# Digital Circuits

Cezar Ionescu cezar.ionescu@th-deg.de

WS 2023-24



# Outline

Admin

2 Review

3 Digital gates

### Admin

# Questions?

### Review

# Binary arithmetic

• Addition (carry is 0 or 1):

```
1111 (carry)
10110
+01110
-----
100100
```

Multiplication

```
1110

× 1001

-----

1110

0000

0000

1110

-----

1111110
```

Digital gates

### Decomposition

- Fundamental insight: arithmetical operations on many large numbers can be decomposed into a (large) number of standard operations on few small numbers.
- Example:

• 
$$a_1 + a_2 + \ldots + a_n = a_1 + (a_2 + (a_3 + (\ldots + a_n) \ldots))$$

# Decomposing addition in base b

where

$$c_k = \text{if } k == n \text{ then } 0 \text{ else } x_{k+1} + y_{k+1} + c_{k+1} \text{ div } b$$
  $z_k = \text{if } k == 0 \text{ then } c_0 \text{ else } x_k + y_k + c_k \text{ mod } b$ 

# Decomposing addition in base 2

For base 2, obtaining the results

$$c_k = \text{if } k == n \text{ then } 0 \text{ else } x_{k+1} + y_{k+1} + c_{k+1} \text{ div } b$$
  
 $z_k = \text{if } k == 0 \text{ then } c_0 \text{ else } x_k + y_k + c_k \text{ mod } b$ 

involves examining only one or two bits at a time.

# One-bit operations

Let 
$$\mathbb{B} = \{0, 1\}$$
.

How many non-constant functions of type  $\mathbb{B} \to \mathbb{B}$  are there?

# One-bit operations

```
Let \mathbb{B} = \{0, 1\}.
```

How many non-constant functions of type  $\mathbb{B} \to \mathbb{B}$  are there?

#### Two:

```
id 0 = 0
id 1 = 1
neg 0 = 1
```

neg 1 = 0

# Identity

Implementing the identity function is trivial:



### Negation

The *negate* function (also known as flip, invert, change, reverse, etc.) is usually denoted by -,  $\neg$ , or  $\bar{\cdot}$  and has the truth table

| X | $\bar{x}$ |
|---|-----------|
| 0 | 1         |
| 1 | 0         |

and is implemented by a NOT gate:





13 / 34

How many functions of type  $\mathbb{B} \times \mathbb{B} \to \mathbb{B}$  are there?

```
const1 (b_1, b_2) = 1
min (b_1, b_2) = if b_1 == 0 or b_2 == 0 then 0 else 1
max (b_1, b_2) = if b_1 == 1 or b_2 == 1 then 1 else 0
leq (b_1, b_2) = if b_1 == 0 then 1 else b_2
```

How many functions of type  $\mathbb{B} \times \mathbb{B} \to \mathbb{B}$  are there?

$$2^4 = 16$$

```
const0 (b_1, b_2) = 0
const1 (b_1, b_2) = 1
min (b_1, b_2) = if b_1 == 0 or b_2 == 0 then 0 else 1
max (b_1, b_2) = if b_1 == 1 or b_2 == 1 then 1 else 0
leq (b_1, b_2) = if b_1 == 0 then 1 else b_2
```

How many functions of type  $\mathbb{B} \times \mathbb{B} \to \mathbb{B}$  are there?

$$2^4 = 16$$

```
const0 (b_1, b_2) = 0
const1 (b_1, b_2) = 1
min (b_1, b_2) = if b_1 == 0 or b_2 == 0 then 0 else 1
max (b_1, b_2) = if b_1 == 1 or b_2 == 1 then 1 else 0
leg (b_1, b_2) = if b_1 == 0 then 1 else b_2
```

How many functions of type  $\mathbb{B} \times \mathbb{B} \to \mathbb{B}$  are there?

$$2^4 = 16$$

```
const0 (b_1, b_2) = 0
const1 (b_1, b_2) = 1
min (b_1, b_2) = if b_1 == 0 or b_2 == 0 then 0 else 1
max (b_1, b_2) = if b_1 == 1 or b_2 == 1 then 1 else 0
leq (b_1, b_2) = if b_1 == 0 then 1 else b_2
```

How many functions of type  $\mathbb{B} \times \mathbb{B} \to \mathbb{B}$  are there?

