Turma:	Nota:

MA 327 Álgebra Linear

Segundo Semestre de 2006

Terceira Prova

Nome:	RA:
-------	-----

$Quest\~oes$	Pontos
Questão 1	
Questão 2	
Questão 3	
Questão 4	
T o t a l	

Questão 1. (2.0 Pontos)

Sejam V um espaço vetorial sobre o corpo $I\!\!F$, T um operador linear sobre V, $\lambda \in I\!\!F$ e E_{λ} o subconjunto de V definido por:

$$E_{\lambda} = \{ v \in V / T(v) = \lambda v \}.$$

Prove que $T(E_{\lambda}) \subset E_{\lambda}$.

Questão 2. (3.0 Pontos)

Sejam V um espaço vetorial de dimensão n sobre o corpo F e T um operador linear sobre V. Pede–se:

- (a) Se $v \in V$ é um autovetor de T, quantos autovalores associados a v podem existir, no máximo? Justifique sua resposta.
- (b) Se $\lambda = 0$ é um autovalor de T, podemos afirmar que T não é um operador injetor? A recíproca é verdadeira? Justifique suas respostas.
- (c) Se o operador linear T possui somente dois autovalores distintos λ_1 e λ_2 com $dim(V_{\lambda_1}) = n 1$, prove que T é um operador diagonalizável.

Questão 3. (3.0 Pontos)

Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ um operador linear definido por T(x,y) = (5x - 6y, x). Pede–se:

- (a) Calcule os autovalores e os autovetores do operador T.
- (b) Exiba uma base para cada um dos autoespaços do operador T.
- (c) Utilizando o resultado do item (a), calcule os valores de $a, b, c, d \in \mathbb{R}$, tais que

$$T^{8}(x,y) = (ax + by, cx + dy),$$

onde $T^n: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ é o operador linear definido por:

$$T^0 = I$$
 e $T^n = T^{n-1} \circ T$ para todo natural $n \ge 1$.

Questão 4. (3.0 Pontos)

Determine explicitamente a expressão do operador linear T sobre \mathbb{R}^4 , diagonalizável, satisfazendo simultaneamente as seguintes condições:

- (a) $Ker(T) = \{ (x, y, z, t) \in \mathbb{R}^4 / x + y z + t = 0 \text{ e } z t = 0 \}.$
- (b) T(0,0,1,0) = (0,0,2,0).
- (c) $(0,1,0,0) \in Im(T)$.
- (d) $\lambda = -3$ é um autovalor do operador T.

GABARITO

Questão 1. (2.0 Pontos)

Seja $w\in T(E_{\lambda})$, isto é, existe um elemento $v\in E_{\lambda}$ tal que w=T(v). Como $v\in E_{\lambda}$, temos que $w=T(v)=\lambda v$. Logo, $w=\lambda v$.

Aplicando o operador T no elemento w, obtemos $T(w) = \lambda T(v)$.

Como w=T(v), temos que $T(w)=\lambda w$. Assim, podemos concluir que $w\in E_{\lambda}$. Portanto, provamos que $T(E_{\lambda})\subset E_{\lambda}$.

Questão 2. (3.0 Pontos)

(a) Temos somente um autovalor λ associado ao autovetor v. Podemos observar que o autovalor λ é unicamente determinado pelo operador T e pelo autovetor v. De fato, considere que λ e λ' são autovalores do operador T associados ao autovetor v, isto é,

$$T(v) = \lambda v$$
 e $T(v) = \lambda' v$.

Assim, temos que

$$\lambda v - \lambda' v = 0_V \implies (\lambda - \lambda') v = 0_V \implies (\lambda - \lambda') = 0 \implies \lambda = \lambda',$$
pois $v \neq 0_V$.

(b) Sim. De fato, se $\lambda = 0$ é um autovalor de T e v um autovetor associado, temos que $v \in Ker(T)$, pois $T(v) = \lambda v = 0_V$. Logo, como $v \neq 0_V$, $Ker(T) \neq \{0_V\}$. Portanto, T não é um operador injetor.

Reciprocamente, se T não é um operador injetor, sabemos que $Ker(T) \neq \{0_V\}$. Logo, os elementos não nulos $v \in Ker(T)$ são autovetores do operador T associados ao autovalor $\lambda = 0$, pois $T(v) = 0_V = \lambda v$.

