```
In [1]: # Importing the necessary libraries
         import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
         import seaborn as sns
In [2]:
         # Loading the dataset
         df = pd.read_csv('med dataset.csv')
         df.head()
In [3]:
                          sex glang part job stud_h health psyt jspe qcae_cog qcae_aff amsp
            id age year
Out[3]:
                                                                                                erec_mean
         0
             2
                 18
                       1
                            1
                                120
                                       1
                                           0
                                                  56
                                                          3
                                                               0
                                                                   88
                                                                             62
                                                                                      27
                                                                                            17
                                                                                                  0.738095
         1
             4
                 26
                       4
                            1
                                  1
                                           0
                                                  20
                                                          4
                                                               0
                                                                  109
                                                                             55
                                                                                      37
                                                                                            22
                                                                                                  0.690476
                                       1
                            2
         2
             9
                 21
                       3
                                       0
                                           0
                                                  36
                                                          3
                                                               0
                                                                  106
                                                                             64
                                                                                      39
                                                                                            17
                                                                                                  0.690476
                       2
                            2
                                                          5
                                                                  101
                                                                             52
         3
            10
                 21
                                       0
                                           1
                                                  51
                                                               0
                                                                                      33
                                                                                            18
                                                                                                  0.833333
                                                  22
         4 13
                 21
                       3
                            1
                                  1
                                       1
                                           0
                                                          4
                                                               0
                                                                  102
                                                                             58
                                                                                      28
                                                                                            21
                                                                                                  0.690476
In [4]:
         # column types
         df.dtypes
                          int64
         id
Out[4]:
                          int64
         age
                          int64
         year
         sex
                          int64
                          int64
         glang
                          int64
         part
                          int64
         job
                          int64
         stud_h
         health
                          int64
                          int64
         psyt
         jspe
                          int64
                          int64
         qcae_cog
                          int64
         qcae_aff
                          int64
         amsp
         erec_mean
                       float64
         cesd
                          int64
         stai_t
                          int64
                          int64
         mbi_ex
         mbi_cy
                          int64
         mbi_ea
                          int64
         dtype: object
In [5]: # checking for missing values
         df.isnull().sum() # no missing values
         id
                        0
Out[5]:
                        0
         age
                        0
         year
                        0
         sex
                        0
         glang
                        0
         part
         job
                        0
                        0
         stud_h
         health
                        0
                        0
         psyt
                        0
         jspe
                        0
         qcae_cog
                        0
         qcae_aff
```

```
cesd
           stai_t
                           0
           mbi_ex
                           0
                           0
           mbi_cy
           mbi_ea
                           0
           dtype: int64
 In [6]: # removing the 'id' column
           df.drop(['id'], axis=1, inplace=True)
           # check for duplicates
 In [7]:
           df.duplicated().sum() # no duplicates
 Out[7]:
 In [8]:
           # separate the data into two groups: categorical and numerical
           df_cat = df[['sex', 'year', 'part', 'glang', 'job', 'stud_h', 'health', 'psyt']]
df_num = df[['age', 'jspe', 'qcae_aff', 'amsp', 'erec_mean', 'cesd', 'stai_t', 'mbi_ex',
 In [9]:
           # Categorical Data
           # Description
           df_cat.head(20)
               sex year part glang job stud_h health psyt
 Out[9]:
            0
                                  120
                  1
                        1
                             1
                                         0
                                                56
                                                         3
                                                               0
                                         0
                                                20
            1
                  1
                        4
                             1
                                    1
                                                               0
            2
                  2
                             0
                        3
                                    1
                                         0
                                                36
                                                         3
                                                               0
            3
                  2
                        2
                             0
                                         1
                                                51
                                                         5
                                                               0
            4
                  1
                        3
                             1
                                         0
                                                22
                                                         4
                                                               0
                                    1
                  2
                                                         2
            5
                        5
                                                10
                             1
                                         1
                                                               0
            6
                  2
                        5
                                         0
                                                15
                                                         3
                                                               0
                             1
                                    1
            7
                  1
                        4
                             1
                                    1
                                         1
                                                 8
                                                         4
                                                               0
                  2
                                                20
                                                         2
            8
                        4
                             1
                                    1
                                         1
                                                               0
            9
                  2
                        2
                                         0
                                                         5
                             1
                                    1
                                                20
                                                               0
           10
                  1
                        1
                             0
                                    1
                                         0
                                                20
                                                         4
                                                               0
           11
                  2
                        1
                             0
                                         1
                                                         5
                                                               1
                                    1
           12
                  2
                        5
                             0
                                         0
                                                25
                                                         5
                                                               0
                                   90
                  2
                        2
                                         0
                                                51
                                                         2
           13
                             1
                                    1
                                                               1
                  2
                        2
                                                42
           14
                             1
                                    1
                                         0
                                                         3
                                                               0
                        2
                                         0
           15
                  1
                             1
                                    1
                                                40
                                                         4
                                                               0
           16
                  1
                        1
                             1
                                   90
                                         0
                                                 9
                                                         4
                                                               0
           17
                  1
                        4
                             1
                                    1
                                         0
                                                10
                                                         4
                                                               0
           18
                  2
                        5
                             0
                                         0
                                                38
                                                               0
                                    1
                                                         4
           19
                        3
                                    1
                                         0
                                                15
                                                               0
In [10]:
           # Descriptive Statistics
           df_cat.describe(include="all")
```

