Heuristic Search Techniques

N Geetha
A M & C S
P S G College of Technology

Informed (heuristic search)

- Large branching factors are a serious issue
- We must find a way to reduce the number of visited nodes
- Informed (heuristic) search proposes methods to help us choose smartly the nodes to expand
- It uses problem-specific knowledge beyond the definition of the problem itself
- This information helps to find solution more efficiently
- The information concerns the regularities of the state space

Heuristic

- root from Greek word eurisko = I discover / find
- Derived word is heuriskein
- A rule of thumb, simplification or educated guess that reduces or limits the search for solutions in domains that are difficult and poorly understood
- Heuristics are based on intuition or experience
- Heuristics are formalized as rules to choose those branches in a state space that are most likely to lead to an acceptable solution
- Addnl. knowledge is imported into the search algorithm through heuristics
- heuristics do not guarantee feasible solutions
- usually work and find a good enough (if not optimal) solution most of the time

Blind vs. heuristic strategies

Uninformed (or blind) strategies

- They treat all the problems in the same way
- They only exploit the positions of the nodes in the search tree

Informed (heuristic) strategies

- They use knowledge about the problem
- The most "promising" nodes are placed at the beginning of the fringe
- Employed in two situations
 - When a problem does not have an exact solution because of inherent ambiguities in the problem statement or available data
 - When a problem has an exact solution but the computational cost is combinatorially explosive. Uninformed search may fail to find a solution within any practical length of time

Heuristic Search

- It exploits state description to estimate how "good" each node is
- An evaluation function h maps each node n of the search tree to a real number h(n) ≥ 0
 - $-H:S \rightarrow R^+$ (S is the set of nodes)
 - Traditionally, h(n) is an estimated cost
 - The smaller h(n) is, the more promising 'n' is
 - refers to the estimated goodness of successor nodes
 - A good heuristic is optimistic, well informed and simple to compute
- Search sorts the fringe in increasing order of h
 - Random order is assumed among nodes with equal h

Better h means better search

- When h = cost to the goal
 - Only nodes on correct path are expanded
 - Optimal solution is found
- When h < cost to the goal
 - Additional nodes are expanded
 - Optimal solution is found
- When h > cost to the goal
 - Optimal solution can be overlooked

Admissible heuristics

- Let h*(n) be the cost of the optimal path from 'n' to a goal node
- The heuristic function h(n) is admissible if: $0 \le h(n) \le h^*(n)$ then h(G) = 0
- An admissible heuristic function is always optimistic (never overestimates)

Creating an admissible h

- An admissible heuristic can usually be seen as the cost of an optimal solution to a relaxed problem (one obtained by removing constraints)
- In robot navigation:
 - The Manhattan distance corresponds to removing the obstacles
 - The Euclidean distance corresponds to removing both the obstacles and the constraint that the robot moves on a grid

Heuristics for 8-puzzle I

The number of misplaced tiles (not including the blank)

 Current
 1
 2
 3

 4
 5
 6

 7
 8

Goal State

1	2	3
4	5	6
7	8	

In this case, only "8" is misplaced, so the heuristic function evaluates to 1.

In other words, the heuristic is *telling* us, that it *thinks* a solution might be available in just 1 more move.

N	N	N
N	N	N
N	Y	

h(current state) = 1

Heuristics for 8-puzzle II

 Current
 3
 2
 8

 4
 5
 6

 7
 1

The Manhattan Distance (not including the blank)

Goal State 1 2 3 4 5 6 7 8

In this case, only the "3", "8" and "1" tiles are misplaced, by 2, 3, and 3 squares respectively, so the heuristic function evaluates to 8.

In other words, the heuristic is *telling* us, that it *thinks* a solution is available in just 8 more moves.

h(current state) = 8

How to construct h?

- Commonly used functions
 - g(n) is the cost of the path from the initial node to 'n'
 - It is known
 - f'(n) is an estimate of the cost of a path from n to a goal node
 - It is a heuristic estimate
- Hill Climbing
 - h(n) = f'(n)
- Greedy Best First search
 - h(n) = f'(n)
- A search
 - h(n) = g(n) + f'(n)
- Using only g is equivalent to uninformed search
- Main problem: how to choose the most helpful h function?

