2024年度 物理工学基礎演習 (統計力学第一) 第6回 解答例

担当; 水田 郁 (mizuta@qi.t.u-tokyo.ac.jp, 工学部 9 号館 325 号室) 提出日; 7/14 13:00 (前半クラス), 7/7 13:00 (後半クラス)

I 理想 Fermi 気体

体積 V の立方体の中に閉じ込められた N 個の自由粒子からなる理想 Fermi 気体を考える。粒子のエネルギー固有値は $\varepsilon(\pmb{k})=\frac{\hbar^2\pmb{k}^2}{2m}$ で与えられ、スピンは 1/2 であるとする。次の問いに答えよ。

I-1

(1) 絶対零度において Fermi 粒子に占められる準位のうちで最高のエネルギー準位を Fermi エネルギーという。この粒子系の Fermi エネルギー ε_F を求めよ。

解答.— 第 5 回 IV (4) の結果を用いると $(d=3, r=2, g=2, A=\hbar^2/2m)$ 、

$$D(\varepsilon) = D\varepsilon^{1/2}, \quad D = 2\frac{L^3}{8\pi^3} \frac{2\pi^{3/2}}{\pi^{1/2}/2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \frac{1}{2} = \frac{\sqrt{2}m^{3/2}L^3}{\pi^2\hbar^3}$$

で状態密度が与えられる。全粒子数に関して、第5回 IV (3) の結果を用いると

$$N = \sum_{i} \langle n(\varepsilon_{i}) \rangle = \int_{0}^{\infty} f_{F}(\varepsilon) D(\varepsilon) d\varepsilon$$

である。絶対零度 $\beta \to \infty$ では $f_F(\varepsilon) = \lim_{\beta \to \infty} (e^{\beta(\varepsilon - \mu)} + 1)^{-1} = \theta(\mu - \varepsilon)$ より

$$\begin{split} N &= \int_0^\mu D(\varepsilon) \mathrm{d}\varepsilon \\ &= \frac{2}{3} D \mu^{3/2} \end{split}$$

より、化学ポテンシャル μ が $\mu=(3N/2D)^{2/3}$ と決まる。また、この時分布 $f_F(\varepsilon)=\theta(\mu-\varepsilon)$ は、エネルギー μ 以下が全て占有されていることを意味することから、定義より Fermi エネルギー ε_F はこの時の化学ポテンシャル μ に一致する。従って、

$$\varepsilon_F = (3N/2D)^{2/3} = \frac{3^{2/3}\pi^{4/3}\hbar^2 N^{2/3}}{2mL^2}$$

である。 □

(2) 絶対零度におけるこの系の全エネルギーを ε_F を用いて表せ。また、これを用いて粒子系の圧力 P を求めよ。

解答.— 系の全エネルギーEは

である。

圧力 P に関して、全体積 $V = L^3$ とすると

$$\begin{split} P &=& -\frac{\partial E}{\partial V} \\ &=& -\frac{3}{5}N\frac{\partial}{\partial V}\left(\frac{3^{2/3}\pi^{4/3}\hbar^2N^{2/3}}{2m}V^{-2/3}\right) \\ &=& \frac{2}{5}\frac{N\varepsilon_F}{V} \end{split}$$

となる。 □

(3) $\varepsilon < 0$ で $h(\varepsilon) = 0$ であるような滑らかな関数 $h(\varepsilon)$ に対して、十分低温な範囲では以下の近似ができる (Sommerfeld 展開)。

$$\int_0^\infty h(\varepsilon) f_F(\varepsilon) d\varepsilon = \int_0^{\varepsilon_F} h(\varepsilon) d\varepsilon + \frac{\pi^2}{6} \left(h'(\varepsilon_F) - \frac{D'(\varepsilon_F)}{D(\varepsilon_F)} h(\varepsilon_F) \right) (k_B T)^2 + \mathcal{O}((k_B T)^4).$$

この式を用いて低温における系のエネルギーE(T)および比熱C(T)を求めよ。

解答.— $h(\varepsilon) = \varepsilon D(\varepsilon) \ (\varepsilon \ge 0)$ を代入すると、

$$E = \int_0^\infty \varepsilon D(\varepsilon) f_F(\varepsilon) d\varepsilon$$

$$= \int_0^{\varepsilon_F} \varepsilon D(\varepsilon) d\varepsilon + \frac{\pi^2}{6} \left(\varepsilon_F D'(\varepsilon_F) + D(\varepsilon_F) - \frac{D'(\varepsilon_F)}{D(\varepsilon_F)} \varepsilon_F D(\varepsilon_F) \right) (k_B T)^2 + \mathcal{O}((k_B T)^4)$$

$$= \frac{3}{5} N \varepsilon_F + \frac{\pi^2}{6} D(\varepsilon_F) (k_B T)^2 + \mathcal{O}((k_B T)^4)$$

である。ここで、

$$D(\varepsilon_F) = D\varepsilon_F^{1/2} = \frac{3}{2} \left(\frac{2}{3}D\varepsilon_F^{3/2}\right)\varepsilon_F^{-1} = \frac{3N}{2\varepsilon_F}$$

を用いると、

$$E = \frac{3}{5}N\varepsilon_F + \frac{\pi^2 N}{4\varepsilon_F}(k_B T)^2 + \mathcal{O}((k_B T)^4)$$

が得られる。

また、比熱 C(T) は同じ低温極限で

$$C(T) = \frac{\partial E}{\partial T}$$
$$= \frac{\pi^2 N}{2\varepsilon_F} k_B^2 T$$
$$\propto T$$

で、温度 T に比例する。 \Box

(4) 磁場 H 中に置かれた各電子のエネルギー準位は Zeeman 効果により $\varepsilon_{\sigma}(\mathbf{k})=\hbar^2\mathbf{k}^2/2m-\sigma\mu_0H$ に分裂する (ただし、磁場の運動項への寄与は無視した)。ここで、 $\sigma=+1$ (-1) は磁場に平行 (反平行) なスピン磁気モーメントを持つ電子を表す。この系の低磁場・低温極限における磁化率を求めよ。

