Tensor SOM のアルゴリズム

2019年9月12日

表 1 変数記号表

 記号	
X	データ集合($\underline{\mathbf{X}} = (x_{n_1 n_2 d}) \in \mathbb{R}^{N_1 \times N_2 \times D}$)
N_1	モード1のデータ数
N_2	モード 2 のデータ数
D	データの次元数
$\mathbf{Z}^{(1)}$	モード 1 の潜在変数集合($\mathbf{Z}^{(1)}=(z_{n_1l_1}^{(1)})\in\mathbb{R}^{N_1\times L_1})$
	$m{z}_{n_1} = (z_{n_1 1}^{(1)}, \dots, z_{n_1 L_1}^{(1)})^{\mathrm{T}}$
$\mathbf{Z}^{(2)}$	モード 2 の潜在変数集合($\mathbf{Z}^{(2)} = (z_{n_2 l_2}^{(2)}) \in \mathbb{R}^{N_2 \times L_2}$)
	$m{z}_{n_2} = (z_{n_21}^{(2)}, \dots, z_{n_2L_2}^{(2)})^{\mathrm{T}}$
L_1	モード 1 の潜在変数の次元
L_2	モード 2 の潜在変数の次元
\mathbf{Y}	2 次モデル($\underline{\mathbf{Y}} = (y_{k_1 k_2 d}) \in \mathbb{R}^{K_1 \times K_2 \times D}$)
K_1	モード1のノード数
K_2	モード 2 のノード数
$\underline{\mathbf{U}}^{(1)}$	モード 1 の 1 次モデル $(\mathbf{U}^{(1)} = (u_{n_1k_2d}^{(1)}) \in \mathbb{R}^{N_1 \times K_2 \times D})$
$\underline{\mathbf{U}}^{(2)}$	モード 2 の 2 次モデル $(\mathbf{U}^{(2)} = (u_{k_1 n_2 d}^{(2)}) \in \mathbb{R}^{K_1 \times N_2 \times D})$
$k_{n_1}^{*}{}^{(1)}$	モード 1 の n_1 番目の勝者ノード 番号
$k_{n_2}^{*}{}^{(2)}$	モード 2 の n_2 番目の勝者ノード 番号
$\zeta_{k_1 l_1}^{(1)}$	モード 1 の潜在空間における k_1 番目のノード座標
$\zeta_{k_2l_2}^{(2)}$	モード 2 の潜在空間における k_2 番目のノード座標
${f R}^{(1)}$	モード 2 の学習率集合 $(\mathbf{R}^{(1)} = (r_{k_1 n_1}^{(1)}) \in \mathbb{R}^{K_1 \times N_1})$
	$\boldsymbol{r}_{k_1}^{(1)} = (r_{k_11}^{(1)}, \dots, r_{k_1N_1}^{(1)})^{\mathrm{T}}$
${f R}^{(2)}$	モード 1 の学習率集合 $(\mathbf{R}^{(2)} = (r_{k_2 n_2}^{(2)}) \in \mathbb{R}^{K_2 \times N_2})$
	$m{r}_{k_2}^{(2)} = (r_{k_21}^{(2)}, \dots, r_{k_2N_2}^{(2)})^{\mathrm{T}}$
T	総学習回数
$ au^{(1)}, au^{(2)}$	モード 1 およびモード 2 の時定数
$\sigma_{max}^{(1)},\sigma_{max}^{(2)}$	モード 1 およびモード 2 の近傍半径の最大値
$\sigma_{min}^{(1)},\sigma_{min}^{(2)}$	モード 1 およびモード 2 の近傍半径の最小値
$\sigma^{(1)}(t), \sigma^{(2)}(t)$	モード 1 およびモード 2 の学習回数 t 回目の近傍半径

1 Tensor SOM のシミュレーションコードの作成

1.1 TSOM の学習

1.1.1 スカラー表示

■初期化

1 次モデル $\underline{\mathbf{U}}^{(1)}$, $\underline{\mathbf{U}}^{(2)}$ と 2 次モデル $\underline{\mathbf{Y}}$ に初期値を与える.または潜在変数初期化でもよい.

以下の潜在変数の推定とモデルの更新をT回繰り返す.

