PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS SOCIALES ESPECIALIDAD DE ECONOMÍA

ESTADÍSTICA INFERENCIAL PRÁCTICA CALIFICADA 4

7 de noviembre de 2015

Horario 522

Clave del curso: EST241

Ejercicio 1.

(10 puntos)

Sea X una variable aleatoria continua positiva cuya función de densidad está dada por

$$f(x) = \theta e^{-x} (1 - e^{-x})^{\theta - 1}, x > 0,$$

donde $\theta > 0$ es un parámetro para estimar por el método de máxima verosimilitud y a partir de una muestra aleatoria de tamaño 100.

a) Deducir el estimador de máxima verosimilitud de θ .

b) Estudie si el estimador hallado anteriormente es consistente (fuertemente). (2 puntos) = (1/2) + (-\frac{1}{2})

 $\lim_{x \to \infty} \hat{\theta} = \frac{N}{\lim_{x \to \infty} (1 - e^{-X})}$ Tenga presente que $Y = -Ln(1 - e^{-X}) \sim exp(\theta)$.

 $\frac{\partial L}{\partial \theta} = \frac{M}{\theta} + \ln(1 - e^{2x_j}) = 0 + (0.1) \ln(1 - e^{2x_j}) = 0$

 $\lim_{x \to -\frac{1}{2}} (1-e^{x})c$) Si p = P(X > 1), deducir el estimador de máxima verosimilitud de p y estudie su $\lim_{x \to -\frac{1}{2}} (2 \text{ puntos})$

d) Determine, aproximadamente, la probabilidad de que el error de estimación sea como máximo un décimo de la estimación correspondiente. Use la distribución asintótica del estimador asociada a la Información de Fisher Observada. (1990) NO NO (1991) (2 puntos)

e) Determine, aproximadamente, la probabilidad de que el error de estimación sea como $\ell''(\hat{\theta}) = \ell''(\hat{\theta})$ máximo un décimo del valor del parámetro. Use la distribución asintótica del estimador asociada a la Información de Fisher. cicio 2. (0-0)(0)IN

asociada a la información de l'isher. $\begin{array}{c} \sqrt{N}\left(\hat{\theta}-\theta\right) \\ \hline 0 \end{array}$ Ejercicio 2. $\begin{array}{c} \sqrt{N}\left(\hat{\theta}-\theta\right) \\ \hline 0 \end{array}$ Si $X \sim N(0; \sigma^2)$ se proponen los estimadores de σ^2 siguientes: $\begin{array}{c} \sqrt{N}\left(\hat{\theta}-\theta\right) \\ \hline 0 \end{array}$ $\begin{array}{c} \sqrt{N}\left(\hat{\theta}-\theta\right) \\ \hline 0 \end{array}$ Si $X \sim N(0; \sigma^2)$ se proponen los estimadores de σ^2 siguientes: $\begin{array}{c} \sqrt{N}\left(\hat{\theta}-\theta\right) \\ \hline 0 \end{array}$ $\begin{array}{c} \sqrt{N}\left(\hat{\theta}-\theta\right) \\ \hline 0 \end{array}$

- a) Determine cuáles de los 3 estimadores son insesgados y, entre los que resulten (3 puntos) insesgados, el más eficiente.
- b) Estudie la propiedad de consistencia (fuerte) para estos estimadores. (2 puntos)
- c) Si $\hat{\sigma}^2$ es el mejor de los estimadores anteriores y se desea que $P(\sigma^2 \leq 2\hat{\sigma}^2) \approx 0.95$, iserá suficiente un tamaño de muestra n=16? (1 punto)

$$S^2 = \frac{\sum_{i=1}^{N} \chi_i^2 - N \chi}{N-1}$$

Ejercicio 3.

(4 puntos)

Considere el modelo de regresión lineal sin intercepto:

$$Y_j = \beta x_j + \epsilon_j$$
, para $j = 1, \ldots, n$,

donde x_1, \ldots, x_n son constantes conocidas, β es un parámetro desconocido y $\epsilon_1, \ldots, \epsilon_n$ son variables aleatorias independientes, cada una tiene distribución normal de media cero y varianza σ^2 .

- a) Determine $l(\beta, \sigma^2)$: la función log-verosimilitud de β, σ^2 asociada al registro siguiente de las variables aleatorias independientes Y_1, \ldots, Y_n : $Y_1 = y_1, \ldots, Y_n = y_n$. (1 punto) Previamente determine $f_{Y_i}(y_j)$ a partir de que $Y_j \sim N(\beta x_j; \sigma^2), j = 1, \ldots, n$.
- b) Determine los estimadores de β y de σ^2 , por máxima verosimilitud. (3 puntos)

Recordatorio

 $\mathcal{L}(\theta) = f_{\mathbf{x}}(x_1) \cdots f_{\mathbf{x}}(x_n)$: la función log- verosimilitud de θ .

 $l(\theta) = Ln(\mathcal{L}(\theta)) = Ln(f_{X_1}(x_1)) + \cdots + Ln(f_{X_n}(x_n))$: la función de log-verosimilitud de θ .

Información de Fisher: $I(\theta) = -E(\frac{\partial^2}{\partial \theta^2} Ln(f(X; \theta)))$, donde $f(x; \theta) = f_x(x)$.

Información de Fisher observada: $-l''(\hat{\theta})$, donde $\hat{\theta}$ es el estimador de máxima verosimilitud de θ .

Distribución asintótica del estimador de máxima verosimilitud:

 $\sqrt{n\,I(\theta)}\,(\hat{\theta}-\theta) \overset{aprox.}{\sim} N(0,1)$ (a partir de la información de Fisher).

Distribución asintótica del estimador de máxima verosimilitud:

 $\frac{(\hat{\theta}-\theta)}{\hat{\sigma}_{\hat{\theta}}} \overset{aprox.}{\sim} N(0,1)$ donde $\hat{\sigma}_{\hat{\theta}} = \sqrt{-1/l''(\hat{\theta})}$ (a partir de la Información de Fisher obervada).

Si X_1, \ldots, X_n es una muestra aleatoria de X y $X \sim N(\mu; \sigma^2)$; entonces,

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1), \quad \frac{\sum_{j=1}^n (X_j - \mu)^2}{\sigma^2} \sim \chi^2(n-1).$$

Si $X \sim exp(\beta)$: $f(x) = \beta e^{-\beta x}, x > 0$; $E(X) = 1/\beta$, donde $\beta > 0$.