ЗАДАНИЕ на лабораторные работы №3

Тема: Программно- алгоритмическая реализация приближенного аналитического и разностного методов при решении краевой задачи для системы ОДУ.

Цель работы. Получение навыков разработки алгоритмов для решения краевых задач при реализации моделей, построенных на системе ОДУ.

Задача 1.

1. Методом Галеркина найти приближенное аналитическое решение краевой задачи

$$u'' - 2x \ u' + 2u = x,$$

 $u(0) = 0, \ u'(1) = 1,$
 $0 \le x \le 1$

- 2. Представить выкладки, на основе которых написан код.
- 3. Найти численное решение задачи, аппроксимируя первую производную центральной разностью. Применить метод прогонки.
- 4. Изобразить графики полученных решений, выполнить анализ результатов.

Задача 2.

- 1. Разработать алгоритм и программу, реализующие решение сформулированной в лаб. работе №2 краевой задачи методом конечных разностей.
- 2. Представить разностный аналог краевого условия при x = l и его вывод интегро интерполяционным методом.
- 3. Привести графики зависимостей F(z), u(z), u(z), u(z), divF(z) от безразмерной координаты z при указанных выше параметрах.

Замечания.

- 1) При определении потока F(z) использовать формулы численного дифференцирования 2-го порядка точности, в том числе и при z=1.
- 2) Определить поток F(z) другим способом, а именно, интегрированием 2-го уравнения исходной системы, т.е.

$$F(z) = \frac{R}{z} \int_{0}^{1} div F(z) z dz = \frac{cR}{z} \int_{0}^{z} k(z) (u_{p}(z) - u(z)) z dz$$

- 4. Сравнить решения, полученные в данной лабораторной работе и работе №2. Дать оценку степени совпадения полученных результатов
- 5. Привести результаты исследования влияния ряда параметров задачи на выходные данные, т.е. зависимости . F(z), u(z) от k(T), T_0 , p, R.

Вопросы при защите лабораторной работы

1. Получите простейший разностный аналог нелинейного краевого условия при x = l

$$x = l$$
, $-k(l) \frac{du}{dx} = \alpha_N (u(l) - \beta) + \varphi(u(l))$,

где $\varphi(T)$ - заданная функция.

Производную аппроксимируйте односторонней разностью.

2. Опишите алгоритм применения метода прогонки, если при x = 0 краевое условие квазилинейное, а при x = l, как в п.1, т.е.

$$\begin{cases} x = 0, -k(u(0)) \frac{du}{dx} = F_0, \\ x = l, -k(u(l)) \frac{du}{dx} = \alpha (u(l) - \beta) + \varphi(u(l)) \end{cases}$$

3. Опишите алгоритм применения метода прогонки, если при x = 0 краевое условие нелинейное, а при x = l - квазилинейное, т.е.

$$\begin{cases} x = 0, -k(u(0)) \frac{du}{dx} = F_0 + \varphi(u(0)), \\ x = l, -k(u(l)) \frac{du}{dx} = \alpha (u(l) - \beta) \end{cases}$$

- 4. Опишите алгоритм определения **единственного** значения сеточной функции y_p в **одной** заданной точке p. Использовать встречную прогонку, т.е. комбинацию правой и левой прогонок. Оба краевых условия линейные.
- 5. Какие можно предложить способы тестирования программы?
- 6. Найдите приближенное аналитическое решение Задачи 2 любым методом.

Методика оценки работы.

Модуль 2, срок - 12-я неделя.

- 1. Задание полностью выполнено 6 баллов (минимум).
- 2. В дополнение к п.1 даны исчерпывающие ответы на все вопросы 10 баллов (максимум).