Processamento de Sinais em Tempo Discreto

Prof. Dr. Samuel Lourenço Nogueira

Conteúdo Programático

Revisão:

- Tipos de sinais (Contínuos/Discretos)
- Analógico vs Digital
- Ondas senoidais

Amostragem

- Introdução
- Processo de amostragem
- Amostragem e ruído de alta frequência
- Sobreposição espectral (aliasing)
- Taxa de Nyquist

REVISÃO

Revisão

- Tipos de sinais
- Analógico vs Digital
- Ondas senoidais

Revisão – Tipos de sinais

Sinais **contínuos**:

- Podem ser medidos continuamente
- Não existe distância mínima entre medidas

Exemplo:

temperatura(tempo)

Mesmo com distâncias muito pequenas seria possível recuperar as medidas.

temperatura(1h) temperatura(1,001h)

temperatura(1,00000...000001h)

Sinais **discretos**:

- A distância regular entre medidas (tempo)
- Indexada por um número inteiro

Exemplo:

temperatura[índice inteiro]

temperatura[1] temperatura[2] Distância entre medidas temperatura[3] consecutivas é fixa.

temperatura[n]

distância regular = 0.25 segundos:

temperatura[2] é obtida exatamente 0.25 segundos após temperatura[1]

Revisão – Tipos de sinais

Sinais contínuos:

- Podem ser medidos continuamente
- Não existe distância mínima entre medidas

Exemplo: imagem(tamanho)

imagem (6x9mm) imagem(12x18mm) Imagem(14,4x21,6mm)

Ampliação máxima dependente apenas da resolução do filme

Sinais discretos:

- A distância regular entre medidas (tempo)
- Indexada por um número inteiro

Exemplo:

vídeo[índice inteiro]

distância regular = 1/24 segundos ou 24 quadros/s

Cada quadro é atomizado, não existe outros quadros entre vídeo[1] e vídeo[2].

Revisão – Tipos de sinais

Os sinais podem ser de 4 tipos distintos

	Índice ou Espaçamento			
Grandeza	discreto		contínuo	
discreta	Vídeo digital[n do quadro]	Pessoas em um edifício (tempo)	
contínua	Hora nascim	nto[pessoa]	Temperatura(tempo)	
Nossos estudos focaram nesses tipos				

• Assim, representaremos sempre:

```
sinal[n]: discreto \Rightarrow digital sinal(t): contínuo \Rightarrow analógico
```

Revisão

- Tipos de sinais
- Analógico vs Digital
- Ondas senoidais

Revisão - Analógico vs Digital

Analógico

- Valores contínuos
- Armazenados ou apresentados em dispositivos analógicos
- Exemplos:
 - Fita K7 (compact cassette)
 - Disco de vinil
 - Balança de molas
 - Termômetro de mercúrio
 - Voltímetro / galvanômetro
 - etc...

Revisão - Analógico vs Digital

- Digital
 - Valores discretos
 - Obtidos de um sinal/grandeza analógico
 - Amostragem (sampling)
 - Intervalos regulares (medidas)
 - Armazenados em estruturas contendo vetores e matrizes
 - Arquivos de texto
 - Arquivos binários
 - Exemplos:
 - Imagem/Luz
 - Som/Voz

Revisão - Analógico vs Digital

• Sinal digital é agrupado em vetores/matrizes, acessado por índices inteiros:

sendo que $t = nT_S$

Tempo de amostragem

Portanto, x{1.30, 1.00, -0.50,-0.60, 0.50, 1.00, 1.10, 1.20, -1,20,-1.10 $t\{0.00, 0.02,$ 0.04,0.08, 0.10, 0.12, 0.14,0.06, 0.16, 0.18}

