Curso: Estatística e Probabilidade

Prof. Neemias Martins

PUC Campinas

neemias.silva@puc-campinas.edu.br neemias.org

Z-Score

Um *z-score* (ou escore padrão, ou valor padronizado) é o número de desvios padrões que um valor *x* está em relação à média. O z-score é calculado por

$$z = \frac{x - \overline{x}}{\sigma}.$$

Qual dos dois valores a seguir é mais extremo em relação ao conjunto de dados do qual foi retirado?

- A temperatura de 37.2 °C de um adulto (entre adultos com média amostral $\overline{x} = 36.78$ °C e desvio padrão $\sigma = 0.34$ °C)
- A nota 5.6 de um universitário (entre um conjunto de universitários com média $\bar{x} = 5.85$ g e desvio padrão $\sigma = 0.52$).

• A temperatura de 37.2 °C de um adulto (entre adultos com média amostral $\overline{x} = 36.78$ °C e desvio padrão $\sigma = 0.34$ °C)

$$z = \frac{37.2 - 36.78}{0.34} = \frac{0.42}{0.34} = 1.24.$$

• A nota 5.6 de um universitário (entre um conjunto de universitários com média $\overline{x} = 5.85$ g e desvio padrão $\sigma = 0.52$).

$$z = \frac{5.6 - 5.85}{0.52} = -\frac{0.25}{0.52} = -0.48.$$

O valor mais extremo (em termos absolutos) é o da temperatura, pois está mais distante da média do que a nota.

A distribuição Normal é a mais importante das distribuições estatísticas, tanto na teoria como na prática:

- Representa a distribuição de freqüência de muitos fenômenos naturais;
- Serve como aproximação da distribuição Binomial, quando n é grande;
- As médias e as proporções de grandes amostras segue a distribuição Normal (Teorema do Limite Central).

Se uma variável aleatória contínua possui distribuição cujo gráfico pode ser descrito pela expressão

$$y = \frac{e^{-\frac{1}{2}(\frac{x-\overline{x}}{\sigma})^2}}{\sigma\sqrt{2\pi}}$$

dizemos que ela possui uma distribuião normal.

Observação: Não usaremos muito essa expressão, mas observe que ela nos diz que a distribuição normal é determinada pela média μ e pelo desvio padrão σ .

Gráfico de uma distribuição normal:

Formato de sino e simétrico.

A curva acima é chamada de curva densidade da distribuição.

Distribuição Normal Padrão

Uma distribuição normal padrão satisfaz às seguintes propriedades:

- É uma distribuição normal, logo o gráfico tem formato de sino e é simétrico.
- $\mu = 0$: A distribuição normal padrão possui média igual a zero.
- $\sigma = 1$: A distribuição normal padrão possui desvio padrão igual a 1.
- A área abaixo da curva de densidade é 1.

Distribuição Normal Padrão

O eixo x é representado pelo z-score.

Exemplo - Calculado probabilidade pelo z-score

Um exame de densidade mineral óssea pode ser útil para identificar a presença ou a suscetibilidade à osteoporose, uma doença que faz com que os ossos se tornem mais frágeis e propensos a fraturas. O resultado de um exame de densidade óssea é comumente medido como um z-score.

A população desses z-score tem distribuição normal, com média igual a 0 e desvio padrão igual a 1, portanto esses resultados atendem aos requisitos de uma distribuição normal padrão.

Um adulto é selecionado aleatoriamente para realizar o exame de densidade óssea. Qual a probabilidade de que essa pessoa tenha um z-score inferior a 1.27?

Tal probabilidade é dada pela área abaixo da curva considerando os valores menores do que z=1.27 no eixo das abscissas.

Para calcular, podemos recorrer ao auxílio computacional ou fazer o uso de tabelas de probabilidade.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319

A tabela acima fornece a área acumulada **a partir da esquerda para valores de z-score positivos.**

Localize 1.2 na coluna da esquerda; em seguida, encontre o valor na linha correspondente de probabilidades que está diretamente abaixo de 0.07. A Tabela mostra que há uma área de 0.8980 correspondente a z=1.27.

Então probabilidade de um escore z inferior a 1.27 é 0.8980. A probabilidade de que uma pessoa selecionada aleatoriamente tenha um resultado de densidade óssea inferior a 1.27 é 0.8980, representada como a região sombreada na imagem. Ou seja, 89.80% das pessoas têm níveis de densidade óssea abaixo de 1.27.

Tabelas de probabilidade - Distribuição Normal Padrão

No Canvas há um arquivo com duas tabelas:

- Área acumulada a partir da esquerda para z-score **NEGATIVO**
- Área acumulada a partir da esquerda para z-score POSITIVO.

Ao realizar os exemplos a seguir, usaremos tais tabelas.

Exercício

Considerando o mesmo exemplo anterior, qual a probabilidade de que uma pessoa selecionada aleatoriamente tenha resultado no teste maior do que -1.00?

Obs: Um valor acima de -1.00 é considerado dentro da faixa "normal" de resultados de densidade óssea.

Como z = -1.00, usaremos a tabela para z-score **negativo**.

NE	GAT	ΓΙVΙ	Ξ <i>z</i>	Sco	ores	6	_			
ABLE A-2	Standard N	Normal (z) D	istribution:	Cumulative	Area from t	he LEFT		Z	0	
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.50 and										
lower -3.4	.0001	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.4 -3.3	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.2	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0005
-3.1	.0010	.0007	.0009	.0009	.0008	.0008	.0008	.0003	.0003	.0007
-3.0	.0010	.0013	.0003	.0012	.0012	.0011	.0011	.0011	,0010	.0010
-2.9	.0019	.0018	.0018	.0012	.0012	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611

Localize o valor que se encontra na linha -1.0 e coluna .00.

-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611

O valor encontrado é 0.1587. Este valor corresponde à área acumulada a partir da esquerda até -1.00, ou seja corresponde a valores de z-score menores do que -1.00.

Como a área abaixo da curva é 1, então

$$P({z \ge -1.00}) = 1 - 0.1587 = 0.8413.$$

Ou seja, 84.13% das pessoas possuem densidade óssea com níveis acima de -1.00.

Uma leitura do exame de densidade óssea entre -1.00 e -2.50 indica que o indivíduo apresenta osteopenia, que é uma certa perda de massa óssea.

Calcule a probabilidade de que uma pessoa selecionada aleatoriamente tenha um resultado entre -1.00 e -2.50.

Observe que a área entre z=-2.50 e z=-1.00 é dada pela diferença entre a área acumulada até z=-1.00 e a área acumulada até z=-2.50.

Usando a tabela para z-score negativo, obtemos:

- $P({z \le -1}) = 0.1587$
- $P({z \le -2.50}) = 0.0062$
- $P(\{-2.5 \le z \le -1\}) = 0.1587 0.0062 = 0.1525$.

Portanto, 15.25% das pessoas possuem osteopenia.

Exercícios

Exercícios

1. Os gráficos abaixo apresentam a distribuição de probabilidade normal padrão de densidade óssea. Obtenha a área das regiões indicadas.

Exercícios

2. Encontre o z-score correspondente a cada probabilidade (área) indicada nos seguintes gráficos de distribuição normal padrão.

0

