

Accelerated Insertion of Materials - Composites

AHS International Structures Specialists
by
Charles R. Saff, Boeing
314-23233-8623
charles.r.saff@boeing.com

30 October – 1 November 2001

Jointly accomplished by BOEING and the U.S Government under the guidance of NAST

This program was developed under the guidance of Dr. Steve Wax and Dr. Leo Christodoulou of DARPA. It is under the technical direction of Dr. Ray Meilunas of NAVAIR.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 2001			3. DATES COVERED				
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER				
Accelerated Inserti International Struc	ion of Materials Cor	nposites Presented t	o AHS	5b. GRANT NUMBER			
The national Struc	5c. PROGRAM ELEMENT NUMBER						
6. AUTHOR(S)				5d. PROJECT NUMBER			
	5e. TASK NUMBER						
		5f. WORK UNIT NUMBER					
7. PERFORMING ORGANI Boeing	ZATION NAME(S) AND AD	8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITO	10. SPONSOR/MONITOR'S ACRONYM(S)						
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NO The original docum	otes nent contains color i	mages.					
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	UU	24	RESI ONSIBLE I ERSON				

Report Documentation Page

Form Approved OMB No. 0704-0188

Accelerated Insertion of Materials

Gail Hahn, (314) 233-1848, gail.l.hahn@boeing.com

Defense Sciences Office

Sequential, Unlinked R&D, Locally Optimized R&D

Parallel, Linked, Globally Optimized R&D

- Development of Properties, Processing Done Without Quantifiable Link to Designer Needs
 - Processing Reality Requires Rework of Properties, Still No Link to Designer
 - Production Readiness Steps Reworks
 Technology Readiness
 - » Designer Knowledge Base NOT Ready Until Final Stages

- Development of Properties, Processing Explicitly (Through Models/Experiments) Linked to Designer
 - Development of Designer Knowledge Base Begins at Outset of R&D Based on Designer Needs
 - Time/Effort Refines Knowledge Base
 - » Driven by Properties, Performance, Accuracy Really Needed

A New Paradigm in Materials Development is Required to Significantly Reduce the Timeframe of Insertion

AIM-C Program Organization

• Glenn Havskjold – Integration & Propagation of Errors

• Karl Nelson – Problem Specific Tools

• Larry Ilcewicz – FAA

Jon Schuck - Army

DESIGN TEAM'S NEEDS Requirements are Multi-Disciplined

Structural

- Strength and Stiffness
- Weight
- Service Environment
 - Temperature
 - Moisture
 - Acoustic
 - Chemical
- Fatigue and Corrosion Resistant
- · Loads & Allowables

<u>Manufacturing</u>

- Recurring Cost, Cycle Time, and Quality
- Use Common Mfg.
 Equipment and Tooling
- Process Control
- · Inspectable
- Machinable
- Automatable
- Impact on Assembly

Supportability

- O&S Cost and Readiness
- Damage Tolerance
- Inspectable on Aircraft
- Repairable
- Maintainable
 - Accessibility
 - Depaint/Repaint
 - Reseal
 - Corrosion Removal
- Logistical Impact

Certification Material & Processes

- Development Cost
- Feasible Processing Temperature and Pressure
- · Process Limitations
- Safety/Environmental Impact
- Useful Product Forms
- Raw Material Cost
- Availability
- Consistency

Miscellaneous

- Observables
- EMI/Lightning Strike
- Supplier Base
- Applications History
- Certification Status
 - USN
 - USAF
 - ARMY
 - FAA

Risk in Each Area is Dependent Upon Application's Criticality and Material's Likelihood of Failure

AIM-C Methodology Addresses All Elements of the Maturation Process Simultaneously

