

Progetto di Basi di Dati A.A. 2021-2022

Laurea Triennale in Ingegneria Informatica

Studenti:

Tommaso Falaschi

Rossana Antonella Sacco

Sommario

INTRODUZIONE	5
1.GLOSSARIO	5
AREA GENERALE	5
AREA COSTRUZIONE	6
AREA MONITORAGGIO	
AREA ANALISI DEL RISCHIO E MONITORAGGIO DANNI	11
2.RISTRUTTURAZIONE DEL DIAGRAMMA E-R	12
2.1 Eliminazione delle generalizzazioni	12
Generalizzazione sull'entità Materiale	12
Generalizzazione sull'entità Rilevamento	13
3.TAVOLA DEI VOLUMI	14
AREA GENERALE	14
AREA COSTRUZIONE	
AREA MONITORAGGIO	
AREA ANALISI DEL RISCHIO E MONITORAGGIO DANNI	19
4. OPERAZIONI	19
1.Costo totale di un progetto	19
2. Lavori diretti da un determinato capocantiere	22
3. Superficie di un edificio	23
4. Inserimento turni	25
5. Calendario dei turni degli operai per i sette giorni successivi	27
6. Trovare l'area geografica più a rischio in quel momento	28
7.Determinare il sensore che ha dato più alert	29
8.Determinare il costo dei materiali per un determinato lavoro	32
5. PROGETTAZIONE LOGICA	
AREA GENERALE	
AREA ANALISI DEL RISCHIO E MONITORAGGIO DANNI	
AREA MONITORAGGIOAREA COSTRUZIONE	
6.ANALISI DELLE DIPENDENZE FUNZIONALI E NORMALIZZAZIONE	
AREA GENERALE	
AREA ANALISI DEL RISCHIO E MONITORAGGIO DANNI	
AREA MONITORAGGIO	
AREA COSTRUZIONE	
6.1. VINCOLI DI INTEGRITÀ GENERICI	41
7. AREA ANALYTICS	42
7.1. ANALYTICS 1 – CONSIGLI DI INTERVENTO	

7.2. ANALYTICS 2 – STIMA DEI DANNI	44

INTRODUZIONE

Questo progetto si concentra sulla creazione di un database che consenta di monitorare e gestire l'intero ciclo di vita degli edifici, dalla fase di progettazione, alla costruzione, alla ristrutturazione e al monitoraggio continuo della loro sicurezza.

Il nostro obiettivo è quello di creare un sistema che permetta di raccogliere e mantenere informazioni relative alle proprietà degli edifici, alle attività di manutenzione, alle ispezioni di sicurezza e alle azioni correttive intraprese per risolvere i problemi.

Il nostro database sarà strutturato in modo da poter essere facilmente interrogato e visualizzato, consentendo agli utenti di accedere rapidamente alle informazioni necessarie per prendere decisioni informate sulla sicurezza degli edifici.

Il progetto sarà suddiviso in diverse fasi, che includeranno la progettazione del database, l'implementazione del sistema.

1.GLOSSARIO

Il Glossario dei termini conterrà l'accurata descrizione di tutto ciò che è presente all'interno del diagramma ER.

AREA GENERALE

ENTITÀ

TERMINE	DESCRIZIONE	IDENTIFICATORE	COLLEGAMENTI
Edificio	Edificio gestito dal	IDEdificio	Area Geografica,
	cliente		Piano, Lavoro
Piano	Piano di un dato	NumeroPiano,	Edificio, Vano
	edificio	IDedificio(FK)	
Vano	Un'area delimitata di	IDVano	Piano, Muro, Sensore,
	un piano di un edificio		Lavoro,Finestra,
			Lavoro
Punto d'Accesso	Elemento che	IdAccesso	Muro
	permette di collegare		
	i vani tra loro		
Finestra	Elemento strutturale,	IDFinestra	Vano
	può essere di diverso		
	tipo		
Muro	Determinata parete	IdVano(FK), Tipologia	Vano, Pietra, Punto
	appartenente ad un		d'accesso
	vano		

• RELAZIONI

RELAZIONE	ENTITÀ 1	ENTITÀ 2	ATTRIBUTI
Appartenenza	Edificio (1,N)	Piano (1,1)	-
	Ogni edificio è	Ogni piano	
	composto da uno o	appartiene ad un	
	più piani	solo edificio	
Pianta	Piano (1,N)	Vano (1,1)	-
	Un piano può avere	Un vano appartiene	
	uno o più vani	ad un solo piano	
Apertura	Finestra (1,1)	Vano (0,N)	-
	Una finestra	Un Vano può avere	
	appartiene ad un	zero o più finestre	
	solo Vano		
Locazione	Area Geografica	Edificio (1,1)	-
	(1,N)	Un edificio è situato	
	In un'area	in una determinata	
	geografica possono	e unica area	
	essere presenti uno		
	o più edifici		
Collegamento	Muro (1,N)	Punto d'Accesso	-
	Un muro può avere	(1,N)	
	più punti d'accesso	Un punto d'accesso	
		si trova su due	
		facciate di un muro	
VanoMuro	Vano (1,N)	Muro (1,1)	-
	Ogni vano può	Ogni muro	
	avere uno o più	(facciata)	
	muri	appartiene ad un	
		solo vano	

AREA COSTRUZIONE

• ENTITÀ

TERMINE	DESCRIZIONE	IDENTIFICATORE	COLLEGAMENTI
Progetto	Insieme dei lavori da realizzare per la costruzione o la modifica di un edificio	IDProgetto	Stadio
Stadio	Suddivisione	IDStadio	Lavoro

	progetto in stadi di		
	avanzamento		
Lavoro	Singolo lavoro da svolgere su un edifico o parte di esso	IDLavoro	Stadio, Materiale, Responsabile, Capo Cantiere, Turno, Vano, Edificio
Responsabile	Responsabile del lavoro	CodFiscale	Lavoro
Capo Cantiere	Capo Cantiere di un lavoro	CodFiscale	Lavoro
Turno	Turno di lavoro di un operaio o responsabile o capo cantiere,contenente il numero di ore ed il lavoro da svolgere	IdOperaio(FK), Data,OraInizio	Lavoro, Operaio
Operaio	Addetto ai lavori	CodFiscale	Turno
Materiale	Materiale edilizio acquistato dall'azienda oppure utilizzato da altri soggetti per la realizzazione di parte di un edificio	CodiceLotto	Lavoro, Intonaco, Mattoni, Piastrelle, Parquet, Pietra, MaterialeVario
Intonaco	Materiale utilizzato per rivestire le mura	CodiceLotto(FK)	Materiale
Mattoni	Materiale utilizzato per la costruzione dei muri	CodiceLotto(FK)	Materiale
Piastrelle	Materiale utilizzato per la pavimentazione	CodiceLotto(FK)	Materiale
Parquet	Materiale utilizzato per la pavimentazione	CodiceLotto(FK)	Materiale
Pietra	Materiale utilizzato per la costruzione o a scopo decorativo	CodiceLotto(FK)	Materiale, Muro
Materiale Vario	Materiale edilizio generico	CodiceLotto(FK)	Materiale

