Math 673

Multigrid Methods: A Mostly Matrix-Based Approach

Chapter 05: Multigrid

Abner J. Salgado and Steven M. Wise

asalgad1@utk.edu swise1@.utk.edu University of Tennessee

Fall 2024

Chapter 05, Part 2 of 2 Multigrid

Convergence of the Two-Grid Method Revisited

Theorem (Convergence of the Two-Grid Method)

Suppose that L=1 (two-grid) $m_1=m\geq 1$ and $m_2=0$ (one-sided). Suppose that Assumptions (G0, strong Galerkin condition), (A0, strong approximation property), and (S1, first smoothing property) all hold. Then

$$\left\|\boldsymbol{u}_{1}^{\mathrm{E}}-\mathrm{TG}\left(\boldsymbol{f}_{1},\boldsymbol{u}_{1}^{(0)}\right)\right\|_{A_{1}}\leq C_{\mathrm{A0}}C_{\mathrm{S1}}m^{-1/2}\left\|\boldsymbol{u}_{1}^{\mathrm{E}}-\boldsymbol{u}_{1}^{(0)}\right\|_{A_{1}},$$

where

Two-Grid Convergence Revisited

$$\mathsf{A}_1 \boldsymbol{u}_1^{\mathrm{E}} = \boldsymbol{f}_1.$$

Written another way,

$$\left\|\boldsymbol{e}_{1}^{k+1}\right\|_{A_{1}} \leq \textit{C}_{\mathrm{A0}}\textit{C}_{\mathrm{S1}}\textit{m}^{-1/2}\left\|\boldsymbol{e}_{1}^{k}\right\|_{A_{1}},$$

where $e_1^k = u_1^E - u_1^{(0)}$.

Proof.

Two-Grid Convergence Revisited

0000

Recall that, in the present case,

$$\mathsf{E}_1 = \left(\mathsf{I}_1 - \tilde{\mathsf{\Pi}}_1\right)\mathsf{K}_1^m,$$

and

$$\boldsymbol{e}_1^{k+1} = \mathsf{E}_1 \boldsymbol{e}_1^k,$$

or, equivalently

$$oldsymbol{u}_1^{\mathrm{E}} - \mathrm{TG}\left(oldsymbol{f}_1, oldsymbol{u}_1^{(0)}
ight) = \mathsf{E}_1\left(oldsymbol{u}_1^{\mathrm{E}} - oldsymbol{u}_1^{(0)}
ight).$$

When we prove (G0) and (A0) imply (A1) in the last slide deck, we also see that

$$\left\| \left(\mathsf{I}_{\ell} - \tilde{\mathsf{\Pi}}_{\ell} \right) \boldsymbol{u}_{\ell} \right\|_{\mathsf{A}_{\ell}} \leq C_{\mathsf{A}0} \rho_{\ell}^{-1/2} \left\| \mathsf{A}_{\ell} \boldsymbol{u}_{\ell} \right\|_{\ell}, \tag{1}$$

for any $\boldsymbol{u}_{\ell} \in \mathbb{R}^{n_{\ell}}$.

Applying (1) (with $\ell=1$), and using Assumption (S1), we have

$$\begin{split} \left\| \boldsymbol{e}_{1}^{k+1} \right\|_{A_{1}} &= \left\| \left(I_{1} - \tilde{\Pi}_{1} \right) K_{1}^{m} \boldsymbol{e}_{1}^{k} \right\|_{A_{1}} \\ &\stackrel{(1)}{\leq} \quad C_{A0} \rho_{1}^{-1/2} \left\| A_{1} K_{1}^{m} \boldsymbol{e}_{1}^{k} \right\|_{1} \\ &\stackrel{(S1)}{\leq} \quad C_{A0} \rho_{1}^{-1/2} C_{S1} \rho_{1}^{1/2} m^{-1/2} \left\| \boldsymbol{e}_{1}^{k} \right\|_{A_{1}} \\ &= \quad C_{A0} C_{S1} m^{-1/2} \left\| \boldsymbol{e}_{1}^{k} \right\|_{A_{1}} . \end{split}$$

Convergence of the W-Cycle Algorithm

In this section, we will prove that the W-cycle converges, provided that we perform enough smoothing iterations per cycle. Before we get to that result, we need a technical lemma.

Lemma

For Richardson's smoother we have the following stabilities:

$$\|\mathsf{K}_{\ell} \mathbf{v}_{\ell}\|_{\mathsf{A}_{\ell}} \leq \|\mathbf{v}_{\ell}\|_{\mathsf{A}_{\ell}}, \tag{2}$$

$$(\mathsf{K}_{\ell} \mathbf{v}_{\ell}, \mathbf{v}_{\ell})_{\ell} \leq (\mathbf{v}_{\ell}, \mathbf{v}_{\ell})_{\ell}, \tag{3}$$

$$(\mathsf{K}_{\ell} \mathsf{v}_{\ell}, \mathsf{v}_{\ell})_{\ell} \leq (\mathsf{v}_{\ell}, \mathsf{v}_{\ell})_{\ell}, \tag{3}$$

for all $\mathbf{v}_{\ell} \in \mathbb{R}^{n_{\ell}}, \ell > 0$

T

Let $\mathbf{v}_{\ell} \in \mathbb{R}^{n_{\ell}}$ be arbitrary. Suppose that $B_{\ell} \coloneqq \left\{ \mathbf{w}_{\ell}^{(1)}, \mathbf{w}_{\ell}^{(2)}, \cdots, \mathbf{w}_{\ell}^{(n_{\ell})} \right\}$ is an orthonormal basis of eigenvectors of A_{ℓ} with respect to $(\cdot, \cdot)_{\ell}$. Then, there exist unique constants $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n_{\ell}} \in \mathbb{R}$, such that

$$\mathbf{v}_{\ell} = \sum_{k=1}^{n_{\ell}} \alpha_k \mathbf{w}_{\ell}^{(k)}.$$

Recall

$$\mathsf{K}_\ell = \mathsf{I}_\ell - \mathsf{\Lambda}_\ell^{-1} \mathsf{A}_\ell,$$

with

$$\rho(A_{\ell}) =: \rho_{\ell} \leq \Lambda_{\ell} \leq C_{R} \rho_{\ell},$$

where $C_{\rm R} \geq 1$ is independent of ℓ . Then

$$\mathsf{K}_{\ell} \mathbf{w}_{\ell}^{(k)} = \mu_{\ell}^{(k)} \mathbf{w}_{\ell}^{(k)},$$

where

$$\mu_\ell^{(k)} := \left(1 - rac{\lambda_\ell^{(k)}}{\Lambda_\ell}
ight).$$

The $\lambda_\ell^{(k)}$ are the positive eigenvalues for the SPD matrix A_ℓ , and the $\mu_\ell^{(k)}$ are the eigenvalues for K_ℓ , $k=1,\ldots,n_\ell$. Thus

$$\begin{aligned} \|\mathsf{K}_{\ell} \mathbf{v}_{\ell}\|_{\mathsf{A}_{\ell}}^{2} &= \left(\mathsf{K}_{\ell} \mathbf{v}_{\ell}, \mathsf{A}_{\ell} \mathsf{K}_{\ell} \mathbf{v}_{\ell}\right)_{\ell} \\ &= \sum_{k=1}^{n_{\ell}} \left(\mu_{\ell}^{(k)}\right)^{2} \lambda_{\ell}^{(k)} \alpha_{k}^{2}. \end{aligned}$$

Recall for the Richardson's smoother, we have

$$\Lambda_{\ell} \ge \rho_{\ell} = \rho(A_{\ell}), \quad 1 \le \ell \le L, \tag{4}$$

and thus,

$$0 \le \mu_{\ell}^{(k)} = 1 - \frac{\lambda_{\ell}^{(k)}}{\Lambda_{\ell}} \le 1,\tag{5}$$

and we have

$$\left\| \mathsf{K}_{\ell} \boldsymbol{\mathsf{v}}_{\ell} \right\|_{\mathsf{A}_{\ell}}^{2} \leq \left\| \boldsymbol{\mathsf{v}}_{\ell} \right\|_{\mathsf{A}_{\ell}}^{2}.$$

Hence,

$$\|\mathsf{K}_{\ell} \mathsf{v}_{\ell}\|_{\mathsf{A}_{\ell}} \leq \|\mathsf{v}_{\ell}\|_{\mathsf{A}_{\ell}}$$
.

