# Visão Por Computador Trabalho 2

Christophe Oliveira n°2011154912 Noé Godinho n° 2011159459

9 de Março de 2015

# Conteúdo

| Introdução                  | 3        |
|-----------------------------|----------|
| Exercício 1                 | 4        |
| 1.1                         | <br>. 4  |
| 1.2                         | <br>. 4  |
| 1.2.1                       | <br>. 5  |
| 1.2.2                       | <br>. 5  |
| 1.2.3                       | <br>. 6  |
| 1.3                         | <br>. 6  |
| 1.4                         | <br>. 6  |
| Exercício 2                 | 8        |
| Exercício 3                 | g        |
| Exercício 4                 | 15       |
| Parte dois                  | 19       |
| 5.1 Hough Transform Lines   | <br>. 21 |
| 5.2 Hough Transform Circles | 22       |

## Introdução

O objectivo deste trabalho é implementar os algoritmos de detecção de três tipos de pontos característicos numa imagem, sendo eles:

- Cantos;
- Rectas;
- Circunferências.

A primeira detecção, a detecção de cantos, é a mais simples de realizar, sendo necessário para cada ponto  $\boldsymbol{P}$ , uma vizinhança  $\boldsymbol{Q}$  e uma matriz  $\boldsymbol{C}$  definida por uns somatórios obtidos a partir da vizinhança e procedendo à sua diagonalização, como iremos ver mais à frente.

A detecção de rectas e circunferências, é mais complicado, o que implica a utilização da transformada de Hough que, no caso das rectas, envolve o uso da equação polar.

O primeiro algoritmo a implementar é o algoritmo de detecção de cantos de uma imagem I, considerando uma vizinhança Q de dimensão  $2N+1\times 2N+1$ . Também é necessário definir um valor  $\sigma$  para  $\lambda_2$ , acima do qual se considera a existência de um canto.

Este algoritmo fornece uma lista de pontos com  $\lambda \geq \sigma$  e cujas vizinhanças não se sobrepõem.

#### 1.1

De maneira a ser possível implementar o algoritmo, é necessário calcular as componentes  $\mathbf{X}$  e  $\mathbf{Y}$  do gradiente em toda a imagem  $\mathbf{I}$  previamente convertida em escala de cinzento pela função rgb2gray do Matlab.

```
Sobel_hor_mask = [-1 -2 -1; 0 0 0; 1 2 1];
Sobel_ver_mask = [-1 0 1; -2 0 2; -1 0 1];

Ix = imfilter(image, Sobel_hor_mask);
Iy = imfilter(image, Sobel_ver_mask);

Ix = double(Ix);
Iy = double(Iy);
```

Com este código, obtém-se duas matrizes, cada uma com o tamanho da imagem, com o gradiente correspondente ao eixo  $\mathbf{X}$  e  $\mathbf{Y}$ , respectivamente  $\mathit{Ix}$  e  $\mathit{Iy}$ .

#### 1.2

Uma vez calculado o gradiente, percorre-se cada ponto  $\boldsymbol{P}$  da imagem  $\boldsymbol{I}$  e realiza-se uma série de operações.

#### 1.2.1

Para cada ponto P é necessário obter a matriz C.

Esta matriz é obtida da seguinte forma:

$$oldsymbol{C} = egin{bmatrix} \sum I_x & \sum I_x I_y \ \sum I_x I_y & \sum I_u^2 \end{bmatrix}$$

Em que  $I_x$  e  $I_y$  são as matrizes obtidas na alínea anterior.

Para cada ponto  $\boldsymbol{P}$ , não são utilizados todos os pontos das matrizes, mas as submatrizes pertencentes à vizinhança  $\boldsymbol{Q}$  de dimensão  $2N+1\times 2N+1$  do ponto  $\boldsymbol{P}$  para os cálculos do somatório.

Como a matriz é simétrica, só é necessário calcular três somatórios, sendo um deles reutilizável em dois pontos da matriz.

O código correspondente ao cálculo de cada somatório é o seguinte:

Em que px é o ponto P actual e *limit* é o cálculo do limite da vizinhança Q, definido por  $2N + 1 \times 2N + 1$ , sendo N fornecido pelo utilizador.

De salientar que é necessário realizar uma soma dupla, já que o Matlab calcula primeiro a soma de cada linha e a insere num array, só depois é calculada a soma do array final, contendo todos os pontos da submatriz calculada.

#### 1.2.2

Depois de ter a matriz C, é necessário calcular os valores próprios de C e selecionar o valor mais baixo de  $\lambda_2$ .

O cálculo dos valores próprios de C é feito pela diagonalização através da rotação dos eixos de coordenadas, já que C é uma matriz simétrica. Depois de realizar a diagonalização, obtém-se a seguinte matriz:

$$m{C} = egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}$$

Em que  $\lambda_1$  e  $\lambda_2$  correspondem aos valores próprios de C.

Para calcular a diagonalização de C, foi usado o seguinte código:

$$C = eig([Q_Ix_2 Q_Ix_Iy; Q_Ix_Iy Q_Iy_2]);$$

Uma vez calculada a diagonalização de C, é necessário calcular o valor mínimo de  $\lambda_2$ .

Sabe-se que  $\lambda_1 \geq \lambda_2$ , logo um canto é definido pela localização do ponto P onde o valor próprio de  $\lambda_2$  é suficientemente elevado, sendo determinado por um  $\sigma$ .

Como o valor que é necessário obter é o menor valor de  $\lambda_2$ , e o menor valor será sempre  $\lambda_2$  pela regra acima explicada, o código para obter esse valor é o seguinte:

```
minimum = min(C);
```

#### 1.2.3

Depois de ter sido calculado o menor valor de  $\lambda_2$ , é necessário verificar se este é suficientemente elevado para ser considerado um canto.

O valor de verificação é determinado por  $\sigma,$  sendo este, fornecido pelo utilizador.

O código que trata dessa verificação é o seguinte:

```
if minimum >= sigma
    list = [list; minimum px py];
end
```

Caso o valor seja superior a sigma, o valor é suficientemente elevado para ser considerado um canto, logo é armazenado na lista que contém todos os cantos que são cantos, tal como as suas coordenadas.

#### 1.3

Uma vez obtida a lista L com todos os valores de  $\lambda_2$  que satisfazem a condição, é necessário ordenar a lista de pontos por ordem decrescente dos valores de  $\lambda_2$ .

```
list = sortrows(list, -1);
```

A função sortrows, quando enviado um valor negativo, ordena por ordem decrescente, uma lista/array/matriz na coluna indicada pelo valor.

#### 1.4

Por último, para a implementação correcta do algoritmo, percorre-se a lista  $\boldsymbol{L}$  ponto a ponto e, para cada ponto  $\boldsymbol{P}$  existente na mesma, removem-se os que pertencem à sua área de vizinhança.

Desta maneira, assegura-se que não são detectados vértices com pontos de vizinhança comuns.

Este ciclo percorre os todos os pontos da lista  $\boldsymbol{L}$ , verifica se existe algum ponto com coordenadas pertencentes à vizinhança  $\boldsymbol{Q}$  na lista, com a função exists, uma função que, quando encontra um ponto em comum, retorna 1. Depois esse ponto é inserido numa lista temporária, que contém todos os pontos a eliminar, para serem removidos no final do ciclo.

Como foi explicado anteriormente, para que valor mínimo de  $\lambda_2$  num ponto  $\boldsymbol{P}$  seja considerado canto, é necessário definir um valor adequado de  $\sigma$  para obter o melhor resultado possível.

Uma maneira de obter isso, como pedido neste exercício, é usar o histograma de todos os valores de  $\lambda_2$  existentes na imagem. Dessa maneira, podemos verificar qual o valor mais adequado para  $\sigma$ .

```
[n, h] = hist(histogram_values, 15);
bar(h, n);
```

Uma vez feito o algoritmo, é necessário executá-lo para dois tipos de imagens diferentes, obter o seu histograma, para poder escolher melhor um sigma, mostrar o tensor da matriz C para os cantos escolhidos e mostrar a imagem final com os cantos detectados.

Neste caso, será testada a imagem "chess2.png" com vizinhanças 3x3 e 5x5.



Figura 1: Histograma de  $\lambda_2$  da imagem chess2, vizinhança 3x3



Figura 2: Imagem chess<br/>2 com cantos detectados, vizinhança  $3\mathrm{x}3$ 



Figura 3: Tensor de estrutura da matriz C, vizinhança 3x3

Como é possível verificar, houve uma boa detecção dos cantos, com valor de  $\sigma$  a 250000.



Figura 4: Histograma de  $\lambda_2$  da imagem chess2, vizinhança 5x5



Figura 5: Imagem chess<br/>2 com cantos detectados, vizinhança $5\mathrm{x}5$ 



Figura 6: Tensor de estrutura da matriz C, vizinhança 5x5

Neste caso, também verifica-se uma boa detecção dos cantos, com bastantes cantos sobrepostos e valor de  $\sigma$ , 250000, tal como anteriormente.

Agora, o algoritmo será testado numa imagem real, "corners.jpg", com vizinhanças de  $3\mathrm{x}3$ e $5\mathrm{x}5.$ 

Irá ser verificado o seu histograma e a detecção dos cantos na imagem.



Figura 7: Histograma de  $\lambda_2$  da imagem corners, vizinhança  $3\mathrm{x}3$ 



Figura 8: Imagem corners com cantos detectados, vizinhança 3x3

Como é possível verificar, houve uma boa detecção dos cantos, com valor de  $\sigma$  a 50000.



Figura 9: Histograma de  $\lambda_2$  da imagem corners, vizinhança 5x5



Figura 10: Imagem corners com cantos detectados, vizinhança 5x5

Neste caso, também verifica-se uma boa detecção dos cantos, com bastantes cantos sobrepostos e valor de  $\sigma$ , 50000, tal como anteriormente.

### Parte dois

Nesta parte, serão mostrados os resultados derivados da implementação da transformada de Hough sobre rectas e sobre circunferências.

Para podermos fazer o display das matrizes que seram usadas para a detecção das rectas e das circunferências usámos a função houghTransform.m onde começamos por definir o espaço de Hough, seguindo-se da detecção das bordas da imagem, após isto criámos um acumulador e fizémos o display das matrizes, onde resultou nas seguintes figuras:



Figura 11: Gráfico do acumulador da transformada de Hough



Figura 12: Gráfico do espaço de Hough

### 5.1 Hough Transform Lines



Figura 13: Intersecção da imagem com a detecção das linhas

Como é possível verificar, a detecção das rectas tem bastantes falhas e só detecta algumas partes, provavelmente devido à intensidade das próprias na imagem original.

### 5.2 Hough Transform Circles

Após a detecção das rectas, foi a vez de analisarmos a imagem tendo em conta as circunferências e usando mais uma vez a transformada de Hough. Após a execução da função circlesDetection.m obtivemos a seguinte imagem:



Figura 14: Intersecção da imagem com a detecção das circunferências

Como podemos observar pela figura, onde os centros das circunferências estão a vermelho e as margens das circunferências estão a verde, a aplicação da transformada de Hough foi bem sucedida aqui, uma vez que foram detectadas as circunferências correctamente.