Rozwiązywanie algebraicznych układów równań liniowych metodami bezpośrednimi

Plan wykładu:

- 1. Definicje macierzy, norm etc.
- 2. Metoda eliminacji Gaussa, Jordana
- 3. Rozkład LU metodą Gaussa, Doolittle'a,
- 4. Układy równań z macierzą symetryczną. Rozkład LDL™, LL™
- 5. Układy równań z macierzą trójdiagonalną
- 6. Iteracyjne poprawianie rozwiązań
- 7. Układy liniowe nadokreślone, równania normalne, metody ortogonalizacji

Pojecia podstawowe

Macierz jest uporządkowanym układem mxn liczb rzeczywistych lub zespolonych

$$A=(a_{ij}) (i=1,...,m; j=1,...,n)$$

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Jeśli m=n to A jest **kwadratowa** stopnia n.

Macierz diagonalna $D=(\delta_{ij} d_{ij})$

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

Macierz jednostkowa $I=(\delta_{ij})$

Transpozycja -
$$A=(a_{ij})$$
 to $A^T=(a_{ji})$
$$(A^T)^T=A$$

$$(\alpha A)^T=\alpha A^T$$

$$(A+B)^T=A^T+B^T$$

$$(AB)^T=B^TA^T$$

$$(Ax)^T=x^TA^T$$

Ślad macierzy $A=A_{nxn}$

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

$$tr(A^T) = tr(A)$$

Macierz trójkątna lewa (dolna)

$$L = \begin{bmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{bmatrix}$$

Macierz trójkątna prawa (górna)

$$R = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & \dots & r_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & r_{nn} \end{bmatrix}$$

Sumy, iloczyny i odwrotności macierzy trójkątnych tego samego rodzaju są macierzami trójkątnymi.

Wyznacznik macierzy trójkątnej

$$det(L) = l_{11}l_{22} \dots l_{nn}$$
$$det(R) = r_{11}r_{22} \dots r_{nn}$$
$$det(A) = det(A^T)$$
$$det(AB) = det(A)det(B)$$

Jeśli

$$det(A) \neq 0$$

to macierz jest **nieosobliwa** i dla takiej macierzy istnieje **macierz odwrotna** A⁻¹

$$AA^{-1} = A^{-1}A = I$$

 $(AB)^{-1} = B^{-1}A^{-1}$

Macierz symetryczna

$$A^T = A$$

Macierz ortogonalna $Q=Q_{m\times n}$

$$Q^T Q = I$$

$$Q^{-1}Q = I$$

$$Q^T = Q^{-1}$$

Macierz idempotentna

$$A^2 = A$$

Macierzą hermitowską nazywamy macierz, która po transpozycji i sprzężeniu zespolonemu jej elementów jest równa macierzy pierwotnej

$$A^H = \left(A^T\right)^*$$

Elementy diagonalne macierzy hermitowskiej są rzeczywiste (pozostałe mogą być zespolone lub rzeczywiste).

Macierzą dodatniookreśloną nazywamy macierz rzeczywistą lub hermitowską o własności:

$$x^T A x > 0, \quad x \in \mathbb{R}^n, \quad x \neq 0$$

Macierz dodatnio określona jest zawsze odwracalna. Macierz odwrotna jest również dodatnio określona.

Przestrzenią liniową (wektorową) nad ciałem liczb rzeczywistych (zespolonych) nazywamy zbiór obiektów (wektorów) z określonym działaniem dodawania elementów przestrzeni oraz mnożenia ich przez liczbę i oznaczamy R^N (C^N).

Aksjomaty: łączność, przemienność, element neutralny, element odwrotny,....

Uporządkowany zbiór liczb rzeczywistych (zespolonych) tworzy wektor

$$x = (x_1, x_2, x_3, \dots, x_n)$$

Przestrzeń wektorowa będąca zbiorem takich obiektów ma wymiar n.

Dowolny zbiór n wektorów liniowo $\,$ niezależnych w $\,$ $\,$ $\,$ R $^{\rm N}$

$$y_1, y_2, \ldots, y_n$$

tworzy bazę przestrzeni. Każdy element przestrzeni można zapisać jako kombinację liniową elementów bazy

$$x = \alpha_1 y_1 + \alpha_2 y_2 + \ldots + \alpha_n y_n$$

Podprzestrzeń linową R w R^N tworzy zbiór wszystkich wektorów

$$y_1, y_2, \dots, y_k, \quad k \le n$$

Macierz możemy traktować jako obiekt zbudowany z wektorów (wektory wierszowe lub kolumnowe).

Rzędem macierzy $A=A_{m\times n}$

$$r=rank(A)$$

nazywamy największą liczbę niezależnych liniowo wektorów wierszowych lub kolumnowych. Jeśli r=m=n to macierz jest nieosobliwa.

Normy wektorów i macierzy

Normy wprowadza się w celu ilościowego określania własności wektorów i macierzy. Norma wektora nazywamy funkcje, która każdemu elementowi w R^N przyporządkowuje liczbę rzeczywistą. Dla dowolnych

$$x, y \in \mathbb{R}^n \quad \alpha \in \mathbb{R}$$

norma wektora musi spełniać następujące aksjomaty:

$$||x|| \ge 0, \quad ||x|| = 0 \iff x = 0$$

 $||\alpha x|| = |\alpha| \cdot ||x||$
 $||x + y|| \le ||x|| + ||y||$

Dla n-wymiarowego wektora
$$x = [x_1, x_2, \dots, x_n]^T$$

najczęściej stosowane są normy z rodziny L_p:

$$||x||_p = (|x_1|^p + |x_2|^p + \dots |x_n|^p)^{\frac{1}{p}}$$

norma pierwsza

$$p = 1, \quad ||x||_1 = |x_1| + |x_2| + \ldots + |x_n|$$

- norma druga (euklidesowa)

$$p = 2, \quad ||x||_2 = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$$

- norma maksymalna

$$p = \infty, \quad ||x||_{\infty} = max\{|x_1|, |x_2|, \dots, |x_n|\}$$

Dla dowolnego wektora x w przestrzeni Rⁿ prawdziwe są poniższe relacje pomiędzy normami:

$$||x||_{\infty} \le ||x||_{2} \le ||x||_{1} \le \sqrt{n} ||x||_{2} \le n ||x||_{\infty}$$

