NCKU 112.2 Miscellaneous Facts

Eric Liu

Contents

	CHAPTER 1	GENERAL TOPOLOGY	PAGE 2
	1.1 Directed Sets 1.2 Net		2 9
(Chapter 2	METRIC SPACE	Page 10
	2.1		10
	Chapter 3	Calculus	Page 11
	3.1 Examples for unifor	rm convergence	11
	3.2 Test Example		12
	3.3 Dini's Theroem		14
(Chapter 4	Multi-Variable Calculus	Page 16
	4.1		16

General Topology

1.1 Directed Sets

Axiom 1.1.1. (Axioms in Order Theory) Given an relation (X, \leq) , and suppose $x, y, z \in X$.

- (a) $x \le x$ (Reflexive)
- (b) $x \le y \le z \implies x \le z$ (Transitive)
- (c) $x \le y$ and $y \le x \implies x = y$ (Antisymmetric)
- (d) $x \le y$ or $y \le x$ (Connected)
- (e) $\forall x, y \in X, \exists z \in X, x \leq z \text{ and } y \leq z \text{ (Directed)}$

We say (X, \leq) form a

- (a) total order if it is reflexive, transitive, antisymmetric and connected.
- (b) partial order if it is reflexive, transitive and antisymmetric.
- (c) preorder if it is reflexive and transitive.
- (d) directed set if it is reflexive, transitive and directed.

Theorem 1.1.2. (Why is it called Preorder) Given a preorder (X, \leq) , the relation \sim defined by

$$x \sim y \iff x \le y \text{ and } y \le x$$

is an equivalence relation and if we define \leq^e on the equivalence class by

$$\exists x \in A, y \in B, x \leq y \implies A \leq^e B$$

Then \leq^e is a partial order. Moreover, if the preorder \leq is directed, then \leq^e is also directed.

Proof. We first show \sim is an equivalence relation. Because preoder is reflexive, we see

$$\forall x \in X, x \leq x \text{ which implies } \forall x \in X, x \sim x$$

For symmetry, it is easy to see

$$x \sim y \implies x \leq y \text{ and } y \leq x \implies y \sim x$$

For transitive, see

$$x \sim y$$
 and $y \sim z \implies x \leq y$ and $y \leq x$ and $y \leq z$ and $z \leq y$ $\implies x \leq z$ and $z \leq x \implies x \sim z$ (done)

We now show \leq^e is a partial order. Reflexive property and Transitive property of \leq^e follow from that of \leq . Suppose $A \leq^e B$ and $B \leq^e A$, where $x_1, x_2 \in A, y_1, y_2 \in B$ satisfy $x_1 \leq y_1$ and $y_2 \leq x_2$. Because $x_1, x_2 \in A$ and $y_1, y_2 \in B$, we have

$$x_1 \le x_2$$
 and $x_2 \le x_1$ and $y_1 \le y_2$ and $y_2 \le y_1$

Then because \leq satisfy transitive, we have

$$\begin{cases} x_2 \le x_1 \le y_1 \implies x_2 \le y_1 \\ y_1 \le y_2 \le x_2 \implies y_1 \le x_2 \end{cases}$$

This tell us

$$x_2 \sim y_1$$

which implies A = B, thus proving \leq^e is antisymmetric. (done)

Lastly, we show \leq is directed $\Longrightarrow \leq^e$ is directed. Let A,B be two arbitrary equivalence class. We wish to find an equivalence class T such that

$$A \leq^e T$$
 and $B \leq^e T$

Let a, b respectively be an arbitrary element of A, B. Because \leq is directed, we know there exists $c \in X$ such that

$$a \le c$$
 and $b \le c$

We immediately see

$$A \leq^{e} [c]$$
 and $B \leq^{e} [c]$ (done)

Corollary 1.1.3. (Chunk Structure of Preorder) Given two equivalence class A, B, we have

$$A \leq^e B \implies \forall x \in A, y \in B, x \leq y$$

Proof. Because $A \leq^e B$, we know

$$\exists x_0 \in A, y_0 \in B, x_0 \le y_0$$

Then by definition of \sim , we have

$$x \le x_0 \le y_0 \le y$$

This give us

$$x \le y$$

Definition 1.1.4. (Definition of Maximal element in Preorder) Let (I, \leq) be a preorder. We say $m \in I$ is a maximal element if

$$\forall y \in I, m \leq y \implies y \leq m$$

Theorem 1.1.5. (In Preorder, Maximal element form an Equivalence class) Let (I, \leq) be a preorder, and $m \in I$ be a maximal element. Then

