PHYS2350: Acceleration in 1D

Dr. Wolf

Fall 2024

Making a velocity diagram:

Making a velocity diagram:

Making a velocity diagram:

Making a velocity diagram:

Compare \vec{v}_1, \vec{v}_2 , and $\Delta \vec{v}_{12}$:

Making a velocity diagram:

Compare \vec{v}_1, \vec{v}_2 , and $\Delta \vec{v}_{12}$:

Does it matter which instants we pick?

Compare \vec{v}_1, \vec{v}_2 , and $\Delta \vec{v}_{12}$:

Does it matter which instants we pick?

Compare \vec{v}_1, \vec{v}_2 , and $\Delta \vec{v}_{12}$:

Compare \vec{v}_3 , \vec{v}_4 , and $\Delta \vec{v}_{34}$:

Does it matter which instants we pick?

Compare \vec{v}_1, \vec{v}_2 , and $\Delta \vec{v}_{12}$:

Compare \vec{v}_3 , \vec{v}_4 , and $\Delta \vec{v}_{34}$:

Answer

 $\Delta \vec{v}$ is always opposite the instantaneous velocity \vec{v} when speed is decreasing.

Change in velocity vector and acceleration

We can assume that the scale on this graph is accurate. For example, one box length represents:

- 1 second on the x-axis
- 1 m/s on the y-axis

Note: The positive direction has been chosen to be *up* the track.

Summary:

- $\Delta \vec{v}$ is always opposite in direction from \vec{v}
- \vec{a} is always opposite in direction from \vec{v}
- $\Delta \vec{v}$ and \vec{a} are always pointing down the ramp.

Summary:

- \bullet $\Delta \vec{v}$ is always in the same direction as \vec{v}
- ullet $ec{a}$ is always in the same direction as $ec{v}$
- $\Delta \vec{v}$ and \vec{a} are always pointing down the ramp.

Motion that includes a change in direction

Consider the velocity at instants 5 and 7:

Find the *change in velocity* vector, Δv for this scenario

Motion that includes a change in direction

Consider the velocity at instants 5 and 7:

Find the *change in velocity* vector, Δv for this scenario

Motion that includes a change in direction

Consider the velocity at instants 5 and 7:

Find the *change in velocity* vector, Δv for this scenario

Direction of $\Delta \vec{v}$ and \vec{a}

- $\Delta \vec{v}$ and \vec{a} are always pointing in the same direction.
- $\Delta \vec{v}$ and \vec{a} are always pointing down the ramp.

Make a graph

For the motion of the ball on the ramp, make graphs of x vs. t, v vs. t, and a vs. t. Choose your origin to be at the bottom of the ramp, and the

Kinematic equations in 1D

Also called the "Constant acceleration equations".

$$x(t) = x_i + v_i t + \frac{1}{2} a t^2 \tag{1}$$

$$v(t) = v_i + at (2)$$

$$v_f^2 - v_i^2 = 2a(x_f - x_i) (3)$$

Equation (3) is obtained by solving (2) for t and plugging into (1), then simplifying. It assumes $x(t) = x_f$ and $v(t) = v_f$.

9/9