Assignment 1

Question 1: Let F be a field, let I be a set, and let $V = V_I$ the set of finitely supported F-valued functions on I.

- a. Explain why V is an F-vector space.
- b. For $i \in I$, let δ_i be the function $\delta_i : I \to F$ given by the rule

$$\delta_i(j) = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ else} \end{cases}$$

Prove that $\mathcal{B} = \{\delta_i \mid i \in I\}$ is a basis for V_I as F-vector space. You need to prove that \mathcal{B} spans V and that \mathcal{B} is linearly independent.

c. If $f:I\to J$ is a bijective function, prove that there is a linear mapping $\Phi_f:V_I\to V_J$ for which $\Phi_f(\delta_i)=\delta_{f(i)}$ for each $i\in I$, and that Φ_f determines an isomorphism of F-vector space $V_I\to V_J$.

Question 2: Let F be a field, let V be an F-vector space, and let $\mathrm{GL}(V)$ be the group of invertible F-linear maps $V \to V$.

a. Let $e \in V$, let $\varphi: V \to F$ be an F-linear map, and suppose that $\varphi(e) = 0$. Consider the mapping

$$\Psi = \Psi_{\varphi,e} : V \to V$$

defined by the rule $\Psi(v)=v+\varphi(v)e$ for $v\in V.$ Prove that Ψ is F-linear and invertible, so that $\Psi\in \mathrm{GL}(V).$

b. If $\dim_F V > 1$ prove that $\mathrm{GL}(V)$ is non-abelian.

Hint/Suggestion: Let $e_1,e_2\in V$ be linearly independent vectors. Explain why you can choose linear maps $\varphi_1,\varphi_2:V\to F$ for which $\varphi_i(e_i)=1$ and $\varphi_i\bigl(e_j\bigr)=0$ if $i\neq j$. Now show that Ψ_{φ_1,e_2} and Ψ_{φ_2,e_1} don't commute.