 $\forall x \in [m], x \text{ is a maximal element}$

Proof. Arbitrarily pick an element x in [m]. Suppose

$$x \le y$$

By definition of \sim , we have

$$m \le x \le y$$

Thus $m \leq y$. Then because m is maximal, we know $y \leq m$. This now give us

$$y \le m \le x$$

Notice that in partially ordered set, where anti-symmetric property is true, the definition of maximal element $m \in I$ falls into

$$\forall y \in I, m \le y \implies y = m$$

Definition 1.1.6. (Definition of Greatest element in Preorder) Let (I, \leq) be a preorder. We say $x \in I$ is a greatest element if

$$\forall y \in I, y \leq x$$

Theorem 1.1.7. (In Directed Set, Maximal element is the Greatest) Suppose (I, \leq) is a directed set.

 $x \in I$ is a maximal element $\implies x \in I$ is the greatest element

Proof. Arbitrarily pick an element $y \in I$. Because I is directed, we see there exists an element z such that

$$y \le z$$
 and $x \le z$

Then because x is maximal, we know

$$y \le z \le x$$

This shows

$$y \le x$$

Theorem 1.1.8. (Sufficient Condition for Preorder to become Directed)

 (I, \leq) is a preorder and has a greatest element $x \implies I$ is a directed set *Proof.* Given arbitrary two element $y, z \in I$, we see $y \leq x$ and $z \leq x$.

Example 1 (Partial Order that is Directed)

$$X = \{a, b, c\}$$
 and $a \le c$ and $b \le c$

Example 2 (Partial Order that is Not Directed)

$$X = \{a, b, c\}$$
 and $a \le b$ and $a \le c$

Example 3 (Partial Order that is Directed)

$$X = \mathbb{Z}_0^+ \text{ and } \forall x,y \in \mathbb{N}, x \leq y \iff y - x | 2 \text{ and } x \leq y$$
 and $\forall x \in \mathbb{N}, x \leq 0$

Example 4 (Partial Order that is not Directed)

$$X = \mathbb{N} \text{ and } \forall x, y \in \mathbb{N}, x \leq y \iff y - x | 2 \text{ and } x \leq y$$

Example 5 (Directed Set that is not Partially Ordered)

$$X = \{a, b, c\}$$
 and $a \le b$ and $b \le a$
and $a \le c$ and $b \le c$

Example 6 (Preorder that is Neither Directed nor Partially Ordered)

$$X = \{a, b, c, d\}$$
 and $a \le b$ and $b \le a$
and $a \le c$ and $b \le c$
and $a \le d$ and $b \le d$

Example 7 (Directed Sets)

X is a metric space and $x \leq y \iff d(y,x_0) \leq d(x,x_0)$ where x_0 is a fixed point in X

Notice that this directed set is generally not antisymmetric, meaning it generally isn't a partial order. Also, notice that x_0 is the greatest element. Also, this order is connected, meaning if we take equivalence class on it, it become a total order.

Lastly, notice that if we remove x_0 , X can still be directed, say if $X = \mathbb{R}^2$ and x_0 is the origin.

Example 8 (Directed Sets)

Suppose X, Y are both directed sets. We see $X \times Y$ is a directed set if we define

$$(x,y) \le (a,b) \iff x \le a \text{ and } y \le b$$

Example 9 (Partial Order)

Every collection of sets is a partial order if we define

$$A \le B \iff A \subseteq B$$

Also, every collection of sets form a partial order if we define

$$A < B \iff A \supset B$$

Example 10 (Directed Sets)

Suppose (X, τ) is a topological space and $x \in X$. Then all of τ , neighborhoods of x and open neighborhoods of x form directed sets under \subseteq , since X is open.

Also, τ , neighborhoods of x and open neighborhoods of x form directed sets under \supseteq , because intersection of two open set is again an open set and intersection of two neighborhood is again a neighborhood.

