Лабораторная работа №5

Модель эпидемии (SIR)

Шияпова Дарина Илдаровна

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы 3.1 Реализация модели в хсов	6 6 10
4	Выводы	13

Список иллюстраций

3.1	Задание переменных окружения в хсов	7
3.2	Модель SIR в xcos	8
3.3	Задание начальных значений в блоках интегрирования	8
3.4	Задание начальных значений в блоках интегрирования	ç
3.5	Задание конечного времени интегрирования в хсоз	ç
3.6	Эпидемический порог модели SIR при $\beta=1, \nu=0.3$	10
3.7	Модель SIR в xcos с применением блока Modelica	10
3.8	Параметры блока Modelica для модели SIR	11
3.9	Параметры блока Modelica для модели SIR	12
3.10	Эпилемический порог молели SIR при $\beta=1, \nu=0.3$	12

1 Цель работы

Построить модель SIR в xcos и OpenModelica.

2 Задание

- 1. Реализовать модель SIR в в *хсоs*;
- 2. Реализовать модель SIR с помощью блока Modelica в в xcos;
- 3. Реализовать модель SIR в OpenModelica;
- 4. Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- 5. Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- 6. Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

3 Выполнение лабораторной работы

Задача о распространении эпидемии описывается системой дифференциальных уравнений:

$$\begin{cases} \dot{s} = -\beta s(t)i(t); \\ \dot{i} = \beta s(t)i(t) - \nu i(t); \\ \dot{r} = \nu i(t), \end{cases}$$

где β – скорость заражения, ν – скорость выздоровления.

3.1 Реализация модели в хсоѕ

Зафиксируем начальные данные: $\beta=1,\, \nu=0,3, s(0)=0,999,\, i(0)=0,001,\, r(0)=0.$

В меню Моделирование, Установить контекст зададим значения переменных β и ν (рис. 3.1).

Рис. 3.1: Задание переменных окружения в хсоз

Для реализации модели (рис. 3.2) потребуются следующие блоки xcos:

- CLOCK_с запуск часов модельного времени;
- CSCOPE регистрирующее устройство для построения графика;
- TEXT_f задаёт текст примечаний;
- MUX мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых;
- INTEGRAL_m блок интегрирования;
- GAINBLK_f в данном случае позволяет задать значения коэффициентов β и ν ;
- SUMMATION блок суммирования;
- PROD_f поэлементное произведение двух векторов на входе блока.

Рис. 3.2: Модель SIR в хсоѕ

В параметрах верхнего и среднего блока интегрирования необходимо задать начальные значения s(0)=0,999 и i(0)=0,001 (рис. 3.3,3.4).

Рис. 3.3: Задание начальных значений в блоках интегрирования

Рис. 3.4: Задание начальных значений в блоках интегрирования

В меню Моделирование, Установка зададим конечное время интегрирования, равным времени моделирования, в данном случае 30 (рис. 3.5).

Рис. 3.5: Задание конечного времени интегрирования в хсоз

Результат моделирования представлен на рис. 3.6, где черной линией обозначен график s(t) (динамика численности уязвимых к болезни особей), красная линия определяет r(t) — динамику численности выздоровевших особей, наконец, зеленая линия определяет i(t) — динамику численности заражённых особей. Пересечение трёх линий определяет порог эпидемии.

Рис. 3.6: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

3.2 Реализация модели с помощью блока Modelica в xcos

Готовая модель SIR представлена на рис. 3.7.

Для реализации модели SIR с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f и MUX требуются блоки CONST_m — задаёт константу; MBLOCK (Modelica generic) — блок реализации кода на языке Modelica. Задаём значения переменных β и ν (рис. 3.1).

Рис. 3.7: Модель SIR в хсоз с применением блока Modelica

Параметры блока Modelica представлены на рис. 3.8,3.9. Переменные на входе ("beta", "nu") и выходе ("s", "i", "r") блока заданы как внешние ("E").

Рис. 3.8: Параметры блока Modelica для модели SIR

Рис. 3.9: Параметры блока Modelica для модели SIR

В результате получаем график (рис. 3.10), построенный с помощью блока Modelica идентичный графику (рис. 3.6), построенному без них.

Рис. 3.10: Эпидемический порог модели SIR при $\beta=1, \nu=0.3$

4 Выводы

В процессе выполнения данной лабораторной работы была построена модель SIR в *xcos* и OpenModelica.