Lecture Note

Instructors: Dr. Ins Tructor1
Dr. Ins Tructor2, Dr. Ins Tructor3

Erkang 9102 Spring

Contents

1	Intro													3	
	1.1	Nouveaux environnements						 							3

1 Introduction to Easy Class

1.1 Nouveaux environnements

Définition 1.1: Ensemble Convexe

Un ensemble $S \subseteq \mathbb{R}^n$ est convexe si pour tout $x, y \in S$ et $\lambda \in [0, 1]$, le point $\lambda x + (1 - \lambda)y$ appartient à S.

Propriété 1.1: Somme des Angles

La somme des angles dans un triangle est 180° .

Méthodologie 1.1: Méthode de Résolution

Pour résoudre une équation linéaire, suivez ces étapes...

Démonstration 1.1: Preuve de la Somme des Angles

Considérons un triangle quelconque...

Remarque 1.1: Importance de la Convexité

La convexité est une propriété clé en optimisation.

Exemple 1.1: Un Ensemble non Convexe

L'ensemble $S = \{(x, y) \mid x^2 + y^2 \le 1\} \cup \{(x, y) \mid x^2 + y^2 \ge 4\}$ n'est pas convexe.