Assignment #2 Math 584A

Due September 17th, 1 am (via Gradescope)

For uploading to Gradescope, it will be easiest to put each solution on a different page. The code for this is commented out in the tex file.

Problem 1. Let (X, d_X) and (Y, d_Y) be metric spaces that are both subsets of some larger linear space Z; that is, $X, Y \subset Z$. Consider the following potential metrics on $X \cap Y$:

(i)
$$d_p(v_1, v_2) = (d_X(v_1, v_2)^p + d_Y(v_1, v_2)^p)^{\frac{1}{p}}$$
 for a fixed $p \in [1, \infty)$,

(ii)
$$d_{\max}(v_1, v_2) = \max\{d_X(v_1, v_2), d_Y(v_1, v_2)\}, and$$

(iii)
$$d_{\min}(v_1, v_2) = \min \{d_X(v_1, v_2), d_Y(v_1, v_2)\}.$$

Each of these is well-defined in that it is finite for any $v_1, v_2 \in X \cap Y$. Which are metrics? Give a proof or counterexample for each.

Solution. What follows is a solution to part (i). By construction, $d_p(v_1, v_2)$ can only be zero if both $d_X(v_1, v_2)$ and $d_Y(v_1, v_2)$ are zero, and will be positive if both $d_X(v_1, v_2)$ and $d_Y(v_1, v_2)$. Since both d_X and d_Y are metrics, they satisfy positive definiteness property. Thus, d_p also satisfies positive definiteness.

Since both d_X and d_Y are metrics,

$$d_X(v_1, v_2) = d_X(v_2, v_1)$$
 and $d_Y(v_1, v_2) = d_Y(v_2, v_1)$.

Therefore,

$$d_p(v_2, v_1) = (d_X(v_2, v_1)^p + d_Y(v_2, v_1)^p)^{\frac{1}{p}}$$
$$= (d_X(v_1, v_2)^p + d_Y(v_1, v_2)^p)^{\frac{1}{p}}$$
$$= d_p(v_1, v_2).$$

Thus, d_p satisfies the symmetry property.

Using the triangle inequality on the metrics d_X and d_Y yields

$$d_p(v_1, v_2) \le ([d_X(v_1, v_3) + d_X(v_3, v_2)]^p + [d_Y(v_1, v_3) + d_Y(v_3, v_2)]^p)^{\binom{1}{p}}. \tag{1}$$

Using the definition

$$|x|_p = (|x_1|^p + \dots + |x_N|^p)^{1/p},$$

notice that for $\bar{v} = (d_X(v_1, v_2), d_Y(v_1, v_2)),$

$$d_p(v_1, v_2) = |\bar{z}|_p.$$

Let vectors \bar{x} and \bar{y} be two vectors defined by

$$\bar{x} = (d_X(v_1, v_3), d_Y(v_1, v_3))$$
 and $\bar{y} = (d_X(v_3, v_2), d_Y(v_3, v_2)).$

Applying our definition for $|x|_p$ gives

$$|\bar{x} + \bar{y}|_p = (|x_1 + y_1|^p + |x_2 + y_2|^p)^{1/p}.$$

Substituting in the values for each vector gives

$$|\bar{x} + \bar{y}|_p = (|d_X(v_1, v_3) + d_X(v_3, v_2)|^p + |d_Y(v_1, v_3) + d_Y(v_3, v_2)|^p)^{1/p}.$$

Substituting in with (1) gives

$$d_p(v_1, v_2) \le |\bar{x} + \bar{y}|_p. \tag{2}$$

Since we proved in a previous homework that $|\cdot|_p$ satisfies the triangle inequality,

$$|\bar{x} + \bar{y}|_p \le |\bar{x}|_p + |\bar{y}|_p.$$

Substituting in the values for each vector gives

$$|\bar{x} + \bar{y}|_p \le |d_X(v_1, v_3) + d_Y(v_1, v_3)|_p + |d_X(v_3, v_2) + d_Y(v_3, v_2)|_p$$

= $d_p(v_1, v_3)^p + d_p(v_3, v_2)^p$

Combining with (2) gives

$$d_n(v_1, v_2) \le d_n(v_1, v_3)^p + d_n(v_3, v_2)^p$$

thus satisfying the triangle inequality. Therefore, d_p is a metric.

