In [1]: # Instalando pacotes necessários !pip install imblearn

Requirement already satisfied: imblearn in /Users/rpaganini/opt/an aconda3/lib/python3.8/site-packages (0.0)

Requirement already satisfied: imbalanced-learn in /Users/rpaganin i/opt/anaconda3/lib/python3.8/site-packages (from imblearn) (0.7.0)

Requirement already satisfied: scikit-learn>=0.23 in /Users/rpagan ini/opt/anaconda3/lib/python3.8/site-packages (from imbalanced-lea rn->imblearn) (0.23.1)

Requirement already satisfied: scipy>=0.19.1 in /Users/rpaganini/o pt/anaconda3/lib/python3.8/site-packages (from imbalanced-learn->i mblearn) (1.5.0)

Requirement already satisfied: numpy>=1.13.3 in /Users/rpaganini/o pt/anaconda3/lib/python3.8/site-packages (from imbalanced-learn->i mblearn) (1.18.5)

Requirement already satisfied: joblib>=0.11 in /Users/rpaganini/op t/anaconda3/lib/python3.8/site-packages (from imbalanced-learn->im blearn) (0.16.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in /Users/rpag anini/opt/anaconda3/lib/python3.8/site-packages (from scikit-learn >=0.23->imbalanced-learn->imblearn) (2.1.0)

In [220]: # Importanto bibliotecas necessárias import pandas as pd from statistics import mean, median, mode import seaborn as sb from scipy import stats import numpy as np from sklearn import preprocessing from sklearn.ensemble import RandomForestClassifier from sklearn.model selection import train test split, GridSearchCV from sklearn.metrics import accuracy score, confusion matrix, class ification report from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from imblearn.over_sampling import SMOTE from sklearn.linear model import LogisticRegression import joblib

```
In [3]: # Carregando o arquivo para um dataset
dataset = pd.read_csv('diabetes.csv')
```

In [4]: # Visualizando o dataset
 dataset.head()

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFun
0	6	148	72	35	0	33.6	_
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

In [5]: # Visualizando os tipos das variáveis dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

```
In [6]: # Definindo o tipo correto da variável TARGET.
    dataset.Outcome = dataset.Outcome.astype('category')
    dataset.Pregnancies = dataset.Pregnancies.astype('object')
    dataset.Age = dataset.Age.astype('object')
```

In [7]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	object
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	object
8	Outcome	768 non-null	category
_			

dtypes: category(1), float64(2), int64(4), object(2)

memory usage: 49.0+ KB

In [8]: # Verificando valores faltantes dataset.isna().sum()

0 Out[8]: Pregnancies 0 Glucose BloodPressure 0 SkinThickness Insulin 0 BMI 0 DiabetesPedigreeFunction 0 Age Outcome 0 dtype: int64

In [9]: dataset.describe()

Out[9]:

	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigre
count	768.000000	768.000000	768.000000	768.000000	768.000000	70
mean	120.894531	69.105469	20.536458	79.799479	31.992578	
std	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	140.250000	80.000000	32.000000	127.250000	36.600000	
max	199.000000	122.000000	99.000000	846.000000	67.100000	

```
In [10]: # Algumas variáveis como: Glucose, BloodPressure, SkinThickness, In
         sulin, BMI, DiabetesPedigreeFunction, Age não
         # podem conter valores 0 pois são índices de análises sanguíneas pa
         ra determinar a diabetes.
In [11]: dataset.Glucose.isin([0]).sum()
Out[11]: 5
In [12]: dataset.SkinThickness.isin([0]).sum()
Out[12]: 227
In [13]: dataset.BloodPressure.isin([0]).sum()
Out[13]: 35
In [14]: dataset.Insulin.isin([0]).sum()
Out[14]: 374
In [15]: dataset.BMI.isin([0]).sum()
Out[15]: 11
In [16]: dataset.DiabetesPedigreeFunction.isin([0]).sum()
Out[16]: 0
```

```
In [17]: # Tratando valores Outliers. Estes valores podem comprometer o algo
    ritmo de ML, portanto devem ser tratados.

# Verificando Outliers individualmente nas variáveis e aplicando a
    técnica IQR para removê-los.

# Variável 'Pregnancies'
    sb.boxplot(dataset.Pregnancies)
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf69ddf700>


```
In [18]: # Técnica IQR para detectar Outliers aplicada na variável 'Pregnanc
ies'
Q1_Pregnancies = dataset.Pregnancies.quantile(0.25)
Q3_Pregnancies = dataset.Pregnancies.quantile(0.75)
```

```
In [19]: Q1_Pregnancies , Q3_Pregnancies
```

Out[19]: (1.0, 6.0)

```
In [20]: IQR_Pregnancies = Q3_Pregnancies - Q1_Pregnancies
```

```
In [22]: lower_limit_Pregnancies , upper_limit_Pregnancies
```

Out[22]: (-6.5, 13.5)

In [23]: dataset[(dataset.Pregnancies < lower_limit_Pregnancies) | (dataset.
Pregnancies > upper_limit_Pregnancies)]

Out[23]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeF
88	15	136	70	32	110	37.1	
159	17	163	72	41	114	40.9	
298	14	100	78	25	184	36.6	
455	14	175	62	30	0	33.6	

In [25]: sb.boxplot(dataset.Pregnancies)

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf69dd8280>

In [26]: # Perfect !!! Outliers da variável 'Pregnancie' removidos com suces
so !!
Aplicando a técnica de detecção e remocação de Outliers (IQR) nas
demais variáveis.

