Operation Analytics and Investigating Metric Spike

<u>Description</u>:- This project focuses on Operational Analytics which is a critical process used to analyse and improve a company's daily operations. This is done by deriving insights from data. My role as a Lead Data Analyst will involve collaborating with cross-functional teams to answer questions which will help identify areas of improvement and understand sudden metric spikes, such as dips in user engagement or sales. I will be working with advanced SQL queries to analyse the given datasets to gain valuable insights about user activity, retention, throughput, and engagement.

<u>Approach</u>:- My approach will include data cleaning and validation. I will be using powerful SQL features like window functions and cross joins to build sophisticated queries. In the final step I will communicate the insights derived, helping the company make data-driven decisions which will help the company gain operational efficiency.

Tech-Stack used: - My SQL Workbench 8.0 is being used.

Case Study 1: Job Data Analysis

<u>Task 1</u>:- Jobs Reviewed Over Time:

- Objective: Calculate the number of jobs reviewed per hour for each day in November 2020.
- o My Task: Write an SQL query to calculate the number of jobs reviewed per hour for each day in November 2020.
- o Code Written:

```
use assignment3;

SELECT

ds AS date,

ROUND((COUNT(job_id) / (SUM(time_spent) / 3600)),

2) AS jobs_reviewed_per_hr_per_day

FROM

job_data

GROUP BY ds

ORDER BY jobs_reviewed_per_hr_per_day DESC;
```


o Output:-

o Insights derived:-

- <u>a)</u> The jobs reviewed per hour per day was the highest on 28th November, 2020
- b) The jobs reviewed per hour per day was the lowest on 27th November, 2020
- <u>c)</u> The jobs reviewed per hour per day was the same on 30th and 29th of the aforesaid month

<u>Task 2</u>:- <u>Throughput Analysis:</u>

- Objective: Calculate the 7-day rolling average of throughput (number of events per second).
- My task: Write an SQL query to calculate the 7-day rolling average of throughput. Additionally, explain whether I prefer using the daily metric or the 7-day rolling average for throughput, and why.
- o Code Written:

use assignment3;

#7 day rolling average for throughput

select round(count(job id)/sum(time spent),2) as 7 day rolling avg throughput from job data;

daily metric

select ds, round(count(job_id)/sum(time_spent),2) as daily_metric from job_data group by ds order by daily_metric;

For 7 day rolling average:-

For Daily Metric:-

Output:-

Whether I prefer using the daily metric or the 7-day rolling average for throughput?

For the throughput analysis, I will prefer the 7-day rolling average because it gives the average for all the days right from day 1 to day 7. On the other hand, daily metric gives us the average for only that day itself.

Task 3:- Language Share Analysis:

- o Objective: Calculate the percentage share of each language in the last 30 days.
- o <u>Your Task</u>: Write an SQL query to calculate the percentage share of each language over the last 30 days.
- o Code Written:-

```
SELECT

language,

(individual_occ_lang * 100 / total_occurence_languages) AS

percentage_distribution

FROM

(SELECT

COUNT(language) AS total_occurence_languages

FROM

job_data) table1

CROSS JOIN

(SELECT

language, COUNT(language) AS individual_occ_lang

FROM

job_data

GROUP BY language) table2;
```


Derived Insights:-

- It was observed that the Persian language had the highest percentage distribution amongst all i.e. 37.5%
- o Whereas all other languages had an equal percentage distribution of 12.5%.

Task 4:- Duplicate Rows Detection:

- Objective: Identify duplicate rows in the data.
- o My Task: Write an SQL query to display duplicate rows from the job data table
- Code Written:

#This is based on actor id

SELECT actor_id, COUNT(*) AS duplicate FROM job_data GROUP BY actor_id HAVING COUNT(*) > 1;

#OR

SELECT * FROM job_data a JOIN job_data b ON a.actor_id = b.actor_id WHERE a.ds > b.ds;

#OR

SELECT a.* FROM job_data a JOIN job_data b ON a.actor_id = b.actor_id WHERE a.ds > b.ds;

Insights Derived:-

o There was one duplicate row having the job-id 23.

