

Random Variables

The outcomes of random experiments may be numerical or non-numerical in nature. For example, the number of telephone calls received in a board in 1 h is numerical in nature, while the result of a coin tossing experiment in which 2 coins are tossed at a time is non-numerical in nature. As it is often useful to describe the outcome of a random experiment by a number, we will assign a number to each non-numerical outcome of the experiment. For example, in the 2 coins tossing experiment we could assign the value 0 to the outcome of getting 2 tails, 1 to the outcome of getting 1 head and 1 tail and 2 to the outcome of getting 2 heads. Thus in any experimental situation we can assign a real number x to every element s of the sample space s. That is, the function s is called the random variable associated with the concerned experiment. A formal definition may be given as follows.

Definition: A random variable (abbreviatively RV) is a function that assigns a real number X(s) to every element $s \in S$, where S is the sample space corresponding to a random experiment E.)

Note Although we are expected to perform the random experiment E, we observe the outcome $s \in S$ and then evaluate X(s) [i.e., assign a real number x to X(s)], the number x = X(s) itself can be thought of as the outcome of the experiment and R_x as the sample space of the experiment. In this sense, we will hereafter talk about a random variable X taking the value x and P(X = x). Actually, $P(X = x) = P\{s: X(s) = x\}$.

Hereafter, R_r will be referred to as **Range space**.

Similarly $\{X \le x\}$ represents the subset $\{s: X(s) \le x\}$ and hence an event associated with the experiment.

Discrete Random Variable

If *X* is a random variable (RV) which can take a finite number or countably infinite number of values, *X* is called a discrete RV. When the RV is discrete, the possible

values of X may be assumed as $x_1, x_2, ..., x_n, ...$ In the finite case, the list of values terminates and in the countably infinite case, the list goes upto infinity.

For example, the number shown when a die is thrown and the number of alpha particles emitted by a radioactive source are discrete RVs.

Probability Function

If *X* is a discrete RV which can take the values x_1, x_2, x_3, \ldots such that $P(X = x_i) = p_i$, then p_i is called the *probability function or probability mass function or point probability function*, provided p_i ($i = 1, 2, 3, \ldots$) satisfy the following conditions:

(i)
$$p_i \ge 0$$
, for all i, and

(ii)
$$\sum_{i} p_i = 1$$

The collection of pairs $\{x_i, p_i\}$, i = 1, 2, 3, ..., is called the probability distribution of the RV X, which is sometimes displayed in the form of a table as given below:

$X = x_i$	$P(X = x_i)$
x_1	p_1
x_2	p_2
:	÷
x_r	p_r
:	:

Continuous Random Variable

If *X* is an RV which can take all values (i.e., *infinite number* of values) in an interval, then *X* is called a *continuous* RV.

For example, the length of time during which a vacuum tube installed in a circuit functions is a continuous RV.

Probability Density Function

If X is a continuous RV such that

$$P\left\{x - \frac{1}{2} dx \le X \le x + \frac{1}{2} dx\right\} = f(x)dx$$

then f(x) is called the *probability density function* (shortly denoted as pdf) of X, provided f(x) satisfies the following conditions:

(i)
$$f(x) \ge 0$$
, for all $x \in R_x$, and

(ii)
$$\int_{R_x} f(x) dx = 1$$

Moreover, $P(a \le X \le b)$ or P(a < X < b) is defined as

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx.$$

The curve y = f(x) is called the *probability curve of the* RV *X*.

Note When X is a continuous RV

$$P(X = a) = P(a \le X \le a) = \int_{a}^{a} f(x) dx = 0$$

This means that it is almost impossible that a continuous RV assumes a specific value. Hence $P(a \le X \le b) = P(a \le X \le b) = P(a < X \le b) = P(a < X \le b)$.

Cumulative Distribution Function (cdf)

If X is an RV, discrete or continuous, then $P(X \le x)$ is called the *cumulative* distribution function of X or distribution function of X and denoted as F(x). If X is discrete,

$$F(x) = \sum_{\substack{j \\ X_i \le x}} p_j$$

If X is continuous,

$$F(x) = P(-\infty < X \le x) = \int_{-\infty}^{x} f(x) dx$$

Properties of the *cdf* F(x)

- 1. F(x) is a non-decreasing function of x, i.e., if $x_1 < x_2$, then $F(x_1) \le F(x_2)$.
- 2. $F(-\infty) = 0$ and $F(\infty) = 1$.
- 3. If *X* is a discrete RV taking values $x_1, x_2, ...,$ where $x_1 < x_2 < x_3 < ... < x_{i-1} < x_i < ...,$ then $P(X = x_i) = F(x_i) F(x_{i-1})$.
- 4. If *X* is a continuous RV, then $\frac{d}{dx}F(x) = f(x)$, at all points where F(x) is differentiable.

Note Although we may talk of probability distribution of a continuous RV, it cannot be represented by a table as in the case of a discrete RV. The probability distribution of a continuous RV is said to be known, if either its pdf or cdf is given.

Special Distributions

The probability mass functions of some discrete RVs and the probability density functions of some continuous RVs, which are of frequent applications, are as follows:

Discrete Distributions

1. If the discrete RV X can take the values 0, 1, 2, ..., n, such that $P(X = i) = nC_i p^i q^{n-i}$, i = 0, 1, ..., n, where p + q = 1, then X is said to follow a binomial distribution with parameters n and p, which is denoted a B(n, p).

The **McGraw·Hill** Companies

36 Probability, Statistics and Random Processes

- 2. If the discrete RV X can take the values 0, 1, 2, ..., such that $P(x = i) = \frac{e^{-\lambda} \lambda^i}{i!}$, i = 0, 1, 2, K, then X is said to follow a Poisson distribution with parameter λ .
- 3. If the discrete RV X can take the values 0, 1, 2, ..., such that $P(X = i) = (n + i 1)C_i p^n q^i$, i = 0, 1, 2, ..., where p + q = 1, then X is said to follow a *Pascal (or negative binomial) distribution* with parameter n.
- 4. A Pascal distribution with parameter 1 [i.e., $P(X = i) = pq^i$, i = 0, 1, 2, ... and p + q = 1] is called a *geometric distribution*.

Continuous Distributions

- 5. If the pdf of a continuous RV X is $f(x) = \frac{1}{b-a}$ (a constant), $a \le x \le b$, then X follows a *uniform distribution* (or rectangular distribution).
- 6. If the pdf of a continuous RV X is $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$, $-\infty < x < \infty$, then X is said to follow a *normal distribution* (or *Gaussian distribution*) with parameters μ and σ , which will be hereafter denoted as $N(\mu, \sigma)$.
- 7. If the pdf of a continuous RV X is $f(x) = \frac{1}{\lceil (n) \rceil} e^{-x} x^{n-1}$, $0 < x < \infty$ and n > 0, then X follows a *gamma distribution* with parameter n. Gamma distribution is a particular case of *Erlang distribution*, the pdf of which is $f(x) = \frac{c^n}{\lceil (n) \rceil} x^{n-1} e^{-cx}, \ 0 < x < \infty, \ n > 0, \ c > 0.$
- 8. An Erlang distribution with n = 1 [i.e., $f(x) = ce^{-cx}$, $0 < x < \infty$, c > 0] is called an exponential (or negative exponential) distribution with parameter c.
- 9. If the pdf of a continuous RV *X* is $f(x) = \frac{x}{\alpha^2} e^{-x^2/2\alpha^2}$, $0 < x < \infty$, then *X* follows a *Rayleigh distribution* with parameter α .
- 10. If the pdf of a continuous RV X is $f(x) = \frac{\sqrt{2}}{\alpha^3 \sqrt{\pi}} x^2 e^{-x^2/2\alpha^2}$, $0 < x < \infty$, then X follows a *Maxwell distribution* with parameter α .
- 11. If the pdf of a continuous RV X is $f(x) = \frac{1}{2\lambda} e^{-|x-\mu|/\lambda}$, $-\infty < x < \infty$, $\lambda > 0$, then X follows a *Laplace* (or *double exponential*) *distribution* with parameters λ and μ .

12. If the pdf of a continuous RV X is $f(x) = \frac{\alpha}{\pi} \times \frac{1}{x^2 + \alpha^2}$, $\alpha > 0$, $-\infty < x < \infty$

 ∞ , then X follows a Cauchy distribution with parameter a.

Worked Examples 2(A)

Example 1 From a lot containing 25 items, 5 of which are defective, 4 items are chosen at random. If X is the number of defectives found, obtain the probability distribution of X, when the items are chosen (i) without replacement and (ii) with replacement.

Solution Since only 4 items are chosen, X can take the values 0, 1, 2, 3 and 4. The lot contains 20 non-defective and 5 defective items.

Case (i): When the items are chosen without replacement, we can assume that all the 4 items are chosen simultaneously.

P(X = r) = P(choosing exactly r defective items) = P(choosing r defective and (4 - r) good items) $= \frac{5 C_r \times 20 C_{4 - r}}{25 C_4} (r = 0, 1, ..., 4)$

Case (ii): When the items are chosen with replacement, we note that the probability of an item being defective remains the same in each draw.

i.e.,
$$p = \frac{5}{25} = \frac{1}{5}$$
, $q = \frac{4}{5}$ and $n = 4$

The problem is one of performing 4 Bernoulli's trials and finding the probability of exactly *r* successes.

$$P(X=r) = 4C_r \left(\frac{1}{5}\right)^r \left(\frac{4}{5}\right)^{4-r} \ (r=0, 1, ..., 4)$$

Example 2 A shipment of 6 television sets contains 2 defective sets. A hotel makes a random purchase of 3 of the sets. If X is the number of defective sets purchased by the hotel, find the probability distribution of X. (MU - Apr. 96) Solution All the 3 sets are purchased simultaneously. Since there are only 2 defective sets in the lot, X can take the values 0, 1 and 2.

$$P(X = r) = P(\text{choosing exactly } r \text{ defective sets})$$

$$= P[\text{choosing } r \text{ defective and } (3 - r) \text{ good sets}]$$

$$= \frac{2C_r \times 4C_{3-r}}{6C_3} \quad (r = 0, 1, 2)$$

The required probability distribution is represented in the form of the following table.

X = r	p_r
0	1/5
1	3/5
2	1/5
Total	1

Example 3 A random variable X may assume 4 values with probabilities (1 + 3x)/4, (1 - x)/4, (1 + 2x)/4 and (1 - 4x)/4. Find the condition on x so that these values represent the probability function of X?

Solution
$$P(X = x_1) = p_1 = (1 + 3x)/4; p_2 = (1 - x)/4;$$

 $p_3 = (1 + 2x)/4; p_4 = (1 - 4x)/4$

If the given probabilities represent a probability function, each $p_i \ge 0$ and

$$\sum_{i} p_i = 1.$$

In this problem, $p_1 + p_2 + p_3 + p_4 = 1$, for any x.

But $p_1 \ge 0$, if $x \ge -1/3$; $p_2 \ge 0$, if $x \le 1$; $p_3 \ge 0$, if $x \ge -1/2$ and $p_4 \ge 0$, if $x \le 1/4$.

Therefore, the values of x for which a probability function is defined lie in the range $-1/3 \le x \le 1/4$.

Example 4 If the random variable X takes the values 1, 2, 3 and 4 such that 2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4), find the probability distribution and cumulative distribution function of X.

Solution Let
$$P(X = 3) = 30K$$
. Since $2P(X = 1) = 30K$, $P(X = 1) = 15K$.

Similarly
$$P(X = 2) = 10K$$
 and $P(X = 4) = 6K$.

Since S
$$p_i = 1$$
, $15K + 10K + 30K + 6K = 1$.

$$\therefore K = \frac{1}{61}$$

The probability distribution of *X* is given in the following table:

X =	i i	1	2	3	4
p_i		$\frac{15}{61}$	$\frac{10}{61}$	$\frac{30}{61}$	$\frac{6}{61}$

The cdf F(x) is defined as $F(x) = P(X \le x)$. Accordingly the cdf for the above distribution is found out as follows:

When
$$x < 1$$
, $F(x) = 0$

When
$$1 \le x < 2$$
, $F(x) = P(X = 1) = \frac{15}{61}$

When
$$2 \le x < 3$$
, $F(x) = P(X = 1) + P(X = 2) = \frac{25}{61}$

When
$$3 \le x < 4$$
, $F(x) = P(X = 1) + P(X = 2) + P(X = 3) = \frac{55}{61}$

When
$$x \ge 4$$
, $F(x) = P(x = 1) + P(x = 2) + P(x = 3) + P(x = 4) = 1$.

Example 5 A random variable X has the following probability distribution.

$$x:$$
 -2 -1 0 1 2 3 $p(x):$ 0.1 K 0.2 $2K$ 0.3 $3K$

(a) Find K, (b) Evaluate P(X < 2) and P(-2 < X < 2), (c) find the cdf of X and (d) evaluate the mean of X. (BU — Apr. 96)

Solution (a) Since S P(x) = 1, 6K + 0.6 = 1

$$\therefore K = \frac{1}{15}$$

: the probability distribution becomes

$$x$$
: -2 -1 0 1 2 3
 $p(x)$: $1/10$ $1/15$ $1/5$ $2/15$ $3/10$ $1/5$
(b) $P(X < 2) = P(X = -2, -1, 0 \text{ or } 1)$
 $= P(X = -2) + P(X = -1) + P(X = 0) + P(X = 1)$

[since the events (X = -2), (X = -1) etc. are mutually exclusive]

$$= \frac{1}{10} + \frac{1}{15} + \frac{1}{5} + \frac{2}{15} = \frac{1}{2}$$

$$P(-2 < X < 2) = P(X = -1, 0 \text{ or } 1)$$

$$= P(X = -1) + P(X = 0) + P(X = 1)$$

$$= \frac{1}{15} + \frac{1}{5} + \frac{2}{15} = \frac{2}{5}$$

(c) F(x) = 0, when x < -2 $= \frac{1}{10}$, when $-2 \le x < -1$ $= \frac{1}{6}$, when $-1 \le x < 0$ $= \frac{11}{30}$, when $0 \le x < 1$ $= \frac{1}{2}$, when $1 \le x < 2$ $= \frac{4}{5}$, when $2 \le x < 3$ = 1, when $3 \le x$

(d) The mean of *X* is defined as $E(X) = \sum xp(x)$ (refer to Chapter 4)

$$\therefore \qquad \text{Mean of } X = \left(-2 \times \frac{1}{10}\right) + \left(-1 \times \frac{1}{15}\right) + \left(0 \times \frac{1}{5}\right) + \left(1 \times \frac{2}{15}\right) + \left(2 \times \frac{3}{10}\right) + \left(3 \times \frac{1}{5}\right) + \left($$

Example 6 The probability function of an infinite discrete distribution is given by $P(X = j) = 1/2^j$ ($j = 1, 2, ..., \infty$). Verify that the total probability is 1 and find the mean and variance of the distribution. Find also P(X is even), $P(X \le 5)$ and P(X is divisible by 3).

The McGraw·Hill Companies

40 Probability, Statistics and Random Processes

Solution Let $P(X = j) = p_j$

$$\sum_{j=1}^{\infty} p_j = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots \infty$$
, that is a geometric series.

$$=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1$$

The mean of *X* is defined as $E(X) = \sum_{j=1}^{\infty} jp_j$ (refer to Chapter 4).

$$E(X) = a + 2a^{2} + 3a^{3} + \dots \infty, \text{ where } a = \frac{1}{2}$$

$$= a(1 + 2a + 3a^{2} + \dots \infty)$$

$$= a(1 - a)^{-2} = \frac{\frac{1}{2}}{\left(\frac{1}{2}\right)^{2}} = 2$$

The variance of *X* is defined as $V(X) = E(X^2) - [E(X)]^2$,

where $E(X^2) = \sum_{j=1}^{\infty} j^2 p^j$ (refer to Chapter 4).

$$E(X^2) = \sum_{j=1}^{\infty} j^2 a^j, \text{ where } a = \frac{1}{2}$$

$$= \sum_{j=1}^{\infty} [j(j+1) - j]a^{j} = \sum_{j=1}^{\infty} j(j+1)a^{j} - \sum_{j=1}^{\infty} ja^{j}$$

$$= a (1.2 + 2.3a + 3.4a^{2} + \dots \infty) - a(1 + 2a + 3a^{2} + \dots \infty)$$

$$= a \times 2 (1 - a)^{3} - a \times (1 - a)^{-2}$$

$$= \frac{2a}{(1 - a)^{3}} - \frac{a}{(1 - a)^{2}} = 8 - 2 = 6$$

$$V(X) = E(X^2) - \{E(X)\}^2 = 6 - 4 = 2$$

P(X is even) = P(X = 2 or X = 4 or X = 6 or etc.)

$$P(X = 2) + P(X = 4) + ... + \infty$$

(since the events are mutually exclusive)

$$= \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{4} + \left(\frac{1}{2}\right)^{6} + \dots + \infty$$

$$= \frac{\frac{1}{4}}{1 - \frac{1}{4}} = \frac{1}{3}$$

$$P(X \ge 5) = P(X = 5 \text{ or } X = 6 \text{ or } X = 7 \text{ or etc.})$$

$$= P(X = 5) + P(X = 6) + \dots + \infty$$

$$= \frac{\frac{1}{2^{5}}}{1 - \frac{1}{2}} = \frac{1}{16}$$

$$P(X \text{ is divisible by } 3) = P(X = 3 \text{ or } X = 6 \text{ or } X = 9 \text{ etc.})$$

$$= P(X = 3) + P(X = 6) + \dots + \infty$$

$$= \left(\frac{1}{2}\right)^{3} + \left(\frac{1}{2}\right)^{6} + \left(\frac{1}{2}\right)^{9} + \dots + \infty$$

$$= \frac{\frac{1}{8}}{1 - \frac{1}{8}} = \frac{1}{7}$$

Example 7 A random variable X has the following probability distribution.

Find (i) the value of K, (ii) P(1.5 < X < 4.5/X > 2) and (iii) the smallest value of λ for which $P(X \le \lambda) > 1/2$.

Solution $\sum p(x) = 1$

$$\therefore 10K^2 + 9K = 1$$
 i.e., $(10K - 1)(K + 1) = 0$

$$\therefore K = \frac{1}{10} \text{ or } -1.$$

The value K = -1 makes some values of p(x) negative, which is meaningless.

$$\therefore K = \frac{1}{10}$$

The actual distribution is given below:

$$x$$
 : 0 1 2 3 4 5 6 7
 $p(x)$: 0 $\frac{1}{10}$ $\frac{2}{10}$ $\frac{2}{10}$ $\frac{3}{10}$ $\frac{1}{100}$ $\frac{2}{100}$ $\frac{17}{100}$

The McGraw·Hill Companies

42 Probability, Statistics and Random Processes

(i)
$$P(1.5 < X < 4.5 / X > 2) = P(A/B)$$
, say

$$= \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P[(1.5 < X < 4.5) \cap (X > 2)]}{P(X > 2)}$$

$$= \frac{P(X = 3) + P(X = 4)}{\sum_{r=3}^{7} (X = r)} = \frac{\frac{5}{10}}{\frac{7}{10}} = \frac{5}{7}$$

(ii) By trials,
$$P(X \le 0) = 0$$
; $P(X \le 1) = \frac{1}{10}$; $P(X \le 2) = \frac{3}{10}$
 $P(X \le 3) = \frac{5}{10}$; $P(X \le 4) = \frac{8}{10}$

Therefore, the smallest value of λ satisfying the condition $P(X \le l) > 1/2$ is 4.

Example 8 If
$$p(x) = \begin{cases} x e^{-x^2/2} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

- (a) show that p(x) is a pdf (of a continuous RV X.)
- (b) find its distribution function P(x).

(BU - Nov. 96)

Solution (a) If p(x) is to be a pdf, $p(x) \ge 0$ and

$$\int_{R_X} p(x) \, \mathrm{d}x = 1$$

Obviously, $p(x) = xe^{-x^2/2}$ 0, when $x \ge 0$

Now
$$\int_{0}^{\infty} p(x)dx = \int_{0}^{\infty} xe^{-x^{2}/2} dx = \int_{0}^{\infty} e^{-t} dt$$
 (putting $t = x^{2}/2$) = 1

 \therefore p(x) is a legitimate pdf of a RV X.

$$F(x) = P(X \le x) = \int_{0}^{x} f(x) dx$$

$$\therefore \qquad F(x) = 0, \text{ when } x < 0$$
and
$$F(x) = \int_{0}^{x} xe^{-x^{2}/2} dx = 1 - e^{-x^{2}/2}, \text{ when } x \ge 0.$$

Example 9 If the density function of a continuous RV X is given by

$$f(x) = ax, 0 \le x \le 1$$

= a, $1 \le x \le 2$
= $3a - ax$, $2 \le x \le 3$
= 0, $elsewhere$

- (i) find the value of a
- (ii) find the cdf of X
- (iii) If x_1 , x_2 and x_3 are 3 independent observations of X, what is the probability that exactly one of these 3 is greater than 1.5?

Solution (i) Since
$$f(x)$$
 is a pdf, $\int_{R_{-}} f(x)dx = 1$

i.e.,
$$\int_{0}^{3} f(x)dx = 1$$
i.e.,
$$\int_{0}^{1} axdx + \int_{1}^{2} adx + \int_{2}^{3} (3a - ax)dx = 1$$
i.e.,
$$2a = 1$$

$$\therefore \qquad a = \frac{1}{2}$$

(ii) $F(x) = P(X \le x) = 0$, when x < 0

$$F(x) = \int_{0}^{x} \frac{x}{2} dx = \frac{x^{2}}{4}, \text{ when } 0 \le x \le 1$$

$$= \int_{0}^{1} \frac{x}{2} dx + \int_{1}^{x} \frac{1}{2} dx = \frac{x}{2} - \frac{1}{4} \text{ when } 1 \le x \le 2$$

$$= \int_{0}^{1} \frac{x}{2} dx + \int_{0}^{1} \frac{1}{2} dx + \int_{2}^{x} \left(\frac{3}{2} - \frac{x}{2}\right) dx$$

$$= \frac{3}{2} x - \frac{x^{2}}{4} - \frac{5}{4}, \text{ when } 2 \le x \le 3$$

$$= 1, \text{ when } x > 3$$

(iii)
$$p(X > 1.5) = \int_{1.5}^{3} f(x) dx$$

= $\int_{1.5}^{2} \frac{1}{2} dx + \int_{2}^{3} \left(\frac{3}{2} - \frac{x}{2}\right) dx = \frac{1}{2}$

Choosing an X and observing its value can be considered as a trial and (X > 1.5) can be considered a success.

$$p = 1/2, q = 1/2$$

As we choose 3 independent observations of X, n = 3.

By Bernoulli's theorem,

P(exactly one value > 1.5)

$$= P(1 \text{ success}) = 3C_1 \times (p)^1 \times (q)^2 = \frac{3}{8}$$

Example 10 A continuous RV X that can assume any value between x = 2 and x = 5 has a density function given by f(x) = k(1 + x). Find P(X < 4).

(MU — Apr. 96)

Solution By the property of pdf,

 $\int_{R_x} f(x) dx = 1. X \text{ takes values between 2 and 5.}$

$$\int_{2}^{5} k(1+x) \mathrm{d}x = 1$$

i.e.,
$$\frac{27}{2} k = 1$$

$$\therefore \qquad k = \frac{2}{27}$$

Now
$$p(X < 4) = p(2 < X < 4) = \int_{2}^{4} k(1 + x) dx = \frac{16}{27}$$

Example 11 A continuous RV X has a $pdf f(x) = kx^2 e^{-x}$; $x \ge 0$. Find k, mean and variance. (MKU — Apr. 97)

Solution By the property of pdf,

$$\int_{0}^{\infty} kx^2 e^{-x} dx = 1$$

i.e.,
$$2k$$

$$\therefore \qquad k = \frac{1}{2}$$

Mean of *X* is defined as

$$E(X) = \int_{R_x} x f(x) dx$$

(refer to Chapter 4)

Variance of \bar{X} is defined as

$$V(X) = E(X^2) - \{E(X)\}^2,$$

where $E(X^2) = \int_{R_x} x^2 f(x) dx$ (refer to Chapter 4)

$$E(X) = \frac{1}{2} \int_{0}^{\infty} x^{3} e^{-x} dx$$

$$= \frac{1}{2} \left[x^{3} (-e^{-x}) - 3x^{2} (e^{-x}) + 6x (-e^{-x}) - 6(e^{-x}) \right]_{0}^{\infty}$$

$$= \frac{3}{2} \left[x^{3} (-e^{-x}) - 3x^{2} (e^{-x}) + 6x (-e^{-x}) - 6(e^{-x}) \right]_{0}^{\infty}$$

$$E(X^{2}) = \frac{1}{2} \int_{0}^{\infty} x^{4} e^{-x} dx$$

$$= \frac{1}{2} \left[x^{4} (-e^{-x}) - 4x^{3} (e^{-x}) + 12x^{2} (-e^{-x}) - 24x(e^{-x}) + 24(-e^{-x}) \right]_{0}^{\infty}$$

$$= 12$$

$$V(X) = E(X^{2}) - \{E(X)\}^{2} = 3$$

Example 12 The probability that a person will die in the time interval (t_1, t_2) is given by

$$p(t_1 \le t \le t_2) = \int_{t_1}^{t_2} a(t)dt.$$

Solution The function a(t) is determined from long records and can be assumed to be

$$a(t) = \begin{cases} 3 \times 10^{-9} t^2 (100 - t)^2 & 0 \le t \le 100 \\ 0 & \text{elsewhere} \end{cases}$$

Determine (i) the probability that a person will die between the ages 60 and 70 and (ii) the probability that he will die between those ages, assuming he lived upto 60. (MSU — Apr. 96)

(i)
$$P(60 < t < 70) = \int_{60}^{70} a(t)dt$$

$$= 3 \times 10^{-9} \int_{60}^{70} t^{2}(100 - t)^{2}dt$$

$$= 0.1544$$
(ii) $P(60 < t < 70/t \ge 60) = P(60 < t < 70/60 \le t \le 100)$

$$= \frac{P(60 < t < 70)}{P(60 < t < 100)}$$

$$= \int_{60}^{70} a(t)dt / \int_{60}^{100} a(t)dt$$

$$= \frac{0.15436}{0.31744} = 0.4863$$

Example 13 A continuous RV has a pdf $f(x) = 3x^2$, $0 \le x \le 1$. Find a and b such that

(i)
$$P(X \le a) = P(X > a)$$
 and
(ii) $P(X > b) = 0.05$ (BDU — Nov. 96)

Solution

(i)
$$P(X \le a) = P(X > a)$$

$$\therefore \qquad \int_{0}^{a} 3x^{2} dx = \int_{a}^{1} 3x^{2} dx$$
i.e.,
$$a^{3} = 1 - a^{3}$$
i.e.,
$$a^{3} = \frac{1}{2}$$

$$\therefore \qquad a = 0.7937$$

(ii)
$$P(X > b) = 0.05$$

$$\int_{b}^{1} 3x^2 \mathrm{d}x = 0.05$$

i.e.,
$$b^3 = 95$$

 $\therefore b = 0.9830$

Example 14 The distribution function of a RV X is given by $F(x) = I - (1 + x)e^{-x}$, $x \ge 0$. Find the density function, mean and variance of X. (MKU — Nov. 96) Solution By the property of F(x), the pdf f(x) is given by f(x) = F'(x) at points of continuity of F(x).

