Salience and Taxation: Theory and Evidence

By Raj Chetty, Adam Looney, and Kory Kroft*

Using two strategies, we show that consumers underreact to taxes that are not salient. First, using a field experiment in a grocery store, we find that posting tax-inclusive price tags reduces demand by 8 percent. Second, increases in taxes included in posted prices reduce alcohol consumption more than increases in taxes applied at the register. We develop a theoretical framework for applied welfare analysis that accommodates salience effects and other optimization failures. The simple formulas we derive imply that the economic incidence of a tax depends on its statutory incidence, and that even policies that induce no change in behavior can create efficiency losses. (JEL C93, D12, H25, H71)

A central assumption in public economics is that agents optimize fully with respect to tax policies. For example, Frank P. Ramsey's (1927) seminal analysis of optimal commodity taxation assumes that agents respond to tax changes in the same way as price changes. Canonical results on tax incidence, efficiency costs, and optimal income taxation (e.g., Arnold C. Harberger 1964; James A. Mirrlees 1971; Anthony B. Atkinson and Joseph E. Stiglitz 1976) all rely on full optimization with respect to taxes.

Contrary to the full optimization assumption, there is accumulating evidence that suggests that individuals are inattentive to some types of incentives. Inattention and imperfect optimization could be particularly important in the case of taxation, because tax systems are complex and nontransparent in practice. Income tax schedules are typically highly nonlinear; benefit-tax linkages for social insurance programs are opaque (e.g., social security taxes and benefits); and taxes on commodities are often not displayed in posted prices (sales taxes, hotel city taxes, vehicle excise fees).

Recent studies of inattentive behavior include prices versus shipping fees (Tanjim Hossain and John Morgan 2006; Jennifer Brown, Hossain, and Morgan 2008), financial markets (Stefano DellaVigna and Joshua Pollet 2009), and rebates for car purchases (Meghan Busse, Jorge Silva-Risso, and Florian Zettelmeyer 2006). See DellaVigna (2009) for additional examples and a review of this literature.

^{*} Chetty: Department of Economics, University of California, Berkeley, 549 Evans Hall, #3880, Berkeley, CA 94720–3880 (e-mail: chetty@econ.berkeley.edu); Looney: Division of Research and Statistics, Board of Governors of Federal Reserve System, 20th St. and Constitution Avenue, NW, Washington, DC 20551 (e-mail: adam.looney@frb. gov); Kroft: Department of Economics, University of California, Berkeley, 549 Evans Hall, #3880, Berkeley, CA 94720–3882 (e-mail: kroft@econ.berkeley.edu). We are very grateful to Sofia Berto Villas-Boas and Reed Johnson for help in implementing the experiment, and to Christopher Carpenter, Jeffrey Miron, and Lina Tetelbaum for sharing data on alcohol regulations. Thanks to George Akerlof, David Ahn, Alan Auerbach, Douglas Bernheim, Kitt Carpenter, Judith Chevalier, Stefano DellaVigna, Amy Finkelstein, Michael Greenstone, Caroline Hoxby, Shachar Kariv, Peter Katuscak, Botond Kőszegi, Erzo Luttmer, James Poterba, Matthew Rabin, Ricardo Reis, Emmanuel Saez, Jesse Shapiro, Andrei Shleifer, Dan Sichel, Uri Simonsohn, anonymous referees, and numerous seminar participants for helpful comments and discussions. Laurel Beck, Gregory Bruich, Matt Grandy, Matt Levy, Ankur Patel, Ity Shurtz, James Sly, and Philippe Wingender provided outstanding research assistance. Funding was provided by National Science Foundation grant SES 0452605 and the Hoover Institution. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff or the Board of Governors of the Federal Reserve. Appendices and stata code for the empirical analysis are available on Chetty's Web site.

In the first half of this paper, we investigate empirically whether individuals optimize fully with respect to taxes by analyzing the effect of "salience" on behavioral responses to commodity taxation. Specifically, we show that commodity taxes that are included in the posted prices that consumers see when shopping (and are thus more salient) have larger effects on demand. In Xavier Gabaix and David I. Laibson's (2006) terminology, our empirical analysis shows that some types of taxes are "shrouded attributes." In the second half of the paper, we develop a simple method of characterizing the welfare consequences of taxation when agents optimize imperfectly with respect to taxes.

We study the importance of salience empirically using two complementary strategies: an experiment in a grocery store, and an observational study of the effect of alcohol taxes on alcohol consumption. The experiment was implemented at a supermarket over a three-week period in early 2006. In this store, prices posted on the shelf exclude sales tax of 7.375 percent. If a product is subject to sales tax, it is added to the bill only at the register, as in most other retail stores in the United States.³ To test if people underreact to the sales tax because it is not included in the posted price, we posted tags showing the tax-inclusive price below the original pretax price tags (shown in Exhibit 1). We posted these tags for all products (roughly 750 total) in three taxable groups: cosmetics, hair care accessories, and deodorants. A preliminary survey-based evaluation of the tags indicates that they succeed in reminding consumers of actual tax-inclusive prices. Without the tags, nearly all survey respondents ignored taxes when calculating the total price of a basket of goods, whereas with the tags, the vast majority computed the total tax-inclusive price correctly.

We analyze the effect of posting tax-inclusive prices on demand using a difference-in-differences research design. Scanner data show that quantity sold and total revenue in the treated group of products fell by about 8 percent during the intervention relative to two "control groups"—other products in the same aisle of the treatment store that were not tagged and products in two other stores in nearby cities. The null hypothesis that posting tax-inclusive prices has no effect on demand is rejected using both *t*-tests and nonparametric permutation tests. To interpret the magnitude of the treatment effect, we compare it with the price elasticity of demand for these categories, which is in the range of 1 to 1.5. Since showing the tax-inclusive price reduced demand by nearly the same amount as a 7.375 percent price increase, we infer that most consumers do not normally take the sales tax into account.

A concern with the experiment is that posting 750 new tags may have reduced demand because of a "Hawthorne effect," or a short-run violation of norms. This issue motivates our second empirical strategy, which compares the effect of price changes with tax changes using observational data over a longer horizon. To implement this test, we focus on alcohol consumption, because alcohol is subject to two state-level taxes in the United States: an excise tax that is included in the posted price and a sales tax that is added at the register (and hence is less salient). Exploiting state-level changes in these two tax rates between 1970 and 2003, coupled with annual data on total beer consumption by state, we find that increases in the excise tax reduce beer consumption by an order of magnitude more than similar increases in the sales tax. A simple calibration shows

² We use "tax salience" to refer to the visibility of the tax-inclusive price. When taxes are included in the posted price, the total tax-inclusive price is more visible but the tax rate itself may be less clear. There is a longstanding theoretical literature on "fiscal illusion" which discusses how the lack of visibility of tax rates may affect voting behavior and the size of government (John S. Mill 1848). Unlike that literature, we define salience in terms of the visibility of the tax-inclusive price because we focus on behaviors that optimally depend on total tax-inclusive prices rather than behaviors that depend on the tax rate itself.

³ The sales tax affects relative prices because it does not apply to all goods. Approximately 40 percent of expenditure is subject to sales tax in the United States. Since food is typically exempt, the fraction of items subject to sales tax in grocery stores is much lower.

EXHIBIT 1. TAX-INCLUSIVE PRICE TAGS Photo: Raj Chetty

that the magnitude of the difference in the elasticity estimates cannot be explained purely by the fact that the sales tax applies to a broader base, especially since food and nonalcoholic beverages are exempt from sales tax in most states. The difference in elasticities persists over time, indicating that behavioral responses to taxes and prices differ, even in the long run.

Why do consumers underreact to taxes that are not included in posted prices? One explanation is that customers are uninformed about the sales tax rate or which goods are subject to sales tax. An alternative hypothesis is that salience matters: the customers know what is taxed, but focus on the posted price when shopping. To distinguish between these hypotheses, we surveyed grocery shoppers about their knowledge of sales taxes. The median individual correctly reported the tax status of seven out of the eight products on the survey, indicating that our empirical findings are driven by salience effects. A key feature of salience is that it matters in steady state, and not just on the transition path after tax changes.

Our empirical results contradict the basic assumptions of the neoclassical models currently used to guide tax policy. To understand the implications of the empirical evidence for tax policy, we need a method of characterizing the welfare consequences of taxation when agents do not optimize perfectly relative to taxes. The objective of the second half of the paper is to develop such a method. The main challenge we confront, which is central to behavioral public economics more generally, is the recovery of true preferences when behavior is inconsistent with full optimization. We characterize the welfare consequences of taxation using an approach that does not rely on a specific positive model of behavior, as in B. Douglas Bernheim and Antonio Rangel (2009). Our method relies on two assumptions: taxes affect welfare only through their effects on the consumption bundles chosen by agents; and consumption choices, when prices are perfectly salient, are optimal. Under these assumptions, we derive formulas for the effect of taxes on social surplus (deadweight loss) and distribution (incidence) that depend only on the empirically observed demand function and not on the underlying model that generates that demand function. Intuitively, there are two demand curves that together are sufficient statistics for welfare calculations when individuals make optimization errors: the tax-demand curve, which tells us how demand varies as a function of (nonsalient) taxes, and the price-demand curve, which tells us how demand varies as (fully salient) posted prices change. We use the tax-demand curve to determine the effect of the tax on behavior, and then use the price-demand curve to calculate the effect of that change in behavior on welfare. The price-demand curve can be used to recover the agent's preferences and calculate welfare changes because it is generated by optimizing behavior.

The benefits of this approach to welfare analysis are its simplicity and adaptability. The formulas for deadweight loss and incidence can be derived using supply and demand diagrams and familiar notions of consumer and producer surplus. The formulas differ from Harberger's (1964) widely applied formulas by a single factor—the ratio of the compensated tax elasticity to the compensated price elasticity. Thus, one can calculate the (partial equilibrium) deadweight cost and incidence of any tax policy by estimating both the tax and price elasticities instead of just the tax elasticity, as in the existing empirical literature. Although we motivate our welfare analysis by evidence of salience effects, the formulas account for *all* errors that consumers may make when optimizing with respect to taxes.⁴ For example, confusion between average and marginal income tax rates (Charles de Bartolome 1995; Jeffrey B. Liebman and Richard J. Zeckhauser 2004; Naomi E. Feldman and Peter Katuščák 2006) or overestimation of estate tax rates (Robert J. Blendon et al. 2003; Joel B. Slemrod 2006) can be handled using exactly the same formulas, without requiring knowledge about individuals' tax perceptions or rules of thumb.

The results of the welfare analysis challenge widely held intuitions based on the full optimization model. First, the agent who bears the statutory incidence of a tax bears more of the economic incidence, violating the classic tax neutrality result in competitive markets. Second, a tax increase can have an efficiency cost even when demand for the taxed good does not change by distorting budget allocations. Finally, holding fixed the tax elasticity of demand, we show that an increase in the price elasticity of demand *reduces* deadweight loss and *increases* incidence on consumers.

This paper builds on and relates to several recent papers in public economics. Our theoretical analysis can be viewed as an application of Bernheim and Rangel's (2009) choice-based approach to welfare, where the choices when taxes are salient reveal an agent's true rankings (see section IV for more details). Our analysis also relates to the work of Liebman and Zeckhauser (2004), who analyze optimal income taxation in a model where individuals misperceive tax schedules because of "ironing" or "spotlighting" behavior. Our approach does not require assumptions about whether

⁴ Our formulas do not, however, permit errors in optimization relative to salient prices. Such errors can be accommodated by identifying an environment where the true price elasticity is revealed and by applying the same formulas.

individuals iron, spotlight, or respond in some other way to the tax schedule, as any of these behaviors are captured in the empirically observed tax and wage elasticities of labor supply.

Our empirical results are consistent with those of Amy N. Finkelstein (2007) and Tomer Blumkin, Bradley J. Ruffle, and Yosi Ganun (2008), who find evidence of salience effects in toll collection and a lab experiment on consumption versus income taxes. One notable study that does not find that salience matters is Harvey S. Rosen (1976), who shows that the cross-sectional correlation between marginal tax rates and work hours is similar to the correlation between wage rates and work hours. The cross-sectional approach to estimation of wage elasticities has since been shown to suffer from identification problems, which could explain why our use of exogenous variation to identify salience effects yields different results.

The remainder of the paper is organized as follows. Section I presents an organizing framework for our empirical analysis. Section II discusses the grocery experiment. Section III presents the evidence on alcohol sales. Section IV explores why consumers underreact to taxes. Section V presents the theoretical welfare analysis. Section VI concludes.

I. Empirical Framework

To motivate the empirical analysis, consider consumer behavior in an economy with two goods, x and y, that are supplied perfectly elastically. Normalize the price of y to one and let p denote the pretax price of x. Assume that y is untaxed and x is subject to an *ad valorem* sales tax τ^s . The total price of x is $q = (1 + \tau^s)p$. The price that consumers see when deciding what to purchase is p; the sales tax is not included in the posted price. Since consumers must calculate q themselves but can see p directly, we will say that the tax-inclusive price q is less "salient" than the pretax price p.

Let $x(p, \tau^s)$ denote demand as a function of the posted price and the *ad valorem* sales tax. In the neoclassical full-optimization model, demand depends only on the total tax-inclusive price: $x(p, \tau^s) = x((1+\tau^s)p, 0)$. If consumers optimize fully, a 1 percent increase in p and a 1 percent increase in the gross-of-tax price $(1+\tau^s)$ reduce demand by the same amount: $\varepsilon_{x,p} \equiv -(\partial \log x)/(\partial \log p) = \varepsilon_{x,1+\tau^s} \equiv -(\partial \log x)/((\partial \log (1+\tau^s)))$. We hypothesize that in practice consumers underreact to the tax τ^s because it is less salient: $\varepsilon_{x,p} > \varepsilon_{x,1+\tau^s}$. To test this hypothesis, we log-linearize the demand function $x(p,\tau^s)$ to obtain the following estimating equation:

(1)
$$\log x(p, \tau^s) = \alpha + \beta \log p + \theta_{\tau} \beta \log (1 + \tau^s).$$

In this equation, the parameter θ_{τ} measures the degree to which agents underreact to the tax.⁶ In particular, θ_{τ} is the ratio of the tax elasticity of demand $(\varepsilon_{x,1+\tau^s}=-\theta_{\tau}\beta)$ to the price elasticity of demand $(\varepsilon_{x,p}=-\beta)$:

(2)
$$\theta_{\tau} = \frac{\partial \log x}{\partial \log (1 + \tau^{S})} \left| \frac{\partial \log x}{\partial \log p} \right| = \frac{\varepsilon_{x, 1 + \tau^{S}}}{\varepsilon_{x, p}}.$$

⁵The supply curve is effectively flat in both of our empirical strategies. In the grocery experiment, stocking patterns and prices are set at a regional level and are exogenous to our small intervention. In the alcohol analysis, we show that state-level changes in taxes on producers are shifted fully to consumers because each state accounts for a small share of the national market.

⁶ The parameter θ_{τ} does not have a structural interpretation because we have not specified an economic model that generates (1). In a companion paper (Chetty, Looney, and Kroft 2007), we develop a bounded rationality model in which agents face heterogeneous cognitive costs of computing tax-inclusive prices. In that model, θ is the fraction of individuals whose cognitive costs lie below the threshold where it is optimal to compute the tax-inclusive price.

The null hypothesis of full optimization implies $\theta_{\tau} = 1$. We use two empirical strategies to estimate θ_{τ} .

STRATEGY 1: Manipulate Tax Salience. Our first empirical strategy is to make the sales tax as salient as the pretax price by posting the tax-inclusive price q on the shelf. When tax-inclusive prices are posted, consumers presumably optimize relative to the tax-inclusive price and set demand to $x((1 + \tau^s)p, 0)$. Hence, the effect of posting the tax-inclusive price on demand is

$$\log x((1+\tau^{s})p,0) - \log x(p,\tau^{s}) = (1-\theta_{\tau})\beta \log (1+\tau^{s}).$$

Recalling that $\varepsilon_{x,p} = -\beta$, we obtain the following estimator for θ_{τ} :

(3)
$$(1 - \theta_{\tau}) = -\frac{\log x((1 + \tau^{S})p, 0) - \log x(p, \tau^{S})}{\varepsilon_{x, p} \log (1 + \tau^{S})}.$$

The right-hand side of this equation measures the effect of posting tax-inclusive prices on demand divided by the effect of a price increase corresponding to the size of the tax. This ratio measures the degree of misperception of total prices when taxes are not included in posted prices. If all consumers normally take the sales tax into account, posting q should have no effect on demand $(\theta_{\tau}=1)$, since it is redundant information. If all consumers ignore the sales tax, posting q should reduce demand by $\varepsilon_{x,p}\log(1+\tau^s)$, implying $\theta_{\tau}=0$.

STRATEGY 2: *Manipulate Tax Rate*. An alternative method of estimating θ_{τ} is to exploit independent variation in τ^{s} and p to estimate the sales tax elasticity $\varepsilon_{x,1+\tau^{s}}$ and the price elasticity $\varepsilon_{x,p}$, as in Rosen (1976). As shown in (2), the ratio of the two elasticities, $\varepsilon_{x,1+\tau^{s}}/\varepsilon_{x,p}$, identifies θ_{τ} .

In the next section, we implement strategy 1 using a field experiment at a grocery store. In Section III, we implement strategy 2 using observational data on alcohol consumption.

II. Evidence from an Experiment at a Grocery Store

A. Research Design

We conducted an experiment posting tax-inclusive prices at one store of a national grocery chain. The store is a 37,000 square foot supermarket with annual revenue of approximately \$25 million and is located in a middle-income suburb in Northern California. Approximately 30 percent of the products sold in the store are subject to the local sales tax of 7.375 percent, which is added at the register. Price tags on the shelves display only pretax prices, as in the upper half of the tag shown in Exhibit 1.

The grocery chain's managers expected that posting tax-inclusive prices would reduce sales. To limit revenue losses, they asked us to restrict our intervention to three product groups that were not "sales leaders" and to limit the duration of the intervention to three weeks. We looked for three product groups that met this requirement as well as two additional criteria: products

⁷ We estimate that the loss in revenue due to our experiment was about \$300 (8 percent of \$3,900). Extrapolating from this estimate, if taxes were included in posted prices for all taxable products, the revenue loss would be 2.4 percent, or \$600,000 per year per store. Note that this calculation ignores general equilibrium effects that would arise if all retailers were required to post tax-inclusive prices.

with relatively high prices so that the dollar amount of the sales tax is nontrivial; and products belonging to "impulse purchase categories"—goods that exhibit high price elasticities—so that the demand response to the intervention would be detectable. We chose three groups of taxable toiletries: cosmetics, hair care accessories, and deodorants. These three product groups take up half an aisle of the store and together include about 750 distinct products.

We posted tax-inclusive prices for all products in the three groups beginning February 22, 2006, and ending March 15, 2006. Exhibit 1 shows how the price tags were altered. The original tags, which show pretax prices, were left untouched on the shelf. A tag showing the tax-inclusive price was attached directly below this tag for each product. The added tag stated "Total Price: p + Sales Tax = q," where q denotes the pretax price (repeating the information in the original tag) and q denotes the tax-inclusive price. The original pretax price was repeated on the new tag to avoid giving the impression that the price of the product had increased. For the same reason, the fonts used for q, q, and the words "Sales Tax" exactly matched the font used by the store for the original price. Additional details on experiment implementation are given in Web Appendix A (available at http://www.aeaweb.org/articles.php?doi=10.1257/aer.99.4.53).

Evaluation of Tags.—To determine whether the tags are effective in increasing tax salience and are understood by consumers, we conducted a preliminary survey-based evaluation in an undergraduate class. We showed the students a photograph of taxable products on the shelf at the grocery store similar to that in Exhibit 1. We distributed surveys (shown in Web Appendix Exhibit 1) asking each student to choose two goods and write down "the total bill due at the register for these two items." We first showed the photograph with the regular tags displaying only the pretax prices. After collecting the survey responses, we showed a second photograph of products with our tax-inclusive price tags and asked students to repeat the exercise. The results are summarized in the first panel of Table 1. When presented with the first photo, the modal response was the total pretax bill for the two products. Only 18 percent of students reported a total price within \$0.25 of the total tax-inclusive amount. When presented with the second photo, the modal response included the sales tax, and 75 percent wrote down an amount within \$0.25 of the true tax-inclusive total. This evidence shows that posting tax-inclusive price tags does indeed have a strong "first stage" effect on tax salience. Moreover, the results allay concerns that the tags confused consumers into believing that these items were subject to an additional tax or that the pretax price of the product had been increased.

Although we are confident that the tags increased tax salience substantially, we cannot rule out the possibility that they also affected demand through other channels or "Hawthorne effects." For instance, the very fact that 750 new tags were posted on the shelves could have deterred customers from the aisle. We are able only to estimate the effect of posting the tags on demand, and have no means of decomposing the effect of the intervention into the various mechanisms through which the tags may have had an effect. The large first-stage effect of the tags on perceived prices leads us to believe that the primary mechanism is increased tax salience, but we ultimately rely on evidence from the second empirical approach (see Section III) to address such concerns.

Empirical Strategy.—To estimate the effect of our intervention on demand, we compare changes in quantity sold in the "treatment" group of products whose tags were modified with

⁸ The treatment of showing tax-inclusive price tags could have been randomized at the individual product level. However, the concern that such an intervention could be deceptive (e.g., suggesting that one lipstick is taxed and another is not) dissuaded us from pursuing this strategy. We therefore tagged complete product groups, so that any direct substitute for a treated product would also be treated.

TABLE 1— SURVEY EVIDENCE: SUMMARY STATISTICS

	Mean	Median	Standard deviation
Panel A. Classroom survey			
Original price tags: Correct tax-inclusive price w/in \$0.25	0.18	0.00	0.39
Experimental price tags: Correct tax-inclusive price w/in \$0.25	0.75	1.00	0.43
t-test for equality of means: $p < 0.001$			
N = 49			
Panel B. Grocery store survey			
Local sales tax rate (Actual rate is 7.375 percent)	7.48	7.39	0.80
Fraction correctly reporting tax status			
All items	0.82	1.00	0.38
Beer	0.90	1.00	0.30
Cigarettes	0.98	1.00	0.15
Cookies	0.65	1.00	0.48
Magazines	0.87	1.00	0.34
Milk	0.82	1.00	0.38
Potatoes	0.81	1.00	0.39
Soda	0.76	1.00	0.43
Toothpaste	0.80	1.00	0.40
N = 91			

Notes: Panel A reports summary statistics for a survey of 49 students who were shown regular (non-tax-inclusive) price tax and the experimental (tax-inclusive) price tags. Statistics shown are for an indicator for whether individual reported total bill within 25 cents of total tax-inclusive price. See Web Appendix Exhibit 1 for survey instrument. Panel B reports summary statistics for a survey of 91 customers at the treatment grocery store. See Web Appendix Exhibit 2 for survey instrument.

two "control" groups. We define the treatment group as products that belong to the cosmetics, hair care accessories, or deodorants product groups in the store where we conducted the experiment. The first control group is a set of products in the same aisles as the treatment products for which we did not change tags within the experimental store. These products include similar (taxable) toiletries such as toothpaste, skin care, and shaving products; see Web Appendix Table 1 for the full list. The second control group consists of all the toiletry products sold in a pair of stores in nearby cities. These control stores were selected to match the treatment store prior to the experiment on the demographic and store characteristics shown in Web Appendix Table 2. Using these two control groups, we implement a standard difference-in-differences methodology to test whether sales of the treated products fell during the intervention relative to the controls.

B. Data and Summary Statistics

We use scanner data from the treatment store and the two control stores, spanning week 1 of 2005 to week 13 of 2006. The dataset contains weekly information on price and quantity sold for all toiletry (treatment and control) products in each store. See Web Appendix A for details on the dataset.

Within the treatment group, there are 13 product "categories" (e.g., lipsticks, eye cosmetics, roll-on deodorants, body spray deodorants). The control product group contains 95 categories, which are listed in Web Appendix Table 1. We analyze the data at the category level (summing quantity sold and revenue over the individual products within categories) rather than the product

TADIE 2_	GROCERV	EXPERIMENT:	STIMMADY	STATISTICS.

	Treatment store		Control stores		Total	
	Treatment products (1)	Control products (2)	Treatment products (3)	Control products (4)	All stores and products (5)	
Panel A. Category-level statistics						
Weekly quantity sold per category	25.08 (24.1)	26.63 (38.1)	27.84 (27.4)	30.64 (47.0)	29.01 (42.5)	
Weekly revenue per category	\$97.85 (81.9)	\$136.05 (169.9)	\$107.04 (92.3)	\$154.66 (207.7)	\$143.10 (187.1)	
Number of categories	13	95	13	95	108	
Panel B. Product-level statistics	-					
Pre-tax product price	\$4.46 (1.8)	\$6.26 (4.3)	\$4.52 (1.7)	\$6.31 (4.2)	\$6.05 (4.1)	
Pre-tax product price (weighted by quantity sold)	\$4.27 (1.7)	\$5.61 (3.9)	\$4.29 (1.6)	\$5.59 (3.8)	\$5.45 (3.7)	
Weekly quantity sold per product (conditional > 0)	1.47 (0.9)	1.82 (1.6)	1.61 (1.1)	1.98 (1.9)	1.88 (1.7)	

Notes: Statistics reported are means with standard deviations in parentheses. Statistics are based on sales between 2005 week 1 and 2006 week 15. Data source is scanner data obtained from a grocery chain. The "treatment store" is the store where the intervention took place; the "control stores" are two nearby stores in the same chain. "Treatment products" are cosmetics, hair care accessories, and deodorants. "Control products" are other toiletries located in the same aisles; see Web Appendix Table 2 for complete list. Product price reflects actual price paid, including any discount if product is on sale. See Web Appendix A for data sources and sample definition.

level for two reasons. First, the intervention was done at the category level. Second, we cannot distinguish products that were on the shelf but did not sell (true zeros) from products that were not on the shelf. Analyzing the data at the category level circumvents this problem because there are relatively few category-weeks with missing data (4.7 percent of all observations). Since all the categories always existed in all stores throughout the sample period, we believe that these observations are true zeros, and code them as such.

Table 2 presents summary statistics for the treatment and control product groups in each store. The treatment store sold an average of 25 items per category and earned \$98 of revenue per week per category over the sample period (column 1 of Table 2). The treatment products thus account for approximately \$1,300 of revenue per week as a whole. Average weekly quantity sold per category is similar for the control products in the treatment store, but products in these categories are somewhat more expensive on average (column 2). Sales and revenue for the same categories in the control stores are very similar to those in the treatment store (columns 3–4).

C. Results

Comparison of Means.—We begin our analysis with a cross tabulation of mean quantity sold (see Table 3). The upper panel of the table shows data for the treatment store. The data are split into four cells. The rows split the data by time: preexperiment (week 1 of 2005 to week 6 of 2006) versus the intervention period (weeks 8 to 10 of 2006). The columns split the data by product group: treated versus control categories. Each cell shows the mean quantity sold for the group

⁹ In the week before the experiment (week 7 of 2006), the store asked us to conduct a pilot to ensure that our team could place the tags successfully without disrupting business. For a subset of the treated products, we posted tags which said "This product is subject to sales tax" but did not show tax-inclusive prices. To avoid bias, we exclude this pilot

TABLE 3— EFFECT OF POSTING TAX-INCLUSIVE PRICES: DDD ANALYSIS OF MEAN QUANTITY SOLD

Period	Control categories	Treated categories	Difference
Panel A. Treatment store			
Baseline (2005:1-2006:6)	26.48	25.17	-1.31
	(0.22)	(0.37)	(0.43)
	[5,510]	[754]	[6,264]
Experiment (2006:8-2006:10)	27.32	23.87	-3.45
,	(0.87)	(1.02)	(0.64)
	[285]	[39]	[324]
Difference over time	0.84	-1.30	$DD_{TS} = -2.14$
	(0.75)	(0.92)	(0.68)
	[5,795]	[793]	[6,588]
Panel B. Control stores			
Baseline (2005:1-2006:6)	30.57	27.94	-2.63
	(0.24)	(0.30)	(0.32)
	[11,020]	[1,508]	[12,528]
Experiment (2006:8-2006:10)	30.76	28.19	-2.57
,	(0.72)	(1.06)	(1.09)
	[570]	[78]	[648]
Difference over time	0.19	0.25	$DD_{CS} = 0.06$
	(0.64)	(0.92)	(0.95)
	[11,590]	[1,586]	[13,176]
DDD Estimate			-2.20
			(0.59)
			[19,764]

Notes: Each cell shows mean quantity sold per category per week, for various subsets of the sample. Standard errors (clustered by week) in parentheses, number of observations in square brackets. Experimental period spans week 8 in 2006 to week 10 in 2006. Baseline period spans week 1 in 2005 to week 6 in 2006. Lower panel reflects averages across the two control stores.

labelled on the axes, along with the standard error and the number of observations. All standard errors reported in this and subsequent tables in this section are clustered by week to adjust for correlation of errors across products.¹⁰

The mean quantity sold in the treatment categories fell by an average of 1.30 units per week during the experimental period relative to the preperiod baseline. Meanwhile, quantity sold in the control categories within the treatment store went up by 0.84 units. Hence, sales fell in the treatment categories relative to the control categories by 2.14 units on average, with a standard error of 0.68. This change of $DD_{TS} = -2.14$ units is the "within-treatment store" difference-in-differences estimate of the impact of posting tax-inclusive prices. The identification assumption necessary for consistency of DD_{TS} is the standard "common trends" condition (Bruce D. Meyer 1995), which in this case requires that sales of the treatment and control products would have evolved similarly absent our intervention.

One natural way of evaluating the validity of this identification assumption is to compare the change in sales of treatment and control products in the control stores, where no intervention took place. The lower panel of Table 3 presents such a comparison. In the control stores, sales of treatment products increased by a (statistically insignificant) $DD_{CS} = 0.06$ units relative to sales of control products. The fact that DD_{CS} is not significantly different from zero suggests that sales

week throughout the analysis reported in the paper. However, none of the results is affected by extending the preperiod to include this week.

¹⁰ Standard errors are similar when we cluster by category to adjust for serial correlation.

of the treatment and control products would in fact have evolved similarly in the treatment store had the intervention not taken place.

Putting together the upper and lower panels of Table 3, one can construct a "triple difference" (DDD) estimate of the effect of the intervention, as in Jonathan Gruber (1994). This estimate is $DDD = DD_{TS} - DD_{CS} = -2.20$. This estimate is statistically significant with p < 0.01, rejecting the null of full optimization ($\theta_{\tau} = 1$). Note that both within-store and within-product time trends are differenced out in the DDD. The DDD estimate is therefore immune to both store-specific shocks—such as a transitory increase in customer traffic—and product-specific shocks—such as fluctuations in demand for certain goods. Hence, the identification assumption for consistency of the DDD estimate is that there was no shock during our experimental intervention that differentially affected sales of only the treatment products in the treatment store. In view of the planned, exogenous nature of the intervention, we believe that this condition is likely to be satisfied.

We gauge the magnitude of the treatment effect using the framework in Section I. The mean quantity sold per category fell by 2.2 units per week, relative to a base of 29 units sold per week. Making the sales tax salient thus reduces demand by 7.6 percent. We show below that the estimated price elasticity of demand at the category level is $\varepsilon_{x,p} = 1.59$. Given the sales tax rate of 7.375 percent, plugging these values into (3) yields a point estimate of $\theta_{\tau} = 1 - (7.6/(1.59 \times 7.375)) = 0.35$. That is, a 10 percent tax increase reduces demand by the same amount as a 3.5 percent price increase.

Regression Estimates.—We evaluate the robustness of the DDD estimate by estimating a series of regression models with various covariate sets and sample specifications (see Table 4). Let the outcome of interest (e.g., quantity, log quantity, revenue) be denoted by Y. Let the variables TS (treatment store), TC (treatment categories), and TT (treatment time) denote indicators for whether an observation is in the experimental store, categories, and time, respectively. Let X denote a vector of additional covariates. We estimate variants of the following linear model, which generalizes the DDD method above (see Gruber 1994):

(4)
$$Y = \alpha + \beta_1 TT + \beta_2 TS + \beta_3 TC + \gamma_1 TT \times TC + \gamma_2 TT \times TS + \gamma_3 TS \times TC + \delta TT \times TC \times TS + \varepsilon X + \varepsilon.$$

In this specification, the third-level interaction (δ) captures the treatment effect of the experiment and equals the DDD estimate when no additional covariates are included.

