

General information

Designation

Polypropylene (Impact copolymer, high flow)

Tradenames

A. Schulman Pp; Acclear; Accpro; Acctuf; Accucomp; Achieve; Addilene; Adflex; Adpro; Akrolen; Alphacan; Altech; Anapro; Aplax; Appryl; Aqualoy; Arcoplen; Armlen; Arpak; Arpro; Astryn; Atofinapolypropylene; Azdel; Bapolene; Bergaprop; Bicor; Bormed; Borstar; Bras-Tec; Braskem Pp; Bynel; Caltex; Capilene; Carboprene; Carmelstat; Cefor; Certene; Clyrell; Compel; Compotene; Comshield; Corton; Cosmoplene; Cotene; Cp Pryme Polypropylene; Cuyolen; Daelimpoly; Dafnelen; Daicelpp; Danapro; Daplen; Delta; Denilen; Dep; Dexflex; Digilyte; Dow; Dualpoly; Ecollent; El-Pro; Eltex; Eltex P; EnDure; Endura; Epsilon; Equistarpp; Escalloy; Esdash; Estaprop; Eticourt; Extron; Exxonmobil Pp; Exxpol Enhance; Exxtral; FHR; Ferrexnewfoamer; Ferrolene; Fhr Polypropylene; Fiberfil; Finapro; Flametec; Formolene; Fortilene; Gapex; Globalene; Grand Polpro; Haiplen; Halene; Hi-Glass; Hifax; Hishiplate; Hival; Hms; Hoegolen; Hopelen; Hostacen; Hostacom; Hostalen Pp; Huntsman; Huntsman Pp; Hyosung Pp; Hypro; Hyundai; Inertec: Innovene Pp: Inspire: Ipiranga: Isplen: Jazz: Kelburon: Kopelen: Kopelen: Kovlene: Latene: Lucent: Lupol: Luvogard; M. Holland; Mafill; Magnacomp; Majoris; Malen-P; Marlex Pp; Maxbatch; Maxpro; Maxxam; Metallyte; Metocene; Microthene; Moplen; Mosten; Multipro; Mytex; Network Polymers Pp; Neviprop; Newstren; Niplene; Nissen; Noblen; Nortuff; Novatec; Novolen; Oleform; Olehard; Olesafe; Oppalytetrespaphan; Osstyrol; Osterlene; Palprop; Percom; Permastat; Petoplen; Petrothene; Piolen; Plastiflam; Polene; Polifor; Polycom; Polycomp; Polyfill; Polyflam; Polyfort; Polystone; Polyvance; Ponalen; Pre-Elec; Primefin; Pro-Fax; Procom; Prolen; Propak; Propilco Pp; Propilven; Propylux; Protec; Proteg; Proteus; Purell; RTP; Ranplen; Razalen; Refax; Regal; Repol; Repolen; Reptol; Retpol; Rexene; Rhetech Pp; Rotothon; Sabic Pp; Samsung Total; Sanalite; Sanren; Saxene; Scolefin; Seetec; Sequel; Simona; Sinpolene; Slovalen; Spolen; Stamax; Stamylan; Starpylen; Strandfoam; Sunlet; Sunoco Pp; Sup-Tech; Syntegum; Taboren; Taffen; Taipolene; Tairipro; Talcoprene; Tatren; Tecafine; Tecolen; Teknoplen; Terez; Thermolen; Thermylene: Tipplen: Topilene: Torayfan: Total: Total: Petrochemicals Polypropylene: Tracolen: Trapylen: Trilene: Trilene: Umastyr; Valmax; Valtec; Vamplem; Vylene; Vyon; Wintec; Wpp; Xenopren; Yuhwa; Yuplene; Yuyao; Zeral

