Suites de variables aléatoires.

- 1. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités. Déterminer pour chacune des convergences suivantes à quelle condition sur la suite $(A_n)_{n\geq 1}$ elle a lieu.
 - a. La suite $(\mathbb{1}_{A_n})_{n\geq 1}$ converge en probabilité vers 0.
 - b. La suite $(\mathbb{1}_{A_n})_{n\geq 1}$ converge dans L^2 vers 0.
 - c. La suite $(\mathbb{1}_{A_n})_{n\geq 1}$ converge presque sûrement vers 0.

Solution de l'exercice 1. a. Supposons que $\mathbb{1}_{A_n}$ converge vers 0 en probabilité. Alors en particulier, $\mathbb{P}(\mathbb{1}_{A_n} > \frac{1}{2}) = \mathbb{P}(A_n)$ tend vers 0. Réciproquement, si $\mathbb{P}(A_n)$ converge vers 0, alors pour tout $\varepsilon > 0$, $\mathbb{P}(\mathbb{1}_{A_n} > \varepsilon) \leq \mathbb{P}(A_n)$ converge vers 0.

Finalement la condition est $\lim_{n\to\infty} \mathbb{P}(A_n) = 0$.

- b. On a $\mathbb{E}[\mathbb{1}_{A_n}] = \mathbb{P}(A_n)$. La condition est donc $\lim_{n\to\infty} \mathbb{P}(A_n) = 0$.
- c. Soit $\omega \in \Omega$. La suite $(\mathbb{1}_{A_n}(\omega))_{n\geq 1}$ converge vers 0 si et seulement si elle est stationnaire, égale à 0 à partir d'un certain rang. Ceci a lieu si et seulement si ω appartient à $\lim\inf A_n^c$, qui est le complémentaire de $\limsup A_n$. Ainsi, la convergence a lieu presque sûrement si et seulement si $\mathbb{P}(\limsup A_n) = 0$.
- 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires. Montrer que si la suite X_n converge simultanément vers deux variables aléatoires X et Y, alors X=Y presque sûrement, et ceci quel que soit le mode de convergence vers X et quel que soit le mode de convergence vers Y, parmi : convergence presque sûre, convergence dans L^p avec $p \in \{1, 2\}$, convergence en probabilité.

Solution de l'exercice 2. Tous les modes de convergence considérés entraînent la convergence en probabilité, qui est le plus faible d'entre eux. Ainsi, on a au moins convergence en probabilité de la suite $(X_n)_{n\geq 1}$ vers X et Y simultanément.

Montrons que pour tout $\varepsilon > 0$, on a $\mathbb{P}(|X - Y| > \varepsilon) = 0$. En effet, on a, pour tout $n \ge 1$,

$$\mathbb{P}(|X - Y| > \varepsilon) \le \mathbb{P}\left(|X - X_n| > \frac{\varepsilon}{2} \text{ ou } |X_n - Y| > \frac{\varepsilon}{2}\right)$$

$$\le \mathbb{P}\left(|X - X_n| > \frac{\varepsilon}{2}\right) + \mathbb{P}\left(|X_n - Y| > \frac{\varepsilon}{2}\right).$$

Lorsque n tend vers $+\infty$, le membre de droite tend vers 0 par définition du fait que $(X_n)_{n\geq 1}$ converge en probabilité vers X et Y, donc $\mathbb{P}(|X-Y|>\varepsilon)=0$. On peut maintenant écrire

$$\mathbb{P}(X \neq Y) = \mathbb{P}\left(\bigcup_{k \geq 1} |X - Y| > \frac{1}{k}\right) = \lim_{k \to \infty} \mathbb{P}\left(|X - Y| > \frac{1}{k}\right) = 0.$$

Ainsi, X et Y sont égales presque sûrement.

