

Instituto de Matemática Departamento de Ciência da Computação

Arquitetura de Computadores

Sistemas de Entrada e Saída

Prof. Marcos E Barreto

Tópicos

- Considerações sobre dispositivos de E/S
- Módulos de E/S
- Tipos de operações de E/S
- Canais e processadores de E/S
- Interfaces externas

 Stallings. Arquitetura e organização de computadores. Cap. 7.

Contextualização

- A arquitetura de E/S de um sistema computacional é a sua interface com o mundo exterior.
 - => fornece ao SO as informações necessárias ao gerenciamento de atividade de E/S.
- A arquitetura é composta por vários módulos de E/S. Cada módulo se conecta ao barramento do sistema ou comutador central e controla um ou mais dispositivos.
- O módulo de E/S é necessário devido:
 - à grande variedade de dispositivos, com diferentes modos de operação.
 - Às diferentes taxas de transferência entre os periféricos e o processador e a memória.
 - Aos diferentes formatos de dados e tamanhos de palavras usados pelos periféricos.

Contextualização

- Funções de um módulo de E/S
 - Interface com o
 processador e a memória
 por meio do barramento
 do sistema ou comutador
 central
 - Interface com um ou mais dispositivos periféricos por conexões de dados adequadas.

2010/2

MATA48

Dispositivos externos

- Dispositivos periféricos: trocam dados, sinais de controle e de estado com o módulo de E/S.
- Três categoriais:
 - Legíveis ao ser humano
 - Comunicação com humanos.
 - Monitores de vídeo, impressoras etc.
 - Legíveis à máquina
 - Comunicação com equipamentos.
 - Discos e fitas, sensores, atuadores etc.
 - Comunicação
 - Interação com dispositivos remotos.
 - Hardware de rede e comunicação com outros sistemas.

Dispositivos externos

Sinais de controle READ, WRITE etc

Sinais de estado READY, NOT READY etc

Transdutor

Conversão de sinais elétricos para outros formatos

Buffer

Armazenamento temporário de dados a serem transferidos. Normalmente, de 8 a 16 bits.

Dispositivos externos

Teclado e monitor

- Conjunto básico de interação.
- A unidade de troca básica é o caractere. Cada caractere possui um código associado, normalmente com 7 ou 8 bits.
 - IRA (International Reference Alphabet), do ITU-T
 - ASCII (American Standard Code for Information Interchange), nos EUA.
- Os caracteres podem ser imprimíveis (numéricos, alfabéticos e especiais) ou de controle (de impressão ou exibição de dados => carriage return (CR), line feed (LF)).

Unidade de disco

 Contém os mecanismos eletrônicos para a troca de sinais de dados, de controle e de estado com um módulo de E/S e para a movimentação das cabeças de leitura e gravação.

- Um módulo de E/S deve executar as seguintes funções:
 - Controle e temporização
 - Comunicação com o processador
 - Comunicação com dispositivos
 - Armazenamento temporário (buffering) de dados
 - Detecção de erros

- Controle e temporização
 - Os recursos intermos (memória e barramento do sistema) são compartilhados entre uma série de atividades, incluindo E/S de dados.
 - Isso requer mecanismos de controle (arbitragem) e temporização para controlar o tráfego entre recursos internos e dispositivos externos.

- Controle e temporização
 - Os recursos intermos (memória e barramento do sistema) são compartilhados entre uma série de atividades, incluindo E/S de dados.
 - Isso requer mecanismos de controle (arbitragem) e temporização para controlar o tráfego entre recursos internos e dispositivos externos.

Comunicação com o processador

- Decodificação de comando
 - Módulo de E/S aceita comandos (sinais no barramento de controle) enviados pelo processador.
 - Ex.: READ SECTOR, WRITE SECTOR, SCAN <ID_registro>, SEEK <ID_trilha>.
- Dados
 - Dados são trocados pelo barramento de dados.
- Informação de estado
 - Indicam o estado (READY, BUSY ou erros) dos periféricos, uma vez que estes são mais lentos que o processador.
- Reconhecimento de endereço
 - Os módulos de E/S empregam um endereço exclusivo para cada periférico que controlam.

- Comunicação com os dispositivos
 - Comandos, dados e sinais de controle.

