Helly-Type Theorems for Abstract Convexity

Dong gyu Lee

Department of Mathematical Sciences in Korea Advanced Institute of Science and Technology

November 26, 2018

1 / 30

Table of Contents

Classical Invariants

2 Helly-Type Theorems for Abstract Convexity

3 Counterexample to Eckhoff's Conjecture

Table of Contents

Classical Invariants

2 Helly-Type Theorems for Abstract Convexity

Counterexample to Eckhoff's Conjecture

Radon's Lemma. In \mathbb{R}^d , any (d+2)-point set P can be partitioned into two parts P_1 and P_2 such that

$$conv(P_1) \cap conv(P_2) \neq \emptyset.$$

Here, conv(S) denotes the smallest convex set containing S.

4 / 30

Radon's Lemma. In \mathbb{R}^d , any (d+2)-point set P can be partitioned into two parts P_1 and P_2 such that

$$conv(P_1) \cap conv(P_2) \neq \emptyset.$$

Here, conv(S) denotes the smallest convex set containing S.

Example) In plane, consider 4 points

Radon's Lemma. In \mathbb{R}^d , any (d+2)-point set P can be partitioned into two parts P_1 and P_2 such that

$$conv(P_1) \cap conv(P_2) \neq \emptyset.$$

Here, conv(S) denotes the smallest convex set containing S.

Example) In plane, consider 4 points

 $P_1 = \{x_1, x_4\}$ and $P_2 = \{x_2, x_3\}$

Radon's Lemma. In \mathbb{R}^d , any (d+2)-point set P can be partitioned into two parts P_1 and P_2 such that

$$conv(P_1) \cap conv(P_2) \neq \emptyset.$$

Here, conv(S) denotes the smallest convex set containing S.

Example) In plane, consider 4 points

 $P_1 = \{x_1, x_4\}$ and $P_2 = \{x_2, x_3\}$

4 / 30

Radon's Lemma. In \mathbb{R}^d , any (d+2)-point set P can be partitioned into two parts P_1 and P_2 such that

$$conv(P_1) \cap conv(P_2) \neq \emptyset.$$

Here, conv(S) denotes the smallest convex set containing S.

Example) In plane, consider 4 points

$$P_1 = \{x_1, x_4\} \text{ and } P_2 = \{x_2, x_3\}$$
 $P_1 = \{x_1, x_2, x_3\} \text{ and } P_2 = \{x_4\}$

$$P_1 = \{x_1, x_2, x_3\}$$
 and $P_2 = \{x_4\}$

Radon's Lemma. In \mathbb{R}^d , any (d+2)-point set P can be partitioned into two parts P_1 and P_2 such that

$$conv(P_1) \cap conv(P_2) \neq \emptyset.$$

Here, conv(S) denotes the smallest convex set containing S.

Example) In plane, consider 4 points

Partitioning the index set is more useful:

Radon's Lemma. In \mathbb{R}^d , any (d+2)-point set P can be partitioned into two parts P_1 and P_2 such that

$$conv(P_1) \cap conv(P_2) \neq \emptyset.$$

Here, conv(S) denotes the smallest convex set containing S.

Example) In plane, consider 4 points

Partitioning the index set is more useful:

Radon's Lemma. For any d+2 points x_1, \ldots, x_{d+2} in \mathbb{R}^d , the index set [d+2] can be partitioned into two parts I_1 and I_2 such that

$$conv(\{x_i: i \in I_1\}) \cap conv(\{x_i: i \in I_2\}) \neq \emptyset.$$

Definition

The Radon number of \mathbb{R}^d is the smallest integer m satisfying the following. For any m points x_1, \ldots, x_m in \mathbb{R}^d , there is a partition $[m] = I_1 \cup I_2$ such that $conv(\{x_i : i \in I_1\}) \cap conv(\{x_i : i \in I_2\}) \neq \emptyset$.

Recall: Radon's Lemma.

For any d+2 points x_1,\ldots,x_{d+2} in \mathbb{R}^d , there is a partition $[d+2]=I_1\cup I_2$ such that

$$conv(\{x_i: i \in I_1\}) \cap conv(\{x_i: i \in I_2\}) \neq \emptyset.$$

5 / 30

Definition

The Radon number of \mathbb{R}^d is the smallest integer m satisfying the following. For any m points x_1,\ldots,x_m in \mathbb{R}^d , there is a partition $[m]=I_1\cup I_2$ such that

$$conv(\{x_i:i\in I_1\})\cap conv(\{x_i:i\in I_2\})\neq \emptyset.$$

Recall: Radon's Lemma.

For any d+2 points x_1,\ldots,x_{d+2} in \mathbb{R}^d , there is a partition $[d+2]=I_1\cup I_2$ such that

$$conv(\{x_i: i \in I_1\}) \cap conv(\{x_i: i \in I_2\}) \neq \emptyset.$$

- \triangleright The Radon number of \mathbb{R}^d is at most d+2.
- ightharpoonup Indeed, the Radon number of \mathbb{R}^d is exactly d+2.

 $3 < ({\it the Radon number of plane})$

Helly's Theorem. Let C_1, \ldots, C_n be convex sets in \mathbb{R}^d . If every d+1 convex sets of them are intersecting, then all the convex sets are intersecting.

Example) In plane, let $\mathcal{F} = \{C_1, C_2, C_3, C_4\}$.

Helly's Theorem. Let C_1, \ldots, C_n be convex sets in \mathbb{R}^d . If every d+1 convex sets of them are intersecting, then all the convex sets are intersecting.

Example) In plane, let $\mathcal{F} = \{C_1, C_2, C_3, C_4\}$.

Helly's Theorem. Let C_1, \ldots, C_n be convex sets in \mathbb{R}^d . If every d+1 convex sets of them are intersecting, then all the convex sets are intersecting.

Example) In plane, let $\mathcal{F} = \{C_1, C_2, C_3, C_4\}$.

Helly's Theorem. Let C_1, \ldots, C_n be convex sets in \mathbb{R}^d . If every d+1 convex sets of them are intersecting, then all the convex sets are intersecting.

Example) In plane, let $\mathcal{F} = \{C_1, C_2, C_3, C_4\}.$

Definition

The Helly number of \mathbb{R}^d is the smallest integer k satisfying the following. Let C_1, \ldots, C_n be convex sets in \mathbb{R}^d . If every k convex sets of them are intersecting, then all the convex sets are intersecting.

Helly's Theorem. Let C_1, \ldots, C_n be convex sets in \mathbb{R}^d . If every d+1 convex sets of them are intersecting, then all the convex sets are intersecting.

Example) In plane, let $\mathcal{F} = \{C_1, C_2, C_3, C_4\}.$

Definition

The Helly number of \mathbb{R}^d is the smallest integer k satisfying the following. Let C_1,\ldots,C_n be convex sets in \mathbb{R}^d . If every k convex sets of them are intersecting, then all the convex sets are intersecting.

- ightharpoonup The Helly number of \mathbb{R}^d is d+1.
- ightharpoonup The Helly number of \mathbb{R}^d is less than the Radon number(=d + 2) of \mathbb{R}^d

Convex set?

A set $C \subseteq \mathbb{R}^d$ is a standard convex set if for any two points $x, y \in C$, the segment $\{tx + (1-t)y : t \in [0,1]\}$ is contained in C.

A Combinatorial Property:

The intersection of two standard convex sets is also a standard convex set.

Convex set?

A set $C \subseteq \mathbb{R}^d$ is a standard convex set if for any two points $x, y \in C$, the segment $\{tx + (1-t)y : t \in [0,1]\}$ is contained in C.

A Combinatorial Property:

The intersection of two standard convex sets is also a standard convex set.

