Alberi binari (binary trees)

Classi quarte Scientifico - opzione scienze applicate
Bassano del Grappa, Dicembre 2022
Prof. Giovanni Mazzocchin

La struttura che vogliamo realizzare (rooted tree)

La struttura che vogliamo realizzare (rooted tree)

La struttura che vogliamo realizzare (rooted tree)

Definizione ricorsiva

Un **albero binario** è:

- un albero senza alcun nodo oppure
- un nodo che punta a due alberi binari

Recuperare la definizione ricorsiva di lista concatenata Il caso «vuoto» servirà come caso base per le funzioni ricorsive, come per le liste

Implementazione tramite puntatori ai figli

```
typedef struct tree_node {
  int key;
  struct tree_node* left;
  struct tree_node* right;
} T_NODE;
```

Per rappresentare alberi n-ari (in cui ogni nodo ha fino a n figli) il principio è lo stesso. Chi studierà informatica vedrà anche altre rappresentazioni più efficienti in termini di memoria occupata

Allocazione in memoria di un albero

leftChild e rightChild sono riferimenti con valore null. Significa che non puntano ad alcun oggetto in memoria

Allocazione in memoria di un albero

leftChild e rightChild sono riferimenti con valore null. Significa che non puntano ad alcun oggetto in memoria

Alberi binari di ricerca (binary search trees)

Binary-search-tree property

se n è un nodo di un albero binario di ricerca, n.key è la chiave di n, n.left è la radice del sottoalbero sinistro di n, e n.right è la radice del sottoalbero destro di n, allora:

per ogni nodo **nl** del sottoalbero radicato in **n.left** è vero che **nl.key <= n.key** per ogni nodo **nr** del sottoalbero radicato in **n.right** è vero che **n.key < nr.key**

Una struttura del genere è molto utile per ricercare informazioni.

L'albero che salta fuori quando si analizza la ricerca binaria è un albero binario di ricerca, ma è solo logico, non viene veramente allocato in memoria

Alberi binari di ricerca (binary search trees)

Questo albero ha **altezza 2**: l'altezza di un albero binario è la distanza del percorso più lungo dalla radice ad una foglia. In questo caso abbiamo 3 percorsi radice foglia di lunghezza 2:

- $5 \rightarrow 3 \rightarrow 2$ (lunghezza 2: la lunghezza del percorso è il numero delle frecce)
- 5 -> 3 -> 5 (lunghezza 2: la lunghezza del percorso è il numero delle frecce)
- 5 -> 7 -> 8 (lunghezza 2: la lunghezza del percorso è il numero delle frecce)

Alberi binari di ricerca (binary search trees)

Questo albero ha le stesse chiavi del precedente, ma ha **altezza 4**:

- 2 -> 3 -> 7 -> 8: percorso di lunghezza 3
- 2 -> 3 -> 7 -> 5 -> 5: percorso di lunghezza 4

Chiamiamo l'albero **T**

Se T è un albero vuoto, ossia un puntatore **null**, allora: **height(T) = 0**

Se *T* è un albero composto da 1 solo nodo **senza sottoalberi**, allora:

$$height(T) = 0$$

Se *T* è un albero composto da 1 solo nodo con **almeno 1 sottoalbero**, allora:

height(T) = max(height(T.left),height(T.right)) + 1

albero di 1 nodo

bisogna aggiungere 1:
sicuramente un albero composto
da 1 nodo con almeno un
sottoalbero ha altezza almeno 1.
Come in questo esempio.
È proprio questo +1 che permette
di effettuare il calcolo completo.

```
height(T) = max(height(T.left), height(T.right)) + 1 = max(0, 0) + 1 = 0 + 1 = 1
```

albero vuoto


```
height(T) = max(height(T.left), height(T.right)) + 1 =
max(0, 0) + 1 =
0 + 1 = 1
```


