

Espaço Vectorial

Seja V um conjunto não vazio e R o corpo dos reais.

Diz-se que V é um espaço vectorial real se:

- 1. Em V está definida uma operação binária que se designa por adição, e se representa por +, tal que (V,+) é um grupo comutativo;
- 2. Está definida uma aplicação de $\Re xV$ em V que a cada par (λ,x) de $\Re xV$ faz corresponder um elemento λx de V tal que:

Espaços Vectoriais

Espaço Vectorial

Seja V um conjunto não vazio e R o corpo dos reais.

Diz-se que V é um espaço vectorial real se:

- 1. Em V está definida uma operação binária que se designa por adição, e se representa por +, tal que (V,+) é um grupo comutativo;
- 2. Está definida uma aplicação de $\Re xV$ em V que a cada par (l,x) de $\Re xV$ faz corresponder um elemento λx de V tal que:
 - $\forall x, y \in V, \forall \alpha \in \Re; \alpha(x+y) = \alpha x + \alpha y$
 - $\forall x \in V, \forall \alpha, \beta \in \Re; (\alpha + \beta)x = \alpha x + \beta x$
 - $\forall x \in V, \forall \alpha, \beta \in \Re; \alpha (\beta x) = (\alpha \beta)x$
 - $\forall x \in V ; 1x = x$

Combinação Linear

Seja V um espaço vectorial sobre **R** e sejam $x_1, x_2, ..., x_n$ n vectores de V Um vector **v** de V diz-se uma **combinação linear** de $x_1, x_2, ..., x_n$ Se existirem $\lambda_1, \lambda_2, ..., \lambda_n \in \Re$ tais que:

Espaços Vectoriais

Vectores Linearmente Independentes

Seja V um espaço vectorial sobre \mathbf{R} e $x_1, x_2, ..., x_n$ n vectores de V Diz-se que $x_1, x_2, ..., x_n$ são **linearmente independentes** se a única combinação linear nula de $x_1, x_2, ..., x_n$ é a trivialmente nula, isto é, se para quaisquer escalares $\lambda_1, \lambda_2, ..., \lambda_n \in \Re$

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = 0_V \implies \lambda_1 = \lambda_2 = \dots = \lambda_n = 0$$

$$\frac{\lambda_1(2,3) + \lambda_2(1,2) = (0,0)}{\lambda_1 + 2\lambda_2 = 0} \qquad \qquad \begin{cases} 2\lambda_1 + \lambda_2 = 0 \\ 3\lambda_1 + 2\lambda_2 = 0 \end{cases} \qquad \qquad \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \end{cases}$$

$$\underline{\lambda_1(2,3) + \lambda_2(1,2) + \lambda_3(1,1) = (0,0)} \longrightarrow \begin{cases}
2\lambda_1 + \lambda_2 + \lambda_3 = 0 \\
3\lambda_1 + 2\lambda_2 + \lambda_3 = 0
\end{cases}$$

$$\frac{\lambda_1(2,3) + \lambda_2(1,2) + \lambda_3(1,1) = (0,0)}{\lambda_1(2,3) + \lambda_2(1,2) + \lambda_3(1,1)}$$

Teorema

Seja V um espaço vectorial sobre \mathbf{R} e $x_1, x_2, ..., x_n$ n vectores de V Então os vectores $x_1, x_2, ..., x_n$ são linearmente independentes se e só se qualquer combinação linear dos vectores $x_1, x_2, ..., x_n$ tem coeficientes únicos.

$$\Re^{2} \quad \{(2,3) (1,2)\}$$

$$(x,y) = \lambda_{1}(2,3) + \lambda_{2}(1,2) \qquad \qquad \begin{cases} 2\lambda_{1} + \lambda_{2} = x \\ 3\lambda_{1} + 2\lambda_{2} = y \end{cases} \qquad \begin{cases} \lambda_{1} = 2x - y \\ \lambda_{2} = -3x + 2y \end{cases}$$

$$(3,5)$$

$$(2,3)$$

Espaços Vectoriais

Teorema

Seja V um espaço vectorial sobre \mathbf{R} e $x_1, x_2, ..., x_n$ (n>1) n vectores de V Então os vectores $x_1, x_2, ..., x_n$ são linearmente dependentes se e só se pelo menos um deles for uma combinação linear dos restantes.

