HELSINGIN YLIOPISTO

MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Pro gradu -tutkielma

Stone-Čech kompaktisointi

Pekka Keipi

Ohjaaja: Erik Elfving 10. maaliskuuta 2017

Sisältö

1	Johdanto	2
2	Esitietoja	3
3	Uniformiset rakenteet	4
4	Pseudometriikat	8

Luku 1 Johdanto

Luku 2

Esitietoja

Olkoon X joukko ja V,W sen osajoukko
ja. Merkitään tällöin joukkoilla V ja W seuraavasti:

$$V\circ W=\{(x,z)\mid \text{ on olemassa sellainen }y\in X \text{ jolla }(x,y)\in V \text{ ja }(y,z)\in W\}$$
 ja $W^2=W\circ W.$

Määritelmä 2.1. Topologian ympäristökanta. Olkoon (X, d) topologinen avaruus ja $x \in X$. Kokoelma B(x) alkion x ympäristöjä on alkion x ympäristökanta (topologiassa \mathcal{T}), jos jokainen alkion x ympäristö sisältää kokoelman B(x) jonkin jäsenen.

Esimerkki 2.2. Jos B on avaruuden (X, \mathcal{T}) kanta ja $x \in X$, niin $\{A \mid x \in A \in B\}$ on alkion x eräs ympäristökanta. Käänteisesti, jos jokaisella $x \in X$ on annettu ympäristökanta B(x) avaruudessa (X, \mathcal{T}) , niin $\bigcup \{B(x) \mid x \in X\}$ on avaruuden (X, \mathcal{T}) kanta.

Lause 2.3. Olkoon A joukon X peite. Tällöin A on joukon X erään topologian \mathcal{T} esikanta. Lisäksi \mathcal{T} on karkein niistä joukon X topologioista, joilla $A \in \mathcal{T}$. Tämä topologia \mathcal{T} on peitteen A yksikäsitteisesti määräämä, ja sitä sanotaan peitteen A virittämäksi joukon X topologiaksi.

Todistus.

Luku 3

Uniformiset rakenteet

Tässä kappaleessa tutustutaan uniformisiin rakenteisiin ja näiden keskeisiin ominaisuuksiin [1].

Määritelmä 3.1. Uniforminen rakenne (tai uniformisuus) joukolle X annetaan karteesisen tulon $X \times X$ potenssijoukon $\mathcal{P}(X \times X)$ osajoukkona \mathcal{U} , jolle pätee

- (U1) Jos $V \in \mathcal{U}$ ja $V \subset W \subset X \times X$ niin $W \in \mathcal{U}$,
- (U2) Jokainen äärellinen leikkaus joukon \mathcal{U} alkioista kuuluu joukkoon \mathcal{U} ,
- (U3) Joukko $\{(x,x) \mid x \in X\}$ on jokaisen joukon $V \in \mathcal{U}$ osajoukko,
- (U4) Jos $V \in \mathcal{U}$, niin $V^{-1} = \{(y, x) \mid (x, y) \in V\} \in \mathcal{U}$,
- (U5) Jos $V \in \mathcal{U}$, niin on olemassa sellainen $W \in \mathcal{U}$, jolla $W^2 \subset V$.

Uniformisen rakenteen muodostavia joukkoja $V \in \mathcal{U}$ sanotaan uniformisuuden \mathcal{U} lähistöksi. Joukkoa X joka on varustettu uniformisuudella \mathcal{U} sanotaan univormiseksi avaruudeksi.

Huomautus~3.2. Uniformisuuden \mathcal{U} lähistöön (entourage) $V \in \mathcal{U}$ kuuluvan pisteparin $(x,y) \in V$ pisteiden $x,y \in X$ sanotaan olevan V-lähellä, tarpeeksi lähellä tai mielivaltaisen lähellä toisiaan.

Huomautus3.3. Mikäli muut ehdot pätevät, voidaan ehdot (U4) ja (U5) korvata yhtäpitävällä ehdolla

(Ua) Jos $V \in \mathcal{U}$, niin on olemassa sellainen $W \in \mathcal{U}$, jolla $W \circ W^{-1} \subset V$.

Huomautus 3.4. Jos joukko X on tyhjä, niin ehdon (U3) nojalla joukon X uniformiteetti \mathcal{U} on tyhjä. Erityisesti $\{\emptyset\}$ on joukon X ainoa ehdot täyttävä uniformiteetti, jos joukko X on tyhjä.

