

SÍLABO DIBUJO Y DISEÑO GRÁFICO

ÁREA CURRICULAR: DISEÑO E INNOVACIÓN TECNOLÓGICA

CICLO II: Ing. Industrial CURSO DE VERANO 2017

II: Ing. Electrónica.

II: Ing. en Industrias Alimentarias

CICLO III: Ing. Civil

I. CÓDIGO DEL CURSO : 090661

II. CRÉDITOS : 03

III. REQUISITOS : 090663Geometría Analítica.

IV. CONDICIÓN DEL CURSO : OBLIGATORIO

V. SUMILLA

El curso de Dibujo y Diseño Gráfico es un curso teórico-práctico orientado a lograr que el estudiante desarrolle la habilidad de representar objetos en 2D, útiles para la preparación de planos en 2D relacionados a su especialidad, mediante un Trabajo Aplicativo Grupal (TAG), y una introducción para la representación de objetos en 3D, utilizando una herramienta CAD (Computer Aided Drawing) de última generación.

El curso se desarrolla mediante las unidades de aprendizaje siguientes:

I. Construcciones geométricas II. Construcciones geométricas III. Geometría aplicada. IV. Acotado y Proyecciones. V. Dibujo de objetos en tres dimensiones.

VI. FUENTES DE CONSULTA

Bibliográficas

- Spencer, H., Dygdon, J. & Novack. J. (2009). Dibujo Técnico. 7^{ma}. ed. Alfaomega. D.F., México.
- · Giesecke, F., Mitchell, A., Spencer, H., Hill, I., Dygdon, J., Novack, J& Lockhart, S. (2006). Dibujo y Comunicación Gráfica. 3^{ra}. Ed. México Prentice Hall. Edo.
- · López, J. & Tajadura, J. (2010). AutoCAD 2010 Avanzado. Madrid Ed. McGraw Hill.
- · Yarwood, A. (2010). Introduction to AutoCAD 2010 2D and 3D Design. EEUU Newnes.

Electrónicas

- Huapaya, A., Muñoz, C.& Guerrero, R. Separata de Dibujo y Diseño Gráfico. (2010). Facultad de Ingeniería y Arquitectura, Universidad de San Martín de Porres, Perú. Recuperado de: ftp://www.usmp.edu.pe/separatas/FIA/Industrial/Ciclo_II/Dis_Industrial
- Huapaya, A. (2010). Cuadernillo de Problemas de Dibujo y Diseño Gráfico. Facultad de Ingeniería y Arquitectura, Universidad de San Martín de Porres, Perú. Recuperado de: ftp://www.usmp.edu.pe/separatas/FIA/Industrial/Ciclo II/Dis Industrial

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: CONSTRUCCIONES GEOMÉTRICAS I

OBJETIVOS DE APRENDIZAJE:

- Utilizar la normativa del dibujo técnico.
- Reconocer el entorno gráfico del software a utilizar.
- Aplicar los comandos básicos de dibujo y de visualización en 2D.
- Usar sistemas de coordenadas en la elaboración de dibujos en 2D.

PRIMERA SEMANA

Primera sesión:

Prueba de entrada: Evaluación y entrega de resultados.

Segunda sesión:

Introducción. El editor de dibujo del AutoCAD: Uso de los Espacios de Trabajo: Dibujo 2D y Anotación, Modelado 3D y AutoCAD Clásico. La línea de estado. Uso de plantillas de trabajo. Ejemplos de aplicación.

SEGUNDA SEMANA

Primera sesión:

Coordenadas absolutas y relativas. Límites del dibujo. Dibujo de rectas. Dibujo de un rectángulo y su aplicación para dibujos de sólidos. Dibujo de circunferencias. Ejemplos de aplicación.

Segunda sesión:

Modos de referencia. Configuración del uso de los modos de referencia. Recorte de líneas. Modos de visualización en 2D.Ejemplos de aplicación.

UNIDAD II: CONSTRUCCIONES GEOMÉTRICAS II

OBJETIVOS DE APRENDIZAJE:

- Representar digitalmente las construcciones geométricas.
- Aplicar métodos de enlaces internos y externos en la geometría de objetos en 2D.
- Utilizar comandos de modificación en la construcción de objetos en 2D.

TERCERA SEMANA

Primera sesión:

Enlaces internos y externos: métodos gráficos de construcción. Modos de selección de objetos. Unidades. Comandos de modificación: Borrar, recuperar, mover, copiar, deshacer, Ejemplos de aplicación.

Segunda sesión:

Comandos de modificación: Rehacer, Extender. Redondeo, biselado, propiedades de entidades. Formación de grupos para el TAG según la especialidad. Ejemplo de aplicación.

CUARTA SEMANA

Primera sesión:

Dibujo del rótulo. Mediatriz de un segmento. Bisectriz de un ángulo.

Segunda sesión:

Enlace de rectas y curvas. Comandos de dibujo: puntos. Estilos de visualización. Comandos avanzados de Modificación: Adecuación, división de entidades. Ejemplos de aplicación.

UNIDAD III: GEOMETRÍA APLICADA

OBJETIVOS DE APRENDIZAJE:

- Aplicar comandos de modificación en la construcción de objetos en 2D.
- Utilizar los métodos gráficos de construcción de curvas cónicas.
- Representar gráficamente la construcción de curvas cónicas.

QUINTA SEMANA

Primera sesión:

Comandos de dibujo: Polígonos regulares, dibujo de arcos. Comandos avanzados de modificación: entidades simétricas uniformemente distribuidas, rotación de entidades, Ejemplo de Aplicación: Dibujo de un ovoide.

