Preliminary Examination

Joe Camilleri

Virginia Tech

DNP October 2021

Mini-Symposium: Neutrinos and Nuclei XII: Double Beta Decay Analysis
Techniques

Neutrinos in the Standard Model

leptons in the standard model e, μ, τ each have associated neutrinos ν_{μ}, ν_{τ} . U(1) gauge symmetry (global phase?) implies conservation of lepton flavor.

$$\begin{pmatrix} \nu_{\alpha} \\ \ell_{\alpha} \end{pmatrix} \rightarrow \qquad (1)$$

Proposed

 $[\]begin{pmatrix} \nu_{\alpha} \\ \ell_{\alpha} \end{pmatrix} \to \tag{2}$

⁰squid.

CUPID experiment

- Proposed 0νββ search using bolometric array of 1596 Li₂MoO₄ crystals, to be deployed in the CUORE cryostat¹.
- Aims to eliminate dominant background of alpha particles present in CUORE.
- Are new backgrounds introduced with using a new isotope for the bolometers?

Rendering of proposed CUPID array of Li_2MoO_4 crystals

¹arxiv.org/abs/1904.05745.

Lithium molybdate

- Li₂MoO₄ crystals allow for discrimination of α backgrounds from $\beta\beta$ events (Q=3034keV) via thermal + scintillation signals.
- relatively high isotopic abundance of ¹⁰⁰Mo (10%)
- enrichment above 95% already demonstrated in CUPID-Mo².

St. org /ohs /1000 02004

Scintillating Bolometer

$2\nu\beta\beta$ events and muons

- The rate of $2\nu\beta\beta$ events is not negligible³ in the CUPID array
- Minimizing the distance cut helps avoid mis-labelling random $2\nu\beta\beta$ coincidences as multiplicity 2.
- Assuming a simple muon veto geometry, increasing the distance cut rejects more muon events.

$$T_{1/2}^{2
uetaeta}=7.1*10^{18} yr$$
 $ightarrow$ single crystal rate $\sim 3mHz$

³arxiv.org/abs/1912.07272.

Distance cut in the CUPID array

- monte-carlo simulation of 1million 2.6MeV gamma rays in the crystal volume.
- With this energy, we expect multiple scattering events in the crystals.
- higher multiplicity events are discarded from counts

Integration time in the CUPID array

$$\begin{array}{ccc} ^{238}U \xrightarrow{\alpha} ^{234}Th \rightarrow ... \\ ^{214}Bi \xrightarrow{\beta} ^{214}Po \xrightarrow{\alpha} ^{210}Pb \ ... \end{array}$$

- 100,000 Uranium-238 events (full chain)
- lacksquare $T_{1/2}$ 214 Po $\sim 160 \mu s$
- $T_{1/2}$ ²¹⁴Bi \sim 20 minutes

$2\nu\beta\beta$ tagging simulation

- 40 million events generated in crystal volume.
- expect $\sim 90\%$ efficiency for $2\nu\beta\beta$ tagging, when using approximate CUORE parameters
- larger distance cut causes more random coincidences and more variation with integration time
- bremsstrahlung, escape, random coincidences are primary contributors

implementation of muon background

- incorporating scintillating muon veto geometry into monte-carlo simulations
- muon flux at LNGS is $3 \cdot 10^{-8}$ muons $/(s \cdot cm^2)$
- muon suppression versus distance cut optimization.

preliminary muon veto geometry

summary and future work

- validation of distance cut and integration time
- qualitative understanding of effect on $2\nu\beta\beta$ events
- optimize these parameters with the muon background, potential cosmogenics + in-situ reactions

