Numerické metody 1

Obsah

- Korektnost úloh a stabilita výpočetních postupů
 - Typy chyb
 - Aproximace čísla
 - <u>Šíření chyb při aritmetických operací</u>
- Numerické řešení nelineárních rovnic
 - <u>Separace kořenů</u>
 - Metoda půlení intervalů
 - Metoda prostých iterací

Korektnost úloh a stabilita výpočetních postupů

Definice: **Korektní úloha** na dvojici (B_1,B_2) je taková úloha $y=U(x), x\in B_1, y\in B_2$, kde

- $\forall x \in B_1 : \exists ! y \in B_2;$
- $x_n o x, U\left(x_n
 ight) = y_n \Rightarrow U\left(x_n
 ight) o U(x) = y$, tj. řešení y spojitě závisí na x.

Definice: Dobře podmíněná úloha u(x) je taková úloha, kde malá změna x vyvolá malou změnu y. Pro dobře podmíněnou úlohu platí $1 < c_p < 100$, kde:

$$c_p = rac{rac{\|\Delta y\|}{\|y\|}}{rac{\|\Delta x\|}{\|x\|}}$$

Typy chyb

- Chyba matematického modelu vzniká nepřesným zachycením reality matematickým modelem
- ullet Chyba numerické metody nahrazení $\lim_{n o\infty}a_npprox a_{500}$
- Chyba aproximace nahrazení matematické úlohy numerickou, např. spojitá vstupní data za diskrétní
- Chyby ve vstupních datech
- Chyba aproximace

Aproximace čísla

Nechť x je přesná hodnota a $\widetilde{x}\approx x$ je aproximace hodnoty. **Absolutní chyba** vyjadřuje $\Delta x=x-\varepsilon$, přičemž hledáme **odhad absolutní chyby** $\|\Delta x\|\leq \varepsilon$. **Relativní chyba** vyjadřuje $\frac{\Delta x}{x}$, přičemž hledáme **odhad relativní chyby** $\frac{\|\Delta x\|}{\|x\|}=\frac{\|\Delta x\|}{\|\widetilde{x}\|}\leq \delta$.

Šíření chyb při aritmetických operací

Mějme odhady $\widetilde{x_1},\widetilde{x_2}$ a $\varepsilon_1,\varepsilon_2,\delta_1,\delta_2$.

• Součet $\widetilde{u}=\widetilde{x_1}+\widetilde{x_2}, \varepsilon=\varepsilon_1+\varepsilon_2, \delta=rac{1}{|\widetilde{x_1}-\widetilde{x_2}|}\cdot ($

Obecný vzorec chyb: $arepsilon = \sum_{i=1}^n \left| f'_{x_i}\left(\widetilde{x_1},\ldots,\widetilde{x_n}
ight) \right| \cdot arepsilon_i, \delta = rac{arepsilon}{\|f([\widetilde{x_1},\ldots,\widetilde{x_n}])\|}.$

Numerické řešení nelineárních rovnic

Definice: Nechť funkce $f: \mathbb{R} \to \mathbb{R}, D(f) = \langle a, b \rangle$. Číslo $\overline{x} \in \langle a, b \rangle$ nazýváme **kořen rovnice f** $(\mathbf{x}) = \mathbf{0}$ právě tehdy, když f(x) = 0.

Věta (existence \overline{x}): Nechť f je spojitá na $\langle a,b \rangle$, $f(a)\cdot f(b) < 0$, poté rovnice f(x)=0 má alespoň jeden kořen.

Separace kořenů

Hledáme polohu a počet kořenů.

