mas540 exercises

Jaemin Oh

May 15, 2021

Exercise (1.4).

(a) Let I = [0, 1]. Then $I \setminus \hat{C} = \bigcup_{n=1}^{\infty} \hat{C}_n^c$ where \hat{C}_n is n-th stage of constructing Fat Cantor set. Thus,

$$m(I \setminus \hat{C}) = m(I) - m(\hat{C}) = 1 - m(\hat{C}) = \lim_{n \to \infty} m(\hat{C}_n^c) = \sum_{n=1}^{\infty} 2^{n-1} l_n$$

because $\hat{C}_n^c \uparrow \bigcup_{n=1}^{\infty} \hat{C}_n^c$ and \hat{C} is closed hence measurable. Therfore $m(\hat{C}) = 1 - \sum_{n=1}^{\infty} 2^{n-1} l_n > 0$.

(b) \hat{C}_k consists of 2^k closed intervals whose length are $(1 - \sum_{n=1}^k 2^{n-1} l_n)/2^k$. Let $x \in \hat{C}$. Then $x \in \hat{C}_k$. So we can find $x_k \in I_k$ such that

$$|x - x_k| \le \left(1 - \sum_{n=1}^k 2^{n-1} l_n\right) / 2^k + \varepsilon_k l_k$$

for some $0 < \varepsilon_k < 1$. As $k \to \infty$, $|x - x_k| \to 0$ since $l_k \to 0$.

(c) The result of b tells us that every point of \hat{C} is a limit point of I. And we also know that \hat{C} is closed. Hence \hat{C} is a perfect set.

Let $(a,b) \subset \hat{C}$ and a < c < d < b. For large k, $l_k < d - c$ since $l_k \to 0$. Then, for \hat{C}_k , c and d must lie in different intervals of \hat{C}_k . So there is $e \notin \hat{C}_k$ such that c < e < d. Then [c,d] does not belong to \hat{C}_k which is a contradiction. So \hat{C} is totally disconnected.

(d) It is well known fact that a nonempty perfect set is uncountable. We had learned it in an introductory analysis course and topology course.

Exercise (1.7).

First, we will show that if O is open, then δO is also open. Let $\delta x \in \delta O$. Then $x \in O$. By openness, there is r > 0 such that $Q_r(x) \subset O$ where $Q_r(x)$ is a cube whose side length is r and centered at x. Thus $\delta Q_r(x) \subset \delta O$ and $\delta Q_r(x)$ contains δx . But a collection of all open rectangles forms a basis of Euclidean space. So δO is an open set.

Next, let a set E and a positive number ε be given. Choose $O \supset E$ such that $m_*(O \setminus E) < \varepsilon/(\delta_1 \cdots \delta_d)$. Then, there is an union of cube $\bigcup_{j=1}^{\infty} Q_j \supset O \setminus E$ such that $\sum_{j=1}^{\infty} m(Q_j) < \varepsilon/(\delta_1 \cdots \delta_d)$. Then,

$$m_*(\delta O \setminus \delta E) = m_*(\delta(O \setminus E)) \le m_*(\bigcup_{j=1}^{\infty} \delta Q_j) \le \sum_{j=1}^{\infty} m(\delta Q_j) < \varepsilon.$$

Thus δE is measurable.

Now let $E \subset \bigcup_{j=1}^{\infty} Q_j$. Then $\delta E \subset \bigcup \delta Q_j$, so $m(\delta E) \leq \delta_1 \cdots \delta_d \sum_{j=1}^{\infty} m(Q_j)$. Since $\bigcup_{j=1}^{\infty}$ is arbitrary, we get

$$m(\delta E) \leq \delta_1 \cdots \delta_d m(E)$$
.

Now let $\delta E \subset \bigcup_{j=1}^{\infty} Q'_j$. Then $E \subset \bigcup_{j=1}^{\infty} 1/\delta Q'_j$. So $m(E) \leq \sum_{j=1}^{\infty} m(Q'_j)/(\delta_1 \cdots \delta_d)$. Since $\bigcup_{j=1}^{\infty} Q'_j$ is arbitary, we get

$$m(E) \le \frac{m(\delta E)}{\delta_1 \cdots \delta_d}$$

and this finishes the proof.

