LINEAR, RIDGE AND LASSO REGRESSION

```
In [3]: from sklearn.datasets import load_boston

In [1]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline

In [21]: df=load_boston()
```

```
In [22]: df
Out[22]: {'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+0
         2,
                  4.9800e+00],
                 [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
                  9.1400e+00],
                 [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
                  4.0300e+00],
                 [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                  5.6400e+00],
                 [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
                  6.4800e+00],
                 [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                  7.8800e+00]]),
          'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 1
         5.,
                 18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
                 15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
                 13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
                 21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,
                 35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,
                 19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
                 20.8, 21.2, 20.3, 28. , 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
                 23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
                 33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
                 21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22.
                 20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,
                 23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
                 15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
                 17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
                 25., 50., 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
                 23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50.
                 32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
                 34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
                 20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,
                 26.7, 21.7, 27.5, 30.1, 44.8, 50., 37.6, 31.6, 46.7, 31.5, 24.3,
                 31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,
                 22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
                 42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
                 36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
                 32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,
                 20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
                 20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
                 22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
                 21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,
                 19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19., 18.7,
                 32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
                 18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8,
                 16.8, 21.9, 27.5, 21.9, 23.1, 50. , 50. , 50. , 50. , 50. , 13.8,
                 13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
                  7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2,
                                                            9.7, 13.8, 12.7, 13.1,
                 12.5, 8.5, 5. , 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5. , 11.9,
                 27.9, 17.2, 27.5, 15., 17.2, 17.9, 16.3,
                                                            7.,
                                                                 7.2,
                                                                       7.5, 10.4,
                        8.4, 16.7, 14.2, 20.8, 13.4, 11.7,
                                                            8.3, 10.2, 10.9, 11.
```

```
9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,
        10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13., 13.4,
        15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20., 16.4, 17.7,
        19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
        29.8, 13.8, 13.3, 16.7, 12., 14.6, 21.4, 23., 23.7, 25., 21.8,
        20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
        23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),
 'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DI
S', 'RAD',
        'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'),
 'DESCR': ".. _boston_dataset:\n\nBoston house prices dataset\n----------
-----\n\n**Data Set Characteristics:** \n\n
                                                     :Number of Instances: 506
        :Number of Attributes: 13 numeric/categorical predictive. Median Value
(attribute 14) is usually the target.\n\n
                                             :Attribute Information (in orde
                        per capita crime rate by town\n
r):\n
             - CRIM
                                                                          propo
rtion of residential land zoned for lots over 25,000 sq.ft.\n
                                                                     - INDUS
proportion of non-retail business acres per town\n
                                                          - CHAS
                                                                    Charles Ri
ver dummy variable (= 1 if tract bounds river; 0 otherwise)\n
                                                                     - NOX
nitric oxides concentration (parts per 10 million)\n
                                                            - RM
                                                                       average
number of rooms per dwelling\n
                                                proportion of owner-occupied u
                                      AGE
nits built prior to 1940\n
                                            weighted distances to five Boston
                                  - DIS
employment centres\n
                            - RAD
                                       index of accessibility to radial highway
s\n
           - TAX
                     full-value property-tax rate per $10,000\n
IO pupil-teacher ratio by town\n
                                        - B
                                                   1000(Bk - 0.63)^2 where Bk
is the proportion of blacks by town\n
                                             - LSTAT
                                                       % lower status of the p
                              Median value of owner-occupied homes in $1000's\n
opulation\n
                   MEDV
\n
      :Missing Attribute Values: None\n\n
                                            :Creator: Harrison, D. and Rubinfe
ld, D.L.\n\nThis is a copy of UCI ML housing dataset.\nhttps://archive.ics.uci.
edu/ml/machine-learning-databases/housing/\n\nThis dataset was taken from the
StatLib library which is maintained at Carnegie Mellon University.\n\nThe Bosto
n house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\nprices and the
demand for clean air', J. Environ. Economics & Management, \nvol.5, 81-102, 197
    Used in Belsley, Kuh & Welsch, 'Regression diagnostics\n...', Wiley, 1980.
N.B. Various transformations are used in the table on\npages 244-261 of the lat
ter.\n\nThe Boston house-price data has been used in many machine learning pape
rs that address regression\nproblems.
                                               \n.. topic:: References\n\n
                                       \n
Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data an
d Sources of Collinearity', Wiley, 1980. 244-261.\n - Quinlan,R. (1993). Comb
ining Instance-Based and Model-Based Learning. In Proceedings on the Tenth Inte
rnational Conference of Machine Learning, 236-243, University of Massachusetts,
Amherst. Morgan Kaufmann.\n",
 'filename': 'C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\datasets
\\data\\boston house prices.csv'}
```

