Write your name here Surname	Othe	er names
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Mathema	tics D	
Paper 2	ucs D	
_		Paper Reference
Paper 2	ernoon	Paper Reference 4MB0/02

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Calculators may be used.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.

Turn over ▶

Answer ALL ELEVEN questions.

Write your answers in the spaces provided.

	You must write down all stages in your working.	
1	$\mathscr{E} = \{x : 2 \le x \le 10 \text{ and } x \text{ is an integer}\}$	
	$A = \{x : 3 \leqslant x \leqslant 8\}$	
	$B = \{x : x \text{ is prime}\}$	
	$C = \{x : x \text{ is an even integer}\}$	
	List the elements of	
	(a) <i>B</i> ′	
		(1)
	(b) $A \cap C$	(1)
	Find	
	(c) $n([A \cap C]' \cap B')$	
		(2)
	(Total for Question 1 is 4 mar	rks)
	(100011011701 VILLE 111011)	1237

2	Given that $\begin{pmatrix} 1 & 3 \\ x & 0 \end{pmatrix} \begin{pmatrix} x \\ 2 \end{pmatrix} = \begin{pmatrix} y \\ 4 \end{pmatrix}$,	
	(a) find the values of x .	(3)
	(b) Hence find the possible values of y.	(2)
		(3)
	(Total for Question 2 is 6 ma	rks)

3	A particle is moving in a straight line through O.	
	The displacement, s metres, of the particle from O at time t seconds is given by	
	$s = 3t^2 - 4t + 10 \qquad t \geqslant 0$	
	(a) Find an expression, in terms of t , for the velocity, v m/s, of the particle at time t second	nds. (2)
	(b) Calculate the value of t when the particle is instantaneously at rest.	(2)
	(c) Calculate the distance, in metres, travelled by the particle in the fifth second.	(2)

Question 3 continued	
	(Total for Question 3 is 6 marks)

4	A total of 50 teachers and pupils from a school had planned to go on a school trip.	
	There were expected to be t teachers and p pupils on the trip.	
	(a) Write down an equation in t and p to represent this information.	(1)
	The number of pupils on the trip was expected to be four times the number of teachers of the trip.	n
	(b) Write down another equation in t and p to represent this information.	(1)
	(c) Hence find the value of t and the value of p .	(3)
	On the day of the trip, 1 teacher and 5 pupils were absent and did not go on the trip.	
	The school had to pay £10 for each teacher and £3 for each pupil who went on the trip.	
	(d) Calculate how much, in total, the school had to pay.	(3)

Question 4 continued	
	(Total for Question 4 is 8 marks)

5	(a) (i) Solve the inequality $3x - 7 < 3 - x$	
	(ii) Represent your solution on the number line on page 9.	(3)
	(b) (i) Solve the inequality $x - 12 \le 3(x - 3)$	
	(ii) Represent your solution on the same number line.	(4)
	(c) Write down the range of values of x which satisfy both the inequalities	
	$3x - 7 < 3 - x$ and $x - 12 \le 3(x - 3)$	(2)

Question 5 continued (Total for Question 5 is 9 marks)

6 There are 159 people living in a street.

The table below shows information about the number of people living in each of 30 houses in the street.

Number (n) of people living in a house	Number of houses with <i>n</i> people living in the house
1	2
2	3
3	1
4	4
5	3
6	6
7	8
8	2
9	1

()	TO: 1
(a)	Find
(u)	I IIIG

- (i) the modal number of people living in a house,
- (ii) the median number of people living in a house,
- (iii)the mean number of people living in a house.

(5)

Two houses in the street are chosen at random.

(b) Calculate the probability that 4 people live in one of the houses and 2 people live in the other of the houses.

(2)

One of the people living in the street is chosen at random.

(c) Find the probability that this person lives in a house in which at least 5 people live.

(2)

Question 6 continued	
	(Total for Question 6 is 9 marks)

- 7 The points (2, 3), (4, 3) and (4, 4) are the vertices of a triangle A.
 - (a) On the grid, draw and label triangle A.

(1)

Triangle *A* is transformed to triangle *B* under the translation $\begin{pmatrix} 0 \\ -5 \end{pmatrix}$.

(b) On the grid, draw and label triangle B.

