Suites de nombres réels

OUIKENE Fethia

Department of Mathematics University of Science and Technology of Oran, Algeria

January 23, 2024

Suites de nombres réels

On appelle suite réelle d'éléments de \mathbb{R} , toute application U de \mathbb{N} à valeurs dans \mathbb{R} .

$$\begin{array}{cccc} \textit{U}: & \mathbb{N} & \rightarrow & \mathbb{R} \\ & \textit{n} & \mapsto & \textit{U}\left(\textit{n}\right). \end{array}$$

On note l'image de n par U_n au lieu de U(n), il est appelé terme général de la suite U.

U₀ est appelé premier terme.

On note la suite U par $(U_n)_{n\in\mathbb{N}}$ ou $(U_n)_n$.n

On appelle l'ensemble $\{U_n, n \in \mathbb{N}\}$ l'ensemble des valeurs de la suite $(U_n)_n$.

On dit que
$$(U_n)_n$$
 est une suite arithmétique s'il existe $r \in \mathbb{R}; U_{n+1} - U_n = r, \forall n \in \mathbb{N},$ dans ce cas $U_n = U_0 + nr,$ et $S = U_0 + U_1 + \ldots + U_n = \frac{(n+1)(U_0 + U_n)}{2} = \frac{(nombre de terme)(premierterme+dernier terme)}{2}.$ On dit que $(U_n)_n$ est une suite géométrique s'il existe $q \in \mathbb{R}; \frac{U_{n+1}}{U_n} = q, \forall n \in \mathbb{N},$ dans ce cas $U_n = U_0 q^n,$ et $S = U_0 + U_1 + \ldots + U_n = U_0 \left(\frac{1-q^{n+1}}{1-q}\right)$ =premier terme $\left(\frac{1-Raison^{nombre de termes}}{1-raison}\right)$.

Suites bornées

Soit $(U_n)_n$ une suite réelle, on dit que:

- 1. $(U_n)_n$ est une suite majorée si $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}; U_n \leq M$.
- 2. $(U_n)_n$ est une suite minorée si $\exists m \in \mathbb{R}, \forall n \in \mathbb{N}; U_n \geq m$.
- 3. $(U_n)_n$ est une suite bornée si
- $\exists M \in \mathbb{R}, \exists m \in \mathbb{R}, \forall n \in \mathbb{N}; m \leq U_n \leq M.$
- ou bien $\exists \alpha > 0, \forall n \in \mathbb{N}; |U_n| \leq \alpha$.

Suites monotones

Soit (U_n) une suite réelle, on dit que

- 1. (U_n) est croissante si $\forall n \in \mathbb{N}, U_{n+1} \geq U_n$.
- 2. (U_n) est strictement croissante si $\forall n \in \mathbb{N}, U_{n+1} > U_n$.
- 3. (U_n) est décroissante si $\forall n \in \mathbb{N}, U_{n+1} \leq U_n$.
- 4. (U_n) est strictement décroissante si $\forall n \in \mathbb{N}, U_{n+1} < U_n$.
- 5. (U_n) est monotone si elle est croissante ou décroissante.

Remarque

- 1. Pour étudier la monotonie d'une suite, on étudie le signe de $U_{n+1} U_n$.
- 2. Pour étudier la monotonie d'une suite à termes positifs on compare le signe de $\frac{U_{n+1}}{U_n}$ à 1.
- Si $\frac{U_{n+1}}{U_n}$ < 1 \Leftrightarrow (U_n) est décroissante.n
- Si $\frac{U_{n+1}}{U_n} > 1 \Leftrightarrow (U_n)$ est croissante.

Sous suites (suites extraites)

Soit (U_n) une suite réelle, on appelle suite extraite ou sous suite de (U_n) , toute suite de la forme $(U_{\varphi(n)})$ telle que φ est une application croissante de $\mathbb N$ vers $\mathbb N$.

Exemple:

- 1. (U_{2n}) et (U_{2n+1}) sont des sous suites de (U_n) .
- 2. $U_n = 2^{(-1)^n}$, $U_{2n} = 2$, $U_{2n+1} = \frac{1}{2}$.
- 3. (U_{n+1}) est une suite extraite de (U_n) .

Nature d'une suite (convergence, divergence)

Suite convergente

Soit (U_n) une suite réelle, on dit qu'elle est convergente et admet pour limite le nombre I si

$$\lim_{\substack{n\to +\infty}} U_n = I \Leftrightarrow \forall \varepsilon > 0, \exists N_\varepsilon \in \mathbb{N}, \forall n \in \mathbb{N} \ \big(n > N_\varepsilon \Rightarrow |U_n - I| < \varepsilon \big).$$

Une suite qui n'est pas convergente est dite divergente.

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} U_n = +\infty \Leftrightarrow \forall A > 0, \exists N_A \in \mathbb{N}, \forall n \in \mathbb{N} \ (n > N_A \Rightarrow U_n > A)$$

$$\lim_{\substack{n \to +\infty \\ n \to +\infty}} U_n = -\infty \Leftrightarrow \forall B < 0, \exists N_B \in \mathbb{N}, \forall n \in \mathbb{N} \ (n > N_B \Rightarrow U_n < B)$$

Théorème 1: Si (U_n) converge vers une limite I alors I est unique.