2010/2

• Armazenamento (buffering) de dados

Diferenças nas taxas de transferência de dados dos recursos internos (memória e processador) e periféricos

Detecção de erros

- Detecção e sinalização de erros ao processador.
- Erros podem ser mecânicos/elétricos (papel emperrado, defeito em trilha do disco) ou mudanças não intencionais no padrão de bits quando são transmitidos do periférico ao módulo de E/S.
- Emprego de códigos de detecção e (possível) correção de erros.

Estrutura do módulo de E/S

- Os módulos de E/S variam bastante em complexidade e no número de dispositivos que podem controlar.
- Um módulo de E/S permite que o processador interaja com uma grande variedade de dispositivos através de comandos simples de leitura, gravação e manipulação de arquivos.
- Os módulos podem ocultar detalhes de temporização, de formato e de eletromecânica dos dispositivos.
- Módulos podem ser classificados em:
 - Canal de E/S ou processador de E/S
 - Interface de alto nível ao processador, com responsabilidade pela maior parte do processamento => mainframes.
 - Controlador de E/S ou controlador de dispositivo
 - Módulos mais primitivos, que requerem controle externo => PCs.

Estrutura do módulo de E/S

E/S programada

- Processador executa um programa que lhe oferece controle da operação de E/S, percepção do estado do dispositivo, envio de comandos e transferência de dados.
- Processador deve esperar enquanto o dispositivo realiza a operação.
- E/S controlada por interrupção
 - Processador emite um comando de E/S e executa outras tarefas enquanto o dispositivo está ocupado realizando a operação.
 - Uma interrupção é usada pelo dispositivo para avisar o processador do término da operação requisitada.

Acesso direto à memória

 O módulo de E/S e a memória trocam dados diretamente, sem o envolvimento do processador.

- E/S programada
- E/S controlada por interrupção
- Acesso direto à memória

	Sem interrupções	Uso de interrupções
Transferência de E/S para memória via processador	E/S programada	E/S controlada por interrupção
Transferência direta de E/S para memória		Acesso direto à memória (DMA)

E/S programada

- Processador executa uma instrução de E/S enviando ao módulo de E/S o comando apropriado.
- O módulo executa a ação e define os bits apropriados no registrador de estado.
- Processador deve verificar constantemente pelo término da operação.
- Comandos trocados entre módulo de E/S e processador:
 - Controle: o que o dispositivo deve fazer.
 - Teste: testar condições de estado do módulo de E/S e dispositivos.
 - Leitura: módulo de E/S obtém dado do dispositivo e o armazena até que o processador solicite o dado.
 - Escrita: módulo de E/S obtém dado do barramento de dados e depois o transfere ao dispositivo.

- E/S programada
 - Exemplo de leitura de dados de um periférico.
 - Os dados são lidos em palavras (16 bits, por exemplo).
 - Para cada palavra lida, o processador precisa permanecer num ciclo de verificação de estado até que a palavra esteja disponível no registrador de dados do módulo de E/S.

- E/S programada instruções de E/S
 - Existe uma correspondência (relação um para um) entre as instruções de E/S que o processador busca na memória e os comandos de E/S que o processador emite para o módulo de E/S.
 - A forma da instrução depende do endereçamento dos módulos de E/S.
 - E/S mapeada na memória
 - Único espaço de endereçamento para memória e dispositivos de E/S.
 - Registradores de estado e de dados são tratados como endereços de memória.
 - E/S independente
 - O barramento tem linhas de leitura e escrita de memória e linhas de comando de E/S.
 - A linha de comando determina se o endereço é de memória ou de um dispositivo de E/S.

E/S mapeada na memória

Memória com 1024 posições

0 – 511: memória

512 – 1023: dispositivos E/S

Teclado

Posição 516: dados

Posição 517: estado/controle

<u>Operação</u>

Leitura de 1 byte de dados do teclado para o registrador AC

<u>Lógica</u>

Processador fica em loop até que o byte de dados esteja disponível

Registrador de dados de entrada do teclado

ENDEREÇO	INSTRUÇÃO	OPERANDO	COMENTÁRIO
200	Carrega AC	"1"	Carrega acumulador
	Armazena AC	517	Inicia leitura do teclado
202	Carrega AC	517	Apanha byte de estado
	Desvia se sinal $= 0$	202	Loop até estar pronto
	Carrega AC	216	Carrega byte de dados

2010/2

E/S independente

As portas de E/S são acessíveis apenas por comandos de E/S especiais, que ativam as linhas de comando de E/S no barramento.

