

# ASTRONOMICAL IMAGE COLOURISATION AND SUPER-RESOLUTION USING GANS

Group ID: 23

Internal Guide: Prof. Dr. S. M. Kamalapur





# TEAM MEMBERS

| Division./<br>Roll No. | Exam Seat No. | Name of the student |
|------------------------|---------------|---------------------|
| 17                     | B150134261    | Shreyas Kalvankar   |
| 18                     | B150134296    | Hrushikesh Pandit   |
| 19                     | B150134299    | Pranav Parwate      |
| 20                     | B150134303    | Atharva Patil       |

### Content



- Problem Definition
- Requirement Specification
- Literature Survey
- Motivation of the Project
- Objectives
- Block diagram of Project/Architecture
- Methodology
- Mathematical Model
- Experimental Set Up
- Performance Parameter
- Efficiency Issues
- References

# Requirement Specifications

• The following table showcases the minimum hardware requirements:

| Sr. No. | Parameter  | Minimum Requirement     | Justification      |
|---------|------------|-------------------------|--------------------|
| 1       | GPU type   | NVIDIA CuDA enabled GPU | Training the model |
| 2       | GPU memory | >6 GB                   | Batch training     |

- The following are the software requirements:
  - Operating System: Windows/Linux
  - IDE: Jupyter Notebook
  - Programming Languages: python3, javascript
  - Frameworks: Node.js, Tensorflow, sklearn, plotting libraries, openCV

Table 1: Hardware Requirements





- The problem can be divided into two sub-problems:
  - Create an efficient model to colorize grayscale images
  - Take a colorized image and upscale it n times the original size

Keywords: GAN, Neural Network, NodeJS, puppeteer, Convolutional Neural Network, Upscaling, Colorization.



| Publication and                                        | Technology                                                                                                                      | Summary                                                                                                                                                                                                                   |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year                                                   |                                                                                                                                 |                                                                                                                                                                                                                           |
| TSAI, R. (1984)                                        | Multiframe image restoration and registration                                                                                   | Applied and evaluated<br>the ScSR method<br>for improvement of<br>image quality of mag-<br>nified MR images<br>(T1-weighted, T2-<br>weighted, FLAIR, and<br>DWI images) in16-bit<br>DICOM format                          |
| Tom and Katsaggelos (1996)                             | Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images | Solution is provided to<br>the problem of obtain-<br>ing a high resolution<br>image from several low<br>resolution images that<br>have been subsampled<br>and displaced by dif-<br>ferent amounts of sub-<br>pixel shifts |
| Welsh, T., Ashikhmin,<br>M., and Mueller, K.<br>(2002) | Transferring color to greyscale images                                                                                          | Introduced a general<br>technique for coloriz-<br>ing greyscale images by<br>transferring color be-<br>tween a source, color<br>image and a destina-<br>tion, greyscale image                                             |
| Levin, A., Lischinski,<br>D., and Weiss, Y.<br>(2004)  | Colorization using optimization                                                                                                 | Used quadratic cost<br>function and were able<br>to generate high qual-<br>ity colorizations.                                                                                                                             |



| Yatziv, L. and Sapiro,<br>G. (2006)                                                                                        | Fast image and video colorization using chrominance blending | High Quality colorization results are obtained at a fraction of the complexity and computational cost using concepts of luminance-weighted chrominance blending and fast intrinsic distance computations |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qu, Y., Wong, TT.,<br>and Heng, PA. (2006)                                                                                 | Manga colorization                                           | Proposed a novel colorization technique that propagates color over regions exhibiting pattern-continuity as well as intensity-continuity                                                                 |
| Tola, E., Lepetit, V.,<br>and Fua, P. (2008)                                                                               | A fast local descriptor for dense matching                   | Introduced a novel local image descriptor designed for dense wide-baseline matching purposes                                                                                                             |
| Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014) | Generative Adversarial<br>Networks                           | Proposed a novel approach of implementing Generative Adversarial Networks using two Neural Networks, viz Generator and Discriminator Networks.                                                           |



