Напоминание

Определение 1. Число a называют $npedenom\ nocnedoвательности\ (x_n)$, если (x_n) можно представить в виде $x_n = a + \alpha_n$, где последовательность (α_n) бесконечно малая. Обозначение: $\lim_{n \to \infty} x_n = a$. Говорят также, что (x_n) стремится κ a при n, стремящемся κ бесконечности (и пишут $x_n \to a$ при $n \to \infty$).

Определение 2. Число a называют $npedenom\ nocnedoвательности\ (x_n)$, если для всякого числа $\varepsilon > 0$ найдётся такое число N, что при любом натуральном k > N будет выполнено неравенство $|x_k - a| < \varepsilon$. Формально: $\forall \varepsilon > 0 \ \exists \ k \in \mathbb{N} \ \forall \ n > k \ |x_n - a| < \varepsilon$.

Определение 3. Число a называют $npedenom\ nocnedoвательности\ (<math>x_n$), если в любом интервале, содержащем a, содержатся $noumu\ все$ члены (x_n) (то есть все, кроме конечного числа).

Утверждение 1. Определения 1, 2 и 3 эквивалентны.

Утверждение 2. (*Теорема Вейерштрасса*) Любая ограниченная монотонная последовательность сходится.

Утверждение 3. (*Теорема Больцано-Вейерштрасса*) Из всякой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Определение 4. Последовательность (x_n) называется $\phi y n \partial a$ ментальной, если для всякого числа $\varepsilon > 0$ существует такое $k \in \mathbb{N}$, что для любых натуральных m и n, больших k, выполняется неравенство $|x_m - x_n| < \varepsilon$.

Формально: $\forall \varepsilon > 0 \; \exists \, k \in \mathbb{N} \; \forall \, m, n > k \colon |x_m - x_n| < \varepsilon.$

Утверждение 4. (*Критерий Коши*) Последовательность сходится тогда и только тогда, когда она является фундаментальной.

Определение 5. Пусть $\varepsilon > 0$, $a \in \mathbb{R}$. Множество $\dot{U}_{\varepsilon}(a) = U_{\varepsilon}(a) \setminus \{a\} = \{x \in \mathbb{R} \mid 0 < |x-a| < \varepsilon\}$ называется проколотой ε -окрестностью точки a. Множества $\dot{U}_{\varepsilon}^+(a) = \{x \in \mathbb{R} \mid a < x < a + \varepsilon\}$ и $\dot{U}_{\varepsilon}^-(a) = \{x \in \mathbb{R} \mid a - \varepsilon < x < a\}$ называются правой и левой проколотыми полуокрестностями точки a соответственно.

Определение 6. (Предел функции в смысле Гейне) Пусть функция f определена на множестве M и некоторая проколотая окрестность точки a вложена в M. Число b называется пределом функции f в точке a, если для любой последовательности (x_n) элементов множества $M \setminus \{a\}$, сходящейся к a, последовательность $(f(x_n))$ сходится к b.

Обозначение: $\lim_{x\to a} f(x) = b$ или $f(x)\to b$ при $x\to a$.

Определение 7. (Предел функции в смысле Коши) Пусть функция f определена на множестве M и некоторая проколотая окрестность точки a вложена в M. Число b называется пределом функции f в точке a, если для каждого $\varepsilon > 0$ существует такое число $\delta > 0$, что для всех x из множества $\dot{U}_{\delta}(a) \cap M$ выполняется условие $f(x) \in U_{\varepsilon}(b)$.

Формально: $\forall \varepsilon > 0 \; \exists \, \delta > 0 \; \forall \, x \in \dot{U}_{\delta}(a) \cap M : f(x) \in U_{\varepsilon}(b).$

Утверждение 5. Определения 6 и 7 эквиваленты.

Непрерывность

Определение 8. (непрерывность в смысле Коши) Пусть $M\subseteq\mathbb{R}$. Функция $f:M\to\mathbb{R}$ называется непрерывной в точке $a\in M$, если для любого $\varepsilon>0$ найдётся число $\delta>0$ такое, что для всех $x\in M\cap (a-\delta,a+\delta)$ выполнено неравенство $|f(x)-f(a)|<\varepsilon$.

Задача 1. Укажите множество точек непрерывности функций: a) x; б) $\operatorname{sgn} x$; в) x^2 ; г) $\{x\}$; д) $\frac{1}{x}$.

Задача 2. Сформулируйте определение непрерывности, аналогичное определению предела по Гейне.

Задача 3. Запишите без отрицаний: « $f: M \to \mathbb{R}$ разрывна в точке $a \in M$ » (для определения по Коши).

