100 Car

6.434

FIG.2

4/30

5/30

FIG.7

FIG.9

181

FIG.10

FIG.11

Rn, Gn, Bn, α n

. 4870

R2, G2, B2, α2

 R_1, G_1, B_1, α_1

Ro, Go, Bo, α o

mr.

```
R=0;
1
2
             G=0;
3
             B=0;
             \alpha = 0;
             for (i=0; i < =N; i++)
5
               if (VIDEO=component i) {
6
                        R = (1 - \alpha i) * R ;
7
8
                       G=(1-\alpha i)*G;
                        B = (1 - \alpha i) * B;
9
10
                        \alpha = \alpha i;
11
               else {
                        R = \alpha i*Ri+(1-\alpha i)*R;
12
                        G = \alpha i*Gi+(1-\alpha i)*G;
13
                        B = \alpha i*Bi + (1 - \alpha i)*B;
14
                        \alpha = \alpha * (1 - \alpha i);
15
16
17
18
             R=R+\alpha*Rv;
             G=G+\alpha*Gv;
19
             B=B+\alpha*Bv;
20
```

```
[program 1]
             R=0;
2
             G=0;
3
             B=0;
4
             \alpha = 0;
             for (i=0; i < =N; i++)
5
               if (VIDEO=component i)
6
                       R = (1 - \alpha i) R;
7
                        G=(1-\alpha i)*G;
8
9
                        B = (1 - \alpha i) * B;
10
                        \alpha = \alpha i;
               else
11
                        R = \alpha i*Ri+(1-\alpha i)*R;
12
                        G = \alpha i*Gi+(1-\alpha i)*G;
13
                        B = \alpha i*Bi+(1-\alpha i)*B;
14
                        \alpha = \alpha * (1 - \alpha i);
15
16
17
[program 2]
             while(true) {
1
                        R = R + \alpha * Rv;
2
3
                        G=G+\alpha*Gv;
                        B=B+\alpha*Bv;
4
5
```

FIG.15

AND DESCRIPTION

FIG.16

The same

16/30

Mis in

FIG.20

53 CT - 3

FIG.22

3B	operation type	CLEAR	SRC	SRC_OVER	DST_OVER	SRC_IN	DST_IN	SRC_OUT	DST_OUT
FIG.23B	number	1	2	3	4	5	9	7	8
o 									

FIG.24

ur 400

V	`
Č	i
7>	i
\subseteq	4
Ţ	-

operation type	operation
CLEAR	R=0, G=0, B=0
SRC	$R = \alpha_i \cdot R_i, G = \alpha_i \cdot G_i, B = \alpha_i \cdot B_i$
SRC_OVER	$R = \alpha_i \cdot R_i + (1 - \alpha_i) \cdot R, G = \alpha_i \cdot G_i + (1 - \alpha_i) \cdot G,$
	$\mathbf{B} = \alpha_{\mathbf{i}} \cdot \mathbf{B}_{\mathbf{i}} + (1 - \alpha_{\mathbf{i}}) \cdot \mathbf{B}$
DST_OVER	$R=R+(1-\alpha)\cdot \alpha_i\cdot R_i, G=G+(1-\alpha)\cdot \alpha_i\cdot G_i,$
	$B=B+(1-\alpha)\cdot\alpha_i\cdot B_i,$
SRC_IN	$R = \alpha \cdot \alpha \cdot R_i, G = \alpha \cdot \alpha \cdot G_i, B = \alpha \cdot \alpha \cdot B_i$
DST_IN	$R = \alpha_i \cdot R, G = \alpha_i \cdot G, B = \alpha_i \cdot B,$
SRC_OUT	$R=(1-\alpha)\cdot\alpha_i\cdot R_i, G=(1-\alpha)\cdot\alpha_i\cdot G_i,$
	$\mathbf{B} = (1 - \alpha) \cdot \alpha \cdot \mathbf{B}$
DST_OUT	$R = (1 - \alpha_i) \cdot R, G = (1 - \alpha_i) \cdot G, B = (1 - \alpha_i) \cdot B$

9
S
7
<u>5</u>
冝
$\overline{}$

operation type	operation
CLEAR	R=0, G=0, B=0
SRC	R=0, G=0, B=0
SRC_OVER	$R = (1 - \alpha i) \cdot R, G = (1 - \alpha i) \cdot G, B = (1 - \alpha i) \cdot B$
DST_OVER	R=R, G=G, B=B
SRC_IN	R=0, G=0, B=0
DST_IN	$R = \alpha_i \cdot R, G = \alpha_i \cdot G, B = \alpha_i \cdot B$
SRC_OUT	R=0, G=0, B=0
DST_OUT	$R = (1 - \alpha i) \cdot R, G = (1 - \alpha i) \cdot G, B = (1 - \alpha i) \cdot B$

operation type	operation
CLEAR	$\alpha = 0$
SRC	$\alpha = \alpha$ i
SRC_OVER	$\alpha = \alpha i + (1 - \alpha i) \cdot \alpha$
DST_OVER	$\alpha=lpha+(1-lpha)\cdotlpha$ i
SRC_IN	$lpha=lpha\cdotlpha$ i
DST_IN	$lpha=lpha\cdotlpha$ i
SRC_OUT	$\alpha = (1 - \alpha) \cdot \alpha$ i
DST_OUT	$\alpha = (1 - \alpha i) \cdot \alpha$

FIG.28

operation type	operation
CLEAR	$\alpha = 0$
SRC	$\alpha = 0$
SRC_OVER	$\alpha = \alpha \cdot (1 - \alpha i)$
DST_OVER	$\alpha = \alpha$
SRC_IN	$\alpha = 0$
DST_IN	$lpha=lpha\cdotlpha$ i
SRC_OUT	$\alpha = 0$
DST_OUT	$\alpha = (1 - \alpha i) \cdot \alpha$

operation type	operation
CLEAR SRC SRC_OVER DST_OVER SRC_IN	$\alpha = 0$ $\alpha = \alpha i$ $\alpha = \alpha i$ $\alpha = \alpha i \cdot (1 - \alpha \text{ osd})$ $\alpha = \alpha i \cdot \alpha \text{ osd}$
DST_IN SRC_OUT DST_OUT	$\alpha = 0$ $\alpha = (1 - \alpha \text{ osd}) \cdot \alpha \text{ i}$ $\alpha = 0$

```
R=0;
1
2
           G=0;
3
           B=0;
4
            \alpha = 0;
5
            \alpha v = 0;
           for (i=0; i < =N; i++)
6
             if (VIDEO=component i)
7
8
                     R,G,B update A
9
                      \alpha v update A.
             else
10
11
                      R,G,Bupdate B
                      α v update B
12
13
14
              α update
15
            R = R + \alpha v * R v;
16
            G=G+\alpha v*Gv;
17
18
            B=B+\alpha v*Bv;
```