

现代密码学

中国海洋大学 信息安全实验室

第一章

数字签名

▮ 本章内容

- 7.1 数字签名概述
- 7.2 RSA签名方案
- 7.3 ElGamal签名方案
- 7.4 公钥基础设施(PKI)简介

7.1 数字签名概述

对称密码技术(MAC算法)的局限性

只能实现 数据完整性
不能实现 非否认

什么是 否认

耍赖,不承认曾经参与过某次通信

Q: 为什么对称密码技术不能实现非否认?

- 因为双方都持有相同的密钥(信息是对称的)
 - ·接收方可以产生相同的消息,所以发送方可以诬赖消息是接收方伪造的

数字签名是基于公钥思想的数据完整性技术

手写签名: Alice 对一份文件签

名后

- ① 别人可以验证她的签名
- ② 其他人 很难模仿 她的签名

- ① 可验证性
- ② 不可伪造性

数字签名:利用电子手段对电子文档进行签名,数字签名至少要满足手写签名的两个基本性质

- ① 别人可以验证数字签名
- ② 其他人 很难模仿 数字签名

- ① 可验证性
- ② 不可伪造性

- 由于数字签名技术对政府、企事业、一般团体和个人的重要 影响,世界各国都加强了对它的研究。
 - ·1994年,美国正式颁发美国数字签名标准DSS
 - ·1995年, 我国制定自己的签名标准(GB15851-1995)
 - ·1999年,美国参议院已通过了立法,规定电子数字签名与手写签名的文件、邮件在美国具有同等的法律效力
 - ·2004年,我国颁发《中华人民共和国电子签名法》

数字签名的基本思想:

发送者利用 自己的私钥SK 产生消息的认证码 (类似于MAC)

只有发送者掌握 SK,所以该认证码只有发送者才能产生

任何人都可以用相应的公钥 PK 验证认证码的合法性

只要通过验证,就可以确信发送者产生了该消息

认证码相当于发送者在消息上做的"签名", 故而称作 数字签名

• 数字签名方案包括三个组成部分:

- ·密钥生成 Setup:产生公钥/私钥
- · 签名算法 Sign: 利用私钥对消息产生数字签名
- ·验证算法 Ver:利用公钥对数字签名进行验证

Setup	Setup(1 ^k) = PK / SK
签名	$Sign_{SK}(M) = s$
验证	Ver _{PK} (M, s) = true/false
Ver _{PK} (M, Sign _{SK} (M)) = true/false	

类似 MAC 算法

数字签名原理图

- · Sign 是签名算法
- · Ver 是验证算法

抗伪造

任何人都不能 伪造他人的签名

防篡改

任何人无法篡改 已签名的消息

非否认

签名者事后无法 否认自己的签名

消息认证

接收者可以确信消息发送者的身份

相当于在电子文件上签自己的名字

抗伪造是数字签名的核心安全性要求

什么叫 伪造签名

在不知道私钥 SK 的情况下,产生签名 s,使得 Ver_{PK}(M,s) = true 则称 s 是对 M 伪造的签名 (PK 是 SK 对应的公钥)也即 找到一对能通过验证算法校验的 (M,s)

什么叫 抗伪造

给定消息 M,在不知道私钥 SK的情况下,产生签名 s,使得 Ver_{PK}(M,s) = true 是计算上不可行的(就算已知一大堆消息以及其对应的签名也是如此)

数字签名 安全模型

① 完全攻破: 攻击者能找到私钥 SK

(UB: Unbreakability,不可完全攻破)

② 泛伪造: 攻击者可以对任何消息产生合法的签名

(UU: Universal Unforgeability,泛不可伪造)

③ 选择性伪造:对别人选择的消息,攻击者能以不可忽略的概率产生

一个合法的签名

(SU: Selective Unforgeability,选择性不可伪造)

存在性伪造:攻击者能至少为一条消息产生合法的签名

(EU: Existential Unforgeability , 不可存在性伪造)

