Параллельное программирование для высокопроизводительных вычислительных систем

сентябрь – декабрь 2018 г.

Лектор доцент Н.Н.Попова

Лекция 9 19 ноября 2018 г.

Тема

- Параллельный алгоритм матричного умножения SUMMA
- 3D блочный параллельный алгоритм матричного умножения DNS
- 2,5D алгоритм матричного умножения

Ограничения алгоритмов Фокса и Кеннона

- Трудно обобщаются для случаев:
 - р не полный квадрат
 - А и В не квадратные
 - Размерности A, B не делятся нацело на s=sqrt(p)
- Требуется дополнительная память для хранения копий блоков

Алгоритм SUMMA

- SUMMA = Scalable Universal Matrix Multiply*
- Менее эффективный, чем алгоритм Кеннона, но проще и легче обобщается на случай разных способов распределения данных
- Требует меньше дополнительной памяти, но в то же время и больше пересылок (в log р раз больше, чем в методе Кеннона)
- Используется на практике в PBLAS = Parallel BLAS
 - * R. A. Van De Geijn and J. Watts. SUMMA: scalable universal matrix multiplication algorithm. Concurrency: Pract. Ex., 9(4):255–274, 1997

- Процессорная решетка не обязательно должна быть квадратной: P = pr * pc
- b << N/ max(px,py) размер блока
- k -блок $c b \ge 1$ строками или столбцами $C(i,j) = \Sigma_{k} A(i,k)^* B(k,j)$

for k=0 to n-1 ... или n/b-1 где b – размер блока

 \dots = # cols in A(i,k) and # rows in B(k,j)

for all i = 1 to p_r ... in parallel

owner of A(i,k) broadcasts it to whole processor row

for all j = 1 to p_c ... in parallel

owner of B(k,j) broadcasts it to whole processor column

Receive A(i,k) into Acol

Receive B(k,j) into Brow

C_myproc = C_myproc + Acol * Brow

Оценка времени выполнения алгоритма SUMMA

 $^{\circ}$ Для упрощения преположим, что s = sqrt(p)

```
for k=0 to n/b-1
   for all i = 1 to s \dots s = sqrt(p)
       owner of A(i,k) broadcasts it to whole processor row
         ... time = log s *( \alpha + \beta * b*n/s), используя дерево
   for all j = 1 to s
       owner of B(k,j) broadcasts it to whole processor column
         ... time = log s *( \alpha + \beta * b*n/s), используя дерево
   Receive A(i,k) into Acol
   Receive B(k,j) into Brow
   C_myproc = C_myproc + Acol * Brow
        ... time = 2*(n/s)^2*b
```

2D параллельные алгоритмы матричного умножения

2D

Cannon

- Эффективность = $1/(1+O(\alpha*(sqrt(p)/n)^3+\beta*sqrt(p)/n)) oптимальная$
- Трудно обобщать на случай произвольного р, n, блочноциклического распределения данных

SUMMA

- Эффективность = $1/(1 + O(\alpha * log p * p / (b*n²) + \beta*log p * sqrt(p) /n))$
- Легко обобщается
- b маленькое => меньше памяти, меньше эффективность
- b большое => больше памяти, выше эффективность
- Используется на практике (PBLAS)

Matrix Multiply: DNS алгоритм Dekel, Nassimi, Sahni

Оценка времени выполнения: O(log N), используя O(N^3/log N) процессов.

Предположим::

А, В, С: размера N x N

$$C_{rs} = \sum_{t=1}^{K} A_{rt} B_{ts}$$

 $P = K^3$ число процессоров, организованных в $K \times K \times SD$ решетку,

А, В, С - К х К блочные матрицы, каждый блок (N/K) х (N/K) Общее число К*К*К блочных матричных умножений

Идея: каждый блок назначается на отдельный процессор Процессор (i,j,k) вычисляет С_{ij}=A_{ik}*B_{kj} Вычисляется редукционная сумма (i,j,k), k=0,...,K-1

Matrix Multiply: DNS алгоритм

Начальное распределение данных: A_{ij} и B_{ij} на процессор (i,j,0)