Määritelmä 3.5. Olkoon X joukko ja joukko $\mathcal{U} \subset X \times X$ sen uniformiteetti. Tällöin lähistöjen joukko $B \subset \mathcal{U}$ on uniformiteetin \mathcal{U} kanta, jos jokaiselle lähistölle $V \in \mathcal{U}$ löytyy kannan alkio $W \in B$, jolla pätee $W \subset V$.

Määritelmä 3.6. Olkoon X joukko. Joukko $B \subset \mathcal{P}(X \times X)$ on joukon X uniformisuuden kanta, jos joukolle B pätee

- (B1) Jos $V_1, V_2 \in B$ niin on olemassa sellainen $V_3 \in B$, jolla $V_3 \subset V_1 \cap V_2$,
- (B2) Joukko $\{(x,x) \mid x \in X\}$ on jokaisen joukon $V \in B$ osajoukko,
- (B3) Jos $V \in B$, niin on olemassa sellainen $V' \in B$, jolla $V' \subset V^{-1}$,
- (B4) Jos $V \in B$, niin on olemassa sellainen $W \in B$, jolla $W^2 \subset V$.

Lause 3.7. Uniformisen avaruuden topologia. Olkoon joukko X varustettu uniformisuudella U. Olkoon $x \in X$ alkio ja $V \in U$ lähistö avaruudessa X. Olkoon

$$V(x) = \{ y \in X \mid (x, y) \in V \} \text{ ja } B(x) = \{ V(x) \mid V \in \mathcal{U} \}$$

joukkoja. Uniformiteetti \mathcal{U} määrää topologian joukolle X niin, että joukko V(x) on (lähistön V määräämä) ympäristö alkiolle x ja joukko B(x) on alkion x kaikkien ympäristöjen joukko kyseisessä topologiassa.

Todistus. Olkoon joukko X varustettu uniformisuudella \mathcal{U} . Olkoon $x \in X$ alkio, $V \in \mathcal{U}$ lähistö avaruudessa X ja joukot V(x) ja B(x) kuten edellä. Alkiolle x pätee $x \in V(x)$, joten joukko V(x) on epätyhjä. Jokaiselle lähistölle $V, W \in \mathcal{U}$ pätee

$$V(x) \cup W(x) = \{ y \in X \mid (x, y) \in V \text{ tai } (x, y) \in W \}$$

= $\{ y \in X \mid (x, y) \in V \cup W \} \in B(x),$

ja

$$V(x) \cap W(x) = \{ y \in X \mid (x, y) \in V \text{ ja } (x, y) \in W \}$$

= $\{ y \in X \mid (x, y) \in V \cap W \} \in B(x)$

sillä määritelmän 3.1 ehtojen (U1) ja (U2) nojalla $V \cup W \in B$ ja $V \cap W \in B$. Tällöin on olemassa yksikäsitteinen topologia, jossa B(x) on alkion x kaikkien ympäristöjen joukko.[1]

Huomautus 3.8. Uniformiteetin määräämää topologiaa sanotaan uniformiteetin indusoimaksi topologiaksi.

Määritelmä 3.9. Olkoon X ja X' uniformeja avaruuksia ja $f: X \to X'$ kuvaus. Kuvaus f on uniformisti jatkuva, jos jokaiselle avaruuden X' lähistölle V' on olemassa avaruuden X lähistö V niin, että jokaiselle $(x, y) \in V$ pätee $(f(x), f(y)) \in V'$.

Korollaari 3.10. Olkoon X ja X' uniformeja avaruuksia ja $f: X \to X'$ uniformisti jatkuva kuvaus. Olkoon $g: X \times X \to X' \times X'$ kuvaus, jolla pätee g(x,y) = (f(x),f(y)) kaikilla $x,y \in X$. Tällöin jos V' on avaruuden X' lähistö, niin alkukuva $g^{\leftarrow}V'$ on avaruuden X lähistö.

Lause 3.11. Jokainen uniformisti jatkuva kuvaus on jatkuva uniformien määräämien topologioiden suhteen.

