```
Unit 3 Activity 1
package hola;
public class Hola {
  public static void main(String[] args) {
   System.out.println("Hola bafethu");
  }
}
Unit 3 Activity 2
package playwithoutput;
public class PlayWithOutput {
    public static void main(String[] args) {
        System.out.println("I am a Java program!");
        System.out.println();
        System.out.println("Hola bafethu");
        System.out.println("How are you?");
        System.out.println("I can do mathematics");
        System.out.println("6 + 4 = " + 6 + 4);
        System.out.println("6 + 4 = " + (6 + 4));
        System.out.println("*************");
    }
}
Unit 3 Activity 5
package greetme;
import java.util.Scanner;
public class GreetMe
{ // begin class
  public static void main(String[] args)
  { // begin main method
      Scanner keyboard = new Scanner(System.in);
      String sName; //declare a variable
      System.out.print("What is your name?");
      sName = keyboard.nextLine();
      System.out.println("Dumela " + sName);
  } // end main method
} //end class
Unit 3 Activity 6
package nameandage;
import java.util.Scanner;
public class NameAndAge
{ // begin class
  public static void main(String[] args)
  { // begin main method
      Scanner keyboard = new Scanner(System.in);
     String sName;
      int iAge;
      System.out.print("What is your name? ");
```

} //end main method
} //end of the class

```
sName = keyboard.nextLine();
      System.out.print("How old are you? ");
      iAge = keyboard.nextInt();
      System.out.println("Dumela " + sName + ", you are " + iAge +
                        " years old.");
  } // end main method
} //end class
Unit 3 Activity 7a) CalculateAverage
package calculateaverage;
import java.util.Scanner;
public class CalculateAverage
{ //start class
  public static void main(String[] args)
  { //start main method
      Scanner keyboard = new Scanner(System.in);
      //declare variables
      String sStudentName;
      int iPPA,iCOH,iCFA;
      double rAverage;
      //input
      System.out.print("Enter the name of the student: ");
      sStudentName = keyboard.nextLine();
      System.out.print("Enter the marks for PPA: ");
      iPPA = keyboard.nextInt();
      System.out.print("Enter the marks for COH: ");
      iCOH = keyboard.nextInt();
      System.out.print("Enter the marks for CFA: ");
      iCFA = keyboard.nextInt();
      //processing
      rAverage = (iPPA + iCOH + iCFA)/3;
      //output
      System.out.println("In the three tests conducted " + sStudentName +
                        " scored an average of " + rAverage + "%");
```

Unit 3 Activity 7b) PoolDimentions

```
package pooldimentions;
import java.util.Scanner;
public class PoolDimentions
{ //start class
  public static void main(String[] args)
  { //start main method
      Scanner keyboard = new Scanner(System.in);
      //declare variables
      String sPoolName;
      double rLength, rWidth, rPerimeter, rArea;
      System.out.println();
      //Prompt the user to provide the Name of the pool used
     System.out.print("Which pool are you interested in? ");
      //Read the name from the keyboard and store it in variable sPoolName
      sPoolName = keyboard.nextLine();
      System.out.println();
      //Prompt the user to enter the length of the pool
     System.out.print("What is its Length? ");
      //Read the length from the keyboard and store it in variable rLength
      rLength = keyboard.nextDouble();
     System.out.println();
      //Prompt the user to enter the Width of the pool
      System.out.print("What is its Width?");
      //Read the length from the keyboard and store it in variable rWidth
      rWidth = keyboard.nextDouble();
     System.out.println();
      //Perform the calculations
      rPerimeter = 2 * (rLength + rWidth);
      rArea = rLength * rWidth;
      //Display the Answers
     System.out.println("The Perimeter of " + sPoolName + " is " +
                       rPerimeter + " meters, and its Area is " +
                       rArea + " square meters");
  } //end main method
} //end of the class
```

Unit 3 Activity 8a) ConvertDistance

```
ConvertDistance // the class name
begin //start of the class
main method
begin //main method
display "How many Kilometers did you cover today? "
enter iKilometer
iMeter = iKilometer * 1000
iCentimeter = iMeter * 100
display "Today you covered an equivalent of " + iMeter + " m"
display "This is also equivalent to " + iCentimeter + " cm"
end //main method
end //end of the class
```

Unit 3 Activity 8b) CalculateSalary

```
CalculateSalary // the class name
begin //start of the class
  main method
  begin //main method
      //declare variables
      String sAssistantName
     double rSalary, rRate
      int iHourWorked
     //Input
     display " Please provide the name of the Assistant: "
      enter sAssistantName
     display "Please provide the hours worked: "
      enter iHourWorked
     display "Please provide the pay per hour: "
     enter rRate
     //Calculate the salary
      rSalary = iHourWorked * rRate
     // Display the Salary
      display " For this month, " + sAssistantName +
             " will earn a total of R " + rSalary
  End //main method
End //end of the class
```

Unit 3 Activity 11: Determine the best data type

Which data type is the most appropriate for the following variables' values?

