EXAMINING THE PERFORMANCE OF REGULARIZATION PENALTIES FOR VARIABLE SELECTION IN THE BETA REGRESSION MODEL

Alfonso J. Martinez (PhD student, EMS; MS student, Statistics)

GSEC Graduate Research Colloquium

10/28/22

DO YOU COLLECT DATA OR ANALYZE DATA WITH QUANTITATIVE METHODS (E.G., REGRESSION)?

DO YOU KNOW WHICH VARIABLES ARE IMPORTANT/ASSOCIATED WITH AN OUTCOME VARIABLE PRIOR TO ANALYSIS?

WHICH VARIABLES ARE IMPORTANT FOR EXPLAINING STUDENT TRUANCY?

Outcome (dependent) variable

Student truancy (proportion)

Candidate covariates

Parental involvement

Height

Free and reduced lunch

Learning disability

Number of friends

Age

MODEL SELECTION

 Process of selecting the best model from all the available models for a particular problem based on different criterions such as robustness and model complexity.

Student truancy

Age Height

...

Student truancy

Age Parental involvement

Number of

friends

VARIABLE SELECTION

- Process of selecting the best subset of predictors/covariates for a given problem
- Different from model selection: select one specific model from the list of available predictive models
- Failure to identify covariates that are related to the outcome leads to incorrect inferences
- Retaining redundant/insignificant covariates decreases a model's predictive accuracy and makes model unnecessarily complex

REGULARIZATION VIA PENALTY FUNCTIONS

- Continuous variable selection via penalty functions
- Penalty functions penalize unimportant covariates in the model
- Dual purpose:
 - Remove unimportant covariates from the model WHILE
 - Simultaneously estimating the coefficients of the important covariates
- Oracle property: perform as well as if the analyst had known in advance which covariates were not important and which were important

PENALTY FUNCTIONS

Smoothly-clipped absolute deviation (SCAD)

$$P(x|\lambda,\gamma) = \begin{cases} \lambda|x| & \text{if } |x| \leq \lambda, \\ \frac{2\gamma\lambda|x|-x^2-\lambda^2}{2(\gamma-1)} & \text{if } \lambda < |x| < \gamma\lambda, \\ \frac{\lambda^2(\gamma+1)}{2} & \text{if } |x| \geq \gamma\lambda \end{cases}$$

Minimax Concave Penalty (MCP)

$$P_{\gamma}(x;\lambda) = \begin{cases} \lambda |x| - \frac{x^2}{2\gamma}, & \text{if } |x| \leq \gamma \lambda \\ \frac{1}{2}\gamma \lambda^2, & \text{if } |x| > \gamma \lambda \end{cases}$$

CASE STUDY: BETA REGRESSION

- Beta regression model:
 generalized linear model for
 modeling rates/proportions
 (outcome is value between 0
 and 1, i.e., truancy).
- Popular in many social science disciplines, including psychology and education

RESEARCH QUESTION

- How well do the SCAD and MCP penalty functions perform in the beta regression model when there are varying levels of multicollinearity in the covariates?
- Multicollinearity = correlation among the covariates

RATIONALE

- Beta regression is becoming increasingly popular; however, no studies have examined variable selection in this setting
- It is unknown how correlation among covariates influences the SCAD and MCP penalty functions, if at all

SIMULATION STUDY

- Fully-crossed design with three manipulated conditions:
 - Penalty (SCAD, MCP)
 - Sample size (250, 500)
 - Correlation between covariates (0, 0.3, 0.6, 0.9)
- Data generated with p = 30 covariates
- True coefficients: $\beta = (-2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 0_{21 \times 1})$
- 100 replications per condition
- Outcomes I: root mean square error, bias, BIC
- Outcomes II: average number of zero coefficients that were correctly dropped

RESULTS: RMSE

RESULTS: BIAS

RESULTS: BIC

RESULTS: PROPORTION OF CORRECTLY DROPPED COVARIATES

CONCLUSION

- RMSE decreased as sample size increased and was highest when covariates were highly correlation (correlation = 0.9)
- Negative bias across all conditions, with smallest bias when covariates were highly correlated and highest when covariates were independent of each other (not expecting this result)
- BIC appears to be substantially influenced by correlation in the covariates
- MCP had higher proportion of correctly dropped covariates than SCAD in conditions in which only the penalty differed
- Next steps:
 - Why was bias smallest when covariates were highly correlated?
 - Compare penalties with empirical datasets to see if simulation condition results are corroborated