hw4

資工三 110590002 王熯竑

1.

1.a.

minimum:O(1) maximum:O(1)

1.b.

index of the corresponding element: index $+ \lfloor \log(\text{index} + 1) \rfloor * 2(0.5 + \lfloor \log(\text{index} + 1) \rfloor - |\text{index} + |\log(\text{index} + 1)| + 1|)$

1.c.

add new element to array last, make new element to be the right order in max heap or min heap, check the corresponding element in the other heap and swap if necessary, if swap then repeat the process until the new element is in the right order.

2.

2.a.

node of depth k in B_k is the handle, then T_0 is a single handle, is same as B_0 tree. T_1 is a handle node link with a parent, that is, handle node link a B_0 tree, is same as B_1 tree. T_2 is a handle link with a parent node, and handle's parent has a parenet with one another child that is, handle node link B_0 tree and link a B_1 tree, is same as B_2 tree. and so on.

2.b.

node of depth k in B_k is the handle, then T_0 is a single handle, T_1 is a handle node link with a parent, that is, handle node link a B_0 tree. that is, T_0 link a B_0 tree's $\mathrm{root}(r_0)$ T_2 is a handle link with a parent node, and handle's parent has a parenet with one another child that is, handle link r_0 and a B_1 tree (r_1) . that is, T_1 link T_1 and so on.

3.

- step1: use quickselection find the element which has randk $\lfloor k-\frac{1}{2} \rfloor * \frac{n}{k}$ in O(n) time. that will split the array into two parts, S_1 is smaller than the element, and S_2 is larger than the element, and they have same size
- step2: repeat use step1 to get all the elements in S_1 and S_2 in O(n) time.: find from $\left(\frac{n}{k}\right)$ to $\left(\left\lfloor k \frac{1}{2} \right\rfloor 1\right) * \frac{n}{k}$ from S_1 , find from $\left(\left\lfloor k \frac{1}{2} \right\rfloor 1\right) * \frac{n}{k}$ to $\left\lfloor k 1 \right\rfloor * \frac{n}{k}$ from S_2 .
- time compelexity:

```
T(n) = T\left(\frac{n}{k}\right) + O(n) \Rightarrow O(n\log(k))
```

```
arr = input().split(',')
k= int(input())

def sol(arr,kar):
    if len(arr)==0 or len(kar) ==0:
        return []
    k = kar[len(kar)//2]
```

```
print(arr,kar)
  ( e,s1,s2 ) = quickSelection(arr,k)
  el = sol(s1,kar[:len(kar)//2])
  e2 = sol(s2,kar[len(kar)//2+1:])
  return [e]+ el+e2
kar = []
for i in range(k):
    kar.append(int(len(arr)/k*(i+1)))
kar = kar[:-1]
print( sol(arr,kar))
```

4.

- step1: use counting sort to sort the array in O(n) time.
- step2: find the median in the sorted array in O(1) time.
- step3: find all the elements and median distance in O(n) time.
- step4: get k minimum numbers from median to the left and right in O(k) < O(n) time.
- $\bullet \ \ time \ compelexity:$

```
O(n)
arr =[ int(i) for i in input().split(',')]
k= int(input())

(median,_,_) = quickSelection(arr,len(arr)//2)
distance = []
for i in arr:
    distance.append(abs(i-median))
(kthDistance,_,_) = quickSelection(distance,k)
ans= []
for i in range(len(arr)):
    if distance[i]<kthDistance and len(ans)!=k:
        ans.append(arr[i])
print(ans)</pre>
```