עקרונות שפות תכנות – תרגיל 1

חלק ב': אינדוקציה מבנית

שאלה 1:

: להלן דקדוק חסר הקשר (1.1

$$E_1 ::= \varepsilon \mid id \mid (E_1)$$

. הסוגריים הסוגריים הסוגריים שווה למספר הסוגריים הסוגריים מספר בשפה של בשפה של הוכיחו שבכל ביטוי בשפה של $E_{\rm 1}$

הוכחה:

נוכיח על ידי אינדוקציה מבנית:

 $E \in L(E_1)$ יהי ביטוי

: <u>בסיס</u>

א. arepsilon=arepsilon. מספר הסוגריים הפותחים הוא 0 וגם מספר הסוגריים הסוגריים.

.0 ב. E=id גם כאן כמות הסוגריים משני הסוגים היא

Fעבור ביטוי כלשהו F (נניח שכמות הסוגריים הפותחים והסוגרים ב-F שווה. F עבור ביטוי כלשהו F (נכיח שזה מתקיים גם עבור F (נסמן ב-F את כמות הסוגריים הפותחים ב-F לכן מהנחת האינדוקציה F זו גם כמות הסוגריים הסוגרים ב-F יש F יש יי)יי אחד יותר מב-F (כלומר כמות הסוגריים הפותחים ב-F היא F באופן דומה זו גם כמות הסוגריים הסוגריים ב-F ולכן כמות הסוגריים הפותחים והסוגרים ב-F שווה, כנדרש.

: להלן דקדוק חסר הקשר (1.2

$$E_2 ::= \varepsilon \mid id \mid (R$$
$$R ::=) \mid E_2)$$

. הסוגריים הסוגריים הסוגריים שווה למספר הסוגריים מספר בשפה E_2 מספר ביטוי שבכל הוכיחו

הוכחה:

נוכיח על ידי אינדוקציה מבנית:

 $E \in L(E_2)$ יהי ביטוי

E=בסיס שני המקרים הראשונים זהים לחלוטין לבסיס של הסעיף הקודם. המקרה השלישי הוא כאשר בסיס E=1 ויש בו בדיוק סוגר פותח אחד וסוגר אחד. E=2 ויש בו בדיוק סוגר פותח אחד וסוגר אחד.

נעים ב-F שווה. נשים הפותחים והסוגריים ב-F עבור F בעד הסוגריים והסוגריים ב-F נניח שכמות הסוגריים ב-F עבור F ולכן לפי אותו הסבר כמו בצעד של הסעיף הקודם נקבל שכמות הסוגריים לב שמתקיים F שווה (אחד יותר מב-F), כנדרש.

 $L(E_1) = L(E_2)$ הוכיחו שמתקיים (1.3

הוכחה:

נוכיח על ידי הכלה דו-כיוונית:

 $E\in L(E_1)$ על ידי אינדוקציה מבנית יהי ביטוי $E\in L(E_2)$, נוכיח שמתקיים: \subseteq

: <u>בסיס</u>

- . הביטוי הזה כמובן שייך גם ל- $L(E_2)$ לפי הגדרת הדקדוק. E=arepsilon
 - . ב. E=id ביטוי הזה שייך גם ל- $L(E_2)$ לפי הגדרת הדקדוק.

: נחלק למקרים $F \in L(E_2)$. נניח ש $F \in L(E_1)$ נחלק למקרים עבור ביטוי כלשהו E = (F)

 E_{2} אניירה של הגזירה על ידי את פיטוי לב שניתן לגזור לב שניתן (נשים לב שניתן הגזירה אל E=(arepsilon) לכן. אי

$$E_2 \Rightarrow (R \Rightarrow (E_2) \Rightarrow (\varepsilon) = ()$$

 $E \in L(E_2)$ ולכן מתקיים

- ב. F = id ההוכחה דומה למקרה אי.
- $E_2 \Rightarrow \cdots \Rightarrow F:$ נסמן זאת כך, עם כללי הגזירה של F עם כללי היימת גזירה של האינדוקציה קיימת גזירה של F:

$$E_2 \Rightarrow (R \Rightarrow (E_2) \Rightarrow \cdots \Rightarrow (F) = E$$

 $E \in L(E_2)$ ושוב

: יהי אינדוקציה מבנית על ידי אינדוקציה מבנית, נוכיח שמתקיים $E \in L(E_1)$ יהי : \supseteq

