

Virginia Highways: MAP-21

by Christian Schroeder, Timothy (Will) Tyree, Colin Warner

Executive Summary

Research Question:

Is it possible to predict the reliability of travel time for each Virginia interstate segment?

Response Variable:

RELIABLE

OR

UNRELIABLE

Findings:

Decision Tree accurately identifies unreliable segments for VDOT.

Data Import and Preprocessing

By Highway Segment

By Highway Segment, Year, and Daily Traffic Period

- Area Type
- Terrain
- Road
- Direction
- Road Direction
- District
- Intersection
- Road Order
- Global Order

54,624 rows | 21 Columns

тмс	YEAR	PERIOD	PCT- PRECIP- MINS	V/C_STRAIGHT_AVG
110+04170	2018	AMP	0.0035	0.705245
110+04170	2018	MIDD	0.0021	0.654288
110+04170	2018	PMP	0.0077	0.616007
110+04170	2018	WE	0.0090	0.657910

- Crashes
- Weather
- Precipitation
- SSP
- V/C_Straight_AVG
- AVG HOURLY VAL

By Highway Segment and Year

Number of Lanes

Data Splitting

Check distribution of numeric variables - do they benefit from Log transformation?

Weather Events, Hourly Volume Rate, and Precipitation Rate Distribution vs. Log Transform Distribution

How do Volume/Capacity and District variables impact reliability?

How District and Volume Affect Reliability

2017 - Reliability

2017 - Hourly Traffic Volume

2017 - Reliability

2017 - Crashes

Model Construction | Build Pipeline

pipeline = Pipeline(stages=[stringIndexer,encoder,assembler])

Model Construction | Logistic Regression

Parameter Grid

Cross Validator

= CrossValidator(estimator = Ir, estimatorParamMaps = IrParamGrid, evaluator = evaluator, numFolds = 10, seed=314)

Best Model

Lambda = 0.01, Max Iterations = 10, Alpha = 0.2

TP	TN	FP	FN	Accuracy	AUROC
0.343	0.978	0.022	0.657	0.911114	0.66029

Model Construction | Logistic Regression

AUROC	Accuracy	FN	FP	TN	TP	Threshold
+		+		++		+
0.8727	0.82411	0.066	0.189	0.811	0.934	0.1
0.82049	0.88638	0.263	0.096	0.904	0.737	0.2
0.74812	0.90168	0.446	0.057	0.943	0.554	0.3
0.71108	0.91187	0.543	0.035	0.965	0.457	0.4
0.66029	0.91114	0.657	0.022	0.978	0.343	0.5
0.59943	0.90605	0.789	0.012	0.988	0.211	0.6
0.54468	0.90095	0.907	0.004	0.996	0.093	0.7
0.51496	0.89694	0.969	0.001	0.999	0.031	0.8
0.50173	0.89512	0.997	0.0	1.0	0.003	0.9

Model Construction | Random Forest

Parameter Grid

= (ParamGridBuilder() \
 .addGrid(rf.maxDepth, [2, 5, 10]) \
 .addGrid(rf.maxBins, [10, 20]) \
 .addGrid(rf.numTrees, [5, 20, 50]) \
 .build())

Cross Validator

= CrossValidator(estimator = rf, estimatorParamMaps = rfParamGrid, evaluator = evaluator, numFolds = 10, seed=314)

Best Model

Max Depth = 10, Max Bins = 10, Num Trees = 5

TP	TN	FP	FN	Accuracy	AUROC
0.083	0.9996	4.0E-4	0.917	0.90313	0.54132

Model Construction | Random Forest

+	+		+			++
Threshold	TP	TN	FP	FN	Accuracy	AUROC
+	+					
0.2	0.7889	0.8596	0.1404	0.2111	0.85215	0.82426
0.1	0.9827	0.6227	0.3773	0.0173	0.6606	0.8027
0.3	0.5571	0.9573	0.0427	0.4429	0.91515	0.75718
0.4	0.1972	0.9923	0.0077	0.8028	0.90859	0.59475
0.5	0.083	0.9996	4.0E-4	0.917	0.90313	0.54132
0.6	0.0415	1.0	0.0	0.9585	0.89913	0.52076
0.7	0.0173	1.0	0.0	0.9827	0.89658	0.50865
0.8	0.0	1.0	0.0	1.0	0.89476	0.5
0.9	0.0	1.0	0.0	1.0	0.89476	0.5
+	+		+			++

Model Construction | Decision Trees

Parameter Grid

```
= (ParamGridBuilder() \
.addGrid(dt.maxDepth, [2, 5, 10]) \
.addGrid(dt.maxBins, [10, 20]) \
.build())
```

Cross Validator

= CrossValidator(estimator = dt, estimatorParamMaps = dtParamGrid, evaluator = evaluator, numFolds = 10, seed=314)

Best Model

Max Depth = 10, Max Bins = 20

TP	TN	FP	FN	Accuracy	AUROC
0.6886	0.978	0.022	0.3114	0.94756	0.8333

Model Construction | Decision Trees

+	+	+	+	+	+	++
Threshold	TP	TN	FP	FN	Accuracy	AUROC
+	+	+	+	+	+	++
0.1	0.803	0.901	0.099	0.197	0.89039	0.85173
0.2	0.699	0.974	0.026	0.301	0.94465	0.83625
0.3	0.692	0.978	0.022	0.308	0.94756	0.83483
0.4	0.689	0.978	0.022	0.311	0.94756	0.8333
0.5	0.689	0.978	0.022	0.311	0.94756	0.8333
0.6	0.498	0.994	0.006	0.502	0.9421	0.74629
0.7	0.484	0.996	0.004	0.516	0.9421	0.74018
0.8	0.474	0.996	0.004	0.526	0.94101	0.73499
0.9	0.415	0.998	0.002	0.585	0.937	0.7068
+	+	+	+	+	+	++

Model Evaluation

Model Evaluation

YEAR pred	iction	count
2021	0.0	6458
2021	1.0	370
2022	0.0	6453
2022	1.0	375
2023	0.0	6453
2023	1.0	375
2024	0.0	6454
2024	1.0	374
++	+	+

Model Evaluation - NOVA

2020 Historical

2021 Forecasted

ALEXANDRIA

Model Evaluation - Stafford Area

2020 Historical

2021 Forecasted

Model Evaluation - Portsmouth

2020 Historical

2021 Forecasted

Conclusions & Future Work

- The Decision Tree model projected on average 136 highway segments to be unreliable each year from 2021-2024
- Tradeoffs based on context of the problem
- Future Work: Evaluating the methodology used for the Forecasted data set
- Future Work: Developing methods to advise the state on which enhancements would make specific unreliable segments more reliable.

