Deep High-Resolution Representation Learning for Human Pose Estimation

Ke Sun^{1,2*†} Bin Xiao^{2*} Dong Liu¹ Jingdong Wang²

¹University of Science and Technology of China ²Microsoft Research Asia

{sunk,dongeliu}@ustc.edu.cn, {Bin.Xiao,jingdw}@microsoft.com

论文地址: https://arxiv.org/abs/1902.09212

推荐博文: https://blog.csdn.net/qq_37541097/article/details/124346626

人体行为动作识别,人机交互,动画制作等

单一个体的姿态评估

0: nose

1: left_eye

2: right_eye

3: left_ear

4: right ear

5: left shoulder

6: right_shoulder

7: left elbow

8: right_elbow

9: left_wrist

10: right_wrist

11: left_hip

12: right_hip

13: left_knee

14: right_knee

15: left_ankle

16: right_ankle

MS COCO Dataset

对于Human Pose Estimation任务,现在基于深度学习的方法主要有两种:

- > 基于regressing的方式,即直接预测每个关键点的位置坐标。
- ▶ 基于heatmap的方式,即针对每个关键点预测一张热力图(预测出现在每个位置上的分数)。

目录

- 1 HRNet网络结构
- □ 2 预测结果 (heatmap) 可视化
- □ 3 损失的计算
- □ 4评价准则
- □ 5 其他
 - □ 5.1 数据增强
 - □ 5.2 注意输入图片比例

网络结构

HRNet-W32网络结构简图

网络结构

预测结果可视化

预测结果可视化

Each keypoint location is predicted by adjusting the highest heatvalue location with a quarter offset in the direction from the highest response to the second highest response.

损失的计算

均方误差Mean Squared Error

		0.1	0.2	0.1		
	0.1	0.3	0.5	0.3	0.1	
	0.2	0.5	1	0.5	0.2	
V	0.1	0.3	0.5	0.3	0.1	
		0.1	0.2	0.1		

损失的计算

损失的计算

0.2	0.3	0.1				
0.1	0.9	0.4				
0.1	0.2	0.2				
				层	意	語
	ili	oi	M	F	1-1-	
P) I I					

			0.1	0.2	0.1		
		0.1	0.3	0.5	0.3	0.1	
		0.2	0.5	1	0.5	0.2	
1	N	0.1	0.3	0.5	0.3	0.1	
			0.1	0.2	0.1		

Predict heatmap

GT heatmap

损失的计算

每个关键点所计算的损失采用不同的权重

["nose","left_eye","right_ear","right_ear","left_shoulder","right_shoulder","left_elbow","right_e lbow","left_wrist","right_wrist","right_hip","left_knee","right_knee","left_ankle","right_ankle"]

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5]

评价准则

在目标检测 (Object Detection) 任务中可以通过IoU (Intersection over Union) 作为预测bbox和真实bbox之间的重合程度或相似程度。在关键点检测 (Keypoint Detection) 任务中一般用OKS (Object Keypoint Similarity)来表示预测keypoints与真实keypoints的相似程度,其值域在0到1之间,越靠近1表示相似度越高。

$$OKS = rac{\sum_i [e^{-d_i^2/2s^2k_i^2} \cdot \delta(v_i>0)]}{\sum_i [\delta(v_i>0)]}$$

- ▶ i代表第i个关键点
- ▶ vi代表第i个关键点的可见性,这里的vi是由GT提供
- ▶ δ(x)当x为True时值为1, x为False时值为0
- ▶ di为第i个预测关键点与对应GT之间的欧氏距离
- > s为目标面积的平方根
- ▶ ki是用来控制关键点类别i的衰减常数

详情参考: https://cocodataset.org/#keypoints-eval

数据增强

- ▶ 随机旋转 (在 -45~45度之间)
- ▶ 随机缩放 (在0.65到1.35之间)
- ▶ 随机水平翻转
- ▶ half body (有一定概率会对目标进行裁剪,只保留半身关键点,上半身或者下半身)

注意输入图片比例

