Computer Science Department

University of Verona

A.A. 2017-18

Pattern Recognition

Bayes decision theory

Rev. Thomas Bayes, F.R.S (1702-1761)

Introduzione

- Approccio statistico fondamentale di classificazione di pattern
- Ipotesi:
 - 1. Il problema di decisione è posto in termini probabilistici;
 - 2. Tutte le probabilità rilevanti sono conosciute;
- Goal:

Discriminare le differenti *regole di decisione* usando le *probabilità* ed i *costi* ad esse associati;

Un esempio semplice

- Sia ω lo *stato di natura* da descrivere probabilisticamente;
- Siano date:
 - 1. Due classi ω_1 and ω_2 per cui sono note
 - a) $P(\omega = \omega_1) = 0.7$
 - b) $P(\omega = \omega_2) = 0.3$
- = Probabilità a priori o Prior
- 2. Nessuna misurazione.
- Regola di decisione:
 - Decidi ω_1 se $P(\omega_1) > P(\omega_2)$; altrimenti decidi ω_2
- Più che decidere, *indovino* lo stato di natura.

Altro esempio – Formula di Bayes

• Nell'ipotesi precedente, con in più la singola misurazione x, v.a. dipendente da ω_i , posso ottenere

$$p(x | \omega_j)_{j=1,2}$$
 = Likelihood, o

Probabilità stato-condizionale

ossia *la probabilità di avere la misurazione x sapendo che lo stato di natura è* ω_j Fissata la misurazione x più è alta $p(x|\omega_j)$ più è probabile che ω_j sia lo stato "giusto".

Altro esempio – Formula di Bayes (2)

Note $P(\omega_i)$ e $p(x | \omega_i)$, la decisione dello stato di natura diventa, per Bayes

$$p(\omega_j, x) = P(\omega_j \mid x) p(x) = p(x \mid \omega_j) P(\omega_j)$$

ossia

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)} \propto p(x \mid \omega_j)P(\omega_j)$$
, doves

- $P(\omega_i)$ = Prior
- $P(x | \omega_i) = \text{Likelihood}$
- $P(\omega_j \mid x) = Posterior$ $p(x) = \sum_{j=1}^{J} p(x \mid \omega_j) P(\omega_j)$ = Evidenza

Regola di decisione di Bayes

$$P(\omega_j \mid x) = \frac{p(x \mid \omega_j)P(\omega_j)}{p(x)} \iff posterior = \frac{likelihood \times prior}{evidence}$$

- Ossia il Posterior o **probabilità a posteriori** è la probabilità che lo stato di natura sia ω_i data l'osservazione x.
- Il fattore più importante è il prodotto $likelihood \times prior$; l'evidenza p(x) è semplicemente un fattore di scala, che assicura che

$$\sum_{j} P(\omega_{j} \mid x) = 1$$

Dalla formula di Bayes deriva la regola di decisione di Bayes:

Decidi
$$\omega_1$$
 se $P(\omega_1|x) > P(\omega_2|x)$, ω_2 altrimenti

Regola di decisione di Bayes (2)

- Per dimostrare l'efficacia della regola di decisione di Bayes:
 - 1) Definisco la *probabilità d'errore* annessa a tale decisione:

$$P(error \mid x) = \begin{cases} P(\omega_1 \mid x) & \text{se decido} & \omega_2 \\ P(\omega_2 \mid x) & \text{se decido} & \omega_1 \end{cases}$$

2) Dimostro che la regola di decisione di Bayes minimizza la probabilità d'errore.

Decido ω_1 se $P(\omega_1 | x) > P(\omega_2 | x)$ e viceversa.

3) Quindi se voglio *minimizzare la probabilità media di errore* su tutte le osservazioni possibili,

$$P(error) = \int_{-\infty}^{+\infty} P(error, x) dx = \int_{-\infty}^{+\infty} P(error \mid x) p(x) dx$$

se per ogni x prendo P(error|x) più piccola possibile mi assicuro la probabilità d'errore minore (come detto il fattore p(x) è ininfluente).

