Do New Patients Displace Existing Patients' Treatment?

Jori Barash University of Oregon

October 2, 2025

Motivation

Healthcare policy interventions often target the supply of physicians

- ullet Underpinned by assumption: too many patients o inadequate treatment
- e.g., patient limits per physician and subsidized entry into less profitable areas

Motivation

Healthcare policy interventions often target the supply of physicians

- ullet Underpinned by assumption: too many patients o inadequate treatment
- e.g., patient limits per physician and subsidized entry into less profitable areas

Consistent with regional correlations between doctors per capita and health outcomes

- Causal evidence is limited and unobserved factors likely matter
- Physicians may prefer locations with better patient health
- Patients may prefer high-quality physicians

Motivation

Healthcare policy interventions often target the supply of physicians

- ullet Underpinned by assumption: too many patients o inadequate treatment
- e.g., patient limits per physician and subsidized entry into less profitable areas

Consistent with regional correlations between doctors per capita and health outcomes

- Causal evidence is limited and unobserved factors likely matter
- Physicians may prefer locations with better patient health
- Patients may prefer high-quality physicians

Research question

What is the effect of a primary care physician's number of registered patients ("enrollment") on short-run treatment intensity?

Instrument for enrollment with quasi-random patient assignments

Instrument for enrollment with quasi-random patient assignments

Treatment intensity falls for incumbent patients but not overall

• Economically small effect size, several measures of treatment

Instrument for enrollment with quasi-random patient assignments

Treatment intensity falls for incumbent patients but not overall

• Economically small effect size, several measures of treatment

Use theoretical framework to distinguish between two mechanisms

- Capacity constraints → Need more physicians
- Income effects → Need more payment per service
- Effect heterogeneity most consistent with idiosyncratic capacity constraints

Instrument for enrollment with quasi-random patient assignments

Treatment intensity falls for incumbent patients but not overall

• Economically small effect size, several measures of treatment

Use theoretical framework to distinguish between two mechanisms

- ullet Capacity constraints o Need more physicians
- Income effects → Need more payment per service
- Effect heterogeneity most consistent with idiosyncratic capacity constraints

Contextualize findings

- Suggestive evidence: baseline treatment intensity might be too low
- Fixing physician supply, simulate new targeted patient assignment

Contribution

Healthcare disruptions: [Emergency Care] Jena et al., 2017; Gruber, Hoe and Stoye, 2018; Hsia and Shen, 2019; Hoe, 2022; [Short-Term Disruptions in Primary Care] Shurtz et al., 2018; Harris, Liu and McCarthy, 2020; Freedman et al., 2021; Kovacs and Lagarde, 2022; Details

• Persistent disruption in primary care

Contribution

Healthcare disruptions: [Emergency Care] Jena et al., 2017; Gruber, Hoe and Stoye, 2018; Hsia and Shen, 2019; Hoe, 2022; [Short-Term Disruptions in Primary Care] Shurtz et al., 2018; Harris, Liu and McCarthy, 2020; Freedman et al., 2021; Kovacs and Lagarde, 2022; Details

Persistent disruption in primary care

Consequences of Physician Retirement: Kwok, 2018; Fadlon and Van Parys, 2020; Bischof and Kaiser, 2021; Simonsen et al., 2021; Zhang, 2022; Sabety, 2023)

Consequences for nearby patients and test of exclusion

Automatic reassignment of the patients of physicians who exit the market

- Random conditional on municipality and availability
- I focus on patients of nearby physicians (exogenous treatment need)

Automatic reassignment of the patients of physicians who exit the market

- Random conditional on municipality and availability
- I focus on patients of nearby physicians (exogenous treatment need)

Registration system encourages long-term patient-physician relationships

• Large balanced panel of patients: no variation in composition

Automatic reassignment of the patients of physicians who exit the market

- Random conditional on municipality and availability
- I focus on patients of nearby physicians (exogenous treatment need)

Registration system encourages long-term patient-physician relationships

• Large balanced panel of patients: no variation in composition

National agreements dictate an identical reimbursement schedule for physicians

No confounding variation in incentives when enrollment increases

Automatic reassignment of the patients of physicians who exit the market

- Random conditional on municipality and availability
- I focus on patients of nearby physicians (exogenous treatment need)

