

Title: GAS COMPONENT SENSOR FOR GAS OXIDES

Inventors: Abdel Essalik, John Currie, Howard Rosen

5 This application is a division and continuation in part of US Patent Application Serial No. 09/498211 filed February 4, 2000.

BACKGROUND OF THE INVENTION

The present invention relates to dual layer membranes for selectively admitting gas components to gas component sensors.

10 Prior art electrolytic sensors for carbon dioxide have disclosed the following useful relationship. As disclosed in "Study of a new solid electrolyte thin film based micropotentiometric carbon dioxide gas sensor" (A. Essalik et al, J. New Mat. Electrochem. Systems 1, p.67-70 (1998)) electrode reactions giving the EMF of such a sensor are as follows:

sensing electrode:

reference electrode:

where Na^+ and Ag^+ are the mobile ions and Na_2O and Na_2CO_3 are in solid state. The cell EMF can be written according to the Nernst equation as:

$$\text{EMF} = K - [(2.3RT \log a_{\text{Ag}^+}) / F] + [(2.3RT \log P_{\text{O}_2}) / 4F] + [(2.3RT \log P_{\text{CO}_2}) / 2F]$$

where K is a constant, F and R are the Faraday and gas constants respectively and T is the temperature. According to this equation, at constant P_{O_2} and silver-ion activity a_{Ag^+} , the 25 EMF depends only on the CO_2 partial pressure.

Also disclosed therein is an inherent restriction on the usefulness of that prior art electrode. "However, for practical use, stability of the sensors should be improved." (Essalik et al, p. 70) and the article explained that the sensor lasted only a few hours at 30 operating temperature. This limitation is a common problem of prior art electrolyte based

carbon dioxide sensors. Typically, in other prior art carbon dioxide sensors, high temperature operation (400-500°C) has been required, although the Essalik et al sensor displayed superior operational response at about 250°C.

There is a need for a carbon dioxide sensor after the Essalik et al device for which

- 5 stable operation is maintained over a long period of time, sufficiently long for application to control or sensing systems wherein low power, low temperature carbon dioxide sensing may used to advantage.

SUMMARY OF THE INVENTION

10 The present invention is an electrolyte composition. The electrolyte composition in bulk, sintered or thin film embodiments are capable of forming with different-metal sensing and reference electrodes a highly stable carbon dioxide sensor. The sensor of Essalik et al is improved with changed electrolyte composition, thereby changing the electrochemical reactions at the sensing and reference electrodes and the overall reaction of the electrodes and electrolyte.

15 The novel electrolyte has: (1) excellent chemical stability and thermal compatibility as to the electrodes and a preferred ceramic substrate, (2) excellent chemical stability with the environment as to the reference and sensing electrodes, which need not be sealed against the atmosphere to be sensed, (3) effective adherence to the substrate and electrode metals. The novel electrolyte has solved the stability problems of the Essalik et al sensor.

20 The invention electrolyte comprises a relatively small amount of reference electrode metal halide and optionally an alkaline. The invention sensor comprises an electrochemically effective amount of the electrolyte in electrical connection with sensing and reference electrodes, whereby the sensing and reference electrodes are of different metals.

25 The invention electrolyte has been additionally found to have gas concentration reactive sensitivity to NO_x, SO_x, H₂S, chloride ions, flouride ions and bromide ions. Although insensitive and non-reactive with carbon monoxide, gas concentration carbon monoxide may be indirectly determined by its calculation from the gas concentrations of carbon 30 dioxide and/or nitrogen oxides and sulfur oxides, as the gas species and concentration

ranges of a sensed gas are typically known for a specific application of the invention sensor.

The invention electrolyte is effective in bulk or thin layer for chemical specie detection, although the thin layer embodiment has a somewhat lower power requirement and
5 improved response time.

