

WONIK-KAIST FTC 기술 전수 세미나: Decision-Making with Data-Driven Model

Dept. of Industrial & Systems engineering, KAIST Chihyeon Song, Haewon Jung, Jinkyoo Park

Decision-Making

Decision-making: What we really want to do

$$\min_{u_1,...,u_T} \sum_{t=1}^{T} c(x_t, u_t)$$
s.t. $x_{t+1} = f(x_t, u_t)$

Model-based optimizations

Optimal controls

Anomaly detections

Ways to Make a Decision

Decision-Making with Data-Driven Models

Data: discrete value that contains information

Weather **SNS Image**

Decision-Making with Data-Driven Models

- Model: Theoretical representation of a system
 - Will be used in decision-making instead of the actual system

Decision-Making with Data-Driven Models

- Data-driven model: Model parameters are *learned* from the data
 - Collect the information from the data in terms of modeling

Linear model

Deep neural networks

Gaussian process

Why Data-Driven Decision-Making?

- Complexity of modern systems
 - Data-driven approach doesn't require any background knowledge of the system

Scientific Knowledge

Modern Complex Systems

Why Data-Driven Model?

• In the real-world, we often have limited amount of data

- With an appropriate model, more data-efficient than model-free approach
 - More practical approach to the real-world systems

How to Make a Decision

Two Big Questions

Q1. How we build data-driven model?

- Formulate System
- **Model Selection**
- **Data Preprocessing**
- Learn Model

Q2. How we make a decision with model?

- Define Decision-Making
- Formulate Optimization Problem
- **Solve Control Optimization**
- Validate Control Performance

```
\min_{x} f(x)
 s.t. g_i(x) \le 0 \ \forall i = 1, ..., I
       h_i(x) = 0 \ \forall j = 1, ..., J
```


Two Big Questions

Q1. How we build data-driven model?

- Formulate System
- **Model Selection**
- **Data Preprocessing**
- Learn Model

Day 1

Q2. How we make a decision with model?

- Define Decision-Making
- Formulate Optimization Problem
- **Solve Control Optimization**
- Validate Control Performance

```
\min f(x)
 s.t. g_i(x) \le 0 \ \forall i = 1, ..., I
       h_i(x) = 0 \ \forall j = 1, ..., J
```


12

Day 2

Q1. How We Build Data-Driven Model?

Q1. How We Build Data-Driven Model?

- Step 1. Formulate into a mathematical system
- Step 2. Select the model class
- Step 3. Prepare the data
- Step 4. Learn (Train) the model

Step 1. Formulate Into Mathematical System

Step 1. Formulate Into Mathematical System

- Control Input u_t : What we can control to the system
 - Workset

- Observation o_t : What we can observe from the system
 - Power, Control TC, (Glass TC)
- State x_t : What we care in the system
 - Glass TC
 - NOT always observable

Step 1. Formulate Into Mathematical System

Assume Glass TC is observable

- Model: What we want to know in the system
 - Interaction between future Glass TC and other variables
 - $\hat{x}_{t+1} = \hat{f}(x_t, u_t; \theta)$, predicted Glass TC
 - Let true system is $x_{t+1} = f(x_t, u_t)$

Step 2. Select Model Class

- Many different model classes
 - Linear, Deep neural network, Graph neural network, Gaussian process, etc.
- There is no perfect answer to choose the model class

Model expressivity

Optimization solvability

Linear Model

- Simplest data-driven model
- Parameters: a weight matrix W and bias vector b

Step 3. Prepare the Data

Let's skip for now

Step 4. Learn the Model

- Role of model: Substitute the true system in decision-making
 - Good model = Good approximation to the true system
- Make the predicted Glass TC as close as the true Glass TC

Step 4. Learn the Model

- Meaning of 'learning model'
 - Find the optimal model parameters θ from the data
 - $\hat{f}(x_t, u_t; \theta) \approx f(\cdot)$ as possible as we can
- Mathematically,

$$\min_{\theta} \frac{1}{|\mathcal{D}|} \sum_{(x_t, u_t, x_{t+1}) \in \mathcal{D}} (x_{t+1} - \hat{x}_{t+1})^2$$
s.t. $\hat{x}_{t+1} = \hat{f}(x_t, u_t; \theta)$

• \mathcal{D} : prepared dataset

How can we solve this? Gradient Descent Algorithm!

