

Aula 02

Representação de Números Sistema Decimal e Binário

Agenda:

- 1. Introdução;
- 2. Representação de números;
- 3. Conversão de números decimal/binário;
- 4. Aritmética de ponto flutuante;
- 5. Encerramento.

1. Introdução

Os resultados dependem:

- Da precisão de dados de entrada;
- Da representação dos dados no computador;
- Das operações numéricas efetuadas.

Referências:

- ❖ MATHEWS, J. H. Numerical Methods for Mathematics, Science and Engineering, second edition. Prentice Hall International, INC., 1992.
- ❖ OVERTON, M. L. & PAIGE, C. Notes on Numerical Computing. Computer Science Department of New York University and McGill University, USA, 1995.
- * WILKINSON, J. H. Rounding Errors in Algebraic Processes. Prentice Hall, Inc., 1963.

2. Representação de números

Exemplo: cálculo de uma área circular de raio 100 m.

- a) 31400 m²
- b) 31416 m²
- c) 31415.92654 m²

Qual está correta?

2. Representação de números

Exemplo: cálculo de uma área circular de raio 100 m.

- a) 31400 m^2 $\pi = 3.14$
- b) $31416 \text{ m}^2 \longrightarrow \pi = 3.1416$
- c) $31415.92654 \text{ m}^2 \longrightarrow \pi = 3.141592654$

O resultado depende da aproximação utilizada.

A representação depende também da base escolhida ou disponível e do número máximo de dígitos usados na sua representação.

Sistemas numéricos

Sistemas de notação usados para representar quantidades abstratas denominadas números

Base é o número de símbolos diferentes ou algarismos necessários para representar um número

Sistemas dependem da base que se utiliza

A chamada conversão de base é a passagem de uma base para outra

A representação muda, mas o valor quantitativo é preservado

Tipos de numeração mais usuais:

- Base 10 (decimal) 0 a 9
- Base 2 (binária) -0 a 1
- Base 8 (octal) 0 a 7
- Base 16 (hexadecimal) -0 a F

Denary	Hexadecimal	Octal	Binary
(base 10)	(base 16)	(base 8)	(base 2)
0	0	000	00000000
1	1	001	00000001
2	2	002	00000010
3	3	003	00000011
4	4	004	00000100
5	5	005	00000101
6	6	006	00000110
7	7	007	00000111
8	8	010	00001000
9	9	011	00001001
10	A	012	00001010
11	В	013	00001011
12	C	014	00001100
13	D	015	00001101
14	E	016	00001110
15	F	017	00001111

Denary	Hexadecimal	Octal	Binary
(base 10)	(base 16)	(base 8)	(base 2)
16	10	020	00010000
17	11	021	00010001
18	12	022	00010010
19	13	023	00010011
20	14	024	00010100
21	15	025	00010101
22	16	026	00010110
23	17	027	00010111
24	18	030	00011000
25	19	031	00011001
26	1A	032	00011010
27	1B	033	00011011
28	1C	034	00011100
29	1D	035	00011101
30	1E	036	00011110
31	1F	037	00011111

Base Binária:

- Ótimo para representação eletrônica
- Difícil para nossa visualização

Quanto menor a base, mais algarismos são necessários para representar os números.

$$(482)_{10} = 4 \times 10^2 + 8 \times 10^1 + 2 \times 10^0$$

$$(10011)_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

3. Conversão de números – decimal/binário

Convertendo para o sistema decimal:

$$(10011)_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 16 + 0 + 0 + 2 + 1 = 19$$


```
// C++ program to convert binary to decimal
                                                      temp = temp/10;
#include<iostream>
                                                      dec value += last digit*base;
using namespace std;
                                                          base = base*2;
// Function to convert binary to decimal
int binaryToDecimal(int n)
                                                        return dec_value;
  int num = n;
  int dec value = 0;
  // Initializing base value to 1, i.e 2^0
  int base = 1;
  int temp = num;
  while (temp)
    int last_digit = temp % 10;
```



```
# Python3 program to convert
                                            temp = int(temp / 10);
# binary to decimal
                                                dec value += last digit * base;
# Function to convert
                                                 base = base*2;
# binary to decimal
                                              return dec_value;
def binaryToDecimal(n):
  num = n;
  dec value = 0;
  # Initializing base
  # value to 1, i.e 2^0
  base = 1;
  temp = num;
  while(temp):
    last digit = temp % 10;
```