Variables descriptions	Data types								
	byte	short	int	long	float	double	char		
The interest rate is 13.50					х				
5000 registered students		х							
The number of meters is 1 274 367 851			Х						
The number of tickets sold is 5	Х								
The change is R45.50					Х				
The answer is the square root of 500					Х				
The class group is H							х		
The weight is 10	Х								

Unit 3 Activity 12: Valid / suitable identifiers

Type and Name	Valid ? ✓/×	motivation & suggestion	Suitable? ✓/×	motivation & suggestion
variable iNum&Litres	×	A variable name may not contain a special character other than an underscore.	N/A	N/A
variable iHours	√		✓	
Class Hours	√		√	
Class Class	×	An identifier name may not be a Java keyword	N/A	N/A
variable price 2	×	The variable name should be one word	N/A	N/A
variable payRate	√		×	The additional convention is to let the first letter be an indication of the data type stored in a variable
method print Ln	×	The method println is in one word	N/A	
method nextInt	√		√	

class	✓		The convention is to start the name of
rands		*	a class with a capital letter
Tarius			

Unit 3 Activity 13 Declare and initialize variables

- 1. Translate the following lines into Java code:
 - a) Declare an integer variable called iDistance with an initial value 100.

```
int iDistance = 100;
```

b) Declare and initialize a double variable called rValue to 1.406.

```
double rValue = 1.406;
```

c) Declare a Boolean variable bAnswer and set the value of the variable to true.

```
boolean bAnswer= true;
```

- 2. Which of the following is an invalid assignment statement?
 - a) iTotal=9;
 - b) 75.00=price;

//Invalid. Variable name should be on the left-hand side of the assignment operator.

- c) cAns='N';
- d) iSum=150;
- 3. Fix all the errors in the following code:

```
public class Test
{
pablic statics void main(string[] args)
public statics void main(String[] args)
{
iAge = 52;
int iAge = 52;
int iGift = iAge * 5
int iGift = iAge * 5;

System.Out.printline("Your gift is R" + Gift);
System.out.println("Your gift is R" + iGift);
}
}
```

Unit 3 Activity 14: Calculate age this year (Class name CalculateAge)

Data type of variable	Variable name	What value will be stored in thevariable	Is it an input/intermediate / output variable
int	iThisYear	Date of current year e.g. 2020	input
int	iBirthYear	Year the person was born, e.g. 1995	input

ļi	int	iAge	Age the person will become	output
			in the current year.	

```
package calculateage;
import java.util.Scanner;
public class CalculateAge
{ //start class
    public static void main(String[] args)
    { //start main method
        Scanner keyboard = new Scanner(System.in);
        int iThisYear, iBirthYear, iAge;
        System.out.print("Please enter the current year: ");
        iThisYear = keyboard.nextInt();
        System.out.print("Please enter your birth year: ");
        iBirthYear = keyboard.nextInt();
        iAge = iThisYear - iBirthYear;
        System.out.println("By the end of this year, you will be " + iAge +
                         " years old.");
    } //end main method
} //end class
```

Unit 3 Activity 15 Library fine (Class name LibraryFine)

Data type of variable	Variable name	What value will be stored in thevariable	Is it an input/intermediate / output variable
double	AMT_BOOK_DAY	Fine per book per day	constant
int	iNumBooks	Number of books the student had	input
int	iNumdays	Number of days the books are late	input
double	rFine	The fine the student should pay	output

```
package libraryfine;
import java.util.Scanner; // Scanner is in the java.util package
public class LibraryFine //A new class called LibraryFine is created
{ //start class
    public static void main(String[] args)
    { //start main method
        Scanner input = new Scanner(System.in);
        //Declare variables and constant values
        int iNumBooks, iNumdays;
        double rFine;
        final double AMT_BOOK_DAY = 0.5;
```

```
//Input
System.out.print("How many books:");
iNumBooks = input.nextInt();
System.out.print("How many days late:");
iNumdays = input.nextInt();

//Processing
rFine = iNumBooks * iNumdays * AMT_BOOK_DAY;

//Display the cost on the screen
System.out.println("The fine is: R " + rFine);
} //end main method
} //end class
```

Unit 3 Activity 16 Calculate phone call cost Class name PhoneCallCost)

Data type of variable	Variable name	What value will be stored in the variable	Is it an input/intermediate / output variable
int	FIRST_MIN	The number of minutes that has a standard cost.	constant
double	FIRST_COST	Cost for the first number of minutes.	constant
double	REM_COST	Cost of the remaining minutes each.	constant
double	rDuration	Duration of the phone call.	input
double	rRemMin	Number of minutes above the standard cost minutes.	intermediate
real	rCostRem	Amount to pay for the remaining minutes.	intermediate
real	rTotalCost	Total amount to pay.	output

```
//Prompt the user to enter the duration of the call
System.out.print("Duration of call: ");
rDuration = input.nextDouble();

//Calculate the remaining minutes
    rRemMin = rDuration - FIRST_MIN;
//Calculate the cost for the remaining minutes
    rCostRem = rRemMin * REM_COST;
//Calculate cost for total call
    rTotalCost = FIRST_MIN * FIRST_COST + rCostRem;

//Display the total cost on the screen
    System.out.println("The total cost is: R " + rTotalCost);
} //end main method
} //end class
```

Unit 3 Activity 17: Calculate wages (class name CalculateWages)

