

## Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica e de Computação

# SEL330 – LABORATÓRIO DE CONVERSÃO ELETROMECÂNICA DE ENERGIA

# PRÁTICA #3 – TRANSFORMADORES – PARTE 2

#### **AUTOTRANSFORMADOR**

**Professores:** Eduardo Nobuhiro Asada, Elmer Pablo Tito Cari, José Carlos de Melo Vieira Junior, Luís Fernando Costa Alberto.

#### **OBJETIVOS:**

O objetivo principal desta prática é avaliar o funcionamento de um transformador de dois enrolamentos conectado como autotransformador por meio de um ensaio de carregamento. Espera-se que o estudante compreenda as vantagens e limitações associadas ao funcionamento de um autotransformador em comparação a um transformador de dois enrolamentos de mesma capacidade.

### **PROBLEMA**

Os enrolamentos primário e secundário de um transformador de dois enrolamentos podem ser conectados de forma que o equipamento opere como um autotransformador. Com isso, tem-se a possibilidade de um aumento na potência a ser transformada, além de melhorar a regulação de tensão e o rendimento do equipamento. Baseando nestes aspectos, propõe-se o seguinte problema:

a. Conectar o transformador de dois enrolamentos ensaiado na aula anterior na configuração de autotransformador com entrada em 110V e saída em 220V. Realizar o ensaio de carregamento utilizando o conjunto de 9 lâmpadas de 60 W, obter a curva de carga, de rendimento, de regulação e de



## Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica e de Computação

fator de potência e comparar com as curvas obtidas no ensaio de carregamento do transformador de 2 enrolamentos.

### **DISPOSITIVO EM ESTUDO**

Será utilizado o mesmo transformador da aula anterior. Preencha os dados abaixo já considerando o dispositivo conectado como autotransformador:

| • | Potência nominal:                 |
|---|-----------------------------------|
| • | Corrente nominal no primário:     |
| • | Corrente nominal no secundário:   |
| • | Relação de transformação teórica: |
| • | Relação de transformação real:    |

## **RECOMENDAÇÕES**

**Recomendação 1)** Antes de proceder à ligação do autotransformador na configuração requerida, é preciso definir a configuração dos lados primário e secundário do transformador de dois enrolamentos, ou seja se eles devem ser ligados em 110V ou 220V. Isto também é válido antes de realizar a conexão do arranjo trifásico. Assim, para cada parte desta prática esquematize as ligações e discuta com o professor.

**Recomendação 2)** Sobre o ensaio de carregamento do autotransformador, tenha em mente quais são as grandezas importantes para obter o rendimento e a regulação. Isto é essencial para verificar quais são os instrumentos de medida necessários na montagem do experimento. Esboce um esquema e discuta com o professor como realizar este ensaio. Recomenda-se ainda, inserir as lâmpadas gradativamente (uma a uma) e realizar as medições necessárias após cada inserção.



## Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica e de Computação

# **PRECAUÇÕES**

Precaução 1) Deve-se realizar o ensaio da determinação da polaridade dos transformadores antes de conectá-los como autotransformador.

Precaução 2) Não exceda as correntes máximas nominais dos enrolamentos.

**Precaução 3**) Cuidado ao manusear as lâmpadas no ensaio de carregamento, devido ao aquecimento das mesmas.

**Precaução 4**) Atente-se à seleção das escalas nos instrumentos de medição. Uma escolha inadequada pode provocar danos ao instrumento.

### **BIBLIOGRAFIA**

- [1] P. C. Sen, Principles of Electric Machine and Power Electronics, Wiley, 2013
- [2] G. McPersonn and R. D. Laramore, *Electrical Machines and Transformers*, John Wiley & Sons, 1981
- [3] A. E. Fitzgerald, C. Kingsley Jr., S. D. Umans, *Electric Machinery*, McGraw-Hill, 2003.