Probability and Statistics

Y-DATA School of Data Science

P&P 4

Due: 29.11.2022

PROBLEM 1. Let $X_1,...,X_n \stackrel{\text{i.i.d.}}{\sim} Geo(\theta), \theta \in [0,1]$. Find the MLE for θ .

PROBLEM 2. Let $X_1, ..., X_n$ be an i.i.d. sample from the density

$$f_{\theta}(x) = \frac{1}{x} e^{-\pi (\log(x) - \theta)^2}$$

Compute the MLE for θ .

PROBLEM 3. Let $X_1,...,X_n \stackrel{\text{i.i.d.}}{\sim} N(\mu,\sigma^2)$, where μ and σ^2 are the unknown parameters. Find the MLE of μ and σ^2 .

PROBLEM 4. Let $X_1,...,X_n \stackrel{\text{i.i.d.}}{\sim} U(\theta+2,\theta+10)$ (continuous).

- (1) Find $\hat{\theta}_{MOM}$ (method of moments estimator for θ).
- (2) Evaluate $\hat{\theta}_{MOM}$ for the sample

PROBLEM 5. It is assumed that the daily amount of rain (in mm) that falls in London during January is distributed $N(\mu, 25)$. We are interested in estimating P(X > 75). Two approaches were suggested:

- A Estimate μ using the method of moments, and then estimate the probability using $\hat{\mu}_{MOM}$ instead of μ in the normal distribution.
- B Don't assume normality. Estimate the probability by calculating the proportion of observations that are greater than 75.

In a random sample of 10 observations, the following results were received:

- (1) Estimate the required probability using both methods and compare the results.
- (2) Estimate the probability P(X > 72) using both methods and compare the results.

PROBLEM 6. Let $X_1, ... X_n \stackrel{\text{i.i.d.}}{\sim} Pois(\lambda)$.

- (1) Compute the MSE of the MLE for λ .
- (2) A researcher believes that λ is approximately 3, so he suggests to use the estimator which is the average between the MLE and 3: $T = \frac{\bar{X}_n + 3}{2}$. Compute the MSE of T.
- (3) Compare the bias and the variance of the estimators as functions of λ .
- (4) Compare the MSE of the estimators as a function of λ and find for which values of λ each estimator is better than the other. Note that the range of λ might depend on n.

PROBLEM 7. The weight of students in some university is normally distributed. A sample of 12 students is drawn with the following results (in Kg):

(1) Assuming that the variance is known and equals 1.5 Kg, calculate the confidence interval for the expected value of the weight with confidence level 95%.

1

- (2) Repeat part 1, this time for a confidence level of 90%. What can you say about the difference between the results?
- (3) Assuming that the variance is known and equals 2 Kg, calculate the confidence interval for the expected value of the weight with confidence level 95%. What can you conclude from the result?
- (4) Repeat part 1, assuming that the variance is unknown.

PROBLEM 8. Let $X \sim N(\mu, \sigma^2)$ (both parameters are unknown). In a random sample of 10 observations we received that

$$\sum_{i=1}^{n} x_i = 15, \, \sum_{i=1}^{n} x_i^2 = 27$$

and the CI for μ is [1.09, 1.91]. What is the confidence level of this confidence interval?

PROBLEM 9. In a random sample of 100 students, it was found that 30 like Bamba.

- (1) Compute an asymptotic confidence interval for the proportion of Bamba lovers among the students.
- (2) Find the minimal sample size n for which the length of the CI will be at most 0.02.