LAPORAN PRAKTIKUM SISTEM SENSOR ELC

MATA KULIAH MII2307 Praktikum Sistem Sensor Pengampu: Muhammad Auzan, S.Si., M.Cs.

Oleh: Rizki Fajar Kurniawan 19/442389/PA/19138

PROGRAM STUDI ELEKTRONIKA DAN INSTRUMENTASI
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS GADJAH MADA
YOGYAKARTA
TAHUN 2021

1. Tujuan

- 1. Mahasiswa mampu memahami rangkaian penguat non inverting dan inverting
- 2. Mahasiswa mampu memahami rangkaian filter dan jenis jenisnya
- 3. Mahasiswa mengetahui manfaat rangkaian penguat dan filter

2. Hasil

LAB REPORT 2

Pertemuan 2. Rangkaian Penguat dan Tapis

Nama : Rizki Fajar Kurniawan

NIM : 19/442389/PA/19138

Tanggal : 8 September 2021

Asisten : Yusuf Aji Mahendra

I. Rangkaian Penguat Non Inverting

No	V_{in}	V_{out}	R_{f}	R_1	Av
1	5	16	220	100	3.2
2	5	10	220	220	2
3	5	6.1	220	1000	1.22
4	10	110	1000	100	11
5	10	55.4545	1000	220	5.54545
6	10	20	1000	1000	2
7	12	1212	10000	100	101
8	12	557.455	10000	220	46.4545
9	12	132	10000	1000	11

II. Rangkaian Penguat Inverting

No	V_{in}	V_{out}	R_{f}	R_1	Av
1	5	-11	220	100	-2.2
2	5	-5	220	220	-1
3	5	-1.1	220	1000	-0.22
4	10	-100	1000	100	-10
5	10	-45.455	1000	220	-4.5455
6	10	-10	1000	1000	-1
7	12	-1200	10000	100	-100
8	12	-545.45	10000	220	-45.455
9	12	-120	10000	1000	-10

III. Low Pass Filter

No	Frekuensi (Hz)	Ain	Aout	R _{1 (ohm)}	R _{2 (ohm)}	C _{1 (uF)}	C _{2 (uF)}	F _{c (Hz)}
1.	20	10	11.65	2k	2k	1	1	79.57747155
2.	30	10	10.79	2k	2k	1	1	79.57747155
3.	50	10	8.74	2k	2k	1	1	79.57747155
4.	60	10	7.74	2k	2k	1	1	79.57747155
5.	70	10	6.80	2k	2k	1	1	79.57747155
6.	80	10	5.99	2k	2k	1	1	79.57747155
7.	100	10	5.16	2k	2k	1	1	79.57747155
8.	120	10	3.65	2k	2k	1	1	79.57747155
9.	150	10	2.61	2k	2k	1	1	79.57747155
10.	200	10	0.77	2k	2k	1	1	79.57747155

IV. High Pass Filter

No	Frekuensi (Hz)	Ain	Aout	$R_1(\Omega)$	$R_2(\Omega)$	C ₁ (uF)	C ₂ (uF)	Frekuensi cutoff
1.	1	10	0,015	1k	1k	2	20	25,18
2.	2	10	0,062	1k	1k	2	20	25,18
3.	5	10	0,33	1k	1k	2	20	25,18
4.	10	10	1	1k	1k	2	20	25,18
5.	15	10	1,65	1k	1k	2	20	25,18
6.	20	10	2,25	1k	1k	2	20	25,18
7.	50	10	5,25	1k	1k	2	20	25,18
8.	80	10	7	1k	1k	2	20	25,18
9.	100	10	7,75	1k	1k	2	20	25,18

