

Nedbørfeltgrenser, feltparametere og vannføringsindekser er automatisk generert og kan inneholde feil. Resultatene må kvalitetssikres.

Lavvannskart

Vassdragsnr.: 012.CB5C Kommune: Flå			Feltparametere					
Kommune: Flå Fylke: Buskerud			Areal (A)	4,9 km²				
Vassdrag: Trommaldelva			Effektiv sjø (S _{eff})	4,7 %				
vassurag. Hommanderva			Elvelengde (E _L)	3,5 km				
			Elvegradient (E _G)	24,5 m/km				
Vannføringsindeks, se merknader			Elvegradient ₁₀₈₅ (G ₁₀₈₅)	26,5 m/km				
-			Feltlengde(F _L)	3,2 km				
Middelvannføring (61-90)		1/(s*km²)	H _{min}	518 moh.				
Alminnelig lavvannføring		1/(s*km²)	H ₁₀	525 moh.				
5-persentil (hele året)		1/(s*km²)	H ₂₀	541 moh.				
5-persentil (1/5-30/9)		1/(s*km²)	H ₃₀	562 moh.				
5-persentil (1/10-30/4)		l/(s*km²)	H ₄₀	574 moh.				
Base flow	8,1	l l/(s*km²)	H ₅₀	585 moh.				
BFI	0,4		H ₆₀	600 moh.				
Klima			H ₇₀	612 moh.				
Kiiiia			H 80	630 moh.				
Klimaregion		Ost	H ₉₀	659 moh.				
Årsnedbør	791	mm	H_{max}	757 moh.				
Sommernedbør	412	mm	Bre	0,0 %				
Vinternedbør	380	mm	Dyrket mark	0,0 %				
Årstemperatur	1,2	°C	Myr	6,9 %				
Sommertemperatur	9,1	°C	Sjø	6,6 %				
Vintertemperatur	-4,5	°C	Skog	86,3 %				
Temperatur Juli	11,7	°C	Snaufjell	0,0 %				
Temperatur August	11,3	°C	Urban	0,0 %				

1) Verdien er editert

Det er generelt stor usikkerhet i beregninger av lavvannsindekser. Resultatene bør verifiseres mot egne observasjoner eller sammenlignbare målestasjoner.

I nedbørfelt med høy breprosent eller stor innsjøprosent vil tørrværsavrenning (baseflow) ha store bidrag fra disse lagringsmagasinene.

Flomberegning

Vassdragsnr.: 012.CB5C

Kommune: Flå

Fylke: Buskerud

Vassdrag: Trommaldelva

Flomverdiene viser størrelsen på kulminasjonsflommer for ulike gjentaksintervall. De er beregnet ved bruk av et formelverk som er utarbeidet for nedbørfelt under ca 50 km2. Feltparametere som inngår i formelverket er areal, effektiv sjøprosent og normalavrenning (l/s*km²). For mer utdypende beskrivelse av formelverket henvises det til NVE –Rapport 7/2015 «Veileder for flomberegninger i små uregulerte felt». Det pågar fortsatt forskning for å Det pågar fortsatt forskning for å bestemme klimapåslag for momentanflommer i små nedbørfelt. Frem til resultatene fra disse prosjektene foreligger anbefales et klimapåslag på 1.2 for døgnmiddelflom og 1.4 for kulminasjonsflom i små nedbørfelt.

Trommaldelva					
Areal (km²)	4,88				
Klimafaktor	1,4				

	Q^{M}		Q <i>5</i>	Q 10	Q 20	Q 50	Q 100	Q 200
	m3/s	l/(s*km²)		~ .	~ .	•	•	
Flomfrekvensfaktorer	-	-	1,25	1,50	1,78	2,20	2,58	3,02
95% intervall øvre grense (m³/s)	2,5	522,3	3,3	4,0	4,8	6,2	7,4	8,7
Flomverdier (m³/s)	1,4	295	1,8	2,2	2,6	3,2	3,7	4,4
95% intervall nedre grense (m³/s)	0,8	167	1,0	1,2	1,4	1,6	1,9	2,2
Flommer med klimapåslag (m³/s)	2,0	413,1	1,8	3,0	3,6	4,4	5,2	6,1

Beregningene er automatisk generert og kan inneholde feil. Det er generelt stor usikkerhet i denne typen beregninger. Resultatene må verifiseres mot egne observasjoner eller sammenlignbare målestasjoner. Resultatene er ikke gyldig som grunnlag til flomberegninger for klassifiserte dammer.