(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 18. August 2005 (18.08.2005)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2005/076363\ A1$

- (51) Internationale Patentklassifikation⁷: H01L 29/12, 29/88, 29/772, 21/335, 33/00, H01S 5/34
- (21) Internationales Aktenzeichen: PCT/DE2005/000080
- (22) Internationales Anmeldedatum:

21. Januar 2005 (21.01.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität:
 - 10 2004 005 363.4 3. Februar 2004 (03.02.2004) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): FORSCHUNGSZENTRUM JÜLICH GMBH [DE/DE]; Wilhelm-Johnen-Strasse, 52425 Jülich (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): INDLEKOFER, Michael [DE/DE]; Hermann-Sudermann-Str. 22, 52078 Aachen (DE). LÜTH, Hans [DE/DE]; Eupener Strasse 299 B, 52076 Aachen (DE). FÖRSTER, Arnold [DE/DE]; Breite Strasse 27, 52152 Simmerath (DE).
- (74) Gemeinsamer Vertreter: FORSCHUNGSZENTRUM JÜLICH GMBH; Fachbereich Patente, Wilhelm-Johnen-Strasse, 52425 Jülich (DE).

[Fortsetzung auf der nächsten Seite]

- (54) Title: SEMICONDUCTOR STRUCTURE
- (54) Bezeichnung: HALBLEITER-STRUKTUR

(57) Abstract: The invention concerns semiconductor structure comprising at least one first material region and second material region. whereby the second material region epitaxially surrounds the first material region and forms a boundary surface. The structure is characterized in that Fermi level pinning is present on the non-epitaxial boundary surface of the second material region located opposite the boundary surface of both material regions, and the first material region forms a quantum well for free charge carriers. This advantageously results in enabling a controllable charge carrier concentration to be set in the quantum well.

(57) Zusammenfassung:

Die Erfindung betrifft eine Halbleiter-Struktur. Die Halbleiter-Struktur weist mindestens einen ersten Materialbereich und einen zweiten Materialbereich auf, wobei der zweite Materialbereich den ersten Materialbereich epitaktisch umschliesst und eine

Grenzfläche ausbildet. Die Struktur ist dadurch gekennzeichnet, dass Fermi-Level-Pinning an der, der Grenzfläche

[Fortsetzung auf der nächsten Seite]

WO 2005/076363 A1

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU,

TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

. 1888 8 | 1888 | 1888 8 | 1888 8 | 1888 8 | 1888 8 | 1888 8 | 1888 8 | 1888 8 | 1888 8 | 1888 8 | 1888 8 | 1888

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\u00fcr \u00e4nnderungen der Anspr\u00fcche geltenden Frist; Ver\u00f6ffentlichung wird wiederholt, falls \u00e4nderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

beider Materialbereiche gegenüberliegenden, nicht epitaktischen Grenzfläche des zweiten Materialbereichs vorliegt und der erste Materialbereich einen Quantentopf für freie Ladungsträger ausbildet. Dadurch wird vorteilhaft bewirkt, dass eine steuerbare Ladungsträger-Konzentration im quantentopf eingestellt werden kann.

Beschreibung Halbleiter-Struktur

Die Erfindung betrifft eine Halbleiter-Struktur.

5

10

15

20

25

In der Halbleiter-Elektronik werden Bauelemente mit immer kürzeren Schaltzeiten und geringerem Leistungsbedarf gewünscht. Der Weg dahin führt über Mikrostrukturen aus Halbleitermaterialien mit möglichst kurzen Wegen für die Elektronen zwischen Injektions- und Extraktionspunkt (Kanallängen) und hohen Beweglichkeiten, das heißt mit guter Response auf äußere elektrische Felder.

Im Labor werden Standardwerte für sogenannte High Electron Mobility Transistoren (HEMT) bei Kanallängen < 1 μ m mit Beweglichkeiten μ_e > 10^6cm^2 / V*s und Schaltzeiten < 10 ps erreicht. In einem HEMT werden mehrere gut definierte Schichten aus verschiedenen Halbleitermaterialien, z. B. aus GaAs und AlGaAs mit Dicken im Bereich von Nanometern, das heißt bis hinunter zu einigen Atomlagen, und definiert dotiert mit verschiedenen elektrisch aktiven Fremdatomen hergestellt. Diese Schichten sind in der Ebene lateral auf Bruchteile von μ m strukturiert.

Im HEMT ist das Prinzip der Modulationsdotierung für zwei-dimensionale Halbleiterheterostrukturen genutzt. Dabei wird durch eine einseitig planar epitaktisch aufgewachsene Halbleiterheterostruktur eine räumliche Trennung von dotiertem Halbleitermaterial und dem undotierten Halbleitermaterial des Transistorkanals, in dem

5

10

15

20

25

sich an der Grenzfläche ein steuerbares zweidimensionales Ladungsträgergas, z.B. in Form eines Leitungsband-Elektronengases ausbildet, erzielt. Durch die Trennung von Kanal und Dotierstörstellen wird eine stark erhöhte Beweglichkeit des Ladungsträgergases ermöglicht.

2

Im HEMT stellt sich in einer Schicht mit einer kleinen Bandlücke an der Grenzfläche zu einer zweiten Schicht mit einer großen Bandlücke eine hohe Konzentration von Ladungsträgern ein, die parallel zur Grenzfläche eine hohe Beweglichkeit haben, während sie in der dritten Dimension auf einen Bereich von z. B. 10 Nanometer an der Grenzfläche eingeschränkt bleiben.

Ein Quantentopf ist eine Struktur, die für die Kristallelektronen in eine Raumrichtung als Potentialtopf mit einer Ausdehnung vergleichbar der de-Broglie-Wellenlänge wirkt. Bei den meisten Halbleitern ist dies bei Abmessungen von einigen 10 Nanometern oder weniger erfüllt. Es bildet sich ein sogenanntes, quasi zweidimensionales Elektronengas aus. Die Ladungsträger bleiben in x- und in y-Richtung frei beweglich, entlang der z-Achse sind die Energieeigenwerte quantisiert.

Die hohen Anforderungen an die Perfektion derartiger Schichten und Bereiche in Nanostrukturen können durch Hetero-Epitaxie, z. B. in einer Molekularstrahl-Epitaxie-Anlage, erfüllt werden. Mit solchen Verfahren werden die Strukturen zur Ausbildung eines zweidimensionalen Elektronengases hergestellt.

