1 Zentrale Begriffe und Definitionen

- 1. (*Zur Grenzwertdefinition.*) Welche Aussagen sind korrekt? Für eine reelle Folge (a_n) und $a \in \mathbb{R}$ gilt: Der Punkt a ist ein Häufungswert von (a_n) , falls
 - (a) [true] $\forall \varepsilon > 0 \quad \forall N \in \mathbb{N} \quad \exists n \geq N : \quad |a_n a| < \varepsilon.$
 - (b) [true] $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N : \quad |a_n a| < \varepsilon$.
 - (c) [false] $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \exists n \geq N : \quad |a_n a| < \varepsilon.$
 - (d) [true] in jeder ε -Umgebung von a alle Folgenglieder a_n liegen.
- 2. (Stetigkeit.) Welche Aussagen sind korrekt? Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ ist nicht stetig in $a \in \mathbb{R}$, falls
 - (a) [true] es eine reelle Folge (x_n) gibt mit $x_n \to a$ aber $f(x_n) \not\to f(a)$.
 - (b) [false] für jede reelle Folge (x_n) mit $x_n \to a$ auch $f(x_n) \to f(a)$ gilt.
 - (c) [true] f in a einen Sprung hat.
 - (d) [true] $\lim_{x\to a} f(x) \neq f(a)$ gilt.
- 3. (Absolute Konvergenz.) Welche Aussagen sind korrekt? Eine Reihe

$$\sum_{n=0}^{\infty} a_n$$

konvergiert absolut, falls

- (a) [false] $|\sum_{n=0}^{\infty} a_n| \leq \infty$.
- (b) [false] sie konvergiert und unendlich viele positive Glieder a_n hat.
- (c) [true] sie konvergiert und nur endlich viele negative Glieder a_n hat.
- (d) [false] sie nicht alternierend ist.
- 4. (Logarithmus.) Welche Aussagen sind korrekt? Für die Logartihmusfunktion

$$\log:(0,\infty)\to\mathbb{R}$$

gilt:

- (a) [false] $\log(x) > 0$ für alle $x \in (0, \infty)$.
- (b) [true] \log ist die Umkehrfunktion der Exponentialfunktion $\exp: \mathbb{R} \to \mathbb{R}^+$.

- (c) [true] log ist bijektiv.
- (d) [false] $x = \exp(y) \iff x = \log(y)$.
- 5. (Differenzierbarkeit.) Welche Aussagen sind korrekt? Eine Funktion $f:I\to\mathbb{R}$ ist differenzierbar in einem Punkt ξ im Intervall I, falls
 - (a) [true] $\lim_{\xi \neq x \to \xi} \frac{f(\xi) f(x)}{x \xi}$ existiert und endlich ist.
 - (b) [true] $\lim_{\xi \neq x \to \xi} \frac{f(\xi) f(x)}{\xi x}$ existiert und endlich ist.
 - (c) [false] es eine Zahl $\alpha \in \mathbb{R}$ und eine Funktion $r:I \to \mathbb{R}$ gibt sodass,

$$f(\xi+h)-f(\xi)=\alpha+r(h) \text{ und } \lim_{0\neq h\to 0}\frac{r(h)}{h}=0.$$

- (d) [true] $\lim_{\xi \neq x \to \xi} \frac{f(\xi) f(x)}{\xi x} = 0.$
- 6. (Stammfunktion.) Welche Aussagen sind korrekt? Sei $f:(a,b)\to\mathbb{R}$ eine Funktion. Eine Funktion $F:(a,b)\to\mathbb{R}$ ist eine Stammfunktion von f, falls
 - (a) [false] F'(x) = f(x) + C gilt.
 - (b) [false] $F(x) = \int_a^x f(t)dt$ gilt.
 - (c) [true] es eine Stammfunktion $G:(a,b)\to\mathbb{R}$ von f gibt und F-G=c für eine Konstante c gilt.
 - (d) [true] $\left(F(x) + C\right)' = f(x)$ gilt.

