TAX AVOIDANCE On a Social Network

27. April 2017

Duccio Gamannossi - Matthew Rablen

CONTENT

- 1. Overview
- 2. Model
- 3. Network Interactions
- 4. Conclusions

OVERVIEW

Tax Avoidance and Reference Dependence

- → Tax avoidance causes significant losses in public revenue
- → Economic agents are often driven by positional concerns
- → Central role of social interactions in shaping reference points
- → Tax avoidance is a means to improve agents' relative standing

ntent **Overview** Model Network Interactions Conclusions

RELATED LITERATURE

- → Kahneman and Tversky 1979
 Reference dependence of utility
- → Gali 1994
 "Keeping up with the Jones"
- → Myles and Naylor 1996
 Tax evasion and group conformity
- → Ballester, Calvo, Zenou 2006
 Network game with local payoff complementarities
- → Quah 2007 Monotone comparative statics on network games

ontent Overview Model Network Interactions Conclusions

RESEARCH GOALS

Provide a Model where:

- → Agents are heterogeneous in income
- → Taxpayers may engage in costly tax avoidance
- → **Self** and **social** comparison shape the reference income
- → **Social** comparison depends on agents' **social network**

Relevant parameters and variables:

 $t \in (0, 1)$

 $\phi \in (0,1)$

 $p_i \in (0,1)$

 $W_i \in [W, \overline{W}]$

 $X_i = (1 - t) W_i$

 $A_i \in (0, tW_i)$

 R_i

I inear tax rate

Per-unit linear fee on avoided tax

Probability of audit

Exogenous income

Honest after-tax income

Avoided income

Reference Income

THE AVOIDANCE PROBLEM

Taxpayer's problem is:

$$\max_{A_i} \mathbb{E}[U] = (1 - p_i) U(W_i^n - R_i) + p_i U(W_i^a - R_i)$$

After-tax income if not audited

$$W_i^n = X_i + [1 - \phi]A_i$$

After-tax income if audited

$$W_i^a = X_i - \phi A_i$$

Utility is quadratic

$$U(z) = z[b - \frac{az}{2}]$$

Optimal Avoidance at an interior solution is:

$$A_i^* = \frac{1 - p_i - \phi}{a\zeta_i} \{ a[\mathbf{R}_i - X_i] + b \}, \zeta_i > 0$$

REFERENCE DEPENDENCE

Agents' reference income is a weighted average of habitual income and the average of her reference group

Taxpayer i expected after-tax income when avoiding A_i is:

$$q_i = X_i + [1 - p_i - \phi]A_i$$

And the reference income may be expressed as:

$$R_i = \iota_h D_i + \iota_s \sum_{j \neq i} g_{ij} q_j$$

ι_h Relative importance of hab

$$D_i$$
 Habit income

$$\iota_s$$
 Relative importance of peers

$$g_{ij}$$
 weight of agent j in i reference group

NETWORK AND ADJACENCY MATRIX

Undirected Network Weighted Network Directed Network

ACCOUNTING FOR SOCIAL NETWORK

Expanding A_i^* using the definitions of R_i and q_i we solve à la **Cournot-Nash**:

$$A_i = \alpha_i + \iota_s \sum_{j \neq i} g'_{ij} A_j =$$

 $\mathbf{A} = \boldsymbol{\alpha} + \mathbf{G}' \boldsymbol{\beta} \mathbf{A}$

Where:

$$\alpha_i = \frac{1 - p_i - \phi}{a\zeta_i} \{ a[\iota_h D_i + \iota_s \sum_{j \neq i} g_{ij} X_j - X_i] + b \}$$

$$\beta = Diag(\iota_s)$$

$$g'_{ij} = \frac{[1 - p_i - \phi][1 - p_j - \phi]}{\zeta_i}g_{ij}$$

BONACICH CENTRALITY AND AVOIDANCE

The nash equilibrium is then:

$$\mathbf{A} = [\mathbf{I} - \mathbf{G}'\boldsymbol{\beta}]^{-1}\boldsymbol{\alpha} = b(\mathbf{G}', \boldsymbol{\beta}, \boldsymbol{\alpha})$$

 $b(\mathbf{G}', \boldsymbol{\beta}, \boldsymbol{\alpha})$ is the weighted Bonacich centrality defined on:

 $\mathbf{G}^{'}$ Edge weights scaled by agents' relative ER of A

 β Scales weight of longer paths

lpha Weights centrality by agent characteristics

 $[\mathbf{I} - \mathbf{G}' \boldsymbol{\beta}]^{-1}$ Well defined by row-scaling

TAXPAYERS' INTERACTION AS A GAME

The game arising from taxpayers interaction is:

Smooth Supermodular Game (Milgrom and Roberts 1990)

Bounds on strategies

Differentiability

Strategic Complements

$$A_i \in (0, tW_i)$$

$$\mathbb{E}[U]_i$$
 is of class C^2

$$\frac{\partial^2 \mathbb{E}[U]_i}{\partial A_i \partial A_i} \ge 0$$

MONOTONE COMPARATIVE STATICS

Smooth Supermodular Games can be analyzed using **Monotone comparative statics**

Following Quah (2007) we exploit the **weaker** condition of **local supermodularity** around the Nash equilibrium point:

Then, for a given parameter z, it holds:

$$\left. \frac{\partial^2 \mathbb{E}[U]_i}{\partial A_i \partial z} \right|_{A_i = A_i^*} \ge 0 \Leftrightarrow \left. \frac{\partial A_i^*}{\partial z} \right. \begin{cases} > 0 \text{ if } \left. \frac{\partial^2 \mathbb{E}[U]_i}{\partial A_i \partial z} \right|_{A_i = A_i^*} > 0 \\ \ge 0 \text{ if } \left. \frac{\partial^2 \mathbb{E}[U]_i}{\partial A_i \partial z} \right|_{A_i = A_i^*} = 0 \end{cases}$$

MONOTONE COMPARATIVE STATICS

	A_i^*		A_i^*
a	_	t	+
b	+	ϕ	+/-
D_i	+	R_i	+
p_i	_	X_i	_
p_j	-/0	X_j	+/0
ι_h	+	ι_s	+/0

Monotone comparative statics for interior A_i^*

Content Overview Model **Network Interactions** Conclusions

NETWORK STRUCTURE AND INCOME

The pure effect of X_i on A_i^* is negative

However, if:

- $\rightarrow X_i$ increases with X_i
- $\rightarrow \iota_s$ is high enough

The positive peer-effect may cause a reversal

If taxpayers with similar income tend to **group together** (homophily) and **social comparison plays a relevant role** in shaping reference income, the model predicts **avoidance to be increasing in income**

CONCLUDING REMARKS

- → Comparison utility included in tax avoidance model
- → Network structure plays a major role
- → Network (Bonacich) centrality and avoidance are closely linked
- → Assumption of quadratic utility crucial

FURTHER RESEARCH

- → Effect of network structure on enforcement policies
- → Investigate the model as a dynamic game
- → Allow for joint avoidance/evasion decision

Thank You!

Questions?

BEST RESPONSE

Quadratic utility leads to linear best response

Positive slope of best response functions follows from strategic complementarity in $A_i,\,A_j$

Content Overview Model Network Interactions **Conclusions**

NETWORK STRUCTURE AND INCOME

If taxpayers with similar income tend to **group together** (homophily) and **social comparison plays a relevant role** in shaping reference income, the model predicts **avoidance to be increasing in income**

AUDIT EFFECT

Audits performed on **high income** taxpayers **are more effective** than the ones performed on low income ones