5

10

15

20

25

Wenn die Abmessungen der Leiterbahnen in die Größenord-

PCT/DE2005/000080

nung der Fermiwellen kommen, werden die möglichen Elektronenbahnen eingeschränkt. Dann bekommt die Quantenmechanik wegen des Wellencharakters der Elektronen einen wesentlichen Einfluss auf die stationären Zustän-

de und auf den Transport der Elektronen.

Wird die Dimension eines zweidimensionalen Elektronengases durch laterale Strukturierung weiter eingeschränkt, werden eindimensionale oder sogar nulldimensionale, das heißt in jeder Raumrichtung einge-

schränkte Systeme, sogenannte Quantendots, realisiert.

Aus dem Stand der Technik sind Verfahren zur Herstellung von Strukturen bekannt, in denen die freien Elektronen oder Löcher in bestimmten Raumrichtungen auf Nanometerbereiche eingeschränkt sind.

nometerbererche erngeschrankt sind.

Derartige Bauelemente, die auf ein- oder nulldimensionalen Halbleiterstrukturen basieren, sind aufgrund
quantenmechanischer Effekte vielversprechende Systeme
für verbesserte Transistor- und Dioden-Bauelemente und
neuartige Quanten-Nano-Bauelemente. Die Dimensionsreduktion in zwei bzw. drei Raumrichtungen zu, in Bezug
auf die Ladungsträger-Beweglichkeit, ein- bzw. nulldimensionalen Strukturen, basiert auf der Quantisierung
der eingeschränkten Freiheitsgrade der freien Ladungsträger. Dazu muss die de-Broglie-Wellenlänge des Ladungsträgers, also des Kristall-Elektrons oder des
Kristall-Lochs von der Größenordnung der Abmessungen
der eingeschränkten Raumrichtungen sein.

5

20

25

Aus Björk et al. (Björk, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C., Magnusson, M.H., Deppert, K., Wallenberg, L.R., Samuelson, L. (2002), One-dimensional heterostructures in semiconductor nanowhiskers. Applied Physics Letters 80, 1058) ist epitaktisches und teilweise selbstorganisiertes Wachstum von eindimensionalen Halbleiterheterostrukturen, sogenannten Whiskern, bekannt.

4

PCT/DE2005/000080

Aus Panev et al. (Panev, N., Persson, A.I., Sköld, N.,

10 L. Samueleson (2003), Sharp exciton emission from single InAs Quantum dots in GaAs nanowires. Applied Physics Letters 83, 2238) ist bekannt, Ladungsträger aus
einem GaAs-Substrat in eine InAs-Insel über einen nanowire aus GaAs zu transportieren und Lumineszenz zu erzeugen.

Nachteilig zeigen diese Strukturen eine schlecht steuerbare Ladungsträger-Konzentrationen im Quantendot.

Aufgabe der Erfindung ist es, eine einfach aufgebaute Halbleiter-Struktur bereit zu stellen, mit der eine hohe Konzentration freier Ladungsträger eingestellt und deren räumlicher Verlauf in einem null- oder eindimensionalen Quantentopf gezielt gesteuert werden kann.

Die Aufgabe wird durch eine Halbleiter-Struktur gemäß Hauptanspruch gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den darauf rückbezogenen Patentansprüchen.

WO 2005/076363 5

5

10

15

20

25

Erfindungsgemäß weist die Halbleiter-Struktur mindestens einen ersten Materialbereich und einen zweiten Materialbereich auf. Der zweite Materialbereich umschließt den ersten Materialbereich und ist epitaktisch auf dem ersten Materialbereich angeordnet. In der Halbleiter-Struktur liegt Fermi-Level-Pinning an der, der Grenzfläche beider Materialbereiche gegenüberliegenden, nicht epitaktischen Außenfläche vor, wodurch der erste Materialbereich einen Quantentopf für freie Ladungsträger ausbildet.

PCT/DE2005/000080

Vorteilhaft ist der Quantentopf durch Fermi-Level-Pinning nicht gestört.

Der erste Materialbereich bildet einen Quantentopf für freie Ladungsträger aus, so dass diese quantenmechanisch null- oder eindimensional in ihrer Freiheit eingeschränkt sind, bzw. die Zustände für Ladungsträger liegen 0-d oder 1-d vor.

Dadurch wird vorteilhaft bewirkt, dass im Quantentopf des ersten innen angeordneten Materialbereichs eine hohe Konzentration und Beweglichkeit an Ladungsträgern vorliegt, ohne dass dieser Materialbereich hoch dotiert sein muss. Im Gegensatz zum Stand der Technik ist besonders vorteilhaft eindimensionaler Ladungsträger-Transport im ersten Materialbereich bzw. Quantentopf gezielt einstellbar, was zur Herstellung von Transistoren mit hoher Ladungsträger-Beweglichkeit genutzt werden kann.

Neben eindimensionalen Quantenstrukturen, wie Whiskern und lithographisch hergestellten Mesastrukturen, sind

5

20

25

besonders vorteilhaft auch Inseln ohne Fermi-Level-Pinning an der Grenzfläche des Quantentopfes herstellbar. Die Whisker können mit weiteren Heterostrukturen ausgebildet werden, z.B. mit GaAs / AlGaAs- oder GaN / AlGaN-Bereichen als verarmte Strukturen.

6

Damit ist vorteilhaft gewährleistet, dass die positiven Eigenschaften dieser Halbleiter-Strukturen auch in räumlich übergeordneten Strukturen bis hin zu Lasern und Transistoren ausgenutzt werden.

Das energetische Minimum des Quantentopfs des ersten Materialbereichs liegt entweder unterhalb der Fermi-Energie im Gleichgewicht oder aber weist einen Abstand kleiner gleich k_BT zur Fermi-Energie auf. Dann ist vorteilhaft gewährleistet, dass genügend Ladungsträger im Quantentopf sind und für Transistoren, Dioden und so weiter genutzt werden können.

Die Abmessung bzw. der Durchmesser des ersten Materialbereichs sind so klein, dass die Ladungsträgerbeweglichkeit in mindestens zwei Raumrichtungen quantenmechanisch eingeschränkt ist.

Der erste Materialbereich ist so zum zweiten Materialbereich angeordnet, bzw. ist von diesem so umwachsen, dass das unerwünschte Fermi-Level-Pinning von der Grenzfläche der beiden Materialbereiche, zu der dieser Grenzfläche gegenüberliegenden, nicht epitaktischen Außenfläche, des zweiten Materialbereichs verschoben ist. Das Fermi-Level-Pinning tritt dann an der nicht epitaktischen Außenfläche des zweiten Materialbereichs zu gegebenenfalls weiteren Materialbereichen auf. Sind wei-

5

10

15

20

25

30

tere epitaktische Grenzflächen am zweiten Materialbereich angeordnet, so tritt Fermi-Level-Pinning an der ersten nicht epitaktischen Außenfläche auf.

