المادة: الفيزياء الشهادة: الثانوبة العامة الفرع: علوم الحياة نموذج رقم 2 المدّة: ساعتان

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة) المرجع: دورة سنة 2012 الإستثنائية الإكمالية (معدّلة بحسب توصيف مادة الفيزياء للعام الدراسي 2016-2017)

Cette épreuve comporte trois exercices obligatoires. L'usage des calculatrices non programmables est autorisé.

Exercice 1 (7 points)

Influence de la fréquence sur l'intensité du courant

Le circuit, représenté par le document (Doc 1) ci-contre, comporte en série:

- un générateur (G) délivrant, à ses bornes, une tension alternative, $u_{AF} = u_G = 8\sin(2\pi ft)$ (S.I.);
- un condensateur de capacité $C = 0.265 \mu F$;
- une bobine d'inductance L = 31,833 mH et de résistance négligeable ;
- un conducteur ohmique de résistance $R = 100 \Omega$.

Le circuit est alors parcouru par un courant alternatif d'intensité i où $i = I_m \sin(2\pi f t + \varphi)$ (S.I.).

Le but de cet exercice est d'étudier l'effet de la fréquence f de u_G sur l'amplitude I_m de i et sur le déphasage φ entre i et u_G.

Un oscilloscope, branché comme l'indique le document (Doc 1), sert à visualiser les tensions u_G et $u_R = u_{DF}$. Dans toutes les expériences, la sensibilité verticale est la même pour les deux voies : $S_v = 2 \text{ V/div}$.

1^{re} expérience 1)

On règle la fréquence à la valeur $f = f_1 = 1500$ Hz. On observe sur l'écran de l'oscilloscope les courbes représentées par le document (Doc 2) ci-contre.

- **1-1**) Identifier les oscillogrammes (a) et (b).
- **1-2**) Déterminer le déphasage φ_1 entre i et u_G .
- 1-3) Calculer l'amplitude I_{1m} de l'intensité i du courant.

(a) (b) (Doc 2)

2^e expérience 2)

On augmente la valeur de f et on lui donne la valeur $f = f_0$, f₀ étant la fréquence propre du dipôle (RLC).

On remarque que les deux oscillogrammes obtenus se superposent. Le circuit est alors le siège d'un certain phénomène.

- **2-1**) Donner le nom du phénomène physique obtenu.
- **2-2)** Donner alors la nouvelle valeur du déphasage φ_2 entre i et u_G .
- **2-3**) Déduire la valeur de f_0 et la nouvelle valeur de l'amplitude I_{2m} de i.

3) 3^e expérience

3-1) On mesure I_m et ϕ pour trois autres valeurs de f; les résultats sont enregistrés dans le tableau du (Doc 3) ci-contre. Compléter le tableau.

3-2)	En	se	référant	au	tableau	(Doc	3),	tracer	la
	cou	rbe	donnant 1	les v	variations	$de \; I_m \\$	en f	onction	de f

f (Hz)	1000	1500	$f_0 = ?$	2220	2500
$I_{m}(A)$	0,02			0,04	0,03
φ (rd)	1,33			-1,04	-1,2

(Doc 3)

3-3) Conclure sur l'effet de f sur l'amplitude I_m de i et sur le signe du déphasage φ entre i et u_G.

Exercice 2 (7 points)

Énergies et choc

Une particule (S_1) , de masse m_1 = 200 g, est abandonnée sans vitesse d'un point A, le long d'une glissière ABOE placée dans un plan vertical comme l'indique le document (Doc 4) ci-contre.

La partie AB, très glissante, le long de laquelle la force de frottement est alors négligeable, a la forme d'un arc de cercle de rayon h_A et la partie BO, rugueuse,

le long de laquelle la force de frottement \vec{f} est supposée constante, est rectiligne horizontale avec BO = 1 m. La particule (S_1) arrive au point B avec une vitesse de valeur $v_{1B} = 4$ m/s, puis elle continue le long de BO et arrive au point O avec une vitesse de valeur $v_{1O} = 2$ m/s.

En O, (S_1) entre en choc frontal avec une particule (S_2) , de masse $m_2 = 400$ g, initialement au repos et reliée à l'extrémité d'un ressort de constante de raideur k = 100 N/m dont l'autre extrémité est fixée en E.

Prendre le plan horizontal contenant BO comme niveau de référence de l'énergie potentielle de pesanteur. Prendre : $g = 10 \text{ m/s}^2$.

