POLYNOMIAL APPROXIMATION AND INTERPOLATION

(APPROXIMATION WITH UNEVENLY SPACED POINTS)

Dr. Gabriel Obed Fosu

Department of Mathematics

Kwame Nkrumah University of Science and Technology

Google Scholar: https://scholar.google.com/citations?user=ZJfCMyQAAAAJ&hl=en&oi=ao

ResearchGate ID: https://www.researchgate.net/profile/Gabriel_Fosu2

Lecture Outline

- Introduction
- 2 Lagrange Interpolation
- Divided Difference Interpolation
 - Difference Method
 - Newton's Divided Difference Interpolation
- Inverse Interpolation

Introduction

We now discuss the problem of approximating a given function by polynomials.

Why approximating polynomials

- To reconstruct the function f(x) when it is not given explicitly and only values of f(x) and/or its certain order derivatives are given at a set of distinct points called nodes or tabular points.
- ② to perform the required operations which were intended for f(x), like determination of roots, differentiation and integration etc. can be carried out using the approximating polynomial P(x).
- **3** The approximating polynomial P(x) can be used to predict the value of f(x) at a non-tabular point.

The deviation of P(x) from f(x), that is f(x) - P(x), is called the error of approximation.

Introduction

• Let f(x) be a continuous function defined on some interval [a,b], and be prescribed at n+1 distinct tabular points x_0, x_1, \dots, x_n such that

$$a = x_0 < x_1 < x_2 < \dots < x_n = b \tag{1}$$

② The distinct tabular points x_0, x_1, \dots, x_n may be non-equispaced or equispaced, that is

$$x_{k+1} - x_k = h; \quad k = 0, 1, 2, \dots, n-1$$
 (2)

3 The problem of polynomial approximation is to find a polynomial $P_n(x)$, of degree $\leq n$, which fits the given data exactly, that is,

$$P_n(x_i) = f(x_i); \quad i = 0, 1, 2, \dots, n$$
 (3)

The polynomial $P_n(x)$ is called the interpolating polynomial. The conditions given in eq. (3) are called the interpolating conditions.

Introduction

Remark

- Through two distinct points, we can construct a unique polynomial of degree 1 (straight line).
- Through three distinct points, we can construct a unique polynomial of degree 2 (parabola) or a unique polynomial of degree1 (straight line).
- **③** That is, through three distinct points, we can construct a unique polynomial of degree ≤ 2.
- In general, through n+1 distinct points, we can construct a unique polynomial of degree $\leq n$.

Lagrange Interpolation

x	x_0	x_1	x_2	•••	x_n
f(x)	$f(x_0)$	$f(x_1)$	$f(x_2)$	•••	$f(x_n)$

Let the data above be given at distinct unevenly spaced points or non-uniform points x_0, x_1, \dots, x_n . This data may also be given at evenly spaced points. We can fit a unique polynomial of degree $\leq n$ given as

$$P_n(x) = l_0(x)f(x_0) + l_1(x)f(x_1) + \dots + l_n(x)f(x_n)$$
(4)

$$= l_0(x)f_0 + l_1(x)f_1 + \dots + l_n(x)f_n$$
 (5)

where $l_i(x)$; $i = 0, 1, 2, \dots, n$ are polynomials of degree n defined as

$$l_i(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0)(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$
(6)

Equation (5) is called the Lagrange interpolating polynomial and eq. (6) are called the Lagrange & fundamental polynomials. Note that the denominator is obtained by setting $x = x_i$ in the numerator

Linear interpolation

• For n = 1, we have the data

X	x_0	x_1
f(x)	f_0	f_1

The Lagrange fundamental polynomials are given by

$$l_0(x) = \frac{(x - x_1)}{(x_0 - x_1)}, \qquad l_1(x) = \frac{(x - x_0)}{(x_1 - x_0)}$$
 (7)

The Lagrange linear interpolation polynomial is given by

$$P_1(x) = l_0(x)f_0 + l_1(x)f_1$$
(8)

Quadratic interpolation

• For n = 2, we have the data

x	x_0	x_1	x_2
f(x)	f_0	f_1	f_2

The Lagrange fundamental polynomials are given by

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}, \quad l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}, \text{ and}$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_0 - x_0)(x_0 - x_1)} \tag{9}$$

