

Background

- Passage of the Health and Information Technology for Economic and Clinical Health Act (HITECH Act) of American Recovery and Reinvestment Act of 2009 (ARRA – Obama's economic stimulus bill) incentivized medical institutions to digitize health records
- Inconsistencies of data captured
- Desire to standardize EHRs
 - Secondary research
 - Collaboration and compatibility with other data sets
 - Increased accuracy, reproducibility

OHDSI's OMOP CDM

- Standardizes data
 - Common format
 - Common representation

- Perform systematic and standard analytics
- Support research to identify and evaluate associations
- Allows data analysis from multiple, disparate data sources
 - Handles administrative claims and EHR

Example OMOP Person Table

Field	Туре	
person_id	integer	
gender_concept_id	integer	
year_of_birth	integer	
month_of_birth	integer	
day_of_birth	integer	
birth_datetime	datetime	
death_datetime	datetime	
race_concept_id	integer	
ethnicity_concept_id	integer	
location_id	integer	
provider_id	integer	
care_site_id	integer	
person_source_value	varchar(50)	
gender_source_value	varchar(50)	
gender_source_concept_id	integer	
race_source_value	varchar(50)	
race_source_concept_id	integer	
ethnicity_source_value	varchar(50)	
ethnicity_source_concept_id	integer	

Example OHSU Demographics Table

Field	Туре		
OHSU_MRN	integer		
SOURCE_SYSTEM_PAT_ID	integer		
CURRENT_AGE_YRS	integer		
BIRTH_DATE	datetime		
GENDER	varchar(50)		
NIH_ETHNICITY	varchar(50)		
NIH_RACE	varchar(50)		
PATIENT_ALIVE	varchar(50)		
DEATH_DATE	datetime		
LAST_NAME	varchar(50)		
FIRST_NAME	varchar(50)		
ADDRESS_CITY	varchar(50)		
ADDRESS_LINE1	varchar(50)		
ADDRESS_LINE2	varchar(50)		
ADDRESS_STATE	varchar(50)		
ADDRESS_ZIP	integer		
ADDRESS_PHONE	integer		
EMAIL	varchar(50)		
ADDRESS_COUNTY	varchar(50)		
CURRENT_PCP	varchar(50)		
BIO_SAMPL_OPT_OUT_FLG	varchar(50)		
GENETC_OPT_OUT_FLG	varchar(50)		

Mapping Data Demographics vs. Vitals

Issues with Mapping Data

- Loss of uniqueness of certain OHSU tables
- Fields can map but terminology won't

encounter_diagnosis			
BILLING_DX_FLAG	Y/N		
DX_DATE	YYYY-MM-DD	(CONDITION_OCCURRENCE) condition_start_datetime	datetime
DX_ICD	code		
DX_ICD10	code	(CONDITION_OCCURRENCE) condition_source_concept_id	varchar(50)
DX_ICD10_NAME	varchar, blank	(CONDITION_OCCURRENCE) condition_source_value	varchar(50)
DX_NAME	varchar		
ENC_DX_FLAG	Y/N		
FOLLOWUP_DX_FLAG	Y/N		
HOSP_ADMIT_FLAG	Y/N		
MED_HX_DX_FLAG	Y/N		
OHSU_MRN	integer		
ORDER_MED_DX_FLAG	Y/N		
ORDER_PROC_DX_FLAG	Y/N		
REFERRAL_DX_FLAG	Y/N		
SOURCE_SYSTEM_ENC_ID	integer	(CONDITION_OCCURRENCE) visit_occurrence_id	varchar(50)
SOURCE_SYSTEM_PAT_ID	Z + integer	(CONDITION_OCCURRENCE) person_id	integer

Success in Mapping Data

- 74% (198/268) source fields mapped successfully
- 62% (96/154) OMOP fields of pure data mapped successfully
 - Adding _concept_ids will increase percentages of mapped OMOP fields

Aaron - PostgreSQL

- Use PostgreSQL to create CDM tables and source tables
- Extract data from Elasticsearch and import into created source tables
- Transform source data format into CDM data format
- Load newly formatted data into CDM tables
- Implement primary, foreign keys for relationality

The Path of Aaron's Data **XML OHSU Data Epic** Warehouse **Documents Elastic PostgreSQL** Search

