

Absztrakt vektorterek

Összeállította: dr. Leitold Adrien egyetemi docens

2013. 10. 08. Absztrakt vektorterek /1.

Absztrakt vektortér definíciója

Legyen V egy halmaz, Γ egy test (pl. valós vagy komplex számtest), és legyenek adottak a $+: V \times V \to V$ és a $\cdot: \Gamma \times V \to V$ műveletek. Tegyük fel, hogy bármely $a, b, c \in V$, $\lambda, \mu \in \Gamma$ esetén

V1:
$$(a+b)+c=a+(b+c)$$
 (asszociativitás)

V2:
$$a + b = b + a$$
 (kommutativitás)

V3: Létezik olyan $o \in V$ elem, hogy bármely $a \in V$ esetén a + o = a (nullelem létezése)

V4: Bármely $a \in V$ esetén létezik olyan $a' \in V$, hogy a + a' = o, ahol $a' = (-1) \cdot a$, az a ellentettje. (ellentett létezése)

V5:
$$(\lambda + \mu) \cdot a = \lambda \cdot a + \mu \cdot a$$

V6:
$$\lambda \cdot (a+b) = \lambda \cdot a + \lambda \cdot b$$

V7:
$$\lambda \cdot (\mu \cdot a) = (\lambda \cdot \mu) \cdot a$$

V8:
$$1 \cdot a = a$$

Absztrakt vektortér definíciója (folyt.)

Ekkor V-t a Γ test feletti vektortérnek, V elemeit vektoroknak, Γ elemeit skalároknak hívjuk.

 $\Gamma = R$ esetén valós vektortérről, $\Gamma = C$ esetén komplex vektortérről beszélünk.

A V1-V8 tulajdonságokat vektortér-axiómáknak nevezzük.

Analóg módon értelmezhető lin. algebrai fogalmak absztrakt vektorterekben

Lineáris kombináció:

Legyen V egy Γ test feletti vektortér.

Legyenek a_1, a_2, \ldots, a_k V-beli vektorok és $\lambda_1, \lambda_2, \ldots, \lambda_k \in \Gamma$ skalárok.

Ekkor a $\lambda_1 \cdot a_1 + \lambda_2 \cdot a_2 + \ldots + \lambda_k \cdot a_k \in V$ vektort az a_1, \ldots, a_k vektorok $\lambda_1, \ldots, \lambda_k$ skalárokkal vett lineáris kombinációjának nevezzük.

- Triviális lineáris kombináció
- Lineáris függetlenség, összefüggőség véges sok vektorra Kiegészítés:

Egy $H \subset V$ vektorhalmaz lineárisan független, ha minden véges részhalmaza lineárisan független. Ellenkező esetben H lineárisan összefüggő.

- Rang
- Generátorrendszer, bázis

Analóg módon értelmezhető lin. algebrai fogalmak absztrakt vektorterekben (folyt.)

■ Dimenzió:

- •Ha egy vektortérnek van véges bázisa, akkor igazolható, hogy a vektortér minden bázisa ugyanannyi vektorból áll. Ezt a számot a vektortér dimenziójának nevezzük.
- Ha egy vektortérnek nincs véges bázisa, akkor a vektorteret végtelen dimenziósnak hívjuk.

Megjegyzés:

Véges dimenziós vektorterekben használható a bázistranszformáció algoritmusa.

Példák absztrakt vektorterekre

- 1. $V = R^n$, $\Gamma = R$
 - + és · művelet a tanult módon értelmezve valós vektortér
- $V = C^n$ a komplex számokból képzett rendezett *n*-esek halmaza, Γ = R vagy C
 - Γ=R esetén valós vektortér
 - Γ=C esetén komplex vektortér
 - + és ' művelet a tanult módon értelmezve
 - nullelem: (0, ...,0);
 - a $(z_1, ..., z_n) \in C^n$ ellentettje: $(-z_1, ..., -z_n)$
 - $\Gamma = R$ esetén bázis: (1, ..., 0), (i, ..., 0), ..., (0, ..., 1), $(0, ..., i) \Rightarrow 2n$ dimenziós vektortér
 - $\Gamma = C$ esetén bázis: $(1, ..., 0), ..., (0, ..., 1) \Rightarrow n$ dimenziós vektortér

-

Példák absztrakt vektorterekre (folyt.)