The Lagrange linear interpolation polynomial is given by

$$P_2(x) = l_0(x)f_0 + l_1(x)f_1 + l_2(x)f_2$$

Two Data Values

Example

Using the data $\sin(0.1) = 0.09983$ and $\sin(0.2) = 0.19867$, find an approximate value of $\sin(0.15)$ by Lagrange interpolation.

$$x = 0.15$$
, $x_0 = 0.1$, $x_1 = 0.2$, $f_0 = 0.09983$, $f_1 = 0.19867$

$$l_0(0.15) = \frac{(x - x_1)}{(x_0 - x_1)} = \frac{0.15 - 0.2}{0.1 - 0.2} = 0.5$$
(11)

$$l_1(0.15) = \frac{(x - x_0)}{(x_1 - x_0)} = \frac{0.15 - 0.1}{0.2 - 0.1} = 0.5$$
 (12)

Then

$$P_1(x) = l_0(x)f_0 + l_1(x)f_1 = 0.5f_0 + 0.5f_1$$

$$P_1(0.15) = (0.5)(0.09983) + (0.5)(0.19867) = 0.14925.$$

Example

Given that f(0) = 1, f(1) = 3, f(3) = 55, find the unique polynomial of degree 2 or less, which fits the given data.

We have $x_0 = 0$, $f_0 = 1$, $x_1 = 1$, $f_1 = 3$, $x_2 = 3$, $f_2 = 55$. Then

$$l_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{(x-1)(x-3)}{(0-1)(0-3)} = \frac{1}{3}(x^2-4x+3)$$
 (15)

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{x(x - 3)}{(1 - 0)(0 - 2)} = \frac{1}{2}(3x - x^2)$$
(16)

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{x(x - 1)}{(3 - 0)(2 - 0)} = \frac{1}{6}(x^2 - x)$$
(17)

The Lagrange linear interpolation polynomial is given by

$$P_2(x) = l_0(x)f_0 + l_1(x)f_1 + l_2(x)f_2$$
(18)

$$= \frac{1}{3}(x^2 - 4x + 3)(1) + \frac{1}{2}(3x - x^2)(3) + \frac{1}{6}(x^2 - x)(55)$$
 (19)

$$=8x^2-6x+1$$

Example

Construct the Lagrange interpolation polynomial for the data below and hence, interpolate at x = 5.

x	-1	1	4	7
f(x)	-2	0	63	342

$$l_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} = \frac{(x - 1)(x - 4)(x - 7)}{(-1 - 1)(-1 - 4)(-1 - 7)} = \frac{-1}{80}(x^3 - 12x^2 + 39x - 28)$$
(21)

$$l_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} = \frac{(x + 1)(x - 4)(x - 7)}{(1 + 1)(1 - 4)(1 - 7)} = \frac{1}{36}(x^3 - 10x^2 + 17x + 28)$$
 (22)

$$l_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} = \frac{(x + 1)(x - 1)(x - 7)}{(4 + 1)(4 - 1)(4 - 7)} = -\frac{1}{45}(x^3 - 7x^2 - x + 7)$$
(23)

$$l_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} = \frac{(x + 1)(x - 1)(x - 4)}{(7 + 1)(7 - 1)(7 - 4)} = \frac{1}{144}(x^3 - 4x^2 - x + 4)$$

$$P_3(x) = l_0(x)f_0 + l_1(x)f_1 + l_2(x)f_2 + l_3(x)f_3$$
(25)

$$= \frac{2}{80}(x^3 - 12x^2 + 39x - 28) + 0 - \frac{63}{45}(x^3 - 7x^2 - x + 7) + \frac{342}{144}(x^3 - 4x^2 - x + 4)$$
 (26)

$$= \left(\frac{1}{40} - \frac{7}{5} + \frac{171}{72}\right)x^3 + \left(-\frac{3}{10} + \frac{49}{5} - \frac{171}{18}\right)^2 + \left(\frac{39}{40} + \frac{7}{5} - \frac{171}{72}\right)x + \left(-\frac{7}{5} - \frac{49}{5} + \frac{171}{8}\right) \tag{27}$$

$$=x^3-1$$
 (28)