ENDEREÇO	INSTRUÇÃO	OPERANDO	COMENTÁRIO
200	Carrega E/S	5	Inicia leitura do teclado
201	Testa E/S	5	Verifica término
	Desvia se não pronto	201	Loop até estar pronto
	Entrada	5	Carrega byte de dados

- E/S mapeada em memória X E/S independente
 - Ambas são usadas nos sistemas computacionais.
 - E/S mapeada em memória
 - + Grande variedade de instruções diferentes para referenciar a memória
 - + Programação mais eficiente
 - Ocupa espaço de memória para endereçamento de periféricos e não de dados
 - E/S independente
 - Pequeno conjunto de instruções para E/S, específico para cada dispositivo

- E/S controlada por interrupções
 - Processador emite um comando de E/S para o módulo e segue executando outras tarefas.
 - O módulo interrompe o processador quando está pronto para atender a requisição de E/S.

 processamento da interrupção

> sequência de eventos quando o dispositivo de E/S completa uma operação de E/S

PSW – program status word PC – program counter

Y + L

Contador de

programa

Registradores

gerais

— M

Ponteiro

de pilha

Processador

- E/S controlada por interrupções aspectos de projeto
 - 1. Como o processador determina qual dispositivo emitiu a interrupção?
 - Técnicas de identificação de dispositivos
 - Múltiplas linhas de interrupção
 - Verificação por software (polling)
 - Verificação por hardware, vetorado (daisy)
 - Arbitração de barramento, vetorado

Múltiplas linhas de interrupção

- Múltiplas linhas de interrupção entre o processador e os módulos.
- Na prática, é inviável dedicar muitas linhas e pinos do processador aos módulos de E/S, o que levaria ao compartilhamento de uma linha entre vários módulos.

Verificação por software (polling)

- Quando o processador detecta uma interrupção, ele desvia para uma rotina genérica de tratamento de interrupções, a qual se comunica com todos os módulos para identificar qual deles gerou a interrupção.
- Quando o módulo é identificado, o processador inicia a execução da rotina de tratamento de interrupção para o dispositivo em questão.

- Verificação por hardware, vetorado (daisy chain)
 - Todos os módulos compartilham uma linha de requisição de interrupção, a qual é configurada como uma cadeia circular (em forma de margarida).
 - Quando o processador reconhece uma interrupção, ele envia uma confirmação através dessa linha, que se propaga pelos módulos.
 - O módulo requisitante responde colocando no barramento de dados uma palavra (vetor de interrupção), que contém seu endereço.
 - Com isso, o processador pode executar a rotina de tratamento específica para este módulo => evita executar uma rotina genérica.

- Arbitração de barramento
 - Um módulo de E/S precisa ganhar o acesso ao barramento antes de ativar uma requisição de interrupção.
 - Somente um módulo ativa o barramento por vez.
 - O processador, ao detectar a requisição, responde na linha de identificação de interrupções.
 - O módulo requisitante coloca seu vetor de interrupções no barramento.

- 2. Como o processador define qual interrupção processar?
- Prioridades de tratamento de interrupções
 - Mútiplas linhas
 - Processador atende a linha com prioridade mais alta.
 - Verificação por software (polling)
 - A ordem na qual os módulos são consultados determina a ordem.
 - Verificação por hardware, vetorado
 - A ordem dos módulos na cadeia circular determina a ordem.
 - Arbitração de barramento
 - Pode empregar um esquema de prioridades.

- Acesso direto a memória (DMA)
 - Técnica indicada para a transferência de grandes volumes de dados.

 Dispensa o processador do controle (envolvimento) com a transferência de dados => operação dependente da taxa de transferência provida pelo dispositivo e pelo módulo.

FUNÇÃO DO DMA

Módulo adicional no barramento do sistema.

 Usa a técnica de <u>roubo de ciclo</u> para realizar a operação.

Recebe comando do processador com informações sobre qual operação executar, endereço do dispositivo, endereço na Reco memória e quantidade de dados

Requisição de DMA
Reconhecimento de DMA
Interrupção
Leitura
Gravação

Linhas de dados

MATA48 - Arquit

a serem transferidos.

