Data cleaning

Jenny

January 2019

Introduction

This file documents the data cleaning for the Representation Project

Data cleaning - Cumulative

Read in the data.

```
tbl<-read_rds("../Data/cumulative_2006_2017.Rds")
```

Take a look at the data

```
head(tbl)
```

```
## # A tibble: 6 x 70
      year case_id weight weight_cumulati~ state st
                                                        cd
                                                               dist dist up
##
     <int>
            <int> <dbl>
                                     <dbl> <chr> <chr> <S3:> <int>
## 1 2006 439219 1.85
                                     1.35 Nort~ NC
                                                        NC-10
                                                                 10
                                                                         10
## 2
     2006 439224 0.968
                                     0.704 Ohio OH
                                                        0H-3
                                                                  3
                                                                          3
## 3
     2006 439228 1.59
                                     1.16 New ~ NJ
                                                        NJ-1
                                                                  1
                                                                          1
## 4 2006 439237 1.40
                                     1.02 Illi~ IL
                                                        IL-9
                                                                  9
                                                                          9
     2006 439238 0.903
## 5
                                     0.656 \text{ New } \sim \text{NY}
                                                        NY-22
                                                                 22
                                                                         22
     2006 439242 0.839
                                     0.610 Texas TX
                                                        TX-11
                                                                 11
## # ... with 61 more variables: cong <int>, cong_up <int>, zipcode <chr>,
       county_fips <chr>, tookpost <int>, weight_post <dbl>,
       starttime <dttm>, pid3 <int>, pid7 <int>, pid3_leaner <int>,
## #
## #
       ideo5 <fct>, gender <int>, birthyr <int>, age <int>, race <int>,
## #
       hispanic <int>, educ <int>, faminc <fct>, economy_retro <int>,
       approval_pres <int>, approval_rep <fct>, approval_sen1 <fct>,
## #
## #
       approval_sen2 <fct>, approval_gov <int>, intent_pres_08 <fct>,
## #
       intent_pres_12 <fct>, intent_pres_16 <fct>, voted_pres_08 <fct>,
## #
       voted_pres_12 <fct>, voted_pres_16 <fct>, vv_regstatus <fct>,
       vv_party_gen <fct>, vv_party_prm <fct>, vv_turnout_gvm <fct>,
       vv_turnout_pvm <fct>, intent_rep <fct>, intent_sen <fct>,
## #
## #
       intent_gov <fct>, voted_rep <fct>, voted_sen <fct>, voted_gov <fct>,
## #
       intent_rep_chosen <chr>, intent_rep_fec <chr>,
## #
       intent_sen_chosen <chr>, intent_sen_fec <chr>,
## #
       intent gov chosen <chr>, intent gov fec <chr>, voted rep chosen <chr>,
## #
       voted_rep_fec <chr>, voted_sen_chosen <chr>, voted_sen_fec <chr>,
## #
       voted_gov_chosen <chr>, voted_gov_fec <chr>, rep_current <chr>,
## #
       rep_icpsr <int>, sen1_current <chr>, sen1_icpsr <int>,
       sen2_current <chr>, sen2_icpsr <int>, gov_current <chr>, gov_fec <chr>
```

Another way to look at the data, where we can clearly see all variable names and types.

```
tbl %>% glimpse()
```

```
## $ case id
                  <int> 439219, 439224, 439228, 439237, 439238, 4392...
## $ weight
                  <dbl> 1.8516757, 0.9683084, 1.5934412, 1.3985290, ...
## $ weight cumulative <dbl> 1.3460123, 0.7038787, 1.1582975, 1.0166128, ...
                  <chr> "North Carolina", "Ohio", "New Jersey", "Ill...
## $ state
                  <chr> "NC", "OH", "NJ", "IL", "NY", "TX", "MN", "N...
## $ st
## $ cd
                  <S3: glue> "NC-10", "OH-3", "NJ-1", "IL-9", "NY-22...
## $ dist
                  <int> 10, 3, 1, 9, 22, 11, 3, 2, 24, 2, 9, 5, 1, 1...
                  <int> 10, 3, 1, 9, 22, 11, 3, 2, 24, 2, 9, 5, 1, 1...
## $ dist_up
## $ cong
                  ## $ cong_up
                  ## $ zipcode
                  <chr> "28645", "45409", "08030", "60613", "12783",...
                  <chr> "37027", "39113", "34007", "17031", "36105",...
## $ county_fips
## $ tookpost
                  <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0,...
## $ weight_post
                  <dttm> 2006-10-07 00:02:34, 2006-10-07 00:02:53, 2...
## $ starttime
## $ pid3
                  <int> 1, 4, 1, 1, 1, 3, 2, 1, 1, 1, 2, 2, 3, 3, 2,...
## $ pid7
                  <int> 1, 3, 1, 1, 1, 3, 7, 1, 1, 1, 7, 6, 5, 5, 6,...
                  <int> 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, ...
## $ pid3_leaner
                  <fct> Liberal, Moderate, Liberal, Liberal, Liberal...
## $ ideo5
## $ gender
                  <int> 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1,...
## $ birthyr
                  <int> 1974, 1957, 1952, 1972, 1986, 1979, 1959, 19...
## $ age
                  <int> 32, 49, 54, 34, 20, 27, 47, 20, 77, 19, 53, ...
                  <int> 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, ...
## $ race
                  ## $ hispanic
## $ educ
                  <int> 2, 6, 2, 5, 3, 3, 4, 3, 3, 3, 3, 2, 4, 2, 2,...
## $ faminc
                  <fct> 10k - 20k, 150k+, 30k - 40k, Less than 10k, ...
                  <int> 4, 5, 5, 3, 3, 3, 1, 4, 5, 3, 1, 4, 1, 1, 5,...
## $ economy_retro
## $ approval_pres
                  <int> 4, 4, 4, 4, 4, 1, 4, 4, 3, 2, 4, 2, 1, 4,...
                  <fct> Strongly Disapprove, Disapprove / Somewhat D...
## $ approval_rep
## $ approval_sen1
                  <fct> Disapprove / Somewhat Disapprove, Strongly D...
## $ approval_sen2
                  <fct> Strongly Disapprove, Disapprove / Somewhat D...
## $ approval_gov
                  <int> 2, 3, 1, 2, 3, 5, 2, 2, 4, 2, 2, 3, 3, 1, 2,...
## $ intent_pres_08
                  ## $ intent_pres_12
                  ## $ intent_pres_16
                  ## $ voted_pres_08
                  ## $ voted pres 12
                  ## $ voted_pres_16
                  ## $ vv_regstatus
                  ## $ vv_party_gen
                  ## $ vv_party_prm
                  <fct> Voted, Voted, No Record Of Voting, Voted, No...
## $ vv_turnout_gvm
                  ## $ vv_turnout_pvm
                  <fct> [Democrat / Candidate 1], [Democrat / Candid...
## $ intent_rep
## $ intent_sen
                  <fct> NA, [Democrat / Candidate 1], [Democrat / Ca...
                  <fct> NA, [Democrat / Candidate 1], NA, [Democrat ...
## $ intent_gov
## $ voted_rep
                  <fct> [Democrat / Candidate 1], [Democrat / Candid...
                  <fct> NA, [Democrat / Candidate 1], [Democrat / Ca...
## $ voted_sen
## $ voted_gov
                  <fct> NA, [Democrat / Candidate 1], NA, [Democrat ...
## $ intent_rep_chosen <chr> "Richard C. Carsner (D)", "Stephanie Studeba...
                  <chr> "H6NC10141", "H6OH03142", "H0NJ01066", "H8IL...
## $ intent_rep_fec
## $ intent_sen_chosen <chr> NA, "Sherrod C. Brown (D)", "Robert Menendez...
                  <chr> NA, "S60H00163", "S6NJ00289", NA, NA, NA, "S...
## $ intent_sen_fec
## $ intent_gov_chosen <chr> NA, "Ted Strickland (D)", NA, "Rod Blagojevi...
```

```
<chr> NA, "OH19691", NA, "IL7", "NY19490", NA, "MN...
## $ intent_gov_fec
                       <chr> "Richard C. Carsner (D)", "Stephanie Studeba...
## $ voted_rep_chosen
                       <chr> "H6NC10141", "H6OH03142", "H0NJ01066", "H8IL...
## $ voted rep fec
                       <chr> NA, "Sherrod C. Brown (D)", "Robert Menendez...
## $ voted_sen_chosen
                       <chr> NA, "S60H00163", "S6NJ00289", NA, "S0NY00188...
## $ voted_sen_fec
## $ voted_gov_chosen <chr> NA, "Ted Strickland (D)", NA, "Rod Blagojevi...
                       <chr> NA, "OH19691", NA, "IL7", "NY19490", NA, "MN...
## $ voted_gov_fec
                       <chr> "Patrick T. McHenry (R)", "Michael R. Turner...
## $ rep_current
## $ rep_icpsr
                       <int> 20522, 20342, 29132, 29911, 29380, 20531, 29...
                       <chr> "Elizabeth Dole (R)", "Mike DeWine (R)", "Ro...
## $ sen1_current
## $ sen1_icpsr
                       <int> 40303, 15020, 29373, 15021, 14858, 49306, 40...
                       <chr> "Richard Burr (R)", "George V. Voinovich (R)...
## $ sen2_current
                       <int> 29548, 49903, 14914, 40502, 40105, 40305, 40...
## $ sen2_icpsr
## $ gov_current
                       <chr> "Michael Easley (D)", "Bob Taft (R)", "Jon C...
                       <chr> "NC5998", NA, "NJ6395", "IL7", NA, "TX3156",...
## $ gov_fec
Select variables (from Kuriwaki Guide)
tbl %>%
  select(year, case_id, pid3)
## # A tibble: 392,755 x 3
##
       year case id pid3
##
      <int>
              <int> <int>
   1 2006
            439219
##
##
   2 2006 439224
   3
       2006
            439228
##
                        1
   4 2006 439237
##
   5 2006 439238
##
   6 2006 439242
##
                        3
   7
       2006 439251
##
                        2
##
   8 2006 439254
                        1
  9 2006 439255
##
                        1
## 10 2006 439263
## # ... with 392,745 more rows
Display frequencies of validated turnout General Election over time - shows only first few rows in console
tbl %>%
  group_by(year) %>%
  count(vv_turnout_gvm)
## # A tibble: 21 x 3
## # Groups:
               year [12]
##
       year vv_turnout_gvm
                                    n
##
      <int> <fct>
                                <int>
##
   1 2006 Voted
                                15575
   2 2006 No Record Of Voting 20489
##
##
       2006 No Voter File
                                  357
##
   4 2007 <NA>
                                 9999
   5 2008 Voted
                                22235
       2008 No Record Of Voting 10520
##
##
   7
       2008 No Voter File
                                    45
   8 2009 <NA>
##
                                13800
   9 2010 Voted
                                33854
## 10 2010 No Record Of Voting 20215
```