7

In der Halbleiter-Struktur soll der kürzeste Abstand des Quantentopfes vom Mittelpunkt aus zur nicht epitaktischen Außenfläche, an der das Fermi-Level-Pinning vorliegt, dabei größenordnungsmäßig die Verarmungslänge d nicht unterschreiten. Eine Definition der Verarmungslänge kann Lüth (Lüth H (1996). Surfaces and interfaces of solid materials. 3rd edition, Springer Study Edition, Seite 458) entnommen werden. Die Verarmungslänge ist eine dotierungsabhängige Materialgröße.

Dadurch wird vorteilhaft bewirkt, dass die Konzentration freier Ladungsträger und ihres räumlichen Verlaufes in derartigen ein- und nulldimensionalen Halbleiter-Strukturen mit Hilfe einer lateralen epitaktischen Umwachsung gegebenenfalls mit Dotierung und/oder Grenzflächen-Polarisationsladungen eingestellt und gesteuert werden kann. Aus Dotieratomen des zweiten Materialbereichs können Ladungsträger in den ersten Materialbereich gelangen. Ein oder mehrere optionale äußere Gates können die Ladungsträger-Konzentration im ersten Mate-

Level-Pinning an der Grenzfläche des ersten zum zweiten Materialbereich diese beeinflusst.

rialbereich steuern, ohne dass das unerwünschte Fermi-

Die nicht epitaktischen Grenz- oder Außenflächen der Halbleiter-Struktur zeigen Fermi-Level-Pinning aufgrund von Grenzflächenzuständen. Je nach energetischer Position des Fermi-Level-Pinnings der Struktur, ergeben sich zwei Fälle: Die Verarmung oder die Anreicherung

5

10

15

20

25

30

freier Ladungsträger im Halbleiter nahe der Grenzfläche. Dieser Umstand wird im Rahmen der Erfindung für die Ladungsträger-Konzentration im Quantentopf genutzt. Das gemäß Stand der Technik an der Grenzfläche zwischen zwei Materialbereichen vorhandene Fermi-Level-Pinning wird auf Grund geeigneter Wahl der Materialien oder der Abmessungen und/oder gegebenenfalls der Dotierung der beiden Materialbereiche an die erste nicht epitaktisch ausgebildete Grenzfläche eines äußeren Materialbereichs verschoben und hat somit keinen oder zumindest weniger Einfluss auf die Ladungsträger-Konzentration und Beweglichkeit im Quantentopf des ersten Materialbereichs. Dies wird zur Steuerung der Ladungsträger-Konzentration in dem Quantentopf mittels Elektroden genutzt.

8

PCT/DE2005/000080

Für die Klasse der grenzflächenverarmten Halbleiter mit GaAs, InP, oder GaN als Materialien für den ersten Materialbereich ist die Konzentration freier Ladungsträger in daraus hergestellten Bauelementen, insbesondere mit Durchmessern in der Größenordnung der Verarmungslänge und kleiner, verschwindend gering und praktisch nicht beeinflussbar durch externe Größen, wie z. B. Elektroden. Auch zu hohe Dotierungen können auf Grund des negativen Einflusses auf die Ladungsträger-Beweglichkeit und auf die Steuerung nicht verwendet werden. Eine solche verarmte Struktur ist für elektronische Bauelemente unbrauchbar.

grenzflächenangereicherten Halbleiter mit z.B. InAs, InSb, und anderen sogenannten narrow-gap Materialien für den ersten Materialbereich die Konzentration freier Ladungsträger räumlich nahe der Grenzfläche zwischen

Es wurde weiterhin erkannt, dass für die Klasse der

5

10

15

20

25

30

erstem und zweiten Materialbereich praktisch unveränderlich ist und eine Materialgröße darstellt. Die freien Ladungsträger liefern metallähnliche Eigenschaften, insbesondere elektronische Transporteigenschaften und optische Response. Sie sind praktisch nicht beeinflussbar durch Dotierung und/oder externe Größen, wie z. B. Elektroden. In Bauelementen aus grenzflächenangereicherten Materialien, insbesondere mit Abmessungen in der Größenordnung der Anreicherungslänge, werden die elektronischen Eigenschaften praktisch durch die freien Ladungsträger nahe der Grenzfläche dominiert und sind somit unveränderbar. Eine solche Struktur ist für elektronische Transistor-Bauelemente mit Steuerelektroden ebenfalls unbrauchbar.

9

PCT/DE2005/000080

Die gegebenenfalls dotierten Materialien und/oder die Dicke der beiden Materialbereiche in der Halbleiter-Struktur werden erfindungsgemäß zur Ausbildung eines gezielt mit Ladungsträgern versorgten ersten Materialbereichs so ausgewählt, dass das Fermi-Level-Pinning von der Grenzfläche an die der Grenzfläche gegenüberliegenden, nicht epitaktischen Grenzfläche des zweiten Materialbereichs verschoben ist. Gegebenenfalls ist mindestens ein weiterer epitaktisch oder nicht epitaktisch angeordneter Materialbereich auf dem zweiten Materialbereich angeordneter.

In dem Fall, dass dieser weitere Materialbereich epitaktisch auf dem zweiten Materialbereich angeordnet ist, bildet er vorteilhaft einen beständigen Abschluss der Halbleiter-Struktur, bevor weitere Schichten z. B. mit Gate-Funktion angeordnet werden.

5

10

PCT/DE2005/000080

Das Material des weiteren Materialbereichs kann zwecks Passivierung der Halbleiter-Struktur identisch zum Material des ersten Materialbereichs sein.

Die Halbleiter-Struktur kann auch ein Metall als Material für den weiteren Materialbereich umfassen.

Der erste Materialbereich weist in einer weiteren Ausgestaltung der Erfindung eine Abmessung bzw. einen Durchmesser von kleiner 100 Nanometern, insbesondere eine von 0,5 bis 50 Nanometern, auf.

