

Dual Propagation

Accelerating Contrastive Hebbian Learning with Dyadic Neurons

Rasmus Høier, D. Staudt, Christopher Zach

Chalmers University of Technology

Email: hier@chalmers.se

Code repo: github.com/rasmuskh/dual-propagation Slideshow: github.com/rasmuskh/dualprop-slideshow

Motivation

Contrastive Hebbian learning (CHL) [1] and equilibrium propagation (EP) [2]

- Biological plausibility
- Neuromorphic computing

1

Motivation

Contrastive Hebbian learning (CHL) [1] and equilibrium propagation (EP) [2]

- · Biological plausibility
- · Neuromorphic computing

However, certain issues limit their usability.

- 1. First order gradient estimate
- 2. Extremely slow inference
- 3. Two globally synchronized inference phases

1

Motivation

Contrastive Hebbian learning (CHL) [1] and equilibrium propagation (EP) [2]

- · Biological plausibility
- · Neuromorphic computing

However, certain issues limit their usability.

- 1. First order gradient estimate
- 2. Extremely slow inference
- 3. Two globally synchronized inference phases

A dyadic objective

$$\begin{split} \mathcal{L}_{\alpha}(\theta) &:= \min_{z^{+}} \max_{z^{-}} \alpha \ell(z_{L}^{+}) + (1 - \alpha) \ell(z_{L}^{-}) \\ &+ \sum_{k=1}^{L} \frac{1}{\beta_{k}} \Big(G_{k}(z_{k}^{+}) - G_{k}(z_{k}^{-}) + (z_{k}^{-} - z_{k}^{+})^{\top} W_{k-1}(\alpha z_{k-1}^{+} + (1 - \alpha) z_{k-1}^{-}) \Big) \end{split}$$

- Linear units: $G_k = ||\cdot||^2/2$
- ReLU units: $G_k = ||\cdot||^2/2 + i_{\geq 0}(\cdot)$
- $\alpha \in [0,1]$

Choice of α

- $\alpha = 1$ and $\alpha = 0$:
 - · LPOM-like [3, 4] pure minimization objectives
 - · Slow iterative inference

Choice of α

- $\alpha = 1$ and $\alpha = 0$:
 - · LPOM-like [3, 4] pure minimization objectives
 - Slow iterative inference
- $\alpha \in (0,1)$ excluding $\alpha = 1/2$
 - · Fast inference
 - · Lacks convergence guarantee

Choice of α

- $\alpha = 1$ and $\alpha = 0$:
 - · LPOM-like [3, 4] pure minimization objectives
 - Slow iterative inference
- $\alpha \in (0,1)$ excluding $\alpha = 1/2$
 - Fast inference
 - · Lacks convergence guarantee
- $\alpha = 1/2$:
 - · Fast inference
 - · Convergence guarantee (details in paper)

Assume $\alpha = 1/2$ from now on.

Connection to CHL and EP

Defining energy functions E_k as in CHL allows reformulating $\mathcal{L}_{\frac{1}{2}}.$

$$\cdot \ E_k(z_k, z_{k-1}) := G_k(z_k) - z_k^T W_{k-1} z_{k-1}$$

$$\cdot \ \overline{Z}_k := \frac{1}{2}(Z_k^+ + Z_k^-)$$

$$\mathcal{L}_{\frac{1}{2}}(\theta) = \min_{z^{+}} \max_{z^{-}} \ell(z_{L}^{+}) + \ell(z_{L}^{-}) + \sum_{k=1}^{L} \frac{1}{\beta_{k}} (E(z_{k}^{+}, \bar{z}_{k-1}) - E(z_{k}^{-}, \bar{z}_{k-1}))$$

Similar to CHL and EP objectives but z_k^+ and z_k^- are inferred simultaneously and "tethered" via \bar{z}_{k-1} .

4

Inference

- · Neurons within layers are not coupled.
- Fully optimize $\mathcal{L}_{\frac{1}{2}}$ with respect to z_k^+ and z_k^- in a single block-coordinate descent step!

$$z_{k}^{\pm} \leftarrow f_{k} \left(\frac{1}{2} W_{k-1} (z_{k-1}^{+} + z_{k-1}^{-}) \pm \frac{\beta_{k}}{2\beta_{k+1}} W_{k}^{\top} (z_{k+1}^{+} - z_{k+1}^{-}) \right)$$

• Same runtime as BP and >100X faster than EP and CHL.

Dvadic neurons

$$Z_{k}^{\pm} \leftarrow f_{k} \left(\underbrace{\frac{1}{2} W_{k-1} (Z_{k-1}^{+} + Z_{k-1}^{-})}_{\text{FF in}} \pm \underbrace{\frac{\beta_{k}}{2\beta_{k+1}} W_{k}^{\top} (Z_{k+1}^{+} - Z_{k+1}^{-})}_{\text{FB in}} \right)$$

$$\text{FF out} = \frac{1}{2} (Z_{k,i}^{+} + Z_{k,i}^{-})$$

$$\text{FB out} = \frac{1}{2} (Z_{k,i}^{+} - Z_{k,i}^{-})$$

Learning

- Fully local contrastive Hebbian gradient
- Second order gradient estimate
- Discounting not needed ($\beta_k = 1 \forall k \text{ employed in experiments}$)

$$\begin{split} \frac{\partial}{\partial W_{k-1}} \mathcal{L}_{\frac{1}{2}} &= \frac{1}{\beta_k} \left(\frac{E(Z_k^+, \bar{Z}_{k-1})}{\partial_{W_{k-1}}} - \frac{E(Z_k^-, \bar{Z}_{k-1})}{\partial_{W_{k-1}}} \right) \\ &= \frac{1}{2\beta_k} \left(Z_k^- - Z_k^+ \right) \left(Z_{k-1} + Z_{k-1} \right)^\top. \end{split}$$

