Taller

Coding Deep Neural Networks for PDEs Session III: Introducing Least Squares in (V)PINNs

Professors: Carlos Uriarte*, Ángel Javier Omella*, David Pardo*

Organizers: Ignacio Muga[†], Paulina Sepúlveda[†]

*Research Group on Applied Mathematical Modelling, Statistics, and Optimization (MATHMODE) at UPV/EHU

†IMA Numerics Research Group at PUCV

Follow us on: @mathmode.science*. @ima.numerics.pucv†

Biosfera Lodge, Olmué. January 19-24, 2025

The LS/GD Optimizer

$$\underbrace{u^{\alpha,c}(x)}_{\text{scalar-valued neural network}} = \mathbf{c} \cdot \mathbf{u}^{\alpha}(x) = \sum_{n=1}^{N} c_n \cdot u_n^{\alpha}(x),$$

 $\underline{u^{\alpha,c}}(x) = \underline{c} \cdot \underline{u^{\alpha}}(x) = \sum_{n=1}^{\infty} c_n \cdot u_n^{\alpha}(x), \qquad \underline{u^{\alpha}}(x) := \{u_n^{\alpha}(x)\}_{n=1}^{N} \text{ spanning set to discretize } \mathbb{U}$

vector-valued neural network

Trainable variables: α

The LS/GD Optimizer

$$\underbrace{u^{\alpha,\mathbf{c}}(x)}_{\text{scalar-valued network}} = \mathbf{c} \cdot \mathbf{u}^{\alpha}(x) = \sum_{n=1}^{N} c_n \cdot u_n^{\alpha}(x),$$

 $\underbrace{u^{\alpha,c}(x)}_{n} = \mathbf{c} \cdot \mathbf{u}^{\alpha}(x) = \sum c_n \cdot u_n^{\alpha}(x), \qquad \underbrace{\mathbf{u}^{\alpha}(x) := \{\underline{u}^{\alpha}(x)\}_{n=1}^{N}}_{n} \text{ spanning set to discretize } \mathbb{U}$

vector-valued neural network

Trainable variables: α

The LS/GD Optimizer

$$\underbrace{u_{\text{scalar-valued}}^{\alpha,c}(x)}_{\text{scalar-valued neural network}} = \underbrace{c \cdot u_{n}^{\alpha}(x)}_{n=1} = \underbrace{c \cdot u_{n}^{\alpha}(x)}_{n=1}^{N} = \underbrace{c \cdot u_{n}^{\alpha}(x)}_{\text{vector-valued neural network}}^{N} = \underbrace{c \cdot u_{n}^{\alpha}(x)}_{\text{vector-valued neural network}}^{N} = \underbrace{c \cdot u_{n}^{\alpha}(x)}_{\text{neural network}}^{N} = \underbrace$$

Petrov-Galerkin-Based Gradient-Descent Optimization

$$\mathcal{L}(\boldsymbol{\alpha}, \mathbf{c}) = \|\mathbf{r}(u^{\boldsymbol{\alpha}, \mathbf{c}})\|^2$$

$$\min_{\boldsymbol{\alpha},\mathbf{c}} \mathcal{L}(\boldsymbol{\alpha},\mathbf{c})$$

Conventional GD optimization

For $\theta := (\alpha, \mathbf{c})$

$$oldsymbol{ heta}_t = oldsymbol{ heta}_{t-1} - oldsymbol{\eta}_t \cdot
abla_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{ heta}_{t-1})$$

 η : learning rate

Petrov-Galerkin-Based Gradient-Descent Optimization

$$\mathcal{L}(\boldsymbol{\alpha}, \mathbf{c}) = \|\mathbf{r}(u^{\boldsymbol{\alpha}, \mathbf{c}})\|^2$$

$$\min_{\boldsymbol{\alpha},\mathbf{c}} \mathcal{L}(\boldsymbol{\alpha},\mathbf{c})$$

 $\min_{\boldsymbol{\alpha}} \min_{\mathbf{c}} \mathcal{L}(\boldsymbol{\alpha}, \mathbf{c})$

Conventional GD optimization

For $\theta := (\alpha, \mathbf{c})$

$$oldsymbol{ heta}_t = oldsymbol{ heta}_{t-1} - oldsymbol{\eta}_t \cdot
abla_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{ heta}_{t-1})$$

 η : learning rate

Hybrid LS/GD optimization

1. **Petrov-Galerkin.** Given α , find \mathbf{c}^{α} .

