CS-305

Formal Language & Automata Theory

Instructor: Dr. Ashish Phophalia
Asst. Prof., IIIT-V

ashish_p@iiitvadodara.ac.in

Reference Books:

- 1. Peter Linz
- 2. Micheal Sipser
- 3. K. L. Mishra & Chandrashekran
- 4. Kamala Kirtivasan,
- 5. John C. Martin
- 6. Aho, Ullman, Sethi
- 7. Dexter Kozen
- 8. Lewis & Papadimitriou
- 9. John Sevage
- 10. Vivek Kulkarni
- 11. ...

Course Resources

- Offered to all major universities/colleges around the globe in CS stream
- NPTEL video lectures
- You are free to refer course website of other reputed universities/faculties

Video Lectures

- 1. Prof. Somnath Biswas, IIT Kanpur
- 2. Prof. Kamala K., IIT Madras
- 3. Prof. J. Ullman, Coursera/Stanford
- 4. Prof. Shai Simonson, ArsDigita University

Purpose of Course

- Historical Perceptive Current Computation modeling
- Foundation course to computer science & research in relevant areas
- Major part in many competitive exams like GATE

Course Content

- Mathematical Preliminaries: Set, Functions, Relation, Graph Theory, Mathematical Induction, Proof Techniques
- Finite Automata: DFA, NDFA, Conversion b/w DFA & NDFA, Melay & Moore Machine, Minimization of automata
- Languages & Grammars: Types and Properties of Chomsky classification
- Regular Languages & Grammar, Pumpimg Leema
- Context Free Language, Grammar & Pushdown Automata, Deterministic Context Free Language and Automatam, Pumping Leema
- Context Sensitive Language, Grammar & Linear Bounded automata
- Turning Machines & its variants, Undecideability & Reduceability
- Computational Complexity: P, NP, NP Complete and Hard Problems, Post Correspondence Problem (PCP)

Course Goals

Provide computation Models

Analyze power of Models

Answer Intractability questions:

What computational problems can each model solve?

Answer Time Complexity questions:

How much time we need to solve the problems?

A widely accepted model of computation

The different components of memory

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input

$$x = 2$$

output

Program memory

compute x * x

CPU

compute $x^2 * x$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

CPU

input

$$x = 2$$

Program memory

compute
$$x * x$$

compute
$$x^2 * x$$

output

f(x) = 8

Automaton

Automaton

CPU+ProgramMem = States + Transitions

Different Kinds of Automata

utomata are distinguished by the temporary memory

• Finite Automata: no temporary memory

Pushdown Automata: stack

• Turing Machines: random access memory

Memory affects computational power:

More flexible memory

results to

The solution of more computational problems

Finite Automaton

xample: Elevators, Vending Machines, Lexical Analyzers (small computing power)

Pushdown Automaton

Example: Parsers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest known computing power)

Power of Automata

Simple problems

More complex problems

Hardest problems

Finite
Automata

Pushdown Automata

Turing Machine

Less power

More power

Solve more computational problems

Turing Machine is the most powerful known computational model

Question: can Turing Machines solve all computational problems?

Answer: NO (there are unsolvable problems)

Time Complexity of Computational Problems:

P problems:

(Polynomial time problems)

Solved in polynomial time

NP-complete problems:

(Non-deterministic Polynomial time problems)

Believed to take exponential time to be solved

Languages

A language is a set of strings

String: A sequence of letters

Examples: "cat", "dog", "house", ...

Defined over an alphabet:

$$\Sigma = \{a, b, c, \dots, z\}$$

Alphabets and Strings

We will use small alphabets:
$$\Sigma = \{a, b\}$$

Strings

a

ab

abba

baba

aaabbbaabab

$$u = ab$$

$$v = bbbaaa$$

$$w = abba$$

Alphabets and Strings

Alphabets: Finite Non-empty set of symbols

$$\Sigma = \{a,b\} \qquad \Sigma = \{0,1\} \qquad \Sigma = \{a,b,\ldots,z\}$$

String: Finite sequence of alphabets from set of symbols

> Empty/Null string will be default in any set of alphabets

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

Length:
$$|w| = n$$

Examples:
$$|abba| = 4$$

$$|aa| = 2$$

$$|a| = 1$$

Length of Concatenation

$$|uv| = |u| + |v|$$

Example:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Empty String

A string with no letters: λ

Observations:
$$|\lambda| = 0$$

$$\lambda w = w\lambda = w$$

$$\lambda abba = abba\lambda = abba$$

Substring

Substring of string: a subsequence of consecutive characters

String	Substring
<u>ab</u> bab	ab
<u>abba</u> b	abba
$ab\underline{b}ab$	b
a <u>bbab</u>	bbab

