PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-241057

(43)Date of publication of application: 17.09.1996

(51)Int.CI.

G09G 3/30 H05B 33/08

(21)Application number: 07-043749

(71)Applicant: TDK CORP

SEMICONDUCTOR ENERGY LAB CO LTD

(22)Date of filing:

03.03.1995

(72)Inventor:

TAKAYAMA ICHIRO

ARAI MICHIO

KODAMA MITSUFUMI

(54) IMAGE DISPLAY DEVICE

(57)Abstract:

PURPOSE: To provide an image display device making it possible to display with a luminance according to a control signal without being affected by an image control signal for another pixel.

CONSTITUTION: This device is an image display device provided with a thin film pixel element EL, a nonlinear element 5 for controlling the light emission of the thin film pixel element EL, a capacitor C for holding a signal connected to the gate electrode of the nonlinear element 5 and the nonlinear element 6 for writing the data in the capacitor C at every pixel. At this time, a resistor R whose resistance value is larger than the on resistance of the nonlinear element 6 for writing the data and smaller than the off resistance of the nonlinear element 6 for writing the data is arranged between the capacitor C and optional fixed potential.

LEGAL STATUS

[Date of request for examination]

21.02.2002

[Date of sending the examiner's decision of rejection]

02.11.2004

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

Best Available Copy

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-241057

(43)公開日 平成8年(1996)9月17日

(51) Int.C	l. ⁸
------------	-----------------

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 9 G 3/30

H05B 33/08

4237 - 5H

G 0 9 G 3/30

H05B 33/08

K

審査請求 未請求 請求項の数2 〇L (全 6 頁)

(21)出願番号

特願平7-43749

(22)出廣日

平成7年(1995)3月3日

(71)出願人 000003067

ティーディーケイ株式会社

東京都中央区日本橋1丁目13番1号

(71)出願人 000153878

株式会社半導体エネルギー研究所

神奈川県厚木市長谷398番地

(72)発明者 高山 一郎

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

(72)発明者 荒井 三千男

東京都中央区日本橋一丁目13番1号 ティ

ーディーケイ株式会社内

(74)代理人 弁理士 山谷 皓榮 (外2名)

最終頁に続く

(54) 【発明の名称】 画像表示装置

(57)【要約】

【目的】 他画素に対する画像制御信号の影響を受けず、制御信号に応じた輝度での表示を可能とした画像表示装置を提供すること。

【構成】 一画素毎に薄膜画素素子ELと、この薄膜画素素子ELの発光制御用の非線形素子5と、この非線形素子5のゲート電極に接続された信号保持用のコンデンサCと、このコンデンサCへのデータ書き込み用の非線形素子6を備えた画像表示装置において、前記コンデンサCと任意の固定電位との間に、前記データ書き込み用の非線形素子6のオン抵抗より大きな抵抗値でかつ前記データ書き込み用の非線形素子6のオフ抵抗より小さな抵抗値の抵抗Rを配置したことを特徴とする。

本発明の原理構成図

【特許請求の範囲】

【請求項1】 一画素毎に薄膜画素素子と、この薄膜画 素素子の発光制御用の非線形素子と、この非線形素子の ゲート電極に接続された信号保持用のコンデンサと、こ のコンデンサへのデータ書き込み用の非線形素子を備え た画像表示装置において、

前記コンデンサと任意の固定電位との間に、前記データ 書き込み用の非線形素子のオン抵抗より大きな抵抗値で かつ前記データ書き込み用の非線形素子のオフ抵抗より 小さな抵抗値の抵抗を配置したことを特徴とする画像表 10 示装置。

【請求項2】 前記薄膜画素素子がエレクトロルミネセ ンス素子であることを特徴とする請求項1に記載された 画像表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は画像表示装置に係り、特 に制御信号に応じた輝度での表示を可能にしたものに関 する。

[0002]

【従来の技術】従来のエレクトロルミネセンス(EL) 画像表示装置は、図4(A)に示す如く、ELで構成さ れる画面部1と、X軸信号が出力されるシフトレジスタ 2と、Y軸信号が出力されるシフトレジスタ3等を具備 している。画面部1にはEL電源Eoが印加され、Y軸 用のシフトレジスタ3にはY軸同期信号Ycとシフトレ ジスタ電源SRが印加される。またX軸用のシフトレジ スタ2には画像データ信号Diと、X軸同期信号Xcと シフトレジスタ電源SRが印加される。

【0003】図4(B)は、画面部1の1部分Wを拡大 30 したものを示す回路であり、4つの画素10-1、10 -2、10-3、10-4が例示されている。画素10 - 1は、発光用の薄膜のEL素子EL1 と、このEL素 子EL、の発光を制御するバイアス薄膜トランジスタ (TFT) 11-1と、このバイアスTFT11-1の ゲート電極に接続されるコンデンサC1と、このコンデ ンサC、に対し信号を書き込む書き込み用のY座標セレ クトスイッチ12-1で構成される。他の画素10-2、10-3、10-4・・・も画素10-1と同様に 構成されている。

【0004】Y座標セレクトスイッチ12-1は、例え ぱTFTで構成され、そのゲート電極はシフトレジスタ 3の端子Y,に接続される。このY座標セレクトスイッ チ12-1はまたX座標セレクトスイッチ13に接続さ れている。そしてX座標セレクトスイッチ13は、例え ぱTFTで構成され、そのゲート電極はシフトレジスタ 2の端子X, に接続されている。なおX座標セレクトス イッチ13には、画像データ信号Diが入力される。 【0005】従って、Y軸用のシフトレジスタ3におい

スイッチ12-1、12-2・・・はオンとなる。この ときX軸用のシフトレジスタ2において端子X, に同期 信号が出力されると、X座標セレクトスイッチ13がオ ンとなり、X座標セレクトスイッチ13に入力された画 像データ信号D, がY座標セレクトスイッチ12-1を 経由してコンデンサC、に保持される。次に端子X、に 同期信号が出力されると、X座標セレクトスイッチ13 がオフになると同時にX座標セレクトスイッチ14がオ ンとなり、このときX座標セレクトスイッチ14に入力 された画像データ信号D。がY座標セレクトスイッチ1 2-2を経由してコンデンサC、に保持される。従っ て、Y座標セレクトスイッチ12-1、12-2・・・ はコンデンサC、、C、・・・に画像データ信号に応じ た電荷を蓄積する書き込み用のセレクトスイッチとして 機能する。

【0006】とのようにしてコンデンサC,、C,・・ ・に画像データ信号D₁、D₂・・・が保持され、これ に応じてバイアスTFT11-1、11-2・・・もオ ン状態になりEL素子EL、、EL、・・・を画像デー 20 夕信号D, 、D, ・・・に応じて発光制御する。このよ うに端子Y, に対する画素10-1、10-2・・・が 発光制御動作したのちに、Y軸用のシフトレジスタ3で は端子Y」に同期信号が出力され、同様にして画素10 -3、10-4・・・が発光制御動作する。なおEL素 子EL,、EL,・・・は、例えば有機EL素子で構成 される。

【0007】このような、一画素毎に薄膜EL素子と、 前記EL素子の発光制御用の、バイアスTFTの如き非 線形素子と、この非線形素子のゲート電極に接続された 信号保持用のコンデンサと、この信号保持用のコンデン サへのデータ書き込み用のY軸セレクトスイッチの如き 非線形素子を備えたEL画像表示装置において、ELの 発光強度は信号保持用のコンデンサに蓄積された電圧に 依存し、その発光はスタティックである。このようなE L画像表示装置は、例えばA66-in 201pi Electroluminescent Displa y Panel T. p. Brody, F. C. Luo, et. al., IEEE Trans. Electro n Devices, Vol. ED-22, No. 9, Sept. 1975, (P739~P749) に記載さ れている。

[0008]

