Теория автоматов и формальных языков Контекстно-свободные языки: нисходящий анализ

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

23 ноября 2021

В предыдущей серии

- Нисходящий анализ
- Алгоритм синтаксического анализа LL(1)

Когда LL-анализ не возможен

- Леворекурсивные правила
- Когда при построении таблицы в одну ячейку нужно записать больше одной записи
 - FIRST-FIRST конфликт

★
$$A \rightarrow \alpha \mid \beta, FIRST(\alpha) \cap FIRST(\beta) \neq \emptyset$$

$$\star$$
 $E \rightarrow T + E \mid T * E$

- ► FIRST-FOLLOW конфликт
 - ★ $FIRST(A) \cap FOLLOW(A) \neq \emptyset$

★
$$S \rightarrow Aab, A \rightarrow a \mid \varepsilon$$

- Как с этим бороться?
 - Избавиться от левой рекурсии
 - Избавиться от недетерминизма
 - Факторизовать грамматику
 - ▶ Использовать аннотации (если есть)
 - Переписать грамматику
 - ▶ Использовать более одного символа предпросмотра

Леворекурсивные правила грамматики

- Явная (непосредственная) левая рекурсия
 - ightharpoonup A
 igh
- Неявная левая рекурсия
 - $A \to \alpha A \beta, \alpha \stackrel{*}{\Rightarrow} \varepsilon$
- Взаимная рекурсия
 - $A \rightarrow \alpha B\beta, B \rightarrow \gamma A\delta, \alpha \stackrel{*}{\Rightarrow} \varepsilon, \gamma \stackrel{*}{\Rightarrow} \varepsilon$

Избавление от левой рекурсии

• $A \rightarrow A\alpha \mid \beta \Leftrightarrow A \rightarrow \beta A', A' \rightarrow \varepsilon \mid \alpha A'$

Избавление от левой рекурсии

- $A \rightarrow A\alpha \mid \beta \Leftrightarrow A \rightarrow \beta A', A' \rightarrow \varepsilon \mid \alpha A'$
- $E \rightarrow E + T \mid T \Leftrightarrow E \rightarrow TE', E' \rightarrow \varepsilon \mid +TE'$

Избавление от левой рекурсии

- $A \rightarrow A\alpha \mid \beta \Leftrightarrow A \rightarrow \beta A', A' \rightarrow \varepsilon \mid \alpha A'$
- $E \rightarrow E + T \mid T \Leftrightarrow E \rightarrow TE', E' \rightarrow \varepsilon \mid +TE'$

Избавление от левой рекурсии: более общий случай

- $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_n \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_k$
- $A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_k A'$
- $A' \rightarrow \varepsilon \mid \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_n A'$

Избавление от взаимной левой рекурсии

- Избавляемся от arepsilon-продукций
- Упорядочиваем правила по индексу нетерминала
- Добиваемся того, чтобы не было правил вида $A_i o A_i lpha, j \leq i$
 - ▶ Перебираем все A_i
 - ▶ Перебираем все $A_i, 1 \le j < i$
 - lacktriangle Для каждого правила $p:A_i o A_i\gamma$
 - ⋆ Удалить правило р
 - \star Для каждого правила $A_j o\delta_1\,|\,\cdots\,|\,\delta_k$ Добавить правила $A_i o\delta_l$
 - ightharpoonup Устранить непосредственную левую рекурсию для A_i

Левая факторизация грамматики

• Выделяем наибольший общий префикс продукций $A o lpha eta \mid lpha \gamma \Rightarrow A o lpha A', \ A' o eta \mid \gamma$

Пример

$$\begin{array}{ccc} S & \rightarrow & aSSbS \\ & | & aSaSb \\ & | & abb \\ & | & b \end{array}$$

Пример

Пример

$$S \rightarrow aSSbS$$
 $\mid aSaSb$
 $\mid abb$
 $\mid b$
 $S \rightarrow aS'$
 $\mid b$
 $S' \rightarrow SSbS$
 $\mid SaSb$
 $\mid bb$
 $S \rightarrow aS' \mid b$
 $S' \rightarrow SS'' \mid bb$
 $S' \rightarrow SbS \mid aSb$

LL(k)-анализ

- Можно использовать более одного символа предпросмотра
- Все равно применимо не ко всем КС-грамматикам

LL(k): функция *FIRST*

- Функция $\mathit{FIRST}_k^{\mathcal{G}}(\alpha) = \{\omega \in V_T^* \mid \mathsf{либо} \ |\omega| < k \ \mathsf{u} \ \alpha \stackrel{*}{\Rightarrow} \omega, \ \mathsf{либо} \ |\omega| = k \ \mathsf{u} \ \alpha \stackrel{*}{\Rightarrow} \omega\gamma, \gamma \in V_T^* \}$
 - ightharpoonup По сути: первые k символов, встречающиеся в выводе из lpha
- Пример
 - $S \rightarrow SS \mid aSb \mid \varepsilon$
 - ightharpoonup FIRST $_3^G(aSb) = \{ab, aab, aaa\}$
 - aba ∉ FIRST^G₃(aSb)!