Exercise (1.24).

Let s_n be enumeration of $\mathbb{Q} \cap [-1,1]$ and t_n be enumeration of $\mathbb{Q} \cap [-1,1]^c$. When $n=m^2$, put $r_n=t_m$. When $n \in (m^2,(m+1)^2)$, put $r_n=s_{n-m}$. Then r_n is an enumeration of \mathbb{Q} . Also, we get

$$m\left(\bigcup_{n=1}^{\infty} (r_n - 1/n, r_n + 1/n)\right) \le \sum_{m=1}^{\infty} 2/m^2 + m\left(\bigcup_{n \ne m^2} (r_n - 1/n, r_n + 1/n)\right)$$
$$\le \sum_{m=1}^{\infty} 2/m^2 + 2 + 1 < \infty.$$

Therefore, finiteness implies nonemptyness of the complement, since the Lebesgue measure of complement is positive.

Exercise (1.35).

First, let's briefly check the idea of constructing φ . Construction can be done by defining a sequence of functions, say φ_n . Put $\varphi_n(0) = 0$ and $\varphi_n(1) = 1$. Let C_{ji} be the i-th stage of constructing C_j . Then φ_i maps the discarded set of stage i to the discarded set of stage i, sequentially, and linearly(positive). We can extend φ_i by assigning value on C_{1i} using linearity and monotonicity. This sequence of functions converges uniformly, thus φ is continuous. The other properties of φ can be checked by this construction.

Let $\mathcal{N} \subset C_1$ be a non-measurable set. Then $\varphi(\mathcal{N}) \subset C_2$ so $\varphi(\mathcal{N})$ is measurable by completeness. If $\varphi(\mathcal{N})$ is a Borel set, then by continuity, $\varphi^{-1}(\varphi(\mathcal{N})) = \mathcal{N}$ must be a Borel set, which is a contradiction. So there is a Lebesgue measurable set which is not Borel measurable.

Since $\varphi(\mathcal{N})$ is measurable, $f = 1_{\varphi(\mathcal{N})}$ is a measurable map. Then $f \circ \varphi(x) = 1_{\mathcal{N}}(x)$ is non-measurable map.

Problem (1.4).

(a) A_{ε} is clearly bounded, so it is enough to show that the complement is open. Let $c \notin A_{\varepsilon}$. Then $osc(f,c) < \varepsilon$, so for some r > 0, $osc(f,c,r) < \varepsilon$. Choose any $d \in I(c,r)$. We can choose $r^* > 0$ so that $I(d,r^*) \subset I(c,r)$. Then

$$osc(f, d, r^*) \le osc(f, c, r) < \varepsilon$$

so $osc(f,d) < \varepsilon$, which says $I(c,r) \subset J \setminus A_{\varepsilon}$. Therefore $J \setminus A_{\varepsilon}$ is open in J, hence A_{ε} is compact.

(b) Let D_f be a set of all discontinuities of f. Then for any $\varepsilon > 0$, $A_{\varepsilon} \subset D_f$. So $m(A_{\varepsilon}) \leq m(D_f) = 0$. By the definition of Lebesgue measure, there is countably many open intervals which cover A_{ε} and have sum of length $\leq \varepsilon$. Using compactness, we can choose finite subcover, call them by $(a_i,b_i)_{i=1}^k$ where $a_i < a_{i+1}$. After discarding all of subcovers from J, we get compact subset of J, say J'. For each $c \in J'$, we can choose r_c such that $\operatorname{osc}(f,c,2r_c) < \varepsilon$. Again, using compactness, we can choose finitely many c's. Then finitely many closed intervals $[c-r_c,c+r_c]$ have finite intersections. By taking these endpoints (contain a_i,b_i 's) as endpoints of our partition(if necessary, consider a refinement), we get

$$U(f,P) - L(f,P) \le 2M\varepsilon + m(J)\varepsilon$$

where M is bound of f. The first term of estimate comes from (a_i, b_i) 's and the second term comes from J'.

