ABS-Normal Form Eine Implementierung mit CUDA

Matthias Mitterreiter

Seminar Parallel Computing - FSU Jena Prof. Martin Bücker, Dr. Torsten Bosse, Dipl-Inf. Ralf Seidler

June 30, 2017

- 1. ABS-NF Einführung
- 2. Aufgabenbeschreibung
- 3. Evaluate
- 4. Gradient
- 5. Blocksize and Gridsize
- 6. Solve
- 7. Final Thoughts

Einführung ABS-NF

- 1. Einführung
- 2. Aufgaben
- 3. Evaluate
- 4. Gradient
- 5. Blocksize und Gridsize
- 6. Solve
- 7. Final Thoughts

Ausgangspunkt:

- Picewise smooth functions
- Picewise linear function

Ausgangspunkt:

- Picewise smooth functions
- Picewise linear function

- Repräsentierung für Picewise linear functions (PL)
- Wird zur Approximierung von picewise smooth functions verwendet

$$\begin{pmatrix} \Delta z \\ \Delta y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} Z & L \\ J & Y \end{pmatrix} \times \begin{pmatrix} \Delta x \\ |\Delta z| \end{pmatrix}$$

Erzeugung der ABS-NF:

• (Theorem) Jede PL kann mithilfe von *min* und *max* ausgedrückt werden.

Erzeugung der ABS-NF:

- (Theorem) Jede PL kann mithilfe von *min* und *max* ausgedrückt werden.
- (Theorem) Jeder min max Ausdruck kann mit abs repäsentiert werden.

Erzeugung der ABS-NF:

- (Theorem) Jede PL kann mithilfe von *min* und *max* ausgedrückt werden.
- (Theorem) Jeder min max Ausdruck kann mit abs repäsentiert werden.
- Picewise linearization" wird durch algorithmisches Differenzieren erreicht.

$$F(x_1, x_2) = (x_2^2 - x_1^+)^+ \qquad F: \mathbb{R}^2 \to \mathbb{R}$$

 $(i)^+ = \max(0, i)$

Nach der Transformation:

$$\begin{pmatrix} \Delta Z_1 \\ \Delta Z_2 \\ \Delta Y \end{pmatrix} = \begin{pmatrix} w_1 \\ w_7 - \frac{1}{2}|w_1| \\ \frac{1}{4}|w_1| - \frac{1}{2}|w_7| \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ -\frac{1}{4} & w_2 & -\frac{1}{4} & \frac{1}{2} \end{pmatrix} \times \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \\ |\Delta Z_1| \\ |\Delta Z_2| \end{pmatrix}$$

$$\begin{pmatrix} \Delta z \\ \Delta y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} Z & L \\ J & Y \end{pmatrix} \times \begin{pmatrix} \Delta x \\ |\Delta z| \end{pmatrix}$$

Aufgaben

- 1. Einführung
- 2. Aufgaben
- 3. Evaluate
- 4. Gradient
- 5. Blocksize und Gridsize
- 6. Solve
- 7. Final Thoughts

$$\begin{pmatrix} \Delta z \\ \Delta y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} Z & L \\ J & Y \end{pmatrix} \times \begin{pmatrix} \Delta x \\ |\Delta z| \end{pmatrix}$$

Aufgaben:

- Evaluate abs normal form:
 - Geg: a, b, Z, L, J, Y, Δx
 - Ges: Δz , Δy

$$\begin{pmatrix} \Delta z \\ \Delta y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} Z & L \\ J & Y \end{pmatrix} \times \begin{pmatrix} \Delta x \\ |\Delta z| \end{pmatrix}$$

Aufgaben:

- Evaluate abs normal form:
 - Geg: a, b, Z, L, J, Y, Δx
 - Ges: Δz, Δy
- Calculate Gradient
 - Geg: a, b, Z, L, J, Y, ∆Z
 - Ges: Gradient γ, Γ

$$\begin{pmatrix} \Delta z \\ \Delta y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} Z & L \\ J & Y \end{pmatrix} \times \begin{pmatrix} \Delta x \\ |\Delta z| \end{pmatrix}$$

