Database Management Systems

Vijaya Saradhi

IIT Guwahati

Tue, 06rd Feb 2020

Introduction

Example - 02

S(EMPLOYE	e, child	, SALARY,	YEAR)
EMPLOYEE	CHILD	SALARY	YEAR
E1	e1_c1	\$35K	1976
E1	e1_c1	\$40K	1976
E2	e2_c1	\$40K	1975
E2	e2_c2	\$40K	1975
E2	e2_c1	\$50K	1976
E2	e2_c2	\$50K	1976
E3	e3_c1	\$15K	1975
E3	e3_c1	\$20K	1976

```
Consider Employee E<sub>2</sub>
                                   e_2 c_1
                   E_2
                                                 ($40K, 1975)
                   E_2
                                                 ($40K, 1975)
                                   e_2 c_2
                   E_2
                                   e_2 c_1
                                                 ($50K, 1976)
                   E_2
                                                 ($50K, 1976)
                                   e_2 c_2
```

Two rows $t, u \in R$ (\$40K, 1975) E_2 $e_2 c_1$ t (\$40K, 1975) $e_2 c_2$ E_2 (\$50K, 1976) $e_2 c_1$ (\$50K, 1976) $e_2 c_2$ u

Vijaya Saradhi (IIT Guwahati)

There exists a $v \in R$ (\$40K, 1975) e_2c_1 e_2c_1 (\$50K, 1976); e_2c_2 (\$50K, 1976) u

5/29

$$t[X] = v[X] \& t[Y] = v[Y] X = \{employee\}, Y = \{child\}, Z = \{salary, year\}$$

u E_2 $e_2 c_2$ (\$50K, 1976)

Vijaya Saradhi (IIT Guwahati) CS245 Tue,

6/29

Notation

- Let $R(X_1, \dots, X_m, Y_1, \dots, Y_n, Z_1, \dots, Z_r)$ be a relation
- R has (m + n + r) column names
- Let $X = \{X_1, \dots, X_m\}$; so is Y, Z
- if $X_1 = x_1, \dots, X_m = x_m$ then $\mathbf{x} = (x_1, \dots, x_m)$; so is y, z

Define

 $\mathbf{Y}_{xz} = \{ \mathbf{y} : (\mathbf{x}, \ \mathbf{y}, \ \mathbf{z}) \in R \}$

is non-empty if and only if x and z appear together in a tuple of R

Definition

The MVD $X \to Y$ holds for R(X, Y, Z) if $Y_{x,z}$ depends only on x That is $Y_{x,z} = Y_{x,z'}$ for each x, z, z' such that $Y_{x,z}$ and $Y_{x,z'}$ are nonempty

S(EMPLOYEE, CHILD, SALARY, YEAR)

J(LIVII LOI	S(EINI EOTEE, CHIED, SALAKT, TEAK)			
EMPLOYEE	CHILD	SALARY	YEAR	
E1	e1_c1	\$35K	1976	
E1	e1_c1	\$40K	1976	
E2	e2_c1	\$40K	1975	
E2	e2_c1	\$50K	1976	
E2	e2_c2	\$40K	1975	
E2	e2_c2	\$50K	1976	
E3	e3_c1	\$15K	1975	
E3	e3_c1	\$20K	1976	

- EMPLOYEE →→ CHILD holds for T
- CHILD_{E2,\$40K,1975} = {e2_c1, e2_c2}
- CHILD_{E2,\$50K,1976} = {e2_c1, e2_c2}
- Therefore $CHILD_{E2,\$40K,1975} = CHILD_{E2,\$50K,1976}$

S(EMPLOYEE, CHILD, SALARY, YEAR)

S(EINI EOTEE, CHIED, SALAKT, TEAK)			
EMPLOYEE	CHILD	SALARY	YEAR
E1	e1_c1	\$35K	1976
E1	e1_c1	\$40K	1976
E2	e2_c1	\$40K	1975
E2	e2_c1	\$50K	1976
E2	e2_c2	\$40K	1975
E2	e2_c2	\$50K	1976
E3	e3_c1	\$15K	1975
E3	e3_c1	\$20K	1976

- Delete the row (E2, e2_c2, \$50K, 1976) from T; Let this relation be T'
- Then EMPLOYEE →→ CHILD holds for T'
- CHILD_{E2,\$40K,1975} = {e2_c1, e2_c2}
- CHILD_{E2,\$50K,1976} = {e2_c1}
- Therefore $CHILD_{E2,\$40K,1975} \neq CHILD_{E2,\$50K,1976}$

FDs in terms of MVD

Definition

- ullet The FD ${f X}
 ightarrow {f Y}$ holds for R(${f X}, {f Y}, {f Z}$) if ${f Y}_{{f x},{f z}}$ depends only on ${f x}$ AND
- $\mathbf{Y}_{xz} = \{ \mathbf{y} : (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in R \}$ is non-empty if and only if \mathbf{x} and \mathbf{z} appear together in a tuple of R AND
- The set $Y_{x,z}$ is nonempty and contains at most one member

