Regression & the LMS Algorithm

Yingming Li yingming@zju.edu.cn

Data Science & Engineering Research Center, ZJU

14th March 2018

Adapted from slides provided by Prof. Michael Mandel.

Problem statement

Linear regression with one variable

Given a set of N pairs of data $\{x_i, d_i\}$, approximate d by a linear function of x (regressor), *i.e.*,

$$d \approx wx + b$$

or

$$d_i = y_i + \epsilon_i = \varphi(wx_i + b) + \varepsilon$$
$$= wx_i + b + \varepsilon$$

where the activation function $\varphi(x)=x$ is a linear function, corresponding to a linear neuron. y is the output of the neuron, and

$$\varepsilon_i = d_i - y_i$$

is called the (expectational) regression error.

Linear regression

- The problem of regression with one variable is how to choose w and b to minimize the regression error.
- The least squares method aims to minimize the square error

$$E = \frac{1}{2} \sum_{i=1}^{N} \varepsilon_i^2 = \frac{1}{2} \sum_{i=1}^{N} (d_i - y_i)^2$$

Linear regression

To minimize the two-variable square function, set

$$\begin{cases} \frac{\partial E}{\partial b} &= 0\\ \frac{\partial E}{\partial w} &= 0 \end{cases}$$

$$\Rightarrow \begin{cases} -\sum_{i} (d_{i} - wx_{i} - n) &= 0\\ -\sum_{i} (d_{i} - wx_{i} - b)x_{i} &= 0 \end{cases}$$

Analytic solution approaches

- Solve one equation for b in terms of w
 - Substitute into other equation, solve for $\it w$
 - Substitute solution for w back into equation for b

$$\begin{cases} -\sum_{i} (d_i - wx_i - b) = 0 \\ -\sum_{i} (d_i - wx_i - b)x_i = 0 \end{cases}$$

Analytic solution approaches

- Solve one equation for b in terms of w
 - Substitute into other equation, solve for w
 - Substitute solution for w back into equation for b

$$\begin{cases} -\sum_{i} (d_i - wx_i - b) = 0 \\ -\sum_{i} (d_i - wx_i - b)x_i = 0 \end{cases}$$

$$\Rightarrow b = \frac{\sum_{i} x_i^2 \sum_{i} d_i - \sum_{i} x_i \sum_{i} x_i d_i}{N \sum_{i} (x_i - \bar{x})^2}, \quad w = \frac{\sum_{i} (x_i - \bar{x}) (d_i - \bar{d})}{\sum_{i} (x_i - \bar{x})^2}$$

, where an \bar{x} indicates the mean

There may exist other forms, such as $w=\frac{\sum_i d_i(x_i-\bar{x})}{\sum_i x_i^2-\frac{1}{m}(\sum_i x_i)^2}$,

$$w = \frac{\sum_{i} (d_i - \bar{d}) x_i}{\sum_{i} (x_i - \bar{x}) x_i}$$

Analytic solution approaches

- Solve one equation for b in terms of w
 - Substitute into other equation, solve for w
 - Substitute solution for w back into equation for b
- Setup system of equations in matrix notation
 - Solve matrix equation
- Rewrite problem in matrix form
 - Compute matrix gradient
 - Solve for w

Linear regression in matrix notation

Let $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_N]^T$, then the model predictions are $\mathbf{y} = \mathbf{X}\mathbf{w}$. And the mean square error can be written as

$$E(\mathbf{w}) = \|\mathbf{d} - \mathbf{y}\|^2 = \|\mathbf{d} - \mathbf{X}\mathbf{w}\|^2$$

To find the optimal w, set the gradient of the error w.r.t. w equal to 0 and solve for w.

$$\partial E(\mathbf{w})/\partial \mathbf{w} = 0$$

Linear regression in matrix notation

$$\begin{split} \frac{\partial}{\partial \mathbf{w}} E(\mathbf{w}) &= \frac{\partial}{\partial \mathbf{w}} \|\mathbf{d} - \mathbf{X} \mathbf{w}\|^2 \\ &= \frac{\partial}{\partial \mathbf{w}} (\mathbf{d} - \mathbf{X} \mathbf{w})^T (\mathbf{d} - \mathbf{X} \mathbf{w}) \\ &= \frac{\partial}{\partial \mathbf{w}} \mathbf{d}^T \mathbf{d} - \mathbf{d}^T \mathbf{X} \mathbf{w} - \mathbf{w}^T \mathbf{X}^T \mathbf{d} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \\ &= 2 \mathbf{X}^T \mathbf{X} \mathbf{w} - 2 \mathbf{X}^T \mathbf{d} = 0 \\ \Rightarrow \mathbf{w} &= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{d} \end{split}$$

Finding optimal parameters via search

- Often there is no closed form solution for $\frac{\partial}{\partial \mathbf{w}} E(\mathbf{w}) = 0$
- We can still use the gradient in a numerical solution
- We will still use the same example to permit comparison
- For simplicity's sake, set b=0

$$E(w) = 1/2 \sum_{i=1}^{N} (d_i - wx_i)^2$$

, where E(w) is called cost function.

Cost function

Question: how can we update w from w_0 to minimize E?

Consider a two-variable function f(x,y). Its gradient at the point $(x_0,y_0)^T$ is defined as

$$\nabla f = \left(\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y} \right)^{T} \Big|_{x=x_{0}, y=y_{0}}$$
$$= f_{x}(x_{0}, y_{0}) \mathbf{u}_{x} + f_{y}(x_{0}, y_{0}) \mathbf{u}_{y}$$

, where ${\bf u}_x$ and ${\bf u}_y$ are unit vectors in the x and y directions, and $f_x=\partial f/\partial x$ and $f_y=\partial f/\partial y$

At any given direction, $\mathbf{u} = \alpha \mathbf{u}_x + b \mathbf{u}_y$, with $\sqrt{a^2 + b^2} = 1$, the directional derivative at $(x_0, y_0)^T$ along the unit vector \mathbf{u} is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

$$= \lim_{h \to 0} \left[f(x_0 + ha, y_0 + hb) - f(x_0, y_0 + hb) \right] / h$$

$$+ \left[f(x_0, y_0 + hb) - f(x_0, y_0) \right] / h$$

$$= af_x(x_0, y_0) + bf_y(x_0, y_0)$$

$$= \nabla f(x_0, y_0)^T \mathbf{u}$$

Which direction has the greatest slope? The gradient! Because of the dot product.

Example: $f(x, y) = 5/2x^2 - 3xy + 5/2y^2 + 2x + 2y$

Example: $f(x, y) = 5/2x^2 - 3xy + 5/2y^2 + 2x + 2y$

Gradient and directional derivatives (cont.)

- The level curves of a function f(x, y) are curves such that f(x, y) = k
- Thus, the directional derivative along a level curve is 0

$$D_{\mathbf{u}} = \nabla f(x_0, y_0)^T \mathbf{u} = 0$$

And the gradient vector is perpendicular to the level curve

Gradient and directional derivatives (cont.)

- The gradient of a cost function is a vector with the dimension of w that points to the direction of maximum E increase and with a magnitude equal to the slope of the tangent of the cost function along that direction
 - Can the slope be negative?

Gradient illustration

Gradient descent

 Minimize the cost function via gradient (steepest) descent a case of hill-climbing

$$w(n+1) = w(n) - \eta \nabla E(n)$$

- n: iteration number
- η: learning rate

Gradient descent (cont.)

• For the mean-square-error cost function and linear neurons

$$E(n) = \frac{1}{2}e^{2}(n) = \frac{1}{2}[d(n) - y(n)]^{2}$$

$$= \frac{1}{2}[d(n) - w(n)x(n)]^{2}$$

$$\nabla E(n) = \frac{\partial E}{\partial w(n)} = \frac{\partial e^{2}(n)}{2\partial w(n)}$$

$$= -e(n)x(n)$$

Gradient descent (cont.)

