Filière II: EDS rétrogrades et applications

Examen final: durée 3 heures

Mercredi 03 avril 2002

 $\{W_t\}_{t\geq 0}$ désigne un mouvement brownien standard à valeurs dans \mathbb{R}^d , défini sur un espace probabilisé complet $(\Omega, \mathcal{F}, \mathbb{P})$ et dont la filtration naturelle augmentée est notée $\{\mathcal{F}_t\}_{t\geq 0}$.

Exercice 1. Soit ξ une variable aléatoire réelle, \mathcal{F}_T -mesurable, telle que \mathbb{P} -p.s. $0 \le \xi \le 1$; on note f la fonction réelle définie par f(y) = y(1-y).

1. Montrer que l'EDSr associée à (ξ, f) – i.e. de condition terminale ξ et de générateur f – possède une solution $\{(Y_t, Z_t)\}_{t \in [0,T]}$.

Indication : introduire la fonction $y \longmapsto y^+(1-y)^+$ et utiliser le théorème de comparaison.

2. Montrer que $\{Y_t\}_{t\in[0,T]}$ est une surmartingale.

Exercice 2. ξ est une variable aléatoire réelle, positive, \mathcal{F}_T -mesurable et de carré intégrable. On note F la fonction réelle $F(y) = -y^2$.

- **1.** Soit $n \in \mathbb{N}^*$. On pose $\xi^n = \xi \wedge n$, $F^n(y) = -(y^+ \wedge n)^2$.
- a. Montrer que l'EDSr de paramètres (ξ^n, F^n) possède une unique solution dans \mathcal{B}^2 que l'on note $\{(Y^n_t, Z^n_t)\}_{t\in[0,T]}$.
 - **b.** En utilisant le théorème de comparaison, montrer que P-p.s.,

$$\forall t \in [0, T], \qquad 0 \le Y_t^n \le n.$$

- **c.** En déduire que (Y^n, Z^n) est une solution de l'EDSr de paramètres (ξ^n, F) .
- 2. Montrer que la suite $((Y^n,Z^n))_{n\in\mathbb{N}^*}$ est une suite de Cauchy dans \mathcal{B}^2 .
- **3.** En déduire que l'EDSr associée à (ξ, F) possède une solution $\{(Y_t, Z_t)\}_{t \in [0, T]}$.
- **4.** Peut-on supprimer la condition « ξ positive »?

Exercice 3. 1. On considère une famille de fonctions aléatoires $\{f^{\varepsilon}\}_{\varepsilon>0}$ de $[0,T] \times \Omega \times \mathbb{R}^k \times \mathbb{R}^{k \times d}$ dans \mathbb{R}^k telle que, pour tout $(y,z) \in \mathbb{R}^k \times \mathbb{R}^{k \times d}$, le processus $\{f^{\varepsilon}(t,y,z)\}_{t \in [0,T]}$ est progressivement mesurable ainsi qu'une famille de variables aléatoires $\{\xi^{\varepsilon}\}_{\varepsilon>0}$ appartenant à $L^2(\mathcal{F}_T)$.

On suppose qu'il existe $K \geq 0$ telle que, \mathbb{P} -p.s., pour tout $\varepsilon > 0$, pour tout $t \in [0, T]$,

$$\forall (u,v) \in \mathbb{R}^k \times \mathbb{R}^{k \times d}, \quad \forall (y,z) \in \mathbb{R}^k \times \mathbb{R}^{k \times d}, \qquad |f^{\varepsilon}(t,u,v) - f^{\varepsilon}(t,y,z)| \leq K \left(|u-y| + \|v-z\|\right).$$

