

iiESI, KU Leuven, May 22nd 2015 Gas & Electricity

Ir Vincent Verbeke

Outline

Introduction

Engie Organization, Portfolio overview, Generalities

Gas

Markets, Optimization, Operational deep dive

Power

Markets, Optimization, Operational deep dive

X-COM

Interactions Gas – Power : some concrete examples

Conclusions

Conclusions

Energy Management & Trading core activities

Optimizing BEE physical and contractual assets

Trading on European Markets

Negotiating with External Counterparties

Supporting BEE
Marketing
& Sales teams

EMT organization

Portfolio & Risk Management

- Develop consolidated view and steering for overall EMT portfolio
- Propose risk management framework and support EMT management in decision making
- Ensure consistency and quality of modeling and build and maintain competitive advantage

Optimization & Prompt

- Optimize the physical power & gas portfolio in CWE
- Identify and transfer options/positions to Trading
- Develop optimization and trading strategies beyond week-ahead
- Coordinate physical delivery, balancing & dispatch

Trading

- Maximize the value of the portfolio by identifying and capturing option value
- Ensure single voice to the market
- Capture value based on market views if proven competitive advantage

Origination & Sales Support

- Manage relationships with external counterparts, lead negotiations and conduct deal-making
- Ensure efficient Sales
 Support to M&S
 by serving as a single point of contact within EMT

EMT Set up in a nutshell

Some Key Figures

Breakdown of gas supplied by EMT:

CLIENTS AND COUNTERPARTS SERVED

COMMODITIES TRADED BY EMT ON MARKET PLACES

Volumes traded eq. overall

10,000 TWh broken down as follows

Gas: 4,500 TWh

Coal:

138 Mt (1,000 TWh eq.)

Power: 1,500 TWh

218 Mt (2,800 TWh eq.)

CO₂/emissions: 460 Mt (230 TWh eq.)

Gas & Power: some generalities

- Electricity and Gas have their own characteristics...
 - Transport
 - Storage
 - Market organization
- ... But
 - Markets are incomplete
 - More renewable energy
 - · More need for flexibility
 - Enhanced role for gas-fired power generation
 - Pan European convergence on both gas & power
 - Common market regulation (REMIT, ...)
- So... interactions between gas & power are / should be valuable

Optimization & Trading: some generalities

- Optimizers maximize the value of a portfolio taking into account all portfolio constraints and market conditions
 - Portfolio = power plants, gas storages, clients (B2C/B2B/Giants), regasification plants, LT contracts,...
 - Constraints = weather impact on consumption forecast, balancing obligations, power plants availabilities, gas transport availbilities, ...
- Traders extract the maximum possible value from electricity and gas markets
 - Continuous trading
 - Auction trading

Gas

Gas Markets: introduction

- Financial or physical products
- Different Maturities
 - Forward Y+1, Q+1, M+1
 - Spot
 - Intraday
 - Balancing markets
- Organized around Trading hubs
 - Hub = trading place or market, where energy volumes are exchanged.
 - Hubs create a common point for commercial trading contracts to settle with or without going to physical delivery
 - Hubs are intended to create price signals for geographical regions of the control area by aggregating a group of representative buses

Gas Markets: overview

Gas Markets: overview

06/05/2015

Gas Optimization: a conceptual overview

Gas Optimization: flexible assets against markets

Gas Optimization: portfolio overview

Gas Portfolio Overview

Number of LT contracts, storages, grid capacities...

- 13 countries
- 360 TWh/year (final end-users, under average climate)
- 160 TWh/year (market interventions, direct or via origination)
- 80 TWh of transit and balanced swap

- 30 long term contracts
- 7 LNG long term contracts
- 4 LNG terminals

- 101 consumption areas
- 178 routing connections between the areas (with Italy and Spain)
- 20 storages with more than 90 TWh of WV (with Italy and Spain)