$$2^4 = 16$$

```
const0 (b_1, b_2) = 0
const1 (b_1, b_2) = 1
min (b_1, b_2) = if b_1 == 0 or b_2 == 0 then 0 else 1
max (b_1, b_2) = if b_1 == 1 or b_2 == 1 then 1 else 0
leq (b_1, b_2) = if b_1 == 0 then 1 else b_2
```

How many functions of type  $\mathbb{B} \times \mathbb{B} \to \mathbb{B}$  are there?

$$2^4 = 16$$

#### Examples:

```
const0 (b_1, b_2) = 0
const1 (b_1, b_2) = 1
min (b_1, b_2) = if b_1 == 0 or b_2 == 0 then 0 else 1
max (b_1, b_2) = if b_1 == 1 or b_2 == 1 then 1 else 0
leq (b_1, b_2) = if b_1 == 0 then 1 else b_2
```

Digital Circuits

Function of type  $\mathbb{B}^n \to \mathbb{B}$  have several interpretations:

- ullet as restrictions of functions of type  $\mathbb{N}^n o \mathbb{N}$ 
  - in particular, we have that 1+1=2, therefore + is *not* such a function
- ullet as functions on numbers  $\emph{modulo}$  2  $(\mathbb{B}=\mathbb{Z}_2)$ 
  - in particular, we have that 1+1=0
- as functions on *truth values* ( $\mathbb{B} = \{\text{False}, \text{True}\}$ )
  - ullet example, + on  $\mathbb{Z}_2$  above corresponds to the logical function xor

The standard terminology favours the "logical" interpretation.

Digital Circuits WS 2023-24

Function of type  $\mathbb{B}^n \to \mathbb{B}$  have several interpretations:

- ullet as restrictions of functions of type  $\mathbb{N}^n o \mathbb{N}$ 
  - in particular, we have that 1+1=2, therefore + is *not* such a function
- ullet as functions on numbers  $\emph{modulo}$  2  $(\mathbb{B}=\mathbb{Z}_2)$ 
  - in particular, we have that 1+1=0
- as functions on *truth values* ( $\mathbb{B} = \{\text{False}, \text{True}\}$ )
  - ullet example, + on  $\mathbb{Z}_2$  above corresponds to the logical function xor

The standard terminology favours the "logical" interpretation.

Digital Circuits WS 2023-24

Function of type  $\mathbb{B}^n \to \mathbb{B}$  have several interpretations:

- ullet as restrictions of functions of type  $\mathbb{N}^n o \mathbb{N}$ 
  - in particular, we have that 1+1=2, therefore + is *not* such a function
- ullet as functions on numbers  $\emph{modulo}$  2  $(\mathbb{B}=\mathbb{Z}_2)$ 
  - in particular, we have that 1+1=0
- as functions on *truth values* ( $\mathbb{B} = \{\text{False, True}\}$ )
  - ullet example, + on  $\mathbb{Z}_2$  above corresponds to the logical function xor

The standard terminology favours the "logical" interpretation.

Digital Circuits WS 2023-24

Function of type  $\mathbb{B}^n \to \mathbb{B}$  have several interpretations:

- as restrictions of functions of type  $\mathbb{N}^n \to \mathbb{N}$ 
  - in particular, we have that 1+1=2, therefore + is *not* such a function
- ullet as functions on numbers  $\emph{modulo}$  2  $(\mathbb{B}=\mathbb{Z}_2)$ 
  - in particular, we have that 1+1=0
- as functions on *truth values* ( $\mathbb{B} = \{\text{False, True}\}$ )
  - ullet example, + on  $\mathbb{Z}_2$  above corresponds to the logical function xor

The standard terminology favours the "logical" interpretation.

Digital Circuits WS 2023-24

### The AND gate

The and function should probably be better called min, and is usually denoted by  $\Lambda$ ,  $\cdot$ , or just juxtaposition (as we normally do in the case of multiplication). The truth table is

| Х | у | ху |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 0  |
| 1 | 0 | 0  |
| 1 | 1 | 1  |

and is implemented by an AND gate:

Transistor AND Gate





16 / 34

(https://commons.wikimedia.org/wiki/File:TransistorANDgate.png)

### The OR gate

The or function should probably be better called max, and is usually denoted by  $\nu$ , |, or +. The truth table is

| Х | у | x+y |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |

and is implemented by an OR gate:





17 / 34

(https://commons.wikimedia.org/wiki/File:Transistor\\_OR\\_Gate.png)

### The XOR gate

The xor function should probably be better called not equal, and is usually denoted by  $\circledast.$  The truth table is

| Х | у | х⊕у |
|---|---|-----|
| 0 |   |     |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 0   |

and is implemented by an XOR gate:





18 / 34

(https://commons.wikimedia.org/wiki/File:TransmissionCmosXORGate.png)

# Digital: digital logic designer and simulator

Digital

# Implementing XOR

Exercise: implement XOR in Digital, using NOT, AND, and OR gates.

