

UNIVERSITÄ BERN

Übung Open Data

BADEWETTER-INDEX, Gruppe 5

Abschlusspräsentation, 23. Mai 2019

Benjamin Schüpbach und Christoph von Matt

Forschungsstelle Digitale Nachhaltigkeit Institut für Wirtschaftsinformatik Universität Bern

Team

b UNIVERSITÄT BERN

> Benjamin Schüpbach

- Hauptfach: Geographie (Master)
- Semester: 4
- Bisherige Programmiererfahrung: Python
- Email: <u>benjamin.schuepbach@students.unibe.ch</u>

Christoph von Matt

- Hauptfach: Geographie (Master)
- Semester: 4
- Bisherige Programmiererfahrung: Python, R
- Email: <u>christoph.vonmatt@students.unibe.ch</u>

UNIVERSITÄT BERN

Aufgabenstellung

- > Ausgangslage, Problemstellung:
 - Messwerte automatischer Wetterstationen (MeteoSchweiz)

- > Zielsetzung:
 - Aufzeigen des Potentials von OpenData anhand eines Badeindexes

- Datenquelle, Data Coaches:
 - Daniel Wolf (MeteoSchweiz)
 - Joël Fisler (MeteoSchweiz)
 - Weitere Quellen: BAFU, BFS (komplementäre Daten)

u^{b}

Daten

b UNIVERSITÄT BERN

Datenformate:

- CSV (Meteodaten, MCH)
 → StationsID, Temperatur, Niederschlag, Luftfeuchte, ...
- .txt (Metadaten, MCH)→Stationshöhe, Stationsname, ...
- JSON (Flusstemperaturen, BAFU)
 →Stationsname, Temperaturklasse, ...
- Shapefile (Basisgeometrien, BFS)
 →Landes- und Kantonsgrenzen

Seite von MeteoSchweiz: Messdaten

u^{b}

Vorgehen

b UNIVERSITÄT BERN

- > Datenbeschaffung:
 - OpenData Plattform (direkt per R-Skript)
 - Webseite Bundesamt f
 ür Statistik (BFS)
- > Datentransformation:
 - Konvertierung GeoJson / TopoJson
 - Indexberechnung (R-Skript),
 räumliche Interpolation (QGIS)
- Technologien, Libraries etc.:
 - D3.js, Bootstrap, R, QGIS, jQuery, Google Fonts

```
# Section 3: Joining Data-Tables together by "Station"
     joined <- right_join(meta, badewetter_subset, by="Station")
                                                                    R-Skript
     joined <- as.data.frame(joined)
     # Section 4: INDEX CALCULATION
    # get dimensions r-rows, c-cols
    dims <- dim(joined)</pre>
    r <- dims[1]
193 c <- dims[2]
    # Badewetter-Index Calculation
     index <- rep(NA, r)
    cols <- colnames(joined)</pre>
      temp <- as.numeric(joined[i,grep("Temp+", col
      prec <- as.numeric(joined[i,grep("Nieder+", c</pre>
      sun <- as.numeric(joined[i,grep("Sonnen+", co</pre>
      glob <- as.numeric(joined[i,grep("Global+", c</pre>
      feu <- as.numeric(joined[i,grep("Luftfeu+", c
      wind <- as.numeric(joined[i,grep("Windgesch+"
      if(!(is.na(temp) || is.na(prec) ||is.na(sun)
        \#index[i] <- 0.4*temp + 0.2*prec + 0.05*sun
        index[i] <- temp_cont(temp, temp_wgt, temp_</pre>
         glob_cont(glob, glob_wgt, glob_max) + feu
```

u^{b}

Resultat

b UNIVERSITÄT BERN

> Link: http://bs14v076.opendata.iwi.unibe.ch

GitHub: @taetscher, @codicolus

- Visualisierungsart:
 - Karte
- > Funktionalitäten:
 - Variable Interpolationsgenauigkeit
 - Benutzerdefinierte, dynamische Berechnung des Index
 - Anzeige aktueller Messdaten per Tooltip

Fazit

D UNIVERSITÄT BERN

- > Was haben wir gelernt?
 - Programmieren von Web-Applikationen

- > Was würden wir nächstes Mal anders machen?
 - Ressourceneffizienz auf Benutzerseite steigern (lange Ladezeiten von Rasterdaten)

- Was bringt uns diese Übung?
 - Erweiterung unserer Programmierfähigkeiten
 - Verbindung von Geospatial Analysis Tools und web-basierten Visualisierungsmöglichkeiten