

3º Grado en Ingeniería Informática

Transmisión de Datos y Redes de Computadores

TEMA 2. PROTOCOLOS Y SERVICIOS DE RED

(2019-2020)

TEMA 2. Índice

- 2.1. Enrutamiento estático y dinámico. (2h)
- 2.2. Protocolos de enrutamiento. (2h)
- **2.3**. El problema del direccionamiento en IPv4. (4h)

APLICACIÓN PRESENTACIÓN SESIÓN TRANSPORTE RED ENLACE FÍSICO

TDRC Tema 2.2.

Protocolos de enrutamiento

Antonio M. Mora García

Enrutamiento en Internet

Sistema Autónomo (Autonomous System):

Red definida por una única política administrativa, es decir, tiene una gestión de rutas común e independiente de otros sistemas.

Tipos de enrutamiento

• Estático:

El administrador decide las rutas a seguir dentro de su red, mediante la **configuración manual** de los routers, definiendo sus tablas de enrutamiento.

Dinámico:

Existen *algoritmos o <u>protocolos</u>* entre routers que establecen de forma dinámica las mejores rutas de acuerdo a un *criterio definido* por el administrador.

Protocolos de enrutamiento (características)

- Exactitud: encaminamiento entre los host origen y destino deseados (y no otros).
- **Robustez**: el algoritmo debe ser capaz de adaptarse ante posibles fallos en la red (buscar rutas alternativas).
- **Estabilidad**: el algoritmo debe tener un consumo asociado controlado.
- **Optimización**: debe proporcionar la mejor solución posible (considerando un criterio).
- **Imparcialidad**: debe haber un compromiso para que unos nodos no se vean perjudicados (por ser siempre elegidos o no elegidos en la ruta).
- Eficiencia: debe consumir los menores recursos posibles.
- **Simplicidad**: debe ser sencillo de implementar para que ofrezca más beneficios que el coste de ponerlo en funcionamiento.

Protocolos de enrutamiento (especificación)

- Criterio de decisión: métrica usada para la decisión del encaminamiento (distancia, número de saltos, retardo, carga).
- Instante de decisión: momento en el que se toma la decisión de encaminamiento (al inicio de la comunicación, en cada salto).
- **Lugar de decisión**: puntos que toman las decisiones de encaminamiento (al inicio, en un nodo central de la red, en cada nodo por el que se pase).
- **Fuente de información**: procedencia de los datos considerados para hacer el encaminamiento (local, de los vecinos, de todos los nodos de la red).
- **Tiempo de actualización**: momento en el que se actualizan los datos para el encaminamiento (invariable, cada X segundos). De este factor depende la adaptabilidad del protocolo a los cambios en la red.

Protocolos de enrutamiento

IGP (Interior Gateway Protocol):

Son los que se dan **dentro de un sistema autónomo**. Ejemplos: RIP (*RFC 2453*) y OSPF (*RFC 2328*).

EGP (Exterior Gateway Protocol):

Son los que utilizan **distintos sistemas autónomos entre sí**, como podrían ser distintos ISPs. Ejemplo: BGP (*RFC 4271*).

Enrutamiento en Internet

IGP (Interior Gateway Protocol)

Vector distancia:

Los routers construyen su tabla de rutas con el único conocimiento de la <u>distancia</u> (métrica) y el <u>siguiente salto (next hop)</u> para llegar a la red.

Ejemplo: RIP

Estado del enlace:

Los routers necesitan <u>conocer</u> previamente toda la <u>topología de la red</u> (cómo se conectan todos los nodos entre sí) antes de generar su tabla de enrutamiento. Ejemplo: OSPF

Híbrido:

Una mezcla entre ambos. Ejemplo: EIGRP

Vector Distancia

- No conoce la topología de la red. Solo conoce distancia (métrica) y next hop.
- Actualizaciones frecuentes (necesarias ya que se desconoce la topología).
- Las actualizaciones que se envían son copias de la tabla de rutas con el incremento correspondiente al enlace hasta el router al que se envían.
- Cada router lo comunica a sus vecinos, no a todos.
- Consume poca CPU y poca memoria.

Vector Distancia

- Utiliza un Algoritmo de Bellman-Ford para calcular las rutas.
 - Cada router calcula la distancia (métrica) a todos los demás dentro de su red (dentro del AS en el que está). Almacena esta información en una tabla.
 - Cada router envía su tabla a todos sus vecinos (directamente conectados con él).
 - Cuando un router recibe las tablas de distancias de sus vecinos, éste calcula la ruta más corta a los demás routers y actualiza su tabla para reflejar los cambios.

