International Rectifier

IRF7350

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- Dual N and P Channel MOSFET
- Surface Mount
- Available in Tape and Reel

	N-Ch	P-Ch
V _{DSS}	100V	-100V
R _{DS(on)}	0.21Ω	0.48Ω

Description

These dual N and P channel HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in DC motor drives and load management applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques.

Absolute Maximum Ratings

	Parameter	Ma	Units		
	Farameter	N-Channel	P-Channel	Units	
V _{DS}	Drain-to-Source Voltage	100	-100		
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	2.1	-1.5	A	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	1.7	-1.2		
I _{DM}	Pulsed Drain Current ①	8.4	-6.0		
P _D @T _A = 25°C	Power Dissipation	2	2.0	W	
	Linear Derating Factor	0.0	016	W/°C	
E _{AS}	Single Pulse Avalanche Energy	35	51	mJ	
V _{GS}	Gate-to-Source Voltage	± 20	± 20	V	
dv/dt	Peak Diode Recovery dv/dt ②	4.0	4.3	V/ns	
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150		°C	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	
$R_{\theta JA}$	Junction-to-Ambient ③		62.5	°C/W

IRF7350

International **TOR** Rectifier

Electrical Characteristics @ $T_1 = 25^{\circ}C$ (unless otherwise specified)

	al Characteristics @ 1j = 25 C (unless otherwise specified)								
	Parameter		Min.	Тур.	Max.	Units	Conditions		
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	N-Ch		_	_	V	$V_{GS} = 0V, I_D = 250\mu A$		
- (PK)D99	Brain to Course Broakaown voltage	P-Ch			_	\ \ \	$V_{GS} = 0V, I_D = -250\mu A$		
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	N-Ch	-	0.12		V/°C	Reference to 25°C, $I_D = 1mA$		
		P-Ch	_	-0.11	_		Reference to 25°C, I _D = -1mA		
R _{DS(ON)}	Static Drain-to-Source On-Resistance	N-Ch	—	_	0.21	Ω	$V_{GS} = 10V, I_D = 2.1A$ ②		
NDS(ON)		P-Ch	-		0.48	1 22	V _{GS} = -10V, I _D = -1.5A ②		
V	Gate Threshold Voltage	N-Ch		_	4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		
$V_{GS(th)}$	Gate Theshold Voltage	P-Ch	-2.0	_	-4.0] V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$		
g _{fs}	Forward Transconductance	N-Ch	2.4	_	_	s	$V_{DS} = 50V, I_D = 2.1A$		
9ts	1 of ward Transconductance	P-Ch	1.1	_		ુ	$V_{DS} = -50V, I_{D} = -1.5A$		
		N-Ch	_	_	25	μA	$V_{DS} = 100V, V_{GS} = 0V$ ②		
I _{DSS}	Drain-to-Source Leakage Current	P-Ch	_	_	-25		$V_{DS} = -100V, V_{GS} = 0V$ ②		
יטאי	Drain to Course Leakage Current	N-Ch		_	250		$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 70 ^{\circ}\text{C}$		
		P-Ch	_	_	-250		$V_{DS} = -80V$, $V_{GS} = 0V$, $T_{J} = 70$ °C		
I _{GSS}	Gate-to-Source Forward Leakage	N-P	_	_	±100		$V_{GS} = \pm 20V$		
Q_q	Total Gate Charge	N-Ch		19	28	nC	N-Channel		
₩g		P-Ch	_	21	31		$I_D = 2.1A$, $V_{DS} = 80V$, $V_{GS} = 10V$		
Q_{qs}	Gate-to-Source Charge	N-Ch		3.0	4.5		10 - 2.174, VDS - 00V, VGS - 10V		
~gs	g-	P-Ch		3.4	5.1	-	P-Channel I _D = -1.5A, V _{DS} = -80V, V _{GS} = -10V		
Q_{ad}	Gate-to-Drain ("Miller") Charge	N-Ch		8.8	13				
<u> </u>		P-Ch		10	16				
t _{d(on)}	Turn-On Delay Time	N-Ch	_	6.7	_	4	N-Channel		
		P-Ch		25		-	$V_{DD} = 50V$, $I_D = 1.0A$, $R_G = 22\Omega$, $R_D = 50\Omega$, $V_{GS} = 10V$		
t _r	Rise Time	N-Ch		11		4			
		P-Ch	_	13	-	ns			
t _{d(off)}	Turn-Off Delay Time	N-Ch P-Ch		35 30	_	1	P-Channel		
. ,		N-Ch		20	$\vdash =$		$V_{DD} = -50V$, $I_D = -1.0A$, $R_G = 22\Omega$,		
t _f	Fall Time	P-Ch	_	40			$R_D = 50\Omega, V_{GS} = -10V$		
	Input Capacitance Output Capacitance	N-Ch		380	-	pF			
C _{iss}		P-Ch		360			N-Channel		
_		N-Ch		100			$V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz$		
Coss		P-Ch		110					
	Reverse Transfer Capacitance	N-Ch		54	$\vdash \equiv$		P-Channel		
C _{rss}		P-Ch		65	$+ \equiv -$		$V_{GS} = 0V$, $V_{DS} = -25V$, $f = 1.0MHz$		
		F-OII	_	00					