Data type of variable	Variable name	What value will be stored in the variable	Is it an input/intermediate / output variable
int	FIRSTHOURS	The number of hours that pays a standard amount.	constant
double	BASE	Amount paid for the first hours (standard amount)	constant
double	PERC_INC	% by which base salary will be increased for hours more than the first hours.	constant
double	TAX_PERC	% tax to be paid	constant
double	rHoursWorked	Number of hours worked	input
double	rOtherHours	Number of hours more than the base (first hours)	intermediate
double	rGrossWage	Total amount earned before tax deducted	output
double	rTax	Amount of tax to be paid	intermediate
double	rNett	Amount earned after tax is deducted	intermediate

```
package calculatewages;
import java.util.Scanner;
public class CalculateWages {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        //Declare constant values
```

```
final int FIRSTHOURS = 5;
        final double BASE = 100.0;
        final double PERC_INC = 15.0;
        final double TAX_PERC = 22.5;
        //Declare variables
        double rHoursWorked, rOtherHours, rGrossWage, rTax, rNett;
        //Input
        System.out.print("Please enter number of hours worked: ");
        rHoursWorked = keyboard.nextDouble();
        //Processing
        rOtherHours = rHoursWorked - FIRSTHOURS;
        rGrossWage = FIRSTHOURS * BASE +
                       BASE * (1 + PERC_INC/100) * rOtherHours;
        rTax = (TAX_PERC / 100) * rGrossWage;
        rNett = rGrossWage - rTax;
        //Output
        System.out.println("Gross wage: R" + rGrossWage);
        System.out.println("Tax: R" + rTax);
        System.out.println("Amount earned: R" + rNett);
    }
}
```

Unit 3 Activity 18: Contractor fees (class name ContractorFees)

Data type of variable	Variable name	What value will be stored in the variable	Is it an input/intermediate / output variable				
double	LABOUR_SQ_M	The cost for labout to install 1 m ² of tiles.	constant				
double	DEPOSIT_PERC	The % deposit to pay.	constant				
double	rLength	Length of the room to be tiled.	Input and output				
double	rWidth	Width of the room to be tiled.	Input and output				
double	rArea	Area of the room to be tiled	Output				
double	rCost	Labour cost.	Output				
double	rDeposit	The amount to pay as deposit.	Output				
double	rBalance	The balance to be paid when the job is done.	Output				

```
import java.util.Scanner;
public class ContractorFees {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        //Declare constants
        final double LABOUR_SQ_M = 65.45;
        final double DEPOSIT PERC = 10.0;
        //Declare variables
        double rLength, rWidth, rArea, rCost, rDeposit, rBalance;
        //Input
        System.out.print("Length of room in meters: ");
        rLength = keyboard.nextDouble();
        System.out.print("Width of room in meters: ");
        rWidth = keyboard.nextDouble();
        //Processing
        rArea = rLength * rWidth;
        rCost = LABOUR SQ M * rArea;
        rDeposit = DEPOSIT PERC/100 * rCost;
        rBalance = rCost - rDeposit;
        //Output
        System.out.println("The room is " + rLength + " x " + rWidth);
        System.out.println("Area " + rArea + " square meters");
        System.out.println("Total cost: R"+ rCost);
        System.out.println("Deposit : R" + rDeposit);
        System.out.println("Balance: R" + rBalance);
    }
}
Unit 3 Activity 19: Food cost (class name EatALot)
package eatalot;
import java.util.Scanner;
public class EatALot {
    public static void main(String[] args) {
        Scanner kb = new Scanner(System.in);
        final double PLATE = 1.05; //plate weighs 1.05 kg
        final double FOOD_UNIT = 100.0; //cost is calculated per 100g food
        final double COST PER UNIT = 7.35; //R7.35 per 100 g
        final double VAT_PERC = 0.15; //VAT % in South Africa in 2021
        double rFoodPlate, rFoodOnly, rCostFood, rAmtPay;
        //input
        System.out.print("Weight of food plus plate in kg: ");
        rFoodPlate = kb.nextDouble();
        //processing
        rFoodOnly = rFoodPlate - PLATE;
        rCostFood = COST_PER_UNIT * rFoodOnly * 1000/100;
        rAmtPay = rCostFood + rCostFood * VAT PERC;
        //output
        System.out.println("Weight of food: " + rFoodOnly + " kg");
```

System.out.println("Amount to pay R" + rAmtPay);

}

}

Unit 3: Activity 22 Translate Math to Java and vice versa

Mathematical equation	Java assignment statement					
$percentageIncrease = rac{New - Old}{Old} imes 100$	rPercIncrease = (rNew - rOld)/rOld * 100;					
$result = \frac{2(x+3y)}{2x-3y}$	rResult = 2*(rX + 3*rY) / (2*rX - 3*rY);					
$result = 2a - \frac{ab}{a+b} \div \frac{b}{b-1}$	= 2*rA - rA*rB / (rA + rB) / (rB / (rB - 1));					
Important! Not	te the parentheses.					
<pre>public static void main(String[] args) { double rA = 5.0, rB = 6.0; double rResult1 = 2 * rA - rA * rB / (rA + rB) / (rB / (rB - 1)); double rResult2 = 2 * rA - rA * rB / (rA + rB) / rB / (rB - 1); System.out.println(rResult1); System.out.println(rResult2); }</pre>						
7.7272727272727275 9.909090909090908						
AgeA = 3(AgeB - 10)	iAgeA = 3 * (iAgeB - 10);					
$weeklyWage = dailyWage \times noDays$	rWeeklyWage = rDailyWage * iNoDays;					
$z = 2a(ab - \frac{a}{b-2})$	rZ = 2*rA * (rA * rB - rA / (rB - 2));					
$z = \frac{x}{2x - 3y} + 6y$	rZ = rX / (2 * rX - 3 * rY) + 6 * rY;					
$z = 3xy + \frac{xy}{y - 2y} - 2y$	3 * rX * rY + rX * rY / (rY - 2 * rY) - 2 * rY;					