Problemas:

- Mala escalabilidad: si la red crece el algoritmo adquiere mucha complejidad.
- <u>Convergencia lenta</u>: si hay cambios en la topología de la red tardan en informarse a todos los routers, ya que las actualizaciones se distribuyen nodo por nodo.

Vector Distancia (cuenta al infinito)

 Problema en el que se producen bucles por culpa de actualizaciones de rutas publicadas por la misma interfaz, es decir, desde el mismo router al que se quiere llegar.

- > La distancia de R1 a los hosts de la Red A es 1
- > La distancia de R2 a esos hosts es 2 (a través de R1)
- > La distancia de R3 a esos hosts es 3 (a través de R2)

Vector Distancia (cuenta al infinito)

Si se cae el enlace entre R1 y la Red A.

> ¡¡¡R1 podría acceder a Red A a través de R2, con distancia total 3!!!

- > La actualización posterior haría que R2 pudiese llegar a la Red A en 4 saltos (a través de R1->R2->R1)
- > La actualización posterior haría que R3 pudiese llegar a la Red A en 5 saltos
- ... etc, etc

Vector Distancia (soluciones a la cuenta al infinito)

- Horizonte dividido (split horizon): Un router sólo publica una ruta a un destino por una interfaz (enlace) por la que no pase el camino a dicho destino.
 - > R2 no publicaría su ruta hasta Red A a través de la interfaz que llega a R1.
- Envenenamiento inverso (poison reverse): La ruta que se aprende por una interfaz es publicada por esa misma interfaz pero con métrica infinita.
- Envenenamiento de ruta: Si una ruta falla, se comunica mediante difusión a todos los nodos.
- **Tiempo de espera (hold down)**: Después de conocer que la ruta a una red ha fallado, el router deja pasar un tiempo (60 segs) antes de aceptar nuevas rutas a ese destino.
- **Actualización por disparo**: En cuanto se conoce que la ruta a una red no está disponible se publica inmeditatamente al resto de routers sin esperar al periodo de actualización.

RIP

- Routing Information Protocol.
- Es un protocolo de enrutamiento IGP.
- Basado en el Vector Distancia.
- Aplica el algoritmo de Bellman-Ford distribuido.
- La métrica que emplea es el número de saltos.
- Una red directamente conectada a un router tiene coste 1.
- Cada router envía información de su tabla de rutas a los routers vecinos (directamente conectados con él).
- Actualizaciones cada 30 segundos.
- Máximo de 15 saltos.

RIP

- El router que recibe el paquete sabe que el next-hop es el origen del paquete (IP origen del paquete RIP).
- En el paquete con las rutas no hay máscaras asociadas a ellas.
- Protocolo de capa de aplicación. Para el intercambio de información se usan datagramas UDP sobre el puerto reservado 520.
- En un paquete de RIP pueden ir hasta 25 rutas.
- Si la tabla de rutas a enviar es mayor se tendrán que enviar varios paquetes (varios datagramas UDP).

RIP v2:

- Se envían también las máscaras de red.
- Compatible con redes con máscaras de tamaño variable (VLSM, *Variable Length Subnet Mask*).
- Permite autenticación.

RIP (Escenario 1)

Múltiples rutas a la misma subred con igual métrica

Routers A and C Advertising to Router B

1.- RouterA envía actualización a RouterB indicando en cuántos saltos RouterB podría alcanzar estas redes

Outgoing Interface

3.- Router B compila el mejor camino posible. Además, aparecen dos rutas de igual métrica a la misma red.

Next Router

Metric

Router B Routing Table.

11001111	gopadio	•					
	1	162.11.5.0	S0	162.11.8.1		1	
2 RouterC envía		162.11.6.0	S1			0	
		162.11.7.0	E0			0	
actualización a RouterB indicando en cuántos		162.11.8.0	S0			0	
saltos RouterB podría		162.11.9.0	S0	162.11.8.1	, 162.11.6.2	1	
alcanzar estas redes		162.11.10.0	S1	162.11.6.2		1	

Group

RIP (Escenario 2)

Sin horizonte dividido

¡PROBLEMAS!

