ON THE EQUIVALENCE OF OFFSET AND WEIGHTED GLMS AND GBMS

Thomas Bury

Internal Presentation - September 2025

VOCABULARY & NOTATION

- Data:
 - $-n_i$ ∈ {0, 1, 2, ...}: observed number of claims for cell i.
 - ω_i > 0: exposure (e.g. policy-years) for cell *i*.
 - $-x_i$ ∈ \mathbb{R}^p : vector of covariates (risk factors).
- Model parameters:
 - β ∈ \mathbb{R}^p : regression coefficients.
 - $-\eta_i = x_i^{\mathsf{T}} \beta$: linear predictor.
 - $\mu_i = \exp(\eta_i)$: frequency per unit exposure.
 - $\lambda_i = \omega_i \mu_i$: expected count of claims.
- Tariff cells:
 - Defined by discretization (binning) of risk factors.
 - Within each cell, exposure ω_i aggregates homogeneous risks.

TWO WAYS TO INCORPORATE EXPOSURE

Poisson regression with offset

$$N_i \sim \text{Poisson}(\lambda_i), \quad \lambda_i = \omega_i \mu_i, \quad \log \mu_i = x_i^{\mathsf{T}} \beta.$$

Equivalent to

$$\log \lambda_i = \log \omega_i + x_i^{\mathsf{T}} \beta,$$

where $\log \omega_i$ enters as a fixed offset.

Quasi-likelihood on rates with weights

Define rate $r_i = n_i/\omega_i$. Objective:

$$L_{\text{wt}}(\beta) = \sum_{i} \omega_{i} [r_{i}\eta_{i} - e^{\eta_{i}}].$$

This is algebraically identical to the offset likelihood (see later proof).

INTUITION: OFFSET VS WEIGHTS

- **Offset view:** We predict counts. Exposure acts as a known multiplicative factor in *intensity* λ_i .
- **Weight view:** We normalize by exposure to work with frequencies. To preserve the correct variance structure, we re-weight each observation by ω_i .
- Mathematically: both give the same score and Hessian \Rightarrow identical $\hat{\beta}$.
- Practically: choice is about implementation (e.g., GLM vs. LightGBM).

STEP 1 — POISSON WITH LOG-EXPOSURE OFFSET

True Poisson log-likelihood (constants in n_i ! dropped)

$$\ell_{\text{off}}(\beta) = \sum_{i=1}^{N} \left[n_i \log \lambda_i - \lambda_i \right] = \sum_{i=1}^{N} \left[n_i (\log \omega_i + \eta_i) - \omega_i e^{\eta_i} \right].$$

Drop terms independent of β to get the optimization objective:

$$\ell_{\text{off}}(\beta) = \sum_{i=1}^{N} \left[n_i \eta_i - \omega_i e^{\eta_i} \right].$$

Score and Hessian

$$\nabla \ell_{\text{off}} = \sum_{i=1}^{N} (n_i - \omega_i e^{\eta_i}) x_i, \qquad \nabla^2 \ell_{\text{off}} = -\sum_{i=1}^{N} \omega_i e^{\eta_i} x_i x_i^{\mathsf{T}}.$$

Canonical link $\log \Rightarrow$ strict concavity in $\beta \Rightarrow$ unique maximizer $\hat{\beta}$.

STEP 2 — "RATES + WEIGHTS": DEFINE A QUASI-LIKELIHOOD

Key caveat

If N_i is Poisson, the rate $R_i \equiv N_i/\omega_i$ is **not** Poisson. There is no valid "likelihood of the rates."

Construct a weighted quasi-likelihood per unit exposure

Define $r_i = n_i/\omega_i$ and consider

$$\ell_{\text{wt}}(\beta) = \sum_{i=1}^{N} \omega_i [r_i \eta_i - e^{\eta_i}] = \sum_{i=1}^{N} [n_i \eta_i - \omega_i e^{\eta_i}].$$

Score and Hessian (identical to offset)

$$\nabla \ell_{\mathsf{wt}} = \sum_{i=1}^{N} (n_i - \omega_i e^{\eta_i}) x_i, \qquad \nabla^2 \ell_{\mathsf{wt}} = -\sum_{i=1}^{N} \omega_i e^{\eta_i} x_i x_i^{\mathsf{T}}.$$

Estimator equivalence: ℓ_{wt} and ℓ_{off} have the same score/Hessian \Rightarrow same $\hat{\beta}$ and same fitted means.

