KONWERSJA WYRAŻEŃ ARYTMETYCZNYCH MIĘDZY POSTACIAMI: INFIKSOWĄ – PREFIKSOWĄ – POSTFIKSOWĄ

KONCEPCJE JĘZYKÓW PROGRAMOWANIA

IGOR JURASZEK

Agenda:

- Postać infiksowa
- Postać postfiksowa
- Postać prefiksowa
- Podsumowanie
- Pytania

Zapis infiksowy (zapis wrostkowy) – klasyczny sposób zapisywania wyrażeń z binarnymi (dwuargumentowymi) operacjami arytmetycznymi (dodawanie, mnożenie, potęgowanie, itd.).

```
<arg_A> <operator> <arg_B> 
1 + 2
3 * sin(x)
```

Oprócz symboli i argumentów operacji stosuje się nawiasy, aby ustalić inną niż domyślna kolejność wykonywania operacji.

$$2 + 3 * 4 / 3 + 1 = 7$$

 $2 + 3 * 4 / (3 + 1) = 5$
 $(2 + 3) * 4 / 3 + 1 = 7 + 2/3$

Odwrotna notacja polska (ONP, ang. reverse Polish notation, RPN) – sposób zapisu wyrażeń arytmetycznych, w którym znak wykonywanej operacji umieszczony jest po operandach (zapis postfiksowy), a nie pomiędzy nimi jak w konwencjonalnym zapisie algebraicznym (zapis infiksowy) lub przed operandami jak w zwykłej notacji polskiej (zapis prefiksowy). Zapis ten pozwala na całkowitą rezygnację z użycia nawiasów w wyrażeniach, jako że jednoznacznie określa kolejność wykonywanych działań.

Wagi

Wagi dla poszczególnych operatorów:

OGRANICZNIK	PRIORYTET
(0
+ -)	1
· / ÷	2
^	3
sin cos tg ctg NEG	4

	Sr. no.	Expression Stack		Postfix	
	0	Expression	(roomx	
	1	(((
	2	1	((1	
	3	+	((+	1	
	4	2	((+	12	
	5)	(12+	
(1+2)*3/(2+1)	6	*	(*	12+	
(1+2)*3/(2+1)	7	3	(*	12+3	
	8	1	(/	12+3*	
	9	((/(12+3*	
	10	2	(/(12+3*2	
	11	+	(/(+	12+3*2	
	12	1	(/(+	12+3*21	
	13)	(/	12+3*21+	
	14)		12+3*21+/	

Tłumaczenie wyrażeń na **ONP** jest do dzisiaj jednym z elementów działania kompilatorów, choć – ze względu na efektywność – po późniejszej optymalizacji częściowe wyniki obliczeń są w miarę możliwości przechowywane w rejestrach procesora, a nie na stosie w pamięci (w praktyce dość rzadko spotyka się wyrażenia, przy których wyliczaniu jest potrzebny bardzo wysoki stos). Stos jest także częścią maszyny wirtualnej wykonującej programy zapisane w Javie, a kompilator Javy tłumaczy wyrażenia matematyczne na ONP.

Notacja polska, zapis przedrostkowy, notacja Łukasiewicza, notacja prefiksowa, symbolika beznawiasowa – sposób zapisu wyrażeń logicznych (a później arytmetycznych), podający najpierw operator, a potem operandy (argumenty), który został wynaleziony w 1924, a pierwszy raz użyty w druku w 1929, przez polskiego (stąd nazwa) filozofa i logika Jana Łukasiewicza.

Notacja polska różni się od notacji infiksowej (w których operatory znajdują się pomiędzy argumentami i wymaga stosowania nawiasów), a także od odwrotnej notacji polskiej, gdzie operatory znajdują za argumentami. Według Jana Woleńskiego, notacja ta pozwala na łatwiejsze przeprowadzanie operacji na formułach o znacznej długości, formuły krótsze wydają się tu jednak mniej intuicyjne niż w notacji nawiasowej, stąd notacja Łukasiewicza jest rzadko spotykana w dydaktyce.

