

Markscheme

May 2017

Physics

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Q	uestic	on	Answers	Notes	Total
1.	а		it is not possible to draw a straight line through all the error bars OR the line of best-fit is curved/not a straight line ✓	Treat as neutral any reference to the origin. Allow "linear" for "straight line".	1
	b	i	$d = 0.35 \pm 0.01$ AND $\Delta d = 0.05 \pm 0.01$ «cm» \checkmark « $\frac{\Delta d}{d} = \frac{0.05}{0.35}$ » = 0.14 OR 1 or 14 % or 0.1 \checkmark	Allow final answers in the range of 0.11 to 0.18. Allow [1 max] for 0.03 to 0.04 if $x=\lambda 5$ 10 ⁶ m is used.	2
	b	ii	28 to 30 % ✓	Allow ECF from (b)(i), but only accept answer as a %	1
	С	i	a: m² ✓ b: m ✓	Allow answers in words	2

(Question 1 continued)

C	Question		Answers	Notes	Total
	С	ii	ALTERNATIVE 1 – if graph on page 4 is used $d^2 = 0.040 \times 10^{-4}$ «m²» ✓ $d = 0.20 \times 10^{-2}$ «m» ✓ ALTERNATIVE 2 – if graph on page 2 is used any evidence that d intercept has been determined ✓ $d = 0.20 \pm 0.05$ «cm» ✓	For MP1 accept answers in range of 0.020 to 0.060 « cm 2 » if they fail to use given value of "a". For MP2 accept answers in range 0.14 to 0.25 « cm » .	2

C	Question		Answers	Notes	Total
2.	а		correct labelling of both instruments ✓	Cell with internal resistance	1
	large triangle to find gradient and correct read-offs from the line		large triangle to find gradient and correct read-offs from the line OR use of intercept E=1.5 V and another correct data point ✓	For MP1 – do not award if only $R=\frac{V}{I}$ is used. For MP2 points at least 1A apart must be used. For MP3 accept final answers in the range of 0.55 Ω to 0.65 Ω .	3

(Question 2 continued)

Q	Question		Answers	Notes	Total
	С	i	a non-zero reading when a zero reading is expected/no current is flowing OR	OWTTE Do not accept just "systematic error".	1
			a calibration error ✓		
	С	ii	the error causes «all» measurements to be high/different/incorrect ✓	Award [1 max] for statement of "no effect" without valid argument.	
			effect on calculations/gradient will cancel out	OWTTE	2
			OR		
			effect is that value for <i>r</i> is unchanged ✓		

Section B

Option A — Relativity

C	uestion	Answers	Notes	Total
3.	а	the speed of light is a universal constant/invariant OR c does not depend on velocity of source/observer ✓ electric and magnetic fields/forces unified/frame of reference dependant ✓		1 max
	b observer X will measure zero «magnetic or electric» force ✓ observer Y must measure both electric and magnetic forces ✓ which must be equal and opposite so that observer Y also measures zero force ✓		Allow [2 max] for a comment that both X and Y measure zero resultant force even if no valid explanation is given.	3

A COUNTY OF A COUN	
ALTERNATIVE 1 — for answers in terms of time overall idea that more muons are detected at the ground than expected «without time dilation» ✓ «Earth frame transit time = $\frac{2000}{0.98c}$ » = 6.8 « μs » ✓ «Earth frame dilation of proper half-life = 2.2 μs × 5 » = 11 « μs » OR « muon's proper transit time = $\frac{6.8 \mu s}{5}$ » = 1.4 « μs » ✓ ALTERNATIVE 2 – for answers in terms of distance overall idea that more muons are detected at the ground than expected «without time dilation» ✓ « distance muons can travel in a proper lifetime = 2.2 μs × 0.98c » = 650 « m » ✓ « Earth frame lifetime distance due to time dilation = 650 m × 5 » = 3250 « m » OR « muon frame distance travelled = $\frac{2000}{5}$ » = 400 « m » ✓	om one of the