• RELAZIONI

RELAZIONE	ENTITÀ 1	ENTITÀ 2	ATTRIBUTI
Svolgimento	Stadio (1,N)	Lavoro (1,1)	-
	Durante uno stadio	Un lavoro è svolto	
	di avanzamento si	durante un	
	svolgono diversi	determinato stato	
	lavori	di avanzamento	
ProgettoStadio	Progetto (1,N)	Stadio (1,1)	-
	Un progetto	Uno stadio riguarda	
	attraversa vari stadi	un determinato	
	di avanzamento	progetto	
Osservazione	Responsabile (0,N)	Lavoro(1,1)	-
	Il Responsabile può	Un lavoro ha un	
	avere a carico zero	solo responsabile	
	o più lavori		
Direzione	CapoCantiere (0,N)	Lavoro (1,1)	-
	Il Capo Cantiere può	Un lavoro ha un	
	avere a carico zero	solo Capo Cantiere	
	o più lavori		
LavoroTurno	Turno (1,1)	Lavoro (1,N)	-
	Durante un turno si	Un lavoro può	
	svolge un	essere svolto in	
	determinato lavoro	turni diversi	
TurnoOperaio	Operaio (1,N)	Turno (1,1)	-
	Un operaio ha uno	Un turno si riferisce	
	o diversi turni in un	ad un determinato	
	periodo lavorativo	operaio	
Utilizzo	Lavoro (1,N)	Materiale (1,N)	QuantitaUtilizzata
	Durante un lavoro	Un materiale può	
	possono essere	essere impiegato in	
	impiegati diversi	più lavori	
114:1:	materiali	Internacy (4.4)	
UtilizzoIntonaco	Materiale (0,1)	Intonaco (1,1)	-
	Ogni materiale può	Ci si riferisce ad un	
	essere o meno	determinato lotto di	
UtilizzoMattoni	Intonaco	Intonaco	
Othizzoiviattorii	Materiale (0,1)	Mattoni (1,1) Ci si riferisce ad un	-
	Ogni materiale può essere o meno	determinato lotto di	
	Mattoni	Mattoni	
UtilizzoPiastrelle	Materiale (0,1)	Piastrelle (1,1)	_
UtilizzoPlastielle	Ogni materiale può	Ci si riferisce ad un	-
	essere o meno	determinato lotto di	
	Piastrelle	Piastrelle	
LitilizzoDarguet			
UtilizzoParquet	Materiale (0,1)	Parquet (1,1)	-

	Ogni materiale può essere o meno	Ci si riferisce ad un determinato lotto di	
	Parquet	Parquet	
UtilizzoPietra	Materiale (0,1)	Pietra (1,1)	-
	Ogni materiale può	Ci si riferisce ad un	
	essere o meno	determinato lotto di	
	Pietra	Pietra	
UtilizzoMaterialeVario	Materiale (0,1)	MaterialeVario (1,1)	-
	Ogni materiale può	Ci si riferisce ad un	
	essere o meno	determinato lotto di	
	Materiale Vario	Materiale Vario	
RivestimentoMuro	Muro (0,N)	Pietra (0,1)	Superficie,
	Su ogni muro può	Ci si riferisce ad un	Disposizione,
	esserci o meno un	determinato lavoro	Utilizzo,PesoMedio
	lavoro in pietra	di pietra	
LavoroEdificio	Edificio (0,N)	Lavoro (0,1)	-
	Su un edificio è	Un lavoro può	
	possibile o meno	riguardare o meno	
	che vengano	un edificio	
	effettuati dei lavori		
LavoroVano	Vano (0,N)	Lavoro (0,1)	-
	Su un vano è	Un lavoro può	
	possibile o meno	riguardare o meno	
	che vengano	un vano	
	effettuati dei lavori		

AREA MONITORAGGIO

• ENTITÀ

TERMINE	DESCRIZIONE	IDENTIFICATORE	COLLEGAMENTI
Sensore	Dispositivi che permettono il monitoraggio di diverse grandezze	IdSensore	Vano, Registro, RegistroMultivalore
Registro	Registro con cui si tiene traccia del valore registrato dal sensore, attraverso diversi timestamp	IdSensore (FK), Timestamp	Sensore, Alert
Alert	Sistema di sicurezza che, quando scatta, segnala il superamento della soglia di sicurezza	IdSensore (FK), Timestamp (FK)	Registro

	da parte di un sensore monovalore		
RegistroMultivalore	Registro con cui si tiene traccia dei diversi valori misurati dai sensori, attraverso diversi timestamp	IdSensore(FK), Timestamp	Sensore, AlertMultivalore
AlertMultivalore	Sistema di sicurezza che, quando scatta, segnala il superamento della soglia di sicurezza da parte di un sensore multivalore	IdSensore (FK), Timestamp (FK)	RegistroMultivalore

RELAZIONI

RELAZIONE	ENTITÀ 1	ENTITÀ 2	ATTRIBUTI
Ubicazione	Vano (0,N)	Sensore (1,1)	-
	Un vano può avere zero	Un sensore si trova in	
	o più sensori	una determinata	
		locazione	
Misurazione	Sensore(0,N)	Registro(1,1)	-
	Per ogni sensore ci	Ogni record si riferisce	
	possono essere diverse	ad una determinata	
	registrazioni	misurazione	
Violazione	Registro(0,1)	Alert(1,1)	-
	Una misurazione può o	Ogni record si riferisce	
	meno generare un alert	ad una determinata	
		violazione	
Misurazione Multivalore	Sensore(0,N)	RegistroMultivalore(1,1)	-
	Per ogni sensore ci	Ogni record si riferisce	
	possono essere diverse	ad una determinata	
	registrazioni	misurazione	
ViolazioneMultivalore	RegistroMultivalore(0,1)	AlertMultivalore(1,1)	-
	Una misurazione può o	Ogni record si riferisce	
	meno generare un alert	ad una determinata	
		violazione	

AREA ANALISI DEL RISCHIO E MONITORAGGIO DANNI

• ENTITÀ

TERMINE	DESCRIZIONE	IDENTIFICATORE	COLLEGAMENTI
Registro Rischio	Per ogni area geografia, monitorizza il coefficiente di rischio dovuto a calamità naturali	IdArea(FK), DataInizio	Area Geografica
Area Geografica	Area geografica in cui vengono costruiti gli edifici	IdArea	RegistroRischio, Calamità, Edificio
Calamità	Evento calamitoso riguardante l'area geografica	Timestamp	AreaGeografica

• RELAZIONI

RELAZIONE	ENTITÀ 1	ENTITÀ 2	ATTRIBUTI
Avvenimento	Calamità (1,1) Una calamità può riguardare una area geografica	Area Geografica (0,N) Un'area geografica può esse o meno colpita da una calamità	•
Rischio	Area Geografica (0,N) Ogni area geografica può avere o meno dei coefficienti di rischio	Registro rischio (1,1) Ogni registrazione si riferisce ad una determinata area geografica	-

2.RISTRUTTURAZIONE DEL DIAGRAMMA E-R

In questa sezione sono descritte le fasi della ristrutturazione del diagramma ER, tramite cui vengono eliminati e sostituiti tutti quegli elementi dello schema che non sono direttamente traducibili nello schema logico.

2.1 ELIMINAZIONE DELLE GENERALIZZAZIONI

• GENERALIZZAZIONE SULL'ENTITÀ MATERIALE

L'entità **Materiale** è specializzata in Intonaco, Mattoni, Parquet, Piastrella, Pietra e MaterialeGenerico per distinguere i diversi materiali edilizi utilizzati, che presentano elementi caratterizzanti differenti. Considerato che le quantità di materiali nelle diverse categorie si assume confrontabile, l'eterogeneità degli attributi delle singole categorie e l'ipotesi di un accesso relativamente raro alle proprietà specifiche del singolo materiale abbiamo scelto di eliminare la generalizzazione trasformando le specializzazioni in entità e introducendo delle relazioni tra esse e l'entità Materiale.

Da:

A:

GENERALIZZAZIONE SULL'ENTITÀ RILEVAMENTO

L'entità **Rilevamento** è specializzata in Registro e RegistroMultivalore, che distinguono le registrazioni effettuate dai dispositivi con diversi sistemi di misurazione. Si è scelto di ristrutturare tale generalizzazione accorpando il genitore nelle figlie (essendo una generalizzazione totale è possibile) in quanto gli accessi avvengono solo alle figlie ed una figlia alla volta. Le entità figlie Registro e RegistroMultivalore erediteranno inoltre gli attributi e la chiave del padre.

