

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA

MACROAREA DI SCIENZE MATEMATICHE, FISICHE E NATURALI

CORSO DI LAUREA IN INFORMATICA

A.A. 2020/2021

Progetto MATLAB

PROFESSORE

STUDENTI

Carlo Garoni

Gabriele Benedetti Giulia Pascale

Indice

In	trod	uzione	1
1	Pro	blemi assegnati	2
	1.1	Problema 1	2
		1.1.1 Risoluzione problema 1	3
	1.2	Problema 2	5
		1.2.1 Risoluzione problema 2	6
	1.3	Problema 3	8
		1.3.1 Risoluzione problema 3	9
\mathbf{A}	ppen	dice A - Programmi utilizzate	11
	.1	Esercizio 1.11	12
	.2	interpolazione	13
	.3	differenze divise	14
	.4	integrazioneNumerica	15
	.5	iacobi	16

INDICE

Introduzione

Verranno inizialmente risolti dei problemi e successivamente, in appendice, spiegati tutti le funzioni utilizzate nel dettaglio.

Per la stesura del sequente elaborato abbiamo utilizzato LATEX, per la risoluzione dei problemi MATLAB.

Introduzione 1

Capitolo 1

Problemi assegnati

1.1 Problema 1

Si consideri la funzione \sqrt{x}

(a) Sia p(x) il polinomio d'interpolazione di \sqrt{x} sui nodi

$$x_0 = 0$$
, $x_1 = \frac{1}{64}$, $x_2 = \frac{4}{64}$, $x_3 = \frac{9}{64}$, $x_4 = \frac{16}{64}$, $x_5 = \frac{36}{64}$, $x_6 = \frac{36}{64}$, $x_7 = \frac{49}{64}$, $x_8 = 1$

Calcolare il vettore (colonna)

$$[p(\zeta_1) - \sqrt{\zeta_1} \qquad p(\zeta_2) - \sqrt{\zeta_2} \qquad \dots \qquad p(\zeta_{20}) - \sqrt{\zeta_{20}}]^T$$

dove $\zeta_i = \frac{i-1}{20}$ per i=1,...21, e osservare in che modo varia la differenza $p(\zeta_i) - \sqrt{\zeta_i}$ al variare di i da 1 a 21.

(b) Tracciare il grafico di \sqrt{x} e di p(x) sull'intervallo [0,1], ponendo i due grafici su un'unica figura e inserendo una legenda che ci dica qual è la funzione \sqrt{x} e qual è il polinomio p(x).

1.1.1 Risoluzione problema 1

```
x = [0, 1/64, 4/64, 9/64, 16/64, 25/64, 36/64, 49/64, 1];
 2
 3 -
        y = sqrt(x);
        zeta = (0:20)/20;
 5
        p = Eserciziol 11(x,y,zeta);
 7
 8
        %punto a: calcolo il vettore colonna k
        k = p' - zeta';
10 -
        disp(k);
11
        %punto b: traccio i grafici
12
13 -
       x1 = linspace(0, 1, 1000);
       yl = sqrt(xl);
15 -
       pl = Eserciziol 11(x,y,x1);
       plot(x1,p1,'linewidth',5)
16 -
17 -
       hold on
       plot(x1,y1,'linewidth',5);
18 -
       legend('p(x)','sqrt(x)')
20 -
       hold off;
```

Nella prima parte del codice, viene inizializzato il vettore x contenente i nodi $x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8$, si calcola il vettore y contenente i valori della funzione calcolata sul vettore x.

Quindi viene calcolato un vettore zeta contenente i valori

$$[p(\zeta_1) - \sqrt{\zeta_1} \quad p(\zeta_2) - \sqrt{\zeta_2} \quad \dots \quad p(\zeta_{20}) - \sqrt{\zeta_{20}}]^T \text{ dove } \zeta_i = \frac{i-1}{20} \text{ per } i = 1,...21.$$

Infine si calcola p, il polinomio d'interpolazione sui nodi contenuti nel vettore x, tramite la funzione Esercizio1 - 11. Quello che si ottiene è un vettore p contenente i valori del polinomio calcolato.