【発明が解決しようとする課題】ところが、前記信号保 持用のコンデンサに蓄積された電荷はデータ書き込み用 の非線形素子のオフ・リークにより失われ、画質が変化 してしまう。しかもこの失われる電荷の量は、表示され る画面の情報により影響される。

【0009】いま図4に示す一画素の回路を図5に示 す。発光用の薄膜のEL素子ELの一端は共通電極CO て端子Y,より同期信号が出力されるとY座標セレクト 50 Mに接続され、他端はこれを発光制御するバイアスTF T11に接続される。とのバイアスTFT11は固定電位VD(図4のEoに相当)が印加され、またそのゲート電極には信号保持用のコンデンサCが接続される。そしてこの信号保持用のコンデンサCにはY座標セレクトスイッチ12が接続される。

【0010】ところで信号保持用のコンデンサCに蓄積される電荷は、前記Y座標セレクトスイッチ12を経由してリークされ、EL素子ELのバイアスが変わり画質に影響が生ずるが、そのリーク量は、Y座標セレクトスイッチ12に印加される電位Xiにより影響される。例 10 えば図4(B)において、画素10-3のコンデンサC,のリーク電流はY座標セレクトスイッチ12-3のオフ抵抗とこのY座標セレクトスイッチ12-3の接続電位に影響される。

【0011】 ここでY座標セレクトスイッチ12-3の接続電位は、他画素に蓄積しようとする(換言すれば端子Y,に同期信号が出力されていない時間中に)Y座標セレクトスイッチ12-1、12-3(図示省略されているが、画素10-3の上方の画素10-5に設けられたY座標セレクトスイッチ12-5等)が接続されてい 20るX軸の共通データ線 XD_1 に印加される電圧の影響を受ける。この共通データ線 XD_1 の電位は画像信号に基づき決まるものである。

【0012】しかしE L 画像表示装置には、どのような画像を表示するのか事前には不明のため、前記リーク損失を設計に反映することが不可能であった。そこで、Y座標セレクトスイッチには極めて高いオフ抵抗が要求される。また同時に限られた書き込み時間内に信号保持用のコンデンサに画像データを充電するために、低いオン抵抗も要求される。この書き込み時間は高解像度を目指 30 し、一画面の画素数を増やす程、短くなる。このため極めて高いオフ抵抗と同時に、より低いオン抵抗が要求される。そのため非線形素子の製造方法の選択の自由度が小さく、低コスト化、画面部の大面積化、高画質化、高解像度化が難しかった。

[0013]

【課題を解決するための手段】本発明は、前記の問題点を改善するため、図1に示す如く、EL素子ELに対するバイアスTFT5のゲート電極に接続された信号保持用のコンデンサCに、放電用の抵抗Rを接続する。

【0014】との抵抗Rの値は、データ書き込み用の非線形素子であるセレクトスイッチ6のオフ抵抗よりも低く、かつオン抵抗よりも高い値のものを配置する。なお図1において、COMは共通電極、VDは固定電位である。

[0015]

応じて充電され、E L素子がこの画像データ信号Dに応じて発光する。

【0016】その後、セレクトスイッチ6がオフになると、コンデンサCの電荷は主に抵抗Rにより任意の固定電位(図1の場合はCOM)へ放電が行われるので、このコンデンサCの失われる電荷量はそれに隣接する表示画面の情報に影響されることがない。

[0017]

【実施例】本発明の一実施例を図2に基づき詳述する。 図2において、2はX軸用のシフトレジスタ、3はY軸 用のシフトレジスタ、10-1、10-2、10-3、 10-4・・・は画面部を構成する画素である。

【0019】Y座標セレクトスイッチ6-1は、例えば TFTで構成され、そのゲート電極はシフトレジスタ3 の端子Y,に接続されている。このY座標セレクトスイッチ6-1は、また、X座標セレクトスイッチ13に接続されている。このX座標セレクトスイッチ13は、例えばTFTで構成され、そのゲート電極はシフトレジスタ2の端子X,に接続されている。なおX座標セレクトスイッチ13には、画像データ信号Dが入力される。

