Secure Hash Algorithm SHA-256

Chi Trung Nguyen *T-Systems*

Agenda

Einführung

Was ist ein Hash?

GESCHICHTE

SHA Allgemein

SHA-0

SHA-1

SHA-2

IMPLEMENTIERUNG

Algorithmus

Pseudocode

ANWENDUNG

Verwendungszweck

Schwachstellen/Angriffsvektoren

AUSBLICK

3 of 25

EINFÜHRUNG

- ► deutsch: "zerhacken", "verstreuen"
- ► Hashfunktion oder Streuwertfunktion erstellt aus beliebiger großer Quellmenge eine immer gleich große Zielmenge
 - f(x) = f(x')
- ► Einwegfunktion

AUSBLICK

SHA ALLGEMEIN

EINFÜHRUNG

- ▶ 1993 vom National Institute of Standards (NIST) als ein U.S. Federal Information Processing Standard (FIPS) veröffentlicht
- ► Gruppe von kryptologischer Hashfunktionen
 - ► SHA-0
 - ► SHA-1
 - ► SHA-2
 - ► SHA-3

- ► 1993 veröffentlicht
- ► Bestandteil des Digital Signature Algorithms (DSA) für Digital Signature Standard (DSS)

Secure Hash Algorithm 5 of 25

- ► 1995 veröffentlicht
- ► aufgrund Designfehler in SHA-0

- ► 2002 veröffentlicht
- ► existiert in mehreren Bit Variante

Tabelle: Secure Hash Algorithmus Eigenschaften

Α	lgorithmus	Message	Block	Word	Message Digest
		Größe(bits)	Größe(bits)	Größe(bits)	Größe(bits)
	SHA-1	$< 2^{64}$	512	32	160
	SHA-224	$< 2^{64}$	512	32	224
	SHA-256	$< 2^{64}$	512	32	256
	SHA-384	$< 2^{128}$	1024	64	384
	SHA-512	$< 2^{128}$	1024	64	512

Secure Hash Algorithm 8 of 25

DARSTELLUNG DES ALGORITHMUS

AUSBLICK

$$Ch(E, F, G) = (E \land F) \oplus (\neg E \land G)$$

$$Maj(A, B, C) = (A \land B) \oplus (A \land C) \oplus (B \land C)$$

$$\Sigma_0 = (A \ggg 2) \oplus (A \ggg 13) \oplus (A \ggg 22)$$

 $\Sigma_1 = (A \gg 6) \oplus (A \gg 11) \oplus (A \gg 25)$

PSEUDOCODE

- ► Initialisiere Variabeln (die ersten 32 Bits der Nachkommastellen der Quadratwurzeln von den ersten 8 Primzahlen 2..19):
- ► Initialisiere Variabeln der Runden Konstanten (die ersten 32 Bits der Nachkommastellen der Kubikwurzel von den ersten 64 Primzahlen 2..311):

Secure Hash Algorithm 11 of 25

PREPROCESSING

- ► 1message
- ► k0kmessage
- ▶ message

- ▶ message
- ► { w[0..15]

```
i = 1663 \{
s0 := (w[i-15] \text{ rightrotate 7}) \text{ xor } (w[i-15] \text{ rightrotate } 18) \text{ xor } (w[i-15] \text{ rightshift 3})
s1 := (w[i-2] \text{ rightrotate } 17) \text{ xor } (w[i-2] \text{ rightrotate } 19) \text{ xor } (w[i-2] \text{ rightshift } 10)
w[i] := w[i-16] + s0 + w[i-7] + s1
\}
```

Secure Hash Algorithm 13 of 25

0 0 0 0

HASHZUWEISUNG

WENDUNG AUSBLICK
OO

a := h0 b := h1 c := h2 d := h3 e := h4 f := h5 g := h6h := h7

EINFÜHRUNG

HAUPTSCHLEIFE

```
i = 063{
     S0a2a13a22
     majabacbc
     t2S0maj
     S1e6e11e25
     chefeg
     t1hS1chk[i]w[i]
     h := g
     g := f
     f := e
     e := d + t1
     d := c
     c := b
     b := a
     a \cdot - t1 \perp t2
```

AUSBLICK

AUSBLICK

HAUPTSCHLEIFE

```
h0h0a
h1h1b
h2h2c
h3h3d
h4h4e
h5h5f
h6h6g
h7h7h
} //Ende der foreach-Schleife
```

AUSGABE

h0h1h2h3h4h5h6h7

DARSTELLUNG DES ALGORITHMUS

- ► Digitale Zertifikate und Signaturen
- ► Passwortverschlüsselung
 - ► pam_unix: sha2, md5
 - ► htpasswd(Apache): sha1, md5
 - ► MySQL: sha1
- ► Prüfsummen bei Downloads

► Resistenzen:

EINFÜHRUNG

- ► Kollisionsresistenz
- ► Preimage Resistenz
- ► Second Preimage Resistenz

Secure Hash Algorithm 20 of 25

KOLLISIONSRESISTENZ

Wie schwer ist es, zwei verschiedenen Nachrichten mit gleicher Prüfsumme zu finden?

Secure Hash Algorithm 21 of 25

PREIMAGE RESISTENZ

Wie schwer ist es, zu einem vorgegebenen Hash-Wert eine Nachricht zu erzeugen, die denselben Hash-Wert ergibt?

Secure Hash Algorithm 22 of 25

SECOND PREIMAGE RESISTENZ

Wie schwer ist es, zu einer vorgegebene Nachricht einen Hash-Wert eine Nachricht zu finden, die denselben Hash-Wert ergeben?

Secure Hash Algorithm 23 of 25

- ▶ 2007 rief NIST zu einem Wettbewerb auf
- ▶ 191 Einreichungen, 5 Finalisten
- ▶ bisher langsamer als SHA2

Fragen?