STEP 3 — WHY THE OPTIMIZERS COINCIDE

1. Offset likelihood objective:

$$\ell_{\text{off}}(\beta) = \sum_{i} [n_i \eta_i - \omega_i e^{\eta_i}].$$

2. Quasi-likelihood (rates + weights):

$$\ell_{\text{wt}}(\beta) = \sum_{i} \omega_{i} [(n_{i}/\omega_{i})\eta_{i} - e^{\eta_{i}}] = \sum_{i} [n_{i}\eta_{i} - \omega_{i}e^{\eta_{i}}].$$

- 3. Therefore $\ell_{\text{off}} \equiv \ell_{\text{wt}}$ as functions of β (up to constants), with identical score/Hessian.
- 4. Strict concavity under log link \Rightarrow unique maximizer $\hat{\beta}$ in both cases.

What this statement is

Equality of optimization objectives/estimators (likelihood vs. quasi-likelihood), not equality of a true likelihood for R_i .

CONDITIONS FOR EQUIVALENCE & WHERE IT FAILS

Holds when

- Poisson GLM with canonical log link.
- Objective is the sum of contributions (no hidden normalization changes).
- No extra penalties, or penalties scaled consistently across parameterizations.

Does not hold when

- Using non-canonical links or different distributions (e.g., NB with logit of mean-variance).
- Using squared error on rates (MSE on r_i) instead of the Poisson objective.
- Computing likelihood-based ICs (AIC) from the "rates" objective (it is not a true likelihood).

PRACTICAL CAVEATS — POISSON GBM (LIGHTGBM)

Two equivalent ways to encode exposure in LightGBM

- 1. **Sample weights:** use objective="poisson", labels $y_i = r_i$, and sample_weight = ω_i .
- 2. **Offset via init_score:** labels $y_i = n_i$, set init_score = $\log \omega_i$ (per-row constant added to raw score), weights = 1.

Both yield identical per-point gradients/Hessians:

$$g_i = \omega_i e^{f_i} - n_i, \qquad h_i = \omega_i e^{f_i},$$

with f_i the current raw score (including init_score when used).

PRACTICAL CAVEATS — POISSON GBM (LIGHTGBM)

Which should we use in a dataset class?

stopping/metrics.

• Use init score = log (v); when you need an explicit offset (e.g., to align with GLM formulations, or

Default to sample weight = ω_i for LightGBM Poisson: simplest, robust across CV/early

- Use init_score = $\log \omega_i$ when you need an explicit offset (e.g., to align with GLM formulations, or to pass the same offset into scoring on holdout).
- Provide a toggle and test that the two modes produce numerically equivalent training curves on the same seed.

PRACTICAL CAVEATS — METRICS, REGULARIZATION, STABILITY

- Tiny exposure small exposure values can break the optimization or prevent convergence.
- **Metrics & early stopping:** ensure validation metrics are computed with the *same* weights ω_i if using sample_weight. Mixing weighted training with unweighted early stopping biases model selection.
- **Regularization scaling:** many libs minimize averaged loss. If you switch between offset and weights, the effective strength of ℓ_1/ℓ_2 penalties may change. Scale penalties with total weight.
- **Prediction reconstruction:** with sample_weight, model learns η_i ; compute $\hat{\lambda}_i = \omega_i \exp(\hat{\eta}_i)$. With init_score, the offset is already baked into the raw score.
- Large exposures: extremely large ω_i can dominate gradients. Consider capping exposures or grouping to stabilize training; always inspect leverage points.
- Don't use MSE on rates: it breaks the Poisson equivalence; stick to the Poisson objective for count data with
 exposure.

BOTTOM LINE & REFERENCES

- For Poisson/log-link GLMs, log-exposure offset and rates + weights yield the same estimator (identical score/Hessian).
- In LightGBM, prefer sample_weight for simplicity; support init_score when an explicit offset is required. Validate equivalence in unit tests.

Statement noted in [3] (no proof). See also GLM treatments for the Exponential Dispersion Family under canonical links in [1].

TWEEDIE DISTRIBUTION (SETUP)

Let Y_i be aggregate claims for risk i, with exposure $\omega_i > 0$ and covariates x_i . We define:

$$R_i = \frac{Y_i}{\omega_i}, \qquad \mu_i = \mathbb{E}[R_i], \qquad \tilde{\mu}_i = \mathbb{E}[Y_i] = \omega_i \mu_i.$$

We use a Tweedie GLM with power index $p \in (1,2]$ and a log link:

$$\eta_i = x_i^{\mathsf{T}} \beta, \quad \mu_i = e^{\eta_i}, \quad \log \tilde{\mu}_i = \log \omega_i + \eta_i.$$

Tweedie exponential dispersion family

The density (up to a normalising constant c) is

$$f(y_i; \tilde{\mu}_i, \phi, p) = \exp \left\{ \frac{y_i \tilde{\mu}_i^{1-p}}{(1-p) \phi} - \frac{\tilde{\mu}_i^{2-p}}{(2-p) \phi} + c(y_i, \phi, p) \right\},\,$$

with variance function

$$Var(Y_i) = \varphi \tilde{\mu}_i^p$$
.

