Doing full stack QML using qibo

Matteo Robbiati feat. Alejandro Sopena 24 May 2023

Working in the NISQ era

The qibo ecosystem

Two snapshots

O Consider two Hamiltonians H_0 and H_1 , whose ground states are $|g_0\rangle$ and $|g_1\rangle$.

- $oldsymbol{\odot}$ Consider two Hamiltonians H_0 and H_1 , whose ground states are $|g_0\rangle$ and $|g_1\rangle$.
- We call Adiabatic Evolution the process represented by:

- $oldsymbol{\circ}$ Consider two Hamiltonians H_0 and H_1 , whose ground states are $|g_0\rangle$ and $|g_1\rangle$.
- We call Adiabatic Evolution the process represented by:

$$H_{ad}(\tau;\theta) = [1 - s(\tau;\theta)]H_0 + s(\tau;\theta)H_1.$$
 (1)

- Consider two Hamiltonians H_0 and H_1 , whose ground states are $|g_0\rangle$ and $|g_1\rangle$.
- We call Adiabatic Evolution the process represented by:

$$H_{ad}(\tau;\theta) = [1 - s(\tau;\theta)]H_0 + s(\tau;\theta)H_1. \tag{1}$$

 $oldsymbol{\circ}$ in which we parametrize the **scheduling** function s.

- Consider two Hamiltonians H_0 and H_1 , whose ground states are $|g_0\rangle$ and $|g_1\rangle$.
- We call Adiabatic Evolution the process represented by:

$$H_{ad}(\tau;\theta) = [1 - s(\tau;\theta)]H_0 + s(\tau;\theta)H_1. \tag{1}$$

 \odot in which we parametrize the **scheduling** function s.

```
# with gibo we can implement an Adiabatic Evolution via trotter formula
       from gibo import models, hamiltonians, callbacks
       # problem's parameters
       nqubits = 1
       h0 = hamiltonians.X(ngubits)
       h1 = hamiltonians.Z(nqubits)
       target_observable = h1
10
       # we track the energy of h1 on the evolved ground state
11
       energies = callbacks. Energy (target_observable)
12
       evolution = models.AdiabaticEvolution(
           h0=h0, h1=h1, s = lambda t : t. dt=0.1, callbacks = [energies])
       # calculate the evolved final state at time t=final_time
16
       evolved_state = evolution(final_time = final_time)
```

Quantum Machine Learning - doing ML using QC

Machine Learning

 \mathcal{M} : model;

 \mathcal{O} : optimizer;

 \mathcal{J} : loss function.

(x, y): data

Quantum Computation

 \mathcal{Q} : qubits;

 $\mathcal{S} \colon \mathsf{superposition};$

 \mathcal{E} : entanglement.

Quantum Machine Learning - operating on qubits

Machine Learning

 \mathcal{M} : model;

O: optimizer;

 \mathcal{J} : loss function.

(x, y): data

Quantum Computation

Q: qubits;

 \mathcal{S} : superposition;

 \mathcal{E} : entanglement.

VQC execution $\mathcal{M},~\mathcal{S},~\mathcal{E}$ $\mathcal{U}(\theta)\ket{q_i}
ightarrow\ket{q_f}$

Quantum Machine Learning - natural randomness

Machine Learning

 \mathcal{M} : model;

O: optimizer;

 \mathcal{J} : loss function.

(x, y): data

Expected values

$$y_{est} \equiv \langle q_f | B | q_f \rangle$$

Quantum Computation

Q: qubits;

S: superposition;

 \mathcal{E} : entanglement.

VQC execution

Quantum Machine Learning - encoding the problem

Quantum Machine Learning!

STEP 0: the goal

- Let's consider a sample of data $\{x\}_{k=1}^{N_{\text{data}}}$.
- $oldsymbol{\circ}$ We can calculate the Cumulative Density Function (CDF) values F(x),
- ullet which are related to the Probability Density Function (PDF) via $\rho(x) = \mathrm{d}F(x)/\mathrm{d}x$.

STEP 0: the idea

Fit CDF with Adiabatic Evolution (AE)

3 Given a sample $\{x\}$ and calculated its CDF values F(x):

Fit CDF with Adiabatic Evolution (AE)

- **3** Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H_0 and H_1 such that a target observable has energy E=0 and E=1 respectively on H_0 and H_1 ground states;

- **3** Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H_0 and H_1 such that a target observable has energy E=0 and E=1 respectively on H_0 and H_1 ground states;
- **%** we map (x, F) → (τ, E) .

