Assignment 3 MAT 354

Q4: We first map $\mathbb{C}\setminus[-1,1]$ to $\mathbb{C}\setminus[-\infty,0]$ using the conformal mapping $f_1(z)$ defined by

$$z \mapsto \frac{z+1}{z-1}.$$

Now we map $C \setminus [-\infty, 0]$ to $\mathbb{C} \setminus \{z = x + iy : x < 0, \arg(z) \in [\pi - \arccos(r), \pi + \arccos(r)]\}$, using the conformal mapping $f_2(z)$ defined by

$$z \mapsto z^{1 - \frac{\arccos(r)}{\pi}}.$$

We choose the power of z such that the boundary of $C \setminus \{z = x + iy : x < 0, \arg(z) \in [\pi - \arccos(r), \pi + \arccos(r)]\}$ gets sent to the boundary of the lense by our choice of f_4 . We now apply $f_3(z) = -z$, which is conformal, to rotate the plane. We finally apply

$$f_4(z) = \frac{1-z}{1+z}$$

to transform this unbounded region into the compliment of the lense. Hence we take

$$f = f_4 \circ f_3 \circ f_2 \circ f_1,$$

to be our conformal mapping of the given region