Normy macierzy

Własności norm macierzy

$$||A|| \ge 0, \quad ||A|| = 0 \iff A = 0$$
 $||\alpha A|| = ||\alpha|| \cdot ||A|||$
 $||A + B|| \le ||A|| + ||B|||$
 $||AB|| \le ||A|| \cdot ||B|||$
 $||Ax|| \le ||A|| \cdot ||x||$ (normy zgodne)

Normy zgodne - norma macierzy indukowana przez norme wektora

Macierz o m wierszach i n kolumnach można traktować jako operator liniowy przekształcający przestrzeń R^m w Rⁿ. Normę takiej macierzy można określić przy użyciu wektorów:

$$||A||_{pq} = \sup_{\substack{x \in R^n \\ x \neq 0}} \frac{||Ax||_q}{||x||_p}$$

gdzie: p i q oznaczają normy wektorów w przestrzeniach R^n i w R^m . Mówimy, że norma $||A||_{pq}$ jest normą indukowaną przez normy $||.||_p$ oraz $||.||_q$. Dla p=q oznaczając

$$||A||_p = ||A||_{pq}$$

możemy określić następujące normy macierzy

- maksymalna suma modułów w kolumnie

$$||A||_1 = \max_{j=1,2,\dots,n} \sum_{i=1}^m |a_{ij}|$$

- norma spektralna

$$||A||_2 = (\max_{i=1,\dots,n} \lambda_i (AA^T))^{1/2}$$

- maksymalna suma modułów w wierszu

$$||A||_{\infty} = \max_{i=1,2,\dots,n} \sum_{j=1}^{n} |a_{ij}|$$

- maksymalny moduł elementu

$$||A||_{1\infty} = \max_{i,j} |a_{ij}|$$

W przestrzeniach z normą $||\cdot||_2$ często używa się **euklidesowej (Frobeniusa)** normy macierzy:

$$||A||_E = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$

która nie jest indukowana żadną normą ale spełnia ona z normą $||\cdot||_2$ warunek zgodności:

$$||A||_2 \le ||A||_E ||x||_2, \quad x \in \mathbb{R}^n$$

Normy macierzy mają istotne znaczenie w analizie błędów (np. błędów rozwiązania układów równań liniowych).

Szukamy rozwiązania układu równań liniowych w postaci:

Powyższy układ równań można zapisać w postaci macierzowej:

$$Ax = b$$

gdzie:

- macierz współczynników układu

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

rozwiązań

- szukany wektor - wektor wyrazów wolnych

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Warunek rozwiązywalności układu niejednorodnego:

$$b \in R(A)$$

R(A) – podprzestrzeń liniowa rozpięta na wektorach kolumnowych macierzy A

Dla
$$R(A) = R_n$$

warunek rozwiązywalności układu jest spełniony dla każdego b i rozwiązanie ma postać

$$x = A^{-1}b$$

Jeśli rank(A)=r<n to rozwiązania tworzą rozmaitość (n-r) wymiarowa.

Układ równań z macierzą trójkątną

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

$$\ldots$$

$$a_{nn}x_n = b_n$$

Zakładamy, że elementy leżące na diagonali są niezerowe. Rozwiązanie układu można znaleźć posługując się wzorem rekurencyjnym, zaczynając od elementu x_n :

$$x_n = \frac{b_n}{a_{nn}}$$

$$x_i = \frac{b_i - a_{ii+1}x_{i+1} - \dots - a_{in}x_n}{a_{ii}}$$

W celu wyznaczenia wszystkich składowych wektora rozwiązania x należy wykonać:

- M operacji mnożenia i dzielenia

$$M = \frac{1}{2}n^2 + \frac{1}{2}n$$

- D operacji dodawania i odejmowania

$$D = \frac{1}{2}n^2 - \frac{1}{2}n$$

<u>Uwarunkowanie zadania - rozwiązania</u> układu równań

Wpływ błędów zaokrągleń na wynik można oszacować analizując zaburzenia danych: A,b

a) zaburzamy wektor b:

$$A(x + \delta x) = b + \delta b$$

$$\delta x = A^{-1} \delta b$$

$$||\delta x|| \leq ||A^{-1}|| \cdot ||\delta b||$$

b) zaburzamy elementy macierzy A:

$$(A + \delta A)(x + \delta x) = b$$

$$A\delta x + \delta A(x + \delta x) = 0$$

$$\delta x = -A^{-1}\delta A(x + \delta x)$$

$$||\delta x|| \le ||A^{-1}|| \cdot ||\delta A|| \cdot ||x + \delta x||$$

ostatnią nierówność zapisujemy w postaci

$$\frac{||\delta x||}{||x + \delta x||} \le \kappa(A) \frac{||\delta A||}{||A||}$$

gdzie

$$\kappa(A) = ||A|| \cdot ||A^{-1}||$$

jest wskaźnikiem uwarunkowania macierzy

Korzystając z wyniku (a) oraz nierówności

$$||b|| = ||Ax|| \le ||A|| \cdot ||x||$$

dostajemy oszacowanie na błąd względny rozwiązania:

$$\frac{||\delta x||}{||x||} \le \kappa(A) \frac{||\delta b||}{||b||}$$

Wniosek - duży wskaźnik uwarunkowania macierzy może powodować duże względne zaburzenia rozwiązania nawet dla małych zaburzeń wektora danych. Zadanie jest wówczas źle uwarunkowane.