- 10 Eine Halbleiter-Struktur mit derartigen Abmessungen des ersten Materialbereichs ist gemäß Stand der Technik besonders anfällig gegenüber Fermi-Level-Pinning und kann hier erstmalig mit hoher Ladungsträger-Konzentration bereit gestellt werden.
- Als eine besonders vorteilhafte Halbleiter-Struktur ist GaAs als Material für den ersten Materialbereich und/oder AlGaAs als Material für den zweiten Materialbereich vorgesehen. Diese Materialien sind wegen der quasi-Gitteranpassung epitaktisch gut miteinander in Verbindung zu bringen und dann praktisch versetzungsfrei zueinander angeordnet. Ohne Einschränkung der Erfindung können aber andere Halbleiter-Strukturen mit derartig gitterangepassten Materialbereichen verwendet werden.
- Der zweite Materialbereich kann durch Dotierung ein beliebiges auch inhomogenes Dotierprofil aufweisen. Es
 ist aber auch möglich Polarisationsladungen an der
 Grenzfläche zwischen dem ersten und dem zweiten Materialbereich zur Optimierung des Ladungsträgerprofils im

•

WO 2005/076363

5

10

15

20

25

30

Quantentopf zu nutzen. Die Polarisationsladungen werden abhängig von der kristallographischen Ausrichtung der Grenzflächenbereiche in Beziehung zu den Achsen des Gesamtkristalls genutzt, so dass Dotierungen im zweiten Materialbereich auch vermieden werden können.

11

PCT/DE2005/000080

Der zweite Materialbereich kann mehrere, schellenartig und epitaktisch zueinander angeordnete Flächen aufweisen. Der zweite Materialbereich kann z. B. von der Grenzfläche zum ersten Materialbereich aus GaAs ausgehend, aus einer Abfolge von 20 Nanometer dicken Bereichen aus Al_{0,3}Ga_{0,7}As, AlAs und Al_{0,51}Ga_{0,49}As bestehen. Ein dünner, undotierter oder niedrig dotierter Spacer schließt den zweiten Materialbereich nach außen ab. Der Spacer verringert die Streuung von Ladungsträgern innerhalb des ersten Materialbereichs. Der erste Materialbereich aus GaAs wird von dieser Abfolge umschlossen. Der erste Materialbereich kann hingegen in Längsrichtung, also senkrecht zum zweiten Materialbereich Heterostrukturen aufweisen.

Der erste und der zweite Materialbereich können somit beliebig durch gesondert abgreifbare Heterostrukturen unterbrochen sein. Dadurch sind z. B. resonante Tunneldioden herstellbar.

Der erste Materialbereich der Halbleiter-Struktur soll bei geringer lateraler Ausdehnung von beispielsweise weniger als 50 Nanometern eine Ladungsträger-Konzentration von mindestens 10¹⁰ cm⁻³, insbesondere eine Ladungsträger-Konzentration von mindestens 10¹⁶ cm⁻³ aufweisen. Es können ein oder mehrere Gates zur Steuerung der Ladungsträger-Konzentration angeordnet sein.

ben.

5

10

15

20

25

Im weiteren wird die Erfindung an Hand von Ausführungsbeispielen und der beigefügten Figuren näher beschrie-

PCT/DE2005/000080

Fig. 1 zeigt einen Ausschnitt des elektronischen Bänderschemas für eine Halbleiter-Struktur gemäß Stand der Technik. Die Leitungsbandkante (E) für Elektronen ist als Funktion der radialen Position x innerhalb einer großen und daher nur partiell verarmten Struktur wiedergegeben. Der Fall der Valenzbandkante für Löcher ist analog. Diese Bandkante ist Potential für Ladungsträger.

Der Abstand a sei gemäß Stand der Technik groß und gibt die Abmessung eines ersten Materialbereichs 1 an, auf dem nicht epitaktisch ein zweiter Materialbereich 3 (nicht dargestellt), z. B. ein Metall, Gas oder Kunststoff oder sonstiger Isolator oder Halbleiter angeordnet ist. Der Abstand d ist die Verarmungslänge ausgehend vom Fermi-Level-Pinning der Grenzfläche 2 des betrachteten Halbleiters. Bei partiell verarmter Struktur ist d << a und daher relativ unschädlich für den Ladungsträgertransport in der Grenzfläche 2 zwischen beiden Materialbereichen. Die verarmten Bereiche des Materialbereichs 1 weisen aufgrund d << a nur einen kleinen Anteil an der Gesamtstruktur auf. An der nicht epitaktischen Grenzfläche tritt aufgrund von Grenzflächenzuständen das Fermi-Level-Pinning mit einer energetischen Größe gemäß des Pfeils 5 auf.

Die Fermienergie (=Fermi-Level) im Gleichgewicht ist durch die Punkt-Strich-Linie 4 dargestellt. Der energe-

15

20

25

tische Wert des Fermi-Level-Pinnings, ist gemäß Pfeil 5 ein fixierter, energetischer Abstand von der Leitungsbandkante an der Stelle der Grenzfläche 2 aufgrund von Grenzflächenzuständen.

13

PCT/DE2005/000080

Fig. 2 zeigt eine weitere Leitungsbandkante E für Elektronen in einer Halbleiter-Struktur als Funktion der radialen Position x. Hier ist die Abmessung von Materialbereich 1 im Vergleich zu der Halbleiter-Struktur der Fig. 1 sehr klein gewählt und Materialbereich 1 ist daher komplett verarmt. Der Fall der Valenzbandkante für Löcher ist analog. Diese Bandkante ist Potential für Ladungsträger.

Der Abstand a stellt erneut die räumlichen Abmessungen von Materialbereich 1 dar (z. B. 20 Nanometer). Auf Materialbereich 1 ist der Materialbereich 3 (nicht dargestellt) nicht epitaktisch angeordnet. Der Materialbereich 3 besteht z. B. aus einem Metall oder einem Gas, Kunststoff oder sonstigem Isolator oder Halbleiter.

Der Abstand d stellt wiederum die Verarmungslänge dar. In diesem Fall ist die Verarmungslänge d größer als die Abmessungen a des Materialbereichs 1. Das Potentialminimum des ausgebildeten Quantentopfes ist durch Pfeil 6 dargestellt. Das Potentialminimum liegt aufgrund d > a energetisch weit oberhalb zu k_BT (T=Temperatur, k_BT=Boltzmann-Konstante) der Fermienergie im Gleichgewicht, dargestellt durch die Punkt-Strich-Linie 4. Die Grenzfläche 2 zwischen Materialbereich 1 und Materialbereich 3 ist daher vollständig verarmt. Die Grenzfläche 2 weist aufgrund von Grenzflächenzuständen Fermi-

5

10

15

20

25

Level-Pinning (siehe Pfeil 5) auf. Pfeil 5 gibt das energetische Niveau des Fermi-Level-Pinnings wieder. Es wird deutlich, dass ein fixierter, energetischer Abstand der Leitungsbandkante an der Stelle der Grenzfläche 2 aufgrund von Grenzflächenzuständen vorliegt.

