Soluções Jacob Palis 2023 N2

Samuel de Araújo Brandão

4 de Setembro de 2025

Uma coleção de soluções para a **Jacob Palis 2023 Nível 2**, inspirada no estilo de Evan Chen. Pode-se encontrar todos os problemas e respostas oficiais **aqui**.

Todas as soluções foram inteiramente escritas por mim, enquanto me preparava para a International Mathematical Olympiad (IMO).

Caso encontre algum erro ou tiver sugestões ou comentários, sinta-se a vontade para entrar em contato!

Conteúdos

1	Problemas 2		
	1.1	Testes	
	1.2	Respostas Numéricas	
2	Soluções		
	2.1	Problema 1	
	2.2	Problema 2	
	2.3	Problema 3	
	2.4	Problema 4	
	2.5	Problema 5	
	2.6	Problema 6	
	2.7	Problema 7	
	2.8	Problema 8	
	2.9	Problema 9	
	2.10	Problema 10	
		Problema 11	
	2.12	Problema 12	
		Problema 13	
		Problema 14	
		Problema 15	
		Problema 16	
		Problema 17	
		Problema 18	
		Problema 19	
		Problema 20	
3	Refe	rências 25	

1 Problemas

1.1 Testes

- 1. Ana foi à feira com 20 reais, comprou 3 bananas e 2 peras e recebeu certo valor de troco. Mais tarde, seu irmão João foi ao mesmo local com 29 reais, comprou 5 bananas e 3 peras e também recebeu troco. Depois Maria, mãe de João e Ana, comprou mais uma banana e uma pera. Sabendo que Ana, João e Maria receberam a mesma quantia de troco, quantos reais Maria levou para a feira?
- 2. Regis vai comprar uma capinha personalizada de celular na internet. A capinha custa 100 reais, o frete custa 20 reais e a personalização custa 30 reais. Regis possui dois cupons de desconto, mas só pode usar um deles. O primeiro dá frete grátis e o segundo dá desconto de 20% no total da compra (capinha, frete e personalização). Se Regis usar o cupom no qual paga o menor valor possível, quanto Regis vai pagar?
- **3.** José preencheu um tabuleiro 3×3 com os números de 1 a 9 e notou que a soma dos números em k filas (linhas ou colunas) era ímpar. Quantos são os possíveis valores para k?
- 4. Qual é o número mínimo de cores necessárias para colorir as bolinhas da figura abaixo de modo que bolinhas ligadas por um segmento tenham cores distintas?

5. José escreveu no quadro a igualdade

$$2^n + 2^n + \dots + 2^n = 15360.$$

Maria percebeu que havia 2m + 1 parcelas iguais a 2^n no lado esquerdo, sendo m um número inteiro. Quanto vale m + n?

- **6.** O número de seis algarismos N = (2aaaa6) é divisível por 24. A soma dos algarismos de N é quanto?
- 7. Sendo $x \in y$ reais tais que

$$\frac{x+1^2}{y+1} = \frac{x+2^2}{y+2} = k,$$

quanto vale k?

8. De quantas maneiras podemos pintar as letras da palavra JACOB se as vogais devem ser coloridas de azul ou vermelho e as consoantes devem ser coloridas de azul ou verde e, além disso, não podemos ter letras adjacentes com a mesma cor?

9. As letras O, B, M, J, P representam algarismos distintos. Sabendo que

$$OBM + OBM = JP \cdot JP$$
,

qual é o valor de O + B + M + J + P?

10. Na figura a seguir, ABCD é um paralelogramo. Os pontos M e N são pontos médios de DP e BP, respectivamente. Se a área do paralelogramo ABCD é 24, qual é a área da região sombreada?

- **11.** Seja X um subconjunto de $1, 2, \ldots, 2023$ (conjunto dos inteiros de 1 até 2023) tal que se a e b pertencem a X, então a+b não é múltiplo de 3. Qual é o maior valor possível da quantidade de elementos de X?
- 12. O número

$$\sqrt{2022^2 + 2023^2 + (2022 \cdot 2023)^2} + \sqrt{2023^2 + 2024^2 + (2023 \cdot 2024)^2}$$