stud_h

job

health

psyt

amsp erec_mean

sex

year

part

glang

Out[10]: -

	count	886.000000	886.000000	886.000000	886.000000	886.000000	886.000000	886.000000	886.000000
	mean	1.695260	3.102709	0.563205	14.327314	0.348758	25.288939	3.777652	0.224605
	std	0.472665	1.763937	0.496269	32.366389	0.476847	15.927875	1.061497	0.417558
	min	1.000000	1.000000	0.000000	1.000000	0.000000	0.000000	1.000000	0.000000
	25%	1.000000	1.000000	0.000000	1.000000	0.000000	12.000000	3.000000	0.000000
	50%	2.000000	3.000000	1.000000	1.000000	0.000000	25.000000	4.000000	0.000000
	75%	2.000000	5.000000	1.000000	1.000000	1.000000	36.000000	5.000000	0.000000
	max	3.000000	6.000000	1.000000	121.000000	1.000000	70.000000	5.000000	1.000000

```
In [11]: # Plotting the count of each category for each feature using Seaborn
         # Set the figure size
         plt.figure(figsize=(20, 20))
         # Plot the count of each category for each feature
         for i, col in enumerate(df_cat.columns):
             plt.subplot(3, 3, i+1)
             sns.countplot(x=col, data=df_cat)
             plt.xlabel(col)
             plt.ylabel('Count')
```



```
Variable 1 Variable 2
                                               p-value
                            Chi-Square
0
                             12.769894
                                         2.368234e-01
          sex
                     year
1
          sex
                     part
                              6.787509
                                         3.358236e-02
2
          sex
                    glang
                             54.444023
                                         2.496473e-02
```

```
6
                                      23.484975 7.948815e-06
                   sex
                              psyt
         7
                  year
                              part
                                      27.375938 4.818767e-05
         8
                                     109.823807 7.634917e-02
                  year
                             glang
         9
                                      72.560233 3.002212e-14
                  year
                               job
         10
                  year
                            stud_h
                                     608.992141 3.320205e-23
         11
                            health
                                      21.604790 3.623350e-01
                  year
         12
                  year
                              psyt
                                       4.315674 5.049176e-01
         13
                             glang
                                      22.638009 2.048861e-01
                  part
         14
                                       1.811389
                                                 1.783416e-01
                  part
                               job
         15
                  part
                            stud_h
                                      65.031867 3.058703e-01
         16
                            health
                                       7.025088 1.345683e-01
                  part
         17
                                       0.515159 4.729141e-01
                  part
                              psyt
                 glang
         18
                               job
                                      19.719717
                                                 3.488184e-01
         19
                            stud_h
                                   1113.757550 2.317115e-01
                 glang
         20
                 glang
                            health
                                      84.094422 1.559493e-01
         21
                 glang
                              psyt
                                       7.207154 9.882601e-01
         22
                            stud_h
                                      81.825491 3.207564e-02
                   job
         23
                   job
                            health
                                       5.115215 2.756787e-01
         24
                    job
                                       2.909025 8.808513e-02
                              psyt
         25
                stud_h
                            health
                                     293.764489
                                                 1.013227e-02
         26
                stud_h
                                      42.095944 9.616637e-01
                              psyt
         27
                health
                                      27.583952 1.514423e-05
                              psyt
         # Keep only the pairs of variables that are related (p-value < 0.05) and sort them by p-
In [13]:
         chi2_table = chi2_table[chi2_table['p-value'] < 0.05].sort_values(by='p-value')</pre>
         chi2_table
         #from the results, we can conclude that:
         # sex and health are both related to psychoterapy in the last year
         # sex and health are related
         # how long students study is related to their health
```

8.190127e-01

```
Variable 1 Variable 2 Chi-Square
Out[13]:
                                                         p-value
            10
                      year
                               stud_h
                                       608.992141 3.320205e-23
             9
                      year
                                  job
                                        72.560233 3.002212e-14
             6
                                                   7.948815e-06
                      sex
                                 psyt
                                        23.484975
            27
                    health
                                 psyt
                                         27.583952 1.514423e-05
             7
                      year
                                  part
                                        27.375938
                                                    4.818767e-05
             5
                                health
                                         21.975553 4.961357e-03
                      sex
            25
                                       293.764489
                                                   1.013227e-02
                    stud h
                                health
             2
                                        54.444023 2.496473e-02
                      sex
                                glang
            22
                       job
                               stud h
                                         81.825491
                                                    3.207564e-02
             1
                      sex
                                  part
                                          6.787509
                                                    3.358236e-02
```

