Representação computacional de grafos

TEG0001 - Teoria dos grafos Prof. Dr. Ricardo José Pfitscher ricardo.pfitscher@gmail.com

Leitura complementar

 IME-USP: https://www.ime.usp.br/~pf/algoritmos_para_grafos/aulas/graphs.ht
 ml

Conseguiram ler?

Exercício - entregar no moodle

- 1. Acesse a ferramenta do google maps e encontre o endereço de sua residência ou um local conhecido por você
- 2. Faça uma captura de tela e marque os encontros entre ruas (cruzamentos) como sendo vértices de um grafo
- 3. Use a ferramenta de medição do google para medir a distância entre esses cruzamentos
- 4. Represente esse grafo na forma matemática e indique:
 - a. Qual o maior grau desse grafo?
 - b. Qual o tipo de grafo?

Três alunos sorteados para explicar sua resposta...

Grafos - representação

- Como representar computacionalmente um grafo?
 - Precisamos armazenar os dados essenciais da definição de grafos
 - Adjacências entre vértices, vértices, arestas, etc...

Grafos - representação

- Como representar computacionalmente um grafo?
 - Precisamos armazenar os dados essenciais da definição de grafos
 - Adjacências entre vértices, vértices, arestas, etc...
- Implementações mais utilizadas
 - Matriz de adjacências
 - Lista de adjacências

Também existe a matriz de incidências

- Conceito de adjacência:
 - \circ u é adjacente a v, se u está conectado a v
- Dado um grafo G, a matriz de adjacências r= (r_{ij}) é uma matriz nXn onde: $r_{ij} = \begin{cases} 1, \text{ se } i \text{ é adjacente a } j \\ 0, \text{ em caso contrário} \end{cases}$
 - Também pode ser utilizado o peso da aresta
 - Em grafos direcionados utiliza-se valor positivo se a aresta sai do nó e valor negativo se a aresta incide sobre o nó

Como o seguinte grafo pode ser representado com uma matriz de

adjacências?

X	Α	В	С	D
Α				
В				
С				
D				

v —	$\int 1$, se <i>i</i> é adjacente a <i>j</i>
$r_{ij} =$	(0, em caso contrário

Como o seguinte grafo pode ser representado com uma matriz de

adjacências?

X	Α	В	С	D
Α	0	1	0	0
В	1	0	1	0
С	0	1	0	1
D	0	0	1	0

Como o seguinte dígrafo pode ser representado com uma matriz de

	adja	acên	cias?)
--	------	------	-------	---

X	Α	В	С	D
Α				
В				
С				
D				

$$r_{ij} = \begin{cases} 1, \text{ se } i \text{ \'e adjacente a } j \\ 0, \text{ em caso contrário} \end{cases}$$

Como o seguinte dígrafo pode ser representado com uma matriz de

adjacências?

X	Α	В	С	D
Α	0	0	0	0
В	1	0	0	0
С	0	1	0	1
D	0	0	0	0

Como o seguinte grafo ponderado pode ser representado com uma matriz de adjacências?

X	Α	В	С	D
Α				
В				
С				
D				

Como o seguinte grafo ponderado pode ser representado com uma matriz de adjacências?

X	Α	В	С	D
Α	0	2	0	3
В	2	0	0	0
С	0	0	0	5
D	3	0	5	0

Como o seguinte grafo **com laço** pode ser representado com uma matriz de adjacências?

X	Α	В	С	D
Α				
В				
С				
D				

Como o seguinte grafo **com laço** pode ser representado com uma matriz de adjacências?

X	А	В	С	D
Α	1	1	1	1
В	1	0	0	0
С	1	0	0	1
D	1	0	1	0

 Como o seguinte grafo com arestas paralelas pode ser representado com uma matriz de adjacências?

X	Α	В	С	D
Α				
В				
С				
D				

 Como o seguinte grafo com arestas paralelas pode ser representado com uma matriz de adjacências?

X	А	В	С	D
Α	0	?	0	1
В	?	0	0	0
С	0	0	0	1
D	1	0	1	0

- Vantagens
 - Fácil visualização para vértices adjacentes
 - Útil em algoritmos que precisamos de rapidez para saber se existe conexão entre dois vértices
 - Acesso pertence à O(1)
 - Cálculo do grau do nó
 - Grafos não direcionados: Soma dos números de uma linha
 - Grafos direcionados:
 - Soma da linha: grau de saída
 - Soma da coluna: grau de entrada
- Desvantagem:

Complexidade de espaço, O(n²)

 Vamos estabelecer uma Classe para armazenar a matriz de adjacências e uma lista de vértices (rótulos)

```
class Graph():
    def init (self, nvertices):
        self.N = nvertices
        self.graph = [[0 for column in range(nvertices)]
                    for row in range (nvertices) ]
        self.V = ['0' for column in range(nvertices)]
print('Qual o número de vértices?')
n = int(input())
q = Graph(n)
print(g.graph)
```


 Modifique a classe Grafo e adicione um método para nomear os vértices do grafo

 Modifique a classe Grafo e adicione um método para nomear os vértices do grafo

```
#...
def nameVertex(self):
    for i in range(self.N):
        print("Qual o rotúlo do vértice %i?"%(i))
        self.V[i]=input()
#...
```


 Modifique a classe Grafo e adicione um método para ler o peso das adjacências entre os vértices

 Modifique a classe Grafo e adicione um método para ler o peso das adjacências entre os vértices

Exercícios

- 1. Implemente computacionalmente o grafo do exercício de mapeamento de bairro que você fez na aula passada.
- 2. Implemente métodos para:
 - a. verificar se dois vértices são adjacentes e a distância entre eles
 - b. retornar o grau de um dado vértice
 - c. verificar se um grafo a é subgrafo do grafo b
 - d. retornar o número de arestas do grafo
 - e. verificar se o grafo é completo