Risoluzione punto (a) - Righe (8 - 10)

Viene calcolato il vettore colonna k, per osservare in che modo varia la differenza $p(\zeta_i) - \sqrt{\zeta_i}$ al variare di i da 1 a 21. Essendo k un vettore colonna, servono le trasposte p' e zeta' dei relativi vettori p e zeta. I risultati verranno poi visualizzati nella

command Window di MATLAB come segue:

>> Problemal
0
0.1830
0.1996
0.2436
0.2733
0.2500
0.2009
0.1888
0.2515
0.3575
0.4031
0.2618
-0.1241
-0.6376
-0.9112
-0.3457
1.6945
5.4096
9.6974
10.7562
-0.0000

Risoluzione punto (b) - Righe (12 - 20)

Vengono visualizzati i grafici di \sqrt{x} e di p(x) sull'intervallo [0,1].

1.2 Problema 2

Si consideri la funzione

$$f(x) = e^x$$

Per ogni intero $n \geq 1$ indichiamo con I_n la formula dei trapezi di ordine n per approssimare

$$I = \int_0^1 f(x)dx = 1,182818284590...$$

- (a) Per ogni fissato $\epsilon > 0$ determinare un $n = n(\epsilon)$ tale che $|I I_n| \le \epsilon$
- (b) Costruire una tabella che riporti vicino ad ogni $\epsilon \in 10^{-1}, 10^{-2}, ..., 10^{-10}$:
 - il numero $n(\epsilon)$;
 - il valore I_n per $n = n(\epsilon)$;
 - il valore esatto I (in modo da confrontarlo con In);
 - l'errore $|I I_n|$ (che deve essere $\leq \epsilon$).
- (c) Calcolare le approssimazioni di I ottenute con le formule dei trapezi I_2 , I_4 , I_8 , I_16 e confrontarle con il valore esatto I.
- (d) Sia p(x) il polinomio d'interpolazione dei valori I_2, I_4, I_8, I_{16} sui nodi $h_2^2, h_4^2, h_8^2, h_{16}^2,$ dove $h_2 = \frac{1}{2}, h_4 = \frac{1}{4}, h_8 = \frac{1}{8}, h_{16} = \frac{1}{16},$

1.2.1 Risoluzione problema 2

Il punto (a) viene risolto senza utilizzare MATLAB, ma utilizzando $\left| \int_a^b f(x) dx - I_n \right| = \left| \frac{(b-a)f''(\eta)}{12} h^2 \right| = \left| \frac{e^x}{12n^2} \right| \le \epsilon$. Di conseguenza si ottiene che $n \ge \sqrt{\frac{e}{12\epsilon}}$. Si inserisce questo valore nel codice e si procede con la risoluzione degli altri punti.

```
1 -
       format long;
2 -
       f = 0(x) \exp(x);
3 -
       x = sym('x');
4 -
       integrale = integral(f,0,1); %integrale = int(f,x,0,1)
5
 6
       %punto b
7 -
       fprintf('\n');
8 -
       disp('punto b:');
9 -
       fprintf('\n');
10
       e = 10.^(-(1:10));
11 -
12 -
       n = ceil(sqrt(exp(1)./(12*e)));
13
14 -
       vettoreIn = zeros(1,10);
15 - for i = 1:10
16 -
           vettoreIn(i) = integrazioneNumerica(0,1,n(i),f);
17 -
18 -
      differenzaB = abs(integrale - vettoreIn);
19 -
       Tb = table(e',n',vettoreIn',differenzaB','VariableNames',{'Soglia e' 'n(e)' 'In' '|I-In|'});
20 -
       Tb.Properties.VariableNames;
21 -
       disp(Tb);
22
23
       %punto c
24 -
       fprintf('\n');
25 -
       disp('punto c:');
26 -
       fprintf('\n');
27
28 -
       i = [2,4,8,16];
29 - \boxed{-} for k = 1:4
30 -
           r(k) = integrazioneNumerica(0,1,i(k),f);
31 -
32 -
       differenzaC = abs(integrale - r);
33 -
       Tc = table(r',differenzaC','VariableNames',{'Nuove approssimazioni' 'differenza'});
34 -
       Tc.Properties.VariableNames;
35 -
       disp(Tc);
36
       %punto d
37
38 -
       fprintf('\n');
39 -
       disp('punto d:');
40 -
       fprintf('\n');
41
42 -
       h = [(1/2)^2, (1/4)^2, (1/8)^2, (1/16)^2];
43 -
       p = interpolazione(h,r,0)
44 -
       fprintf('\n');
45 -
       disp(['differenza = ', num2str(abs(p-integrale))]);
```