Hill Climbing Search

> Hill Climbing

- Is a variant of generate-and test
- feedback from the test procedure is used to help the generator decide which direction to move in search space.
- The test function is augmented with a heuristic function that provides an estimate of how close a given state is to the goal state.
- Computation effort of heuristic function is negligible.
- is often used when a good heuristic function is available for evaluating states but when no other useful knowledge is available.

Hill Climbing: Algorithm

- /* Let h'(n) be the inferred value of the cost from node n of the state space to the goal state */
 - S1. n = start state
 - S2. Loop: If goal(n) then exit(success).
 - S3. Expand n; Compute h'(n_i) for all child nodes n_i of n and take the child node which gives the minimum value for its cost. Call the child node as next_n.
 - S4. If $h'(n) < h'(next_n)$, exit (failure).
 - S5. $n = next_n$.
 - S6. Go to Loop.

Hill Climbing

This simple policy has three well-known drawbacks:

- 1. Local Maxima: a local maximum as opposed to global maximum.
- 2. **Plateaus**: An area of the search space where evaluation function is flat, thus requiring random walk.
- 3. **Ridge**: Where there are steep slopes and the search direction is not towards the top but towards the side.

Figure: Local maxima, Plateaus and ridge situation for Hill Climbing

Overcoming drawbacks:

- Hill climbing a local search method which only looks at the 'immediate' consequences of its choices
- To deal local maxima: Backtrack to some earlier node and try going in a different direction (need to maintain visited nodes to use when the nodes visited leads to a dead end)
- To deal with plateau: Make a good jump in some direction to try to get a new section of the search space
- To deal with ridge: Apply 2 or more rules before applying the test. This corresponds to moving in several directions at once.

Hill-climbing

- In each of the previous cases (local maxima, plateaus the algorithm reaches a point at which no progress is being made.
- A solution is to do a random-restart hill-climbing where random initial states are generated, running each until it halts or makes no discernible progress. The best result is then chosen.

Random-restart hill-climbing (6 initial values)

- A alternative to a random-restart hill-climbing when stuck on a local maximum is to do a 'reverse walk' to escape the local maximum.
- This is the idea of simulated annealing.

h'(n) = | x-coord of 'G' - x-coord of 'n' | +
 | y-coord of 'G' - y-coord of 'n' |

Path = SABEG Cost = 2 + 1 + 1 + 1 = 5

n	n _i	next_n	h'(n) > h'(n _i)	Remarks
				n = S
S ⁵	A ³	A^3	h'(S) > h'(A)	n = A
A^3	B ² C ⁴	B ²	h'(A) > h'(B)	n=B
B ²	$A^3 D^2 E^1$	E ¹	h'(B) > h'(E)	n=E
E ¹	$B^2 H^2 G^0$	G ⁰	h'(E) > h'(G)	n=G
G ⁰				Goal reached

Example 2

Measures

- 'b' is the branching factor
- Complete? No
- Optimal? No
- Time Complexity : O(b)
- Space Complexity : O(1)

Best First Search

- Procedure Best_First_Search
- /* h'(n): inferred cost from node n of the state space to the goal state */
- /* OPEN is a priority queue and CLOSED is a list */
 - S1. Put start state S into OPEN.
 - S2. Loop: If empty(OPEN) then exit(failure).
 - S3. n = first(OPEN)
 - S4. If goal(n) then exit(success)
 - S5. remove(n, OPEN). Add(n, CLOSED)
 - S6. Expand n and generate all child nodes of n and only put those into OPEN that are neither in OPEN nor in CLOSED; Link each of these to node n. Compute h'(n) and list the nodes in OPEN in the order of the smallest h'(n).
 - S7. Go to Loop.