The given cdf is continuous for $x \ge 0$.

$$f(x) = (1+x)e^{-x} - e^{-x} = xe^{-x}, x \ge 0$$

$$E(X) = \int_{0}^{\infty} x^{2}e^{-x}dx = 2$$

$$E(X^{2}) = \int_{0}^{\infty} x^{3}e^{-x}dx = 6$$

$$V(X) = E(X^{2}) - [E(X)]^{2} = 2$$

Example 15 The cdf of a continuous RV X is given by

$$F(x) = 0, x < 0$$

$$= x^{2}, 0 \le x < \frac{1}{2}$$

$$= 1 - \frac{3}{25} (3 - x)^{2}, \frac{1}{2} \ge x < 3$$

$$= 1, x \ge 3$$

Find the pdf of X and evaluate $P(|X| \le 1)$ and $P(\frac{1}{3} \le X < 4)$ using both the pdf and cdf.

Solution The points x = 0, 1/2 and 3 are points of continuity

$$f(x) = 0, x < 0$$

$$= 2x, 0 \le x < \frac{1}{2}$$

$$= \frac{6}{25} (3 - x), \frac{1}{2} \le x < 3$$

$$= 0, x^{\frac{3}{3}} 3$$

Although the points x = 1/2, 3 are points of discontinuity for f(x), we may assume

that
$$f\left(\frac{1}{2}\right) = \frac{3}{5}$$
 and $f(3) = 0$.

$$P(|X| \le 1) = p(-1 \le x \le 1)$$

$$= \int_{-1}^{1} f(x) dx = \int_{0}^{1/2} 2x dx + \int_{1/2}^{1} \frac{6}{25} (3 - x) dx \text{ (using property of pdf)}$$

$$= \frac{13}{25}$$

If we use property of cdf

$$P(|X| \le 1) = P(-1 \le x \le 1) = F(1) - F(-1) = \frac{13}{25}$$

If we use the property of pdf

$$P(1/3 \le X < 4) = \int_{1/3}^{1/2} 2x dx + \int_{1/2}^{3} \frac{6}{25} (3 - x) dx = \frac{8}{9}$$

If we use the property of cdf

$$P(1/3 \le X < 4) = F(4) - F\left(\frac{1}{3}\right) = 1 - \frac{1}{9} = \frac{8}{9}.$$

Example 16 If the RV k is uniformly distributed over (0, 5) what is the probability that the roots of the equation $4x^2 + 4kx + (k + 2) = 0$ are real? Solution The RV k is U (0, 5).

Example 17 A point P is taken at random on a line AB of length 2a, all positions of the point being equally likely. Find the probability that the product

$$(AP \times PB) > \frac{a^2}{2}.$$

Solution Let AP = X.

$$\therefore PB = (2a - X)$$

Since all positions of the point P are equally likely, X(=AP) is uniformly distributed over (0, 2a).

$$pdf \text{ of } X = \frac{1}{2a}, 0 < x < 2a$$

$$P[AP \times PB > \frac{a^2}{2}] = P[X(2a - X) > \frac{a^2}{2}]$$

$$= P(2X^2 - 4aX + a^2 < 0)$$

$$= P\left[\left\{X - \left(1 - \frac{1}{\sqrt{2}}\right)a\right\} \left\{X - \left(1 + \frac{1}{\sqrt{2}}\right)a\right\} < 0\right] \text{ [since the factors of }$$

$$(2x^2 - 4ax + a^2) \text{ are } x - \left(1 - \frac{1}{\sqrt{2}}\right)a \text{ and } x - \left(1 + \frac{1}{\sqrt{2}}\right)a\right]$$

$$= P\left[\left(1 - \frac{1}{\sqrt{2}}\right)a < X < \left(1 + \frac{1}{\sqrt{2}}\right)a\right]$$

$$= \int_{\left(1 - \frac{1}{\sqrt{2}}\right)a}^{\left(1 + \frac{1}{\sqrt{2}}\right)a} \left[x\right] = \frac{\sqrt{2} a}{2a} = \frac{1}{\sqrt{2}}$$

Example 18 If the continuous RV. X represents the time of failure of a system, that has been put into operation at t = 0, find the conditional density function of X, given that the system has survived upto time t. Deduce the same when X follows an exponential distribution with parameter λ .

Solution The conditional distribution function of X, subject to the given condition, is given by

$$F(x/X > t) = \frac{P[X \le x \text{ and } X > t]}{P(X > t)} \text{ [since unconditional } F(x) = P(X \le x)]$$
$$= \frac{P[t < X \le x]}{P[t < X < \infty]}$$

$$= \frac{F(x) - F(t)}{1 - F(t)} \text{ for } x > t$$
$$= 0 \text{ for } x < t$$

Therefore, the conditional density function f(x/X > t) is given by

$$f(x/X > t) = \frac{d}{dx} F(x/X > t)$$
$$= \frac{f(x)}{1 - F(t)}, x > t$$

For the exponential distribution with parameter λ ,

$$f(x) = \lambda e^{-\lambda^x}, x > 0$$
, and $F(x) = \int_0^X \lambda e^{-\lambda^x} dx = 1 - e^{-\lambda^x}$.

$$\therefore f(x/X > t) = \frac{\lambda e^{-\lambda x}}{e^{-\lambda t}} = \lambda e^{-\lambda(x-t)} = f(x-t)$$

Example 19 If f(t) is the unconditional density of the time of failure of a system and h(t) is the hazard rate (or conditional failure rate or conditional density of T, given T > t) find f(t) in terms of h(t). Deduce that T follows a Rayleigh distribution, when h(t) = t.

Solution The conditional density of T, given T > t or the hazard rate, is given by h(t) = f(t/T > t)

$$=\frac{f(t)}{1-F(t)}=\frac{F'(t)}{1-F(t)}$$

$$\therefore \int_0^t h(t) dt = \int_0^t \frac{F'(t)}{1 - F(t)} dt$$

$$= [-\log \{1 - F(t)\}]_0^t$$

 $= [-\log \{1 - F(t)\}]_0^t$ $= -\log \{1 - F(t)\} [\text{since } F(0) = P(T \le 0) = 0 \text{ as the system was put into operation}$

$$F(t) = 1 - e^{-\int_{0}^{t} h(t) dt}$$

$$f(t) = h(t) \times e^{-\int_{0}^{t} h(t) dt}$$

When
$$h(t) = t$$
,

$$f(t) = t \times e^{-\int_{0}^{t} t dt}$$

= $te^{-t^2/2}$, which is the pdf of a Raleigh distribution

Example 20 If a continuous RV X follows N(0, 2), find $P\{1 \le X \le 2\}$ and $P\{1 \le X \le 2/X \ge 1\}$.

Solution *X* follows N(0, 2), the density function of which is $f(x) = \frac{1}{2\sqrt{2\pi}} e^{-x^2/8}$,

 $-\infty < x < \infty$.

$$P\{1 \le X \le 2\} = \int_{1}^{2} f(x) dx$$
$$= \int_{0.5}^{1} \phi(t) dt, \text{ putting } t = \frac{x}{2}$$

where ϕ (t) is the standard normal density.

$$= \int_{0}^{1} \phi(t)dt - \int_{0}^{0.5} \phi(t)dt$$

$$= 0.3413 - 0.1915 \text{ (from the normal tables)}$$

$$= 0.1498$$

$$P\{1 \le X \le 2/X \ge 1\} = \frac{P\{(1 \le X \le 2) \text{ and } X \ge 1\}}{P\{X \ge 1\}}$$

$$= \frac{P\{1 \le X \le 2\}}{P\{1 \le X < \infty\}}$$

$$= \frac{0.1498}{\int_{0}^{\infty} \phi(t) dt - \int_{0}^{\infty} \phi(t) dt}$$

Exercise 2 (A)

Part A (Short answer questions)

- 1. Define a RV with an example.
- 2. Define a discrete RV with an example.
- 3. Define a continuous RV and give an example for the same.
- 4. Distinguish between a discrete RV and a continuous RV.
- 5. Define the probability mass function of a discrete RV.

 $=\frac{0.1498}{0.5-0.1915}=0.4856.$

- 6. Write down the probability distribution of the outcome when 2 fair dice are tossed.
- 7. Define the pdf of a continuous RV.
- 8. State the properties of the pdf of a continuous RV.
- 9. What is the probability curve of a continuous RV? Give an example.

- 10. Prove that it is almost impossible that a continuous RV assumes a specific value. (OR) If X is a continuous RV prove that P(X = a) = 0.
- 11. If *X* represents the total number of heads obtained, when a fair coin is tossed 5 times, find the probability distribution of *X*.
- 12. If the probability distribution of *X* is given as:

x: 1 2 3 4

$$p_x$$
: 0.4 0.3 0.2 0.1
find $P\left(\frac{1}{2} < X < \frac{7}{2} / X > 1\right)$

- 13. Define the cdf of a RV. Explain how to find it for both kinds of RV.
- 14. Differentiate between the pdf and cdf of a RV.
- 15. State the properties of the cdf of a RV.
- 16. Verify whether $f(x) = \begin{cases} |x| & \text{in } -1 \le x \le 1 \\ 0, & \text{elsewhere} \end{cases}$

can be the pdf of a continuous RV.

- 17. If $f(x) = kx^2$, 0 < x < 3, is to be a density function, find the value of k.
- 18. If the pdf of a RV X is given by

$$f(x) = \begin{cases} 1/4 & \text{in } -2 < x < 2 \\ 0, & \text{elsewhere} \end{cases}$$

find $P\{|X| > 1\}$.

19. Find the value of k, if $f(x) = \begin{cases} k x e^{-x} & x > 0 \\ 0 & \text{elsewhere} \end{cases}$

is the pdf of a RV X.

- 20. If the pdf of a RV *X* is $f(x) = \frac{x}{2}$ in $0 \le x \le 2$, find P(X > 1.5/X > 1).
- 21. The RV X has the following probability distribution:

$$x: -2 -1 0 1$$

 $p_x: 0.4 k 0.2 0.3$

find k and the mean value of X.

- 22. If *X* represents the outcome of the toss of a 6 faced dice, find $P(X \le x)$ as a function of *x*.
- 23. If the pdf of a RV X is f(x) = 2x, 0 < x < 1, find the cdf of X.
- 24. If the cdf of a RV X is given by $f(x) = 1 e^{-lx}$, when $x \ge 0$ and $x \ge 0$, when $x \le 0$, find the pdf of X.
- 25. If the cdf of a RV is given by F(x) = 0, for x < 0; = $x^2/16$ for $0 \le x < 4$ and = 1, for $4 \le x$, find P(X > 1/X < 3).
- 26. Define binomial distribution. What are its mean and variance?
- 27. Give the probability law of Poisson distribution and also its mean and variance.
- 28. Define the exponential distribution.
- 29. If X follows an exponential distribution with parameter 1, find P(|X| < 1).

The McGraw·Hill Companies

52 Probability, Statistics and Random Processes

- Define Pascal distribution and define geometric distribution as a particular case of Pascal distribution.
- Write down the pdf's of general normal distribution and standard normal distribution.
- 32. Define Erlang distribution. Deduce Gamma distribution as a particular case of Erlang distribution.
- 33. Deduce the pdf of an exponential distribution as a particular case of that of Erlang distribution.
- 34. Give the pdf of Raleigh distribution.
- 35. Define Maxwell distribution.
- 36. Write down the pdf of Laplace distribution.
- 37. Define Cauchy distribution.

Part B

- 38. Find the formula for the probability distribution of the number of heads, when a fair coin is tossed 4 times. (MU Nov. 96)
- 39. A coin is known to come up heads 3 times as often as tails. This coin is tossed 3 times. Write down the probability distribution of the number of heads that appear and also the cdf. Make a sketch of both.
- 40. Consider the experiment of tossing a coin, the 2 events of the space being occurrence of head of tail. Assign probabilities p and q for head and tail respectively and define a random variable X by X(h) = 1 and x(t) = 0. Determine and plot the probability function f(x) and the distribution function F(x). (MSU Apr. 96)
- 41. Two dice are tossed. If *X* is the sum of the numbers shown up, find the probability mass function of *X*.
- 42. Consider the experiment of tossing a fair coin 4 times. Define X = 0, if 0 or 1 head appears; X = 1, if 2 heads appear; X = 2, if 3 or 4 heads appear. Find the probability function, mean and variance of X.
- 43. A discrete RV *X* has the following probability distribution. 8 0 1 2 3 4 5 6 x: p(x): a 3a5*a* 7*a* 9a11*a* 13*a* 15*a* 17*a* Find the value of a, P(X < 3), variance and distribution function of X. (MKU — Apr. 97)
- 44. The probability distribution of a RV *X* is given below:

$$x$$
: 0 1 2 3 $p(x)$: 0.1 0.3 0.5 0.1

If $Y = X^2 + 2X$, find the probability distribution, mean and variance of Y.