0.001129 0.000000

job

stud_h

health

sex

sex

sex

0.399311

102.535577 8.736027e-01

21.975553 4.961357e-03

3

4

5

1

```
# Percentage of each category for each pair of variables in chi2_table
In [14]:
         for i, row in chi2_table.iterrows():
             var1 = row['Variable 1']
             var2 = row['Variable 2']
             print(var1 + " and " + var2)
             print(pd.crosstab(index=df[var1], columns=df[var2], normalize=True))
             print('----')
         year and stud_h
                                 1
                                          2
                                                    3
                                                              4
                                                                        5
                                                                                  6
         stud_h
         year
```

0.001129 0.001129

0.006772

0.000000 0.000000

```
2
                0.000000 0.000000 0.000000
                                           0.001129 0.000000 0.001129
       0.000000
3
       0.002257 0.000000 0.002257 0.001129
                                           0.000000 0.004515 0.001129
4
       0.001129 0.001129 0.001129 0.002257
                                           0.004515 0.005643 0.003386
5
       0.002257 0.000000 0.003386 0.001129 0.001129 0.005643 0.001129
6
       0.007901 0.009029 0.013544 0.007901 0.010158 0.005643 0.007901
stud_h
                                                     55
                     8
                                            53
                                                              56 \
                                  . . .
year
                                  . . .
1
       0.009029 0.006772 0.004515
                                  ... 0.001129 0.005643 0.005643
2
       0.002257 0.001129 0.000000
                                 ... 0.001129 0.002257 0.001129
                                  ... 0.000000 0.000000 0.000000
3
       0.003386 0.004515 0.000000
4
       0.006772 0.004515 0.002257
                                  ... 0.000000 0.000000 0.000000
5
       0.001129 0.006772 0.001129
                                      0.000000 0.000000 0.000000
                                  . . .
       0.001129 0.007901 0.002257
                                  . . .
                                      0.000000 0.000000 0.000000
            58
                     59
                              60
                                       63
                                                 65
                                                         69
                                                                   70
stud_h
year
       0.001129 0.001129 0.010158 0.002257 0.003386 0.001129 0.005643
1
2
       0.000000 0.000000 0.004515 0.000000
                                           0.001129 0.000000
                                                             0.001129
       0.000000 0.000000 0.001129 0.000000
                                           0.000000 0.000000
3
                                                             0.000000
       0.000000 0.000000 0.000000 0.000000
                                           0.001129 0.000000
4
                                                             0.000000
5
       0.000000
                0.000000 0.002257 0.000000
                                           0.000000 0.000000
                                                             0.000000
       [6 rows x 61 columns]
-----
year and job
job
                    1
year
1
     0.223476 0.053047
2
     0.118510 0.033860
3
     0.092551 0.068849
4
     0.064334 0.074492
     0.071106 0.072235
5
     0.081264 0.046275
6
sex and psyt
psyt
                    1
sex
     0.272009 0.038375
1
2
     0.498871 0.185102
     0.004515 0.001129
-----
health and psyt
psyt
health
       0.033860 0.007901
2
       0.060948 0.037246
3
       0.106095 0.047404
4
       0.356659 0.097065
       0.217833 0.034989
year and part
part
                    1
year
     0.151242 0.125282
1
2
     0.069977 0.082393
3
     0.064334 0.097065
     0.049661 0.089165
4
     0.065463 0.077878
5
     0.036117 0.091422
sex and health
health
            1
                      2
                               3
                                        4
                                                 5
sex
       0.014673 0.025959 0.034989 0.132054 0.102709
1
```

```
2
             0.072235 0.116253 0.320542
      0.025959
                                    0.148984
      0.001129 \quad 0.000000 \quad 0.002257 \quad 0.001129 \quad 0.001129
3
stud_h and health
health 1 2 3 4
                                          5
stud_h
      0.002257 0.003386 0.001129 0.004515 0.003386
      0.000000 0.001129 0.000000 0.003386 0.005643
1
    0.000000 0.005643 0.001129 0.009029 0.004515
2
3
     0.000000 0.000000 0.000000 0.009029 0.003386
      0.002257 0.001129 0.001129 0.005643 0.007901
4
. . .
      ... ...
                             . . . .
    0.001129 0.002257 0.006772 0.002257 0.005643
60
63
      0.000000 0.000000 0.001129 0.000000 0.001129
    0.000000 0.001129 0.000000 0.002257 0.002257
65
    0.000000 0.000000 0.001129 0.000000 0.000000
69
70
    0.000000 0.002257 0.000000 0.001129 0.003386
[61 rows x 5 columns]
sex and glang
glang 1 15 20 37 54 60 63
sex
    0.251693 0.010158 0.007901 0.000000 0.000000 0.000000 0.002257
1
    0.554176 0.024831 0.016930 0.003386 0.001129 0.003386 0.002257
    90 92 95 98 102 104
glang
                                                       106 \
sex
     1
2
    0.001129 \quad 0.000000 \quad 0.000000 \quad 0.000000 \quad 0.000000 \quad 0.000000
glang
         108 114
                       118
                            120
                                       121
sex
     0.001129 0.000000 0.000000 0.001129 0.004515
    0.000000 0.001129 0.002257 0.001129 0.010158
    _____
job and stud_h
stud_h 0
                1 2 3
                                     4
                                                5
job
      0.010158 \quad 0.004515 \quad 0.010158 \quad 0.007901 \quad 0.010158 \quad 0.009029 \quad 0.012415
0
     0.004515 0.005643 0.010158 0.004515 0.007901 0.013544 0.009029
                                            55
stud_h
         7
                  8
                          9
                                    53
                                                    56 \
                             . . .
job
                             . . .
     0.014673 0.014673 0.006772 ... 0.001129 0.007901 0.006772
0
     0.009029 0.016930 0.003386 ... 0.001129 0.000000 0.000000
stud_h
       58 59 60 63
                                         65
                                                        70
job
0
      0.001129 \quad 0.001129 \quad 0.015801 \quad 0.002257 \quad 0.004515 \quad 0.001129 \quad 0.004515
     0.000000 0.000000 0.002257 0.000000 0.001129 0.000000 0.002257
[2 rows x 61 columns]
-----
sex and part
    0 1
part
sex
1 0.138826 0.171558
   0.292325 0.391648
3 0.005643 0.000000
```

```
In [15]: # relationships between psyt and sex
var1 = "psyt"
var2 = "sex"

# create a cross-tabulation table
ctab = pd.crosstab(df[var1], df[var2])
```

```
In [16]: # plot the cross-tabulation table
    ctab.plot(kind='bar', stacked = True)
    plt.title("Relationship between " + var1 + " and " +var2)
    plt.xlabel(var1)
    plt.ylabel(var2)
    plt.show()
```