Typical uses

Furniture, automotive applications, automotive bumper, lawn and garden equipment, tool/tote box, luggage, consumer applications, household goods, sporting goods, toys, containers, plastics modification, battery cases, industrial applications, lids, business equipment, construction applications, automotive interior parts, outdoor furnishings, automotive exterior parts, automotive under the hood, electrical/electronic applications, automotive instrument panel, containers, food, outdoor applications, film, cast, appliance components, fishing applications, parts, industrial, blending, compounding, fascias, trays, support, closures, containers, industrial, general purpose, packaging, food, buckets, bowls, general mechanical parts, bottle crates, medical components, washing machine drums, pipes, bottle caps, films for packaging, fibers for carpeting and artificial sports surfaces, electric cars, hybrid cars, air purifiers, dehumidifiers, air conditioners, battery packs, batteries

Included in Materials Data for Simulation	✓
Materials Data for Simulation name	Plastic, PP (impact copolymer, high flow)

Composition overview

Compositional summary

Block copolymer of PP homopolymer and 5-25 wt% ethylene-propylene copolymer rubber (EPR or E/P). Forms a two-phase (heterophase) material with EPR finely dispersed in the continuous PP phase.

Material family	Plastic (thermoplastic, semi-crystalline)
Base material	PP (Polypropylene)
Additive	Impact modifier
Polymer code	PP-I

Composition detail (polymers and natural materials)

PP (impact copolymer, high flow)

GRANTA EDUPACK				
Polymer	80	-	90	%
Impact modifier	10	-	20	%
Price				
Price	* 2,44	-	2,51	EUR/kg
Price per unit volume	* 2,19e3	-	2,27e3	EUR/m^3
Physical properties				
Density	896	-	905	kg/m^3
Mechanical properties				
Young's modulus	* 1,03	-	1,23	GPa
Specific stiffness	* 1,14	-	1,36	MN.m/kg
Yield strength (elastic limit)	19	-	22	MPa
Tensile strength	19	-	23	MPa
Specific strength	21,1	-	24,4	kN.m/kg
Elongation	59,5	-	245	% strain
Elongation at yield	5,5	-	10,4	% strain
Compressive modulus	* 1,03	-	1,23	GPa
Compressive strength	* 30,6	-	32,2	MPa
Flexural modulus	1,02	-	1,28	GPa
Flexural strength (modulus of rupture)	17,3	-	34	MPa
Shear modulus	* 0,401	-	0,442	GPa
Bulk modulus	* 1,07	-	1,18	GPa
Poisson's ratio	* 0,367	-	0,405	
Shape factor	6			
Hardness - Vickers	6			HV
Hardness - Rockwell M	* 43	-	47	
Hardness - Rockwell R	62	-	77	
Hardness - Shore D	63	-	68	
Hardness - Shore A	* 94	-	99	
Elastic stored energy (springs)	* 158	-	219	kJ/m^3
Fatigue strength at 10^7 cycles	* 7,37	-	7,74	MPa
Improved Q functions proportion				
Impact & fracture properties	* 4.00		1.06	MDa mAO E
Fracture toughness	* 1,23	-	1,36	MPa.m^0.5
Toughness (G)	* 1,32	-	1,7	kJ/m^2
Impact strength, notched 23 °C	6,95	-	12,4	kJ/m^2
Impact strength, notched -30 °C	4,05	-	5,8	kJ/m^2
Impact strength, unnotched 23 °C	590	-	600	kJ/m^2
Impact strength, unnotched -30 °C	590	-	600	kJ/m^2
Thermal properties				
Melting point	158	-	167	°C
Glass temperature	-25	-	-17	°C
I				

PP (impact copolymer, high flow)

Heat deflection temperature 0.45MPa	83,3	-	101	°C
Heat deflection temperature 1.8MPa	45,2	-	61,3	°C
Vicat softening point	127	-	148	°C
Maximum service temperature	* 59,6	-	76,4	°C
Minimum service temperature	* -26	-	-11	°C
Thermal conductivity	* 0,183	-	0,19	W/m.°C
Specific heat capacity	1,66e3	-	1,92e3	J/kg.°C
Specific heat capacity with temperature	1,6e3	-	1,6e3	J/kg.°C

Parameters: Temperature = 23°C

Thermal expansion coefficient	110	-	130	µstrain/°C
Thermal shock resistance	* 133	-	175	°C
Thermal distortion resistance	* 0,00143	-	0,0017	MW/m

