Generator relaksacyjny

Łukasz Jezapkowicz

03.06.2019

Spis treści

1		nerator relaksacyjny z wzmacniaczem operacyjnym	2
	1.1	Cel ćwiczenia	2
	1.2	Przebieg ćwiczenia	2
		Wnioski	
ก	Cor	anatan nalahasarinya a dayana anagani kanananasi	G
4		nerator relaksacyjny z dwoma progami komparacji	6
	2.1	Cel ćwiczenia	6
	2.2	Przebieg ćwiczenia	7
	2.3	Wnioski	9
3		nerator sterowany napięciem VCO (Voltage Controlled Oscillator)	9
	3.1	Cel ćwiczenia	S
	3.2	Przebieg ćwiczenia	9
	3.3	Wnioski	11

1 Generator relaksacyjny z wzmacniaczem operacyjnym

1.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z generatorem relaksacyjnym astabilnym z wzmacniaczem operacyjnym oraz zbadanie od czego zależy częstotliwość sygnału wyjściowego.

1.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód generatora relaksacyjnego astabilnego z wzmacniaczem operacyjnym widoczny na **Rys. 1**. Wejście odwracające sterowane jest napięciem z kondensatora C_1 , natomiast na jego wyjście nieodwracające podawany jest sygnał z dzielnika napięciowego R_1, R_2 zasilanego napięciem wyjściowym wzmacniacza. Obwód składa się dwóch źródeł napięcia stałego $V_1 = 12V, V_2 = 12V$, trzech rezystorów $R_1 = 5k\Omega, R_2 = 10k\Omega, R_3 = 1k\Omega$, kondensatora $C_1 = 2nF$ oraz wzmacniacza operacyjnego LM715CH. Do układu podłączyłem również oscyloskop XSC1.

Rys. 1: Schemat obwodu generatora relaksacyjnego astabilnego z wzmacniaczem operacyjnym

Podczas włączania obwodu kondensator jest rozładowany i na wejście odwracające podawane jest napięcie 0V zaś na wyjściu mamy maksymalny sygnał U_{Z+} . Kondensator zaczyna się ładować poprzez rezystor R_3 . Gdy napięcie na wejściu odwracającym i wejściu nieodwracającym zrównają się, napięcie na wyjściu wzmacniacza zmieni się na maksymalny ujemny sygnał U_{Z-} . Od tego momentu kondensator zaczyna się rozładowywać od napięcia $U_{P1} = U_{Z+} \frac{R_1}{R_1+R_2}$ do napięcia $U_{P2} = U_{Z-} \frac{R_1}{R_1+R_2}$. Gdy osiągnie napięcie U_{P2} to napięcie na wyjściu przełącza się z powrotem do U_{Z+} i całość powtarza się cyklicznie. Na wyjściu mamy sygnał prostokątny widoczny na **Rys. 2**.

Rys. 2: Ekran oscyloskopu dla obwodu z Rys. 1. Sygnał wyjściowy zaznaczony jest kolorem niebieskim zaś sygnał na kondensatorze kolorem czerwonym.

Następnie w miejsce rezystora R_1 wstawiłem potencjometr P_1 , którego rezystancja może zmieniać się w zakresie do $40k\Omega$. Zbadałem jak zmienia się częstotliwość f sygnału wyjściowego w zależności od oporu P_1 . Do pomiaru częstotliwości wykorzystałem miernik częstotliwości XFC1 dołączony do wyjścia obwodu. Zmierzyłem częstotliwość dla P_1 równego kolejno $5k\Omega, 10k\Omega, 20k\Omega, 40k\Omega$. Na Rys. 3 zamieściłem przebieg sygnału wyjściowego dla wartości oporu $5k\Omega$. Wyniki pomiarów widać w tabeli na Rys. 4. Z pomiarów wynika, że ze wzrostem oporu P_1 (wzrostem napięcia z dzielnika) napięcie na kondensatorze też rośnie, zaś częstotliwość maleje.

