平成21年度 大阪大学基礎工学部編入学試験

[数文

学] 默 原 問 題

受 轶 番 号	志望学科・コース
	* 村
18	3-2

[数学一1]

門 是西 1

変数 x,y の関数 z が、方程式 $z^2+(x+2y)z-(4+2x^2+y+y^2/2)=0$ によって定まっており、値域は $z\geq 0$ とする. 以下の設問に答えよ.

- (1) 関数 zを x と y それぞれについて偏微分せよ. 答は z を含んでもよい.
- (2) 関数 z は xy 平面上のある点で極値をとることがわかっている。 その点 (x,y) と,そこでの z の値を求めよ。
- (3) 条件 x+y-1=0 のもとで、関数 z はある点で極値をとることがわかっている。その点 (x,y) と、そこでの z の値を求めよ。

平成21年度 大阪大学基礎工学部編入学試験

[娄女

学] 3式 馬灸 門門 是亞

受	験	番	号	志	볲	学	料	٠	٦	-	2
										*	*
				1						7	->

「数 益 — 2]

問題 2

漸化式

$$x_n = -2x_{n-1} + 3y_{n-1} + 2z_{n-1}$$

$$y_n = -6x_{n-1} + 7y_{n-1} + 2z_{n-1}$$

$$z_n = 3x_{n-1} - 3y_{n-1} + 3z_{n-1}$$

(ただしn = 2, 3, ...) について以下の設問に答えよ.

- (1) $x_n = {}^t[x_n, y_n, z_n]$ としたとき。上記漸化式は 3×3 行列 A を用いて $x_n = Ax_{n-1}$ の形で表せる。A を求めよ。
- (2) Aの固有値、固有ベクトルを求めよ.
- (3) A を対角化する行列 P および P-1 AP を求めよ.
- (4) $(x_1, y_1, z_1) = (1, 1, 2)$ のとき、 x_n, y_n, z_n を求めよ.

平成21年度 大阪大学基礎工学部編入学試験

曼	験	8	ŧ	옆	*	14	•	3	-	ス	
						*			学		d
									_	-	2

[数学-3]

門景面3

事象 A. B. C. C の余事象 \bar{C} に対して、積事象 AのC, BのC, A0B0 \bar{C} の 磁率をそれぞれ P(A0C), P(B0C), P(A0B0C). P(A0C), P(A0C), P(A0C), P(A0C), P(A0C) とおき、すべ て正の値をとるものとする。また、事象 C を与えたときの事象 A. B と射事象 A0B0条件付き 磁率をそれぞれ

$$P(A|C) = \frac{P(A \cap C)}{P(C)}, \quad P(B|C) = \frac{P(B \cap C)}{P(C)}, \quad P(A \cap B|C) = \frac{P(A \cap B \cap C)}{P(C)}$$

とおき、事象でを与えたときの事象 A、Bと積事象 AOBの条件付き確率をそれぞれ

$$P(A|\bar{C}) = \frac{P(A\cap\bar{C})}{P(\bar{C})}, \quad P(B|\bar{C}) = \frac{P(B\cap\bar{C})}{P(\bar{C})}, \quad P(A\cap B|\bar{C}) = \frac{P(A\cap B\cap\bar{C})}{P(\bar{C})}$$

とおく、ただし、P(C) は事象 C の確率であり、P(C) は事象 C の確率である。以下の設問に答えよ。

(1) 客象 A の確率 P(A) に対して

$$P(A) = P(A|C)P(C) + P(A|C)P(C)$$

が成り立つことを示せ.

(2) $P(A \cap B | C) = P(A | C) P(B | C)$ と $P(A \cap B | C) = P(A | C) P(B | C)$ が成り立つと仮定する: このとき、積事象 $A \cap B$ の確率 $P(A \cap B)$ に対して

$$P(A \cap B) = P(A|C)P(B|C)P(C) + P(A|\hat{C})P(B|\hat{C})P(\hat{C})$$

が成り立つことを示せ.

- (3) P(A|C) = P(A|C) が成り立つとき、事象 $A \ge C$ は独立であることを証明せよ、