Minimization of DFA Using Equivalence Theorem

Step-01:

• Eliminate all the dead states and inaccessible states from the given DFA (if any).

Dead State

All those non-final states which transit to itself for all input symbols in \sum are called as dead states.

Inaccessible State

All those states which can never be reached from the initial state are called as inaccessible states.

Step-02:

Draw a state transition table for the given DFA.

ullet Transition table shows the transition of all states on all input symbols in Σ .

Step-03:

Now, start applying equivalence theorem.

- Take a counter variable k and initialize it with value 0.
- Divide Q (set of states) into two sets such that one set contains all the non-final states and other set contains all the final states.
- This partition is called P₀.

Step-04:

- Increment k by 1.
- Find P_k by partitioning the different sets of P_{k-1}.
- In each set of P_{k-1} , consider all the possible pair of states within each set and if the two states are distinguishable, partition the set into different sets in P_k .

Two states q_1 and q_2 are distinguishable in partition P_k for any input symbol 'a', if δ (q_1, a) and δ (q_2, a) are in different sets in partition P_{k-1} .

Step-05:

- Repeat step-04 until no change in partition occurs.
- In other words, when you find $P_k = P_{k-1}$, stop.

Step-06:

- All those states which belong to the same set are equivalent.
- The equivalent states are merged to form a single state in the minimal DFA.

Number of states in Minimal DFA = Number of sets in Pk

PRACTICE PROBLEMS BASED ON MINIMIZATION OF DFA-

Problem-01:

Minimize the given DFA-

Solution-

<u>Step-01:</u>

The given DFA contains no dead states and inaccessible states.

<u>Step-02:</u>

Draw a state transition table-

	а	b
→ q0	q1	q2
q1	q1	q3

q2	q1	q2
q3	q1	*q4
*q4	q1	q2

Step-03:

Now using Equivalence Theorem, we have-

$$P_0 = \{\; q_0 \;,\; q_1 \;,\; q_2 \;,\; q_3 \;\} \; \{\; q_4 \;\}$$

$$P_1 = \{ \; q_0 \; , \; q_1 \; , \; q_2 \; \} \; \{ \; q_3 \; \} \; \{ \; q_4 \; \}$$

$$P_2 = \{\; q_0 \;,\; q_2 \;\} \; \{\; q_1 \;\} \; \{\; q_3 \;\} \; \{\; q_4 \;\}$$

$$P_3 = \{\; q_0 \;,\; q_2 \;\} \; \{\; q_1 \;\} \; \{\; q_3 \;\} \; \{\; q_4 \;\}$$

Since $P_3 = P_2$, so we stop.

From P_3 , we infer that states q_0 and q_2 are equivalent and can be merged together.

So, Our minimal DFA is-

Problem-02:

Minimize the given DFA-

Solution-

Step-01:

- \bullet State q_3 is inaccessible from the initial state.
- So, we eliminate it and its associated edges from the DFA.

The resulting DFA is-

Step-02:

Draw a state transition table-

a b

→ q0	*q1	q0
*q1	*q2	*q1
*q2	*q1	*q2

<u>Step-03:</u>

Now using Equivalence Theorem, we have-

$$P_0 = \{\; q_0 \;\} \; \{\; q_1 \;,\; q_2 \;\}$$

$$P_1 = \{\; q_0 \;\} \; \{\; q_1 \;,\; q_2 \;\}$$

Since $P_1 = P_0$, so we stop.

From P_1 , we infer that states q_1 and q_2 are equivalent and can be merged together.

So, Our minimal DFA is-

Problem-03:

Minimize the given DFA-

Solution-

Step-01:

The given DFA contains no dead states and inaccessible states.

Step-02:

Draw a state transition table-

	0	1
→ q0	q1	q3

q1	q2	*q4
q2	q1	*q4
q3	q2	*q4
*q4	*q4	*q4

Step-03:

Now using Equivalence Theorem, we have-

$$P_0 = \{\; q_0 \;,\, q_1 \;,\, q_2 \;,\, q_3 \;\} \; \{\; q_4 \;\}$$

$$P_1 = \{\; q_0 \;\} \; \{\; q_1 \;,\; q_2 \;,\; q_3 \;\} \; \{\; q_4 \;\}$$

$$P_2 = \{\; q_0 \;\} \; \{\; q_1 \;,\; q_2 \;,\; q_3 \;\} \; \{\; q_4 \;\}$$

Since $P_2 = P_1$, so we stop.

From P_2 , we infer that states q_1 , q_2 and q_3 are equivalent and can be merged together. So, Our minimal DFA is-

Minimal DFA

Problem-04:

Minimize the given DFA-

Solution-

Step-01:

- \bullet State q_5 is inaccessible from the initial state.
- So, we eliminate it and its associated edges from the DFA.

The resulting DFA is-

<u>Step-02:</u>

Draw a state transition table-

	0	1
→q0	q1	q2
q1	q2	*q3
q2	q2	*q4
*q3	*q3	*q3
*q4	*q4	*q4

<u>Step-03:</u>

Now using Equivalence Theorem, we have-

$$P_0 = \{\; q_0 \;,\, q_1 \;,\, q_2 \;\} \; \{\; q_3 \;,\, q_4 \;\}$$

$$P_1 = \{\; q_0 \;\} \; \{\; q_1 \;,\; q_2 \;\} \; \{\; q_3 \;,\; q_4 \;\}$$

$$P_2 = \{\; q_0 \;\} \; \{\; q_1 \;,\; q_2 \;\} \; \{\; q_3 \;,\; q_4 \;\}$$

Since $P_2 = P_1$, so we stop.

From P2, we infer-

- States q₁ and q₂ are equivalent and can be merged together.
- States q₃ and q₄ are equivalent and can be merged together. So, Our minimal DFA is-