- **3.** Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soient $X, X_1, X_2, \ldots : (\Omega, \mathscr{F}, \mathbb{P}) \to \mathbb{R}$ des variables aléatoires réelles. On suppose que la suite $(X_n)_{n\geq 1}$ converge en probabilité vers X.
- a. Montrer qu'il existe une suite strictement croissante d'entiers $1 \le n_1 < n_2 < \dots$ telle que pour tout $k \ge 1$ on ait

$$\mathbb{P}\left(|X_{n_k} - X| > \frac{1}{k}\right) \le \frac{1}{2^k}.$$

b. Pour tout $k \geq 1$, on pose $Y_k = X_{n_k}$ (on dit que la suite $(Y_k)_{k \geq 1}$ est extraite de la suite $(X_n)_{n \geq 1}$). Montrer que la suite $(Y_k)_{k \geq 1}$ converge presque sûrement vers X.

On a montré que d'une convergence en probabilité on pouvait extraire une convergence presque sûre.

Solution de l'exercice 3. a. Soit $k \geq 1$. Supposons qu'on a construit les k-1 premiers termes $n1 < \cdots < n_{k-1}$ de la suite. Comme $\mathbb{P}\left(|X_n - X| > \frac{1}{k}\right) \to 0$ lorsque $n \to \infty$, on peut trouver $n = n_k > n_{k-1}$ tel que

$$\mathbb{P}\left(|X_{n_k} - X| > \frac{1}{k}\right) \le \frac{1}{2^k}.$$

b. On remarque que

$$\lim_{K\to\infty}\sum_{k=1}^K\mathbb{P}\left(|X_{n_k}-X|>\frac{1}{k}\right)=\sum_{k\geq 1}\mathbb{P}\left(|X_{n_k}-X|>\frac{1}{k}\right)<+\infty.$$

Or, par le théorème de convergence monotone,

$$\sum_{k\geq 1} \mathbb{P}\left(|X_{n_k} - X| > \frac{1}{k}\right) = \lim_{K \to \infty} \sum_{k=1}^K \mathbb{P}\left(|X_{n_k} - X| > \frac{1}{k}\right) = \lim_{K \to \infty} \mathbb{E}\left[\sum_{k=1}^K \mathbb{1}_{\left\{|X_{n_k} - X| > \frac{1}{k}\right\}}\right] \\
= \mathbb{E}\left[\lim_{K \to \infty} \sum_{k=1}^K \mathbb{1}_{\left\{|X_{n_k} - X| > \frac{1}{k}\right\}}\right] = \mathbb{E}\left[\sum_{k>1} \mathbb{1}_{\left\{|X_{n_k} - X| > \frac{1}{k}\right\}}\right].$$

Comme cette espérance est finie, on en déduit que la variable aléatoire $\sum_{k\geq 1} \mathbbm{1}_{\left\{|X_{n_k}-X|>\frac{1}{k}\right\}}$ est finie presque sûrement. Autrement dit, il y a seulement un nombre fini (dépendant de ω) d'indices k tels que $|X_{n_k}-X|>\frac{1}{k}$. On en déduit qu'avec probabilité 1, pour tout k assez grand $|X_{n_k}-X|\leq \frac{1}{k}$. En particulier, $|X_{n_k}-X|\to 0$ quand $k\to\infty$ presque sûrement.

4. Lemme de Borel-Cantelli. Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soit $(A_n)_{n\geq 1}$ une suite d'événements telle que

$$\sum_{n\geq 1} \mathbb{P}(A_n) < +\infty.$$

Montrer que $\mathbb{P}(\limsup A_n) = 0$.

On rappelle que $\limsup A_n := \bigcap_{k \ge 1} \bigcup_{n \ge k} A_n = \{\omega \in \Omega : \{n : \omega \in A_n\} \text{ estinfini}\}.$

Solution de l'exercice 4. $\bigcup_{n\geq k}A_n$ est décroissant (au sens de l'inclusion) en k, et donc, quand k croît vers l'infini,

$$\mathbb{P}\left(\bigcup_{n\geq k} A_n\right) \searrow \mathbb{P}\left(\bigcap_{k\geq 1} \bigcup_{n\geq k} A_n\right) = \mathbb{P}\left(\limsup A_n\right).$$