162.11.5.0 Router A

1. Al caer hace router So

Con tablas erróneas la red tarda más en converger

1. Al caerse 162.11.7.0, RouterB hace route poissoning (métrica 16 es red inalcanzable)

1. Por casualidad, RouterC envía una actualización simultánea a RouterB.
RouterC incumple la regla del Split Horizon para la red 162.11.7.0

Router B Routing Table, After Subnet 162.11.7.0 Failed and Update from Router C Is Received

Group	Outgoing Interface	Next Router	Metric
162.11.6.0	S1		0
162.11.7.0	S1		2
162.11.10.0	S1	162.11.6.2	1

Router C Routing Table, After Subnet 162.11.7.0 Failed and Update from Router B Is Received

Group	Outgoing Interface	Next Router	Metric	
162.11.6.0	S1		0	. /
162.11.7.0	S1		16	
162.11.10.0	E0		1	

2.- Esto causa que la tabla de rutas de Router B sea errónea!!

3.- Tabla correcta en RouterC, pero no ha evitado tabla de rutas corrupta en RouterB. Tendrá que hacer Route poisoning en próxima actualización. Convergencia lenta

RIP (Escenario 3)

Router A Advertising Routes Learned from Router C

Con horizonte dividido

TODO OK

Router B Routing Table, After Receiving Update in Figure 6-3

Group	Outgoing Interface	Next Router	
162.11.5.0	S0	162.11.8.1	
162.11.7.0	E0		
162.11.8.0	S0		
162.11.9.0	S0	162.11.8.1	
162.11.10.0	S0	162.11.8.1	

Situación: La red ha convergido y todos los routers tienen en sus tablas de rutas todas las redes (5 en total). Hay total conectividad

 RouterC envía una actualización a RouterA.
 Sólo contiene aquellas rutas que no fueron aprendidas de RouterA o que tienen en común

2.- RouterA actualiza a
RouterB. Sólo contiene
aquellas rutas que no
fueron aprendidas de
RouterB o que tienen en
común

RIP (Escenario 4)

Con envenenamiento inverso

TODO OK

1.- En las actualizaciones mutuas entre RouterB y RouterC, las rutas aprendidas del otro son incluidas en las actualizaciones, pero con métrica infinita 16 (poisson reverse). Por tanto, se trata de una reafirmación activa del concepto split horizon.

RIP (Escenario 5)

Con actualización por disparo

TODO OK

1.- En cuanto falla una red, no se espera a la actualización periódica (e.g. RIPv2 cada 30 segundos), sino que se publica una actualización de forma inmediata con un **RP**

Estado del enlace

- Cada router informa de conexiones con sus vecinos (nodos directamente conectados con él).
- Construye un **paquete LSP** (*Link State Packet*) que dice quien es el router, la lista de sus vecinos (nodos/redes alcanzables) y sus respectivas distancias desde él.
- Envía su LSP por inundación a todos los routers de la red.
- Recibe los LSP de todos los nodos de la red.
- Mejor convergencia, ya que no hay calculo para obtener las rutas.

MEJORAS

- La inundación se hace reenviando las LSP por todas las interfaces excepto por la que se recibió.
- Los LSP se numeran para detectar y descartar duplicados, además tienen un TTL (Sólo se envían los LSP nuevos y que no están expirados).

Estado del enlace (Algoritmo de Dijkstra)

Busca los caminos mínimos desde un nodo a todos los demás en un grafo (o una red).

OSPF

- Open Shortest Path First.
- Es un protocolo de enrutamiento IGP.
- Basado en el Estado de los Enlaces.
- Los routers envían a todos los demás routers de la red **paquetes LSA** (*Link State Advertisements*) en los que informan de las **redes a las que están directamente conectados** y los routers adyacentes que tienen.
- Al final todos los routers conocen el grafo de la topología con el coste de cada enlace (mediante una base de datos de LSAs).
- Aplica el algoritmo de Dijsktra para el cálculo de los caminos mínimos.
- Se puede emplear cualquier métrica o coste.
- El coste de los enlaces puede ser diferente de unos a otros e incluso según el sentido.
- No tiene un coste infinito.
- Funciona directamente sobre protocolo IP.

Vecino:

- Router con conexión directa con el que intercambio información de rutas.
- Se descubren con los paquetes de Hello (cada 10")
- Todos los routers OSPF, direccion IP multicast 224.0.0.5

Área:

- Regiones dentro de la red.
- Backbone es el área central de la red. A ella se conectan todas las demás áreas.

Adyacencia:

- Formada por 2 routers vecinos.
- Cada router forma una adyacencia con el Designated router (DR) y el Backup DR (BDR).
- Una adyacencia consiste en el intercambio de enlaces de topología conocidos.

