Introduction to genome-wide association analysis: rvtests

Department of Biomedical Data Sciences
Section of Molecular Epidemiology
LUMC, Leiden

- Genome-wide association study
 - Introduction to rvtests software
 - Requirements: input files
 - Association analysis
 - Output file
- Post-association analysis steps
 - Quality control
 - Visualization

- Genome-wide association study
 - Introduction to rvtests software
 - Requirements: input files
 - Association analysis
 - Output file
- Post-association analysis steps
 - Quality control
 - Visualization

Genome-wide association study (GWAS)

- Millions of genetic variants across the genomes of many individuals tested to identify genotype—
 phenotype associations
- Various statistical methods and tools available
- Today's practical: Rvtests (Rare Variant tests)
- Available on Linux, MacOS and Windows, developed by Zhan et al.
- Developed to support genetic association analysis for sequence datasets
- Can analyze:
 - unrelated individuals and related (family-based) individuals
 - quantitative and binary outcomes

Rvtests and meta-analysis

Meta-analysis - combining the results of individual studies with statistical methods

- Genome-wide association study
 - Introduction to rvtests software
 - Requirements: input files
 - Association analysis
 - Output file
- Post-association analysis steps
 - Quality control
 - Visualization

Input files (1)

Phenotype file

fid	iid	fatid	matid	sex	phenotype1	phenotype2	phenotype3	
1	1	0	0	1	5.879	25.888	0	
2	2	0	0	2	8.954	19.324	2	
3	3	0	0	2	1.909	20.125	1	
4	4	0	0	1	NA	28.587	1	
5	5	0	0	1	7.888	35.996	1	

Covariate file

fid	iid	fatid	matid	sex	covariate1	covariate2
1	1	0	0	1	78.534	1
2	2	0	0	2	67.987	0
3	3	0	0	2	85.123	0
4	4	0	0	1	49.023	1
5	5	0	0	1	55.943	1

Input files (2)

```
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
               ID
                                ALT
                                        QUAL FILTER INFO
                                                                                        FORMAT
                                                                                                    NA00001
                                                                                                                   NA00002
                                                                                                                                  NA00003
                                                                                       GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20
       14370 rs6054257 G
                                        29
                                             PASS
                                                    NS=3; DP=14; AF=0.5; DB; H2
20
       17330
                                             q10
                                                     NS=3; DP=11; AF=0.017
                                                                                       GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
                                                                                                                                  0/0:41:3
                                                    NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
       1110696 rs6040355 A
                                             PASS
                                                                                                                                  2/2:35:4
20
       1230237 .
                                             PASS
                                                     NS=3; DP=13; AA=T
                                                                                       GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
       1234567 microsat1 GTC
                                G.GTCT 50
                                             PASS
                                                     NS=3;DP=9;AA=G
                                                                                       GT:GQ:DP
                                                                                                   0/1:35:4
                                                                                                                   0/2:17:2
                                                                                                                                  1/1:40:3
```

Input files (2)

```
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
               ID
                                         QUAL FILTER INFO
                                                                                        FORMAT
                                                                                                     NA00001
                                                                                                                    NA00002
                                                                                                                                   NA00003
                                                     NS=3; DP=14; AF=0.5; DB; H2
                                                                                        GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
       14370 rs6054257 G
                                         29
                                              PASS
20
       17330
                                              q10
                                                     NS=3; DP=11; AF=0.017
                                                                                        GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
                                                                                                                                   0/0:41:3
20
                                                     NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
       1110696 rs6040355 A
                                             PASS
                                                                                                                                   2/2:35:4
       1230237 .
                                              PASS
                                                     NS=3; DP=13; AA=T
                                                                                        GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
       1234567 microsat1 GTC
                                 G.GTCT
                                              PASS
                                                     NS=3; DP=9; AA=G
                                                                                        GT:GQ:DP
                                                                                                    0/1:35:4
                                                                                                                    0/2:17:2
                                                                                                                                   1/1:40:3
```

##fileformat=VCFv4.2

Input files (2)

```
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
                                                                                     INFO meta-information
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
                                                                                      FILTER meta-information
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
                                                                                      FORMAT meta-information
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
               ID
                                        QUAL FILTER INFO
                                                                                      FORMAT
                                                                                                  NA00001
                                                                                                                 NA00002
                                                                                                                                NA00003
                                                    NS=3; DP=14; AF=0.5; DB; H2
                                                                                      GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20
       14370 rs6054257 G
                                        29
                                             PASS
20
       17330 .
                                                    NS=3; DP=11; AF=0.017
                                                                                      GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
                                                                                                                                0/0:41:3
                                                    NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
       1110696 rs6040355 A
                                            PASS
                                                                                                                                2/2:35:4
20
       1230237 .
                                             PASS
                                                    NS=3; DP=13; AA=T
                                                                                      GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
       1234567 microsat1 GTC
                                G.GTCT 50
                                             PASS
                                                    NS=3; DP=9; AA=G
                                                                                      GT:GQ:DP
                                                                                                  0/1:35:4
                                                                                                                 0/2:17:2
                                                                                                                                1/1:40:3
```