| Mirza, M. and Osin-    | Conditional generative | Introduced the con-     |
|------------------------|------------------------|-------------------------|
| dero, S. (2014)        | adversarial nets       | ditional version of     |
| (2011)                 |                        | generative adversarial  |
|                        |                        | nets, which can be      |
|                        |                        | constructed by simply   |
|                        |                        | feeding the data, v,    |
|                        |                        | to condition on to      |
|                        |                        | both the generator and  |
|                        |                        | discriminator           |
| He K Zhang X           | Deep residual learning | Presented 152 layer     |
| Ren, S., and Sun, J.   |                        | using residual learning |
| (2015)                 | for image recognition  | framework for image     |
| (2013)                 |                        | recognition and an      |
|                        |                        | adaptive edge detec-    |
|                        |                        | tion based colorization |
|                        |                        | algorithm and its       |
|                        |                        | applications.           |
| Long, J., Shelhamer,   | Fully convolutional    | Showed that convo-      |
| E., and Darrell, T.    | networks for semantic  | lutional networks by    |
| (2015)                 | segmentation           | themselves, trained     |
| (2013)                 | segmentation           | end-to-end, pixels-     |
|                        |                        | to-pixels, improve      |
|                        |                        | on the previous best    |
|                        |                        | result in semantic      |
|                        |                        | segmentation.           |
| Simonyan, K. and Zis-  | Very deep convolu-     | Investigated the effect |
| serman, A. (2015)      | tional networks for    | of the convolutional    |
| 50111an, 11. (2010)    | large-scale image      | network depth on its    |
|                        | recognition            | accuracy in the large-  |
|                        | 10008iiivioii          | scale image recognition |
|                        |                        | setting                 |
| Cheng, Z., Yang, Q.,   | Deep Colorization      | The paper presented     |
| and Sheng, B. (2016)   | 2 cop colorination     | a fully-automatic col-  |
| and bliefig, D. (2010) |                        | orization method using  |
|                        |                        | deep neural networks    |
|                        |                        | deep neural networks    |



| Dahl, R. (2016)  Radford, A., Metz, L.,                                                                                                                       | Automatic Colorization  Unsupervised repre-                                         | automatically produce<br>multiple colorized ver-<br>sions of a grayscale im-<br>age<br>Introduced a class of                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and Chintala, S. (2016)                                                                                                                                       | sentation learning with<br>deep convolutional<br>generative adversarial<br>networks | CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning |
| Ledig, C., Theis, L.,<br>Huszar, F., Caballero,<br>J., Cunningham, A.,<br>Acosta, A., Aitken, A.,<br>Tejani, A., Totz, J.,<br>Wang, Z., and Shi, W.<br>(2017) | Super Resolution using GAN                                                          | Photorealistic single<br>image super-resolution<br>using a generative<br>adversarial network.                                                                                                    |
| Isola, P., Zhu, JY.,<br>Zhou, T., and Efros, A.<br>A. (2018)                                                                                                  | Image-to-image trans-<br>lation with conditional<br>adversarial networks            | Pix2Pix is a Conditional-GAN with images as the conditions for coloriza- tion.                                                                                                                   |



# Motivation of the Project

- Application of GANs has successfully improved the performance and computers are getting better and better at predicting accurate missing pixel values and upscaling images many folds the original size.
- All this computation power can be used for astronomical research by processing large data archives.

# Motivation of the Project



- A large number of images lie dormant in most of the space survey data archives which never go through any kind of processing and are low resolution and black & white.
- These images could be processed automatically by an algorithm that will colorize and super-resolve the images which can make it easier for astronomers to visually inspect the images.



Fig 1a: Black & White image from space archive



Fig 1b: Subsequent colored version of Fig 1a





- Auto-Colorization
- Upscaling/super-resolution
- The models may be combined to form a single model that will take a low resolution, grayscale image as its input and produce a high resolution, colorized image as its output.







Figure 2: Basic Block diagram



# Block diagram of Project



Figure 3: Data Preprocessing



Figure 4: Basic GAN architecture







Figure 5: GAN Block Summary

# Block diagram of Project



Figure 6: Image conversion by GAN







Figure 7: Discriminator (Ronneberger et al., 2015)







Figure 8: Encoder Decoder Generator (Ronneberger et al., 2015)



# Block diagram of Project



Figure 9: Ledig SRGAN Architecture (Ledig et al., 2017)





- Data gathering and processing:
  - Data Scraping
  - Data Cleaning
- Model Building
- Model Training
- Cost Optimization and tuning
- Performance Evaluation and Documentation



# Image Colorization

- Image Colorization convolutional neural networks with residual encoders using the VGG16 architecture will be used.
- System will consists of L2 loss which is a function of the Euclidean distance between the pixel's blurred color channel value in the target and predicted image.
- Generative Adversarial Networks use a minimax loss which is different than the L2 loss as it will choose a color to fill an area rather than averaging. This is similar to a classification based approach.