é

- (A) número irracional
- (B) inteiro e múltiplo de 3
- (C) inteiro e múltiplo de 5
- (D) inteiro e múltiplo de 8
- (E) primo?
- 13. No triângulo acutângulo ABC, AH é altura, com H sobre BC. Sejam P e Q as projeções de H em AB e AC, respectivamente. Sabendo que $\angle ABC \angle ACB = 20^{\circ}$. Qual é a medida do ângulo agudo determinado pelas retas PQ e AH?
- **14.** Sejam a e b números reais. As raízes da equação $x^2 ax + b = 0$ são r e s, e as raízes da equação $x^2 (b+3)x + (a+3) = 0$ são $\frac{1}{r}$ e $\frac{1}{s}$. Então $(b+1)^3$ é igual a quê?
- 15. Considere que n times de futebol jogam exatamente uma vez contra cada um dos outros n-1 times. Em cada partida, o time vencedor ganha 3 pontos e o perdedor 0; em caso de empate, cada time ganha 1 ponto. Ao fim do campeonato, ordenamos os times por pontos em ordem decrescente.

Para n = 3, há sete possibilidades de pontuações dos três times: (6; 3; 0), (6; 1; 1), (4; 4; 0), (4; 3; 1), (4; 2; 1), (3; 3; 3) e (2; 2; 2).

Para n=4, há quantas possibilidades de pontuação dos quatro times?

1.2 Respostas Numéricas

- **16.** Se a e b são inteiros positivos tais que $\mathrm{mdc}(a,b)=6$ e $\mathrm{mmc}(a,b)=36a^2$, quanto vale a+b?
- 17. De quantos modos podemos colorir um tabuleiro 2×8 de modo que cada quadrado unitário seja verde ou amarelo e cada quadrado 2×2 possua três quadrados unitários de uma cor e o outro da cor oposta?
- 18. No trapézio retângulo ABCD, com $\angle ABC = \angle BCD = 90^{\circ}$, a base AB mede 104 e a base CD mede 234. Sabendo que a bissetriz do ângulo D intersects BC no seu ponto médio, determine a medida do lado BC.

- 19. Um número é chamado de perfeitoso quando nenhum dos seus algarismos é zero e a soma dos seus algarismos é um quadrado perfeito. Por exemplo, 97, 112 e 1111 são números perfeitosos com 2, 3 e 4 algarismos, respectivamente. Luiz escreveu todos os números perfeitosos de 2023 algarismos. Quantos valores possíveis para a soma dos algarismos dos números da lista?
- **20.** A sequência de Fibonacci é uma sequência em que cada termo, a partir do terceiro, é a soma dos dois termos imediatamente anteriores, sendo os dois termos iniciais iguais a 1. Então, os primeiros termos da sequência são:

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

Dentre os 100 primeiros termos da sequência, quantos são múltiplos de 3 ou 4?

2 Soluções

2.1 Problema 1

Enunciado

Ana foi à feira com 20 reais, comprou 3 bananas e 2 peras e recebeu certo valor de troco. Mais tarde, seu irmão João foi ao mesmo local com 29 reais, comprou 5 bananas e 3 peras e também recebeu troco. Depois Maria, mãe de João e Ana, comprou mais uma banana e uma pera. Sabendo que Ana, João e Maria receberam a mesma quantia de troco, quantos reais Maria levou para a feira?

2.2 Problema 2

Enunciado

Regis vai comprar uma capinha personalizada de celular na internet. A capinha custa 100 reais, o frete custa 20 reais e a personalização custa 30 reais. Regis possui dois cupons de desconto, mas só pode usar um deles. O primeiro dá frete grátis e o segundo dá desconto de 20% no total da compra (capinha, frete e personalização). Se Regis usar o cupom no qual paga o menor valor possível, quanto Regis vai pagar?

2.3 Problema 3

Enunciado

José preencheu um tabuleiro 3×3 com os números de 1 a 9 e notou que a soma dos números em k filas (linhas ou colunas) era ímpar. Quantos são os possíveis valores para k?

2.4 Problema 4

Enunciado

Qual é o número mínimo de cores necessárias para colorir as bolinhas da figura abaixo de modo que bolinhas ligadas por um segmento tenham cores distintas?

2.5 Problema 5

Enunciado

José escreveu no quadro a igualdade

$$2^n + 2^n + \dots + 2^n = 15360.$$

Maria percebeu que havia 2m+1 parcelas iguais a 2^n no lado esquerdo, sendo m um número inteiro. Quanto vale m+n?

2.6 Problema 6

Enunciado

O número de seis algarismos N=(2aaaa6) é divisível por 24. A soma dos algarismos de N é quanto?