Or, on a de manière évidente

$$\mathbb{P}\left(\bigcup_{n>k} A_n\right) \le \sum_{n>k} \mathbb{P}(A_n).$$

Comme la série des $\mathbb{P}(A_n)$ est sommable, le membre de droite de cette inégalité, qui est la queue de la série, tend vers 0 lorsque k tend vers l'infini. Donc le membre de gauche de l'inégalité (dont on a dit juste avant qu'il tendait vers $\mathbb{P}(\limsup A_n)$) tend aussi vers 0, ce qui prouve le résultat demandé (par unicité de la limite d'une suite de réels).

- 5. Soit X une variable aléatoire positive sur un espace de probabilités $(\Omega, \mathscr{F}, \mathbb{P})$.
- a. Montrer que

$$\sum_{n \ge 0} n \mathbb{P}(n \le X < n+1) < +\infty \Leftrightarrow \mathbb{E}[X] < +\infty.$$

b. Montrer que

$$\sum_{n>1} \mathbb{P}(X \ge n) < +\infty \Leftrightarrow \mathbb{E}[X] < +\infty.$$

Solution de l'exercice 5. a. Pour tout entier $n \geq 0$, on a, presque sûrement,

$$n \mathbb{1}_{n \le X < n+1} \le X \mathbb{1}_{n \le X < n+1} \le (n+1) \mathbb{1}_{n \le X < n+1}.$$

Par positivité de l'espérance, on en déduit que

$$n\mathbb{P}(n \le X < n+1) \le \mathbb{E}[X\mathbb{1}_{n \le X < n+1}] \le (n+1)\mathbb{P}(n \le X < n+1).$$

On somme maintenant les inégalités précédentes sur $n \ge 0$ pour obtenir

$$\sum_{n \geq 1} n \mathbb{P}(n \leq X < n+1) \leq \mathbb{E}[X] \leq 1 + \sum_{n \geq 0} \mathbb{P}(n \leq X < n+1).$$

Ce qui entraine de manière évidente le résultat demandé (chaque inégalité donnant un sens de l'équivalence).

b. On considère la série double $(a_{k,n})_{k\geq 0, n\geq 0} := \mathbb{P}(n\leq X< n+1)\mathbb{1}_{k< n}$. En commençant par sommer en k, on obtient :

$$\sum_{n \ge 0} \sum_{k \ge 0} a_{k,n} = \sum_{n \ge 0} \mathbb{P}(n \le X < n+1) sum_{k \ge 0} \mathbb{1}_{k < n} = \sum_{n \ge 0} n \mathbb{P}(n \le X < n+1).$$

En sommant d'abord en n puis en k, on trouve :

$$\sum_{k \ge 0} \sum_{n \ge 0} a_{k,n} = \sum_{k \ge 0} \sum_{n > k} \mathbb{P}(n \le X < n + 1) = \sum_{k \ge 0} \mathbb{P}(X \ge k + 1) = \sum_{k \ge 1} \mathbb{P}(X \ge k).$$

Comme la série est à termes positifs, l'ordre de sommation n'a pas d'importance et on peut identifier les deux résultats. On conclut en utilisant le résultat de la question précédente.

- **6.** Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires toutes de même loi.
- a. Montrer qu'on a $\frac{X_n}{n} \xrightarrow[n \to \infty]{P} 0$.
- b. Montrer que si $\mathbb{E}[|X_1|] < +\infty$, alors $\frac{X_n}{n} \xrightarrow[n \to \infty]{L^1} 0$. Étudier la réciproque.
- c. Montrer que si $\mathbb{E}[|X_1|]<+\infty$, alors $\frac{X_n}{n}\xrightarrow[n\to\infty]{p.s.}0$. Étudier la réciproque.

