

Gomory割平面法 Gomory Cutting-plane Method

电信学院·自动化科学与技术系 系统工程研究所 吴江

Outline

- ▶ Gomory割平面法的基本思想
- ▶ Gomory割平面法的基本步骤
- 算例
- ▶ Gomory割平面法缺点及其现状简介

IP vs. LP

$$\min \quad c^T x$$
 vs. $\min \quad c^T x$ $s.t.$ $Ax = b$ $x \ge 0$ $x \in I^n$ (其中A, b, c中的元素皆为整数)

- 若 (LP) 无解,则 (IP) 无解
- 若(LP) 无界,则(IP) 无解或无界
- (LP) 的最优值是 (IP) 问题最优值的下界
- 若 (LP) 的最优解为整向量,则它也是 (IP) 问题的最优解

割平面法

Ralph E. Gomory 1959

原始问题可行域

新问题可行域

先不考虑变量的取整数约束,求解相应的**线性规划**,然后不断**增加**线性约束条件(即**割平面**),将**原可行域割掉**不含整数可行解的一部分,最终得到一个**具有整数坐标顶点**的可行域,而该**顶点**恰好是原整数规划问题的最优解。

割平面算法框架

割平面的形成方法(1/2)

$$c^T x$$

$$s.t.$$
 $Ax = b$

$$x \ge 0$$

最优基B

min

$$c_B^T \overline{b} + \zeta_N^T x_N$$

$$s.t. x_B + B^{-1}Nx_N = \overline{b}$$

$$x_B \ge 0, x_N \ge 0$$

设 b_l 不是整数, $0 \le l \le m$ 则第1个约束方程为:

$$x_{B_l} + \sum_{j=1}^{n-m} \overline{a}_{lN_j} x_{N_j} = \overline{b}_l$$
 诱导方程

割平面的形成方法(2/2)

▶引入取整函数:

$$x = [x] + \{x\}, 0 \le \{x\} \le 1, [x] \in I$$

(1)
$$x_{B_l} + \sum_{j=1}^{n-m} ([\overline{a}_{lN_j}] + {\{\overline{a}_{lN_j}\}}) x_{N_j} = [\overline{b}_l] + {\{\overline{b}_l\}}$$

(2)
$$x_{B_l} + \sum_{j=1}^{n-m} [\overline{a}_{lN_j}] x_{N_j} \le [\overline{b}_l]$$
 \{\begin{align*} \begin{align*} \begin{align*

$$\sum_{j=1}^{n} \{\overline{a}_{lN_j}\} x_{N_j} \ge \{\overline{b}_l\}$$
 Gomory割 平面条件

增加不等式约束

Z	0	ζ_N^T	$oldsymbol{C}_B^T \overline{oldsymbol{b}}$
$X_{\mathcal{B}}$	/	N	b

Z	0	0	ζ_N^T	$C_B^T \overline{b}$
X_B	/	0	N	b
X_{n+1}	0	1	$-\{a\}^T$	$-\{b_{n+1}\}$

对偶单纯形法

例: 求解整数线性规划问题

min
$$z = -2x_1 - 5x_2$$

s.t. $2x_1 - x_2 + x_3 = 9$
 $2x_1 + 8x_2 + x_4 = 31$
 $x_j \ge 0$ 为整数, $j = 1, 2, 3, 4$

注意, \bar{b} 有多个非整分量时,一般取 $\{\bar{b}_l\}$ 最大的那一个

应用对偶单纯形法,确定出基、入基变量:

解:求解松弛LP,得最优单纯形表

	X_1	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	
\mathcal{Z}	0	0	-1/3	-2/3	-71/3
$\overline{x_1}$	1	0	4/9	1/18	103/18
\mathcal{X}_2	0	1	-1/9	1/9	22/9

加入割平面:
$$\frac{4}{9}x_3 + \frac{1}{18}x_4 \ge \frac{13}{18}$$

引入松弛变量,扩充单纯形表:

•	•					
	X_1			•	\mathcal{X}_5	
\underline{z}	0		-1/3			-71/3
x_1	1	0	4/9	1/18	0	103/18
\mathcal{X}_2	0	1	-1/9	1/9		22/9
\underline{x}_5	0	0	-4/9*	-1/18	1	-13/18

选择诱导方程:

加入割平面:
$$\frac{1}{8}x_4 + \frac{3}{4}x_5 \ge \frac{5}{8}$$

引入松弛变量,扩充单纯形表:

	$ x_1 $	\mathcal{X}_2	\mathcal{X}_3	\mathcal{X}_4	X_5	
				- 5/8		-185/8
x_1	1	0	0	0	1	5 21/8 13/8
x_2	0	1	0	1/8	-1/4	21/8
X_3	0	0	1	1/8	-9/4	13/8

选择诱导方程:

加入割平面:
$$\frac{1}{8}x_4 + \frac{3}{4}x_5 \ge \frac{5}{8}$$

引入松弛变量,扩充单纯形表:

	X_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5	
\overline{z}	0	0	0	-5/8	-3/4	-185/8
x_1	1	0	0	0	1	5 21/8 13/8
X_2	0	1	0	1/8	-1/4	21/8
X_3	0	0	1	1/8	-9/4	13/8

	X_1	\mathcal{X}_2	x_3	\mathcal{X}_4	\mathcal{X}_{5}	\mathcal{X}_{6}		
\overline{z}	0	0	0	- 5/8	-3/4	0	-185/8	
\mathcal{X}_{1}	1	0	0	0	1	0	5	
\mathcal{X}_2	0	1	0	1/8	-1/4	0	21/8	
X_3	0	0	1	1/8	-9 /4	0	13/8	应用对偶单纯形法,
\mathcal{X}_{ϵ}	0	0	0	-1/8	$-3/4^{*}$	1	_5/8	确定出基、入基变量:

