物体検出に用いられるニューラルネットワークモ デル

最新モデルのサーベイと目的に応じたモデルの選択

Neural Network Models for Object Detection

A Survey of the Latest Models and Optimal Model Selections for Specific Tasks

金子 純也 Morning Project Samurai 株式会社

inya Kaneko Morning Project Samurai Inc.

junya@mpsamurai.com, http://www.mpsamurai.com

山田 貢己 (同 上)

Miki Yamada m.yamada@mpsamurai.com

keywords: survey, neural network, object detection, instance segmentation, deep learning

Summary

「ショートノート」は 200 ワード, それ以外は 200~500 ワード以内の英文で summary を記す (ここは,論文執筆後に書く.)

ここにチートシートを出力する.

1. ま え が き

作成中.

2. 物体検出 (Object detection)

- 2·1 Two-stage 検出器
- § 1 Faster R-CNN
- § 2 TFANet
- § 3 Few-Shot Object Detection
- 2·2 One-stage 検出器
- § 1 YOLOv4
- § 2 EfficientDet
- **3.** インスタンスセグメンテーション (Instance segmentation)

3·1 Mask Scoring R-CNN (MS R-CNN)

マスク品質 (インスタンスマスクと正解マスクとの IoU として定量化されるもの) を分類スコアと明示的に関連付けたモデルである [Huang 19] . MS R-CNN は , 予測マスクの品質を学習するためのブロック (MaskIoU Head)を , Mask R-CNN[He 17] に導入したモデルになっている (図 1) . MaskIoU Head はインスタンスの特徴量と対応する予測マスクを一緒に取り込み , それを元に Mask IoU を回帰推定する . そして , 推論時に予測 MaskIoU を分類スコアに掛け算して補正する .

§1 MS R-CNN の学習

学習サンプルとして RPN proposals を使う. proposal box と正解 box との IoU が 0.5 以上の学習サンプルが必要となる. これは Mask R-CNN の Mask head の学習サンプルの場合と同じである. 各学習サンプルに対する回帰目標を生成するために,まず目標クラスの予測マスクを取得し,予測マスクを閾値=0.5 で 2 値化する. そして,2 値化マスクと正解との MaskIoU を使う. MaskIoUを回帰するのには L2 損失を使い,損失重みは 1 にする.ネットワーク全体は end-to-end で学習する.

図1 Mask Scoring R-CNN の構造.

§ 2 MS R-CNN の推論処理

MaskIoU Head は分類スコア (R-CNN head の出力) の調整に使う. 推論の手順は次のようになる:

- (1) R-CNN head が N 個の bounding box を出力する.
- (2) N 個の bounding box のうち , SoftNMS[Bodla 17] で上位 k 個のボックスを選択する .
- (3) 上位 k 個のボックスを Mask Head に入力し, k 個のマルチクラスマスクを生成する (ここまでは標準的 Mask R-CNN の手順).
- (4) これら k 個のマスクを目標として MaskIoU Head に入力し, 予測 MaskIoU を出力する.
- (5) 予測 MaskIoU を , 分類スコアに掛け算し , 上位 k 個の修正された分類スコアを得る .

3·2 YOLACT++

- **4.** パノプティックセグメンテーション (Panoptic(?) segmentation)
- 5. む す び

謝 辞

謝辞について

♦ 参考文献♦

- [Bodla 17] Bodla, N., Singh, B., Chellappa, R., and Davis, L. S.: Soft-NMS Improving Object Detection with One Line of Code, in 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5562–5570 (2017)
- [He 17] He, K., Gkioxari, G., Dollr, P., and Girshick, R.: Mask R-CNN, in 2017 IEEE International Conference on Computer Vision (ICCV), Venice, pp. 2980–2988 (2017)
- [Huang 19] Huang, Z., Huang, L., Gong, Y., Huang, C., and Wang, X.: Mask Scoring R-CNN, in Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6409–6418 (2019)

[担当委員: x x]

19YY 年 MM 月 DD 日 受理

♦ 付録 ♦

A. 付録のタイトル 1

付録の本文1

———著 者 紹 介———

金子 純也(正会員) 著者 1 の略歴

山田 貢己(正会員)

1989 年東京大学大学院物理学専攻修了、理学博士、同年株式会社東芝入社、ニューラルネットワークの研究開発,セキュリティ技術,画像認識技術,テレビの高画質化技術,車載画像認識プロセッサ等の開発業務に従事、2020 年ジャパニアス株式会社に入社、現在,Morning Project Samurai株式会社において AI 開発業務に従事、