19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

No de publication :
(A n'utiliser que pour le classement et les commandes de reproduction).

2.162.025

Nº d'enregistrement national

72.42279

(A utiliser pour les paiements d'annuités, les demandes de copies officielles et toutes autres correspondances avec l'I.N.P.I.)

DEMANDE DE BREVET D'INVENTION

1re PUBLICATION

(22) (41)	Date de dépôt Date de la mise à la disposition du public de la demande	28 novembre 1972, à 16 h 16 mn. B.O.P.I. — «Listes» n. 28 du 13-7-1973.
(51)	Classification internationale (Int. Cl.)	A 61 k 7/00//C 08 g 33/00.
71	Déposant : Société anonyme dite : L'O	DRÉAL, résidant en France.

- 73 Titulaire : Idem (71)
- (74) Mandataire : Alain Casalonga, 8, avenue Percier, 75008 Paris.
- 54 Compositions de traitement et de conditionnement de la chevelure.
- (72) Invention de : Guy Vanlerberghe et Henri Sebag.
- (33) (32) (31) Priorité conventionnelle : Demande de brevet déposée dans le Grand-Duché de Luxembourg le 29 novembre 1971, n. 64.371 au nom de la demanderesse.

15

20

25

30

35

La présente invention concerne des compositions de traitements et de conditionnement de la chevolure.

La présente demando a pour objet des compositions cosmétiques pour les cheveux contenant un polymère cationique filmogène de bas poids moléculairo.

Les cheveux de nombreuses personnes, par suite do l'état général ou des traitements sensibilisants subis périodiquement tels que décolorations, permanentes ou teintures, souvent difficiles à démêler et à coiffer surtout en ce qui concerne les chevelures abondantes. Ils sont également, et à des degrés divers, secs, ternes et rèches ou manquent de "vigueur" et de "nervesité". Ils sont de plus très sensibles à l'humidité de l'air, ce qui explique que les mises en plis ne tiennent pas longtemps. On est par conséquent obligé d'augmenter la fréquence des traitements, ce qui accentue les inconvénients précités.

La présonte invention permet de limiter ou de corriger ces défauts par application comme conditionneur, sur les cheveux, d'un polymère cationique, filmogène et de bas poids moléculaire pouvant redonner au cheveux toute sa vigueur et son éclat.

Co polymèro peut Otro utilisé soul ou comme composé principal, dans des lotions, crèmes ou gels coiffants, lotions do mise en plis, renforçateurs do mise en plis, ou encore comme adjuvant dans une composition de shampooing, de mise en plis, de fixateur de permanente ou de composition de teinture, de crème de traitement pour cheveux socs ou gras, de lotion anti-pelliculaire et dans des compositions similaires.

L'application d'un conditionneur ou d'une composition cosmétiquo, selon la présente invention, a pour effet d'améliorer le démêlage du cheveux humide et de donner au cheveu sec de la brillance, de la douceur, de la docilité à la coiffure. Le cheveu semble plus léger et en même temps plus épais et plus "nerveux".

Lo conditionneur solon l'invention, qui remplié les fonctions d'un adoucissant et d'un émollient, laisso, après application dans un shampooing par exemple, une chevelure plus brillante et plus volumineuse, plus aérée, sans apparition d'électricité statique.

Le polymèro cationique solon l'invention, présente d'autre part l'avantage de ne pas donner lieu au phénomène de poudrage fréquomment observé avec do nombroux polymères.

Il est de plus à noter que l'introduction d'un tel condi-40 tionneur dans les compositions selon l'invention, n'entraîne pas de diminution sensible des propriétés do celles-ci. Les polymères cationiques utilisables selon l'invention sont caractérisés par le fait que les groupements cationiques font partie des chaînes principales et qu'ils proviennent essentiellement d'amines hétérocycliques bis secondaires et de préférence de la pipérazine.

Les compositions cosmétiques selon l'invention renferment (1) un polymère cationique filmogène de bas poids moléculaire de formule

10

$$-A-Z-A-Z-A-Z \qquad \qquad (I)$$

dans laquelle A désigne un radical dérivé d'un hétérocycle comportant deux fonctions amine secondaire et de préférence le radical

15

et Z désigne le symbole B ou B°; B et B° identiques ou différents désignent un radical bivalent qui est un radical alkylène à chaîne droite ou ramifiée, comportant jusqu°à 7 atomes de carbone dans la chaîne principale, non substitué ou substitué par des groupements hydroxyle et pouvant comporter en outre des atomes d'oxygène, d'azote, de soufre, l à 3 cycles aromatiques ou hétérocyles; les atomes d'oxygène, d'azote et de soufre pouvant être présents sous forme de groupements éther, thioéther, sulfoxyde, sulfone, sulfonium, amine, alkylamine, alkénylamine, benzylamine, oxyde d'amine, ammonium quaternaire, amide, imide, alcool, ester et/ou uréthane ou (2) un sel d'ammonium quaternaire d'un polymère de formule (I) ou (3) le produit d'oxydation d'un polymère de formule (I).

Plusieurs des polymères de formule (I) sont des composés nouveaux.

Parmi les polymères préférés appartiennent ceux dans lesquels A a la signification ci-dessus indiquée et B et B identiques ou différents désignent un radical alkylène à chaîne droite ou ramifiée ayant jusqu'à 7 atomes de carbone dans la chaîne principale, non substitué ou substitué par un groupement hydroxyle,

ou un groupement alkylène ou hydroxyalkylène ayant jusqu'à 7 atomes de carbone interrompu par un ou plusieurs groupements 40 choisis parmi les groupements amine, alkylamine, alkénylamine,

10

15

20

25

30

35

benzylamine, oxyde d'amine, ammonium quaternaire, carboxamide, éther, pipérazinyle et/ou le groupement

Ces polymères sont le plus généralement rigoureusement alternés, c'est-à-dire du type

$$-A - B - A - B - \Lambda - B - \qquad (II)$$

où A ot B ont les significations ci-dessus indiquées.