- 1) Conservation et non conservation de l'énergie mécanique.
 - **1-1**) En appliquant le principe de conservation de l'énergie mécanique du système [(S₁), Terre], déterminer h_A.
 - 1-2) Déterminer le travail effectué par la force de frottement \vec{f} le long de BO.
 - 1-3) Déduire l'intensité f de la force de frottement \vec{f} le long de BO.
- 2) Choc élastique.

Le choc frontal entre les particules (S_1) et (S_2) est parfaitement élastique. Toutes les vitesses, avant et après le choc, sont portées par l'axe horizontal x'Ox.

- **2-1**) Déterminer les valeurs des vitesses v'₁₀ de (S₁) et v'₂₀ de (S₂) juste après le choc.
- **2-2)** En négligeant la force de frottement entre (S_2) et le support, juste après le choc, calculer la compression maximale $x_m = OD$ du ressort.
- **2-3**) En réalité, la force de frottement \vec{f}' entre (S_2) et le support, juste après le choc, n'est pas négligeable et la compression maximale du ressort est $x'_m = OD' = 6,4$ cm.
 - **2-3-1**) Déterminer la diminution en énergie mécanique du système [(S₂), Terre, ressort] entre O et D'.
 - **2-3-2**) Sous quelle forme d'énergie cette diminution apparaît-elle ?

Exercice 3 (6 points) Radioactivité du Thallium

L'isotope radioactif de Thallium $^{207}_{81}$ Tl est un émetteur β^- , de période radioactive 135 jours. La désintégration d'un noyau de Thallium 207 produit un noyau fils, le Plomb $^{A}_{2}$ Pb. L'énergie cinétique d'une particule β^- émise est E_C (β^-) = 0,70 MeV. Cette désintégration est aussi accompagnée par l'émission d'une radiation gamma (γ) d'énergie $E(\gamma)$ et d'un antineutrino $^{0}_{0}\overline{\nu}$ d'énergie $E(^{0}_{0}\overline{\nu})$ = 0,10 MeV.

L'équation de cette désintégration s'écrit : $^{207}_{81}$ Tl \longrightarrow $^{A}_{Z}$ Pb + $^{0}_{-1}$ e + $^{0}_{0}\overline{v}$ + γ Données :

$$\begin{array}{ll} m\;(^{A}_{Z}Pb) = 206,9759\;u\;; & m\;(^{207}_{81}Tl) = 206,9775\;u\;; & m\;(^{0}_{-1}e) = 5,486\times10^{-4}\;u\;; \\ 1\;u = 931,5\;MeV/c^{2}\;; & 1\;eV = 1,6\times10^{-19}\;J\;; & N_{A} = 6,023\times10^{23}. \end{array}$$

- 1)
- **1-1**) Calculer A et Z en précisant les lois utilisées.
- 1-2) Définir la période radioactive d'une substance.
- **1-3**) Calculer la constante radioactive λ du Thallium 207.
- **1-4**) Interpréter l'émission de la radiation γ .
- **1-5**) Sachant que le noyau de Thallium 207 est initialement au repos et l'énergie cinétique du noyau fils est négligeable, déterminer l'énergie $E(\gamma)$ du photon γ émis.
- 2) Dans une étude énergétique concernant l'émission β⁻ par un échantillon de 1 g de Thallium 207 fraichement préparé, un expérimentateur, détecte, durant le premier jour de désintégration, les électrons émis pour déterminer la puissance maximale moyenne produite par ces électrons.
 - 2-1) Calculer le nombre initial des noyaux de Thallium 207 contenus dans cet échantillon.
 - **2-2**) Déterminer, en Bq, la valeur initiale de l'activité radioactive, de cet échantillon.
 - **2-3**) Durant le premier jour :
 - 2-3-1) Calculer le nombre des électrons émis.
 - **2-3-2**) Déterminer, en joules, l'énergie des particules β^- émises.
 - **2-3-3**) Déduire la puissance moyenne des électrons émis.

المادة: الفيزياء الشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم 2 المدّة: ساعتان