In one embodiment of the invention sensor, a hydrophobic layer filter substantially excludes water from the sensed gas reaching the sensor. Such filters are effective in selecting out or permitting in some chemical species such as water, carbon monoxide, and oxides of nitrogen and sulfur. Where such filters are effectively used, separate invention
10 sensors may be used as an array to determine a profile of multiple gas components in a sensed gas, thereby providing a process determination to recording, control and/or display means. For example, such a profile for a gas composition as air after combustion with oxidizeable components and compared with a prior air composition will indicate the presence of a fire or other undesirable condition. Increased carbon dioxide, oxides of
15 sulfur and nitrogen and carbon monoxide in air typically indicate high temperatures and combustion products.

In a preferred embodiment of the invention sensor, thin layer sensing and reference electrodes are in effective connection through the invention electrolyte, the assembly adhered to a top side of a thin ceramic layer also comprising a resistive temperature detector (RTD), whereby a heating layer is adhered to a bottom side of the thin ceramic layer. As described above, a change in the gas concentration of the sensed component changes the EMF across the electrodes, thereby permitting direct or indirect calculation of the concentration of the sensed component. The invention sensor in this embodiment is inexpensive, easy to fabricate, compact, operates at low temperature, and uses very low
20 power. The small size and low power use of the invention sensor enable the skilled person to now use a stable carbon dioxide sensor in low power and temperature sensitive assemblies. The invention sensor has a broad operating range as to carbon dioxide, typically up to and exceeding 10,000 ppm. Such a range of operation allows use of the invention sensor in devices for sensing, recording or controlling air quality, fire detection,
25 chemical, biochemical and biological (including medical) processes, agricultural processes and the like. The present sensor senses a sensed component independent of the flow rate
30

of the component across the sensor. The present sensor eliminates gas tight sealing of at least one electrodes against a sensed or reference gas. The present sensor now permits stable operation through a substantially equilibrium reaction at the electrolyte / reference metal interface of the following reaction:

The above benefits were not realized or taught in the prior art with respect to the novel electrolyte composition of the invention. The invention electrolyte comprises electrochemically effective amounts of one or more alkali metal carbonates, one or more alkaline earth metal carbonates, one or more reference electrode metal halogens and 10 optionally an amount of one or more alkali halogens. Although not specifically described herein, the invention electrolyte may comprise substantially electrochemically neutral components while still achieving the objects of the invention. Thus, a description of the invention electrolyte will include a composition with such substantially neutral components so long as the invention benefits are obtained with an electrochemically effective amount of 15 the electrolyte applied across the electrodes of the invention sensor.

The invention electrolyte also comprises a method for conversion from a carbon dioxide sensing electrode to an electrode capable of sensing oxides of nitrogen or sulfur or

hydrogen sulfide. At operating temperature, the invention electrode is exposed to

substantial amounts of oxides of nitrogen or sulfur or hydrogen sulfide, resulting in

20 absorption and reaction of a portion of that component with the invention CO₂ electrolyte.

The resulting electrolyte (such as including sodium or barium nitrate or sulfate) thereby

becomes sensitized to that component in addition to some sensitivity to carbon dioxide.

Calculation of the concentrations of the sensed components is possible from a previously

determined potential range of component concentrations for carbon dioxide and the other

25 component, or a filter may be arranged such that substantially all carbon dioxide is

excluded from the sensed gas.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a top view of the interdigitated reference and sensing electrodes and RTD's

30 on a top side of a thin support layer, with the outline of the invention electrolyte shown in

broken lines.

Figure 2 is a bottom view of a bottom side of the thin support layer, having adhered thereon a resistive heating element.

Figure 3 is a graph of the EMF response of the invention thin film electrolyte to CO₂ in a sensed gas.

5 Figure 4 is a graph demonstrating stability of the invention CO₂ sensor.

Figure 5 is a graph demonstrating the response of the invention CO₂ sensor to CO₂ levels in a gas.

Figure 6 is a graph of the invention CO₂ sensor response to non-CO₂ components of air as to the response of the sensor shown in Figure 5.