Cos polymèros rigourousement alternés utilisables dans la présente invention, peuvent être préparés solon des procédés classiques, par polyaddition ou polycondonsation (a) de la pipérazine ou de ses dérivés comme par exemple la N,N'bis-(hydroxyéthyl) pipérazine.

sur (b) des composés bifonctionnels tels que

- (1) dos dihalogénuros d'alcoyles ou d'alcoylearyles tels quo des chloruros ou bromures d'éthylène ou le bis chlorométhyl 1,4-bonzène;
- (2) dos dérivés dihalogénés plus complexes tols que le bis-(chloracétyl)éthylène diamine 8
- (3) dos bis halohydrines commo la bis chloro-3 hydroxy-2 propyléthor, ou toute autre bis chlorhydrine obtenue de façon connue par condensation de l'épichlorhydrine (i) sur une amine primaire éventuellement hydroxylée, (ii) sur une diamine bis secondaire comme la pipérazine, la 4,4%-dipipéridyle, la bis 4,4% (N-méthylaminophényl)-méthane ou la N,N% diméthyléthylène diamine ou propylène diamine, (iii) sur un & dimercaptoalcane, (iv) sur un diel comme l'éthylène glycel eu (v) sur bis phénel comme l'hydroquinene eu le "bis phénel A";
 - (4) des bis époxydes commo le diglycidyl éther ou la N,N'bis(époxy-2,3 propyl)pipérazino éventuellement obtenus
 à partir des bis halohydrines correspondantes;
 - (5) dos épihalohydrines comme l'épichlorhydrine ou l'épichlorhydrine ;

10

15

20

bis maléimide dérivé de l'éthylène diamine, ou encore des bis acrylamides comme le méthylène bis acrylamide, la pipérazine bis acrylamide, dérivés de diamines bis primaires ou bis secondaires.

- (7) des acides insaturés comme l'acide acrylique ou méthacrylique ou leurs esters méthyliques ou éthyliques;
- (8) des diacides comme les acides succinique, adipique, triméthyl-2,2,4 ou -2,4,4 adipique ou téréphtalique, les chlorures d'acides ou les esters méthyliques ou éthyliques correspondants;
- (9) des diisocyanates comme le toluène diisocyanate ou lo triméthyl-2,2,4 ou -2,4,4-hexaméthylène d'isocyanato; les réactions de polyaddition ou de polycondensation étant effectuées à la pression ambiante et à uno température comprise entre 0 et 100°C, le rapport molaire (a) 3 (b) étant de 0,85 3 1 à 1,15 3 1.

Bien entendu, les composés de l'invention peuvent êtro dans certains cas, avantageusement préparés de la même manière à partir de la N,N'bis (chloro-3, hydroxy-2 propyl) pipérazine ou à partir de la N,N' bis (époxy-2,3 propyl) pipérazine et d'un composé bie fonctionnel tel qu'une diamine bis secondaire, un dimercaptan, un diol, un diphénol, un diacide, une amine primaire telle qu'une alkylamine, alkénylamine, arylalkylamine, dont les deux atomes d'hydrogène peuvent être substitués et qui se comporte comme un composé bifonctionnel.

Les polymères cationiques utilisables solon l'invention peuvent également, dans certains cas, être du type

$$-A-B-A-B'-$$
 (III)

30

35

25

c'est-à-dire être constitués de chaînes polymères dans lesquelles A représentant un motif amine hétérocyclique bis secondaire par exemple le motif pipérazine, est réparti régulièrement, les doux motifs B et B' désignés par Z dans la formule (I) sont répartis de façon statistique.

Co type de polymères est obtenu quand on condense la pipérazine ou l'un de ses dérivés avec un mélange de deux dérivés bifonctionnels.

Les polycondensats du type (I), (II) ou (III) peuvent ensuite, 40 de façon connue, être oxydés avec de l'eau oxygénée ou avec des

15

20

25

30

peracidos, ou encore peuvent être quaternisés avec des agents de quaternisation connus, comme par exemple le chlorure, bromure, ioduro, sulfate, mésylate ou tosylate d'alkyle inférieur et de préférence do méthyle ou d'éthyle, le chlorure ou bromure de benzyle ou bien peuvent être condensés avec l'oxyde d'éthylène, l'oxyde do propylène, l'épichlorhydrine ou le glycidol.

Dans le cas de composés dans lesquels les motifs Z ou B et B' no comportent pas d'azote basique ni de thioéther, seuls les motifs A seront modifiés statistiquement ou quasi totalement par quaternisation ou exydation. Dans le cas contraire n'importe quel motif pourra être modifié.

Los réactions d'oxydation peuvent ôtre réalisées avec des proportions de réactifs de 0 à 100 % par rapport aux groupements oxydables et les réactions de quaternisation dans des proportions de 0 à 50 %.

Les polymères cationiques utilisables selon l'invention sont encore caractérisés par le fait qu'ils sont tous filmogènes et sont généralement de poids moléculaires relativement bas, c'estadire inférieurs à 15.000.

Ils sont solubles dans l'eau en milieu acide. Nombre d'entre eux sont également solubles tels quels dans l'eau sans addition d'acide ou en milieu hydro-alcoolique.

Ils sont particulièrement efficaces pour les cheveux sensibilisés après des traitements comme les décolorations, les permanentes ou les teintures, mais peuvent aussi être avantageusement utilisés pour les cheveux normaux.

Ils peuvent êtro introduits dans des proportions do 0,1 à 5 % ot de préférence 0,2 à 3 % dans différentes compositions cosmétiques comme des lotions, des crèmes ou des gels coiffants, en tant que constituant principal, ou encore dans des shampooings, compositions do mises en plis, de fixateurs de permanentes, ou de teintures, etc..., en tant qu'adjuvants en présence d'autres composés tels que des tensicactifs anioniques, cationiques non ioniques, amphotères ou zwitterioniques, des oxydants, des synergistes ou stabilisants de mousse, des séquestrants, des surgraissants, des épaississants, des adoucissants, des antiseptiques, des conservateurs, des colorants, des parfums, des germicides ou autres polymères anioniques, cationiques, amphotères ou non ioniques.

Ils sont utilisables dans les différentes compositions dont 40 les pH-varient-do-3 à-ll,-soit-sous-forme de sels d'acides minéraux

10

15

25

ou organiques, soit sous forme de base libre ou encore de quaternaires.

Les compositions cosmétiques pour cheveux selon l'invention peuvent se présenter sous forme de solution aqueuse, hydroalcoclique, de crème, de pâte, de gel, ou de poudre. Elles peuvent également renfermer un propulseur et être conditionnées en bombe aérosol.

