

## Mining Structural Hole Spanners in Social Networks

Tiancheng Lou<sup>1,2</sup>, Jie Tang<sup>2</sup>

<sup>1</sup>Google, Inc.

<sup>2</sup>Department of Computer Science and Technology Tsinghua University



### Social Networks









- >1000 million users
- The 3<sup>rd</sup> largest "Country" in the world
- More visitors than Google
- >800 million users
- 2013, 560 million users, 40% yearly increase







- 2009, **2 billion** tweets per quarter
- 2010, 4 billion tweets per quarter
- 2011,25 billion tweets per quarter
- More than <u>6 billion</u> images
- Pinterest, with a traffic higher than Twitter and Google



## A Trillion Dollar Opportunity



Social networks already become a bridge to connect our daily physical life and the virtual web space

On2Off [1]

[1] Online to Offline is trillion dollar business

http://techcrunch.com/2010/08/07/why-online2offline-commerce-is-a-trillion-dollar-opportunity/



## Core Research in Social Network





## Today, let us start with the notion of "structural hole"...



### What is "Structural Hole"?



 Structural hole: When two separate clusters possess nonredundant information, there is said to be a structural hole between them.<sup>[1]</sup>

#### Structural hole spanner





## Few People Connect the World



#### Six degree of separation<sup>[1]</sup>



#### In that famous experiment...

- Half the arrived letters passed through the same three people.
- It's not about how we are connected with each other. It's about how we are linked to the world through few "gatekeepers"[2].
- How could the letter from a painter in Nebraska been received by a stockbroker in Boston?

- [1] S. Milgram. The Small World Problem. Psychology Today, 1967, Vol. 2, 60–67
- [2] M. Gladwell. The Tipping Point: How Little Things Can Make A Big Difference. 2006.

## Structural hole spanners control information diffusion...

- The theory of Structural Hole [Burt92]:
  - "Holes" exists between communities that are otherwise disconnected.
- Structural hole spanners

Individuals would benefit from tilling the "holes".
 Community 2
 Community 1

On Twitter, **Top 1%** twitter users control **25%** retweeting flow between communities.



## Examples of DBLP & Challenges



Challenge 1 : Struspanner vs Opini

**82** overlapped PC members of **SIGMOD/ICDT/VLDB** and **SIGKDD/ICDM** during years 2007 – 2009.

: Who control tion diffusion?





# Mining Top-k Structural Hole Spanners

#### **Problem Definition**



Which node is the best structural hole spanner?



Well, mining top-k structural hole spanners is more complex...



#### Problem definition



- INPUT:
  - A social network, G = (V, E) and L communities  $C = (C_1, C_2, ..., C_L)$
- Identifying top-k structural hole spanners.

max  $Q(V_{SH}, C)$ , with  $|V_{SH}| = k$ 

**Utility function Q(V\*, C)**: measure V\*'s degree to span structural holes.

V<sub>SH</sub>: Top-k structural holes spanners as a subset of k nodes

#### Data



|          | #User     | #Relationship | #Messages            |
|----------|-----------|---------------|----------------------|
| Coauthor | 815,946   | 2,792,833     | 1,572,277<br>papers  |
| Twitter  | 112,044   | 468,238       | 2,409,768<br>tweets  |
| Inventor | 2,445,351 | 5,841,940     | 3,880,211<br>patents |

- In Coauthor, we try to understand how authors bridge different research fields (e.g., DM, DB, DP, NC, GV);
- In **Twitter**, we try to examine how structural hole spanners control the information diffusion process;
- In **Inventor**, we study how technologies spread across different companies via inventors who span structural holes.

### Our first questions



- Observable analysis
  - How likely would structural hole spanners connect with "opinion leaders"?
  - How likely would structural hole spanners influence the "information diffusion"?

## Structural hole spanners vs Opinion leaders



Structural hole vs.
Opinion leader vs. Random

**Result:** Structural hole spanners are more likely to connect important nodes

+15% - 50%



The two-step information flow theory<sup>[1]</sup> suggests structural hole spanners are connected with many "opinion leaders"



[1] E. Katz. The two-step flow of communication: an up-to-date report of an hypothesis. In Enis and Cox(eds.), Marketing Classics, pages 175–193, 1973.

# Structural hole spanners control the information diffusion



Results: Opinion leaders controls information flows within communities, while Structural hole spanners dominate information spread across communities.



# Structural hole spanners influence the information diffusion



#### **Intuitions**



 Structural hole spanners are more likely to connect important nodes in different communities.