Specification 1 of Table 4 estimates (4) for quantity sold, controlling for the mean price of the products in each category using a quadratic specification and including category, week, and store fixed effects. The estimated effect of the treatment is essentially the same as in the comparison of means, which is not surprising since there were no unusual price changes during our intervention period. Specification 2 shows that the intervention led to a significant reduction in revenue (price × quantity) from the treated products. ¹²

¹¹ The mean price is defined as the average price of the products in each category in the relevant week, weighted by quantity sold over the sample period. The fixed weights eliminate any mechanical relationship between fluctuations in quantity sold and the average price variable.

¹² Studies in the marketing literature (e.g., Eric T. Anderson and Duncan I. Simester 2003) find that demand drops discontinuously when prices cross integer thresholds (such as \$3.99 versus \$4.01), and that retailers respond by setting prices that end in "9" to maximize profits. Indeed, the retailer we study sets most products' *pretax* prices just below the integer threshold—an observation that in itself supports our claim that individuals focus on the pretax price, since the tax-inclusive price is often above the integer threshold. We find no evidence that demand fell more for the products whose price crossed the integer threshold once taxes were included (e.g., \$3.99 + sales tax = \$4.28), but the difference in the treatment effects is imprecisely estimated.

TABLE 4—Effect of Posting Tax-Inclusive Prices: Regression Estimates

Dependent variable	Quantity per category (1)	Revenue per category (\$) (2)	Log quantity per category (3)	Quantity per category (4)	Quantity (treat. categories only) (5)
Treatment	-2.20 (0.60)	-13.12 (4.89)	-0.101 (0.03)	-2.27 (0.60)	-1.55 (0.35)
Average price	-3.15 (0.26)	-3.24 (1.74)		-3.04 (0.25)	-15.06 (3.55)
Average price squared	0.05 (0.00)	0.06 (0.03)		0.05 (0.00)	1.24 (0.34)
Log average price			-1.59 (0.11)		
Before treatment				-0.21 (1.07)	
After treatment				0.20 (0.78)	
Category, store, week FEs	X	X	X	x	X
Sample size	19,764	19,764	18,827	21,060	2,379

Notes: Standard errors, clustered by week, reported in parentheses. All columns report estimates of the linear regression model specified in equation (4). Quantity and revenue reflect total sales of products within a given category per week in each store. Average price is a weighted average of the prices of the products for sale in each category using a fixed basket of products (weighted by total quantity sold) over time. In column 3, observations are weighted by total revenue by category-store. Specification 4 includes "placebo" treatment variables (and their interactions) for the three-week period before the experiment and the three-week period after the experiment. Specification 5 reports DD estimates restricting the sample to treatment product categories only (at both treatment and control stores). In this specification, the "treatment" variable is defined as the interaction between the treatment store dummy and treatment time dummy.

In specification 3, we estimate an analogous model in logs instead of levels. In this specification, we weight each observation by the mean revenue over time by category by store, placing greater weight on the larger categories as in the levels regressions. The log specification is perhaps a better model for comparisons across categories with different baseline quantities, but it forces us to omit observations that have zero quantity sold. It yields a slightly larger estimate than the levels model for the reduction in quantity sold (10.1 percent). The estimated category-level price elasticity—the effect of a 1 percent increase in the prices of *all* goods within a category—is $\varepsilon_{x,p} = 1.59$. This elasticity is identified by the variation in average category-level prices across weeks within the stores. The estimate is consistent with those of Stephen J. Hoch et al. (1995), who estimate a full product-level demand system and obtain category-level price elasticities of 1 to 1.5 for similar products using scanner data from the same grocery chain.

Placebo and Permutation Tests.—To further evaluate the "common trends" identification assumption, we check for unusual patterns in demand immediately before and after the experiment. We replicate specification 1 including indicator variables for the three-week periods before the intervention began (BT: weeks 4 to 6 of 2006) and after the intervention ended (AT: weeks 11 to 13). We also include second- and third-level interactions of BT and AT with the TC and TS variables, as for the TT variable in (4). Column 4 of Table 4 reports estimates of the third-level interactions for the periods before, during, and after the experiment. Consistent with the other results in Table 4, quantity sold in the treatment group is estimated to change by $\delta = -2.27$ units during the intervention. The corresponding "placebo" estimates for the periods before and after the treatment are close to zero, indicating that the fall in demand coincides precisely with the intervention period.

FIGURE 1. DISTRIBUTION OF PLACEBO ESTIMATES: LOG QUANTITY

Notes: This figure plots the empirical distribution of placebo effects (G) for log quantity. The CDF is constructed from 4,725 estimates of δ_p using the specification in column 3 of Table 4. No parametric smoothing is applied: the CDF appears smooth because of the large number of points used to construct it. The vertical line shows the treatment effect estimate reported in Table 4.

A concern in DD analysis is that serial correlation can bias standard errors, leading to overrejection of the null hypothesis of no effect (Marianne Bertrand, Esther Duflo, and Sendhil Mullainathan 2002). To address this concern, we implement a nonparametric permutation test for $\delta=0$. We first choose a "placebo triplet" consisting of a store, three-week time period, and a randomly selected set of 13 product categories. We then estimate (4), pretending that the placebo triplet is the treatment triplet. We repeat this procedure for all permutations of stores and contiguous three-week periods and 25 different randomly selected groups of 13 categories, obtaining $63\times3\times25=4{,}725$ placebo estimates. Defining $G(\hat{\delta}_p)$ to be the empirical cumulative distribution function of these placebo effects, the statistic $G(\delta)$ gives a p-value for the hypothesis that $\delta=0$. Intuitively, if the experiment had a significant effect on demand, we would expect the estimated coefficient to be in the lower tail of estimated placebo effects. Since this test does not make parametric assumptions about the error structure, it does not suffer from the overrejection bias of the t-test.

Figure 1 illustrates the results of the permutation test by plotting the empirical distribution of placebo effects G for log quantity (specification 3 of Table 4). The vertical line in the figure denotes the treatment effect reported in Table 4. For log quantity, $G(\delta)=0.07$. An analogous test for log revenue yields $G(\delta)=0.04$. Although these p-values are larger than those obtained using the t-tests, they confirm that the intervention led to an unusually low level of demand.

Finally, we consider subsets of the large set of counterfactuals across time, categories, and stores. In column 5 of Table 4, we restrict the sample to the treatment product categories and

¹³ This test is an extension of Ronald A. Fisher's (1922) "exact test" for an association between two binary variables. See Paul R. Rosenbaum (1996) for more on permutation tests.

compare across time and stores. This DD estimate is quite similar to the DDD estimates. Results are also similar when we restrict the sample to the treatment store or limit the preexperiment sample to the three months immediately before the intervention.

III. Evidence from Observational Data on Alcohol Sales

A. Research Design

We turn now to the second empirical test: comparing the effect of increases in posted prices and taxes on demand. We implement this strategy by focusing on alcohol consumption. Alcohol is subject to two taxes in most states: an *excise* tax that is levied at the wholesale level and is included in the price posted on the shelf or restaurant menu; and a *sales* tax, which is added at the register (except in Hawaii, which we exclude). The total price of alcohol is therefore $q = p(1 + \tau^E)(1 + \tau^S)$ where p is the pretax price, τ^E is the excise tax, and τ^S is the sales tax. Since the excise tax is included in the posted price, it is more salient than the sales tax.

We estimate the effect of τ^E and τ^S on alcohol consumption by exploiting the many state-level changes in the two taxes between 1970 and 2003. Our estimating equation is based on the demand specification in (1):

(5)
$$\log x = \alpha + \beta \log(1 + \tau^E) + \theta_{\tau} \beta \log(1 + \tau^S).$$

We estimate (5) in first-differences because both the tax rates and alcohol consumption are highly autocorrelated series. Letting t index time (years) and j index states, define the difference operator $\Delta z_{jt} = z_{jt} - z_{j,t-1}$. Introducing a set of other demand-shifters X_{jt} and an error term ε_{jt} to capture idiosyncratic state-specific demand shocks, we obtain the following estimating equation by first-differencing (5):

(6)
$$\Delta \log x_{jt} = \alpha' + \beta \Delta \log (1 + \tau_{jt}^{E}) + \theta_{\tau} \beta \Delta \log (1 + \tau_{jt}^{S}) + X_{jt} \rho + \varepsilon_{jt}.$$

We estimate variants of (6) using OLS and test the hypothesis that $\theta_{\tau} = 1.^{14}$ The identification assumption is that the changes in sales and excise taxes are uncorrelated with state-specific shocks to alcohol consumption.

B. Data and Summary Statistics

Tax rates on alcohol vary across beer, wine, and spirits. In the interest of space, we present results for beer, which accounts for the largest share of alcohol consumption in the United States. As we discuss below, the results for total alcohol consumption are similar, because changes in tax rates across the three types of alcohol are very highly correlated.

We use data on aggregate annual beer consumption by state from the National Institute of Alcohol Abuse and Alcoholism (NIAAA) (2006) from 1970 to 2003. These data are compiled from administrative state tax records, and are more precise than data from surveys because they reflect total consumption in each state. We obtain data on beer excise tax and sales tax rates and revenues by state from the Brewer's Almanac (various years), World Tax Database (University

 $^{^{14}}$ The full-optimization model predicts $\theta_\tau=1$ irrespective of the incidence of the taxes. If tax increases are passed through fully to the consumer—which appears to be the case in practice as we show below— β equals the price elasticity of demand.

TABLE 5— SUMMARY STATISTICS FOR STATE BEER CONSUMPTION, TAXES, AND REGULATION

Per capita beer consumption (cans)	243.2
	(46.1)
State beer excise tax (\$/case)	0.51
	(0.50)
State beer excise tax (percent)	6.5
	(8.2)
Sales tax (percent)	4.3
	(1.9)
Drinking age is 21	0.73
	(0.44)
Drunk driving standard	0.65
	(0.47)
Any alcohol regulation change	0.19
	(0.39)
N (number of state-year pairs)	1,666

Notes: Statistics reported are means with standard deviations in parentheses. Observations are by state for each year from 1970 to 2003. "Drinking age is 21" is an indicator for whether the state-year has a legal drinking age of 21. "Drunk driving standard" indicates state-year has a threshold blood alcohol content level above which one is automatically guilty of drunk driving. "Any alcohol regulation change" is a dummy variable equal to one in any year where a state has raised the drinking age or implemented a stricter drunk driving standard, an administrative license revocation law, or a zero tolerance youth drunk driving law. See Web Appendix A for data sources and sample definition.

of Michigan Business School 2006), and other sources.¹⁵ The state sales tax is an *ad valorem* tax (proportional to price), while the excise tax is typically a specific tax (dollars per gallon of beer). We convert the excise tax rate into percentage units comparable to the sales tax by dividing the beer excise tax per case in year 2000 dollars by the average cost of a case of beer in the United States in the year 2000.¹⁶ We normalize the excise tax by the average *national* price because each state's price is endogenous to its tax rate. Details on the data sources and construction of tax rates are given in Web Appendix A.

Table 5 shows summary statistics for the pooled dataset. Between 1970 and 2003, mean per capita consumption of beer is roughly 240 cans per year. The average state excise tax rate is 6.5 percent of the average price, while the mean state sales tax rate is 4.3 percent. There is considerable independent variation within states in the two taxes over the sample period. There are 153 legislated changes to the sales tax and 131 legislated changes to excise taxes; the correlation between excise tax changes and sales tax changes is 0.06.

¹⁵ We exclude West Virginia because of problems with the sales tax rate data described in Web Appendix A. Including West Virginia magnifies the difference between the excise and sales tax elasticities.

¹⁶Real growth in the price of beer could lead to mismeasurement of beer prices and excise tax rates early in the sample. Using a subset of the data for which we have information on beer prices from the American Chamber of Commerce Researchers Association (ACRRA) cost-of-living survey, we find that beer price growth closely tracks changes in the CPI. Moreover, we show below that instrumenting for the actual ACCRA price in each state/year for which it is available using our construction of the excise tax rate yields similar results.

¹⁷ Some cities also levy local sales taxes on top of the state sales tax. In Chetty, Looney, and Kroft (2007), we show that including local sales taxes by imputing them from data on local tax revenues does not affect the results.

C. Results

We begin with a graphical analysis (Figures 2A and 2B) to illustrate the relationship between alcohol consumption and taxes. These figures plot annual state-level changes in log beer consumption per capita against log changes in the gross-of-excise-tax price $\Delta \log (1+\tau^E)$ and the gross-of-sales-tax price $\Delta \log (1+\tau^S)$. To construct Figure 2A, we first round each state excise tax change to the nearest tenth of a percent. We then compute the mean change in log beer consumption for observations with the same rounded excise tax change. Finally, we plot the mean consumption change against the rounded excise tax rates, superimposing a best-fit line on the points as a visual aid. Figure 2B is constructed analogously using sales tax changes. To make the range of changes in the excise tax comparable to the smaller range of changes in the sales tax, we restrict the range of both tax changes to ± 0.02 log points. Figure 2A shows that increases in the beer excise tax sharply reduce beer consumption. Figure 2B shows that increases in the sales tax have a much smaller effect on beer consumption.

Regression Estimates.—Table 6 presents estimates of the model for the state-level growth rate of alcohol consumption in (6). In these and all subsequent specifications, we adjust for potential serial correlation in errors by clustering the standard errors by state. Column 1 reports estimates of a baseline model that includes only year fixed effects (which remove aggregate trends) and log state population growth as covariates. In this specification, a 1 percent increase in the gross-of-excise-tax price is estimated to reduce beer consumption by 0.88 percent ($\varepsilon_{x,1+\tau^E}=0.88$). In contrast, a 1 percent increase in the gross-of-sales-tax price is estimated to reduce beer consumption by 0.20 percent ($\varepsilon_{x,1+\tau^E}=0.20$). The null hypothesis that the excise and sales tax elasticities are equal is rejected with p=0.05.

Columns 2–4 control for factors that may be correlated with the tax changes. One concern is that sales tax changes are correlated with the business cycle. In column 2, we control for the state-level business cycle by including changes in log state per capita income and the state unemployment rate as covariates. Introducing these controls reduces the estimated sales tax coefficient, and as a result the null hypothesis of equal elasticities is rejected with p = 0.01. The sales tax effect is smaller because sales taxes are sometimes raised during budgetary shortfalls that occur in recessions. Since alcohol is a normal good (as indicated by the coefficients on per capita income and unemployment rate), failing to control for the business cycle biases the correlation between alcohol consumption and sales tax changes upward in magnitude. Hence, the endogeneity of sales tax rate appears to work *against* rejecting the null hypothesis that $\varepsilon_{x,1+\tau^E} = \varepsilon_{x,1+\tau^E}$.

Another concern is that excise tax increases are sometimes associated with contemporaneous tightening of alcohol regulations. We evaluate this concern using data on four regulations: the legal drinking age, the blood alcohol content limit, implementation of stricter drunk driving regulations for youths, and introduction of administrative license revocation laws. We control for the change in the legal drinking age (in years) and separate indicator variables for a shift toward stricter regulations in each of the other three measures (column 3). The coefficient on the excise tax rate does not change significantly because regulation changes have modest effects on total

¹⁸ This elasticity estimate is consistent with estimates of the elasticity of beer consumption with respect to the excise tax rate $(\varepsilon_{x,r^{\ell}})$ reported in previous studies. For example, Philip J. Cook, Jan Ostermann, and Frank A. Sloan (2005) estimate that a \$0.01 increase in the beer tax per ounce of ethanol reduces beer consumption by 1.9 percent, which translates to $\varepsilon_{x,1+r^{\ell}} = 1.26$ at the sample mean.

¹⁹ Changes in excise taxes are not correlated with the business cycle. A more plausible source of endogeneity is that policymakers raise alcohol excise taxes when alcohol consumption is rising. This would also work against finding a difference in the elasticities, as the estimate of $\varepsilon_{x,1+\tau}$ will be biased downward.

FIGURE 2A. PER CAPITA BEER CONSUMPTION AND STATE BEER EXCISE TAXES

FIGURE 2B. PER CAPITA BEER CONSUMPTION AND STATE SALES TAXES

Notes: These figures plot within-state annual changes in beer consumption against within-state changes in gross-of-tax-prices $(1+t^E$ and $1+t^S)$. To construct Figure 2A, we round each state excise tax change to the nearest tenth of a percent $(0.1 \, \mathrm{percent})$, and compute the mean change in log beer consumption for observations with the same rounded excise tax change. Figure 2A plots the mean consumption change against the rounded excise tax rates. Figure 2B is constructed analogously, rounding sales tax changes to the nearest 0.1 percent. See Web Appendix A for data sources and sample definition.

beer consumption; on average, beer consumption falls by only 0.5 percent when one of the four regulations is tightened.

A third concern is that trends in excise tax rates may be correlated with changes in social norms, which directly influence alcohol consumption. For example, rising acceptance of alcohol consumption in historically conservative regions such as the South may have led to both a

TABLE 6— EFFECT OF EXCISE AND SALES TAXES ON BEER CONSUMPTION

	Baseline	Business cycle	Alcohol regulations	Region trends			
	(1)	(2)	(3)	(4)			
Dependent variable: Change in log (per capita beer consumption)							
$\Delta \log (1 + \text{excise tax rate})$	-0.88 (0.17)	-0.91 (0.17)	-0.89 (0.17)	-0.71 (0.18)			
$\Delta \log (1 + \text{sales tax rate})$	-0.20 (0.30)	-0.01 (0.30)	-0.02 (0.30)	-0.05 (0.30)			
$\Delta \log (\text{population})$	0.03 (0.06)	-0.07 (0.07)	-0.07 (0.07)	-0.09 (0.08)			
$\Delta \log ({ m income \ per \ capita})$		0.22 (0.05)	0.22 (0.05)	0.22 (0.05)			
$\Delta \log (\text{unemployment rate})$		-0.01 (0.01)	-0.01 (0.01)	-0.01 (0.01)			
Alcohol regulation controls			X	X			
Year fixed effects	X	X	X	X			
Region fixed effects				X			
F-test for equality of tax elasticities (prob $> F$)	0.05	0.01	0.01	0.06			
Sample size	1,607	1,487	1,487	1,487			

Notes: Standard errors, clustered by state, in parentheses. All specifications are estimated on full sample for which data are available (state unemployment rate data are unavailable in early years). Column 3 includes three indicators for whether the state implemented per se drunk driving standards, administrative license revocation laws, or zero tolerance youth drunk driving laws, and the change in the minimum drinking age (measured in years). Column 4 includes fixed effects for each of nine census regions. *F*-test tests null hypothesis that coefficients on excise and sales tax rate variables are equal.

reduction in the excise tax as a percentage of price and an increase in alcohol consumption. To assess whether such trends lead to significant bias, we include region fixed effects in column 4 of Table 6, effectively identifying the model from changes in taxes in geographically adjacent states. The coefficient on the excise rate remains substantially larger than the coefficient on the sales tax, suggesting that our results are not spuriously generated by region-specific trends.

There are two sources of variation identifying the excise tax coefficient: policy changes in the nominal tax rate, which produce sharp jumps in tax rates; and gradual erosion of the nominal value of the tax by inflation, which creates differential changes in excise tax rates across states because they have different initial tax rates.²⁰ To test whether the two sources of variation yield similar results, we isolate the effect of the policy changes using an instrumental variables strategy. We fix the price of beer at its sample average and compute the implied *ad valorem* excise tax as the nominal tax divided by this *time-invariant* price. The only variation in this simulated tax rate is due to policy changes. Using the simulated excise tax rate to instrument for the actual excise tax rate, we replicate the specification in column 3 of Table 6. The point estimates of both tax elasticities, reported in column 1 of Table 7, are similar to those in previous specifications. The standard errors rise as expected, since part of the variation in excise tax rates has been excluded.

 $^{^{20}}$ To clarify why inflation generates identifying variation, consider the following example. Suppose the pretax price of beer is \$1 and that state A has a nominal alcohol tax of 50 cents, while state B has no excise tax. If prices of all goods double, the gross-of-tax price of beer relative to other goods falls by (1.50 - 1.25)/1.50 = 17 percent in state A but is unchanged in state B.

TABLE 7— EFFECT OF EXCISE AND SALES TAXES ON BEER CONSUMPTION: ROBUSTNESS CHECKS

	Dependent variable: Change in log (per capita beer consumption)				Dep. var.
	IV for excise w/ policy (1)	3-Year differences (2)	IV for ACCRA beer price (3)	Food exempt (4)	Share ethanol from beer (5)
$\Delta \log (1 + \text{excise tax rate})$	-0.63 (0.28)	-1.10 (0.47)		-0.91 (0.22)	0.16 (0.13)
$\Delta \log ({\rm beer \; price})$			-0.88 (0.42)		
$\Delta \log (1 + \text{sales tax rate})$	-0.03 (0.30)	-0.00 (0.33)	0.10 (0.59)	-0.14 (0.30)	0.25 (0.22)
$\Delta \log (\text{population})$	-0.06 (0.07)	-1.24 (0.33)	-0.06 (0.15)	0.03 (0.07)	0.09 (0.05)
$\Delta \log ({ m income~per~capita})$	0.22 (0.05)	0.08 (0.05)	0.23 (0.10)	0.22 (0.05)	0.01 (0.03)
$\Delta \log ({\rm unemployment \; rate})$	-0.01 (0.01)	-0.00 (0.01)	0.00 (0.01)	-0.01 (0.01)	0.00 (0.01)
Alcohol regulation controls	X	X	X	x	X
Year fixed effects	X	X	X	x	X
F-test for equality of tax elasticities (prob $> F$)	0.15	0.05	0.12	0.04	0.73
Sample size	1,487	1,389	825	937	1,487

Notes: Standard errors, clustered by state, in parentheses. Column 1 replicates column 3 of Table 6, instrumenting for excise tax rate changes with the nominal excise tax rate divided by the average price of a case of beer from 1970 to 2003 to eliminate variation in the tax rate due to inflation erosion. In column 2, all variables are defined using three-year differences instead of first-differences. Column 3 instruments for the the log change in the ACCRA survey price of beer using the log change in the gross-of-excise tax rate. Column 4 restricts the sample to states where all food was exempt from taxation in 2000. In column 5, the dependent variable is the fraction of total ethanol consumption in each state-year accounted for by beer. F-test tests null hypothesis that coefficients on excise and sales tax rate variables are equal.

Thus far, we have focused on changes in tax rates and alcohol consumption at an annual frequency. One explanation of the difference between the sales and excise tax effects at the annual frequency is learning: people might immediately perceive excise taxes, but learn about changes in the sales tax over time. To test for such learning effects, we estimated specifications, including lags and leads of the tax variables and differences over longer horizons. For example, column 2 of Table 7 shows the effect of sales and excise tax changes on consumption over a three-year horizon (as in Jonathan Gruber and Emmanuel Saez 2002). An increase in the excise tax rate continues to have a large negative effect on alcohol consumption after three years, whereas an equivalent increase in the sales tax still does not. This evidence suggests that consumers underreact to taxes that are not salient, even in the long run.

The premise underlying our analysis is that firms pass changes in the state excise tax through to consumers so that they are reflected in the posted price of beer. We expect full pass through of state-level tax changes because each state constitutes a small share of the national market, effectively making the state-level supply curves flat. We check this mechanism using data on posted prices of beer from the ACCRA cost of living survey from 1982 to 2000. Using these data, we estimate the price elasticity of demand for beer, instrumenting for changes in the posted price using changes in the excise tax rate. The estimated price elasticity of demand, reported in column 3 of Table 7, is $\varepsilon_{x,p} = 0.88$, almost identical to the estimates of $\varepsilon_{x,1+\tau^E}$ in the previous specifications. The standard error rises because we have price data for only 55 percent of the observations. The reason that $\varepsilon_{x,p} = \varepsilon_{x,1+\tau^E}$ is that state-level excise tax increases are fully passed

through to consumers as expected—the coefficient on the excise tax variable in the first-stage regression is approximately one. This finding supports the claim that the excise tax has a larger effect on demand than the sales tax because it is fully salient.

Relative Price Changes and Excise versus Sales Taxes.—An important concern in the comparison of sales and excise tax effects is that the sales tax applies to a broader set of goods than alcohol. Approximately 40 percent of consumption is subject to sales taxation.²¹ A 1 percent increase in τ^s changes the relative price of alcohol and all other goods less than a 1 percent increase in τ^s , which could potentially explain why the sales tax effect is smaller than the excise tax effect, even absent salience effects.

We evaluate the magnitude of the bias due to this problem in two ways. First, we estimate the model using only the 30 states that fully exempted all food items from the sales tax in 2000.²² In these states, changes in the sales tax always affect the relative price of alcohol and food (and nonalcoholic beverages), which is the most plausible substitute for alcohol. Column 4 of Table 7 shows that the sales tax elasticity remains quite small in this subsample.

As an alternative approach, we calibrate the effect of a 1 percent increase in a (hypothetical) tax τ^A that applies solely to alcohol (x) and is excluded from the posted price. Treating all goods other than alcohol as a composite commodity (y) of which 40 percent is subject to sales tax, observe that a 1 percent increase in the gross-of-sales-tax price $(1+\tau^S)$ increases the price of x relative to y by $(1.01/1.004)-1\simeq 0.6$ percent. It follows that the effect of a 1 percent increase in the tax τ^A that applies solely to alcohol is given by $\varepsilon_{x,1+\tau^A}=(1/0.6)\varepsilon_{1,1+\tau^S}$. Scaling up the largest estimated response to the sales tax in Table 6 of -0.20 by 5/3 yields an estimate of $\varepsilon_{x,1+\tau^A}=0.33$, which remains substantially below the excise tax elasticity estimates.

A related concern is that increases in the beer excise tax may induce substitution to wine and spirits, thereby biasing the beer tax elasticity up relative to the sales tax elasticity. To assess the extent of substitution, we estimate the effect of the beer excise tax on the share of beer in total alcohol (ethanol) consumption. The estimates in column 5 of Table 7 show that the beer share is insensitive to the beer tax rate. The reason is that excise tax rates on beer, wine, and spirits are highly correlated. For example, the correlation coefficient of changes in beer and wine tax rates is 0.94; in 86 percent of the instances in which a state changes its beer excise tax, it also changes its wine excise tax rate. We also find that the effect of changes in beer excise taxes on *total* ethanol consumption is much larger than the effect of changes in sales tax rates. We conclude that differences in tax bases are unlikely to explain the substantial gap between the estimated sales and excise tax elasticities.

Summary.—Averaging across the estimates in Tables 6 and 7, the mean estimate of the gross-of-excise-tax elasticity is 0.84. The mean estimate of the gross-of-sales-tax elasticity is 0.03. Scaling up the sales tax coefficient by 5/3, we obtain an implied elasticity of 0.05 for a tax τ^A that is applied solely to alcohol at the register. Combining these estimates yields a point estimate of $\theta_{\tau} = \varepsilon_{x,1+\tau^A}/\varepsilon_{x,1+\tau^E} = 0.06$.

²¹ In 2004, sales tax revenues were 2.1 percent of personal consumption expenditures (PCE). The average (state income-weighted) sales tax rate was 5.3 percent. Hence the tax base is approximately 40 percent of PCE.

²² We do not have historical data on which goods are subject to the sales tax. Case studies of some states suggest, however, that the set of items subject to sales tax is fairly stable over time.

IV. Why Do Consumers Underreact to Taxes?

There are two potential explanations for the finding that consumers underreact substantially to taxes that are not included in posted prices. One is that customers are uninformed about sales tax rates. Showing the tax-inclusive price tags may have provided new information about tax rates. An alternative explanation is that *salience* matters: individuals know about taxes when their attention is drawn to the subject, but do not pay attention to taxes that are not transparent while deciding what to buy.

A few pieces of auxiliary evidence from the empirical analysis cast doubt on the information hypothesis. First, sales of the (taxable) toiletries adjacent to those that were tagged in the grocery store experiment did not change significantly during the intervention. The fact that posting tax-inclusive prices had no "spillover effects" suggests that individuals did not simply learn that toiletries are subject to sales tax. Second, demand returned to preexperiment levels after the intervention ended, suggesting that there were no persistent learning effects.²³ Third, the finding that sales and excise tax elasticities for alcohol demand do not converge over time suggests that the underreaction to the sales tax is not caused by delays in acquiring information.

To distinguish between information and salience more directly, we surveyed 91 customers entering the store where we conducted the experiment about their knowledge of sales taxes. See Web Appendix A for details on survey implementation and Appendix Exhibit 2 for the survey instrument. We asked individuals what the local sales tax rate was and whether various products (e.g., milk, magazines, toothpaste) were subject to sales tax. Summary statistics for the survey data are displayed in panel B of Table 1. Seventy-five percent of those surveyed reported the sales tax rate within 0.5 percentage points of the true rate, and 97 percent reported a rate between 6.75 percent and 8.75 percent. The modal answer was exactly 7.375 percent. The median respondent answered 7 out of 8 questions about taxable status of the goods correctly. The respondents generally believe that food is not taxed, but inedible items and "sin" goods are taxed. Exceptions to this heuristic led to the most errors. In California, carbonated beverages are subject to sales tax, while cookies are not. Coca Cola and cookies accounted for more than half the mistakes among respondents who got one question wrong.

In summary, most consumers are well informed about commodity tax rates when their attention is drawn to the subject. However, they do not remember to include the tax when making consumption decisions, as shown by the survey of students discussed in Section II. The two surveys and two strands of empirical evidence together indicate that salience and inattention are a central determinant of consumer responses to taxation in steady state.

Positive Theories.—There are many positive theories that can explain underreaction to taxation. In a companion paper (Chetty, Looney, and Kroft 2007), we propose a bounded-rationality model in which agents pay cognitive costs to calculate tax-inclusive prices. We show that small cognitive costs can generate substantial inattention to taxes because the utility loss from ignoring taxes is a second-order function of the tax rate. For example, an agent, who spends $x_0 = \$1,000$ and has $\varepsilon_{x,p} = 1$ and linear utility in y, loses only \$5 by ignoring a 10 percent sales tax. An economy populated by individuals who face small cognitive or time costs of paying attention to taxes can thus generate $\varepsilon_{x,p} \gg \varepsilon_{x,1+\tau^s}$.

More generally, agents with limited attention may use heuristics to achieve a consumption allocation that approximates the fully optimal bundle, but leads them to underreact to taxes. For

²³ We cannot rule out another equally plausible explanation of this finding: the set of individuals who shop for these durable goods is likely to vary substantially across weeks, so customers in the weeks after the experiment may have been untreated.

example, consumers may apply a tax rate of 5 percent or 10 percent instead of 7.375 percent, or compute 7 percent of \$5.00 instead of 7 percent of the exact price \$4.95. A more sophisticated heuristic is to keep a separate shadow value of money in mind for taxed and untaxed goods. An entirely different theory of attention is a psychological model in which allocation of attention is triggered by cues (e.g., the visibility or color of pricing information) rather than economic optimization.

Our data do not allow us to distinguish between these models. We therefore proceed to analyze the welfare consequences of taxation in a manner that does not depend on a specific positive theory of underreaction to taxes.

V. Welfare Analysis

This section explores the implications of our empirical results for tax policy. In particular, we generalize Harberger's (1964) canonical partial-equilibrium formulas for incidence and deadweight loss to allow for salience effects and other optimization errors with respect to taxes. The formulas we develop can be used to analyze the effects of taxes in the specific commodity markets that we analyzed empirically, as well as other policies such as labor and capital income taxation.

We first characterize tax incidence, which is essentially a mechanical calculation of price changes. We then characterize efficiency costs, which is a more complex problem because additional assumptions are required to calculate welfare changes when agents optimize imperfectly. We restrict attention to tax policies designed to raise revenue (e.g., to finance a public good). The tools developed below can be adapted to analyze Pigouvian taxes intended to correct behavior, but we defer that analysis to future work.

A. Setup

We use the same two-good model as in Section I, but assume from this point onward that the sales tax levied on good x is a specific (unit) tax t^s rather than an *ad valorem* tax for consistency with the theoretical literature on commodity taxation. Let p denote the pretax price of x and $q = p + t^s$ denote the tax-inclusive price of x. Good y, the numeraire, is untaxed. As is standard in partial equilibrium analysis, assume that tax revenue is not spent on the taxed good (i.e., it is used to buy y or thrown away).

Consumption.—The representative consumer has wealth Z and has utility u(x) + v(y). Let $(x^*(p, t^S, Z), y^*(p, t^S, Z))$ denote the bundle chosen by a fully optimizing consumer as a function of the posted price, tax, and wealth. Full optimization implies $\partial x^*/\partial p = \partial x^*/\partial t^S$, contradicting our empirical findings. Let $(x(p, t^S, Z), y(p, t^S, Z))$ denote the empirically observed demand functions, which permit $\partial x/\partial p \neq \partial x/\partial t^S$. We do not place structure on the positive model that generates $(x(p, t^S, Z), y(p, t^S, Z))$ other than to assume that the demand functions are smooth and that the choices are feasible:

$$(p + t^{s})x(p, t^{s}, Z) + y(p, t^{s}, Z) = Z.$$

²⁴ We focus on the costs of raising tax revenue, taking the benefits of a given amount of revenue as invariant to the tax system used to generate it. For example, we ignore the possibility that more visible taxes may constrain inefficient spending by politicians (Finkelstein 2007).