FDs and MVDs

Proposition - 01

If **X** and **Y** are disjoint, and if the FD $X \to Y$ holds for a relation R, then the MVD $X \to Y$ also holds for R

FDs and MVDs

Discussion

Proposition 01 implies that if the FD $X \to Y$ holds for a relation every instance of R, then the MVD $X \to Y$ necessarily holds

Trivial MVD

Trivial

- The MVD $\mathbf{X} \to \to \phi$
- The MVD $X \rightarrow Y$ necessarily hold for R(X, Y)
- The MVD $\{A, B\} \rightarrow \rightarrow C$ holds for every relation R(A, B, C) with exactly three columns A, B, C
- These are trivial MVDs

4th Normal Form

Definition

A relation schema R^* is in 4NF if, whenever a nontrivial MVD $\mathbf{X} \to \to \mathbf{Y}$ holds, then so does the *functional dependency* $\mathbf{X} \to \mathsf{A}$ for every column A of R^* .

4th Normal Form

Definition

Intuitively all dependencies are the result of the keys

Theorem

If a relation schema R^* is in 4NF, then it is in BCNF

- Assume R* is in 4NF and not in BCNF
- ullet As R^* not in BCNF, there is a nontrivial FD ${f X}
 ightarrow {f Y}$
- ullet This FD holds for R^* and there is a column A such that the FD ${f X}$ o A hold

- Let $\mathbf{Y}_1 = \mathbf{Y} \mathbf{X}$
- ullet ${f X}
 ightarrow {f Y}_1$ holds as ${f X}
 ightarrow {f Y}$ holds
- X and Y₁ are disjoint
- The MVD $X \rightarrow \rightarrow Y_1$ holds from proposition 01

- The MVD is nontrivial
 - $\mathbf{Y}_1 \neq \phi$
 - **X** and Y_1 do not partition the columns of R^*
 - As $A \notin \mathbf{X}$ or $A \notin \mathbf{Y}_1$

- ullet By definition of 4NF, since the MVD ${f X}
 ightarrow {f Y}_1$ holds for R^*
- so does the FD $X \rightarrow A$
- This is a contradiction
- Therefore the theorem holds

When two (or more) many-to-many relations are placed in single table

Example - 01

EMPLOYEE	SKILL	LANGUAGE
Smith	Cook	
Smith	Type	
Smith		French
Smith		German
Smith		Greek

Storage Format - Disjoint

KILL LANGUAGE
look
ype
French
German
Greek

Storage Format - Random Mix with minimal number of records

EMPLOYEE	SKILL	LANGUAGE
Smith	Cook	French
Smith	Type	German
Smith	Type	Greek

Storage Format - Random Mix with NULL values

EMPLOYEE	SKILL	LANGUAGE
Smith	Cook	French
Smith	Type	German
Smith	\perp	Greek

Storage Format - Random Mix - Unrestricted

EMPLOYEE	SKILL	LANGUAGE
Smith	Cook	French
Smith	Type	\perp
Smith	\perp	German
Smith	Type	Greek

Storage Format - Cross product

EMPLOYEE	SKILL	LANGUAGE
Smith	Cook	French
Smith	Cook	German
Smith	Cook	Greek
Smith	Type	French
Smith	Type	German
Smith	Type	Greek

When two (or more) many-to-many relations are placed in single table

Example - 01

EMPLOYEE	SKILL	LANGUAGE
Smith	Cook	
Smith	Type	
Smith		French
Smith		German
Smith		Greek

- MVD: EMPLOYEE →→ SKILL
- MVD: EMPLOYEE →→ LANGUAGE

Example - 01

Decompose the original relation into two

- EMP_SKILL(EMPLOYEE, SKILL)
- EMP_LANGUAGE(EMPLOYEE, LANGUAGE)

Example - 02

 R^* (class, section, student, major, exam, year, instructor, rank, salary, text, day, room)

FDs

FD #	X	\rightarrow	Υ
F1	{class, section}	\rightarrow	instructor
F2	{class, section, day}	\rightarrow	room
F3	student	\rightarrow	{major, year}
F4	instructor	\rightarrow	$\{rank, salary\}$

MVDs

MVD #	Х	$\rightarrow \rightarrow$	Υ
M1	{class, section}	$\rightarrow \rightarrow$	{student, major, exam, year}
M2	{class, section}	$\rightarrow \rightarrow$	{instructor, rank, salary}
M3	{class, section}	$\rightarrow \rightarrow$	text
M4	{class, section}	$\rightarrow \rightarrow$	$\{day,\;room\}$
M5	{class, section, student}	$\rightarrow \rightarrow$	exam
M6	class	$\rightarrow \rightarrow$	text

```
\begin{array}{c} R^*(\mathsf{class}, \mathsf{section}, \mathsf{student}, \mathsf{major}, \\ \mathsf{exam}, \mathsf{year}, \mathsf{instructor}, \mathsf{rank}, \mathsf{salary}, \mathsf{text}, \\ \mathsf{day}, \mathsf{room}) & R_1^*(\mathsf{class}, \mathsf{section}, \mathsf{student}, \mathsf{major}, \mathsf{exam}, \\ \mathsf{Use} & \mathsf{year}) \\ & R_2^*(\mathsf{class}, \mathsf{section}, \mathsf{instructor}, \mathsf{rank}, \mathsf{salary}, \\ & R_2^*(\mathsf{class}, \mathsf{section}, \mathsf{instructor}, \mathsf{rank}, \mathsf{salary}, \\ & \\ \hline \frac{\mathsf{MVD} \ \# \ \mathbf{X}}{\mathsf{M1}} & \frac{\to \to \ \mathbf{Y}}{\{\mathsf{class}, \mathsf{section}\}} & \frac{\mathsf{text}, \ \mathbf{day}}{\mathsf{day}, \ \mathsf{room}} \\ & \\ \hline \end{array}
```

