IMPLEMENTING A BAYESIAN-BASED IMAGE RESTORATION METHOD

Adrienne Stolte, Aneesh Malhotra, Rishi Gupta, Shakib Rashid October 15, 2018

Proposal Presentation

Introduction

Motivation

 Often Fourier methods fail to reproduce deblurred images in the presence of additional noise. We wish to compare the results of applying a probabilistic method with that of the Fourier method.

1

REQUIREMENTS

- The goal is to reconstruct an image that has been blurred using a known blurring function with the addition of noise.
- The original image will be obtained when the blurring function is a Gaussian point spread function (PSF).
- The final product will be code written in Matlab that implements the findings of W. H. Richardson's *Bayesian-based iterative* method of image restoration and can be run on a standard laptop.

SYSTEM ARCHITECTURE

Figure: Diagram of the main components and how they interface

MAIN COMPONENTS

- · Equation
 - · Degraded Image H
 - · Point Spread Function S
 - · Original Image W
- · MATLAB
 - · Computation
 - · Image Processing

APPROACH

ALTERNATIVE DESIGNS

Some examples of other proposed methods of image restoration are:

- · Wiener Filter
- · Adaptive Filter

EXPERIMENT 1

- · Simple experiment to reduce factors that would hinder the operation
- · Generate simple shapes and figures to be inputted into a blurring point spread function that is known
- · Multiple different images will be used at various different noise levels
- · Use this as an input to the Bayesian based iterative method of image restoration
- · Retrieve the original clear image and compare to the original and repeat for different shapes

EXPERIMENT 1 FIGURES

Fig. 3. Restoration with no noise. (A) Original image, (B) degraded image, (C) 10-iteration restoration, (D) 20 iterations, and (E) 30 iterations.

Fig. 4. Restoration with 0.1 noise. (A) Original image, (B) degraded image, (C) 10-iteration restoration, (D) 20 iterations, and (E) 30 iterations.

Figure: Figure 1 (right) no noise and Figure 2 (left) with noise

EXPERIMENT 2

- Experiment will be conducted using multiple real images of a simple object such as a box or chair.
- · Picture will be taken indoors with artificial light to minimize factors such as sun glare.
- · Images will be processed into a blurring point spread function where the function is know
- This will serve as the input to the Bayesian based iterative method that will return a deblurred version of the image
- · Compare to original and repeat for multiple images

CHALLENGES

- · Learning and understanding the theory behind image processing techniques and Bayes formula as applied to image processing
- Understanding existing methods of blurring point spread functions in order to process our input
- · Programming the equation and methods into Matlab
- · Latency in the computation as the image becomes more complex
- Deblurring the image until the subject can be reasonably determined (number of iterations)

TASKS

- · Track progress; contact faculty Project Manager
- · Program computation Rishi G., Aneesh M.
- · Testing Adrienne S., Shakib R.
- · Prepare in-progress presentation all members
- · Prepare final poster presentation all members

KNOWLEDGE AND SKILLS

- · Communications
- · Signal processing
- Probability
- · Programming in Matlab

Knowledge to be acquired:

· Understanding of image processing theory and applications

