Statistics Ph.D. Qualifying Exam: Part II

November 19, 2005

Student Name:

1. Answer 8 out of 12 problems. Mark the problems you selected in the following table.

Problem	1	2	3	4	5	6	7	8	9	10	11	12
Selected												
Scores												

- 2. Write your answer right after each problem selected, attach more pages if necessary.
- 3. Assemble your work in right order and in the original problem order.

1. Consider the following transformation

$$X_1 = \sqrt{-2 \ln(U_1)} \cos(2\pi U_2), \quad X_1 = \sqrt{-2 \ln(U_1)} \sin(2\pi U_2),$$

where U_1, U_2 are i.i.d. random variables with U(0,1) distribution. Prove that X_1 and X_2 are i.i.d. random variables with N(0,1) distribution.

- 2. Let X_1, X_2, \dots, X_n be a random sample of size n from a $U(\theta, 2\theta)$ distribution.
 - (a) Find the method of moments estimator of θ .
 - (b) Find the MLE of θ , $\hat{\theta}$, and find a constant k such that $E(k\hat{\theta}) = \theta$.
 - (c) Compare the estimators found above.

3. Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with p.d.f.

$$f(x;\theta) = \begin{cases} \frac{\theta x^{\theta-1}}{(1+x)^{\theta+1}}, & x > 0\\ 0, & \text{elsewhere,} \end{cases}$$

where $\theta > 0$ is an unknown parameter.

- (a) Find the distribution of $Y_1 = \frac{X_1}{1+X_1}$.
- (b) Find the distribution of $Z_1 = -\ln(Y_1) = -\ln\left(\frac{X_1}{1+X_1}\right)$.
- (c) Find an UMVUE (Uniformly Minimum Varianced Unbiased Estimator) for θ^{-1} .

- 4. Let X_1, \ldots, X_m be a random sample from $N(\mu_1, a^2\sigma^2)$ and Y_1, \ldots, Y_n a random sample from $N(\mu_2, b^2\sigma^2)$ where a^2 and b^2 are known positive numbers.
 - (a) Obtain maximum likelihood estimators of μ_1, μ_2 , and σ^2 .
 - (b) Derive the likelihood ratio test for testing $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$. What is the sampling distribution of your test statistic under H_0 ?
 - (c) Obtain a 95% confidence interval for σ^2 . $[z_{0.05}=1.645,z_{0.025}=1.960,z_{0.01}=2.326,z_{0.005}=2.576]$

5. Let X_1, X_2, \ldots, X_n be be a random sample of size n from a Poisson distribution with the probability distribution function

$$f(x;\theta) = \frac{e^{-\theta}\theta^x}{x!}, x = 0, 1, \dots$$

- (a) Find the UMVUE (Uniformly Minimum Varianced Unbiased Estimator) of $\theta^2 e^{-\theta}$.
- (b) Under either $H_0: \theta = 20$ or $H_1: \theta = 10$, explain why we do not require a large n to permit a reasonable normal approximation for $\sum_{i=1}^{n} X_i$.
- (c) Given $H_0: \theta = 20$ vs. $H_1: \theta = 10$, find n to guarantee type I and type II error probabilities are less than 0.05. (i.e. $\alpha, \beta \leq 0.05$) $[z_{0.05} = 1.645, z_{0.025} = 1.960, z_{0.01} = 2.326, z_{0.005} = 2.576]$

- 6. Let X_1, \ldots, X_n and Y_1, \ldots, Y_m be Poisson random variables with X's parameter $\theta \lambda$ and Y's parameter λ . Let $X = \sum_{i=1}^n X_i$ and $Y = \sum_{i=1}^m Y_i$.
 - (a) Find the MLE's of θ and λ .
 - (b) Find the conditional distribution X given X + Y = N.
 - (c) Using a sample of size n from the above conditional distribution, calculate the MLE of θ .
 - (d) Compare the MLE's of θ obtained in (b) and (c), by their bias and mean square error. Which will you prefer?

7. Let Y_1, \ldots, Y_n be independent random variables such that

$$Y_i = \beta_0 + \sum_{j=1}^p x_{ij}\beta_j + \epsilon_i,$$

i = 1, ..., n, and p < n. Let **X** be the $n \times p$ matrix of x_{ij} 's, **1**, the $n \times 1$ vector of 1's, β the $p \times 1$ vector of β_j 's and ϵ , the vector of ϵ_i 's.