# Image Upscaling

• SR-GAN works well with for single image super-resolution as it also uses an intelligent content loss function that uses pre-trained VGG-net layers.





- A generative network, G, is supposed to learn the underlying distribution of a latent space, Y.
- The Discriminator network D takes in both the fabricated outputs generated by G and real inputs from the underlying distribution Y.
- The network produces a probability of the image belonging to the real or fabricated space.

### Mathematical Model



Let  $x \in X$  be a low resolution/grayscale image and  $y \in Y$  be it's underlying distribution from the latent space Y.

$$G(x) = \hat{y}$$

The discriminative network D is fed the fabricated mapping  $x \to \hat{y}$  and the underlying distribution of x i.e.  $y \in Y$ .

$$D(G(x), y) = p$$

where  $p \in (0,1)$  is the probability that the image is fabricated or real.

Let the generator be parameterized by  $\theta_g$  and the discriminator be parameterized by  $\theta_d$ . The minimax objective function can be defined as:

$$\min_{\theta_g} \max_{\theta_d} \left[ \mathbb{E}_{x, y \sim p_{data}} \log D_{\theta_d}(x, y) + E_{x \sim p_{data}} \log (1 - D_{\theta_d}(x, G_{\theta_g}(x))) \right]$$

### Mathematical Model



Where,  $G_{\theta_g}$  is the output of the generator and  $D_{\theta_d}$  is the output of the discriminator.

Also, we consider L1 difference between input x and output y in generator.

On each iteration, the discriminator would maximize  $\theta_d$  according to the above expression and generator would minimize  $\theta_g$  in the following way:

$$\min_{\theta_g} \left[ -\log(D_{\theta_d}(x, G_{\theta_g}(x))) + \lambda \|G_{\theta_g}(x) - y\|_1 \right]$$

# **Experimental Setup**

- We aim to implement the neural network models in Tensorflow using Jupyter Notebook and python
- As deep learning models require huge computational power for training, we plan to use Google Colab which provides a Tesla K80 GPU with memory ranging between 8GB to 16GB
- The dataset has been scraped off the Hubble Heritage project and Hubble Legacy Archive
- The processing on the dataset will be done using OpenCV and other image libraries in python and will be fed into the network

### Performance Parameters

- To evaluate the performance of the coloring model quantitatively, we propose averaging the L1 and L2 distance (per pixel-channel) between the generated images and the ground truth images
- Another evaluation method is to calculate the Perceptual loss. It is critical for the performance of the Generator network
- The perceptual loss is defined as the weighted sum of the content loss and the adversarial loss component

# **Efficiency Issues**

- The data gathered had to be scraped off websites such as the Hubble Legacy archive and Hubble main website
- This yielded in more images than were useful. So we focused on a particular section of the sky where we could get the images of galaxy M101
- This still yielded in about 400,000 images which had to be manually filtered
- Even with all the images available, the network training will require huge computational resources to perform efficiently
- The network parameters exceed the available training data and will require augmentation to avoid overfitting
- A quantitative evaluation of a GAN is considerably difficult even with the availability of the ground truth images

### References

- Cheng, Z., Yang, Q. and Sheng, B. (2016). Deep colorization.
- Dahl, R. (2016). Automatic colorization.
- Dong, C., Loy, C. C., He, K. and Tang, X. (2014). Learning a deep convolutional network for image super-resolution, in D. Fleet, T. Pajdla, B. Schiele and T. Tuytelaars (eds), Computer Vision ECCV 2014, Springer International Publishing, Cham, pp. 184-199.
- Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014).
   Generative adversarial networks.
- He, K., Zhang, X., Ren, S. and Sun, J. (2015). Deep residual learning for image recognition.
- Huang, Y.-C., Tung, Y.-S., Chen, J.-C., Wang, S.-W. and Wu, J.-L. (2005). An adaptive edge detection based colorization algorithm and its applications, pp. 351–354.
- Isola, P., Zhu, J.-Y., Zhou, T. and Efros, A. A. (2018). Image-to-image translation with conditional adversarial networks.
- Jianchao Yang, Wright, J., Huang, T. and Yi Ma (2008). Image super-resolution as sparse representation of raw image patches, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8.