Proposição

Seja V um espaço vectorial sobre \mathbf{R} e $x_1, x_2, ..., x_n$ n vectores de V se $x_i = x_j$ com i $\neq \mathbf{j}$. $x_1, x_2, ..., x_n$ são lin. dependentes se x_i for o vector nulo $x_1, x_2, ..., x_n$ são lin. dependentes $x_1, x_2, ..., x_n$ lin. ind. $x_1, x_2, ..., x_n$, y são lin. dependentes y é combinação linear dos restantes.

Teorema

Seja V um espaço vectorial sobre \mathbf{R} e $x_1, x_2, ..., x_n$ n vectores de V

Então

$$x_1, x_2, ..., x_{i-1}, x_i + x_j, x_{i+1}, ..., x_n$$

são lin. independentes
$$\begin{cases} x_1, x_2, ..., x_n \\ \text{são lin. independentes} \end{cases}$$

$$x_1, x_2, ..., x_{i-1}, \lambda x_i, x_{i+1}, ..., x_n$$
 $com \lambda \neq 0$ \Rightarrow $\begin{cases} x_1, x_2, ..., x_n \\ s\~{a}o lin. independentes \end{cases}$

Espaços Vectoriais

Conjunto de Geradores

Seja V um espaço vectorial sobre **R** e C um subconjunto não vazio de V Diz-se que C é um conjunto de geradores de V se qualquer vector de V se escreve com combinação linear de vectores de C.

Escreve $V = \langle C \rangle$

$$\mathfrak{R}^2 = \langle (2,3) (1,2) \rangle ?$$

$$\Re^{2} = \langle (2,3) (1,2) \rangle ?$$

$$(x,y) = \lambda_{1}(2,3) + \lambda_{2}(1,2) \qquad \begin{cases} 2\lambda_{1} + \lambda_{2} = x \\ 3\lambda_{1} + 2\lambda_{2} = y \end{cases} \qquad \begin{cases} \lambda_{1} = 2x - y \\ \lambda_{2} = -3x + 2y \end{cases}$$

$$(1,2)$$

$$(2,3)$$

Teorema

Seja V um espaço vectorial sobre **R** que admite um conjunto $\{x_1, x_2, ..., x_n\}$ de geradores lin. independentes Então as seguintes afirmações são verdadeiras:

- 1. Quaisquer m vectores de V com m > n são lin. dependentes
- 2. Qualquer conjunto de geradores de E tem no mínimo n vectores
- 3. Qualquer conjunto de n vectores lin ind. de E são geradores
- 4. Qualquer conjunto de n vectores geradores de E são lin. independentes
- 5. Qualquer conjunto de geradores de E constituído por vectores lin. ind. são exactamente n

Espaços Vectoriais

Teorema

Seja V um espaço vectorial sobre **R**

Qualquer conjunto finito de geradores de V contém ainda um subconjunto de geradores de V constituído por vectores linearmente independentes

Definição

Seja V um espaço vectorial sobre **R**

Denomina-se de <u>base</u> de um espaço vectorial a qualquer conjunto de vectores geradores e linearmente independentes.

Definição

Seja V um espaço vectorial sobre R

Denomina-se de <u>dimensão</u> de um espaço vectorial ao <u>número</u> de <u>vectores de</u> uma sua <u>base</u>.

Característica de uma matriz

Denomina-se característica de uma matriz ao número de linhas ou colunas linearmente independentes.

$$A = \begin{bmatrix} -1 & 2 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Espaços Vectoriais

Característica de uma matriz

Denomina-se característica de uma matriz ao número de linhas ou colunas linearmente independentes.

Método de Eliminação de Gauss

Característica de uma matriz

Método de Eliminação de Gauss

Espaços Vectoriais

Característica de uma matriz

Método de Eliminação de Gauss

Característica de uma matriz

Método de Eliminação de Gauss

Espaços Vectoriais

Característica de uma matriz

$$\begin{bmatrix} 1 & 2 & 0 & 3 & 1 \\ 2 & 3 & 2 & 0 & 1 \\ 3 & 1 & 2 & 1 & 1 \\ 5 & 4 & 4 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 3 & 1 \\ 0 & -1 & 2 & -6 & -1 \\ 0 & -6 & 4 & -14 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 3 & 1 \\ 0 & -1 & 2 & -6 & -1 \\ 0 & 0 & -8 & 22 & 3 \end{bmatrix}$$

Método de Eliminação de Gauss

