VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Modelování a simulace – projekt Téma č. 1: Epidemiologické modely pomocí celulárních automatů

Obsah

1	Úvo	d	
	1.1	Autori a zdroje	
	1.2	Validita modelu	
2	Rozbor témy a použitých metód/technológií		
	2.1	Použité postupy	
	2.2	Pôvod použitých metód	
3	Kon	cepcia	
4	Architektúra simulátora		
	4.1	Mapovanie konceptuálneho modelu do simulátora	
	4.2	Infekčnosť okolia	
5	Pod	stata simulačných experimentov a ich priebeh	
	5.1	Postup experimentovania	
	5.2	Jednotlivé experimenty	
		5.2.1 Experiment č. 1	
		5.2.2 Experiment č. 2	
	5.3	Závery experimentov	
6	Zhr	nutie simulačných experimentov a záver	

1 Úvod

Tento projekt a inžinierska správa sa zaoberajú problematikou šírenia epidémie vírusu. Pri tvorbe modelu boli využité verejno-dostupné dáta a štatistiky pandémie Covid-19, ktorými bol model následne naplnený. Teda výsledok je prispôsobený a zameraný na vírus Covid-19, ale model by mal byť využiteľný aj pri iných epidémiach. Cieľ om modelu je štatisticky znázorniť priebeh šírenia vírusu Covid-19 a potvrdiť / vyvrátiť účinnosť jednotlivých opatrení zavedených na spomalenie šírenia vírusu.

1.1 Autori a zdroje

Autormi modelu sú Filip Čižmár (xcizma06) a Samuel Križan (xkriza06). Zadanie práce spadá pod Vysoké učení technické v Brně, projekt predmetu Modelování a simulace. Presné zadanie je Téma č. 1: Epidemiologické modely pomocí celulárních automatů. [1]

Štatistické informácie boli prevzaté z článkov štúdií verejne dostupných na internete, a kde zdroj je jednoznačný, budú vždy označené patričnými informáciami v poslednej sekcii dokumentu - Referencie.

Koncept a matematický základ modelu bol prevzatý z článku Using Cellular Automata to Simulate Epidemic Diseases[4].

1.2 Validita modelu

Validita modelu bola overená porovnaním reálnych štatistík priebehu covid-19 s výstupmi modelu.

2 Rozbor témy a použitých metód/technológií

Informácie týkajúce sa implementácie modelu boli získané z článku vedeckého časopisu Applied Mathematical Sciences - Using Cellular Automata to Simulate Epidemic Diseases.[4] Článok popisuje princíp využitia celulárnych automatov na modelovanie šírenia epidémií. Celulárne automaty sú implementačne jednoduché dvojrozmerné modely schopné simulovať komplexné biologické či environmentálne javy z reálneho života, a preto sú vhodné aj na modelovanie problematiky epidémií.

2.1 Použité postupy

Celulárny automat tohto projektu vychádza z matematického modelu SIR - Susceptible (náchylní), Infected (infikovaní), Recovered (uzdravení). Rovnako ako vo vyššie zmienenom článku bola použitá možnosť Moorovho okolia bunky - teda všetky bunky v 3x3 štvorci so stredom v aktuálnej bunke. Jazyk implementácie je C++. Žiadne vonkajšie knižnice neboli použité.

2.2 Pôvod použitých metód

Všetky použité metódy sú prebrané z nasledovného článku: https://www.researchgate.net/publication/228819056_Using_Cellular_Automata_to_Simulate_Epide mic_Diseases

3 Koncepcia

Ako už bolo vyššie spomenuté, model použitý v našej práci vychádza z modelu SIR, ktorý sme však mierne upravili v snahe dosiahnuť väčšiu podobnosť s reálnym šírením choroby COVID-19. Nakoľ ko daná choroba ešte nie je dokonale preskúmaná, existuje množstvo odlišných popisov ochorenia. Preto sme sa rozhodli pre nasledovný kompromis: nakazený človek začne byť infekčný až po určitej dobe, a takisto je infekčný len určitú dobu. Po tejto dobe sa môže každým dňom s určitou pravdepodobnosť ou vyliečiť alebo zomrieť. Vyliečený získava imunitu, t.j. už sa viac nemôže nakaziť.