الهيئة الأكاديمية المشتركة قسم: العلوم

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

Question	Réponse	Note						
1-1	$\underline{U_{mG}} > \underline{U_{mR}}$ avec la même sensibilité verticale ; (a) représente $\underline{u_G}$ et (b) représente $\underline{u_R}$.							
1-2	$ \varphi_1 = \frac{2\pi \times 0.8}{6.4} = \frac{\pi}{4} \text{ rd}$							
	or l'oscillogramme (b) est en avance de phase sur l'oscillogramme (a), donc u _R ((ou i) est						
	en avance de phase sur u_G car u_R atteint la valeur maximale avant u_G , donc : φ_1	π						
1-3		$= + \frac{1}{4} \text{ fu}$ $\frac{1}{2}$ $\frac{1}{2}$						
2-1	$I_{1m} = U_{Rm}/R = 0,056 \text{ A}$ Résonance d'intensité.	1/4						
2-2	$\varphi_2 = 0$	1/4						
2-3	$LC\omega^2 = 1 \text{ avec } \omega = 2\pi f_0, \text{ donc } : f_0 = \frac{1}{2\pi\sqrt{LC}} = 1733 \text{ Hz}$	1/2						
	=,20	1/2						
	A la résonance d'intensité, le circuit se comporte comme un conducteur ohmiqu	ie, soit 1/2						
3-1	$I_{2m} = U_{mG}/R = 8/100 = 0,08 \text{ A}$							
J-1	f (Hz) 1000 1500 $f_0 = 1733$ 2220 2500							
	I _m (A) 0,02 0,056 0,08 0,04 0,03	1/2						
	φ (rd) 1,33 0,785 0 -1,04 -1,2	, -						
3-2	0,1 / Im (A)							
	0,09							
	0,00							
	0,08							
	0,07							
	0,06							
	0,05							
	0,04	1						
	0,03							
	0,02							
	0,01							
	0 f (Hz)							
	0 1000 2000 3000	$\phi > 0.$ $\frac{1}{2}$						
3-3	Lorsque f augmente, pour $f < f_0$, I_m augmente et i est en avance de phase sur u_G ; $\phi > 0$.							
	Pour $f = f_0$, I_m prend une valeur maximale et i et u_G sont en phase; $\varphi = 0$.	$0 < 0.$ $\frac{1/2}{1/2}$						
	Lorsque f augmente, pour $f > f_0$, I_m diminue et i est en retard de phase sur u_G ; $\phi < 0$.							

Exercice 2 (7 points) Énergies et choc

$\begin{tabular}{ c c c c }\hline Question & & & \\\hline 1-1 & & E_m(A) = E_m(B) \\ & & E_{pp}(A) + E_c(A) = E_{pp}(B) + E_c(A) \\ \hline \end{tabular}$	Réponse	Note
` ' ` '		
	(B)	
$m_1gh_A + 0 = 0 + \frac{1}{2}m_1(v_{1B})^2$,	1/2
$\frac{1}{2}(v_{1B})^2$		
$n_A = \frac{g}{g}$		
$h_{A} = \frac{\frac{1}{2}(v_{1B})^{2}}{g}$ $h_{A} = \frac{\frac{1}{2}(4)^{2}}{10}$		
		3/4
$h_A = 0.8 \text{ m}$		74
1-2 Explication:		
$E_m(O) - E_m(B) = W(\vec{f})_{B \to O}$	→	
$E_{pp}(O) + E_c(O) - E_{pp}(B) - E_c($		
$0 + \frac{1}{2}m_1(v_{1O})^2 - 0 - \frac{1}{2}m_1(v_{1B})$		1/2
$W(\vec{f})_{B\to O} = \frac{1}{2} \times 0, 2 \times (2)^2 - 0$	$-\frac{1}{2}\times0,2\times(4)^2$	
$W(\vec{f})_{B \to O} = -1.2 \text{ J}$		3/4
1-3 $W(\vec{f})_{B\to O} = \vec{f} \cdot \overrightarrow{BO} = -f \times BO$		
$f = -\frac{W(\vec{f})_{B \to 0}}{BO}$		
I DU		1
$f = -\frac{-1.2}{1} = 1.2 \text{ N}$		1
	nouvement du système $[(S_1), (S_2)]$ est conservée :	
$\vec{p}_{avant} = \vec{p}_{après}$		
Algébriquement selon le sens	nositif ·	
$m_1v_{10} + 0 = m_1v'_{10} + m_2v'_{20}$	positii .	
$m_1 (v_{10} - v'_{10}) = m_2 v'_{20}$	(équation 1)	
	lors la conservation de l'énergie cinétique du système:	
$E_{c}(avant) = E_{c}(après)$	1/ / 2 2	
$\frac{1}{2}m_1(v_{10})^2 + 0 = \frac{1}{2}m_1(v'_{10})^2 + \frac$		
$m_1(v_{10} - v'_{10})(v_{10} + v'_{10}) = m$	$(2(v'_{20})^2$ (équation 2)	
Compte tenu des équations (é	quation 2) et (équation 1), on obtient :	
$v_{10} + v'_{10} = v'_{20}$	(équation 3)	
. ===		
En opérant sur (équation 1) et	(équation 3), on obtient:	
$V'_{10} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) V_{10}$		1
\III ₁ + III ₂ /		1
Ce qui donne : $v'_{10} = -2/3 = -6$	0,67 m/s	
Et en remplaçant dans (équati	on 3), on obtient : $v'_{2O} = 4/3 = 1,33$ m/s.	1/2

