POWERED BY Dialog

Publication Number: 2002-231904 (JP 2002231904 A), August 16, 2002

Inventors:

- KUNIKIYO TATSUYA
- NAGAHISA KATSUMI
- MAEDA SHIGENOBU

Applicants

MITSUBISHI ELECTRIC CORP

Application Number: 2001-029426 (JP 200129426), February 06, 2001

International Class:

- H01L-027/105
- G11C-011/14
- G11C-011/15
- H01F-010/08
- H01F-010/32
- H01L-043/08

Abstract:

PROBLEM TO BE SOLVED: To provide a RAM requiring lower power dissipation in writing and time in erasing and writing. SOLUTION: A plurality of bit wires BL1 disposed in parallel each other are disposed so that they are intersecting over a plurality of word wires WL1 disposed in parallel each other. MRAM cells MC2 are formed at each intersection point sandwiched between the word wires and the bit wires. Each MRAM cell MC3 is disposed so that easy axes indicated by arrows are inclined at 45-degree to the bit and word wires. COPYRIGHT: (C)2002,JPO

JAPIO

© 2005 Japan Patent Information Organization. All rights reserved. Dialog® File Number 347 Accession Number 7363407

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-231904

(P2002-231904A)

(43)公開日 平成14年8月16日(2002.8.16)

(51) Int.Cl. ⁷		設別記号	FΙ		5	γ-マコート*(参考)
H01L	27/105	W/6337- V	G11C 11	1/14	Α	5 E O 4 9
G11C	11/14		11	1/15		5 F O 8 3
0110	11/15		H01F 10	0/08		
H01F	10/08		10	0/32		
	10/32		H01L 43	3/08	Z	
		審査請求	未請求 請求項	iの数27 OL	(全 49 頁)	最終頁に続く
(21)出願番号		特願2001-29426(P2001-29426)	(71)出願人	000006013 三菱電機株式	会社	
(22)出願日		平成13年2月6日(2001.2.6)	(72)発明者	東京都千代田	区丸の内二〕	「目2番3号 「目2番3号 三
			(72)発明者		区丸の内二	「目2番3号 三
		•	(74)代理人			42名)
						最終頁に続く

(54) 【発明の名称】 磁気記憶装置および磁性体基板

(57)【要約】

【課題】 書き込み時の消費電力を低減したMRAMを提供するとともに、消去および書き込みに費やす時間を低減したMRAMを提供する。

【解決手段】 互いに平行に配設された複数のワード線WL1の上部において交差するように、互いに平行に配設された複数のビット線BL1が配設されている。そして、ワード線およびビット線で挟まれる各交点にMRAMセルMC2が形成されている。そして、矢印で示すイージーアクシスが、ビット線およびワード線に対して45度傾くように各MRAMセルMC3が配設されている。

【特許請求の範囲】

【請求項1】 非接触で交差して、マトリックスを構成 する複数のビット線および複数のワード線と、

前記複数のビット線と前記複数のワード線との交差部に それぞれ配設され、少なくとも1つの磁気トンネル接合 を含む複数のメモリセルとを備えた磁気記憶装置であっ

前記複数のメモリセルは、前記複数のビット線のうちの 1本および前記複数のワード線のうちの1本の間にそれ ぞれ配設され、

前記少なくとも1つの磁気トンネル接合は、磁化の方向 が変更可能なソフト強磁性体層を有し、

前記少なくとも1つの磁気トンネル接合は、前記ソフト 強磁性体層の磁化の容易な方向であるイージーアクシス が、前記複数のビット線および前記複数のワード線の延 在方向に対して40~50度の角度を有するように配設 される、磁気記憶装置。

【請求項2】 前記磁気トンネル接合は、

前記イージーアクシスに平行な辺が、前記イージーアク シスに直交する辺よりも長くなるように、平面視形状が 20 矩形に構成される、請求項1記載の磁気記憶装置。

【請求項3】 非接触で交差して、マトリックスを構成 する複数のビット線および複数のワード線と、

前記複数のビット線と前記複数のワード線との交差部に それぞれ配設され、少なくとも1つの磁気トンネル接合 を含む複数のメモリセルとを備えた磁気記憶装置であっ て、

前記複数のビット線の第1の端部にそれぞれ接続され、 前記第1の端部と第1の電源あるい第2の電源との電気 的な接続を切り替え可能な複数の第1の切り替え手段 ٤.

前記複数のビット線の第2の端部にそれぞれ接続され、 前記第2の端部と前記第1の電源あるい前記第2の電源 との電気的な接続を切り替え可能な複数の第2の切り替 え手段と、を備える、磁気記憶装置。

【請求項4】 前記第1の切り替え手段は、

前記複数のビット線の第1の端部にそれぞれの第1の主 電極が接続され、それぞれの第2の主電極が、前記第1 の電源および前記第2の電源に接続された同一導電型の 第1および第2のMOSトランジスタを有し、

前記第2の切り替え手段は、

前記複数のビット線の第2の端部にそれぞれの第1の主 電極が接続され、それぞれの第2の主電極が、前記第1 の電源および前記第2の電源に接続された同一導電型の 第3および第の4MOSトランジスタを有する、請求項 3 記載の磁気記憶装置。

(請求項5) 前記第1の切り替え手段は、

前記複数のビット線の第1の端部にそれぞれの第1の主 電極が接続され、それぞれの第2の主電極が、前記第1 の電源および前記第2の電源に接続された導電型の異な 50 メモリセルアレイ群選択線の1本とに接続される、請求

るの第1および第2のMOSトランジスタを有し、 前記第2の切り替え手段は、

前記複数のピット線の第2の端部にそれぞれの第1の主 電極が接続され、それぞれの第2の主電極が、前記第1 の電源および前記第2の電源に接続された導電型の異な る第3および第4のMOSトランジスタを有する、請求 項3記載の磁気記憶装置。

【請求項6】 前記第1および第2のMOSトランジス タのそれぞれ前記第1の主電極間に接続された、前記第 2のMOSトランジスタと同一導電型の第5のMOSト ランジスタと、

記第3および第4のMOSトランジスタのそれぞれ前記 第1の主電極間に接続された、前記第4のMOSトラン ジスタと同一導電型の第6のMOSトランジスタと、を

前記第5 および第6のMOSトランジスタの制御電極 は、常時オン状態となる所定電圧を与える第3の電源に 接続される、請求項5記載の磁気記憶装置。

【請求項7】 非接触で交差して、マトリックスを構成 する複数のビット線および複数のワード線、および、 前記複数のビット線と前記複数のワード線との交差部に それぞれ配設され、少なくとも 1 つの磁気トンネル接合 . を含む複数のメモリセル、

で構成される複数のメモリセルアレイと、

前記複数のメモリセルアレイに渡る複数のメインワード

前記複数のメモリセルアレイの個々に対応して配設され た複数のメモリセルアレイ選択線と、を有した、少なく とも1のメモリセルアレイ群を備え、

30 前記複数のワード線は、前記複数のメインワード線と前 記複数のメモリセルアレイ選択線との交差部にそれぞれ 設けられた第1の組み合わせ論理ゲートの出力にそれぞ れ接続され、

前記第1の組み合わせ論理ゲートの入力は、交差状態に ある前記複数のメインワード線の1本と前記複数のメモ リセルアレイ選択線の 1 本とに接続される、磁気記憶装

【請求項8】 前記少なくとも1のメモリセルアレイ群 を複数有し、

40 前記複数のメモリセルアレイ群に渡る複数のグローバル ワード線と、

前記複数のメモリセルアレイ群の個々に対応して配設さ れた複数のメモリセルアレイ群選択線とをさらに有し、 前記複数のメインワード線は、前記複数のグローバルワ ード線と前記複数のメモリセルアレイ群選択線との交差 部にそれぞれ設けられた第2の組み合わせ論理ゲートの 出力にそれぞれ接続され、

前記第2の組み合わせ論理ゲートの入力は、交差状態に ある前記複数のグローバルワード線の1本と前記複数の

項7記載の磁気記憶装置。

【請求項9】 非接触で交差して、マトリックスを構成 する複数のビット線および複数のワード線、および、

前記複数のビット線と前記複数のワード線との交差部に それぞれ配設され、少なくとも1つの磁気トンネル接合 を含む複数のメモリセル、

で構成される複数のメモリセルアレイと、

前記複数のメモリセルアレイに渡る複数のメインビット 線と、

前記複数のメモリセルアレイの個々に対応して配設され 10 た複数のメモリセルアレイ選択線とを有した、少なくと も1のメモリセルアレイ群とを備え、

前記複数のビット線は、前記複数のメインビット線と前 記複数のメモリセルアレイ選択線との交差部にそれぞれ 設けられた第1の組み合わせ論理ゲートの出力にそれぞ れ接続され、

前記第1の組み合わせ論理ゲートの入力は、交差状態に ある前記複数のメインビット線の1本と前記複数のメモ リセルアレイ選択線の1本とに接続される、磁気記憶装

【請求項10】 前記少なくとも1のメモリセルアレイ 群を複数有し、

前記複数のメモリセルアレイ群に渡る複数のグローバル ビット線と、

前記複数のメモリセルアレイ群の個々に対応して配設さ れた複数のメモリセルアレイ群選択線とをさらに有し、 前記複数のメインビット線は、前記複数のグローバルビ ット線と前記複数のメモリセルアレイ群選択線との交差 部にそれぞれ設けられた第2の組み合わせ論理ゲートの 出力にそれぞれ接続され、

前記第2の組み合わせ論理ゲートの入力は、交差状態に ある前記複数のグローバルビット線の1本と前記複数の メモリセルアレイ群選択線の1本とに接続される、請求 項9記載の磁気記憶装置。

【請求項11】 非接触で交差して、マトリックスを構 成する複数のビット線および複数のワード線、および、 前記複数のビット線と前記複数のワード線との交差部に それぞれ配設され、少なくとも1つの磁気トンネル接合 を含む複数のメモリセル、

で構成されるメモリセルアレイと、

インダクタとを備え、

前記少なくとも 1 つの磁気トンネル接合は、磁化の方向 が変更可能なソフト強磁性体層を有し、

前記インダクタは、前記ソフト強磁性体層の磁化の容易 な方向であるイージーアクシスに沿った方向に磁界を発 生させる、磁気記憶装置。

【請求項12】 前記少なくとも1つの磁気トンネル接 合は、

前記イージーアクシスが、前記複数のビット線または前 記複数のワード線の延在方向に合致するように配設さ

ħ.

前記インダクタは、

前記イージーアクシスの方向と合致する前記複数のビッ ト線または前記複数のワード線の延在方向に沿って、前 記メモリセルアレイを取り巻くように配設されたコイル 状のインダクタである、請求項11記載の磁気記憶装

【請求項13】 非接触で交差して、マトリックスを構 成する複数のビット線および複数のワード線、および、 前記複数のビット線と前記複数のワード線との交差部に それぞれ配設され、少なくとも1つの磁気トンネル接合 を含む複数のメモリセル、

で構成される少なくとも1つのメモリセルアレイと、 前記少なくとも1つのメモリセルアレイの、前記複数の ビット線および前記複数のワード線の外側にそれぞれ設 けられ、前記複数のビット線および前記複数のワード線 の形成領域を覆う平板状の少なくとも1つのフラッシュ ビット線と、少なくとも1つのフラッシュワード線と、 を備える磁気記憶装置。

【請求項14】 前記少なくとも1つのメモリセルアレ 20 イを複数有し、

前記複数のメモリセルアレイはマトリックス状に配設さ

前記少なくとも1つのフラッシュビット線および、少な くとも1つのフラッシュワード線は、

前記複数のメモリセルアレイの配列に沿って、マトリッ クスを構成するようにそれぞれ複数配設される、請求項 13記載の磁気記憶装置。

【請求項15】 非接触で交差して、マトリックスを構 30 成する複数のビット線および複数のワード線、および、 前記複数のビット線と前記複数のワード線との交差部に それぞれ配設され、少なくとも1つの磁気トンネル接合 を含む複数のメモリセル、

で構成されるメモリセルアレイと、

前記複数のビット線および複数のワード線の少なくとも 1方の2つの端部にそれぞれ配設され、選択されたビッ ト線およびワード線の少なくとも 1 方に流れる電流を、 LC共振によって保存する少なくとも1つのインダクタ と、少なくとも1つのキャパシタと、を備える磁気記憶 40 装置。

【請求項16】 前記少なくとも1つのインダクタおよ び、前記少なくとも1つのキャパシタを複数有し、

前記複数のビット線は、2 つが対となって複数のピット 線対を構成し、

前記複数のインダクタは、前記複数のビット線対のそれ ぞれに対応して、ビット線間に電気的に接続されるよう に配設された複数の第1のインダクタを含み、

前記複数のキャパシタは、前記複数のインダクタの配設 側とは反対の端部において、前記複数のビット線のそれ 50 ぞれに対応して電気的に接続される複数の第1のキャバ

5

シタを含む、請求項15記載の磁気記憶装置。

【請求項17】 前記複数のワード線は、2つが対となって複数のワード線対を構成し、

前記複数のインダクタは、前記複数のワード線対のそれ ぞれに対応して、ワード線間に電気的に接続されるよう に配設された複数の第2のインダクタをさらに含み、

前記複数のキャバシタは、前記複数のインダクタの配設側とは反対の端部において、前記複数のワード線のそれぞれに対応して電気的に接続される複数の第2のキャバシタをさらに含む、請求項16記載の磁気記憶装置。

[請求項18] 少なくとも1つの半導体チップと、 導体で構成され、前記少なくとも1つの半導体チップを 収納する遮蔽体と、

樹脂で構成され、前記遮蔽体を収納するパッケージと、前記パッケージの開口部を閉じて密閉する底面基板と、前記底面基板の外側主面に配設され、前記少なくとも1つの半導体チップと外部との信号伝送を行う信号伝送用バンプと、

前記信号伝送用バンプを囲むように配設され、前記遮蔽 体に電気的に接続される遮蔽用バンプと、を備え、 前記少なくとも1つの半導体チップは、

少なくとも1つの磁気トンネル接合を含む複数のメモリセルを有して構成されるメモリセルアレイを備えた磁気 記憶チップを含む、磁気記憶装置。

【請求項19】 前記遮蔽体の開口部端縁の内側および 外側に配設された第1の応力緩和膜と、

前記遮蔽体の内壁に配設された第2の応力緩和膜とをさ らに備える、請求項18記載の磁気記憶装置。

【請求項20】 前記少なくとも1つの半導体チップ は

前記メモリセルアレイの周辺回路を含む回路チップをさらに含み、

前記磁気記チップおよび前記回路チップは上下に重ねられて前記遮蔽体内に収納される、請求項19記載の磁気記憶装置。

【請求項21】 前記少なくとも1つの磁気トンネル接合は、磁化の方向が変更可能なソフト強磁性体層を有し、

前記遮蔽体は、

前記ソフト強磁性体層と同等か、それよりも大きな透磁 40 率を有する強磁性体で構成される、請求項18記載の磁気記憶装置。

【請求項22】 前記遮蔽体は、反強磁性体で構成される、請求項18記載の磁気記憶装置。

【請求項23】 前記遮蔽体は、強磁性体と反強磁性体との多層膜で構成される、請求項18記載の磁気記憶装置

[請求項24] 主面全域に配設された、少なくとも1つの磁気トンネル接合を形成する多層膜を少なくとも有する磁性体基板。

【請求項25】 前記多層膜は、前記少なくとも1つの磁気トンネル接合として、順に配設された、反磁性体層、強磁性体層、絶縁体で構成されるトンネルバリア層およびソフト強磁性体層を含む、請求項24記載の磁性体基板。

【請求項26】 前記多層膜は、前記少なくとも1つの磁気トンネル接合の下部に配設され、pn接合を構成する第1導電型不純物層と第2導電型不純物層との2層膜をさらに含む、請求項25記載の磁性体基板。

【請求項27】 前記磁性体基板は、

土台となる基板部と、該基板部上に配設された埋め込み酸化膜と、該埋め込み酸化膜上に配設されたSOI層とを備えるSOI基板上に前記多層膜を有する、請求項24記載の磁性体基板。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は磁気記憶装置に関し、特に、磁気トンネル接合を個々のメモリセルとして利用する不揮発性メモリアレイを有した磁気記憶装置に 20 関する。

[0002]

【従来の技術】<トンネル磁気抵抗効果>絶縁体を2つ の強磁性体で挟んだ構造を磁気トンネル接合(Magnetic Tunnel Junction:MTJ)と呼称する。

【0003】図67にMTJの概念図を示す。図67において、強磁性体層FM21およびFM22によって絶縁層TBが挟まれるように配設され、強磁性体層FM21およびFM22には電圧が印加される構成となっている

80 【0004】との構造において、絶縁層TBをトンネル する電流を測定すると、2つの強磁性体層の磁化の向き によって電流値が異なる現象が観測される。

【0005】 この現象はトンネル磁気抵抗(Tunnel Magnetic Resistance: TMR)効果と呼称される。 TMR 効果について図68~図70を用いて説明する。

【0006】図68は遷移金属の状態密度N(E)の模式図を示している。図68においては、横軸に状態密度を、縦軸にエネルギーEを示し、原子が有する電子をスピンの向きで分類して示している。すなわち、図68に向かって左側にスピンの向きが下向きの電子を有する原子の状態密度を示し、向かって右側にスピンの向きが上向きの電子を有する原子の状態密度を示す。

【0007】また、図68においては、3d軌道と4s軌道のうち、フェルミ準位まで電子が充填されている原子を模式的に示すため、フェルミ準位を境界として、フェルミ準位まで電子が充填されている原子をハッチングで示している。

【0008】遷移金属が強磁性体になるのは、フェルミ 準位まで電子が充填されている原子のうち、3d軌道の 50 電子において、上向きのスピンの数と下向きのスピンの 数が異なるためである。

[0009] すなわち、4 s 軌道の電子は上向きのスピンの数と下向きのスピンの数が同じであるので磁性の発生には寄与しない。

【0010】図69および図70はTMR効果を模式的に示す図である。図69では、絶縁層TBの左側の強磁性体層FM21を構成する原子の3d軌道のうち、下向きのスピンの電子を有する原子の状態密度が上向きのスピンの電子を有する原子の状態密度より多いので、全体として磁化の向きは下向きになる。

【0011】絶縁層TBの右側の強磁性体層FM22も同じく全体として磁化の向きが下向きになる。

【0012】電子のトンネリングは、主に始状態と終状態のスピンの向きを保存するように起こる。図69の場合、始状態(強磁性体層FM21内)と終状態(強磁性体層FM22内)の下向きのスピン状態密度がともに大きいので、トンネル確率は大きくなり、トンネル電流も大きくなる。すなわち、トンネル磁気抵抗は小さくなる。

【0013】一方、図70では始状態(強磁性体層FM 2021内)の上向きのスピンの電子を有する原子の状態密度が大きいが、終状態(強磁性体層FM22内)の上向きのスピンの電子を有する原子の状態密度が小さいため、トンネル確率は小さくなり、トンネル電流も小さくなる。すなわち、トンネル磁気抵抗は大きくなる。

【0014】 CCで、2つの強磁性体層の磁化の向きが 互いに同じである場合の抵抗をR,、反対方向を向いて いる場合の抵抗をR, とすると、トンネル磁気抵抗変化 率(Tunnel Magnetic Resistance Rate: TMRR)は 次式で表される。

[0015]

【数1】

$$TMRR = \frac{R_{AF} - R_{F}}{R_{A}} = \frac{P_{1}P_{2}}{1 - P_{1}P_{2}} \cdots (1)$$

【0016】なお、上記数式(1)において、P1、P1は、それぞれ強磁性体層FM21およびFM22のスピン分極率である。

【0017】そして、 σ スピンバンドのフェルミ面での 状態密度を $D\sigma$ (E,) とするとスピン分極率は次に式 で表される。

[0018]

【数2】

$$P = \frac{D_1(E_F) - D_1(E_F)}{D_1(E_F) + D_1(E_F)} \cdots (2)$$

【0019】すなわち、スピン分極率はフェルミ面での上向きスピンと下向きスピンの状態密度差が大きいほど大きくなる。また、スピン分極率が1に近づくほど、TMRRは大きくなる。また、スピン分極と磁化は比例することが知られている。ここで、表1に各種磁性体のスピン分極率をまとめて示す。

[0020]

【表1】

材料	スピン分極率		
Fe	0.44		
Со	0.35		
Ni	0.23		
NisoFe20	0.25, 0.45		
FeCo	0.53		
NiMnSb	1. 0.58		
PtMnSb	1		
CrO2	1		
Fe3O4	11		
(La·Sr)MnO3	11		

[0021]以上説明したTMR効果を利用して、2つの強磁性体層の磁化方向を、0あるいは1に対応させてデータを記憶する装置がMRAM (Magnetic Random AccessMemory) である。

[0022]従って、MTJの2つの強磁性体層の一方のみ磁化方向を変えたいが、図67の構造では磁界をかけると両方の強磁性体層とも磁化の方向が変わってしまう場合がある。そこで、一方の強磁性体層の磁化方向を固定する目的で、図71に示すように、一方の強磁性体層の上に反強磁性体層が形成された構造が提案されている

【0023】図71において、絶縁層TBを強磁性体層FM21およびFM22で挟み、強磁性体層FM21の上部には反強磁性体層AFが配設されている。なお、反強磁性体層AFには直流電源の正電極を、強磁性体層FM22には負電極を接続している。

30 【0024】強磁性体と反強磁性体を隣接して形成すると、両者を貫く磁束が閉じることにより磁化の方向が固定される。この構造をスピンバルブ型強磁性トンネル接合素子と呼称する。

[0025]また、図72にスピンバルブ型強磁性トンネル接合素子の変形例の構成を示す。図72において、絶縁層TBを強磁性体層FM21およびFM22で挟み、強磁性体層FM21の上部には反強磁性体層AFを配設し、強磁性体層FM22の下部には強磁性体層FM23を配設している。

