Amatérské radio

Vydavatel: MAGNET-PRESS

Slovakia s.r.o.

ve spolupráci s AMARO spol. s r.o.

Adresa redakce: Radlická 2, 150 00

Praha 5, tel.: 57 31 73 14

Séfredaktor: Ing. Radomír Klabal

Redakce: Alan Kraus, Roman Kudláč,

Pavel Meca

Ročně vychází 12 čísel, cena výtisku 25 Kč. Pololetní předplatné 150 Kč,

roční předplatné 300 Kč.

Objednávky předplatného přijímá

Michaela Jiráčková, Radlická 2,

150 00 Praha 5

Rozšiřuje PNS a.s., Transpress spol. s r.o., Mediaprint & Kapa a soukromí

distributoři.

Objednávky inzerce přijímá redakce.

Inzerciju v SR vybavuje MAGNET-PRESS Slovakia s.r.o., P.O.BOX 169 830 00 Bratislava, tel./fax (07) 525 45 59, (07) 525 46 28 Objednávky a predplatné v Slovenskej republike vybavuje MAGNET-PRESS Slovakia s.r.o., P.O.BOX 169 830 00 Bratislava, tel./fax (07) 525 45 59, (07) 525 46 28 Podávání novinových zásilek povolené Českou poštou - ředitelstvím OZ Praha (č.j. nov 6285/97 ze dne 3.9.1997)

Za původnost příspěvku odpovídá autor. Otisk povolen jen s uvedením původu. Sazba a DTP: AK DESIGN - Alan Kraus Za obsah inzerátu odpovídá inzerent.

Redakce si vyhrazuje **právo neuveřejnit** inzerát, jehož obsah by mohl poškodit pověst časopisu.

Nevyžádané rukopisy autorům nevracíme Bez předchozího písemného souhlasu vydavatele nesmí být žádná část kopírována, rozmnožována, nebo šířena jakýmkoliv způsobem.

Právní nárok na odškodnění v případě změn, chyb nebo vynechání je vyloučen. Veškerá práva vyhrazena.

ISSN 0322-9572, č.j. 46 043

Obsah

Editorial
NF zesilovač 60/150W s LM3886T
Regulátor otáček univerzálního motoru5
Síťový regulátor
Batest SMD
Palubní počítač
Interkom
Kirchhoffovy zákony
Protel Easytrax - program pro návrh desek plošných spojů 16
DVD - nové možnosti optických disků
IR vysílač
IR přijímač
Světelné relé
O bateriích, článcích a akumulátorech
AMPIC 2080 - první zkušenosti
Dálkové ovládání s vyšší bezpečností
Malý měnič napětí
Začínáme s Ferdou Mravencem II
Elektronické potenciometry II
Z radioamatérského světa
Řádková inzerce
Seznam inzerentů

Vážení čtenáři

Nechtěl bych se přít, zda nejepochálnějším vynálezem v dějinách lidstva bylo kolo, knihtisk nebo počítač.
Už proto, že mají jedno společné: položily základ k obrovskému skoku
v šíření informací a vytvořily specifický předpoklad k tomu, aby se naše
civilizace stala takovou, jaká je, totiž
civilizací komunikační. Kolo k rozmachu komunikací napomáhalo nejpomaleji, neboť trvalo pár století, než
zmenšilo starý kontinent natolik, že
cesta s návratem se stala běžnou a zajišťovala a stabilizovala tak výměnu
informací na větší vzdálenosti.

Další dveře výměně informací otevřel Guttenberg. Od počátku 16. stol. mohl být objem poznatků a novinek, které cestovatel přinášel ze světa a také je tam odnášel, nesrovnatelně vétší. Dostávaly se přitom k mnohem většímu počtu lidí. Ale především to byly informace přesné, nikoli zkreslené, pozměněné a zčásti poztrácené ústním předáváním a zapomínáním. V této souvislosti bychom ovšem měli připomenout i 1. pol. 19. stol., pány Gausse a Webera, kteří informaci "odhmotnili" a komunikovali ji pouze pomoci signálů, tedy bez transportní účasti člověka, ale přinejmenším bychom tím v přenosu sdělení na dálku upřeli primát starým Rekům, kteří zprávu o dobytí Tróje odeslali do Mykén, vzdálených přibližně 500 km jen tak vzduchem, pomocí světla, i když nikoli koherentního (laserového), nýbrž ohňového, tedy svým způsobem moderněji, než to dosud většinou děláme my.

Třetí ze "zlomů" v civilizační rozvoji, počítač, je dosud chápán především jako stroj na zpracování informací. Ale jeho role v komunikaci rychle vzrůstá. Na Internetu je nová informace dostupná po celém světě všem připojeným v okamžiku umístění na webovskou stránku.

Svět, ve kterém žijeme, je stále více světem informací. Jejich základní komunikační formou už nejsou fonémy, jako při mluveném sdělování, či písmena, číslice aj. symboly, jako při sdělování pomocí tisku, nýbrž impulzy. Je to sdělování, které "chvíli je a chvíli není", je to způsob v jistém smyslu poněkud podivný, avšak navýsost účinný, schopný dříve netušených komunikačních výkonů, tudíž virtuální, jelikož virtuální znamená schopný a účinný, ale také

pomyslný. Je-li však svět impulzů světem virtuálním, může jím být i svět informací, které z variety světa impulzů vznikají.

Z pojednání o virtuální realitě se dovíme, že počítač se specifickou periferií je schopen účinně dráždit smyslové receptory, čímž v centrální nervové soustavě vyvolá procesy shodné s těmi, které tam probíhají při standardním biologickém smyslovém vnímání. Řečeno, populárně, nemusíme špihat na Everest, riskovat pád či zmrznutí, neboť únavou a kyslíkovým dluhem můžeme trpět v křesle příjemně vyhřátého pokoje. Mně se tato perspektiva zdá lákavá, ale cestovní kanceláře a hoteliéři se mohou cítit existenčně ohroženi.

Zajisté není třeba mít bujnou fantazii, abychom domysleli, že virtuální počítačová realita může přinést nové jevy mezilidské komunikace a další prudký rozvoj poznání. Jde totiž o to, že poznatky získávané z textů budeme moci doplnit relevantním prožitkem, což zajistí podstatně lepší fixaci v paměti. A protože zážitek lze považovat už od dob Komenského za nejlepší cestu k osvojení znalostí, může to přinést obrovský vzrůst všeobecné vzdělanosti a následně i rozumových schopností lidstva.

Ale virtuální realita může nabídnout i zkušenosti řekněme syntetické,
např. zážitek trhání zubu skloubený
s erotickou masáží. Takže kdoví, zda
s touto inovací při stomatologických
výkonech některá ze soukromých
ordinací vbrzku nepřijde. Mohou to
však být i zážitky myslitelné, avšak
reálně neuskutečnitelné, tedy, zůstaneme-li v "lechtivé" rovině, např.
zážitek orgasmu opačného pohlaví.
Bude však něco takového obohacením o novou zkušenost, anebo deformací reálného vztahu člověka k světu?

Nejde ovšem pouze o nové informační jevy vzhledem k jedinci. V síti počítačů lze "informovat" věrohodným způsobem o něčem smyšleném i nepravdivém, co někomu přinese prospěch a jiné poškodí. Není to samozřejmě důvod k cenzuře, jak se dnes domnívají mnozí politici, je to pouze důsledek demokracie, podobně, jako je jím podle tvrzení těchže, zvýšená kriminalita. Ostatně informační malverzace nám bezostyšně zprostředkovávají i tradiční média.

Ze světa variety impulzů však může přijít ještě cosi jiného, vnímatelného,

i když nevytvořeného odrazem skutečnosti, cosi navýsost svébytného, avšak zcela se vymykajícího dosavadnímu poznání, dosavadním možnostem poznání a samozřejmě i zkušenostem, jakýsi ne-svět, nonrealita. Odtud mohou do našeho světa vstupovat "máhtovřilí bufňáci".

Myslitelné, je všechno to, co vymyslí mozek. Mozek může mít bizarní synapse neuronů, může to být mozek génia nebo debila, avšak všechno, co v mozku vznikne, je myslitelné a následně v nějaké formě i komunikovatelné. Jakkoli podivuhodné, jakkoli absurdní, jsou to stále jen vymyšlené světy či systémy. Lidské systémy a lidský svět. Mohou být bláznivé, nesmyslné, nefunkční, udivující, směšné, stupidní či moudré, zlotřilé, občanskou důstojnost ponižující či respektující, přesto všechny vznikají v mozkových buňkách na základě všech možných logik, od Aristotelovy, přes Booleovu až po Zadehovu, tedy na základě zákonů tohoto světa.

Počítače se vydaly jinou cestou. Jediné, čím jsou omezeny ve svém "rozmachu" je varieta, pokud informaci chápeme jako konečnou množinu možných stavů. Zbavily se ošidného a mnohoznačného světa slov lidských jazyků a interpretují slova svého jazyka zásadně stejně, ať pracují v Cíně, v Cile či v Ceské republice. A především nemusí mít žádná omezení, pokud jde o rozmanitost kombinaci, tedy toho, co "myslí". Zít ve světě zprostředkovávaném počítačem tak může znamenat žít v pseudorealitě či dokonce v nonrealitě, mít vjemy máhtovřilé a získávat zkušenosti bufňáků.

Existuje samozřejmě problém přiřazení významu k určité kombinaci stavů vydělené z vesmíru variety, neboli co rozumět slovy máhtovřilý a bufňák. A o to právě běží.

Musíme doufat že to bude stejný problém, jako přiřazení významu k pozorovanému úkazu v reálném vesmíru, anebo problém, jaký vzniká čtenáři Jakuba Demla, ale nikoli problém, jak přiřadit smysl k pojmu český politik. To první by mohlo být spjato s tím, co nazýváme pokrokem, to druhé, s čímsi jako poetický rozměr bytí, to třetí by nás mohlo přivést ke ztrátě smyslu mezilidské komunikace.

Ing. Radomír Klabal

NF zesilovač 60/150 W s LM3886T

FANDA elektronik s.r.o.

K základním požadavkům na nízkofrekvenční zesilovač patří velký zisk, malé zkreslení, malý šum, odolnost proti zkratu na výstupu a proti změně napájecího napětí a spolehlivost. Tyto požadavky splňuje velmi dobře monolitický integrovaný obvod LM3886T.

Spolu s několika vnějšími pasivními součástkami tvoří tento obvod velmi kvalitní a spolehlivý nízkofrekvenční zesilovač se stálým výstupním výkonem 60 W a špičkovým až 150 W při zátěží 4 Ω.

Integrovaný obvod LM3886T

Tento obvod patří do řady nízkofrekvenčních zesilovačů, které jsou jako první na světě vyrobeny monolitickým procesem. Tuto řadu zesilovačů dodává na trh firma National Semikonduktor a nazvala ji Overture. Obvod LM 3886T je velmi robustní a spolehlivý. Má ochranu před náhlým špičkovým tepelným kolapsem kterékoliv aktivní součástky, před zvýšeným nebo příliš malým napájecím napětím, před mžikovým i trvalým zkratem na výstupu na zem nebo na napájecí napětí a navíc je vybaven umlčovacím obvodem. Zmíněný monolitický obvod je určen pro stavbu velmi kvalitních zesilovačů a aktivních reproduktorových soustav s vysokou spolehlivostí (pro svojí kvalitu může být použit např. jako zesilovač k CD přehrávačům). Navíc obsahuje obvod, který odstraní špičkové

Obr. 1. Blokové schéma LM3886

změny napětí na výstupu, které vznikají při zapínání nebo vypínání
zdrojů. U zesilovačů se projevují jako
nepříjemné zvuky nebo rázy v reproduktorech. Nemusíme tedy během
připojení nebo odpojení napájecího
napětí elektronicky odpojovat výstup zesilovače jak tomu bylo dříve
zvykem. Vnitřní zapojení obvodu je
na obrázku 1. Neobsahuje ovšem
schéma ochranného obvodu nazvaného "SPiKe Protection", který je
patentově chráněn a je dobře utajen.

Obr. 2. Závislost zkreslení a šumu na f $(P = 10W, RL = 8\Omega, Ucc = + 35V)$

Obr. 3. Kmitočtový rozsah pro velký vstupní signál (Ucc = + 35V, $RL = 8\Omega$, THD = 10%)

Obr. 4. Pouzdro LM3886

Zapojení vývodů

1						٠			+ Ucc
2				2.					nezapojen
3									výstup
									- Ucc
5		•				•			nezapojen
									nezapojen
7									0V
									umlčovač
									invert. vstup
1	0								neinvert. vst.
1	1	•							nezapojen

Popis zapojení a funkce

Vypínač S1 ovládá umlčovací obvod. Spíná se současně s vypínačem sítě. Člen R2 C10 zpožďuje vypnutí a zapnutí umlčovacího obvodu při zapnutí a vypnutí sítě. Velikost R2 určuje vztah:

 $R2 = \frac{(-Ucc) - 2,6V}{0.5 \times 10^{-3}}$

Při napájecím napětí +30 V má rezistor R2 velikost 54,8 kΩ. Pro vypnutí umlčovacího obvodu je třeba proud 0,5 mA na vývodu 8 IO, proto pro spolehlivé vypnutí obvodu musíme k vypočtenému R2 ze standardní vyráběné řady rezistorů vybrat nejbližší nižší hodnotu a tou je v našem případě hodnota 47 kΩ. Na R2. vznikne v našem případě úbytek napětí asi 23,5 V a tak je na vývodu 8 IO napětí jen asi 6,5 V, proto může být C10 dimenzován na nižší napětí (10 V). Kondenzátor C9 a sériová kombinace R6, C6 zabraňují vzniku vysokofrekvenčních oscilací zesilovače. Kondenzátory C2, C4, C7 a C8 filtrují napájecí napětí. Sériový člen R3 C3 určuje dolní mezní kmitočet, který je 16 Hz. Horní mezní kmitočet je určen zpětnovazebním členem R5 C5 a je asi 150 kHz. Cívka L1 snižuje zatížení výstupu velkou kapacitní zátěží na vysokých kmitočtech a rezistor R7 zmenšuje činitel jakosti Q takto vzniklého rezonančního obvodu a zlepšuje stabilitu zapojení. Zesílení v přenášeném pásmu je určeno vztahem A = R4 / Ri + 1, (přičemž Ri je vnitřní odpor zesilovače), v našem případě je A = 21.

Oživení přístroje

Před osazováním součástek do plošného spoje musíme nejdříve zhotovit cívku Ll, o indukčnosti 0,7 mH. Tato cívka je navinutá na rezistoru R7 viz. následující obrázek.

Cívku tvoří 10 až 12 závitů navinutých těsně vedle sebe běžným měděným lakovaným drátem o průměru 0,6 mm.

Při osazování desky s plošnými spoji předepsanými součástkami

Obr. 5. Schéma zapojení

pájíme podle osazovacího plánu na obr. 6. jako první rezistory, pak kondenzátory a cívku, nakonec integrovaný obvod. Většina rezistorů je pro úsporu místa pájena na stojato. Pečlivě zkontrolujeme, zda jsme neudělali nějakou chybu. Pokud jsme provedli kontrolu, připevníme integrovaný obvod na chladič. Má-li chladič snížit teplotu pouzdra o 25 °C, je na chlazení potřeba chladič s tepelným odporem 1,3 °K/W. Pokud má být teplota snížena o 40 °C musíme použít chladič s tepelným odporem 1,0 °K/W. V našem případě při výkonu zesilovače 60/150 W a snížení teploty pouzdra o 60 °C potřebujeme chladič, s tepelným odporem 0,8 °K/W. Je vhodné použít žebrovaný chladič s vnějšími rozměry 120 x 50 x 100 mm. Záporné napájecí napětí (vývod 4) je spojené s kovovou podložkou jeho pouzdra a proto musí být integrovaný obvod před montáží na chladič opatřen izolační podložkou. Poté na výstup zesilovače

připojíme rezistor o velikosti 8 Ω, který je dimenzován pro danou výkonovou ztrátu. Na odbočku rezistoru připojíme pro kontrolu reproduktor. Připojíme napájecí napětí a měřením se přesvědčíme, zda je správně připo-Vstupní jeno. signál (např. z generátoru napětí sinusového průběhu, např. kmitočet

1 kHz, nebo jakýkoliv nf signál, který nepřesáhne mezní parametry integrovaného obvodu) nastavíme na nejmenší velikost a připojíme ho na vstup zesilovače. Poté velikost vstupního signálu pomalu zvětšujeme. Pro ochranu zařízení, které dodává nf signál, je vhodné zařízení připojit přes předzesilovač. Pokud se dotkneme vstupu zesilovače musí se z reproduktoru ozvat silný brum. Pokud se z reproduktoru ozvat silný brum. Pokud se z reproduktoru ozývá signál, který odpovídá signálu připojenému na vstup, můžeme zesilovač vybudit na

plný výkon. Pro plné vybuzení zesilovače, to je 60 / 150 W, je potřeba vstupní nízkofrekvenční signál o velikosti asi 2 V. Popisovaný integrovaný obvod je velice kvalitní a je opatřen řadou ochran a proto by mělo popisované zařízení fungovat na první zapojení. Oživení přístroje by nemělo činit velké problémy ani začátečníkovi.

Popis konstrukce

Všechny součástky jsou umístěny na plošném spoji o rozměrech 90 x 34 mm. Ve dvou rozích plošného spoje jsou vyvrtány díry, které slouží pro připevnění plošného spoje na chladič pomocí malých úhelníků. Pokud tento zesilovač umístíme do kovové krabice, musí být krabice podle platných předpisů uzemněna, přívodní šňůra musí být třížilová a v přístroji musí být síťová pojistka. Na přední panel krabičky můžeme připevnit síťový vypínač, kontrolní LED diodu indikující zapnutí přístroje, a zásuvku na vstup a výstup zesilovače.

Stavebnici a modul zesilovače dodává FANDA elektronik s.r.o.

Parametry zesilovače:	
Trvalý / špičkový výkon (RL = 4 Ω):	
Požadavky na zdroj:	
Frekvenční rozsah:	에는 가게 되어 없는데 이 아니는 것이 되었습니다. 아니는
Intermodulační zkreslení (60 Hz, 7 kHz 1:	1):0,006 %
Celkové harmonické zkreslení THD (20 Hz	
Poměr signál / šum (P = 1 W, f = 1 kHz, R	
Zeslabení umlčovače:	
Omezený výstupní proud:	
Pracovní teplota:	

Obr. 6. Rozložení součástek a deska s plošnými spoji zesilovače

SEZNAM SOUČÁSTEK

Regulátor otáček univerzálního motoru C

V hobby i profesionální činnosti je často potřeba regulovat otáčky universálního motoru. Při malé rychlosti otáčení s velkým kroutícím momentem lze použít jen regulátory,

ké síly, tj. které pracují se zpětnou vazbou.

V praxi rozeznáváme dva druhy regulátorů - půlvlnný (regulace tyristorem) a celovlnný (triakem). Každý z těchto dvou typů regulátorů má své výhody i nevýhody. Celovlnný regulátor s triakem je vhodné použít pro řízení v oblasti vyšších otáček, kde nevyžadujeme velký kroutící moment. Regulace triakem při malé rychlosti otáčení je velmi obtížná pro nepříznivé komutační vlastnosti triaku a potíže se zavedením zpětné vazby.

které využívají protielektromotoric-

V následujícím stavebním návodu se budeme zabývat konstrukcí regulátoru půlvlnného.

Popis funkce universálního motoru

Po připojení napájecího napětí vytvoří procházející proud dvě magnetická pole - statoru a rotoru. Cívky obou těchto částí motoru jsou zapojeny tak, že obě magnetická pole jsou na sebe vzájemně kolmá a tím dochází k tomu, že pole statoru nutí pole rotoru k pohybu. Při střídavém napětí se mění současně pole rotoru i statoru, proto se rotor otáčí stále ve

FANDA elektronik s.r.o.

Obr. 1. Schéma zapojení regulátoru

stejném směru. Otáčí-li se rotor kolmo k magnetickému poli statoru, indikuje se v něm napětí, které má vzhledem k napájecímu napětí obrácenou polaritu (protinapětí). Velikost tohoto napětí je vždy úměrná rychlosti otáčení motoru a regulací této složky je možno řídit otáčky motoru.

Popis zapojení

Hlavním regulačním prvkem je tyristor, u něhož měníme úhel otevření a tím i napětí na svorkách motoru. Tímto procesem tedy ovlivňujeme zároveň i indukované napětí v rotoru. Spouštěcí obvod je tvořen R1 a P1. Impuls k otevření tyristoru se získává z rozdílu části napájecího napětí na běžci potenciometru P1 a protina-

pětí, které je na katodě tyristoru. Bude-li střídavé napětí na běžci potenciometru větší než protinapětí, tyristor se otevře. Cím je úhel otevření větší, tím rychleji se motor otáčí. Zmenší-li se rychlost otáčení vlivem zatížení, zmenší se i protinapětí a tyristor se začne otevírat dříve, Tím se zvětší napětí na svorkách motoru s tendencí zvýšit otáčky a tím vykompenzovat vliv mechanické zátěže. Tl zastává funkci generátoru impulzů a je zapojen jako emitorový sledovač. Připojením řídicí elektrody tyristoru na nízkou impedanci získáme lepší vlastnosti řídicích impulzů. C5 a D4 chrání tyristor. R2 a D3 zabezpečují ss napájení T1. Změnou C3, C4 a trimrem P2 je možno nastavit nejnižší otáčky motoru.

Konstrukce

Všechny součástky jsou umístěny na desce plošných spojů o rozměrech 104 x 74 mm. Tento rozměr včetně rohových upevňovacích děr je zvolen tak, aby bylo možno desku umístit do univerzální konstrukční krabičky K3.

Konstrukce tohoto zařízení neskýtá žádné záludnosti a při správném osazení a zaletování součástek musí pracovat na první pokus. Jediným seřizovacím prvkem je trimr P2. Ten nastavíme tak, že spustíme motor a Pl vytočíme do krajní polohy na minimální otáčky. Trimrem pak nastavíme minimum otáček na takovou hodnotu, kdy je ještě použitelný kroutící moment.

POZOR! Všechny součástky regulátoru musí být dobře izolovány!!

Obr. 2. Deska s plošnými spoji regulátoru

Síťový regulátor

FANDA elektronik s.r.o.

Toto zařízení lze využít k regulaci příkonu spotřebičů, které jsou zátěží do 400 W. Pomocí mikrospínače lze plynule řídit příkon spotřebiče, který má jako zátěž charakter odporu nebo indukčnosti.

Hodí se např. k regulaci topného tělesa, otáček vrtačky apod., ale svojí konstrukcí hlavně jako stmívač pro žárovku nebo celý lustr do příkonu 400 W (čtyři žárovky s příkonem 100 W), který se instaluje jako běžný vypínač. Stmívače se v současné době stávají běžným vybavením hlavně proto, že stále roste cena elektrické energie a zároveň také nároky na kvalitu osvětlení. Hlavním požadavkem na síťový regulátor je, aby s ním bylo možno regulovat příkon plynule a především aby regulovaný příkon nekolísal apod.

