Complex Analysis Problem Set 3

D. Zack Garza

$March\ 18,\ 2020$

Contents

1	Prob	plems From Tie 2	<u>)</u>
	1.1	1)
		1.1.1 Solution)
	1.2	2)
		1.2.1 Solution	3
	1.3	3	Ł
		1.3.1 Solution	Ł
	1.4	4	í
		1.4.1 Solution	į
	1.5	5	į
	1.6	6	į
	1.7	7	j
	1.8	8	j
	1.9	9	;
	1.10	10	;
	1.11	11	;
	1.12	12	;
		1.12.1 Solution	;
	1.13	13	7
	1.14	14	7
2	Stei	n and Shakarchi 8	
	2.1	S&S 3.8.1	
	2.2	S&S 3.8.2	3
	2.3	S&S 3.8.4	3
	2.4	S&S 3.8.5	3
	2.5	S&S 3.8.6	3
	2.6	S&S 3.8.7)
	2.7	S&S 3.8.8)
	2.8	S&S 3.8.9)
	2.9	S&S 3.8.10)
	2.10	S&S 3.8.14)
	2.11	S&S 3.8.15)
		2.11.1 a)

	2.11.2 b																			10
	2.11.3 c																			10
	2.11.4 d																			10
2.12	S&S 3.8.17																			10
	2.12.1 a																			10
	2.12.2 b																			10
2.13	S&S 3.8.19																			10
	2.13.1 a																			10
	2.13.2 b																			11

1 Problems From Tie

1.1 1

Prove that if f has two Laurent series expansions,

$$f(z) = \sum c_n(z-a)^n$$
 and $f(z) = \sum c'_n(z-a)^n$

then $c_n = c'_n$.

1.1.1 Solution

By taking the difference of two such expansions, it suffices to show that if f is identically zero and $f(z) = \sum_{n=-\infty}^{\infty} c_n(z-a)^n$ about some point a, then $c_n = 0$ for all n.

Under this assumption, let $D_{\varepsilon}(a)$ be a disc about a and γ be any contoured contained in its interior. Then for each n, we can apply the formula

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - a)^{n+1}} d\xi$$
$$= \frac{1}{2\pi i} \int_{\gamma} \frac{0}{(\xi - a)^{n+1}} d\xi \quad \text{by assumption}$$
$$= 0$$

which shows that $c_n = 0$ for all n.

1.2 2

Find Laurent series expansions of

$$\frac{1}{1 - z^2} + \frac{1}{3 - z}$$

How many such expansions are there? In what domains are each valid?

1.2.1 Solution

Note that f has poles at z = -1, 1, 3, all with multiplicity 1, and so there are 3 regions to consider:

- 1. |z| < 1
- 2. 1 < |z| < 3
- 3. 3 < |z|.

Region 1: Take the following expansion:

$$\begin{split} f(z) &= \frac{1}{1 - z^2} + \frac{1}{3 - z} \\ &= \sum_{n \ge 0} z^{2n} + \frac{1}{3} \left(\frac{1}{1 - \frac{3}{z}} \right) \\ &= \sum_{n \ge 0} z^{2n} + \frac{1}{3} \sum_{n \ge 0} \left(\frac{1}{3} \right)^n z^n \\ &= \sum_{n \ge 0} z^{2n} + \sum_{n \ge 0} \left(\frac{1}{3} \right)^{n+1} z^n \end{split}$$

Noting $\left|z^2\right| < 1$ implies then |z| < 1, and that the first term converges for $\left|z^2\right| < 1$ and the second for $\left|\frac{z}{3}\right| < 1 \iff |z| < 3$, this expansion converges to f on the region |z| < 1.

Region 2: Take the following expansion:

$$f(z) = \frac{1}{1 - z^2} + \frac{1}{3 - z}$$

$$= -\frac{1}{z^2} \left(\frac{1}{1 - \frac{1}{z^2}} \right) - \frac{1}{3} \left(\frac{1}{1 - \frac{z}{3}} \right)$$

$$= -\frac{1}{z^2} \sum_{n \ge 0} z^{-2n} + \sum_{n \ge 0} \left(\frac{1}{3} \right)^{n+1} z^n$$

$$= -\sum_{n \ge 2} \frac{1}{z^{2n}} + \sum_{n \ge 0} \left(\frac{1}{3} \right)^{n+1} z^n$$

By construction, the first term converges for $\left|\frac{1}{z^2}\right| < 1 \iff |z| > 1$ and the second for |z| < 3.