LL(k): функция FOLLOW

$$FOLLOW_k^{\mathcal{G}}(\beta) = \{\omega \in V_T^* \mid S \stackrel{*}{\Rightarrow} \gamma \beta \alpha, \omega \in FIRST_k^{\mathcal{G}}(\alpha)\}, k \geq 0$$

Пример: $S o SS \mid aSb \mid arepsilon$

- $FOLLOW_3^G(aa) = \{abb, aab, aaa, aba, baa, bab, bb, bba, \dots\}$
- ε , $b \notin FOLLOW_3^G$!

Нисходящий синтаксический анализ: LL-грамматики

Фундаментальное свойство: по сентенциальной форме $a_1a_2\dots a_jA\beta, a_i\in V_T, A\in V_N, \beta\in (V_T\cup V_N)^*$ однозначно определяется, какое правило нужно применять дальше, чтобы разобрать всю строку

Нисходящий синтаксический анализ: LL-грамматики

Фундаментальное свойство: по сентенциальной форме $a_1a_2\dots a_jA\beta, a_i\in V_T, A\in V_N, \beta\in (V_T\cup V_N)^*$ однозначно определяется, какое правило нужно применять дальше, чтобы разобрать всю строку

КС грамматика G является LL(k)-грамматикой для некоторого k, если для любых двух левосторонних выводов вида

- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \beta \alpha \stackrel{*}{\Rightarrow} \omega \delta$
- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \gamma \alpha \stackrel{*}{\Rightarrow} \omega \eta$

в которых $FIRST_k^G(\delta) = FIRST_k^G(\eta)$, верно $\beta = \gamma$

КС грамматика G является **LL-грамматикой**, если она является LL(k)-грамматикой для некоторого $k \geq 0$

Пример LL(1)-грамматики

$$S \rightarrow aBS \mid b \ B \rightarrow a \mid bSB$$

Надо показать: для любых левосторонних выводов

- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \beta \alpha \stackrel{*}{\Rightarrow} \omega \delta$
- $S \stackrel{*}{\Rightarrow} \omega A \alpha \Rightarrow \omega \gamma \alpha \stackrel{*}{\Rightarrow} \omega \eta$

если δ и η начинаются с одного символа, то $\beta=\gamma$ Рассматриваем выводы, где роль A выполняет $S\colon S\Rightarrow aBS, S\Rightarrow b.$ $\omega=\alpha=\varepsilon, \beta=aBS, \gamma=b.$ Любая цепочка, выводимая из $\beta\alpha=aBS$ начинается на a; любая цепочка, выводимая из $\gamma\alpha=b$ начинается на a. Однозначно определяется, какой альтернативе следовать.

Аналогично с $A = B : S \Rightarrow aBS \Rightarrow aaS; S \Rightarrow aBS \Rightarrow abSBS$

Простая LL(1)-грамматика

КС-грамматика G называется **простой LL(1)-грамматикой**, если в ней нет ε -правил, и все альтернативы для каждого нертерминала начинаются с терминалов, и притом различных.

 $orall (A,a), A \in V_{N}, a \in V_{T}, \exists$ максимум 1 альтернатива вида A o a lpha

LL-грамматика: необходимое и достаточное условие

Теорема

КС грамматика $G = \langle V_N, V_T, P, S \rangle$ является LL(k)-грамматикой $\Leftrightarrow FIRST_k^G(\beta\alpha) \cap FIRST_k^G(\gamma\alpha) = \emptyset$, для всех таких $\alpha, \beta, \gamma: A \to \beta, A \to \gamma \in P, \beta \neq \gamma, \exists$ вывод $S \stackrel{*}{\Rightarrow} \omega A\alpha$

LL(1)-грамматика: необходимое и достаточное условие

Теорема

КС-грамматика $G = \langle V_N, V_T, P, S \rangle$ является LL(1)-грамматикой $\Leftrightarrow FIRST_1^G(\beta FOLLOW_1^G(A)) \cap FIRST_1^G(\gamma FOLLOW_1^G(A)) = \varnothing, \forall A \in V_N, \beta, \gamma \in (V_N \cup V_T)^*, A \to \gamma, A \to \beta \in P, \beta \neq \gamma$

LL(1)-грамматика: необходимое и достаточное условие: другая формулировка

Теорема

КС-грамматика $G = \langle V_N, V_T, P, S \rangle$ является LL(1)-грамматикой $\Leftrightarrow \forall A \to \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$ верно:

- $FIRST_1^G(\alpha_i) \cap FIRST_1^G(\alpha_j) = \emptyset, i \neq j, 1 \leq i, j \leq n$
- если $\alpha_i \stackrel{*}{\Rightarrow} \varepsilon$, то $\mathit{FIRST}_1^{\mathsf{G}}(\alpha_j) \cap \mathit{FOLLOW}_1^{\mathsf{G}}(A) = \varnothing, 1 \leq j \leq \mathsf{n}, i \neq j$

Леворекурсивность

Теорема

Если КС-грамматика $G=\langle V_N,V_T,P,S\rangle$ леворекурсивна, то она не является LL(k)-грамматикой ни при каком k