Lecture 5

- 1. Prior Probabilities
- 2. Class-Conditional Probabilities
- 3. Posterior Probabilities
- 4. Bayes Rule

Probability Decision Theory

- Bayesian Decision Theory is a fundamental statistical approach to the problem solving.
- It allows us to quantify the tradeoffs between various classification decisions using probability and the costs that accompany these decisions.
- We assume all relevant probability distributions are known.
 - ➤ Later, as part of the machine learning process, we will learn how to estimate these from data.
- Can we exploit prior knowledge using Bayesian Decision Theory?
- For example, in our fish classification problem:
 - Are the sequence of fish predictable? (statistics)
 - Is each class equally probable? (uniform priors)
 - What is the cost of an error? (risk, optimization)

Machine Learning Example: Sorting Fish

 Sorting Fish: incoming fish are sorted according to species using optical sensing (sea bass or salmon?)

- Problem Analysis:
 - Set up a camera and take some sample images to extract features
 - Consider features such as length, color, width, number and shape of fins etc.

Prior Probabilities

- State of nature is prior information
- Model as a random variable, ω:
 - $\omega = \omega_1$: the event that the next fish is a sea bass
 - category 1: sea bass; category 2: salmon
 - $P(\omega_1)$ = probability of category 1
 - $P(\omega_2)$ = probability of category 2
 - $P(\omega_1) + P(\omega_2) = 1$
 - \triangleright Exclusivity: ω_1 and ω_2 share no basic events
 - \triangleright Exhaustivity: the union of all outcomes is the sample space (either ω_1 or ω_2 must occur)
- If all incorrect classifications have an equal cost:
 - ► Decide $ω_1$ if $P(ω_1) > P(ω_2)$; otherwise, decide $ω_2$

Class-Conditional Probabilities

- A decision rule with only prior information always produces the same result and ignores measurements.
- If $P(\omega_1) >> P(\omega_2)$, we will be correct most of the time.
- Probability of error: $P(E) = min(P(\omega_1), P(\omega_2))$.
- Given a feature, x (color), which is a continuous random variable, $p(x|\omega_1)$ is a class-conditional probability density function.
- $p(x|\omega_1)$ and $p(x|\omega_2)$ describe the difference in lightness between populations of sea and salmon.
- We often refer to these as likelihoods because they represent the likelihood of a value x given that it came from class ω₁ (or ω₂).

Probability Functions

- A probability density function represents a function of a continuous variable.
- $p_x(x|\omega)$, often abbreviated as p(x), denotes a probability density function for the random variable X. Note that $p_x(x|\omega)$ and $p_y(y|\omega)$ can be two different functions.
- P(x|ω) denotes a probability mass function, and must obey the following constraints:

$$P(x) \geq 0$$

$$\sum_{x\in X}P(x)=1$$

- Probability mass functions are typically used for discrete random variables (which are summed) while densities describe continuous random variables (latter must be integrated).
- We may mix both discrete variables (related to the number of classes) and continuous variables (the probability of a feature vector).

Bayes Formula

- Suppose we know both $P(\omega_j)$ and $p(x|\omega_j)$, and we can measure x. How does this influence our decision?
- The joint probability of finding a pattern that is in category ω_j and that this pattern has a feature value of x is:

$$p(\omega_j, x) = P(\omega_j | x)p(x) = p(x | \omega_j)P(\omega_j)$$

Rearranging terms, we arrive at Bayes Rule, also known as Bayes Formula:

$$P(\omega_j|x) = \frac{p(x|\omega_j)P(\omega_j)}{p(x)}$$

 The denominator term, which is known as the evidence, combines the two numerator terms (for the case of two categories):

$$p(x) = \sum_{j=1}^{2} p(x|\omega_j) P(\omega_j)$$

• This is the probability that a particular value of x can occur. It is difficult to calculate because it is the sum across all possible conditions.

Posterior Probabilities

Bayes Rule:

$$P(\omega_j|x) = \frac{p(x|\omega_j)P(\omega_j)}{p(x)}$$

can be expressed in words as:

$$posterior = \frac{likelihood \times prior}{evidence}$$

- By measuring x, we can convert the prior probability, $P(\omega_j)$, into a posterior probability, $P(\omega_i|x)$.
- Evidence can be viewed as a scale factor and is often ignored in optimization applications (e.g., speech recognition).
- Bayes Rule allows us to train a system by collecting data in what is called a supervised mode (e.g., collect a sea bass sample and measure its length, speak a specific set of words and measure the feature vectors).