Registration system encourages long-term patient-physician relationships

• Large balanced panel of patients: no variation in composition

National agreements dictate an identical reimbursement schedule for physicians

No confounding variation in incentives when enrollment increases

Universal public healthcare system: data includes almost all patients + physicians

- Registration system design has far-reaching consequences for health and spending
- Statistical power to estimate small effects, test model predictions

Summary Statistics: Treatment Intensity per Physician

Variable	Mean	Std. Dev.	10th Percentile	Median	90th Percentile
Enrollment	1,262.00	354.23	811.00	1,237.50	1,710.00
Visits	372.52	210.86	51.00	368.00	641.00
Spending	10,858.77	27,152.92	1,056.89	10, 111.69	17,832.71
Hours	103.25	42.84	45.29	107.94	153.00
Avoidable Hosp.	3.61	2.93	1.00	3.00	7.00
Follow-up Visits	110.29	74.31	21.00	102.00	204.00
Bill Lines	1,140.84	700.84	322.00	1,060.00	2,019.00
Diagnostics	72.59	88.72	8.00	51.50	150.00
Procedures	274.05	215.50	57.00	228.00	541.00
per Visit	2.94	0.84	2.04	2.81	4.01
Physician-Spells	2,722				

Econometric Model

$$\begin{split} Y_{jt} &= \beta_1 \widehat{\mathsf{Enroll}}_{jt} + \beta_j + \beta_t + \epsilon_{jt} \\ \mathsf{Enroll}_{jt} &= \gamma_1 \mathsf{Auto}_{jt} + \gamma_j + \gamma_t + \varepsilon_{jt} \,. \end{split}$$

 Y_{it} is the outcome of interest, t months after auto-reassignment

ullet Sum among incumbent patients of physician j

 Enroll_{jt} is total enrollment, including incumbents and newly joined patients

 $Auto_{jt}$ reflects the cumulative number of patients auto-reassigned

Identifying Assumptions: Exclusion

Assumption: Timing and size of auto-reassignment

• Independent of factors determining changes to incumbent illness severity that are specific to a physician, e.g., missed preventative or local viral outbreak

Identifying Assumptions: Exclusion

Assumption: Timing and size of auto-reassignment

• Independent of factors determining changes to incumbent illness severity that are specific to a physician, e.g., missed preventative or local viral outbreak

Balance test: auto-reassigned patient counts uncorrelated with incumbent severity

Conditional on availability, a shared municipality, and the exiting physician

Similar trends in outcomes prior to auto-reassignment

• Event-Study: Large vs. small auto-reassignments (1 patient)

Trends Among Incumbent Patients: Large vs. Small Auto-Reassignments

Effect of Enrollment Among Incumbent Patients

	Enrollment (1)	Hours (2)	Bill Lines (3)	Spending (4)	Visits (5)
Cuml. Auto-Joins	1.055 (0.055) [<0.001]				
Enrollment		-0.048 (0.026) $[0.070]$	-0.345 (0.055) $[<0.001]$	2.230 (4.597) [0.628]	0.004 (0.152) [0.980]
Dep. Var. Mean New Pat. Mean F-Statistic	1274.917 117.129	101.349 0.124 20.101	1126.464 1.313 30.679	10299.286 131.205 9.458	370.160 0.400 28.624
Observations	35,386 Lines Per Visit (6)	35,386 Procedures (7)	35,386 Diagnostics (8)	35,386 Follow-ups (9)	35,386 Avoidable Hosp. (10)
Enrollment	$ \begin{array}{c} -0.002 \\ (0.000) \\ [<0.001] \end{array} $	-0.038 (0.019) $[0.045]$	-0.058 (0.015) $[<0.001]$	-0.023 (0.021) $[0.268]$	0.001 (0.000) $[0.024]$
Dep. Var. Mean New Pat. Mean F-Statistic Observations	2.940 3.244 36.423 34,578	70.908 0.096 46.320 35,386	270.428 0.293 43.653 35,386	135.084 0.165 26.550 35,386	3.619 0.004 6.869 35,386