²⁵ The incidence and excess burden of an *ad valorem* tax τ^s can be calculated by replacing t^s by τ^s and $\partial x/\partial t^s$ by $\partial x/\partial \tau^s$ in Propositions 1 and 2.

Define the degree of underreaction to the specific tax t^{S} as

$$\theta = \frac{\partial x(p, t^s, Z)}{\partial t^s} \bigg/ \frac{\partial x(p, t^s, Z)}{\partial p} = \frac{\varepsilon_{x,q|t^s}}{\varepsilon_{x,q|p}},$$

where $\varepsilon_{x,q|t^S} = (-\partial x/\partial t^S)(q/x(p,t^S,Z))$ measures the percentage change in demand caused by a 1 percent increase in the total price of good x through a tax change, and $\varepsilon_{x,q|p} = (-\partial x/\partial p) \times (q/x(p,t^S,Z))$ represents the analogous measure for a 1 percent increase in q through a change in p. When discussing the intuition for the results below, we will focus on the case where $\theta < 1$ and interpret θ as a measure of the degree of inattention to the tax. However, our analysis permits $\theta > 1$ and more generally permits $\partial x/\partial t^S$ to differ from $\partial x/\partial p$ for any reason, not just inattention. The formulas derived below therefore account for any errors that consumers may make when optimizing with respect to taxes.

Production.—Price-taking firms use c(S) units of the numeraire y to produce S units of x. The marginal cost of production is weakly increasing: c'(S) > 0 and $c''(S) \ge 0$. The representative firm's profit at pretax price p and level of supply S is pS - c(S). Assuming that firms optimize perfectly, the supply function for good x is implicitly defined by the marginal condition p = c'(S(p)). Let $\varepsilon_{S,p} = (\partial S/\partial p) \ (p/S(p))$ denote the price elasticity of supply.

B. Incidence

How is the burden of a tax shared between consumers and producers in competitive equilibrium when consumers optimize imperfectly with respect to taxes? We derive formulas for the incidence of the sales tax on producers and consumers which parallel the derivations of Laurence J. Kotlikoff and Lawrence H. Summers (1987) for the full-optimization case. As is standard in the literature on tax incidence, we use $D(p, t^s, Z)$ instead of $x(p, t^s, Z)$ to refer to the demand curve in this subsection. Let $p = p(t^s)$ denote the equilibrium pretax price that clears the market for good x as a function of the tax rate. The market-clearing price p satisfies

(7)
$$D(p, t^{S}, Z) = S(p).$$

Implicit differentiation of (7) yields the following results.

PROPOSITION 1: The incidence on producers of increasing t^{S} is

(8)
$$\frac{dp}{dt^{S}} = \frac{\partial D/\partial t^{S}}{\partial S/\partial p - \partial D/\partial p} = -\frac{\varepsilon_{D,q|t^{S}}}{\frac{q}{p}\varepsilon_{S,p} + \varepsilon_{D,q|p}} = -\frac{\theta\varepsilon_{D,q|p}}{\frac{q}{p}\varepsilon_{S,p} + \varepsilon_{D,q|p}},$$

²⁶ The empirical estimates of θ_{τ} can be directly mapped to values for θ using the equation $\theta_{\tau} = \theta(1+t^s)/(1+\theta t^s)$. The reason that $\theta_{\tau} < \theta$ is that agents underreact to price increases when the tax is *ad valorem*, because part of the price increase raises the amount of the tax $p \tau^s$. For small values of t^s , $\theta_{\tau} = \theta$ and hence the values of θ_{τ} reported in Sections II and III roughly correspond to estimates of θ .

²⁷ Although our evidence shows that $\theta < 1$ for commodity taxes that are not salient, this need not be the case for all taxes. The opaque estate tax system, for example, appears to cause many individuals to overestimate tax rates on wealth (Slemrod 2006).

²⁸ The literature in psychology and economics has argued that firms are less prone to systematic errors than consumers (see e.g., Section IV of DellaVigna 2009). It would be straightforward to extend our analysis to allow for salience effects on the firm side as well, in which case the formulas will depend on $\partial S/\partial p$ and $\partial S/\partial t^s$.

FIGURE 3. INCIDENCE OF TAXATION

Notes: This figure illustrates the incidence of introducing a tax t^S levied on consumers in a market that is initially untaxed. The figure plots supply and demand as a function of the pretax price p. The initial price-demand curve is $D(p|t^S=0)$; the price-demand curve after the tax is introduced is $D(p|t^S)$. When the tax is levied, the demand curve shifts inward by $t^S \times \partial D/\partial t^S$ units, creating an excess supply of $E=t^S \times \partial D/\partial t^S$. To reequilibriate the market, producers cut the pretax price by $E/(\partial S/\partial p - \partial D/\partial p)$ units, implying $dp/dt^S = (\partial D/\partial t^S)/(\partial S/\partial p - \partial D/\partial p)$.

and the incidence on consumers is

$$\frac{dq}{dt^{S}} = 1 + \frac{dp}{dt^{S}} = \frac{\frac{q}{p} \varepsilon_{S,p} + \varepsilon_{D,q|p} - \varepsilon_{D,q|r}^{S}}{\frac{q}{p} \varepsilon_{S,p} + \varepsilon_{D,q|p}} = \frac{\frac{q}{p} \varepsilon_{S,p} + (1-\theta)\varepsilon_{D,q|p}}{\frac{q}{p} \varepsilon_{S,p} + \varepsilon_{D,q|p}},$$

where $\partial D/\partial t^s$ and $\partial D/\partial p$ are both evaluated at (p, t^s, Z) , and $\partial S/\partial p$ is evaluated at p.

Figure 3 illustrates the incidence of introducing a sales tax t^s in a market that is initially untaxed. The figure plots supply and demand as a function of the pretax price p. The market initially clears at a price $p_0 = p(0,0)$. When the tax is levied, the demand curve shifts inward by $t^s\partial D/\partial t^s$ units, creating an excess supply of $E = t^s\partial D/\partial t^s$ units of the good at the initial price p_0 . To reequilibriate the market, producers cut the pretax price by $E/(\partial S/\partial p - \partial D/\partial p)$ units. The only difference in the incidence diagram in Figure 3 relative to the traditional model without salience effects is that the demand curve shifts inward by $t^s\partial D/\partial t^s$ instead of $t^s\partial D/\partial p$. With salience effects, the shift in the demand curve is determined by the tax elasticity, while the price adjustment needed to clear the market is determined by the price elasticity. This is why one must estimate both the tax and price elasticities to calculate incidence.

Three general lessons about tax incidence emerge from the formulas in Proposition 1.

Attenuated Incidence on Producers. Incidence on producers is attenuated by $\theta = (\partial D/\partial t^s)/(\partial D/\partial p)$ relative to the traditional model. Intuitively, producers face less pressure to reduce the pretax price when consumers underreact to the sales tax. In the extreme case where $\partial D/\partial t^s = 0$, consumers bear all of the tax, because there is no need to change the pretax price to clear the market. More generally, the incidence of a tax on consumers is inversely related to the degree of attention to the tax (θ) .

One interpretation of this result is that the demand curve becomes more inelastic when individuals are inattentive. Though changes in inattention and the price elasticity both affect the gross-of-tax-elasticity $\varepsilon_{D,q|r^S} = \theta \varepsilon_{D,q|p}$ in the same way, their effects on incidence are not equivalent. To see this, consider two markets, A and B, where $\varepsilon_{S,p}^A = \varepsilon_{S,p}^B = 0.1$. In market A, demand is inelastic and consumers are fully attentive to taxes: $\varepsilon_{D,q|p}^A = 0.3$ and $\theta^A = 1$. In market B, demand is elastic but consumers are inattentive: $\varepsilon_{D,q|p}^B = 1$ and $\theta^B = 0.3$. An econometrician would estimate the same tax elasticity in both markets: $\varepsilon_{D,q|r^S}^A = \varepsilon_{D,q|r^S}^B = 0.3$. However, $[dp/dt^S]^A = -0.75$ whereas $[dp/dt^S]^B = -0.27$. In market A, suppliers bear most of the incidence since demand is three times more elastic to price than supply. In market B, even though demand is ten times as price elastic as supply, producers are able to shift most of the incidence of the tax to consumers because of inattention.

Intuitively, a low-price elasticity of demand has two effects on incidence: it reduces the shift in the demand curve but increases the size of the price cut needed to reequilibriate the market for a given level of excess supply. Inattention to the tax also reduces the shift in the demand curve, but does not have the second offsetting effect. This difference is apparent in the formula for dp/dt in (8), where $\varepsilon_{D,q|p}$ appears in both the numerator and denominator, whereas θ appears only in the numerator. As a result, a 1 percent reduction in attention leads to greater incidence on consumers than a 1 percent reduction in the price elasticity. As $\varepsilon_{s,p}$ approaches 0, dq/dt^s approaches $1-\theta$ irrespective of $\varepsilon_{D,q|p}$. If consumers are sufficiently inattentive, they bear most of the incidence of a tax even if supply is inelastic.

No Tax Neutrality. Taxes that are included in posted prices—such as the alcohol excise tax—have greater incidence on producers because they are fully salient ($\theta=1$). Taxes levied on producers are more likely to be included in posted prices than taxes levied on consumers because producers must actively "shroud" a tax levied on them in order to reduce its salience. Together, these observations imply that producers will generally bear more of the incidence when a tax is levied on them than when it is levied on the consumers. Statutory incidence affects economic incidence, contrary to intuition based on the full-optimization model.²⁹

Effect of Price Elasticity. Holding fixed the size of the tax elasticity $\varepsilon_{D,q|r}^s$, an increase in the price elasticity of demand raises incidence on consumers $(\partial [dp/dt^s]/\partial \varepsilon_{D,q|p} > 0)$. This is because holding fixed the shift in the demand curve created by the introduction of the tax, a smaller price reduction is needed to clear the market if demand is very price elastic. In contrast, if the degree of inattention θ is held fixed as $\varepsilon_{D,q|p}$ varies, we obtain the conventional result $\partial [dp/dt^s]/\partial \varepsilon_{D,q|p} < 0$ because $\varepsilon_{D,q|r}^s$ and $\varepsilon_{D,q|p}^s$ vary at the same rate. Thus, taxing markets with more elastic demand could lead to greater or lesser incidence on consumers, depending on the extent to which the tax elasticity $\varepsilon_{D,q|p}^s$ covaries with the price elasticity $\varepsilon_{D,q|p}^s$.

²⁹ Consistent with this prediction, Busse, Silva-Risso, and Zettelmeyer (2006) find that 35 percent of manufacturer rebates given to car dealers are passed through to the buyer, while 85 percent of rebates given to buyers stay with the buyer. The reason is that most consumers did not find out about the dealer rebates. Rudolf Kerschbamer and Georg Kirchsteiger (2000) find that statutory evidence affects economic incidence in a lab experiment.

In the interest of space, we formally characterize the excess burden of introducing a sales tax in a market where there are no preexisting taxes and production is constant-returns-to-scale (c''=0). In this case, the pretax price of x is fixed at p=c'(0). Moreover, since firms earn zero profits, only consumer welfare matters for excess burden. At the end of this section, we briefly discuss the effects of endogenous producer prices and preexisting taxes.

Definitions.—Let $V(p,t^s,Z) = u(x(p,t^s,Z)) + v(y(p,t^s,Z))$ denote the agent's indirect utility as a function of the posted price of good x, the sales tax, and wealth. Let $e(p,t^s,V)$ denote the agent's expenditure function, which represents the minimum wealth necessary to attain utility V at a given posted price and sales tax. Let $R(p,t^s,Z) = t^s x(p,t^s,Z)$ denote tax revenue.

Following Herbert Mohring (1971) and Alan J. Auerbach (1985), we measure the excess burden (deadweight cost) of a tax using the concept of equivalent variation. When p is fixed, the excess burden of introducing a sales tax t^s in a previously untaxed market is

(9)
$$EB(t^{S}) = Z - e(p, 0, V(p, t^{S}, Z)) - R(p, t^{S}, Z).$$

The value $EB(t^s)$ is the amount of additional tax revenue that could be collected from the consumer while keeping his utility constant if the distortionary tax were replaced with a lump-sum tax. Roughly speaking, $EB(t^s)$ can be interpreted as the total value of the purchases that fail to occur because of the tax. Our objective is to derive a simple expression for (9) in terms of empirically estimable elasticities.

Preference Recovery.—The efficiency cost of a tax policy depends on two elements: the change in behavior induced by the tax; and the effect of that change in behavior on the consumer's utility. The first element is observed empirically. The second element is the key challenge for behavioral welfare economics. How do we compute indirect utility $V(p, t^s, Z)$ when the agent's behavior is not consistent with optimization? The following two assumptions allow us to recover V without specifying a positive model for the demand function $x(p, t^s, Z)$.

A1: Taxes affect utility only through their effects on the chosen consumption bundle. The agent's indirect utility given a tax of t^{S} is

$$V(p, t^{S}, Z) = u(x(p, t^{S}, Z)) + v(y(p, t^{S}, Z)).$$

A2: When tax-inclusive prices are fully salient, the agent chooses the same allocation as a fully-optimizing agent:

$$x(p,0,Z) = x^*(p,0,Z) = \arg\max u(x(p,0,Z)) + v(Z - px(p,0,Z)).$$

Assumption A1 requires that consumption is a sufficient statistic for utility—that is, holding fixed the consumption bundle (x, y), the tax rate or its salience has no effect on V. To understand the content of this assumption, consider the following situation in which it is violated. In a bounded rationality model, the cognitive cost that the agent pays to calculate the total price when $t^s > 0$ makes his utility lower than pure consumption utility. Taxes that are not included in posted prices therefore generate deadweight burden beyond that due to the distortion in the consumption

bundle (Chetty, Looney, and Kroft 2007). In such models, the excess burden computations in this paper correspond to the deadweight cost net of any increase in cognitive costs.³⁰

Assumption A2 requires that the agent behave like a fully optimizing agent when all taxes are fully salient. That is, the agent's choices when total prices are fully salient reveal his true rankings. This assumption is violated when the agent's choices are suboptimal even without taxes. For example, if there are other "shrouded attributes" or if agents suffer from biases when optimizing relative to prices (Nina Mazar, Botond Kőszegi, and Dan Ariely 2008), we would not directly recover true preferences from x(p,0,Z). The excess burden formulas derived below ignore errors in optimization relative to prices.

Using Assumptions A1 and A2, we calculate consumer welfare and excess burden in two steps. We first use the demand function without taxes x(p,0,Z) to recover the agent's underlying preferences (u(x),v(y)) as in the full-optimization model. We then use the demand function with taxes $x(p,t^s,Z)$ to calculate the agent's indirect utility $V(p,t^s,Z)$ as a function of the tax rate. Conceptually, this method pairs the libertarian criterion of calculating welfare from individual choice with the assumption that the agent optimizes relative to true incentives only when taxinclusive prices are perfectly salient.

Our calculation of excess burden can be viewed as an application of Bernheim and Rangel's (2009) choice-based approach to welfare analysis. Bernheim and Rangel show that one can obtain bounds on welfare without specifying a positive theory of behavior by separating the inputs that matter for utility from "ancillary conditions" that do not. By applying a "refinement" to identify ancillary conditions under which an agent's choices reveal his true rankings, one can sharpen the bounds. In Bernheim and Rangel's terminology, our Assumption A1 is that tax salience is an "ancillary condition" that affects choices but not true utility. Assumption A2 is a "refinement" which posits that the choices made when the tax is not perfectly salient are "suspect," and should be discarded when inferring the utility relevant for welfare analysis. This refinement allows us to obtain exact measures of equivalent variation and efficiency costs without placing specific structure on the model that generates $x(p, t^s, Z)$.

Formula for Excess Burden.—We derive a formula for excess burden using quadratic approximations analogous to those used by Harberger (1964) and Edgar K. Browning (1987). To state the formula compactly, we introduce notation for income-compensated elasticities. Let $\partial x^c/\partial p = \partial x/\partial p + x\partial x/\partial Z$ denote the income-compensated (Hicksian) price effect. Define $\partial x^c/\partial t^s = \partial x/\partial t^s + x\partial x/\partial Z$ as the analogous income-compensated tax effect. Note that this "compensated tax effect" does not necessarily satisfy the Slutsky condition $\partial x^c/\partial t^s < 0$. It is possible to have an upward-sloping compensated tax-demand curve because $x(p,t^s,Z)$ is not generated by utility maximization. In contrast, Assumption A2 guarantees $\partial x^c/\partial p < 0$ through the Slutsky condition. Let $\varepsilon^c_{x,q|p} = -(\partial x^c/\partial p)(q/x)$ and $\varepsilon^c_{x,q|t^s} = -(\partial x^c/\partial t^s)(q/x)$ denote the compensated price and tax elasticities.

PROPOSITION 2: Suppose producer prices are fixed ($\varepsilon_{s,p} = \infty$). Under Assumptions A1–A2, the excess burden of introducing a small tax t^s in an untaxed market is approximately

(10)
$$EB(t^{S}) \simeq -\frac{1}{2} (t^{S})^{2} \theta^{c} \partial x^{c} / \partial t^{S}$$

$$= \frac{1}{2} (\theta^{c} t^{S})^{2} x(p, t^{S}, Z) \frac{\varepsilon_{x,q|p}^{c}}{p+t^{S}},$$

³⁰ Chetty, Looney, and Kroft (2007) show that the additional deadweight burden due to cognitive costs is likely to be negligible since relatively small cognitive costs generate substantial amounts of inattention.

Figure 4. Excess Burden with No Income Effect for Good x ($\partial x/\partial Z = 0$)

Notes: This figure illustrates the deadweight cost of introducing a tax t^s levied on consumers when $\partial x/\partial Z=0$ and producer prices are fixed. The figure plots two demand curves: the price-demand curve x(p,0), which shows how demand varies with the pretax price of the good; and the tax-demand curve $x(p_0,t^s)$, which shows how demand varies with the tax. The figure is drawn assuming $|\partial x/\partial t^s| \leq |\partial x/\partial p|$, consistent with the empirical evidence. The tax reduces demand from x_0 to x_1 . The consumer's surplus after the implementation of the tax is given by triangle DGC minus triangle DEF. The revenue raised from the tax corresponds to the rectangle GBEH. The change in total surplus—government revenue plus consumer surplus—equals the shaded triangle AFH.

where $\partial x^c/\partial t^S$ and $\partial x^c/\partial p$ are evaluated at (p,0,Z) and $\theta^c = (\partial x^c/\partial t^S)/(\partial x^c/\partial p) = \varepsilon^c_{x,q|t^S}/\varepsilon^c_{x,q|p}$ is the ratio of the compensated tax and price effects.

PROOF:

See Web Appendix B. Chetty (2009) gives an instructive proof for the case without income effects $(\partial x/\partial Z = 0)$.

Figure 4 illustrates the calculation of deadweight loss for the case without income effects $(\partial x/\partial Z=0)$, which implies utility is quasilinear. The initial price of the good is p_0 and the price after the imposition of the sales tax is p_0+t^s . The figure plots two demand curves. The first is the standard Marshallian demand curve as a function of the total price of the good, x(p,0). This *price-demand* curve coincides with the marginal utility u'(x) under Assumption A2. The second, $x(p_0,t^s)$ represents how demand varies with the tax on x. This *tax-demand* curve is drawn assuming $\partial x/\partial p < \partial x/\partial t^s$, consistent with the empirical evidence.

The agent's initial consumption choice prior to the introduction of the tax is depicted by $x_0 = x(p_0, 0)$. Initial consumer surplus is given by triangle *ABC*, which equals total utility (up to a constant). When the tax t^s is introduced, the agent cuts consumption of x by $\Delta x = -t^s \partial x / \partial t^s$.

Notice that at the new consumption choice x_1 , the agent's marginal willingness to pay for x is below the total price $p_0 + t^S$ because he underreacts to the tax. This optimization error leads to a loss of surplus corresponding to triangle DEF. The consumer's surplus after the implementation of the tax is therefore given by triangle DGC minus triangle DEF. The revenue raised from the tax corresponds to the rectangle GBEH. It follows that the change in total surplus—government revenue plus consumer surplus—equals the shaded triangle AFH, whose area is given by (10).

When there are income effects $(\partial x/\partial Z > 0)$, the form of the formula remains exactly the same, but all the inputs are replaced by income-compensated effects, exactly as in the Harberger formula. The intuition for this difference is analogous to that in the full-optimization model: behavioral responses due to pure income effects are nondistortionary, since they would occur under lump sum taxation as well. Deadweight loss is determined by the difference between the actual behavioral response $(\partial x/\partial t^s)$ and the socially optimal response given the reduction in net-of-tax income $(-x(\partial x/\partial Z))$, which is $(\partial x/\partial t^s) - (-x(\partial x/\partial Z)) = \partial x^c/\partial t^s$.

Like the Harberger formula, (10) ignores the third- and higher-order terms in the Taylor expansion for EB. Hence, it provides an accurate measure of excess burden for small tax changes. In addition, note that $\partial x^c/\partial p$ must be evaluated at a point with zero sales $\tan(p,0)$. The reason is that we recover true preferences only when the posted price equals the total price: $x(p,t^s,Z) = x^*(p,t^s,Z)$ if and only if $t^s = 0$. If an environment without sales tax is not observed, one could implement the formula by assuming that the price elasticity does not depend on the tax rate $(d^2x^c/dpdt^s = 0)$, and using an estimate of $dx^c/dp(p,t^s,Z) = dx^c/dp(p,0,Z)$.

Discussion.—The only difference between (10) and the canonical Harberger formula $(EB^*(t^s) = -(\frac{1}{2})(t^s)^2(\partial x^c/\partial t^s))$ is the introduction of the parameter $\theta^c = (\partial x^c/\partial t^s)/(\partial x^c/\partial p)$. Three general lessons about excess burden emerge from this new parameter.

Inattention Reduces Excess Burden if $\partial x/\partial Z=0$. When there are no income effects, the tax t^s generates deadweight loss equivalent to that created by a perfectly salient tax of θt^s . If agents ignore the tax completely and $\theta=0$, then EB=0. Taxation creates no inefficiency when $\theta=0$ because the agent's consumption allocation coincides with the first-best bundle that he would have chosen under lump sum taxation. As the degree of attention to the tax rises, excess burden rises at a quadratic rate: $EB \propto \theta^2$. Excess burden rises with the square of θ for the same reason that it rises with the square of the t^s —the increasing marginal social cost of deviating from the first best. Because EB is a quadratic function of θ but a linear function of $\varepsilon_{x,q|p}$, inattention (reductions in θ) and inelasticity (reductions in $\varepsilon_{x,q|p}$) have different effects on excess burden, as in the incidence analysis. Like incidence, excess burden depends on which side of the market is taxed. Since a tax on producers is likely to be included in posted prices, it leads to a larger reduction in demand and more deadweight loss than an equivalent tax levied on consumers when $\partial x/\partial Z=0$.

Inattention Can Raise Excess Burden if $\partial x/\partial Z > 0$. When there are income effects, making a tax less salient to reduce $\partial x/\partial t^s$ can *increase* deadweight loss. In fact, a tax can create deadweight cost even if the agent completely ignores it and demand for the taxed good does not

³¹ Another instructive derivation starts from the excess burden of taxation for a fully optimizing agent, EB^* (triangle AID). Starting from EB^* , we obtain excess burden for the agent who does not optimize fully (triangle AFH) by making two adjustments: subtracting the additional revenue earned by the government because the agent underreacts to the tax (rectangle HIDE); and adding the *private* welfare loss due to the optimization error (triangle FED).

³² The consumer's *private* welfare always rises with θ —increased salience of tax-inclusive prices is always desirable from the consumer's perspective. However, the gain in the consumer's private welfare from full attention (triangle *FED* in Figure 4) is more than offset by the resulting loss in government revenue (rectangle *HIDE*), which is why total surplus falls with θ when $\partial x/\partial Z=0$.

change, i.e., $\partial x/\partial t^s = 0$. This result contradicts the canonical intuition that taxes generate deadweight costs only if they induce changes in demand. In the full-optimization model, taxation of a normal good creates a deadweight cost only if $\partial x/\partial p < 0$, since $\partial x/\partial p = 0 \Rightarrow \partial x^c/\partial p = 0$ given $\partial x/\partial Z > 0$. This reasoning fails when the tax demand is not the outcome of perfect optimization, because there is no Slutsky condition for $\partial x^c/\partial t^s$. A zero uncompensated tax elasticity does not imply that the compensated tax elasticity is zero. Instead, when $\partial x/\partial t^s = 0$, $\partial x^c/\partial t^s = \partial x/\partial Z$ and (10) becomes

$$EB(t^{S}) = -\frac{1}{2}(t^{S}x)^{2} \frac{\partial x/\partial Z}{\partial x^{c}/\partial p} \frac{\partial x}{\partial z} \frac{\partial x}{\partial z}.$$

This equation shows that EB > 0, even when $\partial x/\partial t^s = 0$ in the presence of income effects. To understand this result, recall that the excess burden of a distortionary tax is determined by the extent to which the agent deviates from the allocation he would optimally choose if subject to a lump sum tax of an equivalent amount. In the quasi-linear case, the agent's consumption bundle when ignoring the tax coincides with the bundle he would optimally choose under lump sum taxation, because the socially optimal choice of x does not depend on total income. When utility is not quasi-linear, an optimizing agent would reduce consumption of both x and y when faced with a lump sum tax. An agent who does not change his demand for x at all when the tax is introduced ends up overconsuming x relative to the social optimum. The income-compensated tax elasticity $\partial x^c/\partial t^s = \partial x/\partial z$ is positive because the tax effectively distorts demand for x upward once the income effect is taken into account, leading to inefficiency.

As a concrete example, consider an individual who consumes cars (x) and food (y). Suppose he chooses the same car he would have bought at a total price of p_0 because he does not perceive the tax $(\partial x/\partial t^s = 0)$ and therefore has to cut back on food to meet his budget. This inefficient allocation of net-of-tax income leads to a loss in surplus. The lost surplus is proportional to the income effect on cars $\partial x/\partial Z$ because this elasticity determines how much the agent should have cut spending on the car to reach the social optimum given the tax. This example illustrates that policies that "hide" taxes can potentially create substantial deadweight loss despite attenuating behavioral responses, particularly when the income elasticity and expenditure on the taxed good are large.

Note that inattention to a tax on x need not necessarily lead to $\partial x/\partial t^s = 0$. The effect of inattention on $\partial x/\partial t^s$ depends on how the agent meets his budget given the tax. The agent must reduce consumption of at least one of the goods to meet his budget when the tax on x is introduced: $\partial x/\partial t^s + \partial y/\partial t^s = -x$. The way in which agents meet their budget may vary across individuals (Chetty, Looney, and Kroft 2007). For example, credit-constrained agents may be forced to cut back on consumption of y if they ignore the tax when buying x, as in the car purchase example above, leading to $\partial x/\partial t^s = \theta = 0$ and EB > 0. Agents who smooth intertemporally, in contrast, may cut both y as well as future purchases of x (buying a cheaper car next time). Such intertemporal smoothing could lead to a long-run allocation closer to the socially optimal response $\partial x/\partial t^s = -x(\partial x/\partial Z)$, in which case hidden taxes would lead to $\theta^c = 0$ and EB = 0. Importantly, Proposition 2 holds, irrespective of how the agent meets his budget. Variations in the budget adjustment process are captured in the value of $\partial x^c/\partial t^s$.

Role of Price Elasticity. Holding fixed $\varepsilon_{x,q|r^s}$, excess burden is inversely related to $\varepsilon_{x,q|p}$. As demand becomes *less* price-elastic, *EB increases*. This can be seen in Figure 4, where the shaded triangle becomes larger as x(p,0) becomes steeper, holding $x(p_0,t^s)$ fixed. Intuitively, an agent with price-inelastic consumption has rapidly increasing marginal utility as his consumption level deviates from the first-best level. A given reduction in demand thus leads to a larger loss of

surplus for an agent with more price-inelastic demand. As in the incidence analysis, taxing markets with more elastic demand could lead to greater or lesser excess burden, depending on the covariance between $\varepsilon_{x,q|t}$ and $\varepsilon_{x,q|p}$.

It is straightforward to extend the preceding results to allow for preexisting taxes and endogenous producer prices; see Chetty (2009) for a complete analysis and discussion of these cases. When p is fixed and the initial sales tax rate is t_0^s , the excess burden of a sales tax increase Δt is approximately

(11)
$$EB(\Delta t | t_0^S) \simeq \theta^c x_0 \frac{\varepsilon_{x,q|t^s}^c}{q_0} \left(\frac{1}{2} (\Delta t)^2 + t_0^S \Delta t \right),$$

where x_0 denotes the initial demand and $q_0 = p + t_0^S$ denotes the initial price. This expression, which is simply the Harberger "trapezoid" formula multiplied by θ^c , shows that tax increases can have a first-order (large) deadweight cost when there are preexisting taxes. The first-order deadweight cost due to t_0^S is attenuated by θ^c because the deviation from the socially optimal level of x caused by t_0^S is proportional to θ^c . When p is endogenous (i.e., supply is upward sloping) and $\partial x/\partial Z=0$, (11) holds with the elasticity $\varepsilon_{x,q|t^S}$ replaced by $\varepsilon_{x,q|t^S}^{TOT}=-(dx/dt^S)(q/x(p,t^S))$. The elasticity $\varepsilon_{x,q|t^S}^{TOT}$ measures the total change in demand caused by a 1 percent increase in the price $q=p+t^S$ through an increase in t^S , taking into account the effect of the endogenous price response.

VI. Conclusion

This paper has shown empirically that commodity taxes that are included in posted prices reduce demand significantly more than taxes that are not included in posted prices. Individuals appear to be well informed about commodity taxes when their attention is drawn to the topic, suggesting that *salience* is an important determinant of behavioral responses to taxation. The finding that individuals make systematic optimization errors even with respect to relatively simple, linear commodity taxes suggests that more complex policies such as income taxes or transfers could generate very different behavioral responses from those predicted by standard models.³³ Moreover, the standard method of using variation in tax rates as instruments to estimate wage and price elasticities cannot be applied unless the tax is perfectly salient.

Our empirical results contradict the basic assumptions of the canonical theory of taxation used for policy analysis. As an alternative, we have proposed a method of welfare analysis that does not rely on a specific positive model of how agents make choices when faced with taxes. This approach accommodates salience effects as well as other optimization errors with respect to taxes. The formulas we obtain for the incidence and excess burden of commodity taxes are simple variants of those in introductory textbooks and can be easily adapted to analyze other tax policies, such as income or capital taxation. Much as Harberger (1964) identified the compensated price elasticity as the key parameter to be estimated in subsequent work, our analysis identifies the compensated tax and price elasticities ($\varepsilon_{x,q|t^s}^c$ and $\varepsilon_{x,q|p}^c$) as "sufficient statistics" for empirical studies in behavioral public economics.

A natural next step would be to characterize optimal taxation when agents optimize imperfectly, generalizing the results of Ramsey (1927) and Mirrlees (1971). For this purpose, it will be important to extend the welfare analysis to a general equilibrium model with more than two markets. Combining the formulas developed here with a positive theory of tax salience could be useful in characterizing the optimal structure of the tax system. For example, Chetty, Looney,

³³ In a follow-up study, Chetty and Saez (2009) document similar optimization errors in income taxation and labor supply decisions.

and Kroft's (2007) bounded-rationality model predicts that attention and behavioral responses to taxation are larger when (1) tax rates are high, (2) the price-elasticity of demand is large, and (3) the amount spent on the good is large. Combined with the welfare analysis here, these predictions suggest that in markets with these three characteristics, tax incidence should fall more heavily on producers, and excess burden should be closer to the Harberger measure.

Finally, the approach to welfare analysis proposed here—using a domain where incentives are fully salient to characterize the welfare consequences of policies that are not salient—can be applied in other contexts. Many social insurance and transfer programs (e.g., Medicare and Social Security) have complex features and may induce suboptimal behaviors. One can characterize the welfare consequences of these programs more accurately by estimating behavioral responses to analogous programs whose incentives are more salient. Another potential application is to optimal regulation (e.g., consumer protection laws, financial market regulations). By identifying "suboptimal" transactions using data on consumer's choices in domains where incentives are more salient, one could develop rules to maximize consumer welfare that do not rely on paternalistic judgements.

