$Anomalias\ Magn\'eticas$

Disciplina Métodos Potenciais

Vanderlei C. Oliveira Jr.

Observatório Nacional - MCTI

Rio de Janeiro - 2015

Conteúdo

1	Anomalia de Campo Total		
	1.1	Definição	3
	1.2	Anomalia de Campo Total aproximada	4
		1.2.1 Exercício	6

1 Anomalia de Campo Total

1.1 Definição

Considere uma área de estudo sobre uma pequena região na superfície do planeta. Em um dado intervalo curto de tempo, podemos considerar que a parcela do campo geomagnético que é produzida pelo núcleo da Terra é um vetor constante em toda a área de estudo. Este vetor pode ser escrito como

$$\mathbf{F} = \|\mathbf{F}\| \,\hat{\mathbf{F}} \,, \tag{1}$$

em que $\|\mathbf{F}\|$ é a intensidade de \mathbf{F} e $\hat{\mathbf{F}}$ é um vetor unitário dado por

$$\hat{\mathbf{F}} = \begin{bmatrix} \cos(I)\cos(D) \\ \cos(I)\sin(D) \\ \sin(I) \end{bmatrix}, \tag{2}$$

sendo D e I a declinação e a inclinação de ${\bf F}$, respectivamente, de acordo com a Figura 1.

Figura 1: Representação esquemática de um vetor com declinação D e inclinação I referidas a um sistema de coordenadas Cartesianas com o eixo x apontando para o norte geográfico, y apontando para o leste e z para baixo.

A anomalia de campo total em uma determinada posição (x_i, y_i, z_i) , i = 1, ..., N, da área de estudo é definida da seguinte forma:

$$\Delta T_i = \|\mathbf{F} + \mathbf{B}_i\| - \|\mathbf{F}\|, \tag{3}$$

em que \mathbf{B}_i é a indução magnética produzida na posição (x_i,y_i,z_i) por corpos geológicos magnetizados em subsuperfície. Em geral, a seguinte relação é válida:

$$\|\mathbf{F}\| \gg \|\mathbf{B}_i\|, \ i = 1, ..., N.$$
 (4)

Esta relação possibilita aproximar a anomalia de campo total ΔT_i (Eq. 3) por uma série de Taylor, tal como será descrito a seguir.

1.2 Anomalia de Campo Total aproximada

Seja $f(\mathbf{p})$ uma função escalar dada por:

$$f(\mathbf{p}) = \|\mathbf{p}\|$$

$$= \sqrt{\mathbf{p}^{\mathsf{T}}\mathbf{p}}$$

$$= p_x^2 + p_y^2 + p_z^2,$$
(5)

em que \mathbf{p} é um vetor dado por

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}_{3 \times 1} . \tag{6}$$

A função $f(\mathbf{p})$ (Eq. 5) representa a norma Euclidiana do vetor \mathbf{p} (Eq. 6), cujas componentes Cartesianas são p_x , p_y e p_z . A função pode ser expandida em torno de um ponto \mathbf{p}_0 por meio de uma série de Taylor até ordem 1 da seguinte forma:

$$f(\mathbf{p}_0 + \Delta \mathbf{p}) \approx f(\mathbf{p}_0) + \nabla f(\mathbf{p}_0)^{\mathsf{T}} \Delta \mathbf{p} ,$$
 (7)

em que $\Delta \mathbf{p}$ é um vetor que representa uma pequena perturbação em torno de \mathbf{p}_0 – isto é, $\|\mathbf{p}_0\| \gg \|\Delta \mathbf{p}\|$ – e $\nabla f(\mathbf{p}_0)$ é o vetor gradiente de $f(\mathbf{p}_0)$, que é definido como:

$$\nabla f(\mathbf{p}_0) = \begin{bmatrix} \frac{\partial f(\mathbf{p}_0)}{\partial p_x} \\ \frac{\partial f(\mathbf{p}_0)}{\partial p_y} \\ \frac{\partial f(\mathbf{p}_0)}{\partial p_z} \end{bmatrix}_{3 \times 1} . \tag{8}$$

