VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÝCH TECHNOLÓGIÍ

Elektronika pro informační technologie 2015/2016

Semestrálny projekt

Príklad 1, Varianta E

Stanovte napätie U_{R3} a prúd I_{R3}. Použite metódu postupného zjednodušovania obvodu.

Zadané hodnoty:

U [V]	$R_1[\Omega]$	$R_2\left[\Omega\right]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	R ₇ [Ω]	$R_8 [\Omega]$
115	485	660	100	340	575	815	255	225

1.) V sérii zapojené rezistory R_5 a R_7 zjednotíme, paralelne zapojené rezistory R_6 a R_8 zjednotíme.

$$R_{57} = R_5 + R_7 = 575 + 255 = 830\Omega$$

$$R_{68} = \frac{R_6 \cdot R_8}{R_6 + R_8} = \frac{815 \cdot 225}{815 + 225} = \frac{183375}{1040} \doteq 176,3221\Omega$$

2.) Obvod transformujeme na hviezdu, a vypočítame $R_A,\,R_B,\,R_C.$

3.) V sérii zapojené rezistory R₁ a R_A, R_B a R₅₇, R_C a R₆₈ zjednotíme.

$$R_{1A} = R_1 + R_A = 485 + 60 = 545\Omega$$

$$R_{B57} = R_B + R_{57} = 204 + 830 = 1034\Omega$$

$$R_{C68} = R_C + R_{68} = 30,9091 + 176,3221 = 207,2312\Omega$$

4.) Paralelne zapojené rezistory R_{B57} a R_{C68} zjednotíme.

$$R_{B57C68} = \frac{R_{B57} \cdot R_{C68}}{R_{B57} + R_{C68}} = \frac{1034 \cdot 207,2312}{1034 + 207,2312} = \frac{214277,0608}{1241,2312} \doteq 172,6327\Omega$$

5.) Sériovo zapojené rezistory R_{1A} a R_{B57C68} zjednotíme. Výsledkom je hľadaný R_{EKV}.

$$R_{EKV} = R_{1A} + R_{B57C68} = 545 + 172,6327 = 717,6327\Omega$$

6.) Pomocou Ohmovho zákona vypočítame celkový prúd.

$$I = \frac{U}{R_{EKV}} = \frac{115}{717,6327} \doteq 0,1602A$$

7.) Celkový prúd prechádza odpormi ktoré sú v sérii zapojené R_{1A} a R_{B57C68} a z toho vieme vypočítať napätie na týchto odporoch.

$$U_{R_{1A}} = R_{1A} \cdot I = 545 \cdot 0,1602 = 87,309V$$

$$U_{R_{B57C68}} = R_{B57C68} \cdot I = 172,6327 \cdot 0,1602 = 27,6558V$$

8.) Celkový prúd prechádza cez rezistory R₁ a R_A pretože sú v sérii zapojené. Vieme vypočítať napätie na rezistoroch R₁ a R_A. Napätie na paralelne zapojených rezistoroch R_{B57} a R_{C68} je rovnaké ktoré vieme určiť z napätia na R_{B57C68}. Vieme vypočítať prúd prechádzajúci cez rezistory R_{B57} a R_{C68}.

9.) Keďže poznáme prúd ktorý prechádza cez rezistory R_{B57} a R_{C68}, vieme vypočítať napätie na rezistoroch R_C a R₆₈.

$$U_{R_C} = R_C \cdot I_{R_{C68}} = 30,9091 \cdot 0,1335 \doteq 4,1264V$$

 $U_{R_{68}} = R_{68} \cdot I_{R_{C68}} = 207,2312 \cdot 0,1335 \doteq 23,539V$

10.) Napätie na rezistoroch ktoré sú paralelne zapojené je rovnaké. Vieme určiť napätie na R₈.

