Ubungen - Bildgenierung Übung 09.

Jose Jimenez

Angewandte Informatik Bergische Universität Wuppertal

Table of Contents

Aufgabe 30: Bézier-Flächen

2 Aufgabe 31: Rotationskörper

3 Aufgabe 32: Bézier-Flächen mit OpenGL

4 Aufgabe 33: (Rotationskörper mit OpenGL

Zu jeweils 16 Punkten p[i][j],...,p[i+3][j+3] gehört ein Flächenstück bestehend aus **anzkurv** Kurvenstücken für jede der beiden Richtungen, wobei jedes Kurvenstück durch **anzlin** Linien approximiert wird.

Zu jeweils 16 Punkten p[i][j],...,p[i+3][j+3] gehört ein Flächenstück bestehend aus **anzkurv** Kurvenstücken für jede der beiden Richtungen, wobei jedes Kurvenstück durch **anzlin** Linien approximiert wird.

Ihr habt in der Vorlesung gelernt:

Parametrisierte bikubische Fläche

$$Q(s,t) = T^T \cdot M^T \cdot \tilde{G} \cdot M \cdot S \qquad T = \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}, \qquad S = \begin{bmatrix} s^3 \\ s^2 \\ s \\ 1 \end{bmatrix}$$

Zu jeweils 16 Punkten p[i][j], ..., p[i+3][j+3] gehört ein Flächenstück bestehend aus anzkurv Kurvenstücken für jede der beiden Richtungen, wobei jedes Kurvenstück durch anzlin Linien approximiert wird.

Ihr habt in der Vorlesung gelernt:

Parametrisierte bikubische Fläche

$$Q(s,t) = T^T \cdot M^T \cdot \tilde{G} \cdot M \cdot S \qquad T = \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}, \qquad S = \begin{bmatrix} s^3 \\ s^2 \\ s \\ 1 \end{bmatrix}$$

oder koordinatenweise:

$$x(s,t) = T^{T} \cdot \underbrace{M^{T} \cdot \tilde{G}_{x} \cdot M}_{C_{1}} \cdot S$$

$$y(s,t) = T^{T} \cdot \underbrace{M^{T} \cdot \tilde{G}_{y} \cdot M}_{C_{2}} \cdot S$$

$$z(s,t) = T^{T} \cdot \underbrace{M^{T} \cdot \tilde{G}_{z} \cdot M}_{C_{3}} \cdot S$$

Zu jeweils 16 Punkten p[i][j],...,p[i+3][j+3] gehört ein Flächenstück bestehend aus **anzkurv** Kurvenstücken für jede der beiden Richtungen, wobei jedes Kurvenstück durch **anzlin** Linien approximiert wird.

Zu jeweils 16 Punkten p[i][j],...,p[i+3][j+3] gehört ein Flächenstück bestehend aus **anzkurv** Kurvenstücken für jede der beiden Richtungen, wobei jedes Kurvenstück durch **anzlin** Linien approximiert wird.

Wir brauchen...

- einen Zähler für jede Richtung (von 0 bis ... ?)
- zwei Deltas für die Kurven und Linien
- Bezier-Basismatrix-
- Geometriematrix
- C_1, C_2, C_3 .

$$x(s,t) = T^{T} \cdot \underbrace{M^{T} \cdot \tilde{G}_{x} \cdot M}_{C_{1}} \cdot S \qquad y(s,t) = T^{T} \cdot \underbrace{M^{T} \cdot \tilde{G}_{y} \cdot M}_{C_{2}} \cdot S$$

$$z(s,t) = T^{T} \cdot M^{T} \cdot \tilde{G} \cdot M \cdot S$$

Zu jeweils 16 Punkten p[i][j],...,p[i+3][j+3] gehört ein Flächenstück bestehend aus **anzkurv** Kurvenstücken für jede der beiden Richtungen, wobei jedes Kurvenstück durch **anzlin** Linien approximiert wird.

Wir brauchen...

- einen Zähler für jede Richtung
- zwei Deltas f
 ür die Kurven und Linien
- Bezier-Basismatrix-
- Geometriematrix
- C_1, C_2, C_3 .

Wir brauchen...

- einen Zähler für jede Richtung
- zwei Deltas für die Kurven und Linien
 Bezier-Basismatrix
 Geometriematrix
 C₁, C₂, C₃.

- Schleifen über die Einzel-Flächen

```
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                           int anzkurv = 5, int anzlin = 20 ){
  /* berechnet ein Netz aus Bezier-Flaechen, alle Kantenstuecke werden
    dem Vektor vk hinzugefügt*/
  int m = p.size() - 1;
  int n = p[0].size() - 1;
 double deltakurv = 1.0 / (anzkurv - 1);
 double deltalin = 1.0 / anzlin:
 double mbel[4][4] = { \{-1, 3, -3, 1\},
                       {3, -6, 3, 0},
                       \{-3, 3, 0, 0\},
                       { 1, 0, 0, 0 };
 Matrix4x4 MB(mbel);
```

```
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                   int anzkurv = 5, int anzlin = 20 ){
 /* berechnet ein Netz aus Bezier-Flaechen, alle Kantenstuecke werden
  dem Vektor vk hinzugefügt*/
 int m = p.size() - 1, n = p[0].size() - 1;
 // Schleifen über die Einzel-Flaechen
 for (k = 3; k \le m; k += 3)
  for (1 = 3; 1 \le n; 1 += 3)
```



```
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                   int anzkurv = 5, int anzlin = 20 ){
 /* berechnet ein Netz aus Bezier-Flaechen, alle Kantenstuecke werden
  dem Vektor vk hinzugefügt*/
 int m = p.size() - 1, n = p[0].size() - 1;
 // Schleifen über die Einzel-Flaechen
 for (k = 3; k \le m; k += 3)
  for (1 = 3: 1 \le n: 1 += 3)
```

Wir könnten die Matrizen C[d] vorweg rechnnen

$$z(s,t) = T^T \cdot \underbrace{M^T \cdot \tilde{G}_z \cdot M}_{C_3} \cdot S$$


```
z(s,t) = T^T \cdot C_3 \cdot S C_3 = M^T \cdot \tilde{G}_7 \cdot M
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                    int anzkurv = 5, int anzlin = 20 ){
 int m = p.size() - 1, n = p[0].size() - 1;
 for (k = 3; k \le m; k += 3) // Schleifen über die Einzel-Flaechen
  for (1 = 3; 1 \le n; 1 += 3){
    /*----- berechne vorweg die Matrizen C[d] -----*/
```

