Theorem (2.3.47a). Let x be a real number, and let n be an integer. $x < n \iff \lfloor x \rfloor < n$.

Proof. $\lfloor x \rfloor \leq x$, by the properties of the floor function. So if x < n, then $|x| \leq x < n$, and of course |x| < n.

Proving the converse, suppose $\lfloor x \rfloor < n$. Since $\lfloor x \rfloor$ and n are integers, $\lfloor x \rfloor + 1 \le n$. Now, by the properties of the floor function, we have the following tautology, $\lfloor x \rfloor = \lfloor x \rfloor \iff \lfloor x \rfloor \le x < \lfloor x \rfloor + 1$. Since we know that $\lfloor x \rfloor + 1 \le n$, it must be that $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1 \le n$. This statement says that x < n.