■潜在変数の推定

$$k_{n_1}^{*}^{(1)} = \arg\min_{k_1} \sum_{k_2=1}^{K_2} \sum_{d=1}^{D} (u_{n_1 k_2 d}^{(1)} - y_{k_1 k_2 d})^2$$
(1)

$$k_{n_2}^{*(2)} = \arg\min_{k_2} \sum_{k_1=1}^{K_1} \sum_{d=1}^{D} (u_{k_1 n_2 d}^{(2)} - y_{k_1 k_2 d})^2$$
(2)

$$z_{n_1 l_1}^{(1)} = \zeta_{k_{n_1}^* {}^{(1)} l_1}^{(1)} \tag{3}$$

$$z_{n_2l_2}^{(2)} = \zeta_{k_{n_2}^*(^2)l_2}^{(2)} \tag{4}$$

■モデルの更新

$$r_{k_1 n_1}^{(1)} = \sum_{l_1=1}^{L_1} \exp\left[-\frac{1}{2\sigma^{(1)}(t)} \left(\zeta_{k_1 l_1}^{(1)} - z_{n_1 l_1}^{(1)}\right)^2\right]$$
 (5)

$$r_{k_2n_2}^{(2)} = \sum_{l_2=1}^{L_2} \exp\left[-\frac{1}{2\sigma^{(2)}(t)} \left(\zeta_{k_2l_2}^{(2)} - z_{n_2l_2}^{(2)}\right)^2\right]$$
 (6)

近傍半径は式 (7) で求める. $\max()$ 演算子は入力集合の最大値を出力として返す.

$$\sigma(t) = \max((\sigma_{max} - \sigma_{min}) \frac{t}{\tau}, \sigma_{min})$$
(7)

$$g_{k_1}^{(1)} = \sum_{n_1=1}^{N_1} r_{k_1 n_1}^{(1)} \tag{8}$$

$$g_{k_2}^{(2)} = \sum_{n_2=1}^{N_2} r_{k_2 n_2}^{(2)} \tag{9}$$

1 次モデルの更新では,モデルのモードと更新式の学習率のモードが異なることに注意する. $u_{n_1k_2d}^{(1)}$ は $\boldsymbol{r}_{k_2}^{(2)}$, $u_{n_1k_2d}^{(1)}$ は $\boldsymbol{r}_{k_1}^{(1)}$ で更新する.

$$u_{n_1 k_2 d}^{(1)} = \frac{1}{g_{k_2}^{(2)}} \sum_{n_2=1}^{N_2} r_{k_2 n_2}^{(2)} x_{n_1 n_2 d}$$
(10)

$$u_{k_1 n_2 d}^{(2)} = \frac{1}{g_{k_1}^{(1)}} \sum_{n_1=1}^{N_1} r_{k_1 n_1}^{(1)} x_{n_1 n_2 d}$$
(11)

$$y_{k_1 k_2 d} = \frac{1}{g_{k_1}^{(1)} g_{k_2}^{(2)}} \sum_{n_1=1}^{N_1} \sum_{n_2=1}^{N_2} r_{k_1 n_1}^{(1)} r_{k_2 n_2}^{(2)} x_{n_1 n_2 d}$$
(12)

1.1.2 テンソル, 行列表示

■初期化

1 次モデル $\underline{\mathbf{U}}^{(1)}$, $\underline{\mathbf{U}}^{(2)}$ と 2 次モデル $\underline{\mathbf{Y}}$ に初期値を与える.または潜在変数初期化でもよい.

以下の潜在変数の推定とモデルの更新を T回繰り返す.

■潜在変数の推定

$$k_{n_1}^{*}^{(1)} = \arg\min_{k_1} \|\mathbf{U}_{n_1::}^{(1)} - \mathbf{Y}_{k_1::}\|^2$$
(13)

$$k_{n_2}^{* (2)} = \arg\min_{k_2} \|\mathbf{U}_{:n_2:}^{(2)} - \mathbf{Y}_{:k_2:}\|^2$$
(14)

$$\mathbf{Z}^{(1)} = (\zeta_{k_{n_1}^*(1)}^{(1)})_{n_1=1}^{N_1} \tag{15}$$

$$\mathbf{Z}^{(2)} = (\zeta_{k_{n_2}^*(2)}^{(2)})_{n_2=1}^{N_2} \tag{16}$$

■モデルの更新

 $\mathbf{H}^{(1)},\mathbf{H}^{(2)}$ は潜在空間のノードの距離行列に近傍半径の係数 $-\frac{1}{2\sigma^2}$ をかけ、exp をとったものである.対角成分は 1 となっている.