For the second estimate,

$$(\mathsf{K}_{\ell} \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell})_{\ell} = \left(\mathsf{K}_{\ell} \sum_{k=1}^{n_{\ell}} \alpha_{k} \boldsymbol{w}_{\ell}^{(k)}, \sum_{k=1}^{n_{\ell}} \alpha_{k} \boldsymbol{w}_{\ell}^{(k)}\right)_{\ell}$$

$$= \left(\sum_{k=1}^{n_{\ell}} \alpha_{k} \mathsf{K}_{\ell} \boldsymbol{w}_{\ell}^{(k)}, \sum_{k=1}^{n_{\ell}} \alpha_{k} \boldsymbol{w}_{\ell}^{(k)}\right)_{\ell}$$

$$= \left(\sum_{k=1}^{n_{\ell}} \alpha_{k} \mu_{\ell}^{(k)} \boldsymbol{w}_{\ell}^{(k)}, \sum_{k=1}^{n_{\ell}} \alpha_{k} \boldsymbol{w}_{\ell}^{(k)}\right)_{\ell}$$

$$= \sum_{k=1}^{n_{\ell}} \alpha_{k}^{2} \mu_{\ell}^{(k)}$$

$$\stackrel{(5)}{\leq} \sum_{k=1}^{n_{\ell}} \alpha_{k}^{2}$$

$$= (\boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell})_{\ell}.$$

The proof of the convergence of the W-cycle algorithm uses a technique called a perturbation argument. Basically, we will show that the error is equal to the error in the two-grid method plus a perturbation that we can control.

Theorem (Convergence of the One-Sided W-Cycle)

Suppose that p > 2, $m_1 = m > 1$, and $m_2 = 0$ (one-sided). Suppose, further, that Assumptions (G0, Galerkin condition) and (A0, strong approximation property) hold and the smoothing is done by Richardson's smoother. Then for any $0 < \gamma < 1$, m can be chosen large enough so that

$$\left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \mathrm{MG}\left(\boldsymbol{g}_{\ell}, \ell, \boldsymbol{u}_{\ell}^{(0)}\right) \right\|_{\mathrm{A}_{\ell}} \leq \gamma \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{\mathrm{A}_{\ell}},$$

for any $\ell > 0$, where

$$\mathsf{A}_\ell \mathbf{u}^\mathrm{E}_\ell = \mathbf{g}_\ell.$$

Proof.

The proof is by induction.

(Base cases): The cases $\ell=0$, and $\ell=1$ (which is two-grid) are clearly true.

(Induction hypothesis): Assume

$$\left\|\mathsf{E}_{\ell-1}\mathbf{w}_{\ell-1}\right\|_{\mathsf{A}_{\ell-1}} \leq \gamma \left\|\mathbf{w}_{\ell-1}\right\|_{\mathsf{A}_{\ell-1}}$$

is true for any $\mathbf{w}_{\ell-1} \in \mathbb{R}^{n_{\ell-1}}$.

(General case): Suppose that $m{q}_{\ell-1}^{(1,\mathrm{E})}, m{r}_{\ell-1}^{(1)} \in \mathbb{R}^{n_{\ell-1}}$ satisfy

$$\mathsf{A}_{\ell-1} {m q}_{\ell-1}^{(1,\mathrm{E})} = {m r}_{\ell-1}^{(1)}.$$

Recall, $q_{\ell-1}^{(1,E)}$ is the *exact* coarse grid correction. Then

$$\begin{array}{lll} \boldsymbol{u}_{\ell}^{\mathrm{E}} - \mathrm{MG}\left(\boldsymbol{g}_{\ell}, \ell, \boldsymbol{u}_{\ell}^{(0)}\right) & = & \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(2)} \\ & = & \boldsymbol{u}_{\ell}^{\mathrm{E}} - \left\{\boldsymbol{u}_{\ell}^{(1)} + \mathsf{P}_{\ell-1}\boldsymbol{q}_{\ell-1}^{(1)}\right\} \\ & = & \boldsymbol{u}_{\ell}^{\mathrm{E}} - \left(\boldsymbol{u}_{\ell}^{(1)} + \mathsf{P}_{\ell-1}\boldsymbol{q}_{\ell-1}^{(1,\mathrm{E})}\right) \\ & & + \mathsf{P}_{\ell-1}\left(\boldsymbol{q}_{\ell-1}^{(1,\mathrm{E})} - \boldsymbol{q}_{\ell-1}^{(1)}\right) \\ & = & \boldsymbol{u}_{\ell}^{\mathrm{E}} - \mathrm{TG}\left(\boldsymbol{g}_{\ell}, \boldsymbol{u}_{\ell}^{(0)}\right) + \mathsf{P}_{\ell-1}\left(\boldsymbol{q}_{\ell-1}^{(1,\mathrm{E})} - \boldsymbol{q}_{\ell-1}^{(1)}\right). \end{array}$$

1

Suppose that $m \in \mathbb{N}$ satisfies

$$0 < \left(\frac{C_{A0}C_{S1}}{\gamma - \gamma^{\rho}}\right)^2 \le m. \tag{6}$$

We have proved Richardson's smoother satisfies Assumption (S1) in the last slide deck. Thus,

$$\begin{aligned} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \mathrm{MG}\left(\boldsymbol{g}_{\ell}, \ell, \boldsymbol{u}_{\ell}^{(0)}\right) \right\|_{A_{\ell}} & \leq & \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \mathrm{TG}\left(\boldsymbol{g}_{\ell}, \boldsymbol{u}_{\ell}^{(0)}\right) \right\|_{A_{\ell}} \\ & + \left\| \mathsf{P}_{\ell-1}\left(\boldsymbol{q}_{\ell-1}^{(1, \mathrm{E})} - \boldsymbol{q}_{\ell-1}^{(1)}\right) \right\|_{A_{\ell}} \\ & \leq & C_{\mathrm{A0}} C_{\mathrm{S1}} m^{-1/2} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{A_{\ell}} \\ & + \left\| \mathsf{P}_{\ell-1}\left(\boldsymbol{q}_{\ell-1}^{(1, \mathrm{E})} - \boldsymbol{q}_{\ell-1}^{(1)}\right) \right\|_{A_{\ell}}. \end{aligned}$$

$$(7)$$

Now, observe that, for any $\mathbf{w}_{\ell-1} \in \mathbb{R}^{n_{\ell-1}}$,

$$\begin{aligned} \|\mathsf{P}_{\ell-1} \mathbf{w}_{\ell-1}\|_{\mathsf{A}_{\ell}}^2 &= (\mathsf{P}_{\ell-1} \mathbf{w}_{\ell-1}, \mathsf{P}_{\ell-1} \mathbf{w}_{\ell-1})_{\mathsf{A}_{\ell}} \\ &= (\mathsf{P}_{\ell-1} \mathbf{w}_{\ell-1}, \mathsf{A}_{\ell} \mathsf{P}_{\ell-1} \mathbf{w}_{\ell-1})_{\ell} \\ &= \left(\mathbf{w}_{\ell-1}, \mathsf{P}_{\ell-1}^{\top} \mathsf{A}_{\ell} \mathsf{P}_{\ell-1} \mathbf{w}_{\ell-1}\right)_{\ell-1} \\ &= \left(\mathbf{w}_{\ell-1}, \mathsf{R}_{\ell-1} \mathsf{A}_{\ell} \mathsf{P}_{\ell-1} \mathbf{w}_{\ell-1}\right)_{\ell-1} \\ &\stackrel{(\mathsf{G0})}{=} \left(\mathbf{w}_{\ell-1}, \mathsf{A}_{\ell-1} \mathbf{w}_{\ell-1}\right)_{\ell-1} \\ &= \left(\mathbf{w}_{\ell-1}, \mathbf{w}_{\ell-1}\right)_{\mathsf{A}_{\ell-1}} \\ &= \left\|\mathbf{w}_{\ell-1}\right\|_{\mathsf{A}_{\ell-1}}^2. \end{aligned}$$