45. The probability mass function of a RV *X* is defined as $P(X = 0) = 3C^2$, $P(X = 1) = 4C - 10C^2$ and P(X = 2) = 5C - 1, where C > 0 and P(X = r) = 0, if $r \ne 0, 1, 2$.

(i) Find the value of C, (ii) Find $P\{0 < X < 2/X > 0\}$, (iii) the distribution

function of X, (iv) the largest value of X for which $F(x) < \frac{1}{2}$ and (v) the

smallest value of *X* for which $F(x) > \frac{1}{2}$.

- 46. If the probability mass function of a RV X is given by $P(X = r) = kr^3$; r = 1, 2, 3, 4, find (i) the value of k (ii) P(1/2 < X < 5/2 / X > 1), (iii) the mean and variance of X and (iv) the distribution function of X.
- 47. Find the values of a for which $P(x = j) = (1 a)a^j$, j = 0, 1, 2, K represents a probability mass function. Show also that for any 2 positive integers m and n

$$P(X > m + n/X > m) = P(X \ge n).$$

- 48. If a discrete probability distribution is given by $P(X = r) = k(1 a)^{r-1}$, 0 < a < 1, for $r = 1, 2, ..., \infty$, find the value of k and also the mean and variance of X.
- 49. If the probability distribution of a discrete RV X is given by $P(X = x) = ke^{-t} (1 e^{-t})^{x-1}$, $x = 1, 2, ..., \infty$, find the value of k and also the mean and variance of X.
- 50. In a continuous distribution, the probability density is given by f(x) = kx(2-x), 0 < x < 2. Find k, mean, variance and the distribution function. (MKU Nov. 96)
- 51. The diameter of an electric cable *X* is a continuous RV with pdf f(x) = kx(1-x), $0 \le x \le 1$. Find (i) the value of *k*, (ii) cdf of *X*, (iii) the value of *a* such that P(X < a) = 2P(X > a) and (iv) $P(X \le 1/2 / 1/3 < X < 2/3)$.
- 52. *X* is a continuous RV with pdf given by f(x) = kx, in $0 \le x \le 2$; = 2k, in $2 \le x \le 4$, and = 6k kx, in $4 \le x \le 6$. Find the value of k and k
- 53. The continuous RV X has pdf $f(x) = \frac{x}{2}$, $0 \le x \le 2$. Two independent determinations of X are made. What is the probability that both these determinations will be greater than 1? If 3 independent determinations had been made, what is the probability that exactly 2 of these are larger than 1?
- 54. A continuous RVX that can assume values between x = 2 and x = 5 has a density function given by f(x) = 2(1 + x)/27. Find P(3 < X < 4).

(MU — Nov. 96)

- 55. A continuous RV has the pdf $f(x) = kx^4$, -1 < x < 0. Find the value of k and also P(X > -1/2 / X < -1/4).
- 56. Suppose that the life length of a certain radio tube (in hours) is a continuous RV *X* with pdf $f(x) = \frac{100}{x^2}$ x > 100 and x = 0, elsewhere.
 - (a) What is the probability that a tube will last less than 200 h, if it is known that the tube is still functioning after 150 h of service?
 - (b) What is the probability that if 3 such tubes are installed in a set, exactly 1 will have to be replaced after 150 h of service?
 - (c) What is the maximum number of tubes that may be inserted into a set so that there is a probability of 0.1 that after 150 *h* of service all of them are still functioning?

- 57. If the cdf of a continuous RV *X* is given by $F(x) = \frac{1}{2}e^{kx}$, $x \le 0$, and $F(x) = 1 \frac{1}{2}e^{-kx}$, x > 0, find $P(|x| \le 1/k)$. Prove that the density function of *X* is $f(x) = \frac{k}{2}e^{-k|x|} \infty < x < \infty$, given that k > 0.
- 58. If the distribution function of a continuous RV X is given by F(x) = 0, when x < 0; = x, when $0 \le x < 1$ and = 1, when $1 \le x$, find the pdf of X. Also find P(1/3 < X < 1/2) and P(1/2 < X < 2) using the cdf of X.
- 59. A point is chosen on a line of length *a* at random. What is the probability that the ratio of the shorter to the longer segment is less than 1/4?
- 60. If the RV k is uniformly distributed over (1, 7) what is the probability that the roots of the equation $x^2 + 2kx + (2k + 3) = 0$ are real?
- 61. If f(t) is the unconditional density of time to failure T of a system and h(t) is the conditional density of T, given T > t, find h(t) when (i) $f(t) = \lambda e^{-\lambda t}$ (ii) $f(t) = 1^2 t e^{-\lambda t}$, t > 0. Prove also that h(t) is not a density function.
- 62. If the continuous RV X follows N(1000, 20), find
- (i) P(X < 1024), (ii) P(X < 1024 / X > 961) and
- (iii) $P(31 < \sqrt{X} \le 32)$.

Two-Dimensional Random Variables

So far we have considered only the one-dimensional RV, i.e., we have considered such random experiments, the outcome of which had only one characteristic and hence was assigned a single real value. In many situations, we will be interested in recording 2 or more characteristics (numerically) of the outcome of a random experiment. For example, both voltage and current might be of interest in a certain experiment.

Definitions: Let *S* be the sample space associated with a random experiment *E*. Let X = X(s) and Y = Y(s) be two functions each assigning a real number to each outcomes $s \hat{1} S$. Then (X, Y) is called a *two-dimensional random variable*.

If the possible values of (X, Y) are finite or countably infinite, (X, Y) is called a two-dimensional discrete RV. When (X, Y) is a two-dimensional discrete RV the possible values of (X, Y) may be represented as (x_i, y_j) , i = 1, 2, K, m, K; j = 1, 2, ..., n, ...

If (X, Y) can assume all values in a specified region R in the xy-plane, (X, Y) is called a two-dimensional continuous RV.

Probability Function of (X, Y)

If (X, Y) is a two-dimensional discrete RV such that $P(x = x_i, y = y_j) = p_{ij}$, then p_{ij} is called the *probability mass function* or simply the *probability function* of (X, Y) provided the following conditions are satisfied.

(i)
$$p_{ij} \ge 0$$
, for all i and j
 (ii) $\sum \sum_{i} p_{ij} = 1$

The set of triples $\{x_i, y_j, p_{ij}\}$, i = 1, 2, ..., m, ..., j = 1, 2, K, n, ..., is called *the joint probability distribution of* (X, Y).

Joint Probability Density Function

If (X, Y) is a two-dimensional continuous RV such that.

$$P\left\{x - \frac{\mathrm{d}x}{2} \le X \le x + \frac{\mathrm{d}x}{2} \text{ and } y - \frac{\mathrm{d}y}{2} \le Y \le y + \frac{\mathrm{d}y}{2}\right\} = f(x, y) \, \mathrm{d}x \, \mathrm{d}y, \text{ then } f(x, y)$$

is called the joint pdf of (X, Y), provided f(x, y) satisfies the following conditions.

(i) $f(x, y) \ge 0$, for all $(x, y) \in R$, where R is the range space.

(ii)
$$\iint_{R} f(x, y) dx dy = 1.$$

Moreover if D is a subspace of the range space R, $P\{(X, Y) \in D\}$ is defined as

$$P\{(X, Y) \in D\} = \iint_D f(x, y) dx dy$$
. In particular

$$P\{a \le X \le b, c \le Y \le d\} = \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

Cumulative Distribution Function

If (X, Y) is a two-dimensional RV (discrete or continuous), then $F(x, y) = P\{X \le x \text{ and } Y \le y\}$ is called *the cdf of* (X, Y). In the discrete case,

$$F(x, y) = \sum_{j} \sum_{i} p_{ij}$$
$$y_{j} \le y x_{i} \le x$$

In the continuous case,

$$F(x, y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(x, y) dx dy$$

Properties of F(x, y)

(i)
$$F(-\infty, y) = 0 = F(x, -\infty)$$
 and $F(\infty, \infty) = 1$

(ii)
$$P{a < X < b, Y \le y} = F(b, y) - F(a, y)$$

(iii)
$$P{X \le x, c < Y < d} = F(x, d) - F(x, c)$$

(iv)
$$P\{a < X < b, c < Y < d\} = F(b, d) - F(a, d) - F(b, c) + F(a, c)$$

(v) At points of continuity of f(x, y)

$$\frac{\partial^2 F}{\partial x \partial y} = f(x, y)$$

Marginal Probability Distribution

$$P(X = x_i) = P\{(X = x_i \text{ and } Y = y_1) \text{ or } (X = x_i \text{ and } Y = y_2) \text{ or etc.}\}$$

= $p_{i1} + p_{i2} + K = \sum_i p_{ij}$

 $P(X = x_i) = \sum_j p_{ij}$ is called the marginal probability function of X. It is defined

for $X = x_1, x_2, ...$ and denoted as P_{i*} . The collection of pairs $\{x_i, p_{i*}\}, i = 1, 2, 3, ...$ is called the *marginal probability distribution of X*.

Similarly the collection of pairs $\{y_j, p_{*j}\}, j = 1, 2, 3, ...$ is called *the marginal probability distribution of Y*, where $p_{*j} = \sum_{i} P_{ij} = P(Y = y_j)$.

In the continuous case,

$$P\{x - \frac{1}{2} dx \le X \le x + \frac{1}{2} dx, -\infty < Y < \infty\}$$

$$= \int_{-\infty}^{\infty} \int_{x - \frac{1}{2} dx}^{x + \frac{1}{2} dx} f(x, y) dx dy$$

$$= \left[\int_{-\infty}^{\infty} f(x, y) \, dy \right] dx \text{ [since } f(x, y) \text{ may be treated a constant in }$$

$$(x - \frac{1}{2}dx, x + \frac{1}{2}dx)]$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 is called the marginal density of X.

Similarly, $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$ is called the marginal density of Y.

Note $P(a \le X \le b) = P(a \le X \le b, -\infty < Y < \infty)$

$$= \int_{-\infty}^{\infty} \int_{a}^{b} f(x, y) dx dy$$

$$= \int_{a}^{b} \left[\int_{-\infty}^{\infty} f(x, y) dy \right] dx = \int_{a}^{b} f_{X}(x) dx$$

Similarly,
$$P(c \le Y \le d) = \int_{a}^{d} f_Y(y) dy$$

Conditional Probability Distribution

 $P\{X = x_i / Y = y_j\} = \frac{P\{X = x_i | Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{*j}} \text{ is called } the \ conditional \ probability}$

function of X, given that $Y = y_i$.

The collection of pairs, $\left\{x_{i,} \frac{p_{ij}}{p_{*j}}\right\}$ i = 1, 2, 3, ...,

is called the conditional probability distribution of X, given $Y = y_i$.

Similarly, the collection of pairs, $\left\{Y_{j}, \frac{p_{ij}}{p_{i*}}\right\}$, j = 1, 2, 3, ..., is called the *conditional* probability distribution of Y given $X = x_i$. In the continuous case,

$$P\left\{x - \frac{1}{2} dx \le X < x + \frac{1}{2} dx / Y = y\right\}$$

$$= P\left\{x - \frac{1}{2} dx \le X \le x + \frac{1}{2} dx / y - \frac{1}{2} dy \le Y \le y + \frac{1}{2} dy\right\}$$

$$= \frac{f(x, y) dx dy}{f_Y(y) dy} = \left\{\frac{f(x, y)}{f_Y(y)}\right\} dx.$$

 $\frac{f(x, y)}{f_Y(y)}$ is called the conditional density of X, given Y, and is denoted by f(x/y).

Similarly, $\frac{f(x, y)}{f_X(y)}$ is called *the conditional density of Y*, given *X*, and is denoted by f(y/x).

Independent RVs

If (X, Y) is a two-dimensional discrete RV such that $P\{X = x_i/Y = y_j\} = P(X = x_i)$

i.e., $\frac{p_{ij}}{p_{*j}} = p_{i*}$, i.e., $p_{ij} = p_{i*} \times p_{*j}$ for all i, j then X and Y are said to be independent

RVs.

Similarly if (X, Y) is a two-dimensional continuous RV such that $f(x, y) = f_X(x) \times f_Y(y)$, then X and Y are said to be independent RVs.

Random Vectors

Sometimes we may have to be concerned with Random experiments whose outcomes will have 3 or more simultaneous numerical characteristics. To

study the outcomes of such random experiments we require knowledge of n-dimensional random variables or random vectors. For example, the location of a space vehicle in a cartesian co-ordinate system is a three-dimensional random vector.

Most of the concepts introduced above for the two-dimensional case can be extended to the n-dimensional one.

Definitions: A vector $X: [X_1, X_2, ..., X_n]$ whose components X_i are RVs is called a random vector. $(X_1, X_2, ..., X_n)$ can assume all values in some region R_n of the n-dimensional space. R_n is called the *range space*.