ITERATIVELY REWEIGHTED LEAST SQUARES (IRLS)

In a GLM, the coefficients β are updated by solving a weighted least squares problem. At iteration t:

$$\beta^{(t+1)} = (X^{\top} W^{(t)} X)^{-1} X^{\top} W^{(t)} z^{(t)}.$$

Working quantities

$$\begin{split} &\eta_i^{(t)} = x_i^\mathsf{T} \beta^{(t)} & \text{(linear predictor)} \\ &\mu_i^{(t)} = g^{-1}(\eta_i^{(t)}) & \text{(fitted mean)} \\ &D_i^{(t)} = \left. \frac{d\mu}{d\eta} \right|_{\eta = \eta_i^{(t)}} & \text{(derivative of link)} \\ &z_i^{(t)} = \eta_i^{(t)} + \frac{y_i - \mu_i^{(t)}}{D_i^{(t)}} & \text{(working response)} \\ &w_i^{(t)} = \frac{1}{\Phi} \frac{(D_i^{(t)})^2}{V(\mu_i^{(t)})} & \text{(working weight)} \end{split}$$

TWEEDIE IRLS (LOG LINK)

For Tweedie GLM with $V(\mu) = \mu^p$ and $g(\mu) = \log \mu$:

$$\mu_i = e^{\eta_i}, \quad \frac{d\mu_i}{d\eta_i} = \mu_i.$$

Offset form (aggregate mean $\tilde{\mu}_i = \omega_i \mu_i$)

$$z_i^{\mathsf{off}} = \log \tilde{\mu}_i + \frac{y_i - \tilde{\mu}_i}{\tilde{\mu}_i}, \quad w_i^{\mathsf{off}} = \frac{1}{\Phi} (\tilde{\mu}_i)^{2-\rho} = \frac{1}{\Phi} (\omega_i \mu_i)^{2-\rho}.$$

Rates + weights form
$$(r_i = y_i/\omega_i, \text{ weight } s_i = \omega_i^{2-p})$$

$$z_i^{\text{wt}} = \eta_i + \frac{r_i - \mu_i}{\mu_i}, \quad w_i^{\text{wt}} = \frac{s_i}{\Phi} \mu_i^{2-p}.$$

TWEEDIE SCORE WITH LOG-EXPOSURE OFFSET (QUASI-LIKELIHOOD)

Quasi log-likelihood (ignoring y-only constants)

$$\ell_{\text{off}}(\beta) \propto -\sum_{i=1}^{N} \frac{1}{\Phi} \left[\frac{(\tilde{\mu}_i)^{2-p}}{2-p} - \frac{y_i(\tilde{\mu}_i)^{1-p}}{1-p} \right], \qquad \tilde{\mu}_i = \omega_i e^{\eta_i}.$$

Score function (log link)

Let $\tilde{\eta}_i = \log \tilde{\mu}_i = \log \omega_i + \eta_i$. Then

$$\nabla \ell_{\text{off}} = \sum_{i=1}^{N} \frac{y_i - \tilde{\mu}_i}{\Phi\left(\tilde{\mu}_i\right)^p} \frac{d\tilde{\mu}_i}{d\tilde{\eta}_i} x_i = \sum_{i=1}^{N} \frac{y_i - \tilde{\mu}_i}{\Phi\left(\tilde{\mu}_i\right)^p} \tilde{\mu}_i x_i = \sum_{i=1}^{N} \frac{y_i - \tilde{\mu}_i}{\Phi} \left(\tilde{\mu}_i\right)^{1-p} x_i.$$

TWEEDIE SCORE WITH PER-EXPOSURE NORMALIZATION (QUASI-LIKELIHOOD)

Define rates $R_i \equiv Y_i/\omega_i$ so that $\mathbb{E}[R_i] = \mu_i$ and

$$Var(R_i) = \frac{Var(Y_i)}{\omega_i^2} = \frac{\phi(\tilde{\mu}_i)^p}{\omega_i^2} = \frac{\phi}{\omega_i^{2-p}} \mu_i^p.$$

Thus the **effective dispersion** for R_i is $\phi_r = \phi/\omega_i^{2-p}$.

prior/sample weight $s_i = \omega_i^{2-p} \iff \phi_r = \phi/s_i$.