General Description of Optimization Problem

Objective function
$$\min_{\chi} f(\chi)$$
 Constraints
$$s.t. \ g_i(\chi) \leq 0 \ \forall \ i=1,\ldots,I \quad \text{Inequality constraints}$$

$$(s.t.: \text{Acronym} \atop \text{of 'subject to'}) \ h_j(\chi) = 0 \ \forall j=1,\ldots,J \quad \text{Equality constraints}$$

where
$$x = \begin{bmatrix} x^1 \\ \vdots \\ x^n \end{bmatrix} \in \mathbb{R}^n$$
, f , g_i , h_j : $\mathbb{R}^n \to \mathbb{R} \ \forall \ i = 1, ..., I, j = 1, ..., J$

- Optimal solution x^* is the minimizers of the optimization problem. Possibly exist multiple optimal solutions
- Optimal value $f(x^*)$ is the minimal (maximal) function value
- Feasible solutions (search space) $\mathcal{X} = \{x \in \mathbb{R}^n | g_i(x) \le 0 \ \forall i = 1, ..., I, h_j(x) = 0 \ \forall j = 1, ..., J\}$
 - If objective or constraints are not scalar valued, then we can't solve the problem with optimization techniques.
 - such setting requires different solution concepts → Game Theory

Visual Understanding of Optimization Problem

- Naïve approach: "Trial-and-error"
 - Plug in every solution in \mathcal{X} and Find the solution that is corresponds to the minimal function value.

Can we Do Better?

- If the objective or constraint not differentiable,
 - We can come up with heuristics:
 - Simulated Annealing, Genetic algorithms.
 - If the optimization problem is combinatorics, use Branch and Bound (B&B) or MILP etc.
- What if the objective and constraint is differentiable?
 - Use Gradient / Hessians to solve the optimization problem efficiently.

Sidewalk: Extremum and Optimum

Recall our memory of high school mathematic class

문제) 함수 $f(x) = (x - 3)^2 + 2$ 일 때, 함수의 최솟값을 구하면?

- ① 5 ② 4 ③ 3 ④ 2 ⑤ 1

해설) $\frac{df(x)}{dx} = 2(x-3)$ 이며, 극댓값 정리, $\frac{df(x)}{dx} = 0$ 인 극값에서, 최대/최소값이 존재, 를 활용해서 2(x-3)=0를 만족하는 극값을 찾으면, x=3.

극점 (Extreme point = local optima) 는 gradient $\frac{df(x)}{dx}$ 가 0 이 되는 지점!

Example 1) $f(x) = ax^2 + bx + c$ for a > 0, then $x^* = -\frac{b}{2a}$ Example 2) $f(x) = \sin x$, then $x^* = \left(2k + \frac{3}{2}\right)\pi \ \forall \ k \in \mathbb{Z}$

How to Solve Unconstrained Optimization Problem?

$$\min_{x} f(x)$$

- What if f(x) is complicate so we can't find analytical form of optimal solution?
- Use "Gradient descent <u>algorithm</u>" to iteratively find the optimal solution x^*

Taylor Approximation

Taylor approximation is a local approximation of function.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$
 Taylor series
$$= \sum_{n=0}^{T} \frac{f^n(a)}{n!} (x - a)^n$$
 Torder
Taylor approximation

 $f^n(a)$: n^{th} derivative of f at a

This approximation is valid when $|x - a| < \epsilon$.i.e., local approximation

Taylor approximations of function

Gradient Descent Algorithm

- Since Taylor approximation becomes more inaccurate as we move far from x_0
- Trust the approximated function in locale only! i.e., Move our guess slightly
- Set next good point as $x_1 \leftarrow x_0 + \eta \nabla f(x_0)$. step size (learning rate) η is sufficiently small number.

*Utilizing 2nd order local approximation of function can be also used → Newton methods

Gradient Descent Algorithm

(Vanilla) Gradient Descent

- 1) Initialize an arbitrary $x = x_0 \in \mathbb{R}^n$, step size $\eta > 0$, tolerance $\epsilon > 0$
- 2) For t = 0,1,...,

2-1) Compute
$$\nabla f(x_t) = \begin{bmatrix} \frac{\partial f}{\partial x^1}(x_t) \\ \vdots \\ \frac{\partial f}{\partial x^n}(x_t) \end{bmatrix}$$

- 2-2) Update $x_{t+1} \leftarrow x_t \eta \nabla f(x_t)$
- 2-3) break if $|x_{t+1} x_t| < \epsilon$