C	Questi	on	Answers	Notes	
5.	а	i	the gamma factor is $\frac{5}{3}$ or 1.67 \checkmark	Allow ECF from MP1 to MP2.	2
			$L = \frac{450}{\frac{5}{3}} = 270 \text{ m/s} \checkmark$		2
	а	ii	$u' = \left(\frac{u - v}{1 - \frac{uv}{c^2}}\right) = \frac{0.20c - 0.80c}{1 - 0.20 \times 0.80}$	Check signs and values carefully.	
			OR		2
			$0.2c = \frac{0.80c + u'}{1 + 0.80u'} \checkmark$		2
			<i>u'</i> = « − » 0.71 <i>c</i> ✓		
	b	i	$\Delta t' = \langle \gamma \left(\Delta t - \frac{v \Delta x}{c^2} \right) = \rangle \frac{5}{3} \times \left(0 - \frac{(0.80c \times 9000)}{c^2} \right) \checkmark$	Allow ECF for use of wrong γ from (a)(i).	2
			$\Delta t' = \mathbf{e} - \mathbf{v} \cdot 4.0 \times 10^{-5} \mathbf{es} \mathbf{v}$		
	b	ii	lamp 2 turns on first ✓	Ignore any explanation	1

(Question 5 continued)

Q	uesti	on	Answers	Notes	Total
	С	i	x coordinate as shown ✓	Labels must be clear and unambiguous.	
			ct coordinate as shown ✓	Construction lines are optional.	
			space station ct-axis event 2 1.0 m rocket x'-axis event 1 space station x-axis		2
	С	ii	«in any other frame» <i>ct</i> is greater ✓	MP1 is a statement	
			the interval $ct' = 1.0 \text{ m}$ is proper time	MP2 is an explanation	
			OR		2
			ct is a dilated time		2
			OR		
			$ct = \gamma ct' \ll = \gamma \gg \checkmark$		
	С	iii	use of $c^2t^2 - x^2 = c^2t'^2 - x'^2$	For MP1 equation must be used.	
			$c^2t^2-x^2=1^2-0^2=1$ «m²» \checkmark	Award [2] for correct answer that first finds x (1.33 m) and ct (1.66 m)	2

Qu	estion	Answers	Notes	Total
6.		pion momentum is $\gamma mv = 1.2265 \times 140 \times 0.579 = 99.4$ «MeV c ⁻¹ » \checkmark use of momentum conservation to realize that produced particles have equal and opposite momenta \checkmark so for proton $\gamma v = \frac{99.4}{938} = 0.106c$ \checkmark solving to get $v = 0.105c$ \checkmark	Accept pion momentum calculation using $E^2 = p^2c^2 + m^2c^4$. Award [2 max] for a non-relativistic answer of $v = 0.0864c$.	4

7.	а	i	the surface at which the escape speed is the speed for light	Accept distance as alternative to surface.	
			OR		
			the surface from which nothing/not even light can escape to the outside		1
			OR		
			the surface of a sphere whose radius is the Schwarzschild radius ✓		
	а	ii	use of $A = 4\pi R^2$ and $R = \frac{2GM}{c^2}$		4
			$\text{wto get } A = \frac{16\pi G^2 M^2}{c^4} \text{ w}$		1

(Question 7 continued)

Qu	Question		Answers	Notes	Total
	a	iii	since mass and energy can never leave a black hole and $A = \frac{16\pi G^2 M^2}{c^4}$		
			OR		1
			some statement that area is increasing with mass ✓		-
			«the area cannot decrease»		
	b		ALTERNATIVE 1 — (student/planet frame):		
			photon energy/frequency decreases with height		
			OR		
			there is a gravitational redshift ✓		
			detector in ceiling is approaching photons so Doppler blue shift ✓		3
			two effects cancel/frequency unchanged ✓		3
			ALTERNATIVE 2 – (box frame):		
			by equivalence principle box is an inertial frame ✓		
			so no force on photons ✓		
			so no redshift/frequency unchanged ✓		

Option B — Engineering physics

C	Question		Answers	Notes	Total
8.	а	i	zero ✓		1
	а	ii	the torque of each force is $9.60 \times 10^3 \times 6.0 = 5.76 \times 10^4$ «Nm» \checkmark so the net torque is $2 \times 5.76 \times 10^4 = 1.15 \times 10^5$ «Nm» \checkmark	Allow a one-step solution.	2
	b		the angular acceleration is given by $\frac{1.15 \times 10^5}{1.44 \times 10^4}$ «= 8.0s^{-2} » \checkmark $\omega = \alpha t = 8.0 \times 2.00 = 16$ « s^{-1} » \checkmark		2
	С	i	$1.44 \times 10^{4} \times 16.0 = (1.44 \times 10^{4} + 4.80 \times 10^{3}) \times \omega \checkmark$ $\omega = 12.0 \text{ (s}^{-1}\text{)} \checkmark$	Allow ECF from (b).	2
	С	ii	initial KE $\frac{1}{2} \times 1.44 \times 10^4 \times 16.0^2 = 1.843 \times 10^6 \text{ «J» } \checkmark$ final KE $\frac{1}{2} \times (1.44 \times 10^4 + 4.80 \times 10^3) \times 12.0^2 = 1.382 \times 10^6 \text{ «J» } \checkmark$ loss of KE = 4.6×10^5 «J» \checkmark	Allow ECF from part (c)(i).	3

