요약

이 연구는 기존의 로봇 자율주행에 널리 쓰이는 SLAM 과 딥러닝을 활용하여 현실 CCTV의위치를 가상환경에서 찾는 방법을 탐구합니다. 건축적 요소(예: 벽,바닥,창문 등)와 공간인식을 위한 시설적 요소 (예: 이동가능한 시설, 고정 시설 등)를 선별합니다. 이를 통해 실제환경의 CCTV의 위치 및 각도를 검출하여 미리 구성된 가상환경에 동일하게 배치하는 것을목표로 하고 있습니다.

배경

현실의 정보를 가상으로 투영하기 위한 다양한 방법들이 시도 되고 있습니다. 여기에 가장핵심적인 HW로써 CCTV가 많이 쓰이고 있습니다.

이에 공장이나 대형 병원 등 수요가 많은 다양한 시설에서는 CCTV의 대수가 몇백대를 넘어가기 때문에 수동으로 추가, 수정 등의 과정을 거치는 것이 어려운 현실입니다. 따라서 자동적으로 CCTV를 미리 구성된 가상현실내에 동기화하는 방안을 고안 할 것입니다.

연구 질문

실제 환경 공간에 대해 동일하거나 그 이하의 품질(BIM기준 LOD 300이하로 구성)로 구성된 미리 구성된 가상환경이 존재할때, 실제 환경의 CCTV의 위치와 각도를 해당 가상환경에서 찾는 방안

- 1) CCTV를 가상환경에서 수많은 사진을 찍어 sfm을 기반으로한 알고리즘으로 처리할 수 있는지?
- 2) CCTV에서 몇 가지 시설 요소를 제거하여 가상현실과의 정합성을 올릴 수 있는지?

연구 방법

- 대상 CCTV 이미지 처리: 타겟이 되는 cctv의 이미지를 필요한 객체들만 남기는 작업을 하고, 처리된 이미지를 넘긴다.
- 3D Engine에서의 처리 : cctv카메라가 있을 수 있는 범위를 제한하고 이에 대해 Unity scene안에서 수 많은 사진을 가상에서 찍으며 Target된 이미지와 비교하며 가장 비슷한 이미지를 찾는다.
- CCTV 위치 확정 : Target된 이미지와 3D Engine에서의 이미지 후보를 보여주며 최종 맞는 이미지를 골라 해당 이미지를 찍은 카메라의 위치와 각도를 특정한다.

기대 결과

연구는 CCTV의 배치를 자동화 할 뿐 아니라, 이를 통해 가상과 현실을 잇는 교두보의 역할을 할 것으로 예상된다. 이를 통해 다양한 공간을 Digital Twin화 하는데 있어 확장 전개가 빠르고 신속하게 이루어 질 수 있을 것이라 생각된다. 또한 추후 CCTV가 배치되지 않은 영역을 검출하고 이 공간들에 있어서 몇 개의 CCTV를 설치하여야 사각지대가 없을지 확인 하는 방안을 확립할 수 있을 것이라 생각한다.

함의

실제 Digital Twin의 환경을 구성하고 판매하기 위한 취약한 한계를 알고리즘 및 딥러닝을 이용하여 보안한다. 이를 통해 더욱 Digital Twin 환경을 다양한 공간에 전개 할 수 있을 것이다.