... with 11 more rows

Display frequencies of validated turnout General Election over time - shows all rows in console in kable format to print in a clean formatted table.

```
tbl %>%
  group_by(year) %>%
  count(vv_turnout_gvm) %>%
  kable()
```

year	$vv_turnout_gvm$	n
2006	Voted	15575
2006	No Record Of Voting	20489
2006	No Voter File	357
2007	NA	9999
2008	Voted	22235
2008	No Record Of Voting	10520
2008	No Voter File	45
2009	NA	13800
2010	Voted	33854
2010	No Record Of Voting	20215
2010	No Voter File	1331
2011	NA	20150
2012	Voted	36402
2012	No Record Of Voting	18133
2013	NA	16400
2014	Voted	25309
2014	No Record Of Voting	30891
2015	NA	14250
2016	Voted	35829
2016	No Record Of Voting	28771
2017	NA	18200

Recode of vv_turnout_gvm to dichotomous

```
tbl <- tbl %>%
  mutate(vv_turnout_gvm_binary = as.numeric(vv_turnout_gvm == "Voted"))
```

Display frequencies of recoded Validated turnout General Election over time

```
tbl %>%
  group_by(year) %>%
  count(vv_turnout_gvm_binary)
```

```
## # A tibble: 18 x 3
## # Groups:
              year [12]
##
      year vv_turnout_gvm_binary
##
                           <dbl> <int>
     <int>
##
   1 2006
                               0 20846
##
   2 2006
                               1 15575
##
  3 2007
                              NA 9999
## 4 2008
                               0 10565
## 5 2008
                              1 22235
## 6 2009
                              NA 13800
## 7 2010
                               0 21546
```

```
## 8 2010
                               1 33854
  9 2011
                              NA 20150
##
## 10 2012
                               0 18133
## 11 2012
                               1 36402
## 12 2013
                              NA 16400
## 13 2014
                               0 30891
## 14 2014
                               1 25309
## 15 2015
                              NA 14250
## 16 2016
                               0 28771
## 17 2016
                               1 35829
## 18 2017
                              NA 18200
```

Display table, frequencies of recoded Validated turnout General Election over time

```
tbl %>%
  group_by(year) %>%
  count(vv_turnout_gvm_binary) %>%
  kable(align = c("l", "c", "c"))
```

year	vv_turnout_gvm_binary	n
2006	0	20846
2006	1	15575
2007	NA	9999
2008	0	10565
2008	1	22235
2009	NA	13800
2010	0	21546
2010	1	33854
2011	NA	20150
2012	0	18133
2012	1	36402
2013	NA	16400
2014	0	30891
2014	1	25309
2015	NA	14250
2016	0	28771
2016	1	35829
2017	NA	18200

