FTML Exercices 2

Pour le 13 mars 2025

TABLE DES MATIÈRES

1	Ordinary	least squares	
	1.0.1	Enoncé	
2	Expected	value as a minimization	1
	2.0.1	Enoncé	1

1 ORDINARY LEAST SQUARES

1.0.1 Enoncé

On veut étudier la fonction objectif du problème OLS présenté lors du tp 2 afin de prouver par la suite la valeur de l'estimateur OLS. Les questions 1 et 2 peuvent être traitées indépendamment. Les définitions de la convexité et du gradient sont disponibles dans lecture_notes.pdf (ou d'autres références de votre choix).

Soit n et $d \in \mathbb{N}^*$.

1) Soit $X \in \mathbb{R}^{n,d}$, et $y \in \mathbb{R}^n$. Calculer le gradient de

$$g = \left\{ \begin{array}{l} \mathbb{R}^d \to \mathbb{R} \\ \theta \mapsto \|X\theta - y\|^2 \end{array} \right.$$

L'estimateur OLS est la valeur $\hat{\theta}$ qui minimise g sur \mathbb{R}^d .

- 2) On veut montrer que la fonction g est convexe. Il y a de nombreuses méthodes pour cela mais utiliser ici les étapes suivantes :
 - a) montrer que si $s: \mathbb{R}^d \to \mathbb{R}^n$ est linéaire et $f: \mathbb{R}^n \to \mathbb{R}$ est convexe, alors $f \circ s: \mathbb{R}^d \to \mathbb{R}$ est convexe.
 - b) montrer que toute norme sur \mathbb{R}^n est convexe.
 - c) montrer que si $w : \mathbb{R} \to \mathbb{R}$ est convexe croissante et $\mathfrak{a} : \mathbb{R}^n \to \mathbb{R}$ est convexe, alors $\mathfrak{u} = w \circ \mathfrak{a} : \mathbb{R}^n \to \mathbb{R}$ est convexe.
 - d) montrer que si $u : \mathbb{R}^n \to \mathbb{R}$ est convexe, alors si $\beta \in \mathbb{R}^n$, l'application $f : x \mapsto u(x+\beta)$ est convexe.
 - e) Appliquer les résultats précédents pour montrer la convexité de g.

2 EXPECTED VALUE AS A MINIMIZATION

2.0.1 Enoncé

Soit X une variable aléatoire réelle ayant un moment d'ordre 2. Montrer que son espérance E(X) est la quantité minimisant la fonction de variable réelle $t\mapsto E\big((X-t)^2\big)$