```
In [27]: # Variável 'Glucose'
sb.boxplot(dataset.Glucose)
```

Out[27]: <matplotlib.axes. subplots.AxesSubplot at 0x7fdf69f71160>


```
In [28]: Q1_Glucose = dataset.Glucose.quantile(.25)
    Q3_Glucose = dataset.Glucose.quantile(.75)

IQR_Glucose = Q3_Glucose - Q1_Glucose

lower_limit_Glucose = Q1_Glucose - 1.5 * IQR_Glucose
    upper_limit_Glucose = Q3_Glucose + 1.5 * IQR_Glucose
```

Out[29]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeF
75	1	0	48	20	0	24.7	_
182	1	0	74	20	23	27.7	
342	1	0	68	35	0	32.0	
349	5	0	80	32	0	41.0	
502	6	0	68	41	0	39.0	

In [30]: # Observe que o Outlier da variável 'Glucose'. Não existem exames c omo este com valores 0. Isso indica claramente # que os valores nesta variável não foram digitados. Teremos que ab ordar esse problema de outra forma. Aplicarei # uma técnica para preencher os valores 0 desta variável com a média da mesma.

In [31]: dataset.Glucose = dataset.Glucose.replace([0],[mean(dataset.Glucose
)])

In [32]: sb.boxplot(dataset.Glucose)

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6a042340>

In [33]: # Mais um problema resolvido. Vamos partir para a próxima variável. 'BloodPressure'

In [34]: sb.boxplot(dataset.BloodPressure)

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6a1043a0>

In [35]: Q1_BloodPressure = dataset.BloodPressure.quantile(.25)
 Q3_BloodPressure = dataset.BloodPressure.quantile(.75)

IQR_BloodPressure = Q3_BloodPressure - Q1_BloodPressure

lower_limit_BloodPressure = Q1_BloodPressure - 1.5 * IQR_BloodPressure

upper_limit_BloodPressure = Q3_BloodPressure + 1.5 * IQR_BloodPressure

ure

Out[36]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeF
7	10	115.0	0	0	0	35.3	
15	7	100.0	0	0	0	30.0	
18	1	103.0	30	38	83	43.3	
43	9	171.0	110	24	240	45.4	
49	7	105.0	0	0	0	0.0	
60	2	84.0	0	0	0	0.0	
78	0	131.0	0	0	0	43.2	
81	2	74.0	0	0	0	0.0	
84	5	137.0	108	0	0	48.8	
106	1	96.0	122	0	0	22.4	
125	1	88.0	30	42	99	55.0	
172	2	87.0	0	23	0	28.9	
177	0	129.0	110	46	130	67.1	
193	11	135.0	0	0	0	52.3	
222	7	119.0	0	0	0	25.2	
261	3	141.0	0	0	0	30.0	
266	0	138.0	0	0	0	36.3	
269	2	146.0	0	0	0	27.5	
300	0	167.0	0	0	0	32.3	
332	1	180.0	0	0	0	43.3	
336	0	117.0	0	0	0	33.8	
347	3	116.0	0	0	0	23.5	
357	13	129.0	0	30	0	39.9	

362	5	103.0	108	37	0	39.2
426	0	94.0	0	0	0	0.0
430	2	99.0	0	0	0	22.2
435	0	141.0	0	0	0	42.4
453	2	119.0	0	0	0	19.6
468	8	120.0	0	0	0	30.0
484	0	145.0	0	0	0	44.2
494	3	80.0	0	0	0	0.0
522	6	114.0	0	0	0	0.0
533	6	91.0	0	0	0	29.8
535	4	132.0	0	0	0	32.9
549	4	189.0	110	31	0	28.5
589	0	73.0	0	0	0	21.1
597	1	89.0	24	19	25	27.8
601	6	96.0	0	0	0	23.7
604	4	183.0	0	0	0	28.4
619	0	119.0	0	0	0	32.4
643	4	90.0	0	0	0	28.0
691	13	158.0	114	0	0	42.3
697	0	99.0	0	0	0	25.0
697 703	0 2	99.0 129.0	0	0	0	25.0 38.5

```
In [37]: # Observem acima que a variável 'BloodPressure' também possui valor
es 0 e vários Outliers. Teremos que aplicar as
# duas técnicas (IQR e Preencher valores 0) Let's do it !
```