Hence,

$$f(5) = P_3(5) = 53 - 1 = 124 (29)$$

Permanence Property

Remarks

- Suppose that the data $(x_i, f(x_i)), i = 0, 1, 2, \dots, n$, is given.
- 2 Assume that a new value $(x_{n+1}, f(x_{n+1}))$ at the distinct point x_{n+1} is added at the end of the table.
- The data, $(x_i, f(x_i)), i = 0, 1, 2, \dots, n+1$, represents a polynomial of degree $\leq (n+1)$.
- If this polynomial of degree (n+1) can be obtained by adding an extra term to the previously obtained n_{th} degree interpolating polynomial, then the interpolating polynomial is said to have the permanence property.

Note

The Lagrange interpolating polynomial does not have the permanence property.

Divided differences

Let the data, $(x_i, f(x_i))$, $i = 0, 1, 2, \dots, n$, be given. We define the divided differences as follows.

First divided difference

$$f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{f(x_{i+1})}{x_{i+1} - x_i} + \frac{f(x_i)}{x_i - x_{i+1}}; \quad i = 0, 1, 2, \dots, n-1$$
 (30)

Example

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}, \ f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1}, \ \text{and} \ f[x_2, x_3] = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$
 (31)

Second divided difference

Consider any three consecutive data values

$$(x_i, f(x_i)), (x_{i+1}, f(x_{i+1})), (x_{i+2}, f(x_{i+2})), \text{ then}$$

$$f[x_{i}, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i}, x_{i+1}]}{x_{i+2} - x_{i}}; \quad i = 0, 1, 2, \dots, n-2$$

$$= \frac{f_{i}}{(x_{i} - x_{i+1})(x_{i} - x_{i+2})} + \frac{f_{i+1}}{(x_{i+1} - x_{i})(x_{i+1} - x_{i+2})} + \frac{f_{i+2}}{(x_{i+2} - x_{i})(x_{i+2} - x_{i+1})}$$
(33)

$$= \frac{f_i}{(x_i - x_{i+1})(x_i - x_{i+2})} + \frac{f_{i+1}}{(x_{i+1} - x_i)(x_{i+1} - x_{i+2})} + \frac{f_{i+2}}{(x_{i+2} - x_i)(x_{i+2} - x_{i+1})}$$
(33)

Example

A 2_{nd} divided difference can be defined as:

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}, \text{ and } f[x_6, x_7, x_8] = \frac{f[x_7, x_8] - f[x_6, x_7]}{x_8 - x_6}$$
(34)

n_{th} Divided Difference

The n_{th} divided difference using all the data values in the table, is defined as

$$f[x_0, x_1, \cdots, x_n] = \frac{f[x_1, x_2, \cdots, x_n] - f[x_0, x_1, \cdots, x_{n-1}]}{x_n - x_0}$$
(35)

Table of Divided differences

x	f(x)	First	Second	Third
x_0	f_0			
		$f[x_0, x_1]$		
x_1	$\mid f_1 \mid$		$f[x_0, x_1, x_2]$	
		$f[x_1,x_2]$		$f[x_0, x_1, x_2, x_3]$
x_2	$\int f_2$		$f[x_1, x_2, x_3]$	
		$f[x_2,x_3]$		
x_3	f_3			

Example

Obtain the divided difference table for the data

x	-1	0	2	3
f(x)	-8	3	1	12

x	f(x)	First	Second	Third
-1	-8	$\frac{3+8}{0+1} = 11$	1 11	
0	3	$\frac{1-3}{2-0} = -1$	$\frac{-1-11}{2+1} = -4$	$\frac{4+4}{3+1} = 2$
2	1	$\frac{12-1}{3-2} = 11$	$\frac{11+1}{3-0} = 4$	
3	12	0 2		

Newton's Divided Difference Interpolation

The Newton's divided difference interpolating polynomial is defined as

$$f(x) = P_n(x)$$

$$= f(x_0) + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2]$$

$$+ \dots + (x - x_0) (x - x_1), \dots, (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$
(36)

Note

Newton's divided difference interpolating polynomial possesses the permanence property.