Da:

A:

3.TAVOLA DEI VOLUMI

La tavola dei volumi mostra una stima del carico di ciascuna entità.

AREA GENERALE

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Edificio	Е		10	Assunzione
				iniziale
Piano	Е	3*10 = 30	30	Si stima una media di 3 piani ad edificio
Vano	E	30*5=150	150	Si stima una media di 5 vani a piano

Finestra Punto d'accesso	E	150*1.5=225 150*1.5 =225	225	Si stima una media di 1.5 finestra per vano (0.25 per muro) Si stima una
Punto d'accesso	E	130 1.3 -225	225	media di 1.5 punti d'accesso a vano
Muro	Е	6*150=900	900	Si stima una media di 6 muri a vano (si considerano i 4 muri laterali, soffitto e pavimento)
Appartenenza	R		30	Cardinalità (1,1) con Piano
Locazione	R		10	Cardinalità (1,1) con edificio
Pianta	R		150	Cardinalità (1,1) con vano
Apertura	R		225	Cardinalità (1,1) Con finestra
Collegamento	R	225*0.8*2+225*0.2=405	405	Si considera l'80% dei punti di accesso colleghi 2 vani e quindi sia memorizzato 2 volte
VanoMuro	R		900	Cardinalità (1,1) Con muro

AREA COSTRUZIONE

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Progetto	Е		30	Si stima una media di 3 progetto ad edificio
Stadio	E		150	Si stima una media di 5 stadi di avanzamento a progetto

Lavoro	Е	4*150=600	600	Considerando
Lavoro	L	4 130-000	000	una media di
				4 lavori per
				ogni stadio di
				avanzamento
Posnonsahilo	E		5	Assunzione
Responsabile			5	
CapoCantiere	E E	2*4*20-240 -		Assunzione
Turno	E	2*4*30=240 a	11520	In media 2
		settimana 240*4*12=11520		turni al giorno
		all'anno		per 4 giorni alla settimana
		ali anno		
Operaio	F		20	ad operaio
Operaio	E	00*10-000	30	Assunzione
Materiale	E	90*10=900	900	Consideriamo
				90 lotti di
				materiale a
	_	22*40 220	220	edificio
Intonaco	E	22*10=220	220	Si assume
				l'acquisto di
				22 lotti ad
	_			edificio
Mattoni	E	12*10=120	120	Si assume
				l'acquisto di
				12 lotti ad
	_			edificio
Piastrelle	E	12*10=120	120	Si assume
				l'acquisto di
				12 lotti ad
	_	4440 40	10	edificio
Parquet	E	4*10=40	40	Si assume
				l'acquisto di 4
				lotti ad
Dieter		10*10 100	100	edificio
Pietra	E	10*10=100	100	Si assume
				l'acquisto di
				10 lotti ad
NAStant-1-Mark	F	20*10.200	200	edificio
MaterialeVario	E	30*10=300	300	Si assume
				l'acquisto di
				30 lotti ad
Description of the			450	edificio
ProgettoStadio	R		150	Cardinalità
				(1,1) con
	_			stadio
Svolgimento	R		600	Cardinalità
				(1,1) con
				lavoro

LavoroEdificio	R	600*0.05=30	30	Si assume il 5% dei lavori
				per gli edifici
LavoroVano	R	600*0.95	570	Si assume che il 95% dei lavori sia su vani
Osservazione	R		600	Cardinalità (1,1) con lavoro
Direzione	R		600	Cardinalità (1,1) con lavoro
LavoroTurno	R		11520	Cardinalità (1,1) con turno
TurnoOperaio	R		11520	Cardinalità (1,1) con Turno
Utilizzo	R	600*1.5=900	900	Si assume l'utilizzo di 1.5 materiali per ogni lavoro svolto
UtilizzoMattoni	R		120	Cardinalità (1,1) con Mattoni
UtilizzoIntonaco	R		220	Cardinalità (1,1) con Intonaco
UtilizzoPiastrelle	R		120	Cardinalità (1,1) con Piastrelle
UtilizzoParquet	R		40	Cardinalità (1,1) con Parquet
UtilizzoPietra	R		100	Cardinalità (1,1) con Pietra
UtilizzoMateriale	R		300	Cardinalità (1,1) con Materiale
RivestimentoMuro	R		100	Se tutti i lotti di pietra vengono utilizzati per rivestire muri

AREA MONITORAGGIO

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Sensore	E	20*10 = 200	200	Si assume ci siano 20 sensori a edificio
RegistroMultivalore	E	60*24*30*50= 2160000	2160000	Supponiamo che ogni Sensore Multivalore (50) misuri 1 valore al minuto e che vengano tenute solo le registrazioni degli ultimi 30 giorni
AlertMultivalore	Е	2160000*0.001 = 2160	2160	Si assume che ogni registrazione abbia una probabilità del 0.001% di generare un alert
Registro	E	60*24*30*150=6480000	6480000	Supponiamo che ogni Sensore monovalore (150) misuri 1 valore al minuto e che vengano tenute solo le registrazioni degli ultimi 30 giorni
Alert	Е	6480000*0.001=6480	6480	Si assume che ogni registrazione abbia una probabilità del 0.001% di generare un alert
Ubicazione	R		200	Cardinalità (1,1) con sensore
Misurazione	R		6480000	Cardinalità (1,1) con registro
Violazione	R		6480	Cardinalità (1,1) con alert
MisurazioneMultivalore	R		2160000	Cardinalità (1,1) con registroMultivalore
ViolazioneMultivalore	R		2160	Cardinalità (1,1) con alertMultivalore

AREA ANALISI DEL RISCHIO E MONITORAGGIO DANNI

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Area geografica	E		6	Assunzione
Calamità	E	6*5=30	30	Una media di 5 calamità diverse per area
Registro Rischio	E	30*0.4	12	Si suppone che il coefficiente di rischio cambi in caso di calamità grave che capita 2 volte su 5
Avvenimento	R		30	Cardinalità (1,1) con Calamità
Rischio	R		12	Cardinalità (1,1) Con Registro rischio

4. OPERAZIONI

Di seguito le operazioni sui dati, ideate ed implementate, che consentono di effettuare significative interrogazioni o modifiche al database.

1.Costo totale di un progetto

Descrizione: Operazione che permette di calcolare il costo complessivo di un progetto: se ultimato corrisponde al costo complessivo totale, altrimenti al costo fino a quel momento.

Input: IDProgetto

Output: Costo complessivo del progetto

Frequenza stimata: Annuale

Porzione di diagramma interessato:

Porzione Tavola dei Volumi interessata:

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Progetto	E		30	Si stima una media di 3 progetto ad edificio
Stadio	E		150	Si stima una media di 5 stadi di avanzamento a progetto
Lavoro	E	4*150=600	600	Considerando una media di 4 lavori per ogni stadio di avanzamento
ProgettoStadio	R		150	Cardinalità (1,1) con stadio
Svolgimento	R		600	Cardinalità (1,1) con lavoro

CONCETTO	COSTRUTTO	ACCESSI	TIPO OP.	DESCRIZIONE
Progetto	Е	1	Lettura	Ricerca con
				attributo chiave
Stadio	E	150	Lettura	Ricerca stadi
				corrispondenti
Lavoro	E	600	Lettura	Ricerca di tutti i
				lavori per stadio

Accessi Totali: 751 annuali

Con l'aggiunta della ridondanza "CostoEffettivo":

CONCETTO	COSTRUTTO	ACCESSI	TIPO OP.	DESCRIZIONE
Progetto	E	1	Lettura	Ricerca con attributo chiave
Stadio	E	150	Lettura	Ricerca stadi corrispondenti

Accessi: 151 annuali

151 < 751 -> Si sceglie di mantenere la ridondanza

2. LAVORI DIRETTI DA UN DETERMINATO CAPOCANTIERE

Descrizione: Operazione che permette di conoscere quali sono i lavori diretti da un determinato capocantiere in uno specifico anno.

