Mathématiques Appliquées

Révisions d'Optimisation Convexe

1 Rappel sur les fonctions convexes

On considère ici \mathcal{X} un espace de Hilbert et $f: \mathcal{X} \to \mathbb{R}$. On appelle épigraphe de f, noté $\mathbb{U}(f)$ le sous ensemble :

 $U(f) \stackrel{\text{def}}{=} \{ (x, \xi) \mid x \in \mathcal{X}, \, \xi \in \mathbb{R} : \, \xi \ge f(x) \}$

Définition 1 (Convexité). Une fonction $f: \mathcal{X} \to \mathbb{R}$ est convexe si, de façon équivalente :

- L'épigraphe U(f) de f est un ensemble convexe
- f vérifie, $\forall \alpha \in [0,1], \forall x,y \in \mathcal{X}$:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) \tag{1}$$

Définition 2 (Stricte et forte convexité). • On dit qu'une fonction f est strictement convexe si elle vérifie strictement l'inégalité 1.

• On dit qu'une fonction est fortement convexe si $\exists b > 0$, tel que $\forall x, y \in \mathcal{X}, \forall \alpha \in [0, 1]$:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) - b\alpha(1 - \alpha)\frac{||x - y||_{\mathcal{X}}^2}{2}$$

$$\tag{2}$$

2 Différentiabilité au sens de Gateau

Dans un espace de Hilbert, il existe diverses notions de différentiabilité. Nous nous intéresserons ici à la différentiabilité au sens de Gateau.

Définition 3 (Dérivé directionnelle). On appelle dérivée directionnelle de $f: \mathcal{X} \to \mathbb{R}$ au point $x \in \mathcal{X}$ dans la direction $d \in \mathcal{X}$, notée Df(x; d), la quantité (lorsqu'elle existe):

$$Df(x;d) = \lim_{\varepsilon \to 0_+} \frac{f(x + \varepsilon d) - f(x)}{\varepsilon}$$

Définition 4 (Dérivée de Gateau). Si f admet en x des dérivées directionnelles pour toutes les directions d et si Df(x;d) est linéaire continue en d, alors f est dite différentiable au sens de Gateau au point x.

Ainsi, si f est différentiable au sens de Gateau au point x, on aura que $\forall y \in \mathcal{X}$:

$$f(x + \varepsilon y) = f(x) + \varepsilon (y \cdot D(x)) + o_0(\varepsilon)$$
(3)

où l'on a écrit la forme linéaire D(x;d) comme un produit scalaire entre d et D(x) (cf. théorème de représentation de Riesz), que l'on peut également considéré comme la définition de f'(x).

Proposition 1. Soit f une application différentiable de \mathcal{X} dans \mathbb{R} . Les assertions suivantes sont équivalentes :

$$J \text{ est convexe sur } \mathcal{X}$$

$$J(v) \geq J(u) + (J'(u) \mid v - u), \forall u, v \in \mathcal{X}$$

$$(J'(u) - J'(v) \mid v - u) \geq 0, \forall u, v \in \mathcal{X}$$

3 Optimisation convexe sous contrainte

On cherche à résoudre le problème suivant :

$$\min_{u \in I \mid ad} J(u) \tag{4}$$

où J est une fonction convexe (critère) et U^{ad} un sous-ensemble convexe fermé d'un espace de Hilbert \mathcal{U} . On peut sans trop de problème se ramener à un problème d'optimisation sans contrainte, en posant :

$$I_{U^{ad}}(u) = \begin{cases} 0 & \text{si } u \in U^{ad} \\ +\infty & \text{sinon} \end{cases}$$

et en résolvant :

$$\min_{u \in \mathcal{U}} \left[J(u) + I_{U^{ad}}(u) \right] \tag{5}$$

Cependant, cette technique n'a qu'un intérêt pratique, peu théorique.

3.1 Condition d'existence et d'unicité

Lorsque J est convexe, il est clair que tout minimum local est un minimum global (l'ensemble des minima locaux est en fait un convexe). On dispose du théorème suivant :

Théorème 1. Si J est une fonction convexe et coercive (ie infini à l'infini) sur U^{ad} , si U^{ad} est convexe et fermé, alors il existe au moins une solution au problème 4. L'ensemble des solutions est un sousensemble convexe fermé. Il est réduit à un point (la solution est donc unique) si J est strictement convexe.

