Домашние задание

В качестве данных были выбраны данные по съедобным/несъедобном грибам.

https://archive.ics.uci.edu/ml/datasets/Mushroom

Всего в данных было 8124 объектов, 22 категориальных признаков. Для тестирования были созданы по 10 файлов для обучения и тестирования. Для этого для каждой пары выбирались случайные 1000 объектов, 900 — для обучения, 100 — для тестирования. Все данные переводились в бинарный формат.

Для сравнения были реализованы 4 алгоритма:

1) Тот что был реализован в lazyfca.ipynp.

2)
$$f(g_{\tau}, +) = \frac{\sum_{g^{+}} a^{|g'_{\tau} \cap g^{+}|} * h(g_{\tau}, g^{+})}{|G^{+}|}$$

где $h(g_{\tau}, g^+) = 1$ если нет описания из G^- в которое вкладывается $|g'_{\tau} \cap g^+|$. И $h(g_{\tau}, g^+) = 0$ в ином случае.

Аналогично определяем $f(g_{\tau}, -)$. Если $f(g_{\tau}, +) > f(g_{\tau}, -)$ то классифицируем объект как + иначе как -.

- 3) Наивный байесовский классификатор.
- 4) Тестируемый объект классифицируется таким классом, к которому принадлежит объект, пересечение описаний с которым максимально.

Так как результаты (первая таблица) для алгоритмом 1-3 получились очень хорошими, а хотелось бы их сравнить, то попробуем использовать выбоки для общчения меньшего объема — 50 объектов. Для тестирования также выбираем 50 объектов. Для второго алгоритма наилучшего рузультата удается добится при a=1.5.

Algorithm	1	2, a = 1	3	4
True Positive	512	543	519	524
True Negative	380	455	476	475
False Positive	96	1	0	1
False Negative	12	1	5	0
True Positive Rate	0.55	0.56	0.56	0.57
True Negative Rate	0.43	0.54	0.55	0.54
Negative Predictive Value	0.17	0.0	0.0	0.0
False Positive Rate	0.95	0.99	0.99	1.0
False Discovery Rate	0.15	0.0	0.0	0.0
Accuracy	0.892	0.998	0.995	0.999
AccuracyPrecision	0.84	0.99	1.0	0.99
Recall	0.98	0.99	0.99	1.0

Algorithm	1	2, a = 1.5	3	4
True Positive	252	253	181	241
True Negative	197	224	243	236
False Positive	46	15	0	7
False Negative	5	8	76	16
True Positive Rate	0.54	0.54	0.39	0.52
True Negative Rate	0.44	0.49	0.55	0.53
Negative Predictive Value	0.2	0.07	0.0	0.03
False Positive Rate	0.96	0.96	0.75	0.94
False Discovery Rate	0.17	0.06	0.0	0.03
Accuracy	0.898	0.954	0.848	0.954
AccuracyPrecision	0.84	0.94	1.0	0.97
Recall	0.98	0.97	0.7	0.93