The joint distribution function of $(X_1, X_2, ..., X_n)$ is defined as $F(x_1, x_2, ..., x_n) = P[X_1 \le x_1, X_2 \le x_2, ..., X_n \le x_n]$ The joint pdf of $(X_1, X_2, ..., X_n)$ is defined as $f(x_1, x_2, ..., x_n)$

$$= \frac{\partial^n F(x_1, x_2 \cdots x_n)}{\partial x_1 \times \partial x_2 \cdots \partial x_n}$$
 and satisfies the following conditions.

(i)
$$f(x_1, x_2, ..., x_n) \ge 0$$
, for all $(x_1, x_2, ..., x_n)$

(ii)
$$\iiint_{R_n} \cdots \int f(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n = 1$$

(iii)
$$P[(X_1, X_2, ..., X_n) \in D] = \iint_D ... \int f(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n \text{ where } D$$

is a subset of the range space R_n .

The marginal pdf of any subset of the n RVs $X_1, X_2, ..., X_n$ is obtained by "integrating out" the variables not in the subset. For example, if n = 3, then

$$f_{X_1}(x_1) = \int_{0}^{\infty} \int_{0}^{\infty} f(x_1, x_2, x_3) dx_2 dx_3$$
 is the marginal pdf of the one-dimensional

RV
$$X_1$$
 and $f_{X_1, X_2}(x_1, x_2) = \int_{-\infty}^{\infty} f(x_1 x_2 x_3) dx_3$ is the marginal joint pdf of the

two-dimensional RV (X_1, X_2) . The concept of independent RVs is also extended in a natural way. The RVs $(X_1, X_2, ..., X_n)$ are said to be independent, if

$$f(x_1, x_2, ..., x_n) = f_{X_1}(x_1) \cdot f_{X_2}(x_2) \cdot ... f_{X_n}(x_n)$$

The conditional density functions are defined as in the following examples. If n = 3,

$$f(x_1, x_2 / x_3) = \frac{f(x_1, x_2, x_3)}{f_{X_3}(x_3)}$$
 and

$$f(x_1 / x_2, x_3) = \frac{f(x_1, x_2, x_3)}{f_{X_2, X_3}(x_2, x_3)}.$$

Worked Examples 2(B)

Example 1 Three balls are drawn at random without replacement from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls drawn and Y denotes the number of red balls drawn, find the joint probability distribution of (X, Y).

Solution As there are only 2 white balls in the box, X can take the values 0, 1 and 2 and Y can take the values 0, 1, 2 and 3.

$$P(X = 0, Y = 0) = P(\text{drawing 3 balls none of which is white or red})$$

= $P(\text{all the 3 balls drawn are black})$

$$=4C_3/9C_3=\frac{1}{21}$$

$$P(X = 0, Y = 1) = P(\text{drawing 1 red and 2 black balls})$$

$$=\frac{3C_1\times 4C_2}{9C_3}=\frac{3}{14}$$

Similarly,
$$P(X = 0, Y = 2) = \frac{3C_2 \times 4C_1}{9C_3} = \frac{1}{7}$$
; $P(X = 0, Y = 3) = \frac{1}{84}$

$$P(X = 1, Y = 0) = \frac{1}{7}$$
; $P(X = 1, Y = 1) = \frac{2}{7}$; $P(X = 1, Y = 2) = \frac{1}{14}$;

P(X = 1, Y = 3) = 0 (since only 3 balls are drawn)

$$P(X = 2, Y = 0) = \frac{1}{21}$$
; $P(X = 2, Y = 1) = \frac{1}{28}$; $P(X = 2, Y = 2) = 0$;

$$P(X = 2, Y = 3) = 0$$

The joint probability distribution of (X, Y) may be represented in the form of a table as given below:

X	Y			
	0	1	2	3
0	1/21	3 14	$\frac{1}{7}$	1/84
1	$\frac{1}{7}$	$\frac{2}{7}$	1/14	0
2	$\frac{1}{21}$	$\frac{1}{28}$	0	0

Note $Sum\ of\ all\ the\ cell\ probabilities=1.$

Example 2 For the bivariate probability distribution of (X, Y) given below, find $P(X \le 1)$, $P(Y \le 3)$, $P(X \le 1, Y \le 3)$, $P(X \le 1/Y \le 3)$, $P(Y \le 3/X \le 1)$ and $P(X + Y \le 4)$.

Y	1	2	3	4	5	6
0	0	0	1/32	2/32	2/32	3/32
1	1/16	1/16	1/8	1/8	1/8	1/8
2	1/32	1/32	1/64	1/64	0	2/64

Solution
$$P(X \le 1) = P(X = 0) + P(X = 1)$$

$$= \sum_{j=1}^{6} P(X = 0, Y = j) + \sum_{j=1}^{6} P(X = 1, Y = j)$$

$$= \left(0 + 0 + \frac{1}{32} + \frac{2}{32} + \frac{2}{32} + \frac{3}{32}\right) + \left(\frac{1}{16} + \frac{1}{16} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right)$$

$$= \frac{1}{4} + \frac{5}{8} = \frac{7}{8}$$

$$P(Y \le 3) = P(Y = 1) + P(Y = 2) + P(Y = 3)$$

$$= \sum_{i=0}^{2} P(X = i, Y = 1) + \sum_{i=0}^{2} P(X = i, Y = 2)$$

$$+ \sum_{i=0}^{2} P(X = i, Y = 3)$$

$$= \left(0 + \frac{1}{16} + \frac{1}{32}\right) + \left(0 + \frac{1}{16} + \frac{1}{32}\right) + \left(\frac{1}{32} + \frac{1}{8} + \frac{1}{64}\right)$$

$$= \frac{3}{32} + \frac{3}{32} + \frac{11}{64} = \frac{23}{64}$$

$$P(X \le 1, Y \le 3) = \sum_{j=1}^{3} P(X = 0, Y = j) + \sum_{j=1}^{3} P(X = 1, Y = j)$$

$$= \left(0 + 0 + \frac{1}{32}\right) + \left(\frac{1}{16} + \frac{1}{16} + \frac{1}{8}\right) = \frac{9}{32}$$

$$P(X \le 1/Y \le 3) = \frac{P(X \le 1, Y \le 3)}{P(Y \le 3)} = \frac{9/32}{23/64} = \frac{18}{23}$$

$$P(Y \le 3/X \le 1) = \frac{P(X \le 1, Y \le 3)}{P(X \le 1)} = \frac{9/32}{7/8} = \frac{9}{28}$$

$$P(X + Y \le 4) = \sum_{j=1}^{4} P(X = 0, Y = j) + \sum_{j=1}^{3} P(X = 1, Y = j) + \sum_{j=1}^{2} P(X = 2, Y = j)$$
$$= \frac{3}{32} + \frac{1}{4} + \frac{1}{16} = \frac{13}{32}$$

Example 3 The joint probability mass function of (X, Y) is given by p(x, y) = k(2x + 3y), x = 0, 1, 2; y = 1, 2, 3. Find all the marginal and conditional probability distributions. Also find the probability distribution of (X + Y).

Solution The joint probability distribution of (X, Y) is given below. The relevant probabilities have been computed by using the given law.

v	Y		
X	1	2	3
0	3 <i>k</i>	6 <i>k</i>	9 <i>k</i>
1	5 <i>k</i>	8 <i>k</i>	11 <i>k</i>
2	7 <i>k</i>	10 <i>k</i>	13 <i>k</i>

$$\sum_{j=1}^{3} \sum_{i=0}^{2} p(x_i, y_j) = 1$$

i.e., the sum of all the probabilities in the table is equal to 1. i.e., 72k = 1.

$$\therefore \qquad k = \frac{1}{72}$$

Marginal Probability Distribution of X: $\{i, p_{i*}\}$

X = i	$p_{i^*} = \sum_{j=1}^{3} p_{ij}$
0	$p_{01} + p_{02} + p_{03} = \frac{18}{72}$
1	$p_{11} + p_{12} + p_{13} = \frac{24}{72}$
2	$p_{21} + p_{22} + p_{23} = \frac{30}{72}$
	Total = 1

Marginal Probability Distribution of Y: $\{j, p_{*j}\}$

Y = j	$p_{*j} = \sum_{i=1}^{2} p_{ij}$
1	15/72
2	24/72
3	33/72
	Total = 1

Conditional distribution of X, given Y = 1, is given by $\{i, P(X = i/Y = 1)\} = \{i, P(X = i, Y = 1)/P(Y = 1)\} = \{i, p_{i1}/p_{*1}\}, i = 0, 1, 2.$

the tabular representation is given below:

X = i	p_{i1}/p_{*1}
0	$3k/15k = \frac{1}{5}$
1	$5k/15k = \frac{1}{3}$
2	$7k/15k = \frac{7}{15}$
	Total = 1

The other conditional distributions are given below:

C.P.D. of X , given $Y = 2$		
X = i	p_{i2}/p_{*2}	
0	$\frac{6k}{24k} = \frac{1}{4}$	
1	$\frac{8k}{24k} = \frac{1}{3}$	
2	$\frac{10k}{24k} = \frac{5}{12}$	
Total = 1		

C.P.D. of X , given $Y = 3$		
X = i	p_{i3}/p_{*3}	
0	$\frac{9k}{33k} = \frac{3}{11}$	
1	$\frac{11k}{33k} = \frac{1}{3}$	
2	$\frac{13k}{33k} = \frac{13}{33}$	
	Total = 1	

C.P.D. of Y , given $X = 0$		
Y = j	p_{oj}/p_{o*}	
1	$\frac{3k}{18k} = \frac{1}{6}$	
2	$\frac{6k}{18k} = \frac{1}{3}$	
3	$\frac{9k}{18k} = \frac{1}{2}$	
	Total = 1	

C.P.D. of Y , given $X = 1$		
Y = j	p_{Ij}/p_{I*}	
1	$\frac{5k}{24k} = \frac{5}{24}$	
2	$\frac{8k}{24k} = \frac{1}{3}$	
3	$\frac{11k}{24k} = \frac{11}{24}$	
	Total = 1	

C.P.D. of Y , given $X = 2$		
Y = j	p_{2j}/p_{2*}	
1	$\frac{7k}{30k} = \frac{7}{30}$	
2	$\frac{10k}{30k} = \frac{1}{3}$	
3	$\frac{13k}{30k} = \frac{13}{30}$	
	Total = 1	

Probability distribution of $(X + Y)$			
(X + Y)	Р		
1	$p_{01} = \frac{3}{72}$		
2	$p_{02} + p_{11} = \frac{11}{72}$		
3	$p_{03} + p_{12} + p_{21} = \frac{24}{72}$		
4	$p_{13} + p_{22} = \frac{21}{72}$		
5	$p_{23} = \frac{13}{72}$		
	Total = 1		

Example 4 A machine is used for a particular job in the forenoon and for a different job in the afternoon. The joint probability distribution of (X, Y), where X and Y represent the number of times the machine breaks down in the forenoon and in the afternoon respectively, is given in the following table. Examine if X and Y are independent RVs.

X	Y		
	0	1	2
0	0.1	0.04	0.06
1	0.2	0.08	0.12
2	0.2	0.08	0.12

Solution X and Y are independent, if $P_{i^*} \times P_{*j} = P_{ij}$ for all i and j. So, let us find P_{i^*} P_{*j} for all i and j.

The McGraw·Hill Companies

64 Probability, Statistics and Random Processes

$$\begin{split} P_{0*} &= 0.1 + 0.04 + 0.06 = 0.2; \, P_{1*} = 0.4; \, P_{2*} = 0.4 \\ P_{*0} &= 0.5; \, P_{*1} = 0.2; \, P_{*2} = 0.3 \\ \text{Now } P_{0*} \times P_{*0} = 0.2 \times 0.5 = 0.1 = P_{00} \\ P_{0*} \times P_{*1} = 0.2 \times 0.2 = 0.04 = P_{01} \\ P_{0*} \times P_{*2} = 0.2 \times 0.3 = 0.06 = P_{02} \\ \text{Similarly we can verify that} \end{split}$$

Similarly we can verify that

$$P_{1*} \times P_{*0} = P_{10}; P_{1*} \times P_{*1} = P_{11}; P_{1*} \times P_{*2} = P_{12};$$

 $P_{2*} \times P_{*0} = P_{20}; P_{2*} \times P_{*1} = P_{21}; P_{2*} \times P_{*2} = P_{22}$

Hence the RVs *X* and *Y* are independent.

Example 5 The joint pdf of a two-dimensional RV (X, Y) is given by f(x, y) =

$$xy^2 + \frac{x^2}{8}$$
, $0 \le x \le 2$, $0 \le y \le 1$.

Compute
$$P(X > 1)$$
, $P(Y < \frac{1}{2})$, $P(X > 1/Y < 1/2)$

$$P(Y < \frac{1}{2}/X > 1)$$
, $P(X < Y)$ and $P(X + Y \le 1)$.

Solution Here the rectangle defined by $0 \le x \le 2$, $0 \le y \le 1$ is the range space R. R_1, R_2, \dots , are event spaces.

