

1. General Overview

1.1. Introduction

Espressif Systems' Smart Connectivity Platform (ESCP) is a set of high performance, high integration wireless SOCs, designed for space and power constrained mobile platform designers. It provides unsurpassed ability to embed WiFi capabilities within other systems, or to function as a standalone application, with the lowest cost, and minimal space requirement.

Figure 1 ESP8266EX Block Diagram

ESP8266EX offers a complete and self-contained WiFi networking solution; it can be used to host the application or to offload WiFi networking functions from another application processor.

When ESP8266EX hosts the application, it boots up directly from an external flash. In has integrated cache to improve the performance of the system in such applications.

Alternately, serving as a WiFi adapter, wireless internet access can be added to any micro controller-based design with simple connectivity (SPI/SDIO or I2C/UART interface).

ESP8266EX is among the most integrated WiFi chip in the industry; it integrates the antenna switches, RF balun, power amplifier, low noise receive amplifier, filters, power management modules, it requires minimal external circuitry, and the entire solution, including front-end module, is designed to occupy minimal PCB area.

ESP8266EX also integrates an enhanced version of Tensilica's L106 Diamond series 32-bit processor, with on-chip SRAM, besides the WiFi functionalities. ESP8266EX is often integrated with external sensors and other application specific devices through its GPIOs; sample codes for such applications are provided in the software development kit (SDK).

Espressif Systems 6/31 June 1, 2015

Espressif Systems' Smart Connectivity Platform (ESCP) demonstrates sophisticated system-level features include fast sleep/wake context switching for energy-efficient VoIP, adaptive radio biasing for low-power operation, advance signal processing, and spur cancellation and radio co-existence features for common cellular, Bluetooth, DDR, LVDS, LCD interference mitigation.

1.2. Features

- 802.11 b/g/n
- Integrated low power 32-bit MCU
- Integrated 10-bit ADC
- Integrated TCP/IP protocol stack
- Integrated TR switch, balun, LNA, power amplifier and matching network
- Integrated PLL, regulators, and power management units
- Supports antenna diversity
- WiFi 2.4 GHz, support WPA/WPA2
- Support STA/AP/STA+AP operation modes
- Support Smart Link Function for both Android and iOS devices
- SDIO 2.0, (H) SPI, UART, I2C, I2S, IR Remote Control, PWM, GPIO
- STBC, 1x1 MIMO, 2x1 MIMO
- A-MPDU & A-MSDU aggregation & 0.4s guard interval
- Deep sleep power <10uA, Power down leakage current < 5uA
- Wake up and transmit packets in < 2ms
- Standby power consumption of < 1.0mW (DTIM3)
- +20 dBm output power in 802.11b mode
- Operating temperature range -40C ~ 125C
- FCC, CE, TELEC, WiFi Alliance, and SRRC certified

2. Hardware Overview

2.1. Pin Definitions

The pin assignments for 32-pin QFN package is illustrated in Fig.2.

Figure 2 Pin Assignments

Table 2 below presents an overview on the general pin attributes and the functions of each pin.

Tab	0	Din	Do	finiti	one
120	_	PIN	1 10		nns

Pin	Name	Туре	Function
1	VDDA	P	Analog Power 3.0 ~3.6V
2	LNA	1/0	RF Antenna Interface. Chip Output Impedance=50Ω No matching required but we recommend that the n-type matching network is retained.
3	VDD3P3	Р	Amplifier Power 3.0~3.6V
4	VDD3P3	Р	Amplifier Power 3.0~3.6V
5	VDD_RTC	Р	NC (1.1V)

	T		ADC Distance in the Little Little Little Little	
6		I	ADC Pin (note: an internal pin of the chip) can be used to	
	TOUT		check the power voltage of VDD3P3 (Pin 3 and Pin4) or the	
			input voltage of TOUT (Pin 6). These two functions cannot be	
			used simultaneously.	
7	CHIP_EN	1	Chip Enable.	
	V00 0000		High: On, chip works properly; Low: Off, small current	
8	XPD_DCDC	1/0	Deep-Sleep Wakeup; GPIO16	
9	MTMS	1/0	GPIO14; HSPI_CLK	
10	MTDI	1/0	GPIO12; HSPI_MISO	
11	VDDPST	Р	Digital/IO Power Supply (1.8V~3.3V)	
12	MTCK	1/0	GPIO13; HSPI_MOSI; UART0_CTS	
13	MTDO	1/0	GPIO15; HSPI_CS; UART0_RTS	
14	GPIO2	1/0	UART Tx during flash programming; GPIO2	
15	GPIO0	1/0	GPIO0; SPI_CS2	
16	GPIO4	1/0	GPIO4	
17	VDDPST	Р	Digital/IO Power Supply (1.8V~3.3V)	
18	SDIO_DATA_2	1/0	Connect to SD_D2 (Series R: 200Ω); SPIHD; HSPIHD; GPIO9	
19	SDIO_DATA_3	1/0	Connect to SD_D3 (Series R: 200Ω); SPIWP; HSPIWP; GPIO10	
20	SDIO_CMD	1/0	Connect to SD_CMD (Series R: 200Ω); SPI_CS0; GPIO11	
21	SDIO_CLK	1/0	Connect to SD_CLK (Series R: 200Ω); SPI_CLK; GPIO6	
22	SDIO_DATA_0	1/0	Connect to SD_D0 (Series R: 200Ω); SPI_MSIO; GPIO7	
23	SDIO_DATA_1	1/0	Connect to SD_D1 (Series R: 200Ω); SPI_MOSI; GPIO8	
24	GPIO5	1/0	GPIO5	
25	UORXD	1/0	UART Rx during flash programming; GPIO3	
26	U0TXD	1/0	UART Tx during flash progamming; GPIO1; SPI_CS1	
27	XTAL_OUT	1/0	Connect to crystal oscillator output, can be used to provide BT clock input	
28	XTAL_IN	1/0	Connect to crystal oscillator input	
29	VDDD	Р	Analog Power 3.0V~3.6V	
30	VDDA	Р	Analog Power 3.0V~3.6V	
31	RES12K	1	Serial connection with a 12 $k\Omega$ resistor and connect to the ground	
32	EXT_RSTB	(1	External reset signal (Low voltage level: Active)	