

데이터마이닝 기법 기반 차량 센서데이터를 이용한 졸음운전 판정 방법론

권순찬a, 성인현b, 정성훈b, 김동일a

a: 한국생산기술연구원

b: 인하대학교 산업경영공학과

ksch4301@kitech.re.kr

1. 연구개요

연구배경 및 목적

- ❖ 졸음운전은 교통사고에서 2차 사고 유발과 함께 높은 치사율의 주된 원인으로 지목되고 있다
- ❖ 자율주행 시대가 도래함에 있어 졸음운전은 여전히 난제이자 반드시 해결해야 하는 과제

- ❖ 졸음에 주요 영향을 미치는 차량 내 센서데이터들을 이용한 데이터 마이닝 기법 기반 방법론 제시
- ◆ 졸음운전 방지 모델 구축 방법론을 제안, 향후 졸음 예측 및 방지와관련된 연구 시 참고가 될 수 있는 실험적 근거 제시

연구의 필요성

졸음 운전 감지에 대한 기존 연구는 다음과 같은 한계점 존재

- 1. 졸음에 영향을 미치는 주요 원인 인자 파악이 어려웠음
- 2. 그 원인 또한 단변량 요인에 입각하였기 때문에 졸음에 영향을 주는 다양한 원인을 동시에 고려하지 않음
- 3. 실제 운전자의 주행 중 측정한 데이터에 입각한 객관적 성능 평가가 잘 이루어지지 않음

본 연구에서는 졸음운전 여부를 판정할 수 있는 데이터마이닝 기반 방법론을 제안한다. 제안하는 방법론은 다음과 같은 특징이 있다.

- 1. 차량의 다양한 센서에서 수집된 다양한 원인을 동시에 고려하여 모델링
- 2. 졸음운전에 영향을 미치는 주요 원인 인자 파악
- 3. 실제 운전자의 주행 중 측정한 데이터를 활용하여 다양한 모델을 구축하고 객관적인 성능 평가

2. 연구현황

국/내외 연구현황

[1] 정은비, 오철. (2011). Support Vector Machine을 이용한 위험운전심각도 분류 알고리즘. 대한교통학회 학술대회지, 65, 767-772.

[2] 김태우, 박재희, 이재천. (2013). 호흡기반 운전자 졸음 감지를 위한 압력센서 시스템. 한국ITS학회 논문지, 12(2), 45-51.

[3] 정선미, 김계희, 문형진, 김창근. (2016). 센서를 이용한 사행 운전 검출 시스템 설계 및 구현. 한국디지털정책학회 저널, 14(11), 305-311.

[4] Park, H., Oh, S., Hahn, M. (2009). Drowsy Driving Detection Based on Human Pulse Wave by Photoplethysmography Signal Processing. ACM Conference Proceeding Series, 398, 89–92.

[5] Wang, X., Li, F. (2015). Eye Indicators and Drowsy Level Analysis Based on Driving Simulator. Journal of Tongji University: Natural Science, 43(2), 226-231.

- 기존 연구에서는 주로 단변량 센서를 바탕으로 졸음 운전을 판정하는 연구가 진행되었음[1-5]
- 현재 많은 연구가 다양한 방향으로 이루어지고 있으나, 졸음운전 판정을 위한 다변량 센서데이터 처리에 관한 연구는 찾아보기 어려움
- ▶ 따라서 졸음 운전 판정 방법론 연구를 통해 주요 변수를 찾고 우수한 알고리즘을 제안하고자 한다

3. 방법론 구축

[방법론 도식]

데이터수집 데이터탐색 데이터전처리 변수 및 개체 선택 분류 및 피드백 11. 2. 10. 4. 결측치 처리/대체 분류 알고리즘 선정 센서를 통한 데이터 수집 통계적 특징 파악 변수 중요도 파악 5. 이상치 절사 - 인공신경망(DNN) (상관관계, 분포, 특이점) - 로지스틱 회귀분석 6. 낮은 분산값을 갖는 - Decision Tree - 랜덤포레스트 - SVM 변수 제가 - Random Forest 7. 높은 상관관계를 갖는 변수의 성격 사전 이해 변수 병합 12. (시각화 기법을 이용) 성능 진단 및 분석 8. 범주형 변수 속성 변환 예측력 향상 9. 정규화 13. 이상원인 판단 양질의 데이터 수집 분석 전략 수립 모델링 성공여부 결정 개선

3. 방법론 구축

[방법론 적용 데이터 수집]

