[Apprentissage Automatique] Réseaux de Neurones Convolutionnels

Anthony Larcher, thanks to Loïc Barrault

anthony.larcher@univ-lemans.fr Le Mans Université

1er décembre 2020

Plan

- La convolution
 - Définitions et (un peu) d'arithmétique
- CNN pour le texte
 - du RNN au CNN
 - Convolution pour le texte
 - Applications
 - Classification
 - Traduction automatique

Sources principales

- "Convolutional Neural Network (for NLP)", R. Socher
 - http://cs224d.stanford.edu/
- "A guide to convolution arithmetic for deep learning", V. Dumoulin & F. Visin
 - https://arxiv.org/abs/1603.07285

• Définition générale (convolution discrète, 1 dimension)

$$(f*g)(n) = \sum_{m=-M}^{M} f(n-m)g(m)$$

- Très utile pour extraire des caractéristiques d'une image
- Exemple en 2 dimensions
 - filtre : ,

1	0	1
0	1	0
1	0	1

image:

	1	1	1	0	0
•	0	1	1	1	0
(0	0	1	1	1
-	0	0	1	1	0
-	0	1	1	0	0

- filtre = **kernel**
- image : input feature map

• Définition générale (convolution discrète, 1 dimension)

$$(f*g)(n) = \sum_{m=-M}^{M} f(n-m)g(m)$$

- Très utile pour extraire des caractéristiques d'une image
- Exemple en 2 dimensions
 - filtre : ,

1	0	1
0	1	0
1	0	1

image :

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0

- filtre = **kernel**
- image : input feature map

• Définition générale (convolution discrète, 1 dimension)

$$(f*g)(n) = \sum_{m=-M}^{M} f(n-m)g(m)$$

- Très utile pour extraire des caractéristiques d'une image
- Exemple en 2 dimensions
 - filtre : ,

1	0	1
0	1	0
1	0	1

image :

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0

- filtre = **kernel**
- image : input feature map

• Définition générale (convolution discrète, 1 dimension)

$$(f*g)(n) = \sum_{m=-M}^{M} f(n-m)g(m)$$

- Très utile pour extraire des caractéristiques d'une image
- Exemple en 2 dimensions
 - filtre : ,

1	0	1
0	1	0
1	0	1

image :

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0

- filtre = **kernel**
- image : input feature map

• Définition générale (convolution discrète, 1 dimension)

$$(f*g)(n) = \sum_{m=-M}^{M} f(n-m)g(m)$$

- Très utile pour extraire des caractéristiques d'une image
- Exemple en 2 dimensions
 - filtre :

1	0	1
0	1	0
1	0	1

image :

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0

- filtre = **kernel**
- image : input feature map

• Définition générale (convolution discrète, 1 dimension)

$$(f*g)(n) = \sum_{m=-M}^{M} f(n-m)g(m)$$

- Très utile pour extraire des caractéristiques d'une image
- Exemple en 2 dimensions
 - filtre : ,

1	0	1
0	1	0
1	0	1

image:

	_				
1		1	1	0	0
0		1	1	1	0
0		0	1	1	1
0		0	1	1	0
0		1	1	0	0

1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0

- filtre = **kernel**
- image : input feature map

• Définition générale (convolution discrète, 1 dimension)

$$(f*g)(n) = \sum_{m=-M}^{M} f(n-m)g(m)$$

- Très utile pour extraire des caractéristiques d'une image
- Exemple en 2 dimensions
 - filtre : ,

1	0	1
0	1	0
1	0	1

image :

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0

- filtre = **kernel**
- image : input feature map

• Définition générale (convolution discrète, 1 dimension)

$$(f*g)(n) = \sum_{m=-M}^{M} f(n-m)g(m)$$

- Très utile pour extraire des caractéristiques d'une image
- Exemple en 2 dimensions
 - filtre :

1	0 1	
0	1	0
1	0	1

image :

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

- filtre = **kernel**
- image : input feature map

• Définition générale (convolution discrète, 1 dimension)

$$(f*g)(n) = \sum_{m=-M}^{M} f(n-m)g(m)$$

- Très utile pour extraire des caractéristiques d'une image
- Exemple en 2 dimensions
 - filtre :

1	0	1
0	1	0
1	0	1

image :