11.) Vieme vypočítať prúd prechádzajúci rezistorom R₈.

$$I_{R_8} = \frac{U_{R_8}}{R_8} = \frac{23,539}{225} = 0,1046A$$

12.) Z druhého Kirchhoffovho zákona vieme vypočítať napätie na R₃.

13.) Pomocou Ohmovho zákona vieme vypočítať prúd prechádzajúci na R₃.

$$I_{R_3} = \frac{U_{R_3}}{R_3} = \frac{13,768}{100} = 0,13768A$$

 $I_{R_3} = 0,13768A$

Príklad 2, Varianta D

Stanovte napätie U_{R3} a prúd I_{R3}. Použite metódu Theveninovej vety.

Zadané hodnoty:

U [V]	$R_1[\Omega]$	$\mathrm{R}_{2}\left[\Omega ight]$	$R_3[\Omega]$	$ m R_4\left[\Omega ight]$	$R_5[\Omega]$
150	200	660	200	550	330

1.) Obvod podľa Theveninovej vety vyzerá nasledovne.

2.) Odvodíme si rovnicu pre U_i. Využijeme druhý Kirchhoffov zákon.

3.) Vytvoríme si rovnicu pomocou druhého Kirchhoffovho zákona z ľavej a pravej slučky.

$$U_{R_1} + U_i - U_{R_2} = 0$$

$$U_{R_4} - U_{R_5} - U_i = 0$$

4.) Využijeme jednu z rovníc z ktorej si vyjadríme U_i.

$$U_i = U_{R_2} - U_{R_1}$$

5.) Musíme si odvodiť rovnicu pre napätie na odporoch R₂ a R₁.

$$U_{R_1} = R_1 \cdot I_1$$
$$U_{R_2} = R_2 \cdot I_2$$

6.) Hodnoty R₁ a R₂ poznáme. I₁ a I₂ nepoznáme, musíme si odvodiť rovnice ktoré potom dosadíme za I₁ a I₂.

$$I_1 = \frac{U_1}{R_1 + R_4}$$
$$I_1 = \frac{U_1}{R_2 + R_5}$$

7.) U₁ sme si už vypočítali tak len dosadíme.

$$I_1 = \frac{U}{R_1 + R_4}$$

$$I_1 = \frac{U}{R_2 + R_5}$$

 $U_1 = U$

8.) Dosadíme.

$$U_{R_1} = R_1 \cdot I_1$$

$$U_{R_2} = R_2 \cdot I_2$$

$$U_{R_1} = R_1 \cdot \frac{U}{R_1 + R_4}$$

$$U_{R_2} = R_2 \cdot \frac{U}{R_2 + R_5}$$

9.) Znovu dosadíme a získame rovnicu pre U_i.

$$U_i = U_{R_2} - U_{R_1}$$

$$U_i = R_2 \cdot \frac{U}{R_2 + R_5} - R_1 \cdot \frac{U}{R_1 + R_4}$$

10.) Získali sme rovnicu pre U_i , teraz musíme získať rovnicu pre R_i . Musíme zoskratovať obvod a zakresliť ho bez R_3 .

11.) Prekreslíme.

12.) R₁ a R₄, R₂ a R₅ sú zapojené paralelne, zjednotíme ich.

$$R_{14} = \frac{R_1 \cdot R_4}{R_1 + R_4}$$
$$R_{25} = \frac{R_2 \cdot R_5}{R_2 + R_5}$$

13.) V sérii zapojené odpory R₁₄ a R₂₅ zjednotíme.

$$R_{1425} = R_{14} + R_{25}$$

14.) Získali sme R_i.

$$R_i = R_{1425}$$

$$R_i = \frac{R_1 \cdot R_4}{R_1 + R_4} + \frac{R_2 \cdot R_5}{R_2 + R_5}$$

15.) Dosadíme do hlavnej rovnice U_i a R_i, dopočítame rovnicu.

