CT - ECC Sam Robbins

Hamming Codes

1 Linear Codes

1.1 Summary on linear codes

An (n, k, d_{min}) -linear code C is a linear subspace of dimension k of F^n with minimum distance d_{min}

We can represent it by

• Generator matrix $G(k \times n)$ used for encoding

$$C = \left\{ \mathbf{mG} : \mathbf{m} \in F^k \right\}$$

mG means the message multiplied by the generator matrix

• Parity-check matrix $\mathbf{H}(n - k \times n)$ used for detecting errors

$$C = \{ \mathbf{c} \in F^n : \mathbf{c}\mathbf{H}^\top = \mathbf{0} \}$$

$$cH^T \Leftrightarrow c_1 = c_2 = c_3 = c_4 = \dots$$

The repetition code and Parity-Check codes are dual to each other, meaning that they have symmetry. The generator matrix of a repetition code is H of a parity-check code and vice versa.

1.2 Parameters of a linear code

A **linear code** is simply any subspace of F^n

Parameters:

- Length n
- Dimension k
- Redundancy r = n k
- Rate R = k/n
- Minimum distance d_{min} this shows how many errors can be corrected
- Error-correction capability $t = \lfloor (d_{min} 1)/2 \rfloor$

We usually write (n, k, d_{min}) -"name of code"

1.3 Parameters of parity-check and repetition codes

Parameter	Parity-check	Repetition
Length n	n	n
Dimension k	n-1	1
Rendundancy r	1	n-1
Rate R	1-1/n	1/n
Minimum distance d_{min}	2	n
Error-correction capability t	0	$\lfloor (n-1)/2 \rfloor$

CT - ECC Sam Robbins

1.4 Minimum distance of a linear code

Theorem: Viewing the columns of H as vectors in F^{n-k} , d_{min} is the minimum number of linearly dependent columns of H

E.g. for the (5, 1, 5)-repetition code

$$H_{\text{repetition}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Any set of four columns is linearly independent, but the set of all five columns is linearly dependent, therefore $d_{min} = 5$

This is true for all repetition codes, you can see this adding all the columns together, remembering modulo 2, the linear combination is 0.

2 Hamming codes

2.1 The Hamming code of redundancy 3

Definition: This is the linear code with the parity check matrix

$$H = \left(\begin{array}{ccccccc} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{array}\right)$$

The columns are the integers 1 to 7 written in binary

Any two columns are linearly independent; the first 3 are linearly dependent.

Therefore $d_{min} = 3$ this is the (7,4,3)-Hamming code

So for any matrix, the number of linearly dependent rows is equal to d_{min}

2.2 Generalisation

For any $r \ge 2$ we use the parity-check matrix whose columns are all the integers from 1 to $2^r - 1$ in binary

- For r=2: the (3,1,3)-repetition code
- For r=3: the (7,4,3)-Hamming code
- For r=4: the (15,11,4)-Hamming code with parity-check matrix

Note that $d_{min} = 3$ for all r

2.3 Parameters

In general a Hamming code has parameters

- Length $n = 2^r 1$
- Dimension $k = 2^r r 1$
- Redundancy r = n k
- Rate $R = 1 r/(2^r 1)$
- Minimum distance $d_{min} = 3$
- Error correction capability t = 1

CT - ECC Sam Robbins

2.4 Optimality of Hamming codes

The **sphere-packing bound**: If C is a code of length n which can correct at least one error (and hence $d_{min} = 3$), then

$$|C| \le \frac{2^n}{n+1}$$

Consider again the spheres showing the errors that can be corrected.

The volume of a sphere is $\frac{4}{3}\pi r^3$

There are |C| spheres which do not intersect.

There are |C|(n + 1) vectors in all the spheres

 $|C|(n + 1) \le 2^n$ (can't be greater than the number of vectors)

3 CW

The hamming encoder is mG

Message decoder is just doing the opposite of creating the message in the first question.