

Communication Interface Protocol

(EFEM-0000-00)

Table of Contents

1. Hardware 구성	
1.1 Port 구성 및 Port 번호	3
2. Communication Protocol	
2.1 TCP-IP 통신	4
2.2 통신 Format	4
2.3 Port Number 정의	4
2.4 Return Value 정의	4
2.5 Command Message List	5
3. Communication Command	
3.1 PAUSE	7
3.2 RESUME	8
3.3 ABORT	9
3.4 STOP~	10
3.5 INIT~	11
3.6 MODE~	12
3.7 SIGLM	13
3.8 HOME~	14
3.9 TRANS	15
3.10 WAIT~	19
3.11 VACUU	20
3.12 LOADL	22
3.13 UNLDL	23
3.14 OPEN~	24
3.15 CLOSE	25
3.16 MAPP~	26
3.17 CLAMP	27
3.18 UCLAM	28
3.19 RFIDR	29
3.20 RFIDW	30
3.21 ALMSG	31

EFEM Communication Interface Protocol

EFEM PROTOCOL

3.22 STAT~	32
3.23 TRSPP	36
3.24 AGVTM	37
3.25 TIMRD	38
3.26 RESET	39
3.27 FFURD	40
3.28 N2STS	41
3.29 N2RUN	42
3.30 ALTXT	43
4. Command Sequence	
4.1 Pickup or Place	44
4.2 Pause, Resume and Abort	45
4.3 Error Occurrence	47
4.4 Carrier Load and Unload	49
4.5 MODE change	53
4.6 Load and Unload in Manual Mode	55
5. Button Sequence	
5.1 Load scenario in Online mode	57
5.2 Unload scenario in Online mode	58
6. Error(Alarm) Code	
6.1 Error(Alarm) Code	59
7. Cancel Code	
7.1 Cancel Code	60

1. Hardware 구성.

1.1 Port 구성 및 Port 번호

각 Port의 구분은 아래 그림과 같습니다.

EFEM 내 Port 구성은 EFEM 정면을 기준으로 좌측 Load Port 를 1 번으로 하여 Count 합니다. Process 장비측 Port 는 EFEM 정면을 기준으로 우측부터 A,B,C 순으로 Count 합니다.

Robot 은 Port No.0 으로 assign 됩니다..

Slot Number 는 각 Port 의 Slot 아래를 기준 2 자리로 Count 합니다.(01,02,~,25)

2. Communication Protocol

2.1 TCP/IP 통신 (권장 방식)

- IP, Port 지정

2.2 통신 Format

(1) Command String Format (Main Equipment → EFEM)

Func.	Start String	Command String	Port No.	Clf. Sign	Data String	Clf. Sign	End Code
Cmd	@	XXXXX	X	[X~X]	CR
Size	1	5	1	1	N	1	1

(2) Reply Command String Format (Main Equipment ← EFEM)

Func.	Start String	Cmd. String	Port No.	Return Value	Clf. Sign	Data String	Clf. Sign	End Code
Cmd.	\$	XXXXX	Χ	Χ	[X∼X]	CR
Size	1	5	1	1	1	n	1	1

^{.*} Data String 이 존재하지 않는 Command 에서 Clf. Sign 은 제외됩니다.

2.3 Port Number 정의

Port No	비고
0	EFEM (ROBOT)
1	Load port1
2	Load port2
3	Load port3
*	Load port1 ~ 3
А	Process Port 1
В	Process Port 2
С	Process Port 3

2.4 Return Value 정의

Return Value	비고				
1	Command String Running (Wait main Equipment) - ACK				
2	Command rejection 2Byte Cancel Code Reply(…"2"+"XX"+CS+CR)				
3	Bad Syntax / Bad Checksum - NAK Data String Return 하지 않음.				
4	EVENT				

2.5 Command Message List

^{.*} Reply 되는 Cancel code 는 Clf. Sign 으로 처리되지 않습니다.

^{.*} Clf. Sign: Classification Sign.

No.		Command	Mean	Reply Data	Command Direction
1	R	PAUSE	Robot의 Pause 요구.	무	H → E
2	R	RESUM	Robot Pause 상태 해제 및 재동작 요구	무	$H \rightarrow E$
3	Е	ABORT	Robot Pause 상태 해제 및 경도 Error 해제요구	무	H → E
4	R	STOP~	ROBOT의 STOP 요구	무	H → E
5	Е	INIT~	EFEM Initialize 및 중도 Error 해제요구	무	$H \rightarrow E$
6	Е	MODE~	EFEM(Robot), Load Port, Aligner Mode 설정 요구	유	H → E
7	Е	SIGLM	Signal Lamp 및 Buzzer 제어 요구	유	H → E
8	R	HOME~	Robot 을 원점 위치로 이동 요구	무	H → E
9	R	TRANS	지정된 위치로의 Wafer 반송 요구	유	H → E
10	R	WAIT~	지정된 대기 위치로 Robot 이동 요구	유	H → E
11	R,A	VACUU	Robot 또는 Aligner Vacuum 제어 요구	유	H → E
12	L	LOADL	FOUP Open 및 Mapping 요구.	무	H → E
13	L	UNLDL	FOUP Close 및 Mapping(option) 요구.	무	H → E
14	L	OPEN~	FOUP Open 요구	무	H → E
15	L	CLOSE	FOUP Close 요구	무	H → E
16	L	MAPP~	Mapping Data 요구	유	H → E
17	L	CLAMP	FOUP Clamping 요구	무	$H \rightarrow E$
18	L	UCLAM	FOUP Unclamping 요구	무	$H \rightarrow E$
19	L	RFIDR	RFID Data Read 요구	유	$H \rightarrow E$
20	L	RFIDW	RFID Data Write 요구	유	H → E
21	E,e	ALMSG	EFEM Error 발생 보고 요구(event)	유	H ↔ E
22	E,e	STAT~	EFEM(Robot), Load Port, Aligner 상태 요구(event)	유	H ↔ E
23	R	TRSPP	Robot Arm 의 extract 및 retract 동작 요구.	유	H → E
24	Е	AGVTM	PIO Timeout value 설정 요구	유	H → E
25	Е	TIMRD	PIO Timeout value 보고 요구	유	H → E
26	L	RESET	PIO Error 해제 요구	무	H → E
27	Е	FFURD	FFU(RPM, Differential Pressure) Data 요구	유	$H \rightarrow E$

- -. Event 를 제외한 모든 Command 는 1 차 응답만 있습니다.
- -. 응답방식을 Event 로 설정한 경우 상위장비 측에서 EFEM의 상태정보 요구가 없어도 EFEM에서 상태변화가 일어나면 계속 보고가 되며, Polling 방식으로 설정한 경우 상위장비 측의 요구에 의해서만 EFEM의 상태정보가 보고됩니다.
- -. Event 에 의한 STAT~의 경우 EFEM의 Status Data 가 변화되는 순간 보고 됩니다.
- -. Event 에 의한 ALMSG 의 경우 EFEM Error 발생 순간 보고 됩니다.
- -. Reply Data 는 Command 에 대한 확인응답 Data 까지 포함합니다.
- -. H:상위장비, E: EFEM, R: Robot, L: Load Port, A: Aligner, e: Event 에 해당

3. Communication Command

3.1 PAUSE

기능

Robot을 일시 정지 시킵니다. Robot 이 동작중이 아닐 때 "PAUSE"를 요구하면 Cancel 처리됩니다. 동작의 재개는 "RESUM" Command를 사용 합니다. Robot 상태가 Pause 상태일 때는 "STAT~", "ALMSG", "RESUM", "ABORT" Command 만 처리 됩니다. 그 외의 Command 는 Cancel 처리됩니다. Command String Format 의 Port No.는 "0"으로 고정됩니다.

Main Equipment → EFEM

"@PAUSE" + "0" + CS + CR : Robot Pause 요구

Main Equipment ← EFEM

"\$PAUSE" + "0" + "1" + CS + CR: Pause 요구를 정상적으로 인지함. "\$PAUSE" + "0" + "2" + "XX" + CS + CR: Command Cancel "\$PAUSE" + "0" + "3" + CS + CR: Command Bad Format or Check Sum

3.2 RESUM

기능

Robot 이 Pause 중일 때 Pause 해제와 더불어 Pause 이전의 Job 을 진행합니다. Robot 이 Pause 중이 아닐 때 "RESUM"을 요구하면 Cancel 처리됩니다. Command String Format 의 Port No.는 "0"으로 고정됩니다.