REFERENCES

- American Chamber of Commerce Researchers Association. 1982–2000. ACCRA Cost of Living Index Quarterly Report, 1982–2000. Louisville, KY: American Chamber of Commerce Researchers Association.
- Anderson, Eric T., and Duncan I. Simester. 2003. "Effects of \$9 Price Endings on Retail Sales: Evidence from Field Experiments." *Quantitative Marketing and Economics*, 1(1): 93–110.
- **Atkinson, Anthony B., and Joseph E. Stiglitz.** 1976. "The Design of Tax Structure: Direct versus Indirect Taxation." *Journal of Public Economics*, 6(1–2): 55–75.
- Auerbach, Alan J. 1985. "The Theory of Excess Burden and Optimal Taxation." In *Handbook of Public Economics*, Vol. 1, ed. Alan J. Auerbach and Martin S. Feldstein, 67–127. Amsterdam: Elsevier Science.
- Bernheim, B. Douglas, and Antonio Rangel. 2009. "Beyond Revealed Preference: Choice-Theoretic Foundations for Behavioral Welfare Economics." *Quarterly Journal of Economics*, 124(1): 51–104.
- Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. 2002. "How Much Should We Trust Differences-in-Differences Estimates?" National Bureau of Economic Research Working Paper 8841.
- Beer Institute. Various years. Brewer's Almanac. http://www.beerinstitute.org/statistics.asp?bid=200.
- Blendon, Robert J., Stephen R. Pelletier, Marcus D. Rosenbaum, and Mollyann Brodie. 2003. "Tax Uncertainty: A Divided America's Unformed View of the Federal Tax System." *Brookings Review*, 21: 28–31.
- **Blumkin, Tomer, Bradley J. Ruffle, and Yosi Ganun.** 2008. "Are Income and Consumption Taxes Ever Really Equivalent? Evidence from a Real-Effort Experiment." Munich Personal RePEc Paper 6479.
- **Brown, Jennifer, Tanjim Hossain, and John Morgan.** 2008. "Shrouded Attributes and Information Suppression: Evidence from Field Experiments." Unpublished.
- **Browning, Edgar K.** 1987. "On the Marginal Welfare Cost of Taxation." *American Economic Review*, 77(1): 11–23.
- Busse, Meghan, Jorge Silva-Risso, and Florian Zettelmeyer. 2006. "\$1,000 Cash Back: The Pass-through of Auto Manufacture Promotions." *American Economic Review*, 96(4): 1253–70.
- **Chetty, Raj.** 2006. "A New Method of Estimating Risk Aversion." *American Economic Review*, 96(5): 1821–34.
- Chetty, Raj. 2009. "The Simple Economics of Salience and Taxation." Unpublished.
- **Chetty, Raj, Adam Looney, and Kory Kroft.** 2007. "Salience and Taxation: Theory and Evidence." National Bureau of Economic Research Working Paper 13330.
- **Chetty, Raj, and Emmanuel Saez.** 2009. "Teaching the Tax Code: Earnings Responses to an Experiment with EITC Recipients." National Bureau of Economic Research Working Paper 14836.
- Commerce Clearing House. Various years. *State Tax Handbook*. Chicago: Commerce Clearing House Inc. Cook, Philip J., Jan Ostermann, and Frank A. Sloan. 2005. "Are Alcohol Excise Taxes Good for Us? Short and Long-Term Effects on Mortality Rates." National Bureau of Economic Research Working Paper 11138.

de Bartolome, Charles A. M. 1995. "Which Tax Rate Do People Use: Average or Marginal?" *Journal of Public Economics*, 56(1): 79–96.

DellaVigna, Stefano. 2009. "Psychology and Economics: Evidence from the Field." *Journal of Economic Literature*, 47(2): 315–72.

DellaVigna, Stefano, and Joshua M. Pollet. 2009. "Investor Inattention and Friday Earnings Announcements." *Journal of Finance*, 64(2): 709–49.

Feldman, Naomi E., and Peter Katuščák. 2006. "Should the Average Tax Rate be Marginalized?" Center for Economic Research and Graduate Education Economics Institute Working Paper 304.

Finkelstein, Amy. 2007. "E-Z Tax: Tax Salience and Tax Rates." National Bureau of Economic Research Working Paper 12924.

Fisher, Ronald A. 1922. "On the interpretation of χ^2 from contingency tables, and the calculation of P. J. Roy." *Journal of the Royal Statistical Society*, 85(1): 87–94.

Gabaix, Xavier, and David Laibson. 2006. "Shrouded Attributes, Consumer Myopia, and Information Suppression in Competitive Markets." *Quarterly Journal of Economics*, 121(2): 505–40.

Gruber, Jonathan. 1994. "The Incidence of Mandated Maternity Benefits." *American Economic Review*, 84(3): 622–41.

Gruber, Jonathan, and Emmanuel Saez. 2002. "The Elasticity of Taxable Income: Evidence and Implications." *Journal of Public Economics*, 84(1): 1–32.

Harberger, Arnold C. 1964. "The Measurement of Waste." American Economic Review, 54(3): 58–76.

Hoch, Stephen J., Byung-Do Kim, Alan L. Montgomery, and Peter E. Rossi. 1995. "Determinants of Store-Level Price Elasticity." *Journal of Marketing Research*, 32(1): 17–29.

Hossain, Tanjim, and John Morgan. 2006. ". . . Plus Shipping and Handling: Revenue (Non) Equivalence in Field Experiments on eBay." *B E Journal of Economic Analysis and Policy: Advances in Economic Analysis and Policy*, 6(2): 1–27.

Kerschbamer, Rudolf, and Georg Kirchsteiger. 2000. "Theoretically Robust but Empirically Invalid? An Experimental Investigation into Tax Equivalence." *Economic Theory*, 16(3): 719–34.

Kotlikoff, Laurence J., and Lawrence H. Summers. 1987. "Tax Incidence." In *Handbook of Public Economics*, Vol. 2, ed. Alan J. Auerbach and Martin Feldstein, 1043–92. Amsterdam: Elsevier Science.

Lakins, Nekisha E., Gerald D. Williams, Hsiao-ye Yi, and Barbara A. Smothers. 2004. Surveillance Report #66: Apparent Per Capita Alcohol Consumption: National, State, and Regional Trends, 1977-2002. Bethesda, MD: NIAAA, Alcohol Epidemiologic Data System.

Liebman, Jeffrey B., and Richard J. Zeckhauser. 2004. "Schmeduling." Unpublished.

Mazar, Nina, Botond Kőszegi, and Dan Ariely. 2008. "Price-Sensitive Preferences." Unpublished.

Meyer, Bruce D. 1995. "Natural and Quasi-Experiments in Economics." *Journal of Business and Economic Statistics*, 13(2): 151–61.

Mill, John S. 1848. Principles of Political Economy. Oxford: Oxford University Press.

Mirrlees, James A. 1971. "An Exploration in the Theory of Optimum Income Taxation." *The Review of Economic Studies*, 38(2): 175–208.

Mohring, Herbert. 1971. "Alternative Welfare Gain and Loss Measures." *Western Economic Journal*, 9: 349–68.

National Institute of Alcohol Abuse and Alcoholism (NIAAA). 2006. "Per Capita Alcohol Consumption." http://www.niaaa.nih.gov/Resources/DatabaseResources/QuickFacts/AlcoholSales.

Nephew, Thomas M., Hsiao-ye Yi, Gerald D. Williams, Frederick S. Stinson, and Mary C. Dufour. 2004. "U.S. Alcohol Epidemiologic Data Reference Manual." NIH Publication 04–5563.

Ramsey, Frank P. 1927. "A Contribution to the Theory of Taxation." Economic Journal, 37(145): 47–61.

Rosen, Harvey S. 1976. "Taxes in a Labor Supply Model with Joint Wage-Hours Determination." *Econometrica*, 44(3): 485–507.

Rosenbaum, Paul R. 1996. "Observational Studies and Nonrandomized Experiments." In Design and Analysis of Experiments, ed. S. Ghosh and C. R. Rao, 181–97. Amsterdam: Elsevier Science.

Slemrod, Joel B. 2006. "The Role of Misconceptions in Support for Regressive Tax Reform." *National Tax Journal*, 59(1): 57–75.

Tax Foundation. Various years. *Special Report: State Tax Rates and Collections*. Washington, DC: Tax Foundation. http://www.taxfoundation.org.

University of Michigan Business School. 2006. *World Tax Database*. http://www.bus.umich.edu/OTPR/otpr/introduction.htm.

This article has been cited by:

- 1. Yunsen Chen, Jianqiao Huang, Sheng Xiao, Ziye Zhao. 2020. The "home bias" of corporate subsidiary locations. *Journal of Corporate Finance* **62**, 101591. [Crossref]
- 2. Yichuan Hu, Chang Li, Cong Qin. 2020. The impact of regional financial depth on outbound cross-border mergers and acquisitions. *Journal of International Money and Finance* **104**, 102181. [Crossref]
- 3. Ambuj Dewan, Nathaniel Neligh. 2020. Estimating information cost functions in models of rational inattention. *Journal of Economic Theory* **187**, 105011. [Crossref]
- 4. Brett Doble, Felicia Ang Jia Ler, Eric A. Finkelstein. 2020. The effect of implicit and explicit taxes on the purchasing of 'high-in-calorie' products: A randomized controlled trial. *Economics & Human Biology* 37, 100860. [Crossref]
- 5. John Cawley, David Frisvold, Anna Hill, David Jones. 2020. Oakland's sugar-sweetened beverage tax: Impacts on prices, purchases and consumption by adults and children. *Economics & Human Biology* 37, 100865. [Crossref]
- 6. Áine Ní Choisdealbha, Shane Timmons, Peter D. Lunn. 2020. Experimental evidence for the effects of emissions charges and efficiency information on consumer car choices. *Journal of Cleaner Production* **254**, 120140. [Crossref]
- 7. Matthew Philip Makofske. 2020. The Effect of Information Salience on Product Quality: Louisville Restaurant Hygiene and Yelp.com. *The Journal of Industrial Economics* 3. . [Crossref]
- 8. Cenjie Liu, Chunbo Ma, Rui Xie. 2020. Structural, Innovation and Efficiency Effects of Environmental Regulation: Evidence from China's Carbon Emissions Trading Pilot. *Environmental and Resource Economics* 75:4, 741-768. [Crossref]
- 9. Jale Tosun, Simon Schaub, Andreas Fleig. 2020. What determines regulatory preferences? Insights from micropollutants in surface waters. *Environmental Science & Policy* **106**, 136-144. [Crossref]
- 10. Bing Ye, Ling Lin. 2020. Environmental regulation and responses of local governments. *China Economic Review* **60**, 101421. [Crossref]
- 11. Sandra Bammert, Ulrich Matthias König, Maximilian Roeglinger, Tabitha Wruck. 2020. Exploring potentials of digital nudging for business processes. *Business Process Management Journal* ahead-of-print: ahead-of-print. . [Crossref]
- 12. Miao Miao, Yan Zhang, Shilin Zheng. 2020. Within-Firm Wage Inequality and Corporate Innovation: Evidence from China's Listed Firms. *Emerging Markets Finance and Trade* **56**:4, 796-819. [Crossref]
- 13. Anthony Heyes, Sandeep Kapur, Peter W. Kennedy, Steve Martin, John W. Maxwell. 2020. But What Does It Mean? Competition between Products Carrying Alternative Green Labels When Consumers Are Active Acquirers of Information. *Journal of the Association of Environmental and Resource Economists* 7:2, 243-277. [Crossref]
- 14. Johann Jakob Häußermann. 2020. Nudging and Participation: a Contractualist Approach to Behavioural Policy. *Philosophy of Management* 19:1, 45-68. [Crossref]
- 15. Fédéric Holm-Hadulla. 2020. Fiscal equalization and the tax structure. *Regional Science and Urban Economics* 81, 103519. [Crossref]
- 16. Ha Trong Nguyen, Alan S. Duncan. 2020. Macroeconomic Fluctuations in Home Countries and Immigrants' Well-Being: New Evidence from Down Under. *International Migration Review* 54:1, 205-232. [Crossref]
- 17. Spencer Bastani, Thomas Giebe, Chizheng Miao. 2020. Ethnicity and tax filing behavior. *Journal of Urban Economics* 116, 103215. [Crossref]
- 18. Jennifer L. Blouin, Eliezer M. Fich, Edward M. Rice, Anh L. Tran. 2020. Corporate tax cuts, merger activity, and shareholder wealth. *Journal of Accounting and Economics* 101315. [Crossref]

- 19. Rafael Cezar, Timothée Gigout, Fabien Tripier. 2020. Cross-border investments and uncertainty: Firm-level evidence. *Journal of International Money and Finance* 102159. [Crossref]
- 20. Giacomo Brusco, Benjamin Glass. 2020. Attending to inattention: Identification of deadweight loss under nonsalient taxes. *Journal of Public Economic Theory* 22:1, 5-24. [Crossref]
- 21. CARY FRYDMAN, BAOLIAN WANG. 2020. The Impact of Salience on Investor Behavior: Evidence from a Natural Experiment. *The Journal of Finance* 75:1, 229-276. [Crossref]
- 22. Pablo D Fajgelbaum, Pinelopi K Goldberg, Patrick J Kennedy, Amit K Khandelwal. 2020. The Return to Protectionism*. *The Quarterly Journal of Economics* 135:1, 1-55. [Crossref]
- 23. Claus Ghesla, Manuel Grieder, Renate Schubert. 2020. Nudging the poor and the rich A field study on the distributional effects of green electricity defaults. *Energy Economics* **86**, 104616. [Crossref]
- 24. Dongwei He, Kai Yu, Jun Wu. 2020. Industry characteristics, court location, and bankruptcy resolution. *Journal of Management Analytics* 37, 1-35. [Crossref]
- 25. John Cawley, David Frisvold, Anna Hill, David Jones. 2020. The Impact of the Philadelphia Beverage Tax on Prices and Product Availability. *Journal of Policy Analysis and Management*. [Crossref]
- 26. Benito Arruñada. 2020. The impact of experience on how we perceive the rule of law. *Journal of Institutional Economics* 2, 1-19. [Crossref]
- 27. Matthew Gould, Matthew D. Rablen. 2020. Voluntary disclosure schemes for offshore tax evasion. *International Tax and Public Finance* 162. . [Crossref]
- 28. Sieuwerd Gaastra. 2020. Personal Income Taxation and College Major Choice: A Case Study of the 1986 Tax Reform Act. *Public Finance Review* 48:1, 3-42. [Crossref]
- 29. Xian Zheng, Wenwei Peng, Mingzhi Hu. 2020. Airport noise and house prices: A quasi-experimental design study. *Land Use Policy* **90**, 104287. [Crossref]
- 30. Brian C. Prest. 2020. Peaking Interest: How Awareness Drives the Effectiveness of Time-of-Use Electricity Pricing. *Journal of the Association of Environmental and Resource Economists* 7:1, 103-143. [Crossref]
- 31. Emmanuel Farhi, Xavier Gabaix. 2020. Optimal Taxation with Behavioral Agents. *American Economic Review* 110:1, 298-336. [Abstract] [View PDF article] [PDF with links]
- 32. Alexander M. Gelber, Damon Jones, Daniel W. Sacks. 2020. Estimating Adjustment Frictions Using Nonlinear Budget Sets: Method and Evidence from the Earnings Test. *American Economic Journal: Applied Economics* 12:1, 1-31. [Abstract] [View PDF article] [PDF with links]
- 33. Aurélien Baillon, Han Bleichrodt, Vitalie Spinu. 2020. Searching for the Reference Point. *Management Science* **66**:1, 93-112. [Crossref]
- 34. Shelle Santana, Steven K. Dallas, Vicki G. Morwitz. 2020. Consumer Reactions to Drip Pricing. *Marketing Science* 39:1, 188-210. [Crossref]
- 35. Ming Tie, Ming Qin, Qijiao Song, Ye Qi. 2020. Why does the behavior of local government leaders in low-carbon city pilots influence policy innovation?. *Resources, Conservation and Recycling* **152**, 104483. [Crossref]
- 36. Adesegun Oyedele, Fuat Firat. 2019. Institutions, small local firms' strategies, and global alliances in sub-Saharan Africa emerging markets. *International Marketing Review* 37:1, 156-182. [Crossref]
- 37. Marcella Alsan, Owen Garrick, Grant Graziani. 2019. Does Diversity Matter for Health? Experimental Evidence from Oakland. *American Economic Review* 109:12, 4071-4111. [Abstract] [View PDF article] [PDF with links]
- 38. Joel Slemrod. 2019. Tax Compliance and Enforcement. *Journal of Economic Literature* **57**:4, 904-954. [Abstract] [View PDF article] [PDF with links]

- 39. Jerome Olsen, Christoph Kogler, Mark J. Brandt, Linda Dezső, Erich Kirchler. 2019. Are consumption taxes really disliked more than equivalent costs? Inconclusive results in the USA and no effect in the UK. *Journal of Economic Psychology* 75, 102145. [Crossref]
- 40. Vidhan K. Goyal, S. Lakshmi Naaraayanan, Anand Srinivasan. 2019. Banking Relationships and Creditor Rights. *Quarterly Journal of Finance* **09**:04, 1950016. [Crossref]
- 41. David J. Hardisty, Alec T. Beall, Ruben Lubowski, Annie Petsonk, Rainer Romero-Canyas. 2019. A carbon price by another name may seem sweeter: Consumers prefer upstream offsets to downstream taxes. *Journal of Environmental Psychology* 66, 101342. [Crossref]
- 42. Annette Alstadsæter, Wojciech Kopczuk, Kjetil Telle. 2019. Social networks and tax avoidance: evidence from a well-defined Norwegian tax shelter. *International Tax and Public Finance* 26:6, 1291-1328. [Crossref]
- 43. Luca Repetto, Alex Solís. 2019. The Price of Inattention: Evidence from the Swedish Housing Market. *Journal of the European Economic Association* 74. . [Crossref]
- 44. Zhiyong An. 2019. Two General Lessons from the 2019 Personal Income Tax Reform of China. *The Economists' Voice*, ahead of print. [Crossref]
- 45. Leslie K John, George Loewenstein, Andrew Marder, Michael L Callaham. 2019. Effect of revealing authors' conflicts of interests in peer review: randomized controlled trial. *BMJ* **2**, 15896. [Crossref]
- 46. Scott E. Carrell, Mark Hoekstra, James E. West. 2019. The Impact of College Diversity on Behavior toward Minorities. *American Economic Journal: Economic Policy* 11:4, 159-182. [Abstract] [View PDF article] [PDF with links]
- 47. Anna Alberini, Valeria Di Cosmo, Andrea Bigano. 2019. How are fuel efficient cars priced? Evidence from eight EU countries. *Energy Policy* 134, 110978. [Crossref]
- 48. Mariona Segú. 2019. The impact of taxing vacancy on housing markets: Evidence from France. *Journal of Public Economics* 104079. [Crossref]
- 49. Kristina M. Bott, Alexander W. Cappelen, Erik Ø. Sørensen, Bertil Tungodden. 2019. You've Got Mail: A Randomized Field Experiment on Tax Evasion. *Management Science* . [Crossref]
- 50. Jacob Goldin, Daniel Reck. 2019. Revealed Preference Analysis with Framing Effects. *Journal of Political Economy*. [Crossref]
- 51. Jacquelyn Pless, Arthur A. van Benthem. 2019. Pass-Through as a Test for Market Power: An Application to Solar Subsidies. *American Economic Journal: Applied Economics* 11:4, 367-401. [Abstract] [View PDF article] [PDF with links]
- 52. Viola Angelini, Marco Bertoni, Luca Stella, Christoph T. Weiss. 2019. The ant or the grasshopper? The long-term consequences of Unilateral Divorce Laws on savings of European households. *European Economic Review* 119, 97-113. [Crossref]
- 53. Johanna Brühl, Grant Smith, Martine Visser. 2019. Simple is good: Redesigning utility bills to reduce complexity and increase understanding. *Utilities Policy* **60**, 100934. [Crossref]
- 54. Wenjing Gao, Yao Lu, Xinzheng Shi. 2019. TRADE LIBERALIZATION AND CORPORATE INCOME TAX AVOIDANCE. *Economic Inquiry* 57:4, 1963-1980. [Crossref]
- 55. Hans-Theo Normann, Tobias Wenzel. 2019. Shrouding Add-On Information: An Experimental Study. *The Scandinavian Journal of Economics* **121**:4, 1705-1727. [Crossref]
- 56. Johannes Becker, Jonas Fooken, Melanie Steinhoff. 2019. Behavioral Effects of Withholding Taxes on Labor Supply. *The Scandinavian Journal of Economics* 121:4, 1417-1440. [Crossref]
- 57. Bladimir Carrillo. 2019. Present Bias and Underinvestment in Education? Long-run Effects of Childhood Exposure to Booms in Colombia. *Journal of Labor Economics*. [Crossref]

- 58. Alex Rees-Jones, Dmitry Taubinsky. 2019. Measuring "Schmeduling". *The Review of Economic Studies* 108. . [Crossref]
- 59. Marco Savioli, Lorenzo Zirulia. 2019. Does add-on presence always lead to lower baseline prices? Theory and evidence. *Journal of Economics* 81. . [Crossref]
- 60. Aria Ardalan, Sebastian G. Kessing. 2019. Tax pass-through in the European beer market. *Empirical Economics* 81. . [Crossref]
- 61. Norman Gemmell, Derek Gill, Loc Nguyen. 2019. Modelling public expenditure growth in New Zealand, 1972–2015. *New Zealand Economic Papers* **53**:3, 215-244. [Crossref]
- 62. Isaac William Martin, Jane Lilly Lopez, Lauren Olsen. 2019. Policy Design and the Politics of City Revenue: Evidence from California Municipal Ballot Measures. *Urban Affairs Review* 55:5, 1312-1338. [Crossref]
- 63. Jeffrey D. Shulman, Xianjun Geng. 2019. Does It Pay to Shroud In-App Purchase Prices?. *Information Systems Research* **30**:3, 856-871. [Crossref]
- 64. Eric Ohrn, Nathan Seegert. 2019. The impact of investor-level taxation on mergers and acquisitions. *Journal of Public Economics* 177, 104038. [Crossref]
- 65. Davide Cerruti, Anna Alberini, Joshua Linn. 2019. Charging Drivers by the Pound: How Does the UK Vehicle Tax System Affect CO2 Emissions?. *Environmental and Resource Economics* 74:1, 99-129. [Crossref]
- 66. Giorgia Maffini, Jing Xing, Michael P. Devereux. 2019. The Impact of Investment Incentives: Evidence from UK Corporation Tax Returns. *American Economic Journal: Economic Policy* 11:3, 361-389. [Abstract] [View PDF article] [PDF with links]
- 67. Yongzheng Liu, Jie Mao. 2019. How Do Tax Incentives Affect Investment and Productivity? Firm—Level Evidence from China. *American Economic Journal: Economic Policy* 11:3, 261-291. [Abstract] [View PDF article] [PDF with links]
- 68. Linda Thunström, Chian Jones Ritten. 2019. Endogenous attention to costs. *Journal of Risk and Uncertainty* 59:1, 1-22. [Crossref]
- 69. Gopal Das, Rajat Roy. 2019. How self-construal guides preference for partitioned versus combined pricing. *Journal of Business Research* 101, 152-160. [Crossref]
- 70. Jean Hindriks, Valerio Serse. 2019. Heterogeneity in the tax pass-through to spirit retail prices: Evidence from Belgium. *Journal of Public Economics* 176, 142-160. [Crossref]
- 71. Hunt Allcott, Benjamin B Lockwood, Dmitry Taubinsky. 2019. Regressive Sin Taxes, with an Application to the Optimal Soda Tax*. *The Quarterly Journal of Economics* 134:3, 1557-1626. [Crossref]
- 72. Joshua K Abbott, U Rashid Sumaila. 2019. Reducing Marine Plastic Pollution: Policy Insights from Economics. *Review of Environmental Economics and Policy* 13:2, 327-336. [Crossref]
- 73. Anna Alberini. 2019. Revealed versus Stated Preferences: What Have We Learned About Valuation and Behavior?. Review of Environmental Economics and Policy 13:2, 283-298. [Crossref]
- 74. Andrea Lopez-Luzuriaga, Carlos Scartascini. 2019. Compliance spillovers across taxes: The role of penalties and detection. *Journal of Economic Behavior & Organization* **164**, 518-534. [Crossref]
- 75. Mark R. Jacobsen, Christopher R. Knittel, James M Sallee, Arthur A. van Benthem. 2019. The Use of Regression Statistics to Analyze Imperfect Pricing Policies. *Journal of Political Economy*. [Crossref]
- 76. Victoria Ateca-Amestoy, Javier Gardeazabal, Arantza Ugidos. 2019. On the response of household expenditure on cinema and performing arts to changes in indirect taxation: a natural experiment in Spain. *Journal of Cultural Economics* 72. . [Crossref]

- 77. Kris Bachus, Luc Van Ootegem, Elsy Verhofstadt. 2019. 'No taxation without hypothecation': towards an improved understanding of the acceptability of an environmental tax reform. *Journal of Environmental Policy & Planning* 21:4, 321-332. [Crossref]
- 78. Namryoung Lee, Charles Swenson. 2019. Solving the tax evasion problem by co-opting the public: the Korean cash receipts system. *Asia-Pacific Journal of Accounting & Economics* **26**:4, 362-381. [Crossref]
- 79. Ernest Baskin, Sean P. Coary. 2019. Implications of the Philadelphia Beverage Tax on Sales and Beverage Substitution for a Major Grocery Retailer Chain. *Journal of International Food & Agribusiness Marketing* 31:3, 293-307. [Crossref]
- 80. Bingxiao Wu. 2019. Information presentation and consumer choice: Evidence from Assisted Reproductive Technology (ART) Success Rate Reports. *Health Economics* 28:7, 868-883. [Crossref]
- 81. Garth Heutel. 2019. Prospect theory and energy efficiency. *Journal of Environmental Economics and Management* **96**, 236-254. [Crossref]
- 82. Haizhen Lin, Daniel W. Sacks. 2019. Intertemporal substitution in health care demand: Evidence from the RAND Health Insurance Experiment. *Journal of Public Economics* 175, 29-43. [Crossref]
- 83. Brian M. Mills, Mark S. Rosentraub, Gidon Jakar. 2019. Tourist tax elasticity in Florida: Spatial effects of county-level room tax rate variation. *Tourism Management Perspectives* 31, 174-183. [Crossref]
- 84. Hualu Zheng, Lu Huang, William Ross. 2019. Reducing Obesity by Taxing Soft Drinks: Tax Salience and Firms' Strategic Responses. *Journal of Public Policy & Marketing* 38:3, 297-315. [Crossref]
- 85. Kenneth Shores, Matthew P. Steinberg. 2019. Schooling During the Great Recession: Patterns of School Spending and Student Achievement Using Population Data. *AERA Open* 5:3, 233285841987743. [Crossref]
- 86. Bhavani Shanker Uppari, Sameer Hasija. 2019. Modeling Newsvendor Behavior: A Prospect Theory Approach. *Manufacturing & Service Operations Management* 21:3, 481-500. [Crossref]
- 87. Rebecca L. C. Taylor, Scott Kaplan, Sofia B. Villas-Boas, Kevin Jung. 2019. SODA WARS: THE EFFECT OF A SODA TAX ELECTION ON UNIVERSITY BEVERAGE SALES. *Economic Inquiry* 57:3, 1480-1496. [Crossref]
- 88. Matthew Wibbenmeyer, Sarah E. Anderson, Andrew J. Plantinga. 2019. SALIENCE AND THE GOVERNMENT PROVISION OF PUBLIC GOODS. *Economic Inquiry* **57**:3, 1547-1567. [Crossref]
- 89. Laura Dague, Joanna N Lahey. 2019. Causal Inference Methods: Lessons from Applied Microeconomics. *Journal of Public Administration Research and Theory* 29:3, 511-529. [Crossref]
- 90. E. Glen Weyl. 2019. Price Theory. *Journal of Economic Literature* 57:2, 329-384. [Abstract] [View PDF article] [PDF with links]
- 91. Emanuele Bracco, Francesco Porcelli, Michela Redoano. 2019. Political competition, tax salience and accountability. Theory and evidence from Italy. *European Journal of Political Economy* **58**, 138-163. [Crossref]
- 92. Martin Fochmann, Nadja Wolf. 2019. Framing and salience effects in tax evasion decisions An experiment on underreporting and overdeducting. *Journal of Economic Psychology* **72**, 260-277. [Crossref]
- 93. Erik Lie. 2019. Investor Inattention and Stock Prices: Evidence from Acquisitions with a Choice of Payment Type. *Journal of Financial and Quantitative Analysis* 54:3, 1347-1369. [Crossref]
- 94. Scott R. Baker, Lorenz Kueng, Leslie McGranahan, Brian T. Melzer. 2019. Do Household Finances Constrain Unconventional Fiscal Policy?. *Tax Policy and the Economy* 33, 1-32. [Crossref]
- 95. Alan J. Auerbach. 2019. Tax Equivalences and Their Implications. *Tax Policy and the Economy* 33, 81-107. [Crossref]

- 96. Andrew Carter, Robert Breunig. 2019. Do Earned Income Tax Credits for Older Workers Prolong Labour Market Participation and Boost Earned Income? Evidence from Australia's Mature Age Worker Tax Offset. *Economic Record* 95:309, 200-226. [Crossref]
- 97. Changyuan Luo, Qingyuan Chai, Huiyao Chen. 2019. "Going global" and FDI inflows in China: "One Belt & One Road" initiative as a quasi-natural experiment. *The World Economy* **42**:6, 1654-1672. [Crossref]
- 98. Serafin Grundl, You Suk Kim. 2019. Consumer mistakes and advertising: The case of mortgage refinancing. *Quantitative Marketing and Economics* 17:2, 161-213. [Crossref]
- 99. Sally Sadoff, Anya Samek, Charles Sprenger. 2019. Dynamic Inconsistency in Food Choice: Experimental Evidence from Two Food Deserts. *The Review of Economic Studies* 105. . [Crossref]
- 100. Erica Myers. 2019. Are Home Buyers Inattentive? Evidence from Capitalization of Energy Costs. *American Economic Journal: Economic Policy* 11:2, 165-188. [Abstract] [View PDF article] [PDF with links]
- 101. Di Xiang, Chad Lawley. 2019. The impact of British Columbia's carbon tax on residential natural gas consumption. *Energy Economics* **80**, 206-218. [Crossref]
- 102. A.V. Chari, Peter Glick, Edward Okeke, Sinduja V. Srinivasan. 2019. Workfare and infant health: Evidence from India's public works program. *Journal of Development Economics* 138, 116-134. [Crossref]
- 103. Hyuncheol Bryant Kim, Suejin A. Lee, Wilfredo Lim. 2019. Knowing is not half the battle: Impacts of information from the National Health Screening Program in Korea. *Journal of Health Economics* **65**, 1-14. [Crossref]
- 104. Andrew Caplin, Mark Dean, John Leahy. 2019. Rational Inattention, Optimal Consideration Sets, and Stochastic Choice. *The Review of Economic Studies* 86:3, 1061-1094. [Crossref]
- 105. Christina M Dalton, Gautam Gowrisankaran, Robert J Town. 2019. Salience, Myopia, and Complex Dynamic Incentives: Evidence from Medicare Part D. *The Review of Economic Studies* 101. . [Crossref]
- 106. Catherine Larochelle, Jeffrey Alwang, Elli Travis, Victor Hugo Barrera, Juan Manuel Dominguez Andrade. 2019. Did You Really Get the Message? Using Text Reminders to Stimulate Adoption of Agricultural Technologies. *The Journal of Development Studies* 55:4, 548-564. [Crossref]
- 107. David R Just, Anne T Byrne. 2019. Evidence-based policy and food consumer behaviour: how empirical challenges shape the evidence. *European Review of Agricultural Economics* **92**. . [Crossref]
- 108. Donatella Baiardi, Paola Profeta, Riccardo Puglisi, Simona Scabrosetti. 2019. Tax policy and economic growth: does it really matter?. *International Tax and Public Finance* 26:2, 282-316. [Crossref]
- 109. Boqiang Lin, Junpeng Zhu. 2019. Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China. *Applied Energy* **239**, 12-22. [Crossref]
- 110. Kunlun Wang, Hongchun Yin, Yiwen Chen. 2019. The effect of environmental regulation on air quality: A study of new ambient air quality standards in China. *Journal of Cleaner Production* 215, 268–279. [Crossref]
- 111. Mark A Andor, Andreas Gerster, Lorenz Götte. 2019. How effective is the European Union energy label? Evidence from a real-stakes experiment. *Environmental Research Letters* 14:4, 044001. [Crossref]
- 112. Alari Paulus, Holly Sutherland, Iva Tasseva. 2019. Indexing Out of Poverty? Fiscal Drag and Benefit Erosion in Cross-National Perspective. *Review of Income and Wealth* 107. . [Crossref]
- 113. Jonas Hjort, Jonas Poulsen. 2019. The Arrival of Fast Internet and Employment in Africa. *American Economic Review* 109:3, 1032-1079. [Abstract] [View PDF article] [PDF with links]
- 114. Javier Cano-Urbina, Christopher M. Clapp, Kevin Willardsen. 2019. The effects of the BP Deepwater Horizon oil spill on housing markets. *Journal of Housing Economics* **43**, 131-156. [Crossref]