Regola di decisione di Bayes (3)

In questo caso tale probabilità d'errore diventa

$$P(error|x) = min[P(\omega_1|x), P(\omega_2|x)];$$

Questo mi assicura che la regola di decisione di Bayes

Decidi
$$\omega_1$$
 se $P(\omega_1|x) > P(\omega_2|x)$, ω_2 altrimenti minimizza l'errore!

- Regola di decisione equivalente:
 - La forma della regola di decisione evidenzia *l'importanza della* probabilità a posteriori, e sottolinea *l'ininfluenza dell'evidenza*, un fattore di scala che mostra quanto frequentemente si osserva un pattern x; eliminandola, si ottiene la equivalente regola di decisione:

Decidi
$$\omega_1$$
 se $p(x|\omega_1)P(\omega_1) > p(x|\omega_2)P(\omega_2)$, ω_2 altrimenti

Teoria della decisione

• Il problema può essere scisso in una fase di *inferenza* in cui si usano i dati per addestrare un modello $p(\omega_i|\mathbf{x})$ e una seguente fase di *decisione*, in cui si usa la posterior per fare la scelta della classe

- Un'alternativa è quella di risolvere i 2 problemi contemporaneamente e addestrare una funzione che mappi l'input x direttamente nello spazio delle decisioni, cioè delle classi → linear machine, che usa funzioni discriminanti lineari
- Poniamoci in un caso di classificazione multiclasse, con C classi

Funzioni discriminanti

Esempio per C classi:

- Uno dei vari metodi per rappresentare classificatori di pattern consiste in un set di *funzioni discriminanti* $g_i(\mathbf{x})$, i=1...C
- Il classificatore finale, ossia la linear machine assegna il vettore di feature \mathbf{x} alla classe ω_i se

$$g_i(\mathbf{x}) > g_j(\mathbf{x})$$
 per ogni $j \neq i$

- Di per sé l'applicazione della regola di Bayes non permette di osservare il confine di separazione
- In pratica, una linear machine mi permette di visualizzare il confine di decisione in maniera analitica, grazie alle funzioni discriminanti, date alcune assunzioni sulla forma della likelihood e dei prior, che vedremo

Funzione discriminanti (2)

- Esistono molte funzioni discriminanti <u>equivalenti</u>. Per esempio, tutte quelle per cui i risultati di classificazione sono gli stessi
 - Per esempio, se f è una funzione monotona crescente, allora

$$g_i(\mathbf{x}) \Leftrightarrow f(g_i(\mathbf{x}))$$

 Alcune forme di funzioni discriminanti sono più semplici da capire o da calcolare

$$g_i(\mathbf{x}) = P(\omega_i | \mathbf{x}) = \frac{p(\mathbf{x} | \omega_i) P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x} | \omega_j) P(\omega_j)}$$
$$g_i(\mathbf{x}) = p(\mathbf{x} | \omega_i) P(\omega_i)$$
$$g_i(\mathbf{x}) = \ln p(\mathbf{x} | \omega_i) + \ln P(\omega_i),$$

Funzione discriminanti (3)

- L'effetto di una funzione discriminante è quello di *dividere lo spazio* delle features in c superfici di separazione o decisione, R₁, ..., R_c
 - Le regioni sono separate con *confini di* decisione, linee descritte dalle funzioni
 discriminanti.
 - Nel caso a *due* categorie ho due funzioni discriminanti, g_1,g_2 , per cui assegno x a ω_1 se $g_1(x) > g_2(x)$ o se $g_1(x) g_2(x) > 0$
 - Quindi

$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$$

$$g(\mathbf{x}) = P(\omega_1 \mid \mathbf{x}) - P(\omega_2 \mid \mathbf{x})$$

$$g(\mathbf{x}) = \ln \frac{p(\mathbf{x} \mid \omega_1)}{p(\mathbf{x} \mid \omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}$$

ottengo una linear machine

La densità normale (qui utile per le linear machine... ma anche altrove, come vedremo)

- La struttura di un classificatore di Bayes è determinata da:
 - Le densità condizionali $p(\mathbf{x} \mid \omega_i)$
 - Le probabilità a priori $P(\omega_i)$
- Una delle più importanti densità è la densità normale o Gaussiana multivariata; infatti:
 - è analiticamente trattabile;
 - fornisce una robusta modellazione di problemi sia teorici che pratici
 - il teorema del Limite Centrale asserisce che 'sotto varie condizioni, la distribuzione della somma di d variabili aleatorie indipendenti tende ad un limite particolare conosciuto come distribuzione normale'.

