Joulukuun vaativammat valmennustehtävät – ratkaisut

1. Tapa 1. Pätee z=x+y-2, joten $z^2=(x+y-2)^2=x^2+y^2$, josta sieventämällä seuraa 2xy-4x-4y+4=0. Siispä (x-2)(y-2)=2. Tästä yhtälöstä saadaan suoraan x=3,y=4 tai x=0,y=1 jos oletetaan symmetrian nojalla $x\leq y$. Sijoittamalla lukujen x ja y arvot voidaan laskea z. Siispä (x,y,z)=(0,1,-1),(1,0,-1),(3,4,5) tai (4,3,5).

Tapa 2. Luvut x, y, z muodostavat Pythagoraan kolmikon. Tunnetusti kaikki Pythagoraan kolmikot saadaan kaavasta $x = m^2 - n^2, y = 2mn, z = \pm (m^2 + n^2)$ joillakin $m, n \in \mathbb{Z}$, tai vaihtamalla muuttujien x ja y roolit. Nyt $m^2 - n^2 + 2mn = \pm (m^2 + n^2) + 2$, joten $n^2 = mn - 1$ tai $m^2 + mn = 1$. Näin ollen $n \mid 1$ tai $m \mid 1$ eli m tai n on ± 1 . Jos n = 1, niin m = 2 ja jos n = -1, niin m = -2. Jos $m = \pm 1$, niin n = 0. Saadaan n = 3, n = 4, n = 1, a räiden symmetriset versiot, kuten aikaisemminkin.

2. Sovelletaan Cauchy-Schwarzin epäyhtälöä jonoihin (a^2,b^2,c^2) ja (b,c,a). Tällöin väite seuraa.

3. Osoitetaan, että Bertta voittaa. Käytetään induktiota; tapaus n=2 on selvä. Oletetaan tapaus n ja tarkastellaan tapausta n+1. Jos Anna aloittaa positamalla vaakarivin, Bertta poistaa jonkiin pystyrivin, ja päin vastoin. Nyt yhden kierroksen jälkeen jäljellä on $(n+1)^2-2(n+1)+1=n^2$ tyhjää ruutua, joiden voidaan ajatella muodostavan $n\times n$ -neliön (liimataan neljä muodostunutta osaa yhteen. Pois jätetetty rivi ja sarake eivät vaikuta peliin, koska ovat jo väritettyjä.) Induktio-oletuksen nojalla Bertta voittaa tällä uudella $n\times n$ laudalla, joten hän voittaa alun perinkin.

4. Todistetaan aluksi yläraja. Olkoon $a \geq b \geq c$, jolloin $\alpha \geq \beta \geq \gamma$. Kolmioepäyhtälöllä b+c>a, ja toisaalta $\alpha a+\beta b+\gamma c \leq (\alpha+\beta+\gamma)a=180^{\circ}\cdot a$, koska a on luvuista a,b,c suurin. Siten

$$\frac{\alpha a + \beta b + \gamma c}{a + b + c} < \frac{180^{\circ} a}{2a} = 90^{\circ}.$$

Todistetaan sitten alaraja. Väite on

$$\frac{\alpha a + \beta b + \gamma c}{3} \ge \frac{\alpha + \beta + \gamma}{3} \frac{a + b + c}{3}.$$

Tämä seuraa suoraan Tsebyshevin epäyhtälöstä (jonka voi todistaa suuruusjärjestysepäyhtälöllä), koska α, β, γ ja a, b, c ovat samassa suuruusjärjestyksessä.

5. Olkoon n=6k+1 jollakin kokonaisluvulla k>0. Tällöin n on pariton ja $2^n+=2^{6k+1}+6k+1\equiv 2+1\equiv 0\pmod 3$. Siispä 2^n+n ei ole alkuluku näillä äärettömän monella n.

6. Osoitetaan aluksi, ettei jono a_n ei ole rajoitettu.

Tapa 1. Osoitetaan induktiolla $a_n > \frac{\sqrt{n}}{2}$, minkä jäkeen väite seuraa. Tapaus n=1 on selvä. Jos oletetaan tapaus n, niin $a_{n+1} > \frac{\sqrt{n}}{2} + \frac{2}{\sqrt{n}}$, koska funktio $f(x) = x + \frac{1}{x}$ on aidosti kasvava, kun $x \ge 1$ (ja koska $a_1 = 1$, on $a_n > 1$ kaikilla n > 1). Epäyhtälö $\frac{\sqrt{n}}{2} + \frac{2}{\sqrt{n}} > \frac{\sqrt{n+1}}{2}$ saa neliöimällä muodon $n+8+\frac{16}{n} > n+1$, joka on tosi.

