

Signaling and SynchronizationFall 2020

Topic 7

Clock and Data Recovery (CDR) Circuits

Sameh A. Ibrahim

Ain Shams University

ICL

(Courtesy of B. Casper – Intel, K. Yang – UCLA, A. Elshazly – Marvell and S. Palermo – TAMU)

Outline

- CDR overview
- CDR Performance Metrics
- CDR Components (phase detectors)
- CDR Topologies
- CDR jitter properties calculations

Serial-Link System Block Diagram

- TX and RX clocks needs synchronization → CDRs
 - Frequency synchronization (depend on clock path)
 - Phase synchronization (data path)

Serial-Link System Block Diagram

- A clock and data recovery system (CDR) produces the clocks to sample incoming data at optimum phase position and correct clock frequency
- Recovered Clock (CK_{OUT}) extracted from incoming data

CDR Block Diagram

- Extracts embedded clock and retimes input data
- Phase detection continuously running.
- Possible CDR implementations
 - Stand-alone PLL
 - "Dual-loop" architecture with PLL/DLL and phase interpolators (PI)
 - Phase-rotator PLL

CDR Performance Metrics

- Jitter transfer
- Jitter tolerance
- Jitter generation

1- Jitter Transfer Function (JTF)

Ratio of magnitudes of output sinusoidal jitter to input sinusoidal jitter of a CDR

- This specification is intended to control jitter peaking in long repeater chain
- For example, the SONET specification limits maximum transfer peaking of the PLL to less than 0.1 dB

2- Jitter Tolerance (JTOL)

How much sinusoidal jitter can the CDR "tolerate" and still achieve a given BER

3- Jitter Generation

jitter produced by the CDR measured at its output

- Jitter generation is how much jitter the CDR "generates".
- Assumes jitter-free serial data input.

3- Jitter Generation (Cont.)

jitter produced by the CDR measured at its output

- Jitter generation is how much jitter the CDR "generates".
- Assumes jitter-free serial data input.
- VCO phase noiseN = 1 for CDR

$$H_{n_{VCO}}(s) = \frac{\phi_{out}}{\phi_{n_{VCO}}} = \frac{s^2}{s^2 + \left(\frac{K_{Loop}}{N}\right)RCs + \frac{K_{Loop}}{N}} = \frac{s^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

SONET specification → rms output jitter ≤ 0.01 UI

Outline

- CDR overview
- CDR Performance Metrics
- CDR Components (phase detectors)
- CDR Topologies
- CDR jitter properties calculations

CDR Phase Detectors (PDs)

CDR phase detectors

- Compares phase between input data & recovered clock
- Provides information to adjust sampling clock phase

CDR Phase detectors

- Non-linear PD: provide only sign information regarding the sampling phase error (Examples: Alexander or Bang-Bang)
- Linear PD: Provide both sign and magnitude information regarding the sampling phase error (example Hogge PD)
- 3. Oversampling (>2)
- 4. Baud-Rate

1- Non-Linear PD (Alexander PD)

- Most commonly used CDR phase detector
- Non-linear (Binary) "Bang-Bang" PD
 - Only provides sign information of phase error (not magnitude), 2x-Oversampled.
- Phase detector uses 2 data samples and one "edge" sample
- Data transition necessary

$$D_n \oplus D_{n+1}$$

 If "edge" sample is same as second bit (or different from first), then the clock is sampling "late"

$$E_n \oplus D_n$$

 If "edge" sample is same as first bit (or different from second), then the clock is sampling "early"

$$E_n \oplus D_{n+1}$$

Alexander PD Characteristic (Ideal)

Output Pulse Width (Late - Early)

- Phase detector only outputs phase error sign information in the form of a late OR early pulse whose width doesn't vary,
- Phase detector gain is ideally infinite at zero phase error.

Alexander PD Characteristic (with Noise)

Output Pulse Width (Late – Early)

- Phase detector only outputs phase error sign information in the form of a late OR early pulse whose width doesn't vary,
- Phase detector gain is ideally infinite at zero phase error.
- Finite gain will be present with noise, clock jitter, sampler metastability, ISI.
- Unpredictable loop dynamics

2- Linear PD: Hogge PD (1)

- With a data transition and assuming a full-rate clock
 - The late signal produces a signal whose pulse width is proportional to the phase difference between the incoming data and the sampling clock.
 - A Tb/2 reference signal is produced with a Tb/2 delay.
- If the clock is sampling early, the late signal will be shorter than Tb/2 and vice-versa.

2- Linear PD: Hogge PD (2)

For phase transfer 0 rad is w.r.t optimal Tb/2 (π) spacing between sampling clock and data

TD is the transition density – no transitions, no information

 A value of 0.5 can be assumed for random data.

