Spatial Health: How Smoking Shapes our Neighborhoods

Jesús Bueren° Carla Revilla* Siyu Shi*

°Católica-Lisbon

* EUI

PROSPER, October 2025

Introduction Model Estimation Decompositions Counterfactuals Conclusions

INTRODUCTION

- In the United states, not only income but also health are highly spatially segregated
 - Within New York City, the life expectancy difference between someone living in Tribeca (Manhattan) versus Brownsville (Brooklyn) is 11 years
- Local spillovers (school funding and peer effects) have been identified as the main drivers of income segregation through human capital accumulation
- On the other hand, we don't know much about the mechanisms driving health segregation
- Health outcomes are to a large extent determined by the health behaviors
- This paper proposes a theory of health segregation that is based on the idea that:
 - Richer individuals are more willing to adopt healthier behaviors
 - Health behaviors pose externalities on the health behaviors of others

THIS PAPER

- A recent empirical literature has identified peer effects play a key role in smoking Argys and Rees (2008), Lundborg (2006), Card and Giuliano (2013), Arduini et al (2025)
- We extend previous equilibrium models on neighborhood segregation to incorporate endogenous health outcomes through smoking
 Benabou (1996), Durlauf (1996), Fernandez and Rogerson (1996)
- We calibrate the model using Add Health data and use it to:
 - 1 Understand why health is segregated space: income vs peer effects
 - 2 Evaluate the welfare effects of place-based policies: consumption versus health

OVERVIEW OF THE MODEL

- OLG model
 - Endogenous choices:
 - Neighborhood
 - 2 Education
 - 3 Smoking
 - Individuals derive utility from consumption and being alive:
 - Higher educated individuals have a stronger incentive to avoid smoking as they enjoy a higher consumption flow
 - Local externalities:
 - Health: living in an area with a larger fraction of smokers increases the utility flow from smoking.
 - Education: individuals living in a more affluent neighborhoods (better schools) have larger probabilities of attending college.
 - House prices in each neighborhood adjust in equilibrium.

PREVIEW OF THE RESULTS

LITERATURE

 Understanding differences in health inequalities across SES through health behavior choices

Cole et al. (2019); Mahler, Yum (2023); Margaris and Wallenius (2023); Bueren et al. (2025)

- → We focus on the spatial dimension to understand health inequalities
- Recent spatial quantitative literature analyzing the welfare consequences of income segregation

Chyn and Daruich (2025); Fogli et al. (2025); Eckert and Kleineberg (2025)

- → We analyze how smoking can amplify economic segregation
- Health in space

Margaris and Wallenius (2025)

→ Write an equilibrium model where spillovers are endogenous to analyze how placed based policies affect welfare

• We build an OLG model with 3 phases:

- Adolescence: individuals are born in a given neighborhood and decide education and smoking decision.
- Prime: enter the labor market, then have a kid and decide where to live taking as given education and smoking decisions.
- 3 Retirement: individuals face survival uncertainty.
- ullet Individuals discount the future at a rate eta
- The utility function is given by:

$$u(c) = \frac{c^{1-\gamma} - 1}{1-\gamma} + b,$$

where b is a constant capturing the joy of living.

Adolescence Prime Age Retirement Housing Market Equilibrium

ADOLESCENCE

- A teenager is born in a given neighborhood n.
- Receives an parental transfer a₀
- Decides whether to smoke or not and whether to go to college or not.
- Are heterogeneous in terms of the utility of smoking and going to college
- Utility depends on:
 - Parental background: college (C^p) and smoking (S^p)
 - Neighborhood characteristics: fraction of smokers (\bar{S}_n) and average income (\bar{y}_n)
 - Idiosyncratic shocks related to college (ϵ_e) and smoking (ϵ_s)

ADOLESCENCE

• The teenager solves:

$$V_{0}(a_{0}, \mathcal{C}_{p}, \mathcal{S}_{p}, \epsilon_{c}, \epsilon_{s}, n) = \max_{c, a', \mathcal{C} \in \{1, 0\}, \mathcal{S} \in \{1, 0\}} u(c) + u^{\mathcal{S}}(\mathcal{S}_{p}, \bar{\mathcal{S}}_{n}, \epsilon_{s}) + u^{\mathcal{C}}(\mathcal{C}_{p}, \bar{y}_{n}, \epsilon_{c}) + \mathcal{B}\mathbb{E}V_{1}(a', \mathcal{C}, \mathcal{S}, z')$$
s.t. $c + a' = a_{0} - \mathcal{C}.\tau_{\mathcal{C}} + (1 - \mathcal{C})y_{0}$

$$\underline{a} \leq a' \leq 0$$

$$u^{\mathcal{S}}(\mathcal{S}_{p}, \bar{\mathcal{S}}_{n}, \epsilon_{c}) = \mathcal{S}\left[\alpha_{s} + \gamma_{s} \bar{\mathcal{S}}_{n}^{\rho_{s}} + \delta_{s} \mathcal{S}_{p} + \epsilon_{s}\right], \ \epsilon_{s} \sim \mathcal{U}[-\sigma_{s}, \sigma_{s}]$$

$$u^{\mathcal{C}}(\mathcal{C}_{p}, \bar{y}_{n}, \epsilon_{c}) = \mathcal{C}\left[\alpha_{c} + \gamma_{c} \bar{y}_{n}^{\rho_{c}} + \delta_{c} \mathcal{C}_{p} + \epsilon_{c}\right], \ \epsilon_{c} \sim \mathcal{U}[-\sigma_{c}, \sigma_{c}]$$

where $\epsilon_{\mathcal{C}}$ and $\epsilon_{\mathcal{S}}$ are assumed to be independent.

• The prime age phase is divided into two periods:

Period 1: individuals enter the labor market

- receive an exogenous income depending on education and a persistent shock (z)
- make a consumption savings decision

Period 2: on top individuals have a kid, decide where to live, and how much wealth to transfer to the kid.

Period 1

• In period 1 they solve:

$$V_1(a, \mathcal{C}, \mathcal{S}, z) = \max_{c, a'} u(c) + \beta \mathbb{E} V_2(a', \mathcal{C}, \mathcal{S}, z')$$
s.t. $c + a' = T(y_1(\mathcal{C}, \mathcal{S}, z)) + (1 + r)a$

Period 2

• In period 2, the value function is given by:

$$V_2(a, \mathcal{C}, \mathcal{S}, z) = \mathbb{E}\Big[\max_n \Big\{\tilde{V}_2^n(a, \mathcal{C}, \mathcal{S}, z) + \epsilon_n\Big\}\Big],$$

where $\tilde{V}_2^n(a,\mathcal{C},\mathcal{S},z)$ the neighborhoods-specific value functions.

• We assume ϵ_n to be i.i.d across neighborhoods and type-I extreme value distributed with scale parameter σ_n .

Period 2

• Choice specific value functions are given by:

$$\tilde{V}_{2}^{n}(a, \mathcal{C}, \mathcal{S}, z) = \max_{c, a', a_{0}^{k}} u(c) - \mu_{n} + \beta \delta_{2}(\mathcal{C}, \mathcal{S}) \mathbb{E}_{z} \Big[V_{3}(a', \mathcal{C}, \mathcal{S}, z) \Big] + \alpha \mathbb{E}_{\epsilon_{\mathcal{C}}, \epsilon_{\mathcal{S}}} \Big[V_{0}(a_{0}^{k}, \mathcal{C}, \mathcal{S}, \epsilon_{\mathcal{C}}, \epsilon_{\mathcal{S}}, n) \Big]$$
s.t. $c + a' + a_{0}^{k} = T(y_{2}(\mathcal{C}, \mathcal{S}, z)) + (1 + r)a - P_{n}$

 μ_n : utility flow from living in neighborhood n

 P_n : price of living in neighborhood n

 α : altruism parameter

 a_0^k : initial assets of the kid

 $\delta_2(\mathcal{C},\mathcal{S})$: survival probability at period 2

RETIREMENT

- During retirement (two subperiods), individuals receive a pension which is a function of their education and the last productivity shock
- They make a consumption/saving decision

$$V_3(a, \mathcal{C}, \mathcal{S}, z) = \max_{c, a'} u(c) + \beta \delta_3(\mathcal{C}, \mathcal{S}) V_4(a', \mathcal{C}, \mathcal{S}, z)$$
s.t. $c + a' = T(\omega(\mathcal{C}, \mathcal{S}, z)) + (1 + r)a$

$$V_4(a, \mathcal{C}, \mathcal{S}, z) = u\Big((1 + r)a + T(\omega(\mathcal{C}, \mathcal{S}, z))\Big)$$

HOUSING MARKET

- Housing prices are determined in equilibrium
- The supply of housing is given by:

$$S_n = A_n P_n^{\tau},$$

where τ drives the price elasticity of housing supply, A_n are housing supply shifters

Introduction Model Estimation Decompositions Counterfactuals Conclusions Adolescence Prime Age Retirement Housing Market Equilibrium

EQUILIBRIUM

- A stationary equilibrium in this economy is:
 - a set of neighborhood, education, smoking, parental transfer decisions
 - house prices
 - average smoking rates and income in each neighborhood

such that:

- Given, prices and shares, hh decision are optimal
- Given house prices, housing supply equals housing demand
- Average smoking rates and income in each neighborhood are consistent with the households decision (endogenous neighborhood quality)

DATA

- To estimate the model we are going to use AddHealth data.
- Tracks a cohort of adolescents from grades 7-12 in the US during the 1994-95 school year through several follow-up waves: 1996, 2001-02, 2008-09, and 2016-18.
- Wave 1 includes comprehensive data on the parents of these adolescents (smoking and college).
- Tract-level statistics using Census on income and house prices
- Sample: 6,034 parent-child pairs

DATA

- We set the number of neighborhoods equal to three: $n \in \{A, B, C\}$
- We assign kids in Addhealth to neighborhoods depending on the income distribution of the tract with respect to the MSA in which they lived:
 - A: income in the bottom 30%
 - *B*: income in 30%-90%
 - C: income in the top 10%

• We follow a standard 2 step procedure:

External:

- Wages $y_t(\mathcal{C}, z)$ (PSID)
- Survival probabilities $\delta_t(\mathcal{C},\mathcal{S})$ (HRS)
- College costs $\tau_{\mathcal{S}} = 60k$
- House Prices: $P_A = 174k$; $P_B = 253k$; $P_C = 374k$
- Elasticity of housing supply: 1.75 (Saiz, 2010)
- Replacement rate: 0.494 (OECD, 2019)

Introduction Model Estimation Decompositions Counterfactuals Conclusions

ESTIMATION

Internal: The remaining parameters are estimated internally.

We use Add Health data to match:

- College graduation rates conditional on neighborhood and parental education
- Smoking rates conditional on neighborhood and parental smoking
- Parental transfers
- Value of Statistical Life
- Asset to income ratio
- Average marginal tax rate
- Intergenerational mobility

Estimated parameters: smoking and college decision

Parameter	Description	Value		
		S	\mathcal{C}	
$\alpha_{S C}$	constant	-1.72	-4.15	
$\alpha_{\mathcal{S} \mathcal{C}}$ $\delta_{\mathcal{S} \mathcal{C}}$	parental influence	0.27	0.44	
$\gamma_{S C}$	neighborhood effect	1.55	2.75	
$\rho_{\mathcal{S} \mathcal{C}}$	curvature	0.37	0.08	
$\sigma_{\mathcal{S} \mathcal{C}}$	support of $\epsilon_{\mathcal{S} \mathcal{C}}$	0.96	0.83	

Remaining estimated parameters

Parameter	Description	Value	
b	value of life	10.30	
eta	annual discount factor	0.98	
α	altruism parameter	0.68	
μ_n	amenity in NBH B, C	0.14, 0.15	
σ_n	Gumbel taste shock for NBH	0.02	
λ	tax rate	0.77	

Model Fit: Smoking and College by Neighborhood and Parental characteristics

Model Fit: Smoking by Neighborhood and College Decision

Model Fit

Moments		Model			Data		
VSL		\$ 6.6 million		\$ 6 millions		S	
A/Y at age 40		4.33		4.32			
Cost of raising a kid	ising a kid 4			301k			
% living in good NBH A	,B,C	0.29, 0.62, 0.09		(0.3, 0.6, 0.1		
Average tax rate		0.34			0.35		
	n' = A	A n' = B	n' = C	n' = A	n' = B	n' = C	
Transition $Pr(n)$	' A) 0.36	0.60	0.04	0.49	0.48	0.03	
probabilities $Pr(n)$	' B) 0.28	0.62	0.10	0.25	0.69	0.06	
Pr(n	' C) 0.17	0.65	0.18	0.18	0.67	0.16	

DECOMPOSITIONS

The Role of Smoking Externalities

- To which extent space is segregated in health because the returns of non-smoking are larger for the rich vs local externalities?
 - Set $\gamma_{\mathcal{S}} = 0$ and see how the spatial equilibrium is affected

Benchmark			No spillover in smoking				
	NBH A	NBH B	NBH C		NBH A	NBH B	NBH C
Smoking	0.22	0.18	0.14	Smoking	0.22	0.20	0.18
College	0.10	0.35	0.65	College	0.10	0.35	0.66
Housing Price	237k	345k	511k	Housing Price	243k	343k	493k
Fraction	0.29	0.62	0.09	Fraction	0.31	0.61	0.08

Introduction Model Estimation Decompositions Counterfactuals Conclusions

COUNTERFACTUALS Small scale experiments

- What are the welfare consequence of placed-based policies like MTO?
- To which extent increases in welfare are driven by changes in economic vs changes in health outcomes.

COUNTERFACTUALS

Small scale experiments

- ullet We simulate an experiment where we give a voucher so that reduces the prices of living in neighborhood B
- ullet We target individuals in the bottom 10% and living in neighborhood A

Outcomes of the kids of eligible individuals

	Without voucher	With vouchers		
Smoking rate	22.6%	20.2%		
College rate	17.9%	21.4%		

• Compute welfare gains from income and health

COUNTERFACTUALS: LARGE-SCALE EXPERIMENTS

- Small experiments affect a few individuals.
- Large-scale policies reshape entire neighborhoods.
- Composition changes. Neighborhood quality shifts. Prices adjust.
- We ask: How do these equilibrium effects modify the results?

CONCLUSIONS

- A lot of work to be done, we will get there.
- To be continued in another Prosper meeting...