基於單通道腦電圖之機器學習應用於識別注意力狀態 Recognizing-Attention-State-Based-on-Singlechannel-EEG-Using-Machine-Learning

簡介:

注意力不集中往往會造成日常的麻煩和影響到工作績效,因此本研究提出基於單通道腦波訊號的注意力判別架構,在客觀情境下以及主觀感受下的注意力判別都能有不錯的準確度。(準確度分別是86%和82%)

流程圖:

圖一. 注意力判別架構流程圖

特徵選擇法:

圖二. 前向遞迴特徵選擇法

分類效果:

	Precision	Recall	F1-score			
Inattention	0.92	0.78	0.84			
Attention	0.81	0.94	0.87			
Accuracy: 0.86						

圖三. 客觀注意力判別模型分類效果

	Precision	Recall	F1-score			
Inattention	0.72	0.76	0.74			
Attention	0.88	0.85	0.86			
Accuracy: 0.82						

圖四. 主觀注意力判別模型分類效果

結論:

我們提出的注意力識別架構,可以在客觀情況下識別注意力狀態的準確率高達 86%,在主觀感受下識別注意力狀態的準確率高達 82%。另外,我們的優勢在於使用單通道腦波,受試者人數多並且特徵數量少,也就是兼顧到模型的泛用性以及計算成本。

Objective experiment setting							
Ref.	Objective label setting	Channel Number	Sampling Rate (Hz)	Participant Number	Feature Number	Classifier	Accuracy
Our work	Two task states (Rest / Attention)	Single	512	30	9	SVM	86%
[47]	Two task states (Noise / Silent)	Single	512	24	5	SVM	76.82%
[48]	Score + Reaction Time (CogniFit website)	Multi	128	86	280	NN	84%
[50]	Two task states (Inattention/Attention)	Multi	256	8	52	SVM	72%~80%
[51]	Three task states (Rest / Inattention / Attention)	Multi	128	5	252	SVM	91.72%
[53]	Three task states (Rest / Inattention / Attention)	Multi	256	14	3	SVM	76.19%

圖五. 客觀注意力模型與其他架構之比較

Subjective Self Assessment Report						
Ref.	Channel Number	Sampling Rate (Hz)	Participant Number	Feature Number	Classifier	Accuracy
Our work	Single	512	30	28	SVM	82%
[49]	Multi	256	10	23	KNN	80.84%
[52]	Multi	256	11	20	LDA	84.8%

圖六. 主觀注意力模型與其他架構之比較