

Be Careful

도로 보행 위험 행동 인식

2143978 김예령 2143993 백수민

위험행동 정의

스마트폰을 보며 보행하는 사람 > 어떻게 위험 행동을 정의할 것인가?

위험행동 정의

만약 왼손에 스마트폰을 들고 있다고 가정하면 머리부터 목까지의 Bone 각도가 기울어져 있고 왼쪽 어깨부터 왼쪽 팔꿈치. 왼쪽 팔꿈치부터 왼손까지의 Bone의 "각도"가 수직이거나 예각이면 스마트폰을 하고 있다고 판단함 => 각도의 범위를 정해 범위 안에 있는 경우 Bone 스마트폰을 하고 있다고 판단함 Joint

YOLO와 Openpose 데이터 파이프라인

YOLOv5s

저번 실험: 300장의 이미지 / batch size: 16, epochs: 50

> 900장의 이미지 / batch size : 16, epochs: 30

도로는 고정되어 있어 비교적 탐지가 쉽기 때문에 이번에는 도로 객체 탐지 제외

YOLO 결과

Class	Images	Instances	Р	R	mAP50
all	180	715	0.971	0.954	0.988
person	180	414	0.962	0.964	0.981
vehicle	180	230	0.987	0.954	0.992

전체 결과: Precision: 97.1% / Recall: 95.4% / mAP50: 98.8%

사 람: Precision: 96.2% / Recall: 96.4% / mAP50: 98.1%

자 동 차: Precision: 98.7% / Recall: 95.4% / mAP50: 99.2%

=> 저번과 비교하여 성능이 평균적으로 mAP50 기준 1.38% 향상되었음

Class	Images	Instances	P	R	mAP50
all	42	242	0.854	0.662	0.734
person	42	52	0.973	0.788	0.78
vehicle	42	55	0.663	0.745	0.695

YOLO 결과 (이미지)

