STVE : M1 MBEE – module *Systèmes dynamiques* AgroParisTech, 18 octobre 2010

Modèles épidémiologiques (\mathcal{R}_0)

Suzanne Touzeau

Suzanne.Touzeau@jouy.inra.fr

UR341 Mathématiques et Informatique Appliquées, Jouy-en-Josas, France

http://www.jouy.inra.fr/mia/

Présentation du cours

- □ Cours ∈ module Systèmes dynamiques ⇒ en épidémiologie, utilisés pour modéliser la propagation de maladies infectieuses dans des populations (but : prédiction, contrôle, etc.).
- Objectif : introduction aux modèles à compartiments de type « SIR » en épidémiologie et au calcul du \mathcal{R}_0 .
- ☐ Cadre: temps continu, EDO.
- Cours/TD.

Bref historique

Modèle SEIR

Taux de reproduction de base \mathcal{R}_0

Modèle de KERMACK & MCKENDRICK

Modèle de Ross

TD Modèles simples

Bref historique

□ Premiers modèles à compartiments

- Ross (1911) : transmission homme—moustique du paludisme ;
 concept de densité critique de moustiques.
- KERMACK & MCKENDRICK (1927) : modèle SIR de base et théorème du seuil ; épidémie de peste à Bombay 1905-1906.

\Box Taux de reproduction de base \mathcal{R}_0

- Concept issu de la démographie (BÖCKH, 1886) = nombre de filles engendrées par une femme au cours de sa vie.
- Très utilisé en écologie, plus récemment en épidémiologie.
- DIEKMANN, HEESTERBEEK & METZ (1990) : définition mathématique du \mathcal{R}_0 .
- VAN DEN DRIESSCHE & WATMOUGH (2002) : calcul du \mathcal{R}_0 par la « next generation matrix ».

Modèle SEIR

- S sensibles, sains (susceptible)
- E infectés non infectieux (exposed)
- I infectés infectieux (infected)
- R retirés, immunisés ou morts, résistants (removed)
- ightharpoonup Population totale P = S + E + I + R
- **☐** Transmission horizontale

Force d'infection = $f(I, P) \ge 0$, avec f(0, P) = 0, $f \uparrow I$ et $f \downarrow P$.

- ightharpoonup Généralement $f(I,P)=\beta I$ ou $\beta I/P$.
- \square **Prévalence** = proportion d'infectés = I/P.
- ☐ Incidence = nombre de cas / unité de temps = f(I, P)S.

Modèle SEIR de base

$$\begin{array}{c|c} S & & \\ \hline & f(I,P) \end{array} \longrightarrow \begin{array}{c|c} E & & \\ \hline & \alpha & \\ \hline \end{array} \longrightarrow \begin{array}{c|c} R & \\ \hline \end{array}$$

$$\begin{cases} \frac{dS}{dt} = -f(I, P)S & S(0) = S_0 \\ \frac{dE}{dt} = f(I, P)S - \alpha E & E(0) = E_0 \\ \frac{dI}{dt} = \alpha E - \gamma I & I(0) = I_0 \\ \frac{dR}{dt} = \gamma I & R(0) = R_0 \end{cases}$$

STVE: M1 MBEE

Modèle SEIRS = SEIR avec perte d'immunité

STVE: M1 MBEE

$$\begin{cases} \frac{dS}{dt} = -f(I, P)S + \delta R & S(0) = S_0 \\ \frac{dE}{dt} = f(I, P)S - \alpha E & E(0) = E_0 \\ \frac{dI}{dt} = \alpha E - \gamma I & I(0) = I_0 \\ \frac{dR}{dt} = \gamma I - \delta R & R(0) = R_0 \end{cases}$$

Modèles épidémiologiques (\mathcal{R}_0) – S. Touzeau

AgroParisTech, 18/10/10

Modèle SEIRS avec mortalité maladie

$$\begin{cases} \frac{dS}{dt} = -f(I, P)S + \delta R & S(0) = S_0 \\ \frac{dE}{dt} = f(I, P)S - \alpha E & E(0) = E_0 \\ \frac{dI}{dt} = \alpha E - \gamma I - \nu I & I(0) = I_0 \\ \frac{dR}{dt} = \gamma I - \delta R & R(0) = R_0 \end{cases}$$

Modèle SEIRS + démographie (simple)

$$\begin{cases} \frac{dS}{dt} = -f(I, P)S + \delta R - \mu S + b P & S(0) = S_0 \\ \frac{dE}{dt} = f(I, P)S - \alpha E - \mu E & E(0) = E_0 \\ \frac{dI}{dt} = \alpha E - \gamma I - \nu I - \mu I & I(0) = I_0 \\ \frac{dR}{dt} = \gamma I - \delta R - \mu R & R(0) = R_0 \end{cases}$$