In the proof of the Multigrid error relation theorem in the last slide deck, we showed that

$$\begin{array}{ll} \boldsymbol{q}_{\ell-1}^{(1,\mathrm{E})} - \boldsymbol{q}_{\ell-1}^{(1)} & = & \mathsf{E}_{\ell-1}^{\rho} \boldsymbol{q}_{\ell-1}^{(1,\mathrm{E})} \\ & \stackrel{(\mathsf{MG \; Err. \; Rel.})}{=} & \mathsf{E}_{\ell-1}^{\rho} \boldsymbol{\Pi}_{\ell-1} \left(\boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(1)} \right) \\ & = & \mathsf{E}_{\ell-1}^{\rho} \boldsymbol{\Pi}_{\ell-1} \mathsf{K}_{\ell}^{m} \left(\boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right). \end{array}$$

Using the induction hypothesis,

$$\begin{split} \left\| \mathsf{P}_{\ell-1} \left(\boldsymbol{q}_{\ell-1}^{(1,\mathrm{E})} - \boldsymbol{q}_{\ell-1}^{(1)} \right) \right\|_{\mathsf{A}_{\ell}} &= \left\| \boldsymbol{q}_{\ell-1}^{(1,\mathrm{E})} - \boldsymbol{q}_{\ell-1}^{(1)} \right\|_{\mathsf{A}_{\ell-1}} \\ &= \left\| \mathsf{E}_{\ell-1}^{\mathsf{p}} \mathsf{\Pi}_{\ell-1} \mathsf{K}_{\ell}^{\mathsf{m}} \left(\boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right) \right\|_{\mathsf{A}_{\ell-1}} \\ & \stackrel{\mathsf{Ind. Hyp.}}{\leq} \gamma^{\mathsf{p}} \left\| \mathsf{\Pi}_{\ell-1} \mathsf{K}_{\ell}^{\mathsf{m}} \left(\boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right) \right\|_{\mathsf{A}_{\ell-1}}. \end{split}$$

T

Since we are assuming the Galerkin condition (Assumption (G0)) holds, it follows that

$$\|\Pi_{\ell-1}\mathbf{w}_{\ell}\|_{A_{\ell-1}} = \|\tilde{\Pi}_{\ell}\mathbf{w}_{\ell}\|_{A_{\ell}}.$$

Furthermore,

$$\begin{split} \left\| \tilde{\Pi}_{\ell} \mathbf{w}_{\ell} \right\|_{A_{\ell}}^{2} &= \left(\tilde{\Pi}_{\ell} \mathbf{w}_{\ell}, \tilde{\Pi}_{\ell} \mathbf{w}_{\ell} \right)_{A_{\ell}} \\ &= \left(\tilde{\Pi}_{\ell}^{2} \mathbf{w}_{\ell}, \mathbf{w}_{\ell} \right)_{A_{\ell}} \\ &= \left(\tilde{\Pi}_{\ell} \mathbf{w}_{\ell}, \mathbf{w}_{\ell} \right)_{A_{\ell}} \\ &\stackrel{\text{C.S.}}{\leq} \left\| \tilde{\Pi}_{\ell} \mathbf{w}_{\ell} \right\|_{A_{\ell}} \left\| \mathbf{w}_{\ell} \right\|_{A_{\ell}}. \end{split}$$

So, we have the stability

$$\left\| \tilde{\Pi}_{\ell} \mathbf{w}_{\ell} \right\|_{A_{\ell}} \leq \left\| \mathbf{w}_{\ell} \right\|_{A_{\ell}}. \tag{8}$$

Therefore,

$$\begin{split} \left\| \mathsf{P}_{\ell-1} \left(\boldsymbol{q}_{\ell-1}^{(1,\mathrm{E})} - \boldsymbol{q}_{\ell-1}^{(1)} \right) \right\|_{\mathsf{A}_{\ell}} & \leq \qquad \gamma^{\rho} \left\| \mathsf{\Pi}_{\ell-1} \mathsf{K}_{\ell}^{m} \left(\boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right) \right\|_{\mathsf{A}_{\ell-1}} \\ & = \qquad \gamma^{\rho} \left\| \tilde{\mathsf{\Pi}}_{\ell} \mathsf{K}_{\ell}^{m} \left(\boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right) \right\|_{\mathsf{A}_{\ell}} \\ & \leq \qquad \gamma^{\rho} \left\| \mathsf{K}_{\ell}^{m} \left(\boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right) \right\|_{\mathsf{A}_{\ell}} \\ & \leq \qquad \gamma^{\rho} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{\mathsf{A}_{\ell}} . \end{split}$$

$$(Stability Lem.)$$

$$\leq \qquad \gamma^{\rho} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{\mathsf{A}_{\ell}} . \end{split}$$

Combining this with estimate (7), we have

$$\begin{split} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \mathrm{MG} \left(\boldsymbol{g}_{\ell}, \ell, \boldsymbol{u}_{\ell}^{(0)} \right) \right\|_{A_{\ell}} \\ & \leq C_{\mathrm{A0}} C_{\mathrm{S1}} m^{-1/2} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{A_{\ell}} + \left\| \mathsf{P}_{\ell-1} \left(\boldsymbol{q}_{\ell-1}^{(1, \mathrm{E})} - \boldsymbol{q}_{\ell-1}^{(1)} \right) \right\|_{A_{\ell}} \\ & \leq C_{\mathrm{A0}} C_{\mathrm{S1}} m^{-1/2} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{A_{\ell}} + \gamma^{p} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{A_{\ell}} \\ & \leq \left(C_{\mathrm{A0}} C_{\mathrm{S1}} m^{-1/2} + \gamma^{p} \right) \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{A_{\ell}} \\ & \leq \left(C_{\mathrm{A0}} C_{\mathrm{S1}} \left(\left(\frac{C_{\mathrm{A0}} C_{\mathrm{S1}}}{\gamma - \gamma^{p}} \right)^{2} \right)^{-1/2} + \gamma^{p} \right) \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{A_{\ell}} \\ & = \gamma \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{A_{\ell}}. \end{split}$$

Remark

Notice that we need p>1 for this argument to work. Otherwise $\gamma-\gamma^p$ is zero and m would need to be infinitely large to get convergence.

Convergence of the Simple Symmetric V-Cycle

In this section, we will prove that the simple symmetric V-cycle algorithm $(p=1 \text{ and } m_1=m_2=1)$ converges. First we need a new, and useful, smoothing assumption.

Definition (Assumption (S2))

We say that the multigrid algorithm satisfies the **second smoothing property**, equivalently, **Assumption (S2)**, iff there is some $C_{\rm S2}>0$ such that

$$\|\mathbf{v}_{\ell}\|_{\ell}^{2} \leq \rho_{\ell} C_{S2}^{2} \left(\overline{\mathsf{K}}_{\ell} \mathbf{v}_{\ell}, \mathbf{v}_{\ell} \right)_{\ell}, \tag{9}$$

for all $\mathbf{v}_{\ell} \in \mathbb{R}^{n_{\ell}}$ and $\ell \geq 1$, where

$$\overline{\mathsf{K}}_{\ell} \coloneqq \left(\mathsf{I}_{\ell} - \mathsf{K}_{\ell}^{*} \mathsf{K}_{\ell}\right) \mathsf{A}_{\ell}^{-1}.$$

Lemma

Richardson's smoother satisfies Assumption (S2) with $S_{\ell} = \Lambda_{\ell}^{-1}I_{\ell} = S_{\ell}^{\top}$.

Proof.

