CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

Today's Topics

- Recap: Slicing & Images
- Introduction to Functions
- NYC Open Data

CSci 127 (Hunter) Lecture 7 March 21 2023 2 / 57

Image and Array

```
import matplotlib.pyplot as plt
 import numpy as np #code link in trinket
 #code link in replit
 height= 20
 width = 30
6
 #An image is an array with height, width and
 #depth 3 for r(ed) g(reen) b(lue)
 img = np.zeros((height, width, 3))
 img[:height//2, :width//2, 0] = 1
 #which does this statement do? Same as
 \#img[:height//2, :width//2] = [1,0,0]
```

Image and Array: II

```
img[height//2:, :width//2, 1] = 1
  #which does this statement do? Same as
  \#img[height//2:, :width//2] = [0,1,0]
16
  img[:height//2:2, width//2:, 2] = 1
  #What does this statement do?
19
  img[height//2:, width//2::2] = [1, 1, 0]
20
  #What does this statement do?
21
22
  plt.imshow(img)
  plt.show()
    CSci 127 (Hunter)
                         Lecture 7
                                           March 21 2023
                                                    4 / 57
```

output for the above program

Crop an image to select the top quarter (upper left corner)


```
import matplotlib.pyplot as plt
import numpy as np #link to replit
#In replit, if do not see cropped image,
   click Tools in left pane, choose Output.
img = plt.imread("csBridge.png")
height = img.shape[0]
width = img.shape[1]
img2 = img[0:height//2, 0:width//2]
#img2 is top left of img. Same as
\#img2 = img[:height//2, :width//2].
plt.imshow(img2)
plt.show()
plt.imsave("top_left_csBridge=png", img2)=
 CSci 127 (Hunter)
                     Lecture 7
                                      March 21 2023
```

```
import matplotlib.pyplot as plt
import numpy as np
img = plt.imread('csBridge')
plt.imshow(img)
plt.show()
height = img.shape[0]
width = img.shape[1]
img2 = img[:height//2, :width//2]
plt.imshow(img2)
plt.show()
```


CSci 127 (Hunter) Lecture 7 March 21 2023 8 / 57

```
import matplotlib.pyplot as plt
import numpy as np
img = plt.imread('csBridge')
plt.imshow(img)
plt.show()
height = img.shape[0]
width = img.shape[1]
img2 = img[:height//2, :width//2]
plt.imshow(img2)
plt.show()
```


CSci 127 (Hunter) Lecture 7 March 21 2023 9 / 57

```
import matplotlib.pyplot as plt
import numpy as np
img = plt.imread('csBridge')
plt.imshow(img)
plt.show()
height = img.shape[0]
width = img.shape[1]
img2 = img[:height//2, :width//2]
plt.imshow(img2)
plt.show()
```


10 / 57

CSci 127 (Hunter) Lecture 7 March 21 2023

```
import matplotlib.pyplot as plt
import numpy as np
img = plt.imread('csBridge')
plt.imshow(img)
plt.show()
height = img.shape[0]
width = img.shape[1]
img2 = img[:height//2, :width//2]
plt.imshow(img2)
plt.show()
```


• How would you select the lower left corner?

10 / 57

CSci 127 (Hunter) Lecture 7 March 21 2023

```
import matplotlib.pyplot as plt
import numpy as np
img = plt.imread('csBridge')
plt.imshow(img)
plt.show()
height = img.shape[0]
width = img.shape[1]
img2 = img[:height//2, :width//2]
plt.imshow(img2)
plt.show()
```


• How would you select the lower left corner?

$$[img2 = img[height//2:, : width//2]$$

10 / 57

```
import matplotlib.pyplot as plt
import numpy as np
img = plt.imread('csBridge')
plt.imshow(img)
plt.show()
height = img.shape[0]
width = img.shape[1]
img2 = img[:height//2, :width//2]
plt.imshow(img2)
plt.show()
```


• How would you select the lower left corner?

$$img2 = img[height//2:, : width//2]$$

• How would you select the upper right corner?

10 / 57

CSci 127 (Hunter) Lecture 7 March 21 2023

```
import matplotlib.pyplot as plt
import numpy as np
img = plt.imread('csBridge')
plt.imshow(img)
plt.show()
height = img.shape[0]
width = img.shape[1]
img2 = img[:height//2, :width//2]
plt.imshow(img2)
plt.show()
```


• How would you select the lower left corner?

$$img2 = img[height//2:, : width//2]$$

• How would you select the upper right corner?

$$img2 = img[:height//2, width//2:]$$

CSci 127 (Hunter) Lecture 7

10 / 57

```
import matplotlib.pyplot as plt
import numpy as np
img = plt.imread('csBridge')
plt.imshow(img)
plt.show()
height = img.shape[0]
width = img.shape[1]
img2 = img[:height//2, :width//2]
plt.imshow(img2)
plt.show()
```


• How would you select the lower left corner?

$$img2 = img[height//2:, : width//2]$$

• How would you select the upper right corner?

$$img2 = img[:height//2, width//2:]$$

• How would you select the lower right corner?