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 2 4 3 2 3 4

- filtre = **kernel**
- image : input feature map

- Soit:
 - $n \equiv$ nombre de cartes de caractéristiques en sortie
 - $m \equiv$ nombre de cartes de caractéristiques en entrée
 - $k_j \equiv$ taille du noyau sur l'axe j
- Les propriétés suivantes affectent la taille de sortie o_j d'une couche convolutionnelle selon l'axe j:
 - i_j : taille de l'entrée selon l'axe j (input feature map)
 - k_j : taille du noyau selon l'axe j (kernel)
 - s_i : pas selon l'axe j (stride)
 - p_j : remplissage de 0 selon l'axe j (padding)
 - Exemple ci-contre :

•
$$i_1 = i_2 = 5$$
, $k_1 = k_2 = 3$, $s_1 = s_2 = 2$, $p_1 = p_2 = 1$

- Figures issues de [Dumoulin and Visin, 2016]
- Voir aussi https://github.com/vdumoulin/conv_arithmetic

- Soit :
 - $n \equiv$ nombre de cartes de caractéristiques en sortie
 - $m \equiv$ nombre de cartes de caractéristiques en entrée
 - $k_j \equiv$ taille du noyau sur l'axe j
- ullet Les propriétés suivantes affectent la taille de sortie o_j d'une couche convolutionnelle selon l'axe j:
 - i_j : taille de l'entrée selon l'axe j (input feature map)
 - k_j : taille du noyau selon l'axe j (kernel)
 - s_i : pas selon l'axe j (stride)
 - p_j : remplissage de 0 selon l'axe j (padding)
 - Exemple ci-contre :

•
$$i_1 = i_2 = 5$$
, $k_1 = k_2 = 3$, $s_1 = s_2 = 2$, $p_1 = p_2 = 1$

- Figures issues de [Dumoulin and Visin, 2016]
- Voir aussi https://github.com/vdumoulin/conv_arithmetic

- Soit :
 - $n \equiv$ nombre de cartes de caractéristiques en sortie
 - $m \equiv$ nombre de cartes de caractéristiques en entrée
 - $k_j \equiv$ taille du noyau sur l'axe j
- Les propriétés suivantes affectent la taille de sortie o_j d'une couche convolutionnelle selon l'axe j:
 - i_j : taille de l'entrée selon l'axe j (input feature map)
 - k_j : taille du noyau selon l'axe j (kernel)
 - s_i : pas selon l'axe j (stride)
 - p_j : remplissage de 0 selon l'axe j (padding)
 - Exemple ci-contre :

•
$$i_1 = i_2 = 5$$
, $k_1 = k_2 = 3$, $s_1 = s_2 = 2$, $p_1 = p_2 = 1$

- Figures issues de [Dumoulin and Visin, 2016]
- Voir aussi https://github.com/vdumoulin/conv_arithmetic

- Soit :
 - $n \equiv$ nombre de cartes de caractéristiques en sortie
 - $m \equiv$ nombre de cartes de caractéristiques en entrée
 - $k_j \equiv$ taille du noyau sur l'axe j
- Les propriétés suivantes affectent la taille de sortie o_j d'une couche convolutionnelle selon l'axe j:
 - i_j : taille de l'entrée selon l'axe j (input feature map)
 - k_j : taille du noyau selon l'axe j (kernel)
 - s_i : pas selon l'axe j (stride)
 - p_j : remplissage de 0 selon l'axe j (padding)
 - Exemple ci-contre :

•
$$i_1 = i_2 = 5$$
, $k_1 = k_2 = 3$, $s_1 = s_2 = 2$, $p_1 = p_2 = 1$

- Soit :
 - $n \equiv$ nombre de cartes de caractéristiques en sortie
 - $m \equiv$ nombre de cartes de caractéristiques en entrée
 - $k_j \equiv$ taille du noyau sur l'axe j
- Les propriétés suivantes affectent la taille de sortie o_j d'une couche convolutionnelle selon l'axe j:
 - i_j : taille de l'entrée selon l'axe j (input feature map)
 - k_j : taille du noyau selon l'axe j (kernel)
 - s_i : pas selon l'axe j (stride)
 - p_j : remplissage de 0 selon l'axe j (padding)
 - Exemple ci-contre :