TRL	1		2	3	4	5	6	7	8	9	10
Application	Concept		ncept	Proof of	Preliminary	Design	Component	Ground Test	Flight Test	Production	Recycle or
Maturity	Exploration	Def	inition	Concept	Design	Haturatio	n Testing		-		Dispose Neuliuible -
Application Risk	Very High	-	ligh	High - Med	Med - High	Medium	Med - Low	Low	Low - Very Low	Very Low	Recycle or
Certification		F	fication Nan mented	Certification Plan Approved	Preliminary Design Allowables	Design Allowable Subcompo		Full Scale Airframe Test	Eliabs Taxs	Production Approval	Disposal Disposal Plan Approval
Assembly	Assembly Concept		embly San inition	Assembly Definition	Assembly Details Tested	Subcompo nts Assemb		Airframe Assembled	Flight Vehicles Assembled	Production	Disassembly for Disposal
Design	Concept Exploration		ncept inition	Design Closure	Preliminary Design	Design Maturatio	Ground Test	Flight Test Plan	Production Plan	Production Support	Disposal Support
Supportability	,	Ri	ep air	Repair Processes Documented	Fabrication Process Repairs Identified	Fabricatio Repair Process Tri Subcompo	Repair of Component	Production Repairs Identified	Flight Qualified Repairs	Repair / Replace Decisions	Support for Recycle or Disposal
					Develor	ment	Demonstra	ation Int	egration	Implen	nentation
	Cont Books	RO	$\overline{}$	7	Develop	illoit i	ocinonati e	111011 1111	egration	IIIIpici	icitation
Maturity	ost Benefit Maturity Cost Benefit Projected	A		ner &							
Structures Maturity	Potential Benefits Predicted	App Res	Sup	plier							
Fabrication Maturity	Target Applications Identified	App Pro T	Bus	siness							
Quality		Instand Pro- Ide	Des Fab Tes	*							
Materials Maturity	Key Target Properties Defined from Chemistries	Key Pro Obs	Rep	port, pair, &							
Intellectual Rights	Concept Documented	Dis.	Dis	posal			Contracts	Contracts	Agreements	Agreements	Agreements

AIM-C Comprehensive Analysis Tool Must Rest Solidly on the Methodology

Our Current Vision of the AIM Product

Boeing AIM - C Goals

AIM-Composites Will Take Us From Test Supported by Analysis to Analysis Supported by Test

Designer Knowledge Base Driven

RDCS- Robust Design Computational Systems (Rocketdyne)
DOME- Distributed Object Oriented Modeling Environment (MIT)

AIM-C CAT Benefits: COMPRO Integration with Robust Design Computational System (RDCS)

767-400 Raked Wingtip Front Spar DOE Sensitivity Analysis

RDCS Sensitivity Analysis Plus Design Scan

Conventional Approach

• 32-Runs	for	Simple	DOE

4-Months Calendar Time to Set-Up and Solve

- Computer (time) intense
- 216-Hrs Actual Labor to Complete
- Labor-Intense Data Reduction

Integrated with RDCS

- 127-runs for Sensitivity Analysis and Design Scan
- 1-2 Weeks Calendar Time to Set-Up and Solve
- User Isolated from Intense Interaction with Multiple Codes
- 28-Hrs. Actual Labor to Complete
- Automated Data Reduction and Graphics

Module Integration

DOME: Distributed Object-Oriented Modeling Environment

- Modules Link Via Internet
- Visual Interface
- Connections Represented via Lines Between Modules
- Resolves Firewall & Proprietary Code Issues
- Utilize Existing Software

(Some minor modifications expected)

David Wallace

MIT Mechanical Engineering CADlab

Distributed Object Oriented Modeling Environment

Addresses heterogeneity, interoperability, accessibility, complexity, scalability, flexibility, & proprietary knowledge

Error Sources and Mitigation in The AIM-C Product

Round-off

Errors

Modeling

Errors

Math Modeling

Errors

Modeling

Errors

13

AIM-C

Technology Transition Plan

AIM Product AIM Product **AIM Product AIM Product AIM Product AIM Product Validation Development** Verification **Demonstration** Refinement **Implementation Basic Program Optional Program** Phase II Customer Team **Des**ign Team **Certification Team Implementation Team Commercialization Team**

Customer Team – To Insure that the Product Meets the Needs of the Funding Agents

Design Team - To Insure Acceptance Among Users in Industry

Certification Team – To Insure Acceptance Among the Certification Agents for Structures

Implementation Team - To Insure Acceptance Among the User Community

Commercialization Team – To Insure Commercial Support of Users

The Boeing Design Team

Navy Fighters
Bill Carrier

F/A-18 Forward Fuselage (Prev. ALAFS CRAD Mgr.)