```
In [38]: dataset.BloodPressure = dataset.BloodPressure.replace([0],[mean(dataset.BloodPressure)])
```

```
In [39]: Q1_BloodPressure = dataset.BloodPressure.quantile(.25)
    Q3_BloodPressure = dataset.BloodPressure.quantile(.75)

IQR_BloodPressure = Q3_BloodPressure - Q1_BloodPressure

lower_limit_BloodPressure = Q1_BloodPressure - 1.5 * IQR_BloodPressure

upper_limit_BloodPressure = Q3_BloodPressure + 1.5 * IQR_BloodPressure

upper_limit_BloodPressure = Q3_BloodPressure + 1.5 * IQR_BloodPressure
```

In [40]: dataset[(dataset.BloodPressure < lower_limit_BloodPressure) | (data
 set.BloodPressure > upper_limit_BloodPressure)]

Out[40]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeF
18	1	103.0	30.0	38	83	43.3	
43	9	171.0	110.0	24	240	45.4	
84	5	137.0	108.0	0	0	48.8	
106	1	96.0	122.0	0	0	22.4	
125	1	88.0	30.0	42	99	55.0	
177	0	129.0	110.0	46	130	67.1	
362	5	103.0	108.0	37	0	39.2	
549	4	189.0	110.0	31	0	28.5	
597	1	89.0	24.0	19	25	27.8	
599	1	109.0	38.0	18	120	23.1	
658	11	127.0	106.0	0	0	39.0	
662	8	167.0	106.0	46	231	37.6	
672	10	68.0	106.0	23	49	35.5	
691	13	158.0	114.0	0	0	42.3	

In [41]: dataset = dataset[(dataset.BloodPressure > lower_limit_BloodPressur
e) & (dataset.BloodPressure < upper_limit_BloodPressure)]</pre>

In [42]: sb.boxplot(dataset.BloodPressure)

Out[42]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6a1ccfd0>


```
In [43]: # Variável 'SkinThickness'
```

```
In [44]: sb.boxplot(dataset.SkinThickness)
```

Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6a2a8190>


```
In [45]: Q1_SkinThickness = dataset.SkinThickness.quantile(.25)
Q3_SkinThickness = dataset.SkinThickness.quantile(.75)

IQR_SkinThickness = Q3_SkinThickness - Q1_SkinThickness
lower_limit_SkinThickness = Q1_SkinThickness - 1.5 * IQR_SkinThickness
upper_limit_SkinThickness = Q3_SkinThickness + 1.5 * IQR_SkinThickness
```

Out[46]:

_		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeF
	579	2	197.0	70.0	99	0	34.7	_

- In [47]: dataset = dataset[(dataset.SkinThickness > lower_limit_SkinThickness
 s) & (dataset.SkinThickness < upper_limit_SkinThickness)]</pre>
- In [48]: # Mesmo não sendo um outlier, esta variável também possui valores 0
 . Devemos tratar esses valores
- In [49]: dataset.SkinThickness = dataset.SkinThickness.replace([0],[mean(dataset.SkinThickness)])

```
In [50]: sb.boxplot(dataset.SkinThickness)
```

Out[50]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6a365550>


```
In [51]: # Next ;-) variável 'Insulin'
```

In [52]: sb.boxplot(dataset.Insulin)

Out[52]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6a428a90>


```
In [53]: Q1_Insulin = dataset.Insulin.quantile(.25)
    Q3_Insulin = dataset.Insulin.quantile(.75)

IQR_Insulin = Q3_Insulin - Q1_Insulin

lower_limit_Insulin = Q1_Insulin - 1.5 * IQR_Insulin
    upper_limit_Insulin = Q3_Insulin + 1.5 * IQR_Insulin
```

In [54]: dataset[(dataset.Insulin < lower_limit_Insulin) | (dataset.Insulin
> upper_limit_Insulin)]

Out[54]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeF
8	2	197.0	70.0	45.0	543	30.5	
13	1	189.0	60.0	23.0	846	30.1	
54	7	150.0	66.0	42.0	342	34.7	
111	8	155.0	62.0	26.0	495	34.0	
139	5	105.0	72.0	29.0	325	36.9	
153	1	153.0	82.0	42.0	485	40.6	
186	8	181.0	68.0	36.0	495	30.1	
220	0	177.0	60.0	29.0	478	34.6	
228	4	197.0	70.0	39.0	744	36.7	
231	6	134.0	80.0	37.0	370	46.2	
247	0	165.0	90.0	33.0	680	52.3	
248	9	124.0	70.0	33.0	402	35.4	
258	1	193.0	50.0	16.0	375	25.9	
286	5	155.0	84.0	44.0	545	38.7	
296	2	146.0	70.0	38.0	360	28.0	
360	5	189.0	64.0	33.0	325	31.2	
370	3	173.0	82.0	48.0	465	38.4	
375	12	140.0	82.0	43.0	325	39.2	
392	1	131.0	64.0	14.0	415	23.7	
409	1	172.0	68.0	49.0	579	42.4	
415	3	173.0	84.0	33.0	474	35.7	
480	3	158.0	70.0	30.0	328	35.5	
486	1	139.0	62.0	41.0	480	40.7	
519	6	129.0	90.0	7.0	326	19.6	
574	1	143.0	86.0	30.0	330	30.1	
584	8	124.0	76.0	24.0	600	28.7	
612	7	168.0	88.0	42.0	321	38.2	
645	2	157.0	74.0	35.0	440	39.4	
655	2	155.0	52.0	27.0	540	38.7	
695	7	142.0	90.0	24.0	480	30.4	

707	2	127.0	46.0	21.0	335 34.4
710	3	158.0	64.0	13.0	387 31.2
715	7	187.0	50.0	33.0	392 33.9
753	0	181.0	88.0	44.0	510 43.3

In [56]: sb.boxplot(dataset.Insulin)

Out[56]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6a1f3400>


