

Tratamiento de la Información y Competencia Digital (TICD)

Acceso Ciclos Formativos de Grado Superior (ACFGS)

Tema 1.2. El ordenador

Resumen

Paco Aldarias. 8/10/2024

Índice

- 1. Conceptos iniciales
- 2. Historia de la informática.
- 3. La función del ordenador.
- 4. Unidades informáticas de medida.
- 5. Webgrafia.
- 6. Actividades.

1. Conceptos iniciales

<u>Informática</u>

¿Qué es la INFORMÁTICA?:

Ciencia que estudia el tratamiento automático de la información (conocimiento) mediante el uso de ordenadores (dispositivos: tablets, móviles, relojes, televisores...)

1. Conceptos iniciales (II)

Hardware y Software

HARDWARE (HW)

Componentes físicos (tangibles) de un ordenador:

- carcasa,
- monitor,
- teclado,
- ratón,
- CPU,
- memoria,
- etc

SOFTWARE (SW)

Conjunto de programas (intangibles) que dirigen las tareas que realiza el ordenador.

2. Historia de la informática

Ordenador: máquina electrónica que <u>recibe</u>, <u>procesa y almacena</u> información y es capaz de realizar operaciones (lógicas y aritméticas) a gran velocidad.

Para que el ordenador pueda procesar la información es necesario que el usuario le proporcione las órdenes o comandos pertinentes sobre qué procesar, de qué manera y con qué objetivos.

Avances tecnológicos

<u>ÁBACO</u>

- Egipcios
- 500 a.C

PASCALINA

- Máquina para realizar cálculos
- Invento de Pascal
- 1623 -1662

MÁQUINA DE LEIBNIZ

- Raíces cuadradas en sistema binario
- 1646 1716

<u>CALCULADORA</u> (CHARLES BABBAGE)

- Varias operaciones.
- Tarjetas perforadas.
- NO FUNCIONÓ

3. Historia de la informática

Generaciones de la informática

1^a Generación (1940-1960)

2^a Generación (1960-1965)

3^a Generación (1965-1975)

4^a Generación (1975-1990)

5^a Generación (1990-???)

- Válvulas de vacío (para representar el cero y el uno: binario).
- Lenguajes de bajo nivel: cercano a la máquina (conjunto de códigos binarios)
- Sugen los programas: conjunto de instrucciones/órdenes para realizar tareas.
- Uso de electrónica de transistores (para representar el cero y el uno: binario)
 → ahorro de energía → menor tamaño → más velocidad → menor coste
 Lenguaje de alto nivel: cercano al lenguaje natural (mayor abstracción).
- Circuitos integrados (base de silicio).
- Lenguajes de programación: COBOL, FORTRAN
- Primeros Sistemas Operativos
- Microchips y microprocesadores.
- Ordenadores personales (80's)
- Lenguajes: Pascal, Basic. Compañías: Microsoft y Apple. Nace Linux.
- Microchips cada vez más pequeños (nanotecnología)
- Futuro → computación cuántica (qubits).

La función básica del ordenador es procesar o tratar información

Arquitectura Von NewMan: CPU, MEMORIA, DISPOSITIVOS E/S, BUSES

La arquitectura de von Neumann, propuesta por el matemático y físico John von Neumann en 1945, es el diseño fundamental en el que se basan la mayoría de las computadoras modernas.

La arquitectura de von Neumann, propuesta por el matemático y físico John von Neumann en 1945, es el diseño fundamental en el que se basan la mayoría de las computadoras modernas.

https://www.youtube.com/watch?v=KW

3.1. Del dato a la inteligencia

DATOS

Elemento(s) que NO relevantes por sí solos.

INFORMACIÓN

Resultado de analizar. estudiar y filtrar los datos

CONOCIMIENTO

Resultado de analizar, estudiar y filtrar la información

INTELIGENCIA

¿Cómo la definirías?