Recall

$$\rho_{\ell} \leq \Lambda_{\ell} \leq C_{\mathrm{R}} \rho_{\ell},$$

for some $C_{\mathrm{R}} \geq 1$ that is independent of ℓ . Then

$$\begin{split} \overline{K}_{\ell} &= \left(I_{\ell} - K_{\ell}^* K_{\ell}\right) A_{\ell}^{-1} \\ &= \left\{I_{\ell} - \left(I_{\ell} - \Lambda_{\ell}^{-1} A_{\ell}\right) \left(I_{\ell} - \Lambda_{\ell}^{-1} A_{\ell}\right)\right\} A_{\ell}^{-1} \\ &= \left(I_{\ell} - \left\{I_{\ell} - 2\Lambda_{\ell}^{-1} A_{\ell} + \Lambda_{\ell}^{-2} A_{\ell}^{2}\right\}\right) A_{\ell}^{-1} \\ &= 2\Lambda_{\ell}^{-1} I_{\ell} - \Lambda_{\ell}^{-2} A_{\ell}. \end{split}$$

Define

$$\mathsf{J}_{\ell} \coloneqq \rho_{\ell} \, \mathsf{C}_{\mathrm{R}} \overline{\mathsf{K}}_{\ell} - \mathsf{I}_{\ell}.$$

If we can show that J_ℓ is SPSD with respect to ($\cdot\,,\,\cdot\,)_\ell$ then we get (S2) with $\mathcal{C}_{\text{S2}}^2=\mathcal{C}_{\rm R}.$

 J_{ℓ} is clearly symmetric with respect to $(\cdot, \cdot)_{\ell}$. Now let $\left\{ \mathbf{v}_{\ell}^{(1)}, \mathbf{v}_{\ell}^{(2)}, \cdots, \mathbf{v}_{\ell}^{(n_{\ell})} \right\}$ be the orthonormal basis of eigenvectors of A_{ℓ} with respect to $(\cdot, \cdot)_{\ell}$. Then

$$J_{\ell} \mathbf{v}_{\ell}^{(k)} = \rho_{\ell} C_{R} \overline{K}_{\ell} \mathbf{v}_{\ell}^{(k)} - \mathbf{v}_{\ell}^{(k)}
= \rho_{\ell} C_{R} \left(2\Lambda_{\ell}^{-1} \mathbf{I}_{\ell} - \Lambda_{\ell}^{-2} A_{\ell} \right) \mathbf{v}_{\ell}^{(k)} - \mathbf{v}_{\ell}^{(k)}
= 2\rho_{\ell} C_{R} \Lambda_{\ell}^{-1} \mathbf{v}_{\ell}^{(k)} - \rho C_{R} \Lambda_{\ell}^{-2} \lambda_{\ell}^{(k)} \mathbf{v}_{\ell}^{(k)} - \mathbf{v}_{\ell}^{(k)}
= \left(2\rho_{\ell} C_{R} \Lambda_{\ell}^{-1} - \rho_{\ell} C_{R} \Lambda_{\ell}^{-2} \lambda_{\ell}^{(k)} - 1 \right) \mathbf{v}_{\ell}^{(k)}.$$

Set

$$\eta_\ell^{(k)} := 2\rho_\ell \, \mathsf{C}_{\mathrm{R}} \mathsf{\Lambda}_\ell^{-1} - \rho_\ell \, \mathsf{C}_{\mathrm{R}} \mathsf{\Lambda}_\ell^{-2} \lambda_\ell^{(k)} - 1.$$

We want to show that $\eta_{\ell}^{(k)} \geq 0$ for all $1 \leq k \leq n_{\ell}$.

$$\begin{split} \eta_\ell^{(k)} &= 2C_\mathrm{R}\frac{\rho_\ell}{\Lambda_\ell} - C_\mathrm{R}\frac{\rho_\ell\lambda_\ell^{(k)}}{\Lambda_\ell^2} - 1 \\ &\geq 2C_\mathrm{R}\frac{\rho_\ell}{\Lambda_\ell} - C_\mathrm{R}\frac{\rho_\ell}{\Lambda_\ell} - 1 \quad \text{(since } -\lambda_\ell^{(k)} \geq -\Lambda_\ell\text{)} \\ &= C_\mathrm{R}\frac{\rho_\ell}{\Lambda_\ell} - 1 \\ &\geq 1 - 1 \quad \text{(since } C_\mathrm{R}\rho_\ell \geq \Lambda_\ell\text{)} \\ &= 0. \end{split}$$

Thus the eigenvalues of J_ℓ , $\eta_\ell^{(k)}$, are all non-negative and J_ℓ is SPSD. This implies

$$0 \leq \left(J_{\ell} \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell}\right)_{\ell} = \rho_{\ell} C_{\mathrm{R}} \left(\overline{K}_{\ell} \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell}\right)_{\ell} - \left(\boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell}\right)_{\ell},$$

and (S2) follows with $C_{S2}^2 = C_B$.

Next, we need two more technical lemmas.

Lemma

Let $J_{\ell} \in \mathbb{R}^{n_{\ell} \times n_{\ell}}$ and $J_{\ell} = J_{\ell}^*$. Then

$$\left(J_{\ell} \boldsymbol{v}_{\ell}, J_{\ell} \boldsymbol{v}_{\ell} \right)_{A_{\ell}} - \left(J_{\ell}^{2} \boldsymbol{v}_{\ell}, J_{\ell}^{2} \boldsymbol{v}_{\ell} \right)_{A_{\ell}} \leq \left(\boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}} - \left(J_{\ell} \boldsymbol{v}_{\ell}, J_{\ell} \boldsymbol{v}_{\ell} \right)_{A_{\ell}},$$
 (10)

for any $\mathbf{v}_\ell \in \mathbb{R}^{n_\ell}$

Proof.

Since A_{ℓ} is SPD.

$$\begin{array}{lll} 0 & \leq & \left\| \left(I_{\ell} - J_{\ell}^{2} \right) \boldsymbol{v}_{\ell} \right\|_{A_{\ell}}^{2} \\ & = & \left(\left(I_{\ell} - J_{\ell}^{2} \right) \boldsymbol{v}_{\ell}, \left(I_{\ell} - J_{\ell}^{2} \right) \boldsymbol{v}_{\ell} \right)_{A_{\ell}} \\ & = & \left(I_{\ell} \boldsymbol{v}_{\ell} - J_{\ell}^{2} \boldsymbol{v}_{\ell}, I_{\ell} \boldsymbol{v}_{\ell} - J_{\ell}^{2} \boldsymbol{v}_{\ell} \right)_{A_{\ell}} \\ & = & \left(\boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}} - \left(J_{\ell}^{2} \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}} - \left(\boldsymbol{v}_{\ell}, J_{\ell}^{2} \boldsymbol{v}_{\ell} \right)_{A_{\ell}} + \left(J_{\ell}^{2} \boldsymbol{v}_{\ell}, J_{\ell}^{2} \boldsymbol{v}_{\ell} \right)_{A_{\ell}} \\ & = & \left(\boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}} - \left(J_{\ell} \boldsymbol{v}_{\ell}, J_{\ell} \boldsymbol{v}_{\ell} \right)_{A_{\ell}} - \left(J_{\ell} \boldsymbol{v}_{\ell}, J_{\ell} \boldsymbol{v}_{\ell} \right)_{A_{\ell}} + \left(J_{\ell}^{2} \boldsymbol{v}_{\ell}, J_{\ell}^{2} \boldsymbol{v}_{\ell} \right)_{A_{\ell}} \\ & = & \left(\boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}} - 2 \left(J_{\ell} \boldsymbol{v}_{\ell}, J_{\ell} \boldsymbol{v}_{\ell} \right)_{A_{\ell}} + \left(J_{\ell}^{2} \boldsymbol{v}_{\ell}, J_{\ell}^{2} \boldsymbol{v}_{\ell} \right)_{A_{\ell}}. \end{array}$$

So

$$\left(\mathsf{J}_{\ell}\boldsymbol{v}_{\ell},\mathsf{J}_{\ell}\boldsymbol{v}_{\ell}\right)_{\mathsf{A}_{\ell}}-\left(\mathsf{J}_{\ell}^{2}\boldsymbol{v}_{\ell},\mathsf{J}_{\ell}^{2}\boldsymbol{v}_{\ell}\right)_{\mathsf{A}_{\ell}}\leq\left(\boldsymbol{v}_{\ell},\boldsymbol{v}_{\ell}\right)_{\mathsf{A}_{\ell}}-\left(\mathsf{J}_{\ell}\boldsymbol{v}_{\ell},\mathsf{J}_{\ell}\boldsymbol{v}_{\ell}\right)_{\mathsf{A}_{\ell}}.$$

Lemma

For any $\mathbf{v}_\ell \in \mathbb{R}^{n_\ell}$

$$\left(\Pi_{\ell-1}\boldsymbol{v}_{\ell},\Pi_{\ell-1}\boldsymbol{v}_{\ell}\right)_{A_{\ell-1}} = \left(\boldsymbol{v}_{\ell},\boldsymbol{v}_{\ell}\right)_{A_{\ell}} - \left(\left(I_{\ell} - \tilde{\Pi}_{\ell}\right)\boldsymbol{v}_{\ell},\boldsymbol{v}_{\ell}\right)_{A_{\ell}}. \tag{11}$$

Proof.