10 【0026】とこで、反強磁性体層AFは、例えばIr (イリジウム)を20~30atom.%含むIrMnで構 成され、強磁性体層FM21の磁化の方向を固定する が、磁化の方向は外部磁界に対して反転しにくい方が良 いので、強磁性体層FM21としては保磁力が大きなC oFeが用いられている。

【0027】また、数式(1)を用いて説明したように、トンネル磁気抵抗変化率(TMRR)はスピン分極率が大きい方が大きくなるので、スピン分極率が大きい材料としてCoFeが用いられている。

50 【0028】一方、強磁性体層FM22にも同じCoF

eが用いられているが、強磁性体層FM22はなるべく 小さな外部磁界により磁化の方向が制御できるように、 保磁力が小さな材料の方が望ましい。

【0029】図72の構成においては、強磁性体層FM 22の磁化の向きを反転しやすくする目的で、強磁性体 層FM23として保磁力とスピン分極率が小さなNi.o Fe₂₀ (パーマロイ)を使用する。これにより、強磁性 体層 FM22は小さな外部磁界で磁化の向きを反転させ るととができる。

【0030】図73は図72に示すスピンバルブ型強磁 10 性トンネル接合素子の実際的な構造を示し、図74は当 該構造におけるTMRの実測特性を示している。

【0031】図73において、基板BD上に平面的に配 設された反強磁性体層AFおよび強磁性体層FM21の 積層体上部に絶縁層TBが配設され、絶縁層TBの上部 に強磁性体層FM23が配設されている。 このような構 成において、外部磁界を印加して、磁気抵抗MRの変化 を測定した結果が図74である。

【0032】図74においては、横軸に磁界(1エルス テッド=約79A/mで換算)、縦軸にトンネル磁気抵 20 抗率(TMRR)を示している。図74からは、TMR Rが36%の値を実現していること、磁化の方向の反転 に必要な磁界が約30 (×79A/m)程度と低いこ と、磁界の方向に対して対称なヒステリシスが得られて いることが判る。

【0033】<MRAMの構造と動作原理>MRAMで はメモリセルを構成する磁気トンネル接合素子の2つの 強磁性体の磁化の方向が同じ、あるいは、相反する方向 になるように外部磁界で制御し、磁化の方向が同じ、あ るいは、相反する方向の状態を0、あるいは1に対応さ 30 せてデータを記憶する。

【0034】記憶されたデータは、メモリセルに所定の 電流を流してトンネル磁気抵抗の両端電圧をセンスする ことにより読み出すことができる。そして、トンネル磁 気抵抗値の変化率 (TMRR) が大きいほどセンスしや すいので、スピン分極率が大きな強磁性体材料がMRA Mには有利である。

【0035】また、データの書き込みは、配線(ワード 線およびビット線) に所定電流を流して発生した磁界を 用いて、一方の強磁性体の磁化の方向を変えれば良い。 【0036】<MRAMセルの構造>以下、MRAMの 従来例として、米国特許USP5,793,697で公開 されているMR AMについて構造および動作を説明す

【0037】図75はMRAMセルアレイとセルを示す 斜視図である。図75において、互いに平行に配設され たワード線1、2および3の上部において交差するよう に、ビット線4、5および6が互いに平行に配設されて

る各交点にMR AMセル(以後、単にセルと呼称する場 合も有り)9が形成されている。図75において拡大図 として示すように、MRAMセル9はワード線の上にシ リコンpn接合ダイオード7と磁気トンネル接合素子 (MTJ) 8が積層された構造である。

【0039】図76はMRAMセル9の断面構造を示す 模式図である。なお、図76においてはワード線3上の MRAMセル9を例示しており、シリコン基板80の上 にワード線3が配設され、その上にn*シリコン層10 とp・シリコン層11が積層され、pn接合ダイオード 7が形成されている。 pn接合ダイオード7はシリコン 酸化膜13等の絶縁膜で被覆される。

【0040】そして、pn接合ダイオード7の上部には タングステンスタッド12が配設され、pn接合ダイオ ード7はタングステンスタッド12を介してMTJ8に 電気的に接続されている。なお、シリコン酸化膜13は タングステンスタッド12も覆うように配設され、タン グステンスタッド12とシリコン酸化膜13の表面はC MP (Chemical Mechanical Polishing) で平坦化され

【0041】MTJ8は積層構造であり、下から順に、 白金(Pt)で構成されるテンプレート層15(膜厚1 Onm)、Ni,Fe,のパーマロイで構成される初期 強磁性体層16(膜厚4nm)、Mn٫ೣFeೣ。で構成さ れる反磁性体層18(膜厚10nm)、CoFeあるい はNi,Fe,のバーマロイで構成され、磁化方向が固 定された強磁性体層20(膜厚8nm)、Al、〇、で構 成されるトンネルバリア層22、膜厚2nmのCoFe と膜厚20nmのNi。1Fe1。の多層膜で構成されるソ フト強磁性体層24、Ptで構成されるコンタクト層2 5を備えている。

【0042】なお、トンネルバリア層22は、膜厚1~ 2 n mのA l を堆積後、プラズマ酸化法により 1 0 0 m Torrの酸素圧力下で25W/cm²のパワー密度で 60~240秒間処理して形成される。

【0043】また、図76には示さないが、実際には基 板80上のシリコン酸化膜13の全面に1つの大きなM TJを形成し、これをフォトレジストマスクを用いてア ルゴンイオンミリングでパターニングして、図76に示 40 す小さなMTJ8を複数の形成する。個々のMTJ8は シリコン酸化膜26で被覆されている。また、図76に は示されていないが、コンタクト層25はビット線に接 続する。

【0044】MTJ8の磁気トンネル抵抗は、先に説明 したようにソフト強磁性体層24の磁化の方向が、強磁 性体層20の磁化の方向と同じである場合と、反対方向 を向いている場合とで異なる。ソフト強磁性体層24の 磁化の方向は、ビット線とワード線を流れる電流により 生成された磁界で変化させることができる。

【0038】そして、ワード線およびビット線で挟まれ 50 【0045】また、MTJ8の磁気トンネル抵抗は、ト

ンネルバリア層22の膜厚、および、そのバリアハイトと、接合の下の界面のラフネス等の膜の材質特性にも大きく依存する。

[0046]ソフト強磁性体層24は、イージーアクシス (easy axis)と呼称される磁化の容易な方向を持つように形成される。このイージーアクシスに沿う磁化の方向は2方向となり、それぞれメモリセルの0および1の2つのデータに対応させることができる。

【0047】一方、強磁性体層20は、磁化の方向がソフト強磁性体層24のイージーアクシスと同じで、かつ、MRAMの動作状態によらず方向を変えないように形成される。

【0048】この磁化の方向を固定磁化の方向(unidir ectional anisotropy directionの便宜的な訳語)と言う。ソフト強磁性体層24のイージーアクシスは、MT J8の真性異方性(intrinsic anisotropy)、応力誘起異方性(stress induced anisotropy)、形状に起因する異方性を組み合わせて定められる。

【0049】ととで、真性異方性とは、強磁性体が有する物性本来の磁化の異方性を意味し、応力誘起異方性と 20は、強磁性体に応力を加えた場合に生じる磁化の異方性を意味する。

【0050】また、図75に示すように、MTJ8は平面視形状が、長辺長さL、短辺長さWの長方形状をしている。これは、MTJ8の形状に起因する異方性を利用して、ソフト強磁性体層24のイージーアクシスを定めているためである。

【0051】次に、強磁性体層20の固定磁化の方向の設定方法を説明する。テンプレート層15上に堆積形成される初期強磁性体層16は、結晶方位が{111}方30位となる面({111}面)を上にして成長する。また、MnFeで構成される反磁性体層18は、初期強磁性体層16の上に堆積される。

【0052】 これらの磁性体層は、後に堆積されるソフト強磁性体層24のイージーアクシスの方向と同じ方向に向いた磁界の下で堆積され、これにより、ソフト強磁性体層24の固定磁化の方向が定められる。

【0053】また、強磁性体層20と反磁性体層18との間で磁束が閉じるために、強磁性体層20の磁化の方向は、ソフト強磁性体層24のそれよりも、外部磁界によって方向を変えにくくなり、ワード線とビット線を流れる電流により発生する磁界の大きさの範囲では、強磁性体層20の磁化の方向は固定される。さらに、MTJ8の平面視形状を長方形にしているため、強磁性体層20の形状に起因する磁化異方性が発生し、このことも強磁性体層20の磁化の方向の安定に貢献している。

【0054】<MRAMの書き込み/読み出し動作の概要>以下、MRAMの書き込みおよび読み出し動作について説明する。アドレス選択を行うためのワード線およびビット線(選択ワード線および選択ビット線と呼称)

に所定の電流を流すと、各線の周りに磁界が発生し、両線の交差部(選択アドレス)では各磁界が結合した結合磁界が発生する。この磁界が印加されると両線の交差部に設置されているMTJ8のソフト強磁性体層24の磁化の方向が層の面内で回転し、データの書き込みが行われる。

[0055] との磁界の大きさはソフト強磁性体層24 のスイッチング磁界(磁化の方向が反転し始める磁界) よりも大きくなるように設計され、主にソフト強磁性体 10 層24の保磁力と磁化異方性で決まる。

【0056】また、選択ワード線および選択ビット線の周囲に発生する磁界は、強磁性体層20の固定磁化の方向を回転させないように、十分小さく設計しなければならない。なぜならば、半選択(Half select)セルの磁化の方向を変えないためである。なお、半選択セルとは、その上下に位置するワード線およびビット線の一方にしか電流が流れていないセルである。

【0057】このように、メモリセルアレイのアーキテクチャは、書き込み時の消費電力を低減するため、書き込み電流がMTJ8に直接に流れないように設計される。

【0058】また、MRAMセル9に書き込まれたデータは、pn接合ダイオード7とMTJ8とを垂直に流れる電流をセンスすることにより読み出される。なお、動作時にはMRAMセル9中をトンネル電流が縦に流れるので、MRAMセル9の占有面積を小さくすることができる。

[0059] MTJ8のA1,0,で構成されるトンネルバリア層22の抵抗は、膜厚に対してほぼ指数関数的に変化する。すなわち、トンネルバリアを流れる電流は膜厚が厚くなると低減し、接合をトンネルする電流だけが接合に対して垂直に流れる。

【0060】そして、MRAMセル9のデータは、書き込み電流よりもはるかに小さいセンス電流がMTJ8を垂直に流れるときに発生するMRAMセル9の電圧をモニタすることで読み出される。

【0061】先に説明したように、MTJ8のトンネル確率は、始状態におけるソフト強磁性体層24中のスピンの極性と同じ極性のスピンの状態密度が、終状態における強磁性体層20中において多く存在するほど増加する

【0062】従って、MTJ8の磁気トンネル抵抗は、ソフト強磁性体層24と強磁性体層20のスピンの状態が同じである場合、すなわち、磁化の方向が両層で同じである場合には低く、磁化の方向が反対である場合には高くなる。それゆえ、MTJ8の抵抗を微小電流でモニタすればMRAMセル9のデータを読み出すことができる。

[0063]なお、センス電流が発生する磁界は無視で 50 き、MRAMセル9の磁化の状態に影響を与えない。ま た、MRAMセル9の読み出し/書き込みに必要な配線 は、図75に示したビット線とワード線のアレイのみで あるので、効率の良いメモリセルアレイを構成すること ができる。

【0064】<書き込み動作>以下、MRAMの書き込 み動作について図77および図78を用いてさらに説明 する.

【0065】図77は、図75に示すメモリセルアレイ の等価回路図であり、ワード線1~3の両端は、それぞ れワード線制御回路53接続され、ピット線4~6の両 10 からⅤ。に下げ、ビット線BL4の電圧をⅤ。からⅤ。に 端は、それぞれビット線制御回路51に接続されてい・ る。なお、図78の説明の便宜を図るため、ワード線1 ~3をワード線WL1~WL3、ビット線4~6をビッ ト線BL4~BL6として示す場合もある。

【0066】そして、ワード線1~3およびビット線4 ~6の交点には、抵抗記号で表されるMTJ8およびダ イオード記号で表されるpn接合ダイオード7が配設さ

【0067】ととで、ワード線1およびビット線4を選 択する場合を想定すると、両者の交点に位置するMRA 20 Mセル9aが選択される。

【0068】選択されたMRAMセルセル9aは、ビッ ト線4を流れる電流 I。と、ワード線1を流れる電流 I。 により発生した結合磁界で書き込まれる。

【0069】電流【、および 1、のどちらか一方がセル領 域内で単独に発生する磁界は、MTJ8のソフト強磁性 体層24セルの磁化の方向を変えるのに必要な磁界より も小さい。

【0070】それゆえ、半選択セルであるMRAMセル - 9b~9e(ワード線およびビット線に、電流 [。か [。 のどちらか一方しか流れないセル)には書き込みは行わ

【0071】しかしながら、電流Ⅰ。およびⅠ。による磁 界が結合されると、選択されたメモリセル9aのソフト 強磁性体層24の磁化の方向を変えるのに十分な大きさ となる。

【0072】なお、セル9aのソフト強磁性体層24の 磁化方向を、相反する2つの異なる磁化方向にできるよ うに、電流 1。および 1. の少なくとも一方は、双方向に ット線制御回路51もワード線制御回路53も2つペア で構成されているので、電流し。およびし。は両方とも、 電流の向きを変えることができる。

【0073】図78はビット線4~6(ビット線BL4 ~BL6) およびワード線1~3 (ワード線WL1~W L3)の電圧および電流のタイミングチャートを示して いる。

【0074】図78に示すように、書き込み時のビット 線BL4~BL6の電圧は、電流を双方向に流すのに都 合が良い電圧Ⅴ。に設定される。また、ワード線WLl

~W L 3 の電圧は電圧 V。より大きく、かつ、正の電圧 V. に設定される。

【0075】スタンバイ時には、これらの電圧はすべて のセル9のpn接合ダイオード7に逆バイアスがかかる ように設定される。従って、スタンパイ時に電流Ⅰ。お よびしがメモリセル内を流れることはない。

【0076】<読み出し動作>次に、MRAMの読み出 し動作について図77および図78を用いてさらに説明 する。

図78に示すようにワード線

製L1の電圧を

V。 上げて、選択されたセル9aのpn接合ダイオード7に 順バイアスを印加する。

【0077】読み出し中は、非選択ピット線5および6 はスタンバイ電圧Ⅴ。のままであり、非選択ワード線₩ L2 および3はスタンバイ電圧V,のままである。

【0078】なお、半選択セル9b~9eにおいてはワ ード線からビット線への電圧降下がない(すなわち、p n接合ダイオード7に0Vが印加される)ので、セル内 を電流が流れることはない。

【0079】選択セル9aの磁気トンネル抵抗により、 ビット線BL4からセル9aを通ってワード線WL1へ 流れるセンス電流30(図77参照)の大きさが決定さ れる。ビット線制御回路51の一部を構成するセンス回 路において、セルの2つの状態に対応して予測される2 つの電流値の平均値を参照電流とし、センス電流と比較 する。そして、両電流の差を増幅して、選択セル9aに 蓄えられているデータを読み出す。

【0080】なお、図77のセンス電流30の波形に示 すように、センス電流30は、MTJ8の2つの磁化状 30 態に相当する2種類の電流波形を呈する。

【0081】データ読み出し後、ビット線BL4とワー ド線WL1の電圧は、それぞれのスタンバイ値に戻され るが、メモリセル9 a の磁化状態は、読み出し動作後も 維持される。

[0082]

【発明が解決しようとする課題】以上説明したように、 MRAMセルへの書き込み時には、ビット線とワード線 に電流を流して磁界を発生させる。そして、選択アドレ スのメモリセルには、セルを構成するソフト強磁性体層 流れるように設計される。なお、図77においては、ビ 40 のスイッチング磁界より大きな磁界を与える必要がある ため、比較的大きな電流を流す必要があった。そのた め、書き込み時の消費電力が大きくなるという問題点が あった。

> 【0083】本発明は上記のような問題点を解消するた めになされたもので、書き込み時の消費電力を低減した MRAMを提供することを第1の目的とする。

【0084】また、従来のMRAMセルアレイでは、少 なくとも1つのメモリセルアレイで構成されるメモリブ ロック単位で一括してデータを消去、あるいは、書き込 50 みするには時間がかかるという問題点があった。

【0085】本発明は、消去および書き込みに費やす時間を低減したMRAMを提供することを第2の目的とする。

[0086]

【課題を解決するための手段】本発明に係る請求項1記載の磁気記憶装置は、非接触で交差して、マトリックスを構成する複数のビット線および複数のワード線と、前記複数のビット線と前記複数のワード線との交差部にそれぞれ配設され、少なくとも1つの磁気トンネル接合を含む複数のメモリセルとを備えた磁気記憶装置であって、前記複数のメモリセルは、前記複数のビット線のうちの1本および前記複数のワード線のうちの1本和よび前記複数のワード線のうちの1本和よび前記複数のワード線のうちの1本の間にそれぞれ配設され、前記少なくとも1つの磁気トンネル接合は、磁化の方向が変更可能なソフト強磁性体層をし、前記少なくとも1つの磁気トンネル接合は、前記ソフト強磁性体層の磁化の容易な方向であるイージーアクシスが、前記複数のビット線和よび前記複数のワード線の延在方向に対して40~50度の角度を有するように配設される。

[0087] 本発明に係る請求項2記載の磁気記憶装置 20 は、前記磁気トンネル接合が、前記イージーアクシスに 平行な辺が、前記イージーアクシスに直交する辺よりも 長くなるように、平面視形状が矩形に構成されている。 【0088】本発明に係る請求項3記載の磁気記憶装置 は、非接触で交差して、マトリックスを構成する複数の ビット線および複数のワード線と、前記複数のビット線 と前記複数のワード線との交差部にそれぞれ配設され、 少なくとも1つの磁気トンネル接合を含む複数のメモリ セルとを備えた磁気記憶装置であって、前記複数のビッ ト線の第1の端部にそれぞれ接続され、前記第1の端部 と第1の電源あるい第2の電源との電気的な接続を切り 替え可能な複数の第1の切り替え手段と、前記複数のビ ット線の第2の端部にそれぞれ接続され、前記第2の端 部と前記第1の電源あるい前記第2の電源との電気的な 接続を切り替え可能な複数の第2の切り替え手段とを備 えている。

【0089】本発明に係る請求項4記載の磁気記憶装置は、前記第1の切り替え手段が、前記複数のビット線の第1の端部にそれぞれの第1の主電極が接続され、それぞれの第2の主電極が、前記第1の電源および前記第2の電源に接続された同一導電型の第1および第2のMOSトランジスタを有し、前記第2の切り替え手段は、前記複数のビット線の第2の端部にそれぞれの第1の主電極が接続され、それぞれの第2の主電極が、前記第1の電源および前記第2の電源に接続された同一導電型の第3および第の4MOSトランジスタを有する。

【0090】本発明に係る請求項5記載の磁気記憶装置は、前記第1の切り替え手段が、前記複数のビット線の第1の端部にそれぞれの第1の主電極が接続され、それぞれの第2の主電極が、前記第1の電源および前記第2

16

の電源に接続された導電型の異なるの第1 および第2の MOSトランジスタを有し、前記第2の切り替え手段 は、前記複数のピット線の第2の端部にそれぞれの第1 の主電極が接続され、それぞれの第2の主電極が、前記 第1の電源および前記第2の電源に接続された導電型の 異なる第3および第4のMOSトランジスタを有する。 【0091】本発明に係る請求項6記載の磁気記憶装置 は、前記第1および第2のMOSトランジスタのそれぞ れ前記第1の主電極間に接続された、前記第2のMOS トランジスタと同一導電型の第5のMOSトランジスタ と、前記第3および第4のMOSトランジスタのそれぞ れ前記第1の主電極間に接続された、前記第4のMOS トランジスタと同一導電型の第6のMOSトランジスタ と、をさらに備え、前記第5および第6のMOSトラン ジスタの制御電極は、常時オン状態となる所定電圧を与 える第3の電源に接続される。

【0092】本発明に係る請求項7記載の磁気記憶装置 は、非接触で交差して、マトリックスを構成する複数の ビット線および複数のワード線、および、前記複数のビ ット線と前記複数のワード線との交差部にそれぞれ配設 され、少なくとも1つの磁気トンネル接合を含む複数の メモリセル、で構成される複数のメモリセルアレイと、 前記複数のメモリセルアレイに渡る複数のメインワード 線と、前記複数のメモリセルアレイの個々に対応して配 設された複数のメモリセルアレイ選択線とを有した、少 なくとも1のメモリセルアレイ群を備え、前記複数のワ ード線は、前記複数のメインワード線と前記複数のメモ リセルアレイ選択線との交差部にそれぞれ設けられた第 1の組み合わせ論理ゲートの出力にそれぞれ接続され、 前記第1の組み合わせ論理ゲートの入力は、交差状態に ある前記複数のメインワード線の1本と前記複数のメモ リセルアレイ選択線の1本とに接続される。

[0093] 本発明に係る請求項8記載の磁気記憶装置は、前記少なくとも1のメモリセルアレイ群を複数有し、前記複数のメモリセルアレイ群に渡る複数のグローバルワード線と、前記複数のメモリセルアレイ群の個々に対応して配設された複数のメモリセルアレイ群選択線とをさらに有し、前記複数のメインワード線は、前記複数のグローバルワード線と前記複数のメモリセルアレイ群選択線との交差部にそれぞれ設けられた第2の組み合わせ論理ゲートの出力にそれぞれ接続され、前記第2の組み合わせ論理ゲートの入力は、交差状態にある前記複数のグローバルワード線の1本と前記複数のメモリセルアレイ群選択線の1本とに接続される。

【0094】本発明に係る請求項9記載の磁気記憶装置は、非接触で交差して、マトリックスを構成する複数のビット線および複数のワード線、前記複数のビット線と前記複数のワード線との交差部にそれぞれ配設され、少なくとも1つの磁気トンネル接合を含む複数のメモリセルで構成される複数のメモリセルアレイと、前記複数の

