函数与导数

若函数 f(x) 可导, 则由 f(-x)=-f(x) 两边对 x 求导, 得 -f'(-x)=-f'(x), 即 f'(-x)=f'(x); 由 f(-x)=f(x) 两边 对 x 求导, 得 -f'(-x)=f'(x), 即 f'(-x)=-f'(x) 可得奇、偶函数的导数的性质:

- (1) 可导奇函数的导数是偶函数;
- (2) 可导偶函数的导数是奇函数. 这一特征性质实现了函数奇偶性的相 互转化, 在解题中可灵活应用. 例 1 若 $f(x) = a \sin\left(x + \frac{\pi}{3}\right) + b \cos\left(x \frac{\pi}{3}\right) (ab \neq 0)$ 是偶函敉, 则有序实数对 (a,b) 可以是 (写出你认为正确的一组数对即可).

解折 求导得 $f'(x)=a\cos\left(x+\frac{\pi}{3}\right)-b\sin\left(x-\frac{\pi}{3}\right)$, 由可导偶函数的导数特征性质得: f'(x) 是 R 上的奇函数, 所以 f'(0)=0, 即 $f'(0)=a\cos\frac{\pi}{3}-b\sin\left(-\frac{\pi}{3}\right)=0$, 所以 $a+\sqrt{3}b=0$, 故只要填写满跃 $a+\sqrt{3}b=0$ 且 $ab\neq 0$ 的任意一组数对即可, 如 $(\sqrt{3},-1)$.

评注

本题一般解题思路就是利用偶函数的定义,显然较为篡杂,而妙用导数处理此类问题,简洁、高效、快捷! 变式 1 若 $f(x)=a\sin\left(x+\frac{\pi}{4}\right)+b\sin\left(x-\frac{\pi}{4}\right)(ab\neq0)$ 是偶函数,则 $2^{a+b}=$ 设函数 $f(x)=a\sin x+b\cos x(ab\neq0)$,则可化为 $f(x)=\sqrt{a^2+b^2}\sin(x+\varphi)$,其中 $\tan\varphi=\frac{b}{a}$. 于是,结合函数 f(x) 的图像易知:若 $x=x_0$ 时函数 f(x) 取得最值,即函数 f(x) 例 2 (2013 新课标卷 I)设当 $x=\theta$ 时,函数 $f(x)=\sin x-2\cos x$ 取得最大值,则 $\cos\theta=$ 解折 由起设可知 $f'(\theta)=0$,又 $f'(x)=\cos x+2\sin x$,所以 $\cos\theta+2\sin\theta=0$,即

$$an heta = -rac{1}{2}, \cos heta = -2 \sin heta \cdot$$
 于是,结合 $\sin^2 heta + \cos^2 heta = 1$,解得 $\begin{cases} \sin heta = rac{\sqrt{5}}{5} \\ \cos heta = -rac{2\sqrt{5}}{5} \end{cases}$

或
$$\begin{cases} \sin \theta = -rac{\sqrt{5}}{5} \\ \cos \theta = rac{2\sqrt{5}}{5} \end{cases}$$
 故所求 $\cos \theta = -rac{2\sqrt{5}}{5}.$

1. 已知函数 $f(x) = \ln x + \ln \left(a - x \right)$ 的图象 关于直线 x = 1 对称, 则函数 f(x) 的单调 递增区间为()

A.
$$(0,2)$$
 B. $[0,1)$ C. $(-\infty,1]$ D. $(0,1]$

【解析】 :: 函数 $f(x) = \ln x + \ln (a-x)$ 的图 象关于直线 x=1 对称, :: f(2-x) = f(x), 即

$$\ln(2-x) + \ln^{a-(2-x)} = \ln x + \ln(a-x)$$

$$\ln(x+a-2) + \ln(2-x) = \ln x + \ln(a-x)$$

即
$$\therefore a=2$$

$$\therefore f(x) = \ln x + \ln \left(2 - x
ight) = \ln x (2 - x) \qquad \qquad 0 < x < 2$$

由于
$$y = x(2-x) = -(x-1)^2 + 1$$
 为开口向下

的抛物线, 其对称轴为 x=1, 定义域为 (0,2),

 \therefore 它的递增区间为 (0,1],

已知函数
$$f(x)=a\mathrm{e}^x-\dfrac{b\ln x}{x}$$
 , 在点 $(1,f(1))$ 处的切线方程为 $y=(\mathrm{e}-1)x+1$. (1)求 a,b ;

(2) 证明:\$ f(x)>1\$.