- 115. Mathias Dolls, Philipp Doerrenberg, Andreas Peichl, Holger Stichnoth. 2019. Reprint of: Do retirement savings increase in response to information about retirement and expected pensions?. *Journal of Public Economics* 171, 105-116. [Crossref]
- 116. Hunt Allcott, Christopher Knittel. 2019. Are Consumers Poorly Informed about Fuel Economy? Evidence from Two Experiments. *American Economic Journal: Economic Policy* 11:1, 1-37. [Abstract] [View PDF article] [PDF with links]
- 117. Emiliano Huet-Vaughn. 2019. Stimulating the Vote: ARRA Road Spending and Vote Share. *American Economic Journal: Economic Policy* 11:1, 292-316. [Abstract] [View PDF article] [PDF with links]
- 118. Prithwiraj Choudhury, Do Yoon Kim. 2019. The ethnic migrant inventor effect: Codification and recombination of knowledge across borders. *Strategic Management Journal* 40:2, 203-229. [Crossref]
- 119. Guanchun Liu, Chengsi Zhang. 2019. Economic policy uncertainty and firms' investment and financing decisions in China. *China Economic Review*. [Crossref]
- 120. Wenjie Wu, Mark (Xin) Wang, Fangni Zhang. 2019. Commuting behavior and congestion satisfaction: Evidence from Beijing, China. *Transportation Research Part D: Transport and Environment* 67, 553-564. [Crossref]
- 121. Erika Deserranno. 2019. Financial Incentives as Signals: Experimental Evidence from the Recruitment of Village Promoters in Uganda. *American Economic Journal: Applied Economics* 11:1, 277-317. [Abstract] [View PDF article] [PDF with links]
- 122. Mark Schelker. Mark Schelker Recommends "Salience and Taxation: Theory and Evidence" by Raj Chetty, Adam Looney, and Kory Kroft 109-110. [Crossref]
- 123. Rachel Griffith, Aviv Nevo. Marketing and public policy 553-596. [Crossref]
- 124. Xavier Gabaix. Behavioral inattention 261-343. [Crossref]
- 125. C. Königsheim, M. Lukas, M. Nöth. 2019. Salience theory: Calibration and heterogeneity in probability distortion. *Journal of Economic Behavior & Organization* 157, 477-495. [Crossref]
- 126. Robert Dur, Ben Vollaard. 2019. Salience of law enforcement: A field experiment. *Journal of Environmental Economics and Management* 93, 208-220. [Crossref]
- 127. Rebecca L.C. Taylor. 2019. Bag leakage: The effect of disposable carryout bag regulations on unregulated bags. *Journal of Environmental Economics and Management* 93, 254-271. [Crossref]
- 128. Stefan Goldbach, Arne J. Nagengast, Elias Steinmüller, Georg Wamser. 2019. The effect of investing abroad on investment at home: On the role of technology, tax savings, and internal capital markets. *Journal of International Economics* 116, 58-73. [Crossref]
- 129. Roberto Dell'Anno, Jorge Martinez-Vazquez. 2019. A problem with observational equivalence: Disentangling the renter illusion hypothesis. *Urban Studies* **56**:1, 193-209. [Crossref]
- 130. Xiaomin Li, Colin F. Camerer. 2019. Using Visual Salience in Empirical Game Theory. SSRN Electronic Journal . [Crossref]
- 131. Hanna Hoover. 2019. Default Tip Suggestions in NYC Taxi Cabs. SSRN Electronic Journal . [Crossref]
- 132. Matias D. Cattaneo, Richard K. Crump, Max Farrell, Yingjie Feng. 2019. On Binscatter. SSRN Electronic Journal. [Crossref]
- 133. Bladimir Carrillo Bermúdez. 2019. Present Bias and Underinvestment in Education? Long-Run Effects of Childhood Exposure to Booms in Colombia. SSRN Electronic Journal . [Crossref]
- 134. Jon P. Nelson, John R. Moran. 2019. Are Alcohol Excise Taxes Overshifted to Prices? Systematic Review and Meta-Analysis of Empirical Evidence From 29 Studies. SSRN Electronic Journal . [Crossref]

- 135. Anna Alberini, Olha Khymych, Milan Ščasný. 2019. Estimating Energy Price Elasticities When Salience Is High: Residential Natural Gas Demand in Ukraine. SSRN Electronic Journal. [Crossref]
- 136. Davide Cerruti, Claudio Daminato, Massimo Filippini. 2019. The Impact of Policy Awareness: Evidence from Vehicle Choices Response to Fiscal Incentives. SSRN Electronic Journal. [Crossref]
- 137. Wen-Tai Hsu, Yi Lu, Xuan Luo, Lianming Zhu. 2019. Does Foreign Direct Investment Lead to Industrial Agglomeration?. SSRN Electronic Journal. [Crossref]
- 138. Anna Alberini, Olha Khymych, Milan Scasny. 2019. The Elusive Effects of Residential Energy Efficiency Improvements: Evidence from Ukraine. SSRN Electronic Journal. [Crossref]
- 139. Drury D. Stevenson. 2019. The Urgent Need for Legal Scholarship on Firearm Policy. SSRN Electronic Journal. [Crossref]
- 140. Francesco Nicolai, Marco Pelosi, Simona Risteska. 2019. Living on the Edge: the Salience of Property Taxes in the UK Housing Market. SSRN Electronic Journal . [Crossref]
- 141. Cloe Garnache, Todd Guilfoos. 2019. Does the Salience of Risk Affect Large, Risky Asset Purchases?. SSRN Electronic Journal. [Crossref]
- 142. Ghazala Azmat. 2019. Incidence, salience, and spillovers: The direct and indirect effects of tax credits on wages. *Quantitative Economics* **10**:1, 239-273. [Crossref]
- 143. Avner Strulov-Shlain. 2019. More than a Penny's Worth: Left-Digit Bias and Firm Pricing. SSRN Electronic Journal. [Crossref]
- 144. Benito Arruñada. 2019. The Impact of Experience on How We Perceive the Rule of Law. SSRN Electronic Journal. [Crossref]
- 145. Panle Jia Barwick, Shanjun Li, Lin Liguo, Eric Zou. 2019. From Fog to Smog: The Value of Pollution Information. SSRN Electronic Journal. [Crossref]
- 146. John Gathergood, George F. Loewenstein, Edika Quispe-Torreblanca, Neil Stewart. 2019. Investor Attention, Reference Points and the Disposition Effect. SSRN Electronic Journal . [Crossref]
- 147. Ezra G. Goldstein. 2019. Communication Costs in Science: Evidence from the National Science Foundation Network. SSRN Electronic Journal . [Crossref]
- 148. Daniel Cahill, Zhangxin (Frank) Liu. 2019. Limitations in an Imitation Game: Lessons from another Bitcoin Copycat. *SSRN Electronic Journal* . [Crossref]
- 149. Radu Vranceanu, Angela Sutan, Delphine Dubart. 2019. Discontent with Taxes and the Timing of Taxation: Experimental Evidence. *Revue économique* **70**:6, 1227. [Crossref]
- 150. Nicolas Carayol, Matthew O. Jackson. 2019. Evaluating the Underlying Qualities of Items and Raters from a Series of Reviews. SSRN Electronic Journal . [Crossref]
- 151. Niklas Elert, Magnus Henrekson, Mark Sanders. Taxation and Entrepreneurship 35-51. [Crossref]
- 152. William J. Bazley, Jordan Moore, Melina Murren Vosse. 2019. Taxing the Disposition Effect: The Impact of Tax Awareness on Investor Behavior. SSRN Electronic Journal . [Crossref]
- 153. Takanori Ida, Ryo Okui. 2019. Can Information Alleviate Overconfidence? A Randomized Experiment on Financial Market Predictions. SSRN Electronic Journal . [Crossref]
- 154. Scott Rick, Gabriele Paolacci, Katherine Burson. 2018. Income tax and the motivation to work. *Journal of Behavioral Decision Making* 31:5, 619-631. [Crossref]
- 155. Florian Buhlmann, Benjamin Elsner, Andreas Peichl. 2018. Tax refunds and income manipulation: evidence from the EITC. *International Tax and Public Finance* 25:6, 1490-1518. [Crossref]
- 156. Sarah Hofmann, Andrea Mühlenweg. 2018. Learning intensity effects in students' mental and physical health Evidence from a large scale natural experiment in Germany. *Economics of Education Review* **67**, 216-234. [Crossref]

- 157. Fabian Paetzel, Jan Lorenz, Markus Tepe. 2018. Transparency diminishes framing-effects in voting on redistribution: Some experimental evidence. *European Journal of Political Economy* 55, 169-184. [Crossref]
- 158. Eric J. Brunner, Mark D. Robbins, Bill Simonsen. 2018. Information, Tax Salience, and Support for School Bond Referenda. *Public Budgeting & Finance* 38:4, 52-73. [Crossref]
- 159. Stephen Gibbons, Maria Sanchez-Vidal, Olmo Silva. 2018. The bedroom tax. *Regional Science and Urban Economics* 103418. [Crossref]
- 160. Igor Kopylov, Joshua Miller. 2018. Subjective beliefs and confidence when facts are forgotten. *Journal of Risk and Uncertainty* 57:3, 281-299. [Crossref]
- 161. Tatiana A. Homonoff. 2018. Can Small Incentives Have Large Effects? The Impact of Taxes versus Bonuses on Disposable Bag Use. *American Economic Journal: Economic Policy* 10:4, 177-210. [Abstract] [View PDF article] [PDF with links]
- 162. Yan Song, Douglas Barthold. 2018. The effects of state-level pharmacist regulations on generic substitution of prescription drugs. *Health Economics* 27:11, 1717-1737. [Crossref]
- 163. Quinn Keefer, Galib Rustamov. 2018. Limited attention in residential energy markets: a regression discontinuity approach. *Empirical Economics* **55**:3, 993-1017. [Crossref]
- 164. Andreas Mense. 2018. The Value of Energy Efficiency and the Role of Expected Heating Costs. Environmental and Resource Economics 71:3, 671-701. [Crossref]
- 165. Alberto Salvo. 2018. Flexible fuel vehicles, less flexible minded consumers: Price information experiments at the pump. *Journal of Environmental Economics and Management* 92, 194-221. [Crossref]
- 166. Renato Gomes, Jean Tirole. 2018. Missed Sales and the Pricing of Ancillary Goods*. *The Quarterly Journal of Economics* 133:4, 2097-2169. [Crossref]
- 167. James C. Cox, Mark Rider, Astha Sen. 2018. Tax Incidence. *Public Finance Review* 46:6, 899-925. [Crossref]
- 168. Xiao Liu, Alan Montgomery, Kannan Srinivasan. 2018. Analyzing Bank Overdraft Fees with Big Data. *Marketing Science* **37**:6, 855-882. [Crossref]
- 169. Jeffrey Allen, Shanthi Nataraj, Tyler C. Schipper. 2018. Strict duality and overlapping productivity distributions between formal and informal firms. *Journal of Development Economics* 135, 534-554. [Crossref]
- 170. Jae-Won Kang, Hyungun Sung. 2018. Impact on Land Use Change in Rail Station Areas Using the Triple Difference Regression Modeling: Focusing on the Ten-Years Operation since Opening of Subway Line 1 in the Daejeon metropolitan city. *Journal of Korea Planning Association* 53:5, 171-183. [Crossref]
- 171. Vanessa S. Williamson. 2018. Who are "The Taxpayers"?. The Forum 16:3, 399-418. [Crossref]
- 172. Petr Houdek, Petr Koblovský, Daniel Šťastný, Marek Vranka. 2018. Consumer Decision Making in the Information Age. *Society* **55**:5, 422-429. [Crossref]
- 173. DEREK MESSACAR. 2018. The effect of tax withholding on pre-retirement savings withdrawals: evidence from Canada. *Journal of Pension Economics and Finance* 17:4, 534-553. [Crossref]
- 174. Dmitry Taubinsky, Alex Rees-Jones. 2018. Attention Variation and Welfare: Theory and Evidence from a Tax Salience Experiment. *The Review of Economic Studies* **85**:4, 2462-2496. [Crossref]
- 175. Christian N. Brinch, Dennis Fredriksen, Ola L. Vestad. 2018. Life Expectancy and Claiming Behavior in a Flexible Pension System. *The Scandinavian Journal of Economics* **120**:4, 979-1010. [Crossref]

- 176. Derek Messacar. 2018. Crowd-Out, Education, and Employer Contributions to Workplace Pensions: Evidence from Canadian Tax Records. *The Review of Economics and Statistics* 100:4, 648-663. [Crossref]
- 177. Abigail B. Sussman, Shannon M. White. 2018. Negative Responses to Taxes: Causes and Mitigation. *Policy Insights from the Behavioral and Brain Sciences* 5:2, 224-231. [Crossref]
- 178. Marc Fleurbaey, François Maniquet. 2018. Optimal Income Taxation Theory and Principles of Fairness. *Journal of Economic Literature* 56:3, 1029-1079. [Abstract] [View PDF article] [PDF with links]
- 179. Richard W. Patterson. 2018. Can behavioral tools improve online student outcomes? Experimental evidence from a massive open online course. *Journal of Economic Behavior & Organization* 153, 293-321. [Crossref]
- 180. Linda Thunström, Ben Gilbert, Chian Jones Ritten. 2018. Nudges that hurt those already hurting distributional and unintended effects of salience nudges*. *Journal of Economic Behavior & Organization* 153, 267-282. [Crossref]
- 181. Izumi Yokoyama. 2018. How the tax reform on the special exemption for spouse affected the work-hour distribution. *Journal of the Japanese and International Economies* **49**, 69-84. [Crossref]
- 182. Sarah E Gollust, Xuyang Tang, Carlisle Ford Runge, Simone A French, Alexander J Rothman. 2018. The effect of proportional v. value pricing on fountain drink purchases: results from a field experiment. *Public Health Nutrition* 21:13, 2518-2522. [Crossref]
- 183. Isaac William Martin, Nadav Gabay. 2018. Tax policy and tax protest in 20 rich democracies, 1980-2010. *The British Journal of Sociology* **69**:3, 647-669. [Crossref]
- 184. Syed Hasan, Mathias Sinning. 2018. GST Reform in Australia: Implications of Estimating Price Elasticities of Demand for Food. *Economic Record* 94:306, 239-254. [Crossref]
- 185. Jarkko Harju, Tuomas Kosonen, Oskar Nordström Skans. 2018. Firm types, price-setting strategies, and consumption-tax incidence. *Journal of Public Economics* 165, 48-72. [Crossref]
- 186. Haoyuan Ding, Cong Qin, Kang Shi. 2018. Development through electrification: Evidence from rural China. *China Economic Review* **50**, 313-328. [Crossref]
- 187. BRIAN BAUGH, ITZHAK BEN-DAVID, HOONSUK PARK. 2018. Can Taxes Shape an Industry? Evidence from the Implementation of the "Amazon Tax". *The Journal of Finance* **73**:4, 1819-1855. [Crossref]
- 188. Andrea Morone, Francesco Nemore, Simone Nuzzo. 2018. Experimental evidence on tax salience and tax incidence. *Journal of Public Economic Theory* **20**:4, 582-612. [Crossref]
- 189. David Klenert, Linus Mattauch, Emmanuel Combet, Ottmar Edenhofer, Cameron Hepburn, Ryan Rafaty, Nicholas Stern. 2018. Making carbon pricing work for citizens. *Nature Climate Change* **8**:8, 669-677. [Crossref]
- 190. Jason Abaluck, Jonathan Gruber, Ashley Swanson. 2018. Prescription drug use under Medicare Part D: A linear model of nonlinear budget sets. *Journal of Public Economics* 164, 106-138. [Crossref]
- 191. Cheng Cheng, Wei Long. 2018. Improving police services: Evidence from the French Quarter Task Force. *Journal of Public Economics* **164**, 1-18. [Crossref]
- 192. Yvonne Jie Chen, Pei Li, Yi Lu. 2018. Career concerns and multitasking local bureaucrats: Evidence of a target-based performance evaluation system in China. *Journal of Development Economics* 133, 84-101. [Crossref]
- 193. Tom Y Chang, Wei Huang, Yongxiang Wang. 2018. Something in the Air: Pollution and the Demand for Health Insurance. *The Review of Economic Studies* **85**:3, 1609-1634. [Crossref]
- 194. Daniel F. Stone, Jeremy Arkes. 2018. MARCH MADNESS? UNDERREACTION TO HOT AND COLD HANDS IN NCAA BASKETBALL. *Economic Inquiry* **56**:3, 1724-1747. [Crossref]

- 195. David P. Byrne, Andrea La Nauze, Leslie A. Martin. 2018. Tell Me Something I Don't Already Know: Informedness and the Impact of Information Programs. *The Review of Economics and Statistics* 100:3, 510-527. [Crossref]
- 196. Justin M. Ross, Siân Mughan. 2018. The Effect of Fiscal Illusion on Public Sector Financial Management. *Public Finance Review* 46:4, 635-664. [Crossref]
- 197. Luca A. Panzone, Alistair Ulph, Daniel John Zizzo, Denis Hilton, Adrian Clear. 2018. The impact of environmental recall and carbon taxation on the carbon footprint of supermarket shopping. *Journal of Environmental Economics and Management*. [Crossref]
- 198. Andreas Buehn, Roberto Dell'Anno, Friedrich Schneider. 2018. Exploring the dark side of tax policy: an analysis of the interactions between fiscal illusion and the shadow economy. *Empirical Economics* 54:4, 1609-1630. [Crossref]
- 199. Sébastien Houde. 2018. How consumers respond to product certification and the value of energy information. *The RAND Journal of Economics* **49**:2, 453-477. [Crossref]
- 200. Florian Englmaier, Arno Schmöller, Till Stowasser. 2018. Price Discontinuities in an Online Market for Used Cars. *Management Science* 64:6, 2754-2766. [Crossref]
- 201. Per Engström, Eskil Forsell. 2018. Demand effects of consumers' stated and revealed preferences. Journal of Economic Behavior & Organization 150, 43-61. [Crossref]
- 202. Hunt Allcott, Benjamin Lockwood, Dmitry Taubinsky. 2018. Ramsey Strikes Back: Optimal Commodity Taxes and Redistribution in the Presence of Salience Effects. AEA Papers and Proceedings 108, 88-92. [Abstract] [View PDF article] [PDF with links]
- 203. Jacob Goldin, Daniel Reck. 2018. Rationalizations and Mistakes: Optimal Policy with Normative Ambiguity. *AEA Papers and Proceedings* **108**, 98-102. [Abstract] [View PDF article] [PDF with links]
- 204. Eric Ohrn. 2018. The Effect of Corporate Taxation on Investment and Financial Policy: Evidence from the DPAD. *American Economic Journal: Economic Policy* 10:2, 272-301. [Abstract] [View PDF article] [PDF with links]
- 205. Sebastien Bradley. 2018. Assessment limits and timing of real estate transactions. *Regional Science and Urban Economics* **70**, 360-372. [Crossref]
- 206. PETRA PERSSON. 2018. Attention manipulation and information overload. *Behavioural Public Policy* 2:1, 78-106. [Crossref]
- 207. Alex Rees-Jones, Dmitry Taubinsky. 2018. Taxing Humans: Pitfalls of the Mechanism Design Approach and Potential Resolutions. *Tax Policy and the Economy* **32**:1, 107-133. [Crossref]
- 208. Peter Ganong, Simon Jäger. 2018. A Permutation Test for the Regression Kink Design. *Journal of the American Statistical Association* 113:522, 494-504. [Crossref]
- 209. Malte F. Dold. 2018. Back to Buchanan? Explorations of welfare and subjectivism in behavioral economics. *Journal of Economic Methodology* 25:2, 160-178. [Crossref]
- 210. Dominic P. Parker, Walter N. Thurman. 2018. Tax Incentives and the Price of Conservation. *Journal of the Association of Environmental and Resource Economists* 5:2, 331-369. [Crossref]
- 211. Jonathan de Quidt. 2018. Your Loss Is My Gain: A Recruitment Experiment with Framed Incentives. Journal of the European Economic Association 16:2, 522-559. [Crossref]
- 212. SULE ALAN, MEHMET CEMALCILAR, DEAN KARLAN, JONATHAN ZINMAN. 2018. Unshrouding: Evidence from Bank Overdrafts in Turkey. *The Journal of Finance* **73**:2, 481-522. [Crossref]
- 213. Gal Wettstein. 2018. The Affordable Care Act's insurance market regulations' effect on coverage. Health Economics 27:3, 454-464. [Crossref]

- 214. Anna Alberini. 2018. Household energy use, energy efficiency, emissions, and behaviors. *Energy Efficiency* 11:3, 577-588. [Crossref]
- 215. Zhihua Xiao, Murray Fulton. 2018. Underinvestment in Producer-Funded Agricultural R&D: The Role of the Horizon Problem. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie 66:1, 55-86. [Crossref]
- 216. Anne Marie Thow, Shauna M Downs, Christopher Mayes, Helen Trevena, Temo Waqanivalu, John Cawley. 2018. Fiscal policy to improve diets and prevent noncommunicable diseases: from recommendations to action. *Bulletin of the World Health Organization* **96**:3, 201-210. [Crossref]
- 217. Andreas Friedl,, Felix Gelhaar,, Patrick Ring,, Christoph Schütt. 2018. Global Nudging als Politikkonzept zur Bewältigung globaler Herausforderungen. *Vierteljahrshefte zur Wirtschaftsforschung* 87:1, 93-103. [Crossref]
- 218. Anthony Heyes, Thomas P. Lyon, Steve Martin. 2018. Salience games: Private politics when public attention is limited. *Journal of Environmental Economics and Management* 88, 396-410. [Crossref]
- 219. Benjamin Handel, Joshua Schwartzstein. 2018. Frictions or Mental Gaps: What's Behind the Information We (Don't) Use and When Do We Care?. *Journal of Economic Perspectives* **32**:1, 155-178. [Abstract] [View PDF article] [PDF with links]
- 220. Kai Gehring, Stephan A. Schneider. 2018. Towards the Greater Good? EU Commissioners' Nationality and Budget Allocation in the European Union. *American Economic Journal: Economic Policy* 10:1, 214-239. [Abstract] [View PDF article] [PDF with links]
- 221. Koichiro Ito, Takanori Ida, Makoto Tanaka. 2018. Moral Suasion and Economic Incentives: Field Experimental Evidence from Energy Demand. *American Economic Journal: Economic Policy* 10:1, 240-267. [Abstract] [View PDF article] [PDF with links]
- 222. Mathias Dolls, Philipp Doerrenberg, Andreas Peichl, Holger Stichnoth. 2018. Do retirement savings increase in response to information about retirement and expected pensions?. *Journal of Public Economics* 158, 168-179. [Crossref]
- 223. Ben S. Meiselman. 2018. Ghostbusting in Detroit: Evidence on nonfilers from a controlled field experiment. *Journal of Public Economics* **158**, 180-193. [Crossref]
- 224. Helen G. Levy, Edward C. Norton, Jeffrey A. Smith. 2018. Tobacco Regulation and Cost-Benefit Analysis: How Should We Value Foregone Consumer Surplus?. *American Journal of Health Economics* 4:1, 1-25. [Crossref]
- 225. Dongyoung Kim, Young-I Albert Kim. 2018. Mental health cost of terrorism: Study of the Charlie Hebdo attack in Paris. *Health Economics* 27:1, e1-e14. [Crossref]
- 226. Henk-Wim de Boer, Egbert Jongen, Mauro Mastrogiacomo. Tax-Benefit Reforms and Structural Models for Labour Supply 239-264. [Crossref]
- 227. Maximilian Zieser. Verhaltenslenkung durch Steuern und Nudging 121-143. [Crossref]
- 228. Felix Schläpfer, Christian Fichter. Gesellschaft 241-262. [Crossref]
- 229. Yukinori Iwata. 2018. Salience and limited attention. *Social Choice and Welfare* **50**:1, 123-146. [Crossref]
- 230. B. Douglas Bernheim, Dmitry Taubinsky. Behavioral Public Economics 381-516. [Crossref]
- 231. Stefano Della Vigna. Structural Behavioral Economics 613-723. [Crossref]
- 232. Paul Heidhues, Botond Kőszegi. Behavioral Industrial Organization 517-612. [Crossref]
- 233. Laura Cornelsen, Richard D. Smith. 2018. Viewpoint: Soda taxes Four questions economists need to address. *Food Policy* 74, 138-142. [Crossref]

- 234. Bruno Lanz, Jules-Daniel Wurlod, Luca Panzone, Timothy Swanson. 2018. The behavioral effect of Pigovian regulation: Evidence from a field experiment. *Journal of Environmental Economics and Management* 87, 190-205. [Crossref]
- 235. Zachary Bleemer, Basit Zafar. 2018. Intended college attendance: Evidence from an experiment on college returns and costs. *Journal of Public Economics* **157**, 184-211. [Crossref]
- 236. Christian Traxler, Franz G. Westermaier, Ansgar Wohlschlegel. 2018. Bunching on the Autobahn? Speeding responses to a 'notched' penalty scheme. *Journal of Public Economics* 157, 78-94. [Crossref]
- 237. J. Michael Collins, Carly Urban. 2018. The effects of a foreclosure moratorium on loan repayment behaviors. *Regional Science and Urban Economics* **68**, 73-83. [Crossref]
- 238. Douglas Kriner, Breanna Lechase, Rosella Cappella Zielinski. 2018. Self-interest, partisanship, and the conditional influence of taxation on support for war in the USA. *Conflict Management and Peace Science* 35:1, 43-64. [Crossref]
- 239. J.J. Prescott. 2018. Assessing Access-to-Justice Outreach Strategies. SSRN Electronic Journal . [Crossref]
- 240. Javier Canoo Urbina, Christopher M. Clapp, Kevin Willardsen. 2018. The Effects of the BP Deepwater Horizon Oil Spill on Housing Markets. SSRN Electronic Journal. [Crossref]
- 241. Eliezer M. Fich, Rachel Gordon, Adam S. Yore. 2018. Class Action Spillover Effects on Joint Venture Partners. SSRN Electronic Journal . [Crossref]
- 242. Mallick Hossain. 2018. A World Without Borders Revisited: The Impact of Online Sales Tax Collection on Shopping and Search. SSRN Electronic Journal. [Crossref]
- 243. Koichiro Ito, Takanori Ida, Makoto Tanaka. 2018. Moral Suasion and Economic Incentives: Field Experimental Evidence from Energy Demand. SSRN Electronic Journal . [Crossref]
- 244. Ike Brannon, Michelle Hanlon, Eric Miller. 2018. Internet Sales Taxes and the Discriminatory Burden on Remote Retailers An Economic Analysis. SSRN Electronic Journal . [Crossref]
- 245. Paul Schmitt, Francesco Bronzino, Renata Teixeira, Tithi Chattopadhyay, Nick Feamster. 2018. Enhancing Transparency: Internet Video Quality Inference from Network Traffic. SSRN Electronic Journal. [Crossref]
- 246. Yifei Mao, Jessie Jiaxu Wang. 2018. Labor Scarcity, Finance, and Innovation: Evidence from Antebellum America. SSRN Electronic Journal. [Crossref]
- 247. Marco Cosconati. 2018. No News is Good News: Moral Hazard in Oligopolistic Insurance Markets. SSRN Electronic Journal. [Crossref]
- 248. Mary Zaki. 2018. Interest Rates: Prices Hidden in Plain Sight. SSRN Electronic Journal . [Crossref]
- 249. Di Xiang, Lue Zhan, Massimo Bordignon. 2018. A Reconsideration of the Sugar Sweetened Beverage Tax in a Household Production Model. SSRN Electronic Journal . [Crossref]
- 250. Matthew Wibbenmeyer, Sarah Anderson, Andrew Plantinga. 2018. Salience and the Government Provision of Public Goods. SSRN Electronic Journal . [Crossref]
- 251. Itzhak Ben-David, Zhi Li, Zexi Wang. 2018. Financial Constraints and Industry Dynamics. SSRN Electronic Journal . [Crossref]
- 252. Ginger Zhe Jin, Michael Luca, Daniel Martin. 2018. Complex Disclosure. SSRN Electronic Journal . [Crossref]
- 253. Matthias Weber. 2018. Aspirations and Optimal Taxation: Lump-Sum and Proportional Taxes. SSRN Electronic Journal. [Crossref]
- 254. Nicolas Duquette, Alexandra Graddy-Reed, Mark Phillips. 2018. The Extent and Efficacy of State Charitable Contribution Income Tax Credits. SSRN Electronic Journal. [Crossref]

- 255. Robert V. Breunig, Andrew Carter. 2018. Do Earned Income Tax Credits for Older Workers Prolong Labor Market Participation and Boost Earned Income? Evidence from Australia's Mature Age Worker Tax Offset. SSRN Electronic Journal. [Crossref]
- 256. Song-Hee Kim, Jordan Tong, Carol Peden. 2018. The Effects of Occupancy Information Hurdles and Physician Admission Decision Noise on Hospital Unit Utilization. SSRN Electronic Journal. [Crossref]
- 257. Geoffrey de Clippel, Kareen Rozen. 2018. Consumer Theory with Misperceived Tastes. SSRN Electronic Journal. [Crossref]
- 258. Evan Herrnstadt, Richard Sweeney. 2018. Housing Market Capitalization of Pipeline Risk: Evidence From the San Bruno Explosion. SSRN Electronic Journal. [Crossref]
- 259. saurabh bhargava, Lynn Conell-Price, Richard Mason, Shlomo Benartzi. 2018. Save(d) by Design. SSRN Electronic Journal . [Crossref]
- 260. Hallie Cho, Sameer Hasija, Manuel Sosa. 2018. Reading between the Stars: Understanding the Effects of Online Customer Reviews on Product Demand. SSRN Electronic Journal . [Crossref]
- 261. Sandra García-Uribe. 2018. The Effects of Tax Changes on Economic Activity: A Narrative Approach to Frequent Anticipations. SSRN Electronic Journal . [Crossref]
- 262. John Cawley, David E. Frisvold, Anna Hill, David Jones. 2018. The Impact of the Philadelphia Beverage Tax on Prices and Product Availability. SSRN Electronic Journal. [Crossref]
- 263. Scott R. Baker, Lorenz Kueng, Leslie McGranahan, Brian Melzer. 2018. Do Household Finances Constrain Unconventional Fiscal Policy?. SSRN Electronic Journal. [Crossref]
- 264. Jean-Thomas Bernard, Maral Kichian. 2018. Carbon Tax Saliency: The Case of B.C. Diesel Demand. SSRN Electronic Journal . [Crossref]
- 265. Federico Balbiano di Colcavagno. 2018. Tax Diversity and Economic Growth. SSRN Electronic Journal . [Crossref]
- 266. Jeremy Jackson, James Caton, Raheem Williams, Kali Christianson. 2018. Prairie Prosperity: An Economic Guide for the State of North Dakota. SSRN Electronic Journal . [Crossref]
- 267. Rebecca Taylor, Scott Kaplan, Sofia Villas-Boas, Chae Young Jung. 2018. Soda Wars: The Effect of a Soda Tax Election on University Beverage Sales. SSRN Electronic Journal . [Crossref]
- 268. Laura Dague, Joanna Lahey. 2018. Causal Inference Methods: Lessons from Applied Microeconomics. SSRN Electronic Journal . [Crossref]
- 269. John Tomas Sjöström, Levent Ulku, Radovan Vadovic. 2018. Free to Choose: Testing the Pure Motivation Effect of Autonomous Choice. SSRN Electronic Journal. [Crossref]
- 270. Andrea López-Luzuriaga, Carlos G. Scartascini. 2018. Compliance Spillovers Across Taxes: The Role of Penalties and Detection. SSRN Electronic Journal. [Crossref]
- 271. John Haisken-DeNew, Syed Hasan, Nikhil Jha, Mathias Sinning. 2018. Unawareness and selective disclosure: The effect of school quality information on property prices. *Journal of Economic Behavior & Organization* 145, 449-464. [Crossref]
- 272. Yunsen Chen, Jianqiao Huang, Sheng Xiao, Ziye Zhao. 2018. Corporate Subsidiary Locations, Politics, and Firm Value. SSRN Electronic Journal. [Crossref]
- 273. Claus Ghesla, Manuel Grieder, Renate Schubert. 2018. Nudging the Poor and the Rich A Field Study on the Distributional Effects of Green Electricity Defaults. SSRN Electronic Journal. [Crossref]
- 274. Andrew Bibler, Keith Teltser, Mark Tremblay. 2018. Inferring Tax Compliance from Pass-Through: Evidence from Airbnb Tax Enforcement Agreements. SSRN Electronic Journal . [Crossref]
- 275. Andrew Bibler, Keith Teltser, Mark Tremblay. 2018. Inferring Tax Compliance from Pass-Through: Evidence from Airbnb Tax Enforcement Agreements. SSRN Electronic Journal . [Crossref]