Agora, do sistema decimal para binário:


```
// C++ program to convert a decimal
// number to binary number
#include <iostream>
using namespace std;
// function to convert decimal to binary
void decToBinary(int n)
  // array to store binary number
  int binaryNum[1000];
  // counter for binary array
  int i = 0;
  while (n > 0) {
```

```
// storing remainder in binary
array
    binaryNum[i] = n % 2;
    n = n / 2;
    i++;
  // printing binary array in reverse
order
  for (int j = i - 1; j >= 0; j--)
    cout << binaryNum[j];</pre>
```



```
# Python3 program to convert a
# decimal number to binary number
# function to convert
# decimal to binary
def decToBinary(n):
  # array to store
  # binary number
  binaryNum = [0] * n;
  # counter for binary array
  i = 0;
  while (n > 0):
```

```
# storing remainder
    # in binary array
    binaryNum[i] = n % 2;
    n = int(n / 2);
    i += 1;

# printing binary array
# in reverse order
for j in range(i - 1, -1, -1):
    print(binaryNum[j], end = "");
```


Números fracionários – base 2 para base 10:

Números fracionários – base 10 para base 2:

$$0.8125$$
 $0.8125 \times 2 \quad | \cdot 6250 \quad | \quad 0.625$
 $0.625 \times 2 \quad | \cdot 250 \quad | \quad 0.250$
 $0.25 \times 2 \quad 0.50 \quad 0 \quad 0.5$
 $0.5 \times 2 \quad | \cdot 00 \quad | \quad 0$

Na transformação da base 10 para base 2 sempre será possível para números inteiros; no entanto, nem sempre será possível escrever quando for número fracionário em representação finita.

Exemplo:

$$(0,6)_{10} = ?$$

Conclusão:

Série infinita, ou seja, o computador não conseguirá armazenar com exatidão o número em binário.

Erro de conversão de base

EXERCÍCIOS

4. Aritmética de ponto flutuante

Um número real, no sistema da máquina, é representado na forma:

$$\pm$$
, $(.d_1d_2...d_t) \times \beta^e$ ou $(-1)^s \times (.d_1d_2...d_t) \times \beta^e$

Onde: β é a base em que a máquina opera;

t é o número de dígitos na mantissa; $0 \le d_j \le (\beta - 1)$, j =

 $1,\ldots,t,\ d_1\neq 0$

e é o expoente no intervalo [l, u]

s é o sinal (0 se for positivo e 1 se for negativo)

A representação utilizada nas máquinas digitais é chamada NOTAÇÃO DE PONTO FLUTUANTE, na qual o espaço é dividido em:

- Sinal do número;
- Parte fracionária MANTISSA;
- Área para expoente.

O espaço de armazenamento é limitado

O que se armazena são INTERVALOS DISCRETOS

precisão depende do espaço disponível armazenamento.

Precisão simples

- 32 bits ou 4 bytes;
- 1 bit para o sinal do número (+ ou -);
- 8 bits para armazenar um número inteiro que é o expoente da base;
- 23 bits para a mantissa.

Precisão dupla

- 64 bits ou 8 bytes;
- 1 bit para o sinal do número (+ ou -);
- 11 bits para armazenar um número inteiro que é o expoente da base;
- 52 bits para a mantissa.

Na aritmética de ponto flutuante (Floating-Point System), um sistema é representado por 4 números e abrange um subconjunto de números reais.

 $F(\beta,t,m,M)$

 β : base utilizada;

t: tamanho ou número de dígitos (precisão);

m e M: menor e maior expoentes, respectivamente.

