Lista #12

Curso: Ciência da Computação

Disciplina: Inteligência Artificial

Prof^a. Cristiane Neri Nobre

Data de entrega: 08/06

Valor: 5 pontos

Aluno: Lucas Henrique Rocha Hauck

Github: https://github.com/o-hauck/IA

1. Preparação dos dados

- Faça o download e carregamento da base de imagens.
- Separe os dados em treino, validação e teste (ex: 70% treino, 15% validação, 15% teste).
- Aplique técnicas de pré-processamento de imagens:
 - Redimensionamento para tamanho padrão (ex: 150x150 ou 224x224)
 Normalização dos pixels
 - o Aumento de dados: rotação, inversão horizontal, zoom etc.

Nessa etapa utilizei a API do kaggle para baixar a base de dados diretamente no google collab:

```
[2] from google.colab import files
     files.upload()
Procurar... kaggle.json
     kaggle.json(application/json) - 66 bytes, last modified: n/a - 100% done
     Saving kaggle.json to kaggle.json
     {'kaggle.json': b'{"username":"lucashauck","key":
     # Cria a pasta .kaggle e move o arquivo json para lá
     !mkdir -p ~/.kaggle
     !cp kaggle.json ~/.kaggle/
     # Define as permissões corretas para o arquivo
     !chmod 600 ~/.kaggle/kaggle.json
     # Baixa a base de dados "dogs-vs-cats" do Kaggle
     # A flag -c indica o nome da competição
     !kaggle competitions download -c dogs-vs-cats
     # Descompacta o arquivo train.zip de forma silenciosa (-q)
     # Isso criará uma pasta chamada 'train'
     !unzip -q dogs-vs-cats.zip -d .
     # Descompacta o arquivo train.zip de forma silenciosa (-q)
     # Isso criará uma pasta chamada 'train'
     !unzip -q train.zip -d .
→ Downloading dogs-vs-cats.zip to /content
     98% 792M/812M [00:05<00:00, 120MB/s]
100% 812M/812M [00:05<00:00, 166MB/s]
```

Depois preparei os dados:

1. Separar as imagens em pastas diferentes:

```
import os
import shutil
# 1. Definir os caminhos no ambiente do Google Colab
# A pasta original com as imagens descompactadas
original_dir = '/content/train'
# A nova pasta onde vamos organizar os dados
base_dir = '/content/data_gatos_vs_caes'
# Não execute se a pasta base já existir (para evitar erros se rodar a célula de novo)
if not os.path.exists(base_dir):
    os.mkdir(base_dir)
    # 2. Criar os diretórios para gatos e cachorros dentro da pasta base
    cats_dir = os.path.join(base_dir, 'cats')
    os.mkdir(cats_dir)
    dogs_dir = os.path.join(base_dir, 'dogs')
    os.mkdir(dogs_dir)
    # 3. Pegar a lista de todos os nomes de arquivo da pasta original
    fnames = os.listdir(original_dir)
    print(f"Iniciando a movimentação de {len(fnames)} arquivos...")
    # 4. Mover os arquivos para as pastas corretas
    for fname in fnames:
        # Verifica se o nome do arquivo começa com 'cat'
        if fname.startswith('cat'):
            # Cria o caminho de origem e destino
            src = os.path.join(original_dir, fname)
            dst = os.path.join(cats_dir, fname)
            # Move o arquivo
            shutil.move(src, dst)
        # Verifica se o nome do arquivo começa com 'dog'
        elif fname.startswith('dog'):
            src = os.path.join(original_dir, fname)
            dst = os.path.join(dogs_dir, fname)
            shutil.move(src, dst)
    # 5. Imprimir um resumo
    print("\nOrganização dos arquivos concluída!")
    print(f"Total de imagens de gatos: {len(os.listdir(cats_dir))}")
    print(f"Total de imagens de cachorros: {len(os.listdir(dogs_dir))}")
    print(f"A pasta '{base_dir}' já existe. Os arquivos provavelmente já foram organizados.")
```

- 2. Divisão entre treino, validação e teste. Pre processamento:
 - a. Nessa etapa devidi os dados entre treino, validação e teste (70/15/15) e aumentei os dados retacionando, invertendo e dando zoom.

```
# Célula 4: Carregar os dados e aplicar pré-processamento
import tensorflow as tf
# Agora você pode acessar o Keras com tf.keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
# Parametros
img_height = 150
img_width = 150
batch_size = 32
data_dir = '/content/data_gatos_vs_caes' # Caminho da pasta organizada
# Carregar dados de treino (70%)
train_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.3, # Reservar 30% para validação e teste
  subset="training",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)
# Carregar os 30% restantes
val_test_ds = tf.keras.utils.image_dataset_from_directory(
  data_dir,
  validation_split=0.3,
  subset="validation",
  seed=123.
  image_size=(img_height, img_width),
  batch_size=batch_size)
val_test_batches = tf.data.experimental.cardinality(val_test_ds)
val_ds = val_test_ds.take(val_test_batches // 2)
test_ds = val_test_ds.skip(val_test_batches // 2)
class_names = train_ds.class_names
print("Classes:", class_names)
# Otimizar performance do pipeline de dados
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)
# Camada para aumento de dados
data_augmentation = tf.keras.Sequential([
  layers.RandomFlip("horizontal"),
  layers.RandomRotation(0.1),
  layers.RandomZoom(0.1),
# Camada de normalização de pixels (0-255 para 0-1)
normalization_layer = layers.Rescaling(1./255)
```

