

Matura NWES-SESD

Höhere Technische Bundeslehr- und Versuchsanstalt Anichstraße

Abteilung für Wirtschaftsingenieure/Betriebsinformatik

Ausgeführt im Schuljahr 2024 von: Gwercher

Inhaltsverzeichnis

	4BHWII	1
1	IPv4 (Internet Protocol Version 4):	2
2	Netzwerke im Alltag und Grundbegriffe	4
	2.1 Referenzmodell (OSI und TCP/IP)	6
	2.1.1 Layer 1 (Physical)	8
	2.1.2 Layer 2 (Data Link)	10
	2.1.3 Layer 3 (Network)	14
	2.1.4 Layer 4 (Transport)	18
	2.1.5 Layer 5, 6, 7 (Session, Presentation, Application)	22
3	template	23
	3.1 image	23
	3.2 code	23
ı	Quellcodeverzeichnis	П

Teil I 4BHWII

1 IPv4 (Internet Protocol Version 4):

Eine IPv4-Adresse ist eine 32-Bit Zahl. Es gibt also $2^{32} \approx$ 4,3 Milliarden IPv4-Adressen.

Bsp:

11000000	10101000	00001010	00001010		
192	168	10	10		
\rightarrow 192.168.10.10					

Schreibweise:

Die IPv4-Adresse wird in Dotted Decimal Notation geschrieben. Die IP-Adresse wird in 8-Bit Blöcke (Oktetten) geteilt, dezimal übersetzt und durch Punkte getrennt.

Verwendung

Jedes Gerät soll durch eine Adresse (IP-Adresse) eindeutig identifiziert werden. Zusätzlich sollten auch Gruppen (Netze) von Computern erstellt werden (mit Subnetzmasken). Ein Gerät mit IP-Adresse nennt man Host.

Subnetmask

Ist eine 32-Bit Zahl, die in Dotted Deicmal Notation beschrieben wird. Es kommen zuerst alles Einsen und nach der ersten Null nur noch Nullen.

Typische Subnetmasken:

	Präfix	Hosts
255.0.0.0	8	$2^{24} - 2 = 16.777.214$
255.255.0.0	16	$2^{16} - 2 = 65.534$
255.255.255.0	24	$2^8 - 2 = 254$

Bsp:

Telefor	nummer	IP-Ad	resse
+43 664	123456		
Netz	einzigartig	255.255.	0.0
		Netzteil	Hostteil

Die Subnetzmaske trennt die IP-Adresse in Netzteil und Hostteil. IP-Adresse und Subnetzmaske gehören immer zusammen.

1) 2 IP-Adressen im gleichen Netz $10.10.226.120\ /\ 24$ $10.10.226.80\ /\ 24$

2) 2 IP-Adressen nicht im gleichen Netz11.40.30.124 / 2414.8.50.100 / 24

3) Anzahl der Hosts 2^8-2 10.10.226.0 (Netzadresse) 10.10.226.255 (Broadcastadresse)

192.168.20.100 / 8 Netz: 192.0.0.0

Broad: 192.255.255.255

2 Netzwerke im Alltag und Grundbegriffe

Netzwerk Komponenten

- Endgeräte (PC, Handy, Uhr, TV, Server,...)
- Intermediary Devices (Router, Repeater, Switch, Hub, Access Point)
- Übertragungsmedien (Drahtlos, Kupfer, Glasfaser)

Host-Aufgaben

- Client-Server-Modell
- Peer-to-Peer Modell
 - + Komplexität Security
 - + Leichter zum Aufsetzen Erweiterbarkeit

Netzwerk Dokumentation

- Physische Topologie (Räume, ...)
- Logische Topologie (Netze, ...)

Netzwerke nach Größe

- SOHO ... small office home office
- LAN ... local area network
- MAN ... metropolitan area network
- WAN ... wide area network
- Internet

Netzwerke nach Funktion

- SAN ... storage area network
- Intranet, Extranet

Internetzugang

- Kabel (Glasfaser)
- DSL / Dial Up
- Mobilfunknetz
- Satellit

Trends

- Video / Streaming
- Cloud
- Drahtlos (5G)
- BYOD (bring your own device)
- Online Collaboration
- Powerline Method

Netzwerkarchitektur

- Quality of Service QoS
- Erweiterbarkeit
- Security
- Fehlertoleranz

Security

- Ransomware
- DoS / DDoS
- Virus, Wurm, Trojaner
- Social Engineering
- Zero-Day-Attack