Todistus. Olkoon X ja X' uniformeja avaruuksia ja $f\colon X\to X'$ uniformisti jatkuva kuvaus. Olkoon $g\colon X\times X\to X'\times X'$ kuvaus, jolla pätee g(x,y)=(f(x),f(y)) kaikilla $x,y\in X.$ Olkoon V' avaruuden X' lähistö ja $x'\in X'$ alkio. Korollaarin 3.10 mukaan lähistön V' alkukuva $g^\leftarrow V'$ on avaruuden X lähistö. Avaruuden X' uniformiteetin määrittämässä topologiassa kaava V'(x') määrää alkion x' ympäristön. Tällöin koska $g^\leftarrow V'$ on avaruuden X lähistö, niin $g^\leftarrow V'(g^\leftarrow(x'))$ on alkion x' alkukuvan $g^\leftarrow(x')\in X$ ympäristö.

Siis ympäristön alkukuva on ympäristö ja siten uniformisti jatkuva kuvaus on jatkuva. $\hfill\Box$

Lause 3.12. Olkoon X, X' ja X'' uniformeja avaruuksia ja $f: X \to X'$ ja $g: X' \to X''$ uniformisti jatkuvia kuvaksia. Tällöin yhdistetty kuvaus $g \circ f: X \to X''$ on uniformisti jatkuva.

Todistus. Lisätään myöhemmin.

Määritelmä 3.13. Olkoon X ja X' uniformeja avaruuksia ja $f: X \to X'$ bijektiivinen kuvaus. Kuvaus f on isomorfia, jos sekä kuvaus f että sen käänteiskuvaus f^{-1} ovat uniformisti jatkuvia.

Määritelmä 3.14. Uniformiteettien vertailtavuus. Olkoon X joukko ja \mathcal{U}_1 ja \mathcal{U}_2 uniformiteetteja joukolle X. Uniformiteetti \mathcal{U}_1 on hienompi kuin uniformiteetti \mathcal{U}_2 , jos identtinen kuvaus $id: (X, \mathcal{U}_1) \to (X, \mathcal{U}_2)$ on uniformisti jatkuva. Tällöin uniformiteetti \mathcal{U}_2 on karkeampi kuin uniformiteetti \mathcal{U}_1 . Jos lisäksi pätee $\mathcal{U}_1 \neq \mathcal{U}_2$, niin \mathcal{U}_1 on aidosti hienompi kuin \mathcal{U}_2 ja vastaavasti \mathcal{U}_2 on aidosti karkeampi kuin \mathcal{U}_1 . Kahta uniformiteettia \mathcal{U}_1 ja \mathcal{U}_2 on mahdollista vertailla, jos \mathcal{U}_1 on hienompi kuin \mathcal{U}_2 .

Korollaari 3.15. Olkoon X joukko ja \mathcal{U}_1 ja \mathcal{U}_2 uniformiteetteja joukolle X. Uniformiteetti \mathcal{U}_1 on hienompi kuin uniformiteetti \mathcal{U}_2 jos ja vain jos jokaisella lähistöllä $V \in \mathcal{U}_2$ pätee $V \in \mathcal{U}_1$.

Korollaari 3.16. Olkoon X joukko, \mathcal{U}_1 ja \mathcal{U}_2 uniformiteetteja joukolle X ja \mathcal{U}_1 on hienompi kuin \mathcal{U}_2 . Tällöin uniformiteetin \mathcal{U}_1 indusoima topologia on hienompi kuin uniformiteetin \mathcal{U}_2 indusoima topologia.

Todistus. Ympäristökannat.

Määritelmä 3.17. Initial uniformities. Kuvausperheen indusoima uniformiteetti. Olkoon X joukko ja Y_i uniformiteetilla varustettuja joukko ja kaikilla $i \in I$, jollain indeksijoukolla I. Olkoon $f_i \colon X \to Y_i$ uniformisti jatkuvia kuvauksia kaikilla $i \in I$. Olkoon $g = f_i \times f_i \colon X \times X \to Y_i \times Y_i$ kuvaus kaikilla $i \in I$. Olkoon

$$B = \left\{ \bigcap_{i \in I} g^{\leftarrow}(V_i) \mid V_i \in \mathcal{U}_i \right\}$$

missä \mathcal{U}_i on avaruuden Y_i uniformiteetti. Tällöin B on kanta eräälle avaruuden X uniformiteetille \mathcal{U} . Kyseinen uniformiteetti \mathcal{U} on karkein niistä uniformiteeteista, joiden suhteen kaikki kuvaukset f_i ovat uniformisti jatkuvia.

