GENERAL DESCRIPTION

The RM4136 and RC4136 include four independent high gain operational amplifiers internally compensated and constructed on a single silicon chip using the planar epitaxial processes.

These amplifiers meet or exceed all specifications for 741 type amplifiers. Excellent channel separation allows the use of the 4136 quad amplifier in all 741 operational amplifier applications providing the highest possible packaging density.

The specially designed low noise input transistors allow the 4136 to be used in low noise signal processing applications such as audio preamplifiers and signal conditioners.

DESIGN FEATURES

- Unity Gain Bandwidth, 3MHz
- Continuous Short Circuit Protection
- No Frequency Compensation Required
- No Latch-up
- Large Common Mode and Differential Voltage Ranges
- Low Power Consumption
- Parameter Tracking Over Temperature Range
- Gain and Phase Match Between Amplifiers

SCHEMATIC DIAGRAM

CONNECTION INFORMATION

Quad 741 General Purpose Operational Amplifier

ABSOLUTE MAXIMUM RATINGS

Supply Voltage RM4136: ±22V	Storage Temperature Range65°C to +150°C
RV4136, RC4136: ±18V	Operating Temperature Range RM4136: -55°C to +125°C
Internal Power Dissipation (Note 1) 800mW	RC4136: 0°C to +70°C
Differential Input Voltage ±30V	RV4136: -40°C to +85°C
Input Voltage (Note 2) ±15V	Lead Temperature (Soldering, 60s) 300°C
	Output Short-Circuit Duration (Note 3) Indefinite

ELECTRICAL CHARACTERISTICS (V_{CC} = ±15V, T_A = +25°C unless otherwise noted.)

DADAMETED		RM4136			RV4136, RC4136			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	R _S ≤ 10 kΩ		0.5	5.0		0.5	6.0	mV
Input Offset Current			5.0	200		5.0	200	nA
Input Bias Current			40	500		40	500	nA
Input Resistance		0.3	5.0		0.3	5.0		МΩ
Large-Signal Voltage Gain	R _L ≥2kΩ							
	V _{out} = ±10V	50,000	300,000		20,000	300,000		V/V
Output Voltage Swing	R _L ≥ 10 kΩ	±12	±14		±12	±14		V
	R _L ≥2kΩ	±10	±13		±10	±13		V
Input Voltage Range		±12	±14		±12	±14		V
Common Mode Rejection Ratio	R _S ≤ 10 kΩ	70	100		70	100		dB
Supply Voltage Rejection Ratio	R _S ≤ 10 kΩ		10	150		10	150	μV/V
Power Consumption	R _L = ∞, All Outputs		210	340		210	340	mW
Transient Response	V _{in} = 20 mV							
(unity gain)	R _L = 2 kΩ							
	C _L ≤ 100 pF							İ
Risetime			0.13			0.13		μs
Overshoot			5.0		j	5.0		%
Unity Gain Bandwidth			3.0			3.0		MHz
Slew Rate (unity gain)	R _L ≥2 kΩ		1.5			1.0		V/μs
Channel Separation	f = 10 kHz							
(open loop)	$R_S = 1 k\Omega$		105			105		dB
(Gain = 100)	f = 10 kHz							
	$R_S = 1 k\Omega$		105			105		dB
The following specifications apply	for -55°C ≤ T _A ≤ +	125°C for	RM4136;	0°C ≤ TA	≤+70°C	for RC4136	6.	
Input Offset Voltage	R _S ≤ 10 kΩ			6.0			7.5	mV
Input Offset Current				500			300	nΑ
Input Bias Current				1500			800	nΑ
Large-Signal Voltage Gain	R _L ≥2kΩ							
	V _{out} = ±10V	25,000			15,000			V/V
Output Voltage Swing	R∟≥2kΩ	±10			±10			>
Power Consumption	T _A = High		180	300		180	300	mW
	T _A = Low		240	400		240	400	mW

NOTES:

- 1. Rating applies for case temperature to +25°C; derate linearly at 6.4 mW/°C for ambient temperatures above +25°C.
- 2. For supply voltages less than $\pm 15 \text{V}$ the absolute maximum input voltage is equal to the supply voltage.
- 3. Short-circuit may be to ground or one amplifier only. I_{CC} = 45mA (typical).

TYPICAL ELECTRICAL DATA

TYPICAL ELECTRICAL DATA

ELECTRICAL CHARACTERISTICS COMPARISON (V_{CC} = ±15V, T_A = +25°C)

PARAMETER		RC4136 (typ)	RC741 (typ)	LM324 (typ)	UNIT
Input Offset Voltage	9	0.5	2.0	2	mV
Input Offset Current	t	5	10	5	nA
Input Bias Current		40	80	55	nA
Input Resistance		5	2		МΩ
Large-Signal Voltage $(R_L = 2 k\Omega)$	Gain	300,000	200,000	100,000	V/V
Output Voltage Swin	ng	±13V	±13V	+V _{CC} - 1.2V to -V _{CC}	⊽
Input Voltage Range	,	±14V	±13V	+V _{CC} - 1.5V to -V _{CC}	V
Common-Mode Reje	ection Ratio	100	90	85	dB
Supply Voltage Reje	ection Ratio	10	30	10	μV/V
Transient Response (gain = 1)	Risetime Overshoot	0.13	0.3 5		μs %
Unity-Gain Bandwid	lth	3	0.8	0.8	MHz
Unity-Gain Slew Rate		1.0	0.5	0.5	V/μs
Input Noise Voltage (f ₀ = 1 kHz)		10	22.5		nV/√H
Output Short-Circuit Current		±45	±25		mA

4136 vs. 741

Although the 324 is an excellent device for single-supply applications where ground-sensing is important, it is a poor substitute for four 741's in split-supply circuits.

The simplified input circuit of the 4136 exhibits much lower noise than that of the 324 and exhibits no crossover distortion as compared with the 324 (see illustration). The 324 shows serious crossover distortion and pulse delay in attempting to handle a large-signal input pulse.

Comparative Cross-over Distortion

 $R_L = 2 k\Omega$ $A_V = 0 dB$ $V_{CC} = \pm 5V$

400 Hz Lowpass Butterworth Active Filter

RIAA Preamplifier

Low Frequency Sine Wave Generator with Quadrature Output

Triangular-Wave Generator

