# 임상연구 설계와 분석을 위한 통계 방법

Boncho Ku, Ph.D., Senior researcher

16<sup>th</sup> November, 2017

KM Fundamental Research Division, Korea Institute of Oriental Medicine

# Chapter I: Overview of Statistics

## Famous quotes about statistics

**◆□▶◆昼▶◆臺▶◆臺▶** 臺 釣९0

There are three types of lies: lies, damn lies, and **STATISTICS** (Benjamin Disraeli)

Fact are stubborn things, but STATISTICS are pliable (Mark Twain)

Huge number of quotes about statistics commented it in sarcastic tone

 $\rightarrow$  mostly hard to refute

### However ...

and so on ...

Statistics itself always provides useful information and allows us to maintain objective perspective based on DATA

So then, what is statistics??





 $^{\dagger}$  Each word cloud was cited from Trident University International and Augusta University, respectively.

#### **Statistics**

Concerning with collection, organization, summarization and analysis of DATA

## The most important things in statistics

- 1. Data (sample)
  - · Investigation, experiment, and survey
  - $\bullet~$  Gathering numbers (for quantitative analysis)
- 2. Description or Summarization
  - Table, chart, and so on
  - Based on summarized statistics (e.g. mean, standard deviation, median,  $\dots)$
- 3. Inference
  - Numerous statistical tests and models based on probability theory
  - e.g. two-sample t-test, ANOVA, ANCOVA, regression, and so on

### Measure everything from POPULATION

- Benefits
  - You will get exactly correct answer
  - No need to meet an awkward statistician LIKE ME
- · If you had a plenty of
  - Money (typing "SHOW ME THE MONEY" may help your budget)
  - Time (TOO SHORT TO COLLECT data of entire population)

#### Inferential approach based on SAMPLE

- If we have a proper sample that represents the whole population, you can get NEARLY the correct answer
- Estimation and hypothesis testing

# Data consist of a set of independent sample and measured variables

 $Measurement\ is\ ubiquitous 
ightarrow\ then\ error\ is\ also\ ubiquitous.$ 

- 1. Nominal (명목척도): sex, marital status, blood type, race, ...
- 2. Ordinal scale (순서척도): grade, education level, preference, severity, ...
- 3. Interval scale (구간척도): temperature, IQ, ...
- 4. Ratio scale (비율척도): height, weight, BMI, blood pressure, . . .

Type of Studies

## Research or trial?

#### Research

자료의 수집과 분석 목적이 학술적 목적에 국한된 모든 종류의 연구 및 실험

#### Trial

자료의 수집과 분석 목적이 이윤추구 또는 허가에 목적이 있는 임상시험

## Cross-sectional study (단면적 관찰연구)

- 1. prevalence study
- 2. Diagostic test
- 3. Ecological study
- 4. Validity, Reliability, and agreement study

# Longitudinal study (종단적 관찰연구)

- 1. Prospective study
- 2. Retrospective study

## Experimental Study

**◆□▶◆□▶◆臺▶◆臺▶** 臺 釣९@

Randomized controlled trial

Pilot study

Exploratory study

Confirmative study

Type of outcome variables

# Primary outcomes

# Secondary outcomes

4□▶
4□▶
4□▶
4□▶
4□▶
4□
5
9
0

# Surrogate variables

## Global assessment variable

4□▶
4□▶
4□▶
4□▶
4□▶
4□
5
9
0

# Sample size calculation

17 / 36

#### Two approaches

- 1. Based on the marginal error rate  $\rightarrow$  population based observational study
- 2. Based on the effectiveness between concerning groups  $\rightarrow$  experimental study

Both approaches are based on previous studies

Is your study entirely new?

## Observational study

## Observational study: prevalence study

4□ > 4□ > 4 = > 4 = > = 900

## Observational study: prevalence study

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣९○

# Parallel design

# $2 \times 2$ cross-over design

**↓□▶↓□▶↓≡▶↓≡▶** ■ からの

# Factorial design

# Multiple comparison

## What makes data significant?

4□ > 4□ > 4 = > 4 = > = 900

- $1. \ \, {\rm Data} \,\, {\rm themselves} \,\, {\rm contain} \,\, {\rm unexpected} \,\, {\rm errors}$
- 2. Bias
- 3. Just conincidence
- 4. Our hypothesis is working

# Torturing data

4□▶
4□▶
4□▶
4□▶
4□▶
4□
5
9
0

# Statistical Analysis

## Overview

## Independent two sample t-test

1. Too easy, but very useful methodology for the comparison of sample means between two groups  $\,$ 

# Analysis of Variance (ANOVA)

**◆□▶◆□▶◆臺▶◆臺▶** 臺 釣९♡

# Analysis of Covariance (ANCOVA)

**◀ㅁ▶◀@▶◀돌▶◀돌▶** 돌 쒼٩@

# Simple or multiple regression

**◆□▶◆□▶◆ミ▶◆ミ▶** ミ かへで

## Repeated Measures ANOVA

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣९○

## Linear mixed effects model

4□▶
4□▶
4□▶
4□▶
4□▶
4□
5
9
0

## Reliability analysis

**◆□▶◆□▶◆臺▶◆臺▶** 臺 釣९@

Cohen's  $\kappa$ 

Cronbach's  $\alpha$ 

Intra Class Correlation (ICC)