3.2. Características de la información digital

DIGITAL

Que suministra los datos mediante dígitos (ceros y unos) o elementos finitos o discretos.

LENGUAJE/SISTEMA BINARIO

- El ordenador sólo puede representar: encendido y apagado.
 (es como un interruptor que deja pasar o no la corriente eléctrica).
- Sistema binario → sistema numérico de dos valores / dígitos.
- Es el que emplean todos los ordenadores.
- El estado de encendido se representa por un 1 y el de apagado por un 0.
- A un valor binario se le denomina bit, (abreviatura de binary digit).
- Necesidad de traducir la información de entrada al sistema binario.

3.2. Características de la información digital

CONVERSIÓN DE DATOS AL SISTEMA BINARIO

PIXEL

Del inglés: PICTURE + ELEMENT PI X EL

NÚMEROS

Igual el que en decimal: sistema cuando se llega último dígito disponible se pasa al cero para comenzar de nuevo v se suma posición uno la siguiente.

LETRAS

Diversas opciones:

- Código ASCII:
 - 1 carácter = 8 bits
 - 256 caracteres representados.
- Código ANSI: Necesario incorporar caracteres de otros idiomas (ñ,ó, ü,...)
- Código UNICODE: Necesario incorporar chino y árabe
- Código UTF
 Resto de idiomas

IMÁGENES

- Los mapas de bits = imágenes descompuestas en puntos (pixeles).
- Cada punto se puede representar por uno o varios bits.
- Por ejemplo: 000001 rojo claro 000002 rojo oscuro

212389 azul maring

3.2. Características de la información digital

CONVERSIÓN DE DATOS AL SISTEMA BINARIO

Números		
Binario	Decimal	
0000	00	
0001	01	
0010	02	
0011	03	
0100	04	
0101	05	
0110	06	
0111	07	
1000	08	
1001	09	
1010	10	
1011	11	
1100	12	
1101	13	
1110	14	
1111	15	

lmagen digital		
odificación	Visualización	
000000000		
901110000		
010001000		
100000100	_===_	
000000010		
000000010		
000000010		
100000100		
010001000		
901110000		
000000000		

5.1 Unidades de medida de almacenamiento/ capacidad

¡Cuidado!

En la siguiente tabla están las unidades más usadas:

Nombre	Abreviación	Descripción
Bit	b	Es la unidad mínima de información. Es un dígito binar <mark>i</mark> o. Permite únicamente dos valores: 0, 1
Byte	В	Pronunciado "bait". es la unidad fundamental en la que se mide la capacidad de los datos. Es el conjunto de 8 bits . Permite 2 ⁸ valores.
Kilobyte	КВ	Son 1024 bytes (redondeando, mil bytes).
Megabyte	МВ	Son 1024 KB (redondeando, un millón de bytes).
Gigabyte	GB	Son 1024 MB (redondeando, mil millones de bytes).
Terabyte	ТВ	Son 1024 GB (redondeando, un billón de bytes).
Petabyte	РВ	Son 1024 TB (redondeando, mil billones de bytes).
Exabyte	EB	Son 1024 PB (redondeando, ¡uff! un trillón de bytes).

En inglés 1 "billion" de unidades son mil millones de unidades

En español 1 billón de unidades son un millón de millones de unidades

¡No solo en informática!

5.1 Unidades de medida de almacenamiento/ capacidad

LA COMUNITAT VALENCIANA

5. Unidades informáticas de medida

5.1 Unidades de medida de almacenamiento/ capacidad

ALMACENAMIENTO / CAPACIDAD

La unidad de medida es el BYTE o B (en MAYÚSCULA)

Los múltiplos se agrupan en bloques de 1024:

1 "ka" = 1 KB = 1024 B 1 "mega" = 1 MB = 1024 KB

1 "giga" = 1 GB = 1024 MB

1 "tera" = 1 TB = 1024 GB

Por tanto...

si hablamos de ALMACENAMIENTO/CAPACIDAD

4 "megas" serán 4 MegaBytes o lo que es lo mismo

4 "megas" serán 4 MB

Ejemplo:

Tengo una película

cuyo tamaño es de 50 "megas"

¿Qué quiere decir?