Revisão

- Tipos de sinais
- Analógico vs Digital
- Ondas senoidais

- Mundo analógico:
 - Descrevem o comportamento de grandezas físicas
 - Ondas aparecem isoladas ou combinadas
 - Energia elétrica (corrente alternada)
 - Rotação/Translação da Terra
 - Sinais eletromiográficos
 - Voz humana
- Equação:

$$sinal = a sen(2\pi ft + \theta)$$

$$a = amplitude$$

$$f = frequência (Hz)$$

$$\theta = fase (radianos)$$

$$sinal = \frac{a}{a}sen(2\pi ft + \theta)$$

>> Topico | Exemplo | 1.m % Parte |

$$sinal = a sen(2\pi f t + \theta)$$

$$sinal = a sen(2\pi ft + \theta)$$

>> Topico | Exemplo | 1.m % Parte 2

>> Topico | Exemplo | 1.m % Parte 3

$$sinal = a sen(2\pi f t + \theta)$$

- Combinação de senoides para descrever grandezas oscilantes no tempo
- Exemplo:

$$x(t) = \cos(2\pi 100t) + \cos(2\pi 200t)$$

>> Topico I Exemplo 2.m

$$T_s = 0.0002$$

 $N = 100$ amostras

AMOSTRAGEM

Amostragem

- Introdução
- Processo de amostragem
- Ruído de alta frequência
- Sobreposição espectral
- Taxa de Nyquist

Introdução à amostragem

- Mudo real
 - Analógico
 - Sinais contínuos

- Computadores
 - Dispositivos digitais
 - Dados discretos e finitos
 - Limites de precisão
 - Intervalos de medidas
 - Magnitude do sinal medido

Fontes:

http://pixabay.com/

https://en.wikipedia.org/wiki/Galvanometer

https://www.maxpixel.net

https://en.wikipedia.org/wiki/Sampling (signal processing)

Introdução à amostragem

• Amostragem: é um processo de obtenção de um sinal digital à partir de um sinal analógico.

Exemplo: Música de 3 minutos

- Taxa de 16 bits (resolução de amplitude)
- Amostrada à 44100 Hz ou $T_s \cong 22,68 \mu s$ (distância entre amostras)
- 2 canais (estéreo)

$$3 \min = 180 s$$

Cada amostra teria 16 bits ou 2 bytes

Teríamos 44100 amostras por segundo, por canal

:.
$$970_{ins} = \frac{180 \times 2 \times 94100 \times 2}{3min^{2}byris} \times \frac{94100 \times 2}{3min^{2}byris} \times \frac{94100 \times 2}{3min^{2}byris} \times \frac{95000 \text{ byris}}{3min^{2}byris}$$

Amostragem

- Introdução
- Processo de amostragem
- Ruído de alta frequência
- Sobreposição espectral
- Taxa de Nyquist

$$F = \frac{1}{0.02} = 50$$
Hz

 $90^{o} * \pi/180$

Supondo sinal contínuo

$$x(t) = \cos(2 * \pi * F * t - \frac{\pi}{2})$$

- Amostrar
 - Substituir t (índice contínuo) por valor discreto $n * T_s$, sendo:
 - n um valor inteiro de $0 \dots N-1$ (N: número de amostras)
 - T_s o período de amostragem (intervalo entre duas amostras)
 - $T_S = 1/F_S$, sendo F_S a frequência de amostragem

Assim o processo de amostragem é dado por:

$$x[n] = x(n * T_s)$$

x[n] não é exatamente x(t), mas uma boa aproximação.

- Exemplo: Dado o sinal contínuo representado pela função senoidal abaixo, faça:
 - Discretização, utilizando $T_S = \frac{1}{500}$
 - Obtenha 100 amostras

$$x(t) = \cos(2 * \pi * 45 * t)$$

```
>> N = 100;  % número de amostras

>> Ts = 1/500;  % 500 amostras/s

>> n = 0:N-1;  % vetor índices inteiros

>> x = cos(2*pi*45*n*Ts);

>> plot(n,x, 'r'); hold on;

>> stem(n,x);
```

Obs:

•
$$T = \frac{1}{45}$$
 é diferente de $T_S = \frac{1}{500}$

- Tamanho da janela = $(N-1) * T_s$
- $(N-1)*\frac{T_s}{T}$ = número de repetições

• Exercício I:

• Se um sinal x(t) for amostrado à 20 kHz, quantas amostras teríamos após 60ms?

$$DC(4) = cos(211404 \pm 11/4) + 26s(2116510)$$

 $R: \mathcal{FD}_{Amosinus} = 60mz * 20kHz$
 $= 60.10^{-3} * 20 * 10^{-3} = 1200 \text{ Amosinus}$

Exercício 2:

• Supondo que o sinal do exercício (1) tenha sido amostrado à 16 bits/amostra, qual a quantidade de bytes necessários para armazenar os 60ms amostrados?

Exercício 3:

Qual o período do sinal ao lado?

Exercício 4:

• Para o sinal do exercício anterior, supondo período de amostragem de $T_{\rm S}=1/2500$, defina uma quantidade de amostras N, para que o sinal amostrado tenha pelo menos 3 repetições do mesmo.

$$(N-1) \times \frac{1/2500}{1/250} = 3$$

 $\therefore N = 31$ amostras

- Exercício 5:
 - Amostre o sinal do exercício (4) no Matlab/Octave, apresente o código e gráficos.

```
>> N = 31;  % número de amostras

>> Ts = 1/2500;  % 2500 amostras/s

>> n = 0:N-1;  % vetor índices inteiros

>> x = 4*cos(2*pi*250*n*Ts + 2*pi/7);

>> plot(n,x,'r'); hold on;

>> stem(n,x);
```


Amostragem

- Introdução
- Processo de amostragem
- Ruído de alta frequência
- Sobreposição espectral
- Taxa de Nyquist

Ruído de alta frequência

• Torna cada amostra do sinal um pouco maior ou menor do que seria

Uma sobreposição amostral do ruído aparecerá no sinal amostrado como componente de alta frequência.

Amostragem

- Introdução
- Processo de amostragem
- Ruído de alta frequência
- Sobreposição espectral
- Taxa de Nyquist

Exemplo prático:

- Rodas de um carro (vídeo) aparentam girar no sentido contrário, efeito conhecido como "wagon-wheel effect" ou efeito estroboscópico, ou ainda sobreposição espectral temporal.
 - Link Vídeo Youtube: https://www.youtube.com/watch?v=jHS9]GkEOmA
 - Link Vídeo Wikipedia: https://en.wikipedia.org/wiki/Wagon-wheel_effect:

- Ocorre quando o sinal amostrado possui réplicas de suas componentes senoidais, que podem distorcer o sinal real ao ponto de o mesmo não ser distinguível. O que ocasionará em perda de informação.
- Exemplo: seja $x(t) = \cos(2\pi 800t)$, amostrado à $F_S = 600$ amostras/segundo, ou 600Hz. O que ocorre?

$$x(t) = \cos(2\pi 800t)$$

$$x[n] = \cos(2\pi 800nT_s)$$
Substituindo 800 por 600 + 200, teríamos:

 $x[n] = \cos(2\pi(200 + 600)nT_s)$ sendo, $T_s = 1/600$ $x[n] = \cos(2\pi 200nT_s + 2\pi n)$ Como o \cos é uma função periódica com período de 2π , temos que $\cos(\theta+2\pi)=\cos(\theta)$

Assim, para qualquer n inteiro, temos:

$$x[n] = \cos(2\pi 200nT_s + 2\pi n) = \cos(2\pi 200nT_s)$$

Portanto, se amostrarmos uma senoide de 800Hz à 600 amostras/segundo, não conseguiríamos distingui-la de uma de 200Hz.

PERDA DE INFORMAÇÃO!