解答.— $\varepsilon(\mathbf{k}) = \hbar^2 \mathbf{k}^2 / 2m$ の分散を持つとき、縮重度を含めない時の状態密度を

$$D_0(\varepsilon) = \frac{D}{2}\varepsilon^{1/2}, \quad D = 2\frac{L^3}{8\pi^3} \frac{2\pi^{3/2}}{\pi^{1/2}/2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \frac{1}{2} = \frac{\sqrt{2}m^{3/2}L^3}{\pi^2\hbar^3}$$

と書く $(D(\varepsilon) = 2D_0(\varepsilon)$ で、 $\varepsilon < 0$ では $D_0 = 0$ とする)。

磁場 H を印加した時、エネルギー ε を持つ状態は、運動項 $\hbar^2 \mathbf{k}^2/2m = \varepsilon + \mu_0 H$ を満たす $\sigma = +1$ の状態と、運動項 $\hbar^2 \mathbf{k}^2/2m = \varepsilon - \mu_0 H$ を満たす $\sigma = -1$ の状態で構成される。従って、磁化 $\mu_0 \sigma$ の期待値は、

$$\langle \mu_0 \sigma \rangle = (+\mu_0) \int_{-\mu_0 H}^{\infty} D_0(\varepsilon + \mu_0 H) f_F(\varepsilon) d\varepsilon + (-\mu_0) \int_{\mu_0 H}^{\infty} D_0(\varepsilon - \mu_0 H) f_F(\varepsilon) d\varepsilon$$

$$= \mu_0 \int_0^{\infty} d\varepsilon D_0(\varepsilon) (f_F(\varepsilon - \mu_0 H) - f_F(\varepsilon + \mu_0 H))$$

$$= 2\mu_0^2 H \int_0^{\infty} \frac{\partial D_0(\varepsilon)}{\partial \varepsilon} f_F(\varepsilon) d\varepsilon + \mathcal{O}((\mu_0 H)^2)$$

となる。ただし 2 行目からは 3 行目では、十分低い温度ではあるののの $\beta<\infty$ であることにより $\frac{\partial f_F(\varepsilon)}{\partial \varepsilon}$ が存在することと、部分積分を用いた。従って、磁化率の主要項は

$$\chi = \frac{\partial \langle \mu_0 \sigma \rangle}{\partial H}$$

$$\sim 2\mu_0^2 \int_0^\infty \frac{\partial D_0(\varepsilon)}{\partial \varepsilon} f_F(\varepsilon) d\varepsilon$$

$$= 2\mu_0^2 \int_0^{\varepsilon_F} \frac{\partial D_0(\varepsilon)}{\partial \varepsilon} d\varepsilon + \frac{\pi^2 \mu_0^2}{3} \left(D_0''(\varepsilon_F) - \frac{(D_0'(\varepsilon_F))^2}{D_0(\varepsilon_F)} \right) (k_B T)^2 + \mathcal{O}((k_B T)^4)$$

$$= 2\mu_0^2 D_0(\varepsilon_F) + \frac{\pi^2 \mu_0^2}{3} \left(-\frac{1}{4} D_0(\varepsilon_F) \varepsilon_F^{-2} - \frac{1}{4} D_0(\varepsilon_F) \varepsilon_F^{-2} \right) (k_B T)^2 + \mathcal{O}((k_B T)^4)$$

$$= \mu_0^2 D(\varepsilon_F) \left(1 - \frac{\pi^2}{12} \left(\frac{k_B T}{\varepsilon_F} \right)^2 \right) + \mathcal{O}((k_B T)^4)$$

である。 □

注釈.— 磁場 H が印加され $\sigma=\pm 1$ の粒子数が変化することで、化学ポテンシャルも変化する。 具体的には、粒子数保存による方程式

$$N = \int_0^\infty D_0(\varepsilon + \mu_0 H) f_F(\varepsilon; \mu) d\varepsilon + \int_0^\infty D_0(\varepsilon - \mu_0 H) f_F(\varepsilon; \mu) d\varepsilon, \quad f_F(\varepsilon; \mu) = \frac{1}{e^{\beta(\varepsilon - \mu)} + 1}$$

を満たすように μ が変化する。H=0 における μ を $\mu_{H=0}$ として

$$D_{0}(\varepsilon + \mu_{0}H) = D_{0}(\varepsilon) + D'_{0}(\varepsilon)\mu_{0}H + \frac{1}{2}D''_{0}(\varepsilon)(\mu_{0}H)^{2} + \mathcal{O}((\mu_{0}H)^{3}),$$

$$f_{F}(\varepsilon; \mu) = f_{F}(\varepsilon; \mu_{H=0}) - f'_{F}(\varepsilon; \mu_{H=0})(\mu - \mu_{H=0}) + \mathcal{O}((\mu - \mu_{H=0})^{2})$$

(' は ε に関する微分) と展開する (十分低い温度ではあるものの絶対零度でなければ f_F は解析的であるため、 f_F も展開可能である)。 $\mu_0 H, \, \mu - \mu_{H=0}$ の最低次の項のみを考えると

$$0 = \int_0^\infty D_0''(\varepsilon) f_F(\varepsilon; \mu_{H=0}) (\mu_0 H)^2 d\varepsilon - \int_0^\infty D_0(\varepsilon) f_F'(\varepsilon; \mu_{H=0}) (\mu - \mu_{H=0}) d\varepsilon + o((\mu_0 H)^2, \mu - \mu_{H=0})$$

である。これを解けば $\mu = \mu_{H=0} + \mathcal{O}((\mu_0 H)^2)$ が得られる。磁化率 χ の計算では磁化の期待値 $\langle \mu_0 \sigma \rangle$ の $\mathcal{O}(H)$ の項までを考えれば良いので、この微小な化学ポテンシャルの変化は磁化率に寄与しない。

I-2 Sommerfeld 展開

Sommerfeld 展開は、 $k_BT\ll \varepsilon_F$ が成立するときの微小パラメータ k_BT/ε_F に関する摂動展開である。以下の問いに答えよ。

