18MAB101T CT2 Answer Key

1. If $Z = x^2 + y^2 + 3xy$, then what is $\frac{\partial Z}{\partial x}$?

- (i) 2y+3x (ii) 3y (iii) 2x+3y (iv) 2x

Answer C) 2x+3y

2. If f(x,y) is an implicit function then $\frac{dy}{dx} = ?$

- (i) $-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial x}}$ (ii) $\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial x}}$ (iii) $\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}$ (iv) $\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}$

Answer A) $-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial x}}$

3. If $f(x,y) = x^2 + y^2$, $x = r\cos\theta$ and $y = r\sin\theta$ then $\frac{\partial f}{\partial \theta} = ?$ (i) r^2 (ii) r (iii) 2r

- (iv) 0

Answer D) 0

4. If $\log(x^2 + xy + y^2)$, then what is $x \frac{\partial Z}{\partial x} + y \frac{\partial Z}{\partial y}$?

A) 1 B) $\frac{2x+y}{x^2+xy+y^2}$ C) 2 D) $\frac{x+2y}{x^2+xy+y^2}$

Answer C) 2

5. If $u = \frac{y}{z} + \frac{z}{x}$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$ is

- A) $2\frac{y}{z}$ B) 0 C) $2\frac{z}{x}$ D) $2(\frac{y}{z} + \frac{z}{x})$

Answer B) 0

6.	If	rt	$-s^2$	<	0	at	(a	. b`) ther	า
٠.	• •			•	•	~ C	(UU	, ~	,	•

- A) Maximum point B) Minimum point C) Saddle point
 - D) None of these

Answer C) Saddle point

7. If
$$u = x^y$$
 then $\frac{\partial u}{\partial y}$ is

- A) yx^{y-1} B) $x^{y} \log x$ C) $x^{y} \log y$ D) $\frac{x}{y}$

Answer B) $x^y \log x$

- 8. If If $rt s^2 < 0$ and r > 0at (a, b) then
 - A) Maximum point B) Minimum point C) Saddle point D) None of these

Answer C) Saddle point

9. If
$$f(x, y) = e^{xy}$$
, then what is $f_{yyy}(0,1)$?

- A) -e B) $\frac{1}{e}$ C) 0 D) $-\frac{1}{e}$

Answer C) 0

10. If
$$Z = f(x-y, y-z, z-x)$$
 then $\frac{\partial Z}{\partial x} + \frac{\partial Z}{\partial y} + \frac{\partial Z}{\partial z}$ is

- A) 0
- B) 1 C) 3
- D) 2

Answer A) 0

11. If
$$v = tan^{-1}x + tan^{-1}y$$
, then $\frac{\partial v}{\partial x}$ is

- A) $1 + y^2$ B) $\frac{1}{1+y^2}$ C) $\frac{1}{1+x^2}$ D) $1 + x^2$

Answer C) $\frac{1}{1+r^2}$

12. If
$$f(x, y) = cosxsiny$$
, then $f_{yy}(0,0) = ?$

- A) 1 B) 0 C) -1
- D) ½

Answer B) 0

13. If
$$f(x,y) = tan^{-1}(\frac{y}{x})$$
, then $f_x(1,1)$ is A) $\frac{\pi}{4}$ B) ½ C) -1/2 D) 0

Answer C) -1/2

14. If
$$f(x, y) = e^x \cos y$$
, the value of $f_{xy} \left(0, \frac{\pi}{2} \right)$ is A) 0 B) 1 C) -1 D) 2

Answer: C) -1

15. If
$$f(x,y)=e^x \sin y$$
, the value of $f_{xy}\left(1,\frac{\pi}{2}\right)$ is

- A) e B) $\frac{1}{}$ C) 0
- D) 2e

Answer: C) 0

16. If
$$f(x,y) = \sin xy$$
, the value of $f_{yy}\left(1,\frac{\pi}{2}\right)$

- A) 1 B) -1 C) 0 D) $\frac{\pi}{2}$

Answer B) -1

17. If
$$f(x, y) = e^{xy}$$
, the value of $f_{xxx}(0,0)$

18. If
$$f = e^x \log(1+y)$$
 then $f_{xxx}(0,0)$

A) 0 B) 1 C) -1 D)
$$\infty$$
 Answer A) 0

19. If
$$f(x,y) = x^2y + 3y - 2$$
, the value of $f_{xxy}(1,-2)$

- A) 2 B) 4 C) -4 D) 0

Answer A) 2

20. If $f(x,y) = x^3 + y^3 - 3x - 12y + 20$ t	hen the	function is								
at (1,2)										
A) Maximum point B) Minimur	n point	C)Saddle point	D)							
Nothing can be said										
Answer B) Minimum point										

