

# UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA





## Comparação entre algoritmos geradores das Distribuições Normal, Qui-Quadrado, F de Snedecor e t de Student através de simulação

Autor: Denis Camargo Schutz Orientador: Professor Dr. Lori Viali

Porto Alegre, 09 de Julho de 2012.

### Universidade Federal do Rio Grande do Sul Instituto de Matemática Departamento de Estatística

## Comparação entre algoritmos geradores das Distribuições Normal, Qui-Quadrado, F de Snedecor e t de Student através de simulação

Autor: Denis Camargo Schutz

Monografia apresentada para obtenção do grau de Bacharel em Estatística.

Banca Examinadora:

Professor Dr. Lori Viali (orientador)

Professor Dr. Hubert Ahlert (convidado)

Porto Alegre, 09 de Julho de 2012.

Dedico este trabalho a meus pais, Aldemira Fátima de Camargo Schutz e João Carlos Schutz, por terem me dado a vida e sempre batalharem ao máximo para que eu pudesse estudar.

#### **RESUMO**

O presente trabalho faz uma comparação, através de Simulação Monte Carlo, entre diferentes algoritmos para geração de números aleatórios das distribuições Normal, Qui-Quadrado, F de Snedecor e t de Student. Estas quatro distribuições são muito empregadas em Estatística e têm como característica em comum não serem integráveis analiticamente. Foram utilizadas 100 replicações, com diferentes tamanhos de amostra para cada distribuição. As análises descritivas foram realizadas mediante a comparação das estimativas médias de cada algoritmo ao longo das 100 amostras com os valores "exatos" da distribuição. Também foi estimado o erro padrão, e gráficos foram gerados para algumas medidas-resumo, tais como a média, o desvio-padrão e a mediana. De forma geral, os resultados foram bastante equilibrados, pois, para um mesmo tamanho de amostra em uma dada distribuição, alguns algoritmos apresentaram um comportamento semelhante.

Palavras-chave: Simulação Monte Carlo. Algoritmos. Geração de números aleatórios. Distribuição Normal. Distribuição Qui-Quadrado. Distribuição F de Snedecor. Distribuição t de Student. Amostra.

## **LISTA DE FIGURAS**

| Figura 1 – Gráfico da distribuição normal padrão, com média $\mu$ = 0 e variância $\sigma^2$ = 1                                                                     | . 21 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figura 2 – Gráfico da função gama no domínio dos números reais positivos<br>Figura 3 – Gráfico da Distribuição t de Student para alguns valores de $\nu$ comparada à | . 23 |
| Distribuição Normal (em preto)                                                                                                                                       | . 24 |
| Figura 4 – Gráfico da Distribuição Qui-Quadrado para alguns valores de $ u$                                                                                          | . 26 |
| Figura 5 – Gráfico da Distribuição F de Snedecor para m = 5 e n = 20                                                                                                 | . 28 |
| Figura 6 – Diagrama ilustrativo das relações entre as distribuições de probabilidade                                                                                 | . 30 |
| Figura 7 – Histograma de 1.000.000 números aleatórios gerados pelo algoritmo do<br>Mersenne Twister                                                                  | . 34 |
| Figura 8 – Gráfico de dispersão com 2000 pares de números aleatórios gerados em sequência                                                                            | . 35 |
| Figura 9 – Gráfico de dispersão com 32500 pares de números aleatórios gerados em sequência                                                                           | . 35 |
| Figura 10 – Histograma de 100 valores gerados da distribuição N(0,1) pelo algoritmo de<br>Kinderman-Monahan                                                          | . 61 |
| Figura 11 – Histograma de 1000 valores gerados da distribuição N(0,1) pelo algoritmo de Rejeição pela Distribuição Exponencial                                       | . 70 |
| Figura 12 – Histograma de 10000 valores gerados da distribuição N(0,1) pelo algoritmo de<br>Box-Muller                                                               | . 80 |
|                                                                                                                                                                      |      |

## **LISTA DE QUADROS**

| Quadro 1 – Gráficos dos valores estimados para a esperança da distribuição N(0,1) em 100 amostras de tamanho 100                        | . 53 |
|-----------------------------------------------------------------------------------------------------------------------------------------|------|
| Quadro 2 – Gráficos dos valores estimados para o desvio-padrão da distribuição N(0,1) em 100 amostras de tamanho 100                    |      |
| Quadro 3 – Gráficos dos valores estimados para o 2º quartil da distribuição N(0,1) em 100 amostras de tamanho 100                       | . 58 |
| Quadro 4 – Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma<br>distribuição N(0,1) em 100 amostras de tamanho 100     | . 60 |
| Quadro 5 – Gráficos dos valores estimados para a esperança da distribuição N(0,1) em 100 amostras de tamanho 1000                       |      |
| Quadro 6 – Gráficos dos valores estimados para o desvio-padrão da distribuição N(0,1) em 100 amostras de tamanho 1000                   | . 65 |
| Quadro 7 – Gráficos dos valores estimados para o 2º quartil da distribuição N(0,1) em 100 amostras de tamanho 1000                      | . 67 |
| Quadro 8 – Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma<br>distribuição N(0,1) em 100 amostras de tamanho 1000    |      |
| Quadro 9 – Gráficos dos valores estimados para a esperança da distribuição N(0,1) em 100 amostras de tamanho 10000                      |      |
| Quadro 10 – Gráficos dos valores estimados para o desvio-padrão da distribuição N(0,1) em 100 amostras de tamanho 10000                 | . 74 |
| Quadro 11 – Gráficos dos valores estimados para o 2º quartil da distribuição N(0,1) em 100 amostras de tamanho 10000                    | . 77 |
| Quadro 12 – Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma<br>distribuição N(0,1) em 100 amostras de tamanho 10000  | . 79 |
| Quadro 13 – Gráficos dos valores estimados para a esperança da distribuição $\chi^2$ (1) em 100 amostras de tamanho 100                 | . 86 |
| Quadro 14 - Gráficos dos valores estimados para a esperança da distribuição $\chi^2$ (17) em 100 amostras de tamanho 100                | . 86 |
| Quadro 15 – Gráficos dos valores estimados para a esperança da distribuição $\chi^2$ (50) em 100 amostras de tamanho 100                | . 87 |
| Quadro 16 – Gráficos dos valores estimados para o desvio-padrão da distribuição $\chi^2$ (1) em 100 amostras de tamanho 100             | . 89 |
| Quadro 17 – Gráficos dos valores estimados para o desvio-padrão da distribuição $\chi^2$ (17) em 100 amostras de tamanho 100            | . 89 |
| Quadro 18 – Gráficos dos valores estimados para o desvio-padrão da distribuição $\chi^2$ (50) em 100 amostras de tamanho 100            | . 90 |
| Quadro 19 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição $\chi^2$ (1) em 100 amostras de tamanho 100 |      |
| Quadro 20 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma                                                          |      |
| distribuição $\chi^2$ (17) em 100 amostras de tamanho 100                                                                               | . 93 |
| distribuição $\chi^2$ (50) em 100 amostras de tamanho 100                                                                               | . 94 |
| Quadro 22 – Histogramas de 100 valores gerados da Distribuição Qui-Quadrado pelo algoritmo Logaritmo Produto Uniformes                  | . 95 |
| Quadro 23 - Gráficos dos valores estimados para a esperança da distribuição $\chi^2$ (1) em 100 amostras de tamanho 1000                | 96   |

| Quadro 24 - Gráficos dos valores estimados para a esperança da distribuição $\chi^2$ (17) em 100 amostras de tamanho 1000                  | . 97 |
|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| Quadro 25 - Gráficos dos valores estimados para a esperança da distribuição $\chi^2$ (50) em 100 amostras de tamanho 1000                  | . 97 |
| Quadro 26 - Gráficos dos valores estimados para o desvio-padrão da distribuição $\chi^2$ (1) em 100 amostras de tamanho 1000               |      |
| Quadro 27 - Gráficos dos valores estimados para o desvio-padrão da distribuição $\chi^2$ (17) em 100 amostras de tamanho 1000              | 100  |
| Quadro 28 - Gráficos dos valores estimados para o desvio-padrão da distribuição $\chi^2$ (50) em 100 amostras de tamanho 10                |      |
| Quadro 30 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição $\chi^2$ (17) em 100 amostras de tamanho 1000  |      |
| Quadro 31 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição $\chi^2$ (50) em 100 amostras de tamanho 1000  | 104  |
| Quadro 32 – Histogramas de 1000 valores gerados da Distribuição Qui-Quadrado pelo algoritmo Soma Quadrados Normal                          | 106  |
| Quadro 33 - Gráficos dos valores estimados para a esperança da distribuição $\chi^2$ (1) em 100 amostras de tamanho 10000                  | 107  |
| Quadro 34 - Gráficos dos valores estimados para a esperança da distribuição $\chi^2$ (17) em 100 amostras de tamanho 10000                 | 108  |
| Quadro 35 - Gráficos dos valores estimados para a esperança da distribuição $\chi^2$ (50) em 100 amostras de tamanho 10000                 | 108  |
| Quadro 36 - Gráficos dos valores estimados para o desvio-padrão da distribuição $\chi^2$ (1) em 100 amostras de tamanho 10000              | 110  |
| Quadro 37 - Gráficos dos valores estimados para o desvio-padrão da distribuição $\chi^2$ (17) em 100 amostras de tamanho 10000             | 111  |
| Quadro 38 - Gráficos dos valores estimados para o desvio-padrão da distribuição $\chi^2$ (50) em 100 amostras de tamanho 10000             | 111  |
| distribuição $\chi^2$ (1) em 100 amostras de tamanho 10000                                                                                 | 114  |
| Quadro 40 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição $\chi^2$ (17) em 100 amostras de tamanho 10000 | 115  |
| Quadro 41 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição $\chi^2$ (50) em 100 amostras de tamanho 10000 | 115  |
| Quadro 42 – Histogramas de 10000 valores gerados da Distribuição Qui-Quadrado pelo algoritmo Logaritmo Produto Uniformes                   | 117  |
| Quadro 43 - Gráficos dos valores estimados para a esperança da distribuição F(1,5) em 100 amostras de tamanho 10000                        | 120  |
| 100 amostras de tamanho 10000                                                                                                              |      |
| em 100 amostras de tamanho 10000                                                                                                           |      |

| Quadro 47 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição F(1,5) em 100 amostras de tamanho 10000 | 124 |
|-------------------------------------------------------------------------------------------------------------------------------------|-----|
| Quadro 48 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição F(5,1) em 100 amostras de tamanho 10000 | 125 |
| Quadro 49 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição F(5,5) em 100 amostras de tamanho 10000 |     |
| Quadro 50 – Histogramas de 10000 valores gerados da Distribuição F pelo algoritmo F pela Beta                                       |     |
| Quadro 51 – Gráficos dos valores estimados para a esperança da distribuição t(3) em 100 amostras de tamanho 100                     |     |
| Quadro 52 - Gráficos dos valores estimados para a esperança da distribuição t(15) em 100 amostras de tamanho 100                    |     |
| Quadro 53 – Gráficos dos valores estimados para a esperança da distribuição t(30) em 100 amostras de tamanho 100                    |     |
| Quadro 54 – Gráficos dos valores estimados para o desvio-padrão da distribuição t(3) em 100 amostras de tamanho 100                 |     |
| Quadro 55 – Gráficos dos valores estimados para o desvio-padrão da distribuição t(15) em 100 amostras de tamanho 100                |     |
| Quadro 56 – Gráficos dos valores estimados para o desvio-padrão da distribuição t(30) em 100 amostras de tamanho 100                |     |
| Quadro 57- Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(3) em 100 amostras de tamanho 100      |     |
| Quadro 58 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(15) em 100 amostras de tamanho 100    |     |
| Quadro 59 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(30) em 100 amostras de tamanho 100    |     |
| Quadro 60 – Histogramas de 100 valores gerados da Distribuição t de Student pelo algoritmo Normal/Qui-Quadrado                      |     |
| Quadro 61 - Gráficos dos valores estimados para a esperança da distribuição t(3) em 100 amostras de tamanho 10000                   |     |
| Quadro 62 - Gráficos dos valores estimados para a esperança da distribuição t(15) em 100 amostras de tamanho 10000                  |     |
| Quadro 63 - Gráficos dos valores estimados para a esperança da distribuição t(30) em 100 amostras de tamanho 10000                  |     |
| Quadro 64 - Gráficos dos valores estimados para o desvio-padrão da distribuição t(3) em 100 amostras de tamanho 10000               | 143 |
| Quadro 65 - Gráficos dos valores estimados para o desvio-padrão da distribuição t(15) em 100 amostras de tamanho 10000              |     |
| Quadro 66 - Gráficos dos valores estimados para o desvio-padrão da distribuição t(30) em 100 amostras de tamanho 10000              | 144 |
| Quadro 67 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(3) em 100 amostras de tamanho 10000   | 146 |
| Quadro 68 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(15) em 100 amostras de tamanho 10000  |     |
| Quadro 69 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(30) em 100 amostras de tamanho 10000  |     |
| Quadro 70 – Histogramas de 10000 valores gerados da Distribuição t de Student pelo algoritmo Normal/Qui-Quadrado                    |     |
|                                                                                                                                     | _   |

## **LISTA DE TABELAS**

| 1 |
|---|
| 2 |
| 3 |
| 1 |
| 1 |
| 5 |
| 3 |
| 3 |
| 7 |
| 7 |
| 3 |
| 9 |
| 9 |
| 1 |
| 1 |
| 2 |
| 3 |
| 3 |
| 1 |
| 5 |
| 5 |
| 3 |
| 3 |
| 7 |
| 3 |
| 3 |
|   |

| Tabela 27 – Estimativas médias do algoritmo de Rejeição pela Distribuição Exponencial em 100 amostras de tamanho 1000 da distribuição N(0,1)       | 70 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Tabela 28 – Média e erro padrão dos tempos de execução, em segundos, medidos em 100 amostras de tamanho 10000 da distribuição N(0,1)               |    |
| Tabela 29 – Média e erro padrão dos valores estimados para a esperança da distribuição N(0,1) em 100 amostras de tamanho 10000                     | 71 |
| Tabela 30 – Média e erro padrão dos valores estimados para o máximo da distribuição N(0,1) em 100 amostras de tamanho 10000                        |    |
| Tabela 31 – Média e erro padrão dos valores estimados para o mínimo da distribuição                                                                | 73 |
| Tabela 32 – Média e erro padrão dos valores estimados para a amplitude da distribuição N(0,1) em 100 amostras de tamanho 10000                     |    |
| Tabela 33 – Média e erro padrão dos valores estimados para o desvio-padrão da                                                                      | 74 |
| Tabela 34 – Média e erro padrão dos valores estimados para a assimetria da distribuição                                                            | 75 |
| Tabela 35 – Média e erro padrão dos valores estimados para a curtose da distribuição                                                               | 75 |
| Tabela 36 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição                                                            | 76 |
| Tabela 37 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição N(0,1) em 100 amostras de tamanho 10000                    |    |
| Tabela 38 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição N(0,1) em 100 amostras de tamanho 10000                    |    |
| Tabela 39 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição N(0,1) em 100 amostras de tamanho 10000     |    |
| Tabela 40 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição N(0,1) em 100 amostras de tamanho 10000     |    |
| Tabela 41 – Estimativas médias do algoritmo de Box-Muller em 100 amostras de tamanho 10000 da distribuição N(0,1)                                  |    |
| Tabela 42 – Média e erro padrão dos valores estimados para a esperança da distribuição Qui-Quadrado em 100 amostras de tamanho 100                 |    |
| Tabela 43 – Média e erro padrão dos valores estimados para o máximo da distribuição                                                                | 87 |
| Tabela 44 – Média e erro padrão dos valores estimados para o mínimo da distribuição                                                                | 87 |
| Tabela 45 - Média e erro padrão dos valores estimados para a amplitude da distribuição Qui-Quadrado em 100 amostras de tamanho 100                 | •  |
| Tabela 46 – Média e erro padrão dos valores estimados para o desvio-padrão da distribuição Qui-Quadrado em 100 amostras de tamanho 100             |    |
| Tabela 47 – Média e erro padrão dos valores estimados para a assimetria da distribuição Qui-Quadrado em 100 amostras de tamanho 100                |    |
| Tabela 48 – Média e erro padrão dos valores estimados para a curtose da distribuição Qui-Quadrado em 100 amostras de tamanho 100                   |    |
| Tabela 49 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 100                |    |
| Tabela 50 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 100                |    |
| Tabela 51 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 100                |    |
| Tabela 52 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição Qui-Quadrado em 100 amostras de tamanho 100 |    |
| Tabela 53 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição Qui-Quadrado em 100 amostras de tamanho 100 |    |
| and all and any de de de de de de de la recente de la marine 100 mm.                                                                               | ٥_ |

| Tabela 54 – Estimativas médias do algoritmo Logaritmo Produto Uniformes em 100 amostras de tamanho 100 da Distribuição Qui-Quadrado                  | 95  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Tabela 55 – Média e erro padrão dos valores estimados para a esperança da distribuição Qui-Quadrado em 100 amostras de tamanho 1000                  |     |
| Tabela 56 – Média e erro padrão dos valores estimados para o máximo da distribuição Qui-Quadrado em 100 amostras de tamanho 1000                     |     |
| Tabela 57 – Média e erro padrão dos valores estimados para o mínimo da distribuição Qui-Quadrado em 100 amostras de tamanho 1000                     | 98  |
| Tabela 58 – Média e erro padrão dos valores estimados para a amplitude da distribuição Qui-Quadrado em 100 amostras de tamanho 1000                  | 98  |
| Tabela 59 – Média e erro padrão dos valores estimados para o desvio-padrão da distribuição Qui-Quadrado em 100 amostras de tamanho 1000              | 99  |
| Tabela 60 – Média e erro padrão dos valores estimados para a assimetria da distribuição Qui-Quadrado em 100 amostras de tamanho 1000                 | 101 |
| Tabela 61 – Média e erro padrão dos valores estimados para a curtose da distribuição Qui-Quadrado em 100 amostras de tamanho 1000                    | 101 |
| Tabela 62 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 1000                 | 101 |
| Tabela 63 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 1000                 | 102 |
| Tabela 64 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 1000                 | 102 |
| Tabela 65 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição Qui-Quadrado em 100 amostras de tamanho 1000  | 102 |
| Tabela 66 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição Qui-Quadrado em 100 amostras de tamanho 1000  | 103 |
| Tabela 67 – Estimativas médias do algoritmo Soma Quadrados Normal em 100 amostras de tamanho 1000 da Distribuição Qui-Quadrado                       | 105 |
| Tabela 68 – Média e erro padrão dos tempos de execução, em segundos, medidos em 100 amostras de tamanho 10000 da Distribuição Qui-Quadrado           |     |
| Tabela 69 - Média e erro padrão dos valores estimados para a esperança da distribuição Qui-Quadrado em 100 amostras de tamanho 10000                 | 107 |
| Tabela 70 - Média e erro padrão dos valores estimados para o máximo da distribuição Qui-Quadrado em 100 amostras de tamanho 10000                    | 109 |
| Tabela 71 - Média e erro padrão dos valores estimados para o mínimo da distribuição Qui-Quadrado em 100 amostras de tamanho 10000                    | 109 |
| Tabela 72 - Média e erro padrão dos valores estimados para a amplitude da distribuição Qui-Quadrado em 100 amostras de tamanho 10000                 | 109 |
| Tabela 73 - Média e erro padrão dos valores estimados para o desvio-padrão da distribuição Qui-Quadrado em 100 amostras de tamanho 10000             | 110 |
| Tabela 74 – Média e erro padrão dos valores estimados para a assimetria da distribuição Qui-Quadrado em 100 amostras de tamanho 10000                | 112 |
| Tabela 75 – Média e erro padrão dos valores estimados para a curtose da distribuição Qui-Quadrado em 100 amostras de tamanho 10000                   | 112 |
| Tabela 76 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 10000                | 112 |
| Tabela 77 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 10000                | 113 |
| Tabela 78 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 10000                | 113 |
| Tabela 79 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição Qui-Quadrado em 100 amostras de tamanho 10000 |     |
| Tabela 80 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição Qui-Quadrado em 100 amostras de tamanho 10000 |     |

| Tabela 81 – Estimativas médias do algoritmo Logaritmo Produto Uniformes em 100 amostras de tamanho 10000 da Distribuição Qui-Quadrado               | 116 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Tabela 82 – Média e erro padrão dos tempos de execução, em segundos, medidos em 100 amostras de tamanho 10000 da Distribuição F                     | )   |
| Tabela 83 - Média e erro padrão dos valores estimados para a esperança da distribuição F em 100 amostras de tamanho 10000                           |     |
| Tabela 84 - Média e erro padrão dos valores estimados para o máximo da distribuição F em 100 amostras de tamanho 10000                              | 121 |
| Tabela 85 - Média e erro padrão dos valores estimados para o mínimo da distribuição F em 100 amostras de tamanho 10000                              | 1   |
| Tabela 86 - Média e erro padrão dos valores estimados para a amplitude da distribuição F em 100 amostras de tamanho 10000                           |     |
| Tabela 87 - Média e erro padrão dos valores estimados para o desvio-padrão da distribuição F em 100 amostras de tamanho 10000                       | 121 |
| Tabela 88 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição F em 100 amostras de tamanho 10000                          | 123 |
| Tabela 89 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição F em 100 amostras de tamanho 10000                          | 123 |
| Tabela 90 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição F em 100 amostras de tamanho 10000                          | 123 |
| Tabela 91 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição F em 100 amostras de tamanho 10000           | 123 |
| Tabela 92 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição F em 100 amostras de tamanho 10000           | 124 |
| Tabela 93 – Estimativas médias do algoritmo F pela Beta em 100 amostras de tamanho 10000 da Distribuição F                                          | 126 |
| Tabela 94 – Média e erro padrão dos valores estimados para a esperança da distribuição t de Student em 100 amostras de tamanho 100                  | 130 |
| Tabela 95 – Média e erro padrão dos valores estimados para o máximo da distribuição t de Student em 100 amostras de tamanho 100                     |     |
| Tabela 96 – Média e erro padrão dos valores estimados para o mínimo da distribuição t de Student em 100 amostras de tamanho 100                     | 132 |
| Tabela 97- Média e erro padrão dos valores estimados para a amplitude da distribuição t de Student em 100 amostras de tamanho 100                   | 133 |
| Tabela 98 – Média e erro padrão dos valores estimados para o desvio-padrão da distribuição t de Student em 100 amostras de tamanho 100              | 133 |
| Tabela 99 – Média e erro padrão dos valores estimados para a assimetria da distribuição t de Student em 100 amostras de tamanho 100                 | 135 |
| Tabela 100 – Média e erro padrão dos valores estimados para a curtose da distribuição t de Student em 100 amostras de tamanho 100                   | 135 |
| Tabela 101 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição t de Student em 100 amostras de tamanho 100                | 135 |
| Tabela 102 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição t de Student em 100 amostras de tamanho 100                | 135 |
| Tabela 103 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição t de Student em 100 amostras de tamanho 100                | 136 |
| Tabela 104 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição t de Student em 100 amostras de tamanho 100 |     |
| Tabela 105 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t de Student em 100 amostras de tamanho 100 | 136 |
| Tabela 106 – Estimativas médias do algoritmo Normal/Qui-Quadrado em 100 amostras de tamanho 100 da Distribuição t de Student                        |     |
| Tabela 107 – Média e erro padrão dos tempos de execução, em segundos, medidos em 100 amostras de tamanho 10000 da Distribuição t de Student         |     |

| Tabela 108 - Média e erro padrão dos valores estimados para a esperança da distribuição t de Student em 100 amostras de tamanho 10000                 |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Tabela 109 - Média e erro padrão dos valores estimados para o máximo da distribuição t de Student em 100 amostras de tamanho 10000                    |     |
| Tabela 110 - Média e erro padrão dos valores estimados para o mínimo da distribuição t de Student em 100 amostras de tamanho 10000                    | 142 |
| Tabela 111- Média e erro padrão dos valores estimados para a amplitude da distribuição t de Student em 100 amostras de tamanho 10000                  | 142 |
| Tabela 112 - Média e erro padrão dos valores estimados para o desvio-padrão da distribuição t de Student em 100 amostras de tamanho 10000             | 142 |
| Tabela 113 – Média e erro padrão dos valores estimados para a assimetria da distribuição t de Student em 100 amostras de tamanho 10000                | 144 |
| Tabela 114 – Média e erro padrão dos valores estimados para a curtose da distribuição t de Student em 100 amostras de tamanho 10000                   | 144 |
| Tabela 115 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição t de Student em 100 amostras de tamanho 10000                | 145 |
| Tabela 116 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição t de Student em 100 amostras de tamanho 10000                | 145 |
| Tabela 117 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição t de Student em 100 amostras de tamanho 10000                | 145 |
| Tabela 118 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição t de Student em 100 amostras de tamanho 10000 |     |
| Tabela 119 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t de Student em 100 amostras de tamanho 10000 | 146 |
| Tabela 120 – Estimativas médias do algoritmo Normal/Qui-Quadrado em 100 amostras de tamanho 10000 da Distribuição t de Student                        | 148 |
| Tabela 121 – Algoritmos "vencedores" para cada distribuição                                                                                           | 151 |

## SUMÁRIO

| 1. INTRODUÇÃO                                                           | 18 |
|-------------------------------------------------------------------------|----|
| 1.1 Tema e objetivos                                                    | 19 |
| 1.2 Justificativas                                                      | 19 |
| 2. REVISÃO TEÓRICA                                                      | 20 |
| 2.1 A Distribuição Normal                                               | 20 |
| 2.2 A Função Gama                                                       | 22 |
| 2.3 A Distribuição t de Student                                         | 23 |
| 2.4 A Distribuição Qui-Quadrado                                         | 25 |
| 2.5 A Distribuição F de Snedecor                                        | 27 |
| 2.6 A Distribuição Gama                                                 | 28 |
| 2.7 Relações entre as distribuições                                     | 30 |
| 2.8 Considerações sobre as distribuições                                | 31 |
| 3. GERAÇÃO DE NÚMEROS ALEATÓRIOS                                        | 32 |
| 3.1 Geração de Variáveis Aleatórias Uniformes                           | 32 |
| 3.1.1 O Gerador de Números Pseudo-Aleatórios Mersenne Twister           | 33 |
| 3.2 Geração de Variáveis Aleatórias Não-Uniformes                       | 36 |
| 3.2.1 O Método de Inversão                                              | 36 |
| 3.2.2 O Método de Aceitação-Rejeição                                    | 37 |
| 3.2.3 O Método do Quociente de Uniformes                                | 38 |
| 3.2.4 Outros Métodos                                                    |    |
| 4. METODOLOGIA PARA A ANÁLISE COMPARATIVA DOS ALGORITMOS                | 40 |
| 5. GERADORES DE NÚMEROS ALEATÓRIOS DA DISTRIBUIÇÃO NORMAL               | 42 |
| 5.1 Geradores baseados no Método de Inversão                            | 42 |
| 5.1.1 Inversão Aproximada                                               |    |
| 5.1.2 Inversão pelas aproximações de Wichura                            | 42 |
| 5.2 Geradores baseados no Método de Aceitação-Rejeição                  |    |
| 5.2.1 Gerador Normal a partir da Distribuição de Cauchy                 |    |
| 5.2.2 Gerador Normal a partir da Distribuição Exponencial               |    |
| 5.2.3 Gerador de Marsaglia e Bray (1964)                                | 44 |
| 5.2.4 Gerador de Kinderman e Ramage (1976)                              | 45 |
| 5.3 Geradores baseados no Método do Quociente de Uniformes              | 47 |
| 5.3.1 Quociente de Uniformes de Kinderman e Monahan (1977)              | 47 |
| 5.3.2 Quociente de Uniformes de Leva (1992)                             | 48 |
| 5.3.3 Quociente de Uniformes exposto por Insúa, Jiménez e Martín (2009) | 48 |
| 5.4 Geradores baseados em outros métodos                                | 49 |
| 5.4.1 Soma de Doze Uniformes ou Método da Convolução                    | 49 |
| 5.4.2 Método de Box-Muller                                              | 49 |
| 5.4.3 Variante de Marsaglia                                             | 50 |
| 5.4.4 Método Ahrens-Dieter                                              |    |
| 6. ESTIMATIVAS DAS AMOSTRAS DA DISTRIBUIÇÃO NORMAL                      |    |
| 6.1 Estimativas com amostras de tamanho n = 100                         |    |
| 6.1.1 Esperança                                                         |    |
| 6.1.2 Máximo e Mínimo                                                   |    |
| 6.1.3 Amplitude                                                         |    |
| 6.1.4 Desvio-Padrão                                                     |    |
| 6.1.5 Assimetria                                                        |    |
| 6.1.6 Curtose                                                           | 56 |

| 6.1.7 Quartis                                                            |    |
|--------------------------------------------------------------------------|----|
| 6.1.8 Distância Interquartílica                                          | 59 |
| 6.1.9 Teste de Aderência                                                 | 59 |
| 6.1.10 Conclusões                                                        | 60 |
| 6.2. Estimativas com amostras de tamanho n = 1000                        | 61 |
| 6.2.1 Esperança                                                          | 61 |
| 6.2.2 Máximo e Mínimo                                                    | 62 |
| 6.2.3 Amplitude                                                          | 63 |
| 6.2.4 Desvio-Padrão                                                      | 64 |
| 6.2.5 Assimetria                                                         | 65 |
| 6.2.6 Curtose                                                            | 65 |
| 6.2.7 Quartis                                                            |    |
| 6.2.8 Distância Interquartílica                                          | 68 |
| 6.2.9 Teste de Aderência                                                 | 68 |
| 6.2.10 Conclusões                                                        | 69 |
| 6.3. Estimativas com amostras de tamanho n = 10000                       | 70 |
| 6.3.1 Tempo de Execução                                                  | 71 |
| 6.3.2 Esperança                                                          | 71 |
| 6.3.3 Máximo e Mínimo                                                    | 72 |
| 6.3.4 Amplitude                                                          | 73 |
| 6.3.5 Desvio-Padrão                                                      | 74 |
| 6.3.6 Assimetria                                                         | 75 |
| 6.3.7 Curtose                                                            | 75 |
| 6.3.8 Quartis                                                            |    |
| 6.3.9 Distância Interquartílica                                          | 78 |
| 6.3.10 Teste de Aderência                                                | 78 |
| 6.3.11 Conclusões                                                        | 79 |
| 7. GERADORES DE NÚMEROS ALEATÓRIOS DA DISTRIBUIÇÃO QUI-QUADRADO          | 81 |
| 7.1 Geradores baseados na Distribuição Gama                              |    |
| 7.2 Geradores baseados na Distribuição Normal                            | 82 |
| 7.2.1 Soma dos Quadrados de Normais                                      | 82 |
| 7.2.2 Aproximação Normal                                                 | 83 |
| 7.3 Gerador baseado na Distribuição Uniforme e na Distribuição Normal    | 83 |
| 7.3.1 Logaritmo do Produto de Uniformes                                  | 83 |
| 7.4 Gerador baseado na Distribuição Exponencial e na Distribuição Normal | 83 |
| 8. ESTIMATIVAS DAS AMOSTRAS DA DISTRIBUIÇÃO QUI-QUADRADO                 |    |
| 8.1 Estimativas com amostras de tamanho n = 100                          | 85 |
| 8.1.1 Esperança                                                          | 85 |
| 8.1.2 Máximo e Mínimo                                                    | 87 |
| 8.1.3 Amplitude                                                          | 88 |
| 8.1.4 Desvio-Padrão                                                      | 88 |
| 8.1.5 Assimetria                                                         | 90 |
| 8.1.6 Curtose                                                            | 91 |
| 8.1.7 Quartis                                                            |    |
| 8.1.8 Distância Interquartílica                                          |    |
| 8.1.9 Teste de Aderência                                                 |    |
| 8.1.10 Conclusões                                                        |    |
| 8.2 Estimativas com amostras de tamanho n = 1000                         |    |
| 8.2.1 Esperança                                                          |    |
| 8.2.2 Máximo e Mínimo                                                    | 98 |

| 8.2.3 Amplitude                                                            | 98    |
|----------------------------------------------------------------------------|-------|
| 8.2.4 Desvio-Padrão                                                        | 99    |
| 8.2.5 Assimetria                                                           | . 101 |
| 8.2.6 Curtose                                                              | . 101 |
| 8.2.7 Quartis                                                              | . 101 |
| 8.2.8 Distância Interquartílica                                            | . 102 |
| 8.2.9 Teste de Aderência                                                   | . 103 |
| 8.2.10 Conclusões                                                          | . 105 |
| 8.3. Estimativas com amostras de tamanho n = 10000                         | . 106 |
| 8.3.1 Tempo de Execução                                                    | . 106 |
| 8.3.2 Esperança                                                            | . 107 |
| 8.3.3 Máximo e Mínimo                                                      | . 109 |
| 8.3.4 Amplitude                                                            | . 109 |
| 8.3.5 Desvio-Padrão                                                        | . 110 |
| 8.3.6 Assimetria                                                           | . 112 |
| 8.3.7 Curtose                                                              | . 112 |
| 8.3.8 Quartis                                                              | . 112 |
| 8.3.9 Distância Interquartílica                                            | . 113 |
| 8.3.10 Teste de Aderência                                                  | . 114 |
| 8.3.11 Conclusões                                                          | . 116 |
| 9. GERADORES DE NÚMEROS ALEATÓRIOS DA DISTRIBUIÇÃO F                       | . 118 |
| 9.1 Gerador baseado na Distribuição Qui-Quadrado                           | . 118 |
| 9.2 Gerador baseado na Distribuição Beta                                   |       |
| 10. ESTIMATIVAS DAS AMOSTRAS DA DISTRIBUIÇÃO F                             | . 119 |
| 10.1 Estimativas com amostras de tamanho n = 10000                         | . 119 |
| 10.1.1 Tempo de Execução                                                   | . 119 |
| 10.1.2 Esperança                                                           | . 119 |
| 10.1.3 Máximo e Mínimo                                                     | . 121 |
| 10.1.4 Amplitude                                                           | . 121 |
| 10.1.5 Desvio-Padrão                                                       | . 121 |
| 10.1.6 Quartis                                                             | . 123 |
| 10.1.7 Distância Interquartílica                                           | . 123 |
| 10.1.8 Teste de Aderência                                                  | . 124 |
| 10.1.9 Conclusões                                                          |       |
| 11. GERADORES DE NÚMEROS ALEATÓRIOS DA DISTRIBUIÇÃO t DE STUDENT           | . 127 |
| 11.1 Método de Rejeição Polar                                              | . 127 |
| 11.2 Rejeição da densidade t(3)                                            | . 127 |
| 11.3 Gerador baseado na Distribuição Gama                                  | . 128 |
| 11.4 Gerador baseado na Distribuição Normal e na Distribuição Qui-Quadrado | . 128 |
| 12. ESTIMATIVAS DAS AMOSTRAS DA DISTRIBUIÇÃO t DE STUDENT                  | . 130 |
| 12.1 Estimativas com amostras de tamanho n = 100                           | . 130 |
| 12.1.1 Esperança                                                           | . 130 |
| 12.1.2 Máximo e Mínimo                                                     | . 132 |
| 12.1.3 Amplitude                                                           | . 133 |
| 12.1.4 Desvio-Padrão                                                       | . 133 |
| 12.1.5 Assimetria                                                          | . 135 |
| 12.1.6 Curtose                                                             | . 135 |
| 12.1.7 Quartis                                                             | . 135 |
| 12.1.8 Distância Interquartílica                                           | . 136 |
| 12.1.9 Teste de Aderência                                                  | . 136 |

| 12.1.10 Conclusões                                  | 138 |
|-----------------------------------------------------|-----|
| 12.2. Estimativas com amostras de tamanho n = 10000 | 139 |
| 12.2.1 Tempo de Execução                            | 140 |
| 12.2.2 Esperança                                    | 140 |
| 12.2.3 Máximo e Mínimo                              | 142 |
| 12.2.4 Amplitude                                    | 142 |
| 12.2.5 Desvio-Padrão                                | 142 |
| 12.2.6 Assimetria                                   | 144 |
| 12.2.7 Curtose                                      | 144 |
| 12.2.8 Quartis                                      | 145 |
| 12.2.9 Distância Interquartílica                    | 145 |
| 12.2.10 Teste de Aderência                          |     |
| 12.2.11 Conclusões                                  | 148 |
| 13. ALGORITMOS DISPONÍVEIS NO SOFTWARE R            |     |
| 14. ALGORITMOS "VENCEDORES" PARA CADA DISTRIBUIÇÃO  | 151 |
| 15. CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS   | 152 |
| REFERÊNCIAS                                         | 153 |

## 1. INTRODUÇÃO

Muitas vezes, profissionais da área de Ciências Exatas fazem uso de modelos probabilísticos para representar situações reais, ou então para descrever um experimento aleatório. Entretanto, mesmo com um modelo probabilístico, certas questões não podem ser resolvidas analiticamente e teremos de recorrer a estudos de simulação para obter aproximações de quantidades de interesse. De modo bastante amplo, estudos de simulação tentam reproduzir num ambiente controlado o que se passa com um problema real. Para tal propósito, a solução de um problema real envolverá a simulação de variáveis aleatórias de um ou mais modelos probabilísticos de interesse. A simulação de variáveis aleatórias supõe que o pesquisador disponha de um bom gerador de números aleatórios. Um número aleatório representa um valor da Distribuição Uniforme no intervalo [0; 1].