Modèle SEIRS + démographie & transmission verticale $(I \rightarrow I)$

$$\begin{cases} \frac{dS}{dt} = -f(I, P)S + \delta R - \mu S + b(P - \lambda I) & S(0) = S_0 \\ \frac{dE}{dt} = f(I, P)S - \alpha E - \mu E & E(0) = E_0 \\ \frac{dI}{dt} = \alpha E - \gamma I - \nu I - \mu I + b \lambda I & I(0) = I_0 \\ \frac{dR}{dt} = \gamma I - \delta R - \mu R & R(0) = R_0 \end{cases}$$

STVE: M1 MBEE

+ Structure continue en **âge** (sensibilité âge-dépendante $\sigma(a)$).

Densité $I(t, \mathbf{a})$: $I(t) = \int_0^{\overline{A}} I(t, \mathbf{a}) d\mathbf{a}$.

$$\frac{dI(t, \mathbf{a})}{dt} = \left[\frac{\partial}{\partial t} + \frac{\partial}{\partial \mathbf{a}}\right] I(t, \mathbf{a}) = \sigma(\mathbf{a}) S(t, \mathbf{a}) f(I, P) + \cdots \text{ (EDP)}$$

- ⇒ Modèles SI, SIS, SIR, SIRS, SEIR, SEIRS...
- + Structure de population plus complexe, avec espace (EDP ou métapopulation), hétérogénéités, etc.
- + Épidémiologie plus complexe (transmission indirecte, vecteurs, plusieurs niveaux d'infectiosité, etc.).
- + Démographie plus complexe (croissance logistique, etc.).
- + Vaccination ($S \rightarrow R$), contrôle.

+ ...

Le niveau de complexité du modèle — structure de population \pm fine, interactions et phénomènes représentés — dépend des objectifs de l'étude.

Taux de reproduction de base \mathcal{R}_0

 nombre de cas secondaires produits par un individu infectieux moyen au cours de sa période d'infectiosité, dans une population entièrement constituée de sensibles.

\mathcal{R}_0 est un **seuil** :

- $\mathcal{R}_0 > 1 \Rightarrow$ épidémie ;
- $\mathcal{R}_0 < 1 \Rightarrow$ pas d'épidémie, l'infection ne peut pas s'installer.

[Selon VAN DEN DRIESSCHE & WATMOUGH, 2002]

État de la population : (x_i) , i = 1, ... n. **Dynamique** :

$$\frac{dx_i}{dt} = \dot{x}_i = \mathcal{F}_i(x) + \mathcal{V}_i^+(x) - \mathcal{V}_i^-(x),$$

avec $\mathcal{F}_i(x)$: vitesse d'apparition des nouveaux infectés en i, i.e. ce qui provient des autres compartiments et entre en i suite à une infection.

 $\mathcal{V}_i^+(x)$: ce qui entre en i pour toute autre cause;

 $\mathcal{V}_i^-(x)$: ce qui sort du compartiment i.

- lacktriangle On ordonne les variables d'état afin que les $m(\leqslant n)$ premières correspondent à des états infectés.
- \Box États sans maladies : $X_S = \{x | x_1 = \cdots = x_m = 0\}$.
- \Box Équilibre sans maladie **DFE** (disease free equilibrium) $x^* \in X_S$.

Conditions

- 1. $x \ge 0$ (nombre d'individus) et flux $\mathcal{F}_i(x)$, $\mathcal{V}_i^+(x)$, $\mathcal{V}_i^-(x) \ge 0$ (par déf.).
- 2. $x_i = 0 \Rightarrow \mathcal{V}_i^- = 0$ (pas de sortie d'un compartiment vide).
- 3. Pour i > m, $\mathcal{F}_i = 0$ (pas d'incidence pour états non infectés).
- 4. $x \in X_S \Rightarrow \mathcal{F}_i(x) = 0$ & pour i < m, $\mathcal{V}_i^+(x) = 0$ (pas d'infection spontanée).
- 5. Si $\mathcal{F} = 0$, le système est LAS en x^* , *i.e.* $D(\mathcal{V}^+ \mathcal{V}^-)(x^*)$ a des valeurs propres à partie réelle strictement négative.
- ► La jabobienne s'écrit $J(x^*) = D\mathcal{F}(x^*) + D(\mathcal{V}^+ \mathcal{V}^-)(x^*)$ avec

$$D\mathcal{F}(x^*) = \begin{pmatrix} F & 0 \\ 0 & 0 \end{pmatrix} \quad \text{et} \quad D(\mathcal{V}^+ - \mathcal{V}^-)(x^*) = \begin{pmatrix} V & 0 \\ J_3 & J_4 \end{pmatrix} \;,$$

où $F \geqslant 0$ est une matrice positive et V est une matrice de Metzler (terme extra-diagonaux $\geqslant 0$) stable (\Leftrightarrow inversible).