Example 2

Path = SAC.. Cost =

n	OPEN	CLOSED	Remarks
	S ⁵		Initialise OPEN
S ⁵		S ⁵	Goal(S) is false
	A ⁴	S ⁵	Expand S
A ⁴		S ⁵ A ⁴	Goal(A) is false
	C_3	S ⁵ A ⁴	Expand A
C_3		S ⁵ A ⁴ C ³	Goal(C) is false
	$B^2 D^4$		Expand C

Measures

- 'b' is the branching factor
- Complete? No; greedy best-first search can start down an infinite path and never return to try other possibilities,
- Optimal? No; best-first search resembles depthfirst search in the way it prefers to follow a single path all the way to the goal, but will back up when it hits a dead end
- Time Complexity : O(b^m)
- Space Complexity : O(b^m)

A Algorithm

Algorithm A.

If the evaluation function h'(n) = g(n) + f'(n) is used with the best_first_search algorithm, the result is called **Algorithm A**, where,

- n is any state encountered in the search,
- g(n) is the cost of n from the start state (e.g., measures the depth at which the state has been found), and
- f'(n) is the heuristic estimate of the cost of going from n to a goal.
- Thus h'(n) estimates the <u>total</u> cost of the path from the start state through n to the goal state.

A Algorithm

- Procedure A_Algorithm
- /* g(n): computed minimum cost of path from start state to node n;
- f'(n): inferred cost from node n to the goal state */
- /* OPEN is a priority queue and CLOSED is a list */
 - S1. Put start state S into OPEN.

$$h'(S) = g(S) + f'(S) = 0 + f'(S) = f'(S)$$

- S2. Loop: If empty(OPEN) then exit(failure).
- S3. n = first(OPEN)
- S4. If goal(n) then exit(success)
- S5. remove(n, OPEN). Add(n, CLOSED)
- S6. Expand n; For all child nodes n_i , compute $h'(n_i) = g(n_i) + h'(n_i)$ using the exact cost of the node n_i from S and the estimated cost of n_i with the goal node.

A Algorithm contd.

- S6. Put nodes neither in OPEN nor in CLOSED into OPEN and set pointer to n.
 - For nodes contained in OPEN, compare $h'(n_i)$ with its existing ones before expanding n. If new $h'(n_i)$ is smaller update the same and reset the pointer from n_i to n.
 - If the child node n_i is contained in CLOSED and the new $h'(n_i)$ is smaller than the existing one, then reset the value, update the pointer from n_i to n and put n_i in OPEN.
- List the nodes in OPEN in the order of the least h'(n). S7. Go to Loop.

A Algorithm: Example

straignt-ime distance to Bucharest		
366		
0		
160		
242		
161		
176		
77		
151		
226		
244		
241		
234		
380		
10		
193		
253		
329		
80		
199		
374		

Best First Expansion

• Total Cost = 253 + 176 = 429 kms

A Algorithm computation

n	OPEN	CLOSED	h'(n) computation	Remarks
	A ³⁶⁶		h'(A) = 0+366=366	
A ³⁶⁶		A ³⁶⁶		Goal(S) is false
	S ³⁹³ T ⁴⁴⁷ Z ⁴⁴⁹		h'(S) = 140+253=393 h'(T) = 118+329=447 h'(Z) = 75+374=449	Expand A
S ³⁹³	T ⁴⁴⁷ Z ⁴⁴⁹	A ³⁶⁶		Goal(A) is false
				Expand S

A Algorithm Expansion

Total cost = 418

Example 2

A* Algorithm

Algorithm A*.

If we use the evaluation function $h^*(n) = g(n) + f'(n)$ in which f'(n) is less or equal to the cost of the minimal path from n, the result is called **Algorithm** A^* , where,

n is any state encountered in the search,

g is the cost of the current path from the start state to n,

f is the actual cost of the shortest path from n to the goal that passes through n.

Thus,

h * is the cost of the "optimal" path from a start node to a goal node that passes through n.

In algorithm A, g(n), is a reasonable estimate of g*, but they may not be equal:

$$g(n) \ge g^*$$

If algorithm A uses an evaluation function in which $f^*(n) \ge f'(n)$, then it is called **algorithm A***(A STAR).