Solution de l'exercice 6. a. Comme les X_n sont de même loi, on a, pour tout $\varepsilon > 0$ et $n \ge 1$,

$$\mathbb{P}\left(\frac{|X_n|}{n} > \varepsilon\right) = \mathbb{P}\left(\frac{|X_1|}{n} > \varepsilon\right) = \mathbb{P}(|X_1| > n\varepsilon).$$

Le membre de droite est la probabilité d'une suite décroissante d'événements, qui tend, lorsque $n \to \infty$, vers

$$\lim_{n \to \infty} \mathbb{P}(|X_1| > n\varepsilon) = \mathbb{P}(\bigcap_{n \ge 1} \{|X_1| > n\varepsilon\}) = \mathbb{P}(|X_1| = +\infty) = 0.$$

b. Quand $n \to +\infty$, on a bien, en supposant $\mathbb{E}[|X_1|] < +\infty$

$$\mathbb{E}\left[\frac{|X_n|}{n}\right] = \mathbb{E}\left[\frac{|X_1|}{n}\right] = \frac{1}{n}\mathbb{E}\left[|X_n|\right] \to 0.$$

Réciproquement, si on suppose toujours les X_n de même loi, alors $\frac{X_n}{n} \xrightarrow[n \to \infty]{L^1} 0$ entraine bien sûr que $\mathbb{E}[|X_1|] < +\infty$ est finie.

c. On suppose $\mathbb{E}[|X_1|] < +\infty$. Soit $\varepsilon > 0$. Par le b. de l'exercice précédent appliqué à $X = |X_1|/\varepsilon$, on sait que e la série de terme général $\mathbb{P}(|X_1| \geq \varepsilon n)\mathbb{P}(|X_n| \geq \varepsilon n)$ est sommable. Par le lemme de Borel-Cantelli, on en déduit que

$$\mathbb{P}\left(\limsup\{|X_n| \ge \varepsilon n\}\right) = 0.$$

Autrement dit, sur un événement A_{ε} de probabilité 1 est inclus dans le complémentaire de $\limsup\{|X_1| \geq \varepsilon n\}$, c'est-à-dire que

$$\exists N \ge 0, \forall n \ge N, |X_n| < \varepsilon n.$$

En particulier, sur A_{ε} , $\limsup |X_n|/n \leq \varepsilon$. On prend $\varepsilon = 1/k$, pour tout entier $k \geq 1$. Alors $\bigcap_{n\geq 1} A_{1/k}$ a aussi probabilité 1 (parce que son complémentaire est inclus dans la réunion des complémentaires des $A_{1/k}$ qui est de probabilité nulle), et sur cet événement, on a $\limsup |X_n|/n = 0$, ce qu'on voulait démontrer.

La réciproque est fausse. En effet, soit X une variable aléatoire réelle non intégrable. Alors le choix $X_n := X$ pour tout $n \ge 1$ fournit un contre-exemple.

- 7. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et toutes de carré intégrable.
 - a. Montrer que pour tout $n \geq 1$ et tout $a \in \mathbb{R}$, on a

$$\mathbb{E}[(X_n - a)^2] = (\mathbb{E}[X_n] - a)^2 + \operatorname{Var}(X_n).$$

b. En déduire que la suite $(X_n)_{n\geq 1}$ converge en moyenne quadratique vers une constante a si et seulement si on a les convergences

$$\lim_{n \to \infty} \mathbb{E}[X_n] = a \text{ et } \lim_{n \to \infty} \text{Var}(X_n) = 0.$$

Solution de l'exercice 7. a. On a

$$\mathbb{E}[(X_n - a)^2] = \mathbb{E}[((X_n - \mathbb{E}[X_n]) + (\mathbb{E}[X_n] - a))^2]$$

= $Var(X_n) + 2\mathbb{E}[(X_n - \mathbb{E}[X_n])(\mathbb{E}[X_n] - a)] + (\mathbb{E}[X_n] - a))^2.$

En sortant la constante ($\mathbb{E}[X_n] - a$) de l'espérance du deuxième terme du membre de droite, on constate que celui-ci est nul, d'où le résultat.

