

UNIVERSITÄT BERN

Theoretical Exercises

Jesutofunmi Ademiposi Ajayi Lucas Pacheco September 21, 2020

$u^{\scriptscriptstyle b}$

Question 1 (1 point)

UNIVERSITÄT BERN

Q1. Explain why a router would implement a Non-work conserving scheduler, and how applications could benefit from this strategy and what are the downsides?.

R1.

$u^{\scriptscriptstyle \mathsf{b}}$

Question 2 (1 point)

b UNIVERSITÄT BERN

Q2.1 Consider a Work-conserving scheduler, describe what does it mean to be work-conserving? R2.1-

$u^{^{\scriptscriptstyle t}}$

Question 2

Q2.2 For said scheduler, consider the flows below sharing a 150Mbps link, before and after applying a certain scheduling policy, what is the new queue delay for flow D?

Flow	Bandwidth	Queue
	Utilization (Mbps)	Delay
Α	5	0.4
В	10	0.6
С	7	0.5
D	5	0.4

Flow	Bandwidth Utilization (Mbps)	Queue Delay
Α	5	0.3
В	10	0.7
С	7	0.4
D	5	?

Table: Before

Table: After

Question 3 (2 points)

Q3. Consider a certain queue that applies a RED packet dropping scheme with the parameters below, in each moment from t_0 to t_7 a packet arrives and the router must decide if it gets dropped of not, when a probability must be calculated use the one listed:

$$TH_{min}$$
 10 TH_{max} 15

Table: Parameters

Question 3

Q3. For each of the exponential averages listed, consider the drop probability for the packet being considered, given TH_{min} and TH_{max} , in which moments are packets dropped by the router? Explain your conclusions.

ps. Consider that a probability > 0.5 means a drop.

$u^{\scriptscriptstyle \mathsf{b}}$

Question 4 (1 point)

b UNIVERSITÄT BERN

Q4. Describe the advantages of using early packet dropping instead of late dropping, especially in the case of TCP connections.

Question 5 (4 points)

b UNIVERSITÄT BERN

Q5. Consider the queues below, what is the output when considering the schedulers? Also describe which flows benefit from each scheduling policy and why.

- 1. RR (1pt)
- 2. DRR (1pt)
- 3. WFQ (2pt)

Quantum: 215