Relationship between psyt and sex


```
# let's see what sex visited a psychoterapist the most in the last year

# create a new data frame
df_psyt = pd.DataFrame(data = {'psyt' : df_cat['psyt'], 'sex' : df_cat['sex']})

#group the data by psychoterapy and sex
df_psyt = df_psyt.groupby(['psyt', 'sex']).size().reset_index(name='count')

# calculate the male, female and non binary in each health category
total = df_psyt['count'].sum()
df_psyt['percentage'] = df_psyt['count']/total *100
df_psyt['sex'] = df_psyt['sex'].map({1: 'Male', 2: 'Female', 3: 'Non-binary'})
```

In [18]: df_psyt # females tend to visit the psychoterapist more than males or non-binary people

Out[18]:		psyt	sex	count	percentage	
	0	0	Male	241	27.200903	
	1	0	Female	442	49.887133	
	2	0	Non-binary	4	0.451467	

```
5
                             0.112867
            1 Non-binary
        # print each percentage for every pair of variables in chi2_table
In [19]:
        for i, row in chi2_table.iterrows():
           var1 = row['Variable 1']
           var2 = row['Variable 2']
           print(f"{var1} and {var2}")
           # Create a temporary DataFrame with the pair of variables
           df_temp = pd.DataFrame(data={var1: df_cat[var1], var2: df_cat[var2]})
           df_temp = df_temp.groupby([var1, var2]).size().reset_index(name='count')
           total = df_temp['count'].sum()
           df_temp['percentage'] = df_temp['count'] / total * 100
           # Append the sum of numeric columns
           sum_row = df_temp.sum(numeric_only=True)
           sum_row[var1] = 'Total'
           sum_row[var2] = ''
           df_temp = pd.concat([df_temp, pd.DataFrame(sum_row).T], ignore_index=True)
           print(df_temp)
           print('----')
        year and stud_h
             year stud_h count percentage
        0
               1 0 1 0.112867
                           1 0.112867
        1
                    4
               1
                    5
        2
               1
                           1 0.112867
                    6
                    6 6 0.677201
7 8 0.902935
        3
              1
              1
              . . .
                    . . .
                          . . .
             6 36 2 0.225734
                               . . .
        . .
        218
        219
                   40
                          3 0.3386
              6
        220
              6
                   45
                          1 0.112867
               6 50 1 0.112867
        221
        222 Total 886.0
                                100.0
        [223 rows \times 4 columns]
        year and job
            year job count percentage
        0
             1
                0
                     198 22.34763
        1
              1 1
                       47
                            5.30474
        2
             2 0 105 11.851016
        3
             2 1
                      30 3.386005
              3 0
                      82
                           9.255079
        4
                      61 6.884876
        5
             3 1
        6
             4 0
                      57 6.433409
        7
             4 1
                      66
                            7.44921
        8
             5 0
                      63
                           7.110609
             5 1
        9
                      64 7.223476
             6 0
                      72 8.126411
        10
             6
                      41
        11
                            4.62754
                  1
        12 Total
                  886.0
                              100.0
        sex and psyt
            sex psyt count percentage
            1 0 241 27.200903
        0
        1
             1 1
                      34 3.837472
        2
             2 0 442 49.887133
             2 1 164 18.510158
        3
```