DR/BDR:

- Responsable de formar las adyacencias con los demás routers vecinos para garantizar que todos tienen la misma tabla topológica.
- El BDR hace las mismas funciones que el DR cuando éste cae.
- Se eligen mediante el protocolo de Hello:
 - Los dos que tengan configurados la prioridad o las IPs más altas son elegidos DR y BDR.
- Sólo se da en una red multiacceso (routers unidos por un conmutador), pero no en enlaces punto a punto.
- El DR será el encargado de hacer adyacencias con otros DR de otras redes

Tablas:

- Tabla de vecinos
- Tabla de Topología
 - -Tabla con los enlaces conocidos dentro de un área.
 - Los enlaces se descubren a través del intercambio de información al formar adyacencia.
 - Todos los routers en el mismo área tienen la misma tabla de topología.
 - Desde cada Router se ejecuta el algoritmo de Dijkstra sobre ella para calcular el mejor camino (SPF) a cada red destino. El resultado es la tabla de rutas.
- Tabla de rutas

Escalabilidad:

- •Al principio todos los routers están en el área 0 o de backbone.
- Cuando el número de routers OSPF se hace muy grande, el número de adyacencias no es manejable, incluso con DR/BDR, por lo que se define una nueva área en la que se van incluyendo nuevos routers.
- Las áreas son regiones que confinan las adyacencias de los routers que la componen
- Cada nueva área definida se conecta al área 0
- ABR: La interconexión entre áreas se hace mediante routers frontera llamados ABR (Area Border Router) que impiden que se formen adyacencias entre routers de distintas áreas. También son los encargados de hacer conocer a un área las redes alcanzables de la otra.
- ASBR: La interconexión con Internet se hace con un ASBR (Autónomous System Border Router)

https://www.slideshare.net/ghostlinexawey/ospf-multi-area

OSPF (Ejemplo)

Ejemplo: Generación Tabla de rutas

- 1.- RouterA se une por primera vez a una red OSPF.
- 2.- Envía paquetes de Hello para descubrir a sus vecinos en la misma red y conocer al DR y BDR
- 3.- Descubre a todos los routers vecinos. Router7200 es el DR, por tanto establece adyacencia con él.
- 4.- Se intercambian información de los enlaces/redes que conoce cada uno. Paquetes OSPF
 - DDP: Database descriptor packets: Usado para mandar info para sincronización de tabla de topología
 - LSR: Link State Request. Petición de mayor información (e.g. Después de un DDP por inconsistencias)
 - LSU: Link State Update. Respuesta de un LSR
 - LSACK: Ack de LSU
- 5.- Una vez que la tabla de topología converge, ambos routers aplican el algoritmo de Dijkstra (SPF) a la Tabla de Topología y construyen sus tablas de rutas
- 6 .-El Router7200 también forma adyacencia con RouterB y RouterC y repite 4 y 5
- 7.- Router 7200 será el encargado de formar adyacencia con otros DR y BDR en Otras redes y repetir pasos 4 y 5

Nota: En el ejemplo sólo se contempla la adyacencia con el DR, no se ha considerado la formada con el BDR

Distancia Administrativa (Administrative Distance)

- Medida (usada por routers CISCO) para seleccionar rutas cuando hay varias alternativas hacia un destino.
- Indica la calidad/fiabilidad de la fuente de enrutamiento.
- Cuanto menor valor → mayor calidad.

Fuente de enrutamiento	Distancia Administrativa
Conexión directa	0
Ruta estática	1
EIGRP	90
OSPF	110
RIP	120

Ejemplo salida router Cisco

```
Seville#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR
RIP eway of last reso DA 1 salto et
     10.0.0.0/8 is var ab subnetted, 6 subnets, 2 masks
        10.1.2.0/24 [120/1] via 10.1.5.252, 00:00:19, Serial1
        10.1.1.0/24 [120/1] via 10.1.6.251, 00:00:22, Serial0
        10.1.6.0/24 is directly connected, Serial0
        10.1.5.0/24 is directly connected, Serial1
        10.1.4.0/24 [120/1] via 10.1.6.251, 00:00:22, Serial0
                                                                    Igual métrica
                     [120/1] via 10.1.5.252. 00:00:19. Serial1
        10.1.3.192/26 is directly connected, Ethernet0
```

Prioridad de enrutamiento

- En caso de que se disponga de varias fuentes de enrutamiento para llegar a una red, no todas las rutas aparecerán en la tabla de rutas. Existen unos criterios:
 - La fuente con **menor distancia administrativa** se queda.
 - En caso de **igual DA**, la ruta con **menor métrica** se queda .
 - En caso de **igual DA e igual métrica**, **ambas se quedan** en la tabla de rutas, pudiéndose producir balanceo/compartición de carga

Redes superpuestas:

- Se enruta mediante la ruta a la red más específica (dirección de red más pequeña, máscara mayor).