Définition $\mathcal{R}_0 = \rho(-FV^{-1}),$

où ρ est le rayon spectral, *i.e.* le plus grand module des valeurs propres de la **matrice de prochaine génération** (next generation matrix) $K = -FV^{-1}$.

Interprétation Soit un individu infecté introduit dans l'état j.

- Le terme (i, j) de $-V^{-1}$ donne son temps moyen passé dans i.
- Le terme (i, j) de F donne l'incidence qu'il génère dans i.
- Ainsi le terme (i, j) de $-FV^{-1}$ correspond au nombre d'infections générées dans le compartiment i par un infecté introduit en j.

Théorème

- $\mathcal{R}_0 > 1 \Rightarrow \mathsf{DFE}$ instable.
- $\mathcal{R}_0 < 1 \Rightarrow$ DFE localement asymptotiquement stable (LAS).

REMARQUES

$\square \mathcal{R}_0$ et seuils

La décomposition de la jacobienne au DFE selon les conditions (1-5) n'est pas unique. Toute autre décomposition donnera un seuil équivalent, parfois plus facile à calculer.

☐ Condition 5

Pour la définition de \mathcal{R}_0 , il suffit que V soit stable (\Leftrightarrow inversible).

Modèle de KERMACK & MCKENDRICK

$$\begin{cases} \frac{dS}{dt} = -\beta IS & S(0) = S_0 \\ \frac{dI}{dt} = \beta IS - \gamma I & I(0) = I_0 \\ \frac{dR}{dt} = \gamma I & R(0) = R_0 \end{cases}$$

- Population totale $P = S + I + R = S_0 + I_0 + R_0$ constante.
- Transmission horizontale avec $f(I, P) = \beta I \iff \beta' I/P$).

- \Box Comme R = P S I, on considère uniquement (S, I).
- \Box Domaine d'étude : $S + I \leq P$.
- \Box Équilibres = DFE : $\{(S^*,0)|0 \leqslant S^* \leqslant P\}$.
- □ Valeurs propres jacobienne : $(\mathbf{0}, \beta S^* \gamma) \Rightarrow$ stabilité?
- \Box Intégrale première : $L(S,I)=I+S-rac{\gamma}{\beta}\ln S$ (= constante).

Taux de reproduction de base \mathcal{R}_0

Pour DFE $(S^*, 0, P - S^*)$, on a $F = \beta S^*$ et $V = -\gamma$, d'où

$$\mathcal{R}_0 = \frac{\beta S^*}{\gamma}.$$

Si $\mathcal{R}_0 > 1$, alors $S^* < \gamma/\beta$ et DFE instable.

Taille finale $P - S_{\infty}$

On a $L(S_0, I_0) = L(S_{\infty}, 0)$, d'où

$$\ln \frac{S_0}{S_\infty} = \mathcal{R}_0 \left(1 - \frac{S_\infty}{P} \right) .$$

Modèle de Ross

= transmission homme \leftrightarrow moustique (vecteur) du **paludisme**.

$$\begin{cases} \dot{I}_{H} = a \, b_{1} \, I_{V} \frac{H - I_{H}}{H} - \gamma \, I_{H} \\ \dot{I}_{V} = a \, b_{2} \, (V - I_{V}) \frac{I_{H}}{H} - \mu \, I_{V} \end{cases}$$

avec I_H nombre d'humains infectés (pop. H constante),

 I_V nombre de moustiques femelles infectées (pop. V constante),

a nombre moyen de piqûres / moustique et unité de temps,

 b_1 proba pour une piqûre de I_V de déclencher une infection I_H ,

proba pour un moustique de s'infecter en piquant un I_H ,

 $1/\gamma$ durée moyenne d'une infection chez l'homme,

 $1/\mu~$ durée de vie moyenne d'un moustique.

DFE: $(I_H, I_V) = (0, 0)$.