Main Equipment → EFEM

"@RESUM" + "0" + CS + CR : Robot Resume 요구

Main Equipment ← EFEM

"\$RESUM" + "0" + "1" + CS + CR : Resume 요구를 정상적으로 인지함.

"\$RESUM" + "0" + "2" + "XX" + CS + CR : Command Cancel

"\$RESUM" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

3.3 ABORT

기능

Robot 이 Pause 중일 때 Pause 해제와 더불어 Pause 이전의 Job을 중지시킵니다. 또한 EFEM 에 경도 Error 발생시 "ABORT" Command 를 수행하여 Error 를 해제할 수 있습니다.

Command String Format 의 Port No.는 "0"으로 고정됩니다.

Main Equipment → EFEM

"@ABORT" + "0" + CS + CR : Robot Pause 해제와 더불어 Job 중지 요구 또는 EFEM 경도 Error 해제 요구

Main Equipment ← EFEM

"\$ABORT" + "0" + "1" + CS + CR : Abort 요구를 정상적으로 인지함.

"\$ABORT" + "0" + "2" + "XX" + CS + CR : Command Cancel

"\$ABORT" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

3.4 STOP~

기능

동작중인 Robot 을 정지 시킵니다. Robot 이 동작중이 아닐 때 "STOP~"을 요구하면 Cancel 처리 됩니다. Command String Format 의 Port No.는 "0"으로 고정됩니다.

Main Equipment → EFEM

"@STOP~" + "0" + CS + CR : Robot Stop 요구

Main Equipment ← EFEM

"\$STOP~" + "0" + "1" + CS + CR : Stop 요구를 정상적으로 인지함. "\$STOP~" + "0" + "2" + "XX" + CS + CR : Command Cancel

"\$STOP~" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

3.5 INIT~

기능

Error 해제를 포함하여 EFEM의 각 Module(Robot, Load Port)을 초기화 시킵니다.

Command String Format 의 Port No.를 "0"으로 설정하였을 경우 EFEM 의 각 Module 을 한꺼번에 초기화 시킵니다.

해당 Module 이 동작 중일 때 "INIT~"을 요구하면 Cancel 처리되며 각 Module 에 중도 Error 가 발생했을 때 "INIT~" Command 를 수행하여 정상화 시킬 수 있습니다.

Main Equipment → EFEM

```
"@INIT~" + "0" + CS + CR : EFEM(Robot, LoadPort# 포함) 초기화 요구
"@INIT~" + "1" + CS + CR : Load Port1 초기화 요구
```

Main Equipment ← EFEM

```
"$INIT~" + "0" + "1" + CS + CR : EFEM Initialize 요구를 정상적으로 인지함.
```

"\$INIT~" + "0" + "2" + "XX" + CS + CR : Command Cancel

"\$INIT~" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

"\$INIT~" + "1" + "1" + CS + CR: Load Port1 Initialize 요구를 정상적으로 인지함.

"\$INIT~" + "1" + "2" + "XX" + CS + CR : Command Cancel

"\$INIT~" + "1" + "3" + CS + CR : Command Bad Format or Check Sum

3.6 MODE~

기능

EFEM, Load Port 에 대한 Mode 및 사용 여부에 대한 설정을 합니다.

Data Format (Port No.: "0")

1.MODE 선택	2.None	3.RFID	4.Port	5.Close 시 Mapping	6.통신응답 방식	7.None
0:상시	Reserved	0:상시	0:상시	0:상시	0:EVENT 1:POLLING	Reserved

Data Format (Port No.: "1"~"3")

1.MODE 선택	2.None	3.RFID	4. Port	5.Close Δl Mapping	6.통신 응답방식	7.None
0:Manual 1:AMHS 3:상태유지	Reserved	0:사용안함 1:사용 3:상태유지	0:사용안함 1:사용 3:상태유지	0:사용안함 1:사용 3:상태유지	0:상시	Reserved

^{.* 0:}상시 -> 0 으로 고정하여 Format 합니다.

Main Equipment → EFEM

```
"@MODE~" + "0" +"[00000X0]" + CS + CR : EFEM 의 Mode 변경 요구
```

```
"$MODE~" + "0"+"1" + "[00000X0]" + CS + CR : EFEM Mode 변경 요구 정상인지.
```

```
"$MODE~" + "1"+"1" + "[X0XXX00]" + CS + CR : LP1 Mode 변경 요구 정상 인지.
```

^{.* 3:}상태유지-> 전에 유지하고 있던 상태를 유지합니다.

[&]quot;@MODE~" + "1" +"[X0XXX00]" + CS + CR: Load Port 1 의 Mode 변경 요구

[&]quot;\$MODE~" + "0"+"2" + "XX" + CS + CR : Command Cancel

[&]quot;\$MODE~" + "0"+"3" + CS + CR : Command Bad Format or Check Sum

[&]quot;\$MODE~" + "1"+"2" + "XX" + CS + CR : Command Cancel

[&]quot;\$MODE~" + "1"+"3" + CS + CR : Command Bad Format or Check Sum

3.7 SIGLM

기능

Signal Lamp 및 Buzzer 가 Data Format 의 설정에 맞게 동작합니다.

Data Format

1.Lamp (R)	2.Lamp (Y)	3.Lamp (G)	4. Lamp (B)	5.Buzzer
0:OFF	0:OFF	0:OFF	0:OFF	0:OFF
1:ON	1:ON	1:ON	1:ON	1:Flicker (0.5sec)
2:Blink	2:Blink	2:Blink	2:Blink	2:Flicker (1sec)
3:상태유지	3:상태유지	3:상태유지	3:상태유지	3:상태 유지

^{.* 3:}상태유지-> 전에 유지하고 있던 상태를 유지합니다.

Main Equipment → EFEM

"@SIGLM" + "0" +"[XXXXX]" + CS + CR : Signal Lamp 및 Buzzer 동작 요구

- "\$SIGLM" + "0" + "1" + "[XXXXX]" + CS + CR
 - : Signal Lamp 및 Buzzer 동작 요구를 정상 인지함.
- "\$SIGLM" + "0" + "2" + "XX" + CS + CR : Command Cancel
- "\$SIGLM" + "0" + "3" + CS + CR : Command Bad Format / Check Sum

3.8 **HOME~**

기능

Robot 이 원점위치로 이동합니다. Error 해제 기능은 없습니다. Command String Format 의 Port No.는 "0"으로 고정됩니다.

Main Equipment → EFEM

"@HOME~" + "0" + CS + CR : Robot 원점위치로의 이동을 요구

Main Equipment ← EFEM

"\$HOME~" + "0" + "1" + CS + CR : Robot 원점위치로의 이동 요구를 정상 인지함.

"\$HOME~" + "0" + "2" + "XX" + CS + CR : Command Cancel

"\$HOME~" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

3.9 TRANS

(1) 2 Finger Type

기능

Wafer 반송이 시작되는 위치와 목표위치를 지정하여 반송동작을 수행합니다. Robot 이 Single Arm 일 경우 Data Format 에는 1st Arm 만 존재하게 되며 Robot 이 Dual Arm 일 경우 Data Format 에는 1st,2nd Arm 이 모두 존재하게 됩니다. Process Port 로 Wafer 를 반송할 때는 Process Port 의 기구구성에 맞게 "TRANS" command 를 사용할 것인지 또는 "TRSPP" command 를 사용할 것인지를 판단하여 야 합니다.

Data Format

1			Dort No	0~3, A~C
l		Source	Port No.	0~3, A~C
2,3	1 st Arm		Slot No.	00~25
4	2 nd Arm	Torget	Port No.	0~3, A~C
5,6		Target	Slot No.	00~25
7		Source Target	Port No.	0~3, A~C
8,9			Slot No.	00~25
10			Port No.	0~3, A~C
11,12			Slot No.	00~25

- .* Arm 하나에 의해 반송이 이루어질 경우 사용하지 않는 Arm 은 "#####" 처리합니다. 즉, Robot 이 Single Arm 일 경우 Data Format 의 7,8,9,10,11,12 자리는 항상 "######"으로 처리하여야 합니다.
- * Data Format 의 Port No.가 "0"인 경우 Robot 을 의미하며 Robot 의 Hand 는 "00" 번을 사용하게 됩니다. Robot 의 Hand 위로 Wafer 를 Pick up 하거나 Robot Hand 에 서 Wafer 를 타 Module 로 Place 할 경우 사용합니다.

