Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Задание №2

по дисциплине «Основы конструирования и технологии производства радиоэлектронных средств»

Вариант № 10

Выполнил ст. группы РЛ6-61 Филимонов С.В.

Преподаватель Руденко Н.Р.

1. В EWB собрать асинхронные RS-триггеры на элементах И-НЕ, ИЛИ-НЕ согласно таблице 1. К входам подключить переключатели, к выходам светодиоды, подписать выводы. Составить таблицу состояний. Посмотреть, что происходит при подаче на вход триггера запрещенных комбинаций (R=S=1).

Табл. 1. Асинхронные RS-триггеры

Схема «Асинхронный RS-триггер с инверсивными входами» в EWB:

\overline{S}	\overline{R}	Q	\overline{Q}
0	0	1	1
0	1	1	0
1	0	0	1
1	1	1	1

Схема «Асинхронный RS-триггер с прямыми входами» в EWB:

S	R	Q	\overline{Q}
0	0	0	0
0	1	1	0
1	0	0	1
1	1	0	0

2. В ЕWB собрать синхронный RS-триггер со статическим управлением согласно рис. 1. Составить таблицу состоянй. (входом С управлять при помощи переключателя). Убедиться в том, что при C=0 триггер находится в режиме хранения и не реагирует на изменение сигналов на входах S, R; а при C=1 триггер работает как асинхронный, и сигнал на выходах изменяется сразу после изменения сигнала на входе.

Рис. 1. Синхронный RS-триггер со статическим управлением В триггерах с динамическим управлением переключение осуществляется по переднему (переход из 0 в 1) или по заднему (переход из 1 в 0) фронту синхросигнала С.

Схема «Синхронный RS-триггер» в EWB:

С	R	S	Q	\overline{Q}
1	0	0	режим хранения	режим хранения
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1
0	X	X	«Эффект гонок»	«Эффект гонок»

3. В EWB собрать синхронный RS-триггер с прямым динамическим входом согласно рис. 2. Составить таблицу состояний. Убедиться в том, что переключение происходит только по переднему фронту импульса С.

Рис. 2. RS-триггер с прямым динамическим входом

Схема «RS-триггер с прямым динамическим входом» в EWB:

\overline{S}	\overline{R}	C	Q	\overline{Q}
1	1	X	0	1
0	1	X	0	1
0	1	P	1	0
1	0	P	1	0
1	0	X	1	0
1	0	P	0	1

4. В EWB составить таблицу состояний микросхемы 74279 (входы S1, S2 в EWB объединить). По смотреть, что происходит при подаче на вход триггера запрещенных комбинаций.

Рис. 4. Микросхема К555ТР2

На макете RS-триггеры представлены микросхемой К555TP2 (зарубежный аналог 74279). Она содержит четыре асинхронных RS-триггера с инверсными входами (рис. 4).

Схема «RS-триггеры представлены микросхемой К555TP2 (зарубежный аналог 74279)» в EWB:

\overline{S}	\overline{R}	Q^{i+1}
1	1	1
0	1	1
1	0	0
0	0	1

5. В EWB собрать D-триггер по рис. 6. Составить таблицу состояний.

D-триггеры. D-триггеры строятся на основе RS-триггеров. У них два входа — информационный вход D и вход синхронизации C. При подаче синхронизирующего сигнала C триггер запоминает состояние входного сигнала D. Как и RS-триггеры, D-триггеры могут быть как со статическим, так и с динамическим управлением, могут строиться по одноступенчатой и по двухступенчатой («Master-Slave») схеме. Простейший D-триггер с прямым статическим входом показан на рис. 6.

Рис. 6. D-триггер с прямым статическим входом Схема «D-триггер с прямым статическим входом» в EWB:

6. В EWB изучить микросхему 7474. Составить таблицу состояний.

На лабораторном макете D-триггер представлен микросхемой К155ТМ2..

Рис. 7. Микросхема К155ТМ2

Микросхема содержит два независимых D-триггера, срабатывающих по переднему фронту тактового сигнала (переход С из 0 в 1). По входам R и S микросхема K155TM2 (аналог 7474) работает как обычный асинхронный RS-триггер.

Схема «D-триггер с прямым статическим входом на схеме 7474» в EWB:

Таблица истинности для D-триггера с прямым статическим входом на схеме 7474.

С	D	Presei	Resei	Q	\overline{Q}
X	X	0	1	1	0
X	X	1	0	0	1
X	X	0	0	1/0*	1/0*
0-1-0**	1	1	1	1	0
0-1-0**	0	1	1	0	1
0	X	1	1	Без изм	енений
1	X	1	1	Без изм	иенений
1-0-1***	1	1	1	1	0

^{*-}нестабильное состояние неоднозначной работы триггера.

^{**-}фронт тактового импульса.

^{***-}спад тактового импульса.

7. В EWB на микросхеме 7474 собрать Т-триггер по рис. 8-б. Составить таблицу состояний.

Схема «Т-триггер на микросхеме 7474» в EWB:

Таблица истинности Т-триггера на основе D-триггера

С	Q
0	0
1	1
0	1
1	0

По входному импульсу С состояние выхода Q меняется на противоположное.

8. В EWB составить таблицу состояний JK-триггера 74112. Убедиться, что RS-входы являются асинхронными, а входы JK – синхронными с инверсным динамическим управлением по входу С.

Схема «ЈК-триггер на схеме 74112» в EWB:

Таблица истинности

S	R	С	J	K	Q
0	0	X	X	X	Запрещённое
					состояние
0	1	X	X	X	1
1	0	X	X	X	0
1	1	1⊸0	0	0	Q
1	1	1⊸0	0	1	0
1	1	1_0	1	0	1
1	1	1_0	1	1	Q_{-1}

Из полученной таблицы истинности видно, что RS входы являются асинхронными, так как не зависят от состояния входа C. Входы JK-триггера являются синхронными с инверсным динамическим управлением по C.

9. В EWB на основе JK-триггера 74112 собрать D-триггер и асинхронный и синхронный Т-триггеры согласно рис. 10 – 12 и составить таблицу состояний.

На основе ЈК-триггера можно получить D- и асинхронный и синхронный Т-триггеры (рис. 10-12).

Рис. 10. Асинхронный Т-триггер

Рис. 11. Синхронный Т- триггер

Рис. 12. D-триггер

Схема «D-триггер на основе JK-триггера 74112» в EWB:

Таблица истинности D-триггера на основе ЈК-триггера 74112

C	D	Q
0	0	Q
0	1	Q
1 → 0	0	0
1_0	1	1

При подаче "0" на С и любом сигнале на входе D триггер сохраняет своё состояние. По заднему фронту импульса C выход Q принимает значение на входе D.

Схема «синхронный Т-триггер на основе JK-триггера 74112» в EWB:

Таблица истинности синхронного Т-триггера на основе ЈК-триггера 74112

С	Т	Q
0	X	Q
1 → 0	1	\overline{Q}_{-1}
1	X	Q

По заднему фронту импульса С при подаче "1" на Т состояние выхода Q меняется на противоположное.

Схема «асинхронный Т-триггер на основе JK-триггера 74112» в EWB:

Таблица истинности асинхронного Т-триггера на основе ЈК-триггера 74112

С	Q
0	0
1	1
0	1
1	0

По входному импульсу С состояние выхода Q меняется на противоположное.