2 Sätze & Resultate

- 1. (Folgen & Konvergenz, 1.) Welche Aussagen über reelle Folgen sind korrekt?
 - (a) [true] Jede konvergente Folge hat einen Häufungswert.
 - (b) [true] Gilt $a_n \to \infty$, dann auch $1/a_n \to 0$.
 - (c) [false] Unbeschränkte Folgen sind bestimmt divergent.
 - (d) [false] Kehrwerte von Nullfolgen divergieren bestimmt nach $\pm\infty$.
- 2. (Folgen & Konvergenz, 2.) Von der reellen Folge a_n ist bekannt, dass sie unbeschränkt ist. Welche der folgenden Aussagen sind dann korrekt?

- (a) [false] a_n hat keinen Häufungswert.
- (b) [false] a_n hat genau einen Häufungswert.
- (c) [false] a_n hat mehrere Häufungswerte.
- (d) [true] Keine der anderen Aussagen ist korrekt.
- 3. (Nullstellen.) Aus welchen Aussagen kann man korrekter Weise schließen, dass

$$f: \mathbb{R} \to \mathbb{R} \quad \mathsf{mit} \quad f(-1) = -7$$

eine Nullstelle hat?

- (a) [true] f ist stetig und f(-7) = 1.
- (b) [false] f ist monoton und f(1) = 1.
- (c) [false] f ist stetig und f(1) = -1.
- (d) [true] f ist stetig und monoton und f(1) = 10.
- 4. (Extremstellen.) Welche der Aussagen sind korrekt? Die Funktion

$$f:[a,b]\to\mathbb{R}$$

hat ein Extremum

- (a) [true] in irgend einem Punkt $\xi \in [a,b]$, falls f stetig ist.
- (b) [false] in einem Punkt $\xi \in (a,b)$, falls f differenzierbar ist und $f'(\xi) = 0$ gilt.
- (c) [true] in irgend einem Punkt $\xi \in [a,b]$, falls f differenzierbar ist.
- (d) [false] in irgend einem Punkt $\xi \in (a,b)$, falls f stetig ist.
- 5. (Monotoniekiterium.) Welche der Aussagen sind korrekt? Eine stetige Funktion

$$f:[a,b]\to\mathbb{R}$$

sei zusätzlich differenzierbar auf (a,b). Dann gilt

- (a) [true] f ist streng monoton wachsend auf [a,b], falls f'(x)>0 für alle $x\in(a,b)$ gilt.
- (b) [true] f ist streng monoton wachsend auf (a,b), falls f'(x)>0 für alle $x\in(a,b)$ gilt.
- (c) [false] f'(x) > 0 für alle $x \in (a,b)$, falls f streng monoton wachsend auf [a,b] ist.

- (d) [true] $f'(x) \ge 0$ für alle $x \in (a,b)$, falls f streng wachsend auf [a,b] ist.
- 6. (Hauptsatz der Differential und Integralrechnung.) Welche der folgenden Aussagen sind korrekt?
 - (a) [true] Jede (auf einem Intervall) stetige Funktion hat eine Stammfunktion.
 - (b) [true] Jede (auf einem Intervall) differenzierbare Funktion hat eine Stammfunktion.
 - (c) [false] Jede (auf einem Intervall) integrierbare Funktion hat eine Stammfunktion.
 - (d) [true] Jede (auf einem Intervall) stetig differenzierbare Funktion hat eine Stammfunktion.

3 Beispiele & Gegenbeispiele

1. (Grenzwerte.) Gegeben ist eine reelle Folge (x_n) , die auf Konvergenz untersucht werden soll. Es gelte, dass

$$\lim_{n \to \infty} x_{n+1} = 17.$$

Welche der folgenden Aussagen sind korrekt?