Les compositions de shampooings pour cheveux selon l'invention sont caractérisées par le fait qu'elles renferment on plus d'un agent de surface anionique, cationique, non ionique, amphotère, et/ou zwiterrionique, un ou plusieurs composés de formule (I) ainsi qu'éventuellement des synergistes ou stabilisants do mousse, des séquestrants, des surgraissants, des épaississants, une ou plusieurs résines cosmétiques, des adoucissants, des colorants, des parfums, des antiseptiques, des conservateurs et tout autre adjuvant habituellement utilisé dans les compositions cosmétiques.

Les polymères de formule (I) permettent également de préparer des lotions de mise en plis, des renforçateurs de mise en plis, des crèmes de traitement, des conditionneurs pour cheveux, des lotions anti-pelliculaires et d'autres compositions similaires caractérisées par le fait qu'elles renferment un ou plusieurs polymères de formule (I) ayant un poids moléculaire, déterminé par abaissement de la tension de vapeur, compris entre 1000 et 15000, ou le sel d'ammonium quaternaire ou l'oxyde d'amine de ces polymères, éventuellement mélangés à d'autres résines cosmétiques.

Exemplos de préparation du polymère

EXEMPLE 1

Polycondensation de la pipérazine et de l'épichlorhydrine.

A une solution de 97 g (0,5 mole) d'hexahydrate de pipérazine

dans 125 g d'eau, on ajoute goutte à goutte, en l'espace d'une
heure, 46,3 g (0,5 mole) d'épichlorhydrine, tout en agitant et en
maintenant la température à 20°C. On continue à agiter encore
pendant l heure à 20°C, puis on chauffe la masse réactionnelle
à 90-95°C pendant 2 heures. On additionne ensuite à cette température, en l'espace d'une heure, 0,5 mole d'hydroxyde de sodium sous
forme d'une solution de NaOH à 40 % (50 g). Il apparaît alors un
trouble au sein de la solution. On maintient la température encore
pendant 15 minutes puis on refroidit sous agitation tout en rajoutant 182 g d'eau pour ramener la concentration à 20 % d'extrait sec
dont 14,5 % de matière active et 5,5 % de NaCl.

25

30

35

On obtient ainsi une solution limpide et presque incolore ayant une viscosité de 2,5 poises, mesurée à 25°C.

Par évaporation d'une solution diluée du composé ainsi préparé, on obtient un film rugueux et opaque à cause de la présence du chlorure de sodium, mais dur et non collant.

EXEMPLE 2

Polycondonsation do la N,N°bis-(époxy-2,3 propyl)pipérazine ot do la pipérazino.

On prépare un composé semblable à celui de l'exemple 1 mais exempt de chlorure de sodium par polycondensation de pipérazine et de N,N' bis (époxy=2,3 propyl)pipérazine en milieu aqueux et en proportions stoechiométriques. Le N,N'bis (époxy=2,3 propyl) pipérazine peut être préparé de la façon suivante s

A 86 g (1 mole) do pipérazine anhydro dissous dans 540 g d'isopropanol on ajouto, on l'espace de 30 minutes et à la température de 10 - 15°C, 185 g d'épichlorhydrine (2 moles). On maintient cette température sous agitation pendant 7 heures.

La dichlorhydrine dérivée do la pipérazine, ainsi obtenue, est filtrée et séchée. C'est un produit blanc cristallisé ayant un point de fusion de 108 = 110°C.

50,7 g (0,18 mole) de dichlorhydrine ainsi obtenue sont dispersés dans 100 ml de benzène. La suspension est refroidio à 10°C, puis on ajoute par fractions, en l'espace de 30 minutes, 15,5 g (0,37 mole) d'hydroxyde de sodium broyé. On maintient cetto température pendant 2 h 1/2. On filtre et rince le précipité de chlorure de sodium avec trois fois 100 ml de benzène.

Après élimination du benzèno, sous vide partiol, on recueille 26 g de solide blanc correspondant d'après les analyses fonctionnelles au N,Nº bis (époxy-2,3 propyl) pipérazino.

25 g (0,125 mole) de produit ainsi préparé sont chauffés au reflux avec 10,8 g (0,125 mole) de pipérazine anhydre dans 60 g d'isopropanol pendant 3 h 1/2. Le polymère cationique est alors partiellement précipité. On élimine le solvant sous vide partiel et on obtient ainsi une poudre presque blanche, soluble dans l'eau, dont le point de fusion est de 190°C et dont le poids moléculaire, mesuré dans le chloroforme par la méthode de l'abaissement de la tension de vapeur est de 2460.

EXEMPLE 3

Quaternisation du produit de polycondensation de la pipérazine et de l'épichlorhydrine.

A 200 g de solution obtenue selon l'exemple 1 et contenant 0,4 équivalent d'azote basique, on ajoute 170 g d'alcool absolu puis 25,3 g (0,2 mole) de chlorure de benzyle et on chauffe à 80°C pendant 1 h 1/2. L'éthanol est ensuite éliminé sous vide partiel, tout en rajoutant de l'eau, pour obtenir une solution à 10 % d'extrait sec.

10

15

EXEMPLE 4

Oxydation du produit de polycondensation de la pipérazine et de l'épichlorhydrine.

A 100 g de solution obtenue selon l'exemple 1 et contenant 0,2 équivalent d'azote basique on ajoute à la température de 50°C, 7,2 ml (0,13 mole) d'eau oxygénée à 200 volumes et on maintient la température pendant 10 heures.

La solution de polymère obtenue est toujours parfaitement limpide et donne par évaporation des films comparables à ceux de l'exemple 1.

20

25

30

EXEMPLE 5

Polycondensation de la pipérazine, de la benzylamine et de l'épichlorhydrine.

A une solution de 97 g (0,5 mole) de pipérazine hexahydratée, dans 384 g d'alcool isopropylique, on ajoute goutte à goutte à 15°C, 92,5 g (1 mole) d'épichlorhydrine. La solution est maintenue sous agitation 2 heures à 15°C, puis on chauffe à 70°C, et on ajoute en 1'espace de 15 minutes, 54 g (0,5 mole) de benzylamine. On chauffe au reflux pendant une heure puis on ajoute goutte à goutte 160 g de solution méthanolique de méthylate de sodium (0,98 mole). On maintient le chauffage encore pendant 1 heure.

