CpE 690: Introduction to VLSI Design

Lecture 9 SPICE Simulation

Bryan Ackland
Department of Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from Lecture Notes, David Mahoney Harris CMOS VLSI Design

Simulation of VLSI Circuits

- Complex circuits cannot be analyzed using analytic expressions for transistor behavior
 - simple models useful for estimation to compare competing approaches
 - modern transistors are highly non-linear devices that deviate significantly from first-order models (e.g. Shockley)
 - need simulation to confidently verify correct operation and performance
 - over range of process, temperature & voltage variations
- Simulation at different levels of abstraction:
 - Process simulation e.g. SUPREME
 - Device simulation e.g. PROPHET
 - Circuit simulation e.g. SPICE
 - Logic Simulation e.g. ModelSim, Isim (VHDL, Verilog)
 - Architectural Simulation (processor specific)
 - Algorithmic Simulation (MATLAB)

Introduction to SPICE

- Simulation Program with Integrated Circuit Emphasis
 - Developed in 1970's at Berkeley
 - Many commercial versions are available
 - HSPICE is a robust industry standard
 - PSPICE is PC based also widely used
 - LTSPICE free version from Linear Technology
 - WinSpice is another Windows based version
 - T-Spice is part of the Tanner Package
- Originally written in FORTRAN for punch-card machines
 - Circuits elements are called cards
 - Complete description is called a SPICE deck

Structure of a SPICE Deck

A SPICE deck may contain:

- Circuit components
 - netlist of resistors, capacitors, transistors, subcircuits etc.
 - netlist can be
 - handwritten
 - extracted from layout
 - derived from schematic
- Sources
 - voltage sources, current sources etc. to drive circuit
- Device models
 - transistor models, resistor models, diode models etc.
- SPICE commands
 - initial conditions, type of analysis, plot specification etc.

Manually Writing a SPICE Deck

- Writing a SPICE deck is like writing a good program
 - Plan: sketch schematic on paper or in editor
 - Modify existing decks whenever possible
 - Code: strive for clarity
 - Start with name, email, date, purpose
 - Generously comment
 - Test:
 - Predict what results should be
 - Compare with actual
 - Understand any differences before you proceed!

Example: RC Filter

```
* RC Filter.cir
* backland@stevens.edu 4/2/12
* Find the response of RC circuit to rising input
* Parameters and options
.options gmin=1e-9
* Simulation netlist
R1 in out 2k
C1 out gnd 100f
* Sources
Vin in gnd pwl 0ps 0 100ps 0 150ps 1.0 1ns 1.0
                                                 R1 = 2K\Omega
* Commands
*_____
.tran 10ps 1ns
                                         Vin
.print v(in) v(out)
.end
```

RC_Filter T-Spice Result

Sources

- ☐ DC Source

 Vdd vdd gnd 2.5
- ☐ Piecewise Linear Source

 Vin in gnd pwl 0ps 0 100ps 0 150ps 1.0 1ns 1.0
- ☐ Pulsed Source

 Vck clk gnd PULSE 0 1.0 Ops 100ps 100ps 300ps 800ps

PULSE v1 v2 td tr tf pw per

Circuit Elements

Letter	Element
R	Resistor
С	Capacitor
L	Inductor
K	Mutual Inductor
V	Independent voltage source
ı	Independent current source
M	MOSFET
D	Diode
Q	Bipolar transistor
W	Lossy transmission line
X	Subcircuit
E	Voltage-controlled voltage source
G	Voltage-controlled current source
Н	Current-controlled voltage source
F	Current-controlled current source

Units

Letter	Unit	Magnitude
а	atto	10 ⁻¹⁸
f	fempto	10 ⁻¹⁵
р	pico	10 ⁻¹²
n	nano	10 ⁻⁹
u	micro	10 ⁻⁶
m	milli	10 ⁻³
k	kilo	10 ³
Х	mega	10 ⁶
g	giga	10 ⁹

Ex: 100 femptofarad capacitor = 100fF, 100f, 100e-15

Analyses

.ac	Small signal AC (linear)	
.dc	DC transfer function	
.disto	Distortion	
.noise	Noise (linear)	
.op	Operating Point	
.pz	Pole-zero (linear)	
.sens	DC or AC Sensitivity	
.temp	Temperature sweep	
.tf	Transfer function (linear)	
.tran	Transient	