(c) Since $D_f \subset \bigcup_{n=1}^{\infty} A_{1/n}$, so $m(A_{1/n}) = 0$ leads the conclusion. Assume not, i.e. $m(A_{1/n}) > \varepsilon$. Take partition P such that $U(f,P) - L(f,P) < \varepsilon/n$. Let [a,b] be interval of P whose interior intersects to $A_{1/n}$. Then

$$\sup_{x,y\in[a,b]}|f(x)-f(y)|\geq\frac{1}{n}.$$

But $m(A_{1/n}) > \varepsilon$. So

$$\sum_{[a,b]\cap A_{1/n}\neq\emptyset} \left[\sup_{x\in[a,b]} f(x) - \inf_{y\in[a,b]} f(y) \right] m \left(A_{1/n} \cap [a,b] \right)$$

$$= \sum_{[a,b]\cap A_{1/n}\neq\emptyset} \sup_{x,y\in[a,b]} |f(x) - f(y)| m \left(A_{1/n} \cap [a,b] \right)$$

$$\geq \frac{\varepsilon}{n}$$

$$> U(f,P) - L(f,P)$$

which is a contradiction.

Exercise (2.2).

Let $\varepsilon > 0$. Choose $g \in C_c(\mathbb{R}^d)$ such that $||f - g||_1 < \varepsilon$. Let the domain of g is contained in $B_r(0)$. For $x \in B_r(0)$,

$$|x - \delta x| = |1 - \delta||x| \le r|1 - \delta| < \xi$$

if $|1-\delta|$ is small. Let $\xi>0$ be a number which satisfies $|x-y|<\xi\Rightarrow |g(x)-g(y)|<\varepsilon$. Then, for enoughly small $|1-\delta|$, we get $|x-\delta x|<\xi\Rightarrow |g(\delta x)-g(x)|<\varepsilon$. Thus we get $|g_\delta-g||\leq \varepsilon m(B_r(0)), \ ||f-g||<\varepsilon, \ ||f_\delta-g_\delta||< K\varepsilon$. Therefore

$$||f - f_{\delta}|| \le ||f - g|| + ||g - g_{\delta}|| + ||g_{\delta} - f_{\delta}|| \le (m(B_r(0)) + 1 + K)\varepsilon.$$

This says as $\delta \to 1$, $||f_{\delta} - f|| \to 0$.

Exercise (2.6).

(a) Let $n \in \mathbb{N}$. On [n, n+1], define

$$f(x) = \begin{cases} n & \text{if } n \le x \le n + 1/n^3 \\ 1/n^3 & \text{if } n + 2/n^3 \le x \le n + 1 - 1/n^3 \\ linear & \text{otherwise.} \end{cases}$$

Then

$$\int_{[n,n+1]} f(x) dx \leq \frac{1}{n^2} + \frac{1}{n^3} n \frac{1}{2} + \left(1 - \frac{3}{n^3}\right) \frac{1}{n^3} + \frac{1}{n^3} (n+1) \frac{1}{2} = \frac{2n+3}{2n^3} + \frac{1}{n^2} - \frac{3}{n^6}.$$

Now, reflect f to the y-axis. Define f on (-1,1) by 1. Then

$$\int_{\mathbb{R}} f dm \leq 2 + 2 \left(\sum_{n \geq 1} \left(\frac{4n+2}{2n^3} - \frac{3}{n^6} \right) \right) < \infty.$$

But clearly $\limsup_{x\to\infty} f(x) = \infty$.

(b) By same manipulation used in #2.24.b, the result follows. See after If φ does not vanish \sim .

Exercise (2.19).

Let $g(x,\alpha) = 1_{E_{\alpha}}(x)1_{(0,\infty)}(\alpha)$. Since g is nonnegative, Tonelli's theorem can be applied.

$$\begin{split} \int_{\mathbb{R}^d \times \mathbb{R}} g dm &= \int_{\mathbb{R}^d} \int_{\mathbb{R}} g_x d\alpha dx = \int_{\mathbb{R}^d} |f(x)| dx \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}^d} g^\alpha dx d\alpha = \int_{(0,\infty)} m(E_\alpha) d\alpha. \end{split}$$

Because $g_x(\alpha) = 1_{(0 < \alpha < |f(x)|)}(\alpha)$ and $g^{\alpha}(x) = 1_{(0 < \alpha < |f(x)|)}(x)$.

