Таблица 1: Методы решения дифференциальных уравнений

Название	Вид	Алгоритм решения	Сводится к
Уравнение		Умножить или разделить	на такое выражение,
с разделя-	P(x,y)dx + Q(x,y)dy = 0	чтобы получить уравенение, одна часть кото-	
ющимися		рого содержит только dx и функцию от x , а	
переменными		вторая только dy и функт	μ ию от y
(РП)			
Однородное			РΠ
уравнение	P(x,y)dx + Q(x,y)dy = 0	y = xz	
(OY)			
Линейное урав-		Найти общее решение соот	гветствующего одно-
нение (ЛУ)	y' + a(x)y = f(x)	родного уравнения $y' + a(x)y = 0$. Представить	
, ,		константу в этом решении	
		подставить в исходное ур	авнение и найти эту
		функцию.	
Уравнение		_	ЛУ
Бернулли	$y' + a(x)y = b(x)y^m$	$z = y^{1-m}$	
Уравнение Ри-		$y = z + y_0(x)$, где $y_0(x)$ -	Уравнение
катти		какое-нибудь решение	Бернулли
	$y' + a(x)y^2 + b(x)y + c(x) = 0$	3,7, 1	T J
37			
Уравнение в			
полных диф-	P(x,y)dx + Q(x,y)dy = 0 = dU	∂U	∂U
ференциалах	I(x,y)ax + Q(x,y)ay = 0 = aC	$U(x,y) = C, \frac{\partial U}{\partial x} = P(x,y), \frac{\partial U}{\partial y} = Q(x,y)$	
			o g
Интегрирующий		Поделить или умножить	Уравнение в
множитель	P(x,y)dx + Q(x,y)dy = 0	на такое $f(x,y)$, чтобы	полных диф-
		уравнение стало уравне-	ференциалах
		нием в полных диффе-	
		ренциалах	
Уравнения, допускающие понижения порядка			
1	Tr (b) (b+1) (c) -		
	$F(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) = 0$	$y^k = z$	
2			
	$F(y, y', y'', \dots, y^{(n)}) = 0$	y'=p(y)	y)
	,	, , ,	
3			
	$F(x, y, y', \dots, y^{(n)}) = 0 \Leftrightarrow$	y' = yz	
	(, 0 , 0 , , , , , , , , , , , , , , ,		
	$\Leftrightarrow F(kx, ky, ky', \dots, ky^{(n)}) = 0$		
4	(n)		1 - 3
	$F(x, y, y', \dots, y^{(n)}) = 0 \Leftrightarrow$		
	$F(kx, k^m y, k^{m-1} y', \dots, k^{m-n} y^{(n)}) = 0$	$x = e^t, y = ze^{mt}$	
	$y = \langle \dots, \dots, y, \dots \rangle$		