FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Typografie a publikování – 2. projekt Sazba dokumentů a matematickýh výrazů

2014 Roman Blanco

Úvod

V této úloze si vyzkoušíme sazbu titulní strany, matematických vzorců, prostředí a dalších textových struktur obvyklých pro technicky zaměřené texty (například rovnice ... nebo definice 1.1 na straně 1).

Na titulní straně je využito sázení nadpisu podle optického středu s využitím zlatého řezu. Tento postup byl probírán na přednášce.

1 Matematický text

Nejprve se podíváme na sázení matematických symbolů a výrazů v plynulém textu. Pro množinu V označuje $\operatorname{card}(V)$ kardinalitu V. Pro množinu V reprezentuje V^* volný monoid generovaný množinou V s operací konkatenace. Prvek identity ve volném monoidu V^* značíme symbolem ε . Nechť $V^+ = V^* - \{\varepsilon\}$. Algebraicky je tedy V^+ volná pologrupa generovaná množinou V s operací konkatenace. Konečnou neprázdnou množinu V nazvěme abeceda. Pro $w \in V^*$ označuje |w| délku řetězce w. Pro $W \subseteq V$ označuje $\operatorname{occur}(w,W)$ počet výskytů symbolů z W v řetězci w a $\operatorname{sym}(w,i)$ určuje i-tý symbol řetězce w; například $\operatorname{sym}(abcd,3) = c$.

Nyní zkusíme sazbu definic a vět s využitím balíku amsthm.

Definice 1.1. Bezkontextová gramatika je čtveřice G=(V,T,P,S), kde V je totální abeceda, $T\subseteq V$ je abeceda terminálů, $S\in (V-T)$ je startující symbol a P je konečná množina pravidel tvaru $q:A\to \alpha$, kde $A\in (V-T)$, $\alpha\in V^*$ a q je návěští tohoto pravidla. Nechť N=V-T značí abecedu neterminálů. Pokud $q:A\to \alpha\in P$, $\gamma,\delta\in V^*$, G provádí derivační krok z $\gamma A\delta$ do $\gamma \alpha\delta$ podle pravidla $q:A\to \alpha$, symbolicky píšeme $\gamma A\delta\Rightarrow \gamma \alpha\delta[q:A\to \alpha]$ nebo zjednodušeně $\gamma A\delta\Rightarrow \gamma \alpha\delta$. Standardním způsobem definujeme \Rightarrow^m , kde $m\geq 0$. Dále definujeme tranzitivní uzávěr \Rightarrow^+ a tranzitivně-reflexivní uzávěr \Rightarrow^* .

Algoritmus můžeme uvádět podobně jako definice textově, nebo využít pseudokódu vysázeného ve vhodném prostředí (například algorithm2e).

Algoritmus 1.2. Algoritmus pro ověření bezkontextovosti gramatiky. Mějme gramatiku G = (N, T, P, S).

- 1. Pro každé pravidlo $p \in P$ proved' test, zda p na levé straně obsahuje právě jeden symbol z N.
- 2. Pokud všechna pravidla splňují podmínku z kroku 1, tak je gramatika G bezkontextová.

Definice 1.3. Definice: Jazyk definovaný gramatikou G definujeme jako $L(G) = \{w \in T^* | S \Rightarrow^* w\}.$

1.1 Podsekce obsahující větu

Definice 1.4. Nechť L je libovolný jazyk. L je *bezkontextový jazyk*, když a jen když L=L(G), kde G je libovolná bezkontextová gramatika.

Definice 1.5. Množinu $\mathcal{L}_{CF} = \{L | L \text{ je bezkontextový jazyk }\}$ nazýváme třídou bezkontextových jazyků.

Věta 1. Necht' $L_{abc} = \{a^n b^n c^n | n \ge 0\}$. Platí, že $L_{abc} \notin \mathcal{L}_{CF}$.

Důkaz. Důkaz se provede pomocí Pumping lemma pro bezkontextové jazyky, kdy ukážeme, že není možné, aby platilo, což bude implikovat pravdivost věty 1. □

2 Rovnice a odkazy

Složitější matematické formulace sázíme mimo plynulý text. Lze umístit několik výrazů na jeden řádek, ale pak je třeba tyto vhodně oddělit, například příkazem \ quad.

třeba tyto vhodně oddělit, například příkazem \ quad.
$$x_0^2 \sqrt{y_0^3} \quad N = \{0,1,2,...\} \quad x^{y^y} \neq x^{yy} \quad z_{i_j} \not\equiv z_{ij}$$
 V rovnici (1) jsou využity tři typy závorek s různo

V rovnici (1) jsou využity tři typy závorek s různou explicitně definovanou velikostí.

$$\{[(a+b)*c]^d + 1\} = x$$

$$\lim_{x \to \infty} \frac{\sin^2 x + \cos^2 x}{4} = y$$
(1)

V této větě vidíme, jak vypadá implicitní vysázení limity $\lim_{n \to \infty} f(n)$ v normálním odstavci textu. Podobně je to i s dalšími symboly jako \sum_1^n či $\bigcup_{A \in \mathcal{B}}$. V případě vzorce $\lim_{x \to 0} \frac{\sin x}{x} = 1$ jsme si vynutili méně úspornou sazbu příkazem \ limits.

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
 (2)

$$(\sqrt[5]{x^4})' = (x^{\frac{4}{5}})' = \frac{4}{5}x^{-\frac{1}{5}} = \frac{4}{5\sqrt[5]{x}}$$
 (3)

$$\overline{\overline{A \vee B}} = \overline{\overline{A} \vee \overline{B}} \tag{4}$$

3 Matice

Pro sázení matic se velmi často používá prostředí array a závorky (\left,\right).

$$\underbrace{\frac{(a)+bb-a}{\xi+\omega\pi}}_{\mathbf{a}} \underbrace{\overset{A}{A}\overset{C}{C}}_{\mathbf{C}}$$

$$A = a_{11}a_{12} \cdots a_{1n}$$

$$a_{21}a_{22} \cdots a_{2n}$$

$$\vdots \cdots \vdots$$

$$a_{m1}a_{m2} \cdots a_{mn}$$

Prostředí array lze úspěšně využít i jinde.

$$abs(x) = \begin{cases} x & prox \ge 0\\ 0 & prok \le 0 \\ nebok > n \end{cases}$$

4 Závěrem

V případě, že budete potřebovat vyjádřit matematickou konstrukci nebo symbol a nebude se Vám dařit jej nalézt v samotném IATEXu, doporučuji prostudovat možnosti balíku maker -IATEX. Analogická poučka platí obecně pro jakoukoli konstrukci v TEXu.