Intervallo	Inform.
$\mu \pm \sigma$	68%
$\mu \pm 2\sigma$	95%
$\mu \pm 2.5\sigma$	99%

Probabilità che il dato sia contenuto negli intervalli di riferimento.

La densità normale (2)

- La funzione Gaussiana ha altre proprietà
 - La trasformata di Fourier di una funzione Gaussiana è una funzione Gaussiana;
 - La moltiplicazione di due funzioni Gaussiane è ancora Gaussiana
 - È ottimale per la localizzazione nel tempo o in frequenza
- Guardate le "Gaussian Identities" o il "Matrix Cookbook"

Densità normale univariata

• Iniziamo con la densità normale univariata. Essa è completamente specificata da due parametri, *media* μ e *varianza* σ^2 , si indica con $N(\mu, \sigma^2)$ e si presenta nella forma

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$
Media $\mu = E[x] = \int_{-\infty}^{\infty} xp(x) dx = \frac{1}{N} \sum_{i=1}^{N} x_i$
Varianza $\sigma^2 = E[(x-\mu)^2] = \int_{-\infty}^{\infty} (x-\mu)^2 p(x) dx = \frac{1}{N-1} \sum_{i=1}^{N-1} \sum_{i=1}^{N-1} (x-\mu)^2$

- Fissata media e varianza la densità Normale è quella dotata di massima entropia;
 - L'entropia misura l'incertezza di una distribuzione o la quantità d'informazione necessaria in media per descrivere la variabile aleatoria associata, ed è data da

$$H(p(x)) = -\int p(x) \ln p(x) \, dx$$

Densità normale multivariata

• La generica densità normale multivariata a d dimensioni si

presenta nella forma

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\right\}$$

in cui

- μ = vettore di *media* a *d* componenti
- Σ = matrice $d \times d$ di *covarianza*, dove
 - $|\Sigma|$ = determinante della matrice
 - Σ^{-1} = matrice inversa

- Analiticamente $\Sigma = E[(\mathbf{x} \boldsymbol{\mu})(\mathbf{x} \boldsymbol{\mu})^t] = \int (\mathbf{x} \boldsymbol{\mu})(\mathbf{x} \boldsymbol{\mu})^t p(\mathbf{x}) d\mathbf{x}$
- Elemento per elemento $\sigma_{ij} = E[(x_i \mu_i)(x_j \mu_j)]$

d=1

Densità normale multivariata (2)

- Caratteristiche della matrice di covarianza
 - Simmetrica
 - Semidefinita positiva ($|\Sigma| \ge 0$) Determinante maggiore o uguale di zero, tutti gli autovalori sono non negativi.
 - σ_{ii} = varianza di $x_i (= \sigma_i^2)$
 - σ_{ij} = covarianza tra x_i e x_j (se x_i e x_j sono *statisticamente* indipendenti σ_{ij} = 0)

- Se $\sigma_{ij} = 0$ $\forall i \neq j$ $p(\mathbf{x})$ è il prodotto della densità univariata per \mathbf{x}

componente per componente.

- Se

- $p(\mathbf{x}) \approx N(\mathbf{\mu}, \Sigma)$
- A matrice $d \times k$
- $\mathbf{y} = \mathbf{A}^{t}\mathbf{x}$

 $\rightarrow p(\mathbf{y}) \approx N(A^t \mathbf{\mu}, A^t \Sigma A)$

Perché P sia una proiezione unidimensionale, A dev'essere Dx1 così da ottenere un vettore.