Задача 4. Будет ли функция, непрерывная и положительная в точке a

а) ограниченной; б) положительной в некоторой окрестности точки а?

Листок №22 Страница 2

- **Задача 5.** Функции f, g непрерывны в точке $a \in \mathbb{R}$. Докажите:
- а) $|f| \in C(a)$; б) $f \pm g \in C(a)$; в) $f \cdot g \in C(a)$; г) если $g(a) \neq 0$, то $f/g \in C(a)$.

Задача 6. Сформулируйте и докажите теорему о непрерывности композиции двух непрерывных функций.

- **Задача 7.** Докажите непрерывность функции (во всех точках её области определения): **a)** x^n , где $n \in \mathbb{N}$;
- **б)** многочлен из $\mathbb{R}[x]$; **в)** P(x)/Q(x), где $P,Q \in \mathbb{R}[x]$, $Q \neq 0$; **г)** $\sqrt[n]{x}$, где $n \in \mathbb{N}$; **д)** x^{α} , где $\alpha \in \mathbb{R}$; **е)** $\sin x$; **ж)** e^{x} ; **3)** a^{x} , где a > 0; **и)** $\ln x$; **к)** $\operatorname{arctg} x$.
- **Задача 8.** Придумайте функцию $f: \mathbb{R} \to \mathbb{R}$, **a)** всюду разрывную; **б)** непрерывную лишь в одной точке; **в)** разрывную в точках вида 1/n, где $n \in \mathbb{N}$, и только в них; **г)*** разрывную в точках из \mathbb{Q} и только в них; **д)**** на каждом отрезке принимающую все действительные значения.
- **Задача 9.** Пусть функция f определена и непрерывна в каждой точке отрезка [a,b] ($f \in C([a,b])$), причём f(a) > 0, f(b) < 0. Всегда ли найдётся такое $c \in (a,b)$, что f(c) = 0?
- Задача 10. Докажите, что любой многочлен нечётной степени с действительными коэффициентами имеет хотя бы один действительный корень.
- **Задача 11°.** (*Теорема Коши о промежуточном значении*) Пусть $f \in C([a;b]), f(a) < f(b)$. Верно ли, что для любого числа $c \in [f(a), f(b)]$ существует такая точка $x \in [a,b]$, что f(x) = c?
- Задача 12. (Теорема Л. Бра́уэра о неподвижной точке для отрезка) Пусть $f \in C([0;1])$ и все значения функции f содержатся в отрезке [0;1]. Докажите, что уравнение f(x)=x имеет корень.
- Задача 13°. Пусть функция непрерывна на отрезке. Докажите, что она на этом отрезке
- а) (1-я теорема Вейерштрасса) ограничена;
- 6) (2-я теорема Вейерштрасса) достигает своего наибольшего и наименьшего значения;
- в) Верны ли утверждения пунктов а), б) для функции, непрерывной на интервале или на прямой?
- **Задача 14.** Функции f и g непрерывны на \mathbb{R} , причём f(x) = g(x) при $x \in \mathbb{Q}$. Докажите, что f = g.

Определение 9. *Промежсутком* называют любой отрезок, полуинтервал, интервал, открытый или замкнутый луч на прямой, а также всю прямую.

- **Задача 15°.** (*Теорема о монотонной функции*) Пусть функция непрерывна на некотором промежутке $I \subseteq \mathbb{R}$. Докажите, что f обратима на этом промежутке тогда и только тогда, когда f строго монотонна на нём, причём обратная функция также будет строго монотонной и непрерывной.
- **Задача 16.** Непостоянная функция f определена и непрерывна на множестве $I \subseteq \mathbb{R}$. Каким может быть множество значений этой функции на I, если I это **a)** отрезок; **б)** интервал; **в)** прямая?
- **Задача 17.** Выпуклый многоугольник M, прямая l и точка A лежат в одной плоскости. Докажите, что найдётся прямая l', которая делит M на две равновеликие части и **a)** параллельна l; **б)** проходит через A.
- Задача 18. Докажите, что функция, а) непрерывная на некотором интервале; б) монотонная на некотором интервале, имеет предел как слева, так и справа в каждой точке этого интервала.
- **Задача 19.** Докажите, что монотонная функция, определённая на промежутке, непрерывна во всех точках этого промежутка, за исключением не более чем счётного числа точек.
- **Задача 20*.** Пусть функция f определена на промежутке и в каждой точке этого промежутка имеет конечный предел, не обязательно совпадающий со значением в точке. Насколько f может отличаться от непрерывной? Более точно, каким может быть у f множество точек разрыва?

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	81920