For a Bayesian analysis comparing two groups we use the following sampling model (Hoff p. 127):

$$Y_{i,1} = \mu + \delta + \epsilon_{i,1}$$

$$Y_{i,2} = \mu + \delta + \epsilon_{i,2}$$

$$\{\epsilon_{i,j}\} \sim \text{i.i.d. normal } (0, \sigma^2).$$

Letting $\theta_1 = \mu + \delta$ and $\theta_2 = \mu - \delta$ we see that $\delta = (\theta_1 - \theta_2)/2$ is half the population difference in means, and $\mu = (\theta_1 + \theta_2)/2$ is the pooled average. We'll assume conjugate prior distributions

$$\begin{split} p\left(\mu, \delta, \sigma^2\right) &= p(\mu) \times p(\delta) \times p\left(\sigma^2\right) \\ \mu &\sim \operatorname{normal}\left(\mu_0, \gamma_0^2\right) \\ \delta &\sim \operatorname{normal}\left(\delta_0, \tau_0^2\right) \\ \sigma^2 &\sim \operatorname{inverse-gamma}\left(\nu_0/2, \nu_0 \sigma_0^2/2\right), \end{split}$$

from which the full conditional distributions follow:

$$\{\mu|\mathbf{y}_1,\mathbf{y}_2,\delta,\sigma^2\}\sim \text{normal}(\mu_n,\gamma_n^2), \text{ where}$$

$$\mu_n = \gamma_n^2 \times \left[\frac{\mu_0}{\gamma_0^2} + \frac{\sum_{i=1}^{n_1} (y_{i,1} - \delta) + \sum_{i=1}^{n_2} (y_{i,2} + \delta)}{\sigma^2} \right]$$

$$\gamma_n^2 = \left[\frac{1}{\gamma_0^2} + \frac{(n_1 + n_2)}{\sigma^2} \right]^{-1}$$