Length As A Discriminator

Conclusion: Length is a poor discriminator

Add Another Feature

- Lightness is a better feature than length because it reduces the misclassification error.
- Can we combine features in such a way that we improve performance? (Hint: correlation)

Width And Lightness

- Treat features as a N-tuple (two-dimensional vector)
- Create a scatter plot
- Draw a line (regression) separating the two classes

Decision Theory

Can we do better than a linear classifier?

What is wrong with this decision surface? (Hint: generalization)

Generalization and Risk Revisited

 Why might a smoother decision surface be a better choice? (Hint: Occam's Razor).

 This course investigates how to find such "optimal" decision surfaces and how to provide system designers with the tools to make intelligent trade-offs.

Posteriors Sum To 1.0

• Two-class fish sorting problem $(P(\omega_1) = 2/3, P(\omega_2) = 1/3)$:

- For every value of x, the posteriors sum to 1.0.
- At x=14, the probability x is in category ω_1 is 0.92.
- The probability x is in ω_2 is 0.08.
- Likelihoods and posteriors are related via Bayes Rule.

Summary

- Probability Decision Theory: allows us to quantify the tradeoffs between various classification decisions using probability and the costs that accompany these decisions.
- Prior Probabilities: reflect our knowledge of the problem, which comes from "subject matter expertise."
- Likelihoods: A model that assesses the probability a specific feature vector could have occurred from a specific class.
- Posterior Probabilities: the probability a class occurred given a specific feature vector (converts a measurement to a probability that it came from a specific class).
- Bayes Rule: factors a posterior into a combination of a likelihood, prior and the evidence. Is this the only appropriate engineering model?

Univariate Normal Distribution

 A normal or Gaussian density is a powerful model for modeling continuousvalued feature vectors corrupted by noise due to its analytical tractability.

Univariate normal distribution:

Univariate normal distribution:
$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \qquad X = data/observation \qquad P(x|\omega_{1})$$

$$Mon , \sigma = STD$$

where the mean and covariance are defined by:

$$\mu = E[x] = \int_{-\infty}^{\infty} xp(x)dx$$

$$\sigma^2 = E[(x-\mu)^2 = \int_{-\infty}^{\infty} (x-\mu)^2 p(x)dx$$

$$\int_{-\infty}^{\infty} (x-\mu)^2 p(x)dx$$

$$\int_{-\infty}^{\infty} (x-\mu)^2 p(x)dx$$

The entropy of a univariate normal distribution is given by:

$$H(p(x)) = -\int_{-\infty}^{\infty} p(x) \ln p(x) dx = \frac{1}{2} \log(2\pi e \sigma^2)$$

Mean and Variance

• A normal distribution is completely specified by its mean and variance:

The peak is at:

$$p(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$$

• 66% of the area is within one σ ; 95% is within two σ ; 99% is within three σ .

$$M \pm G \qquad 66\%$$
 $M \pm 26 \qquad 95\%$

- Central Limit Theorem: The sum of a large number of small, independent random variables will lead to a Gaussian distribution.

Multivariate Normal Distributions

A multivariate distribution is defined as:

A multivariate distribution is defined as:
$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[\frac{-1}{2} (\mathbf{x} - \mathbf{\mu})^t \sum^{-1} (\mathbf{x} - \mathbf{\mu})\right] \qquad \qquad \times = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} \in \mathbb{R}$$
 where μ represents the mean (vector) and Σ represents the covariance

where μ represents the mean (vector) and Σ represents the covariance (matrix).

- Note the exponent term is really a dot product or weighted Euclidean distance.
- The covariance is always symmetric and positive semidefinite matrix.
- How does the shape vary as a function of the covariance?