Definition 1.1.9. (Definition of Cofinal) Given a directed set \mathcal{D} , a subset $\mathcal{D}' \subseteq \mathcal{D}$ is called cofinal if

$$\forall d \in \mathcal{D}, \exists e \in \mathcal{D}', d \leq e$$

Theorem 1.1.10. (Cofinal Subset is a Directed Set with Original Order) Given a directed set \mathcal{D}

$$\mathcal{D}' \subseteq \mathcal{D}$$
 is cofinal $\implies \mathcal{D}'$ is a directed set

Proof. Arbitrarily pick two $a, b \in \mathcal{D}'$. Because $\mathcal{D} \ni a, b$ is directed, we know

$$\exists c \in \mathcal{D}, a \leq c \text{ and } b \leq c$$

Then because \mathcal{D}' is cofinal in \mathcal{D} , we know

$$\exists d \in \mathcal{D}', c \leq d$$

Then because transitivity of directed set, our proof is finished, as we have found an element d in \mathcal{D}' that is greater than the arbitrary picked elements $a, b \in \mathcal{D}'$.

1.2 Net

Definition 1.2.1. (Subnet) Given a net $w: \mathcal{D} \to X$ and $v: \mathcal{E} \to X$ and a function $h: \mathcal{E} \to \mathcal{D}$ we say v is a subnet of w if

$$\begin{cases} \forall e, e' \in \mathcal{E}, e \leq e' \implies h(e) \leq h(e') \text{(monotone)} \\ h[E] \text{ is cofinal in } \mathcal{D} \\ v = w \circ h \end{cases}$$

Definition 1.2.2. (Net convergence) We say the net $w: \mathcal{D} \to X$ converge to $x, w \to x$ if

Theorem 1.2.3. $(w \to x \implies v \to x)$ Suppose v is a subnet of w, we have

$$w \to x \implies v \to x$$

Proof.

Theorem 1.2.4. ()

Definition 1.2.5. ()

Metric Space

2.1

Calculus

3.1 Examples for uniform convergence

Theorem 3.1.1. (Test Example) The sequence

$$f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}$$
 is not equicontinuous on $[0, 1]$

Proof. Notice that

$$f_n(\frac{1}{n}) = 1 \text{ and } f_n(0) = 0$$

Then for all δ , we see that if n is large enough

then
$$\left|\frac{1}{n} - 0\right| < \delta$$
 and $\left|f_n(\frac{1}{n}) - f_n(0)\right| = 1$

Theorem 3.1.2. (Test Example) Prove

$$\frac{x}{1+nx^2}$$
 uniformly converge on $\mathbb R$

Proof. It is clear that $\frac{x}{1+nx^2}$ pointwise converge to 0. Because $\frac{x}{1+nx^2}$ is an odd function, fixing ϵ , we only wish to find N such that

$$\forall x > 0, \forall n > N, \frac{x}{1 + nx^2} < \epsilon$$

Observe

$$\frac{x}{1 + nx^2} < \epsilon \iff x < \epsilon(1 + nx^2)$$
$$\iff \frac{x - \epsilon}{\epsilon x^2} < n$$

Notice that $\frac{x-\epsilon}{\epsilon x^2}$ is bounded since it is continuous and converge to 0 as $x\to\infty$.

3.2 Test Example

Theorem 3.2.1. (Cauchy-Schwarz Inequality for Integral) Let $\mathscr{R}([a,b])$ be the space of Riemann-Integrable functions on [a,b]. It is clear that $\mathscr{R}([a,b])$ is a vector space over \mathbb{R} . Define $\langle \cdot, \cdot \rangle$ on $\mathscr{R}([a,b])$ by

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx$$

It is easy to show

(a)
$$\forall f \in \mathcal{R}([a,b]), \langle f, f \rangle \geq 0$$
 (non-negativity)

(b)
$$\forall f, g \in \mathcal{R}([a, b]), \langle f, g \rangle = \langle g, f \rangle$$
 (Symmetry)

(c)
$$\forall f, g, h \in \mathcal{R}([a, b]), \forall c \in \mathbb{R}, \langle cf + g, h \rangle = c \langle f, h \rangle + \langle g, h \rangle$$
 (Linearity in first argument)

This make $\langle \cdot, \cdot \rangle$ a **positive semi-definite Hermitian form**. We shall prove Cauchy-Schwarz Inequality hold for positive semi-definite Hermitian form. That is, we shall prove

$$\forall f, g \in \mathcal{R}([a, b]), \langle f, g \rangle \le ||f|| \cdot ||g||$$

Proof.