Obrázek 1: Priebeh ochorenia

Ako vidieť ochorenie má 4 fázy: nakazení neinfekční, nakazení infekční, nakazení neinfekční čakajúci na vyliečenie a vyliečení. Nakazení sa budú po jednotlivých dňoch posúvať v tejto schéme v smere šipiek, pričom prvé dve fázy fungujú na princípe fronty, kde každý štvorček symbolizuje 1 deň. V tretej fáze sa budú zbierať čakajúci na vyliečenie, z ktorých sa každý deň vylieči niekoľ ko percent. Keď že sme sa rozhodli nesledovať štatistiku úmrtí a keď že vyliečení získavajú imunitu, môžeme tieto dve skupiny zlúčiť a tým zjednodušiť model.

Na výpočet nových nakazených sme takisto použili vzorec z článku[4] upravený tak, aby zodpovedal nášmu modelu:

$$ND = H * (P_d * I + IN)$$

kde:

- ND... noví nakazení,
- H... zdraví, ktorí sa môžu nakaziť,
- P_d ... pravdepodobnosť nákazy pri kontakte konštanta získaná z publikácií [5],
- *I...* počet infekčných v danej bunke,
- $IN = P_d * \text{počet infekčných v okolí.}$

4 Architektúra simulátora

Na implementáciu simulátora sme využili objektovo orientovaný prístup ponúkaný jazukom C++. Základnými prvkami v ňom sú triedy *Cell* a *Site*. *Cell*, ako už názov napovedá, má zodpovedať bunke cellulárneho automatu a uchovávať všetky potrebné údaje o nej, ako aj základné operácie

s ňou. Trieda Site reprezentuje samotný automat, ktorý obsahuje dvojrozmerné pole buniek typu Cell, umožňuje interakciu medzi bunkami a vyvoláva zmenu ich stavu. Za stav bunky považujeme množstvo práve nakazených z <0,1>s presnosťou na 2 desatinné miesta, t.j. počet percent celej populácie, ktorí sú aktuálne nakazení. Podobne pracujeme aj s ostatními množinama. Pre tieto účeli máme vytvorenú diskretizačnú funkciu.

4.1 Mapovanie konceptuálneho modelu do simulátora

Obr. 1 v kapitole 3 zobrazuje obsah jednej bunky. Trieda Cell preto obsahuje dátovú štruktúru pre každú zo 4 fáz ochorenia samostatne. Pre prvé dve je to std:queue < float > a pre zvyšné dve obyčajný float. Zároveň zabezpečuje plynulé prechádzanie danej skupiny nakazených celým reť azcom: pri prechode na nový deň (funkcia Cell:nextDay) sa najprv presunie niekoľ ko nakazených z 3. fázy do vyliečených a následna sa vyráta počet nových nakazených¹. Tí sa vložia na koniec fronty neinfekčných nakazených, čim sa ostatné hodnoty posunú a prvá sa vyberie a vloží na koniec fronty infekčných, tá sa obdobne posunie a prvá hodnota sa vloží do čakajúcich na vyliečenie.

Pred prechodom na nový deň celého automatu je treba si vytvoriť kópiu buniek z objektu triedy Site-z nej sa bude počítať infekčnosť okolia požadovanej bunky. Potom sa preiterujú všetky bunky a so zistenou infekčnosť ou okolia (z kópie) sa u každej spustí prechod na nový deň.

4.2 Infekčnosť okolia

Pri infekčnosti okolia berieme okrem klasického moorovho okolia do úvahy aj určitý počet náhodne zvolených buniek, čo by malo lepšie reprezentovať prirodzený pochyb obyvateľ stva a obmedzenie tejto funkcie by zodpovedalo obmedzeniu pohyby v reálnom svete.

5 Podstata simulačných experimentov a ich priebeh

Podstatou experimentov bolo potvrdiť validitu modelu voči verejne-dostupným štatistikám z prvej/druhej vlny koronavírusu a následne zistiť efektivitu jednotlivých opatrení na spomalenie šírenia vírusov.