Передать A_{ik} (i,k=0,...,K-1) на процессор (i,j,k) for all j=0,1,...,K-1

Два шага:

- Переслать A_{ik} с процессора (i,k,0) на (i,k,k);
- Broadcast A_{ik} с процессора (i,k,k) на процессоры (i,j,k);

Matrix Multiply

Переслать $A_{ik} c (i,k,0)$ на (i,k,k)

Broadcast A_{ik} с (i,k,k) на (i,j,k)

(b) After moving A[i,j] from $P_{i,j,\theta}$ to $P_{i,j,j}$

Matrix Multiply

Финальное распределение блоков матрицы A

А может быть рассмотрена как распределенная по (i,k) плоскости с broadcast вдоль j-оси.

(c) After broadcasting A[i,j] along j axis

Распределение элементов матрицы В

В распределение:

1. B_{kj} на (k,j,0); Требуется передать на процессоры (i,j,k) for all i=0,1,...,K-1

Два шага:

- -Переслать $B_{kj} c(k,j,0)$ на (k,j,k)
- -Broadcast B_{kj} с (k,j,k) на (i,j,k) for all $i=0,\ldots,K-1$, т.е. вдоль i-направления

(a) Initial distribution of A and B

Распределение матрицы В

Переслать $B_{\{kj\}}$ с (k,j,0) на (k,j,k)

Broadcast (k,j,k) вдоль і направления

Matrix Multiply

Финальное распределение В

(d) Corresponding distribution of *B*

Matrix Multiply

A_{ik} и B_{kj} на процессорах (i,j,k) Вычисляем С_{ij} локально Reduce (sum) С_{ij} вдоль k-направления

(c) After broadcasting A[i,j] along j axis

Лекции "Параллельное программирование

для ВПВС", лекция 9

2.5D матричное умножение Communication avoiding algorithm

Edgar Solomonik and James Demmel.

Communication-optimal parallel 2.5d matrix multiplication and lu factorization algorithms. In Proceedings of the 17th international conference on Parallel processing - Volume Part II, Euro-Par'11, pages 90–109, Berlin, Heidelberg, 2011. Springer-Verlag.

2.5D матричное умножение

- Предположим, что мы можем разместить cn²/P данных на процессор, c>1
- Процессоры формируют $(P/c)^{1/2}$ х $(P/c)^{1/2}$ х с сетку

Пример: P = 32, c = 2

2.5D Matrix Multiplication

2.5D Matrix Multiplication

```
Algorithm 2: [C] = 2.5D-matrix-multiply(A,B,n,p,c)
Input: square n-by-n matrices A, B distributed so that P_{ij0} owns \frac{n}{\sqrt{p/c}}-by-\frac{n}{\sqrt{p/c}} blocks A_{ij} and B_{ij} for each i,j
Output: square n-by-n matrix C = A \cdot B distributed so that P_{ij0} owns \frac{n}{\sqrt{p/c}}-by-\frac{n}{\sqrt{p/c}} block C_{ij} for each i, j
/* do in parallel with all processors
                                                                                                                                      */
forall i, j \in \{0, 1, ..., \sqrt{p/c} - 1\}, k \in \{0, 1, ..., c - 1\} do
    P_{ij0} broadcasts A_{ij} and B_{ij} to all P_{ijk}
                                                                                               /* replicate input matrices */
    s := \mod(j - i + k\sqrt{p/c^3}, \sqrt{p/c})
                                                                                           /* initial circular shift on A */
    P_{ijk} sends A_{ij} to A_{local} on P_{isk}
    s' := \mod(i-j+k\sqrt{p/c^3},\sqrt{p/c})
                                                                                           /* initial circular shift on B */
    P_{ijk} sends B_{ij} to B_{local} on P_{s'ik}
    C_{ijk} := A_{local} \cdot B_{local}
    s := \mod(j+1, \sqrt{p/c})
    s' := \mod(i+1, \sqrt{p/c})
    for t = 1 to \sqrt{p/c^3} - 1 do
        P_{ijk} sends A_{local} to P_{isk}
                                                                                      /* rightwards circular shift on A */
        P_{ijk} sends B_{local} to P_{s'jk}
                                                                                        /* downwards circular shift on B */
        C_{ijk} := C_{ijk} + A_{local} \cdot B_{local}
    end
    P_{ijk} contributes C_{ijk} to a sum-reduction to P_{ij0}
end
```