In [24]: pd.DataFrame(df.data)

Out[24]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
											•••		
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.67
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.08
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.64
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.48
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.88

506 rows × 13 columns

Out[25]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
4													

In [26]: dataset["Price"]=df.target

In [27]: dataset

Out[27]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LST
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.
											•••		
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.

506 rows × 14 columns

In [28]: #Dividing the dataset into independent and dependent features

X=dataset.iloc[:,:-1]
y=dataset.iloc[:,-1]

In [29]: X.head()

Out[29]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33
4													•

```
In [30]: y.head()
Out[30]: 0
              24.0
         1
              21.6
         2
              34.7
              33.4
              36.2
         4
         Name: Price, dtype: float64
In [34]: ###Linear Regression
         from sklearn.linear model import LinearRegression
         from sklearn.model_selection import cross_val_score
         lin_reg=LinearRegression()
         mse=cross_val_score(lin_reg,X,y,scoring="neg_mean_squared_error",cv=5)
         print(mse)
         [-12.46030057 -26.04862111 -33.07413798 -80.76237112 -33.31360656]
In [35]: | np.mean(mse)
Out[35]: -37.13180746769922
In [40]: #Ridge Regression
         from sklearn.linear model import Ridge
         from sklearn.model selection import GridSearchCV
In [42]: ridge=Ridge()
         params={ 'alpha': [1e-15,1e-10,1e-8,1e-3,1e-2,1,5,10,20]}
         ridge regressor=GridSearchCV(ridge,params,scoring="neg mean squared error",cv=5)
         ridge_regressor.fit(X,y)
Out[42]: GridSearchCV(cv=5, estimator=Ridge(),
                      param_grid={'alpha': [1e-15, 1e-10, 1e-08, 0.001, 0.01, 1, 5, 10,
                                             20]},
                       scoring='neg_mean_squared_error')
In [44]: |print(ridge_regressor.best_params_)
         {'alpha': 20}
         print(ridge_regressor.best_score_)
In [45]:
         -32.38025025182513
```

```
In [47]: from sklearn.linear model import Lasso
         from sklearn.model selection import GridSearchCV
         lasso=Lasso()
         params={'alpha':[1e-15,1e-10,1e-8,1e-3,1e-2,1,5,10,20]}
         lasso regressor=GridSearchCV(ridge,params,scoring="neg mean squared error",cv=5)
         lasso_regressor.fit(X,y)
Out[47]: GridSearchCV(cv=5, estimator=Ridge(),
                      param_grid={'alpha': [1e-15, 1e-10, 1e-08, 0.001, 0.01, 1, 5, 10,
                                             20]},
                      scoring='neg_mean_squared_error')
In [48]: print(lasso_regressor.best_params_)
         {'alpha': 20}
In [49]: |print(lasso_regressor.best_score_)
         -32.38025025182513
In [50]: from sklearn.model selection import train test split
         X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.33,random_state=41
In [51]: lin reg=LinearRegression()
         mse=cross val score(lin reg,X train,y train,scoring="neg mean squared error",cv=
         print(mse)
         [-33.75185215 -21.4641199 -27.97099777 -17.7140812 -25.03832267]
In [52]: | np.mean(mse)
Out[52]: -25.187874739285057
 In [ ]:
 In [ ]:
 In [ ]:
 In [ ]:
 In [ ]:
```

In []:	
In []:	
In []:	