Transistor Hybrid Model for AC Analysis

Figure 1

There are four variables: I_1 , V_1 , I_2 , and V_2 ; they represent the instantaneous values of the currents and voltages. We can write two Kirchhoff voltage equations.

One for the input loop

$$f(I_1, V_1, I_2, V_2) = 0$$

and

one for the output loop

$$g(I_1, V_1, I_2, V_2) = 0$$
.

The exact form of the function f and g will depend on the contents of the black box. We will pick two of the four variables to be independent (I_1, V_2) and two to be dependent (I_2, V_1) . Starting with the function f we solve for V_1 , then substitute V_1 into function g. Finally, we solve for I_2 in terms of I_1 , and I_2 . In a similar manner we can eliminate I_2 and solve for I_3 in terms of I_4 , and I_4 . We obtain the following general functions

$$I_2 = I_2(I_1, V_2)$$
 and $V_1 = V_1(I_1, V_2)$.

In general we are interested in the response of the transistor to the application of small, low frequency AC input signals (differential changes). To obtain the expressions for the change in I_2 and V_1 as a function of the changes in I_1 and V_2 we take the differentials of the above functions.

Model Equations: $V_1 = V_1(I_1, V_2)$ and $I_2 = I_2(I_1, V_2)$

$$dI_2 = \left(\frac{\partial I_2}{\partial I_1}\right)_{V_2} dI_1 + \left(\frac{\partial I_2}{\partial V_2}\right)_{I_1} dV_2 \qquad \text{and} \qquad dV_1 = \left(\frac{\partial V_1}{\partial I_1}\right)_{V_2} dI_1 + \left(\frac{\partial V_1}{\partial V_2}\right)_{I_1} dV_2$$

Letting lower case letters represent small AC voltages and currents

$$i_1 \equiv dI_1$$
 $i_2 \equiv dI_2$ $v_1 \equiv dV_1$ and $v_2 \equiv dV_2$

and defining hybrid parameters h_{xy} yields

$$i_2 = \left(\frac{\partial I_2}{\partial I_1}\right)_{V_2} i_1 + \left(\frac{\partial I_2}{\partial V_2}\right)_{I_1} v_2 = h_{21} i_1 + h_{22} v_2$$

and

$$v_1 = \left(\frac{\partial V_1}{\partial I_1}\right)_{V_2} i_1 + \left(\frac{\partial V_1}{\partial V_2}\right)_{I_1} v_2 = h_{11} i_1 + h_{12} v_2.$$

Figure 2

$h_{21} \equiv \left(\frac{\partial I_2}{\partial I_1}\right)_{V_2}$	a pure number forward current transfer ratio	represents how much of the input current i_1 is transferred to
_		the output current i_2 ; The higher the value of h_{21} , the larger the
		change in output current for a given input current change.
$h_{22} \equiv \left(\frac{\partial I_2}{\partial V_2}\right)_{I_1}$	a conductance output admittance	an admittance or conductance directly across the output terminals
$h_{11} \equiv \left(\frac{\partial V_1}{\partial I_1}\right)_{V_2}$	a resistance input resistance	a resistance in the input circuit; it is usually called the input resistance
$h_{12} \equiv \left(\frac{\partial V_1}{\partial V_2}\right)_{I_1}$	a pure number reverse voltage transfer ratio	the amplitude of a voltage generator in the input; it represents how much of the
		output voltage v_2 is fed back into the input

Table 1

This mathematical development is exact; that is, no approximations have been made except that v and i must refer to small signals because the starting equations hold exactly only for infinitesimal changes in v's and i's. To show that this mathematical model can represent a real transistor a comparison of experimental input and output curves for a transistor must be looked at and h_{xy} values based on these curves must be chosen. The model will represent the real transistor if for a chosen set of h_{xy} parameters they represent the experimental curves over a wide range of currents and voltages.

