Bài 2: Tổng và hiệu của hai vectơ

Bài 1 trang 94 SBT Toán 10 Tập 1: Cho hình thoi ABCD và M là trung điểm cạnh AB, N là trung điểm cạnh CD. Chứng minh rằng: $\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD} = \overrightarrow{MN}$

Lời giải:

Gọi O là tâm hình thoi. O là trung điểm của AC và BD (tính chất hình thoi).

$$\Rightarrow \overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{0} \text{ và } \overrightarrow{OB} + \overrightarrow{OD} = \overrightarrow{0}.$$

Ta có:

$$\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MO} + \overrightarrow{OA} + \overrightarrow{MO} + \overrightarrow{OC} = 2\overrightarrow{MO} + \overrightarrow{OA} + \overrightarrow{OC} = 2\overrightarrow{MO} = \overrightarrow{MN}$$
.

$$\overrightarrow{MB} + \overrightarrow{MD} = \overrightarrow{MO} + \overrightarrow{OB} + \overrightarrow{MO} + \overrightarrow{OD} = 2\overrightarrow{MO} + \overrightarrow{OB} + \overrightarrow{OD} = 2\overrightarrow{MO} = \overrightarrow{MN}$$
.

$$V$$
ây $\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD} = \overrightarrow{MN}$.

Bài 2 trang 94 SBT Toán 10 Tập 1: Chứng minh rằng với tứ giác ABCD bất kì, ta luôn có:

a)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0}$$
.

b)
$$\overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{CB} - \overrightarrow{CD}$$
.

Lời giải:

a) Theo quy tắc ba điểm cộng vecto ta có:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} \ va \ \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{CA}$$

Như vậy:
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{0}$$
.

b) Ta có:

$$\overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{DA} = \overrightarrow{DB}$$
.

$$\overrightarrow{CB} - \overrightarrow{CD} = \overrightarrow{CB} + \overrightarrow{DC} = \overrightarrow{DB}$$
.

$$\hat{V}$$
ây $\overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{CB} - \overrightarrow{CD}$.

Bài 3 trang 94 SBT Toán 10 Tập 1: Cho tam giác đều ABC cạnh bằng a. Tính độ dài của các vector $\overrightarrow{AB} + \overrightarrow{BC}$ và $\overrightarrow{AB} - \overrightarrow{BC}$.

Lời giải:

Theo quy tắc ba điểm, ta có: $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

Tam giác ABC đều cạnh bằng a nên AC = a.

Do đó
$$\left| \overrightarrow{AB} + \overrightarrow{BC} \right| = \left| \overrightarrow{AC} \right| = a$$
.

Gọi M là trung điểm cạnh AC.

Ta có:

$$\overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{CB} = \overrightarrow{AB} + \overrightarrow{CA} + \overrightarrow{AB} = 2\overrightarrow{AB} + 2\overrightarrow{MA} = 2(\overrightarrow{MA} + \overrightarrow{AB}) = 2$$
 \overrightarrow{MB} .

Vì MB là đường trung tuyến của tam giác đều ABC cạnh bằng a nên MB = $\frac{a\sqrt{3}}{2}$.

Do đó
$$\left| \overrightarrow{AB} - \overrightarrow{BC} \right| = 2 \left| \overrightarrow{MB} \right| = a \sqrt{3}$$
.

$$V$$
ây $|\overrightarrow{AB} + \overrightarrow{BC}| = a \ v$ à $|\overrightarrow{AB} - \overrightarrow{BC}| = a\sqrt{3}$.

Bài 4 trang 94 SBT Toán 10 Tập 1: Cho hình bình hành ABCD tâm O. Chứng minh rằng:

- a) $\overrightarrow{CO} \overrightarrow{OB} = \overrightarrow{BA}$;
- b) $\overrightarrow{AB} \overrightarrow{BC} = \overrightarrow{DB}$;
- c) $\overrightarrow{DA} \overrightarrow{DB} = \overrightarrow{OD} \overrightarrow{OC}$;
- d) $\overrightarrow{DA} \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{0}$.

Lời giải:

a) Vì ABCD là hình bình hành nên O là trung điểm của AC, BD.

Do đó
$$\overrightarrow{CO} = \overrightarrow{OA} \Rightarrow \overrightarrow{CO} - \overrightarrow{OB} = \overrightarrow{OA} - \overrightarrow{OB} = \overrightarrow{BA}$$
.

b) Vì ABCD là hình bình hành nên: $\overrightarrow{BC} = \overrightarrow{AD}$

$$Ta \ c\acute{o}: \ \overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{DA} = \overrightarrow{DA} + \overrightarrow{AB} = \overrightarrow{DB} \ .$$

c) Ta có:
$$\overrightarrow{DA} - \overrightarrow{DB} = \overrightarrow{DA} + \overrightarrow{BD} = \overrightarrow{BD} + \overrightarrow{DA} = \overrightarrow{BA} \text{ và } \overrightarrow{OD} - \overrightarrow{OC} = \overrightarrow{OD} + \overrightarrow{CO} = \overrightarrow{CO} + \overrightarrow{OD} = \overrightarrow{CD}$$
.

Mà ta lại có ABCD là hình bình hành nên $\overrightarrow{BA} = \overrightarrow{CD}$.