Après avoir refroidi, on filtre le chlorure de sodium formé, puis on élimine l'isopropanol sous vide partiel. Après séchage sous vide et en présence d'anhydride phosphorique on obtient un solide incolore, dur et cassant ayant un point de ramolissement de 65°C et dont le poids moléculaire mesuré dans l'éthanol absolu est de 1600.

Le composé obtenu est soluble dans l'eau en milieu acide et en milieu hydroalcoolique. Il donne après évaporation de ses solutions hydro-alcooliques de beaux films durs et très brillants.

30

35

EXEMPLE 6

Polycondensation do la N,N°bis(époxy-2,3 propyl) pipérazine et do la cétylamine.

24 g (0,1 molo) de cétylamine et 20 g (0,1 mole) do N,N'bis-(époxy-2,3 propyl)pipérazine préparée selon l'exemple 2, sont chauffés au reflux dans 45 g d'isopropanol pendant 15 houros. La résine obtenue est soluble dans l'eau on milieu acide.

EXEMPLE 7

Quaternisation du produit obtenu à l'exemple 6.

A 68 g do solution isopropanolique ci-dessus (0,23 équivalent en azote basique), on ajoute goutte à goutte à 30°C, 14,6 g (0,11 mole) de sulfate de diméthyle. On maintient l'agitation pendant 2 heures puis on élimine le solvant sous vide partiel en rajoutant de l'eau pour avoir une solution aqueuse finale à 10 % en poids.

Lo film obtenu par évaporation d'une solution diluée est assez dur et non collant.

EXEMPLE 8

Polycondensation de la N,Nº bis (époxy-2,3 propyl) pipérazino ot de la dodécylamino.

On dissout 18,5 g (0,1 mole) de dodésylamine et 20 g (0,1 mole) de N,N°bis (époxy-2,3 propyl) pipérazino, préparéo solon l'exemple 2, dans 90 g d'alcool isopropylique. Après 10 heures de chauffage au reflux, on élimine le solvant sous vide partiel. On obtient ainsi une résine molle, incolore et transparento, soluble dans l'eau en présence d'acide chlorhydrique ainsi que dans l'alcool.

Lo poids moléculaire de cetto résine, mesuré dans l'éthanol absolu est de 2900.

Par évaporation de solutions diluées, on obtient des films mous et un peu collants.

EXEMPLE 9

Quaternisation du produit de polyaddition de la N_pN^p bis-(époxy-2,3 propyl) pipérazine et de la dodécylamine.

A 30 g de résine obtenue selon l'exemple 7 (0,21 équivalent en azote basique) dissous dans 40 g d'isopropanel, en ajoute goutte à goutte à 30°C, 13,5 g (0,1 mole) de sulfate de diméthyle et en maintient l'agitation pendant 2 heures à la même température. On élimine ensuite le solvant sous vide partiel tout en rajoutant de l'eau pour obtenir la résine sous forme d'une solution à 10 % en poids dans l'eau.

40 Par évaporation des solutions aqueuses diluées on obtient dos

15

20

25

30

films qui sont toujours mous mais qui ne sont plus collants.

EXEMPLE 10

Polycondensation de la pipérazine et de la N,Nº bis-(chloracétyl) éthylène diamine.

A une solution de 10,6 g (0,05 mole) de N,Nº bis chloracétyl éthylène diamine dans 125 g d'eau, on ajoute 9,7 g (0,05 mole) de pipérazine hexahydratée. Le mélange est chauffé 3 houres à 100°C. Tout en maintenant le chauffage, on neutralise l'acide formé par addition, en plusieurs fractions, de 0,1 mole d'hydroxyde de sodium sous forme d'une solution de NaOH à 40 % (10 g).

On obtient ainsi une solution collofdale ayant de bonnes propriétés filmogènes.

EXEMPLE 11

Polycondensation de la N,Nº bis (époxy=2,3 propyl) pipérazine, de l'oléylamine et de la pipérazine.

A la solution de 20 g (0,1 mole) de N,N° bis (époxy=2,3 propyl)pipérazine dans 47 g d'isopropancl, on ajoute 10,7 g (0,04 mole) d'cléylamine et 5,16 g (0,06 mole) do pipérazine anhydre. Après 4 heures de reflux, on procède à l'élimination du solvant sous pression réduite. On obtient alors un solide blanc ayant un point de ramolissement do 100°C environ, insoluble dans l'eau neutre, soluble dans l'éthanol et dans l'eau en milieu acide.

Les films obtenus par évaporation de solution diluéo sont transparents, non collants et peu durs.

EXEMPLE 12

Polycondensation de la pipérazine et du diglycidyl éther.

A 6,63 g (0,077 mole) de pipérazine anhydre dans 11 g
d'isopropanol on ajoute en l'espace de 15 minutes à 30°C, 10 g
(0,077 mole) de diglycidyl éther. On chauffe le mélange au reflux
pendant 4 h 1/2. On élimine ensuite le solvant, sous pression
réduite, tout en ajoutant de l'eau pour obtenir une solution
collofdale à 5 % de matière active.

Les films obtenus par évaporation de solutions diluées sont opalescents, durs et non collants.

Le diglycidyl éther est préparé par réaction à 15 = 20°C d'une quantité stoechiométrique d'hydroxyde de sodium sur le bis (chloro-3 hydroxy-2 propyl) éther. Le diglycidyl éther est isolé par distillation sous pression réduite. Point d'ébullition 80 - 85°C/0,05 mm Hg.

10

15

20

30

EXEMPLE 13

Préparation du produit de polycondensation de la pipérazine et du méthylène bis acrylamide :

A 15,4 g (0,1 mole) do méthylène bis acrylamide empaté avec 18,6 g d'eau, en ajoute sous agitation entre 0 et 5°C et sous atmosphère d'azote 86 g d'une solution aqueuse de pipérazine à 10% (0,1 mole). Le mélange est ensuite abandonné 30 heures à 25°C.

Le polymère est précipité en coulant la solution aqueuse dans un grand excès d'acétone.

On obtiont alors un solide blanc de point do ramollissement de 205°C environ et de point de fusion de 260°C.

Par évaporation d'une solution aqueuse diluée en obtient des films très durs, transparents et non collants.

