Notes concerning article

Taro Valentin Brown

 $August\ 13,\ 2018$

1 Role of γ

1.1 Introduction

 μ is the renormalization scale,

$$m_0(\lambda) \equiv m_r(\lambda) Z_m(\epsilon, g_r)$$
 (1.1)

RG equations

$$-\gamma_m \equiv \frac{\partial \log m_r(\lambda)}{\partial \log \mu} = -\frac{\partial \log Z_m}{\partial \log \mu} = \frac{\partial \log Z_m}{\partial \log \mu_0}$$

$$m_0(\lambda) = \lambda m_0, \quad \mu_0(\lambda) = \lambda \mu_0$$
(1.2)

We want to find how $m_r(\lambda)$ transforms. Differentiating equation 1.1

$$\frac{\partial m_0(\lambda)}{\partial \log \lambda} = \frac{\partial}{\partial \log \lambda} \left(m_r(\lambda) Z_m \right) = Z_m \frac{\partial m_r(\lambda)}{\partial \log \lambda} + m_r(\lambda) \frac{\partial Z_m}{\partial \log \lambda}
\frac{1}{Z_m} \frac{\partial m_0(\lambda)}{\partial \log \lambda} = \frac{\partial m_r(\lambda)}{\partial \log \lambda} + \frac{m_r(\lambda)}{Z_m} \frac{\partial Z_m}{\partial \mu_0} \frac{\partial \mu_0}{\partial \log \lambda}
\frac{\partial m_0(\lambda)}{\partial \log \lambda} = \frac{\partial m_0(\lambda)}{\partial \lambda} \left(\frac{\partial \log \lambda}{\partial \lambda} \right)^{-1} = m_0 \lambda = m_0(\lambda)
\frac{m_0(\lambda)}{Z_m} = \frac{\partial m_r(\lambda)}{\partial \log \lambda} + \frac{m_r(\lambda)}{Z_m} \frac{\partial Z_m}{\partial \mu_0} \mu_0(\lambda)
\frac{\partial Z_m}{\partial \mu_0} = \frac{\partial \log Z_m}{\partial \log \mu_0} \frac{\partial \log \mu_0}{\partial \mu_0} \left(\frac{\partial \log Z_m}{\partial Z_m} \right)^{-1} = -\gamma_m \frac{Z_m}{\mu_0}
\frac{m_0(\lambda)}{Z_m} = m_r(\lambda) = \frac{\partial m_r(\lambda)}{\partial \log \lambda} - \gamma_m m_r(\lambda)
\frac{\partial m_r(\lambda)}{\partial \log \lambda} = (1 + \gamma_m) m_r(\lambda)$$
(1.3)

$$\frac{\partial m_r(\lambda)}{\partial \lambda} = \frac{(1+\gamma_m)}{\lambda} m_r(\lambda) \Rightarrow m_r(\lambda) = \lambda^{1+\gamma_m} m_r \tag{1.4}$$