On suppose également que $\sup_{\varepsilon>0}\mathbb{E}\left[\int_0^T|f^\varepsilon(t,0,0)|^2\,dt\right]<+\infty$ et que

$$\forall t \in [0, T], \qquad \lim_{\varepsilon \to 0^+} \mathbb{E}\left[|\xi^{\varepsilon}|^2 + \left| \int_0^t f^{\varepsilon}(r, 0, 0) \, dr \right|^2 \right] = 0. \tag{\sharp}$$

a. Justifier brièvement l'existence d'une solution $\{(Y_t^{\varepsilon}, Z_t^{\varepsilon})\}_{t \in [0,T]}$ de l'EDSr

$$Y_t^{\varepsilon} = \xi^{\varepsilon} + \int_t^T f^{\varepsilon}(r, Y_r^{\varepsilon}, Z_r^{\varepsilon}) dr - \int_t^T Z_r^{\varepsilon} dW_r, \qquad 0 \le t \le T$$

b. Montrer que, pour tout $t \in [0, T]$,

$$\lim_{\varepsilon \to 0^+} \mathbb{E} \left[|Y^\varepsilon_t|^2 + \int_0^T \|Z^\varepsilon_r\|^2 \ dr \right] = 0.$$

Indication : chercher une EDSr satisfaite par $(U^{\varepsilon}, V^{\varepsilon})$ avec $U_t^{\varepsilon} = Y_t^{\varepsilon} + \int_0^t f^{\varepsilon}(r, 0, 0) dr$ et $V_t^{\varepsilon} = Z_t^{\varepsilon}$ et appliquer les estimations à priori.

c. En considérant l'EDSr

$$Y_t^{\varepsilon} = \xi^{\varepsilon} + \int_t^T f^{\varepsilon}(r) dr - \int_t^T Z_r^{\varepsilon} dW_r, \qquad 0 \le t \le T,$$

montrer que la condition (#) est optimale pour obtenir la convergence de la question b.

On se place désormais pour simplifier dans le cas scalaire k = d = 1.

2. Soit g une fonction réelle de classe C_b^2 i.e. g est C^2 avec g, g' et g'' bornées. On note u la solution de l'équation de la chaleur

$$\partial_t u(t,x) + \frac{1}{2} \partial_x^2 u(t,x) = 0, \quad (t,x) \in]0, T[\times \mathbb{R}, \qquad u(T,x) = g(x).$$

- a. Exprimer u à l'aide du mouvement brownien. (Formule de Feynman-Kac).
- **b.** En déduire rapidement que u est de classe $C^{1,2}([0,T]\times\mathbb{R})$.
- **c.** Soit $k:[0,T]\times\mathbb{R}\longrightarrow\mathbb{R}$ une fonction continue bornée. Montrer que, pour $(t,x)\in[0,T]\times\mathbb{R}$,

$$\lim_{\varepsilon \to 0^{+}} \mathbb{E}\left[\left| \int_{0}^{t} k\left(r, x + W_{r}\right) \sin\left(\frac{x + W_{r}}{\varepsilon}\right) dr \right|^{2} \right] = 0.$$

Indication : supposer k de classe C_b^2 et appliquer la formule d'Itô à $k(r, x+W_r) \sin \left(\varepsilon^{-1}(x+W_r)\right)$ entre 0 et t; pour le cas général, utiliser une suite de fonctions k_n , C_b^2 , qui converge vers k uniformément sur tout compact vérifiant $||k_n||_{\infty} \leq ||k||_{\infty}$.

3. Soit h une fonction de \mathbb{R}^2 dans \mathbb{R} Lipschitzienne et bornée. Pour tout $\varepsilon > 0$, on désigne par F^{ε} la fonction de \mathbb{R}^3 dans \mathbb{R} définie par $F^{\varepsilon}(x,y,z) = \sin(x/\varepsilon)h(y,z)$. Si $\varepsilon > 0$ et $x \in \mathbb{R}$, on note $\{(Y^{\varepsilon,x}_t,Z^{\varepsilon,x}_t)\}_{t\in[0,T]}$ la solution de l'EDSr

$$Y_t^{\varepsilon,x} = g(x + W_T) + \int_t^T F^{\varepsilon}(x + W_r, Y_r^{\varepsilon,x}, Z_r^{\varepsilon,x}) dr - \int_t^T Z_r^{\varepsilon,x} dW_r, \qquad 0 \le t \le T.$$

