Rappel de cours

Definition 1. Deux suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ sont adjacentes ssi:

- $\bullet \ (u_n)_{n \geq 0}$ est croisssante et $(v_n)_{n \geq 0}$ est décroissante
- $\forall n \in \mathbb{N}, u_n \le v_n$
- $\lim_{n\to\infty} (v_n u_n)_{n\geq 0} = 0$

Exercice 1

Montrons que $(u_n)_{n\geq 1}$ est croissante.

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k^3} - \sum_{k=1}^{n} \frac{1}{k^3} = \sum_{k=1}^{n} \frac{1}{k^3} + \frac{1}{(n+1)^3} - \sum_{k=1}^{n} \frac{1}{k^3} = \frac{1}{(n+1)^3}$$

 $\forall n, u_{n+1} - u_n > 0$ donc la suite $(u_n)_{n \geq 1}$ est croisssante.

Montrons que $(v_n)_{n\geq 1}$ est déroissante.

$$v_{n+1} - v_n = u_{n+1} + \frac{1}{(n+1)^2} - \left(u_n + \frac{1}{n^2}\right) = \frac{1}{(n+1)^2} + \frac{1}{(n+1)^3} - \frac{1}{n^2} = \frac{n+2}{(n+1)^3} - \frac{1}{n^2}$$
$$\frac{-3n^2 - n - 1}{n^2(n+1)^3}$$

 $\forall n, v_{n+1} - v_n < 0$ donc la suite $(v_n)_{n \ge 1}$ est décroisssante.

Montrons que $\forall n \in \mathbb{N}, n \geq 1, u_n \leq v_n$

$$u_n \le v_n, u_n \le u_n + \frac{1}{n^2}$$

Vrai car $\frac{1}{n^2}$ est positif pour $n \ge 1$.

Montrons que $\lim_{n\to\infty} (v_n - u_n)_{n\geq 0} = 0$

$$\lim_{n \to \infty} (v_n - u_n)_{n \ge 1} = \lim_{n \to \infty} (u_n + \frac{1}{n^2} - u_n)_{n \ge 1} = \lim_{n \to \infty} \frac{1}{n^2} = 0$$

Vrai

Donc les deux suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ sont adjacentes.

Exercice 2

Montrons que $(u_n)_{n\geq 1}$ est croissante.

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k!} - \sum_{k=1}^{n} \frac{1}{k!} = \sum_{k=1}^{n} \frac{1}{k!} + \frac{1}{(n+1)!} - \sum_{k=1}^{n} \frac{1}{k!} = \frac{1}{(n+1)!}$$

 $\forall n, u_{n+1} - u_n > 0$ donc la suite $(u_n)_{n \geq 1}$ est croisssante.

Montrons que $(v_n)_{n\geq 1}$ est déroissante.

$$v_{n+1} - v_n = u_{n+1} + \frac{1}{(n+1)!} - (u_n + \frac{1}{n!}) = \frac{1}{(n+1)!} + \frac{1}{(n+1)!} - \frac{1}{n!} = \frac{2}{(n+1)!} - \frac{1}{n!}$$
$$\frac{1-n}{(n+1)!}$$

 $\forall n, v_{n+1} - v_n \leq 0$ donc la suite $(v_n)_{n \geq 1}$ est décroisssante.

Montrons que $\forall n \in \mathbb{N}, n \geq 1, u_n \leq v_n$

$$u_n \le v_n, u_n \le u_n + \frac{1}{n!}$$

Vrai car $\frac{1}{n!}$ est positif pour $n \geq 1$.

Montrons que $\lim_{n\to\infty} (v_n - u_n)_{n\geq 0} = 0$

$$\lim_{n \to \infty} (v_n - u_n)_{n \ge 1} = \lim_{n \to \infty} (u_n + \frac{1}{n!} - u_n)_{n \ge 1} = \lim_{n \to \infty} \frac{1}{n!} = 0$$

Vrai

Donc les deux suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ sont adjacentes.

Exercice 3

3.1

 $\forall n \geq 1, u_n > 0$ car u_n est une somme de nombres tous positifs.

