UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE INFORMÁTICA (DPI)

TRABALHO PRATICO 1

Rafael Zardo Crevelari – ES105468 Natascha Siqueira Martinez Palhares - ES105460

> Disciplina: Matemática Discreta Professor: André Gustavo Dos Santos

13 de julho 2022

RESPOSTAS:

Exercício 1: (Feito por Natascha)

Note que para um número ser escrito como a soma de cubos de inteiros positivos, os números escolhidos para serem elevados ao cubo tem que ser menor ou igual a raiz cúbica do número final. Ou seja, a raiz cúbica de 1729 é aproximadamente 12,0023, então tem que ser escolhidos números menores ou iguais a 12.

Como vimos em sala que o primeiro número que pode ser escrito como a soma de cubos inteiros positivos de duas maneiras diferentes é o 1729, então vamos começar pelo número 1730.

Utilizando o programa exercicio1.cpp, temos que

```
4104 atende as propriedades: 2^3 + 16^3 = 9^3 + 15^3
13832 atende as propriedades: 2^3 + 24^3 = 18^3 + 20^3
20683 atende as propriedades: 10^3 + 27^3 = 19^3 + 24^3
32832 atende às propriedades: 4^3 + 32^3 = 18^3 + 30^3
39312 atende as propriedades: 2^3 + 34^3 = 15^3 + 33^3
40033 atende as propriedades: 9^3 + 34^3 = 16^3 + 33^3
46683 atende às propriedades: 3^3 + 36^3 = 27^3 + 30^3
64232 atende as propriedades: 17^3 + 39^3 = 26^3 + 36^3
65728 atende às propriedades: 12^3 + 40^3 = 31^3 + 33^3
110656 atende às propriedades: 4^3 + 48^3 = 36^3 + 40^3
```

O código exercicio1.cpp para depois de encontrar 10 números que podem ser escritos como a soma de cubos inteiros positivos de duas maneiras diferentes. Porém, se quiser encontrar mais números, basta aumentar a restrição do laço de repetição while. Ou seja, se quiser saber 15 números que atendem a essas propriedades basta mudar o cont < 10 para cont < 15, por exemplo.

Exercício 2: (Feito por Rafael)

Para responder esse exercício foi criado o software **exercicio2.cpp**, para obter os números **Inválidos**, ou seja, os que não podem ser escritos como a soma de quartas potenciais de 18 valores inteiros. O software gera os números até o tamanho máximo de uma variável int, depois disso a linguagem C++ não consegue computar os próximos números. A tabela da direta foi extraída a partir do software em questão, vale ressaltar que todos os dados obtidos pelo software não estão na tabela, uma vez que encontrar valores para números maiores que 200/300 demandas uma elevada quantidade de tempo pelo software. Logo, podemos perceber na tabela a direita que os números 159, 239 são inválidos, assim temos outros números além do 79 com a propriedade de não poderem ser escritos como a soma de quartas potenciais de 18 valores inteiros.

Sequência		
Valor	Situação	
0	Valido	
78	Valido	
79	Invalido	
80	Valido	
158	Valido	
159	Invalido	
160	Valido	
238	Valido	
239	Invalido	

Exercício 3: (Feito por Natascha)

Utilizando o programa exercicio3.cpp, temos que Os 11 primeiros números de Fibonacci que são divisíveis por 5 são:

0, 5, 55, 610, 6765, 75025, 832040, 9227465, 102334155, 1134903170, 512559680, 1820529360

Note que, a partir do 3 termo, conseguimos chegar no próximo divisível por 5, multiplicando o anterior por 11 e somando a esse valor o número anterior ao anterior. Assim, tomamos por definição o primeiro termo como 0 e o segundo como 5.

Dessa forma conseguimos achar os próximos números divisíveis por 5 seguindo essa conjectura:

```
0

5

55 = (11*5) +0

610 = (11*55) +5

6765 = (11*610) + 55

75025 = (11 * 6765) + 610
```

E assim por diante....

Além disso, note que, os números de Fibonacci são divisíveis por 5, se e somente se, seu índice for divisível por 5 (posição na sequência de Fibonacci). Assim, temos que,

```
5 \Rightarrow índice 5

55 \Rightarrow índice 10

610 \Rightarrow índice 15
```

E assim por diante....

Obs: por questões de tamanho do número, o código exercicio3.cpp foi feito para descobrir apenas os 11 primeiros números.

Exercício 4: (Feito por Rafael)

Para responder esse exercício foi criado o software **exercicio4.cpp**, para obter os números de Fibonacci. O software gera os números da sequência de Fibonacci até o tamanho máximo de uma variável long long int, depois disso a linguagem C++ não consegue computar os próximos números de Fibonacci. A tabela da direta foi extraída a partir do software em questão, vale ressaltar que todos os dados obtidos pelo software não estão na tabela, apenas estão uma quantidade suficiente para o entendimento da conjectura, caso queira ver os dados completos é recomendado rodar o software.

