Computations

$$\bar{h} = 1$$

1 S_2 , char 2, τ trivial

1.1 Hilbert polynomial

$$t^4 + 2t^3 + 2t^2 + 2t + 1 = (t+1)^2(t^2+1).$$

1.2 Generators

$$x_0^2 + x_1^2$$

 x_0^4 .

2 S_3 , char 3, τ trivial

2.1 Hilbert polynomial

$$t^{12} + 3t^{11} + 6t^{10} + 8t^9 + 9t^8 + 9t^7 + 9t^6 + 9t^5 + 9t^4 + 8t^3 + 6t^2 + 3t + 1 = (t^2 + t + 1)^3(t^6 + t^3 + 1).$$

2.2 Generators

$$x_0^3 + x_1^3 + x_2^3$$

$$((2c+2)/c)x_0^3 + ((c+1)/c)x_1^3 - x_0^2x_1 - x_1^2x_2 - x_0x_2^2 + x_0x_1^2 + x_0^2x_2 + x_1x_2^2$$

 x_0^9 .

3 S_4 , char 2, τ trivial

3.1 Hilbert polynomial

$$t^6 + 4t^5 + 7t^4 + 8t^3 + 7t^2 + 4t + 1 = (t+1)^4(t^2+1).$$

3.2 Generators

$$\begin{split} x_0^2 + x_1^2 + x_2^2 + x_3^2 \\ &((c+1)/c)x_0^2 + x_0x_1 + x_1x_2 + ((c+1)/c)x_2^2 + x_0x_3 + x_2x_3 \\ &((c+1)/c)x_0^2 + ((c+1)/c)x_1^2 + x_0x_2 + x_1x_2 + x_0x_3 + x_1x_3 \\ &x_0^4. \end{split}$$

4 S_5 , char 5, τ trivial

4.1 Hilbert polynomial

PARTIAL

$$1 + 5t + 15t^2 + 35t^3 + 70t^4 + 122t^5 + 190t^6 + 270t^7 + \dots$$

4.2 Generators

PARTIAL

```
x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5
 ((4c+4)/c)x_0^5
 +((c+1)/c)x_3^5
+x_0^4x_1+x_0^4x_2+x_1^4x_3+x_2^4x_3+x_0^4x_4+x_3x_4^4
   +2x_0^4x_3
   +3x_0x_3^4
 -x_0x_1^4 - x_0x_2^4 - x_1x_3^4 - x_2x_3^4 - x_3^4x_4 - x_0x_4^4
 + ((c+4)/(c+2))x_0^2x_1^3 + ((c+4)/(c+2))x_0^2x_2^3 + ((c+4)/(c+2))x_1^2x_3^3 + ((c+4)/(c+2))x_2^2x_3^3 + ((c+4)/(c+2))x_2^2x_3^2 + ((c+4)/(c+2))x_3^2x_3^2 + ((c+4)/(c+2))x_3^2 + ((
2))x_3^3 x_4^2 + ((c+4)/(c+2))x_0^2 x_4^3
 +((2c+3)/(c+2))x_0^2x_3^3
+((3c+2)/(c+2))x_0^3x_3^2\\+((4c+1)/(c+2))x_0^3x_1^2+((4c+1)/(c+2))x_0^3x_2^2+((4c+1)/(c+2))x_1^3x_3^2+((4c+1)/(c+2))x_2^3x_3^2+((4c+1)/(c+2))x_1^3x_3^2+((4c+1)/(c+2))x_1^3x_3^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_3^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^3x_2^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)/(c+2))x_1^2+((4c+1)
 1)/(c+2)x_0^3x_4^2 + ((4c+1)/(c+2))x_3^2x_4^3
 (2))x_0x_2x_4^3
 + \left(2c/(c+2)\right)x_0^3x_1x_3 + \left(2c/(c+2)\right)x_0^3x_2x_3 + \left(2c/(c+2)\right)x_1x_2x_3^3 + \left(2c/(c+2)\right)x_0^3x_3x_4 + \left(2c/(c+2)\right)x_1x_3^3x_4 + \left(2c/(c+2)\right)x_1x_3^2x_4 + \left(2c/(c+2)\right)x_
 (2c/(c+2))x_2x_3^3x_4
 + \left(3c/(c+2)\right)x_0^3x_1x_2 + \left(3c/(c+2)\right)x_0x_1x_3^3 + \left(3c/(c+2)\right)x_0x_2x_3^3 + \left(3c/(c+2)\right)x_0^3x_1x_4 + \left(3c/(c+2)\right)x_0^3x_2x_4 + \left(3c/(c+2)\right)x_0^3x_1x_2 + \left(3c/(c+2)\right)x_1^3x_1x_2 + \left(3c/(c+2)\right)x_1^3x_1 + \left(3c/(c+2)\right)x_1^3x_1 + \left(3c/(c+2)\right)x_1^3x_1 + \left(3c/(c+2)\right)x_1^3x_1 + \left(3c/(c+2)\right)x_1^3x_1 + \left(3
 (3c/(c+2))x_0x_3^3x_4
 +(4c/(c+2))x_1^3x_2x_3+(4c/(c+2))x_1x_2^3x_3+(4c/(c+2))x_1^3x_3x_4+(4c/(c+2))x_2^3x_3x_4+(4c/(c+2))x_1x_3x_4^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^3+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_2x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3^2+(4c/(c+2))x_1x_3x_3
 (4c/(c+2))x_2x_3x_4^3
 1)x_1^2x_3x_4^2 + ((c^2+4c)/(c^2+1))x_2^2x_3x_4^2 + ((c^2+4c)/(c^2+1))x_0x_3^2x_4^2
+((2c^2+3c)/(c^2+1))x_1^2x_2x_3^2+((2c^2+3c)/(c^2+1))x_1x_2^2x_3^2+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4+((2c^2+3c)/(c^2+1))x_1^2x_2^2x_3^2+((2c^2+3c)/(c^2+1))x_1^2x_2^2x_3^2+((2c^2+3c)/(c^2+1))x_1^2x_2^2x_3^2+((2c^2+3c)/(c^2+1))x_1^2x_2^2x_3^2+((2c^2+3c)/(c^2+1))x_1^2x_2^2x_3^2+((2c^2+3c)/(c^2+1))x_1^2x_2^2x_3^2+((2c^2+3c)/(c^2+1))x_1^2x_2^2x_3^2+((2c^2+3c)/(c^2+1))x_1^2x_2^2x_3^2+((2c^2+3c)/(c^2+1))x_1^2x_2^2x_2^2+((2c^2+3c)/(c^2+1))x_1^2x_2^2x_2^2+((2c^2+3c)/(c^2+1))x_1^2x_2^2x_2^2+((2c^2+3c)/(c^2+1)x_1^2x_2^2x_2^2+((2c^2+3c)/(c^2+1)x_1^2x_2^2x_2^2+((2c^2+3c)/(c^2+1)x_1^2x_2^2x_2^2+((2c^2+3c)/(c^2+1)x_1^2x_2^2x_2^2+((2c^2+3c)/(c^2+1)x_1^2x_2^2x_2^2+((2c^2+3c)/(c^2+1)x_1^2x_2^2x_2^2+((2c^2+3c)/(c^2+1)x_1^2x_2^2x_2^2+((2c^2+3c)/(c^2+1)x_1^2x_2^2+((2c^2+3c)/(c^2+1)x_1^2x_2^2+((2c^2+3c)/(c^2+1)x_1^2x_2^2+((2c^2+3c)/(c^2+1)x_1^2x_1^2+((2c^2+3c)/(c^2+1)x_1^2+((2c^2+3c)/(c^2+1)x_1^2+((2c^2+3c)/(c^2+1)x_1^2+((2c^2+3c)/(c^2+1)x_1^2+((2c^2+3c)/(c^2+1)x_
1))x_2^2x_3^2x_4 + ((2c^2+3c)/(c^2+1))x_1x_3^2x_4^2 + ((2c^2+3c)/(c^2+1))x_2x_3^2x_4^2
```

```
\begin{aligned} &1))x_0^2x_2^2x_4 + ((3c^2+2c)/(c^2+1))x_0^2x_1x_4^2 + ((3c^2+2c)/(c^2+1))x_0^2x_2x_4^2 \\ &+ ((4c^2+c)/(c^2+1))x_0x_1^2x_2^2 + ((4c^2+c)/(c^2+1))x_0^2x_1^2x_3 + ((4c^2+c)/(c^2+1))x_0^2x_2^2x_3 + ((4c^2+c)/(c^2+1))x_0^2x_2^2x_3^2 + ((4c^2+c)/(c^2+1))x_0^2x_2x_3^2 + ((4c^2+c)/(c^2+1))x_0^2x_3x_4^2 \\ &+ (c^2/(c^2+1))x_0^2x_1x_2x_4 \\ &+ (2c^2/(c^2+1))x_0x_1x_2x_3^2 + (2c^2/(c^2+1))x_1^2x_2x_3x_4 + (2c^2/(c^2+1))x_1x_2^2x_3x_4 + (2c^2/(c^2+1))x_0x_1x_3^2x_4 + (2c^2/(c^2+1))x_0x_2x_3^2x_4 + (2c^2/(c^2+1))x_0x_2x_3^2x_4 + (2c^2/(c^2+1))x_0x_1x_2x_3x_4^2 \\ &+ (3c^2/(c^2+1))x_0^2x_1x_2x_3 + (3c^2/(c^2+1))x_0x_1^2x_2x_4 + (3c^2/(c^2+1))x_0x_1x_2^2x_4 + (3c^2/(c^2+1))x_0x_1x_2x_3^2x_4 + (4c^2/(c^2+1))x_0x_1x_2x_3^2x_4 + (4c^2/(c^2+1))x_0x_1x_2x_3^2x_4
```