The mathematical model developed above is a four terminal device while a transistor is a three terminal device. To apply this model to a transistor two of the terminals must be

common between the input and output. Three configurations are possible: common emitter, common collector, and common base. The h_{xy} parameters will be different for each configuration. When a configuration is chosen letter subscripts are usually used instead of the numerical subscripts. The second letter denotes which terminal is common. In general the values of a particular h_{xy} are different for each configuration, e.g., $h_{fe} \neq h_{fb}$.

	h Parameter Notation				
h parameter	CE	CC	СВ		
h_{11}	$h_{ m ie}$	$h_{ m ic}$	$h_{ m ib}$		
h_{12}	$h_{ m re}$	$h_{ m re}$	$h_{ m rb}$		
h_{21}	$h_{ m fe}$	$h_{ m fc}$	$h_{ m fb}$		
h_{22}	$h_{ m oe}$	$h_{ m oc}$	$h_{ m ob}$		
	Common Emitter	Common Collector	Common Base		

Table 2

Equations for transistor alone (no biasing, collector, emitter, or load resistors		
Voltage Gain	$A_{v} = \frac{-h_{21}R_{L}}{\left(h_{11}h_{22} - h_{12}h_{21}\right)R_{L} + h_{11}}$	
Current Gain	$A_i = \frac{h_{21}}{1 + h_{22}R_L}$	
Input Impedance	$Z_{T_{in}} = \frac{\left(h_{11}h_{22} - h_{12}h_{21}\right)R_L + h_{11}}{1 + h_{22}R_L}$	
Output Impedance	$Z_{T_{out}} = \frac{h_{11} + R_S}{\left(h_{11}h_{22} - h_{12}h_{21}\right) + h_{22}R_S}$	

Approximate Gains & Impedances for Transistor Circuits			
	CE	CC	СВ
$A_{_{\scriptscriptstyle \mathcal{V}}}$	$-\frac{h_{fe}\left(R_{C}\parallel R_{L}\right)}{h_{ie}}\approx-h_{fe}\approx100$	1	$\frac{h_{fe}R_L}{h_{ie}}\approx h_{fe}\approx 100$
A_{i}	$h_{fe} \approx 100$	$-h_{fe} \approx -100$	1
Z_{in}	$h_{ie} \parallel R_1 \parallel R_2$	$\sim h_{fe}(R_E \parallel R_L \parallel R_1 \parallel R_2)$	$\frac{h_{ie}}{h_{fe}} \parallel R_1 \parallel R_2$
Z_{out}	$\frac{h_{ie}}{(h_{11}h_{22} - h_{12}h_{21})} \parallel R_C \cong 5k\Omega \parallel R_C$	$\sim \frac{h_{ie}}{h_{fe}} \parallel R_E$	$\frac{h_{fe}R_S}{h_{11}h_{22}-h_{12}h_{21}} \parallel R_C$

3

Common Emitter Configuration

The experimental curves we look at are $I_C = I_C (I_B, V_{CE})$ and $V_{BE} = (I_B, V_{CE})$.

