LR アルバイト課題3

東海大学情報通信学研究科 古川 大鷹

使用ツール:xschem, ngspice

課題内容

抵抗ラダー・キャパシタタイプ14bitDAC+ボルテージフォロワの回路設計、 シミュレーション

入力•出力信号情報

VDD:3.3V±10%, VSS:0V

VREFH:VDD、Vrefl:VSS、入力範囲:VSS~VDD

DIN[13:0]:VIL=VDDx0.2, VIH=VDD*0.8, trise=tfall=1ns

DACO=(Vrefh-Vrefl)/16384 x din(バイナリ値)

PD:PD=VILでパワーダウンモード

<u>Iref:10uAのバイアス電流源</u>

VOUT:DACOをボルテージフォロアアンプを経由した出力

din⇒dout出力遅延時間:90ns max

vm=VDD/16384

【タイムチャート】以下参照

din[14'h0000]		din[14'h3fff]		din[14'h1fff]		din[14'h0fff]		din[14'h1111]		
不定	dout=0	不定	dout=VDD	不定	dout=vm*8192	不定	<u>dout=vm</u> *4096	不定	dout=vm*4369	
\longleftrightarrow	<90ns	\hookrightarrow	<90ns	\hookrightarrow	<90ns	\	→ <90ns	\hookrightarrow	<90ns	
	100ns		100ns		100ns		100ns		100ns	

設計した 抵抗ラダー型14ビットDAC

入力信号:DIN1~DIN14

DAC出力:DACO

出力信号:OUT

赤枠:入力信号によって $V_{DD}[V]$ or O[V]を

出力するセレクタ群

青枠:抵抗ラダー群(R-2R型)

橙枠:ボルテージフォロワ

緑枠:パワーダウン回路

抵抗ラダー型14ビットDACの回路図

抵抗ラダー群, 縦:横 = 1:2で設計

抵抗値を2K:4Kに変更

セレクタの回路図(変更なし)

RDAC部のパワーダウン回路

DACの出力DACOの前にnMOSを配置 PDがLowレベルになると、DACOとGNDが導通しDACOの電圧が下がる

ボルテージフォロワ

赤枠:カレントミラー

緑枠:差動増幅回路

橙枠:ソースフォロワ回路

青枠:パワーダウン回路

黄枠:電流源

各MOSの寸法は検討できていない 位相補償のキャパシタは5pF

パワーダウン回路は、電流源をカットできるようにnMOSを配置 (まだ検討途中で完全ではない)

シミュレーション

DAC部

PD = Low(0V)

入力信号は課題内容スライドのタイムチャートを満たすように入力している

ある程度Vin=Voutの関係にはなっているが、 0V付近と3.3V付近はその関係が崩れている 現実的に利用できる範囲は0.8V~2.5Vあたりと思われる

評価(DAC)

DAC部(VDD=3.3V, VSS=0V)								
項目	Symbol	条件	目標値	typ	ワースト	単位		
INLI5-	INL	データ=x0000-x3ffff	±2	+1.26		LSB		
DNL	DNL	データ=x0000-x3ffff	±1	+1.61		LSB		
オフセットエラー	Vos	VIN=0x0000	5	ほぼ0%		%of FSR		
Gain Iラー	g E	VIN=0x3fff	5	0.05		%of FSR		
消費電流	IDD	VIN=0x3FFF, PD=VIH, f=10MHz*	5	0.108		mΑ		
スタンバイ電流	IDDS	PD=VIL	100	26.181		<u>uA</u>		

INL, DNL

本来は0x0000~0x3fffまで比較し、その最大値を記載する

→ 時間の関係上、1サンプルのみの比較です

 $1LSB = 3.3/2^{14} = 200[\mu V]$ din = $0x0003 = 352.0366[\mu V]$ (理想: $604.2480[\mu V]$) din = $0x0004 = 875.6003[\mu V]$ (理想: $805.6640[\mu V]$)