Exercise (2.24).

Let $\varphi = f * g$.

(a) Choose h > 0 small so that $||f_h - f||_1 < \varepsilon$. Then

$$|\varphi(x+h)-\varphi(x)| \le \int |f(x+h-y)-f(x-y)||g(y)|dy \le B||f_h-f||_1 < B\varepsilon.$$

Thus φ is uniformly continuous.

(b) By Tonelli's theorem,

$$\|\varphi\|_1 \le \iint |f(x-y)||g(y)|dydx \le \|f\|_1 \int |g(y)|dy = \|f\|_1 \|g\|_1 < \infty.$$

So $\varphi \in L^1$. Note that φ is uniformly continuous by (a).

If φ does not vanish at infinity, then there exists $\varepsilon > 0$ such that for all M > 0, there is $|x_M| \ge M$: $|\varphi(x_M)| > 2\varepsilon$. By uniform continuity, there is $\delta > 0$ such that $|x - y| < \delta \Rightarrow |\varphi(x) - \varphi(y)| < \varepsilon$. We can get strictly increasing sequence $y_i \in \{x_M : M > 0\}$ such that $B_{\delta}(y_i) \cap B_{\delta}(y_j) = \emptyset$ whenever $i \ne j$.

Note that for $x \in B_{\delta}(y_i)$, $|\varphi(x)| > \varepsilon$. Thus

$$\int |\varphi| dx \ge \sum_{i=1}^{\infty} \varepsilon m(B_{\delta}(y_i)) = \infty.$$

But the above contradicts to $\varphi \in L^1$.

Problem (2.3).

Let $E_k = \{|f_k - f| > \varepsilon\}$. By the Markov inequality,

$$m(E_k) \le \frac{1}{\varepsilon} \int |f_k - f| dm.$$

Since $f_k \to f$ in L^1 , we get $m(E_k) \to 0$. Thus L^1 convergence implies the convergence in measure.

For counterexample, consider $f_k = k1_{(0,1/k)}$. Then $\int f_k dm = 1$. But $m(|f_k| > \varepsilon) \le 1/k$ so $f_k \to 0$ in measure. But, as we seen, f_k does not converge to 0 in L^1 . Thus the converse of the previous result is not true.

Exercise (3.2).

Let $\{L_{\delta}\}$ be any approximation to the identity. Then, by triangle inequality, $\{K_{\delta} + L_{\delta}\}$ is also approximation to the identity because of the third condition. Therefore

$$f * (K_{\delta} + L_{\delta})(x) \rightarrow f(x) \text{ a.e. } x$$

as $\delta \to 0$ by theorem 2.1. But,

but,

$$f * (K_{\delta} + L_{\delta})(x) = \int f(x - y)(K_{\delta}(y) + L_{\delta}(y))dy$$
$$= f * K_{\delta}(x) + f * L_{\delta}(x).$$

Since $f * L_{\delta}(x) \to f(x)$ for a.e. $x, f * K_{\delta}(x) \to 0$ for a.e. x necessarily.

Exercise (3.5).

(a) By the change of variable formula $(\log x = t)$,

$$\int_{\mathbb{R}} |f(x)| dx = \int_{-1/2}^{1/2} f(x) dx$$
$$= \int_{-\infty}^{-\log 2} \frac{1}{t^2} dt = \frac{1}{\log 2} < \infty.$$

(b) Let $\varepsilon > 0$. Then

$$f^*(x) \ge \frac{1}{2|x| + 2\varepsilon} \int_{-|x| - \varepsilon}^{|x| + \varepsilon} \frac{dt}{t(\log t)^2}$$
$$= \frac{1}{|x| + \varepsilon} \int_0^{|x| + \varepsilon} \frac{dt}{t(\log t)^2}$$
$$= \frac{1}{-\log(|x| + \varepsilon)(|x| + \varepsilon)}.$$

Since $\varepsilon > 0$ is arbitrary, by taking $\varepsilon \downarrow 0$, we obtain

$$f^*(x) \ge \frac{1}{|x| \log \frac{1}{|x|}}.$$

But $1/(-|x|\log|x|)$ is clearly non-locally integrable function. This is by integrating on the interval containing 0 and the change of variable formula, used above.