(c) Seja $\{v_1, \dots, v_{n-1}\}$ uma base para o subespaço V_{λ_1} , desde que $dim(V_{\lambda_1}) = n - 1$. Sabemos que cada elemento v_j é um autovetor de T associado ao autovalor λ_1 , pois

$$T(v_j) = \lambda_1 v_j$$
 para $j = 1, \dots, (n-1)$.

Assim, temos (n-1) autovetores T linearmente independentes. Tomando v_n o autovetor de T associado ao autovalor λ_2 , temos que o conjunto $\{v_1, \dots, v_{n-1}, v_n\}$ também é linearmente independente, pois o autovetor $v_n \notin V_{\lambda_1}$.

Desse modo, temos uma base ordenada $\gamma = \{v_1, \dots, v_{n-1}, v_n\}$ de autovetores de T para o espaço vetorial V. Assim, sabemos que $[T]_{\gamma}^{\gamma} = diag(\lambda_1, \lambda_1, \dots, \lambda_1, \lambda_2)$. Logo, T é um operador diagonalizável.

Questão 3. (3.0 Pontos)

(a) Com relação à base canônica $\beta = \{ (1,0), (0,1) \}$ de \mathbb{R}^2 , temos que

$$[T]^{\beta}_{\beta} = \begin{bmatrix} 5 & -6 \\ 1 & 0 \end{bmatrix}.$$

Sabemos que o polinômio característico do operador T é o polinômio característico da matriz $A=[T]^{\beta}_{\beta}$ que é dado por:

$$p(\lambda) = \det(A - \lambda I) = -\lambda(5 - \lambda) + 6 = \lambda^2 - 5\lambda + 6.$$

Portanto, $\lambda_1 = 2$ e $\lambda_2 = 3$ são os autovalores do operador T.

Para determinar os autovetores de T associados ao autovalor $\lambda_1 = 2$, temos que encontrar os elementos não nulos do núcleo do operador $T - \lambda_1 I$.

Assim, obtemos o seguinte sistema linear homogêneo

$$\begin{cases} 3x - 6y = 0 \\ x - 2y = 0 \end{cases} \iff x - 2y = 0$$

que possui como solução x=2y para $y\in I\!\!R$ não nulo.

Desse modo, os autovetores do operator T associados ao autovalor $\lambda_1 = 2$ são do tipo v = (2y, y) para $y \in \mathbb{R}$ não nulo. Assim, podemos escolher $v_1 = (2, 1)$ o autovetor de T associado ao autovalor $\lambda_1 = 2$.

De modo análogo, para determinar os autovetores de T associados ao autovalor $\lambda_2=3$, temos que encontrar os elementos não nulos do núcleo do operador $T-\lambda_2 I$.

Assim, obtemos o seguinte sistema linear homogêneo

$$\begin{cases} 2x - 6y = 0 \\ x - 3y = 0 \end{cases} \iff x - 3y = 0$$

que possui como solução x = 3y para $y \in \mathbb{R}$ não nulo.

Desse modo, os autovetores do operator T associados ao autovalor $\lambda_2 = 3$ são do tipo v = (3y, y) para $y \in \mathbb{R}$ não nulo. Assim, podemos escolher $v_2 = (3, 1)$ o autovetor de T associado ao autovalor $\lambda_2 = 3$.

(b) Do item (a), podemos observar facilmente que

$$V_{\lambda_1} = [(2,1)]$$
 e $V_{\lambda_2} = [(3,1)]$

são os autoespaços do operador T associados aos autovalores $\lambda_1=2$ e $\lambda_2=3$, respectivamente.

(c) Do item (a), podemos concluir que T é um operador diagonalizável. Logo, a matriz $A = [T]^{\beta}_{\beta}$ é uma matriz diagonalizável.

Além disso, sabemos que os autovetores da matriz A são

$$X_1 = [v_1]_{\beta} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 e $X_2 = [v_2]_{\beta} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

associados aos autovalores $\lambda_1 = 2$ e $\lambda_2 = 3$, respectivamente.

