Trigonometric Ratios

Opposite & Adjacent Sides in a Right Angled Triangle

In the $\triangle ABC$ right-angled at B, BC is the side opposite to $\angle A$, AC is the hypotenuse and AB is the side adjacent to $\angle A$.

Trigonometric Ratios

For the right $\triangle ABC$, right-angled at $\angle B$, the trigonometric ratios of the $\angle A$ are as follows:

- sin A=opposite side/hypotenuse=BC/AC
- cos A=adjacent side/hypotenuse=AB/AC
- tan A=opposite side/adjacent side=BC/AB
- cosec A=hypotenuse/opposite side=AC/BC
- sec A=hypotenuse/adjacent side=AC/AB
- cot A=adjacent side/opposite side=AB/BC

Visualization of Trigonometric Ratios Using a Unit Circle

Draw a circle of unit radius with the origin as the centre. Consider a line segment OP joining a point P on the circle to the centre which makes an angle θ with the x-axis. Draw a perpendicular from P to the x-axis to cut it at Q.

- $\sin\theta = PQ/OP = PQ/1 = PQ$
- $\cos\theta = OQ/OP = OQ/1 = OQ$
- tanθ=PQ/OQ=sinθ/cosθ
- cosecθ=OP/PQ=1/PQ
- secθ=OP/OQ=1/OQ

cotθ=OQ/PQ=cosθ/sinθ

Visualisation of Trigonometric Ratios Using a Unit Circle

Relation between Trigonometric Ratios

- $\csc \theta = 1/\sin \theta$
- $\sec \theta = 1/\cos \theta$
- $\tan \theta = \sin \theta / \cos \theta$
- $\cot \theta = \cos \theta / \sin \theta = 1 / \tan \theta$

Trigonometric Ratios of Specific Angles

Range of Trigonometric Ratios from 0 to 90 degrees

For 0∘≤θ≤90∘,

- 0≤sinθ≤1
- 0≤cosθ≤1

- 0≤tanθ<∞
- 1≤secθ<∞
- 0≤cotθ<∞
- 1≤cosecθ<∞

 $tan\theta$ and $sec\theta$ are not defined at 90.

 $\cot\theta$ and $\csc\theta$ are not defined at 0.

Variation of trigonometric ratios from 0 to 90 degrees

As θ increases from 0° to 90°

- sinθ increases from 0 to 1
- cosθ decreases from 1 to 0
- tanθ increases from 0 to ∞
- cosecθ decreases from ∞ to 1
- secθ increases from 1 to ∞
- cotθ decreases from ∞ to 0

Standard values of Trigonometric ratios

∠A	0°	30°	45°	60°	90°
sin A	0	1/2	1/√2	√3/2	1
cos A	1	√3/2	1/√2	1/2	0
tan A	0	1/√3	1	√3	not defined
cosec A	not defined	2	√2	2/√3	1
sec A	1	2/√3	√2	2	not defined
cot A	not defined	√3	1	1/√3	0

Trigonometric Ratios of Complementary Angles

Complementary Trigonometric ratios

If θ is an acute angle, its complementary angle is $90^{\circ}-\theta$. The following relations hold true for trigonometric ratios of complementary angles.

- $\sin (90 \theta) = \cos \theta$
- $\cos (90 \theta) = \sin \theta$
- $\tan (90 \theta) = \cot \theta$
- $\cot (90 \theta) = \tan \theta$
- $\csc (90 \theta) = \sec \theta$
- $\sec (90 \theta) = \csc \theta$

Trigonometric Identities

- $\sin_2\theta + \cos_2\theta = 1$
- 1+cot2θ=coesc2θ
- 1+tan2θ=sec2θ