Figure. 1

Ford 社에서 제공한 차량 센서데이터 (출처 : Kaggle)

l. Train Data : 604,3301H

2. Test Data : 120,840 **1** H

3. Target Variable: 졸음여부(Binary)

입력변수: 30종류의 센서데이터

- P1-P8 : 운전자 정보

- E1-E11 : 차량 환경 정보

- V1-V11 : 차량 상태 정보

5. TIEŁ

- 각 변수들은 질적변수와 양적변수가 섞여있으며 센서별 상세 내용은 비공개
- Test data의 경우 Solution이 존재하여 성능을 평가할 수 있음
- Train data를 10-fold cross-validation하여 모델 구축
- 사전 실험을 통한 경험적 방법에 의해 모델 파라미터 설정

사용 소프트웨어: R Studio, 성능 평가 기준: AUC

4. 적용사례

[데이터 탐색 및 전처리]

결측치 제거

전체 데이터의 95% 이상이 결측치 -> E1, E2, E11 Column 제가

낮은 분산값 파악 freqRatio percentUnique zeroVar 1.000000 8.273639e-02 TrialID FALSE FALSE ObsNum 1.000000 2.003875e-01 FALSE FALSE 1.374163 3.309456e-04 IsAlert FALSE FALSE 1.057143 1.875551e+01 FALSE FALSE 1.027027 2.340894e+01 FALSE FALSE 1.043975 6.767837e-02 FALSE FALSE 1.043975 6.767837e-02 FALSE FALSE 1.012477 2.017113e-01 FALSE FALSE 1.003334 6.933310e-02 FALSE FALSE 1.003334 6.933310e-02 FALSE FALSE 0.000000 1.654728e-04 TRUE TRUE 9188.058824 2.151146e-03 FALSE TRUE 13015.500000 4.964183e-03 FALSE TRUE 13.559381 4.964183e-04 FALSE FALSE 5.381432 4.169914e-02 FALSE FALSE 1.014846 4.203009e-02 FALSE FALSE 1.147194 4.087178e-02 FALSE FALSE E7 1.054086 4.302292e-03 FALSE FALSE 1.176659 1.654728e-03 FALSE FALSE 7.116047 3.309456e-04 FALSE FALSE 1.066349 2.035315e-02 FALSE FALSE 370.459211 3.971347e-03 FALSE TRUE V1 385.071661 2.054841e+00 FALSE TRUE 1.511603 1.489255e-02 FALSE FALSE V3 1.381180 5.626075e-03 FALSE FALSE 1.024873 5.361318e-02 FALSE FALSE V5 4.561293 3.309456e-04 FALSE FALSE 1.592391 4.611726e-01 FALSE FALSE V7 0.000000 1.654728e-04 TRUE TRUE 42.517801 5.344771e-02 FALSE TRUE V9 0.000000 1.654728e-04 3.500522 8.273639e-04 FALSE FALSE 1.031250 2.994048e+01 V11 FALSE FALSE

4. 적용사례

[변수 및 개체 선택]

Coefficient			_	
(Intercept)	Estimate 2.1326174	Std. Error 0.0062199	z value 342.870	Pr(> z) < 2e-16 ***
P1	0.1274756	0.0052199	25.163	< 2e-16 ***
P2	0.0207586	0.0037435	5.545	
P4	0.0057486	0.0037433	1.506	0.13201
P5	-0.0447944	0.0045773	-9.786	< 2e-16 ***
P6	2.8705861	0.0374417	76.668	< 2e-16 ***
P7	1.8091170	0.0305075	59.301	< 2e-16 ***
E3.E31	-0.0856552	0.0034247	-25.011	< 2e-16 ***
E3.E34	0.6194521	0.0052116	118.861	< 2e-16 ***
E4	-0.0633908	0.0036226	-17.499	< 2e-16 ***
E5	0.3820271	0.0038655	98.830	< 2e-16 ***
E6	0.3129800	0.0036643	85.412	< 2e-16 ***
E7.E71	0.4672309	0.0073823	63.291	< 2e-16 ***
E7.E72	0.1461676	0.0051621	28.315	< 2e-16 ***
E7.E73	0.0571646	0.0043314	13.198	< 2e-16 ***
E7.E74	-0.1090803	0.0042786	-25.495	< 2e-16 ***
E7.E75	-0.0012545	0.0033275	-0.377	0.70617
E7.E76	0.0003716	0.0032587	0.114	0.90922 8 55e-06 ***
E7.E77 E7.E78	0.0166844 0.2343167	0.0037485 0.0069015	4.451 33.952	8.55e-06 *** < 2e-16 ***
E7.E78	0.2343167	0.0064020	32.566	< 2e-16 ***
E7.E79	0.1547665	0.0059559	25.985	< 2e-16 ***
E8.E81	0.2544493	0.0039339	35.768	< 2e-16 ***
E8.E82	0.0174315	0.0053354	3.267	0.00109 **
E8.E83	-0.5618251	0.0053393	-105.225	< 2e-16 ***
E8.E84	-0.1234155	0.0042914	-28.759	< 2e-16 ***
E8.E85	-0.1047374	0.0045701	-22.918	< 2e-16 ***
E8.E86	-0.1626186	0.0053120	-30.613	< 2e-16 ***
E8.E87	-0.1394803	0.0046481	-30.008	< 2e-16 ***
E8.E89	-0.0808337	0.0045526	-17.755	< 2e-16 ***
E9.E91	-0.1104011	0.0053569	-20.609	< 2e-16 ***
E10	-0.0809474	0.0054337	-14.897	< 2e-16 ***
V2	-0.0652699	0.0040490	-16.120	< 2e-16 ***
V3	0.1025469	0.0039592	25.901	< 2e-16 ***
V4	-0.5038737	0.0045679	-110.307	< 2e-16 ***
V5.V51	-0.1448570	0.0044956	-32.222	< 2e-16 ***
V6	-0.1003078	0.0083491	-12.014	< 2e-16 ***
V8	0.0079670	0.0048704	1.636	0.10188 2.42e-07 ***
V10.V102	-0.0193589	0.0037487	-5.164	2.420-07
V10.V103	-0.0452925	0.0043101	-10.508	1 LC LO
V10.V104 V10.V107	-0.4612446 0.0218197	0.0083784	-55.051 6.604	< 2e-16 *** 3.99e-11 ***
V10.V107 V11	-0.8919313	0.0033038		< 2e-16 ***