- a. Justifier rapidement l'existence de la solution de l'EDSr précédente.
- **b.** En utilisant la question 1 et la question 2.c, montrer que, pour tout $t \in [0, T]$,

$$\lim_{\varepsilon \to 0^+} \mathbb{E}\left[\left| Y_t^{\varepsilon, x} - u(t, x + W_t) \right|^2 \right] = 0.$$

 $\text{Indication}: \text{chercher une EDSr satisfaite par } U^\varepsilon_t = Y^{\varepsilon,x}_t - u(t,x+W_t) \text{ et } V^\varepsilon_t = Z^{\varepsilon,x}_t - \partial_x u(t,x+W_t).$

c. En déduire que $\lim_{\varepsilon\to 0^+}u^\varepsilon(0,x)=u(0,x)$ où, pour $\varepsilon>0,$ u^ε désigne la solution de viscosité de l'EDP

$$\partial_t u^{\varepsilon}(t,x) + \frac{1}{2} \partial_x^2 u^{\varepsilon}(t,x) + F^{\varepsilon}(x, u^{\varepsilon}(t,x), \partial_x u^{\varepsilon}(t,x)) = 0, \quad (t,x) \in]0, T[\times \mathbb{R}, \qquad u^{\varepsilon}(T,x) = g(x).$$

EDSr et applications : Correction de l'examen du 03 avril 2002.

Exercice 1. 1. La fonction f n'est pas Lipschitzienne et ne vérifie pas la condition de monotonie puisque $yf(y)/y^2 = (1-y) \longrightarrow +\infty$ si $y \longrightarrow -\infty$. Considérons la fonction $g(y) = y^+(1-y)^+$. g est Lipschitzienne puisque $g(y) = \int_0^y (1-2x) \mathbf{1}_{]0,1[}(x) \, dx$. Le théorème de Pardoux-Peng fournit donc une unique solution de carré intégrable de l'EDSr associée à (ξ,g) , disons (Y,Z). Puisque g(1) = g(0) = 0, (0,0) est la solution de l'EDSr de paramètres (0,g) et (1,0) est celle associée à (1,g). Comme $0 \le \xi \le 1$, le théorème de comparaison implique que, \mathbb{P} -p.s.,

$$\forall t \in [0, T], \qquad 0 < Y_t < 1.$$

Comme sur [0,1], g et f sont égales, (Y,Z) est une solution associée à (ξ,f) .

2. Montrons que Y est une surmartingale. Si $0 \le s \le t \le T$, on a,

$$Y_s = Y_t + \int_s^t Y_r (1 - Y_r) dr - \int_s^t Z_r dW_r,$$

et en conditionnant par rapport à \mathcal{F}_s , on obtient, comme Z est de carré intégrable,

$$Y_s = \mathbb{E}\left(Y_t + \int_s^t Y_r (1 - Y_r) dr \mid \mathcal{F}_s\right) \ge \mathbb{E}\left(Y_t \mid \mathcal{F}_s\right)$$

puisque pour tout $r \in [0, T], f(Y_r) \ge 0$.

Exercice 2. 1. a. La fonction F^n est décroissante sur \mathbb{R} , Lipschitzienne et bornée; ξ^n est de carré intégrable. Les hypothèses du théorème de Pardoux-Peng sont satisfaites. Notons (Y^n, Z^n) la solution ainsi obtenue.

b. On a $F^n(0) = 0$; on en déduit que (0,0) est la solution de l'EDSr de paramètres $(0,F^n)$. ξ^n étant positive, le théorème de comparaison implique que \mathbb{P} -p.s., pour tout $t \in [0,T], Y^n \geq 0$. D'autre part, (n,0) est la solution de l'EDSr de paramètres (n,0). Comme F^n est négative et $\xi^n \leq n$, le théorème de comparaison donne aussi la seconde inégalité.