Region 3: Take the following expansion:

$$\begin{split} f(z) &= \frac{1}{1-z^2} + \frac{1}{3-z} \\ &= -\frac{1}{z^2} \left(\frac{1}{1-\frac{1}{z^2}} \right) - \frac{1}{z} \left(\frac{1}{1-\frac{3}{z}} \right) \\ &= -\frac{1}{z^2} \sum_{n \geq 0} \frac{1}{z^{2n}} - \frac{1}{z} \sum_{n \geq 0} 3^n \frac{1}{z^n} \\ &= -\sum_{n \geq 2} \frac{1}{z^{2n}} - \sum_{n \geq 1} \left(\frac{1}{3} \right)^{n-1} \frac{1}{z^n}. \end{split}$$

Note: in principle, terms could be collected here.

By construction, this converges on $\left\{ \left|z\right|^{2}>1\right\} \bigcap \left\{ \left|z\right|>3\right\} =\left\{ \left|z\right|>3\right\} .$

1.3 3

Let P, Q be polynomials with no common zeros. Assume a is a root of Q. Find the principal part of P/Q at z=a in terms of P and Q if a is (1) a simple root, and (2) a double root.

1.3.1 Solution

todo

1.4 4

Let f be non-constant, analytic in |z| > 0, where $f(z_n) = 0$ for infinitely many points z_n with $\lim_{n \to \infty} z_n = 0$.

Show that z = 0 is an essential singularity for f.

Example: $f(z) = \sin(1/z)$.

1.4.1 Solution

It suffices to show that $z_0 = 0$ is neither a pole nor a removable singularity, i.e.

- 1. $\lim_{z \to z_0} f(z) \neq \infty$
- 2. |f(z)| is not bounded on any neighborhood $D_{\varepsilon}(z_0)$.

The first property follows because if f is analytic,

1.5 5

Show that if f is entire and $\lim_{z \to \infty} f(z) = \infty$, then f is a polynomial.

1.6 6

Problem: a. Show that

$$\int_0^{2\pi} \log \left| 1 - e^{i\theta} \right| \, d\theta = 0$$

b. Show that this identity is equivalent to SS 3.8.9.

1.7 7

Let 0 < a < 4 and evaluate

$$\int_0^\infty \frac{x^{\alpha - 1}}{1 + x^3} \ dx$$

1.8 8

Prove the fundamental theorem of Algebra using

- a. Rouche's Theorem.
- b. The maximum modulus principle.

1.9 9

Let f be analytic in a region D and γ a rectifiable curve in D with interior in D. Prove that if f(z) is real for all $z \in \gamma$, the f is constant.

1.10 10

For a > 0, evaluate

$$\int_0^{\pi/2} \frac{d\theta}{a + \sin^2 \theta}$$

1.11 11

Find the number of roots of $p(z) = 4z^4 - 6z + 3$ in |z| < 1 and 1 < |z| < 2 respectively.

1.12 12

Prove that $z^4 + 2z^3 - 2z + 10$ has exactly one root in each open quadrant.

1.12.1 Solution

Let $f(z) = z^4 + 2z^3 - 2z + 10$, and consider the following contour:

Since polynomials are holomorphic on \mathbb{C} , by the argument principle it suffices to show that f does not vanish on Γ and $\Delta_{\Gamma} f(z) = 1$, where Δ_{Γ} denote total change in the argument of f over Γ .

1.13 13

Prove that for a > 0, $z \tan z - a$ has only real roots.

1.14 14

Let f be nonzero, analytic on a bounded region Ω and continuous on its closure $\overline{\Omega}$. Show that if $|f(z)| \equiv M$ is constant for $z \in \partial \Omega$, then $f(z) \equiv M e^{i\theta}$ for some real constant θ .

2 Stein and Shakarchi

2.1 S&S 3.8.1

Using Euler's formula

$$\sin(\pi z) = \frac{1}{2i} (e^{i\pi z} - e^{-i\pi z})$$

show that the complex zeros of $\sin(\pi z)$ are exactly the integers, each of order one. Calculate the residue of $\frac{1}{\sin(\pi z)}$ at $z=n\in\mathbb{Z}$.