10.	500	10	9,75	1k	1k	2	20	25,18

V. Band Pass Filter

	Frekuensi			R_1	R_2	R_3	R ₄	C_1	C_2	C_3	C ₄	Frekue	ensi
No	(Hz)	Ain	A_{out}	(Ω)	(Ω)	(Ω)	(Ω)	(uF)	(uF)	(nF)	(nF)	cutoff	
	,			, ,	,	,	, ,	,	,	,	, ,	Low	High
1.	1	10	0	1k	1k	8k	8k	2	20	100	100	25,18	199,04
2.	10	10	0,975	1k	1k	8k	8k	2	20	100	100	25,18	199,04
3.	50	10	4,9	1k	1k	8k	8k	2	20	100	100	25,18	199,04
4.	100	10	6	1k	1k	8k	8k	2	20	100	100	25,18	199,04
5.	150	10	5,5	1k	1k	8k	8k	2	20	100	100	25,18	199,04
6.	200	10	4,5	1k	1k	8k	8k	2	20	100	100	25,18	199,04
7.	250	10	3,6	1k	1k	8k	8k	2	20	100	100	25,18	199,04
8.	300	10	2,9	1k	1k	8k	8k	2	20	100	100	25,18	199,04
9.	500	10	1,3	1k	1k	8k	8k	2	20	100	100	25,18	199,04
10.	1000	10	0,35	1k	1k	8k	8k	2	20	100	100	25,18	199,04

3. Pembahasan

3.1. Hasil Pengujian

3.2. Pertanyaan

- 1. Apa pengaruh perubahan Rf terhadap respons penguat inverting dan non inverting? Pengaruh Rf yaitu terhadap nilai besarnya penguat (Av)-nya. Semakin besar Rf maka Av nya semakin besar.
- 2. Apa perbedaan dari penguat inverting dan non inverting?
 Inverting memiliki Output sebagai penguat akan tetapi membalikkan tanda atau polaritasnya, yang diakibatkan karena input sinyal melalui pin negatif pada Op Amp nya. Sedangkan non inverting memil memiliki Output sebagai penguat tanpa

- membalikkan tanda atau polaritasnya, yang diakibatkan karena input sinyal melalui pin positif pada Op Amp nya.
- 3. Bagaimana Rangkaian tapis yang disertai dengan penguat tegangan? Sinyal yang akan masuk akan tetap dikuatkan tergantung jenis penguatnya, akan tetapi memiliki batas dimana rangkaian tapis membatasinya tergantung jenis rangkaian tapisnya.
- 4. Apa hubungan R₁, R₂, C₁ dan C₂ pada rangkaian tapis aktif? Hubungan R₁,R₂,C₁ dan C₂ adalah untuk mengatur batas frekuensi yang akan dibatasi agar sinyal tidak dapat masuk. Dengan melakukan rumus seperti gambar dibawah ini.

$$f_c = \frac{1}{(2pi\sqrt{R_1R_2C_1C_2})}$$

4. Kesimpulan

- Rangkaian penguat merupakan rangkaian yang berfungsi untuk menguatkan sinyal.
 Rangkaian penguat dibagi menjadi 2 yaitu inverting dan non inverting yang dibedakan dari perbedaan polaritas Outputnya.
- 2. Rangkaian tapis merupakan rangkaian yang berfungsi untuk meloloskan sinyal pada rentang frekuensi tertentu. Daerah frekuensi yang diloloskan tapis disebut pass band, sedangkan daerah frekuensi yang tidak diloloskan dinamakan stop band.

Rangkaian tapis terdiri dari:

- Low pass filter: meneruskan sinyal dengan frekuensi lebih rendah dari frekuensi tertentu, sebaliknya menahan sinyal dengan frekuensi lebih tinggi.
- High pass filter: meneruskan sinyal dengan frekuensi lebih tinggi dari frekuensi tertentu, sebaliknya menahan sinyal dengan frekuensi lebih rendah.
- Band pass filter: meneruskan sinyal dengan frekuensinya terletak diantara dua buah frekuensi tertentu.
- 3. Manfaat dari Rangkaian penguat dan rangkaian Tapisyaitu untuk menggerakkan suatu aktuator atau transduser tertentu yang dimana membutuhkan sinyal tertentu untuk mengendalikannya

5. Daftar Pustaka

Anon, 2019. *Belajar Elektronika*. *Band Pass Filter (BPF) - Filter Aktif*, Tersedia di: https://abdulelektro.blogspot.com/2019/06/band-pass-filter-bpf-filter-aktif.html

Anon, 2019. *Belajar Elektronika*. *Low Pass Filter (LPF) - Filter Aktif*. Tersedia di: https://abdulelektro.blogspot.com/2019/06/low-pass-filter-lpf-filter-aktif.html