Air Force Fighters
Mark Rosenberger

JSF Airframe IPT Lead

Commercial Aircraft
Jay Hopper

NAPD Structures Chief (Prev. 777 Design Team & 747 Chief Structures Engineer)

Uninhabited Aircraft Charley Saff

UCAV Structures Integration

This team insures that the product will be desired and used by Airframe IPTs

Program Level Conclusions from Design Team

AIM-C Needs to Address

- Early scale up and maturation of materials & processes to address readiness for program development
- Repeatability
- Non-destructive quality measurement techniques and defect characterization as well as pristine allowables
- Repairs, both as manufactured and in service
- Life Cycle Costs, from start-up and capital requirements to disposal

The Certification Team

Agency	Integration	Structures	Materials	Producibility
Boeing	Charley Saff	Eric Cregger	Pete George	John Griffith
Navy	Don Polakovics	Dave Barrett	Kathy Nesmith	Steve Claus
Air Force	Jack Lincoln	Dick Holzwarth	Tia Benson-Tolle	Bob Reifenberg
FAA	Richard Yarges	Larry Ilcewicz	David Swartz	Dave Ostrodka
Army	TBD	Jon Schuck	TBD	TBD
NASA	TBD	Jim Starnes	TBD	TBD

To Insure That the Methodology, Verification, and System Validation We Do Satisfies Certifying Agencies

Certification Team Feedback Biggest Obstacles to Acceleration

Customer / Stakeholders	IPT	Design	Allowables				
Regulatory agency understands and approves methods used to insert materials	Full time focus of development team	Design teams can make design decisions before design guidelines were established	Testing for allowables costs too much				
Customers are ready for 1) price, 2) service level, 3) maintenance & Inspection reqs, and 4) repair requirements	Development maturity in one area that outstrips the general maturity can be detrimental to the overall process	Preliminary design values can be developed with very few tests in prototype. How do we move into this paradigm with reduced risk for operational vehicles?	Must establish the requirements for the material				
Customer is part of IPT in good and bad times	If materials development lags product development, the product is at risk	Concept development is done without regard to materials - this imposes limitations on designs, concepts, and costs	Early specs did not address the variables which impacted the process downstream				
When customer changes, the tolerance for risk, vision, and technical criteria change	Has the material been used on other products or is it currently in use on other products?	Multifunctional parts require different designs than we traditionally look at.	Must test durability, aging, and environmental effects				
Identify stakeholders early	Is an industry database available?	Design criteria that are late in being developed or established can eliminate new materials from the design space.	Moisturization takes a long time				
Need to resolve conflicting requirements	IPTs need to be much larger than is currently perceived. They must include more administrative disciplines.	When designers do not follow composite design guidelines, there will be problems manufacturing parts.	Must understand long term environmental exposure effects				
Material decisions must be made with the head and not with the heart.	Must demonstrate the ability to manufacture parts as designed	Design capabilities for composite parts and tools are required.	The impact of proof testing on certification and risk reduction must be determined				
Government programming - large scale demos instead of basic materials and structural data. These programs leave many unaddressed issues and uncertainties	Need an On-the-Floor support staff capable of identifying problems and resolving them.	Conceptual design tools impose load paths that make composites a tough sell.	Due to miscommunication, the entire materials qualification program was run with an incorrect postcure - autoclave cycles used in the lab were not validated.				
	Material form not compatible with design requirements and manufacturing process (K-3 wing, tow vs slit tape, fabric types, large Ti castings)	Incorrect ply stacking design or lay-up sequence	Lower performance of the materials in design details				
	Lack of interface between design, materials, and manufacturing	Product design requirements and objectives must be met	Coupon data doesn't translate into elements				

