CS 211 RECITATIONS WEEK 12

Wenjie Qiu Teaching Assistant Office hour: Thu. noon – 1pm wenjie.qiu@rutgers.edu

Content

- Transistors
- Logic Gates
- Boolean Algebra

MOS = Metal Oxide Semiconductor

■ two types: n-type and p-type

n-type

- when Gate has positive voltage, short circuit between #1 and #2
- when Gate has zero voltage, open circuit between #1 and #2

p-type MOS Transistor

p-type is complementary to n-type

- when Gate has positive voltage, open circuit between #1 and #2
- when Gate has zero voltage, short circuit between #1 and #2

Logic Gates

Use transistors to implement logical functions: AND, OR, NOT Digital symbols:

recall that we assign a range of analog voltages to each digital (logic) symbol

- assignment of voltage ranges depends on electrical properties of transistors being used
 - typical values for "1": +5V, +3.3V, +2.9V
 - from now on we'll use +2.9V

CMOS Circuit

Complementary MOS

Uses both n-type and p-type MOS transistors

- p-type
 - Attached to + voltage
 - Pulls output voltage UP when input is zero
- n-type
 - Attached to GND
 - Pulls output voltage DOWN when input is one

MOS transistors are combined to form Logic Gates

For all inputs, make sure that output is either connected to GND or to +, but not both!

Basic Logic Gates Symbols

More than 2 Inputs?

AND/OR can take any number of inputs.

- AND = 1 if all inputs are 1.
- OR = 1 if any input is 1.
- Similar for NAND/NOR.

Can implement with multiple two-input gates.

Logical Completeness

Can implement ANY truth table with AND, OR, NOT.

A	В	С	D
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

. AND combinations that yield a "1" in the truth table.

2. OR the results of the AND gates.

DeMorgan's Law

Converting AND to OR (with some help from NOT)

Consider the following gate:

To convert AND to OR (or vice versa), invert inputs and output.

A	В	Α	В	A ⋅B	A ⋅B	
0	0	1	1	1	0	
				0	1	Generally, DeMorgan's Laws:
1	0	0	1	0	1	1. $\overline{PQ} = \overline{P} + \overline{Q}$
1	1	0	0	0	1	2 <u>P+O</u> - <u>P</u> <u>O</u>

Same as A+B!

NAND, NOR universality

NAND, NOR universal because they can realize AND, OR, NOT

$\overline{A} = A \text{ NAND } A$	$\overline{A} = A_{NOR} A$	
$AB = \overline{A} \text{ NAND } \overline{B}$	$A+B = \overline{A} \text{ NOR } \overline{B}$	
$A+B=\overline{A}_{NAND}\overline{B}_{RAND}$	$AB = \overline{A} \text{ NOR } \overline{B}$	

NAND and NOR Functional Completeness

Any gate can be implemented using either NOR or NAND gates.

Why is this important?

When building a chip, easier to build one with all of the same gates.

Boolean Identities

OR	AND	NOT	
X+0 = X	X1 = X		(identity)
X+1 = 1	X0 = 0		(null)
X+X=X	XX = X		(idempotent)
$\overline{X+X} = 1$	$\overline{XX} = 0$		(complementarity)
		$\overline{\overline{X}} = X$	(involution)
X+Y=Y+X	XY = YX		(commutativity)
X+(Y+Z) = (X+Y)+Z	X(YZ) = (XY)Z		(associativity)
X(Y+Z) = XY + XZ	X+YZ = (X+Y)(X+Z)		(distributive)
$\overline{X+Y} = \overline{X}\overline{Y}$	$\overline{XY} = \overline{X} + \overline{Y}$		(DeMorgan's theorem)