Vishal Asnani

Phone: +1 (517) 505-4249 Email: asnanivi@msu.edu LinkedIn: www.linkedin.com/in/vishal-asnani GitHub: https://github.com/vishal3477

OBJECTIVE

To put my skills to use in exciting, innovative ways while working for something greater than myself and gain some in-depth ideas in the field of Computer Vision and Deep Learning.

EDUCATION

Ph.D. In Computer Science and Engineering Advisor: Dr. Xiaoming Liu Michigan State University, East Lansing, USA GPA: 3.8/4.0

M.S In Electrical and Computer Engineering Michigan State University, East Lansing, USA GPA: 4.0/4.0

B.E.(Hons.) Electronics and Instrumentation Engineering (Minor in Finance) Birla Institute of Technology and Science, Pilani, India CGPA: 8.01/10.0

| Aug. 2019-Dec. 2020|

| Jan. 2021-Current|

| Aug. 2015- May 2019|

PUBLICATIONS

- Vishal Asnani, Xi Yin, Tal Hassner, Sijia Liu, Xiaoming Liu, "Proactive Image Manipulation Detection," In Proceeding of IEEE Computer Vision and Pattern Recognition 2022.
- Vishal Asnani, Xi Yin, Tal Hassner, Xiaoming Liu, "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images" under review in IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.

TECHNICAL PROFICIENCY

Tools, Simulation, and Software Platforms

 TensorFlow, PyTorch, Keras, Numpy, Scikit-learn, Jupyter, OpenCV, CUDA, MATLAB and Simulink, GCS, Amazon Web Services (AWS), LabVIEW, Linux, CST Microwave studio, Cadence virtuoso, Microsoft-Visual Studio, Excel, Word and Powerpoint, Orcad PSpice, Labcentre Proteus, Eagle- PCB Design and Schematic Software, Xilinx Vivado Suite and SDK, FluidSim

Languages / Scripts

 Python, MATLAB, R, SQL, Perl, C, C++, Cascading Style Sheets (CSS), JavaScript, HTML, Verilog, VHDL, x86 Assembly Language, Arduino Programming

PROJECTS

1. Proactive scheme for image manipulation detection by adding learnable templates

|Jan. 2021-Nov. 2021|

- A novel proactive scheme is proposed which encrypts a real image by adding a template from a learnable template set.
- The **added template** is later **recovered** to perform image manipulation detection.
- The template set is **learned** using defined **constraints** which incorporate properties including small magnitude, more high-frequency content, orthogonality, and classification ability
- Near-perfect average precision is obtained for unseen Generative Models (GMs) compared to prior works.
- The proposed framework is more generalizable to different GMs, showing an improvement of 10% average precision averaged across 12 GMs compared to prior works.

2. Model Parsing: Reverse engineering of hyperparameters of generative models

|Jul. 2020-Apr. 2022|

- A novel problem of Model Parsing is defined to develop a framework for predicting the network architecture and loss functions given a generated image.
- We estimate the mean and deviation for each GM using two different parsers: cluster parser and instance parser which are then combined as the final predictions.
- A network architecture super-set with 15 features and a loss function type super-set with 10 features were selected to represent every GM.
- 1000 images each for 116 generative models were collected to create a new dataset, and the experiments were conducted in the leave-out setting.
- The framework has an **L1 error** of **0.149** with **a p-value of 0.00045** for **continuous** type parameters and **71.8% F1-score** for **discrete** type parameters in **network architecture** prediction.
- **81.3% F1-score** for the type of **loss function** prediction was achieved.

• The method generalizes well to tasks of **deepfake detection** on the Celeb-DF benchmark and **image attribution** with an AUC of **74.60%** and **99.32%**, respectively, in both cases reporting results comparable with existing **SOTA**.

3. Deepfake video detection model built using PvTorch

|Feb. 2020-Apr. 2020|

- Implemented a machine learning model consisting of Convolution neural networks (CNN) followed by a recurrent neural network (RNN) for **deepfake detection**.
- The CNN-RNN model would be able to detect whether a video is fake or real.
- The frames were extracted using the MTCNN model, which was then passed into the CNN-RNN model, **trained** on the **Face-Forensics++** (FF++) dataset, and **tested** on the **FF++ and Celeb-DF** datasets.
- The model achieves 98.2% AUC on the FF++ dataset and 68.1% AUC on the Celeb-DF dataset.

4. Machine learning classifiers to classify news into different categories.

|Mar. 2020-May 2020|

- News category dataset available on Kaggle was used to test different classifiers classifying news into different categories.
- Many classifiers were tested like Multinomial Naïve Bayes, Multinomial Gaussian Bayes, K nearest neighbor, Decision trees, Linear Support vector machines, Multi-class logistic regression, Bagging, AdaBoost, and Recurrent neural network.
- The models were tested on the **different trains: test split ratio** and **different hyperparameters** for each classifier.
- Multinomial Gaussian Bayes, Multi-class logistic regression, and Linear Support vector machines performed better than other classifiers with an accuracy of 75%.

5. Framework for information retrieval using PyTorch

|Aug. 2019-Dec. 2019|

- Developed a framework for binding and retrieving class-specific information from image patterns using correlation filters.
- The template-based framework works by **matching the template** with the **query pattern** of the same class.
- Class-specific information is mapped to spatial translations applied to image patterns to generate a multi-peak correlation filter.
- The **CMU PIE and FRGC databases** were used to study the relationship between the False class Information retrieval rate (FCIRR) and several peaks of the correlation filter.
- FCIRR had an inverse relationship with several peaks. The FCIRR for 30 peaks was 0.02 for CMU PIE and 0.88 for FRGC.

6. Deep Learning model involving modified version of LSTM RNN

|Jan. 2019-May 2019|

- Developed a deep learning framework involving two parameter-reduced variants of the LSTM layer.
- The model was built using high-level Keras API in the Jupyter Notebook with the UCI News Aggregator dataset.
- **1% increase** in accuracy was successfully achieved in the model involving a modified LSTM layer compared to the standard LSTM layer.

WORK EXPERIENCE

Texas Instruments, Bengaluru, India

| Jul. 2018- Dec. 2018 |

- Analog design intern in Multiphase and Control solutions team.
- Developed a Perl Script to create vector-based patterns for SWD and PMBus commands used in the test program.
- Patterns were appended to the test program beforehand, thereby saving test time.
- Efficient implementation of SWD and PMBus patterns saved approximately 74% execution time.

RELEVANT COURSES PURSUED

- Computer Vision: Detectors and Descriptors, Optical Flow, Image segmentation, Tracking and object detection in videos, Epipolar geometry.
- Machine learning: Regression, Classification, Dimensionality reduction, Sparse learning, Matrix competition, Ensemble methods, Multi-task learning
- Pattern recognition and analysis: Bayesian classification, Estimating gaussian MLE parameters, Non-parametric density estimation.
- Deep Learning: Deep Neural Networks, Convolution Neural Networks, Recurrent Neural Networks, Sequence Models.
- Deep Learning specialization- deepleraning by Andrew Ng (Coursera).