2-2	L'énergie mécanique du système [(S ₂), ressort, Terre] est conservée.	
	Em(O) = Em(D)	
	$E_{pp}(O) + E_{pe}(O) + E_{c}(O) = E_{pp}(D) + E_{pe}(D) + E_{c}(D)$	
	$0 + 0 + \frac{1}{2}m_2(v'_{2O})^2 = 0 + \frac{1}{2}k(x_m)^2 + 0$	1/2
	$m_2(v'_{2O})^2 = k(x_m)^2$	
	$x_{\rm m} = (v'_{\rm 2O}) \sqrt{\frac{m_2}{k}}$	
	$x_{\rm m} = \frac{4}{3} \sqrt{\frac{0.4}{100}}$	
	$x_m = OD = 0.084 \text{ m} = 8.4 \text{ cm}$	1/2
2-3-1	La diminution en énergie mécanique du système [(S ₂), Terre, ressort] est égale à :	
	$\Delta E_{\rm m} = \frac{1}{2} m_2 (v'_{2O})^2 - \frac{1}{2} k (x'_{\rm m})^2 = \frac{1}{2} \times 0.4 \times (4/3)^2 - \frac{1}{2} \times 100 \times (0.064)^2 = 0.15 \text{ J}$	1/2
2-3-2	Cette diminution apparaît sous forme d'énergie thermique (chaleur).	1/2

Exercice 3 (6 points) Radioactivité du Thallium

Exercice 3	8 (6 points) Radioactivité du Thallium	
Question	Réponse	Note
1-1	En appliquant les lois de Soddy:	1/4
	Conservation du nombre de masse : $207 = A + 0 + 0 \implies A = 207$	1/4
	Conservation du nombre de charge : $81 = Z - 1 + 0 \implies Z = 82$	1/4
1-2	La période radioactive T d'une substance est l'intervalle de temps au bout duquel	
	l'activité devient égale à la moitié de sa valeur initiale.	1/2
1-3	$\lambda = \frac{\ln 2}{T} = \frac{0.693}{135 \times 24 \times 3600} = 5.94 \times 10^{-8} \text{s}^{-1}$	1/2
1-4	Le noyau fils de plomb, produit par la désintégration, est obtenu dans un état excité;	
	la durée de présence dans cet état étant très courte, le noyau fils de plomb va se	
	désexciter et cette désexcitation est accompagnée par l'émission d'une radiation γ.	1/4
1-5	La loi de conservation de l'énergie totale :	
	$m(T1).c^2 = m(Pb).c^2 + m(e^-).c^2 + Ec(e^-) + E(\gamma) + E(\frac{0}{0}\overline{v})$	1/2
	or $\Delta m.c^2 = (206,9775 - 206,9759 - 5,486 \times 10^{-4}) \times 931,5$	
	et $\Delta m.c^2 = 0.70 + E(\gamma) + 0.10$	
	d'où : $E(\gamma) = 0.97938 - 0.80 = 0.179 \text{ MeV}$	1/2
2-1	$\frac{m}{M} = \frac{N_0}{N_A}$ alors $N_0 = 2,9096 \times 10^{21}$ noyaux	1/2
2-2	$A_0 = \lambda N_0 = 5.94 \times 10^{-8} \times 2.9096 \times 10^{21} = 1.7283 \times 10^{14} \text{ Bq}$	1/2
2-3-1	Le nombre de noyaux de thallium présents au bout d'un jour :	
	$N_1 = N_0 e^{-\lambda t} = 2.9096 \times 10^{21} e^{(-5,94 \times 10^{-8} \times 24 \times 3600)} = 2,8947 \times 10^{21} \text{ noyaux}$	1/2
	Le nombre des noyaux désintégrés $N = N_0 - N_1 = 1,49 \times 10^{19}$ noyaux	
	Or le nombre des électrons émis est égal au nombre des noyaux désintégrés	1./
	Alors: $N_{e-} = 1,49 \times 10^{19}$ électrons	1/2
2-3-2	$E = N_{e-} \times Ec(\beta^{-}) = 1,49 \times 10^{19} \times 0,70 = 1,043 \times 10^{19} \text{ MeV} = 1,668 \times 10^{6} \text{ J}$	1/2
2-3-3	$P_{\text{moy}} = E/\Delta t = 1,668 \times 10^6/(24 \times 3600) = 19,3 \text{ W}$	1/2