松弛变量 x_5 再次成为基变量,删去其所对应的行及列!

	x_1	\mathcal{X}_2	X_3	\mathcal{X}_4	X_5	\mathcal{X}_{6}	
Z							-45/2
x_1	1	0	0	-1/6	0	4/3	25/6
\mathcal{X}_2	0	1	0	1/6	0	-1/3	17/6
\mathcal{X}_3	0	0	1	1/2	0	-3	7/2
x_5	0	0	0	-1/6	1	- 4/3	5/6

	x_1	\mathcal{X}_2	x_3	\mathcal{X}_4	\mathcal{X}_{5}	x_6		对但单位形法进伐
\overline{z}	0	0	0	- 5/8	-3/4	0	-185/8	对偶单纯形法迭代, 得到最优单纯形表
x_1	1	0	0	0	1	0	5	
\mathcal{X}_2	0	1	0	1/8	-1/4	0	21/8	
x_3	0	0	1	1/8	- 9/4	0	13/8	应用对偶单纯形法,
χ_{ϵ}	0	0	0	-1/8	$-3/4^{*}$	1	-5/8	确定出基、入基变量:

松弛变量x5再次 成为基变量, 删去其 所对应的行及列!

	x_1	\mathcal{X}_2	X_3	\mathcal{X}_4	x_5	\mathcal{X}_{6}	
z	0	0	0	-1/2	0	-1	-45/2
X_1	1	0	0	-1/6	0	4/3	25/6
x_2	0	1	0	1/6	0	-1/3	17/6
X_3	0	0	1	1/2	0	-3	7/2
x_5	0	0	0	-1/6	1	- 4/3	5/6

化简单纯形表

	X_1	\mathcal{X}_2	X_3	\mathcal{X}_4	\mathcal{X}_{6}	
\overline{z}	0	0	0	-1/2	-1	-45/2
\mathcal{X}_1	1	0	0	-1/6	4/3	25/6
X_2	0	1	0	1/6	-1/3	17/6
\mathcal{X}_3	0	0	1	1/2	4/3 -1/3 -3	7/2

选择诱导方程,继 续迭代.....

$$x^* = (3,3,6,1), z^* = -21$$

Gomory割平面法缺点及其现状简介

Gomory割平面法:分数对偶割平面法

- 1. 分数: 判断一个数是否为整数数值误差影响: -1 → -1.0001 [-1]=-1 , {-1}=0 [-1.0001]=-2, {-1.0001}=0.9999
- 2. 对偶:中途停止计算得不到可行解

改进措施:整数对偶割平面法?原始整数 割平面法?

例:解如下整数规划问题

max x_2 s.t. $3x_1 + 2x_2 \le 6$ $-3x_1 + 2x_2 \le 0$ $x_1, x_2 \ge 0$,整数

(LP)问题

	X_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	RHS
Z	0	1	0	0	0
<i>X</i> ₃	3	2	1	0	6
<i>X</i> ₄	-3	2 [*]	0	1	0
		<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	RHS
Z	3/2	0	0	-1/2	0
<i>X</i> ₃	6 *	0	1	-1	6
<i>X</i> ₂	-3/2	1	0	1/2	0
		<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	RHS
Z	0	0	-1/4	-1/4	-3/2
X_1	1	0	1/6	-1/6	1

1/4

 $x=(1, 3/2)^T$

 X_2

0

3/2

1/4

Gomory割平面

Z
<i>X</i> ₁

X_1	<i>X</i> ₂	<i>X</i> ₃	X_4	RHS
0	0	-1/4	-1/4	-3/2
1	0	1/6	-1/6	1
0	1	1/4	1/4	3/2

割平面条件
$$\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2}$$

Z	
<i>X</i> ₁	
<i>X</i> ₂	

\boldsymbol{X}_1	X_2	<i>X</i> ₃	X_4	<i>5</i> ₁	RHS
0	0	-1/4	-1/4	0	-3/2
1	0	1/6	-1/6	0	1
0	1	1/4	1/4	0	3/2
0	0	-1/4	-1/4	1	-1/2

RHS

(LP)-1问题(对偶单纯形法)

 X_1

*X*₂

X_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>5</i> ₁	RHS
0	0	-1/4	-1/4	0	-3/2
1	0	1/6	-1/6	0	1
0	1	1/4	1/4	0	3/2
0	0	-1/4	-1/4	1	-1/2

 X_1

 X_2

 X_3

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>5</i> ₁	RHS
0	0	0	0	-1	-1
1	0	0	-1/3	2/3	2/3
0	1	0	0	1	1
0	0	1	1	-4	2

割平面条件
$$\frac{2}{3}x_4 + \frac{2}{3}s_1 \ge \frac{2}{3}$$

(LP)-2问题(对偶单纯形法)

 X_1

 X_2

*X*₃

*S*₂

X_1	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>5</i> ₁	<i>5</i> ₂	RHS
0	0	0	0	-1	0	-1
1	0	0	-1/3	2/3	0	2/3
0	1	0	0	1	0	1
0	0	1	1	-4	0	2
0	0	0	-2/3	-2/3	1	-2/3

Z

 X_1

*X*₂

*X*₃

*X*₄

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>s</i> ₁	<i>5</i> ₂	RHS	•
0	0	0	0	-1	0	-1	1
1	0	0	0	1	-1/2	1	
0	1	0	0	1	0	1	
0	0	1	0	-5	3/2	1	
0	0	0	1	1	-3/2	1	

作业

▶ P101 3. (2)