Aufgaben:

- Evaluate abs normal form:
 - Geg: $a, b, Z, L, J, Y, \Delta x$
 - Ges: Δz, Δy
- Calculate Gradient
 - Geg: a, b, Z, L, J, Y, ΔZ
 - Ges: Gradient γ , Γ
- Solve abs-normal form
 - Geg: a, b, Z, L, J, Y, Δy
 - Ges: Δx , ΔZ

Programmiersprachen

- Python 3.5: Prototyping und Serial Performance benchmarks
- Cuda C++: Implementierung der paralleln ABS-NF Aufgaben

Annahmen:

- Global memory der GPU ist groß genug um alle benötigten Datenstrukturen zeitgleich zu halten
- 2. Daten werden vektorisiert übergeben
- 3. Sofern möglich mappe alle Problem auf existierende Librariers

Benutzte Libraries:

- cuBLAS (cuda Basic Linear Algebra Subprograms)
 - Matrix Vector operations
 - Matrix Matrix operations
- cuSOLVER
 - Matrix factorization
 - Triangular solve
- C++ STL

```
1 #include <cublas_v2.h>
2 #include <cusolverDn.h>
```

```
1 nvcc -std=c++11 x.cu -lcublas -lcusolver -o x
```


Evaluate

- 1. Einführung
- 2. Aufgaben
- 3. Evaluate
- 4. Gradient
- 5. Blocksize und Gridsize
- 6. Solve
- 7. Final Thoughts

$$\begin{pmatrix} \Delta z \\ \Delta y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} Z & L \\ J & Y \end{pmatrix} \times \begin{pmatrix} \Delta x \\ |\Delta z| \end{pmatrix}$$

Gegeben:

$$a, b, Z, L, J, Y, m, n, s, \Delta x$$

Gesucht:

$$\Delta z, \Delta y$$

$$\begin{pmatrix} \Delta z \\ \Delta y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} Z & L \\ J & Y \end{pmatrix} \times \begin{pmatrix} \Delta x \\ |\Delta z| \end{pmatrix}$$

Gegeben:

$$a, b, Z, L, J, Y, m, n, s, \Delta x$$

Gesucht:

$$\Delta z, \Delta y$$

$$\Delta y = b + (J \times \Delta x) + (Y \times |\Delta z|)$$

$$\Delta z = a + (J \times \Delta x) + (L \times |\Delta z|)$$

$$\begin{pmatrix} \Delta z \\ \Delta y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} Z & L \\ J & Y \end{pmatrix} \times \begin{pmatrix} \Delta x \\ |\Delta z| \end{pmatrix}$$

Gegeben:

$$a, b, Z, L, J, Y, m, n, s, \Delta x$$

Gesucht:

$$\Delta z, \Delta y$$

$$\Delta y = b + (J \times \Delta x) + (Y \times |\Delta z|)$$

$$\Delta z = a + (J \times \Delta x) + (L \times |\Delta z|)$$

Problem:

$$\Delta z = a + (J \times \Delta x) + (L \times |\Delta z|)$$

$$\begin{pmatrix} \Delta z_1 \\ \Delta z_2 \\ \Delta z_3 \\ \Delta z_4 \end{pmatrix} = \begin{pmatrix} k_1 \\ k_2 \\ k_3 \\ k_4 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 \\ L_{2,1} & 0 & 0 & 0 \\ L_{3,1} & L_{3,2} & 0 & 0 \\ L_{4,1} & L_{4,2} & L_{4,3} & 0 \end{pmatrix} \times \begin{pmatrix} |\Delta z_1| \\ |\Delta z_2| \\ |\Delta z_3| \\ |\Delta z_4| \end{pmatrix}$$