2.2 S&S 3.8.2

Evaluate the integral

$$\int_{\mathbb{R}} \frac{dx}{1+x^4}$$

What are the poles of the integrand?

2.3 S&S 3.8.4

Show that

$$\int_{\mathbb{R}} \frac{x \sin x}{x^2 + a^2} = \frac{\pi e^{-a}}{a} \quad a > 0$$

2.4 S&S 3.8.5

Show that for $\xi \in \mathbb{R}$,

$$\int_{\mathbb{R}} \frac{e^{2\pi i x \xi}}{(1+x^2)^2} = \frac{\pi}{2} (1+2\pi |\xi|) e^{-2\pi |\xi|}$$

2.5 S&S 3.8.6

Show that

$$\int_{\mathbb{R}} \frac{dx}{(1+x^2)^{n+1}} = \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)\pi}{2 \cdot 4 \cdot \dots \cdot (2n}$$

2.6 S&S 3.8.7

Show that for a > 1,

$$\int_0^{2\pi} \frac{d\theta}{(a+\cos\theta)^2} = \frac{2\pi a}{(a^2-1)^{3/2}}$$

2.7 S&S 3.8.8

Show that if $a, b \in \mathbb{R}$ with a > |b| then

$$\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta} = \frac{2\pi a}{\sqrt{a^2 - b^2}}$$

2.8 S&S 3.8.9

Show that

$$\int_0^1 \log(\sin \pi x) \ dx = -\log 2$$

2.9 S&S 3.8.10

Show that if a > 0

$$\int_0^\infty \frac{\log x}{x^2 + a^2} \ dx = \frac{\pi \log a}{2a}$$

2.10 S&S 3.8.14

Prove that if f is entire and injective, then f(z) = az + b with $a, b \in \mathbb{C}$ with $a \neq 0$. Hint: apply the Casorati-Weierstrass theorem to f(1/z).

2.11 S&S 3.8.15

Use the Cauchy inequalities or the maximum modulus principle to solve the following problems:

2.11.1 a

If f is entire and for all R > 0, there are constants A, B > 0 such that $\sup_{|z|=R} |f(z)| \le AR^k + B$, then f is a polynomial of degree less than k.

2.11.2 b

Show that if f is holomorphic on the unit disk, is bounded, and converges to zero uniformly in the sector $\theta \le \arg z \le \phi$ as $|z| \longrightarrow 1$, then $f \equiv 0$.

2.11.3 c

Let w_1, \dots, w_n be points on $S^1 \subset \mathbb{C}$. Show that there exists a point $z \in S^1$ such that

$$\prod_{i=1}^{n} |z - w_i| \ge 1.$$

Conclude that there exists a point $w \in S^1$ such that

$$\prod_{i=1}^{n} |w - w_i| = 1.$$

2.11.4 d

Show that if f is entire and $\Re(f)$ is bounded, then f is constant.

2.12 S&S 3.8.17

Let f be non-constant, and holomorphic in an open set containing the open unit disc.

2.12.1 a

Show that $|z| = 1 \implies |f(z)| = 1$, then the image of f contains the unit disc.

Hint: Show that $f(z) = w_0$ has a root for every $w_0 \in \mathbb{D}$, for which it suffices to show that f(z) = 0 has a root, then use the maximum modulus principle.

2.12.2 b

Show that if $|z| \ge 1 \implies |f(z)| = 1$ and there exists a point $z_0 \in \mathbb{D}$ such that $|f(z_0)| < 1$, then the image of f contains the unit disc.

2.13 S&S 3.8.19

Prove the maximum modulus principle for harmonic functions; i.e.,

2.13.1 a

If u is a non-constant real-valued harmonic function on Ω , then u can not attain its extrema on Ω .

2.13.2 b

Suppose Ω has compact closure $\overline{\Omega}$, then if u is harmonic on Ω and continuous on $\overline{\Omega}$, then

$$\sup_{z\in\Omega}|u(z)|\leq \sup_{z\in\overline{\Omega}-\Omega}|u(z)|$$

Hint: to prove (a), assume that u attains a local maximum at z_0 , and let f be holomorphic near z_0 with $u = \Re(f)$, then show that f is not open. Part (b) is a direct consequence.