- **c.** Comme F^n et F sont égales sur l'intervalle $[0,n],\ (Y^n,Z^n)$ est solution de l'EDSr de paramètres (ξ^n,F) .
- **2.** Soient $m \ge n \ge 1$. On a, d'après la question précédente, pour tout $t \in [0, T]$,

$$\begin{aligned} |Y_t^m - Y_t^n|^2 + \int_t^T ||Z_r^m - Z_r^n||^2 dr \\ &= |\xi^m - \xi^n|^2 + 2 \int_t^T (Y_r^m - Y_r^n) \left(F(Y_r^m) - F(Y_r^n) \right) dr - 2 \int_t^T (Y_r^m - Y_r^n) \left(Z_r^m - Z_r^n \right) dW_r. \end{aligned}$$

F étant décroissante sur \mathbb{R}^+ , $(Y_r^m - Y_r^n)(F(Y_r^m) - F(Y_r^n)) \leq 0$ et par suite,

$$|Y_t^m - Y_t^n|^2 + \int_t^T ||Z_r^m - Z_r^n||^2 dr \le |\xi^m - \xi^n|^2 - 2 \int_t^T (Y_r^m - Y_r^n) (Z_r^m - Z_r^n) dW_r.$$

On obtient donc, via les inégalités BDG,

$$\mathbb{E}\left[\sup_{t\in[0,T]}|Y_t^m - Y_t^n|^2 + \int_0^T \|Z_r^m - Z_r^n\|^2 dr\right] \le C_u \,\mathbb{E}\left[|\xi^m - \xi^n|^2\right],$$

ce qui montre que la suite de processus (Y^n, Z^n) est de Cauchy dans \mathcal{B}^2 .

3. Notons (Y, Z) la limite de cette suite. Il reste à vérifier que (Y, Z) est solution de l'EDSr que nous cherchons à résoudre. On a, pour tout $n \in \mathbb{N}^*$,

$$Y_t^n = \xi^n + \int_t^T F(Y_r^n) dr - \int_t^T Z_r^n dW_r, \qquad 0 \le t \le T,$$

et on doit passer à la limite dans cette équation. Pour cela, il suffit de remarquer que

$$\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_t^T Z_r^n\,dW_r-\int_t^T Z_r\,dW_r\right|^2\right]\leq 16\,\mathbb{E}\left[\int_0^T \|Z_r^n-Z_r\|^2\,dr\right],$$

$$\mathbb{E}\left[\sup_{t\in[0,T]}\left|\int_{t}^{T}F(Y_{r}^{n})\,dr-\int_{t}^{T}F(Y_{r})\,dr\right|\right]\leq 2T\,\mathbb{E}\left[\sup_{t\in[0,T]}|Y_{t}-Y_{t}^{n}|^{2}\right]^{1/2}\sup_{n\geq1}\mathbb{E}\left[\sup_{t\in[0,T]}|Y_{t}^{n}|^{2}\right]^{1/2}.$$

4. La condition de positivité est fondamentale ici : pour s'en convaincre il suffit de considérer le cas où ξ est déterministe, disons $\xi = c$. Il s'agit alors de résoudre l'équation différentielle $y' = y^2$ avec $y_T = c$. La solution est $y_t = c (1 + c(T - t))^{-1}$. La solution explose si $cT \le -1$.

Exercice 3. 1. a. Les hypothèses du théorème de Pardoux-Peng sont satisfaites. On obtient donc une unique solution $(Y^{\varepsilon}, Z^{\varepsilon})$ dans \mathcal{B}^2 .

b. On a $dU_t^{\varepsilon} = -f^{\varepsilon}(t, Y_t^{\varepsilon}, Z_t^{\varepsilon}) dt + f^{\varepsilon}(t, 0, 0) dt + Z_t^{\varepsilon} dW_t$, que l'on réécrit, notant, pour $t \in [0, T], \ \psi_t^{\varepsilon} = \int_0^t f^{\varepsilon}(s, 0, 0) \, ds$,

$$dU_t^{\varepsilon} = -\left[f^{\varepsilon}\left(t, U_t^{\varepsilon} - \psi_t^{\varepsilon}, V_t^{\varepsilon}\right) - f^{\varepsilon}(t, 0, 0)\right]dt + V_t^{\varepsilon}dW_t.$$

