IOT Phase3

FLOOD MONITORING & EARLY WARNING

NAME:P.DHANUSH

REG NO:610821106017

Deploying IoT sensors in flood-prone areas to measure water levels is a proactive approach to flood monitoring and management. To do this:

- **1.Select Sensor Type:** Choose the appropriate water level sensors compatible with IoT technology. Ultrasonic sensors, pressure transducers, or capacitance sensors are commonly used for this purpose.
- **2.Sensor Placement:** Install the sensors at strategic locations within the flood-prone areas, such as near rivers, streams, or floodplains.
- **3.IoT Connectivity:** Configure the sensors to connect to an IoT network. This may involve using Wi-Fi, cellular, LoRa, or other suitable communication methods.
- **4.Data Transmission:** Set up the sensors to regularly transmit water level data to a central server or cloud platform. Ensure data security and integrity.
- **5.Data Processing:** Implement data processing algorithms to filter and analyze the incoming data for anomalies and flood potential.
- **6.Alert System:** Develop an alert system that triggers notifications when water levels rise to a certain predefined threshold, indicating a potential flood event.
- **7.Integration:** Integrate the sensor data with local weather information and other relevant data sources for a more comprehensive flood monitoring system.

IOT Phase3

- **8. Monitoring and Maintenance:** Regularly monitor the sensor network for functionality and perform maintenance as needed.
- **9.Community Outreach:** Inform local authorities and communities about the system and its capabilities, so they can take timely actions in response to flood alerts.
- **10.Emergency Response Plan:** Develop an emergency response plan that outlines actions to be taken when flood alerts are triggered, such as evacuation procedures and resource allocation.

This IoT-based flood monitoring system can greatly improve flood preparedness and response, potentially saving lives and reducing flood-related damages.

Python script on the IoT sensors to send collected water level data to the early warning platform.

import paho.mqtt.client as mqtt import random import time

MQTT broker settings

mqtt_broker = "mqtt.eclipse.org" # Replace with your MQTT broker address

mqtt_port = 1883

MQTT topic to publish to mqtt_topic = "water_level"

Initialize MQTT client

IOT Phase3

```
client = mqtt.Client("WaterLevelSensor")
client.connect(mqtt broker, mqtt port)
try:
  while True:
    # Simulate collecting water level data (replace with real sensor data)
    water_level = round(random.uniform(0.0, 100.0), 2) # Simulated value
between 0 and 100
    # Prepare the data payload
    payload = {
      "sensor id": "sensor123", # Replace with your sensor ID
      "water level": water level,
      "timestamp": int(time.time())
    }
    # Publish the data to the MQTT broker
    client.publish(mqtt_topic, str(payload))
    print(f"Published data: {payload}")
    # Adjust the interval to your desired data sending frequency (e.g., every 5
minutes)
    time.sleep(300) # 300 seconds (5 minutes)
except KeyboardInterrupt:
```

IOT_Phase3

print("Data publishing stopped.")
client.disconnect()