(1) $\varepsilon < 0$ で $h(\varepsilon) = 0$ であるような滑らかな関数 $h(\varepsilon)$ に対して、十分低温な範囲では

$$\int_{0}^{\infty} h(\varepsilon) f_{F}(\varepsilon) d\varepsilon = \int_{0}^{\mu} h(\varepsilon) d\varepsilon + \frac{\pi^{2}}{6} h'(\mu) (k_{B}T)^{2} + \mathcal{O}((k_{B}T)^{4})$$

が成立することを示せ (Hint: Fermi 分布関数 $f_F(\varepsilon)$ を $f_F(\varepsilon) = \theta(\mu - \varepsilon) + g(\varepsilon)$ と分解する)。

解答.— Sommerfeld 展開は、 $k_BT\ll \varepsilon_F$ において微小量 k_BT/ε_F による展開であることに留意する。十分低温ということで Fermi 分布関数 $f_F(\varepsilon)$ を絶対零度の部分とそれ以外に分けて考える。すなわち、

$$f_F(\varepsilon) = f_F^{\beta = \infty}(\varepsilon) + g(\varepsilon - \mu)$$

とおく。 $f_F^{\beta=\infty}(\varepsilon)=\theta(\mu-\varepsilon)$ は絶対零度の Fermi 分布関数で、 $\varepsilon<0,\,\mu<\varepsilon$ で 0, また $0<\varepsilon<\mu$ で 1 となるステップ関数である。一方で、

$$g(\varepsilon) = f_F(\varepsilon + \mu) - f_F^{\beta = \infty}(\varepsilon + \mu) = \begin{cases} 0 & (\varepsilon < -\mu) \\ -\frac{1}{e^{-\beta \varepsilon} + 1} & (-\mu < \varepsilon < 0) \\ \frac{1}{e^{\beta \varepsilon} + 1} & (\varepsilon > 0) \end{cases}$$

である。これを用いると Sommerfeld 展開における左辺は

$$\int_{0}^{\infty} h(\varepsilon) f_{F}(\varepsilon) d\varepsilon = \int_{0}^{\infty} h(\varepsilon) (f_{F}^{\beta=\infty}(\varepsilon) + g(\varepsilon - \mu)) d\varepsilon$$
$$= \int_{0}^{\mu} h(\varepsilon) d\varepsilon + \int_{0}^{\infty} h(\varepsilon) g(\varepsilon - \mu) d\varepsilon$$
$$= \int_{0}^{\mu} h(\varepsilon) d\varepsilon + \int_{-\infty}^{\infty} h(\varepsilon + \mu) g(\varepsilon) d\varepsilon$$

と計算される。ここで $h(\varepsilon)$ は $\varepsilon < 0$ で 0 なので、関数 $g(\varepsilon)$ を

$$g(\varepsilon) = \begin{cases} -\frac{1}{e^{-\beta\varepsilon} + 1} & (\varepsilon < 0) \\ \frac{1}{e^{\beta\varepsilon} + 1} & (\varepsilon > 0) \end{cases}$$

としても積分は同じ結果を与える。

次に、第2項

$$\int_{-\infty}^{\infty} h(\varepsilon + \mu) g(\varepsilon) d\varepsilon = \beta^{-1} \int_{-\infty}^{\infty} h(\beta^{-1}x + \mu) g(\beta^{-1}x) dx$$

に対して関数 $h(\beta^{-1}x + \mu)$ の Taylor 展開を用いる。 $\beta^{-1} \propto T$ が微小量であるので μ 周りで展開すると、

$$\int_{-\infty}^{\infty} h(\varepsilon + \mu) g(\varepsilon) d\varepsilon = \beta^{-1} \int_{-\infty}^{\infty} \left(h(\mu) + h'(\mu) \beta^{-1} x + \frac{1}{2} h''(\mu) (\beta^{-1} x)^2 + \mathcal{O}(\beta^{-3}) \right) g(\beta^{-1} x) dx$$
$$= \beta^{-2} h'(\mu) \int_{-\infty}^{\infty} x g(\beta^{-1} x) dx + \mathcal{O}(\beta^{-4})$$

である。ここで $g(\varepsilon)$ は奇関数であることで奇数番目の積分が消えることを利用した。第 1 項に関しては

$$\int_{-\infty}^{\infty} x g(\beta^{-1}x) dx = 2 \int_{0}^{\infty} dx \frac{x}{e^{x} + 1}$$
$$= \frac{\pi^{2}}{6}$$

である。以上から、

$$\int_0^\infty h(\varepsilon) f_F(\varepsilon) d\varepsilon = \int_0^\mu h(\varepsilon) d\varepsilon + \frac{\pi^2}{6} h'(\mu) (k_B T)^2 + \mathcal{O}((k_B T)^4)$$

が導かれる。

(2) 前設問の結果を用いて、化学ポテンシャル μ の十分低温での温度依存性が

$$\mu = \varepsilon_F - \frac{\pi^2}{6} \cdot \frac{D'(\varepsilon_F)}{D(\varepsilon_F)} (k_B T)^2 + \mathcal{O}((k_B T)^4)$$

となることを示せ。また、この結果を用いて Sommerfeld 展開を導出せよ。

解答.— 前設問の結果に $h(\varepsilon) = D(\varepsilon)$ [状態密度] を代入すると

$$N = \int_0^{\mu} D(\varepsilon) d\varepsilon + \frac{\pi^2}{6} D'(\mu) (k_B T)^2 + \mathcal{O}((k_B T)^4)$$

すなわち

$$\int_0^{\varepsilon_F} D(\varepsilon) d\varepsilon = \int_0^{\mu} D(\varepsilon) d\varepsilon + \frac{\pi^2}{6} D'(\mu) (k_B T)^2 + \mathcal{O}((k_B T)^4)$$