Ejemplo:

Entradas definidas con enrutamiento estático

	Destino	Siguiente
Prioridad ?	0.0.0.0/0	R3
Prioridad ?	192.168.33.0/24	R1
Prioridad ?	192.168.33.0/22	R2

Prioridad de enrutamiento

- En caso de que se disponga de varias fuentes de enrutamiento para llegar a una red, no todas las rutas aparecerán en la tabla de rutas. Existen unos criterios:
 - La fuente con **menor distancia administrativa** se queda.
 - En caso de **igual DA**, la ruta con **menor métrica** se queda .
 - En caso de **igual DA e igual métrica**, **ambas se quedan** en la tabla de rutas, pudiéndose producir balanceo/compartición de carga

Redes superpuestas:

- Se enruta mediante la ruta a la red más específica (dirección de red más pequeña, máscara mayor).

Ejemplo:

Entradas definidas con enrutamiento estático

	Destino	Siguiente
Prioridad 3	0.0.0.0/0	R3
Prioridad 1	192.168.33.0/24	R1
Prioridad 2	192.168.33.0/22	R2

Ejercicio

- Un router CISCO tiene configurada la red 10.20.30.1/24 en la interfaz FE0/0.
- Las rutas estáticas según la sintaxis:

ip route <direc red> <mascara> <next-hop> ip route 20.30.40.0 255.255.255.128 10.20.30.2 ip route 30.30.40.0 255.255.255.192 10.20.30.3

Por otra parte ha aprendido por RIP (R) y OSPF (O):

R 30.30.40.0/26 -> 10.20.30.4 en 4 saltos

R 40.20.30.0/25 -> 10.20.30.5 en 4 saltos

R 40.20.30.0/25 ->10.20.30.6 en 3 saltos

O 40.20.30.0/24 ->10.20.30.7 en coste 1000

O 40.20.30.0/25 ->10.20.30.8 en coste 100

¿Cómo quedaría definida su tabla de enrutamiento?

¿Por dónde enrutará al host 40.20.30.1?

¿y al 40.20.30.129?

Ejercicio

• A partir de la tabla de enrutamiento anterior, reconstruya la red:

	DESTINO	MÁSCARA	SIGUIENTE	DA	METRIC
С	10.20.30.0	255.255.255.0	-	0	
S	20.30.40.0	255.255.255.128	10.20.30.2	1	
S	30.30.40.0	255.255.255.192	10.20.30.3	1	
0	40.20.30.0	255.255.255.0	10.20.30.7	110	1000
0	40.20.30.0	255.255.255.128	10.20.30.8	110	100

Resumen

PROTOCOLO	MÉTRICA	DIST. ADMINIST.	CARACTERÍSTICAS
RIP (v2)	Número de saltos	120	Vector distancia (Bellman-Ford) Actualizaciones periódicas (30'') Genera tráfico durante las actualizaciones Poco coste computacional (memoria y CPU) No escalable: el máximo número de saltos es 15
OSPF	Coste del enlace (Depende del ancho de banda o puede ser definida por el administrador)	110	Estado del enlace Algoritmo Dijkstra (Shortest Path First) No actualizaciones periódicas. Sólo se ejecuta cuando hay un cambio topológico Alto coste computacional durante la convergencia del algoritmo: Tabla de vecinos y topología Escalabilidad basada en confinamiento por áreas
EIGRP	Combinación de:	90	Híbrido Actualizaciones periódicas (90'') Computa tablas de rutas alternativas en background para activarlas en cuanto sea necesario Escalable

Bibliografía y enlaces

- Behrouz A. Forouzan. Transmisión de datos y redes de comunicaciones, 4º Edición. Ed. Mc Graw Hill 2007.
- James F. Kurose, Keith W. Ross. Redes de computadoras. Un enfoque descendente. 7º Edición. Editorial Pearson S.A., 2017.
- Ernesto Ariganello. Redes Cisco: guía de estudio para la certificación CCNA Routing y Switching.
- García-Teodoro, P; Díaz-Verdejo, J.E.; López-Soler, J.M, Transmisión de datos y redes de computadores, Prentice-Hall, 2007.
- RIP Version 2 https://tools.ietf.org/html/rfc2453
- OSPF Version 2 https://tools.ietf.org/html/rfc2328
- A Border Gateway Protocol 4 (BGP-4) https://tools.ietf.org/html/rfc4271

Entonces... ¿tenemos ya delegad@?

Para que sea el/la intermediario/a para la comunicación entre la clase y los profesores de la asignatura.

¿Alguna duda?