Błędy zaokrągleń pojawiające się podczas obliczeń możemy oszacować zastępując je zaburzeniem δA^z . Szacujemy poziom zaburzeń elementów A:

$$|\delta a_{ij}^{(z)}| \le \varepsilon \begin{bmatrix} n|a_1| & (n+2)|a_{12}| & \dots & 4|a_{1,n-1}| & 3|a_{1,n}| \\ & (n-1)|a_{22}| & \dots & 4|a_{2,n-1}| & 3|a_{2,n}| \\ & & \ddots & & & \\ & & & 2|a_{n-1,n-1}| & 3|a_{n-1,n}| \\ & & & & 1|a_{nn}| \end{bmatrix}$$

skąd wynika

$$\|\delta A^{(z)}\|_p \le \varepsilon(n+2)\|A\|_p, \quad p=1,\infty,E$$

Znamy oszacowanie od góry elementów macierzy A: $\|A\|_{1\infty} \leq g$ więc możemy oszacować prawe strony nierówności.

a) przypadek ogólny

$$\|\delta A^{(z)}\|_1 \le \varepsilon \left(\frac{1}{4}n^2 + \frac{5}{2}n\right)g \qquad \|\delta A^{(z)}\|_{\infty} \le \varepsilon \left(\frac{1}{2}n^2 + \frac{5}{2}n - 2\right)g$$

b) macierz diagonalnie dominująca wierszowo

$$|a_{ii}| \ge \sum_{\substack{k=1\\k \ne i}}^{n} |a_{ik}|, \quad i = 1, 2, \dots, n$$
 $||\delta A^{(z)}||_{\infty} \le \varepsilon \left(2n + 2\right)g$

c) macierz diagonalnie dominująca kolumnowo

$$\|\delta A^{(z)}\|_1 \le \varepsilon \bigg(2n+1\bigg)g$$

Metoda eliminacji Gaussa rozwiązania układu równań liniowych. Metoda jest dwuetapowa:

1) Eliminacja zmiennych. Układ pierwotny:

$$A^{(1)}x = b^{(1)}$$

Odejmujemy od i-tego wiersza (i=2,3,...,n) wiersz pierwszy pomnożony przez współczynnik

$$l_{i1} = \frac{a_{i1}^{(1)}}{a_{11}^{(1)}}$$

Z równań i=2,3,..,n wyeliminowana została zmienna x_1 .

$$A^{(2)}x = b^{(2)}$$

Powtarzamy operację, ale odejmujemy od i-tego wiersza (i=3,4,...,n) wiersz drugi pomnożony przez współczynnik

$$l_{i2} = \frac{a_{i2}^{(2)}}{a_{22}^{(2)}}$$

Postępując dalej w ten sposób eliminujemy z każdego następnego równania jedną zmienną. Eliminację kończymy po (n-1) krokach, gdy uzyskamy trójkątny układ równań w postaci:

$$a_{11}^{(n)}x_1 + a_{12}^{(n)}x_2 + \dots + a_{1n}^{(n)}x_n = b_1^{(n)}$$

$$a_{22}^{(n)}x_2 + \dots + a_{2n}^{(n)}x_n = b_2^{(n)}$$

$$\dots \dots \dots \dots = \dots$$

$$a_{nn}^{(n)}x_n = b_n^{(n)}$$

2) Etap drugi nazywany jest postępowaniem odwrotnym.

Rozwiązanie (kolejne składowe wektora x) znajdujemy stosując wzór rekurencyjny dla macierzy trójkątnej. Wyznaczenie rozwiązania metodą Gaussa wymaga wykonania:

- M op. mnożenia i dzielenia

$$M = \frac{1}{3}n^3 + n^2 - \frac{1}{3}n$$

- D op. dodawania i odejmowania

$$D = \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n$$

Metoda eliminacji w tej postaci jest niestabilna numerycznie – problem dzielenia przez 0 lub liczbę bliską zeru. Rozwiązanie:

- a) częściowy wybór elementów głównych
- b) pełny wybór elementów głównych

Częściowy wybór elementów głównych W k-tym kroku szukamy elementu

$$|a_{rk}^{(k)}| = \max_{k \le i \le n} |a_{ik}^k|$$

i przestawiamy wiersze r oraz k.

Pełny wybór elementów głównych

W k-tym kroku szukamy elementu

$$|a_{rs}^{(k)}| = \max_{k \le i, j \le n, |a_{ij}^k|$$

i przestawiamy wiersze: k i r oraz kolumny: k i s

Stosując wybór elementu głównego rozwiązanie otrzymujemy zawsze. W trakcie wyboru elementu głównego należy zmienić także kolejność w x i b. Modyfikacji tej można nie stosować dla:

a) macierzy z dominującą przekątną

$$|a_{ii}| \ge \sum_{j=1, j \ne i}^{n} |a_{i,j}| \quad (i = 1, \dots, n)$$

b) macierzy symetrycznej i jednocześnie dodatniookreślonej

Metoda eliminacji Jordana (eliminacji zupełnej)

