Sample Average Approximation

Jin Fulong

University of Science and Technology of China

9th May 2025

Consistency of SAA

Asymptotics of the Optimal Value x^*

What's SAA

Consider that ξ a random variable on a Carathéodory function F

$$\operatorname{Min}_{x \in \mathcal{X}} \{ f(x) := \mathbb{E}[F(x, \xi)] \},\$$

Under distribution of ξ unknown, we have to deal with

$$\operatorname{Min}_{x \in \mathcal{X}} \left\{ \hat{f}_N(x) := \frac{1}{N} \sum_{j=1}^N F(x, \xi^j) \right\}$$

How we make sure such two solution converge when $N \to \infty$?

Theory guarantee

- **Law of Large Numbers**: Under regularity conditions, the sample average function $\hat{f}_N(x)$ converges pointwise almost surely (w.p.1) to the true objective function f(x) as $N \to \infty$.
- **Unbiase**: $\hat{f}_N(x)$ is an unbiased estimator of f(x), meaning

$$\mathbb{E}\left[\hat{f}_N(x)\right] = f(x)$$

Consistency: As N increases, the optimal value $\hat{\theta}_N$ and optimal solution set \hat{S}_N of the SAA problem converge to their true counterparts (ϑ^* and \mathcal{S}) in the original problem.

Equality

Pointwise Sequence Convergence: For any $\bar{x} \in \mathcal{X}$ and any sequence $\{x_N\} \subset \mathcal{X}$ converging to \bar{x} , it holds that

$$f_N(x_N) \to f(\bar{x})$$

Continuity & Local Uniform Convergence: if $f(\cdot)$ is continuous on \mathcal{X} , then

 $f_N(\cdot) \to f(\cdot)$ uniformly on every compact subset of \mathcal{X}

convergence of optimal set S_N

Theorem (convergence of optimal set S_N)

Suppose that there exists a compact set $C \subset \mathbb{R}^n$ such that

- 1. the set S of the true problem is nonempty and $S \subset C$,
- 2. the function f(x) is finite valued and continuous on C,
- 3. $\hat{f}_N(x)$ converges to f(x) w.p.l, as $N \to \infty$, uniformly in $x \in C$.
- 4. w.p.1 for N large enough the set \hat{S}_N is nonempty and $S_N \subset C$.

Then $\hat{artheta}_N oartheta^*$ and $\mathbb{D}\left(\hat{\mathcal{S}}_N,\mathcal{S}
ight) o 0$ w.p. 1 as $N o\infty$.

000000000

Consistency of SAA

Condition 2 and 3 yields Pointwise Sequence Convergence

$$f_N(x_N) \to f(\bar{x})$$

lacksquare The distance $\mathbb{D}\left(\hat{\mathcal{S}}_{N},\mathcal{S}\right)
ightarrow 0$ w.p. 1 means any measurable selection $\hat{x}_N \in \hat{\mathcal{S}}_N$ satisfies dist $(\hat{x}_N, \mathcal{S}) \to 0$ w.p.1.

Convexity construction

In most time, we will adapt **contraint** optimal problem in such a uncontraint optimal problem by

$$\min f_N(x) + \mathbb{I}_{\mathcal{X}}(x)$$

where.

$$\mathbb{I}_{\mathcal{X}}(x) = \begin{cases} 0 & \text{if } x \in \mathcal{X}, \\ +\infty & \text{else } x \notin \mathcal{X}. \end{cases}$$

The above "penalization" operation preserves convexity of respective functions

Weaken version

Theorem (convergence of optimal set S_N)

Suppose that

- 1. F is random lower semi-continuous.
- 2. For almost every $\xi \in \Xi$, $F(\cdot, \xi)$ is convex,
- 3. \mathcal{X} is closed and convex
- 4. f is lower semi-continuous and there exists a point $\bar{x} \in \mathcal{X}$ such that $f(x) < +\infty$ for all x in a neighborhood of \bar{x} ,
- 5. the set S of optimal solutions of the true problem is nonempty and bounded.
- 6. the LLN holds pointwise.