Integrovaný obvod SLB 0587

Tento inteligentní osmivývodový integrovaný obvod plně vyhovuje požadavkům na regulátory, protože speciálně pro ně je vyráběn. Prošel dlouhým vývojem a vyrábí ho firma SIEMENS. Obvod umožňuje všechny již dávno běžné funkce jakou je např. senzorové ovládání. Dále oproti starším obvodům umožňuje např. ovládání nízkonapěťových halogenových svítidel s regulací na primární straně transformátoru. Popisovaný integrovaný obvod má

Obr. 1. Připojení zátěže k regulátoru

Obr. 2. Schéma zapojení síťového regulátoru

velkou výhodu v tom, že při zapnutí stmívače přímo na maximální výkon se triak neotevře naplno, ale tzv. měkký start umožní, že napětí na zátěži nabíhá postupně. Toto plynulé rozsvícení je dosti rychlé, aby nepůsobilo rušivě, avšak dostatečně pomalé, aby chránilo triak a žárovku.

Další ochrany integrovaného obvodu umožňují použití regulátoru i pro řízení induktivních zátěží. Nemůže tedy např. nastat tzv. půlcyklová činnost obvodu, při které triak spínal každou druhou půlperiodu, takže se choval jako usměrňovač. Obvod SLB 0587 dále umožňuje i digitální

Obr. 3. Rozložení součástek na desce plošných spojů regulátoru otáček

			STEK
R1		5,6 kW 10	až 12 W
R2		5,6 kΩ/10	až 12 W
-			
P2		470	Ω - trimr
C1		100	nF/630 V
C2		100	mF/35 V
C3			. 220 nF
C4			
C5		4,7	mF/16 V
D1 až l	D4		1N4007
Ty 1 .		KT	206 /600
T1			. KC238
Po			2 mA

Stavebnice regulátoru a osazené moduly dodává FANDA elektronik:

ovládání, které se používá např. u stmívačů s dálkovým ovládáním.

Popis zapojení a funkce

Toto zapojení je klasickým regulátorem s fázově regulovaným triakem. Celé zařízení se ovládá mikrospínačem nebo několika mikrospínačí zapojenými paralelně (viz. obr. 1). Obvodem je vyhodnocována doba stisku mikrospínače a podle tohoto vyhodnocení se integrovaný obvod chová. Pokud je mikrospínač stiskvání se také obvod SLB 0587 chová. Vše je znázorněno na obr. 3. V prvním grafu (jumper spojen A a B) je po aktivaci nastaveno maximum hodnoty nastavení (řízení začíná na minimu). Směr řízení je reverzní s opakovanou dlouhou aktivací. V druhém grafu (jumper spojen B a C) je při zapnutí nastavena maximální hladina a směr řízení není reverzní (viz. jedenáctá sekunda grafu). V posledním grafu (jumper nezapojen) je při vypnutí nastavená intenzita uložena do paměti a po

Obr. 3. Zobrazení změn přepnutím jumperu

nut jen po krátkou dobu (od 50 do 400 ms), pracuje jako běžný tlačítkový vypínač s pomalým náběhem. Obvod reaguje ihned po ukončení dotyku. Po delším stisku pracuje obvod jako regulátor a úhel otevření triaku se mění od menšího jasu do většího a zpět. Délka celého cyklu je asi 7,6 s. Po uvolnění mikrospínače zůstane obvod na zvolené hodnotě. Tento obvod může být předprogramován pomocí jumperu (přepínací spojka). Podle tohoto předprogramo-

opětovném zapnutí je z této paměti vyvolána a nastavena. Řízení začíná od této přednastavené hodnoty a směr řízení je reverzní s opakovanou dlouhou aktivací.

V grafu je ve stupních znázorněna změna úhlu otevření triaku v závislosti na aktivaci senzoru a čase. Pokud bychom chtěli regulátor ovládat z několika míst, můžeme zapojit několik mikrospínačů paralelně. Potom se obvod bude chovat jako schodišťový vypínač s možností regulace.

Tlumivka Ll má funkci odrušovače. Obvod je navržen na zátěž

Obr. 4. Deska s plošnými spoji síťového regulátoru a rozložení součástek

400 W a na odrušení fázově regulované zátěže, (jako je např. žárovka) podle české normy na mez 2, (to je bytové použití), je zapotřebí tlumivka · s indukčností asi 5 mH. Použitý triak a tlumivka jsou dimenzovány pro výkon do 400 W. Triak má určitou výkonovou rezervu, aby nebylo nutné použít chladič. Integrovaný obvod SLB 0587 je napájen stejnosměrným napětím asi 5 V. Aby nebylo nutno k napájení integrovaného obvodu použít transformátor, je zde použit tzv. srážecí kondenzátor o kapacitě 100 nF (pro dané zatížení musí být hodnota kondenzátoru přesně spočítána) a rezistory R1

tegrovaného obvodu použít transformátor, je zde použit tzv. srážecí kondenzátor o kapacitě 100 nF (pro dané zatížení musí být hodnota kondenzátoru přesně spočítána) a rezistory R1 a R2 zapojené paralelně (aby nemusel být použit rezistor pro zatížení 0,5 W). Této vlastnosti kondenzátoru lze využít k napájení obvodů s maximálním odběrem asi do 50 mA. Kondenzátor C2 musí být dimenzován na střídavé napětí 250 V nebo alespoň 630 V stejnosměrných. Hodnota srážecího kondenzátoru musí být vypočtena pro konkrétní hodnoty napětí a proudu. Napětí za kondenzátorem C2 je dále usměrněno diodou D2 a stabilizováno diodou D3. Rezistor R4 slouží jako srážecí rezistor.

Oživení přístroje

Při osazování desky s plošnými spoji předepsanými součástkami pájíme podle osazovacího plánu na

SEZNAM SOUČÁSTEK	
R1 2 kΩ/ 0,5 W	j.
R2 2 kΩ/ 0,5 W	1
R3	
R4	2
R5	
R6	
R7	
R8	
C1, C2 100 nF/ svitkový/ 250 V~	
C3 6,8 nF/ fóliovy	
C4 100 μF/ 20 \	
C5, C6 100 nF/ keramick	
L1 (viz. text) + úchytka	
D1, D2	
D3	
TC1 TIC 236 / BT 136 - 9	
. 이 아픈 일반 아니는 아이는 그리는 아이는 아이는 아이는 아이를 다 가지 않는데 아이를 다 하는데 아이를 하는데 하는데 아이를 다 되었다.	
101	
Po F 2 A poj. přístr. + 2 svorky	
TI mikrospínad	
jumper 3 kolíky	y
zkratovací spojka	
konektor ARK 210 / 3	3

obrázku č. 4. jako první rezistory, kondenzátory, cívku a nakonec integrovaný obvod. Abychom dodrželi bezpečnost práce spojenou s oživováním přístrojů, které jsou spojeny přímo se síťovým napětím, musíme zapojit desku přes oddělovací transformátor. Po osazení desky pečlivě zkontrolujeme, zda jsme neudělali nějakou chybu - důležitá je hlavně polarita diod a elektrolytického kondenzátoru C4. Poté připojíme k regulátoru zátěž do 400 W (při oživování je vhodné použít menší zátěž např. jen jednu žárovku a až po oživení připojit zátěž kompletní) podle obrázku č. 1. a na takto sestavený obvod připojíme přes oddělovací transformátor síťové napětí 220 V/50 Hz. Potom zkontrolujeme, jestli je na Zenerově diodě napětí asi 5,6 V. Je-li tomu tak, je napájecí napětí pro integrovaný obvod v pořádku. Pokud se přeruší pojistka, může závadu způsobovat zkrat nebo příliš velká zátěž. Zařízení je poměrně jednoduché a proto by mělo fungovat na první zapojení. Oživení přístroje by nemělo činit velké problémy ani začátečníkovi.

Popis konstrukce

Všechny součástky včetně mikrospínače jsou umístěny na plošném spoji o rozměrech 52 x 65 mm. Obrazec plošných spojů a rozmístění součástek jsou na obrázku č. 4. Mikrospínač Tl a jumper jsou pájeny ze strany plošného spoje. Odrušovací tlumivka L1 je k plošnému spoji připevněna příchytkou. Po utažení její zbytek odstřihněte. Vzhledem k tomu, že použitý triak je dimenzován na proud asi 12 A a při plném zatížení reguluje proud do 2 A, není nutno jej chladit. V plošném spoji jsou vyvrtány dvě díry, které slouží k upevnění plošného spoje do pouzdra pro vypínač pomocí dvou distančních sloupků. V přístroji je umístěna sítová pojistka, která chrání regulátor před náhlým zvýšením odebíraného proudu zátěží. Síťový regulátor je přímo spojen se síťovým napětím. Věnujte proto velkou pozornost mechanické konstrukci a instalaci zařízení tak, aby vyhovovalo bezpečnostním předpisům.

Stavebnice i osazené moduly regulátoru dodává:

FANDA elektronik s.r.o Těrlická 475/22, 735 35 Horní Suchá

Brána jazyků pootevřena

J. A. Komenský by měl z naší doby jistě radost. Nejen, že vědomostí je možné získávat snadno a vcelku "hravým" způsobem na Internetu, ale už začal útok i na jazykové bariéry. Společnost DEC (Digital Equipment Corporation) oznámila, že na vyhledávacím serveru Alta Vista Search lze, prostřednictvím překladatelské služby poskytované bezplatně, získat překlad z angličtiny pro většinu stránek World Wide Web. Pro nás bohužel, pouze do němčiny, francouzštiny, italštiny, španělštiny a portugalštiny. Ale kdožví, možná se časem dočkáme překladatelské služby rovněž do češtiny. A snad dokonce i zdarma.

-aba-

Plagiáty konečně bez námahy

Pro většinu soukromých "computerholiků" je zlým snem papír potištěný cennými informacemi. Chtějí-li je využívat v přímé podobě jako citace, grafy, tabulky, vyobrazení, většině většinou nezbývá, než je opisovat či překreslovat ručně, což je únavné a pracné. Anebo se jich vzdát, což je skličující. Solidní stolní skener je totiž stále ještě záležitostí dostupnou pro firmy, ale nikoli pro souktomé osoby, zvláště nemohou-li výdaj uplatnit jako daňově odečítatelný náklad. Tato nepříznivá okolnost se však vbrzku nepochybně změní, neboť Hewlet-Packard oznámil, že v dubnu dá na trh nový HP ScanJet 5100C v ceně okolo

13 000,- Kč, založený na technologii IST (Inteligent Scanning Technology). Nový skener sám nastavuje parametry pro snímání textu, grafiky i fotografií, takže se zachovávají i formátovací charakteristiky původního dokumentu. Příjemná je rovněž rychlost skenování; textová stránka je např. do Wordu převedena do 5 minut, což je nejméně dvojnásobná rychlost ve srovnání s výkonnou písařkou a šestinásobná ve srovnání s jinými obdobnými skenery. HP ScanJet 5100C se připojuje k počítači paralelním portem a bude k dispozici s ovladači pro Windows 95 a Windows NT.

-aba-

Krást a bát se

Nebát se a nekrást říkával T. G. Masaryk. Většina z nás se stále ještě bojí nahlas projevit svůj názor či postoj, zejména pokud jde o šikanu ze strany státních byrokratů a nekvalitu služeb či výrobků četných podnikatelských "rychlokvašek". A krademe, neboť krást je v CR "in" a heslo z éry socialismu "Kdo nekrade, okrádá rodinu" jako by stále ještě platilo. Zvlášť vydatně se u nás krade ve fondech z kupónové šarády a v oblasti software. Odhaduje se, že až 80 % SW je na počítačích v CR používáno nelegálně. Podle údajů ministerstva vnitra je např, na cca 750 000 PC používáno pouze asi 120 000 textových editorů, rozumí se legálně. Nicméně éra volného zneužívání autorských práv se začíná uzavírat. V síti lovců nelegálních uživatelů SW už uvízly i soukromé

osoby. A nejen uvízly. Mladík z Příbrami byl za nelegální používání SW v hodnotě cca 50 000,- Kč odsouzený Okresním soudem k propadnutí věci (počítače) v hodnotě 30 000,- Kč. A to mohl být odsouzený až na 5 let odnětí svobody.

Podle údajů BSA (Business Software Aliance), společnosti pro odhalování nelegálního používání software, bylo u nás v r. 1997 v oblasti SW spácháno téměř 300 trestných činů, přičemž "hodnota" činů dosáhla výše téměř 3 mil. Kč.

Kdo tedy krade SW má se čeho bát a může se mu snadno stát, že nakonec okrade vlastní rodinu, takže mu potom do státního zařízení ani buchty nosit nebude, aby se "odškodnila".

-aba-

Batest SMD

FANDA elektronik s.r.o.

Obr. 1. Schéma zapojení testeru autobaterie

Tento malý přístroj je určen do automobilu ke kontrole napětí v palubní síti pomocí tří barevných LED diod - červená indikuje nízké napětí, zelená správné a žlutá indikuje přepětí. Díky této indikaci je možné včas odhalit závadu v elektroinstalaci vozidla. Jednotlivé úrovně napětí je možné jednoduše nastavit dvěma trimry. Zařízení vyniká svými miniaturními rozměry 18 x 27 mm díky použití součástek SMD. Batest odebírá proud do 25 mA.

Popis funkce

V zapojení je použitý číslicový integrovaný obvod 7400 obsahující čtyři

Obr. 2. Deska s plošnými spoji

hradla NAND. Protože tento obvod je napájen napětím 5 V, je nutné stabilizovat napětí 12 V z auta na 5 V pomocí R1 a D4. Dvě hradla z IO1 jsou zapojena jako komparátory na výstupy děličů sestavených z rezistorů R5, R6 a trimrů P1 a P2. Těmito děliči se nastavují napětí pro indikaci podpětí (R6, P2) a přepětí (R5, P1). Pokud je napětí menší než dolní hranice nastavená trimrem P2 (na běžci P2 je napětí menší než cca 2,4V), na výstupu hradla H1 je log. 1, na výstupu hradla H2 je log. 0, LED

tedy 'svítí. D1Když se napětí zvýší nad dolní hranici, ale je menší než horní hranice nastavená trimrem Pl (na běžci Pl opět cca 2,4 V), na výstupu H2 je log. 1, na výstupu H3 je také log. 1, to znamená, že na výstupu H4 bude log. 0 a rozsvítí se LED D2. Jestliže

se napětí zvýší nad horní hranici, na výstupu H3 se objeví log. 0, rozsvítí se LED D3. Logické úrovni 0 odpovídá napětí 0 až 0,8 V, úrovni 1 odpovídá napětí 2,4 až 5 V.

Konstrukce, oživení

Pro sestavení batestu budeme nutně potřebovat mikropájku, protože ve stavebnici jsou použity součástky SMD, oproti kterým je hrot trafopájky příliš velký. Součástky osazujeme podle plánku, dáváme velký pozor, abychom některé nevyměnili nebo neotočili - součástky jdou bez poškození spoje odletovat velmi obtížně. Při letování postupujeme tak, že si nejprve na jednu pájecí plošku naneseme trochu cínu, přitiskneme součástku přesně na místo (nejlépe pinzetou), hrotem mik- + ropájky zahřejeme nanesený cín tak, aby se chytil na součástku. Potom již jen přikládáme mikropájku a cín ke zbývajícím vývodům součástky tak, aby se cín dokonale rozlil mezi pájecí ploškou a vývodem součástky. Pozor na množství cínu - větší množství cínu než je třeba se velice rychle spojí se sousední ploškou.

K oživení batestu budeme potřebovat regulovatelný zdroj napětí (postačí od 12 V do 17 V) a voltmetr. Nejprve nastavíme oba trimry do poloviny odporové dráhy, zdroj nastavíme přibližně na 12 V a připojíme batest, měla by se rozsvítit nějaká dioda. Zdroj pomocí voltmetru nastavíme na 12,5 V, což je dolní hranice napětí. Trimr P2 nastavíme tak, aby se právě rozsvítila zelená dioda D2. Pokud svítí žlutá dioda D1 pootočíme trimrem P1, aby zhasla.

Jestliže napětí zmenšíme pod tuto hodnotu napětí, zelená dioda zhasne a rozsvítí se červená dioda D3. Potom zdroj nastavíme na 15 V, a trimrem otáčíme, aby se právě rozsvítila žlutá dioda D1. Když napětí snížíme, rozsvítí se zelená dioda D2.

Pokud máme nastavená tato dvě napětí, můžeme přístroj zabudovat do auta. Plošku označenou "-" spojíme s kostrou automobilu a plošku označenou "+" spojíme s plus pólem baterie, ale až za spínací skříňkou aby byl batest zapnutý jen při provozu.

Když zapneme klíček, rozsvítí se červená dioda. Při nastartování motoru by měla zhasnout a rozsvítit se zelená. Pokud stále svítí červená i při zvýšených otáčkách motoru, znamená to špatnou funkci regulátoru napětí. Červená dioda se může rozsvítit při zapnutí světel a nižších otáčkách motoru. Pokud se rozsvítí žlutá dioda, znamená to závadu na regulátoru napětí.

Stavebnice Batestu a oživené moduly dodává FANDA elektronik.

Obr. 3. Rozložení součástek

SEZNAM SOUČÁSTEK

	R1 270 Ω/ SMD
	R2, R3, R4 470 Ω/ SMD
	R6 1,2 kΩ/ SMD
	R5 2,2 kΩ/ SMD
	P1,P2 470 Ω/ trimr SMD
	D5 1N4148 / SMD
	D1 LED žlutá
	D2 LED zelená
	D3 LED červená
**	D4ZD 5V1 / SMD
	101 7400 (LS, HC, ap.) / SMD

Palubní počítač

Roman Pilný

Palubní počítač, určený pro automobily, poskytuje uživateli třináct funkcí, které jej informují o okamžité a průměrné spotřebě paliva, o celkově spotřebovaném množství paliva od určitého okamžiku a o jeho zůstatku v nádrži, o okamžité rychlosti vozidla, ujeté dráze, času jízdy a hodinovém čase; další funkce jsou podpůrného charakteru, tj. zpřesňují např. odhad času potřebného k dosažení cíle jízdy apod. Informační funkce palubního počítače je zaměřena na ekonomii provozu vozidla; vzhledem k použitým čidlům pro zjišťování určujících parametrů jízdy může být palubní počítač namontován do libovolného vozu.

Základní technické údaje

Napájení: 7,5 až 24 V (z akumulá-

toru vozu)

Odběr: provozní: 280 mA

klidový: 80 mA

Rozměry: 140 x 150 x 60 mm Hmotnost: cca 1 kg Displej: čtyřmístný, LED Ovládání: . šestitlačítková klávesnice

Mikroprocesor: 8749HD.

Blok CPU

Popis zapojení

Blokové schéma palubního počítače zapojení je na obr. 1.

Celkové elektrické schéma zapojení je na obr. 2.

Základem celého zařízení je blok CPU, tvořený jednočipovým mikroprocesorem 8749HD, který zajišťuje řízení všech napojených periferií. Použitý typ mikroprocesoru sdružuje na jediném čipu oscilační i hodinové obvody, CPU, časovač nebo čítač vnějších událostí, jednoúrovňovou přerušovací logiku se dvěma druhy maskovatelných přerušení, paměť RAM o rozsahu 64 bytů a paměť programu typu EPROM o rozsahu 2 kB. Řídicí program má velikost 2044 B.

Mikroprocesor je buzený křemíkovým krystalem o frekvenci 6 Mhz. Tuto frekvenci je třeba dodržet, nemá-li řídicí program pracovat s nekorektními vstupními daty, neboť impulzy od čidel by byly načítány po jinou dobu.

K okolí je mikroprocesor připojený 3 osmibitovými porty. Port P0 je

naprogramovaný jako výstupní, přičemž jeho nižší bity P0.0 až P0.3 slouží jako sběrnice displeje, vyšší bity P0.4 až P0.7 obstarávají zápisové impulzy jednotlivých řádů pro vyrovnávací paměti BCD dekodérů displeje. Rovněž port P2 je naprogramován jako výstupní, přičemž jeho čtyři nižší bity nesou informaci o právě aktivní funkci a jsou připojeny na dvojici dekodérů 1 z 8, které zajišťují rozsvícení jedné ze čtrnácti LED funkcí. Piny P2.4 a P2.5 zajišřují přes budicí tranzistory T1 a T2 ovládání desetinných teček pro řády desítek a stovek, piny P2.6 a P2.7 zajišťují vysílání mazacích impulzů (přechod L-H-L) pro klopné obvody 4013/1 a 4013/2 po obsloužení přerušení od čidel dráhy a průtoku. Port Pl je naprogramován tak, že piny P1.0 až P1.6 jsou vstupní od bloku ovládání, kdežto pin P1.7 je výstupní. Piny P1.0 až P1.2 snímají stav kláves NEXT FUNCTION, EDIT a CLEAR, piny P1.3 až P1.6 snímají stav kláves předvolené maximální povolené rychlosti. Pin P1.7 řídí stav akustického výstupu tím, že úroveň L blokuje rozkmitání multivibrátoru a udržuje tím akustický výstup neaktivní.

Obr. 1. Blokové schéma zapojení palubního počítače

Obr. 2. Schéma zapojení palubního počítače

Blok napájení

Obsahuje jediné napájecí napětí 12 V z akumulátoru vozu, které je v monolitickém stabilizátoru 7805 s maximálním výstupním proudem 1 A stabilizováno na 5 V, což je společné napájecí napětí všech částí počítače.

Jako ochrana pro případ přepólování zdroje slouží dioda Dl, která musí být Schottkyho typu, aby na ní nedocházelo k velkým úbytkům napětí. Zapojení kondenzátorů C14 a C15 je doporučeno výrobci obvodů 7805. Kondenzátor C1 filtruje napětí v případě jeho kolísání a při špičkách a kapacity kondenzátorů C1 a C3 zajišťují překonání proudového nárazu při zapojení napájení do periferií a s tím spojeného krátkého poklesu napětí na výstupu stabilizátoru, který by měl za následek reset mikroprocesoru.

Aby nedošlo k "zapomenutí" všech hodnot uložených v RAM mikroprocesoru jsou blok CPU, vstupní blok a blok zjištění stavu, napájeny trvale, kdežto bloky displeje, ovládání, akustické signalizace a optické indikace zvolené funkce jsou napájeny přes spínač S1. Je-li spínač S1 rozpojený, mikroprocesor přejde do programu obsluhy přerušení, kdy pouze načítá čas a vyčkává na opětovné sepnutí S1. Zařízení má proto v klidu odběr pouhých 80 mA, na rozdíl od provozních 280 mA.

Vstupní blok

Snímá impulzy z průtokoměru a čidla dráhy a připravuje je ke zpracování mikroprocesorem. Čidla jsou proti záporným přepětím chráněna diodami D30 a D31, kdežto kondenzátory C8 a C9 integrují možné krátké napěřové špičky a falešné signály, které se na vedení od čidel mohou vyskytnout. Vstupní impulzy jsou tvarovány Schmidtovými klopnými obvody a přes rezistory R58 a R60, které zajišťují převod úrovně TTL na úroveň CMOS, jsou vedeny na hodinové vstupy klopných obvodů typu D.

Mikroprocesor 8749 má jen jeden přerušovací vstup a proto musí být výběr zdroje dat řešen programově. Pro tento účel jsou využity testovatelné piny T0 a T1.