$$k = a + Z \times \Delta x$$

$$\Delta z_1 = \underbrace{L_1 \times |\Delta z|}_{=0} + k_1 = k_1$$

$$\begin{pmatrix} \Delta z_1 \\ \Delta z_2 \\ \Delta z_3 \\ \Delta z_4 \end{pmatrix} = \begin{pmatrix} k_1 \\ k_2 \\ k_3 \\ k_4 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 \\ L_{2,1} & 0 & 0 & 0 \\ L_{3,1} & L_{3,2} & 0 & 0 \\ L_{4,1} & L_{4,2} & L_{4,3} & 0 \end{pmatrix} \times \begin{pmatrix} |\Delta z_1| \\ |\Delta z_2| \\ |\Delta z_3| \\ |\Delta z_4| \end{pmatrix}$$

$$k = a + Z \times \Delta x$$

$$\Delta z_1 = \underbrace{L_1 \times |\Delta z|}_{=0} + k_1 = k_1$$

$$\Delta z_2 = L_2 \times |\Delta z| + k_2$$
$$= L_{2,1} \times |\Delta z_1| + k_2$$

$$\begin{pmatrix} \Delta z_1 \\ \Delta z_2 \\ \Delta z_3 \\ \Delta z_4 \end{pmatrix} = \begin{pmatrix} k_1 \\ k_2 \\ k_3 \\ k_4 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 \\ L_{2,1} & 0 & 0 & 0 \\ L_{3,1} & L_{3,2} & 0 & 0 \\ L_{4,1} & L_{4,2} & L_{4,3} & 0 \end{pmatrix} \times \begin{pmatrix} |\Delta z_1| \\ |\Delta z_2| \\ |\Delta z_3| \\ |\Delta z_4| \end{pmatrix}$$

$$k = a + Z \times \Delta x$$

$$\Delta z_1 = \underbrace{L_1 \times |\Delta z|}_{=0} + k_1 = k_1$$

$$\Delta z_2 = L_2 \times |\Delta z| + k_2$$

$$= L_{2,1} \times |\Delta z_1| + k_2$$

$$\Delta z_3 = L_3 \times |\Delta z| + k_3$$

$$= L_{3,1} \times |\Delta z_1| + L_{3,2} \times |\Delta z_2| + k_3$$

$$\begin{pmatrix} \Delta z_1 \\ \Delta z_2 \\ \Delta z_3 \\ \Delta z_4 \end{pmatrix} = \begin{pmatrix} k_1 \\ k_2 \\ k_3 \\ k_4 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 \\ L_{2,1} & 0 & 0 & 0 \\ L_{3,1} & L_{3,2} & 0 & 0 \\ L_{4,1} & L_{4,2} & L_{4,3} & 0 \end{pmatrix} \times \begin{pmatrix} |\Delta z_1| \\ |\Delta z_2| \\ |\Delta z_3| \\ |\Delta z_4| \end{pmatrix}$$

