Cone: A set C is called a Cone (non-negative homogeneou)

68

4x E C, and 4 0 >0, Ox E C

⇒ since θ can be zero ⇒ θ ∈ core.

It x 1.8 in c then the ray from 0 to x must be in c.

Conver Cone

A Set C 18 a Commer Come if H 18 a Conc and Connex.

→ + θ, θ, ≥ ≥ 0 and + x, x, ∈ C

9, x, → 92x2 € C

OA live passing through origin is affine, subspace,
and a Conver Cone
3 A substace is a hop a conver core.
Space of Positive Semidelinite Motrices
S_+ = } x E S : X 70 } S_+ = } x E S : X > 0
Space of Symmotric matrices N Space of Symmotric matrices OF S++
Sty is a convex cone.
Let X and Y E SA
$ \sqrt{\tau} \left(\theta_1 \times + \theta_2 \times \right) \sqrt{\epsilon} $
$\frac{\theta,\sqrt{1}\times1+\theta_2\sqrt{1}}{70}>0$
Similar to affine hall and convex hall of a sex,
use can define contre hull of a Set.
Conic Combination of a set of points is: airen 2,, xu and 0,,, Ox 20
0,x,+ 02x2++0,xx is celled conic

9,x, + 92x2++0, xx is colled conic
conic hull of a set is the set of all conic combinations of c.
conic combinations of c.
= } 0, x, + + 0, x, b; >0, x; & c}
conic hull = R? conver hull = Conver hull
Convex hall
o G
- 2407
& Any norm ball is conven
Gregoralless of the norm
& An ellipsoid is a con vex set.
Norm Cone:
2 24
$C = \frac{2}{3}(x,t)$: $ x \ge t$ $\int C dx$

$C = \begin{cases} (x,t) : x \ge t \end{cases} \subset \mathbb{R}$
It is a Convex conc.
Second-Order cone => norm cone corresponding to 11.11=11.11
$C = \frac{3}{3}(x,t) \in \mathbb{R}^{n+1}, x _2 \leq t^{\frac{n}{2}} = z^{\frac{n}{2}}$
Quadratic Cone
$\begin{cases} x \\ t \end{cases} = \begin{cases} x \\ t \end{cases} = 0, t > 0$
$Z^TRZ \leq 0$ Oughetic equation
Operations that presure Convexity of Sets
Affine functions and convex sets Let $f(x) = Ax + b$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}$ be an affine function.
(1) Let $S \subset \mathbb{Q}^n$ be a Convex Set $S \longrightarrow S \longrightarrow$

S1+52 18 a convex 80+ 8,+52 = } x+y:x ES, , y ES2} 6 & (x,8) = x+y 4) If SCRXR=R is convex then projection of S ando Some of its condinates is convex. (5) $S = \{x : A(x) \leq B\} \not\triangleq A_i \leq and B are$ Symmetric (Sm) $A(x) - B \leq 0 \Rightarrow B - A(x) \geq 0$ where A(x) = x, A, + -- + x, A, EX, A, + --- + x, A, 38 => Linear motrix (LMI) Let f: R > S 26x> = B-A6G $S = 2(S_{+}) = {x : B - Ax > 0}$ Convex SIC See-inset of a Convex Seg

Class Notes Page 6

Berefestive function:

. Jerstoopine function.

P: R = R with down P= Rx R++

 $P(z,t) = \frac{z}{t}$

If C = down P is Conven then

P(C) = }P(x): x & C}

is conver.

Convex Functions

Typically, ue prove functions are convex in four different ways:

1) Jensen's inequality | zeroth - order condition

4 0 € (0,1) + (1-0) x2) = 0 f(x,) + (1-0) f(x2)

(2) If f is second-order different in ble then we show that

726x 20 Ax

3) f is convex if and only if its restriction \$(b)=\$(z+tv) and show it is conver for any I and V Example: Show that $f(x) = \log \det X$ is concan on donn &= 8+ (ps. del. motrices) Let us work with $\frac{7}{4}(E) = 2(Z+EV)$ and Show that it is concone in t for any Z and V matrices. Since $t=0 \Rightarrow we$ have f(Z) $go Z \in S_{++}$ $f(t) = \log \det (Z+tV) \Rightarrow Z^{2} = U \wedge U$ = 10gdet (Z2(I+tZVZ)Z) = 100/96f z, 96f (I+ fz, 15, 15).96fz) = 108 (get (I+fz, 12, 15), 96+ 5) = 100 get (I+FI NI) + logdet I Let 37:3; be the eigenvalues of Z 12

Let 3'x; J: be the eigenvalues of L VL => Eigenvalues of (I+ FZ VZ) one of 1++xil:-. Let (M) = To eigenvalues (M) >2(E) = 108 TI (1+ +7i) + 108det Z = = 108(1+t 72) + 108det Z Z(t) is twice-differentiable in t $\frac{2}{5}(f) = \frac{1}{5} \frac{1+5}{5} + 0$ $f''(E) = -\frac{1}{2} \frac{\lambda_{i}^{2}}{(1+t\lambda_{i})^{2}} \leq 0 \Rightarrow \log \det x$ is Concara Va