BMC - Exercicios

Felipe B. Pinto 61387 - MIEQB

16 de novembro de 2022

Conteúdo

Grupo I -	Lista	2	Questão 7	6
Questão 1		2	Questão 8	7
Questão 2		2	Questão 9	8
Questão 3		3	Questão 10	9
Questão 4		3	Grupo II – Extra 1	0
			Questão 1 1	

Grupo I

Questão 1

As bases nucleotidicas absorvem radiação a _____nm, enquanto que os aminoácidos aromáticos absorvem radiação a _____nm.

- a. 280, 260.
- b. 260, 280. c. 280, 280.
- d. 260, 260.

e. Nenhuma das hipóteses está correta.

RS: b.

Questão 2

Indique quais as razões de absorvância na gama dos raios ultravioleta que lhe permitem definir a pureza de uma amostra de DNA.

- a. A260/A320 e A280/A260
- d. A260/A320 e A230/A260
- b. A280/A260 e A260/A230
- c. A230/A260eA260/A280

e. A260/A280 e A260/A230

RS:

Qual dos espectros apresentados deverá ter sido obtido a partir de uma amostra de DNA?

RS: Primeiro gráfico por possuir um pico próximo de 260 nm

Questão 4

O que deverá acontecer ao espectro se a amostra for fervida? Desenhe um novo espetro na figura do exercício anterior.

Considerando o espectro de absorvância abaixo, indique qual o valor das razões de absorvância A260/A280 e A260/A230:

Selecione uma opção de resposta:

a.
$$A260/A280 = 0.46 \text{ e } A260/A230 = 0.42$$

b.
$$A260/A280 = 2.15 \text{ e } A260/A230 = 2.37$$

c.
$$A260/A280 = 0.46 \text{ e } A260/A230 = 2.37$$

d.
$$A260/A280 = 2.15$$
 e $A260/A230 = 0.42$

e. nenhuma alínea está correta

RS

$$A260/A280 \cong 0.755/0.351 \cong 2.15$$
 $A260/A230 \cong 0.755/0.318 \cong 2.37$

RS: b.

Relativamente aos espetros de absorvância abaixo, indique qual a opção correta:

- a. A amostra tem muito pouco DNA.
- b. Os valores A260/A280 e A260/A230 indicam que o DNA está contaminado com proteínas com resíduos aromáticos.
- c. A amostra de DNA está contaminada com restos celulares.
- d. A amostra de DNA está contaminada com DNA em cadeia simples ou nucleotidos livres.
- e. Os valores das razões de A260/A280 e A260/A230 estão de acordo com os critérios de pureza e o DNA plasmídico está puro.

RS

RS 10 Gráfico: d. (fazer as razões)

RS 20 Gráfico: a.

No caso do espectro de absorvância obtido por espectrofotometria de UV de uma amostra de DNA plasmídico, indique qual a concentração de DNA plasmídico da amostra inicial, considerando que a leitura diz respeito a uma diluição de 1:20 da amostra inicial e que o coeficiente de extinção molar de DNA em cadeia dupla é de $20 \, \mathrm{mg} \, \mathrm{mL}^{-1} \, \mathrm{cm}^{-1}$ e $d=1 \, \mathrm{cm}$.

- a. 2360 ng/μL
- c. 5900 ng/µL
- e. 23.6 ng/μL

- b. 11.4 ng/μL
- d. 59 ng/μL

RS C.

$$C = C_i \, 20 = \frac{A}{L \,\varepsilon} \, 20 \cong \frac{5.9}{1 * 10^{-2} * 20 * 10^{-3}} \, 20 = \frac{5.9}{20} \, 20 * 10^{-5} = 5.9 * 10^{-5}$$

Relativamente ao espectro de absorvância obtido por espectrofotometria de UV de uma amostra de DNA plasmídico, indique qual o volume necessário de solução de DNA plasmídico inicial de forma a digerir 2 mg de DNA, considerando que a leitura diz respeito a uma diluição de 1:100 e que o coeficiente de extinção molar de DNA em cadeia dupla é de $20 \, \mathrm{mg \, mL^{-1} \, cm^{-1}}$ e $d=1 \, \mathrm{cm}$.

a. 0.68 µL

c. 68 µL

e. 5.9 μL

b. 6.8 μL

d. 59 μL

RS C.

$$Vol = m/C = m \left(\frac{A}{L \,\varepsilon} * 100\right)^{-1} = \frac{m \,L \,\varepsilon}{A * 100} =$$
$$= \frac{20 * 10^{-2} * 1 * 10^{-3} * 20 * 10^{-6}}{5.900 * 100} \cong 67.80 \,\mathrm{E} - 9$$

Considerando o espectro de absorvância no UV de uma amostra de DNA obtida pelo método de extração fenólica, indique qual a explicação mais plausível para os valores de absorvância obtidos e justifique a sua escolha.

- a. Durante o protocolo de extração, a seguir à adição de etanol absoluto e centrifugação, o pellet soltou-se e não se conseguiu recuperar.
- b. A extração foi realizada com fenol equilibrado a pH 4.
- c. A extração foi realizada com fenol equilibrado a pH 7.
- d. Após o passo de adição da solução fenólica, a mistura não foi homogeneizada de forma eficiente, não havendo extração total da proteína.
- e. Após o passo de precipitação do DNA não se procedeu à evaporação total do álcool.

Considerando as razões de pureza de uma amostra de DNA, analise a seguinte observação experimental:

Amostra 1: DNA cromossómico extraído utilizando um kit comercial, a partir de uma cultura de E. coli.

A260/280 = 1.6; A260/230 = 1.3

Amostra 2: Amostra 1, submetida a um passo de purificação fenólica (para remoção de proteínas contaminantes).

A260/280 = 1.99; A260/230 = 1.85

Amostra 3: Amostra 2, à qual se adicionou uma amostra da proteína XPTO pura.

A260/280 = 1.99; A260/230 = 1.6

O que pode inferir acerca da proteína XPTO?

Grupo II

Questão 1

Is the sample pure or contaminated? Sample concentration in mg/mL?

RS

A260/A280 = 2.1 > 2.0 e A260/A230 = 2.58 > 2.2 ∴ A amostra está contaminada

$$C = \frac{A}{L\,\varepsilon} * 100 = \frac{2.439}{1*10^{-2}*20*10^{-6}} * 100 = \frac{2.439}{20} * 10^{-6} \cong 121.95\,\mathrm{E} - 9\,\mathrm{kg/L} = 121.95\,\mathrm{E} - 6\,\mathrm{mg/mL}$$