Laboratory Exercise 4

Counters

这是使用计数器的练习。

Part I

考虑图1中的电路。它是一个4位同步计数器,它使用四个T型触发器。如果使能信号有效,计数器会在时钟的每个上升沿递增计数。使用复位信号将计数器复位为0。您将实现此类型的16位计数器。

Figure 1. A 4-bit counter.

- 1. 编写一个VHDL文件,通过使用图8所示的结构定义一个16位计数器,并编译电路。有多少逻辑单元(LE)用于实现电路?电路可以运行的最大频率Fmax是多少?
- 2. 模拟电路以验证其正确性。
- 3. 增加您的VHDL文件,使用按钮KEY0作为时钟输入,将SW₁和SW₀切换为启用和复位输入,7段显示HEX3-0以显示电路运行时的十六进制计数。进行必要的引脚分配并编译电路。
- 4. 在DE2板上实现电路, 并通过操作已实现的开关来测试其功能。
- 5. 实现4位版本的电路,并使用Quartus II RTL Viewer查看Quartus II软件如何合成电路。与图8相比有何不同?

Part II

简化您的VHDL代码,以便计数器规范基于VHDL语句

$$Q \leq Q + 1$$
;

编译此计数器的16位版本, 并比较所需的LE数和可达到的Fmax。 使用RTL Viewer查看此实现的结构, 并评论与第I部分中的设计的差异。

Part III

使用参数化模块库中的LPM来实现16位计数器。选择LPM选项以与上述设计保持一致,即启用和同步清除。这个版本与以前的设计相比如何?

Part IV

设计并实现一个在7段显示器HEX0上连续闪烁数字0到9的电路。 每个数字应显示约一秒钟。 使用计数器确定一秒间隔。 计数器应该通过DE2板上提供的50 MHz时钟信号递增。 不要在设计中获得任何其他时钟信号 - 确保电路中的所有触发信号都由50 MHz时钟信号直接计时。

Part V

设计并实现一个电路,在8个7段显示器HEX7 - 0上以自动收报机方式显示单词HELLO。使字母以大约一秒的间隔从右向左移动。表1中给出了应在连续时钟间隔中显示的模式。

Clock cycle	Displayed pattern							
0				Н	Е	L	L	0
1			Н	E	L	L	O	
2		Н	E	L	L	O		
3	Η	E	L	L	O			
4	Е	L	L	O				Η
5	L	L	O				Η	E
6	L	Ο				Η	E	L
7	О				Η	E	L	L
8				Η	E	L	L	O
	and so on							

Table 1. Scrolling the word HELLO in ticker-tape fashion.

Copyright © 2006 Altera Corporation.