Size of optimization problem modelling

- 380 000 variables
- 150 000 constraints

Gas Optimization: managing uncertainty – orders of magnitude

MATURITY	UNCERTAINTIES		LEVERS	
Monthly volumes	Weather risk	+/- 15 TWh	Monthly flexibilities of LT Contracts	+/- 5 > 10 TWh
January consumption	LNG shortfall	3 TWh	Storages	+/- 15 TWh
(Normal weather): ~ 75 TWh	Gas shortfall	3 TWh	Market	Constrained by liquidity
	Weather risk	1500 GWh	Daily flexibilities of LT Contracts	+/- 300 GWh
Daily volumes	Daily uncertainties (D-1 → D)	200 GWh	Storages	+/- 1000 GWh
Daily consumption in January	One power plants outage	20 GWh	Interruptibles clients	20 GWh
(Medium weather) : ~1.5 TWh	LNG downloads & terminal emissions	70 GWh	LNG emissions	+/- 250GWh
Peak demand :	Shortfalls and disruptions	100 GWh	Power plants with switch options	
3.35 TWh/d	Note: Availability of physical assets under extreme conditions	350 GWh	Market	

Uncertainties are managed with assets and markets

Gas Optimization & Trading: operational deep dive

- Portfolio is close to fully hedged on a mid term basis (before start of the month)
- Within month: management of the physical detailed characteristics of the portfolio
- Optimization based on assets costs and markets prices 7/7 days
- Respect of risk framework, contractual and operational constraints
- Involved functions:
 - Optimization teams
 - Operational teams for nominations (TSO and counterparts)
 - Trading for market operations
 - Risk Control teams for respect of risk framework
 - Support teams for invoicing and reporting

Gas Optimization & Trading: operational deep dive

Power

Power Markets: introduction

- Different Markets
 - Commodity Markets
 - Ancillary Services markets
 - Capacity Markets
- Financial or physical products
- Different Maturities
 - Forward Y+1, Q+1, M+1
 - Spot
 - Intraday
 - Balancing markets
- Organized around Trading hubs

Power Markets: an overview

- Markets offer different products for different time horizons
 - You can buy today, at a price fixed today some electricity to be delivered in 2014
 - Products: Year, quarter, month, week ahead, day ahead, ID markets etc
- There are several types of electricity markets
 - OTC markets: Bilateral contracts products covering the whole time horizon (with a known counterparty or a broker)

Market for

eliver

CNGIC

Power Markets: zoom on spot markets

- Towards a pan European commodity market
- Spot = day-ahead market
- Auction based
- Hourly granularity
- DA market coupling: 15 countries
 - market coupling between Austria, Belgium, Denmark, Estonia,
 Finland, France, Germany, Great Britain, Latvia, Lithuania,
 Luxemburg, The Netherlands, Norway, Poland, and Sweden

Different products

Power Markets: zoom on intraday & balancing

Production

Trading

Balancing

1h

45'

1h

n

У

n

n

n

Power Optimization: a conceptual overview

Power Optimization: flexible assets against markets

Power Portfolio Overview in CWE

Power - Technology Overview (1)

	Criteria	Nuclear	Coal	CCGT	СНР	GT / Diesel / TJ
	Goal	Baseload inflexible but cheap generator	Baseload mid merit generator	Flexible generator, peak hours mainly	Inflexible, partnerships to supply heat	Very flexible, peaker
	Load Factor	LF > 85 %	LF > 75 %	20% < LF < 50%	LF > 75 %	LF < 10 %
	Flexibility	Startup: 24 h Modulation: Low	Startup: hours Modulation: Yes	Startup: 45' -1.5 h Modulation: Yes	Startup: 1 h Modulation: No	Startup: < 15' Modulation: Yes
	Efficiency	33 %	30-50 %	50-60 %	Up to 85 % (considering heat)	30 %
	Investment cost	3000-5000 €/kW (new EPR: 8 b€)	1500 €/kW	750 €/kW	500 €/kW	500-1000 €/kW
	Fuel Cost	Very Low	Low	High	High	Very High

Power - Technology Overview (2)

