## Przybliżanie funkcji

Podsumowanie

Opracowanie: Maksymilian Sulima

## Informacje techniczne

### System operacyjny:

• Windows 10 19044.2604

#### Technologie:

- Python 3.10
- numpy 1.24.2
- matplotlib 3.7.1
- jupyter

#### Procesor:

• AMD Ryzen 7 4700U

## Funkcja zadana

$$f(x) = \sin(2x) * \sin(2x^2/\pi), x \in (-2\pi, \pi)$$



## Rozważone podejścia do przybliżenia

- Interpolacja
  - Zagadnienie Lagrange'a
    - Wzór Lagrange'a
    - Wzór Newtona
  - Zagadnienie Hermite'a
    - Wzór Newtona
  - Funkcjami sklejanymi
    - Drugiego stopnia
    - Trzeciego stopnia
- Aproksymacja średniokwadratowa wielomianami:
  - Algebraicznymi
  - Trygonometrycznymi

## Najważniejsze założenia teoretyczne

- Wartości błędów liczono dla 1000 równoodległych punktów
- Dla zagadnienia Hermite'a użyto wzoru Newtona i wagi dla każdego węzła 2
- Warunki brzegowe dla funkcji sklejanych
  - Kwadratowych
    - Clamped boundary  $s'_1(x_1) = f'(x_1)$
    - Natural quadratic  $s''_1(x_1) = 0$
  - Sześciennych
    - Cubic function  $s'''_1(x_1) = C'''_1(x_1)$  i  $s'''_1(x_1) = C'''_n(x_n)$ ,  $C_1$ ,  $C_n f$ / sześcienne przechodzące przez pierwsze/ostatnie 4 pkt
    - Natural  $s''_1(x_1) = s''_n(x_1) = 0$

## Wyniki

- Dokładność obliczeń zmierzono za pomocą 2 metryk:
  - Błędu maksymalnego

$$\forall i \in <1, p>\max |f(x_i) - F(x_i)|$$

• Błędu średniokwadratowego

$$\frac{1}{p} \sqrt{\sum_{i=0}^{p} (f(x_i) - F(x_i))^2}$$

P – liczba punktów pomiaru

 $x_i$  - i-ty pkt pomiaru

## Najlepsze wyniki, błąd maksymalny

| Nazwa                       | Dane      | Bład maksymalny |
|-----------------------------|-----------|-----------------|
| Lagrange węzły Czebyszewa   | n=70      | 4,339E-14       |
| Hermite węzły Czebyszewa    | n=21      | 1,223E-03       |
| Newton węzły Czebyszewa     | n=39      | 1,887E-03       |
| Kwadratowy spline clamped   | n=70      | 1,404E-02       |
| Aproksymacja śrd, trygo,    | n=70 m=30 | 2,059E-02       |
| Sześcienny spline cubic     | n=70      | 2,853E-02       |
| Sześcienny spline natural   | n=70      | 3,903E-02       |
| Kwadratowy spline natural   | n=70      | 7,027E-02       |
| Lagrange węzły Równoodległe | n=61      | 4,354E-01       |
| Aproksymacja śrd, alg,      | n=60 m=20 | 5,474E-01       |
| Newton węzły równoodległe   | n=4       | 9,494E-01       |
| Hermite węzły równoodległe  | n=4       | 9,494E-01       |

## Najlepsze wyniki, błąd średniokwadratowy

| Nazwa                       | Dane      | Błąd średniokwadratowy |
|-----------------------------|-----------|------------------------|
| Nazwa                       | Dune      | Biqu Sicumokwaaratowy  |
| Lagrange węzły Czebyszewa   | n=70      | 4,228E-16              |
| Hermite węzły Czebyszewa    | n=21      | 1,000E-05              |
| Newton węzły Czebyszewa     | n=42      | 1,201E-05              |
| Sześcienny spine cubic      | n=70      | 8,921E-05              |
| , .p.                       |           | -7-                    |
| Kwadratowy spline clamped   | n=70      | 1,059E-04              |
| Sześcienny spline natural   | n=70      | 1,247E-04              |
| Aproksymacja śrd, trygo,    | n=70 m=30 | 2,166E-04              |
| Lagrange węzły równoodległe | n=61      | 7,898E-04              |
| Kwadratowy spline natural   | n=39      | 1,294E-03              |
| Aproksymacja śrd, alg,      | n=65 m=20 | 7,175E-03              |
|                             |           |                        |
| Newton węzły równoodległe   | n=4       | 1,422E-02              |
| Hermite węzły równoodległe  | n=4       | 1,422E-02              |