2.1 Referenzmodell (OSI und TCP/IP)

	OSI	Protokolle	TCP/IP
7	Application Layer	HTTPS, FTP, Telnet, SSH	
6	Presentation Layer	POP, SMTP, IMAP	Application Layer
5	Session Layer	DHCP, NTP, DNS	
4	Transport Layer	TCP, UDP	Transport Layer
3	Netzwerk Layer	IP, ICMP; OSPF, BGP, RIP	Internet Layer
2	Data Link Layer	Wifi, Ethernet, ARP	Network Access Layer
1	Physical Layer	vviii, Linemet, AKF	Network Access Layer

Abbildung 2.1: OSI-Modell Datenübertragung

Layer 1 (Physical): Bits übertragen

Layer 2 (Data Link): Lokale Adressierung, Fehlererkennung

Layer 3 (Network): Globale Adressierung, Routing

Layer 4 (Transport): Datenpaketzuordnung, Segmentierung, Datenfluss steuern

Layer 5 (Session): Session Verwalten, Verschlüsselung

Layer 6 (Presentation): Darstellung der Daten

Layer 7 (Application): Funktionen für die Application

Cisco CLI

Abbildung 2.2: Cisco CLI

2.1.1 Layer 1 (Physical)

Aufgaben

- Bits von A nach B bringen
- elektrische, mechanische oder andere physische Verbindung zwischen zwei Geräten
- Kodierung

Geräte: Kabel, Antenne, Hub, Repeater,...

Wichtige Begriffe

- Bandbreite (bits/s → theoretisch)
- Durchsatz (bits/s → praktisch)
- Latenz (Dauer der Daten von A bis B in ms)

Typische Medien

Kupferkabel (Twisted-Pair-Kabel)

```
+ Günstig pprox Distanz (ca 100m)
```

+ einfache Handhabung \approx Geschwindigkeit

- Interferenzen (Störungen)

Straight Through (beide Enden gleich)

Crossover (verschiedene Enden)

(durch Auto MDIX werden Enden automatisch konfiguriert)

- Koaxialkabel
- Glasfaserkabel

Arten: Single-Mode (Senden Laser, Reichweite 1-10km) Multi-Mode (Senden LED, Reichweite ca 600m)

(a) Single-Mode

(b) Multi-Mode

Abbildung 2.3: Glasfaserkabelarten

+ Speed

- Teuer

+ Reichweite

- Handhabung

+ Störungen

Drahtlos

Übertragung: elektromagnetische Wellen über Luft

+ Flexibel - S

- Störungen

- Shared Medium

- Reichweite (ca 100m), Hindernisse

- Security

2.1.2 Layer 2 (Data Link)

Aufgaben

• lokale Adressierung

• Fehlererkennung

• Zugang zum Medium herstellen

• Kommunikation mit Layer 3

Geräte: Netzwerkkarte, Switch, Bridge,...

Standards: Wifi (802.11), Ethernet (802.2, 802.3)

Topologie

• Sterntopologie

• Baumtopologie

• Punkt-zu-Punkt

Stern

Verfügt über ein zentrales Gerät, das Daten an andere Knoten im System überträgt.

Baum

Verbindet Geräte in einer Struktur, die einem Baum ähnelt, bei dem übergeordnete Knoten mit untergeordneten Knoten verbunden sind.

Abbildung 2.4: Baum- und Sterntopologie

Ethernet

	L2 (Header)					L3-L7	DATA	L2 (Trailer)
Preamble	Start Frame Delimiter	Dest MAC	Source MAC	VLANs 802.1q	Type/Length		Daten	FCS
7 Byte	1 Byte	6 Byte	6 Byte	4 Byte	2 Byte		46-1500 Byte	4 Byte
				1514	1-1522 Byte			

Abbildung 2.5: Ethernet Frame

MAC-Adresse

Die MAC-Adresse ist eine 48-Bit Zahl und wird in hexadecimal dargestellt.

Bsp:

Hersteller für den Hersteller einzigartig DC F5 05 |17 9A 69

Jede Netzwerkkarte besitzt eine weltweit einzigartige (theoretisch) MAC-Adresse.

Type

Kodierung für Layer 3 $0x800 \rightarrow IP$ $0x806 \rightarrow ARP$

Fehlerkennung

Frame Checksum (CRC)

Polynomdivision mit einem Polynom von Grad 32

Funktion eines Switches

Der Switch baut mit der Source-MAC seine MAC-Tabelle auf. Dort steht zu jeder MAC-Adresse der passende Port. Falls die MAC-Adresse schon eingetragen ist, wird ein Timer aktualisiert. Sollte es noch keinen Eintrag geben wird er hinzugefügt und bleibt dort eine gewisse Zeit (5 Minuten) bevor er gelöscht wird. Der Switch vergleicht die Destination-MAC mit seiner MAC-Tabelle. Falls der Switch keinen Eintrag findet sendet er an alle Ports (Flooding, Unknown Unicast). Sonst sendet er an den Port, wo er den Frame bekommen hat.