Source-Drain Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Conditions
		N-Ch	_		1.8		
IS	Continuous Source Current (Body Diode)	P-Ch	_	_	-1.4	A	
		N-Ch	_	_	8.4	^	
I _{SM}	Pulsed Source Current (Body Diode) ①	P-Ch	_	_	-6.0]	
		N-Ch	_	_	1.3	V	$T_J = 25^{\circ}C$, $I_S = 1.8A$, $V_{GS} = 0V$ ②
V_{SD}	Diode Forward Voltage	P-Ch	_	_	-1.6	1 °	$T_J = 25^{\circ}C$, $I_S = -1.4A$, $V_{GS} = 0V$ ②
		N-Ch	_	72	110	ns	N-Channel
t _{rr}	Reverse Recovery Time	P-Ch	_	77	120	113	$T_{.1} = 25^{\circ}C$, $I_{F} = 1.8A$, $di/dt = 100A/\mu s$
		N-Ch	_	205	310	nC	P-Channel 2
Q _{rr}	Reverse Recovery Charge	P-Ch	—	240	360	'''	$T_J = 25$ °C, $I_F = -1.4$ A, $di/dt = -100$ A/ μ s

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- 4 N channel: Starting T $_{J}$ = 25°C, L = 4.0mH, R $_{G}$ = 25 Ω , I $_{AS}$ = 4.2A P channel: Starting T $_{J}$ = 25°C, L = 11mH, R $_{G}$ = 25 Ω , I $_{AS}$ = -3.0A
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ③ Surface mounted on 1 in square Cu board

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14. Typical Threshold Voltage Vs. Junction Temperature

Fig 15. Typical Power Vs. Time www.irf.com

Fig 16a. Maximum Avalanche Energy Vs. Drain Current

Fig 16c. Unclamped Inductive Test Circuit

Fig 16d. Unclamped Inductive Waveforms

Fig 17. Gate Charge Test Circuit

Fig 18. Basic Gate Charge Waveform

Fig 19. Typical Avalanche Current Vs. Pulsewidth

Fig 20. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
- Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

t_{av =} Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV-I}_{av} \text{)} = \Delta \text{T/ Z}_{thJC} \\ I_{av} &= 2\Delta \text{T/ [1.3 \cdot \text{BV-Z}_{th}]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

Fig 21. Typical Output Characteristics

Fig 22. Typical Output Characteristics

Fig 23. Typical Transfer Characteristics

Fig 24. Normalized On-Resistance Vs. Temperature

Fig 25. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 27. Typical Source-Drain Diode Forward Voltage

-V_{SD}, Source-toDrain Voltage (V)

Fig 26. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 28. Maximum Safe Operating Area

Fig 29. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 30. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 31. Typical On-Resistance Vs. Gate Voltage

Fig 32. Typical On-Resistance Vs. Drain Current

Fig 33. Typical Threshold Voltage Vs. Junction Temperature

Fig 34. Typical Power Vs. Time

12

Fig 35a. Maximum Avalanche Energy Vs. Drain Current

Fig 35c. Unclamped Inductive Test Circuit

Fig 35d. Unclamped Inductive Waveforms

Fig 36. Gate Charge Test Circuit

Fig 37. Basic Gate Charge Waveform

Fig 38. Typical Avalanche Current Vs. Pulsewidth

Fig 39. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D~(ave)} &= 1/2~(~1.3 \cdot BV \cdot I_{aV}) = \Delta T/~Z_{thJC} \\ I_{av} &= 2\Delta T/~[1.3 \cdot BV \cdot Z_{th}] \\ E_{AS~(AR)} &= P_{D~(ave)} \cdot t_{av} \end{split}$$

IRF7350

MILLIMETERS

MAX

1.75

0.25

MIN

1.35

0.10

SO-8 Package Details

8X c

8X L

INCHES

MAX

.0688

.0098

MIN

DIM

A .0532

A1 .0040

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

WWW.iii.com

IRF7350

International IOR Rectifier

SO-8 Tape and Reel

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 08/01 16 www.irf.com