•
$$i_1 = i_2 = 5$$
, $k_1 = k_2 = 3$, $s_1 = s_2 = 2$, $p_1 = p_2 = 1$

- Figures issues de [Dumoulin and Visin, 2016]
- Voir aussi https://github.com/vdumoulin/conv_arithmetic

- Soit :
 - $n \equiv$ nombre de cartes de caractéristiques en sortie
 - $m \equiv$ nombre de cartes de caractéristiques en entrée
 - $k_j \equiv$ taille du noyau sur l'axe j
- Les propriétés suivantes affectent la taille de sortie o_j d'une couche convolutionnelle selon l'axe j:
 - i_j : taille de l'entrée selon l'axe j (input feature map)
 - k_j : taille du noyau selon l'axe j (kernel)
 - s_i : pas selon l'axe j (stride)
 - p_j : remplissage de 0 selon l'axe j (padding)
 - Exemple ci-contre :

•
$$i_1 = i_2 = 5$$
, $k_1 = k_2 = 3$, $s_1 = s_2 = 2$, $p_1 = p_2 = 1$

- Figures issues de [Dumoulin and Visin, 2016]
- Voir aussi https://github.com/vdumoulin/conv_arithmetic

- Soit :
 - $n \equiv$ nombre de cartes de caractéristiques en sortie
 - $m \equiv$ nombre de cartes de caractéristiques en entrée
 - $k_j \equiv$ taille du noyau sur l'axe j
- Les propriétés suivantes affectent la taille de sortie o_j d'une couche convolutionnelle selon l'axe j:
 - i_j : taille de l'entrée selon l'axe j (input feature map)
 - k_j : taille du noyau selon l'axe j (kernel)
 - s_i : pas selon l'axe j (stride)
 - p_j : remplissage de 0 selon l'axe j (padding)
 - Exemple ci-contre :

•
$$i_1 = i_2 = 5$$
, $k_1 = k_2 = 3$, $s_1 = s_2 = 2$, $p_1 = p_2 = 1$

- Figures issues de [Dumoulin and Visin, 2016]
- Voir aussi https://github.com/vdumoulin/conv_arithmetic

- Soit :
 - $n \equiv$ nombre de cartes de caractéristiques en sortie
 - $m \equiv$ nombre de cartes de caractéristiques en entrée
 - $k_j \equiv$ taille du noyau sur l'axe j
- ullet Les propriétés suivantes affectent la taille de sortie o_j d'une couche convolutionnelle selon l'axe j:
 - i_j : taille de l'entrée selon l'axe j (input feature map)
 - k_j : taille du noyau selon l'axe j (kernel)
 - s_i : pas selon l'axe j (stride)
 - p_j : remplissage de 0 selon l'axe j (padding)
 - Exemple ci-contre :
 - $i_1 = i_2 = 5$, $k_1 = k_2 = 3$, $s_1 = s_2 = 2$, $p_1 = p_2 = 1$

- Figures issues de [Dumoulin and Visin, 2016]
- Voir aussi https://github.com/vdumoulin/conv_arithmetic

- Soit :
 - $n \equiv$ nombre de cartes de caractéristiques en sortie
 - $m \equiv$ nombre de cartes de caractéristiques en entrée
 - $k_j \equiv$ taille du noyau sur l'axe j
- Les propriétés suivantes affectent la taille de sortie o_j d'une couche convolutionnelle selon l'axe j:
 - i_j : taille de l'entrée selon l'axe j (input feature map)
 - k_j : taille du noyau selon l'axe j (kernel)
 - s_i : pas selon l'axe j (stride)
 - p_j : remplissage de 0 selon l'axe j (padding)
 - Exemple ci-contre :

•
$$i_1 = i_2 = 5$$
, $k_1 = k_2 = 3$, $s_1 = s_2 = 2$, $p_1 = p_2 = 1$

- Figures issues de [Dumoulin and Visin, 2016]
- Voir aussi https://github.com/vdumoulin/conv_arithmetic

Le pas (stride)

• Une autre manière de voir le pas (stride)

- ullet On effectue la convolution par pas de 1
- mais on ne retient qu'une valeur tous les s=2 éléments