W układzie równań:

$$A^{(1)}x = b^{(1)}$$

$$a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)}$$

$$a_{21}^{(1)}x_1 + a_{22}^{(1)}x_2 + \dots + a_{2n}^{(1)}x_n = b_2^{(1)}$$

$$= b_2^{(1)}$$

$$a_{n1}^{(1)}x_1 + a_{n2}^{(1)}x_2 + \ldots + a_{nn}^{(1)}x_n = b_n^{(1)}$$

równanie pierwsze dzielimy obustronnie przez współczynnik: $w_1=a_{11}^{(1)}$

Następnie odejmujemy od i-tego wiersza (i=2,3,...,n) wiersz pierwszy przemnożony przez

$$w_{1i} = a_{i1}^{(1)}$$

i otrzymujemy

$$A^{(2)}x = b^{(2)}$$

Podobnie postępujemy z równaniem drugim. Dzielimy je przez

$$w_2 = a_{22}^{(2)}$$

Następnie od i-tego wiersza (i=1,3,4,...,n) odejmujemy wiersz drugi pomnożony przez współczynnik:

$$w_{2i} = a_{i2}^{(2)}$$

Otrzymujemy zmodyfikowany układ równań:

$$A^{(3)}x = b^{(3)}$$

Po przeprowadzeniu (n-1) eliminacji zmiennych układ równań ma poniższą postać:

$$x_1 = b_1^{(n)}$$

$$x_2 = b_2^{(n)}$$

$$\dots = \dots$$

$$x_n = b_n^{(n)}$$

czyli gotowe rozwiązanie. Liczba operacji:

$$M = \frac{1}{2}n^3 + \frac{1}{2}n^2$$
$$D = \frac{1}{2}n^3 - \frac{1}{2}n^2$$

Rozkład LU metodą Gaussa-Crouta(GCW)

Metodę Gaussa można użyć do znalezienia takich macierzy L i U, które z macierzą A związane są relacją:

$$A = L \cdot U$$

Procedura wyznaczania elementów tych macierzy nosi nazwę **rozkładu LU.** Sposób postępowania (wykorzystujemy **metodę eliminacji Gaussa**):

1) mnożenie wiersza pierwszego przez czynnik

$$l_{i1} = \frac{a_{i1}^{(1)}}{a_{11}^1}$$

i odjęcie go od i-tego wiersza (i=2...n), zastępujemy mnożeniem przez macierz:

$$L^{(1)} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ -l_{21} & 1 & 0 & \dots & 0 \\ -l_{31} & 0 & 1 & 0 & 0 \\ \dots & \dots & \dots & 1 & 0 \\ -l_{n1} & 0 & 0 & \dots & 1 \end{bmatrix}_{n \times n}$$

co można zapisać macierzowo:

$$L^{(1)}A^{(1)} = A^{(2)}$$
 $L^{(1)}b^{(1)} = b^{(2)}$ 15

Eliminacja zmiennej z równań (i=3,4,...,n) wygląda podobnie. Mnożymy wiersze zmodyfikowanego układu równań o indeksach i=3,4,...,n przez czynnik

$$l_{i2} = \frac{a_{i2}^{(2)}}{a_2^2}$$

i odejmujemy od nich wiersz drugi. Operację ta można przeprowadzić mnożąc układ równań obustronnie przez macierz L⁽²⁾:

$$L^{(2)} = \begin{bmatrix} 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & 0 & 0 & \dots \\ 0 & -l_{32} & 1 & 0 & 0 \\ \dots & \dots & \dots & 1 & 0 \\ 0 & -l_{n2} & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} L & = & (L^{(1)})^{-1}(L^{(2)})^{-1} \dots (L^{(n-1)})^{-1} \\ U & = & A^{(n)} = \begin{pmatrix} L^{(n-1)}L^{(n-2)} \dots L^{(1)} \end{pmatrix} A^{(1)} \\ A & = & L \cdot U \\ \text{Jak znaleźć macierze } (L^{(i)})^{-1}? \end{bmatrix}$$

Zapis macierzowy operacji:

$$L^{(2)}A^{(2)} = A^{(3)}$$

 $L^{(2)}b^{(2)} = b^{(3)}$

Po wykonaniu (n-1) takich operacji dostajemy

$$L^{(n-1)}L^{(n-2)}\dots L^{(1)}A^{(1)} = A^{(n)}$$

$$L^{(n-1)}L^{(n-2)}\dots L^{(1)}b^{(1)} = b^{(n)}$$

Macierze L⁽ⁱ⁾ są nieosobliwe (można znaleźć dla każdej macierz odwrotną). Przemnażając obie strony powyższych równań przez $(L^{(n-1)})^{-1}$, $(L^{(n-2)})^{-1}$, otrzymamy:

$$A^{(1)} = \left(L^{(1)}\right)^{-1} \left(L^{(2)}\right)^{-1} \dots \left(L^{(n-1)}\right)^{-1} A^{(n)}$$

$$b^{(1)} = \left(L^{(1)}\right)^{-1} \left(L^{(2)}\right)^{-1} \dots \left(L^{(n-1)}\right)^{-1} b^{(n)}$$

wprowadzamy oznaczenia

$$L = (L^{(1)})^{-1} (L^{(2)})^{-1} \dots (L^{(n-1)})^{-1}$$

$$U = A^{(n)} = \left(L^{(n-1)} L^{(n-2)} \dots L^{(1)}\right) A^{(1)}$$

$$A = L \cdot U$$

Jak znaleźć macierze (L⁽ⁱ⁾)⁻¹?

$$L^{(1)} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ -l_{21} & 1 & \dots & 0 \\ \dots & \dots & 1 & 0 \\ -l_{n1} & 0 & \dots & 1 \end{bmatrix}$$

$$\left(L^{(1)}\right)^{-1} = \left[\begin{array}{cccc} 1 & 0 & \dots & 0 \\ l_{21} & 1 & \dots & 0 \\ \dots & \dots & 1 & 0 \\ l_{n1} & 0 & \dots & 1 \end{array} \right]$$

Sprawdzenie

$$L^{(i)}\left(L^{(i)}\right)^{-1} = I$$

macierz L jest macierzą dolną z jedynkami na diagonali:

$$L = (L^{(1)})^{-1}(L^{(2)})^{-1}\dots(L^{(n-1)})^{-1}$$

$$L = \begin{bmatrix} 1 & 0 & \dots & 0 \\ l_{21} & 1 & 0 & \dots & 0 \\ l_{31} & l_{32} & 1 & 0 & 0 \\ \dots & \dots & \dots & 1 & 0 \\ l_{n1} & l_{n2} & l_{n3} & \dots & 1 \end{bmatrix}$$

macierz U jest macierzą górną z niezerowymi elementami na diagonali:

$$U = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & \dots & u_{2n} \\ 0 & 0 & u_{33} & \dots & u_{nn} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

Dysponując macierzami L i U można rozwiązać układ równań:

$$Ax = b$$
$$LUx = b$$

poprzez rozwiązanie 2 układów równań

$$Ly = b$$
$$Ux = y$$

Rozwiązanie każdego z równań wiąże się z nakładem obliczeń jak dla układu z macierzą trójkątną ($\sim 1n^2$). Rozkład LU (eliminacja Gaussa) to nakład rzędu $\sim 0.5n^3$.