Wyrażenie w notacji polskiej nie wymaga nawiasów, ponieważ przypisanie argumentów do operatorów wynika wprost z ich kolejności w zapisie, o ile z góry znana jest liczba argumentów poszczególnych operatorów.

Na przykład zakładając, że operatory / i + są binarne, zapis w notacji polskiej:

$$/7 + 23$$

interpretuje się jednoznacznie jako równoważny notacji tradycyjnej (zapisowi wrostkowemu):

$$7/(2+3)$$

(1+2)*3/(2+1)

Sr. no.	Expression	Stack	Prefix (Reversed)
0		(
1	(((
2	1	((1
3	+	((+	1
4	2	((+	12
5)	(12+
6	1	(/	12+
7	3	(/	12+3
8	*	(/*	12+3
9	((/*(12+3
10	2	(/*(12+32
11	+	(/*(+	12+32
12	1	(/*(+	12+321
13)	(/*	12+321+
14)		12+321+*/

Poniższe równanie w każdym z trzech zapisów

- Postać infiksowa: (1+2)*3/(2+1)
- Postać prefiksowa: /*+123+21
- Postać postfiksowa: 12+3*21+/

RPN to nazwa sposoby zapisu wyrażeń arytmetycznych dla:

- a) postaci infiksowej
- b) postaci prefiksowej
- c) notacji polskiej
- d) postaci postfiksowej

RPN to nazwa sposoby zapisu wyrażeń arytmetycznych dla:

- a) postaci infiksowej X
- b) postaci prefiksowej X
- c) notacji polskiej 🗙
- d) postaci postfiksowej 🔽

Postać infiksowa dla równania (1+7)/(2+6-4)*2 to:

- a) 17+26+4-/2*
- b) */+17-+2642
- c) (1+7)/(2+6-4)*2
- d) 17 */+ -+2642

Postać infiksowa dla równania (1+7)/(2+6-4)*2 to:

- a) 17+26+4-/2* X
- b) */+17-+2642 X
- c) (1+7)/(2+6-4)*2 🔽
- d) 17 */+ -+2642 X

Wymień zalety zapisu wyrażeń w ONP:

- a) W ONP nie trzeba używać nawiasów do określenia kolejności wykonywania operacji, co upraszcza składnię wyrażeń. Kolejność operacji jest jednoznacznie określona przez pozycję operatorów i operandów.
- b) ONP jest bardziej intuicyjna dla ludzi niż notacja infiksowa
- c) ONP automatycznie poprawia błędy w wyrażeniach matematycznych
- d) ONP jest używana we wszystkich językach programowania

Wymień zalety zapisu wyrażeń w ONP:

- a) W ONP nie trzeba używać nawiasów do określenia kolejności wykonywania operacji, co upraszcza składnię wyrażeń. Kolejność operacji jest jednoznacznie określona przez pozycję operatorów i operandów.
- b) ONP jest bardziej intuicyjna dla ludzi niż notacja infiksowa 🔀
- c) ONP automatycznie poprawia błędy w wyrażeniach matematycznych
- d) ONP jest używana we wszystkich językach programowania 🗙

Który z wymienionych operatorów ma najwyższy priorytet:

```
a) ^
b) (
c) +
d) -
```

Który z wymienionych operatorów ma najwyższy priorytet:

```
a) ^ 🗸
```

b) (X

d) - X

Jaki będzie wynik dla działania zapisanego w ONP:

- a) 54
- b) 1
- c) 5
- d) Żadna z powyższych

Jaki będzie wynik dla działania zapisanego w

- a) 54 b) 1 c) 5

- d) Żadna z powyższych 🗙

Źródła

- https://raj457036.github.io/Simple-Tools/prefixAndPostfixConvertor.html
- https://pl.wikipedia.org/wiki/Notacja infiksowa
- https://pl.wikipedia.org/wiki/Notacja polska
- https://pl.wikipedia.org/wiki/Odwrotna notacja polska
- Skrypt WDI prof. Urszuli Boryczki
- https://portal.pti.org.pl/wp-content/uploads/2022/07/15.-O-nawiasach-i-ich-braku-Domena-2-2022.pdf