UNICAMP/IFGW F328Noturno 2Sem.2007/19/09/2007 Primeira Prova.

RA 062456 Nome Luciona Luciagi Colo Turma C

Questão1

Cinco cargas iguais a Q são igualmente espaçadas em uma semicircunferência de raio R, conforme figura.

- a) Determine a força (módulo, direção e sentido) que atua sobre uma carga q localizada no centro da semicircunferência; (1,5pto.)
- b) A partir do item (a), determine o vetor campo elétrico no centro da semicircunferência, considerando agora a carga q como sendo uma carga de

Obs: É expressamente proibido o uso de calculadora e justifique todas as suas respostas.

Questão2

Uma barra isolada, de comprimento L, tem uma carga +Q distribuída uniformemente ao longo de sua extensão, conforme figura.

- a) Determine o vetor campo elétrico no ponto P, situado a uma distancia a da extremidade direita da barra; (1,0pto.)
- b) Suponha que uma outra carga isolada puntiforme +Q seja colocada num outro ponto distante 3a da extremidade direita da barra. Determine o vetor campo elétrico no ponto P devido apenas à carga isolada; (0.5pto.)
- c) Determine, agora, o vetor campo elétrico total no ponto P. (1,0pto.)

Questão3

Uma casca esférica de raio R_I tem uma carga total q_I uniformemente distribuída em sua superficie. Uma segunda casca esférica de raio R2, concêntrica com a primeira, tem carga q₂ também uniformemente distribuída em sua superficie.

a) Utilize a Lei de Gauss para determinar o vetor campo elétrico nas regiões onde:

 $r < R_1, R_1 < r < R_2, e, r > R_2, (1,5pto.)$

b) Qual seria a relação entre as cargas q_1/q_2 e seus sinais relativos para que o campo elétrico fosse nulo para $r > R_2$?; (0,5pto.)

c) Esquematize as linhas de forças de campo elétrico para a situação do item (b) quando a carga q_l é positiva. (0,5pto.)

a) ((2) E=0 poir a cango envolvida, detero do condudo é 0:

$$\frac{q_{11}q_{2}}{\epsilon_{0}} = \int \vec{E} \cdot \vec{r} \cdot \vec{r} \cdot \vec{r} = \frac{q}{\epsilon_{0}} \cdot \vec{r}^{2}$$

$$\frac{42}{4z} = -1$$

7

Questão 4

Uma camada esférica condutora, de raio externo R_2 e raio externo R_3 , é concêntrica a uma casca esférica condutora fina de raio R_1 . A casca esférica fina tem uma carga total +q e a carga total da casca externa é zero, sendo que ambas estão iscladas.

- a) Determine a densidade de carga em cada superficie da camada; (0,5pto.)
- b) Encontre as expressões para o potencial elétrico, V(r), em todo espaço: $r < R_I$, $R_1 < r < R_2$, $R_2 < r < R_3$ $e r > R_3$; Suponha que V(r) = 0 no infinito (1,5pto.)
- c) Calcule a diferença de potencial entre os pontos A e B na canv externa. (0,5pto.)
- a) (= demidode de carga na parte interno da comoda

$$\Gamma_1 = \frac{q}{4\pi R_2^2}$$

50= demidocle de caugo no externa da camada

Q1 ((R2)

Ve = V-ray carcar, poir
$$\stackrel{?}{=} = 0$$
 dentity do Vearcar = $\frac{1}{12}$ or order $\frac{1}{12} = \frac{1}{12}$ variar = $\frac{1}{12}$ $\frac{1}{12}$

Va = Ka , poir v foras ou vas superficie entervisos

VB= Va polor a camada perence do mesmo polencial.