On a alors

$$U_t^{\varepsilon} = \zeta^{\varepsilon} + \int_t^T g^{\varepsilon}(r, U_r^{\varepsilon}, V_r^{\varepsilon}) dr - \int_t^T V_r^{\varepsilon} dW_r, \qquad 0 \le t \le T,$$

avec $\zeta^{\varepsilon} = \xi^{\varepsilon} + \psi_{T}^{\varepsilon}$ et, pour tout $(t, u, v) \in [0, T] \times \mathbb{R}^{k} \times \mathbb{R}^{k \times d}$,

$$g^{\varepsilon}(t, u, v) = f^{\varepsilon}(t, u - \psi_t^{\varepsilon}, v) - f^{\varepsilon}(t, 0, 0).$$

La fonction g^{ε} est K-Lipschitzienne; les estimations à priori donnent, notant $\alpha = 2K + 2K^2$ et utilisant l'inégalité $|g^{\varepsilon}(r,0,0)| \leq K|\psi_r^{\varepsilon}|$,

$$\mathbb{E}\left[\sup_{t\in[0,T]}|U_t^{\varepsilon}|^2 + \int_0^T \|V_r^{\varepsilon}\|^2 dr\right] \leq C_u e^{\alpha T} \mathbb{E}\left[|\zeta^{\varepsilon}|^2 + \left|\int_0^T |g^{\varepsilon}(r,0,0)| dr\right|^2\right] \\
\leq C(K,T) \left(\mathbb{E}\left[|\xi^{\varepsilon}|^2 + |\psi_T^{\varepsilon}|^2\right] + \int_0^T \mathbb{E}\left[|\psi_r^{\varepsilon}|^2\right] dr\right).$$

Par hypothèse, pour tout $t\in[0,T]$, $\lim_{\varepsilon\to 0^+}\mathbb{E}\left[|\xi^\varepsilon|^2+|\psi_t^\varepsilon|^2\right]=0$, et de plus,

$$\sup_{\varepsilon>0} \mathbb{E}\left[|\psi_t^\varepsilon|^2\right] \le T \sup_{\varepsilon>0} \mathbb{E}\left[\int_0^T |f^\varepsilon(r,0,0)|^2 \, dr\right]$$

est fini donc intégrable sur [0,T]. Le théorème de convergence dominée de Lebesgue implique que $(U^{\varepsilon}, V^{\varepsilon})$ converge vers 0 dans \mathcal{B}^2 . Le résultat s'en suit immédiatement.

c. Si on considère une famille d'EDSr dont les générateurs sont indépendants des variables, on obtient

$$\mathbb{E}\left[|Y_t^\varepsilon|^2 + \int_t^T \|Z_r^\varepsilon\|^2 dr\right] = \mathbb{E}\left[\left|Y_t^\varepsilon + \int_t^T Z_r^\varepsilon dW_r\right|^2\right] = \mathbb{E}\left[\left|\xi^\varepsilon + \int_t^T f^\varepsilon(r) dr\right|^2\right].$$

Si on suppose que pour tout $t \in [0, T]$,

$$\lim_{\varepsilon \to 0^+} \mathbb{E}\left[|Y^\varepsilon_t|^2 + \int_0^T \|Z^\varepsilon_r\|^2 \, dr \right] = 0$$

alors $\xi^{\varepsilon} \longrightarrow 0$ dans L² et de plus, pour tout $t \in [0, T]$,

$$\lim_{\varepsilon \to 0^+} \mathbb{E} \left[\left| \int_t^T f^\varepsilon(r) \, dr \right|^2 \right] = 0,$$

ce qui montre que la condition (\sharp) est optimale.

2. a. La formule de Feynman-Kac donne dans ce cas

$$\forall (t, x) \in [0, T] \times \mathbb{R}, \qquad u(t, x) = \mathbb{E}\left[g(x + W_T - W_t)\right].$$

b. Le théorème de « dérivation sous le signe \int »— les majorations sont triviales comme g est C_b^2 — montre directement que u est deux fois dérivable en x avec

$$\forall (t,x) \in [0,T] \times \mathbb{R}, \qquad u_x(t,x) = \mathbb{E}\left[g'(x+W_T-W_t)\right], \quad u_{xx}(t,x) = \mathbb{E}\left[g''(x+W_T-W_t)\right] ;$$

ces deux fonctions sont continues sur $[0,T] \times \mathbb{R}$ via le théorème de continuité des intégrales à paramètres.