Vậy nên
$$\overrightarrow{DA} - \overrightarrow{DB} = \overrightarrow{OD} - \overrightarrow{OC}$$
.

d) Theo chứng minh trên ta có: $\overrightarrow{DA} - \overrightarrow{DB} = \overrightarrow{BA} = \overrightarrow{CD}$

$$\Rightarrow \overrightarrow{DA} - \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{CD} + \overrightarrow{DC} = \overrightarrow{0}.$$

Vậy
$$\overrightarrow{DA} - \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{0}$$
.

Bài 5 trang 94 SBT Toán 10 Tập 1: Cho ba lực $\overrightarrow{F_1} = \overrightarrow{MA}$, $\overrightarrow{F_2} = \overrightarrow{MB}$ và $\overrightarrow{F_3} = \overrightarrow{MC}$ cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết độ lớn của $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ đều là 100N và AMB = 60°. Tính độ lớn của lực $\overrightarrow{F_3}$.

Lời giải:

M đứng yên nên $\overrightarrow{F_1}$ + $\overrightarrow{F_2}$ + $\overrightarrow{F_3}$ = $\vec{0}$

$$\Rightarrow \overrightarrow{F_3} = -(\overrightarrow{F_1} + \overrightarrow{F_2}) = -(\overrightarrow{MA} + \overrightarrow{MB}) = -\overrightarrow{MD}$$

 $\Rightarrow \overrightarrow{F_3}$ có hướng ngược với \overrightarrow{MD} và có độ lớn bằng \overrightarrow{MD} .

Dựng hình bình hành MADB.

Gọi I là giao điểm của AB và MD. Khi đó I là trung điểm của AB và MD.

Mặt khác AMB = 60° nên tam giác AMB đều.

Khi đó MI ⊥ AB ⇒ Tam giác AIM vuông tại I.

$$\Rightarrow$$
 MI = AM.sin MAI = $100.\sin 60^{\circ} = 50\sqrt{3} \Rightarrow$ MD = 2MI = $100\sqrt{3}$.

Vậy độ lớn của lực \overrightarrow{F}_3 bằng $100\sqrt{3}$.

Bài 6 trang 94 SBT Toán 10 Tập 1: Khi máy bay nghiêng cánh một góc α , lực \vec{F} của không khí tác động vuông góc với cánh và bằng tổng của lực nâng \vec{F}_1 và lực cản \vec{F}_2 (Hình 8). Cho biết $\alpha = 45^\circ$ và $|\vec{F}| = a$. Tính $|\vec{F}_1|$ và $|\vec{F}_2|$ theo a.

Lời giải:

Đặt tên các điểm trong hình vẽ, ta có:

Khi đó
$$|\vec{F}| = OB, |\vec{F}_1| = OA, |\vec{F}_2| = OC$$

Vì lực \vec{F} vuông góc với phương xy của cánh nên $FOx = 90^{\circ}$.

Ta có: $COx = \alpha = 45^{\circ}$

$$\Rightarrow$$
 BOC = BOx - COx = 90° - 45° = 45°

Xét tam giác BOC vuông tại C, có:

$$\cos BOC = \frac{OC}{OB} \iff \cos 45^{\circ} = \frac{|\overrightarrow{F_2}|}{a} \implies |\overrightarrow{F_2}| = |\overrightarrow{F}| \cdot \cos 45^{\circ} = \frac{a\sqrt{2}}{2}.$$

$$\sin BOC = \frac{OC}{OB} \Leftrightarrow \sin 45^\circ = \frac{|\overrightarrow{F_1}|}{a} \Rightarrow |\overrightarrow{F_1}| = |\overrightarrow{F}| \cdot \sin 45^\circ = \frac{a\sqrt{2}}{2}.$$

$$|\overrightarrow{F_2}| = |\overrightarrow{F_1}| = \frac{a\sqrt{3}}{2}.$$

Bài 7 trang 94 SBT Toán 10 Tập 1: Cho hình vuông ABCD có tâm O và có cạnh bằng a. Cho hai điểm M, N thỏa mãn: $\overrightarrow{MA} + \overrightarrow{MD} = \overrightarrow{0}$; $\overrightarrow{NB} + \overrightarrow{ND} + \overrightarrow{NC} = \overrightarrow{0}$.

Tìm độ dài các vecto \overrightarrow{MA} , \overrightarrow{NO} .

Lời giải:

Ta có: $\overrightarrow{MA} + \overrightarrow{MD} = \overrightarrow{0}$ suy ra M là trung điểm AD. Khi đó $\left| \overrightarrow{MA} \right| = MA = \frac{1}{2} AD = \frac{a}{2}$

.

Và $\overrightarrow{NB} + \overrightarrow{ND} + \overrightarrow{NC} = \overrightarrow{0}$ suy ra N là trọng tâm tam giác BCD. Khi đó $|\overrightarrow{NO}| = NO = \frac{1}{3}$ $CO = \frac{1}{6} CA.$

Xét hình vuông ABCD, có: $CA = \sqrt{AB^2 + AC^2} = \sqrt{a^2 + a^2} = a\sqrt{2}$

Suy ra
$$|\overrightarrow{NO}| = \frac{1}{6}CA = \frac{1}{6}.a\sqrt{2} = \frac{a\sqrt{2}}{6}.$$