Definition

An (abstract) convexity space is a pair (X, C) such that

- ullet C is a collection of subsets of X.
- $\emptyset \in \mathcal{C}$ and $X \in \mathcal{C}$.
- $A \cap B \in \mathcal{C}$ for any $A, B \in \mathcal{C}$.

Convex set?

A set $C \subseteq \mathbb{R}^d$ is a standard convex set if for any two points $x, y \in C$, the segment $\{tx + (1-t)y : t \in [0,1]\}$ is contained in C.

A Combinatorial Property:

The intersection of two standard convex sets is also a standard convex set.

Definition

An (abstract) convexity space is a pair (X, \mathcal{C}) such that

- \circ \mathcal{C} is a collection of subsets of X.
- $\emptyset \in \mathcal{C}$ and $X \in \mathcal{C}$.
- $A \cap B \in \mathcal{C}$ for any $A, B \in \mathcal{C}$.
- \triangleright Every member of \mathcal{C} is called an (abstract) convex set.
- \triangleright "Convex hull" conv(S) denotes the "inclusion-minimal" convex set containing S. In other words,

$$conv(S) := \bigcap_{C \in \mathcal{C}, S \subset C} C$$

Convexity Space

A convexity space is a pair (X, \mathcal{C}) such that

- $\emptyset \in \mathcal{C}$ and $X \in \mathcal{C}$.
- $A \cap B \in \mathcal{C}$ for any $A, B \in \mathcal{C}$.
- $ightharpoonup (\mathbb{R}^d,\mathcal{S})$ is called the standard convexity space.

Convexity Space

A convexity space is a pair (X, \mathcal{C}) such that

- $\emptyset \in \mathcal{C}$ and $X \in \mathcal{C}$.
- $A \cap B \in \mathcal{C}$ for any $A, B \in \mathcal{C}$.
- $ightharpoonup (\mathbb{R}^d, \mathcal{S})$ is called the standard convexity space.
- \triangleright (\mathbb{Z}^d , \mathcal{L}) is called the integer lattice convexity space.

Convexity Space

A convexity space is a pair (X, \mathcal{C}) such that

- $\emptyset \in \mathcal{C}$ and $X \in \mathcal{C}$.
- $A \cap B \in \mathcal{C}$ for any $A, B \in \mathcal{C}$.
- $ightharpoonup (\mathbb{R}^d, \mathcal{S})$ is called the standard convexity space.
- $ightharpoonup (\mathbb{Z}^d,\mathcal{L})$ is called the integer lattice convexity space.

Convexity Space

A convexity space is a pair (X, \mathcal{C}) such that

- $\emptyset \in \mathcal{C}$ and $X \in \mathcal{C}$.
- $A \cap B \in \mathcal{C}$ for any $A, B \in \mathcal{C}$.
- $ightharpoonup (\mathbb{R}^d, \mathcal{S})$ is called the standard convexity space.
- $ightharpoonup (\mathbb{Z}^d,\mathcal{L})$ is called the integer lattice convexity space.
- \triangleright (\mathbb{R}^d , \mathcal{B}) is called the box convexity space.

Radon Number

The Radon number $r(X, \mathcal{C})$ is the smallest integer m satisfying the following. For any m points x_1, \ldots, x_m in X, there is a partition $[m] = I_1 \cup I_2$ such that

$$conv(\{x_i:i\in I_1\})\cap conv(\{x_i:i\in I_2\})\neq \emptyset.$$

- $ightharpoonup r(\mathbb{R}^d, \mathcal{S}) = d + 2$. (Radon, 1921)
- $ightharpoonup r(\mathbb{Z}^d,\mathcal{L}) \leq d \cdot (2^d-1) + 3$. (Sierksma, 1977)
- $ightharpoonup r(\mathbb{R}^d,\mathcal{B}) = \min\{r: \binom{r}{\lfloor r/2 \rfloor} > 2d\}.$ (Eckhoff, 1969)

The Helly Property with k

The Helly number h(X, C) is the smallest integer k satisfying the following. Let C_1, \ldots, C_n be convex sets in C. If every k convex sets of them are intersecting, then all the convex sets are intersecting.

- ho $h(\mathbb{R}^d, \mathcal{S}) = d + 1$. (Radon, 1921)
- ho $h(\mathbb{Z}^d,\mathcal{L})=2^d.$ (Doignon, 1973)
- ho $h(\mathbb{R}^d, \mathcal{B}) = 2$.

The Helly Property with k

The Helly number h(X, C) is the smallest integer k satisfying the following.

Let C_1, \ldots, C_n be convex sets in C. If every k convex sets of them are intersecting, then all the convex sets are intersecting.

- ho $h(\mathbb{R}^d, \mathcal{S}) = d + 1$. (Radon, 1921)
- ho $h(\mathbb{Z}^d, \mathcal{L}) = 2^d$. (Doignon, 1973)
- $ightharpoonup h(\mathbb{R}^d,\mathcal{B})=2.$

What do we want to do? Let (X, \mathcal{C}) be a convexity space.

The Helly Property with k

The Helly number h(X, C) is the smallest integer k satisfying the following.

Let C_1, \ldots, C_n be convex sets in C. If every k convex sets of them are intersecting, then all the convex sets are intersecting.

- ho $h(\mathbb{R}^d, \mathcal{S}) = d + 1$. (Radon, 1921)
- ho $h(\mathbb{Z}^d,\mathcal{L})=2^d$. (Doignon, 1973)
- $ightharpoonup h(\mathbb{R}^d,\mathcal{B})=2.$

What do we want to do? Let (X, \mathcal{C}) be a convexity space.

If the Radon number r(X, C) is bounded, then

 $ightharpoonup (X,\mathcal{C})$ satisfies the Helly property. (Revi, 1951)

The Helly Property with k

The Helly number h(X, C) is the smallest integer k satisfying the following.

Let C_1, \ldots, C_n be convex sets in C. If every k convex sets of them are intersecting, then all the convex sets are intersecting.

- ho $h(\mathbb{R}^d, \mathcal{S}) = d + 1$. (Radon, 1921)
- ho $h(\mathbb{Z}^d, \mathcal{L}) = 2^d$. (Doignon, 1973)
- $ightharpoonup h(\mathbb{R}^d,\mathcal{B})=2.$

What do we want to do? Let (X, \mathcal{C}) be a convexity space.

If the Radon number r(X, C) is bounded, then

- $hd (X,\mathcal{C})$ satisfies the Helly property. (Revi, 1951)
- \triangleright (X, C) satisfies "the colorful Helly property". (**Theorem 1**)
- \triangleright (X, C) satisfies "the weak fractional Helly property". (**Theorem 2**)

Table of Contents

Classical Invariants

Pelly-Type Theorems for Abstract Convexity

Counterexample to Eckhoff's Conjecture

Colorful Helly Theorem. (Lovász, 1974)

Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be families of convex sets in \mathbb{R}^d . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

ightharpoonup Here, a colorful tuple denotes a family $\{C_1,\ldots,C_{d+1}\}$, where $C_1\in\mathcal{F}_1,\ldots,C_{d+1}\in\mathcal{F}_{d+1}$.

$$\mathcal{F}_1$$
 —

Colorful Helly Theorem. (Lovász, 1974)

Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be families of convex sets in \mathbb{R}^d . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

ightharpoonup Here, a colorful tuple denotes a family $\{C_1,\ldots,C_{d+1}\}$, where $C_1\in\mathcal{F}_1,\ldots,C_{d+1}\in\mathcal{F}_{d+1}$.

$$\mathcal{F}_1$$
 — \mathcal{F}_2 —

Colorful Helly Theorem. (Lovász, 1974)

Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be families of convex sets in \mathbb{R}^d . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

ightharpoonup Here, a colorful tuple denotes a family $\{C_1,\ldots,C_{d+1}\}$, where $C_1\in\mathcal{F}_1,\ldots,C_{d+1}\in\mathcal{F}_{d+1}$.

$$\mathcal{F}_1$$
 — \mathcal{F}_2 —

Colorful Helly Theorem. (Lovász, 1974)

Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be families of convex sets in \mathbb{R}^d . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

ightharpoonup Here, a colorful tuple denotes a family $\{\mathcal{C}_1,\ldots,\mathcal{C}_{d+1}\}$, where $\mathcal{C}_1\in\mathcal{F}_1,\ldots,\mathcal{C}_{d+1}\in\mathcal{F}_{d+1}$.

$$\mathcal{F}_1$$
 —

Colorful Helly Theorem. (Lovász, 1974)

Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be families of convex sets in \mathbb{R}^d . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

 \triangleright Here, a colorful tuple denotes a family $\{C_1,\ldots,C_{d+1}\}$, where $C_1\in\mathcal{F}_1,\ldots,C_{d+1}\in\mathcal{F}_{d+1}$.

$$\mathcal{F}_1$$
 — \mathcal{F}_2 — \mathcal{F}_3 —

Colorful Helly Theorem. (Lovász, 1974)

Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be families of convex sets in \mathbb{R}^d . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

ightharpoonup Here, a colorful tuple denotes a family $\{\mathcal{C}_1,\ldots,\mathcal{C}_{d+1}\}$, where $\mathcal{C}_1\in\mathcal{F}_1,\ldots,\mathcal{C}_{d+1}\in\mathcal{F}_{d+1}$.

$$\mathcal{F}_1$$
 — \mathcal{F}_2 — \mathcal{F}_3 —

Colorful Helly Theorem. (Lovász, 1974)

Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be families of convex sets in \mathbb{R}^d . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

ightharpoonup Here, a colorful tuple denotes a family $\{\mathcal{C}_1,\ldots,\mathcal{C}_{d+1}\}$, where $\mathcal{C}_1\in\mathcal{F}_1,\ldots,\mathcal{C}_{d+1}\in\mathcal{F}_{d+1}$.

$$\mathcal{F}_1$$
 — \mathcal{F}_2 — \mathcal{F}_2 — \mathcal{F}_3

Colorful Helly Theorem. (Lovász, 1974)

Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be families of convex sets in \mathbb{R}^d . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

ightharpoonup Here, a colorful tuple denotes a family $\{C_1,\ldots,C_{d+1}\}$, where $C_1\in\mathcal{F}_1,\ldots,C_{d+1}\in\mathcal{F}_{d+1}$.

For example)

$$\mathcal{F}_1$$
 — \mathcal{F}_2 — \mathcal{F}_2

Colorful Helly Theorem. (Lovász, 1974)

Let $\mathcal{F}_1, \dots, \mathcal{F}_{d+1}$ be families of convex sets in \mathbb{R}^d . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

ightharpoonup Here, a colorful tuple denotes a family $\{C_1,\ldots,C_{d+1}\}$, where $C_1\in\mathcal{F}_1,\ldots,C_{d+1}\in\mathcal{F}_{d+1}$.

For example)

$$\mathcal{F}_2$$
 —

Colorful Helly Theorem. (Lovász, 1974)

Let $\mathcal{F}_1, \ldots, \mathcal{F}_{d+1}$ be families of convex sets in \mathbb{R}^d . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

ightharpoonup Here, a colorful tuple denotes a family $\{C_1,\ldots,C_{d+1}\}$, where $C_1\in\mathcal{F}_1,\ldots,C_{d+1}\in\mathcal{F}_{d+1}$.

For example)

$$\mathcal{F}_1$$
 —

Definition. (Colorful Helly Property with k)

 (X,\mathcal{C}) satisfies the colorful Helly property if there exists k satisfying the following. Let $\mathcal{F}_1,\ldots,\mathcal{F}_k$ be families of convex sets in \mathcal{C} . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

- \triangleright (\mathbb{R}^d , \mathcal{S}) satisfies the colorful Helly property with d+1.
- ho The colorful Helly property \Rightarrow the Helly property by setting $\mathcal{F}_1 = \cdots = \mathcal{F}_k$.

Colorful Helly Property with k

Let $\mathcal{F}_1, \dots, \mathcal{F}_k$ be families of convex sets in \mathcal{C} . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

Theorem 1

If the Radon number r = r(X, C) is bounded, then (X, C) satisfies the colorful Helly property with p = p(r).

 \triangleright Here, p(r) is a Stirling number of the second kind.

Colorful Helly Property with k

Let $\mathcal{F}_1, \ldots, \mathcal{F}_k$ be families of convex sets in \mathcal{C} . If every colorful tuple is intersecting, then some \mathcal{F}_i of the families is intersecting.

Theorem 1

If the Radon number r = r(X, C) is bounded, then (X, C) satisfies the colorful Helly property with p = p(r).

- \triangleright Here, p(r) is a Stirling number of the second kind.
- ▶ Tool : Nerve complex.
- > Translate the Radon number to the language of a simplicial complex.
- ho By using "Duplication", we may assume $\mathcal{F}_1,\ldots,\mathcal{F}_k$ are pairwise disjoint.

Let $\mathcal{F}=\{\textit{C}_1,\ldots,\textit{C}_n\}$ be a finite family of sets. The nerve complex of \mathcal{F} is defined as

$$N(\mathcal{F}):=\{\sigma\in 2^{[n]}:\cap_{i\in\sigma}C_i\neq\emptyset\}.$$

$$\cap_{i\in\sigma}\,C_i\neq\emptyset\quad\Leftrightarrow\quad\sigma\in N(\mathcal{F}).$$

Let $\mathcal{F} = \{C_1, \dots, C_n\}$ be a finite family of sets. The nerve complex of \mathcal{F} is defined as

$$N(\mathcal{F}) := \{ \sigma \in 2^{[n]} : \cap_{i \in \sigma} C_i \neq \emptyset \}.$$

$$\cap_{i\in\sigma}\,C_i\neq\emptyset\quad\Leftrightarrow\quad\sigma\in N(\mathcal{F}).$$

$$\mathcal{F} = \{ c_1, c_2, c_3, c_4 \}$$

$$\begin{split} \textit{N}(\mathcal{F}) &= \big\{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \\ \{1, 3\}, \{2, 3\}, \{3, 4\}, \{1, 2, 3\} \big\} \end{split}$$

Let $\mathcal{F} = \{C_1, \dots, C_n\}$ be a finite family of sets. The nerve complex of \mathcal{F} is defined as

$$N(\mathcal{F}) := \{ \sigma \in 2^{[n]} : \cap_{i \in \sigma} C_i \neq \emptyset \}.$$

$$\cap_{i\in\sigma}\,C_i\neq\emptyset\quad\Leftrightarrow\quad\sigma\in N(\mathcal{F}).$$

$$\mathcal{F} = \{ \textit{C}_{1}, \textit{C}_{2}, \textit{C}_{3}, \textit{C}_{4} \}$$

Let $\mathcal{F} = \{C_1, \dots, C_n\}$ be a finite family of sets. The nerve complex of \mathcal{F} is defined as

$$N(\mathcal{F}) := \{ \sigma \in 2^{[n]} : \cap_{i \in \sigma} C_i \neq \emptyset \}.$$

$$\cap_{i\in\sigma}\,C_i\neq\emptyset\quad\Leftrightarrow\quad\sigma\in N(\mathcal{F}).$$

$$\mathcal{F} = \{ c_1, c_2, c_3, c_4 \}$$

$$N(\mathcal{F}) = \left\{ \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}, \{1, 2, 3\} \right\}$$