Tapa 2. Oletataan, että a_n on rajoitettu. Tällöin on olemassa M siten, että $a_n < M$ kaikilla n mutta $a_n > M - \frac{1}{M}$ äärettömän monella n. Jos n on tällainen luku, pätee $a_{n+1} > M - \frac{1}{M} + \frac{1}{M} = M$; ristiriita oletukselle.

Tapa 3. Selvästi $a_{n+1} > a_n$ kaikilla n. Tunnetusti kasvava, rajoitettu jono reaalilukuja suppenee. Jos siis a_n on rajoitettu, on olemassa x, jolle $a_n \to x$ kun $n \to \infty$. Luvulle x on nyt pädettävä $x = x + \frac{1}{x}$; ristiriita.

Osoitetaan sitten, että $a_{100} < 15$.

On helpompaa osoittaa vahvempi tulos: $a_n < \frac{3}{2}\sqrt{n}$ kaikilla n. Kun n=1 tai n=2, tämä on selvää. Jos oletetaan tapaus n, niin $a_{n+1} < \frac{3}{2}\sqrt{n} + \frac{2}{3\sqrt{n}}$ (jälleen koska $f(x) = x + \frac{1}{x}$ on kasvava). Nyt riittää osoittaa $\frac{3}{2}\sqrt{n} + \frac{2}{3\sqrt{n}} < \frac{3}{2}\sqrt{n+1}$, eli yhtäpitävästi $\frac{9}{4}n + 2 + \frac{4}{9n} < \frac{9}{4}(n+1)$, joka pätee kun $n \geq 2$.

7. **Tapa 1.** Olkoon $M = \lfloor \sqrt[10]{n} \rfloor$. Kukin luvuista $r_1^{\beta_1}, r_2^{\beta_2}, ..., r_{11}^{\beta_{11}}$, missä r_i on i:s alkuluku suuruusjärjestyksessä, jakaa luvun n, kun $\beta_i = \lfloor \log_{r_i} M \rfloor$ ja

M>31. Erityisesti $\beta_i\geq \frac{1}{10}\log_{r_i}n-1$, kun n on riittävän suuri. Seuraa

$$n > 2^{\beta_1} \cdot 3^{\beta_2} \cdot \dots \cdot 31^{\beta_{11}} > n^{\frac{1}{10}} 2^{-1} \cdot n^{\frac{1}{10}} 3^{-1} \cdot \dots \cdot n^{\frac{1}{10}} 31^{-1}$$

(31 on yhdestoista alkuluku). Siispä $n \ge n^{\frac{11}{10}}2^{-1} \cdot \dots \cdot 31^{-1}$, mikä on mahdotonta suurille n.

Tapa 2. Käytetään aikaisempia merkintöjä. Jos $n>11^{10}$, niin lukujen M,M-1,...,M-10 pienin yhteinen monikerta, sanotaan N, jakaa luvun n. Aritmetiikan peruslauseen nojalla lukujen $p_1^{a_1}...p_k^{a_k},\,p_1^{b_1}...p_k^{b_k},\,p_1^{c_1}...p_k^{c_k},...$ pienin yhteinen monikerta on

$$p_1^{\max\{a_1,b_1,c_1,\ldots\}}...p_k^{\max\{a_k,b_k,c_k,\ldots\}}$$

kun $p_1,...,p_k$ ovat erisuuria alkulukuja (eksponentit voivat olla nollia, eli luvuilla ei tarvitse olla samat alkutekijät). Nyt jos p^a on alkulukupotenssi ja p>11, niin oletuksesta $p^a\mid M(M-1)...(M-10)$ seuraa $p^a\mid N$, koska 11 peräkkäisestä luvusta vain yksi voi olla jaollinen luvulla p. Jos taas $p\leq 11$, niin oletuksesta seuraa $p^{\max\{a-18,1\}}\mid N$, koska jokin luvuista M,M-1,...,M-10 on jaollinen vähintään näin korkealla p:n potenssilla (siksi, että enintään kaksi niistä on jaollinen p^3 :lla, enintään kolme jaollisia p^2 :lla ja enintään kuusi jaollisia p:llä). Jos merkitään

$$M(M-1)...(M-10) = 2^{\alpha_1} 3^{\alpha_2} 5^{\alpha_3} 7^{\alpha_4} 11^{\alpha_5} q_1^{\alpha_6} ... q_r^{\alpha_{r+5}},$$

missä $11 < q_1 < ... < q_r$ ovat alkulukuja, niin saadaan

$$N \ge 2^{\alpha_1 - 18} 3^{\alpha_2 - 18} 5^{\alpha_3 - 18} 7^{\alpha_4 - 18} 11^{\alpha_5 - 18} q_1^{\alpha_6} \dots q_r^{\alpha_{r+5}} \ge \frac{M(M-1) \dots (M-10)}{(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11)^{18}}$$
$$> \frac{(M-10)^{11}}{(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11)^{18}}.$$

Koska $N \leq (M+1)^{10}$, saadaan ristriita, kun M on riittävän suuri.

