Teleinformática y Comunicaciones

ppt #04

Donde se explicará el núcleo de la suite TCP-IP

Tema de hoy : Capa Transporte

Modelo TCP/IP Modelo OSI 7. Aplicación Aplicación 6. Presentación 5. Sesión 4. Transporte Transporte 3.Red Internet 2. Enlace de Datos Acceso a la Red 1.Física Las semejanzas más importantes las encontramos en la capa de Red y de Transporte.

Modelo

Application

Transport

Internet

Network Interface Transmission Control Protocol (TCP)

User Datagram Protocol (UDP)

Recordemos: Formato IP

TCP vs UDP Generalidad

User Datagram Protocolos

User Datagram Protocol

RFC 768

Protocolo de capa transporte

Servicio NO orientado a la conexion

Trabaja al mejor esfuerzo

La aplicacion es responsable de corregir errores

En caso que por tener error se descarte un datagrama, no se genera mensaje de error

UDP

Los puertos especifican los procesos

IP especifica la computadora (la conexion)

Responsabilidades

IP

es responsable de transferir los datos entre hosts (delivery) UDP

es responsable de diferenciar entre fuentes y destinos dentro del host

0 16 31

SOURCE PORT			DESTINATION PORT
LENGTH			UDP CHECKSUM
	BEGINNING	OF DATA	

Nro de octetos de header + data

Opcional. verifica el pseudo encabezado

UDP Checksum

Los diseñadores decidieron hacer opcional la suma de verificación, a fin de permitir que las implantaciones <u>operen con poco</u> <u>trabajo computacional</u> cuando operen con UDP.

□ De todas formas se recomienda su uso.

Pseudo encabezado

- □ 12 Bytes
- Usado por UDP y TCP
- □ Permite un doble chequeo que el dato llego al destino correcto

0	8	16	31
	SOURCE IF	ADDRESS	
	DESTINATION	I IP ADDRESS	
ZERO	PROTO	UDP LENGTH	

UDP Encapsulado

Encapsulando UDP en IP

Demultiplexado

Puertos <u>mas comunes</u>

F Listado de puertos bien conocidos (algunos).

```
21 – FTP
                  (TCP)
22 – SSH
                  (TCP)
23 – Telnet
                  (TCP)
25 – SMTP
                  (TCP)
53 – DNS
                  (TCP / UDP)
80 – HTTP
                  (TCP)
                  (UDP)
123 – NTP
161 - SNMP
                  (UDP)
443 – HTTPS
                  (TCP)
                  (UDP)
514 – SYSLOG
```

Números de puertos

Menores a 1024

- Puerto "Bien Conocidos"
- Utilizados por los servidores

Mayores a 1024

- No reservados
- Utilizados por los clientes

Idea de puerto

Quien hace esto?

Los protocolos UDP o TCP.

Característica UDP

- UDP no puede conocer una dirección IP al menos que interactúe con la capa IP.
- UDP está fuertemente integrado al protocolo IP.
 - ★ Se viola la idea de separar la funcionalidad entre capas.
- El multiplexado y demultiplexado entre el software UDP y los programas de aplicación (SNMP) ocurre a través del mecanismo de puertos
- Si un datagrama que recibe UDP no corresponde a uno de los puertos en uso, envía error ICMP: puerto no accesible y descarta el datagrama.

Concepto_importante-Socket

Que es un socket o conector?.

Dirección IP + puerto ⇒ Socket

20

Maximo Tamaño UDP

- □ Max datagrama → 65535 Bytes
- □ Header IP min 20 Byte, Header UDP = 8 Bytes
 - MAX DATA UDP = 65507 Bytes

Las aplicaciones limitan a valores menores

Transmission Control Protocol

PROTOCOLO TCP

Niveles Superiores

TCP

Protocolo Internet (IP)

Red de comunicación

- Usa IP para transmitir datos a otra computadora.
- Ofrece un servicio de transferencia de datos eficiente y confiable a los programas de aplicación.
- Debe compensar pérdidas y retardos sin sobrecargar redes ni enrutadores.

Características de TCP

Orientado a la conexion

Full Duplex

Fiable

Flujo de Bytes controlado

Segmentación

Transmisión uno a uno

Confiable

- Logra confiabilidad mediante ACK
 - El receptor envia ACK cuando llegan los datos
 - El emisor inicia un timer con la emision
 - Si no llega el ACK se reenvian los datos

Errores

FASES DE TCP

Establecimiento de conexión

Transferencia de Datos

Cierre de Conexión

Nro Secuencia

Ventana Corrediza

- •Permite el envio de multiples paquetes
- •Con cada ACK se desplaza la ventana

Aplicacion

Encapsulación TCP

Cabecera de la trama Ethernet (DIX)