30 【0020】従って、Y軸用のシフトレジスタ3において、端子Y,より同期信号が出力されるとY座標セレクトスイッチ6-1、6-2・・・はオンとなる。このときX軸用のシフトレジスタ2の端子X,に同期信号が出力されると、X座標セレクトスイッチ13がオンとなり、X座標セレクトスイッチ13に入力された画像データ信号D,が書き込み用のセレクトスイッチとして機能するY座標セレクトスイッチ6-1を経由してコンデンサC, に保持される。これによりバイアスTFT5-1をオン状態にし、画像データ信号D,に基づき発光制御される。

【0021】次にX軸用のシフトレジスタ2の端子X、に同期信号が出力されると、X座標セレクトスイッチ14がオンとなり、このときX座標セレクトスイッチ14に入力された画像データ信号D、が、書き込み用のセレクトスイッチとして機能するY座標セレクトスイッチ6-2を経由してコンデンサC、んに保持される。これによりバイアスT F T 5 -2 をオン状態にし、画像データ信号D、に応じた電流がE L 素子E、に流れ、画像データ信号D、に基づき発光制御される。

20

[0022] COLOCLOCUTULE COLOCLOCUTULE COLOCUTULE COLOCU ・・・に画像データ信号D1、D2・・・が保持され、 これに応じてバイアスTFT5-1、5-2···もオ ン状態になりEL素子EL、、EL、・・・を画像デー タ信号D₁、D₂・・・に応じて発光させる。このよう に端子Y1 に対する画素10-1、10-2・・・が発 光制御したのちに、Y軸用のシフトレジスタ3では端子 Y, に同期信号が出力され同様にして画素10-3、1 0-4···が発光される。このような動作がX軸用の シフトレジスタ2、Y軸用のシフトレジスタ3について「10 順次行われ、画面が構成される。

【0023】本発明においてはコンデンサC, 'にはデ ータ書き込み用の非線形素子であるセレクトスイッチ6 - 1 のオフ抵抗値よりも小さな値の抵抗R,が並列接続 されている。同様にコンデンサ C_{*} ' 、 C_{*} ' 、 C_{*} ・・・には抵抗R、、R、、R、・・・が接続されてい る。従ってコンデンサC1′に充電された電荷は、セレ クトスイッチ6-1がオフ状態の間で抵抗R, を介し て、図2(B)に示す如く、放電される。コンデンサC , ′、C, ′、C, ′・・・でも同様である。この場 合、コンデンサ C_1 の放電は、前記の如く、抵抗 R_1 を介して行われるので、その放電が他の画素10-3・ ・・の画像データの影響を受けることがなく、一定の割 合で失われるため、常に一定となる。他のコンデンサC ı′、C,′、C,′・・・においても、同様にその放 電は他の画素の画像データの影響を受けることはない。 【0024】本発明では、このようにコンデンサ C₁′、C₂′、C₃′、C₄′···に蓄積された電 荷が一定の割合で失われるため、EL素子の発光は間欠 発光になるが、各画素への電荷の書き込み周波数を、人 30 間の目が明滅を判定できる限界の周波数以上にすること により、使用者には連続した発光と同様に認識させるこ とができる。このとき、発光強度は、1秒あたりの時間 平均輝度がスタティック発光時の目的の輝度になるよう に調整すればよい。

【0025】本発明の他の実施例を図3(A)、(B) に示す。図3(A)ではコンデンサCと固定電位VDの 間に抵抗Rを接続する場合を示し、同(B)では固定電 位VDとは別に固定電位V。を用意し、この固定電位V 。とコンデンサCの間に抵抗Rを接続した場合を示す。 これらによるも前記の場合と同様に動作させることがで きる。

【0026】なおEL素子の極性は、図示のものに限定 されるものではなく、逆極性のものを使用することがで きる。逆極性のものを使用した場合には、当然これに応 じて固定電位VD、共通電極COMも逆になる。