Hogge PD Nonidealities (1)

- Flip-Flop Clk-to-Q delay widens Late pulse, but doesn't impact Tb/2 reference pulse.
- CDR will lock with a phase shift to equalize Tb/2 reference and Late pulse widths.

Hogge PD Nonidealities (2)

- CDR phase shift compensated with a dummy delay element.
- Other issues
 - Need extremely high-speed XOR gates
 - Phase skew between Tb/2 reference and Late signals induces a "triwave" disturbance (ripple) on the control voltage.

3- Oversampling Phase Detectors

- Multiple clock phases are used to sample incoming data bits.
- PD can have multiple output levels.
- Detects rate of phase change for frequency acquisition.

4- Baud-Rate Mueller-Muller PD (1)

- Baud-rate phase detector only requires one sample clock per symbol (bit).
- Mueller-Muller phase detector commonly used.
- Attempting to equalize the amplitude of samples taken before and after a pulse

Locked Condition: $h(\tau_k - T_b) = h(\tau_k + T_b)$

Early Clock: $h(\tau_k - T_b) < h(\tau_k + T_b)$

Late Clock: $h(\tau_k - T_b) > h(\tau_k + T_b)$

4- Baud-Rate Mueller-Muller PD (2)

Phase Error:		UP	DN
$\Delta T_n = D_n \times D_{n-1} \times (ERR_n - ERR_{n-1})$	+1	1	0
Phase detector	0	0	0
output truth table	7	0	1

d _j	d _{j-1}	e _j	е _{ј-1}	ϕ_{err_i}
1	-1	1	-1	LATE
-1	1	1	-1	LATE
1	-1	-1	1	EARLY
-1	1	-1	1	EARLY
All other cases				HOLD

[Spagna, ISSCC 2010]

Outline

- CDR overview
- CDR Performance Metrics
- CDR Components (phase detectors)
- CDR Topologies
- CDR jitter properties calculations

CDR in Forwarded vs. Embedded Clock

- Preferred in high aggregate bandwidth
- FC recovery unit attempts to center the receiver sample at the optimum point as measured by operating margin BER.
- One time, periodic or continuous based on matching. Coding might be necessary

- Preferred in low aggregate bandwidth
- Can help implement modular designs if PLL not shared.
- Requires timing information to be encoded in the data to ensure a high probability of data edge transitions

DLL-Based Forwarded Clocking

- DLL acts as a multiphase clock generator.
- The DLL and phase interpolator (PI) combination produces an adjustable phase clock generator with the same frequency as the incoming FC.
- DLLs are more simple, robust and stable than other types of multiphase clock generators.
- DLLs don't exhibit accumulation of internal phase errors.
- DLLs facilitate high bandwidth tracking of the FC.
- FC jitter is amplified (Type I DLL)

PLL-Based Forwarded Clocking

- Used for applications that are sensitive to FC jitter amplification.
- Low-pass phase transfer characteristic results in suboptimum performance and lower clock recovery bandwidth.
- PLLs also have other disadvantages such as susceptibility to jitter accumulation and stability issues.
- PLLs are usually more area intensive and complex than the equivalent DLL-based recovery solution.

Single-Loop CDR: VCO or PLL-Based EC

- Dedicated RX side VCO
- CDR acts as the loop filter.
- The combination of these components forms a loop that locks to the mean phase of the incoming data.
- Direct locking to TX clock domain No intermediate clock
- Modularity possible

Single-Loop CDR Issues

- Large capacitors → large area for loop filters
- VCO-based clocking in the presence of multiple adjacent links may be subject to interference and coupling effects known as injection locking.
- Phase detectors have limited frequency acquisition range.
 - Results in long lock times or not locking at all.
 - Can potentially lock to harmonics of correct clock frequency.
- VCO frequency range variation with process, voltage, and temperature can exceed PLL lock range if only a phase detector is employed.

Dual loop CDRs

- Phase and Frequency Tracking Loops
- Frequency tracking loop operates during startup or loss of phase lock.
 - Ideally should be mostly off in normal operation.
- Frequency loop bandwidth typically much smaller than phase loop bandwidth to prevent loop interaction.

Analog Dual-Loop CDR w/ Two VCOs

 Frequency synthesis loop with replica VCO provides a "coarse" control voltage to set phase tracking loop frequency.

- Frequency loop can be a global PLL shared by multiple channels.
- Issues
 - VCO matching
 - VCO pulling
 - Distributing voltage long distances

Analog Dual-Loop CDR w/ One VCO

- Frequency loop operates during startup or loss of phase lock.
 - Ideally should be mostly off in normal operation.
- Input reference clock simplifies frequency loop design.
- Care must be taken when switching between loops to avoid disturbing VCO control voltage and loose frequency lock.

LD: Lock Detector

Phase Interpolator (PI) Based CDR (1)

 Frequency synthesis loop produces multiple clock phases used by the phase interpolators.

