1. Czynniki wpływające na natężenie refleksu

Natężenie refleksu pochodzącego od kryształu rzeczywistego:

$$I(hkl) = t \cdot A \cdot L \cdot p \cdot |F(hkl)|^2$$

gdzie:

I – natężenie refleksu

hkl – wskaźniki refleksu

t – czynnik skali

A – czynnik absorpcji

L – czynnik Lorentza

p – czynnik polaryzacji

F(hkl) - czynnik struktury (structure factor)

1.

1.

- 2. $Lp \sim heta$ (zależy od kąta Bragga)
- 3. $A=exp(\mu x)$ (zależy od współczynnika absorpcji i drogi promieniowania przez kryształ)
- $4.\ t$ zależy np. od natężenia wiązki padającej
- 2. Czynnik struktury

Czynnik struktury:

$$F(hkl) = \sum_{j=1}^{N} f_j e^{2\pi i(hx_j + ky_j + lz_j)}$$

gdzie:

f_i – atomowy czynnik rozpraszania dla j-tego atomu/jonu (atomic scattering factor)

e – podstawa logarytmu naturalnego, i – jednostka urojona

x_j, y_j, z_j – współrzędne j-tego atomu/jonu w komórce elementarnej, wyrażone w ułamkach periodów identyczności (wielkość bezwymiarowa)

 $2\pi(hx_j+ky_j+lz_j)$ - kąt przesunięcia fazowego (faza): różnica pomiędzy fazą promienia odbitego od płaszczyzny (hkl) przechodzącej przez x_j,y_j,z_j a fazą promienia odbitego od równoległej do niej płaszczyzny (hkl) przechodzącej przez punkt 000.

Sumowanie jest dokonywane po wszystkich atomach i jonach w całej komórce elementarnej, N.

Wartości atomowych czynników rozpraszania zostały obliczone metodami chemii kwantowej. W obliczeniach założono, że atomy/jony są nieruchome oraz sferyczne.

Istnieją również asferyczne atomowe czynniki rozpraszania (rzadko stosowane ze względu na trudność procesu wyznaczania struktury na poziomie atomowym).

Atomowe czynniki rozpraszania zależą od (sinθ)/λ:

- Im większa liczba elektronów w atomie (im cięższy jest atom), tym większe są wartości atomowych czynników rozpraszania. Krzywe na wykresie nie przecinają się.
 - Pojedynczy elektron atomu wodoru rozprasza nieznacznie w porównaniu z atomami innych pierwiastków zwłaszcza dla dużych wartości kąta θ (niski wkład w natężenia refleksów).
- Wartość atomowego czynnika rozpraszania jest równa liczbie elektronów w atomie gdy (sinθ)/λ=0.
- Wartości atomowych czynników rozpraszania maleją wraz ze wzrostem wartości (sinθ)/λ. Dla H, C, N, O (atomów lekkich) wartości atomowych czynników rozpraszania dla (sinθ)/λ > 1.1 są niewielkie.

Dlaczego refleksy wysokokątowe, tzn. powstające pod dużym kątem Bragga θ, mają niskie natężenia (są słabe)?

$$\theta \uparrow \ \rightarrow \ (\text{sin}\theta)/\lambda \uparrow \ \rightarrow \ f_i \downarrow \ \rightarrow \ F \downarrow \rightarrow \ I \downarrow$$

Czynnik rozpraszania dla atomu drgającego:

$$f^T = f \cdot \exp(-B \cdot s^2)$$

gdzie:

f^T – atomowy czynnik rozpraszania dla atomu/jonu drgającego

f – atomowy czynnik rozpraszania dla atomu/jonu nieruchomego

B – atomowy parametr przemieszczenia (atomic displacement parameter, dawniej: czynnik temperaturowy)

 $s = (sin\theta)/\lambda$ $\theta - kąt$ Bragga $\lambda - długość$ fali promieniowania rentgenowskiego.

$$B = 8\pi^2 U = 8\pi^2 < u > 2$$

gdzie:

<u> - tzw. średnia kwadratowa obliczona dla wychyleń atomu z położenia równowagowego. Współcześnie w krystalografii nie są stosowane wartości B, lecz U.

Natężenia refleksów są większe w niskiej temperaturze :

$$T \downarrow \rightarrow \langle u \rangle \downarrow \rightarrow B \downarrow \rightarrow f^T \uparrow \rightarrow F \uparrow \rightarrow I \uparrow$$

- 3. Korekcja natężeń
 - 1. Przekształcanie zmierzonych wartości natężeń refleksów do postaci użytecznej do obliczeń (wyznaczania struktury) uwzględnienie zjawisk polaryzacji i absorpcji.
 - 2. Wyznaczenie F względnego: $F_{rel}(h) = \sqrt{rac{I(h)}{L_P A}}$
 - 3. Jeżeli dobrze rozumiem wyznaczamy również niepewność wyznaczenia F względnego zależnie od niepewności wyznaczenia natężenia refleksu $\Delta F_{rel}=\frac{\Delta I}{2LpAF_{rel}}$
- 4. Określenie układu krystalograficznego na podstawie symetrii rozkładu natężeń refleksów.

