PROJECT REPORT

DEMANDEST - AI POWERED FOOD DEMAND FORECASTER TEAM ID: PNT2022TMID00218

INTRODUCTION

1.1 PROJECT OVERVIEW

Machine learning algorithms can be used by businesses to as accurately predict changes in consumer demand as feasible. These algorithms are capable of automatically recognizing patterns, locating intricate links in big datasets, and picking up indications for changing demand. A food delivery service has to deal with a lot of perishable raw materials which makes it all, the most important factor for such a company is to accurately forecast daily and weekly demand. Too much inventory in the warehouse means more risk of wastage, and not enough could lead to out-of- stocks - and push customers to seek solutions from your competitors. The replenishment of majority of raw materials is done on weekly basis and since the raw material is perishable, the procurement planning is of utmost importance, the task is to predict the demand for the next 10 weeks

1.2 PURPOSE

The main aim of this project is to create an appropriate machine learning model to forecast the number of orders to gather raw materials for next ten weeks. To achieve this, we should know the information about of fulfilment center like area, city etc., and meal information like category of food sub category of food price of the food or discount in particular week. By using this data, we can use any classification algorithm to forecast the quantity for 10 weeks. A web application is built which is integrated with the model built.

2. LITERATURE SURVEY

2.1 EXISTING PROBLEM

There are lot more problems on ordering food over network and there is no proper demand for all the individual as well for the deployment, Consistent evaluation is also eradicated.

2.2 REFERENCES

- AQUAREL
- 09Solution
- Kaggle

2.3 PROBLEM STATEMENT DEFINITION

 The data set relates to a food delivery service that has operations throughout several cities. For delivering meal orders to clients, they have a number of fulfilment sites in these cities. The required raw materials are stocked appropriately at the fulfilment centers.

3. IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

EMPATHY MAP FOR FOOD DEMAND FORCASTING

3.2 IDEATION & BRAINSTORMING

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

⊕ 5 minute

PROBLEM

TO PREDICT THE DEMAND OF RAW MATERIALS FOR NEXT 10 WEEKS.

Brainstorm

Write down any ideas that come to mind that address your problem statement.

→ 10 minutes

YAZHINI

AI METHODS TO PREDICT THE DEMANDS

TIME SERIES
APPROACH
THAT USES
PAST DEMAND
RECORDS

QUANTITATIVE AND QUALITATIVE FORECASTING OF RAW MATERIALS

USING THE OPEN-SOURCE DATASET LIKE KAGGLE

SHIREEN

GET DATA SET RELATED TO A MEAL DELIVERY COMPANY WHICH OPERATES IN MULTIPLE CITIES GET INSIGHTS OF SUPPLY CHAIN OPERATIONS, PROFIT MARGIN, CAPITAL EXPENDITURE, CAPACITY PLANNING

USE TREND
PROJECTION
METHOD THAT
USES YOUR PAST
SALES DATA TO
PREDICT YOUR
FUTURE SALES

INCREASED
CUSTOMER
SATISFACTION BY
TIMELY FULLFILLING
THEIR
EXPECTATIONS AND
REQUIREMENTS

VIRUKSHA V

SURVEY METHOD IS ONE OF THE MOST COMMON AND DIRECT METHODS OF FORECASTING DEMAND IN THE SHORT TERM

BY USING STRAIGHT LINE TECHNIQUE WHICH IS BY THE CONSTANT GROWTH RATE

UNDERSTAND HOW TO EXPAND OR CONTRACT THEIR FUTURE OPERATIONS IS SO PIVOTAL
BECAUSE IT ALLOWS
A BUSINESS TO SET
CORRECT
INVENTORY LEVELS.