 $((4c+4)/c)x_0^5 + x_0^4x_1 + ((4c+1)/(c+2))x_0^3x_1^2 + ((c+4)/(c+2))x_0^2x_1^3 - x_0x_1^4 + 2x_0^4x_2 + (2c/(c+2))x_0^3x_1x_2 + ((4c^2+1)/(c+2))x_0^2x_1^3 + ((4c+1)/(c+2))x_0^3x_1^2 + ((4c+1)/(c+2))x_0^3x_1^3 + ((4c+1)/(c+2))x_0^3 + ((4c+1)/($ $(c)/(c^2+1))x_0^2x_1^2x_2 + x_1^4x_2 + ((3c+2)/(c+2))x_0^3x_2^2 + ((c^2+4c)/(c^2+1))x_0x_1^2x_2^2 + ((4c+1)/(c+2))x_1^3x_2^2 + ((2c+1)/(c+2))x_1^3x_2^2 + ((2c+1)/(c+2))x_1^3x_1^2 + ((2c+1)/(c+2))x_1^3 + ((2c+1)/(c+2))x_1^3 + ((2c+1)/(c+2))x_1^3 + (2c+1)/(c+2)x_1^2 + (2c+1)/(c+2)x_1^2$ $3)/(c+2))x_0^2x_2^3 + (3c/(c+2))x_0x_1x_2^3 + ((c+4)/(c+2))x_1^2x_2^3 + 3x_0x_2^4 - x_1x_2^4 + ((c+1)/c)x_2^5 + x_0^4x_3 + (3c/(c+2))x_0x_1x_2^3 + (3c/(c+2))x_1x_2^3 + (3c/(c+2))x_1x_2^2 + ($ $2))x_0^3x_1x_3 + ((3c^2 + 2c)/(c^2 + 1))x_0^2x_1^2x_3 + (c/(c+2))x_0x_1^3x_3 + (2c/(c+2))x_0^3x_2x_3 + (3c^2/(c^2 + 1))x_0^2x_1x_2x_3 + (3c^2/(c^2 + 1))x_0^2x_1x_2x_3 + (3c^2/(c^2 + 1))x_0^2x_1x_3 + (3c^2/(c^2 + 1)$ $(4c/(c+2))x_1^3x_2x_3 + (2c^2/(c^2+1))x_0x_1x_2^2x_3 + ((2c^2+3c)/(c^2+1))x_1^2x_2^2x_3 + (3c/(c+2))x_0x_2^3x_3 + (2c/(c+2))x_0x_2^3x_3 + (2c/(c+2))x_0x_2^2x_3 + (2c/(c+2))x_0x_3^2x_3 + (2c/(c+2))x_3^2x_3^2x_3^2 + (2c/(c+2))x_3^2x_3^2x_3^2 + (2c/(c+2))x_3^2x_3^2 + (2c$ $(4c+1)/(c+2))x_1^3x_2^3 + (4c+1)/(c+2))x_0^3x_3^2 + ((3c^2+2c)/(c^2+1))x_0^2x_1x_3^2 + ((4c^2+c)/(c^2+1))x_0x_1^2x_3^2 + ((4c^2+c)/(c^2+1))x_0x_1^2x_1^2 + ((4c^2+c)/(c^2+1))x_0x_1^2x_1^2 + ((4c^2+c)/(c^2+1))x_0x_1^2 + ((4c^2+c)/(c^2+1))x_1^2 + ((4c^2+c)/(c^2+c)/(c^2+1)x_1^2 + ((4c^2+c)/(c^2+1)x_1^2 + ((4c^2+c)/(c^2+c)/(c^2+1)x_1^2 + ((4c^2+c)/(c^$ $c)/(c^2+1))x_0^2x_2x_3^2+((c^2+4c)/(c^2+1))x_1^2x_2x_3^2+((c^2+4c)/(c^2+1))x_0x_2^2x_3^2+((2c^2+3c)/(c^2+1))x_1x_2^2x_3^2+((2c^2+3c)/(c^2+3c)/$ $2))x_0x_2^3x_4 + (2c/(c+2))x_1x_2^3x_4 - x_2^4x_4 + (3c/(c+2))x_0^3x_3x_4 + (c^2/(c^2+1))x_0^2x_1x_3x_4 + (3c^2/(c^2+1))x_0x_1^2x_3x_4 + (3c/(c+2))x_0x_1^2x_3x_4 + (3c/(c+2))x_1^2x_3x_4 + (3c/($ $(3c^2/(c^2+1))x_0^2x_2x_3x_4 + (2c^2/(c^2+1))x_1^2x_2x_3x_4 + (2c^2/(c^2+1))x_0x_2^2x_3x_4 + (4c^2/(c^2+1))x_1x_2^2x_3x_4 + (2c/(c^2+1))x_1x_2^2x_3x_4 + (2c/(c^2+1))x_1x_2^2x_3x_3x_4 + (2c$ $(3c^2+2c)/(c^2+1))x_0^2x_3^2x_4+(3c^2/(c^2+1))x_0x_1x_3^2x_4+(2c^2/(c^2+1))x_1x_2x_3^2x_4+((2c^2+3c)/(c^2+3c)/(c^2$ $1))x_{2}^{2}x_{3}^{2}x_{4} + (c/(c+2))x_{0}x_{3}^{3}x_{4} + (4c/(c+2))x_{2}x_{3}^{3}x_{4} + ((4c+1)/(c+2))x_{0}^{3}x_{4}^{2} + ((3c^{2}+2c)/(c^{2}+1))x_{0}^{2}x_{1}x_{4}^{2} + ((4c+1)/(c+2))x_{0}^{2}x_{1}^{2}x_{2}^{2} + ((4c+1)/(c+2))x_{0}^$ $((4c^2+c)/(c^2+1))x_0x_1^2x_4^2 + ((4c^2+c)/(c^2+1))x_0^2x_2x_4^2 + ((c^2+4c)/(c^2+1))x_1^2x_2x_4^2 + ((c^2+4c)/(c^2+1))x_1^2x_2x_2^2 + ((c^2+4c)/(c^2+1))x_1^2x_2^2 + ((c^2+4c)/(c^2+1))x_1^2 + ((c^2+4c)/(c^2+1)x_1^2 + (c^2+4c)/(c^2+1)x_1^2 + ((c^2+4c)/(c^2+1)x_1^2 + ((c^2+4c)/(c^2+1)x_1^2 + ((c^2+4c)/(c^2+1)x$ $1))x_0x_2^2x_4^2 + ((2c^2 + 3c)/(c^2 + 1))x_1x_2^2x_4^2 + ((c+4)/(c+2))x_2^3x_4^2 + ((3c^2 + 2c)/(c^2 + 1))x_0^2x_3x_4^2 + (3c^2/(c^2 + 1))x_1x_2^2x_4^2 + ((c+4)/(c+2))x_2^3x_4^2 + ((c+4)/(c+2))x_2^3x_2^2 + ((c+4)/(c+2))x_2^2 + ((c+4)/(c+$ $(c/(c+2))x_0x_3x_4^3 + (4c/(c+2))x_2x_3x_4^3 - x_0x_4^4 + x_2x_4^4$