Rys. 3: Przebieg sygnału wyjściowego dla oporu $P_1=5k\Omega$

$R_1 \left[\Omega\right]$ $R_2 \left[\Omega\right]$		U _c [V]	f [Hz]		
5k	10k	5.504	167.275k		
10k	10k	7.017	121.415k		
20k	10k	8.483	92.967k		
40k	10k	8.731	77.133k		

Rys. 4: Tabela zmierzonych wartości dla różnych wartości P_1

Następnie w miejsce rezystora R_3 wstawiłem potencjometr P_3 , którego rezystancja może zmieniać się w zakresie do $20k\Omega$. Zbadałem jak zmienia się częstotliwość f sygnału wyjściowego w zależności od oporu P_3 . Opory R_1 i R_2 ustawiłem na odpowiednio $5k\Omega$ oraz $10k\Omega$. Zmierzyłem częstotliwość dla P_3 równego kolejno $1k\Omega$, $5k\Omega$, $10k\Omega$, $20k\Omega$. Na **Rys. 5** zamieściłem przebieg sygnału wyjściowego dla wartości oporu $1k\Omega$. Wyniki pomiarów widać w tabeli na **Rys. 6**. Z pomiarów wynika, że ze wzrostem oporu P_3 napięcie na kondensatorze maleje, zaś częstotliwość rośnie.

Rys. 5: Przebieg sygnału wyjściowego dla oporu P_3 = $1k\Omega$

$R_3[\Omega]$	C ₁ [nF]	f [Hz]
1k	2n	156.707k
5k	2n	44.298k
10k	2n	24.876k
20k	2n	15.896k

Rys. 6: Tabela zmierzonych wartości dla różnych wartości P_3

Następnie dla $R_1 = 5k\Omega, R_2 = 10k\Omega, R_3 = 1k\Omega$ zbadałem wpływ zmian pojemności kondensatora na częstotliwość f. Zmierzyłem częstotliwość dla C_1 równego kolejno 2nF, 5nF, 10nF, 20nF. Na **Rys. 7** zamieściłem przebieg sygnału wyjściowego dla pojemności 2nF. Wyniki pomiarów widać w tabeli na **Rys. 8**. Z pomiarów wynika, że ze wzrostem pojemności C_1 napięcie na kondensatorze rośnie, zaś częstotliwość maleje.

 ${\bf Rys.}$ 7: Przebieg sygnału wyjściowego dla pojemności C_1 = 2nF

·	
C [F]	f [Hz]
2n	163.868k
5n	74.937k
10n	43.840k
20n	27.304k

Rys. 8: Tabela zmierzonych wartości dla różnych wartości C_1

1.3 Wnioski

Wykonane ćwiczenie pozwala wyciągnąć wnioski na temat wartości częstotliwości f sygnału wyjściowego. Częstotliwość ta wraz ze wzrostem napięcia na kondensatorze maleje czyli czym większe napięcie z dzielnika napięcia (wzrost R_1) tym mniejsza częstotliwość f. Natomiast wraz ze spadkiem napięcia na kondensatorze częstotliwość f rośnie czyli czym większy opór R_3 tym większa częstotliwość. Częstotliwość f wraz ze wzrostem pojemności C_1 maleje, ponieważ wzrost pojemności oznacza wzrost napięcia na kondensatorze. Częstotliwość w naszym obwodzie z $\mathbf{Rys.}$ 1 zależy więc od R_1, R_2, R_3, C_1 .

2 Generator relaksacyjny z dwoma progami komparacji

2.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z generatorem relaksacyjnym z dwoma progami komparacji oraz zbadanie jak U_{P1}, U_{P2} oraz częstotliwość f zależą od oporu R_{12} (napięcia na kondensatorze).

2.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód generatora relaksacyjnego z dwoma progami komparacji widoczny na **Rys. 9**. Obwód składa się źródła napięcia stałego $V_1 = 5V$, trzech rezystorów $R_{11} = 1k\Omega, R_{13} = 1k\Omega, R_3 = 1k\Omega$, potencjometru $R_{12} = 1k\Omega$, kondensatora $C_1 = 100nF$, dwóch komparatorów U_1, U_2 oraz przerzutnika RS. Do układu podłączyłem również oscyloskop XSC1 i miernik częstotliwości XFC1.

Rys. 9: Schemat obwodu generatora relaksacyjnego z dwoma progami komparacji

Przerzutnik RS posiada dwa wejścia S (Set) oraz R (Reset) a także dwa wyjścia Q oraz Q. Przerzutnik jest urządzeniem dwustanowym więc na jego wyjściu może pojawić się sygnał wysoki (1) lub niski (0) w zależności od kombinacji sygnałów wejściowych. Na przykład gdy na wejściu S pojawia się sygnał wysoki (1) a na wejściu R niski (0) to na wyjściu Q pojawia się sygnał wysoki (1). Sygnał wyjściowy jest sygnałem prostokątnym widocznym na Rys. 10.

Rys. 10: Ekran oscyloskopu dla obwodu z Rys. 9. Sygnał wyjściowy zaznaczony jest kolorem czerwonym zaś sygnał na kondensatorze kolorem niebieskim.