$$k = a + Z \times \Delta x$$

$$\Delta z_1 = \underbrace{L_1 \times |\Delta z|}_{=0} + k_1 = k_1$$

$$\Delta z_2 = L_2 \times |\Delta z| + k_2$$

$$= L_{2,1} \times |\Delta z_1| + k_2$$

$$\Delta z_3 = L_3 \times |\Delta z| + k_3$$

$$= L_{3,1} \times |\Delta z_1| + L_{3,2} \times |\Delta z_2| + k_3$$

$$\Delta z_4 = L_4 \times |\Delta z| + k_4$$

$$= L_{4,1} \times |\Delta z_1| + L_{4,2} \times |\Delta z_2| + L_{4,3} \times |\Delta z_3| + k_4$$

```
1
     template <tvpename T>
     void eval(T *a. T *b.
 2
3
           T *Z, T *L,
4
           T *J, T *Y,
5
           T *dx.
6
           int m, int n, int s,
7
           T *dz, T *dv,
8
           T *abs dz)
9
    {
10
         // dz = a
11
         cudaMemcpv(dz, a, ... cudaMemcpvDeviceToDevice));
12
         // dz = Z * dx + dx
13
         cublasDgemv(.,Z, ., dx, . dz, .)
14
         // dz[i] = L[i]_i * |dz|_i
15
         for(int i=0: i<s: i++)
16
17
           cublasDgemv( . ,&L[i * s], . ,abs_dz, . , &dz[i],.);
           abs <<<1,1>>>(&dz[i], &abs_dz[i], 1);
18
19
         }
20
         // dv = b
21
         cudaMemcpy(dy, b, ., cudaMemcpyDeviceToDevice);
         // dv = dv + J*dx
22
23
         cublasDgemv(.,J, ., dx, ., dv, .));
         // dv = dv + Y * |dz|
24
         cublasDgemv(., Y, ., abs_dz, ., dy, .));
25
26
```


Speicherkomplexität:

$$(s^2 + (3 + m + n) * s + (m + 2)m + n) * sizeof(T)$$

Speicherkomplexität:

$$(s^2 + (3 + m + n) * s + (m + 2)m + n) * sizeof(T)$$

Seien

- m = 1000, n = 1000, s = 1000
- ullet Datatype: double pprox 8 bytes
- 32.048.000 Bytes $\approx 0.032048 GB$

Speicherkomplexität:

$$(s^2 + (3 + m + n) * s + (m + 2)m + n) * sizeof(T)$$

Seien

- m = 1000, n = 1000, s = 1000
- Datatype: $double \approx 8bytes$
- \bullet 32.048.000 Bytes \approx 0.032048 GB

Seien

- m = 1000, n = 1000, s = 100.000
- Datatype: double ≈ 8bytes
- 81.610.424.000 Bytes \approx 81.610*GB*

Komplexität:

Funktion	Komplexität Seriell	Komplexität Parallel
cudaMemcpy(dz, a)	S	s/p
cublasDgemv(Z, dx, dz)	s * n	(s*n)/p
cublasDgemv(L, dz)	s * s	(s*s)/p
cublasMemcpy(dy,b)	m	m/p
cublasDgemv(J, dx, dy)	m * n	(m*n)/p
cublasDgemv(Y, dz , dy)	m * s	(m*s)/p

Komplexität:

Funktion	Komplexität Seriell	Komplexität Parallel
cudaMemcpy(dz, a)	S	s/p
cublasDgemv(Z, dx, dz)	s * n	(s*n)/p
cublasDgemv(L, dz)	s * s	(s*s)/p
cublasMemcpy(dy, b)	m	m/p
cublasDgemv(J, dx, dy)	m * n	(m*n)/p
cublasDgemv(Y, dz , dy)	m * s	(m*s)/p

Der Rechenaufwand steigt im selben Maße wie der Speicheraufwand !

Komplexität:

Funktion	Komplexität Seriell	Komplexität Parallel
cudaMemcpy(dz, a)	S	s/p
cublasDgemv(Z, dx, dz)	s * n	(s*n)/p
cublasDgemv(L, dz)	s * s	(s*s)/p
cublasMemcpy(dy, b)	m	m/p
cublasDgemv(J, dx, dy)	m * n	(m*n)/p
cublasDgemv(Y, dz , dy)	m * s	(m*s)/p

Der Rechenaufwand steigt im selben Maße wie der Speicheraufwand!

Vermutung, parallelisieren bringt hier nicht viel!