Theorem 3.2.2. (Application) Given $f \in \mathcal{R}([a,b])$ such that

- (a) f(a) = 0 = f(b)
- (b) $\int_{a}^{b} f^{2}(x)dx = 1$
- (c) f is continuously differentiable on (a, b)
- (d) $f' \in \mathscr{R}([a,b])$

We have

$$\int_{a}^{b} x f(x) f'(x) = \frac{-1}{2}$$

and have

$$\int_{a}^{b} (f'(x))^{2} dx \cdot \int_{12}^{b} (xf(x))^{2} dx > \frac{1}{4}$$

Proof. Notice that

$$\frac{d}{dx}xf^2(x) = f^2(x) + 2xf(x)f'(x)$$

Then by Integral by Part (We have to check $(xf^2(x))'(t) = f^2(t) + 2tf(t)f'(t)$ for all $t \in (a, b)$, and we have to check $xf^2(x)$ is continuous on [a, b]), we have

$$1 = \int_{a}^{b} f^{2}(x)dx = xf^{2}(x)\Big|_{a}^{b} - \int_{a}^{b} 2xf(x)f'(x)dx$$

Then because f(b) = f(a) = 0, we see

$$2\int_a^b x f(x)f'(x)dx = -1$$

We wish to show

$$||f'||^2 \cdot ||xf(x)||^2 > \frac{1}{4} = (\langle f', xf(x) \rangle)^2$$

It is clear that \geq is valid from Cauchy-Schwarz Inequality. We have to prove \neq . In other words, we have to prove

f' and xf(x) are linearly independent

Assume f' and xf(x) are linearly dependent. Then

$$\exists c \in \mathbb{R}, \forall x \in [a, b], f'(x) = cxf(x)$$

The solution for this first order linear homogeneous ODE is

$$f(x) = Ae^{\frac{cx^2}{2}}$$
 where $A \in \mathbb{R}$ depends on $f(a)$ and $f(b)$

Then because f(a) = f(b) = 0, we see A = 0. Then $\int_a^b f^2(x) dx = 0$ CaC

Theorem 3.2.3. (Example) Given $G, g, \alpha : [a, b] \to \mathbb{R}$, suppose

- (a) G'(x) = g(x) for all $x \in (a, b)$ (G is differentiable on (a, b))
- (b) G is continuous on [a, b]
- (c) α increase on [a, b]
- (d) g is properly Riemann-Integrable on [a, b]

Prove

$$\int_{a}^{b} \alpha(x)g(x)dx = \alpha G\Big|_{a}^{b} - \int_{a}^{b} G(x)d\alpha$$

Proof.

3.3 Dini's Theroem

Theorem 3.3.1. (Dini's Theorem) Given a topological space X and a sequence of functions $f_n: X \to \mathbb{R}$, suppose

- (a) X is compact
- (b) f_n is continuous
- (c) $f_n \to f$ pointwise
- (d) f is continuous
- (e) $f_n(x) \le f_{n+1}(x)$ for all $x \in X$

Then

$$f_n \to f$$
 uniformly

Proof. Define $g_n: X \to \mathbb{R}$

$$g_n = f - f_n$$

We reduce the problem into

proving
$$g_n \to 0$$
 uniformly

Notice that we have the property

- (a) $g_n(x) \ge g_{n+1}(x)$ for all $x \in X$
- (b) g_n is continuous
- (c) $g_n \to 0$ pointwise

Fix ϵ . We wish

to find N such that
$$\forall n > N, \forall x \in X, g_n(x) < \epsilon$$

Define $E_n \subseteq X$ by

$$E_n = \{ x \in X : g_n(x) < \epsilon \}$$

Because g_n is continuous and $E_n = g_n^{-1} [(-\infty, \epsilon)]$, we know

$$E_n$$
 is open for all $n \in \mathbb{N}$

We first prove

 $\{E_n\}_{n\in\mathbb{N}}$ is an open cover of X

Fix $y \in X$. We wish

to find n such that $y \in E_n$

Because $g_n(y) \to 0$, this is clear. (done)

We now prove

 ${E_n}_{n\in\mathbb{N}}$ is ascending

Fix $n \in \mathbb{N}$. We wish

to prove $E_n \subseteq E_{n+1}$

Because $g_n(x) \ge g_{n+1}(x)$ for all $x \in X$ and $E_n = g_n^{-1} [(-\infty, \epsilon)]$ by definition, we see

$$y \in E_n \implies g_{n+1}(y) < g_n(y) < \epsilon \implies y \in E_{n+1} \text{ (done)}$$

Now, because X is compact and $\{E_n\}_{n\in\mathbb{N}}$ is an open cover of X, we know

there exists
$$N$$
 such that $X \subseteq \bigcup_{k=1}^{N} E_k = E_N$ (3.1)

It is clear such N works. (done)

Multi-Variable Calculus

4.1