

Box-supervised Instance Segmentation with Level Set Evolution

https://github.com/LiWentomng/boxlevelset

Wentong Li, Wenyu Liu, Jianke Zhu*, Miaomiao Cui, Xiansheng Hua, Lei Zhang

Motivation

Forms of supervisions (annotations):

Fully pixel-wise mask

> Simple bounding box

Limitations of existing box-supervised method:

➤ Simple pairwise affinity modeling on neighboring pixel or colour pairs, which is susceptible to noisy context.

Key idea

- Instance-aware mask map as the predicted level sets.
- Level set evolution on the low-level and high-level features with robust initialization.

Contributions

- A novel single-shot level set-based approach to box-supervised instance segmentation.
- Leading performance in various scenarios, including general scene, remote sensing and medical image.

Method

Fig. 2: Overview of our method. Our framework is designed based on SOLOv2. The positive mask maps *M* are obtained by level set evolution within the bounding box region. With the iterative energy minimization, the accurate instance segmentation can be obtained with box annotations only. The level set are only performing during training, and inference process is same as the original SOLOv2.

> Level Set Energy

$$\mathcal{F}(\phi, I, c_1, c_2, \mathcal{B}) = \int_{\Omega \in \mathcal{B}} |I^*(x, y) - c_1|^2 \sigma(\phi(x, y)) dx dy$$
$$+ \int_{\Omega \in \mathcal{B}} |I^*(x, y) - c_2|^2 (1 - \sigma(\phi(x, y))) dx dy + \gamma \int_{\Omega \in \mathcal{B}} |\nabla \sigma(\phi(x, y))| dx dy$$

> Input Data Terms

$$\mathcal{F}(\phi) = \lambda_1 * \mathcal{F}(\phi, I_u, c_{u_1}, c_{u_2}, \mathcal{B}) + \lambda_2 * \mathcal{F}(\phi, I_f, c_{f_1}, c_{f_2}, \mathcal{B})$$

> Level Set Initialization

$$\mathcal{F}(\phi_0)_{box} = \mathcal{P}_{dice}(m_x^p, m_x^b) + \mathcal{P}_{dice}(m_y^p, m_y^b)$$

> Network Learning

$$L = L_{cate} + L_{inst} \qquad L_{inst} = \frac{1}{N_{pos}} \sum_{k} \mathbb{1}_{\{p_{i,j}^* > 0\}} \{ \mathcal{F}(\phi) + \alpha \mathcal{F}(\phi_0)_{box} \}$$

Ablation of Level Set Energy

\mathcal{F}_{ϕ_0}	$\mathcal{F}_\phi(I_u)$	$\mathcal{F}_\phi(I_f)$	$\Omega \in \mathcal{B}$	$\Omega \in I$	AP	AP_{50}	AP_{75}
\checkmark			√				
\checkmark	\checkmark		\checkmark				
\checkmark	\checkmark	\checkmark	\checkmark		24.7	53.3	20.8
\checkmark	\checkmark	\checkmark		\checkmark	21.7	48.4	17.4
	\mathcal{F}_{ϕ_0} \checkmark \checkmark	\mathcal{F}_{ϕ_0} $\mathcal{F}_{\phi}(I_u)$ \checkmark \checkmark \checkmark \checkmark	\mathcal{F}_{ϕ_0} $\mathcal{F}_{\phi}(I_u)$ $\mathcal{F}_{\phi}(I_f)$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark	\mathcal{F}_{ϕ_0} $\mathcal{F}_{\phi}(I_u)$ $\mathcal{F}_{\phi}(I_f)$ $\Omega \in \mathcal{B}$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark		 ✓ ✓	\mathcal{F}_{ϕ_0} $\mathcal{F}_{\phi}(I_u)$ $\mathcal{F}_{\phi}(I_f)$ $\Omega \in \mathcal{B}$ $\Omega \in I$ AP AP ₅₀ \checkmark \checkmark \checkmark \checkmark 22.2 49.5 \checkmark \checkmark \checkmark \checkmark 24.7 53.3 \checkmark \checkmark \checkmark \checkmark 21.7 48.4

Performance

methods	backbone	AP	AP_{25}	AP_{50}	AP_{70}	AP_{75}
BBTP w/ CRF	ResNet-101	27.5	-	59.1	-	21.9
BoxInst	ResNet-50	34.3	-	59.1	-	34.2
BoxInst	ResNet-101	36.5	-	61.4	-	37.0
DiscoBox	ResNet-50	-	71.4	59.8	41.7	35.5
$\operatorname{DiscoBox}$	ResNet-101	-	72.8	62.2	45.5	37.5
Ours	ResNet-50	36.3	76.3	64.2	43.9	35.9
Ours	ResNet-101	38.3	77.9	66.3	46.4	38.7

Table 1. Results on Pascal VOC.

method	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
mask- $supervised$:							
Mask R-CNN	ResNet-101	35.7	58.0	37.8	15.5	38.1	52.4
YOLACT-700	ResNet-101	31.2	50.6	32.8	12.1	33.3	47.1
PolarMask	ResNet-101	32.1	53.7	33.1	14.7	33.8	45.3
CondInst	ResNet-101	39.1	60.9	42.0	21.5	41.7	50.9
SOLOv2	ResNet-101	39.7	60.7	42.9	17.3	42.9	57.4
box-supervised:							
BBTP^\dagger	ResNet-101	21.1	45.5	17.2	11.2	22.0	29.8
BBAM	ResNet-101	25.7	50.0	23.3	-	-	-
$BoxCaseg^*$	ResNet-101	30.9	54.3	30.8	12.1	32.8	46.3
BoxInst	ResNet-101	33.2	56.5	33.6	16.2	35.3	45.1
BoxInst	ResNet-101-DCN	35.0	59.3	35.6	17.1	37.2	48.9
\mathbf{Ours}	ResNet-101	33.4	56.8	34.1	15.2	36.8	46.8
Ours	ResNet-101-DCN	35.4	59.1	36.7	16.8	38.5	51.3

Table 2. Performance on COCO test 2017.

method	backbone	Sup.	AP
DeepSnake	DLA-34	Mask	30.5
Levelset R-CNN	ResNet-50	Mask	34.3
DVIS-700	ResNet-50	Mask	32.6
DVIS-700	ResNet-101	Mask	35.7
Ours	ResNet-101	Box	33.0
Ours	ResNet-101-DCN	Box	35.0

Table 3. Deep variational instance segmentation.

method	backbone	Sup.	AP	method	backbone	Sup	ΙΛD
Mask R-CNN	R-50-C4	Mask	28.8			1	
	R-50-FPN	I		Mask R-CNN	R-50-FPN	Mask	64.2
CondInst	R-50-FPN	Mask	29.5	BoxInst	R-50-FPN	Box	40.7
BoxInst	R-50-FPN	Box	17.8	Ours	R-50-FPN	Box	44.5
Ours	B-50-FPN	Box	20.1				

Table 4. Results on remote sensing and medical scene.

Fig 3. Visual results on COCO and iSAID.

Fig 4. Visual results on LiTS.