ENGN4627: Aligned RMSE

This document gives instructions on how to compute the aligned RMSE between two tuples of points, $(\hat{p}_i)_{i=1}^n$ and $(p_i)_{i=1}^n$, defined as

aRMSE =
$$\min_{S \in \mathbf{SE}(2)} \sqrt{\frac{1}{n} \sum_{i=1}^{n} ||R_S^{\top}(\hat{p}_i - x_S) - p_i||^2}$$
. (1)

Note that the indices must correspond: p_i is matched to \hat{p}_i for each i = 1, ..., n. In order to compute the aRMSE, it is necessary to compute the $S \in \mathbf{SE}(2)$ that minimises the above expression. This can be done following the Umeyama's method [1]. First, define the following terms:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \hat{p}_{i},$$

$$\mu = \frac{1}{n} \sum_{i=1}^{n} p_{i},$$

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (p_{i} - \mu)(\hat{p}_{i} - \hat{\mu})^{\top}.$$

Let $UDV^{\top} = \Sigma$ be the singular value decompositions (SVD) of Σ . In MATLAB, this may be computed using [U,D,V] = svd(Sigma). Define the matrix A by

$$A = \begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \text{if } \det(\Sigma) \ge 0 \\ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & \text{if } \det(\Sigma) < 0 \end{cases}$$

Then the rotation matrix R_S and the translation vector x_S are given by

$$R_S = VAU^{\top},$$

$$x_S = \hat{\mu} - R_S \mu.$$

The aligned RMSE is now calculated by substituting these values into (1).

References

[1] Umeyama, Shinji. "Least-squares estimation of transformation parameters between two point patterns." *IEEE Transactions on Pattern Analysis & Machine Intelligence* 4 (1991): 376-380.