703308/703309 VO+PS High-Performance Computing Where are the slides?

https://github.com/philippgs/uibk hpc 24 or

https://tinyurl.com/UIBKHPC24

703308/703309 VO+PS High-Performance Computing Introduction & Administrative Stuff

Philipp Gschwandtner

Organizational stuff

lecturer information

- philipp.gschwandtner@uibk.ac.at
- philgs
- room 2W05, ICT building
- no fixed office hours (send an e-mail, I'm quite responsive)
- Adhere to my communication rules!

dates and location

- see Ifu:online (<u>VO</u>, <u>PS</u>) for exact dates
- generally:
 - lecture every Wednesday 11:00-12:45 in HSB 4
 - proseminar every Tuesday08:30-10:00 in RR 15
- Except for December!

Communication rules

- Philipp (Gschwandtner (PhD))
- Use of LLMs (ChatGPT & Co)
 - "I hope this e-mail finds you well"
 - overly polite
 - very generic & lengthy
 - eloquent, over-the-top phrases
 - wastes my time and yours

https://xkcd.com/1838/

More organizational stuff

prerequisites

- interest in parallel hardware, parallel programing and high-performance computing
- lecture: very little beyond that
- proseminar: + programming in C/C++

language

English

content

- general concepts of parallel programming and its intricacies
 - concepts apply to almost all parallel programming models
 - as an example, we will mainly discuss MPI
 - there are countless others (OpenMP, Kokkos, CUDA, SYCL, TBB, Cilk, Pthreads, C++ STL, Charm++, X10, ...)
 - also bits and pieces of hardware every now and then
- guided tour
- Feel free to request topics!

Grading: Lecture

- no mandatory attendance
 - Note: not everything I say will be on the slides...
- ▶ single, written exam on January 29th 2025
 - multiple exercises with multiple points
 - > standard grading scheme, ≥ 50 % for positive grade, 12.5% intervals between grades
 - Don't memorize the slides, understand the content!

Grading: Proseminar

- weekly assignments, published on GitHub
 - https://github.com/philippgs/uibk hpc 24
- teamwork is permitted and encouraged
 - 3 people max. per team
 - every team member must be able to present and discuss solution
- solutions must be handed in via OLAT until Monday 17:00!
 - solutions must work on the LCC3 cluster
 - copying solutions (e.g. off the Internet) is acceptable if properly cited and understood
 - grade is 50 % solutions, 50 % presentations/discussion both must be ≥ 50 %!

Interaction & feedback

- platform for interaction outside of the PS/VO
 - https://discord.gg/Muyg3dKW2M
- anonymous feedback possible via Google Form linked in OLAT

Literature

www.internet.com

- MPI: A Message-Passing Interface Standard 4.1
 (PDF available via https://www.mpi-forum.org/, hardcover of v3.1 available)
- Stackoverflow
- Google
- ...

old school: Printed books

▶ Let me know and I will look up some references...

Who is this speaker, what does he do besides teaching?

- Head of Research Center HPC (Forschungszentrum Hochleistungsrechnen), University of Innsbruck (https://dps.uibk.ac.at/~philipp, https://uibk.ac.at/fz-hpc)
 - Studied computer science @ UIBK, focus on parallel programming, benchmarking and tuning
- Research interests in and around HPC
 - Measurement/optimization/modeling of performance, energy, efficiency, ...
 - APIs, programming models, runtime systems, compilers, ...
- Aid researchers at UIBK in developing and optimizing parallel applications
 - (Co-)Writing HPC-focused project proposals
 - Making stuff go faster
 - Giving training course on how to make stuff go faster (OpenMP, MPI, etc.)
- Supervising very exciting master theses!

Extremely professional-looking photo of Philipp Gschwandtner (© Andreas Friedle)

What are we all doing here?

- discuss key concepts of parallel computing
 - hardware and software aspects
 - multiple non-functional aspects there's more than just speed
 - portability, usability, maintainability, sustainability
- we still need to actually do some concrete work
 - (mostly) MPI for implementing and evaluating distributed-memory parallelism concepts
 - we'll use LCC3 for running experiments

What are we going to discuss?

- crash course on hardware and programming models
- introduction to MPI (and a bit of other APIs/models such as OpenMP?)
- tons of generic concepts at the example of MPI (and others) programs
 - metrics: performance, efficiency, scalability
 - problem partitioning, scheduling and load balancing
 - parallel program classification and characteristics
 - programmer productivity, debugging, profiling
 - ...

Hints (not only) for this course

- choose a suitable source code editor/ IDE and choose it wisely!
- get acquainted with your toolchain
 - debuggers, version control (git), etc.
- use common sense and sanity checks!

Questions?

Image sources

- ► LCC3: https://www.uibk.ac.at/zid/systeme/hpc-systeme/leo3/
- ► Sandbox: http://www.googblogs.com/open-sourcing-sandboxed-api/