Single Path One-Shot Neural Architecture Search with Uniform Sampling

Zichao Guo*, Xiangyu Zhang*, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, Jian Sun

Megvii Technology

Tsinghua University, Hong Kong University of Science and Technology {guozichao, zhangxiangyu, hengwen, weiyichen, sunjian}@megvii.commuhy17@mails.tsinghua.edu.cn, zliubq@connect.ust.hk

Qing Lyu

5/8/2019

Contribution

 proposed a Single Path One-Shot mode to achieve NAS on large dataset

NAS Background

- Nested Approaches
 - High computation cost
 - Used on small dataset (CIFAR 10)

$$w_a = \underset{w}{\operatorname{argmin}} \mathcal{L}_{\text{train}} \left(\mathcal{N}(a, w) \right),$$
 (1)

$$a^* = \underset{a \in \mathcal{A}}{\operatorname{argmaxACC}_{\operatorname{val}}} \left(\mathcal{N}(a, w_a) \right),$$
 (2)

NAS Background

- Weight Sharing Approaches
 - The architecture search space \mathcal{A} is encoded in a supernet $\mathcal{N}(\mathcal{A}, W)$
 - convert the discrete architecture search space into a continuous one

$$(\theta^*, W_{\theta^*}) = \underset{\theta, W}{\operatorname{argmin}} \mathcal{L}_{train}(\mathcal{N}(\mathcal{A}(\theta), W)). \tag{4}$$

- Challenges
 - the weights of the graph nodes in the supernet depend on each other and become deeply coupled during optimization
 - joint optimization of architecture parameter $\boldsymbol{\theta}$ and weights W introduces further coupling

NAS Background

- One-shot Approaches
 - the supernet training and architecture search are decoupled, in two sequential steps

$$W_{\mathcal{A}} = \underset{W}{\operatorname{argmin}} \mathcal{L}_{\operatorname{train}} \left(\mathcal{N}(\mathcal{A}, W) \right). \tag{5}$$

$$a^* = \underset{a \in \mathcal{A}}{\operatorname{argmaxACC}_{\operatorname{val}}} \left(\mathcal{N}(a, W_{\mathcal{A}}(a)) \right). \tag{6}$$

- architecture weights are properly initialized
- weights of the graph nodes in the supernet are still coupled

Method

- Single path one-shot supernet
 - Choice block search
 - Channel number search
 - Mixed-precision quantization search
- Uniform sampling
- Evolutionary Architecture Search

Method: objective function

$$W_{\mathcal{A}} = \underset{W}{\operatorname{argmin}} \mathcal{L}_{\operatorname{train}} \left(\mathcal{N}(\mathcal{A}, W) \right). \tag{5}$$

$$W_{\mathcal{A}} = \underset{W}{\operatorname{argmin}} \mathbb{E}_{a \sim \Gamma(\mathcal{A})} \left[\mathcal{L}_{\operatorname{train}} (\mathcal{N}(a, W(a))) \right], \tag{7}$$
where $\Gamma(\mathcal{A})$ is a prior distribution of $a \in \mathcal{A}$.

- In each step of optimization, an architecture a is randomly sampled
- Only weights W(a) are activated and updated

Method: single path and choice blocks

Single path to reduce weights coupling

Figure 1. Architecture of a single path supernet. It consists of a series of *choice blocks*. Each has several *choices*. Only one choice is invoked at the same time.

Method: model and choice blocks

input shape	block	channels	repeat	stride
$224^2 \times 3$	3×3 conv	16	1	2
$112^{2} \times 16$	CB	64	4	2
$56^{2} \times 64$	CB	160	4	2
$28^2 \times 160$	CB	320	8	2
$14^2 \times 320$	CB	640	4	2
$7^2 \times 640$	1×1 conv	1024	1	1
$7^2 \times 1024$	GAP	-	1	_
1024	fc	1000	1	_

Table 2. Supernet architecture. CB – choice block. GAP – global average pooling. The "stride" column represents the stride of the first block in each repeated group.

Method: channel number search and mixedprecision quantization search

Figure 4. *Choice block* for channel number search.

Figure 5. *Choice block* for mixed-precision quantization search.

Method: uniform sampling

- The prior distribution $\tau(A)$ could be important
- Empirically find that uniform sampling is good enough
- Treat all architectures equally

Method

Evolutionary Architecture Search

Figure 3. Evolutionary vs. random architecture search.

