DEVOIR SURVEILLE DU MODULE DE STATISTIQUES

Durée: 1h

Pas	de	documents	autorisés -	Calculatrices	autorisées
ı us	ue	accuments	441011363	Culculu II ICCS	4410113663

NOM:	Prénom :	Groupe :

Le barème est seulement indicatif pour la répartition des points.

Exercice 1 (3 points)

Un professeur de français désire monter avec ses élèves une représentation de théâtre. Sa classe contient 12 filles et 14 garçons.

1) Sachant qu'il a besoin de 3 garçons pour tenir les rôles masculins, et de 2 filles pour tenir les rôles féminins, de combien de manières peut-il répartir ces rôles sachant que chaque élève ne peut jouer qu'un seul rôle.

2) Il doit de plus choisir 5 élèves (garçon ou filles) qui seront des figurants n'ayant aucun texte à dire. De combien de manières peut-on choisir les acteurs et les figurants ;

Exercice 2 (1+1+2+1+2=7 points)

On lance simultanément deux dés équilibrés. On s'intéresse à la valeur M "valeur maximum des 2 dés". Sur les 36 couples possibles, le tableau suivant donne le nombre de couple présentant le maximum k

Maximum k	1	2	3	4	5	6
Nombre de couples de maximum k	1	3	5	7	9	11

¹⁾ Calculer l'espérance E(M).

2) On mise 10€, on gagne 30€ si le maximum est 6, on récupère la mise le maximum est 5, on perd la mise dans les autres cas. Soit G la variable aléatoire "gain net (mise déduite) d'un lancer avec mise de 10€".

Donner la loi de probabilité de G.

3) Calculer l'espérance E(G), la variance et l'écart type de la variable G.
4) On mise une valeur 5 fois plus grande (50€) sur 1 lancer dont les gains sont alors multipliés dans le même rapport. Soit Y la variable aléatoire "gain net de 1 lancer avec mise de 50€". Calculer l'espérance E(Y), la variance et l'écart type de la variable Y.
5) On dispose de 50€, qu'on joue sur 5 lancers indépendants. Soit G5 la variable aléatoire "gain net de 5 lancers avec mise de 10€". Calculer l'espérance E(G5), la variance et l'écart type de la variable G5.
Exercice 3 (2 points) Lors du contrôle en fin de fabrication, on estime que 1 pièce sur 1000 est défectueuse. En supposant que les pièces sont fabriquées indépendamment, qu'elle est la probabilité de ne pas avoir de pièce défectueuse sur les 200 premières pièces fabriquées.

Exercice 4 (1+1,5+2+2=6,5 points)
On considère que le poids X d'un abricot suit une loi normale d'espérance 45g et d'écart type 12g.
1) Calculer la probabilité qu'un abricot pèse plus de 60g.

2) Quelle est le poids auquel est supérieur les 10% d'abricot les plus lourds.
3) On vend les abricots par paquet de 10 abricots. Calculer la probabilité qu'un paquet de 10 abricots pèsent moins de 400g.
4) Combien devrait-on mettre d'abricots dans un paquet si on veut être sûr à 90% d'avoir un poids

Parmi les étudiants de CPE 30% sont des filles. Le pourcentage de fumeur est respectivement de 45% pour les filles et de 25% pour les garçons. Quelle est la probabilité pour qu'un étudiant fumeur pris au hasard devant CPE soit un garçon ?

Exercice 6 (3 points) pour ceux qui ont tout fini

Soit X la v.a. "Note d'un étudiant d'IRC au DS de statistiques". On suppose que X suit une loi normale, et on observe que 20% des étudiants ont une notes supérieure à 15, et que 15% des étudiants on une note inférieure à la moyenne de 10. Calculer l'espérance et l'écart type de X.

Formulaire de probabilités

Soient A et B deux évènements:

Soloni II et B dedit e venements.	
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	$P(\overline{A}) = 1 - P(A)$
A et B incompatibles si $P(A \cup B) = P(A) + P(B)$	Probabilité conditionnelle: $P(A/B) = \frac{P(A \cap B)}{P(B)}$
Evènements indépendants: $P(B/A) = P(B)$ ou	A et B indépendants: $P(A \cap B) = P(A)P(B)$
P(A/B) = P(A)	
Théorème de Bayes: $P(A/B) = P(B/A) \frac{P(A)}{P(B)}$	

p tirages parmi n objets	Sans remise	Avec remise
Avec ordre	A_n^p	n ^p
Sans ordre (combinaison)	C_n^p	C_{n+p-1}^p

$$A_{n}^{p} = \frac{n!}{(n-p)!} = n(n-1)...(n-p+1)$$

$$C_{n}^{p} = \frac{A_{n}^{p}}{p!}$$

p objets sur n cases	un objet par case	sans limitation du nombre d'objets par		
		case		
Objets discernables (ordre)	A_n^p	n ^p		
Objets non discernables (sans ordre)	C_n^p	C_{n+p-1}^p		