EXEMPLE 14

<-->B---->

Préparation du produit do polycondonsation do la pipérazino et du pipérazino bis acrylamide :

A uno solution de 19,4 g (0,1 mole) de pipérazine bis acrylamide dans 35 g d'eau, on ajouto sous agitation entre 0 et 5°C et sous atmosphère d'azote, 86 g d'une solution aqueuse de pipérazine à 10 % (0,1 mole). Le mélange est ensuite abandenné 30 heures à 25°C.

35 Lo polymèro est précipité en coulant la solution aqueuse dans un grand excès d'acétone.

On obtient un solide blanc de point de ramollissement de 205°C et de point de fusion supérieur à 260°C.

Par évaporation do la solution aquouso diluée on obtient 40 des films très durs, transparents et non collants.

EXEMPLE -15

Préparation du produit de polycondensation de la bis pipérazine-1,3 propanol-2 et du méthylène bis acrylamide :

$$10 \quad \longleftarrow A \longrightarrow \longleftarrow B \quad \longrightarrow \qquad B^{\mathfrak{g}} \longrightarrow \qquad \longrightarrow$$

Méthodo 1 2

20

35

40

A 15,4 g (0,1 mole) do méthylène bis acrylamide empaté avec 23,1 g d'eau on ajoute sous agitation entre 0 et 5°C et sous atmosphère d'azote 152,5 g d'une solution aqueuso titréo contenant 22,8 g (0,1 mole) do bis pipérazine-1,3 propanol=2. Lo mélange est ensuite abandonné 30 houres à 25°C.

Le polymère est précipité comme dans l'exemplo précédent.
On obtient un solide blanc de point de ramollissement de 176°C et de point de fusion 200-210°C.

Par évaporation de la solution aqueuse diluée, on obtient des films très durs, transparents et non collants.

La bis pipérazino-1,3 propanol-2 peut être préparée de la façon suivante :

A 688 g (8 moles) do pipérazine anhydre solubilisée dans 1500 g d'isopropanol, on ajoute 92,5 g (1 mole) d'épichlorhydrine en 1 heure à 20°C. Le mélange réactionnel est ensuite chauffé 1 h 30 à 80°C puis toujours à la même température, on ajoute en 1/2 heure 250 g d'une solution de méthanol contenant 54 g (1 mole) de 30 méthylate de sodium. Après refroidissement, on filtre la solution pour éliminer le chlorure de sodium. Après concentration de la solution sous vide partiel, celle-ci abandonne la plus grande partie de la pipérazine en excès. Le composé est isolé par distillation. Point d'ébullition : 147 ~ 152°C/0,07 mm Hg.

C'est un solide blanc, point de fusion 8 78°C.

Méthodo 2 :

A une solution de 116,4 g (0,6 mole) d'hexahydrate de pipérazine dans 353 g d'eau, on ajoute par petites fractions 46,2g (0,3 mole) de méthylène bis acrylamide solide, sous agitation, entre 0 et 5°C et sous atmosphère d'azote. Le mélange est abandonné 24

houros à 25°C. On ajouto alors goutto à goutto 27,75 g (0,3 mole) d'épichlorhydrine on l heure en maintonant la température du mélange à 20°C.

L'agitation est maintenue encoro pendant 1 heuro à 20°C puis on ajouto en 1 heuro à cette température 30 g (0,3 molo) de solution de NaOH à 40 %.

Après une nouvelle houre d'agitation à 20°C, en chauffe le mélange réactionnel l houre à 60°C.

On obtiont ainsi une solution do polymèro à 20 % présontant 10 uno très légèro opalosconco et presque incolore.

Par évaporation de la solution aqueuse diluée, en obtient un film très dur, transparent et non collant.

EXEMPLE 16

$$20 \longrightarrow A \longrightarrow \longleftarrow B \longrightarrow \longleftarrow A \longrightarrow \longleftarrow B^{\dagger} \longrightarrow$$

Préparation du produit do polycondonsation do la bis pipérazino-1,3 propanol-2 et du pipérazine bis acrylamide 8 A une solution de 19,4 g d'eau en ajoute sous agitation entre 0 et 5°C et sous atmosphère d'azote 152,5 g d'une solution aqueuse titrée contenant 22,8 g (0,1 mole) de bis pipérazine-1,3 propanol-2. Le mélange est ensuite abandonné 30 houres à 25°C.

Lo polymèro est précipité comme dans l'exemple précédent. On obtient un solide blanc de point de fusion environ

30 205 - 210°C.

25

Par évaporation do la solution aqueuso diluée on obtient un film dur, transparent et non collant.

EXEMPLES D'APPLICATION

EXEMPLE 17

35	Lotion do miss on plis pour chovoux très socs	•
	Composé préparé solon l'exemple 1	1 g
	Para hydroxy benzoate do propylo	0,4 g
	Colorant Roso Néolanc B A, C.I 18810	0,005g
	Parfum	0,2 g
40	Bau q.s.p	100 g

	Renforce town do mine on all			
	Renforçateur do mise en plis pour cheveux abîmés			
	Composé préparé selon l'exemple 1	1	8	;
=	Copolymèro polyvinyl pyrrolidone/acétate de	•		
5	vinyle 60/40	0,	5 g	;
	Bromure de triméthyl cétyl ammonium	0,	2 g	,
	Parfum	. 0,	L g	,
	Para-hydroxybenzoato do méthylo	0,3	l g	
	Eau q.s.p	100	g	
10	EXEMPLE 19			
	Renforçateur do mise en plis pour cheveux normaux			
	Composé préparé solon l'oxemple l	. 1	g	
	Copolymère acétate de vinyle/acide crotonique			
	(PM = 20000)	1	g	
15	Bromure do triméthyl cétyl ammonium	0,1	_	
	Colorant Violet de méthyle, CI 42535	0,0		
	Parfum	0,1		
	Alcool éthylique q.s.p 500	- y-		
	Eau q.s.p	100	æ	•
20	EXEMPLE 20	100	g	
	Shampooing anionique			
	Composé préparé selon l'exemple 1	1.	~	
	R-(OCH ₂ -CH ₂) ₂ -OSO ₃ Na	10	g	
	$R = alcoyle C_{12} = C_{14}$ dans dos proportions 70/30	10	g	
25	Diéthanolamide d'acides gras du coprah	·3	•	
	Eau q.s.p	100	g	
	pH = 7	100	g	
	EXEMPLE 21			
	Shampooing anionique			
30	Composé préparé selon l'exemple 1	0.7	e	
	Alcoyl sulfate de triéthanolamine	0 _{9.} 7		
	Alcoyl = $C_{12} - C_{14} 70/30$	15.	·g	
	Monoéthanolamide d'acides gras de coprah	4		
	N-lauryl sarcosinate de sodium	4	g	
35	Lanolino acétyléo	3	g	
- 0	Eau q.s.p	3	g	
	pH = 7.5	100	8	
	·			
	Shampaoing non iowing			
40	Shampooing non ionique		-	
70	Composé préparé solon l'oxemple 1	2,5	8	\$