Määritelmä 3.18. Uniformiteettien pienin yläraja Olkoon X joukko ja I jokin indeksijoukko. Olkoon $(\mathcal{U}_i)_{i\in I}$ perhe uniformiteetteja joukolle X. Tällöin perheen $(\mathcal{U}_i)_{i\in I}$ pienin yläraja on uniformiteetti \mathcal{U} , joka on kuvausten $id: X \to (X, \mathcal{U}_i)$ määritelmän 3.17 mukaisesti indusoima.

Luku 4

Pseudometriikat

Tässä kappaleessa tutustutaan pseudometriikoihin, jotka ovat tavanomaisten metriikoiden yleistys. Lisää aiheesta [2].

Määritelmä 4.1. Olkoon X joukko ja $f: X \times X \to [0, +\infty]$ kuvaus. Kuvaus f on pseudometriikka, jos seuraavat ehdot pätevät:

- (P1) f(x,x) = 0 kaikilla $x \in X$,
- (P2) f(x,y) = f(y,x) kaikilla $x, y \in X$,
- (P3) $f(x,y) \le f(x,z) + f(z,y)$ kaikilla $x, y, z \in X$.

Huomautus 4.2. Pseudometriikasta saadaan metriikka, jos rajoitutaan äärellisiin arvoihin ja vahvistetaan ehtoa (P1) muotoon

(M1)
$$f(x,y) = 0 \Leftrightarrow x = y \text{ kaikilla } x, y \in X.$$

Esimerkki 4.3. Euklidinen etäisyys on pseudometriikka.

Esimerkki 4.4. Olkoon X epätyhjä joukko ja $f: X \times X \to [0, +\infty]$ sellainen kuvaus, jolla

$$f(x,y) = \begin{cases} 0, & \text{jos } x = y \\ \infty, & \text{muulloin.} \end{cases}$$

Tällöin f on pseudometriikka.

Esimerkki 4.5. Olkoon X epätyhjä joukko ja $g: X \to \mathbb{R}$ (äärellisarvoinen) kuvaus. Tällöin kuvaus $f: X \times X \to [0, +\infty]$ kaavalla f(x, y) = |g(x) - g(y)| on pseudometriikka.

Esimerkki 4.6. Olkoon X kaikkien muotoa $g: [0,1] \to \mathbb{R}$ olevien jatkuvien kuvausten joukko. Tällöin kuvaus $f: X \times X \to [0,+\infty]$ kaavalla $f(x,y) = \int_0^1 |x(t)-y(t)| dt$ määrittää pseudometriikan joukolle X.

Huomautus 4.7. Ehdosta (P3) seuraa, että jos $f(x,z)+f(z,y)<\infty$ niin $f(x,y)<\infty$. Tällöin koska kaavat $f(x,z)\leq f(x,y)+f(y,z)$ ja $f(y,z)\leq f(y,x)+f(x,z)$ pätevät, niin myös kaava $|f(x,z)-f(z,y)|\leq f(x,y)$ pätee.

Esimerkki 4.8. Olkoon f pseudometriikka. Tällöin myös λf on pseudometriikka, jos kaavat $(\lambda f)(x) = \lambda(f(x))$ ja $0 < \lambda < +\infty$ pätevät.

Esimerkki 4.9. Olkoon $(f_i)_{i\in I}$ perhe joukon X pseudometriikoita. Tällöin summakuvaus $f: X \times X \to [0, +\infty]$ kaavalla $f(x, y) = \sum_{i \in I} f_i(x, y)$ kaikilla $x, y \in X$ on pseudometriikka.

Esimerkki 4.10.

Huomautus 4.11.

Lause 4.12.

Määritelmä 4.13.

Korollaari 4.14.

Esimerkki 4.15.

Lemma 4.16.

Kirjallisuutta

- [1] Nicolas Bourbaki: General Topology Part 1, 1. painos, Hermann, 1966.
- [2] Nicolas Bourbaki: General Topology Part 2, 1. painos, Hermann, 1966.
- [3] Jussi Väisälä: Topologia II, 2. korjattu painos, Limes ry, 2005.