- 276. Maartje Poelman, Willemieke Kroeze, Wilma Waterlander, Michiel de Boer, Ingrid Steenhuis. 2017. Food taxes and calories purchased in the virtual supermarket: a preliminary study. *British Food Journal* 119:12, 2559-2570. [Crossref]
- 277. Alexandre Mas, Amanda Pallais. 2017. Valuing Alternative Work Arrangements. *American Economic Review* **107**:12, 3722-3759. [Abstract] [View PDF article] [PDF with links]
- 278. Todd D. Gerarden, Richard G. Newell, Robert N. Stavins. 2017. Assessing the Energy-Efficiency Gap. *Journal of Economic Literature* 55:4, 1486-1525. [Abstract] [View PDF article] [PDF with links]
- 279. Edwin Woerdman, Jan Willem Bolderdijk. 2017. Emissions trading for households? A behavioral law and economics perspective. *European Journal of Law and Economics* 44:3, 553-578. [Crossref]
- 280. Thomas DeLeire, Andre Chappel, Kenneth Finegold, Emily Gee. 2017. Do individuals respond to cost-sharing subsidies in their selections of marketplace health insurance plans?. *Journal of Health Economics* **56**, 71-86. [Crossref]
- 281. Francesco Figari, Alari Paulus, Holly Sutherland, Panos Tsakloglou, Gerlinde Verbist, Francesca Zantomio. 2017. Removing Homeownership Bias in Taxation: The Distributional Effects of Including Net Imputed Rent in Taxable Income. *Fiscal Studies* 38:4, 525-557. [Crossref]
- 282. Xiaoling Ang, Alexei Alexandrov. 2017. Choice Architecture Versus Price: Comparing the Effects of Changes in the U.S. Student Loan Market. *Journal of Empirical Legal Studies* 14:4, 762-812. [Crossref]
- 283. Florian Englmaier, Andreas Roider, Uwe Sunde. 2017. The Role of Communication of Performance Schemes: Evidence from a Field Experiment. *Management Science* 63:12, 4061-4080. [Crossref]
- 284. AMY E. LERMAN, MEREDITH L. SADIN, SAMUEL TRACHTMAN. 2017. Policy Uptake as Political Behavior: Evidence from the Affordable Care Act. *American Political Science Review* 111:4, 755-770. [Crossref]
- 285. Lukas Buchheim, Thomas Kolaska. 2017. Weather and the Psychology of Purchasing Outdoor Movie Tickets. *Management Science* **63**:11, 3718-3738. [Crossref]
- 286. Laura Cornelsen, Oliver T Mytton, Jean Adams, Antonio Gasparrini, Dalia Iskander, Cecile Knai, Mark Petticrew, Courtney Scott, Richard Smith, Claire Thompson, Martin White, Steven Cummins. 2017. Change in non-alcoholic beverage sales following a 10-pence levy on sugar-sweetened beverages within a national chain of restaurants in the UK: interrupted time series analysis of a natural experiment. *Journal of Epidemiology and Community Health* 103, jech-2017-209947. [Crossref]
- 287. Matthew Harding, Steven Sexton. 2017. Household Response to Time-Varying Electricity Prices. Annual Review of Resource Economics 9:1, 337-359. [Crossref]
- 288. Saugato Datta, Juan José Miranda, Laura Zoratto, Oscar Calvo-González, Matthew Darling, Karina Lorenzana. A Behavioral Approach to Water Conservation: Evidence from Costa Rica 13-29. [Crossref]
- 289. Jonas Hjort, Mikkel Sølvsten, Miriam Wüst. 2017. Universal Investment in Infants and Long-Run Health: Evidence from Denmark's 1937 Home Visiting Program. *American Economic Journal: Applied Economics* 9:4, 78-104. [Abstract] [View PDF article] [PDF with links]
- 290. Vittorio Bassi, Imran Rasul. 2017. Persuasion: A Case Study of Papal Influences on Fertility-Related Beliefs and Behavior. *American Economic Journal: Applied Economics* **9**:4, 250-302. [Abstract] [View PDF article] [PDF with links]
- 291. David C. Phillips. 2017. Stopping on Nine: Evidence of Heuristic Managerial Decision-Making in Major League Baseball Pitcher Substitutions. *Southern Economic Journal* 84:2, 577-599. [Crossref]
- 292. John D. Hey, Yudistira Permana, Nuttaporn Rochanahastin. 2017. When and how to satisfice: an experimental investigation. *Theory and Decision* 83:3, 337-353. [Crossref]
- 293. Johannes Voester, Bjoern Ivens, Alexander Leischnig. 2017. Partitioned pricing: review of the literature and directions for further research. *Review of Managerial Science* 11:4, 879-931. [Crossref]

- 294. Jaakko Aspara, Xueming Luo, Ravi Dhar. 2017. Effect of intelligence on consumers' responsiveness to a pro-environmental tax: Evidence from large-scale data on car acquisitions of male consumers. *Journal of Consumer Psychology* 27:4, 448-455. [Crossref]
- 295. Andrew G. Meyer, Andrew R. Hanson, Daniel C. Hickman. 2017. Perceptions of institutional quality: Evidence of limited attention to higher education rankings. *Journal of Economic Behavior & Organization* 142, 241-258. [Crossref]
- 296. Quitterie Roquebert, Marianne Tenand. 2017. Pay less, consume more? The price elasticity of home care for the disabled elderly in France. *Health Economics* 26:9, 1162-1174. [Crossref]
- 297. Massimo Bordignon, Veronica Grembi, Santino Piazza. 2017. Who do you blame in local finance? An analysis of municipal financing in Italy. *European Journal of Political Economy* 49, 146-163. [Crossref]
- 298. Daniel C. Matisoff, Erik P. Johnson. 2017. The comparative effectiveness of residential solar incentives. *Energy Policy* **108**, 44-54. [Crossref]
- 299. Zirui Song. 2017. MACRAeconomics: Physician incentives and behavioral economics in the Medicare Access and CHIP Reauthorization Act. *Healthcare* 5:3, 150-152. [Crossref]
- 300. Hans Henrik Sievertsen, Miriam Wüst. 2017. Discharge on the day of birth, parental response and health and schooling outcomes. *Journal of Health Economics* 55, 121-138. [Crossref]
- 301. Claus Ghesla. 2017. Defaults in Green Electricity Markets: Preference Match Not Guaranteed. *Journal of the Association of Environmental and Resource Economists* 4:S1, S37-S84. [Crossref]
- 302. John R. Graham, Michelle Hanlon, Terry Shevlin, Nemit Shroff. 2017. Tax Rates and Corporate Decision-making. *The Review of Financial Studies* **30**:9, 3128-3175. [Crossref]
- 303. Matthias Weber, Arthur Schram. 2017. The Non-Equivalence of Labour Market Taxes: A Real-Effort Experiment. *The Economic Journal* 127:604, 2187-2215. [Crossref]
- 304. Michael Conlin, Stacy Dickert-Conlin. 2017. Inference by college admission departments. *Journal of Economic Behavior & Organization* 141, 14-28. [Crossref]
- 305. Sea-Jin Chang, Jaiho Chung. 2017. A Quasi-experimental Approach to the Multinationality-performance Relationship: An Application to Learning-by-exporting. *Global Strategy Journal* 7:3, 257-285. [Crossref]
- 306. Martin Fochmann, Johannes Hewig, Dirk Kiesewetter, Katharina Schüßler. 2017. Affective reactions influence investment decisions: evidence from a laboratory experiment with taxation. *Journal of Business Economics* 87:6, 779-808. [Crossref]
- 307. Helia Marreiros, Mirco Tonin, Michael Vlassopoulos, M.C. Schraefel. 2017. "Now that you mention it": A survey experiment on information, inattention and online privacy. *Journal of Economic Behavior & Organization* 140, 1-17. [Crossref]
- 308. Casey J. Wichman. 2017. Information provision and consumer behavior: A natural experiment in billing frequency. *Journal of Public Economics* **152**, 13–33. [Crossref]
- 309. Robert French, Philip Oreopoulos. 2017. Behavioral barriers transitioning to college. *Labour Economics* 47, 48-63. [Crossref]
- 310. Robert French, Philip Oreopoulos. 2017. Applying behavioural economics to public policy in Canada. Canadian Journal of Economics/Revue canadienne d'économique 50:3, 599-635. [Crossref]
- 311. Marie-Claude Lavoie, Patricia Langenberg, Andres Villaveces, Patricia C. Dischinger, Linda Simoni-Wastila, Kathleen Hoke, Gordon S. Smith. 2017. Effect of Maryland's 2011 Alcohol Sales Tax Increase on Alcohol-Positive Driving. *American Journal of Preventive Medicine* 53:1, 17-24. [Crossref]
- 312. Ekaterina Rhodes, Jonn Axsen, Mark Jaccard. 2017. Exploring Citizen Support for Different Types of Climate Policy. *Ecological Economics* 137, 56-69. [Crossref]

- 313. Garret Christensen. 2017. Occupational Fatalities and the Labor Supply: Evidence from the Wars in Iraq and Afghanistan. *Journal of Economic Behavior & Organization* 139, 182-195. [Crossref]
- 314. J.R. DeShazo, Tamara L. Sheldon, Richard T. Carson. 2017. Designing policy incentives for cleaner technologies: Lessons from California's plug-in electric vehicle rebate program. *Journal of Environmental Economics and Management* 84, 18-43. [Crossref]
- 315. John Beshears, James J. Choi, David Laibson, Brigitte C. Madrian. 2017. Does front-loading taxation increase savings? Evidence from Roth 401(k) introductions. *Journal of Public Economics* 151, 84-95. [Crossref]
- 316. Maisy Best, Esther K. Papies. 2017. Right Here, Right Now: Situated Interventions to Change Consumer Habits. *Journal of the Association for Consumer Research* 2:3, 333-358. [Crossref]
- 317. Ronald C. Fisher, Robert W. Wassmer. 2017. Does Perception of Gas Tax Paid Influence Support for Funding Highway Improvements?. *Public Finance Review* 45:4, 511-537. [Crossref]
- 318. Steven Wallander, Paul Ferraro, Nathaniel Higgins. 2017. Addressing Participant Inattention in Federal Programs: A Field Experiment with the Conservation Reserve Program. *American Journal of Agricultural Economics* 99:4, 914-931. [Crossref]
- 319. Annette Alstadsæter, Martin Jacob. 2017. Who participates in tax avoidance? Evidence from Swedish microdata. *Applied Economics* **49**:28, 2779-2796. [Crossref]
- 320. Sungmun Choi. 2017. Does past experience affect future behavior? Evidence from estate tax avoidance behavior. *International Tax and Public Finance* **24**:3, 416-431. [Crossref]
- 321. Phuong Nguyen-Hoang, Alexander Bogin. 2017. Raising State Gas Tax Rates for Transportation Revenues: Navigating a Bumpy Road. *Journal of Planning Education and Research* 37:2, 164-175. [Crossref]
- 322. Marcel Stadelmann. 2017. Mind the gap? Critically reviewing the energy efficiency gap with empirical evidence. *Energy Research & Social Science* 27, 117-128. [Crossref]
- 323. Hakan Yilmazkuday. 2017. Asymmetric incidence of sales taxes: A short-run investigation of gasoline prices. *Journal of Economics and Business* **91**, 16-23. [Crossref]
- 324. Matthew Harding, Michael Lovenheim. 2017. The effect of prices on nutrition: Comparing the impact of product- and nutrient-specific taxes. *Journal of Health Economics* **53**, 53-71. [Crossref]
- 325. GEORGE LOEWENSTEIN, NICK CHATER. 2017. Putting nudges in perspective. *Behavioural Public Policy* 1:1, 26-53. [Crossref]
- 326. Yiquan Gu, Tobias Wenzel. 2017. Consumer confusion, obfuscation and price regulation. *Scottish Journal of Political Economy* 64:2, 169-190. [Crossref]
- 327. Michaël Aklin, Patrick Bayer, S. P. Harish, Johannes Urpelainen. 2017. Does basic energy access generate socioeconomic benefits? A field experiment with off-grid solar power in India. *Science Advances* 3:5, e1602153. [Crossref]
- 328. Sofronis Clerides, Pascal Courty. 2017. Sales, Quantity Surcharge, and Consumer Inattention. *The Review of Economics and Statistics* **99**:2, 357-370. [Crossref]
- 329. Alejandro Ponce, Enrique Seira, Guillermo Zamarripa. 2017. Borrowing on the Wrong Credit Card? Evidence from Mexico. *American Economic Review* 107:4, 1335-1361. [Abstract] [View PDF article] [PDF with links]
- 330. Mikael Elinder, Sebastian Escobar, Ingel Petré. 2017. Consequences of a price incentive on free riding and electric energy consumption. *Proceedings of the National Academy of Sciences* 114:12, 3091-3096. [Crossref]
- 331. Marie Briguglio. Household Cooperation in Waste Management: Initial Conditions and Intervention 111-142. [Crossref]

- 332. David P. Daniels, Margaret A. Neale, Lindred L. Greer. 2017. Spillover bias in diversity judgment. Organizational Behavior and Human Decision Processes 139, 92-105. [Crossref]
- 333. Sebastien Bradley. 2017. Inattention to Deferred Increases in Tax Bases: How Michigan Home Buyers Are Paying for Assessment Limits. *Review of Economics and Statistics* **99**:1, 53-66. [Crossref]
- 334. Leslie A. Martin, Shanthi Nataraj, Ann E. Harrison. 2017. In with the Big, Out with the Small: Removing Small-Scale Reservations in India. *American Economic Review* 107:2, 354-386. [Abstract] [View PDF article] [PDF with links]
- 335. Johannes Spinnewijn. 2017. Heterogeneity, Demand for Insurance, and Adverse Selection. *American Economic Journal: Economic Policy* 9:1, 308-343. [Abstract] [View PDF article] [PDF with links]
- 336. Enrique Seira, Alan Elizondo, Eduardo Laguna-Müggenburg. 2017. Are Information Disclosures Effective? Evidence from the Credit Card Market. *American Economic Journal: Economic Policy* 9:1, 277-307. [Abstract] [View PDF article] [PDF with links]
- 337. Nicholas Rivers, Brandon Schaufele. 2017. New vehicle feebates. *Canadian Journal of Economics/Revue canadienne d'économique* **50**:1, 201-232. [Crossref]
- 338. K. JEREMY KO, JARED WILLIAMS. 2017. The Effects of Regulating Hidden Add-On Costs. Journal of Money, Credit and Banking 49:1, 39-74. [Crossref]
- 339. John Coglianese, Lucas W. Davis, Lutz Kilian, James H. Stock. 2017. Anticipation, Tax Avoidance, and the Price Elasticity of Gasoline Demand. *Journal of Applied Econometrics* 32:1, 1-15. [Crossref]
- 340. Niklas Elert, Magnus Henrekson, Mikael Stenkula. Innovation and Entrepreneurship in the European Union—A Reform Agenda 25-86. [Crossref]
- 341. HENNING FINSERAAS, NIKLAS JAKOBSSON, MIKAEL SVENSSON. 2017. Do knowledge gains from public information campaigns persist over time? Results from a survey experiment on the Norwegian pension reform. *Journal of Pension Economics and Finance* 16:1, 108-117. [Crossref]
- 342. Christian N. Brinch, Erik Hernæs, Zhiyang Jia. 2017. Salience and Social Security Benefits. *Journal of Labor Economics* 35:1, 265-297. [Crossref]
- 343. Paul Heidhues, Botond Kőszegi, Takeshi Murooka. 2017. Inferior Products and Profitable Deception. The Review of Economic Studies 84:1, 323-356. [Crossref]
- 344. Nicholas Chesterley. 2017. Defaults, Decision Costs and Welfare in Behavioural Policy Design. *Economica* 84:333, 16-33. [Crossref]
- 345. Carrie H. Colla, William H. Dow, Arindrajit Dube. 2017. The Labor-Market Impact of San Francisco's Employer-Benefit Mandate. *Industrial Relations: A Journal of Economy and Society* **56**:1, 122-160. [Crossref]
- 346. Jolana Stejskalová. 2017. The Impact of Attention to News about Tax Changes on the Stock Market. *Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis* **65**:6, 2113-2121. [Crossref]
- 347. Mark Andor, Andreas Gerster, Stephan Sommer. 2017. Consumer Inattention, Heuristic Thinking and the Role of Energy Labels. SSRN Electronic Journal . [Crossref]
- 348. Scott R. Baker, Lorenz Kueng. 2017. Shopping for Lower Sales Tax Rates. SSRN Electronic Journal . [Crossref]
- 349. Daniel F. Stone, Jeremy Arkes. 2017. March Madness? Underreaction to Hot and Cold Hands in NCAA Basketball. SSRN Electronic Journal . [Crossref]
- 350. Victor Stango, Joanne Yoong, Jonathan Zinman. 2017. The Quest for Parsimony in Behavioral Economics: New Methods and Evidence on Three Fronts. SSRN Electronic Journal. [Crossref]
- 351. David J. Hardisty, Alec Beall, Ruben N. Lubowski, Annie Petsonk, Rainer Romero-Canyas. 2017. A Carbon Price by Another Name May Seem Sweeter: Consumers Prefer Upstream Offsets to Equivalent Downstream Taxes. SSRN Electronic Journal. [Crossref]

- 352. Ben S. Meiselman. 2017. Ghostbusting in Detroit: Evidence on Nonfilers from a Controlled Field Experiment. SSRN Electronic Journal . [Crossref]
- 353. Evelina Gavrilova, Floris T. Zoutman. 2017. How to Use One Instrument to Identify Two Elasticities. SSRN Electronic Journal. [Crossref]
- 354. Syed Hasan, Mathias Sinning. 2017. GST Reform in Australia: Implications of Estimating Price Elasticities of Demand for Food. SSRN Electronic Journal. [Crossref]
- 355. Hunt Allcott, Michael Greenstone. 2017. Measuring the Welfare Effects of Residential Energy Efficiency Programs. SSRN Electronic Journal. [Crossref]
- 356. Rebecca Taylor. 2017. Bag 'Leakage': The Effect of Disposable Carryout Bag Regulations on Unregulated Bags. SSRN Electronic Journal. [Crossref]
- 357. Fabian Paetzel, Jan Lorenz, Markus S. Tepe. 2017. Transparency Diminishes Framing-Effects in Voting on Redistribution: Some Experimental Evidence. SSRN Electronic Journal. [Crossref]
- 358. Davide Cerruti, Anna Alberini, Joshua Linn. 2017. Charging Drivers by the Pound: The Effects of the UK Vehicle Tax System. SSRN Electronic Journal. [Crossref]
- 359. Deniz Anginer, Xue Snow Han, Celim Yildizhan. 2017. Do Individual Investors Ignore Transaction Costs?. SSRN Electronic Journal. [Crossref]
- 360. Brian Dillon, Joachim De Weerdt, Ted O'Donoghue. 2017. Paying More for Less: Why Don't Households in Tanzania Take Advantage of Bulk Discounts?. SSRN Electronic Journal. [Crossref]
- 361. Benjamin Hansen, Keaton Miller, Caroline Weber. 2017. The Taxation of Recreational Marijuana: Evidence from Washington State. SSRN Electronic Journal . [Crossref]
- 362. Cary Frydman, Baolian Wang. 2017. The Impact of Salience on Investor Behavior: Evidence from a Natural Experiment. SSRN Electronic Journal. [Crossref]
- 363. Christine Exley, Judd B. Kessler. 2017. The Better is the Enemy of the Good. SSRN Electronic Journal . [Crossref]
- 364. Filip Mattjka, Guido Tabellini. 2017. Electoral Competition with Rationally Inattentive Voters. SSRN Electronic Journal . [Crossref]
- 365. Peijun Guo. 2017. Focus Theory of Choice: Modeling Procedural Rationality and Resolving the St. Petersburg, Allais, and Ellsberg Paradoxes, Preference Reversals, the Event-Splitting Effect, and the Violations of Tail-Separability, Stochastic Dominance and Transitivity. SSRN Electronic Journal. [Crossref]
- 366. Vladimir Kogan, Thomas Wood. 2017. Did Obamacare Implementation Cost Clinton the 2016 Election?. SSRN Electronic Journal. [Crossref]
- 367. Thomas Fujiwara, Carlos Sanz. 2017. Norms in Bargaining: Evidence from Government Formation in Spain. SSRN Electronic Journal . [Crossref]
- 368. Florian Buhlmann, Benjamin Elsner, Andreas Peichl. 2017. Tax Refunds and Income Manipulation Evidence from the EITC. SSRN Electronic Journal . [Crossref]
- 369. Natalia Montinari, Emma Runnemark, Erik Wengstrrm. 2017. Self-Scanning and Self-Control: A Field Experiment on Real-Time Feedback and Shopping Behavior. SSRN Electronic Journal. [Crossref]
- 370. SSbastien Houde, Joseph E. Aldy. 2017. The Efficiency Consequences of Heterogeneous Behavioral Responses to Energy Fiscal Policies. SSRN Electronic Journal . [Crossref]
- 371. Simon Porcher. 2017. Water Taxes and Consumer Behavior in France. SSRN Electronic Journal . [Crossref]
- 372. Alecia Waite Cassidy. 2017. How Does Mandatory Energy Efficiency Disclosure Affect Housing Prices?. SSRN Electronic Journal. [Crossref]

- 373. Marcelo BBrgolo, Guillermo Cruces, Matias Giaccobasso. 2017. Tax Audits as Scarecrows: Evidence from a Large-Scale Field Experiment. SSRN Electronic Journal. [Crossref]
- 374. Brian D. Galle. 2017. The Dark Money Subsidy? Tax Policy and Donations to 501(c)(4) Organizations. SSRN Electronic Journal . [Crossref]
- 375. Ashok Kaul, Gregor Pfeifer, Stefan Witte. 2016. The incidence of Cash for Clunkers: Evidence from the 2009 car scrappage scheme in Germany. *International Tax and Public Finance* 23:6, 1093-1125. [Crossref]
- 376. Justin S White. 2016. Incentives in workplace wellness programmes. The Lancet Diabetes & Endocrinology 4:12, 967-969. [Crossref]
- 377. Benjamin J. Keys, Devin G. Pope, Jaren C. Pope. 2016. Failure to refinance. *Journal of Financial Economics* 122:3, 482-499. [Crossref]
- 378. Keith M. Marzilli Ericson, Amanda Starc. 2016. How product standardization affects choice: Evidence from the Massachusetts Health Insurance Exchange. *Journal of Health Economics* **50**, 71-85. [Crossref]
- 379. Aart Gerritsen. 2016. Optimal taxation when people do not maximize well-being. *Journal of Public Economics* 144, 122-139. [Crossref]
- 380. Robert B. Couch. 2016. A Payback Approach to Generational Inequity. *Public Budgeting & Finance* 36:4, 94-110. [Crossref]
- 381. Dean Karlan, Margaret McConnell, Sendhil Mullainathan, Jonathan Zinman. 2016. Getting to the Top of Mind: How Reminders Increase Saving. *Management Science* **62**:12, 3393-3411. [Crossref]
- 382. Jane G. Gravelle, Sean Lowry. 2016. The Affordable Care Act, Labor Supply, and Social Welfare. *National Tax Journal* **69**:4, 863-882. [Crossref]
- 383. Calvin Lakhan. 2016. Consumer Perception of Environmental Harm and Willingness to Pay Environmental Handling Fees. *Environments* 3:4, 8. [Crossref]
- 384. Hagen Ackermann, Martin Fochmann, Nadja Wolf. 2016. The Effect of Straight-Line and Accelerated Depreciation Rules on Risky Investment Decisions—An Experimental Study. *International Journal of Financial Studies* 4:4, 19. [Crossref]
- 385. Manasi Deshpande. 2016. Does Welfare Inhibit Success? The Long-Term Effects of Removing Low-Income Youth from the Disability Rolls. *American Economic Review* **106**:11, 3300-3330. [Abstract] [View PDF article] [PDF with links]
- 386. Pei Li, Yi Lu, Jin Wang. 2016. Does flattening government improve economic performance? Evidence from China. *Journal of Development Economics* 123, 18-37. [Crossref]
- 387. Xiqian Cai, Yi Lu, Mingqin Wu, Linhui Yu. 2016. Does environmental regulation drive away inbound foreign direct investment? Evidence from a quasi-natural experiment in China. *Journal of Development Economics* 123, 73-85. [Crossref]
- 388. Jeffrey Carpenter, Peter Hans Matthews, Benjamin Tabb. 2016. Progressive taxation in a tournament economy. *Journal of Public Economics* 143, 64-72. [Crossref]
- 389. Marianna Belloc, Francesco Drago, Roberto Galbiati. 2016. Earthquakes, Religion, and Transition to Self-Government in Italian Cities*. *The Quarterly Journal of Economics* 131:4, 1875-1926. [Crossref]
- 390. Hunt Allcott. 2016. Paternalism and Energy Efficiency: An Overview. *Annual Review of Economics* 8:1, 145-176. [Crossref]
- 391. Andrew Caplin. 2016. Measuring and Modeling Attention. *Annual Review of Economics* **8**:1, 379-403. [Crossref]
- 392. Bibek Adhikari, James Alm. 2016. Evaluating the Economic Effects of Flat Tax Reforms Using Synthetic Control Methods. *Southern Economic Journal* 83:2, 437-463. [Crossref]

- 393. Martin Fochmann, Kristina Hemmerich, Dirk Kiesewetter. 2016. Intrinsic and extrinsic effects on behavioral tax biases in risky investment decisions. *Journal of Economic Psychology* **56**, 218-231. [Crossref]
- 394. Jacob Goldin, Nicholas Lawson. 2016. Defaults, Mandates, and Taxes: Policy Design with Active and Passive Decision-Makers. *American Law and Economics Review* 18:2, 438-462. [Crossref]
- 395. Jeremy Carl, David Fedor. 2016. Tracking global carbon revenues: A survey of carbon taxes versus cap-and-trade in the real world. *Energy Policy* **96**, 50-77. [Crossref]
- 396. Raúl Bajo-Buenestado. 2016. Evidence of asymmetric behavioral responses to changes in gasoline prices and taxes for different fuel types. *Energy Policy* **96**, 119-130. [Crossref]
- 397. Claus Thustrup Kreiner, Søren Leth-Petersen, Peer Ebbesen Skov. 2016. Tax Reforms and Intertemporal Shifting of Wage Income: Evidence from Danish Monthly Payroll Records. *American Economic Journal: Economic Policy* 8:3, 233-257. [Abstract] [View PDF article] [PDF with links]
- 398. Nadja Dwenger, Henrik Kleven, Imran Rasul, Johannes Rincke. 2016. Extrinsic and Intrinsic Motivations for Tax Compliance: Evidence from a Field Experiment in Germany. *American Economic Journal: Economic Policy* 8:3, 203-232. [Abstract] [View PDF article] [PDF with links]
- 399. Jarkko Harju, Tuomas Matikka. 2016. The elasticity of taxable income and income-shifting: what is "real" and what is not?. *International Tax and Public Finance* 23:4, 640-669. [Crossref]
- 400. Caroline Elliott, Kwok Tong Soo. 2016. The impact of MBA programme attributes on post-MBA salaries †. *Education Economics* 24:4, 427-443. [Crossref]
- 401. Itzik Fadlon, Jessica Laird, Torben Heien Nielsen. 2016. Do Employer Pension Contributions Reflect Employee Preferences? Evidence from a Retirement Savings Reform in Denmark. *American Economic Journal: Applied Economics* 8:3, 196-216. [Abstract] [View PDF article] [PDF with links]
- 402. Veronica Grembi, Tommaso Nannicini, Ugo Troiano. 2016. Do Fiscal Rules Matter?. *American Economic Journal: Applied Economics* 8:3, 1-30. [Abstract] [View PDF article] [PDF with links]
- 403. Aneel Karnani, Brent McFerran, Anirban Mukhopadhyay. 2016. The Obesity Crisis as Market Failure: An Analysis of Systemic Causes and Corrective Mechanisms. *Journal of the Association for Consumer Research* 1:3, 445-470. [Crossref]
- 404. Marie Briguglio. 2016. HOUSEHOLD COOPERATION IN WASTE MANAGEMENT: INITIAL CONDITIONS AND INTERVENTION. *Journal of Economic Surveys* 30:3, 497-525. [Crossref]
- 405. Paul E. Terry. 2016. The Art of Health Promotion ideas for improving health outcomes. *American Journal of Health Promotion* 30:6, 475-475. [Crossref]
- 406. Peter Berck, Jacob Moe-Lange, Andrew Stevens, Sofia Villas-Boas. 2016. Measuring Consumer Responses to a Bottled Water Tax Policy. *American Journal of Agricultural Economics* **98**:4, 981-996. [Crossref]
- 407. Vojtěch Bartoš, Michal Bauer, Julie Chytilová, Filip Matějka. 2016. Attention Discrimination: Theory and Field Experiments with Monitoring Information Acquisition. American Economic Review 106:6, 1437-1475. [Abstract] [View PDF article] [PDF with links]
- 408. Matthew Levy, Joshua Tasoff. 2016. EXPONENTIAL-GROWTH BIAS AND LIFECYCLE CONSUMPTION. Journal of the European Economic Association 14:3, 545-583. [Crossref]
- 409. John Y. Campbell. 2016. Restoring Rational Choice: The Challenge of Consumer Financial Regulation. *American Economic Review* 106:5, 1-30. [Abstract] [View PDF article] [PDF with links]
- 410. Nicolas J. Duquette. 2016. Do tax incentives affect charitable contributions? Evidence from public charities' reported revenues. *Journal of Public Economics* 137, 51-69. [Crossref]
- 411. Silvia Tiezzi, Stefano F. Verde. 2016. Differential demand response to gasoline taxes and gasoline prices in the U.S. *Resource and Energy Economics* 44, 71-91. [Crossref]

- 412. Reto Foellmi, Stefan Legge, Lukas Schmid. 2016. Do Professionals Get It Right? Limited Attention and Risk-taking Behaviour. *The Economic Journal* **126**:592, 724-755. [Crossref]
- 413. Andrew Hanson, Ryan Sullivan. 2016. Incidence and Salience of Alcohol Taxes. *Public Finance Review* 44:3, 344-369. [Crossref]
- 414. Ulrike Malmendier. 2016. The Bidder's Curse: Reply. *American Economic Review* **106**:4, 1195-1213. [Abstract] [View PDF article] [PDF with links]
- 415. Catrine Jacobsen, Marco Piovesan. 2016. Tax me if you can: An artifactual field experiment on dishonesty. *Journal of Economic Behavior & Organization* 124, 7-14. [Crossref]
- 416. Keith Marzilli Ericson, Judd B. Kessler. 2016. The articulation of government policy: Health insurance mandates versus taxes. *Journal of Economic Behavior & Organization* 124, 43-54. [Crossref]
- 417. Judd B. Kessler, Michael I. Norton. 2016. Tax aversion in labor supply. *Journal of Economic Behavior & Organization* 124, 15-28. [Crossref]
- 418. Nachum Sicherman, George Loewenstein, Duane J. Seppi, Stephen P. Utkus. 2016. Financial Attention. *Review of Financial Studies* 29:4, 863-897. [Crossref]
- 419. Mark Grinblatt, Seppo Ikäheimo, Matti Keloharju, Samuli Knüpfer. 2016. IQ and Mutual Fund Choice. *Management Science* **62**:4, 924-944. [Crossref]
- 420. Brandon Lehr. 2016. Information and Inflation: An Analysis of Grading Behavior. *The B.E. Journal of Economic Analysis & Policy* **16**:2, 755-783. [Crossref]
- 421. Petr Houdek, Petr Koblovský. 2016. Behavioural Finance and Organisations: A Review. *Acta Oeconomica Pragensia* 24:2, 33-45. [Crossref]
- 422. Samara R. Gunter. 2016. Child support wage withholding and father-child contact: parental bargaining and salience effects. *Review of Economics of the Household* 91. . [Crossref]
- 423. Naomi E. Feldman, Peter Katuš čÁk, Laura Kawano. 2016. Taxpayer Confusion: Evidence from the Child Tax Credit. *American Economic Review* **106**:3, 807-835. [Abstract] [View PDF article] [PDF with links]
- 424. Kenan Kalaycı, Marta Serra-Garcia. 2016. Complexity and biases. *Experimental Economics* **19**:1, 31-50. [Crossref]
- 425. Michèle Belot, Jonathan James. 2016. Partner selection into policy relevant field experiments. *Journal of Economic Behavior & Organization* 123, 31-56. [Crossref]
- 426. Federico Etro. 2016. Research in economics and public finance. *Research in Economics* **70**:1, 1-6. [Crossref]
- 427. Jeffrey L. Hoopes, Jacob R. Thornock, Braden M. Williams. 2016. Does Use Tax Evasion Provide a Competitive Advantage to E-Tailers?. *National Tax Journal* **69**:1, 133-168. [Crossref]
- 428. Stephanie A.S. Staras, Melvin D. Livingston, Alexander C. Wagenaar. 2016. Maryland Alcohol Sales Tax and Sexually Transmitted Infections. *American Journal of Preventive Medicine* **50**:3, e73-e80. [Crossref]
- 429. Eric Cardella, Michael J. Seiler. 2016. The effect of listing price strategy on real estate negotiations: An experimental study. *Journal of Economic Psychology* **52**, 71-90. [Crossref]
- 430. Alan Tse, Lana Friesen, Kenan Kalaycı. 2016. Complexity and asset legitimacy in retirement investment. *Journal of Behavioral and Experimental Economics* **60**, 35-48. [Crossref]
- 431. Cass R. Sunstein. 2016. The Council of Psychological Advisers. *Annual Review of Psychology* **67**:1, 713-737. [Crossref]
- 432. Yusufcan Masatlioglu, Daisuke Nakajima, Erkut Y. Ozbay. Revealed Attention 495-522. [Crossref]
- 433. Isamu Matsukawa. Effects of In-home Displays on Residential Electricity Consumption 45-79. [Crossref]