Algorithm 1 Evolutionary Architecture Search

Input: supernet weights W_A , population size P, architecture constraints C, max iteration T, validation dataset D_{val} **Output**: the architecture with highest validation accuracy under architecture constraints

```
1: P_0 := Initialize\_population(P, C);

2: n := P/2; # Crossover number

3: m := P/2; # Mutation number

4: prob := 0.1; # Probability to mutate

5: Topk := \emptyset;

6: for i = 1 : \mathcal{T} do

7: ACC_{i-1} := Inference(W_{\mathcal{A}}, D_{val}, P_{i-1});

8: Topk := Update\_Topk(Topk, P_{i-1}, ACC_{i-1});

9: P_{crossover} := Crossover(Topk, n, C);

10: P_{mutation} := Mutation(Topk, m, prob, C);

11: P_i := P_{crossover} \cup P_{mutation};

12: end for
```

13: **return** the entry with highest accuracy in Topk;

Result

- Dataset
 - ImageNet
- Training
 - The batch size is 1024
 - Supernet training for 120 epochs (150000 iterations)
 - The best architecture training for 240 epochs (300000 iterations)
- The size of the search space is 420

Result: building block search

model	FLOPs	top-1 acc(%)
all choice_3	324M	73.4
all choice_5	321M	73.5
all choice_7	327M	73.6
all choice_x	326M	73.5
random select (5 times)	~320M	~73.7
SPS + random search	323M	73.8
ours (fully-equipped)	319M	74.3

Table 3. Results of building block search. *SPS* – single path supernet (Sec. 3.2).

Result: channel search

Model	FLOPs	Top-1 acc(%)
all choice_3	324M	73.4
rand sel. channels (5 times)	$\sim 323M$	~ 73.1
choice_3 + channel search	329M	73.9
rand sel. blocks + channels	~ 325M	~ 73.4
block search	319M	74.3
block search + channel search	328M	74.7
MobileNet V1 (0.75x) [10]	325M	68.4
MobileNet V2 (1.0x) [23]	300M	72.0
ShuffleNet V2 (1.5x) [17]	299M	72.6
NASNET-A [38]	564M	74.0
PNASNET [13]	588M	74.2
MnasNet [24]	317M	74.0
DARTS [15]	595M	73.1
Proxyless-R (mobile)* [4]	320M	74.2 (74.6)
FBNet-B* [26]	295M	74.1 (74.1)

Table 4. Results of channel search. * Performances are reported in the form "x (y)", where "x" means the accuracy retrained by us and "y" means accuracy reported by the original paper.

Result: compared with SOTA NAS methods

baseline network	FLOPs	latency	top-1 acc(%)	top-1 acc(%)	top-1 acc(%)
			baseline	ours (same FLOPs)	ours (same latency)
FBNet-A [26]	249M	13ms	73.0 (73.0)	73.2	73.3
FBNet-B [26]	295M	17ms	74.1 (74.1)	74.2	74.8
FBNet-C [26]	375M	19ms	74.9 (74.9)	75.0	75.1
Proxyless-R (mobile) [4]	320M	17ms	74.2 (74.6)	74.5	74.8
Proxyless (GPU) [4]	465M	22ms	74.7 (75.1)	74.8	75.3

Table 5. Compared with state-of-the-art NAS methods [26, 4] using the same search space. The latency is evaluated on a single NVIDIA $Titan\ XP\ GPU$, with batchsize=32. Accuracy numbers in the brackets are reported by the original papers; others are trained by us. All our architectures are searched from the **same** supernet via evolutionary architecture optimization (see Sec. 3.4).

Result: mixed-precision quantization search

method	BitOps	top-1 acc(%)
ResNet-18	float point	70.9
2W2A	6.32G	65.6
ours	6.21G	66.4
3W3A	14.21G	68.3
DNAS [27]	15.62G	68.7
ours	13.49G	69.4
4W4A	25.27G	69.3
DNAS [27]	25.70G	70.6
ours	24.31G	70.5
ResNet-34	float point	75.0
2W2A	13.21G	70.8
ours	13.11G	71.5
3W3A	29.72G	72.5
DNAS [27]	38.64G	73.2
ours	28.78G	73.9
4W4A	52.83G	73.5
DNAS [27]	57.31G	74.0
ours	51.92G	74.6

Table 6. Results of mixed-precision quantization search. "kWkA" means k-bit quantization for all the weights and activations.

Result: search cost

Method	Proxyless	FBNet	Ours
GPU memory cost	37G	63G	24G
(8 GPUs in total)	370	030	240
Training time	15 Gds	20 Gds	12 Gds
Search time	0	0	<1 Gds
Retrain time	16 Gds	16 Gds	16 Gds
Total time	31 Gds	36 Gds	29 Gds

Table 7. Search Cost. Gds - GPU days

Conclusion

- Propose a single path one-shot NAS approach that reduce weight coupling in the supernet
- comparing to previous works on a large dataset (ImageNet) verify that the proposed approach is SOTA in terms of
 - accuracy
 - memory consumption
 - training time
 - architecture search efficiency
 - flexibility