Und dann, multiplizieren mit S und T.


```
z(s,t) = T^T \cdot C_3 \cdot S C_3 = M^T \cdot \tilde{G}_7 \cdot M
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                 int anzkurv = 5, int anzlin = 20 ){
 int m = p.size() - 1,
              n = p[0].size() - 1;
 for (k = 3; k \le m; k += 3) // Schleifen über die Einzel-Flaechen
  for (1 = 3; 1 \le n; 1 += 3){
   /*----berechne vorweg die Matrizen C[d] -----*/
   /*----*/
   /*----*/
```

```
z(s,t) = T^T \cdot C_3 \cdot S C_3 = M^T \cdot \tilde{G}_z \cdot M
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                            int anzkurv = 5, int anzlin = 20 ){
 int m = p.size() - 1,
                       n = p[0].size() - 1;
 for (k = 3; k <= m; k += 3) // Schleifen über die Einzel-Flaechen
    for (1 = 3: 1 \le n: 1 += 3)
 //---- berechne vorweq die Matrizen C[d]-----
     for (d = 0; d < 3; d++){} //jede C
       for (i = 0; i < 4; i++) // alle 16 KontrolPunkte
         for (j = 0; j < 4; j++)
            G.el[i][j] = p[k - 3 + i][1 - 3 + j].el[d];
       C[d] = MB * G * MB: // MB^T = MB
```

```
z(s,t) = T^T \cdot C_3 \cdot S C_3 = M^T \cdot \tilde{G}_z \cdot M
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                     int anzkurv = 5, int anzlin = 20 ){
 int m = p.size() - 1, n = p[0].size() - 1;
 for (k = 3; k \le m; k += 3) // Schleifen über die Einzel-Flaechen
   for (1 = 3: 1 \le n: 1 += 3)
    for (d = 0; d < 3; d++){ // berechne vorweg die Matrizen C[d]
      for (i = 0; i < 4; i++)
       for (i = 0; i < 4; i++)
         G.el[i][j] = p[k - 3 + i][1 - 3 + j].el[d];
      C[d] = MB * G * MB; // MB^T = MB
```

```
z(s,t) = T^T \cdot C_3 \cdot S C_3 = M^T \cdot \tilde{G}_7 \cdot M
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                    int anzkurv = 5, int anzlin = 20 ){
 int m = p.size() - 1, n = p[0].size() - 1;
 double mbel[4][4] = \{...\}: Matrix4x4 MB(mbel): Matrix4x4 C[3]:
 for (k = 3; k \le m; k += 3) // Schleifen über die Einzel-Flaechen
  for (1 = 3; 1 \le n; 1 += 3){
    /*----berechne vorweg die Matrizen C[d] -----*/
                       /*DONE*/
    /*----*/
    /*-----*/
```

```
z(s,t) = T^T \cdot C_3 \cdot S s \in [?,?] und t \in [?,?]
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                int anzkurv = 5, int anzlin = 20 ){
 int m = p.size() - 1, n = p[0].size() - 1;
 for (k = 3; k <= m; k += 3) // Schleifen über die Einzel-Flaechen
  for (1 = 3; 1 \le n; 1 += 3){
   /*----- berechne vorweg die Matrizen C[d] -----*/
                   /*DONE*/
   /*----*/
   /*----*/
```

◆ロト ◆御 ト ◆ 恵 ト ・ 恵 ・ 夕久(で)


```
z(s,t) = T^T \cdot C_3 \cdot S  s \in [0,1) und t \in [0,1)
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                 int anzkurv = 5, int anzlin = 20 ){
 int m = p.size() - 1, n = p[0].size() - 1;
 for (k = 3; k <= m; k += 3) // Schleifen über die Einzel-Flaechen
  for (1 = 3; 1 \le n; 1 += 3){
   /*----- berechne vorweg die Matrizen C[d] -----*/
                   /*DONE*/
   /*----*/
   /*----*/
```

Wir gehen von 0 bis anzkurv mit schritten von deltakruv.

```
z(s,t) = T^T \cdot C_3 \cdot S  s \in [0,1) und t \in [0,1).
Wir gehen mit i von 0 bis anzkurv mit schritten von deltakruv.
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                    int anzkurv = 5, int anzlin = 20 ){
 int m = p.size() - 1, n = p[0].size() - 1;
 for (k = 3; k \le m; k += 3) // Schleifen über die Einzel-Flaechen
   for (1 = 3: 1 \le n: 1 += 3)
    /*----*/
    for (i = 0, s = 0; i < anzkurv; i++, s += deltakurv)
```


"Mit dem Befehl vk.push_back(Kante(anf, end, BLACK)); können Sie dem Kanten-Vektor die einzelnen Kantenstücke hinzufügen, wobei anf und end vom Typ Vec4D sind."

"Mit dem Befehl vk.push_back(Kante(anf, end, BLACK)); können Sie dem Kanten-Vektor die einzelnen Kantenstücke hinzufügen, wobei anf und end vom Typ Vec4D sind."

Wie können wir die Kanten erzeugen?

"Mit dem Befehl vk.push_back(Kante(anf, end, BLACK)); können Sie dem Kanten-Vektor die einzelnen Kantenstücke hinzufügen, wobei anf und end vom Typ Vec4D sind."

Wie können wir die Kanten erzeugen?

Wir haben schleifen über die Flächen und Kurven.

"Mit dem Befehl vk.push_back(Kante(anf, end, BLACK)); können Sie dem Kanten-Vektor die einzelnen Kantenstücke hinzufügen, wobei anf und end vom Typ Vec4D sind."

Wie können wir die Kanten erzeugen?

Wir haben for-schleifen über die Flächen und Kurven.

