

Communication Theory (5ETB0) Module 11.1

Alex Alvarado a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/

Module 11.1

Presentation Outline

Part I Motivation

Part II Passband and Quadrature Multiplexing

Part III Capacity of the Passband Channel

Passband Transmission: Motivation (1/2)

Baseband Transmission

- For a baseband pulse p(t) with Fourier transform P(f), the BW of the transmitted signal is at least 1/2T, where 1/T is the symbol rate
- \blacksquare Best case scenario, we use pulses sinc pulses and the BW is exactly 1/2T
- Baseband signals can be sent over a telephone line or a coaxial cable

Passband Transmission

- FM radio operates at 100 [MHz], $\lambda = v/f \approx 3$ m \Longrightarrow Large antennas
- WiFi operates at 2.4 [GHz] or 5 [GHz], $6 \lesssim \lambda \lesssim 12.5$ cm \Longrightarrow Small antennas
- More transmission bandwidth available at higher frequencies.

Passband Transmission: Motivation (2/2)

Module 11.1

Presentation Outline

Part I Motivation

Part II Passband and Quadrature Multiplexing

Part III Capacity of the Passband Channel

System Model

Ideal passband channel with AWGN

Ideal passband filter

■ Noise is AWGN, PSD is:

$$S_{N_w}(f) = N_0/2 \text{ for } -\infty < f < \infty$$

Quadrature Multiplexing: Model

Quadrature Multiplexing Transmitter

lacksquare Consider two set of baseband waveforms having bandwidth smaller than W:

$$\{s_1^c(t), s_2^c(t), \dots, s_{|\mathcal{M}|}^c(t)\}\$$

 $\{s_1^s(t), s_2^s(t), \dots, s_{|\mathcal{M}|}^s(t)\}\$

Corresponding building-block waveforms are:

$$\phi_i(t), i = 1, 2, \dots, N_c, \quad N_c \le |\mathcal{M}|$$

$$\psi_j(t), j = 1, 2, \dots, N_s, \quad N_s \le |\mathcal{M}|$$

Transmitted signal is:

$$s_m(t) = s_m^c(t)\sqrt{2}\cos(2\pi f_0 t) + s_m^s(t)\sqrt{2}\sin(2\pi f_0 t)$$

Quadrature Multiplexing: Orthogonality (1/2)

Transmitted waveform

Building-block waveforms $\phi_i(t)$ and $\psi_j(t)$:

$$s_m^c(t) = \sum_{i=1}^{N_c} s_{mi}^c \phi_i(t) \quad \text{and} \quad s_m^s(t) = \sum_{j=1}^{N_s} s_{mj}^s \psi_j(t)$$

The mth transmitted waveform is

$$\begin{split} s_m(t) &= s_m^c(t)\sqrt{2}\cos(2\pi f_0t) + s_m^s(t)\sqrt{2}\sin(2\pi f_0t) \\ &= \sum_{i=1}^{N_c} s_{mi}^c \phi_i(t)\sqrt{2}\cos(2\pi f_0t) + \sum_{j=1}^{N_s} s_{mj}^s \psi_j(t)\sqrt{2}\sin(2\pi f_0t) \\ &= \sum_{i=1}^{N_c} s_{mi}^c \phi_{c,i}(t) + \sum_{j=1}^{N_s} s_{mj}^s \psi_{s,j}(t) \end{split}$$

where $\phi_{c,i}(t)$ and $\psi_{s,j}(t)$ are in-phase and quadrature building-block waveforms.

Quadrature Multiplexing: Orthogonality (2/2)

Building-block waveforms?

Are $\phi_{c,i}(t)$ and $\psi_{s,j}(t)$ building-block waveforms?

Step 1 of proof is (11.9) of the reader:

Step 2 of proof is to show (see (11.10)–(11.12)) of the reader)

$$\begin{split} &\int_{-\infty}^{\infty}\phi_{c,i}(t)\phi_{c,i'}(t)dt = \int_{-\infty}^{\infty}\Phi_{c,i}(f)\Phi_{c,i'}^*(f)df = \delta_{i,i'} \\ &\int_{-\infty}^{\infty}\phi_{s,i}(t)\phi_{s,i'}(t)dt = \delta_{i,i'} \qquad \text{and} \qquad \int_{-\infty}^{\infty}\phi_{s,i}(t)\phi_{c,i'}(t)dt = 0 \end{split}$$

Quadrature Multiplexing: Building-block Waveforms

Quadrature Building-Block Waveforms

We have shown that all in-phase building-block waveforms $\phi_{c,i}(t)$ for $i=1,...,N_c$ and all quadrature building-block waveforms $\psi_{s,j}(t)$ for $j=1,...,N_s$ together form an orthonormal basis.

Bandwidth Considerations

The spectra $\Phi_{c,i}(f)$ and $\Psi_{s,j}(f)$ of all these building-block waveforms are zero outside the passband $\pm [f_0 - W, f_0 + W]$. Therefore none of these building-block waveforms is hindered by the passband filter W(f) when they are sent over our passband channel.

Module 11.1

Presentation Outline

Part I Motivation

Part II Passband and Quadrature Multiplexing

Part III Capacity of the Passband Channel

Capacity of the Passband Channel

Passband Channel Capacity

The capacity is $C_N = 1/2 \log_2 (1 + E_N/(N_0/2))$ [bit/dimension], where $E_N = P_s/(4W)$ [Joule/dimension] and 4W is the number of dimension/second for the passband channel (dimensionality theorem). The capacity of the passband channel with bandwidth $\pm [f_0 - W, f_0 + W]$ is

$$C_N = \frac{1}{2} \log_2 \left(1 + \frac{P_s}{2N_0 W} \right) \; \left[\frac{\mathrm{bit}}{\mathrm{dimension}} \right]$$

The capacity in bit per second is

$$C = 2W \log_2 \left(1 + \frac{P_s}{2N_0 W} \right) \left[\frac{\text{bit}}{\text{second}} \right]$$

Connection to Baseband AWGN Capacity

The passband bandwidth is 2W, thus

$$C = W \log_2 \left(1 + \frac{P_s}{W N_0} \right) \left[\frac{\mathsf{bit}}{\mathsf{second}} \right].$$

Who Cares?

Summary Module 11.1

Take Home Messages

- Motivation for passband transmission
- Quadrature transmitter using in-phase and quadrature building-blocks
- Capacity of the passband channel has the same structure of the baseband AWGN channel

Communication Theory (5ETB0) Module 11.1

Alex Alvarado a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/