b. Supposons d'abord que $E[(X_n-a)^2]\to 0$ lorsque $n\to\infty$. Alors, l'inégalité de Cauchy-Schwarz entraine que

$$0 \le \mathbb{E}[(X_n - a)] \le \sqrt{\mathbb{E}[(X_n - a)^2]} \to 0.$$

Par conséquent, $\operatorname{Var}(X_n) = \mathbb{E}[(X_n - a)^2] - (\mathbb{E}[X_n] - a)^2 \to 0$ lorsque $n \to \infty$. Réciproquement, supposons que

$$\lim_{n \to \infty} \mathbb{E}[X_n] = a \text{ et } \lim_{n \to \infty} \text{Var}(X_n) = 0.$$

On conclut grâce à l'égalité démontrée au a., en remarquant que les deux termes du membre de droite tendent vers 0.

8. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires. Montrer que si la suite $(X_n)_{n\geq 1}$ converge dans L^2 vers une variable aléatoire X, alors la suite $(X_n^2)_{n\geq 1}$ converge dans L^1 vers X^2 . La réciproque est-elle vraie?

Solution de l'exercice 8. On suppose que la suite $(X_n)_{n\geq 1}$ converge dans L^2 vers une variable aléatoire X. Par l'inégalité de Cauchy-Schwarz :

$$0 \le \mathbb{E}[|(X_n^2 - X^2)|] = \mathbb{E}[|X_n - X|(X_n + X)] \le \sqrt{\mathbb{E}[(X_n - X)^2]} \sqrt{\mathbb{E}[(X_n + X)^2]}.$$

Comme la norme 2 est sous-additive et continue,

$$\sqrt{\mathbb{E}[(X_n + X)^2]} = \|X_n + X\|_2 \le \|X_n\|_2 + \|X\|_2 \to 2\|X\|_2.$$

En particulier, cette suite est bornée et, comme $\mathbb{E}[(X_n - X)^2] \to 0$ par hypothèse, on a bien $\mathbb{E}[|X_n^2 - X^2|] \to 0$, autrement dit la suite $(X_n^2)_{n \ge 1}$ converge dans L^1 vers X^2 .

La réciproque est fausse. Il suffit de prendre X telle que $\mathbb{P}(X=0) < 1$ et $X_n = -X$ pour s'en convaincre.

9. Lemme de Borel-Cantelli (suite). Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace de probabilités. Soit $(A_n)_{n\geq 1}$ une suite d'événements indépendants telle que

$$\sum_{n\geq 1} \mathbb{P}(A_n) = +\infty.$$

On veut démontrer que $\mathbb{P}(\limsup A_n) = 1$.

- a. Montrer que pour tout réel x, on a l'inégalité $1 + x \le e^x$.
- b. Montrer que pour tous entiers n, m tels que $1 \le m \le n$, on a

$$\mathbb{P}\left(\bigcap_{k=m}^{n} A_{k}^{c}\right) \leq \exp\left(-\sum_{k=m}^{n} \mathbb{P}(A_{k})\right).$$

c. En déduire que pour tout $m \geq 1$, on a $\mathbb{P}\left(\bigcap_{k=m}^{\infty} A_k^c\right) = 0$, puis conclure.

Solution de l'exercice 9. a. Il s'agit d'une inégalité de convexité classique (le graphe de l'exponentielle reste au dessus de sa tangente en x = 0).

b. D'après le a. avec $x = -\mathbb{P}(A_k)$, on obtient pour chaque entier $k \geq 1$,

$$\mathbb{P}(A_k^c) = 1 - \mathbb{P}(A_k) \le e^{-\mathbb{P}(A_k)}.$$

On fait maintenant le produit de ces inégalités, pour $k=m,\ldots,n$, ce qui donne, grâce à l'indépendance :

$$\mathbb{P}\left(\bigcap_{k=m}^{n} A_{k}^{c}\right) = \prod_{k=m}^{n} \mathbb{P}(A_{k}^{c}) \le \exp\left(-\sum_{k=m}^{n} \mathbb{P}(A_{k})\right).$$

c. On fait tendre n vers l'infini dans l'inégalité précédente. Pour le membre de gauche, on utilise la décroissance en n de la suite d'événements $\bigcap_{k=m}^n A_k^c$. Pour celui de droite, on utilise l'hypothèse $\mathbb{P}\left(\bigcap_{k=m}^\infty A_k^c\right) = 0$. On obtient finalement

$$\mathbb{P}\left(\bigcap_{k=m}^{\infty} A_k^c\right) = \lim_{n \to \infty} \mathbb{P}\left(\bigcap_{k=m}^n A_k^c\right) = 0.$$

