4.7.1 – Двойное лучепреломление.

Цель работы. Изучение зависимости показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; определение главных показателей преломления в кристалле.

В работе используются: гелий-неоновый лазер, вращающийся столик с неподвижным лимбом, призма из исландского шпата, поляроид.

Теоретическая часть. Двойное лучепреломления — явление, характерное для одноосных кристаллов, типичный пример неизотропной оптики. В неизотропной среде в общем случае векторы D и E неколлинеарны: $D = \varepsilon_{\parallel} E_{\parallel} + \varepsilon_{\perp} E_{\perp}$. Из уравнений Максвелла для гаромнических волн получаем тогда

$$\mathbf{D} = -\frac{c}{\omega}\mathbf{k} \times \mathbf{H}, \quad \mathbf{H} = \frac{c}{\omega}\mathbf{k} \times \mathbf{E}.$$

Видим, что векторы \mathbf{D} , \mathbf{H} , \mathbf{k} взаимно перпендикулярны. Поскольку в анизотропной среде \mathbf{D} не коллинеарен \mathbf{E} , то получаем, что вектор Пойнтинга $\mathbf{S} = 4\pi/c\mathbf{E} \times \mathbf{H}$ (направление распространения энергии) не коллинеарен волновому вектору (распространение фронта волны)! Рассматривая полученный результат вместе с материальным уравнением, видим, что возможны лишь два случая — вектор \mathbf{D} перпенд. плоскости оптической оси кристалла и волнового вектора, либо же он лежит в главном сечении. В первом случае фазовая скорость не зависит от направления волнового вектора и равна $v = \omega/k = c/n_o$; такую волну называют обыкновенной, она ничем не отличается от плоской волны в изотропной среде. Во втором случае квадрат коэффициента преломления есть отношение вектора D и проекции E на его направление, потому

$$n_e = \frac{1}{\frac{\sin^2 \theta}{\varepsilon_{\parallel}} + \frac{\cos^2 \theta}{\varepsilon_{\perp}}},$$

где θ — угол между осью кристалла и **E**. Соотв. фазовая скорость зависит от угла; такую волну называют *необыкновенной*. В общем случае всякая волна раскладывается в суперпозицию указанных типов волн.

В нашем опыте мы измеряем характеристики кристалла, используя призму.

Эксперимент. По полученным данным (см. таблицы в .ipynb) строим графики n_o и n_e от $\cos^2\theta$ в Sigma Plot.

Рис. 1: Графики и главные показатели преломления.

φ_o	3.25	4	5.75	9.25	16	7.5	11.5	5	7.5	10	12.5	15	17.5	20	22.5	25	26.25	27.5	28.75	30	32.5	35	40	45	50	55
ψ_o	50	45	40	35	30	37	33	42	36.5	34.5	32	30.5	29.5	28.5	28	27	27	27	27	26.5	26.5	26.5	27	30	31	31.5
ψ_e	26	25.5	24.5	23	21	24.5	22	25	23.5	22.5	22	21.5	20.5	20.5	20	20	20	20	20	20	20	20.5	21	24.5	25.5	26
$\cos \theta_o$	0	0	0	0.01	0.03	0.01	0.01	0	0.01	0.01	0.02	0.02	0.03	0.04	0.05	0.07	0.07	0.08	0.09	0.09	0.11	0.12	0.15	0.17	0.20	0.24
$\cos \theta_e$	0	0	0	0.01	0.03	0.01	0.02	0	0.01	0.01	0.02	0.03	0.04	0.05	0.07	0.08	0.09	0.10	0.10	0.11	0.13	0.15	0.18	0.20	0.24	0.28
n_o	1.691	1.685	1.678	1.670	1.656	1.673	1.667	1.683	1.667	1.672	1.661	1.657	1.657	1.652	1.653	1.640	1.643	1.646	1.648	1.638	1.639	1.638	1.640	1.694	1.693	1.670
n_e	1.491	1.490	1.49	1.490	1.486	1.503	1.485	1.492	1.487	1.486	1.490	1.492	1.481	1.489	1 483	1.487	1.488	1.489	1.489	1.489	1.487	1.496	1.497	1.563	1.561	1.539

Из графиков получаем значения

$$n_o = 1.675 \pm 0.017,$$

 $n_e = 1.489 \pm 0.013,$

что хорошо согласуется с табличными данными.

Рассчитаем средние значения углов наименьшего отклонения

$$\psi_{mo} = 26 \pm 1^{\circ},$$

 $\psi_{me} = 21 \pm 1^{\circ}.$

Расчёты показателей преломления с помощью универсальной зависимости дают

$$n_o = 1.67 \pm 0.03,$$

 $n_e = 1.5 \pm 0.04.$

Углы падения, соответствующие полному внутреннему отражению:

$$\varphi_{1o} = 2.5 \pm 0.5^{\circ},$$

$$\varphi_{1e} = 5.0 \pm 0.5^{\circ}.$$

Через углы наименьшего отклонения определяем

$$n_o = 1.65 \pm 0.07,$$

 $n_e = 1.48 \pm 0.06.$

Вывод. Изучив явление двойного лучепреломления, мы измерили главные показатели преломления тремя различными способами и получили их взаимное согласие в пределах погрешностей.