Input files (2)

##fileformat=VCFv4.2

```
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
                                                                                                Optional: FORMAT field
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
                                                                                                specifying data type and per-
                                                                            Fixed fields
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
                                                                                                sample genotype data
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
                                                                                      FORMAT
#CHROM POS
                                                                                                  NA00001
                                                                                                                 NA00002
                                                                                                                                NA00003
               ID
                                        QUAL FILTER INFO
       14370
              rs6054257 G
                                                    NS=3; DP=14; AF=0.5; DB; H2
                                                                                      GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20
                                             PASS
20
       17330
                                             q10
                                                    NS=3:DP=11:AF=0.017
                                                                                      GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
                                                                                                                                0/0:41:3
20
       1110696 rs6040355 A
                                             PASS
                                                    NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
                                        67
                                                                                                                                2/2:35:4
       1230237 .
                                             PASS
                                                    NS=3; DP=13; AA=T
                                                                                      GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
       1234567 microsat1 GTC
                                G.GTCT
                                             PASS
                                                    NS=3:DP=9:AA=G
                                                                                      GT:GQ:DP
                                                                                                  0/1:35:4
                                                                                                                 0/2:17:2
                                                                                                                                1/1:40:3
```


Input files (2)

```
##fileformat=VCFv4.2
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                                                                                        FORMAT
                                                                                                    NA00001
                                                                                                                   NA00002
                                                                                                                                  NA00003
               ID
                                        QUAL FILTER INFO
20
       14370 rs6054257 G
                                             PASS
                                                     NS=3; DP=14; AF=0.5; DB; H2
                                                                                       GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:...
20
       17330
                                             q10
                                                     NS=3;DP=11;AF=0.017
                                                                                       GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
                                                                                                                                  0/0:41:3
                                             PASS
20
       1110696 rs6040355 A
                                        67
                                                    NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
                                                                                                                                  2/2:35:4
20
       1230237 .
                                             PASS
                                                     NS=3; DP=13; AA=T
                                                                                       GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
       1234567 microsat1 GTC
                                G,GTCT 50
                                             PASS
                                                     NS=3;DP=9;AA=G
                                                                                       GT:GQ:DP
                                                                                                   0/1:35:4
                                                                                                                   0/2:17:2
                                                                                                                                  1/1:40:3
```

VCF file --genotype fields

Missing values

// Handle missing genotypes and phenotypes

When genotypes are missing (e.g. genotype = "./.") or genotypes are filtered out, there are three options to handle them: (1) impute to its mean(default option); (2) impute by HWE equilibrium; (3) remove from the model. Use --impute [mean|hwe|drop] to specify which option to use.

When quantitative phenotypes are missing, for example, some samples have genotype files, but not phenotypes, rvtests can impute missing phenotype to its mean.

NOTE: Do not use --imputePheno for binary trait.

In summary, the following two options can be used:

```
--impute : Specify either of mean, hwe, and drop
--imputePheno : Impute phenotype to mean by those have genotypes but no
phenotypes
```

- Genome-wide association study
 - Introduction to rvtests software
 - Requirements: input files
 - Association analysis
 - Output file
- Post-association analysis steps
 - Quality control
 - Visualization

Association analysis

Model: Trait ~ constant + β_1 x SNP + β_2 x covariate 1 + β_3 x covariate 2

Estimate of regression intercept

Estimate of regression slope

The dependent variable "trait" is:

- Quantitative trait → Linear regression
- Case control status → Logistic regression

test H0: β 1 = 0, No association

H1: β 1 \neq 0, Association

Association tests (1)

// Meta-analysis models

Туре	Model(#) T	raits(##)	Covariates	Related / unrelated	Description			
Score test	score	B,Q	Υ	R, U	standard score tests			
Dominant model	dominant	B,Q	Υ	R, U	score tests and covariance matrix under dominant disease model			
Recessive model	recessive	B,Q	Υ	R, U	score tests and covariance matrix under recessive disease model			
Covariance	COV	B,Q	Υ	R, U	covariance matrix			
BOLT-LMM score test	bolt	Q	Υ	R	BOLT-LMM based score tests (###)			
BOLT-LMM covariance	boltCov	Q	Υ	R	BOLT-LMM based score tests (###)			

(#) Model columns list the recognized names in rvtests. For example, use --meta score,cov will generate score statistics and covariance matrix for meta-analysis.

