NGRAMS – PART 2 NATURAL LANGUAGE PROCESSING - CS 322.00

Blake Howald September 27, 2017

AGENDA

- Presentation Maryam Hedayati, Sasha Mayn
- Questions
- Ngrams Part 2
 - Smoothing
 - Evaluation
 - Training/Testing
 - Perplexity

SMOOTHING

- Multiple methods to address data sparsity (also known as discounting).
- Redistributing probability mass to unseen data
 - · Laplace (add one) smoothing
 - Also add k smoothing
 - Good-Turing discounting
 - Kneser-Nay and other "absolute" discounting methods

LAPLACE (ADD ONE) SMOOTHING The cat in the hat The Cat In Hat The Cat ln Hat The 0 1 0 The 0 .25 .25 .25 Cat 0 0 0 Cat 0 0 0 ln 0 0 ln .25 0 0 0 0 0 0 0 Hat Hat 0 0 Cat In The Cat In Hat The Hat 2 2 The The 0.05 .1 0.05 .1 2 Cat 1 Cat 0.05 0.05 .1 0.05 .1 In In 0.05 0.05 0.05 Hat Hat 0.05 0.05 0.05 0.05

GOOD TURING SMOOTHING

The cat in the hat

	The	Cat	In	Hat
The	0	ı	0	- 1
Cat	2	ı	3	2
ln	4	ı	0	0
Hat	- 1	1	2	- 1

Bucket: occur	rences
0 counts:	4
I count:	7
2 counts:	3
3 counts:	- 1
1 counts	- 1

	The	Cat	In	Hat
The	0	.05	0	.05
Cat	.1	.05	.15	.1
ln	.2	.05	0	0
Hat	.05	. 05	.1	.05

GOOD TURING SMOOTHING

The cat in the hat

	The	Cat	In	Hat
The	0	- 1	0	- 1
Cat	2	- 1	3	2
ln	4	- 1	0	0
Hat	ı	1	2	I

Bucket: occuri	ence
0 counts:	4
I count:	7
2 counts:	3
3 counts:	- 1
4 counts:	- 1

	The	Cat	In	Hat
The	(.35)	.05	(.35)	.05
Cat	.1	.05	.15	.1
ln	.2	.05	(.35)	(.35)
Hat	.05	. 05	.1	.05

P* (zero counts) = I Counts/Total Counts P* (zero counts) = 7/20 = .35

GOOD TURING SMOOTHING The cat in the hat The Cat Hat Cat Hat In The In **Bucket:** occurrences The 0 0 L 0 counts: The .35 .05 .35 .05 I count: 7 2 Cat 2 1 3 Cat .1 .05 .15 .1 2 counts: 3 4 0 0 .2 .05 .35 In ln .35 3 counts: Ι 4 counts: Hat 1 2 I Hat .05 . 05 .1 .05 The Cat Hat In UPDATE COUNTS ((c+1)Nc+1/Nc) I count: 2 x 2 Counts / I Counts = 2 (3/7) = .856 The .214 .856 .214 .856 (0 count: 1×1 Counts / 0 Counts = 1 (.856/4) = .214) Cat .999 .856 .999 2 count: 3 x 3 Counts / 2 Counts = 3 (1/3) = .999 In .856 .214 .214 ... Hat .856 .856 .999 .856

COOR TURING SMOOTHING										
			GOOD TURING SMOOTHING							
		_			The cat in the hat			_		
	The	e Ca	t In	Hat	Bucket: occurrences		The	Cat	In	Hat
Th	e 0	- 1	0	I	0 counts: 4	The	.35	.05	.35	.05
Ca	t 2	1	3	2	l count: 7 2 counts: 3	Cat	.l	.05	.15	.1
ln	4	- 1	0	0	2 counts: 3 3 counts:	ln	.2	.05	.35	.35
Ha	t l	ı	2	I	4 counts:	Hat	.05	. 05	.1	.05
	The	Cat	In	Hat	UPDATE PROBABILITIES (New Counts/Total Counts	s)	The	Cat	In	Hat
The	.214	.856	.214	.856	0 count: .214/20 = .017 1 count: .856/20 = .042	The	.017	.042	.017	.042
Cat	.999	.856		.999	2 count: .999/20 = .049	Cat	.049	.042		.049
ln		.856	.214	.214		ln		.042	.017	.017
Hat	.856	.856	.999	.856		Hat	. 042	.042	.049	.042

INTERPOLATION & BACKOFF

• Interpolation (sum of $\lambda s = 1$) - learned from the Holdout Set

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1})
+ \lambda_2 P(w_n|w_{n-1})
+ \lambda_3 P(w_n)$$

- Katz Backoff
 - Back off to increasingly shorter histories until you have an estimation based on observation.
 - * Full version requires a discounted probability (P*) and a normalization factor (α) to ensure that we're not adding more probability mass than is actually there.

EVALUATION - PERPLEXITY

- Perplexity
 - · Intrinsic evaluation
 - $^{\circ}$ Sum all probabilities of test sentences raised to the I / N (where N is the total number of word tokens encountered in the test set)
 - Lower the perplexity (good!) the higher the conditional probability the better the model is at capturing sequence patterns
 - Perplexity typically lowers for higher order N-gram models

	Unigram	Bigram	Trigram
Perplexity	962	170	109

- MUST exclude test data from the training data (values artificially high)
- If (truly) random Perplexity will be (approach) the size of the vocabulary.