- (a) [false] (x_n) ist konvergent mit $\lim x_n = 17 + 1 = 18$.
- (b) [true] (x_n) ist konvergent mit $\lim x_n = 17$.
- (c) [false] (x_n) kann konvergent oder divergent sein. Das lässt sich aufgrund der Angabe nicht entscheiden.
- (d) [false] (x_n) ist konvergent mit $\lim x_n = 17 1 = 16$.
- 2. (Die Vorzeichenmaschine konvergiert doch nicht!) Jemand beweist, dass die Folge $a_n=(-1)^n$ konvergiert und zwar mit Grenzwert

$$\lim_{n \to \infty} (-1)^n = 0.$$

Dafür wird folgendes Argument bemüht:

$$0 = \lim_{n \to \infty} 0 = \lim_{n \to \infty} \left((-1)^n + (-1)^{n+1} \right)$$

$$= \lim_{n \to \infty} (-1)^n + \lim_{n \to \infty} (-1)^{n+1} = \lim_{n \to \infty} (-1)^n + \lim_{n \to \infty} (-1)^n = 2 \lim_{n \to \infty} (-1)^n$$

$$\implies \lim_{n \to \infty} (-1)^n = 0$$

Das ist natürlich falsch! Aber wo liegt/liegen der/die Fehler?

- (a) [false] Das 2. Gleichheitszeichen ist falsch.
- (b) [true] Das 3. Gleichheitszeichen ist falsch.
- (c) [false] Das 4. Gleichheitszeichen ist falsch.
- (d) [false] Die Schlussfolgerung bei "⇒" ist falsch.
- 3. (Stetigkeit aus der Definition.) Welche der folgenden Aussagen sind korrekt? Die Stetigkeit der Funktion

$$f(x) = 3x$$

in einem beliebigen Punkt $x_0 \in \mathbb{R}$ folgt aus dem ε - δ -Kriterium da wir

- (a) [false] zu $\delta > 0$ beliebig gegeben, $\varepsilon = \delta/3$ wählen können.
- (b) [false] zu $\delta > 0$ beliebig gegeben, $\varepsilon = 3\delta$ wählen können.
- (c) [false] zu $\varepsilon > 0$ beliebig gegeben, $\delta = 3\varepsilon$ wählen können.
- (d) [true] zu $\varepsilon > 0$ beliebig gegeben, $\delta = \varepsilon/3$ wählen können.
- 4. (Beschränkte Funktionen.) Welche der Aussagen sind korrekt? Eine Funktion

$$f:[a,b]\to\mathbb{R}$$

ist beschränkt, falls

- (a) [true] f(a) = 0 gilt und sie monoton fallend ist.
- (b) [true] sie stetig ist.
- (c) [false] falls sie stetig auf (a, b) ist.
- (d) [false] sie differenzierbar auf (a, b) ist und f(a) = f(b) = 0 gilt.
- 5. *(Funktionsgrenzwerte.)* Gegeben sind zwei Funktionen $f,g:(0,\infty)\to\mathbb{R}$ und es gelte

$$\lim_{x \to 0} f(x) = 0.$$

Welche Aussagen sind korrekt?

- (a) [false] Es gilt $\lim_{x\to 0} f(x) g(x) = 0$, denn f(x) g(x) = 0 g(x) = 0.
- (b) [false] Es gilt $\lim_{x\to 0} (f(x) g(x)) = \lim_{x\to 0} f(x) \lim_{x\to 0} g(x) = 0.$
- (c) [false] Es gilt $\lim_{x\to 0} f(x) g(x) \neq 0$.
- (d) [true] Keine der anderen Aussagen ist korrekt.

6. (Funktionseigenschaften.) Welche der folgenden Implikationen gelten für eine Funktion

$$f:[a,b]\to\mathbb{R}$$
 ?

