

Explanation in Ontology Languages

Bijan Parsia, Thomas Schneider University of Manchester

ESSLLI 2009, 27-31 July, Bordeaux

With thanks to Matthew Horridge and Johannes Bauer

Outline

Mon Introduction

Tue Computation of justifications

Wed Fine-grained justifications

Thu Lemmata

Fri Model based explanations

Monday Introduction

Schedule for today

- Ontologies and ontology languages
- Background on explanation
- Introduction to justifications and associated services

Ontologies and ontology languages

- Are logical theories
- Capture a domain of interest
- Contain explicit knowledge
- Implicit knowledge can be inferred
- This is possible through the formal semantics underlying ontology languages

Ontology languages

- Often based on Description Logics (DLs)
 - Class/object/role paradigm
 - DLs have clear, formal semantics
 - (Decidable) fragments of first order logic
 - Standard, implemented inference services

Ontology languages

- Often based on Description Logics (DLs)
 - Class/object/role paradigm
 - DLs have clear, formal semantics
 - (Decidable) fragments of first order logic
 - Standard, implemented inference services

Many services are "automagic" (e.g., classification)

Women are female persons.

Every mother is a female parent.

Every parent is a person.

Women are female persons.

Woman \equiv Female \sqcap Person

Every mother is a female parent.

Every parent is a person.

Women are female persons.

Woman \equiv Female \sqcap Person

Every mother is a female parent.

Mother \sqsubseteq Female \sqcap Parent

Every parent is a person.

Women are female persons.

Woman \equiv Female \sqcap Person

Every mother is a female parent.

Mother \sqsubseteq Female \sqcap Parent

Every parent is a person.

Parent

□ Person

Women are female persons.

Woman \equiv Female \sqcap Person

Every mother is a female parent.

Mother \sqsubseteq Female \sqcap Parent

Every parent is a person.

Parent

□ Person

Every parent has at least one child, each of which is a person.

Parent $\sqsubseteq \geqslant 1$ hasChild $\sqcap \forall$ hasChild.Person

Women are female persons.

Woman \equiv Female \sqcap Person

Every mother is a female parent.

Mother \sqsubseteq Female \sqcap Parent

Every parent is a person.

Parent

□ Person

implies:

Every mother is a woman.

Mother

☐ Woman

Every parent has at least one child, each of which is a person.

Parent $\sqsubseteq \geqslant 1$ hasChild $\sqcap \forall$ hasChild.Person

The University of Manchester

DL examples

Parent $\sqsubseteq \geqslant 1$ hasChild $\sqcap \forall$ hasChild.Person

The University of Manchester

DL examples

Parent $\sqsubseteq \geqslant 1$ has Child $\sqcap \forall$ has Child. Person

The University of Manchester

DL syntax

• class names; property names:

$$A, B, \ldots; P, Q, \ldots$$

complex classes:

T,
$$A$$
, $\neg C$, $C \sqcap D$, $\exists R.C$, $\geqslant n R.C$

A atomic; C, D possibly complex; R atomic property or inverse (P^-) ; $n \in \mathbb{N}$

- convention: A, B atomic classes; C, D, \ldots arbitrary
- syntactic sugar:

$$\bot = \neg \top \qquad \forall R.C = \neg \exists R. \neg C$$

$$C \sqcup D = \neg C \sqcap \neg D \qquad \leqslant n R.C = \neg (\geqslant n+1 R.C)$$

DL syntax

 $C \sqsubseteq D$

subClassOf axiom

 $C \equiv D$

shortcut for $C \sqsubseteq D$ and $D \sqsubseteq C$

 $R_1 \circ \cdots \circ R_n \sqsubseteq S$ subPropertyChain axiom

+ more features, mostly syntactic sugar: disjointness, transitivity, reflexivity, ...

