Type-IIB String Theory: all class(ea+Lis Groups
F-Theory: all classical Lie Groups as Gauge Group possible

Type-IIB String Theory: all classical Lie Groups as Gauge Group possible

Type-IIB String Theory: all class(ea+Lis Groups)

Type-IIB String Theory: all class(ea+Lis Groups)

└-Physical Context

- ullet Type-IIB only A_n and D_n
- F-Theory is non-pertubative and other Lie groups require bound states

Internal space: 6-real-dimensional (B_6) + elliptic fibre (2-real-dimensional)

Locus	Physical content	$\dim_{\mathbb{C}}$
Torus degenerates into one P ¹	7-branes	2
7-branes intersect / degeneration into two P ¹ s	matter curves	1
matter curves intersect / degeneration into three P1s	intersection locus	0

 $\bullet\,$ due to symmetries it is possible to work over $\mathbb C$

F-Theory

Internal space: 6-real-dimensional (B_0) + elliptic fibre (2-real-dimensional)

Locus	Physical content	$\dim_{\mathbb{C}}$
Torus degenerates into one \mathbb{P}^1	7-branes	2
7-branes intersect / degeneration into two P ¹ s	matter curves	1
matter curves intersect / degeneration into three P1s	intersection locus	0

- Internal space: 6 dim + elliptic fibre 2 dim
- Fibration can degenerate in the following ways.
- explain table
- ullet Physical Reasons: B_6 has complex structure

Given Equations

```
\begin{array}{lll} 0 &=& b_{12} + b_{13} - b_{13} c_{13} \\ 0 &=& d_1 b_{12} - d_2 b_{13} - d_3 c_{13} \\ 0 &=& d_1 b_{12} - d_3 b_{13} - c_{13} d_3 \\ 0 &=& d_1 b_{12} - d_3 b_{13} - c_{13} d_3 \\ 0 &=& d_1 c_{13}^2 - d_3 b_{13}^2 - c_{13}^2 d_3 \\ 0 &=& d_1 c_{13}^2 - d_3 b_{13}^2 - d_3 c_{13}^2 c_{23} + d_3^2 (b_1 b_{21} - b_{22}^2 - c_{13}^2 d_3) \\ 0 &=& d_1 c_{13}^2 c_{13}^2 + d_1^2 c_{13}^2 + d_1^2 c_{13}^2 + d_1^2 (b_1 b_{21} - b_{22}^2 - c_{13}^2 d_3) \\ &=& d_1 c_{13}^2 c_{13}^2 + d_1^2 c_{13}^2 + d_1
```

→ Algebraic Geometry

- ullet Variables $\{b_i, c_i, d_i\}$ are polynomial functions on B_6
- Have: 8 variables + 5 scaling relations \rightarrow 3 complex dimensions
- Every two equations describe a possibly complicated 7-brane around an intersecting curve
- Every two equations define matter curve possibly more than one
- We have to analyse the zero set of polynomials. This is predesignated for the use of algebraic geometry.