Class 12 RECAP

Class 12

Shikhar Saxena

March 06, 2023

Contents

Recap	
Optimal Transport	
Example	
Sinkhorn Generative Modeling	 . :
Questions for solver for (4)	 . :
Conclusion	 . 4
Alternating Projection	

Recap

- Generative Modeling
- GANs
 - \star KL and f divergence
 - * bring sup out of integral (variational approach)
 - $\star \ E_p[f(x)] E_q[f(y)]$
- WGANs
 - \star Wasserstein distance W-1 $\inf_{\gamma} \prod_{(p,q)} E\left[\ \|x-y\| \ \right]$
 - \star KR Duality $\sup_{\|h\| \leq 1} E[h(x)] \ddot{E}[\dot{h}(y)]$
 - * Gradient Penalty in WGAN improves performance (by enforcing the 1-Lipschitz condition better). $\sup_{\|h\|_2 \le 1} E[h(x)] E[h(y)] + (\|\nabla h\| 1)^2$

Gradient Penalty Proof. There exists an f^* that is a solution to the KR duality problem (optimal minimizer for W-1 distance) such that

$$\nabla f^*(x_t) = \frac{y - x_t}{\|y - x_t\|} \implies \|\nabla f^*(t)\| = 1$$

Here v is the direction in which $\frac{\partial f}{\partial v} = 1$.

Since f^* is 1-Lipschitz $\implies \|\nabla f^*(x)\| \le 1$.

$$\|\nabla f^*(x_t)\|^2 = \langle v, \nabla f^*(x_t)\rangle^2 + \|\nabla f^*(x_t) - \langle v, \nabla f^*(x_t)v\rangle\|^2$$

Proof:

$$\begin{split} &1 \geq \|\nabla f^*(x_t)\|^2 \\ &= \langle v, \nabla f^*(x_t) \rangle^2 + \|\nabla f^*(x_t) - \langle v, \nabla f^*(x_t) v \rangle\|^2 \\ &= \langle v, \nabla f^*(x_t) \rangle^2 + \|\nabla f^*(x_t)\|^2 + \|\langle v, \nabla f^*(x_t) \rangle v\|^2 - 2\langle \nabla f^*(x_t), \langle v, \nabla f^*(x_t) \rangle v \rangle \end{split}$$

(Some terms cancel) and we get that expression.

Thus, we get that $\nabla f^*(x_t) = v$ (since norm greater than and less than equal to 1).

Optimal Transport

(X, p) and (Y, q) be some finite probability space with |X| = n and |Y| = m.

 $\Pi(p,q)$: Collection of distributions on the product $X\times Y$ with marginals p and q Consider a cost $C:X\times Y\to R_+$ then the optimal transport problem is:

$$d_c(p,q) = \min_{\pi \in \Pi(p,q)} \langle C, \pi \rangle = \min_{\pi} \sum_{x,y} C(x,y) \pi(x,y) \tag{1}$$

Example

If $X,Y\subset R^n,\ C(x,y)=\|x-y\|_2$ then optimal transport between p and q:

$$d_c(p,q) = \min_{\pi} \sum_{x,y} \|x-y\|_2 \pi(x,y) = W_1(p,q)$$

Marginals:

 $p(x) = \sum_{i=1}^m \pi(x,y_i) = (\pi \ 1_m)_x$ where 1_m is vector of all ones.

Similarly,
$$q(y) = \sum_{i=1}^{n} \pi(x_i, y) = 1_n^T \pi$$
.

Hence (1) simplifies to

$$d_c(p,q) = \min_{\pi 1_m = p, \pi^T 1_n = q} \sum_{x,y} c(x,y) \pi(x,y) \tag{2}$$

Remark. Discrete EM distance minibatch approximation of W-distance between two continuous distributions.