Wir brauchen noch eine über die Linien!


```
z(s,t) = T^T \cdot C_3 \cdot S  s \in [0,1) und t \in [0,1).
Wir brauchen noch eine über die Linien!
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                       int anzkurv = 5, int anzlin = 20 ){
  int m = p.size() - 1, n = p[0].size() - 1;
  double mbel[4][4] = \{...\}; Matrix4x4 MB(mbel); Matrix4x4 C[3];
  for (k = 3; k <= m; k += 3) // Schleifen über die Einzel-Flaechen
   for (1 = 3; 1 \le n; 1 += 3){
     /*----*/
     for (i = 0, s = 0; i < anzkurv; i++, s += deltakurv)
      for (j = 1, t = deltalin; j <= anzlin; j++, t += deltalin)
```

$$z(s,t) = T^T \cdot C_3 \cdot S$$
 $s \in [0,1)$ und $t \in [0,1)$

Wir brauchen noch eine über die Linien! Die erste Kante für festes s ist etwas wie...

```
anf = mult(s, C, 0);
end = mult(s, C, deltalin);
vk.push_back(Kante(anf, end, BLACK));
```


$$z(s,t) = T^T \cdot C_3 \cdot S$$
 $s \in [0,1)$ und $t \in [0,1)$

Wir brauchen noch eine über die Linien!

Die erste Kante für festes s ist etwas wie...

```
anf = mult(s, C, 0);
end = mult(s, C, deltalin);
vk.push_back(Kante(anf, end, BLACK));
```

Natürlich mussen wir die Funktion mult implementieren..., aber wir gehen weiter.

$$z(s,t) = T^T \cdot C_3 \cdot S$$
 $s \in [0,1)$ und $t \in [0,1)$

Wir brauchen noch eine über die Linien! Die erste Kante für festes s ist etwas wie...

```
anf = mult(s, C, 0);
end = mult(s, C, deltalin);
vk.push_back(Kante(anf, end, BLACK));
```

Die zweite Kante für festes s ist...

```
anf = end;
end = mult(s, C, 2*deltalin);
vk.push_back(Kante(anf, end, BLACK));
```

und so weiter

$$z(s,t) = T^T \cdot C_3 \cdot S$$
 $s \in [0,1)$ und $t \in [0,1)$

Wir brauchen noch eine über die Linien!

Die erste Kante für festes s ist etwas wie

dann in unserer for-Schleife...


```
z(s,t) = T^T \cdot C_3 \cdot S  s \in [0,1) und t \in [0,1).
  /*----- Linien für jeweils festes s -----*/
   for (i = 0, s = 0; i < anzkurv; i++, s += deltakurv)
    end = mult(s, C, 0);
    for (j = 1, t = deltalin; j <= anzlin; j++, t += deltalin)
      anf = end;
      end = mult(s, C, t);
      vk.push_back(Kante(anf, end, BLACK));
```



```
z(s,t) = T^T \cdot C_3 \cdot S  s \in [0,1) und t \in [0,1).
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                           int anzkurv = 5, int anzlin = 20 ){
 for (k = 3; k \le m; k += 3) // Schleifen über die Einzel-Flaechen
   for (1 = 3: 1 \le n: 1 += 3)
    /*----berechne vorweg die Matrizen C[d] -----*/
                               /*DONE*/
     /*----- Linien für jeweils festes s -----*/
      for (i = 0, s = 0; i < anzkurv; i++, s += deltakurv)
       end = mult(s, C, 0);
       for (j = 1, t = deltalin; j <= anzlin; j++, t += deltalin)
         anf = end;
         end = mult(s, C, t);
         vk.push_back(Kante(anf, end, BLACK));
```

```
z(s,t) = T^T \cdot C_3 \cdot S  s \in [0,1) und t \in [0,1).
void berechneBezierFlaeche( vector<Kante>& vk, vector<vector<Vec3D> > &p,
                       int anzkurv = 5, int anzlin = 20 ){
 for (k = 3; k \le m; k += 3) // Schleifen über die Einzel-Flaechen
   for (1 = 3; 1 \le n; 1 += 3){
    /*----*/
                           /*DONE*/
     /*----- Linien für jeweils festes s -----*/
                           /*DONE*/
     /*----- Linien für jeweils festes t -----*/
                       /*Analog zu s*/
```

Und... die Function mult?


```
z(s,t) = T^T \cdot C_3 \cdot S
Und... die Function mult?
Vec4D mult(double s, Matrix4x4 C[3], double t)
  // berechnet den Punkt fuer die Parameter s und t
  Vec4D ss(s * s * s, s * s, s , 1);
  Vec4D tt(t * t * t, t * t, t , 1);
  return Vec4D( skalarprod(ss, (C[0] * tt)),
                 skalarprod(ss, (C[1] * tt)),
                 skalarprod(ss, (C[2] * tt)),
                 1);
```



```
z(s,t) = T^T \cdot C_3 \cdot S
Und... die Function mult?
Vec4D mult(double s, Matrix4x4 C[3], double t)
  // berechnet den Punkt fuer die Parameter s und t
  Vec4D ss(s * s * s, s * s, s , 1);
  Vec4D tt(t * t * t, t * t, t , 1);
  return Vec4D( skalarprod(ss, (C[0] * tt)),
                 skalarprod(ss, (C[1] * tt)),
                 skalarprod(ss, (C[2] * tt)),
                 1);
```

Schauen wir uns den Code an.

Rotationskörper

Beim letzten mal haben wir gelernt:

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$

Hier:

$$G = (P_{i-3}, P_{i-2}, P_{i-1}, P_i)$$
 und $T = (t^3, t^2, t, 1)^T$ (1)

und M sind die Basismatrizen.

$$M_B = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

for
$$(k = 3; k \le m; k += 3)$$
 { $//Bézier$ $cx[0] = -p[k - 3].x + 3 * p[k - 2].x - 3 * p[k - 1].x + p[k].x; $cx[1] = 3 * p[k - 3].x - 6 * p[k - 2].x + 3 * p[k - 1].x; $cx[2] = -3 * p[k - 3].x + 3 * p[k - 2].x; \\ cx[3] = p[k - 3].x; }$$$

Und es ist gleich für y, dann...

