Systematic investigation of methods for slip detection in robotic manipulation.

By Nelson Elijah

How does different methods of slip detection affect a robot's ability to manipulate objects?

The Experiment

Papers and their methods used for slip detection

Papers Methods Used		Data Used	Manipulation Task Done
Event-Driven Visual- Tactile Sensing and Learning for Robots	Visual-tactile spiking Neural Network to detect slip events	Perception (event based), proprioceptive and tactile data	Object classification and (rotational) slip detection
2) Tactile Convolutional Networks for Online Slip and Rotation Detection	Time series classification with Convolutional Neural Networks to detect slip	Tactile data (piezo- resistive data)	Holding a cardboard cylinder, a remote and a drinking glass
3) Force Estimation and Slip Detection/ Classification for Grip Control using a Biomimetic Tactile Sensor	Artificial Neural Networks to detect slip	Force and Pressure data (all from BioTac sensor)	Grasp experimentation on various objects like plastic cup, plastic jar, wood,
4) Grip Stabilization of Novel Objects Using Slip Prediction	SVM and Random Forest to classify slips	Tactile data from BioTac Sensor	Grip stabilization on objects like a box, ball, cup, marker, measuring stick, tape, Watering can

Papers	Methods Used	Data Used	Manipulation Task Done
5) Real-time Friction Estimation for Grip Force Control	Closed-loop grip force algorithm that dynamically applies a near-optimal grip force to avoid dropping objects of varying weight and friction	Force tactile data from the PapillArray sensor	Vertical lifting of objects with varying weights like Orange, Cardboard box, Coffee jar
6) Tactile-Driven Grasp Stability and Slip Prediction	CCN and GCN models are used for stability binary detection, i.e., stable grip and unstable grip. LSTM and ConvLSTM models are built to classify the type of slippage in the following cases: lack of stability, translational or rotational	Tactile images formed from the pressure data from the BioTac sensor	Stability prediction and slip direction detection of objects (spheres, cylinders, box)
7) Self-supervised learning of object slippage: An LSTM model trained on low-cost tactile sensors	Binary classification using LSTM networks where 0 implies the slip label and 1 implies the no-slip label	Pressure data from the Takktile Micro-Electro- Mechanical-Systems (MEMS) barometer sensors	Grasping of a 500ml plastic bottle filled with water to two-thirds

Papers	Methods Used	Data Used	Manipulation Task Done
8) Learning Spatio Temporal Tactile Features with a ConvLSTM for the Direction Of Slip Detection	mporal Tactile (ConvLSTM) to learn spatio- temporal features -Spatial: where slip occurs - Temporal: Slip occurrence with		Grasping of various objects sets like basic (hard drive, sponge), solids (plastic bottle), small (metal screw), textures (bubble wrap)
9) Grasping Force Control of Multi-Fingered Robotic Hands through Tactile Sensing for Object Stabilization	DNN (LSTM): to detect contact events and object materials simultaneously from tactile data GMM: to estimate the force Grasping force control strategy using tactile sensing techniques with feedback control	Tactile data, contact event, and material information using the BioTac sensor	Grasping of objects like paper, foam, plastic, and metal
10) Slip Detection for Grasp Stabilization With a Multifingered Tactile Robot Hand	SVM, LogRes & Threshold classifier to detect slip and test multiple slip scenarios	Optical tactile data from the TacTip tactile sensor	Grasp destabilization and First-Time Grasping

Papers	Methods Used	Data Used	Manipulation Task Done
11) Slip Detection with a Biomimetic Tactile Sensor	SVM to detect slip from pin motion in the TacTip sensor	Pin velocity data from the TacTip tactile sensor	Slip experimentation on a rig (a vertical low friction rail system with a slider)
12) Slip Detection with Combined Tactile and Visual Information	DNN: (CNN and RNN) with tactile image to detect slip CNN: To extract features from the image RNN (LSTM): To compare feature sequences and make a decision	Tactile image data from the GelSight sensor	Grasping and lifting of 84 daily objects like (wood, bottle, basketball, syringe, toys)
13) Tactile-based Manipulation of Deformable Objects with Dynamic Center of Mass	Tangential force based slip detection method and a deformation prevention approach relying on weight estimation	Force data from the OptoForce OMD-20-SE- 40N 3D force sensor	Grasping of deformable objects like plastic bottle, tee box, juice container, disposable cup.