Electrical properties

Electrical resistivity	* 9,9e22	-	1,01e23	µohm.cm
Electrical conductivity	* 1,71e-21	-	1,74e-21	%IACS
Dielectric constant (relative permittivity)	* 2,2	-	2,28	
Dissipation factor (dielectric loss tangent)	* 1,96e-4	-	2,04e-4	
Dielectric strength (dielectric breakdown)	* 17,6	-	18,4	MV/m
Comparative tracking index	600			V

Magnetic properties

Optical, aesthetic and acoustic properties

Refractive index	1,48 - 1,5
Transparency	Translucent
Acoustic velocity	* 1,07e3 - 1,17e3 m/s
Mechanical loss coefficient (tan delta)	* 0,0426 - 0,0448

GRANTA EDUPACK

Critical materials risk							
Contains >5wt% critical elements?	No						
Absorption & permeability							
Water absorption @ 24 hrs	* 0,0195	-	0,0205	%			
Water vapor transmission	0,224	_	0,308	g.mm/m².day			
Permeability (O2)	61,2	-	144	cm³.mm/m².day.atm			
Processing properties							
Polymer injection molding	Excellent						
Polymer extrusion	Excellent						
Polymer thermoforming	Acceptab	le					
Linear mold shrinkage	1,25	-	1,65	%			
Melt temperature	205		238	°C			
Mold temperature	23,4	_	49,7	°C			
Molding pressure range	2,94		24,9	MPa			
Widding pressure range	2,94		24,3	IVII a			
Durability							
Water (fresh)	Excellent						
Water (salt)	Excellent						
Weak acids	Excellent						
Strong acids	Excellent						
Weak alkalis	Excellent						
Strong alkalis	Excellent						
Organic solvents	Excellent	Excellent					
Oxidation at 500C	Unaccept	able					
UV radiation (sunlight)	Poor						
Flammability	Highly flar	nmal	ole				
Notes							
Currently NOT UL tested but expected to pass the HB test	40		00	0/			
Oxygen index	18	-	20	%			
Primary production energy, CO2 and water							
Embodied energy, primary production (virgin grade)	* 74,4	-	82	MJ/kg			
Embodied energy, primary production (typical grade)	* 73	-	80,6	MJ/kg			
CO2 footprint, primary production (virgin grade)	* 3,16	-	3,48	kg/kg			
CO2 footprint, primary production (typical grade)	* 3,1	-	3,42	kg/kg			
Water usage	* 33,5	-	37	l/kg			
Processing energy, CO2 footprint & water							
Polymer extrusion energy	* 5,93	-	6,56	MJ/kg			
Polymer extrusion CO2	* 0,445	-	0,492	kg/kg			
Polymer extrusion water	* 4,87	-	7,31	l/kg			
Polymer molding energy	* 21,8	-	24,1	MJ/kg			
Polymer molding CO2	* 1,63	-	1,81	kg/kg			
Polymer molding water	* 13,9	-	20,8	l/kg			

PP (impact copolymer, high flow)

Coarse machining energy (per unit wt removed)	* 0,732	-	0,809	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0,0549	-	0,0607	kg/kg
Fine machining energy (per unit wt removed)	* 3,05	-	3,37	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0,229	-	0,253	kg/kg
Grinding energy (per unit wt removed)	* 5,62	-	6,21	MJ/kg
Grinding CO2 (per unit wt removed)	* 0,422	-	0,466	kg/kg

Recycling and end of life

Recycle	√		
Embodied energy, recycling	* 25,2	- 27,9	MJ/kg
CO2 footprint, recycling	* 1,07	- 1,18	kg/kg
Recycle fraction in current supply	2,57	- 2,84	%
Downcycle	✓		
Combust for energy recovery	✓		
Heat of combustion (net)	* 44	- 46,2	MJ/kg
Combustion CO2	* 3,06	- 3,22	kg/kg
Landfill	✓		
Biodegrade	×		

Links

ProcessUniverse		
Producers		
Reference		
Shape		