(i)
$$P(X > 1) = \int_{R_1}^{1} \int_{(x > 1)}^{1} f(x, y) dx dy$$

$$= \int_{0}^{1} \int_{1}^{2} \left(xy^2 + \frac{x^2}{8} \right) dx dy = \frac{19}{24}$$
(ii) $P(Y < 1/2) = \int_{R_2}^{1} \left(xy^2 + \frac{x^2}{8} \right) dx dy$

$$= \int_{0}^{1/2} \int_{0}^{2} \left(xy^2 + \frac{x^2}{8} \right) dx dy$$

$$= \frac{1}{4}$$

(iii)
$$P(X > 1, Y < 1/2) = \int_{R_3} \left(xy^2 + \frac{x^2}{8} \right) dx dy$$

$$= \int_{0}^{1/2} \int_{0}^{2} \left(xy^2 + \frac{x^2}{8} \right) dx dy = \frac{5}{24}$$
(iv) $P(X > 1/Y < \frac{1}{2}) = \frac{P\left(X > 1, Y < \frac{1}{2} \right)}{P\left(Y < \frac{1}{2} \right)} = \frac{5/24}{1/4} = \frac{5}{6}$
(v) $P(Y < \frac{1}{2}/X > 1) = \frac{P\left(X > 1, Y < \frac{1}{2} \right)}{P\left(X > 1 \right)} = \frac{5/24}{19/24} = \frac{5}{19}$
(vi) $P(X < Y) = \int_{R_4} \int_{(x < y)} \left(xy^2 + \frac{x^2}{8} \right) dx dy$

$$= \int_{0}^{1} \int_{0}^{1} \left(xy^2 + \frac{x^2}{8} \right) dx dy = \frac{53}{480}$$
(vii) $P(X + Y \le 1) = \int_{R_5} \int_{(x + y \le 1)} \left(xy^2 + \frac{x^2}{8} \right) dx dy = \frac{13}{480}$

Example 6 If the joint pdf of the RV (X, Y) is given by f(x, y)

$$= \frac{1}{2\pi\sigma^2} \exp\{-(x^2 + y^2)/2 \ \sigma^2\}, -\infty < x, y < \infty, find \ P(X^2 + Y^2 \le a^2).$$

Solution Here the entire xy-plane is the range space R and the event-space D is the interior of the circle $x^2 + y^2 = a^2$.

$$P(X^{2} + Y^{2} \le a^{2}) = \iint_{x^{2} + y^{2} \le a^{2}} f(x, y) dx dy$$

Transform from cartesian system to polar system, i.e., put $x = r \cos \theta$ and $y = r \sin \theta$.

Then $dx dy = rd rd \theta$.

The domain of integration becomes $r \le a$.

Then
$$P(X^2 + Y^2 \le a^2) = \int_0^{2\pi} \int_0^a \frac{1}{2\pi\sigma^2} e^{-r^2/2\sigma^2} r dr d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \left(-e^{-r^2/2\sigma^2} \right)_0^a d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \left(1 - e^{-a^2/2\sigma^2} \right) d\theta$$

$$= 1 - e^{-a^2/2\sigma^2}$$

Example 7 A gun is aimed at a certain point (origin of the co-ordinate system). Because of the random factors, the actual hit point can be any point (X, Y) in a circle of radius R about the origin. Assume that the joint density of X and Y is constant in this circle given by

$$f_{xy}(x, y) = c$$
, for $x^2 + y^2 \le R^2$
= 0, otherwise

(i) Compute c and (ii) show that

$$f_x(x) = \frac{2}{\pi R} \sqrt{1 - \left(\frac{x}{R}\right)^2}, for - R \le x \le R$$

$$= 0, \quad otherwise \tag{BDU — Nov. 96}$$

Solution Here the range space is the interior of the circle $x^2 + y^2 = R^2$. By the property of joint pdf,

$$\iint_{x^2 + y^2 \le R^2} f(x, y) dx dy = 1$$
i.e.,
$$\iint_{x^2 + y^2 \le R^2} c dx dy = 1$$

Changing over to polar co-ordinates, we have

$$\int_{0}^{2\pi} \int_{0}^{R} c r dr d\theta = 1$$

$$\therefore \qquad c = \frac{1}{\pi R^2}$$

Note We have defined earlier that $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$. This definition holds

good if the range space is the entire xy-plane. If the range space is different from the entire xy-plane $f_X(x)$ is given by $\int f(x, y) dy$, for which the limits are fixed as follows: Draw an arbitrary line parallel to y-axis (since x is to be treated as a constant). The y co-ordinates of the ends of the segment of such a line that lies within the range space are the required limits. These limits will be either constants or functions of x.

The point
$$A = \left\{ x, -\sqrt{R^2 - x^2} \right\}$$

and the point
$$B = \left\{ x, \sqrt{R^2 - x^2} \right\}$$

Now
$$f_X(x) = \int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} \frac{1}{\pi R^2} dy$$
$$= \frac{2}{\pi R^2} \sqrt{R^2 - x^2} = \frac{2}{\pi R} \sqrt{1 - \left(\frac{x}{R}\right)^2} - R \le x \le R$$

Note Whenever we are required to find the marginal and conditional density functions, the ranges of the concerned variables should also be specified.

Example 8 The joint pdf of the RV (X, Y) is given by $f(x, y) = k x y e^{-(x^2 + y^2)}$ x > 0, y > 0. Find the value of k and prove also that X and Y are independent. Solution Here the range space is the entire first quadrant of the xy-plane. By the property of the joint pdf

$$\iint_{x>0, y>0} kxy \ e^{-(x^2+y^2)} \ dx \ dy = 1$$

i.e.,
$$k \int_{0}^{\infty} ye^{-y^{2}} dy \int_{0}^{\infty} xe^{-x^{2}} dx = 1$$

i.e.,
$$\frac{k}{4} = 1$$

$$k=4$$

$$k = 4$$
Now $f_x(x) = \int_0^\infty 4x \ e^{-x^2} \times e^{-y^2} \, dy = 2x \ e^{-x^2}, x > 0$

Similarly,
$$f_{y}(y) = 2ye^{-y^{2}}, y > 0.$$

Now
$$f_x(x) \times f_y(y) = 4 x y e^{-(x^2 + y^2)} = f(x, y)$$

∴ The RVs x and y are independent.

Note If f(x, y) can be factorised as $f_1(x) \times f_2(y)$ then X and Y will be independent.

Example 9 Given $f_{xy}(x, y) = cx(x - y)$, 0 < x < 2, -x <, y < x, and 0 elsewhere, (a) evaluate c, (b) find $f_x(x)$, (c) $f_{y/x}(y/x)$ and (d) $f_y(y)$.

Solution Here the range space is the area within the triangle *OAB* (shown in the figure), defined by 0 < x < 2 and -x < y < x.

(a) By the property of jpdf

$$\int_{\Delta OAB} cx(x - y) dx dy = 1$$

$$\int_{\Delta OAB} \int_{OAB} cx(x - y) dx dy = 1$$

$$\int_{0-x}^{2} \int_{0-x}^{x} cx(x - y) dy dx = 1$$

i.e.,
$$8c = 1$$

$$\therefore \qquad c = \frac{1}{8}$$

(b)
$$f_x(x) = \int_{-x}^{x} \frac{1}{8}x (x - y) dy$$

$$= \frac{x^3}{4}, \text{ in } 0 < x < 2$$
(c) $f(y/x) = \frac{f(x, y)}{f_X(x)} = \frac{1}{2x^2} (x - y), -x < y < x$
(d) $f_y(y) = \int_{-y}^{2} \frac{1}{8}x (x - y) dx, \text{ in } -2 \le y \le 0$

$$= \int_{y}^{2} \frac{1}{8}x (x - y) dx, \text{ in } 0 \le y \le 2$$
i.e., $f_y(y) = \begin{cases} \frac{1}{3} - \frac{y}{4} + \frac{5}{48}y^3, & \text{in } -2 \le y \le 0\\ \frac{1}{3} - \frac{y}{4} + \frac{1}{48}y^3, & \text{in } 0 \le y \le 2 \end{cases}$

Example 10 Train X arrives at a station at random in the time interval (0, T) and stops for 'a'min. Train Y arrives independently in the same interval and stops for 'b' min.

- (i) Find the probability P_1 that X will arrive before Y.
- (ii) Find the probability P_2 that the two trains meet.
- (iii) Assuming that they meet, find the probability P_3 that X arrived before Y. (MSU Nov. 96)

Solution Let the trains X and Y arrive at the station at time instances X and Y respectively.

Then the lengths of the intervals (0, X) and (0, Y), namely X and Y are continuous RVs. Each of X and Y is uniformly distributed in (0, T) (since the

times of arrival are equally likely) with pdf $\frac{1}{T}$.

Since the 2 trains arrive independently, *X* and *Y* are independent RVs.

 \therefore The joint pdf of (X, Y) is given by

$$f(x, y) = f_x(x) \times f_y(y) = \frac{1}{T^2}; 0 \le x, y \le T$$

The range space is the square defined by $0 \le x \le T$ and $0 \le y \le T$.

(i)
$$P_1 = P(X < Y) = \iint_{\substack{x < y \ (\Delta OBC)}} f(x, y) dxdy$$

70 Probability, Statistics and Random Processes

(ii) If train X arrives first, the 2 trains will meet if $Y \le X + a$. If train Y arrives first, the 2 trains will meet if $X \le Y + b$.

 \therefore For the 2 trains to meet, $-a \le X - Y \le b$.

$$P_2 = P(-a \le X - Y \le b) = \int_{-a \le x - y \le b} \int_{(ODEBGFO)} f(x, y) dx dy$$

$$= \frac{1}{T^2} \times \text{Area of the figure } ODEBGFO$$

$$= \frac{1}{T^2} \times \left[\frac{1}{2} \times \frac{b}{\sqrt{2}} \left\{ (T - b) \sqrt{2} + T \sqrt{2} \right\} + \frac{1}{2} \times \frac{a}{\sqrt{2}} \left\{ (T - a) \sqrt{2} + T \sqrt{2} \right\} \right]$$

$$= \frac{1}{2T^2} \left\{ a(2T - a) + b(2T - b) \right\}$$

$$= \frac{1}{2T^2} \left\{ 2(a + b)T - (a^2 + b^2) \right\}$$
(iii) $P_3 = P\{X < Y/- a \le X - Y \le b\}$

$$= \frac{P[X < Y \text{ and } -a \le X - Y \le b]}{P(-a \le X - Y \le b)}$$

$$= \frac{1}{T^2} \times \text{ area of trapezium } OBGF$$

$$= \frac{a(2T - a)}{2(a + b)T - (a^2 + b^2)}$$

Example 11 Two trains arrive at a station at random between 7 A.M. and 7:30 A.M. One train stops for 5 min and the other for x min. For what value of x, will

the probability that the 2 trains meet be equal to $\frac{1}{3}$?

Solution In the notation of the previous problem,

$$T = 30$$
, $a = 5$, $b = x$ and $P_2 = \frac{1}{3}$

$$\therefore \frac{1}{2T^2} \left\{ 2(a+b)T - (a^2 + b^2) \right\} = \frac{1}{3}$$

i.e.,
$$\frac{1}{1800} \left\{ 60(x+5) - (x^2 + 25) \right\} = \frac{1}{3}$$

i.e.,
$$x^2 - 60x + 325 = 0$$
.

Solving, x = 53.98 (or) 6.02

As x = 53.98 is meaningless, x = 6 min (nearly).

Example 12 The two-dimensional RV (X, Y) follows a bivariate normal distribution $N(0, 0; \sigma_x, \sigma_y; r)$. Find the marginal density function of X and the conditional density function of Y, given X.

Solution The notation $N(0, 0; \sigma_x, \sigma_y; r)$ refers to a bivariate normal distribution with mean of X = mean of Y = 0, variance of $X = \sigma_x^2$, variance of $X = \sigma_y^2$ and the co-efficient of correlation between X and Y = r.

The joint pdf of such a brivariate normal distribution is given by

$$f(x, y) = \frac{1}{2\pi\sigma_{x}\sigma_{y}\sqrt{1 - r^{2}}} \exp\left\{-\frac{1}{2(1 - r^{2})} \left(\frac{x^{2}}{\sigma_{x}^{2}} - \frac{2rxy}{\sigma_{x}\sigma_{y}} + \frac{y^{2}}{\sigma_{y}^{2}}\right)\right\} - \infty < x, y < \infty$$

The marginal density function of X is given

by
$$f_x(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$= A \int_{-\infty}^{\infty} \exp \left\{ -\frac{1}{2(1 - r^2)} \left(\frac{y}{\sigma_y} - \frac{rx}{\sigma_x} \right)^2 \right\} \times$$

$$\exp \left(\frac{-x^2}{2\sigma_x^2} \right) dy, \text{ where } A = \frac{1}{2\pi \sigma_x \sigma_y \sqrt{1 - r^2}}$$

$$= A \exp \left(\frac{-x^2}{2\sigma_x^2} \right) \times \sqrt{2} \sigma_y \sqrt{1 - r^2} \int_{-\infty}^{\infty} e^{-r^2 dt},$$

72 Probability, Statistics and Random Processes

by putting
$$\frac{1}{\sqrt{2(1-r^2)}} \left(\frac{y}{\sigma_y} - \frac{rx}{\sigma_x} \right) = t$$

$$= A \exp\left(\frac{-x^2}{2\sigma_x^2} \right) \sqrt{2} \cdot \sigma y \sqrt{1-r^2} \left[\frac{1}{2} \right]$$

$$= \frac{1}{2\pi\sigma_x \sigma_y \sqrt{1-r^2}} \exp\left(\frac{-x^2}{2\sigma_x^2} \right) \sqrt{2} \cdot \sigma y \sqrt{1-r^2} \sqrt{\pi}$$

$$= \frac{1}{\sigma_x \sqrt{2\pi}} \exp\left(\frac{-x^2}{2\sigma_x^2} \right), -\infty < x < \infty$$

which is the density function of a normal distribution $N(0, \sigma_{v})$.