メモリセルアレイに渡る複数のメインビット線と、前記 複数のメモリセルアレイの個々に対応して配設された複 数のメモリセルアレイ選択線とを有した、少なくとも1 のメモリセルアレイ群とを備え、前記複数のビット線 は、前記複数のメインビット線と前記複数のメモリセル アレイ選択線との交差部にそれぞれ設けられた第1の組 み合わせ論理ゲートの出力にそれぞれ接続され、前記第 1の組み合わせ論理ゲートの入力は、交差状態にある前 記複数のメインビット線の1本と前記複数のメモリセル アレイ選択線の1本とに接続される。

【0095】本発明に係る請求項10記載の磁気記憶装 置は、前記少なくとも1のメモリセルアレイ群を複数有 し、前記複数のメモリセルアレイ群に渡る複数のグロー バルビット線と、前記複数のメモリセルアレイ群の個々 に対応して配設された複数のメモリセルアレイ群選択線 とをさらに有し、前記複数のメインビット線は、前記複 数のグローバルビット線と前記複数のメモリセルアレイ 群選択線との交差部にそれぞれ設けられた第2の組み合 わせ論理ゲートの出力にそれぞれ接続され、前記第2の 組み合わせ論理ゲートの入力は、交差状態にある前記複 20 数のグローバルビット線の1本と前記複数のメモリセル アレイ群選択線の1本とに接続される。

【0096】本発明に係る請求項11記載の磁気記憶装 置は、非接触で交差して、マトリックスを構成する複数 のビット線および複数のワード線、および、前記複数の ビット線と前記複数のワード線との交差部にそれぞれ配 設され、少なくとも1つの磁気トンネル接合を含む複数 のメモリセルで構成されるメモリセルアレイと、インダ クタとを備え、前記少なくとも1つの磁気トンネル接合 は、磁化の方向が変更可能なソフト強磁性体層を有し、 前記インダクタは、前記ソフト強磁性体層の磁化の容易 な方向であるイージーアクシスに沿った方向に磁界を発 生させる。

【0097】本発明に係る請求項12記載の磁気記憶装 置は、前記少なくとも1つの磁気トンネル接合が、前記 イージーアクシスが、前記複数のビット線または前記複 数のワード線の延在方向に合致するように配設され、前 記インダクタは、前記イージーアクシスの方向と合致す る前記複数のビット線または前記複数のワード線の延在 方向に沿って、前記メモリセルアレイを取り巻くように 40 配設されたコイル状のインダクタである。

【0098】本発明に係る請求項13記載の磁気記憶装 置は、非接触で交差して、マトリックスを構成する複数 のビット線および複数のワード線、および、前記複数の ビット線と前記複数のワード線との交差部にそれぞれ配 設され、少なくとも1つの磁気トンネル接合を含む複数 のメモリセルで構成される少なくとも1つのメモリセル アレイと、前記少なくとも1つのメモリセルアレイの、 前記複数のビット線および前記複数のワード線の外側に のワード線の形成領域を覆う平板状の少なくとも1つの フラッシュビット線と、少なくとも1つのフラッシュワ ード線とを備えている。

【0099】本発明に係る請求項14記載の磁気記憶装 置は、前記少なくとも1つのメモリセルアレイを複数有 し、前記複数のメモリセルアレイはマトリックス状に配 設され、前記少なくとも1つのフラッシュビット線およ び、少なくとも1つのフラッシュワード線は、前記複数 のメモリセルアレイの配列に沿って、マトリックスを構 10 成するようにそれぞれ複数配設される。

【0100】本発明に係る請求項15記載の磁気記憶装 置は、非接触で交差して、マトリックスを構成する複数 のビット線および複数のワード線、および、前記複数の ビット線と前記複数のワード線との交差部にそれぞれ配 設され、少なくとも1つの磁気トンネル接合を含む複数 のメモリセルで構成されるメモリセルアレイと、前記復 数のビット線および複数のワード線の少なくとも1方の 2つの端部にそれぞれ配設され、選択されたビット線お よびワード線の少なくとも1方に流れる電流を、LC共 振によって保存する少なくとも1つのインダクタと、少 なくとも1つのキャパシタとを備えている。

【0101】本発明に係る請求項16記載の磁気記憶装 ... 置は、前記少なくとも1つのインダクタおよび、前記少 なくとも1つのキャパシタを複数有し、前記複数のビッ ト線は、2つが対となって複数のビット線対を構成し、 前記複数のインダクタは、前記複数のビット線対のそれ ぞれに対応して、ビット線間に電気的に接続されるよう に配設された複数の第1のインダクタを含み、前記複数 のキャパシタは、前記複数のインダクタの配設側とは反 30 対の端部において、前記複数のビット線のそれぞれに対 応して電気的に接続される複数の第1のキャパシタを含 んでいる。

【0102】本発明に係る請求項17記載の磁気記憶装 置は、前記複数のワード線が、2つが対となって複数の ワード線対を構成し、前記複数のインダクタは、前記複 数のワード線対のそれぞれに対応して、ワード線間に電 気的に接続されるように配設された複数の第2のインダ クタをさらに含み、前記複数のキャパシタは、前記複数 のインダクタの配設側とは反対の端部において、前記複 数のワード線のそれぞれに対応して電気的に接続される 複数の第2のキャバシタをさらに含んでいる。

【0103】本発明に係る請求項18記載の磁気記憶装 置は、少なくとも1つの半導体チップと、導体で構成さ れ、前記少なくとも1つの半導体チップを収納する遮蔽 体と、樹脂で構成され、前記遮蔽体を収納するパッケー ジと、前記パッケージの開口部を閉じて密閉する底面基 板と、前記底面基板の外側主面に配設され、前記少なく とも1つの半導体チップと外部との信号伝送を行う信号 伝送用バンプと、前記信号伝送用バンプを囲むように配 それぞれ設けられ、前記複数のビット線および前記複数 50 設され、前記遮蔽体に電気的に接続される遮蔽用バンプ

と、を備え、前記少なくとも1つの半導体チップは、少 なくとも1つの磁気トンネル接合を含む複数のメモリセ ルを有して構成されるメモリセルアレイを備えた磁気記 憶チップを含んでいる。

【0104】本発明に係る請求項19記載の磁気記憶装 置は、前記遮蔽体の開口部端縁の内側および外側に配設 された第1の応力緩和膜と、前記遮蔽体の内壁に配設さ れた第2の応力緩和膜とをさらに備えている。

【0105】本発明に係る請求項20記載の磁気記憶装 置は、前記少なくとも1つの半導体チップが、前記メモ 10 リセルアレイの周辺回路を含む回路チップをさらに含 み、前記磁気記チップおよび前記回路チップは上下に重 ねられて前記遮蔽体内に収納される。

【0106】本発明に係る請求項21記載の磁気記憶装 麗は、少なくとも1つの磁気トンネル接合が、磁化の方 向が変更可能なソフト強磁性体層を有し、前記遮蔽体 は、前記ソフト強磁性体層と同等か、それよりも大きな 透磁率を有する強磁性体で構成されている。

【0107】本発明に係る請求項22記載の磁気記憶装 置は、前記遮蔽体が反強磁性体で構成されている。

【0108】本発明に係る請求項23記載の磁気記憶装 置は、前記遮蔽体が、強磁性体と反強磁性体との多層膜 で構成されている。

【0109】本発明に係る請求項24記載の磁性体基板 は、主面全域に配設された、少なくとも1つの磁気トン ネル接合を形成する多層膜を少なくとも有している。

【0110】本発明に係る請求項25記載の磁性体基板 は、前記多層膜が、前記少なくとも1つの磁気トンネル 接合として、順に配設された反磁性体層、強磁性体層、 絶縁体で構成されるトンネルバリア層およびソフト強磁 30 性体層を含んでいる。

【0111】本発明に係る請求項26記載の磁性体基板 は、前記多層膜が、前記少なくとも1つの磁気トンネル 接合の下部に配設され、pn接合を構成する第1導電型 不純物層と第2導電型不純物層との2層膜をさらに含ん でいる。

【0112】本発明に係る請求項27記載の磁性体基板 は、土台となる基板部と、該基板部上に配設された埋め 込み酸化膜と、該埋め込み酸化膜上に配設されたSOI 層とを備えるSOI基板上に前記多層膜を有している。 [0113]

【発明の実施の形態】<A. 実施の形態1>

<本実施の形態の特徴>本発明の実施の形態1に係るM RAMは、MRAMセルを構成するソフト強磁性体層の イージーアクシスがビット線およびワード線と非平行で あり、より具体的には、ビット線およびワード線と40 ~50度の角度をなすようにMRAMセルを配設すると とを特徴とする。

【0114】<A-1. 装置構成> <A-1-1.MRAMセルの構成>まず、MRAMセ 50 ワード線およびビット線(選択ワード線および選択ビッ

ルの代表的な構成について図1を用いて説明する。図1 に示すMRAMセルMCは、n*シリコン層10および p・シリコン層 1 1 が積層されて構成されるpn接合ダ イオード7を有している。

【Oll5】そして、pn接合ダイオード7の上部には タングステンスタッド12が配設され、pn接合ダイオ ード7はタングステンスタッド12を介して磁気トンネ ル接合(Magnetic Tunnel Junction:MTJ)8に電気 的に接続されている。

【Oll6】MTJ8は積層構造であり、下から順に、 白金(Pt)で構成されるテンプレート層15(膜厚1 Onm)、Ni,Fe,のパーマロイで構成される初期 強磁性体層 16 (膜厚4 n m)、Mn, Fe, で構成さ れる反磁性体層18(膜厚10nm)、CoFeあるい はNi,Fe,のパーマロイで構成され、磁化方向が固 定された強磁性体層20(膜厚8nm)、Al,O,で構 成されるトンネルバリア層22、膜厚2nmのCoFe と膜厚20nmのNi,Fe,の多層膜で構成されるソ フト強磁性体層24、Ptで構成されるコンタクト層2 5を備えている。

【0117】MTJ8を含めてMRAMセルMCの平面 視形状は長方形であり、その長辺に平行な方向が、ソフ ト強磁性体層24の電子のスピンの方向におけるイージ ーアクシスとなるように設定されている。なお、短辺に 平行な方向が、磁化の困難な方向であるハードアクシス (hard axis) となる。

【0118】<A-1-2. 従来のMRAMセルアレイ の詳細な検討>図2に、従来のMRAMセルアレイの平 面構成を示す。なお、MRAMセルMC1は便宜的に斜 視図として示している。

【0119】図2に示すように、互いに平行に配設され た複数のウード線WL1の上部において交差するよう に、互いに平行に配設された複数のビット線BL1が配 設されている。

【0120】そして、ワード線およびビット線で挟まれ る各交点にMRAMセル(以後、単にセルと呼称する場 合も有り) MC 1 が形成されている。なお、各MRAM セルMC1 に模式的に示す矢印は、MRAMセルMC1 のソフト強磁性体層24のスピンの方向を示しており、 図2に示すスタンバイ状態では全てのMR A MセルMC 1のスピン方向が右向きになっている。なお、MRAM セルMClの構成は、例えば図lに示すメモリセルMC と同様とするが、との構成に限定されるわけではない。 【0121】図3は従来のMRAMセルアレイにおい て、書き込みの状態を模式的に示す平面図である。な お、以下においては、MR AMセルMC 1 に便宜的にM Cla、MClb、MClcの符号を付して区別する場 合もある。

【0122】書き込み時に、アドレス選択を行うための

ト線と呼称)に所定の電流を流すと、ビオ・サバール (Biot-Savart)の法則により、電流の周りには磁界が 発生する。

【0123】 ここで、ビット線の周りに発生する磁界を Hx、ワード線の周りに発生する磁界をHyとする。そ して、便宜的に、選択ワード線および選択ビット線を、 それぞれWL1 aおよびBL1 a として表記する。

【0124】なお、図3における電流の流れる方向は、 選択ビット線BL1bにおいては下から上に、選択ワー F線WL1aにおいては左から右である。

【0125】選択ワード線WL1aおよび選択ビット線BL1bに所定の電流を流すと、両線の交差部(選択アドレス)では磁界HxおよびHyが結合する。この結合磁界が印加されると、選択ワード線WL1aおよび選択ビット線BL1bの交差部に設置されているMRAMセルMC1aのソフト強磁性体層24の磁化の方向が層の面内で回転し、データの書き込みが行われる。図3においては、MRAMセルMC1aのスピン方向が90度以上回転して示されている。

【0126】そして、セル形状による磁化異方性により、イージーアクシスの方へスピンが回転するため、最終的にはスピンは反転(180度回転)することになる。

【0127】一方、その上下に位置するワード線および ビット線の一方にしか電流が流れていない半選択(half -select)9セルであるMRAMセル、すなわち図3に 示す、複数のMRAMセルMC1bにおいても、ソフト 強磁性体層24のスピンが回転するが、反転には至らな いように、各電流が設定されている。

【0128】なお、選択ビット線BLlaによる複数の 30 することが望ましい。 半選択セルMClcは、選択ビット線BLlaの周りに 【0142】発明者を発生する磁界Hxが、イージーアクシスの方向と同じで いて、磁界Hkを低減あるので、磁界Hxだけでは図3上に表示するほどの大きな回転は起こせない。 【0143】<A-1

【0129】図4に、スピンを反転させるのに必要な磁界Hkを、磁界HxとHyとの結合磁界で形成する場合の上記3磁界の関係を示す。図4において横軸に磁界Hkを、縦軸に磁界Hyを示している。また、当該関係を以下に数式で表す。

[0130]
{数3}
$$H_x^{2/3} + H_y^{2/3} = H_k^{2/3}$$
 …(3)

【0131】図4における曲線はアステロイド曲線と呼称される。そして、磁界Hkが下記数式(4)で表される場合、ソフト強磁性体層24のスピンは反転する。

[0132]

【数4】

$$H_{x}^{2/3} + H_{y}^{2/3} > H_{h}^{2/3} \cdots (4)$$

22

【0133】また、磁界Hkが下記数式(5)で表される場合、ソフト強磁性体層24のスピンの方向は維持される。

[0134]

【数5】

$$H_x^{2/3} + H_y^{2/3} < H_k^{2/3}$$
 ... (5)

【0135】定常電流 I の周りに発生する磁束密度 B は、ビオ・サバールの法則から次に式(6)で表される。

10 る。 【0136】

【数6】

$$B(R) = \frac{\mu}{2\pi} \cdot \frac{1}{R} \qquad \cdots (6)$$

【0137】ここで、μは透磁率、Rは電流Iからの距 離である。また、磁界Hと磁束密度Bとは、次に式

(7)で表される関係にある。

[0138]

【数7】

$$B = \mu H \qquad \cdots (7)$$

【0139】従って、以下の数式(8)が成り立つ。 【0140】

【数8】

$$H(R) = \frac{1}{2\pi} \cdot \frac{I}{R} \qquad \cdots (8)$$

【0141】上記数式(8)から、磁界日は定常電流 I に比例することが判る。従って、書き込み時の消費電力を下げるには、スピンを反転させるのに必要な磁界 H k を下げること、すなわち、Hx+Hyをなるべく小さくすることが望ましい。

【0142】発明者らは上述した従来技術の検討に基づいて、磁界Hkを低減することができるMRAMセルアレイの構成に到達した。

【0143】<A-1-3. MRAMセルアレイの構成 および動作>図5に、本発明の実施の形態1に係るMRAMセルアレイMA10の平面構成を示す。図5に示すように、互いに平行に配設された複数のワード線WL1の上部において交差するように、互いに平行に配設された複数のビット線BL1が配設されている。

40 【0144】そして、ワード線およびビット線で挟まれる各交点にMRAMセルMC2が形成されている。なお、MRAMセルMC2の構成は、例えば図1に示すメモリセルMCと同様とするが、この構成に限定されるわけではない。

【0145】図5に示すように、イージーアクシスが、ビット線およびワード線に対して45度傾くように各MRAMセルMC3が配設されている。なお、本例においては、ワード線WL1に対しては右斜め上に45度傾けて配設されているので、図5に示すスタンバイ状態では全てのMRAMセルMC2のスピン方向が右斜め上の向

きになっている。

[0146] 図6はMRAMセルアレイMA10の書き 込みの状態を模式的に示す平面図である。なお、以下に おいては、MRAMセルMC2に便宜的にMC2a、M C2b、MC2cの符号を付して区別する場合もある。 【0147】選択ワード線WLlaおよび選択ビット線

23

BLlbに所定の電流を流すと、両線の交差部(選択ア ドレス) では磁界Hx およびHy が結合する。なお、図 6 における電流の流れる方向は、選択ビット線 B L 1 b においては下から上に、選択ワード線WLlaにおいて 10 は左から右である。

【0148】この結合磁界が印加されると、選択ワード 線WLlaおよび選択ビット線BLlbの交差部に設置 されているMRAMセルMClaのソフト強磁性体層2 4の磁化の方向が層の面内で回転し、データの書き込み が行われる。図6においては、MRAMセルMC2aの スピン方向が90度以上回転して示されている。

【0149】そして、セル形状による磁化異方性によ り、イージーアクシスの方へスピンが回転するため、最 終的にはスピンは反転(180度回転)することにな

【0150】一方、その上下に位置するワード線および ビット線の一方にしか電流が流れていない半選択セルで あるMRAMセル、すなわち図6に示す、複数のMRA MセルMC2bおよびMC2cにおいても、ソフト強磁 性体層24のスピンが回転するが反転には至らないよう に、各電流が設定されている。

【0151】ととで、選択ビット線BL1aによる複数 の半選択セルMC2cは、選択ビット線BL1aの周り に発生する磁界Hxが、イージーアクシスの方向に対し 30 て約45度の角度で交差するので、図6に表示するよう にソフト強磁性体層24のスピンが回転するが、各電流 の大きさを調節することで、スピンを反転させることも できるし、反転させないこともできる。これは、選択ワ ード線WL1aによる複数の半選択セルMC2bについ ても同様である。

【0152】<A-1-4. その他の構成例>図7に、 実施の形態 1 のその他の構成例として、MRAMセルア レイMA20の平面構成を示す。図7に示すように、互 いに平行に配設された複数のワード線WL1の上部にお 40 いて交差するように、互いに平行に配設された複数のビ ット線BL1が配設されている。

【0153】そして、ワード線およびビット線で挟まれ る各交点にMRAMセルMC3が形成されている。な お、MRAMセルMC3の構成は、例えば図1に示すメ モリセルMCと同様とするが、この構成に限定されるわ けではない。

【0154】図7に示すように、イージーアクシスが、 ビット線およびワード線に対して45度傾くように各M RAMセルMC3が配設されている。なお、本例におい 50 MRAMセルアレイMA20における書き込み時の選択

ては、ワード線WL1に対しては右斜め下に45度傾け て配設されているので、図7に示すスタンバイ状態では 全てのMRAMセルMC3のスピン方向が右斜め下の向 きになっている。

【0 1 5 5 】 図 8 は M R A M セルアレイ M A 2 0 の 書き 込みの状態を模式的に示す平面図である。なお、以下に おいては、MRAMセルMC3に便宜的にMC3a、M C3b、MC3cの符号を付して区別する場合もある。

【0156】選択ワード線WLlaおよび選択ビット線 BLlaに所定の電流を流すと、両線の交差部(選択ア ドレス)では磁界HxおよびHyが結合する。

【0157】なお、図8における電流の流れる方向は、 選択ビット線BL1aにおいては下から上に、選択ワー ド線WLlaにおいては左から右である。

【0158】この結合磁界が印加されると、選択ワード 線WLlaおよび選択ビット線BLlaの交差部に設置 されているMRAMセルMC3aのソフト強磁性体層2 4の磁化の方向が層の面内で回転し、データの書き込み が行われる。図8においては、MRAMセルMC3aの 20 スピン方向が90度以上回転して示されている。

【0159】そして、セル形状による磁化異方性によ り、イージーアクシスの方へスピンが回転するため、最 終的にはスピンは反転(180度回転)することにな

【0160】一方、図8に示す半選択セルである複数の MRAMセルMC2bおよびMC2cにおいても、ソフ ト強磁性体層24のスピンが回転するが、反転には至ら ないように各電流が設定されている。

【0161】<A-1-5. MRAMセルの配設方向の 最適化>次に、図9~図25を用いて、MRAMセルの 配設方向の最適化について説明する。

【0162】まず、結合磁界Hkによりスピンの方向を 反転させる場合について説明する。

【0163】図9および図10に、図2に示す従来のM RAMセルアレイにおける書き込み時の選択アドレスの MRAMセルMClaのスピンの方向と、それを反転さ せる結合磁界Hkの方向の関係を模式的に示す。

【0164】図9および図10において、磁界Hxおよ びHyの大きさが同じ場合を想定すると、スピンと結合・ 磁界Hkがなす角度は $\theta_1 = 135$ 度となる。

【0165】また、図11および図12に、図5に示す MRAMセルアレイMA10における書き込み時の選択 アドレスのMR AMセルMC 2 a のスピンの方向と、そ れを反転させる結合磁界Hkの方向の関係を模式的に示

【0166】図11および図12において、磁界Hxお よびHyの大きさが同じ場合を想定すると、スピンと結 合磁界H kがなす角度は θ_1 =90度となる。

【0167】また、図13および図14に、図7に示す

アドレスのMR AMセルMC3 a のスピンの方向と、そ れを反転させる結合磁界Hkの方向の関係を模式的に示

【0168】図13および図14において、磁界Hxお よびHyの大きさが同じ場合を想定すると、スピンと結 合磁界H kがなす角度は θ ,=180度となる。

【0169】次に、図15に、結合磁界Hkと、磁界H xおよびHyとの関係を示す。この関係は図4において アステロイド曲線として示したものと同じであるが、一 Hx | + | Hy | = 一定という条件下で、すなわち、一 10 定の書き込み電流という条件下で、アステロイド曲線上 の磁界HxおよびHyを求めると、Hx=Hy=Hk/ 2√2の関係が得られる。

