p-adische Zahlen und das Henselsche Lemma

Emma Bach - Proseminar Elementare Zahlentheorie, WS25/26

28. Oktober 2025

Definition 1.1. Sei p eine Primzahl. Wir nennen folgende Abbildung $\mathbb{Z} \to \mathbb{N}_0$ die p-adische Bewertung auf \mathbb{Z} :

$$v_p(n) = \begin{cases} \max\{k \in \mathbb{N}_0 : p^k \mid n\} & n \neq 0 \\ \infty & n = 0 \end{cases}$$

Die p-adische Bewertung ist auch bekannt als die Vielfachheit von p in n. Die p-adische Bewertung kann durch die Vorschrift $v_p\left(\frac{r}{s}\right) = v_p(r) - v_p(s)$ auf die rationalen Zahlen erweitert werden.

Definition 1.2. Der p-adischen Betrag $|-|_p$ auf \mathbb{Q} ist die Abbildung:

$$\left|n\right|_p = \frac{1}{p^{v_p(n)}}$$

Satz 1.3. Satz von Ostrowski: Jeder Betrag auf $\mathbb Q$ ist entweder der triviale Betrag, oder äquivalent zu $|-|_p$ für eine Primzahl p, oder äquivalent zum Standardabsolutbetrag |-|.

Definition 2.4. Wir bezeichnen die Vervollständigung des Rings \mathbb{Z} gemäß der durch den p-adischen Absolutbetrag erzeugten Metrik als die p-adischen ganzen Zahlen \mathbb{Z}_p . Analog bezeichnen wir die Vervollständigung des Rings \mathbb{Q} gemäß der p-adischen Metrik als die p-adischen Zahlen \mathbb{Q}_p . Die Konstruktion verläuft analog zur Konstruktion von \mathbb{R} aus Cauchyfolgen in \mathbb{Q} .

Proposition 2.5. Jede Reihe der Form

$$x = \sum_{n=m}^{\infty} d_n p^n,$$

wobei $m \in \mathbb{Z}_{\leq 0}$, $d_n \in \{0, 1, ..., p-1\}$, konvergiert in \mathbb{Q}_p . Wir nennen die Folge d_n die p-adische **Darstellung von** x. Jede p-adische Zahl kann als eine solche Reihe dargestellt werden.

Wir können jede p-adische Zahl z somit analog zur Standarddarstellung Basis p schreiben:

$$z = \dots d_4 d_3 d_2 d_1 d_0, d_{-1} \dots d_m$$

In manchen Quellen werden p-adische Zahlen umgekehrt geschrieben, mit der kleinsten Ziffer links.

Proposition 2.6. Sei p beliebig. So ist in der p-adischen Darstellung von -1 jede Ziffer p-1. Die 5-adische Darstellung von -1 ist also . . . 4444 und die 7-adische Darstellung ist . . . 66666. Somit ist bei der Darstellung p-adischer Zahlen kein Vorzeichen nötig.

Satz 3.7. Henselsches Lemma: Sei f(x) ein Polynom mit Koeffizienten $c_i \in \mathbb{Z}_p$. Sei f'(x) die Ableitung von f(x). Sei außerdem $a \in \mathbb{Z}_p$, sodass:

$$f(a) \equiv 0 \mod p$$

 $f'(a) \not\equiv 0 \mod p$

Dann existiert ein eindeutiges $\alpha \in \mathbb{Z}_p$, sodass:

$$f(\alpha) = 0$$
$$\alpha \equiv a \mod p$$

Anwendung 3.8. Das Polynom $f(x) = x^2 + 1$ erfüllt für p = 5 und a = 2 die gefragten Bedingungen. Somit existiert eine Nullstelle in \mathbb{Z}_5 , also $i = \sqrt{-1} \in \mathbb{Z}_5$.

Anwendung 3.9. Eine p-adische Zahl u hat eine k-te Wurzel in den p-adischen Zahlen, wenn $k \not\equiv 0 \mod p$ und eine Zahl n mit $n \equiv u \mod p$ existiert, sodass n eine k-te Wurzel in $\mathbb{Z}/p\mathbb{Z}$ hat.