```
In [57]: dataset[(dataset.Insulin < lower_limit_Insulin) | (dataset.Insulin
> upper_limit_Insulin)]
```

Out[57]:

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunc

```
In [58]: # Observem que ainda temos valores Outliers. Para resolver esse pro blema precisaremos alterar o fator da técnica de # detecção e remoção de Outliers IQR
```

```
In [59]: lower_limit_Insulin = Q1_Insulin - 1 * IQR_Insulin
upper_limit_Insulin = Q3_Insulin + 1 * IQR_Insulin
```

In [60]: dataset[(dataset.Insulin < lower_limit_Insulin) | (dataset.Insulin
> upper_limit_Insulin)]

Out[60]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeF
53	8	176.0	90.0	34.0	300	33.7	
56	7	187.0	68.0	39.0	304	37.7	
73	4	129.0	86.0	20.0	270	35.1	
144	4	154.0	62.0	31.0	284	32.8	
162	0	114.0	80.0	34.0	285	44.2	
199	4	148.0	60.0	27.0	318	30.9	
206	8	196.0	76.0	29.0	280	37.5	
215	12	151.0	70.0	40.0	271	41.8	
254	12	92.0	62.0	7.0	258	27.6	
279	2	108.0	62.0	10.0	278	25.3	
364	4	147.0	74.0	25.0	293	34.9	
388	5	144.0	82.0	26.0	285	32.0	
395	2	127.0	58.0	24.0	275	27.7	
412	1	143.0	84.0	23.0	310	42.4	
425	4	184.0	78.0	39.0	277	37.0	
487	0	173.0	78.0	32.0	265	46.5	
561	0	198.0	66.0	32.0	274	41.3	
606	1	181.0	78.0	42.0	293	40.0	
608	0	152.0	82.0	39.0	272	41.5	
679	2	101.0	58.0	17.0	265	24.2	
713	0	134.0	58.0	20.0	291	26.4	

```
In [62]: sb.boxplot(dataset.Insulin)
```

Out[62]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6a6b0400>


```
In [63]: # Próxima variável 'BMI'
```

In [64]: sb.boxplot(dataset.BMI)

Out[64]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6a886d30>


```
In [65]: Q1_BMI = dataset.BMI.quantile(.25)
    Q3_BMI = dataset.BMI.quantile(.75)

IQR_BMI = Q3_BMI - Q1_BMI

lower_limit_BMI = Q1_BMI - 1.5 * IQR_BMI
    upper_limit_BMI = Q3_BMI + 1.5 * IQR_BMI
```

In [66]: dataset[(dataset.BMI < lower_limit_BMI) | (dataset.BMI > upper_limi
t_BMI)]

Out[66]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeF
9	8	125.0	96.000000	20.323056	0	0.0	
49	7	105.0	69.098168	20.323056	0	0.0	
60	2	84.0	69.098168	20.323056	0	0.0	
81	2	74.0	69.098168	20.323056	0	0.0	
99	1	122.0	90.000000	51.000000	220	49.7	
120	0	162.0	76.000000	56.000000	100	53.2	
145	0	102.0	75.000000	23.000000	0	0.0	
155	7	152.0	88.000000	44.000000	0	50.0	
193	11	135.0	69.098168	20.323056	0	52.3	
303	5	115.0	98.000000	20.323056	0	52.9	
371	0	118.0	64.000000	23.000000	89	0.0	
426	0	94.0	69.098168	20.323056	0	0.0	
445	0	180.0	78.000000	63.000000	14	59.4	
494	3	80.0	69.098168	20.323056	0	0.0	
522	6	114.0	69.098168	20.323056	0	0.0	
673	3	123.0	100.000000	35.000000	240	57.3	
681	0	162.0	76.000000	36.000000	0	49.6	
684	5	136.0	82.000000	20.323056	0	0.0	
706	10	115.0	69.098168	20.323056	0	0.0	

In [67]: # Observem que esta variável também possui valores 0. Teremos que t ratar esses valores da mesma forma como foi na # variáveis 'BloodPressure' e 'Glucose'

In [68]: dataset.BMI = dataset.BMI.replace([0],[mean(dataset.BMI)])

In [69]: dataset[(dataset.BMI < lower_limit_BMI) | (dataset.BMI > upper_limit_BMI)]

Out[69]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeF
99	1	122.0	90.000000	51.000000	220	49.7	
120	0	162.0	76.000000	56.000000	100	53.2	
155	7	152.0	88.000000	44.000000	0	50.0	
193	11	135.0	69.098168	20.323056	0	52.3	
303	5	115.0	98.000000	20.323056	0	52.9	
445	0	180.0	78.000000	63.000000	14	59.4	
673	3	123.0	100.000000	35.000000	240	57.3	
681	0	162.0	76.000000	36.000000	0	49.6	

In [71]: sb.boxplot(dataset.BMI)

Out[71]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6a698a30>