Run GWAS --command

rvtest --inVcf input.vcf

--pheno phenotype.ped

--pheno-name phenotype1

--covar example.covar

--covar-name age,sex

--dosage DS

--meta score

--out output

→ specify genotype file

→ specify phenotype file

→ specify phenotype

→ specify covariate file

→ specify covariates

→ specify dosage tag

→ specify association model

→ specify output file

Demonstration using HPC (SHARK)

- Genome-wide association study
 - Introduction to rvtests software
 - Requirements: input files
 - Association analysis
 - Output file
- Post-association analysis steps
 - Quality control
 - Visualization

Output file

CHROM	POS	REF	ALT	N INFORMATIVE	AF	INFORMATI VE ALT AC	CALL RATE	HWE PVALUE	N_REF	N_HET	N_ALT	U_STAT	SQRT_V_STAT	ALT_EFFSIZE	PVALUE
1	13380	С	G	2158	7,22E-01	0.029	1	1	2158	0	0	-0.0098	0.007996	-154.14	0.217756
1	16071	G	Α	2158	0.0002	0.796	1	1	2157	1	0	0.03002	0.738133	0.0551133	0.96755
1	16141	С	Т	2158	0.0002	0.6	1	1	2158	0	0	0.48214	0.465026	22.296	0.29982
1	16280	T	С	2158	0.0004	1.647	1	1	2158	0	0	0.00312	0.063440	0.777443	0.960663
1	49298	Т	С	2158	0.6361	2745.95	1	9.33E-284	6	1777	375	0.72486	526.607	0.02613	0.890518
1	54353	С	А	2158	0.0007	3.171	1	1	2158	0	0	0.09704	0.113511	753.182	0.39258
1	54564	G	Т	2158	0.0001	0.518	1	1	2158	0	0	-0.00917	0.033233	-830.354	0.782583
1	54591	Α	G	2158	0.0002	0.956	1	1	2158	0	0	0.03387	0.5388	0.1167	0.949864
1	54676	С	Т	2158	0.3790	1636.34	1	0	278	1874	6	0.55609	541.083	0.0189943	0.918141

Number of samples analyzed for association

Allele frequency

The number of alternative alleles in the analyzed samples

Number of samples carrying homozygous reference/ heterozygous/ homozygous alternative alleles

P-value Hardy-Weinberg equilibrium

The fraction of non-missing alleles

- Genome-wide association study
 - Introduction to rvtests software
 - Requirements: input files
 - Association analysis
 - Output file
- Post-association analysis steps
 - Quality control
 - Visualization

Quality control

- 1. Cleaning of the data by deleting poor quality data
 - SNPs with low minor allele frequency (MAF)
 - SNP deviating from Hardy-Weinberg equilibrium (HWE)
 - SNPs with low imputation quality ($R^2 < 0.3$)
- 2. Detect bias QQ plot

QQ plot – bias detection

Easy QC software

STARTSEITE

EPIDEMIOLOGIE UND PRÄVENTIVMEDIZIN

> **GENETISCHE EPIDEMIOLOGIE**

> > Unser Team AugUR Lehre

Forschung Publikationen

Software

GWAS summary statistics MEDIZINISCHE SOZIOLOGIE

> NAKO **PUBLIKATIONEN**

VERANSTALTUNGEN

STELLENANGEBOTE KONTAKT

Software

Regensburger GEM Plattform

Universität Regensburg

The Genetic Epidemiology Unit

Downloads

Prof. Dr. Iris Heid, Dr. Thomas Winkler, Dr. Mathias Gorski, Felix Günther

MLA-bilateral (Günther et al. 2020)

EasyStrata (Winkler et al. 2014)

EasyQC (Winkler et al. 2014)

Description

EasyQC is an R-package that provides advanced funcionality

- (i) to perform file-level QC of single genome-wide association (GWA) data-sets;
- (ii) to conduct quality control across several GWA data-sets (meta-level QC);
- (iii) to simplify data-handling of large-scale GWA data-sets

One could also say, it can be used as Nonsense-Detector for study-specific GW. data-sets.

- Genome-wide association study
 - Introduction to rvtests software
 - Requirements: input files
 - Association analysis
 - Output file
- Post-association analysis steps
 - Quality control
 - Visualization

Manhattan plot

Locus Zoom

THANK YOU FOR YOUR ATTENTION!