Let $\mathcal{F} = \{C_1, \dots, C_n\}$ be a finite family of sets. The nerve complex of \mathcal{F} is defined as

$$N(\mathcal{F}) := \{ \sigma \in 2^{[n]} : \cap_{i \in \sigma} C_i \neq \emptyset \}.$$

In other words, for an index set σ

$$\cap_{i\in\sigma}\,C_i\neq\emptyset\quad\Leftrightarrow\quad\sigma\in N(\mathcal{F}).$$

 $\mathcal{F} = \{C_1, C_2, C_3, C_4\}$

$$N(\mathcal{F}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}, \{1, 2, 3\}\}$$

- A nerve complex is an (abstract) simplicial complex.
- \triangleright An (abstract) simplicial complex K is a collection of subsets of V such that

$$\tau \in K \text{ and } \sigma \subseteq \tau \implies \sigma \in K.$$

Let $\mathcal{F} = \{C_1, \dots, C_n\}$ be a finite family of sets. The nerve complex of \mathcal{F} is defined as

$$N(\mathcal{F}) := \{ \sigma \in 2^{[n]} : \cap_{i \in \sigma} C_i \neq \emptyset \}.$$

$$\cap_{i\in\sigma} C_i\neq\emptyset\quad\Leftrightarrow\quad\sigma\in N(\mathcal{F}).$$

$$\mathcal{F} = \{C_1, C_2, C_3, C_4\}$$

- A nerve complex is an (abstract) simplicial complex.
- \triangleright An (abstract) simplicial complex K is a collection of subsets of V such that

$$\tau \in K \text{ and } \sigma \subseteq \tau \quad \Rightarrow \quad \sigma \in K.$$

- $\triangleright v \in V$ is called a vertex. e.g.) $1, 2, 3, \dots$
- \triangleright If σ is inclusion-maximal in K, then σ is called a facet. e.g.) $\{1,2,3\},\{3,4\}$

Colorful Helly Property with k

Let $\mathcal{F}_1, \ldots, \mathcal{F}_k$ be families of convex sets in \mathcal{C} . If every colorful tuple is intersecting, then there exists an intersecting family \mathcal{F}_i among the families.

Let $K = N(\bigcup_{i=1}^k \mathcal{F}_i)$ denote the nerve complex. Consider

$$\mathcal{F}_i \quad \leftrightarrow \quad V_i.$$

For example,

Each V_i is a "color class".

Colorful Helly Property with k

Let $\mathcal{F}_1, \ldots, \mathcal{F}_k$ be families of convex sets in \mathcal{C} . If every colorful tuple is intersecting, then there exists an intersecting family \mathcal{F}_i among the families.

Let $K = N(\bigcup_{i=1}^k \mathcal{F}_i)$ denote the nerve complex. Consider

$$\mathcal{F}_i \quad \leftrightarrow \quad V_i.$$

For example,

Each V_i is a "color class".

A "colorful subset" S is a set of vertices such that $|S \cap V_i| = 1$ for all $1 \le i \le k$.

Colorful Helly Property with k

Let $\mathcal{F}_1, \ldots, \mathcal{F}_k$ be families of convex sets in \mathcal{C} . If every colorful tuple is intersecting, then there exists an intersecting family \mathcal{F}_i among the families.

Let $K = N(\bigcup_{i=1}^k \mathcal{F}_i)$ denote the nerve complex. Consider

$$\mathcal{F}_i \quad \leftrightarrow \quad V_i.$$

For example,

Each V_i is a "color class".

A "colorful subset" S is a set of vertices such that $|S \cap V_i| = 1$ for all $1 \le i \le k$.

Colorful Helly Property with k

Let $\mathcal{F}_1, \ldots, \mathcal{F}_k$ be families of convex sets in \mathcal{C} . If every colorful tuple is intersecting, then there exists an intersecting family \mathcal{F}_i among the families.

Let $K = N(\bigcup_{i=1}^k \mathcal{F}_i)$ denote the nerve complex. Consider

$$\mathcal{F}_i \quad \leftrightarrow \quad V_i.$$

For example,

Each V_i is a "color class".

A "colorful subset" S is a set of vertices such that $|S \cap V_i| = 1$ for all $1 \le i \le k$.

Claim: If every colorful subset is a face of K, then some V_i is a face of K.

Colorful Helly Property with k

Let $\mathcal{F}_1, \ldots, \mathcal{F}_k$ be families of convex sets in \mathcal{C} . If every colorful tuple is intersecting, then there exists an intersecting family \mathcal{F}_i among the families.

Let $K = N(\bigcup_{i=1}^k \mathcal{F}_i)$ denote the nerve complex. Consider

$$\mathcal{F}_i \quad \leftrightarrow \quad V_i.$$

For example,

Each V_i is a "color class".

A "colorful subset" S is a set of vertices such that $|S \cap V_i| = 1$ for all $1 \le i \le k$.

Claim: If every colorful subset is a face of K, then some V_i is a face of K.

Definition

The Radon number $r^*(K)$ of a simplicial complex K is the smallest integer m with the following. For any m facets $\sigma_1, \ldots, \sigma_m$ of K, there exists a partition $[m] = l_1 \cup l_2$ such that

$$(\cap_{i\in I_1}\sigma_i)\cup(\cap_{i\in I_2}\sigma_i)\in K.$$

Compare to

The Radon number r(X,C) is the smallest integer m with the following. For any m points x_1,\ldots,x_m in X, there is a partition $[m]=I_1\cup I_2$ such that

$$conv(\{x_i: i \in I_1\}) \cap conv(\{x_i: i \in I_2\}) \neq \emptyset.$$

15 / 30

Definition

The Radon number $r^*(K)$ of a simplicial complex K is the smallest integer m with the following. For any m facets $\sigma_1, \ldots, \sigma_m$ of K, there exists a partition $[m] = l_1 \cup l_2$ such that

$$(\cap_{i\in I_1}\sigma_i)\cup(\cap_{i\in I_2}\sigma_i)\in K.$$

Compare to

The Radon number r(X, C) is the smallest integer m with the following. For any m points x_1, \ldots, x_m in X, there is a partition $[m] = I_1 \cup I_2$ such that

$$conv(\{x_i:i\in I_1\})\cap conv(\{x_i:i\in I_2\})\neq \emptyset.$$

Lemma

Let (X,\mathcal{C}) be a convexity space. For any finite family \mathcal{F} of convex sets in \mathcal{C} ,

$$r^*(N(\mathcal{F})) \leq r(X, \mathcal{C}).$$

Definition

The Radon number $r^*(K)$ of a simplicial complex K is the smallest integer m with the following. For any m facets $\sigma_1, \ldots, \sigma_m$ of K, there exists a partition $[m] = I_1 \cup I_2$ such that

$$(\cap_{i\in I_1}\sigma_i)\cup(\cap_{i\in I_2}\sigma_i)\in K.$$

Compare to

The Radon number r(X, C) is the smallest integer m with the following. For any m points x_1, \ldots, x_m in X, there is a partition $[m] = I_1 \cup I_2$ such that

$$conv(\{x_i:i\in I_1\})\cap conv(\{x_i:i\in I_2\})\neq \emptyset.$$

Lemma

Let (X,\mathcal{C}) be a convexity space. For any finite family \mathcal{F} of convex sets in \mathcal{C} ,

$$r^*(N(\mathcal{F})) \leq r(X, \mathcal{C}).$$

Claim: If every colorful subset is a face of K, then some V_i is a face of K.

Reduced Problem

If $r^*(K)$ is bounded, then the **Claim** holds?