```
In [72]: # Ainda temos Outliers.Devemos alterar o valor do fator.
lower_limit_BMI = Q1_BMI - 1.25 * IQR_BMI
upper_limit_BMI = Q3_BMI + 1.25 * IQR_BMI
```

In [73]: dataset[(dataset.BMI < lower_limit_BMI) | (dataset.BMI > upper_limit_BMI)]

Out[73]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeF
154	8	188.0	78.0	20.323056	0	47.9	_
335	0	165.0	76.0	43.000000	255	47.9	
378	4	156.0	75.0	20.323056	0	48.3	
746	1	147.0	94.0	41.000000	0	49.3	

In [75]: sb.boxplot(dataset.BMI)

Out[75]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6a9f7e80>

In [76]: # Perfect !!! Próxima variável 'DiabetesPedigreeFunction'

In [77]: sb.boxplot(dataset.DiabetesPedigreeFunction)

Out[77]: <matplotlib.axes. subplots.AxesSubplot at 0x7fdf6aac5c40>

In [78]: Q1_DiabetesPedigreeFunction = dataset.DiabetesPedigreeFunction.quan
 tile(.25)
 Q3_DiabetesPedigreeFunction = dataset.DiabetesPedigreeFunction.quan
 tile(.75)

 ${\tt IQR_DiabetesPedigreeFunction = Q3_DiabetesPedigreeFunction - Q1_DiabetesPedigreeFunction}$

lower_limit_DiabetesPedigreeFunction = Q1_DiabetesPedigreeFunction
- 1.5 * IQR_DiabetesPedigreeFunction
upper_limit_DiabetesPedigreeFunction = Q3_DiabetesPedigreeFunction
+ 1.5 * IQR_DiabetesPedigreeFunction

03/09/2020 09:12 diabetesPima_1

Out[79]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
12	10	139.0	80.0	20.323056	0	27.100000	
39	4	111.0	72.0	47.000000	207	37.100000	
45	0	180.0	66.0	39.000000	0	42.000000	
58	0	146.0	82.0	20.323056	0	40.500000	
100	1	163.0	72.0	20.323056	0	39.000000	
147	2	106.0	64.0	35.000000	119	30.500000	
152	9	156.0	86.0	28.000000	155	34.300000	
187	1	128.0	98.0	41.000000	58	32.000000	
218	5	85.0	74.0	22.000000	0	29.000000	
243	6	119.0	50.0	22.000000	176	27.100000	
245	9	184.0	85.0	15.000000	0	30.000000	
259	11	155.0	76.0	28.000000	150	33.300000	
292	2	128.0	78.0	37.000000	182	43.300000	
308	0	128.0	68.0	19.000000	180	30.500000	
330	8	118.0	72.0	19.000000	0	23.100000	
371	0	118.0	64.0	23.000000	89	31.530246	
383	1	90.0	62.0	18.000000	59	25.100000	
408	8	197.0	74.0	20.323056	0	25.900000	
534	1	77.0	56.0	30.000000	56	33.300000	
593	2	82.0	52.0	22.000000	115	28.500000	
618	9	112.0	82.0	24.000000	0	28.200000	
621	2	92.0	76.0	20.000000	0	24.200000	
622	6	183.0	94.0	20.323056	0	40.800000	
659	3	80.0	82.0	31.000000	70	34.200000	
661	1	199.0	76.0	43.000000	0	42.900000	
744	13	153.0	88.0	37.000000	140	40.600000	
750	4	136.0	70.0	20.323056	0	31.200000	

In [80]: dataset = dataset[(dataset.DiabetesPedigreeFunction > lower_limit_D iabetesPedigreeFunction) & (dataset.DiabetesPedigreeFunction < uppe r_limit_DiabetesPedigreeFunction)]

In [81]: sb.boxplot(dataset.DiabetesPedigreeFunction)

Out[81]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6ab9f400>

In [82]: # Ainda temos Outliers.Devemos alterar o valor do fator.
lower_limit_DiabetesPedigreeFunction = Q1_DiabetesPedigreeFunction
- 1.20 * IQR_DiabetesPedigreeFunction
upper_limit_DiabetesPedigreeFunction = Q3_DiabetesPedigreeFunction
+ 1.20 * IQR_DiabetesPedigreeFunction

Out[83]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeF
131	9	122.0	56.0	20.323056	0	33.3	
267	2	128.0	64.0	42.000000	0	40.0	
270	10	101.0	86.0	37.000000	0	45.6	
314	7	109.0	80.0	31.000000	0	35.9	
416	1	97.0	68.0	21.000000	0	27.2	
434	1	90.0	68.0	8.000000	0	24.5	
493	4	125.0	70.0	18.000000	122	28.9	
588	3	176.0	86.0	27.000000	156	33.3	
657	1	120.0	80.0	48.000000	200	38.9	
747	1	81.0	74.0	41.000000	57	46.3	
755	1	128.0	88.0	39.000000	110	36.5	

In [85]: sb.boxplot(dataset.DiabetesPedigreeFunction)

Out[85]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6ac64970>

In [86]: # Última variável para analisar 'Age'

In [87]: sb.boxplot(dataset.Age)

Out[87]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6ad206a0>