Loi binomiale $\mathcal{B}(n;p)$: $P(X = k) = C_n^k p^k (1-p)^{n-k}$ pour tout k de 0 à n; E(X)=n p; V(X)=n p(1-p);

Loi géométrique de paramètre p : $P(X = k) = p(1-p)^{k-1}$; $P(X > k) = (1-p)^k$;

E(X)=1/p; $V(X)=(1-p)/p^2$

Loi Pascal (binomiale négative) de paramètre r et p : $P(X = k) = C_{k-1}^{r-1} p^r (1-p)^{k-r}$;

 $E(X)=r/p; V(X)=r(1-p)/p^2$

Loi de Poisson $\mathcal{P}(\lambda)$: $P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$; $E(X) = \lambda$; $V(X) = \lambda$;

Approximation: loi binomiale => loi de Poisson: si n>50 et p \le 0,1 et np <17, on remplace la loi binomiale $\mathcal{B}(n;p)$ par la loi de Poisson $\mathcal{P}(np)$.

Loi Normale
$$\mathcal{N}(\mu, \sigma^2)$$
: $f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$; $E(X)=\mu$; $V(X)=\sigma^2$;

Approximation: loi binomiale => loi Normale si : np(1-p) > 9

on remplace la loi binomiale $\mathcal{B}(n,p)$ par la loi $\mathcal{N}(np,\; n\,p\,(1-p)\,)$

Approximation: loi de Poisson => loi Normale: si λ >18 alors on remplace la loi de Poisson $\mathcal{P}(\lambda)$ par la loi $\mathcal{N}(\lambda,\lambda)$.

<u>Table 1</u>: Loi Normale centrée réduite $\mathcal{N}(0;1)$ Détermination de t_p pour p=P(Z $\leq t_p$) connue

