

P-ţa Victoriei nr. 2 RO 300008 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.uot.ro

Logică digitală

-Curs 9-Circuite logice secvențiale

Clasificare componente digitale

- Componente combinaționale
 - Ușor de analizat, partiționat, verificat

Componente secvenţiale

Circuite secvențiale

- ☐ Circuitele secvențiale se clasifică:
 - Asincrone
 - Sincrone
- Componentele secvențiale asincrone își modifică starea și valorile de ieșire funcție de modificările semanlelor de la intrare (oricând!) se modifică acestea.
- ☐ Componentele secvențiale sincrone își modifcă valoarea funcție de valoarea semnalelor de intrare la momente bine definite de timp, dictate de un semnal (de intrare) care se numește tact (*clock*)

Semnalul de tact

- □ Palierul uni semnal reprezintă porțiunea unde acesta rămâne constant o logic (palier negativ) și 1 logic (palier pozitiv).
- Frontul crescător se referă la porțiunea unde senalul își modifică valoarea de la 0 logic la 1 logic (mai exact de la 10% din nivelul corespunzător lui 1 logic la 90% din nivelul corespunzător lui 1 logic
- □ t0 perioada semnalului de tact,
- □ tw(H) și tw(L) reprezintă durata unui impuls de 1 respectiv 0 logic

Semnalul de tact

b)Formă idealizată a semnalului

S-R Latch (SAU-NU) - asincron

Gated SR-latch

S	R	С	Q_next	Q_next
0	0	1	Q	\overline{Q}
0	1	1	0	1
1	0	1	1	0
1	1	1	-	-
*	*	0	Q	\overline{Q}

- Când semnalul C este activ valorile de la intrare sunt propagate prin latch
- Semnalele de intrare nu trebuie să se modifice în intervalul t_{setup} și t_{hold} al frontului descrescător

Gated SR-Latch

•Control signal C activates the latch

C	S	R	Q	Q(next)							
0	X	X	0	0	(inactive)						
0	\mathbf{X}	\mathbf{X}	1	1	(inactive)						
1	0	0	0	0	(hold)						
1	0	0	1	1	(hold)						
1	0	1	\mathbf{X}	0	(reset)						
1	1	0	\mathbf{X}	1	(set)						
1	1	1	\mathbf{X}	NA	(?)						
	T 4 . 44										

Gated D-latch

Flip-flop-uri

- Se mai numesc şi latch-uri sensibile pe frontul semnalului de tact;
- Bascularea se face pe frontul semnalului de tact (!nu pe palier – latch-uri)
- Două variante de arhitecturi:
 - Configurația master-slave
 - Edge-triggered FF

Latch sincron vs. FF sincron

FF-uri

- contrângeri de timp in operarea FF-urilor trebuie să aibe în vedere 3 timpi:
 - Timpul de setup: se referă la timpul necesar pentru ca semnalul de intrare (D) să rămână stabil înainte de apariția frontului semnalului de tact;
 - Timpul de hold: reprezintă timpul în care datele de intrare nu pot fi modificate după apariţia frontului semnalului de tact în vederea încărcării corecte a acestora;
 - Timpul aferent întârzirii datorate propagării (tp): constituie timpul necesar basculării FF-ului (clock to Q delay);

Prezentarea celor 3 timpi de propagare

Timpii de setup și hold pentru un FF care basculează pe front crescător al tactului

Timpi de propagare t_p

- ☐ Semnalul de reset (set)
 - Functionalitate aducerea bistabilului intr-o stare "initiala" cunoscuta (de obicei starea 0)
 - Reset este un semnal global este aplicat tuturor elementelor de memorie dintr-un sistem digital
 - Tipuri de reset
 - □Reset sincron
 - □Reset asincron

- □ Reset sincron
 - Este activ doar pe palierul (latch) sau front-ul (FF) activ al semnalului de clock

□ Reset asincron

 Reseteaza elementul secvential indiferent de valoarea semnalului de clock

□ Reset sincron vs Reset asincron

```
always

@(posedge clk)
begin

if (rst)

begin

q <= 0;

end

else

begin

q <= d;

end

end

end
```

```
always
@(posedge clk, posedge rst)
begin
if (rst)
begin
q <= 0;
end
else
begin
q <= d;
end
end
```

Modalitati de descriere: circuite secvențiale

- □ Tabelul caracteristic:
 - Pentru fiecare combinație de intrare, funcție de starea curentă este precizată starea următoare
- ☐ Ecuația caracteristică:
 - Ecuația rezultată în urma aplicării unei metode de minimizare
- □ Tabelul excitaţiilor:
 - Folosit la sinteza circuitului
 - Specifică intrările necesare pentru a trece din starea curentă în starea următoare
- ☐ Diagrame/grafuri de stare:
 - Graf orientat, în care valorile posibile (stările) sunt reprezentate prin cercuri, iar tranzițiile prin arce

Tipuri de FF-uri

Copyright © 2004-2005 by Daniel D. Gajski

Flip-flop name	Flip-flop symbol	Characteristic table	Characteristic equation	Excitation table			
SR	S Q Clk	S R Q(next) 0 0 0 0 1 0 1 0 1 1 1 NA	Q(next)=S+R'Q SR=0	Q. Q(next) S R 0 0 0 X 0 1 1 0 1 0 0 1 1 1 X 0			
JK	J Q — Clk K Q'	J K O(next) 0 0 0 0 1 0 1 0 1 1 1 Q'	Q(next)=JQ'+K'Q	Q Q(next) J K 0 0 0 X 0 1 1 X 1 0 X 1 1 1 X 0			
D	D Q Clk	D Q(next) 0 0 1 1	Q(next)=D	Q Q(next) D 0 0 0 0 1 1 1 0 0 1 1 1			
Т	T Q — Clk Q'	T Q(next) 0 Q 1 Q'	Q(next)=TQ'+T'Q	Q Q(next) T 0 0 0 0 1 1 1 0 1 1 1 0			

Sildes by Philip Pham, University of California, Irvine

Circuite secvențiale reprezentare

Circuitele secvenţiale:

- MEALY sunt caracterizate prin faptul că starea următoare şi ieşirea la un moment dat depind de starea prezentă si de intrarea prezentă;
- MOORE sunt caracterizate prin faptul că ieşirea depinde numai de starea circuitului. Starea următoare depinde de intrarea prezentă;
- Modelele matematice ale circuitelor secvenţiale se numesc in teoria comutaţiilor automate finite.

