Probabilidad multidimensional

Análisis estadístico de datos

2021

- 1. Graficar las superficies de nivel 1σ de las distribuciones binormales con parámetros $\mu_1=1.3,\ \mu_2=0.5,\ \sigma_1=1.7,\ y\ \sigma_2=2.3$ para tres diferentes correlaciones $\rho=-0.9,\ 0\ y\ 0.5.$
- 2. Considerar dos variables independientes X_1 y X_2 distribuidas con la función de densidad de probabilidad binormal,

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{q(x_1, x_2)}{2}\right),$$

dónde

$$q(x_1, x_2) = \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2.$$

Transformar a una variable χ^2 para calcular la probabilidad que la variable aleatoria bidimensional (X_1, X_2) caiga en las regiones 1σ , 2σ y 3σ definidas por las elipses q=1, q=4 y q=9 respectivamente. Sin hacer cuentas, pensar como cambiarían las elipses si X_1 y X_2 estuvieran correlacionadas y cuánta probabilidad contienen las elipses 1σ , 2σ y 3σ .

- 3. Considerar la distribución binormal con parámetros $\mu_1 = \mu_2 = 0$, $\sigma_1 = \sigma_2 = 1$ y correlación $\rho \neq 0$. Escribir la matriz Hessiana \boldsymbol{A} correspondiente a estos cinco parámetros y encontrar analíticamente sus autovalores y autovectores. Graficar las regiones 1σ , 2σ y 3σ correspondientes a la forma cuadrática $q(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$ para $\rho = -0.9$.
- 4. La eficacia de una vacuna (VE) se puede medir en un test clínico en base a la proporción de pacientes contagiados vacunados con respecto al número total de pacientes contagiados (p),

$$VE = \frac{1 - 2p}{1 - p}$$

.

En el test de la vacuna covid de Astra-Zeneca se estimó que la media de la variable aleatoria p es E(p)=0.28 y su desviación estándar es $\sigma(p)=0.05$. Aplicando la fórmula de propagación de la varianza calcular la media y la desviación estándar de la eficacia VE.

- 5. Considerar dos variables independientes X_1 y X_2 con varianzas σ_1^2 y σ_2^2 . Calcular la matriz de covarianza de las nuevas variables $Y_1 = X_1 + X_2$ y $Y_2 = X_1 X_2$ en términos de σ_1 y σ_2 . Calcular la correlación entre Y_1 e Y_2 y decidir si estas dos variables son independientes.
- 6. En un experimento se miden los siguientes datos que se ajustan con una regresión lineal:

i	x_i	y_i
1	1	1.85
2	2.5	2.72
3	3.1	5.15
4	4	5.7
5	5.5	6.9

Los datos y_i se consideran como un vector \boldsymbol{y} de cinco variables normales. Se asume además las variables y_i tienen la misma desviación estándar $\sigma = 0.5$ (homocedasticidad). La pendiente (\hat{m}) y la ordenada al origen (\hat{y}_0) de la recta que ajusta los datos son una nueva variable aleatoria de dos dimensiones:

$$\hat{m{ heta}} = egin{pmatrix} \hat{y}_0 \ \hat{m} \end{pmatrix}$$

Sus valores se calculan con la multiplicación de matrices $\hat{\boldsymbol{\theta}} = \mathbf{B}\, \boldsymbol{y}$ dónde

$$\boldsymbol{B} = \begin{pmatrix} 0.834 & 0.406 & 0.234 & -0.023 & -0.451 \\ -0.197 & -0.064 & -0.011 & 0.069 & 0.202 \end{pmatrix}$$

.

Calcular la ordenada al origen y la pendiente de la recta que ajusta los datos. Graficar los datos y el ajuste. Expresar la matriz de covarianza de y. Considerando que la variable aleatoria en dos dimensiones $\hat{\theta}$ es una combinación linear de la variable aleatoria en cinco dimensiones y vía la matriz B, calcular la matriz de covarianza de $\hat{\theta}$. Calcular las desviaciones estándares de \hat{y}_0 , \hat{m} y su correlación. Identificar la distribución que sigue $\hat{\theta}$ y los valores de sus parámetros.

7. (Para entregar) Simular una variable aleatoria $X=(X_1,X_2)$ que sigue una distribución binormal con parámetros $\mu_1=2.3, \ \mu_2=1.5, \ \sigma_1=1.2, \ \sigma_2=0.5$ y correlación $\rho=0.7$. Usar que la distribución conjunta $f(x_1,x_2)=h_2(x_2|x_1)\,g_1(x_1),$ con $g_1(x_1)$ la distribución marginal de X_1 y $h_2(x_2|x_1)$ la distribución condicional de X_2 dado X_1 . Esta distribución condicional se puede expresar como $h_2(x_2|x_1)=N(\mu_2',\sigma_2')$ con $\mu_2'=\mu_2+\rho\frac{\sigma_2}{\sigma_1}(x_1-\mu_1)$ y $\sigma_2'^2=\sigma_2^2(1-\rho^2)$. Repetir la simulación 1000 veces. Calcular la fracción de eventos caen en la elipse 1σ y comparar con la probabilidad contenida dentro de dicha región. Graficar los datos simulados junto a la elipse 1σ . Nota: un punto (x_1,x_2) pertenece a la elipse 1σ si la forma cuadrática asociada $q(x_1,x_2)\leq 1$.