Originalmente, os números aleatórios eram gerados manualmente (simulação manual) ou mecanicamente, usando dados, roletas, etc. Isso se tornava muito trabalhoso ou mesmo impraticável quando era necessário gerar uma quantidade muito grande de números aleatórios, da ordem de 1.000 ou 10.000. A solução moderna foi substituir esses métodos de geração por simulação em computadores digitais, utilizando números pseudo-aleatórios em vez de números aleatórios.

Os números pseudo-aleatórios são obtidos por meio de algoritmos matemáticos recursivos determinísticos. Logo, um número pseudo-aleatório gerado numa iteração dependerá do número gerado na iteração anterior e, portanto, não será realmente aleatório, originando o nome pseudo-aleatório. (BUSSAB e MORETTIN, 2006). Além disso, toda sequência, por mais longa que seja, será finita, e o conjunto de valores gerados tenderá a repetir-se.

O propósito dos geradores de números pseudo-aleatórios é produzir uma sequência de números que aparentam ser gerados aleatoriamente de uma distribuição de probabilidade previamente especificada, tais como a Uniforme, a Normal, a Exponencial, etc. Tratam-se de programas de computador cujo objetivo é imitar ou simular o comportamento típico de uma sequência de variáveis aleatórias independentes. São algoritmos específicos, sequenciais e determinísticos (se inicializados em computadores ou momentos diferentes com o mesmo estado inicial ou semente, produzem a mesma sequência de números pseudo-aleatórios).

Os geradores de números pseudo-aleatórios são ingredientes cruciais para uma grande faixa de aplicações que envolvem a simulação de variáveis aleatórias, tais como experimentos estatísticos, sistemas estocásticos, análises numéricas com métodos de Monte Carlo, algoritmos probabilísticos, jogos de computador e criptografia, entre outros. (VIEIRA, RIBEIRO e CASTRO E SOUZA, 2004). Nesses estudos, espera-se que o(s) gerador(es) de números pseudo-aleatórios envolvido(s) seja(m) o mais eficiente possível, fornecendo valores muito próximos aos do modelo de interesse, com a maior rapidez e o menor custo computacional.

#### 1.1 Tema e objetivos

Este trabalho tem por objetivo comparar diferentes algoritmos geradores de números pseudo-aleatórios das distribuições Normal, t de Student, Qui-Quadrado e F de Snedecor através de simulação. Neste estudo, uma simulação pode ser entendida como uma particular realização de cada um desses modelos. Assim, os valores simulados podem ser considerados uma amostra aleatória de cada uma das distribuições. Tentar-se-á responder questões como, por exemplo: dentre os vários algoritmos existentes para a geração de uma distribuição normal padrão, qual o mais eficiente? Qual o mais simples e fácil de implementar? Qual o mais rápido? Que algoritmo converge mais rapidamente para a distribuição proposta?

#### 1.2 Justificativas

As distribuições Normal, t de Student, Qui-Quadrado e F de Snedecor são largamente utilizadas em diversos procedimentos estatísticos, tais como testes de hipóteses (paramétricos e não-paramétricos), intervalos de confiança, Inferência Bayesiana, etc. Entretanto, nenhuma delas é integrável analiticamante. Todos os valores dessas distribuições estão dispostos em tabelas, construídas por meio de técnicas de cálculo numérico. Daí, decorre o interesse e a necessidade de gerar números pseudo-aleatórios dessas distribuições quando se realiza um estudo de simulação, pois as amostras obtidas são supostas apresentar esses comportamentos por hipótese. Assim, seria conveniente gerar dados que, de fato, apresentem esses tipos de distribuições.

#### 2. REVISÃO TEÓRICA

A seguir, será feita uma revisão teórica da função gama e das distribuições de probabilidade Normal, t de Student, Qui-Quadrado, F de Snedecor e Gama. A função gama está presente em várias funções densidade de probabilidade, tais como nas distribuições t de Student, Qui-Quadrado, F de Snedecor e Gama. A Distribuição Gama será abordada pois, dependendo dos valores de seus parâmetros, esta poderá dar origem a uma Distribuição Qui-Quadrado.

#### 2.1 A Distribuição Normal

A Distribuição Normal é uma das distribuições de probabilidade que tem maiores aplicações na Estatística. É também conhecida como Distribuição de Gauss-Moivre-Laplace.

A Distribuição Normal foi introduzida pela primeira vez por Abraham de Moivre (1667-1754) em um artigo no ano de 1733, que foi reproduzido na segunda edição de seu *The Doctrine of Chances* (1738) no contexto da aproximação de distribuições binomiais para grandes valores de n. Seu resultado foi estendido por Pierre Simon Laplace (1749-1827), em seu livro *Analytical Theory of Probabilities* (1812), no que hoje é conhecido como Teorema de Moivre-Laplace. (WIKIPEDIA, 2012).

Laplace utilizou a Distribuição Normal na análise de erros de experimentos. Em 1805, Adrien-Marie Legendre (1752-1833) introduziu o método dos mínimos quadrados. Carl Friedrich Gauss (1777-1855), que alegava ter utilizado o método desde 1794, justificou-o rigorosamente em seus trabalhos de 1809, assumindo uma Distribuição Normal para os erros de observações astronômicas. Daí, deriva o motivo pelo qual esta distribuição é também chamada de distribuição dos erros. O nome "Distribuição Normal" foi atribuído independentemente por Charles S. Peirce, Francis Galton e Wilhelm Lexis, por volta de 1875.

Além de descrever uma série de fenômenos físicos e financeiros, a Distribuição Normal possui grande uso no campo da Estatística Inferencial, sendo imprescindível para o desenvolvimento da Amostragem, Estimação por intervalo e Testes de Hipóteses. É inteiramente descrita por seus parâmetros média e desvio padrão (ou, de forma equivalente, a variância), ou seja, conhecendo-se estes, consegue-se determinar qualquer probabilidade em uma Distribuição Normal.

Um uso conhecido da Distribuição Normal é que ela serve de aproximação para o cálculo de outras distribuições de probabilidade quando o número de observações se torna grande. Essa propriedade provém do Teorema Central do Limite, que afirma que "toda soma de variáveis aleatórias independentes de média finita e variância limitada é aproximadamente Normal, desde que o número de termos da soma seja suficientemente grande".

A função densidade de probabilidade da Distribuição Normal com média  $\mu$  e variância  $\sigma^2$  (de forma equivalente, desvio padrão  $\sigma$ ) é dada por:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)} \qquad \mu \in \Re, \sigma > 0 \qquad x \in \Re$$

Se a variável aleatória X segue esta distribuição, escreve-se X ~ N( $\mu$ ,  $\sigma^2$ ). Se  $\mu$  = 0 e  $\sigma$  = 1, a distribuição é chamada de distribuição normal padrão (ou normal standard ou normal reduzida ou normal centrada) e a função de densidade de probabilidade reduz-se a:

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{z^2}{2}\right)} \qquad z \in \Re$$

Esta função densidade é tão especial que recebe uma notação própria, a qual utiliza a letra grega  $\phi$  e a letra z .



Figura 1 – Gráfico da distribuição normal padrão, com média  $\mu$  = 0 e variância  $\sigma^2$  = 1

Fonte: elaborada pelo autor.

Uma Distribuição Normal possui as seguintes propriedades:

- Média = Mediana =  $\mu$ .
- Variância =  $\sigma^2$ .
- Assimetria = Curtose = 0.
- Sua função densidade de probabilidade não é integrável analiticamente, sendo necessário integração numérica ou o uso de tabelas para encontrar o valor das probabilidades.
- Os limites de sua função densidade f(x) tendem a zero quando x tende a infinito. Assim,  $\lim_{x\to -\infty} f(x) = 0 = \lim_{x\to +\infty} f(x)$ . Além disso, seu ponto de máximo (x,f(x)) é  $\left(\mu,\frac{1}{\sigma\sqrt{2\pi}}\right).$ 
  - É simétrica ao redor da média.

- Cerca de 68,26% dos valores da distribuição estão compreendidos no intervalo  $[\mu \sigma, \mu + \sigma]$ ; 95,44%, no intervalo  $[\mu 2\sigma, \mu + 2\sigma]$ ; e 99,73%, no intervalo  $[\mu 3\sigma, \mu + 3\sigma]$ . Este fato é conhecido como "regra 68-95-99,7" ou a "regra empírica" ou a "regra dos 3-sigmas".
- De acordo com o Teorema Central do Limite (TCL), a soma de uma grande quantidade de variáveis aleatórias (com algumas restrições) tende a uma Distribuição Normal.
- A idéia acima resulta que a soma de variáveis aleatórias Normais é ainda Normal com média igual à soma das médias. Se as variáveis forem independentes, a variância é igual à soma das variâncias.
- Se a e b são constantes conhecidas e se X segue uma Distribuição Normal  $(X \sim N(\mu, \sigma^2))$ , então aX + b  $\sim N(a\mu + b, a^2\sigma^2)$ .
- Se X e Y são variáveis aleatórias independentes que seguem Distribuição Normal, então a soma U = X + Y, a diferença V = X Y ou qualquer combinação linear W = aX + bY também são variáveis aleatórias com Distribuição Normal.
- Se X é uma variável aleatória N( $\mu$ ,  $\sigma^2$ ), então (X  $\mu$ ) /  $\sigma$  é uma variável aleatória normal padrão. Reciprocamente, se X é uma variável aleatória N(0,1), então  $\sigma$  X +  $\mu$  é uma variável aleatória N( $\mu$ ,  $\sigma^2$ ).

#### 2.2 A Função Gama

A função gama foi introduzida por Leonhard Paul Euler (1707-1783), por volta de 1730, como resultado de uma pesquisa sobre uma forma de interpolação da função fatorial. Posteriormente, foi estudada por outros matemáticos, incluindo Adrien-Marie Legendre (1752-1833), que, em 1809, a denominou de "função gama" e introduziu a notação  $\Gamma(.)$ , utilizada atualmente.

Matematicamente, a função gama é considerada uma extensão do fatorial para o domínio dos números complexos, com exceção dos números inteiros negativos, sendo definida por:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \qquad t \in [0, \infty) \qquad x \in \Re^+$$

Esta expressão é também conhecida como Segunda Integral de Euler.

Graficamente, a função gama tem um comportamento estranho, especialmente para os números negativos devido aos pontos de descontinuidade. A figura abaixo mostra o gráfico da função gama apenas para os números reais positivos, os quais são de maior interesse neste trabalho.



Figura 2 – Gráfico da função gama no domínio dos números reais positivos

Fonte: elaborada pelo autor.

Ela apresenta algumas propriedades peculiares:

- Se  $n \in \mathbb{N}$ , então  $\Gamma(n) = (n-1)!$
- A função gama é recursiva, isto é,  $\Gamma(x) = x\Gamma(x-1)$
- Outro resultado é dado pela fórmula de reflexão de Euler:

$$\Gamma(1-x)\Gamma(x) = \frac{\pi}{sen(\pi x)}$$

#### 2.3 A Distribuição t de Student

A Distribuição t foi desenvolvida por William Sealey Gosset (1876-1937) em um artigo publicado na revista Biometrics em março de 1908, enquanto trabalhava como químico da cervejaria Guinness de Dublin, Irlanda. Como a empresa não permitia publicações com o nome real dos funcionários, ele utilizou o pseudônimo de "Student".

Gosset descobriu que o comportamento da variável  $Z=(\overline{X}-\mu_{\overline{x}})/\sigma_{\overline{x}}$ , quando o valor de  $\sigma$  fosse desconhecido e estimado por meio de pequenas amostras, distribuía-se simetricamente, com média zero, porém não normalmente, pois a variabilidade dependia do tamanho da amostra utilizada. Quanto menor fosse a amostra, mais variável seriam os resultados.

O modelo t de Student foi, então, caracterizado por um único parâmetro: o tamanho amostral. Em geral, esse parâmetro é especificado genericamente pela letra  $\nu$ , sendo denominado de "graus de liberdade". Quando é necessário estabelecer a relação com o tamanho da amostra, determina-se  $\nu$  = n - 1, ou seja, o número de elementos amostrais subtraído de uma unidade.

Todavia, a função densidade de probabilidade da que hoje é conhecida como Distribuição t de Student foi determinada por Fisher, e é definida por:

$$t_{v}(x) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{\pi v} \Gamma\left(\frac{v}{2}\right) \left(1 + \frac{x^{2}}{v}\right)^{\frac{v+1}{2}}} \qquad v = 1, 2, 3, \dots \qquad x \in \Re$$

na qual  $\Gamma$  é a função gama e  $\nu$  são os graus de liberdade (VIALI e BITTENCOURT, 2007).



Figura 3 – Gráfico da Distribuição t de Student para alguns valores de *V* comparada à Distribuição Normal (em preto)

Fonte: elaborada pelo autor.

A Distribuição t é simétrica e semelhante à curva normal padrão, porém com caudas mais altas, ou seja, uma simulação da t de Student pode gerar valores mais extremos que uma simulação da normal. Quanto maior for o valor de  $\nu$ , melhor será a aproximação com a distribuição normal padrão. A função densidade da distribuição t também não é integrável analiticamente.

A Distribuição t aparece naturalmente nos casos em que o verdadeiro valor do desvio padrão da população (que supõe-se seguir a Distribuição Normal) é desconhecido, e sua estimativa a partir dos dados amostrais, dada por  $S=\sqrt{\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\overline{X}\right)^2}$ , é utilizada para substituir o valor de  $\sigma_x$  (desconhecido) na equação do erro padrão  $\sigma_{\overline{x}}=\sigma_x/\sqrt{n}$ .

Supondo que o tamanho da amostra n seja extraído de uma população normal, temos que a amostra é formada por n variáveis aleatórias normais independentes  $X_1,...,X_n$ , cuja média

amostral  $\overline{X}=(X_1+...+X_n)/n$  é considerada o melhor estimador para a média  $\mu$  da população. Considerando  $S^2=\frac{1}{n-1}\sum_{i=1}^n \left(X_i-\overline{X}\right)^2$  como a variância amostral, temos o seguinte resultado:

A variável aleatória t dada por:

$$t=rac{\overline{X}-\mu}{S/\sqrt{n}}$$
 ou  $t=\sqrt{n}\,rac{\overline{X}-\mu}{S}$ , tem uma Distribuição t de Student com  $v=n$  - 1 graus

de liberdade.

O resultado acima também é utilizado no teste paramétrico t para comparação de duas médias populacionais, supondo que ambas as populações são normalmente distribuídas.

A Distribuição t possui as seguintes propriedades:

- Média = 0, para V > 1.
- Mediana = 0.

• Variância = 
$$\frac{v}{v-2}$$
, para  $v > 2$ .

- Assimetria = 0, para V > 3.
- Curtose =  $\frac{6}{v-4}$ , para v > 4.

#### 2.4 A Distribuição Qui-Quadrado

A Distribuição Qui-Quadrado ou  $\chi^2$  foi desenvolvida inicialmente, de acordo com Upton e Cook (2002), pelo físico alemão Ernst Carl Abbe (1840-1905) em 1863 e, de forma independente, pelo engenheiro geodesista alemão Friedrich Robert Helmert (1843-1917) em 1875. O modelo foi batizado e popularizado pelo estatístico britânico Karl Pearson (1857-1936) em 1900, ano no qual ele desenvolveu uma das aplicações mais populares do modelo: o teste de aderência.

A Distribuição Qui-Quadrado também é definida por um único parâmetro  $\nu$  que está relacionado ao tamanho amostral ( $\nu$  = n - 1). Outra maneira de caracterizá-la é como a soma dos quadrados de  $\nu$  normais padrão independentes (VIALI e BITTENCOURT, 2007). Por definição, se  $Z_1, Z_2, ..., Z_{\nu}$  forem  $\nu$  distribuições normais padronizadas (ou seja, com média zero e variância unitária) independentes, então a soma de seus quadrados é uma Distribuição Qui-Quadrado com  $\nu$  graus de liberdade:

$$\chi_{\nu}^2 = Z_1^2 + Z_2^2 + ... + Z_{\nu}^2$$

Um corolário imediato da definição acima é que a soma de duas Qui-Quadrado independentes também é uma Qui-Quadrado:

$$\chi_a^2 + \chi_b^2 = \chi_{a+b}^2$$

William Gemmell Cochran (1909-1980) também mostrou que a Distribuição Qui-Quadrado é igual, a menos de uma constante, a distribuição da variância amostral.

Sua função densidade de probabilidade está definida apenas para valores não-negativos de x e, assim como a Distribuição t, depende dos graus de liberdade  $\nu$  conforme seque:

$$\chi_{v}^{2}(x) = \frac{x^{\frac{v}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{v}{2}} \Gamma\left(\frac{v}{2}\right)} \qquad v = 1, 2, 3, \dots \qquad x \in [0; \infty)$$

na qual  $\Gamma$  é a função gama definida por:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \qquad t \in [0, \infty) \qquad x \in \Re^+$$

e  $\, \nu \,$  são os graus de liberdade (VIALI e BITTENCOURT, 2007).



Figura 4 – Gráfico da Distribuição Qui-Quadrado para alguns valores de  ${\cal V}$ 

Fonte: elaborada pelo autor.

A Distribuição Qui-Quadrado possui as seguintes propriedades:

- Média =  $\nu$ .
- Mediana  $\approx v \left(1 \frac{2}{9v}\right)^3$ .
- Variância =  $2\nu$ .
- Assimetria =  $\sqrt{8/\nu}$ .

• Curtose = 
$$\frac{12}{v}$$
.

A Distribuição Qui-Quadrado é muito utilizada em testes de aderência e de independência e sua função densidade, assim como a Distribuição Normal e a Distribuição t de Student, também não é integrável analiticamente.

#### 2.5 A Distribuição F de Snedecor

O modelo F de Snedecor foi inicialmente desenvolvido por Ronald Aylmer Fisher (1890-1962) em 1922 e, por isso, ele é também conhecido por Distribuição de Fisher ou por Distribuição de Fisher-Snedecor. Em 1934, foi tabelado por George Waddel Snedecor (1881-1974), que também introduziu a letra F para representá-lo, homenageando dessa forma o seu real criador.

A Distribuição F de Snedecor também depende de dois parâmetros denominados "graus de liberdade". O primeiro (m) é o grau de liberdade do numerador e o segundo (n) do denominador. Na estatística, ela é caracterizada como o quociente de duas variâncias e, portanto, de duas distribuições Qui-Quadrado. Cada parâmetro, da mesma forma que nos modelos anteriores, é associado ao tamanho amostral subtraído de uma unidade. Assim,  $m = n_a$ -1 e  $n = n_a$ -1, onde  $n_a$  representa o número de unidades amostrais.

A função densidade de probabilidade da F não é integrável analiticamante e uma de suas possíveis representações, em termos da função gama, é dada por:

$$F_{m,n}(x) = \frac{\Gamma\left(\frac{m+n}{2}\right) m^{\frac{m}{2}} n^{\frac{n}{2}} x^{\frac{m}{2}-1}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right) (mx+n)^{\frac{m+n}{2}}} \qquad m, n = 1, 2, 3, \dots \qquad x \in [0; \infty)$$

na qual  $\Gamma$  é a função gama definida por:

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \qquad t \in [0, \infty) \qquad x \in \Re^+$$

e m e n são os graus de liberdade.



Figura 5 – Gráfico da Distribuição F de Snedecor para m = 5 e n = 20

Fonte: elaborada pelo autor.

A Distribuição F possui as seguintes propriedades:

• Média = 
$$\frac{n}{n-2}$$
, para  $n > 2$ .

• Variância = 
$$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$$
, para  $n > 4$ .

• Assimetria = 
$$\frac{(2m+n-2)\sqrt{8(n-4)}}{(n-6)\sqrt{m(m+n-2)}} \text{ , para } n > 6.$$

• Se X é uma variável aleatória F(m,n), então 1/X é uma variável aleatória F(n,m).

O modelo F é fundamental, em Estatística, para as áreas de Regressão, Planejamento de Experimentos e Análise de Variância (VIALI e BITTENCOURT, 2007).

### 2.6 A Distribuição Gama

A Distribuição Gama é uma distribuição de probabilidade contínua, com dois parâmetros. Há duas maneiras diferentes de representá-la:

- (1) Com um parâmetro de forma k e um parâmetro de escala  $\theta$ .
- (2) Com um parâmetro de forma  $\alpha=k$  e um parâmetro de escala inversa  $\beta=\frac{1}{\theta}$ , chamado de parâmetro de proporção.

Caracterizando a Distribuição Gama usando a forma k e a escala  $\theta$ , temos que uma variável aleatória X, seguindo Distribuição Gama, é denotada por:

$$X \sim G(k, \theta) \equiv Gama(k, \theta)$$

Analogamente, pela caracterização (2), temos que uma variável aleatória X, seguindo Distribuição Gama, é denotada por:

$$X \sim G(\alpha, \beta) \equiv Gama(\alpha, \beta)$$

Sua função densidade de probabilidade pode ser expressa em termos da função gama parametrizada pela forma k e pela escala  $\theta$ . Ambos os parâmetros são valores positivos.

A equação que define a função densidade da Distribuição Gama pela forma e pela escala é:

$$f(x;k,\theta) = \frac{1}{\theta^k} \frac{1}{\Gamma(k)} x^{k-1} e^{-\frac{x}{\theta}} \qquad x \ge 0 \text{ e } k, \theta > 0$$

Já pela caracterização (2), a função densidade da Distribuição Gama é dada por:

$$f(x;\alpha,\beta) = \beta^{\alpha} \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \qquad x \ge 0 \text{ e } \alpha,\beta > 0$$

Ambas as representações podem ser utilizadas no software estatístico R, e são comumente encontradas, pois uma ou outra pode ser mais conveniente dependendo da situação.

Algumas propriedades da Distribuição Gama:

- Se  $X_i$  tem uma distribuição  $G(k_i,\theta)$ , para i=1,2,...n (isto é, todas as distribuições têm o mesmo parâmetro de escala  $\theta$ ), então  $\sum_{i=1}^n X_i \sim G\!\left(\sum_{i=1}^n k_i,\theta\right)$ , se todos  $X_i$  são independentes.
  - Se  $X \sim G(k, \theta)$ , então  $cX \sim G(k, c\theta)$ .
  - Se  $Y \sim G(\alpha,1)$  , então  $X = Y/\beta$  tem distribuição  $G(\alpha,\beta)$  .

#### 2.7 Relações entre as distribuições



Figura 6 - Diagrama ilustrativo das relações entre as distribuições

Fonte: elaborada pelo autor.

As distribuições de probabilidade elencadas acima estão inter-relacionadas da seguinte forma:

- Normal / Normal padrão: Se X é uma variável aleatória  $N(\mu,\sigma^2)$ , então  $(X-\mu)/\sigma$  é uma variável aleatória normal padrão. Reciprocamente, se X é uma variável aleatória normal padrão, então  $\mu+\sigma\!X$  é uma variável aleatória  $N(\mu,\sigma^2)$ .
- Gama / Normal: Se X é uma variável aleatória  $G(k,\theta)$  e Y é uma variável aleatória Normal com a mesma média e a mesma variância que X, então  $F_X \approx F_Y$  se o parâmetro de forma k é grande em relação ao parâmetro de escala  $\theta$ .
- Gama / Qui-Quadrado: Se X é uma variável aleatória  $G(k,\theta)$  com k=v/2 e  $\theta=2$ , então X é uma variável aleatória Qui-Quadrado com v graus de liberdade. De forma análoga, se X é uma variável aleatória  $G(\alpha,\beta)$  com  $\alpha=v/2$  e  $\beta=1/2$ , então X é uma variável aleatória Qui-Quadrado com v graus de liberdade. Reciprocamente, se  $Q\sim\chi^2(v)$  e c é uma constante positiva, então  $c.Q\sim G(k=v/2,\theta=2c)$ .
- t de Student / Normal: Se X é uma variável aleatória t com um número grande de graus de liberdade  $\nu$ , então  $F_X \approx F_Y$ , onde Y é uma variável aleatória normal padrão.

- F de Snedecor / Qui-Quadrado: Se X é uma variável aleatória F(m,n) com n grande, então mX é distribuída aproximadamente como uma variável aleatória Qui-Quadrado com  $\nu$  graus de liberdade.
- Qui-Quadrado / F de Snedecor: Se  $X_1$  e  $X_2$  são variáveis aleatórias Qui-Quadrado com  $v_1$  e  $v_2$  graus de liberdade respectivamente, então  $(X_1/v_1)/(X_2/v_2)$  é uma variável aleatória  $F(v_1,v_2)$ .
- t de Student / F de Snedecor: Se X é uma variável aleatória t com v graus de liberdade, então  $X^2$  é uma variável aleatória F(1,v); se X é uma variável aleatória t com v graus de liberdade, então  $X^{-2}$  é uma variável aleatória F(v,1).

A tabela a seguir apresenta a fórmula de cálculo para algumas medidas estatísticas, baseada nos valores dos parâmetros das distribuições.

Tabela 1 – Medidas estatísticas das distribuições Normal, t de Student, Gama, Qui-Quadrado e F de Snedecor

| Medidas    | Normal     | t de<br>Student         | Gama                 | Qui-Quadrado                                | F de<br>Snedecor                                            |
|------------|------------|-------------------------|----------------------|---------------------------------------------|-------------------------------------------------------------|
| Média      | μ          | 0, v > 1                | kθ                   | ν                                           | $\frac{n}{n-2}$ , $n>2$                                     |
| Mediana    | μ          | 0                       | -                    | $\approx v \left(1 - \frac{2}{9v}\right)^3$ | -                                                           |
| Variância  | $\sigma^2$ | $\frac{v}{v-2}$ , $v>2$ | $k\theta^2$          | $2\nu$                                      | $\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}, n > 4$                  |
| Assimetria | 0          | $0, \nu > 3$            | $\frac{2}{\sqrt{k}}$ | $\sqrt{8/\nu}$                              | $\frac{(2m+n-2)\sqrt{8(n-4)}}{(n-6)\sqrt{m(m+n-2)}}, n > 6$ |
| Curtose    | 0          | $\frac{6}{v-4}, v>4$    | $\frac{6}{k}$        | 12/ <i>v</i>                                | -                                                           |

Fonte: elaborada pelo autor.

### 2.8 Considerações sobre as distribuições

Pode-se observar que a origem dos quatro modelos é diversa, mas que, de fato, apresentam algumas características comuns. Os quatro modelos apresentam aplicações na Estatística Inferencial e desempenham o principal papel num variado leque de técnicas estatísticas tanto paramétricas quanto não-paramétricas. As características mais notórias que esses quatro modelos apresentam são: possuir funções densidade de probabilidade de difícil manuseio, não integráveis analiticamente; e dependência da função gama (com exceção da Normal).

## 3. GERAÇÃO DE NÚMEROS ALEATÓRIOS

Para gerar realizações de uma distribuição de probabilidade específica, como a Distribuição Uniforme, por exemplo, precisamos gerar números aleatórios. Isso não pode ser realizado por máquinas, pois, na verdade, qualquer sequência produzida por uma máquina é na realidade uma sequência previsível. Daí, a denominação de sequência de números pseudo-aleatórios.

Uma sequência de números será considerada "aleatória" do ponto de vista computacional se o programa que a gerar for diferente e estatisticamente não correlacionado com o programa que a usará (FERREIRA, 2010).

Basicamente, a geração de números "aleatórios", o que constitui o chamado Método de Monte Carlo, pode ser dividida em dois tipos: geração de números (variáveis) aleatórias uniformes e geração de números (variáveis) aleatórias não-uniformes.

#### 3.1 Geração de Variáveis Aleatórias Uniformes

Variáveis aleatórias uniformes são aquelas que, a princípio, se situam dentro de uma determinada amplitude, geralmente entre 0 e 1, para os quais não podemos produzir uma sequência previsível de valores. Em várias linguagens estes números são gerados utilizando o comando "random" ou comandos similares. Na linguagem de programação Pascal, por exemplo, se este comando for utilizado com o argumento "n", "random(n)", números aleatórios inteiros U do intervalo  $0 \le U \le n-1$  são gerados e se o argumento n não for usado, os números gerados são valores aleatórios reais do intervalo [0;1].

Em simulação estocástica, as variáveis aleatórias com Distribuição Uniforme no intervalo [0; 1] são empregadas de muitas maneiras:

- · Em forma direta.
- Para gerar outras distribuições discretas ou contínuas, pois a partir do modelo Uniforme podemos gerar realizações de variáveis aleatórias de qualquer outro modelo probabilístico, com base em transformações realizadas nos números aleatórios uniformes.
- Para gerar conjuntos de variáveis aleatórias dependentes (processos estocásticos e/ou distribuições multivariadas).

Devemos ter bem em claro que, na maioria das vezes, a performance de uma simulação estará fortemente correlacionada com a do gerador de uniformes usado. (BUSTOS e FRERY, 1992). Então, uma fonte confiável para gerar números aleatórios uniformes determina o sucesso de métodos estocásticos de inferência e de todo o processo de simulação Monte Carlo. (FERREIRA, 2010).

Segundo Costa Vieira, Ribeiro e Castro e Souza (2004), um bom gerador de números aleatórios uniformes deveria possuir as seguintes propriedades:

- Uniformidade A sequência de números aleatórios deve passar em testes estatísticos com a finalidade de verificar a uniformidade da distribuição.
- Independência Subseqüências da sequência completa  $u_0,u_1,...$  devem ser independentes. Por exemplo, membros da subseqüência par  $u_0,u_2,u_4,...$  devem ser independentes dos seus vizinhos ímpares  $u_1,u_3,...$  Desta maneira, a sequência de pares  $(u_{2n},u_{2n+1})$  deve ser uniformemente distribuída no quadrado unitário.
- Período longo O gerador deve possui um período longo, ou seja, começar a repetir valores somente após que uma sequência muito grande de números aleatórios foi gerada.
   Idealmente, o gerador não deve repetir valores. Na prática, a repetição deve ocorrer somente depois da geração de um grande conjunto de valores.
- Facilidade de implementação e eficiência Os geradores devem ser fáceis de serem implementados em uma linguagem de programação de alto nível e eficientes, isto é, utilizar poucas operações aritméticas para gerar cada número aleatório, usar todas as capacidades vetoriais/paralelas disponíveis na máquina e minimizar "overheads", tais como chamadas a subrotinas.
- Repetição Os geradores devem possuir a habilidade de repetir exatamente a mesma sequência de números aleatórios, pois isto é relevante em procedimentos de teste e desenvolvimento de programas.
- Portabilidade Os geradores devem ser portáveis, isto é, gerar exatamente a mesma sequência de números aleatórios em duas máquinas diferentes, possivelmente com diferentes tamanhos de palavras.
- Subsequências disjuntas Os geradores devem dispor de métodos eficientes para gerar um número aleatório sem ter que passar por todos os estados intermediários. Essa característica é necessária para a utilização dos geradores de números aleatórios em ambientes de processamento paralelo, permitindo, assim, particionar a sequência em subfluxos disjuntos.

Bustos e Frery (1992) estendem o conceito de portabilidade para o âmbito das linguagens de programação: "Portabilidade significa que, sob as mesmas condições definidoras, a sequência seja a "mesma", independentemente da linguagem computacional usada para implementar o algoritmo de geração, e do computador usado. Na verdade, isto é bem difícil de ser atingido, particularmente com microcomputadores.".

De fato, é sabido que os geradores de números aleatórios não conseguem atender todos os requerimentos expostos acima em sua plenitude.

#### 3.1.1 O Gerador de Números Pseudo-Aleatórios Mersenne Twister

Segundo Ferreira (2010), um dos melhores geradores de números aleatórios é o Mersenne Twister (MT). O Mersenne Twister é um gerador de números pseudo-aleatórios

desenvolvido por Makoto Matsumoto e Takuji Nishimura, da Universidade Keio (Japão), nos anos de 1996 e 1997. Seu nome deriva do fato que o tamanho escolhido para o período do gerador é um primo de Mersenne. Primo de Mersenne é um número de Mersenne (número da forma  $M_n = 2^n - 1$ , com "n" sendo número natural) que também é um número primo.

O MT possui as seguintes características segundo seus desenvolvedores:

- Foi desenvolvido para eliminar as falhas dos diferentes geradores existentes.
- Apresenta o maior período e maior ordem de equi-distribuição do que de qualquer outro método implementado. Ele fornece um período que é da ordem de  $2^{19.937}-1\approx 4.3154\times 10^{6001}$ , e uma equidistribuição 623-dimensional.
  - É um dos mais rápidos geradores existentes, embora seu algoritmo seja complexo.
  - · Faz uso eficiente da memória.

O Mersenne Twister foi criado para simulações com Método de Monte Carlo e outras simulações estatísticas, não sendo adequado, em sua forma nativa, para tarefas de criptografia.

