Sample space, Events and Probability Laws

Friday, January 8, 2021 8:55 AM

Mathematical description of an uncertain Situation Probability Model

Every prob model involves an underlying process -> Experiment.
Experiment produces one of the several possible outcomes

Set of all possible outcomes is called the Sample space, denoted by

Ex! Tossing a cain Ex. Throwing a dice

$$-2 = \{H,T\}$$

Ex. Throwing a dice $-2 = \{1, 2, 3, 4, 5, 6\}$ 10

(x) outcomes should be mutually exclusive collectively exhautive

Ex3 Rolling a 4-fored dice twice

	4	1		1 1	
2nd voll	3		2,3		
	2			(3,2)	
)	ě			
	٠	1	2	3	4
		10	t soll		

Ex 4 (0,1)

Throwing a don't on the unit pg $\Delta = \left\{ (x,y) \mid 0 \le x, y \le 1 \right\}$

A subcet of
$$\Omega$$
 is called an event E

$$E, \cap E_2 \longrightarrow Both the events occurred$$

$$E, \cup E_2 \longrightarrow E, , E_2 \text{ or both occurred}$$

⊗ Not every subset of Ω is an event.

Probability Lows

$$A2$$
 $P(-2) = 1$ (Normalization)

A3 For any ceg of mutually exchains events,
$$E, E_2 \cdots E_n \cdots (E_i \cap E_j = \emptyset \text{ for } i \neq j)$$

$$P(UE_i) = \sum_i P(E_i)$$

AC -> complement of event A

$$1 \stackrel{\text{(A)}}{=} P(A) = P(A \cup A^c) \stackrel{\text{(A)}}{=} P(A) + P(A^c)$$

$$P(A) = 1 - P(A^c) \leq 1$$

E 3

Prob law: Prob of every outcome is 1/16

$$P((X,Y) \equiv (1,2) \text{ or } (3,4) = P((X,Y) \equiv (1,2)) + P((X,Y) \equiv (3,4))$$
$$= \frac{1}{6} + \frac{1}{6} = \frac{1}{8}$$

$$P\left(x+y = is odd\right) = \frac{1}{16} \cdot 8 = \frac{1}{2}$$

E4

Prob
$$|aw|$$
: $Prob(E) = area of E$

$$P((x,y) = (\cdot 5, \cdot 5)) = 0$$

$$P(x+y \le \frac{1}{2}) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$