KOY is not UC-Secure

Naman Kumar

March 12, 2024

This document contains a proof that the PAKE protocol of Katz, Ostrovsky and Yung (2001) is not UC-secure.

1 Overview

At a high level, our attack relies on an adversary \mathcal{A} that completely disregards the presence of Server and instead interacts with User while executing Server's algorithm on its own. In particular, once the protocol is initiated by User, \mathcal{A} assumes the role of the server (discarding the actual server in the process, which plays no part in the protocol henceforth) and receives $\mathsf{msg}_1 = \mathsf{VK}|A|B|C|D$. After this, \mathcal{A} runs the server's algorithm on the correct password pw and computes $\mathsf{msg}_2 = E|F|G|I|J$. User then runs its session-key generating algorithm and outputs its session key $\mathsf{sk} = E^{r_1}F^{x_1}G^{y_1}(I')^{z_1}J^{w_1}$. We note that at this point, \mathcal{A} (and \mathcal{Z}) have all the information they need to run the server's session-key generating algorithm and ensure that their generated session key is equal to the sk generated by User.

To see why a simulator \mathcal{S} cannot simulate this adversary, we attempt an ideal-world execution and pinpoint where our simulation fails. Since \mathcal{S} is allowed to choose $\operatorname{crs} = (\mathbb{G}; g_1, g_2, h, c, d \in \mathbb{G}; H : \{0,1\}^* \to \mathbb{Z}_q)$, it can sample g_1 at random and set h such that $h = g_1^\ell$. After receiving the NewSession command from $\mathcal{F}_{\mathsf{PAKE}}$, \mathcal{S} must simulate User's first message msg_1 . Since \mathcal{S} does not know the password at this point it must (effectively) guess some pw^* at random; that is, in msg_1 , $C = h^{r_1} \cdot \mathsf{pw}^*$ where pw^* can be no better than a random password sampled from the dictionary. After \mathcal{Z} responds with $\mathsf{msg}_2 = E|F|G|I|J$, \mathcal{S} can extract pw as I/F^ℓ . Once this has been done, \mathcal{S} can send a TestPwd command to $\mathcal{F}_{\mathsf{PAKE}}$ which would mark the User session compromised and thus allow \mathcal{S} to successfully choose the sk output by User.\(^1 The problem is that even with this information, \mathcal{S} still cannot determine what sk is.

¹Recall that a TestPwd must be run, since we require that msg_1 and msg_2 together with the randomness of the User and \mathcal{A} together determine sk; allowing the simulation to proceed without a TestPwd would result in \mathcal{F}_{PAKE} outputting a uniformly random key.

To determine sk , \mathcal{S} can either run Server's algorithm or User's algorithm to generate session keys. Recalling that $\operatorname{msg}_2 = E|F|G|I|J$ is provided to \mathcal{S} directly from the environment, \mathcal{S} cannot use Server's algorithm since it would require the determination of all of x_2, y_2, z_2, r_2, w_2 , which is computationally infeasible under the hardness of CDH. Alternately, \mathcal{S} can run User's algorithm to determine sk , for which it already has access to x_1, y_1, z_1, r_1, w_1 and E, F, G, I, J. However, we recall that this sk output by \mathcal{S} must be equal to that which \mathcal{Z} determines using its own execution of Server's algorithm (this is what happens in the real world). The problem here is that the password guess pw^* that \mathcal{S} uses while generating msg_1 is likely incorrect; in fact, we can show that the output of Server's algorithm on msg_1 , msg_2 and msg_3 by \mathcal{Z} will have $(\operatorname{pw}^*/\operatorname{pw})^{z_2}$ as a factor, and except in the $1/|\mathcal{D}|$ probability case that $\operatorname{pw}^* = \operatorname{pw}$, \mathcal{S} cannot determine z_2 assuming the hardness of CDH and thus will be unable to determine sk .