A* Search

- One of the most popular algorithms in AI
- h(n) = g(n) + f(n), where:
 - g(n) = cost of best path found so far to n
 - f(n) = admissible heuristic function
- $\forall n,n' \exists \epsilon : c(n,n') \geq \epsilon > 0$
 - There is a positive cost between every two different nodes
 - Infinite paths will have infinite costs

Result #1

- A* is complete and optimal
 - If nodes revisiting states are not discarded

What to do with revisited states?

The heuristic h is clearly admissible

What to do with revisited states?

If we discard this new node, then the search algorithm expands the goal node next and returns a non-optimal solution

What to do with revisited states?

Instead, if we do not discard nodes revisiting states, the search terminates with an optimal solution

Consistent heuristics

- A heuristic h is consistent (or monotone) if:
 - for each node n and each child n' of n:
 - $h(n) \le c(n,n') + h(n')$
 - for each goal node G
 - h(G) = 0
- A consistent heuristic is also admissible

 A consistent heuristic becomes more precise as we go deeper in the search tree

Result #2

If h is consistent, then whenever A*
 expands a node, it has already found an
 optimal path to this node's state

Complexity of A*

- Time
 - The better the heuristic, the less time
 - Best case: h is perfect, O(d)
 - Worst admissible case: h is 0, O(b^d) → BFS
- Space
 - All nodes (open and closed list) are saved in case of repetition
 - Worst case: O(n_S)
 - n_s is the number of states
- A* generally runs out of space before it runs out of time

IDS vs. A*

	For 8-puzzle, average number of states expanded over 100 randomly chosen problems in which optimal path is length		
	4 steps	8 steps	12 steps
Iterative Deepening (see previous slides)	112	6,300	3.6 x 10 ⁶
A* search using "number of misplaced tiles" as the heuristic	13	39	227
A* using "Sum of Manhattan distances" as the heuristic	12	25	73

"No Free Lunch" theorem

- Any two algorithms are equivalent when their performance is averaged across all possible problems (Wolpert and Macready)
- The performance of an algorithm may be excellent for a problem but catastrophic for all other cases
 - Great performance, no robustness
- Contrary, another algorithm may have mediocre performance for all cases, but it doesn't fail
 - Poor performance, high robustness
- Common sense
 - Robustness * Efficiency = Constant
 - Generality * Depth = Constant

- Greedy Best First
 - Prague Warsaw Bratislava Budapest Iasi
 - Total cost: 2246 km
- A*
 - Prague Vienna Budapest Iasi
 - Total cost: 1312 km

- Prague Warsaw
 - g = 630 (road distance Prague Warsaw)
 - f = 723 (direct distance Warsaw Iasi)
- Prague Vienna
 - g = 294 (road distance Prague Vienna)
 - f = 842 (direct distance Vienna lasi)
- Greedy (h): 723 (W) < 842 (V) → chooses Warsaw
- A* (g+f): 1353 (W) > 1136 (V) → chooses Vienna

- A*
 - Bruxelles Paris Konstanz Vienna Budapest Bucharest –
 Sofia Athens Total cost: 3843 km

- g = 306 (road distance Bruxelles Paris)
- f = 2103 (direct distance Paris Athens)
- Greedy (h): 1824 (B) < 2103 (P) → chooses Berlin
- A* (g+f): 2604 (B) > 2409 (P) → chooses Paris

Statistics for city route

- They apply to the previous problem space only (every problem is different)
- Considering all possible problems (routes between any two cities)
 - A* is better for 17.65% of the problems
 - Greedy is better for 0.15 % of the problems
 - Identical results for 82.2% of the problems

Conclusion

- Heuristic Search methods are useful when:
 - The search space is large, and
 - Some additional info is given in the problem statement
 - No other technique is available, and
 - There exist "good" heuristics

References

- ➤ Elaine Rich, Kevin Knight, "Artificial Intelligence", Tata Mcgraw Hill, 2002.
- Amit Konar, "Artificial Intelligence and Soft Computing", CRC Press, 2000.
- Peter Norvig, Stuart Russel, "Artificial Intelligence: A modern Approach", Prentice Hall of India, 2006.
- > Florin Leon, http://eureka.cs.tuiasi.ro/~fleon