Do obwodu podłączyłem dwa multimetry pozwalające zmierzyć napięcia progowe wyzwalające oba komparatory (U_{P1}, U_{P2}) . Zbadałem zmianę częstotliwości f w zależności od od zmiany oporu R_{12} . Zmierzyłem częstotliwość dla R_{12} równego kolejno $0.25k\Omega, 0.5k\Omega, 0.75k\Omega, 1k\Omega$. Na **Rys.** 11 zamieściłem przebieg sygnału wyjściowego dla oporu $R_{12} = 1k\Omega$. Wyniki pomiarów widać w tabeli na **Rys.** 12. Z pomiarów wynika, że ze wzrostem oporu R_{12} (czyli wzrostem napięcia na kondensatorze) napięcie U_{P1} rośnie, U_{P2} maleje, zaś częstotliwość f maleje.

Rys. 11: Przebieg sygnału wyjściowego dla oporu R_{12} = $1k\Omega$

R ₁₂ [Ω]	U _{P1} [V]	U _{P2} [V]	U _{P1} -U _{P2} [V]	f [kHz]
0.25k	2.778	2.222	0.556	21.751
0.5k	3	2	1	12.162
0.75k	3.182	1.818	1.364	8.812
1k	3.333	1.667	1.666	7.157

Rys. 12: Tabela zmierzonych wartości dla różnych wartości R_{12}

2.3 Wnioski

Wykonane ćwiczenie pozwala wyciągnąć wnioski na temat wartości częstotliwości f sygnału wyjściowego oraz wartości napięć progowych U_{P1}, U_{P2} . Napięcia progowe U_{P1}, U_{P2} w naszym obwodzie z **Rys. 9** zależą od napięcia na dzielniku napięciowym czyli od R_{11}, R_{12}, R_{13} . Częstotliwość sygnału wyjściowego f wraz ze wzrostem R_{12} maleje.

3 Generator sterowany napięciem VCO (Voltage Controlled Oscillator)

3.1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie się z generatorem sterowanym napięciem VCO (Voltage Controlled Oscillator) oraz zaobserwowanie przebiegu na kondensatorze i wyjściowego układu.

3.2 Przebieg ćwiczenia

Na pulpicie symulacyjnym zbudowałem obwód generatora sterowanego napięciem VCO widoczny na **Rys. 13**. Obwód składa się źródła napięcia stałego V_1 = 4V, rezystora R_3 = $1k\Omega$, kondensatora C_1 = 20nF, dwóch komparatorów U_1,U_2 oraz przerzutnika RS. Do układu podłączyłem również oscyloskop XSC1, miernik częstotliwości XFC1 oraz generator XFG1 wytwarzający sygnał sinusoidalny o parametrach: częstotliwość 50Hz oraz amplituda 1V.

Rys. 13: Schemat obwodu generatora sterowanego napięciem VCO

Generator ten to typ generatora, w którym częstotliwość oscylacji wyjściowych zmienia się wraz ze zmianą amplitudy sygnału wejściowego. Zbudowany jest na bazie generatora astabilnego z dwoma komparatorami. Na wejście nieodwracające dolnego komparatora podany jest sygnał sinusoidalny z generatora, który ustala zmienny dolny próg przełączania U_{P1} . Na wejście odwracające górnego komparatora wprowadzone zostało stałe napięcie, które ustala górny próg przełączania U_{P2} . Zmienny dolny próg przełączania sprawia, że sygnał wyjściowy raz jest "gęstszy" i ma większą częstotliwość (co zostało ukazane na **Rys. 13**) zaś innym razem jest "rzadszy" i ma mniejszą częstotliwość (co zostało ukazane na **Rys. 14**).

Rys. 14: Ekran oscyloskopu dla obwodu z Rys. 13. Sygnał wyjściowy jest "gęstszy" i częstotliwość jest duża (13.037kHz)

 ${\bf Rys.~15}:$ Ekran oscyloskopu dla obwodu z Rys. 13. Sygnał wyjściowy jest "rzadszy" i częstotliwość jest mała (467.307Hz)

3.3 Wnioski

Wykonane ćwiczenie pozwala wyciągnać wnioski na temat wartości częstotliwości f sygnału wyjściowego. Gdy na wejście nieodwracające dolnego komparatora podany jest sygnał sinusoidalny z dużą amplitudą to sygnał wyjściowy jest "rzadszy" i częstotliwość jest mniejsza, zaś gdy podany jest sygnał sinusoidalny z małą amplitudą to sygnał wyjściowy jest "gęstszy" i częstotliwość jest większa.