21. All the stationary points of the function

$$f(x,y)=x^3+y^3-12x-3y+20$$
 is
A) (2,1) B) (-2,-1) C) $(\pm 2,\pm 1)$ D) $(\pm 1,\pm 2)$

Answer C) $(\pm 2,\pm 1)$

22. All the stationary points of the function $f(x,y) = x^3y^2(1-x-y)$ is

A)
$$(0,0), \left(\frac{1}{2},0\right)$$
 B) $(0,0), \left(\frac{1}{2},\frac{1}{3}\right)$ C) $\left(\frac{1}{2},\frac{1}{3}\right)$ D) $(0,0), \left(\frac{1}{3},\frac{1}{2}\right)$ Answer B) $(0,0), \left(\frac{1}{2},\frac{1}{3}\right)$

23. If $f(x,y) = x^2y + siny + e^x$, then $f_x(1,\pi)$ is A) $2\pi - e$ B) 2π C) $2\pi + e$ D) 0 Answer C) $2\pi + e$

24. If
$$u = \frac{y^2}{x}, v = \frac{x^2}{y}$$
 then $\frac{\partial(u, v)}{\partial(x, y)}$
A) 3 B) -3 C) 5 D) -2
Answer B) -3

25. If $x = r \cos \theta$, $y = r \sin \theta$ then $J\left(\frac{r, \theta}{x, y}\right)$ is

A)
$$\frac{1}{r}$$
 B) r C) r^2 D) $r\cos 2\theta$

Answer A) $\frac{1}{r}$

26. u and v are functionally dependent if their Jocobian value is

- A) zero
- B) one
- C) nonzero D) greater than zero

Answer A) zero

27. If $u = x^2y$ and $v = xy^2$, then $\frac{\partial(u,v)}{\partial(x,y)} = ?$ A) 0 B) 3xy C) $3x^2y^2$ D) $5x^2y^2$ Answer C) $3x^2y^2$

28. If $u = \frac{y^2}{x}$ and $v = \frac{x^2}{y}$, then $\frac{\partial(x,y)}{\partial(u,v)} = ?$

- A) -3 B) 3 C) $\frac{1}{3}$ D) $\frac{1}{3}$

Answer C) - $\frac{1}{2}$

29. If $x = r\cos\theta$, $y = r\sin\theta$ then $J\left(\frac{r,\theta}{x,y}\right)$ is

- A) $\frac{1}{r}$ B) r C) r^2 D) $r\cos 2\theta$

Answer A) 1/r

30. If x = u(1+v), y = v(1+u) then $\frac{\partial(x, y)}{\partial(u, v)}$

- A) 1+u+v B) uv C) u+v D)

Answer A) 1+u+v

31. Which of the following is the general solution to

 $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 10y = 0$

A) $y = Ae^{2x} + Be^{-5x}$ B) $y = Ae^{-2x} + Be^{5x}$ C) $y = Ae^{-2x} + Be^{-5x}$ D) $y = Ae^{2x} + Be^{5x}$ Answer A) $y = Ae^{2x} + Be^{-5x}$

32. The solution of the differential equation $(D^2 + 2D + 1)y = 0$ is

- A) $e^{-x}(Ax+B)$ B) $Ae^{-x}+Be^{-2x}$ C) $Ae^{x}+Be^{2x}$ D) $e^{x}(Ax+B)$

Answer A) $e^{-x}(Ax+B)$

33. The solution of $(D^2 - 2D + 2)y = 0$ is

A) $e^{-x}(A\cos x + B\sin x)$ B) $e^{x}(A\cos x + B\sin x)$ C) $Ae^{-x} + Be^{x}$ D) $e^{x}(Ax + B)$

Answer B) $e^x(A\cos x + B\sin x)$

34. The solution of $(D^2 + 6D + 9)y = 0$ is

A) $e^{-3x}(Ax+B)$ B) $e^{3x}(Ax+B)$ C) $Ae^{3x}+Be^{-3x}$ D) $e^{3x}(A\cos 3x+B\sin 3x)$

Answer A) $e^{-3x}(Ax+B)$

35. The Solution of $(D^2 - 9D - 52)y = 0$ is

A) $Ae^{4x} + Be^{-13x}$ B) $Ae^{-4x} + Be^{-13x}$ C) $Ae^{-4x} + Be^{13x}$ D) $Ae^{4x} + Be^{13x}$

Answer C) $Ae^{-4x} + Be^{13x}$

36. The complementary function of $(D^2 + 6D + 8)y = e^{-x}$

A) $Ae^{4x} + Be^{2x}$ B) $Ae^{4x} + Be^{-2x}$ C) $Ae^{-4x} + Be^{-2x}$ D) $Ae^{-4x} + Be^{2x}$