C	Questi	on	Answers	Notes	Total
9.	а	i	$\Delta U = 0 \text{ so } Q = \Delta U + W = 0 + 416 = 416 \text{ «J» } \checkmark$	Answer given, mark is for the proof.	1
	a	ii	alternative 1 use $pV^{\frac{5}{3}} = c$ to get $TV^{\frac{2}{3}} = c$ ✓ hence $T_C = T_A \left(\frac{V_A}{V_C}\right)^{\frac{2}{3}} = 612 \times 0.5^{\frac{2}{3}} = 385.54$ ✓ « $T_C \approx 386$ K» Alternative 2 $P_C V_C^{\gamma} = P_A V_A^{\gamma}$ giving $P_C = 1.26 \times 10^6$ «Pa» ✓ $\frac{P_C V_C}{T_C} = \frac{P_A V_A}{T_A}$ giving $T_C = 1.26 \times \frac{612}{2} = 385.54$ «K» ✓ « $T_C \approx 386$ K»	Answer of 386K is given. Look carefully for correct working if answers are to 3 SF. There are other methods: Allow use of $P_{\rm B}=2\times10^6$ « Pa » and $\frac{P}{T}$ is constant for BC. Allow use of $n=0.118$ and $T_{\rm C}=\frac{P_{\rm C}V_{\rm C}}{nR}$.	2
	а	iii	$Q = \Delta U + W = \frac{3}{2} \frac{P_{A} V_{A}}{T_{A}} \Delta T + 0 \checkmark$ $Q = \frac{3}{2} \times \frac{4.00 \times 10^{6} \times 1.50 \times 10^{-4}}{612} \times (386 - 612) \checkmark$	Answer of 330 J given in the question. Look for correct working or more than 2 SF.	2

(Question 9 continued)

C	Question		Answers	Notes	Total
	а	iv	$e = \frac{Q_{\text{in}} - Q_{\text{out}}}{Q_{\text{in}}} = \frac{416 - 332}{416}$ e = 0.20	Allow $\frac{416 - 330}{416}$. Allow e=0.21.	2
	b		entropy is largest at B \checkmark entropy increases from A to B because T =constant but volume increases so more disorder or $\Delta S = \frac{Q}{T}$ and $Q > 0$ so $\Delta S > 0$ \checkmark entropy is constant along CA because it is adiabatic, Q =0 and so ΔS = 0		3
			OR entropy decreases along BC since energy has been removed, $\Delta Q < 0$ so $\Delta S < 0$		

C	Questic	on	Answers	Notes	Total
10.	а	i	$\Delta p = \frac{1}{2}\rho (v_T^2 - v_L^2) = \frac{1}{2} \times 1.20 \times (28.4^2 - 16.6^2) = 318.6 \text{ «Pa} \checkmark$ $F = \frac{318.6}{4} \times \frac{2.50 \times 10^{-2}}{4} = 1.99 \text{ «N} \checkmark$	Allow ECF from MP1.	2
	а	ii	downward arrow of any length or position ✓	Accept any downward arrow not just vertical.	1
	b		flow is laminar/non-turbulent OR Bernoulli's equation holds OR pressure is uniform on each hemisphere OR diameter of ball can be ignored /ρgz = constant ✓		1

Q	uestic	on	Answers	Notes	Total
11.	a		lower peak ✓ identical behaviour to original curve at extremes ✓ peak frequency shifted to the left ✓ A f	Award [0] if peak is higher. For MP2 do not accept curves which cross.	2 max
	b	i	displacement of vibrator is $0 \checkmark$ because phase difference is $\frac{\pi}{2}$ or 90° or $\frac{1}{4}$ period \checkmark	Do not penalize sign of phase difference. Do not accept $\frac{\lambda}{4}$ for MP2	2
	b	ii	resonant $f = 0.125 \text{ «Hz »} \checkmark$ $\frac{25}{(2\pi \times 0.125)} = 32 \text{ «s»} \checkmark$	Watch for ECF from MP1 to MP2.	2