- Grafická separace kořenů z grafu funkce
- Grafická separace kořenů rozkladem na více funkcí $P\check{r}$ íklad: $f(x):=e^x-2x-1=e^x-(2x+1)=f_1(x)-f_2(x)$ a hledáme průsečík těchto funkcí.
- Tabelace funkce

Metoda půlení intervalů

Mějme a_0,b_0 takové, že $f\left(a_0\right)\cdot f\left(b_0\right)<0$. Konstruujme posloupnosti (a_k) , (b_k) takových, že $\langle a_0,b_0\rangle\supset\langle a_1,b_1\rangle\supset\ldots\supset\langle a_k,b_k\rangle\supset\ldots$ a současně $\forall i\in\mathbb{N}^0:f\left(a_i\right)\cdot f\left(b_i\right)<0$. Máme-li $\langle a_k,b_k\rangle$, vypočteme $s_{k+1}=\frac{a_k+b_k}{2}$. Je-li $f\left(a_k\right)\cdot f\left(s_{k+1}\right)<0$, poté $a_{k+1}\coloneqq a_k$ a $b_{k+1}\coloneqq s_{k+1}$. Je-li $f\left(b_k\right)\cdot f\left(s_{k+1}\right)<0$, poté $b_{k+1}\coloneqq b_k$ a $a_{k+1}\coloneqq s_{k+1}$.

Věta (konvergence půlení intervalů): Metoda půlení intervalů je konvergentní a navíc $\lim_{k o\infty}s_k=\overline{x}$.

Nechť
$$\overline{x} \in \langle a_k, b_k \rangle$$
 , $s_{k+1} = \frac{a_k + b_k}{2}$, $d_k = \frac{(b_k - a_k)}{2}$. Víme, že $a_k = s_{k+1} - d_k$, $b_k = s_{k+1} + d_k$, $\overline{x} \in \langle s_{k+1} - d_k, s_{k+1} + d_k \rangle$. Tudíž $|\overline{x} - s_{k+1}| \leq d_k$. Dále $b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2} = \ldots = \frac{b_0 - a_0}{2^k}$ a $0 \leq |\overline{x} - s_{k+1}| \leq d_k = \frac{b_0 - a_0}{2^{k-1}} \to 0$. Víme tudíž, že $\lim_{k \to \infty} |\overline{x} - s_{k+1}| = 0 \Rightarrow \lim_{k \to \infty} s_{k+1} = \overline{x}$.

Metoda prostých iterací

Metoda prostých iterací je založena na konstrukci posloupnosti aproximací (x_k) , $k\in\mathbb{N}^0$ daných rekurzivním předpisem $x_{k+1}=G\left(x_k\right)$.

Definice: Zobrazení $G:\mathbb{R}^n o \mathbb{R}^n$ se nazývá **kontraktivní**, platí-li:

$$\exists arrho \in (0,1): orall x, y \in \Omega: \|G(x) - G(y)\| \leq arrho \cdot \|x - y\|$$

Definice: Nechť je zobrazení $G:\mathbb{R}^n o\mathbb{R}^n$. Bod $\overline{x}\in\mathbb{R}^n$ se nazývá **pevný bod** zobrazení G, platí-li $\overline{x}=G\left(\overline{x}\right)$.

Věta (pevný bod): Nechť $\Omega\subset\mathbb{R}^n$ je souvislá, omezená a uzavřená množina, zobrazení $G:\mathbb{R}^n\to\mathbb{R}^n$ je kontraktivní v Ω a postupně aproximace $x_k:=G\left(x_{k-1}\right)$ leží v Ω , poté:

- $orall x_0 \in \mathbb{R}^n$ platí, že posloupnost (x_k) konverguje a $\lim_{k o \infty} x_k = \overline{x}$;
- \overline{x} je pevným bodem G;
- $ullet \|x_k \overline{x}\| \leq rac{arrho^k}{1-arrho} \cdot \|x_1 x_0\|$

Věta (postačující podmínka konvergence metody prostých iterací): Nechť $\Omega \subset \mathbb{R}^n$ je souvislá, omezená a uzavřená množina, zobrazení $G:\mathbb{R}^n \to \mathbb{R}^n$ je kontraktivní v Ω a postupně aproximace $x_k:=G\left(x_{k-1}\right)$ leží v Ω , nechť $G\in C^2(\Omega)$ a $\forall x\in\Omega: \|G'(x)\|\leq M<1$, poté platí tvrzení věty o pevném bodě.