	шшт	THI		변수중요	
	┅╞╌	トロリノ		じかがん	'
-				<u>,</u>	
	-1	0		MeanDecreaseAccuracy	
TrialID		152.372649		176.607760	9.678014e+04
ObsNum		147.830681		152.606704	5.204284e+03
P1	30.994348	62.567729	75.547018	63.596715	5.756390e+03
P4 P5		161.568663		164.844500	2.286752e+03
P6	34.071814 24.279882	52.446933 41.619155	45.953606 43.910205	50.208425 42.726701	1.065165e+04 1.528069e+04
P7	24.768493	41.509835	45.594658	43.580485	1.533467e+04
E3.E31	23.894488	26.443021	30.227226	33.093310	1.113031e+03
E3.E31	30.444260	21.107868	30.516220	31.382317	2.513794e+03
E4	28.401538	96.820914	64.353820	78.377662	3.728087e+03
E5	35.895094	63.811775	66.994968	66.831620	1.227625e+04
E6	42.480085	68.209797	91.210243	80.427136	2.406548e+04
E7.E71	29.175297	38.191748	42.592441	47.470455	6.158038e+03
E7.E72	22.833344	40.959120	41.371434	45.993582	2.608538e+03
E7.E73	18.919036	49.053295	38.798436	45.903286	1.392990e+03
E7.E74	14.199348	21.061806	11.364636	22.789397	9.574252e+01
E7.E76	5.060063	17.514228	9.069320	17.641106	1.706646e+01
E7.E77	7.769102	5.981152	8.802468	9.526980	4.383817e+01
E7.E78	10.519286	10.399367	13.075916	14.518761	8.215611e+02
E7.E79	11.850434	14.903834	15.230310	16.744984	1.033222e+03
E7.E710	13.733312	18.788729	17.934953	22.693860	8.709536e+02
E7.E711	7.444029	2.514496	2.921789	7.575267	2.928661e+00
E7.E712	2.831300	1.001002	1.001002	2.976906	7.247273e-01
E7.E713	3.748863	1.001002	1.001002	3.918466	6.571108e-01
E7.E714	5.024435	1.417042	1.895999	5.113752	9.518248e-01
E7.E715	4.595225	1.417045	2.372281	4.783504	1.043226e+00
E7.E716	5.001879	2.193302	1.464468	5.447361	1.115911e+00
E7.E717	7.180625	3.379455	2.753896	6.542928	6.440668e+00
E7.E718	4.447789	3.291642	3.996179	5.429112	2.809145e+01
E7.E719	4.844577	0.000000	0.000000	4.844111	8.924180e-01
E7.E722	1.794806	0.000000	0.000000	1.794584	5.333451e-02
E7.E723	2.724002	0.000000	1.001002	2.781996	9.610965e-01
E7.E725	1.178097 26.131278	0.000000	0.000000	1.178047	1.081822e-01
E8.E81 E8.E82	20.131278	36.645137 35.107127	41.707786 37.934296	41.589353	1.340106e+04 3.483774e+03
E8.E83	20.247781	31.373317	30.704290	40.401679 31.796490	4.681182e+03
E8.E86	7.398317	10.797206	11.529828	13.655786	3.535583e+02
E8.E88	3.981053	14.590647	7.898095	9.294263	5.479027e+01
E8.E89	6.147847	14.905876	9.127319	11.115587	6.349274e+01
E9.E91	24.108067	44.612180	48.261081	49.265040	1.002285e+04
E10	36.135987	66.092550	85.478548	81.816776	2.075700e+04
V2	25.600199	52.162954	51.544655	56.049223	5.007302e+03
V3	20.141060	47.787489	41.591244	45.189551	2.822973e+03
V4	35.829874	58.191620	58.573124	66.435003	8.543492e+03
V5.V51	24.821212	32.322937	33.587402	39.420420	1.714293e+03
V6	32.307062	52.867703	67.285976	64.650905	1.284930e+04
V8	21.349780	36.398943	37.318464	37.524115	5.444640e+03
V10.V102	19.088087	30.065517	33.952795	39.616092	2.429319e+02
V10.V103	19.178393	29.480260	33.614819	36.602816	4.315822e+02
V10.V104	22.573310	40.020199	32.537845	36.449760	7.298335e+03
V10.V107	8.916084	14.336534	14.005660	19.593433	3.959881e+01
V11	93.634710	96.018039	80.956271	105.679759	5.416080e+04