Exercise (3.12).

By chain rule, F' exists for all $x \neq 0$. But,

$$\lim_{h \to 0} \frac{F(h)}{h} = \lim_{h \to 0} h \sin(1/h^2) = 0$$

Thus F' exists for all $x \in \mathbb{R}$.

For $1/\sqrt{2n\pi + \pi/6} \le x \le 1/\sqrt{2n\pi - \pi/6}$, $2n\pi - \pi/6 \le 1/x^2 \le 2n\pi + \pi/6$, thus $\cos 1/x^2 \ge \sqrt{3}/2$ and $\left|\sin 1/x^2\right| \le 1/2$. So $|F'| \ge 2/x \cos 1/x^2 - 2x \left|\sin 1/x^2\right| \ge \sqrt{3}\sqrt{2n\pi - \pi/6} - 1/\sqrt{2n\pi - \pi/6}$.

By using the above,

$$\begin{split} \int_0^1 |F'| dm &\geq \sum_{n=1}^\infty \left(1/\sqrt{2n\pi - \pi/6} - 1/\sqrt{2n\pi + \pi/6} \right) \left(\sqrt{3}\sqrt{2n\pi - \pi/6} - 1/\sqrt{2n\pi - \pi/6} \right) \\ &= \sum_{n=1}^\infty \frac{\pi/\sqrt{3}}{\sqrt{2n\pi + \pi/6} \left(\sqrt{2n\pi + \pi/6} + \sqrt{2n\pi - \pi/6} \right)} \\ &- \sum_{n=1}^\infty \frac{\pi/3}{(2n\pi - \pi/6) \sqrt{2n\pi + \pi/6} \left(\sqrt{2n\pi + \pi/6} + \sqrt{2n\pi - \pi/6} \right)} \end{split}$$

where the last sum converges and previous one diverges (by p-test.) Thus F^\prime is non-integrable.

Exercise (3.23).

(a) Follow the hint.

$$(D^+G_{\varepsilon})(x_0) = (D^+F)(x_0) + \varepsilon > 0.$$

This means, for sufficiently small h > 0,

$$G_{\varepsilon}(x_0+h) > G_{\varepsilon}(x_0) \ge 0.$$

This contradicts to our choice of x_0 .

(b) Use the Mean value theorem.

Exercise (3.25).

(a) Let f be the function given in the hint. Note that all of points in any open set O is a point of Lebesgue density. This is because, we can only consider small ball B_x contained in O. Thus

$$\liminf \frac{m(O_n \cap B)}{m(B)} = 1$$

for all $x \in E$. Therefore

$$\lim\inf\frac{1}{m(B)}\int_Bfdm=\lim\inf\sum_{n\geq 1}\frac{m(O_n\cap B)}{m(B)}$$

$$\geq \sum_{n\geq 1}\liminf\frac{m(O_n\cap B)}{m(B)}=\sum_{n\geq 1}1=\infty.$$

(b) Let $F(x) = \int_{-\infty}^{x} f(t)dt$ where f is the function found in a. Then F satisfies the given condition.

Exercise (3.32).

Assume the Lipschitz condition. Take $\delta = \varepsilon/M$ when $\varepsilon > 0$ is given. For (a_i,b_i) such that $\sum_i (b_i-a_i) < \delta$, then $\sum_i |f(b_i)-f(a_i)| \leq M \sum_i (b_i-a_i) < M\delta = \varepsilon$. Thus f is absolutely continuous. So f' exists a.e. Now consider the following:

$$|f'(x)| = \lim_{h \to 0} \frac{|f(x+h) - f(x)|}{|h|} \le M$$

Thus $|f'| \leq M$ a.e. x.

For the other direction, without loss of generality, assume $x \leq y$. Since f is absolutely continuous, f' exists a.e, and $\int_x^y f' dm = f(y) - f(x)$. Thus, $|f(x) - f(y)| = \left| \int_x^y f' dm \right| \leq \int_x^y |f'| dm \leq (y - x) M = |x - y| M$.

