得分 教师签名 批改日期

课程编号_____

深圳大学实验报告

课程名称:	大学物理实验(2)						
实验名称:	表面张力系数的测量						
学 院:	电子与	i信息工程学	· <u>院</u>				
组号:	<u>12</u>	指导教师 : _	王凡				
报告人:	龚浩文	学号:	2019284042				
实验地点:	3	改原楼 208					
实验时间:		<u>2</u> 月 <u>14</u> 日	星期一				
提交时间:	2020	年 12	月 21 日				

1

一、实验目的

- 1、学习力敏传感器的定标方法。
- 2、用拉脱法测量室温下水的表面张力系数。

二、实验原理

表面张力(系数):液体的表面,由于表面层内分子的作用,存在 着一定的张力, 称为表面张力。

表面张力 f 存在于表面层,方向恒与直线垂直,大小与直线的长 度 L 成正比。

$$f = \alpha L$$

α 称为表面张力系数,单位为 N•m-1,与液体的成分、纯度、浓度以及温度有关

使用吊环,在液膜拉破前瞬间:

F1 = mg + f1 + f2

考虑一级近似,液体的表面张力为:

 $f=f1 + f2 = \alpha \pi (D1 + D2)$

液膜拉破后有: F2 = mg

液膜拉破前后拉力差值:

 $F1 - F2 = f1 + f2 = \alpha \pi (D1 + D2)$

力敏传感器拉力 F 和电压 U 成正比:

U1 = BF1

U2 = BF2

(B 为力敏传感器灵敏度,单位 V/)

液膜拉破前后的拉力用电压表示:

 $F1 - F2 = (U1 - U2)/B = \alpha \pi (D1 + D2)$

$$\alpha = \frac{U_1 - U_2}{B\pi(D_1 + D_2)} = \frac{\triangle U}{B\pi(D_1 + D_2)}$$

三、实验仪器:

FD-NST-1型液体表面张力系数测定仪

- 1. 调节螺丝.
- 2. 升降螺丝.
- 3. 玻璃器皿.
- 4. 吊环.

- 5. 力敏传感器
- 6. 支架.
- 7. 固定螺丝.
- 8. 航空插头.
- 9. 底座.
- 10. 数字电压表.
- 11. 调零旋纽

四、实验内容:

- 1、接通数字电压表及直流电源, 预热 15 分钟。保证测力方向和传感器弹簧片的平面垂直。 2、传感器定标:
- (1) 调零:将砝码盘挂在传感器梁端头小钩上,调节补偿电压旋钮,使数字电压 表 显示为零。
 - (2) 在砝码盘上分别加上 0.5g、1.0g、1.5g、2.0g、2.5g、3.0g、3.5g 等质量的砝

- 码,记录这些砝码力F作用下,数字电压表相应的读数值 U.
 - (3) 作 U-F 图, 直线拟合, 求出传感器灵敏度 B。
- 3. 用游标卡尺测量吊环的内外直径(已给出,直接记录)。
- 4. 液体表面张力系数的测定
 - (1) 取下砝码盘,将数字电压表调零。
- (2)将吊环挂在传感器的小钩上,调节升降台,将液体升至靠近环片的下沿,观察吊环下沿与待测液面是否平行,如果不平行,将吊环取下后,调节吊环上的细丝,使其与待测液面平行。
- (3)调节容器下的升降台,使其渐渐上升,将吊环的下沿部分全部浸没于待测液体,然后反向调节升降台,使液面逐渐下降,这时,金属环片和液面间形成环形液膜,继续下降液面,测出环形液膜拉断前一瞬间数字电压表读数值 U1 和液膜拉断后数字电压表读数值 U2。

$\triangle U = U1 - U2$

五、数据记录:

姓名、组号: 龚浩文 12

1、基本测量:记录吊环外径 D1 和内径 D2,以及 20℃下水的表面张力系数参考值 α ∞。

吊环外径 D1 = 3.496cm

吊环内径 D2 = 3.310cm

α _{≫@20°C=} 0.007275N/m

2、测量力敏传感器的灵敏度 B:

砝码质量 m(g)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
电压表读数	0	17.6	34.9	52	69.3	86.9	104	121.4
U(mv)	-1.2	16.2	34.3	51.8	69.9	86	104.9	121.5

3、测量液膜拉断前后瞬间电压表读数 U₁ 和 U₂:

No.	U₁(mV)	U₂(mV)
1	174.3	118.3
2	174.5	118.3
3	174.5	118.3
4	173.8	118.1

5 174.4 118.3	
---------------	--

六、数据处理

1、分别计算加载不同质量砝码时对应的电压表读数平均值 \overline{U} 和砝码重量。

砝码质量 m(g)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
电压表读数	0	17.6	34.9	52	69.3	86.9	104	121.4
U(mv)	-1.2	16.2	34.3	51.8	69.9	86	104.9	121.5
\overline{U} (V)	- 0.000 6	0.016 9	0.034 6	0.0519	0.0696	0.086 45	0.1044 5	0.1214 5
砝码重量		0.000				0.002		
F=mg(N)	0	5	0.001	0.0015	0.002	5	0.003	0.0035

2、绘出U-F曲线图,并进行线性拟合,得出拟合后的直线方程。

由拟合后的直线方程斜率得出力敏传感器灵敏度 B=34.889V/N。

3、根据测得的 U1、U2 和灵敏度 B, 按公式分别计算每组表面张力系数 α , 并求平均值。

$$\alpha = \frac{U_1-U_2}{B\pi(D_1+D_2)} = \frac{\triangle U}{B\pi(D_1+D_2)}$$

No.	U₁(mV)	U₂(mV)	α(N/m)	$\bar{lpha}({\sf N/m})$
1	174.3	118.3	0.007511	
2	174.5	118.3	0.007537	
3	174.5	118.3	0.007537	0.007516
4	173.8	118.1	0.00747	
5	174.4	118.3	0.007524	

4、将 α 平均值与 20℃下水的表面张力系数参考值进行对比, 计算相对误差。

$$\alpha_{20\,\mathcal{C}} = \quad 0.007275 N/m$$

$$\bar{\alpha} = 0.007516 N/m$$

$$\delta = \frac{\bar{\alpha} - \alpha_{20\,\mathcal{C}}}{\bar{\alpha}} \times 100\% = 3.2\%$$

七、结果陈述:

经过实验测量数据得力敏传感器的灵敏度 B=34.889V/N,测得 20℃下水的表面张力为 $\bar{\alpha}=0.007516N/m$,与标准值比较得相对误差为 $\delta=3.2\%$,误差由气温、仪器等因素造成,相对误差在可接受范围内,实验得到的结论可靠。

八、实验总结与思考题

- 1、如何才能使液膜不过早地破裂?
- ①实验过程中实验室不宜通风,空气流动要小。
- ②吊环须严格处理干净。
- ③下降载物台要保持慢速、匀速。
- 2、在本实验中,误差来源可能在哪些方面?

实验误差可能来自水温、水的纯度、吊环是否干净、液膜被拉破后吊环上附着着的液珠的质量不同

指导教师	市批阅意见:				
成绩评定	2 :				
预习 (20 分)	操作及记录 (40 分)	数据处理与结果陈述 30 分	思考题 10 分	报告整体 印 象	总分

数据记录:

姓名、组号: 龚浩文 12

1、基本测量:记录吊环外径 D1 和内径 D2,以及 20℃下水的表面张力系数参考值 α ∞。

吊环外径 D1 =____ 吊环内径 D2 =____ α _{参@20℃}=____

2、测量力敏传感器的灵敏度 B:

砝码质量 m(g)	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
电压表读数								
U(mv)								

3、测量液膜拉断前后瞬间电压表读数 U₁和 U₂:

No.	U₁(mV)	U₂(mV)
1		
2		
3		
4		
5		