Densità normale multivariata (3)

- CASO PARTICOLARE: k = 1
 - $-p(\mathbf{x}) \approx N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
 - -a vettore $d \times 1$ di lunghezza unitaria
 - $-y=a^{t}\mathbf{x}$

-y è uno scalare che rappresenta la proiezione di x su una

linea in direzione definita da a

 $-a^t \sum a$ è la *varianza* di x su a

• In generale Σ ci permette di calcolare la dispersione dei dati in ogni superficie, o sottospazio.

Densità normale multivariata (4) – whitening

- Siano
 - Φ la matrice degli autovettori di Σ in colonna;
 - Λ la matrice diagonale dei corrispondenti autovalori;
- La trasformazione $A_w = \Phi \Lambda^{-1/2}$, applicata alle coordinate dello spazio delle feature, assicura una distribuzione con matrice di covarianza

= I (matrice identica)

• La densità $N(\mu, \Sigma)$ d-dimensionale necessita di d + d(d+1)/2 parametri per delementi sono quelli sulla diagonale che contengono gli autovalori, essere definita d(d+1)/2 sono gli elementi che rappresentano la covarianza (matrice simmetrica, c.a metà elementi)

Ma cosa rappresentano graficamente

 $\Phi e \Lambda$?

Media
individuata dalle
coordinate di
Teorie e Tecniche del Riconoscimento

Densità normale multivariata (5)

PCA!!!!!!

Gli assi principali degli iperellissoidi sono dati dagli autovettori di Σ (descritti da Φ)

Gli iperellissoidi sono quei luoghi dei punti per i quali la distanza di \boldsymbol{x} da $\boldsymbol{\mu}$

$$r^2 = (\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})$$

detta anche distanza di Mahalanobis,

è costante

$$\left(\frac{\chi - \mu}{\sigma}\right)^2 = 1-D$$

Punti in cui, non importa dove sono, la probabilità è sempre la stessa. Viene chiamata distanza di Mahalanobis.

Teorie e Tecniche del Riconoscimento

Le lunghezze degli assi principali degli iperellissoidi sono dati dagli autovalori di Σ (descritti da Λ)

21

Funzioni discriminanti - Densità Normale

• Tornando ai classificatori Bayesiani, ed in particolare alle linear machine, analizziamo la funzione discriminante come si traduce nel caso di densità Normale

$$g_{i}(\mathbf{x}) = \ln p(\mathbf{x} \mid \omega_{i}) + \ln P(\omega_{i})$$

$$g_{i}(\mathbf{x}) = \ln \left[\frac{1}{(2\pi)^{d/2} |\Sigma_{i}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{i})\right\}\right] + \ln P(\omega_{i})$$

$$g_{i}(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{i})^{t} \Sigma_{i}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{i}) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_{i}| + \ln P(\omega_{i})$$

• A seconda della natura di Σ , la funzione discriminante può essere semplificata. Vediamo alcuni esempi.

\bigcirc

Funzioni discriminanti - Densità Normale $\Sigma_i = \sigma^2 I$

• È il caso più semplice in cui le feature sono statisticamente indipendenti (σ_{ij} = 0, i \neq j), ed <u>ogni classe ha la stessa varianza</u> (caso 1-D):

$$g_i(\mathbf{x}) = -\frac{\|\mathbf{x} - \mathbf{\mu}_i\|^2}{2\sigma^2} + \ln P(\omega_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} \left[\mathbf{x}^t \mathbf{x} - 2\mathbf{\mu}_i^t \mathbf{x} + \mathbf{\mu}_i^t \mathbf{\mu}_i \right] + \ln P(\omega_i)$$

dove il termine $\mathbf{x}^t \mathbf{x}$, uguale per ogni \mathbf{x} ,

può essere ignorato giungendo alla forma:

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + \mathbf{w}_{i0},$$

dove

$$\mathbf{w}_{i} = \frac{1}{\sigma^{2}} \mathbf{\mu}_{i} \quad \text{e} \quad \mathbf{w}_{i0} = -\frac{1}{2\sigma^{2}} \mathbf{\mu}_{i}^{t} \mathbf{\mu}_{i} + \ln P(\omega_{i})$$
Teorie e Tecniche del Riconoscimento

