HW2: Problem 1

Mehran Shakerinava

October 2019

For brevity, I'll write $\mathbb{E}_{x \sim p_{\theta}(X|y)}$ as $\mathbb{E}_{x|y}$.

The following result forms the basis of the solutions to this problem:

$$\mathbb{E}_{a_t|s_t} \left[\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \right] = \int \pi_{\theta}(a_t|s_t) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) da_t$$

$$= \int \pi_{\theta}(a_t|s_t) \frac{\nabla_{\theta} \pi_{\theta}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} da_t$$

$$= \int \nabla_{\theta} \pi_{\theta}(a_t|s_t) da_t$$

$$= \nabla_{\theta} \int \pi_{\theta}(a_t|s_t) da_t$$

$$= \nabla_{\theta} 1$$

$$= 0$$

Part A

$$\begin{split} \mathbb{E}_{\tau} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) b(s_t) \right] &= \mathbb{E}_{s_t, a_t} \left[\mathbb{E}_{\tau/s_t, a_t | s_t, a_t} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) b(s_t) \right] \right] \\ &= \mathbb{E}_{s_t, a_t} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) b(s_t) \right] \\ &= \mathbb{E}_{s_t} \left[\mathbb{E}_{a_t | s_t} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) b(s_t) \right] \right] \\ &= \mathbb{E}_{s_t} \left[b(s_t) \mathbb{E}_{a_t | s_t} \left[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right] \right] \\ &= 0 \end{split}$$

Part B

a)

Because of the Markov property, given s_t , the distribution of states and actions after time t is independent of states and actions before time t. This implies that $\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)b(s_t)$, which is a function of s_t and a_t , is independent of $(s_1, a_1, ..., a_{t-1})$ given s_t , and thus, conditioning on $(s_1, a_1, ..., a_{t-1}, s_t)$ is equivalent to conditioning only on s_t .

b)

$$\begin{split} \mathbb{E}_{\tau} \left[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) b(s_{t}) \right] &= \mathbb{E}_{s_{1:t}, a_{1:t-1}} \left[\mathbb{E}_{s_{t+1:T}, a_{t:T}|s_{1:t}, a_{1:t-1}} \left[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) b(s_{t}) \right] \right] \\ &= \mathbb{E}_{s_{1:t}, a_{1:t-1}} \left[\mathbb{E}_{s_{t+1:T}, a_{t:T}|s_{t}} \left[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) b(s_{t}) \right] \right] \\ &= \mathbb{E}_{s_{1:t}, a_{1:t-1}} \left[\mathbb{E}_{a_{t}|s_{t}} \left[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) b(s_{t}) \right] \right] \\ &= \mathbb{E}_{s_{1:t}, a_{1:t-1}} \left[b(s_{t}) \mathbb{E}_{a_{t}|s_{t}} \left[\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right] \right] \\ &= 0 \end{split}$$