	Hydro RoR	Hydro PS	Biomass	Wind	Photovoltaic
Criteria		-incite Style			
Goal	Flexible if reservoir	Very flexible, storage	No CO2, often Must Run	No CO2, Must Run & intermittent	No CO2, Must Run during day
Load Factor			~ 80 %	25 – 40 %	15 – 20 %
Flexibility	Startup: sec Modulation: not always	Startup: sec Modulation: Yes	Startup: ~ hours Modulation: +/-	Startup: - Modulation: No	Startup: - Modulation: No
Efficiency		75 %	35 – 42 %		
Investment cost	1000-2000 €/kW	Specific	1000-2000 €/kW	1500-4000 €/kW	2000 €/kW
Fuel Cost			High		

In general: trend toward more flexibility

Fleet information

Constraints

Revision planning Reserves Special contracts 1

Using fleet information, market prices and constraints as input...

3 ...the production forecast and fuel consumption forecast is created...

OPTIMIZATION MODEL

4 ...based upon which we take hedging (risk reducing) actions...

5 and we reiterate the optimization

- Portfolio is close to fully hedged on a mid term basis (before start of the month)
- Within month: management of the physical detailed characteristics of the portfolio
- Optimization based on assets costs and markets prices 7/7 days (24/24)
- Respect of risk framework, contractual and operational constraints

• Involved functions:

- Optimization teams
- Operational teams for nominations (TSO and counterparts)
- Trading for market operations
- Risk Control teams for respect of risk framework
- Support teams for invoicing and reporting

- A few days before month M, the portfolio is close to fully hedged
- From that point on, management of the detailed physical characteristics of the assets

TIMELINE Intraday Optimization

- DA Delivery of Day-Ahead Plan at 14H
 - 4 Final Day-Ahead Plan after DA Market Clearing (final DA Prices) around 14H
- IOT > 14H: Start additional day in continuous local market in addition to EOD CWE market.
- IOT 15:00 German: DA QH auction market, start continous QH next day.
- IOT > 16H: 1 HTC Optimization Plan for CWE till end of Day plus transferred D+1
- > 21H : Cross Boarder Capacity for D+1 Info to re-Optimize the whole Portfolio and Trade plan
- > 00H: Following ID Prices and Portfolio evolution to Optimize in real time against 2 hourly Cross Boarder Market gates

Our world is changing....

Renewable Energy

- Intermittent Wind / PV Energy management
- Hydro management: reservoir, run-ofriver....

Micro Grid

Energy management at the level of a community / micro grid involving different sources and useages of energy

- bank / Boursorama of the energy markets)

Decentralized Energy

- Management / Optimization of decentralized energy + associated physical flows
- Decentralized = behind the meter
- Power, Gas, and Heat production

Demand Response

- Valorization of final customers' consumption flexibilities
- Optimization of storage
- Mainly Power, but also Gas

Digital sales link

- Market Access Platform (Keytrade
- Consumption forecast?

Energy solutions for Giants

- Investment analysis service
- Bundled offers (commodity and maintenance..)

Green (New) Commodities

Energy Transition

- Sales, wholesale and exchange trading
- e.g. GoO, LEC, biomass (including exchange), green gas, ...

5/18/2015

Merit Order and Price Setting

- Generators bid power plants at marginal cost, from the cheapest to the most expensive one (merit order)
- Intersection between supply and demand determines the assets that will be offered and the power price for each hour of the next day

RES intermittency impact

The Growing Trend is Set to Continue...

• Expected evolution wind capacity in CWE:

Massive increase expected:

	Increase by 2020	GW	% avg demand
Belgium	222%	4	39%
Netherlands	237%	6	45%
France	303%	20	37%
Germany	151%	52	79%

Expected evolution PV capacity in CWE

More steady increase expected:

	Increase by 2020	GW	% avg demand
Belgium	138%	4	31%
Netherlands	250%	3	7%
France	118%	12	9%
Germany	120%	55	60%

Impact on Wholesale Prices is Bigger than Expected (1/2)

• Merit order effect:

high wind & solar → low wholesale price

BUT

price for end-customer increases due to remuneration RES via subsidy

RES pushes conventional power plants out of the merit order

Classical units only remunerated through wholesale markets

Investment decision also impacted, resulting in :