Model 1: HIS

 Structural hole spanners control the information diffusion between communities.



Model 2: MaxD





# Models, Algorithms, and Theoretical Analysis

### Model One: HIS



- Structural hole spanners are more likely to connect important nodes in different communities.
  - If a user is connected with many opinion leaders in different communities, more likely to span structural holes.
  - If a user is connected with structural hole spanners, more likely to act as an opinion leader.





### Model One: HIS



- Structural hole spanners are more likely to connect important nodes in different communities.
  - If a user is connected with many opinion leaders in different communities, more likely to span structural holes.
  - If a user is connected with structural hole spanners, more likely to act as an opinion leader.
- Model

$$- I(v, C_i) = max \{ I(v, C_i), \alpha_i I(u, C_i) + \beta_s H(u, S) \}$$

$$- H(v, S) = min \{ I(v, C_i) \}$$

 $I(v, C_i)$ : importance of v in community  $C_i$ .

*H*(*v*, *S*): likelihood of *v* spanning structural holes across *S* (subset of communities).

α and β are two parameters



## Algorithm for HIS



```
Input: G = (V, E), parameters \alpha_i, \beta_S, and convergence threshold \epsilon
Output: Importance I and structural hole score H
Initialize I(v, C_i) according to Eq. 4;
repeat
     foreach v \in V do
           for each C_i \in \mathbf{C} do
                P(v, C_i) =
                \max_{S \subset \mathbf{C} \wedge C_i \in S} \{ \alpha_i I(v, C_i) + \beta_S H(v, S) \} ;
     end
     foreach v \in V do
           for each C_i \in \mathbf{C} do
                I'(v, C_i) = \max\{I(v, C_i), \max_{e_{uv} \in E} P(u, C_i)\};
           end
           foreach S \subseteq \mathbf{C} do
                H'(v, \overline{S}) = \min_{C_i \in S} I'(v, C_i);
           end
     end
     Check the \epsilon-convergence condition by
                      \max_{v \in V, C_i \in \mathbf{C}} |I'(v, C_i) - I(v, C_i)| \le \epsilon
     Update I = I' and H = H';
until Convergence;
```

$$I(v, C_i) = \underline{r(v)}, \quad v \in C_i$$
$$I(v, C_i) = 0, \quad v \notin C_i$$

By PageRank or HITS

Parameter to control the convergence



## Theoretical Analysis—Existence



- Given  $\alpha_i$  and  $\beta_S$ , solution exists (I(v, C<sub>i</sub>), H(v, S)  $\leq 1$ ) for any graph, if and only if,  $\alpha_i + \beta_S \leq 1$ .
  - For the only if direction
    - Suppose  $\alpha_i + \beta_S > 1$ ,  $S = \{C_{\text{blue}}, C_{\text{yellow}}\}$
    - r(u) = r(v) = 1;
    - $I(u,C_{blue}) = I(u,C_{vellow}) = 1;$
    - $H(u,S) = min \{ I(u, C_{blue}), I(u, C_{vellow}) \} = 1;$
    - $I(v, C_{\text{yellow}}) \ge \alpha_i I(u, C_i) + \beta_S H(u, S) = \alpha_i + \beta_S > 1$



## Theoretical Analysis—Existence



- Given  $\alpha_i$  and  $\beta_S$ , solution exists (I(v, C<sub>i</sub>), H(v, S)  $\leq 1$ ) for any graph, if and only if,  $\alpha_i + \beta_S \leq 1$ .
  - For the *if* direction
    - If  $\alpha_i + \beta_s \le 1$ , we use induction to prove  $I(v, C_i) \le 1$ ;
    - Obviously  $I^{(0)}(v, C_i) \le r(v) \le 1$ ;
    - Suppose after the *k*-th iteration, we have  $I^{(k)}(v, C_i) \le 1$ ;
    - Hence, in the (k + 1)-th iteration,  $I^{(k+1)}(v, C_i) \le \alpha_i I^{(k)}(u, C_i) + \beta_S H^{(k)}(u, S) \le (\alpha_i + \beta_S) I^{(k)}(u, C_i) \le 1$ .

## Theoretical Analysis—Convergence



• Denote  $\gamma = \alpha_i + \beta_S \le 1$ , we have

$$|I^{(k+1)}(v, C_i) - I^{(k)}(v, C_i)| \le \gamma^k$$

- When k = 0, we have  $I^{(1)}(v, C_i) \le 1$ , thus

$$|I^{(1)}(v, C_i)-I^{(0)}(v, C_i)| \le 1$$

– Assume after *k-th iteration*, we have

$$|I^{(k+1)}(v, C_i) - I^{(k)}(v, C_i)| \le \gamma^k$$

- After (k+1)-th iteration, we have

$$I^{(k+2)}(v, C_i) = \alpha_i I^{(k+1)}(u, C_i) + \beta_S H^{(k+1)}(u, S)$$

$$\leq \alpha_i [I^{(k)}(u, C_i) + \gamma^k] + \beta_S [H^{(k+1)}(u, S) + \gamma^k]$$

$$\leq \alpha_i I^{(k)}(u, C_i) + \beta_S H^{(k+1)}(u, S) + \gamma^{k+1}$$

$$\leq I^{(k+1)}(u, C_i) + \gamma^{k+1}$$



## Convergence Analysis



- Parameter analysis.
  - The performance is insensitive to the different parameter settings.





### Model Two: MaxD



- The minimal cut D of a set communities C is the minimal number of edges to separate nodes in different communities.
- The structural hole spanner detection problem can be cast as finding top-k nodes such that after removing these nodes, the decrease of the minimal cut will be maximized.



Two communities with the minimal cut as 4



#### Model Two: MaxD



Structural holes spanners play an important role in information diffusion

$$Q(V_{SH}, C) = MC(G, C) - MC(G \setminus V_{SH}, C)$$

MC(G, C) = the minimal cut of communities C in G.



## Hardness Analysis



$$Q(V_{SH}, C) = MC(G, C) - MC(G \setminus V_{SH}, C)$$

#### Hardness analysis

- If  $|V_{SH}|= 2$ , the problem can be viewed as minimal node-cut problem
- We already have NP-Hardness proof for minimal node-cut problem, but the graph is exponentially weighted.
- Proof NP-Hardness in an un-weighted (polybounded -weighted)
   graph, by reduction from k-DENSEST-SUBGRAPH problem.



## Hardness Analysis



 Let us reduce the problem to an instance of the k-DENSEST SUBGRAPH problem



- Given an instance {G'=<V, E>, k, d} of the k-DENSEST SUBGRAPH problem, n=|V|, m=|E|;
- Build a graph G with a source node S and target node T;
- Build *n* nodes connecting with *S* with capacity *n*\**m*;
- Build n nodes for each edge in G', connect each of them to T with capacity 1;



## Hardness Analysis (cont.)



- Build a link from  $x_i$  to  $y_j$  with capacity 1 if the  $x_i$  in G' appears on the j-th edge;
- MC(G)=n\*m;



 The instance is satisfiable, if and only if there exists a subset

$$|V_{SH}|=k$$
  
such that  
 $MC(G \setminus V_{SH}) <= n(m-d)$ 



## Proof: NP-hardness (cont.)



- For the *only if* direction
  - Suppose we have a sub-graph consists of k nodes
     {x'} and at least d edges;
  - We can choose  $V_{SH} = \{x\}$ ;
  - For the k-th edge y in G', if y exists in the sub-graph,
     two nodes appearing on y are removed in G;
  - Thus y cannot be reached and we lost n flows for y;
  - Hence, we have  $MC(G \setminus V_{SH}) \le n^*(m-d)$ .



## Proof: NP-hardness (cont.)



- For the *if* direction
  - If there exists a k-subset  $V_{SH}$  such that  $MC(G \setminus V_{SH})$   $\leq n^*(m-d)$ ;
  - Denote  $V_{SH}$ '= $V_{SH}$ ^{x}, the size of  $V_{SH}$ ' is at most k, and MC(G\ $V_{SH}$ ') <= n\*(m-d);
  - Let the node set of the sub-graph be  $V_{SH}$ , thus there are at least d edges in that sub-graph.

## Approximation Algorithm



- Two approximation algorithms:
  - Greedy: in each iteration, select a node which will result in a  $\max$ -decrease of Q(.) when removed it from the network.
  - Network-flow: for any possible partitions  $E_S$  and  $E_T$ , we call a network-flow algorithm to compute the minimal cut.