What follows is a solution to part (ii). Since d_X and d_Y are metrics

$$\max \{d_X(v_1, v_2), d_Y(v_1, v_2)\} \ge 0.$$

And since $d_X(v_1, v_2), d_Y(v_1, v_2) = 0$ if and only if $v_1 = v_2$, the same must be true for $d_{max}(v_1, v_2)$. Thus, d_{max} satisfies positive definiteness.

Consider $d_{\max}(v_2, v_1)$. But the symmetry property of d_X and d_Y

$$d_{\max}(v_2, v_1) = \max \{d_X(v_2, v_1), d_Y(v_2, v_1)\}\$$

= $\max \{d_X(v_1, v_2), d_Y(v_1, v_2)\}\$
= $d_{\max}(v_1, v_2).$

Therefore, d_{max} satisfies the symmetry property.

Using the triangle property on d_X and d_Y gives

$$d_{\max}(v_1, v_2) \le \max \left\{ \left(d_X(v_1, v_3) + d_X(v_3, v_2) \right), \left(d_Y(v_1, v_3) + d_Y(v_3, v_2) \right) \right\}.$$

Notice that

$$\begin{split} d_X(v_1,v_3) + d_X(v_3,v_2) &\leq \max\{d_X(v_1,v_3),d_Y(v_1,v_3)\} + d_X(v_3,v_2) \\ &\leq \max\{d_X(v_1,v_3),d_Y(v_1,v_3)\} + \max\{d_X(v_3,v_2),d_Y(v_3,v_2)\} \\ &= d_{\max}(v_1,v_3) + d_{\max}(v_3,v_2) \end{split}$$

The same is also true for the sum $d_Y(v_1, v_3) + d_Y(v_3, v_2)$. Thus,

$$\max \left\{ \left(d_X(v_1, v_3) + d_X(v_3, v_2) \right), \left(d_Y(v_1, v_3) + d_Y(v_3, v_2) \right) \right\} \le d_{\max}(v_1, v_3) + d_{\max}(v_3, v_2),$$

and

$$d_{\max}(v_1, v_2) \le d_{\max}(v_1, v_3) + d_{\max}(v_3, v_2).$$

Therefore, d_{max} satisfies the triangle property and is a metric.

What follows is a counterexample to the proposed metric in part (iii). Let $v_1 = (1,1)$ and $v_2 =$

Problem 2. Fix a metric space (X, d). Show that if U_1, U_2, \ldots are open subsets of X then so is

$$\bigcup_{i=1}^{\infty} U_i = \{ u \in X : \text{ there exists } i \in \mathbb{N} \text{ such that } u \in U_i \}.$$

Solution. Fix any

$$x \in \bigcup_{i=1}^{\infty} U_i.$$

By the definition of union, there exists some i_x such that $x \in U_{i_x}$. Since each U_i is open, there exists $B_{r_x}(x)$ where $B_{r_x}(x) \subset U_{i_x}$. Because

$$U_{i_x} \subset \bigcup_{i=1}^{\infty} U_i,$$

it must be true that

$$B_{r_x}(x) \subset \bigcup_{i=1}^{\infty} U_i.$$

Since the choice of x was arbitrary, the intersection of an arbitrary number of open sets is open.

Problem 3. Let (X, d) be a metric space where X is nonempty and d is the discrete metric.

- (i) Classify all continuous functions $f : \mathbb{R} \to X$ (you can take \mathbb{R} to have the Euclidean metric).
- (ii) Classify all continuous functions $f: X \to \mathbb{R}$.

Solution. Let $f: \mathbb{R} \to X$ be continuous and let $\varepsilon = 1$. Fix $x_0 \in \mathbb{R}$. By definition there exists some $\delta > 0$ such that whenever $|x - x_0| < \delta$ for some other $x \in \mathbb{R}$, $d_{disc}(f(x), f(x_0)) < 1$. However, this implies that $f(x) = f(x_0)$. Since the choice of x_0 was arbitrary, f must be the constant function.