- (a) Derive an expression for $\hat{\beta}$, the least squares estimate of β .
- (b) Prove that $\mathbf{c}'\hat{\beta}$ achieves the lowest variance among all unbiased estimators of $\mathbf{c}'\beta$ that are linear functions of \mathbf{Y}

- 8. Let X_1, \ldots, X_n be a random sample from a Normal $(\mu, 1/\tau)$ population. Assume the following prior specifications on μ and τ : $\mu | \tau \sim N(\mu_0, \frac{1}{\lambda_0 \tau}), \tau \sim Gamma(\alpha_0, \beta_0)$.
 - (a) Show that this prior specification is conjugate for this problem.
 - (b) Find the posterior distribution of $\sqrt{\frac{\lambda_0 \alpha_0}{\beta_0}} (\mu \mu_0)$.

- 9. Let $\{(X_{i,1},\ldots,X_{i,n_i}), i=1,2(n_i>1)\}$ be independent random samples from normal distributions with means 0 and variance σ_i^2 respectively. Let $\bar{X}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{i,j}, i=1,2$ and $S_i^2 = \sum_{j=1}^{n_i} (X_{i,j} \bar{X}_i)^2, i=1,2$. Put $Y_1 = \frac{\sqrt{n_1}\bar{X}_1}{\sqrt{\hat{\sigma}_1^2}}, Y_2 = (n_1 1)S_2^2/((n_2 1)S_1^2),$ where $\hat{\sigma}_1^2 = S_1^2/(n_1 1)$.
 - (a) Obtain the joint pdf (probability density function) of $\{Y_1, Y_2\}$.
 - (b) What is the marginal pdf of Y_1 ?
 - (c) What is the marginal distribution of Y_2 ?

10. Let $\{(X_{i,1},\ldots,X_{i,n_i}), i=1,2,3\}$ be independent random samples from the density $f_i(x;\theta_i)$ (i=1,2,3) respectively, where $f_i(x;\theta_i)$ is given by

$$f_i(x, \theta_i) = \theta_i x^{\theta_i - 1}, 0 < x < 1, \theta_i > 0.$$

Put
$$Y_i = -\sum_{j=1}^{n_i} \log X_{i,j} \ (i = 1, 2, 3).$$

- (a) Derive the joint probability density function of $\{Z_1 = Y_2/Y_1, Z_2 = Y_3/Y_1\}$.
- (b) Assuming that $\theta_2 = \theta_3$, show that the generalized likelihood ratio test for testing $H_0: \theta_1 = \theta_2$ versus $H_1: \theta_1 \neq \theta_2$ is based on the statistic $Z = Z_1 + Z_2$.

11. Let $\{X_1, \ldots, X_n\}(n > 20)$ be a random sample from a population with density $f(x, \Theta) = \sum_{i=1}^{3} \omega_i f_i(x; \mu_i, \sigma^2)$, where $\{\omega_1 = \theta^2, \omega_2 = 2\theta(1-\theta), \omega_3 = (1-\theta)^2 \ (0 < \theta < 1)\}$ and $f_i(x; \mu_i, \sigma^2)$ is the density of a normal distribution with mean μ_i and variance σ^2 . Let the prior distribution of $\Theta = (\theta, \mu_i, i = 1, 2, 3, \sigma^2)$ be given by the non-informative prior

$$P(\Theta) \propto (\sigma^2)^{-1}$$
.

Illustrate how you will use the Gibbs sampling procedure to derive estimates of the parameters.

- 12. Let $\{X_1, \ldots, X_m\}$ be a random sample from the population with density $f(x; \theta_1, \sigma_1^2) = \frac{1}{\sigma_1^2} exp\{-\frac{1}{\sigma_1^2}(x-\theta_1)\}, x > \theta_1, \sigma_1^2 > 0$. Let $\{Y_1, \ldots, Y_n\}$ be a random sample from the population with density $f(y; \theta_2, \sigma_2^2) = \frac{1}{\sigma_2^2} e^{-\frac{1}{\sigma_2^2}(y-\theta_2)}, y > \theta_2, \sigma_2^2 > 0$, independently of $\{X_1, \ldots, X_m\}$.
 - (a) Derive a set of sufficient and complete statistics for the parameters $\{\theta_i, \sigma_i^2, i = 1, 2\}$.
 - (b) Derive the UMVUE (Uniformly Minimum Varianced Unbiased Estimator) of $\phi = \sigma_1^2/\sigma_2^2$.
 - (c) Let the prior distribution of $\Omega = \{\theta_i, \sigma_i^2, i = 1, 2\}$ be given by the non-informative prior $P(\Omega) = \prod_{j=1}^2 (\sigma_j^2)^{-1}$, derive the Bayesian estimator of ϕ under squared loss function.