Sta	Statistic		Linear Model																												
井	<u>₹</u> .₹	>	116	1104	90																										
Assigment 3																															
1					Δ	ic	NoNe	c:n		v	-L	210	1	h	las	i+h	٩٥	-'	tive	2	آ ل،										
1.	N														W	1171	ge	riya	TIVE		10	٨٠									
							<u> </u>	٠.,			_																				
	ي	>	<u>16</u>)	=	8	[¤'	(B V	Ą₿́	ָלי־ע	}]	= :	ة ع	<u>₹</u>)¢	AB'	- B	٠.	. <i>U</i> *	.)												
		_					no					-	-																		
	:	∍	<u>ي</u> و	BAE a X	/ 2/5	=	-(<u>₿</u>	ΑŘ	ج ا ح	∋ (<u>₹</u>	ξĄ! ¥	<u>ž)</u>	ЬA	, B ′)⁻¹	=	– ι	BA₽	() -1	₽∂	(A	.) B	ĮιŖ	<u>4</u> ይ′)	-1							
							β ⊒				ľ									01											
											~>	() <u>k</u>																			
							<u> </u>																								
2.	(4)	•	Cov	()	(2,	2X ₁ .	- X3)) =	20	ov C	۲. د	(ı)-	- C	ov C	χ2, χ	3)															
								=	2	∑્ર	- :	Σ ₂₃																			
								=	0 -	- 0 =	- 0																				
	Not	e 1	hat	bo	th	χ,	and	2 Yı	_Y,	Ola Ola	n	OVM	۸l	dis	trib	utio	n														
							_s)=c						- X ₃	, a'	Ye	inde	Pen	den	t.												
	Zbo.																														
		2	, -	(₂	ا (د	=	2 ا	1	-5)(X3 X2 VI)																			
							I					, .																			
		⇒	Ąμ	√ =	(2 () -5 0)(3 \ -2) =	((ا	브	γ*																	
						2	0 -9	٤١	/ 5		9 -	3 \	/ 2				ישר	0	-1b '	,		-11						*			
			Д≥	.A.:	- (i	Ιo	,)	(-) 4 3 C	1	0 2)	(c	, ; 5 0) =	(5	9	-3,) (0 -5	i O)	=	(13	0 1 5 1	4)	요 :	Σ*			
			1	2Xı	-57	l٤١		. /	*	*	£\		h az		.¥	-	6 \	5	·* _	- /	130	25	\								
		~	(Xı+	- χ Σ)	^	1	K'.	≅")	,	MIE	(۲	//\ =	ĺ	1)		* =	-(25	14)								
	(c) 5	NDD:	se.	Ti	= `	(₃ .	<u>-</u>]	: (X	, X5)	, ,																				
							Nί					. — M2) 2		2 <u>م</u> 2	22 2	21)														
			• • •	ئدا		٠ - س		1" 1	~ ¹²	~~	ت پر	n	1, -		~ ~	~ -	ر · ر														

```
Since X \sim N_3(X, \Xi). Y' = (3, -2, 0). \Xi = \begin{pmatrix} 5 & 0 & -3 \\ 0 & q & 0 \\ -3 & 0 & 2 \end{pmatrix}

\Rightarrow By Suppose, \Rightarrow \Xi_{11} = 2, \Sigma_{22} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & q & 0 \end{pmatrix}. \Xi_{12} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Xi_{12} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{12} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{12} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{13} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{14} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q \end{pmatrix}. \Sigma_{15} = \begin{pmatrix} -3 & 0 \\ 0 & q
                                                                                                                                                                                                   =\left(-\frac{3}{5},0\right)\left(\begin{array}{c}-2\\0\end{array}\right)=\frac{6}{5}
                                                        \sum_{1} - \sum_{1} \sum_{2} \sum_{3} = 2 - (-3.0) \begin{pmatrix} \frac{1}{5} & 0 \\ \frac{1}{5} & \frac{1}{9} \end{pmatrix} \begin{pmatrix} -\frac{3}{5} & 0 \\ \frac{1}{5} & 0 \end{pmatrix} = 2 - \begin{pmatrix} -\frac{3}{5} & 0 \end{pmatrix} \begin{pmatrix} -\frac{3}{5} & 0 \\ 0 & 0 \end{pmatrix} = 2 - \frac{9}{5} = \frac{1}{5}
                                 ⇒ X3 | X1=1, X2=-2 ~ N($, $)
            \Rightarrow then \stackrel{P}{\rightleftharpoons} (y_i - \hat{y}) = \begin{pmatrix} y_i - \hat{y} \\ y_{ir} - \hat{y} \end{pmatrix} \begin{pmatrix} y_i - \hat{y} \\ y_{ir} - \hat{y} \end{pmatrix} = \chi' \not \in \mathcal{B} \chi \cdots (*)
                                Note that B'B= (パーガルバ)(パーガルバ)= I-デルパナートカルバー I- オルバーB
                         → (*) = XBI