Se derivarmos a Equação 5 em relação às variáveis p_x , p_y e p_z , podemos reescrever o vetor $\nabla f(\mathbf{p}_0)$ da seguinte forma:

$$\nabla f(\mathbf{p}_0) = \frac{\mathbf{p}_0}{\sqrt{\mathbf{p}_0^{\mathsf{T}} \mathbf{p}_0}}$$

$$= \hat{\mathbf{p}}_0 , \qquad (9)$$

sendo $\hat{\mathbf{p}}_0$ um vetor unitário com a mesma direção e sentido do vetor \mathbf{p}_0 . Substituindo esta expressão (Eq. 9) na Equação 7 temos que:

$$f(\mathbf{p}_0 + \Delta \mathbf{p}) \approx \|\mathbf{p}_0\| + \hat{\mathbf{p}}_0^{\mathsf{T}} \Delta \mathbf{p}$$
 (10)

Utilizando esta aproximação por série de Taylor (Eq. 10) e considerando que a indução magnética \mathbf{B}_i , i=1,...,N (Eq. 3) é uma pequena perturbaçã no campo geomagnético \mathbf{F} (Eq. 1), — ou seja, que a Equação 4 é válida — podemos aproximar a anomalia de campo total ΔT_i (Eq. 3) pela seguinte expressão:

$$\Delta T_i^a = \|\mathbf{F}\| + \frac{\mathbf{F}^{\mathsf{T}}}{\sqrt{\mathbf{F}^{\mathsf{T}}\mathbf{F}}} \mathbf{B}_i - \|\mathbf{F}\|$$

$$= \hat{\mathbf{F}}^{\mathsf{T}} \mathbf{B}_i , \qquad (11)$$

em que $\hat{\mathbf{F}}$ é um vetor unitário com a mesma direção e sentido do campo geomagnético \mathbf{F} (Eq. 1). Vale ressaltar que esta aproximação (Eq. 11) da anomalia de campo total (Eq. 3) pressupõe a validade da relação descrita pela Equação 4.

......

1.2.1 Exercício

Seja ${\bf B}$ um vetor 3×1 que representa a indução magnética produzida por um corpo geológico em uma determinada posição na superfície da Terra. Este vetor pode ser escrito como:

$$\mathbf{B} = \|\mathbf{B}\| \,\hat{\mathbf{B}} \,, \tag{12}$$

em que $\|\mathbf{B}\|$ é a intensidade de \mathbf{B} e $\hat{\mathbf{B}}$ é um vetor unitário dado por

$$\hat{\mathbf{B}} = \begin{bmatrix} \cos(i)\cos(d) \\ \cos(i)\sin(d) \\ \sin(i) \end{bmatrix}, \tag{13}$$

sendo d e i a declinação e a inclinação de ${\bf B}$, respectivamente, de acordo com a Figura \ref{figura} . Utilizando este vetor ${\bf B}$ (Eq. 12) e um vetor ${\bf F}$ que descreva o campo geomagnético é possível calcular a anomalia de campo total ΔT (Eq. 3) e a anomalia de campo total aproximada ΔT^a (Eq. 11). É de se esperar que, quanto maior a intensidade de ${\bf F}$, menos deve ser a diferença entre ΔT (Eq. 3) e ΔT^a (Eq. 11). Sendo assim:

- 1. Defina valores para $\|\mathbf{B}\|$, $d \in i$ (Eqs. 12 e 13) e calcule um vetor \mathbf{B} .
- 2. Defina valores para $D \in I$ (Eq. 2) e calcule um vetor unitário $\hat{\mathbf{F}}$.
- 3. Defina um conjunto de N valores F = ||F||. Estes valores devem formar uma série crescente, que começa com valores menores que ||B|| (definido no item 1) e terminam com valores muito maiores que ||B|| (definido no item 1).
- 4. Utilizando o vetor unitário $\hat{\mathbf{F}}$ definido no item 2 e cada um dos N valores F definidos no item anterior, calcule um vetor \mathbf{F} .
- 5. Para cada um dos N vetores ${\bf F}$ definidos no item anterior, calcule a anomalia de campo total ΔT (Eq. 3) e a anomalia de campo total aproximada

 ΔT^a (Eq. 11).

- 6. Faça um gráfico da anomalia de campo total predita pelas Equações 3 e $11~{\rm em}~{\rm função}~{\rm da}~{\rm razão}~F/\|{\bf B}\|.$
- 7. A partir de qual valor $F/\|\mathbf{B}\|$ a diferença entre os valores preditos pelas Equações 3 e 11 é mínima?

.....