Introduction

Objectives

To improve the generalization of the existing ILP method in determining the values of decoding parameters — grammar factor and word insertion penalty.

Motivation

- The solution found by the current ILP algorithm when the training data do not match well with the test data is significantly worse than under matched condition.
- In modern machine learning, generalization is often achieved by increasing the margin of the classifier.

Math Tools:

- Iterative linear programming(LP).
- Large-margin training.

Decoding Parameters

- Given a sequence of T acoustic observations, $\mathbf{x}_1^T = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_T\}$, find the corresponding N-word sequence, $\hat{\mathbf{w}}_1^N = \{\hat{\mathbf{w}}_1, \hat{\mathbf{w}}_2, \cdots, \hat{\mathbf{w}}_N\}$.
- In theory, using the MAP decision rule:

$$\hat{\mathbf{w}}_{1}^{N} = \underset{\mathbf{w}_{1}^{N}, N}{\operatorname{argmax}} \underbrace{\frac{\ln p(\mathbf{x}_{1}^{T} | \mathbf{w}_{1}^{N})}{\operatorname{acoustic score}} + \underbrace{\ln p(\mathbf{w}_{1}^{N})}_{\text{language score}}.$$

• In practice, need adjustment because of the very different dynamic ranges of acoustic score and language score.

$$\hat{\mathbf{w}}_{1}^{N} = \underset{\mathbf{w}_{1}^{N}, N}{\operatorname{argmax}} \left\{ \ln p(\mathbf{x}_{1}^{T} | \mathbf{w}_{1}^{N}) + K_{gf} \ln p(\mathbf{w}_{1}^{N}) + K_{wip} N \right\}$$

where, K_{gf} = grammar factor; K_{wip} = word insertion penalty.

Linear Discriminants as LP Constraints

- Let $\hat{\mathbf{w}}_i = \text{correct transcription of the } i \text{th training utterance } \mathbf{x}_i$ $\mathbf{w}_{ij} = j \text{th competing word sequence of } \mathbf{x}_i \text{ during decoding.}$
- Linear discriminants: $\forall i, \forall j, \quad \ln p(\hat{\mathbf{w}}_i | \mathbf{x}_i) \geq \ln p(\mathbf{w}_{ij} | \mathbf{x}_i).$

That is,

where

$$u_{ij} = \ln p(\mathbf{x}_i | \hat{\mathbf{w}}_i) - \ln p(\mathbf{x}_i | \mathbf{w}_{ij})$$

$$v_{ij} = \ln p(\hat{\mathbf{w}}_i) - \ln p(\mathbf{w}_{ij})$$

$$z_{ii} = N_i - N_{ii}$$

LP Formulation

• To allow possible violations, relax the requirement by introducing slack variables, $\xi_{ij} \geq 0$, so that

$$u_{ij} + K_{gf}v_{ij} + K_{wip}z_{ij} + \xi_{ij} \geq 0$$
.

- The slack variables implements the hinge loss function: for correctly decoded utterances, $\xi_{ij} = 0$.
- ξ_{ij} is also an approximation of the utterance recognition error.
- LP form:

$$\min_{K_{gf},K_{wip}}\sum_{i}\xi_{ij}$$

subject to the following constraints:

$$\forall i, \ \forall j, \quad \textit{u}_{ij} + \textit{K}_{\textit{gf}} \textit{v}_{ij} + \textit{K}_{\textit{wip}} \textit{z}_{ij} + \xi_{ij} \ \geq \ 0 \ , \\ \forall i, \ \forall j, \quad \xi_{ij} \ \geq \ 0 \ , \\ \textit{K}_{\textit{gf}} \ \geq \ 0 \ .$$

Min-max Iterative Linear Programming (ILP)

Min-max Training Approach

• $\xi_{ij} \rightarrow \xi_i$: Tie the "errors" ξ_{ij} across all competitors (j's) \Rightarrow minimize the maximum "error" for each training utterance (i.e. worst case or strongest competitor).