- **3** Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H_0 and H_1 such that a target observable has energy E=0 and E=1 respectively on H_0 and H_1 ground states;
 - % we map $(x, F) \rightarrow (\tau, E)$.

- **3** Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H_0 and H_1 such that a target observable has energy E=0 and E=1 respectively on H_0 and H_1 ground states;
 - **%** we map $(x, F) \rightarrow (\tau, E)$.

1. we run the evolution with random initial θ_0 into the scheduling;

- **②** Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H_0 and H_1 such that a target observable has energy E=0 and E=1 respectively on H_0 and H_1 ground states;
 - % we map $(x, F) \rightarrow (\tau, E)$.

- 1. we run the evolution with random initial $heta_0$ into the scheduling;
- 2. we track the energy of a Pauli Z during the evolution;

- **②** Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H_0 and H_1 such that a target observable has energy E=0 and E=1 respectively on H_0 and H_1 ground states;
 - % we map $(x, F) \rightarrow (\tau, E)$.

- 1. we run the evolution with random initial θ_0 into the scheduling;
- 2. we track the energy of a Pauli Z during the evolution;
- 3. we calculate a loss function J_{mse} :

$$J_{\mathrm{mse}} = \sum_{k=1}^{N_{\mathrm{sample}}} \left[E(\tau_k) - F(x_k) \right]^2;$$

- **3** Given a sample $\{x\}$ and calculated its CDF values F(x):
 - % we select two hamiltonians H_0 and H_1 such that a target observable has energy E=0 and E=1 respectively on H_0 and H_1 ground states;
 - **%** we map $(x, F) \rightarrow (\tau, E)$.

- 1. we run the evolution with random initial θ_0 into the scheduling;
- 2. we track the energy of a Pauli Z during the evolution;
- 3. we calculate a loss function J_{mse} :

$$J_{\mathrm{mse}} = \sum_{k=1}^{N_{\mathrm{sample}}} \left[E(\tau_k) - F(x_k) \right]^2;$$

4. we choose an optimizer to find θ_{best} which minimizes J_{mse} .

• nparams=20, dt=0.1, final_time=50 , target_loss=None

A toy example - until $J_{\rm MSE}=10^{-1}$

• nparams=20, dt=0.1, final_time=50 , target_loss=1e-1

nparams=20, dt=0.1, final_time=50, target_loss=1e-2

nparams=20, dt=0.1, final_time=50, target_loss=1e-4

From $\{H_{\mathrm{ad}}\}$ to a derivable circuit \mathcal{C}_R

• Firstly, we did some calculations and approximations in order to:

- Firstly, we did some calculations and approximations in order to:
 - 1. translate the Hamiltonians' sequence into a single unitary:

$$\prod_{j=1}^n e^{-iH_j\mathrm{d}t} \to \mathcal{U}(t);$$

- Firstly, we did some calculations and approximations in order to:
 - 1. translate the Hamiltonians' sequence into a single unitary:

$$\prod_{j=1}^n e^{-iH_j dt} \to \mathcal{U}(t);$$

2. translate this unitary in a sequence of rotational gates:

$$\mathcal{U}(t) = R_z(\theta_1)R_x(\theta_2)R_z(\theta_3)$$
 with $\theta_i \equiv \theta_i(t)$.

- Firstly, we did some calculations and approximations in order to:
 - 1. translate the Hamiltonians' sequence into a single unitary:

$$\prod_{j=1}^n e^{-iH_j\mathrm{d}t} \to \mathcal{U}(t);$$

2. translate this unitary in a sequence of rotational gates:

$$U(t) = R_z(\theta_1)R_x(\theta_2)R_z(\theta_3)$$
 with $\theta_i \equiv \theta_i(t)$.

• Then, we derivate the expected values using parameter shift rule and chain rule.

- Firstly, we did some calculations and approximations in order to:
 - 1. translate the Hamiltonians' sequence into a single unitary:

$$\prod_{j=1}^n e^{-iH_j \mathrm{d}t} o \mathcal{U}(t);$$

2. translate this unitary in a sequence of rotational gates:

$$\mathcal{U}(t) = R_z(\theta_1)R_x(\theta_2)R_z(\theta_3)$$
 with $\theta_i \equiv \theta_i(t)$.

