MINGYU GUAN

 $(+1)470-334-6144 \cdot \text{my.guan@outlook.com}$

EDUCATION

Georgia Institute of Technology

Ph.D in Computer Science

Aug. 2019 - Present (GPA:4.0) Atlanta, GA

The Chinese University of Hong Kong(CUHK)

B.S. in Computer Science with Honours, First Class

Aug. 2017 - May. 2019 (GPA:3.5) **Hong Kong, China**

Sun Yat-Sen University(SYSU)

B.S. in Electronic Information Science $(2+2^*)$

*A joint program offered by SYSU and CUHK.

Sep. 2015 - Jun. 2017

(GPA:4.0) Guangzhou, China

RESEARCH EXPERIENCE

Graduate Research Assistant

May. 2020 - Present

Advisors: Taesoo Kim and Anand Iyer

Georgia Institute of Technology, Atlanta

- · Built graph deep learning and graph processing systems for real-world graphs with billions of edges;
- · Built general ML training and serving systems optimized for large-scale data and models;
- · Leveraged machine learning techniques such as GNNs and Generative AI (LLMs) to cross-domain problems such as blockchain analytics and cloud security.

Research Intern

May. 2022 - Aug. 2022

Advisor: Jay Stokes

Microsoft Research, Redmond

- · Designed and implemented a novel heterogeneous Graph Neural Network (GNN) for compromised email detection, which encodes heterogeneity of graphs efficiently by considering both path and hop information;
- · Outperformed state-of-the-art solutions in terms of accuracy and scalability;
- · Cooperated with a research team and a product team to construct heterogeneous graphs from a large-scale noisy enterprise email data set and built an automatic system for detecting compromised email accounts.

Undergraduate Research Assistant

May. 2018 - Apr. 2019

Advisor: James Cheng

The Chinese University of Hong Kong, Hong Kong

- · Supported Distributed Online Analytical Processing (OLAP) on Husky, which is a general-purpose distributed computing system developed by the system laboratory at CUHK;
- · Used the platform of Husky to implement the By-Layer cubing algorithm in Apache Kylin;
- · Implemented SQL engine and customized query optimization rules on Husky using Apache Calcite.

SELECTED PROJECTS

System for Dynamic Graph Neural Networks at Scale

May. 2021 - Present

- · Supported efficient dynamic GNN training in large-scale distributed settings;
- · Leveraged computational structure in the GNN-RNN approach to propose cross-layer optimizations;
- · Accelerated DGNN training by reusing intermediate results and incrementally computing graph aggregations to eliminate redundant computations;
- · Designed a two-level cache store to support the reusable optimizations and a new cache policy that is aware of the computation pattern of DGNNs;
- · Enabled efficient distributed training that reserves both structure and time dependencies in dynamic graphs;
- · Outperformed existing state-of-the-art GNN frameworks by up to 10.7x on a number of dynamic GNN architectures and workloads.

Telemetry Analytics to Secure Cloud Computing

Jun. 2023 - Sep. 2023

· Built an analytic platform by leveraging GNNs and Large Language Models(LLMs) to analyze and monitor anomalies on cloud telemetry data, such as syscall logs and network data;

- · Modeled network TCP data as graphs and utilized GNNs to be the graph encoders that are aligned with LLMs through iterative training;
- \cdot Conducted anomalous pattern detection based on the GNN-LLM prediction and achieved 92.3% accuracy on a real-world cloud dataset.

Processing Billion-scale Dynamic Graphs on a Single Machine Jan. 2020 - Jul. 2021

- · Introduced the design of cell abstraction, allowing a significant reduction in overall storage space as well as enabling a simple, yet effective load-balancing strategy;
- · Proposed an API and execution model tailored for streaming graphs by incorporating a hybrid edge- and vertex-centric API coupled with the *edgeChanged* API to allow a timely reaction to graph changes;
- · Designed a technique for concurrent analytics on streaming graphs, which fully exploits the similarities in data access among concurrent graph processing jobs.

Automating Massively Parallel Heterogeneous Computing

Jan. 2020 - May. 2021

- · Modeled input program as a hierarchical data flow graph (HDFG) to perform a set of graph-based operations and transformations for automatic optimization and parallelization;
- · Performed purity checking automatically by traversing abstract syntax tree(AST) module;
- · Inferred types of variables and objects automatically with both static analysis and dynamic analysis.

System for Serving ML Inference Pipelines

Sep. 2019 - Dec. 2019

- · Implemented serving models in docker containers across ML frameworks such as TensorFlow and PyTorch;
- · Used Ray Serve as the base platform to communicate with containers via RPC;
- · Supported pipeline and batched queries functionality.

PUBLICATION

Mingyu Guan, Anand Padmanabha Iyer, and Taesoo Kim. DynaGraph: Dynamic Graph Neural Networks at Scale. In Proceedings of the 5th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems and Network Data Analytics (GRADES-NDA), Philadelphia, PA, June 2022.

HONORS AND GRANTS

2023	Student Travel Grant, 17 th USENIX OSDI	Boston, MA
2019	Deans List, CUHK	Hong Kong, China
2019	Rev Mak Shuet Kwong Memorial Scholarship, CUHK	Hong Kong, China
2017	First Prize Academic Scholarship, SYSU	Guangzhou, China
2016	Second Prize Academic Scholarship, SYSU	Guangzhou, China
2016	Jetta Scholarship for Outstanding Students, SYSU	Guangzhou, China

TEACHING EXPERIENCE

Graduate Teaching Assistant

Georgia Institute of Technology, Atlanta

- · CS8803 Systems for AI: Large Language Models, Spring 2024
- · CS3251 Computer Networking, Spring 2020

SKILLS

Language C++, C, Python, SQL

Frameworks PyTorch, TensorFlow, JAX/Flax, DGL, PyG, gRPC, Hadoop

Tools LATEX, Docker, Git, OpenAI API