Funzioni discriminanti - Densità Normale $\Sigma_i = \sigma^2 I$ (2)

- Le funzioni precedenti vengono chiamate *funzioni* discriminanti lineari
- I confini di decisione sono dati da $g_i(x)=g_i(x)$ per le due classi con più alta probabilità a posteriori
 - Ponendo $g_i(\mathbf{x})-g_j(\mathbf{x})=0$ abbiamo: $\mathbf{w}^t(\mathbf{x}-\mathbf{x}_0)=0$ NB: s

$$\mathbf{w}^{t}(\mathbf{x} - \mathbf{x}_{0}) = 0$$

dove

$$\mathbf{w} = \mathbf{\mu}_i - \mathbf{\mu}_j$$

$$\mathbf{x}_0 = \frac{1}{2} (\mathbf{\mu}_i + \mathbf{\mu}_j) - \frac{1}{2} (\mathbf{\mu}_i + \mathbf$$

NB: se $\sigma^2 \ll \|\boldsymbol{\mu}_i - \boldsymbol{\mu}_i\|^2$ la posizione del confine di decisione è insensibile ai prior!

$$\mathbf{x}_{0} = \frac{1}{2} (\mathbf{\mu}_{i} + \mathbf{\mu}_{j}) - \frac{\sigma^{2}}{\|\mathbf{\mu}_{i} - \mathbf{\mu}_{j}\|^{2}} \ln \frac{P(\omega_{i})}{P(\omega_{j})} (\mathbf{\mu}_{i} - \mathbf{\mu}_{j})$$

Funzioni discriminanti - Densità Normale $\Sigma_i = \sigma^2 I$ (3)

- Le funzioni discriminanti lineari definiscono un iperpiano passante per \mathbf{x}_0 ed ortogonale a \mathbf{w} : dato che $\mathbf{w} = \mathbf{\mu}_i \mathbf{\mu}_j$, l'iperpiano che separa R_i da R_j è ortogonale alla linea che unisce le medie.
- Dalla formula precedente si nota che, a parità di varianza, il prior maggiore determina la classificazione.

Funzioni discriminanti - Densità Normale $\Sigma_i = \sigma^2 I$ (4)

Teorie e Tecniche del Riconoscimento

Funzioni discriminanti - Densità Normale $\Sigma_i = \sigma^2 I$ (5)

Funzioni discriminanti - Densità Normale $\Sigma_i = \sigma^2 I$ (6)

$$\mathbf{x}_{0} = \frac{1}{2} (\mathbf{\mu}_{i} + \mathbf{\mu}_{j}) - \frac{\sigma^{2}}{\|\mathbf{\mu}_{i} - \mathbf{\mu}_{j}\|^{2}} \ln \frac{P(\omega_{i})}{P(\omega_{j})} (\mathbf{\mu}_{i} - \mathbf{\mu}_{j})$$

- NB.: Se le probabilità prior $P(\omega_i)$, i=1,...,c sono *uguali*, allora il termine logaritmico può essere ignorato, riducendo il classificatore ad un *classificatore di minima distanza*.
- In pratica, la regola di decisione ottima ha una semplice interpretazione geometrica
 - Assegna x alla classe la cui media μ è più vicina

Funzioni discriminanti - Densità Normale $\Sigma_i = \sigma^2 I$ (7)

Funzioni discriminanti - Densità Normale $\Sigma_i = \sigma^2 I$ (8)

Funzioni discriminanti - Densità Normale $\Sigma_i = \Sigma$

- Un altro semplice caso occorre quando le matrici di covarianza per tutte le classi sono uguali, ma arbitrarie.
- In questo caso l'ordinaria formula

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \Sigma_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \left| \boldsymbol{\Sigma}_i \right| + \ln P(\omega_i)$$

può essere semplificata con

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln P(\omega_i)$$

che è ulteriormente trattabile, con un procedimento analogo al caso precedente (sviluppando il prodotto ed eliminando il termine $\mathbf{x}^t \mathbf{\Sigma}^{-1} \mathbf{x}$)

