POROSITY CALCULATION OF COMPACTED SALT SAMPLE USING VACUUM SEALING METHOD

Scope: To determine the bulk specific porosity of specimen of compacted salt sample

Apparatus: Corelok InstroTek, Inc

Test Specimen:

Sample ID: 175_15 (P4) (Oven dried)

Sample Type: Salt, End piece

Shape: Cylindrical

Figure 1: Salt Sample 175_15 (P4)

Calculation:

Sample (Oven dried) weight in air, $W_1 = 326.030g$

Membrane (InstroTek provided) weight, $W_p = 15.380g$

Sample weight in water (Submerged), $W_2 = 166.730g$

Density of Water (g/cm³) for 22° C = 0.9977

Using *CoreGravity* (Software), Bulk Specific Gravity, $G_b = 2.092$

Therefore, bulk density, $D_b = 2.087 \text{ g/cm}^3$

And sample volume, $V = 156.219 \text{ cm}^3$

Maximum Specific gravity,
$$Gm = [W_1/(W_1-W_3)] \times \rho_s = 2.157$$

(Calculated using Silica oil for Sample 90_05)

Therefore, assumed Gm = 2.157

% Porosity =
$$(1 - G_b/G_m) \times 100 = 3.25\%$$

Results:

Sample volume = 156.219 cm^3

Bulk Specific Gravity, $G_b = 2.092$

Porosity = **3.25 %**