WU Jiamin 20659352

2. La). A 70

Assume Av* + x*v* => Av*>x*v*

then $Av^* = Av^* - \lambda^* V^* + \lambda^* v^*$

=> A(AV*) = A(AV*- X*V*) + A:X*V*

We have \$ 70 1 * 70 V * 70 Av* - 2 V * 70

So A(Av*) > x*Av* + Av3-x*v*

Conflict So AV = x v x

(b) $V^* = \frac{AV^*}{2^n}$ $1^T V^* = 1 \implies V^* \neq 0$ $V^* = 0$ $V^* = 0$

3. (a) $N(i,i) = \mathbb{E}\left(\sum_{m=0}^{\infty} 1 + j \text{ sumps } m \text{ times } from i \text{ to } i \text{ } j\right)$ $= \sum_{m=0}^{\infty} P + j \text{ sumps } m \text{ times } from i \text{ to } i \text{ } j$ $= 1 + \sum_{k=1}^{\infty} N(i,k) Q(k,i)$

(b) $N(i,j) = \mathbb{E}\left(\sum_{m=0}^{\infty} 1 + j \text{ sumps } m \text{ time } from } i \text{ to } j \}\right)$ $= \sum_{m=0}^{\infty} P + j \text{ sumps } m \text{ time } from } i \text{ to } j \}$ $= \sum_{k=1}^{\infty} N(i,k) Q(k,j)$

 $(C) N(i,i) = \sum_{k} N(i,k) Q(k,i) + 1$ =) N - NQ = I

(d) B(i) = E(\$\frac{1}{2} 1 \hat{g}umps m times from i to n+1)
(d) $B(i) = \mathbb{E}\left(\sum_{m=0}^{\infty} 1 \mid \hat{g} \text{ umps } m \text{ times } f \text{ rom } i \text{ to } n + j_0\right)$ $= \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} \mathcal{P} \mid \hat{g} \text{ umps } [m-1) \text{ times } f \text{ rom } i \text{ to } k_j^2 R_{jk}$ $= \sum_{k=1}^{\infty} \mathcal{N}(i,k) R_j(k)$
$= \sum_{k=1}^{\infty} \Lambda(li_k) \mathcal{V}(k)$
$\Rightarrow B=\lambda R$
B = MR