Key Lemma

Let K be a simplicial complex on the vertex set V and let $V=\cup_{i=1}^p V_i$ be the color classes with $|V_i|\geq t$. Assume that K contains all possible colorful subsets but no V_i is a face. If $r^*=r^*(K)$ is bounded, then p< S(m,t) for some $m=m(r^*)$.

- \triangleright Here, S(m, t) is the Stirling number of the second kind.

Def. The Stirling number of the second kind S(m, t) is the number of ways to partition the set [m] into t non-empty subsets.

Key Lemma

Let K be a simplicial complex on the vertex set V and let $V = \cup_{i=1}^p V_i$ be the color classes with $|V_i| \geq t$. Assume that K contains all possible colorful subsets but no V_i is a face. If $r^* = r^*(K)$ is bounded, then p < S(m,t) for some $m = m(r^*)$.

- ▷ i.e., "Too Many" color classes are forbidden.
- \triangleright Here, S(m, t) is the Stirling number of the second kind.

Def. The Stirling number of the second kind S(m, t) is the number of ways to partition the set [m] into t non-empty subsets.

Theorem 1

If the Radon number r = r(X, C) is bounded, then (X, C) satisfies the colorful Helly property with p = p(r).

Key Lemma

Let K be a simplicial complex on the vertex set V and let $V = \cup_{i=1}^p V_i$ be the color classes with $|V_i| \geq t$. Assume that K contains all possible colorful subsets but no V_i is a face. If $r^* = r^*(K)$ is bounded, then p < S(m,t) for some $m = m(r^*)$.

- ▷ i.e., "Too Many" color classes are forbidden.
- \triangleright Here, S(m, t) is the Stirling number of the second kind.

Def. The Stirling number of the second kind S(m, t) is the number of ways to partition the set [m] into t non-empty subsets.

Theorem 1

If the Radon number r = r(X, C) is bounded, then (X, C) satisfies the colorful Helly property with p = p(r).

- \triangleright Choose any finite families $\mathcal{F}_1, \ldots, \mathcal{F}_p$, where $p = \sup\{S(m, t) : m = m(r^*)\}$.
- \triangleright Apply Key Lemma to the nerve complex $K = N(\bigcup_{i=1}^p \mathcal{F}_i)$ with $t = h(X, \mathcal{C})$.
- \triangleright Contrapositive. Since $p \ge S(m, t)$, there exists some $V_i ∈ K$.

Fractional Helly Theorem. (Katchalski and Liu, 1979)

For every $\alpha \in (0,1]$, there exists $\beta \in (0,1]$ satisfying the following. Let C_1,\ldots,C_n be convex sets in \mathbb{R}^d .

$$\left(\# \text{ of intersecting } \left(\frac{d+1}{t}\right)\text{-tuples of the } C_i\text{'s}\right) \geq \alpha \binom{n}{d+1},$$

then

$$\left(\# \text{ of intersecting convex sets among the } C_i$$
's $\right) \ge \beta n$.

Fractional Helly Theorem. (Katchalski and Liu, 1979)

For every $\alpha \in (0,1]$, there exists $\beta \in (0,1]$ satisfying the following. Let C_1,\ldots,C_n be convex sets in \mathbb{R}^d .

$$\left(\# \text{ of intersecting } \left(\frac{d+1}{t}\right)\text{-tuples of the } C_i\text{'s}\right) \geq \alpha \binom{n}{d+1},$$

then

$$\left(\# \text{ of intersecting convex sets among the } C_i\text{'s}\right) \geq \beta n.$$

$$lpha=$$
 0 and $eta=rac{1}{2}$

Fractional Helly Theorem. (Katchalski and Liu, 1979)

For every $\alpha \in (0,1]$, there exists $\beta \in (0,1]$ satisfying the following. Let C_1,\ldots,C_n be convex sets in \mathbb{R}^d .

$$\left(\# \text{ of intersecting } \left(\frac{d+1}{t}\right)\text{-tuples of the } C_i\text{'s}\right) \geq \alpha \binom{n}{d+1},$$

then

 $\left(\# \text{ of intersecting convex sets among the } C_i\text{'s}\right) \geq \beta n.$

$$lpha=rac{1}{2}$$
 and $eta=rac{3}{4}$

Fractional Helly Theorem. (Katchalski and Liu, 1979)

For every $\alpha \in (0,1]$, there exists $\beta \in (0,1]$ satisfying the following. Let C_1, \ldots, C_n be convex sets in \mathbb{R}^d . lf

$$\left(\# \text{ of intersecting } \left(\frac{d+1}{t}\right)\text{-tuples of the } C_i\text{'s}\right) \geq \alpha \binom{n}{d+1},$$

then

$$\left(\# \text{ of intersecting convex sets among the } C_i\text{'s}\right) \geq \beta n.$$

$$lpha=1$$
 and $eta=1$

- \triangleright Here, $\beta = \beta(\alpha)$ should not depend on n.
- If $\beta(1) = 1$, then we obtain the Helly property.

Definition. (Fractional Helly property with k)

 (X,\mathcal{C}) satisfies the fractional Helly property if there exists k with the following. For every $\alpha \in (0,1]$, there exists $\beta \in (0,1]$ such that for any n convex sets C_1,\ldots,C_n in C, if the number of intersecting k-tuples of the C_i 's is at least $\alpha\binom{n}{k}$, then at least βn convex sets among the C_i 's are intersecting.

- ho $(\mathbb{R}^d,\mathcal{S})$ satisfies the f. Helly property with d+1 and $eta=rac{lpha}{d+1}$. (Katchalski and Liu, 1979)
- $\beta = 1 (1 \alpha)^{\frac{1}{d+1}}$ in $(\mathbb{R}^d, \mathcal{S})$. (Kalai, 1984)

Definition. (Fractional Helly property with k)

 (X,\mathcal{C}) satisfies the fractional Helly property if there exists k with the following. For every $\alpha \in (0,1]$, there exists $\beta \in (0,1]$ such that for any n convex sets C_1,\ldots,C_n in C, if the number of intersecting k-tuples of the C_i 's is at least $\alpha \binom{n}{k}$, then at least βn convex sets among the C_i 's are intersecting.

- ho $(\mathbb{R}^d,\mathcal{S})$ satisfies the f. Helly property with d+1 and $eta=rac{lpha}{d+1}$. (Katchalski and Liu, 1979)
- $\beta = 1 (1 \alpha)^{\frac{1}{d+1}}$ in $(\mathbb{R}^d, \mathcal{S})$. (Kalai, 1984)
- ightarrow (\mathbb{Z}^d,\mathcal{L}) satisfies the f. Helly property with d+1. (Bárány and Matoušek, 2003)
- $ightharpoonup (\mathbb{R}^d,\mathcal{B})$ satisfies the weak f. Helly property with 2 and $\beta=1-\sqrt{d(1-lpha)}$. (Eckhoff, 1988)

Definition. (Fractional Helly property with k)

 (X,\mathcal{C}) satisfies the fractional Helly property if there exists k with the following. For every $\alpha \in (0,1]$, there exists $\beta \in (0,1]$ such that for any n convex sets C_1,\ldots,C_n in C, if the number of intersecting k-tuples of the C_i 's is at least $\alpha\binom{n}{k}$, then at least βn convex sets among the C_i 's are intersecting.

- ho $(\mathbb{R}^d,\mathcal{S})$ satisfies the f. Helly property with d+1 and $eta=rac{lpha}{d+1}$. (Katchalski and Liu, 1979)
- $\beta = 1 (1 \alpha)^{\frac{1}{d+1}} \text{ in } (\mathbb{R}^d, \mathcal{S}). \text{ (Kalai, 1984)}$
- ho $(\mathbb{Z}^d,\mathcal{L})$ satisfies the f. Helly property with d+1. (Bárány and Matoušek, 2003)
- ho (\mathbb{R}^d , \mathcal{B}) satisfies the weak f. Helly property with 2 and $\beta = 1 \sqrt{d(1-\alpha)}$. (Eckhoff, 1988)

"WEAK"?

