数字图像处理

MATLAB简介 赵毅力 ylzhao@swfu.edu.cn 大数据与智能工程学院 西南林业大学

MATLAB

- MATLAB是一个科学计算和仿真模拟的软件平台,由 一系列工具箱组成:
 - Aerospace Toolbox
 - Antenna Toolbox
 - Bioinformatics Toolbox
 - Communications System Toolbox
 - Computer Vision System Toolbox
 - Image Processing Toolbox
 - Control System Toolbox
 - Curve Fitting Toolbox
 - Data Acquisition Toolbox
 - ...
- http://cn.mathworks.com/

MATLAB - Matrix Laboratory

Evolution of MATLAB

变量赋值

- a = 1
- b = 2
- c = a + b
- d = cos(a)
- sin(a)
- e = a * b;

向量和矩阵

- 矩阵是二维数组
- 1x1的矩阵称为**标量**
- 只有一行的矩阵称为**行向量**
- 只有一列的矩阵成为**列向量**

输入矩阵

• A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

```
A =

16  3  2  13
  5  10  11  8
  9  6  7  12
  4  15  14  1
```

一些常用的矩阵生成函数

- magic 魔方矩阵
- zeros 全零矩阵
- ones 全一矩阵
- eye 单位矩阵
- rand 均与分布矩阵
- randn 正态分布矩阵

矩阵和数组

- A1 = [1234] % 行向量
- A2 = [1;2;3;4] % 列向量
- B = [1 2 3; 4 5 6; 7 8 9] % 矩阵
- Z = zeros(5, 1)
- C = A + 10
- D = sin(A)
- E = B' % 转置
- F = inv(B) % 逆矩阵
- P = B * E % 矩阵乘法
- W = B .* B % 矩阵点乘
- A.^3 % 元素点乘

矩阵连接

- A = [123; 456; 789]
- A1 = [A, A] % 水平方向连接
- A2 = [A; A] % 垂直方向连接

矩阵求和

• sum(A)

```
ans =
```

34 34 34 34

指定矩阵计算的维度

• sum(A, 2)

```
ans =

34
34
34
34
34
```

矩阵转置

• A'

```
ans =

16 5 9 4

3 10 6 15

2 11 7 14

13 8 12 1
```

对角矩阵

• sum(diag(A))

ans =

34

magic函数

• M = magic(4)

```
M =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
```

矩阵重排序

• C = M(:, [1324])

```
C =

16  3  2  13

5  10  11  8

9  6  7  12

4  15  14  1
```

```
M =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1
```

删除矩阵中的行或列

- A = magic(4)
- X = A
- X(:,2) = []

矩阵索引

- A = magic(4)
- A(4,2) % 行和列下标
- A(8) %线性索引
- A(4,5) %线性索引超出矩阵维度?
- A(1:3, 2) % 使用冒号来引用多个元素
- A(3,:)
- C = 0:10:100 % 范围
- D = 0:10

逻辑数组

- A = [13057];
- L = logical(A);
- A(L)

逻辑运算

逻辑运算	含义
A & B, and(A, B)	逻辑与
~A, not(A)	逻辑非
A B, or(A, B)	逻辑或
xor(A, B)	逻辑异或
all(A)	判断是否全零
any(A)	判断是否有非零元素
logical(A)	把数值矩阵转换为逻辑矩阵
islogical(A)	判断矩阵是否为逻辑矩阵

逻辑下标

- A = magic(4)
- 问题: 将矩阵A中所有非素数全部设置为0
- isprime(A)

find 函数

- find:寻找矩阵中的非零元素及其索引
- A = magic(4)
- 问题: 搜索矩阵A中的所有素数及其位置?
- (1) 首先将矩阵A中所有非素数置为零;
- (2) 使用find函数寻找素数的位置。

关系运算

关系运算	含义
<	小于
<=	小于等于
>	大于
>=	大于等于
==	相等
~=	不相等

特殊的函数

рi

3.14159265...

i

Imaginary unit, $\sqrt{-1}$

j

Same as i

eps

Floating-point relative precision, $\varepsilon = 2^{-52}$

realmin

Smallest floating-point number, 2^{-1022}

realmax

Largest floating-point number, $(2-\varepsilon)2^{1023}$

Inf

Infinity

NaN

Not-a-number

复数

- sqrt(-1)
- C = [3+4i, 4+3j; -i, 10j]

省略号的用法

- s = 1 1/2 + 1/3 1/4 ...
- + 1/5 1/6 + 1/7

字符串

- mytext = 'Hello, world!'
- otherText = 'You''re right'
- longText = [myText, '-', otherText] %字符串连接
- f = 71; c = (f 32) / 1.8;
- tempText = ['Temperature is ', num2str(c), 'C']

字符串输出

- str = 'MATLAB';
- display(str);
- fprintf('%s\n', str);