PostgreSQL Tables and Fields

```
--Fields that map from 'Demographics' to 'location' (Health System Data Table)

INSERT INTO public.location(address_1, address_2, city, state, zip, county)

SELECT "ADDRESS_LINE1", "ADDRESS_LINE2", "ADDRESS_CITY", "ADDRESS_STATE", "ADDRESS_ZIP", "ADD

FROM public."Demographics";

--Fields that map from 'Notes' to 'note' (Clinical Data Table)

INSERT INTO public.note(note_datetime, note_text, note_id, person_id)

SELECT "NOTE_DATE", "NOTE_TEXT", "SOURCE_SYSTEM_NOTE_CSN_ID", "SOURCE_SYSTEM_PAT_ID"

FROM source."Notes";

--Fields that map from 'Problem_List' to 'condition_occurrence' (Clinical Data Table)

INSERT INTO public.condition_occurrence(person_id, condition_start_datetime, condition_end_data table)

INSERT INTO public.condition_occurrence(person_id, condition_start_datetime, condition_end_data table)

INSERT INTO public.patched the public of the public
```

INSERT INTO public.person(person_id, person_source_value, birth_datetime, death_datetime, ger
SELECT "SOURCE_SYSTEM_PAT_ID", "FULL_NAME", "BIRTH_DATE", "DEATH_DATE", "GENDER", "NIH_RACE",

-- Fields that map from 'Demographics' to 'person'

FROM public. "Demographics";

4	birth_datetime timestamp without time zone	death_datetime timestamp without time zone	gender_source_value character varying (50)	gender_concept_id integer	race_source_value character varying (50)	race_concept_id integer
1	1955-12-25 00:00:00	9999-12-31 00:00:00	FEMALE	[null]	WHITE	[null]
2	1956-12-25 00:00:00	9999-12-31 00:00:00	FEMALE	[null]	WHITE	[null]
3	1957-12-25 00:00:00	9999-12-31 00:00:00	FEMALE	[null]	WHITE	[null]
4	2002-12-25 00:00:00	9999-12-31 00:00:00	MALE	[null]	WHITE	[null]
5	1960-12-25 00:00:00	9999-12-31 00:00:00	FEMALE	[null]	WHITE	[null]
6	1943-12-25 00:00:00	9999-12-31 00:00:00	FEMALE	[null]	WHITE	[null]
7	1963-12-25 00:00:00	9999-12-31 00:00:00	FEMALE	[null]	WHITE	[null]
8	1989-12-25 00:00:00	9999-12-31 00:00:00	FEMALE	[null]	WHITE	[null]

Alyssa – Python

 Goal: to develop and implement a software program that maps OHSU's EHR data stored in XML files to new XML files that are formatted and organized by the standards set by the OMOP CDM.

Example OHSU EHR XML Document Demographics

```
<?xml version="1.0"?>
- <main>
  - <DATA RECORD>
       <MEDICAL RECORD NUMBER>00000000
       <PATIENT ID>Z0000000</PATIENT ID>
       <CURRENT AGE IN YEARS>20</CURRENT AGE IN YEARS>
       <BIRTH_DATE>04/21/1999</BIRTH_DATE>
       <GENDER>FEMALE</GENDER>
       <ETHNICITY>NOT HISPANIC OR LATINO</ETHNICITY>
       <RACE>ASIAN</RACE>
       <ALIVE>Y</ALIVE>
       <DEATH DATE>12/31/1999</DEATH DATE>
       <LAST_NAME>HUQUE</LAST_NAME>
       <FIRST NAME>ALYSSA</FIRST NAME>
       <CITY>WASHINGTON</CITY>
       <ADDRESS LINE1>1600 PENNSYLVANIA AVENUE</ADDRESS LINE1>
       <ADDRESS LINE2>N/A</ADDRESS LINE2>
       <STATE>DC</STATE>
       <ZIP>20500</ZIP>
       <PHONE>2024561414</PHONE>
       <EMAIL>ALYHUQUE&#64GMAIL.COM</EMAIL>
       <COUNTY>WASHINGTON DC</COUNTY>
       <PRIMARY_CARE_PROVIDER>HERSH, WILLIAM R.</PRIMARY_CARE_PROVIDER>
       <BIOLOGY SAMPLE OPT OUT>N</BIOLOGY SAMPLE OPT OUT>
       <GENETIC OPT OUT>N</GENETIC OPT OUT>
    </DATA RECORD>
  - <DATA RECORD>
       <MEDICAL_RECORD_NUMBER>11111111</MEDICAL_RECORD_NUMBER>
       <PATIENT ID>Z1111111</PATIENT ID>
       <CURRENT AGE IN YEARS>15/CURRENT AGE IN YEARS>
       <BIRTH DATE>09/05/2003</BIRTH DATE>
       <GENDER>FEMALE</GENDER>
       <ETHNICITY>NOT HISPANIC OR LATINO</ETHNICITY>
       <RACE>ASIAN</RACE>
       <ALIVE>Y</ALIVE>
       <DEATH DATE>12/31/1999</DEATH DATE>
       <LAST_NAME>HUQUE</LAST_NAME>
       <FIRST_NAME>ALAYNA</FIRST_NAME>
       <CITY>WASHINGTON</CITY>
       <ADDRESS LINE1>1600 PENNSYLVANIA AVENUE</ADDRESS LINE1>
       <ADDRESS LINE2>N/A</ADDRESS LINE2>
       <STATE>DC</STATE>
       <ZIP>20500</ZIP>
       <PHONE>2024561414</PHONE>
       <EMAIL>ALAHUQUE&#64GMAIL.COM</EMAIL>
       <COUNTY>WASHINGTON DC</COUNTY>
       <PRIMARY_CARE_PROVIDER>HERSH, WILLIAM R.
       <BIOLOGY SAMPLE OPT OUT>N</BIOLOGY SAMPLE OPT OUT>
       <GENETIC_OPT_OUT>N</GENETIC_OPT_OUT>
    </DATA RECORD>
 </main>
```