Unit 3: Activity 23 Predict results of \ and MOD operators

1. Fill in the blanks:

int result = 10 / 3; int result = 10 % 3; int result = -10 / 3; int result = 3 % 10;	// result will be3 // result will be3 // result will be3 // result will be3	int iNumSweets = 35; int iNumChildren = 4; int iNumEach = iNumSweets / iNumchildren; int iNumLeft = iNumSweets %	iNumEach =8 iNumLeft =3
	77 Tesait Will be <u>s</u>	iNumchildren;	
int result = 11 % 3 % 2;	// result will be0		
double result = 10.0 / 5 / 4;	// result will be <mark>0.5</mark>	int iMinutes = 112; int iHours = iMinutes / 60;	iHours = 1
double result = 1.5 / 0.5;	// result will be	int iRemMinutes = iMinutes % 60;	iRemMinutes52
double result = 12 % 2.5;	// result will be2.0		

2. Predict the exact output of the following program

```
public class CapeToCairo
{ //start class
        public static void main(String[] args)
        { //start main method
                 int iTime = 588224; // time in seconds, to drive from Cape Town to Cairo
                                                   // iSeconds will be _____ 44 ____ seconds
                 int iSeconds = iTime % 60;
                                                   // iTime will be ______ minutes
                 iTime = iTime / 60;
                                                   // iMinutes will be 23 minutes
                 int iMinutes = iTime % 60;
                 iTime = iTime / 60;
                                                   // iTime will be ______hours
                 int iHours = iTime % 60;
                                                   // iHours will be _____ hours
                 int iDays = iTime / 24;
                                                   // iDays will be _____<u>6</u>____
                                                                                 days
                 System.out.println("Driving from Cape Town to Cairo would take " + iDays + "days " + iHours + "hours " +
                             iMinutes + "min and " + iSeconds + "sec.");
        } //end main method
} //end class
```

Screen output:

Driving from Cape Town to Cairo would take 6days 19hours 23min and 44sec.

Unit 3 Activity 24: Chairs in student centre (class ChairsStudentCentre)

```
package chairsstudentcentre;
import java.util.Scanner;
public class ChairsStudentCentre {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        // declare constants
        final int CHAIRSINROW = 54;
        // declare variables
        int iNumChairs, iMaxNumRows, iNumChairsLeft;
        System.out.print("How many chairs are available? ");
        iNumChairs = keyboard.nextInt();
        // Calculate number of rows and left over chairs
        iMaxNumRows = iNumChairs / CHAIRSINROW;
        iNumChairsLeft = iNumChairs % CHAIRSINROW;
        // output
        System.out.println("The maximum number of rows is " + iMaxNumRows);
        System.out.println(iNumChairsLeft + " chairs will be left.");
    }
}
```

Unit 3: Activity 25 Tablets in bottles (class name TabletsInBottle)

```
package tabletsinbottles;
import java.util.Scanner;
public class TabletsInBottles {
    public static void main(String[] args) {
        Scanner keyboard = new Scanner(System.in);
        // Declare constants
        final int TABS_BIG_BOTTLE = 250;
        final int TABS SMALL BOTTLE = 15;
        // Declare variables
        int iNumTablets, iNumBigBottles, iRem, iNumSmallBottles, iRemTablets;
        // input
        System.out.print("Please enter the number of tablets: ");
        iNumTablets = keyboard.nextInt();
        // processing
        iNumBigBottles = iNumTablets / TABS_BIG_BOTTLE;
        iRem = iNumTablets % TABS_BIG_BOTTLE;
        iNumSmallBottles = iRem / TABS SMALL BOTTLE;
        iRemTablets = iRem % TABS SMALL BOTTLE;
        // Show the results
        System.out.println(iNumBigBottles + " bottles with " + TABS_BIG_BOTTLE + "
tablets");
        System.out.println(iNumSmallBottles + " bottles with " + TABS SMALL BOTTLE + "
tablets");
        System.out.println(iRemTablets + " tablets remaining");
    }
}
```

Unit 3 Activity 28 ASCII Decoder

Use the ASCII table to decode the message below.

8	10	10	11	3	10	11	3	9	3	11	10	9	11	10	11	3	10	10	11	11	9	10	10	3
4	4	5	5	2	5	5	2	7	2	5	1	9	4	1	6	2	9	1	5	5	7	3	1	3
Т	h	i	S		i	S		а		S	е	С	r	е	t		m	е	S	S	а	g	е	1

Unit 3 Activity 29 Coconut puzzle

Unit 3 Activity 30 Display initials

```
package dispinit;
import java.util.Scanner;
public class DispInit {
    public static void main(String[] args) {
       String sName, sSurname;
        char cNameInit, cSurnInit, cClassGroup;
       Scanner keyboard = new Scanner(System.in);
       System.out.print("Enter first name: ");
        sName = keyboard.nextLine();
       System.out.print("Enter surname: ");
        sSurname = keyboard.nextLine();
       System.out.print("Enter class group: ");
        cClassGroup = keyboard.next().charAt(0);
        cNameInit = sName.charAt(0);
        cSurnInit = sSurname.charAt(0);
       System.out.println("Your initials are: " + cNameInit + "." + cSurnInit + ".");
       System.out.println("You are in group " + cClassGroup);
    }
```

Unit 3 Activity 31 Widening conversion

Specify the output and/or data type and/or whether the casting is valid or not.