Then $\hat{artheta}_N oartheta^*$ and $\mathbb{D}\left(\hat{\mathcal{S}}_N,\mathcal{S}
ight) o 0$ w.p. 1 as $N o\infty$.

Remark

00000000

Consistency of SAA

- $1. \ \, \textbf{Global infinity} \quad \xrightarrow{} \quad \forall x \in B(\bar{x},\delta), \quad f(x) < +\infty$ reduction
- 2. **Global Continuity** \rightarrow $F(\cdot,\xi)$ is lower semi-continuous. reduction

Consistency of SAA

Asymptotics of the Optimal Value \boldsymbol{x}^{*}

second asymptotics

Monte Carlo

Variance Reduction Techniques Latin Hypercube Sampling

Central Limit Theorem (CLT)

If fix a point $x \in \mathcal{X}$, by CLT

$$N^{1/2} \left[\hat{f}_N(x) - f(x) \right] \xrightarrow{\mathcal{D}} \mathcal{N} \left(0, \sigma^2(x) \right)$$

Consider $x \in S_N$, under what condition satiating?

$$N^{1/2} \left(\hat{\vartheta}_N - \vartheta^* \right) \xrightarrow{\mathcal{D}} \inf_{x \in \mathcal{S}} \mathcal{N} \left(0, \sigma^2(x) \right)$$

Assumptions

- A1 For some point $\tilde{x} \in \mathcal{X}$ the expectation $\mathbb{E}\left[F(\tilde{x},\xi)^2\right]$ is finite.
- A2 There exists a measurable function $G:\Xi\to\mathbb{R}_+$ such that $\mathbb{E}\left[G(\xi)^2\right]$ is finite and

$$|F(x,\xi) - F(x',\xi)| \le G(\xi) ||x - x'||,$$

for all $x, x' \in \mathcal{X}$ and a.e. $\xi \in \Xi$.

First Order Asymptotics

Theorem (First Order Asymptotics)

Let $\hat{\vartheta}_N$ be the optimal value of the SAA problem. Suppose that the sample is i.i.d., the set \mathcal{X} is compact, and assumptions (A1) and (A2) are satisfied. Then the following holds

$$\hat{\vartheta}_N = \inf_{x \in \mathcal{S}} \hat{f}_N(x) + o_p \left(N^{-1/2} \right)$$

$$N^{1/2} \left(\hat{\vartheta}_N - \vartheta^* \right) \xrightarrow{\mathcal{D}} \inf_{x \in \mathcal{S}} \mathcal{N} \left(0, \sigma^2(x) \right)$$

If, moreover, $S = \{\bar{x}\}$ is a singleton, then

$$N^{1/2} \left(\hat{\vartheta}_N - \vartheta^* \right) \xrightarrow{\mathcal{D}} \mathcal{N} \left(0, \sigma^2(\bar{x}) \right)$$

Danskin Theorem

Lemma (Danskin Theorem)

Consider a continuous f

$$f(x) = \max_{u \in U} \phi(x, u)$$

- U is non-empty compact set
- $\phi(x,u)$ is differential on x.

Then it can satisfy

$$\lim_{\epsilon \to 0^+} \frac{f(x + \epsilon d) - f(x)}{\epsilon} = \max_{u \in U(x)} \langle \nabla_x \phi(x, u), d \rangle$$

Proof sketch

 \blacksquare $C(\mathcal{X})$ defined on \mathcal{X} functinal space, define a norm $\|\psi\|:=\sup_{x\in\mathcal{X}}|\psi(x)|,$ by Danskin Theorem,

$$V(\psi) := \inf_{x \in \mathcal{X}} \psi(x),$$

By A2, we have

$$|V(\psi_1) - V(\psi_2)| \le ||\psi_1 - \psi_2||,$$

 $lackbox{\begin{subarray}{c} $V(\cdot)$ is directionally differentiable at any $\mu\in C(\mathcal{X})$,} \end{subarray}$

$$V_{\mu}'(\delta) = \inf_{x \in \overline{\mathcal{X}}(\mu)} \delta(x), \quad \overline{\mathcal{X}}(\mu) := \operatorname*{argmin}_{x \in \mathcal{X}} \mu(x)$$