Certification Team Feedback Roadblocks to Success

Limitations of the Process	Prediction Accuracy	Validation	Intellectual Property Rights	Technology Transition	Commercialization
This is a moving target depending on the		1444	viaa opoy mgma		223333010101011
modules being used and the data input. I think this goes beyond just knowing the 'errors'. We've seen before instances in which engineers who did not understand the limits of the software came out with answers tha	How does one insure that the company that actually builds the part can achieve the required properties? Additional testing?	There is going to have to be a lot of 'proof testing' (validation of AIM-C results) to convince the overall M&P/Structures community	Intellectual property rights to protect databases, test methodologies, and process specifications	Getting past 'Not Invented Here" or industry familiarization.	Developers leave and the certifiers of the next generation process are the next generation
Missing an important behavioral characteristic (ex., crystallinity in thermoplastics, free edge effects in laminates)	Unavailability of useful accurate models for specific technical areas will limit the scope of AIM.	Populating models with 'actual' values and distributions of variations	Protecting company proprietary information; magnitude of variations, costs, etc.	Getting past the "It will never work" crowd	Commercialization buy-in. What is the product?
Complexity of designing aircraft. There are thousands of issues to be considered. How is AIM going to capture them and deal with them in a logical fashion.	fabrication show stoppers? As	Diversity and the extent of the validation activities (more contour, highly loaded, higher fatigue requirements)	Proprietary limitations: Commercial marketing may limit access to non-Boeing data sources.	Certification of materials and structures has different rules depending on who is doing it, the ultimate use of the structure, history of certifying organization Not sure the 'one size fits all" approach will work.	Training to make it work: expert vs casual users
Input data validation: To be universally accepted, data from a large array of sources will be required (i.e., a world standard, ala, MIL-HDBK-5). Who sets this up?	Ability to address long term exposure and fatigue data in a manner different from today. May have to rely on testing for this.	Validation data: gathering sufficient data to certify the multitude of constituent software tools resident in AIM. For instance data to certify strain invariant (if that will be the failure theory used).		Broad adoption by the user community when faced with the "not invented here" syndrome.	Selection of the appropriate time to commercialize. Too early (before the tool is really ready) could be fatal.
Overselling the program to user community on what CAT can and cannot predict, I.e., showstoppers.	Failure of multi-axially loaded composites still difficult to predict.	Can you really provide compelling evidence that you've validated the tool? Criticism could be that since you knew the answers, you developed a system that can regurgitate the answers.		Perception that this is just another big program with no practical value.	Commercialization plan. At the end of AIM, what? Where are the \$ for maintenance, improvements, advertising, and sales, training
Limited funding limits the scope of the program to results in specific technologies. It eliminates those not fully developed (l.e., RTM, fiber placement) resulting in loss of interest by user community, l.e., will not be able to please everybody.		Providing enough confidence to the user community for computational analysis to replace experimental testing for specific applications.		Unfamiliarity of the certification community with computational approaches will result in fall back to building block approach to materials certification.	Where are the \$ to support adoption by other industries, sites? Software, hardware, training, new personnel, revision practices, codes, standards
How far will AIM assist in better understanding composite / metal structure interactions?		Partial validation. Demo leaves loose ends in fatigue, environmental testing, and structural details.		"Not invented here" roadblock. Aim will be perceived as a Boeing only, or a Boeing subcompany process.	How do you partition AIM so that portions can be used before having to use the whole thing?
Can you include a prediction of risk versus benefit for different levels of materials development maturity?					Can AIM be structures so that portions can be spun off and used prior to validation of the whole system?

The Certification Team Will Validate Our Methodology and Our Verification Approach

Step 1

Existing Data

& Tests of Wing Skin Validate Projected Means and Scatter

"Blind"
Subcomponent
Test Results

"Blind"
Component
Test Results

Validates Technical Results, Time Reductions, Cost Reductions

Commercialization Planning

- Past Experience/AIM-C Plan
 - Boeing Parametric Composite Knowledge System (PACKS) with Unigraphics Solutions, Inc.
 - CAICAT with Galorath
 - DMAPS with Unigraphics Solutions, Inc.
 - Easy5 via Boeing's former Computer Services Group
 - RDCS via MSC Software, Inc.
 - Discussion held with MSC Software, Inc., Galorath and others

Technology Transfer Goes Far Beyond Just Communication

It Requires Teams That Are Actively Involved In Making It Happen
We Are Assembling Those Teams

We Have Customer Team Engaged

We Have Boeing's Designers Involved

We'll Be Getting
Certification Agencies
Involved Over the
Next Month

We'll Expand the Design Team to Insure User's Like It

We'll Expand the Implementation Team to Insure That We Can Support It

The Path to the AIM Product Vision

Basic Product

May '02

Architecture Backbone in Place

Limited Heuristic Link to Methodology

Modules Very Limited Utility

No AIM User Interface / Use RDCS?

Optional Product

2004

Architecture with Moderate Robustness

Firm Heuristic Link to Methodology

Modules with Validated Functionality

Internet User Interface for Input

Phase II Product

2007

Architecture Robust

Firm Heuristic Link to Methodology

Modules with Complete Functionality

Internet User Interface for Real Time Input /

Output Manipulation Capability

Accelerated Insertion of Materials

Traditional Building Block Approach Improves Confidence by Extensive Testing Supported by Analysis:

Too Often Misses Material Insertion Windows

What AIM Enables

Time to Insertion Readiness

AIM Methodology Improves Confidence More Rapidly & Effectively by

Analysis Supported By Test / Demonstration -

Focusing on the Designer Knowledge Base Needs

Time to Insertion Readiness

Benefits
50% Time Reduction
33% Cost Reduction

GP14294001.ppt