Then, we derivate the expected values using parameter shift rule and chain rule.

Figure 1: $N_{\rm runs}=10$ evaluations of CDF predictions for $N_{\rm data}=25$ using $N_{\rm shots}=1000$.

Figure 2: $N_{\rm runs}=10$ evaluations of CDF predictions for $N_{\rm data}=25$ using $N_{\rm shots}=1000$ and each qubit of qw5q-gold.

• These first results open several questions:

- These first results open several questions:
 - \blacksquare are these errors compatible with transmon SoA?

- These first results open several questions:
 - are these errors compatible with transmon SoA?
 - which relationship between my results' error and hardware ones?

- These first results open several questions:
 - are these errors compatible with transmon SoA?
 - which relationship between my results' error and hardware ones?
 - where are the execution time bottlenecks?

- These first results open several questions:
 - are these errors compatible with transmon SoA?
 - which relationship between my results' error and hardware ones?
 - where are the execution time bottlenecks?
 - what if we train the entire process on the hardware?

- These first results open several questions:
 - are these errors compatible with transmon SoA?
 - which relationship between my results' error and hardware ones?
 - where are the execution time bottlenecks?
 - what if we train the entire process on the hardware?
 - what if we apply error mitigation on predictions?

- These first results open several questions:
 - are these errors compatible with transmon SoA?
 - which relationship between my results' error and hardware ones?
 - where are the execution time bottlenecks?
 - what if we train the entire process on the hardware?
 - what if we apply error mitigation on predictions?
 - what if we apply real-time error mitigation?

- These first results open several questions:
 - are these errors compatible with transmon SoA?
 - which relationship between my results' error and hardware ones?
 - where are the execution time bottlenecks?
 - what if we train the entire process on the hardware?
 - what if we apply error mitigation on predictions?
 - what if we apply real-time error mitigation?

- These first results open several questions:
 - are these errors compatible with transmon SoA?
 - which relationship between my results' error and hardware ones?
 - where are the execution time bottlenecks?
 - what if we train the entire process on the hardware?
 - what if we apply error mitigation on predictions?
 - what if we apply real-time error mitigation?

② Following $P\'{e}rez$ -Salinas et al. procedure, we can build a universal quantum regressor for approximating y = f(x).

 $oldsymbol{\circ}$ Following *Pérez-Salinas et al.* procedure, we can build a *universal quantum regressor* for approximating y=f(x).

The model can be:

- **②** Following $P\'{e}rez$ -Salinas et al. procedure, we can build a universal quantum regressor for approximating y = f(x).
- The model can be:

Figure 3: Here $\xi_A = \theta_1 x + \theta_2$ and $\xi_B = \theta_3 x + \theta_4$.

② Following *Pérez-Salinas et al.* procedure, we can build a *universal quantum regressor* for approximating y = f(x).

The model can be:

Figure 3: Here $\xi_A = \theta_1 x + \theta_2$ and $\xi_B = \theta_3 x + \theta_4$.

 $oldsymbol{\circ}$ and then use some $E[\hat{O}]$ as predictor:

$$y_{pred} = \langle 0 | \mathcal{C}^{\dagger}(x; \boldsymbol{\theta}) \hat{O} \, \mathcal{C}(x; \boldsymbol{\theta}) | 0 \rangle \,. \tag{2}$$

• Following Pérez-Salinas et al. procedure, we can build a universal quantum regressor for approximating y = f(x).

The model can be:

Figure 3: Here $\xi_A = \theta_1 x + \theta_2$ and $\xi_B = \theta_3 x + \theta_4$.

lacktriangledapprox and then use some $E[\hat{O}]$ as predictor:

$$y_{pred} = \langle 0|\mathcal{C}^{\dagger}(x;\theta)\hat{O}\,\mathcal{C}(x;\theta)|0\rangle. \tag{2}$$

• Using the parameter-shift rule, we can perform a gradient descent on tii1q_b1.

Figure 4: Batch Gradient Descent on the hardware, with gradients evaluated via Parameter-Shift Rule. We take 100 points $\{x_j\}$ in the range [-1,1] and we make 100 predictions for each x_j . Mean and standard deviation are used for determining the estimations and the confidend belt.