2. Construção e treinamento de uma CNN

Construção:

```
# Célula para construir o modelo
    from tensorflow.keras.models import Sequential
    from tensorflow.keras import layers
    model = Sequential([
        # Adiciona as camadas de pré-processamento no início do modelo
        layers.Input(shape=(img_height, img_width, 3)),
        normalization_layer,
        data_augmentation,
        # Bloco 1: Conv2D + MaxPooling2D
        layers.Conv2D(32, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
        # Bloco 2: Conv2D + MaxPooling2D
        layers.Conv2D(64, (3, 3), activation='relu'),
        layers.MaxPooling2D((2, 2)),
        # Camada Flatten para transformar os dados em um vetor
        layers.Flatten(),
        layers.Dense(512, activation='relu'),
        # Camada final de saída com ativação sigmoid para classificação binária
        layers.Dense(1, activation='sigmoid')
    model.compile(optimizer='adam',
                   loss='binary_crossentropy',
metrics=['accuracy'])
    model.summary()
```

Treino:

```
# Célula para treinar o modelo
epochs = 15 # 0 exercício pede pelo menos 10
history = model.fit(
 train_ds,
  validation_data=val_ds,
  epochs=epochs
# Célula para plotar os gráficos
import matplotlib.pyplot as plt
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Acurácia de Treino')
plt.plot(epochs_range, val_acc, label='Acurácia de Validação')
plt.legend(loc='lower right')
plt.title('Acurácia de Treino e Validação')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Perda de Treino')
plt.plot(epochs_range, val_loss, label='Perda de Validação')
plt.legend(loc='upper right')
plt.title('Perda de Treino e Validação')
plt.show()
```


Treinamento feito em 15 épocas, antes notei que estava demorando demais então mudei o ambiente para utilizar GPUs e o treinamento foi feito de forma muito mais rápida.

Observando os gráficos do treino e validação podemos observar que a partir da época 8 a perda de validação para de cair significativamente e fica variando enquanto a perda de treino continua caindo, isso é um sinal claro de overfitting do modelo. Na próxima vez tentarei utilizar 8 épocas para evitar isso ou utilizar uma técnica de dropout para evitar que os neurônios "decorem" os dados de treino.

3. Avaliação e testes

Acurácia no conjunto de teste: 0.81 118/118 ————————————————————————————————				
Relatório de Classificação:				
pr	ecision	recall	f1-score	support
cats	0.82	0.80	0.81	1858
dogs	0.81	0.83	0.82	1898
accuracy			0.81	3756
macro avg	0.81	0.81	0.81	3756
weighted avg	0.81	0.81	0.81	3756

De acordo com as métricas obtidas podemos perceber que temos uma acurácia de 81% e um ótimo balanceamento entre precisão e recall para ambas as classes, com um f1 score de 81%

para gatos e 82% para cachorros. A utilização da técnica de dropout poderia levar a resultados melhores.

Mudanças ao adicionar a camada de dropout:

layers.Dropout(0.5)

Podemos observar que com o dropout a validação fica bem mais próxima do treino, isso normalmente significa que existe menos overfitting.

```
Avaliando o modelo no conjunto de teste...
118/118
                            - 8s 28ms/step - accuracy: 0.8337 - loss: 0.3786
Acurácia no conjunto de teste: 0.82
118/118
                            1s 6ms/step
Relatório de Classificação:
              precision
                          recall f1-score
                                              support
                   0.84
                             0.79
                                       0.81
                                                 1858
        cats
        dogs
                   0.81
                             0.86
                                       0.83
                                                 1898
                                       0.82
                                                 3756
   accuracy
                   0.82
                             0.82
                                       0.82
                                                 3756
   macro avg
weighted avg
                   0.82
                             0.82
                                       0.82
                                                 3756
```

Observando o resultado da avaliação no conjunto de teste podemos observar uma melhora de 1% na acurácia, 2% na precisão para gatos, piora de 1% no recall para gatos, melhora de

3% no recall para cachorros. O f1-score para gatos ficou o mesmo, mas para cachorros aumento 1%. Por isso percebemos que o modelo ficou melhor num geral.

Teste feito com fotos das cachorras da minha namorada:

Teste feito com imagem de fato encontrada no google:

