OBJECTIUS

L'objectiu principal d'aquesta segona pràctica és familiaritzar-nos amb l'entorn Arduino per tal de poder programar els dispositius Mota. Un cop ens hàgim familiaritzat haurem de fer un programa que transmeti una sèrie de dades i camps de control al PC o a d'altres equips i avaluar d'aquesta forma les característiques de la capa física.

PREGUNTES I RESPOSTES

```
#include "ESP8266WiFi.h"
void setup() {
 Serial.begin(9600);
 WiFi.mode (WIFI STA);
 WiFi.disconnect();
 delay (2000);
 Serial.println("Setup done");
void loop() {
 Serial.println("Scan start");
 int n = WiFi.scanNetworks();
 Serial.println("Scan done");
 if (n==0)
   Serial.println("No networks found!");
   for (int i=0; i<n; i++) {
     Serial.print(i+1);
     Serial.print(WiFi.SSID(i));
     Serial.print("(");
     Serial.print(WiFi.RSSI(i));
     Serial.print(")");
     Serial.println((WiFi.encryptionType(i) == ENC_TYPE_NONE)?" ":"*");
     delay(10);
   }
 delay (5000);
1
```

Imatge 1. Codi que se'ns proporciona a la pràctica per a facilitar-nos el treball.

Què fa aquest codi? Expliqueu detalladament el que veieu.

Primerament incloem la llibreria "ESP8266WiFi.h" la qual ens proporciona les funcions necessàries per tal de connectar el nostre mòdul a una xarxa WiFi per començar a enviar i rebre dades.

Seguidament, entrem en setup() les instruccions de la qual s'executa una sola vegada. El Serial.begin() estableix la velocitat de dades en bits per segons (bauds), per a la transmissió de dades en sèrie. En aquest cas es comunica amb l'equip encara que pot especificar altres tasses. Mitjançant WiFi.mode(WIFI_STA) estem dient que el mòdul treballarà en mode estació, és a dir, com un dispositiu que es connecta a un punt d'accés. Posteriorment, ens desconnectem de la xarxa si es que estem connectats a alguna i li donem un temps d'espera de 2 segons. Aquesta seria la nostra configuració abans d'entrar en el loop.

Dins del loop busquem les xarxes WiFi disponibles i retornem el número descobert. En cas de que la n sigui igual a 0 significaria que no hem trobat cap xarxa a la qual ens puguem connectar. En cas contrari, ensenyem cadascuna de les xarxes que hem trobat donant el nom de la xarxa i el RSSI d'aquesta. A més, li afegim un "*" al final a aquelles xarxes que siguen obertes. Un cop hàgim finalitzat ens esperem durant 5 segons i es tornarà a repetir el bucle descrit en aquest paràgraf indefinidament.

```
Setup done
Scan start
Scan done
1MiFibra-5CD4(-81)*
2WLAN_30B0(-84)*
3MOVISTAR_1A50(-78)*
4JLan(-89)*
5MiFibra-4DAC(-84)*
6MiFibra-FEDB(-81)*
7MiFibra-FB01-24G(-82)*
8MOVISTAR_4CE0(-79)*
9vodafoneB52A(-83)*
10ME-A190025297(-79)*
```

Imatge 2. Exemple de xarxes WiFi que se'ns mostra a l'executar el programa.

Què és la RSSI? Expliqueu detalladament perquè podeu fer servir la RSSI i com es relaciona amb la qualitat del senyal.

Feu una taula amb tres columnes: Distància, RSSI obtinguda i la potència de recepció calculada a partir de l'equació anterior. Feu la representació de la potència teòrica obtinguda en funció de la distància mesurada i poseu els punts del RSSI. A partir de l'expressió teòrica i les dades experimentals, feu també la regressió per tal d'obtenir el millor valor possible de η . Recordeu que η varia entre 0 i 1. Tenint en compte tot això, expliqueu el que surt. Representeu l'atenuació del senyal en funció de la distància a partir dels valors mesurats.

Per tal de fer aquesta part hem fet una mitja de totes les RSSI obtingudes (10 mesures) per a cada distància ja que d'aquesta manera obtendriem un resultat més precís. Per tant, per tal de fer la taula hem pres aquesta mitja per a la RSSI. A continuació, podrem observar les mesures preses per a cada distància i la mitja de cadascuna.

```
30 cm \rightarrow -42 -43 -42 -44 -44 -43 -41 -44 -46 -45 = -43.4 dBm
60 \text{ cm} \rightarrow -51 -51 -48 -48 -51 -51 -51 -49 -51 -51 = -50.2 \text{ dBm}
 90 cm \rightarrow -57 -59 -58 -57 -57 -59 -60 -60 -63 = -58.9 dBm
120 cm -> -55 -53 -55 -55 -53 -55 -51 -52 -52 -54 = -53.5 dBm
150 cm -> -67 -67 -67 -65 -65 -65 -68 -68 -64 = -66.3 dBm
180 cm -> -57 -58 -57 -57 -57 -57 -57 -56 -57 = -57.0 dBm
210 cm -> -73 -73 -76 -77 -77 -77 -73 -74 -74 = -75.1 dBm
240 cm -> -77 -75 -78 -80 -78 -80 -76 -76 -75 -76 = -77.1 dBm
270 cm -> -69 -69 -69 -69 -71 -70 -70 -69 -69 -70 = -69.5 dBm
300 \text{ cm} \rightarrow -73 -73 -73 -73 -75 -73 -74 -69 -71 -70 = -72.4 dBm
330 cm -> -75 -75 -75 -75 -75 -70 -73 -74 -75 -74 = -74.1 dBm
360 cm -> -73 -74 -74 -69 -71 -75 -75 -74 -70 -73 = -72.8 dBm
390 cm -> -74 -73 -76 -76 -76 -73 -74 -73 -73 -73 = -74.1 dBm
420 \text{ cm} \rightarrow -72 -72 -70 -69 -69 -69 -71 -71 -71 -71 = -70.5 dBm
450 cm -> -74 -75 -72 -71 -74 -72 -72 -73 -72 -73 = -72.8 dBm
480 cm -> -85 -85 -84 -84 -85 -83 -84 -82 -84 -86 = -84.2 dBm
510 cm -> -89 -88 -87 -87 -86 -90 -88 -89 -86 -85 = -87.5 dBm
540 cm -> -86 -86 -86 -85 -85 -85 -85 -85 -85 -83 = -85.1 dBm
570 cm -> -83 -83 -81 -81 -81 -82 -82 -82 -81 -81 = -81.7 dBm
600 cm -> -80 -77 -78 -78 -78 -81 -81 -79 -79 -78 = -78.9 dBm
```

Imatge 3. Les mesures preses per a calcular la mitja de les RSSI per a cadascuna de les distàncies. A l'esquerra de la imatge veiem les distàncies, al centre les 10 mesures en dBm i a la dreta la mitja de les 10 mesures.

Distància (m)	RSSI (dbm)	Prx (mW) (exp)	Prx (mW) (ideal)
0.3	-43.4	4.57e-5	1.11e-3
0.6	-50.2	9.55e-6	2.77e-4
0.9	-58.9	1.29e-6	1.23e-4
1.2	-53.5	4.47e-6	6.94e-5
1.5	-66.3	2.34e-7	4.44e-5
1.8	-57.0	1.99e-6	3.08e-5
2.1	-75.1	3.09e-8	2.27e-5
2.4	-77.1	1.95e-8	1.74e-5
2.7	-69.5	1.12e-7	1.37e-5
3.0	-72.4	5.75e-8	1.11e-5
3.3	-74.1	3.89e-8	9.18e-6
3.6	-72.8	5.25e-8	7.71e-6
3.9	-74.1	3.89e-8	6.57e-6

4.2	-70.5	8.91e-8	5.67e-6
4.5	-72.8	5.25e-8	4.94e-6
4.8	-84.2	3.80e-9	4.34e-6
5.1	-87.5	1.78e-9	3.84e-6
5.4	-85.1	3.09e-9	3.43e-6
5.7	-81.7	6.76e-9	3.08e-6
6.0	-78.9	1.29e-8	2.78e-6

Per tal de calcular la potència de rebuda en mW, hem hagut de convertir els dBm obtinguts. Per a fer-ho hem usat la següent fòrmula:

$$P_{(\text{mW})} = 1 \text{mW} \cdot 10^{(P_{(\text{dBm})}/10)}$$

Per a calcular el valor de la η hem usat la fòrmula que se'ns ha donat en la pràctica:

$$P_{RX} = P_{TX} \cdot G_{TX} \cdot G_{RX} \cdot \left(\frac{\lambda}{4\pi d}\right)^2 \cdot \eta$$

On Ptx = 1 mW, Gtx = Grx = 1, λ = c / f = 3e8 (m/s) / 2.4e9 (Hz) = 0.125 m. A més, λ / 4π = 0.01 m. Simplificant i aïllant la η ens queda:

$$\eta = Prx \cdot \left(\frac{d}{0.01}\right)^2$$

S'ha de comentar que aquesta no té unitats. A continuació veurem una tabla on es veuen els resultats d'aquesta η i l'atenuació de la senyal (α).

Distància (m)	Prx (mW)	η	α
0.3	4.57e-5	0.04113	-43.40
0.6	9.55e-6	0.03438	-50.20
0.9	1.29e-6	0.01045	-58.89
1.2	4.47e-6	0.06437	-53.50
1.5	2.34e-7	0.00526	-66.31
1.8	1.99e-6	0.06448	-57.01
2.1	3.09e-8	0.00136	-75.10

2.4	1.95e-8	0.00112	-77.10
2.7	1.12e-7	0.00816	-69.51
3.0	5.75e-8	0.00518	-72.40
3.3	3.89e-8	0.00424	-74.10
3.6	5.25e-8	0.00680	-72.80
3.9	3.89e-8	0.00592	-74.10
4.2	8.91e-8	0.01572	-70.50
4.5	5.25e-8	0.01063	-72.80
4.8	3.80e-9	0.00088	-84.20
5.1	1.78e-9	0.00046	-87.50
5.4	3.09e-9	0.00090	-85.10
5.7	6.76e-9	0.00220	-81.70
6.0	1.29e-8	0.00046	-78.90