14

Aus diesen Ausführungen wird deutlich, dass für die Klasse grenzflächenverarmter Halbleiter gemäß Stand der Technik, wie z. B. GaAs, InP und GaN, frei oder auf einem Substrat, die Konzentration freier Ladungsträger in daraus hergestellten Bauelementen, insbesondere mit Abmessungen kleiner 100 Nanometern und in der Größenordnung der Verarmungslänge und kleiner, sehr gering und praktisch nicht beeinflussbar durch externe Größen, wie z.B. Elektroden ist. Die Verarmungslänge ist zwar eine dotierungsabhängige Materialgröße. Allerdings kann bei derartigen Abmessungen auch mit hoher Dotierung in GaAs als Material für die erste Schicht auf Grund der dann auftretenden starken Störstellenstreuung mit schlechter Beweglichkeit der Ladungsträger kein brauchbarer Transistor / Tunneldiode hergestellt werden.

Simulationen zeigen, dass trotz hoher Dotierung praktisch eine vollständig verarmte Struktur dieses Typs bestehen bleibt. Es tritt immer Fermi-Level-Pinning an der Grenzfläche 2 bei etwa 0,65 eV gegen die Leitungsbandkante E auf, so dass die Halbleiter-Struktur aus Materialbereich 1 (30 Nanometer GaAs, n-dotiert mit 10^{18} cm⁻³) und Materialbereich 3 (Metall, Luft und so weiter) vollständig verarmt ist (T=300K).

5

10

15

20

Fig. 3 zeigt die Leitungsbandkante (E) als Funktion der radialen Position (x) innerhalb einer erfindungsgemäßen Halbleiter-Struktur. In Fig. 3 ist schematisch die Leitungsbandkante E entlang des Querschnitts einer erfindungsgemäßen eindimensionalen Halbleiter-Struktur dargestellt. Ein Querschnitt der Materialbereiche ist schematisch der Fig. 4 entnehmbar.

15

PCT/DE2005/000080

Die Halbleiter-Struktur umfasst einen ersten Materialbereich 1 mit der Abmessung a, welcher von einem zweiten Materialbereich 3 epitaktisch umwachsen ist. Materialbereich 1 ist eine Insel oder ein Whisker. Der Materialbereich 3 ist epitaktisch auf dem Materialbereich 1 angeordnet. Der Fall der Valenzbandkante für Löcher ist analog. Diese Bandkante ist ein Potential für Ladungsträger.

Die Materialien beider Bereiche 1, 3 werden so gewählt, dass das Material des ersten Materialbereichs 1 den Quantentopf ausbildet. Der Quantentopf liegt auf dem Niveau der Fermi-Energie 8, dessen energetisches Niveau durch die Punkt-Strich-Linie angedeutet ist. An der Grenzfläche 2 zwischen dem ersten Materialbereich 1 und dem epitaktisch hierzu angeordneten Materialbereich 3 ist die Leitungsbandkante E abgesenkt im Vergleich zum Materialbereich 3.

Es tritt ein Potentialsprung an der Heterointerface-Grenzfläche 2 auf (Band-Diskontinuität). An der Grenzfläche 2 tritt aber kein Fermi-Level-Pinning auf, wie gemäß Stand der Technik, sondern vielmehr an der ersten nicht epitaktischen Grenzfläche 6 zwischen zweitem Ma-

16

terialbereich 3 und einem optional auf diesem angeordneten, gegebenenfalls Materialbereich 3 umwachsenden weiteren Materialbereich 5, welches als cap-Material der Halbleiter-Struktur fungiert. Der optional angeordnete Materialbereich 5 dient der Passivierung der dadurch umwachsenen Halbleiter-Struktur. In dem Fall, dass Schicht 5 nicht epitaktisch auf Schicht 3 angeordnet ist, läge das Fermi-Level-Pinning an der Grenzfläche 4.

5

20

25

Die Grenzfläche 6 der Halbleiterstruktur weist FermiLevel-Pinning aufgrund von Grenzflächenzuständen auf.
Die gesamte Halbleiter-Struktur wird von einem nicht
epitaktischen Material, z. B. einem Isolator 7 oder einem Metall 7 oder einem nicht epitaktischen Halbleiter
7, umgeben. Als Isolator kann z. B. ein Gas wie Luft
oder Kunststoff vorliegen.

Der energetische Wert des Fermi-Level-Pinnings, dargestellt durch Pfeil 9, und damit der Abstand des an der Grenzfläche 6 fixierten energetischen Abstands der Leitungsbandkante E vom Fermi-Level 8 im Gleichgewicht ist durch die Pfeile 9 dargestellt.

Wie ersichtlich, ist das an der Grenzfläche 6 auftretende Fermi-Level-Pinning durch geeignete Wahl der Materialien von Schichten 1 und 3, den Abmessungen dieser Schichten und gegebenenfalls deren Dotierungen so weit von der Grenzfläche 2 entfernt, dass die von Grenzfläche 6 ausgehende Verarmungslänge d den Quantentopf nicht negativ beeinflusst, so dass Ladungen gezielt in diesen Bereich eingebracht werden können. In der Halb-

15

20

25

17

PCT/DE2005/000080

leiter-Struktur soll der kürzeste Abstand des Quantentopfes zur nicht epitaktischen Außenfläche 6 (Fermi-Level-Pinning) dabei größenordnungsmäßig die Verarmungslänge d nicht unterschreiten.

Fig. 4 zeigt einen Ausschnitt eines radial geschnittenen Querschnitts durch einen gemäß Fig. 3 umwachsenen Whiskers. Der innere Materialbereich 1, wird epitaktisch vollständig von Materialbereich 3 umwachsen. Es kann optional cap-Material 5 epitaktisch auf Materialbereich 3, und auf dem cap-Material 5 optional metallisches Schottky-Gate-Material 7 angeordnet sein. Auch die übrigen Bezugszeichen entsprechen denen der Fig. 3.

Als erfindungsgemäße Halbleiter-Strukturen kommen insbesondere GaAs als Material von Bereich 1 und AlGaAs als Material von Bereich 3 in Frage.