 $((4c+4)/c)x_0^5 + 2x_0^4x_1 + ((3c+2)/(c+2))x_0^3x_1^2 + ((2c+3)/(c+2))x_0^2x_1^3 + 3x_0x_1^4 + ((c+1)/c)x_1^5 + x_0^4x_2 + (2c/(c+3)/(c+2))x_0^2x_1^3 + 3x_0x_1^4 + ((c+1)/c)x_1^5 + x_0^4x_2 + (2c/(c+3)/(c+2))x_1^3 + (2c/(c+3)/(c+3)/(c+2))x_1^3 + (2c/(c+3)/(c+3)/(c+2))x_1^3 + (2c/(c+3)/(c+3)/(c+3)/(c+3))x_1^3 + (2c/(c+3)/(c+3)/(c+3)/(c+3)/(c+3)/(c+3)$ $2))x_0^3x_1x_2 + (3c/(c+2))x_0x_1^3x_2 - x_1^4x_2 + ((4c+1)/(c+2))x_0^3x_2^2 + ((4c^2+c)/(c^2+1))x_0^2x_1x_2^2 + ((c^2+4c)/(c^2+1))x_0^2x_1x_2^2 + ((c^2+4c)/(c^2+1))x_1^2 + ((c^2+4c)/(c^2+1)x_1^2 + ((c^2+4c)/(c^2+1)x_1^2 + ((c^2+4c)/(c^2+1)/(c^2+1)x_1^2 + ((c^2+4c)/(c^2+1)/(c$ $1))x_0x_1^2x_2^2 + ((c+4)/(c+2))x_1^3x_2^2 + ((c+4)/(c+2))x_0^2x_2^3 + ((4c+1)/(c+2))x_1^2x_2^3 - x_0x_2^4 + x_1x_2^4 + x_0^4x_3 + (2c/(c+2))x_1^2x_2^2 + ((4c+1)/(c+2))x_1^2x_2^2 + ((4c+1)/(c+2))x_1^2 + ((4c+1)/(c+2))x_1^2 + ((4c+1)/(c+2))x_1^2 + ((4c+1)/(c+2))x_1^2 + ((4c+1)/(c+2))x_1^2 + ((4c+1)/(c+2))x_1^2 + ((4$ $2))x_0^3x_1x_3 + (3c/(c+2))x_0x_1^3x_3 - x_1^4x_3 + (3c/(c+2))x_0^3x_2x_3 + (3c^2/(c^2+1))x_0^2x_1x_2x_3 + (2c^2/(c^2+1))x_0x_1^2x_2x_3 + (3c/(c+2))x_0x_1^2x_2x_3 + (3c/(c+2))x_1^2x_2x_3 + (3c/$ $(4c+1)/(c+2))x_0^3x_3^2 + ((4c^2+c)/(c^2+1))x_0^2x_1x_3^2 + ((c^2+4c)/(c^2+1))x_0x_1^2x_3^2 + ((c+4)/(c+1))x_0x_1^2x_3^2 + ((c+4)/(c+1))x_0x_1^2 + ((c+4)/(c+1))x_0x_1^2 + ((c+4)/(c+1))x_0x_1^2 + ((c+4)/(c+1))x_0x_1^2 + ((c+4)/(c+1))x_1^2 + ((c+4)/(c+1))x_1^2 + ((c+4)/(c+1)/(c+1)x_1^2 + ((c+4)/(c+1)/(c+1)x_1^2 + ((c+4)/(c+1)/(c+1)x_1^2 + ((c+4)/(c+1)/(c+1)x_1^2$ $2))x_1^3x_3^{\frac{7}{2}} + ((3c^2 + 2c)/(c^2 + 1))x_0^2x_2x_3^2 + ((2c^2 + 3c)/(c^2 + 1))x_1^2x_2x_3^2 + ((4c^2 + c)/(c^2 + 1))x_0x_2^2x_3^2 + ((c^2 + 4c)/(c^2 + 1))x_0x_3^2x_3^2 + ((c^2 + 4c)/(c^2 + 1))x_0x_3^2 + ((c^2 + 4c)/(c^2 + 1))x_$ $1))x_1x_2^2x_3^2 + ((c+4)/(c+2))x_0^2x_3^3 + ((4c+1)/(c+2))x_1^2x_3^3 + (c/(c+2))x_0x_2x_3^3 + (4c/(c+2))x_1x_2x_3^3 - x_0x_3^4 + x_1x_3^4 +$ $1))x_0x_1^2x_2x_4 + (2c/(c+2))x_1^3x_2x_4 + ((3c^2+2c)/(c^2+1))x_0^2x_2^2x_4 + ((2c^2+3c)/(c^2+1))x_1^2x_2^2x_4 + (c/(c+2))x_0x_2^3x_4 + (c/(c+2))x_0x_2^2x_4 + (c/(c+2))x_2^2x_4 + (c/(c+2))$ $(4c/(c+2))x_1x_2^3x_4 + (3c/(c+2))x_0^3x_3x_4 + (3c^2/(c^2+1))x_0^2x_1x_3x_4 + (2c^2/(c^2+1))x_0x_1^2x_3x_4 + (2c/(c+2))x_1^3x_3x_4 + (3c/(c+2))x_1^3x_3x_4 + (3c/(c+2))x_1^$ $(c^2/(c^2+1))x_0^2x_2x_3x_4 + (4c^2/(c^2+1))x_1^2x_2x_3x_4 + (3c^2/(c^2+1))x_0x_2^2x_3x_4 + (2c^2/(c^2+1))x_1x_2^2x_3x_4 + ((3c^2+1))x_1x_2^2x_3x_4 + (3c^2/(c^2+1))x_1x_2^2x_3x_4 + (3c$ $\frac{2c}{(c^2+1)}x_0^2x_3^2x_4 + ((2c^2+3c)/(c^2+1))x_1^2x_3^2x_4 + (3c^2/(c^2+1))x_0x_2x_3^2x_4 + (2c^2/(c^2+1))x_1x_2x_3^2x_4 + (c/(c+1))x_1x_2x_3^2x_4 + (c/(c+1))x_1x_3x_3^2x_4 + (c/(c+1))x_1x_3x_3^2x_4 + (c/(c+1))x_1x_3x_3x_4 + (c/(c+1))x_3x_3x_4 + ($ $2))x_0x_3^3x_4 + (4c/(c+2))x_1x_3^3x_4 + ((4c+1)/(c+2))x_0^3x_4^2 + ((4c^2+c)/(c^2+1))x_0^2x_1x_4^2 + ((c^2+4c)/(c^2+1))x_0x_1^2x_4^2 + ((4c^2+c)/(c^2+1))x_0x_1^2x_4^2 + ((4c^2+c)/(c^2+1))x_0x_1^2x_1^2 + ((4c^2+c)/(c^2+1))x_0x_1^2 + ((4c^2+c)/(c^2+1))x_1^2 + ((4c^2+c)/(c^2+c)/(c^2+1)x_1^2 + ((4c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)x_1^2 + ((4c^2+c)/(c^2+c)/(c^2+c)/(c^2+c$ $((c+4)/(c+2))x_1^3x_4^2 + ((3c^2+2c)/(c^2+1))x_0^2x_2x_4^2 + ((2c^2+3c)/(c^2+1))x_1^2x_2x_4^2 + ((4c^2+c)/(c^2+1))x_0x_2^2x_4^2 + ((4c^2+c)/(c^2+1))x_1^2x_2x_4^2 + ((4c^2+c)/(c^2+1))x_1^2x_2x_2^2 + ((4c^2+c)/(c^2+c)/(c^2+c)x_2^2 + ((4c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)x_2^2 + ((4c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)x_2^2 + ((4c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c^2+c)/(c$ $((c^2+4c)/(c^2+1))x_1x_2^2x_4^2 + ((3c^2+2c)/(c^2+1))x_0^2x_3x_4^2 + ((2c^2+3c)/(c^2+1))x_1^2x_3x_4^2 + (3c^2/(c^2+1))x_0x_2x_3x_4^2 + (3c^2+3c)/(c^2+1)x_1x_2^2x_3x_4^2 + (3c^2+3c)/(c^2+3c)/$ $(2c^2/(c^2+1))x_1x_2x_3x_4^{\tilde{2}} + ((4c^2+c)/(c^2+1))x_0x_3^2x_4^2 + ((c^2+4c)/(c^2+1))x_1x_3^2x_4^2 + ((c+4)/(c+2))x_0^2x_4^3 + ((4c+4)/(c+2))x_0x_3^2x_4^2 + ((4c+4)/(c+2))x_3^2x_4^2 + ((4c+4)/(c+2))x_3^2 + ((4c+4)/(c+2)/(c+2))x_3^2 + ((4$ $1)/(c+2))x_1^2x_4^3 + (c/(c+2))x_0x_2x_4^3 + (4c/(c+2))x_1x_2x_4^3 + (c/(c+2))x_0x_3x_4^3 + (4c/(c+2))x_1x_3x_4^3 - x_0x_4^4 + x_1x_4^4 + x_1$

conjecture: x_0^{25}

5 S_6 , char 3, τ trivial

5.1 Hilbert polynomial

PARTIAL

```
1 + 6t + 21t^2 + 51t^3 + 96t^4 + 147t^5 + 192t^6 + 222t^7 + \dots
```

5.2 Generators

PARTIAL

$$x_0^3 + x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 \\ ((2c+2)/c)x_0^3 \\ + ((c+1)/c)x_4^3 \\ + x_0^2x_1 + x_0^2x_2 + x_0^2x_3 + x_0^2x_4 + x_1x_2^2 - x_2x_1^2 - x_3x_2^2 + x_1^2x_5 \\ - x_0x_1^2 - x_0x_2^2 - x_0x_3^2 - x_0^2x_4 + x_1x_2^2 - x_2x_1^2 - x_3x_2^2 - x_1^2x_5 \\ - (c/(c+2))x_0x_1x_2 + (c/(c+2))x_0x_1x_3 + (c/(c+2))x_0x_2x_3 + (c/(c+2))x_0x_1x_5 + (c/(c+2))x_0x_2x_5 \\ + (c/(c+2))x_1x_2x_4 + (2c/(c+2))x_1x_3x_4 + (2c/(c+2))x_2x_3x_4 + (2c/(c+2))x_1x_4x_5 + (2c/(c+2))x_2x_4x_5 + (2c/(c+2))x_3x_4x_5 \\ ((2c+2)/c)x_0^3 \\ + ((c+1)/c)x_0^3 \\ + x_0^2x_1 + x_0^2x_2 + x_1^2x_3 + x_2^2x_3 + x_0x_2^2 + x_1^2x_4 + x_3x_2^2 + x_2^2x_5 + x_3x_2^2 \\ - x_0x_1^2 - x_0x_2^2 - x_0x_3^2 - x_1x_3^2 - x_2x_3^2 - x_2^2x_4 + x_0x_3^2 + x_2^2x_5 + x_0x_3^2 \\ + (c/(c+2))x_0x_1x_2 + (c/(c+2))x_0x_1x_4 + (c/(c+2))x_0x_2x_4 + (c/(c+2))x_0x_1x_5 + (c/(c+2))x_0x_2x_5 + (c/(c+2))x_0x_3x_5 \\ + (2c/(c+2))x_1x_2x_3 + (2c/(c+2))x_1x_3x_4 + (2c/(c+2))x_2x_3x_4 + (2c/(c+2))x_1x_3x_5 + (2c/(c+2))x_2x_3x_5 + (2c/(c+2))x_1x_3x_4 + (2c/(c+2))x_1x_3x_5 + (2c/(c+2))x_2x_3x_5 + (2c/(c+2))x_0x_1x_3 + (2c/(c+2))x_1x_3x_4 + (2c/(c+2))x_1x_3x_4 + (2c/(c+2))x_1x_3x_5 + (2c/(c+2))x_2x_3x_5 + (2c/(c+2))x_1x_2x_3 + (2c/(c+2))x_1x_2x_4 + (2c/(c+2))x_2x_3x_4 + (2c/(c+2))x_1x_2x_5 + (2c/(c+2))x_2x_3x_5 + (2c/(c+2))x_1x_2x_3 + (2c/(c+2))x_1x_2x_4 + (2c/(c+2))x_1x_2x_4 + (2c/(c+2))x_1x_2x_5 + (2c/(c+2))x_1x_2x_5 + (2c/(c+2))x_1x_2x_4 + (2c/(c+2))x_1x_2x_4 + (2c/(c+2))x_1x_2x_5 + (2c/(c+2))x_2x_3x_5 + (2c/(c+2))x_1x_2x_3 + (2c/(c+2))x_1x_2x_4 + (2c/(c+2))x_2x_3x_4 + (2c/(c+2))x_1x_2x_5 + (2c/(c+2))x_2x_3x_5 + (2c/(c+2))x_1x_2x_4 + (2c/(c+2))x_1x_2x_4 + (2c/(c+2))x_1x_2x_5 + (2c/(c+2))x_2x_3x_5 + (2c/(c+2))x_1x_2x_3 + (2c/(c+2))x_1x_2x_4 + (2c/(c+2))x_2x_3x_4 + (2c/(c+2))x_1x_2x_5 + (2c/(c+2))x_2x_3x_5 + (2c/(c+2))x_1x_2x_5 + (2c/$$

conjecture: x_0^9 .

