Optimal Device Selection in Spectrum Sharing Channel under Energy Harvesting Aided D2D Communication

Shashank Murugesh

August 27, 2020

Outline

- Introduction
- Previous work
- Project Objective
- Proposed Method for Optimal Device Selection
- Results and Discussion
- Conclusion

Introduction: Cellular Data Traffic

Widespread use of portables devices has led to a tremendous surge in demand for mobile data traffic

Figure: Mobile data traffic growth prediction ¹

Shashank Murugesh Optimal Device Selection August 27, 2020 3/25

¹Cisco visual networking index:global mobile data traffic forecast update, 2017–2022

Introduction: Cellular Data Traffic

Widespread use of portables devices has led to a tremendous surge in demand for mobile data traffic

Figure: Mobile data traffic growth prediction ¹

This increase in data traffic has lead to spectrum scarcity.

Shashank Murugesh Optimal Device Selection August 27, 2020 3 / 25

¹Cisco visual networking index:global mobile data traffic forecast update, 2017–2022

Introduction: Enhancing Spectral Efficiency

• **Spectrum Sharing:** helps to access the licensed spectrum in an opportunistic manner.

Introduction: Enhancing Spectral Efficiency

• **Spectrum Sharing:** helps to access the licensed spectrum in an opportunistic manner.

Use case: device-to-device (D2D) transmissions among its users.

Introduction: Enhancing Spectral Efficiency

• **Spectrum Sharing:** helps to access the licensed spectrum in an opportunistic manner.

Use case: device-to-device (D2D) transmissions among its users.

• **D2D Communications:** enables devices to communicate directly without base stations.

• **Challenge 1**: Wireless communication is susceptible to numerous attacks.

- Challenge 1: Wireless communication is susceptible to numerous attacks.
 - ► **Solution**: Use Physical Layer Security (PLS).

- Challenge 1: Wireless communication is susceptible to numerous attacks.
 - ► **Solution**: Use Physical Layer Security (PLS).
- Challenge 2: Power-limited devices: Difficult to maintain power cable connection.

- Challenge 1: Wireless communication is susceptible to numerous attacks.
 - Solution: Use Physical Layer Security (PLS).
- Challenge 2: Power-limited devices: Difficult to maintain power cable connection.
 - Solution: Use Energy harvesting (EH) to recharge power-limited devices.

²Towards a win-win spectrum sharing channel

Previous Work

• Hyadi et al.² investigated the optimality of sharing cellular spectrum with the underlying D2D system when both system are interested in transmitting secret message.

²Towards a win-win spectrum sharing channel

Previous Work

- Hyadi et al.² investigated the optimality of sharing cellular spectrum with the underlying D2D system when both system are interested in transmitting secret message.
- No energy limitation on the devices in the D2D system.

²Towards a win-win spectrum sharing channel

Previous Work

- Hyadi et al.² investigated the optimality of sharing cellular spectrum with the underlying D2D system when both system are interested in transmitting secret message.
- No energy limitation on the devices in the D2D system.

Project Objective:

Previous Work

- Hyadi et al.² investigated the optimality of sharing cellular spectrum with the underlying D2D system when both system are interested in transmitting secret message.
- No energy limitation on the devices in the D2D system.

Project Objective:

• We introduce Energy harvesting in the underlying D2D system.

Previous Work

- Hyadi et al.² investigated the optimality of sharing cellular spectrum with the underlying D2D system when both system are interested in transmitting secret message.
- No energy limitation on the devices in the D2D system.

Project Objective:

- We introduce Energy harvesting in the underlying D2D system.
- We propose an optimal device selection scheme to improve the secrecy performance of both cellular system and EH-aided D2D pairs.

Optimal Device Selection: System Model

Figure: System Model

Optimal Device Selection: System Model

Received Signals are given by :

$$Y_{C_n} = h_{c_n} X_C + \mathbf{L}_{D_n} \mathbf{X}_D + \mathbf{L}_{A_n} \mathbf{X}_J + n_{C_n}$$

$$Y_{D_i} = h_{d_i} X_{D_i} + l_{c_i} X_C + \hat{\mathbf{L}}_{D_i} \hat{\mathbf{X}}_D + \hat{\mathbf{L}}_{A_i} \mathbf{X}_J + n_{D_i}$$

$$Y_{E_m} = g_{c_m} X_C + \mathbf{G}_{D_m} \mathbf{X}_D + \mathbf{G}_{A_m} \mathbf{X}_J + n_{E_m}$$

 X_C , X_D is the primary and secondary secret data signals.

