(CI	J)	I	M	Æ

2

1

3 1. A control sub for use with a hydraulically operated 4 downhole tool, comprising a tubular assembly having a 5 through passage between an inlet and a first outlet. 6 the inlet being adapted for connection on a workstring, the first outlet being adapted for connection to a 7 8 hydraulically operated downhole tool, one or more 9 radial outlets extending generally transversely of the 10 tubular assembly, an obturating member moveable between 11 a first position permitting fluid flow through the one 12 or more radial outlets and a second position closing the one or more radial outlets, wherein the obturating 13 member is moved from the first position to the second 14 15 position by a compressive force applied from the tool.

16

2. A control sub as claimed in Claim 1 wherein a crosssectional area of the first outlet is greater than a cross-sectional area of the second outlet.

20

21 3. A control sub as claimed in Claim 1 or Claim 2 wherein 22 the compressive force occurs from the downhole tool 23 remaining static relative to movement of the workstring 24 and the control sub.

25

4. A control sub as claimed in any preceding Claim wherein the tubular assembly comprises an inner sleeve and an outer sleeve, sealingly engaged to each other.

29

30 5. A control sub as claimed in Claim 4 wherein the outer 31 sleeve is adapted to connect to the work string and the 32 inner sleeve is adapted to connect to the tool.

33

WO 03/089755 PCT/GB03/01596

16

1	6. A control sub as claimed in Claim 4 or Claim 5 wherein
2	the inner and outer the sleeves include mutually
3	engageable faces so that the sleeves may be axially
4	slideable in relation to each other over a fixed
5	distance.
6	
7	7. A control sub as claimed in any one of Claims 4 to 6
8	wherein the obturating member is a sleeve, coupled to
9	the inner sleeve of the tubular assembly.
10	
11	8. A control sub as claimed in any one of Claims 4 to 7
12	wherein the one or more radial ports are located on the
13	outer sleeve.
14	·
15	9. A control sub as claimed in Claim 8 wherein matching
16	radial ports are located on the obturating member such
17	that under compression each set of radial ports align
18	to allow fluid to flow radially from the sub.
19	
20	10. A control sub as claimed in any one of Claims 4 to 9
21	wherein an outer surface of the inner sleeve includes
22	portion having a polygonal cross-section and an inner
23	surface of the outer sleeve has a matching polygonal
24	cross-section.
25	
26	11. A control sub as claimed in Claim 10 wherein the
27	polygonal cross sections are hex cross-sections.
28	
29	12. A control sub as claimed in any preceding Claim
30	wherein the sub further includes an indexing mechanism
31	
32	2 13. A control sub as claimed in Claim 12 wherein the
33	indexing mechanism comprises mutually engageable

33

on the tool;

	17	
1	formations on the inner and outer sleeves.	
2		
3	14. A control sub as claimed in Claim 13 wherein	in the
4	engageable formations comprise at least one p	in and a
5	slot into which the pin(s) engage.	
6		
7.	15. A control sub as claimed in Claim 14 wherei	n the
8	slot extends circumferentially around a surface	ce of a
9	sleeve to provide a circumferential path for	the pin.
10		,
11	16. A control sub as claimed in Claim 15 wherei	n the
12	slot includes one or more longitudinal profile	es as
13	offshoots from the circumferential path to all	low the
14	sleeves to move relative to each other to effe	ect the
15	relocation of the obturating member from one p	position
16	to another.	
17		
18	17. A method of controlling a hydraulically ope	rated
19	downhole tool in a well bore, the method compr	ising the
20	steps:	-
21		
22	a) mounting above the tool on a work string a	control
23	sub, the sub including a first outlet to the	e tool
24	and one or more radial outlets through which	
25	within the work string will flow when not of	
26	by an obturating member, the obturating member	
27	moveable under a compressive force from the	•
28		
29	b) running the tool into a well bore and locati	ing the
30	tool on a formation in the well bore;	- · · · · · · · · · · · · · · · · · · ·
31		
32	c) compressing the control sub by setting down	weight

WO 03/089755 PCT/GB03/01596

18

1	
2	d) using the compressive force to move the obturating
3	member and thereby control the fluid flow through
4	the radial outlets, regulating the fluid pressure
5	from the first outlet to hydraulically control the
6	tool.
7	
8	18. A method as claimed in Claim 17 wherein the method
9	includes the step of running the tool in the well bore
LO	with the radial outlets in an open position and
11	circulating fluid within the well bore.
12	
13	19. A method as claimed in Claim 17 or Claim 18 wherein
14	the method includes the step of indexing the sleeves
15	with respect to each other to move a pin in a sleeve
16	within a recess of another sleeve.
17	
18	20. A method as claimed in Claim 19 wherein the method
19	further includes the steps of locating the pin in a
20	position wherein the compressive force is released and
21	the radial ports are selectively moved to an open or
22	closed position.
23	
24	21. A method as claimed in any one of Claims 17 to 20
25	wherein the method include the steps of picking up an
26	setting down the weight of the string repeatedly to
27	cycle opening and closing of the radial outlets and
28	thus provide a selective continuous 'on' and 'off'
29	operation of the tool.