Male

Female

4

4

3 0

4 0.451467

1

34

164

3.837472

18.510158

5 3	1		0.112867
6 Total	886 	. Θ	100.0
health an health		unt pe	ercentage
0 1	0	30	3.386005
1 1	1	7 = 4	0.790068
2 2 3 2	0 1	54 33	6.094808 3.724605
4 3	0	94 1	L0.609481
5 3 6 4	1 0		4.740406 35.665914
7 4	1	86	9.706546
8 5			21.783296
9 5 10 Total	1 88	31 6.0	3.498871 100.0
year and	nart		
		unt pe	ercentage
0 1			L5.124153
1 1 2 2	1 0	111 1 62	L2.528217 6.997743
3 2	1	73	8.239278
4 3 5 3	0 1	57 86	6.433409 9.706546
6 4	0	44	4.96614
7 4	1	79	8.916479
8 5 9 5	0 1	58 69	6.546275 7.78781
10 6	0	32	3.611738
11 6 12 Total	1 88	81 6.0	9.142212
		0.0	100.0
sex and h		count	percentage
0 1	1	13	1.467269
1 1	2	23	2.595937
2 1 3 1	3 4	31 117	3.498871 13.205418
4 1	5	91	10.27088
5 2 6 2	1 2	23 64	2.595937 7.223476
7 2	3	103	11.625282
8 2	4	284	32.054176
9 2 10 3	5 1	132 1	14.89842 0.112867
11 3	3	2	0.225734
12 3 13 3	4 5	1 1	0.112867 0.112867
14 Total		886.0	100.0
stud_h an	d health		
stud_	h health	count	
	0 1 0 2	3	
	0 3	1	
3	0 4	4	
4	0 5 		0.3386
189 6	9 3	1	
190 7 191 7		2	
192 7	0 5	3	0.3386
193 Tota	1	886.0	100.0

[194 rows x 4 columns]

```
sex and glang
     sex glang count percentage
0
               223
      1
          1
                     25.1693
1
      1
          15
                9
                    1.015801
2
        20
                7
                    0.790068
     1
                2 0.225734
3
     1
        63
               20 2.257336
1 0.112867
         90
4
     1
5
     1
          92
6
     1
         102
                5 0.564334
7
      1
          104
                1 0.112867
          106
                1 0.112867
8
      1
9
          108
      1
                1 0.112867
10
     1
          120
                1
                    0.112867
     1
          121
                4 0.451467
11
              491 55.417607
12
     2
          1
             22 2.48307
     2
          15
13
               15 1.693002
     2
        20
14
        37
15
     2
                3
                     0.3386
     2
16
        54
                1 0.112867
     2
        60
                3 0.3386
17
             2 0.225734
24 2.708804
1 0.112867
18
     2
         63
     2
         90
19
     2
20
         95
     2
21
         98
                1 0.112867
22
     2
         102
               22
                    2.48307
               3
23
     2
          104
                     0.3386
     2
          106
                5 0.564334
24
                1 0.112867
25
     2
          114
     2
2
                2 0.225734
26
          118
         120
27
                1 0.112867
     2
         121
                9 1.015801
28
          1
29
     3
                3
                     0.3386
30
      3
         63
                 1 0.112867
     3
          90
31
                 1
                    0.112867
32 Total
          886.0
                     100.0
job and stud_h
    job stud_h count percentage
      0 0 9 1.015801
            1
                   4 0.451467
1
      0
            2
2
      0
                  9 1.015801
3
      0
            3
                  7 0.790068
4
      0
            4
                 9 1.015801
                          . . .
. .
     . . .
           . . .
                 . . .
         53
                 1 0.112867
101
      1
102
          60
                  2 0.225734
       1
103
       1
            65
                   1
                     0.112867
104
       1
            70
                   2
                      0.225734
105
   Total
                886.0
                      100.0
[106 rows x 4 columns]
-----
sex and part
   sex part count percentage
    1 0 123 13.882619
1
    1 1 152 17.155756
2
    2 0 259 29.232506
3
     2 1 347 39.164786
          0 5
4
     3
                  0.564334
5 Total
            886.0
                   100.0
```

Out[20]:		age	jspe	qcae_aff	amsp	erec_mean	cesd	stai_t	mbi_ex	mbi_cy	mbi_ea
	0	18	88	27	17	0.738095	34	61	17	13	20
	1	26	109	37	22	0.690476	7	33	14	11	26
	2	21	106	39	17	0.690476	25	73	24	7	23
	3	21	101	33	18	0.833333	17	48	16	10	21
	4	21	102	28	21	0.690476	14	46	22	14	23

```
In [21]: # Distribution of the numerical variables
plt.figure(figsize = (20,20))
for i, col in enumerate(df_num.columns):
    plt.subplot(4, 3, i+1)
    sns.distplot(df_num[col])
    plt.xlabel(col)
    plt.ylabel('Density')
    plt.show()
```