【0170】とれに基づけば、図9および図10に示す 従来のMRAMセルアレイにおいては、結合磁界Hkに よりスピンを約135度回転させ、そこから180度ま では形状による磁化異方性を利用してスピンを回転させ

【0171】一方、図11および図12に示すMRAM セルアレイMA10においては、同じ結合磁界の大きさ 20 ルアレイMA20の構成において、電流の流れる方向 でスピンが約90度回転する。従って、形状による磁化 異方性を利用しても、スピンが反転するかどうか臨界の 状態である。それゆえ、MRAMセルアレイMA10の 構成を採る場合には、磁界Hxを磁界Hyよりも若干大 きくして、スピンの回転角 θ ,を90度以上にすること が望ましい。

【0172】なお、図13および図14に示すMRAM セルアレイMA20においては、同じ結合磁界の大きさ でスピンが約180度回転するので、確実にスピンを反 転するととができる。

【0173】次に、結合磁界Hkが加わってもスピンの 方向を維持させる場合について、スピンの方向と、それ を維持する結合磁界Hkの方向の関係を図16~図21 に模式的に示す。なお、図16~図21は図9~図14 に対応しているので、重複する説明は省略する。

【0174】図16および図17において、磁界Hxお よびHyの大きさが同じ場合を想定すると、スピンと結 合磁界H kがなす角度は $\theta_{11} = 45 g$ となる。

【0175】図18および図19において、磁界Hxお よびHyの大きさが同じ場合を想定すると、スピンと結 40 合磁界H kがなす角度は $\theta_{11} = 0$ 度となる。

【0176】図20および図21において、磁界Hxお よびHyの大きさが同じ場合を想定すると、スピンと結 合磁界Hkがなす角度は θ_1 ,=90度となる。

【0177】従って、図16に示す従来のMRAMセル アレイにおいては、スピンの方向はほぼ維持され、ま た、図18に示すMRAMセルアレイMA10において は、スピンの方向は完全に維持されるように書き込みが 行われるが、図20に示すMRAMセルアレイMA20 においては、スピンが反転するかどうか臨界の状態であ 50 る。

り、望ましくない。 【0178】以上の考察から、図13および図20に示

すMRAMセルアレイMA20の構成を採用し、ビット 線およびワード線に流す電流の向きを考慮することが望 ましい。当該構成について図22~図25を用いて説明

する。

【0179】図22および図23は、MRAMセルアレ イMA20の構成において、図8と同様に電流の流れる 方向が、選択ビット線BLlaにおいては下から上に、 選択ワード線WLlaにおいては左から右である場合の 書き込み時の選択アドレスのMRAMセルMC3aのス ビンの方向と、それを反転させる結合磁界Hkの方向の 関係を模式的に示している。

【0180】図22および図23において、磁界Hxお よびHyの大きさが同じ場合を想定すると、スピンと結 合磁界H kがなす角度は $\theta_* = 180$ 度となり、スピン の方向を反転させることでデータを書き込む場合に適し た構成であると言える。

【0181】また、図24および図25は、MRAMセ が、選択ビット線BLlaにおいては上から下に、選択 ワード線WLlaにおいては右から左となっている場合 の書き込み時の選択アドレスのMRAMセルMC3aの スピンの方向と、それを維持する結合磁界Hkの方向の 関係を模式的に示している。

【0】82】なお、図22の場合と比べて、ビット線お よびワード線に流す電流の向きを変更している。

【0183】図24および図25において、磁界Hxお よびHyの大きさが同じ場合を想定すると、スピンと結 30 合磁界Hkがなす角度は θ ,=0度となり、スピンの方 向を維持することでデータを書き込む場合に適した構成 であると言える。

【0184】また、図22および図24の何れの構成に おいても、結合磁界の方向とイージーアクシスとが一致 しているため、書き込みの誤差が従来よりも小さくなる という利点をさらに有している。

【0185】<A-2. 作用効果>以上説明したよう に、本発明に係る実施の形態1のMRAMによれば、M RAMセルを構成するソフト強磁性体層24のイージー アクシスを、ビット線およびワード線に対して斜めに4 0~50度、望ましくは45度の角度をなすよう傾けて 配設することで、少ない書き込み電流で、選択アドレス におけるMRAMセルのスピンの方向を確実に反転で き、書き込み時の消費電力を低減することができる。

【0186】また、選択アドレスにおけるMRAMセル のスピンの方向を反転させる場合と、スピンの方向を維 持する場合とでビット線およびワード線に流す電流の向 きを変更することで、結合磁界の方向とイージーアクシ スとを一致させ、書き込みの誤差を低減することもでき

【0187】<B. 実施の形態2>

<本実施の形態の特徴>本発明の実施の形態2に係るM RAMは、MRAMセルアレイのピット線およびワード 線の両端に一対の読み出し/書き込み制御回路を備え、 当該回路の構成として、ビット線と電源電圧VDDとを接 続する第1のMOSトランジスタと、ビット線と接地電 圧V SSとを接続する第2のトランジスタを含み、書き込 み時にビット線の双方向に書き込み電線を流す機能と、 読み出し時にセンス電流に起因する電圧をセンスアンプ に出力する機能を有する。

【0188】<B-1. 装置構成>

<B-1-1. MRAMの全体構成>図26は本発明の 実施の形態2に係るMRAMの構成を示すブロック図で あり、MRAMセルアレイMCAと、その周辺回路を示 している。

【0189】図26において、列アドレスバッファ(co lumn address buffer) CABは、列アドレス信号を受 信し、信号を反転、あるいは、増幅して列デコーダCD に出力する。

ードし、デコードした信号をマルチプレクサMUXに出 力する。

【0191】マルチプレクサMUXは、デコードされた 列アドレス信号に従ってビット線を選択する。同時にビ ット線の一方端に接続される列読み出し/書き込み第1 制御回路CRW1に信号を出力し、列読み出し/書き込 み第1制御回路CRW1からは、読み出し、あるいは、 書き込みに応じて選択ビット線に電圧、電流が印加され る。

【0192】行アドレスバッファ(row address buffe r) RABは、行アドレス信号を受信し、信号を反転、 あるいは、増幅して行デコーダR Dに出力する。

【0193】行デコーダRDは行アドレス信号をデコー ドし、デコードされた行アドレス信号に従ってワード線 を選択する。同時にビット線の一方端に接続される行読 み出し/書き込み第1制御回路RRW1に信号を出力 し、行読み出し/書き込み第1制御回路RRW1から は、読み出し、あるいは、書き込みに応じて選択ワード 線に電圧、電流が印加される。

【0194】また、MRAMセルアレイMCAから読み 40 ソース電圧V,,が与えられる構成となっている。 出したデータ、あるいは、MRAMセルアレイMCAに 書き込むデータは入出力バッファIOBを介して、外部 との間でデータの入出力が行われる。

【0195】なお、ビット線の他方端には列読み出し/ 書き込み第2制御回路CRW2が接続され、ワード線の 他方端には行読み出し/書き込み第2制御回路RRW2 が接続されている。

【0196】<B-1-2. MRAMの詳細構成>図2 7は、図26に示すMRAMのうち、マルチプレクサM UX、列デコーダCD、行デコーダRD、入出力バッフ 50 MN23、可変抵抗R32を介してドレイン電圧V。が

ァIOBを除いた構成についての回路図を示している。 また、列アドレスバッファCABおよび行アドレスバッ ファRABについては便宜的に図示を省略している。な お、図27に示す構成のMRAMはMRAM100と呼 称する。

【0197】図27において、MRAMセルアレイMC Aは、MRAMセルMC11、MC21、MC12およ びMC22を有している。何れのMRAMセルも、磁気 トンネル接合(MTJ)とpn接合ダイオードが直列に 10 接続された構造を有し、図27においては、MTJを可 変抵抗で表し、ダイオードとの直列接続回路が等価回路 として表されている。

【0198】MTJを可変抵抗で表すのは、MTJを構 成するソフト強磁性体層(電子スピンの方向が変更可 能、すなわち磁化の方向が変更可能)と、強磁性体層 (電子スピンの方向が固定、すなわち磁化の方向が固 定) において、両者のスピンが同一方向を向いている場 合にはトンネル抵抗が小さくなり、互いに反対方向を向 いている場合にはトンネル抵抗が大きくなるためであ 【0190】列デコーダCDは、列アドレス信号をデコ 20 る。従って、との可変抵抗は2つの抵抗値を有するとと になる。

> 【0199】MRAMセルMC11は、ビット線BL1 とワード線WL1との間に直列接続された可変抵抗R1 1 およびダイオードD11を有し、MRAMセルMC2 1は、ビット線BL1とワード線WL2との間に直列接 続された可変抵抗R21およびダイオードD21を有 し、MRAMセルMC12は、ビット線BL2とワード 線WL1との間に直列接続された可変抵抗R12および ダイオードD12を有し、MRAMセルMC22は、ビ ット線BL2とワード線WL2との間に直列接続された 可変抵抗R22およびダイオードD22を有している。 【0200】ビット線BL1およびBL2は、列読み出 し/書き込み第2制御回路CRW2において、それぞれ NMOSトランジスタMN11およびMN21を介して ドレイン電圧V。。が与えられる構成となっている。そし て、NMOSトランジスタMN11およびMN21のド レイン電極には、それぞれNMOSトランジスタMN1 2およびMN22のドレイン電極が接続され、NMOS トランジスタMN12およびMN22のソース電極には

【0201】また、NMOSトランジスタMN11、M N12、MN21およびMN22のゲート電極には、そ れぞれ、NANDゲートND1、ND2、ND3および ND4の出力が与えられ、NANDゲートND1~ND 4のそれぞれの3つの入力はマルチプレクサMUXに接 続されている。

【0202】ビット線BL1およびBL2は、列読み出 し/書き込み第1制御回路CRW]において、それぞれ NMOSトランジスタMN13、可変抵抗R31および

与えられる構成となっている。そして、NMOSトラン ジスタMN13およびMN23のドレイン電極には、そ れぞれNMOSトランジスタMN14およびMN24の ドレイン電極が接続され、NMOSトランジスタMN1 4 およびMN24のソース電極にはソース電圧Vssが与 えられる構成となっている。

【0203】なお、NMOSトランジスタMN13およ びMN23のソース電極は、センス電流の検出のため、 センスアンプを含むマルチプレクサMUXにも接続され ている。

【0204】また、NMOSトランジスタMN13、M N14、MN23およびMN24のゲート電極には、そ れぞれ、NANDゲートND5、ND6、ND7および ND8の出力が与えられ、NANDゲートND1~ND 4のそれぞれの3つの入力はマルチプレクサMUXに接 続されている。

【0205】ワード線WL1およびWL2は、行読み出 し/書き込み第1制御回路RRW1において、それぞれ NMOSトランジスタQN11およびQN21を介して ドレイン電圧V。。が与えられる構成となっている。そし て、NMOSトランジスタQN11およびQN21のド レイン電極には、それぞれNMOSトランジスタQN1 2およびQN22のドレイン電極が接続され、NMOS トランジスタQN12およびQN22のソース電極には ソース電圧Vssが与えられる構成となっている。

[0206] また、NMOSトランジスタQN11、Q N12、QN21およびQN22のゲート電極は行デコ ーダR Dに接続されている。

【0207】ワード線WL1およびWL2は、行読み出 し/書き込み第2制御回路RR₩2において、それぞれ 30 NMOSトランジスタQN13およびQN14を介して ソース電圧Vssが与えられる構成となっている。

【0208】なお、図27では、MRAMセルアレイM CAを2行2列のセルアレイとしているが、行と列のサ イズは、これに限定されるものではない。

【0209】<B-2. 装置動作>以下、図27~図2 9を用いてMRAM100の動作について説明する。図 28は、読み出しおよび書き込み時の、MRAM100 における各種電流および電圧のタイミングチャートであ

【0210】図28においては、センス電流のタイミン グチャート、MRAMセルMC11、MC21、MC1 2の書き込みおよび読み出しに際しての、ワード線およ びビット線に与えられる電圧のタイミングチャートを示 すとともに、NMOSトランジスタMN11、MN1 2、MN13およびMN14の各々のゲート電極に与え られるゲート電圧V,,、V,,、V,,およびV,,のタイミ ングチャート、NMOSトランジスタQN11、QN1 2およびQN13のゲート電極に与えられるゲート電圧 $V_{\bullet 1}$ 、 $V_{\bullet 2}$ および $V_{\bullet 3}$ のタイミングチャート、およびN 50 MOSトランジスタMN11はソース電極がドレイン電

MOSトランジスタMN13のソース電圧Vs1のタイミ ングチャートを示している。

【0211】また、図28において、ワード線およびビ ット線のスタンバイ時の電圧は電圧V。およびV。となっ ている。

【0212】各MR A Mセルにはpn接合ダイオードが 含まれているので、スタンバイ時には当該ダイオードの pn接合に逆バイアスが印加されるように、ワード線お よびビット線には電圧V、およびV。が印加される。な 10 お、図27に示すように、各ダイオードはワード線にカ ソードが接続されるように構成されているので、V_{*}> V,の関係となるように設定される。

【0213】以下においては、電圧V。=ソース電圧V ssと想定して、ビット線BLlの制御について説明す

【0214】<B-2-1. スタンパイ状態>図28に 示すように、スタンバイ状態では、全てのワード線は電 圧V、、全てのビット線は電圧V。が印加される。これを 実現するために、図28に示す4つのNMOSトランジ 20 スタMN11、MN12、MN13およびMN14が配 置されている。

【0215】すなわち、スタンバイ時には、NMOSト ランジスタMN 1 1 およびMN 1 3がオフ状態となるよ うにゲート電圧V,,およびV,,にソース電圧V,sが与え られ、NMOSトランジスタMN12およびMN14が オン状態となるようにゲート電圧 V, , および V, , にドレ イン電圧Vaaが与えられる。

【0216】また、NMOSトランジスタQN11がオ ン状態となるようにゲート電圧V*ュを印加し、NMOS トランジスタQN12がオフ状態となるようにゲート電 圧V。な印加し、NMOSトランジスタQN13がオフ 状態となるようにゲート電圧V、、を印加する。

【0217】なお、NMOSトランジスタQN11はソ ース電極がドレイン電圧V。。に接続されているので、ゲ ート電圧V。,としてはV。。+△V。。の電圧を印加する。 これはトランジスタのしきい値電圧による電圧降下を補 うためである。

【0218】との結果、ビット線BL1にはソース電圧 Vssが与えられ、ワード線WL1にはドレイン電圧Voo 40 が与えられる。

【0219】<B-2-2. 書き込み状態1(ライト 1) >MRAMセルMCllにデータ「l」を書き込む (スピンの方向を反転させる)場合、選択ワード線♥し 1と選択ビット線BL1に電流を流す必要がある。図2 7に示すMRAM100では、ビット線のみに双方向に 電流が流れることを想定している。

【0220】この場合、NMOSトランジスタMN11 およびMN14をオン状態とし、NMOSトランジスタ MN12およびMN13をオフ状態とする。ただし、N 圧 V_{nn} + ΔV_{nn} の電圧を印加する。

【0221】この結果、ビット線BL1を流れる電流 I at は図27の上から下へ向かって流れることになる。

【0222】一方、NMOSトランジスタQN11 およびQN13をオン状態とし、NMOSトランジスタQN 12をオン状態とすることで、選択ワード線WL1には図27の左から右へ向かって電流1。が流れることになる。NMOSトランジスタQN11はソース電極がドレイン電圧V。。に接続されているので、ゲート電圧V.。と 10 してはV0。 $+\Delta V$ 0。の電圧を印加する。

【0223】このようにして、選択ワード線WL1および選択ビット線BL1を流れる電流I。およびI。た起因する磁界により、MRAMセルMC11のMTJのソフト強磁性体層のスピンが回転して、データが書き込まれる。

【0224】<B-2-3. 読み出し状態1(リード 1)>MRAMセルMC11に書き込まれたデータ

「1」を読み出す場合、MRAMセルMC110ダイオードD11 にのみ順パイアスを印加し、センス電流 I_s 。 20 を流す。このセンス電流 I_s 。がMRAMセルMC11 を流れるとピット線BL1 が電圧降下を起こす。この電圧降下の大きさでデータが「0」か「1」を判断する。

【0225】ダイオードD11に順バイアスを印加するために、選択ワード線WL1に電圧V。を、選択ビット線BL1に電圧V。を印加する。この状態を実現するために、NMOSトランジスタMN11およびMN13をオン状態とし、NMOSトランジスタMN12およびMN14をオフ状態とする。

【0226】ただし、NMOSトランジスタMN11ね 30 よびMN13はソース線が V_{00} であるので、ゲート電圧 V_{11} および V_{12} として V_{00} + ΔV_{00} の電圧が印加される。

【0227】 このとき、非選択アドレスのMRAMセルMC22のpn接合ダイオードD22には、逆バイアス(ワード線WL2に電圧V_▼、ビット線BL2に電圧V_δ)が印加されたままであり、半選択アドレスのMRAMセルMC12およびMC21のダイオードD12およびD21には電位差が与えられず(0バイアス)、MRAMセルMC12、MC21およびMC22に電流は40流れない。

【0228】ことで、可変抵抗R11(すなわちMT J)の2つの抵抗値のうち、高い方の値を R_{*} 、低い方の値を R_{*} とする。

【0229】MRAMセルMC11のメモリセルを流れるセンス電流 I_{sc} は、MTJの抵抗値(すなわち可変抵抗R11の値)により大きさが変わる。MTJの抵抗がR_nおよびR₁のときのセンス電流の値を I_{c} および I_{n} とすると、R_n>R₁であるので、 I_{n} > I_{c} が成り立つ。

[0230] MRAMセルMC11にはセンス電流が流 50 磁性体層FMS、第2トンネルバリア層TB2、第2反

れるため、NMOSトランジスタMN13のソース電極 (マルチプレクサMUXに接続)の電圧V₅₁は、ドレイ ン電圧V₀₀よりも低下する。

【0231】この電圧降下は磁気トンネル抵抗値に依存し、との降下電圧をマルチプレクサMUXに含まれるセンスアンプで参照電圧と比較して、データ「1」を検出する。

【0232】 < B - 2 - 4. 書き込み状態 0 (ライト 0) > MR A M セル M C 1 1 にデータ「0」を書き込む (スピンの方向を維持する)場合、書き込み状態 1 の場合と異なるのは、選択ビット線 B L 1 を流れる電流の方向が逆となる点である。これを実現するため、NMOSトランジスタMN 1 1 およびMN 1 4 をオフ状態とし、NMOSトランジスタMN 1 2 およびMN 1 3 をオン状態とする。

【0233】 この結果、ビット線 BL 1を流れる電流 1。 は図27の下から上へ向かって流れることになる。 【0234】 < B - 2 - 5.読み出し状態 0(リード 0) > MR AMセルMC 11に書き込まれたデータ「0」を読み出す場合、NMOSトランジスタMN 11、MN 12、MN 13 およびMN 14の動作は、読み出し状態 1(リード 1)と同じである。ただし、読み出すデータが「0」の場合のNMOSトランジスタMN 13のソース電極の電圧 V_{s_1} と、読み出すデータが「1」の場合の電圧 V_{s_1} と、読み出すデータが「1」の場合の電圧 V_{s_1} との電圧差 ΔV は、磁気トンネル抵抗の変化率(R_{**} - R_{**}) / R_{**} の値が大きいほど大きくなる。電圧差 ΔV が大きいほどセンスアンプで検出できる参照電圧に対するマージンが大きくなるので、検出が容易になる。

) 【0235】 ことで、図29に磁気トンネル抵抗の変化率の印加電圧依存性を示す。図29において、横軸にMTJに印加するバイアス電圧を、縦軸に磁気トンネル抵抗の変化率 {(R,-R,)/R,}を示す。なお、図29には、これまでに説明したMTJであるトンネルバリア層を1層有する単磁気トンネル接合についての特性とともに、トンネルバリア層を2層有する2重磁気トンネル接合についての特性を併せて示している。

【0236】図29から判るように、(単および2重) 磁気トンネル接合に印加する電圧が0.1 V程度のとき、磁気トンネル抵抗の変化率が最大になる。従って、読み出し時に選択ビット線BL1に印加する電圧 V、は、pn接合ダイオードに印加される電圧より0.1 Vだけ高い電圧が望ましい。この電圧は、NMOSトランジスタMN11とMN13のゲート電圧 V。。+ △ V。。の値を調節することにより実現できる。

【0237】 ことで、2重磁気トンネル接合の構成について図30を用いて説明する。図30に示すように、2重磁気トンネル接合は、第1反強磁性体層AF1、強磁性体層FM1、第1トンネルバリア層TB1、ソフト強機性体層FM2、第2トンネルバリア層TB2。第2反

32

強磁性体層AF2が積層された構成を有している。 【0238】このような構成において、第1および第2

反強磁性体層AF1およびAF2の端子TAおよびTB 間に電圧Vxを印加した場合、第1および第2のトンネ ルバリア層TB1およびTB2にはVェ/2ずつの電圧 がかかることになる。

【0239】一方、単磁気トンネル接合の場合には電圧 V_xがトンネルバリア薄膜にかかることになるが、磁気 トンネル抵抗の変化率は、印加電圧が大きいほど小さく なるので、2重磁気トンネル接合の方が磁気トンネル抵 10 抗の変化率が大きくなり、図29に示すように、単磁気 トンネル接合と2重磁気トンネル接合とで特性に差が生 じるととになる。

