

Teoria da Computação

Linguagens

versão 1.3

Prof. D.Sc. Fabiano Oliveira fabiano.oliveira@ime.uerj.br

 Um alfabeto é um conjunto finito não-vazio cujos elementos são chamados de símbolos.

```
Ex.:

\{a, b, c, d\}

\{1, 2, 3, 4, 5\}

\{x \in \mathbb{N} \mid x \le 1000\}
```

Usualmente, denotaremos um alfabeto por ∑

- Uma cadeia s de comprimento n sobre o alfabeto Σ é ε se n = 0 (cadeia nula) ou uma função s: {1,...,n} → Σ se n > 0
 - n é denotado por |s|
 - para n > 0, usualmente s é representado por s(1)s(2)...s(n-1)s(n)

Ex.:

cada é uma cadeia sobre {a, b, c, d ,e} 123 é uma cadeia sobre $\{x \in \mathbb{N} \mid x \le 9\}$

- A concatenação de duas cadeias x e y, denotado por x º y, é:
 - \circ x, se y = ϵ
 - \circ y, se x = ϵ
 - a cadeia x(1)...x(|x|)y(1)...y(|y|), caso contrário

Ex.:

$$\varepsilon \circ \varepsilon = \varepsilon$$
cada $\circ \varepsilon = \varepsilon \circ$ cada = cada
cada \circ abc = cadaabc

 Uma *linguagem* L sobre o alfabeto ∑ é um conjunto de cadeias sobre ∑

```
Ex.: \sum = \{a, b, c, d, e\}

\emptyset, \{\epsilon\}, \{abc, bcd, cde\}, \{\epsilon, a, b, c, d, e\}

\{a^i : i \in \mathbb{N}\}

\{a^ibc^ide^i : i \in \mathbb{N} \mid i \in impar\}
```

 Se ∑ é um alfabeto, ∑* é a linguagem que contém todas as cadeias sobre ∑

```
Ex.: \sum = \{a, b\}

\sum^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb,

abb,

baa, bab, bba, bbb, aaaa, ...}
```

 Portanto, se L é uma linguagem sobre ∑, necessariamente L ⊆ ∑*

 Durante TODO O RESTANTE DO CURSO, estaremos interessados em computar:

Seja L uma linguagem sobre $\sum e x \in \sum^*$. Pergunta: $x \in L$?

 Esta pergunta, é o "átomo" da computação. O que é possível computar, depende de sabermos a resposta a esta pergunta!

- Em geral, cada problema computacional pode ser apresentado em três versões:
 - Dado uma instância E de um problema, seja Resp
 (E) o conjunto de possíveis respostas para E. Seja v
 (R) uma função que atribui a cada R ∈ Resp(E) um valor positivo. Considere os problemas:
 - Decisão: Dado uma constante K, existe R ∈ Resp(E) tal que v(R) ≤ K?
 - Busca: Dado uma constante K, encontre R ∈ Resp(E) tal que v(R) ≤ K
 - Otimização: Encontre R ∈ Resp(E) tal que v(R) = min { v(R') | R' ∈ Resp(E) }

0

- Ex.: Seja M um mapa rodoviário. Considere os problemas:
 - Decisão: Dado uma constante K, e duas cidades x e y, existe um caminho entre x e y com comprimento ≤ K?
 - Busca: Dado uma constante K, e duas cidades x e y,
 encontre um caminho entre x e y com comprimento ≤ K
 - Otimização: Determine a distância mínima entre x e y, i.
 e., min { K ∈ ℝ | existe um caminho entre x e y com
 comprimento ≤ K }

(E = mapa, x e y, R
$$\in$$
 Resp(E) = um caminho entre x e y, y , $v(R) = comprimento de R)$

 Portanto, a versão mais fundamental de qualquer problema é este problema na sua versão de decisão

 Por outro lado, dado problema de decisão P, podemos definir o seguinte conjunto:

P_{SIM} = { (E, K) | P tem resposta SIM cominstância E, constante K }

- Logo, dada uma instância E e um natural K, resolver o problema de decisão é saber se (E, K) pertence ou não a P_{SIM}
- Para entrar para um computador, E e K devem ser codificados sobre algum alfabeto ∑. Sendo assim, fazendo L = P_{SIM}, queremos resolver

Dado
$$x \in \sum^*, x \in L$$
?

 Conforme queríamos demonstrar, esta é uma pergunta fundamental da Ciência da Computação

- Operação com linguagens:
 - união, interseção, diferença, complemento:
 - Como linguagens são conjuntos, tais operações são aquelas de conjuntos
 - Para o complemento, qual seria o conjunto universo natural?

- Operação com linguagens:
 - concatenação:

```
L°M = \{x \circ y : x \in L, y \in M\}

Ex.: L = \{\epsilon, a, ab\}, M = \{\epsilon, bc, bcd, e\}

L°M = \{\epsilon, bc, bcd, e,

a, abc, abcd, ae,

ab, abbc, abbcd, abe\}
```

- Operação com linguagens:
 - o potenciação:

$$L^0 = \{ \epsilon \}$$

 $L^k = L \circ L^{k-1}$, para todo $k > 0$

Ex.:
$$\{0, 1\}^3 = \{0, 1\} \circ (\{0, 1\} \circ (\{0, 1\} \circ \{\epsilon\})) =$$

= $\{0, 1\} \circ (\{0, 1\} \circ \{0, 1\}) =$
= $\{0, 1\} \circ \{00, 01, 10, 11\} =$
= $\{000, 001, 010, 011, 100, 101, 110, 111\}$

- Operação com linguagens:
 - o fechamento:

```
L^* = L^0 \cup L^1 \cup L^2 \cup ...
```

. . .

Teorema:

Para qualquer alfabeto \sum , \sum^* é enumerável.

 Dem(???): Ordenar as cadeias de ∑* por ordem alfabética. Seja f: N → ∑* tal que f(i) = s ⇔ s é o (i+1)ésimo da ordenação feita. (Qual o problema com esta prova?)

Teorema:

Para qualquer alfabeto \sum , \sum^* é enumerável.

Dem.: Ordenar as cadeias de ∑* por ordem de tamanho, e, dentre as de mesmo tamanho, em ordem alfabética. Seja f: N → ∑* tal que f(i) = s ⇔ s é o (i+1)-ésimo da ordenação feita.

Teorema:

Qualquer linguagem é enumerável.

 Dem.: Uma linguagem sobre ∑ é um subconjunto de ∑*. Pelo teorema anterior, ∑* é enumerável. Como um subconjunto de um conjunto enumerável deve ser enumerável (prove!), qualquer linguagem é enumerável.

Teorema:

O conjunto de todas as linguagens sobre um alfabeto não é enumerável

 Dem.: Se L é uma linguagem sobre ∑, então L ⊆ ∑*. Logo, o conjunto de todas as possíveis linguagens sobre ∑ é precisamente todos os subconjuntos de ∑*, isto é, P(∑*). Pelo processo de diagonalização, P(∑*) não é enumerável.

Teorema:

Existem problemas de decisão que não admitem um algoritmo para resolvê-los.

• Dem.: Uma vez definido um alfabeto $\sum_{A \in G}$ para escrever algoritmos, o conjunto de todos os possíveis algoritmos (cadeias sobre $\sum_{A \in G}$) é um subconjunto de $\sum_{A \in G}$ *, que é enumerável por teorema anterior. Uma vez definido um alfabeto \sum_{FNT} de entrada de problemas (cadeias sobre \sum_{FNT}), cada problema de decisão pode ser visto como um conjunto de entradas para as quais a resposta é SIM. Ou seja, um problema é um subconjunto de \sum_{FNT} *. O conjunto de todos os problemas é, portanto, todos os subconjuntos de \sum_{FNT}^* , que é não-enumerável por teorema anterior. Logo, não se pode fazer uma correspondência entre o conjunto de algoritmos e de problemas, pois existem mais problemas que algoritmos.

 Uma linguagem L é recursivamente enumerável (r.e.) se existe um algoritmo que escreve cada x ∈ L em tempo finito.

```
Ex.: os racionais são r.e.

procedimento Enumera() // ∑ = {0, ..., 9, /, -}

para i ← 1 até ∞ faça

para j ← 1 até i faça

escrever (i- j, "/", j); escrever ("-", i- j, "/", j)

fim-para

fim-para

fim-procedimento
```

 Uma linguagem L é *recursiva* se existe um algoritmo que determina, para cada x ∈ ∑*, se x ∈ L ou se x ∉ L em tempo finito.

Ex.: os racionais são recursivos

```
função Recursivo(x \in \{0, ..., 9, /, -\}^*): Lógico i \leftarrow 0 se x(i) = "-" então i \leftarrow i + 1 enquanto s(i) \neq "/" faça p \leftarrow p \circ s(i); i \leftarrow i + 1 fim-enquanto para i \leftarrow i + 1 até |x| faça q \leftarrow q \circ s(i) fim-para retornar (p não contém "-") E (q não contém "/" nem "-") E (q \neq "0") fim-função
```

Teorema:

Toda linguagem recursiva é recursivamente enumerável.

Dem.: Seja L uma linguagem recursiva. Seja A(x) o algoritmo que decide se $x \in L$, para cada $x \in \Sigma^*$. Como Σ^* é enumerável, existe sobrejeção f: $\mathbb{N} \to \Sigma^*$. Considere o seguinte algoritmo que lista todos os elementos de L:

```
procedimento Enumera()

para i ← 0 até ∞ faça

x ← f(i)

se (A(x) = V) então

escrever (x)

fim-se

fim-para

fim-procedimento
```