• Pode-se generalizar as componentes senoidais de um sinal, substituindo:

$$f = f_o + kF_S$$
 Freq. de amostragem

Número inteiro

Maior componente de freq. do sinal

$$x(t) = \cos(2\pi f t + \theta)$$

$$x[n] = \cos(2\pi(f_o + kF_s)nT_s + \theta)$$

$$x[n] = \cos(2\pi f_o n T_s + 2\pi k F_s n T_s + \theta)$$

$$x[n] = \cos(2\pi f_o n T_s + 2\pi k n + \theta)$$

A componente de frequência que equivale a um múltiplo do da F_s é nula.

$$x[n] = \cos(2\pi f_o n T_s + \theta)$$

Sejam dos sinais:

•
$$x(t) = 2 * \cos(2\pi 100t)$$

•
$$y(t) = 2 * \cos(2\pi(100 + kF_s)t)$$

para k inteiro

Sendo,

 $F_{\rm s} = 600 \, Hz$ a componente 600Hz N = 200 amostras

não aparece na amostragem

Caso principal, dobramento (folding):

$$\frac{F_s}{2} < f_o < F_s$$

Exemplo: seja $x(t) = cos(2\pi 600t + \theta)$, amostrado à 1000Hz (amostras/segundo)

$$x[n] = \cos(2\pi 600nT_s + \theta)$$

Substituindo 600 por 1000-400

$$x[n] = \cos(2\pi(1000 - 400)nT_s + \theta)$$

$$x[n] = \cos(2\pi n - 2\pi 400nT_s + \theta)$$

Para 'n' um número inteiro

$$x[n] = \cos(-2\pi 400nT_s + \theta)$$

Sabe-se que
$$cos(-\theta) = cos(\theta)$$

$$\begin{cases} cos(\pi) = 1 \\ cos(-\pi) = 1 \end{cases}$$

Portando teríamos duas soluções possíveis,

$$x[n] = \cos(-2\pi 400nT_S + \theta)$$

$$x[n] = \cos(2\pi 400nT_s - \theta)$$

Mudança de fase

- Dado o exemplo anterior, $x[n] = \cos(2\pi 600nT_S + \theta)$, uma solução possível para $T_S = 1000$ seria:
 - $x[n] = a * \cos(2\pi(-400)nT_s + \theta)$
- Considere também o caso generalizado com componente múltipla da F_S
 - $y[n] = a * \cos(2\pi(-400 + kF_s)nT_s + \theta)$

>> Topico I Exemplo 4.m

Mesmo mudando k para valores maiores não afeta a componente de dobramento no sinal amostrado.

Sinal original amostrado não distingue-se do sinal de 400Hz

Amostragem

- Introdução
- Processo de amostragem
- Ruído de alta frequência
- Sobreposição espectral
- Taxa de Nyquist

Taxa de Nyquist

- Taxa de Nyquist ou Teorema da Amostragem de Nyquist:
 - Anteriormente vimos que para $f_o > F_S$ ou $F_S > f_o > \frac{F_S}{2}$, temos perda de informação
 - Consiste da taxa mínima de amostragem para que um sinal possa ser reconstruído:

Nyquist e Sobreposição Amostral (Aliasing)

- Testes, considerando o sinal amostrado com $f_o = 100 Hz$
 - $F_S = 100^* Hz \ até \ 149 Hz$
 - $F_s = 150Hz \ até \ 200^*Hz$
 - $F_S = 2x200Hz$ até 100x200Hz
 - * casos críticos
 - >> Topico I Exemplo 5.m

Resumo de EPCs

- Todos os Exercícios e atividades Para Casa (EPCs) são disponibilizados no <u>AVA da disciplina</u>:
 - Exercício Para Casa 2 (EPC2): Exercícios de fixação sobre amostragem

Referências Bibliográficas

- WEEKS, M.; Processamento Digital de Sinais, utilizando Matlab® e Wavelets; 2a.ed., LTC, 2012. Processamento em tempo discreto de sinais.
- OPPENNHEIM, A.V. SHAFFER, R.W.; Processamento em Tempo Discreto de Sinais, 3a.ed., Pearson, 2013.
- PROAKIS, J. G.; MANOLAKIS, D. G.; Digital Signal Processing: Principles, algorithms, and Applications, Prentice Hall, 2006.
- https://www.mathworks.com/help/
- https://octave.org/doc/v5.2.0/