STVE: M1 MBEE

$$F = \begin{pmatrix} 0 & ab_1 \\ \frac{ab_2V}{H} & 0 \end{pmatrix}, \ V = \begin{pmatrix} -\gamma & 0 \\ 0 & -\mu \end{pmatrix}, \ K = -FV^{-1} = \begin{pmatrix} 0 & \frac{ab_1}{\mu} \\ \frac{ab_2V}{\gamma H} & 0 \end{pmatrix},$$

$$\Rightarrow \mathcal{R}_0 = \sqrt{\frac{a^2 b_1 b_2 V}{\gamma \mu H}}.$$

- $K_{11} = K_{22} = 0$ car un humain (resp. un moustique) n'infecte pas un humain (resp. un moustique) directement.
- K_{12} : nombre moyen d'humains infectés par un moustique (tous les humains sont susceptibles).
- K_{21} : nombre moyen de moustiques infectés par un humain pendant sa période d'infectiosité (les moustiques se répartissent sur les humains).
- > Nombre moyen d'humains infectés produits par un humain infecté :

$$K_{21}K_{12} = \frac{a^2b_1b_2V}{\gamma\mu H} = \mathcal{R}_0^2$$
 \Rightarrow notion de génération!

Ici, 2 générations : 1 homme infecté $\to K_{21}$ vecteur(s) $\to K_{21}K_{12}$ homme(s).

TD Modèles simples

- 1. Modèle SEIR avec transmission verticale (un I donne naissance à un S ou un E) & population constante.
- 2. Modèle SEIS avec naissance constante Λ en S.
- Schéma.
- Équations.
- DFE.
- Calcul du \mathcal{R}_0 .

1. SEIR avec transmission verticale $I \to E$ & population constante P.

$$\begin{cases} \dot{S} = -\beta I S - \mu S + \mu (P - \lambda I) \\ \dot{E} = \beta I S - \alpha E - \mu E + \mu \lambda I \\ \dot{I} = \alpha E - \gamma I - \mu I \\ \dot{R} = \gamma I - \mu R \end{cases} \Rightarrow \text{ \'etats infect\'es} : (E, I).$$

DFE: $S^* = P$, $E^* = I^* = R^* = 0$.

$$F = \begin{pmatrix} 0 & \beta P + \mu \lambda \\ 0 & 0 \end{pmatrix}, \ V = \begin{pmatrix} -(\alpha + \mu) & 0 \\ \alpha & -(\gamma + \mu) \end{pmatrix}, \ -FV^{-1} = \begin{pmatrix} \frac{\alpha(\beta P + \mu \lambda)}{(\alpha + \mu)(\gamma + \mu)} & \frac{\beta P + \mu \lambda}{\gamma + \mu} \\ 0 & 0 \end{pmatrix},$$

$$\Rightarrow \mathcal{R}_0 = \frac{\alpha(\beta P + \mu \lambda)}{(\alpha + \mu)(\gamma + \mu)}.$$

2. SEIS avec naissance constante Λ en S.

La population P = S + E + I n'est pas constante. On prend $f(I, P) = \beta I/P$.

$$\begin{cases} \dot{S} = -\frac{\beta IS}{P} + \gamma I - \mu S + \Lambda \\ \dot{E} = \frac{\beta IS}{P} - \alpha E - \mu E \\ \dot{I} = \alpha E - \gamma I - \mu I \end{cases} \Rightarrow \text{\'etats infect\'es}: (E, I).$$

DFE : $S^* = \Lambda/\mu$, $E^* = I^* = 0$, d'où $P^* = \Lambda/\mu$.

$$F = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix}, \ V = \begin{pmatrix} -(\alpha + \mu) & 0 \\ \alpha & -(\gamma + \mu) \end{pmatrix}, \ -FV^{-1} = \begin{pmatrix} \frac{\alpha\beta}{(\alpha + \mu)(\gamma + \mu)} & \frac{\beta}{\gamma + \mu} \\ 0 & 0 \end{pmatrix},$$

$$\Rightarrow \mathcal{R}_0 = \frac{\alpha\beta}{(\alpha + \mu)(\gamma + \mu)}.$$

STVE: M1 MBEE

Références

- R. Ross, 1911. The prevention of malaria, John Murray.
- W. KERMACK and A. MCKENDRICK, 1927. A contribution to the mathematical theory of epidemics, *Proc. R. Soc. A* 115(772): 700–721.
- O. DIEKMANN, J. A. P. HEESTERBEEK & J. A. J. METZ, 1990. On the definition and the computation of the basic reproduction ratio \mathcal{R}_0 in models for infectious diseases in heterogeneous populations, *J. Math. Biol.* 28(4): 365–382.
- O. DIEKMANN & J. A. P. HEESTERBEEK, 2000. Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, Wiley.
- P. VAN DEN DRIESSCHE & J. WATMOUGH, 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, *Math. Biosci.* 180(1-2): 29–48.
- G. Sallet, 2010. \mathcal{R}_0 , communication personnelle.

Un grand merci à Gauthier SALLET!