Papers	Methods Used	Data Used	Manipulation Task Done
14) Towards Learning to Detect and Predict Contact Events on Vision-based Tactile Sensors	Use DNN to predict future frames of tactile image sequences in an unsupervised learning fashion with 6650 trials of contact sequence as a dataset	Tactile image data from the FingerVision sensor	Grasping of objects like screwdrivers, erasers, a flash drive, pen while measuring picking success rate

Papers	Methods Used	Data Used
16) Maintaining Grasps within Slipping Bound by Monitoring Incipient Slip	When slip starts, the peripheral edge of the contact region will slip first, which means the displacement field of that region will have smaller magnitude than that at the center. This is the trigger signal for our method to detect incipient slip.	Visual Tactile data from the Gelsight tactile sensor
15) Stabilizing novel objects by learning to predict tactile slip	Random forest classifiers to create generalizable slip predictors and then, use these classifiers in the feedback loop of an object stabilization controller.	Tactile data
17) Slip Detection: Analysis and Calibration of Univariate Tactile Signals	Visual-tactile spiking Neural Network to detect slip events	Perception (event based), proprioceptive and tactile data

Conclusion

This systematic investigation shows the various methods and data used in slip detection and tactile sensing that are implemented in modern day robots.

Classification report for slip detection with batch training

Accuracy	0.98057998780 80641
Precision	0.91854150074 15321
F_score	0.92988890769 86483
Recall	0.94200871812 64473

Classification report for slip prediction with batch training

	T + 5	T + 10	T + 15	T + 20
Accuracy	0.983718255021679 5 (0.98 ± 0.02)	0.973165714285714 3	0.969142857142857 2	0.968203793231684 6
Precision	0.964529821142370 8	0.944283767262397 4	0.906459971709575	0.937163317449446
F_score	0.939951999926534	0.892195113887338	0.882158939449489	0.878799212886395

0.852607580157557

6

0.918277275548712

Recall

5

0.836256325352550

0.861086751077975

CNN report for slip detection with batch training

Accuracy	0.927283810850823
Precision	0.4636419054254115
F_score	0.48113505941891466
Recall	0.5

ToDos

- 0. Read about imbalanced classification problems and list the possible solutions here in next slides (DONE)
- 1. Table of results for Dense network with mean and std (in 5 trials) (DONE)
- 2. Train CNN for detection & predictions problems too
- 3. Save&plot the accuracy curve for the training and validation set for both Dense (**DONE**) and CNN. (DONE)
- 4. Train ResNet in PyTorch for slip detection. (If done soon, also for slip prediction)
- 5. Implement Some imbalanced classification techniques (DONE)

DOCUMENT EVERY STEP OF THE WAY AND EVERYTHING YOU DO!!

Dealing with imbalanced dataset

- Choose a proper evaluation metric
- Resampling (Under sampling and oversampling)
- SMOTE (synthetic minority oversampling technique)
- Bagging balanced classifier
- Threshold moving

Loss and Accuracy curve using a DNN for slip detection

Using SMOTE for Imbalanced data

Loss and Accuracy curve using a CNN for slip detection

Using SMOTE for Imbalanced data

Loss and Accuracy curve using a RESNET for slip detection

Using SMOTE for Imbalanced data

Loss and Accuracy curve using a DNN for slip prediction

Loss and Accuracy curve using a DNN for slip prediction

Loss and Accuracy curve using a DNN for slip prediction using SMOTE

Loss and Accuracy curve using a DNN for slip prediction with SMOTE

Loss and Accuracy curve using a CNN for slip prediction

Loss and Accuracy curve using a CNN for slip prediction

Loss and Accuracy curve using a CNN for slip prediction with SMOTE

Loss and Accuracy curve using a CNN for slip prediction with SMOTE

