Theoretical Computer Science – Exercise 4

SS 2022 Jochen Schmidt

Please prepare the following exercises at home prior to the tutorial:

Exercise 1

Draw the transition diagram of a deterministic PDA with $\Sigma = \{a, b, c\}$, $\Gamma = \{\#, A\}$ that recognizes the language $L = \{a^nb^{2n}c^m \mid n,m \in \mathbb{N} \}$ and accepts using end states (as opposed to acceptance by empty stack).

Exercise 2

Draw the transition diagram of a nondeterministic PDA with $\Sigma = \{a, b, c\}$, $\Gamma = \{\#, X\}$ that recognizes the language $L = \{ a^i b^j c^k \mid i = j \text{ or } j = k; i, j, k \in \mathbb{N}_0 \}$ and accepts using end states. Hints:

- 1. Distinguish between the three cases i = j = 0, i = j > 0, and j = k
- 2. and connect these parts with an initial state using ϵ -moves

Exercise 3

Consider the following Turing Machine with input Alphabet $\Sigma = \{1\}$, and tape alphabet $\Gamma = \{\sqcup, 1\}$:

- a) Write down the instruction tables of this TM.
- b) Let the read/write head be initially positioned anywhere on a tape filled with blank (□). What does this TM do?

We will do the following exercises together during the tutorial:

Exercise 4

Draw the transition diagram of a PDA with $\Sigma = \{[,], x\}, \Gamma = \Sigma \cup \{\#\}$ that recognizes strings built of brackets as follows:

- 1. The total number of opening and closing brackets must be the same, for each closing bracket there must be an opening one beforehand.
- 2. An accepted word may begin and end with any number of x (even zero), but it must contain at least one x.
- 3. A closing bracket must never immediately follow an opening bracket (i.e., not []).
- 4. An opening bracket may be followed by any number of x (even zero), but rule 3 must be observed.

Start by writing down some examples for valid words.

Exercise 5

Draw the transition diagram of a Turing Machine with input Alphabet $\Sigma = \{0, 1\}$, and tape alphabet $\Gamma = \{\sqcup, 0, 1\}$ that extends a contiguous bit sequence on an otherwise empty tape (= filled with blanks) with a parity bit to even parity:

- Initially, the read/write head is positioned anywhere to the right of the bit sequence.
- The parity bit is attached on the left of the sequence: A zero, if the total number of ones in the original sequence is even; a one if the total number of ones in the sequence is odd.