- (a) [false] f stetig $\Longrightarrow f$ beschränkt $\Longrightarrow f$ integrierbar
- (b) [true] f stetig $\Longrightarrow f$ integrierbar $\Longrightarrow f$ beschränkt
- (c) [false] f integrierbar $\Longrightarrow f$ stetig $\Longrightarrow f$ beschränkt
- (d) [false] f integrierbar $\Longrightarrow f$ beschränkt $\Longrightarrow f$ stetig

4 Konkrete Beispiele

1. (Reihenkonvergenz, 1.) Welche der folgenden Argumente begründet korrekt die Konvergenz der Reihe

$$\sum_{n=0}^{\infty} \frac{n!}{n^n} ?$$

- (a) [true] Der Quotiententest zeigt die Konvergenz dieser Reihe.
- (b) [false] $\frac{n!}{n^n} \to 0$ und daher konvergiert die Reihe.
- (c) [false] $\frac{n!}{n^n} < \frac{1}{n}$ und daher konvergiert die Reihe.
- (d) [true] $\frac{n!}{n^n} < \frac{1}{n^2}$ und daher konvergiert die Reihe.
- 2. (Komplexe Reihen.) Welche der folgenden Aussagen sind korrekt? Die komplexe Reihe

$$\sum_{n=0}^{\infty} \left(\frac{3}{4} + \frac{3}{4} i \right)^n$$

- (a) [false] ist konvergent, denn $|\frac{3}{4}|<1.$
- (b) [false] ist konvergent, denn $|\frac{3}{4}+\frac{3}{4}\,\mathrm{i}|<1.$
- (c) [false] ist divergent, denn $\left|\frac{3}{4}\right| > 1$.
- (d) [true] ist divergent, denn $|\frac{3}{4}+\frac{3}{4}\,\mathrm{i}|>1.$
- 3. (Reihenkonvergenz, 2.) Ist die folgende Gleichung korrrekt

$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \frac{1}{36} + \dots = \frac{1}{4} + 1 + \frac{1}{16} + \frac{1}{9} + \frac{1}{36} + \frac{1}{25} + \dots$$

6

und welche der Argumente treffen zu?

- (a) [false] Auf beiden Seiten stehen dieselben Summanden, nur in anderer Reihenfolge. Daher gilt die Gleichung.
- (b) [false] Auf beiden Seiten handelt es sich um konvergente Reihen, daher stimmt die Gleichung.
- (c) [true] Die Reihe auf der linken Seite ist absolut konvergent und daher gilt die Gleichheit.
- (d) [false] Die Reihe auf der rechten Seite divergiert und daher ist die Gleichung falsch.
- 4. (Differenzierbarkeit.) Wir betrachten die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \left\{ \begin{array}{ll} \sqrt{-x} & x \le 0 \\ -\sqrt{x} & x \ge 0 \end{array} \right.$$

Welche der folgenden Aussagen sind korrekt?

- (a) [false] f ist in $\xi=0$ differenzierbar und die Tangente in $\xi=0$ ist die Gerade y=-x.
- (b) [false] f ist in $\xi = 0$ differenzierbar und es gilt $\lim_{0 \neq x \to 0} f'(x) = -1$
- (c) [false] f ist in $\xi=0$ nicht differenzierbar, weil der Limes $\lim_{0\neq x\to 0}f'(x)$ nicht existiert.
- (d) [true] f ist in $\xi=0$ nicht differenzierbar und es gilt $\lim_{0\neq x\to 0}f'(x)=-\infty$.
- 5. (Kurvendiskussion.) Die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^4$$

ist ein Beispiel dafür, dass eine zweimal differenzierbare Funktion an der Stelle $\xi=0$

- (a) [false] ein lokales Extremum haben muss, wenn f'(0) = 0 und f''(x) = 0 gilt.
- (b) [false] kein lokales Extremum haben muss, wenn f'(0) = 0 und f''(x) = 0 gilt.
- (c) [true] ein lokales Extremum haben kann, wenn f'(0) = 0 und f''(x) = 0 gilt.
- (d) [false] ein lokales Extremum haben kann, wenn f'(0) = 0 und $f''(x) \neq 0$ gilt.

6. *(Uneigentliches Integral.)* Welche der Aussagen über das uneigentliche Integral

$$\int_0^\infty \cos(x) \, dx$$

sind korrekt?