Existem muitas versões implementadas deste algoritmo, inclusive em linguagens como C e Fortran, e que estão disponíveis na Internet. Este algoritmo é utilizado como gerador padrão no software estatístico R, e está disponível em outros softwares do gênero, tais como SPSS (a partir da versão 13) e SAS. Também pode ser encontrado nas bibliotecas padrões das últimas versões das linguagens PHP, Python e Ruby.

A fim de testá-lo, gerou-se 1.000.000 de valores com Distribuição Uniforme [0; 1]. O resultado pode ser observado no histograma apresentado na figura 7:



Figura 7 – Histograma de 1.000.000 números aleatórios gerados pelo algoritmo do Mersenne Twister

Fonte: elaborada pelo autor.

Como se pode verificar graficamente, não há evidências de que os dados estejam concentrados mais próximos a um determinado valor. Assim, não há indícios de falha no gerador, pois o histograma se apresentou muito próximo da Distribuição Uniforme.

Outra possível falha em geradores de números aleatórios é a de que dois valores consecutivos sejam correlacionados. Pela figura 8, podemos observar o gráfico de dispersão de 2000 pares consecutivos de números aleatórios e, como se pode observar, o diagrama está uniformemente preenchido (não existem buracos):



Figura 8 - Gráfico de dispersão com 2000 pares de números aleatórios gerados em sequência

Fonte: elaborada pelo autor.

Na figura 9 é apresentado o mesmo gráfico de dispersão para 32500 pares, onde se pode verificar que o diagrama está completamente preenchido, não se percebendo falhas aparentes:



Figura 9 - Gráfico de dispersão com 32500 pares de números aleatórios gerados em sequência

Fonte: elaborada pelo autor.

#### 3.2 Geração de Variáveis Aleatórias Não-Uniformes

É comum precisarmos de eventos provenientes de variáveis aleatórias que obedecem outras distribuições, além da Uniforme. Podemos obter variáveis aleatórias de qualquer distribuição de probabilidade a partir de números aleatórios uniformes, por essa razão a geração de números uniformes é necessária. Veremos alguns métodos de validade universal, que serão referenciados neste trabalho, os quais utilizam variáveis aleatórias com Distribuição Uniforme em [0; 1] para construir variáveis aleatórias com qualquer distribuição.

#### 3.2.1 O Método de Inversão

Em sua forma mais simples, o Método de Inversão se baseia no seguinte teorema, chamado de Teorema Fundamental da Transformação de Probabilidades:

**Teorema:** Sejam U uma variável uniforme U[0; 1] e X uma variável aleatória com densidade f e função de distribuição F contínua e invertível, então  $X = F^1(U)$  possui densidade f. Sendo  $F^1$  a função inversa da função de distribuição F.

Este teorema sugere que para gerar amostras de uma variável aleatória X da qual se conhece  $F^{-1}$ , se podem gerar números U uniformes em [0; 1] e fazer  $X = F^{-1}(U)$ . Temos, então, o seguinte algoritmo geral de inversão:

- 1. Gerar  $U \sim U[0;1]$ .
- 2. Fazer  $X = F^{-1}(U)$ .
- 3. Sair X.

Exemplo: Geração de valores com Distribuição Exponencial.

A função densidade de probabilidade da Distribuição Exponencial é dada por:

$$f(x;\lambda) = \lambda e^{-\lambda x} \qquad x \ge 0 \text{ e } \lambda > 0$$

E sua função de distribuição acumulada é dada por:

$$F(x;\lambda) = 1 - e^{-\lambda x}$$
  $x \ge 0$  e  $\lambda > 0$ 

Então, para gerar números aleatórios que seguem uma Distribuição Exponencial, pelo Teorema Fundamental da Transformação de Probabilidades, podemos substituir  $F(x;\lambda)$  por U. Assim:

$$U = 1 - e^{-\lambda x}$$

Isolando x, teremos:

$$X = \frac{-\ln(1-U)}{\lambda}$$

Devido a Distribuição Uniforme ser simétrica, podemos substituir  $1\!-\!U$  por U , e o algoritmo definitivo fica:

1. Gerar  $U \sim U[0;1]$ .

2. Fazer 
$$X = \frac{-\ln(U)}{\lambda}$$
.

3. Sair X.

Também há outras distribuições conhecidas para as quais o Método de Inversão pode ser aplicado, tais como a Distribuição Weibull, a Distribuição de Cauchy e a Distribuição de Pareto.

Para variáveis aleatórias discretas, devemos modificar o teorema para podermos contemplar funções de distribuições F em escada, como são as funções de distribuição de probabilidades associadas a essas variáveis aleatórias (FERREIRA, 2010).

Uma condição mínima para a aplicação deste método é conhecer a forma explícita de F<sup>-1</sup>, através de boas implementações. Entretanto, quando não conhecemos explicitamente a forma de F<sup>-1</sup>, mas dispomos de uma boa aproximação da mesma, podemos utilizar o método por aproximação.

Computacionalmente, a dificuldade é obtermos analiticamente uma expressão para a função F<sup>-1</sup> para muitos modelos probabilísticos, tais como a Distribuição Normal, a Distribuição t, a Distribuição Qui-Quadrado e a Distribuição F, dentre outras. Em geral, suas expressões analíticas não existem e métodos numéricos são requeridos para inverter a função de distribuição.

#### 3.2.2 O Método de Aceitação-Rejeição

Para o Método de Inversão é conveniente conhecer a função de distribuição. Em algumas ocasiões, conhecemos a função densidade, mas não a função de distribuição em forma tratável, como ocorre, por exemplo, com a Distribuição Normal. Em outras situações, a inversa da função de distribuição não é tratável. Um método muito geral para lidar com alguns desses casos é o que se baseia na aceitação e rejeição, chamado de Método de Aceitação-Rejeição ou, simplesmente, de Método de Rejeição. Esse método foi introduzido por Von Neumann (1951).

Suponhamos que desejemos gerar variáveis aleatórias X de uma função de densidade f, mas não sabemos como fazer isso diretamente. Porém, dispomos de um procedimento para gerar variáveis aleatórias de uma função de densidade g tal que  $f(x) \le ag(x)$  para todo x, sendo  $a < \infty$ . O método de rejeição é assim definido:

Enquanto 
$$U > f(X)/(ag(X))$$

Gerar 
$$X \sim g$$
,  $U \sim U[0;1]$ .

Sair X .

Observamos que o método de rejeição equivale a gerar valores  $Y \sim U(0;ag(X))$  e aceitá-los se  $Y \leq f(X)$ . Então, tem-se que o algoritmo de rejeição proporciona saídas X tais que  $P(X \leq x \mid X \text{ aceito}) = F(x)$ , onde F é a função de distribuição de X (INSÚA, JIMÉNEZ e MARTÍN, 2009).

O problema deste método é que devemos encontrar g e, em consequência, a. Segundo Bustos e Frery (1992), "a arte no uso dos métodos de rejeição consiste em encontrar a g conveniente".

Este método também pode ser aplicado à geração de variáveis aleatórias discretas, mas, nesses casos, é bem difícil achar funções g adequadas (BUSTOS e FRERY, 1992).

#### 3.2.3 O Método do Quociente de Uniformes

O método de rejeição apresenta o inconveniente de ter que ser extremamente cuidadoso na seleção da densidade g no caso de distribuições com caudas pesadas. Esse problema não se dá com o Método do Quociente de Uniformes.

É conhecido que quando (U,V) se distribuem uniformemente no círculo unitário, V/U segue uma Distribuição de Cauchy. Surge, então, de forma natural, a questão de que se poderia ser possível gerar variáveis aleatórias de outras distribuições como o quociente de variáveis distribuídas uniformemente sobre certo subconjunto. Tem-se, de fato, o seguinte resultado:

**Proposição:** Seja h uma função não negativa com  $0 < \int h < \infty$  . Seja

$$C_h = \left\{ (u, v) : 0 \le u \le \sqrt{h(v/u)} \right\}$$

Se (U,V) se distribui uniformemente sobre  $C_h$ , então X=V/U tem função de densidade  $h/(\int h)$  .

Podemos fornecer o seguinte algoritmo:

Enquanto  $(U,V) \notin C_h$ 

Gerar 
$$U_1, U_2 \sim U[0;1]$$
.

Fazer 
$$U = mU_1$$
,  $V = p^i + (p^s - p^i)U_2$ .

Sair X = V/U.

#### 3.2.4 Outros Métodos

Na literatura, são relatados vários outros métodos para geração de números pseudoaleatórios de um modelo probabilístico com base na Distribuição Uniforme [0; 1]. Um dos métodos mais conhecidos é o Método de Composição, utilizado no caso em que a distribuição da qual desejamos gerar valores é uma mistura, que envolve uma família de densidades dependentes de um parâmetro y e sua função de distribuição H da seguinte forma:

$$f(x) = \int g(x \mid y) dH(y)$$

Porém, o Método de Composição é aplicável somente para modelos discretos.

# 4. METODOLOGIA PARA A ANÁLISE COMPARATIVA DOS ALGORITMOS

Serão geradas amostras de tamanhos diferentes: 100, 1000 e 10000 para as distribuições Normal e Qui-Quadrado; 100 e 10000 para a distribuição t de Student; e 10000 para a distribuição F. A razão pela escolha destes valores foi por serem os mais referenciados na bibliografia de Estatística Computacional e Simulação. Cada um destes tamanhos amostrais será replicado 100 vezes. Assim, teremos 100 amostras de tamanho 100, 100 amostras de tamanho 1000 e sucessivamente.

Para o caso da Normal só serão gerados valores para a Normal padrão, pois todos os algoritmos, inclusive a implementação no R, utilizam a relação  $X = \mu + \sigma Z$  para gerar valores para as distribuições não padronizadas. Assim, a geração de uma N(-2,4) é diretamente dependente do algoritmo para geração de uma N(0,1), da mesma forma que a geração da N(0,1) depende do gerador da uniforme no intervalo [0; 1]. Para as distribuições  $\chi^2$ , F e t serão utilizados os seguintes valores, respectivamente:  $\chi^2$  (1),  $\chi^2$  (17),  $\chi^2$  (50); F(1,5), F(5,1), F(5,5); t(3), t(15), t(30).

Para cada amostra, serão calculadas as seguintes estatísticas: tempo de execução, esperança, máximo e mínimo, amplitude, desvio-padrão, assimetria, curtose, quartis, distância interquartílica e valor-p para o teste de aderência. Lembrando que o desvio-padrão é a raiz quadrada da variância e o 2º quartil é igual à mediana dos dados.

A aderência ao modelo será avaliada pelo Teste Qui-Quadrado de Aderência. Os níveis de significância utilizados serão os valores 5% e 1%.

O tempo de execução será determinado como sendo o tempo médio da geração das 100 amostras de tamanho 10000. Além do tempo médio, será determinado o erro padrão da média dos tempos. Para as amostras menores o tempo de execução não será avaliado em virtude de ele ser praticamente nulo. O algoritmo mais rápido será considerado o que apresentar o menor tempo médio, com o menor erro padrão.

As demais medidas serão avaliadas quanto à variação em torno dos valores do modelo. Assim, para cada uma das 100 amostras serão calculadas as estatísticas mencionadas acima (quando conveniente) e comparadas com os valores "exatos" do modelo sendo simulado. Estes valores "exatos" foram obtidos com auxílio do software R. As estatísticas para a esperança, a mediana (Distribuição Normal), o desvio-padrão e o valor-p também serão representadas graficamente. Um valor médio, com um erro padrão, será obtido para cada uma das estatísticas. A análise comparativa entre os algoritmos será feita com base nestes valores-resumo, os quais poderão ser apresentados com um número diferente de casas decimais ou em notação científica (conforme a precisão alcançada pelo software R).

Para o algoritmo "vencedor" em cada tamanho de amostra, será gerado um histograma e apresentado os valores calculados.

As análises serão realizadas no software R, versão 2.14.2, através do editor Tinn-R, versão 2.3.7.1, em ambiente Windows. O computador utilizado terá um processador de 2.13GHz e 2GB de memória RAM.

# 5. GERADORES DE NÚMEROS ALEATÓRIOS DA DISTRIBUIÇÃO NORMAL

Neste trabalho, consideraremos diferentes algoritmos para gerar números aleatórios da Distribuição Normal padrão  $(X \sim N(0,1))$  disponíveis na literatura de Estatística Computacional e Simulação. Como indicamos na seção 2.1, se desejarmos gerar números da Distribuição Normal  $Y \sim N(\mu, \sigma^2)$ , basta fazer a transformação  $Y = \mu + \sigma X$ . Na maioria das vezes, a construção destes algoritmos foi baseada nos métodos para geração de variáveis aleatórias não-uniformes mencionados anteriormente.

#### 5.1 Geradores baseados no Método de Inversão

Embora a função densidade do modelo Normal não seja integrável analiticamante, se conhecem várias aproximações para a sua função de distribuição, o que nos permite utilizar o Método de Inversão por aproximação.

#### 5.1.1 Inversão Aproximada

Na literatura, uma fórmula proposta para a inversa da função de distribuição do modelo Normal é dada por:

$$F^{-1}(X) = \frac{X^{0.135} - (1 - X)^{0.135}}{0.1975}$$

Então, pelo Método de Inversão, temos o seguinte algoritmo:

1. Gerar  $U \sim U[0;1]$ .

2. Fazer 
$$X = \frac{U^{0.135} - (1 - U)^{0.135}}{0.1975}$$
.

3. Sair X.

Embora o algoritmo seja baseado em uma fórmula aproximada e não em um cálculo exato, esse é um dos geradores para a Distribuição Normal de mais simples e fácil implementação em qualquer ambiente computacional. Quanto à eficiência, existe uma divergência entre os autores. Insúa, Jiménez e Martín (2009) afirmam que este algoritmo é mais rápido que os demais. Já Ferreira (2010) menciona que a operação é lenta, em virtude de utilizar a exponenciação.

#### 5.1.2 Inversão pelas aproximações de Wichura

Em 1988, Wichura descreveu duas aproximações rápidas e de alta precisão para a inversa da função de distribuição do modelo Normal utilizando polinômios racionais. Para valores de x no intervalo [0,075; 0,925], um polinômio racional em  $(x-0,5)^2$  foi utilizado,

enquanto que para valores fora desse intervalo, um dos dois polinômios racionais em  $\sqrt{-\ln x}$  foi utilizado. Como a maioria dos valores de x está no primeiro intervalo, a raiz quadrada e o logaritmo só precisam ser calculados em 15% das vezes. A primeira aproximação, chamada de PPND7, fornece 7 casas decimais de acurácia no intervalo  $[10^{-316}; 1-10^{-316}]$ , e a segunda, chamada de PPND16, fornece cerca de 16 casas decimais de acurácia no mesmo intervalo. O método de precisão mais baixa, PPND7, utiliza polinômios racionais de graus 2 e 3, enquanto PPND16 utiliza polinômios racionais de grau 7.

O software estatístico R, por padrão, usa estas aproximações propostas por Wichura para gerar números aleatórios da Distribuição Normal baseados no Método de Inversão. No R, este algoritmo está implementado em linguagem C.

Por ser extenso e complexo, uma vez que deve-se ter bastante atenção no momento de digitar os polinômios racionais, não forneceremos aqui o pseudocódigo para este algoritmo. Sua implementação, em linguagem C, pode ser encontrada no código-fonte do software R, disponível no endereço eletrônico http://www.r-project.org

## 5.2 Geradores baseados no Método de Aceitação-Rejeição

Na literatura, podem ser encontrados três algoritmos distintos para gerar números aleatórios da Distribuição Normal tendo como base o Método de Aceitação-Rejeição. O primeiro utiliza a Distribuição de Cauchy; o segundo, a Distribuição Exponencial; e o terceiro não utiliza nenhuma distribuição de probabilidade específica, baseando-se em aceitações e rejeições da própria Distribuição Uniforme [0; 1].

#### 5.2.1 Gerador Normal a partir da Distribuição de Cauchy

Para implementar este algoritmo é necessário gerar ocorrências da Distribuição de Cauchy. A densidade da Distribuição de Cauchy é dada por:

$$f(x) = \frac{1}{\pi(1+x^2)} \qquad x \in \Re$$

Assim, podemos gerar ocorrências desta distribuição pelo Método de Inversão, em que teremos  $X=\tan(\pi(U-1/2))$  .

Assumindo que  $\varphi(X)$  é a densidade da distribuição normal padrão no ponto X , uma proposição para este algoritmo é a seguinte:

Fazer 
$$M = \sqrt{2\pi/e}$$
.

Repita

Gerar 
$$U, V \sim U[0;1]$$
.

Fazer 
$$X = \tan(\pi(U - 1/2))$$
.

$${\it Calcular} \ \varphi(X), f(X) \, .$$
 Até que  $U \leq \varphi(X)/Mf(X)$  Sair  $X$  .

## 5.2.2 Gerador Normal a partir da Distribuição Exponencial

Na seção 3.2.1, vimos como gerar números aleatórios da Distribuição Exponencial através do Método de Inversão. Outro algoritmo proposto para gerar variáveis aleatórias normais padrão baseado no Método de Rejeição é aquele que utiliza a Distribuição Exponencial. Assumindo que  $\varphi(X)$  é a densidade da distribuição normal padrão no ponto X, temos:

1 Gerar 
$$U \sim U[0;1]$$
 e  $Y \sim U[0;U\sqrt{2e/\pi}]$ .

- 2. Fazer  $X = -\ln(U)$ .
- 3. (a). Se  $Y < \varphi(X)/2$  então sair Z = -X .
  - (b). Senão se  $\varphi(X)/2 < Y < \varphi(X)$  então sair Z = X.
  - (c). Senão volte para o passo 1.

Estes dois últimos algoritmos apresentam três desvantagens na sua construção: é preciso saber gerar ou possuir um bom gerador de ocorrências do modelo Cauchy ou Exponencial; é necessário calcular o valor da densidade da normal padrão no ponto X, o que é expresso por  $\varphi(X)$ ; e ambos os algoritmos são iterativos, pois possuem laços de repetição, o que pode comprometer o desempenho.

## 5.2.3 Gerador de Marsaglia e Bray (1964)

Este algoritmo foi proposto inicialmente por Marsaglia e Bray em 1964.

Gerar 
$$U \sim U[0;1]$$
.

Se  $0 \le U \le 0.8638$  então

Gerar 
$$V$$
,  $W \sim U[-1;1]$ .

Sair 
$$X = 2.3153508*U - 1 + V + W$$
.

Se  $0.8638 < U \le 0.9745$  então

Gerar 
$$V \sim U[0;1]$$
.

Sair 
$$X = \frac{3}{2} * (V - 1 + 9.0334237 * (U - 0.8638))$$
.

Se  $0.9973002 < U \le 1$  então

Repita

Gerar 
$$V$$
,  $W \sim U[0;1]$ .

Fazer 
$$X = \frac{9}{2} - \ln(W)$$
.

Até que 
$$XV^2 \le \frac{9}{2}$$

Sair 
$$X = \sqrt{2X}$$
 sinal  $(U - 0.9986501)$ .

Se  $0.9745 < U \le 0.9973002$  então

Repita

Gerar 
$$X \sim U[-3;3]$$
,  $U \sim U[0;1]$ .

Fazer 
$$V = |X|$$
.

Fazer 
$$W = 6.6313339*(3-V)^2$$
.

Fazer Soma = 0.

Se 
$$V < \frac{3}{2}$$
 então

Fazer 
$$Soma = 6.0432809 * \left(\frac{3}{2} - V\right).$$

Se V < 1 então

Fazer 
$$Soma = Soma + 13.2626678*(3-V^2)-W$$
.

Até que 
$$U \le 49.0024445e^{\frac{-V^2}{2}} - Soma - W$$
  
Sair  $X$  .

## 5.2.4 Gerador de Kinderman e Ramage (1976)

Este algoritmo foi proposto por Kinderman e Ramage em 1976, em um artigo intitulado "Computer Generation of Normal Random Variables", e encontra-se implementado no software R em linguagem C utilizando uma versão corrigida de Josef Leydold. Trata-se de um algoritmo diferenciado dos dois últimos por utilizar aceitação-rejeição nos valores da própria Distribuição Uniforme [0; 1], e não em outra distribuição de probabilidade específica. Também não necessita do cálculo da densidade da normal padrão ( $\varphi(X)$ ).

Fazer  $C_1 = 0.398942280401433$ .

Fazer  $C_2 = 0.180025191068563$ .

Fazer A = 2.216035867166471.

Criar a função  $g(x) = C_1 * e^{(-x^*x/2)} - C_2 * (A - x)$ .

Gerar  $U_1 \sim U[0;1]$ .

Se  $U_1 < 0.884070402298758$  então

$$\operatorname{Gerar} U_2 \sim U[0;1].$$
 
$$\operatorname{Sair} X = A^*(1.131131635444180 * U_1 + U_2 - 1).$$
 
$$\operatorname{Se} U_1 \geq 0.973310954173898 \text{ então}$$
 
$$\operatorname{Repita}$$
 
$$\operatorname{Gerar} U_2 \sim U[0;1].$$
 
$$\operatorname{Gerar} U_3 \sim U[0;1].$$
 
$$\operatorname{Fazer} u = (A^*A - 2^* \ln(U_3)).$$
 
$$\operatorname{Até} \operatorname{que} (U_2 * U_2 < (A^*A)/n)$$
 
$$\operatorname{Se} U_1 < 0.986655477086949 \text{ então}$$
 
$$\operatorname{Sair} X = \sqrt{n}.$$
 
$$\operatorname{Senão}$$
 
$$\operatorname{Sair} X = -\sqrt{n}.$$
 
$$\operatorname{Se} U_1 \geq 0.958720824790463 \text{ então}$$
 
$$\operatorname{Repita}$$
 
$$\operatorname{Gerar} U_2 \sim U[0;1].$$
 
$$\operatorname{Gerar} U_3 \sim U[0;1].$$
 
$$\operatorname{Fazer} u = A - 0.630834801921960 * \min(U_2,U_3).$$
 
$$\operatorname{Até} \operatorname{que} (\max(U_2,U_3) \leq 0.755591531667601) \text{ ou } (0.034240503750111^* | U_2 - U_3 | \le g(n))$$
 
$$\operatorname{Se} U_2 < U_3 \text{ então}$$
 
$$\operatorname{Sair} X = u.$$
 
$$\operatorname{Senão}$$
 
$$\operatorname{Sair} X = t.$$
 
$$\operatorname{Senão}$$
 
$$\operatorname{Sair} X = t.$$
 
$$\operatorname{Se} U_1 \geq 0.911312780288703 \text{ então}$$
 
$$\operatorname{Repita}$$
 
$$\operatorname{Gerar} U_2 \sim U[0;1].$$
 
$$\operatorname{Gerar} U_3 \sim U[0;1].$$
 
$$\operatorname{Gerar} U_3 \sim U[0;1].$$
 
$$\operatorname{Gerar} U_3 \sim U[0;1].$$
 
$$\operatorname{Fazer} u = 0.479727404222441 + 1.105473661022070 * \min(U_2,U_3).$$
 
$$\operatorname{Até} \operatorname{que} (\max(U_2,U_3)) \leq 0.872834976671790) \text{ ou } (0.049264496373128 * | U_2 - U_3 | \le g(n))$$
 
$$\operatorname{Se} U_2 < U_3 \text{ então}$$
 
$$\operatorname{Sair} X = t.$$
 
$$\operatorname{Senão}$$
 
$$\operatorname{Sair} X = t.$$
 
$$\operatorname{Senão}$$

Sair X = -tt.

Repita

(a) Gerar 
$$U_2 \sim U[0;1]$$
.

(b) Gerar 
$$U_3 \sim U[0;1]$$
.

(c) Fazer 
$$tt = 0.479727404222441 - 0.595507138015940 * min(U_2, U_3)$$
.

Se tt < 0 então volte para (a).

Até que  $(\max(U_2, U_3) \leq 0.805577924423817)$  ou  $(0.053377549506886* \mid U_2 - U_3 \mid \leq g(tt))$ 

Se  $U_2 < U_3$  então

Sair 
$$X = tt$$
.

Senão

Sair 
$$X = -tt$$
.

Estes dois últimos algoritmos são os mais extensos para geração de ocorrências da Distribuição Normal. No momento de suas implementações, deve-se conferir atentamente a digitação dos valores numéricos envolvidos para evitar erros nos resultados. Observa-se, também, que estes algoritmos fazem uso intenso de estruturas de decisão e de repetição, como as do tipo "se-então" e "repita", respectivamente. O uso da estrutura "repita", que cria um bloco de instruções iterativo, pode comprometer a velocidade de processamento.

## 5.3 Geradores baseados no Método do Quociente de Uniformes

Os algoritmos seguintes foram construídos tendo como base o Método do Quociente de Uniformes. Esse método produz resultados exatos.

#### 5.3.1 Quociente de Uniformes de Kinderman e Monahan (1977)

Repita

Gerar 
$$U \sim U[0;1]$$
.

Gerar 
$$V \sim U[-1;1]$$
.

Fazer 
$$X = (V\sqrt{2/e})/U$$
.

Se 
$$X^2 \le 5 - 4e^{1/4}U$$
 então

Sair 
$$X$$
.

Senão se  $X^2 < 4e^{-1.35}/U + 1.4$  então

Se 
$$V^2 < -4U^2 \ln(U)$$
 então

Sair 
$$X$$
 .

Fim do Se

Fim do Se

Fim do Repita

Fim do Se

Fim do Repita

#### 5.3.2 Quociente de Uniformes de Leva (1992)

```
Repita  \begin{aligned} & \text{Gerar } U \sim U[0;\!1]. \\ & \text{Gerar } V \sim U[-1;\!1]. \\ & \text{Fazer } v = V \sqrt{2/e} \;. \\ & \text{Fazer } X = U - 0.449871 \;, \; Y = \mid v \mid +0.386595 \;. \\ & \text{Fazer } Q = X^2 + Y(0.19600Y - 0.25472X) \;. \\ & \text{Se } Q < 0.27597 \;\; \text{então} \\ & \text{Sair } v/U \;. \\ & \text{Senão se } Q < 0.27846 \;\; \text{então} \\ & \text{Se } v^2 < -4U^2 \ln(U) \;\; \text{então} \\ & \text{Sair } v/U \;. \\ & \text{Fim do Se} \end{aligned}
```

## 5.3.3 Quociente de Uniformes exposto por Insúa, Jiménez e Martín (2009)

O algoritmo abaixo foi exposto por Insúa, Jiménez e Martín (2009) na obra "Simulación – Métodos y Aplicaciones".

Enquanto 
$$Z>-\ln(U)$$
 
$$\text{Gerar }U,U_1\sim U[0;1]\,.$$
 
$$\text{Fazer }V=\Big(\sqrt{2/e}\Big)*\big(2U_1-1\big),\ X=V/U\ ,\ Z=X^2/4\,.$$
 Sair  $X$  .

Como se pode observar, todos os algoritmos baseados no Método do Quociente de Uniformes tem suas instruções contidas dentro de uma estrutura de repetição do tipo "repita" ou "enquanto". Além disso, todos também exigem o cálculo de logaritmos e utilizam operações de radiciação (raiz quadrada) e exponenciação, os quais estão sujeitos a erros de exatidão e precisão.

### 5.4 Geradores baseados em outros métodos

Existem algoritmos para geração de números aleatórios da Distribuição Normal que foram construídos não tendo como base nenhum dos métodos elencados acima. Esses algoritmos estão baseados em outros teoremas ou métodos, e serão apresentados a seguir.

### 5.4.1 Soma de Doze Uniformes ou Método da Convolução

Este procedimento se baseia no Teorema Central do Limite (TCL) que, em linhas gerais, afirma que a soma de uma grande quantidade de variáveis aleatórias (com algumas restrições) tende a uma Distribuição Normal. Este algoritmo pode ser visto como um exemplo dessa transformação. Se as variáveis  $U_i$ , 1,...,n, são independentes e identicamente distribuídas (iid) como uma Uniforme U[0;1], em que  $E(U_i) = 1/2$  e  $Var(U_i) = 1/12$ , pelo

TCL a variável aleatória 
$$X = \frac{\sum_{i=1}^{n} U_i - \frac{n}{2}}{\sqrt{n/12}}$$
 se distribui aproximadamente como uma N(0,1),

para n suficientemente grande. Para n=12 já se tem uma boa aproximação, com o qual X toma a forma  $\left(\sum_{i=1}^{12} U_i\right) - 6$ , e o algoritmo ficaria:

1. Gerar 
$$U_1,...,U_{12} \sim U[0;1]$$
.

2. Fazer 
$$X = \left(\sum_{i=1}^{12} U_i\right) - 6$$
.

3. Sair X .

Embora seja de pouca complexidade, este algoritmo apresenta três inconvenientes:

- Trata-se de uma aproximação para a Distribuição Normal.
- O somatório em questão pode estar sujeito a erros de arredondamento dependendo do ambiente computacional em que o algoritmo seja implementado.
- Pode haver uma "explosão de Uniformes". Por exemplo: se para gerar um valor da Normal preciso gerar 12 Uniformes, então, para gerar 10.000 valores da Normal precisarei gerar 120.000 Uniformes e assim sucessivamante.

#### 5.4.2 Método de Box-Muller

O método exato para gerar valores da Distribuição Normal mais antigo e mais conhecido é o Método de Box-Muller (Box e Muller, 1958), o qual produz um par de números aleatórios normais padrão e independentes de um par de números uniformes. Este método utiliza o fato de que a distribuição bidimensional de dois números aleatórios normais com média zero é radialmente simétrica se ambos os componentes normais tem a mesma variância. O algoritmo de Box-Muller pode ser entendido como um método no qual os números normais

de sua saída representam as coordenadas no plano bidimensional. Devido ao algoritmo produzir dois números aleatórios cada vez que é executado, é comum a sua função geradora retornar o primeiro valor para o usuário e ocultar o outro valor para retornar na próxima chamada da função. Este algoritmo encontra-se disponível no software R.

1. Gerar 
$$U_1, U_2 \sim U[0;1]$$
.

2. Fazer 
$$R = \sqrt{-2\ln(U_1)}$$
,  $\Theta = 2\pi U_2$ .

3. Fazer 
$$X_1 = R\cos(\Theta)$$
,  $X_2 = Rsen(\Theta)$ .

4. Sair 
$$X_1$$
,  $X_2$ .

As equações para obter  $\boldsymbol{X}_1$  e  $\boldsymbol{X}_2$  são conhecidas como transformações de Box-Muller.

A desvantagem deste método é a exigência do cálculo de senos e cossenos, o que envolve o cômputo da expansão de séries de Taylor. Para uma boa aproximação aos valores exatos de senos e cossenos, dependemos da maior expansão possível das séries de Taylor, o que pode variar de acordo com a linguagem de programação utilizada.

#### 5.4.3 Variante de Marsaglia

Marsaglia introduziu sua "Variante Polar do Método de Box-Muller", a qual incorpora o método de rejeição para evitar as operações trigonométricas de senos e cossenos. O algoritmo é:

Enquanto 
$$W > 1$$

Gerar 
$$U_1, U_2 \sim U[0;1]$$
.

Fazer 
$$V_1 = 2U_1 - 1$$
,  $V_2 = 2U_2 - 1$ ,  $W = V_1^2 + V_2^2$ .

Fazer 
$$C = \sqrt{[-2\ln(W)]/W}$$
 .

Sair 
$$X_1 = CV_1$$
,  $X_2 = CV_2$ .

Uma vez que este algoritmo utiliza rejeição para evitar o cálculo das funções trigonométricas, temos uma complexidade adicional na sua programação.

#### 5.4.4 Método Ahrens-Dieter

O Método Ahrens-Dieter (Ahrens e Dieter, 1988) é um gerador normal exato que transforma um par de números aleatórios independentes da Distribuição Exponencial e da Cauchy em dois números aleatórios da Normal independentes. Este método é similar ao de Box-Muller, exceto que, ao invés de aplicar uma transformação complexa para facilmente gerar números aleatórios uniformes, aplica uma transformação mais simples em duas distribuições que são mais complexas de gerar. A princípio, as distribuições Exponencial e Cauchy poderiam

ser geradas diretamente, usando  $-\ln(U)$  e  $\tan(\pi(U-1/2))$ , respectivamente, o que faria deste um método de transformação. Entretanto, a única razão deste método ser factível é devido aos autores terem desenvolvido dois algoritmos baseados em rejeição para gerar amostras das distribuições Exponencial e Cauchy.

Um dos inconvenientes deste método é ser complexo de entender. Deve ser cuidadosamente implementado, pois requer muitas constantes. Este algoritmo encontra-se disponível no software R. Sua implementação, em linguagem C, pode ser encontrada no código-fonte do R, disponível no endereço eletrônico http://www.r-project.org

# 6. ESTIMATIVAS DAS AMOSTRAS DA DISTRIBUIÇÃO NORMAL

Nos capítulos subsequentes, apresentaremos as estimativas com amostras de tamanho n = 100, n = 1000 e n = 10000 da Distribuição Normal padrão para as seguintes medidas: esperança, máximo e mínimo, amplitude, desvio-padrão, assimetria, curtose, quartis, distância interquartílica e valor-p para o teste de aderência. Os valores "exatos" das medidas para a Distribuição Normal padrão são: esperança = 0; máximo = 4.264891 e mínimo = -4.264891; amplitude = 8.529782; desvio-padrão = 1; assimetria = 0; curtose = 0;  $1^{\circ}$  quartil = -0.6744898,  $2^{\circ}$  quartil = 0 e  $3^{\circ}$  quartil = 0.6744898; distância interquartílica = 1.34898. Considera-se como máximo o valor x tal que a probabilidade  $P(X \le x) = 0.99999$ , e como mínimo o valor x tal que a probabilidade  $P(X \le x) = 0.00001$ .

#### 6.1 Estimativas com amostras de tamanho n = 100

Nas tabelas abaixo, apresentamos a média e o erro padrão dos valores estimados pelos geradores para cada uma das medidas analisadas. Nos gráficos, ilustramos o comportamento das estimativas dos geradores ao longo das 100 amostras.

