

JFW / AF
T.J. Gabara 80

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Patent Application

Applicant(s): Thaddeus J. Gabara

Case: 80

Serial No.: 09/870,436

Filing Date: May 30, 2001

Group: 2816

Examiner: Hai L. Nguyen

I hereby certify that this paper is being deposited on this date with the U.S. Postal Service as first class mail addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Signature: Date: January 31, 2005

Title: Comparator Circuits Having Non-Complementary Input Structures

TRANSMITTAL OF THIRD SUPPLEMENTAL APPEAL BRIEF

Mail Stop Appeal Brief - Patents
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

Submitted herewith are the following documents relating to the above-identified patent application:

- (1) Response to Office Action; and
- (2) Third Supplemental Appeal Brief.

Please extend the period for response by one month to January 30, 2005. Please charge **Ryan, Mason & Lewis, LLP Deposit Account No. 50-0762** the amount of \$120, to cover this fee. In the event of non-payment or improper payment of a required fee, the Commissioner is authorized to charge or to credit **Deposit Account No. 50-0762** as required to correct the error.

02/04/2005 HDEMESS1 00000012 500762 09870436

01 FC:1251 120.00 DA

Respectfully submitted,

Joseph B. Ryan

Reg. No. 37,922

Attorney for Applicant(s)

Ryan, Mason & Lewis, LLP

90 Forest Avenue

Locust Valley, NY 11560

(516) 759-7517

Date: January 31, 2005

T.J. Gabara 80

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Patent Application

Applicant(s): Thaddeus J. Gabara

Case: 80

Serial No.: 09/870,436

Filing Date: May 30, 2001

Group: 2816

Examiner: Hai L. Nguyen

I hereby certify that this paper is being deposited on this date with the U.S. Postal Service as first class mail addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Signature: Date: January 31, 2005

Title: Comparator Circuits Having Non-Complementary
Input Structures

RESPONSE TO OFFICE ACTION

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

In response to the Office Action dated September 30, 2004 in the above-referenced application, Applicant hereby requests reinstatement of the appeal pursuant to 37 C.F.R. §1.193(b)(2). A Third Supplemental Appeal Brief is submitted concurrently herewith.

With regard to the objection to claims 1 and 37 raised in the Office Action, Applicant respectfully traverses the objection. The Examiner argues that the term "non-complementary structures" as used to describe the relative structures of the first and second input legs is unclear in view of the arrangement shown in FIG. 14. However, the specification at page 10, lines 11-17, clearly defines the term in question in a manner that is entirely consistent with FIG. 14. Examples of conventional comparators each having a set of complementary input structures are shown, for example, in FIGS. 5A, 5B and 5C, and are described at page 4, line 27, to page 5, line 10.

Accordingly, the objection is believed to be improper, and should be withdrawn.

Respectfully submitted,

Date: January 31, 2005

Joseph B. Ryan
Attorney for Applicant(s)
Reg. No. 37,922
Ryan, Mason & Lewis, LLP
90 Forest Avenue
Locust Valley, NY 11560
(516) 759-7517

T.J. Gabara 80

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Patent Application

Applicant(s): Thaddeus J. Gabara
Case: 80
Serial No.: 09/870,436
Filing Date: May 30, 2001
Group: 2816
Examiner: Hai L. Nguyen

I hereby certify that this paper is being deposited on this date with the U.S. Postal Service as first class mail addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Signature: Date: January 31, 2005

Title: Comparator Circuits Having Non-Complementary
Input Structures

THIRD SUPPLEMENTAL APPEAL BRIEF

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

This Third Supplemental Appeal Brief is submitted in response to the Office Action dated September 30, 2004 in the above-referenced application, in which the Examiner reopened prosecution in response to the Second Supplemental Appeal Brief filed June 14, 2004.