5.1 Postup experimentovania

Všetky experimenty prebiehali mapovaním výstupu modelu do grafov v programe GNU Octave, kde osa x reprezentuje po sebe nasledujúce dni a osa y reprezentuje celkové percento (resp. pomer) nakazených. Vstupné konštanty (koeficient pohybu obyvateľov, koeficient prenosu a pod.) boli pred štartom programu vždy zmenené, program bol viackrát spustený s rôznymi hodnotami a jednotlivé výstupy boli následne porovnané s reálnymi hodnotami.

5.2 Jednotlivé experimenty

5.2.1 Experiment č. 1

Prvý experiment popisuje šírenie vírusu pri zmene koeficientu pohybu. Štatistiky z reálneho sveta hovoria, že pri obmedzení pohybu obyvateľ ov štátu sa šírenie vírusu spomalí a maximálne množstvo

¹Pretože sa nemení počet infekčných ani počet, čo sa môžu nakaziť, nezáleží na poradí týchto 2 operácií.

súčasne nakazených obyvateľ ov sa zníži, brániac tak preplneniu zdravotníckych zariadení.

Pri experimente boli použité hodnoty koeficientu pohybu 15, 3.5 a 0. Tieto čísla popisujú počet náhodných stretnutí s bunkami mimo Moorovho okolia bunky, kde 15 reprezentuje neobmedzený pohyb, 3.5 pohyb mierne obmedzený a 0 reprezentuje zákaz pohybu na väčšie vzdialenosti. Obyvatelia sa teda pohybujú len v rámci Moorovho okolia ich bunky.

Obrázek 2: Koeficient pohybu 15

Obrázek 3: Koeficient pohybu 3.5

Obrázek 4: Koeficient pohybu 0

5.2.2 Experiment č. 2

Experiment popisuje zmenu šírenia vírusu pri použití ochrany dýchacích ciest (rúška). V našom modeli predpokladáme, že 100% obyvateľ ov používa chirurgické rúška a chirurgické rúško zadrží 75% častíc.[2] Experiment prebiehal s hodnotou koeficientu pohybu rovnej 5.

Obrázek 5: 0% obyvateľ ov používa rúška

Obrázek 6: 100% obyvateľ ov používa rúška

5.3 Závery experimentov

Celkovo prebehli 2 experimenty: prvý s obmedzením pohybu a druhý s použitím masky. Model sa správal podľ a očakávaní v oboch prípadoch.

6 Zhrnutie simulačných experimentov a záver

Z experimentov je jasné, že s menším koeficientom pohybu / použitím masky došlo k "splošteniu krivky" a teda výsledky sedia s ostatnými štúdiami. Je možné teda potvrdiť validitu modelu s dostatočnou dôveryhodnosťou. [3]

Referencie

- [1] Zadanie projektu [online]. [cit. 22. listopadu 2020]. Dostupné na: http://perchta.fit.vutbr.cz/vyuka-ims/24.
- [2] HOWARD, J. Face Masks Against COVID-19: An Evidence Review [online]. Dostupné na: https://www.researchgate.net/publication/340603522_Face_Masks_Against_COVID-19_An_Evidence_Review.
- [3] MARION HOFFMAN. Social network-based distancing strategies to flatten the COVID 19 curve in a post-lockdown world [online]. Dostupné na: https://www.researchgate.net/publication/340662667_Social_network-based_distancing_strategies_to_flatten_the_COVID_19_curve_in_a_post-lockdown_world.
- [4] S. HOYA WHITE, A. MARTIN DEL REY, G. RODRIGUEZ SANCHEZ. Using Cellular Automata to Simulate Epidemic Diseases. *Applied Mathematical Sciences*. 2017. Dostupné na: https://www.researchgate.net/publication/228819056_Using_Cellular_Automata_to_Simulate_Epidemic_Diseases.
- [5] STEFAN GILDEMEISTER. SARS-CoV-2 (COVID-19) Modeling (Version 3.0) [online]. Dostupné na: https://mn.gov/covid19/assets/MNmodel_PPT%205.21.20%201019AM_tcm1148-434753.pdf.