【0240】<B-3. 作用効果>以上説明したよう に、本発明に係る実施の形態2のMRAMによれば、M RAMセルアレイMCAのビット線およびワード線の両 端に、列読み出し/書き込み第1制御回路CRW1およ び列読み出し/書き込み第2制御回路CRW2を備え、 それぞれにおいて、ビット線と電圧Vooとを接続する第 3、MN23)、ビット線と電圧Vssとを接続する第2 のMOSトランジスタ (MN12、MN22、MN1 4、MN24)とを有しているので、NMOSトランジ スタを切り替えることで選択ビット線に流れる電流の向 きを変更することができ、MTJを構成するソフト強磁 性体層のスピンの方向を任意に変更できる。なお、NM OSトランジスタMN11およびMN12、MN21お よびMN22、MN13およびMN14、MN23およ びMN24は、ビット線の両端部の接続先を、電圧V。。 替え手段と呼称することができる。

【0241】また、列読み出し/書き込み第1制御回路 CRW1の上記第1のMOSトランジスタはセンスアン プを含むマルチプレクサMUXに接続されているので、 データの読み出し時にセンス電流に起因する電圧をマル チプレクサMUXに出力することができる。

【0242】<B-4.変形例1>本発明に係る実施の 形態2の変形例1として、図31にMRAM200を示 す。なお、MRAM200は図27を用いて説明したM RAM100とほぼ同様の構成を有しており、異なるの 40 はMRAM100におけるNMOSトランジスタMN1 1、MN13、MN21、MN23、QN11およびQ N21、の代わりに、PMOSトランジスタMP11, MP13、MP21、MP23、QP11およびQP2 1を設け、かつ、PMOSトランジスタMP11および NMOSトランジスタMN12のゲート電極にNAND ゲートND11の出力を与え、PMOSトランジスタM P21およびNMOSトランジスタMN22のゲート電 極にNANDゲートND12の出力を与え、入力、PM OSトランジスタMP13およびNMOSトランジスタ 50 【0250】また、図には示さないが、MRAM100

MN14のゲート電極にNANDゲートND13の出力 を与え、PMOSトランジスタMP23およびNMOS トランジスタMN24のゲート電極にNANDゲートN D14の出力を与えて、ゲート入力を共通化している点

【0243】図27に示すMRAM100においては、 NMOSトランジスタMN11、MN13の、MN21 およびMN23のゲートには、オン状態においてVoo+ ΔV_{oo} の電圧が印加されるので、ゲート電圧に V_{oo} しか かからないNMOSトランジスタMN12、MN14、 MN22およびMN24に比べて、ゲート絶縁膜にかか る負担が大きくなる可能性があった。

【0244】しかしながら、図31に示すMRAM20 Oにおいては、PMOSトランジスタMP11, MP1 3、MP21およびMP23を採用することで、ゲート にV。以上の電圧を印加せずに済むので、ゲート絶縁膜 にかかる負担は小さくなる。

【0245】また、PMOSトランジスタMP11, M P13、MP21およびMP23を採用することで、N 1のMOSトランジスタ (MN11、MN21、MN1 20 MOSトランジスタMN12、MN14、MN22およ びMN24とゲート入力の共通化を図ることができ、P MOSトランジスタMPllおよびNMOSトランジス タMN12、PMOSトランジスタMP21およびNM OSトランジスタMN22、PMOSトランジスタMP 13およびNMOSトランジスタMN14、PMOSト ランジスタMP23およびNMOSトランジスタMN2 4 はインバータ(ドライバ、バッファ)を形成し、MR AM100に比べて消費電力を低減できる。

【0246】図32は、読み出しおよび書き込み時の、 あるいは電圧V_{ss}に切り替えることができるので、切り 30 MRAM200における各種電流および電圧のタイミン グチャートである。

> 【0247】MRAM200においては、PMOSトラ ンジスタMP11,MP13と、NMOSトランジスタ MN12、MN14のそれぞれのゲート入力を共通化し ているので、ゲート電圧V、、およびV、、のタイミングチ ャートが同じとなり、またゲート電圧 Vュ,および Vュ,の タイミングチャートが同じとなる。

【0248】また、PMOSトランジスタQP11とN MOSトランジスタQN12のゲート入力を共通化(P MOSトランジスタQP21とNMOSトランジスタQ N22のゲート入力も同様)しているので、ゲート電圧 V_{w1}およびV_{w2}のタイミングチャートが同じとなるが、 基本的な動作はMRAM100と同じである。

【0249】なお、本例においては、電圧V。=ソース 電圧 V、、、電圧 V。= ドレイン電圧 V。。と想定してい る。すなわち、MJTの特性が図29に示したものと同 じである場合には、ドレイン電圧V。。は各MRAMセル のpn接合ダイオードに印加される電圧に0.1 Vを足 した値に、ほぼ等しく設定される。

および200の読み出し/書き込み制御回路は、隣接するMRAMセルアレイと共有しても良い。この場合、共有した分だけ装置面積を縮小する効果を奏する。

【0251】<B-5.変形例2>本発明に係る実施の 形態2の変形例2として、図33にMRAM300を示 す。なお、MRAM300は図31を用いて説明したM RAM200とほぼ同様の構成を有しており、異なるの はPMOSトランジスタMP11およびNMOSトラン ジスタMN12、PMOSトランジスタMP13および NMOSトランジスタMN14、PMOSトランジスタ MP21およびNMOSトランジスタMN22、PMO SトランジスタMP23およびNMOSトランジスタM N24のそれぞれのドレイン電極間に、NMOSトラン ジスタMN15、MN16、MN25、MN26を挿入 した点と、PMOSトランジスタQP11およびNMO SトランジスタQN12、PMOSトランジスタQP2 1 およびNMOSトランジスタQN22のそれぞれのド レイン電極間に、NMOSトランジスタQN1およびQ N2を挿入した点である。

【0252】なお、NMOSトランジスタMN15、M 20 N16、MN25、MN26、QN1およびQN2のゲート電圧は、直流電圧V₆₆に固定される。

【0253】 これらのNMOSトランジスタの目的は、リーク電流の低減である。すなわち、MOSFETのリーク電流は、ドレイン端での高電界に起因するBTBT (Band to band tunneling) TAT (Trap Assisted Tunneling)、インパクトイオン化(Impact Ionization)やSRH (Schockley-Read-hall process)が、その原因である。

【0254】リーク電流を低減するには、ドレイン端の電界を低減すれば良く、例えばPMOSトランジスタMP11なよびNMOSトランジスタMN12のドレイン電極間にNMOSトランジスタMN15を挿入し、NMOSトランジスタMN15のゲート電圧を所定の直流電圧(とこでは電圧Vcc)に設定することにより、NMOSトランジスタMN12なよびMN15に与えられるドレイン電圧を低減することができる。

【0255】例えば、電圧VccをVoo/2+Vchn(NMOSトランジスタMN15のしきい値電圧)に設定し、NMOSトランジスタMN15を常時オン状態にす 40 るように与える。すると、NMOSトランジスタMN12がオン状態になった場合、NMOSトランジスタMN12がオン状態になった場合、NMOSトランジスタMN15と合わせて、2つの抵抗が直列に接続された状態となり、抵抗分割によりNMOSトランジスタMN12およびMN15に加わるストレス電圧(ドレイン電圧Voo)が等しくなるため、MN12およびMN15のトータルのリーク電流は、NMOSトランジスタMN15を挿入しない場合、すなわちNMOSトランジスタMN15を挿入しない場合、すなわちNMOSトランジスタMN12だけの場合のリーク電流に比べて、大幅に低減することができ、消費電力を低減することができる。 50

【0256】なお、電圧 V_{cc} を $V_{nn}/2+V_{chn}$ としたのは、この設定によりNMOSトランジスタMN12およびMN15に加わるストレス電圧が等しく最小になるとの知見に基づくものであるが、実施にあたっては、消費電力が低減されるのであれば、この電圧に限定されるものではない。

【0257】以上の効果は、NMOSトランジスタMN 16、MN25およびMN26においても同様である。 【0258】また、PMOSトランジスタQP11およ びNMOSトランジスタQN12、PMOSトランジスタQP21およびNMOSトランジスタQN22のそれ ぞれのドレイン電極間に挿入したNMOSトランジスタ QN1およびQN2によってもリーク電流を大幅に低減 でき、消費電力を低減することができる。

[0259]また、以上の説明においては、データの書き込み時にMRAMセルアレイのピット線には双方向の電流が流れ、ワード線には一方向の電流が流れると想定したが、ビット線に一方向の電流が流れ、ワード線に双方向の電流が流れるようにしても良い。

【0260】また、MRAMセルのpn接合ダイオードの代わりに、MOSFETやTFT (Thin Film Transistor)やパイポーラトランジスタ等のオン/オフ特性を持つ素子を用いても良い。

【0261】<C. 実施の形態3>

<本実施の形態の特徴>本発明の実施の形態3に係るMRAMは、MRAMセルアレイのワード線あるいはビット線を、複数のサブワード線あるいはサブビット線に分割することを特徴としている。

【0262】すなわち、配線の抵抗率をρ、配線の長さ30 を1、配線の断面積をSとすると、配線抵抗Rは、次に式(9)で与えられる。

[0263]

【数9】

$$R = \rho \frac{1}{S} \qquad \cdots (9)$$

【0264】また、配線に流れる電流を I とすると、消費電力Pは次式(10)で与えられる。

[0265]

【数10】

$$P=R1^2 = \rho \frac{11^2}{S}$$
 ... (10)

【0266】従って、配線の長さ1を短くすれば、消費電力が低減することが判る。例えば、配線を2分割すると、消費電力は2分の1になり、n分割(ただし、nは2以上の整数)すると、消費電力はn分の1になり、MRAMにおいて書き込み時の消費電力を低減することができる。

【0.267】また、同じワード線に接続しているメモリセルの個数が増加すると、負荷容量が増加する。その結50 果、ワード線を伝送する信号の遅延時間が増加し、高速

アクセスができないという欠点が生じる。

【0268】しかしながら、ワード線を複数のサブワー ド線に分割して配線の長さを短くすることにより、同一 の配線に接続されるメモリセルの個数が減少するため、 負荷容量が低減される。その結果、ワード線を分割しな いメモリ装置に比べて遅延時間を短くすることができ、 高速アクセスを実現することができる。これはビット線 においても同様である。以下、本発明の実施の形態3に 係るMRAMの具体的な構成について説明する。

【0269】 < C-1. ワード線の分割>

<C-1-1. 装置構成>図34に、ワード線を分割し たMRAM400の構成をブロック図で示す。図34に 示すようにMRAM400は、複数のMRAMセルアレ イ66を有している。

【0270】各MRAMセルアレイ66は、複数のワー ド線64の第1の端部に接続された行読み出し/書き込 み第1制御回路RRW1および第2の端部に接続された 行読み出し/書き込み第2制御回路RRW2と、複数の ビット線69の第1の端部に接続された列読み出し/書 き込み第1制御回路CRW1および第2の端部に接続さ 20 れた列読み出し/書き込み第2制御回路CRW2とを有。 している。

【0271】なお、上記各制御回路は実施の形態2にお いて説明したMRAM100~300と同様とし、同じ 符号を付しているが、これらに限定されるものではな 630

【0272】そして、各MRAMセルアレイ66に対応 して、図示しない列デコーダに接続されるメモリセルア レイ選択線70が複数配設されている。

【0273】また、行デコーダを構成する複数のAND 30 ゲート62の出力に、それぞれメインワード線67が接 続されている。なお、メインワード線67の本数は各M RAMセルアレイ66のワード線の本数に一致する。

【0274】複数のメモリセルアレイ選択線70と複数 のメインワード線67との交差部には、メモリセルアレ イ選択線70およびメインワード線67を入力とする2 入力のANDゲート61がそれぞれ接続され、その出力 が、行読み出し/書き込み第1制御回路RRW1を介し てサプワード線64に接続されている。このサプワード 線64が各MRAMセルアレイ66のワード線となる。 【0275】<C-1-2. 装置動作>以下、MRAM 400の動作について説明する。例えば、メモリセルア レイ選択線70の1つとメインワード線67の1つが活 性化すると、活性化したメモリセルアレイ選択線70お よびメインワード線67に接続されるANDゲート61 が、その出力に接続されたサブワード線64を活性化す

【0276】との場合、活性化したメインワード線67 はMRAMセルには直接に接続されないため、その容量 には、MRAMセルアレイ66を構成するMRAMセル 50 路RRW1および第2の端部に接続された行読み出し/

の容量が含まれない。従って、複数のMRAMセルアレ イに渡る1本のワード線によりMRAMセルを選択する 構成に比べて、ワード線に含まれる容量が大幅に低減す

38

【0277】さらに、1つのMRAMセルアレイ66を 横切るだけのサブワード線64は、容量および抵抗に起 因する遅延 (CR遅延) が無視できるほど短く構成する ことで、MRAM400は、特定のMRAMセルを選択 する時間を本質的に低減することができ、MRAMの動 10 作速度を向上させることができる。

【0278】ここでMRAMセルの容量について説明す る。一例として、MRAMセルがMTJ(磁気トンネル 接合)とpn接合ダイオードとの直列接続で構成される 場合を想定する。

【0279】Cの場合、MRAMセル容量C_uは以下の 数式(11)に示すように、MTJの容量Cェurとpn 接合ダイオードの接合容量C。とを直列に接続した容量

[0280]

【数11】
$$\frac{1}{CM} = \frac{1}{CTMR} + \frac{1}{CD} \qquad \cdots (11)$$

【0281】図34に示すMRAM400においては、 選択されたMRAMセルアレイ66中のサブワード線6 4 に接続しているMR AMセルのみアクセスされるの で、サブワード線64とビット線69との間を流れる電 流は、ワード線を分割しない構成に比べて、MRAMセ ルアレイの個数の逆数に比例して減少し、消費電力を低 減することができる。

【0282】なお、MRAM400においてはサブワー ド線64を制御する論理ゲートとして、ANDゲートを 用いているが、ANDゲートに限定されるものではな く、例えば、NANDゲート、NORゲート、XORゲ ート等の他の論理ゲートを用いても、メモリセルアレイ 選択線70およびメインワード線67の「High」あるい は「Low」を表す論理と、その逆の論理(「Low」あるい は「High」)を組み合わせて上記論理ゲートに入力する ことで、MRAM400と同様の効果を奏する。こと で、論理の「High」および「Low」とは、各信号電圧の 40 高値あるいは低値の何れかに相当する。

【0283】<C-2. ワード線の階層化> <C-2-1. 装置構成>図35に、ワード線を階層化 したMRAM500の構成をブロック図で示す。図35 に示すようにMRAM500は、m個のMRAMセルア レイ85を有して構成されるn個のメモリセルアレイ群 861~86nを備えている。

【0284】メモリセルアレイ群861を例に採れば、 各MRAMセルアレイ85は、複数のワード線83の第 1の端部に接続された行読み出し/書き込み第1制御回

39

書き込み第2制御回路RRW2と、複数のビット線89 の第1の端部に接続された列読み出し/書き込み第1制 御回路CRW1および第2の端部に接続された列読み出 し/書き込み第2制御回路CRW2とを有している。

【0285】そして、各MRAMセルアレイ85に対応 して、図示しない列デコーダに接続されるm本のメモリ セルアレイ選択線911~91mが配設されている。

【0286】また、複数のANDゲート(サブグローバ ルデコーダ)81の出力に、それぞれメインワード線8 4が接続されている。なお、メインワード線84の本数 10 は各MRAMセルアレイ85のワード線の本数に一致す

【0287】メモリセルアレイ選択線911~91mと 複数のメインワード線84との交差部には、メモリセル アレイ選択線911~91mの何れかとメインワード線 84の1つとを入力とする2入力のANDゲート(ロー カル行デコーダ)82がそれぞれ接続され、その出力 が、行読み出し/書き込み第1制御回路RRW1を介し て、サブワード線83に接続されている。とのサブワー ド線83が各MRAMセルアレイ85のワード線とな る。

【0288】また、複数のサブグローバルデコーダ81 の第1の入力の全ては、メモリセルアレイ群861に対 応して配設されたメモリセルアレイ群選択線901に共 通に接続されている。

【0289】そして、複数のサブグローバルデコーダ8 1の第2の入力のそれぞれは、複数のANDゲート(メ イングローバルデコーダ)80の出力に接続されるグロ ーバルワード線87を介して、メイングローバルデコー ダ80の出力に接続されている。

【0290】メモリセルアレイ群選択線901~90n は、グローバルワード線87とは異なる配線であり、両 者は交差するように配設されている。

【0291】なお、他のメモリセルアレイ群もメモリセ ルアレイ群861と同じ構成を有し、それぞれ複数のサ ブグローバルデコーダ81に接続され、それぞれの複数 のサブグローバルデコーダ81もメモリセルアレイ群選 択線に接続されている。

【0292】すなわち、メモリセルアレイ群861~8 901~90nが配設され、メモリセルアレイ群861 ~86nにそれぞれ接続される複数のサブグローバルデ コーダ81の第2の入力は、それぞれグローバルワード 線87を介して、複数のメイングローバルデコーダ80 の出力に接続されている。

【0293】なお、複数のメイングローバルデコーダ8 0は、アドレス信号線群88に接続されている。

【0294】<C-2-2. 装置動作>以下、MRAM 500の動作について説明する。メモリセルアレイ群8 61~86nは、メモリセルアレイ群選択線901~9 50 ととが判る。

0 n により何れかが選択され、メモリセルアレイ群86 1~86n内の複数のMRAMセルアレイ85は、メモ リセルアレイ選択線911~91mにより選択される。 【0295】メモリセルアレイ群861~86nの動作 は、図34を用いて説明したMRAM400と同様であ り、例えば、メモリセルアレイ選択線911とメインワ ード線84の1つが活性化すると、活性化したメモリセ ルアレイ選択線911とメインワード線84に接続され るANDゲート82が、その出力に接続されたサブワー ド線83を活性化する。

【0296】との場合、活性化したメインワード線84 の容量には、MRAMセルアレイ85を構成するMRA Mセルの容量が含まれないため、複数のMRAMセルア レイに渡る1本のワード線によりMRAMセルを選択し ていた従来のMRAMに比べて、ワード線に含まれる容 量が大幅に低減する。

【0297】また、例えば、メモリセルアレイ群選択線 901とグローバルワード線87の1つが活性化する と、活性化したメモリセルアレイ群選択線901とグロ ーバルワード線87に接続されるANDゲート81が、 その出力に接続されたメインワード線84を活性化す

【0298】この場合、活性化したグローバルワード線 87の容量には、メモリセルアレイ群861~86nを 構成するMRAMセルアレイ85の容量が含まれないた め、複数のメモリセルアレイ群に渡る1本のワード線に よりMRAMセルを選択する構成に比べて、ワード線に 含まれる容量が大幅に低減する。

【0299】従って、ワード線83とピット線89との 30 間を流れる電流は、ワード線を階層化しない従来のMR AMに比べて、MRAMセルアレイの個数の逆数に比例 して減少するだけでなく、メモリセルアレイ群の個数の 逆数に比例して減少し、消費電力を低減することができ

【0300】 < C-2-3. ワード線が階層化されたM RAMの全体構成>図36にワード線が階層化されたM RAMの全体構成の一例を示す。図36においては、4 個のMRAMセルアレイ851~854を有して構成さ れる、4個のメモリセルアレイ群861~864を備え 6 n のそれぞれに対応して、メモリセルアレイ群選択線 40 たMRAMを示しており、4 個のメモリセルアレイ群8 61~864のそれぞれに対応して、4本のメモリセル アレイ群選択線901~904が配設されている。ま た、各メモリセルアレイ群においては、4個のMRAM セルアレイ851~854に対応して、4本のメモリセ ルアレイ選択線911~914が配設されている。

> 【0301】なお、図36においてはMRAMセルアレ イ85等の各構成は単純なブロックで表し、グローバル ワード線87等の各配線経路を矢印で模式的に示してい る。図36から、いわゆるワード線が階層化されている

【0302】<C-3. ピット線の分割>

<C-3-1. 装置構成>図37に、ビット線を分割し たMRAM600の構成をブロック図で示す。図37に 示すようにMRAM600は、複数のMRAMセルアレ イ166を有している。

【0303】各MRAMセルアレイ166は、複数のワ ード線160の第1の端部に接続された行読み出し/書 き込み第1制御回路RRW1および第2の端部に接続さ れた行読み出し/書き込み第2制御回路RRW2と、複 数のビット線164の第1の端部に接続された列読み出 10 し/書き込み第1制御回路CRW1および第2の端部に 接続された列読み出し/書き込み第2制御回路CRW2 とを有している。

【0304】なお、上記制御回路は実施の形態2におい て説明したMRAM100~300と同様とし、同じ符 号を付しているが、これらに限定されるものではない。 【0305】そして、各MRAMセルアレイ166に対 応して、図示しない行デコーダに接続されるメモリセル アレイ選択線170が複数配設されている。

ゲート162の出力に、それぞれメインビット線167 が接続されている。なお、メインビット線167の本数 は各MRAMセルアレイ166のビット線の本数に一致 する。

【0307】複数のメモリセルアレイ選択線170と複 数のメインビット線167との交差部には、メモリセル アレイ選択線170およびメインビット線167を入力 とする2入力のNANDゲート161がそれぞれ接続さ れ、その出力が、列読み出し/書き込み第1制御回路C RW1を介してサブビット線164に接続されている。 こサブビット線164が各MRAMセルアレイ166の ビット線となる。

【0308】<C-3-2. 装置動作>以下、MRAM 600の動作について説明する。例えば、メモリセルア レイ選択線170の1つとメインビット線167の1つ が活性化すると、活性化したメモリセルアレイ選択線 1 70 およびメインビット線167 に接続されるNAND ゲート161が、その出力に接続されたサブビット線1 64を活性化する。

【0309】との場合、活性化したメインビット線16 40 7は、MRAMセルには直接に接続されないので、その 容量にはMRAMセルアレイ166を構成するMRAM セルの容量が含まれない。従って、複数のMRAMセル アレイに渡る1本のビット線によりMRAMセルを選択 する構成に比べて、ビット線に含まれる容量が大幅に低 減する。