	R- OCH2-CH YOH	15	g
	R- CH ₂ OH OH		
	CH ₂ OH/ ₄		
5	$R = alkylo C_{12}H_{25}$		
	Lanolino anhydro alcoxyléo	1,5	8
	commorcialiséo sous la marquo déposéo		
	"Lantrol AVS" par MALSTROM CHEMICAL CORPORATION,	•	
	Now-Jersoy (U.S.A)		
10	Hydroxypropyl methyl colluloso	0,3	g
	Acido eitrique q.s.p pH 6		•
	Eau q.s.p	100	8.
	EXEMPLE 23	-	
	Shampooing cationiquo		
15	Composé préparé solon l'exemple 8	1,5	g
•	Bromuro do dodécyle, tétradécyle ot hexadécyle	5	g
	triméthylammonium commercialisé sous lo nom		
	déposé de "Cotavlon"		
	Alcool lauriquo polyoxyéthyléné avoc 12 molos	12	g
20	d'oxydo d'éthylèno		
	Diéthanolamido lauriquo	. 5	8
	Ethyl colluloso	0,2	5g
	Acido lactiquo q.s.p pH 4		
	Eau q.s.p	100	8
25	EXEMPLE 24		
	Shampooing amphotero		
	Composé préparé solon l'exemplo l	1,2	. E
	ОН		
	OH CH2=COONa		
30	C ₁₁ H ₂₃ -C	20	g
	ж сн ² сн ² -сн ² -сооже		_
	CH ₂		
	- I Warnel HOOMS		
	commercialisé sous lo nom de Miranol "C2M" par		
3 5	Miranol Chemical Corporation, Irvington		
	(New Jordoy) U.S.A	5	æ
	Oxydo do diméthyl alcoylamino préparé à partir dos	,	8
	acidos gras du coprah	2	5 g
	Diethanolamido lauriquo	و ع	, B
40	Alcool laurique oxyéthyléné avec 12 moles d'oxydo	8	,
	d'éthylèno	0	g

		2102	0 2 0
	Acido lactique q.s.p pH 6		
	Eau q.s.p	100	ď
	EXEMPLE 25	100	g
	Shampooing amphotère		
5	Composé préparé selon l'exemple 1	٠,	
	Sel de sodium de la NN(diéthylamino propyl)N ² -	1	g
	dodécyl asparagine	-	
	and of a sparagine	5	g
٠.	B- ∕OCH.=CH →OH	15	~
10	R-COCH ₂ -CH OH R = alcoyle en C ₁₂ H ₂₅	17	
_	CH_OH		
	4	•	
	Acide lactiquo q.s.p pH 5		
15	Eau q.s.p	100	
	EXEMPLE 26		8
	Shampooing anionique		
	Composé préparé selon l'exemple 9	1	~
	Alcoyl sulfate de sodium (alcoyle = C ₁₂ -C ₁₄)	10	g
20	N-lauryl sarcosinato de sodium	3	
	Monoéthanolamide laurique	4	_
	Distéarate de glycol	. 3	
	Eau q.s.p	100	. •
	pH 7,5 EXEMPLE 27	200	G
25	Shampooing anionique		
	Composé préparé selon l'exemple 9	0	,5 g
	$R = O(CH_2 CH_2)_2 OSO_3 N_B$	10	9 - G "
	2 2 2 3		မ
	$R = C_{14} H_{29}$		
30	Sel de sodium de NN(diéthylamino propyl)=N ²	2	_
	dodécyl asparagine	3	g
	Diéthanolamide d'acides gras do coprah	2	
٠	Hydroxypropyl celluloso	3	. g
	Eau q.s.p		,2 g
35	pH = 6,5	100	g
"	EXEMPLE 28		
	Crème de traitement pour cheveux secs		
		•	_
	Composé préparé solon l'exemplo 1 q.s.p Alcool cétylique	3	
40	Alcool stéarylique	2	
70	Trecor startAttdra	. 2	g

	Alcool cétyl-stéarylique exyéthyléné avec		
	15 molos d'oxydo d'éthylèno	4	g
	Hydroxyéthylcolluloso	2	g
	Colorant	0,1	8
5	Parlum	0,2	g
-,		100	8
	L'application de cotte crème est suivie d'un ri	nçago	dos
	choveux.		
	EXEMPLE 29		
10	Conditionnour pour cheveux socs		
	Composé préparé selon l'exemple l, q.s.p	0,5	g
	Copolymèro polyvinylpyrrolidone/acétato do vinyle	0,5	g
	70/30 (FM 40 000)		
	Parfum	0,1	5 g
15	Colorant	0,0	5 g
	Eau q.s.p	100	Ø
,	Co conditionneur est à utiliser après shampooin	got	avant
	mise en plis, sans rinçage intermédiaire.		
	EXEMPLE 30		
20	Lotion antipelliculairo à usago quotidion		
	Composé préparé solon l'oxemplo l q.s.p	0,5	g
	Bromure do lauryl isoquinolinium	1,3	g
	Acido lactiquo q.s.p pH = 5 - 5,3		
	Alcool 6thylique	55 c	m3
25	Panthoténato do monthol	0,1	.
	Parfum	0,3	8
	Colorant	0,1	. g
	Eau qosop EXEMPLE 31	100	8
	Shampooing anioniquo	•	
30	Alcoyl sulfate d'ammonium	. 3	g
	(alcoyl dérivé du coprah)		
	Alcoyl éthòr sulfate de sodium	7	g
	(alcoyl dérivé du coprah + 2 moles d'oxyde		
	d'éthylèno)		
35	Composé obtonu solon 1º exemple 4	1	g
	Diéthanolamido laurique	3	g
	Mélango do mono et diglycéridos d'acidos gras	-	5 8
	commorcialisé sous la marque "ARLACEL 186" par Atlas		
	Acido lactiquo q.s.p pH 7,5		
40	Eau q.s.p	100	g
	On obtiont uno formulo limpide.		
	·		

