SAMPLING PROBABILITY DISTRIBUTIONS

From conjugacy to Hamiltonian Monte Carlo

August 19, 2019

Jon Fintzi

Biostatistics Research Branch National Institute of Allergy and Infectious Diseases National Institutes of Health

Happy Monday-Funday!

Last time:

- Bayesian inference always starts with a model for the joint distribution of θ and y:.
 - $\pi(\theta, y) = f(y|\theta)\pi(\theta) = \pi(\theta|y)m(y).$ $\circ \pi(\theta|y)$ is the **posterior distribution** of θ given y,
 - \circ $f(y|\theta)$ is the **sampling distribution** for y given θ ,
 - $\circ \pi(\theta)$ is the **prior distribution** of θ ,
 - \circ m(y) is the marginal distribution of y.
- Bayes rule yields the posterior distribution

$$\pi(\theta|y) = \frac{f(y,\theta)}{m(y)} = \frac{f(y|\theta)\pi(\theta)}{m(y)} \propto Likelihood \times Prior.$$

• All of the information used in the update to our prior is encoded in the likelihood,

$$L(\mathbf{y}|\theta) = \prod_{i=1}^{N} f(y_i|\theta).$$

- Likelihood principle: implies proportional likelihoods encode equivalent updates for a single observer.
- Two people can have different epistemic uncertainty (different priors).
- The likelihood principle does not imply equivalent Bayesian inferences (corollary

Lecture 10 of Statistical Rethinking

Key takeaways:

- Bayes is all about the posterior distribution, not how you compute it.
- Sometimes, we can't get the posterior analytically, but we can approximate it by sampling.
- Samples also give us a way to approximate the distributions of complicated functionals of the posterior.
- Markov Chain Monte Carlo is one way to sample.
 - Metropolis/Metropolis-Hastings.
 - $\circ\,$ Hamiltonian Monte Carlo.

This Week

Iterations on Bayesian analysis of binomial data

- Motivating example PREVAIL II Trial.
- Analysis with conjugate priors, beta-binomial model.
- Prior selection.
- Analysis with non-conjugate priors.
- First look at Stan if there's time.

Motivating Example — PREVAIL II Trial

Context:

- 2014–2016 Ebola virus disease (EVD) outbreak in Guinea, Liberia, and Sierra Leone.
- Over 28,000 suspected or confirmed cases and 11,000 fatalities.
- Urgent need to identify effective theraputics to reduce mortality.

Partnership for Research on Ebola Virus in Liberia (PREVAIL) II trial:

- Adaptive trial to determine the effectiveness of Zmapp, and possibly other agents, in reducing Ebola mortality.
- Primary endpoint: 28 day mortality on optimized standard of care (oSOC) vs. Zmapp + oSOC.
- 72 patients enrolled at sites in Liberia, Sierra Leone, Guinea, and the US.
 Overall mortality: 21/71 died (30%),
 - SOC alone: 13/35 (37%),
 - \circ Zmapp + SOC: 8/36 (22%).
- Super-duper Barely Bayesian design (Proschan, 2016).

Motivating Example — PREVAIL II Trial

Target of inference: $\pi(p_T, p_C|y_T, y_C)$, the posterior distributions for probability of death on treatment (T) and control (C).

- p_T, p_C : probabilities of 28 day mortality on T and C.
- y_T, y_C : # of deaths on T and C.
- N_T, N_C : # participants randomized to T and C.

Some questions of interest:

- Evidence for Zmapp + oSOC more effective than oSOC alone: $Pr(p_T < p_C | y_T, y_C)$.
- Effectiveness of Zmapp + oSOC, effectiveness of oSOC alone: $\pi(p_T|y_T)$, $\pi(p_C|y_C)$.

A Simple Model for Count Data

Binomial count model:

- Arises as a model for independent binary random variables (RVs), $Z_i \in \{0,1\}, i=1,\ldots,N$, with common success probability, p.
- Let $Y = \sum_{i=1}^{N} Z_i$. The probability of seeing Y = y successes in N trials is

$$\Pr(Y = y|p) = \binom{N}{y} p^y (1-p)^{N-y}.$$

$$\propto p^y (1-p)^{N-y}$$
(1)

- For fixed y, we can view (1) as a function of p this is the **likelihood** function.
- The maximum likelihood estimate (MLE), $\hat{p} = y/N$, is the value of p under which the observed data are most likely (i.e., \hat{p} maximizes the likelihood).