Datové vstupy obou klopných obvodů jsou přivedeny na logickou úroveň L a po zapnutí počítače jsou klopné obvody inicializovány tak, že

jejich výstupy Q jsou ve stavu H. Protože napájení počítače je zapnuto a na výstupu Schmidtova invertoru 103/1 je napětí cca 4,5 V, nalézá se výstup druhého Schmidtova invertoru IO3/2 (v bloku zjištění stavu) rovněž ve stavu H. Všechny požadavky jsou sloučeny diodovou logikou, proto za tohoto stavu vstup přerušení \INT mikroprocesoru je v úrovni H a přerušení je neaktivní. Přijde-li nyní impulz na hodinový vstup obvodu 4013/1, je jeho výstup Q nastavený do L a tento stav je přenesený na vstup INT. Mikroprocesor ihned přechází do programu obsluhy přerušení. Druhý klopný obvod zůstává nastavený a na vstupu T1 je proto úroveň L, zatímco výstup \Q obvodu 4013/1 se dostal vstupním impulzem do úrovně H, a tento stav je přivedený na vstup T0 mikroprocesoru. Obslužný program přerušení rozpozná podle úrovně H na vstupu T0 a úrovně L na vstupu T1, že je požadováno přerušení od čidla dráhy. Na závěr obsluhy přerušení je prostřednictvím výstupu P2.6 vyslán impulz na vstup S klopného obvodu 4013/1, čímž je výstup obvodu 4013/1 opět uvedený do stavu H a obvod je připravený na vstup dalšího impulzu.

Je-li požadováno přerušení od průtokoměru, nastává obdobný proces s obvodem 4013/2. Opět je vyvoláno přerušení, avšak obslužný program v tomto případě rozpozná úroveň L na vstupu T0 a úroveň H na vstupu T1, takže je indikováno přerušení od průtokoměru. Na závěr obsluhy přerušení je v tomto případě vyslán prostřednictvím výstupu P2.7 impulz na vstup S klopného obvodu 4013/2, který jej uvede do výchozího stavu, ve kterém čeká na vstup dalšího impulzu od průtokoměru.

Pokud je palubní počítač vypnutý, napětí na vstupu Schmidtova klopného obvodu IO3/1 v bloku zjištění stavu poklasne na nulu. Podobně se dostane do stavu L výstup Schmidtova klopného obvodu IO3/2 a tento stav je přivedený na vstup \INT, kde vyvolá přerušení. Při obsluze tohoto přerušení je však na vstupech T0 a T1 rozlišena úroveň L, protože výstupy klopných obvodů 4013/1 a 4013/2 zůstávají nastaveny a jejich vstupy čekají na další impulzy od čidel. Toto nastavení vstupů T0 a T1 proto indikuje přechod počítače do klidového stavu; mikroprocesor uloží do paměti RAM důležité hodnoty, načítá pouze čas a čeká, dokud opět není připojeno napájení

k blokům klávesnice a displeje. Vstup INT se znovu dostane do stavu H, obslužný program přerušení je ukončený a nastává návrat do hlavního programu. Klopné obvody 4013/1 a 4013/2 jsou však napájeny i v neaktivním režimu a pokud by v tomto stavu přišly impulzy od čidel, nastavily by výstupy 4013/1 a 4013/2 do stavu L, čímž by se na vstup \INT nedostala úroveň H ani po přivedení napájecího napětí do periferií. Proto během čekání na opětovné zapnutí napájení jsou přibližně 50x za sekundu vysílány mazací impulzy na vstupy S klopných obvodů 4013/1 a 4013/2, které zajišťují, že zapnutí napájení do periferií vyvolá návrat vstupu \INT do stavu H a tím i ukončení přerušovací sekvence.

Blok ovládání

Je tvořený 7 tlačítky a napojenou logikou, která obstarává odrušení zákmitů tlačítek a výběr jednoho ze čtyř rychlostních rozsahů (40, 50, 90, 130 km/hod), včetně indikace zvolené rychlosti svitem LED, zabudované do příslušné klávesy. Ovládací tlačítka Next function, Clear a Edit jsou na sobě nezávislá a každé z nich je připojené na samostatný monostabilní klopný obvod, jehož výstup je přivedený na příslušný pin portu P1.

Tlačítka zvolené maximální rychlosti jsou připojena k nastavovacím vstupům klopných obvodů typu D. Zapojení je provedeno tak, že nastavení výstupu jednoho klopného obvodu vede k vynulování zbývajících tří klopných obvodů, čímž je zajištěno, že vždy je vybrána pouze jedna maximální rychlost. Ke sloučení nulovacích požadavků slouží diodová logika; výstupy klopných obvodů jsou přivedeny k pinům P1.3 až P1.6 portu P1 a současně jsou přes omezovací odpory zapojeny k LED diodám zabudovaným do tlačítek, které zajišťují optickou indikaci zvoleného rychlostního pásma. Kondenzátor C7 slouží k implicitnímu nastavení rychlostního pásma 50 km/hod po zapnutí přístroje.

Blok displeje

Je tvořený dvojicí dvou sedmisegmentových zobrazovačů a čtveřicí registrů/dekodérů 4543. Dekodéry 4543 slouží k zobrazení číslic 0 až 9, přičemž pro vstupní binární kombi-

Interkom

FANDA elektronik s.r.o.

Popis funkce

Pokud není stlačeno ani jedno tlačítko, je napájecí napětí odpojené a vedení je připojené k reproduktoru, je tedy možné poslouchat signál druhé stanice. Při stlačení přepínače A se připojí napájecí napětí k mikrofonu, předzesilovači a ke koncovému zesilovači. Současně se výstup zesilovače připojí k vedení, je tedy možné mluvit. V zapojení je použitý elektretový mikrofon, který v sobě obsahuje předzesilovač. Signál z mikrofonu je dále veden přes trimr R6 sloužící k nastavení citlivosti k předzesilovači tvořeného tranzistorem pracujícím ve třídě A. Na konci řetězce je výkonový zesilovač LM386, který signál přizpůsobuje na vhodnou velikost pro reproduktor o impedanci 8 Ω. Pokud stiskneme obě tlačítka, napájecí napětí se připojí i k oscilátoru a výstupní tón z oscilátoru se připojí na vstup výkonového zesilovače, z druhé stanice se ozývá pískání. Hlasitost pískání je možné nastavit pomocí trimru R6.

práci je nutné dát pozor na správnou orientaci IO1, LED, elektrolytic-kých kondenzátorů a mikrofonu. Po osazení a pečlivém zkontrolování všech součástek můžeme propojit obě stanice kratší dvojlinkou pro nastavení. Dvojlinku připojíme do děr označených vedení A, vedení B -

Obr. 1. Zapojení obou stanic interkomu

Konstrukce a oživení

Všechny součástky jsou umístěny na desce plošných spojů kromě reproduktoru a zdroje napájecího napětí. Mikrofon je možné v případě potřeby umístit mimo desku a do plošného spoje jej propojit pomocí stíněného kablíku. Při osazování součástek se řídíme podle potisku na desce a podle osazovacího plánu. Při

bod A spojíme s bodem A na druhé stanici, bod B s bodem B. Dále připojíme reproduktory o impedanci 8 Ω do děr označených Re. Nakonec zapojíme zdroje nebo baterie 9 V do děr označených + a -. Potom natočíme oba trimry asi do poloviny dráhy a zkusmo stlačíme obě tlačítka. Musí svítit dioda LED a z druhé stanice se musí ozvat pískání, není-li tomu tak, znovu zkontrolujeme celý obvod.

nace 1010 až 1111 zobrazují prázdný znak. Vstup MODE obvodů 4543 řídí aktivní úroveň vstupů, vstup LD řídí zdroj dat. Pro LD v úrovni H se výstup řídí stavem vstupů A až D, v úrovni L pak stavem čtyřbitového registru. Přechod z H do L ukládá stav vstupů A až D do vnitřního registru. Vstupy A až D jsou postupně propojeny do čtyřbitové sběrnice a připojeny k pinům P0.0 až P0.3 mikroprocesoru. Piny P.04 až P0.7 jsou připojeny k vstupům LD jednotlivých dekodérů. Vstupy LD jsou převážně drženy v úrovni L. Zápis údaje na displej probíhá tak, že nejprve je na sběrnici (P0.0 až P0.3) vyslán kód zobrazovaného znaku a poté je na příslušný vstup LD přivedený krátký zápisový impulz (přechod L-H-L). Tím je kód znaku zapsán do vnitřního registru dekodéru a sběrnice může přejít zpět do neaktivního stavu nebo zajišťovat zápis číslice jiného řádu.

Blok řízení jasu displeje

Reguluje jas displeje prostřednictvím řízení napětí na společných anodách displejových segmentů. Jas je řízený fototranzistorem T4; v zapojení byl použitý typ KP101, avšak ukázalo se, že jeho spektrální charakteristika není nejvhodnější. Tranzistor T5 řídí napětí společných anod displeje a tím i jas displeje. Trim Tr1 slouží k nastavení minimálního svitu za tmy, trimr Tr2 řídí citlivost na vnější osvětlení.

Blok akustické signalizace

Zvukový generátor signálu obdélníkového typu o frekvenci asi 2,5 kHz je tvořený jedním Schmidtovým hradlem NAND, RC členem R75 a C15, budicím tranzistorem T3 a výstupním piezokeramickým měničem Pz. Signalizace je řízena stavem pinu P2.7 mikroprocesoru; přechod pinu do úrovně H spouští generátor, kdežto úroveň L jej blokuje. Zvukový výstup lze odstavit přepínačem S2.

Blok indikace zvolené funkce

Tvoří jej dvojice dekodérů 1 z 8 a 14 LED diod, přičemž vždy svítí pouze jedna. Svit diody prosvětluje piktogram zvolené funkce. LED diody mají čtyři různé barvy podle toho, zda zvolená funkce patří mezi funkce týkající se rychlosti vozu, spotřeby či stavu paliva nebo času.

Blok zjištění stavu

Ve spolupráci se vstupním blokem řídí stav přerušovacího vstupu mikroprocesoru, čímž jej informuje, zda se zařízení nalézá v klidovém či provozním režimu.

Pokračování příště

Jestliže je vše v pořádku, můžeme trimrem R6 nastavit hlasitost pískání na vhodnou velikost. Pak zmačkneme jen krajní tlačítko - dioda LED musí svítit a když budeme mluvit do mikrofonu, na druhé straně musí být slyšet tento signál zesílený, trimrem R8 je možné nastavit optimální hlasitost (při nastavení příliš velké citlivosti se z reproduktoru může ozývat síťový brum). Totéž zopakujeme i pro druhou stanici. Pozor - při zkoušení je nutné obě stanice umístit tak, aby nemohla vzniknout akustická zpětná vazba mezi mikrofonem jedné a reproduktorem druhé stanice. Po nastavení můžeme obě stanice umístit na stanoviště a propojit nejlépe měděnou dvojlinkou.

Obr. 2. Schéma zapojení interkomu

Stavebnice a osazené moduly interkomu dodává: FANDA elektronik s.r.o.

Obr. 4. Příklad vhodného konstrukčního uspořádání interkomu

Obr. 3. Deska s plošnými spoji a rozmístění součástek na desce interkomu

SEZNAM SOUČÁSTEK 100 kΩ R7.....................3,3 kΩ C3,C5,C6,C7.....1 μ F/16 V C8,C9,C12 10 µF/16 V T1,T2,T3.....BC237 101 LM386 MIC MCE100 2 x dvojitý přepínač

Kirchhoffovy zákony

V praxi se jen zřídka setkáváme s jednoduchým elektrickým obvodem, kdy jsou všechny prvky zapojeny za sebou. Konstrukce pro rozmanité funkce jsou téměř výhradně založeny na obvodech s mnoha větvemi, jimiž procházejí různě velké proudy, a mnoha uzly s navzájem různými potenciály. Fungující jednoduchá zapojení s několika málo větvemi a uzly lze sice vytvářet na principu pokusů a omylů (neboli "bastlením"), ale získat takovým postupem kvalitní a spolehlivě pracující složitější zařízení by bylo časově neúměrně náročné.

V první polovině 19. století byly poznatky o průchodu elektrického proudu vodičem na tak nízké úrovni (z dnešního pohledu), že experimentální postupy nevadily, neboť je uplatňovala pouze vědecká obec. Nicméně už v této době formuloval G. R. Kirchhoff zákony, které se staly základem pro sestavování elektrických obvodů na exaktní bázi, tedy na bázi přesných výpočtů, a položil tak základy k teorii obvodů.

Gustav Robert Kirchhoff, německý fyzik, profesor na univerzitě v německém Heidelbergu, se narodil r. 1824 a zemřel r. 1887. Kromě zákonů o proudech v rozvětvených vodičích, nesoucích jeho jméno, které formuloval v roce 1845, formuloval v r. 1859 ještě zákony záření, udávající souvislosti mezi vyzařováním a pohlcováním záření tělesem. Spolu s R. W. Bunsenem, rovněž profesorem heidelberské univerzity, objevil princip spektrální analýzy a s její pomocí i nový chemický prvek cesium, který se tak stal prvým prvkem objeveným novou metodou poznávání složení hmoty. Stojí za zmínku, že to byla právě spektrální analýza, která vedla k velmi významnému poznatku, že vesmír má shodnou základní chemickou stavbu.

Kirchhoffovy zákony jsou dva:

I. Součet proudů vstupujících do kteréhokoli uzlu elektrické sítě je roven nule.

Jinými slovy:

Nemá-li se měnit potenciál v uzlu, musí v každém okamžiku veškerý proud, který do uzlu vtéká, z tohoto uzlu zase odtéct.

Neboli:

$$\Sigma I_n = 0$$

II. Součet svorkových napětí prvků elektrického obvodu v jeho libovolné smyčce je roven nule.

Jinými slovy:

Sečteme-li v uzavřeném elektrickém obvodu v témže oběhovém smyslu (směru) napětí a elektromotorické síly, je výsledek rovný nule.

$$\begin{split} \Sigma U_n &= 0 \\ \text{resp.} \\ \Sigma E_n &= \Sigma R_n I_n. \end{split}$$

Názorně:

však využít pravidla, podle nichž celková hodnota za sebou zapojených odporů je rovna jejich součtu a celková hodnota odporů zapojených vedle sebe je rovna součtu jejich převrácených hodnot, tj. jejich vodivostí. Podle těchto pravidel je tedy možné nahradit ve výše uvedeném schématu odpory R_1 a R_4 mezi uzly AD jedním odporem o velikosti $R_{AD} =$ $(1/R_1) + (1/R_4)$ resp, $R_{AD} =$ $(R_1 + R_4)/R_1R_4$. Podobně platí pro $R_{BC} = (R_3 + R_5)/R_3R_5$.

Odpory spojené týmž uzlem tvoří tzv. odporovou hvězdu, kdežto množina odporů spojujících n uzlů se nazývá odporový n-úhelník, který spojuje n(n-1)/2 odporů. Odporový trojúhelník tedy spojuje 3 odpory, kdežto např. pětiúhelník celkem 10

Pro uzly podle I. Kirchhoffova zákona platí:

- a) pro uzel A: $I_1 = I_2 + I_3$,
- b) pro uzel B: $I_3 = I_4 + I_5$,
- c) pro uzel C: $I_5 = I_6 + I_7$,
- d) pro uzel D: $I_7 = I_1 + I_2$, Pro obvod tvořený uzly ABCD

pak podle II. Kirchhoffova zákona platí:

$$I_2R_4 + I_3R_2 + I_4R_5 = E.$$

Pro výpočet složitých obvodů je nutné sestavit řadu rovnic, což je pracné. K zjednodušení výpočtů lze odporů. Odporovou hvězdu s n odpory je vždy možné nahradit odporovým n-úhelníkem, což lze využívat ke zjednodušování obvodů. Obráceně to však platí pouze pro náhradu odporového trojúhelníku odporovou hvězdou s třemi odpory.

Kirchhoffovy zákony platí pro stejnosměrné i střídavé proudy, ale u časově proměnných proudů pouze za předpokladu, že jejich časové změny probíhají současně v celém obvodu a magnetické toky protékající smyčkami jsou zanedbatelné.

rjk

odporový trojúhelník

Protel Easytrax - program pro návrh desek plošných spojů

Program pro návrh desek plošných spojů Protel Easytrax umožňuje návrh spojů v 1. až 5. konstrukční třídě v 6 signálových vrstvách, návrh nepájivé masky, servisního potisku a pasty pro SMT. Funguje i na počítačích typu PC/XT s monochromatickým monitorem. Pro příjemnou práci je však vhodný alespoň PC/AT 286 a barevný monitor.

Protel Easytrax je volně šiřitelný SW (freeware) americké firmy Protel-Easytrax, sestávající z několika funkčních modulů. Programový modul EASYEDIT je určený pro nekomerční použití při navrhování desek plošných spojů. Neobsahuje však modul kreslení schémat, ani možnost automatického návrhu podle schématu. Výstupy jsou rovněž bez omezení. Umožňuje přepínání evropských a amerických délkových jednotek, tj. mm/inch. Pracovní hladiny jsou:

- 1. horní vrstva,
- 2. první mezivrstva,
- 3. druhá mezivrstva,
- 4. třetí mezivrstva,
- 5. čtvrtá mezivrstva,
- 6. spodní vrstva,
- 7. potisk,
- 8. zemnící vrstva,
- 9. napájecí vrstva,
- 10. obrys desky,
- 11. nepájivá maska.

V modulu EASYPLOT lze vygenerovat výstupy pro:

- CNC vrtačku,
- fotoplotr Gerber,
- osvitové jednotky,
- postscript,
- vektorový plotr HPGL
- různé tiskárny.

Tyto výstupy umožňují vytvořit kvalitní podklady pro výrobu desky.

Pro usnadnění práce uživatelům, kteří neovládají angličtinu, bylo vytvořeno menu v českém jazyku. Je obsaženo v souborech s příponou .mcs (originální menu jsou v souborech .man). Program použije ty soubory, které jsou zkopírovány do souborů s příponou .mnu. Česká verze menu je použita tehdy, kdy jsou do adresáře s nainstalovaným programem EASYTRAX zkopírovány z instalační diskety soubory menu.bat, *.mcs a *.man. České me-

nu obsahuje překlad většiny položek originálního. Avšak pro plné a efektivní využití vlastností programu je lépe pracovat s anglickým menu, které umožňuje používání zkrácených klávesových povelů (hot key) a využívání předdefinovaných maker; samozřejmě lze také vytvářet vlastní makra.

Postup kreslení desky

Návrhový modul se spouští programem EASYEDIT.EXE; modul pro generování výstupů programem EASYPLOT.EXE. Oba programy je možné ovládat pomocí klávesnice i myši. Nejvhodnější je využívání obou možností současně, v závislosti na právě prováděné operaci, ale práce je dostatečně pohodlná i bez myši, zejména při používaní zkrácených povelů. Myš usnadňuje a zejména urychluje výběr prvků nebo pozic na pracovní ploše.

Spuštěním souboru easyedit.exe se otevře volná rastrovaná plocha, do níž se vkládají pájecí plošky, spoje a součástky. Je možné vkládat přímo pájecí plošky a ty pak propojit spojovacími čarami nebo použít prvky z knihovny součástek, které obsahují pájecí plošky součástek ve standardních roztečích, a pak propojovat jednotlivé vývody součástek. Při práci je uživatel ve stavovém řádku na spodním okraji pracovní plochy průběžně informován o souřadnicích polohy kurzoru, aktuální pracovní vrstvě, přednastaveném typu bodu, šířce spoje, velikosti textových znaků a kroku pohybu kurzoru. Základní menu se objeví po stisku klávesy Enter nebo pravého tlačítka myši.

Návrh desky obvykle začneme tím, že z menu volíme Vložit a z dalších nabídek pak vybereme volbu, která nejlépe vyhovuje našemu záměru nebo prvek, který chceme umístit na pracovní plochu: Oblouk použijeme na kruhové spoje, výplň na větší měděné plochy, bod na pájecí plošku, znak na popisy, průchody na prokovené otvory. Při volbě součástky je možné zadat typ vypsáním názvu nebo zadáním znaku "?", který umožní výběr podle výpisu součástek v knihovně. Zvolený

prvek je možné umístit na libovolné místo pracovní plochy resp. desky, a v požadované poloze. Otáčení se provádí mezerníkem, zrcadlové převrácení stiskem klávesy "X" nebo "Y". Po umístění prvků na plochu desky se jednotlivé body a součástky vzájemně propojí pomocí spojů. Po vložení lze každý objekt editovat a měnit jeho velikost i tvar. Součástky, body i spoje je samozřejmě možné kdykoliv smazat, přesunout nebo jakkoliv upravit. Spoje ze strany mědi pokládáme na spodní stranu, spoje ze strany součástek na horní stranu. Přepínání mezi vrstvami se nejlépe provádí klávesami "+" a "-" z numerické klávesnice. Body, které jsou v multivrstvě, se vygenerují na obou stranách desky.

Knihovna součástek umožňuje vypsání seznamu součástek, jež jsou v ní obsaženy, vymazání součástky z knihovny, rozložení zadané součástky na elementární grafické prvky tj. body, čáry (spoje), oblouky, text, a samozřejmě přidání vlastní součástky. Přidávanou součástku je třeba nejprve nakreslit pomocí elementárních prvků, které se označí jako blok a volbou Knihovna - Pridat se po zadání názvu doplní do knihovny. Takto je možné rozšířit knihovnu o všechny součástky, které budeme při návrhu desek používat.

Postup generování výstupů

Spustíme program EASYPLOT. EXE a otevřeme soubor s příslušnou deskou (*.pcb). Poté nastavíme vrstvy určené ke generování a jejich parametry (zda díry do pájecích plošek, zvětšení, nepájivé masky atd.). Dále nastavíme výstupní zařízení (port nebo soubor, kvalita, velikost, posun atd.) a spustíme generování všech požadovaných vrstev. Tyto se ukládají pod jménem původního souboru s odlišnou příponou.

Program Easytrax i další programy firmy Protel najdete na internetové adrese http://www.protel.com. Můžete si jej objednat i u firmy Semach se sídlem ve Valašském Meziříčí, kde získáte i soubory s českým menu (viz inzerát v inzertní příloze).

DVD – nové možnosti optických disků J

Ing. Tomáš Klabal

V poslední době se stále častěji můžeme setkat se zkratkou DVD případně DVD-ROM či DVD-RAM. Co tyto pojmy znamenají?

Systém DVD tj. Digital Versatile Disc neboli digitální vícestranný (ve smyslu univerzální) disk (původně šlo o zkratku Digital Video Disc tedy digitální video disk) je nástupcem kompaktních disků, označovaných zkratkou CD (Compact Disc), který aspiruje stát se základním záznamovým médiem a to nejen ve světě počítačů. Na konferenci o nových přenosových a záznamových mediích konané dne 5. února t.r. v hotelu Hilton Atrium v Praze zazněly z úst některých přednášejících i předpovědi, že DVD by do roku 2002 mohlo CD téměř zcela z trhu vytlačit. I když jde o názor nepochybně polemický, má DVD pro jeho naplnění ty nejlepší předpoklady. O svá cédéčka se ovšem nemusíme bát, protože DVD není novým systémem, ale pouhou razantní inovací, vylepšením současných CD, která v některých směrech novým nárokům na paměťová média už nevyhovují. DVD, které je rozměrově identické s CD (tj. o průměru 12 cm) je vlastně CD druhé generace, a o tom, že na svého staršího bratříčka nijak nežárlí svědčí i skutečnost, že všichni výrobci zatím důsledně dbají, aby se v přehrávačích DVD dala bez problémů přehrávat i standardní CD. Problémy ovšem mohou nastat s CD-R (tedy vypalovanými cédéčky), která mají nižší odrazivost; údajně má jít o snahu znepříjemnit život těm, kteří si na tomto levném médiu pořídili nelegální software. Naproti tomu u přepisovatelných CD-RW údajně žádné problémy nemají vznikat.

