TSI1 – Physique-chimie

DS4: Électricité

Durée : 2h. Les calculatrices sont interdites. Le devoir est probablement trop long pour être terminé, faites-en le maximum.

Exercice 1: Résistances équivalentes

Exprimer en fonction de R les résistances équivalentes entre les points A et B dans les trois circuits suivants :

Exercice 2 : Transport d'électricité (TD4)

On modélise une centrale électrique par un générateur de tension idéal E, les câbles sont modélisés par une résistance r parcourue par un courant i. L'utilisateur final est modélisé par un dipôle électrique qui reçoit une puissance P à une tension U

- 1. Faire un schéma représentant l'ensemble des éléments du transport de l'électricité.
- 2. Exprimer la tension E fournie par le générateur en fonction de U, r et i.
- 3. Exprimer la puissance électrique dissipée dans les câbles électriques. Comment d'appelle le phénomène responsable de cette dissipation? Sous quelle forme cette énergie est-elle transformée?
- 4. Exprimer la puissance totale fournie par le générateur.
- 5. Écrire le rendement γ du système en fonction de U, r et P.
- 6. Expliquer pour quoi on utilise des lignes haute tension de $400\,\mathrm{kV}$ pour transporter le courant électrique alors que la majorité des appareils électriques fontionnent à $230\,\mathrm{V}$.
- 7. Quels sont les facteurs qui limitent la tension maximale utilisable pour transporter l'électricité?

Exercice 3 : CIRCUIT RL PARALLÈLE

On s'intéresse au circuit ci-dessous constitué d'un générateur de courant I en parallèle avec une bobine d'inductance L, une résistance R et un interrupteur K.

L'interrupteur est fermé pour t < 0 et on l'ouvre à t = 0.

- 1. Tracer qualitativement l'évolution des courant $i_L(t)$ et $i_R(t)$ entre $t=-\infty$ et $t=+\infty$. La réponse devra être correctement justifiée.
- 2. Montrer que pour t>0, l'équation différentielle satisfaite par le courant $i_L(t)$ a la forme suivante :

$$\frac{\mathrm{d}\,i_L}{\mathrm{d}\,t} + \frac{1}{\tau}i_L = \frac{1}{\tau}I$$

Donner l'expression de τ en fonction de R et L.

- 3. Déterminer l'énergie E_L stockée dans la bobine lorsque $t \to \infty$.
- 4. Déterminer les expressions $i_L(t)$ et u(t) pour t > 0.
- 5. Montrer que la puissance $P_q(t)$ fournie par le générateur pour t>0 est :

$$P_q(t) = RI^2 e^{-t/\tau} + R_1 I^2$$

- 6. On suppose que la puissance dissipée par effet Joule dans la résistance R_1 est négligeable (R_1 très faible). En déduire l'expression de l'énergie totale fournie par le générateur entre t=0 et $t=\infty$.
- 7. En calculant l'énergie E_J dissipée par effet joule dans la résistance R, montrer qu'il y a bien conservation de l'énergie dans ce circuit.

Exercice 4 : CIRCUIT RLC SÉRIE

On s'intéresse au circuit ci-dessous dans lequel le générateur de tension délivre une tension variable dans le temps e(t).

I - Réponse à un échelon de tension

Dans cette partie on considère que la tension e(t) est telle que :

- -e(t) = 0 pour t < 0;
- -e(t) = E pour t > 0.
- 1. Déterminer les valeurs de $i(0^-)$, $u_L(0^-)$ et $u_C(0^-)$ juste avant l'instant t=0. Justifier précisément la réponse.
- 2. Déterminer les valeurs de $i(0^+)$, $u_L(0^+)$ et $u_C(0^+)$ juste après l'instant t=0. Justifier précisément la réponse.
- 3. Déterminer l'équation différentielle satisfaite par la tension $u_L(t)$ pour t>0.
- 4. Exprimer la pulsation propre ω_0 et le facteur de qualité Q du circuit en fonction de R,L et C.
- 5. On donne ci-dessous l'évolution de la tension $u_L(t)$ pour t > 0. Déterminer à partir de ce graphique une estimation des valeurs numériques de E, ω_0 et Q.

6. Quelles valeurs de R, L et C peut-on utiliser pour réaliser ce circuit?

II - Régime sinusoïdal forcé

On étudie maintenant ce circuit en régime sinusoïdal forcé, la tension e(t) est une tension alternative sinusoïdale :

$$e(t) = E\cos(\omega t)$$

- 7. Donner l'expression de la tension complexe $\underline{e}(t)$ associée à la tension réelle e(t).
- 8. Monter que la tension complexe $\underline{\mathbf{u}}_L$ est donnée par :

$$\underline{\mathbf{u}}_{L} = \underline{\mathbf{e}} \frac{jQ\frac{\omega}{\omega_{0}}}{1 + jQ\left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)}$$

avec
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 et $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$.

- 9. Déterminer l'amplitude $U(\omega)$ d'oscillation de la tension $u_L(t)$ aux bornes de la bobine en fonction de E, Q, ω et ω_0 . Que vaut $U(\omega_0)$?
- 10. Comparer cette valeur à l'amplitude E de variation de la tension d'alimentation, comment s'appelle ce phénomène?
- 11. Quelle est la valeur du déphasage φ entre la tension d'alimentation e(t) et la tension aux bornes de la bobine lorsque $\omega=\omega_0$?