$$I = \frac{R_2 \cdot \frac{U}{R_2 + R_5} - R_1 \cdot \frac{U}{R_1 + R_4}}{\frac{R_1 \cdot R_4}{R_1 + R_4} + \frac{R_2 \cdot R_5}{R_2 + R_5} + R_3}$$

$$I = \frac{660 \cdot \frac{150}{660 + 330} - 200 \cdot \frac{150}{200 + 550}}{\frac{200 \cdot 550}{200 + 550} + \frac{660 \cdot 330}{660 + 330} + 200}$$

$$I = 0,1059A$$

$$I_{R_3} = I$$

$$I_{R_3} = 0,1059A$$

16.) Pomocou ohmovho zákona vypočítame napätie na R₃.

$$U_{R_3} = R_3 \cdot I_{R_3}$$
 $U_{R_3} = 200 \cdot 0,1059$ $U_{R_3} = 21,1765V$

Príklad 3, Varianta A

Stanovte napätie U_{R3} a prúd I_{R3} . Použite metódu uzlových napätí (sme $U_A,\,U_B,\,U_C$).

Zadané hodnoty:

U [V]	I ₁ [A]	I ₂ [A]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4 [\Omega]$	$R_5[\Omega]$
120	0,9	0,7	530	490	650	390	320

1.) Označíme si uzly pričom jeden z nich uzemníme a určíme (odvodíme) prúdy vstupujúce a vystupujúce z uzla.

$$I_{R_3} = \frac{U_A - U_B}{R_3}$$

$$I_{R_4} = \frac{U_C}{R_4}$$

$$I_{R_5} = \frac{U_B - U_A}{R_5}$$

2.) Z prvého Kirchhoffovho zákona si vytvoríme rovnice pre každý uzol.

uzol A:
$$I_1 + I_{R_2} - I_{R_3} - I_{R_1} = 0$$

uzol B: $I_{R_3} - I_{R_2} + I_2 - I_{R_5} = 0$
uzol C: $I_{R_5} - I_{R_4} - I_2 = 0$

3.) Dosadíme už odvodené prúdy.

$$0.9 + \frac{U_B - U_A + U}{R_2} - \frac{U_A - U_B}{R_3} - \frac{U_A}{R_1} = 0$$

$$\frac{U_A - U_B}{R_3} - \frac{U_B - U_A + U}{R_2} + 0.7 - \frac{U_B - U_A}{R_5} = 0$$

$$\frac{U_B - U_A}{R_5} - \frac{U_C}{R_4} - 0.7 = 0$$

4.) Dosadíme hodnoty.

$$0.9 + \frac{U_B - U_A + 120}{490} - \frac{U_A - U_B}{650} - \frac{U_A}{530} = 0$$

$$\frac{U_A - U_B}{650} - \frac{U_B - U_A + 120}{490} + 0.7 - \frac{U_B - U_A}{320} = 0$$

$$\frac{U_B - U_A}{320} - \frac{U_C}{390} - 0.7 = 0$$

5.) Upravíme rovnicu.

$$-U_A \cdot (R_1 \cdot R_2 + R_1 \cdot R_3 + R_2 \cdot R_3) + U_B \cdot (R_3 \cdot R_1 + R_1 \cdot R_2) + U_C \cdot 0 = -I_1 \cdot (R_1 \cdot R_2 \cdot R_3) - U \cdot (R_3 \cdot R_1)$$

$$U_A \cdot (R_5 \cdot R_2 + R_3 \cdot R_5) - U_B \cdot (R_2 \cdot R_5 + R_3 \cdot R_5 + R_2 \cdot R_3) + U_C \cdot (R_2 \cdot R_3) = -I_2 \cdot (R_2 \cdot R_3 \cdot R_5) + U \cdot (R_3 \cdot R_5)$$

$$U_A \cdot 0 + U_B \cdot (R_4) - U_C \cdot (R_4 + R_5) = I_2 \cdot (R_4 \cdot R_5)$$