## Najlepsze wyniki, oba błędy

| Nazwa                       | Dane      | Błąd średniokwadratowy | Dane                | Bład maksymalny |
|-----------------------------|-----------|------------------------|---------------------|-----------------|
| Lagrange węzły Czebyszewa   | n=70      |                        | 4,228E-16 n=70      | 4,339E-14       |
| Lagrange węzły równoodległe | n=61      |                        | 7,898E-04 n=61      | 4,354E-01       |
| Newton węzły Czebyszewa     | n=42      |                        | 1,201E-05 n=39      | 1,887E-03       |
| Newton węzły równoodległe   | n=4       |                        | 1,422E-02 n=4       | 9,494E-01       |
| Hermite węzły Czebyszewa    | n=21      |                        | 1,000E-05 n=21      | 1,223E-03       |
| Hermite węzły równoodległe  | n=4       |                        | 1,422E-02 n=4       | 9,494E-01       |
| Kwadratowy spline natural   | n=39      |                        | 1,294E-03 n=70      | 7,027E-02       |
| Kwadratowy spline clamped   | n=70      |                        | 1,059E-04 n=70      | 1,404E-02       |
| Sześcienny spline natural   | n=70      |                        | 1,247E-04 n=70      | 3,903E-02       |
| Sześcienny spine cubic      | n=70      |                        | 8,921E-05 n=70      | 2,853E-02       |
| Aproksymacja śrd, alg,      | n=65 m=20 |                        | 7,175E-03 n=60 m=20 | 5,474E-01       |
| Aproksymacja śrd, trygo,    | n=70 m=30 |                        | 2,166E-04 n=70 m=30 | 2,059E-02       |

## Najlepsze wyniki, porównanie rankingu błędów

| Błąd średniowkadratowy      | Błąd maksymlany             |
|-----------------------------|-----------------------------|
| Lagrange węzły Czebyszewa   | Lagrange węzły Czebyszewa   |
| Hermite węzły Czebyszewa    | Hermite węzły Czebyszewa    |
| Newton węzły Czebyszewa     | Newton węzły Czebyszewa     |
| Szescienny spine cubic      | Kwadratowy spline clamped   |
| Kwadratowy spline clamped   | Aproksymacja śrd, trygo,    |
| Sześcienny spline natural   | Szescienny spine cubic      |
| Aproksymacja śrd, trygo,    | Sześcienny spline natural   |
| Lagrange węzły równoodległe | Kwadratowy spline natural   |
| Kwadratowy spline natural   | Lagrange węzły Równoodległe |
| Aproksymacja śrd, alg,      | Aproksymacja śrd, alg,      |
| Newton węzły równoodległe   | Newton węzły równoodległe   |
| Hermite węzły równoodległe  | Hermite węzły równoodległe  |

