A brief introduction to Euclidean Geometry

Le Nhut Namabc

^aDepartment of Optimization & Systems
^bFaculty of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam
^cVietnam National University, Ho Chi Minh City, Vietnam

May 23, 2024

1 / 24

Table of Contents

1 Isometries of the Euclidean plane

Basic Definitions
Theorem of Orthogonal
A connection to Group Theory

2 Curves in \mathbb{R}^n

Curve and The length of Curve
The way to calculate length of curve

Le Nhut Nam 2 / 24

Isometries of the Euclidean plane

- 1 Isometries of the Euclidean plane
- **2** Curves in \mathbb{R}^n

(Standard) inner product

Definition ((Standard) inner product)

The (standard) inner product on \mathbb{R}^n is defined by

$$(\mathbf{x},\mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i.$$

Le Nhut Nam 3 / 24

Euclidean Norm

Definition (Euclidean Norm

The Euclidean norm of $\mathbf{x} \in \mathbb{R}^n$ is

$$\|\mathbf{x}\| = \sqrt{(\mathbf{x}, \mathbf{x})}.$$

This defines a metric on \mathbb{R}^n by

$$d(\mathbf{x},\mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|.$$

Le Nhut Nam 4 / 24

Isometry

Definition (Isometry

A map $f: \mathbb{R}^n \to \mathbb{R}^n$ is an isometry of \mathbb{R}^n if

$$d(f(\mathbf{x}), f(\mathbf{y})) = d(\mathbf{x}, \mathbf{y})$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Le Nhut Nam

Orthogonal matrix

Definition (Orthogonal matrix)

An $n \times n$ matrix A is <u>orthogonal</u> if $AA^T = A^TA = I$. The group of all orthogonal matrices is the orthogonal group O(n).

Le Nhut Nam 6 / 24

Theorem of Orthogonal

Theorem

Every isometry of $f: \mathbb{R}^n \to \mathbb{R}^n$ is of the form

$$f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}.$$

for A orthogonal and $\mathbf{b} \in \mathbb{R}^n$.

Le Nhut Nam 7 / 24

Let f be an isometry. Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be the standard basis of \mathbb{R}^n . Let

$$\mathbf{b} = f(\mathbf{0}), \quad \mathbf{a}_i = f(\mathbf{e}_i) - \mathbf{b}.$$

The idea is to construct our matrix A out of these a_i . For A to be orthogonal, $\{a_i\}$ must be an orthonormal basis.

8 / 24

Indeed, we can compute

Le Nhut Nam

$$\|\mathbf{a}_i\| = \|\mathbf{f}(\mathbf{e}_i) - f(\mathbf{0})\| = d(f(\mathbf{e}_i), f(\mathbf{0})) = d(\mathbf{e}_i, \mathbf{0}) = \|\mathbf{e}_i\| = 1.$$

For $i \neq i$, we have

$$(\mathbf{a}_{i}, \mathbf{a}_{j}) = -(\mathbf{a}_{i}, -\mathbf{a}_{j})$$

$$= -\frac{1}{2}(\|\mathbf{a}_{i} - \mathbf{a}_{j}\|^{2} - \|\mathbf{a}_{i}\|^{2} - \|\mathbf{a}_{j}\|^{2})$$

$$= -\frac{1}{2}(\|f(\mathbf{e}_{i}) - f(\mathbf{e}_{j})\|^{2} - 2)$$

$$= -\frac{1}{2}(\|\mathbf{e}_{i} - \mathbf{e}_{j}\|^{2} - 2)$$

$$= 0$$

So \mathbf{a}_i and \mathbf{a}_j are orthogonal. In other words, $\{\mathbf{a}_i\}$ forms an orthonormal set. It is an easy result that any orthogonal set must be linearly independent. Since we have found n orthonormal vectors, they form an orthonormal basis.