Eine Simulation (Fig. 5) zu den beiden HalbleiterStrukturen gemäß der Fig. 3, 4 demonstriert die erfindungsgemäße Wirkungsweise der lateralen epitaktischen
Umwachsung und die gegenüber dem Stand der Technik
deutlich erhöhte freie Ladungsträger-Konzentration im
Inneren der Struktur, das heißt im Quantentopf von Materialbereich 1. Die Abmessung der Umwachsung und deren
Dotierung sind so gewählt, dass die freien Ladungsträger zur Erhöhung der Beweglichkeit im Inneren maximiert
sind, räumlich getrennt von Dotierung und Grenzflächen.
Eine erfindungsgemäße Änderung der Materialien und/oder
Materialdicken und/oder Dotierungen ermöglicht eine definierte Variation der freien Ladungsträgerkonzentration und/oder räumlichen Verteilung.

5

10

15

20

25

In Fig. 5 ist eine näherungsweise Simulation zu einem zweidimensionalen Schichtpaket mit selbstkonsistentem Hartree-Potential, LDA-Austausch und quantenmechanischer Berechnung der Elektronenladungen (freie Ladungsträger) gezeigt.

PCT/DE2005/000080

Simuliert wurde der Fall eines undotierten, 20 Nanometer dicken Materialbereichs 1 aus GaAs, der von einem 15 Nanometer dicken Materialbereich 3 aus Al_{0,3}Ga_{0,7}As vollständig umwachsen war. Materialbereich 3 ist ndotiert mit 3,0 x 10¹⁸ cm⁻³ und vollständig ionisiert. Ein undotierter, 5 nm dicker Materialbereich 5 aus GaAs ist zum Schutz gegen Oxidation des Al in Materialbereich 3 auf diesem angeordnet. Der Materialbereich 5 ist an ein nicht epitaktisches metallisches Außenmaterial 7 (z. B. Schottkykontakt) angeordnet.

Die Fermienergie ist erneut strichpunktiert dargestellt. Im oberen Diagramm a) ist der Verlauf der Leitungsbandkante (Potential) als Funktion der Position (z) dargestellt. Im unteren Diagramm b) ist der Verlauf der freien Ladungsträgerkonzentration (Charge) als Funktion der Position (z) dargestellt. Es tritt Fermi-Level-Pinning erst an der Grenzfläche 6 bei etwa 0,65 eV gegen Leitungsbandkante E auf (s. Fig. 4). Es wurde nur der rechte Teil mit Bezugszeichen 1 bis 7 versehen.

Es wird deutlich, dass im Bereich des Materialbereichs 1 eine gezielte Ladungsträger-Konzentration in Höhe von bis zu 2*10¹⁷ cm⁻³ erreicht wird. Dies ist ein Wert, der um etwa 10⁹ höher liegt, als bisher bekannt. Diese An-

5

15

25

19

PCT/DE2005/000080

reicherung von Ladungsträgern im Materialbereich 1 mit Abmessungen von 20 Nanometern und kleiner kann je nach Anwendungsfall für optische Zwecke (null-dimensionale Umwachsung einer Insel), Transistoren oder resonante Tunneldioden oder Superlattices (ein-dimensionale Umwachsung von Whisker-Strukturen) oder andere Stack-Strukturen innerhalb eines Whiskers mit mehreren Transistoren und Gates und/oder Heterostrukturen innerhalb des Whiskers genutzt werden.

- An Stelle der beschriebenen GaAs-AlGaAs-HalbleiterStruktur kann ohne jegliche Einschränkung der Erfindung
 eine Halbleiter-Struktur aus den nachfolgend genannten
 Materialien verwendet werden.
 - $Al_yGa_{1-y}As$ (Materialbereich 1) und $Al_xGa_{1-x}As$ (Materialbereich 3), mit x > y zur Ausbildung der Stufe im Quantentopf (Banddiskontinuität);
 - InP (Materialbereich 1) und $In_xAl_{1-x}As$, mit einem Wert x, der eine Gitteranpassung an InP ermöglicht;
- In_xGa_{1-x}As (Materialbereich 1) und InP (Materialbe-20 reich 3), mit einem Wert x, der eine Gitteranpassung an InP ermöglicht;
 - $Al_vGa_{1-v}N$ (Materialbereich 1) und $Al_xGa_{1-x}N$, mit x > y;
 - Si (Materialbereich 1 oder 3) und Si_xGe_{1-x} (Material-bereich 1 oder 3), je nach Kristallverspannung und ob Elektronen oder Löcher gewünscht sind;

PCT/DE2005/000080

- ZnO (Materialbereich 1) und $Al_xGa_{1-x}N$ (Materialbereich 3);

20

- InAs (Materialbereich 1) und AlSb (Materialbereich 3).
- 5 Die Halbleiter-Strukturen können sowohl Verarmungs- als auch Anreicherungsstrukturen darstellen.

Fig. 6a, b zeigen schematisch in Perspektive die typische Geometrie der betrachteten ein- und null- dimensionalen Strukturen. Die konkrete geometrische

Formgebung (z. B. rund, quadratisch, hexagonal) in den Figuren ist nur zur Veranschaulichung gewählt und allgemein nicht eingeschränkt. Fig. 6a zeigt schematisch den nulldimensionalen Fall der Umwachsung einer Insel mit innerem Materialbereich 1 und äußerem Materialbereich 2. Fig. 6b zeigt schematisch den eindimensionalen Fall der Umwachsung eines Whiskers mit innerem Materialbereich 1 und äußerem Materialbereich 2.

Patentansprüche

- Halbleiter-Struktur aus mindestens einem ersten Ma-1. terialbereich (1) und einem zweiten Materialbereich (3), wobei der zweite Materialbereich (3) den ers-5 ten Materialbereich (1) epitaktisch umschließt und eine Grenzfläche (2) ausbildet, dadurch gekennzeichnet, dass die Materialien des ersten und zweiten Materialbereichs (1, 3) und/oder deren Abmessungen 10 und/oder deren Dotierungen so beschaffen sind, dass ein Fermi-Level-Pinning (9) an der, der Grenzfläche (2) beider Materialbereiche (1, 3) gegenüberliegenden, nicht epitaktischen Grenzfläche (4) des zweiten Materialbereichs (3) vorliegt und der erste Ma-15 terialbereich (1) einen Quantentopf für freie Ladungsträger ausbildet.
- 2. Halbleiter-Struktur aus mindestens einem ersten Materialbereich (1) und einem zweiten Materialbereich (3), wobei der zweite Materialbereich (3) den ersten Materialbereich (1) epitaktisch umschließt und eine Grenzfläche (2) ausbildet, dadurch gekennzeichnet, dass ein Fermi-Level-Pinning (9) an der, der Grenzfläche (2) beider Materialbereiche (1, 3) gegenüberliegenden, nicht epitaktischen Grenzfläche (4) des zweiten Materialbereichs (3) vorliegt und der erste Materialbereich (1) einen Quantentopf für freie Ladungsträger ausbildet.

