UNIT-IV MULTICAST ROUTING IN MANETS

Outline

- Introduction of Multicast
- Multicast in MANET
- Multicast Protocols
- Conclusion
- □ Future Reading

What is Multicast

- "Point-to-multipoint" or "multipoint-to-multipoint"
- Different from broadcast and unicast

Advantages of Multicast

- Delivery to destinations simultaneously
- □ Deliver the messages over each link of the network only once
- only create copies when the links to the destinations split

Multicast routing in MANETs

- What is MANET (Mobil Ad Hoc Network)
 - No fixed infrastructure
 - Dynamic changed network topology
 - Limited bandwidth and power
- Multicast in MANETs
 - Play an important role
 - Internet multicast protocols are not suitable
 - On-demand multicast protocols

Types of Multicast Routing

- □ Tree-based
 - One path between a source-receiver pair
 - AMRoute, AMRIS
- □ Mash-based
 - Multiple paths between a source-receiver pair
 - ODMRP, CAMP
- □ Hybrid
 - Zone Routing Protocol (ZRP)

Typical Multicast Routing Protocols

- AMRIS: Ad Hoc Multicast Routing Protocol Utilizing Increasing ID Numbers
 - National University of Singapore
 - Georgia Institute of Technology
 - November 1998 [draft]
- ODMRP: On-demand Multicasting Routing Protocol
 - University of California at Los Angeles
 - January 2000 [draft]

Why we compare them?

	AMRIS	ODMRP
Big difference		
Topology	Shared Delivery Tree	Mesh of Nodes
Main Similarity		
Mobility support	Yes, based on MANET	
Driven mode	On-demand, do not store whole network topology	
Advantages	simple topology	mobility
	low overheads	robustness
Disadvantages	sensitive to mobility	complex topology
		high overheads

Protocol Phases

- Initialization phase
 - How to set up a multicast session?
 - How to determine the best routing path?
- □ Maintenance phase
 - How to maintain the topology?
 - How to join/leave a multicast session?
 - Discuss the complexity of mobility.

AMRIS

- □ Things need to know:
 - □ SID: Smallest-ID node, holder is the source;
 - msm-id: multicast session member ID;
 - Multicast Messages:
 - NEW-SESSION (N-S, includes msm-id/route table)
 - JOIN-REQ (J-R)
 - JOIN-ACK (J-A)
 - JOIN-NAK (J-N)
 - ...

AMRIS: Initialization phase (1)

Sender actions:

- Downstream
 - Generate N-S message
 - Broadcast N-S
- Upstream
 - Wait for J-R
 - Return J-A
 - Collect Receiver and determine the route path

AMRIS: Initialization phase (2)

- Intermediate node actions:
 - (Downstream)
 - Receive N-S;
 - Calculate own msm-id:

$$msm - id_{self} > msm - id_{parent}$$

- Broadcast N-S' (with
- One solution id_{self}

$$msm - id_{self} = INT((2^{(M/2)})/hop_count$$

AMRIS: Initialization phase (3)

- Intermediate node actions: (Upstream)
 - Receive J-R;
 - If node already in multicast path tree
 - Reply with J-A, path established!
 - Otherwise send J-R up to potential parent (smallest);
 - Receive J-A, reply J-A tons Ruse indeparent path established!
 - Timeout or received J-N
 - BR1: send J-R to a new parent or BR2: broadcast J-R;
 - If BR1 or BR2 success, reply J-A to J-R sender and path established else reply J-N to J-R sender (failed!!);

AMRIS: Initialization phase (4)

Receiver actions:

- Downstream
 - Receive N-S;
 - Calculate own msm-id;
- Upstream
 - Generate J-R message;
 - Send J-R up to potential parent (smallest
 - Receive J-A, path established!
 - Timeout or received J-N
 - BR1: send J-R to a new parent
 - BR2: broadcast J-R
 - path failed!!

■ If BR1 or BR2 success, path established el Figure 1. AMRIS packet forwarding (X and 34 are sources; 11, 24, and 28 are recipients).

AMRIS: Initialization phase (5)

- Initialization routine recall:Sender: N-S;
 - □ Inter-node: relay N-S with new msm-id;
 -
 - Receiver: reply with J-R;
 - Inter-node: reply with J-A or relay J-R;
 -
 - Tree established success / fail

AMRIS: Maintenance phase (1)

- Beacon package
 - Node id;
 - □ msm-id;
 - membership status;
 - registered parents;
 - child's id and msm-id;
 - partition id;

AMRIS: Maintenance phase (2)

- Beaconing Mechanism
 - Node should broadcast beacon msg periodically;
 - Node should detect neighbors' beacon msg;
 - Node joins: detect beacon msg and perform BR1 and BR2 to join;
 - Node leaves: stop broadcast beacon msg;
 - Link-break: if no beacon msg received then perform BR1 and BR2 to rejoin;

ODMRP

- □ Things need to know:
 - Multicast Messages:
 - JOIN-QUERY (J-Q);
 - JOIN-REPLY (J-R);

ODMRP: Initialization phase (1)

Sender actions:

- Downstream
 - Generate J-Q message;
 - Broadcast J-Q;
- Upstream
 - Receive J-R (include the shortest path);

Figure 4. Mesh creation in ODMRP.

ODMRP: Initialization phase (2)

- Intermediate node actions: (Downstream)
 - Receive J-Q, omit duplicated ones (use cached sequence NO);
 - Store upstream node info;
 - Re-Broadcast J-Q;

■ Figure 4. Mesh creation in ODMRP.