- $V = R^{m \times n}$, a valós számokból képzett $m \times n$ -es mátrixok halmaza, $\Gamma = R$
 - valós vektortér
 - + és ' művelet a tanult módon értelmezve
 - nullelem: *m* ×*n*-es nullmátrix

• bázis: $\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$

■ *m·n* dimenziós

- $V = C^{m \times n}$, a komplex számokból képzett $m \times n$ -es mátrixok halmaza, $\Gamma = R$, vagy $\Gamma = C$
 - + és ' művelet a tanult módon értelmezve
 - $\Gamma = R$ esetén valós vektortér, $2m \cdot n$ dimenziós
 - $\Gamma = C$ esetén komplex vektortér, $m \cdot n$ dimenziós
- 5. $V = L(R^m, R^n) = \{A: R^m \rightarrow R^n \mid A \text{ lineáris}\}, \text{ az } R^m \rightarrow R^n \text{ típusú lineáris} \}$ leképezések halmaza, $\Gamma = R$
 - + és ' művelet a tanult módon értelmezve
 - nullelem: $O: R^m \rightarrow R^n, \underline{x} \rightarrow \underline{o}$
 - az $A: R^m \to R^n$ lineáris leképezés ellentettje $A': R^m \to R^n$ melyre $A'(\underline{x}) = -A(\underline{x})$, minden $\underline{x} \in R^m$ esetén
 - valós vektortér
 - igazolható, hogy *m·n* dimenziós

- 6. $V = P_R$, a valós együtthatós polinomok halmaza, $\Gamma = R$
 - + és · művelet pontonként
 - nullelem: $o: R \rightarrow R$, $x \rightarrow 0$ (azonosan nulla polinom)
 - a $p(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + ... + a_n \cdot x^n$ polinom ellentettje: $-p(x) = -a_0 - a_1 \cdot x - a_2 \cdot x^2 - ... - a_n \cdot x^n$
 - valós vektortér
 - bázis: $q_0: R \rightarrow R$, $x \rightarrow 1$; $q_1: R \rightarrow R$, $x \rightarrow x$; $q_2: R \rightarrow R$, $x \rightarrow x^2$; ...
 - végtelen dimenziós
- z. $V = P_R^n$, a legfeljebb n-ed fokú valós együtthatós polinomok halmaza, $\Gamma = R$
 - műveletek, nullelem, ellentett ua., mint előbb
 - valós vektortér
 - bázis: $q_0: R \rightarrow R$, $x \rightarrow 1$; $q_1: R \rightarrow R$, $x \rightarrow x$; ...; $q_n: R \rightarrow R$, $x \rightarrow x^n$
 - \blacksquare *n* +1 dimenziós

- 8. $V = R^N$, a valós számokból álló végtelen számsorozatok halmaza, $\Gamma = R$
 - + és · művelet a tanult módon
 - nullelem: 0, 0, 0, ...(azonosan nulla sorozat)
 - az (a_n) sorozat ellentettje: (-a_n)
 - valós vektortér
 - bázis: a_1 : 1, 0, 0, ...; a_2 : 0, 1, 0, ...; a_3 : 0, 0, 1, ...; ...
 - végtelen dimenziós
- 9. $V = R^I = \{f: I \rightarrow R\}$, az $I \subseteq R$ intervallumon értelmezett valós függvények halmaza, $\Gamma = R$
 - műveletek pontonként
 - valós vektortér
 - végtelen dimenziós


```
10. C(I) = \{f: I \rightarrow R \mid f \text{ folytonos }\}, \ \Gamma = R
D(I) = \{f: I \rightarrow R \mid f \text{ differenciálható }\}, \ \Gamma = R
S(I) = \{f: I \rightarrow R \mid f \text{ integrálható}\}, \ \Gamma = R
```

- nyilván $D(I) \subset C(I) \subset S(I) \subset R^I$
- mindegyik végtelen dimenziós vektortér

Alterek absztrakt vektorterekben

Altér: analóg definíció: Legyen V egy a Γ test feletti vektortér. A $H \subseteq V$ vektorhalmazt altérnek hívjuk a V vektortérben, ha bármely $a, b \in H$ vektorok és bármely $\lambda \in \Gamma$ esetén $a+b \in H$ és $\lambda \cdot a \in H$ is teljesül.

