

### SALES REPORT

Dec 04, 2024





#### INTRODUCTION

Supply chain data analysis is the process of collecting, processing, and interpreting data across various stages of a supply chain to optimize operations, reduce costs, and enhance overall efficiency. With the increasing complexity of global supply chains, businesses rely on data analysis to make informed decisions and remain competitive.



#### PROJECT HIGHLIGHTS:

IN THIS PROJECT, I WORKED WITH A DATASET CONTAINING INFORMATION ABOUT:

- PRODUCT TYPES, SKUS, PRICES, AND STOCK LEVELS
- SALES METRICS (E.G., NUMBER OF PRODUCTS SOLD AND REVENUE GENERATED)
   CUSTOMER DEMOGRAPHICS AND SHIPPING
- DETAILS
- SUPPLIER PERFORMANCE, LEAD TIMES, AND DEFECT RATES



#### #REVENUE ANALYSIS BY PRODUCT

```
SELECT `Product type`, round(sum(`Revenue generated`),2) AS total_revenue
FROM dataset
GROUP BY `Product type`

ORDER BY total_revenue DESC;
```

| <ul> <li>▶ skincare 241628.16</li> <li>haircare 174455.39</li> <li>cosmetics 161521.27</li> </ul> |   | Product<br>type | total_revenue |
|---------------------------------------------------------------------------------------------------|---|-----------------|---------------|
|                                                                                                   | • | skincare        | 241628.16     |
| cosmetics 161521.27                                                                               |   | haircare        | 174455.39     |
|                                                                                                   |   | cosmetics       | 161521.27     |



## #AVERAGE SHIPPING TIMES AND COSTS BY SUPPLIER

```
SELECT `Supplier name`, round(avg(`Shipping times`),0) as avg_shipping_time,
round(avg(`Shipping costs`),4) as avg_shipping_cost
from dataset
group by `Supplier name`
order by `Supplier name`;
```

|   | Supplier<br>name | avg_shipping_time | avg_shipping_cost |
|---|------------------|-------------------|-------------------|
| • | Supplier 1       | 6                 | 5.5123            |
|   | Supplier 2       | 6                 | 5.7392            |
|   | Supplier 3       | 5                 | 4.7888            |
|   | Supplier 4       | 6                 | 5.7596            |
|   | Supplier 5       | 6                 | 5.7898            |
|   |                  |                   |                   |

#### #SALES AND STOCK LEVELS COMPARISON

```
SELECT 'Product type', sum('Number of products sold') as total_sold, avg('Stock levels') as avg_stock_level from dataset group by 'Product type' order by 'total_sold' DESC;
```

| 1 100 | 3012 0110       |            | ****            |
|-------|-----------------|------------|-----------------|
|       | Product<br>type | total_sold | avg_stock_level |
| •     | skincare        | 20731      | 40.2000         |
|       | haircare        | 13611      | 48.3529         |
|       | cosmetics       | 11757      | 58.6538         |
|       |                 |            |                 |



#### #DEFECT RATE BY PRODUCT TYPE

```
select `Product type`, round(avg(`Defect rates`),4) as avg_defect_rate
from dataset
group by `Product type`;
```

| <ul> <li>▶ haircare 2.4832</li> <li>skincare 2.3347</li> <li>cosmetics 1.9193</li> </ul> |   | Product<br>type | avg_defect_rate |
|------------------------------------------------------------------------------------------|---|-----------------|-----------------|
|                                                                                          | • | haircare        | 2.4832          |
| cosmetics 1.9193                                                                         |   | skincare        | 2.3347          |
|                                                                                          |   | cosmetics       | 1.9193          |

#### #TRANSPORTATION MODES ANALYSIS

```
select `Transportation modes` , COUNT(*) AS frequency,
round(avg(`Costs`),4) as avg_cost
from dataset
group by `Transportation modes`;
```

| Transportation modes       frequency       avg_cost         ▶ Road       29       553.386         Air       26       561.7126         Rail       28       541.7476         Sea       17       417.8191 |   | 1    |           |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|-----------|----------|
| Air 26 561.7126 Rail 28 541.7476                                                                                                                                                                       |   | · ·  | frequency | avg_cost |
| Rail 28 541.7476                                                                                                                                                                                       | • | Road | 29        | 553.386  |
|                                                                                                                                                                                                        |   | Air  | 26        | 561.7126 |
| Sea 17 417.8191                                                                                                                                                                                        |   | Rail | 28        | 541.7476 |
| 000 11/10151                                                                                                                                                                                           |   | Sea  | 17        | 417.8191 |

