Motion Planning in Unknown Environments

K. Grover¹, F. Barbosa², J. Tumova², J. Křetínský¹

¹ Technical University of Munich, ² KTH Royal Institute of Technology

Highlights 2021

1 / 13

K. Grover et al. Highlights 2021 Motion Planning Highlights 2021

K. Grover et al.

Highlights 2021

K. Grover et al.

K. Grover et al.

K. Grover et al. Highlights 2021 Motion Planning

Observation

K. Grover et al.

Observation

Observation

K. Grover et al.

K. Grover et al.

Highlights 2021

K. Grover et al. Highlights 2021

K. Grover et al. Highlights 2021

K. Grover et al. Highlights 2021

K. Grover et al. Highlights 2021

Our solution: An overview

K. Grover et al. Highlights 2021 Motion Planning

Highlights 2021

10 / 13

Experiments

Compared different approaches on 100 randomly generated office-like environments.

	Office-like environments		
	Explore, then plan	Simultaneous	Simult. biased
Total length	79.1 (7.1)	62.9 (16.5)	32.3 (11.8)
Total Time	9.6 (2.5)	8.3 (3.2)	9.1 (2.4)
RRG size	2313.8 (550.9)	1868.7 (498.2)	1901.4 (301.2)

K. Grover et al. Highlights 2021

Conclusion

- We gave an algorithm to find a path satisfying an scLTL specification in an unknown environment.
- Introduced biasing based on the semantic relations present in the environment.
- Showed experimentally that this approach is much better than exploring the whole environment first and then planning.

K. Grover et al. Highlights 2021 Motion Planning

Conclusion

- We gave an algorithm to find a path satisfying an scLTL specification in an unknown environment.
- Introduced biasing based on the semantic relations present in the environment.
- Showed experimentally that this approach is much better than exploring the whole environment first and then planning.

K. Grover et al Highlights 2021 Motion Planning