が得られる。ここで、化学ポテンシャルの温度依存性を顕に $\mu(k_BT)$ と書くと、 $\mu(0)=\varepsilon_F$ で十分 低温では $\mu\simeq\varepsilon_F$ である。状態密度 $D(\varepsilon)$ の積分の $\mu=\varepsilon_F$ 周りの Taylor 展開を行えば、

$$\int_{0}^{\mu} D(\varepsilon) d\varepsilon = \int_{0}^{\varepsilon_{F}} D(\varepsilon) d\varepsilon + \left(\frac{d}{d\mu} \int_{0}^{\mu} D(\varepsilon) d\varepsilon \right) \Big|_{\mu = \varepsilon_{F}} (\mu - \varepsilon_{F}) + \mathcal{O}((\mu - \varepsilon_{F})^{2})$$

$$= \int_{0}^{\varepsilon_{F}} D(\varepsilon) d\varepsilon + D(\varepsilon_{F})(\mu - \varepsilon_{F}) + \mathcal{O}((\mu - \varepsilon_{F})^{2})$$

であり、これを代入すれば

$$0 = D(\varepsilon_F)(\mu - \varepsilon_F) + \frac{\pi^2}{6}(D'(\varepsilon_F) + \mathcal{O}(\mu - \varepsilon_F))(k_B T)^2 + \mathcal{O}((k_B T)^4, (\mu - \varepsilon_F)^2)$$

であり、μ について解けば

$$\mu = \varepsilon_F - \frac{\pi^2}{6} \cdot \frac{D'(\varepsilon_F)}{D(\varepsilon_F)} (k_B T)^2 + \mathcal{O}((k_B T)^4, (\mu - \varepsilon_F)(k_B T)^2, (\mu - \varepsilon_F)^2)$$

が得られる。 $\mu(k_BT=0)=\varepsilon_F$ より少なくとも $\mu-\varepsilon_F\in\mathcal{O}(k_BT)$ であるが、これを上式に代入すれば $\mathcal{O}(\cdot)$ の項は $\mathcal{O}((k_BT)^2)$ である。故に、

$$\mu = \varepsilon_F - \frac{\pi^2}{6} \cdot \frac{D'(\varepsilon_F)}{D(\varepsilon_F)} (k_B T)^2 + \mathcal{O}((k_B T)^4)$$

として化学ポテンシャルの温度依存性を得る。

最後に、得られた化学ポテンシャルの表式を前設問の結果に代入する:それぞれの項を $\mu=\varepsilon_F$ 周 りで Taylor 展開して、

$$\int_{0}^{\mu} h(\varepsilon) d\varepsilon = \int_{0}^{\varepsilon_{F}} h(\varepsilon) d\varepsilon + h(\varepsilon_{F}) (\mu - \varepsilon_{F}) + \mathcal{O}((\mu - \varepsilon_{F})^{2})$$
$$= \int_{0}^{\varepsilon_{F}} h(\varepsilon) d\varepsilon + h(\varepsilon_{F}) (\mu - \varepsilon_{F}) + \mathcal{O}((k_{B}T)^{4})$$

および

$$h'(\mu) = h'(\varepsilon_F) + h''(\varepsilon_F)(\mu - \varepsilon_F)$$

= $h'(\varepsilon_F) + \mathcal{O}((k_B T)^2)$

を得る。これらを代入すると、

$$\int_{0}^{\infty} h(\varepsilon) f_{F}(\varepsilon) d\varepsilon = \int_{0}^{\mu} h(\varepsilon) d\varepsilon + \frac{\pi^{2}}{6} h'(\mu) (k_{B}T)^{2} + \mathcal{O}((k_{B}T)^{4})$$

$$= \int_{0}^{\varepsilon_{F}} h(\varepsilon) d\varepsilon + \frac{\pi^{2}}{6} \left(h'(\varepsilon_{F}) - \frac{D'(\varepsilon_{F})}{D(\varepsilon_{F})} h(\varepsilon_{F}) \right) (k_{B}T)^{2} + \mathcal{O}((k_{B}T)^{4})$$

となり、Sommerfeld 展開の帰結を得る。 □

(3) Na は常温・常圧で格子定数 a=4.23 Å の体心立法構造を取る。各 Na 原子は 1 つの自由電子を供給し、Na 原子の作るポテンシャル,電子間相互作用は無視するならばそれらの自由電子は理想 Fermi 気体とみなせる。このとき、室温 $(T=273~{\rm K})$ において比 k_BT/ε_F を計算せよ。また、どのくらいの温度まで Sommerfeld 展開の基づく解析が妥当であるか検討せよ。

解答. — 体心立法構造は、単位格子中に2個原子を含むので、電子密度

$$\rho = \frac{N}{V} = 2a^{-3} = 2.652 \times 10^{28} \, [1/\text{m}^3]$$

である。その他の定数として、

$$\hbar = 1.055 \times 10^{-34} [\text{J} \cdot \text{s}]$$

 $m = 9.109 \times 10^{-31} [\text{kg}]$

 $k_B = 1.381 \times 10^{-23} [\text{J} \cdot \text{K}^{-1}]$

を代入すると、

$$\varepsilon_F = \frac{\hbar^2}{2m} (3\pi^2 \rho)^{2/3} = \frac{\hbar^2}{2ma^2} (6\pi^2)^{2/3} = 5.186 \times 10^{-19} [J]$$

である (有効数字は適切に選んで)。温度 $T=273 \mathrm{K}$ における比率は

$$\frac{k_B T}{\epsilon_B} = 7.270 \times 10^{-3}$$

となる。また、 $\varepsilon_F = k_B T_F$ によって定められる Fermi 温度 T_F は

$$T_F = 3.755 \times 10^4 \, [K]$$

であり、この温度よりも十分低ければ Sommerfeld 展開の結果は信頼できる。

(注釈) フェルミ温度 T_F は、常温 $T\sim 10^2$ [K] と比べると非常に大きい。この事実は、常温においては比熱・感受率など励起を関連した物理的性質はフェルミ面付近 $(\varepsilon_j\sim \varepsilon_f)$ の電子のみしか作用しないことを意味する。

II 真性半導体

状態密度 $D(\epsilon)$ が以下で与えられる理想 Fermi 気体を考える。

$$D(\epsilon) = \begin{cases} A(\epsilon - \Delta)^{d/2 - 1} & (\Delta \le \epsilon), \\ 0 & (0 < \epsilon < \Delta), \\ B(-\epsilon)^{d/2 - 1} & (\epsilon \le 0). \end{cases}$$

ここで、A,B は適当な定数であり、d は系の次元を表す。また絶対零度においては、 $\epsilon \leq 0$ の状態は全て埋まり $\epsilon \geq \Delta$ の状態は完全に空であるとする。基底状態のエネルギー ϵ_{\min} は十分に小さいとして、 $\epsilon_{\min} \to -\infty$ として計算して良い。

(1) 系が十分低温であるとき、化学ポテンシャル μ を逆温度 β の関数として求めよ。

解答.— 基底エネルギーを ϵ_{\min} とする (実際の計算では $\epsilon_{\min} \to -\infty$ とみなして良い)。絶対零度 において、 $\epsilon < 0$ の状態は全て埋まり $\epsilon > 0$ の状態は完全に空であるので、粒子数 N は

$$N = \int_{\epsilon_{\min}}^{0} \mathrm{d}\epsilon D(\epsilon)$$

で与えられる $(\epsilon_{\min} < 0$ は基底エネルギーの値)。また、絶対零度における化学ポテンシャル μ は $\beta \to \infty$ における Fermi 分布関数 $f_F(\epsilon) = (e^{\beta(\epsilon-\mu)}+1)^{-1}$ が $\epsilon > \Delta$ で 0, $\epsilon < 0$ で 1 を取るステップ関数となることから、 $0 < \mu(\beta = \infty) < \Delta$ である。故に系が十分低温である時の化学ポテンシャルも、 $0 < \mu < \Delta$ の範囲にある。

一方で、有限温度 β においても同じように粒子数を考えると

$$N = \int_{\epsilon_{min}}^{\infty} d\epsilon D(\epsilon) f_F(\epsilon)$$

であり、粒子数の保存から

$$\int_{\epsilon_{\min}}^{0} d\epsilon D(\epsilon) = \int_{\epsilon_{\min}}^{\infty} d\epsilon D(\epsilon) f_{F}(\epsilon)$$

$$= \int_{\epsilon_{\min}}^{0} d\epsilon D(\epsilon) f_{F}(\epsilon) + \int_{\Delta}^{\infty} d\epsilon D(\epsilon) f_{F}(\epsilon)$$

が成立する。ただし、 $\epsilon \in (0,\Delta)$ で $D(\varepsilon) = 0$ であることを用いた。これを少し変形して

$$\int_{\Delta}^{\infty} d\epsilon D(\epsilon) f_F(\epsilon) = \int_{\epsilon_{\min}}^{0} d\epsilon D(\epsilon) (1 - f_F(\epsilon))$$

が得られる。

まず左辺に関して、

$$\int_{\Delta}^{\infty} d\epsilon D(\epsilon) f_F(\epsilon) = \int_{\Delta}^{\infty} d\epsilon A (\epsilon - \Delta)^{d/2 - 1} \frac{1}{e^{\beta(\epsilon - \mu)} + 1}$$

$$\sim A \int_{0}^{\infty} d\epsilon \epsilon^{d/2 - 1} e^{-\beta(\epsilon + \Delta - \mu)}$$

$$= A\Gamma(d/2) \beta^{-d/2} e^{\beta(\mu - \Delta)}$$

である。ただし、最初の式変形で十分低温で β が大きく $0 < \mu < \Delta$ であることより $e^{\beta(\epsilon-\mu)} \gg 1$ $(\epsilon > \Delta)$ を用いた。次に右辺に関しても同様にして、

$$\int_{\epsilon_{\min}}^{0} d\epsilon D(\epsilon) (1 - f_F(\epsilon)) = \int_{\epsilon_{\min}}^{0} d\epsilon B(-\epsilon)^{d/2 - 1} \frac{1}{1 + e^{-\beta(\epsilon - \mu)}}$$

$$\sim B \int_{-\infty}^{0} d\epsilon (-\epsilon)^{d/2 - 1} e^{-\beta(\mu - \epsilon)}$$

$$= B e^{-\beta \mu} \int_{0}^{\infty} d\epsilon \epsilon^{d/2 - 1} e^{-\beta \epsilon}$$

$$= B \Gamma(d/2) \beta^{-d/2} e^{-\beta \mu}$$

となる。

以上をまとめると、

$$A\Gamma(d/2)\beta^{-d/2}e^{\beta(\mu-\Delta)} = B\Gamma(d/2)\beta^{-d/2}e^{-\beta\mu}$$

が満たされ、これを化学ポテンシャル μ について解くと、

$$\mu = \frac{1}{2}\Delta + \frac{1}{2}\beta^{-1}\ln\frac{B}{A}$$

が得られる (これは確かに β が十分大きい (低温である) とき、 $0 < \mu < \Delta$ を満たしている)。

(2) d=2 および d=3 の場合において、低温で励起される粒子数および比熱を求めよ。

解答.— 励起された粒子数 N_e は、 $\epsilon > \Delta$ の状態を占有する粒子数であるので

$$\begin{split} N_e &= \int_{\Delta}^{\infty} \mathrm{d}\epsilon D(\epsilon) f_F(\epsilon) \\ &\sim A\Gamma(d/2)\beta^{-d/2} e^{\beta(\mu-\Delta)} \\ &= \sqrt{AB} \, \Gamma(d/2)\beta^{-d/2} e^{-\beta\Delta/2} \\ &= \begin{cases} \sqrt{AB}\beta^{-1} e^{-\beta\Delta/2} & (d=2) \\ \frac{\sqrt{\pi}}{2} \sqrt{AB}\beta^{-3/2} e^{-\beta\Delta/2} & (d=3) \end{cases} \end{split}$$

である。

次に比熱 c を考えるために、エネルギー期待値を考えよう。絶対零度で $\epsilon < 0$ が詰まっている時のエネルギー E_0 は

$$E_0 = \int_{\epsilon_0}^0 d\epsilon D(\epsilon) \epsilon \qquad (定数)$$

である。有限温度 β におけるエネルギー期待値 E は

$$E = \int_{\epsilon_{\min}}^{\infty} d\epsilon D(\epsilon) f_{F}(\epsilon) \epsilon$$

$$= \int_{\Delta}^{\infty} d\epsilon D(\epsilon) f_{F}(\epsilon) \epsilon + \int_{\epsilon_{\min}}^{0} d\epsilon D(\epsilon) f_{F}(\epsilon) \epsilon$$

$$= \int_{\Delta}^{\infty} d\epsilon D(\epsilon) f_{F}(\epsilon) \epsilon - \int_{\epsilon_{\min}}^{0} d\epsilon D(\epsilon) (1 - f_{F}(\epsilon)) \epsilon + E_{0}$$

$$\sim A \int_{\Delta}^{\infty} (\epsilon - \Delta)^{d/2 - 1} e^{-\beta(\epsilon - \mu)} \epsilon d\epsilon - B \int_{-\infty}^{0} (-\epsilon)^{d/2 - 1} e^{\beta(\epsilon - \mu)} \epsilon d\epsilon + E_{0}$$

$$= A e^{\beta(\mu - \Delta)} \int_{0}^{\infty} (\epsilon + \Delta) \epsilon^{d/2 - 1} e^{-\beta \epsilon} d\epsilon + B e^{-\beta \mu} \int_{0}^{\infty} \epsilon^{d/2} e^{-\beta \epsilon} d\epsilon + E_{0}$$

$$= A e^{\beta(\mu - \Delta)} \beta^{-d/2} (\beta^{-1} \Gamma(d/2 + 1) + \Delta \Gamma(d/2)) + B e^{-\beta \mu} \beta^{-d/2 - 1} \Gamma(d/2) + E_{0}$$

$$= \sqrt{AB} \beta^{-d/2} e^{-\beta \Delta/2} (2\beta^{-1} \Gamma(d/2 + 1) + \Delta \Gamma(d/2)) + E_{0}$$

$$= \sqrt{AB} \beta^{-d/2} e^{-\beta \Delta/2} \Gamma(d/2) (d\beta^{-1} + \Delta) + E_{0}$$

である。なお、これに $\beta \Delta \gg 1$ という十分低温であるという近似を入れて (今は常に考えている)、

$$E \simeq \sqrt{AB}\beta^{-d/2}e^{-\beta\Delta/2}\Gamma(d/2)\Delta + E_0 = N_e\Delta + E_0$$

としても良い (N_e は低温で励起される粒子数で、単にその分だけエネルギーが増大していることを意味している)。従って、比熱 c は

$$c = \frac{\mathrm{d}E}{\mathrm{d}T}$$

$$= -\frac{1}{k_B T^2} \frac{\mathrm{d}E}{\mathrm{d}\beta}$$

$$= -\frac{1}{k_B T^2} \sqrt{AB} \beta^{-d/2} e^{-\beta \Delta/2} \Gamma(d/2) \left\{ \left(-\frac{d}{2} \beta^{-1} - \frac{\Delta}{2} \right) (d\beta^{-1} + \Delta) + d\beta^{-2} \right\}$$

である。再び、 $\beta^{-1} \ll \Delta$ であることを用いると、

$$c = \frac{\Delta^2}{2k_BT^2}\sqrt{AB}\beta^{-d/2}e^{-\beta\Delta/2}\Gamma(d/2) = \frac{k_B}{2}(\beta\Delta)^2\sqrt{AB}\beta^{-d/2}e^{-\beta\Delta/2}\Gamma(d/2)$$

となる。なお、これを励起されている粒子数を使って表現すると、 $c=rac{N_e k_B}{2}\cdot(eta\Delta)^2$ となる。

注釈. 一途中で導いた関係式

$$\int_{\Delta}^{\infty} d\epsilon D(\epsilon) f_F(\epsilon) = \int_{\epsilon_{\min}}^{0} d\epsilon D(\epsilon) (1 - f_F(\epsilon))$$

の別の見方として、

$$(\epsilon > \Delta \ \text{に励起された粒子の個数}) = (\epsilon < 0 \ \text{に生成されたホール (hole) の個数)}$$

として捉えることができる。左辺は文字通りの意味である。右辺に関して、粒子がない状況を"空孔 (ホール, hole)"として定義する。この時、エネルギー ϵ のホールの個数は $n'(\epsilon)=1-n(\epsilon)$ となる。ホールに対する分布関数は

$$f_F'(\epsilon) = \langle n'(\epsilon) \rangle = \langle 1 - n(\epsilon) \rangle = 1 - f_F(\epsilon)$$

となるので、右辺は $\epsilon < 0$ に生成されたホールの個数をカウントしている。元々 $\epsilon < 0$ にあった粒子が $\epsilon > \Delta$ に励起された時、粒子のあった準位 $\epsilon < 0$ はホールとなる。従って、両者の個数が一致するのは、ただ単に粒子数保存を意味している (ので物理的には上記の計算過程と等価である)。

注釈 2.— 比熱を計算する際、エネルギー E 中で定数部分 E_0 は寄与せず、残りの 2 項

$$A \int_{\Delta}^{\infty} (\epsilon - \Delta)^{d/2} e^{-\beta(\epsilon - \mu)} d\epsilon + B \int_{-\infty}^{0} (-\epsilon)^{d/2} e^{\beta(\epsilon - \mu)} d\epsilon$$

が支配的であることがわかる。第1項は $\epsilon > \Delta$ に励起された粒子の寄与、第2項は $\epsilon < 0$ に生成されたホールの寄与ということができる。さらにそれぞれの積分においては、Fermi エネルギー $\epsilon_F = \mu(\beta = \infty) = \Delta/2$ 付近の寄与が dominant であり、そこから ϵ が離れると指数的に小さな影響となる。すなわち、"比熱においては Fermi エネルギー付近を占有する粒子がその性質を決める"と言える。一般に、十分低温にある fermion 系において、Fermi エネルギーから十分離れたエネルギーを占有する粒子は多少系が変化しても変化しない。故に励起によって決まるような物理量 (比熱, 磁化) などは、Fermi エネルギー近傍を占有する粒子によってのみ性質が決まる傾向がある。