#### #COST ANALYSIS BASED ON LEAD TIME

```
select `Lead time`, round(avg(`Manufacturing costs`),4) as avg_manf_cost,
round(avg(`Shipping costs`),4) as avg_shipping_cost
from dataset
group by `Lead time`;
```

|   | Lead<br>time | avg_manf_cost | avg_shipping_cost |
|---|--------------|---------------|-------------------|
| • | 29           | 57.0419       | 4.9388            |
|   | 23           | 59.3499       | 9.7279            |
|   | 12           | 45.5377       | 7.4987            |
|   | 24           | 36.4914       | 3.0523            |
|   | 5            | 63.2363       | 5.9528            |
|   | 10           | 27.4          | 8.0571            |
|   | 14           | 58.9696       | 5.111             |
|   | 22           | 53.6759       | 6.0772            |
|   | 13           | 34.6928       | 5.5269            |
|   | 18           | 60.297        | 5.6551            |
|   | 28           | 20.8868       | 4.6               |
|   | 2            | FF 0400       | 2.0010            |

# #CUSTOMER DEMOGRAPHICS AND PRODUCT PREFERENCES

```
select `Customer demographics`, `Product type`, count(*) as product_count
from dataset
group by `Customer demographics`, `Product type`;
```

|   | Customer<br>demographics | Product<br>type | product_count |
|---|--------------------------|-----------------|---------------|
| • | Non-binary               | haircare        | 7             |
|   | Female                   | skincare        | 13            |
|   | Unknown                  | haircare        | 15            |
|   | Non-binary               | skincare        | 11            |
|   | Male                     | skincare        | 7             |
|   | Female                   | cosmetics       | 10            |

#### **#SUPPLIER LOCATION AND PERFORMANCE**

```
SELECT `Supplier name`, `Location`,

AVG(`Production volumes`) AS avg_production_volume,

AVG(`Lead time`) AS avg_lead_time

FROM dataset

GROUP BY `Supplier name`, `Location`

order by `Supplier name`;
```

|   | Supplier<br>name | Location  | avg_production_volume | avg_lead_time |
|---|------------------|-----------|-----------------------|---------------|
| • | Supplier 1       | Bangalore | 469.8000              | 16.0000       |
|   | Supplier 1       | Chennai   | 493.2500              | 16.2500       |
|   | Supplier 1       | Delhi     | 435.0000              | 6.5000        |
|   | Supplier 1       | Kolkata   | 502.6250              | 19.3750       |
|   | Supplier 1       | Mumbai    | 577.0000              | 12.1667       |
|   | Supplier 2       | Bangalore | 447.2000              | 16.6000       |
|   | Supplier 2       | Chennai   | 892.6667              | 27.6667       |

#### #IMPACT OF INSPECTION RESULTS ON DEFECT RATES

```
SELECT `Inspection results`,
round(AVG(`Defect rates`),4) AS avg_defect_rate
FROM dataset
GROUP BY `Inspection results`;
```

| Ι. | <u>'</u> |                    |                 |
|----|----------|--------------------|-----------------|
|    |          | Inspection results | avg_defect_rate |
|    | •        | Pending            | 2.1542          |
| П  |          | Fail               | 2.5693          |
|    |          | Pass               | 2.039           |
|    |          |                    |                 |



## #ORDER QUANTITIES VS. MANUFACTURING LEAD TIMES

```
SELECT `Order quantities`, AVG(`Manufacturing lead time`)

AS avg_manufacturing_lead_time

FROM dataset

GROUP BY `Order quantities`;
```

| INC | suit dila   HII     | Tiller NOWS.                | ]   Expo |
|-----|---------------------|-----------------------------|----------|
|     | Order<br>quantities | avg_manufacturing_lead_time |          |
| •   | 96                  | 18.5000                     |          |
|     | 37                  | 30.0000                     |          |
|     | 88                  | 19.5000                     |          |
|     | 59                  | 10.0000                     |          |
|     | 56                  | 7.0000                      |          |
|     | 66                  | 10.7500                     |          |
|     | 58                  | 21.0000                     |          |
|     | 11                  | 11.0000                     |          |



### THANK YOU

BY JYOTI VERMA