

Laboratoire d'Astrophysique Ecole Polytechnique Fédérale de Lausanne Switzerland

http://lastro.epfl.ch

Kriging Interpolation

Application to the GREAT10 Star Challenge

Marc Gentile, Guldariya Nurbaeva, Frederic Courbin, Georges Meylan

(Laboratoire d'Astrophysique de l'EPFL, Switzerland)

Laboratoire d'Astrophysique Ecole Polytechnique Fédérale de Lausanne Switzerland

Agenda

- The GREAT10 Star Challenge
- Approaching the problem
- Introducing Kriging
- Some results on simulated Star Challenge data
- Some results on actual Star Challenge data

The data

The data

48x48 pixels square postage stamps

- Spatially-varying PSF field
- Images contain Gaussian noise

The challenge

Approaching the problem

Key problems to tackle

- How to predict the right star images at arbitrary non-star positions?
- How to model individual star images?

"Kriging"

- Over the past several decades, Kriging has become a fundamental spatial prediction tool in Geostatistics
 - geostatistics: a branch of statistics focusing on spatial or spatio-temporal data
- Found applications in many fields: mining, environmental sciences, hydrogeology, remote sensing... Why not astrophysics?

"Kriging"

- Named after mining engineer D. G. Krige, further developed by G. Matheron in the 60s
- A method for interpolating the value of a random field at an unobserved location based on available surrounding measurements
- The Kriging interpolation is local, exact and probabilistic

Kriging is a local interpolation method

 For its estimation, Kriging only considers measurements within some neighbourhood

Kriging is an exact interpolation method

- Predictions at known observed values yield exactly the same values again
- The interpolation produces a surface that passes exactly through all known points in the estimation neighbourhood

Kriging: a probabilistic interpolation method

- Assumes a random field of the form $Z(\mathbf{x}) = \mu(\mathbf{x}) + \varepsilon(\mathbf{x})$ with $E[\varepsilon(\mathbf{x})] = 0$ and covariance function $C(\mathbf{x}_j, \mathbf{x}_i) = E[\varepsilon(\mathbf{x}_i) \ \varepsilon(\mathbf{x}_j)]$
- Assumes the random field has some degree of stationary
- The prediction error can be estimated (Kriging variance)

Kriging assumes Intrinsic Stationarity

- Intrinsic stationarity
 - Constancy of the first two moments of the differences: [Z(x+h)-Z(x)]

$$E[Z(\mathbf{x} + \mathbf{h}) - Z(\mathbf{x})] = 0$$
 for small \mathbf{h} at least

$$Var\left[Z\left(\mathbf{x}+\mathbf{h}\right)-Z\left(\mathbf{x}\right)\right]=E\left[\left(Z\left(\mathbf{x}+\mathbf{h}\right)-Z\left(\mathbf{x}\right)\right)^{2}\right]=2\gamma\left(\mathbf{h}\right)$$

-
$$\gamma(\mathbf{h}) = \frac{1}{2}E\left[\left(Z(\mathbf{x} + \mathbf{h}) - Z(\mathbf{x})\right)^2\right]$$
 is the 'semi-variance'

- $h = \mathbf{x}_j - \mathbf{x}_i$ is the 'lag' separation distance

Semi-Variogram

• Compute the semi-variance for a range of lags $h = \mathbf{x}_j - \mathbf{x}_i$

Semi-Variogram

• Compute the semi-variance for a range of lags $h = \mathbf{x}_j - \mathbf{x}_i$... one gets some like this:

Nugget (C0): Semivariance at distance 0: Represents microscale variations or measurement errors

Range (a): Distance at which semivariance levels off: Represents the spatially correlated portion

Sill (C₀ + C₁): Semivariance at which leveling takes place

Semi-Variogram

Estimate the correlation distance in the data

Sample GREAT10 Galaxy Challenge:

Training Set Shear Semi-Variogram

Kriging prediction

Made using a weighted linear estimator

$$z_0^* = z^*(\mathbf{x}_0) = \sum_{i=1}^N \lambda_i \, z(\mathbf{x}_i)$$

 λ_i : weight at location \mathbf{x}_i

 z_0^* : predicted value at \mathbf{x}_0

 d_i : distance between \mathbf{x}_i and \mathbf{x}_0

N: number of sample values used in prediction

Kriging prediction: computing the weights

 Kriging aims at minimizing the so-called Kriging Variance

$$Var\left(Z_{0}^{*}\right) = E\left[\left(Z^{*}\left(\mathbf{x}_{0}\right) - Z\left(\mathbf{x}_{0}\right)\right)^{2}\right] = 2\sum_{i=1}^{N} \lambda_{i} \gamma\left(\mathbf{x}_{i}, \mathbf{x}_{0}\right) - \sum_{i=1}^{N} \lambda_{i} \lambda_{j} \gamma\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]$$

Subject to the unbiaseness condition

$$E\left[Z^{*}\left(\mathbf{x}_{0}\right)-Z\left(\mathbf{x}_{0}\right)\right]=\sum_{i=1}^{N}\lambda_{i}\,\mu\left(\mathbf{x}_{i}\right)-\mu\left(\mathbf{x}_{0}\right)=0$$

Ordinary Kriging Equations

- Ordinary Kriging (OK): most commonly-used
- Ordinary Kriging assumes $Z(\mathbf{x}) = \mu(\mathbf{x}) + \varepsilon(\mathbf{x})$

$$\mu\left(\mathbf{x}\right) = \mathbf{E}\left[Z\left(\mathbf{x}\right)\right] = \mu$$
 constant but unknown

which implies
$$\sum_{i=1}^{N} \lambda_i = 1$$

Ordinary Kriging Equations

$$\sum_{j=1}^{N} \lambda_j \gamma (\mathbf{x}_j - \mathbf{x}_i) + m = \gamma (\mathbf{x}_0 - \mathbf{x}_j) \qquad i = 1, ..., N$$

$$\sum_{i=1}^{N} \lambda_i = 1$$

m: Lagrange multiplier

Main Kriging Steps

- Compute the semi-variance > semi-variogram
- Fit experimental variogram

 variogram variogram model
- At unknown location estimate Kriging weights within some neighbourhood
- Solve the Kriging equation to find the weights λ_i
- Kriging estimate is: $z_0^* = z^*(\mathbf{x}_0) = \sum_{i=1}^N \lambda_i z(\mathbf{x}_i)$

Approaching the problem

Key problems to tackle

- How to predict the right star images at arbitrary non-star positions?
- How to model individual star images?

Approaching the problem

Modeling individual images

• Fit against a realistic star model (Moffat ...)

$$p(r) = \frac{\beta - 1}{\pi \alpha^2} \left[1 + \left(\frac{r}{\alpha} \right)^2 \right]^{-\beta}$$

 Mathematical decomposition in some basis (wavelets, Zernike polynomials ...)

Direct use of pixels: individually, by block ...

Kriging applied to the Star Challenge

Sample Experimental Semi-Variograms

Point Spread Function ellipticity (e₁,e₂)

Kriging applied to the Star Challenge

Sample Experimental Semi-Variograms

Point Spread Function FWHM and Moffat beta

Sample Experimental Covariance Functions

Sample Model-Fitted Semi-Variogram

Ellipticity: predictions at asked positions

Kriging from Simulated Images: predictions

Kriging from Simulated Images: predictions

Kriging from Simulated Images: residuals

Kriging on actual Star Challenge Data

Ellipticity: predictions at asked positions

Kriging Cross-Validation

A few conclusive remarks

- The results of Kriging from simulated data and cross-validation are very encouraging
- Kriging seems quite sensitive to the presence of outliers or misfit values
 - The prediction currently fails for some images
- We plan to submit to GREAT10 in the next few weeks once these problems are solved
- Our current implementation of Kriging:
 - Does not take spatial anisotropy into account
 - Does not attempt to correct the trend in the data Addressing this may improve the results further

Thank You!

Some Extra Slides

Sample Variogram Clouds

H-Scattergram Plots

