Total No. of Questions: 10]	SEAT No.:
P1689	[Total No. of Pages : 4

[5460]-506 T.E. (Civil) ADVANCED SURVEYING (2015 Pattern)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.No.1 or Q.No.2, Q.No.3 or Q.No.4, Q.No.5 or Q.No.6, Q.No.7 or Q.No.8, Q.No.9 or Q.No.10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data if necessary.
- Q1) a) Define:
 - i) Well conditioned triangle
 - ii) Strength of a figure
 - iii) Accuracy of triangulation
 - iv) Geodetic Surveying
 - v) Indivisibility of stations
 - b) Define triangulation, state the object of triangulation and state its applications. [5]

UK

- Q2) a) Describe briefly various applications of Global Positioning System. [5]
 - b) State any five advantages of space based positioning systems.
- Q3) a) State various methods of locating the position of boat in hydrographical surveying and explain briefly.[5]
 - i) location by two angles from Boat
 - ii) location by one angle from shore and the other from the Boat
 - b) Discuss in brief the various data sources to build GIS for civil engineering applications such as watershed development. [5]

[5]

[5]

Q4)	a)	Define remote sensing. State importance of digital image processing.[5]
	b)	What is mean by three point problem? How it solve by analytical method?
		[5]
Q5)	a)	What do you mean by a spherical excess? and how do you find out the
		Area of a spherical triangle? [5]
	b)	Define the following terms: [5]
		i) Mistake
		ii) True error
		iii) Most probable value
		iv) Conditioned equation
		v) Weight of an observation
	c)	Following observation were recorded for an angle under identical
		condition. [8]
		162°20'00'' 162°21'20'' 162°21'40''
		162°20'40'' 162°19'40'' 162°21'20''
		Calculate:
		i) the most probable error of single observation
		ii) the most probable error of mean
		iii) the most probable value of the angles
		OR
<i>Q6</i>)	a)	Explain laws of weight [5]
	b)	Explain step by step procedure for figure adjustment for a geodetic
		quadrilateral without central station. [5]
	c)	Neglecting the spherical excess, adjust the angle of triangle of which
		observed values are [8]
		Angle Weight
		Angle A = 48° 18'22'' 3
		Angle B = $76^{\circ} 32'47.2''$
		Angle $C = 55^{\circ} 08'53.8''$

- Q7) a) Write a stepwise procedure of determine air base distance using mirror stereoscope. [5]
 b) Write short note on: Crab and Drift. [5]
 c) The scale of aerial photograph is 1: 12000. The size of aerial photograph
 - c) The scale of aerial photograph is 1: 12000. The size of aerial photograph is 250 mm × 250 mm. The longitudinal overlap is 60% and side overlap is 30%. Determine the number of photographs required to cover an area of 250 sq.km.

OR

Q8) a) Define the following terms:

[5]

- i) Air base distance
- ii) Relief displacement
- iii) Oblique photograph
- iv) Principal point
- v) Mosaic
- b) Define Ground Control Points, state their role in photogrammetry and bring out difference between pre marked and post marked Ground Control Points (GCP). [5]
- c) Find the number of photographs (size 250 × 250 mm) require to cover an area of 20 km × 16 km if the longitude overlap is 60% and the side overlap is 30%. Scale of photograph is 1 cm: 150m.
 [6]
- **Q9)** a) Two triangulation stations A and B are 3200.65 m apart. Find the difference of elevation of two stations for the following data: [8]

Angle of depression at B to A $= 2^{\circ}18'16''$ Height of signal at A = 4.23 mHeight of Instrument at B = 1.24 mCoefficient of refraction at B = 0.07R sin 1" = 30.88 m

R.L. of B = 242.6 m

b) Describe in brief how setting out of a tunnel with surface setting out and transferring the alignment underground is carried out at site. [8]

OR

Two triangulation stations A and B are 2800 m apart. Find the reduce *Q10)* a) level of station B for the following data:

> Angle of elevation at A to B Height of signal at A = 2.46 mHeight of Instrument at B = 1.38 mCoefficient of refraction at B = 0.07radius of earth is = 6372 kmR.L. of A = 125 m

b) Describe the procedure for setting out a bridge, explain with a sketch.[8]

Chillips of the state of the st Strange of the second of the s