Data Science Project

The life cycle

Big Picture

Data Science Lifecycle

Example

Goal:

To identify

- What data to be used
- Where are data
- How to measure

Scenario: House Mortgages

House price assessment takes approximately 7-14 days which takes time and cost resulting bad customer experience

Problem: How to estimate the price faster with acceptable accuracy?

Example

Variables

- no. of room
- no. of floor
- year (how old)
- Area (size)
- Location (land price per acre)
- Distance from important landmark, e.g. school, hospital, ... etc

Metrics

- Model accuracy
- Turnaround time
- Cost reduction

Example

Data sources

- Internal Data, e.g. Loan database
- External Data, e.g. Geo database, DOLdb

Artifacts

- Charter document¹
- Data source
- Data Dictionary

¹ Example of Charter Document: https://github.com/Azure/Azure-TDSP-ProjectTemplate/blob/master/Docs/Project/Charter.md

Goal

- To produce high quality data
- To ingest data from operation to analytic environment
- To develop solution architecture

Data Ingestion

Major Data Preprocessing Tasks

- Data cleansing, e.g. missing value handling
- Data transformation, e.g. rescaling, normalization
- Data reduction, e.g. data sampling
- Data discretization, e.g. continuous to category conversion
- Text cleansing, e.g. inconsistent delimiters

- Data Preprocessing and Data Exploration
 - From house mortgage scenario

Data Preprocessing and Data Exploration

#room	#floor	year	Size (sq.m.)	Land price	Dist2school (km)	Dist2hospital (km)	Est.Price
4	2	10	250	40,000	5	3	8,500,000
3	1	3	200	45,000	10	10	7,000,000
5	3	5	400	NULL	12	5	10,000,000
3	2	1	220	30,000	2	7	5,000,000

Data flows continuously from the data sources. This idea is called *Data Lake*.

Data Mart:

Just like a store of bottled water – cleansed and packaged and structured for easy consumption

Data Lake:
Similar to a large body of water in a more natural state.
Various users of the lake can come to examine, dive in, or take samples

Goal

- To create a list of feature vectors from raw data
- To create a machine learning model

Structured Data

- Pick all relevant variables to the target class
- Data Preprocessing

Weight	Height	Location	Diabetes
50	155	Bangkok	No
60	165	Bangkok	Yes
70	160	Nakon Ratchasima	No
80	150	Nakon Ratchasima	Yes
90	168	Nakon Ratchasima	Yes

Structured Data

- Pick all relevant variables to the target class
- Data Preprocessing

Weight	Height	BMI	Diabetes
50	155	50/1.55 ² = 20.8	No
60	165	60/1.65 ² = 22	Yes
70	160	$70/1.60^2 = 27.3$	No
80	150	80/1.50 ² = 35.6	Yes
90	168	90/1.68 ² = 31.9	Yes

Deployment

Goal

- Deploy models with a data pipeline to a production or production-like environment for final user acceptance
- Tracking model performance and improving if required

Deployment