5. 결과

인공신경망

0: 졸음운전, 1: 정상운전

	Actual_0	Actual_1	Row Total
Prediction_0	13,240	16674	29914
	0.983	0.155	0.248
Prediction_1	227	90,699	90,926
	0.017	0.845	0.752
Column Total	13,467 0.132	107,373 0.868	120,840

Recall = 98.31%

총 소요니간: 371.11초 Precision = 55.73% AUC = 0.79

Support Vector Machines

	Actual_0	Actual_1	Row Total
Prediction_0	11,348	12,850	24,198
	0.843	0.120	0.248
Prediction_1	2,119	94,523	96,642
	0.157	0.880	0.752
Column Total	13,467 0.098	107,373 0.902	120,840

Recall = 84.27%

총 소요시간: 10시간 이상 Precision = 53.10% AUC = 0.68

Decision Tree

	Actual_0	Actual_1	Row Total
Prediction_0	15,841	14,113	29,914
	0.988	0.135	0.248
Prediction_1	188	90,738	90,926
	0.012	0.865	0.752
Column Total	15,989 0.132	104,851 0.868	120,840

Recall = 98.82%

총 소요니간: 11.62초 Precision = 52.82% AUC = 0.76

Random Forest

	Actual_0	Actual_1	Row Total
Prediction_0	13,044	18,577	31,621
	0.969	0.173	0.262
Prediction_1	423	88,796	89,219
	0.031	0.827	0.738
Column Total	13,467 0.111	107,373 0.889	120,840

Recall = 96.86%

총 소요니간: 30분 Precision = 58.75% AUC = 0.71

0: 졸음운전, 1: 정상운전

6. 결론 및 추후연구

결론

- 1. 가장 우수한 성능을 보인 인공신경망을 활용한 졸음운전 판정 모델의 경우
- AUC = 0.79, Recall = 98.31%, Precision= 55.73%의 성능을 보여줌
- 기타 비교 알고리즘의 경우 예측 성능이 다소 저하됨
- 2. 모델별 학습 시간의 경우
- Decision Tree는 1분 이내에 학습이 가능했으나, SVM의 경우 10시간 이상의 학습 시간이 필요했음
- SVM의 경우 학습 II라미터를 설정하는데 더 많은 시간이 소요되었음
- 3. 졸음 운전을 판정하는데 필요한 주요 변수는 P1, P4, P5, P6, E4, E6, V2, V3, V6, V8로 추출되며, 현재 변수 명은 masking되어있으나 실제 프로젝트에서는 도출할 수 있을 것으로 기대
- 4. 졸음운전 판정 방법론 제안
- 가장 높은 성능과 함께 비교적 짧은 학습 시간을 기록한 인공신경망(DNN) 알고리즘을 추천함
- 센서 이상데이터 제가, 상관관계 분석, 의사결정 나무에 입각한 주요 변수 선정 등의 전처리 방법과 함께 사용
- 특히 P1, P4, E4, E6 변수는 센서를 통해 데이터로 수집이 되어야 함

추후연구

- ❖ 졸음 운전의 수준을 구분 짓고 분류하는 방법론 연구
- ❖ 졸음 판정 방법론을 이용한 졸음 예측 및 방지 모델 구현
- ❖ 계산량 감소를 위한 전처리 단계 추가 및 새로운 알고리즘 발굴