A Simple Model for Count Data

Binomial distributions for two values of p

Binomial likelihoods for two datasets Likelihoods in black, MLEs in red

Beta Distribution as a Prior for a Binomial Probability

Beta distribution

- If we though all values of p were equally likely, could take $p \sim \text{Unif}(0,1)$. In general, this is too restrictive.
- More flexible: $\theta \sim \text{Beta}(a, b)$, with a > 0, b > 0, where

$$\pi(\theta|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma b} p^{(a-1)} (1-p)^{b-1},$$

$$\propto p^{(a-1)} (1-p)^{b-1},$$
(2)

for $0 and where <math>\Gamma(\cdot)$ is the gamma function¹.

- $p \sim \text{Unif}(0,1)$ is equivalent to $p \sim \text{Beta}(1,1)$.
- Moments:

$$E(p|a,b) = \frac{a}{a+b},$$

$$Var(p|a,b) = \frac{ab}{(a+b)^2(a+b+1)}.$$

 $\lim_{x \to \infty} \frac{1}{1} \Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$, more on the Beta distribution here.

Beta Distribution as a Prior for a Binomial Probability

Beta densities for various hyperparameters Density in black, mean in red

Posterior Derivation

In the Beta-Binomial hierarchy, concentrate only on terms that involve θ .

$$\pi(p|y) \propto L(y|p)\pi(p),$$

$$= p^{y}(1-p)^{N-y} \times p^{a-1}(1-p)^{b-1},$$

$$= p^{y+a-1}(1-p)^{N-y+b-1},$$

$$= p^{\widetilde{a}-1}(1-p)^{\widetilde{b}-1},$$

where $\tilde{a} = y + a$ and $\tilde{b} = N - y + b$.

- The posterior takes the form of a $\text{Beta}(\widetilde{a}, \widetilde{b})!$
- We say the prior is <u>conjugate</u> when the posterior is of the same form as the prior.
- Fun fact: all exponential family distributions have conjugate priors!

PREVAIL II Posterior Distributions

- Priors: $p_T \sim \text{Beta}(1,1)$ and $p_C \sim \text{Beta}(1,1)$.
- Data: $y_T = 8$ and $y_C = 13$, with $N_T = 36$ and $N_C = 35$.
- Posteriors: $p_T|y_T \sim \text{Beta}(9,29)$ and $p_C|y_C \sim \text{Beta}(14,23)$.
 - Posterior medians (95% Credible Intervals):
 - Zmapp + oSOC, $p_T|y_T$ 0.23 (0.12, 0.38),
 - oSOC alone, $p_C|y_C$: 0.38 (0.23, 0.54).
 - Risk difference, $p_T p_C \mid y_T, y_C$: -0.14 (-0.34, 0.06).
 - Risk ratio, $p_T/p_C \mid y_T, y_C$: 0.62 (0.29, 1.24).
 - Odds ratio, $[(p_T/(1-p_T))/(p_C/(1-p_C))] \mid y_T, y_C : 0.50(0.18, 1.36)$
 - $\Pr(p_T < p_C | y_T, y_C) \approx 0.91$.

PREVAIL II Posterior Distributions

Posterior Mean and Likelihood-Prior Interaction

- Recall the mean of a Beta(a, b) is a/(a + b).
- The posterior mean of a Beta(y + a, N y + b) is therefore

$$E(p|y) = \frac{y+a}{N+a+b}$$

$$= \frac{y}{N+a+b} + \frac{a}{N+a+b}$$

$$= \frac{y}{N} \times \frac{N}{N+a+b} + \frac{a}{a+b} \times \frac{a+b}{N+a+b}$$

$$= MLE \times W + PriorMean \times (1-W),$$

where the weight W is $W = \frac{N}{N+a+b}$.

- As N increases, the weight tends to 1, so that the posterior mean gets closer to the MLE.
- Notice that the uniform prior a = b = 1 gives a posterior mean of $E(p|y) = \frac{y+1}{N+2}$.

Choosing Prior Hyperparameters

How to specify hyperparameters a and b?

- Suggestion #1: Use information about prior mean prior "sample size."
 - Prior mean: m {prior} = a/(a+b)\$.
 - Recall, $E(p|y) = \frac{y+a}{N+a+b}$, so the denominator is like the posterior sample size, $\implies N_{nrior} = a + b.$
 - \circ Solve for a and b via

$$a = N_{prior} \times m_{prior},$$

$$b = N_{prior} \times (1 - m_{prior}).$$

- Intuition: view a and b as pseudo-observations of successes and failures.
- Suggestion #2: Choose a and b by specifying two quantiles for p associated with prior probabilities.
 - \circ e.g., Pr(p < 0.2) = 0.1 and Pr(p > 0.6) = 0.1.
 - \circ Can find values of a and b numerically.
 - In more complicated models, simulate.