Reste à voir la dérivabilité en temps. Pour $0 \le s < t \le T$, la formule de Taylor avec reste intégrale, donne, notant $X_t = x + W_T - W_t$,

$$g(X_s) = g(X_t) + (W_t - W_s) g'(X_t) + \frac{(W_t - W_s)^2}{2} g''(X_t)$$
$$+ (W_t - W_s)^2 \int_0^1 (1 - \alpha) \left[g''(X_t + \alpha(W_t - W_s)) - g''(X_t) \right] d\alpha,$$

d'où l'on déduit, comme X_t et $W_t - W_s$ sont indépendantes,

$$u(s,x) = u(t,x) + \frac{(t-s)}{2} \mathbb{E} [g''(X_t)] + (t-s) R(t,s),$$

où l'on a posé

$$R(t,s) = \frac{1}{\sqrt{2\pi}} \mathbb{E} \left[\int_{\mathbb{R}} z^2 \int_0^1 (1-\alpha) \left[g''(X_t + \alpha \sqrt{t-s} z) - g''(X_t) \right] d\alpha e^{-z^2/2} dz \right].$$

Comme $R(t,s) \longrightarrow 0$ si $t-s \to 0$, on déduit du calcul précédent que

$$\forall (t,x) \in [0,T] \times \mathbb{R}, \qquad u_t(t,x) = -\frac{1}{2} \mathbb{E} \left[g''(x + W_T - W_t) \right],$$

qui est une fonction continue sur $[0,T] \times \mathbb{R}$.

c. Supposons dans un premier temps k de classe C_b^2 . Notons $K^{\varepsilon}(t,x) = k(t,x) \sin(x/\varepsilon)$. On a alors, pour tout $(t,x) \in [0,T] \times \mathbb{R}$,

$$K_t^{\varepsilon}(t,x) = k_t(t,x)\sin(x/\varepsilon), \qquad K_x^{\varepsilon}(t,x) = k_x(t,x)\sin(x/\varepsilon) + \frac{1}{\varepsilon}k(t,x)\cos(x/\varepsilon),$$
$$K_{xx}^{\varepsilon}(t,x) = k_{xx}(t,x)\sin(x/\varepsilon) + \frac{2}{\varepsilon}k_x(t,x)\cos(x/\varepsilon) - \frac{1}{\varepsilon^2}k(t,x)\sin(x/\varepsilon).$$

La formule d'Itô, donne alors,

$$K^\varepsilon(t,x+W_t) = K^\varepsilon(0,x) + \int_0^t G^\varepsilon(r,x+W_r) \, dr - \frac{1}{2\varepsilon^2} \int_0^t K^\varepsilon(r,x+W_r) \, dr + \int_0^t K^\varepsilon_x(r,x+W_r) \, dW_r,$$

avec $G^{\varepsilon}(t,x) = K_t^{\varepsilon}(t,x) + \frac{1}{2}k_{xx}(t,x)\sin(x/\varepsilon) + \frac{1}{\varepsilon}k_x(t,x)\cos(x/\varepsilon)$. Comme k est C_b^2 , on obtient,

$$\left| \int_0^t K^{\varepsilon}(r, x + W_r) \, dr \right| \le C \varepsilon + \left| \int_0^t 2\varepsilon^2 K_x^{\varepsilon}(r, x + W_r) \, dW_r \right|,$$

et l'inégalité de Doob donne alors le résultat puisque $\sup_{t,x} \varepsilon^2 |K_x^{\varepsilon}(t,x)| \leq C \varepsilon$.