6.) Dosadíme do matice

$$\begin{pmatrix} -(R_1 \cdot R_2 + R_1 \cdot R_3 + R_2 \cdot R_3) & (R_3 \cdot R_1 + R_1 \cdot R_2) & 0 & -I_1 \cdot (R_1 \cdot R_2 \cdot R_3) - U \cdot (R_3 \cdot R_1) \\ (R_5 \cdot R_2 + R_3 \cdot R_5) & -(R_2 \cdot R_5 + R_3 \cdot R_5 + R_2 \cdot R_3) & (R_2 \cdot R_3) & -I_2 \cdot (R_2 \cdot R_3 \cdot R_5) + U \cdot (R_3 \cdot R_5) \\ 0 & (R_4) & -(R_4 + R_5) & I_2 \cdot (R_4 \cdot R_5) \end{pmatrix}$$

7.) Dosadíme za premenné hodnoty zo zadania a spočítame ich.

$$\begin{pmatrix} -922700 & 604200 & 0 & -193264500 \\ 364800 & -683300 & 318500 & -46384000 \\ 0 & 390 & -710 & 87360 \end{pmatrix}$$

8.) Maticu riešime Sarrusovým pravidlom.

$$D_S = -176535632000000$$

$$D_A = -72841113072000000$$

$$D_B = -547706461120000000$$

9.) Získali sme U_A a U_B .

$$U_A = \frac{D_A}{D_S} \doteq 412,614226$$

 $U_B = \frac{D_B}{D_S} \doteq 310,252641$

10.) Vypočítame U_{R3} .

$$U_{R_3} = U_A - U_B = 412,614226 - 310,252641 = 102,361585V$$

$$U_{R_3} = 102,361585V$$

$$U_{R_3} \doteq \mathbf{102},\mathbf{3616}V$$

11.) Cez Ohmov zákon vypočítame I_{R_3} .

$$I_{R_3} = \frac{U_{R_3}}{R_3} = \frac{102,361585}{650} \doteq 0,15747936V$$

$$I_{R_3} \doteq 0,15747936V$$

$$I_{R_3} \doteq 0,1575A$$

Príklad 4, Varianta E

Pre napájacie napätie platí: $u_1=U_1\cdot\sin(2\pi ft),\,u_2=U_2\cdot\sin(2\pi ft).$ Vo vzťahu pre napätie $u_{\mathcal{C}_2}=U_{\mathcal{C}_2}\cdot\sin(2\pi ft+\varphi_{\mathcal{C}_2}),$ určte $\left|U_{\mathcal{C}_2}\right|$ a $\varphi_{\mathcal{C}_2}.$ Použite metódu slučkových prúdov.

Pozn.: Pomocné "smery šípok napájacích zdrojov platí pre špeciálny časový okamžik $\left(t=\frac{\pi}{2\omega}\right)$."

Zadané hodnoty:

$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2\left[\Omega\right]$	L ₁ [mH]	L ₂ [mH]	$C_1 [\mu F]$	$C_2 [\mu F]$	f [Hz]
50	30	145	135	130	60	100	65	90

1.) Pomocou metódy slučkových prúdov si vytvoríme 3 rovnice.

$$\begin{split} I_A \cdot R_1 + I_A \cdot j\omega L_1 - u_2 + (I_A - I_C) \cdot j\omega L_2 - u_1 &= 0 \\ u_1 + (I_B - I_C) \cdot R_2 + I_B \cdot (-j) \cdot \frac{1}{\omega C_1} &= 0 \\ (I_C - I_A) \cdot j\omega L_2 + I_C \cdot (-j) \cdot \frac{1}{\omega C_2} + (I_C - I_B) \cdot R_2 &= 0 \end{split}$$

2.) Upravíme rovnice.