 X_J is secondary jamming signals.

 \mathbf{L}_{D_n} , \mathbf{L}_{A_n} , $\hat{\mathbf{L}}_{D_i}$, $\hat{\mathbf{L}}_{A_i}$, \mathbf{G}_{D_m} , and \mathbf{G}_{A_m} are channel gain vectors. n_{C_n} , n_{D_i} , and n_{E_m} represent the additive white Gaussian noise (AWGN).

Optimal Device Selection: System Model

Received Signals are given by :

$$Y_{C_n} = h_{c_n} X_C + \mathbf{L}_{D_n} \mathbf{X}_D + \mathbf{L}_{A_n} \mathbf{X}_J + n_{C_n}$$

$$Y_{D_i} = h_{d_i} X_{D_i} + l_{c_i} X_C + \hat{\mathbf{L}}_{D_i} \hat{\mathbf{X}}_D + \hat{\mathbf{L}}_{A_i} \mathbf{X}_J + n_{D_i}$$

$$Y_{E_m} = g_{c_m} X_C + \mathbf{G}_{D_m} \mathbf{X}_D + \mathbf{G}_{A_m} \mathbf{X}_J + n_{E_m}$$

 X_C , X_D is the primary and secondary secret data signals.

X_J is secondary jamming signals.

 \mathbf{L}_{D_n} , \mathbf{L}_{A_n} , $\hat{\mathbf{L}}_{D_i}$, $\hat{\mathbf{L}}_{A_i}$, \mathbf{G}_{D_m} , and \mathbf{G}_{A_m} are channel gain vectors.

 n_{C_n} , n_{D_i} , and n_{E_m} represent the additive white Gaussian noise (AWGN).

Jamming Signals Generation:

$$\hat{\mathbf{L}}_A \mathbf{X}_J = 0$$
 $\mathbf{L}_{A_n *} \mathbf{X}_J = 0$

Recap: The work by Hyadi et al. considers no energy limitation on the underlying D2D system.

Recap: The work by Hyadi et al. considers no energy limitation on the underlying D2D system.

We consider that all K D2D transmitters have energy harvesting abilities.

Recap: The work by Hyadi et al. considers no energy limitation on the underlying D2D system.

We consider that all K D2D transmitters have energy harvesting abilities.

Scenario 1:

- Enough energy to transmit secret messages.
- ► Only devices with harvested energy above certain energy threshold can send friendly jamming signals.

Scenario 1: Problem Statement

Given the primary's secrecy sum-rate condition ${}^3\mathcal{R}_{\mathit{C_{sum}}} > \mathcal{R}_{th}$ and energy constraint $E_k \geq E_{min} \ \forall k \in \{1, \dots, K\}$. Find the optimal number of K_S^* and K_J^* that maximizes the secondary secrecy throughput.

10 / 25

Shashank Murugesh Optimal Device Selection August 27, 2020

³Ref: Page 12 in report for the primary's secrecy sum-rate expression

⁴Ref: Page 13 in report for the the secondary's secrecy sum-rate expression

Scenario 1: Problem Statement

Given the primary's secrecy sum-rate condition ${}^3\mathcal{R}_{C_{sum}} > \mathcal{R}_{th}$ and energy constraint $E_k \geq E_{min} \ \forall k \in \{1,\ldots,K\}$. Find the optimal number of K_S^* and K_J^* that maximizes the secondary secrecy throughput.

$$K_S^* \text{ and } K_J^* = \begin{cases} \underset{1 \le K_S \le K_J - 1}{\text{argmax}} & ^4 \sum_{k=1}^{K_S} \mathcal{R}_{D_k} \\ \underset{2 \le K_J \le K - 1}{\text{subject to}} & \mathcal{R}_{C_{sum}}(K_S, K_J) \ge \mathcal{R}_{th} \\ \text{s.t.} & K_S + K_J \le K \end{cases}$$
 (1)

Shashank Murugesh Optimal Device Selection August 27, 2020

10 / 25

³Ref: Page 12 in report for the primary's secrecy sum-rate expression

⁴Ref: Page 13 in report for the the secondary's secrecy sum-rate expression

Scenario 1: Algorithm

Figure: Device selection algorithm

Scenario 1: Results

Figure: Optimum number of device

Figure: Achievable secrecy sum-rates

Recap: $E_k > E_{min} \ \forall k \in \{1, \dots, K\}$

Recap:
$$E_k > E_{min} \ \forall k \in \{1, \dots, K\}$$

• What's the issue?

