金融工程

第0章 资产定价方法

厦门大学财务系 郑振龙 陈蓉

http:// efinance.org.cn http:// aronge.net

目录

- * 绝对定价法与相对定价法
- * 复制定价法、风险中性定价法与状态价格定价法
- * A General Case
- * 积木分析法

绝对定价法与相对定价法

* 绝对定价法: 运用恰当的贴现率将未来现金流贴现加总(股票和债券)

- *相对定价法:利用标的资产价格与衍生证券价格之间的内在关系,直接根据标的资产价格求出衍生证券价格
- *绝对定价法具有一般性,易于理解,但难以应用;相对定价法则易于实现,贴近市场,一般 仅适用于衍生证券

目录

- * 绝对定价法与相对定价法
- * 复制定价法、风险中性定价法与状态价格定价法
- * A General Case
- * 积木分析法

套利

*如果一个市场上,存在下述情况:初期投入为0 ,未来回报大于等于0,大于0的概率大于0,这 个市场就存在套利机会,否则该市场是无套利的 。

- * 市场达到无套利均衡时的价格简称无套利价格。
- * 无套利是衍生资产定价的基本假设,以下三种定价方法均基于无套利的假设。

复制定价法: 例子

* 假设一种不支付红利股票目前的市价为10元, 我们知道在3个月后,该股票价格或者为11元,或者为9元。假设选择的无风险年利率为 10%,如何为一份3个月期协议价格为10.5元 的该股票看涨期权定价? * 为了找出该期权的价值,可构建一个由一单位 看涨期权空头和Δ单位标的股票多头组成的组 合。为了使该组合在期权到期时无风险,Δ 必须满足

11
$$\triangle$$
 -0.5=9 \triangle

* 该组合的现值应为

$$2.25e^{-0.1\times0.25} = 2.19\overline{\pi}$$

*由于该组合中有一单位看涨期权空头和0.25单位股票多头,而目前股票市价为10元,因此

$$10 \times 0.25 - f = 2.19$$

 $f = 0.31 \vec{\pi}$

复制定价法的核心

* 复制

* 定价过程中我们用股票和期权合成了一个无风险资产,也可理解为用股票和无风险资产复制出了期权

* 无套利

* 无风险组合获取无风险收益

风险中性定价法

- * 从复制定价法中可以看出,在确定期权价值时 ,我们并不需要知道股票价格在真实世界中上 涨到 11 元的概率和下降到 9 元的概率。也就 是说,我们并不需要了解真实世界中股票未来 价格的期望值,而期望值的确定正与投资者的 主观风险偏好相联系。
- * 因此我们可以在假设风险中性的前提下为期权定价。

风险中性定价法原理

- * 在为衍生证券定价时,我们作了一个可以大大简化工作的假定:投资者是风险中性的。
- * 在此假设下,所有可交易证券的漂移率率都等于无风险利率,因为风险中性的投资者不需要额外的风险收益来吸引他们承担风险;相应地,所有未来现金流的贴现率也都是无风险利率。
- * 这仅仅是一个技术假定,我们并不真的认为市场投资者是风险中性的。但在此假定下的结论不仅适用于投资者风险中性的情形,也适用于投资者厌恶风险的现实世界。
- * 这就是风险中性定价原理。

风险中性定价法: 例子

* 假设一种不支付红利股票目前的市价为10元, 我们知道在3个月后,该股票价格或者为11元,或者为9元。假设选择的无风险年利率为 10%,如何为一份3个月期协议价格为10.5元 的该股票看涨期权定价? * 在风险中性世界中,假设股票价格上升的概率 为 \hat{P} . 下跌概率为 $1-\hat{P}$. 则

$$e^{-0.1 \times 0.25} \left[11\hat{P} + 9\left(1 - \hat{P}\right) \right] = 10$$

$$\hat{P} = 0.6266$$

*这样,根据风险中性定价原理,期权价值为

$$f = e^{-0.1 \times 0.25} (0.5 \times 0.6266 + 0 \times 0.3734) = 0.31 \vec{\pi}$$

