Problem 3-2 Parametrized Rouctom Nutriches

$$P = \frac{\alpha}{N^2}$$
, $\alpha > 0$, $z \ge 0$ (auto assuming N > 0)

A.

 $Lk > = p(N-1) = \frac{\alpha}{N^2}(N-1)$

• $\alpha = 0.5$, $z = 1$
• $k > = \frac{1}{2} \cdot \frac{1}{N}(N-1) = \frac{1}{2}(1-\frac{1}{N})$

• $\alpha = 0.5$, $z = 1$
• $k > = \frac{1}{2} \cdot \frac{1}{N}(N-1) = \frac{1}{2}(1-\frac{1}{N})$

• $\alpha = 0.5$, $z = 1$
• $k > = \frac{1}{2} \cdot \frac{1}{N}(N-1) = \frac{1}{2}(1-\frac{1}{N})$

• $\alpha = 2$, $z = 1$
• $k > = \frac{2}{N}(N-1) = 2(1-\frac{1}{N}) = 2(1-\frac{1}{N})$

• $\alpha > 0$, $z = 2$
• $k > = \frac{\alpha}{N^2}(N-1) = 2(1-\frac{1}{N}) = 2(1-\frac{1}{N})$

• $\alpha > 0$, $z = 2$
• $k > = \frac{\alpha}{N^2}(N-1) = 2(1-\frac{1}{N})$

• $\alpha > 0$, $z = 0.5$
• $k > = \frac{\alpha}{N^2}(N-1) = 2(1-\frac{1}{N})$

• $\alpha > 0$, $z = 0.5$
• $k > = \frac{\alpha}{N^2}(N-1) = 2(1-\frac{1}{N})$

• $\alpha > 0$, $z = 0.5$
• $k > = \frac{\alpha}{N^2}(N-1) = 2(1-\frac{1}{N})$

• $\alpha > 0$, $z = 0.5$
• $k > = \frac{\alpha}{N^2}(N-1) = 2(1-\frac{1}{N})$

• $\alpha > 0$, α

3. Generally, a random network is critical if 2k > 1. Since we have already shown that $\lim_{N\to\infty} \langle k \rangle = a$ for z=1it follows that him <k>= 1 for a= 1 and z=1 (lim N+00 KK> = lim p(N+1) = lim 1 (N-1) = 1) The nutwork is subcritical for a=0.5, z=1, since wim <k>= 1<1 and for a >0, 7=0, since and him <k> <1. The network is supercritical for the second care a=2, 2=1 Sinu lim (k) = 2 > 1 and lim (k) < (m N +00 wm cky c lim land = 00. The network is in the connected regime for the last core a >0, 2=0.5.