INSTITUTO TECNOLÓGICO DE BUENOS AIRES

22.13 ELECTRÓNICA III

Trabajo Práctico de Laboratorio Nº 1

Grupo 5:

John SMITH Leg. 66666

John SMITH Leg. 66666

John Smith Leg. 66666

John Smith Leg. 66666 Profesor:

Kevin DEWALD

Entregado: 6 de Septiembre de 2018

1. EJERCICIO 2

1.1. Introducción

Se tiene una función dada por:

$$f(d, c, b, a) = \prod (M_0, M_1, M_5, M_7, M_8, M_{10}, M_{14}, M_{15})$$

A partir de esto se construyó la siguiente tabla de verdad, completando únicamente los máxterminos de aquellos estados en los que la función valía 0, ya que éstos son los que nos serán de utilidad:

i	$d = X_1$	$c = X_2$	$b = X_3$	$a = X_4$	f = 0	M_i
0	0	0	0	0	0	$X_1 + X_2 + X_3 + X_4$
1	0	0	0	1	0	$X_1 + X_2 + X_3 + \overline{X_4}$
2	0	0	1	0	1	-
3	0	0	1	1	1	-
4	0	1	0	0	1	-
5	0	1	0	1	0	$X_1 + \overline{X_2} + X_3 + \overline{X_4}$
6	0	1	1	0	1	-
7	0	1	1	1	0	$X_1 + \overline{X_2} + \overline{X_3} + \overline{X_4}$
8	1	0	0	0	0	$\overline{X_1} + X_2 + X_3 + X_4$
9	1	0	0	1	1	-
10	1	0	1	0	0	$\overline{X_1} + X_2 + \overline{X_3} + X_4$
11	1	0	1	1	1	-
12	1	1	0	0	1	-
13	1	1	0	1	1	-
14	1	1	1	0	0	$\overline{X_1} + \overline{X_2} + \overline{X_3} + X_4$
15	1	1	1	1	0	$\overline{X_1} + \overline{X_2} + \overline{X_3} + \overline{X_4}$

Cuadro 1.1: Tabla de verdad de la función dada.

De esta manera, la función está dada por productos de sumas de las variables (máxterminos).

1.2. SIMPLIFICACIÓN APLICANDO ÁLGEBRA BOOLEANA

Se tiene entonces:

$$f(d,c,b,a) = M_0 * M_1 * M_5 * M_7 * M_8 * M_{10} * M_{14} * M_{15}$$
(1.1)

Que es equivalente a:

$$f(d,c,b,a) = (X_1 + X_2 + X_3 + X_4) * (X_1 + X_2 + X_3 + \overline{X_4}) * (X_1 + \overline{X_2} + X_3 + \overline{X_4}) * (X_1 + \overline{X_2} + \overline{X_3} + \overline{X_4})$$

$$* (\overline{X_1} + X_2 + X_3 + X_4) * (\overline{X_1} + X_2 + \overline{X_3} + X_4) * (\overline{X_1} + \overline{X_2} + \overline{X_3} + X_4) * (\overline{X_1} + \overline{X_2} + \overline{X_3} + \overline{X_4})$$

$$(1.2)$$

Utilizando la propiedad del álgebra booleana $(x + y)(x + \overline{y} = x)$ sobre los pares de términos $(M_0, M_1); (M_5, M_7); (M_8, M_{10}); (M_{14}, M_{15})$ se llegó a la siguiente expresión simplificada.

$$f(d,c,b,a) = (X_1 + X_2 + X_3) * (\overline{X_1} + \overline{X_2} + \overline{X_3}) * (X_1 + \overline{X_2} + \overline{X_4}) * (\overline{X_1} + X_2 + X_4)$$
(1.3)

1.3. SIMPLIFICACIÓN APLICANDO MAPAS DE KARNAUGH

1.4. CIRCUITO LÓGICO RESULTANTE

- 1.4.1. UTILIZANDO COMPUERTAS AND, OR, NOT.
- 1.4.2. UTILIZANDO COMPUERTAS NOR.

Comentarios:

- -Falta agregar tildes
- -Falta implementar circuito en verilog

2. EJERCICIO 4

2.1. Introduccion

Para implementar un circuito que convierta un numero binario de 4 bits en su complemento a dos se empezo pensando este circuito como una caja negra con 4 entradas y 4 salidas:

Figura 2.1: Caja Negra Complemento a 2

A su vez, sabemos que el complemento a dos se realiza aplicando el complemento a uno y luego sumando uno al resultado. Por lo que se puede representar mediante el siguiente conjunto de çajas negras":

La salida tras el complemento a uno sabemos que es cada bit negado, es decir que atraviesan una compuerta NOT. De esta manera a la salida de el complemento a uno que se obtiene es:

 $\overline{a}\overline{b}\overline{c}\overline{d}$

Ahora lo unico que falta es sumarle uno.

