итмо Библиотека оптимизации графовых структур GOLEM

Ямщикова Любовь, yamlyubov@gmail.com

Задачи для графов:

- Оптимизируем топологию
- Оптимизируем свойства/атрибуты вершин и ребер
- И то, и другое
- Генерируем графы
- Проводим комбинаторную оптимизацию

В виде графа можно представить:

- Байесовские сети
- Пайплайны машинного обучения
- Нейронные сети
- Молекулы
- Дифференциальные уравнения
- Физические модели

и т.д.

Применение GOLEM

GOLEM может быть применен к задачам:

- представимым в виде направленных графов
- имеющим четко определенную метрику качества

Bayesian Networks

- нода ~ одна из переменных
- граф ~ байесовская сеть

AutoML Pipelines

- нода ~ один из алгоритмов ML
- граф ~ сложный ансамбль

Neural Architecture Search

- нода ~ слой нейронной сети
- граф ~ вся нейронная сеть

Equation Discovery

- нода ~ мат. операция или дифф. операто
- граф ~ дифф. уравнение

GOLEM: Graph Optimization and Learning by Evolutionary Methods

Методы из предметных областей:

- Специфичность
- Закрытость графовых представлений
- Закрытость алгоритмов

GOLEM:

- Универсальность
- Открытое и естественное графовое представление
- Расширяемость

- Оптимизация структуры графа и его свойств (атрибутов узлов)
- **Метаэвристические методы** (в основном эволюционные), применимые к любой задаче с четко заданной целевой функцией
- **Многоцелевая оптимизация**, которая может учитывать как качество, так и сложность
- Оптимизация с поддержкой произвольных ограничений
- Расширяемость для новых предметных областей
- Интерпретируемость благодаря метаэвристике, структурированным моделям и инструментам визуализации
- **Воспроизводимость** благодаря подробной истории оптимизации и сериализации моделей

- Оптимизация структуры графа и его свойств (атрибутов узлов)
- **Метаэвристические методы** (в основном эволюционные), применимые к любой задаче с четко заданной целевой функцией
- **Многоцелевая оптимизация**, которая может учитывать как качество, так и сложность
- Оптимизация с поддержкой произвольных ограничений
- Расширяемость для новых предметных областей
- Интерпретируемость благодаря метаэвристике, структурированным моделям и инструментам визуализации
- **Воспроизводимость** благодаря подробной истории оптимизации и сериализации моделей

- Оптимизация структуры графа и его свойств (атрибутов узлов).
- **Метаэвристические методы** (в основном эволюционные), применимые к любой задаче с четко заданной целевой функцией.
- **Многоцелевая оптимизация**, которая может учитывать как качество, так и сложность.
- Оптимизация с поддержкой произвольных ограничений
- Расширяемость для новых предметных областей
- Интерпретируемость благодаря метаэвристике, структурированным моделям и инструментам визуализации.
- **Воспроизводимость** благодаря подробной истории оптимизации и сериализации моделей.

- Оптимизация структуры графа и его свойств (атрибутов узлов)
- **Метаэвристические методы** (в основном эволюционные), применимые к любой задаче с четко заданной целевой функцией
- **Многоцелевая оптимизация**, которая может учитывать как качество, так и сложность
- Оптимизация с поддержкой произвольных ограничений
- Расширяемость для новых предметных областей
- Интерпретируемость благодаря метаэвристике, структурированным моделям и инструментам визуализации
- **Воспроизводимость** благодаря подробной истории оптимизации и сериализации моделей

- Оптимизация структуры графа и его свойств (атрибутов узлов)
- **Метаэвристические методы** (в основном эволюционные), применимые к любой задаче с четко заданной целевой функцией
- **Многоцелевая оптимизация**, которая может учитывать как качество, так и сложность
- Оптимизация с поддержкой произвольных ограничений
- Расширяемость для новых предметных областей
- Интерпретируемость благодаря метаэвристике, структурированным моделям и инструментам визуализации
- **Воспроизводимость** благодаря подробной истории оптимизации и сериализации моделей

- Оптимизация структуры графа и его свойств (атрибутов узлов)
- **Метаэвристические методы** (в основном эволюционные), применимые к любой задаче с четко заданной целевой функцией
- **Многоцелевая оптимизация**, которая может учитывать как качество, так и сложность
- Оптимизация с поддержкой произвольных ограничений
- Расширяемость для новых предметных областей
- Интерпретируемость благодаря метаэвристике, структурированным моделям и инструментам визуализации
- **Воспроизводимость** благодаря подробной истории оптимизации и сериализации моделей

Основные компоненты GOLEM: Оптимизатор

Основные компоненты GOLEM: Настройка оптимизатора

Как настроить **GOLEM** для своей задачи?

Нужно определить:

- 1. Операции, из которых строится граф
- 2. Представление графа
- 3. Целевую функцию
- 4. Параметры оптимизации и требования к итоговым графам
 - а. размер поколения, вероятности мутации и т.д.
 - b. например, максимальная ширина и глубина графа
- 5. (Опционально) Специфичные правила верификации
- 6. (Опционально) Специфичные операторы для графов (например, особые мутации)

Направления исследований и задач

- Исследование модификаций основного эволюционного оптимизатора
- Реализация других оптимизаторов (PSO, Ant Colony, Simulated Annealing etc.) и гибридных подходов
- Применение фреймворка к новым типам задач:
 - генерация графов (например, молекулярных)
 - о конечных автоматов (например, для игровых ситуаций)
 - 0 ...

Спасибо за внимание!

ITSMOre than a UNIVERSITY

Ямщикова Любовь, yamlyubov@gmail.com