Descriptive Statistics

Year:

```
tbl %>%
    count(year)

## # A tibble: 12 x 2
## year n
```

<int> <int> <int> ## 1 2006 36421 ## 2 2007 9999 ## 3 2008 32800 ## 4 2009 13800 ## 5 2010 55400 ## 6 2011 20150

```
2012 54535
##
    8
       2013 16400
       2014 56200
##
## 10 2015 14250
## 11
       2016 64600
## 12 2017 18200
tookpost - "Whether or not the respondent took the post-election wave of the survey (in even years)"
tbl %>%
  group_by(year) %>%
  count(tookpost) %>%
  filter(!is.na(tookpost)) %>%
  mutate(percent = round((n / sum(n)) * 100, 2))
## # A tibble: 12 x 4
## # Groups:
               year [6]
##
       year tookpost
                          n percent
##
      <int>
               <int> <int>
                              <dbl>
##
    1 2006
                   0 7664
                               21.0
##
    2 2006
                   1 28757
                               79.0
##
   3 2008
                   0 5779
                               17.6
##
   4 2008
                   1 27021
                               82.4
##
   5 2010
                   0 8716
                               15.7
##
   6 2010
                   1 46684
                               84.3
   7 2012
                   0 9700
##
                               17.8
##
    8
       2012
                   1 44835
                               82.2
##
   9 2014
                   0 7312
                               13.0
## 10
       2014
                   1 48888
                               87.0
## 11
       2016
                   0 11701
                               18.1
      2016
                   1 52899
                               81.9
## 12
Weight - year-specific for all years, see Kuriwaki p.7 for notes
tbl %>%
  group_by(year) %>%
  summarize(mean = mean(weight, na.rm = TRUE),
                 = sd(weight, na.rm = TRUE),
            min
                 = min(weight),
            max
                 = max(weight)
## # A tibble: 12 x 5
##
       year mean
##
      <int> <dbl> <dbl>
                             <dbl> <dbl>
##
    1 2006 1.000 0.530 0.331
                                    2.92
##
    2 2007 1.000 0.959 0.379
                                    3.41
##
    3 2008 1.
                  0.775 0.299
                                    6.49
##
   4 2009 1.000 0.675 0.115
                                    5.03
##
       2010 1.000 1.26
                                    7.03
                        0
                                    7.00
##
   6 2011 1
                  1.09
                        0.0863
##
   7
       2012 1
                  1.17
                        0.0000100 15.0
##
    8 2013 1
                  1.02
                        0.000100
                                   12.0
    9
       2014 1
                         0.000100
##
                  1.17
                                   15.0
## 10
       2015 1.000 0.946 0.000112
                                   10.0
                  0.979 0.000100
## 11 2016 1
                                  15.0
```

```
1.07 0.000100 10.0
## 12 2017 1
```

Weight - cumulative. Includes simple adjustment of multiplying a constant within year to make years comparable.

```
tbl %>%
  group_by(year) %>%
  summarize(mean = mean(weight_cumulative, na.rm = TRUE),
                 = sd(weight_cumulative, na.rm = TRUE),
           min = min(weight_cumulative),
                = max(weight_cumulative)
)
## # A tibble: 12 x 5
##
      year mean
                               min
                                     max
##
      <int> <dbl> <dbl>
                             <dbl> <dbl>
   1 2006 0.727 0.385 0.241
##
                                    2.12
##
   2 2007 2.65 2.54 1.00
                                    9.03
##
   3 2008 0.807 0.626 0.241
                                    5.24
   4 2009 1.92 1.29 0.220
##
                                    9.65
##
   5 2010 0.478 0.600 0
                                    3.36
##
   6 2011 1.31 1.44 0.113
                                    9.20
##
   7 2012 0.485 0.570 0.00000485
                                   7.28
  8 2013 1.61 1.64 0.000162
##
                                   19.4
##
  9 2014 0.471 0.550 0.0000472
                                    7.07
## 10 2015 1.86 1.76 0.000208
                                   18.6
## 11 2016 0.410 0.401 0.0000410
                                    6.15
## 12 2017 1.45 1.56 0.000145
                                   14.5
Geographic variables state - imputed from input zipcode st - same data as "State", Var name = 2-letter State
abbreviation
```

```
tbl %>%
  count(state, st)
```

```
## # A tibble: 51 x 3
##
      state
                            st
##
                            <chr> <int>
      <chr>
##
    1 Alabama
                            AL
                                   5106
##
  2 Alaska
                            AK
                                    881
##
  3 Arizona
                                   9928
                            AZ
## 4 Arkansas
                            AR
                                   3703
##
   5 California
                            CA
                                  37821
##
  6 Colorado
                            CO
                                   6824
  7 Connecticut
                            CT
                                   4622
## 8 Delaware
                            DE
                                   1455
## 9 District of Columbia DC
                                    878
## 10 Florida
                            FL
                                  28879
## # ... with 41 more rows
```

Geographic variables *cd: Congressional district in current Congress

```
tbl %>%
  count(st, cd)
```

```
## # A tibble: 448 x 3
##
      st
            cd
##
      <chr> <S3: glue> <int>
```

```
881
## 1 AK
          AK-1
## 2 AL
          AL-1
                      723
## 3 AL AL-2
                     754
## 4 AL AL-3
                      692
## 5 AL AL-4
                      628
## 6 AL AL-5
                      828
## 7 AL AL-6
                     765
## 8 AL AL-7
                      716
## 9 AR AR-1
                      836
## 10 AR AR-2
                      962
## # ... with 438 more rows
Gender
tbl %>%
count(gender)
## # A tibble: 2 x 2
##
   gender
           n
## <int> <int>
## 1 1 184273
## 2
       2 208482
Age
tbl %>%
 summarize(mean = mean(age),
         sd = sd(age),
          min = min(age),
          max = max(age)
 ) %>%
 mutate(variable = "age") %>%
 select(variable, everything())
## # A tibble: 1 x 5
## variable mean sd min max
## <chr> <dbl> <dbl> <dbl> <dbl>
            49.8 16.2 18 109
## 1 age
```

Figures

Plot turnout dichotomous by year via bar charts:

```
# counts
tbl %>%
  filter(year %% 2 != 1) %>%  # filter to even years
mutate(year = as.character(year)) %>%
  ggplot(aes(x = year, y = vv_turnout_gvm_binary, colour = year)) +
  geom_bar(stat = "identity") +
  labs(x = "Year", y = "Voter Turnout", title = "Voter Turnout by Year") +
  theme(legend.position = "none")
```

Voter Turnout by Year


```
# percent
tbl %>%
  filter(year %% 2 != 1) %>%  # filter to even years
  mutate(year = as.character(year)) %>%
  group_by(year) %>%
  summarize(percent = mean(vv_turnout_gvm_binary, na.omit = TRUE) * 100) %>%
  ggplot(aes(x = year, y = percent, fill = year)) +
  geom_bar(stat = "identity") +
  labs(x = "Year", y = "Percent Voter Turnout", title = "Percent Voter Turnout by Year") +
  theme(legend.position = "none")
```

Percent Voter Turnout by Year

Plot turnout dichotomous by year via line plots:

```
# counts
tbl %>%
  group_by(year) %>%
  count(vv_turnout_gvm_binary) %>%
  filter(vv_turnout_gvm_binary == 1) %>%
  ggplot(aes(x = year, y = n)) +
  geom_line() +
  geom_point() +
  ylim(0, 50000) +
  labs(x = "Year", y = "Voter Turnout", title = "Voter Turnout by Year")
```

Voter Turnout by Year


```
# percents
tbl %>%
  filter(year %% 2 != 1) %>%  # filter to even years
  mutate(year = as.character(year)) %>%
  group_by(year) %>%
  summarize(percent = mean(vv_turnout_gvm_binary, na.omit = TRUE) * 100) %>%
  ungroup() %>%
  ggplot(aes(x = year, y = percent, group = 1)) +
  geom_point() +
  geom_line() +
  ylim(0, 100) +
  labs(x = "Year", y = "Percent Voter Turnout", title = "Percent Voter Turnout by Year")
```

Percent Voter Turnout by Year

Data cleaning - 2012, replicating Perspectives findings with focus on Independents

