Choosing different realizations of a function

Α	В	С	Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Which realization is best?

- Reduce number of inputs
 - literal: input variable (complemented or not)
 - can approximate cost of logic gate as 2 transitors per literal
 - why not count inverters?
 - fewer literals means less transistors
 - smaller circuits
 - fewer inputs implies faster gates
 - gates are smaller and thus also faster
 - fan-ins (# of gate inputs) are limited in some technologies
- Reduce number of gates
 - fewer gates (and the packages they come in) means smaller circuits
 - directly influences manufacturing costs

Which is the best realization? (cont'd)

- Reduce number of levels of gates
 - fewer level of gates implies reduced signal propagation delays
 - minimum delay configuration typically requires more gates
 - wider, less deep circuits
- How do we explore tradeoffs between increased circuit delay and size?
 - automated tools to generate different solutions
 - logic minimization: reduce number of gates and complexity
 - logic optimization: reduction while trading off against delay

Are all realizations equivalent?

- Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
 - delays are different
 - glitches (hazards) may arise these could be bad, it depends
 - variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent

Implementing Boolean functions

- Technology independent
 - canonical forms
 - two-level forms
 - multi-level forms
- Technology choices
 - packages of a few gates
 - regular logic
 - two-level programmable logic
 - multi-level programmable logic

Canonical forms

- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
- Canonical forms
 - standard forms for a Boolean expression
 - provides a unique algebraic signature

Sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion

Sum-of-products canonical form (cont'd)

- Product term (or minterm)
 - ANDed product of literals input combination for which output is true
 - each variable appears exactly once, true or inverted (but not both)

Α	В	С	minterms	
0	0	0	A'B'C'	m0
0	0	1	A'B'C	m1
0	1	0	A'BC'	m2
0	1	1	A'BC	m3
1	0	0	AB'C'	m4
1	0	1	AB'C	m5
1	1	0	ABC'	m6
1	1	1	ABC	m7

short-hand notation for, minterms of 3 variables

F in canonical form:

$$F(A, B, C) = \Sigma m(1,3,5,6,7)$$

= m1 + m3 + m5 + m6 + m7
= A'B'C + A'BC + ABC' + ABC'

canonical form ≠ minimal form

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$
= $((A' + A)(B' + B))C + ABC'$
= $C + ABC'$
= $ABC' + C$
= $ABC + C$

Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion

$$F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

Product-of-sums canonical form (cont'd)

- Sum term (or maxterm)
 - ORed sum of literals input combination for which output is false
 - each variable appears exactly once, true or inverted (but not both)

Α	В	С	maxterms	
0	0	0	A+B+C	MO
0	0	1	A+B+C'	M1
0	1	0	A+B'+C	M2
0	1	1	A+B'+C'	M3
1	0	0	A'+B+C	M4
1	0	1	A'+B+C'	M5
1	1	0	A'+B'+C	M6
1	1	1	A'+B'+C'	M7

F in canonical form:

$$F(A, B, C) = \Pi M(0,2,4)$$

= M0 • M2 • M4
= (A + B + C) (A + B' + C) (A' + B + C)

canonical form ≠ minimal form

$$F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$$

$$= (A + B + C) (A + B' + C)$$

$$(A + B + C) (A' + B + C)$$

$$= (A + C) (B + C)$$

short-hand notation for maxterms of 3 variables

S-o-P, P-o-S, and de Morgan's theorem

- Sum-of-products
 - \Box F' = A'B'C' + A'BC' + AB'C'
- Apply de Morgan's
 - \Box (F')' = (A'B'C' + A'BC' + AB'C')'
 - \neg F = (A + B + C) (A + B' + C) (A' + B + C)
- Product-of-sums
 - \neg F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')
- Apply de Morgan's
 - \Box (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'
 - \Box F = A'B'C + A'BC + AB'C + ABC' + ABC

Four alternative two-level implementations of F = AB + C

Waveforms for the four alternatives

- Waveforms are essentially identical
 - except for timing hazards (glitches)
 - delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)

Mapping between canonical forms

- Minterm to maxterm conversion
 - use maxterms whose indices do not appear in minterm expansion
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- Maxterm to minterm conversion
 - use minterms whose indices do not appear in maxterm expansion
 - \Box e.g., $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F'
 - use minterms whose indices do not appear
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7)$ $F'(A,B,C) = \Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F'
 - use maxterms whose indices do not appear
 - e.g., $F(A,B,C) = \Pi M(0,2,4)$ $F'(A,B,C) = \Pi M(1,3,5,6,7)$

Incompleteley specified functions

- Example: binary coded decimal increment by 1
 - □ BCD digits encode the decimal digits 0 9 in the bit patterns 0000 1001