EXEMPLE 32

	عر سيسي		
	Shampooing anionique		
•	Alcoyl éther sulfate de sodium	10 g	
	(radical alcoyl dérivé dos acides gras		
5	du coprah + 2 moles oxyde d'éthylène)	,	
	Diéthanolamide de coprah	3 g	
	Composé solon l'exemple 13	0,8 g	
	Monolauryl sulfosuccinate de sodium	2 g	
• •	Acido lactique q.s.p pH 7,5	.	
10	Eau q.s.p	· 100 g	
	Les choveux ainsi traités par la formul		
	un bon démélage et du volume. Les cheveux son		
	EXEMPLE 33		
	Dans la composition do l'exemple 32 on	romplaco le composé	
15	préparé solon l'exemple 13 par lo composé pré		
	EXEMPLE 34	- · · · · - · · · · · · · · · · · ·	
	Shampooing anionique		
	Lauryl sulfate de triéthanolamine	10 g	
	The field was also and the state of the stat		

	Lauryl sulfate de triéthanolamine	10) g	•
	Diéthanolamido laurique		g g	
30	Composé solon l'exemple 3	3	g	į
	Hydroxy propyl methyl collulose		,1 g	ť
	Acido lastiquo qosop pH 7,2		, ,	,
	Eau q.s.p	100) g	·

Cotto solution donne dos cheveux norvoux et brillants.

25 Il est à noter que dans les exemples d'application n° 17-22, 24, 25, 28-30 le polymère préparé selon l'exemple l pout Otro remplacé soit par le polymère préparé selon l'exemple 15 soit par le polymère préparé selon l'exemple 16 étant entendu que le remplacement se fait à teneur égale en matière active.

Dans tous les exemples d'application ci-dessus, le poids des polymères est exprimé en matière active.

dodecylamine

TABLEAU

Le tableau ci-après résume les composés préparés dans les exemples 1 à 16 et répondant à la formule :

$$-A - B - A - B$$
 (I) ou $-A - B - A - B^2 - A - B^2 - A - B$ (II)

and the second s	
Exemple Réaction	Formule des motifs A, B et Bo
1 Condensation piperazine + épichlorhydrine	-N N+CH ₂ -CH-CH ₂ + OH ← A → B →
<pre>Condensation N,N' bis-(2,3- epoxypropyl)pi- perazine + piperazine</pre>	-CH ₂ -CH-CH ₂ †N V-CH ₂ -CH-CH ₂ †M N OH ← B ← A ← B ← A ←
5 Condensation piperazine + benzylamine + epichlorhydrine	$-N \longrightarrow \text{N-lcH}_2 - \text{CH-CH}_2 - \text{N-cH}_2 - \text{CH-CH}_2 - \text{OH}$ $CH_2 OH$ C_6H_5 $\longrightarrow B \longrightarrow B$
6 Condensation N,N'bis-(2,3- epoxypropyl) piperazine + cetylemine	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8 Condensation N,N°bis-(2,3- epoxypropyl) piperazine +	même que ci-dessus sauf que R = dodecyle

No Exem	ple Réaction	Formule des motifs A,B et B
10	Condensation piperazine + N,N'bis (chlor- acetyl)ethylene diamine	$-N \xrightarrow{\text{N-1}CH_2-\text{CO-NH-CH}_2-\text{CH}_2-\text{NH-CO-CH}_2-}$ $\longleftarrow A \longrightarrow \longleftarrow B \xrightarrow{\text{N-1}CH_2-\text{CO-NH-CH}_2-\text{NH-CO-CH}_2-}$
11	Condensation N,Nº bis(2,3- epoxypropyl) piperazine + oleylamine + piperazine	-N N+CH ₂ -CH-CH ₂ -N-CH ₂ -CH-CH ₂ +N N- OH B OH -CH ₂ -CH-CH ₂ -N N-CH ₂ -CH-CH ₂ +N N- OH
		R = cleyle
12	Condensation piperazine + diglycidyl ether	-N N ⁴ CH ₂ -CH-CH ₂ -O-CH ₂ -CH-CH ₂ -O-CH-CH ₂ -O-CH ₂ -CH-CH ₂ -O-CH ₂ -CH-CH ₂ -O-CH-CH
13	Condensation piperazine + methylene bis- acrylamide	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
14	Condensation piperazine + piperazine bisa acrylamide	$-N + CH_2 - CH_2 - CH_2 - CH_2 - CH_2$ $\longrightarrow A \longrightarrow \longleftarrow B \longrightarrow \square$
15	Condensation 1,3-bis pipe- razine-2-pro- panol + methyl- ene bisacryl- amide	-N+CH ₂ -CHOH-CH ₂ +NN-N- -CH ₂ -CH ₂ -CONH-CH ₂ -NHCO-CH ₂ -CH ₂ - B'

No Exemp	ole Réaction	Formule des motifs A,B et B'
16	Condensation 1,3-bis pipe- razine-2-pro- panol + pipe- razine bis	$-N \longrightarrow N+CH_2-CHOH-CH_2+N \longrightarrow N-$ $-CH_2-CH_2-C-N \longrightarrow N-C-CH_2-CH_2$
	acrylamide	← B' → →

10

-REVENDICATIONS

l.= Composition cosmétiquo pour cheveux, caractériséo par le fait qu'olle renforme (1) un polymère cationique filmogène de bas poids moléculairo de formulo

> - A - Z - A - Z - A - Z (I)

dans laquelle A désigne un radical comportant doux fonctions amines ot do préférenco le radical

ot Z désigne le symbole B ou Bo; B et Bo identiques ou différents 15 désignent un radical bivalent qui est un radical alkylène à chaîne droito ou ramifiéo, comportant jusqu'à 7 atomes de carbono dans la chaîno principale, non substitué ou substitué par des groupoments hydroxylo et pouvant comporter en outre des atomes d'exygène, 20

d'azoto, de soufro, 1 à 3 cycles aromatiques et/ou hétérocycles ; les atomes d'oxygène, d'azote et de soufre étant présents sous forme do groupements éther, thioéther, sulfonydo, sulfone, sulfonium, amino, alkylamino, alkénylamino, benzylamino, oxydo d'amino ammonium quatornaire, amide, imide, alcool, ester ot/ou uréthano, 25

ou (2) un sel d'ammonium quaternaire d'un polymère de formulo (I) ou (3) le produit d'exydation d'un polymère de formule (I).

