KONSTRUKČNÍ USPOŘÁDÁNÍ PC – SOCKETY, CHLAZENÍ, CHIPSETY

- Vnitřní struktura, popis jednotlivých částí základní desky
- Chipset
- Typy a charakteristiky socketů Intel a AMD
- Vliv zátěže a taktovací frekvence na spotřebu
- TDP a návrh chlazení
- Typy a charakteristika chlazení procesoru, princip fungování Heatpipe
- Technologie TCC, EIST, Inteligent Power Capatibility, Cool'n'Quiet, Turbo boost

Vnitřní struktura a popis jednotlivých části základní desky

- Účelem základní desky je propojit jednotlivé součástky PC do fungujícího celku a poskytnout jim elektrické napájení
- Nejdůležitější IO jsou zabudovány v čipové sadě
- Skládá se z:
 - Sokety
 - Paměťové sloty operační paměť
 - o Non volatile paměť (Flash ROM) obsahuje firmware nebo BIOS
 - o CLK generátor produkuje hodinový signál za účelem synchronizace různých komponent
 - Sloty pro karty (grafické, sítové) PCI express
 - Napájecí konektory
 - Konektory předního panelu
 - o Baterie
 - o BIOS
 - o Konektory pro periferie
 - SATA konektory pro disky
 - o I/O řadič
 - o Sběrnice AGP, ISA

Chipset

- Nejdůležitější logická obvod základní desky
- Umožnuje procesoru komunikovat s ostatními částmi PC -> řídí komunikaci
- V obvodech čipové sady jsou integrovaný řadiče, které na základě zpracování instrukcí generují řídící signály pro tato zařízení
- Sběrnice jsou uspořádány hierarchicky od nejrychlejší (FSB) po nejpomalejší (ISA)
- Obsahuje mosty pro propojení různých sběrnic mezi sebou
 - Jižní most
 - Severní most
- Dělení:
 - o Čipová sada s obvody severního a jižního mostu
 - Čipová sada s integrovaným řadičem paměti v CPU
 - Čipová sada s integrovaným severním mostem

- Severní most = North Bridge
 - Systémový řadič, nazýván MCH (Memory Controler Hub)
 - Přímo komunikuje s CPU, OP a GPU
 - S jižním mostem pomocí speciální sběrnice DMI
 - Propojen s CPU pomocí FSB (front Side Bus)
 - 64 bit
 - Od frekvence sběrnice se odvíjí taktovací frekvence CPU a OP
 - Během 1 CLK dokáže přenést data 4x
 - V případě víceprocesorového systému sdílejí CPU sběrnici FSB
 - Nemožnost komunikace CPU přímo mezi sebou
 - Snížení přenosové rychlosti
- Jižní most = South Bridge
 - Nazván také ICH (Input Output Controler Hub)
 - Pomalejší než MCH
 - Umožnuje připojení periferních zařízení k MB
 - Obsahuje řadič disků (ATA, SATA, eSATA, RAID) a rozhraní (USB, PS/2)"
 - o Řídí komunikace na sběrnici PCle
 - K obvodu muže být připojen zvukový adaptér, paměťový obvod BIOS, integrovaný síťový adaptér
 - Se severním mostem propojeno pomocí DMI

- Čipové sady s integrovaným řadičem OP
 - o Severní most dostal označení IOH = Input Output Hub
 - o Řadič operační paměti se přesunul z IOH do CPU
 - o Místo FSB sběrnice se objevuje Quick Path Interconnect QPI
 - Rychlejší komunikace
 - Odolnější proti chybám vzniklých při přenosu
 - Lepší kompatibilita s OP
 - Lepší chlazení díky integraci v CPU
 - o Vyšší teplo vyzářené z CPU
 - QUICK PATH INTERCONNECT
 - Umožnuje komunikaci více CPU přímo mezi sebou
 - Full duplex (2x20bit)
 - Každá IOH obsahuje 2 QPI
 - Využití jednoho IOH pro každý CPU vlastní QPI
 - Využití dvou IOH pro každý CPU vlastní IOH
- Čipová sada s plně integrovaným severním mostem
 - o Kromě řadiče OP je integrován také řadič GPU sběrnice
 - Základní deska nově obsahuje PCH
 - Platform Controler Hub
 - Propojeno s CPU pomocí DMI
 - Zastává funkci jižního mostu

Typy a charakteristika sockterů Intel a AMD

- Patice (socket) je konektor pro připojení CPU k základní desce
- Slot = konektor, do kterého se procesor staví
- Typ patice určuje typ použitého procesoru
- Mají podobný tvar, ale liší se počtem otvorů pro piny procesoru
- INTEL
 - o LGA 1151
 - Skylake
 - o LGA 2011
 - Core i5, i7
 - o Socket 1150
 - Haswell
 - Socket 1155
 - Sandy Bridgge
 - o Socket 1366
 - Socket 1156
- AMD
 - Socket AM4
 - Ryzen
 - o Socket FM2+
 - Socket FM1, FM2
 - o Socket AM3+, AM3, AM2, AM2+
- INTEL vs. AMD
 - LGA = plošky
 - O PGA = piny (háčky)
 - o Intel používá plošky
 - o AMD používá hlavně piny, ale i plošky
 - o Liší se jinou definici TDP