## 6.1.1 Esperança

Tabela 2 – Média e erro padrão dos valores estimados para a esperança da distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média        | Erro Padrão |
|---------------------|--------------|-------------|
| Inv. Aproximada     | -0.009062434 | 0.09543417  |
| Inv. Wichura        | -0.007578265 | 0.106004    |
| Rej. Cauchy         | 0.007823898  | 0.1058975   |
| Rej. Exponencial    | 0.001805649  | 0.09287565  |
| Marsaglia-Bray      | -0.01017365  | 0.1069247   |
| Kinderman-Ramage    | -0.01477516  | 0.08043886  |
| Kinderman-Monahan   | -0.002752763 | 0.09932383  |
| Quoc. Unif. Leva    | 0.009079546  | 0.09477138  |
| Quoc. Unif. Insua   | -0.004753159 | 0.1032364   |
| Soma Doze Uniformes | 0.008746627  | 0.1104117   |
| Box-Muller          | -0.01167383  | 0.1024274   |
| Variante Marsaglia  | 0.008910398  | 0.1019724   |
| Ahrens-Dieter       | 0.01058423   | 0.09843404  |



Quadro 1 – Gráficos dos valores estimados para a esperança da distribuição N(0,1) em 100 amostras de tamanho 100

#### 6.1.2 Máximo e Mínimo

Tabela 3 – Média e erro padrão dos valores estimados para o máximo da distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média    | Erro Padrão |
|---------------------|----------|-------------|
| Inv. Aproximada     | 2.532696 | 0.3717791   |
| Inv. Wichura        | 2.517707 | 0.3713459   |
| Rej. Cauchy         | 2.514574 | 0.4633389   |
| Rej. Exponencial    | 2.542086 | 0.4041451   |
| Marsaglia-Bray      | 2.42405  | 0.403121    |
| Kinderman-Ramage    | 2.51027  | 0.4407196   |
| Kinderman-Monahan   | 2.483085 | 0.3776668   |
| Quoc. Unif. Leva    | 2.531315 | 0.4510915   |
| Quoc. Unif. Insua   | 2.507519 | 0.4138504   |
| Soma Doze Uniformes | 2.481613 | 0.4073649   |
| Box-Muller          | 2.490676 | 0.4677043   |
| Variante Marsaglia  | 2.533667 | 0.4419769   |
| Ahrens-Dieter       | 2.585604 | 0.4743861   |

Tabela 4 – Média e erro padrão dos valores estimados para o mínimo da distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | -2.473534 | 0.3582343   |
| Inv. Wichura        | -2.524946 | 0.4164138   |
| Rej. Cauchy         | -2.408515 | 0.3797996   |
| Rej. Exponencial    | -2.51063  | 0.4381672   |
| Marsaglia-Bray      | -2.49863  | 0.4400174   |
| Kinderman-Ramage    | -2.47332  | 0.3976071   |
| Kinderman-Monahan   | -2.571436 | 0.4578993   |
| Quoc. Unif. Leva    | -2.472008 | 0.4456734   |
| Quoc. Unif. Insua   | -2.539813 | 0.4254929   |
| Soma Doze Uniformes | -2.411904 | 0.3793033   |
| Box-Muller          | -2.47362  | 0.4212333   |
| Variante Marsaglia  | -2.55832  | 0.4564264   |
| Ahrens-Dieter       | -2.46875  | 0.4298149   |

# 6.1.3 Amplitude

Tabela 5 – Média e erro padrão dos valores estimados para a amplitude da distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média    | Erro Padrão |
|---------------------|----------|-------------|
| Inv. Aproximada     | 5.00623  | 0.4993893   |
| Inv. Wichura        | 5.042653 | 0.5974695   |
| Rej. Cauchy         | 4.923089 | 0.5509244   |
| Rej. Exponencial    | 5.052715 | 0.593337    |
| Marsaglia-Bray      | 4.92268  | 0.6096093   |
| Kinderman-Ramage    | 4.983591 | 0.6203069   |
| Kinderman-Monahan   | 5.05452  | 0.594761    |
| Quoc. Unif. Leva    | 5.003323 | 0.6467366   |
| Quoc. Unif. Insua   | 5.047331 | 0.5992069   |
| Soma Doze Uniformes | 4.893517 | 0.574163    |
| Box-Muller          | 4.964297 | 0.6359683   |
| Variante Marsaglia  | 5.091987 | 0.6343671   |
| Ahrens-Dieter       | 5.054355 | 0.6522928   |

#### 6.1.4 Desvio-Padrão

Tabela 6 – Média e erro padrão dos valores estimados para o desvio-padrão da distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | 1.000396  | 0.06350335  |
| Inv. Wichura        | 0.999242  | 0.07288895  |
| Rej. Cauchy         | 0.9963197 | 0.0768562   |
| Rej. Exponencial    | 1.000953  | 0.06933273  |
| Marsaglia-Bray      | 0.9759807 | 0.06204278  |
| Kinderman-Ramage    | 0.9933156 | 0.06913938  |
| Kinderman-Monahan   | 1.007644  | 0.08090255  |
| Quoc. Unif. Leva    | 0.9925069 | 0.06972294  |
| Quoc. Unif. Insua   | 0.9971297 | 0.07582419  |
| Soma Doze Uniformes | 0.990602  | 0.06829935  |
| Box-Muller          | 0.99713   | 0.07369371  |
| Variante Marsaglia  | 1.002215  | 0.07737016  |
| Ahrens-Dieter       | 1.001942  | 0.07607487  |

Fonte: elaborada pelo autor.



Quadro 2 – Gráficos dos valores estimados para o desvio-padrão da distribuição N(0,1) em 100 amostras de tamanho 100

## 6.1.5 Assimetria

Tabela 7 – Média e erro padrão dos valores estimados para a assimetria da distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média         | Erro Padrão |
|---------------------|---------------|-------------|
| Inv. Aproximada     | 0.02902254    | 0.2571842   |
| Inv. Wichura        | -0.0223686    | 0.2439079   |
| Rej. Cauchy         | 0.02635954    | 0.217975    |
| Rej. Exponencial    | 0.003477309   | 0.2376233   |
| Marsaglia-Bray      | -0.01374043   | 0.2320286   |
| Kinderman-Ramage    | -0.0003383674 | 0.2398639   |
| Kinderman-Monahan   | -0.04180047   | 0.2361352   |
| Quoc. Unif. Leva    | 0.02170604    | 0.2331396   |
| Quoc. Unif. Insua   | -0.02183757   | 0.2363794   |
| Soma Doze Uniformes | -0.01089978   | 0.2309453   |
| Box-Muller          | 0.03744194    | 0.234206    |
| Variante Marsaglia  | -0.01625267   | 0.2777991   |
| Ahrens-Dieter       | 0.000102327   | 0.2364053   |

Fonte: elaborada pelo autor.

## 6.1.6 Curtose

Tabela 8 – Média e erro padrão dos valores estimados para a curtose da distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média        | Erro Padrão |
|---------------------|--------------|-------------|
| Inv. Aproximada     | 0.0121851    | 0.4554933   |
| Inv. Wichura        | 0.008668426  | 0.4174302   |
| Rej. Cauchy         | -0.09153277  | 0.3994047   |
| Rej. Exponencial    | 0.03596081   | 0.4327935   |
| Marsaglia-Bray      | 0.039234     | 0.5269268   |
| Kinderman-Ramage    | 0.02258049   | 0.4750382   |
| Kinderman-Monahan   | -0.006353618 | 0.4320223   |
| Quoc. Unif. Leva    | -0.002457271 | 0.4602357   |
| Quoc. Unif. Insua   | 0.006453771  | 0.3898836   |
| Soma Doze Uniformes | -0.1098272   | 0.4534674   |
| Box-Muller          | -0.03922979  | 0.4789778   |
| Variante Marsaglia  | 0.05180219   | 0.4938133   |
| Ahrens-Dieter       | -0.009752955 | 0.478546    |

# 6.1.7 Quartis

Tabela 9 – Média e erro padrão dos valores estimados para o  $1^{\circ}$  quartil da distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média      | Erro Padrão |
|---------------------|------------|-------------|
| Inv. Aproximada     | -0.6628656 | 0.1390403   |
| Inv. Wichura        | -0.6675943 | 0.1319938   |
| Rej. Cauchy         | -0.6790974 | 0.1568243   |
| Rej. Exponencial    | -0.6603809 | 0.1225857   |
| Marsaglia-Bray      | -0.6565412 | 0.1445299   |
| Kinderman-Ramage    | -0.6704237 | 0.1242368   |
| Kinderman-Monahan   | -0.6641848 | 0.1325942   |
| Quoc. Unif. Leva    | -0.65425   | 0.1362246   |
| Quoc. Unif. Insua   | -0.6643328 | 0.1391937   |
| Soma Doze Uniformes | -0.6753588 | 0.1411471   |
| Box-Muller          | -0.6827325 | 0.1323297   |
| Variante Marsaglia  | -0.6614249 | 0.1394763   |
| Ahrens-Dieter       | -0.6571    | 0.1210521   |

Fonte: elaborada pelo autor.

Tabela 10 – Média e erro padrão dos valores estimados para o  $2^\circ$  quartil da distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média        | Erro Padrão |
|---------------------|--------------|-------------|
| Inv. Aproximada     | -0.02281699  | 0.1241362   |
| Inv. Wichura        | -0.004929354 | 0.1317373   |
| Rej. Cauchy         | 0.01026994   | 0.1380688   |
| Rej. Exponencial    | 0.01563119   | 0.1225143   |
| Marsaglia-Bray      | -0.01186945  | 0.1224363   |
| Kinderman-Ramage    | -0.01184882  | 0.09706678  |
| Kinderman-Monahan   | -0.003526452 | 0.1194232   |
| Quoc. Unif. Leva    | 0.002608566  | 0.1149112   |
| Quoc. Unif. Insua   | -0.003913473 | 0.1113667   |
| Soma Doze Uniformes | 0.02130182   | 0.1320383   |
| Box-Muller          | -0.02020447  | 0.1339905   |
| Variante Marsaglia  | 0.008734944  | 0.1279172   |
| Ahrens-Dieter       | 0.01791564   | 0.128293    |



Quadro 3 – Gráficos dos valores estimados para o 2º quartil da distribuição N(0,1) em 100 amostras de tamanho 100

Tabela 11 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | 0.6483198 | 0.1258568   |
| Inv. Wichura        | 0.6714481 | 0.1351443   |
| Rej. Cauchy         | 0.6752402 | 0.1349913   |
| Rej. Exponencial    | 0.6489866 | 0.1329137   |
| Marsaglia-Bray      | 0.6365014 | 0.1346928   |
| Kinderman-Ramage    | 0.6393106 | 0.1269985   |
| Kinderman-Monahan   | 0.6861109 | 0.1418966   |
| Quoc. Unif. Leva    | 0.6742543 | 0.1240231   |
| Quoc. Unif. Insua   | 0.6617501 | 0.1384011   |
| Soma Doze Uniformes | 0.686223  | 0.1544554   |
| Box-Muller          | 0.6564531 | 0.1397859   |
| Variante Marsaglia  | 0.6741447 | 0.1315035   |
| Ahrens-Dieter       | 0.6827423 | 0.1360271   |

# 6.1.8 Distância Interquartílica

Tabela 12 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média    | Erro Padrão |
|---------------------|----------|-------------|
| Inv. Aproximada     | 1.311185 | 0.145169    |
| Inv. Wichura        | 1.339042 | 0.1319143   |
| Rej. Cauchy         | 1.354338 | 0.1842912   |
| Rej. Exponencial    | 1.309368 | 0.1451868   |
| Marsaglia-Bray      | 1.293043 | 0.1525419   |
| Kinderman-Ramage    | 1.309734 | 0.1593492   |
| Kinderman-Monahan   | 1.350296 | 0.1562913   |
| Quoc. Unif. Leva    | 1.328504 | 0.1552029   |
| Quoc. Unif. Insua   | 1.326083 | 0.1592239   |
| Soma Doze Uniformes | 1.361582 | 0.1515428   |
| Box-Muller          | 1.339186 | 0.1740855   |
| Variante Marsaglia  | 1.33557  | 0.1668602   |
| Ahrens-Dieter       | 1.339842 | 0.1400257   |

Fonte: elaborada pelo autor.

## 6.1.9 Teste de Aderência

Tabela 13 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição N(0,1) em 100 amostras de tamanho 100

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | 0.5026506 | 0.2685548   |
| Inv. Wichura        | 0.5131365 | 0.2762698   |
| Rej. Cauchy         | 0.4513709 | 0.2858284   |
| Rej. Exponencial    | 0.5371342 | 0.2636209   |
| Marsaglia-Bray      | 0.4932079 | 0.2950988   |
| Kinderman-Ramage    | 0.5462355 | 0.2922936   |
| Kinderman-Monahan   | 0.464263  | 0.2881989   |
| Quoc. Unif. Leva    | 0.5170986 | 0.2759117   |
| Quoc. Unif. Insua   | 0.5065225 | 0.290438    |
| Soma Doze Uniformes | 0.497217  | 0.306954    |
| Box-Muller          | 0.4951024 | 0.2869744   |
| Variante Marsaglia  | 0.4655814 | 0.2798491   |
| Ahrens-Dieter       | 0.5253088 | 0.2753594   |



Quadro 4 – Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição N(0,1) em 100 amostras de tamanho 100

#### 6.1.10 Conclusões

De maneira geral, para as 100 amostras com tamanho 100, os algoritmos Kinderman-Monahan e Ahrens-Dieter foram os que mais se aproximaram, em média, aos valores exatos das medidas analisadas. Entretanto, o algoritmo de Kinderman-Monahan mostrou-se um pouco mais preciso que o algoritmo de Ahrens-Dieter. Em termos de variabilidade, ambos se comportaram de forma similar.

Assim, podemos dizer que o algoritmo de Kinderman-Monahan comportou-se melhor para a geração de amostras com tamanho n = 100 da Distribuição Normal padrão.

Tabela 14 – Estimativas médias do algoritmo de Kinderman-Monahan em 100 amostras de tamanho 100 da distribuição N(0,1)

| Kinderman-Monahan |  |
|-------------------|--|
| -0.002752763      |  |
| 2.483085          |  |
| -2.571436         |  |
| 5.05452           |  |
| 1.007644          |  |
| -0.04180047       |  |
| -0.006353618      |  |
|                   |  |

| -0.6641848   |  |  |
|--------------|--|--|
| -0.003526452 |  |  |
| 0.6861109    |  |  |
| 1.350296     |  |  |
|              |  |  |

#### Kinderman-Monahan



Figura 10 – Histograma de 100 valores gerados da distribuição N(0,1) pelo algoritmo de Kinderman-Monahan

Fonte: elaborada pelo autor.

## 6.2. Estimativas com amostras de tamanho n = 1000

Nas tabelas abaixo, apresentamos a média e o erro padrão dos valores estimados pelos geradores para cada uma das medidas analisadas. Nos gráficos, ilustramos o comportamento das estimativas dos geradores ao longo das 100 amostras.

## 6.2.1 Esperança

Tabela 15 – Média e erro padrão dos valores estimados para a esperança da distribuição N(0,1) em 100 amostras de tamanho 1000

| Gerador           | Média        | Erro Padrão |
|-------------------|--------------|-------------|
| Inv. Aproximada   | 0.002014318  | 0.03129956  |
| Inv. Wichura      | -0.002079295 | 0.03300581  |
| Rej. Cauchy       | -0.002815066 | 0.03429791  |
| Rej. Exponencial  | 0.0001384719 | 0.02992357  |
| Marsaglia-Bray    | 0.003190983  | 0.03452673  |
| Kinderman-Ramage  | -0.001291773 | 0.03202166  |
| Kinderman-Monahan | 0.001041138  | 0.02778461  |
| Quoc. Unif. Leva  | 0.0004834135 | 0.02646444  |

| Quoc. Unif. Insua   | 0.004022597   | 0.0330536  |
|---------------------|---------------|------------|
| Soma Doze Uniformes | -0.0006903926 | 0.0318287  |
| Box-Muller          | -0.0008262409 | 0.02924798 |
| Variante Marsaglia  | -0.002155977  | 0.03027569 |
| Ahrens-Dieter       | -0.002501833  | 0.03127202 |



Quadro 5 – Gráficos dos valores estimados para a esperança da distribuição N(0,1) em 100 amostras de tamanho 1000

Fonte: Elaborado pelo autor.

### 6.2.2 Máximo e Mínimo

Tabela 16 – Média e erro padrão dos valores estimados para o máximo da distribuição N(0,1) em 100 amostras de tamanho 1000

| Média    | Erro Padrão                                                                                  |
|----------|----------------------------------------------------------------------------------------------|
| 3.161852 | 0.3090106                                                                                    |
| 3.196863 | 0.3647633                                                                                    |
| 3.283016 | 0.3426755                                                                                    |
| 3.223687 | 0.3602605                                                                                    |
| 3.281389 | 0.4154233                                                                                    |
| 3.261837 | 0.3621373                                                                                    |
| 3.242655 | 0.3544424                                                                                    |
| 3.243226 | 0.3253418                                                                                    |
| 3.1706   | 0.3394337                                                                                    |
|          | 3.161852<br>3.196863<br>3.283016<br>3.223687<br>3.281389<br>3.261837<br>3.242655<br>3.243226 |

| Soma Doze Uniformes | 3.101809 | 0.3155943 |
|---------------------|----------|-----------|
| Box-Muller          | 3.215017 | 0.3867896 |
| Variante Marsaglia  | 3.20478  | 0.2929196 |
| Ahrens-Dieter       | 3.210632 | 0.2775037 |
| Variante Marsaglia  | 3.20478  | 0.2929196 |

Tabela 17 – Média e erro padrão dos valores estimados para o mínimo da distribuição N(0,1) em 100 amostras de tamanho 1000

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | -3.169214 | 0.3226643   |
| Inv. Wichura        | -3.298735 | 0.3736771   |
| Rej. Cauchy         | -3.289649 | 0.4256568   |
| Rej. Exponencial    | -3.182163 | 0.3331722   |
| Marsaglia-Bray      | -3.227082 | 0.3436708   |
| Kinderman-Ramage    | -3.184129 | 0.3174223   |
| Kinderman-Monahan   | -3.236524 | 0.3363518   |
| Quoc. Unif. Leva    | -3.249184 | 0.3745607   |
| Quoc. Unif. Insua   | -3.120346 | 0.2724511   |
| Soma Doze Uniformes | -3.147004 | 0.2957891   |
| Box-Muller          | -3.216268 | 0.3210548   |
| Variante Marsaglia  | -3.297524 | 0.387599    |
| Ahrens-Dieter       | -3.252783 | 0.3418995   |

Fonte: elaborada pelo autor.

## 6.2.3 Amplitude

Tabela 18 – Média e erro padrão dos valores estimados para a amplitude da distribuição N(0,1) em 100 amostras de tamanho 1000

| Gerador             | Média    | Erro Padrão |
|---------------------|----------|-------------|
| Inv. Aproximada     | 6.331065 | 0.4586844   |
| Inv. Wichura        | 6.495598 | 0.5209199   |
| Rej. Cauchy         | 6.572665 | 0.5685247   |
| Rej. Exponencial    | 6.405849 | 0.5428715   |
| Marsaglia-Bray      | 6.508471 | 0.5407429   |
| Kinderman-Ramage    | 6.445966 | 0.470401    |
| Kinderman-Monahan   | 6.479179 | 0.5048546   |
| Quoc. Unif. Leva    | 6.49241  | 0.4873395   |
| Quoc. Unif. Insua   | 6.290945 | 0.4391695   |
| Soma Doze Uniformes | 6.248813 | 0.4413202   |
| Box-Muller          | 6.431285 | 0.4837155   |
| Variante Marsaglia  | 6.502304 | 0.4641195   |
| Ahrens-Dieter       | 6.463415 | 0.4245059   |
|                     | l        |             |

#### 6.2.4 Desvio-Padrão

Tabela 19 – Média e erro padrão dos valores estimados para o desvio-padrão da distribuição N(0,1) em 100 amostras de tamanho 1000

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | 0.9985553 | 0.01926768  |
| Inv. Wichura        | 1.004279  | 0.02111584  |
| Rej. Cauchy         | 1.003426  | 0.02143183  |
| Rej. Exponencial    | 1.000373  | 0.02312311  |
| Marsaglia-Bray      | 0.9983488 | 0.02232527  |
| Kinderman-Ramage    | 1.000134  | 0.02512456  |
| Kinderman-Monahan   | 1.003499  | 0.02258203  |
| Quoc. Unif. Leva    | 1.002539  | 0.02043831  |
| Quoc. Unif. Insua   | 0.9941485 | 0.02107412  |
| Soma Doze Uniformes | 1.00111   | 0.02214742  |
| Box-Muller          | 0.996857  | 0.02185337  |
| Variante Marsaglia  | 0.9986953 | 0.02377147  |
| Ahrens-Dieter       | 1.000206  | 0.02285446  |

Fonte: elaborada pelo autor.



Quadro 6 – Gráficos dos valores estimados para o desvio-padrão da distribuição N(0,1) em 100 amostras de tamanho 1000

## 6.2.5 Assimetria

Tabela 20 – Média e erro padrão dos valores estimados para a assimetria da distribuição N(0,1) em 100 amostras de tamanho 1000

| Gerador                      | Média         | Erro Padrão |
|------------------------------|---------------|-------------|
| Inv. Aproximada              | -0.004506061  | 0.07164439  |
| Inv. Wichura                 | -0.01557684   | 0.07423158  |
| Rej. Cauchy                  | 0.003774131   | 0.07394407  |
| Rej. Exponencial             | 0.007041263   | 0.07951698  |
| Marsaglia-Bray               | -0.01176757   | 0.086832    |
| Kinderman-Ramage             | -0.009974317  | 0.07397464  |
| Kinderman-Monahan            | 0.003023725   | 0.07557843  |
| Quoc. Unif. Leva             | 0.0004293911  | 0.07242903  |
| Quoc. Unif. Insua            | -0.0006660868 | 0.07239461  |
| Soma Doze Uniformes          | -0.0063495    | 0.06945569  |
| Box-Muller                   | 0.001022244   | 0.08411176  |
| Variante Marsaglia           | -0.002885438  | 0.08461139  |
| Ahrens-Dieter                | -0.004838704  | 0.07377537  |
| Fonte: elaborada pelo autor. |               |             |

## 6.2.6 Curtose

Tabela 21 – Média e erro padrão dos valores estimados para a curtose da distribuição N(0,1) em 100 amostras de tamanho 1000

| Gerador             | Média         | Erro Padrão |
|---------------------|---------------|-------------|
| Inv. Aproximada     | -0.0255475    | 0.1379419   |
| Inv. Wichura        | -0.01269046   | 0.154017    |
| Rej. Cauchy         | -0.0009228562 | 0.1744196   |
| Rej. Exponencial    | -0.01568317   | 0.1559886   |
| Marsaglia-Bray      | 0.02226501    | 0.1737806   |
| Kinderman-Ramage    | -0.006898075  | 0.1492507   |
| Kinderman-Monahan   | -0.0365112    | 0.1448672   |
| Quoc. Unif. Leva    | -0.01048786   | 0.167665    |
| Quoc. Unif. Insua   | -0.04045058   | 0.1433633   |
| Soma Doze Uniformes | -0.1037695    | 0.1361594   |
| Box-Muller          | -0.0044863    | 0.1405253   |
| Variante Marsaglia  | 0.003023854   | 0.1473875   |
| Ahrens-Dieter       | -0.01796486   | 0.1532614   |
|                     | 1             | l           |

## 6.2.7 Quartis

Tabela 22 – Média e erro padrão dos valores estimados para o  $1^\circ$  quartil da distribuição N(0,1) em 100 amostras de tamanho 1000

| Gerador             | Média      | Erro Padrão |
|---------------------|------------|-------------|
| Inv. Aproximada     | -0.6712368 | 0.04225581  |
| Inv. Wichura        | -0.6781676 | 0.04113612  |
| Rej. Cauchy         | -0.6792409 | 0.03787453  |
| Rej. Exponencial    | -0.6741933 | 0.04050138  |
| Marsaglia-Bray      | -0.665509  | 0.04226359  |
| Kinderman-Ramage    | -0.6715896 | 0.04703856  |
| Kinderman-Monahan   | -0.682993  | 0.04029391  |
| Quoc. Unif. Leva    | -0.6761248 | 0.04052167  |
| Quoc. Unif. Insua   | -0.6610673 | 0.03960869  |
| Soma Doze Uniformes | -0.6827118 | 0.04688311  |
| Box-Muller          | -0.6733365 | 0.04329852  |
| Variante Marsaglia  | -0.6735085 | 0.04686752  |
| Ahrens-Dieter       | -0.6762204 | 0.04461841  |

Fonte: elaborada pelo autor.

Tabela 23 – Média e erro padrão dos valores estimados para o  $2^\circ$  quartil da distribuição N(0,1) em 100 amostras de tamanho 1000

| Gerador             | Média         | Erro Padrão |
|---------------------|---------------|-------------|
| Inv. Aproximada     | 0.001870556   | 0.03771755  |
| Inv. Wichura        | 0.000113983   | 0.03958677  |
| Rej. Cauchy         | -0.005639999  | 0.04216683  |
| Rej. Exponencial    | -0.0006449595 | 0.03999646  |
| Marsaglia-Bray      | 0.004664403   | 0.04397486  |
| Kinderman-Ramage    | 0.001184501   | 0.04123253  |
| Kinderman-Monahan   | 0.002688699   | 0.03827916  |
| Quoc. Unif. Leva    | 0.0008143753  | 0.03307258  |
| Quoc. Unif. Insua   | 0.002831336   | 0.03898503  |
| Soma Doze Uniformes | -0.001977901  | 0.03810385  |
| Box-Muller          | -0.001869335  | 0.0380701   |
| Variante Marsaglia  | -0.003201695  | 0.03986383  |
| Ahrens-Dieter       | -0.0015663    | 0.03989253  |



Quadro 7 – Gráficos dos valores estimados para o 2º quartil da distribuição N(0,1) em 100 amostras de tamanho 1000

Tabela 24 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição N(0,1) em 100 amostras de tamanho 1000

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | 0.6736855 | 0.0420988   |
| Inv. Wichura        | 0.6782685 | 0.04116969  |
| Rej. Cauchy         | 0.6718305 | 0.04810266  |
| Rej. Exponencial    | 0.672289  | 0.04272079  |
| Marsaglia-Bray      | 0.674154  | 0.04426279  |
| Kinderman-Ramage    | 0.6788996 | 0.04190076  |
| Kinderman-Monahan   | 0.6797421 | 0.03955191  |
| Quoc. Unif. Leva    | 0.6754142 | 0.04069196  |
| Quoc. Unif. Insua   | 0.6780062 | 0.04446724  |
| Soma Doze Uniformes | 0.6817653 | 0.04430915  |
| Box-Muller          | 0.6711728 | 0.04166654  |
| Variante Marsaglia  | 0.6694676 | 0.03874335  |
| Ahrens-Dieter       | 0.6734105 | 0.03971431  |

# 6.2.8 Distância Interquartílica

Tabela 25 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição N(0,1) em 100 amostras de tamanho 1000

| Gerador             | Média    | Erro Padrão |
|---------------------|----------|-------------|
| Inv. Aproximada     | 1.344922 | 0.04593239  |
| Inv. Wichura        | 1.356436 | 0.04057731  |
| Rej. Cauchy         | 1.351071 | 0.04705975  |
| Rej. Exponencial    | 1.346482 | 0.05117137  |
| Marsaglia-Bray      | 1.339663 | 0.04921025  |
| Kinderman-Ramage    | 1.350489 | 0.05251921  |
| Kinderman-Monahan   | 1.362735 | 0.05016925  |
| Quoc. Unif. Leva    | 1.351539 | 0.05461544  |
| Quoc. Unif. Insua   | 1.339074 | 0.04933058  |
| Soma Doze Uniformes | 1.364477 | 0.05853384  |
| Box-Muller          | 1.344509 | 0.05054018  |
| Variante Marsaglia  | 1.342976 | 0.04685666  |
| Ahrens-Dieter       | 1.349631 | 0.04926479  |

Fonte: elaborada pelo autor.

## 6.2.9 Teste de Aderência

Tabela 26 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição N(0,1) em 100 amostras de tamanho 1000

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | 0.5381316 | 0.3195284   |
| Inv. Wichura        | 0.4840885 | 0.2940198   |
| Rej. Cauchy         | 0.4564268 | 0.2925798   |
| Rej. Exponencial    | 0.4534743 | 0.2880199   |
| Marsaglia-Bray      | 0.5308782 | 0.293837    |
| Kinderman-Ramage    | 0.4797575 | 0.3009116   |
| Kinderman-Monahan   | 0.5501258 | 0.2868982   |
| Quoc. Unif. Leva    | 0.521443  | 0.2685215   |
| Quoc. Unif. Insua   | 0.5417912 | 0.3045601   |
| Soma Doze Uniformes | 0.4913324 | 0.2950767   |
| Box-Muller          | 0.4940139 | 0.288086    |
| Variante Marsaglia  | 0.5443138 | 0.2808249   |
| Ahrens-Dieter       | 0.4650643 | 0.2863751   |



Quadro 8 – Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição N(0,1) em 100 amostras de tamanho 1000

#### 6.2.10 Conclusões

De maneira geral, para as 100 amostras com tamanho 1000, os algoritmos Rejeição pela Distribuição Exponencial, Rejeição pela Distribuição de Cauchy, Variante de Marsaglia, Quociente de Uniformes de Leva e Box-Muller foram os que mais se aproximaram, em média, aos valores exatos das medidas analisadas. Para este tamanho de amostra, podemos verificar que os algoritmos baseados no método de aceitação-rejeição mostraram-se mais precisos que os demais, com uma leve vantagem para o algoritmo baseado na Distribuição Exponencial, o qual, de 11 medidas calculadas, em cinco delas pode ser elencado como um dos geradores mais precisos (embora nem sempre tenha apresentado a menor variabilidade).

Assim, podemos dizer que o algoritmo de Rejeição pela Distribuição Exponencial comportou-se melhor para a geração de amostras com tamanho n = 1000 da Distribuição Normal padrão.

Tabela 27 – Estimativas médias do algoritmo de Rejeição pela Distribuição Exponencial em 100 amostras de tamanho 1000 da distribuição N(0,1)

| Medidas           | Rej. Exponencial |  |
|-------------------|------------------|--|
| Esperança         | 0.0001384719     |  |
| Máximo            | 3.223687         |  |
| Mínimo            | -3.182163        |  |
| Amplitude         | 7.438032         |  |
| Desvio-Padrão     | 1.000373         |  |
| Assimetria        | 0.007041263      |  |
| Curtose           | -0.01568317      |  |
| 1º Quartil        | -0.6741933       |  |
| 2º Quartil        | -0.0006449595    |  |
| 3º Quartil        | 0.672289         |  |
| Dist. Interquart. | 1.346482         |  |

#### Rejeição pela Distribuição Exponencial



Figura 11 – Histograma de 1000 valores gerados da distribuição N(0,1) pelo algoritmo de Rejeição pela Distribuição Exponencial

Fonte: elaborada pelo autor.

## 6.3. Estimativas com amostras de tamanho n = 10000

Nas tabelas a seguir, apresentamos a média e o erro padrão dos valores estimados pelos geradores para cada uma das medidas analisadas. Nos gráficos, ilustramos o comportamento das estimativas dos geradores ao longo das 100 amostras.

# 6.3.1 Tempo de Execução

Tabela 28 – Média e erro padrão dos tempos de execução, em segundos, medidos em 100 amostras de tamanho 10000 da distribuição N(0,1)

| Gerador             | Média  | Erro Padrão |
|---------------------|--------|-------------|
| Inv. Aproximada     | 0.3785 | 0.02090744  |
| Inv. Wichura        | 1.3302 | 0.02677931  |
| Rej. Cauchy         | 1.0843 | 0.02690256  |
| Rej. Exponencial    | 1.9955 | 0.03801581  |
| Marsaglia-Bray      | 0.7728 | 0.02155941  |
| Kinderman-Ramage    | 0.6618 | 0.02041885  |
| Kinderman-Monahan   | 0.8855 | 0.01838835  |
| Quoc. Unif. Leva    | 0.9466 | 0.02094823  |
| Quoc. Unif. Insua   | 0.8964 | 0.02638181  |
| Soma Doze Uniformes | 0.3658 | 0.01718468  |
| Box-Muller          | 0.4043 | 0.01451262  |
| Variante Marsaglia  | 0.5529 | 0.0193477   |
| Ahrens-Dieter       | 1.4558 | 0.03188299  |

Fonte: elaborada pelo autor.

## 6.3.2 Esperança

Tabela 29 – Média e erro padrão dos valores estimados para a esperança da distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador             | Média         | Erro Padrão |
|---------------------|---------------|-------------|
| Inv. Aproximada     | 4.078576e-05  | 0.00963597  |
| Inv. Wichura        | -0.0005912234 | 0.0108083   |
| Rej. Cauchy         | -2.444202e-05 | 0.01005797  |
| Rej. Exponencial    | 0.0006174231  | 0.01088158  |
| Marsaglia-Bray      | -0.0006449274 | 0.009479491 |
| Kinderman-Ramage    | 1.44414e-05   | 0.01013144  |
| Kinderman-Monahan   | -0.0005370181 | 0.008940114 |
| Quoc. Unif. Leva    | 0.0003107256  | 0.009677595 |
| Quoc. Unif. Insua   | -0.0006837361 | 0.008291807 |
| Soma Doze Uniformes | 0.0002035495  | 0.009101711 |
| Box-Muller          | 0.0004087335  | 0.009980175 |
| Variante Marsaglia  | -0.0002465947 | 0.01037074  |
| Ahrens-Dieter       | -0.001972872  | 0.01112516  |



Quadro 9 – Gráficos dos valores estimados para a esperança da distribuição N(0,1) em 100 amostras de tamanho 10000

#### 6.3.3 Máximo e Mínimo

Tabela 30 – Média e erro padrão dos valores estimados para o máximo da distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador             | Média    | Erro Padrão |
|---------------------|----------|-------------|
| Inv. Aproximada     | 3.67812  | 0.1951931   |
| Inv. Wichura        | 3.887468 | 0.361838    |
| Rej. Cauchy         | 3.833186 | 0.2765049   |
| Rej. Exponencial    | 3.858787 | 0.2889402   |
| Marsaglia-Bray      | 3.803388 | 0.3094301   |
| Kinderman-Ramage    | 3.860144 | 0.2643519   |
| Kinderman-Monahan   | 3.88738  | 0.3085162   |
| Quoc. Unif. Leva    | 3.835344 | 0.3134597   |
| Quoc. Unif. Insua   | 3.911728 | 0.3068029   |
| Soma Doze Uniformes | 3.618569 | 0.2687502   |
| Box-Muller          | 3.886008 | 0.3121628   |
| Variante Marsaglia  | 3.915806 | 0.2765527   |
| Ahrens-Dieter       | 3.791881 | 0.2822758   |

Tabela 31 – Média e erro padrão dos valores estimados para o mínimo da distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | -3.660849 | 0.2222916   |
| Inv. Wichura        | -3.789637 | 0.2614513   |
| Rej. Cauchy         | -3.864249 | 0.3156253   |
| Rej. Exponencial    | -3.87753  | 0.2795228   |
| Marsaglia-Bray      | -3.873991 | 0.3124315   |
| Kinderman-Ramage    | -3.882799 | 0.3072965   |
| Kinderman-Monahan   | -3.830847 | 0.3023282   |
| Quoc. Unif. Leva    | -3.842296 | 0.3212197   |
| Quoc. Unif. Insua   | -3.862537 | 0.3334432   |
| Soma Doze Uniformes | -3.667338 | 0.2377975   |
| Box-Muller          | -3.827891 | 0.2785688   |
| Variante Marsaglia  | -3.841867 | 0.3099171   |
| Ahrens-Dieter       | -3.855592 | 0.3202348   |

## 6.3.4 Amplitude

Tabela 32 – Média e erro padrão dos valores estimados para a amplitude da distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador             | Média    | Erro Padrão |
|---------------------|----------|-------------|
| Inv. Aproximada     | 7.338968 | 0.2875556   |
| Inv. Wichura        | 7.677105 | 0.430032    |
| Rej. Cauchy         | 7.697435 | 0.3923243   |
| Rej. Exponencial    | 7.736316 | 0.4072806   |
| Marsaglia-Bray      | 7.67738  | 0.4693779   |
| Kinderman-Ramage    | 7.742943 | 0.436601    |
| Kinderman-Monahan   | 7.718227 | 0.421272    |
| Quoc. Unif. Leva    | 7.67764  | 0.4750116   |
| Quoc. Unif. Insua   | 7.774266 | 0.4411526   |
| Soma Doze Uniformes | 7.285907 | 0.3325534   |
| Box-Muller          | 7.713899 | 0.441164    |
| Variante Marsaglia  | 7.757674 | 0.4261002   |
| Ahrens-Dieter       | 7.647472 | 0.4475289   |

#### 6.3.5 Desvio-Padrão

Tabela 33 – Média e erro padrão dos valores estimados para o desvio-padrão da distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | 0.9986805 | 0.007287532 |
| Inv. Wichura        | 1.001513  | 0.006440669 |
| Rej. Cauchy         | 1.00055   | 0.00780846  |
| Rej. Exponencial    | 0.9986234 | 0.007175574 |
| Marsaglia-Bray      | 1.000342  | 0.007662034 |
| Kinderman-Ramage    | 1.000927  | 0.007522393 |
| Kinderman-Monahan   | 0.9992433 | 0.007482825 |
| Quoc. Unif. Leva    | 0.9995201 | 0.006742008 |
| Quoc. Unif. Insua   | 1.001852  | 0.007659301 |
| Soma Doze Uniformes | 0.9992795 | 0.006831979 |
| Box-Muller          | 0.9995184 | 0.006948187 |
| Variante Marsaglia  | 0.9997244 | 0.007335063 |
| Ahrens-Dieter       | 0.9999237 | 0.007390292 |

Fonte: elaborada pelo autor.