Operation	Casting valid? Y/N	Data type of output	Output displayed
int x=7;	Υ	float	3.0
float $y = x/2$;			
<pre>System.out.println(y);</pre>			
float $x = 9.2/3$;	N	N/A	N/A
<pre>System.out.println(x);</pre>	(Type mismatch: cannot		
	convert from double to		
byte x = 27;	float)	N/A	N/A
byte $x = 27$; x = x+1;	(Type mismatch: cannot	N/A	IN/A
<pre>x = x+1, System.out.println(x);</pre>	convert from int to byte)		
$long \times = 21L;$	Y	double	7.0
double y = x/3.0;	'	double	7.0
System.out.println(y);			
long x = 25L;	Y	double	5.0
double $y = x/5$;	'	double	3.0
System.out.println(y);			
long x = 200L;	Y – the casting is valid	The data type of the	The vlaue 100.0 will
System.out.println(x/2.0);		output will be double.	be displayed.
double x = 200;	N	N/A	N/A
int y = x/2;	(Type mismatch: cannot	,	,
<pre>System.out.println(y);</pre>	convert from double to		
, ,,,	int)		
double $x = 200.0$;	N	N/A	N/A
<pre>int y = 2;</pre>	(Type mismatch: cannot		
Long $z = x/y$;	convert from double to		
<pre>System.out.println(z);</pre>	Long)		
Long $x = 10/5L$;	N	N/A	N/A
<pre>byte y = x;</pre>	(Type mismatch: cannot		
<pre>System.out.println(x);</pre>	convert from Long to		
	byte)		

Float	y=	(float) (2/20)

Operation	Casting valid? Y/N	Data type of output	Output displayed
double $x = 10.0$;	N	N/A	N/A
float y = x/2.0;	(Type mismatch: cannot		
<pre>System.out.println(x);</pre>	convert from double to		
, , , , ,	float)		

Unit 3 Activity 32 Narrowing casting

Specify the output and/or data type and/or whether the casting is valid or not.

Operation	Casting valid? Y/N	Data type of output	Output displayed
double x = 11.9;	Υ	int	11
<pre>int y = (int)x;</pre>			
<pre>System.out.println(y);</pre>			
double $x = 11.9$;	Υ	float	11.0
<pre>float y = (int)x;</pre>			
<pre>System.out.println(y);</pre>			
<pre>double x = 11.0;</pre>	Υ	float	5.0
<pre>float y = (int)x/2;</pre>			
<pre>System.out.println(y);</pre>			
$\underbrace{\text{int } x = 11;}_{\text{double } y = (\text{float}) \times /2; \text{low}}$	Υ 🗸	double 🗸	5.5
double y = $(float)^{x}/2;$			
System.out.println(y);			
int $x_{-}=10$;	Υ	float	2.0
<pre>float y= (long)(x/5L);</pre>			
System.out.println(y);			

Unit 3 Activity 33 Number of 85g packets

```
package numsmallpackets;
import java.util.Scanner;
public class NumSmallPackets {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        double rKgContainer1;
        double rKgContainer2;
        int iNumSmallPackets;
       final int SMALLPACK = 85;
       System.out.print("Enter the mass of container 1 of sweets (in Kg): ");
       rKgContainer1 = sc.nextDouble();
        System.out.print("Enter the mass of container 2 of sweets (in Kg): ");
        rKgContainer2 = sc.nextDouble();
        iNumSmallPackets = (int)((rKgContainer1 + rKgContainer2)* 1000 / SMALLPACK);
        System.out.println(iNumSmallPackets + " small packets of sweets of " + SMALLPACK + " g can be packed");
}
```

Unit 3 Activity 36 a) RoomCost

```
package roomcost;
import java.util.Scanner;
public class RoomCost {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        double rLength, rWidth, rRoomArea, rPriceToPay;
        final double PRICE_PER_METRE = 50.00;
```

```
System.out.print("What is the length of your desired room? (in metres): ");
       rLength = sc.nextDouble();
       System.out.print("What is the width of your desired room? (in metres): ");
       rWidth = sc.nextDouble();
       rRoomArea = rLength * rWidth;
       rPriceToPay = rRoomArea * PRICE PER METRE;
       rPriceToPay = Math.round(rPriceToPay * 100)/100.0;
       System.out.println("You will have to pay R"+ rPriceToPay);
    }
}
Unit 3 Activity 36 b) ConvertPounds
package convertpounds;
import java.util.Scanner;
public class ConvertPounds {
   public static void main(String[] args) {
       Scanner sc = new Scanner(System.in);
       double rPound, rConvertedAmt;
       final double randToPound = 22.00;
       System.out.print("Hi Leo, how much do you have? (in pounds): ");
       rPound = sc.nextDouble();
```

```
rConvertedAmt = rPound * randToPound;
       rConvertedAmt = Math.round(rConvertedAmt * 100)/100.0;
       System.out.println("Leo's pounds amount to R"+ rConvertedAmt);
    }
}
Unit 3 Activity 36 c) HighestMark
package highestmark;
import java.util.Scanner;
public class HighestMark {
   public static void main(String[] args) {
       Scanner sc = new Scanner(System.in);
       double rMark1, rMark2, rHighestMark;
       System.out.print("Enter the first test mark: ");
       rMark1 = sc.nextDouble();
       System.out.print("Enter the second test mark: ");
       rMark2 = sc.nextDouble();
       rHighestMark = Math.max(rMark1, rMark2);
       System.out.println("Higest test mark is "+ rHighestMark);
```

```
PPA/TRO F05D 2021 Unit 3 solutions
     }
 }
 Unit 3 Activity 36 d) AvgThree
 package avgthree;
 import java.util.Scanner;
 public class AvgThree {
     public static void main(String[] args) {
         Scanner sc = new Scanner(System.in);
         double rMark1, rMark2, rMark3;
         int iAverage;
         System.out.print("Enter the first test mark:");
         rMark1 = sc.nextDouble();
         System.out.print("Enter the second test mark:");
         rMark2 = sc.nextDouble();
         System.out.print("Enter the third test mark:");
         rMark3 = sc.nextDouble();
         iAverage = (int) Math.round((rMark1 + rMark2 + rMark3)/3);
         System.out.println("Your average mark is "+ iAverage);
     }
```

}

Unit 3 Activity 36 e) FlashDrives

```
package flashdrives;
import java.util.Scanner;
public class FlashDrives {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        final int NUM_FLASH_DRIVE = 48;
        int iNumStudents, iEqualUsb;
        System.out.print("How many students are in class?");
        iNumStudents = sc.nextInt();
        iEqualUsb = (int) Math.floor(NUM FLASH DRIVE/iNumStudents);
        System.out.println("Students can get "+ iEqualUsb + " USB Flash Drives each");
    }
}
```

Unit 3 Activity 36 f) StudentNumber

```
package studentnumber;
public class StudentNumber {
    public static void main(String[] args) {
       double rStudNumber;
        int iStudNumber;
       rStudNumber = Math.random();
       System.out.println(rStudNumber);
       rStudNumber = rStudNumber * Math.pow(10,7) + 22 * Math.pow(10,7);
        iStudNumber = (int) rStudNumber;
       System.out.println(iStudNumber);
    }
}
Unit 3 Activity 36 g) CircleMeasurements
package circlemeasurements;
import java.util.Scanner;
public class CircleMeasurements {
    public static void main(String[] args) {
       Scanner sc = new Scanner(System.in);
       double rDiameter, rRadius;
       double rCircumference;
       double rArea;
```

```
System.out.print("Enter the diameter: ");
       rDiameter = sc.nextInt();
       rRadius = rDiameter/2;
       rArea = Math.PI * Math.pow(rRadius,2);
       rCircumference = 2 * Math.PI * rRadius;
       System.out.println("The circumference is: "+ rCircumference);
       System.out.println("The area is: "+ rArea);
   }
Unit 3 Activity 36 h) BoxesTiles
package boxestiles;
import java.util.Scanner;
public class BoxesTiles {
   public static void main(String[] args) {
       Scanner sc = new Scanner(System.in);
       double rLength, rWidth, rArea;
       int iNumTileBoxes;
       final int AREA_PER_BOX = 2;
```

```
System.out.print("Enter the length: ");
rLength = sc.nextDouble();
System.out.print("Enter the breadth: ");
rWidth = sc.nextDouble();

rArea = rLength * rWidth;
iNumTileBoxes = (int) Math.ceil(rArea/AREA_PER_BOX);

System.out.println("They should buy "+ iNumTileBoxes + " boxes of tiles");
}
```

Unit 3 Activity 37

Mathematical equation	Pseudo code		Java assignment statement
$A = AB + \frac{B - A}{3B} + \frac{C^{(B+2)}}{A - 2B}$	A = A * B + (B - A) / (3 * B) + C ^ (B + 2) / (A - 2 * B)		
		A =	A * B + (B - A) / (3 * B) + Math.pow(C, B + 2) / (A - 2 * B);
		If the variable	es A and B are integer, you have to ensure that one of the
			perands of the division operation is double. For example:
		A = A *	$B + (B - A) / (\frac{3.0}{4} * B) + Math.pow(C, B + \frac{2.0}{4}) / (A - 2 * B);$
	A :	= A * B + (B - A) / (3	* (double) B) + Math.pow(C, B + 2) / (A - 2 * (double) B);
$B = \frac{175 \bmod 54 \bmod 5}{2}$	B = 175 % 54 % 5 / 2		B = 175 % 54 % 5 / 2.0;
$C = 3 + 20 MOD 7(\frac{12 * 9}{4})$	C = 3 + 20 mod 7 * (12 * 9/4)		C = 3 + 20 % 7 * (12 * 9/4.0);
$D = 2 + 7^{2} (\sqrt[3]{69 - \frac{5^{2}}{5 \bmod 10}}) \backslash 2$	D = 2 + 7 ^ 2 * (69 - 5 ^ 2 / (5 mo	<mark>d 10)</mark> ^ (1/3) \ 2	
		D = 2 + Math.pow	(7,2) * (int) (Math.pow <mark>(69 - 5 * 5 / (5 % 10)</mark> , 1/3.0 <mark>)</mark> / 2);
$E = 167 \mod 12 \mod 2 \times 3 \times 2^2 - \frac{5}{2}$	E = 167 mod 12 mod 2 * 3 * 2 ^ 2	- (5/3)	E = 167 % 12 % 2 * 3 * Math.pow(2,2) – 5/3.0;
3			Parentheses to calculate 5/3.0 are not needed.
$F \approx \frac{\frac{3^5}{4} \mod 8}{3}$	F = round(3^5 / 4 % 8 / 3)		F = Math.round(Math.pow (3,5) / 4 % 8 / 3);
$G = \frac{15}{5}(2) + \frac{30}{6} + 3$	G = 15 / 5 * 2 + 30 / 6 + 3		G = 15 / 5.0 * 2 + 30 / 6.0 + 3;
$H = 2(\sqrt{56})^3 \bmod 17$	$H = 2 * \sqrt{56} ^ 3 \mod 17$		H = 2 * Math.pow(Math.sqrt(56),3) % 17;
$I = \sqrt{7(3^2) + 1} \bmod 3$	$I = \sqrt{7 * 3^2 + 1} \% 3$		I = Math.sqrt(7* Math.pow (3,2) + 1) % 3;