Recall that we always have

$$R_{\ell-1}A_{\ell} = A_{\ell-1}\Pi_{\ell-1},$$

and

$$\tilde{\Pi}_{\ell} = \mathsf{P}_{\ell-1} \mathsf{A}_{\ell-1}^{-1} \mathsf{R}_{\ell-1} \mathsf{A}_{\ell} = \mathsf{P}_{\ell-1} \mathsf{\Pi}_{\ell-1}.$$

Then

$$\begin{aligned} \left(\Pi_{\ell-1} \mathbf{v}_{\ell}, \Pi_{\ell-1} \mathbf{v}_{\ell}\right)_{A_{\ell-1}} &= \left(\Pi_{\ell-1} \mathbf{v}_{\ell}, A_{\ell-1} \Pi_{\ell-1} \mathbf{v}_{\ell}\right)_{\ell-1} \\ &= \left(\Pi_{\ell-1} \mathbf{v}_{\ell}, R_{\ell-1} A_{\ell} \mathbf{v}_{\ell}\right)_{\ell-1} \\ &= \left(R_{\ell-1}^{\top} \Pi_{\ell-1} \mathbf{v}_{\ell}, A_{\ell} \mathbf{v}_{\ell}\right)_{\ell} \\ &= \left(P_{\ell-1} \Pi_{\ell-1} \mathbf{v}_{\ell}, A_{\ell} \mathbf{v}_{\ell}\right)_{\ell} \\ &= \left(\tilde{\Pi}_{\ell} \mathbf{v}_{\ell}, A_{\ell} \mathbf{v}_{\ell}\right)_{\ell} \\ &= \left(\tilde{\Pi}_{\ell} \mathbf{v}_{\ell}, \mathbf{v}_{\ell}\right)_{A_{\ell}} \\ &= \left(\mathbf{v}_{\ell}, \mathbf{v}_{\ell}\right)_{A_{\ell}} - \left(\left(I_{\ell} - \tilde{\Pi}_{\ell}\right) \mathbf{v}_{\ell}, \mathbf{v}_{\ell}\right)_{A_{\ell}} . \end{aligned}$$

The simple symmetric V-cycle method is gotten by setting $m_1 = m_2 = 1$. It is somewhat surprising that the method converges, because only one pre-smoothing and one post-smoothing iteration is preformed.

Theorem

Suppose that Assumptions (G1, weak Galerkin condition), (A1, weak approximation property), and (S2, second smoothing property) all hold. Suppose that p=1, $m_1=m_2=m=1$, and $S_\ell=S_\ell^\top$. Then

$$0 \leq \left(\mathsf{E}_{\ell} \boldsymbol{\mathit{u}}_{\ell}, \boldsymbol{\mathit{u}}_{\ell}\right)_{\mathsf{A}_{\ell}} \leq \frac{C_{\mathrm{A1}}^{2} C_{\mathrm{S2}}^{2}}{C_{\mathrm{A1}}^{2} C_{\mathrm{S2}}^{2} + 1} \left(\boldsymbol{\mathit{u}}_{\ell}, \boldsymbol{\mathit{u}}_{\ell}\right)_{\mathsf{A}_{\ell}},$$

for all $\mathbf{u}_{\ell} \in \mathbb{R}^{n_{\ell}}$.

Recall, since
$$p=1$$
, $m_1=m_2=m=1$, and $S_\ell=S_\ell^\top$,

$$\mathsf{E}_{\ell} = \mathsf{K}_{\ell} \left(\mathsf{I}_{\ell} - \tilde{\mathsf{\Pi}}_{\ell} \right) \mathsf{K}_{\ell} + \mathsf{K}_{\ell} \mathsf{P}_{\ell-1} \mathsf{E}_{\ell-1} \mathsf{\Pi}_{\ell-1} \mathsf{K}_{\ell}.$$

In particular, notice that

$$K_\ell^* = I_\ell - S_\ell^\top A_\ell = I_\ell - S_\ell A_\ell = K_\ell.$$

Now, set

$$\mathcal{T}_1 \coloneqq \left(\left(\mathsf{I}_\ell - \tilde{\mathsf{\Pi}}_\ell \right) \mathbf{w}_\ell, \mathbf{w}_\ell \right)_{\mathsf{A}_\ell},$$

and

$$T_2 := \left(\mathsf{P}_{\ell-1}\mathsf{E}_{\ell-1}\mathsf{\Pi}_{\ell-1}\mathbf{w}_\ell,\mathbf{w}_\ell\right)_{\mathsf{A}_\ell},$$

where

$$\mathbf{w}_{\ell} = \mathsf{K}_{\ell} \mathbf{u}_{\ell}.$$

Then

$$(\mathsf{E}_{\ell}\mathbf{u}_{\ell},\mathbf{u}_{\ell})_{\mathsf{A}_{\ell}}=T_1+T_2.$$

(12)

Proof (Cont.)

Let us first consider T_1 :

$$\begin{split} T_1 &= \left(\left(\mathsf{I}_{\ell} - \tilde{\mathsf{\Pi}}_{\ell} \right) \mathbf{w}_{\ell}, \mathbf{w}_{\ell} \right)_{\mathsf{A}_{\ell}} \\ &\stackrel{(\mathsf{A}1)}{\leq} C_{\mathsf{A}1}^2 \rho_{\ell}^{-1} \left\| \mathsf{A}_{\ell} \mathbf{w}_{\ell} \right\|_{\ell}^2 \\ &= C_{\mathsf{A}1}^2 \rho_{\ell}^{-1} \left\| \mathsf{A}_{\ell} \mathsf{K}_{\ell} \mathbf{u}_{\ell} \right\|_{\ell}^2 \\ &\stackrel{(\mathsf{S}2)}{\leq} C_{\mathsf{A}1}^2 \rho_{\ell}^{-1} \mathsf{C}_{\mathsf{S}2}^2 \rho_{\ell} \left(\overline{\mathsf{K}}_{\ell} \mathsf{A}_{\ell} \mathsf{K}_{\ell} \mathbf{u}_{\ell}, \mathsf{A}_{\ell} \mathsf{K}_{\ell} \mathbf{u}_{\ell} \right)_{\ell} \\ &= C_{\mathsf{A}1}^2 C_{\mathsf{S}2}^2 \left(\left(\mathsf{I}_{\ell} - \mathsf{K}_{\ell}^* \mathsf{K}_{\ell} \right) \mathsf{A}_{\ell}^{-1} \mathsf{A}_{\ell} \mathsf{K}_{\ell} \mathbf{u}_{\ell}, \mathsf{A}_{\ell} \mathsf{K}_{\ell} \mathbf{u}_{\ell} \right)_{\ell} \\ &= C_{\mathsf{A}1}^2 C_{\mathsf{S}2}^2 \left(\left(\mathsf{I}_{\ell} - \mathsf{K}_{\ell}^* \mathsf{K}_{\ell} \right) \mathsf{K}_{\ell} \mathbf{u}_{\ell}, \mathsf{A}_{\ell} \mathsf{K}_{\ell} \mathbf{u}_{\ell} \right)_{\ell} \\ &= C_{\mathsf{A}1}^2 C_{\mathsf{S}2}^2 \left(\left(\mathsf{K}_{\ell} \mathbf{u}_{\ell}, \mathsf{A}_{\ell} \mathsf{K}_{\ell} \mathbf{u}_{\ell} \right)_{\ell} - \left(\mathsf{K}_{\ell}^* \mathsf{K}_{\ell} \mathsf{K}_{\ell} \mathbf{u}_{\ell}, \mathsf{A}_{\ell} \mathsf{K}_{\ell} \mathbf{u}_{\ell} \right)_{\ell} \right) \\ &= C_{\mathsf{A}1}^2 C_{\mathsf{S}2}^2 \left\{ \left(\mathsf{K}_{\ell} \mathbf{u}_{\ell}, \mathsf{K}_{\ell} \mathbf{u}_{\ell} \right)_{\mathsf{A}_{\ell}} - \left(\mathsf{K}_{\ell}^* \mathsf{K}_{\ell} \mathsf{K}_{\ell} \mathbf{u}_{\ell}, \mathsf{K}_{\ell} \mathbf{u}_{\ell} \right)_{\mathsf{A}_{\ell}} \right\} \\ &= C_{\mathsf{A}1}^2 C_{\mathsf{S}2}^2 \left\{ \left(\mathsf{K}_{\ell} \mathbf{u}_{\ell}, \mathsf{K}_{\ell} \mathbf{u}_{\ell} \right)_{\mathsf{A}_{\ell}} - \left(\mathsf{K}_{\ell}^2 \mathbf{u}_{\ell}, \mathsf{K}_{\ell}^2 \mathbf{u}_{\ell} \right)_{\mathsf{A}_{\ell}} \right\} \\ &= C_{\mathsf{A}1}^2 C_{\mathsf{S}2}^2 \left\{ \left(\mathsf{K}_{\ell} \mathbf{u}_{\ell}, \mathsf{K}_{\ell} \mathbf{u}_{\ell} \right)_{\mathsf{A}_{\ell}} - \left(\mathsf{K}_{\ell}^2 \mathbf{u}_{\ell}, \mathsf{K}_{\ell}^2 \mathbf{u}_{\ell} \right)_{\mathsf{A}_{\ell}} \right\} . \end{split}$$

