

STOMATAL CONDUCTANCE IN CABLE

Cable users meeting, UNSW 24th June, 2014

Department of Biological Sciences, Macquarie University.

Stomatal conductance model

Why change the stomatal conductance model?

- Ideally CABLE should be more modular.
- Currently the world is represented by *2* parameters.
- · Where do these parameters come from?

What have we changed?

- Added Belinda Medlyn's optimal g_s model (Medlyn et al. 2011, Global Change Biology, 17, 2134–2144).
- Added PFT parameters derived from a large global synthesis of 314 species from 56 sites (Lin et al. in prep).

Optimal g_s model

- Model is derived from an optimisation approach whereby stomata act to minimize the amount of water used per unit carbon gained.
- Model has the same form as the standard empirical approach (and fewer parameters than the current Leuning model).

$$g_s = g_0 + 1.6 \left(1.0 + \frac{g_1}{\sqrt{D}} \right) \frac{A}{C_a}$$

- Parameters have a theoretical "meaning": g_1 is related to the marginal cost of water to the plant.
- Model has been widely tested, including data from elevated CO₂ experiments.

Stomatal synthesis

g₁ parameter is linked to plant water use strategy.

- · No data for:
 - i. deciduous needleleaf -> evergreen needleleaf.
 - ii. C4 crops -> C4 grases.
 - iii. Wetlands -> C3/C4 grases

Harvard forest

Transpiration Uncertainty

pprox -94–50 mm/year

Negligible impact for Broadleaf PFT.

Latent Heat

Hyytiala forest

Transpiration

Clear impact for Needleleaf PFT: more conservative water use strategy.

Latent Heat

Transpiration - GSWP2

Medlyn is higher; Leuning is higher

Response to drought - I

Plant responses to drought within most models lacks mechanistic process.

- Two different plants on the same soil, with the same rooting depth would behave in the same way in CABLE. This is not what we see in reality ...
- Following work by Zhou et al. 2013, Agricultural Forest Meteorology, 182–183, 204–214.
- Link to optimal g_s model Stomatal limitation (via g_1) and non-stomatal limitation (via V_{cmax})

Response to drought – 2

Ability to parameterise different "risk taking" behaviour.

Thanks to...

- Jatin Kala (UNSW)
- Yan-Shih Lin (MQ)
- Belinda Medlyn (MQ)
- Andy Pitman (UNSW)
- Gab Abramowitz (UNSW)