- Phase interpolator mixes between input phases to produce a fine sampling phase.
 - Ex: Quadrature 90° PI inputs with 5 bit resolution provides sampling phases spaced by 90°/(2⁵)=2.8°

 Digital phase tracking loop offers advantages in robustness, area, and flexibility to easily reprogram loop parameters.

Phase Interpolator (PI) Based CDR (2)

- Frequency synthesis loop can be a global PLL.
- Can be difficult to distribute multiple phases long distance.
- Need to preserve phase spacing.
- Clock distribution power increases with phase number.
- If CDR needs more than 4 phases consider local phase generation.

DLL Local Phase Generation

- Only differential clock is distributed from global PLL.
- Delay-Locked Loop (DLL)
 locally generates the multiple clock phases for the phase interpolators.
 - DLL can be per-channel or shared by a small number (4).
- Same architecture can be used in a forwarded-clock system.
 - Replace frequency synthesis PLL with forwarded-clock signals

Phase Rotator PLL (PR-PLL)

- Phase interpolators can be expensive in terms of power and area.
- Phase rotator PLL places one interpolator in PLL feedback to adjust all VCO output phases simultaneously.
- Now frequency synthesis and phase recovery loops are coupled.
 - Need PLL bandwidth greater than phase loop
 - Useful in filtering VCO noise

Phase Interpolators

- Phase interpolators realize digital-to-phase conversion (DPC).
- Produce an output clock that is a weighted sum of two input clock phases.
- Common circuit structures
 - Tail current summation interpolation
 - Voltage-mode interpolation
- Interpolator code mapping techniques
 - Sinusoidal
 - Linear

Sinusoidal Phase Interpolation

 Arbitrary phase shift can be generated with linear summation of I/Q clock signal.

$$X_O = A\sin(\omega t - \pi/2) = -A\cos(\omega t)$$

$$Y = A\sin(\omega t - \phi)$$

$$= A\cos(\phi)\sin(\omega t) - A\sin(\phi)\cos(\omega t) \quad \left(0 \le \phi \le \frac{\pi}{2}\right)$$

$$= \cos(\phi)X_I + \sin(\phi)X_Q = a_1X_I + a_2X_Q$$

$$Y = A\sin(\omega t - \phi) = a_1 X_1 + a_2 X_Q$$
where $a_1 = \cos(\phi)$ and $a_2 = \sin(\phi)$

$$a_1^2 + a_2^2 = 1$$

Sinusoidal vs Linear Phase Interpolation

 It can be difficult to generate a circuit that implements sinusoidal weighting.

$$a_1^2 + a_2^2 = 1$$

 In practice, a linear weighting is often used.

$$a_1 + a_2 = 1$$

Tail-Current Summation PI

- Control of I/Q polarity allows for full 360° phase rotation with phase step determined by resolution of weighting DAC.
- For linearity over a wide frequency range, important to control either input or output time constant (slew rate).

Voltage-Mode Summation PI

[Joshi, VLSI Symp. 2009]

 For linearity over a wide frequency range, important to control either input or output time constant (slew rate).

CDR Jitter Model

$$\frac{\phi_{out}}{\phi_{in}} = \frac{s \cdot K_P \cdot K_{PD} \cdot K_{VCO} + K_i \cdot K_{PD} \cdot K_{VCO}}{s^2 + s \cdot K_P \cdot K_{PD} \cdot K_{VCO} + K_i \cdot K_{PD} \cdot K_{VCO}}$$

$$K_{P} = I_{C} \cdot R \qquad K_{i} = \frac{I_{C}}{C} \qquad \omega_{n} = \sqrt{K_{i} \cdot K_{PD} \cdot K_{VCO}} \qquad \zeta = \frac{K_{P}}{K_{i}} \cdot \frac{\omega_{n}}{2}$$

Jitter Transfer Function (JTF) calculation

- Jitter transfer is how much jitter "transfers" to output.
 - If the PLL has any peaking in the phase transfer function, this jitter can actually be amplified.

$$J_{TF}(f_{mod}) = \Delta P_{out} / \Delta P_{in}$$
CDR

Jitter Tolerance Measurement (1)

Differential PRBS Data

- Random and sinusoidal jitter are added by modulating BERT clock
- Deterministic jitter is added by passing data through the channel
- For a given frequency, sinusoidal jitter amplitude is increased until the minimum acceptable BER (10⁻¹²) is recorded.

Jitter Tolerance Measurement (2)

CDR Summary

- Clock frequency and optimum phase position are extracted from incoming data.
- Phase detection continuously running.
- Jitter tracking limited by CDR bandwidth.
- With technology scaling we can make CDRs with higher bandwidths and the jitter tracking advantages of source synchronous systems is diminished.
- Possible CDR implementations
 - Stand-alone PLL
 - "Dual-loop" architecture with a PLL or DLL and phase interpolators (PI)
 - Phase-rotator PLL