H zárt a vektorműveletekre.

Megjegyzések:

- Egy altér mindig tartalmazza a vektortér nullvektorát.
- Egy vektortér altere az örökölt műveletekkel maga is vektortér, teljesülnek benne a V1-V8 vektortéraxiómák.

Példák alterekre

- P_R^n altér a P_R vektortérben.
- R^N vektortérben alteret alkotnak a korlátos sorozatok, azon belül a konvergens sorozatok, azon belül a 0-hoz konvergáló sorozatok.
- $D(I) \subset C(I) \subset S(I) \subset R^I$ egymás alterei.

Absztrakt vektorterek közti lineáris leképezések

Lineáris leképezés: Legyenek V és W azonos test (Γ) feletti vektorterek.

Az $A: V \rightarrow W$ leképezést lineárisnak nevezzük, ha bármely $x,y \in V$ és $\lambda \in \Gamma$ esetén

$$A(x+y)=A(x)+A(y)$$
 additív

$$A(\lambda \cdot x) = \lambda \cdot A(x)$$
 homogén

Megjegyzés: magtér, képtér fogalma analóg módon értelmezhető.

Példák lineáris leképezésekre

1. Legyen $V \subset R^N$ a konvergens sorozatok vektortere.

$$A: V \rightarrow R$$
, $(a_n)_{n=0}^{\infty} \mapsto \lim a_n$

2.
$$A: P_R \rightarrow P_R$$
, $p \mapsto p'$ (deriválás)

3.
$$A: S(I) \rightarrow R$$
, $f \mapsto \int_{I} f$

4.
$$\psi: L(R^m, R^n) \to R^{n \times m}, A \mapsto M(A)$$

5.
$$A: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$$
, $(a_n)_{n=0}^{\infty} \mapsto a_k$ $(k \in \mathbb{N} \text{ rögzített})$

Megjegyzések

- Legyenek V és W a Γ test feletti vektorterek.
 - A $V \rightarrow W$ típusú lineáris leképezésekre a korábbiakkal analóg módon értelmezhető az összeadás és a skalárral valószorzás művelete.
 - Megmutatható, hogy a $L(V, W) = \{A : V \rightarrow W \mid A \text{ lineáris}\}$ leképezések halmaza ezekkel a műveletekkel vektorteret alkot.
- Speciálisan legyen V a Γ test feletti vektortér.
 A L(V, Γ) = {A : V→ Γ | A lineáris} vektorteret a V vektortér duálisának nevezzük és V * -gal jelöljük.
- A V→W típusú lineáris leképezésekre a korábbiakkal analóg módon értelmezhető a magtér, a képtér és a rang fogalma.

Lineáris leképezés mátrixa

Legyenek V és W azonos test feletti véges dimenziós vektorterek, legyen $\dim(V) = m$ és $\dim(W) = n$.

 B_1 legyen bázis a V vektortérben, B_2 pedig legyen bázis a W vektortérben.

Legyen $A: V \rightarrow W$ lineáris leképezés. Az A lineáris leképezés B_1 - B_2 bázisokra vonatkozó mátrixán azt az $n \times m$ -es mátrixot értjük, amelynek oszlopaiban a B_1 bázis elemeihez rendelt képelemek B_2 bázisra vonatkozó koordinátái állnak.

2008.09.08. *Rⁿ* vektortér/17

Izomorf vektorterek

- Lineáris izomorfizmus: A bijektív lineáris leképezéseket lineáris izomorfizmusoknak nevezzük.
- Izomorf vektorterek: A V és W vektorterek izomorfak, ha létezik A: V→W lineáris izomorfizmus.
 Jel.: V≅ W
- Struktúra-tétel: Két azonos test feletti véges dimenziós vektortér pontosan akkor izomorf, ha dimenziójuk megegyezik.

Nullitás-rang tétel

Nullitás: Legyen A : V→ W lineáris leképezés. Az A magterének dimenzióját az A lineáris leképezés nullitásának nevezzük. Jel.: n(A)

$$n(A) = \dim (\ker (A))$$

Nullitás-rang tétel:

Legyen $A: V \rightarrow W$ lineáris leképezés, ahol V véges dimenziós. Ekkor:

$$n(A)+r(A)=\dim(V),$$

azaz A nullitásának és rangjának összege egyenlő V dimenziójával.