Eval Single Repetition - Serial and Parallel Implementation

Eval 1000 Repetitions - Serial and Parallel Implementation

Gradient

- 1. Einführung
- 2. Aufgaben
- 3. Evaluate
- 4. Gradient
- 5. Blocksize und Gridsize
- 6. Solve
- 7. Final Thoughts

$$\begin{pmatrix} \Delta z \\ \Delta y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} Z & L \\ J & Y \end{pmatrix} \times \begin{pmatrix} \Delta x \\ |\Delta z| \end{pmatrix}$$

Gegeben:

$$a, b, Z, L, J, Y, m, n, s, \Delta Z$$

Gesucht:

$$\gamma, \Gamma$$

Wobei:

$$\gamma = b + Y\Sigma(I - L\Sigma)^{-1}a$$

$$\Gamma = J + Y\Sigma(I - L\Sigma)^{-1}Z$$

$$\Sigma = Diag(Sign(\Delta z))$$

Brauchen:

$$\Sigma (I - L\Sigma)^{-1}$$

$$\Sigma = \textit{Diag}(\textit{Sign}(\Delta z))$$

Fallstricken:

Brauchen:

$$\Sigma (I - L\Sigma)^{-1}$$

$$\Sigma = \textit{Diag}(\textit{Sign}(\Delta z))$$

Fallstricken:

 \bullet Sparse Matrix Σ

Brauchen:

$$\Sigma (I - L\Sigma)^{-1}$$

$$\Sigma = \textit{Diag}(\textit{Sign}(\Delta z))$$

Fallstricken:

- \bullet Sparse Matrix Σ
- ullet Inverse $(I-L\Sigma)^{-1}$

Sei:

$$\Delta z = [-3,0,4,-1]$$

Dann gilt für $I - L\Sigma$:

$$I - \begin{pmatrix} 0 & 0 & 0 & 0 \\ L_{2,1} & 0 & 0 & 0 \\ L_{3,1} & L_{3,2} & 0 & 0 \\ L_{4,1} & L_{4,2} & L_{4,3} & 0 \end{pmatrix} \times \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -L_{2,1} & 1 & 0 & 0 \\ -L_{3,1} & 0 & 1 & 0 \\ -L_{4,1} & 0 & 0 & 1 \end{pmatrix}$$

Sei:

$$\Delta z = [-3,0,4,-1]$$

Dann gilt für $I - L\Sigma$:

$$I - \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ L_{2,1} & 0 & 0 & 0 \\ L_{3,1} & L_{3,2} & 0 & 0 \\ L_{4,1} & L_{4,2} & L_{4,3} & 0 \end{array}\right) \times \left(\begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right) = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ -L_{2,1} & 1 & 0 & 0 \\ -L_{3,1} & 0 & 1 & 0 \\ -L_{4,1} & 0 & 0 & 1 \end{array}\right)$$

Das entspricht den folgenden Operationen:

- Hinzufügen einer Hauptdiagonalen
- ullet Skalieren der Spalten von L mit den Vorzeichen von Δz

Sei:

$$\Delta z = [-3,0,4,-1]$$

Dann gilt für $I - L\Sigma$:

$$I - \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ L_{2,1} & 0 & 0 & 0 \\ L_{3,1} & L_{3,2} & 0 & 0 \\ L_{4,1} & L_{4,2} & L_{4,3} & 0 \end{array}\right) \times \left(\begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right) = \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ -L_{2,1} & 1 & 0 & 0 \\ -L_{3,1} & 0 & 1 & 0 \\ -L_{4,1} & 0 & 0 & 1 \end{array}\right)$$

Das entspricht den folgenden Operationen:

- Hinzufügen einer Hauptdiagonalen
- ullet Skalieren der Spalten von L mit den Vorzeichen von Δz