• Excellent gradient alignment between BP and DP

Experiments: MLP (MNIST)

- DP: cost-efficient (forwards + backwards)
- MS-DP: Multiple steps of inference and weight updates per datapoint
- L-DP: "Lazily" let old states persist providing potentially harmful feedback.
- P-DP: parallel neuron updates
- · R-DP-100: Random update sequence

Method	BP	DP	MS-DP	L-DP	P-DP	R-DP-100
Test	98.45	98.43	98.40	98.42	98.47	98.48
acc (%)	±0.04	±0.03	±0.02	± 0.07	±0.04	±0.11

Experiments: VGG16

DP matches back-propagation both in terms of runtime and accuracy.

Method		BP	DP	KP-DP [†]	EP* [5]	DTP* [6]
CIFAR10	Top-1	92.26 ± 0.23	92.30 ± 0.11	91.84 ± 0.11	88.6 ± 0.2	89.38 ± 0.20
CIFAR100	Top-1	69.63 ± 0.24	69.57 ± 0.51	70.40 ± 0.25	61.6 ± 0.1	_
	Top-5	88.13 ± 0.22	88.36 ± 0.13	88.57 ± 0.15	86.0 ± 0.1	_
ImageNet32x32		41.28 ± 0.19			36.5 ± 0.3	
	Top-5	64.89 ± 0.11	64.90 ± 0.13	_	60.8 ± 0.4	60.54

- (†) Dual propagation with Kolen-Pollack learning of feedback weights.
- (*) High computational costs limit EP (Laborieux 2022) and DTP (Ernoult 2022) to 5-7 layer VGG-like networks.

Experiments: VGG16

DP matches back-propagation both in terms of runtime and accuracy.

Method		BP	DP	KP-DP [†]	EP* [5]	DTP* [6]
CIFAR10	Top-1	92.26 ± 0.23	92.30 ± 0.11	91.84 ± 0.11	88.6 ± 0.2	89.38 ± 0.20
CIFAR100	Top-1	69.63 ± 0.24	69.57 ± 0.51	70.40 ± 0.25	61.6 ± 0.1	_
	Top-5	88.13 ± 0.22	88.36 ± 0.13	88.57 ± 0.15	86.0 ± 0.1	_
ImageNet32x32		41.28 ± 0.19			36.5 ± 0.3	36.81
	Top-5	64.89 ± 0.11	64.90 ± 0.13	_	60.8 ± 0.4	60.54

- (†) Dual propagation with Kolen-Pollack learning of feedback weights.
- (*) High computational costs limit EP (Laborieux 2022) and DTP (Ernoult 2022) to 5-7 layer VGG-like networks.

Conclusion

- Unlike previous CHL methods DP computes errors across compartments rather than across time.
- The dyadic neuron model enables closed-form inference rules and a second order gradient estimate.
- Many viable update schemes including random and parallel updates.
- The efficient DP implementation matches back-propagation both in terms of accuracy and runtime.

Future work: Continuous inference and learning in a streaming setting.

Code repo: github.com/rasmuskh/dual-propagation Slideshow: github.com/rasmuskh/dualprop-slideshow

Extra slides

Back of the envelope runtime comparisson

- CIFAR10 runtime per epoch in seconds for different implementations.
- Estimates based on numbers from supplemental material of [5] and [6].

Method	DP	H-EP [5]	DTP [6]
Seconds/epoch	3.5	1700	240
Layers	16	7	6

 Differences in hardware, software, model size and batch size makes this comparisson indicative only.

References

- B. Scellier and Y. Bengio, "Equilibrium propagation: Bridging the gap between energy-based models and backpropagation," Frontiers in computational neuroscience, vol. 11, p. 24, 2017.
- [2] X. Xie and H. S. Seung, "Equivalence of backpropagation and contrastive hebbian learning in a layered network," *Neural computation*, vol. 15, no. 2, pp. 441–454, 2003.
- [3] J. Li, C. Fang, and Z. Lin, "Lifted proximal operator machines," in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4181–4188, 2019.
- [4] C. Zach, "Bilevel programs meet deep learning: A unifying view on inference learning methods," arXiv preprint arXiv:2105.07231, 2021.
- [5] A. Laborieux and F. Zenke, "Holomorphic equilibrium propagation computes exact gradients through finite size oscillations," arXiv preprint arXiv:2209.00530, 2022.
- [6] M. M. Ernoult, F. Normandin, A. Moudgil, S. Spinney, E. Belilovsky, I. Rish, B. Richards, and Y. Bengio, "Towards scaling difference target propagation by learning backprop targets," in International Conference on Machine Learning, pp. 5968–5987, PMLR, 2022.