Цель работы: для сложной системы S, имеющей не более 10 состояний, определить время нахождения системы в предельных состояниях, т.е. при установившемся режиме работы.

Теоретическая часть

Случайный процесс, протекающий в сложной системе S, называется марковским, если он обладает следующим свойством: для каждого момента времени t_0 вероятность любого состояния системы в будущем при $t > t_0$ зависит только от состояния системы в настоящем $t = t_0$ и не зависит от того, когда и каким образом система перешла в это состояние (как процесс развивался в прошлом). В марковском случайном процессе будущее развитие зависит только от настоящего состояния и не зависит от предыстории процесса.

Для марковского процесса составлены уравнения Колмогорова:

$$F = (P'(t), P(t), \lambda) = 0$$

Вероятностью i-го состояния называется вероятность $p_i(t)$ того, что в момент времени t система будет находиться в состоянии S_i . Для любого момента t сумма вероятностей всех состояний равна единице.

Для нахождения предельных вероятностей используется система уравнений вида:

$$\begin{cases} p'_0 = \lambda_{10}p_1 + \lambda_{20}p_2 - (\lambda_{01} + \lambda_{02})p_0, \\ p'_1 = \lambda_{01}p_0 + \lambda_{31}p_3 - (\lambda_{10} + \lambda_{13})p_1, \\ p'_2 = \lambda_{02}p_0 + \lambda_{32}p_3 - (\lambda_{20} + \lambda_{23})p_2, \\ p'_3 = \lambda_{13}p_1 + \lambda_{23}p_2 - (\lambda_{31} + \lambda_{32})p_3. \end{cases}$$

В левой части каждого из уравнений стоит производная вероятности i-го состояния; в правой части - сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние), умноженная на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного i-го состояния.

Результаты работы

На рис. 1 и 2 представлены результаты работы программы:

+		·		+	+		
	1	2	3	4			
1	0.0	0.9905	 0.8032	0.9556	- 		
2	0.7326	0.0	0.3981	0.7493			
3	0.1235	0.734	0.0	0.09			
4	0.4813	0.6056	0.9415	0.0			
+				+	+		
+ 	Предельн	ные вероя	- -	 Время нахо	ждения в	предельных	состояниях
+ 1		0.126			1	 .396	
2	0.2842		ĺ	1.185			
3		0.4074		2.098			
4		0.1824	i		4	.567	
. · . ++			+-				

Рис. 1: Система S с 4 состояниями

1	1	2	3	4	5	6	7	8	9	10
										+ 0.3015
2	0.6275	0.0	0.1184	0.0061	0.0804	0.7998	0.0356	0.0296	0.7604	0.7032
3	0.9993	0.5955	0.0	0.5504	0.4776	0.6338	0.3464	0.5157	0.8324	0.4442
4	0.7516	0.3148	0.101	0.0	0.5644	0.5457	0.64	0.1098	0.3416	0.9241
5	0.994	0.5202	0.4791	0.4406	0.0	0.9028	0.8223	0.9532	0.6698	0.8871
6	0.1804	0.86	0.0388	0.6297	0.2878	0.0	0.0312	0.1143	0.7246	0.0474
7	0.7402	0.0888	0.8508	0.8511	0.141	0.9328	0.0	0.3283	0.2096	0.8121
8	0.4267	0.2641	0.4077	0.0288	0.2921	0.0372	0.8628	0.0	0.2655	0.3737
9	0.7207	0.519	0.9853	0.29	0.3592	0.2621	0.6882	0.7523	0.0	0.0403
10	0.8538	0.1858	0.4533	0.1943	0.6809	0.1789	0.1649	0.0948	0.5208	0.0
+				·		+	+	+	+	+

	Предельные вероятности	Время нахождения в предельных состояниях
1	0.1103	0.8
2	0.1374	3.331
3	0.0739	2.112
4	0.0713	2.593
5	0.048	1.464
6	0.1554	2.475
7	0.077	3.346
8	0.1114	1.177
9	0.0991	0.008
10	0.1162	1.279
+	· +	

Рис. 2: Система S с 10 состояниями

Вывод

В ходе выполнения лабораторной работы был смоделирован марковский процесс, найдены предельные вероятности и время нахождения сложной системы в передельных состояниях.