Convolution

- 2 cartes de caractéristiques \mathbf{FM}_1 et \mathbf{FM}_2 en entrée
- 3 cartes de caractéristiques en sortie
- Collection de noyaux w : 3 x 2 x 3 x 3
- FM₁ convoluée avec kernel w_{1.1}
- FM₂ convoluée avec kernel w_{1,2}
- les résultats sont sommés élément par élément
- \rightarrow on obtient la première carte de sortie
 - on répète pour les autres noyaux (kernel)

Regroupement (Pooling)

- Permet de réduire la taille des cartes de caractéristiques
- Permet de résumer des sous-régions
- Associé à une fonction (généralement non linéaire)
 - Maximum : max-pooling
 - Moyenne : average-pooling
- Les propriétés suivantes affectent la taille de sortie o_j d'une couche de regroupement selon l'axe j:
 - i_j : taille de l'entrée selon l'axe j (input feature map)
 - k_j : taille de la fenêtre de pooling selon l'axe j (window size)
 - s_j : pas selon l'axe j (stride)

Regroupement : moyenne (average pooling)

• average pooling en 2 dimensions : fenêtre 3×3 , entrée 5×5 , par pas de 1×1

Regroupement: maximum (max pooling)

• max pooling en 2 dimensions : fenêtre 3×3 , entrée 5×5 , par pas de 1×1

Cas le plus simple :

- p = 0: pas de padding, s = 1: par pas de 1
- La taille de sortie est définie par :

$$o = (i - k) + 1$$
 avec i la taille de l'entrée, k la taille du noyau

• Ex : noyau $k = 3 \times 3$, entrée $i = 4 \times 4$

Cas simple + padding :

- padding p: ajout de p=2 zéros à la bordure, s=1: par pas de 1
- La taille de sortie est définie par :

$$o = (i - k) + 2p + 1$$
 avec i la taille de l'entrée, k la taille du noyau

- Ex : noyau $k = 4 \times 4$, entrée $i = 5 \times 5$, padding $p = 2 \times 2$
- Note : résultat plus grand que l'entrée (dans cet exemple)

Cas simple + padding complet :

- padding p: ajout de p = k 1 zéros à la bordure, s = 1: par pas de 1
- La taille de sortie est définie par :

$$o = i + 2(k-1) - (k-1) = i + (k-1)$$

- Ex : noyau $k = 3 \times 3$, entrée $i = 5 \times 5$, padding $p = 2 \times 2$
- Toutes les superpositions possibles entre le noyau et l'entrée sont considérées

Question:

• Comment obtenir une sortie de même taille que l'entrée (en gardant un pas de 1)?

À faire chez vous :

- i_1 , i_2 , k_1 et k_2 sont fixés
- le pas s = 1 (**stride**) est fixé
- Déterminer p1 et p2

Pas > 1 + padding:

- padding p, pas s
- La taille de sortie est définie par :

$$o = \left\lfloor \frac{i+2p-k}{s} \right\rfloor + 1$$

• Ex : noyau $k = 3 \times 3$, entrée $i = 5 \times 5$, padding $p = 1 \times 1$, pas $s = 2 \times 2$

Pair / impair

- Note : la dernière ligne et la colonne de droite de l'entrée ne sont pas traitées!
- Malgré les tailles d'entrée différentes, les sorties sont de même tailles (noyau fixé)

Convolution: pour aller plus loin

- "A guide to convolution arithmetic for deep learning", V. Dumoulin & F. Visin
- Que se passe-t-il si on veut aller dans l'autre sens?
- → Notions de convolution transposée
- → Déconvolution
 - Visualisation http://scs.ryerson.ca/~aharley/vis/conv/

CNN pour le texte

Du RNN au CNN

Du RNN au CNN

- Et si on calculait les vecteurs pour chaque segment de la phrase?
- Exemple: "the country of my birth"
 - taille 2 : "the country", "country of", "of my", "my birth"
 - taille 3: "the country of", "country of my", "of my birth",
 - taille 4: "the country of my", "country of my birth"
- peu importe la grammaticalité
- pas besoin d'analyseur
- pas de justification linguistique

• Première couche : calcul des vecteurs pour les bigrammes

• Même opération que pour le RNN, mais pour chaque paire de mots

$$p= anh\left(\mathbf{W}egin{bmatrix} c_1\ c_2 \end{bmatrix}+\mathbf{b}
ight)$$

- convolution sur le vecteurs de mots
- \rightarrow Les poids **W** et **b** sont partagés (nombre de paramètres réduits)