## Podatności na efekt Rungego

## Zagadnienie Lagrange'a wzór Lagrange'a

### N=10 węzły równoodległe



### N=10 węzły Czebyszewa



## Zagadnienie Lagrange'a wzór Newtona

### N=10 węzły równoodległe



### N=10 węzły Czebyszewa



## Zagadnienie Hearmite'a wzór Newtona

#### N=6 węzły równoodległe



### N=6 węzły Czebyszewa



# Aproksymacja średniokwadratowa wielomianem algebraicznym

#### N=10 M=10 węzły równoodległe



#### N=10 M=6 węzły równoodległe



Błędy w arytmetyce

## Zagadnienie Lagrange'a wzór Lagrange'a

### N=61 węzły równoodległe



### N=70 węzły Czebyszewa



## Zagadnienie Lagrange'a wzór Newtona

#### N=47 węzły równoodległe



#### N=47 węzły Czebyszewa



## Zagadnienie Lagrange'a wzór Newtona

#### N=52 węzły równoodległe



#### N=52 węzły Czebyszewa



## Zagadnienie Hermite'a wzór Newtona

#### N=23 węzły równoodległe



#### N=27 węzły Czebyszewa



## Oscylacje

## Kwadratowe funkcje sklejane n = 20, 40, 60

#### Natural

imgflip.com

### 

### Clamped



ngflip.com

# Zależności między zmiennymi w aproksymacji

# Aproksymacja średniokwadratowa wielomianami algebraicznymi





### Zależność błędu maksmymalnego dla danego stopnia wielomianu w zależności od liczby węzłów



# Aproksymacja średniokwadratowa wielomianami algebraicznymi





### Zależność błędu maksymalnego dla danej liczby węzłów w zależności od stopnia wielomianu



## Aproksymacja średniokwadratowa wielomianami trygonometrycznymi, błąd maksymalny

| poprzednia-<br>następna<br>wartość n\m | 2       | 3       | 4 5    |        | 6      | 8      | 10     | 12     | 15     |
|----------------------------------------|---------|---------|--------|--------|--------|--------|--------|--------|--------|
| "5-7"                                  | 18,35%  |         |        |        |        |        |        |        |        |
| "7-10"                                 | -45,38% | -45,38% |        |        |        |        |        |        |        |
| "10-15"                                | 8,03%   | -6,27%  | 21,23% |        |        |        |        |        |        |
| "15-20"                                | 24,34%  | 34,87%  | 17,76% | 11,96% | 11,58% |        |        |        |        |
| "20-25"                                | 1,45%   | 0,48%   | 3,13%  | 7,04%  | 10,84% | 12,83% |        |        |        |
| "25-30"                                | 0,16%   | -0,55%  | 0,82%  | 1,55%  | 2,41%  | 5,29%  | 18,93% | 46,23% |        |
| "30-25"                                | 0,03%   | -0,21%  | 0,20%  | 0,37%  | 0,51%  | 1,02%  | -0,45% | 1,32%  |        |
| "35-40"                                | 0,01%   | -0,10%  | 0,06%  | 0,12%  | 0,17%  | 0,35%  | 0,05%  | 0,75%  | 10,56% |
| "40-45"                                | 0,00%   | -0,06%  | 0,02%  | 0,05%  | 0,07%  | 0,16%  | 0,12%  | -0,54% | 3,55%  |
| "45-50"                                | 0,00%   | -0,04%  | 0,00%  | 0,02%  | 0,03%  | 0,10%  | 0,12%  | -0,62% | 1,46%  |
| "50-55"                                | 0,00%   | -0,03%  | 0,00%  | 0,01%  | 0,01%  | 0,06%  | 0,11%  | -0,34% | 0,64%  |
| "55-60"                                | 0,00%   | -0,02%  | -0,01% | 0,00%  | 0,00%  | 0,04%  | 0,10%  | -0,21% | 0,28%  |
| "60-65"                                | 0,00%   | -0,02%  | -0,01% | 0,00%  | 0,00%  | 0,03%  | 0,08%  | -0,14% | 0,10%  |
| "65-70"                                | 0,00%   | -0,01%  | -0,01% | 0,00%  | 0,00%  | 0,03%  | 0,07%  | -0,09% | 0,02%  |

## Aproksymacja średniokwadratowa wielomianami trygonometrycznymi, błąd średniokwadratowy

| poprzednia-następna wartość\m | 2       | 3       | 1 !    | 5      | 6      | 8 :    | 10    | 12     | 15    |
|-------------------------------|---------|---------|--------|--------|--------|--------|-------|--------|-------|
| "5-7"                         | 12,06%  |         |        |        |        |        |       |        |       |
| "7-10"                        | -20,41% | -20,41% |        |        |        |        |       |        |       |
| "10-15"                       | 16,61%  | 14,26%  | 17,53% |        |        |        |       |        |       |
| "15-20"                       | 7,19%   | 9,92%   | 15,71% | 15,37% | 18,95% |        |       |        |       |
| "20-25"                       | 0,05%   | 0,20%   | 0,48%  | 1,48%  | 4,02%  | 21,46% |       |        |       |
| "25-30"                       | 0,00%   | 0,01%   | 0,01%  | 0,04%  | 0,08%  | 1,15%  | 7,16% | 38,74% |       |
| "30-25"                       | 0,00%   | 0,00%   | 0,01%  | 0,01%  | 0,01%  | 0,07%  | 0,29% | 1,91%  |       |
| "35-40"                       | 0,00%   | 0,00%   | 0,00%  | 0,01%  | 0,01%  | 0,03%  | 0,06% | 0,19%  | 5,65% |
| "40-45"                       | 0,00%   | 0,00%   | 0,00%  | 0,00%  | 0,00%  | 0,02%  | 0,03% | 0,09%  | 1,29% |
| "45-50"                       | 0,00%   | 0,00%   | 0,00%  | 0,00%  | 0,00%  | 0,01%  | 0,02% | 0,06%  | 0,68% |
| "50-55"                       | 0,00%   | 0,00%   | 0,00%  | 0,00%  | 0,00%  | 0,01%  | 0,02% | 0,05%  | 0,47% |
| "55-60"                       | 0,00%   | 0,00%   | 0,00%  | 0,00%  | 0,00%  | 0,01%  | 0,01% | 0,04%  | 0,36% |
| "60-65"                       | 0,00%   | 0,00%   | 0,00%  | 0,00%  | 0,00%  | 0,01%  | 0,01% | 0,03%  | 0,28% |
| "65-70"                       | 0,00%   | 0,00%   | 0,00%  | 0,00%  | 0,00%  | 0,01%  | 0,01% | 0,02%  | 0,22% |