Tapa 3. Sovelletaan Bertrandin postulaattia, jonka mukaan välillä [x,2x] on alkuluku kaikilla $x\geq 1$. Jos käytetään aikaisempia merkintöjä, N on vähintään alkulukujen $p\leq M$ tulo. Bertrandin postullatin mukaan tästä seuraa

$$N \ge \frac{M}{2} \cdot \frac{M}{2^2} \cdot \dots \cdot \frac{M}{2^{11}} = \frac{M^{11}}{2^{66}},$$

kun $M \geq 2^{12}$ (eli n on riittävän suuri). Koska $N \leq (M+1)^{10}$, suurilla n saadaan ristiriita.

- 8. Olkoon M suorien AE ja OC leikkauspiste ja N suorien DE ja BC leikkauspiste. Kaaret AC ja AD ovat symmetrian nojalla yhtä pitkät. Siispä $\angle AEC = \angle AED$. Koska OCB on tasakylkinen kolmio, on $\angle AEC = \angle ABC$, $\angle ABC = \angle OCB$. Tästä seuraa $\angle AED = \angle OCB$ ja edelleen $\angle MEN = \angle MCN$. Täten MNEC on jännenelikulmio, joten $\angle MNC = \angle MEC = \angle OBC$. Kolmiot MNC ja MEC ovat siis yhdenmuotoiset. Niistä saadaan verranto $\frac{1}{2} = \frac{CM}{CO} = \frac{CN}{NB}$, mikä todistaa väitteen.
- 9. Geometrisen sarjan summakaavalla ja aritmeettis-geometrisella epäyhtälöllä

$$\frac{x^n-1}{x-1} = x^{n-1} + \ldots + x + 1 \geq n x^{\frac{(n-1)+\ldots+1+0}{n}} = n x^{\frac{n-1}{2}},$$

kuten haluttiin.

10. Niitä joukkueita, joissa Matikkalaisia on k ja Fysiikkalaisia N-k, on $\binom{n}{k}\binom{n+1}{N-k}$. Niitä joukkueita, joissa $k>\frac{N}{2}$, eli Matikkalaisia on enemmän, on

$$\sum_{k>\frac{N}{2}} \binom{n}{k} \binom{n+1}{N-k} = \sum_{k>\frac{N}{2}} \binom{n}{k} \binom{n}{N-k} + \sum_{k>\frac{N}{2}} \binom{n}{k} \binom{n}{N-1-k}$$

Pascalin kolmiosta seuraavan binomikertoimien ominaisuuden nojalla. Lisäksi pätee

$$\sum_{k > \frac{m}{2}} \binom{n}{k} \binom{n}{m-k} = \sum_{k < \frac{m}{2}} \binom{n}{k} \binom{n}{m-k}$$

binomikertoimien symmetrian nojalla. Tehdään vielä yksi havainto: pätee

$$\sum_{k} \binom{n}{k} \binom{m}{N-k} = \binom{m+n}{N},$$

koska molemmat puolet laskevat, monellako tavalla m+n objektista voi valita N kappaletta. Olkoon aluksi N parillinen. Tällöin haluttujen joukkueiden lukumääräksi saadaan

$$\frac{1}{2}\left(\binom{2n}{N}-\binom{n}{\frac{N}{2}}^2\right)+\frac{1}{2}\binom{2n}{N-1}=\frac{1}{2}\binom{2n+1}{N}-\frac{1}{2}\binom{n}{\frac{N}{2}}^2.$$

Olkoon sitten N pariton. Nyt haluttuja joukkueita on

$$\frac{1}{2}\binom{2n+1}{N} - \frac{1}{2}\binom{n}{\frac{N-1}{2}}^2.$$

Jakamalla tulokset kaikkien joukkueiden määrällä $\binom{2n+1}{N}$ saadaan kysytyksi todennäköisyydeksi

$$\frac{1}{2} - \frac{\binom{n}{\lfloor \frac{N}{2} \rfloor}^2}{2\binom{2n+1}{N}}.$$