Rotationskörper

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$

Hier:

$$G = (P_{i-3}, P_{i-2}, P_{i-1}, P_i)$$
 und $T = (t^3, t^2, t, 1)^T$ (2)

und M sind die Basismatrizen.

$$M_B = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

```
for (k = 3; k <= m; k += 3) {
   for (d = 0; d < 2; d++){ //für x und y
      c[0][d] = -p[k - 3].el[d] + 3 * p[k - 2].el[d] - 3 * p[k - 1].el[d]
      + p[k].el[d];
   c[1][d] = 3 * p[k - 3].el[d] - 6 * p[k - 2].el[d]
      + 3 * p[k - 1].el[d];
   c[2][d] = -3 * p[k - 3].el[d] + 3 * p[k - 2].el[d];
   c[3][d] = p[k - 3].el[d];
}</pre>
```

Frage: Was war *m*?

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$ Frage: Was war m?

```
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                                int anzkurv = 5, int anzlinku = 20,
                                int anzkreis = 5, int anzlinkr = 20 ){
  int m = p.size() - 1;
  for (k = 3; k \le m; k += 3) {
    for (d = 0; d < 2; d++){\frac{1}{f u r} x und y}
      c[0][d] = -p[k - 3].el[d] + 3 * p[k - 2].el[d] - 3 * p[k - 1].el[d]
        + p[k].el[d];
      c[1][d] = 3 * p[k - 3].el[d] - 6 * p[k - 2].el[d]
        + 3 * p[k - 1].el[d];
      c[2][d] = -3 * p[k - 3].el[d] + 3 * p[k - 2].el[d];
      c[3][d] = p[k - 3].el[d];
```


• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$ Now what?

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$ Now what?

```
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                      int anzkurv = 5, int anzlinku = 20,
                      int anzkreis = 5, int anzlinkr = 20 ){
 int m = p.size() - 1;
 for (k = 3; k \le m; k += 3) {
  /*---- berechne vorweg die Matrizen C[d] ----*/
                       /*DONE*/
  /*----*/
  /*----*/
```

ok, Wie?

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$ Unsere erste Punkt ist

• **Bézier-Kurven** $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$ Unsere zweite Punkt ist

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$ Unsere zweite Punkt ist

Beim letzten Mal haben wir erfahren, dass das Produkt wie folgt hergestellt wird:

$$Q(t) = c_0 t^3 + c_1 t^2 + c_2 t + c_3 t$$

$$Q(t) = ((c_0 t + c_1)t + c_2)t + c_3$$

dann...

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$

```
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                           int anzkurv = 5, int anzlinku = 20,
                           int anzkreis = 5, int anzlinkr = 20 ){
   /*----*/
   anf = Vec4D(c[3][0], c[3][1], 0, 1);
   end = Vec4D(((c[0][0] * t + c[1][0]) * t + c[2][0]) * t + c[3][0].
                ((c[0][1] * t + c[1][1]) * t + c[2][1]) * t + c[3][1].
               0.1):
   vk.push_back(Kante(anf, end, BLUE));
```

Ok, jetzt müssen wir von 0 auf 2π gehen und die anderen Kanten erstellen.

}

```
• Bézier-Kurven Q(t) = G_B M_B T = C_{Be} T T = (t^3, t^2, t, 1)^T
```

```
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                           int anzkurv = 5, int anzlinku = 20,
                           int anzkreis = 5, int anzlinkr = 20 ){
   double deltakurv = 2.0 * M_PI / anzkurv;
   /*----*/
   anf = Vec4D(c[3][0], c[3][1], 0, 1);
   end = Vec4D(((c[0][0] * t + c[1][0]) * t + c[2][0]) * t + c[3][0].
                ((c[0][1] * t + c[1][1]) * t + c[2][1]) * t + c[3][1],
                0.1):
   vk.push_back(Kante(anf, end, BLUE));
```

Ok, jetzt müssen wir von 0 auf 2π gehen und die anderen Kanten erstellen.

Jose Jimenez Übungen - Bildgenierung January 18, 2023 45 / 110

```
• Bézier-Kurven Q(t) = G_B M_B T = C_{Be} T T = (t^3, t^2, t, 1)^T
```

```
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                            int anzkurv = 5, int anzlinku = 20,
                            int anzkreis = 5, int anzlinkr = 20 ){
   double deltakurv = 2.0 * M_PI / anzkurv;
   /*----*/
   anf = //Q(0) = C * T(0)
   end = //Q(\Delta t) = C\Delta T
   vk.push_back(Kante(anf, end, BLUE));
   for (j = 1, phi = deltakurv; j < anzkurv; j++, phi += deltakurv){
       anf2 = ?
       end2 = ?
```

```
• Bézier-Kurven Q(t) = G_B M_B T = C_{Be} T T = (t^3, t^2, t, 1)^T
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                              int anzkurv = 5, int anzlinku = 20,
                              int anzkreis = 5, int anzlinkr = 20 ){
   double deltakurv = 2.0 * M PI / anzkurv:
   /*----*/
   anf = //Q(0) = C * T(0)
   end = //Q(\Delta t) = C\Delta T
   vk.push_back(Kante(anf, end, BLUE));
   for (j = 1, phi = deltakurv; j < anzkurv; j++, phi += deltakurv){</pre>
       anf2 = Vec4D(anf.el[0], cos(phi) * anf.el[1],
                     sin(phi) * anf.el[1], 1);
       end2 = Vec4D(end.el[0], cos(phi) * end.el[1],
                     sin(phi) * end.el[1], 1);
       vk.push_back(Kante(anf2, end2, BLACK));
```

```
• Bézier-Kurven Q(t) = G_B M_B T = C_{Be} T T = (t^3, t^2, t, 1)^T Was wir bisher gemacht haben:
```

```
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                          int anzkurv = 5, int anzlinku = 20,
                          int anzkreis = 5, int anzlinkr = 20 ){
   double deltakurv = 2.0 * M PI / anzkurv:
   /*----*/
   //---- Ein Kante erzeug-----
   anf = //Q(0) = C * T(0)
   end = //Q(\Delta t) = C\Delta T
   vk.push_back(Kante(anf, end, BLUE));
   //---- you 0 his 2\pi-----
   for (j = 1, phi = deltakurv; j < anzkurv; j++, phi += deltakurv){
      anf2 = anf
      end2 = end
      vk.push_back(Kante(anf2, end2, BLACK));
     }
```

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$ Was wir bisher gemacht haben:

Wir müssen dasselbe für die anderen **anzlinku** geradenstücke tun.

