Examples of exercises you should be able to solve

Ideal gas law

a)

Helium has the ideal gas law equation of state

$$pV = Nk_bT$$

Where N is the number of Helium atoms, and k_b is boltzmann's constant.

We can rewrite this in terms of the number of moles of the gas n:

$$pV = nN_A k_b T$$

Where n is the number of moles, and N_A is avogadro's constant.

We can also write this in terms of the mass of gas m by substituting $n=\frac{m}{M}$, where M is the molar mass (mass of one mole of Helium)

$$pV = \Big(\frac{m}{M}\Big) N_A k_b T$$

$$pV = m \bigg(\frac{N_A k_b}{M}\bigg) T$$

$$p = mR_s \frac{T}{V}$$

where R_s is the specific gas constant, in our case 2.07 kJ $\rm kg^{-1} \it K^{-1}$

The expansion work p-V is:

$$dW = \int_{V_1}^{V_2} p dV$$

$$dW = \int_{V_1}^{V_2} \frac{mR_sT}{V} dV$$

$$\Delta W = m R_s T \ln \biggl(\frac{V_2}{V_1} \biggr)$$

Figure 1: Diagram to show initial and final pressure, volume

The specific expansion work is

$$\frac{\Delta W}{m} = R_s T \ln \left(\frac{V_2}{V_1} \right)$$

For constant temperature, $\frac{V_2}{V_1} = \frac{p_1}{p_2}$

$$\frac{\Delta W}{m} = R_s T \ln \left(\frac{p_1}{p_2} \right)$$

Where $R_s=2.07~\rm kJ~kg^{-1}K^{-1},$ and $T=373K,\frac{p_1}{p_2}=30$

Figure 2: Blue area is the work done by the gas

We can do this calculation in the Python REPL:

```
>>> import math
>>> (2.07) * 373 * math.log(30)
2626.0985103551666
```

hence:

$$\Delta W = 2626~\rm kJ~kg^{-1}$$

For an isothermal process of an ideal gas:

$$\Delta T = 0 \to \Delta U = 0$$

By the first law of thermodynamics, $\Delta U = Q - W$

Q is the energy added to the system as heat W is the work done by the system on its surroundings. The heat supplied to the gas equals the work done by it, since the internal energy isn't changing. Hence, $2627~{\rm kJ~kg^{-1}}$ has to be supplied

Mass and Energy Balance