Soglia e	n(e)	In	I-In				
0.1	2	1.75393109246483	0.0356492640057804				
0.01	5	1.72400561978279	0.0057237913237429				
0.001	16	1.71884112857999	0.000559300120949402				
0.0001	48	1.71834397651311	6.21480540687891e-05				
le-05	151	1.71828810844886	6.27998981217459e-06				
le-06	476	1.71828246043305	6.31974003795222e-07				
1e-07	1506	1.71828189159303	6.31339851508983e-08				
1e-08	4760	1.71828183477879	6.31974028664217e-09				
1e-09	15051	1.71828182909114	6.32093488661667e-10				
le-10	47595	1.71828182852225	6.32081054163791e-11				
Nuove app	rossimazioni	i differenz	a				
1.75393	109246483	0.0356492640	057804				
1.72722	190455752	0.00894007609	847147				
1.7205	185921643	0.00223676370525672					
1.71884	112857999	0.000559300120949402					
nto d:							
nto d:							

1.3 Problema 3

Si consideri il sistema lineare Ax = b, dove

$$A = \begin{bmatrix} 5 & 1 & 1 \\ -1 & 7 & 1 \\ 0 & 1 & -3 \end{bmatrix}, b = \begin{bmatrix} 13 \\ 16 \\ -7 \end{bmatrix}$$

- (a) Si calcoli la soluzione x del sistema dato con MATLAB.
- (b) La matrice A è a diagonale dominante in senso stretto per cui il metodo di Jacobi è convergente ossia partendo da un qualsiasi vettore d'innesco $x^{(0)}$ la successione prodotta dal metodo di Jacobi converge (componente per componente) alla soluzione x del sistema dato. Calcolare le prime 10 iterazioni $x^{(1)}, ..., x^{(10)}$ del metodo di Jacobi partendo dal vettore nullo $x^{(0)} = [0, 0, 0]^T$ e confrontarle con la soluzione esatta x ponendo iterazioni e soluzione esatta in un'unica matrice S di dimensioni 3x12 le cui colonne sono nell'ordine $x^{(0)}, x^{(1)}, ..., x^{(10)}, x$.
- (c) Consideriamo il metodo di Jacobi per risolvere il sistema dato. Conveniamo d'innescare il metodo di Jacobi con il vettore nullo $x^{(0)}=[0,0,0]^T$. Costruire una tabella che riporti vicino ad ogni $\epsilon\in~10^{-1},10^{-2},...,10^{-10}$:
 - il numero d'iterazioni K_{ϵ} necessarie al metodo di Jacobi per convergere entro la precisione ϵ ;
 - la soluzione approssimata x_{ϵ} calcolata dal metodo di Jacobi;
 - la soluzione esatta x (in modo da confrontarla con la soluzione approssimata x_{ϵ});
 - la norma ∞ dell'errore $||x x_{\epsilon}||_{\infty}$

