Die Abbildung zeigt drei 3D-KS'e A, B und C.

 a) Geben Sie die folgenden homogenen Transformationsmatrizen an:

$$\mathbf{T}_{B}^{A},\mathbf{T}_{C}^{B},\mathbf{T}_{C}^{A}$$

b) Prüfen Sie durch Nachrechnen:

$$\mathbf{T}_C^A = \mathbf{T}_B^A \mathbf{T}_C^B$$

c) Prüfen Sie durch Nachrechnen:

$$\mathbf{T}_A^C = (\mathbf{T}_C^A)^{-1}$$

 d) Führen Sie für den Punkt P einen Koordinatenwechsel von B nach A durch.

Die z-Achsen sind nicht eingezeichnet und ragen aus dem Bild heraus.

Gegeben seien ein raumfestes, globales KS O und zwei transformierte KSe A und B, wobei B um $\theta = 30^{\circ}$ gedreht ist. Die KS'e seien 2-dimensional.

- a) Geben Sie die homogenen Transformationsmatrizen \mathbf{T}_{A}^{O} und \mathbf{T}_{B}^{O} an.
- b) Führen Sie für den Punkt P mit
 p^B = (1,1) einen Koordinatentransformation nach O durch.
- c) Wie lässt sich \mathbf{T}_{B}^{A} aus \mathbf{T}_{A}^{O} und \mathbf{T}_{B}^{O} bestimmen?
- d) Bestimmen Sie **p**^{A.}
- e) Was ergibt sich durch $\mathbf{T}_{B}^{A}\mathbf{p}^{A}$?

Gegeben sei eine 3D-Rotationsmatrix:

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$

Rotationsmatrix, die sich im yaw-pitch-roll-Drehsystem ergibt (s. S. 2-21):

Geben Sie die drei Euler-Drehwinkel ψ , θ , ϕ an.

Ein Roboter befindet sich im KS O an der Position (x_R, y_R) mit der Ausrichtung θ .

Der Roboter hat die Länge I und die Höhe h (ohne Räder). Der Radius der Räder ist r.

Ein Roboterarm ist über einen Drehteller D auf dem Roboter fixiert. Der Roboterarm ist in z-Richtung um α geschwenkt. D hat den Durchmesser a und die Höhe b.

Der Roboterarm besteht aus den Teilen A_1 und A_2 mit den Längen l_1 und l_2 . Die Arme sind jeweils um β_1 bzw. β_2 geneigt. A_1 ist auf dem Drehteller D seitlich drehbar gelagert.

Legen Sie KS'e für den Roboterarm nach der DH-Konvention fest.

Geben Sie die Transformationsmatrix T an, mit der die Position $p^O = (x_p, y_p, z_p)$ der Armspitze P im globalen KS O berechnet werden kann.

Seitenansicht mit $\alpha = 0^{\circ}$

Die Abb. zeigt in der Draufsicht einen 3-DOF-Arm-Roboter mit einem Greifer und insgesamt 3 Drehgelenken (rot). Der erste Arm mit der Länge a₁ ist drehbar auf einem Tisch fixiert. Am zweiten Arm mit der Länge a₂ ist ein Greifer über ein Armstück der Länge a₃ montiert. Der Greifer besteht aus zwei Fingern der Länge f.

Vorwärtskinematik:

Führen Sie 2D-KS'e ein und schreiben Sie eine Funktion, die aus den Drehwinkeln der Gelenke θ_1 , θ_2 und θ_3 die Position (x_F, y_F) und Ausrichtung θ des Greifers berechnet.

Inverse Kinematik:

Schreiben Sie eine Funktion, die aus der Position (x_F, y_F) und der Ausrichtung θ des Greifers die drei Drehwinkel der Gelenke berechnet.