Concretely, If p and q are continuous distribution.

$$\{x_i\} \sim p \text{ and } \{y_i\} \sim q$$

Then,
$$\tilde{p}(x) = 1/n \sum_{i=1}^n 1_{x_i = x}, \tilde{q}(y) = 1/m \sum_{i=1}^m 1_{y_i = y}$$

Expect that $W_1(p,q)\approx W_1(\tilde{p},\tilde{q})$

Recall LP and that (2) is a LP. We can use LP solvers.

Sinkhorn Generative Modeling

• More tractable that WGAN

<u>Key Idea</u>: Sinkhorn Distance (*Cuturi*, 2013, *Sinkhorn Distance*. Lightspeed computation of optimal transport.)

He added a term to the optimization problem (2),

$$d_c^{\lambda}(p,q) = \min_{\pi \in \Pi} \langle C, \pi \rangle - \lambda H(\pi) \tag{3}$$

Clearly as $\lambda \to 0$, $d_c^*(p,q) \to d_c(p,q)$. Reframe (3) as a KL divergence.

- Define $K(x,y) = e^{-c(x,y)/\lambda}$.
- Let $Z_{\lambda} = \sum_{x,y} K(x,y)$.

Then $\frac{1}{Z_{\lambda}}K(x,y)$ defines a Gibb's distribution p_k^{λ} .

We have

$$D_{KL}(\pi \| p_k^{\lambda}) = \sum_{x,y} \pi(x,y) \log \left(\frac{\pi(x,y)}{K(x,y)} Z_{\lambda} \right)$$

$$\begin{split} D_{KL}(\pi \| p_k^\lambda) &= \sum_{x,y} \pi(x,y) \log \pi(x,y) - \sum_{x,y} \pi(x,y) \left(-\frac{c(x,y)}{\lambda} \right) + \sum_{x,y} \pi(x,y) \log Z_\lambda \\ &= -H(\pi) + \frac{1}{\lambda} \left\langle C, \pi \right\rangle + \log Z_\lambda \end{split}$$

Therfore,

$$\arg\min_{\pi\in\Pi} \langle C,\pi\rangle - \lambda H(\pi) = \arg\min_{\pi} D(\pi\|p_k^{\lambda}) \tag{4}$$

Questions for solver for (4)

- 1. Existence: Does a solution exist?
- 2. Uniqueness: Is the solution unique?

Recall, from Metric Space Calculus and topology,

- A continuous function on a compact space attains extrama
- Claim 1 $\Pi(x,y)$ is a compact space
- Claim $2 H(\pi)$ is strongly convex

Definition 1 (-mu strongly convex). A function is strongly convex if

$$\nabla^2 f(x) \ge \mu I$$

(same as $\lambda_{min}(\nabla^2 f) \ge \mu > 0$). This implies f is μ -strongly convex.

For Claim 2.

$$\nabla^2 H(\pi) = 1/\pi > 0$$

Hence strongly convex. Take any $\mu < 1$, then $H(\pi)$ will be μ -strongly convex. \square

For Claim 1. If Π is compact (X and Y is compact) then $\pi(p,q)$ is a **closed subset** of Π . This follows from closed subset of compact set is compact.

Also, Convexity implies continuity. So continuous functions on a compact space attain minima.

Strong Convexity implies uniqueness of solutions.

So, for some $f: X \to Y$ such that f(X) is compact and is closed and bounded. \square

 $\langle C, \pi \rangle$ being linear and $-\lambda H(\pi)$ being strongly convex, then $\langle C, \pi \rangle - \lambda H(\pi)$ is strongly convex.

Conclusion

(3) has existence of solution and solution is unique.

$$\arg\min_{\pi}D(\pi\|p_k^\lambda)$$

Let $\Pi(p)$ and $\Pi(q)$ denote row and column marginal constraints. And another constraint that $\Pi(p,q) = \Pi(p) \cap \Pi(q)$. So we want to find intersection point for two convex sets here (which is a generic optimization problem).

This can be solved using alternating projection.

Alternating Projection

Refer here