- "@TRANS" + "0" +"[101000######]" + CS + CR
 - : Load Port1 에서 Robot 의 1st Arm Hand 로 Wafer 를 반송(Pick Up)
- "@TRANS" + "0" +"[#####101000]" + CS + CR
 - : Load Port1 에서 Robot 의 2nd Arm Hand 로 Wafer 를 반송(Pick Up)
- "@TRANS" + "0" +"[000101######]" + CS + CR
 - : Robot1 의 1st Arm Hand 위의 Wafer 를 Load Port1 의 01 번 Slot 으로 반송(Place)
- "@TRANS" + "0" +"[######000101]" + CS + CR
 - : Robot1 의 2nd Arm Hand 위의 Wafer 를 Load Port1 의 01 번 Slot 으로 반송(Place)
- "@TRANS" + "0" +"[101000102000]" + CS + CR
 - : Load Port1 의 01 번 Slot Wafer 를 Robot 의 1st Arm Hand 로, Load Port1 의 02 번 Slot Wafer 를 Robot 의 2nd Arm Hand 로 반송(Double Pick Up)

3.9 TRANS (continue....)

(1) 2 Finger Type

- "@TRANS" + "0" +"[000101000102]" + CS + CR
 - : Robot 의 1st Arm Hand 위의 Wafer 를 Load Port1 의 01 번 Slot 으로, Robot1 의 2nd Arm Hand 위의 Wafer 를 Load Port1 의 02 번 Slot 으로 반송(Double Place)
- "@TRANS" + "0" +"[101A01102B01]" + CS + CR
 - : Load Port1 01 번 Slot의 Wafer를 Process Port A의 01 번 Slot으로 Load Port1 02 번 Slot의 Wafer를 Process Port B의 01 번 Slot 반송(Double Trans)

- "\$TRANS" + "0" + "1" + "[XXXXXXXXXXXX]" + CS + CR
- : Robot 의 Wafer 의 Trans 요구를 정상 인지함.
- "\$TRANS" + "0" + "2" + "XX" + CS + CR : Command Cancel
- "\$TRANS" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

3.9 TRANS (continue....)

(2) 5+1 Finger Type

기능

Wafer 반송이 시작되는 위치와 목표위치를 지정하여 반송동작을 수행합니다. Robot 이 Single Arm 일 경우 Data Format 에는 1st Arm 만 존재하게 되며 Robot 이 Dual Arm 일 경우 Data Format 에는 1st,2nd Arm 이 모두 존재하게 됩니다. Process Port 로 Wafer를 반송할 때는 Process Port 의 기구구성에 맞게 "TRANS" command 를 사용할 것인지 또는 "TRSPP" command 를 사용할 것인지를 판단하여 야 합니다.

Data Format

1	1 st Arm	Source	Port No.	0~3, A~C	
2,3		Source	Slot No.	00~25	
4	I AIIII	Target	Port No.	0~3, A~C	
5,6]		Slot No.	00~25	
7	2 nd Arm	Source	Port No.	0~3, A~C	
8,9			Slot No.	00~25	
10	Z AIIII	Tarast	Port No.	0~3, A~C	
11,12		Target	Slot No.	00~25	
13	,	구분자		,	
14~18	1 st Arm	Mapping 정보(아래부터)		0=없음 , 1=있음	

- .* Arm 하나에 의해 반송이 이루어질 경우 사용하지 않는 Arm은 "#####" 처리합니다. 즉, Robot 이 Single Arm 일 경우 Data Format 의 7,8,9,10,11,12 자리는 항상 "######"으로 처리하여야 합니다.
- * Data Format 의 Port No.가 "0"인 경우 Robot 을 의미하며 Robot 의 Hand 는 "00" 번을 사용하게 됩니다. Robot 의 Hand 위로 Wafer 를 Pick up 하거나 Robot Hand 에 서 Wafer 를 타 Module 로 Place 할 경우 사용합니다.

Main Equipment → EFEM

"@TRANS" + "0" +"[101000######,10011]" + CS + CR : Load Port1 에서 Robot 의 1st Arm Hand 로

1 번,4 번,5 번 Wafer 를 반송(Pick Up)

"@TRANS" + "0" +"[#####101000,00000]" + CS + CR

: Load Port1 에서 Robot 의 2nd Arm Hand 로 Wafer 를 반송(Pick Up)

"@TRANS" + "0" +"[000110######.11111]" + CS + CR

: Robot 의 1st Arm Hand 위의 5 장의 Wafer 를 Load Port1 의 10.11.12.13.14 번 Slot 으로 반송(Place)

"@TRANS" + "0" +"[######000101,00000]" + CS + CR

: Robot 의 2nd Arm Hand 위의 Wafer 를 Load Port1 의 01 번 Slot 으로 반송(Place)

3.9 TRANS (continue....)

(2) 5+1 Finger Type

- "@TRANS" + "0" +"[101000106000,11111]" + CS + CR
 - : Load Port1 의 1,2,3,4,5 번 Slot Wafer 를 Robot 의 1st Arm Hand 로, Load Port1 의 6 번 Slot Wafer 를 Robot1 의 2nd Arm Hand 로 반송(Double Pick Up)
- "@TRANS" + "0" +"[000101000106,11111]" + CS + CR
 - : Robot 의 1st Arm Hand 위의 5 장 Wafer 를 Load Port1 의 1,2,3,4,5 번 Slot 으로, Robot 의 2nd Arm Hand 위의 Wafer 를 Load Port1 의 6 번 Slot 으로 반송(Double Place)
- "@TRANS" + "0" +"[101A01102B01,11111]" + CS + CR
 - : Load Port1 1,2,3,4,5 번 Slot의 Wafer를 Process Port A의 1,2,3,4,5 번 Slot으로 Load Port1 02 번 Slot의 Wafer를 Process Port B의 01 번 Slot 반송(Double Trans)

- "\$TRANS" + "0" + "1" + "[XXXXXXXXXXXXXXXX]" + CS + CR
- : Robot1 의 Wafer의 Trans 요구를 정상 인지함.
- "\$TRANS" + "0" + "2" + "XX" + CS + CR : Command Cancel
- "\$TRANS" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

3.10 WAIT~

기능

Robot을 지정한 Port(Module) 앞으로 대기시킵니다. 대기시킬 Module의 Wafer 유/무에 따라 Pickup 또는 Place 위치를 자동적으로 찾 아 이동합니다.

Data Format

	1	1 st Arm	Slot No. 00~25 Port No. 0~3, A~C	Port No.	0~3, A~C
	2,3	I AIII		Slot No.	00~25
ſ	4	2 nd Arm		0~3, A~C	
	5,6	∠ AIIII	raigei	Slot No.	00~25

- .* Robot 이 Dual Arm 일 경우, 1st Arm 과 2nd Arm 으로 동시에 값을 보낼 수 없으며 이 경우 Cancel 처리됩니다.
- .* 사용하지 않는 Arm 은 항상 "###"으로 처리하여야 합니다. 즉, Robot 이 Single Arm 일 경우 Data Format 의 4,5,6 자리는 항상 "###"으로 처리하여야 합니다.

Main Equipment → EFEM

"@WAIT~" + "0" + "[101###]" + CS + CR

: Robot 의 1st Arm 을 Load Port1 의 01 번 Slot 앞으로 대기

Main Equipment ← EFEM

"\$WAIT~" + "0" + "1" + "[XXX###]" + CS + CR

: Robot1, 1st Arm 의 Wait 요구를 정상 인지함.

"\$WAIT~" + "0" + "2" + "XX" + CS + CR : Command Cancel

"\$WAIT~" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

3.11 VACUUM

(1) 2 Finger Type

기능

Robot Hand 의 Wafer 흡착용 Vacuum 을 제어합니다. 정상적인 경우 사용하지 않습니다.