Quadro 10 – Gráficos dos valores estimados para o desvio-padrão da distribuição N(0,1) em 100 amostras de tamanho 10000

#### 6.3.6 Assimetria

Tabela 34 – Média e erro padrão dos valores estimados para a assimetria da distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador                      | Média         | Erro Padrão |  |
|------------------------------|---------------|-------------|--|
| Inv. Aproximada              | -0.0004667106 | 0.02768499  |  |
| Inv. Wichura                 | 0.0003648139  | 0.02760971  |  |
| Rej. Cauchy                  | 0.0003492828  | 0.02255564  |  |
| Rej. Exponencial             | 0.0007948796  | 0.02005484  |  |
| Marsaglia-Bray               | -0.0004806933 | 0.02317302  |  |
| Kinderman-Ramage             | 0.0009172677  | 0.02602432  |  |
| Kinderman-Monahan            | -0.002262727  | 0.02740893  |  |
| Quoc. Unif. Leva             | 0.001203913   | 0.02335504  |  |
| Quoc. Unif. Insua            | -0.000310124  | 0.02618433  |  |
| Soma Doze Uniformes          | -0.001984239  | 0.02413896  |  |
| Box-Muller                   | -0.002687322  | 0.02319569  |  |
| Variante Marsaglia           | 0.003313385   | 0.02334822  |  |
| Ahrens-Dieter                | -0.002117759  | 0.02295513  |  |
| Fonte: elaborada pelo autor. |               |             |  |

#### 6.3.7 Curtose

Tabela 35 – Média e erro padrão dos valores estimados para a curtose da distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador             | Média         | Erro Padrão |
|---------------------|---------------|-------------|
| Inv. Aproximada     | -0.007741045  | 0.04796694  |
| Inv. Wichura        | 0.0001346954  | 0.04985316  |
| Rej. Cauchy         | -0.003503153  | 0.04939722  |
| Rej. Exponencial    | 0.006151363   | 0.05392317  |
| Marsaglia-Bray      | -0.0009852633 | 0.04832359  |
| Kinderman-Ramage    | 0.001766893   | 0.04906434  |
| Kinderman-Monahan   | -0.0002936447 | 0.05054862  |
| Quoc. Unif. Leva    | -0.00722352   | 0.05358064  |
| Quoc. Unif. Insua   | -0.001001362  | 0.05331843  |
| Soma Doze Uniformes | -0.1006847    | 0.04137404  |
| Box-Muller          | -0.0006654236 | 0.0434142   |
| Variante Marsaglia  | 0.01010244    | 0.04539371  |
| Ahrens-Dieter       | -0.009525276  | 0.05025189  |
|                     | ſ             |             |

#### 6.3.8 Quartis

Tabela 36 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador             | Média      | Erro Padrão |  |
|---------------------|------------|-------------|--|
| Inv. Aproximada     | -0.6706447 | 0.01463033  |  |
| Inv. Wichura        | -0.6772253 | 0.01430168  |  |
| Rej. Cauchy         | -0.6750242 | 0.01437012  |  |
| Rej. Exponencial    | -0.6730028 | 0.01422749  |  |
| Marsaglia-Bray      | -0.6753228 | 0.0127348   |  |
| Kinderman-Ramage    | -0.6750868 | 0.01398925  |  |
| Kinderman-Monahan   | -0.6742666 | 0.01293207  |  |
| Quoc. Unif. Leva    | -0.6752771 | 0.01454069  |  |
| Quoc. Unif. Insua   | -0.6752463 | 0.01177066  |  |
| Soma Doze Uniformes | -0.679744  | 0.01301145  |  |
| Box-Muller          | -0.6742513 | 0.01185906  |  |
| Variante Marsaglia  | -0.6741473 | 0.01427654  |  |
| Ahrens-Dieter       | -0.6753484 | 0.01407911  |  |

Fonte: elaborada pelo autor.

Tabela 37 – Média e erro padrão dos valores estimados para o  $2^\circ$  quartil da distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador             | Média         | Erro Padrão |  |
|---------------------|---------------|-------------|--|
| Inv. Aproximada     | 0.000306218   | 0.01364375  |  |
| Inv. Wichura        | -0.00107235   | 0.01346843  |  |
| Rej. Cauchy         | -0.0008030546 | 0.01366323  |  |
| Rej. Exponencial    | 0.0007396668  | 0.01453965  |  |
| Marsaglia-Bray      | 0.0006881889  | 0.01251402  |  |
| Kinderman-Ramage    | -0.0001945409 | 0.01279031  |  |
| Kinderman-Monahan   | 0.0004270331  | 0.01125215  |  |
| Quoc. Unif. Leva    | 7.449303e-05  | 0.01205641  |  |
| Quoc. Unif. Insua   | -0.00120771   | 0.01086031  |  |
| Soma Doze Uniformes | 4.913974e-05  | 0.01306972  |  |
| Box-Muller          | 0.001085232   | 0.01280928  |  |
| Variante Marsaglia  | -0.0007062951 | 0.01242037  |  |
| Ahrens-Dieter       | -0.002233441  | 0.01333005  |  |
|                     |               |             |  |



Quadro 11 – Gráficos dos valores estimados para o 2º quartil da distribuição N(0,1) em 100 amostras de tamanho 10000

Tabela 38 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | 0.6709169 | 0.01446716  |
| Inv. Wichura        | 0.673097  | 0.01466783  |
| Rej. Cauchy         | 0.6760559 | 0.01329012  |
| Rej. Exponencial    | 0.673573  | 0.01372757  |
| Marsaglia-Bray      | 0.6733118 | 0.01387864  |
| Kinderman-Ramage    | 0.6741849 | 0.01347749  |
| Kinderman-Monahan   | 0.6727967 | 0.0125165   |
| Quoc. Unif. Leva    | 0.6738794 | 0.01368002  |
| Quoc. Unif. Insua   | 0.6754664 | 0.01372269  |
| Soma Doze Uniformes | 0.680843  | 0.01379811  |
| Box-Muller          | 0.6748083 | 0.0122649   |
| Variante Marsaglia  | 0.6731657 | 0.01245246  |
| Ahrens-Dieter       | 0.6728348 | 0.01452161  |
|                     | 1         |             |

## 6.3.9 Distância Interquartílica

Tabela 39 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador             | Média    | Erro Padrão |  |
|---------------------|----------|-------------|--|
| Inv. Aproximada     | 1.341562 | 0.01668102  |  |
| Inv. Wichura        | 1.350322 | 0.01662842  |  |
| Rej. Cauchy         | 1.35108  | 0.01573124  |  |
| Rej. Exponencial    | 1.346576 | 0.01633259  |  |
| Marsaglia-Bray      | 1.348635 | 0.01622021  |  |
| Kinderman-Ramage    | 1.349272 | 0.01595811  |  |
| Kinderman-Monahan   | 1.347063 | 0.01539988  |  |
| Quoc. Unif. Leva    | 1.349156 | 0.01516611  |  |
| Quoc. Unif. Insua   | 1.350713 | 0.01569344  |  |
| Soma Doze Uniformes | 1.360587 | 0.01506888  |  |
| Box-Muller          | 1.34906  | 0.01390899  |  |
| Variante Marsaglia  | 1.347313 | 0.01458046  |  |
| Ahrens-Dieter       | 1.348183 | 0.01578208  |  |

Fonte: elaborada pelo autor.

#### 6.3.10 Teste de Aderência

Tabela 40 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição N(0,1) em 100 amostras de tamanho 10000

| Gerador             | Média     | Erro Padrão |
|---------------------|-----------|-------------|
| Inv. Aproximada     | 0.4732453 | 0.2935678   |
| Inv. Wichura        | 0.4562296 | 0.285868    |
| Rej. Cauchy         | 0.4648547 | 0.3030879   |
| Rej. Exponencial    | 0.4793055 | 0.3023391   |
| Marsaglia-Bray      | 0.5396041 | 0.2829489   |
| Kinderman-Ramage    | 0.5195344 | 0.2987819   |
| Kinderman-Monahan   | 0.469697  | 0.2880658   |
| Quoc. Unif. Leva    | 0.4770902 | 0.2782912   |
| Quoc. Unif. Insua   | 0.4835915 | 0.2875804   |
| Soma Doze Uniformes | 0.5123736 | 0.2748049   |
| Box-Muller          | 0.5313329 | 0.2923391   |
| Variante Marsaglia  | 0.5197972 | 0.2823057   |
| Ahrens-Dieter       | 0.5222597 | 0.2979281   |
|                     | ı         |             |



Quadro 12 – Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição N(0,1) em 100 amostras de tamanho 10000

#### 6.3.11 Conclusões

De maneira geral, para as 100 amostras com tamanho 10000, os algoritmos Kinderman-Ramage, Box-Muller e Variante de Marsaglia foram os que mais se aproximaram, em média, aos valores exatos das medidas analisadas. Em se tratando de precisão das estimativas, o algoritmo de Kinderman-Ramage mostrou-se um pouco melhor que os demais. Entretanto, sua variabilidade (erro padrão) sempre esteve acima dos demais. O algoritmo de Box-Muller, ao contrário, mostrou ser mais constante nas suas estimativas, pois foi o gerador que apresentou, na maioria das vezes, a menor variabilidade. Além do mais, o algoritmo de Box-Muller foi um dos mais rápidos dentre todos os algoritmos analisados.

Por tudo isso, podemos dizer que o algoritmo de Box-Muller comportou-se melhor para a geração de amostras com tamanho n = 10000 da Distribuição Normal padrão.

Tabela 41 – Estimativas médias do algoritmo de Box-Muller em 100 amostras de tamanho 10000 da distribuição N(0,1)

| Medidas           | Box-Muller    |
|-------------------|---------------|
| Tempo de Execução | 0.4043 s      |
| Esperança         | 0.0004087335  |
| Máximo            | 3.886008      |
| Mínimo            | -3.827891     |
| Amplitude         | 7.713899      |
| Desvio-Padrão     | 0.9995184     |
| Assimetria        | -0.002687322  |
| Curtose           | -0.0006654236 |
| 1º Quartil        | -0.6742513    |
| 2º Quartil        | 0.001085232   |
| 3º Quartil        | 0.6748083     |
| Dist. Interquart. | 1.34906       |



Figura 12 – Histograma de 10000 valores gerados da distribuição N(0,1) pelo algoritmo de Box-Muller

## 7. GERADORES DE NÚMEROS ALEATÓRIOS DA DISTRIBUIÇÃO QUI-QUADRADO

Neste capítulo, apresentaremos alguns geradores de números aleatórios da Distribuição Qui-Quadrado encontrados na literatura de Estatística Computacional e Simulação. A desvantagem desses algoritmos está na sua dependência de outras distribuições de probabilidade, como a Distribuição Normal, por exemplo. Ou seja, para se implementar o algoritmo, é necessário saber gerar ou dispor de um bom gerador de alguma outra distribuição de probabilidade. No caso dos algoritmos para a Distribuição Qui-Quadrado, geralmente é necessário um bom gerador de ocorrências da Distribuição Gama ou da Distribuição Normal padrão. Em nossos estudos posteriores, onde analisamos as estimativas desses geradores, utilizamos o gerador normal disponível por padrão no software R (Inversão por Wichura) na implementação dos algoritmos da Distribuição Qui-Quadrado.

### 7.1 Geradores baseados na Distribuição Gama

Como vimos em nossa Revisão Teórica, a Distribuição Qui-Quadrado também pode ser expressa em termos da Distribuição Gama com parâmetros k=v/2 e  $\theta=2$  (ou, equivalentemente,  $\alpha=v/2$  e  $\beta=1/2$ ), onde  $\nu$  são os graus de liberdade. Assim, podemos aproveitar os algoritmos para geração de números aleatórios da Distribuição Gama para gerar ocorrências da Distribuição Qui-Quadrado.

Geralmente, na literatura especializada, os algoritmos para geração de números aleatórios da Distribuição Gama são apresentados de acordo com o valor assumido para o parâmetro  $\alpha$ : geradores da Gama para  $\alpha \le 1$  e geradores da Gama para  $\alpha > 1$ . Então, podemos combinar esses dois algoritmos (um para  $\alpha \le 1$  e outro para  $\alpha > 1$ ) e dispor de um gerador da Gama para qualquer valor de  $\alpha$ .

Para  $\alpha \le 1$ , caso da Distribuição Qui-Quadrado com grau de liberdade  $\nu$  igual a 1 ou 2, podemos utilizar o algoritmo de rejeição proposto por Ahrens e Dieter (1974):

Fazer 
$$\beta=\frac{e+\alpha}{e},\ c=\frac{1}{\alpha}$$
.

Repita

Gerar  $U,W\sim U[0;1]$ .

Fazer  $V=\beta U$ .

Se  $V\leq 1$  então

Fazer  $X=V^c$ .

Fazer  $Aceitar = [W \le e^{-X}].$ 

senão

Fazer 
$$X = -\log(c(\beta - V))$$
.

Fazer 
$$Aceitar = [W \le X^{\alpha-1}].$$

Até que Aceitar = Verdadeiro.

Sair X.

Para  $\alpha > 1$ , caso da Distribuição Qui-Quadrado com grau de liberdade  $\nu$  maior do que 2, podemos utilizar o algoritmo de Cheng e Feast (1979), o qual é baseado no método do quociente de uniformes:

Fazer 
$$c_1 = \alpha - 1$$
,  $c_2 = \frac{\alpha - (1/6\alpha)}{c_1}$ ,  $c_3 = \frac{2}{\alpha - 1}$ ,  $c_4 = 1 + c_3$ ,  $c_5 = \frac{1}{\sqrt{\alpha}}$ .

1. Enquanto  $U_1 \notin (0,1)$ 

Gerar 
$$U_1, U_2 \sim U(0,1)$$
.

Se  $\alpha > 2.5$  então

Fazer 
$$U_1 = U_2 + c_5(1 - 1.86U_1)$$
.

- 2. Fazer  $W = c_2 U_2 / U_1$ .
- 3. Se  $c_3U_1 + W + W^{-1} \le c_4$  então ir a 5.
- 4. Se  $c_3 \log U_1 \log W + W \ge 1$  então voltar a 1.
- 5. Sair  $X = c_1 W$ .

O software R utiliza um algoritmo baseado na Distribuição Gama para gerar valores da Distribuição Qui-Quadrado. Por ser muito extenso, não forneceremos aqui o pseudocódigo para este algoritmo. Entretanto, sua implementação, em linguagem C, pode ser encontrada no código-fonte do software, disponível no endereço eletrônico http://www.r-project.org . Neste trabalho, chamaremos este gerador de "Gama - R".

## 7.2 Geradores baseados na Distribuição Normal

Os algoritmos seguintes são baseados unicamente na Distribuição Normal. Lembrando que  $\nu$  são os graus de liberdade da Distribuição Qui-Quadrado, a qual queremos gerar.

#### 7.2.1 Soma dos Quadrados de Normais

Gerar 
$$Z_1,...,Z_n \sim N(0,1)$$
.

Sair 
$$X = \sum_{i=1}^{\nu} Z_i^2$$
.

#### 7.2.2 Aproximação Normal

Gerar 
$$Z \sim N(0,1)$$
.

Sair 
$$X = \frac{\left(Z + \sqrt{2\nu - 1}\right)^2}{2}$$
.

## 7.3 Gerador baseado na Distribuição Uniforme e na Distribuição Normal

#### 7.3.1 Logaritmo do Produto de Uniformes

Se  $\nu$  é par então

Gerar 
$$U_1,...,U_{\nu/2} \sim U[0;1]$$
.

Sair 
$$X = -2\log\left(\prod_{i=1}^{\nu/2} U_i\right)$$
.

Se  $\nu$  é impar então

Gerar 
$$U_1,...,U_{(\nu-1)/2} \sim U[0;1]$$
.

Gerar 
$$Z \sim N(0,1)$$
.

Sair 
$$X = -2\log\left(\prod_{i=1}^{(v-1)/2} U_i\right) + Z^2$$
.

# 7.4 Gerador baseado na Distribuição Exponencial e na Distribuição Normal

O algoritmo seguinte é dependente de um bom gerador de ocorrências da Distribuição Exponencial e da Distribuição Normal padrão. Esse gerador pode ser obtido através da implementação de um algoritmo específico. Em nossas análises, utilizaremos o método da inversão para gerar números aleatórios da Distribuição Exponencial. Como já dissemos anteriormente, os números aleatórios da Distribuição Normal serão gerados através do algoritmo disponível por padrão no software R (Inversão por Wichura).

Se  $\nu$  é par então

Gerar 
$$Y_1,...,Y_{\nu/2} \sim Exp(2)$$
.

Sair 
$$X = \sum_{i=1}^{\nu/2} Y_i$$
 .

Se  $\nu$  é impar então

Gerar 
$$Y \sim \chi^2 (\nu - 1)$$
.  
Gerar  $Z \sim N(0,1)$ .  
Sair  $X = Y + Z^2$ .

Note que, quando  $\nu$  é impar, este algoritmo remete à geração, primeiramente, de uma qui-quadrado com grau de liberdade  $\nu$  par.

## 8. ESTIMATIVAS DAS AMOSTRAS DA DISTRIBUIÇÃO QUI-QUADRADO

Nos capítulos subsequentes, apresentaremos as estimativas com amostras de tamanho n = 100, n = 1000 e n = 10000 da Distribuição Qui-Quadrado com graus de liberdade v iguais a 1, 17 e 50 para as seguintes medidas: esperança, máximo e mínimo, amplitude, desvio-padrão, assimetria, curtose, quartis, distância interquartílica e valor-p para o teste de aderência. Os valores "exatos" das medidas para a Distribuição Qui-Quadrado com graus de liberdade v iguais a 1, 17 e 50 são, respectivamente: esperança = 1, 17, 50; máximo = 19.51142, 53.97429, 104.5417 e mínimo = 1.570796e-10, 2.303421, 18.15884; amplitude = 19.51142, 51.67087, 86.38286; desvio-padrão = 1.414214, 5.830952, 10; assimetria = 2.828427, 0.6859943, 0.4; curtose = 12, 0.7058824, 0.24; 1º quartil = 0.101531, 12.79193, 42.94208; 2º quartil = 0.4549364, 16.33818, 49.33494 e 3º quartil = 1.323304, 20.48868, 56.3336; distância interquartílica = 1.221773, 7.69675, 13.39152. Considera-se como máximo o valor x tal que a probabilidade  $P(X \le x) = 0.99999$ , e como mínimo o valor x tal que a probabilidade  $P(X \le x) = 0.00001$ .

#### 8.1 Estimativas com amostras de tamanho n = 100

Nas tabelas abaixo, apresentamos a média e o erro padrão dos valores estimados pelos geradores para cada uma das medidas analisadas. Nos gráficos, ilustramos o comportamento das estimativas dos geradores ao longo das 100 amostras.

#### 8.1.1 Esperança

Tabela 42 – Média e erro padrão dos valores estimados para a esperança da distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                        | $\chi^2(1)$ |           | $\chi^2$ (17) |           | $\chi^2$ (50) |          |
|------------------------|-------------|-----------|---------------|-----------|---------------|----------|
| Gerador                | Média       | E.P.      | Média         | E.P.      | Média         | E.P.     |
| Soma Quadrados Normal  | 1.013611    | 0.1303288 | 17.02971      | 0.552995  | 50.03928      | 1.07885  |
| Gama                   | 1.002445    | 0.1390373 | 15.79455      | 0.5109335 | 46.71836      | 1.05343  |
| Gama - R               | 1.00102     | 0.1345539 | 16.99746      | 0.5218185 | 49.9462       | 1.033436 |
| Exponencial-Normal     | 1.006839    | 0.1528259 | 17.03385      | 0.5591885 | 50.28968      | 1.144026 |
| Aprox. Normal          | 1.002002    | 0.1305188 | 17.04111      | 0.4866329 | 50.09301      | 1.054753 |
| Log. Produto Uniformes | 0.9949566   | 0.1376038 | 17.07459      | 0.6391054 | 49.99594      | 1.067584 |



Quadro 13 – Gráficos dos valores estimados para a esperança da distribuição  $\chi^2$  (1) em 100 amostras de tamanho 100



Quadro 14 - Gráficos dos valores estimados para a esperança da distribuição  $\chi^2$  (17) em 100 amostras de tamanho 100



Quadro 15 – Gráficos dos valores estimados para a esperança da distribuição  $\,\chi^2$  (50) em 100 amostras de tamanho 100

#### 8.1.2 Máximo e Mínimo

Tabela 43 – Média e erro padrão dos valores estimados para o máximo da distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                        | $\chi^2$ (1) |          | $\chi^2$ | (17)     | $\chi^2$ (50) |          |
|------------------------|--------------|----------|----------|----------|---------------|----------|
| Gerador                | Média        | E.P.     | Média    | E.P.     | Média         | E.P.     |
| Soma Quadrados Normal  | 7.83478      | 2.373793 | 35.66113 | 3.878113 | 77.77607      | 5.548218 |
| Gama                   | 7.789801     | 2.701185 | 35.23331 | 3.718802 | 79.60354      | 4.842029 |
| Gama - R               | 7.674068     | 2.103014 | 35.00361 | 3.928359 | 78.77379      | 6.05703  |
| Exponencial-Normal     | 7.959177     | 2.765039 | 35.03132 | 3.479249 | 79.27873      | 6.22584  |
| Aprox. Normal          | 6.305941     | 1.522088 | 34.18193 | 3.918248 | 78.35757      | 5.643764 |
| Log. Produto Uniformes | 7.220294     | 1.847453 | 36.05747 | 4.39571  | 78.5726       | 5.669813 |

Tabela 44 – Média e erro padrão dos valores estimados para o mínimo da distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                          | $\chi^2$     | $\chi^2$     | (17)     | $\chi^2$ (50) |          |          |
|--------------------------|--------------|--------------|----------|---------------|----------|----------|
| Gerador                  | Média        | E.P.         | Média    | E.P.          | Média    | E.P.     |
| Soma Quadrados<br>Normal | 0.0004084102 | 0.000876263  | 5.788777 | 1.203202      | 28.80684 | 2.779686 |
| Gama                     | 0.0003683153 | 0.0007983038 | 5.626165 | 1.092559      | 27.43229 | 2.715992 |
| Gama - R                 | 0.0002209926 | 0.0002939924 | 5.941221 | 1.228423      | 28.36079 | 3.158944 |
| Exponencial-Normal       | 0.0002616999 | 0.0004857139 | 5.920704 | 1.238791      | 28.91423 | 3.056686 |
| Aprox. Normal            | 0.0005140366 | 0.0008861322 | 5.257081 | 1.239701      | 28.04644 | 2.919457 |
| Log. Produto Uniformes   | 0.0003712888 | 0.0007504343 | 5.824605 | 1.202796      | 28.91065 | 2.918235 |

## 8.1.3 Amplitude

Tabela 45 - Média e erro padrão dos valores estimados para a amplitude da distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                        | $\chi^2$ (1) |          | $\chi^2$ (17) |          | $\chi^2$ (50) |          |
|------------------------|--------------|----------|---------------|----------|---------------|----------|
| Gerador                | Média        | E.P.     | Média         | E.P.     | Média         | E.P.     |
| Soma Quadrados Normal  | 7.834372     | 2.373783 | 29.87235      | 4.025711 | 48.96923      | 6.082347 |
| Gama                   | 7.789433     | 2.701208 | 29.60714      | 3.86343  | 52.17125      | 5.683367 |
| Gama - R               | 7.673847     | 2.102969 | 29.06239      | 4.277951 | 50.413        | 6.859562 |
| Exponencial-Normal     | 7.958915     | 2.765042 | 29.11062      | 3.625154 | 50.3645       | 7.024145 |
| Aprox. Normal          | 6.305427     | 1.522081 | 28.92485      | 4.078494 | 50.31113      | 6.051686 |
| Log. Produto Uniformes | 7.219923     | 1.847458 | 30.23287      | 4.616039 | 49.66195      | 6.553711 |

Fonte: elaborada pelo autor.

#### 8.1.4 Desvio-Padrão

Tabela 46 – Média e erro padrão dos valores estimados para o desvio-padrão da distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                        | $\chi^2$ (1) |           | $\chi^2$ | $\chi^2$ (17) |          | $\chi^2$ (50) |  |
|------------------------|--------------|-----------|----------|---------------|----------|---------------|--|
| Gerador                | Média        | E.P.      | Média    | E.P.          | Média    | E.P.          |  |
| Soma Quadrados Normal  | 1.405883     | 0.2500815 | 5.90586  | 0.492661      | 9.976356 | 0.7468697     |  |
| Gama                   | 1.40088      | 0.2733829 | 5.740065 | 0.5319134     | 9.710136 | 0.9146257     |  |
| Gama - R               | 1.385505     | 0.2430769 | 5.796403 | 0.4647291     | 9.993621 | 0.7290067     |  |
| Exponencial-Normal     | 1.415108     | 0.3011704 | 5.853997 | 0.4323223     | 10.02227 | 0.7768654     |  |
| Aprox. Normal          | 1.212119     | 0.1943454 | 5.777463 | 0.4962268     | 10.00456 | 0.6611747     |  |
| Log. Produto Uniformes | 1.347999     | 0.2137367 | 5.829967 | 0.5089148     | 9.979114 | 0.6958168     |  |



Quadro 16 – Gráficos dos valores estimados para o desvio-padrão da distribuição  $\chi^2$  (1) em 100 amostras de tamanho 100

soma\_quadrados\_normal gama\_R 2 2 92 83 desvio-padrão desvio-padrão 9 8 5.5 5.5 53 5.0 20 100 100 20 40 60 80 20 40 60 80 60 80 exponencial\_normal aproximacao\_normal logaritmo\_produto\_uniformes 2 6.5 88

> desvio-padrão 9.0

5.5

20

5.5

40 60

Fonte: Elaborado pelo autor.

Quadro 17 – Gráficos dos valores estimados para o desvio-padrão da distribuição  $\chi^2$  (17) em 100 amostras de tamanho 100

60

amostra

desvio-padrão

9

5.5

5.0

desvio-padrão 9

5.5

20

40 60 80 100

amostra



Quadro 18 – Gráficos dos valores estimados para o desvio-padrão da distribuição  $\chi^2$  (50) em 100 amostras de tamanho 100

#### 8.1.5 Assimetria

Tabela 47 – Média e erro padrão dos valores estimados para a assimetria da distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                        | $\chi^2$ (1) |           | $\chi^2$  | (17)      | $\chi^2$ (50) |           |
|------------------------|--------------|-----------|-----------|-----------|---------------|-----------|
| Gerador                | Média        | E.P.      | Média     | E.P.      | Média         | E.P.      |
| Soma Quadrados Normal  | 2.437157     | 0.7363119 | 0.6527182 | 0.3113891 | 0.3133786     | 0.2472258 |
| Gama                   | 2.501086     | 0.8445426 | 1.028708  | 0.3318637 | 0.9355545     | 0.294272  |
| Gama - R               | 2.465459     | 0.6586784 | 0.6393768 | 0.2962906 | 0.3678915     | 0.2628729 |
| Exponencial-Normal     | 2.52915      | 0.8612415 | 0.6265297 | 0.2533741 | 0.3711038     | 0.2690283 |
| Aprox. Normal          | 1.985724     | 0.4648373 | 0.4940468 | 0.2633555 | 0.2783906     | 0.2403129 |
| Log. Produto Uniformes | 2.366051     | 0.6861194 | 0.6659516 | 0.2887007 | 0.3798524     | 0.2719963 |

#### 8.1.6 Curtose

Tabela 48 - Média e erro padrão dos valores estimados para a curtose da distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                        | $\chi^2$ (1) |          | $\chi^2$  | $\chi^2$ (17) |            | $\chi^2$ (50) |  |
|------------------------|--------------|----------|-----------|---------------|------------|---------------|--|
| Gerador                | Média        | E.P.     | Média     | E.P.          | Média      | E.P.          |  |
| Soma Quadrados Normal  | 7.934095     | 6.357401 | 0.5951687 | 1.024767      | 0.04877901 | 0.5709505     |  |
| Gama                   | 8.432716     | 7.902393 | 1.560152  | 1.325459      | 1.574659   | 0.9745901     |  |
| Gama - R               | 7.879201     | 5.334487 | 0.5266214 | 0.9563342     | 0.2023706  | 0.6732064     |  |
| Exponencial-Normal     | 8.662333     | 7.631208 | 0.4418246 | 0.84462       | 0.1826368  | 0.6922066     |  |
| Aprox. Normal          | 4.948974     | 3.257744 | 0.2862528 | 0.8027683     | 0.09007922 | 0.6715497     |  |
| Log. Produto Uniformes | 7.210431     | 5.633407 | 0.7213792 | 1.013219      | 0.1640637  | 0.7074076     |  |

Fonte: elaborada pelo autor.

#### 8.1.7 Quartis

Tabela 49 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                        | $\chi^2$ (1) |                 | $\chi^2$ (17) |           | $\chi^2$ (50) |          |
|------------------------|--------------|-----------------|---------------|-----------|---------------|----------|
| Gerador                | Média        | E.P.            | Média         | E.P.      | Média         | E.P.     |
| Soma Quadrados Normal  | 0.1047113    | 0.0341031       | 12.82703      | 0.6685445 | 43.06862      | 1.196437 |
| Gama                   | 0.1146729    | 0.03877371      | 11.95431      | 0.5376503 | 40.39959      | 1.021207 |
| Gama - R               | 0.1173784    | 0.04353134      | 12.85218      | 0.6172795 | 43.05649      | 1.083455 |
| Exponencial-Normal     | 0.1107677    | 0.03680077      | 12.79426      | 0.6485682 | 43.24628      | 1.34047  |
| Aprox. Normal          | 0.1458536    | 0.04844308      | 12.94459      | 0.6032102 | 43.05994      | 1.303908 |
| Log. Produto Uniformes | 0.115139     | 0.04209123      | 12.94895      | 0.7349228 | 42.94988      | 1.264603 |
|                        | F            | onte: elaborada | pelo autor.   |           |               |          |

Tabela 50 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                        | $\chi^2$ (1) |           | $\chi^2$ | (17)      | $\chi^2$ (50) |          |
|------------------------|--------------|-----------|----------|-----------|---------------|----------|
| Gerador                | Média        | E.P.      | Média    | E.P.      | Média         | E.P.     |
| Soma Quadrados Normal  | 0.4649426    | 0.100327  | 16.38709 | 0.7008467 | 49.54433      | 1.250187 |
| Gama                   | 0.4633268    | 0.1045903 | 14.79439 | 0.5714141 | 45.50671      | 1.016658 |
| Gama - R               | 0.4654244    | 0.103415  | 16.29942 | 0.6220623 | 49.28501      | 1.245475 |
| Exponencial-Normal     | 0.4651829    | 0.107358  | 16.37297 | 0.7046895 | 49.67072      | 1.305889 |
| Aprox. Normal          | 0.5534392    | 0.1090092 | 16.5745  | 0.6441261 | 49.71388      | 1.342246 |
| Log. Produto Uniformes | 0.4731846    | 0.1050414 | 16.39482 | 0.7899035 | 49.32701      | 1.460295 |

Tabela 51 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                        | $\chi^2$ (1) |           | $\chi^2$ | $\chi^2$ (17) |          | $\chi^2$ (50) |  |
|------------------------|--------------|-----------|----------|---------------|----------|---------------|--|
| Gerador                | Média        | E.P.      | Média    | E.P.          | Média    | E.P.          |  |
| Soma Quadrados Normal  | 1.348428     | 0.231796  | 20.48554 | 0.8147951     | 56.39284 | 1.578335      |  |
| Gama                   | 1.319698     | 0.2354402 | 18.61027 | 0.8604511     | 51.11427 | 1.267399      |  |
| Gama - R               | 1.325479     | 0.2314025 | 20.50397 | 0.8366538     | 56.18925 | 1.608225      |  |
| Exponencial-Normal     | 1.321106     | 0.2339665 | 20.53985 | 0.7752193     | 56.64179 | 1.447134      |  |
| Aprox. Normal          | 1.423434     | 0.229321  | 20.56278 | 0.8498754     | 56.53935 | 1.39651       |  |
| Log. Produto Uniformes | 1.330116     | 0.2568371 | 20.5356  | 0.8926431     | 56.3541  | 1.52539       |  |

## 8.1.8 Distância Interquartílica

Tabela 52 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                        | $\chi^2$ (1) |           | $\chi^2$ (17) |           | $\chi^2$ (50) |          |
|------------------------|--------------|-----------|---------------|-----------|---------------|----------|
| Gerador                | Média        | E.P.      | Média         | E.P.      | Média         | E.P.     |
| Soma Quadrados Normal  | 1.243716     | 0.2279235 | 7.658515      | 0.845224  | 13.32422      | 1.516947 |
| Gama                   | 1.205025     | 0.2292197 | 6.655958      | 0.8579352 | 10.71468      | 1.226004 |
| Gama - R               | 1.2081       | 0.2173916 | 7.651788      | 0.9086198 | 13.13276      | 1.570146 |
| Exponencial-Normal     | 1.210338     | 0.2275746 | 7.745586      | 0.8420262 | 13.39551      | 1.490358 |
| Aprox. Normal          | 1.27758      | 0.2132516 | 7.618193      | 0.9913532 | 13.47941      | 1.497422 |
| Log. Produto Uniformes | 1.214977     | 0.2421293 | 7.586655      | 0.8932431 | 13.40422      | 1.372958 |

Fonte: elaborada pelo autor.

