고려대학교 빅데이터 학회

S t y l e Transfer for Videos

알 고 리 즘 발 표

읽었던 논문들

Artistic style transfer for videos

장전

- 성능이 매우 뛰어남

단점

- 컴퓨터 성능도 뛰어나야 됨
- 구현 난이도 ▲

Artistic style transfer for videos

ization the optimization process needed on average roughly eight to ten minutes per frame at a resolution of 1024×436 on an Nvidia Titan X GPU. When ini-

ReCoNet

ReCoNet Paper - Model & Notations

사전 지식

What is Encoder and Decoder?

What is Encoder and Decoder?

Optical Flow & Occlusion Mask

ReCoNet Paper - Model & Notations

저자가 중요시 한 것

Y Channel Color

XYZ Color Space

Y(luminance)에 대해 집중함

What is Temporal Loss?

Video와 Picture을 다를 때 가장 큰 차이?

What is Temporal Loss?

Fig. 1. Scene from *Ice Age* (2002) processed in the style of *The Starry Night*. Comparing independent per-frame processing to our time consistent approach, the latter is clearly preferable. Best observed in the supplemental video, see section 8.1.

Consistency

ReCoNet Paper - Model & Notations

 F_t : t번째 Frame의 Encoder

Feature Map (output)

 I_t : t번째 Frame의 Input

 O_t : t번째 Frame의 Stylized Output

 M_t : t번째 Frame의 Occlusion Mask

 W_t : t-1 to t Frame 사이 Optical Flow

ReCoNet Paper - Model & Notations

Summary The final loss function for the two-frame synergic training is:

$$\mathcal{L}(t-1,t) = \sum_{i \in \{t-1,t\}} (\alpha \mathcal{L}_{content}(i) + \beta \mathcal{L}_{style}(i) + \gamma \mathcal{L}_{tv}(i)) + \lambda_f \mathcal{L}_{temp,f}(t-1,t) + \lambda_o \mathcal{L}_{temp,o}(t-1,t)$$
(3)

Output Level Temporal Loss

 I_t : t번째 Frame의 Input

 O_t : t번째 Frame의 Stylized Output M_t : t번째 Frame의 Occlusion Mask W_t : t-1 to t Frame 사이 Optical Flow

D: 픽셀 개수

Feature Map Level Temporal Loss

$$\mathcal{L}_{temp,f}(t-1,t) = \frac{1}{D} M_t ||F_t - W_t(F_{t-1})||^2$$

 M_t : t번째 Frame의 Occlusion Mask W_t : t-1 to t Frame 사이 Optical Flow D: Feature Map에서 Element 개수

ReCoNet Paper - Model & Notations

Summary The final loss function for the two-frame synergic training is:

$$\mathcal{L}(t-1,t) = \sum_{i \in \{t-1,t\}} (\alpha \mathcal{L}_{content}(i) + \beta \mathcal{L}_{style}(i) + \gamma \mathcal{L}_{tv}(i)) + \lambda_f \mathcal{L}_{temp,f}(t-1,t) + \lambda_o \mathcal{L}_{temp,o}(t-1,t)$$
(3)

ReCoNet의 한계

장점

- 구현한 코드가 존재
- 속도가 제일 빠름

단점

- 그 구현이 심각함
- 성능이 SOTA가 아닌 듯 함

ReCoNet의 단점

Table 2. Temporal error e_{stab} and average FPS in the inference stage with style Candy on different models. Five scenes from MPI Sintel Dataset are selected for validation

Model	Alley-2	Ambush-5	Bandage-2	Market-6	Temple-2	FPS
Chen et al 4	0.0934	0.1352	0.0715	0.1030	0.1094	22.5
ReCoNet	0.0846	0.0819	0.0662	0.0862	0.0831	235.3
Huang et al 17	0.0439	0.0675	0.0304	0.0553	0.0513	216.8
Ruder et al 27	0.0252	0.0512	0.0195	0.0407	0.0361	0.8

ReCoNet의 단점 2

xinix909 commented 3 days ago

@justanhduc @AntoineGerardeaux @Yiman-GO I fixed it by delete a "mul(255)" or something, there is more other bugs in the code. And now, still no temporal consictency. Flow wrap method is wrong I think.

Huang의 구현체는?

Commits on Feb 7, 2018

transfer network 완성, loss나 optical flow가 맞는지는 모름

curaai00 committed on 7 Feb 2018

Dataset, Video crawler(videvo.net)

curaai00 committed on 7 Feb 2018

Huang의 구현체는?

Real-time neural style transfer via meta networks https://github.com/FalongShen/styletr...

Installation

This library is based on Caffe. CuDNN 7 and NCCL 1 are required. Please follow the installation instruction of Caffe.

Further plans

11/8 Paper Review 11/14 Generate Image Style Transfer CNN Model 11/21 기존의 Video Style Transfer Model Review

12/5 Model 완성

11/28 Generate Video Style Transfer CNN Model

Thank you