JO dropbox link to Nov 2018 work on this topic in stata: CCES 2012_Russ Sage: https://www.dropbox.com/sh/fc7cn2fmaxocsyu/AADt5fFQ9jFXUQgcW65pVYvRa?dl=0

Read in 2012 cleaned data for Perspectives paper.

```
tbl2012 <- read_dta("../Data/CCES_foranalysis.dta")
```

Examine the variables we are interested in.

```
## Observations: 54,535
## Variables: 6
## $ healthcarerepeal1_House1 <chr> "For", "For"
```

```
## $ dontaskdonttell_House1
                                                                                       <chr> "Yea", "Ye
Some descriptive statistics.
tbl2012 vars <- tbl2012 %>%
      select(healthcarerepeal1_House1,
                          ryanbudget_House1,
                          koreafreetrade_House1,
                          simpsonbowles_House1,
                          keystonepipeline_House1,
                          dontaskdonttell House1) %>%
      colnames()
tbl2012_vars %>%
      map(~ tbl2012 %>%
                      count(!!sym(.x)) %>%
                       mutate(percent = round((n / sum(n)) * 100, 2)))
## [[1]]
## # A tibble: 4 x 3
             healthcarerepeal1_House1
                                                                                                n percent
##
              <chr>>
                                                                                                              <dbl>
                                                                                       <int>
## 1 ""
                                                                                                                   0.2
                                                                                            109
## 2 Against
                                                                                       21699
                                                                                                                 39.8
## 3 Did Not Vote
                                                                                            216
                                                                                                                   0.4
## 4 For
                                                                                       32511
                                                                                                                 59.6
##
## [[2]]
## # A tibble: 4 x 3
         ryanbudget_House1
                                                                         n percent
##
              <chr>
                                                                  <int>
                                                                                          <dbl>
## 1 ""
                                                                        439
                                                                                            0.8
## 2 Against
                                                                   22282
                                                                                         40.9
## 3 Did Not Vote
                                                                        557
                                                                                           1.02
## 4 For
                                                                   31257
                                                                                         57.3
##
## [[3]]
## # A tibble: 4 x 3
## koreafreetrade_House1
                                                                                         n percent
## <chr>
                                                                              <int>
                                                                                                     <dbl>
## 1 ""
                                                                                   428
                                                                                                        0.78
## 2 Against
                                                                              17447
                                                                                                     32.0
## 3 Did Not Vote
                                                                                   520
                                                                                                      0.95
## 4 For
                                                                              36140
                                                                                                     66.3
##
## [[4]]
## # A tibble: 5 x 3
## simpsonbowles_House1
                                                                                      n percent
##
              <chr>
                                                                                                   <dbl>
                                                                           <int>
## 1 ""
                                                                                                    1.25
                                                                                 679
## 2 Against
                                                                            47854
                                                                                                  87.8
## 3 Did Not Vote
                                                                                                   1.77
                                                                                965
## 4 For
                                                                              4774
                                                                                                    8.75
```

263

0.48

5 Present

##

```
## [[5]]
## # A tibble: 4 x 3
    keystonepipeline House1
                                 n percent
##
                             <int>
                                      <dbl>
## 1 ""
                               679
                                      1.25
## 2 Against
                             15051
                                     27.6
## 3 Did Not Vote
                              1380
                                      2.53
## 4 For
                             37425
                                      68.6
##
## [[6]]
## # A tibble: 7 x 3
    dontaskdonttell_House1
                                n percent
##
                            <int>
                                    <dbl>
## 1 ""
                                     0.2
                              109
## 2 .
                              368
                                     0.67
## 3 Announced Against
                              269
                                      0.49
## 4 Announced For
                              145
                                     0.27
## 5 Did not vote
                              926
                                     1.7
## 6 Nav
                            21403
                                    39.2
## 7 Yea
                            31315
                                    57.4
# counts of healthcare repeal votes in the House grouped by state district and party
tbl2012 %>%
  group_by(st_dist, party_House1) %>%
  count(healthcarerepeal1_House1)
## # A tibble: 436 x 4
               st_dist, party_House1 [436]
## # Groups:
      st_dist party_House1 healthcarerepeal1_House1
                                                         n
##
      <chr>
              <chr>>
                           <chr>>
                                                     <int>
## 1 AK1
              Republican
                           For
                                                       128
## 2 AL1
              Republican
                           For
                                                       108
## 3 AL2
              Republican
                           For
                                                       126
## 4 AL3
              Republican
                           For
                                                       106
## 5 AL4
              Republican
                           For
                                                        85
## 6 AL5
              Republican
                           For
                                                       112
## 7 AL6
              Republican
                           For
                                                       113
## 8 AL7
              Democratic
                                                        99
                           Against
## 9 AR1
              Republican
                           For
                                                        97
## 10 AR2
              Republican
                                                       141
## # ... with 426 more rows
These are pretty messy, let's recode them.
tbl2012 <- tbl2012 %>%
  mutate_at(tbl2012_vars, list(~ na_if(., y = ""))) %>%
    healthcarerepeal1_House1 = case_when(
      healthcarerepeal1_House1 == "For"
                                            ~ "For",
      healthcarerepeal1_House1 == "Against" ~ "Against",
      TRUE ~ NA_character_
    ryanbudget_House1 = case_when(
      ryanbudget_House1 == "For"
                                     ~ "For",
      ryanbudget_House1 == "Against" ~ "Against",
      TRUE ~ NA_character_
```

```
koreafreetrade_House1 = case_when(
     koreafreetrade_House1 == "For" ~ "For",
     koreafreetrade_House1 == "Against" ~ "Against",
     TRUE ~ NA_character_
   simpsonbowles_House1 = case_when(
     simpsonbowles House1 == "For"
     simpsonbowles_House1 == "Against" ~ "Against",
     TRUE ~ NA character
   ),
   keystonepipeline_House1 = case_when(
     keystonepipeline_House1 == "For"
                                         ~ "For",
     keystonepipeline_House1 == "Against" ~ "Against",
     TRUE ~ NA_character_
   ),
   dontaskdonttell_House1 = case_when(
     dontaskdonttell_House1 == "Announced For" ~ "For",
     dontaskdonttell_House1 == "Announced Against" ~ "Against",
     dontaskdonttell_House1 == "Yea"
                                      ~ "For",
     dontaskdonttell_House1 == "Nay" ~ "Against",
     TRUE ~ NA_character_
   )
 )
# check recodes
tbl2012 vars %>%
 map(~ tbl2012 %>%
       count(!!sym(.x)) %>%
       mutate(percent = round((n / sum(n)) * 100, 2)))
## [[1]]
## # A tibble: 3 x 3
## healthcarerepeal1_House1
                             n percent
   <chr>
                                    <dbl>
                             <int>
                             21699
                                     39.8
## 1 Against
## 2 For
                             32511
                                     59.6
## 3 <NA>
                              325
                                     0.6
##
## [[2]]
## # A tibble: 3 x 3
## ryanbudget_House1 n percent
                    <int> <dbl>
## <chr>
                    22282 40.9
## 1 Against
## 2 For
                     31257
                             57.3
## 3 <NA>
                      996
                            1.83
##
## [[3]]
## # A tibble: 3 x 3
## koreafreetrade_House1
                           n percent
## <chr>
                                 <dbl>
                          <int>
## 1 Against
                          17447
                                 32.0
## 2 For
                          36140 66.3
## 3 <NA>
                           948 1.74
```

```
##
## [[4]]
## # A tibble: 3 x 3
##
     simpsonbowles_House1
                                n percent
##
     <chr>
                            <int>
                                    <dbl>
## 1 Against
                                    87.8
                            47854
## 2 For
                                     8.75
                             4774
## 3 <NA>
                             1907
                                     3.5
##
## [[5]]
## # A tibble: 3 x 3
##
     keystonepipeline_House1
                                   n percent
##
     <chr>
                                       <dbl>
                               <int>
## 1 Against
                               15051
                                       27.6
## 2 For
                               37425
                                       68.6
## 3 <NA>
                                2059
                                         3.78
##
## [[6]]
## # A tibble: 3 x 3
     dontaskdonttell House1
                                  n percent
##
     <chr>>
                              <int>
                                       <dbl>
## 1 Against
                              21672
                                      39.7
## 2 For
                              31460
                                      57.7
## 3 <NA>
                               1403
                                       2.57
```