#### An example: finding top 3 structural holes

Step 1: select V8 and decrease the minimal cut from 7 to 4 Step 2: select V6 and decrease the minimal cut from 4 to 2 Step 3: select V12 and decrease the minimal cut from 2 to 0



## Approximation Algorithm



**Greedy:** In each round, choose the node which results in the max-decrease of Q.

```
Input: G = (V, E), k, l, C = \{C_i\}
Output: Top-k structural hole nodes V_{SH}
Initialize V_{SH} = \emptyset:
while |V_{SH}| < k do
    Initialize f(v) = 0, for each v \in V;
    foreach non empty S \subset \{1, \dots, l\} do
          E_S = \bigcup_{i \in S} C_i and E_T = \bigcup_{i \notin S} C_i;
          Compute the maximal flow with source E_S and sink E_T on
         the induced graph G \setminus V_{SH};
         foreach v \in V do
              Add f(v) by the flow though node v;
          end
    end
     Choose O(k) nodes with the largest f as candidates D;
    Compute p^* = \arg\min_{p \in D} MC(G \setminus (V_{SH} \bigcup \{p\}), \mathbf{C});
    Update V_{SH} = V_{SH} \bigcup \{p^*\}
```

Step 1: Consider top O(k) nodes with maximal sum of flows through them as candidates.

**Step 2:** Compute MC(\*, \*) by trying all possible partitions.

end

Complexity:  $O(2^{2l}T_2(n))$ ;  $T_2(n)$ —the complexity for computing min-cut Approximation ratio:  $O(\log l)$ 





### Results



#### Experiment



|          | #User     | #Relationship | #Messages         |
|----------|-----------|---------------|-------------------|
| Coauthor | 815,946   | 2,792,833     | 1,572,277 papers  |
| Twitter  | 112,044   | 468,238       | 2,409,768 tweets  |
| Inventor | 2,445,351 | 5,841,940     | 3,880,211 patents |

#### Evaluation metrics

- Accuracy (Overlapped PC members in the Coauthor network)
- Information diffusion on Coauthor and Twitter.

#### Baselines

- Pathcount: #shortest path a node lies on
- 2-step connectivity: #pairs of disconnected neighbors
- Pagerank and PageRank+: high PR in more than one communities



#### Experiments



Accuracy evaluation on Coauthor network







- Predict overlapped PC members on the Coauthor network.
  - +20 40% on precision of AI-DM, DB-DM and DP-NC
- What happened to AI-DM?



### Experiment results (accuracy)



- What happened to AI-DB?
  - Only 4 overlapped PC members on Al and DB during 2007 2009, but 40 now.
  - Our conjecture : dynamic of structural holes.

Structural holes spanners of AI and DB form the new area DM.

Similar pattern for 1) Collaborations between experts in Al and DB.

2) Influential of **DM** papers.

**Significantly** increase of coauthor links of Al and DB around year **1994**.

Most overlapped PC members on Al and DB are also PC of SIGKDD



# Maximization of Information Spread





Improvement is limited, due to top a few authors dominate.

Improvement is statistically significant (p << 0.01)



# Case study on the inventor network

- Most structural holes have more than one jobs.
- Mark \* on inventors with highest PageRank scores.
  - HIS selects people with highest PageRank scores,
  - MaxD tends to select people how have been working on more jobs.

| Inventor      | HIS          | MaxD         | Title                                     |
|---------------|--------------|--------------|-------------------------------------------|
|               |              |              | Professor (MIT Media Lab)                 |
| E. Boyden     |              | √            | Associate Professor (MIT McGovern Inst.)  |
|               |              |              | Group Leader (Synthetic Neurobiology)     |
|               |              |              | Founder and Manager (Protia, LLC)         |
| A.A. Czarnik  |              | $\checkmark$ | Visiting Professor (University of Nevada) |
|               |              |              | Co-Founder (Chief Scientific Officer)     |
| A. Nishio     |              | $\sqrt{}$    | Director of Operations (WBI)              |
| A. INISNIO    |              | V            | Director of Department Responsible (IDA)  |
| E. Nowak*     | $\sqrt{}$    |              | Senior vice President (Walt Disney)       |
| E. NOWAK      | V            |              | Secretary of Trustees (The New York Eye)  |
|               |              |              | Consultant (various wireless companies)   |
| A. Rofougaran | $\checkmark$ |              | Co-founder (Innovent System Corp.)        |
|               |              |              | Leader (RF-CMOS)                          |
| S. Yamazaki*  | $\sqrt{}$    |              | President and majority shareholder (SEL)  |



## Efficiency



• Running time of different algorithms in three data sets

| Data Set | Pathcount | 2-Step | PageRank | HIS    | MaxD    |
|----------|-----------|--------|----------|--------|---------|
| Coauthor | 350.66s   | 4.71s  | 0.20s    | 0.60s  | 189.78m |
| Twitter  | 32.03m    | 12.09s | 0.67s    | 3.87s  | 602.37m |
| Inventor | 494.3 hr  | 98.96s | 3.61s    | 26.11s | 370.8hr |

**Inefficient!!** 





# **Applications**



### **Detecting Kernel Communities**



- Community kernel detection
  - GOAL: obtain the importance of each node within each community (as kernel members).
  - HOW: kernel members are more likely to connect structural hole spanners.