Théorème 2: Toute suite convergente est bornée.

Remarque: Toute suite bornée n'est pas convergente.

En effet, la suite $U_n = (-1)^n$ bornée non convergente (elle admet deux limites 1 et -1)

$$(U_n)$$
 convergente \Rightarrow (U_n) bornée (U_n) bornée \Rightarrow (U_n) convergente.

Proposition: Toute sous suite d'une suite convergente est convergente et a la même limite. La reciproque n'est pas vraie. Une suite divergente peut admettre des sous suites convergentes.

Remarque:

- 1. Si $\forall n \in \mathbb{N}, U_n \leq V_n$, et $\lim_{n \to +\infty} U_n = +\infty \Rightarrow \lim_{n \to +\infty} V_n = +\infty$. 2. Si U_n est bornée et $\lim_{n \to +\infty} V_n = +\infty \Rightarrow \lim_{n \to +\infty} U_n V_n = \infty$.
- 3. Si $U_n > 0, \forall n \in \mathbb{N} \Rightarrow \lim_{n \to +\infty} U_n \geq 0.$
- 4. Si $U_n < V_n, \forall n > n_0$ alors $\lim_{n \to +\infty} U_n \leq \lim_{n \to +\infty} V_n$.

Théorème des trois suites

Théorème: Si deux suites (U_n) et (V_n) convergent vers le même nombre réel I et si à partir d'un certain rang, la suite (W_n) vérifie l'inégalité

$$U_n \leq W_n \leq V_n$$

alors la suite (W_n) converge vers I.

Théorème: Soient (U_n) et (V_n) deux suites réelles telles que:

$$\left\{egin{array}{ll} \lim\limits_{n
ightarrow+\infty}U_n=0\ & ext{et} \end{array}
ight. \Rightarrow \lim\limits_{n
ightarrow+\infty}U_nV_n=0.\ (V_n) ext{ est bornée} \end{array}
ight.$$

Théorème de convergence sur les suites monotones

Théorème: Soient (U_n) une suite réelle et

$$A = \{U_n, n \in \mathbb{N}\}$$

alors 1. Si (U_n) est **croissante** et **majorée** alors (U_n) est **convergente** vers $I = \sup A$ et inf $A = U_0$ (premier terme). 2. Si (U_n) est **décroissante** et **minorée** alors (U_n) est **convergente** vers $I = \inf A$ et $\sup A = U_0$ (premier terme).

Suites adjacentes

Définition:

On dit que les deux suites (U_n) et (V_n) sont adjacentes si l'une d'elle est croissante et l'autre est décroissante et

$$\lim_{n\to+\infty}\left(U_n-V_n\right)=0.$$

Théorème: Deux suites adjacentes sont convergentes et admettent la même limite.

Suite récurrentes

Définition: Soit $f: D \subset \mathbb{R} \to \mathbb{R}$ et $f(D) \subset D$. On appelle suite récurrente une suite (U_n) définie par la donnée du premier terme $U_0 \in D$ et la relation

$$U_{n+1}=f\left(U_{n}\right) ,\forall n\in\mathbb{N}.$$

Monotonie: On a $U_{n+1} - U_n = f(U_n) - f(U_{n-1})$.

Donc l'étude de la monotonie de la suite (U_n) revient à celle de la fonction f.

Si f est croissante alors (U_n) est monotone, elle est croissante si $U_1-U_0 \geq 0$, et décroissante si $U_1-U_0 \leq 0$.

Si f est décroissante alors (U_n) n'est pas monotone car $U_{n+1} - U_n$ est alternativement positif et négatif.

Convergence:

Supposons que f est continue sur D et croissante, si la suite (U_n) converge vers $I \in D$, cette limite vérifie I = f(I).

Suites de Cauchy

Définition: On dit que la suite (U_n) est une suite de Cauchy si elle vérifie

$$\forall \varepsilon > 0, \exists \textit{N}_{\varepsilon} \in \mathbb{N}, \forall \textit{p}, \textit{q} \in \mathbb{N}, (\textit{p} > \textit{q} \geq \textit{N}_{\varepsilon} \Rightarrow |\textit{U}_{\textit{p}} - \textit{U}_{\textit{q}}| < \varepsilon)$$

Proposition: Toute suite convergente est de Cauchy .

Remarque: Le critère de Cauchy est un critère de convergence permettant de reconnaître qu'une suite réelle est convergente sans avoir besoin de connaître sa limite.

Théorème:

 (U_n) converge dans $\mathbb{R} \Leftrightarrow (U_n)$ de Cauchy.

Remarque: Pour démontrer qu'une suite est divergente, il suffit de démontrer qu'elle n'est pas de Cauchy.

$$\exists \varepsilon > 0, \forall N \in \mathbb{N}, \exists \rho, q \in \mathbb{N}, (\rho > q \geq N \land |U_{\rho} - U_{q}| \geq \varepsilon).$$

Suites de nombres réels

Théorème de Bolzano Weierstrass

Théorème: Toute suite bornée de nombres réels admet une sous suite convergente.