Linear Algebra

주재걸 고려대학교 컴퓨터학과

Orthogonal Projection Perspective

수직인 그러와

• Back to the case of invertible $C = A^T A$, consider the orthogonal projection of **b** onto Col A as

$$\hat{\mathbf{b}} = f(\mathbf{b}) = A\hat{\mathbf{x}} = \underline{A}(A^TA)^{-1}A^T\mathbf{b}$$

$$\text{OHEORORY OF STATE OF THE STATE OF TH$$

Orthogonal and Orthonormal Sets

P मिल न्युयुक्त

• **Definition**: A set of vectors $\{\mathbf u_1, ..., \mathbf u_p\}$ in $\mathbb R^n$ is an orthogonal **set** if each pair of distinct vectors from the set is orthogonal That is, if $\mathbf{u}_i \cdot \mathbf{u}_i = 0$ whenever $i \neq j$.

- Definition: A set of vectors $\{\mathbf u_1, ..., \mathbf u_p\}$ in $\mathbb R^n$ is an orthogonal set $\mathbb R^n$ in $\mathbb R^n$ is an orthogonal set $\mathbb R^n$ in $\mathbb R^n$ in $\mathbb R^n$ in $\mathbb R^n$ is an orthogonal set $\mathbb R^n$ in $\mathbb R^n$ in $\mathbb R^n$ in $\mathbb R^n$ in $\mathbb R^n$ is an orthogonal set $\mathbb R^n$ in \mathbb **set** if it is an orthogonal set of unit vectors.
- Is an orthogonal (or orthonormal) set also a linearly independent set? What about its converse?

Orthogonal and Orthonormal Basis

- E C
- Consider basis $\{\mathbf v_1, ..., \mathbf v_p\}$ of a p-dimensional subspace W in $\mathbb R^n$.
- Can we make it as an orthogonal (or orthonormal) basis?
 - Yes, it can be done by Gram–Schmidt process. → QR factorization.
- Given the orthogonal basis $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ of W, let's compute the orthogonal projection of $\mathbf{y} \in \mathbb{R}^n$ onto W.

Orthogonal Projection \hat{y} of y onto Line

• Consider the orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto one-dimensional

Orthogonal Projection \hat{y} of y onto Plane

• Consider the orthogonal projection \hat{y} of y onto two-dimensional subspace $W = \frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} \frac{1}{$

•
$$\hat{\mathbf{y}} = \operatorname{proj}_L \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$

• If \mathbf{u}_1 and \mathbf{u}_2 are unit vectors, $\hat{\mathbf{y}} = \text{proj}_L \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2) \mathbf{u}_2$

 Projection is done independently on each orthogonal basis vector.

Orthogonal Projection when $y \in W$

• Consider the orthogonal projection \hat{y} of y onto two-dimensional subspace W, where $y \in W$

$$\mathbf{\hat{y}} = \operatorname{proj}_{L} \mathbf{y} = \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} + \frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}$$

- If \mathbf{u}_1 and \mathbf{u}_2 are unit vectors, $\hat{\mathbf{y}} = \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2)\mathbf{u}_2$
- The solution is the same as before.
 Why?

Transformation: Orthogonal Projection

• Consider a transformation of orthogonal projection $\hat{\mathbf{b}}$ of \mathbf{b} , given orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ of a subspace W:

$$\hat{\mathbf{b}} = f(\mathbf{b}) = (\mathbf{b} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{b} \cdot \mathbf{u}_2) \mathbf{u}_2 \rightarrow \frac{\mathbf{b} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{b} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2$$

$$= (\mathbf{u}_1^T \mathbf{b}) \mathbf{u}_1 + (\mathbf{u}_2^T \mathbf{b}) \mathbf{u}_2$$

$$= \mathbf{u}_1(\mathbf{u}_1^T \mathbf{b}) + \mathbf{u}_2(\mathbf{u}_2^T \mathbf{b})$$

$$= (\mathbf{u}_1 \mathbf{u}_1^T) \mathbf{b} + (\mathbf{u}_2 \mathbf{u}_2^T) \mathbf{b}$$

$$= (\mathbf{u}_1 \mathbf{u}_1^T + \mathbf{u}_2 \mathbf{u}_2^T) \mathbf{b}$$

$$= [\mathbf{u}_1 \quad \mathbf{u}_2] \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \end{bmatrix} \mathbf{b} = UU^T \mathbf{b}$$

$$\Rightarrow \text{ linear transformation!}$$

Orthogonal Projection Perspective

→ U. टेर U27+ न्यं टेरेंग्वा

• Let's verify the following, when $A = U = [\mathbf{u}_1 \quad \mathbf{u}_2]$ has orthonormal columns:

Back to the case of invertible $C = A^T A$, consider the orthogonal projection of **b** onto Col A as

$$\hat{\mathbf{b}} = A\hat{\mathbf{x}} = A(A^TA)^{-1}A^T\mathbf{b} = f(\mathbf{b})$$

•
$$C = A^T A = \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2^T \mathbf{u}_2 \\ \mathbf{u}_2^T \mathbf{u}_1 & \mathbf{u}_2^T \mathbf{u}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \rightarrow \frac{7}{6} \text{ orthonomal of } \mathbf{0} = \mathbf{0}$$
• $C = A^T A = \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix} = I$. Thus,

$$\hat{\mathbf{b}} = A\hat{\mathbf{x}} = A(A^TA)^{-1}A^T\mathbf{b} = A(I)^{-1}A^T\mathbf{b} = AA^T\mathbf{b} = UU^T\mathbf{b}$$