III 理想 Bose 気体: Bose-Einstein 凝縮

長さ L の周期境界条件下にある 3 次元空間中の N 粒子からなるスピン 0 の理想 Bose 気体を考える。粒子のエネルギー固有値は $\varepsilon(\mathbf{k})=\frac{\hbar^2\mathbf{k}^2}{2m}$ で与えられ、エネルギーの小さい方から固有状態を $j=1,2,\ldots$, とうベルを付ける。基底状態は j=1 であり $\varepsilon_1=0$ の固有値を持つ。次の問いに答えよ。

(1) $\langle n_j \rangle / V$ が全ての j について粒子密度 $\rho = N/V$ より十分小さい量であると仮定する。このとき、粒子数期待値 $\sum_j \langle n_j \rangle$ を計算せよ。ただし、関数

$$F_{1/2}(\alpha) = \frac{2}{\sqrt{\pi}} \int_0^\infty dx \frac{x^{1/2}}{e^{x+\alpha} - 1}$$

を用いて良い。

解答. 一 状態密度は、

$$D(\varepsilon) = D\varepsilon^{1/2}, \quad D = \frac{m^{3/2}V}{\sqrt{2}\pi^2\hbar^3}$$

で与えられる (スピン 0 より Fermion 系の場合と比べて係数 2 の違いがあることに注意)。粒子数期 待値は

$$\begin{split} \sum_{j} \left\langle n(\varepsilon_{j}) \right\rangle &= \int_{0}^{\infty} f_{B}(\varepsilon) D(\varepsilon) \mathrm{d}\varepsilon \qquad \left(\left\langle n_{j} \right\rangle / V \right) \right\rangle$$
 か全ての j について ρ より十分小さい)
$$&= \frac{m^{3/2} V}{\sqrt{2} \pi^{2} \hbar^{3}} \int_{0}^{\infty} \mathrm{d}\varepsilon \frac{\varepsilon^{1/2}}{e^{\beta(\varepsilon - \mu)} - 1} \\ &= \frac{m^{3/2} V}{\sqrt{2} \pi^{2} \hbar^{3}} \beta^{-3/2} \int_{0}^{\infty} \mathrm{d}(\beta \varepsilon) \frac{(\beta \varepsilon)^{1/2}}{e^{\beta \varepsilon - \beta \mu} - 1} \\ &= V \left(\frac{m}{2 \pi \hbar^{2} \beta} \right)^{3/2} F_{1/2}(-\beta \mu) \end{split}$$

である。 □

(2) 粒子数期待値が N であるとき、(1) と同じ仮定の下で化学ポテンシャル μ を決定する方程式を導出せよ。また、ある閾値 $\beta_c>0$ があってこの方程式は $\beta>\beta_c$ で解 μ が存在しなくなることを示し、そのときの β_c を答えよ。

解答.— $N = \sum_j \langle n_j \rangle$ より、

$$\rho = \left(\frac{m}{2\pi\hbar^2\beta}\right)^{3/2} F_{1/2}(-\beta\mu)$$

が μ の決定方程式である。粒子数が非負であるという条件から $\langle n_j \rangle = (e^{\beta(\varepsilon_j - \mu)} - 1)^{-1} \ge 0 \ (^{\forall} \varepsilon_j \ge 0)$ であるので $\mu < 0$ の解を持たなければならない。 $F_{1/2}(-\beta\mu)$ は $\mu < 0$ において μ に関する単調増加関数であるので (さらに、 $F_{1/2}(-\infty) = 0$)、

$$F_{1/2}(0) < \left(\frac{2\pi\hbar^2\beta}{m}\right)^{3/2} \rho$$

ならば、 $\mu < 0$ に対応する解 μ が存在しない。従って、閾値 β_c を

$$\beta_c = \frac{m}{2\pi\hbar^2} \left(\frac{F_{1/2}(0)}{\rho}\right)^{2/3}$$

で定めると、 $\beta > \beta_c$ では解 μ が存在しない。 \square

(3) $\beta>\beta_c$ において (2) の導出を修正し正しく化学ポテンシャル μ を決定する方程式を導出せよ。また、熱力学極限においてその解は $\mu=0$ となることを示せ。

解答. 周期境界条件での自由粒子の波動関数の波数は

$$\mathbf{k} = \frac{2\pi}{L}(n_x, n_y, n_z), \quad n_\alpha = 0, 1, 2, \dots$$

であるので第 1 励起状態のエネルギーは $arepsilon_2=2\pi^2\hbar^2/mL^2$ であり、 $L o\infty$ の熱力学極限では $arepsilon_2 o0$ として良い。

 $\beta > \beta_c$ における粒子数期待値は、

$$\langle n_1 \rangle + \int_{\varepsilon_2}^{\infty} f_B(\varepsilon) D(\varepsilon) d\varepsilon = \frac{1}{e^{\beta(\varepsilon_1 - \mu)} - 1} + \int_0^{\infty} f_B(\varepsilon) D(\varepsilon) d\varepsilon$$
$$= \frac{1}{e^{-\beta\mu} - 1} + V \left(\frac{m}{2\pi\hbar^2 \beta}\right)^{3/2} F_{1/2}(-\beta\mu)$$

である。これが粒子数 N に等しいという条件から化学ポテンシャル μ を決定する方程式は

$$N = \frac{1}{e^{-\beta\mu} - 1} + V \left(\frac{m}{2\pi\hbar^2\beta}\right)^{3/2} F_{1/2}(-\beta\mu)$$

となる。

また、この方程式を変形すると

$$e^{-\beta\mu} - 1 = \left\{ N - V \left(\frac{m}{2\pi\hbar^2\beta} \right)^{3/2} F_{1/2}(-\beta\mu) \right\}^{-1}$$
$$= V^{-1} \left\{ \rho - \left(\frac{m}{2\pi\hbar^2\beta} \right)^{3/2} F_{1/2}(-\beta\mu) \right\}^{-1}$$