5.3 n-1 case

6 S_6 , char 2, τ trivial

6.1 Hilbert polynomial

$$t^8 + 6t^7 + 16t^6 + 26t^5 + 30t^4 + 26t^3 + 16t^2 + 6t + 1 = (t+1)^6(t^2+1)$$

6.2 Generators

$$x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2$$

$$((c+1)/c)x_0^2 + x_0x_1 + x_0x_2 + x_0x_3 + x_1x_4 + x_2x_4 + x_3x_4 + ((c+1)/c)x_4^2 + x_0x_5 + x_4x_5$$

$$((c+1)/c)x_0^2 + x_0x_1 + x_0x_2 + x_1x_3 + x_2x_3 + ((c+1)/c)x_3^2 + x_0x_4 + x_3x_4 + x_0x_5 + x_3x_5$$

$$((c+1)/c)x_0^2 + x_0x_1 + x_1x_2 + ((c+1)/c)x_2^2 + x_0x_3 + x_2x_3 + x_0x_4 + x_2x_4 + x_0x_5 + x_2x_5$$

$$((c+1)/c)x_0^2 + ((c+1)/c)x_1^2 + x_0x_2 + x_1x_2 + x_0x_3 + x_1x_3 + x_0x_4 + x_1x_4 + x_0x_5 + x_1x_5$$

$$x_0^4.$$

7 S_9 , char 3, τ trivial

7.1 Hilbert polynomial

PARTIAL

$$\cdots + 157t^3 + 45t^2 + 9t + 1$$

7.2 Generators

PARTIAL

$$x_0^3 + x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 + x_6^3 + x_7^3 + x_8^3 \\ ((2c+2)/c)x_0^3 \\ + ((c+1)/c)x_7^3 \\ + x_0^2x_1 + x_0^2x_2 + x_0^2x_3 + x_0^2x_4 + x_0^2x_5 + x_0^2x_6 + x_1^2x_7 + x_2^2x_7 + x_3^2x_7 + x_4^2x_7 + x_5^2x_7 + x_6^2x_7 + x_0x_7^2 + x_0^2x_8 + x_7x_8^2 \\ - x_0x_1^2 - x_0x_2^2 - x_0x_3^2 - x_0x_4^2 - x_0x_5^2 - x_0x_6^2 - x_0^2x_7 - x_1x_7^2 - x_2x_7^2 - x_3x_7^2 - x_4x_7^2 - x_5x_7^2 - x_6x_7^2 - x_7^2x_8 - x_0x_8^2 \\ + (c/(c+2))x_0x_1x_2 + (c/(c+2))x_0x_1x_3 + (c/(c+2))x_0x_2x_3 + (c/(c+2))x_0x_1x_4 + (c/(c+2))x_0x_2x_4 + (c/$$

```
2))x_0x_3x_4 + (c/(c+2))x_0x_1x_5 + (c/(c+2))x_0x_2x_5 + (c/(c+2))x_0x_3x_5 + (c/(c+2))x_0x_4x_5 + (c/(c+2))x_0x_1x_6 + (c/(c+2))x_0x_2x_6 + (c/(c+2))x_0x_3x_6 + (c/(c+2))x_0x_4x_6 + (c/(c+2))x_0x_5x_6 + (c/(c+2))x_0x_1x_8 + (c/(c+2))x_0x_2x_8 + (c/(c+2))x_0x_3x_8 + (c/(c+2))x_0x_4x_8 + (c/(c+2))x_0x_5x_8 + (c/(c+2))x_0x_6x_8 + (2c/(c+2))x_1x_2x_7 + (2c/(c+2))x_1x_3x_7 + (2c/(c+2))x_2x_3x_7 + (2c/(c+2))x_1x_4x_7 + (2c/(c+2))x_2x_4x_7 + (2c/(c+2))x_3x_4x_7 + (2c/(c+2))x_1x_5x_7 + (2c/(c+2))x_2x_5x_7 + (2c/(c+2))x_3x_5x_7 + (2c/(c+2))x_4x_5x_7 + (2c/(c+2))x_1x_6x_7 + (2c/(c+2))x_2x_6x_7 + (2c/(c+2))x_3x_6x_7 + (2c/(c+2))x_4x_6x_7 + (2c/(c+2))x_5x_6x_7 + (2c/(c+2))x_1x_7x_8 + (2c/(c+2))x_2x_7x_8 + (2c/(c+2))x_3x_7x_8 + (2c/(c+2))x_4x_7x_8 + (2c/(c+2))x_5x_7x_8 + (2c/(c+2))x_6x_7x_8
```

 $((2c+2)/c)x_0^3 + x_0^2x_1 - x_0x_1^2 + x_0^2x_2 + (c/(c+2))x_0x_1x_2 - x_0x_2^2 + x_0^2x_3 + (c/(c+2))x_0x_1x_3 + (c/(c+2))x_0x_2x_3 - x_0x_3^2 + x_0^2x_4 + (c/(c+2))x_0x_1x_4 + (c/(c+2))x_0x_2x_4 + (c/(c+2))x_0x_3x_4 - x_0x_4^2 + x_0^2x_5 + (c/(c+2))x_0x_1x_5 + (c/(c+2))x_0x_2x_5 + (c/(c+2))x_0x_3x_5 + (c/(c+2))x_0x_4x_5 - x_0x_5^2 - x_0^2x_6 + x_1^2x_6 + (2c/(c+2))x_1x_2x_6 + x_2^2x_6 + (2c/(c+2))x_1x_3x_6 + (2c/(c+2))x_2x_3x_6 + x_3^2x_6 + (2c/(c+2))x_1x_4x_6 + (2c/(c+2))x_2x_4x_6 + (2c/(c+2))x_3x_4x_6 + x_2^2x_6 + (2c/(c+2))x_1x_5x_6 + (2c/(c+2))x_2x_5x_6 + (2c/(c+2))x_3x_5x_6 + (2c/(c+2))x_4x_5x_6 + x_5^2x_6 + x_0x_6^2 - x_1x_6^2 - x_2x_6^2 - x_3x_6^2 - x_4x_6^2 - x_5x_6^2 + ((c+1)/c)x_6^3 + x_0^2x_7 + (c/(c+2))x_0x_1x_7 + (c/(c+2))x_0x_2x_7 + (c/(c+2))x_0x_3x_7 + (c/(c+2))x_0x_4x_7 + (c/(c+2))x_0x_5x_7 + (2c/(c+2))x_1x_6x_7 + (2c/(c+2))x_2x_6x_7 + (2c/(c+2))x_3x_6x_7 + (2c/(c+2))x_2x_6x_7 + (2c/(c+2))x_0x_3x_8 + (c/(c+2))x_0x_3x_8 + (c/(c+2))x_0x_3x_8 + (c/(c+2))x_0x_3x_8 + (c/(c+2))x_0x_4x_8 + (c/(c+2))x_0x_5x_8 + (2c/(c+2))x_1x_6x_8 + (2c/(c+2))x_2x_6x_8 + (2c/(c+2))x_2x_6$

 $((2c+2)/c)x_0^3 + x_0^2x_1 - x_0x_1^2 + x_0^2x_2 + (c/(c+2))x_0x_1x_2 - x_0x_2^2 + x_0^2x_3 + (c/(c+2))x_0x_1x_3 + (c/(c+2))x_0x_2x_3 - x_0x_3^2 + x_0^2x_4 + (c/(c+2))x_0x_1x_4 + (c/(c+2))x_0x_2x_4 + (c/(c+2))x_0x_3x_4 - x_0x_4^2 - x_0^2x_5 + x_1^2x_5 + (2c/(c+2))x_1x_2x_5 + x_2^2x_5 + (2c/(c+2))x_1x_3x_5 + (2c/(c+2))x_2x_3x_5 + x_3^2x_5 + (2c/(c+2))x_1x_4x_5 + (2c/(c+2))x_2x_4x_5 + (2c/(c+2))x_2x_3x_5 + x_3^2x_5 + (2c/(c+2))x_1x_4x_5 + (2c/(c+2))x_2x_4x_5 + (2c/(c+2))x_2x_3x_5 + x_3^2x_5 + (2c/(c+2))x_1x_4x_5 + (2c/(c+2))x_0x_1x_6 + (c/(c+2))x_0x_1x_6 + (c/(c+2))x_0x_2x_6 + (c/(c+2))x_0x_3x_6 + (c/(c+2))x_0x_4x_6 + (2c/(c+2))x_1x_5x_6 + (2c/(c+2))x_1x_5x_6 + (2c/(c+2))x_2x_5x_6 + (2c/(c+2))x_2x_5x_6 + (2c/(c+2))x_0x_3x_7 + (c/(c+2))x_0x_4x_7 + (2c/(c+2))x_1x_5x_7 + (2c/(c+2))x_2x_5x_7 + (2c/(c+2))x_3x_5x_7 + (2c/(c+2))x_4x_5x_7 - x_5^2x_7 + (c/(c+2))x_0x_4x_7 + (2c/(c+2))x_1x_5x_7 + (2c/(c+2))x_2x_5x_7 + (2c/(c+2))x_0x_4x_7 + (2c/(c+2))x_0x_4x_7 + (2c/(c+2))x_1x_5x_7 + (2c/(c+2))x_2x_5x_7 + (2c/(c+2))x_0x_1x_8 + (c/(c+2))x_0x_2x_8 + (c/(c+2))x_0x_3x_8 + (c/(c+2))x_0x_4x_8 + (2c/(c+2))x_1x_5x_8 + (2c/(c+2))x_2x_5x_8 + (2c/(c+2))x_3x_5x_8 + (2c/(c+2))x_3x_5x_8 + (2c/(c+2))x_2x_5x_8 + (2c/(c+2))x_3x_5x_8 + (2c/(c+2))x_2x_5x_8 + (2c/(c+2))x_3x_5x_8 + (2c/(c+2))x_2x_5x_8 + (2c/(c+2))x_3x_5x_8 + (2c/(c+2))x_3x_5x_8 + (2c/(c+2))x_5x_5x_8 + (2c/(c$

