CSC 369 Lecture 15 Notes

Vocabulary

- 1. Multiprogramming
- 2. Mechanism
- 3. Policies
- 4. CPU Bound
- 5. I/O Bound
- 6. Non-preemtive Scheduling
 - Is the type of scheduling that once the CPU has been allocated to a process, it keeps the CPU until it terminates or blocks

7. Preemtive Scheduling

• Is type of scheduling where CPU can be taken from a running process and allocated to another

8. Context Switching

• Is dispatching a process from a ready queue

9. Convoy Effect

• All other processes wait for the one big process to release the CPU

1 Recall State Diagram

• Thread/Process is blocked during I/O burst and therefore does not use CPU

2 Scheduling Goals

• All Systems

CSC 369 Lecture 15 Notes

- Fairness Each process receives fair share of CPU
- Avoid starvation
- Policy enforcement Usage policies should be met
- Balance All parts of the system should be busy
- Bach Systems
 - Throughput Maximize job completed per hour
 - Turnaround time Minimize time between submission and completion
 - CPU utilization Keeps the CPU busy all the time

3 Scheduling Goals

- Interactive Systems
 - Response time Minimize time between receiving request and starting to produce output
 - * Response time = First Run Time Arrival Time
 - Proportionality "Simple" tasks complete quickly
- Real-Time Systems
 - Meet deadlines
 - Predictability

4 Process State Diagram

• Dispatching a process from the ready queue is called **context switching**

CSC 369 Lecture 15 Notes

5 Algorithm: Shortest Job First

• Is optimal with respect to average wait time

6 Algorithm: Round Robin

- Designed for time-sharing systems
- Pre-emptive
- Ready queue is circular
- Choice of quantum is chritical