Unit 3 Activity 38 a)

$$m = 5, n = 7, t = 2$$

$$g = n * (m ^ t - 40)$$

$$= 7 * (5 ^ 2 - 50)$$

$$= 7 * (25 - 50)$$

$$= 7 * (-25)$$

$$= -175$$

Unit 3 Activity 38 b)

A = 5, B = 14, C = 23, D = 2

W = B - (B - A * D) ^ D + A mod C + C \ B

= 14 - (14 -
$$\frac{5}{2}$$
) ^ 2 + 5 mod 23 + 23 \ 14

= 14 - ($\frac{14}{2}$ - $\frac{10}{2}$) ^ 2 + 5 mod 23 + 23 \ 14

= 14 - $\frac{4}{2}$ ^ 2 + 5 mod 23 + 23 \ 14

= 14 - $\frac{16}{2}$ + 5 mod 23 + 23 \ 14

= 14 - 16 + 5 + $\frac{1}{2}$ \ 14

= $\frac{14}{2}$ - 16 + 5 + $\frac{1}{2}$ \ 15 mod 23 + 25 + 1

$$=$$
 3 + 1

$$= \underline{4}$$

= 27

Unit 3 Activity 38 c)

a = 10, b = 8, c = 4, d = 30
k = a * (b - c) - a mod c ^ 2 * 2 + d \ c
= 10 * (8 - 4) - 10 mod 4 ^ 2 * 2 + 30 \ 4
= 10 *
$$\frac{4}{4}$$
 - 10 mod $\frac{4}{4}$ ^ 2 * 2 + 30 \ 4
= $\frac{10}{4}$ - 10 mod $\frac{16}{4}$ * 2 + 30 \ 4
= $\frac{40}{4}$ - $\frac{10}{4}$ mod $\frac{16}{4}$ * 2 + 30 \ 4
= $\frac{40}{4}$ - $\frac{10}{4}$ * 2 + 30 \ 4
= $\frac{40}{4}$ - $\frac{10}{4}$ * 2 + 30 \ 4
= $\frac{40}{4}$ - $\frac{20}{4}$ + $\frac{30}{4}$ \ 4
= $\frac{40}{4}$ - $\frac{20}{4}$ + $\frac{30}{4}$ \ 4

Unit 3 Activity 38 d)

Unit 3 Activity 38 e)

$$k = 5$$
, $y = 17$, $z = 10$, $s = 24$

Mathematical formula	Pseudo code	Answer (result)
$W = \frac{kz - y}{y - 6} + \frac{32 + s}{z + 4}$	(k*z-y)/(y-6) + (32+s)/(z+4)	7
$W = (y - z)^{k - 3}$	(y-z)^(k-3)	49
$w = s - z - 3k^2$	$s-z-3*(k^2)$	-61

	s-z-3*k^2 //also correct	
$W = \sqrt{k^4} + \frac{Z}{Z - k}$	$k^4^(1/2) + z/(z-k)$	27
$w = k^2 + \frac{10}{\sqrt{z^2}} - s$	k^2 + 10 / z ^ 2 ^ (1/2) - s	2
$w = 4z^2 - sy + k$	4 * z^2 - s * y + k	-3
$w = \frac{ks}{z} - \frac{\sqrt{100}}{k}(s)$	k * s / z - 100 ^ (1/2)/k * s	-36
$w = \frac{s}{3} - kz + \frac{sz}{8}$	s/3 - k * z + s * z / 8	-12

Unit 3 Activity 39

Pseudo code	Mathematical formula
a) answer = a + b ^ 2 - 5	$a + b^2 - 5$
b) answer = $k - (w + 7) / p + s$	$k - \frac{w+7}{p} + s$
c) answer = $a * b - c + a + (c - k) / s ^ m$	$ab-c+a+rac{c-k}{s^m}$
d) answer = $5 \mod a * 3/\sqrt{c * b}$	$5 \bmod a \frac{3}{\sqrt{bc}}$
e) answer = $k \mod 3 + a + b / c$	$k \bmod 3 + a + \frac{b}{c}$
f) result = $p + r - s * g * 5 ^ a$	$p+r-sg(5^a)$
	$p+r-5^ags$
g) answer = $\sqrt{a^{(3+b)} + c^{2} \mod d}$	$\sqrt{a^{3+b} + c^2 \bmod d}$

Pseudo code	Mathematical formula		
h) answer = $\sqrt[6]{a * b^2 - 2 * c d}$	$\sqrt[6]{ab^2-2\left(\frac{c}{d}\right)}$		
i) answer = a \ b mod 5 * d ^ 2	$\left \frac{a}{b}\right \mod 5d^2$		
j) $answer = (2 * a/c) * ((b3/d) / 5) * e$	$\left(\frac{2a}{c}\right)\left(\frac{3b/d}{5}\right)(e)$		