$$I_{A} \cdot (R_{1} + j\omega L_{1} + j\omega L_{2}) + I_{B} \cdot 0 - I_{C} \cdot (j\omega L_{2}) = u_{1} + u_{2}$$

$$I_{A} \cdot 0 + I_{B} \cdot \left(R_{2} - j \cdot \frac{1}{\omega C_{1}}\right) - I_{C} \cdot (R_{2}) = -u_{1}$$

$$-I_{A} \cdot (j\omega L_{2}) - I_{B} \cdot (R_{2}) + I_{C} \cdot \left(R_{2} + j\omega L_{2} - j \cdot \frac{1}{\omega C_{2}}\right) = 0$$

3.) Dosadíme do matice.

$$\begin{pmatrix} R_{1} + j\omega L_{1} + j\omega L_{2} & 0 & -j\omega L_{2} & u_{1} + u_{2} \\ 0 & R_{2} - j \cdot \frac{1}{\omega C_{1}} & -R_{2} & -u_{1} \\ -j\omega L_{2} & -R_{2} & R_{2} + j\omega L_{2} - j \cdot \frac{1}{\omega C_{2}} & 0 \end{pmatrix}$$

4.) Vypočítame ω .

$$\omega = 2\pi f$$
$$f = 90$$
$$\omega = 180\pi$$

5.) Dosadíme všetky hodnoty.

$$\begin{pmatrix} 145 + j \cdot 180\pi \cdot 0,13 + j \cdot 180\pi \cdot 0,06 & 0 & -j \cdot 180\pi \cdot 0,06 & 50 + 30 \\ 0 & 135 - j \cdot \frac{1}{180\pi \cdot 0,0001} & -135 & -50 \\ -j \cdot 180\pi \cdot 0,06 & -135 & 135 + j \cdot 180\pi \cdot 0,06 - j \cdot \frac{1}{180\pi \cdot 0,000065} & 0 \end{pmatrix}$$

6.) Upravíme.

$$\begin{pmatrix} 145 + 34,2\pi j & 0 & -10,8\pi j & 80\\ 0 & 135 - j \cdot \frac{1}{0,018\pi} & -135 & -50\\ -10,8\pi j & -135 & 135 + 10,8\pi j - j \cdot \frac{1}{0,0117\pi} & 0 \end{pmatrix}$$

8.) Maticu riešime Sarrusovým pravidlom.

$$D_S = \frac{-725000000 - 3077887500j\pi + 777235500\pi^2 + 237398850j\pi^3 - \frac{179627058\pi^4}{5}}{1053\pi^2}$$

$$D_S = 331631,568301 - 222138,211473j$$

$$D_C = \frac{5 \cdot (-1675350\pi - 205578j\pi^2)}{9\pi}$$

$$D_C = -930750 - 358801,296966j$$

9.) Vypočítame I_C .

$$I_C = \frac{|D_C|}{|D_S|}$$

$$I_C = \frac{-930750 - 358801,296966j}{331631,568301 - 222138,211473j}$$

$$I_C = -1,4370800142 - 2,0445329874j A$$

10.) Vypočítame U_C .

$$U_{C_2} = -j \frac{1}{\omega C_2} \cdot I_C$$

$$U_{C_2} = -j \frac{1}{180 \cdot \pi \cdot 65 \cdot 10^{-6}} \cdot (-1,4370800142 - 2,0445329874j)$$

$$U_{C_2} = -55,623509617 + 39,097160321j$$

$$|U_{C_2}| = \sqrt{Real^2 + Imag^2}$$

$$|U_{C_2}| = \sqrt{(-55,623509617)^2 + (39,097160321)^2}$$

$$|U_{C_2}| = 67,424 V$$

11.) Vypočítame φ .

$$\varphi_{C_2} = \tan^{-1} \left(\frac{Imag}{Real} \right)$$

$$\varphi_{C_2} = \tan^{-1} \left(\frac{39,097160321}{-55,623509617} \right)$$

$$\varphi_{C_2} = -0.61266234758 \, rad = -35.102966783^{\circ} = -35^{\circ}6'10,68''$$

