Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Лабораторная работа №1

по дисциплине «Статистика и анализ данных» Семестр II

Выполнили:

Урядов Валерий Сергеевич

ИСУ: 467812

Практический поток: **J3111**

Мокийчук Никита Артурович

ИСУ: 466748

Практический поток: **J3111**

Кек Герман Вадимович

ИСУ: 466149

Практический поток: **J3111**

Отчет сдан: **16.03.2025**

Ход выполнения работы

В процессе выполнения лабораторной работы были выполнены следующие этапы:

- 1. **Анализ исходных данных.** Определение экспериментальной области: квадрат со стороной 2a с центром в начале координат и круг с центром в начале координат и радиусом r. Выбраны 5 значений радиуса в интервале (0, a].
- 2. **Расчёт истинной геометрической вероятности.** Для каждого значения r вычислена истинная вероятность попадания точки в круг по формуле

$$p = \frac{\pi r^2}{4},$$

где 4 — площадь квадрата.

- 3. **Генерация случайных точек.** С использованием генератора случайных чисел из библиотеки **питру** были сгенерированы координаты точек, равномерно распределённых по квадрату.
- 4. **Проверка попадания в круг.** Функция is_in_circle определяет, принадлежит ли точка кругу.
- 5. **Построение графиков.** Для каждого значения r построены:
 - График сходимости оценки $\hat{p}(n)$ к истинной вероятности p,
 - График зависимости абсолютной ошибки $\varepsilon(n) = |\hat{p}(n) p|,$
 - График зависимости необходимого числа точек $N(\varepsilon)$ для достижения заданной точности.
- 6. Определение необходимого количества точек. Функция find_N_for_epsilon вычисляет среднее значение N, при котором абсолютная ошибка становится не больше заданного $\epsilon.$

Основная часть

В данном разделе описывается выполнение ключевых шагов и анализ промежуточных результатов.

1. Анализ исходных данных и расчёт истинной вероятности

Исходные данные задавались следующим образом:

- Квадрат с координатами от -a до a, где a = 1.
- Круг с центром в начале координат и радиусом r, для которого истинная вероятность попадания точки определяется как

$$p = \frac{\pi r^2}{4}.$$

Выбранные значения радиуса (например, $1.0,\ 0.5,\ 0.33,\ 0.25,\ 0.2)$ позволяют оценить зависимость вероятности от размера круга.

2. Генерация случайных точек и проверка попадания в круг

Для генерации точек использовалась функция numpy.random.Generator.uniform с установленным зерном на основе текущего времени. Каждая точка проверялась на принадлежность кругу с помощью условия $x^2 + y^2 \le r^2$. Кумулятивная сумма попаданий использовалась для вычисления оценки $\hat{p}(n)$ по мере увеличения числа точек.

3. Построение графиков и анализ ошибок

Были построены три графика для каждого значения r:

- 1. Сходимость оценки $\hat{p}(n)$. График демонстрирует, как с увеличением числа точек оценка приближается к истинной вероятности.
- 2. Динамика абсолютной ошибки. График зависимости ошибки $\varepsilon(n)$ от числа точек позволяет увидеть, как ошибка уменьшается с ростом выборки. Построение графика в логарифмическом масштабе подчёркивает закономерность сходимости.
- 3. Зависимость $N(\varepsilon)$. На этом графике показано, какое количество точек необходимо для достижения заданной точности (значения $\epsilon \in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}\}$).

Полученные графики (см. приложенные изображения) демонстрируют ожидаемую сходимость оценки и снижение абсолютной ошибки по мере увеличения количества точек.

4. Промежуточные результаты

- При каждом выбранном значении r оценка $\hat{p}(n)$ сходится к теоретическому значению p.
- Графики динамики ошибки подтверждают, что с увеличением числа точек абсолютная ошибка стремится к нулю.
- Зависимость $N(\varepsilon)$ позволяет оценить необходимый объём выборки для достижения требуемой точности, что соответствует теоретическим ожиданиям.

Заключение

В результате выполнения лабораторной работы были достигнуты следующие выводы:

- Реализованный алгоритм корректно моделирует процесс определения геометрической вероятности методом Монте-Карло.
- Построенные графики сходимости оценки, динамики ошибки и зависимости $N(\varepsilon)$ демонстрируют, что при достаточном количестве случайных точек полученная оценка приближается к истинному значению вероятности.
- Экспериментальные результаты подтверждают теоретическую модель: с ростом числа точек уменьшается погрешность оценки.
- Применённые методы генерации случайных чисел и анализа данных оказались эффективными и позволяют оценивать параметры с требуемой точностью.