Problem (3.5).

First, assume that $F' \geq 0$ a.e. Let E be the set, F'(x) < 0. According to exercise 25, we can find Φ which is increasing, absolutely continuous, and $D_{\pm}\Phi(x) = \infty$ for all $x \in E$. Note that $\infty = D_{+}\Phi(x) \leq D^{+}\Phi(x)$. Now, for $\delta > 0$, consider $F + \delta\Phi$. On E, $D^{+}(F + \delta\Phi) = \infty > 0$. On E^{c} , $D^{+}(F + \delta\Phi) = F' + \delta\Phi' \geq 0$. Therefore, by exercise 23, $F + \delta\Phi$ is an increasing function. So

$$F(x) - F(a) + \delta(\Phi(x) - \Phi(a)) > 0.$$

Since $\delta > 0$ is arbitrary, we can assert $F(x) \geq F(a)$ whenever $x \geq a$.

Now we'll solve the problem using the above. Let $G(x) = \int_a^x F'dm$. Then G'(x) = F'(x) a.e. by Lebesgue differentiation theorem. Thus $G'(x) - F'(x) \ge 0$ a.e. Then, the above implies $G(x) - G(a) - F(x) + F(a) \ge 0$. Since we can say that $G'(x) - F'(x) \le 0$ a.e. also, we obtain $G(x) - G(a) - F(x) + F(a) \le 0$. But G(a) = 0. Therefore $F(x) - F(a) = G(x) = \int_a^x F'dm$. Since F' is integrable, $\nu(B) = \int_B F'dm$ is absolutely continuous with respect to m so F is absolutely continuous.

Exercise (4.4).

First, let's show the completeness. Let $\{f_n\} \subset l^2(\mathbb{Z})$ be a Cauchy sequence. Choose n_k such that $||f_{n_{k+1}} - f_{n_k}|| < 2^{-k+1}$. Define $f = f_{n_1} + \sum_{k=1}^{\infty} (f_{n_{k+1}} - f_{n_k})$ and $g = |f_{n_1}| + \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}|$. Note that $||g|| \le ||f_{n_1}|| + \sum_{k=1}^{\infty} ||f_{n_{k+1}} - f_{n_k}|| \le ||f_{n_1}|| + 2 < \infty$. Because, for each $i \in \mathbb{Z}$, $|f(i)| \le g(i) \le ||g|| < \infty$, we can observe that f(i) is absolutely converges. Thus f is well defined function, also in l^2 (: $||f|| \le ||g|| < \infty$). Now let's show that $f_{n_k} \to f$.

$$||f - f_{n_k}|| \le \sum_{m=k}^{\infty} ||f_{n_{m+1}} - f_{n_m}|| \le 2^{-k}.$$

So $f_{n_k} \to f$ as $k \to \infty$ in l^2 . Therefore $l^2(\mathbb{Z})$ is complete.

Now let's show the separability. Let \mathcal{B} be the set of all rational sequence in $l^2(\mathbb{Z})$. Clearly, it is nonempty since the zero sequence is in \mathcal{B} . Let $f \in l^2$. Fix $\varepsilon > 0$. For each $i \in \mathbb{Z}$, choose q_i such that

$$|f(i) - q_i|^2 < \frac{\varepsilon^2}{2^{|i|}}.$$

Let $q: i \mapsto q_i$. Then $||q|| \le ||q - f|| + ||f||$, where

$$||q - f|| = \left(\sum_{-\infty}^{\infty} |q_i - f(i)|^2\right)^{1/2}$$

$$\leq \left(\sum_{-\infty}^{\infty} \frac{\varepsilon^2}{2^{|i|}}\right)^{1/2}$$

$$= \sqrt{3}\varepsilon.$$

Since $||f|| < \infty$, we can see that $q \in l^2$ and $||f - q|| \le \sqrt{3}\varepsilon$. Note that $q \in l^2$ implies $q \in \mathcal{B}$. So \mathcal{B} is dense in l^2 , and clearly \mathcal{B} is countable set.

