Computational Microelectronics L5

Sung-Min Hong

smhong@gist.ac.kr

Semiconductor Device Simulation Laboratory, GIST

Compact charge model

MOS capacitor (with oxide layer)

- Problem specification
 - P-type silicon substrate, N_a
 - Interface at x=0
 - -Oxide layer (thickness of t_{ox})
 - Oxide permittivity, ϵ_{ox}
- We want to know $\phi(x=-t_{ox})$.

Intrinsic Fermi level at gate

- Let us assume that $V_G = 0 \text{ V}$.
 - For the gate metal, the workfunction (Φ_m) is known. The workfunction is the energy difference between the vacuum level and the Fermi level.
 - -Therefore, when the workfunction is 4.3 eV, the vacuum level is located at 4.3 eV, because the Fermi level is the energy reference.
 - Moreover, the energy difference between the vacuum level and the intrinsic Fermi level of silicon is given. (About 4.63 eV)
 - Then, the intrinsic Fermi level of silicon (not of oxide) is located at -0.33 eV.

$$E_i = \Phi_m - \chi - (E_c - E_i)$$

Electron affinity

Electrostatic potential at gate

- From the intrinsic Fermi level (of silicon),
 - We can calculate the electrostatic potential as

$$-q\phi = E_i$$

– Simply speaking, we know
$$\phi(x=-t_{ox})$$
,
$$\phi(x=-t_{ox})=-\frac{\Phi_m-\chi-(E_c-E_i)}{q}$$

– For a general V_G ,

$$\phi(x = -t_{ox}) = -\frac{\Phi_m - \chi - (E_c - E_i)}{q} + V_G$$

Flatband voltage, V_{fb}

Values of $\overline{\phi}$

Now we know that

$$\begin{split} \bar{\phi}(x = -t_{ox}) &= -V_{fb} + V_G \\ \bar{\phi}(x = 0) &= \phi_S \\ \bar{\phi}(x = \infty) &= 0 \end{split}$$

- Ready to get the solution
 - -Condition for $\frac{d\phi}{dx}$ at x = 0

$$\left. \epsilon_{ox} \frac{d\phi}{dx} \right|_{0^{-}} = \left. \epsilon_{si} \frac{d\phi}{dx} \right|_{0^{+}}$$

Equation to be solved

- When $\phi_s > 0$,
 - Left-hand-side

$$\epsilon_{ox} \frac{\varphi_s - (-v_{fb} + v_G)}{t_{ox}}$$

Right-hand-side

$$Q_{s} = - \left\{ \times \begin{bmatrix} \exp\left(-\frac{q\phi_{\infty}}{k_{B}T}\right) \left\{ \exp\left(-\frac{q\phi_{s}}{k_{B}T}\right) - 1 + \frac{q\phi_{s}}{k_{B}T}\right\} \\ + \exp\left(\frac{q\phi_{\infty}}{k_{B}T}\right) \left\{ \exp\left(\frac{q\phi_{s}}{k_{B}T}\right) - 1 - \frac{q\phi_{s}}{k_{B}T}\right\} \end{bmatrix} \right\}$$

MOS equation

- With $\epsilon_{Si} \frac{d\phi}{dx}\Big|_{\Omega^+} = Q_S$,
 - -The equation is simply written as

$$\epsilon_{ox} \frac{\phi_{s} - \left(-V_{fb} + V_{G}\right)}{t_{ox}} = Q_{s}$$

-With
$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$
,

$$\phi_S - \left(-V_{fb} + V_G\right) = \frac{Q_S}{C_{ox}}$$

$$V_G - V_{fb} = -\frac{Q_S}{C_{ox}} + \phi_S$$

(Of course, Q_s is a nonlinear function of ϕ_s .)

Newton method

- It is straightforward to implement the Newton method.
 - –The equation for $\phi_{\scriptscriptstyle S}$ is

$$-\frac{Q_S}{C_{OX}} + \phi_S - V_G + V_{fb} = 0$$

The derivative is

$$-\frac{1}{C_{ox}}\frac{dQ_s}{d\phi_s}+1$$

 $-\frac{1}{C_{ox}}\frac{dQ_s}{d\phi_s}+1$ (Of course, we know how to calculate $\frac{dQ_s}{d\phi_s}$.)

An example

- Let us calculate ϕ_s . For example, 1.0 V?
 - –Assume that Φ_m is 4.10 eV and χ is 4.05 eV.
 - -Also, N_C at 300 K is 2.85665X10¹⁹ cm⁻³ and n_{int} at 300 K is 1.075X10¹⁰ cm⁻³. Therefore, $E_C E_i$ is 0.561 eV.
 - –Assume that the p-type doping concentration is 10^{17} cm⁻³. Then, the flatband voltage, V_{fb} , is about -0.92481 V. When V_G is 1.0 V, $\overline{\phi}$ at gate is 1.92481 V.
 - The oxide thickness is 10 nm. 1.0 0.9479459310308174 0.0006777834886385816 Then, ϕ_S is about 0.948 V. 1.0 0.947940831181903 -2.911728105350234e-10
- How about $V_G = 1.1 \text{ V}$?
 - Even in this case, ϕ_s is about 0.954 V. (Only slightly increased)

Homework#5

- Due: AM08:00, October 8
- Problem#1
 - Consider a MOS capacitor with $N_a=10^{17}~{\rm cm}^{-3}$ and $t_{ox}=10~{\rm nm}$. The metal workfunction is 4.10 eV. Draw ϕ_s as a function of V_G .

Thank you for your attention!