Figure 5: Normalised results of the SGD (green line) compared with true law and a genetic optimizer (red line).

Figure 5: Normalised results of the SGD (green line) compared with true law and a genetic optimizer (red line).

in the full-stack framework works! comparable with a genetic algorithm;

Figure 5: Normalised results of the SGD (green line) compared with true law and a genetic optimizer (red line).

- the full-stack framework works! comparable with a genetic algorithm;
- we can tackle only easy problems: it is slow;

Figure 5: Normalised results of the SGD (green line) compared with true law and a genetic optimizer (red line).

- the full-stack framework works! comparable with a genetic algorithm;
- we can tackle only easy problems: it is slow;
- (a) no mitigation: have been the errors absorbed into the optimization?

- These first results open several questions:
 - are these errors compatible with transmon SoA?
 - which relationship between my results' error and hardware ones?
 - where are the execution time bottlenecks?
 - what if we train the entire process on the hardware?
 - what if we apply error mitigation on predictions?
 - what if we apply real-time error mitigation?

Figure 6: Predictions of a sinus function performed on tii1q_b1 without and with CDR mitigation.

These results open to new questions!

Figure 6: Predictions of a sinus function performed on tii1q_b1 without and with CDR mitigation.

- These results open to new questions!
 - can QEM help the training with a faster convergence?

Figure 6: Predictions of a sinus function performed on tii1q_b1 without and with CDR mitigation.

- These results open to new questions!
 - can QEM help the training with a faster convergence?
 - what's the right balance between error absorption and QEM?

Figure 6: Predictions of a sinus function performed on tii1q_b1 without and with CDR mitigation.

These results open to new questions!

- can QEM help the training with a faster convergence?
- what's the right balance between error absorption and QEM?
- can we train the unmitigated hardware to be self-resistent?

- These first results open several questions:
 - are these errors compatible with transmon SoA?
 - which relationship between my results' error and hardware ones?
 - where are the execution time bottlenecks?
 - what if we train the entire process on the hardware?
 - what if we apply error mitigation on predictions?
 - what if we apply real-time error mitigation?

 $oldsymbol{\circ}$ We want to reproduce the u quark PDF fit of $P\'{e}rez$ -Salinas et al.

¹We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

- $oldsymbol{\circ}$ We want to reproduce the u quark PDF fit of $P\'{e}rez$ -Salinas et al.
- We apply error mitigation techniques during a QML training!

¹We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

- We want to reproduce the *u* quark PDF fit of *Pérez-Salinas et al*.
- We apply error mitigation techniques during a QML training!

Figure 7: PDF fit performed with different levels of noisy simulation. From left to right, exact simulation, noisy simulation, noisy simulation applying error mitigation to the predictions.

¹We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

- We want to reproduce the *u* quark PDF fit of *Pérez-Salinas et al*.
- We apply error mitigation techniques during a QML training!

Figure 7: PDF fit performed with different levels of noisy simulation. From left to right, exact simulation, noisy simulation, noisy simulation applying error mitigation to the predictions.

But on the hardware?

¹We used Zero Noise Extrapolation (ZNE) and Clifford Data Regresssion (CDR).

Figure 8: Full training is here performed on tii1q_b1. We then used the θ_{best} to make statistics on 30 points and 30 runs with simulation (blue line) and on the device (red line).

Conclusions

• The qibo environment is perfect for this kind of research, because

• The qibo environment is perfect for this kind of research, because

 $\mathbf{Q}_{\mathbf{s}}^{\mathbf{e}}$ we have resources deputed to the research;

• The qibo environment is perfect for this kind of research, because

 $\mathbf{c}_{\mathbf{s}}^{\mathbf{s}}$ we have resources deputed to the research;

 $\ensuremath{\boldsymbol{\dagger}}$ we are a fully connected research network.

- The qibo environment is perfect for this kind of research, because
 - $\mathbf{Q}_{\mathbf{s}}^{\mathbf{e}}$ we have resources deputed to the research;
- Moreover, qibo is growing as international environment:

- The qibo environment is perfect for this kind of research, because
 - we have resources deputed to the research;
 - * we are a fully connected research network.
- Moreover, qibo is growing as international environment:

Thanks!