Exercise (4.15).

Let $\{e_1, e_2, \cdots, e_n\}$ be an orthonormal basis of \mathcal{H}_1 . Let $f \in \mathcal{H}_1$, ||f|| = 1. Then $f = \sum_{i=1}^n c_i e_i$, where $\sqrt{\sum |c_i|^2} = 1$. Then

$$||Tf|| = ||c_1Te_1 + \cdots + c_nTe_n||$$

$$\leq |c_1|||Te_1|| + \cdots + |c_n|||Te_n||$$

$$\leq \sum_{i=1}^n |c_i|M$$

$$\leq M \left(\sum_{i=1}^n |c_i|^2\right)^{1/2} \left(\sum_{i=1}^n 1\right)^{1/2}$$

$$= \sqrt{n}M < \infty$$

where $M = \max_{1 \le i \le n} ||Te_i||$. Since n is fixed, the above says that T is bounded operator.

Exercise (4.22).

(a) Polarization identity:

$$(f,g) = \frac{1}{4} \left[\|f + g\|^2 - \|f - g\|^2 + i\|f + ig\|^2 - i\|f - ig\|^2 \right].$$

This can be shown by using the hint. (Actually, we have seen it in the lecture.)

Put Tf, Tg in the place of f, g respectively. Since T is linear and ||Tf|| = ||f||, we can easily see that (f, g) = (Tf, Tg).

Now fix $g \in \mathcal{H}$. Then $(f, T^*Tg) = (Tf, Tg)$ by the definition of adjoint, and (Tf, Tg) = (f, g) by isometric property of T. Thus

$$(f, T^*Tg - g) = 0$$

for all $f \in \mathcal{H}$. Therefore $T^*T = I$ by taking $f = T^*Tg - g$.

(b) Let's show the injectivity. Let Tf = Tg. Then

$$0 = ||Tf - Tg|| = ||f - g|| \Rightarrow f = g.$$

Thus T is bijective isometry. Therefore it is an unitary operator.

Now fix $g \in \mathcal{H}$. For each $f \in \mathcal{H}$, there is h such that f = Th because of the surjectivity. Then

$$(f,TT^*g) = (Th,TT^*g)$$

= (h,T^*TT^*g)
= (h,T^*g)
= (Th,g)
= (f,g)

by the definition of the adjoint and $T^*T=I$ because T is an isometry. Therefore

$$(f, TT^*g - g) = 0$$

for all $f \in \mathcal{H}$. By taking $f = TT^*g - g$, we can conclude that $TT^* = I$.

(c) Let $\mathcal{H} = l^2(\mathbb{N})$. Let $f = (f(1), f(2), \dots) \in \mathcal{H}$. Define $T : (f(1), f(2), \dots) \mapsto (0, f(1), f(2), \dots)$. Clearly T is a linear operator, but non-surjective. If we show that T is isometry, then we are done.

$$||Tf||^2 = 0 + \sum_{i=1}^{\infty} |f(i)|^2 = ||f||^2.$$

SoT is an isometry, which is not unitary.

(d) Note that unitary operator is isometry. So, by (a) and Cauchy Schwartz inequality,

$$(Tf, Tf) = (f, T^*Tf) \le ||f|| ||T^*Tf|| = ||f||^2.$$

Thus $||Tf|| \le ||f||$.

For the other direction,

$$(f,f) = (T^*Tf, T^*Tf)$$
$$= (Tf, TT^*Tf)$$
$$\leq ||Tf|||TT^*Tf||.$$

But $||TT^*Tf||^2 = (TT^*Tf, TT^*Tf) = (Tf, TT^*TT^*Tf) = (Tf, Tf) = ||Tf||^2$ since $(T^*T)^*(T^*T) = T^*TT^*T = I$ by (a). Therefore $(f, f) \leq (Tf, Tf)$, which completes the proof.

Exercise (4.32).

(a) T(cf + dg)(t) = t(cf + dg)(t) = ctf(t) + dtg(t) = cT(f)(t) + dT(g)(t) so T is linear. Note that $t^2 \le 1$ on [0,1]. So

$$||Tf||^2 = \int_0^1 t^2 |f(t)|^2 dt \le \int_0^1 |f(t)|^2 dt = ||f||^2$$

which says that $||T|| \leq 1$.