ODMRP: Initialization phase (3)

- Intermediate node actions: (Upstream)
 - Received J-R;
 - □ If node is on the path
 - Generate new J-R' with node info and broadcast, established!

■ Figure 4. Mesh creation in ODMRP.

ODMRP: Initialization phase (4)

JOIN-REPLY message

J-R of R1

Sender	Next Node
S1	l1
S2	12

J-R of I1

Sender	Next Node
S1	S1

ODMRP: Initialization phase (5)

- Receiver actions:
 - Downstream
 - Received J-Q;
 - Generate J-R with (path info);
 - Upstream
 - Broadcast J-R;

Figure 4. Mesh creation in ODMRP.

ODMRP: Maintenance phase

- Soft state approach
 - Sender repeat J-R periodically to maintain;
 - Node joins
 - the same as Initialization phase;
 - Node leaves
 - Sender: stop sending J-Q;
 - Receiver: stop sending J-R;
 - Link-break
 - received new J-Q and reply with J-R;

Algorithm Comparison (1)

	AMRIS	ODMRP	
More differences			
Multicast topology	Shared Delivery Tree	Mesh of Nodes	
nitialization	Generating msm-id;	Store upstream info;	
Maintenance	All nodes periodically send beacon msg	Sender periodically send J-Q msg	
Node joins	Detect beacon msg and perform BR;	Detect J-Q and response J-R;	
Node leaves	Stop beacon msg;	Stop J-R or J-Q;	
_ink-break	No more beacon msg and perform BR;	received new J-Q and reply J-R;	
More and more differenc	es (message types, routing table info)		

Algorithm Comparison (2)

	AMRIS and ODMRP		
lore Similarities			
Mobility support	Yes, based on MANET		
Driven mode	On-demand, don not store whole network topology		
Broadcast message	Yes		
Jnicast capabilities	Yes		
Periodic message	Yes		
_oop free	Yes		
More and more similarities			

Algorithm Improvement (1)

AMRIS:

- Sid selection algorithm
 - Problem: core-election type of algorithm;
 - Potential solution: investigate and select a best one;
- Beacon mechanism
 - Problem: too many beacon messages;
 - Potential solution: Adopt algorithms from CAMP (Core-Assisted Mesh Protocol);

Algorithm Improvement (2)

ODMRP:

- Overhead in multi-sender scenario
 - Problem: core-election type of algorithm;
 - Potential solution: investigate and select a best one;

Comparison of the AMRIS & ODMRP Protocols

- Initialization
 - Which one is better (under certain circumstances)?
- Maintenance
 - Adaptation to network topology changes
- Performance
 - Packet Delivery Ratio (PDR)
- Overhead
 - # of Control Bytes TXed / Data bytes Delivered

Protocol Applications (1)

Military

- Change frequently and unpredictably
- ODMRP protocol
- May suffer from excessive control overhead

Protocol Applications (2)

- Disaster Recovery
 - Relatively Mobile
 - ODMRP protocol or hybrid protocol

Protocol Applications (3)

- Sensor Network
 - Not move frequently
 - AMRIS protocol

Protocol Applications (3)

- Entertainment
 - No base station or infrastructure
 - Sony PlayStation Portable Ad-hoc networks
 - Allows several PSP users to connect to each other as long as all the users are in broadcast range of each other
 - One unit acts as a host of the game
 - Host reduces battery life by as much as 35%

Conclusion

- □ AMRIS ...
- □ ODMRP ...

Future Reading

Algorithm Drafts

- [1] C. W. Wu, Y.C. Tay, and C.-K. Toh, "Ad Hoc Multicast Routing Protocol Utilizing Increasing idnumberS (AMRIS) Functional Specification," Internet draft, Nov. 1998.
- [2] M. Gerla, S.-J. Lee, and W. Su. "On-Demand Multicast Routing Protocol (ODMRP) for Ad Hoc Networks," Internet draft, draft-ietf-manet-odmrp-02.txt, 2000.

Journal Papers

- [3] H. Gossain, C. M. Cordeiro, and D. P. Agrawal, "Multicast: Wired to Wireless," IEEE Commun. Mag., vol. 40, no. 6, June 2002, pp. 116–23.
- [4] L. Ji, and M. S. Corson, "Differential Destination Multicast A MANET Multicast Routing Protocol for Small Groups," Proc. INFOCOM, 2001, pp.1192–02.
- etc

References

- "Multicast over wireless mobile ad hoc networks: Present and future directions", Carlos de Morais Cordeiro, Hrishikesh Gossain and Dharma P. Agrawal, *IEEE Network, January* 2003
- "A Performance Comparison Study of Ad Hoc Wireless Multicast Protocols", Sung-Ju Lee, William Su, Julian Hsu, Mario Gerla, and Rajive Bagrodia, *Proceedings of IEEE INFOCOM 2000*
- "Exploring Mesh- and Tree Based Multicast Routing Protocols for MANETs", Kumar Viswanath, Katia
 Obraczka and Gene Tsudik
- "Capacity of Wireless Mesh Networks Understanding Single Radio, Dual Radio and Multi-Radio Wireless Mesh Networks"
- "On the 802.11 Turbulence of Nintendo DS and Sony PSP Handheld Network Games", Mark Claypo
- www.wikipedia.org