风险中性定价法的核心

*要注意的是,我们之所以能够使用风险中性定价法,是因为我们假设市场是无套利的和完全的。

* 完全市场是指所有证券都是可复制的。

状态价格定价法

- * 状态价格: 在特定的状态发生时回报为1, 否则回报为0的资产在当前的价格。
- * 如果未来时刻有N种状态,而这N种状态的价格都已知,那么我们只要知道某种资产在未来各种状态下的回报状况,就可以对该资产进行定价,这就是状态价格定价技术。

* 显然,状态价格定价法也是基于无套利和可复制的前提。

状态价格定价法: 例子

* 假设一种不支付红利股票目前的市价为10元, 我们知道在3个月后,该股票价格或者为11元,或者为9元。假设选择的无风险年利率为 10%,如何为一份3个月期协议价格为10.5元 的该股票看涨期权定价? * 设上升状态价格为 π_u ,下跌状态价格为 π_d 。则

$$\begin{cases} 11p_u + 9p_d = 10 \\ p_u + p_d = e^{-10\% \times 3/12} \end{cases}$$

$$p_u = 0.62, p_d = 0.35$$

$$f = 0.5 \times 0.62 = 0.31$$
元

目录

- * 绝对定价法与相对定价法
- * 复制定价法、风险中性定价法与状态价格定价法
- * A General Case
- * 积木分析法

A General case

*假设一只无红利支付的股票,当前时刻t股票价格为S,基于该股票的某个期权的价值是f,期权到期日为T。在期权存续期内,股票价格或者上升到Su,相应的期权回报为f_u;或者下降到Sd,相应的期权回报为f_d。

复制定价法

* 构造一个由一单位看涨期权空头和△单位标的 股票多头组成的组合,并可计算得到该组合无 风险时的△值。 $D = \frac{f_u - f_d}{f_u}$

* 如果无风险利率为r, 在无套利条件下, 有 $SD - f = (SuD - f_u)e^{-r(T-t)}$ $f = e^{-r(T-t)} \left[\hat{P} f_u + \left(1 - \hat{P} \right) f_d \right]$

 $\hat{P} = \frac{e^{r(T-t)} - d}{1 - d}$ * 所以

风险中性定价法

* 假设风险中性世界中股票的上升概率为 P 。 在无套利条件下,股票价格未来期望值按无风 险利率贴现的现值等于该股票当前的价格,即

$$S = e^{-r(T-t)} \left[\hat{P}Su + \left(1 - \hat{P}\right)Sd \right]$$

* 因此

$$\hat{P} = \frac{e^{r(T-t)} - d}{u - d}$$

$$f = e^{-r(T-t)} \left[\hat{P} f_u + (1 - \hat{P}) f_d \right]$$

状态价格定价法

*购买Su份基本证券1和Sd份基本证券2,在无 套利条件下,该组合在T时刻的回报与股票是 相同的,即

$$S = p_u Su + p_d Sd \rightarrow p_u u + p_d d = 1$$

* 同时,购买1份基本证券1和1份基本证券2,在 无套利条件下,该组合在T时刻总能获得1元, 也就是说,这是无风险组合,即

$$p_u + p_d = e^{-r(T-t)}$$

* 所以

$$p_{u} = \frac{1 - de^{-r(T-t)}}{u - d}, p_{d} = \frac{ue^{-r(T-t)} - 1}{u - d}$$

*继而有

$$f = e^{-r(T-t)} \left[\hat{P} f_u + \left(1 - \hat{P} \right) f_d \right]$$

$$\hat{P} = \frac{e^{r(T-t)} - d}{u - d}$$

Question

* 在现实世界中状态价格取决于什么?

* 你知道该股票在现实世界中上升的概率吗?

目录

- * 绝对定价法与相对定价法
- * 复制定价法、风险中性定价法与状态价格定价法
- * A General Case
- * 积木分析法

积木分析法

*金融工程产品和方案本来就是由股票、债券等基础性证券和4种衍生证券构造组合形成的,积木分析法非常适合金融工程

* 积木分析法的重要工具是金融产品回报图或是损益图。

Any Questions?

