Manual

Alec Buchanan & Jason Lawrence October 11, 2018

1. Setup

1.1 Windows 10

Windows 10 was the operating system used to build and test the peer and index server.

1.2 Python 3.7

The peer and index server were both built and tested using python 3.7 on Windows 10.

1.2.1 Downloading

Python 3.7 can be downloaded from their website at: https://www.python.org/downloads/ (https://www.python.org/downloads/)

1.2.2 Configuration and Installation

- 1. Run the python 3.7 installer and follow the on screen instructions
- 2. record the directory that the python.exe was saved in
- 3. Add the python directory to the global PATH variable

Note: How to add to PATH variable

- 1. open file explorer
- 2. right click This PC
- 3. properties
- 4. Advanced system settings
- 5. Environment Variables
- 6. System variables
- 7. click path
- 8. click edit
- 9. add python.exe directory to PATH

1.3 Peer

1.3.1 Installation

- 1. Download peer
- 2. unzip peer if compressed

1.3.2 Configuration

The configuration file is todo.conf located in \todo\conf. The order of which variables go on which lines is important:

- 1. PEER SERVER PORT = Port for the peer server to listen on
- 2. P2P_PORT = The port that the peer server registers the peer on
- 3. INDEX_SERVER_IP = IP address of the index server
- 4. INDEX SERVER PORT = Port of the index server
- 5. LOCAL SHARED FILE SPACE = Directory of shared file space

```
PEER_SERVER_PORT = 4000

P2P_PORT = 4000

INDEX_SERVER_IP = 198.37.25.70

INDEX_SERVER_PORT = 5000

LOCAL_SHARED_FILE_SPACE = C:\Users\abuch\Documents\classes\CS550\bin\LeafNode\SharedSpace\SharedSpace0
```

1.4 Index Server

1.4.1 Installation

- 1. Download index server
- 2. unzip index server if compressed

1.4.2 Configuration

The configuration file is *todo.conf* located in \todo\conf. The order of which variables are placed on which lines are important:

```
1 LOCAL_PORT = The port to listen for linear topology queries on
2 NEIGHBOR_IP = The neighbor ip address for linear topologies
3 NEIGHBOR_PORT = The neighbor super peer port for linear topology
4 SUPER_PEER_PORT_BROADCAST = Super peer
5 SUPER_PEER_ID = Super peer id
6 LEAF_NODE_PORT = Port to listen for leaf nodes on
```

```
1 LOCAL_PORT = 8000
2 NEIGHBOR_IP = 198.37.25.70
3 NEIGHBOR_PORT = 8001
4 SUPER_PEER_PORT_BROADCAST = 7000
5 SUPER_PEER_ID = 0
6 LEAF_NODE_PORT = 5000
```

2. Execution

2.1 Peer

- 1. make sure peer is properly configured
- 2. python <bin directory>\main.py ..\conf\peer0.conf
- 3. Enter data as prompted

Special Commands:

search: retreives list of registered files on the local index server

exit: exits the program

linear: changes the topology to be linear

broadcast: changes the topology to be broadcast

topology: returns the current topology

Notice: The super peer needs to know what topology to use. Using the commands above tells the super peer what topology to use.

```
PS C:\Users\abuch\Documents\classes\CS550\bin\LeafNode> python .\main.py ..\conf\peer0.conf
Starting Peer
Starting Peer Server
 Peer Server: connecting to index server...
 Peer Server: Connected to index server

    Peer Server: Change to file: eightKB.txt

    Peer Server: Change to file: sevenKB.txt

 Peer Server: Change to file: sixKB.txt
 Peer Server: Change to file: tenKB.txt
 Peer Server: Change to file: threeKB.txt
 Peer Server: Now listening for other peers
 Peer Client: Client starting...
+ Peer Client: Client started
 ----- Special Commands
search: retreives list of registered files
exit: exits the program
linear: changes the topology to be linear
broadcast: changes the topolgy to be broadcast
topology: returns the current topology
What file do you want?
```

2.2 Super Peer

python <super-peer-bin>\main.py ..\conf\superPeer0.conf

The server will start and wait for connections. Any configuration will be done through the conf file.

```
PS C:\Users\abuch\Documents\classes\CS550\bin\SuperPeer> python .\main.py ..\conf\superPeer0.conf
Starting Super Peer
[info] Super Peer: Now listening for other super peers
Socket for Super Peers is now active
Socket for Leaf Nodes is now active
```

3. Test Case

3.1 Test 1

This test is used to show that files can be found using linear topology and broadcast topology.

Steps

- 1. Verify the topology is set to Broadcast
- 2. Peer request file that is registered under a different super peer and print a message acknowledging the download and all queryhits
- 3. Switch topologies to linear topology
- 4. Peer request file that is registered under a different super peer and print a message acknowledging the download and all query hits

3.2 More Tests

Check test.pdf for more information on testing