PRICE THEIR

PRODUCTS

CORRECTLY

VITHYA

USING MACHINE LEARNING METHODS

USING STATISTICAL METHODS OF FORECASTING COLLECTING MOST RECENT DATASETS FROM IEEE DATAPORT

REGRESSION BASED FORECASTING METHODS

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. In the last 10 minutes, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

20 minute:

GROUPING BASED ON METHODS

AI METHODS TO PREDICT THE DEMANDS BY USING STRAIGHT LINE TECHNIQUE WHICH IS BY THE CONSTANT GROWTH RATE USE TREND
PROJECTION
METHOD THAT
USES YOUR PAST
SALES DATA TO
PREDICT YOUR
FUTURE SALES

REGRESSION BASED FORECASTING METHODS

GROUPING BASED ON DATASET

USING THE OPEN-SOURCE DATASET LIKE KAGGLE

GET DATA SET RELATED TO A MEAL DELIVERY COMPANY WHICH OPERATES IN MULTIPLE CITIES COLLECTING
MOST RECENT
DATASETS
FROM IEEE
DATAPORT

GROUPING BASED ON SURVEY

SURVEY METHOD IS ONE OF THE MOST COMMON AND DIRECT METHODS OF FORECASTING DEMAND IN THE SHORT TERM

INCREASED
CUSTOMER
SATISFACTION BY
TIMELY FULLFILLING
THEIR
EXPECTATIONS AND
REQUIREMENTS

UNDERSTAND
HOW TO
EXPAND OR
CONTRACT
THEIR FUTURE
OPERATIONS

4

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

20 minutes

3.3 PROPOSED SOLUTION

Project Design Phase-I Proposed Solution Template

Date	24 September 2022
Team ID	PNT2022TMID00218
Project Name	Project – DemandEst –AI Powered Food Demand Forecaster
Maximum Marks	2 Marks

Proposed Solution Template:

Project team shall fill the following information in proposed solution template.

S. No.	Parameter	Description		
1.	Problem Statement (Problem to be solved)	The replenishment of majority of raw materials is done on weekly basis and since the raw material is perishable, the procurement planning is of utmost importance, the task is to predict the demand for the next 10 weeks.		
2.	Idea / Solution description	The main aim of this project is to create an appropriate machine learning model to forecast the number of orders to gather raw materials for next ten weeks.		
3.	Novelty / Uniqueness	Accurately estimating the demand for the next 10 weeks will help the client to maintain perishable raw materials. Secondly staffing of the centers is also one area wherein accurate demand forecasts are really helpful.		
4.	Social Impact / Customer Satisfaction	• •		
5.	Business Model (Revenue Model)	This project will help the food delivery service centers to accurately predict the number of orders for the next 10 weeks which will help them to make necessary arrangements such as perishable raw materials, staffing in centers to avoid any type of losses.		
6.	Scalability of the Solution	The project focuses in applying methods to forecast the demand for products of a food industry, which directs its sales to the food service market, in order to base the short to medium term production planning.		

3.4 PROBLEM SOLUTION FIT

4. REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENT

Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	17 October 2022
Team ID	PNT2022TMID00218
Project Name	Project - DemandEst - AI powered Food Demand Forecaster
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)	
FR-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIN	
FR-2	User Confirmation	Confirmation via EmailConfirmation via OTP	
FR-3	Home page	The User is directed to the home page	
FR-4	Sample use	To gain a feel of how to use it, the user would usethe web application to calculate example ideas.	
FR-5	Adding sub-users and creating network	The user could create a network by including his coworkers on his application page.	
FR-6	Feedback and support	After deployment, continuous customer support using the feedback	

4.2 NON-FUNCTIONAL REQUIREMENTS

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	For people who work in the food industry tocalculate how much food is needed for a particular time period, they must use a web application.
NFR-2	Security	User's emails and passwords are kept in an encrypted form. The user can only access his database if the password matches the encrypted

		form.
NFR-3	Reliability	Since access to the stored data requires a valid password and verification, the web application's data cannot be hacked.
NFR-4	Performance	The web application is created in a way that ensures that performance is constant regardless of how many users are accessing it at once.
NFR-5	Availability	The web application is available in all platforms
NFR-6	Scalability	It works in a fixed scalability

5. PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

Level 0 DFD (Context Level

5.2 SOLUTION & TECHNICAL ARCHITECTURE

Project Design Phase-II Technology Stack (Architecture & Stack)

Date	17th October 2022
Team ID	PNT2022TMID00218
Project Name Demand Est – AI POWERED FOOD	
	DEMANDFORECASTER
Maximum Marks	4 Marks

Technical Architecture:

Table-1: Components & Technologies:

S No	Component	Description	Technology
1.	User Interface	User access to the application through the mobile application.	HTML
2.	Application Logic-1	Creating an application interface	Python
3.	Application Logic-2	Creating an AI assistant that gives food services to the user.	IBM Watson Assistance
6.	File Storage	Files are stored in the local storage and stored in the cloud.	IBM Block Storage or Other Storage Service or Local File system
7.	External API-1	Use this REST API to manage locations. Get all locations. URI, /admin/resources/locations.	IBM Location REST API
8.	Deep Learning Model	Creating an algorithm to calculate case information provides by the fulfillment center.	Object Recognition Model, etc.
9.	Infrastructure (Cloud)	IBM Cloud App Configuration is a centralized feature-management and configuration service on IBM Cloud.	IBM Cloud Foundry

 Table 2: Application Characteristics:

S No	Characteristics	Description	Technology
1.	Open-Source Frameworks	There are no open-source frameworks in this application.	Python
2.	Security Implementations	Block chain technology is used for Security implementation its private framework protects all data.	Block chain
3.	Scalable Architecture	Users are provided with food services in online and they can also get info about the recent highly used products. In this model costumer gets benefits on analyzing their industry data and provides prediction on day-to-day analysis of food that sold and reduce the wastage of food by predicting its sales movements.	IBM Cloud
4.	Availability	Here data are updated and the demands were predicted according to the data.	IBM Watson Assistant
5.	Performance	The geo-fencing algorithm is updated daily and shows the day-to-day updates of the contaminated zones.	Geo fence

5.3 USER STORIES

Project Design Phase-II Data Flow Diagram & User Stories

Date	17 October 2022	
Team ID	PNT2022TMID00218	
Project Name	Demand Est – Al Powered Food	
	DemandForecaster.	
Maximum Marks	4 Marks	

User Stories for Demand Est

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail	I can register & access the dashboard through Gmail Login	Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password	I can login to the application by entering respective email & password.	High	Sprint-1
	Dashboard	USN-6	As a user, I can access all the services provided in the dashboard.	I can predict the orders for next 10 weeks and I estimate of raw materials for the same.	High	Sprint-1
Customer (Web user)	Login & Dashboard	USN-8	As a user, I can login through web application and access the resources in the dashboard.	I can login with the credentials required and I can access the services	High	Sprint-1

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
				provided through web application.		
Customer Care Executive	Support	USN-9	As a user I can get support from the help desk and can get my queries cleared.	I can get guidance and any support to use the application.	High	Sprint-2
Administrator	Management	USN-10	As an admin I can maintain the application.	I can perform maintenance of the app even after the release.	Medium	Sprint-1
		USN-11	As an admin I can update the new datasets to the model and train them.	I can periodically update the datasets.	High	Sprint-1
		USN-12	As an admin I can update the features of the app and upgrade it to better versions.	I can perform upgrading of features and versions.	Medium	Sprint-1
		USN-13	As an admin I can maintain all the user details stored and the user's history.	I can maintain the application user's records.	High	Sprint-1