```
In [88]: Q1_Age = dataset.Age.quantile(.25)
    Q3_Age = dataset.Age.quantile(.75)

IQR_Age = Q3_Age - Q1_Age

lower_limit_Age = Q1_Age - 1.5 * IQR_Age
    upper_limit_Age = Q3_Age + 1.5 * IQR_Age
```

In [89]: dataset[(dataset.Age < lower_limit_Age) | (dataset.Age > upper_limit_Age)]

Out[89]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedi
123	5	132.0	80.000000	20.323056	0	26.800000	
148	5	147.0	78.000000	20.323056	0	33.700000	
221	2	158.0	90.000000	20.323056	0	31.600000	
294	0	161.0	50.000000	20.323056	0	21.900000	
363	4	146.0	78.000000	20.323056	0	38.500000	
453	2	119.0	69.098168	20.323056	0	19.600000	
459	9	134.0	74.000000	33.000000	60	25.900000	
489	8	194.0	80.000000	20.323056	0	26.100000	
495	6	166.0	74.000000	20.323056	0	26.600000	
537	0	57.0	60.000000	20.323056	0	21.700000	
552	6	114.0	88.000000	20.323056	0	27.800000	
666	4	145.0	82.000000	18.000000	0	32.500000	
674	8	91.0	82.000000	20.323056	0	35.600000	
684	5	136.0	82.000000	20.323056	0	31.530246	
759	6	190.0	92.000000	20.323056	0	35.500000	

In [90]: dataset = dataset[(dataset.Age > lower_limit_Age) & (dataset.Age < upper limit Age)]</pre>

In [91]: sb.boxplot(dataset.Age)

Out[91]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdf6ade2250>

In [93]: dataset[(dataset.Age < lower_limit_Age) | (dataset.Age > upper_limi
t_Age)]

Out[93]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeF
115	4	146.0	92.0	20.323056	0	31.2	_
129	0	105.0	84.0	20.323056	0	27.9	
223	7	142.0	60.0	33.000000	190	28.8	
263	3	142.0	80.0	15.000000	0	32.4	
361	5	158.0	70.0	20.323056	0	29.8	
456	1	135.0	54.0	20.323056	0	26.7	
479	4	132.0	86.0	31.000000	0	28.0	
582	12	121.0	78.0	17.000000	0	26.5	
763	10	101.0	76.0	48.000000	180	32.9	

In [95]: sb.boxplot(dataset.Age)

Out[95]: <matplotlib.axes. subplots.AxesSubplot at 0x7fdf6aea7610>

Out[96]:

	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigre
count	613.000000	613.000000	613.000000	613.000000	613.000000	6
mean	116.621339	71.365807	25.835280	56.424144	31.683968	
std	27.747708	10.598459	8.881398	69.399805	6.175456	
min	44.000000	44.000000	8.000000	0.000000	18.200000	
25%	97.000000	64.000000	20.323056	0.000000	27.300000	
50%	112.000000	70.000000	22.000000	0.000000	31.600000	
75%	131.000000	78.000000	32.000000	105.000000	35.700000	
max	196.000000	102.000000	60.000000	250.000000	46.800000	

In [97]: # Agora vamos verificar se as classes da variável target (Outcome) estão balanceadas.

Mas antes é necessário separar o dataset em variáveis preditoras e variável target.

x = dataset.drop(columns='Outcome')

y = dataset.Outcome

In [98]: x.shape , y.shape

Out[98]: ((613, 8), (613,))