Case Study 2: Investigating Metric Spike

Before proceeding we assign the proper format to the given datasets.

Users table format Change:-

We use the STR_TO_DATE function for this. Converting the String format to DateTime format for columns 'Created at' and 'occurred at'.

Events table format Change:- We use the STR_TO_DATE function for this. Converting the String format to DateTime format for column 'occurred at'.

<u>Email Events table format Change:-</u> We use the STR_TO_DATE function for this. Converting the String format to DateTime format for column 'occurred at'.

<u>Task 1</u>: Weekly User Engagement

Objective: Measure the activeness of users on a weekly basis.

My Task: Write an SQL query to calculate the weekly user engagement

Code Written:

select

Extract(week from occured_at) as week_no,

count(distinct user_id) as total_users_weekly

from assignment3.events

group by week_no;

Output:

	week_no	total_users_weekly
Þ	17	663
	18	1068
	19	1113
	20	1154
	21	1121
	22	1186
	23	1232
	24	1275
	25	1264
	26	1302
	27	1372
	28	1365
	29	1376
	30	1467
	31	1299
	32	1225
	33	1225
	34	1204
	35	104

Insights Derived:

- o The total users weekly was highest in week 30 whereas lowest in week 35
- o The highest total users weekly was recorded as 1467, whereas the lowest recorded was 105.

<u>Task 2:</u> User Growth Analysis:

- Objective: Analyse the growth of users over time for a product.
- o My Task: Write an SQL query to calculate the user growth for the product.
- o Code Written:

SELECT year, week_num, num_of_users, sum(num_of_users) over(order by year, week_num) as cumulative users

from (

select extract(year from created_at) as year, extract(week from created_at) as week_num, count(distinct user id) as num of users

from users where state='active'

group by year, week num

order by year, week_num)derived;

	la cont		El D			. ===		2013	38	90	1988
Re	sult Grid		Filter Rows:			ort: 📳	W	2013	39	84	2072
	year	week_num	num_of_users	cumulative_	users			2013	40	87	2159
٠	2013	0	23	23				2013	41	73	2232
	2013	1	30	53				2013	42	99	2331
	2013	2	48	101				2013	43	89	2420
	2013	3	36	137				2013	44	96	2516
	2013	4	30	167				2013	45	91	2607
	2013	5	48	215				2013	46	88	2695
	2013	6	38	253				2013	47	102	2797
	2013	7	42	295				2013	48	97	2894
	2013	9	34 43	329 372				2013	49	116	3010
	2013	10	32	404							
	2013	11	31	435				2013	50	124	3134
	2013	12	33	468				2013	51	102	3236
	2013	13	39	507				2013	52	47	3283
	2013	14	35	542				2014	0	83	3366
	2013	15	43	585				2014	1	126	3 49 2
	2013	16	46	631				2014	2	109	3601
	2013	17	49	680				2014	3	113	3714
	2013	18	44	724				2014	4	130	3844
	2013	19	57	781				2014	5	133	3977
	2013	20	39	820				2014	6	135	4112
	2013	21	49	869				2014	7	125	4237
	2013	22	54	923				2014	8	129	4366
	2013	23	50	973					9	133	4499
	2013	24	45	1018				2014			
	2013	25	57	1075				2014	10	154	4653
	2013	26	56	1131				2014	11	130	4783
	2013	27	52	1183				2014	12	148	4931
	2013	28	72	1255				2014	13	167	5098
	2013	29	67	1322				2014	14	162	5260
	2013	30	67	1389				2014	15	164	5424
	2013	31	67	1456				2014	16	179	5603
	2013	32	71	1527				2014	17	170	5773
	2013	33	73	1600				2014	18	163	5936
	2013	34	78	1678				2014	19	185	6121
	2013	35	63	1741				2014	20	176	6297
	2013	36	72	1813 1898				2014	21	183	6480
	2013	37	85	1090						100	0.00
				2014	22	196		6676			
				2014	23	196		6872			
				2014	24	229		7101			
				2014	25 26	207 201		7308 7509			
				2014	27	222		7731			
				2014	28	215		7946			
				2014	29	221		8167			
				2014	30	238		8405			
				2014	31	193		8598			
				2014	32	245		8843			
				2014	33	261		9104			
				2014	34	259		9363			
				2014	35	18		9381			