6. PROJECT PLANNING & SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION

Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

, , , ,	<u> </u>
Date	22 October 2022
Team ID	PNT2022TMID00218
Project Name	Project – Demand Est - Al Powered FoodDemand Forecaster
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	YAZHINI SHIREEN VIRUKSHA VITHYA
Sprint-1		USN-2	As a user, I will receive confirmation email once I have registered for the application	1	High	YAZHINI SHIREEN VIRUKSHA VITHYA
Sprint-2		USN-3	As a user, I can register for the application through Facebook	2	Low	YAZHINI SHIREEN VIRUKSHA VITHYA
Sprint-2		USN-4	As a user, I can register for the application through Gmail	2	Medium	YAZHINI SHIREEN VIRUKSHA VITHYA
Sprint-1	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	YAZHINI SHIREEN VIRUKSHA VITHYA
Sprint-1	Dashboard	USN-6	As a user, I can access the services and information provided in the dashboard	2	High	YAZHINI SHIREEN VIRUKSHA VITHYA

Sprint-1	Login	USN-7	As a user, I can log into the web application and access the dashboard	1	High	YAZHINI SHIREEN VIRUKSHA VITHYA
Sprint-4	Helpdesk	USN-8	As a user, I can get the guidance from the customer care	1	High	YAZHINI SHIREEN VIRUKSHA VITHYA
Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-3	Management	USN-9	As an administrator, I can collect new datasets and keep the model trained	2	High	YAZHINI SHIREEN VIRUKSHA VITHYA
Sprint-3		USN-10	As an administrator, I can update other features of the application	2	Medium	YAZHINI SHIREEN VIRUKSHA VITHYA
Sprint-3		USN-11	As an administrator, I can maintain the information about the user	2	Medium	YAZHINI SHIREEN VIRUKSHA VITHYA
Sprint-4		USN-12	As an administrator, I can maintain third-party services	1	Low	YAZHINI SHIREEN VIRUKSHA VITHYA

6.2 SPRINT DELIVERY SCHEDULE

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	7	6 Days	24 Oct 2022	29 Oct 2022	7	29 Oct 2022
Sprint-2	4	6 Days	31 Oct 2022	05 Nov 2022	4	05 Nov 2022
Sprint-3	6	6 Days	07 Nov 2022	12 Nov 2022	6	12 Nov 2022
Sprint-4	2	6 Days	14 Nov 2022	19 Nov 2022	2	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

AV (Sprint 1) =
$$7/6 = 1$$

AV (Sprint 2) =
$$4/6 = 1$$

AV (Sprint 3) =
$$6/6 = 1$$

AV (Sprint 4) =
$$2/6 = 1$$

AV (Total) =
$$21/24 = 1$$

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such asScrum.

However, burn down charts can be applied to any project containing measurable progress over time.

6.3 REPORTS FROM JIRA

7. CODING & SOLUTIONING

7.1 FEATURE 1

```
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-</pre>
scale=1.0">
    <title>Home</title>
    <link type="text/css" rel="stylesheet"</pre>
href="/Flask/static/style.css">
    <link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
href="https://fonts.googleapis.com/css2?family=Poppins:wght@200;300;4
00;600;800&display=swap" rel="stylesheet">
<link rel="stylesheet"</pre>
href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-
beta2/css/all.min.css">
<link rel="stylesheet"</pre>
href=" gthttps://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-
beta2/css/v4-shims.min.css">
<style>
    body{
        background-image:url("bg.jpg");
    }
*{
    margin: 0;
    padding: 0;
    font-family: 'Poppins', sans-serif;
.bar
margin: 0;
padding: 15px;
background-color:rgb(5, 100, 84, 0.9);
font-family:'Poppins',sans-serif;
font-size:25px;
a{
color:#fff;
float:right;
text-decoration:none;
padding-right:20px;
```

```
a:hover{
   padding: 3.5px;
   background: #FAAE42;
.text-box{
   width: 90%;
   color: rgba(5, 100, 84, 0.9);
   text-shadow: #0c0d0e;
   position:absolute;
   top: 45%;
   left: 50%;
   transform: translate(-50%,-50%);
   text-align: center;
.text-box h1{
   font-size: 70px;
   text-shadow: 2px 2px 40px #ffffff;
.text-box p{
   margin: 10px 0 40px;
   font-size: 25px;
   color: rgba(0, 0, 0, 0.946);
</style>
</head>
<body>
  <section class="header">
   <div class="bar">
        <a href="/pred">Predict</a>
       <a href="/home">Home</a>
   <br>
         </div>
      <div class="text-box">
       <h1>AI-DemandEst</h1>
           <h2>AI Powered Food Demand Forecasting Model </h2>
           <h3>An efficient solution for food delivery service
centers that helps in the procurement planning of perishable raw
materials.</h3>
   </div>
  </section>
</body>
</html>
```