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$ Was wir bisher gemacht haben:

```
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                          int anzkurv = 5, int anzlinku = 20,
                          int anzkreis = 5, int anzlinkr = 20 ){
   double deltalinku = 1.0 / anzlinku:
   /*----*/
   //---- Ein Kante erzeug-----
   anf = //Q(0) = C * T(0)
   end = //Q(\Delta t) = C\Delta T
   vk.push_back(Kante(anf, end, BLUE));
   //-----for(0 ... 2\pi) \{...\}
```

Wir müssen dasselbe für die anderen **anzlinku** geradenstücke tun. Mit einer § Schleife

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$ Was wir bisher gemacht haben:

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$ Was wir bisher gemacht haben:

```
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                           int anzkurv = 5, int anzlinku = 20,
                           int anzkreis = 5, int anzlinkr = 20 ){
    double deltalinku = 1.0 / anzlinku:
   /*----*/
   //----- Alle Kante erzeugen-----
   end = Vec4D(c[3][0], c[3][1], 0, 1):
   for (i = 1, t = deltalinku; i <= anzlinku; i++, t+= deltalinku){
     anf = end:
     end = Vec4D(((c[0][0] * t + c[1][0]) * t + c[2][0]) * t + c[3][0].
                ((c[0][1] * t + c[1][1]) * t + c[2][1]) * t + c[3][1],
                0.1):
     vk.push_back(Kante(anf, end, BLUE));
   //-----for(0 \ldots 2\pi) \{\ldots SCHWARZ \ldots\}
```

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$ Was wir bisher gemacht haben:

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$

Für die Kreise, ist das Konzept dasselbe. d.h.

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$

Für die Kreise, ist das Konzept dasselbe. d.h.


```
• Bézier-Kurven Q(t) = G_B M_B T = C_{Be} T T = (t^3, t^2, t, 1)^T
```

```
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                      int anzkurv = 5, int anzlinku = 20,
                      int anzkreis = 5, int anzlinkr = 20 ){
   double deltakreis = 1.0 / (anzkreis - 1);
  /*---- male Kreise -----
     -----*/
  end = C*T(0);
  for (i = 0, t = 0; i < anzkreis; i++, t+= deltakreis)
    anf = C*T(t)
   /* -----*/
```



```
Q(t) = G_R M_R T = C_{Re} T Q(t) = ((c_0 t + c_1)t + c_2)t + c_3
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                         int anzkurv = 5, int anzlinku = 20,
                         int anzkreis = 5, int anzlinkr = 20 ){
   double deltakreis = 1.0 / (anzkreis - 1);
   /*---- male Kreise -----
     -----*/
    end = Vec4D(c[3][0], c[3][1], 0, 1);
   for (i = 0, t = 0; i < anzkreis; i++, t+= deltakreis)
    anf = Vec4D(((c[0][0] * t + c[1][0]) * t + c[2][0]) * t + c[3][0].
              ((c[0][1] * t + c[1][1]) * t + c[2][1]) * t + c[3][1],
              0.1):
    /*-----*/
```

```
Q(t) = G_R M_R T = C_{Re} T Q(t) = ((c_0 t + c_1)t + c_2)t + c_3
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                       int anzkurv = 5, int anzlinku = 20,
                       int anzkreis = 5, int anzlinkr = 20 ){
  double deltakreis = 1.0 / (anzkreis - 1);
   /*---- male Kreise -----
     -----*/
   end = C*T(0):
   for (i = 0, t = 0; i < anzkreis; i++, t+= deltakreis)
    anf = C*T(t)
   /* -----*/
```



```
Q(t) = G_R M_R T = C_{Re} T Q(t) = ((c_0 t + c_1)t + c_2)t + c_3
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                          int anzkurv = 5, int anzlinku = 20,
                          int anzkreis = 5, int anzlinkr = 20 ){
  double deltakreis = 1.0 / (anzkreis - 1);
   /*---- male Kreise -----
      -----*/
   end = C*T(0):
   for (i = 0, t = 0; i < anzkreis; i++, t+= deltakreis){
     anf = C*T(t)
     /* -----*/
     end2 = anf:
     for (j = 1, phi = deltalinkr; j <= anzlinkr; j++, phi += deltalinkr
       anf2 = end2:
       end2 = Vec4D(anf.el[0], cos(phi) * anf.el[1],
                  sin(phi) * anf.el[1], 1);
       vk.push_back(Kante(anf2, end2, BLACK));
```

```
• Q(t) = G_B M_B T = C_{Be} T Q(t) = ((c_0 t + c_1)t + c_2)t + c_3
```

Am Ende sieht unser Code so aus::

```
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                  int anzkurv = 5, int anzlinku = 20,
                  int anzkreis = 5, int anzlinkr = 20 ){
 int m = p.size() - 1;
 for (k = 3; k \le m; k += 3){
  /*-----*/
  /*---- male Kurvenstücke -----
    ----- 1. Alle Kante erzeugen -----
    ----*/
  /*---- male Kreise -----
    ----- 1. Alle Kante erzeugen -----
   ----*/
```

60 / 110

```
• Q(t) = G_B M_B T = C_{Be} T Q(t) = ((c_0 t + c_1)t + c_2)t + c_3
```

Am Ende sieht unser Code so aus:

```
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                  int anzkurv = 5, int anzlinku = 20,
                  int anzkreis = 5, int anzlinkr = 20 ){
 int m = p.size() - 1;
 for (k = 3; k \le m; k += 3){
  /*-----*/
  /*---- male Kurvenstücke -----
    ----- 1. Alle Kante erzeugen -----
    ----*/
  /*---- male Kreise -----
    ----- 1. Alle Kante erzeugen -----
   ----*/
```

Schauen wir uns den Code an.

■ Legen Sie mittels glMap2f und des Target-Parameters GL_MAP2_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Flächenstücks fest.

Legen Sie mittels glMap2f und des Target-Parameters GL_MAP2_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Flächenstücks fest.

"The **glMap2f** function defines a two-dimensional evaluator. It generates some values depending of the **target**."

Legen Sie mittels glMap2f und des Target-Parameters GL_MAP2_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Flächenstücks fest.

"The **glMap2f** function defines a two-dimensional evaluator. It generates some values depending of the **target**."

Das Target das wir brauchen ist:

 GL_MAP2_VERTEX_3: Each control point is three floating-point values representing x, y, and z.