Segunda sesión:

Comandos avanzados de modificación: escalación, alargar/acortar entidades. Secciones Cónicas: Elipse. Ejemplos de Aplicación.

SÉXTA SEMANA

Primera sesión:

Dibujo de Polilíneas. Edición de polilíneas. Dibujo de curvas NURBS. Secciones Cónicas: Parábola e hipérbola.

Segunda sesión:

Métodos gráficos para dibujar parábolas. Métodos gráficos para dibujar hipérbolas. Ejemplos de Aplicación.

SÉPTIMA SEMANA

Primera sesión:

Alfabeto de líneas. Creación y gestión de capas. Creación y edición de bloques con atributos.

Segunda sesión:

Laboratorio N° 1: Geometría aplicada. Construcciones geométricas. Entrega del avance N° 1 del TAG.

OCTAVA SEMANA

Examen parcial.

UNIDAD IV: ACOTADO Y PROYECCIONES

OBJETIVOS DE APRENDIZAJE:

- Aplicar los elementos del acotado en la representación de vistas.
- Utilizar las diferentes reglas de acotado de objetos planos.
- Representar los objetos tridimensionales en dibujos bidimensionales.
- Elaborar dibujos isométricos a partir de vistas.

NOVENA SEMANA

Primera sesión:

Acotado. Elementos del acotado. Sistemas de acotado. Creación de estilos de acotado. Aplicación a un formato A3/A4.

Segunda sesión:

Proyecciones. Elementos de una proyección. Sistema de proyección del tercer cuadrante ISO-A. Determinación y elección de vistas en el tercer cuadrante. Elección de la vista frontal. Entrega del avance N° 2 del TAG. Ejemplos de aplicación.

DÉCIMA SEMANA

Primera sesión:

Cambio del cursor a modo isométrico. Dibujo Isométrico. Planos isométricos. Arcos y círculos en dibujos isométricos. Ángulos en dibujos isométricos. Ejemplos de aplicación.

Segunda sesión:

Dibujos isométricos a partir de vistas. Ejemplos de aplicación.

UNDÉCIMA SEMANA

Primera sesión:

Práctica dirigida sobre dibujo de vistas acotadas y dibujos isométricos a partir de vistas...

Segunda sesión:

Laboratorio N°2: Vistas y dibujos isométricos. Entrega del avance N° 2 del TAG.

UNIDAD V: DIBUJO DE OBJETOS EN TRES DIMENSIONES

OBJETIVOS DE APRENDIZAJE:

- Dibujar objetos tridimensionales.
- Aplicar el álgebra de Boole en representaciones gráficas tridimensionales.
- Representar objetos tridimensionales a partir de dibujos bidimensionales.

DUODÉCIMA SEMANA

Primera sesión:

Sistema de coordenadas en 3D.Sistema de coordenadas personales. Preparación del ambiente de trabajo para dibujos en 3D.Presentación en 3D.Estilos de visualización. Puntos de vista en 3D. Segunda sesión:

Dibujo de sólidos regulares básicos (cilindros, conos, esferas, cajas).

DÉCIMOTERCERA SEMANA

Primera sesión:

Creación de regiones .Extrusión de sólidos. Operaciones booleanas con regiones y sólidos (unión sustracción, intersección). Ejemplos de aplicación.

Segunda sesión:

Sólidos por revolución. Sólidos a través de trayectorias. Ejemplos de aplicación.

DÉCIMOCUARTA SEMANA

Primera sesión:

Solevados Generación de sólidos a partir de contornos cerrados (Sólidos simétricos). Sólidos uniformemente distribuidos.

Segunda sesión:

Corte de sólidos. Alineamiento de sólidos. Sección de sólidos. Entrega final del TAG.

DÉCIMOQUINTA SEMANA

Primera sesión:

Eiercicios de aplicación.

Segunda sesión:

Laboratorio N°3: Dibujo de sólidos.

DÉCIMOSEXTA SEMANA

Examen final.

DÉCIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General

IX. PROCEDIMIENTOS DIDÁCTICOS

Método Expositivo – Interactivo. Disertación docente, exposición del estudiante.

Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.

Método de Demostración – Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Computadora personal para el profesor y computadora personal para cada estudiante, ecran, provector de multimedia.

Materiales: Manual universitario, Software de dibujo (AutoCAD 2010), aplicaciones multimedia.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF = (PE + EP + 2*EF) / 4

PE = Promedio de evaluaciones

PE = (2*PL + PT) / 3 PT = Promedio del TAG PT = (W1 + W2 + W3) / 3

PL = Promedio de laboratorios

calificados $W1 = Avance N^{\circ} 1 del TAG$ PL = (X1 + X2 + X3)/3 $W2 = Avance N^{\circ} 2 del TAG$ $W3 = Avance N^{\circ} 3 del TAG$

X1 = Laboratorio calificado N° 1

X2 = Laboratorio calificado N° 2
 X3 = Laboratorio calificado N° 3
 EP = Examen Parcial
 EF = Examen Final.

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de Ingeniería Civil, Ingeniería electrónica, Ingeniería Industrial e Ingeniería de Industrias Alimentarias, se establece en la tabla siguiente:

K = Clave **R** = Relacionado **Recuadro vacío** = No aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	R
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	R
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional	R
(g)	Habilidad para comunicarse con efectividad	K
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	R
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	R
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	K

XIII. HORAS, SESIONES, DURACIÓN

a)	Horas de clase:	Teoría	Práctica	Laboratorio	
		2	2	0	

b) Sesiones por semana: Una sesión.

c) **Duración**: 4 horas académicas de 45 minutos

XIV. DOCENTE DEL CURSO

Ing. Alejandro Huapaya Bautista

XVI. FECHA

La Molina, enero de 2017.