Chaos in stb Cantor set Sierpiński triangle Lonentz attractor Mandelbrot set

Chaos in stb

C library that simulates many fractals and attractors. You can generate them into terminal as ASCII art or into image rendered using stb library.

Cantor set

- Available in ASCII
- Available in stb

Sierpiński carpet

- Available in ASCII
- Available in stb

A Sierpiński carpet is a fractal formed by recursively removing squares from a surface. It is named after its founder, the Polish mathematician Wacław Sierpiński, who described it in 1916.

This fractal is a generalization of Cantor's set into two dimensions.

It is obtained by removing $\frac{1}{9}$ of the content from the square, and removing $\frac{1}{9}$ of their original content from the remaining 8 parts, each of which has $\frac{1}{9}$ of their content again in the same way. This procedure is repeated indefinitely. Again, it is easy to compute the area of a Sierpiński carpet that converges to zero.

The math proof:
$$1-\sum_{n=0}^\infty rac{8^n}{9^{n+1}} \Longrightarrow a_1=rac{1}{9}, q=rac{8}{9} \Longrightarrow 1-s=rac{\frac{1}{9}}{1-rac{8}{9}}=1-1=0$$

The Sierpiński carpet has a fractal (Hausdorff) dimension equal to $rac{log(8)}{log(3)}pprox 1.8928...$

Sierpiński triangle

- Available in ASCII
- Available in stb

Lonentz attractor

- Available in ASCII
- Available in stb

Mandelbrot set

- Available in ASCII Available in stb Available in SDL
- **ASCII** stb

SDL

Available in ASCII

- Available in stb
- **Barnsley fern** Available in ASCII

Available in stb

Available in ASCII

Bifurcation graph

Available in stb

ASCII User interface

TODO

- Cantor set ASCII
- stb Sierpinski carpet
 - ASCII
- stb
- Sierpinski triangle
 - ASCII
- stb Lonentz attractor
 - ASCII
- stb
- Mandelbrot set ASCII
 - stb
- SDL Koch snowflake

 - ASCII stb
- Barnsley fern
 - ASCII ■ stb

Bifurcation graph

ASCII stb