

Universidad Carlos III de Madrid Grado en Ingeniería Informática.

Tecnología de Computadores. Junio de 2009

PRIMERA PARTE

Cuestión 1.1 (0.75 p.)

- a) Obtenga la tabla del código Gray de 4 bits
- b) Obtenga la representación *hexadecimal* y *decimal* de las siguientes codificaciones Gray:
 - 1. 1001000110_{Grav}
 - 2. 1111111110_{Gray}
- c) Obtenga la *codificación Gray* de los siguientes números naturales:
 - 1. 78h
 - 2. 4328
- d) Obtenga la representación en *Complemento a dos* de los siguientes números enteros:
 - 1. -78h
 - $2. +432_{8}$

Problema 1.2(2.25 p.)

Dadas las siguientes funciones lógicas:

$$f_{1}(a,b,c,d) = \sum_{A} (0,1,3,5,7,8,9,11) + \sum_{A} (6,14)$$
$$f_{2}(a,b,c,d) = \sum_{A} (2,5,6,8,10,14) + \sum_{A} (1,3,7)$$

Se pide:

- a) Obtenga la expresión lógica simplificada de f1 como producto de sumas
- b) Obtenga la expresión lógica simplificada de f2 como suma de productos
- c) Implemente la función lógica f1 utilizando el menor número posible de puertas NAND de dos entradas.
- d) Implemente la función lógica f2 utilizando un decodificador 3:8 con salidas activas a nivel alto y la lógica adicional que considere necesaria.
- e) Implemente la función lógica flutilizando un multiplexor de tres entradas de selección de dato y lógica adicional que considere necesaria.

DURACIÓN: 1h 15m

Universidad Carlos III de Madrid Grado en Ingeniería Informática. Tecnología de Computadores. Junio de 2009

SEGUNDA PARTE

Nombre:	Grupo:
Anellidos:	

Cuestión 2.1 (1 p.)

Dado el circuito de la figura:

a) Determine las funciones de excitación y de salida:

Universidad Carlos III de Madrid Grado en Ingeniería Informática.

Tecnología de Computadores. Junio de 2009

Cuestión 2.2 (1 p.)

El circuito de la figura es un registro de desplazamiento serie a la derecha de tres bits diseñado con biestables D. La salida es el bit situado más a la derecha. El circuito tiene las siguientes entradas y salidas:

• Entradas: Dato (1 bit), Clk, Reset.

• Salida: S (1 bit).

Se pide:

- a) Dibuje el diagrama de estados del circuito. Indique de forma clara la codificación utilizada para cada uno de los estados.
- b) Suponga ahora que el registro de desplazamiento del apartado anterior se implementa con biestables T en lugar de biestables D. ¿Se modificaría el diagrama de estado? Justifique de forma razonada su respuesta.

Problema 2.3 (1.5 p.)

Dado un circuito con el siguiente diagrama de transición de estados:

- 1) Responda a las siguientes preguntas:
 - a. ¿Es una máquina de estados de Moore?, o ¿es una máquina de estados de Mealy?
 - b. ¿Cuántas entradas y cuántas salidas tiene este circuito?
 - c. ¿Cuál es el menor número de biestables necesario para implementar el circuito?
- 2) Se quiere implementar el circuito utilizando biestables D con entradas asíncronas de inicialización, *preset* y *clear*, y puertas lógicas adicionales:
 - a. Obtenga las funciones lógicas de la/s salida/s del circuito.
 - b. Obtenga las funciones lógicas de las entradas a los biestables
 - c. Implemente el circuito: dibuje el esquema completo del circuito, indicando claramente todas las señales necesarias para el correcto funcionamiento del circuito.

DURACIÓN: 1h 30m

Universidad Carlos III de Madrid Grado en Ingeniería Informática. Tecnología de Computadores. Junio de 2009

TERCERA PARTE

Nombre:	Grupo:
Apellidos:	

Cuestión 3.1 (1,25 p.)

- 1. Entre las memorias RAM:
 - a) La DRAM es volátil y la SRAM no.
 - b) La DRAM se puede escribir y la SRAM no.
 - c) La DRAM requiere refresco dinámico y la SRAM requiere refresco estático.
 - d) La DRAM requiere refresco y la SRAM no.
- 2. La última posición de una memoria de 16Kx12 es:
 - a) 7FFFH
 - b) 3FFFH
 - c) 3000H
 - d) 8000H
- 3. Un dispositivo lógico programable tipo PAL implementa una suma de productos en la que:
 - a) La suma es fija y los productos son programables.
 - b) La suma es programable y los productos son fijos.
 - c) Tanto la suma como los productos son programables.
 - d) Ninguna de las anteriores.
- 4. Una FPGA de SRAM es:
 - a) Reprogramable y volátil
 - b) Reprogramable, pero no volátil
 - c) No reprogramable y volátil
 - d) No reprogramable y no volátil
- 5. Los dispositivos programables que tienen mayor capacidad son:
 - a) Las PLAs
 - b) Los CPLDs de fusibles
 - c) Las FPGAs de SRAM
 - d) Las FPGAs de antifusibles

Universidad Carlos III de Madrid Grado en Ingeniería Informática. Tecnología de Computadores. Junio de 2009

- 6. Una memoria Flash es:
 - a) una memoria reprogramable mediante fusibles
 - b) una memoria programable por luz UV
 - c) una memoria reprogramable electricamente
 - d) una memoria no reprogramable
- 7. Una LUT es:
 - a) Un tipo de memoria RAM
 - b) Un tipo de memoria ROM
 - c) Una memoria que se utiliza para almacenar la tabla de verdad de una función lógica
 - d) Un tipo de dispositivo programable
- 8. En una PAL, una salida de polaridad programable
 - a) Incorpora un biestable para poder realizar circuitos secuenciales
 - b) Incorpora un buffer triestado para utilizar la salida también como entrada
 - c) Permite poner el biestable de salida a 0 o a 1
 - d) Da más flexibilidad, porque permite negar la salida
- 9. En un sistema digital, el componente fundamental de la unidad de control es
 - a) Una ALU
 - b) Una memoria
 - c) Un registro de instrucción
 - d) Una máquina de estados
- 10. El vector o registro de estado en un microprocesador:
 - a) Almacena la instrucción
 - b) Indica el estado de ejecución de cada instrucción
 - c) Proporciona información relativa al resultado de la última instrucción ejecutada
 - d) Está formado por las señales que controlan la ruta de datos

DURACIÓN: 1h

Universidad Carlos III de Madrid Grado en Ingeniería Informática.

Tecnología de Computadores. Junio de 2009

Nombre:	Grupo:
Apellidos:	

Cuestión 3.2 (0,75 p.)

Por un bus de datos de 3 bits (D2, D1, D0), se recibe un número en modo binario comprendido siempre entre el 1 y el 6, correspondiente a la generación aleatoria de un dado electrónico. Se pide implementar en un dispositivo programable la lógica necesaria para que se iluminen los puntos del display de la figura, activo a nivel alto. Se valorará el mínimo número de conexiones posibles.

Utilícese la siguiente referencia:

Márquese sobre la figura como quedaría el dispositivo grabado.