Kann als lineare Operation implementiert werden. Das Auflösen der unteren Dreiecksmatrix $(I-L\Sigma)^{-1}$ übernimmt CUBLAS.

```
1
     template <typename T>
 2
     void gradient (T *a, T *b,
 3
             T *Z, T *L,
             T *J, T *Y,
4
             T *dz,
5
6
             T *Tss. T *I. T *K.
7
             int m, int n, int s,
8
             int gridsize, int blocksize,
9
             T *gamma, T *Gamma)
10
       // d_Tss = diag(1) - L * diag(sign(dz))
       initTss <<<gridsize, blocksize >>>(d_Tss,d_L, d_dz, s, s*s);
11
       // d I = diag(1) // room for improvement, operations can be merged
12
       initIdentity <<<gridsize, blocksize >>> (d_I, s);
13
       // d T = d Tss * X
14
       getTriangularInverse(handle, d_Tss, d_I, s);
15
16
       // d_I = d_I * diag(sign(dz))
17
       multWithDz <<<gridsize, blocksize >>>(d_I, d_dz, s);
      // d_K = d_Y * d_I
18
19
       cublasDgemm(..d Y...d I.d K.)):
20
       // d gamma = d b
       // d_Gamma = J
21
22
       cudaMemcpv(d gamma, d b..):
23
       cudaMemcpy(d_Gamma, d_J,.);
24
       // d_gamma = d_gamma + K*a
25
       cublasDgemv(.,d_K,., d_a,., d_gamma,.);
26
       // d Gamma = d Gamma + K*Z
27
       cublasDgemm(.,d_K,d_Z,d_Gamma,m));
28
```


Speicherkomplexität:

Bei m = n = s:

$$8s^2 + 4s \times sizeof(type)$$

- m = n = s = 1000 : 0.064 GB
- m = n = s = 5000 : 1.6 GB
- m = n = s = 10.000 : 6.40 GB

Komplexität (m = n = s):

Funktion	Komplexität Seriell
initTss()	s^2
initIdentity()	s^2
getTriangularInverse()	s^2 (backsubstitution)
multWithDz()	s^2
cublasDgemm()	<i>s</i> ³
cublasDgemv()	s^2
cudaMemcpy()	s

Lässt sich alles gut parallelisieren.

Gradient Single Execution - Serial vs Parallel

Gradient 100 Executions - Serial vs Parallel

Blocksize und Gridsize?

- 1. Einführung
- 2. Aufgaben
- 3. Evaluate
- 4. Gradient
- 5. Blocksize und Gridsize
- 6. Solve
- 7. Final Thoughts

Wie sollen gridsize and blocksize gewählt werden?

Generischen Ansatz

- Generischen Ansatz
- Starte mit blocksize and gridsize in abh. von device spec.

- Generischen Ansatz
- Starte mit blocksize and gridsize in abh. von device spec.
- threads berechnen, welche Aufgaben sie abarbeiten sollen

- Generischen Ansatz
- Starte mit blocksize and gridsize in abh. von device spec.
- threads berechnen, welche Aufgaben sie abarbeiten sollen
- über die optimalen Parameter kann optimiert werden.

Choosing Gridsize and Blocksize Beispiel

Zu Implementierende Operation:

$$A = A \times Diag(Sign(dz))$$

Zu Implementierende Operation:

$$A = A \times Diag(Sign(dz))$$

Beispiel:

$$A \in \mathbb{R}^{3 \times 3}, dz \in \mathbb{R}^2$$

$$dz=(-j,0,k)$$

$$\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} \times \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -a & 0 & g \\ -b & 0 & h \\ -c & 0 & i \end{pmatrix}$$

Choosing Gridsize and Blocksize Beispiel


```
template <typename T>
1
2
     void __global__ multWithDz(T *A, T *dz, int s){
       int i = threadIdx.x;
4
       int j = blockIdx.x;
5
6
       int id = i*s + j;
       while(id < s*s && j < s){
7
         if(i<s){
8
           if(A[id] != T(0))
9
             A[id] = A[id] * cuutils::sign(&dz[j]);
10
           i+=blockDim.x:
11
         }
12
         else{
13
          i = i%s;
14
           j = j + gridDim.x;
15
16
         id = i*s + j;
17
18
```

choosing the blocksize

choosing the gridsize

choosing blocksize and gridsize

1750

1500

1250

- 1000

- 750

- 500

- 250

Solve

- 1. Einführung
- 2. Aufgaben
- 3. Evaluate
- 4. Gradient
- 5. Blocksize und Gridsize
- 6. Solve
- 7. Final Thoughts