12.) Dopočítame v inom kvadrante.

$$\varphi_{C_2} = \pi - 0.61266234758$$

$$\varphi_{C_2} = 2.52893030601 \, rad = 144,8970332^\circ = 144^\circ 53' 49,32''$$

Príklad 5, Varianta D

Zostavte diferenciálnu rovnicu popisujúcu chovanie obvodu na obrázku, ďalej ju upravte dosadením hodnôt parametrov. Vypočítajte analytické riešenie $u_C = f(t)$. Spravte kontrolu výpočtu dosadením do zostavenej diferenciálnej rovnice.

Zadané hodnoty:

U[V]	C [F]	R [Ω]	$u_{C}(0) [A]$	
14	25	30	6	

1.) Hľadáme u'_C , pričom platí:

$$u_C' = \frac{1}{C} \cdot I_C$$

2.) Keďže celým obvodom prechádza celkový prúd potom platí:

$$I_R = I_C = I = i$$

3.) Dosadíme.

$$u_C' = \frac{1}{C} \cdot i$$

4.) Vypočítame hodnotu i pomocou druhého Kirchhoffovho zákona.

$$U - u_R - u_C = 0$$

$$u_R + u_C - U = 0$$

$$R \cdot i + u_C - U = 0$$

$$i = \frac{U - u_C}{R}$$

5.) Dosadíme, upravíme.

$$u'_{C} = \frac{1}{C} \cdot \frac{U - u_{C}}{R}$$
$$u'_{C} = \frac{U - u_{C}}{C \cdot R}$$

6.) Dosadíme hodnoty zo zadania.

$$u'_{C} = \frac{14 - u_{C}}{25 \cdot 30}$$
$$u'_{C} = \frac{14 - u_{C}}{750}$$

7.) Rozdelíme zlomok a upravíme.

$$u_C' = \frac{14}{750} - \frac{u_C}{750}$$
$$u_C' + \frac{u_C}{750} = \frac{14}{750}$$

8.) Vyjadríme λ .

$$\lambda = -\frac{1}{750}$$

9.) Vytvoríme rovnicu pre u_C .

$$u_{C}(t) = c(t) \cdot e^{\lambda \cdot t}$$

$$u_{C}(t) = c(t) \cdot e^{-\frac{1}{750} \cdot t}$$

10.) Derivujeme (derivácia súčinu). Získame rovnicu pre $u'_{c}(t)$.

$$u'_{\mathcal{C}}(t) = c'(t) \cdot e^{-\frac{1}{750} \cdot t} + c(t) \cdot e^{-\frac{1}{750} \cdot t} \cdot \left(-\frac{1}{750}\right)$$

11.) Dosadíme a upravíme.

$$u'_{C} + \frac{u_{C}}{750} = \frac{14}{750}$$

$$c'(t) \cdot e^{-\frac{1}{750} \cdot t} + c(t) \cdot e^{-\frac{1}{750} \cdot t} \cdot \left(-\frac{1}{750}\right) + \frac{c(t) \cdot e^{-\frac{1}{750} \cdot t}}{750} = \frac{14}{750}$$

$$c'(t) \cdot e^{-\frac{1}{750} \cdot t} - \frac{c(t) \cdot e^{-\frac{1}{750} \cdot t}}{750} + \frac{c(t) \cdot e^{-\frac{1}{750} \cdot t}}{750} = \frac{14}{750}$$

$$c'(t) \cdot e^{-\frac{1}{750} \cdot t} = \frac{14}{750}$$

12.) Vyjadríme c'(t)

$$c'(t) = \frac{14}{750 \cdot e^{-\frac{1}{750} \cdot t}}$$
$$c'(t) = \frac{14 \cdot e^{\frac{1}{750} \cdot t}}{750}$$

13.) Integrujeme.

