

INDUSTRIAL APPLICATIONS OF MICROWAVES

YALINI SHREE P V 28.11.2023

INTRODUCTION

- Microwaves are defined as electromagnetic radiations with a frequency ranging between 300 MHz to 300 GHz.
- In contrast, the wavelength ranges from 1 mm to around 30 cm.
- Microwave radiation is commonly referred to as microwaves.
- They fall between infrared radiation and radio waves in the electromagnetic spectrum.

THE ELECTROMAGNETIC SPECTRUM

PROPERTIES OF MICROWAVES

- Metal surfaces reflect microwaves. Microwaves with a certain wavelength pass through the earth's atmosphere and can be useful in transmitting information to and from satellites in orbit.
- Microwaves of certain frequencies are absorbed by water. This property of microwaves is useful n cooking..
- Microwave transmission is affected by wave effects such as refraction, reflection, interference, and diffraction.
- Microwaves can pass through glass and plastic. This is the reason why we use a plastic or glass container in a microwave oven and not metal containers, as metal reflects microwaves.

INDUSTRIAL APPLICATIONS

- MICROWAVE HEATING
- MICROWAVE DRYING
- MICROWAVE SINTERING
- MICROWAVE WELDING
- MICROWAVE EXTRACTION
- MICROWAVE STERILIZATION
- MICROWAVE SYNTHESIS
- MICROWAVE SENSING

MICROWAVE HEATING

- Microwaves selectively heat materials with high water content, fats, and certain minerals due to the absorption characteristics of these substances.
- The energy from microwaves causes the molecules in the material to vibrate, generating heat.
- Applied in
 - Microwave Ovens

MICROWAVE DRYING

- Microwave drying is a process that utilizes electromagnetic radiation in the microwave frequency range to remove moisture from materials.
- It is widely used in industrial settings for efficient and rapid drying of various products.

Basic Principles of Microwave Drying:

- Microwaves selectively heat water molecules within the material, leading to the evaporation of moisture.
- Unlike conventional drying methods, microwave drying allows for faster and more uniform drying, as the heat is generated internally.

2.45 GHz Insulation Pyrometer Pressure controller Contr

MICROWAVE SINTERING

- Microwave sintering is a process that utilizes microwave radiation to heat and densify powder materials, typically ceramics or metal powders, into a solid mass with improved properties.
- This technique offers advantages over traditional sintering methods, such as faster heating rates and enhanced control over the sintering process.

Basic Principles of Microwave Sintering:

- Microwaves selectively heat the material by interacting with its polar molecules, leading to rapid and uniform heating.
- The process involves the transformation of powder particles into a solid mass through the diffusion of atoms across particle boundaries.

2.45 GHz, 3000 W power generator Sink Water path Cooling water Dummy load Dummy load Power Applicator Power meter Water path

MICROWAVE WELDING

- Microwave welding is a technique that utilizes electromagnetic radiation in the microwave frequency range to heat and join materials through fusion.
- This process is commonly used for welding plastics and composite materials, offering advantages over traditional welding methods.

Basic Principles of Microwave Welding:

- Microwaves selectively heat the materials by interacting with their polar molecules, causing localized heating at the interface.
- The localized heating softens the materials, allowing them to fuse together when pressure is applied.

MICROWAVE EXTRACTION

- Microwave extraction, also known as microwaveassisted extraction (MAE) or microwave-assisted solvent extraction, is a technique that employs microwave radiation to enhance the extraction of compounds from solid materials, such as plants, herbs, and natural products.
- This method offers advantages in terms of speed, efficiency, and improved extraction yields compared to traditional extraction methods.

Basic Principles of Microwave Extraction:

- Microwaves penetrate the material, causing the targeted compounds to absorb energy and undergo rapid heating.
- The increased temperature facilitates the release of compounds into the solvent, leading to an accelerated extraction process.

MICROWAVE STERILIZATION

- Microwave sterilization is a technology that utilizes microwave radiation to achieve the decontamination and sterilization of various materials, including medical instruments, pharmaceuticals, and food products.
- It is known for its speed, effectiveness, and ability to preserve the quality of sterilized items.

Basic Principles of Microwave Sterilization:

- Microwaves penetrate the material, causing the water molecules within it to absorb energy and heat rapidly.
- The heat generated is sufficient to kill or inactivate microorganisms, achieving sterilization.

MICROWAVE SYNTHESIS

- Microwave synthesis is a laboratory technique that employs microwave irradiation to accelerate chemical reactions, promoting faster reaction rates and higher yields compared to traditional heating methods.
- It is widely used in organic and inorganic chemistry for the synthesis of various compounds, including pharmaceuticals, polymers, and nanoparticles.

Basic Principles of Microwave Synthesis:

- Microwaves selectively heat reaction mixtures by interacting with polar molecules, leading to rapid and uniform heating.
- This results in enhanced kinetic rates and more efficient reactions compared to conventional heating.

FUTURE SCOPE

Here are several areas where the industrial application of microwaves is expected to see continued growth:

- Advanced Materials Synthesis
- Green Chemistry and Sustainable Processes
- Smart Manufacturing and Industry 4.0
- Food Processing Innovations
- Microwave-Assisted Catalysis
- Energy Storage and Conversion
- Biomedical Applications

THANK YOU