2 Proof

Theorem 2.1. Assuming the hardness of fixed-CDH, the protocol of [KOY] does not UC-realize \mathcal{F}_{pake} in the \mathcal{F}_{crs} -hybrid model.

Proof. Consider the environment \mathcal{Z} in Figure 1 and the dummy adversary. It follows from the correctness of the protocol that in the real-world protocol execution \mathcal{Z} always outputs 1, since the algorithm of \mathcal{Z} and \mathcal{A} is the same as that of an honest server. At a high level, we will show that any simulator that successfully simulates the protocol against \mathcal{Z} in the ideal world can be used to solve arbitrary instances of fixed-CDH.

Assume that there exists a negligible function $\varepsilon := \varepsilon(\lambda)$ such that there exists a simulator \mathcal{S} for which \mathcal{Z} outputs 1 with probability $1 - \varepsilon$ in the ideal world. Before the formal execution of the protocol begins, \mathcal{S} samples $\operatorname{crs} = (\mathbb{G}; g_1, g_2, h, c, d \in \mathbb{G}; H : \{0, 1\}^* \to \mathbb{Z}_q)$. First, assume that CDH is hard over (\mathbb{G}, p, h) . Given any two elements (h^a, h^b) where $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_p$, consider any reduction \mathcal{R} which does the following.

Naman: I'm not completely convinced if this is the best way to write this; the proof is correct in the essentials, but I think this needs to be rewritten since I'm not sure what formal part \mathcal{R} is playing here...

- 1. \mathcal{R} sends (NewSession, sid, User, Server) to \mathcal{S} .
- 2. \mathcal{R} waits to receive $\mathsf{msg}_1 = \mathsf{sid}|\mathsf{VK}|A|B|C|D$ in response. It sets $\mathsf{pw} = C/h^b$ and

Environment \mathcal{Z} :

- 1. \mathcal{Z} selects $pw \stackrel{\$}{\leftarrow} \mathcal{PW}$, where $\mathcal{PW} \subseteq \mathbb{G}$ is the password dictionary. It then sends (NewSession, sid, User, Server, pw) to User.
- 2. \mathcal{Z} receives $\mathsf{msg}_1 = \mathsf{sid}|\mathsf{VK}|A|B|C|D$ from \mathcal{A} and samples $x_2, y_2, z_2, w_2, r_2 \xleftarrow{\$} \mathbb{Z}_q$. It then sets

$$\begin{split} &\alpha' := H(A|B|C|D) \\ &E := g_1^{x_2} g_2^{y_2} h^{z_2} (cd^{\alpha'})^{w_2} \\ &F := g_1^{r_2} \\ &G := g_2^{r_2} \\ &I := h^{r_2} \cdot \mathrm{pw} \\ &\beta := H(\mathrm{msg}_1 |E|F|G|I) \\ &J := (cd^{\beta})^{w_2} \end{split}$$

and instructs A to send $msg_2 = sid|E|F|G|I|J$ to User.

- 3. \mathcal{Z} receives $\mathsf{msg}_3 = \mathsf{sid}|K|\mathsf{Sig} \ \mathrm{from} \ \mathcal{A} \ \mathrm{and} \ (\mathsf{sid},\mathsf{sk}) \ \mathrm{from} \ \mathsf{User}$.
- 4. \mathcal{Z} sets $C' = C/\mathsf{pw}$ and then checks if $\mathsf{Vrfy}_{\mathsf{VK}}(\mathsf{msg}_1|\mathsf{msg}_2|K,\mathsf{Sig}) = 1$. If yes, it computes $\mathsf{sk}_S = A^{x_2}B^{y_2}(C')^{z_2}D^{w_2}K^{r_2}$ and outputs 1 if $\mathsf{sk}_S = \mathsf{sk}$. If either of the two checks fails, it outputs 0.