7.2 FEATURE 2

```
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Predict</title>
    <link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
href="https://fonts.googleapis.com/css2?family=Poppins:wght@200;300;400;600;800&dis
play=swap" rel="stylesheet">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-</pre>
awesome/6.0.0-beta2/css/all.min.css">
<style>
.bar
margin: 0;
padding: 15px;
background-color:rgb(5, 100, 84, 0.9);
/* opacity:0.6; */
font-family:'Poppins',sans-serif;
font-size:25px;
color:#fff;
float:right;
text-decoration:none;
padding-right:20px;
a:hover{
    padding: 3.5px;
    background: #FAAE42;
h1{
    color:rgb(5, 100, 84, 0.9);
    font-family:Poppins,serif;
    font-size:30px
h2{
    color:rgb(5, 100, 84, 0.9);
    font-family: Poppins, serif;
    font-size:60px;
    margin-bottom: 10px;
```

```
.my-cta-button{
    font-size: 20px;
    color: rgb(15, 15, 15);
    border: 1px solid #0e0e0ccf;
    padding: 3.5px;
    cursor: pointer;
.my-cta-button:hover{
    border: 2px solid #faae42;
    padding: 3.5px;
    background: #FAAE42;
color:white;
font-family: Poppins, serif;
font-size:30px;
</style>
</head>
<body>
   <div class="bar">
      <a href="/pred">Predict</a>
     <a href="/home">Home</a>
    <br>
        </div>
    <div class="container">
            <div style="text-align: center;"> <div id="content" style="margin-</pre>
top:2em">
            <h2><div style="text-align: center;">Food Demand Forecasting</div></h2>
                 <form action="{{ url for('predict') }}" method="POST">
                      <label for="homepage featured"></label><select</pre>
id="homepage_featured" name="homepage_featured">
      <option value="">homepage featured</option>
         <option value="0">No</option>
         <option value="1">Yes</option>
       </select><br><br>
                     <label for="emailer_for_promotion"></label><select</pre>
id="emailer_for_promotion" name="emailer_for_promotion">
      <option value="">emailer_for_promotion</option>
         <option value="0">No</option>
         <option value="1">Yes</option>
```

```
</select><br><br>
                     <label>
                          <input class="form-input" type="text" name="op area"</pre>
placeholder="Enter the op area(2-7)">
                     </label><br><br></pr>
                     <label for="cuisine"></label><select id="cuisine"</pre>
name="cuisine">
     <option value="">Cuisine</option>
         <option value="0">Continental</option>
         <option value="1">Indian</option>
         <option value="2">Italian</option>
         <option value="3">Thai</option>
       </select><br><br><
                          <input class="form-input" type="text" name="city_code"</pre>
placeholder="Enter city_code">
                     </label><br><br><
                     <label>
                          <input class="form-input" type="text" name="region_code"</pre>
placeholder="Enter region_code">
                     </label><br><br><
                     <label for="category"></label><select id="category"</pre>
name="category">
     <option value="">Category</option>
         <option value="0">Beverages</option>
         <option value="1">Biryani</option>
         <option value="2">Desert</option>
         <option value="3">Extras</option>
         <option value="4">Fish</option>
         <option value="5">Other Snacks</option>
         <option value="6">Pasta</option>
         <option value="7">Pizza</option>
         <option value="8">Rice Bowl</option>
         <option value="9">Salad</option>
         <option value="10">Sandwich</option>
         <option value="11">Seafood</option>
         <option value="12">Soup</option>
         <option value="13">Starters</option>
       </select><br><br><
                      <input type="submit" class="my-cta-button" value="Predict">
                 </form>
          <h1 class="predict">Number of orders: {{ prediction_text }}</h1>
            </div></div>
```