解: (1)
$$f'(1)=ae-b=e-1, f(1)=ae=e$$
 \therefore $a=1,b=1$ (2) 要证 $e^x-\frac{lnx}{x}>0$ 令 $g(x)=e^x-(x+1), x>0$ $g'(x)=e^x-1>0$ 在 $(0,+\infty)$ 上恒成立

所以
$$g(x)$$
在 $(0,+\infty)$ 递增

\$ \begin{aligned}

 $\pi \$

即e^{x}>x+1(x=0 \text {. }\\

&\therefore $x e^{x}>x^{2}+x$

\end{aligned}\$

$$\frac{h}{2} h(x) = x^2 + x - (\ln x + x) = x^2 - \ln x$$

$$h'(x) = 2x - \frac{1}{x} = \frac{2x^2 - 1}{x}$$

由
$$h'(x)>0$$
得 $x>rac{\sqrt{2}}{2}$

由
$$h'(x) < 0$$
得 $0 < x < rac{\sqrt{2}}{2}$

$$h'(x)>0$$
得 $x>rac{\sqrt{2}}{2}$

所以
$$h(x)$$
在 $(0, \frac{\sqrt{2}}{2})$ 递减,在 $(\frac{\sqrt{2}}{2}, +\infty)$

$$\therefore h(x)\geqslant h\left(rac{\sqrt{2}}{2}
ight)=rac{1}{2}+rac{1}{2}{
m ln}\,2>0$$

$$\therefore x^2 + x > \ln x + x$$

$$\therefore xe^x > lnx + x$$

原不等式成立.

$$\Rightarrow f(x) = e^x - x - 1, \quad x > 0$$

$$f'(x) = e^x - 1 > 0 \neq (0, +\infty) \mid 3x'z$$

$$\therefore f(x) > f(0) = 0$$
在 $(0, +\infty)$ 恒成立

$$\therefore e^x > x + 1$$

$$\Leftrightarrow g'(x) = rac{\ln{(x+1)} - rac{x}{x+1}}{\ln^2(x+1)}, x > 0$$

$$\Rightarrow h(x) = \ln(x+1) - \frac{x}{x+1}$$

$$\therefore h(x)$$
在 $(0,+\infty)$ 上递增

$$\therefore h(x) > h(0) = 0$$
在 $(0, +\infty)$ 恒成立

$$\therefore g'(x) > 0$$
 在 $(0, +\infty)$ 恒成立

$$\therefore x > 0$$
时. $e^x - 1 > x > 0$ d

$$\therefore g\left(e^x-1
ight)>g(x)$$
. 即 $rac{e^x-1}{\ln e^x}>rac{x}{\ln (x+1)}$,即\$\dfrac{e^{x}-1}{x}\dfrac{e^{x}-1}{x}}\dfrac{e^{x}-1}{x}

1.如图, 在平面四边形 ABCD 中, O 为 dBD 的中点, 且 OA=3 , OC=5 , 若 $\overrightarrow{AB}\cdot\overrightarrow{AD}=-7$, 则 $\overrightarrow{BC}\cdot\overrightarrow{DC}$ 的值是

2.在 $\triangle ABC$ 中, $\angle C=90^\circ$, |AB|=6, 点 P 满足 |CP|=2, 则 $\overrightarrow{PA}\cdot\overrightarrow{PB}$ 的最大值为(A. 9 B. 16 C. 18 D. 25

3.若 $\triangle ABC$ 的外接圆是半径为 1 的圆 O, 且 $\angle AOB=120^\circ$, 则 $\overrightarrow{AC}\cdot \overrightarrow{CB}$ 的取值范围是

