CSI 4133 - Lab 03

Calculating the difference between two consecutive video frames

Contents

Highlight moving objects from a video and save the resulting video to disk

- Read the input video
- Process the frames
- Write the output video

Procedure

Read video

- Initializing capture from a camera:
 - cv2.VideoCapture(0); // open the default camera
- Initializing capture from a video file:
 - · cv2.VideoCapture("video.avi"); // open the video file

Get capture & frame properties

cv2.VideoCapture.get(propID)

Property identifier. It can be one of the following:

- CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds or video capture timestamp.
- CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
- CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: 0 start of the film, 1 end of the film.
- CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
- CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
- CV CAP PROP FPS Frame rate.
- CV CAP PROP FOURCC 4-character code of codec.
- CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
- CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve().
- CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
- CV CAP PROP BRIGHTNESS Brightness of the image (only for cameras).
- CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
- CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
- CV_CAP_PROP_HUE Hue of the image (only for cameras).
- CV_CAP_PROP_GAIN Gain of the image (only for cameras).
- CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
- CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
- CV_CAP_PROP_WHITE_BALANCE_U The U value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
- CV_CAP_PROP_WHITE_BALANCE_V The V value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
- CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
- CV_CAP_PROP_ISO_SPEED The ISO speed of the camera (note: only supported by DC1394 v 2.x backend currently)
- CV_CAP_PROP_BUFFERSIZE Amount of frames stored in internal buffer memory (note: only supported by DC1394 v 2.x backend currently)

Set capture & frame properties

cv2.VideoCapture.set(propID, set)

Property identifier. It can be one of the following:

- CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
- CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
- o CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: 0 start of the film, 1 end of the film.
- CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
- CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
- CV CAP PROP FPS Frame rate.
- CV CAP PROP FOURCC 4-character code of codec.
- CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
- CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve().
- CV CAP PROP MODE Backend-specific value indicating the current capture mode.
- CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
- **CV_CAP_PROP_CONTRAST** Contrast of the image (only for cameras).
- CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
- CV_CAP_PROP_HUE Hue of the image (only for cameras).
- CV_CAP_PROP_GAIN Gain of the image (only for cameras).
- CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
- CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
- CV_CAP_PROP_WHITE_BALANCE_U The U value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
- CV_CAP_PROP_WHITE_BALANCE_V The V value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
- CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
- CV_CAP_PROP_ISO_SPEED The ISO speed of the camera (note: only supported by DC1394 v 2.x backend currently)
- CV_CAP_PROP_BUFFERSIZE Amount of frames stored in internal buffer memory (note: only supported by DC1394 v 2.x backend currently) value Value of the property.

Write/Save video

- Initializing a video writer:
 - cv2.VideoWriter([filename, fourcc, fps, frameSize[, isColor]]);
 - Filename Name of the output video file.
 - Fource 4-character code of codec used to compress the frames
 - · Example, CV_FOURCC('P','I','M','1') is a MPEG-1 codec, CV_FOURCC('M','J','P','G') is a motion-jpeg codec, etc.
 - Fps Frame rate of the created video stream.
 - FrameSize Size of the video frames.
 - IsColor If it is not zero, the encoder will expect and encode color frames, otherwise it will work with grayscale frames (flag is currently only supported on windows)
- Write/Save video
 - · Once you have a frame (frm) ready, you can write the output video file

```
Result = cv2.VideoWriter(para1,para2,para3,para4)
Result.write(frm)
```

Goal: Highlight moving objects from a video and save the resulting video to disk.

Idea:

- 1. Load input video "park.avi" (in the file folder "video")
- 2. Obtain two consecutive frames
- 3. Calculate the pixel intensity difference between the two consecutive frames
- 4. Perform thresholding on the difference image to get areas of movement in binary format
- 5. Save the resulting frame in a new video (eg: "result.avi")
- 6. Repeat the step2-step5 until the last frame of the input video.

Hints:

- · Read the input video:
 - Open the input video.
 - Obtain the properties of the video, such as the frame size, the number of frames, etc.
 - Obtain the index of the frame (0-based index).
 - Obtain the data of each frame.
- · Write the output video:
 - Create the output video.
 - Save processed frames into the output video.
- · Thresholding:
 - Much of your code from Assignment 1 is reusable here
 - The threshold value from Assignment 1 is used here.

Please submit a **lab report**, **source code**, **screenshots** of your results, and **output videos**.

Examples

END

THANK YOU