</div>
</body>
</html>

8. TESTING

8.1 TEST CASES

Test Case Report

Date	15 November 2022
Team ID	PNT2022TMID00218
Project Name	Project–Demand Est-AI Powered Food Demand Forecaster

Testcase_ id	Feature_ type	component	scenario	Pre- requisite	Steps to execute	Expected result	Actual result	status	Executed by
TC_010	Functional (Maintena nce)	Administrat	As a administra tor, I should be able to edit the menus of the app.	Network accessing system	i) Performing testing after the software is released is known as maintenanc e testing. ii)Maintena nce testing is different from new application testing. iii)There are two important parts of maintenanc e testing such as confirmatio n maintenanc e testing and regression maintenanc e testing.	Is valid one	Is valid	Passed	SHIREEN H YAZHINI CK

Sprint 4 Test case

Date	15 November 2022
Team ID	PNT2022TMID00218
Project Name	Project — Demand Est-AI Powered Food
	Demand Forecaster
Maximum Marks	10 Marks

Testcase	Feature_	component	Test	Steps to	Status	Executed
_id	type	_	scenario	execute		by
		Admin		_	Passed	
				Step 6: Pass/Fail.		

8.2 USER ACCEPTANCE TESTING:

Acceptance Testing UAT Execution & Report Submission

Date	15 November 2022
Team ID	PNT2022TMID00218
Project Name	Project – Demand Est - AI Powered Food Demand
	Forecaster
Maximum Marks	4 Marks

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Demand Est – AI Powered Food Demand Forecaster project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and howthey were resolved

Decelution	Coverity	Coverity	Carramitus?	Carranitura	Cubtotal
Resolution	Severity1	Severity2	Severity3	Severity4	Subtotal
By Design	5	6	3	4	18
Duplicate	0	1	2	0	3
External	2	1	0	1	4
Fixed	5	2	3	11	21
Not Reproduced	0	1	0	1	2
Skipped	2	0	0	1	3
Won't Fix	0	0	0	0	0
Totals	14	11	8	18	51

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	6	0	0	6
Client Application	47	0	0	47
Security	2	0	0	2

Outsource Shipping	4	0	0	4
Exception Reporting	8	0	0	8
Final Report Output	5	0	0	5
Version Control	3	0	0	3

9. RESULTS

9.1 PERFORMANCE METRICS

Project Development Phase Model Performance Test

Date	15 November 2022	
Team ID	PNT2022TMID00218	
Project Name	Project – Demand Est-AI Powered Food Demand Forecaster	
Maximum Marks	10 Marks	

Model Performance Testing:

S. No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE 89.10334778841495, MSE - 43129.82977026746, RMSLE -207.67722496765856, R2 score -0.6946496854280233,	Evaluating the model In [33]: from sklearn.metrics import mean_squared_error In [34]: RMLSE=np.sqrt(mean_squared_error(y_test,pred)) RMLSE Out[34]: 209.71961740201198 In [39]: from sklearn import metrics from sklearn.metrics import mean_absolute_error In [40]: MSE=print(metrics.mean_squared_error(y_test,pred)) MSE 43982.31792324628 In [41]: R2S=print(metrics.r2_score(y_test,pred)) R2S 0.6886142448276894 In [42]: MAE=print(mean_absolute_error(y_test,pred)) 89.10334778841495

10. ADVANTAGES & DISADVANTAGES

ADVANTAGE:

• In supply chain networks, demand forecasting with the aid of AI-based techniques can cut errors by 30 to 50 percent. By implementing these approaches, organizations may be able to forecast accurately at all levels.