Option C — Imaging

Q	Question		Answers	Notes	Total
12.	а	i	line of correct curvature as shown ✓		1
	а	ii	line of approximately correct curvature as shown ✓		1

(Question 12 continued)

Question	Answers	Notes	Total
b	wave travels slower in glass than in air OR RI greater for glass ✓ wavelength less in glass than air ✓ hence wave from Q will cover a shorter distance «than in air» causing the curvature shown ✓	OWTTE	2 max
С	realization that the two lenses must have a common focal point \checkmark distance is $12-4.0=8.0$ «cm» \checkmark	Accept MP1 from a separate diagram or a sketch on the original diagram. A valid reason from MP1 is expected. Award [1 max] for a bald answer of 12-4=8 «cm».	2

13.	а	states $f_o + f_e = 90$ AND $\frac{f_o}{f_e} = 17$ solves to give $f_o = 85$ AND $f_e = 5$ «cm»	Both needed. Both needed.	2
	b	angle subtended by Moon is $\frac{0.16}{17} = 0.0094$ «rad» \checkmark $0.0094 = \frac{D}{3.8 \times 10^8} \checkmark$ $D = 3.6 \times 10^6$ «m» \checkmark	Allow ECF from MP1. Allow [2] for an answer of 6.1×10^7 «m» if the factor of 17 is missing in MP1.	3
	С	operation day and night ✓ operation at all wavelengths/no atmospheric absorption ✓ operation without atmospheric turbulence/light pollution ✓	Accept any other sensible advantages.	2 max

Q	uestic	on	Answers	Notes	Total
14.	а		calculation of critical angle at core–cladding boundary $\ll 1.52 \times \sin \theta_{\rm C} = 1.48 \text{w} \theta_{\rm C} = 76.8^{\circ} \checkmark$ refraction angle at air–core boundary $90^{\circ} - 76.8^{\circ} = 13.2^{\circ} \checkmark$ $\ll 1.52 \times \sin 13.2^{\circ} = \sin A \text{w} A = 20.3^{\circ} \checkmark$	Allow ECF from MP1 to MP2 to MP3.	3
	b	i	attenuation: output signal has smaller area ✓	OWTTE	2
			dispersion: output signal is wider than input signal ✓	OWTTE	
	b	ii	attenuation = $\ll 10 \log \frac{I}{I_0} = 10 \log \frac{77}{320} = $ $\ll - $ $\approx 6.2 \ll dB $ $\ll - $	Allow intensity ratio to be inverted.	2
			$\frac{-6.2}{5.1} = \text{«-} \text{» } 1.2 \text{ «dB km}^{-1} \text{»} \checkmark$	Allow ECF from MP1 to MP2.	_

Q	Question		Answers	Notes	Total
15.	а		accept any value between 1 MHz to 20 MHz ✓		1
	b		an alternating electrical signal is applied to a crystal ✓ crystal vibrates emitting sound ✓ frequency of vibration of crystal is the same as the frequency of the ac ✓ mention of piezoelectric effect/crystal ✓		3 max
	С	i	$Z_{\text{muscle}} = 1.71 \times 10^6 \text{ wkg m}^{-2} \text{ s}^{-1} \text{ w} \checkmark$		1
	С	ii	$ \frac{I_2}{I_1} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2} = 4.3 \times 10^{-3} $ $ I_2 = (0.012 \times (4.3 \times 10^{-3})) = 5.1 \times 10^{-5} $ $ W cm^{-2} $	Allow ECF from (c)(i). Allow ECF from MP1 to MP2.	2

Que	estion	Answers	Notes	Total
16.		a «strong» magnetic field aligns proton «spins» ✓	OWTTE	
		an RF signal is applied to excite protons	Treat any mention of the following as neutral as	
		OR	they are not strictly relevant to the question: gradient field, Larmor frequency, precession,	
		change spin up to spin down state ✓	resonance, 3-D image	
				3 max
		protons de-excite/return to lower energy state		
		OR		
		proton relaxation occurs ✓		
		with emission of RF radiation «that is detected» ✓		