- Plusieurs solutions pour calculer les couches de plus haut niveau
- Idée simple : répéter le processus avec des poids différents

• Simple à comprendre et implémenter, pas nécessairement la meilleure solution

- Plusieurs solutions pour calculer les couches de plus haut niveau
- Idée simple : répéter le processus avec des poids différents

• Simple à comprendre et implémenter, pas nécessairement la meilleure solution

- Plusieurs solutions pour calculer les couches de plus haut niveau
- Idée simple : répéter le processus avec des poids différents

• Simple à comprendre et implémenter, pas nécessairement la meilleure solution

- Une couche convolutionnelle + une opération de groupement (**pooling**)
- cf. [Collobert et al., 2011] et [Kim, 2014]
- Formalisation
 - Embeddings : $\mathbf{x}_i \in \mathbb{R}^k$
 - Phrase : $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \cdots \oplus \mathbf{x}_n$ [vecteurs concaténés]
 - Concaténation d'embeddings dans un intervalle : $\mathbf{x}_{i:i+j}$
 - Filtre pour la convolution : $\mathbf{w} \in \mathbb{R}^{hk}$ [s'étend sur une fenêtre de h mots]
 - Note : le filtre w est un vecteur !
 - Pourrait-être 2 (comme précédemment)

- Une couche convolutionnelle + une opération de groupement (**pooling**)
- cf. [Collobert et al., 2011] et [Kim, 2014]
- Formalisation
 - Embeddings : $\mathbf{x}_i \in \mathbb{R}^k$
 - Phrase : $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \cdots \oplus \mathbf{x}_n$ [vecteurs concaténés]
 - Concaténation d'embeddings dans un intervalle : $\mathbf{x}_{i:i+j}$
 - Filtre pour la convolution : $\mathbf{w} \in \mathbb{R}^{hk}$ [s'étend sur une fenêtre de h mots]
 - Note : le filtre w est un vecteur !
 - Pourrait-être 2 (comme précédemment) ou plus, 3 par exemple :

• Calcul du paramètre pour le CNN :

$$c_i = f(\mathbf{W}^{\top} \mathbf{x}_{i:i+h-1} + \mathbf{b})$$

- Le filtre w est appliqué à toutes les fenêtres possibles (vecteurs concaténés) :
- Phrase : $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \cdots \oplus \mathbf{x}_n$ [vecteurs concaténés]
- ullet Fenêtres de taille h possibles : $\{\mathbf{x}_{1:h}, \mathbf{x}_{2:h+1}, \dots, \mathbf{x}_{n-h+1:n}\}$

Le résultat : carte de caractéristiques (feature map)

•
$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$$

- Le filtre w est appliqué à toutes les fenêtres possibles (vecteurs concaténés) :
- Phrase : $\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \cdots \oplus \mathbf{x}_n$ [vecteurs concaténés]
- Fenêtres de taille h possibles : $\{\mathbf{x}_{1:h}, \mathbf{x}_{2:h+1}, \dots, \mathbf{x}_{n-h+1:n}\}$ Le résultat : carte de caractéristiques (**feature map**)
 - $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$

- Nouvelle brique pour les réseaux de neurones : pooling
- En particulier : couche de max pooling temporel
- Idée : capture l'activation la plus importante à travers le temps
- ullet À partir d'une carte de caractéristiques $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$
 - ightarrow Conserver une seule valeur : $\hat{c} = max(\mathbf{c})$
- mais on a besoin de plus de valeurs!

- Nouvelle brique pour les réseaux de neurones : pooling
- En particulier : couche de max pooling temporel
- Idée : capture l'activation la plus importante à travers le temps
- ullet À partir d'une carte de caractéristiques ${f c} = [c_1, c_2, \ldots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$
 - \rightarrow Conserver une seule valeur : $\hat{c} = max(\mathbf{c})$
- mais on a besoin de plus de valeurs!
 - $\rightarrow \ \, \text{Solution} \,\, 1: \, \text{utiliser plusieurs filtres} \,\, \boldsymbol{w}$

- Nouvelle brique pour les réseaux de neurones : pooling
- En particulier : couche de max pooling temporel
- Idée : capture l'activation la plus importante à travers le temps
- À partir d'une carte de caractéristiques $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$
 - ightarrow Conserver une seule valeur : $\hat{c} = max(\mathbf{c})$
- mais on a besoin de plus de valeurs!
 - ightarrow Solution 1 : utiliser plusieurs filtres ${f w}$
 - Par exemple des filtres w de tailles différentes (h)