(a) [false] Das Integral hat den Wert 0, denn \cos ist periodich und es gilt

$$\int_0^{\pi} \cos(x) \, dx = \sin(x) \mid_0^{\pi} = 0 \, .$$

(b) [false] Das Integral hat den Wert 0, denn cos ist periodich und es gilt

$$\int_0^{2\pi} \cos(x) \, dx = \sin(x) \mid_0^{2\pi} = 0 \, .$$

(c) [false] Das Integral hat den Wert 0, denn es gilt

$$\int_0^\infty \cos(x) \, dx = \lim_{n \to \infty} \int_0^{n \, 2\pi} \cos(x) \, dx = 0.$$

(d) [true] Das Integral existiert nicht, weil

$$\int_0^\infty \cos(x) \, dx = \lim_{b \to \infty} \int_0^b \cos(x) \, dx \, .$$

nicht existiert.

(a) Folls Xn > X Flus ARREITONG

(convergiet, down sind in Sin Sind in X fost olle xn; dohe bleiben for einen freiten lown -Wet kondidaten milt penny Folgenphich über... jede & Umpeber um Hormole: Any X Ly Horen Grentwell von Kn mit x x y; down wohle &= 1x-91 ((x x y)

Donnt sind beca and becy) dijust. liegen fost elle x in lexo, blaben cho für Uz (y) nov. enellet vic le xa abing and y ist dole clock with Greatest von Xn. (6) 27: | Xa bendröntt =) Xn hot einen Hönfarswet Schrift 1: Pillels de Vollstandig tet wird en Kondidot für den Hu gefunden. ilb. Vocoussely pill 10,1 = K (lut est passendes K). Die Houptidee ist einen die Menje A que behoulten, die our Phren besteht die na von hichstens andt sielen Xu The boffen A= {xeR | xn > x for hichstens } endl. vielen }

Siche milt lanxa > K · A + 9, den Ke A · A ist noub denn geder X 2 - K lightin AC The hot A in Infinum a. 2 Petrotto & ist Huron on. Wat ore eA lieger fost oble Xn links von O+E Also lieger inspersont unendbilerele Xn Wal o-E & A liegen anendbis Vicle Xn vecht von 0-E in UE(a) Wail & beliebig wo ist o Huse- Ka (20) Die Nallskelle ist milt andeaty, deun erstens Kom die Interallhol Geragin Zover Nallslellen ibspringer:

Nullsteller

The Springer:

Nullsteller

The State of the Springer:

Justen pihter legenhypiele; siehe denfolls oben. Jo, floor out goodschlig vicle NST hober, 2.B. $\sim 1 N_1 N_2$ (6) Der Un tesschied Ju. der Stehig kart and de plum. Skrighert ist, closs bei de plan. Stehig hat bei perebenen E>0 des of milt vom Phtob-Vinje-dorf. D.h. es mul for alle x e [o, b] en en herlicher sicher hertistevoll am x pelan, sodors elle Parlite dorch & nobre on fexi liegen. Wenn of belonders start wird, mos mon i.o. dos of klein wähle: mighides S-Intervolli pros"

Wear foul onem by Interest stilly 17t, konnes pagen den stand hin wilt beliebig skil veden (in Untishied Jul/x out (0,1)) 2 Wied imme strik Dolw ist so ein f doun oud glm-stety, wat mon dos vorsichtyde" Clariste & wählen koun.

13/(a) Talcarder HS-DI: Sfet) dt = Fla lor jede Stomphia Front einight in wesentlichen dos prohibile Berahne von Integralen. Stott outvendige Ober & Unbrinkeprde ode Riemonn-Cemma kour sho die Fliche cente ahem Flitspropher cirfold on thets flownflit berechnel veder. (b) Gringliher 4 · Jede Trepper flt Yout 42 Ho mul mindestens den Wet I hoben o to and the form of · Jede Trappull 4 ml 42 No mas 60 blerben. XQ = \ \(\lambda \times \in \text{R} \\ \times \\ \times \times \in \times \in \times =) S421, S4€0 Dob SXO + Sx XQ