酱板子的皂各世、	
$\mathcal{H}_{h} = \mathcal{N}_{a} e^{-\frac{1}{2} J_{x}^{2}} \mathcal{H}_{h}(J_{x})$	
$\mathcal{E} = \mathcal{I}_{x}, \mathcal{A} = \sqrt{\frac{m_{\sigma}}{\pi}} \mathcal{N}_{\kappa} = \left(\frac{\mathcal{A}}{J \overline{\kappa}} \mathcal{I}^{n} \mu_{l}\right)^{\frac{1}{m}}$	
Hermit 连推关部,求证.	_
$\chi \psi_n = \frac{1}{2} \left[\sqrt{\frac{n\eta}{2}} \psi_{n\eta} \sqrt{\frac{n}{2}} \psi_{n-1} \right] 0$	
$\gamma^{2} \psi_{n} = \frac{1}{2 d^{2}} \left[\sqrt{(n+1)(n+2)} \psi_{n+2} + (2n+1) \psi_{n} + \sqrt{n(n+1)} \psi_{n-2} \right] 2$	+
并由比证明 在 μ_n 下, $\overline{X}=0$, $\overline{V}=rac{1}{2}E_n$	
The, Handy) - 23x Hadx) + 22 Hadax) = 0	
$H_{n} = \frac{1}{N_{n}} e^{\pm \vec{x} \cdot \vec{x}} $ 中, 一 和 λ 化 简, 即 有 Ω 前	
①式 再由 x 解符作用。产可得 ②式-	
球糖. 平均值的状法。 $\vec{x} = \int \psi_n^* \times \psi_n dx$ $V = \frac{1}{2} k x^2$ $V = \int \psi_n^* \times \psi_n^* dx$	
$\text{FUP.} \frac{dH_n}{d\xi} = 2nH_{n-1} \text{FID} \times \psi_n \text{GRA}$	
$\frac{d}{dx} \psi_n = \lambda \left(\sqrt{\frac{n}{2}} \psi_{n+1} - \sqrt{\frac{n+1}{2}} \psi_{n+1} \right) \qquad \frac{d}{dx} \psi_n =$	
$WA WF, V = T = \frac{1}{2} E_n. \vec{p} = 0$	
ey. V(x) = V(x)+C, 问形分 能量本证券、本征值如何改变、	
$\left(+\frac{t^2}{m}\frac{d^2}{dx^2}+V\right)\psi=\frac{2m}{k}\psi$	
$\frac{1}{4} \frac{1}{4} + \frac{2m}{\hbar^2} \left(E - V \right) \cdot 4 = 0.$	
Ws V+ C.	
$\frac{2mE}{t^2} - C = \frac{2mE}{t^2}$	
	+
$E' = E - \frac{h^2}{2m} C$	
E = E' + C	