A.
$$\left[-\frac{1}{2},1\right)$$
 B. $\left[-1,1\right)$ C. $\left[-\frac{4}{3},0\right)$ D. $\left[-1,0\right)$

5.在面积为 2 的 $\triangle ABC$ 中, E,F 分别是 AB,AC 的中点, 点 P 在直线 EF 上, 则 $PC\cdot PB+BC$ 的最小值是

6. 已知非零向量 $\boldsymbol{a}, \boldsymbol{b}$ 的夹角为锐角, $|\boldsymbol{b}|=2$, 当 $t=\frac{1}{2}$ 时, $|\boldsymbol{b}-t\boldsymbol{a}|$ 取最小值为 $\sqrt{3}$, 则 $|\boldsymbol{a}|=$

7.设向量 $m{a},m{b},m{c}$ 满足 $|a|=|m{b}|=2,m{a}\cdotm{b}=-2,\langlem{a}-m{c},m{b}-m{c}\rangle=60^\circ$, 则 $|m{c}|$ 的最大值等于 (A) A. 4 B. 2 C. $\sqrt{2}$ D. 1

8.已知 $m{a}, m{b}, m{e}$ 是平面向量, $m{e}$ 是单位向量. 若非零向量 $m{a}$ 与 $m{e}$ 的夹角为 $\frac{\pi}{3}$, 向量 $m{b}$ 满足 $m{b}^2-4m{e}\cdot m{b}+3=0$, 则 $|m{a}-m{b}|$ 的最小值是 $(m{A})$ A. $\sqrt{3}-1$ B. $\sqrt{3}+1$ C. 2 D. $2-\sqrt{3}$

9.如图, 在 $\triangle ABC$ 中, $\overrightarrow{AN}=\frac{1}{3}\overrightarrow{NC},P$ 是 BN 上的一点, 若 $\overrightarrow{AP}=\overrightarrow{mAB}+\frac{2}{9}\overrightarrow{AC}$, 则实数 m 的值为 (C)

A. 1 B. $\frac{1}{3}$ C. $\frac{1}{9}$ D. 3

10.给定两个长度为 1 的平面向量 \overrightarrow{OA} , \overrightarrow{OB} , 它们的夹角为 120° , 如图 , 点 C 在以 0 为圆心的 圆弧 AB 上变动. 若 $\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$, 其中 $x,y\in\mathbf{R}$, 则 x+y 的最大值为 2.

11.如图, 在扇形 OAB 中, $\angle AOB=60^\circ$, C 为弧 AB 上且与 A , B 不重合的一个动点, $\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$, 若 $u=x+\lambda y(\lambda>0)$ 存在最大值, 则 λ 的取值范围为 (C) A. $\left(\frac{1}{2},1\right)$ B. (1,3) C. $\left(\frac{1}{2},2\right)$ D. $\left(\frac{1}{3},3\right)$

12.如图, 在等腰梯形 ABCD 中, AB=4, $\angle BAD=60^\circ$, $\overrightarrow{AB}=2\overrightarrow{DC}$, E 为 CD 的中点, M 是梯形 ABCD 所在平面内一点, 则 $\overrightarrow{ME}\cdot(\overrightarrow{MA}+\overrightarrow{MB})$ 的最小值为 【答棨】 $-\frac{3}{2}$

取 AB 中点 F, 则 $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MF}$

设EF中点为O,

所以 $\overrightarrow{ME} \cdot (\overrightarrow{MA} + \overrightarrow{MB}) = 2\overrightarrow{ME} \cdot \overrightarrow{MF} = 2\left(MO^2 - EO^2\right) = 2MO^2 - \frac{EF^2}{2} \ge -\frac{EF^2}{2}$ M与 O 重合时, 等号成立

又 AB=4,CD=2, 故 $EF=\frac{(AB-CD)}{2}\cdot \tan 60^\circ=\sqrt{3}$ 所以 $\overrightarrow{ME}\cdot (\overrightarrow{MA}+\overrightarrow{MB})$ 的最小值为 $-\frac{3}{2}$ 故答案为: $-\frac{3}{2}$.