Layer 2 Broadcast Adresse: FF:FF:FF:FF:FF

L2, L3 Adressierung

Abbildung 2.6: Layer 2 & 3 Adressierung

	Source MAC	Destination MAC	Source IP	Destination IP
1	AA	EE	192.168.0.10	172.16.0.100
2	FF	GG	192.168.0.10	172.16.0.100
3	HH	II	192.168.0.10	172.16.0.100
4	II	HH	172.16.0.100	192.168.0.10

ARP (Address Resolution Protocol)

Nutzt ein Host um zu einer gegebenen IP-Adresse die passende MAC-Adresse zu finden

ARP-Request (Broadcast)

Source MAC: eigene MAC-Adresse Destination MAC: FF-FF-FF-FF

Type: 0x806 Danach ARP-Header (IP, MAC, Protokoll)

ARP-Reply Unicast (auch als Broadcast möglich)

Source MAC: eigene MAC-Adresse (gesucht) Destination MAC: MAC-Adresse (Anfrage)

Type: 0x806

Danach ARP-Header

ARP-Cache

Die Einträge werden im ARP-Cache gespeichert (ca 5 min)

IP MAC Time

ARP-Spoofing

Abbildung 2.7: ARP-Spoofing

2.1.3 Layer 3 (Network)

Aufgaben

- Routing
- Globale Adressierung
- Kommunikation mit L2 & L4

Protkolle: IPv4, IPv6, ICMP, RIP, OSPF, EIGRP, IS-IS, BGP

IPv4

Eigenschaften von IP

- Verbindungslos
- Best Effort
- Medium unabhängig

IP-Header (8.2.2) Wichtige Felder: Source & Destination IP, Time-to-Live

Kommunikationsart

- Unicast (IP des Host)
- Multicast (224.0.0.0 239.255.255.255)
- Broadcast (letzte IP im Netz, 255.255.255.255)

Spezielle IP-Adressen

- 127.0.0.0 / 8 ... localhost
- 10.0.0.0 / 8

172.16.0.0 / 12

192.168.0.0 / 16 ... private IP-Adressen (NAT)

- 169.254.0.0 / 16 ... APIPA
- 192.0.2.0 / 24 ... Testnetz

Fazit: Zu wenig IPv4-Adressen!

Deshalb

- VLSM (variable length subnet mask)
- NAT

IPv6

Classful Addressing (uralt)

Das erste Oktett bestimmt die Subnetzmaske (/8, /16, /24)

Klasse A	0-127	(0)	/8
Klasse B	128-191	(10)	/16
Klasse C	192-223	(110)	/24
Klasse D	224-239	(1110)	Multicast
Klasse E	240-255	(11110)	für spätere Verwendung

Classless Addressing (veraltet!)

Die Subnetzmasken /8, /16, /24 können beliebig verwendet werden

CIDR (Classless Inter-Domain Routing)

Es können beliebige Subnetzmasken (z.B. /25, /26, ...) verwendet werden. Alle Subnetze werden gleich groß.

VLSM (variable length subnet mask)

Alle Subnetzmasken können beliebig verwendet werden. Die Netzte dürfen sich nicht überschneiden.

Subnetzmasken

Präfix Notation	Dotted Decimal Notation	Hosts	Subnetz von /24
/25	255.255.255.128	$2^7 - 2 = 126$	2
/26	255.255.255.192	2^6 - 2 = 62	4
/27	255.255.255.224	2^5 - $2 = 30$	8
/28	255.255.255.240	2^4 - $2 = 14$	16
/29	255.255.255.248	$2^3 - 2 = 6$	32
/30	255.255.255.252	$2^2 - 2 = 2$	64
/31	255.255.255.254	$2^1 - 2 = 0$	für spezielle Anwendung
/20	255.255.240.0	$2^{12} - 2 = 4.094$	

Bsp 1 (CIDR):

Abbildung 2.8: CIDR Beispiel

1	192.168.10.0 / 27	Netzadresse	192.168.100.0
		Broadcast	192.168.100.31
2	192.168.10.32 / 27	Netzadresse	192.168.100.32
		Broadcast	192.168.100.63
3	192.168.10.64 / 27	Netzadresse	192.168.100.64
		Broadcast	192.168.100.95
4	192.168.10.96 / 27	Netzadresse	192.168.100.96
		Broadcast	192.168.100.127
5	192.168.10.128 / 27	Netzadresse	192.168.100.128
		Broadcast	192.168.100.159
6	192.168.10.160 / 27	Netzadresse	192.168.100.160
		Broadcast	192.168.100.191