10 Figure 7 is an infrared spectra of the bulk invention electrolyte.

Figure 8 are the infrared spectra of the bulk and thin film invention electrolyte maintained at 130°C and 400°C for 14 days, demonstrating component integrity and continued stability of the invention electrolyte over time.

Figure 9 is a side cutaway view of one embodiment of the electrode.

15 Figure 10 is a top perspective view of an electrolyte electrode selectively sealed against an outside atmosphere only as to some gas components.

Figure 11 is a side cutaway view of the device of Figure 11.

Figure 12 is a side cutaway view of an alternate embodiment of the device of Figure 11.

Figure 13 is a side cutaway view of one type of composite membrane.

20 Figure 13A is a side cutaway view of another type of composite membrane.

Figure 14 is a microphotograph of a carbon fiber cloth that can be used as a support in the composite membrane.

DETAILED DESCRIPTION OF THE INVENTION

25 The invention electrolyte comprises the following specific ranges of electrochemically effective components relative to each other in weight percent:

- alkali metal carbonate(s): from about 20% to about 99%;
- alkaline earth metal carbonate(s): from about 20% to about 99%;
- reference electrode metal halogen(s): from an electrochemically effective amount, but most preferably from about 0.005% to 10%; and
- alkali halogen(s) (optional): about 0.5% to 1.0%.

Exemplary alkali metal carbonate are NaCO₃, Li₂CO₃, K₂CO₃, and Rb₂CO₃.

Exemplary alkaline earth metal carbonates are BaCO₃, CaCO₃, and SrCO₃. Exemplary reference electrode metal halogens comprise any inorganic salt of the reference electrode metal and halogen ions or oxy-anions as one group or the group of Cl, Br or I. Exemplary

5 alkali halogens are NaX, LiX, KX, and RbX where X is chosen from the group of Cl, Br or I.

Sensing and reference electrode metals are preferably chosen from the group Ru, Rh, Pd, Re, Os, Ir, Pt, or Au. It does not matter which two of the preferred metals are chosen from among this group for the sensing and reference electrode so long as the two metals are different. Optimizing price and ease in fabrication will result in a choice from the above

10 group of sensing and reference electrodes.

For a thin film embodiment of the present invention, it has been found that a ceramic substrate of α -alumina is a preferred material, although many other appropriate supports are appropriate depending on adhesion and heat transfer characteristics of the substrate. A preferred thickness of the ceramic substrate is from about 50um to less than about 1 millimeter. It is preferred to prepare the surfaces for thin film deposition by cleaning in

15 baths of warm acidic solution (Citronox), warm acetone solution, warm isopropanol solution, and warm deionized water dried in nitrogen gas at about 140°C.

Figures 1 and 2 show a thin film invention sensor assembly 100 having ceramic substrate with a top side 101, thickness 102 and bottom side 107. Sensing electrode 104 is interdigitated with reference electrode 105 between RTD's 103, all of which are applied as thin films to top side 101 via sequential e-beam evaporation and patterned by lift-off. When using Au or Pt for electrodes or otherwise depositing such on the substrate, it is preferable to first deposit a layer of chromium to improve adherence of the thin layer metals. It is preferred that electrode layers have the following thicknesses: Ag / >15000

25 angstroms; Pt-Cr / >1000 angstroms; Au-Cr / >5000 angstroms.

The RTD's are preferably Pt, as well as the thin film heater 108 having wire connections 109. It is apparent to the skilled person that the embodiment of Figures 1 and 2 comprise sites for wire lead attachment for connection to electrodes 104 and 105, RTD's 103 and heater 108. The outline 106 of Figures 1 and 2 shows the preferred extent of deposited

30 invention electrolyte on assembly 100, thereby covering a substantial portion of the interdigits of electrodes 104 and 105.

