Teorema 8.1.2

Sea λ un valor característico de la matriz A de $n \times n$ y sea $E_{\lambda} = \{v: Av = \lambda v\}$. Entonces E_{λ} es un subespacio de \mathbb{C}^n .

Demostración

Si $A\mathbf{v} = \lambda \mathbf{v}$, entonces $(A - \lambda I)\mathbf{v} = \mathbf{0}$. Así, E_{λ} es el espacio nulo de la matriz $A - \lambda I$, que por el ejemplo 5.5.10, es un subespacio* de \mathbb{C}^n .

D

Definición 8.1.3

Espacio característico

Sea λ un valor característico de A. El subespacio E_{λ} se denomina espacio característico o propio** de A correspondiente al valor característico λ .

Ahora se probará otro resultado útil.

Teorema 8.1.3

Sea A una matriz de $n \times n$ y sea $\lambda_1, \lambda_2, \ldots, \lambda_m$ valores característicos distintos de A (es decir, $\lambda_i \neq \lambda_j$ si $i \neq j$) con vectores característicos correspondientes $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$. Entonces $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$ son linealmente independientes. Esto es, los vectores característicos correspondientes a valores característicos distintos son linealmente independientes.

Demostración

Se llevará a cabo la demostración por inducción matemática. Comenzando con m=2, suponga que

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{0} \tag{8.1.5}$$

Multiplicando ambos lados de (8.1.5) por A se tiene

$$\mathbf{0} = A(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2) = c_1 A \mathbf{v}_1 + c_2 A \mathbf{v}_2$$

o sea (como $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ para i = 1, 2)

$$c_1 \lambda_1 \mathbf{v}_1 + c_2 \lambda_2 \mathbf{v}_2 = \mathbf{0}$$
 (8.1.6)

Se multiplica (8.1.5) por λ_1 y se resta de (8.1.6) para obtener

$$(c_1\lambda_1\mathbf{v}_1 + c_2\lambda_2\mathbf{v}_2) - (c_1\lambda_1\mathbf{v}_1 + c_2\lambda_2\mathbf{v}_2) = \mathbf{0}$$

o sea

$$c_2(\lambda_1 - \lambda_2)\mathbf{v}_2 = \mathbf{0}$$

Como $\mathbf{v}_2 \neq \mathbf{0}$ (por definición de vector característico) y como $\lambda_1 \neq \lambda_2$, se concluye que $c_2 = 0$. Entonces, sustituyendo $c_2 = 0$ en (8.1.5), se ve que $c_1 = 0$, lo que prueba el teorema en

^{*} En el ejemplo 5.5.10, se vio que N_A es un subespacio de \mathbb{R}^n si A es una matriz real. La extensión de este resultado a \mathbb{C}^n no presenta difficultades

^{**} Observe que $\mathbf{0} \in E_{\lambda}$, ya que E_{λ} es un subespacio. Sin embargo, $\mathbf{0}$ no es un vector característico.