Then by delta method, the result is explicit

Convex form (weaken form)

The compactness of ${\mathcal X}$ can also be weaken by

- 1. \mathcal{X} is close and convex
- 2. $F(x,\xi)$ is convex on x
- 3. \mathcal{S} is non-empty and bound

We can choose a compact set $V \supset S$, construct

$$\tilde{\vartheta}_N := \inf_{x \in \mathcal{V}} \hat{f}_N(x)$$

- By theorem 3, $N^{1/2}\left(\tilde{\vartheta}_N \hat{\vartheta}_N\right) \stackrel{p}{\to} 0$
- A2 togather with \mathcal{X} 's closeness and convexity shows that \mathcal{S} contains a compact subset.

Second order Delta method

Theorem (Second order Delta method)

Denote $\{Y_N\}$ a random sequence, G be secondly order differentiable and $\{\tau_N\}$ be a sequence of positive numbers tending to ∞ , then

$$\tau_N^2 \left[G(Y_N) - G(\mu) - G'_{\mu} (Y_N - \mu) \right] \xrightarrow{\mathcal{D}} \frac{1}{2} G''_{\mu}(Y)$$

assumptions

- S1 The function f(x) is Lipschitz continuous on U, has unique minimizer \bar{x} over $x \in \mathcal{X}$, and is twice continuously differentiable at \bar{x} .
- S2 The set \mathcal{X} is second order regular at \bar{x} .
- S3 The quadratic growth condition holds at \bar{x} .
- S4 Function $F(\cdot, \xi)$ is Lipschitz continuous on U and differentiable at \bar{x} for a.e. $\xi \in \Xi$.

Second optimal

Theorem

Suppose that the assumptions (S1)-(S4) hold and $N^{1/2}\left(\hat{f}_N-f\right)$ converges in distribution to a random element Y of $W^{1,\infty}(U)$. Then

$$\hat{\vartheta}_N = \hat{f}_N(\bar{x}) + \frac{1}{2}V_f''\left(\hat{f}_N - f\right) + o_p\left(N^{-1}\right)$$

and

$$N\left[\hat{\vartheta}_N - \hat{f}_N(\bar{x})\right] \xrightarrow{\mathcal{D}} \frac{1}{2} V_f''(Y)$$

Monte Carlo

•000000000

Consistency of SAA

Asymptotics of the Optimal Value x^* second asymptotics

Monte Carlo

Variance Reduction Techniques
Latin Hypercube Sampling

Monte Carlo problem

Assume we can generate sample ξ^1, \dots, ξ^N , if we use the same sample, instead get

$$\operatorname{Var}\left[\hat{f}_{N}\left(x_{1}\right)-\hat{f}_{N}\left(x_{2}\right)\right]=\operatorname{Var}\left[\hat{f}_{N}\left(x_{1}\right)\right]+\operatorname{Var}\left[\hat{f}_{N}\left(x_{2}\right)\right].$$

Monte Carlo

000000000

but

$$\operatorname{Var}\left[\hat{f}_{N}\left(x_{1}\right)-\hat{f}_{N}\left(x_{2}\right)\right]=\operatorname{Var}\left[\hat{f}_{N}\left(x_{1}\right)\right]+\operatorname{Var}\left[\hat{f}_{N}\left(x_{2}\right)\right]$$
$$-2\operatorname{Cov}\left(\hat{f}_{N}\left(x_{1}\right),\hat{f}_{N}\left(x_{2}\right)\right)$$

How large N guarantee enough accuracy for convergence by LLN?

