

Time Complexity

Data Structures - Coding Course

Complexity

- Time and space complexity tell us how algorithms scale
- Helps choose **efficient algorithms** for large inputs
- What is Space Complexity?
- What is Time Complexity?

Notation

- Big O (O) Upper bound: Worst-case growth
- Theta (Θ) Tight bound: Exact asymptotic growth
- Omega (Ω) Lower bound: Best-case growth

Let's make hands dirty

```
for (int i = 0; i < 100; i++) cout << i;
```

```
int n=200;
for (int i = 0; i < n; i++) cout << arr[i];</pre>
```

0(n)

```
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
        cout << i + j;</pre>
```

```
for (int i = 0; i < n; i++)
    for (int j = i; j < n; j++)
        cout << i << j;</pre>
```

 $O(n^2)$

```
for (int i = 0; i < n; i++)
    for (int j = 0; j < n*n; j++)
        cout << i + j;</pre>
```

 $O(\log n)$

```
int i = n;
while (i > 0) i /= 2;
```

 $O(\log n)$

 $O(\log n)$

```
for (int i = 0; i < n; i++)
  for (int j = 1; j < n; j *= 2)
     cout << i << j;</pre>
```

O(nlog n)

```
for (int i = 1; i * i <= n; i++) cout << i;
```

```
int f(int n) {
   if (n == 0) return 1;
   return f(n - 1) + f(n - 1);
}
```

O(2ⁿ)

```
for (int i = 0; i < n; i++)
  for (int j = 0; j < sqrt(n); j++)
      cout << i + j;</pre>
```

 $O(n\sqrt{n})$

```
for (int i = 1; i < n; i *= 2)
  for (int j = 0; j < i; j++)
      cout << j;</pre>
```

0(n)

```
for (int i = 1; i <= n; i++)
  for (int j = i; j <= n; j += i)
     cout << j;</pre>
```

O(nlog n)

```
for (int i = 0; i < n; i++)
  for (int j = i; j < i + 5 && j < n; j++)
      cout << i + j;</pre>
```

0(n)

```
int k = 1;
while (k * k <= n) {
   for (int j = 0; j < k; j++) cout << j;
   k++;
}</pre>
```

O(n√n)

```
for (int i = 0; i < n; i++)
  for (int j = 0; j < n / 2; j++)
      cout << i + j;</pre>
```

 $O(n^2)$

Let's Compare...

- O(n log n) or O(n²)?
- \rightarrow O(n log n)
- $O(2^n)$ or $O(n^3)$?
- \rightarrow O(n³)
- $O(n^2)$ or $O(2^n)$?
- \rightarrow $O(n^2)$
- $O(n \log n)$ or $O(n + \log n)$?
- \rightarrow O(n + log n)

- O(n!) or O(2ⁿ)?
- $\rightarrow O(2^n)$
- O(\(\forall n\))?
- \rightarrow O(log n)
- O(n³) or O(n² log n)?
- \rightarrow O(n² log n)
- O(n log n) or O(\sqrt{n})?
- \rightarrow O(\forall n)
- O(log₂ n) or O(log₁₀ n)?
- \rightarrow same order

```
O(1) < O(\log \log n) < O(\log n)
< O(\sqrt{n}) < O(n) < O(n \log n)
< O(n\sqrt{n}) < O(n^2) < O(n^2 \log n)
< O(n^3) < O(2^n) < O(3^n)
< O(n!) < O(n^n)
```

Speed Comparison: Python vs C++

- Raw python vs Libraried python!
- Cpp perform 100x faster! But...

n	O(n) Python	O(n) C++	O(n²) Python	O(n²) C++
10 ³	~0.001 S	~0.0001 S	~0.01 S	~0.001 S
10 ⁴	~0.01 S	~0.001 S	~1 S	~0.1 S
10 ⁵	~0.1 S	~0.01 S	~100 S	~10 S
10 ⁶	~1 S	~0.1 S	~10 000 S	~1 000 S