Applicant would also like to point out that this is the fourth appeal brief filed in the present application. In response to each of the previous three appeal briefs, the Examiner has reopened prosecution, but without raising patentability issues which differ substantially from those addressed in the prior brief(s). It is believed that the failure of the Examiner to permit the present application to proceed to the Board is resulting in an inefficient use of resources for both Applicant and the U.S. Patent and Trademark Office, as well as an inordinate delay in prosecution.

Applicant has submitted concurrently herewith a response to the Office Action, requesting reinstatement of the appeal.

REAL PARTY IN INTEREST

The present application is assigned to Agere Systems Inc. The assignee Agere Systems Inc. is the real party in interest.

RELATED APPEALS AND INTERFERENCES

There are no known related appeals and interferences.

STATUS OF CLAIMS

The present application was filed on May 30, 2001 with claims 1-41. Applicant filed a Response to Restriction Requirement on March 20, 2002, electing claims 1-7, 36, 37, 40 and 41 for prosecution on the merits. Claims 8-35, 38 and 39 were initially withdrawn from consideration in response to the election, and claims 40 and 41 were subsequently withdrawn from consideration in view of an Amendment filed by Applicant on September 25, 2002. Claims 1-7, 36 and 37 are therefore currently pending in the application.

Claims 1-5 and 36 stand rejected under 35 U.S.C. §102(e), and claims 6, 7 and 37 stand rejected under 35 U.S.C. §103(a). Claims 1-7, 36 and 37 are appealed.

STATUS OF AMENDMENTS

There have been no amendments filed subsequent to the final rejection.

SUMMARY OF INVENTION

The present invention is directed to comparator circuits that are capable of comparing non-complementary input signals. With regard to independent claims 1, 36 and 37, each of these claims calls for a comparator circuit having an evaluation element and first and second input legs coupled thereto, with the first and second input legs being adapted to receive respective first and second input signals, and with the evaluation element being adapted to perform a comparison of the first and second input signals. Claims 1, 36 and 37 further specify that each of the first and second legs has “associated therewith a variable parameter having a value that is a function of a corresponding one of the input signals.” Claims 1 and 37 further specify that the first and second input legs have “non-

complementary structures relative to one another.” The term “non-complementary input structures” is defined in the specification at page 10, lines 11-17. Claim 36 further specifies that the first and second input signals are “non-complementary input signals.”

An example of an arrangement of the type claimed is shown in FIG. 11 of the drawings, and described as follows in the specification at page 15, line 7 to page 16, line 8, with emphasis supplied:

FIG. 11 shows a basic non-complementary comparator circuit in accordance with an illustrative embodiment of the invention. . . . The circuit includes a cross-coupled RAM cell formed of transistors m1, m2, m3 and m4. . . .

Inputs in_1 and in_2 are applied to evaluation legs denoted as R_1 and R_2 respectively. As previously noted, evaluation legs are also referred to herein as input legs. In accordance with the invention, these legs have input structures which are non-complementary relative to one another, and therefore do not behave as conventional digital circuit structures. The input legs are coupled to nodes of the RAM cell, e.g., nodes *out* and *outn* in this illustrative circuit. . . .

The evaluation legs in the basic comparator circuit of FIG. 11 are viewed as variable resistances during evaluation. More particularly, the variable resistance associated with left leg R_1 is a function of input in_1 and the variable resistance associated with right leg R_2 is a function of input in_2 , as is shown in the figure. The outputs *out* and *outn* of the FIG. 11 comparator circuit are a function of the variable resistances as follows:

If $(R_1 < R_2)$, the circuit will evaluate to $out = 1$ and $outn = 0$.

If $(R_1 > R_2)$, the circuit will evaluate to $out = 0$ and $outn = 1$.

In this embodiment, the evaluation occurs when the clock signal *ck* goes low, although this is of course by way of example and not a requirement of the invention.

The FIG. 11 comparator circuit by virtue of the variable resistances R_1 and R_2 is able to compare input signal in_1 against input signal in_2 , even though in_1 may not be the complement of in_2 . In other words, if the binary weight of in_1 is greater than the binary

weight of in_2 , $R_1 < R_2$ and $out = 1$, thereby indicating that $in_1 > in_2$. As noted previously, conventional comparators are generally unable to process non-complementary inputs in this manner. The variable resistances may be implemented using weighted arrays of transistors, as will be described below.