# Implementing OR

Exercise: implement OR in Digital, using NOT and AND gates.

### The NAND gate

The truth table of the nand function is:

| Х | у | x nand y |
|---|---|----------|
| 0 | 0 | 1        |
| 0 | 1 | 1        |
| 1 | 0 | 1        |
| 1 | 1 | 0        |

and is implemented by a NAND gate:





22 / 34

(By KenShirriff - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=55378810)

# Implementing NAND

Exercise: implement NAND using NOT and AND gates.

# Implementing using NAND

Exercise: implement the NOT, AND, and OR gates using only NAND gates.

# Sum-of-terms expressions for boolean functions

Consider the truth table of a boolean function f of n variables:

| x <sub>1</sub> | x <sub>2</sub> |   | Xn | $f(x_1, x_2,, x_n)$ |
|----------------|----------------|---|----|---------------------|
| 0              | 0              |   | 0  | f(0, 0,, 0)         |
| 0              | 0              |   | 1  | f(0, 0,, 1)         |
|                |                |   |    | <b></b>             |
| 1              | 1              | 1 | 1  | f(1, 1,, 1)         |

Each row of the table can be described by a *minterm*, a conjunction of the variables in which the variables corresponding to 0s are negated. Thus, the minterm corresponding to row r is

```
h minterm = b<sub>1</sub>b<sub>2</sub>...b<sub>n</sub> where
b<sub>i</sub> = X<sub>i</sub>, if X<sub>i</sub> = 1 in the r<sub>th</sub> row
= ¬X<sub>i</sub>, otherwise
```

A formula for f is then given by the *disjunction* of minterms corresponding to rows in which f has the value 1. A formula in this form is called a *sum-of-terms* expression.

### Sum-of-terms expressions for boolean functions

Consider the truth table of a boolean function f of n variables:

| X <sub>1</sub> | x <sub>2</sub> |   | Xn | $f(x_1, x_2,, x_n)$ |
|----------------|----------------|---|----|---------------------|
| 0              | 0              |   | 0  | f(0, 0,, 0)         |
| 0              | 0              |   | 1  | f(0, 0,, 1)         |
|                |                |   |    |                     |
| 1              | 1              | 1 | 1  | f(1, 1,, 1)         |

Each row of the table can be described by a minterm, a conjunction of the variables in which the variables corresponding to 0s are negated. Thus, the minterm corresponding to row r is

```
rth minterm = b_1b_2...b_n where

b_i = x_i, if x_i = 1 in the rth row

= \neg x_i, otherwise
```

A formula for f is then given by the *disjunction* of minterms corresponding to rows in which f has the value 1. A formula in this form is called a *sum-of-terms* expression.

### Sum-of-terms expressions for boolean functions

Consider the truth table of a boolean function f of n variables:

| X <sub>1</sub> | x <sub>2</sub> |   | Xn | $f(x_1, x_2,, x_n)$ |
|----------------|----------------|---|----|---------------------|
| 0              | 0              |   | 0  | f(0, 0,, 0)         |
| 0              | 0              |   | 1  | f(0, 0,, 1)         |
|                |                |   |    |                     |
| 1              | 1              | 1 | 1  | f(1, 1,, 1)         |

Each row of the table can be described by a *minterm*, a conjunction of the variables in which the variables corresponding to 0s are negated. Thus, the minterm corresponding to row r is

```
rth minterm = b_1b_2...b_n where

b_i = x_i, if x_i = 1 in the rth row

= \neg x_i, otherwise
```

A formula for f is then given by the *disjunction* of minterms corresponding to rows in which f has the value 1. A formula in this form is called a *sum-of-terms* expression.

Digital Circuits WS 2023-24

## Example

#### Find a sum-of-terms expression for the boolean function

$$f(x_1, x_2, x_3) = 1$$
, **if**  $x_1 < x_3$   
= 0, otherwise

Solution

| ×1 | Х2 | Х3 | $f(x_1, x_2, x_3)$ |
|----|----|----|--------------------|
|    |    |    |                    |
|    |    | 1  | 1                  |
|    | 1  |    |                    |
|    | 1  | 1  | 1                  |
| 1  |    |    |                    |
| 1  |    | 1  |                    |
| 1  | 1  |    |                    |
| 1  | 1  | 1  |                    |

$$f(x_1, x_2, x_3) = \overline{x_1 x_2} x_3 + \overline{x_1} x_2 x_3$$

#### Example

Find a sum-of-terms expression for the boolean function

$$f(x_1, x_2, x_3) = 1$$
, **if**  $x_1 < x_3$   
= 0, otherwise

Solution:

| x <sub>1</sub> | x <sub>2</sub> | Х3 | $f(x_1, x_2, x_3)$ |
|----------------|----------------|----|--------------------|
| 0              | 0              | 0  | 0                  |
| 0              | 0              | 1  | 1                  |
| 0              | 1              | 0  | 0                  |
| 0              | 1              | 1  | 1                  |
| 1              | 0              | 0  | 0                  |
| 1              | 0              | 1  | 0                  |
| 1              | 1              | 0  | 0                  |
| 1              | 1              | 1  | 0                  |

$$f(x_1, x_2, x_3) = \overline{x_1 x_2} x_3 + \overline{x_1} x_2 x_3$$

# Properties of boolean operations

Boolean operations have a number of properties, similar (but not identical) to the familiar arithmetic ones:

- commutativity: xy = yx, x + y = y + x
- associativity: x(yz) = (xy)z, x + (y + z) = (x + y) + z
- distributivity: x(y+z) = xy + xz, x + yz = (x + y)(x + z) (!)
- idempotence: xx = x, x + x = x
- unit elements: x1 = x, x + 0 = x
- duality (de Morgan):  $\overline{(x+y)} = \overline{x} \, \overline{y}, \, \overline{xy} = \overline{x} + \overline{y}$
- inverses:  $x + \bar{x} = 1$  (law of excluded middle),  $x\bar{x} = 0$  (law of contradiction),  $\bar{x} = x$  (law of double negation)

Digital Circuits WS 2023-24

# Simplifying boolean expressions

The properties of boolean operations can be used to simplify expressions, which can translate in more efficient implementations.

Example: simplify the expression obtained for *f* above. Solution:

$$\overline{x_1x_2}x_3 + \overline{x_1}x_2x_3$$

$$= \{commutativity, associativity\}$$

$$\overline{x_1}x_3\overline{x_2} + \overline{x_1}x_3x_2$$

$$= \{distributivity\}$$

$$\overline{x_1}x_3(\overline{x_2} + x_2)$$

$$= \{excluded \ middle\}$$

$$\overline{x_1}x_31$$

$$= \{unit\}$$

$$\overline{x_1}x_3$$

# Simplifying boolean expressions

The properties of boolean operations can be used to simplify expressions, which can translate in more efficient implementations.

Example: simplify the expression obtained for f above. Solution:

$$\overline{x_1}x_2x_3 + \overline{x_1}x_2x_3$$

$$= \{commutativity, associativity\}$$

$$\overline{x_1}x_3\overline{x_2} + \overline{x_1}x_3x_2$$

$$= \{distributivity\}$$

$$\overline{x_1}x_3(\overline{x_2} + x_2)$$

$$= \{excluded \ middle\}$$

$$\overline{x_1}x_31$$

$$= \{unit\}$$

$$\overline{x_1}x_3$$

# Karnaugh maps

- Karnaugh maps are an alternative tabular representation of logical functions.
- In a Karnaugh map minterms that differ in only one variable are adjacent.
- The goal of using a Karnaugh map is to obtain the simplest sum of terms expression.
  - Karnaugh maps are an alternative to the equational form of simplification.

Digital Circuits WS 2023-24

# Karnaugh maps

- Let  $f \cdot \mathbb{R}^N \to \mathbb{R}$
- Let R and C be such that
  - R = C = N/2, if N is even
  - R + C = N, |R C| = 1, if N is odd
- We associate the variables  $x_1$ , ...,  $x_R$  to the rows and  $x_{R+1}$ , ...,  $x_N$  to the columns of the Karnaugh map.
- The Karnaugh map will have  $2^R$  rows and  $2^C$  columns. Each row is labelled with R bits and each column is labelled with C bits in Gray code.