Let $f: X \to \mathbb{R}$ be continuous. Fix $x_0 \in \mathbb{R}$ and consider when $|f(x) - f(x_0)| < \varepsilon$ for some $\varepsilon > 0$. By the definition of continuity, there must be some $\delta > 0$ such that $|f(x) - f(x_0)| < \varepsilon$ whenever $d_{disc}(x, x_0) < \delta$. This is clearly true for the case when $x = x_0$, but when $x \neq x_0$, $d_{disc}(x, x_0) = 1$. Therefore, whenever $|f(x) - f(x_0)| < \varepsilon$ and $x \neq x_0$, $d_{disc}(x, x_0) = 1$. Thus $\delta > 1$ in order to satisfy the definition of continuity. But since $d_{disc}(x, x_0) = 1$ for all $x \neq x_0$, $|f(x) - f(x_0)| < \varepsilon$ for all $x \in X$.

Problem 4. Fix any non-negative function $K \in L^1_{\text{prel}}(\mathbb{R})$. Define a function

$$T:L^1_{\mathrm{prel}}([0,1])\to L^1_{\mathrm{prel}}([0,1])$$

by, for every $f \in L^1_{\text{prel}}([0,1])$,

$$(Tf)(x) = \int_0^1 K(x-y)f(y)dy.$$

(i) Show that T is well-defined (i.e. $Tf \in L^1_{prel}([0,1])$ whenever $f \in L^1_{prel}([0,1])$). Note: you can exchange the order of integration freely in this problem. We will justify this later in the course.

Also, you may find it helpful to show that if $f \in L^1_{\text{prel}}$, there are nonnegative $f_+, f_- \in L^1_{\text{prel}}$ such that $f = f_+ - f_-$.

- (ii) Show that T is continuous.
- (iii) Is T uniformly continuous?

Solution. We begin proving $Tf \in L^1_{\text{prel}}([0,1])$ by first showing that Tf is bounded. Let $f \in L^1_{\text{prel}}([0,1])$. By definition of the $L^1_{\text{prel}}([0,1])$ norm,

$$\begin{split} ||(Tf)(x)||_{L^1_{\mathrm{prel}}([0,1])} &= \int_0^1 \left| \int_0^1 K(x-y)f(y)dy \right| dx \\ &= \int_0^1 \int_0^1 |K(x-y)f(y)| dy dx \\ &\leq \int_0^1 \int_0^1 |K(x-y)||f(y)| dy dx \\ &= \int_0^1 |f(y)| \int_0^1 |K(x-y)| dx dy \\ &\leq \int_0^1 |f(y)| \int_{-\infty}^\infty |K(x-y)| dx dy. \end{split}$$

Since $K \in L^1_{\text{prel}}(\mathbb{R})$, there exists some $K \in R$ such that

$$\int_{-\infty}^{\infty} |K(x)| dx \le K.$$

Thus,

$$\int_0^1 |f(y)| \int_{-\infty}^\infty |K(x-y)| dx dy \le K \int_0^1 |f(y)| dy.$$

And since, $f \in L^1_{\text{prel}}([0,1])$, there exists some $F \in R$ such that

$$\int_0^1 |f(y)| dy \le F.$$

Thereby,

$$||(Tf)(x)||_{L^1_{prel}([0,1])} \le KF,$$

and Tf must be bounded.

To show that Tf is continuous, fix any $\varepsilon > 0$ and $x_0 \in \mathbb{R}$. For some other $x \in \mathbb{R}$,

$$|Tf(x) - Tf(x_0)| = \left| \int_0^1 K(x - y)f(y)dy - \int_0^1 K(x_0 - y)f(y)dy \right|$$
$$= \left| \int_0^1 \left(K(x - y) - K(x_0 - y) \right) f(y)dy \right|$$
$$\leq \int_0^1 \left| \left(K(x - y) - K(x_0 - y) \right) \right| |f(y)|dy.$$

Since $K \in L^1_{\mathrm{prel}}(\mathbb{R})$, K must be continuous. Thus for F as defined earlier, there must exist some $\delta > 0$ such that $|x - x_0| < \delta$ implies $|K(x) - K(x_0)| < \varepsilon/F$. Notice that

$$|x - x_0| = |x - y + y - x_0|$$

= $|(x - y) - (x_0 - y)|$,

and let $|x-x_0|<\delta$. Then,

$$|Tf(x) - Tf(x_0)| \le \frac{\varepsilon}{F} \int_0^1 |f(y)| dy$$

$$\le \frac{\varepsilon}{F} (F)$$

$$= \varepsilon.$$

Because the choice of f was arbitrary, Tf is continuous. Consequently, $Tf \in L^1_{\text{prel}}([0,1])$.

