Introduction to Logic for Computer Science

Spring 2021

Assignment 1 (Deadline: 6:00pm on 31 March 2021)

Prof Hongseok Yang

Submit your solutions in KLMS. (Reminder: We adopt a very strict policy for handling dishonest behaviours. If a student is found to copy answers from fellow students or other sources in his or her homework submission, she or he will get F.)

Notation: symbols F, G, H denote propositional formulas, and p, q denote propositional variables.

- 1. Let F, G and H be formulas and let S be a set of formulas. Let p_1, \ldots, p_n be propositional variables. Which of the following statements are true? Justify your answer. (10 points)
 - (a) If $F \to G$ is satisfiable and F is satisfiable, then G is satisfiable.
 - (b) $p_1 \rightarrow (p_2 \rightarrow (p_3 \rightarrow \dots (p_n \rightarrow p_1) \dots))$ is valid.
 - (c) $S \models F$ and $S \models \neg F$ cannot both hold.
 - (d) If $S \models F \lor G$, $S \cup \{F\} \models H$ and $S \cup \{G\} \models H$, then $S \models H$.
- 2. Suppose that F and G are formulas such that $F \models G$.
 - (a) Show that if F and G have no variable in common, then either F is unsatisfiable or G is valid. (10 points)
 - (b) Now let F and G be arbitrary formulas. Show that there is a formula H, mentioning only propositional variables common to F and G, such that $F \models H$ and $H \models G$. (10 points)
- 3. A **clique** in an undirected graph is a set of vertices S such that there is an edge between every pair of distinct vertices in S. Given a finite graph G and integer k, describe how to obtain a propositional formula φ such that φ is satisfiable if and only if G has a clique of size k. The formula φ should be computable in time polynomial in the number of vertices of G. (20 points)
- 4. Fix a non-empty set U. A U-assignment \mathcal{A} his a function from the collection of propositional variables to 2^U , the power set of U, that is, \mathcal{A} maps each propositional variable to a subset of U. Such an assignment is extended to all formulas as follows:
 - $\hat{\mathcal{A}}(false) = \emptyset$ and $\hat{\mathcal{A}}(true) = U$;
 - $\hat{\mathcal{A}}(p) = \mathcal{A}(p)$;
 - $\hat{\mathcal{A}}(F \wedge G) = \hat{\mathcal{A}}(F) \cap \hat{\mathcal{A}}(G);$
 - $\bullet \ \ \hat{\mathcal{A}}(F \vee G) = \hat{\mathcal{A}}(F) \cup \hat{\mathcal{A}}(G);$
 - $\hat{\mathcal{A}}(\neg F) = U \setminus \hat{\mathcal{A}}(F)$.

Say that a formula F is U-valid if $\hat{\mathcal{A}}(F) = U$ for all U-assignments \mathcal{A} .

(a) Show that if F is U-valid, then F is valid with respect to the standard semantics defined in the lecture notes. (10 points)

(b) Show that if F is valid, then F is U-valid.

- (10 points)
- 5. (a) Write down a **DNF**-formula equivalent to $(p_1 \vee q_1) \wedge (p_2 \vee q_2) \wedge \cdots \wedge (p_n \vee q_n)$. Here the p_i and q_i are propositional variables. (10 points)
 - (b) Prove that any **DNF**-formula equivalent to the above formula must have at least 2^n clauses. (20 points)