The present invention as set forth in claims 1, 36 and 37 is thus directed to particularly advantageous comparator circuit arrangements that are capable of comparing non-complementary input signals. As noted above, conventional comparator circuits are unable to compare non-complementary input signals.

GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL

1. Claims 1-5 and 36 are rejected under 35 U.S.C. §102(e) as being anticipated by U.S. Patent No. 6,330,188 (hereinafter “Pascucci”).
2. Claims 6 and 7 are rejected under 35 U.S.C. §103(a) as being unpatentable over Pascucci in view of U.S. Patent No. 5,856,949 (hereinafter “Jiang”).
3. Claim 37 is rejected under 35 U.S.C. §103(a) as being unpatentable over Pascucci.

ARGUMENT

Ground 1

Claims 1, 2, 4, 5 and 36

Applicant respectfully traverses the §102(e) rejection.

With regard to independent claims 1 and 36, each of these claims calls for a comparator circuit having an evaluation element and first and second input legs coupled thereto, with the first and second input legs being adapted to receive respective first and second input signals, and with the evaluation element being adapted to perform a comparison of the first and second input signals. Claims 1 and 36 further specify that each of the first and second legs has “associated therewith a variable parameter having a value that is a function of a corresponding one of the input signals.” Claim 1 further specifies that the first and second input legs have “non-complementary structures

relative to one another.” Claim 36 further specifies that the first and second input signals are “non-complementary input signals.”

As indicated previously herein, the present invention as set forth in claims 1 and 36 is directed to particularly advantageous comparator circuit arrangements that, unlike conventional comparator circuits, are capable of comparing non-complementary input signals.

Applicant respectfully submits that such arrangements are not taught or suggested by the Pascucci reference. More particularly, as will be described below, Pascucci fails to teach or suggest an arrangement in which an evaluation element is adapted to perform a comparison of first and second input signals applied to respective first and second input legs as claimed. Pascucci therefore fails to provide the significant advantages associated with the claimed arrangement in terms of its ability to compare non-complementary input signals.

Applicant notes that the Manual of Patent Examining Procedure (MPEP), Eight Edition, August 2001, §2131, specifies that a given claim is anticipated “only if each and every element as set forth in the claim is found, either expressly or inherently described, in a single prior art reference,” citing Verdegaal Bros. v. Union Oil Co. of California, 814 F.2d 628, 631, 2 USPQ2d 1051, 1053 (Fed. Cir. 1987). Moreover, MPEP §2131 indicates that the cited reference must show the “identical invention . . . in as complete detail as is contained in the . . . claim,” citing Richardson v. Suzuki Motor Co., 868 F.2d 1226, 1236, 9 USPQ2d 1913, 1920 (Fed. Cir. 1989). Applicant submits that the Examiner has failed to establish anticipation of at least independent claims 1 and 36 by the Pascucci reference.

The Examiner in formulating the §102(e) rejection argues that the claimed comparator circuit is shown in FIGS. 1 and 2 of Pascucci. More specifically, the Examiner argues that the claimed first and second input legs comprise the circuitry coupled to respective nodes D and D’ in Pascucci FIGS. 1 and 2. The Examiner further argues that the claimed first input signal corresponds to one or more of the signals applied to transistor gates in elements 3 and 4, and the claimed second input signal corresponds to one or more of the signals applied to transistor gates in elements 3’ and 4’. Finally, the Examiner argues that the claimed variable parameter values that are functions of the respective input signals correspond to current signals Im and Ir of Pascucci FIG. 2. See the Office Action dated September 30, 2004 at page 3, section 4, second paragraph.