- Mothballing, decommissioning
- Or modification to more flexibility

Impact on Imbalance Prices Off The Charts (1/2)

Example Belgium 10/06/2014:

Stormy weather conditions:

Unpredicted peak in wind generation: + 700 MW

Drop in PV production not forecasted: -1000 MW

Impact on Imbalance Prices Off The Charts (2/2)

Need for flex to cope with RES intermittency: Demand Side Management will be key Example Belgium 10/06/2014:

Belgian grid can almost not cope with these variations, imbalance price spike (see green bars):

- 300 €/MWh during the wind event & 500 €/MWh during PV event

Cross-commodity: some concrete examples

Gas & Power interactions: methods & concepts

- Market analysis techniques
 - Statistical analysis
 - Fundamental Supply / Demand analysis
- Optimization techniques and models
 - Costs minimization or profit maximization under constraints
 - Concepts are similar
 - Processes are similar
- Trading techniques
 - OTC trading, Exchange tradings, brokets
- Operationally
 - Although gas and power are different animals, linking the gas & power portfolios is important from an optimization perspective

Example #1: Prolonged cold snap in BE-FR...

- Context
 - Gas portfolio
 - · Gas Storages at (historically) low levels
 - · Gas contracts off-takes at their maximum
 - Importation capacities saturated towards FR-BE
 - Power portfolio
 - CCGT running
 - Markets
 - Gas prices surged
- X-commodity optimization
 - CCGTs stopped, buy electricity in BE-FR
 - Use the gas for increased gas consumption

Example #2: Coping with nuclear outage in BE...

- Context
 - Power portfolio
 - Nuclear outage
 - Gas portfolio
 - · Gas Storages level medium range, withdrawal capacities not at their max.
- X-commodity optimization
 - Start 3 CCGTs in BE
 - Withdraw more from Loenhout storage
 - Buy some next season gas.
 - Withdraw more from FR storage, reverse gas flows from the interconnection FR-BE towards FR

Example #3: Coping with very windy days...

- Context
 - Power portfolio
 - · Stormy weather in the Norh Sea
 - Wind speed > 30 m/s (-> cut-off)
 - Gas portfolio
 - Still some spare capacity on our German Storages
- X-commodity optimization
 - Start 1 CCGT in the NL
 - Use XB power capacity NL > BE to ship power to BE
 - Buy Gas on NCG (or withdraw from German storages)
 - use XB gas capacity DE->NL to ship gas in the NL

Example #4: Seizing market opportunities in volatile environment...

- Context
 - Power portfolio
 - · CCGT running on the continent
 - Gas Markets
 - Prices surge in the UK following the announcement of an outage at the Rough facility
- X-commodity optimization
 - Stop CCGTs in Benelux
 - Buy power in BE, NL (if not enough liquidity, buy in FR)
 - Ship the gas in reverse flow towards the UK (via IC or BBL)
 - Sell gas on NBP

- Electricity and Gas have their own characteristics...
 - Transport
 - Storage
 - Market organization
- ... But
 - Markets are incomplete
 - More renewable energy
 - · More need for flexibility
 - Enhanced role for gas-fired power generation
 - Pan European convergence on both gas & power
 - Common market regulation (REMIT, ...)

- Already today, linking gas & power portfolios is valuable...
 - To deal with portfolio events on either the gas or the power portfolios
 - Prolonged cold snap
 - Nuclear outage
 - · Wind cut-off
 - To seize market opportunities as they arise
 - · Taking advantage of price volatility
 - To cope with balancing obligations (gas & power)
- However, more could be done...

- More coherence needed from a market design perspective in both gas & electricity sectors...
 - Harmonization in electricity markets: intra-day markets, balancing markets, ancillary services markets
 - Harmonization in gas markets: intra-day markets, balancing obligations, ...
 - Regional sharing of operational reserves
- More coordination needed between gas and electicity systems...
 - Harmonized gas & power markets
 - Coordinated gas & power reserve requirements
 - Coordinated markets organization
- ... should naturally lead to a better gas & electricity system for the benefit of customers
 - More efficient: reduction of CAPEX, reduction of OPEX
 - Improved reliability & integraty