DL syntax vs. OVL Manchester syntax

DL

concept, role

Т, _

 $\neg C$

=nR.C

OWL Manchester syntax

class, property

Thing, Nothing

not C

 $C \sqcap D$, $C \sqcup D$ C and D, C or D

 $\exists R.C, \forall R.C$ R some C, R only C

 $\geqslant nR.C$, $\leqslant nR.C$ R min nC, R max nC

R exactly n C

DL semantics

- Interpretations $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ $\Delta^{\mathcal{I}} \neq \emptyset$! with $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for class names A and $P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for property names P
- Inductive transfer to arbitrary props / classes

$$(P^{-})^{\mathcal{I}} = \{(x, y) \mid (y, x) \in P^{\mathcal{I}}\}$$

$$T^{\mathcal{I}} = \Delta^{\mathcal{I}}$$

$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$

$$(\exists R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \text{ for some } y \in C^{\mathcal{I}}, (x, y) \in R^{\mathcal{I}}\}$$

$$(\geqslant n R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \#\{y \in C^{\mathcal{I}} \mid (x, y) \in R^{\mathcal{I}}\} \geqslant n\}$$

DL semantics

Interpretation \mathcal{I} satisfies ...

- axiom $A \sqsubseteq B$ if $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$
- axiom $R_1 \circ \cdots \circ R_n \sqsubseteq S$ if:

whenever $xR_1^{\mathcal{I}}z_1R_2^{\mathcal{I}}z_2R_3^{\mathcal{I}}\dots R_{n-1}^{\mathcal{I}}z_{n-1}R_n^{\mathcal{I}}y$, then $xS^{\mathcal{I}}y$

We write $\mathcal{I} \models \alpha$.

We write $\mathcal{I} \models \mathcal{O}$ if $\mathcal{I} \models \alpha$ for all $\alpha \in \mathcal{O}$.

DL semantics

- Interpretation \mathcal{I} is a model of ontology \mathcal{O} if \mathcal{I} satisfies every axiom in \mathcal{O} .
 - We write $\mathcal{I} \models \mathcal{O}$.
- Ontology \mathcal{O} is inconsistent if it has no model.
- Class C is satisfiable if $C^{\mathcal{I}} \neq \emptyset$ for every interpretation \mathcal{I} .
- Axiom α is entailed by \mathcal{O} $(\mathcal{O} \models \alpha)$ if for all \mathcal{I} : $\mathcal{I} \models \mathcal{O} \Rightarrow \mathcal{I} \models \alpha$

(Bio-)Medicine

Chemistry

Astronautics

... are used in these fields and others

Linguistics

Description of business processes

(Web) Service description

"Large" User Base

- Large and Growing
 - (126,870 registered Protégé Users)
 - (Standardization helps)
 - Bio-medical applications huge
- Useful for research!
 - Diverse users, tasks, issues
 - High impact

Reasoning services

Name

Consistency checking

Subsumption checking

Class hierarchy computation

Unsatisfiability test

Instance checking

Question

$$\mathcal{O} \models \top \sqsubseteq \bot ?$$

$$\mathcal{O} \models C \sqsubseteq D$$
?

$$\mathcal{O} \models A \sqsubseteq B$$
?

$$\mathcal{O} \models C \sqsubseteq \bot$$
?

$$\mathcal{O} \models a : C ?$$

Reasoning services ...

• ... are interreducible, e.g.:

$$\mathcal{O} \models \top \sqsubseteq \bot \iff \mathcal{O} \models A \sqcup \neg A \sqsubseteq \bot$$

$$\mathcal{O} \models C \sqsubseteq D \iff \mathcal{O} \models C \sqcap \neg D \sqsubseteq \bot$$

~> Let's focus on unsatisfiability!

... do not provide explanations

Need for explanations

- Some entailments undesirable (e.g., unsatisfiable classes)
- Debugging necessary
 ~> delete/repair axioms responsible,
 but which axioms?
- Needle(s) in the haystack (of a large ontology)

Background on explanation

The University of Mancheste

Context!

	Time	
	Development	Deployment
Ontology Developer		
App Programmer		
App user		

The University of Manchestel

Context!