攻击者最容易实现的伪造

数字签名 攻击分类

依据攻击者获得信息的多少, 对数字签名的攻击分类:

①唯密钥攻击: 攻击者只知道公钥

(KOA: Key only attack)

②已知消息攻击: 攻击者拥有一系列用私钥签过的消息和

相应的签名

(KMA: Known message attack)

③选择消息攻击: 攻击者任意选择一系列消息,并可获得

相应的签名

攻击者的灵活性最大

(CMA) Chosen message attack)

攻击者最容易实现的伪造 而且 灵活性最大

数字签名方案的最高安全性要求:

选择消息攻击下不可存在性伪造(EU-CMA)

7.2 RSA签名方案

- RSA算法不仅可用于加密,还可用于数字签名
- 注意
 - 绝大多数算法只能用于加密或签名二者之一

RSA签名方案 描述

① 系统建立:

- · 随机选择大素数p、q , 计算n = pq
- · 随机选取e $< \phi(n)$, 且gcd(e, $\phi(n)$)=1
- · 计算d , 使 ed≡1 (mod Φ(n))
- ·(e,n)为公钥
- ·d为私钥

(与RSA加密方案的系统建立过程完全一样)

- ② **签名:** $s = m^d \mod n, m \in Z_n^*$
- ③ 校验:m?=se mod n

RSA签名方案 安全性

安全性原理

- 只有签名者知道私钥d,所以他是产生签名s的唯一人
- 公钥e是公开的,任何人都可以验证签名s的合法性
- 但上述基本的RSA签名方案有安全漏洞 —— 存在性伪造

RSA签名方案 存在性伪造

先看一下数字签名的原理

- 给定消息m, 计算签名 s=Sig_{sk}(m)
- · 给定 m 和 s, 验证合法性 Ver_{pk}(m,s)?=true

存在性伪造的原理:将产生签名的思路反过来

- 先选择s , 再构造相应的消息m, 使得 Ver_{pk}(m,s)=true
- 这样不知道私钥sk,也可以产生满足验证算法的消息和签名,这种伪造称为存在性伪造

RSA签名方案 RSA签名方案的存在性伪造

伪造的过程

- 攻击者随机选择s
- ・用签名者公钥(e,n)计算 M ← se mod n
- ·将(M,s)作为消息/签名输出

Q: (M,s)能否通过验证算法的校验呢?

- 很明显 , (M,s) 满足验证算法 M = s^e mod n 的要求
- 因此 , (M,s) 是一对合法的伪造

RSA签名方案 其他漏洞举例

- 可以利用两个消息的签名,产生新消息的签名
 - 如果攻击者知道消息 m_1 和 m_2 的签名,设分别是 $s_1 = m_1^d \mod n , s_2 = m_2^d \mod n$ 则可以伪造消息 $m = m_1 m_2$ 的签名 $s = s_1 s_2$
 - 因为RSA签名方案存在以下性质:

$$(m_1 m_2)^d \equiv m_1^d m_2^d \pmod{n}$$
所以, $s^e \equiv (s_1 s_2)^e \equiv (m_1^d m_2^d)^e$
 $\equiv ((m_1 m_2)^d)^e \equiv m_1 m_2$
 $\equiv m \pmod{n}$

HASH函数在数字签名中的重要作用

・重要作用

- ① 抵抗存在性伪造
- ② 加快计算速度

・方法

• "对消息m签名" 改为 "对H(m)签名"

・原理

- ① 抵抗存在性伪造:利用Hash函数的单向、抗碰撞等性质
- ② 加快计算速度:H(m)比m短得多

利用Hash函数改进RSA签名方案

• 改进后的方案

- 签名:s = H(m)d mod n
- 验证: H(m) ?= se mod n
- 可抵抗"存在性伪造"
 - 攻击者随机选择s,用签名者公钥计算h=se mod n
 - 但计算一个m,使得H(m)=h在计算上不可行
- 可抵抗"利用两个消息的签名,产生新消息的签名"
 - 因为 $(H(m_1)H(m_2))^d ≠ H(m_1m_2)^d \pmod{n}$