Input: CodFiscale del capocantiere, anno di cui siamo interessati

Output: Elenco dei lavori diretti da tale capocantiere nell'anno specificato

Frequenza stimata: Una volta al mese

Porzione di diagramma interessato:

Porzione Tavola dei Volumi interessata:

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Lavoro	E	4*150=600	600	Considerando una media di 4 lavori per ogni stadio di avanzamento
CapoCantiere	E		5	Assunzione
Direzione	R		600	Cardinalità (1,1) con lavoro

CONCETTO	COSTRUTTO	ACCESSI	TIPO OP.	DESCRIZIONE
Lavoro	E	600	L	Devono essere ricercati i lavori diretti dal capocantiere fornito (ricerca su attributo non chiave)
CapoCantiere	E	1	L	Ricerca con attributo chiave

Si sommano gli accessi in lettura precedentemente calcolati

Accessi Totali:601*12 = 7200 accessi annuali

3. SUPERFICIE DI UN EDIFICIO

Descrizione: Operazione con cui viene calcolata la superficie di un determinato edificio

Input: IDEdificio

Output: Superficie dell'edificio

Frequenza stimata: Una volta all'anno

Porzione di diagramma interessato:

Porzione Tavola dei Volumi interessata:

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Edificio	E		10	Assunzione
				iniziale
Piano	E	3*10 = 30	30	Si stima una
				media di 3 piani
				ad edificio
Vano	E	30*5=150	150	Si stima una
				media di 5 vani a
				piano
Appartenenza	R		30	Cardinalità (1,1)
				con Piano
Pianta	R		150	Cardinalità (1,1)
				con vano

Tavola degli accessi:

CONCETTO	COSTRUTTO	ACCESSI	TIPO OP.	DESCRIZIONE
Edificio	E	1	L	Ricerca su
				attributo chiave
Piano	E	30	L	Ricerca dei piani
				appartenenti
				all'edificio
				specificato
Vano	E	150	L	Ricerca dei vani e
				delle misure dei
				vani
				appartenenti ai
				piani dell'edificio

Accessi Totali:181 annuali

Aggiungendo la ridondanza "Superficie" in piano:

CONCETTO	COSTRUTTO	ACCESSI	TIPO OP.	DESCRIZIONE
Edificio	E	1	L	Ricerca su
				attributo chiave
Piano	E	30	L	Ricerca dei piani
				appartenenti
				all'edificio
				specificato

Accessi totali: 31

31 < 181 -> Si sceglie di mantenere la ridondanza

4. INSERIMENTO TURNI

Descrizione: Operazione attraverso cui viene inserito il turno di un operaio, inoltre per ogni turno aggiunto attraverso l'apposita procedura si controlla se sono presenti troppi operai nella fascia oraria coinvolta o troppi sottoposti allo stesso capocantiere.

Input: IdOperaio, Data, Orainizio, OraFine, IdLavoro

Output: Nessuno, verrà inserito il turno nel database in caso l'operazione vada a buon fine, verrà segnalato errore altrimenti

Frequenza stimata: Una volta al giorno per operaio

Porzione di diagramma interessato:

Porzione Tavola dei Volumi interessata:

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Lavoro	Е	4*150=600	600	Considerando una media di 4 lavori per ogni stadio di avanzamento
Turno	E	2*4*30=240 a settimana 240*4*12=11520 all'anno	11520	In media 2 turni al giorno per 4 giorni alla settimana ad operaio
Operaio	E		30	Assunzione
CapoCantiere	Е		5	Assunzione
LavoroTurno	R		11520	Cardinalità (1,1) con turno
TurnoOperaio	R		11520	Cardinalità (1,1) con Turno

Tavola degli accessi:

CONCETTO	COSTRUTTO	ACCESSI	TIPO OP.	NOTE
Lavoro	E	1	L	Si ricava il
				capocantiere del
				lavoro
				specificato
Turno	E	11520	L	Si percorre
				l'intera tabella
				per controllare il
				vincolo sul
				numero massimo
				di lavoratori in
				un istante ed il
				massimo numero
				di sottoposti al
				capocantiere

CapoCantiere	E	1	L	Si trovano gli operai massimi
Turno	E	1	S	Si inserisce il
				turno

Accessi Totali:11524*30 = 345.720 accessi al giorno per operaio

5. CALENDARIO DEI TURNI DEGLI OPERAI PER I SETTE GIORNI SUCCESSIVI

Descrizione: Operazione che calcola i turni di un operaio per i 7 giorni successivi.

Input: CodiceFiscaleOperaio

Output: Turni dei successivi 7 giorni

Frequenza stimata: Una volta a settimana per operaio

Porzione di diagramma interessato:

Porzione Tavola dei Volumi interessata:

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Lavoro	E	4*150=600	600	Considerando una media di 4
				lavori per ogni
				stadio di
				avanzamento
Turno	E	2*4*30=240 a	11520	In media 2 turni
		settimana		al giorno per 4
		240*4*12=11520		giorni alla
		all'anno		settimana ad
				operaio

Operaio	E	30	Assunzione
CapoCantiere	E	5	Assunzione
LavoroTurno	R	11520	Cardinalità (1,1) con turno
TurnoOperaio	R	11520	Cardinalità (1,1) con Turno

CONCETTO	COSTRUTTO	ACCESSI	TIPO OP.	DESCRIZIONE
Operaio	E	1	L	Ricerca su
				attributo chiave
Turno	E	11520	L	Scorro l'intera
				tabella per
				trovarli

Accessi totali: 11521 per operaio (settimanali)

6. Trovare l'area geografica più a rischio in quel momento

Descrizione: Operazione che permette di determinare quale delle aree geografiche registrate nel database è quella più a rischio consideranto la data fornita in input.

Input: Data

Output: IdArea, ValoreRischio

Frequenza stimata: Una volta al giorno

Porzione di diagramma interessato:

Porzione Tavola dei Volumi interessata:

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Area geografica	E		6	Assunzione
Calamità	E	6*5=30	30	Una media di 5 calamità diverse per area
Registro Rischio	Е	30*0.4	12	Si suppone che il coefficiente di rischio cambi in caso di calamità grave che capita 2 volte su 5
Rischio	R		12	Cardinalità (1,1) Con Registro rischio

Tavola degli accessi:

CONCETTO	COSTRUTTO	ACCESSI	TIPO OP.	DESCRIZIONE
Area Geografica	Е	1	L	Ricerca su
				attributo chiave
Registro Rischio	Е	12	L	Si percorre
				l'intera tabella
				per trovare l'area
				geografica che
				ha registrato il
				valore più alto di
				rischio

Accessi totali: 13*365=4745 accessi annuali

7. DETERMINARE IL SENSORE CHE HA DATO PIÙ ALERT

Descrizione: Operazione che permette di determinare qual è il sensore che ha generato più alert in totale, in caso di parimerito restituisce tutti gli ex-equo.