	Time	
	Development	Deployment
Ontology Developer	Our focus	
App Programmer		
App user		

The University of Manchester

OntEng Tasks

Understanding entailments

Debugging and repair

Understanding justifications

Ontology comprehension

The University of Manchester

OntEng Tasks

Understanding entailments

Debugging and repair

Understanding justifications

Ontology comprehension

Understanding entailments

- User notices an entailment.
- Decides to obtain an explanation for it in order to find out why it holds.

Understanding justifications

- Justification for an entailment in an ontology has been obtained.
- User wants to understand the justification better.

Ontology comprehension

- User is faced with a new ontology.
- Wants to get a better picture of it.
- Among the possible metrics:
 - → Number of entailments
 - → Average number of justifications for an entailment

...

Debugging and repair

- User is faced with
 - 1. an inconsistent ontology
 - 2. an unsatisfiable class
 - 3. or "some" undesired entailment.
- Determine the cause and debug.

Debugging and repair

- User is faced with
 - 1. an inconsistent ontology
 - 2. an unsatisfiable class
 - 3. or "some" undesired entailment.
- Determine the cause and debug.

A lot of research on 1 & 2 can be done without domain knowledge

Debugging and repair

- User is faced with
 - 1. an inconsistent ontology
 - 2. an unsatisfiable class
 - 3. or "some" undesired entailment.
- Determine the cause and debug.

A lot of research on 1 & 2 can be done without domain knowledge

1 & 2 have high,visible user value

Manual Debugging

Life without explanations

- Open and classify the TAMBIS ontology tambis-patched.owl in Protégé
- Open the "Asserted class hierarchy" and expand the following terms:

substance physical-substance chemical

Life without explanations

Oops!

144 out of 395 classes are unsatisfiable (red).

Why?

Why are my classes unsatisfiable?

- What have we said in the ontology that causes these classes to be unsat?
- What do we have to change to repair it?
- Where do we start?

Where do we start? Tracing

- Open and classify the TAMBIS ontology tambis-patched.owl in Protégé
- Open the "Asserted class hierarchy" and expand the following terms:

```
substance
physical-substance
chemical
organic-molecular-compound
small-organic-molecular-compound
nucleotide
ribo-nucleotide
```

Where do we start? Tracing

Navigate through the subclass hierarchy. If a class is unsat, then so are its subclasses.

The only way was to manually follow ...

- unsatisfiable named superclasses
- or unsatisfiable fillers of restrictions in anonymous superclasses:

The only way was to manually follow ...

- unsatisfiable named superclasses
- or unsatisfiable fillers of restrictions in anonymous superclasses:

Tedious for big ontologies! ⁽²⁾

The only way was to manually follow ...

- unsatisfiable named superclasses
- or unsatisfiable fillers of restrictions in anonymous superclasses:

Tedious for big ontologies!

May have comprehension benefits!

Now why is the root carbon unsatisfiable?

- Axioms may be spread throughout the ontology.
- Reasons for unsat may be highly non-obvious.

The University of Manchester

Other entailments

What about inferred subsumptions between two

class names?

mitochondrion

cellular-part

Tracing difficult and not obvious

Tracing Issues

- Identifies problem classes/terms
 - Not problem axioms
- Not all problem axioms "stick" with terms
 - Tracing can't find these
 - Depends on definition view of tool
 - Binary search of ontology?
- Multiple problem classes
 - Multiple sets of problem axioms

Tracing Issues

- Identifies problem classes/terms
 - Not problem axioms
- Not all problem axioms "stick" with terms
 - Tracing can't find these
 - Depends on definition view of tool
 - Binary search of ontology?
- Multiple problem classes
 - Multiple sets of problem axioms

Navigational approaches insufficient

Explanation

- Reasons for entailments are often difficult to understand. ~> Tool support is required.
- Theoretical basis of explanation has been investigated. New services have been defined.
- Tool support has gone from None to Respectable.
- It's now fairly easy to get explanations.
 With focus: Justifications