Quasi-log-likelihood (up to r_i -only constants): $\ell_{\text{wt}}(\beta) \propto -\sum_{i=1}^N \frac{s_i}{\Phi} \left[\frac{\mu_i^{2-p}}{2-p} - \frac{r_i \mu_i^{1-p}}{1-p} \right]$.

Score (log-link)

With $\eta_i = \log \mu_i$,

$$\nabla \ell_{\mathsf{wt}} = \sum_{i=1}^{N} \frac{s_i}{\varphi} \frac{r_i - \mu_i}{\mu_i^p} \frac{d\mu_i}{d\eta_i} x_i = \sum_{i=1}^{N} \frac{s_i}{\varphi} (r_i - \mu_i) \mu_i^{1-p} x_i.$$

TWEEDIE EQUIVALENCE (LOG LINK)

Key result

With $s_i = \omega_i^{2-p}$ and $r_i = y_i/\omega_i$:

$$\nabla \ell_{\mathsf{off}}(\beta) = \nabla \ell_{\mathsf{wt}}(\beta), \quad W_i^{\mathsf{off}} = W_i^{\mathsf{wt}}.$$

Thus the two approaches give identical estimating equations and Hessian. Special cases:

- p = 1 (Poisson): $s_i = \omega_i$.
- p = 2 (Gamma): $s_i = 1$, exposure affects only the mean.

Conclusion

With a **log link** and **Tweedie variance** $V(\mu) = \mu^p$, the offset and rates+weights formulations yield identical score functions and IRLS weights. Hence, when the GLM normal equations have a unique solution (full column rank), they produce the **same estimator** $\hat{\beta}$ and the same fitted means.

CONDITIONS FOR EQUIVALENCE & WHEN IT FAILS (TWEEDIE)

Holds when

- **Log link** on the mean: $\log \tilde{\mu} = \log \omega + x^T \beta$ so exposure is a true additive offset.
- Tweedie GLM with $V(\mu) = \mu^p$ and $p \in (1, 2]$ (Poisson p=1, Gamma p=2 as limits).
- In *rates* formulation, use **weights** $s_i = \omega_i^{2-p}$.

Fails or changes when

- **Non-log links:** $g(\omega \mu) \neq g(\mu) + \text{const}$, so exposure cannot be a fixed offset; equivalence breaks.
- Wrong weights on rates: using $s_i = \omega_i$ (Poisson-style) when $p \neq 1$ distorts the variance and the estimator.
- **MSE on rates:** replacing the Tweedie objective by squared error destroys the equivalence.
- **Penalties/averaging:** if losses are averaged, rescale ℓ_1/ℓ_2 by total weight to keep regularization comparable across parameterizations.

REM: p=1 (Poisson): $s_i = \omega_i$ and p=2 (Gamma): $s_i = \omega_i^0 = 1$ (exposure offset only; no reweighting).

PRACTICAL CAVEATS — TWEEDIE GBM (LIGHTGBM)

LightGBM uses a log link for objective="tweedie" with index $p \in (1,2)$. Let the raw score be f_i and $\hat{\mu}_i = \exp(f_i)$.

Two equivalent encodings of exposure

1. Offset on totals: train on y_i with

$$init_score_i = log \omega_i$$
, $sample_weight_i = 1$.

2. **Weighted rates:** train on $r_i = y_i/\omega_i$ with

init_score_i = 0, sample_weight_i =
$$\omega_i^{2-p}$$
.

PRACTICAL CAVEATS — TWEEDIE GBM (LIGHTGBM)

Gradient/Hessian equality (ϕ acts as a dispersion constant and cancels in tree growth.)

Per point (lightgbm uses first/second derivatives of the loss):

$$g_i \propto (\hat{\tilde{\mu}}_i)^{2-p} - y_i (\hat{\tilde{\mu}}_i)^{1-p}, \qquad h_i \propto (2-p) (\hat{\tilde{\mu}}_i)^{2-p} - (1-p) y_i (\hat{\tilde{\mu}}_i)^{1-p}.$$

With Option 1, $\hat{\tilde{\mu}}_i = \omega_i e^{\eta_i}$. With Option 2, g_i , h_i are multiplied by ω_i^{2-p} and y_i is replaced by $r_i = y_i/\omega_i$, yielding the **same** g_i , h_i numerically. Hence identical trees (same seed) and the same fitted means.

