Worksheet 01 (Solutions)

1. Assume we have a random sample of size n=5 with the following data: $x_1=2, x_1=6, x_1=1, x_1=0, x_1=6$. What is the observered sample mean \bar{x} ?

Solution: We have:

$$\bar{x} = \frac{2+6+1+0+6}{5} = \frac{15}{5} = 3.$$

2. Let $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{G}$ be a random sample from a distribution with mean μ_X and variance σ_X^2 . What is the expected value of the sample mean \bar{X} ? Does this imply that \bar{X} is an unbiased estimator of μ_X ?

Solution: NA

3. Using the same set-up as the previous question, what is $Var(\bar{X})$?

Solution: NA

4. Let Y be a random variable with mean m and variance v. Chebyshev's Inequality tells us that if for any a > 0,

$$\mathbb{P}[|Y - m| \ge a] \le \frac{v}{a^2}.$$

Use this result to show that \bar{X} is a consistent estimator of μ_X .

Solution: NA

5. Assume that \mathcal{G} has a normal distribution. Define the following:

$$Z = \frac{\mu_X - \bar{X}}{\sqrt{\sigma_X^2/n}}$$

What is the distribution of Z?

Solution: NA

¹ I am using the standard convention that we replace upper-case random variable names with lower-case variables when we have specific observations of them.

² I gave the answer on the handout. Make sure that you can justify the result.