Pascucci in column 2, lines 3-13, indicates that elements 3 and 3' comprise respective left and right arrays of memory cells, and that elements 4 and 4' comprise respective selection circuits for the left and right arrays of memory cells. The operation of these elements is described in Pascucci as follows in column 2, lines 27-32, with emphasis supplied:

The selection circuit of memory cells 4 is a transistors circuit receiving at its input the address signals for selecting the memory cells to be read contained in the left array of memory cells 3. Operation of the circuits pertaining to the right branch 3' are not further described here, as it is analogous.

Applicant respectfully submits that if the claimed first and second input signals correspond to signals applied to left or right arrays of memory cells 3 and 3' or selection circuits 4 and 4', as alleged by the Examiner, then the arrangement shown in Pascucci FIG. 1 does not meet other limitations of the claims at issue.

First, Applicant notes that the signals applied to the inputs of selection circuits 4 and 4' are address signals used to identify particular memory cells in the respective left and right arrays of memory cells 3 and 3', and therefore are not input signals which are themselves compared using an evaluation element, as required by claim 1. The Pascucci FIG. 1 circuit clearly does not compare the address signals applied to selection circuit 4 with the address signals applied to selection circuit 4'.

Also, Pascucci describes the FIG. 1 circuit as a read circuit for the memory cells in the left and right arrays of memory cells 3 and 3'. Accordingly, there are no input signals applied to particular memory cells in the left and right arrays in conjunction with a read operation. Such signals may be used to store information in the cells, but during a read operation Pascucci does not disclose any particular input being applied to particular cells in the left and right arrays of memory cells 3 and 3' for purposes of comparing such signals. Instead, Pascucci indicates that address signals are applied to the selection circuits 4 and 4' in order to identify particular ones of the memory cells 3 and 3' to be read, with the selected cell from the 3' array comprising a "virgin cell" as a reference cell. Presumably, whatever information is being read from a given one of the memory cells 3 was

stored in that cell prior to the read operation. Thus, any signals applied to gates of the transistors in the arrays of memory cells 3 and 3' cannot comprise the claimed input signals, because such signals are not compared by an evaluation element in the manner required by claim 1.

In column 1, lines 61-65, Pascucci indicates that a logical status of a given selected cell in the left memory array 3 is generally determined as follows:

A logical status is in fact detected by comparing a cell current with the current of a virgin cell under the same bias conditions. Such a comparison is made through a "sense amplifier" or read amplifier.

So, the address signals applied to the selection circuits 4 and 4' select particular ones of the memory cells whose contents will be compared. This is not comparison of first and second input signals as claimed, since what is being compared is the contents of selected memory cells, and not input signals *per se*. It should also be noted in this regard that the variable currents I_m and I_r in FIG. 2 of Pascucci do not have values which are respective functions of corresponding ones of the input signals, as claimed, since as noted above the input signals applied to the selection circuits 4 and 4' are address signals. Nor are there any particular input signals applied to selected ones of the memory cells 3 and 3' in conjunction with a read operation. Instead, as indicated previously, the contents of selected ones of these cells are simply compared "under the same bias conditions."

Pascucci therefore fails to teach or suggest at least the limitation of claims 1 and 36 regarding an evaluation element of a comparator circuit being adapted to perform a comparison of first and second input signals applied to respective first and second input legs. Pascucci thus fails to teach or suggest "each and every element" of claims 1 and 36 in "as complete detail" as is contained in those claims. The §102(e) rejection is therefore believed to be improper, and should be withdrawn.

Dependent claims 2, 4 and 5 are believed allowable for at least the reasons identified above with regard to their corresponding independent claim 1.

Claim 3

With regard to dependent claim 3, this claim specifies that the “variable parameter having a value that is a function of a corresponding one of the input signals” comprises a variable resistance. An example is the variable resistance $R_1 = F(in_1)$ or $R_2 = F(in_2)$ as described previously herein in conjunction with FIG. 11 of the drawings. Applicant notes that the Examiner again relies on signals applied to gates of transistors in elements 3, 3' and 4, 4'. However, as discussed above, none of these signals comprises the claimed first and second input signals that are compared in the manner claimed. Applicant respectfully submits that there is no such variable resistance, having a value which is a function of an input signal, associated with either of the left or right circuit branches in Pascucci FIGS. 1 or 2. Dependent claim 3 is therefore not anticipated by Pascucci.