After deposition of the electrodes 104 and 105, electrolyte 106 is deposited in the following manner. A sputter target disk of about 2 inches diameter and 5 millimeter thickness is prepared from the bulk powder form of the invention electrolyte. The disk is prepared similarly to the process of Essalik et al by hydraulic (6,000 psi) and cold isostatic press (40,000 psi). The target was mounted in the RF magnetron sputtering guns in a UHV chamber for low pressure chemical vapor deposition to the thin film. The target was hygroscopic and therefore was maintained in vacuum protected by load lock. The sputtering chamber of the RF magnetron was back-filled with pure argon to a working pressure. Sputtering of the target to the substrate was done at a power level of about 85W at about 1.1 angstroms/s, producing a thin film of about 20,000 angstroms. The outline of the deposited electrolyte is maintained only such that it is substantially electrochemically in touch with opposing edges of the interdigits of electrodes 104 and 105.

The following list are actual examples sputtering target disk compositions for four embodiments of the invention electrolyte incorporated into a CO sensor assembly 100 and having CO₂ sensing capabilities according to the performance characteristics described herein:

1. BaCO₃, 17.7615 g.; Na₂CO₃, 5.2995; AgCl, 0.3583 g.; NaCl, 0.0055 g. or 0.0 g.
2. NaCO₃, 17.7615 g.; Ba₂CO₃, 5.2995; AgI, 0.5869 g.; NaI, 0.0055 g. or 0.0 g.
3. Li₂CO₃, 17.7615 g.; Ba₂CO₃, 5.2995; AgCl, 0.3583 g.; NaCl, 0.0055 g. or 0.0 g.
4. Li₂CO₃, 17.7615 g.; Ba₂CO₃, 5.2995; AgI, 0.3583 g.; NaI, 0.0055 g. or 0.0 g.

Figures 3-8 show performance characteristics of the sensor assembly 100 wherein heater 108 causes the electrolyte 106 to reach about 250°C and a higher concentration CO₂ containing gas is introduced to and withdrawn from the electrolyte 106 surface. For a single, exemplary sensed gas, Figure 3 shows that full response time to the higher concentration CO₂ containing gas requires only about 20 seconds (from about 65 seconds to 85 seconds) to reach accurate measurement and about 65 seconds to recover once the higher concentration CO₂ gas was replaced with the previous gas. In general, the thin film embodiments of assembly 100 comprise sensors for CO₂, NO₂ and SO₂. The results for CO₂ sensor assembly 100 at 250°C were about 45±3 mV/decade sensitivity, 10-30 seconds for response time and around 60 seconds recovery time. The results for NO₂ sensor assembly 100 at 250°C were about 48±3 mV/decade sensitivity, 2-10 seconds for

response time and around 10 seconds recovery time. The results for SO₂ sensor assembly 100 at 250°C were about 50±3 mV/decade sensitivity, 1-2 seconds for response time and around 5 seconds recovery time. Exemplary electrolyte compositions for NO₂ and SO₂ sensor assemblies are respectively: (1) BaNO₃, AgCl, and NaCl and (2) BaSO₄, Na₂SO₄, 5 AgCl, V₂O₅, and NaCl. Sputtering target and thin film deposition techniques for NO₂ and SO₂ sensor assemblies are as above.

Figure 4 is a graph demonstrating stability of the invention CO₂ sensor. It easily seen that sensor response is substantially flat after an initial period of decline.

Figure 5 is a graph demonstrating the response of the invention CO₂ sensor to CO₂ 10 levels in a gas. The lower CO₂ concentration sensitivity at about 2000 ppm and below is especially useful for devices incorporating the CO₂ sensor into a display, recording or control system where the gas will come into contact with breathing air of animal life.

Figure 6 is a graph of the invention CO₂ sensor response to non-CO₂ components of air as to the response of the sensor shown in Figure 5.

Figure 7 is an infrared spectra of the bulk invention electrolyte.

Figure 8 are the infrared spectra of the bulk and thin film invention electrolyte 15 maintained at 130°C and 400°C for 14 days, demonstrating component integrity and continued stability of the invention electrolyte over time. Component locations on the spectrum are shown in the Figure. Traces A and C show, respectively, bulk powder composition after 14 days of exposure to heating in air at 400°C and 130°C. Traces B and 20 D show, respectively, thin film composition after 14 days of exposure to heating in air at 130°C and 400°C. It will be readily appreciated that the powder electrolyte experiences a greater percentage loss of electrochemically effective components in the increase in temperature from 130°C to 400°C than the thin film electrolyte. The thin film embodiment 25 of the invention electrolyte remains effective in composition through long periods of exposure to much higher temperatures than required for effective operation.

The specific example of the above thin film CO₂ sensor operates effectively with a current of about greater than about 5-10 mA. The low power usage translates into low ambient heat transfer, thereby permitting use in compact, temperature sensitive devices. It 30 is, however, an alternate embodiment of the sensor assembly to do without the RTD's and thin film heater where ambient conditions of a sensed gas are within the temperature range

required by the invention sensor assembly.

F D E C O M P A C T E D

EMBODIMENT FOR COMPOSITE MEMBRANE FOR PROTECTION OF A GAS SENSOR

The present invention of this embodiment is one of the many forms of gas components sensors in the prior art or to be developed later that are protected from some gas components by a dual layer membrane or a membrane that is effectively made to exhibit properties of such dual layer membranes. Specifically, it is known that electrolyte based gas sensors may be impaired by gas components such as water, oxides of nitrogen or sulfur, or other such components. The impairment components typically react to permanently damage the gas sensor abilities or may compete for sensing surface area or sites on the gas sensor. In either case, a gas sensor can require that one or more gas components be excluded for short term or long term sensing stability.

The following discloses prior art gas sensors. Essalik et al (Study of a new solid electrolyte thin film micropotentiometric carbon dioxide gas sensor, J. New Mat. Electrochemical Systems 1, 67-70 (1998) discloses a thin film CO₂ sensor with a composition similar to the invention electrolyte without ions of the electrode metal or different electrode metals.

US Patent 4388155 discloses a shielded side sensor illustrating the operation problems of exposing both electrodes to the sensed gas.

EP Application 91113350.2 discloses a sensor of the NASICON type requiring specific ratios of alkali metal carbonates to alkaline metal carbonates.

US Patent 5759366 discloses a solid electrolyte ceramic with alkali ion conductivity, and two electrodes of conductor material inert with respect to the electrolyte.

US Patent 4715944 discloses an allegedly stable operation CO₂ sensor having a gas shielding layer with respect to the electrolyte thereby protected.

US Patent 5910239 discloses titanium dioxide or tin dioxide used in alkali/alkaline earth metal based electrolyte.

However, gas sensors operate on the principle of gas exchange, i.e., that a volume of gas, typically small, is sensed and is replaced with another volume that is in turn sensed. The volumes exchanged must be representative of the larger volume whose composition is of concern. The requirement of gas exchange has resulted in development of some selective membranes for gas sensors. Selectivity by membrane necessarily slows response over the condition where no membrane is used. Thus, the benefits of selectivity

for protection of a gas sensor must be balanced against the capability of the membrane to exchange volumes of gas with the external environment in time for a sensor response to be of use.

The art of membranes for protection of gas sensors has been expanded with the
5 present invention. The present invention is a composite membrane comprising a support layer arranged so that it is bonded to an exclusion layer, the dual layer forming a barrier against an external environment having one or more undesirable gas components. The composite membrane has adequate porosity for required gas volume exchange and is preferably near the gas sensor without an intervening layer. The exclusion layer is applied
10 to the side of the support layer that would be exposed to the external environment.

In a specific embodiment, a general class of composite membranes is disclosed as those dual layer membranes used in fuel cell technology for gas diffusion electrodes, with or without electrocatalyst loading, a commercial embodiment of which is currently sold by E-Tek Inc., a well known provider of fuel cell components to the industry. That commercial product has a porous support layer overlain with Teflon® (PTFE) that has been pressed onto or into the surface of the support layer. The sole uses of this composite membrane in the prior art has been for a liquid to gas interface. The commercial product is disclosed in combination with a system for fuel cells at their Internet web site at [www.etek-](http://www.etek-inc.com/about.html)
20 [inc.com/about.html](http://www.etek-inc.com/about.html) where they describe their product as an electrode or catalyst (support layer) that can be adhered directly to a polymer electrolyte membrane. The constructions are known to E-Tek, Inc. as membrane electrode assemblies used in fuel cells for power generation. This art of composite membranes has been developed for electrical power generation as a liquid to gas interface since 1930. Although the technology has advanced dramatically, the uses in the prior remain as a liquid to gas interface with uni-directional
25 flow of gas components. No prior art reference suggests their use as an interface for gas to gas where gas exchange back and forth across the membrane occurs. The present invention uses the composite membrane in just such a manner to exclude from a gas sensor a component in the external environment gas.

The support layer of the E-Tek, Inc. composite membrane has a porosity and other
30 characteristics that are designed as a liquid water to gas interface. The exclusion layer of the E-Tek, Inc. composite membrane is shown to be Nafion® or a polymer of the

customer's choosing. In preferred embodiment, the exclusion layer is Teflon® to form a hydrophobic layer on the support layer. The composite layer thereby forms a water exclusion dual layer membrane that surprisingly permits sufficient diffusion back and forth across the membrane so that a gas sensor located fairly close to the membrane is

5 protected but is capable of providing a timely response as to the concentration of one or more components in the external environment. Clearly, if one or more gas components are excluded from the gas sensed by a protected sensor, the concentration of the sensed gas component in the protected gas volume is not precisely that of the external environment. If it is likely that this will introduce substantial error in the concentration desired to be known

10 by measurement by the gas sensor, a second sensor for the excluded components may sense them in the external environment and the result directed to a logic means such a computer with the result of the concentration of the desired gas component so that a correction may be made before transmittal to a user of the information.

The E-Tek, Inc. product is a flat and relatively thin support layer having pressed into or onto one side a polymer as an exclusion layer. US Patents 5798668, 6130175, and 6156461 disclose fluorinated polymers for both the porous support layer and a hydrophobic exclusion layer.

US Patents 5126216 and 5298343 are directed to a catalyst whose activity as a catalyst is of no particular use to the present invention, although the solid material produced from production of the invention catalysts forms a material useful as support material for the present invention. The prior art discloses some dual layer membranes. US Patent 6045697 and the parent patents to it disclose a mineral oxide support with a polymer exclusion layer of PS, PVA, PFV, and others. US Patent 6048383 tells of a dual layer membrane with a support layer made of carbon fiber in a thermoset resin or glass fiber in an epoxy and an exclusion layer made of a fluorinated polymer for hydrophobicity.

Figures 10 and 11 / 12 are respectively perspective and cut away side views of a specific embodiment of the invention system 200. A base plate 203 has sealingly mounted to it cover 202 which has in its top surface a hole 204 that allows external environment gas to pass to the cavity formed between plate 203 and cover 202. Within that cavity and on 30 the plate 203 is a representative gas sensor 206, such as the above disclosed electrolyte gas sensors or other gas sensors that require gas contact with the sensor. Sensor 206 is

open to the external environment except for composite membrane 201 sealed at its periphery 205 to the underside of the top part of cover 202, where the sealing is gas tight so that substantially all gas exchange between the external gas environment and the gas sensor passes back and forth through the composite membrane 201. In a preferred embodiment, the exclusion layer of membrane 201 is adjacent to the underside of the top part of cover 202 so that gas tight sealing between cover 202 and membrane 201 is more easily accomplished and so that the support layer is sealed against the external environment that may have components damaging to the support layer materials. The preferred embodiment of Figures 10 and 11 teaches the skilled person by its disclosure that a composite membrane is sealed in a manner that does not permit external environment gas to reach the sensing surface of a gas sensor without first passing through the composite membrane. This means that the composite membrane 201 may contact or be sealed directly to the sensor 206 as in Figure 12. Fabrication may permit sputtering or other such fabrication of a support layer of a membrane 201 directly on a top surface of a sensor 206 with an exclusion layer applied later to the top surface of the support layer. Alternately, support layers may be applied as the above described polymers or mixtures thereof and the exclusion layer applied thereafter.

In a most dual layer composite membrane, Figure 13 shows a diagram of a commercial product of E-Tek, Inc. The product A-6 solid polymer electrolyte electrode, single sided version has support layer 209 as a plain weave carbon cloth of 3.4oz/yd² (116 g/m²). The support thickness is about 0.36 mm. Figure 14 is a microphotograph of an exemplary carbon cloth Vulcan XC-72 (Cabot Industries Corp.) used in the support layer of the composite membrane of composite membrane 207. A finished catalyzed electrode ranges from 0.45 mm to 0.50 mm in thickness depending on the catalyst loading 210. Gas-side wet-proofing is by means of a hydrophobic fluorocarbon/carbon layer 208 on one side of cloth only. In the commercial product of Figure 13, E-Tek, Inc. uses Nafion® as the hydrophobic fluorocarbon for layer 208, which is pressed at high pressure into the support layer 209 to obtain the hydrophobic fluorocarbon/carbon composite. The water exclusive effect of the inventive system may also be provided by other polymer in layer 208, as disclosed in the research of Jochen Kerres et al in the article "DEVELOPMENT OF MEMBRANES FOR ELECTROLYSIS AND MEMBRANE FUEL CELLS" (Institut für

Chemische Verfahrenstechnik, Universität Stuttgart , 12/24/96, Collaborative Research Center SFB 270 / Project A7, published at http://www.uni-stuttgart.de/sfb270/A7_E.htm.

As is well demonstrated in the prior art, no one heretofore has shown inclination to attempt to use the composite membranes of this embodiment of the invention system in a gas to

5 gas interface for water exclusion. In the composite membrane of Figure 13, a model is disclosed for preparation of other component exclusive layers, whereby layer 208 is a polymer / carbon composition formed from pressing or combining by other method on to support layer 209 with high porosity and adequate support such as is found in carbon fiber cloth or carbon paper. As for any physicochemical phenomena, the determining step is the
10 slowest step and in this embodiment the slowest step is the diffusion of the gas through the hydrophobic part of the membrane which is equipped with the smallest porosity. It is most preferred where the support layer is at least somewhat hydrophilic that the support layer be sealed from the outside environment by the hydrophobic layer and other structure or materials.

15 Figure 13A shows an alternate form 211 of a composite membrane. Operation of electrolyte gas sensor typically requires heating to substantially over the vaporization temperature of water. Hydrophilic layers 208 are impressed or adhered to both sides of a dessicant layer 212, although in one form of this embodiment a hydrophilic layer 207 is optionally eliminated from the side of the membrane facing the electrode. Dessicant layer
20 212 comprises either a dessicant material such as a zeolite or porous silica as the support for the hydrophobic layers 207 or a material such as carbon cloth or other porous material impressed or impregnated with water absorbent but material that results in a porous support layer as in the device of Figure 13. The composite membrane form 211 of Figure 13 takes advantage of the heating of the gas sensor to dry the dessicant layer 212. During
25 operation of a heated electrolyte electrode, water molecules are typically not absorbed on the electrolyte in such quantity to seriously affect electrode performance. However, in a non-operation state when the temperature of the electrode is reduced below the vaporization temperature of water, water molecules can absorb into the electrolyte of the electrode at an unacceptable rate and cause long term reduction in gas sensing accuracy.
30 The present composite membrane uses dessicant in layer 212 to capture water molecules. In non-heated states, gas will pass from an atmospheric side of the membrane and through

a layer 207 to layer 212 where water will be absorbed. The substantially dry gas will pass directly to the gas sensor or through yet another hydrophilic layer 207 to enhance water molecule retention in the dessicant layer 212. During heated operation, the water molecules in layer 212 are driven off and layer 212 is again ready to capture water

5 molecules in non-heated states. Alternately, heated operation of the gas sensor may be initiated periodically not to specifically to sense a gas concentration but instead to drive off water molecules from the dessicant layer. A dessicant layer may also be used with reduced temperate of the atmospheric gas to cause condensation of water on the dessicant layer and drain means are provided to draw off the condensed water, whereafter heated

10 operation will drive the water off. The dessicant layer thus becomes an effective barrier to water molecule intrusion into an electrolyte gas sensor.

10000 20000 30000 40000 50000 60000 70000 80000 90000

EMBODIMENT FOR DRIFT COMPENSATION WITH DUAL GAS SENSORS

The above invention gas sensors for carbon dioxide exhibit effective lives much in excess of the prior art electrolytic sensors. However, operation of the sensors in some environments indicates that continuous operation at effective temperatures leads to a drift 5 in accurate measurement of carbon dioxide in the measured gas volumes passing across the exposed surface of the electrolyte.

Figure 15 is a top view of a drift compensating embodiment of the present invention. An invention electrolyte gas sensor 100 as in Figure 1 is shown in Figure 15 closely associated with a substantially identically functioning electrolyte gas sensor 100'. The aspect numbers 10 of sensor 100' identify substantially the same structure and function of the aspects of sensor 100, although the prime ('') designation with an aspect number indicates the aspect's association with sensor 100'. The support 111 preferably brings sensors 100 and 100' into such close supporting association with effectively about the same heat transfer from a heating element or means that the electrolytes of sensors 100 and 100' experience 15 about the same temperature during operation. Sensor 100' comprises a modification of a gas tight overlay 110 that seals the electrolyte of sensor 100' against the atmosphere. The sealing of the sensor 100' preferably takes place in a typical ambient air atmosphere, although the sealing step may take place in a sensed component-rich or sensed 20 component-absent gas atmosphere.

It has been found that integrated operation of the sensor 100' with one or more sensors 100 at about the same temperature and in effective connection with logic means recording and comparing the potentials across the sensors 100 and 100' results in a substantially constant potential across sensor 100' comparable to reduced potential drift of sensor 100 over a very long period of time. The logic means is programmed to record over a number of 25 short periods the potential across sensor 100, whereby a sequence of relatively constant recorded potentials indicates a period of substantially constant sensed gas concentration of a sensed component. Where the potential of sensor 100 has declined from the start of the period of constant sensed gas concentration of a sensed component to the end of that period, the rate of that decline is compared with the rate of a decline or change, if any, in 30 the potentials across sensor 100' for the same period of time. The logic means uses the overall of instantaneous rate of change of sensor 100 mathematically compared with the

overall of instantaneous rate of change of sensor 100' to generate a correction factor which is applied to the current potential from sensor 100 which is then mathematically transformed to a sensed component concentration for use or display in display means such as in a display screen or printed on media from a printer. For example, if no change in
5 potentials occurs across sensor 100' in a 30 hour period but a 10% decline has occurred in the potentials of sensor 100 in the same period where inputs to the logic means indicates a substantially constant sensed component concentration for the period, then a correction factor of 1.10 (110%) in a simple ratio could be applied to the currently sensed potential across sensor 100 before application of the logic means of mathematical conversion of the
10 potential to sensed gas component concentration.

The above design disclosures present the skilled person with considerable and wide ranges from which to choose appropriate obvious modifications for the above examples. However, the objects of the present invention will still be obtained by the skilled person applying such design disclosures in an appropriate manner.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
995
996
997
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855