C:\Users\Oana\AppData\Local\Temp\ipykernel_15732\2063736890.py:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df_num[col])

C:\Users\Oana\AppData\Local\Temp\ipykernel_15732\2063736890.py:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df_num[col])

C:\Users\Oana\AppData\Local\Temp\ipykernel_15732\2063736890.py:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df_num[col])

C:\Users\Oana\AppData\Local\Temp\ipykernel_15732\2063736890.py:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df_num[col])

 $\verb|C:\Users\Oana\AppData\Local\Temp\ipykernel_15732\2063736890.py:5: UserWarning: \\$

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df_num[col])

C:\Users\Oana\AppData\Local\Temp\ipykernel_15732\2063736890.py:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df_num[col])

C:\Users\Oana\AppData\Local\Temp\ipykernel_15732\2063736890.py:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df_num[col])

C:\Users\Oana\AppData\Local\Temp\ipykernel_15732\2063736890.py:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df_num[col])

C:\Users\Oana\AppData\Local\Temp\ipykernel_15732\2063736890.py:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df_num[col])

C:\Users\Oana\AppData\Local\Temp\ipykernel_15732\2063736890.py:5: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df_num[col])

In [22]: # Correlation matrix
 corr_matrix = df_num.corr(method = 'pearson')
 corr_matrix

cesd stai t mbi_ex mbi_cy Out[22]: age jspe qcae_aff amsp erec_mean age 1.000000 0.223221 -0.008130 0.000477 -0.018699 -0.139106 -0.081893 -0.182733 -0.001853 jspe 0.223221 1.000000 0.263384 0.099395 0.097062 -0.080058 -0.075036 -0.040542 -0.006981 -0.008130 qcae_aff 0.263384 1.000000 -0.071391 0.141379 0.250947 0.331350 0.215886 0.128488 0.000477 0.099395 -0.071391 1.000000 0.002780 -0.152052 -0.249231 -0.073011 -0.029343 amsp -0.018699 0.097062 0.002780 1.000000 0.029881 0.037688 0.061965 erec mean 0.141379 0.015348 -0.139106 -0.080058 0.250947 -0.152052 0.029881 1.000000 0.715728 0.605617 0.407727 cesd

```
stai t -0.081893
                    -0.075036
                                0.331350
                                           -0.249231
                                                        0.037688
                                                                    0.715728
                                                                               1.000000
                                                                                           0.530486
                                                                                                      0.331884
mbi_ex
        -0.182733
                    -0.040542
                                0.215886
                                           -0.073011
                                                        0.015348
                                                                    0.605617
                                                                               0.530486
                                                                                           1.000000
                                                                                                      0.505200
                    -0.006981
mbi cy
         -0.001853
                                0.128488
                                           -0.029343
                                                        0.061965
                                                                    0.407727
                                                                               0.331884
                                                                                           0.505200
                                                                                                      1.000000
mbi_ea
         0.046130
                     0.082508
                                -0.113891
                                            0.220616
                                                        -0.034889
                                                                   -0.453589
                                                                               -0.462535
                                                                                          -0.480821
                                                                                                      -0.565939
```

```
In [23]: # heatmap of the correlation matrix
    plt.figure(figsize = (10,10))
    sns.heatmap(corr_matrix, annot = True, cmap = 'coolwarm')
    plt.show()
```



```
In [24]: # get a dataframe of the the most to least correlated variables
    corr_matrix = corr_matrix.unstack().reset_index()
    corr_matrix.columns = ['Variable 1', 'Variable 2', 'Correlation']
    corr_matrix = corr_matrix[corr_matrix['Variable 1'] != corr_matrix['Variable 2']]
    corr_matrix = corr_matrix.sort_values(by = 'Correlation', ascending = False)
    corr_matrix
```

Out[24]:		Variable 1	Variable 2	Correlation
	65	stai_t	cesd	0.715728
	56	cesd	stai_t	0.715728
	75	mbi_ex	cesd	0.605617
	57	cesd	mbi_ex	0.605617
	67	stai_t	mbi_ex	0.530486
	96	mbi_ea	stai_t	-0.462535
	79	mbi_ex	mbi_ea	-0.480821
	97	mbi_ea	mbi_ex	-0.480821
	89	mbi_cy	mbi_ea	-0.565939
	98	mbi_ea	mbi_cy	-0.565939
In [25]: In [26]:	from	m sklearr m sklearr tandardiz	n.decompos	
	df_ # c	num_scale reate a F	ed = scale PCA instar	er.fit_tra
	# f	it the PO	·	ts = 0.95) ce to the d)
				ed samples ransform(d
				the pca for the PCA is
	The	shape of	the PCA	is: (886
In [27]:	plt plt plt	.plot(np. .xlabel('	cumsum(po	e sum of to ca.explain f componen we explain

the explained variance tells how much information can be attributed to each of the pri

plt.show()