DC Analysis

```
* MOS IV.cir
* backland@stevens.edu 4/2/12
* Plot IV characteristics of NMOS device
* Parameters and options
.options gmin=1e-9
.include mosis tsmc 180nm 18.model
.temp 70
* Simulation netlist
    drain gate gnd gnd NMOS W=0.4u L=0.2u
M1
* Sources
Vgs gate gnd 0
Vds drain gnd 0
* Commands
.dc Vds 0 3.5 0.1 Vgs 0 3.5 0.5
.print id(M1)
.end
```


T-Spice: I-V Characteristics

MOSFET Elements

M element for MOSFET:

Mname drain gate source body type

- + W=<width> L=<length>
- + AS=<area source> AD = <area drain>
- + PS=<perimeter source> PD=<perimeter drain>

Transient Analysis

```
Inverter.cir
* Parameters and options
.options gmin=1e-9
.include mosis_tsmc_180nm_18.model
.param SUPPLY=3.3
* Simulation netlist
M1 y a gnd gnd NMOS W=0.4u L=0.2u AD=1.6E-13 PD=1.6u AS=1.6E-13 PS=1.6u
    y a vdd vdd PMOS W=0.8u L=0.2u AD=3.2E-13 PD=2.4u AS=3.2E-13 PS=2.4u
М2
* Sources
Vvdd vdd gnd SUPPLY
Vvin a gnd PULSE 0 SUPPLY 50p 1p 1p 200p 400p
* Commands
.tran 5p 400p
.print v(a) v(y)
.end
```

Inverter Transient Results

Subcircuits

 Build hierarchy by declaring common elements as subcircuits

```
.subckt inv a y N=1 P=2
M1 y a gnd gnd NMOS W='N*0.4u' L=0.2u AS='N*0.4u*0.2u'
+ PS='2*N*0.4u+0.4u' AD='N*0.4u*0.2u' PD='2*N*0.4u+0.4u'
M2 y a vdd vdd PMOS W='P*0.4u' L=0.2u AS='P*0.4u*0.2u'
+ PS='2*P*0.4u+0.4u' AD='P*0.4u*0.2u' PD='2*P*0.4u+0.4u'
.ends
```

Ex: Fanout-of-4 Inverter Delay

FO4 Inverter Delay (T-Spice)

```
* Inv FO4 delay.cir
* Parameters and options
.options gmin=1e-9
.include mosis tsmc 180nm 18.model
.param SUPPLY=3.3
.global vdd gnd
* Simulation netlist
.subckt inv a y N=1 P=2
M1 y a gnd gnd NMOS W='N*0.4u' L=0.2u AS='N*0.4u*0.2u'
+ PS='2*N*0.4u+0.4u' AD='N*0.4u*0.2u' PD='2*N*0.4u+0.4u'
M2 y a vdd vdd PMOS W='P*0.4u' L=0.2u AS='P*0.4u*0.2u'
+ PS='2*P*0.4u+0.4u' AD='P*0.4u*0.2u' PD='2*P*0.4u+0.4u'
.ends
X1 a b inv N=1 P=2
                                   *shape input
X2 b c inv N=4 P=8
                                   *shape input
X3 c d inv N=16 P=32
                                   *device under test
X4 d e inv N=64 P=128
                                   *load
X5 e f inv N=256 P=512
                                   *load on load
```

FO4 Inverter Delay (cont.)

```
* Sources
Vvdd vdd and SUPPLY
Vvin a gnd PULSE 0 SUPPLY 0p 100p 100p 600p 1200p
* Commands
.tran 1p 1200p
.print v(a) v(b) v(c) v(d) v(e)
.measure tran tpdr trig v(c) val='SUPPLY/2' fall=1
+ targ v(d) val='SUPPLY/2' rise=1
.measure tran tpdf trig v(c) val='SUPPLY/2' rise=1
+ targ v(d) val='SUPPLY/2' fall=1
.measure tran trise trig v(d) val='0.2*SUPPLY' rise=1
+ targ v(d) val='0.8*SUPPLY' rise=1
.measure tran tfall trig v(d) val='0.8*SUPPLY' fall=1
+ targ v(d) val='0.2*SUPPLY' fall=1
.end
```

FO4 Results

Using cursors to measure propagation delay

Using SPICE commands to measure delay

generated using .measure commands in SPICE deck:

