2.5 Aufgabe 5

Aufgabe 5:

Konstruieren Sie eine nicht-konstante, stetig differenzierbare Funktion $f: \mathbb{R}^2 \to \mathbb{R}^2$ derart, dass die Differentialgleichung $\dot{x} = f(x)$ jeweils die folgenden Eigenschaften besitzt:

- (a) Die Funktion $E: \mathbb{R}^2 \to \mathbb{R}$, $E(x) := x_1^2 + x_2^2$ ist eine Erhaltungsgröße (ein erstes Integral) der Differentialgleichung.
- (b) Zusätzlich zu der Eigenschaft in (a) besitzt die Differentialgleichung die stationären Lösungen (-1,0), (0,0), (1,0) und keine weiteren.
- (c) Zusätzlich zu den Eigenschaften in (a) und (b) besitzt die Differentialgleichung zwei Lösungen $x_{\pm} \colon \mathbb{R} \to \mathbb{R}^2$ mit

$$\lim_{t \to \infty} x_{+}(t) = (1,0) = \lim_{t \to -\infty} x_{-}(t) \text{ und}$$
$$\lim_{t \to -\infty} x_{+}(t) = (-1,0) = \lim_{t \to \infty} x_{-}(t).$$

Weisen Sie in jedem Aufgabenteil nach, dass die von Ihnen konstruierte Funktion f diese Eigenschaften tatsächlich besitzt.

(1+2+3 Punkte)

Zu (a)

Die Funktion

$$f_a: \mathbb{R}^2 \to \mathbb{R}^2 \; ; \; \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} y \\ -x \end{pmatrix}$$

erfüllt offensichtlich die gewünschte Eigenschaft, da gilt

$$\nabla E(x,y) \cdot f_a(x,y) = \begin{pmatrix} 2x & 2y \end{pmatrix} \cdot \begin{pmatrix} y \\ -x \end{pmatrix} = 0$$

Zu (b)

Ist

$$q: \mathbb{R}^2 \to \mathbb{R}$$

eine stetig differenzierbare Funktion, so ist auch

$$f_b: \mathbb{R}^2 \to \mathbb{R}^2 \; ; \; \begin{pmatrix} x \\ y \end{pmatrix} \to \begin{pmatrix} y \cdot g(x,y) \\ -x \cdot g(x,y) \end{pmatrix}$$

stetig differenzierbar und es gilt

$$\nabla E(x,y) \cdot f_b(x,y) = \begin{pmatrix} 2x & 2y \end{pmatrix} \cdot \begin{pmatrix} y \cdot g(x,y) \\ -x \cdot g(x,y) \end{pmatrix} = 0$$

so dass E weiterhin eine Erhaltungsgröße ist. Setzt man

$$g: \mathbb{R}^2 \to \mathbb{R} \; ; \; \begin{pmatrix} x \\ y \end{pmatrix} \to y^2 + (x^2 - 1)^2$$

so sind (-1,0), (0,0), (1,0) die einzigen Nullstellen und somit auch stationären Lösungen. Offensichtlich gilt

$$f_b(0,0) = f_b(-1,0) = f_b(1,0) = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

Wäre $y \neq 0$, so hat der erste Eintrag keine Nullstelle, da gilt

$$y^{2} + (x^{2} - 1)^{2} \ge y^{2} > 0 \implies y^{2} + (x^{2} - 1)^{2} \ne 0 \implies y \cdot (y^{2} + (x^{2} - 1)^{2}) \ne 0$$

Somit muss y = 0 gelten. Aus der zweiten Zeile erhält man

$$0 = -x \cdot (x^2 - 1)^2 \implies x = 0 \text{ oder } (x^2 - 1)^2 = 0 \implies x \in \{0, \pm 1\}$$

Zu (c)

Wir behaupten, dass f_b bereits die gewünschten Eigenschaften erfüllt. Wir müssen zeigen, dass es Lösungen

$$x_+: \mathbb{R} \to \mathbb{R}^2$$
 und $x_-: \mathbb{R} \to \mathbb{R}^2$

gibt mit

$$\lim_{t \to \infty} x_{+}(t) = (1,0) = \lim_{t \to -\infty} x_{-}(t) \quad \text{und} \quad \lim_{t \to -\infty} x_{+}(t) = (-1,0) = \lim_{t \to \infty} x_{-}(t)$$

Da E eine Erhaltungsgröße ist, hat die Differentialgleichung

$$x' = f_b(x)$$

Kreislinien als Niveaumengen

$$K_r = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\}$$
 für jedes $r \ge 0$

Die Kreislinien bilden für 0 < r < 1 und r > 1 bereits Trajektorien der Differentialgleichung, da durch keine stationären Lösungen zerlegt werden. K_1 enthält die stationären Punkte $(\pm 1, 0)$, weshalb K_1 in vier Trajektorien $\{(1,0)\}, \{(-1,0)\}$ und in

$$K_{+} = \{(x, y) \in \mathbb{R}^{2} : x^{2} + y^{2} = 1, y > 0\} \text{ und } K_{-} = \{(x, y) \in \mathbb{R}^{2} : x^{2} + y^{2} = 1, y < 0\}$$

zerlegt wird.

Diese werden im Uhrzeigersinn durchlaufen. Da K_+ und K_- weder einpunktig noch geschlossene Kurven sind, sind die beide Trajektorien zu injektiven maximalen Lösungen. Diese bezeichnen wir mit

$$\lambda_+:]a_+, b_+[\to \mathbb{R}^2 \quad \text{bzw.} \quad \lambda_-:]a_-, b_-[\to \mathbb{R}^2$$

Aufgrund der Wahl der Funktionen gilt

$$K_{+} = \lambda_{+} \left(a_{+}, b_{+} \right)$$
 bzw. $K_{-} = \lambda_{-} \left(a_{-}, b_{-} \right)$

Da K_+ von λ_+ im Uhrzeigersinn durchlaufen wird und die Funktion injektiv ist, muss gelten

$$(1,0) = \lim_{t \to b_+} \lambda_+(t)$$
 und $(-1,0) = \lim_{t \to a_+} \lambda_+(t)$

Wäre $b_+ < \infty$, dann wäre

$$\Gamma_{+}(\lambda_{+}) = \{(t, \lambda_{+}(t))_{t} \in [0, b_{+}]\} \subseteq [0, b_{+}] \times K_{1}$$

relativ kompakt in $\mathbb{R} \times \mathbb{R}^2$, was der Charakterisierung von λ_+ als maximale Lösung widerspricht, weshalb $b_+ = \infty$ gelten muss. Analog zeigt man $a_+ = -\infty$. Insgesamt ist daher

$$\lambda_+: \mathbb{R} \to \mathbb{R}^2$$

eine maximale Lösung von

$$x' = f_b(x)$$

mit

$$(1,0) = \lim_{t \to \infty} \lambda_+(t)$$
 und $(-1,0) = \lim_{t \to -\infty} \lambda_+(t)$

Analog geht man bei λ_{-} vor.