${\bf Option} \ {\bf D} - {\bf Astrophysics}$

Q	Question		Answers	Notes	Total
17.	а		core: helium ✓	Accept no other elements.	
			outer layer: hydrogen ✓		2
	b		ratio of masses is $\left(\frac{10^4}{10^{-3}}\right)^{\frac{1}{3.5}} = 10^2 \checkmark$		
			ratio of volumes is $\left(\frac{10}{10^{-1}}\right)^3 = 10^6 \checkmark$		3
			so ratio of densities is $\frac{10^2}{10^6} = 10^{-4}$ \checkmark	Allow ECF for MP3 from earlier MPs	
	С	i	line to the right of X, possibly undulating, very roughly horizontal ✓	Ignore any paths beyond this as the star disappears from diagram.	1
	С	ii	gravitation is balanced by a pressure/force due to neutrons/neutron degeneracy/Pauli exclusion principle ✓	Do not accept electron degeneracy.	1
	С	iii	$L = \sigma A T^4 = 5.67 \times 10^{-8} \times 4\pi \times (2.0 \times 10^4)^2 \times (10^6)^4 \checkmark$		
			$L = 3 \times 10^{26}$ « W »	Allow ECF for [1 max] if πr^2 used (gives 7×10^{25} « W »)	2
			OR	Allow ECF for a POT error in MP1.	
			$L = 2.85 \times 10^{26} \text{ «W » } \checkmark$		
	С	iv	$\lambda = \frac{2.9 \times 10^{-3}}{10^6} = 2.9 \times 10^{-9} \text{ m/s} \checkmark$		2
			this is an X-ray wavelength ✓		

C	uestic	on	Answers	Notes	Total
18.	а		theory in which all space/time/energy/matter were created at a point/singularity ✓ at enormous temperature ✓ with the volume of the universe increasing ever since <i>or</i> the universe expanding ✓	OWTTE	2 max
	b		CMB has a black-body spectrum ✓ wavelength stretched by expansion ✓ is highly isotropic/homogenous ✓ but has minor anisotropies predicted by BB model ✓ $T \ll = 2.7 \text{K} \text{»} \text{ is close to predicted value } \checkmark$	For MP4 and MP5 idea of "prediction" is needed	2 max
	С	i	$\frac{v}{c} = z \Rightarrow v = 0.084 \times 3 \times 10^{5} = 2.52 \times 10^{4} \text{ wkms}^{-1} \text{ w} \checkmark$ $d = \frac{v}{H_{0}} = \frac{2.52 \times 10^{4}}{68} = 370.6 \approx 370 \text{ wMpc} \text{ w} \checkmark$	Allow ECF from MP1 to MP2.	2
	С	ii	type Ia have a known luminosity/are standard candles \checkmark measure apparent brightness \checkmark determine distance from $d = \sqrt{\frac{L}{4\pi b}}$ \checkmark	Must refer to type Ia. Do not accept other methods (parallax, Cepheids)	3

Question		on	Answers	Notes	Total
19.	а	i	the cosmological origin of redshift implies that the wavelength is proportional to the scale factor: $\lambda \propto R$ \checkmark combining this with Wien's law $\lambda \propto \frac{1}{T}$ OR use of $kT \propto \frac{hc}{\lambda}$ \checkmark «gives the result»	Evidence of correct algebra is needed as relationship $T = \frac{k}{R}$ is given.	2
	а	ii	use of $T \propto \frac{1}{R} \checkmark$ = 2.8 × 1100 = 3080 ≈ 3100 «K» \checkmark		2
	b		CMB anisotropies are related to fluctuations in density which are the cause for the formation of structures/nebulae/stars/galaxies ✓	OWTTE	1

C	uestion	Answers	Notes	Total
20.	a	dark matter is invisible/cannot be seen directly OR does not interact with EM force/radiate light/reflect light ✓ interacts with gravitational force OR accounts for galactic rotation curves OR accounts for some of the "missing" mass/energy of galaxies/the universe ✓	OWTTE	2
	b	«from data booklet formula» $v = \sqrt{\frac{4\pi G\rho}{3}} \ r$ substitute to get $v = \sqrt{\frac{4\pi Gk}{3}} \ \checkmark$	Substitution of ρ must be seen.	1
	С	curve A shows that the outer regions of the galaxy are rotating faster than predicted ✓ this suggests that there is more mass in the outer regions that is not visible OR more mass in the form of dark matter ✓	OWTTE	2