Input: nessuno

Output: IdSensore, NumeroAlert

Frequenza stimata: Una volta a settimana

Porzione di diagramma interessato:

Porzione Tavola dei Volumi interessata:

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Sensore	E	20*10 = 200	200	Si assume ci siano 20 sensori a edificio
RegistroMultivalore	E	60*24*30*50= 2160000	2160000	Supponiamo che ogni Sensore Multivalore (50) misuri 1 valore al minuto e che vengano tenute

				solo le registrazioni degli ultimi 30 giorni
AlertMultivalore	E	2160000*0.001 = 2160	2160	Si assume che ogni registrazione abbia una probabilità del 0.001% di generare un alert
Registro	Е	60*24*30*150=6480000	6480000	Supponiamo che ogni Sensore monovalore (150) misuri 1 valore al minuto e che vengano tenute solo le registrazioni degli ultimi 30 giorni
Alert	Е	6480000*0.001=6480	6480	Si assume che ogni registrazione abbia una probabilità del 0.001% di generare un alert
Ubicazione	R		200	Cardinalità (1,1) con sensore
Misurazione	R		6480000	Cardinalità (1,1) con registro
Violazione	R		6480	Cardinalità (1,1) con alert
MisurazioneMultivalore	R		2160000	Cardinalità (1,1) con registroMultivalore
ViolazioneMultivalore	R		2160	Cardinalità (1,1) con alertMultivalore

CONCETTO	COSTRUTTO	ACCESSI	TIPO OP.	DESCRIZIONE
Alert	E	6480	L	Cerco tra tutte le registrazioni di alert e conto quelle per ogni sensore
AlertMultivalore	Е	2160	L	Cerco tra tutte le registrazioni di alert e conto

				quelle per ogni sensore
Sensore	E	1	L	Ricerca su attributo chiave

Accessi totali = 6480 + 2160 + 1 = 8641 accessi settimanali

8. Determinare il costo dei materiali per un determinato lavoro

Descrizione: Operazione che permette di calcolare la spesa totale in materiali in un determinato lavoro

Input: IDLavoro

Output: Spesa totale in materiali per quel determinato lavoro

Frequenza stimata: Una volta a settimana

Porzione di diagramma interessato:

Porzione Tavola dei Volumi interessata:

CONCETTO	TIPO	CALCOLO	VOLUME	NOTE
Lavoro	E	4*150=600	600	Considerando una media di 4 lavori per ogni stadio di avanzamento
Materiale	E	90*10=900	900	Consideriamo 90 lotti di materiale a edificio
Intonaco	E	22*10=220	220	Si assume l'acquisto di 22 lotti ad edificio
Mattoni	E	12*10=120	120	Si assume l'acquisto di 12 lotti ad edificio
Piastrelle	Е	12*10=120	120	Si assume l'acquisto di 12 lotti ad edificio
Parquet	E	4*10=40	40	Si assume l'acquisto di 4 lotti ad edificio
Pietra	E	10*10=100	100	Si assume l'acquisto di 10 lotti ad edificio
MaterialeVario	E	30*10=300	300	Si assume l'acquisto di 30 lotti ad edificio
Utilizzo	R		900	Si assume l'utilizzo di 1.5 materiali per ogni lavoro svolto
UtilizzoMattoni	R		120	Cardinalità (1,1) con Mattoni
UtilizzoIntonaco	R		220	Cardinalità (1,1) con Intonaco
UtilizzoPiastrelle	R		120	Cardinalità (1,1) con Piastrelle
UtilizzoParquet	R		40	Cardinalità (1,1) con Parquet
UtilizzoPietra	R		100	Cardinalità (1,1) con Pietra
UtilizzoMateriale	R		300	Cardinalità (1,1) con Materiale

CONCETTO	COSTRUTTO	ACCESSI	TIPO OP.	DESCRIZIONE
Lavoro	E	1	L	Ricerca su
				attrinuto chiave
Utilizzo	R	900	L	Si scorre l'intera
				tabella per
				cercare i
				materiali usati
				nel lavoro
				specificato
Materiale	E	900	L	Si percorre
				l'intera tabella
				per trovare i
				costi di ogni lotto
				utilizzato

Accessi: 1801*48=86448 a settimana

5. PROGETTAZIONE LOGICA

Di seguito la traduzione nel modello logico relazionale insieme ai vincoli d'integrità referenziali.

AREA GENERALE

Edificio (IdEdificio, Tipologia, IdArea)

Piano (NumeroPiano, IdEdifico, Superficie)

Vano (IdVano, NumeroPiano, IdEdificio, Larghezza, Lunghezza, Altezza, Funzione)

Finestra (IdFinestra, IdVano , PuntoCardinale, Larghezza, Altezza)

Punto d'Accesso (IdAccesso, Tipologia, Collegamento, Altezza, Larghezza)

Collegamento (IdAccesso, Tipologia, IdVano)

Muro (IdVano, Tipologia)

- V.I.R tra la chiave IdEdificio di Edificio e l'attributo della chiave IdEdificio di Piano
- V.I.R tra l'attributo IdArea di Edificio e la chiave IdArea di AreaGeografica
- V.I.R tra l'attributo NumeroPiano, IdEdificio di Vano e l'attributo della chiave NumeroPiano,
 IdEdificio di Piano
- V.I.R tra l'attributo IdVano di Finestra e la chiave IdVano di Vano
- V.I.R tra l'attributo della chiave Vano di Collegamento I l'attributo della chiave di Vano
- V.I.R tra l'attributo della chiave IdVano di Collegamento la chiave IdVano di Vano
- V.I.R tra l'attributo IdVano di Muro e la chiave IdVano di Vano

AREA ANALISI DEL RISCHIO E MONITORAGGIO DANNI

AreaGeografica (IdArea, Nome, Superficie, Latitudine, Longitudine)

RegistroRischio (IdArea, DataInizio, DataFine, Valore)

Calamità (Timestamp, Tipo, Livello, Latitudine, Longitudine, IdArea)

- V.I.R tra l'attributo della chiave IdArea di RegistroRischio e la chiave IdArea di AreaGeografica
- V.I.R tra l'attributo IdArea di Calamità e la chiave IdArea di AreaGeografica
- V.I.R tra l'attributo IdArea di RegistroRischio e la chiave IdArea di AreaGeografica

AREA MONITORAGGIO

Sensore (IdSensore, TipoSensore, SogliaDiSicurezza, IdVano, PosizioneX, PosizioneY, PosizioneZ)

Registro(Timestamp, IdSensore, Valore, SogliaStimata)

Alert (TimeStamp,IdSensore)

RegistroMultivalore(Timestamp, IdSensore, ValoreX, ValoreY, ValoreZ, SogliaStimata)

AlertMultivalore(Timestamp, IdSensore)

- V.I.R tra l'attributo IdVano di Sensore e la chiave IdVano di Vano
- V.I.R tra la chiave TimeStamp, IdSensore di Alert e la chiave di Registro
- V.I.R tra l'attributo della chiave IdSensore di Registro e la chiave di Sensore
- V.I.R tra l'attributo della chiave IdSensore di RegistroMultivalore e la chiave di Sensore
- V.I.R tra la chiave Timestamp, IdSensore di AlertMultivalore e la chiave di RegistroMultivalore

AREA COSTRUZIONE

Progetto (<u>IdProgetto</u>, DataPresentazione, DataApprovazione, TipoLavoro, DataInizio, StimaDataFine)

Stadio (<u>IdStadio</u>, IdProgetto, DataInizio, DataFineStimata, <u>CostoEffettivo</u>, DataFineEffettiva, CostoStimato)

Lavoro (<u>IdLavoro</u>, IdStadio, CodFResponsabile, CodFCapoCantiere, Descrizione, Costo, DataInizio, DataFine, IdEdificio, IdVano)

Responsabile (CodFiscale, Nome, Cognome)

CapoCantiere (CodFiscale, OpeaiMassimi, Nome, Cognome)

Turno (Data, Oralnizio, CodFiscaleOperaio, IdLavoro, OraFine)