Recap:
$$E_k > E_{min} \ \forall k \in \{1, \ldots, K\}$$

• What's the issue? **Energy inefficient!**

Recap:
$$E_k > E_{min} \ \forall k \in \{1, \dots, K\}$$

• What's the issue? **Energy inefficient!** Devices with the energy less than the threshold (E_{min}) will be inactive for the entire time duration.

Recap: $E_k > E_{min} \ \forall k \in \{1, \dots, K\}$

- What's the issue? **Energy inefficient!** Devices with the energy less than the threshold (E_{min}) will be inactive for the entire time duration.
- Solution:

Recap:
$$E_k > E_{min} \ \forall k \in \{1, \dots, K\}$$

- What's the issue? **Energy inefficient!** Devices with the energy less than the threshold (E_{min}) will be inactive for the entire time duration.
- Solution: Reduce E_{min} , we know that $E_{min} = P_d * t$.

Scenario 2

• The harvested energy is utilized in transmitting either data signals or jamming signals.

Scenario 2

- The harvested energy is utilized in transmitting either data signals or jamming signals.
- To increase the energy and spectral efficiencies, we divide the operating time duration into T sub-slots of equal duration δ .

Optimal Device Selection: Scenario 2

Scenario 2

- The harvested energy is utilized in transmitting either data signals or jamming signals.
- To increase the energy and spectral efficiencies, we divide the operating time duration into T sub-slots of equal duration δ .
- Now, the minimum energy required to transmit any signal for the duration δ is given by:

$$E_{min} = P_d * \delta \tag{2}$$

where P_d is the transmit power of secondary devices.

Scenario 2: Problem Statement

Given the primary's secrecy sum-rate condition ${}^5R_{C_{sum},\tau} > \mathcal{R}_{th}$ and energy constraint $E_{k,\tau} \geq E_{min}$. Find $K_{S,\tau}^*$ and $K_{J,\tau}^*$ for each sub-slot τ that maximizes the secondary secrecy throughput over all the sub-slots i.e.

Shashank Murugesh Optimal Device Selection August 27, 2020 15 / 25

⁵Ref: Page 23 in report for the primary's secrecy sum-rate expression

 $^{^6}$ Ref: Page 23 in report for the secondary's secrecy throughput expression

Scenario 2: Problem Statement

Given the primary's secrecy sum-rate condition ${}^5R_{C_{sum},\tau} > \mathcal{R}_{th}$ and energy constraint $E_{k,\tau} \geq E_{min}$. Find $K_{S,\tau}^*$ and $K_{J,\tau}^*$ for each sub-slot τ that maximizes the secondary secrecy throughput over all the sub-slots i.e.

Find
$$\begin{bmatrix} (K_{S,1}^*, K_{J,1}^*), \dots, (K_{S,T}^*, K_{J,T}^*) \end{bmatrix}$$
maximize
$$^6 \sum_{\tau=1}^T \mathcal{R}_{\tau}$$
subjected to
$$\mathcal{R}_{C_{sum,\tau}}(K_{S,\tau}, K_{J,\tau}) \geq \mathcal{R}_{th} \quad \forall \tau,$$
s.t
$$1 \leq K_{S,\tau} \leq K_{J,\tau} - 1 \text{ and } 2 \leq K_{J,\tau} \leq K - 1,$$

$$K_{S,\tau} + K_{J,\tau} \leq K$$

$$(3)$$

Shashank Murugesh Optimal Device Selection August 27, 2020 15 / 25

⁵Ref: Page 23 in report for the primary's secrecy sum-rate expression

⁶Ref: Page 23 in report for the secondary's secrecy throughput expression

Scenario 2: Algorithm

Figure: Optimal device selection algorithm

Scenario 2: Computation time

Table: Computation time optimal device selection

K	Time taken	Time taken	
	(sub-slot 1)	(sub-slot 2)	
6	$2.7947 \sec$	$16.7562 \; { m sec}$	
7	$24.322 \sec$	20.23 min	