5 0 5	0.000	0.004	0.000	0.000	0.004	0.005	0.000	0.007		() Lp		
P<0,5	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009		
0,00		3,090	2,878	2,748	2,652	2,576	2,512	2,457	2,409	2,366	2,326	0,99
0,01	2,326	2,290	2,257	2,226	2,197	2,170	2,144	2,120	2,097	2,075	2,054	0,98
0,02	2,054	2,034	2,014	1,995	1,977	1,960	1,943	1,927	1,911	1,896	1,881	0,97
0,03	1,881	1,866	1,852	1,838	1,825	1,812	1,799	1,787	1,774	1,762	1,751	0,96
0,04	1,751	1,739	1,728	1,717	1,706	1,695	1,685	1,675	1,665	1,655	1,645	0,95
0,05	1,645	1,635	1,626	1,616	1,607	1,598	1,589	1,580	1,572	1,563	1,555	0,94
0,06	1,555	1,546	1,538	1,530	1,522	1,514	1,506	1,499	1,491	1,483	1,476	0,93
0,07	1,476	1,468	1,461	1,454	1,447	1,440	1,433	1,426	1,419	1,412	1,405	0,92
0,08	1,405	1,398	1,392	1,385	1,379	1,372	1,366	1,359	1,353	1,347	1,341	0,91
0,09	1,341	1,335	1,329	1,323	1,317	1,311	1,305	1,299	1,293	1,287	1,282	0,90
0,10	1,282	1,276	1,270	1,265	1,259	1,254	1,248	1,243	1,237	1,232	1,227	0,89
0,10	1,227	1,221	1,216	1,211	1,206	1,200	1,195	1,190	1,185	1,180	1,175	0,88
-											-	0,87
0,12	1,175	1,170	1,165	1,160	1,155	1,150	1,146	1,141	1,136	1,131	1,126	
0,13	1,126	1,122	1,117	1,112	1,108	1,103	1,098	1,094	1,089	1,085	1,080	0,86
0,14	1,080	1,076	1,071	1,067	1,063	1,058	1,054	1,049	1,045	1,041	1,036	0,85
0,15	1,036	1,032	1,028	1,024	1,019	1,015	1,011	1,007	1,003	0,999	0,994	0,84
0,16	0,994	0,990	0,986	0,982	0,978	0,974	0,970	0,966	0,962	0,958	0,954	0,83
0,17	0,954	0,950	0,946	0,942	0,938	0,935	0,931	0,927	0,923	0,919	0,915	0,82
0,18	0,915	0,912	0,908	0,904	0,900	0,896	0,893	0,889	0,885	0,882	0,878	0,81
0,19	0,878	0,874	0,871	0,867	0,863	0,860	0,856	0,852	0,849	0,845	0,842	0,80
0,20	0,842	0,838	0,834	0,831	0,827	0,824	0,820	0,817	0,813	0,810	0,806	0,79
0,21	0,806	0,803	0,800	0,796	0,793	0,789	0,786	0,782	0,779	0,776	0,772	0,78
0,22	0,772	0,769	0,765	0,762	0,759	0,755	0,752	0,749	0,745	0,742	0,739	0,77
0,23	0,739	0,736	0,732	0,729	0,726	0,722	0,719	0,716	0,713	0,710	0,706	0,76
0,24	0,706	0,703	0,700	0,697	0,693	0,690	0,687	0,684	0,681	0,678	0,674	0,75
0,25	0,674	0,671	0,668	0,665	0,662	0,659	0,656	0,653	0,650	0,646	0,643	0,74
0,26	0,643	0,640	0,637	0,634	0,631	0,628	0,625	0,622	0,619	0,616	0,613	0,73
0,27	0,613	0,610	0,607	0,604	0,601	0,598	0,595	0,592	0,589	0,586	0,583	0,72
0,28	0,583	0,580	0,577	0,574	0,571	0,568	0,565	0,562	0,559	0,556	0,553	0,71
0,29	0,553	0,550	0,548	0,545	0,542	0,539	0,536	0,533	0,530	0,527	0,524	0,70
	0,533	0,522	0,519	0,516	0,513	0,539	0,507	0,504	0,502	0,327	0,324	0,70
0,30		•								,	-	
0,31	0,496	0,493	0,490	0,487	0,485	0,482	0,479	0,476	0,473	0,470	0,468	0,68
0,32	0,468	0,465	0,462	0,459	0,457	0,454	0,451	0,448	0,445	0,443	0,440	0,67
0,33	0,440	0,437	0,434	0,432	0,429	0,426	0,423	0,421	0,418	0,415	0,412	0,66
0,34	0,412	0,410	0,407	0,404	0,402	0,399	0,396	0,393	0,391	0,388	0,385	0,65
0,35	0,385	0,383	0,380	0,377	0,375	0,372	0,369	0,366	0,364	0,361	0,358	0,64
0,36	0,358	0,356	0,353	0,350	0,348	0,345	0,342	0,340	0,337	0,335	0,332	0,63
0,37	0,332	0,329	0,327	0,324	0,321	0,319	0,316	0,313	0,311	0,308	0,305	0,62
0,38	0,305	0,303	0,300	0,298	0,295	0,292	0,290	0,287	0,285	0,282	0,279	0,61
0,39	0,279	0,277	0,274	0,272	0,269	0,266	0,264	0,261	0,259	0,256	0,253	0,60
0,40	0,253	0,251	0,248	0,246	0,243	0,240	0,238	0,235	0,233	0,230	0,228	0,59
0,41	0,228	0,225	0,222	0,220	0,217	0,215	0,212	0,210	0,207	0,204	0,202	0,58
0,42	0,202	0,199	0,197	0,194	0,192	0,189	0,187	0,184	0,181	0,179	0,176	0,57
0,43	0,176	0,174	0,171	0,169	0,166	0,164	0,161	0,159	0,156	0,154	0,151	0,56
0,44	0,151	0,148	0,146	0,143	0,141	0,138	0,136	0,133	0,131	0,128	0,126	0,55
0,45	0,126	0,123	0,121	0,118	0,116	0,113	0,111	0,108	0,105	0,103	0,100	0,54
0,46	0,100	0,098	0,095	0,093	0,090	0,088	0,085	0,083	0,080	0,078	0,075	0,53
0,47	0,075	0,073	0,070	0,068	0,065	0,063	0,060	0,058	0,055	0,053	0,050	0,52
0,48	0,050	0,048	0,045	0,043	0,040	0,038	0,035	0,033	0,030	0,028	0,025	0,51
0,49	0,025	0,043	0,043	0,043	0,015	0,033	0,033	0,008	0,005	0,023	0,023	0,50
0,70	0,020	0,009	0,008	0,007	-	0,005	0,004	0,003	0,002	0,001		
		0,009	0,000	0,007	0,006	0,005	0,004	0,003	0,002	0,001	0,000	p≥0,5

f	t_{p}	3,1214	3.1559	3,1947	3,2389	3,2905	3,3528	3,4316	3,5401	3,7190
Γ	р	0,9991	0,9992	0,9993	0,9994	0,9995	0,9996	0,9997	0,9998	0,9999