Before we start

 \blacksquare ε -optimal solutions of the true and the SAA problems:

$$\mathcal{S}^{\varepsilon}:=\{x\in\mathcal{X}:f(x)\leq\vartheta^*+\varepsilon\}$$
 and

$$\hat{\mathcal{S}}_{N}^{\varepsilon} := \left\{ x \in \mathcal{X} : \hat{f}_{N}(x) \leq \hat{\vartheta}_{N} + \varepsilon \right\}$$

For parameters $\varepsilon \geq 0$ and $\delta \in [0, \varepsilon]$, consider the event $\left\{\hat{\mathcal{S}}_N^\delta \subset \mathcal{S}^\varepsilon\right\}$. This event means that any δ -optimal solution of the SAA problem is an ε -optimal solution of the true problem.

We estimate now the probability of that event

$$\left\{\hat{\mathcal{S}}_{N}^{\delta} \not\subset \mathcal{S}^{\varepsilon}\right\} = \bigcup_{x \in \mathcal{X} \setminus \mathcal{S}^{\varepsilon}} \bigcap_{y \in \mathcal{X}} \left\{\hat{f}_{N}(x) \leq \hat{f}_{N}(y) + \delta\right\}$$

Monte Carlo

0000000000

hence.

$$\Pr\left(\hat{\mathcal{S}}_{N}^{\delta} \not\subset \mathcal{S}^{\varepsilon}\right) \leq \sum_{x \in \mathcal{X} \setminus \mathcal{S}^{\varepsilon}} \Pr\left(\bigcap_{y \in \mathcal{X}} \left\{\hat{f}_{N}(x) \leq \hat{f}_{N}(y) + \delta\right\}\right)$$

Consider a mapping $u: \mathcal{X} \backslash \mathcal{S}^{\varepsilon} \to \mathcal{X}$. it follows

$$\Pr\left(\hat{\mathcal{S}}_{N}^{\delta} \not\subset \mathcal{S}^{\varepsilon}\right) \leq \sum_{x \in \mathcal{X} \setminus \mathcal{S}^{\varepsilon}} \Pr\left\{\hat{f}_{N}(x) - \hat{f}_{N}(u(x)) \leq \delta\right\}$$

Monte Carlo

0000000000

lacksquare Assume that the mapping $u(\cdot)$ is chosen in such a way that

$$f(u(x)) \le f(x) - \varepsilon^*$$
 for all $x \in \mathcal{X} \backslash \mathcal{S}^{\varepsilon}$

For some $\varepsilon^* \geq \varepsilon$, note that such a mapping always exists with

$$\varepsilon^* := \min_{x \in \mathcal{X} \setminus \mathcal{S}^{\varepsilon}} f(x) - \vartheta^*$$

Inequality construction

Note that $\mathbb{E}[Y(x,\xi)] = f(u(x)) - f(x)$, and hence $\mathbb{E}[Y(x,\xi)] \leq -\varepsilon^*$ for all $x \in \mathcal{X} \backslash S^{\varepsilon}$. The corresponding sample average is

$$\hat{Y}_N(x) := \frac{1}{N} \sum_{j=1}^N Y(x, \xi^j) = \hat{f}_N(u(x)) - \hat{f}_N(x)$$

Monte Carlo

0000000000

The inequality together with the LD upper bound implies

$$\Pr\left(\hat{\mathcal{S}}_{N}^{\delta} \not\subset \mathcal{S}^{\varepsilon}\right) \leq \sum_{x \in \mathcal{X} \setminus \mathcal{S}^{\varepsilon}} \Pr\left\{\hat{Y}_{N}(x) \geq -\delta\right\} \leq \sum_{x \in \mathcal{X} \setminus \mathcal{S}^{\varepsilon}} e^{-NI_{x}(-\delta)}$$

where $I(\delta) = \sup_{t \in \mathbb{R}} \{t\delta - \ln \mathbb{E}(e^{tY})\}\$

M2 For every $x \in \mathcal{X} \setminus \mathcal{S}^{\varepsilon}$ the moment $\mathbb{E}\left[e^{tY(x,\xi)}\right]$, of the random variable $Y(x,\xi) = F(u(x),\xi) - F(x,\xi)$, is finite valued in a neighborhood of t=0.