Paremeter für glMAP2f

- Legen Sie mittels glMap2f und des Target-Parameters GL_MAP2_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Flächenstücks fest.
- 2 Aktivieren Sie die Kontrollpunkte mittels glEnable.

- Legen Sie mittels glMap2f und des Target-Parameters GL_MAP2_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Flächenstücks fest.
- Aktivieren Sie die Kontrollpunkte mittels glEnable.

- Legen Sie mittels glMap2f und des Target-Parameters GL_MAP2_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Flächenstücks fest.
- Aktivieren Sie die Kontrollpunkte mittels glEnable.
- Erzeugen Sie unter Verwendung des Befehls glMapGrid2f ein Mesh, das aus nMeshSize Partitionen in jeder Richtung besteht.

"Defines a one-dimensional mesh."

Paremeter für glMapGrid2f

```
glMapGrid2f( nMeshSize,
t1, t2, // 0, 1
nMeshSize,
s1, s2); // 0, 1
```


- Legen Sie mittels glMap2f und des Target-Parameters GL_MAP2_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Flächenstücks fest.
- Aktivieren Sie die Kontrollpunkte mittels glEnable.
- Erzeugen Sie unter Verwendung des Befehls glMapGrid2f ein Mesh, das aus nMeshSize Partitionen in jeder Richtung besteht.
- Zeichnen Sie die Bézier-Fläche mit glEvalMesh2.

"Computes a two-dimensional grid of points or lines."

Paremeter f
ür gl
Eval
Mesh2

"Computes a two-dimensional grid of points or lines."

Paremeter für glEvalMesh2

Bisher:

Bisher:

```
void zeichneBezierFlaeche( const vector<vector<Vec3D> >& p,
                           int nMeshSize = 10 ){
/*glMap2f( target, t1, t2, tstride, torder,
            s1. s2. sstride, sorder, points )*/
  glMap2f( GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4,
            0.0, 1.0, 3*4, 4, /*points*/);
  glEnable( GL_MAP2_VERTEX_3 );
//qlMapGrid2f( tn, t1, t2, sn, s1, s2);
  glMapGrid2f( nMeshSize, 0.0, 1.0, nMeshSize, 0.0, 1.0);
//qlEvalMesh2( mode, i1, i2, j1, j2 )
  glEvalMesh2( GL_LINE, 0, nMeshSize, 0, nMeshSize );
```

Bisher:

- Legen Sie die Kontrollpunkte des aktuellen Flächenstücks fest.
- Aktivieren Sie die Kontrollpunkte mittels glEnable.
- Erzeugen Sie unter Verwendung des Befehls glMapGrid2f ein Mesh, das aus nMeshSize Partitionen in jeder Richtung besteht.
- Zeichnen Sie die Bézier-Fläche mit glEvalMesh2.

Bisher für des aktuellen Flachenstucks:

```
void zeichneBezierFlaeche( const vector<vector<Vec3D> >& p,
                           int nMeshSize = 10 ){
/*qlMap2f( target, t1, t2, tstride, torder,
            s1, s2, sstride, sorder, points )*/
 glMap2f( GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4,
           0.0, 1.0, 3*4, 4, /*points*/);
 glEnable( GL_MAP2_VERTEX_3 );
//qlMapGrid2f( tn, t1, t2, sn, s1, s2);
 glMapGrid2f( nMeshSize, 0.0, 1.0, nMeshSize, 0.0, 1.0);
//qlEvalMesh2( mode, i1, i2, j1, j2 )
 glEvalMesh2( GL_LINE, 0, nMeshSize, 0, nMeshSize );
```

Ok, wie initialisieren wir die Punkte?. recap

Die Vorbereitung für Aufgabe 32 war wie folgt:

Nehmen wir denn alles! ctrl+ C


```
void zeichneBezierFlaeche( const vector<vector<Vec3D> >& p,
                           int nMeshSize = 10 ){
  int m = p.size() - 1; int n = p[0].size() - 1;
  for ( int k = 3: k \le m: k += 3 )
    for (int 1 = 3; 1 \le n; 1 += 3){
        glMap2f(GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4,
             0.0, 1.0, 3*4, 4, /*points*/);
        glEnable( GL_MAP2_VERTEX_3 );
        glMapGrid2f( nMeshSize, 0.0, 1.0, nMeshSize, 0.0, 1.0);
        glEvalMesh2( GL_LINE, 0, nMeshSize, 0, nMeshSize );
```

Was denn mit die Punkte?


```
void zeichneBezierFlaeche( const vector<vector<Vec3D> >& p,
                           int nMeshSize = 10 ){
  int m = p.size() - 1; int n = p[0].size() - 1;
  // Array der Kontrollpunkte fuer OpenGL vorbereiten
  GLfloat *apPoints = new GLfloat[3*4*4];
  for ( int k = 3: k \le m: k += 3 )
    for (int 1 = 3; 1 \le n; 1 += 3){
        glMap2f(GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4,
             0.0, 1.0, 3*4, 4, /*points*/);
        glEnable( GL_MAP2_VERTEX_3 );
        glMapGrid2f( nMeshSize, 0.0, 1.0, nMeshSize, 0.0, 1.0 );
        glEvalMesh2( GL_LINE, 0, nMeshSize, 0, nMeshSize );
```

