Assignement 4 COSC 4P61, Theory of Computation Fall, 2017

Due: Dec. 5, Tuesday, 5:00 PM.

1. (30) Construct a Turing machine for $L = \{a^n b^n c^n | n \ge 1\}$. Please first describe the idea behind your construction in English.

δ	a	b	c	X	Y	Z	B
q_0	(q_1, X, R)				(q_4, Y, R)		_
q_1	(q_1, a, R)				(q_1, Y, R)		
q_2			(q_3, Z, L)			(q_2, Z, R)	
q_3	(q_3, a, L)	(q_3,b,L)		(q_0, X, R)	(q_3, Y, L)		
q_4					(q_4, Y, R)	(q_4, Z, R)	(q_f, R, B)
q_f							

2. (bonus 20) Construct a Turing machine for adding 1 to a binary number n with no leading 0's (i.e. $n \in \{0\} \bigcup \{1\}\{0+1\}^*$). Initially, the binary number is on the tape enclosed by a pair of #'s with state q_0 and head pointing to the left #. For convenience, we can assume that the tape is a two way infinite tape. For examples, for input #11111#, the output should be #100000#; for input #10111#, the output should be #11000#; while for input #100#, the output should be #101#.

$$\begin{array}{lcl} \delta(q_0,\#) & = & (q_1,\#,R) \\ \delta(q_1,0) & = & (q_1,0,R), \ \delta(q_1,1,R) = (q_1,1,R), \ \delta(q_1,\#) = (q_2,L) \\ \delta(q_2,0) & = & (q_f,1,_), \ \delta(q_2,1) = (q_2,0,L), \ \delta(q_2,\#) = (q_3,1,L) \\ \delta(q_3,B) & = & (q_f,\#) \end{array}$$

3. (25) Let G be an unrestricted grammar. Then the problem of determing whether or not $L(G) = \emptyset$ is undecidable. Let M_1 and M_2 be two arbitrary Turing machines. Show that the problem $L(M_1) \subseteq L(M_2)$? is undecidable.

We reduce the first problem (known to be undecidable) to the second problem.

Since G is an unrestricted grammar, there is a Turing machine M_1 that recognizes G. We can easily build a Turing machines M_2 such that $L(M_2) = \emptyset$ (for example, by having no final states, i.e., $F = \emptyset$). If the problem whether the problem $L(M_1) \subseteq L(M_2)$ is decidable, then we can also decide whether $L(G) = \emptyset$.

4. (15) Given $A = \{ \langle M \rangle | M \text{ is a finite automaton and } L(M) = \emptyset \}$ where $\langle M \rangle$ is some encoding of the machine M. Is A Turing-decidable? Prove your answer.

We know (from the decision algorithms for regular languages) that L(M) is nonempty if and only M accepts a string of length less than n, where n is the number of states in the finite state machine. Therefore, all we have to do to decide this language is create a Turing machine that does the following: generate all strings of lengths less than n (there are finite of them) and check to see whether any one of them is accepted. This process is guaranteed to halt. Therefore, the language is Turing-decidable.

5. (30) Let M be a deterministic Turing machine that accepts a nonrecursive language. Prove that the halting problem for M is undecidable. That is, there is no TM that takes input w and determines whether the computation of M halts with input w.

The proof idea is as follows:

Assume that the halting problem for this particular Turing machine is decidable, argue that we can construct another Turing machine that actually decides L (the non-recursive language), thus L becomes recursive, a contradiction.

Proof: Let the non-recursive language be L. If the halting problem for M is TM-decidable (recursive), then by definition, there exists a Turing machine M_1 such that for any string w, M_1 is able to decide (in finite amount of time) whether M running on w will halt, i.e., M_1 will always halt on input < M, w >, $\forall w$, such that

- M_1 halts in final state if M halts on w (M may accept or reject w);
- M_1 halts in non-final state if M does not halt on w.

Now we can design a TM M_2 that decides L as follows:

- $\forall w$, run M_1 on < M, w > (this will always halt)
- if M_1 halts on final state (meaning M halts on w)
 - $-\operatorname{run} M$ on w (because M halts on w)
 - * if M accepts w, M_2 halts and accepts w
 - * if M rejects w, M_2 halts and rejects w
- if M_1 halts on a non-final state (meaning M does not halt on w)
 - $-M_2$ halts and rejects w.

In short, $\forall w, M_2$ will always halt such that

if $w \in L$, M_2 accepts, and

if $w \notin L$, M_2 rejects it

Therefore, by definition, L is TM-decidable, i.e., recursive, which is a contradiction.

Note: Since L is non-recursive, and M accepts L, L is TM-recognizable, which means that if w is in L, M will always halt on w, and if w is not in L, M may halt on a non-final state or simply loop forever.