United International University

School of Science and Engineering

Assignment- 01 Trimester: Fall 2024

Course Title: Coordinate Geometry and Vector Analysis

Course Code: Math 2201

- 1. $\mathbf{v}=(2,7)$, $\mathbf{e_1}=(\frac{1}{2},\frac{\sqrt{3}}{4})$ and $\mathbf{e_2}=(\frac{2}{3},\frac{\sqrt{5}}{3})$. Find the scalar components of \mathbf{v} along $\mathbf{e_1}$ and $\mathbf{e_2}$ and the vector components of \mathbf{v} along $\mathbf{e_1}$ and $\mathbf{e_2}$.
- **2.** Let L_1 and L_2 be the lines.

$$L_1$$
: $x = 1 + 2t$, $y = 3 + t$, $z = 1 + t$
 L_2 : $x - 2 = 8t$, $y - 2 = 5t$, $z - 4 = 2t$

- a. Are the lines parallel?
- b. Do the lines intersect?
- c. Find the distance between the lines if possible.
- 3. Determine the line x = 2 t, y = 3 + t, z = t is parallel to the plane 2x + y + z = 1.
- **4.** Find the projection of $\underline{\mathbf{v}}$ on $\underline{\mathbf{b}}$ and the vector component of \mathbf{v} orthogonal to \mathbf{b} where $\underline{\mathbf{v}} = -3\hat{\imath} 2\hat{\jmath}$, $\underline{\mathbf{b}} = 2\hat{\imath} + \hat{\jmath}$.
- 5. Find an equation of plane passing through the point P(-1, 4, 8), Q(2,7,0) and R(2,3,5).
- **6.** Find, to the nearest degree, the angles that a diagonal of a box with dimensions 10 cm by 15 cm by 25 cm makes with the edges of the box.
- 7. Find the volume of the parallelepiped that is determined by the vectors (4,-8,1), (2,1,-2) and (3,-4,12) as adjacent edges.