Verilog

```
1) Implementation of basic gates using gate level
modeling
DESIGN:
module basic_gates_G(
input a,
input b,
output [6:0] y);
       and a1(y[6],a,b);
       or o1(y[5],a,b);
       nand n1(y[4],a,b);
       nor n2(y[3],a,b);
       xor x1(y[2],a,b);
       xnor x2(y[1],a,b);
        not n3(y[0],a);
endmodule
TestBench:
module tb;
       reg in1,in2;
       wire [6:0] out;
        basic_gates_G b1 ( .y(out), .b(in2),.a(in1));
       initial begin
                $monitor (" %b %b %b",in1,in2,out);
                {in1,in2}=2'b00; #10;
                {in1,in2}=2'b01; #10;
                {in1,in2}=2'b10; #10;
                {in1,in2}=2'b11; #10;
                End
endmodule
run.do:
#cd
{C:\Users\alisy\Documents\verilog\class1\basicgates}
#environment creation
vlib work
#compilation
vlog my_not_gate.v
vlog my_not_gate_tb.v
#simulation
vsim work.my_not_tb
```

run -all

LOGIC FUNCTION	LOGIC SYMBOL	OOLEAN XPRESSION	TRUTH TABLE		
			INPUTS		OUTPUTS
		1 1	В	Α	Υ
			0	0	0
	^—————————————————————————————————————		0	1_	0
AND		A+B=Y	1	0	0
			1	1	1
OR	Å Dy	A+B=Y	0	0	0
			0	1	1
			1	0	1
			1	1	1
inverter	$A \longrightarrow \overline{A}$	A=Ā		0	1
				1	0
NAND	AY	A+B =Y		0	1
			0	1	1
			0	0	1
			1	1	0
NOR	A	Ā+B=Y	1	0	1
			0	1	0
			0	0	0
			1	1	0
XOR	A B	A⊕B=Y	1	0	0
			0	1	0
			0	0	1
			1	1	1
XNOR	A	А В=Ү	1	0	0
			0	0	1
			0	1	0
			1	0	0
			1	1	1

Fig 2.34 Summary of basic logic gates