Operaio (CodFiscale, Nome, Cognome, DataNascita)

Utilizzo (IdLavoro, CodiceLotto, QuantitaUtilizzata)

Materiale (CodiceLotto, CostoTotale, QuantitàAcquistata, DataAcquisto, NomeFornitore)

Intonaco (CodiceLotto, Tipo, Colore)

Mattoni (CodiceLotto, Tipo, Alveolatura, Altezza, Lunghezza, Larghezza)

Piastrelle (CodiceLotto, Composizione, Disegno, Fuga, NumeroLati, LunghezzaLato)

Parquet (<u>CodiceLotto</u>, TipoLegno, Altezza, Lunghezza, Larghezza)

Pietra (<u>CodiceLotto</u>, Tipo, Altezza, Lunghezza, Larghezza, Superficie, Disposizione, Utilizzo, PesoMedio, Tipologia, IdVano)

MaterialeVario (CodiceLotto, Nome, Altezza, Lunghezza, Larghezza)

- V.I.R tra l'attributo IdProgetto di Stadio e la chiave IdProgetto di Progetto
- V.I.R tra l'attributo IdStadio di Lavoro e la chiave di Stadio IdStadio
- V.I.R tra l'attributo IdEdificio di Lavoro e la chiave IdEdificio di Edificio
- V.I.R tra l'attributo IdVano di Lavoro e la chiave IdVano di Vano
- V.I.R tra l'attributo CodFResponsabile di Lavoro e la chiave di Responsabile CodFiscale
- V.I.R tra l'attributo CodFCapocantiere di Lavoro e la chiave di Capocantiere CodFiscale
- V.I.R tra l'attributo IdLavoro di Turno e la chiave di Lavoro IdLavoro
- V.I.R tra l'attributo della chiave CodFiscaleOperaio di Turno e la chiave di Operaio
- V.I.R tra l'attributo della chiave IdLavoro di Utilizzo e la chiave di Lavoro

- V.I.R tra l'attributo della chiave CodiceLotto di Utilizzo e la chiave di Materiale
- V.I.R tra l'attributo IdVano di RivestimentoMuro e la chiave di Vano IdVano
- V.I.R tra la chiave di Inconaco e la chiave di Materiale
- V.I.R tra la chiave di Mattoni e la chiave di Materiale
- V.I.R tra la chiave di Piastrelle e la chiave di Materiale
- V.I.R tra la chiave di Parquet e la chiave di Materiale
- V.I.R tra la chiave di Pietra e la chiave di Materiale
- V.I.R tra gli attributi Tipologia, IdVano di Pietra e la chiave di Muro
- V.I.R tra la chiave di Materiale Vario e la chiave di Materiale

6.ANALISI DELLE DIPENDENZE FUNZIONALI E NORMALIZZAZIONE

A questo punto si procede con l'analisi delle dipendenze funzionali delle relazioni ottenute dalla traduzione, per ognuna verrà verificata la **forma normale BCNF.** Qualora non fosse rispettata, verrà applicato l'algoritmo di normalizzazione.

AREA GENERALE

```
Edificio (IdEdificio, Tipologia, IdArea)
```

IdEdificio → Tipologia, IdArea

Già in forma BCNF

Piano (NumeroPiano, IdEdifico, Superficie)

IdEdificio, NumeroPiano → Superficie

Già in forma BCNF

Vano (IdVano, NumeroPiano, IdEdificio, Larghezza, Lunghezza, Altezza, Funzione)

IdVano → NumeroPiano, IdEdificio, Larghezza, Lunghezza, Altezza, Funzione

Già in forma BCNF

Finestra (IdFinestra, IdVano, PuntoCardinale, Larghezza, Altezza)

IdFinestra → IdVano, PuntoCardinale, Larghezza, Altezza

Già in forma BCNF

Punto d'Accesso (IdAccesso, Tipologia, Collegamento, Altezza, Larghezza)

IdAccesso → Tipologia, Collegamento, Altezza, Larghezza

Già in forma BCNF

Collegamento (IdAccesso, Tipologia, IdVano)

Nessuna dipendenza funzionale rilevante

Muro (IdVano, Tipologia)

Nessuna dipendenza funzionale rilevante

AREA ANALISI DEL RISCHIO E MONITORAGGIO DANNI

AreaGeografica (IdArea, Nome, Superficie, Latitudine, Longitudine)

IdArea → Nome, Superficie, Latitudine, Longitudine

Già in forma BCNF

RegistroRischio (IdArea, DataInizio, DataFine, Valore)

<u>IdArea, DataInizio</u> → Valore, DataFine

Già in forma BCNF

Calamità (Timestamp, Tipo, Livello, Latitudine, Longitudine, IdArea)

<u>Timestamp</u> → Tipo, Livello, Latitudine, Longitudine, IdArea

Già in forma BCNF

AREA MONITORAGGIO

Sensore (<u>IdSensore</u>, TipoSensore, SogliaDiSicurezza, IdVano, PosizioneX, PosizioneY, PosizioneZ)

<u>IdSensore</u> → TipoSensore, SogliaDiSicurezza, IdVano, PosizioneX, PosizioneY, PosizioneZ

Già in forma BCNF

Registro(Timestamp, IdSensore, Valore, SogliaStimata)

<u>Timestamp, IdSensore</u> → Valore

Già in forma BCNF

Alert (TimeStamp,IdSensore)

Nessuna dipendenza funzionale rilevante

RegistroMultivalore(Timestamp, IdSensore, ValoreX, ValoreY, ValoreZ, SogliaStimata)

<u>Timestamp, IdSensore</u> → ValoreX, ValoreY, ValoreZ

Già in forma BCNF

AlertMultivalore(Timestamp, IdSensore)

Nessuna dipendenza funzionale rilevante

AREA COSTRUZIONE

Progetto (<u>IdProgetto</u>, DataPresentazione, DataApprovazione, TipoLavoro, DataInizio, StimaDataFine)

<u>IdProgetto</u> → DataPresentazione, DataApprovazione, TipoLavoro, DataInizio, StimaDataFine

Già in forma BCNF

Stadio (<u>IdStadio</u>, IdProgetto, DataInizio, DataFineStimata, DataFineEffettiva, CostoStimato, CostoEffettivo)

<u>IdStadio</u> → IdProgetto, DataInizio, DataFineStimata, CostoEffettivo, DataFineEffettiva, CostoStimato

Già in forma BCNF

Lavoro (IdLavoro, IdStadio, CodFResponsabile, CodFCapoCantiere, Descrizione, Costo, DataInizio, DataFine, IdEdificio, IdVano)

<u>IdLavoro</u> → IdStadio, CodFResponsabile, CodFCapoCantiere, Descrizione, Costo, DataInizio, DataFine, IdEdificio, IdVano

Già in forma BCNF

Responsabile (CodFiscale, Nome, Cognome)

CodFiscale → Nome, Cognome

Già in forma BCNF

CapoCantiere (CodFiscale, OpeaiMassimi, Nome, Cognome)

<u>CodFiscale</u> → OpeaiMassimi, Nome, Cognome

Già in forma BCNF

Turno (<u>Data, Oralnizio, CodFOperaio</u>, IdLavoro, OraFine)

Data, Oralnizio, CodFOperaio → IdLavoro, OraFine

Già in forma BCNF

Operaio (CodFiscale, Nome, Cognome, DataNascita)

CodFiscale → Nome, Cognome, DataNascita

Già in forma BCNF

Utilizzo (IdLavoro, CodiceLotto, QuantitaUtilizzata)

Nessuna dipendenza funzionale rilevante

Materiale (CodiceLotto, CostoTotale, QuantitàAcquistata, DataAcquisto, NomeFornitore)