Example of Gradient Descent Algorithm

$$\min_{x} f(x) = (x - 3)^2 + 1$$

- Start with $x = x_0 = 5$, $\eta = 0.1$, $\epsilon = 0.01$
- For t = 0,

Compute
$$\nabla f(x_0) = 2(x_0 - 3) = 4$$

Update
$$x = x_1 = x_0 - \eta \nabla f(x_0) = 5 - 0.1 * 4 = 4.6$$

Since $|5 - 4.6| > \epsilon$, continue for loop

• For t = 1,

Compute
$$\nabla f(x_1) = 2(x_1 - 3) = 3.2$$

Update
$$x = x_2 = x_1 - \eta \nabla f(x_1) = 4.6 - 0.1 * 3.2 = 4.28$$

Since $|4.6 - 4.28| > \epsilon$, continue for loop

And so forth...

Limitations of Gradient Descent Algorithm

- If f(x) is a convex function, GD find the optimal solution x^*
- If f(x) is not convex, GD does not guarantee the optimality of converged solution.
- As a remedy, several GD variants are developed and works well in practice.
 - Stochastic Gradient Descent (SGD)
 - Momentum
 - AdaGrad
 - AdaDelta
 - RMSprop
 - Adam

Code Exercise!

github.com/song970407/WONIK-KAIST-Day1/settings

Real-World is Different...

- Lots of variables
 - In case of WONIK, 40 control inputs and 140 state variables
- More complicate true system
 - Linear model may be insufficient to approximate the true system
- Different data scale
 - Bad for training
- Introduce more techniques to apply in the real-world problem

Step 2. Select Model Class

- Many different model classes
 - Linear, Deep neural network, Graph neural network, Gaussian process, etc
- Important: Balance between Model expressivity and Optimization solvability

Optimization solvability

(Recap) Step 2. Select Model Class

	Linear Model	Non-Linear Model
Model Expressivity	↓	^
Optimization Solvability	^	↓
Example	Linear / Multistep Linear	NN, GNN

Multistep Linear Model

- 현재의 Glass TC와 Work set 뿐만 아니라 과거 값도 사용 → Furnace의 관성 모델링 가능
- Model expressivity 와 Optimization solvability 를 적절히 밸런싱

Step 3. Prepare the Data (a.k.a. Data Preprocessing)

- Make sure that data is ready to be used
- How?
 - Missing value, outlier
 - Categorical variable
 - Variable reduction
 - Feature scaling

Table (1): A hypothetical example of numerical data				
	Column 1	Column 2	Column 3	
Row 1	26	22	12	
Row 2	Green	8	7	
Row 3	84	60	-	

Hyperparameter Tuning

- Model parameter vs Hyperparameter
 - Model parameter: can be estimated from the data
 - Hyperparameter: cannot be estimated from the data
- Select the best hyperparameter by comparing the model performance
 - The devil is here...

Learning rate, epoch, state/action order, etc

Trick 1: Multistep Prediction

- Not only predict \hat{x}_{t+1} but also $\hat{x}_{t+2}, \hat{x}_{t+3}, \dots$
 - Important: Use x_t and a sequence of future control input $(u_t, u_{t+1}, ...)$
 - $\hat{x}_{t+1} = \hat{f}(x_t, u_t; \theta), \hat{x}_{t+2} = \hat{f}(\hat{x}_{t+1}, u_{t+1}; \theta), \dots$
 - Much harder than one step prediction
- Furnace does not change dramatically within just 5 seconds, which means $x_t \approx x_{t+1}$
 - The learned model can be a trivial model, which is $\hat{f}(x_t, u_t) = x_t$
 - By minimizing MSE between $(x_{t+1}, x_{t+2}, ...)$ and $(\hat{x}_{t+1}, \hat{x}_{t+2}, ...)$, we can obtain more reasonable model

Trick 2: Good Model Parameter Initialization

- Initial model parameter is super important
 - Stable & fast training
- Naïve idea: Just return the current state $\hat{x}_{t+1} = \hat{f}(x_t, u_t; \theta) = x_t$
 - Initialize A, B as $A_0 = I$, otherwise $A_i = B_i = 0$.
 - $\hat{x}_{t+1} = \sum_{i=0}^{I-1} A_i x_{t-i} + \sum_{j=0}^{J-1} B_j u_{t-j} = A_0 x_t + 0 = x_t$

Dive into the Real Code

