

### SSD versus HDD

# THE DIFFERENCE BETWEEN SOLID STATE DRIVES AND HARD DISK DRIVES







### Whats the difference?

A hard drive is a hard drive – yes/no?

HDDs (Hard Disk Drive) have been the main secondary storage in all computers for years.

But now we see the arrival of SSD's (Solid State Drive).

What are they?

# OLISCOIL TEICNEOLAÍOCHTA DUBLIN TECHNOLOGICAL INNUSSETTY DIBLIN

#### SSD

- USB stick's are also called a Flash drive
  - Because they made from Flash memory, not hard disks
  - No moving mechanical components like a HDD has. (thus not as fragile)
  - Hence the name Solid State type device
- An SSD is a bigger version of a Flash drive
  - SSD = Solid State Drive
  - Significantly faster access time than HDD or USB keys
  - Much more reliable than USB drive.
  - Has evolved to be supplied as standard 2.5 inch HDD footprint for easy replacement of HDD in a laptop or PC
- A HDD is technology that uses magnetism to store data as 1 or 0.
- An SSD uses flash memory chips to store the 1 and 0's

# OLISCOIL TEICNEOLAÍOCHTA DUBLIN TECHNOLOGICAL INNUSSETTY DIBLIN

#### SSD

#### Advantages

- Faster than HDD (to start up, shut down, and transfer data)
- No fragmentation issues.
- More durable, no moving parts
- No noise
- Can be made smaller than HDDs

#### Disadvantages

- More expensive
- HDD are higher capacity (No longer true!)
  - Nimbus SSD ExaDrive DC100 has 100 Terabytes capacity (April 2023)
  - Samsung SSD PM1643a has 30.82 Terabytes capacity (April 2023)
- Possibly shorter life time due to the flash write cycle limit.
  - In reality, a desktop user will replace the PC before this may happen.
  - However, in a write-intensive server environment, this may be an issue.



# **Data Volatility**

- Volatile memory
  - Loses data when powered off
- Non Volatile memory
  - Doesn't lose data when powered off
- Flash/SSD/HDD = Non Volatile

DRAM = Volatile



# Flash Memory Basics

- Flash cells start off at level 1 binary
- They are laid out in blocks, made up of pages
  - e.g: blocks of 128 kilo bytes would typically have page size of 2 kilo bytes
  - Subpages now also exist as memory sizes have increased significantly
- To change from 0 to 1 you have to erase the page where that bit is.
- To change from 1 to 0 doesn't require page erase
- The pages/blocks have maximum number of erase cycles (e.g. 100,000)
- So if we need to keep flicking a bit from 1 to 0 and back again then we have a problem? What's the problem?



# Flash Memory, Wear Leveling

- If we keep writing to same page, we will wear the device out
- So the memory devices have a controller that manages this by moving the page to a new page every time you go from 0 to 1
- Therefore they spread the wearing out of the device
- Hence the name: wear levelling
- Hence the device takes years to wear out.
- All modern smart phones, tablets, mac laptops use SSDs
- More and more windows desktop PCs come with the option to buy SSDs
- They ARE more expensive, but much faster and much more reliable.



### Flash File Systems

- SSDs have controllers built in to handle the flash memory chips and wear leveling.
- Therefore traditional file systems (e.g. NTFS, FAT32) can still be used as they are abstracted from the flash memory handling
- But... in a lot of cost sensitive embedded systems it doesn't make commercial sense to use expensive memory controllers and so the OS must handle the wear levelling.
- Fortunately there are specific file systems that do this
  - E.g. UBIFS for Linux (Unsorted Block Image File System)
  - But..... That's for another year.....