Розділ 1

Нормовані простори

1.1 Лінійні нормовані простори

1.1. Довести, що в означенні лінійного нормованого простору аксіому $\|\mathbf{x}\| = 0$ тоді й лише тоді, коли $\mathbf{x} = \mathbf{0}$, можна замінити на аксіому: з $\|\mathbf{x}\| = 0$ слідує $\mathbf{x} = 0$

Доведення. Нам потрібно довести, що з того, що $\mathbf{x} = 0$ слідує $\|\mathbf{x}\| = 0$. Будемо від супротивного. Нехай $\mathbf{x} = 0$ та $\|\mathbf{x}\| = a \neq 0$. Тоді $\|\mathbf{0} + \mathbf{0}\| = 2\|\mathbf{0}\| = 2a = a$. Це можливо лише тоді, коли a = 0.

- **1.2** Нехай $x_n, x, y_n, y \in X (n \in \mathbb{N})$. Довести що:
- 1. якщо $x_n \to x$, то x_n обмежена послідовність

Доведення. За означенням $\forall \epsilon > 0 \exists N(\epsilon) : \forall n > N(\epsilon) \|x_n - x\| < \epsilon$. Оскільки послідовність необмежена, знайдемо таке $N > N(\epsilon)$, що $\|x_N\| > \|x\| + \epsilon + 1$. Візмемо $\epsilon = 1$. Тоді існує $N \in \mathbb{N}$ таке, що для всіх $n > N\|x - x_n\| < 1$., з цього випливає, що $\|x_n\| \le \|x\| + 1$. Нехай

$$M = \max\{\|x_1\|, \|x_2\|, ..., \|x_N\|, \|x\| + 1\}$$
(1.1)

Максимум існує оскільки множина скінченна. Тоді для всіх $n \in \mathbb{N}$ $||x_n|| \leq M$.

2. Якщо $x_n \to x$ та $\lambda_n \to \lambda, \lambda_n \in \mathbb{C}$, то $\lambda_n x_n \to \lambda x$.

Доведення.
$$\|\lambda_n x_n - \lambda x\| = \|\lambda_n x_n - \lambda_n x + \lambda_n x - \lambda x\| = \|\lambda_n (x_n - x) + x(\lambda - \lambda_n)\| \le |\lambda_n| \|x_n - x\| + \|x\| |\lambda - \lambda_n| \to 0.$$

3. якщо $x_n \to x$, то $||x_n|| \to ||x||$.

Доведення. $|||x_n||| - ||x||| \le ||x - x_n|| \to 0$. Згідно оберненої нерівності трикутника.

4.
$$x_n \to x$$
 та $||x_n - y_n|| \to 0$, то $y_n \to x$.

Доведення. $||x-y_n|| = ||x-x_n+x_n-y_n|| \le ||x-x_n|| + ||x_n-y_n|| \to 0$

5. якщо $x_n \to x$, то $||x_n - y|| \to ||x - y||$.

Доведення. $|\|x_n-y\|-\|x-y\|| \leq \|x_n-x\| \to 0$, згідно з оберненої рівності трикутника.

6. Якщо $x_n \to x, y_n \to y$, то $||x_n - y_n|| \to ||x - y||$.

Доведення. $|||x_n - y_n|| - ||x - y||| \le ||x_n - x + y_n - y|| \le ||x_n - x|| ||y_n - y|| \to 0.$