DVD disky mají reálnou šanci nahradit v budoucnu i videokazety, proti nimž mají řadu výhod. Ostatně DVD vznikla právě na popud videotrhu.

V čem se tedy DVD od CD liší? V podstatě jde o klasické CD, u něhož je zvýšena hustota záznamu, tedy paměťová kapacita média. Klasické CD je jednostranné a záznam je pouze v jediné vrstvě, což umožňuje uložit až 650 MB dat. DVD existuje v několika variantách a to:

a) data mohou být stejně jako v případě CD zaznamenána jen v jediné vrstvě a na jedné straně disku, ale díky hustšímu ukládání dat než u klasického CD, se na DVD vejde až 4,7 GB, tedy sedminásobek oproti CD;

b) data mohou být ukládána ve dvou vrstvách a jejich čtení se uskutečňuje pouhou změnou zaostření snímacího paprsku tak, aby svrchní vrstvou procházel a odrážel se až od spodní; na dvouvrstvý disk lze uložit až 8,5 GB dat;

c) ani u této kapacity DVD nekončí, neboť může být oboustranné; v případě dvoustranného, dvouvrstvého tak nabízí kapacitu až 17 GB;

d) případ ad a) – c) platí pro nepřepisovatelná DVD, označovaná zkratkou DVD-ROM; v případě přepisovatelných DVD (označovaných jako DVD-RAM) je záznamová kapacita cca 5 GB.

Uvedené záznamové kapacity DVD umožňují uchovat na disku dosud nebývalé množství informací, například celovečerní film. Pro lepší představu o tom, jaké množství textu lze na disk uložit si uveďme malý příklad. Jedna strojopisná stránka velikosti A4 se 30 řádky po 60 úhozech (původní norma CSN pro rukopisy určené k publikování) se základními formátovacími znaky má přibližně 2 kB (např. v textovém editoru T602) - takže na disk s kapacitou 17 GB by se vešlo 8 a půl milionu standardizovaných stránek. Má-li balík 500 archů kancelářského (xeroxového) papíru výšku cca 5 cm, představuje textový záznam na DVD horu papírů vysokou 850 m, tedy nejméně čtyřikrát převyšující Říp, pokud by byla navršena v krajině pod ním. Při ukládání filmů na disk v digitální kvalitě je sice nutné použít ztrátovou komprimaci MPEG-2, ale obraz i pak zůstává v mimořádné kvalitě přesahující možnosti například VHS, nemluvě o tom, že častým přehráváním se na rozdíl od záznamu na magnetických páskách kvalita obrazu ani zvuku nemění. Ke standardu u filmů na DVD patří prostorový zvuk mimořádné kvality nebo několik jazykových verzí, z nichž si divák může vybrat svou nebo jazyk, který umí. Výhodou disku oproti kazetě je také možnost větvení filmu. Zatímco na kazetě běží film od začátku do konce vždy stejně, umožňuje disk aby film připomínal kdysi populární kinoautomat s tím, že divák si může sám rozhodnout, jak se děj bude odvíjet. Jistou limitou je ovšem fakt, že svět je ve sféře audiovizuálních médií rozdělený na pět navzájem záznamově nekompatibilních oblastí, což znamená, že každý přehrávač i disk jsou vybaveny kódem a mohou být tudíž přehrávány pouze v zařízení ze stejné oblasti. Je to samozřejmě opatření proti pirátskému kopírování, ale přináší jistá omezení i pro poctivé uživatele, např. nemožnost přivést si "informační" suvenýr z dovolené v zemi z jiné kódové oblasti. Kromě toho existují ještě dvě zvukové

normy, takže, jak se zdá, svět má k audiovizálnímu sjednocení daleko. Naštěstí se to vše netýká počítačových dat.

Výhoda DVD pro použití s počítačem je zřejmá. Na jediný disk můžeme umístit dosud nevídané množství dat (pro potřeby videa stačí jednostranný jednovrstvý disk). Výhoda DVD pro multimediální aplikace nebo počítačové hry je nasnadě, neboť např. v multimediální encyklopedii na CD nelze uložit delší a kvalitní videosekvence, nemluvě o hrách které zabírají i několik CD. 17 GB kapacity DVD je, alespoň pro současné představy dost, aby vyhověla i nárokům do budoucna. Ovšem totéž se před časem předpokládalo o CD.

Standardní DVD jsou stejně jako CD nepřepisovatelná. Jsou už však k dispozici opakovaně přepisovatelná DVD-RAM. Využívá se přitom toho, že vlivem působení výkonnějšího laserového paprsku záznamový materiál disku přejdé do krystalického stavu a lze jej tedy strukturně ovlivnit. A protože proces je vratný, lze záznamy libovolně a opakovaně měnit. Při běžném čtení, kdy je energie čtecího paprsku snížena, zůstávají data nedotčena. Tento systém existuje i u CD, které pak onačujeme CD-RW (ReWritable - přepisovatelné) nebo též CD-E (Erasible - smazatelné). Pro úplnost ještě uveďme, že vypalovaná CD se označují jako CD-R (Recordable – schopná záznamu).

Jistou slabinou DVD je přenosová rychlost. Současné mechaniky dosahují sice většinou rychlosti 2,7 MB/s, ale slabší je to s přístupovou dobou, která se pohybuje nad 150 ms. Na náhradu klasických harddisků tímto novým médiem si asi budeme muset ještě nějaký čas počkat.

Pokud jde o ceny, dají se mechaniky DVD pro počítač pořídit už pod šest tisíc. Uvážíme-li, že tím vlastně získáme i vysokorychlostní CD přehrávač (DVD mechaniky většinou zvládají 20x nebo 24x rychlostní čtení CD), pak to není tak mnoho.

Máte-li v úmyslu pořídit si novou audio věž s CD přehrávačem, důkladně zvažte, zda by nebylo lepší počkat možná jen půl roku a pořídit si už rovnou přehrávač DVD. Zatím sice nabídka s DVD není příliš bohatá, ale očekává se velmi bouřlivý rozvoj. Podstatné je to, co už bylo řečeno v úvodu: DVD vás neodkazují do nové říše, kde "neviditelná ruka trhu" bude jistě chtivá tučných zisků, ale ponechávají vám možnost kupovat klasická CD, jejichž cena dost možná půjde naopak dolů, a přitom budete mít otevřené dveře do budoucnosti.

IR vysílač

FANDA elektronik s.r.o.

Chceme-li zapínat či vypínat nějaké zařízení (např. elektrické osvětlení), aniž bychom museli vstávat ze svého oblíbeného křesla, můžeme použít dálkové jednopovelové ovládání s infračervenýmí diodami, samozřejmě máme-li vhodný přijímač.

Obr. 1. Blokové zapojení IR vysílače

Vysílač se vyznačuje těmito vlastnostmi: malý počet součástek, jednoduchá stavba, malý odběr proudu ze
zdroje, snadné oživení spočívající
pouze v nastavení frekvence vysílaného kmitočtu, kterou lze nastavit
v rozmezí 10 - 40 kHz. Přijímač
neobsahuje žádné cívky, dosah je až
15 m (při použití čočky se dosah zvýší). Pro napájení je použita běžná
destičková baterie 9 V.

Obr. 2. Průběh napětí na C1 a tvar výstupních impulzů

Popis činnosti

Vysílač je realizován s IO 4011. Tento IO je vyroben technologií CMOS vyznačující se malým odběrem proudu. Obsahuje 4 hradla NAND, zde jsou použita pouze dvě. V klidovém stavu se přes odpor R1 nabíjí kondenzátor Cl; který má velkou kapacitu (lmF). Stlačením tlačítka se náboj z kondenzátoru vybije do obvodu. Oscilátor tvořený dvěma hradly začne kmitat okamžitě po stlačení tlačítka. Impulzy z oscilátoru jsou přes

oddělovací odpor R3 spínány tranzistory T1a T2 v darlingtonově zapojení. Tím také teče proud přes diody D1 až D3.

Trimrem R6 se reguluje kmitočet vysílaných impulzů v rozmezí 10 kHz až 40 kHz. Signál je vysílán IR diodou, to znamená, že je vysíláno světlo v neviditelné části spektra.

Všechny součástky kromě tlačítka jsou umístěny na deśce s plošnými spoji o rozměrech 55 x 65 mm. IR diody jsou umístěny na okraji plošného spoje a podle umístění v krabičce je můžeme opatrně ohnout. Při pájení je třeba dát pozor

Obr. 3. Schéma zapojení IR vysílače

na to, abychom nepřehodili vývody u diod a elektrolytického kondenzátoru. Jinak by stavba neměla působitvětší potíže. Zapojení by mělo pracovat napoprvé, což si můžeme ověřit tak, že napětí přivedeme přímo na odpor R2 a měříme napětí na kolektorech tranzistorů. Po stisknutí Tl by napětí mělo klesnout asi na 3 V. V případě, že máme osciloskop, zkontrolujeme průběh napětí na kolektorech; rozkmit napětí by měl být asi 5 V. Pak připojíme tlačítko a budeme se snažit sladit vysílač s přijímačem pomocí trimru R6.

Stavebnice a osazené moduly dodává FANTA elektronik s.r.o.

Obr. 4. Deska s plošnými spoji a rozmístění součástek na desce IR vysílače.

SEZNAM SC	UČÁSTEK
R1	270 Ω
R2	1,5 Ω/1W
R3,R4,R7	4,7 kΩ
R5	100 kΩ
R6	47 kΩ - trimr
C1	1000 mF/16 V
C2	
D1,D2,D3	Infra LED
	1N4148
T1	
T2	BC338
101	4011
Přepínací tlačítko	
Konektor na baterii	9V

IR přijímač

FANDA elektronik s.r.o.

Obr. 1. Schéma zapojení IR přijímače

Obr. 2. Blokové schéma IR přijímače

IČ - přijímač infračervených paprsků

ZES - zesilovač

PLL - fázový závěs

KO - bistabilní klopný obvod

Relé - spínací prvek

Chceme-li zapínat či vypínat nějaké zařízení (např. el. osvětlení), aniž bychom museli někam chodit, můžeme použít přijímač pro dálkové jednopovelové ovládání s infračervenými diodami, samozřejmě, máme-li vhodný vysílač.

Přijímač se vyznačuje těmito vlastnostmi: snadná stavba, napájení 8 V (jako zdroj napájecího napětí je možné použít obyčejné zvonkové trafo), lze jej ovládat ze vzdálenosti až 15 m (s předřadnou čočkou se tato vzdálenost může ještě zvětšit), je možné spínat zátěž podle relé až 2000 W.

Popis funkce

Přijímač se skládá ze tří částí. Signál z vysílače je přijímán IR diodou BPW34. Tato dioda přijímá světlo v neviditelné části spektra. Tranzistory T1, T2 a T3 signál zesílí a upraví. Diody D2 a D3 pak signál omezují na velikost 500 mV. Integrovaný obvod IO2 (NE567) pracuje jako fázový závěs PLL a dekóduje přicházející signály. Jeho úkolem je generovat výstupní signál, jestliže se na jeho vstup přivede signál, který se nachází v jeho pracovním kmitočtovém rozsahu (střední hodnota tohoto rozsahu se nastavuje trimrem R5).

Pracovní kmitočet je určen externími součástkami. Když je fázový závěs v činnosti, napětí na vývodu č. 8 se prudce zmenší. Tento impulz se používá jako taktovací signál pro časovač IO3 (NE555) zapojený jako bistabilní klopný obvod. KO ovládá relé dvěma stavy zapnuto - vypnuto. Je důležité, aby KO reagoval jen na taktovací impulz, protože řídí relé, které je zdrojem celé řady rušivých impulzů. Dobu, po kterou IO3 reaguje, lze nastavit trimrem R2.

Obr. 3. Deska s plošnými spoji a rozmístění součástek IR přijímače

Světelné relé

FANDA elektronik s.r.o.

Světelné relé je elektronické zařízení, které pomocí čidla snímá intenzitu osvětlení. Při určité hladině osvětlení sepne nebo rozepne výstupní relé. Výstupní relé galvanicky odděluje zátěž podle typu až do výkonu 2,2 kW. Intenzita osvětlení, při kterém relé spíná, je

nastavitelná v širokém rozmezí (cca 0,5 až 60 Lx), což vyhoví pro všechny běžné aplikace.

Relé je vybaveno zpožděním, které ošetří krátkodobé změny osvětlení, jakými jsou například světla projíždějícího automobilu, světlo blesku, či naopak zatmění čidla stínem přelétajícího letadla či ptáků a pod. Toto zpoždění je možno vypojit, což je výhodné zejména při zkoušení a nastavování. Světelné relé je vybaveno indikačními LED diodami, které signalizují přítomnost napájecího napětí a sepnutí výstupního relé.

Obr. 1. Schéma zapojení světelného relé

Konstrukce

Všechny součástky jsou umístěny na desce s plošnými spoji. Je zde umístěno i relé, k jehož vývodům se připojuje ovládané zařízení s příkonem do 400 W. V případě potřeby ovládání výkonnějšího spotřebiče je možné spínat stykač pro větší zátěž a tím ovládat zátěž až do 2 kW (pro síť 220 V). Přijímač je napájen ze zdroje 8 V (např. zvonkový transformátor).

Oživení

Po překontrolování správnosti osazení součástek připojíme napájecí napětí a změříme odběr proudu (měl by být asi 6 mA). Potom umístíme

vysílač a přijímač proti sobě. Po stlačení tlačítka zjistíme pomocí voltmetru prudký pokles napětí na vývodu č. 8 u IO2. Trimrem R5 nastavíme co největší pokles. Pak připojíme k relé zátěž (například žárovku na malé napětí) a oddalujeme vysílač od přijímače. Trimrem R2 nastavíme klopný obvod tak, aby reagoval jen na impulz z fázového závěsu. To poznáme podle zapínání a rozpínání relé. Přijímač zabudujeme podle použití do vhodné krabičky. Přijímací dioda musí být na přední straně a nesmí být ničím zastíněna. Pro zvětšení dosahu vysílače od přijímače použijeme před diodu předřadnou čočku.

Stavebnice a osazené moduly IR přijímače dodává FANDA elektronik.

Obr. 4. Zapojení při slaďování vysílače s přijímačem

SEZNAM SOUČÁSTEK

H1,H3 1 ΚΩ
R10
R2
R4 10 kΩ
R5
R6
R7,R9 4,7 kΩ
R8,R11,R12 2,2 ΜΩ
R13 100 kΩ
C1
C2,C8
C3,C7,C9 10 nF
C4 100 μF
C5 100 nF
C6
C10,C11
C12,C13
D1
D2 až D4 1N4148
D5 až D8 1N4001
101
102 NE567
103 NE555
T1,T3
T2BC251B
Re Relé

Obr. 2. Deska s plošnými spoji a rozložení součástek na desce světelného relé

Popis zapojení a funkce

Zapojení světelného relé se skládá z měřicího můstku, ve kterém je zapojeno snímací čidlo, z vyhodnocovacího obvodu, jehož hlavní částí je integrovaný obvod IO1, z výkonového relé a z napájecího obvodu. Jako snímací čidlo je použit fotorezistor. Závislost odporu fotorezistoru na osvětlení je na obr. 3. Použití fotorezistoru ve světelném relé je dáno tím, že fotorezistor oproti ostatním součástkám vykazuje mnohem vyšší citlivost při nízkém osvětlení.

Obr. 3. Charakteristika závislosti odporu fotorezistoru na intenzitě osvětlení

Potenciometrem P1 se nastavuje citlivost světelného relé. Přiblížíme-li jezdec P1 ke kladnému napětí, světelné relé spíná až při nízké úrovni osvětlení, přiblížíme-li jezdec k nulovému napětí, spíná relé již při vyšší úrovni osvětlení. Napětí na vstupním obvodu vyhodnocuje polovina dvojitého operačního zesilovače IO1, který je zapojen jako komparátor.

Vstup + IO1a je na jezdec P1 připojen přes rezistor R4, který umožňuje přes R5 zavést kladnou zpětnou vazbu. Tato zpětná vazba zlepšuje chování IO1a při pomalých změnách osvětlení. C8 má odrušovací funkci. Uplatňuje se zejména při umístění Rf mimo desku plošných spojů, kdy zamezuje šíření síťového brumu po prodlužovacím kabelu.

Druhá část operačního zesilovače IO1b je také zapojena jako komparátor. IO1b spolu s RC článkem R6, C6 vytváří časové zpoždění. Tuto dobu lze prodloužit zvětšením kapacity C6 nebo zvětšením odporu R6, zpoždění lze vypnout pomocí spojky JMP1. Zpoždění se stávajícími součástkami je několik minut.

111
R2,R3,R8,R11 3,3 kΩ
R4
R5 820 kΩ
R6 470 kΩ
R7
R9 100 kΩ
R10 68 kΩ
R121,2 kΩ
C1
C2,C3,C510 nF
C4
C6 220 μF/15 V
C7,C8
C9 22 μF/15 V
D1-D5
D6červená LED
D7zelená LED
D8,D9
D10
101
102
T1
P1 10 kΩ/LIN
Re 12 V/400 W
Rf WK 650 75
TR1 220 V/18 V-1,6 VA

C6 je připojen kladným pólem na + pól napájecího napětí. Tím je dosaženo toho, že při výpadku sítě a po jejím opětovném připojení dojde k sepnutí relé (je-li tma) až po uplynutí zpoždění. Kdyby byl C6 připojen záporným pólem na 0 V, došlo by ve dne, po zapnutí světelného relé nejprve k sepnutí osvětlení či jiného ovládaného spotřebiče na dobu zpoždění a až pak k jeho vypnutí. To by bylo nežádoucí - nepožadujeme přece aby ve dne svítilo osvětlení. Kondenzátor C7, zapojený paralelně s C6, zajišťuje malé zpoždění výstupního relé, je-li C6 odpojen. Zajišťuje tak ochranu obvodu před nežádoucími zákmity, které mohou vzniknout při překlápění IO1b, nebo při rušivých impulsech v síti a pod.

Výstup IO1b ovládá přes R11, D8 a T1 relé Re1. R11 omezuje proud do báze T1 a spolu s C9 tvoří RC článek, který ošetřuje případné zákmity IO1b rušivá impulzy a pod

IOlb, rušivé impulzy a pod.

Cervená LED D6 indikuje sepnutí relé, zelená LED D7 indikuje připojení napájecího napětí. R12 omezuje proud diodou D7. D5 má ochrannou funkci - potlačuje napěťové špičky vznikající na cívce relé Rel při jeho rozepnutí.

Celé zařízení je napájeno ze sítě 220 V, přes napájecí transformátor Trl. Napětí na výstupu Trl je usměrněno diodami Dl až D4. Cl je filtrační kondenzátor. Napájecí napětí je stabilizováno integrovaným stabilizátorem IO2.

Mechanická konstrukce

Všechny součástky jsou na desce plošného spoje. Fotorezistor, potenciometr a indikační LED je možné umístit i mimo desku. Celou konstrukci je vhodné umístit do krabičky, nejlépe plastové; při tom je třeba mít na paměti, že v přístroji je přítomno síťové napětí a mechanickou konstrukci je proto nutné přizpůsobit tak, aby nemohlo dojít k úrazu elektrickým proudem.

Pokud fotorezistor umistujeme mimo desku, propojíme ho s ní kabelem, nejlépe stíněným. Při instalaci fotorezistoru do vnějšího prostředí je vhodné zabudovat jej do vodotěsného průhledného krytu, případně jej zalít i s přívody epoxidem do pouzdra, například do krátké kovové trubičky. Fotorezistor je třeba umístit tak, aby nebyl ovlivněn pouličním osvětlením nebo přímo vlastním světelným zařízením, které světelné relé zapíná. Z hlediska životnosti fotorezistoru není vhodné, aby na fotorezistor dopadalo přímé sluneční záření. Rf proto směrujeme na opačnou stranu od slunce, tak aby snímal pouze rozptýlené okolní světlo.

Osazení a oživení

Součástky osazujeme klasickým způsobem. Nejprve osazujeme rezistory, kondenzátory, potom polovodičové součástky - diody, tranzistory, integrované obvody. Velké součástky - relé, trafo osadíme naposledy. Rf osadíme až po odzkoušení funkce, viz dále. Všechny součástky osazujeme podle osazovacího plánku, orientujeme se také podle potisku na desce spojů. Zvláště je třeba kontrolovat orientaci integrovaných obvodů, tranzistorů, diod a elektrolytických kondenzátorů.

Před prvním zapnutím znovu zkontrolujeme správnost osazení a kvalitu pájených spojů. spojku JMP1 rozpojíme, Rf nezapojujeme. POZOR!!! v zařízení je síťové napětí na to je třeba neustále pamatovat. Pro zkoušení je vhodné síťovou část (přívodní svorky a primární část transformátoru) chránit před dotykem, například přelepením izolační lepenkou.

Po připojení napájení se rozsvítí zelená i červená LED a sepne relé. Zkratujeme-li svorky pro Rf, musí zhasnout červená LED a rozepnout relé. Pokud tomu tak není, zkontrolujeme znovu pečlivě správnost osazení všech součástek. Správně sestavené světelné relé funguje na první zapojení.

Nyní již připojíme Rf a odzkoušíme správnou funkci jeho postupným zacloňováním. Taktéž odzkoušíme funkci P1. Pozor, při nastavení P1 na minimální citlivost nemusí k sepnutí relé postačovat zaclonění Rf prstem nebo rukou - silné okolní světlo je může prosvítit. Nyní propojíme spojku JMP1 a odzkoušíme činnost zpoždění. To by mělo být zhruba 2 až 3 minuty. První zpoždění je o něco delší, protože kondenzátor C6 byl zcela vybit. Pro změnu při rychlém střídání stavů sepnuto a rozepnuto je zpoždění o něco kratší, protože C6 se nestačí zcela nabít, resp. vybít.

Závěr

Na kontakty výstupního relé Re lze připojit různá elektricky ovládaná zařízení napájená jak stejnosměrným, tak střídavým napětím do hodnoty až 250 V a proudu podle typu až 10 A. Zařízení s vyšší spotřebou připojíme přes další ovládací prvek, jako je stykač či výkonové relé. Použití výstupního relé má výhodu jednak v galvanickém oddělení zátěže, jednak dává možnost inverzní funkce - přepínací kontakt zapne zátěž při vyšším osvětlení. Světelné relé nalezne nejčastěji uplatnění při spínání nočního osvětlení, reklam či výloh a jistě i v mnoha dalších aplikacích.

Stavebnice a osazené moduly světelného relé dodává FANDA elektronik.

Pracovní příležitost, anebo i vykročení k průlomu?