 $((2c+2)/c)x_0^3 + x_0^2x_1 - x_0x_1^2 + x_0^2x_2 + (c/(c+2))x_0x_1x_2 - x_0x_2^2 + x_0^2x_3 + (c/(c+2))x_0x_1x_3 + (c/(c+2))x_0x_2x_3 - x_0x_3^2 - x_0^2x_4 + x_1^2x_4 + (2c/(c+2))x_1x_2x_4 + x_2^2x_4 + (2c/(c+2))x_1x_3x_4 + (2c/(c+2))x_2x_3x_4 + x_3^2x_4 + x_0x_4^2 - x_1x_4^2 - x_2x_4^2 - x_3x_4^2 + ((c+1)/c)x_4^3 + x_0^2x_5 + (c/(c+2))x_0x_1x_5 + (c/(c+2))x_0x_2x_5 + (c/(c+2))x_0x_3x_5 + (2c/(c+2))x_1x_4x_5 + (2c/(c+2))x_2x_4x_5 + (2c/(c+2))x_3x_4x_5 - x_4^2x_5 - x_0x_5^2 + x_4x_5^2 + x_0^2x_6 + (c/(c+2))x_0x_1x_6 + (c/(c+2))x_0x_2x_6 + (c/(c+2))x_0x_3x_6 + (2c/(c+2))x_1x_4x_6 + (2c/(c+2))x_2x_4x_6 + (2c/(c+2))x_3x_4x_6 - x_4^2x_6 + (c/(c+2))x_0x_3x_7 + (2c/(c+2))x_1x_4x_7 + (2c/(c+2))x_2x_4x_7 + (2c/(c+2))x_3x_4x_7 - x_4^2x_7 + (c/(c+2))x_0x_5x_7 + (2c/(c+2))x_4x_5x_7 + (2c/(c+2))x_2x_4x_7 + (2c/(c+2))x_3x_4x_7 - x_4^2x_7 + (c/(c+2))x_0x_5x_7 + (2c/(c+2))x_0x_5x_7 + (2c/(c+2))x_4x_5x_7 + (2c/(c+2))x_0x_5x_7 + (2c/(c+2))x_1x_4x_7 + (2c/(c+2))x_2x_4x_7 + (2c/(c+2))x_3x_4x_7 - x_4^2x_7 + (c/(c+2))x_0x_5x_7 + (2c/(c+2))x_0x_5x_7 + (2c/(c+2))x_0x_5x_8 + (2c/(c+2)$

 $((2c+2)/c)x_0^3 + x_0^2x_1 - x_0x_1^2 + x_0^2x_2 + (c/(c+2))x_0x_1x_2 - x_0x_2^2 - x_0^2x_3 + x_1^2x_3 + (2c/(c+2))x_1x_2x_3 + x_2^2x_3 + x_0x_3^2 - x_1x_3^2 - x_2x_3^2 + ((c+1)/c)x_3^3 + x_0^2x_4 + (c/(c+2))x_0x_1x_4 + (c/(c+2))x_0x_2x_4 + (2c/(c+2))x_1x_3x_4 + (2c/(c+2))x_2x_3x_4 - x_3^2x_4 - x_0x_4^2 + x_3x_4^2 + x_0^2x_5 + (c/(c+2))x_0x_1x_5 + (c/(c+2))x_0x_2x_5 + (2c/(c+2))x_1x_3x_5 + (2c/(c+2))x_2x_3x_5 - x_3^2x_5 + (c/(c+2))x_0x_4x_5 + (2c/(c+2))x_3x_4x_5 - x_0x_5^2 + x_3x_5^2 + x_0^2x_6 + (c/(c+2))x_0x_1x_6 + (c/(c+2))x_0x_2x_6 + (2c/(c+2))x_1x_3x_6 + (2c/(c+2))x_2x_3x_6 - x_3^2x_6 + (c/(c+2))x_0x_4x_6 + (2c/(c+2))x_3x_4x_6 + (c/(c+2))x_0x_2x_7 + (c/(c+2))x_0x_2x_7 + (c/(c+2))x_0x_2x_7 + (c/(c+2))x_0x_2x_7 + (c/(c+2))x_0x_2x_7 + (c/(c+2))x_0x_2x_7 + (c/(c+2))x_0x_4x_7 + (c/(c+2))x_0x_4x_7 + (c/(c+2))x_0x_4x_7 + (c/(c+2))x_0x_5x_7 + (c/(c+2))x_0x_5x_7 + (c/(c+2))x_0x_5x_7 + (c/(c+2))x_0x_5x_7 + (c/(c+2))x_0x_5x_7 + (c/(c+2))x_0x_5x_7 + (c/(c+2))x_0x_2x_8 + (c/(c+2))x_0x_2x_8 + (c/(c+2))x_0x_2x_8 + (c/(c+2))x_0x_5x_8 + (c/(c+2))x_0x_5x$

 $((2c+2)/c)x_0^3 + x_0^2x_1 - x_0x_1^2 - x_0^2x_2 + x_1^2x_2 + x_0x_2^2 - x_1x_2^2 + ((c+1)/c)x_2^3 + x_0^2x_3 + (c/(c+2))x_0x_1x_3 + (2c/(c+2))x_1x_2x_3 - x_2^2x_3 - x_0x_3^2 + x_2x_3^2 + x_0^2x_4 + (c/(c+2))x_0x_1x_4 + (2c/(c+2))x_1x_2x_4 - x_2^2x_4 + (c/(c+2))x_0x_3x_4 + (2c/(c+2))x_2x_3x_4 - x_0x_4^2 + x_2x_4^2 + x_0^2x_5 + (c/(c+2))x_0x_1x_5 + (2c/(c+2))x_1x_2x_5 - x_2^2x_5 + (c/(c+2))x_0x_3x_5 + (2c/(c+2))x_2x_3x_5 + (c/(c+2))x_0x_4x_5 + (2c/(c+2))x_2x_4x_5 - x_0x_5^2 + x_2x_5^2 + x_0^2x_6 + (c/(c+2))x_0x_1x_6 + (2c/(c+2))x_0x_3x_6 + (2c/(c+2))x_2x_3x_6 + (c/(c+2))x_0x_4x_6 + (2c/(c+2))x_2x_4x_6 + (c/(c+2))x_0x_3x_6 + (2c/(c+2))x_2x_3x_6 + (c/(c+2))x_0x_4x_6 + (2c/(c+2))x_2x_4x_6 + (c/(c+2))x_0x_3x_7 + (2c/(c+2))x_2x_3x_7 + (c/(c+2))x_0x_4x_7 + (2c/(c+2))x_0x_4x_7 + (2c/(c+2))x_2x_3x_7 + (c/(c+2))x_0x_3x_7 + (2c/(c+2))x_2x_3x_7 + (c/(c+2))x_0x_4x_7 + (2c/(c+2))x_0x_5x_7 + (2c/(c+2))x_2x_5x_7 + (c/(c+2))x_0x_3x_7 + (2c/(c+2))x_2x_3x_7 + (c/(c+2))x_0x_4x_7 + (2c/(c+2))x_0x_5x_7 + (2c/(c+2))x_2x_5x_7 + (c/(c+2))x_0x_5x_7 + (2c/(c+2))x_0x_5x_7 + (2c/(c+2))x_0x_5x_7 + (2c/(c+2))x_0x_5x_7 + (2c/(c+2))x_0x_5x_7 + (2c/(c+2))x_0x_5x_7 + (2c/(c+2))x_0x_5x_8 + (2c/(c+2))x_0x_5x_6 + (2c/(c+2))x_0x_5x_6 + (2c/(c+2))x_0x_5x_6 + (2c/(c+2))x_0x_5x_6 + (2c/(c+2))x_0x_5x_6 + (2c/(c+2))x_1x_5x_6 + (2c/(c+2))x_1x_5x_6 + (2c/(c+2))x_1x_5x_6 + (2c/(c+2))x_1x_5x_6 + (2c/(c+2))x_$

conjecture: x_0^9

8 Conjecture for $p = 3, 3 \mid n$

Variables are x_0, \ldots, x_{n-1} .

Generators are:

 x_0^9 in degree 9, and $\sum x_i^3$ in degree 3. There are n-2 remaining generators in degree 3, each with the following form:

$$\frac{c+1}{c}(x_1^3 - x_0^3) + (x_1 - x_0)(x_0x_1) + (x_1 - x_0)\left(\sum_{i \ge 2} x_i^2 - x_i(x_1 + x_0)\right) + \frac{2c}{c+2}(x_1 - x_0)\left(\sum_{i,j \ge 2; i < j} x_i x_j\right).$$

(The other generators are created from this one by switching x_1 with x_k for some $k \geq 2$.)

We note that since $3 \mid n$ that $\sum_{i < j} (x_i - x_j)^2 = \sum_{i < j} x_i x_j + \sum_{i < j} x_i^2 + x_j^2 = -\sum_i x_i^2 + \sum_{i < j} x_i x_j$.

We also note that $\sum_{i}(x_i^2 - x_i x_1 - x_i x_0) = x_0 x_1 + \sum_{i \geq 2}(x_i^2 - x_i x_1 - x_i x_0)$.

We also note that $nx_1^2 = nx_0^2 = nx_0x_1 = 0$.