2.2. EXPRESION DE LA SALIDA EN MINTERMINOS

La expresion de la salida queda determinada por las entrada a traves de la siguiente formula deducida en la introduccion:

 $\overline{a}\overline{b}\overline{c}\overline{d}$ +0001 --- efgh

Para la creacion de las tablas de valor se debe observar que el output de cada bit depende de el resultado de el input de

Figura 2.2: Caja Negra Complemento a 2

los bits menos significativos que con el que se esta trabajando.

Para el BMS la tabla de verdad es muy simple y no vale la pena el uso de minterminos por lo que se vera a continuacion:

Cuadro 2.1: Tabla para bit h
$$\begin{array}{c|cccc}
\overline{d} & \mathbf{1} & \mathbf{h} \\
\hline
1 & 1 & 0 \\
0 & 1 & 1
\end{array}$$

Facilmente de la tabla se puede observar que h resulta ser la entrada negada. Por lo que resulta la primera relacion de entrada-salida:

$$h(d) = \overline{\overline{d}}$$
 (2.1)

Para la salida correspondiente a el bit g la tabla de verdad es de la siguiente manera:

Cuadro 2.2: Tabla para bit g

\overline{c}	\overline{d}	g
0	0	0
0	1	$1 (m_1)$
1	0	$1 (m_2)$
1	1	0

Al escribir la salida en funcion de los minterminos se llega a la siguiente expresion:

$$g(c,d) = m_1 + m_2$$

$$g(c,d) = \overline{\overline{c}d} + \overline{c}\overline{\overline{d}}$$
(2.2)

Ahora para el bit f se requiere una tabla de verdad de tres variables ya que ahora depende del carry causado por las variables de entrada c y d:

Al escribir la salida en funcion de los minterminos se llega a la siguiente expresion:

$$f(b, c, d) = m_3 + m_4 + m_5 + m_6$$

$$f(b,c,d) = \overline{b}\overline{c}\overline{d} + \overline{b}\overline{c}\overline{d} + \overline{b}\overline{c}\overline{d} + \overline{b}\overline{c}\overline{d}$$
(2.3)

Cuadro 2.3: Tabla para bit f

\overline{b}	\overline{c}	\overline{d}	ı f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	$1(m_3)$
1	0	0	$1(m_4)$
1	0	1	$1(m_5)$
1	1	0	$1(m_6)$
1	1	1	0

Para el bit e la tabla de verdad es la siguiente:

Cuadro 2.4: Tabla para bit e

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1	1	. —			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e	\overline{d}	\overline{c}	\overline{b}	\overline{a}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	0
0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1(m ₆) 0 1 1 1(m ₇) 1 0 0 0 1(m ₈) 1 0 0 1 1(m ₁₀) 1 0 1 1(m ₁₀) 1 1 0 1 1(m ₁₂) 1 1 1 0 1 1(m ₁₃) 1 1 1 0 1(m ₁₄)	0	1	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	1	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	1	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	0	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1(m_6)$	0	1	1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1(m_7)$	1	1	1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1(m_8)$	0	0	0	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1(m_9)$	1	0	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1(m_{10})$	0	1	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1(m_{11})$	1	1	0	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$1(m_{12})$	0	0	1	1
(14	$1(m_{13})$	1	0	1	1
1 1 1 1 ($1(m_{14})$	0	1	1	1
	0	1	1	1	1

Al escribir la salida en funcion de los minterminos se llega a la siguiente expresion:

$$e(a, b, c, d) = m_6 + m_7 + m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14}$$

$$e(a,b,c,d) = \overline{\overline{a}}\overline{b}\overline{c}\overline{d} + \overline{a}\overline{b}\overline{c}\overline{d} + \overline{a}\overline{b}\overline{c}\overline{d}$$

(2.4)

2.3. SIMPLIFICACION DE LAS ECUACIONES RESULTANTES

Para reducir las 4 expresiones resultantes procedemos a utilizar la propiedad:

$$\overline{a} = a$$

Lo cual da como resultado las 4 siguientes ecuaciones:

2.4. CIRCUITO RESULTANTE