

Doctorado en Biotecnología PUCV - UTFSM

CURSO

Análisis de expresión diferencial de genes e investigación reproducible con R

Dra. Débora Torrealba Sandoval

Clase 7

Genes de referencia

Plan de la clase

- Cuantificación absoluta
- Cuantificación relativa
- Genes de referencia
- Actividad de aprendizaje con R

Tipos de cuantificación

RT-PCR Cuantificación absoluta

Cuantificación absoluta

- Determina el número de copias exactas presentes en la muestra.
- Se necesita de una curva estándar.
- Es un protocolo laborioso y difícil de llevar a cabo.
- Resultado: cantidad de ácidos nucleicos (número de copias o μg) por una cantidad de muestra (por célula, por μg de ARN total).

Plantillas de ADN

Amplicón de PCR o plásmido

Pros: Fácil de generar, cuantificar y mantener estabilidad

Contra: No puede someterse al paso de transcripción inversa de qRT-PCR, que puede afectar significativamente la eficiencia de la reacción

Plantillas de ARN

ARN transcrito in vitro

Plantillas de ARN

❖ ARN transcrito in vitro

Pros: Aumenta eficiencia RT e imita el objetivo de interés

Contra: Consume tiempo el generar el ARN y es difícil de mantener la precisión a lo largo del tiempo debido a la inestabilidad del ARN

Curva estándar

Dilución seriada

Curva estándar

Real Time-PCR. Life Technologies

Cuantificación absoluta

Table 4.1. Determination of the absolute copy number of β -actin in unknown samples A and B using the absolute quantification method. The equation of the linear regression line shown in Figure 4.1 was used to calculate the copy number of the unknown samples.

Sample	Replicate	C _T	Copies			
A	1	18.61	204,577			
A	2	18.41 234,115				
А 3		18.87 172,300				
Average	203,664 ± 30,917					
В	1	17.06 569,789				
В	2	17.07	563,823			
B 3		17.00 591,173				
Average	574,928 ± 14,381					

Real-Time PCR. BioRad

RT-PCR Cuantificación relativa

Cuantificación relativa

Gen de interés es normalizado contra gen de referencia

referencia EF-1, GADPH, Beta-actina, 18S

¿Qué es un gen de referencia?

- Se usan como calibradores de la cuantificación relativa.
- Se trata de genes que se expresan de forma constitutiva, estable e independiente del estado fisiológico de la célula.

Constitutiva: Que se expresa siempre en todos los tejidos y estados de desarrollo de un organismo.

Estable e independiente: Que su variación es pequeña entre tejidos o tratamientos.

Ejemplo genes de referencia evaluados en plantas

Fig 1. Expression levels (Cq values) of the seven candidate reference genes in all the tested samples. The lower and upper ends of box indicate the 1/4 and 3/4 quartiles. Whiskers indicate the maximum and minimum Cq values. The line in the box indicates the median and the small box indicates the mean Cq value. The star indicates the outlier.

Variación genes de referencia: estados de desarrollo

Camarón de río

Jaramillo et al. 2017 Gene

Variación genes de referencia: temperatura

Pseudomonas antartica expuesta a diferentes temperaturas

García-Laviña et al. 2019. Extremophiles

Métricas para evaluar estabilidad

Coeficiente de variación (CV) de los valores de Ct: Es una medida muy simple de calcular y permite comparar entre genes, muestras y tratamientos (tejidos, estados de desarrollo, estrés ambiental, etc.).

• CV y desviación estándar (SD): variación más baja esta relacionado al gen más estable.

Cualquier gen con valor mayor a 1 es considerado poco estable.

CV y desviación estándar (SD)

Table 2. The stability of candidate reference genes based on Bestkeeper analysis.

	Flower buds			Leaf buds		Different tissues		Different cultivars				
Rank	Gene	SD	CV (%)	Gene	SD	CV (%)	Gene	SD	CV (%)	Gene	SD	CV (%)
1	EF1	0.31	1.60	18srRNA	0.76	2.89	EF1	0.36	1.87	TUB	0.11	0.49
2	TUA	0.33	1.69	ACT2	0.79	3.10	ACT2	0.52	2.08	TUA	0.13	0.68
3	TUB	0.41	1.73	GAPDH	0.82	3.60	GAPDH	0.54	2.45	EF1	0.15	0.80
4	ACT2	0.43	1.78	TUB	1.22	5.01	18S rRNA	0.88	3.40	GAPDH	0.20	0.94
5	GAPDH	0.49	2.33	EF1	1.23	6.15	ACT	1.07	4.49	ACT2	0.23	0.93
5	18S rRNA	0.54	2.14	ACT	1.26	5.26	TUA	1.62	7.63	18S rRNA	0.37	1.45
7	ACT	0.65	2.76	TUA	1.28	6.16	TUB	1.82	7.34	ACT	0.62	2.65

Zhou et al. 2018. PLoS ONE.

Nogal europeo

Métricas para evaluar estabilidad

Valor de estabilidad: la suma de la variación intra e intergrupal
 Valor de estabilidad más bajo significa mayor estabilidad

Table 4Reference gene expression stability values in embryonic developmental and adult tissues of *M. olfersii* based on several programs.

	Rank	NormFinder			
		Genes	Stability index		
Developmental stages	1	AK	0.255		
	2	RpS6	0.263		
	3	β -act	0.280		
	4	RpL8	0.310		
	5	GAPDH	0.580		
	6	EF-1α	2.969		
Adult tissues	1	RpS6	0.699		
	2	RpL8	0.706		
	3	β-act	1.052		
	4	GAPDH	1.329		
	5	AK	1.945		
	6	EF-1α	2.380		

Camarón de río

Jaramillo et al. 2017. Gene.

Métricas para evaluar estabilidad

 Valor M: variación por pares de un gen en particular en comparación con otros genes.

Valor M más bajo muestra mayor genes más estables. Valor máximo 1,5 M

García-Laviña et al. 2019 Extremophiles

Software más usados para escoger un gen de referencia

Lallemant et at. 2009. BMC Molecular Biology

NormFinder

ABOUT

RESEARCH

SERVICES

LOGIN

Q search...

Genetic Analyses

NGS Core Center

cfDNA Analyses

NormFinder software

NormFinder FAQ

MethCORR software

NormFinder software

Determine the optimal normalization gene

NormFinder is an algorithm for identifying the optimal normalization gene among a set of candidates.

It ranks the set of candidate normalization genes according to their expression stability in a given sample set and given experimental design.

NormFinder can analyze expression data obtained through any quantitative method e.g. real time RT-PCR and microarray based expression analysis.

"NormFinder.xla" adds the NormFinder functionality directly to Excel. A version for R (updated June 2014) is also available.

License

Downloads

NormFinder Excel Add-In (*.xla, MS Excel 2003) v0.953

NormFinder for R version 5, 2015-01-05

(MS Excel 2003)

 Valor de estabilidad. Se combina la variación intra e intergrupal, representando una medida del error sistemático que se introducirá al usar el gen investigado.

Actividad de aprendizaje

Selección de genes de referencia con Normfinder en R

Resumen de la clase

- Que es la cuantificación absoluta y revisamos los tipos de plantillas de ADN y ARN para la curva estándar
- Que es la cuantificación relativa y la normalización por unidad de masa y gen de referencia
- Que son los genes de referencia y las medidas de estabilidad
- Selección de genes de referencia con Normfinder en Rstudio.

Próximas clases

Clase 8: Cálculo de la expresión génica relativa.

Clase 9: Análisis exploratorio de datos de Ct.