Que ese archivo

ocupa en el disco duro 50 MegaBytes

... o lo que es lo mismo ...

Que ese archivo

ocupa en el disco duro 50x1024x1024 Bytes

5.1.2. Conversión entre unidades de almacenamiento/ capacidad.

Sistema Decimal:

combinación de dígitos del 0 al 9.

Sistema Binario: combinación de dígitos 0 y 1.

5.2 Unidades de medida de cálculo o procesamiento

- La velocidad de procesamiento de un procesador se mide en Hercios.
- Un Hercio o Herzio (Hz) es una unidad de frecuencia que equivale a un ciclo o repetición de un evento por segundo.
- Utiliza la escala de unidades del Sistema Métrico Internacional, es decir, de 1KHz son 1000Hz.
- Estas unidades de medida se utilizan también para medir la frecuencia de comunicación entre los diferentes elementos del ordenador.

5.3 Unidades de medida de tr<mark>ansmisión o descarga</mark>

- Velocidad de transferencia de información se expresa en bps (bits por segundo) o b/s.
- Transmisión de datos = número de bits transmitidos en cada segundo.
- Hay que tener en cuenta que los múltiplos para expresar el tamaño de la información son en base 10 (10³):
 - 1 Kbps = 1000bps
 - 1 Mbps = 1000kps
 - 1 Gbps = 1000Mbps
- Escala de conversión
- Herramientas y programas suelen mostrar la velocidad de transmisión en Bps (B/s) o en alguno de sus múltiplos (KB/s, MB/s, GB/s).

1000

LA COMUNITAT VALENCIANA

5. Unidades informáticas de medida

5.3 Unidades de medida de transmisión o descarga

VELOCIDAD DE TRANSMISIÓN

La unidad de medida es el BIT POR SEGUNDO o bps (en mínúscula)

Los múltiplos se agrupan en bloques de 1000:

1 "ka" = 1 Kbps = 1000 bps 1 "mega" = 1 Mbps = 1000 Kbps 1 "giga" = 1 Gbps = 1000 Mbps

1 "tera" = 1 Tbps = 1000 Gbps

Por tanto...

si hablamos de VELOCIDAD DE TRANSMISIÓN

4 "megas" serán 4 Megabits por segundo o lo que es lo mismo

4 "megas" serán 4 Mbps

Ejemplo:

La VELOCIDAD DE TRANSMISIÓN que tengo

contratada en casa es de 50 "megas"

¿Qué quiere decir?

Que, como máximo, podré descargar información a 50 Megabits por segundo

... o lo que es lo mismo ...

Que, como máximo, podré descargar

50x1000x1000 bits en 1 segundo

4.3 Unidades de medida de transmisión o descarga

CONVERSIONES (8 bits = 1 byte)

¿Cuánto tardará en descargarse un archivo de 10 "megas" a una velocidad de 10 "megas"? 10 "megas" (hablando de almacenamiento) = > 10 MegaBytes => 10 MB 10 "megas" (hablando de velocidad) = > 10 Megabits por segundo => 10 Mbps

Por tanto, lo que realmente quiero saber, es esto (convertimos todo a bits):

Archivo de 10 MB => 10 MegaBytes => 10.485.760 Bytes

=> 8 x 10.485.760 Bytes => 83.886.080 bits

A una velocidad de 10 Mbps => 10 Megabits por segundo =>10.000.000 bits por seg

- Si 10.000.000 bits se descargan en 1 seg, ¿cuántos segundos necesitarán 83.886.080 bits?
- Solución: 83.886.080 / 10.000.000 = 8,38 segundos
- => Un archivo de 10 MB, a 10Mps, tardará 8,192 segundos en descargarse

