Практические задачи по вычислительной математике. Первое задание.

Николай Чусовитин, группа Б03-905

Задача І.8.19

Для вычисления функции u = f(t) используется частичная сумма ряда Маклорена:

$$u(t) \approx u(0) + \frac{u'(0)}{1!}t + \dots + \frac{u^{(n)}(0)}{n!}t^n$$

где аргумент задан с погрешностью $\Delta t = 10^{-3}$. При каком n погрешность u(t) не превышает Δt ? Рассмотреть отрезки [0,1] и [10,11]. Найти более совершенный алгоритм для вычисления функций $u(t) = \sin t$ и $u(t) = e^t$ на втором отрезке.

Решение

Ошибку метода оценим, воспользовавшись остаточным членом в форме Лагранжа:

$$|\Delta_{\text{метода}}| = \left| \frac{u^{(n+1)}(\xi)}{(n+1)!} t^{n+1} \right|$$

Перейдём теперь к рассмотрению заданных функций. Для $\sin t$ остаточный член в форме Лагранжа имеет вид

$$\Delta_{ ext{метода}} \leq \frac{t^{2n+1}}{(2n+1)!}$$

На отрезке [0,1] имеем $\Delta_{\text{метода}} \leq \frac{1}{(2n+1)!}$ и для необходимой точности достаточно взять $n \geq 3$. На [10,11] $\Delta_{\text{метода}} \leq \frac{11^{2n+1}}{(2n+1)!}$ необходимо уже $n \geq 17$. Для уменьшения n на втором отрезке можно сделать замену переменных: $t=3\pi+\tilde{t}$. Тогда $\sin t=-\sin \tilde{t}$, где \tilde{t} лежит на подмножестве отрезка [0.5,1.6]. (Для синуса n – число элементов в разложении, встречаются только нечетные).

Для экспоненты остаточный член имеет вид:

$$\Delta_{\text{метода}} \le \frac{e^t}{(n+1)!} t^{n+1} \tag{1}$$

На отрезке [0,1] имеем $\Delta_{\text{метода}} \leq \frac{e}{(n+1)!} t^{n+1}$ и для необходимой точности достаточно взять $n \geq 6$. На [0,1] $\Delta_{\text{метода}} \leq \frac{e^{11}11^{n+1}}{(n+1)!} t^{n+1}$ и необходимо $n \geq 42$. Для уменьшения n не втором отрезке можно сделать замену переменных $t=10+\tilde{t}$, тогда $e^t=e^{10}e^{\tilde{t}}$. Из-за лишнего множителя нужно будет увеличить число членов, но не так значительно $(n \geq 11)$.

Задача IV.12.8 (б)

Найти методом простой итерации полуширину на полувы
соте с точностью 10^{-3} функции

$$f(x) = xe^{-x^2}, \ x \ge 0$$

Решение

Найдём сначала максимум функции, приравняв производную к нулю:

$$e^{-x^2} - 2x^2e^{-x^2} = 0$$

Имеем: $x_m = 1/\sqrt{2}, f_m = 1/\sqrt{2e}$. Чтобы найти полуширину нужно решить уравнение

$$f(x) - \frac{f_m}{2} = 0$$

причём один его корень будет расположен на интервале $(0, x_m)$, а второй – на $(x_m, 2)$. Воспользуемся итерационным методом:

$$\varphi_1(x) = \frac{f_m}{2}e^{x^2}$$
$$x^{n+1} = \varphi_1(x^n)$$

Для сходимости процесса необходимо, чтобы производная $\varphi_1'(x)$ по модулю не превосходила единицы. Это условие выполняется на первом интервале ($\varphi_1'<1/2$), значит метод можно использовать для поиска левого корня. Для правого корня:

$$\varphi_2(x) = \sqrt{\ln \frac{2x}{f_m}}$$
$$x^{n+1} = \varphi_2(x^n)$$

Производная $\varphi_2'(x)$ не превосходит по модулю $1/\sqrt{\ln(4e)}$ на втором интервале.

Для определения полуширины нужно каждый из из корней найти с точностью $\varepsilon/2$. Для остановки воспользуемся критерием

$$\frac{|x^{n+1}-x^n|}{1-q} \le \varepsilon$$

здесь q — число, ограничивающее производную. Результаты решения:

$$x_1 = 0.226$$

 $x_2 = 1.359$
 $\Delta_{1/2} = x_2 - x_1 = 1.133$

VI.9.32

По заданным значениям населения США в 1910-2000 годах построить а) интерполяционный полином в форме Ньютона б) кубический сплайн и, экстраполируя на 2010 год, сравнить полученные значения с точным 308 745 538 человек.

Относительная ошибка интерполяционного многочлена в форме Ньютона составляет более 100% от точного значения, что связано с высокой степенью многочлена (10 точек – полином 9

Тип интерполяции	В форме Ньютона	Кубический сплайн
Население в 2010 году	827 906 509	314 133 939
Абсолютная ошибка	$5.19161 \cdot 10^8$	$5.3884 \cdot 10^6$
Относительная ошибка	1.68152	0.0174526

степени), приводящей к быстрому росту за пределами отрезка интерполяции. Относительная ошибка кубического сплайна составляет около 2%. Она значительно меньше ошибки полинома Ньютона ввиду меньшей степени многочлена.

Задача 1

Найти все корни системы уравнений с точностью 10^{-6}

$$\begin{cases} x^2 + y^2 = 1\\ y = \operatorname{tg} x \end{cases}$$

Решение

Первое уравнение системы – уравнение окружности. Кривая $y=\operatorname{tg} x$ пересекает её в двух симметричных точках, так что решение можно искать на интервалах (-1,0) и (0,1). С учётом симметрии задачи достаточно найти одно из этих решений. Решать систему будем методом простой итерации:

$$\begin{cases} x^{n+1} = \operatorname{arctg} y^n \\ y^{n+1} = \sqrt{1 - (x^n)^2} \end{cases}$$

При начальном приближении $(x_0, y_0) = (0.5, 0.5)$ имеем решение системы:

$$(x_1, y_1) = (0.649889, 0.760029)$$

 $(x_2, y_2) = (-0.649889, -0.760029)$

Задача 2

Вычислить интеграл

$$I = \int_0^3 \sin(100x)e^{-x^2} \cos(2x)dx$$

Решение

Интеграл был рассчитан с помощью метода прямоугольников и метода трапеций. Полученное значение $I \approx 0.0100061$. Такое же значение получилось с помощью квадратур Гаусса. Для расчёта с их помощью отрезок был разделён на 15, на каждом из который функция была проинтегрирована с помощью квадратура Гаусса 15 порядка.