

计算机组成原理

第四章 存储系统

4.5 存储扩展

4.5 存储扩展

1 存储扩展的基本概念及类型

无论哪种类型的存储扩展都要完成CPU与主存间地址线、数据线、控制线的连接

2 位扩展举例

例1 用16K×8 的存储芯片构建16K×32的存储器

所需芯片数量:

16K*32/(16K*8)

= 4

所有存储芯片并行工作,贡献32位数据中的不同8位

4.5 存储扩展

3 字扩展举例

例2 用16K×8 的存储芯片构建128k×8的存储器

所需芯片数量:

128K * 8/ (16K*8) = 8

字扩展举例

例2 用16K×8 的存储芯片构建128K×8的存储器

4.5 存储扩展

3 字扩展举例

例2 用16K×8 的存储芯片构建128K×8的存储器

计算每片的全局地址空间

3 字扩展举例

例3 用16K×8 的存储芯片构建128K×8的存储器,其中08000H~0BFFFH存储空间保留不用.

3 字扩展举例

例3 用16K×8 的存储芯片构建128K×8的存储器,其中08000H~0BFFFH存储空间保留不用.

所需芯片数量:

(128K-16k)* 8/ (16K*8)

= 7

4 字位同时扩展举例

例4 用16K×8的存储芯片构建128K×32的存储器