- 434. Sounman Hong, Jeehun Lim. 2016. Capture and the bureaucratic mafia: does the revolving door erode bureaucratic integrity?. *Public Choice* **166**:1-2, 69-86. [Crossref]
- 435. A.M. Lavecchia, H. Liu, P. Oreopoulos. Behavioral Economics of Education 1-74. [Crossref]
- 436. Eric A. Greenleaf, Eric J. Johnson, Vicki G. Morwitz, Edith Shalev. 2016. The price does not include additional taxes, fees, and surcharges: A review of research on partitioned pricing. *Journal of Consumer Psychology* 26:1, 105-124. [Crossref]
- 437. W. Kip Viscusi, Ted Gayer. 2016. Rational Benefit Assessment for an Irrational World: Toward a Behavioral Transfer Test. *Journal of Benefit-Cost Analysis* 7:1, 69-91. [Crossref]
- 438. B. Douglas Bernheim. 2016. The Good, the Bad, and the Ugly: A Unified Approach to Behavioral Welfare Economics. *Journal of Benefit-Cost Analysis* 7:1, 12-68. [Crossref]
- 439. J. R. DeShazo. 2016. Improving Incentives for Clean Vehicle Purchases in the United States: Challenges and Opportunities. *Review of Environmental Economics and Policy* 10:1, 149-165. [Crossref]
- 440. Sumit Agarwal, Artashes Karapetyan. 2016. Salience and Mispricing: Homebuyerss Housing Decisions. SSRN Electronic Journal. [Crossref]
- 441. John Y. Campbell. 2016. Restoring Rational Choice: The Challenge of Consumer Financial Regulation. SSRN Electronic Journal . [Crossref]
- 442. Lukas Buchheim, Thomas Kolaska. 2016. Weather and the Psychology of Purchasing Outdoor-Movie Tickets. SSRN Electronic Journal . [Crossref]
- 443. Aart Gerritsen. 2016. Optimal Nonlinear Taxation: The Dual Approach. SSRN Electronic Journal . [Crossref]
- 444. Harald Amberger, Eva Eberhartinger, Matthias Kasper. 2016. Tax Rate Biases in Tax Planning Decisions: Experimental Evidence. SSRN Electronic Journal . [Crossref]
- 445. Andrius Kaaukauskas, Thomas Broberg. 2016. Perceptions and Inattention in Private Electricity Consumption. SSRN Electronic Journal. [Crossref]
- 446. Radu Vranceanu, Angela Sutan, Delphine Dubart. 2016. Discontent with Taxes and the Timing of Taxation: Experimental Evidence. SSRN Electronic Journal. [Crossref]
- 447. Hirofumi Kurokawa, Tomoharu Mori, Fumio Ohtake. 2016. A Choice Experiment on Taxes: Are Income and Consumption Taxes Equivalent?. SSRN Electronic Journal. [Crossref]
- 448. Iksoo Cho. 2016. Local Sales Tax, Cross-Border Shopping, and Distance. SSRN Electronic Journal . [Crossref]
- 449. Johan Egebark. 2016. Effects of Taxes on Youth Self-Employment and Income. SSRN Electronic Journal . [Crossref]
- 450. Anthony Heyes, Thomas P. Lyon, Steve Martin. 2016. Salience Games: Keeping Environmental Issues in (and out) of the Public Eye. SSRN Electronic Journal. [Crossref]
- 451. Mathias Dolls, Philipp Doerrenberg, Andreas Peichl, Holger Stichnoth. 2016. Do Savings Increase in Response to Salient Information About Retirement and Expected Pensions?. SSRN Electronic Journal . [Crossref]
- 452. Brian Dillon, Joachim De Weerdt, Ted O'Donoghue. 2016. Paying More for Less: Why Don't Households in Tanzania Take Advantage of Bulk Discounts?. SSRN Electronic Journal. [Crossref]
- 453. Linda Thunstrrm, Ben Gilbert, Chian Jones Ritten. 2016. Can Nudges Hurt? The Incidence of an 'Emotional Tax'. SSRN Electronic Journal . [Crossref]
- 454. Andreas Mense. 2016. The Value of Energy Efficiency and the Role of Expected Heating Costs. SSRN Electronic Journal . [Crossref]
- 455. Mark Andor, Andreas Gerster, Stephan Sommer. 2016. Consumer Inattention, Heuristic Thinking and the Role of Energy Labels. SSRN Electronic Journal. [Crossref]

- 456. Emiliano Huet-Vaughn. 2016. Stimulating the Vote: ARRA Road Spending and Vote Share. SSRN Electronic Journal . [Crossref]
- 457. Robert Dur, Ben Vollaard. 2016. Salience of Law Enforcement: A Field Experiment. SSRN Electronic Journal. [Crossref]
- 458. Nicolas Duquette. 2016. Do Tax Incentives Affect Charitable Contributions? Evidence from Public Charitiess Reported Revenues. SSRN Electronic Journal . [Crossref]
- 459. Swen Kuper, Thomas-Patrick Schmidt. 2016. Effects of Tax-Based Saving Incentives on Contribution Behavior: Lessons from the Introduction of the Riester Scheme in Germany. *Modern Economy* **07**:11, 1198-1222. [Crossref]
- 460. Alisa Tazhitdinova. 2016. Income Shifting and the Cost of Incorporation. SSRN Electronic Journal . [Crossref]
- 461. Kelly Wentland. 2016. The Effect of Industrial Diversification on Firm Taxes. SSRN Electronic Journal . [Crossref]
- 462. Devin G. Pope, Justin R. Sydnor. Behavioral Economics 800-827. [Crossref]
- 463. Saurabh Bhargava, Dayanand Manoli. 2015. Psychological Frictions and the Incomplete Take-Up of Social Benefits: Evidence from an IRS Field Experiment. *American Economic Review* 105:11, 3489-3529. [Abstract] [View PDF article] [PDF with links]
- 464. Michael D. Grubb. 2015. Overconfident Consumers in the Marketplace. *Journal of Economic Perspectives* **29**:4, 9-36. [Abstract] [View PDF article] [PDF with links]
- 465. Carsten Dahremöller, Markus Fels. 2015. Product lines, product design, and limited attention. *Journal of Economic Behavior & Organization* 119, 437-456. [Crossref]
- 466. Nicholas Rivers, Brandon Schaufele. 2015. Salience of carbon taxes in the gasoline market. *Journal of Environmental Economics and Management* 74, 23–36. [Crossref]
- 467. Jacob Goldin. 2015. Optimal tax salience. Journal of Public Economics 131, 115-123. [Crossref]
- 468. Andreas, Enni Savitri. 2015. The Effect of Tax Socialization, Tax Knowledge, Expediency of Tax ID Number and Service Quality on Taxpayers Compliance with Taxpayers Awareness as Mediating Variables. *Procedia Social and Behavioral Sciences* 211, 163-169. [Crossref]
- 469. Katherine Baicker, Sendhil Mullainathan, Joshua Schwartzstein. 2015. Behavioral Hazard in Health Insurance *. *The Quarterly Journal of Economics* 130:4, 1623-1667. [Crossref]
- 470. Iñigo Iturbe-Ormaetxe. 2015. Salience of social security contributions and employment. *International Tax and Public Finance* 22:5, 741-759. [Crossref]
- 471. Stephen Gibbons, Eric Neumayer, Richard Perkins. 2015. Student satisfaction, league tables and university applications: Evidence from Britain. *Economics of Education Review* 48, 148-164. [Crossref]
- 472. Xiu Chen, Harry M. Kaiser, Bradley J. Rickard. 2015. The impacts of inclusive and exclusive taxes on healthy eating: An experimental study. *Food Policy* **56**, 13-24. [Crossref]
- 473. Stefania Sitzia, Jiwei Zheng, Daniel John Zizzo. 2015. Inattentive consumers in markets for services. *Theory and Decision* **79**:2, 307-332. [Crossref]
- 474. Heiko Jacobs. 2015. The role of attention constraints for investor behavior and economic aggregates: what have we learnt so far?. *Management Review Quarterly* **65**:4, 217-237. [Crossref]
- 475. Benjamin M. Miller, Kevin J. Mumford. 2015. The Salience of Complex Tax Changes: Evidence from the Child and Dependent Care Credit Expansion. *National Tax Journal* **68**:3, 477-510. [Crossref]
- 476. Hunt Allcott, Dmitry Taubinsky. 2015. Evaluating Behaviorally Motivated Policy: Experimental Evidence from the Lightbulb Market. *American Economic Review* **105**:8, 2501–2538. [Abstract] [View PDF article] [PDF with links]

- 477. Johannes Abeler, Simon Jäger. 2015. Complex Tax Incentives. *American Economic Journal: Economic Policy* 7:3, 1-28. [Abstract] [View PDF article] [PDF with links]
- 478. Jeffrey L. Hoopes, Daniel H. Reck, Joel Slemrod. 2015. Taxpayer Search for Information: Implications for Rational Attention. *American Economic Journal: Economic Policy* 7:3, 177-208. [Abstract] [View PDF article] [PDF with links]
- 479. Lucio Castro, Carlos Scartascini. 2015. Tax compliance and enforcement in the pampas evidence from a field experiment. *Journal of Economic Behavior & Organization* 116, 65-82. [Crossref]
- 480. Lana Friesen, Peter E. Earl. 2015. Multipart tariffs and bounded rationality: An experimental analysis of mobile phone plan choices. *Journal of Economic Behavior & Organization* 116, 239-253. [Crossref]
- 481. Christopher N Ford, Shu Wen Ng, Barry M Popkin. 2015. Targeted Beverage Taxes Influence Food and Beverage Purchases among Households with Preschool Children. *The Journal of Nutrition* 145:8, 1835-1843. [Crossref]
- 482. Romana Khan, Kanishka Misra, Vishal Singh. 2015. Will a Fat Tax Work?. *Marketing Science* 150720091204005. [Crossref]
- 483. Andrew Caplin, Mark Dean. 2015. Revealed Preference, Rational Inattention, and Costly Information Acquisition. *American Economic Review* 105:7, 2183-2203. [Abstract] [View PDF article] [PDF with links]
- 484. Eric J. Brunner, Stephen L. Ross, Becky K. Simonsen. 2015. Homeowners, renters and the political economy of property taxation. *Regional Science and Urban Economics* 53, 38-49. [Crossref]
- 485. Robert Kok. 2015. Six years of CO 2 -based tax incentives for new passenger cars in The Netherlands: Impacts on purchasing behavior trends and CO 2 effectiveness. *Transportation Research Part A: Policy and Practice* 77, 137-153. [Crossref]
- 486. Cheng Cheng. 2015. DO CELL PHONE BANS CHANGE DRIVER BEHAVIOR?. *Economic Inquiry* 53:3, 1420-1436. [Crossref]
- 487. David R. Agrawal, William F. Fox, Joel Slemrod. 2015. Competition and Subnational Governments: Tax Competition, Competition in Urban Areas, and Education Competition. *National Tax Journal* **68**:3S, 701-734. [Crossref]
- 488. Hunt Allcott, Cass R. Sunstein. 2015. REGULATING INTERNALITIES. *Journal of Policy Analysis and Management* 34:3, 698-705. [Crossref]
- 489. Ann Mumford. 2015. Tax Complexity, Tax Salience and Tax Politics. *Social & Legal Studies* 24:2, 185-201. [Crossref]
- 490. Raj Chetty. 2015. Behavioral Economics and Public Policy: A Pragmatic Perspective. *American Economic Review* **105**:5, 1-33. [Abstract] [View PDF article] [PDF with links]
- 491. David R. Agrawal. 2015. The Tax Gradient: Spatial Aspects of Fiscal Competition. *American Economic Journal: Economic Policy* 7:2, 1-29. [Abstract] [View PDF article] [PDF with links]
- 492. Jason M. Fletcher, David E. Frisvold, Nathan Tefft. 2015. Non-Linear Effects of Soda Taxes on Consumption and Weight Outcomes. *Health Economics* 24:5, 566-582. [Crossref]
- 493. Ryan Richard Ruff, Chen Zhen. 2015. Estimating the effects of a calorie-based sugar-sweetened beverage tax on weight and obesity in New York City adults using dynamic loss models. *Annals of Epidemiology* 25:5, 350-357. [Crossref]
- 494. C. Prendergast. 2015. The Empirical Content of Pay-for-Performance. *Journal of Law, Economics, and Organization* 31:2, 242-261. [Crossref]
- 495. Steven Sexton. 2015. Automatic Bill Payment and Salience Effects: Evidence from Electricity Consumption. *Review of Economics and Statistics* 97:2, 229-241. [Crossref]

- 496. Yanwen Wang, Michael Lewis, Vishal Singh. 2015. The Unintended Consequences of Countermarketing Strategies: How Particular Antismoking Measures May Shift Consumers to More Dangerous Cigarettes. *Marketing Science* 150430095504009. [Crossref]
- 497. Manyee Wong, Thomas D. Cook, Peter M. Steiner. 2015. Adding Design Elements to Improve Time Series Designs: No Child Left Behind as an Example of Causal Pattern-Matching. *Journal of Research on Educational Effectiveness* 8:2, 245-279. [Crossref]
- 498. Benjamin Hansen. 2015. Punishment and Deterrence: Evidence from Drunk Driving. *American Economic Review* 105:4, 1581-1617. [Abstract] [View PDF article] [PDF with links]
- 499. Kimberley Scharf, Sarah Smith. 2015. The price elasticity of charitable giving: does the form of tax relief matter?. *International Tax and Public Finance* 22:2, 330-352. [Crossref]
- 500. Petr Houdek, Petr Koblovský. 2015. Where is My Money? New Findings in Fiscal Psychology. *Society* **52**:2, 155-158. [Crossref]
- 501. Tuomas Kosonen, Olli Ropponen. 2015. The role of information in tax compliance: Evidence from a natural field experiment. *Economics Letters* **129**, 18-21. [Crossref]
- 502. Ekaterina Rhodes, Jonn Axsen, Mark Jaccard. 2015. Gauging citizen support for a low carbon fuel standard. *Energy Policy* **79**, 104-114. [Crossref]
- 503. Daniel B. Jones. 2015. EDUCATION'S GAMBLING PROBLEM: EARMARKED LOTTERY REVENUES AND CHARITABLE DONATIONS TO EDUCATION. *Economic Inquiry* 53:2, 906-921. [Crossref]
- 504. Cynthia Blanthorne, Michael L. Roberts. 2015. Cognitive Responses to Partitioned Pricing of Consumption Taxes: Consequences for State and Local Tax Revenues. *The Journal of the American Taxation Association* 37:1, 183-204. [Crossref]
- 505. Kenan Kalaycı. 2015. Price complexity and buyer confusion in markets. *Journal of Economic Behavior & Organization* 111, 154-168. [Crossref]
- 506. Ziming Xuan, Frank J. Chaloupka, Jason G. Blanchette, Thien H. Nguyen, Timothy C. Heeren, Toben F. Nelson, Timothy S. Naimi. 2015. The relationship between alcohol taxes and binge drinking: evaluating new tax measures incorporating multiple tax and beverage types. *Addiction* 110:3, 441-450. [Crossref]
- 507. Philip DeCicca, Donald Kenkel, Feng Liu. 2015. Reservation Prices: An Economic Analysis of Cigarette Purchases on Indian Reservations. *National Tax Journal* 68:1, 93-118. [Crossref]
- 508. Renate Schubert, Marcel Stadelmann. 2015. Energy-Using Durables Why Consumers Refrain from Economically Optimal Choices. Frontiers in Energy Research 3. . [Crossref]
- 509. Jeffrey B. Liebman, Erzo F. P. Luttmer. 2015. Would People Behave Differently If They Better Understood Social Security? Evidence from a Field Experiment. *American Economic Journal: Economic Policy* 7:1, 275-299. [Abstract] [View PDF article] [PDF with links]
- 510. Thomas Klier, Joshua Linn. 2015. Using Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden. *American Economic Journal: Economic Policy* 7:1, 212-242. [Abstract] [View PDF article] [PDF with links]
- 511. Naomi E. Feldman, Bradley J. Ruffle. 2015. The Impact of Including, Adding, and Subtracting a Tax on Demand. *American Economic Journal: Economic Policy* 7:1, 95-118. [Abstract] [View PDF article] [PDF with links]
- 512. Jonathan Smith, Michael Hurwitz, Jessica Howell. 2015. Screening mechanisms and student responses in the college market. *Economics of Education Review* 44, 17-28. [Crossref]
- 513. MARK J. GARMAISE. 2015. Borrower Misreporting and Loan Performance. *The Journal of Finance* **70**:1, 449-484. [Crossref]

- 514. Meghan R. Busse, Devin G. Pope, Jaren C. Pope, Jorge Silva-Risso. 2015. The Psychological Effect of Weather on Car Purchases *. *The Quarterly Journal of Economics* 130:1, 371-414. [Crossref]
- 515. John R. Graham, Michelle Hanlon, Terry J. Shevlin, Nemit Shroff. 2015. Tax Rates and Corporate Decision Making. SSRN Electronic Journal. [Crossref]
- 516. Romana Khan, Kanishka Misra, Vishal Singh. 2015. Will a Fat Tax Work?. SSRN Electronic Journal . [Crossref]
- 517. Frank M. Fossen, Johannes KKnig. 2015. Public Health Insurance and Entry into Self-Employment. SSRN Electronic Journal. [Crossref]
- 518. Sule Alan, Mehmet Cemalcclar, Dean S. Karlan, Jonathan Zinman. 2015. Unshrouding Effects on Demand for a Costly Add-On: Evidence from Bank Overdrafts in Turkey. SSRN Electronic Journal . [Crossref]
- 519. John M. Coglianese, Lucas W. Davis, Lutz Kilian, James H. Stock. 2015. Anticipation, Tax Avoidance, and the Price Elasticity of Gasoline Demand. SSRN Electronic Journal . [Crossref]
- 520. Alexei Alexandrov. 2015. Equilibrium Effects in a General Model of Behavioral Biases. SSRN Electronic Journal. [Crossref]
- 521. Paul Dolan, Robert D Metcalfe. 2015. Neighbors, Knowledge, and Nuggets: Two Natural Field Experiments on the Role of Incentives on Energy Conservation. SSRN Electronic Journal . [Crossref]
- 522. Hagen Ackermann. 2015. How Does the Type of Subsidization Affect Investments: Experimental Evidence. SSRN Electronic Journal. [Crossref]
- 523. Martin Fochmann, Nadja Wolf. 2015. Mental Accounting in Tax Evasion Decisions An Experiment on Underreporting and Overdeducting. SSRN Electronic Journal . [Crossref]
- 524. Todd Gerarden, Richard G. Newell, Robert N. Stavins. 2015. Assessing the Energy-Efficiency Gap. SSRN Electronic Journal . [Crossref]
- 525. Elena Patel, Nathan Seegert, Matthew Grady Smith. 2015. At a Loss: The Real and Reporting Elasticity of Taxable Income. SSRN Electronic Journal. [Crossref]
- 526. Karen L. Palmer, Margaret Walls. 2015. Does Information Provision Shrink the Energy Efficiency Gap? A Cross-City Comparison of Commercial Building Benchmarking and Disclosure Laws. SSRN Electronic Journal. [Crossref]
- 527. Aart Gerritsen. 2015. Optimal Taxation When People Do Not Maximize Well-Being. SSRN Electronic Journal . [Crossref]
- 528. Casey J. Wichman. 2015. Information Provision and Consumer Behavior: A Natural Experiment in Billing Frequency. SSRN Electronic Journal. [Crossref]
- 529. Scott Rick, Gabriele Paolacci, Katherine Alicia Burson. 2015. Income Tax and the Motivation to Work. SSRN Electronic Journal. [Crossref]
- 530. Maximilian D. Schmeiser, Christiana Stoddard, Carly Urban. 2015. Does Salient Financial Information Affect Academic Performance and Borrowing Behavior Among College Students?. SSRN Electronic Journal. [Crossref]
- 531. Henk-Wim de Boer, Egbert L.W. Jongen, Jan Kabatek. 2015. The Effectiveness of Fiscal Stimuli for Working Parents. SSRN Electronic Journal . [Crossref]
- 532. Alberto Salvo. 2015. Flexible Fuel Vehicles, Less Flexible Minded Consumers: Price Salience Experiments at the Pump. SSRN Electronic Journal. [Crossref]
- 533. Filip Mattjka, Guido Tabellini. 2015. Electoral Competition with Rationally Inattentive Voters. SSRN Electronic Journal . [Crossref]
- 534. Martin Fochmann, Kristina Hemmerich, Dirk Kiesewetter. 2015. Intrinsic and Extrinsic Effects on Behavioral Tax Biases in Risky Investment Decisions. SSRN Electronic Journal. [Crossref]

- 535. Matthias Weber. 2015. Behavioral Economics and the Public Sector. SSRN Electronic Journal . [Crossref]
- 536. Donald B. Marron, Maeve E Gearing, John Iselin. 2015. Should We Tax Unhealthy Foods and Drinks?. SSRN Electronic Journal. [Crossref]
- 537. Sebastien Bradley, Naomi E. Feldman. 2015. Hidden Baggage: Behavioral Responses to Changes in Airline Ticket Tax Disclosure. SSRN Electronic Journal. [Crossref]
- 538. Jarkko Harju, Tuomas Kosonen, Oskar Nordstrrm Skans. 2015. Firm Types, Price-setting Strategies, and Consumption-tax Incidence. SSRN Electronic Journal. [Crossref]
- 539. Quinn Keefer, Galib Rustamov. 2015. Limited Attention in Residential Energy Markets: A Regression Discontinuity Approach. SSRN Electronic Journal . [Crossref]
- 540. Ann E. Harrison, Benjamin Hyman, Leslie A. Martin, Shanthi Nataraj. 2015. When Do Firms Go Green? Comparing Price Incentives with Command and Control Regulations in India. SSRN Electronic Journal. [Crossref]
- 541. Michael Klien. 2014. Tariff increases over the electoral cycle: A question of size and salience. *European Journal of Political Economy* **36**, 228-242. [Crossref]
- 542. Kazuki Onji. 2014. The price disparity analysis revisited: An application to pork imports in Japan. *Journal of the Japanese and International Economies* 34, 1-23. [Crossref]
- 543. M. K. Price. 2014. Using field experiments to address environmental externalities and resource scarcity: major lessons learned and new directions for future research. *Oxford Review of Economic Policy* **30**:4, 621-638. [Crossref]
- 544. Anne Brockmeyer. 2014. The Investment Effect of Taxation: Evidence from a Corporate Tax Kink. *Fiscal Studies* **35**:4, 477-509. [Crossref]
- 545. Richard M. Bird, Michael Smart. 2014. VAT in a Federal System: Lessons from Canada. *Public Budgeting & Finance* 34:4, 38-60. [Crossref]
- 546. Hunt Allcott, Nathan Wozny. 2014. Gasoline Prices, Fuel Economy, and the Energy Paradox. *Review of Economics and Statistics* **96**:5, 779-795. [Crossref]
- 547. Shanjun Li, Joshua Linn, Erich Muehlegger. 2014. Gasoline Taxes and Consumer Behavior. *American Economic Journal: Economic Policy* **6**:4, 302-342. [Abstract] [View PDF article] [PDF with links]
- 548. Ben Gilbert, Joshua Graff Zivin. 2014. Dynamic salience with intermittent billing: Evidence from smart electricity meters. *Journal of Economic Behavior & Organization* 107, 176-190. [Crossref]
- 549. J. Michael Collins, Carly Urban. 2014. The dark side of sunshine: Regulatory oversight and status quo bias. *Journal of Economic Behavior & Organization* 107, 470-486. [Crossref]
- 550. Joshua Tasoff, Robert Letzler. 2014. Everyone believes in redemption: Nudges and overoptimism in costly task completion. *Journal of Economic Behavior & Organization* 107, 107-122. [Crossref]
- 551. Xavier Gabaix. 2014. A Sparsity-Based Model of Bounded Rationality *. The Quarterly Journal of Economics 129:4, 1661-1710. [Crossref]
- 552. Thomas Dohmen. 2014. Behavioral labor economics: Advances and future directions. *Labour Economics* **30**, 71-85. [Crossref]
- 553. Johan Almenberg, Artashes Karapetyan. 2014. Hidden Costs of Hidden Debt*. *Review of Finance* 18:6, 2247-2281. [Crossref]
- 554. Norman Gemmell, John Hasseldine. 2014. Taxpayers' Behavioural Responses and Measures of Tax Compliance 'Gaps': A Critique and a New Measure. *Fiscal Studies* 35:3, 275-296. [Crossref]
- 555. Mo-han Wang, Min Xu, Qiang Ye. Change-point effect of seller reputation grade on the performance of online sales 15-20. [Crossref]

- 556. Wilma Elzeline Waterlander, Cliona Ni Mhurchu, Ingrid H.M. Steenhuis. 2014. Effects of a price increase on purchases of sugar sweetened beverages. Results from a randomized controlled trial. *Appetite* **78**, 32-39. [Crossref]
- 557. Tuba Tunçel, James K. Hammitt. 2014. A new meta-analysis on the WTP/WTA disparity. *Journal of Environmental Economics and Management* **68**:1, 175–187. [Crossref]
- 558. HENNING FINSERAAS, NIKLAS JAKOBSSON. 2014. Does information about the pension system affect knowledge and retirement plans? Evidence from a survey experiment. *Journal of Pension Economics and Finance* 13:3, 250-271. [Crossref]
- 559. Xiaoxia Wang, Wenkai Sun. 2014. Discrepancy between Registered and Actual Unemployment Rates in China: An Investigation in Provincial Capital Cities. *China & World Economy* 22:4, 40-59. [Crossref]
- 560. Stephanie A. S. Staras, Melvin D. Livingston, Alana M. Christou, David H. Jernigan, Alexander C. Wagenaar. 2014. Heterogeneous population effects of an alcohol excise tax increase on sexually transmitted infections morbidity. *Addiction* 109:6, 904-912. [Crossref]
- 561. Lori Beaman, Jeremy Magruder, Jonathan Robinson. 2014. Minding small change among small firms in Kenya. *Journal of Development Economics* **108**, 69-86. [Crossref]
- 562. Katrina Jessoe, David Rapson. 2014. Knowledge is (Less) Power: Experimental Evidence from Residential Energy Use. *American Economic Review* 104:4, 1417-1438. [Abstract] [View PDF article] [PDF with links]
- 563. Hunt Allcott, Sendhil Mullainathan, Dmitry Taubinsky. 2014. Energy policy with externalities and internalities. *Journal of Public Economics* 112, 72-88. [Crossref]
- 564. GRISCHA PERINO, LUCA A. PANZONE, TIMOTHY SWANSON. 2014. MOTIVATION CROWDING IN REAL CONSUMPTION DECISIONS: WHO IS MESSING WITH MY GROCERIES?. *Economic Inquiry* **52**:2, 592-607. [Crossref]
- 565. Christopher Jeffords. 2014. Preference-directed regulation when ethical environmental policy choices are formed with limited information. *Empirical Economics* **46**:2, 573-606. [Crossref]
- 566. J. Goldin, Y. Listokin. 2014. Tax Expenditure Salience. *American Law and Economics Review* 16:1, 144-176. [Crossref]
- 567. Koichiro Ito. 2014. Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing. *American Economic Review* **104**:2, 537-563. [Abstract] [View PDF article] [PDF with links]
- 568. Niels Johannesen, Gabriel Zucman. 2014. The End of Bank Secrecy? An Evaluation of the G20 Tax Haven Crackdown. *American Economic Journal: Economic Policy* **6**:1, 65-91. [Abstract] [View PDF article] [PDF with links]
- 569. Kay Blaufus, Axel Möhlmann. 2014. Security Returns and Tax Aversion Bias: Behavioral Responses to Tax Labels. *Journal of Behavioral Finance* 15:1, 56-69. [Crossref]
- 570. Liran Einav, Dan Knoepfle, Jonathan Levin, Neel Sundaresan. 2014. Sales Taxes and Internet Commerce. *American Economic Review* 104:1, 1-26. [Abstract] [View PDF article] [PDF with links]
- 571. Dean Spears. 2014. Decision costs and price sensitivity: Field experimental evidence from India. Journal of Economic Behavior & Organization 97, 169-184. [Crossref]
- 572. Xun Lu, Halbert White. 2014. Robustness checks and robustness tests in applied economics. *Journal of Econometrics* **178**, 194-206. [Crossref]
- 573. Aaron Major, Josh McCabe. 2014. The Adversarial Politics of Fiscal Federalism: Tax Policy and the Conservative Ascendancy in Canada, 1988–2008. *Social Science History* 38:3-4, 333-358. [Crossref]
- 574. K. Gillingham, K. Palmer. 2014. Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence. *Review of Environmental Economics and Policy* 8:1, 18-38. [Crossref]

- 575. Mohan Wang, Bin Gu, Qiang Ye. Elimination by Aspects in Electronic Commerce -- Evidence from Online Marketplace and Implications for Empirical Model Specification 4142-4147. [Crossref]
- 576. Daniel Martin. 2014. Bayesian Revealed Preferences. SSRN Electronic Journal. [Crossref]
- 577. Jeffrey L. Hoopes, Jacob R. Thornock, Braden Williams. 2014. Is Sales Tax Avoidance a Competitive Advantage?. SSRN Electronic Journal . [Crossref]
- 578. Eric Cardella, Michael Seiler. 2014. The Effect of List Price Strategies on Real Estate Negotiations: An Experimental Study. SSRN Electronic Journal . [Crossref]
- 579. Jacob Goldin, Daniel H. Reck. 2014. Preference Identification Under Inconsistent Choice: A Reduced-Form Approach. SSRN Electronic Journal . [Crossref]
- 580. David P. Byrne, Andrea La Nauze, Leslie A. Martin. 2014. Tell Me Something I Don't Already Know: Informedness and External Validity in Information Programs. SSRN Electronic Journal. [Crossref]
- 581. Silvia Tiezzi, Stefano F. Verde. 2014. Overreaction to Excise Taxes: The Case of Gasoline. SSRN Electronic Journal . [Crossref]
- 582. Rene Fahr, Elmar Janssen, Caren Sureth. 2014. Can Tax Rate Increases Foster Investment Under Entry and Exit Flexibility? Insights from an Economic Experiment. SSRN Electronic Journal. [Crossref]
- 583. Martin Fochmann, Kristina Hemmerich. 2014. Real Tax Effects and Tax Perception Effects in Decisions on Asset Allocation. SSRN Electronic Journal . [Crossref]
- 584. Hagen Ackermann, Martin Fochmann. 2014. The Effect of Straight-Line and Accelerated Depreciation Rules on Risky Investment Decisions An Experimental Study. SSRN Electronic Journal . [Crossref]
- 585. Sebastian Eichfelder, Mona Lau. 2014. Capital Gains Taxes and Asset Prices: The Impact of Tax Awareness and Procrastination. SSRN Electronic Journal . [Crossref]
- 586. Anna Mortimore. 2014. Reforming Vehicle Taxes on New Car Purchases Can Reduce Road Transport Emissions -- Ex Post Evidence. SSRN Electronic Journal. [Crossref]
- 587. Bhavani Shanker Uppari, Sameer Hasija. 2014. On the Consistency between Prospect Theory and the Newsvendor Pull-to-Center Effect. SSRN Electronic Journal . [Crossref]
- 588. Alexander Gelber, Damon Jones, Daniel W. Sacks. 2014. Earnings Adjustment Frictions: Evidence from the Social Security Earnings Test. SSRN Electronic Journal. [Crossref]
- 589. Nicholas Rivers, Brandon Schaufele. 2014. New Vehicle Feebates: Theory and Evidence. SSRN Electronic Journal. [Crossref]
- 590. Cass R. Sunstein. 2014. The Council of Psychological Advisers. SSRN Electronic Journal. [Crossref]
- 591. Xiaoling Ang. 2014. The Power of Active Disclosure: The Effect of Self-Certification on the Private Student Loan Market. SSRN Electronic Journal . [Crossref]
- 592. David R. Agrawal, William F. Fox, Joel B. Slemrod. 2014. Competition and Subnational Governments: Tax Competition, Competition in Urban Areas, and Education Competition. SSRN Electronic Journal . [Crossref]
- 593. Alexander Chinco. 2014. No Coincidence, No Story, No Arbitrage. SSRN Electronic Journal . [Crossref]
- 594. Zemin (Zachary) Zhong. 2014. Consumer Limited Attention to Online Ratings and Seller Response: A Regression Discontinuity Design. SSRN Electronic Journal . [Crossref]
- 595. Eric J. Brunner, Stephen L. Ross, Becky K. Simonsen. 2014. Homeowners, Renters and the Political Economy of Property Taxation. SSRN Electronic Journal . [Crossref]
- 596. Ronald C. Fisher, Robert W. Wassmer. 2014. Perception of Gasoline Taxes and Driver Cost: Implications for Highway Finance. SSRN Electronic Journal. [Crossref]

