Class: CSCI 2824

Symbolic Logic

Boolean Algebra Identity's

 $\neg (a \lor b) \equiv \neg a \land \neg b$ DeMorgan Laws

 $\neg(a \land b) \equiv \neg a \lor \neg b$ $\neg \forall x \ \beta(x) \equiv \exists x \ \neg \beta(x)$ $\neg \exists x \ \beta(x) \equiv \forall x \ \neg \beta(x)$

Distributivity $a \wedge (b \vee c) \equiv (a \wedge b) \vee (a \wedge c)$

 $a \vee (b \wedge c) \equiv (a \vee b) \wedge (a \vee c)$

Elimination $a \wedge T \equiv a$

> $a \wedge F \equiv F$ $a \vee F \equiv a$ $a \vee T \equiv T$

Proof

Naive Set's Theory

Definitions

Union	$a \cup b = \{x \in U x \in a \lor x \in b\}$
Intersection	$a \cap b = \{x \in U x \in a \land x \in b\}$
Difference	$A - B = A \cap \overline{B} = \{x x \in A \land x \notin B\}$

 $A\times B=\{(a,b)|a\in A\wedge b\in B\}$ Cartesian Product

 $A_1 \times ... \times A_n$

 $= \{(a_1 \times ... \times a_n) | a_i \in A_i \text{ for } i = 1, ..., n\}$

 ${a,b} \times {0,1} = {(a,0),(a,1),(b,0),(b,1)}$

The power set $\wp(E)$ is the set of all sub sets Theorem 1 For every set $S, \emptyset \subseteq S$ and $S \subseteq S$. Power Set

of E.

Intervals $[a,b] = \{x | a \le x \le b\}$

 $(a,b) = \{x | a < x < b\}$

Proper subset $A \subset B$

Subsets $A \subseteq B = \forall x (x \in A \rightarrow x \in B)$

 $A \cap B = \emptyset$ A disjoint B.

The sets A and B are equal if $A \subseteq B$ and $B \subseteq A$.

Let S be a set. If there are exactly n distinct elements in Swhere n is a non negative integer, we say that S is a finite set and that n is the cardinality (|S|) of S.

Identities

Identity	$A \cap U = A$
	$A \cup \emptyset = A$
Domination laws	$A \cup U = U$
	$A \cap \emptyset = \emptyset$
Idempotent laws	$A \cap A = A$
	$A \cup A = A$
Complementation law	$\overline{(\overline{A})} = A$
Commutative law	$A \cap B = B \cap A$
	$A \cup B = B \cup A$

Modular Arithmetic

a is divisebla by b

 $b \equiv a \pmod{N}$ a congruent to ba congruent to b $a \equiv b \pmod{N}$

Counting

Discrete Probability's

Definition

S is the a finite nonempty sample space of equally likely outcomes, and $E \subseteq S$, the probabilitie of E is $p(E) = \frac{|E|}{|S|}$.

Some Probability Theorems

$$p(\overline{E}) = 1 - p(E)$$

 $p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2)$

Theorems

Theorem 2 Consider $f: \mathbb{Z} \to \mathbb{R}$ and $g: \mathbb{Z} \to \mathbb{R}$

We say f(x) is $\mathcal{O}(g(x))$ if there exist constants C and k such that $|f(x)| \le C|g(x)|$ whenever x > k.

 $=\forall x(x\in A\to x\in B) \land \exists x(x\in B\land x\notin A) \text{ Theorem 3 (Def modulo)} \ \ Let\ m\in\mathbb{Z}^+.\ \ a\equiv b(mod\ m) \ \ if\ and$ only if $\exists k(a = b + km)$. Where a and b are \mathbb{Z}

Theorem 4 (Fermat little thm) $a^{p-1} \equiv 1 \pmod{p}$

Theorem 5 Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $b + d \equiv b + d \pmod{m}$ and $bd \equiv bd \pmod{m}$.