$$\begin{split} &\frac{c+1}{c}(x_1^3-x_0^3)+(x_1-x_0)(x_0x_1)+(x_1-x_0)\left(\sum_{i\geq 2}x_i^2-x_i(x_1+x_0)\right)+\frac{2c}{c+2}(x_1-x_0)\left(\sum_{i\geq 2;i< j}x_ix_j\right)=\\ &=\frac{x_1-x_0}{c(c+2)}\left((c+1)(c+2)(x_0^2+x_0x_1+x_1^2)+c(c+2)(x_0x_1)+c(c+2)\left(\sum_{i\geq 2}x_i^2-x_i(x_1+x_0)\right)+2c^2\left(\sum_{i\geq 2;i< j}x_ix_j\right)\right)\\ &=\frac{x_1-x_0}{c(c+2)}\left((c^2-1)(x_0^2+x_0x_1+x_1^2)+(c^2-c)(x_0x_1)+(c^2-c)\left(\sum_{i\geq 2}x_i^2-x_i(x_1+x_0)\right)-c^2\left(\sum_{i\geq 2;i< j}x_ix_j\right)\right)\\ &=\frac{x_1-x_0}{c(c+2)}((c^2-1)(x_0^2+x_0x_1+x_1^2)+(c^2-c)(x_0x_1)+c^2\left(\sum_{i\geq 2}x_i^2\right)-c^2\left(\sum_{i\geq 2}x_ix_1+x_ix_0\right)\\ &-c\left(\sum_{i\geq 2}x_i^2-x_ix_1-x_ix_0\right)-c^2\left(\sum_{i\geq 2}x_ix_j\right)\right)\\ &=\frac{x_1-x_0}{c(c+2)}((c^2-1)(x_0^2+x_0x_1+x_1^2)+(c^2-c)(x_0x_1)+c^2\left(\sum_{i\geq 2}x_i^2\right)+c^2x_0x_1-c\left(\sum_{i\geq 2}x_i^2-x_ix_1-x_ix_0\right)\\ &-c^2\left(\sum_{i\geq j}x_ix_j\right)\right)\\ &=\frac{x_1-x_0}{c(c+2)}\left(c^2x_0^2+c^2x_1^2-x_0^2-x_1^2-x_0x_1-cx_0x_1+c^2\left(\sum_{i\geq 2}x_i^2\right)-c\left(\sum_{i\geq 2}x_i^2-x_ix_1-x_ix_0\right)-c^2\left(\sum_{i< j}x_ix_j\right)\right)\\ &=\frac{x_1-x_0}{c(c+2)}\left(c^2x_0^2+c^2x_1^2-x_0^2-x_1^2-x_0x_1-cx_0x_1+c^2\left(\sum_{i\geq 2}x_i^2\right)-c\left(\sum_{i\geq 2}x_i^2-x_ix_1-x_ix_0\right)-c^2\left(\sum_{i< j}x_ix_j\right)\right)\\ &=\frac{x_1-x_0}{c(c+2)}\left(-x_0^2-x_1^2-x_0x_1+c^2\left(\sum_ix_i^2\right)-c\left(\sum_ix_i^2-x_ix_1-x_ix_0\right)-c^2\left(\sum_{i< j}x_ix_j\right)\right)\\ &=\frac{x_1-x_0}{c(c+2)}\left(-(x_0-x_1)^2+c^2\left(\sum_ix_i^2-x_ix_1-x_ix_0+x_0x_1\right)-c^2\left(\sum_{i< j}x_ix_j\right)\right)\\ &=\frac{x_1-x_0}{c(c+2)}\left(-(x_0-x_1)^2-c\left(\sum_ix_i^2-x_ix_1-x_ix_0+x_0x_1\right)-c^2\left(\sum_{i< j}(x_i-x_j)^2\right)\right)\\ &=\frac{x_1-x_0}{c(c+2)}\left(-(x_0-x_1)^2-c\left(\sum_i(x_i-x_1)(x_i-x_0)\right)-c^2\left(\sum_{i< j}(x_i-x_j)^2\right)\right)\\ &=\frac{x_1-x_0}{c(c+2)}\left(-(x_0-x_1)^2-c\left(\sum_i(x_i-x_1)(x_i-x_0)\right)-c^2\left(\sum$$

(Checked with Sage)

Let this generator equal g. We see that for $\{i,j\} \cap \{0,1\} = \emptyset$ that $s_{ij}g = g$. Therefore $\frac{g - s_{ij}g}{x_i - x_j} = 0$.

We see easily that $s_{0k}g$ for $k \neq 1$ is $\frac{x_1 - x_k}{c(c+2)} \left(-(x_k - x_1)^2 - c \sum_i (x_i - x_1)(x_i - x_k) - c^2 \sum_{i < j} (x_i - x_j)^2 \right)$. From there further simple algebra tells us that $(x_1 - x_0)(x_i - x_0)(x_i - x_1) - (x_1 - x_k)(x_i - x_1)(x_i - x_k) = 0$

 $(x_1-x_i)(x_0-x_1+x_k-x_i)(x_k-x_0)$ for all i. From this we see easily that

$$\frac{g - s_{0k}g}{x_k - x_0} = \frac{1}{c(c+2)} \left(-(x_k - x_0)^2 - c \sum_i (x_1 - x_i)(x_0 - x_1 + x_k - x_i) - c^2 \sum_{i < j} (x_i - x_j)^2 \right).$$

Similar algebra shows us that for $k \neq 0, 1$:

$$\frac{g - s_{1k}g}{x_k - x_1} = \frac{1}{c(c+2)} \left((x_k - x_1)^2 + c \sum_i (x_0 - x_i)(x_1 - x_0 + x_k - x_i) + c^2 \sum_{i < j} (x_i - x_j)^2 \right).$$

The final case is $s_{01}g$. We see easily that all the terms inside the largest parentheses are left untouched by s_{01} . Therefore $s_{01}g = -g$, so $\frac{g-s_{01}g}{x_1-x_0} = \frac{g--g}{x_1-x_0} = \frac{2g}{x_1-x_0} = -\frac{g}{x_1-x_0}$; this is just

$$\frac{1}{c(c+2)}\left((x_0-x_1)^2+c\left(\sum_i(x_i-x_1)(x_i-x_0)\right)+c^2\left(\sum_{i< j}(x_i-x_j)^2\right)\right).$$

We can use these to calculate the values for the Dunkl operators. We need only check D_0g , D_1g , D_2g , because the rest are essentially equivalent to D_2g .

8.1 $D_0 g$

We start with D_0g . We see that $D_0g = \partial_0g - c\sum_{i\geq 1} \frac{g-s_{0i}g}{x_0-x_i}$.

We consider the partial derivative.

$$\begin{split} \partial_0 g &= \partial_0 \left(\frac{1}{c(c+2)} \left(x_0^3 - x_1^3 - c \left(\sum_i (x_1 - x_0)(x_i - x_1)(x_i - x_0) \right) - c^2 \left(\sum_{i < j} (x_1 - x_0)(x_i - x_j)^2 \right) \right) \right) \\ &= \frac{1}{c(c+2)} \left(-c \left(\sum_{i \ge 2} (x_1 - x_i)(x_0 + x_1 + x_i) \right) - c^2 \left(\sum_{i < j} \partial_0 ((x_1 - x_0)(x_i - x_j)^2) \right) \right) \\ &= \frac{1}{c(c+2)} \left(-c \left(\sum_{i \ge 2} (x_1 - x_i)(x_0 + x_1 + x_i) \right) - c^2 \left(\sum_{i \ge 1} \partial_0 ((x_1 - x_0)(x_i - x_0)^2) \right) - c^2 \left(\sum_{0 < i < j} \partial_0 ((x_1 - x_0)(x_i - x_j)^2) \right) \right) \\ &= \frac{1}{c(c+2)} \left(-c \left(\sum_{i \ge 2} (x_1 - x_i)(x_0 + x_1 + x_i) \right) - c^2 \left(\sum_{i \ge 1} \partial_0 ((x_1 - x_0)(x_i - x_0)^2) \right) + c^2 \left(\sum_{0 < i < j} (x_i - x_j)^2 \right) \right) \\ &= \frac{1}{c(c+2)} \left(-c \left(\sum_{i \ge 2} (x_1 - x_i)(x_0 + x_1 + x_i) \right) + c^2 \left(\sum_{i \ge 2} (x_1 - x_i)(x_0 - x_i) \right) + c^2 \left(\sum_{0 < i < j} (x_i - x_j)^2 \right) \right) \\ &= \frac{c}{c(c+2)} \left(-\left(\sum_{i \ge 2} (x_1 - x_i)(x_0 + x_1 + x_i) \right) + c \left(\sum_{i \ge 2} (x_1 - x_i)(x_0 - x_i) \right) + c \left(\sum_{0 < i < j} (x_i - x_j)^2 \right) \right) \end{split}$$

We note that in $\sum_{0 < i < j} (x_i - x_j)^2$ that in each term at least one of the x_i, x_j has index ≥ 2 . Therefore $\sum_{0 < i < j} (x_i - x_j)^2 = \sum_{0 < i < j} -2(x_i - x_j)^2 = -\sum_{0 < i, j; i \neq j} (x_i - x_j)^2 = -\left(\sum_{i \geq 2} \sum_{j \geq 1} (x_i - x_j)^2\right) - \left(\sum_{i \geq 2} (x_i - x_1)^2\right)$ because of the double-counting. Then since n - 1 = -1, we see that this is equal to $-\left(\sum_{i \geq 2} \sum_{j \geq 1} (x_i - x_j)^2 - (x_i - x_1)^2\right) = \sum_{i \geq 2} \sum_{j \geq 1} (x_i - x_1)^2 - (x_i - x_j)^2 = \sum_{i \geq 2} \sum_{j \geq 1} (x_1 - x_j)(x_1 + x_j)^2$

 $x_j + x_i$).

Therefore we have (there is a switch of indices):

$$\begin{split} \partial_0 g &= \frac{c}{c(c+2)} \left(-\left(\sum_{i \geq 2} (x_1 - x_i)(x_0 + x_1 + x_i) \right) + c \left(\sum_{i \geq 2} (x_1 - x_i)(x_0 - x_i) \right) + c \left(\sum_{i \geq 2} \sum_{j \geq 1} (x_1 - x_j)(x_1 + x_j + x_i) \right) \right) \\ &= \frac{c}{c(c+2)} \left(-\left(\sum_{i \geq 2} (x_1 - x_i)(x_0 + x_1 + x_i) \right) + c \left(\sum_{i \geq 2} (x_1 - x_i)(x_0 - x_i) \right) + c \left(\sum_{i \geq 2} \sum_{j \geq 2} (x_1 - x_i)(x_1 + x_j + x_i) \right) \right) \\ &= \frac{c}{c(c+2)} \left(\sum_{i \geq 2} \left(-\left((x_1 - x_i)(x_0 + x_1 + x_i) \right) + c \left((x_1 - x_i)(x_0 - x_i) \right) + c \left(\sum_{j \geq 2} (x_1 - x_i)(x_1 + x_j + x_i) \right) \right) \right) \\ &= \frac{c}{c(c+2)} \left(\sum_{i \geq 2} (x_i - x_1) \left((x_0 + x_1 + x_i) - c (x_0 - x_i) - c \left(\sum_{j \geq 2} (x_1 + x_j + x_i) \right) \right) \right) \\ &= \frac{c}{c(c+2)} \left(\sum_{i \geq 2} (x_i - x_1) \left((x_0 + x_1 + x_i) - c x_0 + c x_i - c x_1 - c x_i - c \left(\sum_{j \geq 2} x_j \right) \right) \right) \\ &= \frac{c}{c(c+2)} \left(\sum_{i \geq 2} (x_i - x_1) \left((x_0 + x_1 + x_i) - c \left(\sum_{j \geq 2} x_j \right) \right) \right) \end{split}$$