Prefix and Suffix

abbab

Prefixes Suffixes

 λ abbab

a bbab

ab bab

abb ab

abba b

abbab λ

Another Operation

$$w^n = \underbrace{ww\cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

The * Operation

 $\Sigma^*\colon$ the set of all possible strings from alphabet Σ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

The + Operation

 Σ^+ : the set of all possible strings from alphabet Σ except λ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

$$\Sigma^{+} = \Sigma^{*} - \lambda$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, \dots\}$$

Languages

A language is any subset of Σ^*

Example:
$$\Sigma = \{a,b\}$$

 $\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,\ldots\}$

Languages:
$$\{\chi\}$$
 $\{a,aa,aab\}$ $\{\lambda,abba,baba,aa,ab,aaaaaa\}$

Note that:

$$\emptyset = \{ \} \neq \{\lambda\}$$

$$\left|\{\ \}\right| = \left|\varnothing\right| = 0$$

$$|\{\lambda\}| = 1$$

String length
$$|\lambda| = 0$$

$$|\lambda| = 0$$

Another Example

An infinite language
$$L = \{a^n b^n : n \ge 0\}$$

$$\left. egin{aligned} \lambda \ ab \ aabb \ aaaaaabbbbb \end{aligned}
ight) \in L \qquad abb
otin L \ abb
otin$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma * -L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example: $\{a,ab,ba\}\{b,aa\}$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$

Another Operation

Definition:
$$L^n = \underbrace{LL \cdots L}_n$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

Special case:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

More Examples

$$L = \{a^n b^n : n \ge 0\}$$

$$L^2 = \{a^n b^n a^m b^m : n, m \ge 0\}$$

$$aabbaaabbb \in L^2$$

Star-Closure (Kleene *)

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Example:
$$\left\{a,bb\right\}* = \left\{\begin{matrix} \lambda,\\ a,bb,\\ aa,abb,bba,bbb,\\ aaa,aabb,abba,abbb,\ldots \end{matrix}\right\}$$

Positive Closure

Definition:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

= $L^* - \{\lambda\}$

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$

Finite Automata

Finite Automaton

Finite Accepter

Transition Graph

Initial Configuration

Input String

a b b a

Reading the Input

Input finished

Output: "accept"

Rejection

a b a

Input finished

Another Rejection

 λ

Output:

"reject"

Another Example

Input finished

Rejection

Input finished

Output: "reject"

Formalities

Deterministic Finite Accepter (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$
 5 Tuple

Q: set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F : set of final states

Input Alphabet Σ

$$\Sigma = \{a,b\}$$

Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State q_0

Set of Final States F

$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function δ

		•	
δ	а	Ь	
9 90	q_1	<i>q</i> ₅	
q_1	9 5	92	
92	q_5	<i>q</i> ₃	•
<i>q</i> ₃	94	<i>q</i> ₅	a,b
94	<i>q</i> ₅	<i>q</i> ₅	
<i>q</i> ₅	<i>q</i> ₅	<i>q</i> ₅	q_5
			b a b a,b
		 (q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta * (q_0, ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: There is a walk from q to q' with label w

$$\delta * (q, w) = q'$$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} q'$$

Example: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Recursive Definition

$$\delta * (q, \lambda) = q$$

$$\delta * (q, w\sigma) = \delta(\delta * (q, w), \sigma)$$

$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_3$$

$$q_4$$

$$q_4$$

Languages Accepted by DFAs Take DFA $\,M\,$

Definition:

The language L(M) contains all input strings accepted by M

L(M) = { strings that drive M to a final state}

Example

$$L(M) = \{abba\}$$

Another Example

$$L(M) = \{\lambda, ab, abba\}$$

Formally

For a DFA
$$M=(Q,\Sigma,\delta,q_0,F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

$$q_0$$
 W $q' \in F$

Observation

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \mathcal{S}^*(q_0, w) \notin F \}$$

More Examples

$$L(M) = \{a^n b : n \ge 0\}$$

L(M)= { all strings with prefix ab }

L(M) = { all strings without substring 001 }

Regular Languages

A language L is regular if there is a DFA M such that L = L(M)

All regular languages form a language family

Examples of regular languages:

```
\{abba\} \{\lambda, ab, abba\} \{a^nb: n \ge 0\}
\{all strings with prefix ab\}
\{all strings with prefix ab\}
\{all strings without substring 001\}
```

There exist automata that accept these Languages (see previous slides).

Another Example

The language $L = \{awa : w \in \{a,b\}^*\}$ is regular:

There exist languages which are not Regular:

Example:
$$L=\{a^nb^n:n\geq 0\}$$

There is no DFA that accepts such a language

(we will prove this later in the class)

