Задачи за задължителна самоподготовка

ПО

Структури от данни и програмиране

email: kalin@fmi.uni-sofia.bq

16 януари 2018 г.

- 1. Даден е граф $G: < V = \{0..n-1\}, E \subseteq V \times V \times \{a..z\} > c$ етикети на ребрата $\{a..z\}$, представен с матрица std::vector < char > G[n][n]. Каваме, че думата $w = w_1, ..., w_k$ може "да се прочете" в графа, ако в него има път между произволни два върха, състоящ се от последователни ребра с етикети $w_1, ..., w_k$. Да се дефинира функция, която намира по колко различни начина може да се прочете дадена дума в даден граф (т.е. колко различни пътя в графа отговарят на това условие).
- 2. Даден е граф $G: < V = \{0..n-1\}, E \subseteq V \times V >$, представен с матрица bool G[n][n]. Нека $v \in V$ е връх в графа, а $k \in N$. Да се построи и отпечата в dotty формат дърво с корен v и височина най-много k, за което е изпълнено:
 - Всяко ниво $0 \le l < k$ съдържа всички върхове u от графа, до които има път от v с дължина l+1 (в брой върхове).
 - За всяко 0 < l < k, елементът u на ниво l-1 е родител в дървото на елемента w на ниво l тогава и само тогава, когато $(u,w) \in E$.
- 3. Даден е ориентиран ацикличен граф $G : < V = \{0..n-1\}, E \subseteq V \times V >$, представен с матрица bool G[n][n]. Да се построи топологично сортиран вектор $(v_1, ..., v_n)$ от всички върхове на графа.
- 4. Даден е лабиринт, представен с матрица $bool\ L[n][n]$. Елементите L[i][j] == true считаме за проходими, а елементите L[i][j] == false за непроходими.

Да се построи матрицата на съседтсво $bool\ G[n\times n][n\times n]$ на графа G:< V, E>, за който множеството V съдържа представители на всички проходими елементи на L, а $(u,v)\in E$ тогава и само тогава, когато u и v са проходими и са съседи в L.

Да се отпечата графа в dotty формат и да се намери броя на свързаните му компоненти.