The conditional density function of Y given X is given by $f\left(\frac{y}{x}\right) = \frac{f(x, y)}{f_x(x)}$

$$\therefore f\left(\frac{y}{x}\right) = \frac{\frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-r^2}}\exp\left\{\frac{-1}{2\left(1-r^2\right)}\left(\frac{x^2}{\sigma_x^2} - \frac{2rxy}{\sigma_x\sigma_y} + \frac{y^2}{\sigma_y^2}\right)\right\}}{\frac{1}{\sigma_x\sqrt{2\pi}}\exp\left\{\frac{-x^2}{2\sigma_x^2}\right\}}$$

$$= \frac{1}{\sqrt{2\pi}\left(\sigma_y\sqrt{1-r^2}\right)}\exp\left\{-\frac{1}{2\sigma_y^2\left(1-r^2\right)}\left(y^2 - 2r\frac{\sigma_y}{\sigma_x}xy + \frac{r^2\sigma_y^2}{\sigma_x^2}\right)\right\}$$

$$= \frac{1}{\sqrt{2\pi}\left(\sigma_y\sqrt{1-r^2}\right)}\exp\left\{-\frac{1}{2\left(\sigma_y\sqrt{1-r^2}\right)^2}\left(y - \frac{r\sigma_yx}{\sigma_x}\right)^2\right\}$$

which is the density function of a normal distribution

$$N\left(\frac{r\sigma_y}{\sigma_x}x,\sigma_y\sqrt{1-r^2}\right)$$

Exercise 2(B)

Part A (Short answer questions)

- 1. Define a two-dimensional RV. Give an example for the outcome of a random experiment, that is a two-dimensional RV.
- 2. Define the joint pmf of a two-dimensional discrete RV.

- 3. Define the joint pdf of a two-dimensional continuous RV.
- 4. Write down the joint pdf of a bivariate normal distribution.
- 5. Define the cdf of a two-dimensional RV and write down the formulas for, finding the cdf of (*X*, *Y*), when (*X*, *Y*) is (i) a discrete RV and (ii) a continuous RV.
- 6. State the properties of the cdf of a two-dimensional RV (X, Y).
- 7. Define the marginal probability distributions of *X* and *Y*, when (*X*, *Y*) is a discrete RV.
- 8. Define the marginal probability density functions of *X* and *Y*, when (*X*, *Y*) is a continuous RV.
- 9. Define independence of 2 RVs *X* and *Y*, both in the discrete case and in the continuous case.
- 10. Define the conditional probability distributions of *X* and *Y*, given *Y* and *X* respectively, when (*X*, *Y*) is a discrete RV.
- 11. Define the conditional probability density functions of X and Y given Y and X respectively, when (X, Y) is a continuous RV.
- 12. Find the probability distribution of (X + Y) from the bivariate distribution of (X, Y) given below.

X	1	Y
Α	1	2
1	0.1	0.2
2	0.3	0.4

- 13. Find the marginal distributions of X and Y from the bivariate distribution of (X, Y) given in Q.12.
- 14. Find the conditional distribution of X, when Y = 1, from the bivariate distribution of (X, Y) given in Q.12.
- 15. Find the value of k, if f(x, y) = k(1 x)(1 y), for 0 < x, y < 1, is to be a joint density function.
- 16. If f(x, y) = k(1 x y), 0 < x, $y < \frac{1}{2}$, is a joint density function, find k.
- 17. If the joint pdf of (X, Y) is $f(x, y) = \frac{1}{4}$, $0 \le x$, $y \le 2$, find $P(X + Y \le 1)$.
- 18. If the joint pdf of (X, Y) is $f(x, y) = 6e^{-2x-3y}$, $x \ge 0$, $y \ge 0$, find the marginal density of X and conditional density of Y given X.
- 19. The *j* pdf of (X, Y) is given by $f(x, y) = e^{-(x+y)}$, $0 \le x, y < \infty$. Are *X* and *Y* independent? Why?
- 20. Define a random vector with an example.
- 21. Define the joint density and distribution functions of an *n*-dimensional RV. How are they related?

Part B

- 22. If X denotes the number of aces and Y the number of queens obtained when 2 cards are drawn at random (without replacement) from a deck of cards, obtain the joint probability distribution of (X, Y).
- 23. The joint probability function of two discrete RVs X and Y is given by f(x, y) = c(2x + y), where x and y can assume all integers such that $0 \le x \le 2$ and $0 \le y \le 3$, and f(x, y) = 0 otherwise. (a) find the value of c and (b) find $P(X \ge 1, Y \le 2)$. (MKU Apr. 96)

Note f(x, y) should not be mistaken as pdf, It is used instead of $p(x_i, y_i)$

24. The joint probability distribution of a two-dimensional discrete RV (X, Y) is given below:

Y	X					
1	0	1	2	3	4	5
0	0	0.01	0.03	0.05	0.07	0.09
1	0.01	0.02	0.04	0.05	0.06	0.08
2	0.01	0.03	0.05	0.05	0.05	0.06
3	0.01	0.02	0.04	0.06	0.06	0.05

- (i) Find P(X > Y) and $P\{\max(X, Y) = 3\}$ and
- (ii) Find the probability distribution of the RV $Z = \min(X, Y)$.
- 25. The input to a binary communication system, denoted by a RV *X*, takes one of two values 0 or 1 with probabilities 3/4 and 1/4 respectively. Because of errors caused by noise in the system, the output *Y* differs from the input occasionally. The behaviour of the communication system is modeled by the conditional probabilities given below:

$$P(Y = 1/X = 1) = 3/4$$
 and $P(Y = 0/X = 0) = 7/8$
Find (i) $P(Y = 1)$, (ii) $P(Y = 0)$ and (iii) $P(X = 1/Y = 1)$.

26. The following table represents the joint probability distribution of the discrete RV (*X*, *Y*). Find all the marginal and conditional distributions.

Y	X				
	1	2	3		
1	1/12	1/6	0		
2	0	1/9	1/5		
3	1/18	1/4	2/15		

27. The joint distribution of X_1 and X_2 is given by $f(x_1, x_2) = \frac{x_1 + x_2}{21}$,

 $x_1 = 1$, 2 and 3; $x_2 = 1$ and 2. Find the marginal distributions of X_1 and X_2 . (MU — Nov. 96).

28. If the joint pdf of a two-dimensional RV (X, Y) is given by

$$f(x, y) = x^2 + \frac{xy}{3}$$
; $0 < x < 1, 0 < y < 2$

= 0, elsewhere

find (i)
$$P\left(X > \frac{1}{2}\right)$$
, (ii) $P(Y < X)$ and (iii) $P\left(Y < \frac{1}{2} / X < \frac{1}{2}\right)$.

29. If the joint pdf of a two-dimensional RV (X, Y) is given by

$$f(x, y) = k(6 - x - y); 0 < x < 2, 2 < y < 4$$

= 0, elsewhere

find (i) the value of k, (ii) P(X < 1, Y < 3),

(iii) P(X + Y < 3) and (iv) P(X < 1/Y < 3).

30. The joint density function of the RVs X and Y is given by

$$f(x, y) = 8xy$$
; $0 < x < 1$, $0 < y < x$
= 0, elsewhere,

find
$$P\left(Y < \frac{1}{8} / X < \frac{1}{2}\right)$$
. (MU — Nov. 96)

31. Given that the joint pdf of (X, Y) is

$$f(x, y) = e^{-y}; x > 0, y > x$$

= 0, elsewhere

find (i) P(X > 1/Y < 5) and (ii) the marginal distributions of X and Y.

32. If the joint pdf of a two-dimensional RV (X, Y) is given by

$$f(x, y) = 2; 0 < x < 1, 0 < y < x$$

= 0, otherwise

find the marginal density function of X and Y. (BDU — Nov. 96)

- 33. If the joint pdf of (X, Y) is given by f(x, y) = k, $0 \le x < y \le 2$, find k and also the marginal and conditional density functions.
- 34. The joint density function of a RV (X, Y) is f(x, y) = 8xy, 0 < x < 1, 0 < y < x. find the conditional density function f(y/x). (MU Apr. 96)
- 35. The joint density function of a RV (X, Y) is given by f(x, y) = axy, $1 \le x \le 3$, $2 \le y \le 4$, and = 0, elsewhere.

Find (i) the value of a, (ii) the marginal densities of *X* and *Y* and (iii) the conditional densities of *X* and *Y*, given *Y* and *X* respectively.

36. Let X_1 and X_2 be two RVs with joint pdf given by $f(x_1, x_2) = e^{-(x_1 + x_2)}$; x_1 , $x_2 \ge 0$, and $x_1 = 0$, otherwise. Find the marginal densities of X_1 and X_2 . Are they independent? Also find $P[X_1 \le 1, X_2 \le 1]$ and $P(X_1 + X_2 \le 1)$.

37. The joint pdf of the RVs *X* and *Y* is given by $p(x, y) = xe^{-x(y+1)}$ where $0 \le x, y < \infty$. (i) Find p(x) and p(y) and (ii) Are the RVs independent?

38. If the joint pdf of the RV (X, Y) is given by $f(x, y) = k(x^3y + xy^3)$, $0 \le x \le 2$, $0 \le y \le 2$, find (i) the value of k, (ii) the marginal densities of X and Y and (iii) the conditional densities of X and Y.

76 Probability, Statistics and Random Processes

39. If the joint pdf of (X, Y) is given by

$$f(x, y) = \frac{9(1+x+y)}{2(1+x)^4(1+y)^4} \ x > 0 \ y > 0$$

find the marginal densities of X and Y. Are they independent?

- 40. Trains *X* and *Y* arrive at a station at random between 8 A.M. and 8.20 A.M. Train A stops for 4 min and train B stops for 5 min. Assuming that the trains arrive independently of each other, find the probability that (i) *X* will arrive before *Y*, (ii) the trains will meet and (iii) *X* arrived before *Y*, assuming that they met.
- 41. If the two-dimensional RV (X, Y) follows a bivariate normal distribution $N(0, 0; \sigma_x, \sigma_y; r)$, find the marginal density function of Y and the conditional density function of X, given Y.
- 42. The two-dimensional RV (X, Y) has the joint density

$$f(x, y) = 8xy, 0 < x < y < 1$$

= 0, otherwise

- (i) Find $P(X < 1/2 \cap Y < 1/4)$,
- (ii) Find the marginal and conditional distributions, and
- (iii) Are X and Y independent? Give reasons for your answer.

Answers

Exercise 2(A)

6. Assign the values 0, 1, 2 to *X*, when the outcome consists of 2 tails, 1 tail and 1 head and 2 heads respectively. Then the required probability distribution of *X* is

$$x: 0 1 2$$
 $p_x: \frac{1}{4} \frac{1}{2} \frac{1}{4}$

9. **Example** $y = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}, -\infty < x < \infty$, is the equation of the

normal curve, viz., the probability curve of the normal distribution.

11. X: 0 1 2 3 4 5

$$p_{x}$$
: $\frac{1}{32}$ $\frac{5}{32}$ $\frac{10}{32}$ $\frac{10}{32}$ $\frac{5}{32}$ $\frac{1}{32}$

12. Required probability =
$$\frac{P\left\{\left(\frac{1}{2} < X < \frac{7}{2}\right) \cap (X > 1)\right\}}{P(X > 1)}$$

$$= \frac{P(X = 2 \text{ or } 3)}{P(X = 2, 3 \text{ or } 4)} = \frac{0.5}{0.6} = \frac{5}{6}$$

16.
$$f(x) \ge 0$$
;
$$\int_{-1}^{1} |x| dx = 2 \int_{0}^{1} x dx = 1$$
$$\therefore f(x) \text{ can be the pdf of continuous RV.}$$

17.
$$\int_{0}^{3} kx^{2} dx = 1; 9k = 1$$
$$\therefore k = \frac{1}{2}$$

18.
$$P\{|X| > 1\} = 1 - P\{|X| < 1\} = 1 - \int_{-1}^{1} \frac{1}{4} dx = \frac{1}{2}$$

19.
$$\int_{0}^{\infty} kx e^{-x} dx = 1;$$

$$k[x (-e^{-x}) - 1 \times (e^{-x})] \infty_{0} = 1$$

$$\therefore k = 1$$

20. Required probability =
$$\frac{P(X > 1.5)}{P(X > 1)} = \frac{\left(\frac{x^2}{4}\right)_{1.5}^2}{\left(\frac{x^2}{4}\right)_{1}^2} = \frac{7}{12}$$

21.
$$\Sigma P_x = 1$$
 : $k = 0.1$; $E(X) = -0.8 - 0.1 + 0 + 0.3 = -0.6$

22. The probability distribution of *X* is

$$X: \quad 1 \quad 2 \quad 3 \quad 4 \quad 4 \quad 5 \quad 6$$

$$p_x: \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}$$

$$F(x) = P(X \le x) = 0, \text{ if } x < 1; = \frac{1}{6}, \text{ if } 1 \le x < 2;$$

$$= \frac{2}{6} \text{ if } 2 \le x < 3; = \frac{3}{6}, \text{ if } 3 \le x < 4; = \frac{4}{6}, \text{ if } 4 \le x < 5;$$

$$= \frac{5}{6}, \text{ if } 5 \le x < 6 \text{ and } = 1, \text{ if } 6 \le x$$

23. When x < 0, F(x) < 0; when $0 \le x < 1$, $F(x) = x^2$; when $1 \le x$, F(x) = 1.

24.
$$f(x) = \frac{dF}{dx} = \lambda e^{-} \lambda^{x}$$
, when $x > 0$ and $x < 0$.

