Sampling Methods:

Different cases:

1. Given p(x), draw samples x ~ p(x)

e.g.
$$N \sim \mathcal{N}(h^2)$$
, $X = h + r \leq 2 \sim \mathcal{N}(0)$
 ER_q $q^{x_1} q^{x_2}$

$$= r + r \leq 2 \sim \mathcal{N}(0)$$
e.g. $N \sim \mathcal{N}(h^2) = 0$

$$= r + r \leq 2 \sim \mathcal{N}(0)$$
e.g. $N \sim \mathcal{N}(h^2) = 0$

$$= r + r \leq 2 \sim \mathcal{N}(0)$$
e.g. $N \sim \mathcal{N}(h^2) = 0$

$$= r + r \leq 2 \sim \mathcal{N}(0)$$
e.g. $N \sim \mathcal{N}(h^2) = 0$

$$= r + r \leq 2 \sim \mathcal{N}(0)$$
e.g. $N \sim \mathcal{N}(h^2) = 0$

$$= r + r \leq 2 \sim \mathcal{N}(0)$$
e.g. $N \sim \mathcal{N}(h^2) = 0$

$$= r + r \leq 2 \sim \mathcal{N}(0)$$
e.g. $N \sim \mathcal{N}(h^2) = 0$

$$= r + r \leq 2 \sim \mathcal{N}(0)$$

$$= r + r \leq 2 \sim \mathcal{N}(0)$$
e.g. $r \sim \mathcal{N}(h^2) = 0$

$$= r + r \leq 2 \sim \mathcal{N}(0)$$

$$= r + r \leq 2 \sim \mathcal{N}(0)$$

we want to generate g~p(0(D).

- 2. Given ny, nz, -.., n, ni er, learn p (x)
- 3. Estimate statistics, e.g. given a r.v $x \sim p(x)$: $\mathbb{E}_{x \sim p(x)} \left[f(x) \right] = \int f(x) p(x) dx , x \in \mathbb{R}^d$
- 4. Porton Bayesian informce.
- Mang sums or integrals can be writtens as expectations:

 e.g. marginal circlinood: $p(D) = \int p(D|\theta)p(\theta)d\theta =$ $= \left[\begin{array}{ccc} p(D|\theta) \end{array}\right]$

· predictive posterior distribution:

$$P(y^*|x^*,D) = \int P(y^*|x^*,D,\vartheta) P(\vartheta|D) d\vartheta$$

$$= \mathbb{E} \left[P(y^*|x^*,D,\vartheta) \right]$$

$$\vartheta \sim P(\vartheta|D)$$

Example:

Q1: What is the one height of students in ENM 360?

Q2: What is the any height of people in conton city?

$$\underline{ans}$$
: $\mathbb{E}[h] \approx \frac{1}{s} \sum_{i=1}^{s} h(p_i)$

Monte Carlo approximation:

Gool: Approximate an expectation/integral using samples.

Definition: If $x_1, x_2, \dots, x_n \sim p(x)$ thon:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} f(x_i) \text{ is a basic Monte Carlo estimator}$$

$$(this is just the sample overage)$$

Remarks :

L.)
$$\mathbb{E}[\hat{\mu}_n] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[f(n_i)] \xrightarrow{n \to \infty} \mathbb{E}[f(n_i)]$$
,

hence $\hat{\mu}_n$ is an unbiased estimator.

2.) $\hat{\mu}_n \xrightarrow{P} \mathbb{E}[f(n)]$ as $n \to \infty$, convergence in probability i.e.: $\forall E > 0$, $P(|\hat{\mu}_n - \mathbb{E}[f(n)]| < E) \xrightarrow{n \to \infty} \bot$

3.)
$$Var \left[\hat{\mu}_{n}\right] = \frac{1}{n^{2}} \sum_{i=1}^{\infty} Var \left[f(x_{i})\right] \xrightarrow{n \to \infty} \frac{1}{n} Var \left[f(x_{i})\right]$$

$$|\hat{\mu}_{n} - E[f(x_{i})]|^{2} = b_{i}as + var \xrightarrow{n \to \infty} \frac{1}{n} Var \left[f(x_{i})\right]$$

$$\xrightarrow{n \to \infty} \frac{1}{\sqrt{n}} std \left[f(x_{i})\right]$$

Therefore $\hat{\mu}$ converges to E[fox] at a rate $O(\frac{1}{\sqrt{n}})$

- Note: Despite the fact that we know this rate of
 - L.) convergence, it may be very difficult what the actual error is in practice, because we don't know the variance War[f(x)] = [(f(x)-IE[f(x)])^2 p(x)]
 - 2.) Practical limitation: One needs to be able to efficiently generate i.i.d. samples x; from p(x).