Že pojem "český počítačový průmysl" má příchuť UFO (rozuměj Unidentified Fabric Objects, tj. v tuzemsku neznámých továrních objektů) je všeobecně známo. Nyní však v Rudné u Prahy vyrůstá na zelené louce objekt, který bude

montážním závodem tchajwanské firmy First International Computer, v němž najde práci asi 150 lidí a kde budou montovány z dovážených komponent počítače. Na domácí trh půjde jen asi 5 % produkce, která má dosahovat koncem roku 1998 cca

50 000 počítačů měsíčně. Jistě to není žádná náplast na bolístku z kolapsu jednání s Intelem o vybudování moderního závodu na výrobu čipů, tedy se špičkovou technologií, ale konec konců malé ryby také nasytí.

-aba

O bateriích, článcích a akumulátorech

Ondřej Lukavský

Baterie

je účelné seskupení stejných předmětů (nejčastěji raket, či děl, nebo elektrochemických článků). Jeden článek není baterie, ani kdyby to říkala maminka.

Články

Elektrochemické články se dělí na primární, (po spotřebování chemické energie se článek zahodí) a sekundární (akumulátory), které lze znovu nabíjet a používat. Většinu primárních článků je ve skutečnosti možno regenerovat opatrným dobíjením ne zcela vybitého článku, a zvýšit tak jejich životnost na několikanásobek, vyžaduje to však dobrou znalost věci a výrobci to, pro nebezpečí exploze nabíjeného článku, obvykle nedoporučují.

Nejobvyklejší primární články jsou zinko-uhlíkové. (Laclanchéovy) s kyselým elektrolytem, alkalické - varianta se zásaditým elektrolytem, která má výhodnější vlastnosti (větší kapacitu a podstatně delší skladovatelnost, resp. životnost při malých vybíjecích proudech). Oba předchozí články mají napětí 1.5 V. Lithiové články snáší jen malé vybíjecí proudy, mají však malé rozměry, velkou kapacitu, napětí 3 V na článek a skladovatelnost více než deset let. Nevýhodou je vysoká cena. Rtuťové články mají napětí 1.35 V, a nejvýhodnější poměr kapacity k velikosti i při vyšších vybíjecích proudech. Stříbro-zinkové články se používají podobně jako lithiové, ale mají napětí 1.5 V.

Lithiové a stříbrné články se používají ve spotřebičích s extrémně malým odběrem (zálohování MOS pamětí a pod.) pro svou dlouhou životnost. Alkalické články jsou vhodné do hodin, dálkových ovládání a kalkulaček. Rtuťové články se používají skoro výhradně v přístrojích pro nedoslýchavé, uhlíkové články nejčastěji v hračkách, kapesních svítilnách a spotřební elektronice.

Z ekologických i ekonomických důvodů je vhodné nahrazovat primární články sekundárními, vyžaduje to však od uživatele určitou znalost a pečlivost.

Akumulátory

Základním parametrem akumulátoru je (kromě jeho napětí) kapacita. Udává se v Ah (ampérhodina), u malých článků v mAh (miliampérhodina). Kapacita schopnost dodávat po nějakou dobu určitý proud. Zmenšuje se při provozu v nízkých teplotách, a při vybíjení velkými proudy. Zivotností akumulátoru je obvykle míněn počet nabíjecích cyklů, po kterém kapacita klesne na polovinu původní velikosti. Skutečný počet nabíjecích cyklů, dosažený u konkrétního akumulátoru, závisí velmi silně na provozních podmínkách.

Nejlevnější (a takřka nezničitelný) je akumulátor ocelo-niklový s alkalickým elektrolytem (hydroxid draselný). Má napětí pouze 1.25 V na článek a pro nevýhodný poměr váhy a kapacity se užívá jen ve stacionárních zařízeních, pokůd nevadí jeho velký vnitřní odpor. Nejobvyklejší akumulátor je olověný s kapalným elektrolytem (kyselina sírová). Napětí na článek je přibližně 2 V. Spatně snáší hluboké vybití a přebíjení velkými proudy. Ve vybitém stavu nesnese mráz, vyžaduje kontrolu hladiny elektrolytu a periodické dobíjení, není-li používán (samovolně se zcela vybije za několik měsíců a při skladování ve vybitém stavu dochází k sulfataci elektrod a následné ztrátě kapacity). Tam, kde je důležitá schopnost akumulátoru pracovat v libovolné poloze, můžeme použít provedení s elektrolytem ve formě gelu. Má poněkud větší vnitřní odpor a hladinu elektrolytu není nutné kontrolovat.

Moderní zapouzdřené niklokadmiové (dále jen NiCd) akumulátory se sintrovanými elektrodami mají napětí 1.2 V na článek a jsou také poměrně odolné. Na rozdíl od olověných akumulátorů je nejvýhodnější skladovat NiCd vybité (na napětí ca 0,8 V na článek), neboť tak stárnou nejpomaleji. Jejich schopnost snášet přebíjení je závislá na konstrukci článku a trvá jen dokud se nespotřebují látky pohlcující jeho produkty. Přebíjení je nejčastějším důvodem předčasného zničení článku, pracuje-li sám, nebo v krátké baterii. Čím je baterie delší (čím větší je počet článků v baterii), tím větší je nebezpečí přepólování článku při vybíjení. Článek s nejmenší kapacitou (nebo nejméně nabitý) se vybije první a ostatní dodávají proud do zátěže skrz něj, čímž se napětí elektrod v postiženém článku obrátí a dochází k nevratným změnám struktury.

Proto se články do baterií s větším počtem článků než čtyři velmi pečlivě vybírají (obvykle u výrobce). Přes veškerou péči bývá u akumulátorových baterií delších než osm článků pravidelně příčinou zničení postupné přepólování článků a proto nelze použití dlouhých baterií doporučit. Už vůbec se nedoporučuje spojovat do baterie články různě nabité, s různým datem výroby, nebo dokonce různých výrobců. Skoro vždy to má za následek smrt alespoň jednoho z článků. Platí to v plné míře i pro akumulátory niklmetalhydridové, lithiumiontové a ostatní méně obvyklé konstrukce.

Při nákupu článků je dobré si uvědomit, že čím více peněz výrobce vynaloží na reklamu, tím méně mu zbude na kvalitu. Obecně není žádná korelace mezi cenou a kvalitou, levný neznačkový článek může být velmi dobrý, (od firmy, která se snaží prosadit na trhu kvalitou), stejně jako velmi špatný (od firmy, která se snaží na trhu co nejvíc trhnout). A vzhledem k tomu, že obvykle neznáme dobu, ani teplotu skladování kupovaných článků, nelze úplně spolehnout ani na seriózní výrobce. Také nelze brát do úvahy žádné "odborné informace" prodavače v obchodě, jehož jediným zájmem je, abyste u něho utratili co nejvíce peněz, takže vám obvykle doporučí to nejdražší, co má právě na skladě. A tak je pro běžného spotřebitele nákup akumulátoru, zejména NiCd, vždy víceméně sázkou do loterie. Snad jediná rada, platná ostatně nejen pro baterie, je nakupovat obezřetně zejména výrobky, které lze vídat na bilboardech, nebo v televizních reklamách.

AMPIC 2080 - první zkušenosti

Při fotografování prototypu zesilovače pro obálku lednového čísla Amatérského Radia došlo k záhadnému poškození všech integrovaných obvodů řady TC91xx ve vzorku. Nebyl jsem u toho, takže to nedovedu vysvětlit. Měl jsem těch obvodů jen jednu sadu, a protože nerad používám patice, měla za sebou už přibližně desatero pájení, několik zkratů napájecího napětí a mnoho dalších nebezpečných příhod. Už jsem měl dojem, že ty obvody, přesto že jsou CMOS, vydrží opravdu všechno. Teď mám dojem, že vydrží všechno kromě fotografování. Nejhorší na tom je, že po předešlém uveřejnění schematu zmizely ty obvody jak z pultu GM, kde jsem je původně koupil, tak ze všech mě známých prodejen v republice. Více než měsíc trvalo, než jsme sehnali nové, takže vlastně amatéři lační postavit si AMPIC mi nevědomky zabránili v dokončení vývoje. Vzniklé prodlevy jsem sice využil k tomu že jsem ještě jednou, pevně doufám, že už opravdu naposled, trochu učesal spojovou desku, ale bez praktického ověření výsledků to jaksi není ono. Alespoň pro mne ne. V redakci

revoluci [1], mne se to ovšem netýká.

Takže první rada zájemcům o stavbu AMPICu: Nikdy zesilovač nenechávejte fotografovat! Nesnáší to. A snad ještě jedna, poněkud méně aprílová, neuškodí dávat dražší obvody do patic, formovat jim vývody uzeměným nástrojem a při osazování podložit patici proužkem vodivé gumy. A teď

Amatérského Radia došlo sice k tiché,

řekl bych přímo plíživé kontra-

slíbené zkušenosti s oživováním zesilovače AMPIC 2080: nejprve jedno upřesnění ke kapitole "Uvedení do chodu" na dvanácté straně lednového čísla [2]. V předposledním odstavci jsem napsal, že při kontrole stejnosměrné úrovně má být na výstupech všech operačních zesilovačů přibližně nulové napětí. Ve skutečnosti je na výstupu operačních zesilovačů 13A a 13B úmyslně nastaveno několik desítek milivoltů kladného ofsetu, aby následující elektrolyt E110(210) byl správně polarizován. I když se v praxi ukazuje, že elektrolyty (i hliníkové) dlouhodobý provoz bez stejnosměrného předpětí snáší, ba dokonce ani několik milivoltů opačné polarizace nezpůsobí poruchu, je dobrým zvykem navrhovat obvody tak, aby elektrolytické kondenzátory s opačným předpětím nepracovaly. Pro tantalové kondenzátory s kapalným elektrolytem (TC953 a podobné) je správná polarizace dokonce naprosto nezbytná. Tantalové "kapky" s tuhým elektroly-

tem, naproti tomu mohou zcela bez

rizika pracovat s opačnou polarizací až do velikosti jednoho procenta jmenovitého napětí. Pohlédneme-li blíže na schéma linkových výstupních zesilov a č ů (IC19), zjistíme, že i tam provést odobnou úpravu. Tím, že odpory R152 a R252 podstatně zmenšíme, případně nahradíme drátovou propojkou, posune se

stejnosměrné napětí na výstupech 1 a 7 obvodu IC19 přibližně na +10 mV a pokud elektrolyty E111(211) zapájíme do desky tak, aby byly zápornou elektrodou připojeny na konektor, zajistíme jim také alespoň minimální stejnosměrnou polarizaci.

Vyskytne-li se Vám v průběhu

Vyskytne-li se Vám v průběhu oživování nějaký problém, napište mi o něm, nejlépe na adresu: O.Lukavský, Čajkovského 30, 130 00 Praha 3. Sotva asi stihnu odpovídat na všechny dotazy individuálně, ale vyskytne-li se nějaký zajímavý námět, můžeme se k němu ještě na stránkách Amatérského Radia vrátit. V průběhu osazování dalších prototypů jsme už získali řadu zkušeností, z nichž některé vedly dokonce k drobným úpravám zapojení.

První taková úprava se týká nastavování stejnosměrné úrovně mikrofonního předzesilovače. Trimr P1 posouvá výstupní stejnosměrné napětí ve zbytečně velkém rozsahu, což je způsobeno tím, že v jednom z prvních prototypů se na tuto pozici dostaly zesilovače 5532 s extrémně malými vstupními proudy. Pro naprostou většinu obvodů 5532 je výhodnější do zemního přívodu trimru P1 zapojit odpor přibližně 120 kΩ, čímž se rozsah trimru podstatně zmenší a nastavení výstupní stejnosměrné úrovně je pohodlnější. V případě, že by se vyskytl operační zesilovač podobných vlastností jako byl ten v našem prvním prototypu a nebylo možné trimrem nulovou úroveň na výstupu nastavit, můžeme tento odpor dodatečně zmenšit anebo vypustit.

Obr. 1. Upravené (a opravené) schéma tónových korekcí

Kondenzátor 220 nF zapojený z běžce trimru Pl na zem je z cenových důvodů výhodné nahradit tantalovým elektrolytem 1,5 μF/25, zapojeným pochopitelně kladnou svorkou na zem. Šumové vlastnosti předzesilovače to měřitelně nezhorší.

Odpory R10 a R14 až R20 omezují proud svítivými diodami asi na dva miliampéry. Ve vzorku použité diody při tomto proudu svítily dostatečně. Použijete-li diody s menší účinností můžete tyto odpory bez obav zmenšit

Obtíže se sháněním svitkových kondenzátorů v hodnotách z řady E12 mě vedly k úpravě zapojení tónových korekcí (Obr.1), aby bylo možné použít běžnější hodnoty z řady E6. Pokud dostanete svitky 2n7 a 12n můžete použít původní zapojení. Na kondenzátoru C119 (219) se vyřádil redakční šotek: v devátém čísle loňského roku byla ještě správně uvedena kapacita 68nF, v letošním lednovém je všude omylem vytištěno 6n8.

Týž šotek zavinil i to, že ze strany

Obr. 2. Doporučené zapojení odrušovacího členu

třeba i o řád, a zvětšit tak proud diodami až na desetinásobek. Jediný negativní důsledek bude trochu větší výkonová ztráta IC27 a IC28. Nemáte-li to rádi horké, je na desce dost místa na malý chladič. Pokud bude z napětí ±6 V napájen ještě VU-metr a ukazatele nastavené polohy elektronických potenciometrů, budou tyto chladiče už opravdu nezbytné. Výrobní tolerance jsou i u moderních operačních zesilovačů někdy překvapivě velké, zejména, když se jedná o obvody stejného označení, ale od různých výrobců. U některých obvodů TL074 bylo nutné přemostit odpor R134 a R234 kondenzátorem přibližně 27 pF, což lze i na stávající desce snadno provést připájením keramických kondenzátorů k příslušnému odporu ze strany spojů. Stejnou dodatečnou úpravu doporučuji i v okolí integrovaného obvodu IC22, kde je vhodné odpory R157(257) přemostit kondenzátorem 68 pF. Poslední varianta spojové desky (poznáte ji podle toho, že má na spodní straně nápis "Rev. C".) je už upravena tak, aby tyto kondenzátory bylo možné zapájet ze strany součástek. Totéž pochopitelně platí i pro ostatní úpravy.

11 vypadl odstavec s popisem integrovaného obvodu LM3886T: "Byl u nás popsán již několikrát, takže jen stručně k funkci elektronické pojistky. Kromě odolnosti proti zkratu na výstupu chrání obvod i v případě trvalého přetížení. Překročí-li teplota čipu bezpečnou hranici, pojistka odpojí vstupní signál do doby, než se teplota vrátí do stanovených mezí. V praxi k tomu dochází jen v případě plného vybuzení (cca 80 W) harmonickým signálem při provozu do 4Ω zátěže. Hudebním signálem se mi tepelnou pojistku nepodařilo aktivovat ani jednou. Pravda ovšem je, že poslouchám spíš decentní muziku, takže možná budete úspěšnější. Špičkový výkon 135W na kanál udávaný výrobcem se mi také nepodařilo dosáhnout, patrně vyžaduje speciálně upravený napájecí zdroj. S popsaným zdrojem dosahují špičky asi 105 W/4 Ω a 60 W/8 Ω . I to však může být pro některé reproduktory příliš. Vynikající vlastnosti tohoto koncového zesilovače jsou vykoupeny jeho poměrně velkým klidovým odběrem. Není možné ho ani krátce měřit bez chladiče a na chladiči je dost teplý i bez signálu. Integrovaná tepel-

ná pojistka neovládá klidový proud, takže provoz bez chladiče je jedna z mála možností jak jej spolehlivě zničit." Další drobné úpravy na nové spojové desce spočívají ve vynechání odporů R144 a R244, které lze pochopitelně i na původní desce prostě neosadit. Také na odpory R165 a R265 už na noyé desce není místo. Po zkušenostech s osazováním dalších prototypů jsem dospěl k názoru, že jsou nadbytečné. Přestože na desce součástek spíš ubylo, její vnější rozměry jsem nepatrně zvětšil. Tím, že deska v nejhustších místech poněkud prořídla, zlepšily se přeslechy mezi jednotlivými kanály. Ze stejného důvodu jsem poněkud zmenšil šířku některých spojů, a tudíž parazitní kapacity mezi nimi.

Schéma na obr. 2 je doporučené minimální odrušení síťového přívodu. Varistor RV1 není nezbytný, ale doporučuji jeho použití zejména tam, kde v blízkosti jezdí výtah, nebo spíná lednička. Pochopitelně můžete použít hotovou odrušenou síťovou přívodku podobných parametrů, diskrétní řešení je však mnohem levnější a za transformátorem je místa dost. Toroidní trafo použité v prototypu mělo sekundární vinutí 2x24V/3A a 2x11V/0.3A. Potřebná sekundární napětí lze složit i z více kusů menších traf, budou-li však mít jádra EI nebo M, bude nutné mezi trafa a desku umístit stínicí přepážku.

orfal

Literatura

[1] orfal, Revoluce v Amatérském Radiu, AR-97-09, str.6

[2] orfal, AMPIC 2080, AR-98-01, str.3 -

Dálkové ovládání s vyšší bezpečností O

Pavel Meca

Na závěr popisu (en)kodérů a dekodérů firmy HOLTEK je uveden popis dálkového ovládání profesionální kvality.

Popis zapojení

Vysílač - obr.1

obvodem Vysílač je osazen HT12A firmy HOLTEK, což je kodér s délkou slova 2¹², z toho 8 bitů tvoří adresová část a 4 bity tvoří datová část. Adresa je nastavitelná binárně, což znamená 28 (256) kombinací. Datová část je také nastavitelná binárně - 24. Celkem lze tedy dosáhnout teoreticky $.256 \times 16 = 4096$ kombinací. Adresy a data se nastavují pomocí cínových můstků.

Protože se používá infračervený přenos, musí se používat pomocný nosný kmitočet - v našem případě 38 kHz. Tento kmitočet se získává z oscilátoru o kmotočtu 455 kHz s rezonátorem a jeho vydělením 12. Z kodéru jsou přes tranzistory T1 a T2 buzeny vysílací diody LED.

Střední proudový odběr vysílače při vysílání je asi 25 mA s odporem $R1 = 10 \Omega$ as odporem 4,7 Ω asi 40 mA. Odpor 4,7 \O se použije pro případ požadavku většího dosahu. Klidový proud vysílače je menší než $0.5 \mu A$.

K napájení vysílače je použita tužková baterie 6 V, která se běžně používá v dálkových ovladačích. Obvod HT12A má mezní napájecí napětí 5,5 V. Proto je zapojena do série s jeho napájením dioda LED, která je nastaven ve výrobě pro nosný

snižuje napájecí napětí a funguje i jako indikace vysílání. Pokud by se použila k napájení 9 V baterie, pak by se místo propojky na desce spojů zapájela Zenerova dioda D2 5V1. Vysílač bude fungovat správně, ale dioda D1 bude mít menší svit.

Propojkou J1 se volí způsob odezvy sepnutí relé v závislosti na sepnutí tlačítka. Pokud se J1 nepropojí, potom relé po jednom stisku sepne a po druhém rozpojí. V případě zapojení J1, bude relé sepnuté pouze po dobu držení tlačítka. Tato funkce má ještě. jednu zvláštnost. Pokud bude vysílač namířen na přijímač, bude relé sledovat držení tlačítka. Pokud během vysílání namíříme vysílač mimo přijímač a pak tlačítko pustíme, zůstane relé trvale sepnuté. Pak bude funkce tlačítka a relé inverzní. Tzn., že bude relé vypínat po dobu držení tlačítka. Opětným přerušením paprsku při vysílání lze změnit odezvu relé na držení tlačítka.

Příjímač - obr.2

Na vstupu je použitý kompaktní přijímač infračerveného světla IC2 typ TSOP1738 firmy TEMIC, který

Obr. 1. Schéma zapojení vysílače dálkového ovládání

Obr. 2. Schéma zapojení přijímače dálkového ovládání

kmitočet 38 kHz. Je také možno použít přijímač SFH506-38 firmy SIE-MENS, který byl popsán v AR11-12/97. V přijímači je demodulátor, který odstraní nosný kmitočet 38 kHz. Z tohoto přijímače jsou data nejprve invertována jedním hradlem obvodu IC3 a pak vedena do dekodéru IC1 - HT12D. Tento dekodér využívá v obvodu oscilátoru teplotně stabilní odpor R3 s kovovou vrstvou s tolerancí do 1% (pozn.: dle výrobce obvodu HT12D stačí do 5%).

Adresy a data se nastavují pomocí cínových můstků.

Jak bylo uvedeno, popsaný systém umožní nastavit max. 4094 kombinací. Je možno polemizovat o tom, zda je to hodně nebo málo. Jsou samozřejmě systémy s delší délkou slova. Pro snížení možnosti překonání dekodéru postupným zkoušením všech kombinací - tzv. scanování, je použito zapojení, které se používá v podobném provedení u jiných lepších systémů. Tento obvod se nazývá "Anti-Scan". Jeho funkci tvoří 3 hradla obvodu IC3 a součástky kolem nich. Tento obvod má za úkol při prvním pokusu o neoprávněné použití zablokovat na určitou dobu možnost dalšího zkoušení.

Funkce obvodu Anti-Scan

Dekodér HT12D má aktivní data v log.0. Diody D1,D2 a D3 vyhodnocují libovolnou kombinaci dat mimo správného datového výstupu. Log.0 zablokuje přes uvedené diody hradlo IC3B a tím znemožní překlopení obvodu typu D IC4B. Na výstupu hradla IC3B bude log.l a může se nabít kondenzátor C2 přes R2 a D5 invertovaným signálem z IC2. Na výstupu hradla IC3C bude log.0 a ta zablokuje hradlo IC3B. Blokování bude trvat do doby vybití C2 - s uvedenými součástkami to bude asi 15 vteřin. Po tuto dobu není možný příjem povelu jak falešného, tak i správného.

Pokud bychom chtěli prakticky odzkoušet krokování dekodéru, pak při teoretickém počtu pokusů, kdy budeme vycházet např. z 1/2 možných pokusů, tj. asi 2000, budeme potřebovat minimálně 8 hodin na odhalení nastaveného kódu.

Jisliže osoba, snažící se o neoprávněný vstup, neví o časovém blokování, nemá šanci dekodér v přijímači překonat.

Pokud je správný přenos (adresa je stejná na vysílači i přijímači), bude na výstup VT log.1. Platný příjem (VT- Valid Transmision) se vyhodnotí při trojnásobném správném příjmu adresové části vysílaného slova. Tím je zvýšena spolehlivost a odolnost přenosu i proti rušení. Log.1 z VT se přenese přes hradlo IC3B a IC3A na

klopný obvod typu D, ten překlopí a z jeho výstupu je přes tranzistor T6 spínáno výkonové relé.

Log.0 na výstupu IC3B přes diodu D6 vybije kondenzátor C2 a tím se znemožní funkce blokovacího obvodu při správném příjmu.