The proof proceeds by induction. The base case is trivial, and we skip that.

(Induction hypothesis): Assume that, for any $\mathbf{w}_{\ell-1} \in \mathbb{R}^{n_{\ell-1}}$,

$$(\mathsf{E}_{\ell-1} \mathbf{w}_{\ell-1}, \mathbf{w}_{\ell-1})_{\mathsf{A}_{\ell-1}} \le \gamma (\mathbf{w}_{\ell-1}, \mathbf{w}_{\ell-1})_{\mathsf{A}_{\ell-1}}, \quad \gamma \coloneqq \frac{C_{\mathrm{A1}}^2 C_{\mathrm{S2}}^2}{C_{\mathrm{A1}}^2 C_{\mathrm{S2}}^2 + 1}.$$

(General case): Now, we turn to the bound for T_2 . First, note that

$$T_2 = (\mathsf{E}_{\ell-1}\mathsf{\Pi}_{\ell-1}\mathbf{w}_{\ell}, \mathsf{R}_{\ell-1}\mathsf{A}_{\ell}\mathbf{w}_{\ell})_{\ell-1}$$

$$= (\mathsf{E}_{\ell-1}\mathsf{\Pi}_{\ell-1}\mathbf{w}_{\ell}, \mathsf{A}_{\ell-1}\mathsf{\Pi}_{\ell-1}\mathbf{w}_{\ell})_{\ell-1}$$

$$= (\mathsf{E}_{\ell-1}\mathsf{\Pi}_{\ell-1}\mathbf{w}_{\ell}, \mathsf{\Pi}_{\ell-1}\mathbf{w}_{\ell})_{\mathsf{A}_{\ell-1}}.$$

Then

$$T_{2} = (\mathsf{E}_{\ell-1}\mathsf{\Pi}_{\ell-1}\mathbf{w}_{\ell}, \mathsf{\Pi}_{\ell-1}\mathbf{w}_{\ell})_{\mathsf{A}_{\ell-1}}$$

$$\stackrel{\text{ind. hyp.}}{\leq} \gamma (\mathsf{\Pi}_{\ell-1}\mathbf{w}_{\ell}, \mathsf{\Pi}_{\ell-1}\mathbf{w}_{\ell})_{\mathsf{A}_{\ell-1}}$$

$$\stackrel{(11)}{=} \gamma \left\{ (\mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{\mathsf{A}_{\ell}} - \left(\left(\mathsf{I}_{\ell} - \tilde{\mathsf{\Pi}}_{\ell} \right) \mathbf{w}_{\ell}, \mathbf{w}_{\ell} \right)_{\mathsf{A}_{\ell}} \right\}$$

$$= \gamma (\mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{\mathsf{A}_{\ell}} - \gamma T_{1}. \tag{13}$$

To finish up,

$$\begin{split} (\mathsf{E}_{\ell} \textbf{\textit{u}}_{\ell}, \textbf{\textit{u}}_{\ell})_{\mathsf{A}_{\ell}} &= T_{1} + T_{2} \\ &= (1 - \gamma)T_{1} + \gamma T_{1} + T_{2} \\ &\stackrel{(13)}{\leq} (1 - \gamma)T_{1} + \gamma T_{1} + \gamma \left(\textbf{\textit{w}}_{\ell}, \textbf{\textit{w}}_{\ell}\right)_{\mathsf{A}_{\ell}} - \gamma T_{1} \\ &= (1 - \gamma)T_{1} + \gamma \left(\textbf{\textit{w}}_{\ell}, \textbf{\textit{w}}_{\ell}\right)_{\mathsf{A}_{\ell}} \\ &\stackrel{(12)}{\leq} (1 - \gamma)C_{\mathsf{A}_{1}}^{2}C_{\mathsf{S}_{2}}^{2} \left\{ \left(\textbf{\textit{u}}_{\ell}, \textbf{\textit{u}}_{\ell}\right)_{\mathsf{A}_{\ell}} - \left(\textbf{\textit{w}}_{\ell}, \textbf{\textit{w}}_{\ell}\right)_{\mathsf{A}_{\ell}} \right\} + \gamma \left(\textbf{\textit{w}}_{\ell}, \textbf{\textit{w}}_{\ell}\right)_{\mathsf{A}_{\ell}} \\ &= \left(1 - \frac{C_{\mathsf{A}_{1}}^{2}C_{\mathsf{S}_{2}}^{2}}{C_{\mathsf{A}_{1}}^{2}C_{\mathsf{S}_{2}}^{2} + 1}\right)C_{\mathsf{A}_{1}}^{2}C_{\mathsf{S}_{2}}^{2} \left\{ \left(\textbf{\textit{u}}_{\ell}, \textbf{\textit{u}}_{\ell}\right)_{\mathsf{A}_{\ell}} - \left(\textbf{\textit{w}}_{\ell}, \textbf{\textit{w}}_{\ell}\right)_{\mathsf{A}_{\ell}} \right\} \\ &+ \frac{C_{\mathsf{A}_{1}}^{2}C_{\mathsf{S}_{2}}^{2}}{C_{\mathsf{A}_{1}}^{2}C_{\mathsf{S}_{2}}^{2} + 1} \left(\textbf{\textit{w}}_{\ell}, \textbf{\textit{w}}_{\ell}\right)_{\mathsf{A}_{\ell}} \end{split}$$

$$= \frac{C_{A1}^{2}C_{S2}^{2}}{C_{A1}^{2}C_{S2}^{2}+1} \left\{ (\mathbf{u}_{\ell}, \mathbf{u}_{\ell})_{A_{\ell}} - (\mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{A_{\ell}} \right\}$$

$$+ \frac{C_{A1}^{2}C_{S2}^{2}}{C_{A1}^{2}C_{S2}^{2}+1} (\mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{A_{\ell}}$$

$$= \gamma \left\{ (\mathbf{u}_{\ell}, \mathbf{u}_{\ell})_{A_{\ell}} - (\mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{A_{\ell}} \right\} + \gamma (\mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{A_{\ell}}$$

$$= \gamma (\mathbf{u}_{\ell}, \mathbf{u}_{\ell})_{A_{\ell}}.$$

Corollary (Convergence of Simple Symmetric V-Cycle)

Suppose that hypotheses of the last theorem hold and $\mathbf{u}_{\ell}^{\mathrm{E}}, \mathbf{g}_{\ell} \in \mathbb{R}^{n_{\ell}}$ satisfy

$$\mathsf{A}_{\ell} \mathbf{u}_{\ell}^{\mathrm{E}} = \mathbf{g}_{\ell}.$$

Then, given any $\mathbf{u}_{\ell}^{(0)} \in \mathbb{R}^{n_{\ell}}$,

$$\begin{aligned} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(3)} \right\|_{A_{\ell}} &= \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \mathrm{MG} \left(\boldsymbol{g}_{\ell}, \ell, \boldsymbol{u}_{\ell}^{(0)} \right) \right\|_{A_{\ell}} \\ &\leq \frac{M}{M+m} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{A_{\ell}}, \end{aligned}$$

where

$$M = C_{A1}^2 C_{S2}^2$$
 and $m = 1$.