Iterative Linear Programming

- Incomplete knowledge of the feasible region. Two reasons:
 - infinite competing word sequences for an utterance!
 N-best solution only gives a subset of them.
 - ② the feasible region is only an approximation since the N-best solution is not computed with the true decoding parameters ⇒ non-optimal solution.
- Solution: don't move to the globally optimal solution of LP.
 Instead, constrain the change to the decoding parameters:

$$|K_{gf}(n+1) - K_{gf}(n)| \le \Delta K_{gf \, max}$$

 $|K_{wip}(n+1) - K_{wip}(n)| \le \Delta K_{wip \, max}$

and update the estimates in a number of LP iterations.

The Learning Algorithm

- Step 0. Set the iteration index n = 0, and determine
 - initial values of $K_{gf}(0)$ and $K_{wip}(0)$.
 - \bullet $\Delta K_{gf max}$ and $\Delta K_{wip max}$.
 - maximum number of iterations n_{max} .
 - convergence measure θ .
- Step 1. N-best decoding for each training utterance using the current decoding parameters, $K_{gf}(n)$ and $K_{wip}(n)$.
- Step 2. Compute acoustic score difference u_{ij} , language score difference v_{ij} , and the number of words difference z_{ij} .
- Step 3. Construct the LP cost and constraints and add:

$$|K_{gf}(n+1) - K_{gf}(n)| \le \Delta K_{gf max}$$
 (1)

$$|K_{wip}(n+1) - K_{wip}(n)| \leq \Delta K_{wip max}$$
 . (2)

- Step 4. Solve the LP problem of Step 3.
- Step 5. If the relative change of $\sqrt{K_{gf}(n)^2 + K_{wip}(n)^2} \le \theta$, or n_{max} is reached, stop.
- Step 6. Set n = n + 1, and go to Step 1.

Large Margin Training

- It is a regularization method that avoids overfitting of the training data.
- For each utterance, the recognition score of the correct word sequence is required to be greater than any of its competing word sequences by a positive margin $M \geq 0$.
- We modify the constraints as follows:

$$\forall i, \ \forall j, \quad u_{ij} + K_{gf}v_{ij} + K_{wip}z_{ij} + \xi_{ij} \geq M$$
.

- When the margin M is greater than a certain value, all the constraints are satisfied. Therefore, the estimated parameters converge with increasing margin.
- M may be determined by cross validation using extra development data. But in practice, a very big M suffices.

Evaluation on WSJ0

Item	WS0	
# train utt.	7138	
# test utt.	330	
# dev. utt.	442	
acoustic unit	cross-word triphones	
# acoustic models	15,449	
# HMM states	3,132 (tied)	
# Gaussians/state	16	
language model	bigram	
LM perplexity	111 (test), 121 (dev)	
baseline word acc.	93.16%	
by grid search		

- acoustic feature: standard 39-dimensional MFCC vectors .
- competing hypotheses: found by N-best decoding with N = 20.
- LP solver: the Mosek optimization software.
- $\Delta K_{gf max} = 7$, $\Delta K_{wip max} = 10$.
- maximum number of iterations = 10.
- convergence threshold $\theta = 10^{-4}$.

Convergence of the Estimation of Parameters

(a) Grammar Factor

(b) Insertion Penalty

Effect of Large Margin

(a) Utterance Accuracy vs M

(b) Distribution of Score Diff.

Comparison Among Different Approaches

Table: Recognition performance on the standard Nov'92 test set(330).

Training Set (#Utt.)	Method	Word (Utt.) Acc. (%)
test set (330)	grid search	93.16 (44.55)
dev subset (442)	grid search	92.92 (44.55)
dev subset (442)	ILP (M=0)	92.53 (42.42)
train subset (1175)	ILP (M=0)	91.72 (37.58)
dev subset (442)	LMILP ($M=\infty$)	92.86 (45.76)
train subset (1175)	LMILP (M= ∞)	93.03 (45.15)

Summary & Conclusions

- The result obtained by LMILP(93.03%), where no additional data were used, is close to the the upper bound(93.16%) which was achieved by a grid search on the test data (cheating experiment).
- The algorithm shows good convergence within 5-7 iterations.
- The results seem to be independent of the initial values of the parameters.
- Recommended strategy:
 - first run the LMILP algorithm to determine a good estimate of the decoding parameters.
 - fine-tune the estimates from LMILP with a grid search using a fine grid.