Každá kladná věc má i svůj zápor. V tomto případě se může někomu jako zápor jevit blokovací obvod. Jeho nevýhodou je to, že zablokuje přijímač i tehdy, pokud budeme vysílat správný kód, ale na hranici dosahu, kdy již na výstupu přijímače IC2 bude nesprávný zkreslený signál. Pak bude tento příjem vyhodnocen jako neoprávněný. V tomto případě musíme počkat již zmíněných asi 15 vteřin - raději déle, a pak se pokusit o nové vysílání z menší vzdálenosti. Proto musíme vysílat z vyzkoušené vzdálenosti. Podobně se spustí blokování při příjmu rušivého signálu. Zde je třeba upozornit, že pokud bude blokovací obvod aktivován a stiskneme tlačítko se správným nastavením, bude se blokovací obvod stále aktivovat. Podobný blokovací obvod mají některé obvody již vestavěn.

Pokud by někomu blokování přijímače nevyhovovalo z uvedených

Obr. 3. Deska s plošnými spoji a rozložení součástek na desce vysílače

důvodů, stačí nezapojit odpor R2. Kondenzátor C4 provede RESET klopného obvodu IC4B po připojení přijímače na napájení.

Na svorky X5 a X6 je možno připojit koncový spínač od ovládaného zařízení. Tento spínač spojením uvedených svorek provede RESET klopného obvodu IC4B, relé odpadne a to odpojí např. motor od ovládání vrat.

Konstrukce

Vysílač je osazen na desce spojů, která je na obr. 3. Jeho konstrukce je velice snadná. Rezonátor je vhodné před zapájením k desce přilepit, protože jeho vývody by se časem ulomily. Na pozici D2 je pro napájení 6 V baterií propojka a s 9 V baterií ZD 5V1.

Přijímač je osazen dle obr. 4. I zde je osazení součástek bez problémů. Indikační diody LED je možno ohnout o 90°. Na desce je také síťový transformátor a relé. Tím je přijímač velice kompaktní. Desku je možno upravit pro jiný typ relé a transformátoru. Na svorky se přivede síťové napájení a připojí se i ovládaný spotřebič.

Nesmí se zapomenout na připojení síťové pojistky do síťového přívodu.

Po osazení desek je třeba nastavit na straně vysílače i přijímače stejné adresy a data pomocí kapky cínu, kterou se přemostí pájecí plošky. U příjímače je třeba propojkou připojit i diodu D2.

Po připojení napájení bude dálkové ovládání ihned funkční. Můžeme

Obr. 4. Deska s plošnými spoji a rozložení součástek na desce přijímače.

vyzkoušet funkci blokování - Anti-Scan. Na přijímači propojíme např. šroubovákem nezapojený adresový vstup s vedlejším zapojeným a stiskneme tlačítko na vysílači. Tím by se měl spustit blokovací obvod. Provizorní propojení zrušíme a opět zkusíme vysílat vysílačem. Po určitou dobu (asi 15 vteřin) musí být příjem blokován. Činnost blokovacího obvodu můžeme také ověřit sondou nebo osciloskopem na vývodu IC3/10. Po dobu blokování bude na tomto vývodu log. 0.

Se vzorkem byl vyzkoušen dosah ovládání 12-15 m.

SEZNAM SOUČÁSTEK
vysílač R1 10 (4,7) Ω R2 10 MΩ C1 1 uF C2,C3 100 pF D1 LED pr.3mm D2 ZD-viz text D3,D4 LD271 (VQA151) IC1 HT12A T1 KC238C T2 BC337 rezonátor 455 kHz tlačítko
přijímač R1 100Ω R2 $33 \text{ k}\Omega$ R3 $75 \text{ k}\Omega/5\%$ R4 $12 \text{ k}\Omega$ R5 $10 \text{ M}\Omega$ R6 560Ω R7,R8 $1 \text{ k}\Omega$ R9 $12 \text{ k}\Omega$ R10 $1 \text{ k}\Omega$ R11 $2,2 \text{ k}\Omega$ C1,C3,C5 10 uF/50 V C2 $2,2 \mu\text{F/50 V}$ C4 1 uF/100 V C6 220 uF/35 V D1-D6 1 N4148
D7,D9

Malý měnič napětí

Pavel Meca

Někdy potřebujeme v zařízení napětí větší než je jmenovité napájecí a nebo potřebujeme napětí záporné polarity. V zařízení s transformátorem je možno použít jednoduché zapojení a pomocí diod a kondenzátorů toto napětí vytvořit. Při bateriovén napájení nebo napájení ze síťových napáječů s výstupem se stejnosměrným napětím se musí použít měnič napětí. Měniče je možno použít kapacitní nebo s indukčností. Kapacitní měniče jsou levnější a jednodušeji vyrobitelné a pro malé výkony jsou výhodnější. V tomto článku se budeme zabývat měniči kapacitními. Kapacitní měnič se může použít jako násobič napětí, nebo jako měnič pro záporné napětí a nebo jako dělič napětí.

Násobič napětí

Kapacitní násobiče napětí pracují jednoduše řečeno na principu sčítání napětí na kondenzátorech nabitých paralelně a pak vybitých v sériovém zapojení. Teoreticky lze násobit napětí neomezeně. Prakticky je to omezeno vlastnostmi součástek měniče. Na obr. l je principiální zapojení násobiče dvěma.

V každém násobiči je zapojen tranzistorový přepínač. Ten může být uvnitř integrovaného obvodu nebo může být tvořen samotnými tranzistory. Pokud je přepínač PR1 v dolní poloze, pak se kondenzátor Cl nabije na vstupní napětí přes diodu D1. Po přepnutí do horní polohy se napětí na kondenzátoru Cl přičte přes diodu D2 k vstupnímu napětí a tím se nabije kondenzátor C2. Pro správnou funkci je třeba, aby zdroj vstupního napětí měniče měl malou impedanci.

Na výstupu násobiče je tedy napětí teoreticky dvakrát větší než na vstupu. V praxi je třeba odečíst úbytek na diodách D1 a D2 a také, a to je podstatnější, úbytek na výstupních spínacích tranzistorech tvořících přepínač. Na běžných diodách je úbytek asi 0,7 V popř. i větší díky spínacím ztrátám a záleží i na velikosti průchozího proudu. Tzn. že běžná křemíková usměrňovací dioda není schopna sledovat tak rychle změny toku proudu a tudíž se zavírá opožděně a tak částečně vybíjí již nabitý kondenzátor. Lépe je použít rychlé diody tzv. Schottky, které mají menší úbytek napětí v propustném směru. Na přepínači tvořeném tranzistory je úbytek napětí až 2 V podle velikosti zátěže. Jsou také určité ztráty na kondenzátorech, kde vlivem vnitřní impedance kondenzátoru nedochází k jeho dokonalému nabití a vybití. U malých proudů tento problém není tak výrazný. U výkonných měničů se přepínaný kondenzátor sestavuje z více menších kondenzátorů a tím se zmenší jejich celková impedance. Z této úvahy vyplývá, že účinnost kapacitního měniče roste s výšším vstupním napětím,

protože se zvyšuje poměr výstupního napětí a úbytků na diodách, tranzistorech a kondenzátorech, které jsou stále stejné. Některé kapacitní měniče používají výkonové tranzistory v provedení FET. Tím se dosáhne vyšší účinnosti díky malému odporu tranzistoru FET v sepnutém stavu. Kapacitní měniče mohou být navržené i pro proudy několika ampér.

Protože i zde funguje zákon zachování energie, je třeba vycházet z toho, že výstupní proud je pouze teoreticky poloviční než proud vstupní. Prakticky je vstupní proud větší o vlastní spotřebu obvodu ICl a o ztráty, o nichž již byla zmínka.

Obr. 1. Princip měniče pro kladná napětí

Obr. 2 Princip měniče pro záporná napětí

Měnič pro záporné napětí

Měnič je vhodný pro napájení operačních zesilovčů. To, že napětí není přesně symetrické těmto obvodů nevadí. Pouze je max. výstupní napětí operačního zesilovače omezeno velikostí záporného napětí. Na obr. 2 je principiální zapojení měniče pro záporné napětí. Zapojení je velice podobné násobiči napětí. Pokud je přepínač PR1 v horní poloze, pak se kondenzátor C1 nabíjí přes diodu D1 na napájecí napětí. Při přepnutí přepínače se náboj C1 vybije do C2 přes diodu D2. O výstupním napětí z hlediska úbytků platí totéž jako u násobiče napětí.

Pozn.: Osazená deska přijímače na obr. 4 se mírně liší od uvedené fotografie hotového přijímače z důvodu dodatečných změn v zapojení.

Závěr

Popsané dálkové ovládání je dokonalejší alternativou k dálkovým ovládáním již dříve popsaným. Ačkoliv je dálkové ovládání na profesionální úrovni, není jeho cena větší než u jiných klasických konstrukcí (je třeba počítat i s cenou transformátoru).

Stavebnici dálkového ovládání je možno objednat u firmy MeTronix, Masarykova 66, 312 12 Plzeň, tel. 019/67642 pod obj. č. MS98030 za 490,- Kč.

Stavebnice obsahuje všechny součástky dle seznamu.

Obr. 3. Schéma zapojení měniče pro kladná napětí

Obr. 4. Schéma zapojení měniče pro záporná napětí.

Praktické provedení měničů napětí

Na obr. 3 je praktické zapojení měniče jako násobiče napětí. Základem měniče je známý časovač NE555 (B555), zapojený standardně jako astabilní generátor obdélníkového průběhu, který nahrazuje přepínač podle obr. 1. Kmitočet je dán kondenzátorem C2, odporem R1 a R2. Dioda D1 udržuje střídu kmitočtu 1:1. Čím se střída kmitočtu blíží více k poměru 1:1, tím je větší účinnost měniče. Kmitočet generátoru je asi 3kHz. Kmitočet není

Obr. 5. Deska s plošnými spoji

Obr. 5a. Osazení pro kladná napětí

Obr. 6. Osazení pro záporná napětí

vhodné příliš zvyšovat, protože se účinnost spíše sníží díky spínacím ztrátám na diodách, tranzistorech a kondenzátorech. Upozorňuji na nestandardně zapojený kondenzátor C3 z vývodu 5 IC1. Všichni jej zapojují na záporné napětí, zde je připojen na kladné napětí. Není to žádná inovace. Je to pouze proto, že jej lze tak lépe umístit na desku plošných spojů. Z hlediska funkce obvodu je toto připojení nepodstatné, protože se jedná pouze o blokovací kondenzátor.

Velikost elektrolytických kondenzátorů C4 a C5 není třeba příliš zvětšovat. Účinnost obvodu se nezvětší. Při tak velkém kmitočtu nabíjení výstupního kondenzátoru není problém pokrýt úbytky způsobené zátěží.

Na výstupu měniče je možno použít stabilizátor napětí - IC2. Ten vyrovná napěťové poklesy v důsledku různé zátěže a také odstraní případné výstupní zvlnění. Kondenzátor C6 blokuje stabilizátor proti kmitání. Je třeba počítat s úbytkem napětí na stabilizátoru - běžně asi 1,5 V, nebo použít stabilizátor s malým úbytkem napětí tzv. "LOW DROPOUT".

Maximální vstupní napětí je 16 V a je dáno max. vstupním napětím obvodu IC1. Maximální zatěžovací proud obvodu je 200 mA. Tento údaj se u různých výrobců může lišit. Proudová zátěž 100 mA by měla být spíše krátkodobá.

Na obr. 4 je zapojení měniče napětí pro záporné napětí. Na obr. 6 je osazená deska měniče pro násobič napětí. Na obr. 7 je osazená deska měniče pro záporné napětí. Před osazením IC1 je třeba nejprve zapájet propojku, která je pod obvodem. Na deskách je možno vynechat stabilizátory a nahradit je propojkou. Pak se nemusí osazovat kondenzátor C6 a místo něj se osadí kondenzátor C5 a kondenzátory C4 a C5 je možno z prostorových důvodů na desku položit - viz obrázek. Stejně

je možno položit i C1. Vlastní desku je vhodné opatřit kontaktní lištou se zahnutými vývody, za kterou se pak deska měniče zapájí do zařízení, popř. je možno desku přilepit na hlavní desku zařízení a přívody provést samostatnými vodiči.

Při provozu je třeba u obou měničů ohlídat max. vstupní proud, protože obvod IC1 nemá ochranu proti přetížení a zkratu. Max. proud IC1 je 200mA.

Závěr

Článek se zabývá teorií i praxí kapacitních měničů, které mají své uplatnění v elektronice. Někteří výrobci nabízejí speciální obvody, které obsahují kompletní zapojení kapacitního měniče, nebo jsou měniče součástí obvodů se speciální funkcí. Např. firma MAXIM používá podobné kapacitní měniče přímo zapojené v pouzdrech obvodů pro různá použití. Např. velice známý obvod MAX232 používá kapacitní měnič pro generování záporného napětí pro sériovou komunikaci RS232.

Stavebnici měniče bez stabilizátoru je možno zakoupit u firmy MeTronix, Masarykova 66, 312 12 Plzeň, - tel. 019/67642 pod označením MS96130 za 65,- Kč.

SE	Z	ľ	ı	A	N	A	S		0	I	J	Ò	5	Á	i	S	1	E	K
R1		•		•			•					•						4	7 k
R2																			
C1																			
C2						•											4	,7	nF
C3,	C6	,															1(00	nF
C4				٠			*				*							47	μF
C5																			
D1																			148
D2,	D3	}												,			B	A	785
IC1																	N	E	555
IC2		٠	•					S	ta	ak	i	liz	ź	it	0	r	10	0	mA
lišta	3							4		až	ź	5	Š	Sp.)(če	k	-	90°

Začínáme s Ferdou Mravencem II.

Pavel Meca

Blokové funkce (BLOCK)

Blok je ohraničená část na desce plošných spojů. Ohraničuje se pomocí kláves "F1" a "F2". Je jedno, jaké pořadí kláves použijeme. Blok se zobrazí zelenými čarami.

Pozn.: Pokud chceme, aby byl blok stále viditelný, než jej začneme používat, nesmíme pohybovat kurzorovými klávesami, jinak označení bloku zmizí. Označení bloku je ale zachováno. Pro pohyb kurzoru je tedy výhodnější použít posun myší. Blok můžeme:

- a) vymazat ERASE
- b) posunout MOVE
- c) kopírovat COPY

Pozn.: Protože systém FM zná pouze jedinečné označení součástek, budou při funkci kopírování bloku kopírovány pouze samotné spoje.

Před vlastním využitím blokových operací je možno zvolit v nabídce (OPTION), jaké položky návrhu desky se budou společně s blokem zpracovávat, tzn., že lze vyloučit z blokových funkcí součástky (COMPONENTS), spoje (LINES), nebo pájecí body (PADS) aj., popř. i jejich vzájemné kombinace.

Kopírování bloku se využívá pro vytvoření vícenásobného motivu pro výrobu filmové předlohy.

Práce se soubory

Program FM vytváří soubory s příponou .PVF, kterou lze změnit. Příponu .PVF se však nedoporučuje měnit z důvodu jednodušší obsluhy a snadného rozlišení souborů FM od ostatních.

Program vytváří tzv. zálohovou kopii s příponou .BVF. Tato kopie se vytvoří překopírováním stávajícího souboru .PVF na .BVF před uložením aktuálního návrhu.

V nabídce práce se soubory lze zvolit i funkci (ADD), což nám umožňuje přidat část jiného návrhu desky, např. speciální složitou součástku. Tim se nahrazuje funkce chybějící knihovny součástek. Funkcí OPTIONS TRANSFORMAnásledně TIONS, můžeme před přidáním souboru nadefinovat, jak se soubor

přidá, např. funkce rotace (ROTATI-ON), zrcadlení (MIRRORING), přehození stran (SIDES SWAPING) popř. i posun (OFFSET). Funkce ADD také slouží pro úpravu již hotového návrhu, který potřebujeme otočit, nebo zrcadlit. V tomto případě, pomocí inicializace, navrhneme plochu, do které přidáme funkcí ADD již hotový návrh, u kterého zvolíme předem jeho úpravu (TRANSFORMATION).

Pozn.: Při použití funkce ADD je třeba počítat s tím, že toto přidání souboru způsobí nastavení čar, průchodů, pájecích bodů, barev a pod. podle přidaného souboru. Také pokud se přidává součástka s označením, které již existuje, pak se původní součástka vymaže, ale spoje zůstanou. V tomto případě je nutno přidanou součástku předem přejmenovat.

Funkce z nabídky GRAPHICS

V této nabídce je možno nastavit barvy zobrazování všech prvků na obrazovce (GRAPHICS - PALETTE COLORS). Barva se volí váhovým poměrem jednotlivých barev (červená R, zelená G a modrá B). Také je možno zvolit, jak budou prvky na obrazovce vidět. Volí se zobrazení propojovacích čar jako osy čar (DRAW LINE AXES)), pájecí body jako kroužky (FILL PADS), zobrazení nebo nezobrazení (ON/OFF) součástek (COMPONENTS), bodů mimo rastr (OFF GRID POINTS), nápisů (LABELS) a rastrů (GRIDS). Tyto volby jsou vhodné pro vizuální kontrolu desky spojů. Je možno kontrolovat např. dotažení spojů do středu pájecích bodů, kontrolu a opravu šrafování apod.

Návrh plošného spoje lze rozdělit v zásadě na tři způsoby:

- a) ruční návrh spojů,
- b) ruční návrh spojů s kontrolou pomocí NETLIST,
- c) automatický návrh spojů (AUTO-ROUTER).

a) ruční návrh spojů

Pokud chceme rychle navrhnout jednoduchý spoj, použijeme pouze ruční návrh spoje. Vybereme součástky z nabídky (COMPONETS -STANDARD COMPONENTS). Pak žvolíme šířku propojovací čáry (ELEMENTS - SELECT LINE W.).

Pozn.: Z praxe je výhodnější začít kreslit předvolenou šířkou čáry 0,3 mm. Po nakreslení všech spojů tuto čáru v nabídce DIMENSIONS rozšíříme. Tímto postupem snadněji

navrhneme spoje.

Zvolíme pomocí F4 funkci DRAFT (kreslení spojů) a propojujeme ručně pájecí body součástek. Je vhodné propojovat součástky po blocích - částech. Při prvním propojování nemusíme dbát příliš na estetiku. Po vlastním propojení bloku, přejdeme na funkci (MOVE -F8) a spoje a součástky můžeme posouvat. Protože při funkci posun má přednost posun spoje, pro posun součástky použijeme z nabídky COMPONENTS - UNFIX COM-PONENT.

Pozn.: Pro posun součástky je výhodnější nejprve odsunout funkcí MOVE spoj z pájecího bodu č.1 a pak posunout součástku za vývod č.1 a spoj opět dotáhnout k bodu.

Po ukončení návrhu pomocí čáry 0,3 mm orámujeme výsledný spoj.

Pozn.: Orámování desky čarou je použitelné pouze při výrobě 1 ks. desky. Při vícenásobném motivu a orámování desky plnou čarou je problém při stříhání desek. Orámovací čára se nůžkami strhne a pak při následném použití nepájivé masky se může zbytek mědi dostat pod masku.

Je také možno zvolit ruční propojování s podporou AUTOROU-TER (^A). Stačí pouze zadat výchozí bod a koncový bod a program provede propojení sám s kontrolou možných zkratů a izolačních vzdáleností.

Je třeba připomenout, že při samotném ručním návrhu spojů můžeme zanést do spoje mnoho chyb. Proto je vhodné přejít k návrhu pomocí NETLIST.

b) ruční návrh spojů s kontrolou pomocí NETLIST

Tento způsob je pro návrh jednovrstvé desky spojů nejpoužívanější. V tomto případě je možno navrhnout spoj s největší přesností a bez

chyb. Problémem je, jak vytvořit NETLIST, což je textový seznam spojů mezi jednotlivými vývody součástek. Pokud máme program ORCAD, nebo i jiný program - mohou to být i nejstarší verze, pak můžeme vygenerovaný NETLIST z těchto programů převést do NETLIST z těchto programů převést do NETLIST FM pomocí konverzního programu CONNV-.EXE.

Vygenerovaný NETLIST ze schematického programu musí být ve formátu "RACAL REDAC". Po spuštění FM a vybrání součástek (COMPONENT) nahrajeme NETLIST přes nabídku - NETLIST - LOAD NETLIST. Pokud nám některá součástka na ploše chybí, nebo má menší počet vývodů, než je potřeba, pak program FM oznámí chybu.

Pak můžeme zvolit zobrazení počtu nezapojených spojů pomocí funkce NETLIST COMPARE, nebo zobrazit tzv. gumové spoje funkcí SHOW - ALL RAST NEST. Tyto spoje zrušíme pomocí funkce SHOW - CLEAR ALL. Pomocí funkce MOVE - F8 rozmístíme součástky na ploše. Během posunu součástek se budou zelenými čarami zobrazovat tzv. "gumové spoje". Ty ukazují, jaké spoje budou propojeny. Podle nich se dá usuzovat na otočení součástky proti ostatním součástkám. Pokud je dán max. rozměr desky, je vhodné napřed pomocí čáry 0,3 mm nakreslit obvod desky. Pak můžeme propojovat jednotlivé součástky (DRAW) a pomocí funkce SHOW ALL .. a SHOW CLEAR ALL kontrolovat správnost propojení. Pokud program najde zkrat, nahlásí chybu (SHORT CONNECTI-ON). Můžeme si pomocí funkce NETLIST COMPARE ukázat, kde se zkrat nachází.

Pozn.: Program nahlásí zkrat např. i u odporu, pokud je otočený, třebaže v praxi je to jedno. Pak je nutno součástku otočit (COMPONENT -UMFIX COMPONENTS + F3) nebo (F8 - MOVE + F3) a znovu zkontrolovat propojení.

Pokud, po porovnání s NET-LIST, bude nahlášeno více nesprávně propojených součástek, je nutno pozorně prohlédnout, které součástky jsou zkratovány, protože někdy jeden nesprávný spoj nebo jenom otočený odpor nahlásí velké množství zkratů. Musíme tedy zkoušet spoje umazávat nebo otáčet součástky. Tímto způsobem je možno dosáhnout při dokonalém NET-LIST 100% propojení na desce.

Obr. 2. Příklady číslování vývodů součástek

c) automatický návrh spojů

V tomto případě se používá tzv. AUTOROUTER. Existuje několik způsobů automatického propojování. Od jednoduchého systému, který má malou úspěšnost, až po systémy se 100 % úspěšností propojení. V systému FM je použit autorouter pracující na principu vlnového algoritmu autor pan LEE. V plné míře je použitelný spíše pro dvouvrstvé desky, jako většina autorouterů v jiných programech. Jednovrstvé desky je nutno navrhovat po blocích. Tento blok ohraničíme pomocí tlačítek F1 a F2, protože automatické propojování funguje pouze v prostoru vymezeném blokem. Před spuštěním AU-TOROUTER je nutno nejprve určit, zda budeme vytvářet jednovrstvou nebo dvouvrstvou desku a také parametry (pravidla) automatického propojování. To se určuje tzv. cenou (COST) v nabídce AUTO-ROUTER - DESIGN RULES pro jednotlivé směry spojů. Potlačením cen na jedné straně nastavením na 0 zvolíme jednovrstvou desku. Pro začátek není vhodné měnit hodnoty v nastavení mimo potlačení strany. Spustíme AUTOROU-TER. Můžeme volit propojování celoautomatické (ROUTE ALL), nebo propojování po jednotlivých propojích - krokování (ROUTE NEXT). Je zde také volba REVERSE OR-DER, která spustí automatické propojování v obráceném pořadí. To má smysl v případě, že odstraníme některé spoje a zkusíme znovu automatické propojení.

