Dependencies, Decompositions, Normal forms

Submitted by: Saminul Islam (1004511833), Sadman Hasan(1003918246)

Question 1 Part A:

Step 1: Split the RHSs to get our initial set of FDs, S1:

- 1) $M \rightarrow I$
- 2) $M \rightarrow J$
- 3) $M \rightarrow L$
- 4) $J \rightarrow L$
- 5) J → I
- 6) $JN \rightarrow K$
- 7) $JN \rightarrow M$
- 8) KLN \rightarrow M
- 9) K → I
- 10) $K \rightarrow J$
- 11) $K \rightarrow L$
- 12) $IJ \rightarrow K$

Step 2: For each FD, try to reduce the LHS:

- (1)-(5) and (9-11) cannot be reduced.
- 6) $J^+=$ JILK thus can be reduced to $J \rightarrow K$
- 7) $J^+=$ JILK and $N^+=$ N so cannot be reduced
- 8.) K^+ = KIJL so can be reduced to KN \rightarrow M
- 12.) $J^+=JILK$ so can be reduced to $J \rightarrow K$ (redundant, same as 6)

So, our new set of FDs, S2, is:

- 1) $M \rightarrow I$
- 2) $M \rightarrow J$
- 3) $M \rightarrow L$
- 4) $J \rightarrow L$
- 5) J → I
- 6) J→ K
- 7) $J \rightarrow M$
- 8) $KN \rightarrow M$
- 9) $K \rightarrow I$
- 10) $K \rightarrow J$
- 11) $K \rightarrow L$

Step 3: Try to eliminate each FD.

1	$M \rightarrow I$	$M^{+}_{S2-(1)} = MJLIK, RHS included$	Need to remove
2	$M \rightarrow J$	$M^{+}_{S2-\{(1),(2)\}} = ML$	Keep
3	$M \rightarrow L$	$M^{+}_{S2-\{(1),(3)\}} = MJ\underline{L}IK$, RHS included	Need to remove
4	$J \rightarrow L$	$J^{+}_{S2-\{(1),(3),(4)\}} = JIKML, RHS included$	Need to remove
5	J→I	$J^{+}_{S2-\{(1),(3),(4),(5)\}} = JKM\underline{I}L$, RHS included	Need to remove
6	$J \rightarrow K$	$J^{+}_{S2 - \{(1),(3),(4),(5),(6)\}} = J$	Keep
7	$JN \rightarrow M$	$JN^{+}_{S2-\{(1),(3),(4),(5),(7)\}} = JNKILM, RHS included$	Need to remove
8	$KN \rightarrow M$	$KN^{+}_{S2-\{(1),(3),(4),(5),(7),(8)\}} = KNIJL$	Keep
9	$K \rightarrow I$	$K^{+}_{S2-\{(1),(3),(4),(5),(7),(9)\}} = KJL$	Keep
10	$K \rightarrow J$	$K^{+}_{S2-\{(1),(3),(4),(5),(7),(10)\}} = KIL$	Keep
11	$K \rightarrow L$	$K^{+}_{S2-\{(1),(3),(4),(5),(7),(11)\}} = KIJ$	Keep

So, our minimal basis is:

- $J \rightarrow K$
- K → I
- $K \rightarrow J$
- K → L
- $KN \rightarrow M$
- $M \rightarrow J$

Question 1 Part B:

	Appears on		
Attribute	LHS	RHS	Conclusion
J,K,M	Χ	Х	must check
I,L	ı	X	is not in any key
N	Χ	-	must be in every key
O,P	-	-	must be in every key

- JNOP+ = JNOPIKLM. So **JNOP** is a key
- KNOP+ = KNOPIJLM. So **KNOP** is a key
- MNOP+ = MNOPIJKL. So MNOP is a key

Question 1 Part C:

Combining FDs with the same LHS (from minimal basis):

- $J \rightarrow K$
- K → IJL
- $KN \rightarrow M$
- $M \rightarrow J$

We get the following set of relations:

R1(J, K),

R2(K, I, J, L),

R3(K, N, M),

R4(M, J)

R1 is included in R2 so we can remove it to get:

R1(K, I, J, L),

R2(K, N, M),

R3(M, J)

Need to add a relation that includes key:

R1(K, I, J, L),

R2(K, N, M),

R3(M, J),

R4(J, N, O, P)

Question 1 Part D:

 $J \rightarrow K$ will project onto the relationship R1 and $J^+ = JK$ so J is not a superkey of this relation, so the schema does allow redundancy as there are some FDs that violate BCNF.

Question 2 Part A:

BCNF requires that the LHS of an FD be a superkey.

$C \rightarrow EH$	C ⁺ = CDEFGHIJ	Key
$DEI \rightarrow F$	DEI ⁺ = DEIF	Not key, violates BCNF
$F \to D$	F ⁺ = FD	Not key, violates BCNF
EH → CJ	EH+ = CDEFGHIJ	Key
$J \rightarrow FGI$	J ⁺ = JFGID	Not key, violates BCNF

Keys in S_T that violate BCNF:

 $DEI \rightarrow F$

 $\mathsf{F}\to\mathsf{D}$

 $J \rightarrow FGI$

Question 2 Part B:

• $F \rightarrow D$ violates BCNF, $F^+ = FD$ so we split R into:

$$R1(D, F)$$
 $R2(C, E, F, G, H, I, J)$

R1 satisfies BCNF with FD F \rightarrow D.

R2 violates BCNF so we must decompose further.

• Decompose R2 using FD J \rightarrow FGI (J⁺ = JFGID) to get:

$$R3(F, G, I, J)$$
 $R4(C, E, H, J)$

R3 satisfies BCNF with FD J \rightarrow FGI.

R4 satisfies BCNF with FD C \rightarrow EH (which is a key).

Final Decomposition:

- R1(D, F) with FD $F \rightarrow D$
- R3(F, G, I, J) with FD $J \rightarrow FGI$
- R4(C, E, H, J) with FD $C \rightarrow EH$