TDP a návrhy chlazení

- Thermal Design Power
- Udává, jaký tepelný výkon zařízení může vydávat (trvalý tepelný výkon)
- Slouží k dimenzování výkonu chladiče
- Čím větší TDP, tím větší a výkonnější chladič potřebujeme

- Pasivní chlazení

- Kovová nepohyblivá součástka, která má na sobě navařená žebra pro zajištění co největší plochy z důvodu předávání tepla okolnímu vzduchu
- Vyrobeny z mědi nebo hliníku
- Chladič je uchycen pomocí šroubků na základní desce, mezi CPU a chladičem je nanesena tenká vrstva teplo vodivé pasty, která zlepšuje přenos tepla
- o Heatpipe

- Aktivní chlazení

- Aktivní chlazení je prováděno proudícím vzduchem
- o Proud vzduchu je obvykle vytvářen ventilátorem
- o Použito pro chlazení CPU, GPU, zdroje nebo pevných disků
- pomocí aktivních chladičů se vytváří tzv. "tunely", v principu jde o dosažení lepšího proudění vzduchu skříní (na přední části je jeden aktivní chladič, který nasaje vzduch do skříně, ten se zde ohřeje a zdrojem nebo dalším aktivním chladičem pod zdrojem je vysáván mimo skříň)
- o Ventilátor
 - 3-pinové které dodávají konstantní napětí třetí vodič je snímač otáček
 - V případě 3pinového konektoru potřebujete dražší chladič, který si reguluje otáčky v závislosti na teplotě mikroprocesoru.
 - 4-pinové (PWM pulse-width modulation)
 - Ty jsou napojeny na elektroniku desky, která pulzně reguluje otáčky ventilátoru v závislosti na teplotě.
 - Pak stačí jednodušší a levnější ventilátor
- Vodní chlazení, chlazení tekutým dusíkem, oxidem uhličitým, tekutým kovem

HEAT PIPE (pasivní chlazení)

- Slouží k přenosu tepla z jednoho místa na druhé za pomocí pracovní látky
- Jde o uzavřený kovový válec, který je naplněný tekutinou
- Na jednom konci je zasazeny do zdroje tepla a na druhém do chladiče
- Po dosažení teploty, na kterou je nastaven se začne pracovní látka (čpavek, voda, alkohol) odpařovat a proudí směrem k ochlazovanému místu, kde kondenzuje
- Proud par se dává do pohybu na základě rozdílných tlaků v místě výparníku (vyšší tlak) a v místě kondenzátoru (nižší tlak)
- Návrat kondenzátu zpět ke zdroji tepla je zajištěn kapilárními silami v porézním materiálu, který kondenzát nasává zpět ke zdroji tepla (pomocí knotu)
- Umožňuje, aby pracoval v poloze, kdy je kondenzát níže než výparník

ROZDÍL MEZI HEAT PIPE A DVOUFÁZOVÝM TERMISIFONEM

- Termosifonové chlazení na rozdíl od heat pipe dokáže vyvinout velký průtok úzkým průřezem a odvést tak značné množství tepla z velmi malé oblasti
- Vyžaduje dostatečný výškový rozdíl, neměnnou orientaci a stabilní podmínky

Tepelná ochrana procesoru

- Teplo, které CPU vyprodukuje je potřeba spolehlivě odvádět
- Pokud by došlo k poruše chlazení, mohlo by to mít pro CPU katastrofální následky
- Proto existují technologie, které mohou stav kritické teploty ovlivnit

Tepelné ochrany – Technologie

- TCC = Thermal Control Circuit
 - Vkládá nulové cykly
 - o Tepelná dioda, která se používá k regulaci otáček ventilátoru
 - o Při překročení teplotního limitu je vyslán signál, který aktivuje CPU throtlling
 - Výsledkem je snížení napětí a frekvence CPU
- EIST = Enhanced Intel Speed Technology
 - o CPU mění za běhu dynamicky taktovací frekvenci a napětí podle zátěže
- Inteligent Power Capatibility
 - o Inteligentní řízení spotřeby
 - o Funkce, která napájí jednotlivé sub systémy pouze v případě potřeby
- Cool'n'Quiet
 - o Používáno AMD
 - Pracuje obdobně jako EIST od Intelu
 - o Dynamická změna taktovací frekvence a napětí na CPU podle zátěže
- Turbo Boost
 - Umožnuje jednotlivým jádrům CPU běžet rychleji, než je jejich základní frekvence za předpokladu, že to okolnosti dovolují
 - o Dochází ke zvýšení výkonu v jedno i více vláknových operacích

Vliv zátěže a taktovací frekvence na spotřebu

- Při přetaktování se spotřeba jednotlivých komponent několikanásobně zvyšuje
- Je třeba zvolit zdroj s dostatečnou výkonovou rezervou
- S vyšší frekvenci stoupá výdej tepla

