Guía de contenidos Primero medio

Objetivo: Aplicar los distintos métodos de resolución de un sistema de ecuaciones lineales.

Términos de Instrucción:

Determinar: Obtener la única respuesta posible.

Resolver: Obtener la respuesta (o respuestas) utilizando métodos apropiados.

Sistema de ecuaciones de primer grado

Una función y = f(x) de primer grado representa una recta. Cualquier ecuación de primer grado en dos variables ax + by + c = 0 donde $b \neq 0$ se puede escribir como una función y = 0f(x). Si b=0 estamos frente a una ecuación de primer grado de la forma ax+c=0 con $a\neq a$ 0, que representa una recta paralela al eje Y.

Rectas secantes: son aquellas representadas por ecuaciones que tienen una solución común. Se cortan en un punto.

Rectas paralelas: Son aquellas representadas por ecuaciones que no tienen ninguna solución común. No se cortan. Sus ecuaciones constituyen un sistema inconsistente.

Rectas coincidentes: Son aquellas representadas por ecuaciones que tienen todos sus puntos en común, es decir, infinitas soluciones comunes. Sus ecuaciones forman un sistema indeterminado.

Rectas	Sistema 2x2	Soluciones
Secantes	Determinado	Única
Coincidentes	Indeterminado	Infinitas
Paralelas	Inconsistente	No tiene

$$a_1x + b_1y = c_1$$

 $a_2x + b_2y = c_2$, entonces:

- El sistema tiene **solución única** si $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ ١.
- El sistema tiene **infinitas soluciones** si $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ El sistema **no tiene solución** si $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ II.
- III.

Ejercicios: Determinar, sin resolver, si los siguientes sistemas tienen solución única, infinitas soluciones o no tienen solución.

Para resolver geométricamente un sistema de ecuaciones se grafican ambas rectas y luego se leen las coordenadas del punto de intersección (si tiene solución única)

Para resolver algebraicamente un sistema hay varios métodos, entre ellos: eliminación por reducción, eliminación por sustitución y eliminación por igualación.

1. Reducción por igualación

$$x + 2y = 1$$
$$x - 3y = -4$$

Este método consiste en despejar la misma incógnita de las dos ecuaciones e igualar los valores así obtenidos, consiguiendo con ellos una ecuación co una sola incógnita.

Despejemos x en ambas ecuaciones

$$x = -2y + 1$$
$$x = 3y - 4$$

Igualamos

$$-2y + 1 = 3y - 4$$

y obtenemos una sola ecuación con una incógnita.

Resolvemos:

$$-2y - 3y = -4 - 1$$
$$-5y = -5$$
$$y = 1$$

Ahora reemplazamos en cualquiera de las dos ecuaciones del principio obteniendo

$$x = -2y + 1$$

$$x = -2 \cdot 1 + 1$$

$$x = -2 + 1$$

$$x = -1$$

Por lo tanto, la solución del sistema es el punto (-1,1)

Ejercicios: Resolver los siguientes sistemas de ecuaciones lineales por el método de eliminación por igualación

a.

$$-x + 2y + 1 = 0$$
$$x + 2y + 15 = 0$$

b.

$$x + 5y - 6 = 0$$

$$5x + 6y - 11 = 0$$

c.

$$x + 8y - 39 = 0$$
$$5x + y = 0$$

d.

$$-2x + 2y = 6$$
$$6x + 3y = 18$$

e.

$$\begin{aligned}
x + y &= 3 \\
-4x - y &= 6
\end{aligned}$$

f.

$$-2x - y = 3$$
$$-6x + 5y = -15$$

g.

$$x + 2y = 0$$

$$-4x + 7y = 0$$

h.
$$x + 5y - 3 = 0 2x - y + 1 = 0$$

i.
$$x + 2y = -3$$
$$-x + y = 3$$

j.
$$4x + 7y + 15 = 0$$
$$3x + 8y = -25$$

k.
$$-x + 3y - 15 = 0$$
$$-2x + y = 15$$

I.
$$6x + 4y = 28$$
$$-x + 2y = 6$$