Pokud zvolíme automatické propojování pro celou jednovrstvou desku, pak zjistíme, že je tato deska nepoužitelná a propojení se provede pouze na určité části desky. Nejspíše dojde k úplnému zahlcení desky nesmyslnými spoji. Nelze přesně určit návrh desky, zvláště pak jednovrstvé. Je to spíše otázka zkušenosti.

Vytvoření NETLISTu

Pokud máme pouze program FM a nemáme žádný program pro kreslení schémat, následuje popis, jak jednoduše vytvořit NETLIST. Protože pouze s ním je možno vytvořit bezchybnou desku spojů.

Nejprve si nakreslíme schéma. Kreslíme je pro přehlednost raději větší. Pokud chceme použít schéma např. z časopisu, musíme je okopírovat nejlépe zvětšené. Základní podmínkou je, že každá součástka na schématu má své jméno, které je jedinečné. Dále je třeba určit číslování vývodů součástek - na obr. 2 je příklad číslování. Je vhodné určit pravidla, že např. všechny levé a horní vývody odporů budou č.1, u diod je č.1 katoda a u elytů je č.1 kladný pól.

Pokračování příště

Elektronické potenciometry II.

Pavel Meca

Výstupní proud z DCO pro PT2253 a PT2255

Krok	DCO	Zeslabení - PT2253	Zeslabení - PT2255
0	0	-64dB ~ ©	-32dB ~ ∞
1		-60dB ~ -62dB	-30dB ~ -31dB
2	21	-54dB ~ -58dB	-27dB ~ -29dB
3	31	-50dB ~ -52dB	-25dB ~ -26dB
4	41	-44dB ~ -48dB	-22dB ~ -24dB
5	51	-40dB ~ -42dB	-20dB ~ -21dB
6	61	-34dB ~ -38dB	-17dB ~ -19dB
.7	71	-30dB ~ -32dB	-15dB ~ -16dB
8	81	-24dB ~ -28dB	-12dB ~ -14dB
9	91	-20dB ~ -22dB	-10dB ~ -11dB
10	101	-14dB ~ -18dB	-7dB ~ -9dB
11	111	-10dB ~ -12dB	-5dB ~ -6dB
12	. 121	-4dB ~ -8dB	-2dB ~ -4dB
13	131	0dB ~ -2dB	0dB ~ -1dB

Obr. 12. Formát řídicího slova PT2254A

Obr. 13. Časový diagram PT2254A

Obr. 10. Napětí na výstupu DCO

PT2254

Elektronický potenciometr vyrobený technologií CMOS. Je navržen převážně pro audiotechniku. Obsahuje dva nezávislé kanály. Vhodný pro stereo i mono aplikace. Obvod se vyznačuje vynikajícím kmitočtovým rozsahem a malým zkreslením. Rozsah regulace je -68 dB s krokem -2 dB, tj. celkem 34 kroků. Tento obvod je velice podobný obvodu předchozímu, ale má řízení mikroprocesorem. Obvod PT2253 je přímým ekvivalentem obvodu

TOSHIBA TC9154, je ale výrazně levnější. Obvod je nabízen v pouzdře 16DIP.

Na obr. 11 je zapojení pouzdra obvodu. Obvod také používá dvě části - jedna se zeslabením 10 dB a druhá 2 dB.

Obr. 11. Zapojení pouzdra PT 2254

Potenciometr se nastavuje pomocí sériového vstupu z mikroprocesoru. Vstup obsahuje 3 signály - DATA, CK (CLOCK) a ST (STROBE). Na obr. 12 je formát řídícího

slova (např. pro řídicí slovo 000010000001011000 je nastaveno zeslabení -48 dB). Na pozici bitu 13 může být 1 nebo 0, na pozici 16 až 18 musí být 0. Je vidět, že je možno nastavit přesně zeslabení každého kanálu samostatně a nezávisle na druhém. Na obr. 13 je vidět časový diagram.

Potenciometr nemá zálohovací obvod, vstup INH a výstup DCO jako předešlý obvod.

Zapojení pro symetrické a nesymetrické napájení je stejné jako u PT2253, tzn. vč. oddělovacího zesilovače. Pokud se použije napájení symetrické, musí být úrovně sériového interface vztažené k úrovni 0 V.

PT2255

Elektronický potenciometr vyrobený technologií CMOS. Je navržen převážně pro audiotechniku. Obsahuje dva nezávislé kanály. Vhodný pro stereo i mono aplikace. Obvod se vyznačuje vynikajícím kmitočtovým rozsahem a malým zkreslením. Rozsah regulace je -34 dB s krokem -1 dB, tj. celkem 34 kroků. Obvod není ekvivalentem TC9155. Obvod je nabízen v pouzdře 16DIP a SOP.

Obvod je v principu stejný jako typ PT2253, ale liší se hlavně v rozsahu zeslabení. Pouzdro je zapojeno shodně. Ostatní vlastnosti jsou stejné jako u PT2253.

Dokončení příště.

PT2254, Vcc = 6V, Vss = -6V, pokud není jinak specifikováno

Parametr	Podmínky	Min.	Тур.	Max.	Jedn.	
Napájecí proud Stand-by				300	μΑ	
Signál / šum	IN1-OUT1, ATT=0dB			93,4	dB	
	IN2-OUT2, ATT=0dB		1	94,3		
Kmitočtový rozsah	IN1-OUT1, ATT=0dB			602	kHz	
	IN2-OUT2, ATT=0dB			1910	KMZ	
Šumové pozadí	IN1-OUT1,Vin=0V			0,005		
	IN2-OUT2, Vin=0V	·		0,011	mV	
THD - Fin=1kHz	IN1-OUT1,Vin=1Vp-p			0,015	0/	
	IN2-OUT2, Vin=1Vp-p			0,017	%	

Ostatní hodnoty jako PT2253

Vertikálne antény pre pásmo 144 - 146 MHz | S

V článku by som chcel predstaviť najčastejšie používané antény s vertikálnou polarizáciou pre pásmo 2 m, ktoré sa používajú ako antény prenosné, mobilné a stacionárne.

V posledných rokoch sa antény s vertikálnou polarizáciou stali nevyhnutnosťou. Stalo sa tak najmä z nasledovných príčin:

- všesmerová charakteristika vertikálnych antén je výhodná pri lokálnych spojeniach vo väčších mestách,
- nízky uhol vyžarovania hlavného laloku antény zvyšuje dosah antény,
- výrazne sa zvýšil počet ponúkaných továrenských ručných a mobilných FM transceivrov na trhu, ktoré sa používajú len pre prevádzku s vertikálnou polarizáciou,
- rozvíja sa sieť FM a PR prevádzačov, ktoré musia používať vertikálne antény z dôvodu ich všesmerovosti.

Všetky tieto dôvody spôsobili, že vertikálne antény sa stali takmer výhradne používané pri FM prevádzke. Treba ale zdôrazniť, že antény s vertikálnou polarizáciou neslúžia pre DX spojenia (ani tie s vyšším ziskom), ale iba pre lokálne spojenia na direktoch alebo cez prevádzače.

Predstavme si teraz najznámejšie antény s kruhovým vyžarovacím diagramom a vertikálnou polarizáciou.

1. Helikálna anténa

Helikálna anténa (obr. 1) je najkratšia, a z toho vyplýva, že aj najmenej efektívna anténa, používaná v prenosných VKV transceivroch. Tvorí ju medený drôt navinutý na elastickej trubici alebo oceľový drôt zvinutý do tvaru pružiny. Jej dlžka by nemala prekročiť 0,1 λ, vtedy je jej vyžarovací diagram podobný vyžarovaciemu diagramu vertikálneho dipólu (obr. 4). Vertikálna anténa vo výške 3/4 λ nad zemou má impedanciu blížiacu sa 50 Ω. Ak túto navinieme na izolovanú elastickú trubicu, získame anténu s podobnou impedanciou, ale jej rezonančný kmitočet klesne. Ak odvinieme určitý počet závitov, bude helikálna anténa rezonovať na potrebnej frekvencii a bude mat impe-

Obr. 2

danciu 50 Ω. Celková dĺžka navinutého drôtu sa pohybuje medzi 1/2 až 5/8 λ.

Kapacita medzi závitmi spôsobuje, že anténa je v rezonancii práve vo výške 3/4 λ. Je veľmi citlivá na predmety, nachádzajúce sa v jej blízkosti (ľudské telo). Vplyv kapacity tela operátora sa prejavuje zmenou rezonancie antény (obr. 2). Helikálna anténa dosahuje približne o 2 až 3 dB menší zisk oproti rovnakej anténe s nezvinutým drôtom. Doma si môžeme anténu vyrobiť s oceľového, mosadzného alebo medeného drôtu s priemerom 2 mm podľa obr. 1.

Obr. 3

vedenia spôsobí vyžarovanie časti energie cez napájač. Učelné by bolo použiť balun 1:1, kde pravda vznikajú tiež straty, ale takéto prispôsobenie chráni pred eventuálnym TVI. Pri stavbe a umiestňovaní polvlnného dipólu je potrebné pamätať na to, aby napájacie vedenie išlo od antény kolmo, a to minimálne v dlžke 1 λ , a taktiež, aby bola anténa vzdialená od kovového stožiara aspoň 1 λ. V opačných prípadoch dôjde k deformácii kruhovej vodorovnej vyžarovacej charakteristiky.

Zisk polvlnného dipólu je pokladaný za základ pre ostatné antény a má hodno-

2. Polvlnný dipól

Vyžarovacia charakteristika vertikálneho dipólu (obr. 3) vo vodorovnej rovine je kruhová a vo vertikálnej rovine je závislá od výšky antény nad zemou, čo znázorňuje obr. 4. V súvislosti s tým, že anténa má impedanciu okolo 70 Ω, často sa ako napájač používa 75 Ω koaxiálny kábel (vnútorný vodič sa pripája na hornú časť dipólu). Nie je to ale veľmi správne, pretože pripojenie asymetrického tu 0. Dipól sa používa najčastejšie ako anténa pre stacionárne stanice.

3. Ground plane 1/4 λ

Anténu GP tvorí štvrťvlnný zvislý žiarič a protiváhy v tvare prútov alebo vodivej dosky (obr. 5). Vyžarovací diagram v zvislej rovine je na obr. 6. Vo vodorovnej rovine je vyžarovacia charakteristika závislá od počtu protiváh, čím ich je viac, tým viac sa charakteristika blíži kruhu. Ako protiváhu môžeme použiť i vodivú dosku, napr. strechu auta s polomerom od žiariča aspoň 1/4 λ. Zisk antény oproti polvlnnému dipólu je okolo -1 dB. Impedancia antény závisí od uhla medzi žiaričom a protiváhami (obr. 7). Pri uhle približne 135° je impedancia 50 Ω, takže anténa môže byť napájaná priamo 50 Ω koaxiálnym káblom. Pri menšom uhle, napr. 90° pri umiestnení

Obr. 5

antény na streche auta, je impedancia okolo 18 Ω a prispôsobenie antény k napájaču 50 Ω je možné pomocou transformátora z rovnobežných úsekov

zvedené cez uzemnené protiváhy na stožiar a do zeme. Ďalšou výhodou antény je aj jej širokopásmovosť.

Obr. 6

Obr. 8

kábla, alebo využitím transformačných vlastností koaxiálneho kábla, použiť takú dĺžku koaxu, aby PSV bolo čo najmenšie. Dĺžku napájača určíme experimentálne, postupným skracovaním napr. po 5 cm a súčasným meraním PSV.

Pri stacionárnych GP anténach sa najčastejšie používajú tri protiváhy so vzájomným uhlom 120°, alebo štyri s uhlom 90°. Veľmi často sa ako žiarič používa tzv. slučkový dipól (obr. 8, 9), ktorý má so štyrmi protiváhami impedanciu okolo 70 Ω, čo umožňuje priame pripojenie koaxu 75 Ω. Prednosťou takejto antény je jej bezpečnosť, pretože všetky elektrostatické náboje, hromadiace sa na anténe, sú

Obr. 8

Obr. 9

4. Anténa 5/8 λ

Túto anténu získame predĺžením polvlnnej GP. Výrazne sa zmení vertikálny vyžarovací diagram, keď hlavný lalok klesne oproti štvrťvlnnej GP z 30° na 15°. Vodorovná charakteristika je kruhová, dokonca ju výrazne neovplyvní ani umiestnenie antény na rôznych miestach auta pri mobil prevádzke. Zisk je asi 3,5 dB.

Anténa má dodatočnú zdanlivú rezistanciu v podobe zloženej kapacity, ktorá sa kompenzuje pripojením predlžovacej cievky. Prispôsobenie ku koaxiálnemu káblu 50 Ω robíme pripojením asi 1/8 λ dlhého úseku koaxu (obr. 10). Dĺžka protiváh je 51 cm. Pripájajú sa pod uhlom 90° pod predlžovaciu cievku.

Anténa 5/8 \(\lambda\) účinne potláča úniky pri mobilnej prevádzke, ktorých príčinou nie je ohýbanie antény počas jazdy, ale odrazy od okolitých budov, stĺpov a terénu. Pri spojení z idúceho auta spôsobujú všetky prekážky medzi korešpondujúcimi stanicami zoslabenie sily signálu, dokonca až jeho úplný zánik. Prehýbanie antény počas jazdy tieto úniky potláča, pretože anténa mení vyžarovacie uhly, a tak si signál "nájde" skulinky aj medzi terénnymi prekážkami. Štvrťvlnná GP sa počas jazdy takmer nehýbe, a tak mobilná prevádzka v meste je s ňou zložitejšia a menej efektívna.

Keď hovoríme o anténe 5/8 λ , treba spomenúť aj jej kratšiu verziu - 1/2 λ (obr. 11). Polvlnný žiarič sa tu vlastne správa ako žiarič dlhý 3/4 λ , čo je vhodné pre napájanie koaxiálnym káblom 50 Ω . Ak ku žiariču pripojíme predlžovaciu cievku, dostaneme rezonanciu na 3/4 λ , ale je potrebné nájsť na cievke bod, kde impedancia bude rovná 50 Ω . Do tohto miesta sa cez kondenzátor pripája koaxiálny kábel. Ako je známe, usporiadanie žiarič, cievka a kondenzátor má nízku impedanciu v rezonancii. Zisk je 3 dB. Anténu je možné ľahko zhotoviť z predá-

Obr. 10

Obr. 12

vanej antény pre autorádiá, ktorej dĺžka je 105 cm.

Predĺženie žiariča nad $3/4 \lambda$ spôsobí vytvorenie čoraz viac bočných lalokov vo vertikálnej vyžarovacej charakteristike, ktoré majú veľké uhly elevácie (viac ako 45°). Preto sú antény dlhšie ako $3/4 \lambda$ menej efektívne.

5. Kolineárne antény

Snaha po väčšom zisku vertikálnej antény s kruhovou polarizáciou viedla k zapojeniu väčšieho počtu polvlnných dipólov nad sebou v jednej osi pri zachovaní (podobne ako v prípade jedného dipólu) kolmého pripojenia koaxiálneho kábla k anténe (obr. 12). Vzdialenosť antény od stožiara vplýva na jej vstupnú impedanciu (obr. 13), a tiež aj na jej vyžarovaciu charakteristiku vo vodorovnej rovine. Veľkou nevýhodou takéhoto usporiadania je napájanie všetkých dipólov. Pre prispôsobenie impedancie je totiž nutné použiť transformačný člen, zložený z úsekov koaxiálneho vedenia, čo je dosť zložité a pracné. Druhá možnosť

Obr. 11

je metóda, spočívajúca v spojení živých koncov dipólov a pripojení fázových posúvačov (180°). Môžu nimi byť úseky vedenia s dĺžkou 1/4 λ, alebo rovnaké úseky koaxiálneho kábla skrátené o skracovací činiteľ.

Obr. 13

5-A. "Švédska" anténa

Autorom najjednoduchšej kolineárnej antény zloženej z dvoch polvlnných dipólov je SM7DVH (obr. 14). Aktívnymi časťami antény sú iba polovice každého žiariča. Cievka L2 posúva fázu o 180 stupňov, cievka L1 prispôsobuje impe-

Obr. 14

Obr. 15

danciu antény k impedancii koaxiálneho napájača. Vyžarovací diagram vo vodorovnej rovine je kruhový. Uhol vyžarovania je asi 10° a zisk 4 dB.

Podobnú konštrukciu má anténa "Ringo Ranger" (obr. 15). Skladá sa tiež z dvoch polvlnných dipólov. Cievka L2 je nahradená štvrťvlnným úsekom vedenia, ktoré môže mať ľubovoľný tvar. V spodnej časti sa nachádza polkruhový úsek dĺžky 1/8 l (125 mm) spájajúci aktívnu časť s nosnou časťou. Tento úsek plní funkciu cievky L1. Obidve antény sa pre svoju značnú dĺžku používajú ako stacionárne antény.

5-B. Anténa "Big Star"

Anténa bola navrhnutá v polovici 80-tych rokov v Belgicku. Skladá sa z troch rezonátorov (5/8 λ, 2x 3/4 λ), dvoch štvrťvlnných ladených úsekov posúvajúcich fázu o 180 stupňov (obr. 16). Teoreticky sa anténa skladá z troch polvlnných dipólov vzdialených od seba 3/4 λ. Štvrťvlnný pásik prispôsobuje anténu k napájaču a spája ju s nosnou časťou a protiváhami. Protiváh je spolu šesť, každá má dĺžku 510 mm. Na pásiku je potrebné nájsť miesto, kde je PSV 1:1 (vstupná impedancia antény = 50 Ω). Vodorovná vyžarovacia charakteristika je

kruhová, vertikálny uhol vyžarovania hlavného laloku je pri zanedbaní vplyvu zeme takmer 0 stupňov. Zisk antény je úctyhodných 8 dB. Existujú aj verzie so 4-5 rezonátormi, ale zisk už nerastie tak výrazne. Päťprvková (5/8 λ, 4x 3/4 λ) má zisk 9,5 dB.

Anténa "Big Star" sa osvedčila aj pri spojeniach cez rádioamatérske družice RS, zvlášť pri preletoch nízko nad horizontom. Anténu je najlepšie vyrobiť z duralových trubiek a teflonových izolátorov. Pri obmedzených možnostiach je možné použiť tiež päťmetrovú tyč z nevodivého materiálu a na ňu pripevniť anténu zhotovenú z medeného drôtu s priemerom 2 - 3 mm.

Podobnú anténu ponúka firma Diamont pod označením "Diamont -F23". Teoreticky sú to tiež tri kolineárne polvlnné dipóly. Rozdiel je v spôsobe posúvania fázy i v prispôsobení antény k napájaču. Anténa je zhotovená z mosadzného drôtu priemeru 2,5 mm, ktorý je pripevnený na tyč z nevodivého materiálu. Cievky L1, L2 posúvajú fázu o 180 stupňov a ladený člen L3, C1 prispôsobuje impedanciu antény k napájaču. Anténa má tri protiváhy, každá má dĺžku 512 mm. Celková dĺžka antény je 4265 mm a hmotnosť 1,6 kg. Vodorovný vyžarovací diagram je kruhový, vertikálny uhol vyžarovania je 3° a udávaný zisk je 7 dB. Správna činnosť antény a zachovanie uvedených parametrov je závislé od dôkladnosti prevedenia cievok.

Obidve antény sa používajú ako stacionárne.

5-C. Anténa "Slim Jim"

Ako poslednú by som chcel spomenúť anténu "Slim Jim". Tvorí ju zložený polvlnný dipól, ktorý je napájaný cez štvrťvlnný ladiaci transformátor (obr. 17). Prvý krát anténu popísal G2BXC v anglickom časopise "Practical Wireless". Správne zhotovená anténa sa vyznačuje nízkym uhlom vyžarovania (10°) a kruhovou vodorovnou vyžarovacou charakteristikou. Zisk je 1,8 dB. Pre správnu činnosť je potrebné pripojiť ešte balun 1:1. Ladenie spočíva v posúvaní napájača po transformátore, čím sa snažíme nájsť miesto s PSV 1:1. Anténu je možné zhotoviť z jedného kusu medenej trubky priemeru 6 mm a celú ju vložiť do novodurovej trubky, upevniť rozperkami a zalepiť. Zlepší sa tak jej pevnosť a odolnosť voči poveternostným vplyvom.

V tomto obšírnom článku som popísal desať VKV antén. Snažil som sa o stručné popisy, obsiahnuť teóriu i prax. Budem rád, ak sa niekto rozhodne pre stavbu niektorej z antén. Podrobnejšie popisy nájdete v uvedenej literatúre.

Obr. 16

Obr. 17

Literatúra:

- [1] Z. Bienkowski SP6LB, Poradnik ultrakrótkofalowca
- [2] R. Girulski SP5QQ, Amatorskie urzadzenia krótkofalowe
- [3] ARRL, The Radioamateur's Handbook 1984
- [4] G. R. Jessop G6JP, VHF/UHF Manual
- [5] Z. Bienkowski SP6LB, Amatorskie anteny KF i UKF
- [6] K. Rothammel Y21BK, Antennenbuch
- [7] QTC 4/92

Podľa orginálu od SP2MBE v časopise Krotkofalowiec Polski spracoval OM3EI.

50 MHz

LOGY ZA PREVÁDZKU Z EV

DL5BAC chce uzavrieť denníky za prevádzku staníc EV5WZ, EV5DX, EV5M, EV5N, EV5D a EV5K medzi 24.6.-2.7.1993. Ak niekto ešte potrebuje QSL, má ho urýchlene poslať.

JX7DFA QRV

Peer-Einar LA7DFA je od 1.2. opäť QRV pod značkou JX7DFA. Používa IC-706, ale má zatiaľ problémy s anténou, pretože tá, čo mal, nevydržala tvrdé poveternostné

podmienky. Maják JX7DFA bude v činnosti od 1.4. do 1.8. na kmitočte 50,079 MHz. Zdrží sa tam do 1.10.1998.

50 MHZ V LITVE

Od 1.3.1998 majú amatéri v LY vlastniaci triedu A povolené pásmo 50 - 52 MHz. Až doposiaľ sa povolenia vydávali len vo výnimočných prípadoch.

MAJÁK OX3SIX

Maják bude čoskoro opäť v prevádzke na kmitočte 50,012 MHz. Bude používať výkon 50-100 W tak, aby nespôsoboval rušenie iných zariadení.

MAJÁK LZ1SIX

Bulharské majáky LZ1SIX, LZ1TEN a LZ1VHF museli byť pre problémy s QTH vypnuté. Obnovenie ich prevádzky z nového QTH potrvá 2-3 mesiace.

3C5I

IOJX robil 15.2. o 13,14 UTC stanicu 3C5I, ktorá ho zavolala na výzvu. Po ňom urobilo spojenie aj niekoľko ďalších talianskych staníc. Pod touto značkou pracuje operátor Alan. Nepravidelne má spustený aj maják na kmitočte 50,107 MHz, ktorý vysiela s výkonom 10 W a 4el. quadom. Alan má však problémy s QRM od miestnej televíznej stanice, najmä medzi 15-23,00 UTC. Je QRV aj na KV pásmach, uprednostňuje však pásmo 6 m. V Malabe sa zdrží asi dva roky. QSL na adresu: Alan Isaachsen, c/o Mobil Equatorial Guinea, P.O.Box 13908, Dallas, TX 75313, USA.