### References

- Kim, J., Lee, J. K. and Lee, K. M. (2016). Accurate image super-resolution using very deep convolutional networks, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654.
- Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z. and Shi, W. (2017).
  Photorealistic single image super-resolution using a generative adversarial network.
- Levin, A., Lischinski, D. and Weiss, Y. (2004). Colorization using optimization, *ACM SIGGRAPH 2004 Papers*, pp. 689–694.
- Long, J., Shelhamer, E. and Darrell, T. (2015). Fully convolutional networks for semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440.
- Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets.
- Pressman, R. S. (1992). Software Engineering (3rd Ed.): A Practitioner's Approach, McGraw-Hill, Inc., New York, NY, USA.
- Qu, Y., Wong, T.-T. and Heng, P.-A. (2006). Manga colorization, ACM Transactions on Graphics (TOG) 25(3): 1214–1220.
- Radford, A., Metz, L. and Chintala, S. (2016). Unsupervised representation learning with deep convolutional generative adversarial networks.
- Shi, W., Caballero, J., Husz'ar, F., Totz, J., Aitken, A. P., Bishop, R., Rueckert, D. and Wang, Z. (2016).
  Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network,
  2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1874–1883.

### References

- Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition.
- Tola, E., Lepetit, V. and Fua, P. (2008). A fast local descriptor for dense matching, *Proc. CVPR*.
- Tom and Katsaggelos (1996). Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images, in Anon (ed.), IEEE International Conference on Image Processing, Vol. 2, IEEE, pp. 539–542. Proceedings of the 1995 IEEE International Conference on Image Processing. Part 3 (of 3); Conference date: 23-10-1995 Through 26-10-1995.
- TSAI, R. (1984). Multiframe image restoration and registration, *Advance Computer Visual and Image Processing* 1: 317–339.
- Welsh, T., Ashikhmin, M. and Mueller, K. (2002). Transferring color to greyscale images, *ACM Trans. Graph.* 21: 277–280.
- Yatziv, L. and Sapiro, G. (2006). Fast image and video colorization using chrominance blending, IEEE Transactions on Image Processing 15(5): 1120–1129.
- Zhu, J.-Y., Krahenbuhl, P., Shechtman, E. and Efros, A. A. (2018). Generative visual manipulation on the natural image manifold.





# ANNEXURE

### Annexure: Performance Parameters

We define the content loss as the L2 distance between the feature representations of the reconstructed image  $G_{\theta_g}(I^{LR})$  and the reference image  $I^{HR}$ 

$$l_{VGG_{i,j}}^{SR} = \frac{1}{W_{i,j}H_{i,j}} \sum_{x=1}^{W_{i,j}} \sum_{y=1}^{H_{i,j}} \left( \phi_{i,j}(I^{HR})_{x,y} - \phi_{i,j}(G_{\theta_g}(I^{LR}))_{x,y} \right)^2$$

where  $W_{i,j}$  and  $H_{i,j}$  represent the dimensions of the respective feature maps within VGG19 network. The adversarial generative loss  $l_{Gen}^{SR}$  is defined on the probabilities of the discriminator  $D_{\theta_d}(G_{\theta_g}(I^{LR}))$  over all the training samples as:

$$l_{Gen}^{SR} = \sum_{n=1}^{N} -\log D_{\theta_d}(G_{\theta_g}(I^{LR}))$$

### Annexure: Performance Parameters

 $D_{ heta_d}(G_{ heta_g}(I^{LR}))$  is the probability that the reconstructed image  $G_{ heta_g}(I^{LR}))$  is a natural HR image. For beter gradient behavior, we minimize  $-\log D_{ heta_d}(G_{ heta_g}(I^{LR}))$  instead of  $\log \left[1 - D_{ heta_d}(G_{ heta_g}(I^{LR}))\right]$ .