In [28]: # loadings = coefficients that describe how each variable contributes to the principal c
loadings = pd.DataFrame({'Feature' : df_num.columns, 'PC1' : pca.components_[0], 'PC2':
loadings

Out[28]:		Feature	PC1	PC2	PC3	PC4
	0	age	-0.096826	0.383863	0.700289	-0.143540
	1	jspe	-0.046286	0.680183	0.093058	0.065010
	2	qcae_aff	0.208184	0.509245	-0.318282	-0.204569
	3	amsp	-0.151479	0.121522	-0.109618	0.827293
	4	erec_mean	0.045743	0.326902	-0.455469	0.052569
	5	cesd	0.461591	-0.028029	-0.079636	-0.026066
	6	stai_t	0.450715	0.022358	-0.074328	-0.221556
	7	mbi_ex	0.442653	-0.033443	-0.030296	0.220002
	8	mbi_cy	0.373686	0.036472	0.299290	0.378758
	9	mbi_ea	-0.410257	0.072821	-0.278935	-0.067228

```
In [29]: # sort the loadings in descending order
loadings = loadings.sort_values(by = ['PC1', 'PC2', 'PC3', 'PC4'], ascending = False)
loadings.head(20)
# for the first pc, the variables with the highest absolute loadings are 'cesd', 'stai_t
# for the second pc, the variables with the highest absolute loadings is 'jspe'
# for the third pc - 'erec_mean'
# for the fourth pc - 'amsp'
```

Out[29]:		Feature	PC1	PC2	PC3	PC4
	5	cesd	0.461591	-0.028029	-0.079636	-0.026066
	6	stai_t	0.450715	0.022358	-0.074328	-0.221556
	7	mbi_ex	0.442653	-0.033443	-0.030296	0.220002

```
4 erec_mean
                     0.045743
                            0.326902 -0.455469 0.052569
                    1
                ispe
         0
                    3
               amsp -0.151479 0.121522 -0.109618 0.827293
              mbi ea -0.410257 0.072821 -0.278935 -0.067228
In [30]: # Clustering
         from sklearn.cluster import KMeans
In [32]: # determine the optimal number of clusters
         # create a list of inertia values for different k values
         inertia = []
         for k in range (1,10):
             # create a KMeans instance with k clusters
             model = KMeans(n\_clusters = k)
             #fit model to samples
             model.fit(pca_features)
             #append the inertia to the list of inertias
             inertia.append(model.inertia_)
         # plot the ks vs inertias
         plt.plot(range(1,10), inertia, '-o')
         plt.xlabel('Number of clusters, k')
         plt.ylabel('Inertia')
         plt.show()
         # the point where the inertia begins to decrease more slowly is a good choice for the n
         C:\Users\0ana\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning:
         The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_
         init` explicitly to suppress the warning
           warnings.warn(
         C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserWarning:
         KMeans is known to have a memory leak on Windows with MKL, when there are less chunks th
         an available threads. You can avoid it by setting the environment variable OMP_NUM_THREA
         DS=4.
           warnings.warn(
         C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning:
         The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_
         init` explicitly to suppress the warning
           warnings.warn(
         C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserWarning:
         KMeans is known to have a memory leak on Windows with MKL, when there are less chunks th
         an available threads. You can avoid it by setting the environment variable OMP_NUM_THREA
         DS=4.
           warnings.warn(
         C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning:
         The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_
         init` explicitly to suppress the warning
           warnings.warn(
         C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserWarning:
         KMeans is known to have a memory leak on Windows with MKL, when there are less chunks th
         an available threads. You can avoid it by setting the environment variable OMP_NUM_THREA
         DS=4.
           warnings.warn(
         C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning:
         The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_
```

mbi_cy 0.373686

0.208184

init` explicitly to suppress the warning

qcae_aff

2

0.036472 0.299290 0.378758

0.509245 -0.318282 -0.204569

warnings.warn(C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks th an available threads. You can avoid it by setting the environment variable OMP_NUM_THREA DS=4. warnings.warn(C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_ init` explicitly to suppress the warning warnings.warn(C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks th an available threads. You can avoid it by setting the environment variable OMP_NUM_THREA warnings.warn(C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_ init` explicitly to suppress the warning warnings.warn(C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks th an available threads. You can avoid it by setting the environment variable OMP_NUM_THREA DS=4.

warnings.warn(

C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks th an available threads. You can avoid it by setting the environment variable OMP_NUM_THREA DS=4.

warnings.warn(

C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks th an available threads. You can avoid it by setting the environment variable OMP_NUM_THREA DS=4.

warnings.warn(

C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks th an available threads. You can avoid it by setting the environment variable OMP_NUM_THREA DS=4.

