Inference for β

Simple Linear Regression

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Non-Simultaneous

$$\hat{\beta}_0 \pm t \left(1 - \frac{\alpha}{2}, n - 2\right) \times SE(\hat{\beta}_0) \text{ where } SE(\hat{\beta}_0) = \sqrt{s^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}$$

$$\hat{\beta}_1 \pm t \left(1 - \frac{\alpha}{2}, n - 2\right) \times SE(\hat{\beta}_1) \text{ where } SE(\hat{\beta}_1) = \sqrt{\frac{s^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

- Simultaneous
 - Bonferroni
 - $\hat{\beta}_j \pm t \left(1 \frac{\alpha}{2k}, n 2\right) \times SE(\hat{\beta}_j)$ where k is the number of parameters for which we are constructing intervals (can be less than p).
 - Working-Hotelling

•
$$\hat{\beta}_i \pm \sqrt{2F(1-\alpha,2,n-2)} \times SE(\hat{\beta}_i)$$

Multiple Linear Regression

 $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{p-1} x_{i(p-1)}$ where p is the number of parameters including the intercept.

• Non-Simultaneous

o
$$\hat{\beta}_j \pm t \left(1 - \frac{\alpha}{2}, n - p\right) \times SE(\hat{\beta}_j)$$
 where $SE(\hat{\beta}_j) = \sqrt{s^2(X^TX)_{jj}^{-1}}$ where $(X^TX)_{jj}^{-1}$ is the j^{th} diagonal of $(X^TX)^{-1}$.

- Simultaneous
 - Bonferroni
 - $\hat{\beta}_j \pm t \left(1 \frac{\alpha}{2k}, n p\right) \times SE(\hat{\beta}_j)$ where k is the number of parameters for which we are constructing intervals (can be less than p).
 - Working-Hotelling

•
$$\hat{\beta}_i \pm \sqrt{pF(1-\alpha,p,n-p)} \times SE(\hat{\beta}_i)$$

Inference for Y

Simple Linear Regression

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- Non-Simultaneous
 - \circ Mean Response at one x_h

•
$$\hat{y}_h \pm t \left(1 - \frac{\alpha}{2}, n - 2\right) \times \sqrt{s^2 \left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}$$

o Single y_h at one x_h

•
$$\hat{y}_h \pm t \left(1 - \frac{\alpha}{2}, n - 2\right) \times \sqrt{s^2 \left(1 + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}$$

o Multiple (m) y_h at one x_h

•
$$\hat{y}_h \pm t \left(1 - \frac{\alpha}{2}, n - 2\right) \times \sqrt{s^2 \left(\frac{1}{m} + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}$$

- Simultaneous
 - o Mean Response at multiple $(g) x_h$
 - Bonferroni

•
$$\hat{y}_h \pm t \left(1 - \frac{\alpha}{2g}, n - 2\right) \times \sqrt{s^2 \left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}$$

Working-Hotelling

•
$$\hat{y}_h \pm \sqrt{2F(1-\alpha,2,n-p)} \times \sqrt{s^2 \left(\frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}$$

- o Single y_h at multiple $(g) x_h$
 - Bonferroni

•
$$\hat{y}_h \pm t \left(1 - \frac{\alpha}{2g}, n - 2\right) \times \sqrt{s^2 \left(1 + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}$$

Scheffe

•
$$\hat{y}_h \pm \sqrt{gF(1-\alpha,g,n-p)} \times \sqrt{s^2 \left(1 + \frac{1}{n} + \frac{(x_h - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)}$$

Multiple Linear Regression

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{p-1} x_{i(p-1)}$$

- Non-Simultaneous
 - \circ Mean Response at one x_h

$$\hat{y}_h \pm t \left(1 - \frac{\alpha}{2}, n - p\right) \times \sqrt{s^2 x_h^T (X^T X)^{-1} x_h}$$

o Single y_h at one x_h

$$\hat{y}_h \pm t \left(1 - \frac{\alpha}{2}, n - p\right) \times \sqrt{s^2 (1 + x_h^T (X^T X)^{-1} x_h)}$$

o Multiple (m) y_h at one x_h

$$\hat{y}_h \pm t \left(1 - \frac{\alpha}{2}, n - p\right) \times \sqrt{s^2 \left(\frac{1}{m} + \boldsymbol{x}_h^T (X^T X)^{-1} \boldsymbol{x}_h\right)}$$

- Simultaneous
 - o Mean Response at multiple $(g) x_h$
 - Bonferroni

•
$$\hat{y}_h \pm t \left(1 - \frac{\alpha}{2g}, n - p\right) \times \sqrt{s^2 x_h^T (X^T X)^{-1} x_h}$$

Working-Hotelling

•
$$\hat{y}_h \pm \sqrt{pF(1-\alpha,p,n-p)} \times \sqrt{s^2 x_h^T (X^T X)^{-1} x_h}$$

- o Single y_h at multiple $(g) x_h$
 - Bonferroni

•
$$\hat{y}_h \pm t \left(1 - \frac{\alpha}{2g}, n - p\right) \times \sqrt{s^2 (1 + \boldsymbol{x}_h^T (X^T X)^{-1} \boldsymbol{x}_h)}$$

Scheffe

•
$$\hat{y}_h \pm \sqrt{gF(1-\alpha, g, n-p)} \times \sqrt{s^2(1+x_h^T(X^TX)^{-1}x_h)}$$