2.7 Problema 7

Enunciado

Sendo x e y reais tais que

$$\frac{x+1^2}{y+1} = \frac{x+2^2}{y+2} = k,$$

quanto vale k?

2.8 Problema 8

Enunciado

De quantas maneiras podemos pintar as letras da palavra JACOB se as vogais devem ser coloridas de azul ou vermelho e as consoantes devem ser coloridas de azul ou verde e, além disso, não podemos ter letras adjacentes com a mesma cor?

2.9 Problema 9

Enunciado

As letras O, B, M, J, P representam algarismos distintos. Sabendo que

$$OBM + OBM = JP \cdot JP$$
,

qual é o valor de O + B + M + J + P?

2.10 Problema 10

Enunciado

Na figura a seguir, ABCD é um paralelogramo. Os pontos M e N são pontos médios de DP e BP, respectivamente. Se a área do paralelogramo ABCD é 24, qual é a área da região sombreada?

2.11 Problema 11

Enunciado

Seja X um subconjunto de $1, 2, \ldots, 2023$ (conjunto dos inteiros de 1 até 2023) tal que se a e b pertencem a X, então a+b não é múltiplo de 3. Qual é o maior valor possível da quantidade de elementos de X?

2.12 Problema 12

Enunciado

O número

$$\sqrt{2022^2 + 2023^2 + (2022 \cdot 2023)^2} + \sqrt{2023^2 + 2024^2 + (2023 \cdot 2024)^2}$$

é

- (A) número irracional
- (B) inteiro e múltiplo de 3
- (C) inteiro e múltiplo de 5
- (D) inteiro e múltiplo de 8
- (E) primo?

2.13 Problema 13

Enunciado

No triângulo acutângulo ABC, AH é altura, com H sobre BC. Sejam P e Q as projeções de H em AB e AC, respectivamente. Sabendo que $\angle ABC - \angle ACB = 20^{\circ}$. Qual é a medida do ângulo agudo determinado pelas retas PQ e AH?

2.14 Problema **14**

Enunciado

Sejam a e b números reais. As raízes da equação $x^2-ax+b=0$ são r e s, e as raízes da equação $x^2-(b+3)x+(a+3)=0$ são $\frac{1}{r}$ e $\frac{1}{s}$. Então $(b+1)^3$ é igual a quê?

2.15 Problema 15

Enunciado

Considere que n times de futebol jogam exatamente uma vez contra cada um dos outros n-1 times. Em cada partida, o time vencedor ganha 3 pontos e o perdedor 0; em caso de empate, cada time ganha 1 ponto. Ao fim do campeonato, ordenamos os times por pontos em ordem decrescente.

Para n = 3, há sete possibilidades de pontuações dos três times: (6; 3; 0), (6; 1; 1), (4; 4; 0), (4; 3; 1), (4; 2; 1), (3; 3; 3) e (2; 2; 2).

Para n=4, há quantas possibilidades de pontuação dos quatro times?

2.16 Problema 16

Enunciado

Se a e b são inteiros positivos tais que $\mathrm{mdc}(a,b)=6$ e $\mathrm{mmc}(a,b)=36a^2$, quanto vale a+b?

2.17 Problema 17

Enunciado

De quantos modos podemos colorir um tabuleiro 2×8 de modo que cada quadrado unitário seja verde ou amarelo e cada quadrado 2×2 possua três quadrados unitários de uma cor e o outro da cor oposta?

2.18 Problema 18

Enunciado

No trapézio retângulo ABCD, com $\angle ABC = \angle BCD = 90^{\circ}$, a base AB mede 104 e a base CD mede 234. Sabendo que a bissetriz do ângulo D intersects BC no seu ponto médio, determine a medida do lado BC.

2.19 Problema 19

Enunciado

Um número é chamado de perfeitoso quando nenhum dos seus algarismos é zero e a soma dos seus algarismos é um quadrado perfeito. Por exemplo, 97, 112 e 1111 são números perfeitosos com 2, 3 e 4 algarismos, respectivamente. Luiz escreveu todos os números perfeitosos de 2023 algarismos. Quantos valores possíveis para a soma dos algarismos dos números da lista?

2.20 Problema 20

Enunciado

A sequência de Fibonacci é uma sequência em que cada termo, a partir do terceiro, é a soma dos dois termos imediatamente anteriores, sendo os dois termos iniciais iguais a 1. Então, os primeiros termos da sequência são:

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

Dentre os 100 primeiros termos da sequência, quantos são múltiplos de 3 ou 4?

3 Referências