```
In [99]: # Verificando se as classes da variável Outcome estão balanceadas y.value_counts()
```

Out[99]: 0 427 1 186

Name: Outcome, dtype: int64

In [100]: # Constatando o desbalanceamento das classes graficamente
 sb.countplot(x=y, data=y)

Out[100]: <matplotlib.axes. subplots.AxesSubplot at 0x7fdf6af6e580>


```
In [101]: # Aplicando o algoritmo SMOTE para balancear as classes.
# Instanciando o SMOTE
smt = SMOTE()
```

```
In [102]: x,y = smt.fit_sample(x,y)
```

```
In [103]: # Verificando o balanceamento após a execução do SMOTE y.value_counts()
```

Out[103]: 1 427 0 427

Name: Outcome, dtype: int64

```
In [104]: # Verificando graficamente
sb.countplot(x=y, data=y)
```

Out[104]: <matplotlib.axes. subplots.AxesSubplot at 0x7fdf6af758b0>


```
In [106]: x = scaler.transform(x)
```

In [107]: # Dividindo os dados de Treino e dados de Teste para o modelo de ML

In [108]: xTrain, xTest, yTrain, yTest = train_test_split(x,y)

In [109]: xTrain.shape , xTest.shape

Out[109]: ((640, 8), (214, 8))

In [110]: yTrain.shape , yTest.shape

Out[110]: ((640,), (214,))

In [111]: # Vamos agora começar a construir o modelo de ML # Primeiramente vamos construir modelos de base utilizando diversos algoritmos de ML

```
In [113]: # Instânciando o classificador
         clf rf = RandomForestClassifier()
In [114]: # Treinando o modelo base
         modelo rf = clf rf.fit(xTrain,yTrain)
In [115]: | # Fazendo previsões com o modelo treinado
         pred rf = modelo rf.predict(xTest)
In [116]: # Verificando a acurácia do modelo
         rf accuracy = accuracy score(yTest, pred rf)
In [117]: # Relatório de classificação
         print(classification report(yTest, pred rf))
                      precision
                                   recall f1-score
                                                     support
                    0
                           0.85
                                     0.82
                                              0.83
                                                         117
                           0.79
                                     0.82
                                              0.81
                    1
                                                          97
                                              0.82
                                                         214
             accuracy
                           0.82
                                     0.82
                                              0.82
                                                         214
            macro avg
         weighted avg
                           0.82
                                     0.82
                                              0.82
                                                         214
In [118]: # Matriz de cofusão
         print(pd.crosstab(yTest, pred rf, rownames=['Real'], colnames=['Pre
         dito'], margins=True))
         Predito
                   0
                        1 All
         Real
                   96
                       21
                          117
         1
                   17
                       80
                            97
         All
                  113 101 214
####################
In [120]: # Instanciando o classificador
         clf svm = svm.SVC()
In [121]: # Treinando o modelo base
         modelo svm = clf svm.fit(xTrain, yTrain)
In [122]: # Fazendo previsões com o modelo treinado
         pred svm = modelo svm.predict(xTest)
```

```
In [123]: # Verificando a acurácia do modelo
         svm accuracy = accuracy score(yTest, pred svm)
In [124]: # Relatório de classificação
         print(classification_report(yTest, pred_svm))
                      precision
                                  recall f1-score
                                                    support
                           0.83
                                    0.79
                   0
                                              0.81
                                                        117
                           0.76
                                    0.80
                                              0.78
                                                         97
                                              0.80
             accuracy
                                                        214
            macro avq
                           0.80
                                    0.80
                                              0.80
                                                        214
         weighted avg
                           0.80
                                    0.80
                                              0.80
                                                        214
In [125]: # Matriz de cofusão
         print(pd.crosstab(yTest, pred svm, rownames=['Real'], colnames=['Pr
         edito'], margins=True))
         Predito
                  0
                        1 All
         Real
         0
                  93
                       24 117
         1
                  19
                       78
                           97
         All
                  112 102 214
####################
In [127]: # Instanciando o classificador
         clf knn = KNeighborsClassifier()
In [128]: # Treinando o modelo base
         modelo knn = clf knn.fit(xTrain, yTrain)
In [129]: | # Fazendo previsões com o modelo treinado
         pred knn = modelo knn.predict(xTest)
In [130]: # Verificando a acurácia do modelo
         knn accuracy = accuracy score(yTest, pred knn)
```