Si k est simplement continue et bornée, il existe une suite de fonctions C_b^2 , k_n , qui converge vers k uniformément sur les compacts avec $||k_n||_{\infty} \leq ||k||_{\infty}$ – il suffit de faire une régularisation par convolution. On a alors,

$$\mathbb{E}\left[\left|\int_{0}^{t} K^{\varepsilon}(r, x + W_{r}) dr\right|^{2}\right]$$

$$\leq 2 \mathbb{E}\left[\left|\int_{0}^{t} k_{n}(r, x + W_{r}) \sin\left(\varepsilon^{-1}(x + W_{r})\right) dr\right|^{2}\right] + 2T \mathbb{E}\left[\int_{0}^{T} |k - k_{n}|^{2} (r, x + W_{r}) dr\right],$$

et donc, pour tout $n \in \mathbb{N}^*$,

$$\limsup_{\varepsilon \to 0^{+}} \mathbb{E}\left[\left|\int_{0}^{t} K^{\varepsilon}(r, x + W_{r}) dr\right|^{2}\right] \leq 2T \,\mathbb{E}\left[\int_{0}^{T} |k - k_{n}|^{2} (r, x + W_{r}) dr\right].$$

On a, d'autre part, pour a > 0, notant $A_T = [0, T] \times [-a, a]$,

$$\mathbb{E}\left[\int_{0}^{T} |k - k_{n}|^{2}(r, x + W_{r}) dr\right] \leq T \sup_{(t, x) \in A_{T}} |k - k_{n}|^{2}(t, x) + 4T ||k||_{\infty}^{2} \mathbb{P}\left(\sup_{t \in [0, T]} |x + W_{t}| > a\right),$$

ce qui montre le résultat en passant à la limite lorsque $n \to +\infty$ puis lorsque $a \to +\infty$.

- 3. a. Il suffit d'appliquer le théorème de Pardoux-Peng.
- **4.** b u est de classe $C^{1,2}$ ce qui justifie l'emploi de la formule d'Itô. On a, comme u est solution de l'équation de la chaleur,

$$du(t, x + W_t) = (u_t + u_{xx}/2)(t, x + W_t)dt + u_x(t, x + W_t)dW_t = u_x(t, x + W_t)dW_t$$

Par suite, $(U^{\varepsilon}, V^{\varepsilon})$ est solution de l'EDSr

$$U_t^{\varepsilon} = \int_t^T f^{\varepsilon}(x + W_r, U_r^{\varepsilon}, V_r^{\varepsilon}) dr - \int_t^T V_r^{\varepsilon} dW_r, \qquad 0 \le t \le T,$$

avec $f^{\varepsilon}(t,y,z) = F^{\varepsilon}(x+W_t,y+u(t,x+W_t),z+u_x(t,x+W_t))$. Comme u est de classe $C^{1,2}$, la fonction $(t,x) \longmapsto h(u(t,x),u_x(t,x))$ est continue et bornée. La question 2.c implique que, pour tout $(t,x) \in [0,T] \times \mathbb{R}$,

$$\mathbb{E}\left[\left|\int_0^t f^{\varepsilon}(r,0,0) dr\right|^2\right] = \mathbb{E}\left[\left|\int_0^t \sin\left(\varepsilon^{-1}(x+W_r)\right) h(u(r,x+W_r), u_x(r,x+W_r)) dr\right|^2\right]$$

tend vers 0 si $\varepsilon \to 0^+$.

D'après la première question, on a pour tout $t \in [0, T]$,

$$\lim_{\varepsilon \to 0^+} \mathbb{E} \left[|U^\varepsilon_t|^2 + \int_0^T |V^\varepsilon_r|^2 \, dr \right] = 0.$$

 ${\bf a.}$ Si u^ε désigne la solution de viscosité de l'EDP

$$u_t^{\varepsilon} + \frac{1}{2} u_{xx}^{\varepsilon} + F^{\varepsilon}(x, u^{\varepsilon}, u_x^{\varepsilon}) = 0, \qquad u^{\varepsilon}(T, \cdot) = g,$$

on a, via la formule de Feynman-Kac non-linéaire, pour tout $x \in \mathbb{R}$, $u^{\varepsilon}(0,x) = Y_0^{\varepsilon,x}$. Le résultat découle donc de la question précédente pour t=0.