9 / 24

Hence, the matrix A with columns given by the column vectors \mathbf{a}_i is an orthogonal matrix. We define a new isometry

$$g(\mathbf{x}) = A\mathbf{x} + \mathbf{b}.$$

We want to show f = g. By construction, we know $g(\mathbf{x}) = f(\mathbf{x})$ is true for $\mathbf{x} = \mathbf{0}, \mathbf{e}_1, \dots, \mathbf{e}_n$. We observe that g is invertible. In particular,

$$g^{-1}(\mathbf{x}) = A^{-1}(\mathbf{x} - \mathbf{b}) = A^T \mathbf{x} - A^T \mathbf{b}.$$

Moreover, it is an isometry, since A^T is orthogonal (or we can appeal to the more general fact that inverses of isometries are isometries).

Le Nhut Nam 10 / 24

We define

$$h = g^{-1} \circ f$$
.

Since it is a composition of isometries, it is also an isometry. Moreover, it fixes $\mathbf{x} = \mathbf{0}, \mathbf{e}_1, \dots, \mathbf{e}_n$.

It currently suffices to prove that h is the identity.

Let $\mathbf{x} \in \mathbb{R}^n$, and expand it in the basis as

$$\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i.$$

Let

$$\mathbf{y}=h(\mathbf{x})=\sum_{i=1}^n y_i\mathbf{e}_i.$$

We can compute

$$d(\mathbf{x}, \mathbf{e}_i)^2 = (\mathbf{x} - \mathbf{e}_i, \mathbf{x} - \mathbf{e}_i) = ||\mathbf{x}||^2 + 1 - 2x_i$$

 $d(\mathbf{x}, \mathbf{0})^2 = ||\mathbf{x}||^2$.

Similarly, we have

$$d(\mathbf{y}, \mathbf{e}_i)^2 = (\mathbf{y} - \mathbf{e}_i, \mathbf{y} - \mathbf{e}_i) = \|\mathbf{y}\|^2 + 1 - 2y_i$$
$$d(\mathbf{y}, \mathbf{0})^2 = \|\mathbf{y}\|^2.$$

Since h is an isometry and fixes $\mathbf{0}, \mathbf{e}_1, \cdots, \mathbf{e}_n$, and by definition $h(\mathbf{x}) = \mathbf{y}$, we must have

$$d(\mathbf{x},\mathbf{0}) = d(\mathbf{y},\mathbf{0}), \quad d(\mathbf{x},\mathbf{e}_i) = d(\mathbf{y},\mathbf{e}_i).$$

The first equality gives $\|\mathbf{x}\|^2 = \|\mathbf{y}\|^2$, and the others then imply $x_i = y_i$ for all i. In other words, $\mathbf{x} = \mathbf{y} = h(\mathbf{x})$. So h is the identity.

Definition (Isometry group)

The <u>isometry group</u> $lsom(\mathbb{R}^n)$ is the group of all isometries of \mathbb{R}^n , which is a group by composition.

Le Nhut Nam 13 / 24

Special orthogonal group

Definition (Special orthogonal group)

The special orthogonal group is the group

$$SO(n) = \{ A \in O(n) : \det A = 1 \}.$$

Le Nhut Nam 14 / 24

Definition (Orientation)

An <u>orientation</u> of a vector space is an equivalence class of bases — let $\mathbf{v}_1, \dots, \mathbf{v}_n$ and $\mathbf{v}'_1, \dots, \mathbf{v}'_n$ be two bases and A be the change of basis matrix. We say the two bases are equivalent iff det A > 0. This is an equivalence relation on the bases, and the equivalence classes are the orientations.

Definition (Orientation-preserving isometry)

An isometry $f(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ is <u>orientation-preserving</u> if det A = 1. Otherwise, if det A = -1, we say it is orientation-reversing.

Le Nhut Nam 15 / 24

Curves in \mathbb{R}^n

- 1 Isometries of the Euclidean plane
- **2** Curves in \mathbb{R}^n

A curve Γ in \mathbb{R}^n is a continuous map $\Gamma : [a, b] \to \mathbb{R}^n$.

Le Nhut Nam 16 / 24 Considering a dissection $\mathcal{D} = a = t_0 < t_1 < \cdots < t_N = b$ of [a, b], and set $P_i = \Gamma(t_i)$, and define

$$\int_a^b \|\Gamma'(t)\| \, \mathrm{d}t,$$

Le Nhut Nam 17 / 24

Length of curve

The length of a curve $\Gamma: [a, b] \to \mathbb{R}^n$ is

$$\ell = \sup_{\mathcal{D}} \mathcal{S}_{\mathcal{D}},$$

if the supremum exists.