Gegben:

$$a, b, Z, L, J, Y, \Delta y$$

Gesucht:

$$\Delta x, \Delta z$$

$$\begin{pmatrix} \Delta z \\ \Delta y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} Z & L \\ J & Y \end{pmatrix} \times \begin{pmatrix} \Delta x \\ |\Delta z| \end{pmatrix}$$

$$\Delta z = a + Z\Delta x + L|\Delta z|$$

$$\Delta y = b + J\Delta x + Y|\Delta z|$$

Ausgangslage:

$$\Delta y = 0$$

Andernfalls

$$b' = b - \Delta y$$

$$\Delta z = a + Z\Delta x + L|\Delta z|$$
$$\Delta y = b + J\Delta x + Y|\Delta z|$$

Ausgangslage:

$$\Delta y = 0$$

Andernfalls

$$b' = b - \Delta y$$

Umstellen nach Δx :

$$\Delta y = b + J\Delta x + Y|\Delta z|$$

$$0 = b + J\Delta x + Y|\Delta z|$$

$$-b - Y|\Delta z| = J\Delta x$$

$$b + Y|\Delta z| = J\Delta x(-1)$$

$$J^{-1}(b + Y|\Delta z|) = -\Delta x$$

$$\Delta x = -J^{-1}(b + Y|\Delta z|)$$

$$\Delta z = a + Z\Delta x + L|\Delta z|$$

$$\Delta y = b + J\Delta x + Y|\Delta z|$$

Haben:

$$\Delta x = -J^{-1}(b+Y|\Delta z|)$$

$$\Delta z = a + Z\Delta x + L|\Delta z|$$

$$\Delta y = b + J\Delta x + Y|\Delta z|$$

Haben:

$$\Delta x = -J^{-1}(b + Y|\Delta z|)$$

Einsetzen in

$$\begin{split} \Delta z &= a + Z\Delta x + L|\Delta z| \\ &= a + Z\left(-J^{-1}(b+Y|\Delta z|)\right) + L|\Delta z| \\ &= a + Z\left(-J^{-1}b - J^{-1}Y|\Delta z|\right) + L|\Delta z| \\ &= a - ZJ^{-1}b - ZJ^{-1}Y|\Delta z| + L|\Delta z| \\ &= a - ZJ^{-1}b - (ZJ^{-1}Y - L)|\Delta z| \end{split}$$

$$\Delta z = a + Z\Delta x + L|\Delta z|$$

$$\Delta y = b + J\Delta x + Y|\Delta z|$$

Haben:

$$\Delta x = -J^{-1}(b+Y|\Delta z|)$$

$$\Delta z = a - ZJ^{-1}b - (ZJ^{-1}Y - L)|\Delta z|$$

Modularisieren:

$$\Delta z = a - ZJ^{-1}b - (ZJ^{-1}Y - L)|\Delta z|$$

$$= c + S|\Delta z|$$

$$c = a - ZJ^{-1}b$$

$$S = I - ZJ^{-1}Y$$

Problem:

$$\Delta z = c + S|\Delta z|$$

Problem:

$$\Delta z = c + S|\Delta z|$$

Lösung mithilfe Fixpunktiteration:

- Generalized (Pseudo) Newton
- Block-Seidel Algorithmus
- Modulus Iteration Algorithmus

Konvergieren unter gewissen Konvergenzkrieterien (linear / endlich).

Modulus Iteration Algorithmus:

```
1 \Delta z = Init()

2 c = a - ZJ^{-1}b

3 S = L - ZJ^{-1}Y

4 while not converged:

5 \Delta_z = c + S|\Delta z|

6 \Delta x = -J^{-1}(b + Y|\Delta z|)
```

Notes:

Modulus Iteration Algorithmus:

```
1 \Delta z = Init()

2 c = a - ZJ^{-1}b

3 S = L - ZJ^{-1}Y

4 while not converged:

5 \Delta_z = c + S|\Delta z|

6 \Delta x = -J^{-1}(b + Y|\Delta z|)
```

Notes:

- Problem ist die Berechnung von c und S
- J nicht singulär.