FM

31.2.1998 byl po delší přestávce uveden do provozu převaděč OK0BT. Je umístěn na TV vysílači Klučovská hora (nr Třebíč). Technická data:

TX: 439,400 MHz RX: 431,800 MHz

Výkon: 5 W

Naházování: nosnou

Anténa: UV200

Umístění antén: 40 m nad zemí

Po zadání znaku 1 ve formátu DTMF a následném odklíčování převaděč dvakrát odpípne. Po opětovném zaklíčování začne převaděč nahrávat modulaci (max. 20 sekund). Po odklíčování nahranou modulaci

přehraje. Po zadání znaku 3 ve formátu DTMF převaděč přehraje svou teplotu.

TNX info OK2IZS

DX novinky

SPRATLY ISLANDS - Po väčšinu mesiaca február nás fantastickými signálmi vzrušovala DX expedícia 9M0C na ostrov Layang Layang. Celé to začalo 11.2. krátko pred 16,00. Operátori pri dobrých podmienkach pracovali až so šiestimi stanicami súčasne. Snažili sa dodržiavať aj časový harmonogram. Najväčšie problémy mali s dolnými pásmami, zvlášť s TOP bandom. Uspokojivo mohli pracovať len prvú noc. Potom sa úroveň QRN zvýšila na trvalú úroveň S9 +20 dB. Skúšali rôzne antény, nepomohli ani 300metrové beverage. Pomocou DSP sa im podarilo znížiť rušenie na 57, ale nebolo to ono. Len zriedka sa stalo, že QRN kleslo na prijateľnú hodnotu a mohli pracovať aj so slabšími stanicami. Napriek všetkému sa im ale podarilo urobiť na 160-ke takmer 1000 spojení, z toho 447 s EU. Na RTTY urobili cez 1700 QSO. Prevádzku ukončili 24. februára o 01,00 UTC. Celkový počet spojení presiahol úctyhodné číslo 65 tisíc. Počas celej DX expedície operátori prostredníctvom pilotných staníc každodenne informovali o dianí na ostrove v sieti Internet (http://members.aol. com/spratly98), ako aj v sieti PR. Raz denne ukladali spojenia do internetového servera a každý si tak mohol overiť, či je v logu. QSL via G3SWH.

PALMYRA ISLAND - Koncom februára pracoval z ostrova Mark KA4IST/KH5. Európske stanice s ním pracovali 21.2. okolo 18,00 na 14195 kHz. Mark mohol pracovať len obmedzene, pretože ako člen posádky lode mohol ísť na breh len v čase svojho voľna. 25.2. mali prísť na ostrov ďalší W operátori, avšak len na dvojdňovú zastávku. V čase uzávierky sme nemali k dispozícii žiadne bližšie informácie.

MONGOLIA - Skupina siedmych talianskych operátorov bude QRV 7.-14.4. z Ulanbátaru pod značkou JT1Y. Vedúcim tímu je Nicola IOSNY a ďalšími operátormi budú IOTIC, I1JQJ, I8NHJ, IKOAEH, IKOFUX, IV3FSG a možno i ďalší. V non-stop prevádzke budú dve stanice umiestnené v priestoroch rádioklubu JT1KAA. QSL bude vybavovať Nicola IOSNY.

Aj členovia maďarského Pannon DX klubu (HA0HW, HG4GDO, HA6NL, HA7SK a HA7VK) plánujú návštevu Mongolska, a to v máji. Presny termín ani značka ešte neboli zverejnené. V prevádzke chcú mať 2-3 stanice non-stop. Podrobnejšie informácie budú zverejnené neskôr. Nájdete ich aj na Internete: http://www.dunanet.hu/pannondxc/.

NEPAL - Vladimir RU6FP je na štvormesačnom pobyte v Nepále. Vysiela pod značkou 9N1FP prevažne na CW. Jeho koncesia mu umožňuje prevádzku len na 20 a 40 m. QSL via RU6FP.

V Nepále je aj Charlie K4VUD a vysiela pod značkou 9N1UD. Zdrží sa tam do 9.3. QSL na jeho domácu značku.

VIETNAM - Anders SMOORV je na niekoľkomesačnom pobyte v Hanoi a pracuje pod značkou XV7SV. Ako je vo Vietname zvykom, môže pracovať len na určených kmitočtoch - 3526, 7026, 10135, 14212 a 21235 kHz. V Hanoi sa zdrží do júna t.r. QSL na jeho domácu značku.

MOROCCO - Ivan OM3LA urobil medzi 27.1.-6.2. pod značkou CN2IB viac než 6400 spojení väčšinou na CW. Svoju prevádzku však musel ukončiť o štyri dni skôr, pretože sieťové napätie v hoteli, v ktorom býval (4*), vystúpilo občas z 220 V až na 380 V, čo bolo príčinou, že mu "odišiel" zdroj i PA. QSL cez OM1APD.

SOUTH SHETLANDS -LU6UO a LU4AXV urobili pod značkou LU1ZC do 2.2. asi 24900 spojení. Ostrov Deception

mali opustiť okolo 15.3. QSL cez LU6EF.

ANTIGUA - Skupina GM operátorov bude pracovať počas júlového IOTA contestu pod značkou V26VG. Pred a po conteste budú vysielať pod svojimi značkami /V2. QSL bude vybavovať GM4FDM.

EL SALVADOR - Federico YS1FEA oznámil, že z dôvodu slabej aktivity YS staníc na KV (v súčasnosti je aktívnych len 10 staníc) budú každú noc medzi 02,00-03,30 UTC pracovať na 7055 kHz YS1FEA, YS1CQ a YS1SH. QSL pre všetkých je možné poslať na adresu: Box 517, San Salvador, El Salvador, Central America.

SRI LANKA - Mario HB9BRM je QRV od 3.3. pod značkou 4S7BRG. Zdrží sa tam tri mesiace QSL na jeho domácu značku.

MALDIVES - Lorenzo IK5MDF oznámil, že navštívi Maledivy (ostrov Alimatha, AS-013) 2.-8.5.

Jeho značka bude 8Q7DF. Viac info nájdete na www stránke http:/ /www.qsl.net/ik5mdf.

Operátori nedávno skončenej DX expedície 8Q7AA urobili spolu 8628 spojení na CW, 9075 na SSB a 200 na RTTY. Pásmová štatistika je nasledovná:

Pásmo	CW	SSB	RTTY	Spolu
160 m	664	40	0	704
80 m	537	1704	0	2241
40 m	2149	1661	0	3810
30 m	1178	0	0	1178
20 m	1519	2625	200	4344
17 m	1734	909	0	2643
15 m	434 1	654	0	2088
12 m	348	423	0	771
10 m	65	59	0	124

PALESTINA - Od 13.3. mal byť asi 7 dní QRV Yoshi JA1UT pod značkou ZC6MPT. QSL na jeho domácu značku.

TANZANIA - Dave K8MN, ktorý pracuje v súčasnej dobe na US ambasáde v Helsinkách (OH2//K8MN), oznámil, že pobyt vo Fínsku ukončí v júli t.r. Po niekoľ-komesačnej dovolenke by mala byť jeho poslednou zastávkou pred odchodom do penzie Tanzánia. Bude to už jeho štvrté pôsobisko na africkom kontinente. Určite si pamätáte jeho predchádzajúce aktivity (J52US, 9L1US a A22MN). Dave obľubuje najmä prevádzku na spodných pásmach a špeciálne na TOP bande.

AZERBAIJAN - Azerbajdžanské stanice môžu používať v tomto roku špeciálne prefixy 4KA a 4JA. Rádioklub v Baku používa značku 4K80ADR pri príležitosti 80. výročia nezávislosti Azerbajdžanu.

SYRIA - Omar YK1AO by mal byť v krátkej dobe QRV na 160 m. Bude používať 1500 W a vertikál

Gladiator TL160M so šikmými radiálmi. Sponzorom antény je W4DR.

ZK1XXP QSL - QSL lístky za prevádzku ZK1XXP v septembri 1997 sú momentálne v tlači v Nemecku a mali by byť hotové v týchto dňoch. Netreba posielať urgencie.

PA3ERC QSL - Rob PA3ERC oznámil, že odpovedal na všetky direkt prijaté QSL za prevádzku pod značkami J6/PA3BBP, J6/PA3ERC, J6/PA3EWP, 9Y4/PA3BBP, 9Y4/ PA3ERC, 9Y4/PA3EWP. QSL prijaté cez buro budú vybavované v najbližších týždňoch.

QSL - Novým QSL manažérom pre stanice OL1A, OL2M, OL5Y a OK5TOP je Tonda OK1MG. OKIVK je zase novým QSL manažérom pre IH9/OL5Y.

Podmienky KV pretekov

SPDX CONTEST

Termín: 4.-5.4.1998 od 15,00 do 15,00 UTC. Nadväzujú sa spojenia len s SP stanicami raz na každom pásme a móde. Módy: CW, SSB. Pásma: 1,8 - 28 MHz. Kategórie: SOAB (MIX, CW, SSB), SOSB (MIX, CW, SSB), MS (MIX), SWL. Súťažný kód: RS(T) + poradové číslo QSO od 001; SP stanice dávajú RS(T) + dvojpísmenovú skratku vojvodstva. **Bodovanie**: 1 QSO = 3 b. Násobiče: SP vojvodstvá bez ohľadu na pásmo a mód (max. 49). Denníky: do 30.4.1998 na adresu: PZK, SPDX Contest Committee, P.O.Box 320, 00-950 Warszawa, Poland. Denník je možné poslať aj na diskete vo formáte ASCII. Prameň: originálne podmienky r. 1998.

EA RTTY CONTEST Termín: 4.-5.4.1998 od 12,00 do 12,00 UTC. Nadväzujú sa RTTY spojenia so všetkými stanicami. Pásma: 3,5 - 28 MHz. Kategórie: A - SOAB, B - SOSB, C - MS, D -SWL. Súťažný kód: RST + zóna WAZ; EA stn dávajú RST + skratku provincie. Bodovanie: pásma 14, 21, 28 MHz: EU = 1 b., DX = 2 b., pásma 3,5 a 7 MHz: EU = 3 b., DX =6 b., vlastná zem = 0 b. Násobiče: zeme DXCC (vrátane EA, EA6, EA8, EA9) a EA provincie na každom pásme zvlášť. Denníky: do 9.5.1998 na adresu: EA RTTY Contest Manager, Antonio Alcolado, EA1MV, P.O. Box 240, 09400 Aranda de Duero

		Kalendár KV pretek	OV	
2829.3.	0000-2400	CQWW WPX Contest	SSB	AR 2/98
4.4.	0400-0600	SSB Liga	SSB	AR 4/97
45.4.	1500-1500	SPDX Contest	CW/SSB	AR 3/98
45.4.	1600-1600	EA RTTY Contest	RTTY	AR 3/98
5.4.	0400-0600	KV provozní aktiv	CW	AR 4/97
6.4.	1900-2100	Aktivita 160 SSB	CW	AR 11-12/97
1012.4.	2300-2300	JI DX Contest High Band	CW	AR 3/98
11.4.	0400-0600	OM Activity Contest	CW/SSB	AR 4/97
1112.4.	vid podm.	DIG QSO Party	CW	AR 2/98
13.4. 1	400-2000	Jarný šprint	CW	AR 3/98
13.4.	1900-2100	Aktivita 160 CW	CW	AR 11-12/97
18.4.	0500-0700	OM CW preteky	CW	AR 3/98
18.4.	0500-0700	OK CW závod	CW	AR 3/98
18.4.	1500-1900	EU Sprint Spring	SSB	AR 3/98
1819.4.	1200-1200	YU DX Contest	CW/SSB	AR 3/98
1819.4.	1800-1800	Holyland Contest	CW/SSB	AR 3/98
25.4.	0500-0629	Hanácky pohár	CW/SSB	AR 3/98
2526.4.	1300-1300	Helvetia Contest	CW/SSB	AR 3/98
2526.4.	1200-1200	SPDX RTTY Contest	RTTY	AR 3/98
	vš	etky časy sú uvádzané v	v UTC	

(Burgos), Spain, e-mail: alcolado@redestb.es. Denník je možné poslať aj v elektronickej forme (ASCII), titulný list však musí byť na papieri. Prameň: originálne podmienky 1998.

FAPAN INTERNATIONAL DX CONTEST HIGH BAND CW

Termín: 10.-12.4.1998 od 23,00 do 23,00 UTC. Nadväzujú sa CW spojenia len s JA stanicami. Max. doba prevádzky je 30 hodín. Minimálne 60-minútové prestávky musia byť jasne vyznačené v sumárnom liste. Pásma: 14 - 28 MHz. Kategórie: 1. SOAB, SOSB, 2. SOAB Low Power, SOSB Low Power, 3. MS (platí 10-min. pravidlo), 4. stanice /mm. Súťažný kód: RST + číslo WAZ zóny; JA stn dávajú číslo prefektúry (1 - 50). Bodovanie: QSO na 10 m = 2 b. a na 20 a 15 m = 1 b. Násobiče: JA prefektúry plus ostrovy Ogasawara, Minami-Torishima a Okino-Torishima na každom pásme zvlášť. Denníky: je možné poslať aj na diskete spolu s písomným sumárnym listom do 31.5.1998 na adresu: JIDX HF CW Contest, c/o Five-Nine Magazine, P.O.Box 59, Kamata, Tokyo, 144 Japan. Prameň: originálne podmienky r. 1998.

JARNÝ ŠPRINT

Termín: 13.4.1998 (Veľkonočný pondelok) od 14,00 do 20,00 UTC.

Nadväzujú sa len CW spojenia so všetkými stanicami. V zahraničí je contest prezentovaný pod názvom Low Power Spring Sprint (TEST SS). Pásma: 1,8 - 28 MHz. Výkonové kategórie: len SO s max. výkonom A: 1 W, C: 5 W, Q: 25 W, X: 50 W, Y: 100 W. Pásmové kategórie: 1. jedno pásmo, 2. tri pásma, 3. všetky pásma. Súťažný kód: RST + prvé štyri znaky WW lokátora + výkonová trieda (napr. 579 JN98 C). Od staníc, ktoré nie sú v conteste, stačí prijať len RST. Bodovanie: EU = 3 b., DX = 9 b. (pre zahraničné stn je OM = 18 b.). Násobiče: WW lokátory (prvé štyri znaky) a prefixy na každom pásme zvlášť. Denníky: do 30 dní po conteste na adresu: Rádioklub OM3KFV, P.O.Box 29, 036 01 Martin 1. Na obálku napíšte "PRETEKY JS". Vzory súťažných denníkov môžete získať za SASE od vyhodnocovateľa. Diplomy: prvé tri stanice v každej triede kombinácie výkon / pásmo. Ceny: víťazné stanice v každej triede kombinácie výkon / pásmo. Prameň: originálne podmienky r. 1998.

OM CW PRETEKY

Termín: tretia sobota v apríli, t.j. 18.4.1998 od 05,00 do 07,00 UTC. Preteky organizuje SZR pre všetky OM a OK stanice. Súťaží sa v dvoch jednohodinových etapách. Pásma: 1,8 MHz (1860 - 1900) a 3,5 MHz

(3520 - 3570). Kategórie: a) obe pásma, b) pásmo 3,5 MHz, c) stanice QRP do 5 W výkonu obe pásma, d) SWL. Súťažný kód: RST + päťmiestna skupina písmen, kde prvé tri písmená udávajú okresný znak a posledné dve si každá stanica zvolí ľubovoľné a v priebehu pretekov ich nemení. Bodovanie: 1 QSO = 1 b. Násobiče: okresné znaky na každom pásme zvlášť bez ohľadu na etapy. Denníky: do 14 dní po pretekoch na adresu: Rádioklub OM3KAG, Pošt. schr. D-20, 042 00 Košice.

OK CW ZÁVOD

Termín: tretia sobota v apríli, t.j. 18.4.1998 od 05,00 do 07,00 UTC. Preteky organizuje CRK pre všetky OK a OM stanice. Súťaží sa v dvoch jednohodinových etapách. Ostatné podmienky sú rovnaké ako v OM CW pretekoch. Denníky: do 14 dní po závode na adresu: Radioklub OK10FM, c/o Pavel Pok, Sokolovská 59, 323 12 Plzeň.

EU SPRINT

Jarná časť (SPRING):

SSB - 18.4.1998 (vyhodnoc. G4BUO)

CW - 16.5.1998 (B.C.C.) Jesenná časť (AUTUMN):

SSB - 3.10.1998 (I2UIY)

CW - 10.10.1998 (OK2FD)

Cas: od 15,00 do 18,59 UTC. Pásma: 3,5, 7, 14 MHz, pilotné frekvencie: 3730, 7050, 14250, 3550, 7025, 14040 kHz. V pretekoch platí pravidlo QSY, t.j. stanica, ktorá volá na frekvencii výzvu, sa po nadviazaní spojenia musí odladiť min. 2 kHz. Súťažný kód: značky oboch staníc + poradové číslo QSO od 001 + meno operátora (RST nie je potrebné). Bodovanie: 1 QSO = 1 b. Výsledok: súčet bodov za spojenia. Denníky: najlepšie v elektronickej forme do 15 dní po conteste na adresu vyhodnocovatela:

G4BUO - Dave Lawley, Carramore, Coldharbour Rd, Penshurst, Kent,

TN11 8EX, England, UK

B.C.C. - DL6RAI, Bernhard Buettner, Schmidweg 17, 85609 Dornach, Germany

I2UIY, Paolo Cortese, P.O.Box 14,

27043 Broni (PV), Italy OK2FD, Karel Karmasin, Gen. Svobody 636, 674 01 Třebíč, ČR Denníky je možné poslať aj cez Internet na adresu: eusprint@dl6rai. muc.de. Prameň: originálne podmienky r. 1998.

YU DX CONTEST

Termín: 18.-19.4.1998 od 12,00 do 12,00 UTC. Nadväzujú sa spojenia so všetkými stanicami. S tou istou stanicou je možné nadviazať na jednom pásme CW aj SSB QSO. Pásma: 1,8 - 28 MHz. Módy: CW, SSB. Kategórie: SO (CW, SSB, MIX), MS (platí 10-min. pravidlo). Súťažný kód: RS(T) + číslo ITU zóny (OM, OK = 28). Bodovanie: vlastná ITU zóna = 1 b., EU = 3 b., DX = 5 b. Násobiče: ITU zóny a juhoslávske prefixy na každom pásme zvlášť bez ohľadu na mód. Denníky: do 30 dní po conteste na adresu: SRJ, YU DX Contest, 48, 11001 Beograd, P.O.Box Yugoslavia. Prameň: podmienky z r. 1997.

HOLYLAND CONTEST

Termín: 18,-19.4.1998 od 18,00 do 18,00 UTC. Nadväzujú sa spojenia len so 4X stanicami, s jednou stanicou je možné nadviazať na každom pásme jedno CW a jedno SSB QSO. Pásma: 1,8 - 28 MHz. Módy: CW a SSB. Kategórie: SOAB, MS, SWL. Súťažný kód: RS(T) + poradové číslo QSO od 001; 4X stn dávajú RS(T) + oblasť. Bodovanie: QSO na 1,8, 3,5 a 7 MHz = 2 b., QSO na 14, 21,28 MHz = 1 b. Násobiče: jednotlivé 4X oblasti na každom pásme zvlášť. Označenie oblasti sa skladá z piatich znakov, napr. E14TA, H08HF atd'., z ktorých prvé tri označujú geografický štvorec a posledné dva skratku regiónu. Izraelské stanice môžu počas contestu meniť QTH a môžu pracovať až z piatich rôznych oblastí, pričom z každej oblasti musia pracovať pod inou značkou. Rozlíšenie bude v tretej číslici prefixu, napr. 4X4JU bude používať 4X41JU, 4X42JU až 4X45JU. Denníky: do 31.5.1998 (každé pásmo a mód zvlášť) na adresu: IARC Contest Manager, P.O.Box 3003, Beer-Sheva 84130, Israel. Prameň: originálne podmienky r. 1998.

HANÁCKY POHÁR

Termín: 25.4.1998 od 05,00 do 06,29 UTC. Preteky sú organizované pre OK a OM stanice jednotlivcov. S každou stanicou je možné pracovať v pretekoch len raz. Pásmo: 3520 -3600 a 3700 - 3770 kHz. Módy: CW, SSB. Kategórie: MIX (CW+SSB), CW, SWL. Súťažný kód: RS(T) + dvojčíslie udávajúce počet rokov od koncesie vydania operátora. Bodovanie: 1 QSO = 1 b. Výsledok:

súčet bodov za spojenia. Hodnotia sa len spojenia so stanicami, ktoré pošlú denník a ktoré urobia viac ako 5 QSO. V prípade rovnosti bodov rozhoduje počet spojení v prvých 20, príp. 40 minútach. Víťaz získava "Hanácky pohár", ktorý je možné získať natrvalo za tri víťazstvá po sebe alebo päť celkovo. Denníky: do 10 dní na adresu: Bohumil Křenek, OK2BOB, Kmochova 5, 779 00 Olomouc. Prameň: OK2BOB.

HELVETIA CONTEST

Termín: 25.-26.4.1998 od 13,00 do 13,00 UTC. Nadväzujú sa spojenia len so švajčiarskymi stanicami raz na každom pásme bez ohľadu na mód. Pásma: 1,8 - 28 MHz. Módy: CW, SSB. Kategórie: SOAB, MS, SWL. Súťažný kód: RS(T) + číslo QSO od 001; HB stanice dávajú naviac aj dvojpísmennú skratku kantonu. Bodovanie: 1 QSO = 3 b. Násobiče: jednotlivé kantony na každom pásme zvlášť. Denníky: do 31.5.1998 spolu so zoznamom násobičov podľa pásiem na adresu: Niklaus Zinsstag HB9DDZ, Salmendorfli 8, CH-5084 Rheinsulz, Switzerland. Zoznam skratiek kantonov: AG, AI, AR, BE, BL, BS, FR, GE, GL, GR, JU, LU, NE, NW, OW, SG, SH, SO, SZ, TG, TI, UR, VD, VS, ZG, ZH. Prameň: podmienky z r. 1997.

SPDX RTTY CONTEST

Termín: 25.-26.4.1998 od 12,00 do 12,00 UTC. Nadväzujú sa RTTY spojenia so všetkými stanicami. Pásma: 3,5 - 28 MHz. Kategórie: A - SOAB, B - MS, C - SWL. Súťažný kód: RST + poradové číslo QSO od 001; SP stn dávajú RST + skratku vojvodstva. Bodovanie: vlastná zem = 2 b., EU = 5 b., DX =10 b. Násobiče: zeme DXCC a SP vojvodstvá na každom pásme zvlášť. Zvláštnymi násobičmi sú aj kontinenty bez ohľadu na pásma (max. 6). Výsledok: súčet QSO bodov x (súčet zemí + súčet provincií) x súčet kontinentov (max. 6). Denníky: do 30.5.1998 aj v elektronickej forme (WF1B) na adresu: SPDX RTTY Contest Manager, Christopher Ulatowski, P.O.Box 253, 81-963 Gdynia 1, Poland, e-mail: szuwarek@manta.univ.gda.pl. Prameň: originálne podmienky r. 1998.

> Rubriku pripravil a spracoval: Roman Kudláč, OM3EI