<u>CodiceLotto</u> → CostoTotale, QuantitàAcquistata, DataAcquisto, NomeFornitore

Già in forma BCNF

Intonaco (CodiceLotto, Tipo, Colore)

CodiceLotto → Tipo, Colore

Già in forma BCNF

Mattoni (CodiceLotto, Tipo, Alveolatura, Altezza, Lunghezza, Larghezza)

<u>CodiceLotto</u> → Tipo, Alveolatura, Altezza, Lunghezza, Larghezza

Già in forma BCNF

Piastrelle (CodiceLotto, Composizione, Disegno, Fuga, NumeroLati, LunghezzaLato)

<u>CodiceLotto</u> → Composizione, Disegno, Fuga, NumeroLati, LunghezzaLato

Già in forma BCNF

Parquet (<u>CodiceLotto</u>, TipoLegno, Altezza, Lunghezza, Larghezza)

<u>CodiceLotto</u> → TipoLegno, Altezza, Lunghezza, Larghezza

Già in forma BCNF

Pietra (<u>CodiceLotto</u>, Tipo, Altezza, Lunghezza, Larghezza, Superficie, Disposizione, Utilizzo, PesoMedio, Tipologia, IdVano)

<u>CodiceLotto</u> → Tipo, Altezza, Lunghezza, Larghezza

Già in forma BCNF

MaterialeVario (CodiceLotto, Nome, Altezza, Lunghezza, Larghezza)

<u>CodiceLotto</u> → Nome, Altezza, Lunghezza, Larghezza

Già in forma BCNF

6.1. VINCOLI DI INTEGRITÀ GENERICI

Di seguito alcuni dei vincoli di integrità generici trovati implementati attraverso i trigger.

- o L'attributo 'Punto Cardinale' può assumere solo i seguenti valori: N,NE,NW,S,SE,SW,E,W;
- o Non si può superare il numero di operai massimi di un capocantiere durante i turni
- o Le date di Progetto devono essere coerenti
- Le date di Stadio devono essere coerenti
- o Le date di Lavoro devono essere coerenti
- o Un lavoratore non può avere turni sovrapposti
- o L'attributo collegamento in Punto d'Accesso può assumere solo i valori 'Interno' o 'Esterno'
- Un punto d'accesso collega due vani dello stesso piano e dello stesso edificio
- o L'altezza di una finestra non può essere più grande dell'altezza del vano a cui appartiene
- Un operaio deve avere età >= 18
- Un turno deve essere di almeno un'ora
- o Due sensori non possono essere nella stessa posizione all'interno dello stesso vano
- La quantità di materiale utilizza all'interno di un lotto non deve essere maggiore della quantità disponibile
- La data di acquisto del materiale deve essere precedente alla data di fine del lavoro
- o Il costo dei materiali per un lavoro non può essere maggiore del costo del lavoro stesso

7. AREA ANALYTICS

7.1. ANALYTICS 1 - CONSIGLI DI INTERVENTO

Questa analytics si occupa di interpretare i dati forniti dai sensori e restituire un'analisi dell'edificio che permetta di intervenire dove necessario, per mantenere un elevato livello di sicurezza ed il miglior livello di vivibilità possibile.

Considerato un edificio, restituisce:

IdVano	FasciaUrgenzaLavoro	Intervento	FasciaRischioVano	RischioCorrenteTipologia	UrgenzaLavoro	UrgenzaVano
23257	Estremo	Giroscopio	Estremo	Rischio strutturale di carattere sismico	1	1
23257	Elevato	Posizione	Estremo	Rischio crollo	2	1
13905	Estremo	Accelerometro	Elevato	Rischio strutturale di carattere sismico	1	2
13905	Quasi Basso	Livello Precipitazioni	Elevato	Rischio Allagamenti	2	2
30890	Estremo	Accelerometro	Elevato	Rischio strutturale di carattere sismico	1	3
30890	Quasi Basso	Umidità Esterna	Elevato	Rischio Indebolimento Struttura	2	3
30890	Molto Basso	Livello Precipitazioni	Elevato	Rischio Allagamenti	3	3
21719	Elevato	Temperatura Interna	Elevato	Isolamento Termico Interno	1	4
21719	Elevato	Posizione	Elevato	Rischio crollo	2	4

Risultati con IdEdificio = 1 in input

Si è deciso di stilare una classifica di priorità suddivisa per vano, all'interno dei quali è presente una sotto classifica di priorità dei lavori da svolgere all'interno di ognuno, considerando la priorità di essi secondo i calcoli esplicitati in seguito.

Per poter stimare lo stato di ogni vano dell'edificio abbiamo per prima cosa associato ad ogni tipologia di sensore un Livello di Pericolosità ed il rischio associato a quella tipologia di misurazione, tramite delle Stored Function:

Tipo Sensore	Livello di Pericolosità (K)	Rischio Associato
Temperatura Interna	5	Isolamento Termico Interno
Temperatura Esterna	3	Isolamento Termico Esterno
Umidità Interna	7	Rischio muffa
Umidità Esterna	3	Rischio indebolimento
		struttura
Livello Precipitazioni	1	Rischio allagamenti
Posizione	9	Rischio crollo
Accelerometro	10	Rischio strutturale di carattere
		sismico
Giroscopio	10	Rischio strutturale di carattere
		sismico

Il passo successivo è stato il calcolo dei seguenti coefficienti, calcolati *per tipologia* di sensore presente all'interno di un vano:

• $\Delta_{aravita} = \sum_{n} SogliaStimata - \sum_{n} SogliaDiSicurezza$

con n numero di alert generati per tipologia di sensore

Si calcola la differenza tra la somma dei valori misurati da ogni alert (per definizione un valore alterato rispetto alla soglia di sicurezza) di quella *tipologia* di sensore e la somma delle soglie di sicurezza associate ad ogni misurazione dell'alert corrispondente (la soglia di sicurezza è personale alla misurazione, in quanto abbiamo distinto le differenti caratteristiche rispetto alla posizione del sensore: piano a cui appartiene il vano, posizione del sensore all'interno di esso, etc.) Maggiore risulterà essere questa discrepanza, maggiore sarà il possibile danno associato.

• $Coeff_{Rischio} = K * n * RischioArea * \Delta_{aravità}$

con:

- o K = livello di pericolosità tipologia sensore
- o n = numero di alert generati per tipologia di sensore all'interno del vano
- RischioArea = il rischio dell'area in cui si trova l'edificio

Il Coefficiente di rischio della *tipologia* di sensore nel vano è dato dal prodotto tra il livello di pericolosità della tipologia, il numero di alert generati per tipologia, il rischio dell'area a cui appartiene l'edificio ed il delta di gravità calcolato precedentemente. Rappresenta la pericolosità dovuta ai rischi corrispondenti all'alterazione delle misurazioni di quella determinata tipologia di sensore a cui è poi associato il rischio reale corso.

• $R_{TOT} = \sum_{m} Coeff_{Rischio}$

Il risultato della somma dei diversi coefficienti di rischio restituisce il Rischio Totale corso dal vano considerato.

All'interno dell'edificio il vano avente R_{TOT} più alto sarà il vano richiedente maggior urgenza d'intervento. All'interno di ogni vano, la tipologia di sensore avente $Coeff_{Rischio}$ più alto, sarà il lavoro avente la precedenza sugli altri, in quanto il rischio associato ad esso è quello che maggiormente mette in pericolo il vano totale.