#### 8.1.9 Teste de Aderência

Tabela 53 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição Qui-Quadrado em 100 amostras de tamanho 100

|                        | $\chi^2(1)$ |           | $\chi^2$  | (17)      | $\chi^2$ (50) |            |
|------------------------|-------------|-----------|-----------|-----------|---------------|------------|
| Gerador                | Média       | E.P.      | Média     | E.P.      | Média         | E.P.       |
| Soma Quadrados         |             |           |           |           |               |            |
| Normal                 | 0.5037142   | 0.2929729 | 0.523065  | 0.2781264 | 0.5193318     | 0.2931682  |
| Gama                   | 0.449669    | 0.3019771 | 0.1986955 | 0.2163475 | 0.03411114    | 0.06691684 |
| Gama - R               | 0.441788    | 0.2710657 | 0.5379653 | 0.2825794 | 0.4658109     | 0.2913742  |
| Exponencial-Normal     | 0.5141304   | 0.2844422 | 0.5806409 | 0.3088765 | 0.5233726     | 0.3003739  |
| Aprox. Normal          | 0.4167744   | 0.2967426 | 0.4828685 | 0.2705549 | 0.5390299     | 0.295332   |
| Log. Produto Uniformes | 0.5436135   | 0.289159  | 0.4973817 | 0.2953249 | 0.4599109     | 0.2711607  |



Quadro 19 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição  $\chi^2$  (1) em 100 amostras de tamanho 100



Quadro 20 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição  $\chi^2$  (17) em 100 amostras de tamanho 100



Quadro 21 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição  $\chi^2$  (50) em 100 amostras de tamanho 100

#### 8.1.10 Conclusões

Podemos observar um resultado bastante equilibrado entre os algoritmos Soma Quadrados Normal, Gama-R, Exponencial Normal e Logaritmo Produto Uniformes, com uma leve vantagem para os dois últimos que, aparentemente, se mostraram, em média, um pouco mais precisos que os demais. Entretanto, as análises demonstraram que podemos seguramente utilizar qualquer um desses quatro algoritmos para gerar amostras com tamanho n=100 da Distribuição Qui-Quadrado sem notarmos grandes diferenças entre eles.

De maneira geral, o algoritmo Logaritmo Produto Uniformes parece ter apresentado o menor erro padrão. Como este é um dos algoritmos da Distribuição Qui-Quadrado de mais fácil implementação, o indicamos para gerar amostras com tamanho n = 100 da Distribuição Qui-Quadrado.

Tabela 54 – Estimativas médias do algoritmo Logaritmo Produto Uniformes em 100 amostras de tamanho 100 da Distribuição Qui-Quadrado

| Madidae           | Logaritmo    | Produto Unif | ormes        |
|-------------------|--------------|--------------|--------------|
| Medidas           | $\chi^2(1)$  | $\chi^2(17)$ | $\chi^2(50)$ |
| Esperança         | 0.9949566    | 17.07459     | 49.99594     |
| Máximo            | 7.220294     | 36.05747     | 78.5726      |
| Mínimo            | 0.0003712888 | 5.824605     | 28.91065     |
| Amplitude         | 7.219923     | 30.23287     | 49.66195     |
| Desvio-Padrão     | 1.347999     | 5.829967     | 9.979114     |
| Assimetria        | 2.366051     | 0.6659516    | 0.3798524    |
| Curtose           | 7.210431     | 0.7213792    | 0.1640637    |
| 1º Quartil        | 0.115139     | 12.94895     | 42.94988     |
| 2º Quartil        | 0.4731846    | 16.39482     | 49.32701     |
| 3º Quartil        | 1.330116     | 20.5356      | 56.3541      |
| Dist. Interquart. | 1.214977     | 7.586655     | 13.40422     |



Quadro 22 – Histogramas de 100 valores gerados da Distribuição Qui-Quadrado pelo algoritmo Logaritmo Produto Uniformes

#### 8.2 Estimativas com amostras de tamanho n = 1000

Nas tabelas a seguir, apresentamos a média e o erro padrão dos valores estimados pelos geradores para cada uma das medidas analisadas. Nos gráficos, ilustramos o comportamento das estimativas dos geradores ao longo das 100 amostras.

#### 8.2.1 Esperança

Tabela 55 – Média e erro padrão dos valores estimados para a esperança da distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                        | $\chi^2$ (1) |            | $\chi^2$ (17) |           | $\chi^2$ (50) |           |
|------------------------|--------------|------------|---------------|-----------|---------------|-----------|
| Gerador                | Média        | E.P.       | Média         | E.P.      | Média         | E.P.      |
| Soma Quadrados Normal  | 1.00424      | 0.04437553 | 16.98659      | 0.1831337 | 50.04077      | 0.3444357 |
| Gama                   | 0.995014     | 0.04783313 | 15.97035      | 0.1768262 | 46.81807      | 0.2901337 |
| Gama - R               | 0.9923982    | 0.04598366 | 16.98918      | 0.1815391 | 49.99648      | 0.3039203 |
| Exponencial-Normal     | 0.9977112    | 0.04154762 | 17.03724      | 0.1991935 | 50.01545      | 0.3632575 |
| Aprox. Normal          | 1.000872     | 0.03940131 | 16.98845      | 0.1808796 | 49.99464      | 0.3247249 |
| Log. Produto Uniformes | 0.9983978    | 0.04421942 | 16.98404      | 0.1675511 | 49.99014      | 0.3372535 |

Fonte: elaborada pelo autor.



Quadro 23 - Gráficos dos valores estimados para a esperança da distribuição  $\chi^2$  (1) em 100 amostras de tamanho 1000



Quadro 24 - Gráficos dos valores estimados para a esperança da distribuição  $\,\chi^2$  (17) em 100 amostras de tamanho 1000

soma\_quadrados\_normal gama gama\_R 51.0 50.5 50.5 média 900 200 49.5 100 80 100 100 20 40 60 0 20 40 60 80 20 40 60 80 exponencial\_normal aproximacao\_normal logaritmo\_produto\_uniformes 50.0 505 50.5 50.5 média 200 900 200 49.5 40 60 80 60 80 40 60 amostra amostra amostra

Fonte: Elaborado pelo autor.

Quadro 25 - Gráficos dos valores estimados para a esperança da distribuição  $\chi^2$  (50) em 100 amostras de tamanho 1000

#### 8.2.2 Máximo e Mínimo

Tabela 56 – Média e erro padrão dos valores estimados para o máximo da distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                        | $\chi^2$ (1) |          | $\chi^2$ | (17)     | $\chi^2$ (50) |          |
|------------------------|--------------|----------|----------|----------|---------------|----------|
| Gerador                | Média        | E.P.     | Média    | E.P.     | Média         | E.P.     |
| Soma Quadrados Normal  | 12.03881     | 2.178756 | 42.49086 | 3.706514 | 88.90289      | 5.225067 |
| Gama                   | 11.89885     | 2.199388 | 42.46097 | 2.846838 | 90.928        | 4.855209 |
| Gama - R               | 11.65273     | 2.024027 | 42.82514 | 4.558538 | 88.19078      | 4.228634 |
| Exponencial-Normal     | 11.75759     | 2.217741 | 42.71779 | 3.821089 | 88.68212      | 4.938338 |
| Aprox. Normal          | 9.04643      | 1.566842 | 40.7833  | 3.269835 | 87.06148      | 4.500872 |
| Log. Produto Uniformes | 11.9309      | 2.658933 | 42.61165 | 4.299816 | 88.25396      | 5.074735 |

Fonte: elaborada pelo autor.

Tabela 57 – Média e erro padrão dos valores estimados para o mínimo da distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                        | $\chi^2$ (1) |              | $\chi^2$ | (17)      | $\chi^2$ (50) |          |
|------------------------|--------------|--------------|----------|-----------|---------------|----------|
| Gerador                | Média        | E.P.         | Média    | E.P.      | Média         | E.P.     |
| Soma Quadrados Normal  | 3.379198e-06 | 5.92024e-06  | 4.087693 | 0.7359481 | 23.5977       | 2.147051 |
| Gama                   | 2.944007e-06 | 6.202337e-06 | 4.001263 | 0.6803338 | 23.5406       | 2.041333 |
| Gama - R               | 2.740861e-06 | 4.705749e-06 | 4.240101 | 0.7179291 | 24.02316      | 1.855858 |
| Exponencial-Normal     | 2.802556e-06 | 4.329291e-06 | 4.109465 | 0.6971601 | 23.87666      | 2.025615 |
| Aprox. Normal          | 5.15536e-06  | 1.286584e-05 | 3.027657 | 0.8126496 | 22.49796      | 2.442721 |
| Log. Produto Uniformes | 3.02308e-06  | 5.406248e-06 | 4.180386 | 0.723626  | 23.89202      | 2.02322  |

Fonte: elaborada pelo autor.

## 8.2.3 Amplitude

Tabela 58 – Média e erro padrão dos valores estimados para a amplitude da distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                        | $\chi^2$ (1) |          | $\chi^2$ (17) |          | $\chi^2$ (50) |          |
|------------------------|--------------|----------|---------------|----------|---------------|----------|
| Gerador                | Média        | E.P.     | Média         | E.P.     | Média         | E.P.     |
| Soma Quadrados Normal  | 12.03881     | 2.178756 | 38.40316      | 3.893352 | 65.3052       | 5.685702 |
| Gama                   | 11.89884     | 2.199388 | 38.45971      | 2.856143 | 67.3874       | 5.02528  |
| Gama - R               | 11.65272     | 2.024028 | 38.58504      | 4.655872 | 64.16762      | 4.658971 |
| Exponencial-Normal     | 11.75758     | 2.217742 | 38.60833      | 3.861792 | 64.80546      | 5.083443 |
| Aprox. Normal          | 9.046425     | 1.566843 | 37.75564      | 3.390553 | 64.56352      | 5.036253 |
| Log. Produto Uniformes | 11.9309      | 2.658932 | 38.43126      | 4.417534 | 64.36194      | 5.610083 |

#### 8.2.4 Desvio-Padrão

Tabela 59 – Média e erro padrão dos valores estimados para o desvio-padrão da distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                        | $\chi^2$ (1) |            | $\chi^2$ | (17)      | $\chi^2$ (50) |           |
|------------------------|--------------|------------|----------|-----------|---------------|-----------|
| Gerador                | Média        | E.P.       | Média    | E.P.      | Média         | E.P.      |
| Soma Quadrados Normal  | 1.421924     | 0.07896743 | 5.842718 | 0.1609079 | 10.00735      | 0.232679  |
| Gama                   | 1.403045     | 0.07880162 | 5.765446 | 0.1805143 | 9.793368      | 0.2941288 |
| Gama - R               | 1.401075     | 0.07893568 | 5.805701 | 0.1409127 | 9.965562      | 0.202802  |
| Exponencial-Normal     | 1.404111     | 0.07175905 | 5.865415 | 0.1639057 | 9.957347      | 0.2265789 |
| Aprox. Normal          | 1.227181     | 0.05342568 | 5.793724 | 0.1417317 | 9.981239      | 0.197087  |
| Log. Produto Uniformes | 1.411868     | 0.09001057 | 5.823167 | 0.1687384 | 9.976004      | 0.23564   |

Fonte: elaborada pelo autor.



Quadro 26 - Gráficos dos valores estimados para o desvio-padrão da distribuição  $\chi^2$  (1) em 100 amostras de tamanho 1000



Quadro 27 - Gráficos dos valores estimados para o desvio-padrão da distribuição  $\chi^2$  (17) em 100 amostras de tamanho 1000

soma\_quadrados\_normal gama 10.4



Quadro 28 - Gráficos dos valores estimados para o desvio-padrão da distribuição  $\chi^2$  (50) em 100 amostras de tamanho 1000

#### 8.2.5 Assimetria

Tabela 60 – Média e erro padrão dos valores estimados para a assimetria da distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                          | $\chi^2$ (1) |           | $\chi^2$  | (17)       | $\chi^2$ (50) |            |
|--------------------------|--------------|-----------|-----------|------------|---------------|------------|
| Gerador                  | Média        | E.P.      | Média     | E.P.       | Média         | E.P.       |
| Soma Quadrados<br>Normal | 2.814027     | 0.3554923 | 0.6913099 | 0.1127892  | 0.3831471     | 0.07486771 |
| Gama                     | 2.802112     | 0.3345793 | 1.042082  | 0.09317144 | 1.030021      | 0.09209641 |
| Gama - R                 | 2.770751     | 0.3533118 | 0.6827602 | 0.1187743  | 0.3803773     | 0.07723718 |
| Exponencial-Normal       | 2.75016      | 0.3854165 | 0.6814897 | 0.1017661  | 0.3858478     | 0.09084073 |
| Aprox. Normal            | 2.144612     | 0.2466559 | 0.5206336 | 0.09637081 | 0.3067995     | 0.07292042 |
| Log. Produto Uniformes   | 2.770046     | 0.4374848 | 0.6829577 | 0.1227427  | 0.4034304     | 0.08992192 |

Fonte: elaborada pelo autor.

#### 8.2.6 Curtose

Tabela 61 – Média e erro padrão dos valores estimados para a curtose da distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                        | $\chi^2$ (1) |          | $\chi^2$  | (17)      | $\chi^2$ (50) |           |
|------------------------|--------------|----------|-----------|-----------|---------------|-----------|
| Gerador                | Média        | E.P.     | Média     | E.P.      | Média         | E.P.      |
| Soma Quadrados Normal  | 11.5264      | 4.472241 | 0.7263589 | 0.4782312 | 0.2092214     | 0.2183491 |
| Gama                   | 11.50538     | 4.177813 | 1.641141  | 0.434104  | 1.8229        | 0.3745492 |
| Gama - R               | 11.01609     | 4.109657 | 0.7364455 | 0.6489397 | 0.1884587     | 0.2110019 |
| Exponencial-Normal     | 10.99213     | 4.756035 | 0.7001752 | 0.4512081 | 0.2107885     | 0.2642397 |
| Aprox. Normal          | 6.344874     | 2.533877 | 0.3913783 | 0.3394026 | 0.1104477     | 0.1972562 |
| Log. Produto Uniformes | 11.29971     | 5.371717 | 0.7250977 | 0.6046086 | 0.2411044     | 0.330943  |

Fonte: elaborada pelo autor.

#### 8.2.7 Quartis

Tabela 62 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                        | $\chi^2$ (1) |            | $\chi^2$ | (17)      | $\chi^2$ (50) |           |
|------------------------|--------------|------------|----------|-----------|---------------|-----------|
| Gerador                | Média        | E.P.       | Média    | E.P.      | Média         | E.P.      |
| Soma Quadrados Normal  | 0.1044668    | 0.01048598 | 12.78524 | 0.2060105 | 42.98451      | 0.3711625 |
| Gama                   | 0.1034144    | 0.01247105 | 12.01995 | 0.1962964 | 40.47112      | 0.3329982 |
| Gama - R               | 0.103179     | 0.01108255 | 12.80098 | 0.1826826 | 42.92437      | 0.3712551 |
| Exponencial-Normal     | 0.1027504    | 0.01187885 | 12.80451 | 0.2069324 | 43.00127      | 0.422737  |
| Aprox. Normal          | 0.1324968    | 0.01210669 | 12.85337 | 0.2097914 | 43.02181      | 0.3798801 |
| Log. Produto Uniformes | 0.1022963    | 0.01049362 | 12.77966 | 0.2088025 | 42.93264      | 0.3756115 |

Tabela 63 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                        | $\chi^2$ (1) |            | $\chi^2$ | (17)      | $\chi^2$ (50) |           |
|------------------------|--------------|------------|----------|-----------|---------------|-----------|
| Gerador                | Média        | E.P.       | Média    | E.P.      | Média         | E.P.      |
| Soma Quadrados Normal  | 0.4586327    | 0.03242938 | 16.31935 | 0.2154625 | 49.39096      | 0.4136145 |
| Gama                   | 0.4572804    | 0.03691209 | 15.0175  | 0.1725422 | 45.49367      | 0.2647553 |
| Gama - R               | 0.4529179    | 0.0325411  | 16.34747 | 0.2266745 | 49.36931      | 0.3623708 |
| Exponencial-Normal     | 0.458457     | 0.0365063  | 16.39154 | 0.2266728 | 49.37669      | 0.4300503 |
| Aprox. Normal          | 0.5503767    | 0.03598974 | 16.4969  | 0.2278714 | 49.45569      | 0.3661811 |
| Log. Produto Uniformes | 0.4539841    | 0.03486632 | 16.32471 | 0.21808   | 49.31456      | 0.4072877 |

Tabela 64 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                        | $\chi^2$ (1) |            | $\chi^2$ | (17)      | $\chi^2$ (50) |           |
|------------------------|--------------|------------|----------|-----------|---------------|-----------|
| Gerador                | Média        | Média E.P. |          | E.P.      | Média         | E.P.      |
| Soma Quadrados Normal  | 1.321603     | 0.07218033 | 20.47862 | 0.2730428 | 56.38897      | 0.490837  |
| Gama                   | 1.321135     | 0.0835869  | 18.92503 | 0.247618  | 51.17745      | 0.4156423 |
| Gama - R               | 1.309473     | 0.08215092 | 20.47525 | 0.3105727 | 56.34308      | 0.4461338 |
| Exponencial-Normal     | 1.317646     | 0.07683617 | 20.5404  | 0.2841585 | 56.32336      | 0.5502078 |
| Aprox. Normal          | 1.422365     | 0.076653   | 20.57523 | 0.26167   | 56.42925      | 0.4625401 |
| Log. Produto Uniformes | 1.312055     | 0.06768685 | 20.47264 | 0.2698355 | 56.27865      | 0.4544601 |

Fonte: elaborada pelo autor.

## 8.2.8 Distância Interquartílica

Tabela 65 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                        | $\chi^2$ (1) |            | $\chi^2$ | (17)      | $\chi^2$ (50) |           |
|------------------------|--------------|------------|----------|-----------|---------------|-----------|
| Gerador                | Média        | E.P.       | Média    | E.P.      | Média         | E.P.      |
| Soma Quadrados Normal  | 1.217136     | 0.06944868 | 7.693384 | 0.2935874 | 13.40446      | 0.4349357 |
| Gama                   | 1.217721     | 0.07966369 | 6.905073 | 0.285838  | 10.70633      | 0.4500149 |
| Gama - R               | 1.206294     | 0.08000485 | 7.674271 | 0.2974517 | 13.41871      | 0.4629778 |
| Exponencial-Normal     | 1.214896     | 0.07352935 | 7.735889 | 0.2964563 | 13.32209      | 0.5389205 |
| Aprox. Normal          | 1.289868     | 0.07402771 | 7.721859 | 0.2852833 | 13.40744      | 0.4849835 |
| Log. Produto Uniformes | 1.209759     | 0.06552583 | 7.69298  | 0.3208282 | 13.34601      | 0.4798559 |

#### 8.2.9 Teste de Aderência

Tabela 66 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição Qui-Quadrado em 100 amostras de tamanho 1000

|                        | $\chi^2$ (1) |           | $\chi^2$   | (17)       | $\chi^2$ (50) |              |
|------------------------|--------------|-----------|------------|------------|---------------|--------------|
| Gerador                | Média        | E.P.      | Média      | E.P.       | Média         | E.P.         |
| Soma Quadrados Normal  | 0.5209141    | 0.2756987 | 0.4677519  | 0.3056123  | 0.5550917     | 0.2614928    |
| Gama                   | 0.5318049    | 0.2993723 | 0.01286402 | 0.03721403 | 2.981248e-12  | 2.123387e-11 |
| Gama - R               | 0.4521463    | 0.2712331 | 0.497528   | 0.2884394  | 0.528615      | 0.2874854    |
| Exponencial-Normal     | 0.5146178    | 0.3026659 | 0.4809916  | 0.2932923  | 0.5107994     | 0.288806     |
| Aprox. Normal          | 0.164488     | 0.1778481 | 0.3994259  | 0.2695044  | 0.4792859     | 0.2927765    |
| Log. Produto Uniformes | 0.5008267    | 0.2604977 | 0.5143086  | 0.3075101  | 0.4949129     | 0.3209726    |

Fonte: elaborada pelo autor.



Quadro 29 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição  $\chi^2$  (1) em 100 amostras de tamanho 1000



Quadro 30 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição  $\chi^2$  (17) em 100 amostras de tamanho 1000



Quadro 31 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição  $\chi^2$  (50) em 100 amostras de tamanho 1000

#### 8.2.10 Conclusões

Assim como nas amostras com tamanho 100, mais uma vez, para as amostras da Distribuição Qui-Quadrado com tamanho 1000, tivemos um resultado equilibrado, com destaque para os algoritmos Soma Quadrados Normal, Logaritmo Produto Uniformes e Gama-R, os quais, em média, se mostraram mais precisos quanto às suas estimativas em relação aos demais. Dentre esses geradores, o algoritmo Soma Quadrados Normal mostrou ser, em média, o mais preciso de todos, pois quase todas as suas estimativas chegarão bem próximas aos valores exatos. Deste modo, indicamos o algoritmo Soma Quadrados Normal para gerar amostras de tamanho n = 1000 da Distribuição Qui-Quadrado.

Ao contrário das amostras anteriores, desta vez podemos notar que um algoritmo não passou no Teste Qui-Quadrado de Aderência: o gerador formado pela combinação de algoritmos da Gama. Assim, podemos dizer que o uso desse gerador não é aconselhável para geração de amostras com tamanho 1000 da Distribuição Qui-Quadrado.

Tabela 67 – Estimativas médias do algoritmo Soma Quadrados Normal em 100 amostras de tamanho 1000 da Distribuição Qui-Quadrado

| Madialaa          | Soma Quadrados Normal |              |              |  |  |
|-------------------|-----------------------|--------------|--------------|--|--|
| Medidas           | $\chi^2(1)$           | $\chi^2(17)$ | $\chi^2(50)$ |  |  |
| Esperança         | 1.00424               | 16.98659     | 50.04077     |  |  |
| Máximo            | 12.03881              | 42.49086     | 88.90289     |  |  |
| Mínimo            | 3.379198e-06          | 4.087693     | 23.5977      |  |  |
| Amplitude         | 12.03881              | 38.40316     | 65.3052      |  |  |
| Desvio-Padrão     | 1.421924              | 5.842718     | 10.00735     |  |  |
| Assimetria        | 2.814027              | 0.6913099    | 0.3831471    |  |  |
| Curtose           | 11.5264               | 0.7263589    | 0.2092214    |  |  |
| 1º Quartil        | 0.1044668             | 12.78524     | 42.98451     |  |  |
| 2º Quartil        | 0.4586327             | 16.31935     | 49.39096     |  |  |
| 3º Quartil        | 1.321603              | 20.47862     | 56.38897     |  |  |
| Dist. Interquart. | 1.217136              | 7.693384     | 13.40446     |  |  |



Quadro 32 – Histogramas de 1000 valores gerados da Distribuição Qui-Quadrado pelo algoritmo Soma Quadrados Normal

#### 8.3. Estimativas com amostras de tamanho n = 10000

Nas tabelas abaixo, apresentamos a média e o erro padrão dos valores estimados pelos geradores para cada uma das medidas analisadas. Nos gráficos, ilustramos o comportamento das estimativas dos geradores ao longo das 100 amostras.

#### 8.3.1 Tempo de Execução

Tabela 68 – Média e erro padrão dos tempos de execução, em segundos, medidos em 100 amostras de tamanho 10000 da Distribuição Qui-Quadrado

|                        | $\chi^2$ (1) |            | $\chi^2$ (17) |            | $\chi^2$ (50) |             |
|------------------------|--------------|------------|---------------|------------|---------------|-------------|
| Gerador                | Média        | E.P.       | Média         | E.P.       | Média         | E.P.        |
| Soma Quadrados Normal  | 1.814        | 0.02670452 | 23.1541       | 0.09879164 | 66.0115       | 0.2371181   |
| Gama                   | 0.8261       | 0.02064099 | 1.5126        | 0.02517093 | 1.6785        | 0.01799972  |
| Gama - R               | 1.9393       | 0.02383678 | 2.616         | 0.02344131 | 2.5761        | 0.02173741  |
| Exponencial-Normal     | 1.8834       | 0.02745869 | 4.9227        | 0.03209377 | 8.087         | 0.06102657  |
| Aprox. Normal          | 1.8113       | 0.02623341 | 1.8144        | 0.01913904 | 1.8084        | 0.01292715  |
| Log. Produto Uniformes | 2.0269       | 0.02232429 | 2.1376        | 0.02151438 | 0.4278        | 0.008358145 |

## 8.3.2 Esperança

Tabela 69 - Média e erro padrão dos valores estimados para a esperança da distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                        | $\chi^2$ (1) |            | $\chi^2$ (17) |            | $\chi^2$ (50) |            |
|------------------------|--------------|------------|---------------|------------|---------------|------------|
| Gerador                | Média        | E.P.       | Média         | E.P.       | Média         | E.P.       |
| Soma Quadrados         | 1.002265     | 0.01406488 | 17.00356      | 0.05717654 | 50.0073       | 0.111365   |
| Normal                 |              |            |               |            |               |            |
| Gama                   | 0.9984107    | 0.01367806 | 15.9847       | 0.05167152 | 46.79615      | 0.0915945  |
| Gama - R               | 0.9976756    | 0.01428686 | 16.99084      | 0.05833432 | 50.01021      | 0.09790728 |
| Exponencial-Normal     | 1.00177      | 0.01425757 | 17.00686      | 0.06209903 | 50.01576      | 0.1077557  |
| Aprox. Normal          | 0.9973358    | 0.01173986 | 16.99711      | 0.06244536 | 50.00073      | 0.1030472  |
| Log. Produto Uniformes | 0.9993951    | 0.01561921 | 17.00386      | 0.05546464 | 49.99514      | 0.1113688  |

Fonte: elaborada pelo autor.



Quadro 33 - Gráficos dos valores estimados para a esperança da distribuição  $\chi^2$  (1) em 100 amostras de tamanho 10000



Quadro 34 - Gráficos dos valores estimados para a esperança da distribuição  $\chi^2$  (17) em 100 amostras de tamanho 10000

soma\_quadrados\_normal gama 50.2 503



Quadro 35 - Gráficos dos valores estimados para a esperança da distribuição  $\chi^2$  (50) em 100 amostras de tamanho 10000

#### 8.3.3 Máximo e Mínimo

Tabela 70 - Média e erro padrão dos valores estimados para o máximo da distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                        | $\chi^2$ (1) |          | $\chi^2$ | (17)     | $\chi^2$ (50) |          |
|------------------------|--------------|----------|----------|----------|---------------|----------|
| Gerador                | Média        | E.P.     | Média    | E.P.     | Média         | E.P.     |
| Soma Quadrados Normal  | 16.48934     | 2.29293  | 48.737   | 3.271737 | 97.0787       | 4.485189 |
| Gama                   | 16.48934     | 2.396411 | 49.55455 | 3.464171 | 99.73896      | 4.441639 |
| Gama - R               | 15.77967     | 2.183475 | 49.04764 | 3.50109  | 97.76506      | 4.615915 |
| Exponencial-Normal     | 15.76974     | 1.959954 | 49.01826 | 3.281991 | 98.05577      | 4.423998 |
| Aprox. Normal          | 12.03783     | 1.989972 | 46.35482 | 2.741745 | 95.44623      | 4.938173 |
| Log. Produto Uniformes | 15.69272     | 1.97937  | 48.75826 | 3.49013  | 98.47288      | 5.483772 |

Fonte: elaborada pelo autor.

Tabela 71 - Média e erro padrão dos valores estimados para o mínimo da distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                        | $\chi^2$ (1) |              | $\chi^2$ | 2 (17)    | $\chi^2$ (50) |          |
|------------------------|--------------|--------------|----------|-----------|---------------|----------|
| Gerador                | Média        | E.P.         | Média    | E.P.      | Média         | E.P.     |
| Soma Quadrados Normal  | 2.862828e-08 | 6.439318e-08 | 3.003431 | 0.5382061 | 20.54746      | 1.48709  |
| Gama                   | 2.029866e-08 | 3.439935e-08 | 2.848593 | 0.4449955 | 20.05564      | 1.4333   |
| Gama - R               | 2.437269e-08 | 4.134444e-08 | 2.931265 | 0.5084808 | 20.29962      | 1.779706 |
| Exponencial-Normal     | 2.348853e-08 | 4.500242e-08 | 2.946182 | 0.4527233 | 20.38461      | 1.625204 |
| Aprox. Normal          | 4.351029e-08 | 8.783588e-08 | 1.904909 | 0.461565  | 18.62333      | 1.919766 |
| Log. Produto Uniformes | 3.791545e-08 | 9.452867e-08 | 2.903222 | 0.4583714 | 20.26121      | 1.755344 |

Fonte: elaborada pelo autor.

## 8.3.4 Amplitude

Tabela 72 - Média e erro padrão dos valores estimados para a amplitude da distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                        | $\chi^2$ (1) |          | $\chi^2$ | (17)     | $\chi^2$ (50) |          |
|------------------------|--------------|----------|----------|----------|---------------|----------|
| Gerador                | Média        | E.P.     | Média    | E.P.     | Média         | E.P.     |
| Soma Quadrados Normal  | 16.48934     | 2.29293  | 45.73357 | 3.299666 | 76.53124      | 4.767536 |
| Gama                   | 16.48934     | 2.396411 | 46.70596 | 3.443595 | 79.68332      | 4.525931 |
| Gama - R               | 15.77967     | 2.183475 | 46.11637 | 3.468019 | 77.46544      | 4.897227 |
| Exponencial-Normal     | 15.76974     | 1.959954 | 46.07208 | 3.194558 | 77.67116      | 4.959216 |
| Aprox. Normal          | 12.03783     | 1.989972 | 44.44991 | 2.787556 | 76.8229       | 5.270831 |
| Log. Produto Uniformes | 15.69272     | 1.97937  | 45.85503 | 3.494796 | 78.21167      | 5.641993 |

#### 8.3.5 Desvio-Padrão

Tabela 73 - Média e erro padrão dos valores estimados para o desvio-padrão da distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                        | $\chi^2$ (1) |            | χ        | <sup>2</sup> (17) | $\chi^2$ (50) |            |
|------------------------|--------------|------------|----------|-------------------|---------------|------------|
| Gerador                | Média        | E.P.       | Média    | E.P.              | Média         | E.P.       |
| Soma Quadrados Normal  | 1.41723      | 0.02725676 | 5.826287 | 0.04198251        | 9.98813       | 0.0715145  |
| Gama                   | 1.414996     | 0.02531607 | 5.795472 | 0.05859026        | 9.800763      | 0.0936403  |
| Gama - R               | 1.409579     | 0.02880342 | 5.830417 | 0.05258104        | 10.00712      | 0.0744572  |
| Exponencial-Normal     | 1.418003     | 0.02501705 | 5.82827  | 0.05226014        | 10.00512      | 0.08035139 |
| Aprox. Normal          | 1.220302     | 0.01743595 | 5.786366 | 0.04078456        | 9.976783      | 0.07187497 |
| Log. Produto Uniformes | 1.410394     | 0.02759389 | 5.829266 | 0.04762828        | 10.00103      | 0.08075088 |

Fonte: elaborada pelo autor.



Quadro 36 - Gráficos dos valores estimados para o desvio-padrão da distribuição  $\chi^2$  (1) em 100 amostras de tamanho 10000



Quadro 37 - Gráficos dos valores estimados para o desvio-padrão da distribuição  $\chi^2$  (17) em 100 amostras de tamanho 10000

gama\_R soma\_quadrados\_normal desvio-padrão desvio-padrão desvio-padrão exponencial\_normal aproximacao\_normal logaritmo\_produto\_uniformes 10.2 10.0 desvio-padrão desvio-padrão desvio-padrão 10.0 0:0 9.9 amostra amostra amostra

Fonte: Elaborado pelo autor.

Quadro 38 - Gráficos dos valores estimados para o desvio-padrão da distribuição  $\chi^2$  (50) em 100 amostras de tamanho 10000

#### 8.3.6 Assimetria

Tabela 74 – Média e erro padrão dos valores estimados para a assimetria da distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                          | $\chi^{2}$ (1) |            | $\chi^2$  | 2 (17)     | $\chi^2$ (50) |            |
|--------------------------|----------------|------------|-----------|------------|---------------|------------|
| Gerador                  | Média          | E.P.       | Média     | E.P.       | Média         | E.P.       |
| Soma Quadrados<br>Normal | 2.831663       | 0.1290281  | 0.6801614 | 0.02934902 | 0.3943194     | 0.02875119 |
| Gama                     | 2.835818       | 0.1406696  | 1.065714  | 0.03800009 | 1.028579      | 0.03474946 |
| Gama - R                 | 2.803473       | 0.1205338  | 0.691324  | 0.03239232 | 0.4004373     | 0.02608753 |
| Exponencial-Normal       | 2.822748       | 0.1325541  | 0.6813965 | 0.03042899 | 0.4016406     | 0.02365893 |
| Aprox. Normal            | 2.169473       | 0.09495861 | 0.5192819 | 0.02860079 | 0.299735      | 0.02861736 |
| Log. Produto Uniformes   | 2.78456        | 0.1086489  | 0.6846554 | 0.03213571 | 0.4029397     | 0.02797536 |

Fonte: elaborada pelo autor.

#### 8.3.7 Curtose

Tabela 75 – Média e erro padrão dos valores estimados para a curtose da distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                        | $\chi^2$ (1) |          | $\chi^2$  | (17)      | $\chi^2$ (50) |            |
|------------------------|--------------|----------|-----------|-----------|---------------|------------|
| Gerador                | Média        | E.P.     | Média     | E.P.      | Média         | E.P.       |
| Soma Quadrados Normal  | 12.05006     | 1.726341 | 0.6774369 | 0.1326606 | 0.2155453     | 0.08629013 |
| Gama                   | 12.07778     | 1.950514 | 1.740841  | 0.1818896 | 1.833498      | 0.1386318  |
| Gama - R               | 11.61204     | 1.618696 | 0.7284144 | 0.14788   | 0.2279506     | 0.07658477 |
| Exponencial-Normal     | 11.75761     | 1.735673 | 0.6896507 | 0.1320839 | 0.2420802     | 0.07633113 |
| Aprox. Normal          | 6.665851     | 1.143403 | 0.3658851 | 0.1006504 | 0.1111568     | 0.07213606 |
| Log. Produto Uniformes | 11.36261     | 1.357967 | 0.6990607 | 0.1477815 | 0.2503199     | 0.092192   |

Fonte: elaborada pelo autor.