To show that T is continuous, fix any $\varepsilon > 0$, and let $f \in L^1_{\text{prel}}([0,1])$. Let $g \in L^1_{\text{prel}}([0,1])$ such that $||f - g||_{L^1_{\text{prel}}([0,1])} < \varepsilon/K$ where K is the same value defined above. Then,

$$\begin{split} ||Tf(x) - Tg(x)||_{L^1_{\text{prel}}([0,1])} &= \int_0^1 \left| \int_0^1 K(x-y)f(y)dy - \int_0^1 K(x-y)g(y)dy \right| dx \\ &= \int_0^1 \left| \int_0^1 K(x-y)(f(y)-g(y))dy \right| dx \\ &\leq \int_0^1 \int_0^1 |K(x-y)||(f(y)-g(y))|dydx. \end{split}$$

Using the same value for K defined above,

$$||Tf(x) - Tg(x)||_{L^{1}_{\text{prel}}([0,1])} \le K \int_{0}^{1} |(f(y) - g(y))| dy$$
$$= K||f - g||_{L^{1}_{\text{prel}}([0,1])}.$$

But by assumption,

$$||Tf(x) - Tg(x)||_{L^1_{\text{prel}}([0,1])} \le K \frac{\varepsilon}{K}$$

= ε .

Since the choice of f was arbitrary, T is continuous.

Since the value of δ only depends on K, T and not on the choice of f or g, T is uniformly continuous.

Problem 5. Fix a metric space (X, d). Suppose that $x_0 \in X$ and r > 0. Show that $B_r(x_0)$ is an open set.

Solution. The first case is if $B_r(x_0)$ is empty. But the empty set is open.

The second case is when $B_r(x_0)$ is nonempty. Let $y \in B_r(x_0)$. Thus, $d(x_0, y) < r$. There must then exist $s \in \mathbb{R}$ such that

$$d(x_0, y) + s < r$$
.

Let $B_s(y)$ be the open ball centered at y with radius s. Notice that $B_s(y)$ cannot be empty as $y \in B_s(y)$ by definition. Let $z \in B_s(y)$ be any element of $B_s(y)$. Thus, d(y,z) < s. Therefore, $d(x_0, y) + d(y, z) < r$, and by the triangle inequality

$$d(x_0, z) \le d(x_0, y) + d(y, z) < r.$$

Therefore, $z \in B_r(x_0)$. Since the choice of z was arbitrary, $B_r(x_0)$ is open.

Problem 6. Fix any constant $\theta \in \mathbb{R}$ and let x_n be a convergent sequence. Show that

$$\lim_{n \to \infty} \theta x_n = \theta \lim_{n \to \infty} x_n.$$

Solution. Since the sequence (x_n) converges, let

$$\lim_{n \to \infty} x_n = x.$$

Then for any x_n , consider $|\theta x_n - \theta x| = |\theta||x_n - x|$. Since, (x_n) converges to x, there exists some $N \in \mathbb{N}$ such that whenever $n \geq N$,

$$|x_n - x| < \frac{\varepsilon}{|\theta|}.$$

Thus, for $n \geq N$,

$$|\theta x_n - \theta x| < |\theta| \frac{\varepsilon}{|\theta|}$$
$$= \varepsilon.$$

Therefore, θx is the limit of the sequence (θx_n) .

Problem 7. Suppose that (X,d) is a metric space and $f,g:(X,d)\to\mathbb{R}$ are continuous functions.

- (i) Show that f + g is continuous.
- (ii) Show that $f \cdot g$ is continuous.
- (iii) If f, g are uniformly continuous, show that f + g is uniformly continuous.
- (iv) If f, g are uniformly continuous, is $f \cdot g$ uniformly continuous?