                        ⇒ For Q3. We have n=3. ⇒ B=I-\frac{1}{3}(11')=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} -\frac{1}{3}\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} =\begin{pmatrix} \frac{3}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{3}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}
                           and U = IBI , note that B is symmetric
                           \rightarrow E(X) = E(XBX) = tr(BZ) + KBA
                          tr(B = tr(\frac{3}{3}, \frac{1}{3}, \frac{1}{3}) \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} = \frac{5}{3} + \frac{1}{3} + \frac{1}{3} = 4
                               \mu' \beta \mu = (2, 3, 4) \begin{pmatrix} \frac{3}{3} - \frac{1}{3} - \frac{1}{3} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \\ -\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = (-1, 0, 1) \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = 2
                              Thus, ECV) = tr (BE) + KBK
                                                                                               = 4+2
                                                                                              = 6
4. Note that U = \sum_{i \neq j} (Y_i - Y_j)^2 = \frac{1}{2} \sum_{i \neq j} (Y_i - Y_j)^2
                                 > E(U)=E(±=(Yi-Yi))
                                                                              = = = E(Yi2-2Yi7j+Yj2)
                                                                                = = = ( E(Yi2) + E(Yj2) - 2E(Yi,Yj))
                                   Note that Cov(Yi, Yj) = E(Yi-h)(Yj-h) = E(YiYj-hY; -hYj + h2) = E(YiYj)-h2
```

```
when i = j. by covariance marrix of X is & I => Cov (Xi, Xj) = E(Yi Yj) - M'= 0
    \Rightarrow E(Yi, Yi) = \mu^2 and E(Yi) = Var(Yi) + E(Ti) = b^2 + \mu^2
  ⇒ E(U)= 子景(E(M)+E(パ)-2/プ)
                     = \frac{1}{2} \cdot (n^2 - n) (b^2 + \mu^2 + b^2 + \mu^2 - 2\mu^2)
                      = (n^2 - n)b^2.
We want to find k s.t. ku is an unbiased estimator of b.
      i.e. E(kv) = 6^2 = k(n^2 - n)6^2
          ⇒ k= n²-n
Since \{ \land N(0,\theta') \text{ for all errors, } \Rightarrow \{ \Upsilon_{ij} \stackrel{\text{id}}{\sim} N(\theta,\delta') \Rightarrow \frac{m}{i=1} \Upsilon_{ij} \land N(m\theta,m\delta') \}
\{ \Upsilon_{ij} \stackrel{\text{id}}{\sim} N(\theta+\psi,\delta') \Rightarrow \frac{m}{i=1} \Upsilon_{2i} \land N(m(\theta+\psi),m\delta') \}
\{ \Upsilon_{3i} \stackrel{\text{id}}{\sim} N(\theta+\psi,\delta') \Rightarrow \frac{m}{i=1} \Upsilon_{2i} \land N(m(\theta+\psi),m\delta') \}
 \Rightarrow \left\{ \hat{\theta} \wedge N \left[ \frac{m(2\theta+\phi) + n(\theta-2\phi)}{5\pi}, \frac{(2m+n)b^2}{25\pi^2} \right] = N(\theta, \frac{b^2}{5\pi}) \right\}
     \left[ \hat{\phi} \sim N \left[ \frac{m(\theta + \phi) - 2n(\theta - 2\phi)}{6n}, \frac{m\theta + 4n\theta}{36n^2} \right] = N(\phi, \frac{\theta}{6n})
 Consider the Cov(\hat{\theta}, \hat{\phi}) = E(\hat{\theta} - E(\hat{\theta}))(\hat{\phi} - E(\hat{\phi})) = E(\hat{\theta}\hat{\phi}) - E(\hat{\phi})E(\hat{\theta})
  By the property of independence.
          E(BB)= 30m E(富加+富加+富加)(富加-2富加)
                         =\frac{1}{300^{2}}\left[\left(\left(\frac{m}{E_{1}}\right)\sum_{i}\right)\left(\left(\frac{m}{E_{1}}\right)\sum_{i}\right)-2\left(\left(\frac{n}{E_{1}}\right)\sum_{i}\right)\left(\left(\frac{m}{E_{1}}\right)\sum_{i}\right)\right]
                         = \frac{1}{300^2} [ [m^2(\theta+\phi)^2+mb^2-2(n^2(\theta-2\phi)^2+nb^2)]
                         = \frac{1}{300^{2}} \left[ \left[ 4n^{2} (\theta + \phi)^{2} + 2nb^{2} - 2(n^{2}(\theta^{2} - 4\theta\phi + 4\phi^{2}) + nb^{2}) \right]
                         = \frac{1}{300^2} E 40^{\frac{1}{2}} ( 9+29\phi+\phi^2) - 20^{\frac{1}{2}} (\theta^2-48\phi+4\phi^2)
```