Hypothesis testing (part 1)

Lecture 15a (STAT 24400 F24)

1/16

Hypothesis testing (terminology)

Some terminology:

- *H*₀ is called the **null hypothesis**
- H_1 is called the **alternative hypothesis** (sometimes written as H_A or H_a)
- A hypothesis test is a function mapping observed data to a selection $(H_0 \text{ or } H_1)$
- **Type I error** = the probability of selecting H_1 , if H_0 is true (sometimes called the "**level**" of the test)
- **Type II error** = the probability of selecting H_0 , if H_1 is true
- **Power** = prob. of selecting H_1 , if H_1 is true = 1 Type II error

Hypothesis testing (definiton)

Common frame work: suppose our data is drawn from a parametric model,

$$f(\cdot \mid \theta)$$
 for some $\theta \in \Theta$

A **hypothesis test** uses the observed data to choose between two possible statements about θ , e.g.,

• Test H_0 : $\theta = 1$ versus H_1 : $\theta = 2 \leftarrow H_0 \& H_1$ are simple

• Test $H_0: \theta = 1$ versus $H_1: \theta \neq 1 \leftarrow H_0$ is simple, H_1 is composite

• Test H_0 : $\theta \le 1$ versus H_1 : $\theta > 1$ \leftarrow H_0 & H_1 are composite

A hypothesis is **simple** if it specifies the distribution exactly (i.e., a single specific value of θ).

Otherwise it is composite.

2/16

Hypothesis testing (type I & type II errors)

Decision	H ₀ is true	H_0 is false
"Reject <i>H</i> ₀ "	Type I error (α)	COrrect (Power = $1 - \beta$)
"Do not reject H_0 "	correct	Type II error (β)

Common notation:

Type I error $= \alpha$, Type II error $= \beta$, thus power $= 1 - \beta$.

Hypothesis testing (Poisson example)

Example: The output of an X-ray beam follows a Poisson(λ) distribution.

The intensity parameter λ can be set to 100, 110, 120, or 130.

$$H_0: \lambda = 100$$
 vs. $H_1: \lambda \in \{110, 120, 130\}$

A possible hypothesis test:

- If X is in the range 84–117 then we do not reject the null H_0 (i.e., H_0 is plausible, so we choose H_0)
- If X is not in the range 84–117, then we reject the null H_0 (i.e., H_0 is not plausible, so we choose H_1)

5/16

Hypothesis testing(binomial example)

Example: flip a coin 100 times. Is the coin fair?

- $X \sim \text{Binomial}(100, p)$. H_0 : p = 0.5, H_1 : $p \neq 0.5$
- A possible hypothesis test: if $45 \le X \le 55$, choose H_0 ; else, choose H_1 (in practice, we decide the error rate first then design the test so the decision rule will have the error rate.)
- $\mathbb{P}_{H_0}(X < 45 \text{ or } X > 55) = \sum_{k=0}^{44} {100 \choose k} 0.5^k 0.5^{100-k} + \sum_{k=56}^{100} {100 \choose k} 0.5^k 0.5^{100-k} = 0.271$
- Type II error depends on the value of p. For example, if p = 0.6,

$$\mathbb{P}_{H_1}(45 \le X \le 55) = \sum_{k=45}^{55} {100 \choose k} 0.6^k 0.4^{100-k} = 0.178$$

• Power — depends on the value of p. For example, if p = 0.6,

Power =
$$1 - \text{Type II error} = 0.822$$

This is the "power against the alternative p = 0.6"

Hypothesis testing(Poisson example)

What are the Type I and Type II errors of the test?

assuming
$$H_0$$
, i.e., $X \sim \text{Poisson}(100)$

• Type I error = $\mathbb{P}(reject\ H_0\ |\ H_0\ true) = \mathbb{P}_{H_0}(X \not\in [84, 117])$

$$=1-\sum_{k=84}^{117}rac{100^ke^{-100}}{k!}=0.089$$
 ($eq 0.1$ due to discreteness)

• Type II error = $\mathbb{P}(accept \ H_0 \mid H_1 \ true) = \mathbb{P}_{H_1}(X \in [84, 117])$

Type II error depends on H_1 , that is, depends on λ , e.g.,

— If
$$\lambda=110$$
, Type II error $=\mathbb{P}_{\lambda=110}(X\in[84,117])=\sum_{k=84}^{117}\frac{110^ke^{-110}}{k!}=0.761$
— If $\lambda=130$, Type II error $=\mathbb{P}_{\lambda=130}(X\in[84,117])=\sum_{k=84}^{117}\frac{130^ke^{-130}}{k!}=0.136$

— If
$$\lambda=130$$
, Type II error $=\mathbb{P}_{\lambda=130}(X\in[84,117])=\sum_{k=84}^{117}rac{130^ke^{-130}}{k!}=0.136$

6/16

Hypothesis testing(binomial example)

How do we choose which hypothesis to label as H_0 / as H_1 ?