Answer C) $Ae^{-4x} + Be^{-2x}$

37. The complementary function of $(D^2 - 10D + 21)y = \sin 2x$

A) $Ae^{-7x} + Be^{-3x}$ B) $Ae^{-3x} + Be^{7x}$ C) $Ae^{-7x} + Be^{3x}$ D) $Ae^{7x} + Be^{3x}$

Answer D) $Ae^{7x} + Be^{3x}$

38. The Complementary function of $(D^2 - 4D + 5)y = 2x$ is

A) $Ae^{-5x} + Be^{x}$ B) $Ae^{5x} + Be^{-x}$ C) $e^{-2x}(A\cos x + B\sin x)$ D) $e^{2x}(A\cos x + B\sin x)$

Answer B

39. The Particular integral of $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 2y = e^{-3x}$ is

A) $\frac{e^{-3x}}{23}$ B) $-e^{-3x}$ C) e^{-3x} D) $-e^{3x}$

Answer B) $-e^{-3x}$

40. The particular integral of $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-2x}$ is

A) $\frac{xe^{-2x}}{4}$ B) $\frac{x^2e^{-2x}}{2}$ C) $\frac{e^{-2x}}{16}$ D) $\frac{xe^{-2x}}{8}$

Answer B)

```
41. The Particular integral of \frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 4y = e^{-x} is
```

A)
$$\frac{e^{-x}}{10}$$
 B) $\frac{x^2e^{-x}}{2}$ C) $\frac{xe^{-x}}{3}$ D) $\frac{xe^{-x}}{7}$

Answer C)
$$\frac{xe^{-x}}{3}$$

42. The particular integral of
$$(D^2 + 1)y = \cos x$$
 is

A)
$$\frac{x \sin x}{2}$$
 B) $-\frac{x \sin x}{2}$ C) $x \cos x$ D) $-x \sin x$

B)
$$-\frac{x\sin x}{2}$$

C)
$$x \cos x$$

$$D) - x \sin x$$

Answer A)
$$\frac{x \sin x}{2}$$

43. The Particular integral of
$$(D^2 + 4)y = \cos 3x$$
 is

A)
$$\frac{\cos 3x}{5}$$
 B) $\frac{\cos 3x}{-5}$ C) $\frac{\sin 3x}{5}$ D) $-\frac{\sin 3x}{5}$

Answer B)
$$\frac{\cos 3x}{-5}$$

44. The particular integral of
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 2y = e^{2x}$$
 is

A)
$$\frac{e^{2x}}{9}$$
 B) $\frac{e^{2x}}{6}$ C) $\frac{e^{2x}}{18}$ D) $\frac{xe^{2x}}{10}$

Answer C)
$$\frac{e^{2x}}{18}$$

45. The particular integral of
$$\frac{d^2y}{dx^2} + y = x$$
 is

A)
$$x+1$$
 B) $x-1$ C) x D) 1

C)
$$x$$
 D) 2

Answer C) x

46. The Particular integral of
$$\frac{d^2y}{dx^2} + 2y = e^{2x}$$

A)
$$\frac{e^{2x}}{6}$$
 B) $\frac{e^{2x}}{4}$ C) $\frac{e^{2x}}{2}$ D) e^{2x}

Answer A)
$$\frac{e^{2x}}{6}$$

47. The particular integral of
$$\frac{d^2y}{dx^2} + 2y = x^2$$
 is

A)
$$\frac{x^2}{2}$$
 B) $\frac{1}{2}(x^2-1)$ C) $\frac{1}{2}(x^2+1)$ D) x^2-1

C)
$$\frac{1}{2}(x^2+1)$$

D)
$$x^2 - 1$$

Answer B)
$$\frac{1}{2}(x^2 - 1)$$

48. The particular integral of $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \cos x$

A) $e^x \cos x$ B) $-e^x \cos x$ C) $e^x \sin x$ D) $-e^x \sin x$

Answer B) $-e^x \cos x$

49. The complementary function of $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} - 4y = e^x \cos x$

A) $Ae^{x} + Be^{4x}$ B) $Ae^{-x} + Be^{4x}$ C) $Ae^{-x} + Be^{-4x}$ D) $Ae^{x} + Be^{-4x}$ Answer B) $Ae^{-x} + Be^{4x}$

50. The complementary function of $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - 14y = xe^x$

A) $Ae^{2x} + Be^{7x}$ B) $Ae^{-2x} + Be^{-7x}$ C) $Ae^{2x} + Be^{-7x}$ D) $Ae^{2x} + Be^{-7x}$

Answer C) $Ae^{2x} + Be^{-7x}$ D) $Ae^{2x} + Be^{-7x}$