Wir mussen Bezierkurve vorbereiten, indem **alle 16 Kontrollpunkte** des aktuellen Surface-Gebiets an OpenGL uebergeben werden

```
void zeichneBezierFlaeche( const vector<vector<Vec3D> >& p,
                         int nMeshSize = 10 ){
  int m = p.size() - 1; int n = p[0].size() - 1;
 // Array der Kontrollpunkte fuer OpenGL vorbereiten
 GLfloat *apPoints = new GLfloat[3*4*4];
 for ( int k = 3; k \le m; k += 3 )
   for (int 1 = 3; 1 \le n; 1 += 3){
    //----> OpenGL calls <-----
```



```
void zeichneBezierFlaeche( const vector<vector<Vec3D> >& p,
                          int nMeshSize = 10 ){
  int m = p.size() - 1; int n = p[0].size() - 1;
 // Array der Kontrollpunkte fuer OpenGL vorbereiten
 GLfloat *apPoints = new GLfloat[3*4*4];
 for ( int k = 3; k \le m; k += 3 )
   for ( int 1 = 3: 1 \le n: 1 += 3 ){
     for( int i = 0; i < 4; i++ )
       for( int j = 0; j < 4; j++){
         apPoints[3*(4*i+j)+0] = p[k-3+i][1-3+j].el[0]; //x
         apPoints[3*(4*i+j)+1] = p[k-3+i][1-3+j].el[1]; //y
         apPoints[3*(4*i+j)+2] = p[k-3+i][1-3+j].el[2]; //z
    //----> OpenGL calls <-----
```

```
void zeichneBezierFlaeche( const vector<vector<Vec3D> >& p,
                          int nMeshSize = 10 ){
 // Array der Kontrollpunkte fuer OpenGL vorbereiten
 GLfloat *apPoints = new GLfloat[3*4*4];
 for ( int k = 3: k \le m: k += 3 )
   for (int 1 = 3; 1 \le n; 1 += 3){
     for( int i = 0; i < 4; i++ )
       for( int j = 0; j < 4; j++){
         apPoints[3*(4*i+j)+0] = p[k-3+i][1-3+j].el[0]; //x
         apPoints[3*(4*i+j)+1] = p[k-3+i][1-3+j].el[1]; //y
         apPoints[3*(4*i+j)+2] = p[k-3+i][1-3+j].el[2]; //z
      '-----> OpenGL calls <-----
```

Schauen wir uns den Code an.

Schauen wir uns den Rahmenprogram an.

Wie können wir anfangen? Wir haben p nochmal

Wie viele Kontrollpunkte brauchen wir??

```
void zeichneRotationskoerper( const vector<Vec3D>& p,
                              RotkDaten daten ){
  int m= p.size() - 1;
```


Dann, mussen wir irgendwie die anzkurv Kurven malen, d.h....

Wir sollen Bezierkurve vorbereiten, indem alle 4 Kontrollpunkte des aktuellen Kurvenabschnitts an OpenGL übergeben werden.

Wir sollen Bezierkurve vorbereiten, indem alle 4 Kontrollpunkte des aktuellen Kurvenabschnitts an OpenGL übergeben werden.

Was sind die Werte?


```
void zeichneRotationskoerper( const vector<Vec3D>& p,
                               RotkDaten daten ){
  int m= p.size() - 1;
   // Array der Kontrollpunkte für OpenGL vorbereiten
  GLfloat *apPoints = new GLfloat[12];
  for ( int c = 0; c < daten.anzkurv; c++ ){</pre>
    double phi = 2.0 * M_PI * ((double)c) / daten.anzkurv;
    for ( int k = 3; k \le m; k += 3 ){
      for( int i = 0: i < 4: i++){
        apPoints[3*i+0] = p[k-3+i].el[0];
        apPoints[3*i+1] = cos(phi) * p[k-3+i].el[1]; //0 \le \phi \le pi
        apPoints[3*i+2] = sin(phi) * p[k-3+i].el[1];
```

Mit openGL, haben wir glMap2f für die flächen benutz...


```
void zeichneRotationskoerper( const vector<Vec3D>& p,
                              RotkDaten daten ){
  int m= p.size() - 1;
   // Array der Kontrollpunkte für OpenGL vorbereiten
  GLfloat *apPoints = new GLfloat[12];
  for ( int k = 3; k \le m; k += 3 ){
    for( int i = 0: i < 4: i++){
        apPoints[3*i+0] = p[k-3+i].el[0];
        apPoints[3*i+1] = cos(phi) * p[k-3+i].el[1];
        apPoints[3*i+2] = sin(phi) * p[k-3+i].el[1];
```

Wir haben **glMap2f** für die flächen benutz...

Dieses mal, brauchen wir glMap1f.

90 / 110

Wir haben glMap2f für die flächen benutz...

- "The glMap2f function defines a two-dimensional evaluator." Dieses mal, brauchen wir glMap1f...
 - "The glMap1f function defines a one-dimensional evaluator."

So geht es:

Legen wir mittels glMap1f und des Target-Parameters GL_MAP1_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Kurvenstücks fest.

So geht es:

- Legen wir mittels glMap1f und des Target-Parameters GL_MAP1_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Kurvenstücks fest.
- Aktivieren wir die Kontrollpunkte mittels glEnable.
- Teilen Wir OpenGL mit, dass durch Linien verbundene Punkte gezeichnet werden sollen. Dies erfolgt mit dem Befehl glBegin.

So geht es:

- Legen wir mittels glMap1f und des Target-Parameters GL_MAP1_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Kurvenstücks fest.
- Aktivieren wir die Kontrollpunkte mittels glEnable.
- Teilen Wir OpenGL mit, dass durch Linien verbundene Punkte gezeichnet werden sollen. Dies erfolgt mit dem Befehl glBegin.
- Werten Wir die Kurve mittels glEvalCoord1f an Zwischenpunkten aus, so dass pro Kurvenstück anzlinku Linien entstehen.

So geht es:

- Legen wir mittels glMap1f und des Target-Parameters GL_MAP1_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Kurvenstücks fest.
- Aktivieren wir die Kontrollpunkte mittels glEnable.
- Teilen Wir OpenGL mit, dass durch Linien verbundene Punkte gezeichnet werden sollen. Dies erfolgt mit dem Befehl glBegin.
- Werten Wir die Kurve mittels glEvalCoord1f an Zwischenpunkten aus, so dass pro Kurvenstück anzlinku Linien entstehen.
- Seenden wir das Zeichnen mit glEnd.

Legen wir mittels glMap1f und des Target-Parameters GL_MAP1_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Kurvenstücks fest.Aktivieren wir die Kontrollpunkte mittels glEnable.

Dann, es ist einfach

```
glMap1f( GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, apPoints );
glEnable( GL_MAP1_VERTEX_3 );
```


- Legen wir mittels glMap1f und des Target-Parameters GL_MAP1_VERTEX_3, welcher dabei anzugeben ist, die Kontrollpunkte des aktuellen Kurvenstücks fest.
- 2 Aktivieren wir die Kontrollpunkte mittels glEnable.
- Teilen Wir OpenGL mit, dass durch Linien verbundene Punkte gezeichnet werden sollen. Dies erfolgt mit dem Befehl glBegin.
- Werten Wir die Kurve mittels glEvalCoord1f an Zwischenpunkten aus, so dass pro Kurvenstück anzlinku Linien entstehen.
- Seenden wir das Zeichnen mit glEnd.