6

Wstawienie do wzoru na czynnik struktury, F, współrzędnych punktów symetrycznie równoważnych względem elementów symetrii charakterystycznych dla danego układu krystalograficznego prowadzi do następujących zależności:

w układzie rombowym:

$$I(hkl) = I(\bar{h}kl) = I(h\bar{k}l) = I(h\bar{k}l) = I(h\bar{k}l) = I(\bar{h}kl) = I(\bar{h}kl) = I(\bar{h}kl)$$

w układzie jednoskośnym:

$$I(hkl) = I(h\bar{k}l) = I(\bar{h}kl) = I(\bar{h}\bar{k}l)$$

w układzie trójskośnym:

$$I(hkl) = I(\bar{h}\bar{k}l)$$

- 1
- 2. (w układzie rombowym $I(hkl)=I(\bar{h}kl)=I(h\bar{k}l)=I(hk\bar{l})=I(\bar{h}k\bar{l})=I(\bar{h}k\bar{l})=I(\bar{h}k\bar{l})=I(\bar{h}k\bar{l})=I(\bar{h}k\bar{l})$
- 3. (w układzie jednoskośnym $I(hkl)=I(har{k}l)=I(ar{h}kar{l})=I(ar{h}kar{l})$
- 4. (w układzie 3-skośnym $I(hkl)=I(\bar{h}\bar{k}\bar{l})$)
- 5. Wygaszenia ogólne (integralne), pasowe oraz seryjne. Warunki wygaszeń.

Wygaszenia ogólne – dotyczą refleksów o wskaźnikach hkl

Typ komórki elementarnej	Warunek wygaszenia			
P	brak wygaszeń systematycznych			
A	<u>k+l</u> =2n+1			
В	<u>h+l</u> =2n+1 <u>h+k</u> =2n+1 <u>h+k+l</u> =2n+1			
С				
I				
F	Refleks jest obserwowany gdy wszystkie wskaźniki (h, k i l) są parzyste lub wszystkie wskaźniki są nieparzyste I			

1

Wygaszenia pasowe

Kierunek prostopadły do płaszczyzny poślizgu	dla refleksów	płaszczyzna poślizgu	Warunek wygaszenia
Oś X, [100]		ь	k=2n+1
	0kl	c	l=2n+1
		n	<u>k+l</u> =2n+1
Oś Y, [010]		a	h=2n+1
	hOl	c	I=2n+1
		n	<u>h+l</u> =2n+1
Oś Z, [001]		a	h=2n+1
	hk0	ь	k=2n+1
		n	h+k=2n+1

Wygaszenia seryjne

Kierunek równoległy do osi śrubowej	Dla refleksów	Warunki wygaszeń dla osi 2 ₁ , 4 ₂ , 6 ₃	Warunki dla osi 3 ₁ , 3 ₂ , 6 ₂ i 6 ₄	Warunki dla osi 4 ₁ i 4 ₃	Warunki dla osi 6 ₁ i 6 ₅
Oś X, [100]	h00	h=2n+1	Obserwowany tylko wtedy gdy h=3n	Obserwowany tylko wtedy gdy h=4n	Obserwowany tylko wtedy gdy h=6n
Oś Y [010]	0k0	k=2n+1	Obserwowany tylko wtedy gdy k=3n	Obserwowany tylko wtedy gdy k=4n	Obserwowany tylko wtedy gdy k=6n
Oś Z [001]	001	l=2n+1	Obserwowany tylko wtedy gdy l=3n	Obserwowany tylko wtedy gdy l=4n	Obserwowany tylko wtedy gdy l=6n

6. Zasady wyznaczania grupy dyfrakcyjnej

- 1. Najpierw sprawdzamy wygaszenia związane z typem komórki (wszystkie wskaźniki niezerowe)
- 2. Następnie związane z płaszczami poślizgu (jeden wskaźnik równy zerowo) sprawdzamy takie węzły, których nie wygasza wyznaczony już warunek wygaszanie ogólnego
- 3. Na koniec związane z osiami śrubowymi (dla wskaźniki równe zero) sprawdzamy takie węzły, których nie wygaszają wyznaczone warunki wygaszania ogólnego i pasmowego