Monte Carlo 0000000000

Theorem (Well-defined sequence)

Let ε and δ be nonnegative numbers. Then

$$1 - \Pr\left(\hat{\mathcal{S}}_N^{\delta} \subset \mathcal{S}^{\varepsilon}\right) \le |\mathcal{X}| e^{-N\eta(\delta,\varepsilon)}$$

where

$$\eta(\delta, \varepsilon) := \min_{x \in \mathcal{X} \setminus \mathcal{S}^{\varepsilon}} I_x(-\delta)$$

Moreover, if $\delta < \varepsilon^*$ and assumption (M2) holds, then $\eta(\delta, \varepsilon) > 0$.

Monte Carlo

0000000000

sub-gaussian

M3 There is a constant $\sigma > 0$ such that for every $x \in \mathcal{X} \setminus \mathcal{S}^{\varepsilon}$ the random variable $Y(x,\xi) - \mathbb{E}[Y(x,\xi)]$ is σ -subgaussian, i.e., its moment generating function $M_x(t)$ satisfies

$$M_x(t) \le \exp\left(\sigma^2 t^2/2\right), \quad \forall t \in \mathbb{R}$$

From M3.

$$\ln \mathbb{E}\left[e^{tY(x,\xi)}\right] - t\mathbb{E}[Y(x,\xi)] = \ln M_x(t) \le \sigma^2 t^2/2$$

hence the rate function

$$I_x(z) \ge \sup_{t \in \mathbb{R}} \left\{ t(z - \mathbb{E}[Y(x,\xi)]) - \sigma^2 t^2 / 2 \right\} = \frac{(z - \mathbb{E}[Y(x,\xi)])^2}{2\sigma^2}$$

Actually,

$$I_x(-\delta) \ge \frac{(-\delta - \mathbb{E}[Y(x,\xi)])^2}{2\sigma^2} \ge \frac{(\varepsilon^* - \delta)^2}{2\sigma^2} \ge \frac{(\varepsilon - \delta)^2}{2\sigma^2}$$

Theorem takes the form

$$1 - \Pr\left(\hat{\mathcal{S}}_N^{\delta} \subset \mathcal{S}^{\varepsilon}\right) \le |\mathcal{X}| e^{-N(\varepsilon - \delta)^2 / \left(2\sigma^2\right)}$$

Convergence accuracy

Theorem (Convergence accuracy)

Suppose that assumptions (M1) and (M3) hold. Then for $\varepsilon > 0, 0 < \delta < \varepsilon$, and $\alpha \in (0,1)$, and for the sample size N satisfying

$$N \ge \frac{2\sigma^2}{(\varepsilon - \delta)^2} \ln \left(\frac{|\mathcal{X}|}{\alpha} \right)$$

Monte Carlo

0000000000

it follows that

$$\Pr\left(\hat{\mathcal{S}}_N^{\delta} \subset \mathcal{S}^{\varepsilon}\right) \ge 1 - \alpha$$

Asymptotics of the Optimal Value x^*

Variance Reduction Techniques

Latin Hypercube Sampling

Assume $\xi \sim H$

$$\mathbb{E}[F(x,\xi)] = \int_{-\infty}^{+\infty} F(x,\xi) dH(\xi)$$

 $\blacksquare \ \ \mathsf{Generate} \ \xi^j = H^{-1}(U^j)$

$$U^{j} \sim U[(j-1)/N, j/N], \quad j = 1, \dots, N$$

Sample permutation $\xi^{j_1}, \dots, \xi^{j_N}$, by conditinal variance we have

$$\operatorname{Var}\left[\hat{f}_{N}(x)\right] = N^{-1}\sigma^{2}(x) + 2N^{-2} \sum_{s < t} \operatorname{Cov}\left(F\left(x, \xi^{j_{s}}\right), F\left(x, \xi^{j_{t}}\right)\right)$$