Even though we cannot find $\beta \in (0,1]$ for every $\alpha \in (0,1]$, but if such β exists for some α , then we say that (X,\mathcal{C}) satisfies the weak fractional Helly property.

ightharpoonup In $(\mathbb{R}^d,\mathcal{B})$, in order for $\beta=1-\sqrt{d(1-\alpha)}>0$, it needs to be $\alpha>1-\frac{1}{d}$.

"Weak" Fractional Helly property with k

For every $\alpha \in (1 - \delta, 1]$, there exists $\beta \in (0, 1]$ such that for any n convex sets C_1, \ldots, C_n in C, if the number of intersecting k-tuples of the C_i 's is at least $\alpha \binom{n}{k}$, then at least βn convex sets among the C_i 's are intersecting.

Theorem 2

If the Radon number r = r(X, C) is bounded, then (X, C) satisfies the weak fractional Helly property with h.

 \triangleright Here, h is the Helly number of (X, \mathcal{C}) .

"Weak" Fractional Helly property with k

For every $\alpha \in (1 - \delta, 1]$, there exists $\beta \in (0, 1]$ such that for any n convex sets C_1, \ldots, C_n in \mathcal{C} , if the number of intersecting k-tuples of the C_i 's is at least $\alpha \binom{n}{k}$, then at least βn convex sets among the C_i 's are intersecting.

Theorem 2

If the Radon number $r = r(X, \mathcal{C})$ is bounded, then (X, \mathcal{C}) satisfies the weak fractional Helly property with h.

- \triangleright Here, h is the Helly number of (X, \mathcal{C}) .
- $\beta = 1 ph(1 \alpha)^{\frac{1}{h}}$, where p is the Stirling number of the second kind in **Theorem 1**.
- $\triangleright \ \alpha > 1 \frac{1}{(\rho h)^h}$ not to vanish β . i.e., $\frac{\delta}{\delta} = \frac{1}{(\rho h)^h}$.

Sketch of Theorem 2.

Theorem (M. Kim, 2017)

If (X, \mathcal{C}) satisfies the colorful Helly property with $\frac{k}{k}$, then (X, \mathcal{C}) also satisfies the weak fractional Helly property with $\frac{k}{k}$ and $\beta = 1 - k(1 - \alpha)^{\frac{1}{k}}$.

20 / 30

Sketch of Theorem 2.

Theorem (M. Kim, 2017)

If (X,\mathcal{C}) satisfies the colorful Helly property with $\frac{k}{k}$, then (X,\mathcal{C}) also satisfies the weak fractional Helly property with $\frac{k}{k}$ and $\beta=1-k(1-\alpha)^{\frac{1}{k}}$.

M. Kim's theorem approach and double counting give us

Lemma

If (X, \mathcal{C}) satisfies the colorful Helly property with k, then (X, \mathcal{C}) satisfies the weak fractional Helly property with h and $\beta = 1 - kh(1 - \alpha)^{\frac{1}{h}}$, where $h = h(X, \mathcal{C})$.

Sketch of Theorem 2.

Theorem (M. Kim, 2017)

If (X,\mathcal{C}) satisfies the colorful Helly property with k, then (X,\mathcal{C}) also satisfies the weak fractional Helly property with k and $\beta = 1 - k(1-\alpha)^{\frac{1}{k}}$.

M. Kim's theorem approach and double counting give us

Lemma

If (X, \mathcal{C}) satisfies the colorful Helly property with k, then (X, \mathcal{C}) satisfies the weak fractional Helly property with h and $\beta = 1 - kh(1 - \alpha)^{\frac{1}{h}}$, where $h = h(X, \mathcal{C})$.

Theorem 1

If the Radon number r = r(X, C) is bounded, then (X, C) satisfies the colorful Helly property with p = p(r).

Sketch of Theorem 2.

Theorem (M. Kim, 2017)

If (X, \mathcal{C}) satisfies the colorful Helly property with k, then (X, \mathcal{C}) also satisfies the weak fractional Helly property with k and $\beta = 1 - k(1 - \alpha)^{\frac{1}{k}}$.

M. Kim's theorem approach and double counting give us

Lemma

If (X, \mathcal{C}) satisfies the colorful Helly property with k, then (X, \mathcal{C}) satisfies the weak fractional Helly property with h and $\beta = 1 - kh(1 - \alpha)^{\frac{1}{h}}$, where $h = h(X, \mathcal{C})$.

Theorem 1

If the Radon number r = r(X, C) is bounded, then (X, C) satisfies the colorful Helly property with p = p(r).

Then,

Theorem 2

If the Radon number $r=r(X,\mathcal{C})$ is bounded, then (X,\mathcal{C}) satisfies the weak fractional Helly property with h and $\beta=1-ph(1-\alpha)^{\frac{1}{h}}$, where $h=h(X,\mathcal{C})$.

Table of Contents

Classical Invariants

Pelly-Type Theorems for Abstract Convexity

3 Counterexample to Eckhoff's Conjecture

Definition

The k-th Tverberg number $r_k = r_k(X, C)$ is the smallest integer m satisfying the following. For any m points x_1, \ldots, x_m in X, there is a partition $[m] = I_1 \cup \cdots \cup I_k$ such that

$$conv(\{x_i: i \in I_1\}) \cap \cdots \cap conv(\{x_i: i \in I_k\}) \neq \emptyset.$$

ightharpoonup Note that $r_2(X,\mathcal{C})$ is the Radon number.

Definition

The k-th Tverberg number $r_k = r_k(X, \mathcal{C})$ is the smallest integer m satisfying the following. For any m points x_1, \ldots, x_m in X, there is a partition $[m] = I_1 \cup \cdots \cup I_k$ such that

$$conv(\{x_i: i \in I_1\}) \cap \cdots \cap conv(\{x_i: i \in I_k\}) \neq \emptyset.$$

- \triangleright Note that $r_2(X, \mathcal{C})$ is the Radon number.
- ightharpoonup In (\mathbb{R}^d, S) , $r_k = (d+1)(k-1)+1$. (Tverberg, 1966)
- ightharpoonup In $(\mathbb{R}^d, \mathcal{S})$, recall $r_2 = d+2$. Then $r_k = (r_2-1)(k-1)+1$.

Definition

The k-th Tverberg number $r_k = r_k(X, C)$ is the smallest integer m satisfying the following. For any m points x_1, \ldots, x_m in X, there is a partition $[m] = I_1 \cup \cdots \cup I_k$ such that

$$conv(\{x_i: i \in I_1\}) \cap \cdots \cap conv(\{x_i: i \in I_k\}) \neq \emptyset.$$

- \triangleright Note that $r_2(X, \mathcal{C})$ is the Radon number.
- $ightharpoonup In (\mathbb{R}^d, S), r_k = (d+1)(k-1)+1.$ (Tverberg, 1966)
- ightharpoonup In (\mathbb{R}^d, S) , recall $r_2 = d + 2$. Then $r_k = (r_2 1)(k 1) + 1$.

Question) $r_k \le (r_2 - 1)(k - 1) + 1$ for any other convexity?