Data Format (Port No.: "0")

1. 1 st Arm	2. 2 nd Arm	3.None
0:OFF	0:OFF	
1:ON	1:ON	Reserved
3 : 상태유지	3 : 상태유지	

^{.*} Robot 이 Single Arm 일 경우 Data Format 의 2 번 자리는 항상 "#"으로 처리하여 야 합니다.

Main Equipment → EFEM

"@VACUU" + "0" +"[XX0]" + CS + CR : Robot1(Dual) Vacuum On/Off 변경 요구

Main Equipment ← EFEM

"\$VACUU" + "0" + "1" + "[XX0]" + CS + CR

: Robot(Dual) Vacuum On/Off 변경 요구를 정상 인지함.

"\$VACUU" + "0" + "2" + "XX" + CS + CR : Command Cancel

"\$VACUU" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

3.11 VACUUM (continue....)

(2) 5+1 Finger Type

기능

Robot Hand 의 Wafer 흡착용 Vacuum 을 제어합니다. 정상적인 경우 사용하지 않습니다.

Data Format (Port No.: "0")

1. Arm Select	2. Vacuum 제어	3.None
1:1 st Arm -1	0:OFF	
2:1 st Arm -2	1:ON	Reserved
3:1 st Arm -3		
4:1 st Arm -4		
5:1 st Arm -5		
6: 2 nd Arm		

Main Equipment → EFEM

"@VACUU" + "0" +"[XX0]" + CS + CR : Robot1(Dual) Vacuum On/Off 변경 요구

Main Equipment ← EFEM

"\$VACUU" + "1" + "1" + "[XX0]" + CS + CR

: Robot(Dual) Vacuum On/Off 변경 요구를 정상 인지함.

"\$VACUU" + "0" + "2" + "XX" + CS + CR : Command Cancel

"\$VACUU" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

3.12 **LOADL**

기능

Load Port 위의 FOUP을 Clamp 하여 Docking 한 후 FOUP Door를 Open 하고 Wafer를 Mapping 합니다.

Wafer Mapping Data 는 reporting 되지 않습니다.

Main Equipment → EFEM

```
"@LOADL" + "1" + CS + CR : Load Port1 의 FOUP Open 및 Mapping 요구
"@LOADL" + "3" + CS + CR : Load Port3 의 FOUP Open 및 Mapping 요구
```

Main Equipment ← EFEM

```
"$LOADL" + "1" + "1" + CS + CR : Load Port1 FOUP Load 요구를 정상 인지함.
```

"\$LOADL" + "1" + "2" + "XX" + CS + CR : Command Cancel

"\$LOADL" + "1" + "3" + CS + CR : Command Bad Format or Check Sum

3.13 UNLDL

기능

Load Port 위의 Open 된 FOUP Door 를 Close 하고 FOUP을 Undocking 시킵니다. Unload 시 Clamp 해제동작은 이루어지지 않습니다. FOUP Door Close 시 Wafer Mapping 이 필요하면 "MODE~' Command의 Close 시 Mapping flag를 enable 시킵니다.

Main Equipment → EFEM

```
"@UNLDL" + "1" + CS + CR : Load Port1 의 FOUP Unload 요구
"@UNLDL" + "3" + CS + CR : Load Port3 의 FOUP Unload 요구
```

Main Equipment ← EFEM

```
"$UNLDL" + "1" + "1" + CS + CR : Load Port1 FOUP Unload 요구를 정상 인지함.
"$UNLDL" + "1" + "2" + "XX" + CS + CR : Command Cancel
```

"\$UNLDL" + "1" + "3" + CS + CR : Command Bad Format or Check Sum

3.14 OPEN~

기능

Load Port 위의 FOUP을 Clamp 하여 Docking 한 후 FOUP Door를 Open 합니다. Wafer Mapping 동작은 하지 않습니다. Wafer Mapping 동작을 제외하고 "LOADL" command 와 동작이 같습니다.

Main Equipment → EFEM

```
"@OPEN~" + "1" + CS + CR : Load Port1 의 FOUP Open 요구
"@OPEN~" + "3" + CS + CR : Load Port3 의 FOUP Open 요구
```

Main Equipment ← EFEM

```
"$OPEN~" + "1" + "1" + CS + CR : Load Port1 FOUP OPEN 요구를 정상 인지함.
"$OPEN~" + "1" + "2" + "XX" + CS + CR : Command Cancel
```

"\$OPEN~" + "1" + "3" + CS + CR : Command Bad Format or Check Sum

3.15 CLOSE

기능

Load Port 위의 Open 된 FOUP Door 를 Close 하고 FOUP을 Undocking 시킵니다. Unload 시 Clamp 해제동작은 이루어지지 않습니다. FOUP Door Close 시 Wafer Mapping 이 필요하면 "MODE~' Command 의 Close 시 Mapping flag 를 enable 시킵니다. "UNLDL" Command 와 동작이 같습니다.

Main Equipment → EFEM

```
"@CLOSE" + "1" + CS + CR : Load Port1 의 FOUP Open 요구
"@CLOSE" + "3" + CS + CR : Load Port3 의 FOUP Open 요구
```

```
"$CLOSE" + "1" + "1" + CS + CR : Load Port1 FOUP Close 요구를 정상 인지함

"$CLOSE" + "1" + "2" + "XX" + CS + CR : Command Cancel

"$CLOSE" + "1" + "3" + CS + CR : Command Bad Format or Check Sum
```

3.16 MAPP~

기능

Load Port 의 Wafer Mapping Data 를 Reporting 합니다.

Data Format

1~25 0: Wafer 없음 1: Wafer 있음 2: Wafer Double (겹쳐 있음) 3: Wafer Cross (걸쳐 있음) 4: Wafer 위치 이상

Main Equipment → EFEM

"@MAPP~" + "1" + CS + CR : Load Port1 의 Mapping data 요구 "@MAPP~" + "3" + CS + CR : Load Port3 의 Mapping data 요구

Main Equipment ← EFEM

3.17 CLAMP

기능

Load Port 위의 FOUP을 Clamp 합니다.

Main Equipment → EFEM

```
"@CLAMP" + "1" + CS + CR : Load Port1 의 FOUP Clamp 요구
"@CLAMP" + "3" + CS + CR : Load Port3 의 FOUP Clamp 요구
```

```
"$CLAMP" + "1" + "1" + CS + CR: Load Port1 FOUP Clamp 요구를 정상 인지함.
"$CLAMP" + "1" + "2" + "XX" + CS + CR: Command Cancel
"$CLAMP" + "1" + "3" + CS + CR: Command Bad Format or Check Sum
```

3.18 UCLAM

기능

Load Port 위의 FOUP을 Unclamp 합니다.

Main Equipment → EFEM

```
"@UCLAM" + "1" + CS + CR : Load Port1 의 FOUP Unclamp 요구
"@UCLAM" + "3" + CS + CR : Load Port3 의 FOUP Unclamp 요구
```

```
"$UCLAM" + "1" + "1" + CS + CR : Load Port1 FOUP Unclamp 요구 정상 인지함.

"$UCLAM" + "1" + "2" + "XX" + CS + CR : Command Cancel

"$UCLAM" + "1" + "3" + CS + CR : Command Bad Format or Check Sum
```

3.19 RFIDR

기능

RFID 의 MID 영역 또는 각 Page 에 기록된 값을 Read 하여 Reporting 합니다. MID 영역을 Read 할 경우 Page 번호를 "00"으로 하여야 하며 1,2 Page 값 즉, 16Byte Data 값을 전송합니다.