【0027】また前記放電用の抵抗の値は、セレクトス イッチのオン抵抗の2倍~10°倍好ましくは1000 ~10倍、オフ抵抗の1/2~1/10° 好ましくは1 /10~1/1000位である。

【0028】なお、前記第2図の例では、抵抗及びコン デンサをバイアスTFTに追加した固定電位と接続した 例について記載したが、本発明は勿論これに限定される ものではなく、別に設けた固定電位に接続してもよい

し、COM電極に接続することも可能である。

【0029】本発明ではEL素子として有機ELの薄膜 ELを使用できる。本発明では間欠発光であるがスタテ ィック発光に近いため、瞬間的に強く発光させる必要が ない。有機薄膜ELはあまり強く発光させると劣化が早 くなるので、なるべくやわらかく発光させることが好ま しく、その意味からは前記のうちオフ抵抗に近い方の値 が好ましい。

【0030】前記説明では、画素素子としてEL素子を 使用した例について説明したが、本発明は勿論これに限 定されるものではなく、液晶等を使用することもでき る。ところで間欠発光によりEL素子を発光制御するこ とは、特開平4-137392号公報に記載されている が、これに記載されたものは、無発光時間がEL素子の 温度緩和時間であることが必要であるが、本発明はこの ように無発光時間は素子の温度緩和時間以上にする必要 が必ずしもなく、全く異なるものである。しかもこの公 報に記載されたものは、駆動波形を規定しているもの の、その具体的な回路構成については何も記載されてな く、しかも前記問題点の解決を考慮したものでもなく、 これまた全く異なるものである。

【0031】またオフ電流リークに基づく画質の劣化を 防止することは、特開平2-148687号公報の第2 図に記載されたような、カレントミラー回路を用い、カ レントミラー回路の電流をメモリセルの出力によりMO Sトランジスタを制御することによっても可能である が、これはディジタルな信号による階調表示であり、し かも回路が非常に複雑であり、さらに本発明のような間 欠発光ではなく、本発明とはこれまた大きく異なるもの である。

[0032]

【発明の効果】請求項1に記載された本発明によれば信 号保持用のコンデンサに、データ書き込み用非線形素子 のオン抵抗より高くオフ抵抗より小さい値のコンデンサ の電荷放電用の抵抗を設けたので、前記データ書き込み 用非線形素子オフ抵抗をリーク抵抗の極めて小さい、非 常に大きな抵抗値のものとする必要がなく、オフ抵抗の 決定に自由度が与えられ、非線形素子の製造方法の選択 の自由が生まれ、画面の低コスト化、大面積化、高解像 度化、高画質化が容易になった。

【0033】請求項2に記載された本発明によればEL 素子を使用した画像表示装置に対して、オフ抵抗の決定 に自由度が与えられ、非線形素子の製造方法の選択の自 由が生まれ、画面の低コスト化、大面積化、高解像度 化、高画質化が容易になった。

【図面の簡単な説明】 50

7

- 【図1】本発明の原理構成図である。
- 【図2】本発明の一実施例構成図である。
- 【図3】本発明の他の実施例である。
- 【図4】従来例である。
- 【図5】従来例の一画素構成図である。

【符号の説明】

- 1 画面部
- 2 シフトレジスタ
- 3 シフトレジスタ
- 5 NAPATET
- 6 セレクトスイッチ

【図1】

本発明の原理構成図

*10-1 画素

10-2 画素

10-3 画素

10-4 画素

11 MAPATET

11-1 バイアスTFT

12-1 セレクトスイッチ

13 セレクトスイッチ

14 セレクトスイッチ

10 COM 共通電極

* VD 固定電位

【図2】

本発明の一実施例構成図

【図5】

従来例の一画素

(6)

【図3】

本発明の他の実施例

【図4】

フロントページの続き

(72)発明者 小玉 光文

神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.