Definition

The k-th Tverberg number $r_k = r_k(X, \mathcal{C})$ is the smallest integer m satisfying the following. For any m points x_1, \ldots, x_m in X, there is a partition $[m] = I_1 \cup \cdots \cup I_k$ such that

$$conv(\{x_i: i \in I_1\}) \cap \cdots \cap conv(\{x_i: i \in I_k\}) \neq \emptyset.$$

- \triangleright Note that $r_2(X, \mathcal{C})$ is the Radon number.
- ightharpoonup In (\mathbb{R}^d, S) , $r_k = (d+1)(k-1)+1$. (Tverberg, 1966)
- $ightharpoonup In (\mathbb{R}^d, S)$, recall $r_2 = d + 2$. Then $r_k = (r_2 1)(k 1) + 1$.

Question) $r_k \le (r_2 - 1)(k - 1) + 1$ for any other convexity?

Eckhoff's Conjecture, 1971

Let (X, \mathcal{C}) be a convexity space. If the Radon number r_2 is bounded, then

$$r_k \le (r_2 - 1)(k - 1) + 1$$
 for each $k \ge 2$.

 $r_k < (r_2 - 1)(k - 1) + 1$ if $r_2 < 3$. (Jamison, 1981)

Definition

The k-th Tverberg number $r_k = r_k(X, \mathcal{C})$ is the smallest integer m satisfying the following. For any m points x_1, \ldots, x_m in X, there is a partition $[m] = I_1 \cup \cdots \cup I_k$ such that

$$conv(\{x_i: i \in I_1\}) \cap \cdots \cap conv(\{x_i: i \in I_k\}) \neq \emptyset.$$

- \triangleright Note that $r_2(X, \mathcal{C})$ is the Radon number.
- $ightharpoonup In (\mathbb{R}^d, S), r_k = (d+1)(k-1)+1.$ (Tverberg, 1966)
- $ightharpoonup In (\mathbb{R}^d, S)$, recall $r_2 = d + 2$. Then $r_k = (r_2 1)(k 1) + 1$.

Question) $r_k \le (r_2 - 1)(k - 1) + 1$ for any other convexity?

Eckhoff's Conjecture, 1971

Let (X, \mathcal{C}) be a convexity space. If the Radon number r_2 is bounded, then

$$r_k \le (r_2 - 1)(k - 1) + 1$$
 for each $k \ge 2$.

 $r_k \le (r_2 - 1)(k - 1) + 1$ if $r_2 \le 3$. (Jamison, 1981)

Bukh's counterexample, 2010, unpublished

For each $k \geq 3$, there exists a convexity space (X, \mathcal{C}) such that $r_2 = 4$ but $r_k > 3(k-1)+1$.

Eckhoff's Conjecture

Let (X, \mathcal{C}) be a convexity space. If the Radon number r_2 is bounded, then

$$r_k \le (r_2 - 1)(k - 1) + 1$$
 for each $k \ge 2$.

Bukh's counterexample, 2010

For each $k \ge 3$, there exists a convexity space (X, \mathcal{C}) such that $r_2 = 4$ but $r_k > 3(k-1)+1$.

Eckhoff's Conjecture

Let (X, \mathcal{C}) be a convexity space. If the Radon number r_2 is bounded, then

$$r_k \le (r_2 - 1)(k - 1) + 1$$
 for each $k \ge 2$.

Bukh's counterexample, 2010

For each $k \ge 3$, there exists a convexity space (X, \mathcal{C}) such that $r_2 = 4$ but $r_k > 3(k-1)+1$.

Tverberg numbers $r_k(X, C)$ of a convexity space

For any m points x_1, \ldots, x_m in X, there is a partition $[m] = I_1 \cup \cdots \cup I_k$ such that $conv(\{x_i : i \in I_1\}) \cap \cdots \cap conv(\{x_i : i \in I_k\}) \neq \emptyset$.

Compare to

Tverberg numbers $r_k^*(K)$ of a simplicial complex

For any m facets $\sigma_1, \ldots, \sigma_m$ of K, there exists a partition $[m] = I_1 \cup \cdots \cup I_k$ such that $(\cap_{i \in I_1} \sigma_i) \cup \cdots \cup (\cap_{i \in I_k} \sigma_i) \in K$.

Key Lemma

Let K be a simplicial complex. Then there is a convexity space (X,\mathcal{C}) such that

$$r_k(X,C) = r_k^*(K)$$
 for every $k \geq 2$.

 \triangleright Such (X, \mathcal{C}) is called the upper convexity space of K.

Key Lemma

Let K be a simplicial complex. Then there is a convexity space (X, \mathcal{C}) such that

$$r_k(X,\mathcal{C}) = r_k^*(K)$$
 for every $k \geq 2$.

- \triangleright Such (X, \mathcal{C}) is called the upper convexity space of K.
- ightharpoonup By Key Lemma, it suffices to find a simplicial complex K such that $r_2^*(K)=4$ but $r_k^*(K)>3(k-1)+1$.

Theorem 3

For each $k \geq 3$, there exists a simplicial complex K such that

$$r_2^*(K) = 4$$
 but $r_k^*(K) > 3(k-1) + 1$.

Key Lemma

Let K be a simplicial complex. Then there is a convexity space (X, \mathcal{C}) such that

$$r_k(X,\mathcal{C}) = r_k^*(K)$$
 for every $k \geq 2$.

- \triangleright Such (X, \mathcal{C}) is called the upper convexity space of K.
- \triangleright By Key Lemma, it suffices to find a simplicial complex K such that $r_2^*(K) = 4$ but $r_k^*(K) > 3(k-1) + 1$.

Theorem 3

For each $k \geq 3$, there exists a simplicial complex K such that

$$r_2^*(K) = 4$$
 but $r_k^*(K) > 3(k-1) + 1$.

Then,

Counterexample to Eckhoff's Conjecture

For each $k \geq 3$, there exists a convexity space (X, C) such that

$$r_2(X,C) = 4$$
 but $r_k(X,C) > 3(k-1) + 1$.

Theorem 3

For each $k \geq 3$, there exists a simplicial complex K such that

$$r_2^*(K) = 4$$
 but $r_k^*(K) > 3(k-1) + 1$.

Sketch of the simplest case, k = 3.

We will construct a simplicial complex K such that

$$r_2^*(K) = 4$$
 but $r_3^*(K) > 3(k-1) + 1 = 7$.

Let $N = \{1, 2, 3, 4, 5, 6, 7\}$ and let

$$V_1 = \{S \subset N : |S| = 1\}, \ V_2 = \{S \subset N : |S| = 2\} \ \mathrm{and} \ V_3 = \{S \subset N : |S| = 3\}.$$

Theorem 3

For each $k \geq 3$, there exists a simplicial complex K such that

$$r_2^*(K) = 4$$
 but $r_k^*(K) > 3(k-1) + 1$.

Sketch of the simplest case, k = 3.

We will construct a simplicial complex K such that

$$r_2^*(K) = 4$$
 but $r_3^*(K) > 3(k-1) + 1 = 7$.

Let $N = \{1, 2, 3, 4, 5, 6, 7\}$ and let

$$V_1 = \{S \subset N : |S| = 1\}, \ V_2 = \{S \subset N : |S| = 2\} \ \mathrm{and} \ V_3 = \{S \subset N : |S| = 3\}.$$

Step 1. The vertex set V of K is

$$V := V_1 \cup V_2 \cup V_3.$$

Theorem 3

For each $k \geq 3$, there exists a simplicial complex K such that

$$r_2^*(K) = 4$$
 but $r_k^*(K) > 3(k-1) + 1$.

Sketch of the simplest case, k = 3.

We will construct a simplicial complex K such that

$$r_2^*(K) = 4$$
 but $r_3^*(K) > 3(k-1) + 1 = 7$.