Figure 4

Common En	Common Emitter Configuration		
$h_{21} \equiv \left(\frac{\partial I_2}{\partial I_1}\right)_{V_2} \Rightarrow h_{fe} = \left(\frac{\partial I_C}{\partial I_B}\right)_{V_{CE}}$	forward current transfer ratio (a pure number)	$h_{fe} \approx 100$ AC current gain $h_{FE} = \beta = \frac{I_C}{I_R}$ DC current gain	
$h_{22} \equiv \left(\frac{\partial I_2}{\partial V_2}\right)_{I_1} \Rightarrow h_{oe} = \left(\frac{\partial I_C}{\partial V_{CE}}\right)_{I_B}$	output admittance (a conductance)	$h_{fe} \approx h_{FE}$ roughly constant for $ V_{CE} \ge 1V$ although; it increases slightly as $I_{\rm C}$ increases. It decreases drastically when $ V_{CE} $ is well below $1V$. Choose a quiescent point with $V_{\rm CE}$ greater than $1V$. $h_{oe} \approx 2 \times 10^{-5}$ siemens For $V_{\rm CE} > 1V$ it is essentially constant. It does increase with	
$h_{11} \equiv \left(\frac{\partial V_{1}}{\partial I_{1}}\right)_{V_{2}} \implies h_{ie} = \left(\frac{\partial V_{BE}}{\partial I_{B}}\right)_{V_{CE}}$ $= \left(\frac{\partial I_{B}}{\partial V_{BE}}\right)_{V_{CE}}^{-1}$ $h_{11} = \left(\frac{\partial V_{1}}{\partial I_{1}}\right)_{V_{2}} = \left(\frac{\partial V_{1}}{\partial I_{2}}\frac{\partial I_{2}}{\partial I_{1}}\right)_{V_{2}} = h_{21}\left(\frac{\partial V_{1}}{\partial I_{2}}\right)_{V_{2}}$ $\frac{h_{11}}{h_{21}} = \left(\frac{\partial V_{1}}{\partial I_{2}}\right)_{V_{2}} \implies \frac{h_{ie}}{h_{fe}} = \left(\frac{\partial V_{BE}}{\partial I_{C}}\right)_{V_{CE}}$	input resistance (a resistance)	an increase in I_C $h_{ie} = \frac{kT}{eI_B} = \frac{\beta kT}{eI_C}$ $h_{ie}(\beta = 100, T = 300^{\circ}K) = \frac{2.59}{I_C}$ $v_{BE} = i_B h_{ie}$ where h_{ie} is the effective AC resistance of the forward biased base-emitter diode junction. h_{ie} is typically $2.6k\Omega$ for $I_C = 1$ mA, and h_{ie} varies inversely with I_C ($h_{ie} = 260\Omega$ for $I_C = 10$ mA).	
$h_{12} \equiv \left(\frac{\partial V_1}{\partial V_2}\right)_{I_1} \Rightarrow h_{re} = \left(\frac{\partial V_{BE}}{\partial V_{CE}}\right)_{I_B}$	reverse voltage transfer ratio (a pure number)	$h_{re} \approx 10^{-4}$ represents how much of the output voltage v_2 is fed back into the input; roughly constant for $I_B > 10 \mu A$	

Table 3

The $h_{\rm xy}$ parameters are essentially constant when $V_{\rm CE} > 1V$, $I_{\rm B} > 10 \mu A$ ($I_{\rm C} > 1$ mA).

Table 4

Voltage Gain

The voltage gain is defined as $A_v \equiv v_{out}/v_{in} = v_2/v_1$. Using equations (a) – (d) we obtain

$$i_2 = -\frac{v_2}{\left(R_C \parallel R_L\right)} = h_{21}i_1 + h_{22}v_2$$
 and $i_1 = \frac{v_1 - h_{12}v_2}{h_{11}} = \frac{v_S - h_{12}v_2}{\left(R_S + h_{11}\right)}$

Subtituting for i_1

$$-\frac{v_2}{\left(R_C \parallel R_L\right)} = h_{21} \left(\frac{v_1 - h_{12}v_2}{h_{11}}\right) + h_{22}v_2$$

and solving for v_2/v_1

$$A_{v} = \frac{v_{2}}{v_{1}} = \frac{h_{21}}{h_{12}h_{21} - h_{11}h_{22} - \frac{h_{11}}{R_{C} \parallel R_{L}}} = \frac{h_{fe}}{h_{re}h_{fe} - h_{ie}h_{oe} - \frac{h_{ie}}{R_{C} \parallel R_{L}}}$$

For typical values for a low power transistor

$$A_{v} \approx \frac{-h_{21}}{h_{11}} R_{C} \parallel R_{L} = \frac{-h_{fe}}{h_{ie}} R_{C} \parallel R_{L}$$

Current Gain

The current gain is defined as $A_i \equiv i_2/i_1$. substituting $-i_2(R_C \parallel R_L)$ for v_2 yields

$$i_2 = h_{21}i_1 + \left[-i_2\left(R_C \parallel R_L\right)\right]h_{22}$$

Solving for i_2/i_1

$$A_{i} = \frac{i_{2}}{i_{1}} = \frac{h_{21}}{1 + h_{22}(R_{C} \parallel R_{L})} = \frac{h_{fe}}{1 + h_{oe}(R_{C} \parallel R_{L})}$$

