INSTITUTO POLITÉCNICO DE BEJA

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

Engenharia Informática

Estruturas de Dados e Algoritmos

Professor José Jasnau Caeiro

2010-2011

Algoritmo de Rotulagem

de

Componentes Conexos

Introdução

Algoritmo de rotulagem de componentes conexos em imagens é utilizado na área da computação para detecção de regiões conexas em imagens binárias, podendo ser aplicado nas mais diversas áreas, desde a astronomia a forças armadas. Passando uma imagem binária por este algoritmo obtemos todas as áreas conexas separadas pintadas com diferentes cores, permitindo assim a sua separação visual.

Na programação utilizei a linguagem de programação Java. Comecei por utilizar o algoritmo das duas passagens, com conjuntos para tratar dos conjuntos equivalentes.

Algoritmo

Algoritmo das duas passagens

Este algoritmo consiste em percorrer uma imagem *pixel* por *pixel*, uma primeira vez a procura de áreas brancas na imagem, atribuindo-lhe um rótulo e sempre que esse pixel tiver vizinhos já rotulados deve esse pixel ser rotulado com o rótulo mais pequeno de todos os vizinhos já rotulados e devem ser colocadas em listas de equivalências esses rótulos.

Fig.1- P- pixel a ser analisado, V – pixels vizinhos

Na segunda passagem pela imagem os rótulos são trocados por cores e os com rótulos diferentes mas que pertencem à mesma lista de equivalências são todos pintados da mesma cor, pois pertencem ao mesmo objecto.

Resultados experimentais

Após ter concluído o programa procedi aos testes do programa, cujo foi submetido a uma baterias de testes com vários tamanhos de imagens e com vários imagens com diferentes quantidades de componentes conexos (partes brancas da imagem).

Para medir os tempos de execução utilizei o método nanoTime da classe System que devolve um valor longo do tempo actual tirei o tempo inicial e final e subtrai-os, obtendo assim o tempo total.

Numero de	10.000	100.000	1.000.000	10.000.000
pixéis				
	0.017548	0.071893	0.579832	6.534872
	0.016595	0.068952	0.583012	6.514912
	0.010293	0.073245	0.563459	6.486765
	0.007844	0.083244	0.613425	6.484947
	0.007903	0.073452	0.553452	6.559183
	0.007795	0.072345	0.523454	6.419374
	0.009238	0.062346	0.691659	6.381283
	0.008342	0.073234	0.592382	6.528437
	0.010343	0.083247	0.573934	6.419384
	0.007735	0.073457	0.592345	6.337927
	0.008234	0.071893	0.579832	6.534872
	0.009234	0.068952	0.582812	6.514912
	0.017548	0.073245	0.518359	6.238232
	0.016595	0.083244	0.638225	6.212345
Media				

Tempos obtidos em 12 medições

Curva das médias das quatro medições eixo do x n de pixéis por imagem

Com as medições pode concluir que os tempos evoluem linearmente com o com a mesma proporção que aumentei os pixéis da imagem.