Scenario 2: Computation time

Table: Computation time optimal device selection

K	Time taken	Time taken	
	(sub-slot 1)	(sub-slot 2)	
6	$2.7947 \sec$	16.7562 sec	
7	$24.322 \sec$	20.23 min	

Issue: Computation complexity

 The computation complexity grows exponentially, as the number of sub-slots increases

Scenario 2: Computation time

Table: Computation time optimal device selection

K	Time taken	Time taken	
	(sub-slot 1)	(sub-slot 2)	
6	$2.7947 \sec$	16.7562 sec	
7	$24.322 \sec$	20.23 min	

Issue: Computation complexity

 The computation complexity grows exponentially, as the number of sub-slots increases

Solution: Sub-optimal solution

 Decrease the search space. That is, reduce the number of combinations at each sub-slot that the algorithm has to search

Scenario 2: Sub-optimal algorithm

Figure: Sub-optimal device selection algorithm

Scenario 2: Results

Table: Comparison of device selection and secrecy throughput between optimal and sub-optimal solutions

Device selection scheme	K	(KS,KJ)		RD	Rc sum
Device selection scheme		S1	S2	throughput	itc_sum
Optimal	6	(0,2)	(0,2)	0.115	0.872
Optimai	7	(1,5)	(1,4)	0.356	2.46
Sub-optimal	6	(0,2)	(0,2)	0.115	0.872
(maxRD threshold 20%)	7	(1,5)	(1,4)	0.356	2.46

Scenario 2: Sub-optimal solution results

Table: Device selection using sub-optimal solution across 4 sub-slots

Number of	K	(KS, KJ)			
sub-slots	K	S1	S2	S3	S4
No sub-slot	6	(0,2)			
	7	(1,4)			
	8	(1,5)			
	9	(1,6)			
4	6	(1,3)	(0,2)	(0,2)	(0,2)
	7	(1,6)	(1,5)	(1,4)	(1,4)
	8	(1,6)	(1,6)	(1,6)	(1,7)
	9	(1,7)	(1,7)	(1,7)	(1,7)

Scenario 2: Sub-optimal solution results

Figure: Achievable secrecy rate with 4 sub-slots and no sub-slot by fixing sub-optimal max \mathcal{R}_D threshold (Γ_{th}^{maxRD}) to 20%.

Scenario 2: Sub-optimal solution results

Figure: Achievable secrecy rate with Γ_{th}^{maxRD} 20% and Γ_{th}^{maxRD} 50% using sub-optimal device selection scheme, with 4 sub-slots.

• We propose sub-optimal solution to reduce computational complexity.

- We propose sub-optimal solution to reduce computational complexity.
- The secondary devices at each sub-slot are chosen based on energy constraint. Proposed algorithm selects K_S and K_J such that the overall secondary throughput across all the sub-slots is maximized.

- We propose sub-optimal solution to reduce computational complexity.
- The secondary devices at each sub-slot are chosen based on energy constraint. Proposed algorithm selects K_S and K_J such that the overall secondary throughput across all the sub-slots is maximized.
- We also observe an improvement in the secrecy performance of secondary and primary system when increasing the number of sub-slots.

- We propose sub-optimal solution to reduce computational complexity.
- The secondary devices at each sub-slot are chosen based on energy constraint. Proposed algorithm selects K_S and K_J such that the overall secondary throughput across all the sub-slots is maximized.
- We also observe an improvement in the secrecy performance of secondary and primary system when increasing the number of sub-slots.

Future work

Perform analysis on online energy harvesting scheme.

Thank you!

References

Amal Hyadi and Fabrice Labeau. "Towards a Win-Win Spectrum Sharing Channel: A Secrecy Perspective". In: *ICC 2019-2019 IEEE International Conference on Communications (ICC)*. IEEE. 2019, pp. 1–6.