Heterogeneity in the Effect of Enrollment on Hours

	Capacity		Fee L	Fee Level		dule
	Slack (1)	Binds (2)	Low (3)	High (4)	Part-Time (5)	Full-Time (6)
Enrollment	-0.025 (0.023) $[0.281]$	-0.051 (0.027) $[0.057]$	-0.045 (0.027) $[0.095]$	-0.039 (0.030) $[0.197]$	-0.083 (0.004) $[<0.001]$	-0.005 (0.010) $[0.609]$
Dep. Var. Mean 1 st Stage F-Stat. Observations	94.515 33.577 16,783 Ag	107.514 134.240 18,603	84.576 83.519 14,677 Diagr	113.236 46.769 20,709	78.104 100.088 12,324 Gen	113.770 66.967 23,062
	Under 65 (7)	Over 65 (8)	Healthy (9)	Chronic (10)	Male (11)	Female (12)
Enrollment	-0.042 (0.020) $[0.035]$	-0.007 (0.006) [0.248]	-0.037 (0.020) $[0.061]$	-0.012 (0.006) [0.045]	-0.013 (0.007) $[0.068]$	-0.036 (0.019) $[0.053]$
Dep. Var. Mean 1 st Stage F-Stat. Observations	72.288 112.037 35,386	29.061 112.037 35,386	58.032 112.037 35,386	43.316 112.037 35,386	42.905 112.037 35,386	58.444 112.037 35,386

Robustness of the Effect of Enrollment on Hours

			Estimate		Mean	F-Stat.	Obs.
(1)	Add Controls	-0.044	(0.030)	[0.149]	101.349	88.295	35,386
(2)	Top 5%	-0.045	(0.028)	[0.109]	96.568	77.400	2,158
(3)	Drop Event-Month	-0.045	(0.024)	[0.056]	101.349	100.906	35,386
(4)	Calendar Month	-0.061	(0.023)	[0.007]	101.349	61.752	35,386
(5)	Hours Always 8+	-0.034	(0.020)	[0.095]	110.662	69.265	30,472
(6)	Drop Middle Months	-0.056	(0.030)	[0.064]	101.028	61.412	27,220
(7)	Constant Ceiling	-0.077	(0.057)	[0.178]	102.791	72.963	29,328
(8)	Avoidable Hosp.	-0.081	(0.005)	[< 0.001]	103.043	88.793	32,097
(9)	Alt. 1st Stage	-0.050	(0.026)	[0.053]	101.349	3509.565	35,386
(10)	Weighted	-0.057	(0.022)	[0.011]	101.349	98.327	35,386

Should Crowd-Out be Prevented?

Other similar Norwegian patients get more time with physicians (5% of mean)

• Others also have lower avoidable hospitalizations (5% of mean)

Prior surveys of Norwegian patients: concerned about primary care undertreatment

• e.g., 25% dissatisfied with duration of consultations, 50% with wait times

Prior surveys of Norwegian physicians: growing dissatisfaction

- Work hours, amount of responsibility, treatment discretion
- Focus groups: growing workloads could cause issues for patient safety

Norway has lower treatment intensity than most other OECD countries

• More physicians, but fewer visits

Counterfactual: Targeted Patient Assignment

If crowd-out exacerbates undertreatment, policymakers could increase capacity

- Might be too expensive relative to effect size
- Fixing the set of physicians, can we do better than random patient assignment?

Target physician-patient assignments with low crowd-out

- Separate estimates for old vs. young patients
- Separate estimates for high- vs. low- crowd-out physicians (High: part-time or near capacity)
- Simulate sequential assignments to nearby physicians, prioritizing lowest crowd-out

Takeaway

86% of crowd-out hours avoided by targeted assignment

Conclusion

Healthcare providers can sometimes shift labor supply without large frictions

- New patients minimally displace the primary care of existing patients
- Leverage quasi-random administrative assignment

Policy implications: rural subsidies, targeted assignment, and patient limits

- Important to consider heterogeneous capacity constraints
- Income effects and reimbursement