Read 된 MID 영역의 <u>Reply String Data = Page No. 2Byte + Data 16Byte</u> 로 구성되어 Reply 되며 8Byte 단위에서 Data 가 "/"로 구분됩니다

Data Format

```
1~2

"00" MID 영역

"01" 1 Page

"02" 2 Page

:

"17" 17 Page
```

Main Equipment → EFEM

```
"@RFIDR" + "1" + "[00]" + CS + CR : Load Port1 FOUP의 MID 영역 값 요구
"@RFIDR" + "3" + "[01]" + CS + CR : Load Port3 FOUP의 1Page 영역 값 요구
```

Main Equipment ← EFEM

```
"$RFIDR" + "1" + "1" + "[00XXXXXXXXXXXXXXXX]" + CS + CR
```

: Load Port1 FOUP 의 RFID MID 영역에 기록된 값의 전송 요구를 정상 수행함.

```
"$RFIDR" + "3" + "1" + "[01XXXXXXXX]" + CS + CR
```

: Load Port3 FOUP 의 RFID Page1 영역에 기록된 값의 전송 요구를 정상 수행함

```
"$RFIDR" + "1" + "2" + "XX" + CS + CR : Command Cancel
```

"\$RFIDR" + "1" + "3" + CS + CR : Command Bad Format or Check Sum

3.20 RFIDW

기능

RFID 각 Page 별로 정보를 기록 합니다.

Data Format

```
1~10

"01XXXXXXXX" 1 Page 8byte Data 값 Write

"02XXXXXXXX" 2 Page 8byte Data 값 Write

:

"17XXXXXXXXX" 17 Page 8byte Data 값 Write
```

Main Equipment → EFEM

```
"@RFIDW" + "1" + "[01XXXXXXXXX]" + CS + CR
: Load Port1 FOUP의 RFID 1Page에 XXXXXXXX 값 Write 요구
"@RFIDW" + "3" + "[17XXXXXXXXX]" + CS + CR
: Load Port3 FOUP의 RFID 17Page에 XXXXXXXX 값 Write 요구
```

```
"$RFIDW" + "1" + "1" + "[01XXXXXXXX]" + CS + CR
: Load Port1 FOUP의 RFID 1Page에 XXXXXXXX 값 Write 요구를 정상 인지함.
"$RFIDW" + "1" + "2" + "XX" + CS + CR: Command Cancel
"$RFIDW" + "1" + "3" + CS + CR: Command Bad Format or Check Sum
```

3.21 ALMSG

기능

EFEM의 Error 발생내역을 Reporting 합니다.

Alarm Message 는 요구가 없을 경우에도 Error 발생하면 Event 로 Reporting 됩니다.

"ALMSG" Command 가 요구되면 마지막으로 발생한 Error 가 Reporting 됩니다.

Data Format

1	2~5
"#" Error 시작기호	"XXXX" Error 번호

Main Equipment → EFEM

```
"@ALMSG" + "0" + CS + CR : EFEM(Robot)의 Error Reporting 요구
```

"@ALMSG" + "1" + CS + CR : Load Port1 의 Error Reporting 요구

"@ALMSG" + "3" + CS + CR : Load Port3 의 Error Reporting 요구

Main Equipment ← EFEM (EVENT 포함)

```
"$ALMSG" + "0" + "1" + "[XXXXX]" + CS + CR : EFEM Error Reporting 정상처리
```

"\$ALMSG" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

"\$ALMSG" + "0" + "4" + "[XXXXX]" + CS + CR

: EFEM 또는 Robot 의 Error 발생내역을 Event 로 Reporting

"\$ALMSG" + "1" + "1" + "[XXXXX]" + CS + CR

: Load Port 1 Error Reporting 정상처리

"\$ALMSG" + "1" + "3" + CS + CR : Command Bad Format or Check Sum

"\$ALMSG" + "1" + "4" + "[XXXXX]" + CS + CR

: Load Port 1 Error 발생내역을 Event 로 Reporting

3.22 STAT~

(1) 2 Finger Type

기능

EFEM 또는 각 Module 의 Status 를 Reporting 합니다. 요구가 없을 경우에도 Status 에 변화가 일어나면 Event 로 Reporting 됩니다.

Data Format (Port No.: "0")

1	EFEM 초기화 유무		0:미완료	1:완료		
2	Robot Status		0:정지상타	1:동작 중 2:	Pause	3:Error
3	1 st Arm Wafer 유 무		0:무	1:유		
4	2 nd Arm Wafer 유무		0:무	1:유		
5		RED	0:OFF	1:ON	2:Blink	
6	Signal Lamp	YELLOW	0:OFF	1:ON	2:Blink	
7	Status	GREEN	0:OFF	1:ON	2:Blink	
8]	BLUE	0:OFF	1:ON	2:Blink	
9	Buzzer Status		0:OFF 1:	FLICK 0.5Sec	2:FLIC	K 1Sec
10	FFU Status (Hex 표시)			ot use , Bit l압 Fail , Bi		

Bit 0 ~ 3 까지는 Nomal 0 Status (정상)

Main Equipment → EFEM

"@STAT~" + "0" + CS + CR : EFEM(Robot1)의 Status Reporting 요구

Main Equipment ← EFEM (EVENT 포함)

"\$STAT~" + "0" + "1" + "[XXXXXXXXXX]" + CS + CR

: EFEM(Robot1) Status 정상적으로 Reporting

"\$STAT~" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

"\$STAT~" + "0" + "4" + "[XXXXXXXXX]" + CS + CR

: EFEM(Robot) Status 변화내역을 Event 로 Reporting

3.22 STAT~ (continue....)

(1) 2 Finger Type

Data Format (Port No.: "1"~"3")

1	Load Port 초기화 유무	0:미완료 1:완료		
2	Load Port Status	0:정지 1:동작 중	2:Pause 3:Error	
3	FOUP 유무	0:무 1:유	2:Unknown	
4	Door Status	0:Close 1:OPEN	2:Unknown	
5	Clamp Status	0:Unclamp1:Clamp		
6	RFID Status	0:Ready 1:Readir 3:Writing 4:Write 0		
7	AGV Status	0:Ready 1:Busy	3:Error	
8	Load Port Enable	0:사용 안 함 1:사	. ව	
9	RFID Enable	0:사용 안 함 1:사	. ව	
10	Close 시 Mapping Enable	0:사용 안 함 1:사	. ව	
11	Online 시 Mode	0:Manual 1:AMHS		
12	Load Button Status	0:Off 1:On		
13	Unload Button Status	0:Off 1:On		
14	PIO Input (High Word)	Bit 7 = CONT Bit 6 = COMPT Bit 5 = BUSY Bit 4 = TR_REQ	1. 0 :Off 1:On 2. Hex 변환하여 Reply. (00~FF)	
15	PIO Input (Low Word)	bit 3 = N.C bit 2 = CS_1 bit 1 = CS_0 bit 0 = VALID		
16	PIO Output High Word	bit 7 = ES bit 6 = HO_AVBL bit 5 = N.C bit 4 = N.C	1. 0 :Off 1:On	
17	PIO Output Low Word	bit 3 = READY bit 2 = N.C bit 1 = U_REQ bit 0 = L_REQ	2. Hex 변환하여 Reply. (00~FF)	
18	FOUP Type	0: Unknown 1: 300mm 2: 200mm		

^{.*} Load/Unload Button Status 는 해당 Button 이 입력될 때만 그 값이 반영됩니다.

Main Equipment → EFEM

```
"@STAT~" + "1" + CS + CR : Load Port1 의 Status Reporting 요구
```

Main Equipment ← EFEM (EVENT 포함)

"\$STAT~"+"1"+"1"+"[XXXXXXXXXXXXXXXXXX]"+ CS + CR

: Load Port1 Status 정상적으로 Reporting

: Load Port1~3 Status 정상적으로 Reporting

[&]quot;@STAT~" + "3" + CS + CR : Load Port3 의 Status Reporting 요구

[&]quot;@STAT~" + "*" + CS + CR : Load Port1~3 의 Status Reporting 요구

"\$STAT~" + "1" + "3" + CS + CR : Command Bad Format or Check Sum "\$STAT~" + "1" + "4" + "[XXXXXXXXXXXXXXXXXX]" + CS + CR : Load Port1 Status 변화내역을 Event 로 Reporting

3.22 STAT~ (continue....)

(1) 5+1 Finger Type

기능

EFEM 또는 각 Module 의 Status 를 Reporting 합니다. 요구가 없을 경우에도 Status 에 변화가 일어나면 Event 로 Reporting 됩니다.

