IS 606 Presentation

Karen Weigandt November 12, 2015 11/23/2015 IS 606 Presentation

OpenIntro Statistics

Problem 7.41

7.41 Murders and poverty, Part II. Exercise ?? presents regression output from for predicting annual murders per million from percentage living in poverty based on ε sample of 20 metropolitan areas. The model output is also provided below.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-29.901	7.789	-3.839	0.001
poverty%	2.559	0.390	6.562	0.000
s = 5.512	$R^2 = 70.52\%$		$R_{adj}^2 = 68.89\%$	

- (a) What are the hypotheses for evaluating whether poverty percentage is a significant of murder rate?
- (b) State the conclusion of the hypothesis test from part (a) in context of the data.
- (c) Calculate a 95% confidence interval for the slope of poverty percentage, and interpretent of the data.
- (d) Do your results from the hypothesis test and the confidence interval agree? Explain.

11/23/2015 IS 606 Presentation

The Hypotheses

$$H_0 : \beta_1 = 0$$

Poverty percentage is not a significant predictor of murder rate.

$$H_A$$
 : β_1 > 0

Poverty percentage is a significant predictor of murder rate.

The Conclusion

From the data presented in the table we saw that the p value for the slope estimate was 0.000. This low value leads to...

This data provides convincing evidence that poverty percentage is a significant predictor of murder rate.

95% CI for slope of poverty percentage

Since the null hypothesis is rejected, we cannot use the t value from the computed statistics.

Sample Size n = 20

$$df = n - 2 = 18$$

For a one-tailed t-test with 95% confidence we use the one tail value of 1 - 0.05/2 = 0.975

Use the function qt to get the critical value under the t distribution

```
t <- qt(0.975, 18)
t
```

Confidence Interval

ce interval calculation and the

not contain 0!

/