$$\int c'(t) = \int \frac{14 \cdot e^{\frac{1}{750} \cdot t}}{750}$$

$$c(t) = \int \frac{14 \cdot e^{\frac{1}{750} \cdot t}}{750}$$

$$c(t) = \frac{14 \cdot e^{\frac{1}{750} \cdot t}}{750} \cdot \frac{1}{\frac{1}{750}}$$

$$c(t) = \frac{14 \cdot e^{\frac{1}{750} \cdot t}}{750} \cdot 750$$
$$c(t) = 14 \cdot e^{\frac{1}{750} \cdot t} + K$$

14.) Dosadíme do $u_c(t) = c(t) \cdot e^{-\frac{1}{750} \cdot t}$

$$u_{C}(t) = c(t) \cdot e^{-\frac{1}{750} \cdot t}$$

$$u_{C}(t) = \left(14 \cdot e^{\frac{1}{750} \cdot t} + K\right) \cdot e^{-\frac{1}{750} \cdot t}$$

$$u_{C}(t) = 14 \cdot e^{\frac{1}{750} \cdot t} \cdot e^{-\frac{1}{750} \cdot t} + K \cdot e^{-\frac{1}{750} \cdot t}$$

$$u_{C}(t) = 14 + K \cdot e^{-\frac{1}{750} \cdot t}$$

15.) Dosadíme hondnoty t = 0, $u_c(0) = 6$ a vypočítame K.

$$u_C(0) = 14 + K \cdot e^{-\frac{1}{750} \cdot 0}$$
$$6 = 14 + K$$
$$K = -8$$

16.) Získali sme výsledok.

$$u_{\mathcal{C}}(t) = 14 - 8 \cdot e^{-\frac{1}{750} \cdot t}$$

Skúška správnosti.

1.) Dosadíme hodnoty do rovnice.

$$u'_C + \frac{u_C}{750} = \frac{14}{750}$$
$$u'_C + \frac{14 - 8 \cdot e^{-\frac{1}{750} \cdot t}}{750} = \frac{14}{750}$$

2.) $u'_{\mathcal{C}}$ nepoznáme tak zderivujeme $u_{\mathcal{C}}$.

$$u_{C}(t) = 14 - 8 \cdot e^{-\frac{1}{750} \cdot t}$$

$$u'_{C}(t) = \left(14 - 8 \cdot e^{-\frac{1}{750} \cdot t}\right)'$$

$$u'_{C}(t) = 0 - 8 \cdot e^{-\frac{1}{750} \cdot t} \cdot \left(-\frac{1}{750}\right)$$

$$u'_{C}(t) = \frac{8 \cdot e^{-\frac{1}{750} \cdot t}}{750}$$

3.) Dosadíme.

$$u_C' + \frac{14 - 8 \cdot e^{-\frac{1}{750} \cdot t}}{750} = \frac{14}{750}$$

$$\frac{8 \cdot e^{-\frac{1}{750} \cdot t}}{750} + \frac{14 - 8 \cdot e^{-\frac{1}{750} \cdot t}}{750} = \frac{14}{750}$$

$$\frac{8 \cdot e^{-\frac{1}{750} \cdot t}}{750} + \frac{14}{750} - \frac{8 \cdot e^{-\frac{1}{750} \cdot t}}{750} = \frac{14}{750}$$

$$\frac{14}{750} = \frac{14}{750}$$

$$\mathbf{0} = \mathbf{0}$$

4.) Rovnosť platí.

Súhrn výsledkov

1 / E	$I_{R_3} = 0.13768A$ $U_{R_3} = 13.768V$
2 / D	$I_{R_3} = 0.1059A$ $U_{R_3} = 21.1765V$
3 / A	$I_{R_3} = 0.1575A$ $U_{R_3} = 102.3616V$
4 / E	$\varphi_{C_2} = 144^{\circ}53'49,32'' U_{C_2} = 67,424V$
5 / D	$u_C(t) = 14 - 8 \cdot e^{-\frac{1}{750} \cdot t}$