利用Hash函数改进RSA签名方案

注意

- 目前没有严格证明表明其在 选择消息攻击下 不可存在性伪造 (EU-CMA)
- 一些RSA签名方案的变形在 某些假设下 能被证明在 选择消息攻击下 不可存在性伪造 (EU-CMA)

7.3 ElGamal签名方案

ElGamal签名方案

- 1985年提出
- 其变型已被NIST采纳为数字签名算法(DSA)
- 安全性基于"离散对数"问题

Taher Elgamal

ElGamal签名方案 描述

① 系统建立

- · 随机选择大素数p, 及生成元g ∈ Z^*_p
- · 随机选取0 < x≤p-2 , 计算 y=g^x mod p
- · 公钥是(p,g,y)
- · 私钥是x

(与ElGamal加密方案的系统建立过程完全一样)

目前,p的长度至少应为512比特

ElGamal签名方案 描述

② 签名

```
对消息m,随机选择0 < r \le p-2,然后计算: u = g^r \mod p s = r^{-1}(m - xu) \mod (p-1) m的签名为(u,s)
```

③ 验证

对于消息/签名 (m,(u,s)), 如果:
y^uu^s ≡ g^m (mod p)
则(u,s)是m的有效签名

ElGamal签名方案 描述

正确性:

$$y^u u^s = g^{xu} g^{rs}$$

$$= g^{xu+rs}$$

 $= g^m \mod p$

$$y=g^x$$
, $u=g^r$

$$xu+rs = xu + r(r^{-1}(m - xu))$$

= $xu + m - xu$
= m

ElGamal签名方案 存在性伪造

· 对ElGamal签名的存在性伪造

- 攻击者随机选择0 < r,v≤p-2, 且gcd(v,p-1)=1
- 计算 u = g^ry^v mod p
 s = -uv⁻¹ mod (p-1)
 m = -ruv⁻¹ mod (p-1)

则(u,s)是对伪造的消息m的有效签名

• 伪造的正确性

```
y^{u}u^{s} = y^{u}(g^{r}y^{v})^{s} = g^{xu}(g^{r}g^{xv})^{s}
= g^{xu+rs+xvs}
= g^{m} \mod p
```

```
xu+rs+xvs = xu+rs+xv(-uv^{-1})
= xu+rs-ux
= rs
= r(-uv^{-1})
= -ruv^{-1}
= m
```

ElGamal签名方案 利用HASH函数改进

签名

```
u=g^r \mod p, s=r^{-1}(H(m,u)-x u) \mod (p-1) 其中Hash函数H:\{0,1\}^* \rightarrow Z_p 则m的签名为(u,s)
```

验证

对于消息/签名(m,(u,s)),如果: $y^{u}u^{s} = g^{H(m,u)} \mod p$ 则(u,s)是m的有效签名。

ElGamal签名方案

注意

- ① 每次签名时,必须选择不同的 r,否则私钥 x 可能会泄露
- ② 效率不如RSA签名高,而且数据长度有扩张
- ③ 有很多种变形
- ④ 有的ElGamal签名方案的变形能在 某些假设下 被证明在 选择消息攻击下 是安全的

ElGamal签名方案 DSA

- DSA (数字签名算法) 是 NIST 在 1991年选定的数字签名标准
- DSA类似于ElGamal,但具有明显的优势
 - ① 效率更高
 - ② 签名更短

|| 具有特殊功能的数字签名方案

Bob 想让 Alice 对一个消息进行签名,但又不想让 Alice 知道消息的内容,且当Bob揭示签名和消息后, Alice 无法知道这就是当初她签过的消息。如何实现?