Let $N = \{1, 2, 3, 4, 5, 6, 7\}$ and let

$$V_1 = \{S \subset N : |S| = 1\}, \ V_2 = \{S \subset N : |S| = 2\} \ \mathrm{and} \ V_3 = \{S \subset N : |S| = 3\}.$$

Step 1. The vertex set V of K is

$$V:=V_1\cup V_2\cup V_3.$$

Step 2. The facets of K are of the following forms: for any distinct $x, y, z, w \in N$,

- $A_x = \{S \in V : x \in S\}$
- $B_{xy,zw} = \{\{x,y\},\{z,w\}\} \cup \{S \in V_3 : S \cap \{x,y,z,w\} \neq \emptyset\}$
- $C_{xy} = \{\{x,y\}\} \cup V_3.$

Theorem 3

For each $k \geq 3$, there exists a simplicial complex K such that

$$r_2^*(K) = 4$$
 but $r_k^*(K) > 3(k-1) + 1$.

Sketch of the simplest case, k = 3.

We will construct a simplicial complex K such that

$$r_2^*(K) = 4$$
 but $r_3^*(K) > 3(k-1) + 1 = 7$.

Let $N = \{1, 2, 3, 4, 5, 6, 7\}$ and let

$$V_1 = \{S \subset N : |S| = 1\}, \ V_2 = \{S \subset N : |S| = 2\} \ \mathrm{and} \ V_3 = \{S \subset N : |S| = 3\}.$$

Step 1. The vertex set V of K is

$$V := V_1 \cup V_2 \cup V_3.$$

Step 2. The facets of K are of the following forms: for any distinct $x, y, z, w \in N$,

- $A_x = \{S \in V : x \in S\}$
- $B_{xy,zw} = \{\{x,y\},\{z,w\}\} \cup \{S \in V_3 : S \cap \{x,y,z,w\} \neq \emptyset\}$
- $C_{xy} = \{\{x,y\}\} \cup V_3.$

Step 3. The simplical complex K is defined as

$$K := \{ \sigma \subseteq A_x : x \in N \} \cup \{ \sigma \subseteq B_{xy,zw} : x,y,z,w \in N \} \cup \{ \sigma \subseteq C_{xy} : x,y \in N \}.$$

Claim 1: $r_3^*(K) > 7$.

Proposition

Let $N = I_1 \cup I_2 \cup I_3$ be a partition. If $r_3^*(K) \leq 7$, then

 $\{\mathit{I}_{1},\mathit{I}_{2},\mathit{I}_{3}\}\subseteq\tau\text{ for some facet }\tau\in\mathit{K}.$

Claim 1: $r_3^*(K) > 7$.

Proposition

Let $N = I_1 \cup I_2 \cup I_3$ be a partition. If $r_3^*(K) \leq 7$, then

$$\{I_1,I_2,I_3\}\subseteq \tau$$
 for some facet $\tau\in K$.

However, no facet of K contains three disjoint subsets I_1, I_2, I_3 .

$$\triangleright A_x = \{S \in V : x \in S\} \Rightarrow x \in I_1 \cap I_2 \cap I_3.$$

$$\rhd \ B_{xy,zw} = \big\{\{x,y\},\{z,w\}\} \cup \{S \in V_3: S \cap \{x,y,z,w\} \neq \emptyset\big\}$$

$$\Rightarrow \quad \textit{I}_1 = \{x,y\}, \textit{I}_2 = \{z,w\} \text{ but } \textit{I}_3 \cap \{x,y,z,w\} \neq \emptyset.$$

$$\triangleright \ \ C_{xy} = \big\{ \{x,y\} \big\} \cup V_3 \quad \Rightarrow \quad 8 \le |I_1| + |I_2| + |I_3| = 7.$$

Claim 2: $r_2^*(K) = 4$.

Let $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ be distinct facets of K.

- \triangleright For any $i \neq j$, $\sigma_i \cap \sigma_i \subseteq C_{xy}$ for some x, y.
- ightharpoonup If $\sigma_i \cap \sigma_i$ has no sets of size 2, then $\sigma_i \cap \sigma_i \subseteq V_3$. Then, **WLOG**, $(\sigma_1 \cap \sigma_2) \cup (\sigma_3 \cap \sigma_4) \subseteq C_{xy}$ for some x, y.
- \triangleright By the above, **WMA** every pair of $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ have a common set of size 2.
- \triangleright WMA the facets σ_1 , σ_2 , σ_3 , σ_4 are of the types A_X or $B_{XY,ZW}$.

The remaining cases are the following:

- $| \text{If } (\sigma_1, \sigma_2, \sigma_3, \sigma_4) = (A_x, A_y, A_z, A_w), \text{ then } (\sigma_1 \cap \sigma_2) \cup (\sigma_3 \cap \sigma_4) \subseteq B_{xy, zw}$

- $\triangleright \text{ If } (\sigma_1, \sigma_2, \sigma_3, \sigma_4) = (A_x, A_y, B_{xz,yw}, B_{xz,yw}'), \text{ then } (\sigma_1 \cap \sigma_4) \cup (\sigma_2 \cap \sigma_3) \subseteq B_{xz,yw}$
- $| \text{If } (\sigma_1, \sigma_2, \sigma_3, \sigma_4) = (A_x, B_{xy,zw}, B_{xy,z'w'}, B_{xy,z'w'}), \text{ then } (\sigma_1 \cap \sigma_2) \cup (\sigma_3 \cap \sigma_4) \subseteq C_{xy}$
- $| \text{If } (\sigma_1, \sigma_2, \sigma_3, \sigma_4) = (A_x, B_{xy,zw}, B_{xy',zw}, B_{xy'',zw}), \text{ then } (\sigma_1 \cap \sigma_2) \cup (\sigma_3 \cap \sigma_4) \subseteq B_{xy,zw}$
- $\quad \ \, \mathsf{If} \; (\sigma_1,\sigma_2,\sigma_3,\sigma_4) = (B_{\mathsf{XY},\mathsf{ZW}},B_{\mathsf{XY},\mathsf{Z'W'}},B_{\mathsf{XY},\mathsf{Z''W'}},B_{\mathsf{XY},\mathsf{Z'''},\mathsf{W'''}}), \, \mathsf{then} \; (\sigma_1 \cap \sigma_2) \cup (\sigma_3 \cap \sigma_4) \subseteq \mathit{C}_{\mathsf{XY}}.$

By checking all possible cases, $r_2^*(K) < 4$.

- \triangleright Hence, our K satisfies $r_2^*(K) = 4$ but $r_3^*(K) > 7$.
- \triangleright This method can be extended for arbitrary $k \ge 3$.

Theorem 3

For each $k \geq 3$, there exists a simplicial complex K such that

$$r_2^*(K) = 4 \text{ but } r_k^*(K) > 3(k-1) + 1.$$

▷ Because of the upper convexity space of K,

Counterexample to Eckhoff's Conjecture

For each $k \geq 3$, there exists a convexity space (X, C) such that

$$r_2(X,C) = 4$$
 but $r_k(X,C) > 3(k-1) + 1$.

To Summarize

(X, C): abstract convexity space.

To Summarize

 (X,\mathcal{C}) : abstract convexity space. If $r=r(X,\mathcal{C})$ is bounded, then

To Summarize

- (X, \mathcal{C}) : abstract convexity space. If $r = r(X, \mathcal{C})$ is bounded, then
 - \triangleright (X,C) satisfies the Helly property with h < r.
 - \triangleright (X, \mathcal{C}) satisfies the colorful Helly property with p = p(r).
 - \triangleright (X, C) satisfies the weak fractional Helly property with h.
 - ▷ For each $k \ge 3$, an upper convexity space satisfies r = 4 and $r_k > 3(k-1)+1$. This is a counterexample to Eckhoff's conjecture.

Any Questions? Thank You!