- Teilen Wir OpenGL mit, dass durch Linien verbundene Punkte gezeichnet werden sollen. Dies erfolgt mit dem Befehl glBegin.
- Werten Wir die Kurve mittels glEvalCoord1f an Zwischenpunkten aus, so dass pro Kurvenstück anzlinku Linien entstehen.
- 3 Beenden wir das Zeichnen mit glEnd.

```
glBegin( GL_LINE_STRIP );
```


- Teilen Wir OpenGL mit, dass durch Linien verbundene Punkte gezeichnet werden sollen. Dies erfolgt mit dem Befehl glBegin.
- Werten Wir die Kurve mittels glEvalCoord1f an Zwischenpunkten aus, so dass pro Kurvenstück anzlinku Linien entstehen.
- 3 Beenden wir das Zeichnen mit glEnd.

```
glBegin( GL_LINE_STRIP );
for ( int i = 0; i <= daten.anzlinku; i++ )</pre>
```


- Teilen Wir OpenGL mit, dass durch Linien verbundene Punkte gezeichnet werden sollen. Dies erfolgt mit dem Befehl glBegin.
- Werten Wir die Kurve mittels glEvalCoord1f an Zwischenpunkten aus, so dass pro Kurvenstück anzlinku Linien entstehen.
- 3 Beenden wir das Zeichnen mit glEnd.

```
// auswerten an Zwischenpunkten und zeichnen
glBegin( GL_LINE_STRIP );
for ( int i = 0; i <= daten.anzlinku; i++ )
glEnd();</pre>
```



```
for ( int c = 0; c < daten.anzkurv; c++ )</pre>
    double phi = 2.0 * M_PI * ((double)c) / daten.anzkurv;
    // Male die Kurvenabschnitte
    for ( int k = 3; k \le m; k += 3 ){
      // Bezierkurve vorbereiten, indem alle 4 Kontrollpunkte des
      // aktuellen Kurvenabschnitts an OpenGL uebergeben werden
      for( int i = 0; i < 4; i++ )
      { apPoints[ ... ] = ... }
      glMap1f( GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, apPoints );
      glEnable( GL_MAP1_VERTEX_3 );
      // auswerten an Zwischenpunkten und zeichnen
      glBegin( GL_LINE_STRIP );
        for ( int i = 0; i <= daten.anzlinku; i++ )
          glEvalCoord1f( ((GLfloat)i)/daten.anzlinku );
      glEnd();
```

```
// Male die Kurvenabschnitte
for ( int c = 0; c < daten.anzkurv; c++ ){}
// Male die Kreise</pre>
```



```
// Male die Kurvenabschnitte
for ( int c = 0; c < daten.anzkurv; c++ ){}
// Male die Kreise</pre>
```

Wie haben wir es gemacht ohne Opengl?


```
// Male die Kurvenabschnitte
for ( int c = 0; c < daten.anzkurv; c++ ){}
// Male die Kreise
Wie haben wir es gemacht ohne Opengl?
  • Bézier-Kurven Q(t) = G_B M_B T = C_{Be} T T = (t^3, t^2, t, 1)^T
void berechneRotationsKoerper( vector<Kante>& vk, const vector<Vec3D> &p,
                                int anzkurv = 5, int anzlinku = 20,
                                int anzkreis = 5, int anzlinkr = 20 ){
  int m = p.size() - 1;
  for (k = 3; k \le m; k += 3) {
    /*----- berechne vorweg die Matrizen C[d] -----*/
                                 /*DONE*/
```

Also, nur zu erinnerung:


```
// Male die Kreise
for (k = 3; k \le m; k += 3) {
   /*----- berechne vorweg die Matrizen C[d] -----*/
    for (k = 3; k \le m; k += 3) {
      for (d = 0; d < 2; d++){ // für x und y}
       c[0][d] = -p[k - 3].el[d] + 3*p[k - 2].el[d] - 3*p[k - 1].el[d]
          + p[k].el[d];
       c[1][d] = 3*p[k - 3].el[d] - 6 * p[k - 2].el[d]
          + 3*p[k - 1].el[d];
        c[2][d] = -3*p[k - 3].el[d] + 3*p[k - 2].el[d];
       c[3][d] = p[k - 3].el[d];
```

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$


```
// Male die Kreise
for (k = 3; k <= m; k += 3) {
    /*----- berechne vorweg die Matrizen C[d] -----*/
    /*DONE*/
}</pre>
```

Wie viele Kreisen mahlen wir?

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$

Jeder Kreis wird durch anzlink Geradenstücke angenähert.

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$

```
// Male die Kreise
for (k = 3; k <= m; k += 3) {
    /*------ berechne vorweg die Matrizen C[d] -----*/
    /*DONE*/

for ( int i = 0; i < daten.anzkreis; i++ ){
    double t = i * 1.0 / ((double)daten.anzkreis-1);
    Vec4D anf = C*T(t)
}</pre>
```

Jeder Kreis wird durch anzlink Geradenstücke angenähert. Nochmal verwenden wir

- glBegin(GL_LINE_STRIP)
 - glVertex3f(x,y,z)
 - glEnd

• Bézier-Kurven $Q(t) = G_B M_B T = C_{Be} T$ $T = (t^3, t^2, t, 1)^T$

```
// Male die Kreise
for (k = 3; k \le m; k += 3)
    /*---- berechne vorweg die Matrizen C[d] ----*/
                                /*DONE*/
  for ( int i = 0; i < daten.anzkreis; i++ ){</pre>
    double t = i * 1.0 / ((double)daten.anzkreis-1);
    Vec4D anf = C*T(t)
    glBegin( GL_LINE_STRIP );
    for ( int j = 0; j <= daten.anzlinkr; j++ ){</pre>
      double phi = j * 2.0 * M_PI / ((double)daten.anzlinkr);
      glVertex3f( anf.el[0], cos(phi) * anf.el[1], sin(phi) * anf.el[1] );
    glEnd();
```

Jeder Kreis wird durch anzlink Geradenstücke angenähert.

run!

