CLAIMS

- 1. Bioactive silicon (20, 520) characterized in that the silicon is at least partly crystalline.
- 2. Bioactive silicon according to Claim 1, characterized in that when immersed in a simulated body fluid solution held at a physiological temperature the silicon induces the deposition of a mineral deposit (54, C) thereon.
- 3. Bioactive silicon according to Claim 2, characterized in that the mineral deposit is apatite.
- 4. Bioactive silicon according to Claim 3, characterized in that the apatite is continuous over at least an area of 100 μm².
- 5. Bioactive silicon according to Claim 1, characterized in that the silicon (20) is at least partially porous with a porosity greater than 4% and less than 70%.
- 6. Bioactive silicon according to Claim 5, characterized in that the porous silicon is microporous.
- 7. Bioactive silicon according to Claim 5, characterized in that the porous silicon is mesoporous.
- 8. Bioactive silicon according to Claim 5, characterized in that the porous silicon is visibly luminescent.
- Bioactive silicon according to Claim 1 or Claim 5, characterized in that the silicon is impregnated with at least one species taken from a list of calcium, sodium and phosphorus.
- Bioactive silicon according to Claim 1, characterized in that the silicon is polycrystalline silicon (520).

- 11. A bioactiv silicon structure (10, 300, 500) characterized in that the silicon is at least partly crystalline.
- 12. A bioactive silicon structure according to Claim 11, characterized in that the structure comprises a porous silicon region (20) having a porosity greater than 4% and less than 70%.
- 13. A bioactive silicon structure according to Claim 12, characterized in that the porous silicon is microporous.
- 14. A bioactive silicon structure according to Claim 12, characterized in that the porous silicon is mesoporous.
- 15. A bioactive silicon structure according to Claim 12, characterized in that the structure also includes macropores.
- 16. A bioactive silicon structure according to Claim 11 or Claim 12, characterized in that the silicon is impregnated with at least one species taken from a list of calcium, sodium and phosphorus.
- 17. A bioactive silicon structure according to Claim 16 wherein the porous silicon is impregnated with calcium at a concentration greater than 10²¹ cm⁻³.
- 18. A bioactive silicon structure according to Claim 11, characterized in that the structure includes resorbable silicon material.
- 19. A bioactive silicon structure according to Claim 11, characterized in that the structure comprises a region of polycrystalline silicon (520).
- 20. An electronic device (300, 500) for operation within a living human or animal body, characterized in that the device includes bioactive silicon (20, 520).

- 21. An electronic device according to Claim 20, characterized in that the bioactive silicon comprises at least partially porous silicon having a porosity greater than 4% and less than 70%.
- 22. An electronic device according to Claim 21, characterized in that the porous silicon contains macropores for enhancing vascular tissue ingrowth.
- 23. An electronic device according to Claim 21, characterized in that the porous silicon extends at least partially over an outer surface of the device.
- 24. An electronic device according to any one of Claims 20 to 23, characterized in that the device is a sensor device.
- 25. An electronic device according to Claim 20, characterized in that the bioactive silicon is polycrystalline silicon.
- 26. A method of making silicon bioactive, the method comprising making at least part of the silicon porous.
- 27. A method according to Claim 26, characterized in that the method includes the impregnation of the porous silicon with calcium.
- 28. A method of fabricating bioactive silicon, characterized in that the method comprises the step of depositing a layer of polycrystalline silicon.
- 29. The use of bioactive silicon for the construction of a device (300, 500) for use in a living human or animal body characterized in that the silicon is at least partly crystalline.
- 30. Bioactive silicon (20, 520) for use in a method of treatment of the human or animal body.

- 31. Bioactive silicon (20, 520) incorporated in a device (300, 500) suitable for use in a living human or animal body characterized in that the silicon is at least partly crystalline.
- 32. Biocompatible silicon (20, 520) characterized in that the silicon is at least partly cystalline.
- 33. Biocompatible silicon according to Claim 32, characterized in that when immersed in a simulated body fluid solution held at a physiological temperature the silicon induces the deposition of a mineral deposit thereon.
- 34. Resorbable silicon.
- 35. Resorbable silicon according to Claim 34, characterized in that the resorbable silicon comprises a region of porous silicon such that when immersed in a simulated body fluid solution the porous silicon dissolves over a period of time.
- 36. A method of accelerating or retarding the rate of deposition of a mineral deposit on silicon in a physiological electrolyte wherein the method comprises the application of an electrical bias to the silicon.
- 37. A method according to Claim 36, characterized in that the silicon is porous silicon.
- 38. Bioactive material (20) characterised in that the bioactivity of the material is controllable by the application of an electrical bias to the material.
- 39. Bioactive electrically conductive material (20, 520).
- 40. A composite structure (10, 300, 500) comprising bioactive silicon region (20, 520) and a mineral deposit thereon characterized in that the silicon region comprises silicon which is at least partly crystallin.

- 41. A composit structure according to Claim 40, characterized in that the mineral deposit is apatite.
- 42. A composite structure according to Claim 40 or Claim 41, characterized in that the bioactive silicon region is porous silicon (20).
- 43. A composite structure according to Claim 40 or Claim 41, characterized in that the bioactive silicon is polycrystalline silicon (520).
- 44. A method of fabricating a biosensor, characterized in that the method includes the step of forming a composite structure of bioactive silicon and a mineral deposit thereon.
- 45. A biosensor for testing the pharmacological activity of compounds including a silicon substrate, characterized in that at least part of the silicon substrate is comprised of bioactive silicon.