- 597. Lydia Ashton. 2014. Hunger Games: Does Hunger and Cognitive Fatigue Affect Time Preferences?. SSRN Electronic Journal . [Crossref]
- 598. Lydia Ashton. 2014. Left-Digit Bias and Inattention in Retail Purchases: Evidence from a Field Experiment. SSRN Electronic Journal. [Crossref]
- 599. Steffen Altmann, Falk Armin, Paul Heidhues, Rajshri Jayaraman. 2014. Defaults and Donations: Evidence from a Field Experiment. SSRN Electronic Journal. [Crossref]
- 600. Sandro Ambuehl, B. Douglas Bernheim, Annamaria Lusardi. 2014. Financial Education, Financial Competence, and Consumer Welfare. SSRN Electronic Journal. [Crossref]
- 601. Zdravko Paskalev, Huseyin Yildirim. 2014. A Theory of Outsourced Fundraising: Why Dollars Turn into 'Pennies for Charity'. SSRN Electronic Journal . [Crossref]
- 602. Hunt Allcott, Dmitry Taubinsky. 2014. Evaluating Behaviorally-Motivated Policy: Experimental Evidence from the Lightbulb Market. SSRN Electronic Journal. [Crossref]
- 603. Benjamin J. Keys, Devin G. Pope, Jaren Pope. 2014. Failure to Refinance. SSRN Electronic Journal . [Crossref]
- 604. Michael D. Jones. 2013. Teacher behavior under performance pay incentives. *Economics of Education Review* 37, 148-164. [Crossref]
- 605. Ralph-C. Bayer, Changxia Ke. 2013. Discounts and consumer search behavior: The role of framing. *Journal of Economic Psychology* **39**, 215-224. [Crossref]
- 606. Fortuna Casoria, Arno Riedl. Experimental Labor Markets and Policy Considerations: Incomplete Contracts and Macroeconomic Aspects 5-29. [Crossref]
- 607. Ioana Chioveanu, Jidong Zhou. 2013. Price Competition with Consumer Confusion. *Management Science* **59**:11, 2450-2469. [Crossref]
- 608. Vincenzo Maria De Rosa, Roberto Dell'Anno. 2013. The Relevance of the Theory of Fiscal Illusion. The Case of the Italian Tax System. *HISTORY OF ECONOMIC THOUGHT AND POLICY* :2, 63-92. [Crossref]
- 609. Simone Steinhilber, Peter Wells, Samarthia Thankappan. 2013. Socio-technical inertia: Understanding the barriers to electric vehicles. *Energy Policy* **60**, 531-539. [Crossref]
- 610. Hunt Allcott. 2013. The Welfare Effects of Misperceived Product Costs: Data and Calibrations from the Automobile Market. *American Economic Journal: Economic Policy* 5:3, 30-66. [Abstract] [View PDF article] [PDF with links]
- 611. Brian Elbel, Glen B. Taksler, Tod Mijanovich, Courtney B. Abrams, L.B. Dixon. 2013. Promotion of Healthy Eating Through Public Policy. *American Journal of Preventive Medicine* 45:1, 49-55. [Crossref]
- 612. Hagen Ackermann, Martin Fochmann, Benedikt Mihm. 2013. Biased effects of taxes and subsidies on portfolio choices. *Economics Letters* 120:1, 23-26. [Crossref]
- 613. Fortuna Casoria, Arno Riedl. 2013. EXPERIMENTAL LABOR MARKETS AND POLICY CONSIDERATIONS: INCOMPLETE CONTRACTS AND MACROECONOMIC ASPECTS. *Journal of Economic Surveys* 27:3, 398-420. [Crossref]
- 614. Denvil Duncan, John Graham. 2013. Road User Fees Instead of Fuel Taxes: The Quest for Political Acceptability. *Public Administration Review* **73**:3, 415-426. [Crossref]
- 615. Kay Blaufus, Jonathan Bob, Jochen Hundsdoerfer, Dirk Kiesewetter, Joachim Weimann. 2013. Decision heuristics and tax perception An analysis of a tax-cut-cum-base-broadening policy. *Journal of Economic Psychology* 35, 1-16. [Crossref]
- 616. DANIEL F. STONE. 2013. TESTING BAYESIAN UPDATING WITH THE ASSOCIATED PRESS TOP 25. Economic Inquiry 51:2, 1457-1474. [Crossref]

- 617. Martin Fochmann, Joachim Weimann, Kay Blaufus, Jochen Hundsdoerfer, Dirk Kiesewetter. 2013. Net Wage Illusion in a Real-Effort Experiment*. *The Scandinavian Journal of Economics* 115:2, 476-484. [Crossref]
- 618. Yuqing Zheng, Edward W. McLaughlin, Harry M. Kaiser. 2013. Taxing Food and Beverages: Theory, Evidence, and Policy. *American Journal of Agricultural Economics* **95**:3, 705-723. [Crossref]
- 619. Etienne Lehmann, François Marical, Laurence Rioux. 2013. Labor income responds differently to income-tax and payroll-tax reforms. *Journal of Public Economics* **99**, 66-84. [Crossref]
- 620. Yuqing Zheng, Edward W. McLaughlin, Harry M. Kaiser. 2013. Salience and taxation: salience effect versus information effect. *Applied Economics Letters* **20**:5, 508-510. [Crossref]
- 621. Michael Luca, Jonathan Smith. 2013. Salience in Quality Disclosure: Evidence from the U.S. News College Rankings. *Journal of Economics & Management Strategy* 22:1, 58-77. [Crossref]
- 622. Andrew T. Hayashi, Brent K. Nakamura, David Gamage. 2013. Experimental Evidence of Tax Salience and the Labor–Leisure Decision. *Public Finance Review* 41:2, 203-226. [Crossref]
- 623. Rishika Rishika, Ashish Kumar, Ramkumar Janakiraman, Ram Bezawada. 2013. The Effect of Customers' Social Media Participation on Customer Visit Frequency and Profitability: An Empirical Investigation. *Information Systems Research* 24:1, 108-127. [Crossref]
- 624. Jacob Goldin, Tatiana Homonoff. 2013. Smoke Gets in Your Eyes: Cigarette Tax Salience and Regressivity. *American Economic Journal: Economic Policy* 5:1, 302-336. [Abstract] [View PDF article] [PDF with links]
- 625. Raj Chetty,, Emmanuel Saez. 2013. Teaching the Tax Code: Earnings Responses to an Experiment with EITC Recipients. *American Economic Journal: Applied Economics* 5:1, 1-31. [Abstract] [View PDF article] [PDF with links]
- 626. Asmus Leth Olsen. 2013. The politics of digits: evidence of odd taxation. *Public Choice* 154:1-2, 59-73. [Crossref]
- 627. G.E. Metcalf, D. Weisbach. Carbon Taxes 9-14. [Crossref]
- 628. Hunt Allcott, Michael Greenstone. Is There an Energy Efficiency Gap? 133-161. [Crossref]
- 629. James Andreoni, A. Abigail Payne. Charitable Giving 1-50. [Crossref]
- 630. Raj Chetty, Amy Finkelstein. Social Insurance: Connecting Theory to Data 111-193. [Crossref]
- 631. Kenneth Gillingham, Matthew J. Kotchen, David S. Rapson, Gernot Wagner. 2013. The rebound effect is overplayed. *Nature* 493:7433, 475-476. [Crossref]
- 632. David A. Weisbach. 2013. Is Knowledge of the Tax Law Socially Desirable?. American Law and Economics Review 15:1, 187-211. [Crossref]
- 633. Wilma E Waterlander, Ingrid HM Steenhuis, Michiel R de Boer, Albertine J Schuit, Jacob C Seidell. 2013. Effects of different discount levels on healthy products coupled with a healthy choice label, special offer label or both: results from a web-based supermarket experiment. *International Journal of Behavioral Nutrition and Physical Activity* 10:1, 59. [Crossref]
- 634. Cass R. Sunstein. 2013. Nudges.gov: Behavioral Economics and Regulation. SSRN Electronic Journal . [Crossref]
- 635. Matthias Weber, Arthur J. H. C. Schram. 2013. The Non-Equivalence of Labor Market Taxes: A Real-Effort Experiment. SSRN Electronic Journal. [Crossref]
- 636. David M. Muir, Katja Seim, Maria Ana Vitorino. 2013. Drip Pricing When Consumers Have Limited Foresight: Evidence from Driving School Fees. SSRN Electronic Journal . [Crossref]
- 637. Per Engstrom, Eskil Forsell. 2013. Demand Effects of Consumers' Stated and Revealed Preferences. SSRN Electronic Journal. [Crossref]

- 638. Daniel H. Reck. 2013. Taxes and Mistakes: What's in a Sufficient Statistic?. SSRN Electronic Journal . [Crossref]
- 639. Henrique de Oliveira, Tommaso Denti, Maximilian Mihm, M. Kemal Ozbek. 2013. Rationally Inattentive Preferences. SSRN Electronic Journal. [Crossref]
- 640. Thomas Deckers, Armin Falk, Hannah Schildberg-Hörisch. 2013. Nominal or Real? The Impact of Regional Price Levels on Satisfaction with Life. SSRN Electronic Journal . [Crossref]
- 641. Cass R. Sunstein. 2013. Behavioral Economics, Consumption, and Environmental Protection. SSRN Electronic Journal. [Crossref]
- 642. Jeffrey L. Hoopes, Daniel H. Reck, Joel B. Slemrod. 2013. Taxpayer Search for Information: Implications for Rational Attention. SSRN Electronic Journal. [Crossref]
- 643. Sumit Agarwal, Souphala Chomsisengphet, Neale Mahoney, Johannes Stroebel. 2013. Regulating Consumer Financial Products: Evidence from Credit Cards. SSRN Electronic Journal. [Crossref]
- 644. Tuomas Kosonen, Olli Tapani Ropponen. 2013. The Role of Information in Tax Compliance: Evidence from a Natural Field Experiment. SSRN Electronic Journal. [Crossref]
- 645. Nachum Sicherman, George Loewenstein, Duane J. Seppi, Stephen P. Utkus. 2013. Financial Attention. SSRN Electronic Journal. [Crossref]
- 646. Vasiliki Fouka, Hans-Joachim Voth. 2013. Reprisals Remembered: German-Greek Conflict and Car Sales During the Euro Crisis. SSRN Electronic Journal. [Crossref]
- 647. Vojtech Bartos, Michal Bauer, Julie Chytilovv, Filip Mattjka. 2013. Attention Discrimination: Theory and Field Experiments. SSRN Electronic Journal. [Crossref]
- 648. Alexander Gelber, Damon Jones, Daniel W. Sacks. 2013. Earnings Adjustment Frictions: Evidence from Social Security Earnings Test. SSRN Electronic Journal. [Crossref]
- 649. Norman Gemmell, John Hasseldine. 2013. Taxpayers' Behavioural Responses and Measures of Tax Compliance 'Gaps': A Critique. SSRN Electronic Journal . [Crossref]
- 650. Mazhar Waseem. 2013. Taxes, Informality and Income Shifting: Evidence from a Recent Pakistani Tax Reform. SSRN Electronic Journal . [Crossref]
- 651. Carolina Castilla, Timothy Haab. 2013. Limited Attention to Search Costs in the Gasoline Retail Market: Evidence from a Choice Experiment on Consumer Willingness to Search. *American Journal of Agricultural Economics* 95:1, 181-199. [Crossref]
- 652. Kenneth A. Small. 2012. Valuation of travel time. Economics of Transportation 1:1-2, 2-14. [Crossref]
- 653. Dirk Engelmann, Martin Strobel. 2012. Deconstruction and reconstruction of an anomaly. *Games and Economic Behavior* **76**:2, 678-689. [Crossref]
- 654. David Card,, Alexandre Mas,, Enrico Moretti,, Emmanuel Saez. 2012. Inequality at Work: The Effect of Peer Salaries on Job Satisfaction. *American Economic Review* **102**:6, 2981-3003. [Abstract] [View PDF article] [PDF with links]
- 655. Anthony B. Atkinson. 2012. The Mirrlees Review and the State of Public Economics. *Journal of Economic Literature* **50**:3, 770-780. [Abstract] [View PDF article] [PDF with links]
- 656. Robert Metcalfe, Paul Dolan. 2012. Behavioural economics and its implications for transport. *Journal of Transport Geography* **24**, 503-511. [Crossref]
- 657. Sendhil Mullainathan, Joshua Schwartzstein, William J. Congdon. 2012. A Reduced-Form Approach to Behavioral Public Finance. *Annual Review of Economics* 4:1, 511-540. [Crossref]
- 658. Yusufcan Masatlioglu, Daisuke Nakajima, Erkut Y. Ozbay. 2012. Revealed Attention. *American Economic Review* 102:5, 2183-2205. [Abstract] [View PDF article] [PDF with links]

- 659. Nicola Lacetera,, Devin G. Pope,, Justin R. Sydnor. 2012. Heuristic Thinking and Limited Attention in the Car Market. *American Economic Review* **102**:5, 2206-2236. [Abstract] [View PDF article] [PDF with links]
- 660. Tomer Blumkin, Bradley J. Ruffle, Yosef Ganun. 2012. Are income and consumption taxes ever really equivalent? Evidence from a real-effort experiment with real goods. *European Economic Review* **56**:6, 1200-1219. [Crossref]
- 661. Timothy J. Gronberg, R. Andrew Luccasen, Theodore L. Turocy, John B. Van Huyck. 2012. Are tax-financed contributions to a public good completely crowded-out? Experimental evidence. *Journal of Public Economics* **96**:7-8, 596-603. [Crossref]
- 662. Pedro Bordalo, Nicola Gennaioli, Andrei Shleifer. 2012. Salience Theory of Choice Under Risk. *The Quarterly Journal of Economics* 127:3, 1243-1285. [Crossref]
- 663. Wilma E. Waterlander, Ingrid H.M. Steenhuis, Michiel R. de Boer, Albertine J. Schuit, Jacob C. Seidell. 2012. Introducing taxes, subsidies or both: The effects of various food pricing strategies in a web-based supermarket randomized trial. *Preventive Medicine* 54:5, 323-330. [Crossref]
- 664. Paul Dolan, Antony Elliott, Robert Metcalfe, Ivo Vlaev. 2012. Influencing Financial Behavior: From Changing Minds to Changing Contexts. *Journal of Behavioral Finance* 13:2, 126-142. [Crossref]
- 665. KATHERINE BAICKER, WILLIAM J. CONGDON, SENDHIL MULLAINATHAN. 2012. Health Insurance Coverage and Take-Up: Lessons from Behavioral Economics. *Milbank Quarterly* **90**:1, 107-134. [Crossref]
- 666. Hunt Allcott,, Michael Greenstone. 2012. Is There an Energy Efficiency Gap?. *Journal of Economic Perspectives* 26:1, 3-28. [Abstract] [View PDF article] [PDF with links]
- 667. Damon Jones. 2012. Inertia and Overwithholding: Explaining the Prevalence of Income Tax Refunds. American Economic Journal: Economic Policy 4:1, 158-185. [Abstract] [View PDF article] [PDF with links]
- 668. P. Dolan, M. Hallsworth, D. Halpern, D. King, R. Metcalfe, I. Vlaev. 2012. Influencing behaviour: The mindspace way. *Journal of Economic Psychology* 33:1, 264-277. [Crossref]
- 669. J. S. Blumenthal-Barby, Hadley Burroughs. 2012. Seeking Better Health Care Outcomes: The Ethics of Using the "Nudge". *The American Journal of Bioethics* 12:2, 1-10. [Crossref]
- 670. E. Saez, M. Matsaganis, P. Tsakloglou. 2012. Earnings Determination and Taxes: Evidence From a Cohort-Based Payroll Tax Reform in Greece. *The Quarterly Journal of Economics* **127**:1, 493-533. [Crossref]
- 671. Richard Friberg,, Erik Grönqvist. 2012. Do Expert Reviews Affect the Demand for Wine?. *American Economic Journal: Applied Economics* 4:1, 193-211. [Abstract] [View PDF article] [PDF with links]
- 672. Hunt Allcott, Michael Greenstone. 2012. Is There an Energy Efficiency Gap?. SSRN Electronic Journal. [Crossref]
- 673. Carsten Dahremöller, Markus Fels. 2012. Product Lines, Product Design and Limited Attention. SSRN Electronic Journal . [Crossref]
- 674. Jacob Goldin. 2012. Optimal Tax Salience. SSRN Electronic Journal. [Crossref]
- 675. Shanjun Li, Joshua Linn, Erich Muehlegger. 2012. Gasoline Taxes and Consumer Behavior. SSRN Electronic Journal . [Crossref]
- 676. Naomi E. Feldman, Bradley J. Ruffle. 2012. The Impact of Tax Exclusive and Inclusive Prices on Demand. SSRN Electronic Journal. [Crossref]
- 677. Ashok Kaul, Gregor Pfeifer, Stefan Witte. 2012. The Incidence of Cash for Clunkers: An Analysis of the 2009 Car Scrappage Scheme in Germany. SSRN Electronic Journal . [Crossref]

- 678. Joshua Tasoff, Robert Letzler. 2012. Everyone Believes in Redemption: Overoptimism and Nudges. SSRN Electronic Journal. [Crossref]
- 679. Andrew T. Hayashi, Brent K. Nakamura, David Gamage. 2012. Experimental Evidence of Tax Salience and the Labor-Leisure Decision: Anchoring, Tax Aversion, or Complexity?. SSRN Electronic Journal . [Crossref]
- 680. Yair Listokin, Jacob Goldin. 2012. Tax Expenditure Salience. SSRN Electronic Journal . [Crossref]
- 681. Benjamin Hansen. 2012. Punishment and Recidivism in Drunk Driving. SSRN Electronic Journal . [Crossref]
- 682. Richard M. Bird. 2012. The GST/HST: Creating an Integrated Sales Tax in a Federal Country. SSRN Electronic Journal. [Crossref]
- 683. Richard M. Bird, Michael Smart. 2012. VAT in a Federal System: Lessons from Canada. SSRN Electronic Journal. [Crossref]
- 684. K. Jeremy Ko, Jared Williams. 2012. The Effects of Regulating Penalty Fees for Consumer Financial Products. SSRN Electronic Journal . [Crossref]
- 685. Nicholas Rivers, Brandon Schaufele. 2012. Carbon Tax Salience and Gasoline Demand. SSRN Electronic Journal. [Crossref]
- 686. Peter John. 2012. All Tools are Informational Now: How Information and Persuasion Define the Tools of Government. SSRN Electronic Journal. [Crossref]
- 687. Giacomo A. M. Ponzetto, Ugo Troiano. 2012. Social Capital, Government Expenditures, and Growth. SSRN Electronic Journal. [Crossref]
- 688. Thomas Alexander Stephens, Jean-Robert Tyran. 2012. 'At Least I Didn't Lose Money' Nominal Loss Aversion Shapes Evaluations of Housing Transactions. SSRN Electronic Journal. [Crossref]
- 689. Stefania Sitzia, Jiwei Zheng, Daniel John Zizzo. 2012. Complexity and Smart Nudges with Inattentive Consumers. SSRN Electronic Journal . [Crossref]
- 690. Thomas Klier, Joshua Linn. 2012. Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden. SSRN Electronic Journal . [Crossref]
- 691. Naomi E. Feldman, Bradley J. Ruffle. 2012. The Impact of Tax Exlusive and Inclusive Prices on Demand. SSRN Electronic Journal. [Crossref]
- 692. Toshihiro Uchida. 2012. Fairness Norms and the Incidence of Environmental Subsidy. *Modern Economy* **03**:06, 786-792. [Crossref]
- 693. 2011. Book Reviews. *Journal of Economic Literature* 49:4, 1230-1317. [Citation] [View PDF article] [PDF with links]
- 694. 2011. Book Reviews. *Journal of Economic Literature* **49**:4, 1241-1250. [Abstract] [View PDF article] [PDF with links]
- 695. W. G. Gale, B. H. Harris. 2011. Reforming taxes and raising revenue: part of the fiscal solution. Oxford Review of Economic Policy 27:4, 563-588. [Crossref]
- 696. Huriya Jabbar. 2011. The Behavioral Economics of Education. *Educational Researcher* **40**:9, 446-453. [Crossref]
- 697. Ricardo Batista Politi, Enlinson Mattos. 2011. Ad-valorem tax incidence and after-tax price adjustments: evidence from Brazilian basic basket food. *Canadian Journal of Economics/Revue canadienne d'économique* 44:4, 1438-1470. [Crossref]
- 698. David Card,, Stefano DellaVigna,, Ulrike Malmendier. 2011. The Role of Theory in Field Experiments. *Journal of Economic Perspectives* 25:3, 39-62. [Abstract] [View PDF article] [PDF with links]

- 699. Giovanni Mastrobuoni. 2011. The role of information for retirement behavior: Evidence based on the stepwise introduction of the Social Security Statement. *Journal of Public Economics* **95**:7–8, 913–925. [Crossref]
- 700. Edward S. Knotek. 2011. Convenient Prices and Price Rigidity: Cross-Sectional Evidence. *Review of Economics and Statistics* **93**:3, 1076-1086. [Crossref]
- 701. Zhan Guo, Asha Weinstein Agrawal, Jennifer Dill. 2011. Are Land Use Planning and Congestion Pricing Mutually Supportive?. *Journal of the American Planning Association* 77:3, 232-250. [Crossref]
- 702. S. DellaVigna. 2011. Psychology and Economics: Evidence from the Field. Part III. Nonstandard Decision Making and Market Response. *Voprosy Ekonomiki*: 6, 82-106. [Crossref]
- 703. Jason M. Fletcher, David E. Frisvold, Nathan Tefft. 2011. Are soft drink taxes an effective mechanism for reducing obesity?. *Journal of Policy Analysis and Management* **30**:3, 655-662. [Crossref]
- 704. Anthony B. Atkinson. 2011. The Restoration of Welfare Economics. *American Economic Review* **101**:3, 157-161. [Abstract] [View PDF article] [PDF with links]
- 705. James M. Sallee. 2011. The Surprising Incidence of Tax Credits for the Toyota Prius. *American Economic Journal: Economic Policy* 3:2, 189-219. [Abstract] [View PDF article] [PDF with links]
- 706. Bryan Bollinger,, Phillip Leslie,, Alan Sorensen. 2011. Calorie Posting in Chain Restaurants. *American Economic Journal: Economic Policy* 3:1, 91-128. [Abstract] [View PDF article] [PDF with links]
- 707. Rupert Sausgruber, Jean-Robert Tyran. 2011. Are we taxing ourselves?. *Journal of Public Economics* **95**:1-2, 164-176. [Crossref]
- 708. David Card, Michael Ransom. 2011. Pension Plan Characteristics and Framing Effects in Employee Savings Behavior. *Review of Economics and Statistics* **93**:1, 228-243. [Crossref]
- 709. John Cawley, Christopher J. Ruhm. The Economics of Risky Health Behaviors11We thank the editors of this Handbook, Pedro Pita Barros, Tom McGuire, and Mark Pauly, for their feedback and helpful guidance. We also thank the other authors in this volume for their valuable feedback and comments at the Authors' Conference, and we are grateful to Abigail Friedman for transcribing the comments at that conference 95-199. [Crossref]
- 710. Kenan Kalaycı, Jan Potters. 2011. Buyer confusion and market prices. *International Journal of Industrial Organization* 29:1, 14-22. [Crossref]
- 711. Kelly Sims Gallagher, Erich Muehlegger. 2011. Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. *Journal of Environmental Economics and Management* 61:1, 1–15. [Crossref]
- 712. Guy EJ Faulkner, Paul Grootendorst, Van Nguyen, Tatiana Andreyeva, Kelly Arbour-Nicitopoulos, M Christopher Auld, Sean B Cash, John Cawley, Peter Donnelly, Adam Drewnowski, Laurette Dubé, Roberta Ferrence, Ian Janssen, Jeffrey LaFrance, Darius Lakdawalla, Rena Mendelsen, Lisa M Powell, W Bruce Traill, Frank Windmeijer. 2011. Economic instruments for obesity prevention: results of a scoping review and modified delphi survey. *International Journal of Behavioral Nutrition and Physical Activity* 8:1, 109. [Crossref]
- 713. Sven-Olof Fridolfsson, Maria Bigoni, Chloe Le Coq, Giancarlo Spagnolo. 2011. Trust, Salience and Deterrence: Evidence from an Antitrust Experiment. SSRN Electronic Journal . [Crossref]
- 714. Johan Almenberg, Olof Widmark. 2011. Numeracy, Financial Literacy and Participation in Asset Markets. SSRN Electronic Journal . [Crossref]
- 715. Xavier Gabaix. 2011. A Sparsity-Based Model of Bounded Rationality. SSRN Electronic Journal . [Crossref]
- 716. Luke R. Dean, Michael S. Finke. 2011. Compensation and Client Wealth Among U.S. Investment Advisors. SSRN Electronic Journal . [Crossref]

- 717. Jesse Edgerton. 2011. Investment, Accounting, and the Salience of the Corporate Income Tax. SSRN Electronic Journal. [Crossref]
- 718. Veronica Grembi, Tommaso Nannicini, Ugo Troiano. 2011. Do Fiscal Rules Matter? A Difference-in-Discontinuities Design. SSRN Electronic Journal. [Crossref]
- 719. Michael Smart. 2011. The Impact of Sales Tax Reform on Ontario Consumers: A First Look at the Evidence. SSRN Electronic Journal . [Crossref]
- 720. Michael Luca, Jonathan Smith. 2011. Salience in Quality Disclosure: Evidence from the U.S. News College Rankings. SSRN Electronic Journal. [Crossref]
- 721. Ralph C. Bayer, Changxia Ke. 2011. Discounts and Consumer Search Behavior: The Role of Framing. SSRN Electronic Journal. [Crossref]
- 722. Kenan Kalayci. 2011. Price Complexity and Buyer Confusion in Markets. SSRN Electronic Journal . [Crossref]
- 723. Hendrik Schmitz, Nicolas R. Ziebarth. 2011. In Absolute or Relative Terms? How Framing Prices Affects the Consumer Price Sensitivity of Health Plan Choice. SSRN Electronic Journal. [Crossref]
- 724. Adi Brender. 2011. First Year of the Mandatory Pension Arrangement in Israel: Compliance with the Arrangement as an Indicator for Its Potential Implications for Labor Supply. SSRN Electronic Journal. [Crossref]
- 725. Matthias Weber. 2011. Income Tax or Employer's Contribution an Experiment on the Perception of 'Economically Equivalent' Duties. SSRN Electronic Journal . [Crossref]
- 726. Alan J. Auerbach, William G. Gale, Benjamin H. Harris. 2010. Activist Fiscal Policy. *Journal of Economic Perspectives* 24:4, 141-164. [Abstract] [View PDF article] [PDF with links]
- 727. Kevin J. Boyle, Nicolai V. Kuminoff, Christopher F. Parmeter, Jaren C. Pope. 2010. The Benefit-Transfer Challenges. *Annual Review of Resource Economics* 2:1, 161-182. [Crossref]
- 728. B. Douglas Bernheim, 2010. Emmanuel Saez: 2009 John Bates Clark Medalist. *Journal of Economic Perspectives* 24:3, 183-206. [Abstract] [View PDF article] [PDF with links]
- 729. M. Adams, T. Effertz. 2010. Effective Prevention against Risky Underage Drinking -- The Need for Higher Excise Taxes on Alcoholic Beverages in Germany. *Alcohol and Alcoholism* 45:4, 387-394. [Crossref]
- 730. Guido W. Imbens. 2010. Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009). *Journal of Economic Literature* 48:2, 399-423. [Abstract] [View PDF article] [PDF with links]
- 731. Eric T. Anderson, Nathan M. Fong, Duncan I. Simester, Catherine E. Tucker. 2010. How Sales Taxes Affect Customer and Firm Behavior: The Role of Search on the Internet. *Journal of Marketing Research* 47:2, 229-239. [Crossref]
- 732. Hui Shan. 2010. Property taxes and elderly mobility. *Journal of Urban Economics* **67**:2, 194-205. [Crossref]
- 733. A. J. Auerbach. 2010. Public Finance in Practice and Theory. CESifo Economic Studies 56:1, 1-20. [Crossref]
- 734. Austan Goolsbee,, Michael F. Lovenheim,, Joel Slemrod. 2010. Playing With Fire: Cigarettes, Taxes, and Competition from the Internet. *American Economic Journal: Economic Policy* 2:1, 131-154. [Abstract] [View PDF article] [PDF with links]
- 735. Edward Huang, Adib Kanafani. 2010. Taxing for Takeoff: Estimating Airport Tax Incidence Through Natural Experiments. SSRN Electronic Journal . [Crossref]
- 736. Tino Sanandaji, Björn Wallace. 2010. Fiscal Illusion and Fiscal Obfuscation: An Empirical Study of Tax Perception in Sweden. SSRN Electronic Journal . [Crossref]

- 737. David Gamage, Andrew Hayashi, Brent K. Nakamura. 2010. Experimental Evidence of Tax Framing Effects on the Work/Leisure Decision. SSRN Electronic Journal . [Crossref]
- 738. Dean S. Karlan, Margaret McConnell, Sendhil Mullainathan, Jonathan Zinman. 2010. Getting to the Top of Mind: How Reminders Increase Saving. SSRN Electronic Journal . [Crossref]
- 739. Carolina Castilla, Timothy C. Haab. 2010. Inattention to Search Costs in the Gasoline Retail Market: Evidence from a Choice Experiment on Consumer Willingness to Search. SSRN Electronic Journal . [Crossref]
- 740. Nicola Lacetera, Devin G. Pope, Justin R. Sydnor. 2010. Heuristic Thinking and Limited Attention in the Car Market. SSRN Electronic Journal. [Crossref]
- 741. Kimberley A. Scharf, Sarah Smith. 2010. The Price Elasticity of Charitable Giving: Does the Form of Tax Relief Matter?. SSRN Electronic Journal . [Crossref]
- 742. Sofronis Clerides, Pascal Courty. 2010. Sales, Quantity Surcharge, and Consumer Inattention. SSRN Electronic Journal . [Crossref]
- 743. Martin Fochmann, Dirk Kiesewetter, Kay Blaufus, Jochen Hundsdoerfer, Joachim Weimann. 2010. Tax Perception - An Empirical Survey. SSRN Electronic Journal . [Crossref]
- 744. Samara Gunter. 2010. Child Support Payment Method and Father-Child Contact. SSRN Electronic Journal . [Crossref]
- 745. Kenan Kalayci, Johannes (Jan) J. M. Potters. 2010. Buyer Confusion and Market Prices. SSRN Electronic Journal . [Crossref]
- 746. Ori Heffetz,, Moses Shayo. 2009. How Large Are Non-Budget-Constraint Effects of Prices on Demand?. *American Economic Journal: Applied Economics* 1:4, 170-199. [Abstract] [View PDF article] [PDF with links]
- 747. Kay Blaufus, Jonathan Bob, Jochen Hundsdoerfer, Dirk Kiesewetter, Joachim Weimann. 2009. It's All About Tax Rates: An Empirical Study of Tax Perception. SSRN Electronic Journal. [Crossref]