1.3.1 Risoluzione problema 3

```
1
        %punto a:
2 -
       A = [5,1,2;-1,7,1;0,1,-3];
3 -
       b = [13;16;-7];
 4 -
        x = A \b;
 5
 6
       %punto b:
 7 -
       D=diag(diag(A));
8 -
       xk = [0;0;0];
       S = zeros(3,12);
10 -
       S(:,1) = xk;
11
12 -
     \neg for k = 2:11
13
14 -
            xk = xk + D \setminus (b - A*xk);
15 -
            S(:,k) = xk;
16
17 -
      -end
18
       S(:,12) = x;
19 -
20 -
       disp('Matrice S del punto B:');
21 -
       disp(S);
22
23
       %punto c:
24 -
       e = 10.^(-(1:10));
25 -
       x0 = [0;0;0];
26 -
       Matrice2 = zeros(3,10);
27 -
       MatriceX = zeros(10,3);
28
29 -
     \neg for i = 1:10
30 -
           [Matrice2(:,i),k(i),norma2] = jacobi(A,b,x0,e(i),100);
31 -
           normaInf(i) = norm(x-Matrice2(:,i),Inf);
32 -
           MatriceX(i,:) = x;
33 -
34
35 -
       T = table(k', Matrice2', MatriceX, normaInf', 'VariableNames', {'K' 'x e' 'x' 'Norma Infinito |x-x(e)|'});
36 -
       T.Properties.VariableNames;
37 -
       disp(T);
```

Nel punto (a) viene risolto il sistema. Nel punto (b) vengono calcolate le prime 10 iterazioni $x^{(1)},...,x^{(10)}$ del metodo di Jacobi partendo dal vettore nullo $x^{(0)}=[0,0,0]^T$, quindi viene costruita una matrice S 3x12 in cui l'ordine dei valori \tilde{A} ": $x^{(0)},x^{(1)},...,x^{(10)},x$.

Infine il codice si occupa di risolvere il punto (c) e costruire una tabella che ne riporti i risultati nella Command Window.

Problema3									
trice S del pun	:o B:	1							
Columns 1 throu	jh 3								
	0	2.60000	0000000000	1.20952	23809523810				
	0	2.2857	14285714286	2.32380	9523809524				
	0	2.33333	3333333333	3.09523	88095238095				
Columns 4 throu	jh 6								
0.897142857142	357	0.95356	60090702948	1.00384	15804988662				
2.016326530612245		1.969886621315193 1.992588273404600							
3.107936507936	3.005442176870748 2.989962207105064								
Columns 7 throu	jh 9								
1.005497462477054 1.000591555987474 0.999507892287679					7892287679				
2.001983371126228 2.001138291144122 1.99999				90061754105					
2.997529424468200 3.000661123708743 3.000379430381374									
Columns 10 thro	ıgh l	.2							
0.999850215496630 1.000026226187844 1.000000000000000									
1.999875494558043 1.999979075463609			2.00000000000000						
2.999996687251	368	2.99995	58498186015	3.00000	0000000000				
K			x_e				x		Norma Infinito x-x(e
4 0.89714	28571	42857	2.0163265	3061224	3.10793650793651	1	2	3	0.107936507936508
6 1.0038	15804	98866	1.9925882	2734046	2.98996220710506	1	2	3	0.010037792894936
8 1.0005	91555	98747	2.00113829	9114412	3.00066112370874	1	2	3	0.00113829114412178
10 0.9998	0215	49663	1.99987549	9455804	2.99999668725137	1	2	3	0.000149784503370443
12 1.0000	20785	63287	2.0000096	7542883	2.99999302515454	1	2	3	2.07856328726663e-05
14 0.99999	79167	86298	1.9999996	6138707	3.00000132192754	1	2	3	2.08321370165354e-06
16 1.0000	0142	43814	1.9999999	5026036	2.99999983785042	1	2	3	1.62149583093907e-07
18 0.99999	9979	29445	2.0000000	1305538	3.00000001450418	1	2	3	1.45041774146648e-08
					0.0000000000000000	-	_		1 00050555001000- 00
20 0.99999	99987	732847	1.99999999	9817649	2.99999999921073	1	2	3	1.82350579081003e-09

Appendice Funzioni utilizzate

Le seguenti funzioni sono state utilizzate per risolvere i problemi nei primi capitoli. Segue spiegazione delle funzioni e dei relativi codici.

