Формальные языки

домашнее задание до 23:59 16.03

1. Доказать или опровергнуть свойство регулярных выражений:

$$\forall p, q$$
 — регулярные выражения : $(p \mid q)^* = p^*(qp^*)^*$

Построим автоматы для этих регулярных выражений по алгоритму с лекции и приведем их к минимальному ДКА.

Автомат для первого выражения:

Автомат для второго выражения:

Множество языков, принимаемых ДКА совпадает с множеством языков, принимаемых APB. Минимальные автоматы для выражений получились эквивалентными, а значит эти выражения принимают одно и то же множество языков. Тогда данное свойство регулярных выражений выполняется.

2. Доказать или опровергнуть свойство регулярных выражений:

$$\forall p,q$$
 — регулярные выражения : $(pq)^*p=p(qp)^*$

Автомат для первого выражения:

автомат для (pq)*p:

Автомат для второго выражения:

автомат для $(qp)^*$ (строится аналогично $(pq)^*$):

автомат для $p(qp)^*$:

Множество языков, принимаемых ДКА совпадает с множеством языков, принимаемых APB. Минимальные автоматы для выражений получились эквивалентными, а значит эти выражения принимают одно и то же множество языков. Тогда данное свойство регулярных выражений выполняется.

3. Доказать или опровергнуть свойство регулярных выражений:

$$\forall p,q$$
 — регулярные выражения : $(pq)^*=p^*q^*$

Данное свойство не выполняется, так как существует слово, которое принимается первым выражением, но не принимается вторым. Например, пусть слово u1 – принимается регулярным выражением p, а слово u2 принимается регулярным выраженем q, при этом пусть u2 не принимается регулярным выражением p. Тогда, например, слово u1u2u1u2 будет приниматься выражением $(pq)^*$, но не будет приниматься выражением p^*q^* .

4. Для регулярного выражения:

$$(a\mid b)^+(aa\mid bb\mid abab\mid baba)^*(a\mid b)^+$$

Построить эквивалентные:

- (а) Недетерминированный конечный автомат
- (b) Недетерминированный конечный автомат без ε -переходов
- (с) Минимальный полный детерминированный конечный автомат