Funzioni discriminanti - Densità Normale $\Sigma_i = \Sigma$ (2)

 Otteniamo così funzioni discriminanti ancora lineari, nella forma:

$$g_{i}(\mathbf{x}) = \mathbf{w}_{i}^{t} \mathbf{x} + w_{i0}$$

$$dove$$

$$\mathbf{w}_{i} = \mathbf{\Sigma}^{-1} \mathbf{\mu}_{i}$$

$$w_{i0} = -\frac{1}{2} \mathbf{\mu}_{i}^{t} \mathbf{\Sigma}^{-1} \mathbf{\mu}_{i} + \ln P(\omega_{i})$$

 Poiché i discriminanti sono lineari, i confini di decisione sono ancora iperpiani

Funzioni discriminanti - Densità Normale $\Sigma_i = \Sigma$ (3)

• Se le regioni di decisione R_i ed R_j sono contigue, il confine tra esse diventa:

where
$$\mathbf{w}^t(\mathbf{x}-\mathbf{x}_0)=0,$$
 where
$$\mathbf{w}=\mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_i-\boldsymbol{\mu}_j)$$
 and
$$\mathbf{x}_0=\frac{1}{2}(\boldsymbol{\mu}_i+\boldsymbol{\mu}_j)-\frac{\ln[P(\omega_i)/P(\omega_j)]}{(\boldsymbol{\mu}_i-\boldsymbol{\mu}_j)^t\mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_i-\boldsymbol{\mu}_j)}(\boldsymbol{\mu}_i-\boldsymbol{\mu}_j).$$

Funzioni discriminanti - Densità Normale $\Sigma_i = \Sigma$ (4)

- Poiché w in generale (differentemente da prima) non è il vettore che unisce le 2 medie ($\mathbf{w} = \mu_i \mu_j$), l'iperpiano che divide R_i da R_j non è quindi ortogonale alla linea tra le medie; comunque, esso interseca questa linea in \mathbf{x}_0
- Se i *prior* sono uguali, allora \mathbf{x}_0 si trova in mezzo alle medie, altrimenti l'iperpiano ottimale di separazione si troverà spostato verso la media meno probabile.

Funzioni discriminanti - Densità Normale $\Sigma_i = \Sigma$ (5)

Funzioni discriminanti - Densità Normale $\Sigma_i = \Sigma$ (6)

Funzioni discriminanti - Densità Normale Σ_i arbitraria

- Le matrici di covarianza sono differenti per ogni categoria;
- Le funzioni discriminanti sono inerentemente quadratiche;

$$g_i(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w_{i0},$$

where

$$\mathbf{W}_i = -\frac{1}{2}\mathbf{\Sigma}_i^{-1},$$

$$\mathbf{w}_i = \mathbf{\Sigma}_i^{-1} \boldsymbol{\mu}_i$$

and

$$w_{i0} = -\frac{1}{2}\boldsymbol{\mu}_i^t \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i).$$

Funzioni discriminanti Densità Normale Σ_i arbitraria (2)

- Nel caso 2-D le superfici di decisione sono *iperquadriche*:
 - Iperpiani
 - Coppia di iperpiani
 - Ipersfere
 - Iperparaboloidi
 - Iperiperboloidi di vario tipo
- Anche nel caso 1-D, per la varianza arbitraria, le regioni di decisione di solito sono non connesse.

Funzioni discriminanti **Densità Normale** Σ_i arbitraria (3)

Funzioni discriminanti **Densità Normale** Σ_i arbitraria (4)

Funzioni discriminanti **Densità Normale** Σ_i **arbitraria (5)**

Funzioni discriminanti **Densità Normale** Σ_i **arbitraria (6)**

Funzioni discriminanti Densità Normale Σ_i arbitraria (7)

Funzioni discriminanti **Densità Normale** Σ_i **arbitraria (8)**

Riferimenti

- Libro Duda, fino a Sez. 2.6 compresa
- No 2.3.1, 2.3.2