Bsp 2 (VLSM):

Abbildung 2.9: VLSM Beispiel

1	172.16.0.0 / 25	Netzadresse Broadcast	172.16.0.0 172.16.0.127
2	172.16.0.128 / 26	Netzadresse	172.16.0.128
		Broadcast	172.16.0.191
3	172.16.0.192 / 28	Netzadresse	172.16.0.192
		Broadcast	172.16.0.207
4	172.16.0.208 / 28	Netzadresse	172.16.0.208
		Broadcast	172.16.0.223
5	172.16.0.224 / 30	Netzadresse	172.16.0.224
		Broadcast	172.16.0.227

(PT: 10.4.3, 11.5.5, 11.9.3, 11.10.1)

2.1.4 Layer 4 (Transport)

Aufgaben

- Anwendungen identifizieren
- Segmentierung
- ev. Flusskontrolle, Verbindungsauf- & abbau
- Kommunikation mit L3 & L5

Protkolle:

- TCP (Transmission Control Protocol)
- UDP (User Datagram Protocol)

TCP	UDP
Anwendungen identifizieren (Ports)	Anwendungen identifizieren (Ports)
Segmentierung	Segmentierung
Verbindungen auf- bzw abbauen	
Segmente ordnen	
wiederholtes Senden	
Flusskontrolle	

TCP: HTTP (80)/HTTPS (443), SMTP (25), POP (110), IMAP (143), Telnet (23),

SSH (22), FTP (20/21),...

UDP: DNS (53), DHCP (67/68), VoIP, Streaming,...

Ports

Der Port ist eine 16-Bit Zahl $\rightarrow 2^{16} = 65.536$

Der Port identifiziert die Anwendung, sowohl beim Server als auch beim Client.

Gruppe von Ports

Well-Known-Ports 0 - 1.023 Registered-Ports 1.024 - 49.151 Private Ports 49.152 - 65.535

L4-Adressierung

Abbildung 2.10: L4-Adressierung

	L2	(MAC)	L3	(IP)	L4 (Ports)							
	Source	Destination	Source	Destination	Source	Destination						
1	A1	A3	192.168.0.10	8.8.8.8	53.722	53						
2	B1	B2	192.168.0.10	8.8.8.8	53.722	53						
3	C2	C1	8.8.8.8	192.168.0.10	53	53.722						
4	A1	A3	192.168.0.10	172.16.0.100	60.112	443						
5	B1	B2	192.168.0.10	172.16.0.100	60.112	443						
6	D2	D1	172.16.0.100	192.168.0.10	443	60.112						

TCP

Verbindungsaufbau: Drei-Wege-Handshake

Abbildung 2.11: TCP 3-Way-Handshake

Verbindungsabbau: Zwei-Wege-Handshake

Abbildung 2.12: TCP 2-Way-Handshake

Segmentierung

Es wird eine SEQUENCENUMBER mitgeschickt. Diese gibt die Reihenfolge an. Der Client bestätigt die Segmente mit ACK-Segmente. Die ACK-NUMBER gibt an, welches Segment als nächstes kommen soll.

Abbildung 2.13: Layer 4 Segmentierung

Flow-Control

Die Window Size gibt an wann das nächste ACK-Segment erwartet wird.

2.1.5 Layer 5, 6, 7 (Session, Presentation, Application)

Χ

3 template

3.1 image

Abbildung 3.1

Abbildung 3.1: image example

3.2 code

Quellcode 3.1

```
public class MainClass {
    public static void main(String[] args){
        System.out.println("example code import");
}
```


Quellcode 3.1: code include example

Abbildungsverzeichnis

2.1	OSI-Modell Datenübertragung	6
2.2	Cisco CLI	7
2.3	Glasfaserkabelarten	9
2.4	Baum- und Sterntopologie	10
2.5	Ethernet Frame	11
2.6	Layer 2 & 3 Adressierung	12
2.7	ARP-Spoofing	13
2.8	CIDR Beispiel	16
2.9	VLSM Beispiel	17
2.10	L4-Adressierung	19
2.11	TCP 3-Way-Handshake	20
2.12	TCP 2-Way-Handshake	20
2.13	Layer 4 Segmentierung	21
3.1	image example	23

Tabellenverzeichnis

I Quellcodeverzeichnis

3.1 code include	example																												2	3
------------------	---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

Gwercher II