Python Program

- 1. Parse the OHSU XML source files
- 2. Store the EHR patient data into a list
- 3. Add all lists to a queue
- 4. Remove one list at a time from the queue
- 5. Index the list and assign the information to the OMOP field
- Print a new XML file that follows the OMOP CDM standards

```
Steps 1 and 2
detec_data id=
d in root.findall('DATA_RECORD');
collected_data.append[[d.find(x).text for x in ['OHSU_PATIENT_ID',
                 Steps 3 and 4
                         Step 5
ree.write(f"C:\\Users\\hugue\\Desktop\\data\\PERSON {collected data[0]}.xml"
      graphics LOCATION elements[root, collected data] # indexes
```


Example OMOP EHR XML Document PERSON and LOCATION

```
<?xml version="1.0"?>
Da - <PERSON>
     - <DATA RECORD>
           <person_id>Z0000000</person_id>
           <gender concept id/>
          <year_of_birth>1999</year_of_birth>
          <month of birth>04</month of birth>
          <day of birth>21</day of birth>
          <br/>
<br/>
datetime>04/21/1999</br>
/birth datetime>
          <death datetime>12/31/1999</death datetime>
           <race concept id/>
           <ethnicity concept id/>
          <location id>1</location id>
           ovider id/>
          <care site id/>
           <person source value>ALYSSA HUQUE</person source value>
           <gender source value>FEMALE</gender source value>
          <aender source concept id/>
          <race_source_value>ASIAN</race_source_value>
           <race source concept id/>
          <ethnicity source value>NOT HISPANIC OR LATINO/ethnicity source value>
           <ethnicity source concept id/>
       </DATA RECORD>
    </PERSON>
    <?xml version="1.0"?>
  - <LOCATION>
      - <DATA RECORD>
            <location id>2</location id>
           <address 1>1600 PENNSYLVANIA AVENUE</address 1>
            <address 2>N/A</address 2>
            <city>WASHINGTON</city>
           <state>DC</state>
            <zip>20500</zip>
           <county>WASHINGTON DC</county>
            <country/>
            location source value/>
            <latitude/>
            <longitude/>
        </DATA RECORD>
    </LOCATION>
```


The Two Programs

- Similar approaches in both programs
 - Was able to map and standardize to OMOP CDM
- Programs can be used in tandem
 - Print OMOP XML documents
 - Move into database (such as SQL)
 - Implement standardized codes and relationality of tables

Future Directions

- Refine OHSU to OMOP mappings
- Implement standardized codes used in the OMOP CDM _concept_id fields
- Improve the efficiency of our programs to handle a few million data records

Funded by Grant 2T15LM007088, Research Training in Biomedical Informatics and Data Science at Oregon Health and Science University National Library of Medicine

Special thanks to Dr. William Hersh, Dr. Aaron Cohen, Dr. Steven Bedrick, and Dr. Steven Chamberlin

Works Cited

- Belenkaya, R., Blacketer, C., Hripcsak, G., Natajan, K., O'Hara, D., Reich, D., Roa, G., Torok, D., Zandt, M., Velez, M., Voss, E.. *OMOP Common Data Model and Standardized Vocabularies*. https://www.ohdsi.org/wp-content/uploads/2017/10/OHDSI-Vocabulary-CDM-Tutorial-2017-2017.10.11.pdf. PowerPoint Presentation.
- Ohdsi. "OHDI/CommonDataModel." *GitHub*, github.com/OHDSI/CommonDataMode/wiki/Standardized-Clinical-Data-Tables.
- "OMOP Common Data Model." *OHDSI*, www.ohdsi.org/data-standardization/the-commondata-model. Accessed 26 Jun. 2019.
- "Rodriguez, Alison. "HITECH Act Resulted in Significant Gains in EHR Adoption in Hospitals." *AJMC*, 15 Aug. 2017, www.ajmc.com/newsroom/hitech-act-resulted-in-significant-gains-in-ehr-adoption-in-hospitals.