Temos que a matriz A é similar a matriz diagonal $\Lambda = diag(2,3)$, onde a matriz invertível P que realiza a transformação de similaridade é dada por:

$$P = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \quad e \quad P^{-1} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}.$$

Desse modo, temos que $A = P \Lambda P^{-1}$. Logo, sabemos que $A^8 = P \Lambda^8 P^{-1}$ e que a matriz do operador T^8 com relação à base canônica β é dada por $[T^8]^\beta_\beta = A^8$.

Temos que a matriz A^8 é obtida da seguinte forma:

$$A^{8} = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2^{8} & 0 \\ 0 & 3^{8} \end{bmatrix} \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 256 & 0 \\ 0 & 6561 \end{bmatrix} \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 19171 & -37830 \\ 6305 & -12354 \end{bmatrix}$$

Finalmente, temos que

$$[T^8(u)]_{\beta} = [T^8]_{\beta}^{\beta}[u]_{\beta}$$
 para $u = (x, y) \in \mathbb{R}^2$.

Portanto, a expressão explícita do operador linear T^8 é dada por:

$$T^8(x,y) = (19171x - 37830y, 6305x - 12354y)$$
 para $(x,y) \in \mathbb{R}^2$.

Questão 4. (3.0 Pontos)

Da condição (a), sabemos que

$$Ker(T) = \{ (x, y, z, t) \in \mathbb{R}^4 / x + y - z + t = 0 \text{ e } z - t = 0 \}.$$

Podemos verificar facilmente que $\{(-1,1,0,0),(0,0,1,1)\}$ é uma base para Ker(T).

Desse modo, podemos concluir que $\lambda_1=0$ é um autovalor de T com multiplicidade algébrica igual a 2 e multiplicidade geométrica também igual a 2, pois $V_{\lambda}=Ker(T)$ e dim(Ker(T))=2. Assim, podemos escolher $v_1=(-1,1,0,0)$ e $v_2=(0,0,1,1)$ os autovetores de T associados aos autovalores $\lambda_1=0$ e $\lambda_2=0$.

Da condição (b), sabemos que $v_3 = (0,0,1,0)$ é um autovetor do operador T associado ao autovalor $\lambda_3 = 2$. De fato, $T(v_3) = \lambda_3 v_3$, isto é, T(0,0,1,0) = 2(0,0,1,0).

Podemos observar que $\{v_1, v_2, v_3\}$ é linearmente independente em \mathbb{R}^4 . Assim, estamos precisando de mais um elemento $v_4 \in \mathbb{R}^4$ para autovetor do operador T de modo que $\gamma = \{v_1, v_2, v_3, v_4\}$ seja uma base de autovetores para \mathbb{R}^4 .

Da condição (c), sabemos que o elemento $(0,1,0,0) \in Im(T)$. Assim, podemos escolher $v_4 = (0,1,0,0)$ como um autovetor do operador T associado ao autovalor $\lambda_4 = -3$.

Portanto, temos que

$$v_1 = (-1, 1, 0, 0)$$
 , $v_2 = (0, 0, 1, 1)$, $v_3 = (0, 0, 1, 0)$ e $v_4 = (0, 1, 0, 0)$

são os autovetores do operador linear T associados aos autovalores $\lambda_1=0$, $\lambda_2=0$, $\lambda_3=2$ e $\lambda_4=-3$, respectivamente. Desse modo, $\gamma=\{v_1,v_2,v_3,v_4\}$ é uma base de autovetores para \mathbb{R}^4 e sabemos que $[T]_{\gamma}^{\gamma}=diag(0,0,2,-3)$.

Finalmente, vamos determinar a expressão explícita do operador linear T diagonalizável que satisfaz as condições desejadas. Para isso, vamos representar um elemento genérico $(x, y, z, t) \in \mathbb{R}^4$ em relação à base de autovetores $\gamma = \{v_1, v_2, v_3, v_4\}$, isto é,

$$(x, y, z, t) = a(-1, 1, 0, 0) + b(0, 0, 1, 1) + c(0, 0, 1, 0) + d(0, 1, 0, 0).$$

Podemos verificar facilmente que a = -x, b = t, c = z - t e d = x + y.

Portanto, obtemos

$$T(x,y,z,t) = -xT(-1,1,0,0) + tT(0,0,1,1) + (z-t)T(0,0,1,0) + (x+y)T(0,1,0,0)$$
$$= (0, -3x - 3y, 2z - 2t, 0)$$