Let
$$G_1 = \frac{g - s_{01}g}{x_0 - x_1} = -\frac{1}{c(c+2)} \left((x_0 - x_1)^2 + c \left(\sum_i (x_i - x_1)(x_i - x_0) \right) + c^2 \left(\sum_{i < j} (x_i - x_j)^2 \right) \right)$$
. Let $G_2 = \sum_{i \ge 2} \frac{g - s_{0i}g}{x_0 - x_i}$.

$$G_{2} = \sum_{i \geq 2} \frac{g - s_{0i}g}{x_{0} - x_{i}}$$

$$= \sum_{k \geq 2} \left(\frac{1}{c(c+2)} \left((x_{k} - x_{0})^{2} + c \sum_{i} (x_{1} - x_{i})(x_{0} - x_{1} + x_{k} - x_{i}) + c^{2} \sum_{i < j} (x_{i} - x_{j})^{2} \right) \right)$$

$$= \frac{1}{c(c+2)} \left(\sum_{k \geq 2} \left((x_{k} - x_{0})^{2} + c \sum_{i} (x_{1} - x_{i})(x_{0} - x_{1} + x_{k} - x_{i}) \right) + (n-2)c^{2} \sum_{i < j} (x_{i} - x_{j})^{2} \right)$$

$$= \frac{1}{c(c+2)} \left(\sum_{k \geq 2} \left((x_{k} - x_{0})^{2} + c \sum_{i} (x_{1} - x_{i})(x_{0} - x_{1} + x_{k} - x_{i}) \right) + c^{2} \sum_{i < j} (x_{i} - x_{j})^{2} \right)$$

$$= \frac{1}{c(c+2)} \left(c \sum_{k \geq 2} \sum_{i} (x_{1} - x_{i})(x_{0} - x_{1} + x_{k} - x_{i}) + c^{2} \sum_{i < j} (x_{i} - x_{j})^{2} + \left(\sum_{k \geq 2} (x_{k} - x_{0})^{2} \right) \right)$$

We note that n-2-1=0 since $3 \mid n$. Therefore:

$$G_2 + G_1 = \frac{1}{c(c+2)} \left(\sum_{k \ge 2} \left((x_k - x_0)^2 + c \sum_i (x_1 - x_i)(x_0 - x_1 + x_k - x_i) \right) + (n-2)c^2 \sum_{i < j} (x_i - x_j)^2 \right)$$

$$- \frac{1}{c(c+2)} \left((x_0 - x_1)^2 + c \left(\sum_i (x_i - x_1)(x_i - x_0) \right) + c^2 \left(\sum_{i < j} (x_i - x_j)^2 \right) \right)$$

$$= \frac{1}{c(c+2)} \left(\sum_{k \ge 2} \left((x_k - x_0)^2 + c \sum_i (x_1 - x_i)(x_0 - x_1 + x_k - x_i) \right) - (x_0 - x_1)^2 - c \left(\sum_i (x_i - x_1)(x_i - x_0) \right) \right)$$

We consider $\sum_{k\geq 2} \sum_i (x_1 - x_i)(x_0 - x_1 + x_k - x_i) - (\sum_i (x_i - x_1)(x_i - x_0))$. We note that n-2=1, so this is equal to $\sum_{k\geq 2} \sum_i (x_1 - x_i)(x_0 - x_1 + x_k - x_i) - (\sum_{k\geq 2} \sum_i (x_i - x_1)(x_i - x_0))$; then this is equal to $\sum_{k\geq 2} \sum_i ((x_1 - x_i)(x_0 - x_1 + x_k - x_i) - (x_i - x_1)(x_i - x_0))$. This simplifies to $\sum_{k\geq 2} \sum_i (x_1 - x_i)(x_k - x_1)$.

Therefore we see that (again using n-2=1):

$$G_1 + G_2 = \frac{1}{c(c+2)} \left(\sum_{k \ge 2} \left((x_k - x_0)^2 - (x_1 - x_0)^2 + c \sum_i (x_1 - x_i)(x_k - x_1) \right) \right)$$

$$= \frac{1}{c(c+2)} \left(\sum_{k \ge 2} \left((x_k - x_0 + x_1 - x_0)(x_k - x_1) - c \sum_i x_i(x_k - x_1) \right) \right)$$

$$= \frac{1}{c(c+2)} \left(\sum_{k \ge 2} (x_k - x_1) \left(x_k + x_1 + x_0 - c \sum_i x_i \right) \right)$$

Then we can relabel indices and see that $c(G_1 + G_2) = \partial_0 g$, so the Dunkl operator is 0 as desired.

8.2 $D_1 q$

We see that $D_1g = \partial_1 g - c \sum_{i \neq 1} \frac{g - s_{1i}g}{x_1 - x_i}$.

We consider the partial derivative.

$$\begin{split} \partial_1 g &= \partial_1 \left(\frac{1}{c(c+2)} \left(x_0^3 - x_1^3 - c \left(\sum_i (x_1 - x_0)(x_i - x_1)(x_i - x_0) \right) - c^2 \left(\sum_{i < j} (x_1 - x_0)(x_i - x_j)^2 \right) \right) \right) \\ &= \frac{1}{c(c+2)} \left(c \left(\sum_{i \ge 2} (x_0 - x_i)(x_0 + x_1 + x_i) \right) - c^2 \left(\sum_{i < j} \partial_1 ((x_1 - x_0)(x_i - x_j)^2) \right) \right) \\ &= \frac{1}{c(c+2)} \left(c \left(\sum_{i \ge 2} (x_0 - x_i)(x_0 + x_1 + x_i) \right) - c^2 \left(\sum_{i \ne 1} \partial_1 ((x_1 - x_0)(x_i - x_1)^2) \right) - c^2 \left(\sum_{1 \ne i < j \ne 1} \partial_1 ((x_1 - x_0)(x_i - x_j)^2) \right) \right) \\ &= \frac{1}{c(c+2)} \left(c \left(\sum_{i \ge 2} (x_0 - x_i)(x_0 + x_1 + x_i) \right) - c^2 \left(\sum_{i \ge 2} (x_i - x_1)(x_i - x_0) \right) - c^2 \left(\sum_{1 \ne i < j \ne 1} \partial_1 ((x_1 - x_0)(x_i - x_j)^2) \right) \right) \\ &= \frac{1}{c(c+2)} \left(c \left(\sum_{i \ge 2} (x_0 - x_i)(x_0 + x_1 + x_i) \right) - c^2 \left(\sum_{i \ge 2} (x_i - x_1)(x_i - x_0) \right) - c^2 \left(\sum_{1 \ne i < j \ne 1} (x_i - x_j)^2 \right) \right) \\ &= \frac{c}{c(c+2)} \left(\left(\sum_{i \ge 2} (x_0 - x_i)(x_0 + x_1 + x_i) \right) - c \left(\sum_{i \ge 2} (x_i - x_1)(x_i - x_0) \right) - c \left(\sum_{1 \ne i < j \ne 1} (x_i - x_j)^2 \right) \right) \end{split}$$

We note that in $\sum_{1 \neq i < j \neq 1} (x_i - x_j)^2$ that in each term at least one of the x_i, x_j has index ≥ 2 . Therefore $\sum_{1 \neq i < j \neq 1} (x_i - x_j)^2 = \sum_{1 \neq i < j \neq 1} -2(x_i - x_j)^2 = -\sum_{1 \neq i, j; i \neq j} (x_i - x_j)^2 = -\left(\sum_{i \geq 2} \sum_{j \neq 1} (x_i - x_j)^2\right) - \left(\sum_{i \geq 2} (x_i - x_0)^2\right)$ because of the double-counting. Then since n - 1 = -1, we see that this is equal to $-\left(\sum_{i \geq 2} \sum_{j \neq 1} (x_i - x_j)^2 - (x_i - x_0)^2\right) = \sum_{i \geq 2} \sum_{j \neq 1} (x_i - x_0)^2 - (x_i - x_j)^2 = \sum_{i \geq 2} \sum_{j \neq 1} (x_0 - x_j)(x_0 + x_j + x_i) = \sum_{i \geq 2} \sum_{j \geq 2} (x_0 - x_j)(x_0 + x_j + x_i).$

Therefore we have (there is a switch of indices):

$$\begin{split} \partial_1 g &= \frac{c}{c(c+2)} \left(\left(\sum_{i \geq 2} (x_0 - x_i)(x_0 + x_1 + x_i) \right) - c \left(\sum_{i \geq 2} (x_i - x_1)(x_i - x_0) \right) - c \left(\sum_{i \geq 2} \sum_{j \geq 2} (x_0 - x_i)(x_0 + x_j + x_i) \right) \right) \\ &= \frac{c}{c(c+2)} \left(\sum_{i \geq 2} ((x_0 - x_i)(x_0 + x_1 + x_i)) - c \left((x_i - x_1)(x_i - x_0) \right) - c \left(\sum_{j \geq 2} (x_0 - x_i)(x_0 + x_j + x_i) \right) \right) \\ &= \frac{c}{c(c+2)} \left(\sum_{i \geq 2} (x_0 - x_i) \left((x_0 + x_1 + x_i) - c(x_1 - x_i) - c \left(\sum_{j \geq 2} (x_0 + x_j + x_i) \right) \right) \right) \\ &= \frac{c}{c(c+2)} \left(\sum_{i \geq 2} (x_0 - x_i) \left((x_0 + x_1 + x_i) - cx_1 + cx_i - cx_0 - cx_i - c \left(\sum_{j \geq 2} x_j \right) \right) \right) \\ &= \frac{c}{c(c+2)} \left(\sum_{i \geq 2} (x_0 - x_i) \left((x_0 + x_1 + x_i) - c \left(\sum_{j \geq 2} x_j \right) \right) \right) \end{split}$$

Let
$$G_1 = \frac{g - s_{01}g}{x_1 - x_0} = \frac{1}{c(c+2)} \left((x_0 - x_1)^2 + c \left(\sum_i (x_i - x_1)(x_i - x_0) \right) + c^2 \left(\sum_{i < j} (x_i - x_j)^2 \right) \right)$$
. Let $G_2 = \sum_{i \ge 2} \frac{g - s_{1i}g}{x_1 - x_i}$.