warnings.warn(

we choose n=3 clusters

In [34]:

```
model = KMeans(n_clusters = 3)
    clusters = model.fit_predict(pca_features)

C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning:
    The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_
    init` explicitly to suppress the warning
    warnings.warn(
    C:\Users\Oana\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:1382: UserWarning:
    KMeans is known to have a memory leak on Windows with MKL, when there are less chunks th
    an available threads. You can avoid it by setting the environment variable OMP_NUM_THREA
    DS=4.
    warnings.warn(

In [35]: # create a scatter plot of the first two principal components
    plt.scatter(pca_features[:, 0], pca_features[:, 1], c=clusters, cmap = 'viridis')
```

```
In [35]: # create a scatter plot of the first two principal components
   plt.scatter(pca_features[:, 0], pca_features[:, 1], c=clusters, cmap = 'viridis')
   plt.xlabel('PC1')
   plt.ylabel('PC2')
   plt.show()
```



```
In [36]: # extracting the cluster labels
    clusters_labels = model.labels_
```

In [37]: # adding the cluster labels to the original data frame
 df_clustered = df_num.copy()
 df_clustered['Cluster'] = clusters_labels
 df_clustered.head()

Out[37]:		age	jspe	qcae_aff	amsp	erec_mean	cesd	stai_t	mbi_ex	mbi_cy	mbi_ea	Cluster
	0	18	88	27	17	0.738095	34	61	17	13	20	0
	1	26	109	37	22	0.690476	7	33	14	11	26	1
	2	21	106	39	17	0.690476	25	73	24	7	23	2
	3	21	101	33	18	0.833333	17	48	16	10	21	0
	4	21	102	28	21	0.690476	14	46	22	14	23	0

In [38]: # grouping the data frame by cluster to get the properties of each cluster
 cluster_grouped = df_clustered.groupby('Cluster')
 cluster_properties = cluster_grouped.mean()
 print(cluster_properties)

	age	jspe	qcae_aff	amsp	erec_mean	cesd	\
Cluster							
Θ	20.737410	99.460432	32.798561	22.514388	0.691076	18.165468	
1	23.639769	110.198847	34.106628	24.688761	0.723823	9.481268	
2	22.467433	108.655172	37.800766	21.781609	0.746214	29.321839	
	stai_t	mbi_ex	mbi_cy	mbi_ea			
Cluster							
0	43.348921	17.208633	9.708633	23.798561			
1	34.354467	13.097983	7.593660	27.268012			
2	53.777778	21.551724	13.777778	20.574713			

In [39]: cluster_grouped.size()

```
Out[39]: Cluster
0 278
1 347
2 261
dtype: int64
```

In [41]: # plotting the properties for each cluster
 cluster_properties.plot(kind = 'bar', figsize = (15,10))
 plt.show()

Cluster 0 is the cluster with the lowest values of the variables; the patients in this
 # Cluster 1 is the cluster with the intermediate values of the variables; the patients i

In [42]: # Machine Learning
 # Logistic Regression
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LogisticRegression
 from sklearn.metrics import accuracy_score

In [44]: # split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(pca_features, clusters_labels, test_

In [45]: # create a logistic regression classifier
logreg = LogisticRegression()

In [46]: # fit the classifier to the training data
logreg.fit(X_train, y_train)

Out[46]: DogisticRegression LogisticRegression()

```
accuracy = accuracy_score(y_test, y_pred)
         print("Accuracy: {}" .format(accuracy))
         Accuracy: 0.9887640449438202
In [50]: # Model evaluation
         from sklearn.metrics import classification_report
         from sklearn.metrics import confusion_matrix
         print(classification_report(y_test, y_pred))
In [51]:
         print(confusion_matrix(y_test, y_pred))
                       precision recall f1-score
                                                      support
                                     0.97
                   0
                           1.00
                                               0.98
                                                           58
                   1
                           0.98
                                     1.00
                                               0.99
                                                           65
                           0.98
                                     1.00
                                               0.99
                                                           55
                                               0.99
                                                          178
             accuracy
                          0.99
                                     0.99
                                               0.99
                                                          178
            macro avg
         weighted avg
                           0.99
                                     0.99
                                               0.99
                                                          178
         [[56 1 1]
          [ 0 65 0]
          [ 0 0 55]]
In [52]: # precision is the ability of the classifier not to label a positive sample that is nega
         # recall is the ability of the classifier to find all positive labels
         # f1-score is the weighted average of the precision and recall
         # support is the number of occurrences of each class in y_test
In [ ]: # CONCLUSION
         # In this project, I used the chi-square test to determine the relationships between the
         # For continuous variables, I used the Pearson correlation coefficient to determine the
```

data set, and I used the K-Means clustering algorithm to cluster the patients into 3 g # Regression model to predict the cluster labels of the patients based on the principal

In [47]: # predict the labels of the test set
y_pred = logreg.predict(X_test)

In [49]: # compute and print the accuracy

labels