—— 盲签名 (Blind Signature)

- 由 Chaum 于1983年提出,并申请了专利
- 应用:电子投票

具有特殊功能的数字签名方案

Group Signature

Online/Offline
Signature

Undeniable Signature

扩展阅读

One-time Signature

Fail-stop Signature

Proxy Signature

7.4 公钥基础设施(PKI)

- 公钥的分发仍是个严重的问题
 - 当你要与Alice通信时,首先你必须获得她的公钥
 - 但是,你从网络上接收到的公钥只是一个杂乱无章的比特串,你 能确定它就是Alice的公钥吗?

• 解决方案

- 以公钥和用户身份作为消息,产生数字签名(目的是抗伪造),将两者捆绑在一起
- 现在的问题是,该签名由谁产生?
 - 其他用户?—— 缺乏公信力
 - 应该由可信第三方承担,称之认证机构(CA)

"公钥证书"与"身份证"的类比

公钥证书的逻辑形式

Name: Tom

Serial number: 484865

Issued by: GA-CA

Issue date: 1997 01 02

Expiration date: 2003 01 02

Public key: 84A3796301C····

用户身份和用户公钥的结合体;

由CA审核用户身份后签发

公钥基础设施(PKI)

- 为配合公钥证书的签发,需要十分复杂的管理机构,CA只是其中一个组成部分而已
- 由此,引出PKI的概念

☑ 公钥基础设施(PKI) 概述

通过网络进行交流和商业活动,面临的最大问题是

- 如何建立相互间的信任关系
- 如何确保信息的真实性、完整性、机密性和非否认

PKI是解决这一系列问题的技术基础 它是电子商务、电子政务的关键和基础技术

目的

为了提供可信任的高效密钥和证书管理,以支持众多依赖于公钥的安全技术

☑ 公钥基础设施(PKI) 概述

PKI的定义

一个使用公钥概念和密码技术实施和提供安全服务的具有普适性 的安全基础设施的总称

PKI不是特指某一个密码设备和管理设施,它是

- 生成、管理、存储、颁发和撤销公钥证书所需要的软硬件、人员、 策略和规程的总和
- 提供密钥管理和数字签名服务的平台

公钥基础设施(PKI) 密钥生成周期

公钥基础设施(PKI) 系统架构

PKI 相关标准 X.509证书格式

- 版本1、2、3
- 序列号
 - 在CA内部唯一
- 签名算法标识符
 - 指该证书中的签名算法
- 签发人名字
 - CA的名字
- 有效时间
 - 起始和终止时间
- 实体名字

PKI 相关标准 X.509证书格式

- 实体的公钥信息
 - 算法
 - 参数
 - 密钥
- 签发者唯一标识符
- 实体唯一标识符
- 扩展域
- 签名

PKI 相关标准 X.509证书格式

PKI 相关产品

① VeriSign (www.verisign.com)

- 最大的公共CA,最早推广PKI的公司之一
- 最可信的公共CA之一,开发了一些使用工具

② Entrust 公司——世界一流

- 产品: Entrust/PKI 5.0
- 优点:
 - ① 管理和安全做得都很出色
 - ② 与其它产品兼容
 - ③ 支持各种标准:X.509等

本章小结

- 1. 掌握数字签名的含义、特性、存在性伪造的含义
- 2. 掌握RSA、ElGamal签名方案
- 3. 掌握Hash函数在数字签名中的重要作用
- 4. 掌握提出PKI的意义、CA的作用
- 5. 掌握4种信任模型的工作原理
- 6. 了解数据库和目录服务的不同之处
- 7. 了解X.509、LDAP的用途

1. 数字签名无法提供的特性是(D)

A. 抗伪造 B. 非否认 C. 不可重用性 D. 保证可用性

2. 哪个不是对数字签名的攻击方法 (D)

A. 唯密钥攻击 B. 已知消息攻击

C. 选择消息攻击 D. 已知明文攻击

3.下列哪个是公钥证书格式的标准(B)

A. X.500 B. X.509 C.LDAP D. OCSP