```
In [131]: # Relatório de classificação
         print(classification report(yTest, pred knn))
                     precision
                                 recall
                                        f1-score
                                                  support
                   0
                          0.88
                                   0.72
                                            0.79
                                                      117
                          0.72
                                   0.88
                   1
                                            0.79
                                                       97
                                            0.79
                                                      214
            accuracy
           macro avg
                          0.80
                                   0.80
                                            0.79
                                                      214
                          0.80
                                   0.79
                                            0.79
         weighted avg
                                                      214
In [132]: # Matriz de cofusão
         print(pd.crosstab(yTest, pred_knn, rownames=['Real'], colnames=['Pr
         edito'], margins=True))
                  0
         Predito
                     1
                         All
         Real
         0
                 84
                     33
                         117
         1
                 12
                     85
                          97
         All
                 96
                    118
                         214
In [134]: # Instanciando o classificador
         clf lr = LogisticRegression()
In [135]: # Treinando o modelo base
         modelo lr = clf lr.fit(xTrain, yTrain)
In [136]: | # Fazendo previsões com o modelo treinado
         pred lr = modelo lr.predict(xTest)
In [137]: | # Verificando a acurácia do modelo
         lr_accuracy = accuracy_score(yTest, pred lr)
```

```
In [138]: # Relatório de classificação
    print(classification_report(yTest, pred_lr))
```

	precision	recall	f1-score	support
0	0.81	0.75	0.78	117
1	0.73	0.79	0.76	97
accuracy			0.77	214
macro avg	0.77	0.77	0.77	214
weighted avg	0.77	0.77	0.77	214

```
Predito
          0
                 1 All
Real
0
          88
                29
                    117
1
          20
                77
                     97
All
         108
              106
                    214
```

```
In [173]: scores = pd.DataFrame(data=obj)
```

In [174]: scores.head()

y * 100)]}

Out[174]:

	Model	Score
0	RF	82.0
1	SVM	80.0
2	KNN	79.0
3	LR	77.0

```
In [175]: # Podemos observar acima que o algoritmo BASE Random Forest apresen
          tou uma maior accurácia bem como um menor índice
          # de erros (comparando as matrizes de confusão). Portanto, utilizar
          ei o RF para criar o modelo definitivo.
          # Primeiramente vou realizar testes com os hiperparâmetros do RF at
          ravés do grid e verificar se ocorre alguma
          # melhora na acurácia do modelo.
In [184]: # Criando as listas de valores dos hiperparâmetros
          valores = [1,2,3,4,5,6,7,8,9,10]
          criterion = ['gini', 'entropy']
          grid_params_rf = [{'criterion' : criterion,
                              'min samples leaf': valores,
                              'max depth': valores,
                              'min samples split': valores}]
In [185]: | grid_rf = GridSearchCV(estimator=clf rf,
                                  param grid=grid params rf,
                                  scoring='accuracy',
                                  cv=10,)
  In [ ]: grid rf.fit(xTrain, yTrain)
In [187]: grid_rf.best_params_
Out[187]: {'criterion': 'entropy',
           'max depth': 10,
            'min samples leaf': 1,
            'min samples split': 3}
In [188]: | grid_rf.best_score_
Out[188]: 0.8484375
In [189]: # Observe que melhoramos nosso modelo através dos testes com os hip
          erparâmetros do algoritmo Random Forest.
          # Agora vamos criar o modelo definitivo.
          # Instanciando o classificador com os hiperparâmetros
          classifier = RandomForestClassifier(criterion='entropy', max depth=1
          0, min samples leaf=1,min samples split=3)
In [210]: # Treinando o algoritmo com o novo classificador
          modelo = classifier.fit(x, y)
In [211]: | # Fazendo predições
```

predict = modelo.predict(xTest)

```
In [212]: # Verificando a acurácia do modelo
          accuracy = accuracy score(yTest, predict)
In [213]: accuracy
Out[213]: 0.9579439252336449
In [214]: # Relatório de classificação
          print(classification report(yTest, predict))
                         precision
                                      recall f1-score
                                                          support
                      0
                              0.99
                                        0.93
                                                  0.96
                                                              117
                              0.92
                      1
                                        0.99
                                                  0.96
                                                               97
                                                  0.96
                                                              214
              accuracy
                              0.96
                                        0.96
                                                  0.96
                                                              214
             macro avg
          weighted avg
                              0.96
                                        0.96
                                                  0.96
                                                              214
In [215]: # Matriz de cofusão
          print(pd.crosstab(yTest, predict, rownames=['Real'], colnames=['Pre
          dito'], margins=True))
          Predito
                      0
                           1 All
          Real
          0
                    109
                           8
                              117
                               97
          1
                      1
                          96
          All
                        104
                             214
                    110
In [216]: # 0 modelo melhorou quando eu o treinei com todos os dados do datas
          et. Quanto mais dados o dataset tiver,
          # mais amostras ele terá e consequentemente sua accurácia tente a s
          ubir pois ele aprenderá mais
          # Com bases muito pequenas, dificilmente um modelo ficará acima da
           faixa dos 80 - 90%.
In [221]: # Vamos salvar esse modelo treinado para o disco com o joblib
          joblib.dump(modelo,'model rf.joblib')
```

Out[221]: ['model rf.joblib']