# Assignment 0: O Brother, How Far Art Thou?

#### Computational Statistics Instructor: Luiz Max de Carvalho

September 24, 2021

Hand-in date: 06/10/2020.

# General guidance

- State and prove all non-trivial mathematical results necessary to substantiate your arguments;
- Do not forget to add appropriate scholarly references at the end of the document;
- Mathematical expressions also receive punctuation;
- Please hand in a single PDF file as your final main document.

  Code appendices are welcome, in addition to the main PDF document.

## Background

A large portion of the content of this course is concerned with computing high-dimensional integrals via simulation. Today you will be introduced to a simple-looking problem with a complicated closed-form solution and one we can approach using simulation.

Suppose you have a disc  $C_R$  of radius R. Take  $p=(p_x,p_y)$  and  $q=(q_x,q_y)\in C_R$  two points in the disc. Consider the Euclidean distance between p and q,  $||p-q||=\sqrt{(p_x-q_x)^2+(p_y-q_y)^2}=|p-q|$ .

**Problem A:** What is the *average* distance between pairs of points in  $C_R$  if they are picked uniformly at random?

### Questions

1. To start building intuition, let's solve a related but much simpler problem. Consider an interval [0, s], with s > 0 and take  $x_1, x_2 \in [0, s]$  uniformly at random. Show that the average distance between  $x_1$  and  $x_2$  is s/3.

Solution. We want to calculate  $\mathbb{E}[|x_1 - x_2|]$  such that  $x_1, x_2 \stackrel{iid}{\sim} \text{Unif}(0, s)$ . An extensive way to solve this problem is to introduce the random variable  $Y = x_1 - x_2$  and derive its distribution and after its absolute mean. Let

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(x_1 \le y + x_2).$$

Suppose first that  $y \geq 0$ . Given  $x_2$ ,

$$\mathbb{P}(x_1 \le y + x_2 | x_2) = \begin{cases} \frac{y + x_2}{s} & 0 \le x_2 \le s - y \\ 1 & s - y < x_2 \le s. \end{cases}$$

Therefore,

$$F_Y(y) = \int_0^{s-y} \frac{y+x_2}{s^2} dx_2 + \int_{s-y}^s \frac{1}{s} dx_2$$

$$= \frac{y(s-y) + 0.5(s-y)^2}{s^2} + \frac{y}{s}$$

$$= \frac{(s-y)(y+s)}{2s^2} + \frac{y}{s} = -\frac{y^2}{2s^2} + \frac{y}{s} + \frac{1}{2}.$$

Now suppose y < 0. Then

$$\mathbb{P}(x_1 \le y + x_2 | x_2) = \begin{cases} \frac{y + x_2}{s} & -y \le x_2 \le s \\ 0 & 0 \le x_2 < -y. \end{cases}$$

Therefore,

$$F_Y(y) = \int_{-y}^{s} \frac{y + x_2}{s^2} dx_2$$

$$= \frac{ys + 0.5s^2}{s^2} - \frac{-y^2 + 0.5y^2}{s^2}$$

$$= \frac{y^2}{2s^2} + \frac{y}{s} + \frac{1}{2}.$$

Deriving these expressions we get the density with respect to the Lebesgue measure,

$$f_Y(y) = \begin{cases} \frac{1}{s} - \frac{y}{s^2}, & \text{if } 0 \le y \le s\\ \frac{1}{s} + \frac{y}{s^2}, & \text{if } -s \le y < 0. \end{cases}$$

Finally,

$$\mathbb{E}[|x_1 - x_2|] = \mathbb{E}[|Y|] = \int_0^s \frac{y}{s} - \frac{y^2}{s^2} \, dy - \int_{-s}^0 \frac{y}{s} + \frac{y^2}{s^2} \, dy$$
$$= \frac{s^2}{2s} - \frac{s^3}{3s^2} + \frac{s^2}{2s} - \frac{s^3}{3s^2}$$
$$= \frac{s}{2} - \frac{s}{3} + \frac{s}{2} - \frac{s}{3} = \frac{s}{3},$$

as we wished to prove. Now I give a more geometric approach. Consider  $(x_1, x_2)$  uniformly distributed over  $[0, 1]^2$ . Then, let  $t \in [0, s]$ ,

$$\mathbb{P}(|x_1 - x_2| > t) = \mathbb{P}(x_1 > t + x_2) + \mathbb{P}(x_2 > t + x_1),$$

since they are disjoint events, since  $t \geq 0$ . Note that the first region is delimited by the straight line  $x_1 = t + x_2$ ,  $x_1 = s$ , and  $x_2 = 0$ , what gives a triangle with points (t,0),(s,0), and (s,s-t) with area  $(s-t)^2/2$ . The second region is delimited by the straight line  $x_2 = t + x_1$ ,  $x_2 = s$ , and  $x_1 = 0$ , what gives the triangle (0,t).(0,s) and (s-t,s), with area  $(s-t)^2/2$ . We conclude that

$$\mathbb{P}(|x_1 - x_2| > t) = \frac{(s-t)^2}{s^2} \text{ if } t \in [0, s],$$

0, if  $t \geq s$  and 1 if  $t \leq 0$ . This implies that

$$\mathbb{E}[|x_1 - x_2|] = \int_0^{+\infty} \frac{(s-t)^2}{s^2} 1_{\{t \le s\}} dt = -\frac{(s-t)^3}{3s^2} \Big|_0^s = \frac{s}{3},$$

a simpler prove.

2. Show that Problem A is equivalent to computing

$$I = \frac{1}{\pi^2 R^4} \int_0^R \int_0^R \int_0^{2\pi} \int_0^{2\pi} \sqrt{r_1^2 + r_2^2 - 2r_1 r_2 \cos \phi(\theta_1, \theta_2)} r_1 r_2 d\theta_1 d\theta_2 dr_1 dr_2,$$

where  $\phi(\theta_1, \theta_2)$  is the central angle between  $r_1$  and  $r_2$ .

Hint: Draw a picture.

3. Compute I in closed-form.

Hint: Look up Crofton's mean value theorem or Crofton's formula.

4. Propose a simulation algorithm to approximate *I*. Provide point and interval estimates and give theoretical guarantees about them (consistency, coverage, etc).