【0310】さらに、1つのMRAMセルアレイ166 を横切るだけのサブビット線164は、容量および抵抗 に起因する遅延 (CR遅延) が無視できるほど短くでき

する時間を本質的に低減することができ、MRAMの動 作速度を向上させることができる。

【0311】MRAMセルの容量については、数式(1 1)を用いて説明しているので重複する説明は省略する が、図37に示すMRAM600においては、選択され たMRAMセルアレイ166中のサブビット線164に 接続しているMRAMセルのみアクセスされるので、サ ブビット線164とワード線169との間を流れる電流 は、ビット線を分割しない構成に比べて、MRAMセル アレイの個数の逆数に比例して減少し、消費電力を低減 することができる。

【0312】なお、MRAM600においてはサブビッ ト線164を制御する論理ゲートとして、NANDゲー トを用いているが、NANDゲートに限定されるもので はなく、例えばANDゲート、NORゲート、XORゲ ート等の他の論理ゲートを用いても、メモリセルアレイ 選択線170およびメインビット線167の「High」あ るいは「Low」を表す論理と、その逆の論理(「Low」あ るいは「High」)を組み合わせて上記論理ゲートに入力 【0306】また、列デコーダを構成する複数のAND 20 することで、MRAM600と同様の効果を奏する。と とで、論理の「High」および「Low」とは、各信号電圧 の高値あるいは低値の何れかに相当する。

【0313】<C-4. ビット線の階層化>

<C-4-1. 装置構成>図38に、ビット線を階層化 したMRAM700の構成をブロック図で示す。図38 に示すようにMRAM700は、m個のMRAMセルア レイ185を有して構成されるn個のメモリセルアレイ 群1861~186nを備えている。

【0314】メモリセルアレイ群1861を例に採れ 30 ば、各MRAMセルアレイ185は、複数のワード線1 89の第1の端部に接続された行読み出し/書き込み第 1制御回路RRW1および第2の端部に接続された行読 み出し/書き込み第2制御回路RRW2と、複数のビッ ト線183の第1の端部に接続された列読み出し/書き 込み第1制御回路CRW1および第2の端部に接続され た列読み出し/書き込み第2制御回路CRW2とを有し ている。

【0315】そして、各MRAMセルアレイ185に対 応して、図示しない行デコーダに接続されるm本のメモ リセルアレイ選択線1911~191mが配設されてい

【0316】また、複数のANDゲート(サブグローバ ルデコーダ) 181の出力に、それぞれメインビット線 184が接続されている。なお、メインピット線184 の本数は各MR AMセルアレイ185のビット線の本数 に一致する。

【0317】メモリセルアレイ選択線1911~191 mと複数のメインビット線184との交差部には、メモ リセルアレイ選択線1911~191mの何れかとメイ るので、MRAM600は、特定のMRAMセルを選択 50 ンピット線184の1つとを入力とする2入力のAND ゲート (ローカル列デコーダ) 182がそれぞれ接続され、その出力が、列読み出し/書き込み第1制御回路CRW1を介して、サブピット線183に接続されている。このサブビット線183が各MRAMセルアレイ1

【0318】また、複数のサブグローバルデコーダ18 1の第1の入力の全ては、メモリセルアレイ群1861 に対応して配設されたメモリセルアレイ群選択線190 1に共通に接続されている。

85のワード線となる。

【0319】そして、複数のサブグローバルデコーダ1 10 81の第2の入力のそれぞれは、複数のANDゲート (メイングローバルデコーダ) 180の出力に接続されるグローバルビット線187を介して、メイングローバルデコーダ180の出力に接続されている。

[0320]メモリセルアレイ群選択線1901~19 0nは、グローバルビット線187とは異なる配線であり、両者は交差するように配設されている。

【0321】なお、他のメモリセルアレイ群もメモリセルアレイ群1861と同じ構成を有し、それぞれ複数のサブグローバルデコーダ181に接続され、それぞれの 20複数のサブグローバルデコーダ181もメモリセルアレィ群選択線に接続されている。

【0322】すなわち、メモリセルアレイ群 $1861\sim186$ nのそれぞれに対応して、メモリセルアレイ群選択線 $1901\sim190$ nが配設され、メモリセルアレイ群 $1861\sim186$ n にそれぞれ接続される複数のサブグローバルデコーダ1810第2の入力は、それぞれグローバルビット線187を介して、複数のメイングローバルデコーダ18000出力に接続されている。

【0323】なお、複数のメイングローバルデコーダ1 80は、アドレス信号線群188に接続されている。

【0324】<C-4-2. 装置動作>以下、MRAM700の動作について説明する。メモリセルアレイ群1861~186nは、メモリセルアレイ群選択線1901~190nにより何れかが選択され、メモリセルアレイ群1861~186n内の複数のMRAMセルアレイ185は、メモリセルアレイ選択線1911~191mにより選択される。

【0325】メモリセルアレイ群1861~186nの 形成動作は、図37を用いて説明したMRAM600と同様 40 る。 であり、例えば、メモリセルアレイ選択線1911とメインビット線184の1つが活性化すると、活性化した メモリセルアレイ選択線1911とメインビット線18 MC 4に接続されるANDゲート182が、その出力に接続 方向されたサブビット線183を活性化する。

【0326】との場合、活性化したメインビット線18 り巻くようにコイル状の4の容量には、MRAMセルアレイ185を構成するM る。 RAMセルの容量が含まれないため、複数のMRAMセルを選 接続して構成され、ワー択していた従来のMRAMに比べて、ビット線に含まれ 50 って巻き回されている。

る容量が大幅に低減する。

【0327】また、例えば、メモリセルアレイ群選択線 1901とグローバルビット線187の1つが活性化すると、活性化したメモリセルアレイ群選択線1901とグローバルビット線187に接続されるANDゲート181が、その出力に接続されたメインビット線184を活性化する。

【0328】この場合、活性化したグローバルビット線187の容量には、メモリセルアレイ群1861~186nを構成するMRAMセルアレイ185の容量が含まれないため、複数のメモリセルアレイ群に渡る1本のビット線によりMRAMセルを選択する構成に比べて、ビット線に含まれる容量が大幅に低減する。

【0329】従って、ビット線183とワード線189との間を流れる電流は、ビット線を階層化しない従来のMRAMに比べて、MRAMセルアレイの個数の逆数に比例して減少するだけでなく、メモリセルアレイ群の個数の逆数に比例して減少し、消費電力を低減することができる。

【0330】なお、以上説明した実施の形態3においては、ワード線およびビット線のそれぞれについて、分割および階層化した例について説明したが、これらを組み合わせ、ワード線およびビット線の両方を分割した構成、あるいはワード線およびビット線の両方を階層化した構成としても良い。このような構成を採ることで、さらなる消費電力の低減およびMRAMの動作速度をさらに向上させることができる。

【0331】<D. 実施の形態4>

<本実施の形態の特徴>本発明の実施の形態4に係るM 30 RAMは、インダクタで発生した磁界を用いて、複数の MRAMセルの記憶データを一括消去あるいは一括書き 込みすることを特徴とする。

【0332】<D-1. 装置構成>図39は本発明の実施の形態4に係るMRAM800の構成を示す斜視図である。図39において、互いに平行に配設されたワード線1、2および3の上部において交差するように、ピット線4、5および6が互いに平行に配設され、ワード線およびビット線で挟まれる各交点にMRAMセルMCが形成されてMRAMセルアレイMCA1を構成している

【0333】MRAMセルMCの構成は図1を用いて説明しており、重複する説明は省略するが、MRAMセルMCを構成するソフト強磁性体層のイージーアクシスの方向は矢示するように各ワード線の延在方向である。

【0334】そして、MRAMセルアレイMCA1を取り巻くようにコイル状のインダクタIDが配設されてい

【0335】インダクタ I Dは、金属配線をコイル状に接続して構成され、ワード線 I ~3が延在する方向に沿って巻き回されている。

【0336】そして、インダクタIDの両端部は、電流を双方向に流すことができるインダクタ駆動回路(図示せず)に接続されており、インダクタIDに流す電流の向きを変えることで、インダクタIDで囲まれる領域に発生する磁界の方向を変更することができる構成となっている。なお、インダクタIDにより発生する磁界は、ワード線1~3が延在する方向、すなわち、MRAMセルMCを構成するソフト強磁性体層のイージーアクシスの方向にほぼ一致している。

【0337】従って、MRAMセルアレイMCA1の複 10数のMRAMセルMCに対して、データの一括消去、あるいは、一括書き込みを行う場合には、インダクタ駆動回路からインダクタ I Dに所定方向に電流を流し、発生する磁界によってソフト強磁性体層のスピンの方向を一斉に変更することができる。

【0338】なお、図39においては説明の便宜上、3行3列のメモリセルアレイが示されているが、行と列のサイズは、これに限定されるものではないない。

【0339】また、インダクタID、ワード線1~3、 ビット線4~6等の各導体線間は、気体、あるいは、固 20 体の絶縁体が配設されているが、図39では便宜的に表 示を省略している。

【0340】また、図39では、説明の便宜上、インダクターDの巻き線のピッチは、MRAMセルアレイMCA1のピッチより大きく示しているが、これに限定されるものではない。

【0341】また、MRAMセルMCの構成に特に限定はなく、例えば図30を用いて説明した2重磁気トンネル接合を有する構成であっても良く、少なくとも1つの磁気トンネル接合を有していれば良い。例えば、少なく 30とも1つの磁気トンネル接合と静磁気結合で磁束をループし、磁性体/非磁性体/磁性体構造を備えたメモリセルでも良い。

【0342】また、インダクタは、ソフト強磁性体層の イージーアクシスの方向に一致する磁界を発生できるの であればコイル状でなくとも良い。

【0343】 ことで、図39におけるA-A線での断面図である図40~図42を用いて、MRAM800の動作ついて説明する。なお、インダクタ1Dの巻き線ピッチは、説明の便宜上、図39とは異なるピッチで示して40いる。

【0344】図40は、一括消去前の状態の一例を示している。図40に示すようにMRAMセルMCはpn接合ダイオードPNの上部に、磁気トンネル接合(MTJ)が配設された構成を有している。そしてビット線5の下部のMRAMセルMCを構成するソフト強磁性体層22のスピンの方向は図に向かって左を向いており、他のMRAMセルMCのスピンの方向は右を向いている。そして、一括消去動作および一括書き込み動作をしない

は、インダクタIDは接地されている。これにより、外部のノイズを遮断してMRAMセルアレイMCA1を保護する効果を奏する。

【0345】図41は一括消去の状態の一例を示している。一括消去の信号がインダクタ駆動回路に入力されると、インダクタIDに第1の方向の電流が流れ、矢示するように右方向の磁界が発生する。このとき、インダクタIDのピッチが狭いほど、インダクタ内部の磁界が外部へ漏れることが少なくなり、効率よく磁界を発生することができる。

【0346】ここで、消去を表すスピンの方向を図中の右向きとすると、インダクタ内部に発生した右方向の磁界により、全てのMRAMセルMCのソフト強磁性体層22のスピンが同時に右側を向き、データが一括消去される

[0347]図42は一括書き込みの状態の一例を示している。一括書き込みの信号がインダクタ駆動回路に入力されると、インダクタIDに第1の方向とは反対の第2の方向に電流が流れ、矢示するように左方向の磁界が発生する。

【0348】ことで、書き込みを表すスピンの方向を図中の左向きとすると、インダクタ内部に発生した左方向の磁界により、全てのMRAMセルMCのソフト強磁性体層22のスピンが同時に左を向き、データが一括して書き込まれる。

【0349】<D-2.作用効果>複数のMRAMセルの記憶データを一括消去あるいは同じデータを一括して書き込む場合、ワード線とビット線で逐一アドレスを選択して記憶データを消去あるいは書き込む方法では、時間がかかり、かつ、消費電力も大きい。

【0350】一方、本実施の形態によるMRAMでは、複数のMRAMセルのデータを一括消去あるいは一括書き込みできるため、短時間で処理でき、かつ、インダクタIDにより効率よく磁界を発生させるので、消費電力も少なくて済む。

【0351】<D-3.変形例>複数のMRAMセルの 記憶データを一括消去あるいは一括書き込みするために は、インダクタ以外の構成を採ることもできる。

【0352】図43に、本実施の形態4の変形例として MRAM900の平面構成を示す。なお、図43においては、説明の便宜上、4行4列のMRAMセルアレイM CA2を示しているが、行と列のサイズは、これに限定されるものではない。

【0353】図43に示すように、MRAMセルアレイMCA2の上下に、データの一括処理のためのフラッシュピット線FBLおよびフラッシュワード線FWLを配設している。

のMRAMセルMCのスピンの方向は右を向いている。 【0354】フラッシュビット線FBLおよびフラッシ そして、一括消去動作および一括書き込み動作をしない ュワード線FWLは、それぞれ複数のビット線BL1お 状態、すなわち、インダクタIDがスタンバイの状態で 50 よびワード線WL1が配列された領域全域に対応して設

. .

けられ、図43においては何れも平面視形状が矩形状と なっている。

【0355】図43においてはワード線WL1の上部に おいてビット線BL1が交差する構成となっており、ワ ード線WL1およびビット線BL1の交差部の両線の間 にMRAMセルMCが配設されている。

【0356】そして、フラッシュワード線F♥Lはワー ド線WL1の下部に、フラッシュビット線FBLはビッ ト線BL1の上部に配設されている。なお、図43にお いては最上部のフラッシュビット線FBLを便宜的に、 部分的に削除して示している。

【0357】図43におけA-A線およびB-B線での 断面構成を、図44および図45にそれぞれ示す。

【0358】図45に示すようにMRAMセルMCはp n接合ダイオードPNの上部に、磁気トンネル接合(M TJ) が配設された構成を有している。

【0359】とのように、MRAMセルアレイMCA2 の上下に、フラッシュビット線FBLおよびフラッシュ ワード線FWLを配設し、一括消去あるいは一括書き込 みに際しては、フラッシュビット線 F B L およびフラッ 20 W $\mathsf{1}$ 、行読み出し/書き込み第 $\mathsf{2}$ 制御回路 R R W $\mathsf{2}$ 、お シュワード線FWLに所定方向の電流を流すことで、全 てのMRAMセルMCのソフト強磁性体層のスピンを同 時に同じ方向に向けることで一括消去あるいは一括書き 込みが実現できる。

【0360】なお、フラッシュビット線FBLおよびフ ラッシュワード線FWLにおいて、一括消去あるいは一 括書き込みのために流す電流の方向は、MRAMセルM Cに、個々にデータの消去あるいは書き込みを行う際に ビット線BLおよびワード線WL流す電流の方向と同じ にすれば良い。

【0361】なお、フラッシュビット線FBLおよびフ ラッシュワード線FWLは、両方備えても良いし、片方 のみでも良い。すなわち、発生する磁界は電流の大きさ に比例するので、電流を多く流せば、一方だけでもスピ ンの反転は可能である。

【0362】なお、フラッシュピット線FBLおよびフ ラッシュワード線FWLの両方を用い、両線により同じ 大きさの磁界を発生させる方が、スピンを反転させるの に必要な電流の総和は小さくできる。

【0363】また、一括消去動作および一括書き込み動 40 作をしない状態、すなわちフラッシュビット線FBLお よびフラッシュワード線FWLのスタンバイ時には、フ ラッシュビット線FBLおよびフラッシュワード線FW しを接地することで、外部の磁界や電界に起因するノイ ズを遮蔽して、MRAMセルアレイMCA2を保護する 効果を奏する。

【0364】なお、以上説明したMRAM900におい ては、MRAMセルアレイMCA2を1つ有する構成を 示したが、MRAMセルアレイを複数有する構成におい ても適用可能である。当該構成をMRAM900Aとし 50 ビット線BL1の本数に対応して設けられた複数のNM

て図46に示す。

【0365】図46に示すように、MRAM900Aに おいては複数のMRAMセルアレイMCA2がマトリッ クス状に配設されており、MRAMセルアレイMCA2 の配列に対応するように、MRAMセルアレイMCA2 の配列の上下に、データの一括処理のためのグローバル フラッシュビット線GBLおよびグローバルフラッシュ ワード線GWLをマトリックス状に配設している。·

48

【0366】グローバルフラッシュビット線GBLおよ 10 びグローバルフラッシュワード線GWLは、図43に示 すフラッシュビット線FBLおよびフラッシュワード線 FWLと同じ機能を有し、説明は省略するが、複数のM RAMセルアレイMCA2に共通に使用されるので名称 を変更している。

【0367】なお、以上説明したフラッシュピット線F BLおよびフラッシュワード線FWL、グローバルフラ ッシュビット線GBLおよびグローバルフラッシュワー ド線GWLの制御回路は、図27、図31,図33にお いて説明した、行読み出し/書き込み第1制御回路RR よび列読み出し/書き込み第1制御回路CRW1、列読 み出し/書き込み第2制御回路CRW2を使用しても良

[0368]また、図46に示すMRAM900Aのよ うに、複数のMRAMセルアレイMCA2を有する構成 においては、一括消去あるいは一括書き込みの対象とな るMRAMセルアレイMCA2と同じ列および同じ行に おける非選択のMRAMセルアレイMCA2においても 電流が流れる可能性があるので、消費電流を低減する目 的で、図34~図38を用いて説明した、分割されたワ 30 ード線、分割されたビット線、階層化されたワード線、 階層化されたビット線の技術的思想を、グローバルフラ ッシュビット線GBLおよびグローバルフラッシュワー ド線GWLに適用しても良い。

【0369】<E. 実施の形態5>

<本実施の形態の特徴>本発明の実施の形態5に係るM RAMは、インダクタとキャパシタのLC共振を利用し て、電流をリサイクルし、少なくとも1回以上の記憶デ ータの書き換えに利用することを特徴とする。

【0370】<Ε-1. 装置構成>図47は本発明の実 施の形態5に係るMRAM1000の平面構成を示す図 である。図47においてMRAMセルアレイMCA3の 複数のビット線BLlの第1の端部にマルチプレクサM UX1が接続され、第2の端部にマルチプレクサMUX 2が接続されている。また、複数のワード線₩L1の第 1の端部にはドレイン電圧V。。が与えられ、複数のワー ド線WL1のそれぞれの第2の端部にはNMOSトラン ジスタQN1が接続されている。

【0371】また、マルチプレクサMUX1には複数の

OSトランジスタQMlが接続され、各NMOSトラン ジスタQMlのソース電極にはキャバシタCPlが接続 されている。

【0372】また、マルチプレクサMUX2は、2本のビット線BL1に対して1つのインダクタID1が接続されるように構成されており、結果的にマルチプレクサMUX2には、複数のビット線BL1の総数の半分に相当する個数のインダクタID1が接続されている。

【0373】なお、ビット線BL1およびワード線WL1には、図26を用いて説明した列デコーダや行デコーダ、および制御回路が接続されているが、それらは本実施の形態との関連が薄く、また説明の簡略化のため図示および説明は省略する。

【0374】<E-2. 装置動作>次に、MRAM1000の動作について説明する。なお、以下においては便宜的に、ビット線BL1にBL1aおよびBL1bの符号を付して区別する場合もある。

【0375】まず、選択アドレスを含むワード線WL1 が選択され、当該選択ワード線WL1に直流電流1。cが 流れる。

【0378】との電流 I.は、マルチプレクサMUX1を経由して、空いてるキャバシタCP1 に電荷として蓄えられ、再びマルチプレクサMUX1 およびMUX2を適宜接続することで原理的に何度でも書き込みをすることができる。

【0379】なお、複数のNMOSトランジスタQM1はキャパシタCP1への電荷の蓄積および、キャパシタCP1からの電荷の放出のタイミングに合わせてオン・オフ制御され、また、複数のNMOSトランジスタQN1は、ワード線WL1に直流電流 Ioc を流すタイミングに合わせてオン・オフ制御される。

【0380】<E-3.作用効果>以上説明したように、ビット線BL1における書き込み電流をインダクタ ID1およびキャバシタCP1のLC共振を利用してリサイクルすることで、書き込み時の消費電力を低減することができる。

【0381】<E-4.変形例>本実施の形態の変形例 として、図48にMRAM1100の平面構成を示す。 MRAM1100においては、図47に示したMRAM 1000の構成に加えて、MRAMセルアレイMCA3 の複数のワード線WL1の第1の端部にマルチプレクサ MUX3が接続され、第2の端部にマルチプレクサMU X4が接続されている。

【0382】また、マルチプレクサMUX3には複数のワード線WL1の本数に対応して設けられた複数のNMOSトランジスタQN1が接続され、各NMOSトランジスタQN1のソース電極にはキャパシタCP2が接続10されている。

【0383】また、マルチプレクサMUX4は、2本のワード線WL1に対して1つのインダクタID2が接続されるように構成されており、結果的にマルチプレクサMUX4には、複数のビット線WL1の総数の半分に相当する個数のインダクタID2が接続されている。

【0384】とのような構成のMRAM1100においては、ビット線BL1における書き込み電流だけでなく、ワード線WL1における書き込み電流をインダクタ1D2およびキャバシタCP2のLC共振を利用してリサイクルするととができ、書き込み電流の消費に起因する消費電力をさらに低減することができる。

【0385】なお、インダクタ1D2およびキャバシタ CP2のLC共振による書き込み電流のリサイクル動作 は、インダクタ1D1およびキャバシタCP1のLC共 振によるそれと同様であるので説明は省略する。

【0386】また、インダクタ I D 1 およびキャバシタ C P 1、インダクタ I D 2 およびキャパシタ C P 2 において消費される電流については、マルチプレクサMUX 1~MUX 4 に設けられた、一般的な電流検出型補償回 BC とって補償される

【0387】なお、インダクタID1およびID2としては、例えば、配線を渦巻き状に巻き回して形成されたスパイラルインダクタを用いれば良い。

【0388】図47および図48に示す構成は一例であり、LC共振を利用して書き込み電流のリサイクルを図ることができるのであれば上記構成に限定されるものではない。

【0389】<F、実施の形態6>

<本実施の形態の特徴>本発明の実施の形態5に係る磁性体基板は、予め主面上に磁気トンネル接合(MTJ)となる多層膜が形成されていることを特徴としている。

【0390】<F-1. 基板構成>図49に本発明の実施の形態5に係る磁性体基板の断面構成を示す。図49において、シリコン基板SBの主面全面に、シリコン酸化膜あるいはシリコン窒化膜等の絶縁膜1L1が配設され、その上に、後にワード線あるいはビット線となる導体層ML1が配設されている。

