Properties of Regular Languages and Regular Expressions

For regular languages L_1 and L_2 :

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: $L_1 *$

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Take two languages

Regular language L_1

Regular language $\,L_2\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M_2

Single accepting state

Single accepting state

$$L_2 = \{ba\} \qquad \begin{array}{c} M_2 \\ \\ b \\ \end{array}$$

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$a$$

$$L_{2} = \{ba\}$$

$$b$$

$$\lambda$$

$$b$$

$$a$$

Star Operation

NFA for L_1*

$$w = w_1 w_2 \cdots w_k$$

NFA for
$$L_1^* = \{a^n b\}^*$$

Reverse

- 1. Reverse all transitions
- 2. Make initial state accepting state and vice versa

Complement

- 1. Take the DFA that accepts $\,L_1\,$
- 2. Make accepting states non-final, and vice-versa

Intersection Closure

Machine M_1

DFA for L_1

Machine M_2

DFA for L_2

Construct a new DFA $\,M\,$ that accepts $\,L_{\!1}\cap L_{\!2}\,$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

States in M

DFA M_1

DFA M_2

initial state

initial state

 $\mathsf{DFA}\ M$

New initial state

Both constituents must be accepting states

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

$$a, b$$

$$q_0, p_0 \qquad a \qquad q_0, p_1 \qquad b \qquad q_1, p_1 \qquad a \qquad q_2, p_2$$

$$b \qquad a \qquad b \qquad q_2, p_1$$

$$a \qquad b \qquad a$$

$$a, b$$

$\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

$$L(M) = L(M_1) \cap L(M_2)$$

Regular Expressions

Regular Expressions

Regular expressions describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language

$${a,bc}^* = {\lambda,a,bc,aa,abc,bca,...}$$

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 r_1^*
 (r_1)

Are regular expressions

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression:
$$(a+b+)$$

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

Example

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Regular expression: $(a+b) \cdot a^*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Regular expression
$$r = (a+b)*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression
$$r = (0+1)*00(0+1)*$$

$$L(r)$$
 = { all strings containing substring 00 }

Regular expression
$$r = (1+01)*(0+\lambda)$$

$$L(r) = \{ all strings without substring 00 \}$$

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if $L(r_1) = L(r_2)$

 $L = \{ all strings without substring 00 \}$

$$r_1 = (1+01)*(0+\lambda)$$

 $r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent regular expressions

Regular Expressions and Regular Languages

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages

Since L is regular take the NFA M that accepts it

$$L(M) = L$$

Single final state

From M construct the equivalent Generalized Transition Graph

transition labels are regular expressions

Example:

Another Example: \boldsymbol{a} \boldsymbol{a} Reducing the states: \boldsymbol{a} bb*abb*(a+b)

Resulting Regular Expression:

$$r = (bb * a) * bb * (a + b)b *$$

$$L(r) = L(M) = L$$

In General

Removing states: q_{j} q_i qaae*d*ce***b ce***d* q_j q_i ae*b

Obtaining the final regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

$$L(r) = L(M) = L$$