COST

Statistical Estimation Theory

Z Score of difference

Difference of Mean

$$Z = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{N_2}}}$$

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{N}}}$$

Difference of Proportion

$$Z = \frac{(P_1 - P_2) - (p_1 - p_2)}{\sqrt{pq(\frac{1}{N_1} + \frac{1}{N_2})}}$$

$$Z = \frac{P - p}{\sqrt{\frac{pq}{N}}}$$

Where
$$p = \frac{N_1 P_1 + N_2 P_2}{N_1 + N_2}$$

Steps for hypothesis testing

- 1. Write given values.
- 2. Propose Ho and H1.
- 3. Identify test-
 - ▶ one tailed (if < , >)
 - two tailed (if ≠)
- 4. Get table value Z_c according to LOS mentioned in the problem.
- 5. Find Z score using the formula.
- 6. Inference-
 - ▶ If $Z < Z_c$, accept Ho.
 - If $Z > Z_C$, reject Ho.

Question

Qn) A sample of 100 electric light bulbs produced by manufacturer A showed a mean lifetime of 1190hrs with a standard deviation of 90hrs. A sample of 75 bulbs produced by manufacturer B showed a mean lifetime of 1230hrs with a standard deviation of 120hrs. Is there a difference between the mean lifetime of the two brands at significance level of 0.01?

Step 1- Write given values

$$N_1 = 100$$

$$X_1 = 1190 \ hrs$$

•
$$\sigma_1 = 90 \, hrs$$

$$LOS = \alpha = 0.01 = 1 \%$$

$$N_2 = 75$$

$$X_2 = 1230 \ hrs$$

•
$$\sigma_2 = 120 \ hrs$$

Cont...

Step 2- Propose HO

 H_0 : $\mu_1 = \mu_2$ There is no difference between mean lifetime of two brands.

 $H_1: \mu_1 \neq \mu_2$ There is a difference between mean lifetime of two brands.

- Step 3- Identify Test
 - As \neq sign is there, use Two tailed Test

Cont....

	$\alpha = 0.05 (5 \%)$	$\alpha = 0.01 (1 \%)$
Two-tailed Test	Z _c =1.96	Z_c = 2.58
One-tailed Test	Z _c =1.645	Z_c = 2.33

Step 4- Get table value of Z_c for LOS $\alpha = 0.01$ (1 %)

$$Z_c = 2.53$$

Step 5- Find Z score using formula-

$$Z = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{N_2}}}$$

$$Z = -2.4209$$

•
$$N_1 = 100$$
 • $N_2 = 75$
• $\overline{X_1} = 1190 \ hrs$ • $\overline{X_2} = 1230 \ hrs$

$$\sigma_1 = 90 \ hrs \qquad \qquad \sigma_2 = 120 \ hrs$$

As per the claim,
$$\mu_1 = \mu_2$$

Hence,
$$\mu_1 - \mu_2 = 0$$

Cont...

Step 6 - Inference

$$Z = -2.4209$$
, $Z_c = -2.58$

As Z lies between ±2.58, Accept Ho.

Therefore, we can support the claim at 0.01 LOS. i.e., there is no significant difference in mean lifetimes of two bulb manufacturers.

Question

• On an elementary school spelling examination, the mean grade of 32 boys was 72 with a standard deviation of 8, while the mean grade of 36 girls was 75 with a standard deviation of 6. Its is claimed that there is no difference in boys and girls at spelling. Test the claim at 5% LOS.