25. P(X > 1/X < 3)

$$= \frac{P(1 < X < 3)}{P(0 < X < 3)} = \frac{F(3) - F(1)}{F(3) - F(0)} = \frac{\frac{9}{16} - \frac{1}{16}}{\frac{9}{16} - 0} = \frac{8}{9}$$

26. For the binomial distribution B(n, p), mean = np and variance = npq.

78 *Probability, Statistics and Random Processes*

- 27. Mean = variance = λ for the Poisson distribution with parameter λ .
- 29. P(|X| < 1) = P(-1 < X < 1)

$$= \int_{0}^{1} e^{-x} dx = \frac{e-1}{e}$$

Part B

38.
$$P(X=r) = 4 C_r \left(\frac{1}{2}\right)^4, r = 0, 1, 2, 3, 4$$

39.
$$P(X = 0) = \frac{1}{64}$$
, $P(X = 1) = \frac{9}{64}$, $P(X = 2) = \frac{27}{64}$, $P(X = 3) = \frac{27}{64}$

40. P(X = 0) = q, P(X = 1) = p; when x < 0, F(x) = 0; when $0 \le x < 1$, F(x) = q; when $1 \le x$, F(x) = q + p = 1

41.
$$P(X=r) = p(X=14-r) = \frac{(r-1)}{36}, r=2, 3, 4, 5, 6, 7$$

42.
$$P(X = 0) = \frac{5}{16}$$
, $P(X = 1) = \frac{6}{16}$, $P(X = 2) = \frac{5}{16}$; $P(X = 1) = \frac{5}{8}$

43.
$$a = \frac{1}{18}$$
; $P(X < 3) = \frac{1}{9}$; $V(X) = 4.4719$; $F(x) = 0$ in $x < 0$, $F(x) = \frac{1}{81}$ in $0 \le x < 1$, $F(x) = \frac{4}{81}$ in $1 \le x < 2$, $F(x) = \frac{9}{81}$ in $2 \le x < 3$ etc. $F(x) = \frac{64}{81}$ in $7 \le x < 8$ and $F(x) = 1$ in $8 \le x$.

44. P(Y = 0) = 0.1; P(Y = 3) = 0.3; P(Y = 8) = 0.5; P(Y = 15) = 0.1; E(Y) = 6.4; V(Y) = 16.24.

45.
$$C = \frac{2}{7}$$
; $P = \frac{16}{37}$; $F(x) = 0$, when $x < 0$; $= \frac{12}{49}$, when $0 \le x < 1$; $= \frac{28}{49}$, when $1 \le x < 2$ and $= 1$, when $2 \le x$; $x = 0$; $x = 1$.

46.
$$k = \frac{1}{100}$$
; $P = \frac{8}{99}$; $E(X) = 3.54$; $V(X) = 0.4684$; $F(x) = 0$, when $x < 1$; $= \frac{1}{100}$, when $1 \le x < 2$; $= \frac{9}{100}$, when $2 \le x < 3$; $= \frac{36}{100}$, when $3 \le x < 4$ and $= 1$, when $4 \le x$.

47. 0 < a < 1

48.
$$k = a$$
; $E(X) = \frac{1}{a}$; $V(X) = \frac{1}{a} \left(\frac{1}{a} - 1 \right)$

49.
$$k = 1$$
; $E(X) = e^t$; $V(X) = e^t (e^t - 1)$.

50.
$$k = \frac{3}{4}$$
; $E(X) = 1$; $V(X) = \frac{1}{5}$; $F(x) = 0$, when $x < 0$; $= \frac{1}{4} (3x^2 - x^3)$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$, when $0 \le x < 2$; $= 1$; $= 1$

- 51. (i) k = 6;
 - (ii) F(x) = 0, when x < 0; = $3x^2 2x^3$, when $0 \le x < 1$; = 1, when $1 \le x$;
 - (iii) the root of the equation $6a^3 9a^2 + 2 = 0$ that lies between 0 and 1;
 - (iv) $\frac{1}{2}$.
- 52. $k = \frac{1}{8}$; F(x) = 0, when x < 0; $= \frac{x^2}{16}$, when $0 \le x < 2$; $= \frac{1}{4}(x 1)$,

when $2 \le x < 4$; $= -\frac{1}{16} (20 - 12 x + x^2)$, when $4 \le x < 6$; = 1, when $6 \le x$.

- 53. (i) $\frac{9}{16}$ (ii) $\frac{27}{64}$
- 54. $\frac{1}{3}$
- 55. k = 5; $P = \frac{1}{33}$
- 56. (a) $\frac{1}{4}$ (b) $\frac{4}{9}$
- 57. $P = 1 \frac{1}{e}$; $f(x) = \frac{k}{2} e^{-k|x|}$
- 58. f(x) = 1 in $0 \le x \le 1$ and = 0, elsewhere; $\frac{1}{6}$; $\frac{1}{2}$.
- 59. $\frac{1}{5}$
- 60. $\frac{2}{3}$
- 61. (i) λ ; (ii) $\frac{\lambda^2 t}{1 + \lambda t}$
- 62. (i) 0.8849
- (ii) 0.8819
- (iii) 0.8593

Exercise 2(B)

- 6. A
- 4. $f_{XY}(x, y) = \frac{1}{2 \pi \sigma_x \sigma_y \sqrt{1 r^2}}$

$$\exp \left[-\frac{1}{2(1-r^2)} \left\{ \frac{(x-\mu_x)^2}{\sigma_x^2} - \frac{2r(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y} + \frac{(y-\mu_y)^2}{\sigma_y^2} \right\} \right],$$

$$-\infty < x, y < \infty$$

Probability, Statistics and Random Processes

13. <i>X</i>	:	1	2	and	<i>Y</i> :	1	2
p_{j}	_x : 0	0.3	0.7		p_y :	0.4	0.6

14.
$$\hat{X}$$
: 1 2 $p_{X/Y} = 1$: 0.25 0.75

15.
$$k \int_{0}^{1} \int_{0}^{1} (1-x) (1-y) dx dy = 1;$$

$$k \left\{ \frac{(1-x)^2}{-2} \right\}_0^1 \left\{ \frac{(1-y)^2}{-2} \right\}_0^1 = 1$$

i.e.,
$$\frac{k}{4} = 1$$
$$\therefore \qquad k = 4$$

$$k = 4$$

16.
$$\int_{0}^{1/2} \int_{0}^{1/2} k(1 - x - y) \, dx \, dy = 1$$

$$k \int_{0}^{1/2} \left(x - \frac{x^2}{2} - yx \right)_{0}^{\frac{1}{2}} dy = 1;$$

$$k\left(\frac{3}{8y} - \frac{y^2}{4}\right)_0^{\frac{1}{2}} = 1$$

$$\therefore$$
 $k=8$

17.
$$P = \int_{0}^{1} \int_{0}^{1-y} \frac{1}{4} dx dy = \frac{1}{4} \int_{0}^{1} (1-y) dy = \frac{1}{8}$$

18.
$$f_x(x) = 6 \int_{0}^{\infty} e^{-2x} e^{-3y} dy = 2e^{-2x}; x \ge 0$$

$$f_{y/x}(y) = \frac{f(x, y)}{f_x(x)} = 3e^{-3y}; y \ge 0$$

19.
$$f_x(x) = e^{-x}$$
 and $f_y(y) = e^{-y}$

$$f(x, y) = f_{y}(x), f_{y}(y)$$

$$f(x, y) = f_y(x), f_y(y)$$

 \therefore X and Y are independent

22.

Y	0	1	2
0	0.71	0.13	0.01
1	0.13	0.01	0
2	0.01	0	0

CPD of X/Y = 1 CPD of X/Y = 2

23.
$$c = \frac{1}{42}$$
; $P = \frac{4}{7}$

···\	Z	0	1	2	3
(ii)	P	0.28	0.30	0.25	0.17

25. (i)
$$\frac{9}{32}$$
 (ii) $\frac{23}{32}$

(ii)
$$\frac{23}{32}$$

(iii)
$$\frac{2}{3}$$

26.
$$\{i, p_{i^*}\}$$

x = i	p_{i^*}
1	5/36
2	19/36
3	1/3

$\{j, p_{*_{j}}\}$				
	y = j	p_{*_j}		
	1	1/4		
	2	14/45		
	3	79/180		

x = i	p_{i1}/p_{*1}
1	1/3
2	2/3
3	0

x = i	p_{i2}/p_{*2}
1	0
2	5/14
3	9/14

CPD of X/Y = 3CPD of Y/X = 1 CPD of Y/X = 2 CPD of Y/X = 3

x = i	p_{i3}/p_{*3}	y = j	p_{1j}/p_{1*}
1	10/79	1	3/5
2	45/79	2	0
3	24/79	3	2/5

x = j	p_{2j}/p_{2*}
1	6/19
2	4/19
3	9/19

y = j	p_{3j}/p_{3*}
1	0
2	3/5
3	2/5

27.

M.D.	of	X_1

$X_1 = i$	pi*		
1	5/21		
2	7/21		
3	9/21		

$X_2 = j$	p*j
1	9/21
2	12/21

28. (i)
$$\frac{5}{6}$$
 (ii) $\frac{7}{24}$ (iii) $\frac{5}{32}$ 29. (i) 1/8 (ii) 3/8 (iii) 5/24

(ii)
$$\frac{7}{24}$$

(iii)
$$\frac{5}{32}$$

30.
$$\frac{31}{256}$$

31. (i)
$$\frac{e^4 - 5}{e^5 + 6}$$

31. (i)
$$\frac{e^4 - 5}{e^5 - 6}$$
 (ii) $f_x(x) = e^{-x}, x > 0; f_y(y) = y e^{-y}, y > 0.$

32.
$$f_x(x) = 2x$$
 in $0 < x < 1$; $f_y(y) = 2(1 - y)$ in $0 < y < 1$.

33.
$$k = 1/2$$
; $f_x(x) = \frac{1}{2} (2 - x)$, $0 \le x \le 2$; $f_y(y) = (1/2) y$, $0 \le y \le 2$; $f(x/y) = 1/y$; $0 < x < y$; $f(y/x) = \frac{1}{2 - x}$, $x < y < 2$.

82 Probability, Statistics and Random Processes

34.
$$f(y/x) = 2y/x^2$$
, $0 < y < x$

35. (i)
$$a = 1/24$$

(ii)
$$f_x(x) = x/4$$
, $1 \le x \le 3$; $f_y(y) = y/6$, $2 \le y \le 4$

(iii)
$$f(x/y) = x/4$$
, $1 < x < 3$; $f(y/x) = y/6$, $2 < y < 4$

(iii)
$$f_{x}(x) = x/4$$
, $1 \le x \le 3$, $f_{y}(y) = y/6$, $2 \le y \le 4$
(iii) $f(x/y) = x/4$, $1 < x < 3$; $f(y/x) = y/6$, $2 < y < 4$
36. $f_{x1}(x_1) = e^{-x_1}$; $f_{x2}(x_2) = e^{-x_2}$; X_1 and X_2 are independent; $(1 - e^{-1})^2$; $(1 - 2e^{-1})$

37.
$$f_x(x) = e^{-x}$$
, $0 < x < \infty$; $f_y(y) = (y+1)^{-2}$, $0 < y < \infty$; X and Y are not independent.

38.
$$K = 1/16; f_x(x) = \frac{1}{8}(x^3 + 2x), 0 \le x \le 2; f_y(y) = \frac{1}{8}(y^3 + 2y), 0 \le y \le 2;$$

$$f(x/y) = x/2 \frac{(x^2 + y^2)}{(y^2 + 2)} 0 < x < 2; f(y/x) = y/2 \frac{(x^2 + y^2)}{(x^2 + 2)}, 0 < y < 2$$

39.
$$f_x(x) = 3/4$$
, $\frac{2x+3}{(1+x)^4}$ $x > 0$ and $f_y(y) = 3/4$, $\frac{2x+3}{(1+y)^4}$ $y > 0$;

Not independent.

41.
$$f_y(y) = \frac{1}{\sigma_y \sqrt{2\pi}} \exp\left(-\frac{y^2}{2\sigma_y^2}\right) - \infty < y < \infty$$

$$f(x/y) = N\left(\frac{r\sigma_x}{\sigma_y} \cdot y, \sigma_x \sqrt{1 - r^2}\right)$$

(i)
$$f_v(x) = 4x (1 - x^2)$$
 in $(0, 1)$; $f_v(y) = 4y^3$ in $(0, 1)$; $f(y/x)$

$$= \left| \frac{2y}{1 - x^2} \right| f(x/y) = \frac{2x}{y^2}$$

(iii) X and Y are not independent.