福建师范大学<u>数学与统计</u>学院 2024 — 2025 学年第 2 学期<u>高等数学 B</u>期中试卷 参老解析与评分细则

		参考解析与评分细则
		知明符章 直湖城户
		专 业:全校性专业 年 级:2024 课程名称:高等数学 B (下) 任课教师:
操 操		考試时间: 2025 年 4 月 26 日上 午 10 点 30 分 题号 一 二 三 四 五 六 七 总分 得分
间 姓名		1. 答案一律写在答题纸上, 否则无效. 考生 2. 答题要写清题号,不必抄原题. 须知 3. 考试结束,试卷与答题纸一并提交.
信 ————————————————————————————————————	親	
生 专业 ——	Ţ	
₩ <i>\</i> \\(\)	採	

单选题(每小题3分,共15分)

1.
$$\lim_{n\to\infty} \frac{1}{n} \left[\sin\frac{\pi}{n} + \sin\frac{2\pi}{n} + \dots + \sin\frac{(n-1)\pi}{n} \right] = (D)$$

A.
$$\frac{1}{\pi}(1-\cos x)$$
 B. 2

C.
$$-\frac{2}{\pi}$$

D.
$$\frac{2}{\pi}$$

A.
$$\int_1^\infty \frac{dx}{x^2} = \int_0^1 \frac{dx}{x^2}$$
 都收敛

B.
$$\int_1^\infty \frac{dx}{x^2} = \int_0^1 \frac{dx}{x^2}$$
 都发散

C.
$$\int_1^\infty \frac{dx}{x^2}$$
 发散, $\int_0^1 \frac{dx}{x^2}$ 收敛

D.
$$\int_{1}^{\infty} \frac{dx}{x^{2}}$$
 收敛, $\int_{0}^{1} \frac{dx}{x^{2}}$ 发散

3. 设函数
$$f(x)$$
 连续,则 $\frac{d}{dx}\int_0^x f(x-t)dt = (C)$.

A.
$$f(x)$$

B.
$$-f(x)$$

C.
$$f(-x)$$

D.
$$-f(-x)$$

一、单选题(每小题 3 分,共 15 分)

1.
$$\lim_{n\to r} \frac{1}{n} [\sin\frac{\pi}{n} + \sin\frac{2\pi}{n} + \cdots + \sin\frac{(n-1)\pi}{n}] = (D)$$
.

A. $\frac{1}{\pi} (1-\cos x)$ B. 2 C. $-\frac{2}{\pi}$ D. $\frac{2}{\pi}$

2. 下列结论中正确的是(D).

A. $\int_{1}^{\infty} \frac{dx}{x^2} = \int_{0}^{1} \frac{dx}{x^3}$ 都收敛 B. $\int_{1}^{\infty} \frac{dx}{x^2} = \int_{0}^{1} \frac{dx}{x^3}$ 都发散 C. $\int_{1}^{\infty} \frac{dx}{x^2}$ 投散, $\int_{0}^{1} \frac{dx}{x^2}$ 收敛 D. $\int_{1}^{\infty} \frac{dx}{x^2}$ 收敛, $\int_{0}^{1} \frac{dx}{x^2}$ 发散 3. 设函数 $f(x)$ 连续,则 $\frac{d}{dx} \int_{0}^{x} f(x-t) dt = (C)$.

A. $f(x)$ B. $-f(x)$ C. $f(-x)$ D. $-f(-x)$

4. 直线 $\frac{x-1}{-1} = \frac{y-2}{-2} = \frac{z+1}{1}$ 与平面 $x+y-z=0$ 的夹角为(B).

A. $\arccos\frac{2\sqrt{2}}{3}$ B. $\arcsin\frac{2\sqrt{2}}{3}$ C. $-\arcsin\frac{2\sqrt{2}}{3}$ D. $-\arccos\frac{2\sqrt{2}}{3}$

5. 微分方程 y "+6 y '+13 y =0 的通解是(A).

