ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

PROF^A ME MARCO IKURO HISATOMI

Livro didático

Fonte: Tangon, Leonardo Guimarães, 2016

Unidade 1 Fundamentos de Sistemas Computacionais	. 7
Seção 1.1 - Conceitos básicos de arquitetura	. 9
e organização de computadores	
Seção 1.2 - Desenvolvimento histórico	21
Seção 1.3 - A estrutura básica de um computador	33
Seção 1.4 - A hierarquia de níveis de computador	45
Unidade 2 Componetes básicos de um computador	61
Seção 2.1 - Unidade central de processamento (CPU)	63
Seção 2.2 - Memória principal	75
Seção 2.3 - Memória secundária	. 89
Seção 2.4 - Dispositivos de entrada e saída	103
Unidade 3 Sistemas numéricos: conceitos, simbologia e representação de base numérica	121
de base numérica	
de base numérica	123
de base numérica	123
de base numérica	123 135 147
de base numérica	123 135 147
de base numérica	123 135 147 161
de base numérica	123 135 147 161
de base numérica	123 135 147 161 175
de base numérica	123 135 147 161 175 177 193 203
de base numérica	123 135 147 161 175 177 193 203

Conteúdo Programático

Unidade 4 | Álgebra Booleana e Lógica Digital

- ► Seção 4.1 Introdução à álgebra booleana
- Seção 4.2 Expressões lógicas
- ► Seção 4.3 Portas lógicas
- ► Seção 4.4 Introdução a circuitos

Situação Geradora de Aprendizagem

SIMPLIFICAÇÃO

Contextualizando

Sua competência:

- Para que você seja capaz de conhecer e correlacionar a determinação e simplificação de expressões lógicas
- Aprender e desenvolver as formas de simplificação para chegarmos ao menor número possível de portas lógicas, fazendo com que usemos o menor número possível de portas lógicas com o mesmo resultado
- Você está preparado para aprender a simplificação?

ADIÇÃO BOOLEANA

Estamos falando da porta OR. Regra: Dentro da álgebra booleana, chamamos de termo-soma

- A = 0
- ▶ B = 1
- $\mathbf{C} = \mathbf{0}$
- D = 1
- Qual é o valor dessa expressão?

$$A + \overline{B} + C + \overline{D}$$

B e D possuem a negação, logo o valor deles tem de ser invertido.

- A = 0
- **B** = 1
- C = 0
- D = 1
- Qual é o valor dessa expressão?

$$A + \overline{B} + C + \overline{D}$$

$$0 + \bar{1} + 0 + \bar{1}$$

$$0+0+0+0=0$$

$$A = 0$$

$$\neg A = 1$$

$$\rightarrow \neg \neg A = 0$$

$$- \neg (A + B)$$

Se
$$A = 1 e B = 0$$

$$1 + 0$$

$$- - (1 + 0)$$

$$\rightarrow$$
 $\neg (0 + 1)$

► Porta NOT

► Porta NOT

► Tabela verdade

► Porta OR

► Porta OR

► Tabela verdade

Α	В	C
0	0	0
0	1	1
1	0	1
1	1	1

► Porta AND

► Tabela verdade

► Porta AND

► Tabela verdade

Α	В	C
0	0	0
0	1	0
1	0	0
1	1	1

► Porta XOR

► Tabela verdade

Expressão

C=A⊕B

► Porta XOR

► Tabela verdade

► Porta XNOR

► Tabela verdade

Α	В	С
0	0	1
0	1	0
1	0	0
1	1	1

► Porta XNOR

► Tabela verdade

► Porta NOR

► Tabela verdade

► Porta NOR

► Tabela verdade

A B C D
0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

$$D = \overline{A+B}$$

► Porta NAND

► Tabela verdade

► Porta NAND

► Tabela verdade

A B C D
0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

$$D = \overline{A \cdot B}$$

► Porta NAND

► Tabela verdade

Α	В	C	D
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

DUVIDAS

► BONS ESTUDOS!