が得られる。 V^{-1} を除いた部分について、

$$\rho - \left(\frac{m}{2\pi\hbar^{2}\beta}\right)^{3/2} F_{1/2}(-\beta\mu) \geq \rho - \left(\frac{m}{2\pi\hbar^{2}\beta}\right)^{3/2} F_{1/2}(0)$$

$$= \rho \left(1 - \left(\frac{T}{T_{c}}\right)^{3/2}\right)$$

は $T < T_c$ の時、V に依存しない正の定数 C > 0 で下から抑えられる。以上より

$$0 \le e^{-\beta\mu} - 1 \le (CV)^{-1} \to 0 \quad (V \to \infty)$$

であり、熱力学極限 $V \to \infty$ では $e^{-\beta\mu} \to 1$ すなわち化学ポテンシャルは $\mu \to 0$ となる。

(4) $\beta>\beta_c$ において、状態 $j=2,3,\ldots,$ の占有数密度に関して $\langle n_j\rangle/V\to 0$ $(V\to\infty)$ であることを示せ。このことにより、 基底状態 (j=1) 以外の状態では $\beta>\beta_c$ でも占有数密度 $\langle n_j\rangle/V$ が粒子数密度 ρ に比べて十分小さいままであることが確かめられる。

 $j=2,3,\ldots$ について $\varepsilon_j \geq \varepsilon_2 = 2\pi^2\hbar^2/mL^2$ であるので、

$$\frac{\langle n_j \rangle}{V} = \frac{1}{V(e^{\beta(\varepsilon_j - \mu)} - 1)}$$

$$\leq \frac{1}{V\beta(\varepsilon_j - \mu)} \quad (e^x \geq 1 + x)$$

$$\leq \frac{1}{V\beta\varepsilon_2} \quad (\varepsilon_j \geq \varepsilon_2, \quad \mu \leq 0)$$

$$= \frac{m}{2\pi^2 \hbar^2 L}$$

である。故に熱力学極限 $L \to \infty$ では $\langle n_i \rangle / V \ (j=2,3,\ldots)$ はゼロに漸近する。

(5) 熱力学極限 $V\to\infty$ における基底状態の粒子数密度 $\langle n_1\rangle/V$ を、温度 T, 転移温度 $T_c=1/(k_B\beta_c)$), 全粒子数密度 $\rho=N/V$ を用いて表し、温度 T に関する依存性を図示せよ。

解答.— $\beta < \beta_c$ の領域では (1) で $\mu < 0$ の解が存在し、

$$\frac{\langle n_1 \rangle}{V} = \frac{1}{V(e^{-\beta\mu} - 1)} \to 0$$

である。一方で、 $\beta>\beta_c$ の領域では $V\to\infty$ で $\mu\to0$ となるため上記の表式が不定形となる。そこで、(3) の化学ポテンシャルの決定方程式による

$$\frac{\langle n_1 \rangle}{V} = \frac{1}{V(e^{-\beta\mu} - 1)}$$
$$= \rho - \left(\frac{m}{2\pi\hbar^2\beta}\right)^{3/2} F_{1/2}(-\beta\mu)$$

を用いる。熱力学極限 $V \to \infty$ を取ると式中では $\mu \to 0$ となり、

$$\frac{\langle n_1 \rangle}{V} \to \rho - \left(\frac{m}{2\pi\hbar^2\beta}\right)^{3/2} F_{1/2}(0) = \rho \left(1 - \left(\frac{T}{T_c}\right)^{3/2}\right)$$

を得る。

以上から、基底状態の粒子数密度の期待値は

$$\frac{\langle n_1 \rangle}{V} = \begin{cases} 0 & (T > T_c) \\ \rho \left(1 - \left(\frac{T}{T_c} \right)^{3/2} \right) & (T < T_c) \end{cases}$$

という温度依存性を持つ。 □

(6) 前問までの結果のように、ある転移温度 T_c 以下の低温領域で基底状態 j=1 に巨視的な数の粒子が凝縮する現象を Bose-Einstein 凝縮と呼ぶ。分散 $\varepsilon(\mathbf{k})=\frac{\hbar^2\mathbf{k}^2}{2m}$ を持つ 2 次元の理想 Bose 気体は Bose-Einstein 凝縮を起こさないことを説明せよ。

解答.— Bose-Einstein 凝縮を起こさないということは、どのような β, μ に対しても

$$N > \int_0^\infty f_B(\varepsilon) D(\varepsilon) d\varepsilon$$

となることはないということである。これには、 $\mu \rightarrow -0$ で

$$\int_0^\infty f_B(\varepsilon)D(\varepsilon)\mathrm{d}\varepsilon \to \infty$$

となることを示せれば十分。

2次元系では状態密度が ε に依存しないので $D(\varepsilon)=D$ とすると、Bose-Einstein 分布を占有する 粒子数は $\mu<0$ の時

$$\int_{0}^{\infty} f_{B}(\varepsilon) D d\varepsilon = D \int_{0}^{\infty} d\varepsilon \frac{1}{e^{\beta(\varepsilon - \mu)} - 1}$$

$$= D \int_{0}^{\infty} d\varepsilon \frac{e^{-\beta(\varepsilon - \mu)}}{1 - e^{-\beta(\varepsilon - \mu)}}$$

$$= D\beta^{-1} \left[\log \left(1 - e^{-\beta(\varepsilon - \mu)} \right) \right]_{0}^{\infty}$$

$$= -D\beta^{-1} \log \left(1 - e^{\beta\mu} \right)$$

である。 $\mu \to -0$ でこれは ∞ に発散するので、どれだけ温度を下げても、またどれだけ粒子数が多かったとしても

$$N = \int_0^\infty f_B(\varepsilon) D(\varepsilon) \mathrm{d}\varepsilon$$

を満たす化学ポテンシャル $\mu < 0$ が存在する。すなわち、2 次元の場合において Bose-Einstein 凝縮は起きない。