DIS-ADVANTAGE:

• Not every situation can be predicted

11. CONCLUSION

Demand forecasts is, with no doubt, the basis for developing an efficient supply chain. The supply chain planning and control depends of accurate estimates of the volumes of products and services to be processed to satisfy customer's needs. The food products have a factor that limits the maintenance of stocks, the short perishability. These products have a period in which they keep their characteristics and should be consumed before being considered unsuitable for consuming. Thus, it is suggested for future works that the short perishability of products must be taken into account when evaluating the results obtained by the quantitative methods. To make possible not only plan the production to satisfy the forecasted demand, but also contribute to minimize the loss of products due to its short perishability and consequently, improving the profitability of the company.

12. FUTURE SCOPE

This method applied in this work showed its simplicity and accessibility due to the low cost and easiness of application. By having these characteristics, this method can be used by small and medium-sized companies, where is not possible to make huge investments in planning their food demand operations. Hence this work can be further expanded based on customer demand and can be provided to all area of food business at low cost.

13. APPENDIX

Source Code

app.py

```
# import the necessary packages
import pandas as pd
import numpy as np
import pickle
import os

from flask import Flask, request, render_template

app = Flask(__name__, template_folder="templates")

@app.route('/', methods=['GET'])
def index():
    return render_template('home.html')

@app.route('/home', methods=['GET'])
def about():
```

```
return render template('home.html')
@app.route('/pred', methods=['GET'])
def page():
    return render_template('upload.html')
@app.route('/predict', methods=['GET', 'POST'])
def predict():
   print("[INFO] loading model...")
   model = pickle.load(open('fdemand.pkl', 'rb'))
    input features = [float(x) for x in request.form.values()]
    features_value = [np.array(input_features)]
   print(features value)
    features_name = ['homepage_featured', 'emailer_for_promotion', 'op_area',
 cuisine',
                     'city_code', 'region_code', 'category']
    prediction = model.predict(features value)
   output = prediction[0]
    print(output)
    return render_template('upload.html', prediction_text=output)
if name == ' main ':
    app.run(debug=False)
```

new.py

```
import requests

# NOTE: you must manually set API_KEY below using information retrieved from your
IBM Cloud account.
API_KEY = "ibm api key will be provided here"
token_response = requests.post('https://iam.cloud.ibm.com/identity/token',
data={"apikey":

    API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'})
mltoken = token_response.json()["access_token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
# NOTE: manually define and pass the array(s) of values to be scored in the next
line
payload_scoring = {"input_data": [{"field": [["homepage_featured",
"emailer_for_promotion", "op_area", "cuisine",
```

```
"city_code", "region_code",
"category"]], "values": [[0, 0, 2.0, 3, 647,

56, 0]]}]}

response_scoring = requests.post(
    'https://us-south.ml.cloud.ibm.com/ml/v4/deployments/11ac2294-65d5-4aec-af1f-eda82b69d29d/predictions?version=2022'
    '-11-11', json=payload_scoring,
    headers={'Authorization': 'Bearer ' + mltoken})
print("Scoring response")
print(response_scoring.json())
predictions = response_scoring.json()
print(predictions)
print("Final Prediction Result", predictions['predictions'][0]['values'][0][0])
pred=predictions['predictions'][0]['values'][0][0]
```


OUTPUT

AI-DemandEst

Al Powered Food Demand Forecasting Model

An efficient solution for food delivery service centers that helps in the procurement planning of perishable raw materials.

Food Demand Forecasting

Number of orders: 90.0

Number of orders: 90.0

GITHUB & PROJECT DEMO LINK

GITHUB LINK - https://github.com/IBM-EPBL/IBM-Project-10817-1659232384

DEMO LINK -

https://drive.google.com/file/d/13YH1KpUPhs2wFv0Fsa5oFp3ejpx6d8cX/view?usp=drivesdk