Derived Insights:-

- O Week no 33 had the highest number of users i.e. 261 number of users
- o Whereas Week 25 had the lowest number of users i.e. 18 number of users

Task 3: Weekly Retention Analysis:

- Objective: Analyze the retention of users on a weekly basis after signing up for a product.
- My Task: Write an SQL query to calculate the weekly retention of users based on their sign-up cohort.
- o Code Written:

```
SELECT DISTINCT
  user_id,
  COUNT(user_id),
  SUM(CASE
    WHEN retention_week = 1 THEN 1
    ELSE 0
  END) AS per_week_retention
FROM
  (SELECT
    a.user_id,
      a.signup_week,
      b.engagement_week,
      b.engagement week - a.signup week AS retention week
  FROM
    ((SELECT DISTINCT
    user_id, EXTRACT(WEEK FROM occured_at) AS signup_week
  FROM
    events
  WHERE
    event type = 'signup flow'
      AND event name = 'complete signup'
      AND EXTRACT(WEEK FROM occured at) = 17) a
 LEFT JOIN (SELECT DISTINCT
    user_id, EXTRACT(WEEK FROM occured_at) AS engagement week
  FROM
    events
  WHERE
    event type = 'engagement') b ON a.user id = b.user id)) d
GROUP BY user id
ORDER BY user id;
```


Insights Derived:

O User id 11893 & 11833 had the highest count i.e. 14

Task 4: Weekly Engagement Per Device:

- o Objective: Measure the activeness of users on a weekly basis per device.
- o My Task: Write an SQL query to calculate the weekly engagement per device.
- o Code Written:

order by week num;

select
extract(year from occured_at) as year_num,
extract(week from occured_at) as week_num,
device,
count(distinct user_id) as no_of_users
from events
where event_type='engagement'
group by device, week_num, year_num

2014	30	lenovo thinkpad	206
2014	30	mac mini	23
2014	30	macbook air	159
2014	30	macbook pro	322
2014	30	nexus 10	36
2014	30	nexus 5	84
2014	30	nexus 7	62
2014	30	nokia lumia 635	34
2014	30	samsumg galaxy tablet	9
2014	30	samsung galaxy note	15
2014	30	samsung galaxy s4	103
2014	30	windows surface	19
2014	31	acer aspire desktop	31
2014	31	acer aspire notebook	55
2014	31	amazon fire phone	14
2014	31	asus chromebook	56
2014	31	dell inspiron desktop	44

Insights Derived:-

- O Week 30 has the highest number of users i.e. 322
- o The most number of users are for MacBook Pro

Task 5:- Email Engagement Analysis:

- Objective: Analyze how users are engaging with the email service
- o My Task: Write an SQL query to calculate the email engagement metrics.
- Code Written: select 100*sum(case when email_category='email_opened' then 1 else 0 end)/sum(case when email_category

```
='email sent' then 1 else 0 end) as email opening rate,
```

100*sum(case when email_category='email_clicked' then 1 else 0 end)/sum(case when email_category

='email sent' then 1 else 0 end) as email clicking rate

from(

select *, case when action in ('sent weekly digest', 'sent reengagement email')

then 'email sent'

when action in ('email open') then 'email opened'

when action in ('email clickthrough') then 'email clicked'

end as email category

from email events) a; /*firstly we find the email category*/

Insights Derived:-

- o It was observed that the email opening rate was 33.5834
- o The email clicking rate was 14.7899

Overall Insights, Results and Observations:

Insights:-

- a) Practical knowledge gained on implementing SQL to real world scenarios
- b) Gained in-depth knowledge on joins
- c) Helped to gain insights into how MySQL can be used to solve real world problems coming up in the corporate world

Result:-

- a) Gained confidence on MySQL and how to use it in different scenarios and what different methods/codes can be used for a particular problem
- b) Helped to gain a grip on the different syntaxes to be used, what errors need to be avoided while coding in MySQL, I learnt how some common syntax errors can be avoided and what to look for.
- c) Thorough understanding of how to use different Window Functions to solve real world business problems.