Prima di tutto occorre dire che ogni codice è strutturato come segue:

- Spiegazione della funzione e degli input richiesti. Sono presenti esempi di input
 per facilitare la comprensione al lettore. Questa parte è consultabile digitando
 help *nomefunzione* sulla Command Window di MATLAB.
- 2. Il codice vero e proprio che viene eseguito quando la funzione viene invocata.

.1 Esercizio 1.11

```
1
     \neg function p = Eserciziol 11(x,y,t)
2
     = %Eserciziol_ll(x,y,t)
 3
 4
       %Input:
 5
       %x: vettore di valori distinti sull'asse delle ascisse,
 6
       %y: vettore di valori sull'asse delle ordinate,
7
       %t: vettore di valori in cui si vuole valutare il polinomio;
8
       %nota: x e y devono avere la stessa lunghezza.
9
       %Output:
10
       %p: vettore contenente i valori del polinomio di interpolazione calcolato
11
       %nei punti contenuti nel vettore t.
12
       %Esempio input: Valutarlo in un punto: Eserciziol 11([-1,0,2],[0,1,5],1)
       %input: Valutarlo in due punti: Eserciziol_11([-1,0,2],[0,1,5],[1,3])
13
14
15
     for i = 1:length(t)
16 -
17 -
           p(i) = interpolazione(x,y,t(i));
18 -
       end
19 -
      ∟end
```

Esercizio1-11(x,y,t) è una funzione che restituisce un vettore p contenente i valori del polinomio di interpolazione calcolato nei punti contenuti nel vettore t. Questa prima parte di codice si occupa di prendere in input tre vettori di valori. In particolare x è un vettore di valori distinti sull'asse delle ascisse, y è un vettore di valori sull'asse delle ordinate, t è il vettore di valori di cui si vuole valutare il polinomio; x e y devono avere la stessa lunghezza.

.2 interpolazione

```
1
     function p = interpolazione(x,y,t)
     -%interpolazione(x, y, t)
3
 4
       %x: vettore di valori distinti sull'asse delle ascisse,
5
       %y: vettore di valori sull'asse delle ordinate,
       %t punto in cui si vuole valutare il polinomio;
 6
7
       %Nota: x e y devono avere la stessa lunghezza.
8
       %Output:
       p: valore del polinomio d'interpolazione dei punti(x(i),y(i)) nel punto t
9
10
       %inserito in input
11
       -%Esempio input: Valutarlo in un punto: interpolazione([-1,0,2],[0,1,5],1)
12
13 -
           A = differenzeDivise(x,y); %calcolo matrice differenze divise
14 -
           d = diag(A);
15 -
           h = zeros(1,length(d));
16 -
           h(end) = d(end);
17 -
           for i = length(d)-1:-1:1
18 -
               h(i) = d(i) + (t-x(i))*h(i+1);
19 -
               p = h(i);
20 -
           end
      L end
21 -
```

interpolazione(x, y, t) è una funzione che restituisce il valore del polinomio di interpolazione dei punti (x_i, y_i) nel punto t inserito in input.

Nella prima parte di codice è presente la spiegazione della funzione interpolazione(x, y, z) e degli input da inserire. In particolare x è un vettore di valori distinti sull'asse delle ascisse, y è un vettore di valori sull'asse delle ordinate, t è un punto in cui si vuole valutare il polinomio; x e y devono avere la stessa lunghezza.