#### 8.3.8 Quartis

Tabela 76 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                        | $\chi^2$ (1) |             | χ        | <sup>2</sup> (17) | $\chi^2$ (50) |           |
|------------------------|--------------|-------------|----------|-------------------|---------------|-----------|
| Gerador                | Média        | E.P.        | Média    | E.P.              | Média         | E.P.      |
| Soma Quadrados         |              |             |          |                   |               |           |
| Normal                 | 0.1019406    | 0.003206387 | 12.79862 | 0.06730316        | 42.94238      | 0.104047  |
| Gama                   | 0.1009889    | 0.003995372 | 12.01681 | 0.05640511        | 40.4725       | 0.1024506 |
| Gama - R               | 0.1014098    | 0.003338783 | 12.78128 | 0.06230221        | 42.94907      | 0.1284452 |
| Exponencial-Normal     | 0.101537     | 0.003441234 | 12.79932 | 0.06255242        | 42.95145      | 0.1155342 |
| Aprox. Normal          | 0.1337626    | 0.004240343 | 12.84726 | 0.06785608        | 43.00981      | 0.1383088 |
| Log. Produto Uniformes | 0.1012789    | 0.003371071 | 12.79817 | 0.05906082        | 42.93491      | 0.137136  |

Tabela 77 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                          | $\chi^2$ (1) |             | $\chi^2$ (17) |            | $\chi^2$ (50) |            |
|--------------------------|--------------|-------------|---------------|------------|---------------|------------|
| Gerador                  | Média        | E.P.        | Média         | E.P.       | Média         | E.P.       |
| Soma Quadrados<br>Normal | 0.4561991    | 0.01019861  | 16.34726      | 0.07085798 | 49.33652      | 0.1273793  |
| Gama                     | 0.4525091    | 0.01079801  | 15.0019       | 0.05955307 | 45.48062      | 0.09431326 |
| Gama - R                 | 0.45295      | 0.008764726 | 16.32983      | 0.06063126 | 49.33492      | 0.115396   |
| Exponencial-Normal       | 0.4564155    | 0.01096569  | 16.34507      | 0.07528235 | 49.35125      | 0.1243082  |
| Aprox. Normal            | 0.5498407    | 0.01167911  | 16.49199      | 0.08117676 | 49.50313      | 0.1169803  |
| Log. Produto Uniformes   | 0.454777     | 0.01150877  | 16.34436      | 0.06931472 | 49.33172      | 0.1325582  |

Fonte: elaborada pelo autor.

Tabela 78 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                        | $\chi^2$ (1) |            | χ        | <sup>2</sup> (17) | $\chi^2$ (50) |           |
|------------------------|--------------|------------|----------|-------------------|---------------|-----------|
| Gerador                | Média        | E.P.       | Média    | E.P.              | Média         | E.P.      |
| Soma Quadrados Normal  | 1.32616      | 0.02301855 | 20.49486 | 0.0769177         | 56.34428      | 0.1726146 |
| Gama                   | 1.321838     | 0.02328378 | 18.95338 | 0.08688538        | 51.12572      | 0.1093637 |
| Gama - R               | 1.32086      | 0.02039589 | 20.46898 | 0.07906834        | 56.34236      | 0.1443965 |
| Exponencial-Normal     | 1.324601     | 0.02496079 | 20.49989 | 0.08904374        | 56.35018      | 0.1669024 |
| Aprox. Normal          | 1.417413     | 0.02210073 | 20.60256 | 0.08808619        | 56.43978      | 0.148042  |
| Log. Produto Uniformes | 1.32381      | 0.02421657 | 20.48216 | 0.07787123        | 56.31924      | 0.155078  |

Fonte: elaborada pelo autor.

## 8.3.9 Distância Interquartílica

Tabela 79 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                        | $\chi^2$ (1) |            | χ        | <sup>2</sup> (17) | $\chi^2$ (50) |           |
|------------------------|--------------|------------|----------|-------------------|---------------|-----------|
| Gerador                | Média        | E.P.       | Média    | E.P.              | Média         | E.P.      |
| Soma Quadrados Normal  | 1.224219     | 0.02265025 | 7.696245 | 0.07397041        | 13.4019       | 0.1667734 |
| Gama                   | 1.220849     | 0.02199399 | 6.936568 | 0.09805816        | 10.65322      | 0.1294773 |
| Gama - R               | 1.219451     | 0.02060459 | 7.687705 | 0.07834438        | 13.39329      | 0.1713982 |
| Exponencial-Normal     | 1.223064     | 0.02374958 | 7.700567 | 0.09264599        | 13.39873      | 0.1669796 |
| Aprox. Normal          | 1.283651     | 0.02088047 | 7.755296 | 0.08197058        | 13.42997      | 0.1590754 |
| Log. Produto Uniformes | 1.222531     | 0.02289878 | 7.683998 | 0.07770908        | 13.38432      | 0.1555941 |

#### 8.3.10 Teste de Aderência

Tabela 80 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição Qui-Quadrado em 100 amostras de tamanho 10000

|                        | $\chi^{2}$ (1) |            | $\chi^2$     | (17)         | $\chi^2$ (50) |               |
|------------------------|----------------|------------|--------------|--------------|---------------|---------------|
| Gerador                | Média          | E.P.       | Média        | E.P.         | Média         | E.P.          |
| Soma Quadrados Normal  | 0.5097455      | 0.2941802  | 0.510423     | 0.2811355    | 0.4561825     | 0.2963599     |
| Gama                   | 0.5249437      | 0.2748803  | 1.467026e-16 | 9.690749e-16 | 9.250326e-130 | 8.415125e-129 |
| Gama - R               | 0.5056056      | 0.298097   | 0.5216411    | 0.3042426    | 0.4776885     | 0.2738906     |
| Exponencial-Normal     | 0.5106824      | 0.2780927  | 0.4556484    | 0.2872756    | 0.4864259     | 0.2822167     |
| Aprox. Normal          | 0.003118326    | 0.01133058 | 0.1656184    | 0.1977803    | 0.3720583     | 0.2921778     |
| Log. Produto Uniformes | 0.4538806      | 0.2645571  | 0.5115529    | 0.2865802    | 0.5127495     | 0.3128424     |

Fonte: elaborada pelo autor.



Quadro 39 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição  $\chi^2$  (1) em 100 amostras de tamanho 10000



Quadro 40 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição  $\chi^2$  (17) em 100 amostras de tamanho 10000

Fonte: Elaborado pelo autor.



Quadro 41 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição  $\chi^2$  (50) em 100 amostras de tamanho 10000

#### 8.3.11 Conclusões

Novamente, para as amostras com tamanho 10000 da Distribuição Qui-Quadrado, tivemos um resultado equilibrado, com destaque para os algoritmos Soma Quadrados Normal, Exponencial Normal e Logaritmo Produto Uniformes. O gerador Logaritmo Produto Uniformes, mais uma vez, mostrou- se um pouco mais preciso que os demais, e assim o indicamos para gerar amostras com tamanho n = 10000 da Distribuição Qui-Quadrado.

Podemos notar que, à medida que aumentamos o número de graus de liberdade da distribuição, o tempo de processamento do algoritmo Soma Quadrados Normal cresce substancialmente, chegando a ser dez vezes maior que o tempo dos demais algoritmos.

Também constata-se que dois algoritmos não passaram no Teste Qui-Quadrado de Aderência: Aproximação Normal e Gama. Sendo assim, não se recomenda o uso desses algoritmos como geradores de amostras da Distribuição Qui-Quadrado com tamanho 10000.

Tabela 81 – Estimativas médias do algoritmo Logaritmo Produto Uniformes em 100 amostras de tamanho 10000 da Distribuição Qui-Quadrado

| NA - distant      | Logaritmo    | Produto Uni    | formes       |
|-------------------|--------------|----------------|--------------|
| Medidas           | $\chi^2(1)$  | $\chi^{2}(17)$ | $\chi^2(50)$ |
| Tempo de Execução | 2.0269 s     | 2.1376 s       | 0.4278 s     |
| Esperança         | 0.9993951    | 17.00386       | 49.99514     |
| Máximo            | 15.69272     | 48.75826       | 98.47288     |
| Mínimo            | 3.791545e-08 | 2.903222       | 20.26121     |
| Amplitude         | 15.69272     | 45.85503       | 78.21167     |
| Desvio-Padrão     | 1.410394     | 5.829266       | 10.00103     |
| Assimetria        | 2.78456      | 0.6846554      | 0.4029397    |
| Curtose           | 11.36261     | 0.6990607      | 0.2503199    |
| 1º Quartil        | 0.1012789    | 12.79817       | 42.93491     |
| 2º Quartil        | 0.454777     | 16.34436       | 49.33172     |
| 3º Quartil        | 1.32381      | 20.48216       | 56.31924     |
| Dist. Interquart. | 1.222531     | 7.683998       | 13.38432     |



Quadro 42 – Histogramas de 10000 valores gerados da Distribuição Qui-Quadrado pelo algoritmo Logaritmo Produto Uniformes

# 9. GERADORES DE NÚMEROS ALEATÓRIOS DA DISTRIBUIÇÃO F

Neste capítulo, mostraremos dois algoritmos para geração de números aleatórios da Distribuição F. Assim como os algoritmos da Distribuição Qui-Quadrado, esses dois algoritmos também são dependentes de geradores de outras distribuições de probabilidade. No caso da Distribuição F, seus algoritmos são dependentes de bons geradores da Distribuição Qui-Quadrado ou da Distribuição Beta.

### 9.1 Gerador baseado na Distribuição Qui-Quadrado

Este é o gerador disponível por padrão no software R para geração de ocorrências da Distribuição F.

Gerar 
$$Y_1 \sim \chi^2(\nu_1)$$
,  $Y_2 \sim \chi^2(\nu_2)$ .

Sair 
$$X = \frac{Y_1/v_1}{Y_2/v_2}$$
.

Os números aleatórios da Distribuição Qui-Quadrado em questão podem ser gerados através de um algoritmo específico. Em nossos estudos, utilizaremos o gerador da Qui-Quadrado disponível no software R, o qual, como já mencionamos anteriormente, é baseado na Distribuição Gama.

## 9.2 Gerador baseado na Distribuição Beta

Este algoritmo é baseado em uma transformação da Distribuição Beta.

Segundo Gentle (1998), este algoritmo é melhor que o citado anteriormente.

Gerar 
$$Y \sim Beta(v_1/2, v_2/2)$$
.

Sair 
$$X = \frac{v_2}{v_1} \frac{Y}{1-Y}$$
.

O número aleatório proveniente da Distribuição Beta pode ser gerado através do algoritmo abaixo, o qual é dependente da Distribuição Gama.

Gerar 
$$X_1 \sim Gama(\alpha, 1)$$
,  $X_2 \sim Gama(\beta, 1)$ .

Sair 
$$X = X_1/(X_1 + X_2)$$
.

## 10. ESTIMATIVAS DAS AMOSTRAS DA DISTRIBUIÇÃO F

Nos capítulos subsequentes, apresentaremos as estimativas com amostras de tamanho n = 10000 da Distribuição F com graus de liberdade m e n iguais, respectivamente, a 1, 5; 5, 1; e 5, 5 para as seguintes medidas: esperança, máximo e mínimo, amplitude, desviopadrão, quartis, distância interquartílica e valor-p para o teste de aderência. Os valores "exatos" das medidas para a Distribuição F com os graus de liberdade citados acima são, respectivamente: esperança = 1.666667, não definida, 1.666667; máximo = 320.2978, 5764049558, 195.3586 e mínimo = 1.734891e-10, 0.003122094, 0.005118791; amplitude = 320.2978, 5764049558, 195.3535; desvio-padrão = 4.714045, não definido, 2.981424; 1º quartil = 0.1133813, 0.590853, 0.5277992; 2º quartil = 0.5280738, 1.893675, 1 e 3º quartil = 1.692468, 8.819793, 1.89466; distância interquartílica = 1.579087, 8.22894, 1.366861. Considera-se como máximo o valor x tal que a probabilidade  $P(X \le x) = 0.99999$ , e como mínimo o valor x tal que a probabilidade  $P(X \le x) = 0.99999$ , e como mínimo o valor

#### 10.1 Estimativas com amostras de tamanho n = 10000

Nas tabelas abaixo, apresentamos a média e o erro padrão dos valores estimados pelos geradores para cada uma das medidas analisadas. Nos gráficos, ilustramos o comportamento das estimativas dos geradores ao longo das 100 amostras.

#### 10.1.1 Tempo de Execução

Tabela 82 – Média e erro padrão dos tempos de execução, em segundos, medidos em 100 amostras de tamanho 10000 da Distribuição F

|                     | F(1,5) |            | F(5,1) |           | F(5,5) |            |
|---------------------|--------|------------|--------|-----------|--------|------------|
| Gerador             | Média  | E.P.       | Média  | E.P.      | Média  | E.P.       |
| F pela Beta         | 5.5949 | 0.09471376 | 6.0283 | 0.1654382 | 6.7995 | 0.04710562 |
| F pela Qui-Quadrado | 6.0362 | 0.1441575  | 6.3813 | 0.1575613 | 7.1162 | 0.05329127 |

Fonte: elaborada pelo autor.

#### 10.1.2 Esperança

Tabela 83 - Média e erro padrão dos valores estimados para a esperança da distribuição F em 100 amostras de tamanho 10000

|                     | F        | (1,5)      | F(5,  | 1)   | F        | (5,5)      |
|---------------------|----------|------------|-------|------|----------|------------|
| Gerador             | Média    | E.P.       | Média | E.P. | Média    | E.P.       |
| F pela Beta         | 1.672302 | 0.04438049 | N.D.  | N.D. | 1.665627 | 0.02899394 |
| F pela Qui-Quadrado | 1.657483 | 0.04817021 | N.D.  | N.D. | 1.665134 | 0.02617753 |



Quadro 43 - Gráficos dos valores estimados para a esperança da distribuição F(1,5) em 100 amostras de tamanho 10000

Fonte: Elaborado pelo autor.

F pela Beta F pela Qui-Quadrado 0



Quadro 44 - Gráficos dos valores estimados para a esperança da distribuição F(5,5) em 100 amostras de tamanho 10000

#### 10.1.3 Máximo e Mínimo

Tabela 84 - Média e erro padrão dos valores estimados para o máximo da distribuição F em 100 amostras de tamanho 10000

|                         | F(1,5)   |          | F(          | 5,1)         | F(5,5)   |          |
|-------------------------|----------|----------|-------------|--------------|----------|----------|
| Gerador                 | Média    | E.P.     | Média       | E.P.         | Média    | E.P.     |
| F pela Beta             | 197.2603 | 132.9748 | 25150953071 | 201002694257 | 121.4064 | 71.96039 |
| F pela Qui-<br>Quadrado | 174.0411 | 123.6288 | 17495947392 | 99385108881  | 105.4764 | 66.48341 |

Fonte: elaborada pelo autor.

Tabela 85 - Média e erro padrão dos valores estimados para o mínimo da distribuição F em 100 amostras de tamanho 10000

|                         | F(1,5)       |              | F(5         | 5,1)        | F(5,5)     |             |
|-------------------------|--------------|--------------|-------------|-------------|------------|-------------|
| Gerador                 | Média        | E.P.         | Média       | E.P.        | Média      | E.P.        |
| F pela Beta             | 3.961582e-08 | 1.630644e-07 | 0.006844281 | 0.003312341 | 0.01122935 | 0.004708949 |
| F pela Qui-<br>Quadrado | 3.796628e-08 | 8.386135e-08 | 0.006977915 | 0.003302552 | 0.01129847 | 0.005106866 |

Fonte: elaborada pelo autor.

### 10.1.4 Amplitude

Tabela 86 - Média e erro padrão dos valores estimados para a amplitude da distribuição F em 100 amostras de tamanho 10000

|                         | F(1,5)   |          | F(          | 5,1)         | F(5,5)   |          |
|-------------------------|----------|----------|-------------|--------------|----------|----------|
| Gerador                 | Média    | E.P.     | Média       | E.P.         | Média    | E.P.     |
| F pela Beta             | 197.2603 | 132.9748 | 25150953071 | 201002694257 | 121.3951 | 71.96015 |
| F pela Qui-<br>Quadrado | 174.0411 | 123.6288 | 17495947392 | 99385108881  | 105.4651 | 66.48325 |

Fonte: elaborada pelo autor.

#### 10.1.5 Desvio-Padrão

Tabela 87 - Média e erro padrão dos valores estimados para o desvio-padrão da distribuição F em 100 amostras de tamanho 10000

|                     | F(       | 1,5)      | F(5,  | 1)   | F(       | 5,5)      |
|---------------------|----------|-----------|-------|------|----------|-----------|
| Gerador             | Média    | E.P.      | Média | E.P. | Média    | E.P.      |
| F pela Beta         | 4.418839 | 0.9934298 | N.D.  | N.D. | 2.812776 | 0.5698404 |
| F pela Qui-Quadrado | 4.240205 | 0.9862142 | N.D.  | N.D. | 2.719484 | 0.4649891 |



Quadro 45 - Gráficos dos valores estimados para o desvio-padrão da distribuição F(1,5) em 100 amostras de tamanho 10000

Fonte: Elaborado pelo autor.

F pela Beta



Quadro 46 - Gráficos dos valores estimados para o desvio-padrão da distribuição F(5,5) em 100 amostras de tamanho 10000

#### **10.1.6 Quartis**

Tabela 88 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição F em 100 amostras de tamanho 10000

| -                       | F(1,5)    |             | F(        | 5,1)       | F(5,5)    |             |
|-------------------------|-----------|-------------|-----------|------------|-----------|-------------|
| Gerador                 | Média     | E.P.        | Média     | E.P.       | Média     | E.P.        |
| F pela Beta             | 0.1132289 | 0.004189741 | 0.5901057 | 0.01286061 | 0.5274519 | 0.007155641 |
| F pela Qui-<br>Quadrado | 0.1133491 | 0.004092506 | 0.5913281 | 0.01269458 | 0.5276451 | 0.007807439 |

Fonte: elaborada pelo autor.

Tabela 89 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição F em 100 amostras de tamanho 10000

|                         | F(1,5)    |            | F        | (5,1)      | F(5,5)    |            |
|-------------------------|-----------|------------|----------|------------|-----------|------------|
| Gerador                 | Média     | E.P.       | Média    | E.P.       | Média     | E.P.       |
| F pela Beta             | 0.529043  | 0.01191873 | 1.894693 | 0.04607719 | 1.000535  | 0.01215471 |
| F pela Qui-<br>Quadrado | 0.5278787 | 0.01308743 | 1.889677 | 0.04872984 | 0.9994687 | 0.01286403 |

Fonte: elaborada pelo autor.

Tabela 90 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição F em 100 amostras de tamanho 10000

|                         | F(1,5)   |            | F(       | 5,1)      | F(5,5)   |            |
|-------------------------|----------|------------|----------|-----------|----------|------------|
| Gerador                 | Média    | E.P.       | Média    | E.P.      | Média    | E.P.       |
| F pela Beta             | 1.696818 | 0.03184986 | 8.811734 | 0.3188664 | 1.893191 | 0.02697753 |
| F pela Qui-<br>Quadrado | 1.693924 | 0.03577599 | 8.830767 | 0.3079152 | 1.897278 | 0.02554698 |

Fonte: elaborada pelo autor.

#### 10.1.7 Distância Interquartílica

Tabela 91 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição F em 100 amostras de tamanho 10000

|                         | F(1,5)   |            | F(       | 5,1)      | F(5,5)   |            |
|-------------------------|----------|------------|----------|-----------|----------|------------|
| Gerador                 | Média    | E.P.       | Média    | E.P.      | Média    | E.P.       |
| F pela Beta             | 1.583589 | 0.03074358 | 8.221629 | 0.3139174 | 1.365739 | 0.02462552 |
| F pela Qui-<br>Quadrado | 1.580574 | 0.03493599 | 8.239439 | 0.3033141 | 1.369633 | 0.0218095  |

#### 10.1.8 Teste de Aderência

Tabela 92 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição F em 100 amostras de tamanho 10000

| -                       | F(1,5)    |           | F(5       | 5,1)      | F(5,5)    |           |
|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Gerador                 | Média     | E.P.      | Média     | E.P.      | Média     | E.P.      |
| F pela Beta             | 0.5027308 | 0.2903874 | 0.4959093 | 0.2914188 | 0.5124999 | 0.318903  |
| F pela Qui-<br>Quadrado | 0.473582  | 0.2593207 | 0.5397403 | 0.2882822 | 0.4834621 | 0.3132357 |

Fonte: elaborada pelo autor.



Quadro 47 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição F(1,5) em 100 amostras de tamanho 10000



Quadro 48 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição F(5,1) em 100 amostras de tamanho 10000

Fonte: Elaborado pelo autor.



Quadro 49 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição F(5,5) em 100 amostras de tamanho 10000

#### 10.1.9 Conclusões

Ambos os algoritmos passaram sem problemas pelo Teste Qui-Quadrado de Aderência, independentemente se o nível de significância escolhido foi 5% ou 1%.

As estimativas do gerador baseado na Distribuição Beta mostraram-se mais próximas aos valores exatos se comparadas às estimativas do gerador baseado na Distribuição Qui-Quadrado. Assim, recomendamos o algoritmo baseado na Distribuição Beta para gerar amostras da Distribuição F com tamanho n = 10000.

Tabela 93 – Estimativas médias do algoritmo F pela Beta em 100 amostras de tamanho 10000 da Distribuição F

| Medidas           |              | F pela Beta |            |
|-------------------|--------------|-------------|------------|
| Wedidas           | F(1,5)       | F(5,1)      | F(5,5)     |
| Tempo de Execução | 5.5949 s     | 6.0283 s    | 6.7995 s   |
| Esperança         | 1.672302     | N.D.        | 1.665627   |
| Máximo            | 197.2603     | 25150953071 | 121.4064   |
| Mínimo            | 3.961582e-08 | 0.006844281 | 0.01122935 |
| Amplitude         | 197.2603     | 25150953071 | 121.3951   |
| Desvio-Padrão     | 4.418839     | N.D.        | 2.812776   |
| 1º Quartil        | 0.1132289    | 0.5901057   | 0.5274519  |
| 2º Quartil        | 0.529043     | 1.894693    | 1.000535   |
| 3º Quartil        | 1.696818     | 8.811734    | 1.893191   |
| Dist. Interquart. | 1.583589     | 8.221629    | 1.365739   |

F(1,5) F(5,5) 8 400 400 2000 8 80 20 40 60 80 120 0 20 40 60 valores valores

Fonte: elaborada pelo autor.

Quadro 50 – Histogramas de 10000 valores gerados da Distribuição F pelo algoritmo F pela Beta

# 11. GERADORES DE NÚMEROS ALEATÓRIOS DA DISTRIBUIÇÃO t DE STUDENT

Neste capítulo, apresentaremos os algoritmos geradores da Distribuição t de Student. Assim como os algoritmos anteriores da Distribuição Qui-Quadrado e da Distribuição F, estes algoritmos também podem ser dependentes de geradores de outras distribuições de probabilidade, como veremos a seguir. Lembrando que  $\nu$  são os graus de liberdade da Distribuição t de Student.

### 11.1 Método de Rejeição Polar

Este algoritmo foi proposto por Bailey (1994). Sua vantagem é não depender do gerador de qualquer outra distribuição de probabilidade além da Distribuição Uniforme.

- 1. Gerar  $V_1, V_2 \sim U[-1;1]$ .
- 2. Fazer  $r^2 = v_1^2 + v_2^2$ .
- 3. Se  $r^2 \ge 1$  então

Volte para o passo 1.

senão

Sair 
$$X = v_1 \sqrt{\frac{v(r^{-4/\nu} - 1)}{r}}$$
.

## 11.2 Rejeição da densidade t(3)

Este algoritmo foi proposto por Best (1978), e está baseado na rejeição da função densidade de probabilidade da Distribuição t com 3 graus de liberdade.

Repita

Repita

Gerar 
$$U_1, U_2 \sim U[0;1]$$
.

Fazer 
$$U_2 = U_2 - \frac{1}{2}$$
.

Até que 
$$U_1^2 + U_2^2 \le U_1$$

Fazer 
$$X = \sqrt{3} \frac{U_2}{U_1}$$
.

Gerar 
$$U_3 \sim U[0;1]$$
.

Fazer 
$$Z = X^2$$
,  $W = 1 + \frac{Z}{3}$ .

Fazer 
$$Y = 2\log\left(\frac{\frac{9}{16}W^2}{U}\right)$$
.

Fazer 
$$Aceitar = [Y \ge 1 - Z]$$
.

Se não Aceitar então

$$Aceitar = \left[ Y \ge (\nu + 1) \log \left( \frac{\nu + 1}{\nu + Z} \right) \right].$$

Até que Aceitar = Verdadeiro

Sair X.

## 11.3 Gerador baseado na Distribuição Gama

Gerar  $S \sim U[-1;1]$ .

Gerar 
$$G_1 \sim Gama(\frac{1}{2}, 1)$$
,  $G_2 \sim Gama(\frac{1}{2}, 1)$ .

Se S < 0 então

Sair 
$$X = -\sqrt{V} \sqrt{\frac{G_1}{G_2}}$$
.

senão

Sair 
$$X = \sqrt{\nu} \sqrt{\frac{G_1}{G_2}}$$
 .

A Distribuição Gama pode ser gerada pelos algoritmos já mencionados anteriormente. Em nossas análises, utilizaremos o algoritmo disponível no software R.

# 11.4 Gerador baseado na Distribuição Normal e na Distribuição Qui-Quadrado

Este algoritmo está baseado na geração de uma ocorrência da Distribuição Normal padrão e de uma ocorrência da Distribuição Qui-Quadrado.

Gerar 
$$Z \sim N(0,1)$$
.

Gerar 
$$Y \sim \chi^2(\nu)$$
.

Sair 
$$X = \frac{Z}{\sqrt{Y/\nu}}$$
.

Este é o algoritmo disponível no software R para geração de números aleatórios da Distribuição t de Student.

## 12. ESTIMATIVAS DAS AMOSTRAS DA DISTRIBUIÇÃO t DE STUDENT

Nos capítulos subsequentes, apresentaremos as estimativas com amostras de tamanho n = 100 e n = 10000 da Distribuição t de Student com graus de liberdade v iguais a 3, 15 e 30 para as seguintes medidas: esperança, máximo e mínimo, amplitude, desvio-padrão, assimetria, curtose, quartis, distância interquartílica e valor-p para o teste de aderência. Os valores "exatos" das medidas para a Distribuição t de Student com graus de liberdade v iguais a 3, 15 e 30 são, respectivamente: esperança = 0, 0, 0; máximo = 47.92773, 6.108868, 5.054032 e mínimo = -47.92773, -6.108868, -5.054032; amplitude = 95.85546, 12.21774, 10.10806; desvio-padrão = 1.732051, 1.074172, 1.035098; assimetria = não definida, 0, 0; curtose = infinito, 0.5454545, 0.2307692; 1º quartil = -0.7648923, -0.6911969, -0.6827557; distância interquartílica = 1.221773, 1.382394, 1.365511. Considera-se como máximo o valor x tal que a probabilidade  $P(X \le x) = 0.99999$ , e como mínimo o valor x tal que a probabilidade  $P(X \le x) = 0.00001$ .

#### 12.1 Estimativas com amostras de tamanho n = 100

Nas tabelas abaixo, apresentamos a média e o erro padrão dos valores estimados pelos geradores para cada uma das medidas analisadas. Nos gráficos, ilustramos o comportamento das estimativas dos geradores ao longo das 100 amostras.

#### 12.1.1 Esperança

Tabela 94 – Média e erro padrão dos valores estimados para a esperança da distribuição t de Student em 100 amostras de tamanho 100

|                     | t(3)         |           | t(15         | 5)         | t(30)        |            |
|---------------------|--------------|-----------|--------------|------------|--------------|------------|
| Gerador             | Média        | E.P.      | Média        | E.P.       | Média        | E.P.       |
| Rejeição Polar      | -0.004598665 | 0.1019409 | 0.009325166  | 0.06447905 | 0.01287283   | 0.07085583 |
| Rejeição t(3)       | 0.01732537   | 0.2116898 | 0.01938277   | 0.1997123  | -0.008298479 | 0.1865934  |
| Normal/Qui-Quadrado | -0.01986648  | 0.1692288 | 0.0004833724 | 0.1098877  | 0.002908149  | 0.1114964  |
| t pela Gama         | 0.00971455   | 0.1572465 | 0.004024177  | 0.1019915  | 0.006322134  | 0.1047522  |



Quadro 51 – Gráficos dos valores estimados para a esperança da distribuição t(3) em 100 amostras de tamanho 100

Rejeição Polar Rejeição t3 0.15 9.0 900 0.2 0.09 -0.2 0.15 99 100 100 0 20 40 60 80 0 20 40 60 80 amostra amostra t pela Gama Normal Qui-Quadrado 03 0.2 -0 8 Ö -0.2 Ģ 20 100 20 100 o 40 60 80 0 40 60 80 amostra amostra

Fonte: Elaborado pelo autor.

Quadro 52 - Gráficos dos valores estimados para a esperança da distribuição t(15) em 100 amostras de tamanho 100



Quadro 53 – Gráficos dos valores estimados para a esperança da distribuição t(30) em 100 amostras de tamanho 100

Fonte: Elaborado pelo autor.

#### 12.1.2 Máximo e Mínimo

Tabela 95 – Média e erro padrão dos valores estimados para o máximo da distribuição t de Student em 100 amostras de tamanho 100

| _              | t(3)     |           | t        | (15)       | t(30)    |            |  |
|----------------|----------|-----------|----------|------------|----------|------------|--|
| Gerador        | Média    | E.P.      | Média    | E.P.       | Média    | E.P.       |  |
| Rejeição Polar | 2.096557 | 0.3737161 | 1.266886 | 0.03657693 | 1.223106 | 0.03310312 |  |
| Rejeição t(3)  | 7.418707 | 5.471068  | 7.777956 | 4.732135   | 7.43231  | 5.139396   |  |
| Normal/Qui-    |          |           |          |            |          |            |  |
| Quadrado       | 6.395364 | 3.293031  | 2.790624 | 0.5617903  | 2.714362 | 0.504266   |  |
| t pela Gama    | 6.623744 | 5.112158  | 2.902177 | 0.6029363  | 2.708596 | 0.4784058  |  |

Fonte: elaborada pelo autor.

Tabela 96 – Média e erro padrão dos valores estimados para o mínimo da distribuição t de Student em 100 amostras de tamanho 100

|                     | t(        | 3)        | t(        | 15)        | t(30)     |            |
|---------------------|-----------|-----------|-----------|------------|-----------|------------|
| Gerador             | Média     | E.P.      | Média     | E.P.       | Média     | E.P.       |
| Rejeição Polar      | -2.119795 | 0.3521025 | -1.26584  | 0.03738448 | -1.222045 | 0.03151934 |
| Rejeição t(3)       | -6.834417 | 3.452183  | -7.74489  | 5.388736   | -7.192102 | 4.030778   |
| Normal/Qui-Quadrado | -7.221168 | 5.612062  | -2.839191 | 0.6040959  | -2.760361 | 0.6058763  |
| t pela Gama         | -6.306513 | 4.427112  | -2.853139 | 0.5646511  | -2.763708 | 0.5148828  |

## 12.1.3 Amplitude

Tabela 97- Média e erro padrão dos valores estimados para a amplitude da distribuição t de Student em 100 amostras de tamanho 100

|                     | t(3)     |           | t        | (15)       | t(30)    |            |
|---------------------|----------|-----------|----------|------------|----------|------------|
| Gerador             | Média    | E.P.      | Média    | E.P.       | Média    | E.P.       |
| Rejeição Polar      | 4.216352 | 0.5257759 | 2.532726 | 0.05486362 | 2.44515  | 0.04354627 |
| Rejeição t(3)       | 14.25312 | 5.974151  | 15.52285 | 7.122265   | 14.62441 | 6.317338   |
| Normal/Qui-Quadrado | 13.61653 | 6.564588  | 5.629815 | 0.7653944  | 5.474723 | 0.7786894  |
| t pela Gama         | 12.93026 | 6.411619  | 5.755317 | 0.8445249  | 5.472303 | 0.7028371  |

Fonte: elaborada pelo autor.

#### 12.1.4 Desvio-Padrão

Tabela 98 – Média e erro padrão dos valores estimados para o desvio-padrão da distribuição t de Student em 100 amostras de tamanho 100

|                | t(3)     |            | t(        | 15)        | t(30)    |            |
|----------------|----------|------------|-----------|------------|----------|------------|
| Gerador        | Média    | E.P.       | Média     | E.P.       | Média    | E.P.       |
| Rejeição Polar | 0.905292 | 0.06460766 | 0.6943889 | 0.0328755  | 0.683983 | 0.03898796 |
| Rejeição t(3)  | 1.9887   | 0.417468   | 2.068609  | 0.5124419  | 2.017714 | 0.424908   |
| Normal/Qui-    |          |            |           |            |          |            |
| Quadrado       | 1.728108 | 0.4868518  | 1.061975  | 0.0747561  | 1.04709  | 0.07644573 |
| t pela Gama    | 1.689665 | 0.4872077  | 1.061645  | 0.07613666 | 1.042441 | 0.08258455 |

Fonte: elaborada pelo autor.



Quadro 54 – Gráficos dos valores estimados para o desvio-padrão da distribuição t(3) em 100 amostras de tamanho 100



Quadro 55 – Gráficos dos valores estimados para o desvio-padrão da distribuição t(15) em 100 amostras de tamanho 100

Rejeição Polar Rejeição t3 4.0 desvio-padrão desvio-padrão 2.5 2.0 amostra amostra Normal Qui-Quadrado t pela Gama desvio-padrão 1.1 desvio-padrão 0.9 8.0 amostra amostra

Fonte: Elaborado pelo autor.

Quadro 56 – Gráficos dos valores estimados para o desvio-padrão da distribuição t(30) em 100 amostras de tamanho 100

#### 12.1.5 Assimetria

Tabela 99 – Média e erro padrão dos valores estimados para a assimetria da distribuição t de Student em 100 amostras de tamanho 100

|                     | t(3)  |      | t(15)         |           | t(30)       |           |  |
|---------------------|-------|------|---------------|-----------|-------------|-----------|--|
| Gerador             | Média | E.P. | Média         | E.P.      | Média       | E.P.      |  |
| Rejeição Polar      | N.D.  | N.D. | -0.0009921229 | 0.1275464 | -0.02662405 | 0.1420623 |  |
| Rejeição t(3)       | N.D.  | N.D. | 0.04547138    | 1.736186  | 0.04276195  | 1.768826  |  |
| Normal/Qui-Quadrado | N.D.  | N.D. | -0.01360928   | 0.3344405 | -0.02468971 | 0.3028857 |  |
| t pela Gama         | N.D.  | N.D. | 0.02242046    | 0.2992206 | -0.01294353 | 0.2411218 |  |

Fonte: elaborada pelo autor.