E=(R בסיס שני המקרים הראשונים זהים לבסיס של ההכלה הקודמת. המקרה השלישי הוא כאשר בסיס בסיס פליט שני המקרים הראשונים זהים לבסיס של המללי הגזירה של E=() כך: $E_1\Rightarrow (E_1)\Rightarrow (E_1)\Rightarrow (E_1)\Rightarrow (E_1)$ כך: $E_1\Rightarrow (E_1)$

מהנחת .E=(F) . $F\in L(E_1)$ נניח שמתקיים . $F\in L(E_2)$ עבור ביטוי ביטוי E=(R,R=F) . נניח שמתקיים האינדוקציה קיימת גזירה של F עם כללי הגזירה של F עם כללי הגזירה של F נסמן זאת כך ביטוי . $E_1\Rightarrow\cdots\Rightarrow F$.כעת נוכל לגזור . $E_1\Rightarrow\cdots\Rightarrow F$.

$$E_1 \Rightarrow (E_1) \Rightarrow \cdots \Rightarrow (F) = E$$

 $E \in L(E_1)$ לכן

:2 שאלה

:{"course": "concept in PL", "ex": 1, "grade": 100} א. נמצא עץ גזירה עבור (2.1

ב. נוכיח כי ל- $\{course^n: concept\ in\ PL^n, ex^n: 1, grade^n: \{100\}\}$ אין עץ גזירה. נניח בי נוכיח כי ל- $\{rade^n: \{100\}\}$ הגוזרת את $\{rade^n: \{100\}\}$ משום בשלילה שקיים עץ גזירה עבור מילה זו. קיימת חולייה $\{rade^n: \{100\}\}$ הגוזרת את $\{rade^n: \{100\}\}$ מתקבל על ידי גזירת שהביטוי מכיל נקודתיים ולכן מחייב גזירה מ $\{rade^n: value\}$ לכן הביטוי $\{rade^n: value\}$ ולכן נגזור אותו. $\{rade^n: value\}$ בשני המקרים לא נוכל להגיע ל- $\{rade^n: value\}$ ובשני המקרים לא נוכל להגיע ל- $\{rade^n: value\}$ וניחר.

: סטעיף קודם אזירה עבור המילה בעלת עץ גזירה מסעיף קודם (2.2

:3 שאלה

 $bool_expr$ מטיפוס exp מטיפוס: הוכיחו נגדית באמצעות או הפריכו או הפריכו מבנית או הפריכו מתקיים:

$$num_of_vars(exp) = num_of_connectives(exp) + 1$$

הפרכה:

exp = Not(Var("x")) נגדיר

$$\begin{aligned} num_of_vars(exp) &= num_of_vars\Big(Not\big(Var("x")\big)\Big) = num_of_vars\big(Var("x")\big) = 1 \\ num_of_connectives(exp) &= num_of_connectives\Big(Not\big(Var("x")\big)\Big) = \\ &= num_of_connectives\big(Var("x")\big) + 1 = 0 + 1 = 1 \end{aligned}$$

 $.1 \neq 1 + 1$ אך

 $bool_expr$ מטיפוס exp מטיפוס : הוכיחו נגדית נגדית או הפריכו באמצעות או הפריכו מתקיים: Not מתקיים:

$$num_of_vars(exp) = num_of_connectives(exp) + 1$$

:הוכחה

עבור str מחרוזת כלשהי. exp = Var(str) בסיס

$$num_of_vars(exp) = num_of_vars(Var(str)) = 1$$

$$num_of_connectives(exp) = num_of_connectives(Var(str)) = 0$$

$$.1 = 0 + 1$$
 ואכן $1 = 0 + 1$

: נחלק למקרים

אטענה שהטענה exp_1, exp_2 מטיפוס exp_1, exp_2 עבור שני ביטויים $exp = And(exp_1, exp_2)$ א. $exp_2 - exp_1$ מתקיימת עבור $exp_1 - exp_2$. כעת

$$\begin{aligned} #_of_vars(exp) = num_of_vars\big(And(exp_1, exp_2)\big) = \\ &= num_of_vars(exp_1) + number_of_vars(exp_2) \underset{induction\ hypothesis}{=} \\ &= num_of_connectives(exp_1) + 1 + num_of_connectives(exp_2) + 1 \end{aligned}$$

 $= num_of_connectives(And(exp_1, exp_2)) + 1 = num_of_connectives(exp) + 1$ ב. $exp = Or(exp_1, exp_2)$ ב.