CS4102 Algorithms

Spring 2020

Can you cover this?

Warm up

Can you cover an 8×8 grid with 1 square missing using "trominoes?"

With these?

Office Hours

- Weekly:
 - Mondays and Wednesdays, 11am-12pm
 - Tuesdays 3-4pm
- This Week Only:
 - Friday 1-3pm

Today's Keywords

- Recursion
- Recurrences
- Asymptotic notation
- Divide and Conquer
- Trominoes
- Merge Sort

CLRS Readings

• Chapters 3 & 4

Homeworks

- Hw0 due 11pm Tuesday, Jan 21
 - Submit 2 attachments (zip and pdf)
- Hw1 released next week
 - Written (use Latex!)
 - Asymptotic notation
 - Recurrences
 - Divide and conquer

Attendance

- How many people are here today?
- Naïve algorithm
 - 1. Everyone stand
 - 2. Professor walks around counting people
 - 3. When counted, sit down
- Run time?
 - Class of n students
 - O(n)
- Other suggestions?

Good Attendance

 $O(\sqrt{n})$

Better Attendance

- 1. Everyone Stand
- 2. Initialize your "count" to 1

What was the run time of this algorithm?

What are we going to count?

- 3. Greet a neighbor who is standing: share your name, full date of birth(pause if odd one out)
- 4. If you are older: give "count" to younger and sit. Else if you are younger: add your "count" with older's
- 5. If you are standing and have a standing neighbor, go to 3

Attendance Algorithm Analysis

$$T(n) = 1 + 1 + T(\frac{n}{2})$$
 How can we "solve" this?
 $T(1) = 3$ Base case?

Do not need to be exact, asymptotic bound is fine. Why?

Let's solve the recurrence!

$$T(n) = 3 + \sum_{i=0}^{k = \log_2 n} 2 = 2\log_2 n + 3$$

What if $n \neq 2^k$?

More people in the room → more time

$$- \forall 0 < n < m, T(n) < T(m), \text{ where } 2^k < n < 2^{k+1} = m,$$
 i.e., $k < \log n < k+1$

$$-T(n) \le T(m) = T(2^{k+1}) = T(2^{\lceil \log_2 n \rceil}) = 2\lceil \log_2 n \rceil + 3 = O(\log n)$$

These are unimportant. Why?

Asymptotic Notation*

- O(g(n))
 - At most within constant of g for large n
 - {functions $f \mid \exists$ constants $c, n_0 > 0$ s.t. $\forall n > n_0, f(n) \le c \cdot g(n)$ }
- $\Omega(g(n))$
 - At least within constant of g for large n
 - {functions $f \mid \exists$ constants $c, n_0 > 0$ s.t. $\forall n > n_0, f(n) \ge c \cdot g(n)$ }
- $\Theta(g(n))$
 - "Tightly" within constant of g for large n
 - $-\Omega(g(n))\cap O(g(n))$

• Show: $n \log n \in O(n^2)$

```
to show: \exists c, n. 70: \forall n > n_0 n > \log n \leq c \cdot n^2.

Let c = 1, n. = 1. Then n_0 > \log n_0 \leq n_0^2 \cdot c

0 = 1 > \log 1 \leq 1^2 \cdot 1 = 1. 0 \leq 1
```

 $\forall n > 1$, we know $\log(n) \le n$ (by def of by). Multiply by $n = n \log n \le n^2$ Therefore $n \log n \in O(n^2)$

- To Show: $n \log n \in O(n^2)$
 - **Technique:** Find $c, n_0 > 0$ s.t. $\forall n > n_0, n \log n \le c \cdot n^2$
 - **Proof:** Let $c=1, n_0=1$. Then, $n_0 \log n_0 = (1) \log (1) = 0$, $c n_0^2 = 1 \cdot 1^2 = 1$, $0 \le 1$.

$$\forall n \ge 1, \log(n) < n \Rightarrow n \log n \le n^2 \quad \Box$$

Direct Proof!

• Show: $n^2 \notin O(n)$ Assume $n^2 \notin O(n)$, then $\exists c, n_0 > 0$ s.t. $\forall n > n_0 = n^2 \leq c \cdot n$ Consider $n = \max(c, n_0) + 1$. That is, n > c and $n > n_0$. Then $n^2 = n \cdot n > c \cdot n$. contradiction.

- To Show: $n^2 \notin O(n)$
 - Technique: Contradiction

- Proof by Contradiction!
- **Proof:** Assume $n^2 \in O(n)$. Then $\exists c, n_0 > 0$ s. t. $\forall n > n_0, n^2 \leq cn$ Let us derive constant c. For all $n > n_0 > 0$, we know: $cn \geq n^2$, $c \geq n$.

Since c is dependent on n, it is not a constant. Contradiction. Therefore $n^2 \notin O(n)$. \square

Proof Techniques

- Direct Proof
 - From the assumptions and definitions, directly derive the statement
- Proof by Contradiction
 - Assume the statement is true, then find a contradiction
- Proof by Cases
- Induction

Asymptotic Notation

- o(g(n))
 - Below *any* constant factor of g for large n
 - {functions $f : \forall$ constants c > 0, $\exists n_0$ s.t. $\forall n > n_0$, $f(n) < c \cdot g(n)$ }
 - Set of functions that always grow more slowly than g(n)
- $\omega(g(n))$

 $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$

- Above any constant factor of g for large n
- {functions $f : \forall$ constants c > 0, $\exists n_0$ s.t. $\forall n > n_0$, $f(n) > c \cdot g(n)$ }
- Set of functions that always grow more quickly than g(n)
- $\theta(g(n))$?
 - $-\ o(g(n))\cap \omega(g(n))=\emptyset$

- $o(g(n)) = \{\text{functions } f : \forall \text{ constants } c > 0, \exists n_0 \text{ s.t. } \forall n > n_0, f(n) < c \cdot g(n) \}$
- Show: $n \log n \in o(n^2)$

Show:
$$4c70 \ni n_071$$
: $4n \ge n_0$ $n \log n < C n^2$.

Then $\frac{n \log n}{n^2} < C$

$$\frac{\log n}{n} < C$$

$$\frac{\log n}{n} < C$$

$$\frac{\log n}{n} = 0$$

- $o(g(n)) = \{\text{functions } f : \forall \text{ constants } c > 0, \exists n_0 \text{ s.t. } \forall n > n_0, f(n) < c \cdot g(n) \}$
- Show: $n \log n \in o(n^2)$
 - given any c find a $n_0 > 0$ s.t. $\forall n > n_0$, $n \log n < c \cdot n^2$
 - Find a value of n in terms of c:
 - $n \log n < c \cdot n^2$
 - $\log n < c \cdot n$
 - $\frac{\log n}{n} < c$
 - For a given c, select any value of n_0 such that $\frac{\log n}{n} < c$

Equivalently:
$$\lim_{n\to\infty}\frac{n\log n}{n^2}=\lim_{n\to\infty}\frac{\log n}{n}=0$$

What about larger boards?

Divide the board into quadrants

Place a tromino to occupy the three quadrants without the missing piece

Each quadrant is now a smaller subproblem

Solve Recursively

Divide and Conquer

Our first algorithmic technique!

