Panel data estimation

$$y_{it} = x_{it}\beta + z_{it}\gamma + \theta_i + \epsilon_{it}$$

Introduction

A general model based on panel data would look like

$$y_{it} = x_{it}\beta + \alpha y_{i,t-1} + u_{it} = x_{it}\beta + \alpha y_{i,t-1} + \theta_i + \epsilon_{it}$$

or can be written as

$$\Delta y_{it} = x_{it}\beta + (\alpha - 1)y_{i,t-1} + \theta_i + \epsilon_{it}$$

A common feature of the estimators of interests are the following:

- 1. A linear model
- 2. Small T and large N
- 3. (One left hand side variable y_{it} that is dynamic, depending on its own lagged value)
- 4. Regressors x_{it} that are not strictly exogenous, meaning that they are correlated with current and past errors.
- 5. Individual effects θ_i .
- 6. Heteroskedasticity ε_{it} and serial/auto-correlation within individuals but not across them.
- 7. The only instruments are internal.

Name	Paper	Moment Conditions
Difference/TransformAdellano and Bond (1991) GMM		$E[y_{i,t-2}(\Delta y_{it} - \alpha \Delta y_{i,t-1} - \beta \Delta x_{it})]$
System GMM	Arellano and Bover (1995) Blundell and Bond (1998)	$E[x_{i,t-2}(\Delta y_{it} - \alpha y_{i,t-1} - \beta \Delta x_{it})]$ $E[\Delta y_{i,t-1}(y_{it} - \alpha y_{i,t-1} - \beta x_{it})]$
	Dianaon and Dona (1000)	$E[\Delta x_{i,t-1}(y_{it} - \alpha y_{i,t-1} - \beta x_{it})]$

Example

Labor employment in firms: The hiring decision is costly. We expect firms to adjust their labor with delay to changes in other input (capital), input prices (wages), and demand for output. > The process of adjustment to changes in these factors may depend both on the > 1. passage of time, which indicates lagged versions of these factors as regressors, and on the > 2. difference between equilibrium employment level and the previous year's actual level, which argues for a dynamic model, in which lags of the dependent variable are also regressors.

Standard errors

Estimation

If we have homoskedastic error term ϵ_{it} , then the WG estimation is consistent and efficient. Otherwise, first difference and use GLS on the differenced data.

Inference

The view of WG as a dummy-variable least-squares regression may suggest using a traditional (cross-sectional) 'White'-type variance formula to deal with heteroskedasticity.