Also,

$$(Tf,g) = \int_0^1 tf(t)\overline{g(t)}dt$$
$$= \int_0^1 f(t)\overline{tg(t)}dt = (f,Tg)$$

hence $Tg = T^*g$ for all $g \in L^2[0,1]$ by same argument used in exercise 22. Thus T is a bounded linear operator with $T = T^*$.

Let $f_n(t) = \sqrt{2n+1}t^n$. Then $||f_n||^2 = \int_0^1 (2n+1)t^{2n}dt = 1$ for all n. Thus $f_n \in$ the unit ball of $L^2[0,1]$. For any subsequence f_{n_k} ,

$$||Tf_{n_k} - Tf_{n_l}||^2$$

$$= \int_0^1 (2n_k + 1)t^{2n_k + 2} + (2n_l + 1)t^{2n_l + 2} - 2\sqrt{(n_k + 1)(n_l + 1)}t^{(n_k + 1)(n_l + 1)}dt$$

$$= \frac{2n_k + 1}{2n_k + 3} + \frac{2n_l + 1}{2n_l + 3} - \frac{2\sqrt{(n_k + 1)(n_l + 1)}}{(n_k + 1)(n_l + 1) + 1}.$$

As $n_k, n_l \to \infty$, the first two terms go to 1 respectively, but the last term go to 0. So the sequence does not converge. Hence T is non-compact.

(b) Suppose $T\varphi = \lambda \varphi$. Then $t\varphi(t) = \lambda \varphi(t)$ for all $t \in [0,1]$. Then $t\varphi(t)1_{\varphi \neq 0}(t) = \lambda \varphi(t)1_{\varphi \neq 0}(t)$, so $1_{\varphi \neq 0}(t) = 0$, which means $\varphi = 0$. But the zero vector cannot be an eigenvector, hence there is no eigenvector.

Problem (4.1).

Let X be a collection of linearly independent subsets of \mathcal{H} . Impose partial order by the inclusion. Note that X is nonempty since the empty set is in X.

We'll use Zorn's lemma which is equivalent to the AC. Let Y be any totally ordered subset of X. $L_Y = \bigcup_{w \in Y} w$. Then every finite subset of L_Y is in Y, since Y is totally ordered. Hence L_Y is linearly independent, so $L_Y \in X$. But, note that L_Y is an upperbound of Y in X. So Zorn's lemma gives L_m which is maximal element of X.

Now assert that L_m is an algebraic basis of \mathcal{H} . Since $L_m \in X$, L_m is linearly independent. If L_m does not span \mathcal{H} , then there is $f \in \mathcal{H}$ outside of span L_m . Define $L_f = L_m \cup \{f\}$. Then L_f is strictly larger than L_m . But, L_f is linearly independent, since f is outside of span of L_m . Thus $L_f \in X$, which contradicts to the maximality of L_m . Hence L_m spans \mathcal{H} algebraically, so L_m is an algebraic basis

Now $L_m = \{a_\alpha : \alpha \in I\}$. Let $B = \{e_\alpha = \frac{a_\alpha}{\|a_\alpha\|} : \alpha \in I\}$. Then B is an algebraic basis, consists of unit vectors.

Choose $\{e_i\}_{i\in\mathbb{N}}$. For $f\in\mathcal{H}$,

$$f = \sum_{\alpha \in F} c_{\alpha} e_{\alpha} = \sum_{\alpha \in F \setminus \mathbb{N}} c_{\alpha} e_{\alpha} + \sum_{i=1}^{N} c_{i} e_{i}$$

where F is finite set. Define $l(f) = \sum_{i=1}^{N} ic_i$. Note that N depends on f. Clearly, l is linear: $l(cf+dg) = c \sum_{i=1}^{N} ic_i + d \sum_{i=1}^{N} id_i = cl(f) + dl(g)$. Also $l(e_i) = i$. But, $|l(e_i)| = i \to \infty$ as $i \to \infty$, even though $||e_i|| = 1$. This says l is unbounded linear functional.