【0391】導体層ML1の上部には、比較的高濃度の n型不純物を有するn型シリコン層SF1 および比較的 高濃度のp型不純物を有するp型シリコン層SF2が積 層されている。この2層は後にpn接合ダイオードとな る。

51

【0392】そして、p型シリコン層SF2の上部に は、後にタングステンスタッドとなるタングステン層S TDが形成され、タングステン層STD上には後にMT Jとなる多層膜が配設されている。

【0393】すなわち、下から順に、白金(Pt)で構 成されるテンプレート層TPL、Ni,Fe,のパーマ ロイで構成される初期強磁性体層 IFL (膜厚4 n m)、Mn、Fe、で構成される反磁性体層AFL(膜 厚10nm)、CoFeあるいはNi,Fe,のパーマ ロイで構成される強磁性体層FFL(膜厚8nm)、A 1,0,で構成されるトンネルバリア層TBL、膜厚2 n mのCoFeと膜厚20nmのNi,Fe,の多層膜で 構成されるソフト強磁性体層FML、Ptで構成される コンタクト層CLを備えている。

【0394】また、コンタクト層CLの上部には、後に ワード線あるいはビット線となる導体層ML2が配設さ れ、最上部には金属層の酸化防止膜として絶縁膜 1 L 2 が配設されている。

【0395】 このような磁性体基板を販売すれば、ユー ザーはフォトレジストマスクを用いて、例えばアルゴン イオンミリングでパターニングすることで、例えば図3 9に示すようなMRAMセルアレイMCA1を形成する **とができる。**

【0396】<F-2. 作用効果>とのように、主面上 に予めpn接合ダイオードおよびMTJとなる多層膜が 形成された磁性体基板を基板メーカーが販売し、ユーザ ーは当該磁性体基板を用いることで、単なるシリコン基 板を準備し、その主面上に多層膜を形成する場合に比べ 30 て製造工程を省略でき、製造コストを削減できる。

【0397】<F-3. 変形例>図50に、SOl (Si licon On Insulator) 基板の主面上に、予め、pn接合 ダイオードおよびMTJとなる多層膜が形成された磁性 体基板を示す。

【0398】図50においては、シリコン基板SB上に 埋め込み酸化膜BXが配設され、埋め込み酸化膜BX上 にSOI層SIが配設されている。そして、SOI層S 1上には図49示すのと同じ多層膜が配設されている。 【0399】図31および図33を用いて説明したよう 40 いた。 に、MRAMにはMOSFETが必要である。そして、 SOI層上にMOSFETを形成すると寄生容量を低減 できるので、MOSFETの動作速度を速くして、結果

【0400】なお、以上説明した実施の形態6において は、磁気トンネル接合となる多層膜がバルクシリコン基 板やSOI基板上に堆積された構成を示し、それを磁性 体基板と呼称したが、磁気トンネル接合となる多層膜

的にはMRAMの動作速度も速くすることができる。

(薄膜磁性体の多層膜) は、ガラス基板や樹脂基板上に 堆積しても良く、土台となる基板の種類は半導体基板に 50 【0409】なお、周辺回路の構成は、例えば図26を

限定されない。

【0401】従って、本発明においては、何らかの基板 を土台として薄膜磁性体の多層膜を堆積した構成を薄膜 磁性体基板と呼称している。

【0402】<G. 実施の形態7>

<本実施の形態の特徴>本発明の実施の形態7に係るM RAMは、基板の主面上に形成された各種機能ブロック の上に形成されていることを特徴とする。

【0403】 < G-1. 装置構成>まず、本実施の形態 との差異を説明するため、図51に、従来の一般的な半 導体記憶装置の構成をブロック図で示す。

【0404】図51において、メモリセルアレイ31の 周辺回路として、列アドレスバッファ31、列デコーダ 32、列読み出し/書き込み制御回路33、行アドレス バッファ34、行デコーダ35 および行読み出し/書き 込み制御回路36が、メモリセルアレイ31の周囲に配 設されている。

【0405】また、その他の機能プロックとして、装置 外部との信号の送受信を行う入出力バッファ(1/0バ ッファ)、および上記信号が規格値よりも大きかったり (overshoot)、小さかったり (undershoot) した場合 に、規格値に戻すESD(Electric Static Discharg e) 回路44、変調されている信号を復調したり、信号 を変調する機能を有する変調/復調回路 (Modulator/D emodulator) 43、デジタル信号を処理する機能を有す るDSP (Digital Signal Processing) 42、メモリ セルアレイ31と周辺回路間のデータの授受の仲介(一 時的にデータを保持したり、周辺回路とメモリセルアレ イ31間のデータの送受信の同期を取るなど)を行う、 ファーストキャッシュ51およびセカンドキャッシュ5 2、メモリセルアレイ31のデータの入出力を制御する 入出力コントローラ(1/Oコントローラ53)、デー タの演算処理を行うCPU (Micro processor) 4 1 を 備えている。

【0406】従来の半導体記憶装置、例えばDRAM、 SRAMおよびEEPROM等では、メモリセルアレイ にMOSFETを含むため、半導体基板の主面上に形成 する必要があり、結果的に、メモリセルアレイが各機能 ブロックと同一の半導体基板の主面表面上に形成されて

【0407】ととで、図52に本発明の実施の形態7に 係るMRAM1200の構成をブロック図で示す。

【0408】図52において、MRAMセルアレイMC Aは、MRAMセルアレイMCAの周辺回路、すなわ ち、列アドレスバッファCAB、列デコーダCD、列読 み出し/書き込み制御回路CR♥、行アドレスバッファ RAB、行デコーダRDおよび行読み出し/書き込み制 御回路RRWの配設領域の上部にオーバーラップして配 設されている。

用いて説明した構成と同様であり、またその他の機能ブ ロックについては従来からの半導体記憶装置と同様であ るので説明は省略する。

[0410] < G-2. 作用効果>MRAMセルアレイ MCAは、図28、図31および図33を用いて説明し たように、その内部にMOSFETを含まず、半導体素 子としてはpn接合ダイオードのみを含むので、形成領 域が基板の主面表面に限定されることはない。

【0411】従って、MRAMセルアレイMCA以外の 含め、各種機能ブロックは基板の主面表面上に形成し、 MRAMセルアレイMCAはその上層に形成することで 装置面積を削減できる。

【0412】<G-3.変形例>図53に本実施の形態 の変形例としてMRAM1300の構成をプロック図で

[0413] 図53に示すようにMRAM1300にお いては、MRAMセルアレイMCAが、周辺回路および 各種機能ブロックが形成された領域の上部全体にオーバ ーラップして配設されている。

【0414】 とのように、MRAMセルアレイMCA と、周辺回路および各種機能ブロックとを別個の層に形 成することで、MRAMセルアレイMCAの配設位置や 大きさの選択の自由度が増すことになり、装置面積を削 減できるとともに、装置レイアウトの選択性も高めるこ とができる。

【0415】<H. 実施の形態8>

<本実施の形態の特徴>本発明の実施の形態8に係るM RAMは、MRAMセルアレイと、MRAMセルアレイ の周辺回路および各種機能ブロックとを別個の半導体チ 30 ップとし、両チップをモジュールとして1つのパッケー ジに収納したMCP(Multi Chip Package)の形態を採 るととを特徴とする。

【 0 4 1 6 】 <序論>MR AMセルアレイの周辺回路お よび各種機能ブロックの製造時の最大形成温度は100 0~1200°C程度であり、一方、MRAMセルアレイ の製造時の最大形成温度はキュリー温度で決まり400 ~700℃程度である。

【0417】両者を同一の半導体基板上に形成する場 合、形成温度の違いによる不具合を防止するため、最大 40 形成温度が400~700℃程度である配線工程におい てMRAMセルアレイを形成している。

【0418】そのため、MRAMの製造工程においては 工程がシーケンシャルになり、製造コストがかかる問題 があった。

【0419】一方、昨今では1つのパッケージに複数の 半導体チップを収納したMCP構造が使用されつつあ る。とのような現状に鑑み、発明者等は、MRAMセル アレイと、MRAMセルアレイの周辺回路および各種機 能ブロックとを別個の半導体チップとし、両チップをモ 50 ルム124は底面基板134とも別の接着層により接着

ジュールとして1つのパッケージに収納した構成のMR AMであれば上記問題は解決との結論に違したが、現実 にMCP構造のMRAMを得るには、従来のパッケージ 構造ではMRAMに対応できないという認識に至った。 【0420】以下、MCP構造のMRAMを実現するた めの課題を説明した上で、実施の形態8に係るMRAM

2000の構成について説明する。

【0421】<H-1. 従来のMCP構造について>半 導体装置を含む半導体チップの実装方法として、従来、 構成、すなわちMRAMセルアレイMCAの周辺回路を 10 QFP(Quad FlatPackage)が用いられていたが、実装 面積が大きいという問題点があった。そこで、チップ面 積とほとんど同じ大きさの実装面積で済むCSP(Chip Size Package) が近年、使われ始めている。この実装 方法は、QFPに比べてはるかに小さな実装面積で済む ので、携帯電話用LSIやPC(Personal Computer) 用DRAM等に用いられている。

> 【0422】図54に、従来のCSPの構成の一例を断 面図で示す。図54において、半導体チップ122は、 箱形のバッケージ129の内部に収納され、半導体チッ 20 プ122の下主面はパッシベーション膜123によって 覆われて外部環境から保護されている。

【0423】パッシベーション膜123は窒化シリコン 膜や酸窒化シリコン膜等の絶縁膜で構成され、パッシベ ーション膜123には複数の開口部が設けられ、半導体 チップ122の入出力端子となるチップ電極132が、 バッシベーション膜123を貫通する構成となってい

【0424】パッケージ129は有底無蓋の箱状をな し、その開口部から半導体チップ122が挿入される。 ととで、パッケージ129の開口部は最終的には底面基 板134によって覆われる。当該底面基板134の本体 はポリイミド樹脂等の絶縁材で構成され、その外側に面 した主面には、複数の遮蔽用半田バンプ125および信 号伝送用半田バンプ127が配設されている。

【0425】底面基板134は、遮蔽用半田バンプ12 5 および信号伝送用半田バンプ127を内部の構成に電 気的に接続する複数の内部配線 130 および 131を有 している。

【0426】内部配線130および131は、何れも底 面基板134の内側に向いた主面上に配設されたキャリ アフィルム124に接続されている。後に説明するよう に、キャリアフィルム124は絶縁フィルム上に配設さ れた電気配線 (バッドを含む) と接着層133とを有し ている。信号伝送用半田バンプ127からの電気信号 は、内部配線130およびキャリアフィルム124のパ ッドに接続しているチップ電極132を介して半導体チ ップ122に伝達される。また、接着層133は、キャ リアフィルム124と半導体チップ122とを接着す る。なお、図54には示されていないが、キャリアフィ

されている。

【0427】また、底面基板134の内部には導体で構 成される遮蔽電極126が埋め込まれている。遮蔽電極 126の平面視形状は矩形環状をなし、内部配線130 が遮蔽電極126に接触せずに通過できる開口部を有し た構造となっている。図54は遮蔽電極126の開口部 を切断する位置での断面図であり、当該開口部は破線で

【0428】遮蔽電極126は、遮蔽用半田パンプ12 5 および内部配線 1 3 1 を介して電源電位あるいは接地 電位に固定され、内部配線130が外部の電気ノイズを 拾うことを防止することができる。

【0429】また、半導体チップ122を囲むようにキ ャリアフィルム124の上主面上に遮蔽電極126bが 配設されている。遮蔽電極126bは平面視形状が矩形 環状の平板であり、キャリアフィルム124上の電気配 線を介して内部配線131に電気的に接続され、電源電 位あるいは接地電位に固定される。

【0430】遮蔽電極126bを覆うように応力緩和膜 135が配設されている。応力緩和膜135は、半導体 20 チップ122と底面基板134との間の応力を緩和する 働きをする。

【0431】応力緩和膜135の断面形状は本来は矩形 であるが、半導体チップ122の端縁部とキャリアフィ ルム124との間に挟まれ、変形するとともに部分的に 厚さが薄くなる。すなわち、半導体チップ122の端縁 部とキャリアフィルム124とに挟まれた部分に応力が 集中するが、厚さが薄くなることで応力が緩和される。

【0432】応力緩和膜135には、例えば熱可塑性エ ラストマーが用いられる。熱可塑性エラストマーは、常 30 温ではゴム弾性を示すが、高温では可塑化され、各種成 形加工ができる髙分子材料である。

【0433】また、半導体チップ122と応力緩和膜1 35との接着材にはエポキシ樹脂等が使用される。熱可 塑性エラストマーの体積膨張率は約2.7×10-6であ るのに対し、シリコンの体積膨張率は約3.1×10-6 であり、体積膨張率の差が小さいので、熱応力を緩和で きる。

【0434】半導体パッケージにおいて、端子数の増大 が長く、かつ、細くなり、ノイズを拾いやすくなるとい う問題点があるので、遮蔽電極126と遮蔽用半田バン プ125が配設されている。また、半導体チップ122 と底面基板134との間の熱応力が大きくなり、電気的 接続の信頼性が低下することを防止するために応力緩和 膜135が配設されている。

【0435】遮蔽電極126の機能は上述した通りであ り、遮蔽電極126は内部配線131を介して遮蔽用半 田バンプ125に接続されている。そして、遮蔽用半田 バンプ125は信号伝送用半田バンプ127の周囲を囲 50 保磁力の小さい強磁性体が望ましい。バーマロイやスー

むように配設され、信号伝送用半田パンプ127を介し て内部配線130が外部の電気的ノイズを拾うことを防 止する機能を有している。なお、図示は省略するが、遮 7は、配線がプリントされたマザーボードに接続され

【0436】また、従来においてMCP構造はQFPに おいてのみ実現されていた。図55にQFPを用いたM CP構造の断面構成を示す。図55においては、1つの バッケージ107内に3つの半導体チップ102a、1 02bおよび102cが積み重ねられて配設され、樹脂 106で封止されている。

[0437] 一例として、半導体チップ102a、10 2 cがSRAM、半導体チップ102bがフラッシュE EPROMである。

【0438】各半導体チップ間は内部配線109によっ て接続され、外部との電気的接続は、ボンディングワイ ヤ112を介して外部リード線113によりなされる。 【0439】とのような構成とするととで、1つのパッ ケージに1つの半導体チップしか有さないものよりも、 同一占有面積に対して、より多くのメモリ容量を得ると とができる。それゆえ、携帯情報端末に対して需要が多

【0440】しかしながら、QFPはチップ面積に比べ て実装面積が大きくなり、かつ、外部リード線がノイズ を拾いやすいという問題点があった。

【0441】 とのように、CSPにしてもQFPにして も一長一短があり、さらに、MRAMにおいては、外部 磁界の影響でソフト強磁性体層のスピンが反転すること を防止する必要が生じるので、従来のバッケージの構成 をそのまま採用することはできなかった。

【0442】<H-2. 装置構成>以下、図56~図6 5を用いて実施の形態8に係るMRAM2000の構成 について説明する。

【0443】図56にMRAM2000断面構成を、 また図57にMRAM2000を下部側から見た平面構 成を示す。なお、図56は、図57におけるA-A線で の断面を示している。

【0444】図56に示すように、MRAMセルアレイ とバッケージの小型化を両立させるためには、内部配線 40 の周辺回路および各種機能プロックを含む半導体チップ 122は、パーマロイ (Ni., Fe.,) 等の高透磁率の 導体で構成される箱形の遮蔽体SHBに収納されてい る。

> 【0445】遮蔽体SHBの材料として、例えばMRA Mメモリセルに用いられるソフト強磁性体と同等か、そ れよりも大きな透磁率を有する強磁性体として、パーマ ロイの他にスーパマロイ (Mo、NizoFezo)を用い ても良い。保磁力が大きい強磁性体は永久磁石として働 き、周辺の電気機器に影響を与える可能性もあるので、

パマロイ、 Mn_{50} Zn_{50} 等のフェライトはこの条件を満たす材料である。

【0446】遮蔽体SHBの内壁面には、熱可塑性エラストマーで構成される応力緩和膜235が配設されている。応力緩和膜235は半導体チップ122と遮蔽体SHBとの応力を緩和する働きをする。

【0447】遮蔽体SHBは、その本体部となる筒状の外枠部237と、外枠部237の一方端を覆う上部板238と、外枠部237の他方端を覆う下部板236とを有して構成され、応力緩和膜235は上部板238およ 10 び外枠部237の内面に配設されている。

【0448】また、下部板236には開口部が設けられ、当該開口部を半導体チップ122に接続された内部配線130が貫通する構成となっている。

【0449】バッケージ129は有底無蓋の箱状をなし、その開口部から半導体チップ122を有した遮蔽体SHBが挿入される。

【0450】パッケージ129は遮蔽体SHBを収納してさらに空間的な余裕を有する大きさであり、遮蔽体SHBとパッケージ129の内壁との間には、エポキシ樹20脂等の樹脂で構成される樹脂材128が配設されている

【0451】パッケージ129の開口部は最終的には底面基板134によって覆われる。当該底面基板134の本体はボリイミド樹脂等の絶縁材で構成され、その外側に面した主面には、複数の遮蔽用半田バンブ125 および信号伝送用半田バンブ127が配設されている。なお、底面基板134はキャリアフィルム124や下部板236等に塗布された接着剤により固定される。

【0452】底面基板134は、遮蔽用半田バンプ125 および信号伝送用半田バンプ127を内部の構成に電気的に接続する複数の内部配線130 および131を有している。

【0453】内部配線130および131は、何れも底面基板134の内側に向いた主面上に配設されたキャリアフィルム124に接続されるように配設され、内部配線131はキャリアフィルム124上に配設されているパッドおよび電気配線を介して遮蔽体SHBの下部板236に電気的に接続されている。

【0454】また、内部配線131は、底面基板134 40 の内部に埋め込まれた導体で構成される遮蔽電極126 に電気的に接続されている。なお、遮蔽電極126の一部は、必ずしも内部配線130および131と同一断面内に存在するわけではないので、図56においては破線で示している。

【0455】なお、遮蔽電極126は電源電位あるいは接地電位に固定され、内部配線130が外部の電気ノイズを拾うことを防止する働きをする。

【0456】半導体チップ122の入出力端子となるチ る。接着層133は、半導体チップ122をップ電極132は、キャリアフィルム124上に設けら 50 ィルム124と接着するためのものである。

れているパッド(フィルム電極)に直接に接続され、当該キャリアフィルム124上にパターニングされているフィルム電極および電気配線を介して内部配線130に電気的に接続されている。なお、内部配線130は信号伝送用半田バンプ127に接続されている。

【0457】信号伝送用半田バンプ127は、外部と内部の半導体チップとの電気信号の授受を行うための端子であり、遮蔽用半田バンプ125は遮蔽体SHBの電位を接地電位に固定する端子である。

【0458】また、図57に示すように遮蔽用半田バンプ125は信号伝送用半田バンプ127を囲むように配設されている。

【0459】なお、信号伝送用半田バンプ127および 遮蔽用半田バンプ125は、底面基板134に加わる応 力を、取り付け基板(マザーボード)に分散する機能を 有しており、遮蔽用半田バンプ125を設けることで、 半田バンプ1個あたりに加わる応力を低減することがで きる。

【0460】<H-3. 実装方法>次に、図58~図62を用いてMRAM2000の実装方法の概略について説明する。なお、図58~図62はMRAM2000の実装方法を模式的に示すものであり、図56に示す構成を正確に表すものではない。

【0461】図58において、底面基板134の上部に キャリアフィルム124が接着されて、キャリアフィル ム124上に応力緩和膜223が接着されている。

【0462】応力緩和膜223は矩形環状をなし、キャリアフィルム124に設けられたフィルム電極219の配設領域を囲むように配設されている。また、応力緩和膜223には矩形環状の溝224が形成されており、溝224内には遮蔽体SHBの下部板236(図56)が配設されている。なお、溝224内に下部板236が配設された構成は図64(a)、図64(b)に示す。

【0463】また、図示は省略するが、後の工程で、溝224に沿って遮蔽体SHBの外枠部237(図46)が配設され、下部板236に接続される。

【0464】なお、応力緩和膜223が矩形環状をなしているので、図58に示すX方向およびY方向において同様に応力を緩和することができる。

【0465】絶縁体であるキャリアフィルム124上に 配設されたフィルム電極219は、内部配線130を介 して信号伝送用半田パンプ127に接続される。

【0466】なお、キャリアフィルム124上のフィルム電極219および内部配線130を適宜パターニングすることで、各バンプと各チップ電極との接続を任意に設定できる。

【0467】キャリアフィルム124には、フィルム電極219の他に接着層133が選択的に配設されている。接着層133は、半導体チップ122をキャリアフィルム124と接着するためのものである。

【0468】次に、図59に示す工程において、半導体 チップ122の各チップ電極が、キャリアフィルム12 4の各フィルム電極に接触するように半導体チップ12 2を搭載し、接着層133により半導体チップ122を 固定する。

【0469】図60は、図59に示す状態の底面基板1 34を逆転させた状態を示しており、底面基板134に は半球形の半田バンプ形成孔211が配設されている。 内部配線130および131(図56参照)は半田パン プ形成孔211の内壁面に達しており、後の工程で半田 10 バンプ形成孔211内を半田バンプが埋めると、半田バ ンプと内部配線130および131とが電気的に接続さ れることになる。なお、半田バンプの代わりに導電性ボ リマーを用いても良い。