- Metrics/early stopping: If training on rates, compute validation metrics with the same weights ω^{2-p} (or reconstruct totals).
- **Large exposures:** leverage grows like ω^{2-p} ; inspect/cap extreme exposures to stabilize training.

INTUITION AND TAKEAWAYS (TWEEDIE)

- **Offset view:** exposure scales the *mean* linearly; variance grows as $(\omega \mu)^p$.
- **Rates view:** dividing by ω attenuates variance by ω^{2-p} ; weighting by ω^{2-p} restores the correct contribution to the score/Hessian.
- **Unification:** Poisson $(p=1) \Rightarrow$ weights ω ; Gamma $(p=2) \Rightarrow$ no reweighting; in-between smoothly interpolates.
- Rule of thumb: Log link + weights = ω^{2-p} is the exact Tweedie analogue of the Poisson offset/weights equivalence.

EXPONENTIAL DISPERSION FAMILY (EDF) SETUP

General EDF density:

$$f(y;\theta,\phi) = \exp\left\{\frac{y\theta - b(\theta)}{\phi} + c(y,\phi)\right\},\,$$

with mean $\mu = b'(\theta)$ and variance $Var(Y) = \varphi V(\mu)$.

For GLMs:

$$g(\mu_i) = x_i^{\mathsf{T}} \beta$$
, $g(\cdot)$: link function.

Exposure ω_i enters as:

$$\theta_i \mapsto \theta_i + \log \omega_i$$
 (offset formulation).

TWEEDIE DISTRIBUTION

• The **Tweedie** family: variance function

$$V(\mu) = \mu^p$$
, $1 compound Poisson–Gamma.$

Mean/variance structure:

$$\mathbb{E}[Y_i] = \mu_i, \quad Var(Y_i) = \Phi \mu_i^p.$$

- Used in insurance for claim cost modeling:
 - p = 1 ⇒ overdispersed Poisson (frequency).
 - -p = 2 ⇒ Gamma (severity).
 - -1 < p < 2 ⇒ compound Poisson–Gamma (aggregate claims).

OFFSET VS WEIGHTS IN TWEEDIE GLMS

Offset approach

$$Y_i \sim \mathsf{Tweedie}(\mu_i \omega_i, \phi, p), \qquad \log \mu_i = x_i^{\mathsf{T}} \beta.$$

$$\Rightarrow \log \mathbb{E}[Y_i] = \log \omega_i + x_i^{\top} \beta.$$

Rates + weights approach

$$R_i = \frac{Y_i}{\omega_i}, \qquad \mathbb{E}[R_i] = \mu_i.$$

Variance:

$$Var(R_i) = \frac{\Phi}{\omega_i^{2-p}} \mu_i^p.$$

Weighting by ω_i^{2-p} restores correct variance scaling.

GENERAL EQUIVALENCE CONDITIONS

• For Poisson (p = 1):

$$Var(R_i) = \frac{\mu_i}{\omega_i} \implies weight \omega_i.$$

Matches the offset equivalence.

For Tweedie 1

$$Var(R_i) = \frac{\Phi}{\omega_i^{2-p}} \mu_i^p.$$

Requires weight ω_i^{2-p} to match offset formulation.

Thus:

Equivalence principle

Offset and weighted-rates formulations yield identical score/Hessian only if weights are scaled as ω_i^{2-p} .

INTUITION IN TWEEDIE REGRESSION

- Offset view: exposure scales expected aggregate claim cost linearly.
- **Weights view:** normalizing by exposure alters variance structure; weighting by ω_i^{2-p} corrects this.
- **Poisson special case:** p = 1, weight reduces to ω_i (what we already proved).
- **Gamma special case:** p = 2, weight reduces to 1 exposure has no variance effect (modeling average cost).
- Practical note: in software libraries (e.g. LightGBM, XGBoost), Tweedie objectives implicitly assume offset
 parameterization; manual reweighting may be needed if working with normalized rates.

REFERENCES

Ohlsson, Esbjörn and Johansson, Björn Non Non-life insurance pricing with generalized linear models Springer, 2010

Kaivanipour, Kivan

Non-Life Insurance Pricing Using the Generalized Additive Model, Smoothing Splines and L-Curves 2015

Anderson, D and Feldblum, S and Modlin, C and Schirmacher, D and Schirmacher, E and Thandi, N A Practitioner's Guide to Generalized Linear Models: A Foundation for Theory Interpretation and Application, Watson Wyatt Worldwide, London 2005