Proof.

We need only to show that

$$\left\|\mathsf{E}_{\ell} \mathbf{v}_{\ell} \right\|_{\mathsf{A}_{\ell}} \leq \frac{M}{M+m} \left\| \mathbf{v}_{\ell} \right\|_{\mathsf{A}_{\ell}},$$

is true for any $\mathbf{v}_{\ell} \in \mathbb{R}^{n_{\ell}}$. Since E_{ℓ} is SPSD w.r.t. $(\cdot, \cdot)_{\mathsf{A}_{\ell}}$, for $\ell \geq 1$, there is a basis of eigenvectors of E_ℓ , $\left\{ {m w}_\ell^{(1)}, \cdots, {m w}_\ell^{(n_\ell)} \right\}$, such that

$$\mathsf{E}_\ell \, \mathbf{w}_\ell^{(j)} = \epsilon_\ell^{(j)} \, \mathbf{w}_\ell^{(j)},$$

$$\left(oldsymbol{w}_{\ell}^{(i)},oldsymbol{w}_{\ell}^{(j)}
ight)_{\mathsf{A}_{\ell}}=\delta_{ij},$$

and

$$0 \le \epsilon_\ell^{(1)} \le \epsilon_\ell^{(2)} \le \cdots \le \epsilon_\ell^{(n_\ell)}$$
.

Suppose

$$\mathbf{v}_{\ell} = \sum_{k=1}^{n_{\ell}} c_k \mathbf{w}_{\ell}^{(k)}.$$

Then

$$(\mathsf{E}_\ell \mathsf{v}_\ell, \mathsf{v}_\ell)_{\mathsf{A}_\ell} = \sum_{k=1}^{n_\ell} c_k^2 \epsilon_\ell^{(k)}$$

and

$$(\mathbf{v}_{\ell},\mathbf{v}_{\ell})_{\mathsf{A}_{\ell}} = \sum_{k=1}^{n_{\ell}} c_k^2.$$

The last theorem guarantees that

$$\sum_{k=1}^{n_\ell} c_k^2 \epsilon_\ell^{(k)} \leq \frac{M}{M+m} \sum_{k=1}^{n_\ell} c_k^2,$$

for any $c_1, \cdots, c_{n_\ell} \in \mathbb{R}$. This implies that

$$0 \le \epsilon_{\ell}^{(k)} \le \frac{M}{M+m}, \quad 1 \le k \le n_{\ell}.$$

Therefore

$$\begin{aligned} \left\| \mathsf{E}_{\ell} \mathbf{v}_{\ell} \right\|_{\mathsf{A}_{\ell}}^{2} &= \left(\mathsf{E}_{\ell} \mathbf{v}_{\ell}, \mathsf{E}_{\ell} \mathbf{v}_{\ell} \right)_{\mathsf{A}_{\ell}} \\ &= \sum_{k=1}^{n_{\ell}} c_{k}^{2} \left(\epsilon_{\ell}^{(k)} \right)^{2} \\ &\leq \left(\frac{M}{M+m} \right)^{2} \sum_{k=1}^{n_{\ell}} c_{k}^{2} \\ &= \left(\frac{M}{M+m} \right)^{2} \left\| \mathbf{v}_{\ell} \right\|_{\mathsf{A}_{\ell}}^{2}. \end{aligned}$$

Convergence of the General Symmetric V-Cycle

Now for the general symmetric V-cycle. Here we want to show that we can improve the convergence rate if more smoothing steps are performed. We need a technical lemma first.

Lemma

Suppose that smoothing is done with Richardson's smoother, that is,

$$S_\ell = \Lambda_\ell^{-1} I_\ell,$$

where

$$\rho_{\ell} \leq \Lambda_{\ell} \leq C_{\mathrm{R}} \rho_{\ell},$$

for some $C_{\rm R} \geq 1$ that is independent of ℓ . Then,

$$\left(\left(\mathsf{I}_{\ell} - \mathsf{K}_{\ell} \right) \mathsf{K}_{\ell}^{2m} \mathbf{v}_{\ell}, \mathbf{v}_{\ell} \right)_{\mathsf{A}_{\ell}} \leq \frac{1}{2m} \left(\left(\mathsf{I}_{\ell} - \mathsf{K}_{\ell}^{2m} \right) \mathbf{v}_{\ell}, \mathbf{v}_{\ell} \right)_{\mathsf{A}_{\ell}} \tag{14}$$

for any m > 1 and $\ell > 1$.

Proof.

Suppose $i, j \in \mathbb{Z}$ with $0 \le j \le i$. Then

$$\begin{aligned}
\left(\left(\mathsf{I}_{\ell} - \mathsf{K}_{\ell} \right) \mathsf{K}_{\ell}^{i} \mathbf{v}_{\ell}, \mathbf{v}_{\ell} \right)_{\mathsf{A}_{\ell}} &= \left(\mathsf{A}_{\ell} (\mathsf{I}_{\ell} - \mathsf{K}_{\ell}) \mathsf{K}_{\ell}^{i} \mathbf{v}_{\ell}, \mathbf{v}_{\ell} \right)_{\ell} \\
&= \Lambda_{\ell}^{-1} \left(\mathsf{A}_{\ell}^{2} \mathsf{K}_{\ell}^{i} \mathbf{v}_{\ell}, \mathbf{v}_{\ell} \right)_{\ell} \\
&= \Lambda_{\ell}^{-1} \left(\mathsf{K}_{\ell}^{i} \mathsf{A}_{\ell} \mathbf{v}_{\ell}, \mathsf{A}_{\ell} \mathbf{v}_{\ell} \right)_{\ell} \\
&\stackrel{(3)}{\leq} \Lambda_{\ell}^{-1} \left(\mathsf{K}_{\ell}^{j} \mathsf{A}_{\ell} \mathbf{v}_{\ell}, \mathsf{A}_{\ell} \mathbf{v}_{\ell} \right)_{\ell} \\
&= \left((\mathsf{I}_{\ell} - \mathsf{K}_{\ell}) \mathsf{K}_{\ell}^{j} \mathbf{v}_{\ell}, \mathbf{v}_{\ell} \right)_{\mathsf{A}_{\ell}}.
\end{aligned} (15)$$

T

Therefore,

$$\begin{split} 2m \left((I_{\ell} - K_{\ell}) K_{\ell}^{2m} \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}} \\ &= \underbrace{\left((I_{\ell} - K_{\ell}) K_{\ell}^{2m} \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}} + \dots + \left((I_{\ell} - K_{\ell}) K_{\ell}^{2m} \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}}}_{2m} \\ &\leq \underbrace{\left((I_{\ell} - K_{\ell}) K_{\ell}^{0} \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}} + \underbrace{\left((I_{\ell} - K_{\ell}) K_{\ell}^{1} \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}}}_{(j=0)} \\ &+ \dots + \underbrace{\left((I_{\ell} - K_{\ell}) K_{\ell}^{2m-1} \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}}}_{(j=2m-1)} \\ &= \underbrace{\left((I_{\ell} - K_{\ell}^{2m}) \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell} \right)_{A_{\ell}}}_{A_{\ell}}. \end{split}$$

The last equality follows since the sum telescopes.

Theorem (Braess-Hackbusch Result)

Suppose that Assumptions (G1) and (A1) hold. Suppose p=1, $m_1=m_2=m\geq 1$, and smoothing is done with Richardson's smoother. Then

$$0 \leq (\mathsf{E}_{\ell} \mathbf{u}_{\ell}, \mathbf{u}_{\ell})_{\mathsf{A}_{\ell}} \leq \frac{M}{M+m} (\mathbf{u}_{\ell}, \mathbf{u}_{\ell})_{\mathsf{A}_{\ell}},$$

for all $\mathbf{u}_{\ell} \in \mathbb{R}^{n_{\ell}}$, where

$$M:=\frac{C_{\rm A1}^2C_{\rm R}}{2}.$$

Proof.