3.2 Inéquation d'Euler

Théorème 2 (Inéquation d'Euler). Soit $u \in U^{ad}$ (que l'on a supposé convexe). Alors si J est différentiable en u, et u est un point de minimum global de J sur U^{ad} , alors :

$$(J'(u) \mid v - u) \ge 0 \ \forall v \in U^{ad} \tag{6}$$

4 Techniques Lagrangienne

4.1 Description des contraintes

On se donne la forme explicite suivante pour les contraintes. L'espace admissible U^{ad} est décrit par =

$$u \in U^{ad} \Leftrightarrow \begin{vmatrix} \Theta_i(u) & \leq & 0 \ i = 1, \dots, m \\ \Omega_j(u) & = & 0 \ j = 1, \dots, p \end{vmatrix}$$
 (7)

Pour que cet ensemble soit bien convexe, il suffit que chaque composante soit définie par une fonction convexe. Ceci est assuré par :

- Les fonctions $\Theta_i(u): \mathcal{U} \to \mathbb{R}$ sont convexes.
- Les fonctions $\Omega_i(u): \mathcal{U} \to \mathbb{R}$ sont affines (réunion de deux contraintes convexes et concaves)

4.2 Contraintes d'égalité

On a ici seulement des contraintes d'égalité, c'est-à-dire que U^{ad} est simplement donné par :

$$u \in U^{ad} \Leftrightarrow F_j(u) = 0 \ j = 1, \dots, p$$

et on note $U^{ad} = \{v \in \mathcal{U} | F(v) = 0\}.$

Théorème 3. Soit $u \in U^{ad}$. On suppose que :

- (i) J est dérivable en u
- (ii) Les fonctions F_i sont continûment dérivables dans un voisinage de u.
- (iii) La famille $(F'_j(u))_{j \in \{1,...,p\}}$ est libre.

Alors si u est un minimum local de J sur U^{ad} , alors il existe $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ appelés multiplicateurs de Lagrange tels que :

$$J'(u) + \sum_{i=1}^{M} \lambda_i F_i'(u) = 0$$
 (8)

On peut introduire le Lagrangien du problème de minimisation de J sur U^{ad} , définie sur $\mathcal{U} \times \mathbb{R}^p$ par :

$$\mathcal{L}(v,\mu) = J(v) + \mu \cdot F(v) \tag{9}$$

Si $u \in U^{ad}$ est un minimum local de J sur U^{ad} , le théorème précédent nous assure que dans le cas régulier, $\exists \lambda \in \mathbb{R}^p$ tel que :

$$\begin{bmatrix}
\frac{\partial L}{\partial v}(u,\lambda) & = J'(u) + \sum_{i=1}^{M} \lambda_i F_i'(u) = 0 \\
\frac{\partial L}{\partial \mu}(u,\lambda) & = F(u) = 0 \ (u \in U^{ad})
\end{bmatrix}$$
(10)

On peut également noter que le Lagrangien permet d'éliminer les contraintes, au prix du rajout d'une variable car

$$\inf_{v \in U^{ad}} J(v) = \inf_{v \in \mathcal{U}} \sup_{\mu \in \mathbb{R}^p} \mathcal{L}(v, \mu)$$
(11)

4.3 Contraintes d'inégalités

On a maintenant que ${\cal U}^{ad}$ est donné par :

$$U^{ad} = \{ v \in \mathcal{U} | F(v) < 0 \}$$

Définition 5. Soit $u \in U^{ad}$. L'ensemble $I(u) = \{i \in \{1, ..., p\}, F_i(u) = 0\}$ est appelé l'ensemble des contraintes actives en u.

Définition 6. On dit que les contraintes sont qualifiées en u si la famille $(F'_i(u))_{i\in I(u)}$ est libre.

Le théorème se ré-écrit comme suit :

Théorème 4. Soit $u \in U^{ad}$. On suppose que :

- (i) J est dérivable en u
- (ii) Les fonctions F_i sont continûment dérivables dans un voisinage de u.
- (iii) Les contraintes sont qualifiées en u

Alors si u est un minimum local de J sur U^{ad} , alors il existe $\lambda_1, \ldots, \lambda_p \in \mathbb{R}^+$ appelés **multiplicateurs** de Lagrange tels que :

$$J'(u) + \sum_{i=1}^{M} \lambda_i F_i'(u) = 0$$

$$\lambda_i = 0 \text{ si } F_i(u) < 0, \, \forall i \in \{1, \dots, p\}$$
(12)

5 Théorème de Kuhn-Tucker

Définition 7. On dit que (u,p) $\in U \times P$ est un point-selle de \mathcal{L} sur $U \times P$ si :

$$\forall q \in P \quad \mathcal{L}(u, p) \le \mathcal{L}(u, p) \le \mathcal{L}(v, p) \quad \forall v \in U$$

Théorème 5 (Kuhn-Tucker, CNS d'optimalité). On suppose les fonctions J, F_1, \ldots, F_p convexes continues sur \mathcal{U} et dérivables sur U^{ad} . On introduit le Lagrangien associé :

$$\mathcal{L}(v,q) = J(v) + q \cdot F(v) \ \forall (v,q) \in \mathcal{U} \times (\mathbb{R}_+)^p$$

Soit $u \in U^{ad}$ où les contraintes sont qualifiées. Alors u est un minimum global de J sur U^{ad} si et seulement si il existe $p \in (\mathbb{R}_+)^p$ tel que (u,p) soit un point-selle du lagrangien \mathcal{L} sur $\mathcal{U} \times (\mathbb{R}_+)^p$, ou, de manière équivalente :

$$F(u) \le 0$$

$$p \ge 0$$

$$p \cdot F(u) = 0$$

$$J('u) + \sum_{i=1}^{p} p_i F_i'(u) = 0$$