$$\mathbf{H}^{(1)} = \left(\exp\left[-\frac{1}{2\sigma^{(1)}^{2}(t)} \|\boldsymbol{\zeta}_{k_{1}}^{(1)} - \boldsymbol{\zeta}_{k_{1}'}^{(1)}\|^{2}\right]\right)_{k_{1}=1,k_{1}'=1}^{K_{1},K_{1}}$$
(17)

$$\mathbf{H}^{(2)} = \left(\exp\left[-\frac{1}{2\sigma^{(2)}(t)} \|\boldsymbol{\zeta}_{k_2}^{(2)} - \boldsymbol{\zeta}_{k_2'}^{(2)}\|^2\right]\right)_{k_2 = 1, k_2' = 1}^{K_2, K_2}$$
(18)

$$b_{k_1 n_1}^{(1)} = \delta(k_1, k_{n_1}^{*}^{(1)}) \tag{19}$$

$$b_{k_2n_2}^{(2)} = \delta(k_2, k_{n_2}^{*})$$
 (20)

 δ はクロネッカーのデルタであり以下の式を満たす.

$$\delta(i,j) = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$$
 (21)

$$\mathbf{B}^{(1)} = (b_{k_1 n_1}^{(1)})_{k_1 = 1, n_1 = 1}^{K_1, N_1} \tag{22}$$

$$\mathbf{B}^{(2)} = (b_{k_2 n_2}^{(2)})_{k_2 = 1, n_2 = 1}^{K_2, N_2} \tag{23}$$

$$\mathbf{R}^{(1)} = \mathbf{H}^{(1)}\mathbf{B}^{(1)} \tag{24}$$

$$\mathbf{R}^{(2)} = \mathbf{H}^{(2)}\mathbf{B}^{(2)} \tag{25}$$

 $\mathbf{G}^{(1)}$, $\mathbf{G}^{(2)}$ は学習率を対角に並べた対角行列である. 対角成分以外は 0 となっている.

$$\mathbf{G}^{(1)} = \operatorname{diag}(\sum_{n_1=1}^{N_1} r_{k_1 n_1}^{(1)}) \tag{26}$$

$$\mathbf{G}^{(2)} = \operatorname{diag}(\sum_{n_2=1}^{N_1} r_{k_2 n_2}^{(2)}) \tag{27}$$

$$\tilde{\mathbf{R}}^{(1)} = \mathbf{G}^{(1)^{-1}} \mathbf{R}^{(1)} \tag{28}$$

$$\tilde{\mathbf{R}}^{(2)} = \mathbf{G}^{(2)^{-1}} \mathbf{R}^{(2)} \tag{29}$$

1 次モデルの更新では,モデルのモードと更新式の学習率のモードが異なることに注意する. $\underline{\bf U}^{(1)}$ は $\tilde{\bf R}^{(2)}$, ${\bf U}^{(1)}$ は $\tilde{\bf R}^{(2)}$ で更新する.

$$\underline{\mathbf{U}}^{(1)} = \underline{\mathbf{X}} \times_2 \tilde{\mathbf{R}}^{(2)} \tag{30}$$

$$\underline{\mathbf{U}}^{(2)} = \underline{\mathbf{X}} \times_1 \tilde{\mathbf{R}}^{(1)} \tag{31}$$

$$\underline{\mathbf{Y}} = \underline{\mathbf{X}} \times_1 \tilde{\mathbf{R}}^{(1)} \times_2 \tilde{\mathbf{R}}^{(2)} \tag{32}$$

式 (30), (31), (32) はテンソル行列積であり \times_m は第 m モードに関するテンソル行列式を表している。例えば式 (30) ではテンソル $\underline{\mathbf{X}} \in \mathbb{R}^{N_1 \times N_2 \times D}$ と行列 $\tilde{\mathbf{R}}^{(2)} \in \mathbb{R}^{K_2 \times N_2}$ の第 2 モードのテンソル行列積であり,結果が $\mathbf{U}^{(1)} \in \mathbb{R}^{N_1 \times K_2 \times D}$ となっている。

2 Tensor SOM の課題

Tensor SOM のシミュレーションプログラムの作成を行う.

2.1 人工データの用意

submodule 化された som-f を用いて人工データ (双曲面データ) を生成. 用いる関数 (**URL**) は SOM の場合と生成の仕方が異なるので注意.

2.2 アルゴリズム部分の作成

用意されているコードのアルゴリズム部分を作成する.

※双曲面データを学習する際は TSOM の潜在空間は 1 次元にすること!!

以下の2ステップを近傍半径を減少させながら繰り返す.

- 2.2.1 潜在変数の更新
- 2.2.2 1次モデルと2次モデルの更新
- 2.3 ペアプロ

実験条件を他の人と完全に一致させた時、学習結果も完全に一致するか確認する.

2.4 描画

自分で描画関数を作り双曲面データの学習結果を描画する.