Com os dados da tabela, podemos formar uma conjectura a respeito dos números de Fibonacci divisíveis por 3. Analisando a tabela, temos os 28 primeiros números de Fibonacci, caso queiramos encontrar os divisíveis por 3 dentro dessa lista, basta dividir o número em questão por 3 e obter o resto 0. Assim, baseado no obtido pelo nosso software, os números com fundo cinza e destacados com negrito são os números divisíveis por 3 dos 28 primeiros números de Fibonacci. A partir disso, podemos perceber um padrão na nossa tabela, em que a cada 3 elementos, o próximo é um número divisível por 3. Ou seja, a partir disso podemos notar outro fato importante, o qual é, todo elemento divisível por 3 nos 28 primeiros números de Fibonacci possui índice divisível por 4, como podemos ver no número 3, o qual possui índice 4 e 4 mod 4 = 0, também fica evidente no número 21, o qual possui índice 8 e 8 mod 4 = 0 e assim se repete nos índices divisíveis por 4 posteriores. Assim, para ver se essa aplicação é valida basta rodar o software e analisar o resto dos dados. Fazendo isso, podemos afirmar que de fato é verdadeiro e podemos concluir uma conjectura que, um número de Fibonacci é divisível por 3 se, e somente se, seu índice é divisível por 4. Outra conjectura que pode ser observada é, note que, conseguimos chegar no próximo divisível por 3, multiplicando o anterior por 7 e diminuindo a esse valor o número anterior do anterior. Assim, tomamos por definição o primeiro termo como 3 e o segundo como 21. Podemos ver isso no exemplo 21(Número divisível por 3 anterior) * 7 - 3(Número divisível por 3 anterior do anterior) = 144 (Número divisível por 3 atual), e isso é verdadeiro conforme mostrado na tabela a direita.

Números de			
Fibonacci			
Índice	Número		
1	1		
2	1		
3	2		
4	3		
5	5		
6	8		
7	13		
8	21		
9	34		
10	55		
11	89		
12	144		
13	233		
14	377		
15	610		
16	987		
17	1597		
18	2584		
19	4181		
20	6765		
21	10946		
22	17711		
23	28657		
24	46368		
25	75025		
26	121393		
27	196418		
28	317811		

Exercício 5: (Feito por Natascha)

Queremos verificar que (2n)! / ((n!) (n!)) É divisível por um número primo ao quadrado. Vamos considerar n > 2, uma vez que,

Para
$$n = 1 \implies (2*1)! / (1! 1!) = 2$$
 e para $n = 2 \implies (2*2)! / (2! 2)! = 6$

O menor primo é o 2 e o segundo menor é 3, $2^2 = 4 > 2$, $3^2 = 9 > 6$, assim 2 não é divisível por 4 e 6 não é divisível por 4 nem 9.

Utilizando o programa exercicio5.cpp, temos que

```
Quando n = 3, então é divisível por 4 = 2^2
Quando n = 5, então é divisível por 4 = 2^2
Quando n = 6, então divisível por 4 = 2^2
Quando n = 7, então é divisível por 4 = 2^2
Quando n = 8, então é divisível por 9 = 3^3
Quando n = 9, então é divisível por 4 = 2^2
Quando n = 10, então é divisível por 4 = 2^2
Quando n = 11, então é divisível por 4 = 2^2
```

Obs: por questões de tamanho do número, o código exercicio5.cpp foi feito para ir até n=11.

Exercício 6: (Feito por Rafael)

Para responder esse exercício foi criado o software **exercicio6.cpp**, para obter os números **Válidos**, ou seja, inteiros ímpares $N \le 200$, tais que não sejam (n [n/2]) divisíveis pelo quadrado de um número primo. O software gera os números até o tamanho máximo de uma variável long long int, depois disso a linguagem C++ não consegue computar os próximos números. A tabela da direta foi extraída a partir do software em questão, vale ressaltar que todos os dados obtidos pelo software não estão na tabela, apenas estão uma quantidade suficiente para o entendimento de uma conjectura, caso queira ver os dados completos é recomendado rodar o software.

Com isso, podemos perceber que se N é valido, então N é ímpar e primo, conforme destacado de cinza na tabela a direita. Assim, para ver se essa aplicação é verdadeira basta rodar o software e analisar o resto dos dados. Fazendo isso, podemos afirmar que de fato é verdadeiro e podemos concluir uma conjectura que, se N é valido, então N é ímpar e primo.

Sequência		
Valor de N	Situação	
1	Valido	
3	Valido	
5	Valido	
7	Valido	
9	Invalido	
11	Valido	
11	Valido Invalido	
	10.1200	
13	Invalido	
13 15	Invalido Invalido	
13 15 17	Invalido Invalido Valido	