Data cleaning - Panel 2010-2012-2014

Link to prior panel data analyses in stata: CCES panel 2010-2012-2014: https://www.dropbox.com/sh/gj4vfv9xzvdgkwd/AABpmEqKQBT6EQDVCFvqeV7Ka?dl=0

Read in the data.

```
tbl_panel <- haven::read_dta("../Data/CCES_Panel_Full3waves_VV_V4.dta", encoding = "latin1")
```

I. Create joined data file Senate: join on state (2-letter postal abbreviation) In stata: Reshaped into wide format to join In R, relevant commands: spread, gather, mutate_at

 $\label{link} Link for CCES~2014~supplemental~data:~https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi: 10.7910/DVN/D1N0GO$

 $\label{link} Link for CCES~2012~supplemental~data~https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.~7910/DVN/NI3BDE$

 $\label{link} Link for CCES~2010~supplemental~data:~https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi: 10.7910/DVN/KC9EQR$

Recode of relevant respondent measures CC10 $_330A = Roll\ Call$ - American Recovery and Reinvestment Act [According to PanelGuide downloaded 1Feb2019 - https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/TOE8I1]

```
tbl_panel %>%
count(CC10_330A)

## # A tibble: 3 x 2

## CC10_330A n

## <dbl+lbl> <int>
## 1 1 4616

## 2 2 4775
```

3 NA 109

View 1st 5 Lines only in dataframe of all columns (vars)

head(tbl_panel)

```
## # A tibble: 6 x 1,631
     caseid weight CC10_301_1 CC10_301_2 CC10_301_3 CC10_301_4 CC10_301_5
##
      <dbl> <dbl> <dbl+1bl> <dbl+1bl> <dbl+1bl> <dbl+1bl> <dbl+1bl>
##
## 1
      25233 0.538 1
                              1
                                         1
                                                     1
      38716 3.47 1
## 2
                              2
                                                                2
                                         1
                                                     1
                                                                2
## 3
       7796 0.602 2
                              1
                                         1
                                                     1
     78113 0.264 1
                                         1
                                                                2
## 4
                              1
                                                     1
                                                                2
## 5
      63800 0.197 1
                              1
                                         1
                                                     2
## 6
      15002 0.204 1
                              1
                                         1
## #
     ... with 1,624 more variables: CC10_301b <dbl+lbl>, CC10_301c <dbl+lbl>,
       CC10_302 <dbl+lbl>, CC10_304 <dbl+lbl>, CC10_305 <dbl+lbl>,
## #
## #
       CC10_308a <dbl+lbl>, CC10_308b <dbl+lbl>, CC10_308c <dbl+lbl>,
       CC10_308d <dbl+lbl>, CC10_308e <dbl+lbl>, CC10_309a <dbl+lbl>,
## #
       CC10_309b <dbl+lbl>, CC10_309c <dbl+lbl>, CC10_309d <dbl+lbl>,
## #
## #
       CC10_310a <dbl+lbl>, CC10_310b <dbl+lbl>, CC10_310c <dbl+lbl>,
       CC10_310d <dbl+lbl>, CC10_315a <dbl+lbl>, CC10_315b <dbl+lbl>,
## #
       CC10_315c <dbl+lbl>, CC10_316 <dbl+lbl>, CC10_317 <dbl+lbl>,
## #
## #
       CC10_317_t <chr>, CC10_320 <dbl+lbl>, CC10_321 <dbl+lbl>,
## #
       CC10 322 1 <dbl+lbl>, CC10 322 2 <dbl+lbl>, CC10 322 3 <dbl+lbl>,
       CC10_322_4 <dbl+lbl>, CC10_322_7 <dbl+lbl>, CC10_322_8 <dbl+lbl>,
## #
       CC10_324 <dbl+lbl>, CC10_325 <dbl+lbl>, CC10_326 <dbl+lbl>,
## #
       CC10 327 <dbl+lbl>, CC10 328 <dbl+lbl>, CC10 329 <dbl+lbl>,
## #
       CC10 330A <dbl+lbl>, CC10 330B <dbl+lbl>, CC10 330C <dbl+lbl>,
       CC10_330D <dbl+lbl>, CC10_330E <dbl+lbl>, CC10_330F <dbl+lbl>,
## #
## #
       CC10_330G <dbl+lbl>, CC10_330H <dbl+lbl>, CC10_330I <dbl+lbl>,
## #
       CC10_330J <dbl+lbl>, CC10_334E <dbl+lbl>, CC10_334Hb <dbl+lbl>,
## #
       CC10_334Ib <dbl+lbl>, CC10_335a1 <dbl+lbl>, CC10_335a2 <dbl+lbl>,
       CC10_335b1 <dbl+lbl>, CC10_335b2 <dbl+lbl>, CC10_335c1 <dbl+lbl>,
## #
## #
       CC10_335c2 <dbl+lbl>, CC10_341A <dbl+lbl>, CC10_341B <dbl+lbl>,
## #
       CC10_341C <dbl+lbl>, CC10_341F <dbl+lbl>, CC10_341G <dbl+lbl>,
## #
       CC10_341H <dbl+lbl>, CC10_341I <dbl+lbl>, CC10_341J <dbl+lbl>,
## #
       CC10_341K <dbl+lbl>, CC10_341L <dbl+lbl>, CC10_341M <dbl+lbl>,
## #
       CC10_341R <dbl+lbl>, CC10_350 <dbl+lbl>, CC10_351 <dbl+lbl>,
## #
       CC10 352a <dbl+lbl>, CC10 352b <dbl+lbl>, CC10 354 <dbl+lbl>,
       CC10_355 <dbl+lbl>, CC10_355_t <chr>, CC10_355a <dbl+lbl>,
## #
## #
       CC10_355a_t <chr>, CC10_355b <dbl+lbl>, CC10_355b_t <chr>,
## #
       CC10_356 <dbl+lbl>, CC10_356_t <chr>, CC10_356a <dbl+lbl>,
       CC10_356a_t <chr>, CC10_390 <dbl+lbl>, CC10_390_t <chr>,
       CC10_390a <dbl+lbl>, CC10_390a_t <chr>, CC10_401 <dbl+lbl>,
## #
       CC10_402a <dbl+lbl>, CC10_402a_t <chr>, CC10_402b <dbl+lbl>,
## #
## #
       CC10_402b_t <chr>, CC10_403 <dbl+lbl>, CC10_405 <dbl+lbl>,
## #
       CC10_406a <dbl+lbl>, CC10_406b_1 <dbl+lbl>, CC10_406b_2 <dbl+lbl>,
       CC10_406b_3 <dbl+lbl>, CC10_406c <dbl+lbl>, ...
## #
```

NOTE: Discrepanices between pdf "guide" and data: (1) "Guide" says roll call votes 2010 should all have preface CC10_332 - but in data all have preface CC10_330. (2) Data says CC10_330H = Stem cell & CC10_330I = Foreign Intelligence Surveillance Act // Guide swaps them.