The proof is similar to that of the last theorem. We begin with an expression for the error propagation matrix :

$$\mathsf{E}_{\ell} = \mathsf{K}_{\ell}^{\mathit{m}} (\mathsf{I}_{\ell} - \tilde{\mathsf{\Pi}}_{\ell}) \mathsf{K}_{\ell}^{\mathit{m}} + \mathsf{K}_{\ell} \mathsf{P}_{\ell-1} \mathsf{E}_{\ell-1} \mathsf{P}_{\ell-1} \mathsf{\Pi}_{\ell-1} \mathsf{K}_{\ell}^{\mathit{m}},$$

where

$$\mathsf{K}_\ell = \mathsf{I}_\ell - \mathsf{\Lambda}_\ell^{-1} \mathsf{A}_\ell = \mathsf{K}_\ell^*,$$

and

$$\rho_\ell \leq \Lambda_\ell \leq \textit{C}_{\mathrm{R}} \rho_\ell, \quad \exists \; \textit{C}_{\mathrm{R}} \geq 1. \label{eq:epsilon}$$

As before, set

$$\mathcal{T}_1 \coloneqq \left((\mathsf{I}_\ell - \tilde{\mathsf{\Pi}}_\ell) \mathbf{w}_\ell, \mathbf{w}_\ell \right)_{\mathsf{A}_\ell},$$

and

$$\mathcal{T}_2 := \left(\mathsf{P}_{\ell-1}\mathsf{E}_{\ell-1}\mathsf{P}_{\ell-1} \boldsymbol{w}_\ell, \boldsymbol{w}_\ell\right)_{\mathsf{A}_\ell},$$

where

$$\mathbf{w}_{\ell} = \mathsf{K}_{\ell}^{m} \mathbf{u}_{\ell}.$$

Then

$$\left(\mathsf{E}_{\ell}\mathbf{u}_{\ell},\mathbf{u}_{\ell}\right)_{\mathsf{A}_{\ell}}=\mathit{T}_{1}+\mathit{T}_{2}.$$

$$\begin{array}{lll} T_{1} & = & \left((\mathsf{I}_{\ell} - \tilde{\mathsf{\Pi}}_{\ell}) \boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell} \right)_{\mathsf{A}_{\ell}} \\ & \stackrel{(\mathsf{A}1)}{\leq} & C_{\mathsf{A}1}^{2} \rho_{\ell}^{-1} \left\| \mathsf{A}_{\ell} \boldsymbol{w}_{\ell} \right\|_{\ell}^{2} \\ & = & C_{\mathsf{A}1}^{2} \rho_{\ell}^{-1} \left\| \mathsf{A}_{\ell} \mathsf{K}_{\ell}^{m} \boldsymbol{u}_{\ell} \right\|_{\ell}^{2} \\ & = & C_{\mathsf{A}1}^{2} \rho_{\ell}^{-1} \left(\mathsf{A}_{\ell} \mathsf{K}_{\ell}^{m} \boldsymbol{u}_{\ell}, \mathsf{A}_{\ell} \mathsf{K}_{\ell}^{m} \boldsymbol{u}_{\ell} \right)_{\ell} \\ & = & C_{\mathsf{A}1}^{2} \rho_{\ell}^{-1} \left(\mathsf{A}_{\ell}^{2} \mathsf{K}_{\ell}^{m} \boldsymbol{u}_{\ell}, \mathsf{K}_{\ell}^{m} \boldsymbol{u}_{\ell} \right)_{\ell} \\ & = & C_{\mathsf{A}1}^{2} \rho_{\ell}^{-1} \left(\mathsf{A}_{\ell} \mathsf{K}_{\ell}^{m} \boldsymbol{u}_{\ell}, \mathsf{K}_{\ell}^{m} \boldsymbol{u}_{\ell} \right)_{\mathsf{A}_{\ell}} \\ & = & C_{\mathsf{A}1}^{2} \rho_{\ell}^{-1} \mathsf{A}_{\ell} \left((\mathsf{I}_{\ell} - \mathsf{K}_{\ell}) \mathsf{K}_{\ell}^{m} \boldsymbol{u}_{\ell}, \mathsf{K}_{\ell}^{m} \boldsymbol{u}_{\ell}, \mathsf{A}_{\ell} \right)_{\mathsf{A}_{\ell}} \\ & = & C_{\mathsf{A}1}^{2} \rho_{\ell}^{-1} \mathsf{A}_{\ell} \left((\mathsf{I}_{\ell} - \mathsf{K}_{\ell}) \mathsf{K}_{\ell}^{m} \boldsymbol{u}_{\ell}, \boldsymbol{u}_{\ell} \right)_{\mathsf{A}_{\ell}} \\ & \stackrel{(\mathsf{14})}{\leq} & \frac{C_{\mathsf{A}1}^{2} \rho_{\ell}^{-1} \mathsf{A}_{\ell}}{2m} \left((\mathsf{I}_{\ell} - \mathsf{K}_{\ell}^{2m}) \boldsymbol{u}_{\ell}, \boldsymbol{u}_{\ell} \right)_{\mathsf{A}_{\ell}} \end{array}$$

$$\leq \frac{C_{A1}^2 C_{R}}{2m} \left((I_{\ell} - K_{\ell}^{2m}) \boldsymbol{u}_{\ell}, \boldsymbol{u}_{\ell} \right)_{A_{\ell}}$$

$$= \frac{M}{m} \left\{ (\boldsymbol{u}_{\ell}, \boldsymbol{u}_{\ell})_{A_{\ell}} - (\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{A_{\ell}} \right\}$$
(16)

Set

$$\gamma := \frac{M}{M+m}.$$

Exactly as in the proof of the last theorem, an induction argument yields

$$T_2 \le \gamma \left(\mathbf{w}_{\ell}, \mathbf{w}_{\ell} \right)_{A_{\ell}} - \gamma T_1. \tag{17}$$

Therefore,

$$\begin{aligned} (\mathsf{E}_{\ell} \boldsymbol{u}_{\ell}, \boldsymbol{u}_{\ell})_{\mathsf{A}_{\ell}} &= T_{1} + T_{2} \\ &= (1 - \gamma)T_{1} + \gamma T_{1} + T_{2} \\ &\leq (1 - \gamma)T_{1} + \gamma T_{1} + \gamma (\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\mathsf{A}_{\ell}} - \gamma T_{1} \\ &\leq (1 - \gamma)\frac{M}{m} \left\{ (\boldsymbol{u}_{\ell}, \boldsymbol{u}_{\ell})_{\mathsf{A}_{\ell}} - (\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\mathsf{A}_{\ell}} \right\} + \gamma (\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\mathsf{A}_{\ell}} \\ &= \gamma (\boldsymbol{u}_{\ell}, \boldsymbol{u}_{\ell})_{\mathsf{A}_{\ell}} . \end{aligned}$$

Corollary (Convergence of General Symmetric V-Cycle)

Suppose that hypotheses of the last theorem hold and $\mathbf{u}_{\ell}^{\mathrm{E}}, \mathbf{g}_{\ell} \in \mathbb{R}^{n_{\ell}}$ satisfy

$$\mathsf{A}_{\ell} \mathbf{u}_{\ell}^{\mathrm{E}} = \mathbf{g}_{\ell}.$$

Then, given any $\mathbf{u}_{\ell}^{(0)} \in \mathbb{R}^{n_{\ell}}$,

$$\begin{aligned} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(3)} \right\|_{A_{\ell}} &= \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \mathrm{MG}\left(\boldsymbol{g}_{\ell}, \ell, \boldsymbol{u}_{\ell}^{(0)}\right) \right\|_{A_{\ell}} \\ &\leq \frac{M}{M+m} \left\| \boldsymbol{u}_{\ell}^{\mathrm{E}} - \boldsymbol{u}_{\ell}^{(0)} \right\|_{A_{\ell}}, \end{aligned}$$

where

$$M = \frac{C_{A1}^2 C_{S2}^2}{2}$$
 and $m \ge 1$.

Proof.

The proof is exactly that same as that for the last corollary.