22

WO 2005/076363

3.

5

20

Halbleiter-Struktur nach Anspruch 2,

dadurch gekennzeichnet,

dass das Fermi-Level-Pinning (9) durch Wahl des Materials und/oder der Abmessung und/oder der Dotierung und/oder des Dotierprofils einer oder beider Materialbereiche (1, 3) bestimmt wird.

PCT/DE2005/000080

4. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass auf dem zweiten Materialbereich (3) ein weiterer Materialbereich (5) epitaktisch angeordnet ist, so dass Fermi-Level-Pinning erst an der, der epitaktischen Grenzfläche (4) zwischen zweitem und weiterem Materialbereich (3, 5) gegenüberliegenden nicht epitaktischen Grenzfläche (6) vorliegt.

5. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass der erste Materialbereich (1) eine Abmessung a in x-Position von kleiner 100 Nanometern, insbesondere von 0,5 bis 50 Nanometern, aufweist.

6. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

dass der kürzeste Abstand des Quantentopfes zur nicht epitaktischen Grenzfläche (4, 6), an der das Fermi-Level-Pinning vorliegt, die Verarmungslänge d nicht unterschreitet.

23

WO 2005/076363

5

10

15

7. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Material für den weiteren Materialbereich (5), das identisch ist zu dem Material des ersten Materialbereichs (1).

PCT/DE2005/000080

- 8. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Metall als Material für den weitere Materialbereich (5).
- 9. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Materialien des ersten und zweiten Materialbereichs (1, 3) quasi-Gitteranpassung zeigen und
- 10. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche,

versetzungsfrei zueinander angeordnet sind.

- 20 gekennzeichnet durch Al_vGa_{1-v}As und Al_xGa_{1-x}As als Materialien für den ersten bzw. zweiten Materialbereich (1, 3), mit x > y zur Ausbildung einer Stufe im Quantentopf (Banddiskontinuität).
- 25 11. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche, bei der im ersten Materialbereich (1) eine Konzentration freier Ladungsträger von mindestens 1010 cm 3, insbesondere von mindestens 1016 cm-3 vorliegt.

24

12. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese zumindest teilweise Metall- (Schottky)- Elektroden (7) mit Gate-Funktion zur Steuerung der Ladungsträger umfasst.

5

10

13. Transistor, Laser, resonante Tunneldiode oder andere Heterostruktur umfassend eine Halbleiter-Struktur nach einem der vorhergehenden Ansprüche 1 bis 12.

Figur 1 (Stand der Technik)

2/6

Figur 2 (Stand der Technik)

Figur 3

Figur 4

Figur 5

b)

Figur 6

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE2005/000080 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H01L29/12 H01L H01L29/772 H01L29/88 H01L21/335 H01L33/00 H01S5/34According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) H01L H01S Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, INSPEC, COMPENDEX, IBM-TDB, PAJ, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No χ US 2002/175408 A1 (MAJUMDAR ARUN ET AL) 1 - 1328 November 2002 (2002-11-28) paragraph '0116! - paragraph '0197!; figures 2,15 "QUANTUM ANTI-DOT ARRAYS OSAKO S-I ET AL: 1 - 13χ AND QUANTUM WIRE TRANSISTORS FABRICATED ON INAS/ALO.5GAO.5SB HETEROSTRUCTURES" SEMICONDUCTOR SCIENCE AND TECHNOLOGY, INSTITUTE OF PHYSICS. LONDON, GB, vol. 11, no. 4, 1 April 1996 (1996-04-01), pages 571-575, XP000586931 ISSN: 0268-1242 abstract; figure 3 χ US 5 608 231 A (UGAJIN ET AL) 1 - 134 March 1997 (1997-03-04) figure 8 Further documents are listed in the continuation of box C Patent family members are listed in annex X Special categories of cited documents. "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international *X* document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-O' document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 7 July 2005 01/08/2005 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epo nl,

Berthold, K

Fax (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

International Application No
PCT/DE2005/000080

	PCT/DE2005/			
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No		
Х	EP 0 452 950 A (HITACHI, LTD; HITACHI VLSI ENGINEERING CORPORATION) 23 October 1991 (1991-10-23) figures 1,2	1-13		
Α	BRASLAU N: "CONTACT AND METALLIZATION PROBLEMS IN GAAS INTEGRATED CIRCUITS" JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART A, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 4, no. 6, 1 November 1986 (1986-11-01), pages 3085-3090, XP000615746 ISSN: 0734-2101 abstract	1-13		
Α	US 4 424 525 A (MIMURA ET AL) 3 January 1984 (1984-01-03) abstract; figures 4-6	1-13		
Α	TU CHARLES W: "Electronic materials growth: A retrospective and look forward" JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY A. VACUUM, SURFACES AND FILMS, AMERICAN INSTITUTE OF PHYSICS, NEW YORK, NY, US, vol. 21, no. 5, September 2003 (2003-09), pages \$160-\$166, XP012006554 ISSN: 0734-2101 page \$164; figure 6	1-13		
Α	US 5 793 055 A (KASTALSKY ET AL) 11 August 1998 (1998-08-11) column 4, line 49 - line 60	1-13		
Α	US 2003/010987 A1 (BANIN URI ET AL) 16 January 2003 (2003-01-16) claims 1,14; figure 1	1-13		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/DE2005/000080

	tent document in search report		Publication date		Patent family member(s)		Publication date
US	2002175408	A1	28-11-2002	CA CN EP JP MX TW WO US	2442985 1507661 1374309 2004532133 PA03008935 554388 02080280 2002172820	A A1 T A B A1	10-10-2002 23-06-2004 02-01-2004 21-10-2004 30-06-2004 21-09-2003 10-10-2002 21-11-2002
US	5608231	Α	04-03-1997	JP JP	3635683 7176763		06-04-2005 14-07-1995
EP	0452950	A	23-10-1991	JP JP EP JP JP US JP	3020578 4130780 0452950 3181303 4212489 5362972 4118916	A A2 B2 A A	15-03-2000 01-05-1992 23-10-1991 03-07-2001 04-08-1992 08-11-1994 20-04-1992
US	4424525	A	03-01-1984	JP JP JP JP JP CA DE EP US	57007165 57013773 56094779 1409643 56094780 59053714 1145482 3072175 0033037 0317993 RE33584	A A C A B A1 D1 A2 A1	14-01-1982 23-01-1982 31-07-1981 24-11-1987 31-07-1981 26-12-1984 26-04-1983 26-04-1990 05-08-1981 31-05-1989 07-05-1991
US	5793055	Α	11-08-1998	DE JP	19649500 9219542		09-10-1997 19-08-1997
US	2003010987	A1	16-01-2003	AU AU CA EP WO JP	781612 8801501 2391130 1264354 0225745 2004509475	A A1 A2	02-06-2005 02-04-2002 28-03-2002 11-12-2002 28-03-2002 25-03-2004