- If one hypothesis is simple & the other is composite, choose H_0 as the simple one
- If one hypothesis is the one we'd like to prove is likely true. label it as H_1 (because we will try to reject the null H_0)
- Possible conclusions based on the evidence from the data:
 - "Reject the H_0 " (thus accept H_1)

Some conventions:

• "Do not reject the H_0 " (not "accepting the H_0 "; subtle importance)

Beyond the parametric setting

In some cases, the hypotheses may not lie in a parametric family.

Examples in the setting where X_1, \ldots, X_n are i.i.d. from some distribution:

- H_0 : the distrib. is Exponential(λ) for some λ , versus H_1 : the distrib. is not exponential (goodness-of-fit test)
- H_0 : the mean of the distribution is 0, versus H_1 : the mean is $\neq 0$

Another common example—for pairs (X_i, Y_i) i.i.d. from a joint distribution:

 H₀: X & Y are independent, versus H₁: X & Y are not independent

9/16

11 / 16

The likelihood ratio test (LRT)

Intuition:

- Higher values of likelihood of $\theta_0 \longleftrightarrow H_0$ seems more plausible
- Higher values of likelihood of $\theta_1 \longleftrightarrow H_1$ seems more plausible

Performing a **likelihood ratio test** (LRT) means that we will make our decision (H_0 or H_1) based solely on the likelihood ratio

$$LR = \frac{Likelihood of \theta_0}{Likelihood of \theta_1}$$

We will need to set some threshold c:

$$\begin{cases} \text{If LR} > c \text{ then choose } H_0 \\ \text{If LR} \le c \text{ then choose } H_1 \end{cases}$$

(Or use $\geq c$ and < c, which may be different in the discrete setting.)

Testing two simple hypotheses

Assume the data comes from a parametric family, $f(x \mid \theta)$, and we are testing

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta = \theta_1$

How should we decide which is more likely?

One way is to compare their likelihoods.

For a single draw of the data, $X \sim f(\cdot \mid \theta)$:

Likelihood of
$$\theta_0 = f(X \mid \theta_0)$$
 vs. Likelihood of $\theta_1 = f(X \mid \theta_1)$

For *n* data points, $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(\cdot \mid \theta)$:

Likelihood of
$$\theta_0 = \prod_{i=1}^n f(X_i \mid \theta_0)$$
 vs. Likelihood of $\theta_1 = \prod_{i=1}^n f(X_i \mid \theta_1)$

written as $f_0(X)$ in textbook written as $f_1(X)$ in textbook

10 / 16

The Neyman-Pearson lemma

For testing H_0 versus H_1 when both hypotheses are simple, a LR test is the *best* possible test.

Neyman-Pearson lemma:

Suppose H_0 and H_1 are simple hypotheses, and fix any $c \geq 0$. Let $\alpha, \beta =$ Type I error, Type II error for the LR test with threshold c.

Then for any other test of H_0 versus H_1 , if Type I error $= \alpha$ then Type II error $\geq \beta$.

Equivalently:

For any other test of H_0 versus H_1 , if Type II error $= \beta$ then Type I error $\geq \alpha$.

Example: two normal distributions

$$H_0: X \sim N(1,1)$$
 versus $H_1: X \sim N(2,2)$

- Test #1: choose a cutoff 1 < a < 2 (in between the two means),
 & if X < a then return H₀, otherwise if X ≥ a then return H₁.
- Test #2: LR test choose a threshold c > 0, & if LR > c then return H_0 , otherwise if LR $\le c$ then return H_1 .

13 / 16

Example: two normal distributions

Implementing the LR test:

$$\mathsf{LR} = \frac{\frac{1}{\sqrt{2\pi \cdot 1}} e^{-(x-1)^2/2 \cdot 1}}{\frac{1}{\sqrt{2\pi \cdot 2}} e^{-(x-2)^2/2 \cdot 2}} = \sqrt{2} e^{(x-2)^2/4 - (x-1)^2/2} = \sqrt{2} e \cdot e^{-x^2/4}$$

If we choose threshold c = 1.3:

Choose
$$H_0 \Leftrightarrow LR > 1.3 \Leftrightarrow |x| < 2\sqrt{\log\left(\frac{\sqrt{2e}}{1.3}\right)} = 1.529$$

Type I error
$$= \mathbb{P}_{N(1,1)}(\mathsf{LR} \le 1.3) = \mathbb{P}_{N(1,1)}(|X| \ge 1.529) = 0.3042$$

Type II error =
$$\mathbb{P}_{N(2,2)}(LR > 1.3) = \mathbb{P}_{N(2,2)}(|X| < 1.529) = 0.3632$$

14 / 16

Example: two normal distributions

Now compare against Test #1.

Suppose we choose cutoff a to get Type I error = 0.3042: (to match LR's)

$$0.3042 = \text{Type I error} = \mathbb{P}_{N(1,1)}(X \ge a) \quad \leadsto \quad a = 1.5122$$

(same as the LR test with c = 1.3)

Then calculate Type II error:

Type II error =
$$\mathbb{P}_{N(2,2)}(X < 1.5122) = \mathbb{P}_{N(2,2)}(X < 1.5122) = 0.3651$$

(higher than the Type II error of the LR test with c = 1.3)

Illustration of the Neyman-Pearson lemma

The Neyman-Pearson lemma, for this example:

