Birla Institute of Technology and Science Pilani, Pilani Campus (Raj.)

Department of Electrical and Electronics Engineering EEE/INSTR F244 Microelectronic Circuits

Second Semester 2019-20

Weightage: 10 marks SPICE Assignment-II Date: 05/04/2020

Instructions for submission

- 1. Students should use LTSPICE simulator for solving the problems.
- 2. Final report submission process shall be uploaded a few days before the submission dead line.
- **3.** Your assignments shall be collected on 19th April 2020.
- **4.** A penalty of FIVE marks per day shall be imposed for late submissions.
- **5.** Neatly sketch and label all the plots. Proper units have to be mentioned for all the quantities.

Problem-1 (Differential Amplifier Design): Design a differential amplifier using suitable topology to meet the specifications prescribed for you. V_{DD} is 3.3V.

- 1. Output swing has to be at-least 80% of V_{DD} .
- 2. Power supply rails available are V_{DD} and ground only.
- 3. Only one current source can be used in the design IREF = 50μ A.
- 4. Every bias voltage needed has to be generated by designing proper circuits.
- 5. Use of Resistors is not allowed in the design.
- 6. Use a load capacitance of 1pF on both the output terminals.
- 7. ICMR should be 0.2V_{DD} to 0.8V_{DD}
- 8. Phase margin has to be at-least 45°.

Analysis Required:

- 1. DC operating point of each MOSFET in the circuit as obtained from SPICE.
- 2. Bode Plot for differential mode gain and CMRR.
- 3. Obtain the Gain margin and phase margin.
- 4. ICMR and output swing calculation from SPICE.
- 5. Plot the variation of differential mode gain when V_{DD} varies by $\pm 10\%$.

In your submission:

List your specification as per the rules formulated in Table-II.

Draw the circuit showing the W/L values of each MOSFET.

Include hand calculations.

At the last present a table comparing the hand calculation Vs actually used W/L values.

Table I Specifications

	Col1	Col2	Col3
	A _{DM} (dB)	CMRR (dB)	Power dissipation (mW)
Row-1	85 ± 5%	110± 5%	2.5± 5%
Row-2	90± 5%	120± 5%	3.5± 5%
Row-3	75± 5%	90± 5%	2.0± 5%
Row-4	80±5%	100± 5%	3.0± 5%

Your Design Specifications:

Table II Rules for choosing the specification

A _{DM}	Row-1 (if sum of last two digits of id no. %4 == 0)		
	Row-2 (if sum of last two digits of id no. %4 == 1)		
	Row-3 (if sum of last two digits of id no. %4 == 2)		
	Row-4 (if sum of last two digits of id no. %4 == 3)		
CMRR	Row-1 (if sum of last four digits of id no. %4 == 0)		
	Row-2 (if sum of last four digits of id no. %4 == 1)		
	Row-3 (if sum of last four digits of id no. %4 == 2)		
	Row-4 (if sum of last four digits of id no. %4 == 3)		
P_{D}	Row-1 (if (tut. Sec no. * last 2 digits of year of admission) %4 == 0)		
	Row-2 (if (tut. Sec no. * last 2 digits of year of admission) %4 == 1)		
	Row-3 (if (tut. Sec no. * last 2 digits of year of admission) %4 == 2)		
	Row-4 (if (tut. Sec no. * last 2 digits of year of admission) %4 == 3)		

*** The End ***

-Compiled by Mr. K. Babu Ravi Teja Assistant Professor, EEE Department BITS Pilani, Pilani Campus e-mail: baburaviteja.k@pilani.bits-pilani.ac.in