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/DE2005/000080

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 H01L29/12 H01L29/88

H01S5/34

H01L29/772

H01L21/335

H01L33/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprufstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \quad H01L \quad H01S$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evil verwendete Suchbegriffe)

EPO-Internal, INSPEC, COMPENDEX, IBM-TDB, PAJ, WPI Data

Kategone°	Bezeichnung der Veroffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr Anspruch Nr
Х	US 2002/175408 A1 (MAJUMDAR ARUN ET AL) 28. November 2002 (2002-11-28) Absatz '0116! - Absatz '0197!; Abbildungen 2,15	1-13
X	OSAKO S-I ET AL: "QUANTUM ANTI-DOT ARRAYS AND QUANTUM WIRE TRANSISTORS FABRICATED ON INAS/ALO.5GAO.5SB HETEROSTRUCTURES" SEMICONDUCTOR SCIENCE AND TECHNOLOGY, INSTITUTE OF PHYSICS. LONDON, GB, Bd. 11, Nr. 4, 1. April 1996 (1996-04-01), Seiten 571-575, XP000586931 ISSN: 0268-1242 Zusammenfassung; Abbildung 3	1-13
X	US 5 608 231 A (UGAJIN ET AL) 4. März 1997 (1997-03-04) Abbildung 8	1-13

	-/
Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	Siehe Anhang Patentfamilie
 Besondere Kategonen von angegebenen Veroffentlichungen: 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist 'E' alteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veroffentlicht worden ist 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O' Veröffentlichung, die sich auf eine mündliche Öffenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht 'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritatsdatum veröffentlicht worden ist 	 *T* Spatere Veroffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veroffentlicht worden ist und mit der Anmeldung nicht koflidiert, sondern nur zum Verstandnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *X* Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *Y* Veroffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veroffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist *&* Veroffentlichung, die Mitglied derselben Patentfamilie ist
7. Juli 2005	Absendedatum des internationalen Recherchenberichts 01/08/2005
Name und Postanschrift der Internationalen Recherchenbehörde Europaisches Patentamt, P B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx 31 651 epo nl, Fax (+31–70) 340–3016	Bevollmächtigter Bediensteter Berthold, K
Formblatt PCT/ISA/210 (Blatt 2) (Januar 2004)	<u> </u>

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE2005/000080

C.(Fortsetz Kategone°	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile	Betr Anspruch Nr
			1_12
X	EP 0 452 950 A (HITACHI, LTD; HITACHI VLSI ENGINEERING CORPORATION) 23. Oktober 1991 (1991-10-23) Abbildungen 1,2		1-13
Α	BRASLAU N: "CONTACT AND METALLIZATION PROBLEMS IN GAAS INTEGRATED CIRCUITS" JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART A, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 4, Nr. 6, 1. November 1986 (1986-11-01), Seiten 3085-3090, XP000615746 ISSN: 0734-2101 Zusammenfassung		1-13
Α	US 4 424 525 A (MIMURA ET AL) 3. Januar 1984 (1984-01-03) Zusammenfassung; Abbildungen 4-6		1-13
А	TU CHARLES W: "Electronic materials growth: A retrospective and look forward" JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY A. VACUUM, SURFACES AND FILMS, AMERICAN INSTITUTE OF PHYSICS, NEW YORK, NY, US, Bd. 21, Nr. 5, September 2003 (2003-09), Seiten S160-S166, XP012006554 ISSN: 0734-2101 Seite S164; Abbildung 6	-	1-13
A	US 5 793 055 A (KASTALSKY ET AL) 11. August 1998 (1998-08-11) Spalte 4, Zeile 49 - Zeile 60		1-13
А	US 2003/010987 A1 (BANIN URI ET AL) 16. Januar 2003 (2003-01-16) Ansprüche 1,14; Abbildung 1		1-13

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veroffentlichungen, die zur selben Patentfamilie gehoren

Internationales Aktenzeichen
PCT/DE2005/000080

Im Recherchenbericht ngefuhrtes Patentdokument	Datum der Veroffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 2002175408 A1	28-11-2002	CA CN EP JP MX TW WO US	2442985 1507661 1374309 2004532133 PA03008935 554388 02080280 2002172820	A A1 T A B A1	10-10-2002 23-06-2004 02-01-2004 21-10-2004 30-06-2004 21-09-2003 10-10-2002 21-11-2002
US 5608231 A	04-03-1997	JP JP	3635683 7176763		06-04-2005 14-07-1995
EP 0452950 A	23-10-1991	JP JP EP JP JP US JP	3020578 4130780 0452950 3181303 4212489 5362972 4118916	A A2 B2 A A	15-03-2000 01-05-1992 23-10-1991 03-07-2001 04-08-1992 08-11-1994 20-04-1992
US 4424525 A	03-01-1984	JP JP JP JP CA DE EP US	57007165 57013773 56094779 1409643 56094780 59053714 1145482 3072175 0033037 0317993 RE33584	A C A B A1 D1 A2 A1	14-01-1982 23-01-1982 31-07-1981 24-11-1987 31-07-1981 26-12-1984 26-04-1983 26-04-1990 05-08-1981 31-05-1989 07-05-1991
US 5793055 A	11-08-1998	DE JP	19649500 9219542		09-10-1997 19-08-1997
US 2003010987 A1	16-01-2003	AU AU CA EP WO JP	781612 8801501 2391130 1264354 0225745 2004509475	A A1 A2 A2	02-06-2005 02-04-2002 28-03-2002 11-12-2002 28-03-2002 25-03-2004