Rozkład LU metoda Doolittle'a

Równanie A=LU traktujemy jako n² równań z n² niewiadomymi I_{ij} (i>j) i niewiadomymi u_{ij} ($i \le j$)

(**poprzednia strona**). Elementy l_{ij} oraz u_{ij} oblicza się ze wzorów:

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{ik}, \ j = i, i+1, \dots, n$$

$$l_{ji} = \frac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} u_{ki}}{u_{ii}}, \ j = i+1, i+2, \dots, n$$

Liczba wykonywanych działań jest identyczna jak w metodzie Gaussa. Elementy \mathbf{u}_{ij} oraz \mathbf{I}_{ij} można zapamiętać w komórkach macierzy A.

<u>Błąd rozwiązania układu równań przy użyciu</u> <u>rozkładu LU</u>

Przeprowadzając rozkład LU macierzy A:

$$\tilde{L}\tilde{U} = A + E$$

Oszacowanie normy macierzy zaburzeń (LU)

$$||E||_{\infty} \le \varepsilon k_1(n)||A||_{\infty}$$
$$k_1(n) = n^2 g$$

Szukamy rozwiązań układów

$$\tilde{L}y = (L + \delta L)y = b$$
$$\tilde{U}x = (U + \delta U)\tilde{x} = y$$

co można zapisać

$$(A + \delta A)\tilde{x} = b$$

Zaburzenie macierzy (δA) zależy od A i od b (**tym różni się od E**):

$$||\delta A||_{\infty} \le \varepsilon k_2(n)||A||_{\infty}$$
$$k_2(n) = (n^3 + 3n^2)g$$

Oszacowanie wsp. g:

- GCW

$$g \le 2^{n-1}$$

-pełny wybór elementu podstawowego

$$g \le 1.8n^{0.25ln(n)}$$

- realne oszacowanie (z testów numerycznych) $a \approx 8$

Jaki jest wektor reszt rozwiązania?

$$r = b - A\tilde{x} = (A + \delta A)\tilde{x} - A\tilde{x} = \delta A\tilde{x}$$

$$||r||_{\infty} = ||b - A\tilde{x}||_{\infty} \le k_2 \varepsilon ||\delta A||_{\infty} ||\tilde{x}||_{\infty}$$

Norma maksymalna wektora reszt może być mała nawet dla źle uwarunkowanych macierzy.

Zalety:

- 1) Duża wydajność dla dużej liczby równań. Rozkład LU opłaca się stosować w przypadku rozwiązywania wielu układów równań z tą samą macierzą współczynników układu A. Każdy układ równań różni się wtedy tylko wektorem wyrazów wolnych. Rozkład LU wykonuje się w takim przypadku tylko raz (ilość operacji ~n³). Rozwiązanie pojedynczego układu równań można znaleźć przy zastosowaniu algorytmu postępowania odwrotnego (ilość operacji ~n²).
- 2) Oszczędność zajmowanej pamięci. Elementy macierzy L i U mogą zostać zapisane w macierzy A.
- 3) Jeśli macierz A jest symetryczna i dodatniookreślona to nie trzeba dokonywać wyboru elementów podstawowych.

<u>Układy równań z macierzą symetryczną.</u> Rozkład LDL^T

Oznaczmy rozkład LU jako:

$$A = L\overline{U}$$

Szukamy rozkładu macierzy A w postaci:

$$A = LDU$$

gdzie: L – macierz trójkątna dolna z jedynkami na diagonali, D – macierz diagonalna z elementami diagonalnymi macierzy \bar{U} , U – macierz trójkątna górna z jedynkami na diagonali

Wykorzystujemy symetrię macierzy

$$U^T D L^T = A^T = A \Rightarrow U = L^T$$

co prowadzi do rozkładu dla macierzy symetrycznych:

$$A = LDL^T$$

Rozwiązanie układu Ax=b:

$$Lz = b$$
$$Dy = z$$
$$L^{T}x = y$$

Elementy rozkładu wyznaczamy rekurencyjnie

$$d_1 = a_{11}$$

a dla i=2,3,...,n oblicza się na przemian:

$$l_{ij} = \frac{a_{ij} - \sum_{k=1}^{j-1} c_{ik} l_{jk}}{d_j}$$
$$c_{ij} = d_j l_{ij}, \quad j = 1, 2, \dots, i-1$$

$$d_i = a_{ii} - \sum_{k=1}^{i-1} c_{ik} l_{ik}$$

Nakład obliczeń:

$$M = \frac{1}{6}n^3 + n^2 - \frac{7}{6}n$$

$$D = \frac{1}{6}n^3 - \frac{1}{6}n$$

Zalety:

- nakład obliczeń dwukrotnie mniejszy niż w GCW
- dzięki symetrii macierzy wystarczy zapamiętać

$$N = \frac{n(n+1)}{2}$$

elementów

Rozkład LL^I (Banachiewicza-Cholesky'ego)

leśli macierz A jest macierza symetryczna dodatnio określona wówczas można dokonać następującego rozkładu:

$$A = LL^T$$

Macierz L jest macierzą trójkątną dolną z elementami na diagonali mogacymi się różnić od 1. Macierz

$$\bar{L} = -L$$

spełnia warunek

$$A = \bar{L}\bar{L}^T$$

więc rozkład ten nie jest jednoznaczny. Jeśli jednak liczby na diagonali macierzy L są dodatnie wówczas rozkład jest jednoznaczny, a elementy macierzy wyznaczamy ze wzorów:

$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2}, i = 1, 2, \dots, n$$

$$d_{ji} = \frac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} l_{ik}}{l_{ii}}, \ j = i+1, i+2, \dots, n$$

Nakład obliczeń:

$$n - \sqrt{10}$$

$$M = \frac{1}{6}n^3 + \frac{1}{2}n^2 - \frac{2}{3}n$$

$$D = \frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n$$

Przykład

$$A = \left[\begin{array}{ccc} 4 & 2 & 2 \\ 2 & 5 & 3 \\ 2 & 3 & 6 \end{array} \right]$$

$$i = 1:$$
 $l_{11} = 2,$ $l_{21} = 1,$ $l_{31} = 1$

$$i=2:$$
 $l_{22}=2,$ $l_{32}=1$

$$i = 3:$$
 $l_{33} = 2$

$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^{2}}, i = 1, 2, \dots, n$$

$$l_{ji} = \frac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} l_{ik}}{l_{ii}}, j = i+1, i+2, \dots, n$$

$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 5 & 3 \\ 2 & 3 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

Inne zastosowania rozkładu LU.

Obliczanie wyznacznika

Aby obliczyć wyznacznik macierzy A możemy posłużyć się rozkładem

$$A = LU$$

$$det(A + E) = det(LU)$$

$$= det(L)det(U) = det(U)$$

$$det(L) = 1$$

Wyznacznik macierzy U jest iloczynem elementów stojących na diagonali tej macierzy (n-1 operacji mnożenia).

Odwracanie macierzy

Aby znaleźć przy pomocy macierzy L i U macierz odwrotną A-1 należy rozwiązać n układów równań:

$$LUx^{(i)} = e^{(i)}, \quad i = 1, 2, \dots, n$$
 $e^{(i)} = [0, 0, \dots, 1, \dots, 0]^T$ $LUX = I \to X = A^{-1}$

Rozwiązania układów równań x⁽ⁱ⁾ stanowią kolumny macierzy odwrotnej A⁻¹ (po uwzględnieniu ewentualnych przestawień wierszy wynikających z wyboru elementu podstawowego).

Przykład

Znaleźć macierz A⁻¹ jeśli macierz A jest zdefiniowana:

$$A = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 3 & 3 & 0 \\ 0 & 2 & 2 \end{array} \right]$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{3} & -\frac{1}{2} & 1 \end{bmatrix} U = \begin{bmatrix} 3 & 3 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

$$x^{(1)} = \begin{bmatrix} 1/6 \\ 1/6 \\ -1/6 \end{bmatrix} \qquad x^{(2)} = \begin{bmatrix} -1/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$
$$x^{(3)} = \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \end{bmatrix} \qquad P_n = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} \frac{1}{2} & \frac{1}{6} & -\frac{1}{4} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{6} & -\frac{1}{4} \\ -\frac{1}{2} & \frac{1}{6} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{6} & \frac{1}{4} \end{bmatrix}$$

Układy równań z macierzą trójdiagonalną

Szukamy rozwiązania układu równań:

$$Tx = b$$

Zdarza się że macierz układu równań ma postać (np. równania z ilorazami różnicowymi):

Można wykonać rozkład LU macierzy T, macierze te mają postać:

Elementy macierzy rozkładu obliczamy rekurencyjnie:

$$u_1 = d_1$$
 $l_i = \frac{a_i}{u_{i-1}}$
 $u_i = d_i - l_i c_{i-1}, \quad i = 2, 3, \dots, n$

Rozwiązanie układu Tx=b:

$$Ly = b$$
$$Ux = y$$

Rozwiązanie:

$$y_1 = b_1$$
 $y_i = b_i - l_i y_{i-1}$
 $x_n = \frac{y_n}{u_n}$
 $x_i = \frac{y_i - c_i x_{i+1}}{u_i}, \quad i = n-1, n-2, \dots, 1$

nakład obliczeń: M=2n-2, D=n-1 liczba zajętych komórek: **P=3n-2**

Jeśli macierz jest **dominująca kolumnowo** to rozkład T=LU jest równoważny rozkładowi z częściowym wyborem elementu podstawowego (niezawodność metody).

<u>Iteracyjne poprawianie rozwiązania układu</u> równań

Błąd rozwiązania można sprawdzić obliczając wektor reszt:

$$r = b - A\tilde{x}$$

Zazwyczaj współrzędne wektora r są różne od zera. Oznacza to, że nie uzyskaliśmy dokładnego rozwiązania, ale przybliżone. Rozwiązanie to chcemy poprawić:

$$\tilde{x} = x - \delta x$$

gdzie: δx jest poprawką, którą można łatwo wyznaczyć rozwiązując układ:

$$A\delta x = r$$

Należy jednak pamiętać, że wyznaczona poprawka do rozwiązania również jest przybliżeniem. Kolejne **poprawione rozwiązanie**, które uzyskamy będzie miało postać:

$$\bar{x} = \tilde{x} + \delta x + \delta(\delta x)$$

Jeżeli wektor reszt $\mathbf{r}=\mathbf{b}-\mathbf{A}\mathbf{x}$ jest obliczony dokładnie, poprawka $\delta \mathbf{x}$ została wyznaczona metodą Gaussa-Crouta oraz zachodzi warunek:

$$\frac{1}{2}||r||_{\infty} \ge \varepsilon||A||_{\infty}W_3(n)||\delta x||_{\infty} + ||Ax||_{\infty}\varepsilon$$

$$W_3(n) = \frac{9}{2}n^3 + \frac{61}{2}n^2 - 18n - 16$$

wówczas norma wektora reszt obliczona w kolejnych iteracjach maleje

$$||b - A\bar{x}||_{\infty} \le \frac{1}{2}||b - Ax||_{\infty}$$

Algorytm iteracyjnego poprawiania rozwiązania:

- 1. Rozwiązujemy układ Ax⁽¹⁾=b metodą Gaussa
- 2. Obliczamy wektor reszt r⁽¹⁾ i sprawdzamy rozwiązanie
- 3. Sprawdzamy czy poniższy warunek jest prawdziwy

$$||r^i||_{\infty} > ||Ax^{(1)}||_{\infty} \varepsilon$$

jeśli nie to przerywamy obliczenia. Jeśli jest spełniony to kontynuujemy.

