Exercise 4.104

L Answer (c).

Let δ_{t_0} denote an operator that shifts a function by t_0 (i.e., $S_{t_0}x(t) = x(t-t_0)$ for all t). From the graphs of x_1 and x_2 , we can see that

$$x_2 = S_{-2}x_1 + S_{-1}x_1 + S_0x_1$$
. (See (A) and (B)

So, we have

$$y_2 = \Re x_2$$

$$= \Re (S_{-2}x_1 + S_{-1}x_1 + S_0x_1)$$

$$= \Re (S_{-2}x_1) + \Re (S_{-1}x_1) + \Re (S_0x_1)$$

$$= \Re (S_{-2}x_1) + \Re (S_{-1}x_1) + \Re (S_0x_1)$$

$$= S_{-2}\Re x_1 + S_{-1}\Re x_1 + S_0\Re x_1$$

$$= S_{-2}y_1 + S_{-1}y_1 + S_0y_1.$$
definition of \Re

Equivalently, using non-operator notation, we have that the function y_2 is given by the equation

$$y_2(t) = y_1(t+2) + y_1(t+1) + y_1(t)$$
. definition of S_{to}