Viene fatta un'ulteriore divisione in fasce dei rischi corsi dai vari vani e dell'urgenza relativa a ciascun lavoro, considerando i valori medi generabili dagli alert e conseguentemente dal valore dei coefficienti:

Fascia	Valori	
Molto Basso	X < 15.000	
Basso	X > 15.000 and X < 49.999	
Quasi Basso	X > 50.000 and X < 99.999	

Medio Basso	X > 100.000 and X < 299.999
Medio	X > 300.000 and X < 499.999
Medio Alto	X > 500.000 and X < 999.999
Elevato	X > 1.000.000 and X < 1.499.999
Estremo	X > 1.500.000

Fascia Rischio Vano

Fascia	Valori		
Molto Basso	X < 10.000		
Basso	X > 10.000 and X < 24.999		
Quasi Basso	X > 25.000 and X < 74.999		
Medio	X > 75.000 and X < 299.999		
Medio Alto	X > 300.000 and X < 499.999		
Elevato	X > 500.000 and X < 1.000.000		
Estremo	X > 1.000.000		

Fascia Urgenza Lavoro

7.2. ANALYTICS 2 – STIMA DEI DANNI

La seconda analytics si occupa di stimare i danni ad un edificio derivanti da potenziali eventi sismici, basandosi sullo stato attuale dell'edificio e sui passati eventi sismici.

Dato un edificio viene restituito il seguente risultato:

StatoSaluteAttuale	LivelloSisma	ProbabilitàSisma	DanniStimati	StatoSalutePostSisma
Sufficiente	1	9.726	Bassi	Sufficiente
Sufficiente	2	9.115	Bassi	Sufficiente
Sufficiente	3	8.328	Bassi	Sufficiente
Sufficiente	4	7.219	Medi	Scarso
Sufficiente	5	5.323	Medi	Scarso
Sufficiente	6	2.735546037	Medi	Scarso
Sufficiente	7	0.191488223	Consistenti	Scarso
Sufficiente	8	0.013404176	Consistenti	Scarso
Sufficiente	9	0.000938292	Elevati	Pessimo
Sufficiente	10	0.00006568	Elevati	Pessimo

Abbiamo deciso di andare a studiare quello che potrebbe accadere ad un determinato edificio nel caso in cui si verificassero eventi sismici di diverso livello da un minimo di 1 fino ad un massimo di 10.

Si parte innanzitutto dal calcolo della StatoSaluteAttuale dell'edificio, che si ricava grazie all'ausilio della tabella ConsigliDiIntervento ricavata grazie alla prima analytics. Da questa tabella si prendono l'IdVano, il tipo di intervento e la FasciaRischioVano.

Tramite la stored function LivelloRischio convertiamo la FasciaRischioVano in un valore numerico, secondo la seguente tabella di conversione:

Fascia	Livello
Molto Basso	1
Basso	2
Quasi Basso	3
Medio Basso	4
Medio	5
Medio Alto	6
Elevato	8
Estremo	10

LivelloRischio

Anche i vari sensori che rappresentano il tipo di intervento sono convertiti in un valore numerico che rappresenta l'importanza del sensore grazie alla stored function LivelloSensore già utilizzata nella analytics 1.

Grazie ai dati ricavati, per ogni singolo vano dell'edificio, viene calcolata una media ponderata tra il LivelloRischio del vano e il livello dei sensori presenti nel vano, dove quest'ultimi rappresentano i cosiddetti pesi della media ponderata.

•
$$K = \frac{\sum_{i=1}^{n} livellofascia_{i}*livellosensore_{i}}{\sum_{j=1}^{n} livellosensore_{j}}$$

Questi coefficienti calcolati per ogni vano vengono poi sommati e il risultato viene diviso per il numero totale di vani dell'edificio, ottenendo così il valore numerico che rappresenta lo StatoSaluteAttuale dell'edificio. Più alto sarà questo valore numerico peggiore sarà lo stato in cui si trova l'edificio.

Il valore numerico S ottenuto viene poi convertito in una fascia, tramite la stored function FasciaSalute, secondo la seguente tabella:

Fascia	Valore
Ottimo	0≤S≤1.5
Buono	1.51≤S≤3
Discreto	3.01≤S≤4.5
Sufficiente	4.51≤S≤6
Scarso	6.01≤S≤8
Pessimo	8.01≤S≤10
Crollo immediato	S>10

FasciaSalute

Per il calcolo della ProbabilitàSisma si parte dal calcolo del livello medio dei terremoti avvenuti in precedenza e ogni quanti giorni avviene un terremoto in quella determinata area, che si ricava grazie alla differenza di giorni tra il primo terremoto e l'ultimo e dividendo questo numero per il numero totale di terremoti avvenuti.

• LivelloMedio =
$$\frac{\sum_{i=1}^{n} livellosisma_i}{n}$$

•
$$GiorniPerTerremoto = \frac{DataUltimoTerremoto - DataPrimoTerremoto}{NumeroTerremoti}$$

Fatto questo calcoliamo la probabilità che nei prossimi 365 giorni si verifichi un terremoto di livello pari al LivelloMedio, grazie ai dati calcolati precedentemente e al rischio dell'area geografica in cui è situato l'edificio.

•
$$ProbabilitàLivelloMedio = \frac{365}{GiorniPerTerremoto} * RischioArea$$

A questo punto per calcolare le probabilità degli eventi sismici che hanno un livello diverso da quello medio, vengono fatti due calcoli diversi distinguendo gli eventi con livello minore e livello maggiore.

Per il calcolo della probabilità degli eventi con livello maggiore il calcolo è il seguente e viene fatto per ogni livello maggiore del livello medio:

$$\bullet \quad \textit{Probabilit\`aMaggiori} = \textit{Probabilit\`aLivelloMedio} * (\frac{\textit{RischioArea}}{100})^{(\textit{LivelloSisma-LivelloMedio})}$$

Il calcolo che invece viene fatto per ogni livello inferiore al livello medio è:

• ProbabilitàMinori = ProbabilitàLivelloMedio * ln(RischioArea * (LivelloMedio - LivelloSisma))

Consideriamo ora il calcolo dei DanniStimati. Questo viene fatto principalmente in base al LivelloSisma, allo SatoSaluteAttuale e alla percentuale di aumento degli alert del sisma precedente e al livello del sisma precedente.

La percentuale di aumento degli alert si calcola prendendo la data del terremoto precedente e calcolando il numero degli alert registrati nei 15 giorni precedenti al terremoto e il numero degli alert nei 15 giorni successivi. Per calcolare la percentuale di aumento facciamo:

•
$$AumentoPercentualeAlert = \frac{(AlertSuccessivi-AlertPrecedenti)*100}{AlertPrecedenti}$$

La stima effettiva dei danni viene poi fatta tramite una media ponderata dei dati citati all'inizio.

$$\bullet \quad StimaDanni = \frac{\textit{LivelloSisma} * 5 + \textit{StatoSaluteAttuale} * 3 + \left(\frac{\textit{AumentoPercentuale}}{10}\right) * 1 + \textit{LivelloSismaPrecedente} * 1}{10}$$

A questo punto il numero ottenuto viene convertito in una fascia tramite la stored function FasciaDanni secondo la seguente tabella:

Fascia	Valore
Nulli	0≤StimaDanni≤2
Bassi	2.01≤StimaDanni≤4
Medi	4.01≤StimaDanni≤5.50
Consistenti	5.51≤StimaDanni≤6.50
Elevati	6.51≤StimaDanni≤7.50
Catastrofici	7.51≤StimaDanni≤10

FasciaDanni

A questo punto il calcolo dello StatoSalutePostSisma viene effettuato grazie allo StatoSaluteAttuale, alla StimaDanni e al LivelloSisma tramite la formula:

•
$$StatoSalutePostSisma = \frac{(StatoSaluteAttuale*StimaDanni)}{100}*LivelloSisma + StatoSaluteAttuale$$

Il risultato di questo calcolo viene tramutato in una fascia grazie alla stored function FasciaSalute precedentemente usata e illustrata.