4. Obliczamy poprawkę $\delta x^{(1)}$ i wyznaczamy

$$x^{(2)} = x^{(1)} + \delta x^{(1)}$$

5. Wyznaczamy wektor reszt r⁽²⁾ i sprawdzamy rozwiązanie. W razie konieczności powtarzamy kroki 3,4,5 aż do skutku.

Rozwiązywanie układów liniowych nadokreślonych

lak rozwiązać poniższy problem?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \dots & \dots & \dots \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ \dots \\ x_n \end{bmatrix} \text{ wówczas dla dowolnego n-elementowego wektora y spełniona jest nierówność } \\ ||b - Ax||_2 \leq ||b - Ay||_2 \\ \dots \\ ||b - Ax||_2 \leq ||b - Ay||_2 \\ \dots \\ ||b - Ax||_2 \leq ||b - Ay||_2 \\ \dots \\ ||b - Ax||_2 \leq ||b - Ay||_2 \\ \dots \\ ||b - Ax||_2 \leq ||b - Ax||_2 \leq ||b - Ax||_2$$
 Dla dowolnego wektora otrzymujemy warunek
$$(Az)^T (b - Ax) = 0$$

dla warunku m > n

Brak dokładnego rozwiązania w większości przypadków. Można poszukiwać conajwyżej "najlepszego" przybliżenia rozwiązania w sensie średniokwadratowym.

Dla

$$r = b - Ax$$

rozwiązaniem średniokwadratowym problemu nadokreślonego (least square problem) jest taki wektor x, który minimalizuje norme:

$$||r||_2 = (r^T r)^{1/2}$$

Jeśli macierz A jest macierzą o rozmiarach mxn i elementach rzeczywistych, b jest wektorem melementowym, a x wektorem n elementowym spełniającym równanie

$$A^T(b - Ax) = 0$$

$$||b - Ax||_2 \le ||b - Ay||_2$$

$$(Az)^T(b - Ax) = 0$$

skąd wynika że wektor r jest ortogonalny do wszystkich wektorów z przestrzeni R(A) rozpietej na wektorach kolumnowych macierzy A. Ponadto nadokreślony układ równań można przekształcić do postaci układu normalnego

$$(A^T A)x = A^T b$$

Macierz A^TA jest symetryczna, dlatego układ normalny można rozwiązać metodą Cholesky'ego. Jeśli kolumny macierzy A są niezależne liniowo to macierz jest nieosobliwa.

$$x \neq 0 \rightarrow Ax \neq 0$$

$$x^{T}(A^{T}A)x = (Ax)^{T}Ax = ||Ax||_{2}^{2} > 0$$

$$\rightarrow det(A^{T}A) > 0$$
26

Gdy kolumny A są niezależne liniowo, wówczas rozwiązanie układu jest jednoznaczne

$$x = A^I b$$

gdzie macierz A^I:

$$A^I = (A^T A)^{-1} A^T$$

jest **pseudoodwrotnością** macierzy A.

$$r = (I - P_A)b$$

$$P_A = AA^I = A(A^T A)^{-1}A^T$$

P, jest operatorem rzutu ortogonalnego na przestrzeń kolumnowa macierzy A.

Uwaga: jeśli kolumny A są zależne liniowo (bardzo czesto) to wówczas istnieje wiele rozwiązań (średniokwadratowych) dających ten sam wektor reszt.

Przykład - wpływ uwarunkowania macierzy na rozwiązanie układu normalnego

$$A=\left[egin{array}{ccc} 1&1&1&1\ arepsilon&0&0\ 0&arepsilon&arepsilon\end{array}
ight],\;b=\left[egin{array}{ccc} 1\ 0\ 0\ 0\ \end{array}
ight],\;|arepsilon|\ll1 \end{array}
ight] egin{array}{cccc} Q ext{ Jest macierzą o rozmiarach mxn to } Q ext{Jest macierzą o rozmiar$$

Przekształcamy do układu normalnego

$$A^T A = \begin{bmatrix} 1+arepsilon^2 & 1 & 1 \\ 1 & 1+arepsilon^2 & 1 \\ 1 & 1 & 1+arepsilon^2 \end{bmatrix}$$
 $A^T b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Dla precyzji obliczeń rzędu ε

$$\varepsilon^2 \approx 0$$

i macierz A^TA staje się osobliwa – układ nie posiada rozwiązania.

Metody wykorzystujące rozkład QR

Dla macierzy A o rozmiarach mxn, w której kolumny są niezależne liniowo istnieje jednoznaczny rozkład w postaci

$$A = QR$$

Q jest macierzą o rozmiarach mxn taką że:

$$Q^TQ = L$$

$$D=diag(d_1,d_2,\ldots,d_n)$$
 $d_k>0,\; k=1,\ldots,n$ 27

R jest macierzą trójkątną górną z elementami

$$r_{kk} = 1, \ k = 1, \dots, n$$

Warunek minimalizacji normy wektora reszt w sensie średniokwadratowym przyjmuje postać

$$Ax = b \Rightarrow A^{T}Ax = A^{T}b$$

$$R^{T}Q^{T}QRx = R^{T}Q^{T}b$$

$$R^{T}DRx = R^{T}Q^{T}b$$

$$DRx = Q^{T}b$$

$$Rx = D^{-1}Q^{T}b = y$$

Jak wyznaczyć macierze Q i R?