to decompose R^*

 R_1^* (class, section, student, major, exam, year) R_2^* (class, section, instructor, rank, salary, text, day, room) Use

MVD #	Х	$\rightarrow \rightarrow$	Υ
M5	{class, section, student}	$\rightarrow \rightarrow$	exam

 R_{11}^* (class, section, student, exam) R_{12}^* (class, section, student, major, year) R_2^* (class, section, instructor, rank, salary, text, day, room)

to decompose R_1^*

 $R_{11}^*({\rm class,\ section,\ student,\ exam})$ $R_{12}^*({\rm class,\ section,\ student,\ major,\ year})$ $R_2^*({\rm class,\ section,\ instructor,\ rank,\ salary,\ text,\ day,\ room})$ Use

FD #	Х	\rightarrow	Υ
F3	student	\rightarrow	{major, year}

to decompose R_{12}^*

 $\begin{array}{l} R_{11}^*({\rm class,\ section,\ student,\ exam}) \\ R_{121}^*({\rm student,\ major,\ year}) \\ R_{122}^*({\rm class,\ section,\ student}) \\ R_2^*({\rm class,\ section,\ instructor,\ rank,\ salary,\ text,\ day,\ room}) \end{array}$

```
R_{11}^* (class, section, student, exam)
R_{121}^*(student, major, year)
R_{122}^* (class, section, student)
                                                               R_{11}^* (class, section, student, exam)
R_2^* (class, section, instructor, rank, salary,
                                                               R_{121}^*(student, major, year)
text, day, room)
                                                               R_{122}^* (class, section, student)
Use
                                                               R_{21}^* (class, section, instructor, rank, salary)
                                                               \frac{R_{22}^*}{(class, section, text, day, room)}
  MVD #
                                 \rightarrow \rightarrow
  M2
               class, section
                                           instructor, rank, salary
                                 \rightarrow \rightarrow
```

to decompose R_2^*

 $R_{11}^*({\rm class,\ section,\ student,\ exam})$ $R_{121}^*({\rm student,\ major,\ year})$ $R_{122}^*({\rm class,\ section,\ student})$ $R_{21}^*({\rm class,\ section,\ instructor,\ rank,\ salary})$ $R_{22}^*({\rm class,\ section,\ text,\ day,\ room})$ Use

FD #	Х	\rightarrow	Υ
F4	instructor	\rightarrow	{rank, salary}

to decompose R_{21}^*

 $R_{11}^*({\rm class,\ section,\ student,\ exam})$ $R_{121}^*({\rm student,\ major,\ year})$ $R_{122}^*({\rm class,\ section,\ student})$ $R_{211}^*({\rm instructor,\ rank,\ salary})$ $R_{212}^*({\rm class,\ section,\ instructor})$ $R_{22}^*({\rm class,\ section,\ text,\ day,\ room})$

```
R_{11}^* (class, section, student, exam)
R_{121}^* (student, major, year)
R_{122}^* (class, section, student)
R_{211}^* (instructor, rank, salary)
R_{212}^* (class, section, instructor)
R_{22}^* (class, section, text, day, room)
Use
```

M6 Sclass section student \ \		$\rightarrow \rightarrow$	X	MVD #
vio {class, section, student; $\rightarrow \rightarrow$	exam	$\rightarrow \rightarrow$	{class, section, student}	M6

```
R_{11}^* (class, section, student, exam)
R_{121}^*(student, major, year)
R_{122}^* (class, section, student)
R_{211}^* (instructor, rank, salary)
R_{212}^* (class, section, instructor)
R_{221}^*(class, text)
R_{222}^* (class, section, day, room)
```

to decompose R_{22}^*

```
R_{11}^*({\rm class,\ section,\ student,\ exam}) R_{121}^*({\rm student,\ major,\ year}) R_{122}^*({\rm class,\ section,\ student}) R_{211}^*({\rm instructor,\ rank,\ salary}) R_{212}^*({\rm class,\ section,\ instructor}) R_{22}^*({\rm class,\ section,\ text,\ day,\ room}) Remove R_{122}^* as it is part of R_{11}^*
```

```
R_{11}^*({
m class, section, student, exam}) R_{121}^*({
m student, major, year}) R_{211}^*({
m instructor, rank, salary}) R_{212}^*({
m class, section, instructor}) R_{221}^*({
m class, text}) R_{222}^*({
m class, section, day, room})
```