- Nouvelle brique pour les réseaux de neurones : pooling
- En particulier : couche de max pooling temporel
- Idée : capture l'activation la plus importante à travers le temps
- ullet À partir d'une carte de caractéristiques ${f c} = [c_1, c_2, \ldots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$
 - \rightarrow Conserver une seule valeur : $\hat{c} = max(\mathbf{c})$
- mais on a besoin de plus de valeurs!
 - $\rightarrow\,$ Solution 1 : utiliser plusieurs filtres \boldsymbol{w}
 - Par exemple des filtres w de tailles différentes (h)
 - Grâce au max pooling, la taille de c ne change rien.

- Nouvelle brique pour les réseaux de neurones : pooling
- En particulier : couche de max pooling temporel
- Idée : capture l'activation la plus importante à travers le temps
- À partir d'une carte de caractéristiques $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$
 - ightarrow Conserver une seule valeur : $\hat{c} = max(\mathbf{c})$
- mais on a besoin de plus de valeurs!
 - ightarrow Solution 1 : utiliser plusieurs filtres ${f w}$
 - Par exemple des filtres w de tailles différentes (h)
 - Grâce au max pooling, la taille de c ne change rien.
 - On peut utiliser des filtres qui regardent les unigrams, les bigrams, les trigrams, etc.

- Nouvelle brique pour les réseaux de neurones : pooling
- En particulier : couche de max pooling temporel
- Idée : capture l'activation la plus importante à travers le temps
- ullet À partir d'une carte de caractéristiques $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$
 - ightarrow Conserver une seule valeur : $\hat{c} = max(\mathbf{c})$
- mais on a besoin de plus de valeurs!
 - ightarrow Solution 1 : utiliser plusieurs filtres ${f w}$
 - ightarrow Solution 2 : (idée) utiliser plusieurs canaux

- Nouvelle brique pour les réseaux de neurones : pooling
- En particulier : couche de max pooling temporel
- Idée : capture l'activation la plus importante à travers le temps
- ullet À partir d'une carte de caractéristiques $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$
 - ightarrow Conserver une seule valeur : $\hat{c} = max(\mathbf{c})$
- mais on a besoin de plus de valeurs!
 - \rightarrow Solution 1 : utiliser plusieurs filtres **w**
 - → Solution 2 : (idée) utiliser plusieurs canaux
 - Initialiser les embeddings avec un modèle pré-entraîné (word2vec ou Glove)

- Nouvelle brique pour les réseaux de neurones : pooling
- En particulier : couche de max pooling temporel
- Idée : capture l'activation la plus importante à travers le temps
- À partir d'une carte de caractéristiques $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$
 - ightarrow Conserver une seule valeur : $\hat{c} = max(\mathbf{c})$
- mais on a besoin de plus de valeurs!
 - \rightarrow Solution 1 : utiliser plusieurs filtres ${f w}$
 - → Solution 2 : (idée) utiliser plusieurs canaux
 - Initialiser les embeddings avec un modèle pré-entraîné (word2vec ou Glove)
 - Commencer avec 2 copies

- Nouvelle brique pour les réseaux de neurones : pooling
- En particulier : couche de max pooling temporel
- Idée : capture l'activation la plus importante à travers le temps
- À partir d'une carte de caractéristiques $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$
 - ightarrow Conserver une seule valeur : $\hat{c} = max(\mathbf{c})$
- mais on a besoin de plus de valeurs!
 - \rightarrow Solution 1 : utiliser plusieurs filtres ${f w}$
 - → Solution 2 : (idée) utiliser plusieurs canaux
 - Initialiser les embeddings avec un modèle pré-entraîné (word2vec ou Glove)
 - Commencer avec 2 copies
 - Mettre à jour une copie par backpropagation, garder l'autre inchangée