2. Composition selon la revendication l, caractérisée par lo fait que B ot B' idontiques ou différents désignant un radical alkylèno à chaîne droite ou ramifiée ayant jusqu'à 7 atomos do carbone dans la chaîne principale, non substitué ou substitué par un groupement hydroxyle, ou un groupement alkylène ou hydroxyalkylène ayant jusqu'à 7 atomes de carbono interrompu par un ou plusieurs groupements choisis parmi les groupements amino, alkylamine, alkénylamine, benzylamine, oxyde d'amine, ammonium quaternaire, carboxamido, éther, pipérazinyle et/ou le groupement

30

35

20

25

35

3.= Composition solon la revendication 1 ou 2, caractérisée par le fait qu'elle se présente sous forme de solution aqueuse, hydroalecclique, de crème, de pâte, de gel ou de poudre.

4.- Composition solon les revendications 1 à 3, caractérisée par le fait que son pH est compris entre 3 et 11.

5.- Composition solon l'uno quelconque des revondications l 24, caractérisée par le fait qu'elle renferme également un propulsour et est conditionnée en aérosol.

6.- Composition do shampooing pour cheveux solon l'uno quelconque des revendications l à 5, caractérisée par le fait qu'elle contient également un agent de surface anienique, cationique, non ionique, amphotère et/ou switterionique.

7. Lotion pour cheveux solon l'uno quelconquo des revendications l à 5, caractérisée par le fait qu'elle se présente sous la formule d'une solution aqueuse ou hydroalcoolique et renforme également un ou plusieurs adjuvants cosmétiques.

8.00 Renforçateur do miso on plis solon l'une quolconquo dos revendications l à 5, caractérisé par lo fait qu'il so présente sous la forme d'une solution aquouse ou hydroalcoolique et renferme également une ou plusieurs résines cosmétiques.

9.- Compositions solon l'uno quelconque des revendications l à 7, caractérisées par le fait qu'elles contiennent également des épaississants, opacifiants, séquestrants, surgraissants, adoucissants, germicides, conservatours, genmes, parfum, colorants, d'autres résines cosmétiques ainsi que tous autres adjuvants habituellement utilisés dans les compositions cosmétiques.

10.- Polymèro cationique filmogèno do bas poids moléculairo do formulo

 $30 \qquad \qquad = A = Z = A = Z = A = Z \qquad (1)$

dans laquello A désigno lo radical

.

-N N-

ot Z désigno le symbole B ou B¹; B et B¹ identiques ou différents désignent un radical bivalent qui est un radical alkylène à chaîne droite ou ramifiée, comportant jusqu'à 7 atomes de carbone dans la

chaîne principalo, non substitué ou substitué par des groupements hydroxyle et pouvant comporter on outre dos atomes d'oxygèno, d'azote, do soufre, l à 3 cyclos aromatiquos et/ou hétérocycles; les atomes d'oxygène, d'azote et de soufre étant présonts sous forme de groupements éther, thioéther, sulfoxydo, sulfono, sulfonium, amine, alkylamine, alkonylamine, benzylamine, oxydo d'amine, ammonium quatornairo, amido, imido, alcool, ester ot/ou uréthane.

11. Polymère solon la revendication 10, caractérisé par le fait que B et B' identiques ou différents désignent un radical alkylène à chaîne droite ou ramifiée ayant jusqu'à 7 atomes du carbone dans la chaîne principale, non substitué ou substitué par un groupement hydroxyle, ou un groupement alkylène ou hydroxyle alkylène ayant jusqu'à 7 atomes de carbone interrempu par un ou plusieurs groupements choisis parmi les groupements amine, alkyle amine, alkénylamine, benzylamine, exyde d'amine, ammonium quatere naire, carboxamide, éther, pipérazinyle et/ou le groupement

20

25

35

10

15

12. Polymère selon les revendications 10 et 11, caractérisé par le fait que son poids moléculaire, déterminé par abaissement de la tension de vapeur, est compris entre 1000 et 15000.

13. Sels d'ammonium quatornaire des polymères solon la revendication 11, caractérisés par le fait qu'ils sont obtenus par action d'un chlorure, bromure, iodure, sulfate, mésylate ou tosylate d'alcoyle inférieur ayant l à 4 atomes de carbone et de préférence l ou 2 atomes de carbone ou par l'action d'un halogénure de benzyle.

14. Produits d'oxydation des polymères solon la revendication 11, caractérisés par le fait qu'ils sont obtenus par action de l'eau exygénée ou d'un peracide.

15. Polymèro selon la revendication 13, caractérisé par lo fait qu'il est obtenu par quaternisation du produit do polycondon sation de la pipérazine et de l'épichlorhydrine.

16. Polymère solon la revendication 15, caractérisé par lo fait qu'on utiliso comme agent quaternisant le chloruro do benzylo.

17.∞ Polymère selon la revendication 14, caractérisé par le 40 fait qu'il est obtenu par exydation par l'eau exygénée ou par un poracido du produit do polycondonsation do la pipérazino ot do l'épichlorhydrino.

18. Polymèro solon les rovendications 10 et 11, caractérisé par le fait qu'il est obtonu par la polycondensation de la pipée razine et de la N,N° bis (chloracétyl)éthylène diamine, ainsi que les sols d'ammenium quaternaire et les produits d'exydation par l'eau ou par un peracide de ces polymères.

19.= Polymèro selon les rovendications 10 et 11, caractérisé par le fait qu'il est obtenu par la polycondensation de bis pipérazino-1,3 propanol-2 et du méthylène bis-acrylamide, ainsi que les sels d'ammonium quaternaire et les produits d'exydation par l'eau exygénée eu par un peracide de ces polymères.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.