Exemplo: F(2,8,-4,3)

$$x = 0$$
 010 11100110 $y = 0$ 010 11100111

$$x = (-1)^0 \times 2^2 \times (0.11100110) = (11.100110)_2 = (3.59375)_{10}$$

 $y = (-1)^0 \times 2^2 \times (0.11100111) = (11.100111)_2 = (3.609375)_{10}$

x e y são dois números consecutivos neste sistema de representação, sendo que o número decimal 3,6 não possui representação exata.

Exemplo: F(2,3,-1,2)

- Base 2 com mantissa 0 ou 1 sendo que na forma normalizada, o primeiro dígito é obrigatoriamente 1
- Mantissa 0.100; 0.101; 0.110; 0.111
- Expoente variando de 2⁻¹ a 2²

Quantidade de números representáveis:

$$N = 2 \times (\beta - 1) \times \beta^{t-1} \times (M - m + 1) + 1$$

Quanto maior o número de dígitos na mantissa, maior a precisão dos números representáveis e menor o intervalo entre dois números.

Exemplo:
$$\beta = 10, t = 3, e \in [-5; 5]$$

Os números serão representados na forma:

$$0.d_1d_2d_3 \times 10^e$$

$$0 \le d_i \le (10-1), d_1 \ne 0, e \in [-5; 5]$$

Menor número possível: $m = 0.100 \times 10^{-5}$

Maior número possível: $M = 0.999 \times 10^5$

Considerando: $G = \{x \in \Re \mid m \le |x| \le M\}$

Caso 1) $x \in G \longrightarrow$ Truncamento ou arredondamento

Caso 2) $|x| < m \longrightarrow Underflow$

Caso 3) $|x| > M \longrightarrow Overflow$

Exemplo 3

Dar a representação dos números a seguir num sistema de aritmética de ponto flutuante de três dígitos para $\beta = 10$, m = -4 e M = 4.

x	Representação obtida por arredondamento	Representação obtida por truncamento
1.25	0.125 × 10	0.125 × 10
10.053	0.101×10^{2}	0.100×10^2
-238.15	-0.238×10^3	-0.238×10^3
2.71828	0.272×10	0.271×10
0.000007	(expoente menor que -4)	=
718235.82	(expoente maior que 4)	=

Represente no sistema F(10, 3, 5, 5) os números

$$x_1 = 1234.56, \quad x_2 = -0.00054962, \quad x_3 = 0.9995,$$

 $x_4 = 123456.7, \quad x_5 = 0.0000001.$

Resposta:

$$fl(x_1) = 0.123 \times 10^4$$
, $fl(x_2) = -0.550 \times 10^{-3}$, $fl(x_3) = 0.100 \times 10^1$.

Para x_4 e x_5 tem-se *overflow* e *underflow*, respectivamente.

Adição / subtração

- Escolher o número com menor expoente entre x e y e deslocar sua mantissa para a direita um número de dígitos igual à diferença absoluta entre os respectivos expoentes;
- Colocar o expoente do resultado igual ao maior expoente entre x e y;
- Executar a adição/subtração das mantissas e determinar o sinal do resultado;
- Normalizar o valor do resultado, se necessário;
- Arredondar o valor do resultado, se necessário;
- Verificar se houve overflow/underflow.

Multiplicação

- Colocar o expoente do resultado igual à soma dos expoentes de x e y;
- Executar a multiplicação das mantissas e determinar o sinal do resultado;
- Normalizar o valor do resultado, se necessário;
- Arredondar o valor do resultado, se necessário;
- Verificar se houve overflow/underflow.

Divisão

- Colocar o expoente do resultado igual à diferença dos expoentes de x (dividendo) e y (divisor);
- Executar a divisão das mantissas e determinar o sinal do resultado;
- Normalizar o valor do resultado, se necessário;
- Arredondar o valor do resultado, se necessário;
- Verificar erros.

EXERCÍCIOS

Próxima aula:

Aula 03

- Erros absolutos e relativos;
- Arredondamento e truncamento;
- Análise de erros em aritmética de ponto flutuante;
- Instabilidade numérica.