Unit 3 Activity 40 a)

Step	Type of statement	А	В	С	output	calculations (rough work)
1	assign	5				
2	assign		7			
3	calculation			9		C=A*2-1 = 5*2-1=10-1=9
4	calculation		9			B=B+2=7+2=9
5	output				The value of B = 9	
6	output				The value of C = 9	

Unit 3 Activity 40 b)

Step	Type of statement	а	b	С	d	output	(calculations - rough work)
1	assign	7					
2	calculation		49				b=a ^ (a-5)=7^(7-5)=7^2=49
3	calculation			70			c=b+a*3=49+7*3=49+21=70
4	calculation				0		d=a\b+(b-a)mod3=7\49+(49-7)mod3=7\49+42mod3=0+42mod3=0
5	calculation	70					a=c-b*d mod14=70-49*0mod14=70-0mod14=70-0=70
6	output					700	no parentheses, therefore Java will display the values itself.
7	output					70	parentheses will let Java do the calculation and then display the value

Unit 3 Activity 40 c)

Step	Type of statement	а	b	С	output	calculations (rough work)
1	assign	5				
2	assign		2			
3	calculation			9		c=a+b*2=5+2*2=5+4=9
4	calculation		19			b=a*3+b^2=5*3+2^2=15+2^2=15+4=19
5	output				19	
6	calculation		0			b=cmod3=9mod3=0
7	calculation	3				a=a\3+2=5\3+2=1+2=3
8	output				19a is 3	
9	output				b = 0	
			exact out	put	19a is 3	
					b = 0	

Unit 3 Activity 40 d)

Step	Type of statement	w	х	У	Z	output		calculations (rough work)
1	assign	12						
2	assign			17				
3	calculation		14					x=w+ymod5=12+17mod5 = 12 + 2 = 14
4	calculation				27			z=y-w/3+x=17-12/3+14=17-4+14=27
5	output					x = 14	z = 27	

Unit 3 Activity 40 e)

Step	Type of statement	W	Х	Υ	Z	output	calculations (rough work)
1	assign		15				
2	assign			23			
3	assign				2		
4	calculation			4			Y=X*Z\7=15*2\7=30\7=4
5	calculation	7					W=XMOD8=15MOD8=7
6	output					The value of Y is 4	
7	output					The value of W is 7	

Unit 3 Activity 42: Unary operators

What is the value of each variable after the calculation is executed? Assume that the initial value of each variable in each statement is integer value 10.

Statements	У	х
a) y = y * ++x;	110	11
b) y =y * x++;	100	11
c) y = y / ++x;	0	11
d) y = y / x++;	1	11
e) $y = -(y + x);$	-20	9
f) $y = -(y +x);$	-19	9
g) $y = -(y + x++);$	-20	11
h) $y = -(-y + (x+1)*++x);$	-111	11
i) $y = -(y \% x) * (x / y);$	0	9
j) y = -(++y % x) * (x / y);	0	9
k) $y = -(++y \% x) * (++x / y);$	-1	11

Unit 3 Activity 43: Compound (augmented) operators

Ordinary Code	Code using Compound operator
iSum = iSum + iX++;	iSum += iX++;
<pre>iProduct = iProduct *iX;</pre>	iProduct *=iX;
rPrice = rPrice - rPrice * 0.05;	rPrice -= rPrice * 0.05;
iNum = iNum % (iNum / 5);	iNum %= iNum / 5;

Write four different Java statements that add 1 to an integer variable x:

```
x = x + 1;
++x;
x++;
x +=1;
```

Write four different Java statements that subtract 1 to an integer variable x:

```
x = x - 1;
--x;
x--;
x -=1;
```

Use only one statement to assign the product of the current value of integer variables of a and b to x and then increment the value of a:

```
x = a++ * b; or x = b * a++;
```

Unit 3 Activity 46: Predict output when escape sequences are used

Predict the output of the following statements

Unit 3 Activity 47: Write code to format output using escape sequences

a) Complete the statements so that your output looks like the following screenshot using a single println() to display the output.

Output screenshot	Statements
pizza menu Name Rands Cheesy 12	<pre>int iPrice=12; System.out.println("\t pizza menu\n Name\t\t Rands\n Cheesy \t"+iPrice);</pre>

b) Use a single println() with escape sequences to change the output statement to produce the formatted output.

Unit 3 Activity 48: Predict the format of a number when DecimalFormat class is used

How will the values be displayed after they have been formatted with the following formatting patterns?

Values Formatting patterns		Formatted values	
123456.789	"R###,###.##"	R123,456.79	R123 456.79
0.045	"0.00%"	4.50%	
4561237.3	"###,###.00"	4,561,237.30	4 561 237.30
4561237.3	"###,###.##"	4,561,237.3	4 561 237.3

Values may display differently on different computers, depending on the display settings of the operting system. For example, the thousands' separator for floating-point values may be a space.

Unit 3 Activity 49: Format output using methods from the DecimalFormat class

What formatting pattern should be used to change (modify) the unformatted output to the formatted one

Formatting pattern	Unformatted output	Formatted output
"R.00"	45.0768	R45.08
"00.0%"	0.007892	00.8%
"00.000"	4.05	04.050
"00.##" or "00.00"	4.05	04.05
"###,###.00"	974586.2	974,586.20