Für

$$S = L - ZJ^{-1}Y$$

QR - Zerlegung:

Für

$$S=L-ZJ^{-1}Y$$

QR - Zerlegung:

$$J^{-1}Y = X$$
$$Y = JX$$
$$Y = QRX$$
$$QY = RX$$

Berechne:

$$S = L - ZX$$

Komplexität (m = n = s) bei k Iterationen

Funktion	Komplexität Seriell
cusolverDnDgeqrf	<i>s</i> ³ (QR)
cusolverDnDormqr	s^2 (QRxB)
cublasDgemm()	s^3
cublasDgemv()	$s^2 * k$
cudaMemcpy()	s * k

Final Thoughts

- 1. Einführung
- 2. Aufgaben
- 3. Evaluate
- 4. Gradient
- 5. Blocksize und Gridsize
- 6. Solve
- 7. Final Thoughts

Final Thoughts Was ist da?

Was ist da nach der ersten Implementierung?

Was ist da nach der ersten Implementierung?

Language	files	blank	comment	code
Python	25	285	486	7451
C/C++ Header	5	82	209	1256
C++	7	41	19	334
	37	408	714	9041

Was ist da nach der ersten Implementierung?

files	blank	comment	code
25	285	486	7451
5	82	209	1256
7	41	19	334
37	408	714	9041
		25 285 5 82 7 41	25 285 486 5 82 209 7 41 19

Dabei:

- Working prototype in CUDA C++ und Python
- Unittests
- Coole Plot Generatoren

Final Thoughts Was fehlt?

Final Thoughts Was fehlt?

Was fehlt:

Refactoring

Final Thoughts Was fehlt?

- Refactoring
- Funktionierende Implementierung des Gen. Newton solvers

- Refactoring
- Funktionierende Implementierung des Gen. Newton solvers
- Useability

- Refactoring
- Funktionierende Implementierung des Gen. Newton solvers
- Useability
- Anwendung

- Refactoring
- Funktionierende Implementierung des Gen. Newton solvers
- Useability
- Anwendung
- Numerische Checks der Ergebnisse bei größeren Daten

- Refactoring
- Funktionierende Implementierung des Gen. Newton solvers
- Useability
- Anwendung
- Numerische Checks der Ergebnisse bei größeren Daten
- Speichermanager

- Refactoring
- Funktionierende Implementierung des Gen. Newton solvers
- Useability
- Anwendung
- Numerische Checks der Ergebnisse bei größeren Daten
- Speichermanager
- Spezielle Wahl für Gridsize und Blocksize

- Refactoring
- Funktionierende Implementierung des Gen. Newton solvers
- Useability
- Anwendung
- Numerische Checks der Ergebnisse bei größeren Daten
- Speichermanager
- Spezielle Wahl für Gridsize und Blocksize
- Multidevice Support

- Refactoring
- Funktionierende Implementierung des Gen. Newton solvers
- Useability
- Anwendung
- Numerische Checks der Ergebnisse bei größeren Daten
- Speichermanager
- Spezielle Wahl für Gridsize und Blocksize
- Multidevice Support
- Sparsity

- Refactoring
- Funktionierende Implementierung des Gen. Newton solvers
- Useability
- Anwendung
- Numerische Checks der Ergebnisse bei größeren Daten
- Speichermanager
- Spezielle Wahl für Gridsize und Blocksize
- Multidevice Support
- Sparsity
- Math Tuning

- Archiv Torsten Bosse
- Linear Algebra and its Applications Griewank
- Cuda DOC
- https://castingoutnines.wordpress.com/2010/01/12/piecewise linear calculus part 2 getting to smoothness/

SPEICHER-ANIMATION