|     | TP2 Pression - Lothmann Feyrit                                                                                                                    | Pt |   | Α | В | C D | Note |                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|---|-----|------|--------------------------------|
| I.  | Régulation de pression simple boucle (10 pts)                                                                                                     |    |   |   |   |     |      |                                |
|     | Donner le schéma électrique correspondant au cahier des charges.                                                                                  | 1  | Α |   |   |     | 1    |                                |
|     | Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.                                                                      | 1  | В |   |   |     | 0,75 | Je veux voir la boucle         |
|     | Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.                                                                      | 1  | Α |   |   |     | 1    |                                |
|     | Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct). | 1  | А |   |   |     | 1    |                                |
|     | Régler la boucle de régulation, en utilisant la méthode de Ziegler & Nichols. On choisira un correcteur PID.                                      | 4  | Α |   |   |     | 4    | l e                            |
|     | Enregistrer la réponse de la mesure à un échelon de consigne W.                                                                                   | 2  | Α |   |   |     | 2    | 2                              |
| II. | Régulation de proportion (10 pts)                                                                                                                 |    |   |   |   |     |      |                                |
|     | Rappeler le fonctionnement d'une boucle de régulation de proportion.                                                                              | 1  | Α |   |   |     | 1    |                                |
|     | Programmer le régulateur pour obtenir le fonctionnement en régulation de proportion conformément au schéma TI cidessus.                           | 3  | А |   |   |     | 3    | 3                              |
|     | Régler la boucle de régulation menée en utilisant la méthode par approches successives. On ne changera pas le réglage de la boucle menante.       | 2  | D |   |   |     | 0,1  | Votre régulateur est en manuel |
|     | Enregistrer la réponse des mesures à un échelon de consigne W.                                                                                    | 2  | D |   |   |     | 0,1  |                                |
|     | Expliquez l'intérêt d'une régulation de proportion en vous aidant de vos enregistrements. Citez un autre exemple pratique.                        | 2  | С |   |   |     | 0,7  | ,                              |

Note: 14,65/20

## TP2 pression

- I. Régulation de pression simple boucle
- 1-Donner le schéma électrique correspondant au cahier des charges.



2-Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.

| TagName  | pid1      |   | LIN Name | pid1<br><local></local> |  |
|----------|-----------|---|----------|-------------------------|--|
| Туре     | PID       |   | DBase    |                         |  |
| Task     | 3 (110ms) |   | Rate     | 0                       |  |
| Mode     | AUTO      |   | Alarms   |                         |  |
| FallBack | AUTO      |   |          |                         |  |
|          |           |   | HAA      | 100.0                   |  |
| →PV      | 0.0       | % | LAA      | 0.0                     |  |
| SP       | 0.0       | % | HDA      | 100.0                   |  |
| OP       | 0.0       | % | LDA      | 100.0                   |  |
| SL       | 0.0       | % |          |                         |  |
| TrimSP   | 0.0       | % | TimeBase | Secs                    |  |
| RemoteSP | 0.0       | % | XP       | 100.0                   |  |
| Track    | 0.0       | % | TI       | 0.00                    |  |
|          |           |   | TD       | 0.00                    |  |
| HR_SP    | 100.0     | % |          |                         |  |
| LR_SP    | 0.0       | % | Options  | 00101100                |  |
| HL_SP    | 100.0     | % | SelMode  | 00000000                |  |
| LL_SP    | 0.0       | % |          |                         |  |
|          |           |   | ModeSel  | 00000000                |  |
| HR_OP    | 100.0     | % | ModeAct  | 00000000                |  |
| LR_OP    | 0.0       | % |          |                         |  |
| HL_OP    | 100.0     | % | FF_PID   | 0.0                     |  |
| LL_OP    | 0.0       | % | FB_OP    | 0.0                     |  |

| TagName  | 01M01_0A  |      | LIN Name | 01M01_0A        |
|----------|-----------|------|----------|-----------------|
| Туре     | AI_UIO    |      | DBase    | <local></local> |
| Task     | 3 (110ms) |      | Rate     | 0               |
| MODE     | AUTO      |      | Alarms   |                 |
| Fallback | AUTO      |      | Node     | >00             |
|          |           |      | SiteNo   | 1               |
| PV       | 0.0       | %    | Channel  | 1               |
| HR       | 100.0     | %    | InType   | mA              |
| LR       | 0.0       | %    | HR_in    | 20.00           |
|          |           |      | LR_in    | 4.00            |
| HiHi     | 100.0     | %    | AI       | 0.00            |
| Hi       | 100.0     | %    | Res      | 0.000           |
| Lo       | 0.0       | %    |          |                 |
| LoLo     | 0.0       | %    | CJ_type  | Auto            |
| Hyst     | 0.5000    | %    | CJ_temp  | 0.000           |
|          |           |      | LeadRes  | 0.000           |
| Filter   | 0.000     | Secs | Emissiv  | 1.000           |
| Char     | Linear    |      | Delay    | 0.000           |
| UserChar |           |      |          |                 |
|          |           |      | SBreak   | Up              |
| PVoffset | 0.000     | %    | PVErrAct | Up              |
| AlmOnTim | 0.000     | Secs | Options  | >0000           |
| Alm0fTim | 0.000     | Secs | Status   | >0000           |