How to Specify Priors in General?

Theme: What aspects of my model do I know something about? How do I encode that knowledge?

- Containment: Does my prior predictive distribution produce realistic datasets?
- Caveat: People who don't interrogate and justify their priors deserve what's coming to them.
 - Table of priors with references.
 - Prior predictive checks.
 - Sensitivity analyses.

Issues with Uniformity

We might think that if we have little prior opinion about a parameter then we can simply assign a uniform prior, i.e. a prior $p(\theta) \propto \text{constant}$.

There are two problems with this strategy:

• We can't be uniform on all scales since, if $\phi = g(\theta)$:

$$\underbrace{p_{\phi}(\phi)}_{\text{Prior for }\phi} = \underbrace{p_{\theta}(g^{-1}(\phi))}_{\text{Prior for }\theta} \times \underbrace{\left\lfloor \frac{d\theta}{d\phi} \right\rfloor}_{\text{Jacobian}}$$

and so if $g(\cdot)$ is a nonlinear function, the Jacobian will be a function of ϕ and hence not uniform (more on this in a bit).

- If the parameter is not on a finite range, an improper distribution will result (that is, the form will not integrate to 1). This can lead to all kinds of paradoxes (see e.g., Dawid, 1973).
- \bullet And importantly, improper priors are non-generative \implies cannot interrogate their predictive distribution.

Are Priors Really Uniform?

- In the binomial example, $p \sim Unif(0,1)$ seems a natural choice.
- But suppose we are going to model on the logistic scale so that

$$\phi = \log\left(\frac{\theta}{1 - \theta}\right)$$

is a quantity of interest. -A uniform prior on θ produces the very non-uniform distribution on ϕ . -Not being uniform on all scales is not a problem, and is correct probabilistically, but one should be aware of this characteristic.

Are Priors Really Uniform?

- In the binomial example, $p \sim Unif(0,1)$ seems a natural choice.
- But suppose we are going to model on the logistic scale so that

$$\phi = \log\left(\frac{\theta}{1 - \theta}\right)$$

is a quantity of interest. -A uniform prior on θ produces the very non-uniform distribution on ϕ . -Not being uniform on all scales is not a problem, and is correct probabilistically, but one should be aware of this characteristic.

Biostatistics Research Branch

Sampling Probability Distributions

Non-Conjugate Priors

Suppose we want to model mortality on the log-odds scale, $\theta = \log(p/(1-p))$.

Bayesian inference always starts with a model for the joint distribution of θ and y.

- The parameter in our model is θ .
- Lose conjugacy, no closed form for the posterior, now we rely on MCMC.
- Our MCMC targets the posterior $\pi(\theta|y) \propto \pi(\theta,y) = L(y|\theta)\pi(\theta)$.
- If our prior is on the log-odds of death, we have no problems. It does not matter that $L(y|\theta) = Binomial(N, 1/(1 + exp(-\theta))).$
- If our prior is on the probability of death but our model is defined in terms of the log-odds, we must include a Jacobian adjustment.

Critical: We must never lose sight of how our model is defined.

For more on this, see case studies here and here study.

Why Non-Conjugate Priors?

- Information encoded naturally on other scales.
- More flexible/natural representation using other types of distributions.
- Hierarchical information.
- Computational considerations.
- Induce particular features in the posterior, e.g., sparsity.

Next week

Linear regression. Watch lecture 3 (SmaRt).

We'll talk about:

- Bayesian linear regression.
- Weekly informative priors.

References

- P.A. Dawid, M. Stone, and J.V. Zidek. "Marginalization paradoxes in Bayesian and structural inference." Journal of the Royal Statistical Society: Series B (Methodological) 35.2 (1973): 189-213.
- A. Gelman, D.A. Simpson, and M. Betancourt. "The prior can often only be understood in the context of the likelihood." Entropy 19.10 (2017): 555.
- The PREVAIL II Writing Group and Multi-National PREVAIL II Study Team. "A randomized, controlled trial of ZMapp for Ebola virus infection." The New England Journal of Medicine 375.15 (2016): 1448.
- M.A. Proschan, L.E. Dodd, and D. Price. "Statistical considerations for a trial of Ebola virus disease therapeutics." Clinical Trials 13.1 (2016): 39-48.

Jon Fintzi