2010/2

- Acesso direto a memória (DMA)
 - Processador é interrompido quando módulo de DMA termina a transferência
 - Roubo de ciclo => sem salvamento de contexto!

Tempo

- Configurações do módulo de DMA
 - Único barramento, DMA separado
 - Módulo DMA usa E/S programada para transferir dados entre a memória e um módulo de E/S.
 - Configuração "barata" porém ineficiente.
 - Cada transferência (de uma palavra) ocupa dois ciclos
 - Memória => DMA
 - DMA => módulo de E/S

- Configurações do módulo de DMA
 - Único barramento, DMA-E/S integrados
 - A lógica de DMA pode fazer parte de um módulo de E/S ou pode ser um módulo separado que controla vários módulos de E/S.
 - Existe um caminho entre o módulo de DMA e os módulos de E/S, o qual não inclui o barramento do sistema.

- Configurações do módulo de DMA
 - Uso de um barramento de E/S
 - Os módulos de E/S são conectados a um módulo de DMA através de um barramento de E/S.
 - Configuração que favorece expansões.
 - Barramento do sistema é usado somente para a troca de dados entre a memória e o módulo de DMA.

- Evolução da função de E/S
 - 1. CPU controla diretamente o dispositivo.
 - 2. Controlador ou módulo de E/S é acrescentado => CPU usa E/S programada sem interrupções.
 - 3. Controlador ou módulo de E/S com E/S controlada por interrupções.
 - 4. Emprego de DMA.

Canal de E/S

- 5. Módulo de E/S é aprimorado para se tornar um processador com um conjunto de comandos específicos para E/S. A CPU direciona o módulo de E/S a executar um programa de E/S armazenado em memória, sendo interrompida somente no término da execução deste programa.
- 6. Módulo de E/S tem memória própria, tornando-se um sistema separado. Tal arquitetura pode controlar um conjunto grande de dispositivos com envolvimento mínimo da CPU => uso no controle de terminais interativos, por exemplo.

- Características dos canais de E/S
 - Um canal de E/S é um módulo semelhante ao DMA.
 - Executa instruções de E/S que estão armazenadas na memória principal num processador específico nele contido.
 - Tem controle completo sobre as operações de E/S.
 - O processador inicia uma transferência de E/S Instruindo o canal de E/S a executar um programa armazenado na memória.
 - Tal programa especifica os dispositivos envolvidos, endereços de memória, prioridades e ações a serem tomadas em caso de erros.
 - O canal de E/S segue tais instruções e controla a transferência de dados.
 - Dois tipos de canais podem ser usados:
 - Canais seletores
 - Canais multiplexadores

Canais seletores

- Controla múltiplos dispositivos de alta velocidade.
- A qualquer momento, realiza a transferência de dados com um destes dispositivos.
- Cada dispositivo ou grupo de dispositivos é gerenciado por um controlador ou módulo de E/S.

Canais multiplexadores

 Pode realizar transferências de E/S com vários dispositivos simultâneos.

Pode ser mutliplexador
 de bytes, para dispositivos
 de baixa velocidade, ou
 multiplexador de blocos,
 para dispositivos de
 alta velocidade.

2010/2 MATA48

Interfaces externas

- Interface entre periférico e módulo de E/S
 - Deve ser ajustada à natureza da operação do periférico.
 - Pode ser serial ou paralela
 - Serial: dispositivos de baixa velocidade (impressoras, terminais)
 - Paralela: dispositivos de alta velocidade (discos e fitas)

Interfaces externas

- Interface entre periférico e módulo de E/S
 - Configurações ponto a ponto ou multiponto
 - Ponto a ponto: uma linha dedicada entre o módulo de E/S e o periférico
 comum em PCs (ex. EIA-232)
 - Multiponto: são barramentos externos usados para a conexão de dispositivos de armazenamento em massa (discos, fitas) e de multimídia.

Exemplos a serem considerados

- Controlador de interrupções Intel 82C59A
 - Controlador de interrupções programável (PIC)
- Controlador de DMA Intel 8237A
- Interface serial FireWire
- Arquitetura InfiniBand (baseada em comutadores)