.3 differenze divise

```
1
     function A = differenzeDivise(x,y)
     $\frac{1}{2}$differenzeDivise(x,y) restituisce una matrice triangolare inferiore
 2
       %contenente i valori delle differenze divise.
 3
 4
       %Input:
 5
       %x: lista di valori distinti sull'asse delle x,
 6
       %y: lista di valori sull'asse delle y;
 7
        %Nota: x e y devono avere la stessa dimensione
 8
       %Esempio input: differenzeDivise([-1,0,2],[0,1,5])
 9
10 -
       n = length(x);
11 -
       A = zeros(n);
     for i = 1:n
12 -
13 -
           for j = 1:n
14 -
                if j == 1
15 -
                    A(i,j) = y(i);
16 -
                end
17 -
                if (j ~= 1 && j <= i && i>1)
18 -
                    A(i,j) = (A(i,j-1)-A(j-1,j-1))/(x(i)-x(j-1));
19 -
                end
20 -
            end
21 -
       -end
22 -
23
      L end
```

differenzeDivise(x,y) è una funzione che restituisce una matrice triangolare inferiore contenente i valori delle differenze divise.

.4 integrazioneNumerica

```
1
     function r = integrazioneNumerica(a,b,n,f)
     🗄 %integrazioneNumerica(a,b,n,f)
2
3
        %Input:
       %a, b: valori d'inizio e fine dell'intervallo
4
5
       %n numeri di sottointervalli
6
        %f: funzione
7
       %Condizioni: a < b, n >= 1,
8
       %Output:
9
       %valore approssimato dell'integrale di una funzione f calcolato
       %nell'intervallo [a,b] suddiviso in n sottointervalli.
10
       -%esempio input: integrazioneNumerica(0,1,6, @(x) 1./log(x+2))
11
12
13 -
       h = (b-a)/n;
       x = linspace(a,b,n+1); %x = a + (0:n)*h;
14 -
15 -
       r = h * ((f(a) + f(b)) / 2 + sum(f(x(2:n))));
16
17 -
       -end
```

integrazione Numerica(a, b, n, f) è una funzione che restituisce il valore approssimato dell'integrale di una funzione f(x) calcolato nell'intervallo [a, b] suddiviso in n sottointervalli. In particolare è specificato che, essendo un intervallo che va da a fino a b, a deve essere un valore minore rispetto a b ed inoltre n deve essere un numero maggiore di 1, altrimenti non si può dividere l'intervallo in sottointervalli.

.5 jacobi

```
1
      function[xk,k,norma2] = jacobi(A,b,innesco,e,nmax)
 2
 3
      = %jacobi(A,b,innesco,e,nmax)
 4
        %Input:
 5
        %A: matrice,
 6
        %b: vettore colonna,
 7
        %innesco: vettore colonna da cui partire
 8
       %e: valore soglia di precisione,
 9
        %nmax: numero massimo d'iterazioni consentite
10
        %Output:
11
        %xk: primo vettore che, calcolato con il metodo di Jacobi, soddisfa la condizione
12
        %di arresto del residuo norma(r) <= e*norma2(b)
13
       -%Esempio input: jacobi([1 -3 -1; 0 9 0; 0 0 1], [-1 ; 9; 1], [1; 0; 0], 1, 3)
14
       v = diag(A);
15 -
16 -
       D = diag(v);
17
18
        %calcolo le iterazioni
19 -
       xk = innesco;
20 -
       norma2 = norm(b - A*xk , 2);
21 -
     Ė
          for k = 1:nmax
22 -
                if norma2 <= e*norm(b,2)
23 -
24 -
                end
25 -
                xk = xk + D \setminus (b - A*xk);
                norma2 = norm(b - A*xk , 2);
27 -
            end
      end
28 -
```

jacobi(A, b, innesco, e, nmax) è una funzione che restituisce il primo vettore xk che, calcolato dal metodo di Jacobi, soddisfa la condizione di arresto del residuo $||r^{(K)}||_2 \le \epsilon ||b||_2$