Structured Data Assignment

Data Description:

- **Train.parquet** Dataset to be used for training
- **Test.parquet** Dataset to be used for testing

The data consists of three primary columns:

- **Patient-Uid:** A unique alphanumeric identifier assigned to each patient who are taking the medicine.
- Date: The specific date when the patient experienced the event.
- **Incident:** This column provides a description of the event that took place on the given date for the patient.

Problem Statement 3

A drug is generally administered to a patient in certain patterns or in regular intervals of time. For example, Chemotherapy which is drug treatment in case of Cancer is generally given to patients in an interval 3-4 weeks, i.e. every 3-4 weeks' patients are administered with the drug. "Target Similarly, Chemotherapy, Drug" is also to administered/prescribed in certain patterns, we want to analyze in what patterns "Target Drug "is administered/prescribed to patients, there might be multiple patterns in which "Target Drug" is administered/prescribed, come up with an analysis which to extract the dominant patterns in the data using clustering or other unsupervised techniques. Visualize the prescription patterns with time on X-axis (month) and prescriptions on Yaxis for each of the patterns you are able to extract (Below is an example of a prescription pattern, where a prescription is made at least once in the first two months followed by one prescription for every two months).

Process Flow:

Implementation:

Initial analysis of data:

• Loading the dataset

	Patient-Uid	Date	Incident
0	a0db1e73-1c7c-11ec-ae39-16262ee38c7f	2019-03-09	PRIMARY_DIAGNOSIS
1	a0dc93f2-1c7c-11ec-9cd2-16262ee38c7f	2015-05-16	PRIMARY_DIAGNOSIS
3	a0dc94c6-1c7c-11ec-a3a0-16262ee38c7f	2018-01-30	SYMPTOM_TYPE_0
4	a0dc950b-1c7c-11ec-b6ec-16262ee38c7f	2015-04-22	DRUG_TYPE_0
8	a0dc9543-1c7c-11ec-bb63-16262ee38c7f	2016-06-18	DRUG_TYPE_1

• Calculating the total number of distinct patients and the total number of distinct incident

Pivot Table:

Initially, we'll add a column to the data frame to represent months. This month column will be utilized during the clustering process and when constructing a pivot table.

Month	2017- 02	2017- 03	2017- 04	2017- 05	2017- 06	2017- 07	2017- 08	2017- 09	2017- 10	2017- 11	 2
Patient-Uid											
a0e9c384-1c7c-11ec- 81a0-16262ee38c7f	0	0	0	0	0	0	0	0	0	0	
a0e9c3b3-1c7c-11ec- ae8e-16262ee38c7f	0	0	0	0	0	0	0	0	0	0	
a0e9c3e3-1c7c-11ec- a8b9-16262ee38c7f	0	0	0	0	0	0	0	0	0	0	
a0e9c414-1c7c-11ec- 889a-16262ee38c7f	0	0	0	0	0	0	0	0	0	0	
a0e9c443-1c7c-11ec- 9eb0-16262ee38c7f	0	0	0	0	0	0	0	0	0	0	

Clustering:

- Normalize the data.
- Applying Kmeans-to determine optimal number of cluster
- Elbow method to plot the optimal number of cluster.

Prescription pattern with respect to time:

The presence of distinct patterns among various patient groups, likely attributable to different medical conditions or factors, indicates that the provided dataset contains valuable information.

Results:

The existence of unique patterns within different patient groups, which can be attributed to various medical conditions or factors, suggests that the dataset offers valuable insights.