2.5D Matrix Multiplication

```
Algorithm 2: [C] = 2.5D-matrix-multiply(A, B, n, p, c)
Input: square n-by-n matrices A, B distributed so that P_{ij0} owns \frac{n}{\sqrt{p/c}}-by-\frac{n}{\sqrt{p/c}} blocks A_{ij} and B_{ij} for each i,j
Output: square n-by-n matrix C = A \cdot B distributed so that P_{ij0} owns \frac{n}{\sqrt{p/c}}-by-\frac{n}{\sqrt{p/c}} block C_{ij} for each i, j
/* do in parallel with all processors
forall i, j \in \{0, 1, ..., \sqrt{p/c} - 1\}, k \in \{0, 1, ..., c - 1\} do
                                                                                           /* replicate input matrices */
    P_{ij0} broadcasts A_{ij} and B_{ij} to all P_{ijk}
    s := \mod(j - i + k\sqrt{p/c^3}, \sqrt{p/c})
                                                                                       /* initial circular shift on A */
                                                        Эквивалентно алгоритму Кеннона
    P_{ijk} sends A_{ij} to A_{local} on P_{isk}
    s' := \mod(i-j+k\sqrt{p/c^3},\sqrt{p/c})
                                                                                       /* initial circular shift on B */
    P_{ijk} sends B_{ij} to B_{local} on P_{s'ik}
    C_{ijk} := A_{local} \cdot B_{local}
    s := \mod(j+1, \sqrt{p/c})
    s' := \mod(i+1, \sqrt{p/c})
    for t = 1 to \sqrt{p/c^3} - 1 do
                                       Эквивалентно алгоритму
        P_{ijk} sends A_{local} to P_{isk}
                                                                                   /* rightwards circular shift on A */
                                        Кеннона
                                                                                    /* downwards circular shift on B */
        P_{ijk} sends B_{local} to P_{s'jk}
        C_{ijk} := C_{ijk} + A_{local} \cdot B_{local}
    end
    P_{ijk} contributes C_{ijk} to a sum-reduction to P_{ij0}
end
```

2.5D Matmul, BG/P, 16К процессоров, 64К ядер

Умножение разреженных матриц

- Встречаются разные формулировки:
 - Разреженной называют матрицу, имеющую малый процент ненулевых элементов.
- Матрица размера N x N называется разреженной, если количество ее ненулевых элементов есть O(N).
 - Известны и другие определения.

Приведенные варианты являются не вполне точными в математическом смысле.

На практике классификация матрицы зависит не только от количества ненулевых элементов

Способы хранения разреженных матриц

Джордж А., Лю Дж. Численное решение больших разреженных систем уравнений. – М.: Мир, 1984. – Писсанецки С. Технология разреженных матриц. — М.: Мир,1988. – Тьюарсон Р. Разреженные матрицы. – М.: Мир, 1977.

Координатный формат

- Элементы матрицы и ее структура хранятся в трех массивах, содержащих значения, их X и Y координаты.
- Оценим объем необходимой памяти (М):
 - Плотное представление: М = 8 N^ 2 байт.
- В координатном формате: M = 8 NZ + 4 NZ + 4 NZ =
 16 NZ байт
- Ясно, что 16 NZ << 8 N^2, если NZ << N^2.

Формат CRS (CSR)

- Формат хранения CSR (Compressed Sparse Rows) или CRS (Compressed Row Storage),
- Используются три массива:
 - первый массив хранит значения элементов построчно,
 - второй номера столбцов для каждого элемента,
 - третий заменяет номера строк, используемые в координатном формате, на индекс начала каждой строки.

Пример

\mathbf{A}

Структура хранения:

RowIndex