

PODER EXECUTIVO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO AMAZONAS

PLANO DE ENSINO

1. IDENTIFICAÇÃO DA DISCIPLINA

CURSO: Engenharia da Computação PERÍODO LETIVO: 2º Semestre - 2019 TURMA 01

DISCIPLINA PROGRAMAÇÃO EM TEMPO REAL **SIGLA:** FTL066

CARGA HORÁRIA 60 CRÉDITOS: 4

TEÓRICA: 60 PRÁTICA: PRÉ-REQUISITO: IEC481 - PROJETO DE PROGRAMAS

PROFESSOR(ES):

ANDRE LUIZ DUARTE CAVALCANTE-Responsável

EMAIL(S) andreacavalcante@ufam.edu.br

Horário das aulas teóricas Horário das aulas Práticas Horário e local de atendimento de

Terça-feira - 14:00/16:00

Quinta-feira - 14:00/16:00 Terça-feira - 10:00/12:00;Sala do

Professor

Quinta-feira - 10:00/12:00;Sala do

Professor

2. EMENTA (conforme o PPC do curso)

Introdução aos sistemas de tempo real; Arquiteturas de software para sistemas de tempo real; Especificações de requisitos e de projeto de tempo real; Sistemas de máquinas de estados; Especificações declarativas; Predição de tempo de execução do pior caso (WCET); Escalonamento de tarefas em sistemas em tempo real; Sincronização de processos concorrentes; Acesso a periféricos; Gerenciamento de entrada e saída (E/S); Linguagens de programação que atendem às especificidades de tempo-real; Introdução a Verificação de modelos; Verificação explícita e simbólica; Lógica temporal linear e de árvore de computação; Grafos de fluxo de controle; Semântica de programas; Satisfação booleana; Teorias do módulo da satisfação; Exemplo de aplicações

3. OBJETIVOS

3.1 GERAL (conforme o PPC do curso)

Fornecer aos alunos, conhecimento teórico para a elaboração de projetos e verificação de sistemas de tempo real. Dominar as peculiaridades destes sistemas, sendo capazes de analisar, projetar e verificar sistemas de hardware e software que possuam características de concorrência, confiabilidade, segurança, eficiência e facilidade para controlar o hardware.

3.2 ESPECÍFICOS (se houver)

N.A.

4. CONTEÚDO PROGRAMÁTICO/CRONOGRAMA							
Datas	Aulas		Conteúdo	Professor			
	Carga	Tipo (T,P)*	Conteudo	FIOIESSOI			
13/08/2019	2	Teórica	Apresentação da disciplina. Formação do grupo de discussão Texto motivador	ANDRE LUIZ DUARTE CAVALCANTE			
10/09/2019	2	Teórica	Revisão de C - aula 1	ANDRE LUIZ DUARTE CAVALCANTE			

12/09/2019	2	Teórica	Revisão de C - aula 2	ANDRE LUIZ DUARTE CAVALCANTE
17/09/2019	2	Teórica	Revisão de C - aula 3	ANDRE LUIZ DUARTE CAVALCANTE
19/09/2019	2	Teórica	Introdução aos sistemas de tempo real. Explicação do Projeto 1	ANDRE LUIZ DUARTE CAVALCANTE
24/09/2019	2	Teórica	Hardware para tempo real. Por que o PC pode "ser bom" ou "não ser bom" para tempo real? Acompanhamento do Projeto 1	ANDRE LUIZ DUARTE CAVALCANTE
26/09/2019	2	Teórica	Sistemas operacionais para tempo real. Acompanhamento do Projeto 1	ANDRE LUIZ DUARTE CAVALCANTE
01/10/2019	2	Teórica	Arquiteturas de software para tempo real. Modelo de tarefas para tempo real. Acompanhamento do Projeto 1	ANDRE LUIZ DUARTE CAVALCANTE
03/10/2019	2	Teórica	Máquinas de Estados Finito (FSM). Implementação de FSM em C. Acompanhamento do Projeto 1.	ANDRE LUIZ DUARTE CAVALCANTE
08/10/2019	2	Teórica	Escalonador de tarefas. Rate Monotonic Deadline monotonic. Implementando acesso a regiões críticas com semáforos	ANDRE LUIZ DUARTE CAVALCANTE
10/10/2019	2	Teórica	Comunicação interprocessos. Semáforos. Acompanhamento do Projeto 1	ANDRE LUIZ DUARTE CAVALCANTE
15/10/2019	2	Teórica	Comunicação interprocessos. Problemas que podem ocorrer no intercalamento de processos concorrentes: condição de corrida, inversão de prioridade, intertravamento. Acompanhamento do Projeto 1	ANDRE LUIZ DUARTE CAVALCANTE
17/10/2019	2	Teórica	Acompanhamento do Projeto 1	ANDRE LUIZ DUARTE CAVALCANTE
22/10/2019	2	Teórica	Entrega do Projeto 1. Explicação do Projeto 2.	ANDRE LUIZ DUARTE CAVALCANTE
24/10/2019	2	Teórica	Compilação do Kernel Linux para Real Time. Acompanhamento do Projeto 2	ANDRE LUIZ DUARTE CAVALCANTE
29/10/2019	2	Teórica	Programação com API pthreads - aula 1. Tira dúvida: compilação do kernel Linux	ANDRE LUIZ DUARTE CAVALCANTE
31/10/2019	2	Teórica	Programação com API pthreads - aula 2. Tira dúvida: compilação do kernel Linux	ANDRE LUIZ DUARTE CAVALCANTE
05/11/2019	2	Teórica	Sockets Posix API. Servidores sequenciais. Servidores Concorrentes.	ANDRE LUIZ DUARTE CAVALCANTE
07/11/2019	2	Teórica	Mutex e Variáveis de condição. Acompanhamento do Projeto 2.	ANDRE LUIZ DUARTE CAVALCANTE
12/11/2019	2	Teórica	RTAI Linux - Aula 1	ANDRE LUIZ DUARTE CAVALCANTE
14/11/2019	2	Teórica	RTAI Linux Aula 2	ANDRE LUIZ DUARTE CAVALCANTE
19/11/2019	2	Teórica	Acompanhamento do Projeto 2	ANDRE LUIZ DUARTE CAVALCANTE