Recode CC10_330A as factor. This converts the labeled numeric column in to a factor with strings as the values.

```
tbl_panel <- tbl_panel %>%
    mutate(CC10_330A_fac = as_factor(CC10_330A))
# check successful mutate
tbl_panel %>%
  count(CC10_330A, CC10_330A_fac)
## # A tibble: 3 x 3
   CC10_330A CC10_330A_fac
##
     <dbl+lbl> <fct>
                             <int>
## 1 1
                              4616
               Support
## 2 2
               Oppose
                              4775
## 3 NA
               <NA>
                               109
Count all 2010 vars noted in pdf guide to verify they're in dataset (p.49 of guide) CC12_330B
CC10_330_vars <- tbl_panel %>%
  select(CC10_330B, CC10_330C, CC10_330D, CC10_330E,
         CC10_330F, CC10_330G, CC10_330H, CC10_330I, CC10_330J) %>%
  colnames()
CC10_330_vars %>%
  map(~ tbl_panel %>% count(!!sym(.x)))
## [[1]]
## # A tibble: 3 x 2
    CC10_330B
##
     <dbl+lbl> <int>
## 1 1
                6376
## 2 2
                3055
## 3 NA
                  69
##
## [[2]]
## # A tibble: 3 x 2
   CC10_330C
                  n
##
    <dbl+lbl> <int>
## 1 1
                4952
## 2 2
                4386
## 3 NA
                162
##
## [[3]]
## # A tibble: 3 x 2
    CC10_330D
##
##
    <dbl+lbl> <int>
## 1 1
               4664
## 2 2
                4764
## 3 NA
                  72
##
## [[4]]
## # A tibble: 3 x 2
    CC10_330E
##
    <dbl+lbl> <int>
## 1 1
                4798
## 2 2
                4447
```

3 NA

255

```
## [[5]]
## # A tibble: 3 x 2
    CC10_330F
##
##
     <dbl+lbl> <int>
## 1 1
                6365
## 2 2
                3009
## 3 NA
                126
##
## [[6]]
## # A tibble: 3 x 2
##
    CC10_330G
     <dbl+lbl> <int>
##
## 1 1
               5651
## 2 2
                3725
## 3 NA
                124
##
## [[7]]
## # A tibble: 3 x 2
   CC10_330H
                   n
##
     <dbl+lbl> <int>
## 1 1
               6191
## 2 2
                3199
## 3 NA
                110
##
## [[8]]
## # A tibble: 3 x 2
##
    CC10_330I
                   n
     <dbl+lbl> <int>
##
## 1 1
               1100
## 2 2
                328
## 3 NA
                8072
##
## [[9]]
## # A tibble: 3 x 2
##
    CC10_330J
                   n
##
     <dbl+lbl> <int>
## 1 1
                 385
## 2 2
                1070
## 3 NA
                8045
Recode all remaining 2010 vars as factor
tbl_panel <- tbl_panel %>%
  mutate_at(vars(CC10_330B, CC10_330C, CC10_330D, CC10_330E,
                 CC10_330F, CC10_330G, CC10_330H, CC10_330I, CC10_330J),
            funs(fac = as_factor(.)))
Confirm that mutate performed correctly
fac_vars <- CC10_330_vars %>%
  paste0("_fac")
map2(CC10_330_vars, fac_vars, ~ tbl_panel %>% count(!!sym(.x), !!sym(.y)))
```

##

[[1]]

```
## # A tibble: 3 x 3
## CC10_330B CC10_330B_fac n
## <dbl+lbl> <fct> <int>
        Support
Oppose
## 1 1
                        6376
## 2 2
                         3055
## 3 NA
            <NA>
                          69
##
## [[2]]
## # A tibble: 3 x 3
## CC10_330C CC10_330C_fac n
## <dbl+lbl> <fct> <int>
       Support
Oppose
## 1 1
                        4952
## 2 2
                        4386
## 3 NA
            <NA>
                        162
##
## [[3]]
## # A tibble: 3 x 3
## CC10_330D CC10_330D_fac n
## <dbl+lbl> <fct> <int>
        Support
Oppose
## 1 1
                        4664
## 2 2
                         4764
## 3 NA
            <NA>
##
## [[4]]
## # A tibble: 3 x 3
## CC10_330E CC10_330E_fac n
## <dbl+lbl> <fct> <int>
4798
                         4447
## 3 NA
            <NA>
                        255
##
## [[5]]
## # A tibble: 3 x 3
## CC10_330F CC10_330F_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Support
                         6365
## 2 2
         Oppose
                         3009
## 3 NA
            <NA>
                         126
##
## [[6]]
## # A tibble: 3 x 3
## CC10_330G CC10_330G_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Support
                        5651
         Oppose
## 2 2
                         3725
## 3 NA
            <NA>
                         124
##
## [[7]]
## # A tibble: 3 x 3
## CC10_330H CC10_330H_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Support
                       6191
## 2 2
            Oppose
                         3199
## 3 NA
            <NA>
                         110
```

```
##
## [[8]]
## # A tibble: 3 x 3
     CC10_330I CC10_330I_fac
##
##
     <dbl+lbl> <fct>
                               <int>
## 1 1
                Support
                                1100
## 2 2
                Oppose
                                 328
## 3 NA
                <NA>
                                8072
##
## [[9]]
## # A tibble: 3 x 3
##
     CC10_330J CC10_330J_fac
                                   n
##
     <dbl+lbl> <fct>
                               <int>
## 1 1
                Support
                                 385
## 2 2
                Oppose
                                1070
## 3 NA
                <NA>
                                8045
JO checking 2012 roll call opinion votes
Guide includes var "House Supported Roll Call - Repeal Affordable Care Act" JA insight re: whether this is
already merged House votes?
tbl_panel %>% count(CC12_333_a_1)
## # A tibble: 3 x 2
##
     CC12_333_a_1
                       n
     <dbl+1b1>
##
                   <int>
## 1 1
                    4397
## 2 2
                    5014
## 3 NA
                      89
Count all 2012 vars noted in pdf guide to verify they're in dataset (p. 143 of guide)
CC12_vars <- tbl_panel %>%
  select(CC12_330A, CC12_330B, CC12_330C, CC12_330D, CC12_330E,
         CC12_330F, CC12_330G, CC12_330H, CC12_332A, CC12_332B,
         CC12_332C, CC12_332D, CC12_332E, CC12_332F) %>%
  colnames()
CC12_vars %>%
  map(~ tbl_panel %>% count(!!sym(.x)))
## [[1]]
## # A tibble: 3 x 2
##
     CC12_330A
     <dbl+lbl> <int>
##
## 1 1
                 4633
## 2 2
                 4806
## 3 NA
                   61
##
## [[2]]
## # A tibble: 3 x 2
```

##

##

1 1

2 2

3 NA

CC12_330B

<dbl+lbl> <int>

n

6705

2733

62

```
##
## [[3]]
## # A tibble: 3 x 2
## CC12_330C n
## <dbl+lbl> <int>
## 1 1 5025
## 2 2
            4346
## 3 NA
            129
##
## [[4]]
## # A tibble: 3 x 2
## CC12_330D n
## <dbl+lbl> <int>
## 1 1
        4828
## 2 2
             4602
## 3 NA
             70
##
## [[5]]
## # A tibble: 3 x 2
## CC12 330E n
## <dbl+lbl> <int>
## 1 1 4272
## 2 2
            4898
## 3 NA
            330
##
## [[6]]
## # A tibble: 3 \times 2
## CC12_330F n
## <dbl+lbl> <int>
## 1 1
         6417
## 2 2
             2910
## 3 NA
            173
##
## [[7]]
## # A tibble: 3 x 2
## CC12_330G n
## <dbl+lbl> <int>
## 1 1
         5962
## 2 2
            3434
## 3 NA
            104
##
## [[8]]
## # A tibble: 3 x 2
## CC12_330H n
## <dbl+lbl> <int>
## 1 1
        6227
## 2 2
             3144
## 3 NA
             129
##
## [[9]]
## # A tibble: 3 x 2
## CC12_332A n
## <dbl+lbl> <int>
## 1 1
            2436
```

```
## 2 2
                6919
## 3 NA
                 145
##
## [[10]]
## # A tibble: 3 x 2
    CC12_332B
##
##
     <dbl+lbl> <int>
## 1 1
                3975
## 2 2
                5363
## 3 NA
                 162
##
## [[11]]
## # A tibble: 3 x 2
    CC12_332C
##
##
     <dbl+lbl> <int>
## 1 1
                6077
## 2 2
                3188
## 3 NA
                 235
##
## [[12]]
## # A tibble: 3 x 2
    CC12_332D
##
     <dbl+lbl> <int>
## 1 1
                3073
## 2 2
                6188
## 3 NA
                 239
##
## [[13]]
## # A tibble: 3 x 2
    CC12_332E
##
                   n
##
     <dbl+lbl> <int>
## 1 1
                4269
## 2 2
                5119
## 3 NA
                 112
##
## [[14]]
## # A tibble: 3 x 2
##
    CC12_332F
                   n
##
     <dbl+lbl> <int>
## 1 1
                4967
## 2 2
                4223
## 3 NA
                 310
```

JO note: the final 2 vars in the list in the guidebook don't appear in the data: $CC12_332G = Repeal\ ACA\ CC12_332H = Keystone$

Recode all 2012 roll call votes as factors

```
CC12_fac_vars <- CC12_vars %>%
 paste0("_fac")
map2(CC12_vars, CC12_fac_vars, ~ tbl_panel %>% count(!!sym(.x), !!sym(.y)))
## [[1]]
## # A tibble: 3 x 3
## CC12_330A CC12_330A_fac
   <dbl+lbl> <fct>
                     <int>
## 1 1
                            4633
             Yes
## 2 2
              No
                            4806
## 3 NA
              <NA>
                              61
##
## [[2]]
## # A tibble: 3 x 3
## CC12_330B CC12_330B_fac
## <dbl+lbl> <fct>
                           <int>
## 1 1
              Yes
                            6705
## 2 2
                            2733
              No
## 3 NA
              <NA>
##
## [[3]]
## # A tibble: 3 x 3
   CC12_330C CC12_330C_fac
   <dbl+lbl> <fct>
##
                       <int>
## 1 1
             Yes
                            5025
## 2 2
              No
                            4346
## 3 NA
              <NA>
                             129
##
## [[4]]
## # A tibble: 3 x 3
## CC12_330D CC12_330D_fac
## <dbl+lbl> <fct>
                           <int>
## 1 1
                            4828
             Yes
## 2 2
              No
                            4602
## 3 NA
              <NA>
                              70
##
## [[5]]
## # A tibble: 3 x 3
## CC12_330E CC12_330E_fac
##
   <dbl+lbl> <fct>
                       <int>
## 1 1
              Yes
                            4272
## 2 2
              No
                            4898
## 3 NA
              <NA>
                             330
##
## [[6]]
## # A tibble: 3 x 3
## CC12_330F CC12_330F_fac
                             n
## <dbl+lbl> <fct>
                           <int>
## 1 1
              Yes
                            6417
## 2 2
              No
                            2910
## 3 NA
              <NA>
                             173
##
```