| Block: 02P01_0A   Comment   Connections |           |    |          |                 |  |  |  |
|-----------------------------------------|-----------|----|----------|-----------------|--|--|--|
| TagName                                 | 02P01_0A  |    | LIN Name | 02P01_0A        |  |  |  |
| Туре                                    | AO_UIO    |    | DBase    | <local></local> |  |  |  |
| Task                                    | 3 (110ms) |    | Rate     | 0               |  |  |  |
| MODE                                    | AUTO      |    | Alarms   |                 |  |  |  |
| Fallback                                | AUTO      |    | Node     | >00             |  |  |  |
|                                         |           |    | Sitello  | 2               |  |  |  |
| → OP                                    | 0.0       | %  | Channel  | 1               |  |  |  |
| HR                                      | 100.0     | %  | OutType  | mA              |  |  |  |
| LR                                      | 0.0       | %  | HR_out   | 20.00           |  |  |  |
|                                         |           |    | LR_out   | 4.00            |  |  |  |
| Out                                     | 0.0       | %  | AO       | 0.00            |  |  |  |
| Track                                   | 0.0       | %  |          |                 |  |  |  |
| Trim                                    | 0.000     | mA | Options  | >0000           |  |  |  |
|                                         |           |    | Status   | >0000           |  |  |  |

3-Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%

| TagName  | pid1      |   | LIN Name | pid1            |
|----------|-----------|---|----------|-----------------|
| Туре     | PID       |   | DBase    | <local></local> |
| Task     | 3 (110ms) |   | Rate     | 0               |
| Mode     | MANUAL    |   | Alarms   |                 |
| FallBack | MANUAL    |   |          |                 |
|          |           |   | HAA      | 100.0           |
| PV       | 50.1      | % | LAA      | 0.0             |
| SP       | 0.0       | % | HDA      | 100.0           |
| OP       | 50.0      | % | LDA      | 100.0           |
| SL       | 0.0       | % |          |                 |
| TrimSP   | 0.0       | % | TimeBase | Secs            |
| RemoteSP | 0.0       | % | XP       | 100.0           |
| Track    | 0.0       | % | TI       | 0.00            |
|          |           |   | TD       | 0.00            |
| HR_SP    | 100.0     | % |          |                 |
| LR_SP    | 0.0       | % | Options  | 00101100        |
| HL_SP    | 100.0     | % | SelMode  | 00000000        |
| LL_SP    | 0.0       | % |          |                 |
|          |           |   | ModeSel  | 00100000        |
| HR_OP    | 100.0     | % | ModeAct  | 00100001        |
| LR_OP    | 0.0       | % |          |                 |
| HL_OP    | 100.0     | % | FF_PID   | 0.0             |
| LL_OP    | 0.0       | % | FB_OP    | 50.0            |

4-Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).



Le sens du procédé est direct donc le régulateur est inverse.

5-Régler la boucle de régulation, en utilisant la méthode de <u>Ziegler & Nichols</u>. On choisira un correcteur PID.



Xpc=22% tc=3,5s

## PID mixte:

XP=1,7\*XPC=1,7\*22=37,4% Ti=Tc/2=3,5/2=1,75 sec td=tc/8=3,5/8=0,4375sec

6-Enregistrer la réponse de la mesure à un échelon de consigne W



XP=50% ti=2sec

## II. Régulation de proportion

- 1-Rappeler le fonctionnement d'une boucle de régulation de proportion une régulation de proportion est lorsqu'on fait un rapport constant entre deux grandeurs .
- 2-Programmer le régulateur pour obtenir le fonctionnement en régulation de proportion conformément au schéma TI ci-dessus.



PID Block: menee | Comment | Connections LIN Name DBase Rate menee <local> 0 TagName PID 3 (110ms) Mode FallBack REMOTE Alarms 100.0 0.0 0.0 0.0 0.0 LAA HDA LDA Eng 0.0 SP
OP
SL
TrimSP
RemoteSP
Track 100.0 Eng Eng TimeBase XP TI TD 100.0 0.00 0.00 0.0 Eng % HR\_SP LR\_SP HL\_SP LL\_SP 100.0 Eng Options SelMode 00101100 Eng 100.0 Eng 00001000 ModeSel ModeAct 00001001 HR\_OP
LR\_OP
HL\_OP
LL\_OP 100.0 0.0 100.0 00001000 FF\_PID FB\_OP 50.0

add



3-Régler la boucle de régulation menée en utilisant la méthode par <u>approches successives</u>. On ne changera pas le réglage de la boucle menante.



4-Enregistrer la réponse des mesures à un échelon de consigne W. je ne sais pas

5-l'interet d'une régulation de proportion est de mesurer des grandeurs constante entre deux valeurs ,comme pour une régulation de température.