Hence

$$w(n+1) = w(n) + \eta e(n)x(n)$$

= $w(n) + \eta [d(n) - y(n)]x(n)$

 This is the least-mean-square (LMS) algorithm, or the Widrow-Hoff rule

Stochastic gradient descent

If the cost function is of the form

$$E(w) = \sum_{n=1}^{N} E_n(w)$$

Then one gradient descent step requires computing

$$\Delta = \frac{\partial}{\partial w} E(w) = \sum_{n=1}^{N} \frac{\partial}{\partial w} E_n(w)$$

- Which means computing ${\cal E}(w)$ or its gradient for every data point
- Many steps may be required to reach an optimum

Stochastic gradient descent

It is generally much more computationally efficient to use

$$\Delta = \sum_{n=n_i}^{n_i + n_b - 1} \frac{\partial}{\partial w} E_n(w)$$

- For small values of n_b
- This update rule may converge in many fewer passes through the data (epochs)

Stochastic gradient descent example

Stochastic gradient descent error functions

Stochastic gradient descent gradients

Stochastic gradient descent animation

Gradient descent animation

Multi-variable LMS

 The analysis for the one-variable case extends to the multivariable case

$$E(n) = 1/2[d(n) - \mathbf{w}^{T}(n)\mathbf{x}(n)]^{2}$$

$$\nabla E(w) = \left(\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, ..., \frac{\partial E}{\partial w_m}\right)^T$$

where $w_0 = b$ (bias) and $x_0 = 1$, as done for perceptron learning

Multi-variable LMS (cont.)

The LMS algorithm

$$\begin{aligned} \mathbf{w}(n+1) &= \mathbf{w}(n) - \eta \nabla \mathbf{E}(n) \\ &= \mathbf{w}(n) + \eta e(n) \mathbf{x}(n) \\ &= \mathbf{w}(n) + \eta [d(n) - y(n)] \mathbf{x}(n) \end{aligned}$$

LMS algorithm remarks

- The LMS rule is exactly the same equation as the perceptron learning rule
- Perceptron learning is for nonlinear (M-P) neurons, whereas LMS learning is for linear neurons.
 - *i.e.*, perceptron learning is for classification and LMS is for function approximation
- LMS should be less sensitive to noise in the input data than perceptrons
 - On the other hand, LMS learning converges slowly
- Newtons method changes weights in the direction of the minimum ${\cal E}(w)$ and leads to fast convergence.
 - But it is not online and is computationally expensive

Stability of adaptation

- When η is too small, learning converges slowly
- When η is too large, learning does not converge

Learning rate annealing

- Basic idea: start with a large rate but gradually decrease it
- Stochastic approximation

$$\eta(n) = c/n$$

c is a positive parameter

Learning rate annealing (cont.)

Search-then-converge

$$\eta(n) = \frac{\eta_0}{1 + (n/\tau)}$$

 η_0 and τ are positive parameters

- \bullet When n is small compared to τ , learning rate is approximately constant
- When n is large compared to τ , learning rule schedule roughly follows stochastic approximation

Rate annealing illustration

Nonlinear neurons

 To extend the LMS algorithm to nonlinear neurons, consider differentiable activation function at iteration n

$$E(n) = 1/2 \left[d(n) - y(n) \right]^2$$
$$= 1/2 \left[d(n) - \varphi \left(\sum_j w_j x_j(n) \right) \right]^2$$

Nonlinear neurons (cont.)

By chain rule of differentiation

$$\frac{\partial E}{\partial w_j} = \frac{\partial E}{\partial y} \frac{\partial y}{\partial v} \frac{\partial v}{\partial w_j}
= -[d(n) - y(n)] \varphi'(v(n)) x_j(n)
= -e(n) \varphi'(v(n)) x_j(n)$$

Nonlinear neurons (cont.)

Gradient descent gives

$$w_j(n+1) = w_j(n) + \eta e(n)\varphi'(v(n))x_j(n)$$

= $w_j(n) + \eta \delta(n)x_j(n)$

- The above is called the delta (δ) rule
- If we choose a logistic sigmoid for

$$\varphi(v) = \frac{1}{1 + exp(-av)}$$

then

$$\varphi'(v) = a\varphi(v)[1 - \varphi(v)]$$

Role of activation function

The role of φ' : weight update is most sensitive when v is near zero

Thank you!