En prenant la réunion sur $m \geq 1$ des événements de probabilité nulle $\bigcap_{k=m}^{\infty} A_k^c$, on obtient encore un événement de probabilité nulle, qui est précisément le complémentaire de $\limsup(A_n)$. D'où le résultat.

10. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de loi de Bernoulli de paramètre $p\in]0,1[$. Montrer qu'avec probabilité 1, la suite $(X_n)_{n\geq 1}$ prend une infinité de fois la valeur 1 et une infinité de fois la valeur 0.

Solution de l'exercice 10. Pour tout $n \geq 1$, posons $A_n = \{X_n = 1\}$ et $B_n = \{X_n = 0\}$. Les événements $(A_n)_{n\geq 1}$ sont indépendants et tous de probabilité p>0. En particulier, $\sum_{n\geq 1} \mathbb{P}(A_n) = +\infty$. La deuxième partie du lemme de Borel-Cantelli entraîne donc que $\mathbb{P}(\limsup A_n) = 1$. Le même raisonnement s'applique aux événements B_n qui sont de probabilité 1-p>0. Donc $\mathbb{P}(\limsup B_n) = 1$, et $\mathbb{P}(\limsup A_n \cap \limsup B_n) = 1$. Or l'événement $\limsup A_n \cap \limsup B_n$ est précisément l'événement où la suite $(X_n)_{n\geq 1}$ prend une infinité de fois la valeur 1 et une infinité de fois la valeur 0.

- 11. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées. On suppose que $\mathbb{E}[|X_1|] = +\infty$. On veut montrer que presque sûrement, la suite $\left(\frac{X_1+\ldots+X_n}{n}\right)_{n\geq 1}$ n'a pas de limite réelle.
- a. Montrer que si une suite $(x_n)_{n\geq 1}$ de réels est telle que la suite $\left(\frac{x_1+\ldots+x_n}{n}\right)_{n\geq 1}$ ait une limite réelle, alors

$$\lim_{n \to \infty} \frac{x_n}{n} = 0.$$

b. Montrer que $\sum_{n\geq 1} \mathbb{P}(|X_n| \geq n) = +\infty$ et conclure.

Solution de l'exercice 11. a. Notons, pour $n \ge 1$, $u_n := \frac{x_1 + \ldots + x_n}{n}$ et u la limite de cette suite. Introduisons, pour $n \ge 2$, $v_n := u_{n-1} \frac{n-1}{n}$. Cette suite converge aussi vers u. Par conséquent, quand $n \to \infty$, on a bien

$$\frac{x_n}{n} = u_n - v_n \to u - u = 0.$$

b. La divergence de la série de terme général $\mathbb{P}(|X_n| \geq n) = \mathbb{P}(|X_1| \geq n)$ découle de celle de l'espérance de $|X_1|$ et du b. de l'exercice 5.

Comme les $A_n = \{|X_n| \geq n\}$ sont indépendants et que la série de leur probabilités diverge, le lemme de Borel-Cantelli (exercice 9) nous permet d'affirmer que $A = \limsup A_n$ a probabilité 1. Autrement dit, presque sûrement, il existe une infinité de n tels que $|X_n| \geq n$.

Or, d'après le a., on a l'inclusion

$$\{S_n/n \text{ admet une limite réelle}\} \subset \{X_n/n \to 0\} \subset A^c.$$

Par ce qui précède, on conclut que la probabilité de ces événements est nulle.