Statistical inference practice

Joris LIMONIER

January 12, 2022

Contents

1	1.1	Ass exercise January 12, 2022 Exercise 1
1	Ir	iclass exercise January 12, 2022
1.	1 I	Exercise 1
She	ow th	at

 $\mathbb{E}\left[\hat{\mathcal{R}}_{S}(h)\right] = \mathcal{R}_{D,f}(h) \tag{1}$

$$\mathbb{E}\left[\hat{\mathcal{R}}_{S}(h)\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{h(x_{i})\neq y_{i}}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left[\mathbf{1}_{h(x_{i})\neq y_{i}}\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{P}\left(h(x_{i})\neq y_{i}\right)$$

$$= \frac{1}{n}n\mathbb{P}\left(h(x_{i})\neq y_{i}\right)$$

$$= \mathbb{P}\left(h(x_{i})\neq y_{i}\right)$$

$$= \mathbb{P}\left(h(x_{i})\neq f(x)\right)$$

$$= \mathcal{R}_{D,f}(h)$$

1.2 Exercise 2

We must prove that the variance of $\hat{\mathcal{R}}_S(h) \to 0$

$$Var\left[\hat{\mathcal{R}}_{S}(h)\right] = Var\left[\frac{1}{n}\sum_{i=1}^{n}\mathbf{1}_{h(x_{i})\neq y_{i}}\right]$$
$$= Var\frac{1}{n^{2}}\left[\sum_{i=1}^{n}\mathbf{1}_{h(x_{i})\neq y_{i}}\right]$$

Let the \mathbb{Z}_i be defined as follows:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{h(x_i) \neq f(x_i)} =: \frac{1}{n} \sum_{i=1}^{n} Z_i$$

(not finished, see lecture 1 slides)