CSci 127 (Hunter)

```
import matplotlib.pyplot as plt
import numby as np
img = plt.imread('csBridge')
plt.imshow(ima)
plt.show()
height = imq.shape[0]
width = ima.shape\Gamma17
img2 = img[:height//2, :width//2]
plt.imshow(img2)
plt.show()
```


• How would you select the lower left corner?

$$img2 = img[height//2:, : width//2]$$

• How would you select the upper right corner?

```
img2 = img[:height//2, width//2:]
```

• How would you select the lower right corner?

```
img2 = img[height//2:], width//2:]
```

Today's Topics

- Recap: Slicing & Images
- Introduction to Functions
- NYC Open Data

CSci 127 (Hunter) Lecture 7 March 21 2023 11 / 57

Modularity

Modularity

 Functions are a way to break code into pieces, that can be easily reused.

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!

def main():
    print("Hello, World!")

if __name__ == "__main__":
    main()
```

14 / 57

CSci 127 (Hunter) Lecture 7 March 21 2023

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
      says hello to the world!
def main():
     print("Hello, World!")
if __name__ == "__main__":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.

14 / 57

CSci 127 (Hunter) Lecture 7

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!

def main():
    print("Hello, World!")

if __name__ == "__main__":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.
- The opening function is often called main()

14 / 57

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
      says hello to the world!
def main():
     print("Hello, World!")
if __name__ == "__main__":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.
- The opening function is often called main()
- Naming conventions same as variables

14 / 57

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!

def main():
    print("Hello, World!")

if __name__ == "__main__":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.
- The opening function is often called main()
- Naming conventions same as variables
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis:

```
#Name: your name here
#Date: October 2017
This program, uses functions,
# says hello to the world!

def main():
    print("Hello, World!")

if __name__ == "__main__":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.
- The opening function is often called main()
- Naming conventions same as variables
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis: Example: print("Hello", "World")

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!

def main():
    print("Hello, World!")

if __name__ == "__main__":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.
- The opening function is often called main()
- Naming conventions same as variables
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis: Example: print("Hello", "World")
- Can write, or define your own functions,

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!

def main():
    print("Hello, World!")

if __name__ == "__main__":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- Many languages require that all code must be organized with functions.
- The opening function is often called main()
- Naming conventions same as variables
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis: Example: print("Hello", "World")
- Can write, or define your own functions, which are stored, until invoked or called.

"Hello, World!" with Functions

link in PythonTutor

```
#Name: your name here
  #Date: March 2017
  #This program, uses functions,
        says hello to the world!
4
5
  def main():
       print("Hello, World!")
7
8
              == "__main__":
     name
      main()
10
```

March 21 2023

functions - modules - packages

CSci 127 (Hunter) Lecture 7 March 21 2023 16 / 57

functions - modules - packages

CSci 127 (Hunter) Lecture 7 March 21 2023 17 / 57

functions - modules - packages

CSci 127 (Hunter) Lecture 7 March 21 2023 18 / 57

Stand-alone program

CSci 127 (Hunter) Lecture 7 March 21 2023 19 / 57

Challenge: Predict what the code will do:

```
def totalWithTax(food,tip): #link in PythonTutor
     total = 0
2
     tax = 0.1
3
     total = food + food * tax
4
     total = total + tip
5
     return(total)
6
7
 lunch = float(input('Enter lunch total: '))
 1Tip = float(input('Enter lunch tip: '))
 lTotal = totalWithTax(lunch, lTip)
  print('Lunch total is', lTotal)
```

totalWithTax function: continued

```
def totalWithTax(food,tip): #link in PythonTutor
    total = 0
    tax = 0.1
    total = food + food * tax
    total = total + tip
    return(total)
```

Omit code to calculate lunch total...

CSci 127 (Hunter)

```
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip: '))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)
```

Lecture 7

March 21 2023

Scope

```
def eight():
    x = 5+3
    print(x)
def nine():
    x = "nine"
    print(x)
```

You can have multiple functions.

22 / 57

Scope

```
def eight():
    x = 5+3
    print(x)

def nine():
    x = "nine"
    print(x)
```

- You can have multiple functions.
- Each function defines the scope of its local variables

22 / 57

CSci 127 (Hunter)

Scope

```
def eight():
    x = 5+3
    print(x)

def nine():
    x = "nine"
    print(x)
```

- You can have multiple functions.
- Each function defines the scope of its local variables
- A variable defined inside a function is **local**, i.e. defined only inside that function.

Local Data?