 $\forall n \geq 1, u_n \leq 1$, preuve par récurrence. Calculons u_{n+1} .

$$u_{n+1} = \sum_{k=1}^{n+1} \frac{1}{(n+1)+k} = \sum_{k=1}^{n} \frac{1}{(n+1)+k} + \frac{1}{2(n+1)} < \sum_{k=1}^{n} \frac{1}{n+k} + \frac{1}{2(n+1)} = u_n + \frac{1}{$$

Donc c'est inférieur à une suite arithmétique de raison $\frac{1}{2(n+1)}$, donc $u_n < u_1 + n \frac{1}{2(n+1)} = 1/2 + \frac{1}{2+1/n} < 1$.

3.2

Montrons que $(u_n)_{n\geq 1}$ est croissante. Calculon $u_{n+1}-u_n$

$$u_{n+1} = \sum_{k=1}^{n+1} \frac{1}{(n+1)+k} = \frac{1}{(n+1)+1} + \frac{1}{(n+1)+2} + \dots + \frac{1}{(n+1)+(n-1)} + \frac{1}{(n+1)+n} + \frac{1}{(n+1)+(n+1)} + \dots + \frac{1}{(n+1)+(n-1)} + \dots + \frac{1}{(n+1)+(n-1)} + \dots + \frac{1}{(n+1)+n} + \dots +$$

$$u_n = \sum_{k=1}^n \frac{1}{n+k} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$

$$u_{n+1} - u_n = \frac{1}{2n+1} + \frac{1}{2(n+1)} - \frac{1}{n+1} = \frac{1}{2n+1} - \frac{1}{2(n+1)} > 0$$

 $\operatorname{car} 2n + 1 < 2n + 2$. Donc u_n est croissante.

3.3

La suite u_n est borné et croissante donc elle converge. Calculons sa limite.

$$\lim_{n \to \infty} u_n = \frac{1}{2} + \frac{1}{2 + \frac{1}{n}} = 1$$

Exercice 4

4.1

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{k}{k^2 + 1} - \sum_{k=1}^{n} \frac{k}{k^2 + 1} = \frac{n+1}{(n+1)^2 + 1}$$

 $u_{n+1} - n_n > 0$ donc la suite u_n est croissante.

$$u_{2n} - n_n = \sum_{k=1}^{2n} \frac{k}{k^2 + 1} - \sum_{k=1}^{n} \frac{k}{k^2 + 1} = \sum_{k=1}^{n} \frac{n + k}{(n+k)^2 + 1}$$

Preuve pae récurrence, pour n=1, on a $u_2-u_1=2/5=0.4$. Supposons que $u_{2n}-u_n\geq 1/4$, que vaut $u_{2(n+1)}-u_{(n+1)}$?

$$u_{2(n+1)} - u_{(n+1)} = \sum_{k=1}^{n+1} \frac{n+k}{(n+1+k)^2 + 1} = \sum_{k=1}^{n} \frac{n+k}{(n+1+k)^2 + 1} + \frac{n+1}{(2n+2)^2 + 1} = u_n + \frac{n+1}{2(n+1)}$$

Exercice 9

9.1

Preuve par récurrence. Vrai pour $n=1, \sum_{k=1}^1 k^2=1^2=\frac{1(1+1)(2.1+1)}{6}$. Supposons vrai pour $u_n=\frac{n(n+1)(2n+1)}{6}$, calculons

$$u_{n+1} = \sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + \frac{6(n+1)^2}{6}$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6} = \frac{(n+1)(n(2n+1) + 6(n+1))}{6} = \frac{(n+1)(2n+1) + 6(n+1)}{6} = \frac{(n+1)(2n+1) + 6(n+1)}{6} = u_{n+1}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6} = \frac{(n+1)(n+2)(2(n+1) + 1)}{6} = u_{n+1}$$

9.2

On a

$$1 \cdot n + 2(n-1) + 3(n-2) + \dots + (n-1) \cdot 2 + n \cdot 1 = \sum_{k=1}^{n} n(n+1-k) \cdot k$$

$$\sum_{k=1}^{n} n(n+1-k) \cdot k = \sum_{k=1}^{n} nnk + k - k^2 = \sum_{k=1}^{n} n(n+1)k - k^2$$

$$(n+1) \sum_{k=1}^{n} nk - \sum_{k=1}^{n} nk^2 = (n+1) \frac{n(n-1)}{2} - \frac{n(n+1)(2n+1)}{6} = n(n+1) \frac{3(n-1) - (2n+1)}{6}$$

$$= \frac{n(n+1)(n-4)}{6}$$

QED