Zmodyfikowana metoda Grama-Schmidta

Wyznaczamy ciąg macierzy

$$A = A^{(1)}, A^{(2)}, \dots, A^{(n+1)} = Q$$

$$A^{(k)} = \left(q_1, \dots, q_{k-1}, a_k^{(k)}, \dots, a_n^{(k)}\right)$$

$$q_i = \begin{bmatrix} q_{1,i} \\ \dots \\ q_{m,i} \end{bmatrix} \quad a_i^{(k)} = \begin{bmatrix} a_{1,i}^{(k)} \\ \dots \\ a_{m,i}^{(k)} \end{bmatrix}$$

Założenia

- 1) k-1 pierwszych kolumn w $A^{(k)}$ to także k-1 pierwszych kolumn w Q
- 2) kolumny

$$a_k^{(k)}, \dots, a_n^{(k)}$$

są ortogonalne do kolumn

$$q_1,\ldots,q_{k-1}$$

Proces ortogonalizacji polega na rekurencyjnej ortogonalizacji kolumn o indeksie od k do n w k-tej iteracji względem kolumny q_k

$$q_k = a_k^{(k)}, \quad d_k = q_k^T q_k, \quad r_{kk} = 1$$

$$a_j^{(k+1)} = a_j^{(k)} - r_{kj}a_j$$

$$r_{kj} = \frac{q_k^T a_j^{(k)}}{d_k}$$

$$j = k+1, \dots, n$$

w ten sposób wyznaczamy k-tą kolumnę R (elementy r_{kj}) oraz kolumnę k+1 macierzy Q (elementy $a_j^{(k+1)}$). Klasyczna met. GS:

klasyczna met. GS różni się kolejnością obliczeń: $q_k = a_k - \sum_{i=1}^{k-1} r_{ik} q_i$

$$r_{ik} = \frac{q_i^T a_k}{d_i}, \ i = 1, 2, \dots, k - 1$$

Jednocześnie przekształcamy wektor b tj.:

$$b = b^{(1)}, b^{(2)}, \dots, b^{(n+1)}$$
 $b^{(k+1)} = b^{(k)} - y_k q_k, \quad y_k = \frac{q_k^T b^{(k)}}{d_k}$

Po n+1 krokach $\mathbf{b}^{(n+1)}$ jest to część wektora pierwotnego ortogonalna do R(A) i stanowi wektor reszt.

Po przeprowadzeniu procesu ortogonalizacji do końca (kolumny macierzy A są liniowo niezależne) dostajemy

$$Q = (q_1, \dots, q_n)$$

$$R = (r_{kj})$$

$$y = (y_1, y_2, \dots, y_n)^T$$

$$A = QR$$

$$b = Qy + r$$

$$Rx = y$$

Wyznaczenie R i y wymaga wykonania mn(n+1) operacji a rozwiązanie układu n(n+1)/2.

Metoda Grama-Schmidta dla macierzy o liniowo zależnych kolumnach

$$A = QR \to AR^{-1} = Q \to Q = AS$$

S=R⁻¹ jest macierzą trójkątną górną. Stąd wynika

$$q_k = s_{1k}a_1 + s_{2k}a_2 + \ldots + s_{kk}a_k$$

Może się okazać że a_1 , a_2 ,..., a_{k-1} są niezależne liniowo, ale a_k jest już ich kombinacją (oraz wektorów q_1 , q_2 ,...). Wtedy

$$a_k^{(k)} = 0$$
 (w macierzy Q)

i powinniśmy przerwać proces ortogonalizacji. Jeśli jednak

to istnieje wektor

$$a_j^{(k)} \neq 0, \quad k \leq j \leq n$$

Można więc przestawić kolumny j i k oraz prowadzić proces ortogonalizacji do momentu gdy pozostałe wektory a_j^(k) nie będą liniowo zależne. Szukamy wektora o największej normie:

$$||a_s^k||_2 = \max_{k \le j \le n} ||a_j^{(k)}||_2$$

a następnie za kolumnę k podstawiamy kolumnę s. Dla rank(A)= r_A <n rozkład QR ma postać

$$Q = (q_1, q_2, \dots, q_{r_A})$$

$$A = Q(R, S)$$

$$b = Qy + r$$

gdzie: R_{rxr} -macierz trójkątna górna ($r_{kk}=1$) S- macierz o rozmiarach $r_{\Delta}x(n-r_{\Delta})$

Rozwiązania szukamy rozwiązując układ (R,S)x=y

$$x = (x_1, x_2)^T$$

$$x_1 = R^{-1}y - R^{-1}Sx_2$$

gdzie: x_1 - ma r składowych, x_2 - jest dowolnym wektorem o n-r składowych (np. x_2 =0).

Przykład

zakładamy

$$\varepsilon \ll 1, \quad \varepsilon^2 \approx 0$$

$$Q = \left[egin{array}{ccc} 1 & 0 & 0 \ arepsilon & -arepsilon & -arepsilon/2 \ 0 & arepsilon & -arepsilon/2 \ 0 & 0 & -arepsilon/2 \ \end{array}
ight], \quad r = -rac{1}{3}arepsilon \left[egin{array}{c} 0 \ 1 \ 1 \ 1 \ \end{array}
ight]$$

$$R = \left[egin{array}{ccc} 1 & 1 & 1 & 1 \ 0 & 1 & 1/2 \ 0 & 0 & 1 \end{array}
ight], \quad y = \left[egin{array}{c} 1 \ 1/2 \ 1/3 \end{array}
ight]$$

$$x = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}, \quad x_{dok} = \begin{bmatrix} 1/(3+\varepsilon^2) \\ 1/(3+\varepsilon^2) \\ 1/(3+\varepsilon^2) \end{bmatrix}$$