Digital Circuits WS 2023-24

- The *Gray code* is a method of enumerating the  $2^N$  possible binary numbers representable with N bits such that successive representations differ in *only one bit*.
- The enumeration can be seen as a table with N columns and  $2^N$  rows.
- For N = 1, the table is just

- For N > 1, the table is obtained by taking the table for N-1 and *reflecting* it across the last line. The result will then have N-1 columns and  $2^N$  rows. We extend this with a first column consisting of  $2^{N-1}$  zeros, followed by  $2^{N-1}$  ones.
- Example: N=2



- The *Gray code* is a method of enumerating the  $2^N$  possible binary numbers representable with N bits such that successive representations differ in *only one bit*.
- The enumeration can be seen as a table with N columns and  $2^N$  rows.
- For N = 1, the table is just

- For N>1, the table is obtained by taking the table for N-1 and *reflecting* it across the last line. The result will then have N-1 columns and  $2^N$  rows. We extend this with a first column consisting of  $2^{N-1}$  zeros, followed by  $2^{N-1}$  ones.
- Example: N=2



- The *Gray code* is a method of enumerating the  $2^N$  possible binary numbers representable with N bits such that successive representations differ in *only one bit*.
- The enumeration can be seen as a table with N columns and  $2^N$  rows.
- For N = 1, the table is just

- For N>1, the table is obtained by taking the table for N-1 and *reflecting* it across the last line. The result will then have N-1 columns and  $2^N$  rows. We extend this with a first column consisting of  $2^{N-1}$  zeros, followed by  $2^{N-1}$  ones.
- Example: N=2



- The *Gray code* is a method of enumerating the  $2^N$  possible binary numbers representable with N bits such that successive representations differ in *only one bit*.
- The enumeration can be seen as a table with N columns and  $2^N$  rows.
- For N = 1, the table is just

- For N>1, the table is obtained by taking the table for N-1 and reflecting it across the last line. The result will then have N-1 columns and  $2^N$  rows. We extend this with a first column consisting of  $2^{N-1}$  zeros, followed by  $2^{N-1}$  ones.
- Example: N=2



- The *Gray code* is a method of enumerating the  $2^N$  possible binary numbers representable with N bits such that successive representations differ in *only one bit*.
- The enumeration can be seen as a table with N columns and  $2^N$  rows.
- For N = 1, the table is just

- For N>1, the table is obtained by taking the table for N-1 and *reflecting* it across the last line. The result will then have N-1 columns and  $2^N$  rows. We extend this with a first column consisting of  $2^{N-1}$  zeros, followed by  $2^{N-1}$  ones.
- Example: N=2



# Gray code example

```
0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0
```

# Karnaugh maps

- We associate the variables  $x_1$ , ...,  $x_R$  to the rows and  $x_{R+1}$ , ...,  $x_N$  to the columns of the Karnaugh map.
- The Karnaugh map will have  $2^R$  rows and  $2^C$  columns. Each row is labelled with R bits and each row is labelled with C bits in G ray C ode.
- We find maximal blocks of adjacent 1s of size power of two. The blocks may overlap, as long as they differ in at least one cell.
- The minterm associated to each block is given by the variables that remain constant across the block.
- The sum-of-terms expression is then the sum of the minterms.

Digital Circuits WS 2023-24

# Example

#### (source Wikipedia)

| Α | В | С | D | f(A, B, C, D) |
|---|---|---|---|---------------|
| 0 | 0 | 0 | 0 | 0             |
| 0 | 0 | 0 | 1 | 0             |
| 0 | 0 | 1 | 0 | 0             |
| 0 | 0 | 1 | 1 | 0             |
| 0 | 1 | 0 | 0 | 0             |
| 0 | 1 | 0 | 1 | 0             |
| 0 | 1 | 1 | 0 | 1             |
| 0 | 1 | 1 | 1 | 0             |
| 1 | 0 | 0 | 0 | 1             |
| 1 | 0 | 0 | 1 | 1             |
| 1 | 0 | 1 | 0 | 1             |
| 1 | 0 | 1 | 1 | 1             |
| 1 | 1 | 0 | 0 | 1             |
| 1 | 1 | 0 | 1 | 1             |
| 1 | 1 | 1 | 0 | 1             |
| 1 | 1 | 1 | 1 | 0             |

- Derive the sum of terms expression from the truth table.
- Derive a simplified sum-of-terms expression using the Karnaugh map representation of f.