A. $e^{-3x}(C_1\cos 2x + C_2\sin 2x)$ B. $e^{-x}(C_1\cos 2x + C_2\sin 2x)$ C. $e^{-2x}(C_1\cos 3x + C_2\sin 3x)$ D. $e^{2x}(C_1\cos 3x + C_2\sin 3x)$ D. $e^{2x}(C_1\cos 3x + C_2\sin 3x)$ T. $\frac{x}{2}$ $\frac{x}{2}$ $\frac{1}{2}$ $\frac{x}{2}$ $\frac{1}{2}$ $\frac{x}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

A.
$$\arccos \frac{2\sqrt{2}}{3}$$

B.
$$\arcsin \frac{2\sqrt{2}}{3}$$

C.
$$-\arcsin \frac{2\sqrt{2}}{3}$$

D.
$$-\arccos\frac{2\sqrt{2}}{3}$$

A.
$$e^{-3x}(C_1\cos 2x + C_2\sin 2x)$$

B.
$$e^{-x}(C_1\cos 2x + C_2\sin 2x)$$

$$e^{-2x}(C_1\cos 3x + C_2\sin 3x)$$

$$e^{2x}(C_1\cos 3x + C_2\sin 3x)$$

1.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4\cos^4 x dx = \underline{\frac{3\pi}{2}} \underline{\qquad}$$

2. 曲线
$$r = a\cos\theta(a > 0)$$
 的弧长 $s = ___ \pi a$ ____

$$3. \int_{\frac{2}{\pi}}^{+\infty} \frac{1}{x^2} \sin \frac{1}{x} dx = \underline{1}_{\underline{}}$$

4. 己知向量
$$\mathbf{a} = (-2,4,1), \mathbf{b} = (1,-2,2)$$
,则向量 \mathbf{a} 在 \mathbf{b} 上的投影 $\text{Prj}_{\mathbf{b}} \mathbf{a} = __4$ ____.

$$y'' - 6y' + 9y = 0$$
____.

三、(8分) 求
$$\lim_{x\to 0} \frac{x(e^x-1)}{\int_{\cos x}^1 e^{-t^2} dt}$$
.

解: 原式 =
$$\lim_{x\to 0} \frac{x^2}{\int_{\cos x}^1 e^{-t^2} dt}$$

$$= \lim_{x \to \infty} \frac{2x}{-e^{-\cos^2 x}(-\sin x)} \qquad \cdots 6 \, \hat{\mathcal{T}}$$

$$= \lim_{x \to 0} \frac{1}{e^{-\cos^2 x}} = 2e \qquad \cdots 8 \, \hat{\mathcal{T}}$$

四、(8分) 求定积分 $\int_0^4 e^{\sqrt{2x+1}} dx$.

且
$$x = 0$$
 时, $t = 1$, $x = 4$ 时, $t = 3$ ······2 分

原式=
$$\int_1^3 e^t t dt = \int_1^3 t de^t$$

$$=te^{t}\big|_{1}^{3}-\int_{1}^{3}e^{t}dt \qquad \cdots 6 \ \mathcal{H}$$

$$=2e^3$$
 ······8 分

五、(8分) 求微分方程y"+(y') 2 +1=0的通解.

解:
$$\diamondsuit y' = p(x)$$
,则 $y'' = \frac{dp}{dx}$ ······2 分

代入得
$$\frac{dp}{dx} + p^2 + 1 = 0$$

$$\exists \frac{dp}{p^2 + 1} = -dx$$

积分得
$$\operatorname{arctan} p = -x + C_1$$
 ······4 分

即
$$\frac{dy}{dx} = -\tan(x - C_1)$$
 ······6 分

六、(8 分) 求平面 x+y+z-1=0 上一直线 L ,使其与直线 $\frac{x-1}{2} = \frac{y-1}{1} = \frac{z+1}{-1}$ 垂直相交.

解: 取所求直线得方向向量
$$s = \begin{vmatrix} i & j & k \\ 1 & 1 & 1 \\ 2 & 1 & -1 \end{vmatrix} = (-2,3,-1)$$
 ······4 分

又
$$\begin{cases} \frac{x-1}{2} = \frac{y-1}{1} = \frac{z+1}{-1} = t \\ x+y+z-1=0 \end{cases}$$
, 得
$$\begin{cases} t = 0 \\ x = 1 \\ y = 1 \\ z = -1 \end{cases}$$
6 分

故所求直线方程为
$$\frac{x-1}{-2} = \frac{y-1}{3} = \frac{z+1}{-1}$$
8 分

七、(8分) 设平面经过原点及点(6,-3,2)且与平面4x-y+2z=8垂直,求此平面方程.

解一: 由题意,设所有平面为
$$Ax + By + Cz = 0$$
 ······2 分

又平面过点(6,-3,2),则6A-3B+2C=0①

再由所求平面与平面4x-y+2z=8垂直

得
$$4A - B + 2C = 0$$
②