DOAA CA1

CARVALUIFY

YOUR ONE-STOP CAR PRICE PREDICTOR WEBSITE

Name : Dario Prawara Teh Wei Rong

Class: DAAA / FT / 2B / 04

Admin Number: 2201858

PROJECT OBJECTIVE

Using **regression modelling** for car price prediction, **predict car prices**, given a set of input car feature data.

For our <u>'100,000 UK Cars'</u> dataset, it contained extensive data on car model, car registration year, mileage, tax and more.

DEVOPS PROCESS

SETTING UP GITLAB AND SCRUM BOARD

- Managed a <u>scrum board</u> to enable us to keep track of our web application development.
- The scrum board contained 4 key labels, 'To-Do', 'In Progress', 'Testing', and 'Done'.
- Created <u>6</u> branches for frontend, backend, model building and testing for us to make changes to the folder in a controlled environment.

PRESENTING: CARVALUIFY

CARVALUIFY

carValuify is a <u>simple-to-use web</u>

<u>application</u> that enables you to
predict your car prices & valuations
through inputting your car details.
Simply enter the necessary fields, and
our Al algorithm will work out the rest!

GENERAL INFORMATION

Bypassing the authentication by typing in direct link **is addressed** and is prevented.

Username : student Password : student

Responsive + Flexible Website Design using Bootstrap 4 and TailwindCSS.

Webpage is viewable on multiple devices and is customizable to the screen size.

Login Page: Prompt users to enter the username and password before proceeding

Errors & validation checks are displayed using Flask's **flash()** function.

Added attractive icons for user engagement

Dropdown box options for easy selection for our user

Attractive graphic for viewing of the predicted price

Simple 'Return Home' button to easily return to the home page

Profile Page for users to view prediction histories

WELCOME BACK, STUDENT.

Check out your latest car valuation histories below.

Displays all the relevant columns and an 'X' for delete.

Year of Registration	User ID	Mileage	MPG	Car Age	Тах	Fuel Type	Transmission Type	Engine Size	Price (\$)	Date	Delete
2013	1	1000	20.0	50	20.0	petrol	manual	1.4	11389.1	04 Dec 23 08:00	×
2014	1	1000	30.0	3	200.0	petrol	manual	1.2	11389.1	04 Dec 23 07:27	×
2014	1	1000	20.0	6	200.0	petrol	manual	2.1	10960.9	04 Dec 23 06:47	×
2017	1	5000	35.0	3	150.0	electric	automatic	2.0	20000.0	04 Dec 23 02:18	×
2015	1	10000	30.0	5	200.0	petrol	manual	2.5	15000.0	04 Dec 23 02:18	×

MACHINE LEARNING REGRESSOR

- First, conducted extensive EDA on the dataset to discover insights and patterns in data.
- Found moderate to high correlation between most of the car variables in dataset.
- Most variables like Price and Mileage are **slightly skewed** (imbalanced distribution).

MACHINE LEARNING REGRESSOR

• Dropped unnecessary columns not useful for the analysis.

```
# Dropping unnecessary columns from the dataset
car_df.drop(['tax(£)'], axis=1, inplace=True)
car_df
```

• Imputed missing values with **MEDIAN** to remove NULLS and prevent loss of data rows.

```
# Columns with missing values: 'tax' and 'mpg'
# Since 'tax' and 'mpg' are numerical columns, we'll fill missing values with their median
for col in ['tax', 'mpg']:
    median = car_df[col].median()
    car_df[col].fillna(median, inplace=True)
```

Dropped **DUPLICATE** rows of data to prevent biasness to certain groups of values.

```
# Count number of duplicate rows of data and print them
duplicate = car_df[car_df.duplicated(keep=False)]
print("Number of duplicate rows before removal:", duplicate.count().sum())
```

MACHINE LEARNING REGRESSOR

Feature Engineering Performed

- Robust Scaling of Data
- Added new column 'Car Age' (Now Registration Year)
- One-hot Encoded Labels
- Train-Test Split X and Y

Cross-Validation Performance

Best-performing Model: RANDOM FOREST REGRESSOR

MAPE: 0.1156RMSE: 2962.17

<u>Hyperparameter Tuning – Randomized Search</u>

• R2: 0.92

MAPE: 10.93%

WEB APIS DEVELOPED

POST API/ADD

API used to add a new prediction record to the database table.

Login is needed.

GET API/GET

API used to get an existing prediction record from the database table.

Login is needed.

DELETE API/DELETE

API used to delete an existing prediction record from the database table.

Login is needed.

POST API/PREDICT

API used to perform predictions and gain price insights on the car.

Login is needed.

TESTING WITH PYTEST

54 TESTS

VALIDITY TESTING

Tested on valid data to determine if ordinary data can be used. Ensured data entered was acceptable.

RANGE TESTING

Extreme values for columns such as Year, MPG, Car Age and Mileage etc. Tested both lower and upper bounds.

CONSISTENCY TESTING

Given identical inputs, checked if prediction and output prices are the same.

EXPECTED FAILURE TESTING

Tested XFAIL on:

- Invalid Year of Registration
- Invalid Mileage (< 0)
- Invalid MPG
- Invalid Car Age
- Invalid tax value

UNEXPECTED FAILURE TESTING

Tested invalid inputs on:

- Year of Registration (Non-integer)
- MPG (Less than 0)
- Mileage (Negative value)

TESTING WITH PYTEST

52 TESTS DONE

THANK YOU!