Solution. To show that f + g is continuous, fix some $\varepsilon > 0$ and some $x_0 \in X$. For some other $x \in X$,

$$|(f(x) + g(x)) - (f(x_0) + g(x_0))| = |(f(x) - f(x_0)) + (g(x) - g(x_0))|$$

$$\leq |f(x) - f(x_0)| + |g(x) - g(x_0)|.$$

Since both f and g are continuous, there exists δ_f and δ_g such that $|f(x) - f(x_0)| < \varepsilon/2$ whenever $d(x,x_0) < \delta_f$ and $|g(x) - g(x_0)| < \varepsilon/2$ whenever $d(x,x_0) < \delta_g$. Let $\delta = \max\{\delta_f,\delta_g\}$. Then, $d(x,x_0) < \delta$ implies

$$|(f(x) + g(x)) - (f(x_0) + g(x_0))| \le |f(x) - f(x_0)| + |g(x) - g(x_0)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon.$$

Since the choice of x_0 was arbitrary, f + g is continuous.

For part (ii), fix some $\varepsilon > 0$ and some $x_0 \in X$. For some other $x \in X$,

$$|f(x)g(x) - f(x_0)g(x_0)| = |f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) + f(x_0)g(x_0)|$$

$$= |g(x)(f(x) - f(x_0)) + f(x_0)(g(x) - g(x_0))|$$

$$\leq |g(x)(f(x) - f(x_0))| + |f(x_0)(g(x) - g(x_0))|$$

$$\leq |g(x)||f(x) - f(x_0)| + |f(x_0)||g(x) - g(x_0)|.$$

Since both f and g are continuous, there exists δ_f and δ_g such that $|f(x) - f(x_0)| < \varepsilon_f$ whenever $d(x, x_0) < \delta_f$, and $|g(x) - g(x_0)| < \varepsilon_f$ whenever $d(x, x_0) < \delta_g$. Let $\delta = \max\{\delta_f, \delta_g\}$ and let $d(x, x_0) < \delta$. To get an upper bound for |g(x)|, let $A = (x_0 - \delta, x_0 + \delta)$ be an interval and let

$$G = \sup_{x \in A} |g(x)|.$$

Let

$$\varepsilon_f = \frac{\varepsilon}{2G}$$
 and $\varepsilon_g = \frac{\varepsilon}{2|f(x_0)|}$.

Then $d(x, x_0) < \delta$ implies,

$$|f(x)g(x) - f(x_0)g(x_0)| \le G \frac{\varepsilon}{2G} + |f(x_0)| \frac{\varepsilon}{2|f(x_0)|}$$
$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
$$= \varepsilon.$$

Since the choice of x_0 was arbitrary, $f \cdot g$ is continuous.

For part (iii), fix any $\varepsilon > 0$ and any $x, y \in X$. Then,

$$|(f(x) + g(x)) - (f(y) + g(y))| = |(f(x) - f(y)) + (g(x) - g(y))|$$

$$\leq |f(x) - f(y)| + |g(x) - g(y)|.$$

Since both f and g are uniformly continuous, there exists δ_f and δ_g such that $|f(x) - f(y)| < \varepsilon/2$ whenever $d(x,y) < \delta_f$ and $|g(x) - g(y)| < \varepsilon/2$ whenever $d(x,y) < \delta_g$. Let $\delta = \max\{\delta_f, \delta_g\}$. Then, $d(x,x_0) < \delta$ implies

$$|(f(x) + g(x)) - (f(x_0) + g(x_0))| \le |f(x) - f(x_0)| + |g(x) - g(x_0)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Since the choice of x and y was arbitrary, and in neither case does the choice of δ depend on x or y, f + g is uniformly continuous.

To show that $f \cdot g$ is not necessarily uniformly continuous, let f, g = x. We demonstrated in class that this function is uniformly continuous. Assume for contradiction that $f \cdot g = x^2$ is uniformly continuous. Then there exists δ such that for any $x, y \in X$ where $d(x, y) < \delta$, $|x^2 - y^2| < 1$. Let $y = x + \delta/2$. Then,

$$\begin{aligned} 1 &> |x^2 - y^2| \\ &= |x^2 - (x + \delta/2)^2| \\ &= |x^2 - (x^2 + x\delta + \delta^2/4)| \\ &= |x\delta + \delta^2/4|. \end{aligned}$$

Since δ is positive, this value is maximized when x is positive. In this case, the absolute value can be dropped and rearranging for x yields

$$\frac{1 - \delta^2/4}{\delta} > x.$$

This inequality sets an upper bound for x, and therefore does not apply for all x and y in \mathbb{R} . Therefore, $f \cdot g$ is not uniformly continuous, despite f and g both being uniformly continuous.