字符串转换

- n1 = 3.14;
- s1 = num2str(n1);
- n2 = str2num(s1);

工作区变量

- whos
- whos A
- save(myfile.mat, A)
- clear
- clear A
- load(myfile.mat)

- %查看工作区所有变量信息
- %查看工作区变量A的信息
- %将变量A保存为.mat文件
- %清除工作区所有变量
- %清除工作区变量A
- %从.mat文件加载变量

函数调用

- A = [1 3 5];
- maxA = max(A)
- C = [1064];
- maxC = max(A, C)
- [maxA, loc] = max(A) % 计算最大值及其位置
- clc %清除命令行的内容

绘制二维图形

- x = 0:pi/100:2*pi;
- $y = \sin(x)$
- plot(x, y)
- xlabel('x')
- ylabel('sin(x)')
- title('Plot of the Sine function')

绘制Sine函数图形

绘制Sine函数图形

• plot(x, y, 'r--')

绘制Sine函数图形

线型

Specifier	Line Style
_	Solid line
	Dashed line
:	Dotted line
- ,	Dash-dot line

标记形状

Specifier	Marker
0	Circle
+	Plus sign
*	Asterisk
•	Point
X	Cross
S	Square

绘制颜色

Specifier	Color
У	yellow
m	magenta
С	cyan
r	red
g	green
b	blue
W	white
k	black

Hold on / hold off

- x = 0:pi/20:2*pi;
- $y = \sin(x)$;
- plot(x, y, 'm-*')
- hold on
- y2 = cos(x);
- plot(x, y2, 'c--o')
- legend('sin', 'cos')
- hold off

绘制正弦和余弦函数图形

- [X, Y] = meshgrid(-2:.2:2);
- $Z = X .* exp(-X.^2 Y.^2);$
- surf(X, Y, Z)

- [X, Y] = meshgrid(-2:.2:2);
- $Z = X .* exp(-X.^2 Y.^2);$
- mesh(X, Y, Z)

子图 - subplot

```
t = 0:pi/10:2*pi;
w1 = sin(t);
w2 = cos(t);
subplot(1,2,1); plot(t,w1); title('sin');
subplot(1,2,2); plot(t,w2); title('cos');
```

子图 - subplot

程序设计与脚本

• 使用MATLAB实现快速排序算法

流程控制

if elseif else
for
while
switch case otherwise
break
continue
try catch

脚本位置

设置搜索路径

帮助和文档

doc mean

help mean

数组类型

多维数组

细胞数组

多维数组

- p = perms(1:4);
- A = magic(4);
- M = zeros(4, 4, 24);
- for k = 1 : 24
- M(:, :, k) = A(:, p(k, :));
- end

多维数组

多维数组求和

- sum(M, 1)
- sum(M, 2)
- sum(M, 3)

细胞数组

- M = cell(8, 1);
- for n = 1:8
- M{n} = magic(n);
- end

细胞数组

结构体

```
• S.name = 'Ed Plum';
• S.score = 83;
• S.grade = 'A+';
• S(2).name = 'Toni Miller';
• S(2).score = 91;

    S(2).grade = 'A-';

    S(3) = struct('name', 'Jerry Garcia', 'score', 70,... 'grade',

   'C')
```

结构体

- scores = [S.score];
- names = {S.name};
- [N1 N2 N3] = S.name;

函数

```
function f = fact(n)
%FACT    Compute the factorial of n
%    f = fact(n) computes the factorial of n
f = prod(1:n);
```

函数句柄

- h = @fact
- h(4)

匿名函数

- $sqr = @(x) x.^2$
- a = sqr(5)
- b = sqr([1 2 3])

匿名函数

• 计算积分

$$\int_{x=0}^{\infty} e^{-x^2} (\ln x)^2$$

- q = integral(fun, xmin, xmax)
- fun = $@(x) \exp(-x.^2).*log(x).^2$
- q = integral(fun, 0, Inf)

代码优化

数组预分配

循环向量化

数组预分配

```
function y = sinfun1(M)
x = 0:M-1;
for k = 1:numel(x)
    y(k) = sin(x(k) / (100*pi));
end
```

```
function y = sinfun2(M)
x = 0:M-1;
y = zeros(1, numel(x));
for k = 1:numel(x)
    y(k) = sin(x(k) / (100*pi));
end
```

```
tic; sinfun1(20000); toc
tic; sinfun2(20000); toc
```

```
M = 20000;
f1 = @() sinfun1(M);
f2 = @() sinfun2(M);
t1 = timeit(f1);
t2 = timeit(f2);
```

数组预分配

a b

FIGURE 1.3

(a) Approximate execution times for function sinfun1 as a function of M. (b) Approximate times for function sinfun2. The glitches were caused by interval variations in memory paging. The time scales in (a) and (b) are different.

循环向量化

```
function y = sinfun3(M)
x = 0:M-1;
y = sin(x ./ 100*pi);
```