安徽大学 2022—2023 学年第一学期

《 概率论与数理统计 A 》 期末考试试卷 (A 卷)

		(闭卷 时间 120 分钟) 考场登记表序号			
		一、选择题(每小题 3 分,共 15 分) 1. 若随机事件 <i>A</i> 和 <i>B</i> 满足 <i>P</i> (<i>B</i> <i>A</i>)=1,则下列选项正确的是()			
· 他 小		(A) A 是必然事件 (B) $P(\overline{B} A) = 0$ (C) $A \supset B$ (D) $A \subset B$			
ئالە	4	2. 袋中有 5 个球,其中 3 个新球,2 个旧球,不放回地抽取两次,每次取一个,则第二次 取到新球的概率是()			
		(A) $\frac{3}{5}$ (B) $\frac{3}{4}$ (C) $\frac{2}{4}$ (D) $\frac{3}{10}$			
1 ΣΙ	絥				
群化	ኳ	3. 对随机变量 X 来说,若 $EX ≠ DX$,则 X 一定 不服从 () (A)二项分布 (B)指数分布 (C)正态分布 (D)泊松分布			
	胡米	4. 设随机变量 X, Y 独立同分布且 X 分布函数为 $F(x)$,则 $Z = \max\{X, Y\}$ 的分布函数为			
	≅				
4年1	を認	(A) $F(x)F(y)$ (B) $F^{2}(x)$ (C) $1-[1-F(x)]^{2}$ (D) $[1-F(x)][1-F(y)]$			
	411	5. 设随机变量 X 和 Y 都服从标准正态分布,则()			
		(A) $X + Y$ 服从正态分布 (B) $X^2 + Y^2$ 服从 χ^2 分布			
年级		(C) X^2 和 Y^2 都服从 χ^2 分布 (D) $\frac{X^2}{Y^2}$ 服从 F 分布			
	并	**二、填空题(每小题 3 分,共 15 分)			
		6. 设事件 A, B 相互独立, $P(A) = 0.7$, $P(A \cup B) = 0.88$,则 $P(A - B) =$			
		7. 设随机变量 ξ 服从 $(1,6)$ 上的均匀分布,则方程 $x^2 + \xi x + 1 = 0$ 有实根的概率为			
₩ 		8. 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} 6x & 0 \le x \le y \le 1 \\ 0 & $ 其它			
院/祭		[0 共七			

则 $P(X+Y\leq 1)=$ _____.

- 9. 设 $X_1, X_2, ..., X_n$ 是来自二项分布总体B(100, 0.5)的简单随机样本, \overline{X} 和 S^2 分别为样本 均值和样本方差,则 $E(\bar{X}-S^2)=$ _____.
- 10. 设随机变量 X_1, \cdots, X_9 相互独立且同分布, $EX_i = DX_i = 1$, $i = 1, \cdots, 9$,则由切比雪夫不 等式 $P\left(\left|\sum_{i=1}^{9} X_i - 9\right| < 4\right) \ge$ ______.

三、计算题(每小题12分,共60分)

11. 设随机变量
$$X$$
 的分布律为 $X \sim \begin{pmatrix} -1 & 0 & \frac{1}{2} & 1 & 2 \\ \frac{1}{3} & a & \frac{1}{6} & 2a & \frac{1}{4} \end{pmatrix}$

求(1)常数a的值; (2) $Y = X^2$ 的分布.

12. 已知随机变量
$$X$$
 的概率密度为 $f(x) =$
$$\begin{cases} x, & 0 \le x \le 1 \\ a - x, & 1 < x \le 2 \\ 0, & \text{其他} \end{cases}$$

求(1)常数a的值; (2)期望EX.

13. 设二维随机变量(X,Y)的联合分布律为

Y	0	1
0	$\frac{2}{3}$	$\frac{1}{12}$
1	$\frac{1}{6}$	$\frac{1}{12}$

求 X 与 Y 的相关系数 ρ_{xy} .

14. 设
$$(X,Y)$$
 的联合密度函数为 $f(x,y) = \begin{cases} \frac{1}{x}, & 0 < y < x < 1 \\ 0, & 其他 \end{cases}$

求(1)X的边缘密度 $f_X(x)$; (2)条件密度 $f_{Y|X}(y|x)$.

15. 设总体
$$X$$
 服从指数分布,其概率密度为 $f(x;\theta) = \begin{cases} \frac{1}{\theta}e^{-\frac{x}{\theta}} & x > 0\\ 0 & x \le 0 \end{cases}$

 X_1, X_2, \cdots, X_n 是从总体中抽出的简单随机样本,求参数 θ 的最大似然估计量.

四、应用题(每小题5分,共5分)

16. 设某次考试的学生成绩服从正态分布,从中随机抽取 36 位考生的成绩,算得平均成绩为 66.5 分,样本标准差为 15 分,问在显著性水平 α = 0.05 下,是否可以认为这次考试全体考生的平均成绩为 70 分?(t_{0025} (35) = 2.0301).

五、证明题(每小题5分,共5分)

17. 设随机变量 X,Y 相互独立且同分布,已知 X 的概率密度为 $f_X(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & \text{其他} \end{cases}$

证明: 随机变量 $Z = \min(X, Y)$ 服从指数分布.