Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

IP datagram format

IP Address (IPv4)

- A unique 32-bit number
- Identifies an interface (on a host, on a router, ...)
- Represented in dotted-quad notation

Grouping Related Hosts

- The Internet is an "inter-network"
 - Used to connect networks together, not hosts
 - Need to address a network (i.e., group of hosts)

LAN = Local Area Network
WAN = Wide Area Network

Scalability Challenge

- Suppose hosts had arbitrary addresses
 - Then every router would need a lot of information
 - ...to know how to direct packets toward every host

Hierarchical Addressing: IP Prefixes

- Network and host portions (left and right)
- ❖ 12.34.158.0/24 is a 24-bit prefix with 2⁸ addresses

IP Address and 24-bit Subnet Mask

Scalability Improved

- Number related hosts from a common subnet
 - 1.2.3.0/24 on the left LAN
 - 5.6.7.0/24 on the right LAN

Easy to Add New Hosts

- No need to update the routers
 - E.g., adding a new host 5.6.7.213 on the right
 - Doesn't require adding a new forwarding-table entry

Classful Addressing

- In the old days, only fixed allocation sizes
 - Class A: 0*
 - Very large /8 blocks (e.g., MIT has 18.0.0.0/8)
 - Class B: 10*
 - Large /16 blocks (e.g., Princeton has 128.112.0.0/16)
 - Class C: 110*
 - Small /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)
 - Class D: 1110* for multicast groups
 - Class E: 11110* reserved for future use
- This is why folks use dotted-quad notation!

Classless Inter-Domain Routing (CIDR)

Use two 32-bit numbers to represent a network.

Network number = IP address + Mask

Written as 12.4.0.0/15

Hierarchical Address Allocation

- Hierarchy is key to scalability
 - Address allocated in contiguous chunks (prefixes)
 - Today, the Internet has about 400,000 prefixes

Obtaining a Block of Addresses

- Internet Corporation for Assigned Names and Numbers (ICANN)
 - Allocates large blocks to Regional Internet Registries
- Regional Internet Registries (RIRs)
 - E.g., ARIN (American Registry for Internet Numbers)
 - Allocates to ISPs and large institutions
- Internet Service Providers (ISPs)
 - Allocate address blocks to their customers
 - Who may, in turn, allocate to their customers...

Pre-CIDR (1988-1994): Steep Growth

Growth faster than improvements in equipment capability

CIDR (1994-1996): Much Flatter

Separate Forwarding Entry Per Prefix

- Prefix-based forwarding
 - Map the destination address to matching prefix
 - Forward to the outgoing interface

CIDR Makes Packet Forwarding Harder

- Forwarding table may have many matches
 - E.g., entries for 201.10.0.0/21 and 201.10.6.0/23
 - The IP address 201.10.6.17 would match both!

Longest Prefix Match Forwarding

- Destination-based forwarding
 - Packet has a destination address
 - Router identifies longest-matching prefix
 - Cute algorithmic problem: very fast lookups

Creating a Forwarding Table

- Entries can be statically configured
 - E.g., "map 12.34.158.0/24 to Serial0/0.1"
- But, this doesn't adapt
 - To failures
 - To new equipment
 - To the need to balance load
- That is where the control plane comes in
 - Routing protocols

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

Subnets

❖ IP address:

- subnet part high order bits
- host part low order bits

*what's a subnet ?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

network consisting of 3 subnets

Subnets

how many?

Network Address Translation (NAT)

History of NATs

- IP address space depletion
 - Clear in early 90s that 2³² addresses not enough
 - Work began on a successor to IPv4
- In the meantime...
 - Share addresses among numerous devices
 - ... without requiring changes to existing hosts
- Meant as a short-term remedy
 - Now: NAT is widely deployed, much more than IPv6

Network Address Translation

NAT: network address translation

all datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)