Ground 2

Dependent claims 6 and 7 are believed allowable at least by virtue of their dependence from claim 1, for the reasons identified above in the context of claim 1. The Jiang reference fails to supplement the fundamental deficiencies of the Pascucci reference as applied to claim 1. Accordingly, the proposed combination of Pascucci and Jiang fails to meet the limitations of dependent claims 6 and 7.

Ground 3

Independent claim 37 includes limitations similar to those of claim 1, and is therefore believed allowable for at least the reasons identified above with regard to claim 1. The arguments presented above with regard to independent claim 1 are therefore realleged and incorporated herein by reference. Since Pascucci fails to teach or suggest all of the limitations of claim 37, the §103(a) rejection is also believed to be improper, and should be withdrawn.

In view of the above, Applicant believes that claims 1-7, 36 and 37 are in condition for allowance, and respectfully requests withdrawal of the §102(e) and §103(a) rejections.

Respectfully submitted,

Date: January 31, 2005

Joseph B. Ryan
Attorney for Applicant(s)
Reg. No. 37,922
Ryan, Mason & Lewis, LP
90 Forest Avenue
Locust Valley, NY 11560
(516) 759-7517

APPENDIX

1. A comparator circuit comprising:
 - an evaluation element; and
 - at least first and second input legs each coupled to a corresponding one of a first and second node of the evaluation element, the first and second input legs having non-complementary structures relative to one another and being adapted to receive respective first and second input signals, each of the non-complementary structures having associated therewith a variable parameter having a value that is a function of a corresponding one of the input signals, the evaluation element being adapted to perform a comparison of the first and second input signals.
2. The comparator circuit of claim 1 wherein the first and second input signals comprise non-complementary input signals.
3. The circuit of claim 1 wherein the variable parameter for a given one of the input legs comprises a variable resistance.
4. The comparator circuit of claim 1 wherein the variable parameter for a given one of the input legs comprises a variable current.
5. The comparator circuit of claim 1 wherein the variable parameter for a given one of the input legs comprises a variable voltage.

6. The comparator circuit of claim 1 wherein the evaluation element comprises a memory cell.
7. The comparator circuit of claim 6 wherein the evaluation element comprises a random access memory (RAM) cell.
8. The comparator circuit of claim 1 wherein the evaluation element comprises a differential amplifier.
9. The comparator circuit of claim 1 wherein at least one of the first and second input legs comprises a weighted array of transistors, each of the transistors in the weighted array adapted to receive a particular portion of an input signal applied to that leg.
10. The comparator circuit of claim 9 wherein the weighted array comprises an array of transistors digitally sized in width in accordance with a corresponding relationship between portions of a digital input signal.
11. The comparator circuit of claim 1 wherein each of the first and second input legs comprises a weighted array of transistors, and wherein the first and second inputs each comprise a digital word having a plurality of bits, and wherein each transistor of the associated weighted array of transistors is adapted to receive as an input a corresponding bit of a given one of the digital words.

12. The comparator circuit of claim 11 wherein the transistors of the weighted array are weighted in accordance with factors $2^0, 2^1, \dots, 2^{n-1}$ in width and the weighted array is adapted to receive a corresponding input signal comprising an n-bit digital word.
13. The comparator circuit of claim 9 wherein the weighted array comprises an additional transistor having an input adapted to receive an offset signal, the offset signal being configured so as to ensure a predictable output result if comparison of the first and second inputs would otherwise result in an unpredictable output.
14. The comparator circuit of claim 1 being implemented in a pipelined structure, the first and second input legs each being adapted to receive multi-bit digital words as the respective first and second input signals, the pipelined structure having a plurality of stages with each stage involving a comparison of designated portions of the multi-bit digital words.
15. The comparator circuit of claim 14 wherein the first and second input legs are adapted to receive $m \times n$ -bit digital words, and the pipelined structure has m stages with each stage configured to perform an n-bit comparison of a selected portion of the digital words.
16. The comparator circuit of claim 14 wherein the pipelined structure comprises an N-tree to N-tree structure.