$$G_{2} = \sum_{k \geq 2} \frac{g - s_{1k}g}{x_{1} - x_{k}}$$

$$= -\sum_{k \geq 2} \left(\frac{1}{c(c+2)} \left((x_{k} - x_{1})^{2} + c \sum_{i} (x_{0} - x_{i})(x_{1} - x_{0} + x_{k} - x_{i}) + c^{2} \sum_{i < j} (x_{i} - x_{j})^{2} \right) \right)$$

$$= -\frac{1}{c(c+2)} \left(\sum_{k \geq 2} \left((x_{k} - x_{1})^{2} + c \sum_{i} (x_{0} - x_{i})(x_{1} - x_{0} + x_{k} - x_{i}) \right) + (n-2)c^{2} \sum_{i < j} (x_{i} - x_{j})^{2} \right)$$

$$= -\frac{1}{c(c+2)} \left(\sum_{k \geq 2} \left((x_{k} - x_{1})^{2} + c \sum_{i} (x_{0} - x_{i})(x_{1} - x_{0} + x_{k} - x_{i}) \right) + c^{2} \sum_{i < j} (x_{i} - x_{j})^{2} \right)$$

We note that n-2-1=0 since $3 \mid n$. Therefore:

$$G_2 + G_1 = -\frac{1}{c(c+2)} \left(\sum_{k \ge 2} \left((x_k - x_1)^2 + c \sum_i (x_0 - x_i)(x_1 - x_0 + x_k - x_i) \right) + c^2 \sum_{i < j} (x_i - x_j)^2 \right)$$

$$+ \frac{1}{c(c+2)} \left((x_0 - x_1)^2 + c \left(\sum_i (x_i - x_1)(x_i - x_0) \right) + c^2 \left(\sum_{i < j} (x_i - x_j)^2 \right) \right)$$

$$= \frac{1}{c(c+2)} \left(-\left(\sum_{k \ge 2} \left((x_k - x_1)^2 + c \sum_i (x_0 - x_i)(x_1 - x_0 + x_k - x_i) \right) \right)$$

$$+ \left((x_0 - x_1)^2 + c \left(\sum_i (x_i - x_1)(x_i - x_0) \right) \right) \right)$$

We consider $-\sum_{k\geq 2}\sum_i(x_0-x_i)(x_1-x_0+x_k-x_i)+(\sum_i(x_i-x_1)(x_i-x_0))$. We note that n-2=1, so this is equal to $-\sum_{k\geq 2}\sum_i(x_0-x_i)(x_1-x_0+x_k-x_i)+(\sum_{k\geq 2}\sum_i(x_1-x_i)(x_0-x_i))$; then this is equal to $\sum_{k\geq 2}\sum_i((x_0-x_i)(x_0-x_k))$. Therefore we see that (again using n-2=1):

$$G_1 + G_2 = -\frac{1}{c(c+2)} \left(\sum_{k \ge 2} \left((x_k - x_1)^2 - (x_0 - x_1)^2 - c \sum_i (x_0 - x_i)(x_0 - x_k) \right) \right)$$

$$= -\frac{1}{c(c+2)} \left(\sum_{k \ge 2} \left((x_k - x_1 + x_0 - x_1)(x_k - x_0) - c \sum_i x_i(x_k - x_0) \right) \right)$$

$$= -\frac{1}{c(c+2)} \left(\sum_{k \ge 2} (x_k - x_0) \left(x_k + x_1 + x_0 - c \sum_i x_i \right) \right)$$

$$= \frac{1}{c(c+2)} \left(\sum_{k \ge 2} (x_0 - x_k) \left(x_k + x_1 + x_0 - c \sum_i x_i \right) \right)$$

Then we can relabel indices and see that $c(G_1 + G_2) = \partial_1 g$, so the Dunkl operator is 0 as desired.

8.3 $D_2 g$

We see that $D_2g = \partial_2 g - c \frac{g-s_{02}g}{x_2-x_0} - c \frac{g-s_{12}g}{x_2-x_1}$ because the rest cancel. Let $G = \frac{g-s_{02}g}{x_2-x_0} + \frac{g-s_{12}g}{x_2-x_1}$. From the above we see that:

$$G = \frac{g - s_{02}g}{x_2 - x_0} + \frac{g - s_{12}g}{x_2 - x_1}$$

$$= \frac{1}{c(c+2)} \left((x_2 - x_1)^2 - (x_2 - x_0)^2 + c \sum_i (x_0 - x_i)(x_1 - x_0 + x_2 - x_i) - (x_1 - x_i)(x_0 - x_1 + x_2 - x_i) \right)$$

$$= \frac{1}{c(c+2)} \left((x_2 - x_1 + x_2 - x_0)(x_0 - x_1) + c \sum_i (x_1 - x_0)(x_0 + x_1 - x_2 - x_i) \right)$$

$$= \frac{1}{c(c+2)} \left((x_2 - x_1 + x_2 - x_0)(x_0 - x_1) + c \sum_i x_i(x_0 - x_1) \right)$$

We consider the partial derivative.

$$\partial_2 g = \frac{x_1 - x_0}{c(c+2)} \left(-c(x_2 - x_1 + x_2 - x_0) - c^2 \sum_{i \neq 2} 2(x_2 - x_i) \right)$$

$$= \frac{x_1 - x_0}{c(c+2)} \left(-c(x_2 - x_1 + x_2 - x_0) + c^2 \sum_{i \neq 2} x_2 - x_i \right)$$

$$= \frac{x_1 - x_0}{c(c+2)} \left(-c(x_2 - x_1 + x_2 - x_0) + c^2 \sum_{i \neq 2} -x_i + c^2(n-1)x_2 \right)$$

$$= \frac{x_1 - x_0}{c(c+2)} \left(-c(x_2 - x_1 + x_2 - x_0) - c^2 \sum_{i \neq 2} x_i \right)$$

We see that $\partial_2 g = cG$, so $D_2 g = 0$ as desired.

9 Conjecture for $p = 5, 5 \mid n$

Variables are x_0, \ldots, x_{n-1} .

Generators are:

 x_0^{25} in degree 25, and $\sum x_i^5$ in degree 5. There are n-2 remaining generators in degree 3, each with the following form:

It is defintely possible to factor out $x_1 - x_0$ from this.

(The other generators are created from this one by switching x_1 with x_k for some $k \geq 2$.)

9.1 x_0^9

This is the final generator. We note that all partial derivatives are 0, so we disregard them. For Dunkl operators other than D_0 , the only relevant term is $\frac{x_0^9 - x_k^9}{x_k - x_0} = (x_k - x_0)^8$. We will show this is in the ideal. We note that then $D_0(x_0^9) = -c \sum_{k \ge 1} \frac{x_0^9 - x_k^9}{x_0 - x_k}$ will also be in the ideal.

We therefore need only consider the case D_1 since all others will be symmetric and follow.

$$\frac{x_0^9 - x_1^9}{x_1 - x_0} = -\sum_{i=0}^8 x_0^i x_1^{8-i}.$$

We note that $D_0(x_0^9) = -c \sum_{k\geq 1} \frac{x_0^9 - x_k^9}{x_0 - x_k} = -c \sum_{i=0}^8 x_0^i (\sum_j x_j^{8-i}).$

Let $m_{i,j} = \sum_{k=0}^{8} x_i^k x_j^{8-k}$ and $g_{i,j}$ be the generators described above. Ex: $g_{0,1}$ is the generator we were working with above.

We wish to write $m_{0,1} = \sum_{i=1}^{5} p_i g_{0,i}$ where p_i is a homogeneous degree 5 polynomial for all i.

We must consider the symmetries. We note that $g_{i,j}=-g_{j,i}, g_{i,j}-g_{k,j}=g_{i,k}$ and $g_{i,j}-g_{i,k}=g_{k,j}$ for all i,j,k. We also note that $g_{i,i}=0$ for all i, and $\sum_{j=0}^5 g_{i,j}=\frac{c+1}{c}\sum_{j=0}^5 x_j^3$ for all i.

Let s_{ij} be the transposition switching x_i and x_j . By letting these act on $m_{0,1}$ we see that we must have for all $i, j \geq 2$ that $s_{ij}p_k = p_k$ for $k \neq i, k \neq j$ and $s_{ij}p_i = p_j, s_{ij}p_j = p_i$.

We also note that $s_{01}m_{0,1}=m_{0,1}$ and $s_{01}g_{0,1}=-g_{0,1}$, while $s_{0,1}g_{0,k}$ for $k\geq 2$ is $g_{1,k}=g_{0,k}-g_{0,1}$.

Then
$$m_{0,1} = -(s_{0,1} * p_1) * g_{0,1} + \sum_{i=2}^{5} (s_{0,1}p_i) * (g_{0,i} - g_{0,1}).$$

From this we see that $-\sum_{i=1}^{5} s_{0,1} p_i = p_1$ and $s_{0,1} p_i = p_i$ for $i \ge 2$. This means that $p_1 + s_{0,1} p_1 + \sum_{i=2}^{5} p_i = 0$.

10 Conjecture for general $p \mid n$

Variables are x_0, \ldots, x_{n-1} .

Generators are:

 $x_0^{p^2}$ in degree p^2 , and $\sum x_i^p$ in degree p. There are n-2 remaining generators in degree p. It is clear that each such generator contains a term of the form $\frac{c+1}{c}(x_k^p-x_0^p)$. If we assume we are in the generator with k=1, then the generator also contains a term $\left(\sum_{i\geq 2}x_0^{p-1}x_i+x_1x_i^{p-1}-x_0x_i^{p-1}-x_1^{p-1}x_i\right)$

11 n-1 case, n-2 case

In the case where we use the n-1 representation, the Hilbert polynomial appears to be $\left(\frac{1-t^p}{1-t}\right)^{n-1}$.

There are n-1 generators in degree 3. If we choose as basis $e_i = x_i - x_0$ for i = 1, ..., n-1 we will find that these generators are the same as the ones in the *n*-dimensional case, which we can express in terms of the e_i .

In the case $3 \mid n$ where we use the n-2 representation, the Hilbert polynomial appears to be $\left(\frac{1-t^p}{1-t}\right)^{n-2}$.

There are n-3 generators in degree 3. If we choose as basis $e_i = x_i - x_0$ for i = 1, ..., n-2 with $e_{n-1} = -\sum_{i=1}^{n-2} e_i$, we will find that these generators are the same as the ones in the *n*-dimensional case and the n-1 dimensional case, which we can express in terms of the e_i (the last generator is the negative of the sum of the others and therefore can be disregarded).