HackaTAL 2024

Commande vocale de robots

Université Toulouse Jean-Jaurès, les 8 et 9 juillet 2024

Éditions du HackaTAL

- 2016 Paris (Google)
 - Détection d'évènements
 - Gestion de dialogues
- 2017 Orléans (LAB'O)
 - Résumé automatique de commentaires sur des produits en ligne
 - Identification des tendances stratégiques liées aux brevets
- 2018 Rennes (IRISA)
 - Repérer et catégoriser les fausses informations
 - Agrégation des fausses nouvelles pour vision synthétique
- 2019 Toulouse (Université Toulouse 1)
 - Analyses du grand débat national
 - Chatbots juridiques
- 2020-2023 nulle part (aka blackout raoultien)
- 2023 Paris (SCAI)
 - Wikipédia & Politique
 - Détection de Citations
- 2024 Toulouse (Université Toulouse Jean-Jaurès)
 - Commande vocale de robots

Commande vocale de robot

Robot

- Mot tchèque dérivé (1920) de robota (« travail, besogne, corvée »)
- Réalisation de tâches (industrie, cuisine, aspirateurs, tondeuses, drones, voitures)
- Humanoïdes dans l'imaginaire, pas tellement en pratique (ou jeu)
- Capacités cognitives (compréhension, planification) et physiques (senso-motrices)

• Commander un robot

- Interfaces explicites (boutons) ou « commandes » plus ou moin naturelles (voix)
 - Capacités de compréhension, d'interprétation, de dialogue (bot génératif)
 - Converger vers un langage pour formuler des instructions
- Objectif distant à atteindre par planification d'actions (étapes)
- Dépendance forte aux contraintes physiques du monde
- Quelles capacités (machines ou humains)
 - Charge cognitive des tâches à réaliser
 - Dissocier le contrôle de la supervision (voitures) et de la conscience
 - Confiance et dystopie de la perte du contrôle

Organisation

Organisateurs

- Audran Bert (LINAGORA)
- Florian Boyer (Alrudit)
- Chloé Braud (IRIT)
- Angélique Burault (Alrudit)
- Isabelle Ferrané (IRIT)
- Kévin Gravouil (Alrudit)
- Philippe Lebas (Alrudit)
- Jean-Pierre Lorre (LINAGORA)
- Damien Nouvel (Inalco ERTIM)
- Julien Pinquier (IRIT)
- Kate Thompson (LINAGORA)

Étudiants en support (merci!)

- Othman Belgnaoui
- Cyprien Gay
- Samuel Gendre
- Mathilde Lalanne

Programme

Lundi 8 juillet dans la Bulle

- 10h-11h: introduction, présentation du hackathon
- 11h-12h : discussions par groupes
- 12h-14h : pause déjeuner (crous)
- 14h-17h : développements par équipes
- 18h-19h : présentations intermédiaires (concertation)
- 19h-21h : cocktail et buffet
- 21h-23h : développements par équipes (évaluations qualitatives)

Mardi 9 juillet dans la Bulle et en hybride (lien Zoom à venir)

- 10h-11h : présentation des travaux réalisés par les équipes
- 11h-12h : remise des prix (vote) et conclusion

Défis

- 1. Un membre de l'équipe interagit avec le robot pour piloter en temps réel
- Un membre de l'équipe vocalise l'ensemble des instructions en une fois, le robot doit ensuite les exécuter
- 3. Un manuel réalisé par l'équipe est donné à une personne extérieure qui en prend connaissance et interagit avec le robot

Défis

- Les équipes devront réaliser des parcours reproduisant une figure en un minimum d'étapes / instructions
 - les équipes peuvent proposer eux-mêmes une figure
 - ou en tirer une au sort
 - ou on impose 2 figures par équipes ?

- Les équipes devront reproduire des lettres en un minimum d'étapes / instructions pour former l'un des mots suivants :
 - JEP
 - o TALN
 - HACKATAL

Prix

Sur la base d'un vote des participants et des organisateurs :

- prix Alrudit, créativité
 Utilisation innovante et disruptive des briques logicielles par un assemblage original ou un détournement dans leur utilisation
- prix LINAGORA, commande vocale
 Meilleure performance dans les défis avec bonus pour l'utilisation de l'outils LinTO pour la reconnaissance de la parole.