(1)

Triangle B is transformed to triangle C under the transformation with matrix T where

$$\mathbf{T} = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$$

(c) Find the coordinates of the vertices of triangle C.

(2)

(d) On the grid, draw and label triangle C.

(1)

Triangle B is mapped to triangle C under the transformation with matrix T by an anticlockwise rotation about the origin of 180° followed by an enlargement with centre the origin.

(e) Find the scale factor of this enlargement.

(1)

Triangle C is transformed to triangle D under the translation $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$.

(f) On the grid, draw and label triangle D.

(1)

Triangle A is transformed to triangle D by a single enlargement.

(g) Describe fully this enlargement.

(2)

Question 7 continued

Question 7 continued	

Question 7 continued	
	(Total for Question 7 is 9 marks)

8

Figure 1

Figure 1 shows quadrilateral ABCD with diagonal BD.

Given that $\angle BAD = 110^{\circ}$, AB = 6 cm and AD = 8 cm,

(a) calculate the length, in cm to 3 significant figures, of BD.

(3)

Given also that $\angle BDC = 40^{\circ}$ and $\angle BCD = 60^{\circ}$, calculate the length, in cm to 3 significant figures, of

(b) *BC*,

(3)

(c) AC.

Sine Rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
Cosine Rule: $a^2 = b^2 + c^2 - 2bc \cos A$

Question 8 continued

Question 8 continued	

Question 8 continued	
	Cotal for Question 8 is 11 marks)

- 9 Part of the curve with equation $y = x^2 6x + 5$ is drawn on the grid.
 - (a) For $y = -x^2 + 7x 11$ complete the table, giving your answers to 2 decimal places where necessary.

X	1	1.5	2	2.5	3	3.5	4	5
y	-5		-1		1		1	-1

(3)

(b) On the grid, plot the points from your completed table and join them to form a smooth curve.

(3)

(c) Use the two curves on the grid to find estimates for the solutions of the equation $2x^2 - 13x + 16 = 0$

(2)

The curve with equation $y = x^2 - 6x + 5$ intersects the curve with equation $y = -x^2 + 7x - 11$ at the points A and B.

(d) Work out the gradient of the straight line through A and B.

(3)

Question 9 continued 3

Question 9 continued		

Question 9 continued	
	(Total for Question 9 is 11 marks)

10 f and g are the two functions such that

$$f(x) = \frac{2}{x - 1} \qquad x \neq 1$$

$$g(x) = x^2 - 3$$

(a) Find the value of gf(3)

(1)

(b) Find $f^{-1}(x)$ in terms of x.

(2)

(c) Show that $gf^{-1}(x) = \frac{4 + 4x - 2x^2}{x^2}$

(3)

(d) State the value of x which must be excluded from any domain of gf^{-1}

(1)

(e) Find the values of x for which $gf^{-1}(x) = 1$

(5)

Question 10 continued	

Question 10 continued

Question 10 continued	
	(Total for Question 10 is 12 marks)

Figure 2

In Figure 2, the points O, A and B are such that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = 2\mathbf{b}$.

The point C is the midpoint of OB.

The point F is on the line AB such that AF : FB = 2 : 1

(a) Express in terms of a or b or a and b, simplifying your answers where possible,

(i)
$$\overrightarrow{AB}$$
, (ii) \overrightarrow{BC} , (iii) \overrightarrow{FB} , (iv) \overrightarrow{FC} .

The point D is on the line OB such that OD : OB = 1 : 4

(b) Express in terms of **a** or **b** or **a** and **b**, simplifying your answers where possible,

(i)
$$\overrightarrow{OD}$$
, (ii) \overrightarrow{AD} .

The point *E* is such that *ADE* and *FCE* are straight lines.

Given that $\overrightarrow{FE} = \lambda \overrightarrow{FC}$, where λ is a scalar,

(c) find an expression, in terms of **a**, **b** and λ , for \overrightarrow{FE} .

Given that AD : AE = 3 : 4

(d) find and simplify an expression, in terms of \mathbf{a} and \mathbf{b} , for \overrightarrow{FE} .

(e) Hence calculate the value of λ .

Question 11 continued	

Question 11 continued	

Question 11 continued	
	(Total for Question 11 is 15 marks)
	TOTAL FOR PAPER IS 100 MARKS

BLANK PAGE