#### **12.1.6 Curtose**

Tabela 100 – Média e erro padrão dos valores estimados para a curtose da distribuição t de Student em 100 amostras de tamanho 100

|                     | t(C        | 3)        | t(1       | 15)       | t(30)     |           |
|---------------------|------------|-----------|-----------|-----------|-----------|-----------|
| Gerador             | Média      | E.P.      | Média     | E.P.      | Média     | E.P.      |
| Rejeição Polar      | -0.3750947 | 0.4074466 | -1.019636 | 0.1517819 | -1.053629 | 0.154776  |
| Rejeição t(3)       | 7.000221   | 11.9084   | 7.281677  | 10.97333  | 6.987864  | 11.31793  |
| Normal/Qui-Quadrado | 9.153857   | 12.19695  | 0.386272  | 0.7310924 | 0.2540617 | 0.6432579 |
| t pela Gama         | 8.815519   | 13.86484  | 0.424218  | 0.7793396 | 0.2427952 | 0.6451201 |

Fonte: elaborada pelo autor.

#### **12.1.7 Quartis**

Tabela 101 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição t de Student em 100 amostras de tamanho 100

|                | t(3)       |           | t(1        | 15)        | t(30)      |           |
|----------------|------------|-----------|------------|------------|------------|-----------|
| Gerador        | Média      | E.P.      | Média      | E.P.       | Média      | E.P.      |
| Rejeição Polar | -0.6582047 | 0.1421557 | -0.5432306 | 0.09188405 | -0.5437369 | 0.1104535 |
| Rejeição t(3)  | -1.098231  | 0.1704976 | -1.107763  | 0.1650684  | -1.118499  | 0.1627833 |
| Normal/Qui-    |            |           |            |            |            |           |
| Quadrado       | -0.7781199 | 0.1681507 | -0.6701203 | 0.1401034  | -0.6670346 | 0.1340985 |
| t pela Gama    | -0.753171  | 0.1476401 | -0.6785246 | 0.1364987  | -0.6756497 | 0.1320089 |

Fonte: elaborada pelo autor.

Tabela 102 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição t de Student em 100 amostras de tamanho 100

|                | t(3)          |           | t(15         | )         | t(30)        |           |
|----------------|---------------|-----------|--------------|-----------|--------------|-----------|
| Gerador        | Média         | E.P.      | Média        | E.P.      | Média        | E.P.      |
| Rejeição Polar | -0.0006509152 | 0.1354208 | 0.004609962  | 0.1021405 | 0.01904434   | 0.1139502 |
| Rejeição t(3)  | 0.002926382   | 0.2687609 | 0.02455318   | 0.2735703 | -0.003234995 | 0.2616832 |
| Normal/Qui-Qu. | -0.009794832  | 0.1302142 | -0.002341417 | 0.1289588 | 0.005247962  | 0.1327185 |
| t pela Gama    | -0.007814776  | 0.1354155 | -0.002381686 | 0.1248561 | -0.005964509 | 0.130517  |

Tabela 103 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição t de Student em 100 amostras de tamanho 100

|                | t(3)      |           | t(        | 15)        | t(30)     |           |
|----------------|-----------|-----------|-----------|------------|-----------|-----------|
| Gerador        | Média     | E.P.      | Média     | E.P.       | Média     | E.P.      |
| Rejeição Polar | 0.6499294 | 0.1427702 | 0.5724181 | 0.09618475 | 0.5759705 | 0.1037415 |
| Rejeição t(3)  | 1.110021  | 0.1879189 | 1.132244  | 0.1697455  | 1.119253  | 0.1483883 |
| Normal/Qui-    |           |           |           |            |           |           |
| Quadrado       | 0.7395151 | 0.1559699 | 0.6836792 | 0.1369405  | 0.6821984 | 0.1514448 |
| t pela Gama    | 0.7577238 | 0.1413862 | 0.6832777 | 0.1493293  | 0.7022948 | 0.1526656 |

Fonte: elaborada pelo autor.

### 12.1.8 Distância Interquartílica

Tabela 104 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição t de Student em 100 amostras de tamanho 100

|                     | t        | (3)       | t(       | 15)       | t(30)    |           |
|---------------------|----------|-----------|----------|-----------|----------|-----------|
| Gerador             | Média    | E.P.      | Média    | E.P.      | Média    | E.P.      |
| Rejeição Polar      | 1.308134 | 0.1588184 | 1.115649 | 0.105916  | 1.119707 | 0.1332332 |
| Rejeição t(3)       | 2.208252 | 0.2062949 | 2.240007 | 0.2062251 | 2.237752 | 0.1966478 |
| Normal/Qui-Quadrado | 1.517635 | 0.1886474 | 1.3538   | 0.1532061 | 1.349233 | 0.1594522 |
| t pela Gama         | 1.510895 | 0.181088  | 1.361802 | 0.1775066 | 1.377944 | 0.1600078 |

Fonte: elaborada pelo autor.

#### 12.1.9 Teste de Aderência

Tabela 105 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t de Student em 100 amostras de tamanho 100

|                         | t(3)       |            | t(1         | 15)         | t(30)       |             |  |
|-------------------------|------------|------------|-------------|-------------|-------------|-------------|--|
| Gerador                 | Média      | E.P.       | Média       | E.P.        | Média       | E.P.        |  |
| Rejeição<br>Polar       | 0.05891308 | 0.09503757 | 0.5002167   | 0.2812343   | 0.4820837   | 0.2855532   |  |
| Rejeição t(3)           | 0.0443549  | 0.08860526 | 0.001824125 | 0.007823174 | 0.001322604 | 0.007510335 |  |
| Normal/Qui-<br>Quadrado | 0.5242399  | 0.2878748  | 0.4769547   | 0.2781969   | 0.4903221   | 0.2811345   |  |
| t pela Gama             | 0.5233127  | 0.2940255  | 0.4974157   | 0.2990075   | 0.4607708   | 0.2826925   |  |



Quadro 57- Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(3) em 100 amostras de tamanho 100

Rejeição Polar Rejeição t3 0 90:0 80 9.0 0.0 4.0 0.02 0.2 8 8 100 20 100 0 20 40 60 80 0 40 60 80 amostra amostra Normal Qui-Quadrado t pela Gama 0 8 80 9.0 9.0 0.4 0.4 0.2 0.2 8 8 100 o 20 40 60 80 0 20 40 60 80 100 amostra amostra

Fonte: Elaborado pelo autor.

Quadro 58 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(15) em 100 amostras de tamanho 100



Quadro 59 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(30) em 100 amostras de tamanho 100

Fonte: Elaborado pelo autor.

#### 12.1.10 Conclusões

Para amostras de tamanho n=100, o algoritmo baseado na Distribuição Normal e na Distribuição Qui-Quadrado mostrou-se um pouco mais preciso que os demais. Então, o indicamos para gerar amostras com tamanho n=100 da Distribuição t de Student.

Assim como na Distribuição Qui-Quadrado, para a Distribuição t de Student também podemos observar que um algoritmo não passou no Teste Qui-Quadrado de Aderência: o algoritmo baseado na rejeição de uma Distribuição t com 3 graus de liberdade, que aqui chamamos de Rejeição t3. Logo, não aconselhamos o seu uso para geração de amostras com tamanho 100 da Distribuição t de Student.

Tabela 106 – Estimativas médias do algoritmo Normal/Qui-Quadrado em 100 amostras de tamanho 100 da Distribuição t de Student

|               | NI.                 |              | al a        |  |  |  |  |
|---------------|---------------------|--------------|-------------|--|--|--|--|
| Medidas       | Normal/Qui-Quadrado |              |             |  |  |  |  |
| Modidae       | t(3) -0.01986648    | t(15)        | t(30)       |  |  |  |  |
| Esperança     | -0.01986648         | 0.0004833724 | 0.002908149 |  |  |  |  |
| Máximo        | 6.395364            | 2.790624     | 2.714362    |  |  |  |  |
| Mínimo        | -7.221168           | -2.839191    | -2.760361   |  |  |  |  |
| Amplitude     | 13.61653            | 5.629815     | 5.474723    |  |  |  |  |
| Desvio-Padrão | 1.728108            | 1.061975     | 1.04709     |  |  |  |  |

| Assimetria        | N.D.         | -0.01360928  | -0.02468971 |
|-------------------|--------------|--------------|-------------|
| Curtose           | 9.153857     | 0.386272     | 0.2540617   |
| 1º Quartil        | -0.7781199   | -0.6701203   | -0.6670346  |
| 2º Quartil        | -0.009794832 | -0.002341417 | 0.005247962 |
| 3º Quartil        | 0.7395151    | 0.6836792    | 0.6821984   |
| Dist. Interquart. | 1.517635     | 1.3538       | 1.349233    |

Fonte: elaborada pelo autor.



Quadro 60 – Histogramas de 100 valores gerados da Distribuição t de Student pelo algoritmo Normal/Qui-Quadrado

Fonte: Elaborado pelo autor.

## 12.2. Estimativas com amostras de tamanho n = 10000

Nas tabelas a seguir, apresentamos a média e o erro padrão dos valores estimados pelos geradores para cada uma das medidas analisadas. Nos gráficos, ilustramos o comportamento das estimativas dos geradores ao longo das 100 amostras.

## 12.2.1 Tempo de Execução

Tabela 107 – Média e erro padrão dos tempos de execução, em segundos, medidos em 100 amostras de tamanho 10000 da Distribuição t de Student

| $\chi^2$ (1)        |        | ,          | $\chi^2$ (17) | $\chi^2$ (50) |        |            |
|---------------------|--------|------------|---------------|---------------|--------|------------|
| Gerador             | Média  | E.P.       | Média         | E.P.          | Média  | E.P.       |
| Rejeição Polar      | 0.8247 | 0.03975823 | 0.8417        | 0.02974827    | 0.8034 | 0.02327786 |
| Rejeição t(3)       | 1.8059 | 0.07081196 | 1.8563        | 0.03836705    | 1.7489 | 0.02957254 |
| Normal/Qui-Quadrado | 5.5548 | 0.1596554  | 5.2568        | 0.08688643    | 4.9097 | 0.04003673 |
| t pela Gama         | 5.7399 | 0.1759275  | 5.4802        | 0.06853415    | 5.1342 | 0.06108745 |

Fonte: elaborada pelo autor.

#### 12.2.2 Esperança

Tabela 108 - Média e erro padrão dos valores estimados para a esperança da distribuição t de Student em 100 amostras de tamanho 10000

|                | t(3           | 3)          | t(1           | 5)          | t(30)         |             |  |
|----------------|---------------|-------------|---------------|-------------|---------------|-------------|--|
| Gerador        | Média         | E.P.        | Média         | E.P.        | Média         | E.P.        |  |
| Rejeição Polar | -0.000994978  | 0.008361409 | -0.0008118529 | 0.006314536 | -0.0004204632 | 0.007090136 |  |
| Rejeição t(3)  | 0.003500486   | 0.02200558  | 0.001238042   | 0.01963975  | -0.0006904531 | 0.0217135   |  |
| Normal/Qui-    |               |             |               |             |               |             |  |
| Quadrado       | -0.002243976  | 0.01659397  | -0.0027243    | 0.01083226  | -0.0002610586 | 0.01029538  |  |
| t pela Gama    | -0.0005633687 | 0.01611234  | -0.001068755  | 0.01050596  | -0.001126007  | 0.01049263  |  |

Fonte: elaborada pelo autor.



Quadro 61 - Gráficos dos valores estimados para a esperança da distribuição t(3) em 100 amostras de tamanho 10000



Quadro 62 - Gráficos dos valores estimados para a esperança da distribuição t(15) em 100 amostras de tamanho 10000

Rejeição Polar Rejeição t3 0.02 -0.010 0.000 -0.02 -0.020 100 100 0 20 40 60 80 0 20 40 60 80 amostra amostra Normal Qui-Quadrado t pela Gama 0.02 0.02 8.0 8 0.02 100 20 100 0 20 40 60 80 0 40 60 80 amostra amostra

Fonte: Elaborado pelo autor.

Quadro 63 - Gráficos dos valores estimados para a esperança da distribuição t(30) em 100 amostras de tamanho 10000

#### 12.2.3 Máximo e Mínimo

Tabela 109 - Média e erro padrão dos valores estimados para o máximo da distribuição t de Student em 100 amostras de tamanho 10000

|                | t(3)     |          |          | t(15)        | t(30)    |              |  |
|----------------|----------|----------|----------|--------------|----------|--------------|--|
| Gerador        | Média    | E.P.     | Média    | E.P.         | Média    | E.P.         |  |
| Rejeição Polar | 3.253134 | 0.350302 | 1.305183 | 0.0004142814 | 1.255757 | 0.0005393244 |  |
| Rejeição t(3)  | 36.23513 | 21.56082 | 32.9532  | 21.93775     | 33.07402 | 21.24237     |  |
| Normal/Qui-    | 04 00004 | 40.07004 | E 00007  | 0.0005004    | 4 470050 | 0.5440407    |  |
| Quadrado       | 31.99661 | 16.27621 | 5.20627  | 0.6005691    | 4.472856 | 0.5112167    |  |
| t pela Gama    | 31.23282 | 15.83101 | 5.274739 | 0.6727141    | 4.41958  | 0.5065569    |  |

Fonte: elaborada pelo autor.

Tabela 110 - Média e erro padrão dos valores estimados para o mínimo da distribuição t de Student em 100 amostras de tamanho 10000

|                | t(3)      |           |           | t(15)        | t(30)     |              |  |
|----------------|-----------|-----------|-----------|--------------|-----------|--------------|--|
| Gerador        | Média     | E.P.      | Média     | E.P.         | Média     | E.P.         |  |
| Rejeição Polar | -3.231285 | 0.3089289 | -1.305266 | 0.0003333101 | -1.255804 | 0.0003652054 |  |
| Rejeição t(3)  | -34.21112 | 19.1052   | -34.37653 | 19.46049     | -31.70713 | 17.34393     |  |
| Normal/Qui-    | 00 10011  | 44.07700  | E 477000  | 0.7400004    | 4 440704  | 0.4000700    |  |
| Quadrado       | -29.19614 | 14.97728  | -5.177636 | 0.7496224    | -4.449784 | 0.4296766    |  |
| t pela Gama    | -29.80888 | 14.00435  | -5.138016 | 0.638735     | -4.383875 | 0.4876735    |  |

Fonte: elaborada pelo autor.

#### 12.2.4 Amplitude

Tabela 111- Média e erro padrão dos valores estimados para a amplitude da distribuição t de Student em 100 amostras de tamanho 10000

|                | t        | (3)       |          | t(15)        | t(30)    |              |  |
|----------------|----------|-----------|----------|--------------|----------|--------------|--|
| Gerador        | Média    | E.P.      | Média    | E.P.         | Média    | E.P.         |  |
| Rejeição Polar | 6.484419 | 0.4712651 | 2.610449 | 0.0004820758 | 2.511561 | 0.0006344208 |  |
| Rejeição t(3)  | 70.44625 | 27.12852  | 67.32973 | 29.95593     | 64.78115 | 26.5967      |  |
| Normal/Qui-    | 04 40075 | 04 00007  | 10 00001 | 0.0505447    | 0.00004  | 0.0400700    |  |
| Quadrado       | 61.19275 | 21.93637  | 10.38391 | 0.9565117    | 8.92264  | 0.6400792    |  |
| t pela Gama    | 61.04169 | 20.73326  | 10.41275 | 0.9152294    | 8.803455 | 0.7591368    |  |

Fonte: elaborada pelo autor.

#### 12.2.5 Desvio-Padrão

Tabela 112 - Média e erro padrão dos valores estimados para o desvio-padrão da distribuição t de Student em 100 amostras de tamanho 10000

|                | t(3)      |             | t         | (15)        | t(30)     |             |  |
|----------------|-----------|-------------|-----------|-------------|-----------|-------------|--|
| Gerador        | Média     | E.P.        | Média     | E.P.        | Média     | E.P.        |  |
| Rejeição Polar | 0.8935672 | 0.006022852 | 0.6986402 | 0.003684291 | 0.6828484 | 0.003011036 |  |
| Rejeição t(3)  | 2.070406  | 0.1038779   | 2.05683   | 0.113693    | 2.042289  | 0.1015588   |  |

| Normal/Qui- |          |            |          |             |          |             |
|-------------|----------|------------|----------|-------------|----------|-------------|
| Quadrado    | 1.720892 | 0.0822379  | 1.074816 | 0.008093036 | 1.035618 | 0.007173984 |
| t pela Gama | 1.722826 | 0.07306908 | 1.0738   | 0.007637394 | 1.034485 | 0.007607595 |

Fonte: elaborada pelo autor.



Quadro 64 - Gráficos dos valores estimados para o desvio-padrão da distribuição t(3) em 100 amostras de tamanho 10000

Fonte: Elaborado pelo autor.



Quadro 65 - Gráficos dos valores estimados para o desvio-padrão da distribuição t(15) em 100 amostras de tamanho 10000



Quadro 66 - Gráficos dos valores estimados para o desvio-padrão da distribuição t(30) em 100 amostras de tamanho 10000

Fonte: Elaborado pelo autor.

#### 12.2.6 Assimetria

Tabela 113 – Média e erro padrão dos valores estimados para a assimetria da distribuição t de Student em 100 amostras de tamanho 10000

|                     | t(3   | )    | t(15         | 5)         | t(30)        |            |  |
|---------------------|-------|------|--------------|------------|--------------|------------|--|
| Gerador             | Média | E.P. | Média        | E.P.       | Média        | E.P.       |  |
| Rejeição Polar      | N.D.  | N.D. | 0.001054805  | 0.01271668 | 0.001508181  | 0.01345761 |  |
| Rejeição t(3)       | N.D.  | N.D. | -0.1156953   | 3.772117   | 0.2033567    | 3.779235   |  |
| Normal/Qui-Quadrado | N.D.  | N.D. | 0.0009490708 | 0.03928421 | -0.001829655 | 0.02430135 |  |
| t pela Gama         | N.D.  | N.D. | 0.003879621  | 0.03441255 | 0.002563008  | 0.03483463 |  |

Fonte: elaborada pelo autor.

#### 12.2.7 Curtose

Tabela 114 – Média e erro padrão dos valores estimados para a curtose da distribuição t de Student em 100 amostras de tamanho 10000

|                | t(         | 3)         | t(        | 15)        | t(        | 30)        |
|----------------|------------|------------|-----------|------------|-----------|------------|
| Gerador        | Média      | E.P.       | Média     | E.P.       | Média     | E.P.       |
| Rejeição Polar | -0.3682658 | 0.04075416 | -1.052805 | 0.01240015 | -1.080457 | 0.01142997 |
| Rejeição t(3)  | 88.95895   | 242.075    | 80.90279  | 194.9372   | 73.8449   | 181.1188   |
| Normal/Qui-    | 70 50005   | 407.000    | 0.5045044 |            |           |            |
| Quadrado       | 78.50295   | 137.6988   | 0.5315311 | 0.1050083  | 0.237296  | 0.06950506 |

| t pela Gama | 72.95067 | 114.4952 | 0.5659147 | 0.1075562 | 0.2336864 | 0.07741289 |
|-------------|----------|----------|-----------|-----------|-----------|------------|
|-------------|----------|----------|-----------|-----------|-----------|------------|

Fonte: elaborada pelo autor.

#### **12.2.8 Quartis**

Tabela 115 – Média e erro padrão dos valores estimados para o 1º quartil da distribuição t de Student em 100 amostras de tamanho 10000

|                | t(3)       |            | t(15)      |             | t(30)      |            |
|----------------|------------|------------|------------|-------------|------------|------------|
| Gerador        | Média      | E.P.       | Média      | E.P.        | Média      | E.P.       |
| Rejeição Polar | -0.6419352 | 0.01278373 | -0.5724046 | 0.009437525 | -0.5647692 | 0.01004503 |
| Rejeição t(3)  | -1.117401  | 0.01702514 | -1.115255  | 0.01696166  | -1.117387  | 0.01812075 |
| Normal/Qui-    | 0.7007405  | 0.04000055 | 0.0004040  | 0.04544007  |            | 0.04044000 |
| Quadrado       | -0.7667135 | 0.01668055 | -0.6934613 | 0.01511237  | -0.6829064 | 0.01341986 |
| t pela Gama    | -0.7651948 | 0.01729666 | -0.690652  | 0.01397572  | -0.6828854 | 0.01454821 |

Fonte: elaborada pelo autor.

Tabela 116 – Média e erro padrão dos valores estimados para o 2º quartil da distribuição t de Student em 100 amostras de tamanho 10000

|                | t(3)          |            | t(15)        |            | t(30)         |            |
|----------------|---------------|------------|--------------|------------|---------------|------------|
| Gerador        | Média         | E.P.       | Média        | E.P.       | Média         | E.P.       |
| Rejeição Polar | -0.001015602  | 0.01051489 | -0.001316497 | 0.01010447 | -0.0009050616 | 0.01059656 |
| Rejeição t(3)  | -0.002879813  | 0.02831074 | 0.004500296  | 0.03049669 | 0.001071381   | 0.02769272 |
| Normal/Qui-    | 0.001000101   | 0.04040050 |              | 0.04040005 | 0.0000004400  | 0.0444450  |
| Quadrado       | -0.001869124  | 0.01213952 | -0.002282075 | 0.01313385 | -0.0003864402 | 0.0114158  |
| t pela Gama    | -0.0006331813 | 0.01369761 | -0.001219858 | 0.01257827 | -0.001640086  | 0.0125983  |

Fonte: elaborada pelo autor.

Tabela 117 – Média e erro padrão dos valores estimados para o 3º quartil da distribuição t de Student em 100 amostras de tamanho 10000

|                | t(3)      |            | t(15)     |            | t(30)     |            |
|----------------|-----------|------------|-----------|------------|-----------|------------|
| Gerador        | Média     | E.P.       | Média     | E.P.       | Média     | E.P.       |
| Rejeição Polar | 0.6399353 | 0.01265066 | 0.5705428 | 0.01042236 | 0.5631618 | 0.0104577  |
| Rejeição t(3)  | 1.119622  | 0.01640077 | 1.117173  | 0.01660609 | 1.116966  | 0.01661918 |
| Normal/Qui-    | 0.7005400 | 0.04504475 | 0.0004400 | 0.04054004 | 0.000000  | 0.01000010 |
| Quadrado       | 0.7625466 | 0.01531475 | 0.6881182 | 0.01354994 | 0.682698  | 0.01396843 |
| t pela Gama    | 0.7654078 | 0.0170889  | 0.6884739 | 0.01559257 | 0.680062  | 0.01322865 |

Fonte: elaborada pelo autor.

#### 12.2.9 Distância Interquartílica

Tabela 118 – Média e erro padrão dos valores estimados para a distância interquartílica da distribuição t de Student em 100 amostras de tamanho 10000

|                     | t(3)     |            | t(15)    |            | t(30)    |            |
|---------------------|----------|------------|----------|------------|----------|------------|
| Gerador             | Média    | E.P.       | Média    | E.P.       | Média    | E.P.       |
| Rejeição Polar      | 1.28187  | 0.01534214 | 1.142947 | 0.01298505 | 1.127931 | 0.01010873 |
| Rejeição t(3)       | 2.237023 | 0.01893425 | 2.232428 | 0.01996053 | 2.234353 | 0.01992724 |
| Normal/Qui-Quadrado | 1.52926  | 0.01652522 | 1.381579 | 0.01570259 | 1.365604 | 0.01674402 |

t pela Gama | 1.530603 | 0.02061373 | 1.379126 | 0.01717452 | 1.362947 | 0.01569743

Fonte: elaborada pelo autor.

#### 12.2.10 Teste de Aderência

Tabela 119 – Média e erro padrão dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t de Student em 100 amostras de tamanho 10000

|                         | t(3)          |               | t(15)      |           | t(30)      |           |
|-------------------------|---------------|---------------|------------|-----------|------------|-----------|
| Gerador                 | Média         | E.P.          | Média      | E.P.      | Média      | E.P.      |
| Rejeição Polar          | 5.622707e-36  | 5.622696e-35  | 0.07569451 | 0.1276354 | 0.04732809 | 0.1040282 |
| Rejeição t(3)           | 1.933541e-123 | 1.931955e-122 | 0          | 0         | 0          | 0         |
| Normal/Qui-<br>Quadrado | 0.5472772     | 0.3013079     | 0.4764712  | 0.3132472 | 0.495391   | 0.3019421 |
| t pela Gama             | 0.4960554     | 0.2976483     | 0.5231738  | 0.2762151 | 0.4863203  | 0.280924  |

Fonte: elaborada pelo autor.



Quadro 67 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(3) em 100 amostras de tamanho 10000



Quadro 68 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(15) em 100 amostras de tamanho 10000

Rejeição Polar Rejeição t3 10 9.0 0.5 2 0:0 0.2 6.5 <del>.</del> 8 100 20 40 60 80 100 0 20 40 60 80 amostra amostra Normal Qui-Quadrado t pela Gama 0 0 80 89 99 9.0 0.4 0.4 0.2 0.2 8 100 20 o 20 40 60 80 0 40 60 80 100 amostra amostra

Fonte: Elaborado pelo autor.

Quadro 69 - Gráficos dos p-valores do Teste Qui-Quadrado de Aderência para uma distribuição t(30) em 100 amostras de tamanho 10000

#### 12.2.11 Conclusões

Desta vez, tivemos um resultado mais equilibrado entre os algoritmos Normal/Qui-Quadrado e t pela Gama. Qualquer um desses algoritmos poderia ser utilizado para gerar amostras com tamanho n = 10000 da Distribuição t sem prejuízos nos resultados. Entretanto, podemos observar uma leve vantagem para o algoritmo Normal/Qui-Quadrado, pois suas estimativas, mais uma vez, chegaram um pouco mais próximas aos valores exatos se comparadas às estimativas do algoritmo t pela Gama. Além do mais, o algoritmo Normal/Qui-Quadrado mostrou-se um pouco mais rápido que o algoritmo t pela Gama, pois seu tempo de processamento foi um pouco menor. Sendo assim, indicamos o algoritmo Normal/Qui-Quadrado como gerador de amostras com tamanho n = 10000 da Distribuição t de Student.

Os dois algoritmos restantes (Rejeição Polar e Rejeição t3), não passaram no Teste Qui-Quadrado de Aderência e, assim, o seu uso como gerador da Distribuição t não é recomendado.

Tabela 120 – Estimativas médias do algoritmo Normal/Qui-Quadrado em 100 amostras de tamanho 10000 da Distribuição t de Student

| Medidas               | Normal/Qui-Quadrado |              |               |  |  |
|-----------------------|---------------------|--------------|---------------|--|--|
| Wodidas               | t(3)                | t(15)        | t(30)         |  |  |
| Tempo de Execução (s) | 5.5548              | 5.2568       | 4.9097        |  |  |
| Esperança             | -0.002243976        | -0.0027243   | -0.0002610586 |  |  |
| Máximo                | 31.99661            | 5.20627      | 4.472856      |  |  |
| Mínimo                | -29.19614           | -5.177636    | -4.449784     |  |  |
| Amplitude             | 61.19275            | 10.38391     | 8.92264       |  |  |
| Desvio-Padrão         | 1.720892            | 1.074816     | 1.035618      |  |  |
| Assimetria            | N.D.                | 0.0009490708 | -0.001829655  |  |  |
| Curtose               | 78.50295            | 0.5315311    | 0.237296      |  |  |
| 1º Quartil            | -0.7667135          | -0.6934613   | -0.6829064    |  |  |
| 2º Quartil            | -0.001869124        | -0.002282075 | -0.0003864402 |  |  |
| 3º Quartil            | 0.7625466           | 0.6881182    | 0.682698      |  |  |
| Dist. Interquart.     | 1.52926             | 1.381579     | 1.365604      |  |  |



Quadro 70 – Histogramas de 10000 valores gerados da Distribuição t de Student pelo algoritmo Normal/Qui-Quadrado

## 13. ALGORITMOS DISPONÍVEIS NO SOFTWARE R

Dentre todos os geradores apresentados neste trabalho, os algoritmos listados abaixo encontram-se disponíveis no software R, versão 2.14.2, não sendo necessária a sua implementação.

- Para a Distribuição Uniforme:
  - 1. Mersenne Twister (padrão).
- Para a Distribuição Normal:
  - 1. Inversão por Wichura (padrão).
  - 2. Kinderman-Ramage.
  - 3. Box-Muller.
  - 4. Ahrens-Dieter.
- Para a Distribuição Qui-Quadrado:
  - 1. Gama R.
- Para a Distribuição F de Snedecor:
  - 1. F pela Qui-Quadrado.
- Para a Distribuição t de Student:
  - 1. Normal/Qui-Quadrado.

Os demais algoritmos não estão disponíveis no software R e, caso se deseje utilizá-los, deve-se proceder a sua implementação. Além do Mersenne Twister, o software também disponibiliza outros geradores para a Distribuição Uniforme, mas estes não serão tratados neste trabalho.

# 14. ALGORITMOS "VENCEDORES" PARA CADA DISTRIBUIÇÃO

A tabela a seguir resume os algoritmos "vencedores" para cada distribuição.

Tabela 121 – Algoritmos "vencedores" para cada distribuição

| Distribuição  | Tamanho de amostra (n) | Algoritmo "vencedor"             |  |  |
|---------------|------------------------|----------------------------------|--|--|
|               | 100                    | Kinderman-Monahan                |  |  |
| Normal        | 1000                   | Rejeição pela Distr. Exponencial |  |  |
|               | 10000                  | Box-Muller                       |  |  |
|               | 100                    | Logaritmo Produto Uniformes      |  |  |
| Qui-Quadrado  | 1000                   | Soma Quadrados Normal            |  |  |
|               | 10000                  | Logaritmo Produto Uniformes      |  |  |
| F de Snedecor | 10000                  | F pela Beta                      |  |  |
| t de Otrodent | 100                    | Normal/Qui-Quadrado              |  |  |
| t de Student  | 10000                  | Normal/Qui-Quadrado              |  |  |

# 15. CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

Neste trabalho, tivemos a oportunidade de reunir, ao todo, 25 algoritmos para geração de distribuições de probabilidade: 13 para a Distribuição Normal, seis para a Distribuição Qui-Quadrado, dois para a Distribuição F e quatro para a Distribuição t de Student. A maioria desses algoritmos pode, seguramente, ser utilizada para gerar amostras da distribuição a qual se propõe. Além das distribuições Normal, Qui-Quadrado, F e t de Student não serem integráveis analiticamente, a maior parte dos algoritmos geradores desses modelos encontrase espalhada pela literatura de Estatística Computacional e Simulação, sendo difícil encontrar uma obra que os reúna. Daí, resulta a relevância deste trabalho, pois aqui conseguimos agrupar todos esses algoritmos, o que pode se constituir em uma boa fonte de consulta para trabalhos futuros.

Para aprimorar ou estender este trabalho, pode-se, por exemplo, repetir às análises realizadas utilizando o software R para plataforma Linux, aumentar o número de replicações e utilizar tamanhos de amostra diferentes ou repetir às análises usando outro(s) gerador(es) da Distribuição Uniforme [0; 1].

## **REFERÊNCIAS**

BUSSAB, W.O., MORETTIN, P.A. Estatística Básica – 5ª edição. São Paulo: Saraiva, 2002.

BUSTOS, O.H., FRERY, A.C. **Simulação Estocástica: Teoria e Algoritmos**. Rio de Janeiro: IMPA, 1992.

Código-fonte do software R v.2.14.2. 2012. Disponível em:

<a href="http://cran-r.c3sl.ufpr.br/src/base/R-2/">http://cran-r.c3sl.ufpr.br/src/base/R-2/</a>. Acesso em: 24 abr. 2012.

COSTA NETO, P.L.O. Estatística – 2º edição. São Paulo: Blücher, 2002.

DEVROYE, L. Non-Uniform Random Variate Generation. New York: Springer, 1986.

FERREIRA, D.F. Estatística Computacional Utilizando R. 2010. Disponível em:

<a href="http://www.dex.ufla.br/~danielff/apeco.pdf">http://www.dex.ufla.br/~danielff/apeco.pdf</a>>. Acesso em: 25 mar. 2012.

FRERY, A.C., CRIBARI-NETO, F. Elementos de Estatística Computacional Usando Plataformas de Software Livre/Gratuito. Rio de Janeiro: IMPA, 2005.

GENTLE, J.E. Random Number Generation and Monte Carlo Methods. New York: Springer, 1998.

INSÚA, D.R., INSÚA, S.R., JIMÉNEZ, J.M., MARTÍN, A.J. **Simulación. Métodos y aplicaciones, 2ª edición**. Ciudad del México: Alfaomega, 2009.

JONES, O., MAILLARDET, R., ROBINSON, A. Scientific Programming and Simulation Using R. New York: Chapman & Hall, 2009.

MATSUMOTO, M., NISHIMURA, T. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. 1998. Disponível em:

<a href="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf">http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf</a>. Acesso em: 07 jul. 2012.

**Normas de Apresentação Tabular – 3ª edição**. Rio de Janeiro: IBGE, 1993. Disponível em: <a href="http://biblioteca.ibge.gov.br/visualizacao/monografias/GEBIS%20-%20RJ/normastabular.pdf">http://biblioteca.ibge.gov.br/visualizacao/monografias/GEBIS%20-%20RJ/normastabular.pdf</a>>. Acesso em: 07 jul. 2012.

THOMAS, D.B., LUK, W., LEONG, P.H.W., VILLASENOR, J.D. Gaussian Random Number Generators. 2007. Disponível em:

<a href="http://www.cse.cuhk.edu.hk/~phwl/mt/public/archives/papers/grng\_acmcs07.pdf">http://www.cse.cuhk.edu.hk/~phwl/mt/public/archives/papers/grng\_acmcs07.pdf</a>. Acesso em: 18 abr. 2012.

VIALI, L., BITTENCOURT, H.R. **As distribuições de probabilidade T, F e Qui-Quadrado: teoria e prática com o uso da planilha**. In: ENCONTRO NACIONAL DE EDUCAÇÃO MATEMÁTICA. Anais... Belo Horizonte, 2007.

VIEIRA, C.E.C., RIBEIRO, C.C., CASTRO E SOUZA, R. **Geradores de números aleatórios**. 2004. Disponível em: <ftp://ftp.inf.puc-rio.br/pub/docs/techreports/04\_22\_vieira.pdf>. Acesso em: 28 mar. 2012.

#### WIKIPEDIA. The Free Encyclopedia.

- <a href="http://en.wikipedia.org/wiki/Chi-squared\_distribution">http://en.wikipedia.org/wiki/Chi-squared\_distribution</a>>. Acesso em: 18 mar. 2012.
- <a href="http://en.wikipedia.org/wiki/Mersenne\_Twister">http://en.wikipedia.org/wiki/Mersenne\_Twister</a>. Acesso em: 07 jul. 2012.
- <a href="http://en.wikipedia.org/wiki/Normal\_distribution">http://en.wikipedia.org/wiki/Normal\_distribution</a>>. Acesso em: 18 mar. 2012.
- <a href="http://en.wikipedia.org/wiki/Snedecor%27s\_F\_distribution">> Acesso em: 18 mar. 2012.
- <a href="http://en.wikipedia.org/wiki/Student%27s\_t-distribution">http://en.wikipedia.org/wiki/Student%27s\_t-distribution</a>. Acesso em: 18 mar. 2012.
- <a href="http://pt.wikipedia.org/wiki/Primo\_de\_Mersenne">http://pt.wikipedia.org/wiki/Primo\_de\_Mersenne</a>. Acesso em: 07 jul. 2012.