Figure 1: Our Setup.

samples
$$x_2, y_2, w_2, r_2 \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$
, setting
$$\alpha' := H(PIDs|A|B|C|D)$$

$$E := g_1^{x_2} g_2^{y_2} h^a (cd^{\alpha'})^{w_2}$$

$$F := g_1^{r_2}$$

$$G := g_2^{r_2}$$

$$I := h^{r_2} \cdot \mathsf{pw}$$

$$\beta := H(\mathsf{msg}_1|Server|E|F|G|I)$$

$$J := (cd^{\beta})^{w_2}$$

i.e., the same computation as that of the honest server with a special choice of pw and z_2 and sends $\mathsf{msg}_2 = \mathsf{sid}|E|F|G|I|J$ to \mathcal{S} .

3. \mathcal{R} receives K|Sig and checks if $\text{Vrfy}_{VK}(\text{msg}_1|\text{msg}_2|K,\text{Sig}) = 1$. If yes, it receives sk_C

from S, and calculates

$$h' = \frac{\mathsf{sk}_C}{A^{x_2}B^{y_2}D^{w_2}K^{r_2}}.$$

4. \mathcal{R} outputs h'.

We recall that $\mathsf{sk}_C = \mathsf{sk}_S$ with probability $1 - \varepsilon$ by the assumption. Clearly in the protocol execution, we have, setting $C' = C/\mathsf{pw} = h^b$,

$$\mathsf{sk}_S = A^{x_2} B^{y_2} (C')^{z_2} D^{w_2} K^{r_2} = A^{x_2} B^{y_2} (h^b)^a D^{w_2} K^{r_2}$$

which clearly gives $h' = h^{ab}$ with probability $1 - \varepsilon$, as claimed, contradicting the hardness of fixed-CDH.

//everything below is deprecated comments.

First, we will assume the hardness of CDH over the group (\mathbb{G}, g, p) . Let Let g^a, g^b be two elements where $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_p$.

Formally, assume that there exists a simulator \mathcal{S} such that \mathcal{Z} always outputs 1 in the ideal world. Jiayu: Formally we cannot really assume this; need to say "such that \mathcal{Z} outputs 1 with all but negligible probability in the ideal world". I am not entirely sure for now, but we probably need to be more specific and say "there is a negligible function ϵ such that \mathcal{Z} outputs 1 with probability $1-\epsilon$ in the ideal world." We will use this simulator to compute g^{ab} . Jiayu: We will construct a reduction \mathcal{R} that uses \mathcal{S} to solve the CDH problem in (\mathbb{G}, g, p) . (I think it's better to explicitly mention a reduction.) Our technique works as follows: first, we send Jiayu: everywhere you say "we do something", change it to " \mathcal{R} does something" (NewSession, sid, User, Server, pw) to $\mathcal{F}_{\mathsf{PAKE}}$ Jiayu: conceptually I think \mathcal{R} should play the role of $\mathcal{F}_{\mathsf{PAKE}}$ (if you are not sure what I am talking about, chat with me in our meeting or on Slack) and receive $\mathsf{msg}_1 = \mathsf{sid}|\mathsf{VK}|A|B|C|D$ in response from \mathcal{S} . We set $\mathsf{pw} = C/g^b$ and sample $x_2, y_2, z_2, w_2, r_2 \overset{\$}{\leftarrow} \mathbb{Z}_q$.

$$\begin{split} &\alpha' := H(PIDs|A|B|C|D) \\ &E := g_1^{x_2} g_2^{y_2} h^{z_2} (cd^{\alpha'})^{w_2} \\ &F := g_1^{r_2} \\ &G := g_2^{r_2} \\ &I := h^{r_2} \cdot \text{pw} \\ &\beta := H(\text{msg}_1|Server|E|F|G|I) \\ &J := (cd^{\beta})^{w_2} \end{split}$$

i.e., the same computation as that of the honest server with a special choice of pw. Forwarding this to \mathcal{F}_{PAKE} , we receive $msg_3 = K|Sig$ and (sid, sk) in return.