## Aproksymacja średniokwadratowa wielomianami trygonometrycznymi, błąd maksymalny

| n\poprzednia-<br>następna wartość |         |         |        |        |        |        |         |         |
|-----------------------------------|---------|---------|--------|--------|--------|--------|---------|---------|
| m                                 | "2-3"   | "3-4"   | "4-5"  | "5-6"  | "6-8"  | "8-10" | "10-12" | "12-15" |
| 5                                 |         |         |        |        |        |        |         |         |
| 7                                 | 0,00%   |         |        |        |        |        |         |         |
| 10                                | 0,00%   | -21,46% |        |        |        |        |         |         |
| 15                                | -15,56% | 9,97%   | 3,47%  | -5,84% |        |        |         |         |
| 20                                | 0,54%   | -13,68% | -3,34% | -6,30% | 29,23% |        |         |         |
| 25                                | -0,44%  | -10,65% | 0,82%  | -1,95% | 30,80% | 4,82%  | 11,35%  |         |
| 30                                | -1,16%  | -9,14%  | 1,55%  | -1,05% | 32,85% | 18,53% | 41,20%  |         |
| 35                                | -1,40%  | -8,69%  | 1,71%  | -0,91% | 33,19% | 17,32% | 42,23%  | 49,43%  |
| 40                                | -1,51%  | -8,51%  | 1,77%  | -0,86% | 33,31% | 17,07% | 42,64%  | 54,43%  |
| 45                                | -1,57%  | -8,43%  | 1,79%  | -0,84% | 33,37% | 17,04% | 42,25%  | 56,28%  |
| 50                                | -1,61%  | -8,38%  | 1,81%  | -0,83% | 33,42% | 17,06% | 41,82%  | 57,19%  |
| 55                                | -1,63%  | -8,35%  | 1,82%  | -0,82% | 33,45% | 17,10% | 41,56%  | 57,61%  |
| 60                                | -1,65%  | -8,33%  | 1,82%  | -0,82% | 33,48% | 17,14% | 41,38%  | 57,81%  |
| 65                                | -1,66%  | -8,32%  | 1,83%  | -0,81% | 33,50% | 17,18% | 41,25%  | 57,92%  |
| 70                                | -1,68%  | -8,31%  | 1,83%  | -0,81% | 33,52% | 17,22% | 41,16%  | 57,96%  |

## Aproksymacja średniokwadratowa wielomianami trygonometrycznymi, błąd średniokwadratowy

| n\poprzednia-<br>następna wartość | "2-3"  | "3-4"  | "4-5" | "5-6"  | "6-8"  | "8-10" | "10-12" | "12-15" |
|-----------------------------------|--------|--------|-------|--------|--------|--------|---------|---------|
| 5                                 |        |        |       |        |        |        |         |         |
| 7                                 | 0,00%  |        |       |        |        |        |         |         |
| 10                                | 0,00%  | 4,93%  |       |        |        |        |         |         |
| 15                                | -2,82% | 8,55%  | 0,42% | -2,73% |        |        |         |         |
| 20                                | 0,20%  | 14,43% | 0,01% | 1,62%  | 19,61% |        |         |         |
| 25                                | 0,35%  | 14,67% | 1,02% | 4,16%  | 34,21% | 9,46%  | 9,43%   |         |
| 30                                | 0,36%  | 14,68% | 1,05% | 4,20%  | 34,92% | 14,97% | 40,23%  |         |
| 35                                | 0,36%  | 14,68% | 1,05% | 4,20%  | 34,96% | 15,16% | 41,20%  | 62,52%  |
| 40                                | 0,36%  | 14,68% | 1,05% | 4,20%  | 34,97% | 15,19% | 41,28%  | 64,57%  |
| 45                                | 0,36%  | 14,68% | 1,05% | 4,20%  | 34,98% | 15,20% | 41,31%  | 65,00%  |
| 50                                | 0,36%  | 14,69% | 1,05% | 4,20%  | 34,99% | 15,21% | 41,34%  | 65,22%  |
| 55                                | 0,36%  | 14,69% | 1,05% | 4,20%  | 34,99% | 15,21% | 41,36%  | 65,36%  |
| 60                                | 0,36%  | 14,69% | 1,05% | 4,20%  | 35,00% | 15,22% | 41,37%  | 65,48%  |
| 65                                | 0,36%  | 14,69% | 1,05% | 4,20%  | 35,00% | 15,22% | 41,38%  | 65,56%  |
| 70                                | 0,36%  | 14,69% | 1,05% | 4,20%  | 35,00% | 15,22% | 41,39%  | 65,63%  |

### KONIEC

Dziękuję za uwagę