17. The comparator circuit of claim 14 wherein the pipelined structure comprises an N-tree to P-tree structure.
18. The comparator circuit of claim 1 wherein each of the first and second input legs comprises a weighted array of transistors, the first and second input signals each comprising a digital word having a plurality of bits, wherein each transistor of a given one of the weighted arrays is adapted to receive as an input a corresponding bit of a given one of the digital words, each of the transistors in each of the weighted arrays having a substantially equal width such that comparison of the digital words implements a majority rule function.
19. The comparator circuit of claim 1 wherein each of the first and second input legs comprises a weighted array of transistors, the first and second input signals each comprising one or more balanced analog input signal pairs, inputs of parallel transistors in a particular one of the weighted arrays being adapted to receive respective signals of a given one of the pairs, each of the transistors in each of the weighted arrays having a substantially equal width such that the comparator circuit is configured to provide an analog common mode comparison.
20. The comparator circuit of claim 1 wherein each of the first and second input legs comprises a weighted array of transistors, the first and second input signals each comprising one or more analog input signals, inputs of parallel transistors in a particular one of the weighted arrays being adapted to receive corresponding ones of the analog input signals, each of the transistors in each of the

weighted arrays having a substantially equal width such that the comparator circuit is configured to provide an analog common mode comparison.

21. The comparator circuit of claim 1 being a first comparator circuit coupled with a second comparator circuit having an evaluation element and at least first and second input legs each coupled to a corresponding one of a first node and a second node of the evaluation element of the second comparator circuit, the first input leg of the first comparator being adapted to receive an input signal representing a first bound, the second input leg of the second comparator being adapted to receive an input signal representing a second bound, the second input leg of the first comparator and the first input leg of the second comparator both being adapted to receive another input signal, the first and second comparator circuits collectively being adapted to generate an output indicative of whether or not the other input signal falls within the first and second bounds.
22. The comparator circuit of claim 1 having at least a third input leg coupled to the first node of the evaluation element adjacent the first input leg, the third input leg having associated therewith a variable parameter having a value that is a function of a corresponding input signal, the evaluation element being adapted to perform a comparison of the result of an addition of at least first and third inputs applied to the respective first and third input legs with a second input applied to the second input leg.
23. The comparator circuit of claim 1 having a first plurality of input legs including the first leg coupled to the first node of the evaluation element, and a second plurality of input legs including the

second input leg coupled to the second node of the evaluation element, each of the input legs having associated therewith a variable parameter having a value that is a function of a corresponding input signal, the evaluation element being adapted to perform a comparison of the result of an addition of a first plurality of inputs applied to respective ones of the first plurality of input legs with the result of an addition of a second plurality of inputs applied to respective ones of the second plurality of input legs.

24. The comparator circuit of claim 22 being implemented as a serial adder-binary search (SA-BS) circuit having a finite state machine being adapted to generate inputs for application to the second input leg in accordance with a binary search process, so as to determine the result of an addition of inputs applied to the first and third input legs.

25. The comparator circuit of claim 24 wherein the SA-BS circuit is one of m SA-BS circuits each being adapted to perform an n-bit function so as to implement an $m \times n$ -bit serial adder.

26. The comparator circuit of claim 1 wherein a first set of input legs associated with the first node of the evaluation element and a second set of input legs associated with the second node of the evaluation element are adapted to receive a substantially constant current, for at least a designated period of time, so as to implement an analog adder function.