Multivariate Normal Distributions

• Recall the definition of a normal distribution (Gaussian):

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[\frac{-1}{2} (\mathbf{x} - \mathbf{\mu})^t \sum^{-1} (\mathbf{x} - \mathbf{\mu})\right]$$

- Why is this distribution so important in engineering?
- Mean: $\mu = E[\mathbf{x}] = \int \mathbf{x} p(\mathbf{x}) d\mathbf{x}$
- Covariance: $\sum E[(\mathbf{x} \mathbf{\mu})(\mathbf{x} \mathbf{\mu})^{t}] = \int (\mathbf{x} \mathbf{\mu})(\mathbf{x} \mathbf{\mu})^{t} p(\mathbf{x}) d\mathbf{x}$

Prior Distributions

 We can encode out beliefs about what the values of the parameters could be using

$$P(heta)$$
 likelihood Prior

Using Bayes' rule, we have

$$P(\theta = \theta_0 | \text{data}) = \frac{P(\theta = \theta_0, data)}{P(data)} = \frac{P(data | \theta = \theta_0)P(\theta = \theta_0)}{P(data)}$$

$$= \sum_{\theta_1} P(data | \theta = \theta_1) P(\theta = \theta_1)$$

Maximum a-posteriori (MAP)

• Maximize the *posterior probability* of the parameter:

$$argmax_{\theta_0} \frac{P(data|\theta = \theta_0)P(\theta = \theta_0)}{P(data)}$$

$$= argmax_{\theta_0} P(data|\theta = \theta_0)P(\theta = \theta_0)$$

$$= argmax_{\theta_0} \log P(data|\theta = \theta_0) + \log P(\theta = \theta_0)$$

- The posterior of probability is the product of the prior and the data likelihood
- Represents the updated belief about the parameter, given the observed data

Aside: Bayesian Inference is a Powerful Idea

- You can think about anything like that. You have your prior belief $P(\theta)$, and you observe some new data. Now your belief about θ must be proportional to $P(\theta)P(data|\theta)$
 - But only if you are 100% sure that the likelihood function is correct!
 - Recall that the likelihood function is your model of the world it represents knowledge about how the data is generated for given values of θ
 - Where do you get your original prior beliefs anyway?
- Arguably, makes more sense than Maximum Likelihood

Gaussian Residuals Models

Log-likelihood:

$$\log P(data|\theta) = \sum_{i} -\frac{\left(y^{(i)} - \theta^T x^{(i)}\right)^2}{2\sigma^2} - \frac{m}{2}\log(2\pi\sigma^2)$$

- Suppose we believe that $P(\theta_i) = N\left(0, \left(\frac{1}{2\lambda}\right)\right)$
 - I.e., the coefficients in θ will generally be in $[-1.5/\lambda, 1.5/\lambda]$
- $\log[P(data|\theta)P(\theta)]$ is $\log P(data|\theta) \lambda |\theta|^2 + const$ (exercise)
- Maximize $\log[P(data|\theta)P(\theta)]$ to get the θ that you believe the most

Why
$$P(\theta_i) = N\left(0, \left(\frac{1}{2\lambda}\right)\right)$$

- More on this later
- If the θ_i 's are allowed to be arbitrarily large, the ratio of the influences of the different features over the decision boundary could be arbitrarily high
 - Difficult to believe that one of the features still matters, but it matters a 10000000 times less than some other feature
 - Easy to believe a feature doesn't matter at all, though
 - Only reasonable if the inputs are all on the same scale, and the output is on roughly the same scale as the inputs
 - Mostly when we fit coefficients, they don't get crazy high, so it's a reasonable prior belief

L2 Regularization

- L2 regularization: maximize: $\log P(data|\theta) - \lambda |\theta|^2 + const$
- "L2 regularization" because numerically, the cost function penalizes the L2 norm of θ
- A way of preventing overfitting
 - If we set λ to be very high, θ will just be 0: the performance on the training and test sets will be the same (and will be bad)
 - If we set λ to be moderately high, we won't let θ_i 's be too large even if that leads to good performance on the training set. Idea: if the training set makes a θ_i very large, that probably won't be good for test set performance, since usually large θ_i 's lead to poor performance
- What about other norms?

L1 Regularization

L1 = Laplacian prior

- Alternative: L1 regularization: maximize: $\log P(data|\theta) \lambda |\theta|_1 + const$
- Equivalent to using a Laplacian prior:

L2 = Gaussian prior

- Encourages sparsity (feature selection)
 - Sparsity: most θ_i are zero

L2 vs L1 regularization

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Early Stopping

- Initialize the θ s to small initial values
- Run Gradient Descent, but stop early
 - Before finding the minimum of the cost function applied to the training set