Condensé de la terminale Mathématiques

Notations non vues en cours

- := | Égal par définition
- $\lceil x \rceil$ Arrondir x à l'entier supérieur. ($\lceil 5.1 \rceil = 6$)
- 1.5 Séparateur,
- $x \cdot y$ | Multiplication \times

Contents

1	Pro	babilités	3
	1.1	Probabilité conditionnelle $P(A B)$	3
	1.2	Probabilités d'intersections $P(A \cap B)$	3
	1.3	Partitions	3
	1.4	Formule des probabilités totales	3
	1.5	Indépendance d'évenements	3

1 Probabilités

1.1 Probabilité conditionnelle P(A|B)

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad \text{si } P(B) \neq 0$$
$$= P_B(A)$$

 \iff probabilité que A soit réalisé sachant que B a déjà été réalisé.

1.2 Probabilités d'intersections $P(A \cap B)$

$$P(A \cap B) = P(B) \cdot P(A|B)$$
$$= P(A) \cdot P(B|A)$$

 \iff probabilité que A et B soit réalisées.

1.3 Partitions

Si on a deux évenements ou plus tel que...

- Aucun évenement n'est vide $\iff B_i \neq \emptyset \quad \forall i$
- Aucun évenement ne recouvre un autre $\iff B_i \cap B_j = \emptyset \quad \forall i, j$
- L'union de chaque partition couvre l'univers entier $\iff \bigcup_{i=1}^{j} B_i = \Omega$

1.4 Formule des probabilités totales

Soit $B_1, B_2, ..., B_n$ des évenements formant une partition de Ω

$$\sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(B_i) P(A|B_i)$$

1.5 Indépendance d'évenements

$$A$$
 et B sont indépendants $\iff P(A \cap B) = P(A) \cdot P(B)$
 $\iff P(B|A) = P(B)$ et $P(A|B) = P(A)$
 $\iff \overline{A}$ et \overline{B} sont indépendants
 $\iff \overline{A}$ et \overline{B} sont indépendants
 $\iff \overline{A}$ et B sont indépendants