Notation for incompletely specified functions

- Don't cares and canonical forms
 - so far, only represented on-set
 - also represent don't-care-set
 - need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:
 - Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
 - $Z = \Sigma [m(0,2,4,6,8) + d(10,11,12,13,14,15)]$
 - □ Z = M1 M3 M5 M7 M9 D10 D11 D12 D13 D14 D15
 - $Z = \Pi [M(1,3,5,7,9) \bullet D(10,11,12,13,14,15)]$

Simplification of two-level combinational logic

- Finding a minimal sum of products or product of sums realization
 - exploit don't care information in the process
- Algebraic simplification
 - not an algorithmic/systematic procedure
 - how do you know when the minimum realization has been found?
- Computer-aided design tools
 - precise solutions require very long computation times, especially for functions with many inputs (> 10)
 - heuristic methods employed "educated guesses" to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
 - to understand automatic tools and their strengths and weaknesses
 - ability to check results (on small examples)

The uniting theorem

- Key tool to simplification: A (B' + B) = A
- Essence of simplification of two-level logic
 - find two element subsets of the ON-set where only one variable changes its value – this single varying variable can be eliminated and a single product term used to represent both elements

$$F = A'B' + AB' = (A' + A)B' = B'$$

Boolean cubes

- Visual technique for indentifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"

Mapping truth tables onto Boolean cubes

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

ON-set = solid nodes

OFF-set = empty nodes

DC-set = \times 'd nodes

Three variable example

Binary full-adder carry-out logic

Α	В	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Cout = BCin + AB + ACin

Higher dimensional cubes

Sub-cubes of higher dimension than 2

 $F(A,B,C) = \Sigma m(4,5,6,7)$

on-set forms a square i.e., a cube of dimension 2

represents an expression in one variable i.e., 3 dimensions – 2 dimensions

A is asserted (true) and unchanged B and C vary

This subcube represents the literal A

m-dimensional cubes in a n-dimensional Boolean space

- In a 3-cube (three variables):
 - □ a 0-cube, i.e., a single node, yields a term in 3 literals
 - a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 - a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 - a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
- In general,
 - an m-subcube within an n-cube (m < n) yields a term with n – m literals

Karnaugh maps

- Flat map of Boolean cube
 - wrap—around at edges
 - hard to draw and visualize for more than 4 dimensions
 - virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
 - guide to applying the uniting theorem
 - on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

A B	0	1_
0	0 1	2 1
1	1 0	3 0

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

Karnaugh maps (cont'd)

- Numbering scheme based on Gray–code
 - e.g., 00, 01, 11, 10
 - only a single bit changes in code for adjacent map cells

			A		
	0	2	6	4	
С	1	3	7	5	
'			3		

				A	
	0	4	12	8	
	1	5	13	9	D
	3	7	15	11	
С	2	6	14	10	
			3		ı

13 = 1101 = ABC'D

Adjacencies in Karnaugh maps

- Wrap from first to last column
- Wrap top row to bottom row

Karnaugh map examples

More Karnaugh map examples

$$G(A,B,C) = A$$

$$F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$$

F' simply replace 1's with 0's and vice versa $F'(A,B,C) = \sum_{i=1}^{n} m(1,2,3,6) = BC' + A'C$

Karnaugh map: 4-variable example

• $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$

$$F = C + A'BD + B'D'$$

find the smallest number of the largest possible subcubes to cover the ON-set (fewer terms with fewer inputs per term)

Karnaugh maps: don't cares

- $f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13)$
 - without don't cares

$$f = A'D + B'C'D$$

				A	
	0	0	Х	0	
. 1	(-)	1	Х	1	l D
C	1	1	0	0	
С	0	Х	0	0	
•		-	3		•

Karnaugh maps: don't cares (cont'd)

• $f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13)$

$$\Box$$
 f = A'D + B'C'D

 \Box f = A'D + C'D

without don't cares

with don't cares

by using don't care as a "1" a 2-cube can be formed rather than a 1-cube to cover this node

don't cares can be treated as 1s or 0s depending on which is more advantageous

Activity

• Minimize the function $F = \Sigma m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)$

Combinational logic summary

- Logic functions, truth tables, and switches
 - NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
- Axioms and theorems of Boolean algebra
 - proofs by re-writing and perfect induction
- Gate logic
 - networks of Boolean functions and their time behavior
- Canonical forms
 - two-level and incompletely specified functions
- Simplification
 - a start at understanding two-level simplification
- Later
 - automation of simplification
 - multi-level logic
 - time behavior
 - hardware description languages
 - design case studies