Data Format (Port No.: "0")

1	EFEM 초기화	유무	0:미완료	1:완료		
2	Robot Status		0:정지상태	1:동작 중	2: Pause	3:Error
3	1 st Arm 1Finger	Wafer 유무	0:무	1:유		
4	1 st Arm 2Finger	Wafer 유무	0:무	1:유		
5	1 st Arm 3Finger Wafer 유무		0:무	1:유		
6	1 st Arm 4Finger Wafer 유무		0:무	1:유		
7	1 st Arm 5Finger Wafer 유무		0:무	1:유		
8	8 2 nd Arm Wafer 유무		0:무	1:유		
9		RED	0:OFF	1:ON	2:Blink	
10	Signal Lamp	YELLOW	0:OFF	1:ON	2:Blink	
11	Status	GREEN	0:OFF	1:ON	2:Blink	
12		BLUE	0:OFF	1:ON	2:Blink	
13	13 Buzzer Status 14 FFU Status (Hex 丑시)		0:OFF 1:	FLICK 0.5Se	c 2:FLIC	K 1Sec
14			Bit 3 :- Bit 1 :-	*	3it 2 :- 3it 0 :-	

Main Equipment → EFEM

"@STAT~" + "0" + CS + CR : EFEM(Robot1)의 Status Reporting 요구

Main Equipment ← EFEM (EVENT 포함)

"\$STAT~" + "0" + "1" + "[XXXXXXXXXXXXXXX]" + CS + CR

: EFEM(Robot1) Status 정상적으로 Reporting

"\$STAT~" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

"\$STAT~" + "0" + "4" + "[XXXXXXXXXXXXXX]" + CS + CR

: EFEM(Robot1) Status 변화내역을 Event 로 Reporting

3.22 STAT~ (continue....)

(1) 5+1 Finger Type

Data Format (Port No.: "1"~"3")

1	Load Port 초기화 유무	0:미완료 1:완료	
2	Load Port Status	0:정지 1:동작 중	2:Pause 3:Error
3	FOUP 유무	0:무 1:유	2:Unknown
4	Door Status	0:Close 1:OPEN	2:Unknown
5	Clamp Status	0:Unclamp1:Clamp	
6	RFID Status	0:Ready 1:Readin 3:Writing 4:Write C	
7	AGV Status	0:Ready 1:Busy	3:Error
8	Load Port Enable	0:사용 안 함 1:사	용
9	RFID Enable	0:사용 안 함 1:사	용
10	Close Л Mapping Enable	0:사용 안 함 1:사	용
11	Online 시 Mode	0:Manual 1:AMHS	
12	Load Button Status	0:Off 1:On	
13	Unload Button Status	0:Off 1:On	
14	PIO Input (High Word)	Bit 7 = CONT Bit 6 = COMPT Bit 5 = BUSY Bit 4 = TR_REQ	1. 0 :Off 1:On 2. Hex 변환하여 Reply.
15	PIO Input (Low Word)	bit 3 = N.C bit 2 = CS_1 bit 1 = CS_0 bit 0 = VALID	(00~FF)
16	PIO Output High Word	bit 7 = ES bit 6 = HO_AVBL bit 5 = N.C bit 4 = N.C	1. 0 :Off 1:On
17	PIO Output Low Word	bit 3 = READY bit 2 = N.C bit 1 = U_REQ bit 0 = L_REQ	2. Hex 변환하여 Reply. (00~FF)
18	Reserve	0= Off , 1=On	

^{*}Load/Unload Button Status 는 해당 Button 이 입력될 때만 그 값이 반영됩니다.

Main Equipment → EFEM

"@STAT~" + "1" + CS + CR : Load Port1 의 Status Reporting 요구

Main Equipment ← EFEM (EVENT 포함)

"\$STAT~" + "1" + "1" + "[XXXXXXXXXXXXXXXXX]" + CS + CR

: Load Port1 Status 정상적으로 Reporting

"\$STAT~" + "1" + "3" + CS + CR : Command Bad Format or Check Sum

"\$STAT~" + "1" + "4" + "[XXXXXXXXXXXXXXXXX]" + CS + CR

: Load Port1 Status 변화내역을 Event 로 Reporting

3.23 TRSPP

기능

Robot Arm 의 Hand 가 Process Port 를 향해 뻗게 하는 동작(Extract) 또는 뻗은 Arm 를 다시 접는 동작(Retract)을 합니다.

이 명령은 Process Port 에 한해 이루어집니다.

Double Arm 일 경우 동시 access 는 불가합니다.

Arm 을 접을 때는 뻗은 Arm 이 하나이기 때문에 1st,2nd Arm 을 구분하지 않습니다.

(TRanSfer a wafer to Process Port)

Data Format (Arm 을 뻗을 때, Extract)

1. 1 st Arm Extract	2. 2 nd Arm Extract	3. 1 st /2 nd Arm Retract
Process Port "A"~"C"	Process Port "A"~"C"	0:상시

Data Format (Arm 을 접을 , Retract)

1. 1 st Arm Extract	2. 2 nd Arm Extract	3. 1 st /2 nd Arm Retract
0:상시	0:상시	1: Retract 동작

.* 사용하지 않는 Arm은 항상 "#"으로 처리하여야 합니다.

Main Equipment → EFEM

- "@TRSPP" + "0" +"[A#0]" + CS + CR
 - : Process Port A 로 Robot1 의 1st Arm Extract 를 요구
- "@TRSPP" + "0" +"[#A0]" + CS + CR
 - : Process Port A 로 Robot1 의 2nd Arm Extract 를 요구
- "@TRSPP" + "0" + "[001]" + CS + CR
 - : Process Port 로 Extract 되어 있는 Robot1 의 1st Arm 또는 2nd Arm 을 Retract 하 도록 요구

Main Equipment ← EFEM

- "\$TRSPP" + "0" + "1" + "[XXX]" + CS + CR
 - : Robot1 의 Arm Extract 또는 Retract 요구를 정상적으로 인지함.
- "\$TRSPP" + "0" + "2" + "XX" + CS + CR : Command Cancel
- "\$TRSPP" + "0" + "3" + CS + CR : Command Bad Format or Check Sum

3.24 AGVTM

기능

PIO Timeout value 를 설정합니다.

AMHS 와 PIO 통신이 진행되는 동안 해당 명령이 수신되면 Cancel 처리합니다. Timeout value 를 999 로 설정하면 해당 PIO 신호가 수신될 때까지 무한대기 상태가 됩니다.

Command String Format 의 Port No.는 "0"으로 고정됩니다.

Data Format

1:Timer 구분	2 3 4 : Time value (초)
1: TP1	
2: TP2	
3: TP3	001 000
4: TP4	001~999
5: TP5	
6: TP6	

- .* TP1: L_REQ(U_REQ) On ~ TR_REQ On.
- .* TP2: READY On ~ BUSY On.
- .* TP3: BUSY On ~ Carrier detect.(remove)
- .* TP4: L_REQ(U_REQ) Off ~ BUSY Off.
- .* TP5: READY Off ~ VALID Off.
- .* TP6: VALID Off ~ VALID On.(only continuous handoff)

Main Equipment → EFEM

- "@AGVTM" + "0" + "[1002]" + CS + CR : TP1 Timer 2 초로 설정 요구
- "@AGVTM" + "0" + "[3060]" + CS + CR : TP3 Timer 60 초로 설정 요구
- "@AGVTM" + "0" + "[6999]" + CS + CR : TP6 Timer 무한대기로 설정 요구

Main Equipment ← EFEM

- "\$AGVTM" + "0" + "1" + "[XXXX]" + CS + CR
- : PIO Timeout value 설정 요구를 정상적으로 인지함.
- "\$AGVTM" + "0" + "2" + "XX" + CS + CR : Command Cancel
- "\$AGVTM" + "0" + "3" + CS + CR : Command Bad Format or Check

3.25 TIMRD

기능

EFEM 에 설정되어 있는 PIO Timeout value 를 Reporting 합니다. 한번에 6개 구간을(TP1~TP6) 모두 Reporting 하며 구간과 구간은 "/"로 구분됩니다.

Command String Format 의 Port No.는 "0"으로 고정됩니다.

Data Format

1 2 3	567	9 10 11	13 14 15	17 18 19	21 22 23
TP1	TP2	TP3	TP4	TP5	TP6
(000~999)	(000~999)	(000~999)	(000~999)	(000~999)	(000~999)

^{.* 4,8,12,16,20} 번 자리는 "/"으로 채워집니다.

Main Equipment → EFEM

"@TIMRD" + "0" + CS + CR : PIO Timeout value Reporting 요구

Main Equipment ← EFEM

"\$TIMRD" + "0" + "1" + "[XXX/XXX/XXX/XXX/XXX]" + CS + CR

: PIO Timeout value 를 정상적으로 Reporting

"\$TIMRD" + "0" + "2" + "XX" + CS + CR : Command Cancel

"\$TIMRD" + "0" + "3" + CS + CR : Command Bad Format or Check

3.26 RESET

기능

PIO 통신과 관련하여 발생하는 Error 를 해제합니다.

Main Equipment → EFEM

```
"@RESET" + "1" + CS + CR : Load Port1 의 PIO Error 해제 요구 "@RESET" + "3" + CS + CR : Load Port3 의 PIO Error 해제 요구
```

Main Equipment ← EFEM

```
"$RESET" + "1" + "1" + CS + CR : Load Port1 PIO Error 해제 요구를 정상 인지함.
"$RESET" + "1" + "2" + "XX" + CS + CR : Command Cancel
```

"\$RESET" + "1" + "3" + CS + CR : Command Bad Format or Check

3.27 FFURD

기능

FFU 의 RPM, 기압차 Data, EFEM Side Door, Robot, FFU Status 를 Reporting 각 Data 는 "/"로 구분됩니다.

Command String Format 의 Port No.는 "0"으로 고정됩니다.

Data Format

1~4: RPM	15	6~9: 기압차	10		11 : Side Door	12	13: Robot		14	15: FFU	16	17: Maint Mode	18	19 ~ 21
0000 ~ 9999	/	0000~ 9999	/	1:	: Close : Open : Unknown	/	0: Normal 1: Alarm 2: Unknow	n	/	STAT~0 의 10 번째 Byte 에 해당되는 Data	/	0: Normal(Auto) 1: Alarm(Manual)	/	ELT Box Fan Status DNB Box Fan Status PWR Box Fan Status 0: Alarm 1: Normal
22		23		24	25									
/	Vacuum 0: Norm 1: Alarn			/	CDA Status 0: Normal 1: Alarm									

* RPM : [rpm] * 기압차 : [Pa] * FFU Status

EELL OLE IV. (U. T. II)	Bit 3:- Not use , Bit 2:- Door close
FFU Status (Hex 표시)	Bit 1 :- 차압 Fail , Bit 0 :- RPM Fail

Bit 0 ~ 3 까지는 Normal 0 Status (정상)

Main Equipment → EFEM

"@FFURD" + "0" + CS + CR : FFU 의 RPM 및 기압차, Side Door, Robot, FFU Status Data Reporting 을 요구

Main Equipment ← EFEM

"\$FFURD" + "0" + "1" + "[XXXX/XXXX]" + CS + CR

: FFU 의 RPM 및 기압차 Data, Side Door, Robot, FFU Data 를 정상적으로 Reporting

"\$FFURD" + "0" + "2" + "XX" + CS + CR : Command Cancel

"\$FFURD" + "0" + "3" + CS + CR : Command Bad Format or Check

3.28 **N2STS**

기능

Load port N2 Purge 상태를 확인 합니다. 각 Data 는 "/"로 구분됩니다.

Data Format

1	Time	0: Pre, 1: Process, 2: Post, 3: Temporary Pre, 4: PostPost, 5: Nozzle Blow, 6: Other
2	Nozzle1(In) Flow(L/min)	-9999.99 ~ 9999.99
3	Nozzle2(In) Flow(L/min)	-9999.99 ~ 9999.99
4	Nozzle3(In) Flow(L/min)	-9999.99 ~ 9999.99
5	Nozzle1(In) Pressure(kpa)	-9999.99 ~ 9999.99
6	Nozzle2(In) Pressure(kpa)	-9999.99 ~ 9999.99
7	Nozzle3(In) Pressure(kpa)	-9999.99 ~ 9999.99
8	Nozzle4(Out) Pressure(kpa)	-9999.99 ~ 9999.99
9	Oxygen Density(%)	0 ~ 100
10	Cassette Type	0: Unknown, 1: 2 Nozzle Cassette, 2: 4 Nozzle Cassette

Main Equipment → EFEM

- "@N2STS" + "1" + CS + CR : Load Port1 의 N2 Purge Status Reporting 요구
- "@N2STS" + "*" + CS + CR: Load Port1~3 의 N2 Purge Status Reporting 요구

Main Equipment ← EFEM

- "\$N2STS" + "1" + "1" + "[X/XXX/XXX/XXX/XXX/XXX/XXX/XXX/XXX/XX]" + CS + CR
- : N2 Purge 현재 시점과 Flow, Pressure 상태를 정상적으로 Reporting
- : Load Port1~3 N2 Purge Status 정상적으로 Reporting
- "\$N2STS" + "1" + "2" + "XX"+ CS + CR : Command Cancel
- "\$N2STS" + "1" + "3" + CS + CR : Command Bad Format or Check

3.29 **N2RUN**

기능

Valve/MFC Purge Type 에 따라 Load port 의 N2 Purge 동작을 제어합니다. 각 Data 는 "/"로 구분됩니다.

Data Format

1	Run		0: Stop, 1: Start				
2	Nozzle1	Valve	0 ~ 3				
	NOZZIE I	MFC(sccm)	0 ~ 100				
3	Nozzle2	Valve	0 ~ 3				
3	NOZZIEZ	MFC(sccm)	0 ~ 100				
4	Nozzle3	Valve	0 ~ 3				
4	NOZZIES	MFC(sccm)	N/A				
5	Exhaust Nozz	le	0: Off, 1: On				
6	Delay Time(se	ec)	0 ~ 300				

※ Valve Type 의 경우 Data Parameter

	Nozzle:	L(Front)	Nozzle2	2(Rear1)	Nozzle3(Rear2)		
	Valve1 Valve2		Valve3	Valve4	Valve5	Valve6	
0	OFF	OFF	OFF	OFF	OFF	OFF	
1	ON	OFF	ON	OFF	ON	OFF	
2	OFF	ON	OFF	ON	OFF	ON	
3	ON	ON	ON	ON	ON	ON	

Main Equipment → EFEM

"@N2RUN"+ "1"+ [1/XXX/XXX/XXXX/XXXX] + CS + CR : Load Port1 의 N2 Purge Start "@N2RUN"+ "1"+ [0] + CS + CR : Load Port1 의 N2 Purge Stop

Main Equipment ← EFEM

"\$N2RUN"+ "1" + "1" + CS + CR : Load Port1 의 N2 Purge Start/Stop 명령 정상 인지

"\$N2RUN"+ "1" + "2" + "XX" + CS + CR : Command Cancel

"\$N2RUN"+ "1" + "3" + CS + CR : Command Bad Format or Check

3.30 ALTXT

기능

발생한 Alarm 에 대한 부가 정보를 문자열로 받아온다

Main Equipment → EFEM

"@ALTXT" + "1" + CS + CR : Load Port1 에서 발생된 Alarm 의 부가 정보 요구 "@ALTXT" + "3" + CS + CR : Load Port3 에서 발생된 Alarm 의 부가 정보 요구

Main Equipment ← EFEM

"\$ALTXT" + "1" + "1" + "[TP1, BUSY]" + CS + CR: Load Port1 의 Alarm 에 대한 부가 정보 "\$ALTXT" + "1" + "2" + "XX" + CS + CR: Command Cancel "\$ALTXT" + "1" + "3" + CS + CR: Command Bad Format or Check

4. Command Sequence

4.1 Pickup or Place

1) Pickup

.Format : @TRANS + 0 + [101000######] + CS + CR .동 작 : Load Port1 의 01 번 slot 의 Wafer 를 1st Arm 의 Hand 위로 Pickup 한다.

2) Place

.Format : @TRANS + 0 + [000101######] + CS + CR .동 작 : 1st Arm 의 Hand 위의 Wafer 를 Load Port1 의 01 번 slot 으로 Place 한다.

3) Single Pickup & Place

.Format : @TRANS + 0 + [101A01#####] + CS + CR .동 작 : 1st Arm 을 이용하여 Load Port1 의 01 번 slot Wafer 를 Process Port1 의 01 번 slot 으로 transfer 한다.