Bisogna espandere la funzione height ricorsivamente fino ai casi base, così:

```
height(T) = max(height(T.left), height(T.right)) + 1 = \\max(max(height(T.left.left), height(T.left.right)) + 1, 0) + 1 = \\max(max(0, 0) + 1, 0) + 1 = max(1, 0) + 1 = 2
```


height(T) = max(height(T.left), height(T.right)) + 1
=

19/06/2023

max(max(height(T.left.left),height(T.left.right))+1,max(height(T.right.left, height(T.right.right))+1)+1 =

19/06/2023


```
= max(max(0,0) + 1, max(height(T.right.left),
0) + 1) + 1 =
```


max(max(0,0)+1,max(max(height(T.right.left.left),height(T.right.left.right))
+1,0)+1)+1 =

19/06/2023 Alberi binari 21


```
max(max(0,0)+1,max(max(height(T.right.left.left),height(T.right.left.right))
+1,0)+1)+1 =
```

19/06/2023 Alberi binari 22

 $= \max(\max(0,0)+1,\max(\max(0,0)+1,0)+1)+1 =$

$$= max(0 + 1, max(0 + 1, 0) + 1) + 1 =$$

$$= \max(1, \max(1, 0) + 1) + 1 =$$

$$= \max(1, 1 + 1) + 1 =$$

$$= \max(1, 2) + 1 =$$

$$= 2 + 1 = 3$$

La funzione height in pseudocodice

```
height(T): returns int
    if T is nil:
        return 0
    if T.left is nil and T.right is nil:
        return 0
    int heightLeftSubTree = height(T.left)
    int heightRightSubTree = height(T.right)
    return max(heightLeftSubTree, heightRightSubTree) + 1
```

```
length(L): returns an integer
    if L is nil:
        return 0
    int length_remainder = length(L.next)
    return length_remainder + 1
```


19/06/2023

19/06/2023

19/06/2023

Alberi binari

19/06/2023

Alberi binari

19/06/2023

Analogia: calcolo della lunghezza di una linked list

19/06/2023

Alberi binari

Analogia: calcolo della lunghezza di una linked list

19/06/2023

Alberi binari

Analogia: calcolo della lunghezza di una linked list

19/06/2023

Nodo radice dell'invocazione corrente

Nodo per cui l'altezza è stata calcolata completamente

Nodo per cui l'altezza non è stata calcolata completamente

Il chiamante (ad esempio il metodo *main*) invoca **height(T)**. Vediamo cosa succede sullo stack delle chiamate di funzione. Indicheremo in *verde la radice dell'invocazione corrente*, in **grigio quelli per cui l'altezza è stata calcolata**, <u>in marrone i nodi visitati la cui altezza non è stata calcolata</u>

19/06/2023

invocazione ricorsiva

T, hl: ?, hr: ?

T, hl: ?, hr: ?

NB: per come abbiamo scritto il codice, visitiamo prima il sottoalbero sinistro, e poi quello destro. Chiaramente li visitiamo solo se esistono.

T, hl: ?, hr: ?

T, hl: ?, hr: ?

T, return 0

T, hl: 0, hr: ?

T, hl: 0, hr: 0

T, hl: ?, hr: ?

T, hl: 1, hr: 0

19/06/2023 Alberi binari

53

T, hl: 1, hr: 0

T, hl: 1, hr: 0, return max(hl, hr) + 1: 1 + 1: 2

T, hl: 1, hr: 0

La funzione preOrderWalkAndPrint

- Scriviamo un metodo utile per stampare su standard output un albero, in modo chiaro
- Per ora potrebbe risultare misteriosa e magica, più avanti la spieghiamo meglio
- Vogliamo stampare un albero in questa forma:

T.key(T.leftSubtree, T.rightSubTree)

T.leftSubTree vanno stampati ricorsivamente nello stesso modo Se *T.leftSubTree* o *T.rightSubTree* sono alberi vuoti, stamperemo:

nil

La funzione preOrderWalkAndPrint

```
preOrderWalkAndPrint(T)
          if T is nil:
               print 'nil'
                return
          print T.key
          print '('
          preOrderWalkAndPrint(T.left)
          print ', '
          preOrderWalkAndPrint(T.right)
          print ')'
```