Experiment 7

Aim of the experiment : To determine the Chloride ion (Cl⁻) present in a given sample by argentometric method by using **N/100 AgNO**₃ solution

Apparatus required:

- 1. Burette
- 2. Pipette
- 3. Conical Flask
- 4. Beaker

Chemical Required:

- 1. Standard AgNO₃ solution
- 2. K₂CrO₄ solution
- 3. Water Sample

Principle:

Chlorides are present in water as NaCl , Mg₂Cl and CaCl₂ . Although chlorides are not harmful, their concentration above 200 ppm imparts a peculiar taste to water , thus rendering the water unacceptable for drinking purposes.

When $AgNO_3$ solution is released from the burette to the water sample containing Cl^- , first Ag^+ reacts with Cl^- and forms a yellowish white precipitate of AgCl. After completing reaction with Cl^- , with the addition of one extra drop of $AgNO_3$ imparts a red color to the solution due to formation of Ag_2CrO_4

Chemical Reaction:

Observation Table:

No . of	Volume of	Burette Reading (ml)			Remarks
Observa tion	water sample in ml.	Initial	Final	Difference	
1	25	0	5	5	Rough
2	25	5	9.9	4.9	Concordant
3	25	9.9	14.8	4.9	Concordant
4	25	14.8	19.7	4.9	Concordant

Calculation:

 N_1 = Normality of water sample due to CI^- = ?

 V_1 = Volume of water taken for titration = 25ml

 N_2 = Normality of AgNO₃ solution. = 0.01 N

 V_2 = Volume of AgNO₃ solution required for the equivalence point. = 4.9 ml

$$N_1 = \frac{N2V2}{V1} = \frac{0.01 \times 4.9}{25} = \frac{0.049}{25} =$$
0.00196 N
Strength of Cl⁻ ion = $N_1 \times 35.5$ g/l = 0.00196 x 35.5 g/l = **0.06958 g/l** = $N_1 \times 35.5 \times 1000$ ppm = 0.00196 x 35.5 x 1000 ppm = **69.58 ppm**

Conclusion:

The Chloride ion present in a given sample by argentometric method by using N/100 AgNO₃ solution is 69.58 ppm.