27. The comparator circuit of claim 23 further comprising a multiplexer being adapted to select a particular pair of the inputs for propagation to an output thereof so as to implement an add-compare-select (ACS) function.
28. The comparator circuit of claim 23 being one of a plurality of ACS circuits, each being adapted to compare at least a first pair of inputs with a second pair of inputs, the plurality of ACS circuits being implemented in a layered architecture having a plurality of layers including a final layer having a single one of the ACS circuits, the layered architecture being adapted such that winning pairs from one layer are compared against one another at a subsequent layer until a final winning pair is identified.
29. The comparator circuit of claim 28 further comprising an associated adder being adapted to perform an addition of the final winning pair of inputs.
30. The comparator circuit of claim 1 being a first comparator circuit and further comprising at least a second comparator circuit coupled in parallel therewith so as to implement a coupled memory cell comparator.
31. The comparator circuit of claim 30 further comprising a third comparator circuit having first and second input legs each coupled to a corresponding one of a first and second input leg of one of the first comparator circuit and the second comparator circuit.

32. The comparator circuit of claim 1 wherein the first and second input legs each have associated therewith a plurality of mask inputs, the mask inputs being adapted to receive mask signals operative to configure the first and second input legs so as to implement a masking of corresponding portions of the first and second input signals from consideration in the comparison performed by the evaluation element.

33. The comparator circuit of claim 1 wherein the first and second input legs each comprise a plurality of variable resistances arranged in a stack, each of the variable resistances having an input associated therewith, and the evaluation element comprises a differential amplifier.

34. The comparator circuit of claim 1 wherein at least one of the first and second input legs includes an offset signal input, the offset signal input being adapted to introduce signal information into the comparator circuit.

35. The comparator circuit of claim 34 wherein the signal information comprises carry input signal information.

36. A comparator circuit comprising:

an evaluation element; and

at least first and second input legs each coupled to a corresponding one of a first and second node of the evaluation element, the first and second input legs being adapted to receive respective first and second non-complementary input signals, each of the first and second input legs

having associated therewith a variable parameter having a value that is a function of a corresponding one of the input signals, the evaluation element being adapted to perform a comparison of the first and second input signals.

37. An integrated circuit comprising:

at least one comparator circuit, the comparator circuit comprising an evaluation element, and at least first and second input legs each coupled to a corresponding one of a first and second node of the evaluation element, the first and second input legs having non-complementary structures relative to one another and being adapted to receive respective first and second input signals, each of the non-complementary structures having associated therewith a variable parameter having a value that is a function of a corresponding one of the input signals, the evaluation element being adapted to perform a comparison of first and second input signals.

38. A comparator circuit comprising:

an evaluation element; and

at least first and second input legs each coupled to a corresponding one of a first and second node of the evaluation element, the first and second input legs being adapted to receive respective first and second input signals, each of the first and second input legs having associated therewith a variable parameter having a value that is a function of a corresponding one of the input signals, the evaluation element being adapted to perform a comparison of the first and second input signals, wherein outputs of the comparator circuit are isolated from corresponding output nodes of

the evaluation element such that the comparison is substantially independent of asymmetry associated with the outputs of the comparator circuit.

39. A comparator circuit comprising:

a plurality of add-compare-select (ACS) circuits implemented in a layered architecture having a plurality of layers including a final layer having a single one of the ACS circuits and an associated adder being adapted to perform an addition of a final winning pair of inputs, the layered architecture being configured such that winning pairs from one layer are compared against one another at a subsequent layer until the final winning pair is identified.

40. (Amended) A circuit comprising at least first and second input legs, the first and second input legs having non-complementary structures relative to one another, each of the non-complementary structures having associated therewith a variable parameter having a value that is a function of a corresponding input signal, a difference in the variable parameters associated with the first and second input legs being detectable in the circuit;

wherein at least one of the first and second input legs comprises a weighted array of transistors, each of the transistors in the weighted array adapted to receive a particular portion of an input signal applied to that leg.

41. The circuit of claim 40 further comprising an evaluation element, wherein the first and second input legs are each coupled to a corresponding one of a first and second node of the evaluation

element, the evaluation element being adapted to perform a comparison of first and second input signals applied to the respective first and second input legs.