21/11/2019	2	Teórica	Entrega do Projeto 2	ANDRE LUIZ DUARTE CAVALCANTE
26/11/2019	2	Teórica	Revisão para Prova Final	ANDRE LUIZ DUARTE CAVALCANTE
28/11/2019	2	Teórica	Revisão para a PF	ANDRE LUIZ DUARTE CAVALCANTE
03/12/2019	2	Teórica	Avaliação da disciplina. Depedidas	ANDRE LUIZ DUARTE CAVALCANTE

^{*}Aula teórica ou prática

5. PROCEDIMENTOS DE ENSINO E DE APRENDIZAGEM

Serão 2 trabalhos sobre a programação de sistemas de tempo real. O primeiro consiste na criação de vários exercícios introdutórios que culminam em uma simulação de um sistema multithreaded. O segundo consiste na programação de um RTOS, no caso, um Linux compilado para tempo real, com a execução do primeiro trabalho neste novo ambiente. Cada trabalho tem um grau de complexidade e dificuldade crescentes. A cada trabalho, o professor irá também passar material de pesquisa e mostrar códigos funcionais sobre os assuntos. Como uma avaliação extra: um trabalho com um dispositivo embarcado de uma aplicação de tempo real, a ser escolhida pelos alunos, pode ser utilizado.

6. PROCEDIMENTOS DE AVALIAÇÃO

O primeiro trabalho será feito em etapas, através de exercício semanais ou bi-semanais. Uma parte da nota será a execução correta do código. Os código serão enviados para o ambiente Google Classroom da UFAM para análise. A nota será dada proporcionalmente em função do relatório e do código.

O segundo trabalho será feito em uma grande etapa. Uma parte da nota será a execução correta do código. Os código serão enviados para o ambiente Google Classroom da UFAM para análise. A nota será dada proporcionalmente em função do relatório e do código.

Como uma avaliação extra: um trabalho com um dispositivo embarcado de uma aplicação de tempo real, a ser escolhida pelos alunos, pode ser utilizado.

Ao final do semestre a prova final será feita teórica com questões sobre todo o conteúdo.

MF = (MEEx2) + PF

Legenda:

MF: Média Final

MEE: Média dos Exercícios Escolares

Conforme RESOLUÇÃO N° 023/2017 - CONSEPE - "Art. 10 - O discente que obtiver o mínimo de 75% (setenta e cinco por cento) de frequência e Média dos Exercícios Escolares (MEE) igual ou superior a 8,0 (oito vírgula zero) será considerado aprovado na disciplina e dispensado da prova final (PF), resguardado o direito de realizá-la."

7. REFERENCIAS (conforme o PPC do curso)

7.1 BÁSICA (mínimo de 03 indicações, conforme o PPC do curso)

- Alan Burns and Andrew Wellings. Real-Time Systems and Programming Languages: Ada, Real-Time Java and C/Real-Time POSIX, Addison Wesley Pub, 2009.
- Peter Dibble. Real-Time Java Platform Programing. Sun Microsystems Press, 2002.
- Alan Shaw. Sistemas e Software de Tempo Real, Bookman Companhia Ed, 2003.
- Hermann Kopetz. Real-Time Systems: Design Principles For Distributed Embedded Applications, Kluwer Academic, 2011.

7.2 COMPLEMENTAR (mínimo de 05 indicações, conforme o PPC do curso)

- Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, 2nd edition, 1991.
- Andrew Tanenbaum. Operating Systems: Design and Implementation. 2nd edition, 1997.
- Anotações do Professor.
- · Artigos científicos

^{**}Em caso de disciplinas compartilhadas

LOCAL E DATA:
ASSINATURAS DOS PROFESSORES:
DATA DA APROVAÇÃO DO COLEGIADO DO CURSO:
DATA DA ASSINATURA DO(A) COORDENADOR(A) DO COLEGIADO DO CURSO: