1 Interpolation of Tensor Calculus with UNNS

Definition 1.1 (UNNS Nest). A UNNS nest of order r is a sequence (u_n) satisfying

$$u_{n+r} = c_1 u_{n+r-1} + \dots + c_r u_n,$$

for fixed coefficients $c_i \in \mathbb{Z}$ (or in an algebraic integer ring). The tuple (c_1, \ldots, c_r) is called the coefficient vector.

Lemma 1.2 (Differentiation as Recurrence Expansion). Let $f : \mathbb{Z} \to \mathbb{R}$ be a discrete field on a lattice with mesh size h. The forward difference

$$\frac{f(x+h) - f(x)}{h}$$

is equivalent to a 2-term UNNS recurrence. Higher derivatives correspond to higher-order recurrences.

Lemma 1.3 (Contraction as Echo Collapse). Given a tensor T^{ij} on a UNNS-labeled lattice, contraction T^i_i corresponds to summation of UNNS-propagated components. The resulting sum is accompanied by an echo residue measured by the UNNS Paradox Index (UPI), which quantifies the stability of the contraction.

Theorem 1.4 (Tensor Product as Nest Coupling). Let (u_n) and (v_n) be two UNNS nests with coefficient vectors (c_1, \ldots, c_r) and (d_1, \ldots, d_s) . Then their tensor product corresponds to a coupled recurrence of order r+s whose coefficients are obtained by Kronecker product of the companion matrices.

Theorem 1.5 (Curvature as Echo Amplification). Let u_n be a UNNS nest defined on a closed loop in a simplicial complex. Transporting u_n around the loop produces an echo residue ϵ , given by deviation from initial value. This echo amplification is the discrete analog of curvature R^i_{jkl} in tensor calculus.

Echo amplification around a closed UNNS loop, representing curvature.

Remark 1.6. In this interpretation:

- The metric tensor g_{ij} corresponds to the coefficient matrix of a UNNS nest (propagation law).
- Christoffel symbols Γ^k_{ij} correspond to second-order recurrence couplings across lattice directions.
- ullet Curvature R^i_{jkl} measures accumulated echo residue along a closed recurrence loop.