0	4	10	16	24	31
SOURCE PORT			DESTINATION PORT		
		SEQUENC	ENUMBER		
		ACKNOWLEDGE	EMENT NUMBER		
HLEN	NOT USED	CODE BITS	WIN	DOW	
	CHECKSUM		URGEI	NT PTR	
	OPTIONS	MAY BE OMITTE	ED)	PADDING	
		BEGINNING OF F	'AYLOAD (DATA)		

Bit	Significado si está a uno	
URG	El puntero a datos urgentes es válido	
ACK	El campo de reconocimiento es válido	
PSH	Este segmento solicita un PUSH	
RST	Reiniciar la conexión	
SYN	Establecimiento de conexión	
FIN	El emisor llegó al final de su secuencia de datos	

Formato de trama

0	4	10	16	24 33	
SOURCE PORT			DESTINATION PORT		
SEQUENCE NUMBER					
ACKNOWLEDGEMENT NUMBER					
HLEN	NOT USED	CODE BITS	WINDOW		
CHECKSUM			URGENT PTR		
OPTIONS (MAY BE OMITTED) PADDING					
BEGINNING OF JAD (DATA)					

Cuando el bit URG esta activo, especifica la posición dentro del segmento donde terminan los datos urgentes.

Formato de trama

0	4	10	16	24 31		
SOURCE PORT			DESTINATION PORT			
SEQUENCE NUMBER						
ACKNOWLEDGEMENT NUMBER						
HLEN	NOT USED	CODE BITS	WINDOW			
CHECKSUM			URGENT PTR			
OPTIONS (MAY BE OMITTED) PADDING						
BEGINNING OF PAYLOAD (DATA)						

Permite definir por ejemplo el tamaño máximo del segmento (MSS)

Formato de trama

Opciones

Código	Opción	Parámetros	Utilización	
0x00	Fin de lista de opciones	Longitud (1 byte) = n n-2 bytes a 0 x 0 0	Completa al final hasta múltiplos de 32 bits	
0x01	No operación	1 Byte	Alinea opciones a palabras de 32 bits	
0x02	Tamaño máximo de segmento	Longitud (1 byte) = 4 Tamaño máximo (2 bytes)	Negociación del tamaño máximo de segmento	
0x03	Escala de ventana TCP	Longitud (1 byte) = 3 Desplazamiento (1 byte)	Permite aumentar la ventana de transmisión.	
0x04	Reconocimiento selectivo	Longitud (1 byte) = 2	Activar reconocimiento selectivo	
0x05	SACK	Longitud (1 byte) Izquierda Bloque 1 (4 bytes) Derecha Bloque 1 (4 bytes) Izquierda Bloque 2 (4 bytes) Derecha Bloque 2 (4 bytes)	Permite reconocimientos explícitos para bloques de datos no consecutivos.	
0x08	Marcas de tiempo	Longitud (1 byte) = 10 Valor TS (4 bytes) Respuesta de eco TS (4 bytes)	Permite etiquetar los segmentos con tiempos locales para mejorar el cálculo del RTT	

Pseudo header

Al igual que en UDP, permite que el receptor verifique que el segmento llegó a su destino correcto.

	0	8	16	31		
	SOURCE IP ADDRESS					
	DESTINATION IP ADDRESS					
	ZERO	PROTOCOL	TCP LENGTH			
ı						

PROTOCOLO TCP TERMINAL A

TERMINAL

EMISOR

Aplicación

TCP

IP

Interfaz Red

TCP ve a IP como un mecanismo que le permite intercambiar mensaje con un TCP remoto

RECEPTOR

Aplicación

TCP

IP

Interfaz Red

ROUTER

IP

Interfaz Red

RED 1

RED 2

Protocolo de Control de Transmisión Transmission Control Protocol (TCP)

- Que ofrece TCP?

- Es tarea de TCP asegurar que los datos se entreguen:
 - * Fiablemente.
 - * En secuencia.
 - ★ Sin errores.

Protocolo de Control de Transmisión Transmission Control Protocol (TCP)

- Que ofrece TCP ? II

- TCP permite saber si un datagrama llegó adecuadamente al host receptor.
 - * Señales de acuse de recibo.
- El tráfico enviado al puerto j de UDP es distinto al tráfico enviado al puerto j de TCP.

Fragmentación y Checksum

- TCP esta implementado en muchos tipos de redes, → a distinta velocidad y que distintos tamaños de datagramas.
- TCP negocia el tamaño del datagrama a enviar.
- El datagrama puede pasar por redes de menor tamaño, con lo cual se tendrá que fragmentar el datagrama para que pueda pasar por esa red.

Viaje en redondo - Tiempos

Viaje en redondo – tiempo

\square RTT = A * RTT + (1-A) NRTT

- A varia entre 0 y 1 segun la sensibilidad al cambio de la red
- NRTT es el ultimo valor de RTT medido

Reenvio

Segun consideremos al ACK correspondiente al primer o segundo envio, el RTT sera grande o chico

A que envio corresponde ?

FIN-PPT #04