Function Example: burger

Function name: burger (like a variable name, no space is allowed) Input:

- bread: representing for bread layermeat: representing for meat layer
- vegetable: representing for vegetable layer

Return: a hamburger

CSci 127 (Hunter)

Burger function definition

Pseudocode of burger function.

```
def burger(bread, meat, veg):
   pick a bread, put on top
   put meat
   put vegetable
   put a bread at the bottom

return the burger made
```

Pseudocode to call burger function

Functions can have input parameters.

```
def totalWithTax(food,tip):
    total = 0
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
lunch = float(input('Enter lunch total: '))
lTip = float(input('Enter lunch tip:' ))
lTotal = totalWithTax(lunch, lTip)
print('Lunch total is', lTotal)
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner total: '))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)
```

```
def totalWithTax(food,tip):
    total = 0
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
lunch = float(input('Enter lunch total: '))
lTip = float(input('Enter lunch tip:' ))
lTotal = totalWithTax(lunch, lTip)
print('Lunch total is', lTotal)
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:' ))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)
```

- Functions can have input parameters.
- Surrounded by parentheses, both in the function definition. and in the function call (invocation).

```
def totalWithTax(food,tip):
    total = 0
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
lunch = float(input('Enter lunch total: '))
lTotal = totalWithTax(lunch, lTip)
print('Lunch total is', lTotal)
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner total: '))
dTip = float(input('Enter dinner tip:' ))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)
```

- Functions can have input parameters.
- Surrounded by parentheses, both in the function definition, and in the function call (invocation).
- The "placeholders" in the function definition: formal parameters.

```
def totalWithTax(food,tip):
    total = 0
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
lunch = float(input('Enter lunch total: '))
lTip = float(input('Enter lunch tip:' ))
lTotal = totalWithTax(lunch, lTip)
print('Lunch total is', lTotal)
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter dinner total: '))
dTotal = totalWithTax(dinner, dTip)
print('Dinner total is', dTotal)
```

- Functions can have input parameters.
- Surrounded by parentheses, both in the function definition, and in the function call (invocation).
- The "placeholders" in the function definition: formal parameters.
- The ones in the function call: actual parameters

```
def totalWithTax(food,tip):
    total = 0
                        Formal Parameters
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
lunch = float(input('Enter lunch total: '))
lTip = float(input('Enter lunch tip:' ))
lTotal = totalWithTax(lunch, lTip)
print('Lunch total is', [[otal)
                           Actual Parameters
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter_dinner_tip:' ))
dTotal = totalWithTax dinner, dTip
print('Dinner total is', grotal)
```

- Functions can have input parameters.
- Surrounded by parentheses, both in the function definition, and in the function call (invocation).
- The "placeholders" in the function definition: formal parameters.
- The ones in the function call: actual parameters.

```
def totalWithTax(food,tip):
    total = 0
                        Formal Parameters
    tax = 0.0875
    total = food + food * tax
    total = total + tip
    return(total)
lunch = float(input('Enter lunch total: '))
lTip = float(input('Enter lunch tip:' ))
lTotal = totalWithTax(lunch, lTip)
print('Lunch total is', [[otal)
                           Actual Parameters
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter_dinner_tip:' ))
dTotal = totalWithTax dinner, dTip
print('Dinner total is', grotal)
```

- Functions can have input parameters.
- Surrounded by parentheses, both in the function definition, and in the function call (invocation).
- The "placeholders" in the function definition: formal parameters.
- The ones in the function call: actual parameters.
- Functions can also return values to where it was called.

Challenge:

Circle the actual parameters and underline the formal parameters:

```
def prob4():
    verse = "jam tomorrow and jam yesterday,"
    print("The rule is.")
    c = mystery(verse)
    w = enigma(verse.c)
    print(c,w)
def mystery(v):
    print(v)
    c = v.count("jam")
    return(c)
def enigma(v,c):
    print("but never", v[-1])
    for i in range(c):
        print("jam")
    return("day.")
prob4()
```

March 21 2023

Challenge:

Circle the actual parameters and underline the formal parameters:

```
def prob4():
    verse "jam tomorrow and jam yesterday,"
    print("The rule is,")
    c = hystery (verse)
    w = enigma (verse,c)
                                   *Actual
    print(c,w)
                                   Parameters
def mystery(v):
    print(v)
    c = v.count(fiam
    return(c)
                                     Formal
def enigma(v,c):
                                      Parameters
    print("but never", v[-1])
    for i in range(c):
        print("jam")
    return("day.")
prob4()
```

Challenge: Predict what the code will do:

CSci 127 (Hunter)

```
def prob4(): #link in PythonTutor
        verse = "jam tomorrow and jam yesterday,"
2
       print("The rule is,")
3
       c = mystery(verse)
4
       w = enigma(verse,c)
5
       print(c,w)
6
   def mystery(v):
7
       print(v)
8
       c = v.count("jam")
       return(c)
10
   def enigma(v,c):
11
       print("but never", v[-1])
12
       for i in range(c):
13
            print("jam")
14
       return("day.")
15
   prob4()
16
```

Lecture 7

March 21 2023

```
Challenge: Predict what the code will do:
```

2

3

6

```
def prob4(): #link in PythonTutor
    verse = "jam tomorrow and jam yesterday,"
    print("The rule is,")
    c = mystery(verse)
    w = enigma(verse,c)
    print(c,w)
```

```
Omit code of function mystery.
  def enigma(v,c):
       print ("but never", v[-1])
12
       for i in range(c):
13
            print ("jam")
14
       return("day.")
15
  prob4()
```

Challenge: Predict what the code will do:

```
# From "Teaching with Python" by John Zelle
  def happy(): #link to PythonTutor
       print("Happy Birthday to you!")
3
4
  def sing(P):
       happy()
6
       happy()
7
       print ("Happy Birthday dear " + P + "!")
8
       happy()
9
10
  sing("Fred")
11
  sing("Thomas")
  sing("Hunter")
    CSci 127 (Hunter)
                          Lecture 7
                                             March 21 2023
                                                      33 / 57
```

Challenge: Fill in the missing code:

11 12

13 14

16 17

18 19 20

22

23

24

```
def monthString(monthNum): #link in PythonTutor
    Takes as input a number, monthNum, and
    returns the corresponding month name as a string.
    Example: monthString(1) returns "January".
    Assumes that input is an integer ranging from 1 to 12
    monthString = ""
    ### FILL IN YOUR CODE HERE ###
    ### Other than your name above, ###
    ### this is the only section
    ### you change in this program. ###
    return (monthString)
def main():
    n = int(input('Enter the number of the month: '))
    mString = monthString(n)
    print ('The month is', mString)
   CSci 127 (Hunter)
                                   Lecture 7
                                                             March 21 2023
                                                                          34 / 57
```

Define monthString

```
def monthString(monthNum): #link in PythonTutor
        monthString = "
3
        if monthNum == 1:
          monthString = "January"
        elif monthNum == 2:
6
            monthString = "February"
        elif monthNum == 3:
             monthString = "March"
        #... Omit code when monthNum in [4,11]
10
        elif monthNum == 12:
11
            monthString = "December"
12
13
        return(monthString)
14
```

Another solution to define monthString

2

6

10

11

12

13

14

15

16

CSci 127 (Hunter)

```
def monthString(month): #link in PythonTutor
    monthNames = ['January', 'February', 'March', 'April',\
    'May', 'June', 'July', 'August', 'September',\
    'October', 'November', 'December']
    #\ means connect the next line
    #if you have codes spread more than one line,
    #you can use \ to connect these lines .
    if month < 1 or month > 12:
       return '
    else:
       return monthNames[month-1]
       \#if\ month == 1, return monthName[0],
       \#\#if month == 2, return monthName[1],
       #...
       \#if month == 12, return monthName[11].
```

Lecture 7

March 21 2023

 Used to collaborate on and share code, documents, etc.

Octocat

- Used to collaborate on and share code, documents, etc.
- Supporting Open-Source Software: original source code is made freely available and may be redistributed and modified.

- Used to collaborate on and share code, documents, etc.
- Supporting Open-Source Software: original source code is made freely available and may be redistributed and modified.
- More formally: git is a version control protocol for tracking changes and versions of documents.

 Used to collaborate on and share code, documents, etc.

- Supporting Open-Source Software: original source code is made freely available and may be redistributed and modified.
- More formally: git is a version control protocol for tracking changes and versions of documents.
- Github provides hosting for repositories ('repos') of code.

- Used to collaborate on and share code. documents, etc.
- Supporting Open-Source Software: original source code is made freely available and may be redistributed and modified.
- More formally: git is a version control protocol for tracking changes and versions of documents.
- Github provides hosting for repositories ('repos') of code.
- Also convenient place to host websites (i.e. huntercsci127.github.io).

- Used to collaborate on and share code, documents, etc.
- Supporting Open-Source Software: original source code is made freely available and may be redistributed and modified.
- More formally: git is a version control protocol for tracking changes and versions of documents.
- Github provides hosting for repositories ('repos') of code.
- Also convenient place to host websites (i.e. huntercsci127.github.io).
- In Lab6 you set up github accounts to copy ('clone') documents from the class repo. (More in future courses.)

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!

def main():
    print("Hello, World!")

if __name__ == "__main__":
    main()
```

 Functions are a way to break code into pieces, that can be easily reused.

38 / 57

CSci 127 (Hunter) Lecture 7 March 21 2023

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!

def main():
    print("Hello, World!")

if __name__ == "__main__":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis:

```
#Name: your name here
#Date: October 2017
This program, uses functions,
# says hello to the world!

def main():
    print("Hello, World!")

if name == " main ":
```

main()

- Functions are a way to break code into pieces, that can be easily reused.
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis: Example: print("Hello", "World")

```
#Name: your name here
#Date: October 2017
# says hello to the world!

def main():
    print("Hello, World!")

if __name__ == "__main__":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis: Example: print("Hello", "World")
- Can write, or define your own functions,

CSci 127 (Hunter) Lecture 7

```
#Name: your name here
#Date: October 2017
# says hello to the world!

def main():
    print("Hello, World!")

if __name__ == "__main__":
    main()
```

- Functions are a way to break code into pieces, that can be easily reused.
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis: Example: print("Hello", "World")
- Can write, or define your own functions, which are stored, until invoked or called.

38 / 57

CSci 127 (Hunter) Lecture 7 March 21 2023

Today's Topics

- Recap: Slicing & Images
- Introduction to Functions
- NYC Open Data

39 / 57

CSci 127 (Hunter) Lecture 7 March 21 2023

Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
0.0024	0.17	16.12	Brown Dwarf	Red	M
0.056	0.0084	10.58	White Dwarf	Blue White	В
0.00069	0.11	17.45	Brown Dwarf	Red	M
0.00015	0.011	12.59	White Dwarf	Yellowish White	F
1136	7.2	-1.97	Main Sequence	Blue-white	В
0.81	0.9	5.05	Main Sequence	yellow-white	F
0.013	0.014	11.89	White Dwarf	Blue White	В
0.00362	0.1967	13.53	Red Dwarf	Red	М
1.35	0.98	2.93	Main Sequence	yellow-white	F
272000	1183	-9.2	Hypergiant	Red	M
	0.0024 0.056 0.00069 0.00015 1136 0.81 0.013	0.0024 0.17 0.056 0.0084 0.00069 0.11 0.00015 0.011 1136 7.2 0.81 0.9 0.013 0.014 0.00362 0.1967 1.35 0.98	0.0024 0.17 16.12 0.056 0.0084 10.58 0.0069 0.11 17.45 0.00015 0.011 12.59 1136 7.2 1.97 0.81 0.9 5.05 0.013 0.014 11.89 0.0052 0.1567 13.53 0.98 2.93	0.056 0.084 10.58 White Dwarf 0.00069 0.11 17.45 Brown Dwarf 0.00015 0.011 12.59 White Dwarf 1136 7.2 -1.97 Main Sequence 0.81 0.9 5.05 Main Sequence 0.013 0.014 11.89 White Dwarf 0.00362 0.1967 13.53 Red Dwarf 1.135 0.98 2.93 Main Sequence	0.0024 0.17 16.12 Brown Dwarf Red 0.055 0.0084 10.58 White Dwarf Blue White 0.00090 0.11 17.45 Brown Dwarf Red 0.00015 0.011 12.59 White Dwarf Yellowish White 1136 7.2 -1.97 Main Sequence Blue-white 0.81 0.9 5.05 Main Sequence Blue-white 0.013 0.014 11.89 White Dwarf Blue White 0.0362 0.1967 13.53 Red Dwarf Red 1.35 0.98 2.93 Main Sequence yellow-white

• Libraries: pandas

Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
0.0024	0.17	16.12	Brown Dwarf	Red	M
0.056	0.0084	10.58	White Dwarf	Blue White	В
0.00069	0.11	17.45	Brown Dwarf	Red	M
0.00015	0.011	12.59	White Dwarf	Yellowish White	F
1136	7.2	-1.97	Main Sequence	Blue-white	В
0.81	0.9	5.05	Main Sequence	yellow-white	F
0.013	0.014	11.89	White Dwarf	Blue White	В
0.00362	0.1967	13.53	Red Dwarf	Red	М
1.35	0.98	2.93	Main Sequence	yellow-white	F
272000	1183	-9.2	Hypergiant	Red	M
	0.0024 0.056 0.00069 0.00015 1136 0.81 0.013	0.0024 0.17 0.056 0.0084 0.00069 0.11 0.00015 0.011 1136 7.2 0.81 0.9 0.013 0.014 0.00362 0.1967 1.35 0.98	0.0024 0.17 16.12 0.056 0.0084 10.58 0.0069 0.11 17.45 0.00015 0.011 12.59 1136 7.2 1.97 0.81 0.9 5.05 0.013 0.014 11.89 0.0052 0.1567 13.53 0.98 2.93	0.056 0.084 10.58 White Dwarf 0.00069 0.11 17.45 Brown Dwarf 0.00015 0.011 12.59 White Dwarf 1136 7.2 -1.97 Main Sequence 0.81 0.9 5.05 Main Sequence 0.013 0.014 11.89 White Dwarf 0.00362 0.1967 13.53 Red Dwarf 1.135 0.98 2.93 Main Sequence	0.0024 0.17 16.12 Brown Dwarf Red 0.055 0.0084 10.58 White Dwarf Blue White 0.00090 0.11 17.45 Brown Dwarf Red 0.00015 0.011 12.59 White Dwarf Yellowish White 1136 7.2 -1.97 Main Sequence Blue-white 0.81 0.9 5.05 Main Sequence Blue-white 0.013 0.014 11.89 White Dwarf Blue White 0.0362 0.1967 13.53 Red Dwarf Red 1.35 0.98 2.93 Main Sequence yellow-white

• Libraries: pandas

Process:

► Print max of 'Luminosity' column

Stars						
Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
3068	0.0024	0.17	16.12	Brown Dwarf	Red	M
25000	0.056	0.0084	10.58	White Dwarf	Blue White	В
2650	0.00069	0.11	17.45	Brown Dwarf	Red	M
11790	0.00015	0.011	12.59	White Dwarf	Yellowish White	F
15276	1136	7.2	-1.97	Main Sequence	Blue-white	В
5800	0.81	0.9	5.05	Main Sequence	yellow-white	F
16500	0.013	0.014	11.89	White Dwarf	Blue White	В
3192	0.00362	0.1967	13.53	Red Dwarf	Red	M
6380	1.35	0.98	2.93	Main Sequence	yellow-white	F
3834	272000	1183	-9.2	Hypergiant	Red	M

- Libraries: pandas
- Process:
 - ▶ Print max of 'Luminosity' column
 - ► Print min of 'Temperature' column

Stars						
Temperature (K)	Luminosity(L/Lo)	Radius(R/Ro)	Absolute magnitude(Mv)	Star type	Star color	Spectral Class
3068	0.0024	0.17	16.12	Brown Dwarf	Red	M
25000	0.056	0.0084	10.58	White Dwarf	Blue White	В
2650	0.00069	0.11	17.45	Brown Dwarf	Red	M
11790	0.00015	0.011	12.59	White Dwarf	Yellowish White	F
15276	1136	7.2	-1.97	Main Sequence	Blue-white	В
5800	0.81	0.9	5.05	Main Sequence	yellow-white	F
16500	0.013	0.014	11.89	White Dwarf	Blue White	В
3192	0.00362	0.1967	13.53	Red Dwarf	Red	M
6380	1.35	0.98	2.93	Main Sequence	yellow-white	F
3834	272000	1183	-9.2	Hypergiant	Red	M

- Libraries: pandas
- Process:
 - ▶ Print max of 'Luminosity' column
 - ► Print min of 'Temperature' column
 - groupby 'Star Type' and get group 'Hypergiant' to print average 'Radius'

Design Challenge - Code

• Libraries: pandas
import pandas as pd
stars = pd.read_csv('Stars.csv')

Design Challenge - Code

Libraries: pandas
import pandas as pd
stars = pd.read_csv('Stars.csv')

- Process:
 - ► Print max of 'Luminosity' column

```
print (stars['Luminosity(L/Lo)'].max())
```

Design Challenge - Code

Libraries: pandas
import pandas as pd
stars = pd.read_csv('Stars.csv')

- Process:
 - ► Print max of 'Luminosity' column

```
print(stars['Luminosity(L/Lo)'].max())
```

▶ Prints min of 'Temperature' column and store it in temp variable

```
print (stars['Temperature(K)'].min())
```

 groupby 'Star Type' and get a group of Hypergiant, then print average of 'Radius' column for this group.

```
grouped = stars.groupby('Star type')
hypergiant = grouped.get_group('
    Hypergiant')
print("Hypergiant average radius:",
    hypergiant['Radius(R/Ro)'].mean())
```

Link in replit

Freely available source of data.

- Freely available source of data.
- Maintained by the NYC data analytics team.

- Freely available source of data.
- Maintained by the NYC data analytics team.
- We will use several different ones for this class.

Freely available source of data.

CSci 127 (Hunter)

- Maintained by the NYC data analytics team.
- We will use several different ones for this class.
- Will use pandas, pyplot & folium libraries to analyze, visualize and map the data.

- Freely available source of data.
- Maintained by the NYC data analytics team.
- We will use several different ones for this class.
- Will use pandas, pyplot & folium libraries to analyze, visualize and map the data.
- Lab 7 covers accessing and downloading NYC OpenData datasets.

ne Data About v Learr

Film Permits

Permits are generally required when asserting the exclusive use of city property, like a sidewalk, a street, or a park. See http://www1.nyc.gov/site/mome/permits/when-permit-required.page

EventID :	EventType :	StartDateTi :	EndDateTime :	EnteredOn ↓ :	EventAg	ParkingHeld :	Borou
455063	Shooting Permit	12/06/2018 07:00	12/06/2018 09:00	12/05/2018 12:36	Mayor's Offic	STARR AVENUE b	Queens
454967	Shooting Permit	12/06/2018 07:00	12/06/2018 05:00	12/04/2018 09:11	Mayor's Offic	EAGLE STREET be	Brooklyn
454941	Shooting Permit	12/06/2018 07:00	12/06/2018 07:00	12/04/2018 05:44	Mayor's Offic	SOUTH OXFORD	Brooklyn
454920	Shooting Permit	12/06/2018 10:00	12/06/2018 11:59	12/04/2018 03:28	Mayor's Offic	13 AVENUE betw	Queens
454914	Shooting Permit	12/06/2018 08:00	12/06/2018 11:00	12/04/2018 03:05	Mayor's Offic	ELDERT STREET b	Brooklyn
454909	Shooting Permit	12/05/2018 08:00	12/05/2018 06:00	12/04/2018 02:45	Mayor's Offic	ELDERT STREET b	Brooklyn
454905	Shooting Permit	12/06/2018 07:00	12/06/2018 10:00	12/04/2018 02:17	Mayor's Offic	35 STREET betwe	Queens

44 / 57

CSci 127 (Hunter) Lecture 7 March 21 2023

• What's the most popular street for filming?

- What's the most popular street for filming?
- What's the most popular borough?

- What's the most popular street for filming?
- What's the most popular borough?
- How many TV episodes were filmed?

Download the data as a CSV file and store on your computer.

- Download the data as a CSV file and store on your computer.
- Python program:

- Download the data as a CSV file and store on your computer.
- Python program: link in replit

```
#CSci 127 Teaching Staff
#March 2019
#OpenData Film Permits

#Import pandas for reading and analyzing CSV data:
import pandas as pd
csvFile = "filmPermits.csv" #Name of the CSV file
tickets = pd.read_csv(csvFile)#Read in the file to a dataframe
print(tickets) #Print out the dataframe
```


- Download the data as a CSV file and store on your computer.
- Python program:

```
#CSci 127 Teaching Staff
#March 2019
#OpenData Film Permits

#Import pandas for reading and analyzing CSV data:
import pandas as pd
csvFile = "filmPermits.csv"  #Name of the CSV file
tickets = pd.read_csv(csvFile)#Read in the file to a dataframe
print(tickets)  #Print out the dataframe
print(tickets["ParkingHeld"])  #Print out streets (multiple times)
```


- Download the data as a CSV file and store on your computer.
- Python program:

- Download the data as a CSV file and store on your computer.
- Python program:

4 D > 4 P > 4 P > 4 P > B

90 Q

Can approach the other questions in the same way:

- What's the most popular street for filming?
- What's the most popular borough?
- How many TV episodes were filmed?

51 / 57

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

MY HOBBY: Embedding NP-complete problems in restaurant orders

Possible solutions:

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

- Possible solutions:
 - ▶ 7 orders of mixed fruit, or

MY HOBBY: Embedding NP-complete problems in restaurant orders

- Possible solutions:
 - ▶ 7 orders of mixed fruit, or
 - ▶ 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.

MY HORRY: EMREDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS WED LIKE EXACTLY \$ 15: 05 CHOTCHKIES RESTAURANT WORTH OF APPETIZERS, PLEASE ~ APPFTIZERS~ MIXED FRUIT HERE. THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT FRENCH FRIES 2.75 LISTEN. I HAVE SIX OTHER. SIDE SALAD 3.35 - AG FAST AS POSSIBLE OF COURSE. WANT HOT WINGS 3.55 SOMETHING ON TRAVELING SALESYAW? MOZZARELLA STICKS 4.20 5.80 SAMPLER PLATE → SANDVICHES
→

- Possible solutions:
 - ▶ 7 orders of mixed fruit, or
 - ▶ 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.
- Input: List of items with prices and amount to be spent.

MY HORRY: EMREDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS WED LIKE EXACTLY \$ 15: 05 CHOTCHKIES RESTAURANT ~ APPFTIZERS~ MIXED FRUIT 2.15 HERE. THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT FRENCH FRIES SIDE SALAD 3.35 - AG FAST AS POSSIBLE OF COURSE. WANT HOT WINGS 3.55 SOMETHING ON TRAVELING SALESYAW? MOZZARELLA STICKS 5.80 SAMPLER PLATE → SANDVICHES
→

- Possible solutions:
 - 7 orders of mixed fruit, or
 - ▶ 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.
- Input: List of items with prices and amount to be spent.
- **Output:** An order that totals to the amount or empty list if none.

MY HORRY: EMREDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS WED LIKE EXACTLY \$ 15: 05 CHOTCHKIES RESTAURANT ~ APPFTIZERS~ MIXED FRUIT HERE. THESE PROFES ON THE KNAPSACY PROBLEM MIGHT HELP YOU OUT FRENCH FRIES SIDE SALAD 3.35 - AS FAST AS POSSIBLE OF COURSE. WANT HOT WINGS 3.55 SOMETHING ON TRAVELING SALESMAN? 4.20 MOZZARELLA STICKS 5.80 SAMPLER PLATE → SANDVICHES
→

- Possible solutions:
 - 7 orders of mixed fruit, or
 - ▶ 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.
- **Input:** List of items with prices and amount to be spent.
- **Output:** An order that totals to the amount or empty list if none.
- Possible algorithms: For each item on the list, divide total by price. If no remainder, return a list of that item. Repeat with two items, trying 1 of the first, 2 of the first, etc. Repeat with three items, etc.

- Possible solutions:
 - ▶ 7 orders of mixed fruit, or
 - ▶ 2 orders hot wings, 1 order mixed fruit, and 1 sampler plate.
- Input: List of items with prices and amount to be spent.
- **Output:** An order that totals to the amount or empty list if none.
- Possible algorithms: For each item on the list, divide total by price. If no remainder, return a list of that item. Repeat with two items, trying 1 of the first, 2 of the first, etc. Repeat with three items, etc.
- "NP-Complete" problem: possible answers can be checked quickly, but not known how to compute quickly.

 CSci 127 (Hunter)

 Lecture 7

 March 21 2023 53 / 57

• **Functions** are a way to break code into pieces, that can be easily reused.

- **Functions** are a way to break code into pieces, that can be easily reused.
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis:

54 / 57

- **Functions** are a way to break code into pieces, that can be easily reused.
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis:
 Example: print("Hello", "World")

- **Functions** are a way to break code into pieces, that can be easily reused.
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis:
 Example: print("Hello", "World")
- Can write, or define your own functions,

- Functions are a way to break code into pieces, that can be easily reused.
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis:
 Example: print("Hello", "World")
- Can write, or define your own functions, which are stored, until invoked or called.

- Functions are a way to break code into pieces, that can be easily reused.
- You call or invoke a function by typing its name, followed by any inputs, surrounded by parenthesis:
 Example: print("Hello", "World")
- Can write, or define your own functions, which are stored, until invoked or called.
- Accessing Formatted Data: NYC OpenData

Practice Quiz & Final Questions

```
#Mame: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!

def main():
    print("Hello, World!")

if __name__ = "__main__":
    main()
```

```
def totalkiting (Tool, 150)
total of ST Formal Parameters
total = ST Formal Parameters
total = food = food = food = total
total = food = food
```


• Since you must pass the final exam to pass the course, we end every lecture with final exam review.

Practice Quiz & Final Questions

```
#Name: your name here
#Date: October 2017
#This program, uses functions,
# says hello to the world!
def main():
    print("Hello, World!")
if __name__ = "__main__":
    main()
```

```
det totalkithe (Tod.ttp)
total = 07
Formal Parameters
total = 07
Formal Parameters
total = 100
Formal Parameters
Title = Float(Format (Formal Landa, Lipi*))
Title = Float(Format (Formal Landa, Lipi*))
Title = Float(Format (Formal Landa, Lipi*))
Title = Float(Format (Format Landa, Lipi*))
Global = Totalkithou (Format Landa, Lipi*))
Global = totalkithou (Format Landa, Lipi*))
Global = totalkithou (Format Landa, Lipi*))
Format (Donor total Lipi*, Totalkithou (Format Lipi*))
```


- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - ► repeat.

Practice Quiz & Final Questions

```
#Name: vour name here
#Date: October 2017
#This program, uses functions,
      says hello to the world!
def main():
    print("Hello, World!")
if __name__ == "__main__":
     main(`
```

```
def totalWithTax food, tip):
                         Formal Parameters
    tax - 0.8875
    total = food + food * tax
    total = total + tip
    return(total)
lunch = float(input('Enter lunch total: '))
lTip = float(input('Enter_lunch tip:' ))
lTotal = totalWithTax(lunch, lTip)
print('Lunch total is', liotal)
Actual Parameters
dinner= float(input('Enter dinner total: '))
dTip = float(input('Enter_dinner_tip:' ))
dTotal - totalWithTax dinner, dTip
print('Dinner total is', arotal)
```


- Since you must pass the final exam to pass the course, we end every lecture with final exam review.
- Pull out something to write on (not to be turned in).
- Lightning rounds:
 - write as much you can for 60 seconds;
 - followed by answer; and
 - repeat.
- Past exams are on the webpage (under Final Exam Information).
- Theme: Functions! Starting with Spring 19 V3, #4(b).

Before next lecture, don't forget to:

Work on this week's Online Lab

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Schedule an appointment to take the Quiz in lab 1001G Hunter North

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Schedule an appointment to take the Quiz in lab 1001G Hunter North
- If you haven't already, schedule an appointment to take the Code Review (one every week) in lab 1001G Hunter North

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Schedule an appointment to take the Quiz in lab 1001G Hunter North
- If you haven't already, schedule an appointment to take the Code Review (one every week) in lab 1001G Hunter North
- Submit this week's 5 programming assignments (programs 31-35)

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Schedule an appointment to take the Quiz in lab 1001G Hunter North
- If you haven't already, schedule an appointment to take the Code Review (one every week) in lab 1001G Hunter North
- Submit this week's 5 programming assignments (programs 31-35)
- If you need help, schedule an appointment for Tutoring in lab 1001G 11:30am-5:30pm

Before next lecture, don't forget to:

- Work on this week's Online Lab
- Schedule an appointment to take the Quiz in lab 1001G Hunter North
- If you haven't already, schedule an appointment to take the Code Review (one every week) in lab 1001G Hunter North
- Submit this week's 5 programming assignments (programs 31-35)
- If you need help, schedule an appointment for Tutoring in lab 1001G 11:30am-5:30pm
- Take the Lecture Preview on Blackboard on Monday (or no later than 10:15am on Tuesday)

Lecture Slips & Writing Boards

- Hand your lecture slip to a UTA.
- Return writing boards as you leave.