Example

Find f(x) as a polynomial in x for the following data by Newton's divided difference formula

X	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

x	f(x)	First	Second	Third	Fourth
-4 -1 0 2	1245 33 5 9	$\frac{33 - 1245}{-1 + 4} = -404$ $\frac{5 - 33}{0 + 1} = -28$ $\frac{9 - 5}{2 - 0} = 2$ $\frac{1335 - 9}{5 - 2} = 442$	$\frac{-28+404}{4} = 94$ $\frac{2+28}{2+1} = 10$ $\frac{442-2}{5-0} = 88$	$\frac{10 - 94}{2 + 4} = -14$ $\frac{88 - 10}{5 + 1} = 13$	$\frac{13+14}{5+4} = 3$

$$f(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3] + (x - x_0)(x - x_1)(x - x_2)(x - x_3)f[x_0, x_1, x_2, x_3, x_4]$$
 (37)

$$f(x) = 1245 + (x+4)(-404) + (x+4)(x+1)(94) + (x+4)(x+1)x(-14) + (x+4)(x+1)x(x-2)(3)$$
 (38)

$$f(x) = 1245 - 404x - 1616 + (x^2 + 5x + 4)(94) + (x^3 + 5x^2 + 4x)(-14) + (x^4 + 3x^3 - 6x^2 - 8x)(3)$$
 (39)

$$f(x) = 3x^4 - 5x^3 + 6x^2 - 14x + 5$$

Example

Find f(x) as a polynomial in x for the following data by Newton's divided difference formula

X	1	3	4	5	7	10
f(x)	3	31	69	131	351	1011

Hence,

- Interpolate at x = 3.5 and x = 8.0
- ② Find, f'(3) and f''(1.5)

x	f(x)	First	Second	Third	Fourth
1	3				
		14			
3	31		8		
		38		1	
4	69		12		0
		62		1	
5	131		16		0
_		110		1	
7	351		22		
		220			
10	1011				

Since, the fourth order differences are zeros, the data represents a third degree polynomial.

Newton's divided difference formula gives the polynomial as

$$f(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)f[x_0, x_1, x_2, x_3]$$
(41)

$$f(x) = 3 + (x - 1)(14) + (x - 1)(x - 3)(8) + (x - 1)(x - 3)(x - 4)(1)$$

$$= 3 + 14x - 14 + 8x^{2} - 32x + 24 + x^{3} - 8x^{2} + 19x - 12$$
(43)

$$= x^3 + x + 1 (44)$$

$$f(3.5) \approx P_3(3.5) = (3.5)^3 + 3.5 + 1 = 47.375$$
 (45)

$$f(8.0) \approx P_3(8.0) = (8.0)^3 + 8.0 + 1 = 521.0$$
 (46)

$$P_3'(x) = 3x^2 + 1 (47)$$

$$P_3''(x) = 6x (48)$$

$$f'(3) \approx P'(3) = 3(9) + 1 = 28$$
 (49)

$$f''(1.5) \approx P''(1.5) = 6(1.5) = 9$$

Inverse Interpolation

- **①** Suppose that a data $(x_i, f(x_i))$; $i = 0, 1, 2, \dots, n$, is given.
- ② In interpolation, we predict the value of the ordinate $f(x_k)$ at a non-tabular point $x = x_k$.
- **1** In many applications, we require the value of x_k for a given value of $f(x_k)$.
- To other problem, we consider the given data as $(f(x_i), x_i)$; $i = 0, 1, 2, \dots, n$ and construct the interpolation polynomial.
- That is, we consider f(x) as the independent variable and x as the dependent variable. This procedure is called inverse interpolation

Exercise

• Using Lagrange interpolation, find the unique polynomial P(x) of degree 2 or less such that

$$P(1) = 1$$
, $P(3) = 27$, $P(4) = 64$

- ② A third degree polynomial passes through the points (0,-1),(1,1),(2,1), and (3,2). Determine this polynomial using Lagrange's interpolation. Hence, find the value at 1.5.
- Using Lagrange interpolation, find y(10) given that

$$y(5) = 12$$
, $y(6) = 13$, $y(9) = 14$, $y(11) = 16$.

Using Newton's divided difference method, find f(1.5) using the data f(1.0) = 0.7651977, f(1.3) = 0.6200860, f(1.6) = 0.4554022, f(1.9) = 0.2818186, and f(2.2) = 0.1103623.

END OF LECTURE THANK YOU