INL: 理想値から測定値の差を取り、1LSBで割るINL = (604.2480-352.0366)/1LSB = +1.26

DNL: 隣り合うデータの測定値の差を取り、1LSBで割る DNL = (875.6003-352.0366)/1LSB = +1.61

オフセット・Gainエラー

din=0x0000 (理想:0V) 測定値:1.510634[nV]

誤差:0.00000151%(ほぼ0%)

din=0x3fff (理想:3.3V)

測定値:3.298545[V]

誤差:0.05%

消費電流

左記の波形の100nsから200nsを測定した

```
No. of Data Rows: 567

Measurements for Transient Analysis

idd = 1.086285e-04 at= 1.004868e-07

binary raw file "RDAC_ver2.raw"
ngspice 2 -> ■
```

IDD = 0.108[mA]

スタンバイ電流

左記の波形の100nsから200nsを測定した

```
Measurements for Transient Analysis

idds = 2.618066e-05 at= 1.004998e-07

binary raw file "RDAC_ver2.raw"

ngspice 2 -> ■
```

 $IDDS = 26.181[\mu A]$

評価(オペアンプ)

ボルテージフォロワーアンプ部(VDD=3.3V, VSS=0V)							
出力電圧範囲	VOUT		VREFH-VREFL	59.9n~3.16		٧	
位相裕度	Φ		90	33.8		۰	
Slew Rate	SR	RL=1MΩ, CL=1pF	0.1	2.29		V/us	
出力電流	IOUT	CL=1pF	1	0.78		mA.	

出力電圧範囲

Voutの範囲:59.85n[V]~3.166[V]

位相余裕

AC 10k~10G 位相余裕:33.84822°

スルーレート

立ち上がり 10% 0.3166V 1.1131µs 90% 2.8494V 2.236µs SR = 2.2921[V/µs]

立ち下がり 10% 0.8347V 5.377µs 90% 2.9069V 4.277µs -SR = -1.8736[V/µs]

出力電流

Vin+をVDDに接続し、VOUTに電源VOLを 挿入しdc解析

```
Measurements for DC Analysis

iout = 7.830670e-04 at= 0.000000e+00

binary raw file "Opamp_before_sim.raw"

ngspice 2 -> ■
```

 $783\mu A(0.78mA)$

DACとVFの組み合わせ

DACとVFを組み合わせてみたが、DACの出力に対しVF側が全く追いついていない設計したオペアンプのスルーレートが悪かったのもあるが、目標変換速度の10MSPS(周期サイクル100ns)はかなり厳しいと思われる

データシートのフォーマット

DAC部(VDD=3.3V, VSS=0V)								
項目	Symbol	条件	目標値	typ	ワースト	単位		
INLエラー	INL	データ=x0000-x3ffff	±2	+1.26		LSB		
DNL	DNL	データ=x0000-x3ffff	±1	+1.61		LSB		
オフセットエラー	Vos	VIN=0x0000	5	ほぼ0%		%of FSR		
Gain エラー	gE	VIN=0x3fff	5	0.05		%of FSR		
消費電流	IDD	VIN=0x3FFF, PD=VIH, f=10MHz*	5	0.108		mA		
スタンバイ電流	IDDS	PD=VIL	100	26.181		uA		
ボルテージフォロワーアン	ボルテージフォロワーアンプ部(VDD=3.3V, VSS=0V)							
出力電圧範囲	VOUT		VREFH- VREFL	59.9n~3.16		V		
位相裕度	Φ		90	33.8		0		
Slew Rate	SR	RL=1MΩ, CL=1pF	0.1	2.29		V/us		
出力電流 出力電流 サイクル周波	JOUT	CL=1pF	1	0.78		mA		

ブロック図

抵抗ラダー、キャパシタタイプ DAC ボルテージフォロワーアンプ

まとめ

抵抗ラダー型DAC及びボルテージフォロワを設計したが、 目標仕様とは程遠い結果となった 特にボルテージフォロワ部に課題点が多かったので、 適宜見直しが必要 また、DACとVFを組み合わせた場合にVF側が全く 追いつかなかったが、今の回路で変化できる速度を確かめる必要が あると感じた