Laboratorium SJ.

Lab. 2 - Elementy statystyki

Zadania do wykonania w środowisku Matlab

1) Założenie: prawdopodobieństwo, że wylosowana do próbki jednostka jest niezgodna wynosi p. Napisać funkcję obliczającą prawdopodobieństwo, że w próbce o liczności N wystąpi co najmniej K elementów niezgodnych oraz wykreślić zależność wartości tej funkcji od K (K=1..N) dla zadanych wartości p i N (np. p=0.05, N=50). Wejściem funkcji są zmienne p, N i K (0<p<1, K≤N). Wzór pomocniczy: prawdopodobieństwo wystąpienia dokładnie K elementów niezgodnych wynosi:

$$P(K) = {N \choose K} \cdot p^K \cdot (1-p)^{N-K}$$

2) X jest zmienną losową o rozkładzie normalnym ze średnią μ i odchyleniem standardowym σ . Napisać fukcję wyznaczającą prawdopodobieństwo P zdarzenia, że $\left| \frac{X - \mu}{\sigma} \right| > k$, gdzie k jest zadaną liczbą.

Napisać funkcję, która dla zadanego prawdopodobieństwa P zdarzenia, że $\left| \frac{X - \mu}{\sigma} \right| > k$ oblicza wartość k.

- 3) Sprawdzenie normalności rozkładu danych (lub zgodności danych z dowolnym typem rozkładu). Dla dowolnej ustalonej liczby p, $p \in (0,1)$, kwantylem rzędu p rozkładu prawdopodobieństwa o dystrybuancie F(x) nazywamy taką wartość x_p , że $F(x_p) = p$. Jeżeli dokonamy ustawienia losowych wyników pomiarów X_1 X_N w porządku niemalejącym: $X_{(1) \le X_{(2)}} \le X_{(r)} \le \dots \le X_{(N)}$ oraz dokonamy standaryzacji zmiennej losowej X, tak aby wartość średnia wynosiła 0, a odchylenie standardowe 1, to wartość oczekiwana statystyki pozycyjnej $X_{(r)}$ może być przybliżona przez kwantyl $K_{(r-0.5)/N}$ rzędu (r-0.5)/N standardowej zmiennej losowej Z o rozkładzie normalnym N(0,1). Zatem jeśli przebieg wykresu składa się z punktów $\{X_{(r)}, K_{(r-0.5)/N}\}$, to jeżeli próbka pochodzi z rozkładu normalnego, przebieg wykresu powinien być zbliżony do linii prostej. Odstępstwo od linii prostej sugeruje, że zmierzona próbka nie pochodzi z rozkładu normalnego. Podobnie testuje się zgodność rozkładu próbki dla innych typów rozkładów. Napisać funkcję, która dla zadanej próbki losowej o liczności N wykona wykresy sprawdzające, czy próbka pochodzi z rozkładu normalnego. Funkcję przetestować dla próbek symulowanych z rozkładu normalnego (randn) i równomiernego (rand) dla różnych liczności próbek N (np. N = 100, 104, 106).
- 4) Estymatory odchylenia standardowego

Na podstawie N-próbek K-elementowych można wyznaczyć następujące estymatory nieobciążone odchylenia standardowego:

 $\sigma_1 = a(K) \cdot \bar{s}$, gdzie \bar{s} - średnie odchylenie standardowe wyznaczone z N-odchyleń standardowych pojedynczych próbek, a(K) – współczynnik zależny od liczności próbki K.

 $\sigma_2 = b(K) \cdot \overline{R}$, gdzie \overline{R} jest rozstępem średnim z N próbek K-elementowych, b(K) – współczynnik zależny od liczności próbki K.

 $\sigma_3 = c(K) \cdot med(s)$, gdzie med(s) jest medianą odchyleń standardowych z N-próbek K-elementowych, c(K) – współczynnik zależny od liczności próbek K.

Współczynniki a(K), b(K) i c(K) zawarto w poniższej tabeli:

Liczność próbki K	a(K)	b(K)	c(K)
2	1.253	0.8865	1.1829
3	1.1284	0.5907	1.0646
4	1.0854	0.4857	1.0374
5	1.0638	0.4300	1.0260
6	1.0510	0.3946	1.0201
7	1.0423	0.3698	1.0161
8	1.0363	0.3512	1.0136
9	1.0317	0.3367	1.0116
10	1.0281	0.3249	1.0103
15	1.0180	0.2880	1.0063
20	1.0133	0.2677	1.0046

Napisać funkcję wyznaczającą opisane estymatory odchylenia standardowego dla N-próbek K-elementowych dla K=2..20. Wartości współczynników dla brakujących w tabeli liczności próbek wyznaczyć z zastosowaniem interpolacji.

Dla wybranej liczności próbki K przetestować symulacyjnie, który spośród trzech estymatorów odchylenia standardowego jest najefektywniejszy i wyrazić efektywność pozostałych dwóch względem niego.

5) Wygenerować wektor liczb losowych z rozkładu normalnego o wartości oczekiwanej μ i odchyleniu standardowym σ (wartości parametrów rozkładu przyjąć arbitralnie). Na jego podstawie wykreślić histogram (doświadczalną funkcję gęstości) oraz dystrybuantę. Do wykonania wykresów użyć funkcji bar() i wyników odpowiednio wywołanej funkcji hist() lub histocunts() – które wyznaczają położenia binów i liczby zliczeń w binach. Znormalizować histogram (suma powierzchni słupków histogramu znormalizowanego powinna być równa jedności) i przedstawić go na wykresie razem z teoretyczną funkcją gęstości (normpdf). Na podstawie znormalizowanego histogramu wykreślić dystrybuantę. Porównać na drugim wykresie dystrybuantę doświadczalną z dystrybuantą teoretyczną (normcdf). Histogramy i dystrybuanty doświadczalne wykreślić dla kilku różnych długości wektora liczb losowych.