CS915/435 Advanced Computer Security - Elementary Cryptography

Key Agreement

Roadmap

- Symmetric cryptography
 - Classical cryptographic
 - Stream cipher
 - Block cipher I, II
 - Hash
 - MAC
- Asymmetric cryptography
 - Key agreement
 - Public key encryption
 - Digital signature

Quote of the day

Good research is done with a shovel, not with tweezers.

Roger Needham

Goal of key exchange

Alice and Bob want a shared key for secure communication

Is it possible to share a secret key when the eavesdropper can hear everything?

Key exchange in the open air?

- No one had thought it possible
- Until 1974, a Berkeley UG student, Ralph Merkle, proposed the first solution, later known as Merkle puzzles
- He submitted his idea as a project proposal, but his supervisor was not interested, so he went on to Stanford to do a PhD
- He submitted the paper to Communications of ACM, but the paper was harshly rejected

Rejection from CACM

"I am sorry to have to inform you that the paper is not in the main stream of present cryptography thinking and I would not recommend that it be published in the Communications of the ACM."

"Experience shows that it is extremely dangerous to transmit key information in the clear."

Merkle Puzzles (1974)

Main tools: puzzles

- Problems that can be solved with some effort
- E.g. E(k, m) a symmetric cipher with 32-bit k
 - Puzzle (P) = E(k, "message")
 - Goal: find k by trying all 2³² possibilities

How does it work?

Identifier

Alice: prepare 2³² puzzles

- For i=1,..,2³² choose random 32-bit k_i and 128-bit x_i , m_i
- Send all 2³² puzzles

Bob: choose a random puzzle and solve it. Obtain (x_i, m_i) .

Send x_i to Alice

<u>Alice:</u> lookup puzzle with number x_j . Use m_j as the shared key

Alice's work: O(n)

puzzles

Bob's work: O(n)

puzzle

Eavesdropper's work:

O(n^2)

Prepare n

Solve one

What to learn from an UG idea?

- Merkle's 1974 solution, although inefficient, showed for the first time key exchange in the open air was possible!
- 1976, Diffie and Hellman proposed a more efficient solution, and started a new era in cryptography
- 1978, CACM conceded that rejection was a mistake and published Merkle's paper (keeping the original date in 1975)

"The human mind treats a new idea the same way the body treats a strange protein; it rejects it."

Peter Medawar

Birth of public key cryptography

- 1969 ARPANet born: 4 sites
 - Whitfield Diffie started thinking about secure communication when everyone could read traffic
- 1974 Whitfield Diffie gave a talk at IBM lab
 - One audience member mentioned that Martin Hellman (Stanford Prof) was working on key distribution
- That night Diffie started driving 5000 km to Palo Alto
- 1976, Diffie-Hellman key exchange invented

"We stand today on the brink of a revolution in cryptography."

Diffie and Hellman, "New Directions in Cryptography", IEEE Transactions on Information Theory, Nov 1976.

Key exchange with exponential gap

Merkled showed a solution with quadratic gap

Can this be done with an exponential gap?

Basic discrete logarithm

 $g^x \mod p = y$

 A primitive root modulo p is a number whose powers generate all the nonzero numbers mod p.

•	For example,	Let $p = 7$, hence	$Z_7^* = \{$	1, 2, 3,	4, 5,	6}
---	--------------	---------------------	--------------	----------	-------	----

	-	
5^1		= 5 mod 7
5 ²	= 25	= 4 mod 7
5 ³	= 4x5	= 6 mod 7
5 ⁴	= 6x5	= 2 mod 7
5 ⁵	= 2x5	= 3 mod 7
5 ⁶	= 3x5	= 1 mod 7

Thus, 5 is a primitive root modulo 7

What is the Discrete Logarithm?

Given a value h in $(\mathbf{Z}_p)^*$ with generator g, find x such that

$$g^{\times}$$
 = h (mod p)

Example: $(\mathbf{Z}_{17})^*$, g=3

It's easy to compute g⁸ = 16 mod p

But computing the inverse is difficult

Diffie-Hellman key exchange protocol

Let p a prime and g a primitive root modulo p

Alice

Select x from [1, p-1]

Bob

Select y from [1, p-1]

$$A = g^{x}$$

$$B = g^{y}$$

Compute
$$K = H(B^x) = H(g^{xy})$$

Compute
$$K' = H(A^y) = H(g^{xy})$$

Security

Eve sees: p, g, $A=g^x \pmod{p}$, $B=g^y \pmod{p}$

Can she compute gxy (mod p)?

More generally: define $DH_g(g^x, g^y) = g^{xy} \pmod{p}$

How hard is the DH function mod p?

How hard is the DH function?

Suppose prime p is n bits long.

Socurity lovel

256 bits

Best known algorithm (GNFS): run time $exp(O(n^{1/3}))$

modulus siza FII: 1: C. m. 12 2: - 2

512 bits

Security level	modulus size	Elliptic Curve size
80 bits	1024 bits	160 bits
128 bits	3072 bits	256 bits

15360 bits

Slow transition away from (mod p) to elliptic curve

Man-in-the-middle attack

Let p a prime and g a primitive root modulo p

How to prevent the active attack?

- The fundamental limitation with the DH protocol is that it is unauthenticated
- Hence, the solution appears simple: let's add authentication!
- Not a trivial problem; over 40 years research
- A very large amount of authenticated key exchange protocols proposed and broken

Two ways to add authenticated

- Based on public key certificates
 - SSL/TLS Used in https (TLS 1.0, 1.1, 1.2, 1.3)
 - (H)MQV
 - YAK
- Based on a password
 - EKE
 - SPEKE Used in Blackberry
 - J-PAKE Used in Google Nest, Thread

Encrypted Key Exchange (1992)

 Each player uses password s to encrypt the Diffie-Hellman key exchange process

Select x from [1, p-1]

$$A = E(s(g^{x}))$$

$$B = E(s(g^{y}))$$

Bob

Select y from [1, p-1]

Decrypt B with password Compute $K = H(B^x) = H(g^{xy})$ Decrypt A with password Compute $K' = H(A^y) = H(g^{xy})$

[&]quot;Encrypted Key Exchange: Password-Based Protocols Secure Against Dictionary Attacks", Bellovin and Merritt, IEEE S&P 1992.

Information leakage

Eve captures A, B. She can narrow down the password range.

```
For s in passwords dictionary

Decrypt A, B

If D(s, A) \ge p \mid D(s, B) \ge p

Eliminate s
```

What went wrong?

The implicit assumption in EKE is that the content in the encryption is random.

But it's not random.

- $A = g^x \mod p$, the value falls in [0, p-1]
- In practice, A is represented as $\{0,1\}^n$, e.g., n=2048
- If the decrypted result falls in [p, 2²⁰⁴⁸], the candidate password can be ruled out
- The problem is worse if elliptic curve is used