Alternatively, if we let

$$\operatorname{mesh}(\mathcal{D}) = \max_{i}(t_i - t_{i-1}),$$

then if ℓ exists, then we have

$$\ell = \lim_{\mathrm{mesh}(\mathcal{D}) o 0} s_{\mathcal{D}}$$

Le Nhut Nam

How to calculate length of curve?

If Γ is continuously differentiable (i.e. C^1), then the length of Γ is given by

length(
$$\Gamma$$
) = $\int_a^b \|\Gamma'(t)\| dt$.

Le Nhut Nam 19 / 24 To simplify notation, we assume n=3. However, the proof works for all possible dimensions. We write

$$\Gamma(t) = (f_1(t), f_2(t), f_3(t)).$$

For every $s \neq t \in [a, b]$, the mean value theorem tells us

$$\frac{f_i(t)-f_i(s)}{t-s}=f_i'(\xi_i)$$

for some $\xi_i \in (s, t)$, for all i = 1, 2, 3.

Now note that f_i are continuous on a closed, bounded interval, and hence uniformly continuous. For all $\varepsilon \in 0$, there is some $\delta > 0$ such that $|t - s| < \delta$ implies

$$|f_i(\xi_i) - f(\xi)| < \frac{\varepsilon}{3}$$

for all $\xi \in (s, t)$. Thus, for any $\xi \in (s, t)$, we have

$$\left\|\frac{\Gamma(t)-\Gamma(s)}{t-s}-\Gamma'(\xi)\right\| = \left\|\begin{pmatrix}f_1'(\xi_1)\\f_2'(\xi_2)\\f_3'(\xi_3)\end{pmatrix}-\begin{pmatrix}f_1'(\xi)\\f_2'(\xi)\\f_3'(\xi)\end{pmatrix}\right\| \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon.$$

In other words,

$$\|\Gamma(t) - \Gamma(s) - (t-s)\Gamma'(\xi)\| < \varepsilon(t-s).$$

We relabel $t = t_i$, $s = t_{i-1}$ and $\xi = \frac{s+t}{2}$.

Using the triangle inequality, we have

$$egin{aligned} \left(t_i-t_{i-1}
ight)\left\|\Gamma'\left(rac{t_i+t_{i-1}}{2}
ight)
ight\|&-arepsilon(t_i-t_{i-1})<\left\|\Gamma(t_i)-\Gamma(t_{i-1})
ight\|\ &<\left(t_i-t_{i-1}
ight)\left\|\Gamma'\left(rac{t_i+t_{i-1}}{2}
ight)
ight\|+arepsilon(t_i-t_{i-1}). \end{aligned}$$

Summing over all i, we obtain

$$egin{aligned} \sum_i (t_i - t_{i-1}) \left\| \Gamma'\left(rac{t_i + t_{i-1}}{2}
ight)
ight\| - arepsilon (b-a) &< S_{\mathcal{D}} \ &< \sum_i (t_i - t_{i-1}) \left\| \Gamma'\left(rac{t_i + t_{i-1}}{2}
ight)
ight\| + arepsilon (b-a), \end{aligned}$$

which is valid whenever $\operatorname{mesh}(\mathcal{D}) < \delta$.

Le Nhut Nam 22 / 24

Since Γ' is continuous, and hence integrable, we know

$$\sum_{i} (t_i - t_{i-1}) \left\| \Gamma'\left(\frac{t_i + t_{i-1}}{2}\right) \right\| \to \int_a^b \|\Gamma'(t)\| \, dt$$

as $\operatorname{mesh}(\mathcal{D}) \to 0$, and

$$\operatorname{\mathsf{length}}(\Gamma) = \lim_{\operatorname{mesh}(\mathcal{D}) o 0} S_{\mathcal{D}} = \int_a^b \|\Gamma'(t)\| \; \mathrm{d}t.$$

Le Nhut Nam

References I

C. G. Gibson.

Elementary Euclidean geometry: an introduction.

Cambridge University Press, 2003.

D. J. Robinson.

A Course in the Theory of Groups, volume 80.

Springer Science & Business Media, 2012.

Le Nhut Nam 24 / 24