[[7]]

```
## # A tibble: 3 x 3
## CC12_330G CC12_330G_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Yes
## 2 2 No
## 3 NA <NA>
                         5962
                         3434
                          104
##
## [[8]]
## # A tibble: 3 x 3
## CC12_330H CC12_330H_fac n
## <dbl+lbl> <fct> <int>
                        6227
## 1 1 Yes
## 2 2 No
## 3 NA <NA>
                         3144
                         129
##
## [[9]]
## # A tibble: 3 x 3
## CC12_332A CC12_332A_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Yes
## 2 2 No
## 3 NA <NA>
                         2436
                         6919
##
## [[10]]
## # A tibble: 3 x 3
## CC12_332B CC12_332B_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Yes
## 2 2 No
## 3 NA <NA>
                        3975
                         5363
                         162
##
## [[11]]
## # A tibble: 3 x 3
## CC12_332C CC12_332C_fac n
## <dbl+lbl> <fct> <int>
                        6077
## 1 1 Yes
## 2 2 No
## 3 NA <NA>
                         3188
                          235
##
## [[12]]
## # A tibble: 3 x 3
## CC12_332D CC12_332D_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Yes
                         3073
         No
<NA>
## 2 2
                         6188
## 3 NA
                          239
##
## [[13]]
## # A tibble: 3 x 3
## CC12_332E CC12_332E_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Yes
                         4269
## 2 2 No
## 3 NA <NA>
                         5119
                          112
```

```
##
## [[14]]
## # A tibble: 3 x 3
     CC12_332F CC12_332F_fac
##
     <dbl+lbl> <fct>
                              <int>
## 1 1
               Yes
                               4967
## 2 2
               No
                               4223
## 3 NA
               <NA>
                                310
Count all 2014 vars noted in pdf guide to verify they're in dataset (p. 269ff of guide)
CC14_vars <- tbl_panel %>%
  select(CC14_330A, CC14_330B, CC14_330C, CC14_330D, CC14_330E,
         CC14_330F, CC14_330G, CC14_330H, CC14_332A, CC14_332B,
         CC14_332C, CC14_332D, CC14_332E, CC14_332F) %>%
  colnames()
CC14_vars %>%
  map(~ tbl_panel %>% count(!!sym(.x)))
## [[1]]
## # A tibble: 3 x 2
    CC14 330A
##
     <dbl+lbl> <int>
## 1 1
                4816
## 2 2
                4577
## 3 NA
                 107
##
## [[2]]
## # A tibble: 3 x 2
##
    CC14_330B
                   n
##
     <dbl+lbl> <int>
## 1 1
                6451
## 2 2
                2939
## 3 NA
                 110
##
## [[3]]
## # A tibble: 3 x 2
    CC14_330C
##
                   n
     <dbl+lbl> <int>
##
## 1 1
                5068
## 2 2
                4281
## 3 NA
                 151
##
## [[4]]
## # A tibble: 3 x 2
##
    CC14_330D
##
     <dbl+lbl> <int>
## 1 1
                4732
## 2 2
                4703
## 3 NA
                  65
##
## [[5]]
## # A tibble: 3 x 2
## CC14_330E
```

```
## <dbl+lbl> <int>
## 1 1
        4304
            4836
## 2 2
## 3 NA
             360
##
## [[6]]
## # A tibble: 3 x 2
## CC14_330F n
## <dbl+lbl> <int>
## 1 1
        6734
## 2 2
            2572
## 3 NA
             194
## [[7]]
## # A tibble: 3 x 2
## CC14_330G n
## <dbl+lbl> <int>
         5940
## 1 1
## 2 2
            3463
## 3 NA
              97
##
## [[8]]
## # A tibble: 3 x 2
## CC14_330H n
## <dbl+lbl> <int>
## 1 1
         6540
## 2 2
              2857
## 3 NA
              103
##
## [[9]]
## # A tibble: 3 x 2
## CC14_332A n
## <dbl+lbl> <int>
## 1 1
            1792
## 2 2
            7587
## 3 NA
              121
##
## [[10]]
## # A tibble: 3 x 2
## CC14_332B n
## <dbl+lbl> <int>
## 1 1
            3094
## 2 2
            6271
## 3 NA
             135
##
## [[11]]
## # A tibble: 3 \times 2
## CC14_332C n
## <dbl+lbl> <int>
## 1 1
             5544
## 2 2
             3758
## 3 NA
             198
##
## [[12]]
```

```
## # A tibble: 3 x 2
##
     CC14_332D
                   n
##
     <dbl+lbl> <int>
## 1 1
                2497
## 2 2
                6805
## 3 NA
                 198
##
## [[13]]
## # A tibble: 3 x 2
##
     CC14_332E
     <dbl+lbl> <int>
## 1 1
                4405
                4982
## 2 2
## 3 NA
                 113
##
## [[14]]
## # A tibble: 3 x 2
    CC14_332F
                   n
##
     <dbl+lbl> <int>
## 1 1
                4972
## 2 2
                4233
## 3 NA
                 295
JO finished roll call recoding here - restart next 2 chunks to adapt to CC14 Recode all 2012 roll call votes as
factors
tbl_panel <- tbl_panel %>%
  mutate_at(vars(CC14_330A, CC14_330B, CC14_330C, CC14_330D, CC14_330E,
                 CC14_330F, CC14_330G, CC14_330H, CC14_332A, CC14_332B,
                 CC14_332C, CC14_332D, CC14_332E, CC14_332F),
            funs(fac = as_factor(.)))
# Confirm that mutate performed correctly
CC14_fac_vars <- CC14_vars %>%
  paste0("_fac")
map2(CC14_vars, CC14_fac_vars, ~ tbl_panel %>% count(!!sym(.x), !!sym(.y)))
## [[1]]
## # A tibble: 3 x 3
     CC14_330A CC14_330A_fac
                                  n
##
     <dbl+lbl> <fct>
                              <int>
## 1 1
               Yes
                               4816
## 2 2
               No
                               4577
## 3 NA
               <NA>
                                107
## [[2]]
## # A tibble: 3 x 3
     CC14_330B CC14_330B_fac
##
     <dbl+lbl> <fct>
                              <int>
## 1 1
               Yes
                               6451
## 2 2
               No
                               2939
## 3 NA
               <NA>
                                110
##
```

[[3]]

```
## # A tibble: 3 x 3
## CC14_330C CC14_330C_fac n
## <dbl+lbl> <fct> <int>
       Yes
No
         Yes
## 1 1
                        5068
## 2 2
                        4281
## 3 NA
            <NA>
                         151
##
## [[4]]
## # A tibble: 3 x 3
## CC14_330D CC14_330D_fac n
## <dbl+lbl> <fct> <int>
       Yes
No
<NA>
## 1 1
                        4732
## 2 2
                        4703
## 3 NA
                         65
##
## [[5]]
## # A tibble: 3 x 3
## CC14_330E CC14_330E_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Yes
## 2 2 No
## 3 NA <NA>
                        4304
                        4836
                         360
##
## [[6]]
## # A tibble: 3 x 3
## CC14_330F CC14_330F_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Yes
## 2 2 No
## 3 NA <NA>
                       6734
                        2572
## 3 NA
           <NA>
                        194
##
## [[7]]
## # A tibble: 3 x 3
## CC14_330G CC14_330G_fac n
## <dbl+1bl> <fct> <int>
                       5940
## 1 1 Yes
        No
<na>>
## 2 2
                        3463
## 3 NA
           <NA>
                         97
##
## [[8]]
## # A tibble: 3 x 3
## CC14_330H CC14_330H_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Yes
                        6540
         No
<NA>
## 2 2
                        2857
## 3 NA
                        103
##
## [[9]]
## # A tibble: 3 x 3
## CC14_332A CC14_332A_fac n
## <dbl+lbl> <fct> <int>
## 1 1 Yes
                       1792
## 2 2
           No
                        7587
121
```

```
##
## [[10]]
## # A tibble: 3 x 3
   CC14_332B CC14_332B_fac
##
     <dbl+lbl> <fct>
                             <int>
## 1 1
              Yes
                              3094
## 2 2
              No
                              6271
## 3 NA
              <NA>
                               135
##
## [[11]]
## # A tibble: 3 x 3
    CC14_332C CC14_332C_fac
     <dbl+lbl> <fct>
##
                             <int>
## 1 1
              Yes
                              5544
## 2 2
              No
                              3758
## 3 NA
               <NA>
                               198
##
## [[12]]
## # A tibble: 3 x 3
   CC14_332D CC14_332D_fac
##
    <dbl+lbl> <fct>
                             <int>
## 1 1
              Yes
                              2497
## 2 2
                              6805
              No
## 3 NA
              <NA>
                               198
##
## [[13]]
## # A tibble: 3 x 3
    CC14_332E CC14_332E_fac
                                 n
    <dbl+lbl> <fct>
##
                             <int>
## 1 1
              Yes
                              4405
## 2 2
              No
                              4982
## 3 NA
              <NA>
                               113
##
## [[14]]
## # A tibble: 3 x 3
    CC14_332F CC14_332F_fac
##
     <dbl+lbl> <fct>
                             <int>
## 1 1
              Yes
                              4972
## 2 2
              No
                              4233
## 3 NA
               <NA>
                               295
```

Recode Socio-Dem Data

1986

2 2

Next step: recode socio-dem data - code below is a start

Female 24

##	3 2	1952	Female	58
##	4 2	1963	Female	47
##	5 1	1948	Male	62
##	6 1	1951	Male	59
##	7 1	1959	Male	51
##	8 2	1952	Female	58
##	9 2	1939	Female	71
##	10 1	1953	Male	57
##	#	with 9,490 more	rows	

Following vars used in stata: codebook V101 V103 cdid cdid113 countyfips