Input Impedance

Looking into the transistor

$$Z_{T_{in}} \equiv \frac{v_1}{i_1} = h_{11} - \frac{h_{12}h_{21}}{h_{22} + \frac{1}{R_C \parallel R_L}} \approx h_{11} = h_{ie} \text{ (for typical low power transistor)}$$

values)

What the source v_s sees

The source drives both the transistor and the bias network. The impedance the source sees is

Figure 5
$$\frac{1}{Z_S} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{Z_{T_{in}}} \quad \Rightarrow \quad Z_{S_{in}} \approx Z_{T_{in}} \quad \text{if} \quad R_1 \parallel R_2 \gg Z_{T_{in}}$$

If $R_1 \parallel R_2$ is small compared to $Z_{T_{in}}$ then most of the current supplied by the signal source will flow through $R_1 \parallel R_2$, thus lowering the i_B . This results in lowering the transistor output (i.e, lowering the transistor gain).

Output Impedance

The output impedance looking back into the two output terminals is important for two reasons:

- Determines the high frequency response of the circuit (particularly when 1. driving a capacitive load where it represents the resistance in a low-pass filter)
- Determines how much power is transferred to the load attached to the two output terminals.

Another thing to note is that for a given fixed voltage source and a fixed transistor output impedance:

- 1. The output voltage across the load is maximum if $R_L \gg Z_{T_{max}}$
- The output current through the load will be a maximum when $R_L \ll Z_T$
- For purely a resistive load and output impedance of the transistor the output power through the load will be maximum when $R_L = R_{out}$. If the load is fixed, maximum power is delivered to the load when $Z_{T_{--}} = 0$.

To calculate the transistor output impedance in terms of the h_{xy} parameters we again start with the equations in Table 4.

$$v_S - i_1 R_S = v_1 = h_{11} i_1 + h_{12} v_2$$

 $i_2 = h_{21} i_1 + h_{22} v_2$

If we let v_S be set to zero to avoid letting the output depend on the applied input signal $(v_S=0)$ then the transistor output impedance $Z_{T_{out}} = v_2/i_2$ can be obtained by eliminating

$$\begin{aligned}
-i_1 R_S &= v_1 = h_{11} i_1 + h_{12} v_2 \\
i_1 &= -\frac{h_{12} v_2}{h_{11} + R_S} \\
i_2 &= h_{21} i_1 + h_{22} v_2 \\
i_2 &= h_{21} \left(-\frac{h_{12} v_2}{h_{11} + R_S} \right) + h_{22} v_2 \\
i_2 &= \left\{ \frac{\left(h_{11} + R_S \right) h_{22} - h_{12} h_{21}}{h_{11} + R_S} \right\} v_2 \\
Z_{T_{out}} &\equiv \frac{v_2}{i_2} = \frac{h_{11} + R_S}{\left(h_{11} h_{22} - h_{12} h_{21} \right) + h_{22} R_S} = \frac{h_{ie} + R_S}{\left(h_{ie} h_{2a} - h_{re} h_{fe} \right) + h_{2a} R_S} \end{aligned}$$

Note:

- 1. If the reverse voltage generator is not present ($h_{12} = h_{re} = 0$) then $Z_{T_{out}} = 1/h_{22} = 1/h_{oe}$ which is reasonable since h_{22} (h_{oe}) is an admittance.
- 2. When $h_{12} = h_{re} \neq 0$ then the transistor output impedance is a function of h_{11} (h_{ie}) and R_{S} due to the coupling provided by h_{12} (h_{re}).

The output impedance of a common emitter amplifier is $Z_{out} = Z_{T_{out}} \parallel R_C \approx R_C$ when R_C is in the range of 2 to $20 \text{k}\Omega$

P-N Junction		
The current-voltage equation for a p - n junction can be modeled as		
$I(V_B,T) = I_0 \left(e^{eV_B/kT} - 1 \right)$	<i>e</i> electronic charge, 1.60x10 ⁻¹⁹ C	
	k Boltzmann's constant, 1.38x10 ⁻²³ J/°K	
	T absolute temperature °K	
	$V_{\rm B}$ is positive for forward bias, negative for reverse	
	bias	
	I_0 the reverse current for large junction reverse bias	
$I(V_B, T = 300^{\circ}K) = I_0(e^{V_B/(25.875 mV)} - 1)$	$\left(\frac{kT}{e}\right)_{T=300^{\circ}K} = \frac{300 \times 1.38 \times 10^{-23}}{1.6 \times 10^{-19}} = 0.025875V$	

Table 5

Figure 6

For the base-emitter p-n junction of the transistor the base-emitter current is

$$\begin{split} I_{E}(V_{BE},T) &= I_{0} \left(e^{eV_{BE}/kT} - 1 \right) \\ I_{E}(V_{BE},T) &= (\beta+1)I_{B} \\ I_{B}(V_{BE},T,\beta) &= \frac{I_{0}}{(\beta+1)} \left(e^{eV_{BE}/kT} - 1 \right) \\ &= \frac{\partial I_{B}}{\partial V_{BE}} = \frac{eI_{0}}{(\beta+1)kT} e^{eV_{BE}/kT} \\ V_{BE} &= \frac{kT}{e} \ln \left(\frac{(\beta+1)I_{B}}{I_{0}} + 1 \right) \\ h_{11} &= \left(\frac{\partial V_{1}}{\partial I_{1}} \right)_{V_{2}} \implies h_{ie} = \left(\frac{\partial V_{BE}}{\partial I_{B}} \right)_{V_{CE}} = \left(\frac{\partial I_{B}}{\partial V_{BE}} \right)_{V_{CE}}^{-1} = \frac{(\beta+1)kT}{eI_{0}} e^{-eV_{BE}/kT} \end{split}$$

If $V_{BE} > 0.6V$ or equivalently if $I_B > 0.1\mu A$ then $I_C > 10\mu A$. The transistor is turned on and $e^{eV_{BE}/kT} \gg 1$. We can neglect the minus one term in the base current.

$$I_B(V_{BE}, T, \beta) \approx \frac{I_0}{(\beta+1)} e^{eV_{BE}/kT}$$

The effective AC signal resistance of base-emitter junction is

$$h_{ie} \equiv \left(\frac{\partial V_{BE}}{\partial I_B}\right)_{V_{CE}} = \left(\frac{\partial I_B}{\partial V_{BE}}\right)_{V_{CE}}^{-1} = \frac{(\beta+1)kT}{eI_0} e^{-eV_{BE}/kT} = \frac{(\beta+1)kT}{eI_0} e^{-eV_{BE}/kT} = \frac{kT}{eI_B} = \frac{\beta kT}{eI_C}.$$

Common Collector Configuration (Emitter Follower)

Table 6

Current Gain

$$A_i = \frac{i_{out}}{i_1} = \frac{i_{R_L}}{i_1}$$

1)
$$i_1 + i_2 = i_{R_E} + i_{R_L}$$

$$i_2 = h_{21}i_1 + h_{22}v_2$$

$$(1+h_{21})i_1 + \left(h_{22} + \frac{1}{R_E} + \frac{1}{R_L}\right)v_2 = 0$$

$$v_2 = i_{R_L} R_L$$

$$(1+h_{21})i_1 + \left(h_{22} + \frac{1}{R_E} + \frac{1}{R_L}\right)(-i_{R_L}R_L) = 0$$

$$A_{i} = \frac{\left(1 + h_{21}\right)}{1 + \frac{R_{L}}{R_{E}} + h_{22}R_{L}}$$

$$= \frac{\left(1 + h_{fe}\right)}{1 + \frac{R_{L}}{R_{F}} + h_{oe}R_{L}} \approx h_{21} = h_{fe}$$