- Nouvelle brique pour les réseaux de neurones : pooling
- En particulier : couche de max pooling temporel
- Idée : capture l'activation la plus importante à travers le temps
- À partir d'une carte de caractéristiques $\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}] \in \mathbb{R}^{n-h+1}$
 - ightarrow Conserver une seule valeur : $\hat{c} = max(\mathbf{c})$
- mais on a besoin de plus de valeurs!
 - \rightarrow Solution 1 : utiliser plusieurs filtres ${f w}$
 - → Solution 2 : (idée) utiliser plusieurs canaux
 - Initialiser les embeddings avec un modèle pré-entraîné (word2vec ou Glove)
 - Commencer avec 2 copies
 - Mettre à jour une copie par backpropagation, garder l'autre inchangée
 - Les deux canaux sont ajoutés à c avant le max pooling

Classification après un CNN à une seule couche

- Couche de convolution suivie d'une couche de max pooling
- Pour obtenir les vecteurs de caractéristiques finaux : $\mathbf{z} = [\hat{c}_1, \hat{c}_2, \dots, \hat{c}_m]$
 - \rightarrow avec *m* filtres **w**
- Simple fonction softmax en sortie :

$$y = softmax(\mathbf{W}^{(s)}\mathbf{z} + \mathbf{b})$$

$$avec \ softmax(a_i) = \frac{e^{a_i}}{\sum_m e^{a_m}}$$

Figure issue de Kim, 2014

- séquence de *n* mots (pouvant être complétée par des 0 si taille petite)
- chacun représenté par un vecteur de taille k

Dropout 1/2

- Idée : inhiber certaines caractéristiques de z de manière aléatoire
- Vecteur masque r de variables aléatoires suivant une loi de Bernouilli
- \rightarrow probabilité p: hyperparamètre (à déterminer empiriquement)
- Rappel : variable de Bernouilli :

$$P(X = x) = \begin{cases} p \text{ si } x = 1\\ 1 - p \text{ si } x = 0\\ 0 \text{ sinon} \end{cases}$$

• On ignore certaines caractéristiques pendant l'entraînement :

$$y = softmax\left(\mathbf{W}^{(s)}(\mathbf{r} \circ \mathbf{z}) + \mathbf{b}\right)$$

→ empêche le sur-apprentissage

Dropout 2/2

$$y = softmax\left(\mathbf{W}^{(s)}(\mathbf{r} \circ \mathbf{z}) + \mathbf{b}\right)$$

- Pendant l'entraînement :
 - ullet gradients rétropropagés uniquement dans un sous-ensemble d'éléments où ${f r}_i=1$
- En phase de test : pas de dropout, donc **z** est plus grand
- ightarrow On ajuste le vecteur final avec la probabilité p :

$$\mathbf{W}^{(s)} = p\mathbf{W}^{(s)}$$

- [Kim, 2014] :
 - 2 à 4% d'amélioration de la précision
 - possibilité d'entraîner de très grands réseaux sans sur-apprentissage.

CNN: Variantes

 Convolution réductrice ou amplificatrice :

- Regroupements complexes sur les séquences (pooling)
- Réseaux plus profonds
- [Kalchbrenner et al., 2014]

CNN: application à la traduction automatique

- Un des premiers succès pour la traduction automatique
- CNN encode la phrase source
- RNN pour le décodage
- [Kalchbrenner and Blunsom, 2013]

Comparaison des modèles

- Sac de mots :
 - très bon système de base pour les problèmes de classification (surprenant!)
 - Surtout si suivi de quelques couches (profondeur)
- CNN :
 - bon pour la classification + facile à paralléliser sur des GPUs
 - comment incorporer des annotations au niveau sous-phrastique?
 - nécessite de compléter avec des 0 si la phrase est courte
 - difficile à interpréter
- Réseaux récursifs :
 - linguistiquement plausible, mais nécessite un arbre syntaxique
- RNN :
 - Cognitivement plausible : lecture de gauche à droite
 - pas les meilleurs résultats en classification
 - améliorations avec les unités à portes (LSTM, GRU)

References I

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. P. (2011).

Natural language processing (almost) from scratch.

CoRR, abs/1103.0398.

Dumoulin, V. and Visin, F. (2016).

A guide to convolution arithmetic for deep learning.

Kalchbrenner, N. and Blunsom, P. (2013).

Recurrent continuous translation models.

Seattle. Association for Computational Linguistics.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014).

A convolutional neural network for modelling sentences.

CoRR, abs/1404.2188.

References II

Kim, Y. (2014). Convolutional neural networks for sentence classification. CoRR, abs/1408.5882.