【0470】図61は、半田バンプ形成孔211上に信 号伝送用半田バンプ127 および遮蔽用半田バンプ12 5を配設した状態を示している。

【0471】そして、応力緩和膜235(図56)を内 部に有した遮蔽体SHBで半導体チップ122を覆った 等の封止剤を注入することで、図62に示すように裏面 に、信号伝送用半田パンプ127 および遮蔽用半田パン プ125を有した構成を得る。

【0472】 ここで、図63、図64(a) および図6 4 (b)を用いて、遮蔽体SHBを構成する下部板23 6と、応力緩和膜223の平面視形状を説明する。な お、図63は、図56におけるB-B線での概略の断面 構成を示し、図64(a)および図64(b)は、図6 3におけるC-C線およびD-D線での断面構成を示し ている。

【0473】図63に示すように、下部板236は中央 に矩形の開口部OPを有する矩形の平板で構成され、底 面基板134側には、遮蔽用半田バンプ125に電気的 に接続する矩形環状の遮蔽電極126(図56)が配設 される。なお、遮蔽電極126の外形寸法は下部板23 6の外形寸法と略同じである。

【0474】なお、応力緩和膜223は遮蔽体SHBの 開口部端縁の内側および外側に配設され、また応力緩和 膜235(図56参照)が遮蔽体SHBの内側全体に配 設されているので、半導体チップ231と半導体チップ 40 232に加わる外部からの応力を低減できる。

【0475】<H-4.作用効果>以上説明した実施の 形態8に係るMRAM2000によれば、MRAMセル アレイを含む半導体チップ122を外部磁界から遮蔽す る遮蔽体SHBで囲むようにしたので、外部磁界により MRAMセルのスピンが反転して磁化の方向、すなわち データが書き換えられることを防止できる。

【0476】また、応力緩和膜223が遮蔽体SHBの 開口部端縁の内側および外側に配設され、遮蔽体SHB の内側には応力緩和膜235が配設されているので、M 50 【0485】

RAM2000を取り付ける取り付け基板(マザーボー ド)の曲がり、温度サイクルに起因する外部からの応力 が半導体チップ122に加わることを低減できる。

【0477】<H-5.変形例1>なお、以上説明した MRAM2000では、実装する半導体チップは1つと して示したが、図65に示すMRAM2100のよう に、MRAMセルアレイの周辺回路および各種機能ブロ ックが含まれた半導体チップ122a(回路チップ)の 上に、MRAMセルアレイを含む半導体チップ122b (磁気記憶チップ)を載置する構成としても良い。

【0478】半導体チップ122aは両主面にチップ電 極を備え、半導体チップ122aと半導体チップ122 bとは、両者の間に配設されたキャリアフィルム124 b上のフィルム電極および電気配線により接続される。 また、半導体チップ122aと半導体チップ122bと は接着層133により接着固定される。

【0479】なお、半導体チップ122aと信号伝送用 半田バンプ127との電気的な接続は、図65に示す半 導体チップ122と信号伝送用半田バンプ127との接 後、有底無蓋のパッケージ129に挿入し、隙間に樹脂 20 続と同じであり、キャリアフィルム124がキャリアフ ィルム124aとなっている点以外はMRAM2000 と基本的には同じであるので説明は省略する。

> 【0480】また、半導体チップ122aと半導体チッ プ122 bとは、上下関係を逆に配設しても良い。その 場合には、半導体チップ122bの両面にチップ電極を 配設すれば良い。

【0481】また、半導体チップ122aと半導体チッ プ122bとの組み合わせは、少なくとも1方のチップ にMRAMセルアレイが配設されていれば良く、公知の 30 半導体チップの任意の組み合わせが可能である。

【0482】図65に示すMRAM2100では、MR AMセルアレイの周辺回路および各種機能ブロックが含 まれた半導体チップ122aとMRAMセルアレイを含 む半導体チップ122bとを別々に製造し、組み合わせ るため、形成温度の違いを考慮する必要がなく、個々の 形成温度を最適化できる。そして、半導体チップ122 aおよび122bを別々に製造するため、製造工程がパ ラレルに進行し、製造時間が短縮できる。

【0483】<H-6. 変形例2>図56に示すMRA M2000では、遮蔽体SHBの材料に、強磁性体を用 いたが、その代わりにIr(イリジウム)を20~30 atom.%含む Ir Mn等の反強磁性体を用いても同様の 効果を奏する。

【0484】また、図66に示すMRAM2200のよ うに、遮蔽体SHBを、強磁性体136aと反強磁性体 136bとの多層膜で構成しても良い。その場合、底面 基板134中の遮蔽電極126も同様に強磁性体126 aと反強磁性体126bの多層膜とする。なお、多層膜 の上下関係は上記に限定されない。

【発明の効果】本発明に係る請求項1記載の磁気記憶装置によれば、少なくとも1つの磁気トンネル接合が、ソフト強磁性体層の磁化の容易な方向であるイージーアクシスが、複数のビット線および複数のワード線の延在方向に対して40~45度の角度を有するように配設されているので、少ない書き込み電流で、ソフト強磁性体層の磁化の方向を確実に反転でき、書き込み時の消費電力を低減するととができる。

【0486】本発明に係る請求項2記載の磁気記憶装置によれば、磁気トンネル接合の平面視形状において、イージーアクシスに平行な辺が、イージーアクシスに直交する辺よりも長くなるように矩形に構成されているので、形状に起因する異方性により、イージーアクシスを定めることが容易となり、イージーアクシスが変化することを防止できる。

【0487】本発明に係る請求項3記載の磁気記憶装置によれば、第1および第2の切り替え手段により、ビット線の第1および第2の端部を第1あるい第2の電源に切り替えて接続できるので、ビット線に双方向の電流を流すことができ、磁気トンネル接合の磁化の方向を変化 20させて、データの書き込みや消去が可能となる。

【0488】本発明に係る請求項4記載の磁気記憶装置によれば、第1および第2の切り替え手段を同一導電型の第1~第4のMOSトランジスタで構成するので、製造が容易となる。

【0489】本発明に係る請求項5記載の磁気記憶装置によれば、第1の切り替え手段を導電型の異なるの第1 および第2のMOSトランジスタで構成し、第2の切り替え手段を、導電型の異なる第3および第4のMOSトランジスタの一方、および第3および第4のMOSトランジスタの一方の制御電極に、オン状態において電源電圧以上の電圧を加える必要がなくなり、ゲート絶縁膜にかかる負担を小さくできる。

【0490】本発明に係る請求項6記載の磁気記憶装置によれば、第1および第2のMOSトランジスタの第1の主電極間、第3および第4のMOSトランジスタの第1の主電極間に、常時オン状態となる第5、第6のMOSトランジスタをそれぞれ備えているので、第1および第2のMOSトランジスタの一方の第1の主電極、および第3および第4のMOSトランジスタの一方の第1の主電極に加わるストレス電圧を低減し、ストレス電圧に起因するリーク電流を低減して、消費電力を低減できる。

【0491】本発明に係る請求項7記載の磁気記憶装置 数のビット総によれば、複数のメモリセルアレイを有する磁気記憶装 ユビット線制 所定方向の電 シワード線と、単一のメモリセルアレイだけに渡るワー ンネル接合を 大線とを用いることで、同一の配線に直接に接続される よあるいはーメモリセルの個数が減少するので、負荷容量が低減され 50 可能となる。

る。その結果、負荷容量に起因する遅延時間を短くして、高速アクセスを実現することができる。

【0492】本発明に係る請求項8記載の磁気記憶装置によれば、複数のメモリセルアレイを有するメモリセルアレイ群を複数備える磁気記憶装置において、単一のメモリセルアレイだけに渡るワード線と、複数のメモリセルアレイだはで変る複数のメインワード線と、複数のメモリセルアレイ群に渡る複数のグローバルワード線とを用いることで、同一の配線に直接に接続されるメモリセルの個数が減少するので、負荷容量が低減される。その結果、負荷容量に起因する遅延時間を短くして、高速アクセスを実現することができる。

【0493】本発明に係る請求項9記載の磁気記憶装置によれば、複数のメモリセルアレイを有する磁気記憶装置において、複数のメモリセルアレイに渡る複数のメインビット線と、単一のメモリセルアレイだけに渡るビット線とを用いることで、同一の配線に直接に接続されるメモリセルの個数が減少するので、負荷容量が低減される。その結果、負荷容量に起因する遅延時間を短くして、高速アクセスを実現することができる。

【0494】本発明に係る請求項10記載の磁気記憶装置によれば、複数のメモリセルアレイを有するメモリセルアレイ群を複数備える磁気記憶装置において、単一のメモリセルアレイだけに渡るビット線と、複数のメモリセルアレイに渡る複数のメインビット線と、複数のメモリセルアレイ群に渡る複数のグローバルビット線とを用いるととで、同一の配線に直接に接続されるメモリセルの個数が減少するので、負荷容量が低減される。その結果、負荷容量に起因する遅延時間を短くして、高速アクセスを実現することができる。

【0495】本発明に係る請求項11記載の磁気記憶装置によれば、ソフト強磁性体層の磁化の容易な方向であるイージーアクシスに沿った方向に磁界を発生させるインダクタを備えることで、少なくとも1つの磁気トンネル接合を有する複数のメモリセルのデータを一括消去あるいは一括書き込みできるので、短時間での処理が可能となる。

【0496】本発明に係る請求項12記載の磁気記憶装置によれば、コイル状のインダクタにより効率よく磁界40を発生させるので、複数のメモリセルのデータを一括消去あるいは一括書き込みする場合の消費電力が少なくて済む。

【0497】本発明に係る請求項13記載の磁気記憶装置によれば、少なくとも1つのメモリセルアレイの、複数のビット線および複数のワード線の外側に、フラッシュビット線およびフラッシュワード線を備え、これらに所定方向の電流を流すことで、少なくとも1つの磁気トンネル接合を有する複数のメモリセルのデータを一括消去あるいは一括書き込みできるので、短時間での処理が可能となる。

【0498】本発明に係る請求項14記載の磁気記憶装置によれば、複数のメモリセルアレイがマトリックス状に配設された磁気記憶装置において、フラッシュビット線およびフラッシュワード線も、複数のメモリセルアレイの配列に沿って、マトリックスを構成するように配設することで、複数のメモリセルアレイのデータを一括消去あるいは一括書き込みできるので、短時間での処理が可能となる。

【0499】本発明に係る請求項15記載の磁気記憶装置によれば、選択されたビット線およびワード線の少な 10 くとも1方に流れる電流を、LC共振によって保存する少なくとも1つのインダクタと、少なくとも1つのキャパシタとを備えるので、書き込み電流をリサイクルすることができ、書き込み時の消費電力を低減することができる。

【0500】本発明に係る請求項16記載の磁気記憶装置によれば、ビット線における書き込み電流をリサイクルするための具体的構成を得ることができる。

【0501】本発明に係る請求項17記載の磁気記憶装置によれば、ワード線における書き込み電流をリサイク 20ルするための具体的構成を得ることができる。

【0502】本発明に係る請求項18記載の磁気記憶装置によれば、導体で構成される遮蔽体内に少なくとも1つの半導体チップを収納することで、少なくとも1つの磁気トンネル接合を含む複数のメモリセルにおいて、磁気トンネル接合の磁化の方向が外部磁界によって反転し、データが書き換えられることを防止できる。

【0503】本発明に係る請求項19記載の磁気記憶装置によれば、少なくとも1つの半導体チップが第1および第2の応力緩和膜によって保持されるので、外部から 30の応力が複数の半導体チップに加わることを低減できる。

【0504】本発明に係る請求項20記載の磁気記憶装置によれば、磁気記憶チップと、メモリセルアレイの周辺回路を含む回路チップとに分けることで、両者別々に製造することになり、形成温度の違いを考慮する必要がなく、個々の形成温度を最適化できる。また、製造工程がパラレルに進行し、製造時間が短縮できる。

【0505】本発明に係る請求項21記載の磁気記憶装置によれば、遮蔽体が、ソフト強磁性体層と同等か、そ 40 れよりも大きな透磁率を有する強磁性体で構成されるので、外部磁界を有効に遮蔽することができる。

【0506】本発明に係る請求項22記載の磁気記憶装置によれば、遮蔽体が、反強磁性体で構成されるので外部磁界を有効に遮蔽することができる。

【0507】本発明に係る請求項23記載の磁気記憶装置によれば、遮蔽体が、強磁性体と反強磁性体との多層膜で構成されるので外部磁界を有効に遮蔽することができる。

【0508】本発明に係る請求項24記載の磁性体基板 50

によれば、主面全域に配設された、少なくとも1つの磁気トンネル接合を形成する多層膜を少なくとも有しているので、少なくとも1つの磁気トンネル接合を有するメモリセルを備えた磁気記憶装置を製造する場合、単なる半導体基板を準備し、その主面上に多層膜を形成する場合に比べて製造工程を省略でき、製造コストを削減できる。

【0509】本発明に係る請求項25記載の磁性体基板によれば、単磁気トンネル結合を有するメモリセルを備えた磁気記憶装置の製造に適した磁性体基板が得られる。

【0510】本発明に係る請求項26記載の磁性体基板によれば、単磁気トンネル結合の下部にpn接合ダイオードを有したメモリセルを備えた磁気記憶装置の製造に適した半導体基板が得られる。

【0511】本発明に係る請求項27記載の磁性体基板によれば、MOSFETの寄生容量を低減できるSOI基板上に少なくとも1つの磁気トンネル接合が形成されることになるので、MOSFETの動作速度を速くして、結果的には磁気記憶装置動作速度も速くすることができる。

【図面の簡単な説明】

【図1】 MRAMセルの構成を示す斜視図である。

【図2】 一般的なMRAMセルアレイの構成を示す図 である。

【図3】 一般的なMRAMセルアレイの動作を説明する図である。

【図4】 スピンを反転させるのに必要な磁界の関係を 示す図である。

(図5) 本発明に係る実施の形態1のMRAMセルアレイの構成を示す図である。

【図6】 本発明に係る実施の形態1のMRAMセルアレイの動作を説明する図である。

【図7】 本発明に係る実施の形態1のMRAMセルアレイの構成を示す図である。

【図8】 本発明に係る実施の形態1のMRAMセルアレイの動作を説明する図である。

【図9】 一般的なMRAMセルの動作を説明する図である。

) 【図10】 一般的なMR AMセルの動作を説明する図 である。

【図11】 本発明に係る実施の形態1のMRAMセルの動作を説明する図である。

【図12】 本発明に係る実施の形態1のMRAMセルの動作を説明する図である。

【図13】 本発明に係る実施の形態1のMRAMセルの動作を説明する図である。

【図14】 本発明に係る実施の形態1のMRAMセルの動作を説明する図である。

【図15】 スピンを反転させるのに必要な磁界の関係

64

を示す図である。

【図16】 一般的なMRAMセルの動作を説明する図 である。

【図17】 一般的なMRAMセルの動作を説明する図 である。

【図18】 本発明に係る実施の形態1のMRAMセル の動作を説明する図である。

【図19】 本発明に係る実施の形態1のMRAMセル の動作を説明する図である。

【図20】 本発明に係る実施の形態1のMRAMセル 10 の動作を説明する図である。

【図21】 本発明に係る実施の形態1のMRAMセル の動作を説明する図である。

【図22】 本発明に係る実施の形態1のMRAMセル の動作を説明する図である。

【図23】 本発明に係る実施の形態1のMRAMセル の動作を説明する図である。

【図24】 本発明に係る実施の形態 1のMRAMセル の動作を説明する図である。

【図25】 本発明に係る実施の形態 1のMRAMセル 20 の動作を説明する図である。

【図26】 本発明の実施の形態2に係るMRAMの構 成を示すプロック図である。

【図27】 本発明の実施の形態2に係るMRAMの構 成を示す回路図である。

【図28】 本発明の実施の形態2に係るMRAMの動 作を示すタイミングチャートである。

【図29】 磁気トンネル抵抗の変化率の印加電圧依存 性を示す図である。

【図30】 2重磁気トンネル接合の構成を示す図であ 30 る。

【図31】 本発明の実施の形態2に係るMRAMの構 成を示す回路図である。

【図32】 本発明の実施の形態2に係るMRAMの動 作を示すタイミングチャートである。

【図33】 本発明の実施の形態2に係るMRAMの構 成を示す回路図である。

【図34】 本発明の実施の形態3に係るMRAMのワ ード線を分割した構成示すブロック図である。

ード線を階層化した構成示すブロック図である。

【図36】 本発明の実施の形態3に係るMRAMのワ ード線を階層化した構成示す概念図である。

【図37】 本発明の実施の形態3に係るMRAMのビ ット線を分割した構成示すブロック図である。

【図38】 本発明の実施の形態3に係るMRAMのビ ット線を階層化した構成示すブロック図である。

【図39】 本発明の実施の形態4に係るMRAMの構 成を示す斜視図である。

作を説明する断面図である。

【図41】 本発明の実施の形態4に係るMRAMの動 作を説明する断面図である。

【図42】 本発明の実施の形態4に係るMRAMの動 作を説明する断面図である。

【図43】 本発明の実施の形態4に係るMRAMの変 形例の構成を示す平面図である。

【図44】 本発明の実施の形態4に係るMRAMの変 形例の構成を示す断面図である。

【図45】 本発明の実施の形態4に係るMRAMの変 形例の構成を示す断面図である。

【図46】 本発明の実施の形態4に係るMRAMの変 形例の構成を示す平面図である。

【図47】 本発明の実施の形態5に係るMRAMの構 成を示す平面図である。

【図48】 本発明の実施の形態5に係るMRAMの構 成を示す平面図である。

【図49】 本発明の実施の形態6に係る半導体基板の 構成を示す断面図である。

【図50】 本発明の実施の形態6に係る半導体基板の 構成を示す断面図である。

【図51】 一般的なMRAMの構成を示すブロック図 である。

【図52】 本発明の実施の形態7に係るMRAMの構 成を示すブロック図である。

【図53】 本発明の実施の形態7に係るMRAMの構 成を示すブロック図である。

【図54】 一般的なパッケージ化されたMRAMの構 成を示す断面図である。

【図55】 一般的なパッケージ化されたMRAMの構 成を示す断面図である。

【図56】 本発明の実施の形態8に係るMRAMの構 成を示す断面図である。

【図57】 本発明の実施の形態8に係るMRAMの構 成を示す平面図である。

【図58】 本発明の実施の形態8に係るMRAMの製 造工程を示す斜視図である。

【図59】 本発明の実施の形態8に係るMRAMの製 造工程を示す斜視図である。

【図35】 本発明の実施の形態3に係るMRAMのワ 40 【図60】 本発明の実施の形態8に係るMRAMの製 造工程を示す斜視図である。

> 【図61】 本発明の実施の形態8に係るMRAMの製 造工程を示す斜視図である。

> 【図62】 本発明の実施の形態8に係るMRAMの製 造工程を示す斜視図である。

> 【図63】 本発明の実施の形態8に係るMRAMの部 分構成を説明する平面図である。

> 【図64】 本発明の実施の形態8に係るMRAMの部 分構成を説明する断面図である。

【図40】 本発明の実施の形態4に係るMRAMの動 50 【図65】 本発明の実施の形態8に係るMRAMの構

65

成を示す断面図である。

【図66】 本発明の実施の形態8に係るMRAMの構成を示す断面図である。

67

【図67】 磁気トンネル接合の概念を示す図である。

【図68】 遷移金属の状態密度を模式的に示す図であ

【図69】 トンネル磁気抵抗効果を説明する模式図である。

【図70】 トンネル磁気抵抗効果を説明する模式図である。

【図71】 磁気トンネル接合の構成例を示す図である

【図72】 磁気トンネル接合の構成例を示す図である。

【図73】 スピンバルブ型強磁性トンネル接合素子の 実例を示す図である。

【図74】 スピンバルブ型強磁性トンネル接合素子の 実測特性を示す図である。

【図75】 従来のMRAMセルアレイの構成を示す斜*

* 視図である。

【図76】 従来のMRAMセルアレイの構成を示す斜 視図である。

【図77】 従来のMRAMセルアレイの等価回路図である。

【図78】 従来のMRAMセルアレイの動作を説明する図である。

【符号の説明】

MC2、MC3 MRAMセル、64、83 サブワード線、66、85、166 MRAMセルアレイ、67、84 メインワード線、87 グローバルワード線、861、1861 メモリセルアレイ群、164、183 サブビット線、167、184 メインピット線、187 グローバルビット線、125遮蔽用半田バンプ、223、235 応力緩和膜、127 信号伝送用半田バンプ、122 半導体チップ、1D インダクタ、FBL フラッシュビット線、FWL フラッシュワード線、SHB 遮蔽体。

BL1 MC2c MA10
Hx Hv Hv Hv Hv Hv MC2a MC2b

MC2c MC2b

MC2c MA10

MC2c MC2c

MC2c MC2c

MC2c

MC2c

MC2c

MC2c

MC2c

MC2c

MC2c

(図7)

【図8】

(39)

 $[\boxtimes 15]$ $| \square 15 |$ $| \square 15 |$

BEST AVAILABLE COPY

BEST AVAILABLE COPY

特開2002-231904

-SB

64:サブワード線 67:メインワード線 66:MRAMセルアレイ

ID:インダクタ

【図35】

(図36)

【図37】

1 6 4:サブピット稼 1 6 7:メインピット線 1 6 6:MRAMセルアレイ

【図43】

FBL:フラッシュピット線 FWL:フラッシュワード線

【図52】

BEST AVAILABLE COPY

(46)

特開2002-231904

DEST AVAILABLE COPY

(47)

特開2002-231904

BEST AVAILABLE COPY

特開2002-231904

BEST AVAILABLE COPY

[図75]

【図77】

【図78】

フロントページの続き

(51)Int.Cl.'

識別記号

HO1L 43/08

(72)発明者 前田 茂伸

東京都千代田区丸の内二丁目2番3号 三

菱電機株式会社内

FΙ

HO1L 27/10

テーマコード(参考)

Fターム(参考) 5E049 AA01 AA04 AA07 AA09 AC05 BA06 CB01 DB01 DB12

5F083 FZ10 GA01