[1] L. Wang, T. Lou, J. Tang, and J. E. Hopcroft. Detecting Community Kernels in Large Social Networks. In ICDM'11. pp. 784-793.

# **Detecting Kernel Communities**



- Community kernel detection
  - GOAL: obtain the importance of each node within each community (as kernel members).
  - HOW: kernel members are more likely to connect structural hole spanners.
  - Clear improvements on F1-score, average of 5%





#### Model applications



- Link prediction
  - GOAL : predict the types of social relationships (on Mobile and Slashdot)
  - HOW: users are more likely to have the same type of relationship with structural hole spanners.



[1] J. Tang, T. Lou, and J. Kleinberg. Inferring Social Ties across Heterogeneous Networks. In **WSDM'12**. pp. 743-752.

#### Model applications



- Link prediction
  - GOAL : predict the types of social relationships (on Mobile and Slashdot)
  - HOW: users are more likely to have the same type of relationship with structural hole spanners.
  - Significantly improvement of 1% to 6%

| Dataset  | Algorithm | K   | Precision | Recall | F1-score |
|----------|-----------|-----|-----------|--------|----------|
|          | PFG       | -   | 0.9111    | 0.5694 | 0.7008   |
|          | PFG(HIS)  | 5   | 0.8958    | 0.5972 | 0.7166   |
|          | PFG(HIS)  | 15  | 0.8491    | 0.6250 | 0.7200   |
| Mobile   | PFG(HIS)  | 25  | 0.8519    | 0.6389 | 0.7302   |
|          | PFG(MaxD) | 5   | 0.9130    | 0.5833 | 0.7118   |
|          | PFG(MaxD) | 15  | 0.8776    | 0.5972 | 0.7107   |
|          | PFG(MaxD) | 25  | 0.8723    | 0.5972 | 0.7090   |
|          | PFG       | -   | 0.6619    | 0.7281 | 0.6934   |
|          | PFG(HIS)  | 100 | 0.6562    | 0.7965 | 0.7196   |
|          | PFG(HIS)  | 150 | 0.6615    | 0.8241 | 0.7339   |
| Slashdot | PFG(HIS)  | 200 | 0.6788    | 0.7886 | 0.7296   |
|          | PFG(MaxD) | 100 | 0.6602    | 0.7542 | 0.7041   |
|          | PFG(MaxD) | 150 | 0.6667    | 0.7532 | 0.7073   |
|          | PFG(MaxD) | 200 | 0.6619    | 0.7775 | 0.7151   |

[1] J. Tang, T. Lou, and J. Kleinberg. Inferring Social Ties across Heterogeneous Networks. In **WSDM'12**. pp. 743-752.



#### Conclusion



#### Conclusion



- Study an interesting problem: structural hole spanner detection.
- Propose two models (HIS and MaxD) to detect structural hole spanner in large social networks, and provide theoretical analysis.
- Results
  - 1% twitter users control 25% retweeting behaviors between communities.
  - Application to Community kernel detection and Link prediction



#### **Future works**



- Combine the topic leveled information with the user network information.
- Dynamics of structural holes



 What's the difference between the patterns of structural hole spanners on other networks?



















# Thanks you!

Collaborators: Tiancheng Lou (Google)

Jon Kleinberg (Cornell),

Yang Yang, Cheng Yang (THU)

Jie Tang, KEG, Tsinghua U, **Download data & Codes**,

http://keg.cs.tsinghua.edu.cn/jietang http://arnetminer.org/download



#### Hardness Proof



Instance G = (V, E) of **K-Denest Subgraph** 



capacity = 1, iff corresponding node exists in the edge (set of 2 nodes)

capacity =  $(|V|^2 + 1) |E|$ 



#### Hardness Proof





#### Minimal node-cut problem



capacity = 1, iff corresponding node exists in the edge (set of 2 nodes)
 capacity = (|V|<sup>2</sup> + 1) |E|

Instance  $\phi$  is satisfied **iff** there exists a subset  $|V_{SH}| = k$ , such that  $Q(V_{SH}, C) >= d(|V|^2+1)$