

- Ogni campione è una misura del valore di tensione elettrica in uscita da un microfono
- Supponiamo che vari tra un valore minimo ed un massimo, ad esempio, -5Volt/+5Volt
- La gamma delle ampiezze possibili viene divisa in intervalli o *region*i: ogni campione ha un'ampiezza che cade in una delle regioni. Ad esempio, se l'ampiezza varia tra -5 e +5 volt, la gamma totale delle ampiezze è di 10 volt; se la codifica digitale divide la gamma delle ampiezze in 16 regioni, ogni regione sarà ampia 0,625 volt (0,625 = 10/16).

- Il numero di regioni in cui è suddivisa la gamma delle ampiezze dipende dai bit a disposizione per la codifica.
- Valori tipici per la lunghezza di una parola binaria nell'audio sono 8 o 16 bit, per un numero di valori differenti di 256 (2⁸) e 65.536 (2¹⁶), rispettivamente
- Aumentando il numero di bit si aumenta la qualità (granularità) della descrizione del segnale
- Come associamo una configurazione di bit ad una regione della gamma di ampiezze?
- Ci sono diversi modi: quantizzazione lineare, non lineare, con virgola mobile, etc

Quantizzazione lineare di un segnale che va da -5 a +5 volt in una codifica digitale a 1 bit (2 valori)

Valori di tensione	Codifica binaria
-5/0	0
0/5	1

Quantizzazione lineare di un segnale che va da -5 a +5 volt in una codifica digitale a 2 bit (4 valori)

Valori di tensione	Codifica binaria
-5/-2,5	00
-2,5/0	01
0/ 2,5	10
2,5/5	11

Quantizzazione lineare di un segnale che va da -5 a +5 volt in una codifica digitale a 8 bit (256 valori)

Valori di tensione	Codifica binaria	
-5/-4,961	0000 0000	
-4,961/ -4,922	0000 0001	
-4,922/ -4,883	0000 0010	
-4,883/ -4,844	0000 0011	
-4,844/ -4,805	0000 0100	
4,805/4,844	1111 1011	
4,844/4,883	1111 1100	
4,883/4,922	1111 1101	
4,922/4,961	1111 1110	
4,961/5	1111 1111	

Informatica di Base A e B -- Rossano Gaeta

La codifica dei suoni: la voce

- Se volessimo codificare la voce umana dovremmo:
 - Campionare il segnale vocale ogni 125 milionesimi di secondo (producendo 8000 campioni al secondo) per segnale con frequenze inferiori a 4kHz (frequenze della voce umana)
 - Per ogni campione (che è un numero) si usano 8 bit
 - Per cui, il numero di bit che sarebbero necessari per codificare ogni secondo è pari a

8000 campioni × 8 bit/campione=64000 bit

La codifica dei suoni: la musica su CD

- Se volessimo codificare la musica di qualità CD dovremmo:
 - Usare due registrazioni corrispondenti a due microfoni distinti
 - Campionare il segnale musicale producendo 44100 campioni al secondo
 - Per ogni campione (che è un numero) si usano 16 bit
 - Per cui, il numero di bit che sarebbero necessari per codificare ogni secondo è pari a

 2×44100 campioni $\times 16$ bit/campione=1411200 bit

- Codifiche standard:
 - formato WAV (MS-Windows),
 - formati AU e AIFF (rispettivamente SUN ed Apple)
 - formato RA (Real Networks)
 - WIDI
 - MP3

MIDI:

- codifica le note e gli strumenti che devono eseguirle
- solo musica, non voce
- richiede un sintetizzatore o "campioni" per la riproduzione (non utilizzabile "direttamente")
- molto efficiente

MP3:

- MPEG-3: compressione, variante MPEG per suoni
- Grande diffusione
- molto efficiente