Robot Explorateur Projet étudiant de 1A SRI

Adapté pour le HackaTal 2024

Contributeurs SRI 1A:

- Othman Belgnaoui
- Cyprien Gay
- Samuel Gendre
- Mathilde Lalanne

Isabelle Ferrané – Julien Pinquier - IRIT

Architecture générale

Robot mobile

Architecture matérielle

Activation de l'interprétation

du fichier audio

Interface utilisateur

Code fourni – basé Node.js Angular html

CHALLENGE

Activation enregistrement

Déplacement du robot

COMMANDES de BASE	DÉPLACEMENT
 F: Forward, avancer: met en marche avant les moteurs à la vitesse 200 B: Backward, reculer: met en marche arrière les moteurs à la vitesse 200 	
 L : Left, gauche : fait tourner le robot sur lui-même vers la gauche R : Right, droite : fait tourner le robot sur lui-même vers la droite 	Angle 90°
S : stop : arrête le robot. Il faut noter que l'arrêt n'est pas instantané et d'anticiper la distance de freinage, parfois jusqu'à 20cm selon la vitesse	donc
+ : accélère : augmente le paramètre speed des moteurs et augmente la vitesse du robot	
: ralenti : réduit le paramètre speed des moteurs et réduit la vitesse d robot	du
 V : met le paramètre speed à puissance maximum, soit à 100% 	

Déplacement du robot

SIMULATION DÉPLACEMENT RÉEL

['F', 'F', 'F', 'R', 'F', 'L', 'B', 'L', 'F', 'F', 'R', 'F']

Environnement fourni

CODE DISPONIBLE

Archive HACKATAL_2024

HACKATAL ...

... A VOUS DE JOUER !!!

API TAL

Hackatal 2024

Sairudit

Phillipe Lebas
Fondateur et CEO

Kévin Gravouil Responsable R&D

Comment y accéder

- 1. Récupérer un token d'authentification auprès d'Airudit
- 2. Aller à : http://<ADRESSE_IP>:8008/docs
- Via Python :

```
import requests
BASE_URL = "http://<ADRESSE_IP>:8008/"
headers = {
    "X-Airudit-Token": "airu-XXX",
    "Content-Type": "application/json",
}
your_data = { ... }
resp = requests.post(f"{BASE_URL}/multitask/predict", headers=headers, json=your_data)
print( resp.status_code ) # 200=OK, 401=unauthorized, 500=venez me voir
print( resp.headers ) # peut contenir des infos utiles
print( resp.json() ) # contient la résultat de l'analyse demandée
```


Fonctionnalités

/check_auth_token	Vérifie si le token d'authentification est correct
/tokenize	Tokenize une phrase
/matcher_fast	Match many keywords on a sentence
/matcher_complex (1)	Match many "NLP patterns" on a sentence
/number_handler	Détection des expressions et valeurs numériques
/temporal_handler (1)	Détection des informations temporelles
/multitask/predict	Prédit les entités nommées, l'arbre syntaxique et les POStags
/generate	Génère la suite des tokens probables du texte en entrée à l'aide d'un LLM
/nli	Estimation de l'adéquation entre un statement et une liste de labels candidats

http://<ADRESSE IP>:8008/docs

ou venez me voir

Prix

Votre **créativité** dans la manière où vous exploitez et assemblez les différents outils existants

LinTO-STT: API de transcription

Jean-Pierre LorréR&D Director

Kate Thompson NLP

Audran Bert Speech recognition

LinTO-STT, qu'est ce que c'est?

C'est quoi ? Une API

- De transcription
- Open source
- Écrite en Python
- Capable de fonctionner en mode temps réel ou non

Comment ca marche?

- Une image Docker à déployer
- Simple requête HTTP
- En mode temps réel il faut se connecter en WebSocket

Avantages?

- Modèle haute performance : Whisper
- Ou modèle moins performant mais plus léger : kaldi
- Fonctionne sur CPU et GPU
- Capable de transcrire dans plusieurs langues
- Ou de traduire vers l'anglais

LinTO-STT, Comment l'utiliser?

Docker

- Installer Docker
- Choisir son image
- Définir les différentes options
- Lancer l'image

<u>Tutoriel pour déployer</u> <u>I'API</u>

Paramètres

- Choix du modèle
- Choix de la langue
- Choix du device (GPU/CPU)
- Mode streaming (temps réel)

Requêtes

- Mode « offline » : curl -X POST "http://ADDRESS"...
- Mode streaming :
 - Exemple dans le <u>Repo GitHub</u>.
 Connexion via le package websockets en Python

Gitlab:

https://gitlab.irit.fr/melodi/hackatal_robot24_public