Circuite secvențiale: diagrame e stare

circuite de tip Mealy:

- fiecare nod se notează cu simbolul stării pe care o reprezintă,
- arcul care pleacă din nod se notează cu perechea intrarea care a generat tranziţia circuitului/ ieşirea generată în timpul tranziţiei.

Starea inițială se marchează printr-o săgeată aplicată nodului respectiv.

Circuite secvențiale: diagrame e stare

circuite de tip Moore:

- nodurile diagramei de stări se notează simbolul stării corespondente şi ieşirile
- arcul are notată intrarea care a generat tranziția.

Registre

- Reprezinta o colectie/grupare de n bistabile
- □ Nr maxim de valori a unui registru pe n biti – 2ⁿ valori binare
- Folosit pentru memorarea unui cuvant de date/unei stari curente a sistemului

- ☐ Prezinta semnale de incarcare (*Load*)
- La fiecare front crescator valoarea registrului se actualizeaza cu Data In, daca este activ semnalul de Load

Load	Stare viitoare (<i>Data Out</i>)
0	Nu se schimba
1	Data In

- ☐ Functia de deplasare (shift-are) in interiorul registrului
- Datele se introduc serial in registru o singura intrare de date
- La fiecare activare a semnalului de Load (Shift), datele se deplaseaza in cadrul registrului
- Incarcarea a n biti necesita n ciclii de clock

Shift	Starea Curenta	Starea viitoare
0	Q3Q2Q1Q0	Q3Q2Q1Q0 (nu se schimba)
1	Q3Q2Q1Q0	DataInQ3Q2Q1

Registre - clasificare

Număratoare

- circuite secvenţiale sincrone autonome (mulţimea intrărilor vidă), care baleiază o secvenţă de stări impuse de proiectant.
- ☐ de regulă este inițializat cu starea ,,0", după care la fiecare impuls de numărare, comuta într-o nouă stare.
- caracterul asincron al unui numărător este dat de faptul că impulsul de tact nu comandă simultan toate bistabilele numărătorului.
- Funcție de direcția de parcurgere a secvenței de stări:
 - numărător în sens crescător,
 - numărător în sens descrescător,
 - numărător reversibil (ambele sensuri).

Numarator asincron- realizat cu bistabile T

Numarator sincron

Numărătoarele increm/decrem conținutul când primesc semnal de activare

Numarator sincron

Realizaţi un numărător folosind FF-uri de tip J-K care numără după următoarea secvenţă:

^{*}Exemplu preluat din curs LD 2013 - Adrian Mihailescu

4. Implementare cu FF-uri J-K M-S şi porţi logice ŞI-NU:

- Indicaţii:
- construiţi tabelul de adevăr pentru determinarea expresiei intrărilor J-K
- 2. Completați J-K funcție de starea următoare (ex. starea curentă 0, starea următoare e trecută pe rândul următor: st. 2) și de tabelul excitațiilor

Q _n	Q_{n+1}	J	K
0	0	0	х
0	1	1	Х
1	0	X	1
1	1	Х	0

- Indicaţii:
- construiţi tabelul de adevăr pentru determinarea expresiei intrărilot J-K
- 2. Completați J-K funcție de starea următoare (ex. starea curentă 0, starea următoare e trecută pe rândul următor: 2, ș.m.d.)

I	Starea	Q_2	Q,	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
	0	0	0	0	0	X	1	X	0	X
	2	0	1	0	1	X	X	0	0	X
Ł										

- Indicaţii:
- construiţi tabelul de adevăr pentru determinarea expresiei intrărilot J-K
- 2. Completați J-K funcție de starea următoare (ex. starea curentă 0, starea următoare e trecută pe rândul următor: 2, ș.m.d.)

Starea	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0	
0	0	0	0	0	X	1	X	0	X	
2	0	1	0	1	X	X	0	0	X	
6	1	1	0	X	0	X	0	1	X	
7	1	1	1	X	0	X	1	X	0	
5	1	0	1	X	0	0	X	X	1	
4	1	0	0	X	1	0	X	0	X	
0	0	0	0							

- ☐ Indicaţii:
- Minimizăm funcţiile Ji(Q0,Q1,Q2) Ki(Q0,Q1,Q2)
 Stările prin care nu trece numărătoul sunt notate cu "don't care"

$$J_0 = Q_2 Q_1$$

$$K_0 = \overline{Q_1}$$

$$J_1 = \overline{Q_2}$$

$$J_2 = Q_1$$

$$K_1 = Q_0$$

$$K_{2}$$
 Q_{2}
 Q_{000}
 Q_{000}

$$K_2 = \overline{Q_0} \overline{Q_1}$$

4. Implementare cu FF-uri J-K M-S şi porţi logice ŞI:

4. Implementare cu FF-uri J-K M-S şi porţi logice ŞI-NU:

Întrebări?

Enough Talking Let's Get To It!!Brace Yourselves!!