Voltage Gain

$$A_{v} = \frac{v_{out}}{v_{in}} = \frac{v_{out}}{v_1 + v_{out}}$$

$$1) i_1 + i_2 = i_{R_E} + i_{R_E}$$

$$2) i_2 = h_{21}i_1 + h_{22}v_2$$

$$(1+h_{21})i_1 + \left(h_{22} + \frac{1}{R_E} + \frac{1}{R_L}\right)v_2 = 0$$
$$\left(h_{22} + \frac{1}{R_E} + \frac{1}{R_L}\right)$$

$$i_1 = -\frac{\left(h_{22} + \frac{1}{R_E} + \frac{1}{R_L}\right)}{\left(1 + h_{21}\right)} v_2$$

3)
$$v_1 = h_{11}i_1 + h_{12}v_2$$

$$v_{1} = \left[h_{12} - \frac{h_{11} \left(h_{22} + \frac{1}{R_{E}} + \frac{1}{R_{L}} \right)}{\left(1 + h_{21} \right)} \right] v_{2} = \left[\frac{h_{11} \left(h_{22} + \frac{1}{R_{E}} + \frac{1}{R_{L}} \right)}{\left(1 + h_{21} \right)} - h_{12} \right] v_{out}$$

$$A_{v} = \frac{v_{out}}{v_{in}} = \frac{v_{out}}{v_{1} + v_{out}}$$

$$= \frac{v_{out}}{\left[\frac{h_{11}\left(h_{22} + \frac{1}{R_{E}} + \frac{1}{R_{L}}\right)}{(1 + h_{21})} - h_{12}\right] + 1} v_{out}$$

$$= \frac{1 + h_{21}}{(1 - h_{12})(1 + h_{21}) + h_{11}h_{22} + \frac{h_{11}}{R_{E}} + \frac{h_{11}}{R_{L}}}$$

$$= \frac{1 + h_{fe}}{(1 - h_{re})(1 + h_{fe}) + h_{ie}h_{oe} + \frac{h_{ie}}{R_{E}} + \frac{h_{ie}}{R_{L}}} \approx 1$$

The voltage gain can be seen to be almost exactly 1.0. If the base-emitter junction is forward biased, $V_{\rm BE}$ will remain essentially constant at 0.6V for a silicon transistor. If the input changes by ΔV , $V_{\rm B}$ changes by ΔV and $V_{\rm E}$ will change by approximately the same amount to keep $V_{\rm BE}$ constant. The output voltage change approximately equals the input voltage change $\Delta V_{\rm E} = (0.98 \text{ or } 0.99) \times \Delta V_{\rm B}$. The change in emitter voltage is in phase with the change in base voltage.

Input Impedance

$$Z_{in} = \frac{v_{in}}{i_{in}}$$

The input impedance looking into the base of the transistor is

$$Z_{B_{in}} = h_{11} + (1 + h_{21})(R_E \parallel R_L) = h_{ie} + (1 + h_{fe})(R_E \parallel R_L)$$

The input impedance of the circuit is the parallel combination of the base resistors R_1 and R_2 and the input impedance looking into the base of the transistor.

$$Z_{in} = \frac{1}{\frac{1}{R_{1} \parallel R_{2}} + \frac{1}{h_{ie} + \left[\left(1 + h_{fe}\right)\left(R_{E} \parallel R_{L}\right)\right]}} \approx \frac{1}{\frac{1}{R_{1} \parallel R_{2}} + \frac{1}{h_{ie} + h_{fe}\left(R_{E} \parallel R_{L}\right)}}$$

Output Impedance

The output impedance looking back into the emitter of the transistor is

$$Z_{out} = \frac{v_{out}}{i_{out}}$$

$$= \frac{1}{\frac{1}{R_E} + h_{22} + \frac{1}{\frac{(R_1 \parallel R_2 \parallel R_S) + h_{11}}{(1 + h_{21})}}}$$

$$= \frac{1}{\frac{1}{R_E} + h_{oe} + \frac{1}{\frac{(R_1 \parallel R_2 \parallel R_S) + h_{ie}}{(1 + h_{fe})}}} \approx \frac{1}{R_E} + \frac{1}{\frac{(R_1 \parallel R_2 \parallel R_S) + h_{ie}}{h_{fe}}}$$