4) Double Pickup & Place

.Format : @TRANS + 0 + [101A01102B01] + CS + CR

.동 작 : 1st Arm 으로 Load Port1 의 01 번 slot Wafer 를 Process Port1 의 01 번 slot 으로 transfer 하고 2nd Arm 으로 Load Port1 의 02 번 slot Wafer 를 Process Port2 의 01 번 slot 으로 transfer 한다.

4.2 Pause, Resume and Abort

1) Pause and Resume

.Format : @PAUSE + 0 + CS + CR and @RESUM + 0 + CS + CR .동 작 : Robot Run state 에서 Robot 을 일시정지 시킨 후 일시정지해제와 함께 Robot Run 을 재개한다.

2) Pause and Abort

.Format : @PAUSE + 0 + CS + CR and @ABORT + 0 + CS + CR .동 작 : Robot Run state 에서 Robot 을 일시정지 시킨 후 일시정지해제와 함께 Robot Run 을 중지시킨다.

4.3 Error occurrence

.Format: @INIT~ + 0 + CS + CR

.동 작 : Robot 또는 Load Port, Aligner 등 EFEM 의 각 Module 에서 발생한 error 를 clear 하고 초기화한다.

4.4 Carrier Load and Unload

1) Carrier Clamp

.Format: @CLAMP + 1 + CS + CR

.동 작: Load Port1 위의 Carrier 를 clamp 한다.

2) Carrier Unclamp

.Format: @UCLAM + 1 + CS + CR

.동 작: Load Port1 위의 Carrier 를 unclamp 한다.

3) Carrier Loading

.Format: @LOADL + 1 + CS + CR

.동 작: Load Port1 위의 Carrier 를 clamp, docking, door open, wafer mapping 작업까지 순차적으로 행한다.

Load Sequence

4) Carrier Unloading

.Format: @UNLDL + 1 + CS + CR

.동 작 : Load Port1 에 docking 되어 Door open 되어 있는 Carrier 를 Door close 하고 undocking 작업까지 순차적으로 행한다.

Unload Sequence

5) Error occurrence when carrier load

.Format: @INIT~ + 1 + CS + CR

.동 작: Carrier Load 중 발생한 Load Port1 의 error 를 clear 하고 초기화한다.

4.5 MODE change

1) Change the mode to Manual

.Format : @MODE~ + 1 + [00XXX00] + CS + CR .동 작 : Load Port1 을 Manual Mode 로 전환한다.

2) Change the mode to AMHS

.Format : @MODE~ + 1 + [10XXX00] + CS + CR .동 작 : Load Port1 을 AMHS Mode 로 전환한다.

3) Change the mode to Manual in PIO communicating

.Format : @MODE~ + 1 + [00XXX00] + CS + CR .동 작 : PIO 통신중인 Load Port1 을 Manual Mode 로 전환한다.

4.6 Load and Unload in Manual mode

1) Load in Manual mode

Operator 에 의해 Load Port 에 Carrier 가 Load 되는 과정에서 EFEM 의 상태변화를 보여준다.만약, RFID 가 enable 되어 있다면 Carrier 가 clamp 가 되는 순간 MID 영역을 read 한다. 요구가 있기 전까지 Process Main 으로 reporting 하지는 않는다.

2) Unload in Manual mode

Unload 대기중인 Load Port 위의 Carrier 를 Operator 에 의해 제거되는 과정에서 EFEM 의 상태변화를 보여준다.

5. Button Sequence

5.1 Load scenario in Online mode

1) AMHS mode (by AMHS)

78	Dunning	Lamp	state	Domonik
구분	Running	Load	Unload	Remark
PIO	PIO Communicating	On	Off	When carrier is detected.
Clamp	Automatically Clamp.	Blink	Off	Do make a clamp that after COMPT signal On.
RFID	RFID Reading	Blink	Off	RFID Reading 완료 후 Unload Button 사용가능
	Load Command receive			
Move	Carrier docking, Door open	Blink	Off	Lot cancel 가능
	and Mapping.			
Process	Job start	Off	Off	Lot cancel 가능

2) AMHS mode (by Operator)

78	Quanina	Lamp	state	Domark
구분	Running	Load	Unload	Remark
Load	Operator load a carrier.→ Alarm Occurrence.	On	Off	When carrier is detected.
Clamp	Alarm Clear. → Operator push Load Button.	Blink	Off	
RFID	RFID Reading	Blink	Off	RFID Reading 완료 후 Unload Button 사용가능
Move	Load Command receive Carrier docking, Door open and Mapping.	Blink	Off	Lot cancel 가능
Process	Job start	Off	Off	Lot cancel 가능

3) Manual mode

78	Dunning	Lamp	state	Domark
구분 	Running	Load	Unload	Remark
Load	Operator load a carrier.	On	Off	When carrier is detected.
Clamp	Operator push Load Button.	Blink	Off	
RFID	RFID Reading	Blink	Off	RFID Reading 완료 후 Unload Button 사용가능
Move	Load Command receive Carrier docking, Door open and Mapping.	Blink	Off	Lot cancel 가능
Process	Job start	Off	Off	Lot cancel 가능

5.2 Unload scenario in Online mode

1) AMHS mode (by AMHS)

구분	Running	Lamp state		Domork
		Load	Unload	Remark
Process	Job complete	Off	Off	
Move	Unload Command received Carrier Door Close and Undocking.	Off	Blink	
	PIO Communicating	Off	Blink	
PIO	Unclamp	Off	On	Do make a unclamp that after READY signal Off.
	PIO Communication complete.	Off	On	
Ready	_	On	Off	Carrier is removed.

2) AMHS mode (by Operator)

구분	Running	Lamp state		Domorte
		Load	Unload	Remark
Process	Job complete	Off	Off	
Move	Unload Command received Carrier Door Close and Undocking.	Off	Blink	
Clamp	Operator push Unload Button.	Off	Blink	
Unload & Ready	Operator unload a carrier.→ Alarm Occurrence. → Alarm Clear and Ready.	On	Off	Carrier is removed.

3) Manual mode

구분	Running	Lamp state		Domosti
		Load	Unload	Remark
Process	Job complete	Off	Off	
Move	Unload Command received Carrier Door Close and Undocking.	Off	Blink	
Clamp	Operator push Unload Button.	Off	Blink	
Unload & Ready	Operator unload a carrier.→ Ready.	On	Off	Carrier is removed.

6. Error(Alarm) Code 6.1 Error(Alarm) Code 의 정의

[12345]

Alarm Code 는 5Byte 로 구성되며, Alarm Message 전송요구가 없어도 Error 가 발생하면 Event 로 보고됩니다.

1 : Error 시작기호. ("#")

2345 : Error Code.

※ Redefined Alarm - Rev1.xls 참조

7. Cancel Code

7.1 Cancel Code 의 정의(NAK)

Cancel Code 는 2Byte 로 구성됩니다.

Cancel Code	Error Message	Description
01	원점 미완료(Initial 미완료)	
02	Reserved	Check sum[NAK]
03	Reserved	Bad command[NAK]
04	지정된 Arm 은 없음.	
05	Error 발생 중.	
06	PAUSE 상태임.	
07	PAUSE 상태가 아님.	
08	Running 상태임.	
09	Running 상태가 아님.	
0A	Upper Blade 에 Wafer가 있음.	
0B	Upper Blade 에 Wafer가 없음.	
0C	Lower Blade 에 Wafer 가 있음.	
0D	Lower Blade 에 Wafer가 없음.	
0E	지정된 Slot 에 Wafer 가 있음.	
0F	지정된 Slot 에 Wafer 가 없음.	
10	Robot Arm Extend	
11	Port Disable Mode.	
12	Port Door Closed.	
13	지정된 Port에 FOUP이 없음.	
14	Mapping 미완료 상태임.	
15	Position 이상	
16	Port Error 발생 중	
17	지정된 Port 는 RFID를 사용하지 않음.	
18	RFID 에 Error 발생 중	
19	지정한 Page 는 RFID 에 존재하지 않음.	
1A	RFID 에 지정한 Page 를 Write 할 수 없음.	
1B	RFID Reading	
1C	AMHS Busy	
1D	Port 초기화 미완료	
1E	Port Running 상태 임	
FF	기타	