2. Update α using GD.

Implementation

Given α , we have:

$$\mathbf{r}(u^{\alpha,\mathbf{c}}) = \mathbf{B}^{\alpha}\mathbf{c} - \mathbf{I}$$

$$\mathbf{c}^{\alpha} = \arg\min_{\mathbf{c} \in \mathbb{R}^{N}} \|\mathbf{r}(u^{\alpha,\mathbf{c}})\|^{2} = \arg\min_{\mathbf{c} \in \mathbb{R}^{N}} \|\mathbf{B}^{\alpha}\mathbf{c} - \mathbf{I}\|^{2}$$

Matrix and load vector (Poisson's equation: $-\Delta u = f$)

$$\mathbf{B}_{m,n}^{\alpha} = \int_{\alpha} \nabla u_{n}^{\alpha} \cdot \nabla v_{m} \approx \underbrace{\sum_{k=1}^{K} \gamma_{k} \nabla u_{n}^{\alpha}(x_{k}) \cdot \nabla v_{m}(x_{k})}_{\text{Quadrature}}, \qquad \mathbf{I}_{m} = \int_{\alpha} f v_{m} \approx \underbrace{\sum_{k=1}^{K} \gamma_{k} f(x_{k}) v(x_{k})}_{\text{Quadrature}}$$

 γ_k : quadrature weight, x_k : quadrature point, $1 \le m \le M$, $1 \le n \le N$.

• We compute \mathbf{c}^{α} via a direct LS solver, e.g. tf.linalg.lstsqr $(\mathbf{B}^{\alpha}, \mathbf{I})$. Cost: $\mathcal{O}(MN^2)$

Automatic Differentiation

Computational Cost

Using LS has the following dominant cost:

- Evaluation of $\nabla \mathbf{u}^{\alpha}$ over $\{x_k\}_{k=1}^K$ for $1 \leq n \leq N$. Cost: $\begin{cases} \mathcal{O}(KNC_{net}), & \text{if backward AD} \\ \mathcal{O}(KC_{net}), & \text{if forward AD} \end{cases}$
- Summing for $1 \le k, m, n \le K, M, N$. Cost: $\mathcal{O}(KMN)$
- Solver of $\min_{\mathbf{c} \in \mathbb{R}^N} \|\mathbf{B}^{\alpha} \mathbf{c} \mathbf{I}\|^2$. Cost: $\mathcal{O}(MN^2)$

Considerations

- $K \gtrsim M \gtrsim N$ (# of integration points \gtrsim highest test frequency \gtrsim # of spanning functions).
- ullet $C_{net} \gtrsim MN$ (consider a network with "significant" evaluation cost).
- When applying forward AD (backward AD):

Cost of LS: $\mathcal{O}(KNC_{net})$ + Cost of GD: $\mathcal{O}(KC_{net})$ = Cost of LS/GD: $\mathcal{O}(KNC_{net})$

Computational Cost – Illustrative Experiment

- We consider a neural network with evaluation cost $C_{net} \gtrsim 512M$ and input dimension d=1.
- We compare the costs of a **conventional GD optimizer** versus the **hybrid LS/GD optimizer** for M = 5N, K = 10N, and $N \in \{2, 4, 8, ..., 512\}$.

FLOPs when using the **hybrid LS/GD optimizer**# FLOPs when using a **conventional GD optimizer**

Ν	2	4	8	16	32	64	128	256	512
Forward AD									
Backward AD	1.49	1.83	2.49	3.83	6.46	11.82	22.35	43.77	86.05

Numerical Experiments

• Given
$$f$$
, find $u^* \in \mathbb{U} = H_0^1(\alpha)$ s.t.
$$\underbrace{\int_{\alpha} \nabla u^* \cdot \nabla v \ dx}_{b(u^*,v)} = \underbrace{\int_{\alpha} f \ v \ dx}_{l(v)}, \forall v \in \mathbb{V} = H_0^1(\alpha)$$

- We equip $\mathbb{U} = H_0^1(\alpha) = \mathbb{V}$ with $b(\cdot, \cdot)$ as the inner product.
- (Continuum-level) residual r(u) coincides with error function $e(u) = u u^*$. Then,

$$\|e(u)\|_{\mathbb{U}} = \|r(u)\|_{\mathbb{V}}, \qquad \forall u \in \mathbb{U} \qquad (\mu = \alpha = 1).$$

• We consider a Fourier basis for the test space.

•
$$e(u) = r(u) = \sum_{m=1}^{\infty} \{b(u, v_m) - l(v_m)\}v_m \Rightarrow \|e(u)\|_{\mathbb{U}}^2 = \|r(u)\|_{\mathbb{V}}^2 = \sum_{m=1}^{\infty} \{b(u, v_m) - l(v_m)\}^2.$$

• VPINN loss: $\mathcal{L}(u) = ||r_M||_{\mathbb{V}}^2 = \sum_{m=1}^{M} \{b(u, v_m) - I(v_m)\}^2$.

Experiment #1: Simple smooth solution in 1D

$$u^* = \sin(4x)\sin\left(\frac{x}{2}\right)$$

Discretization setup

Fully-connected NN with 3 hidden layers:

$$x \in \mathbb{R}^{d=1} \to \mathbb{R}^{16} \to \mathbb{R}^{16} \to \mathbb{R}^{N=16} \to \mathbb{R} \ni u^{\alpha, \mathbf{c}}(x)$$

- Activation function: tanh
- Fourier modes (test space discretization): M = 32
- Iterations: 1,000
- Learning rate: 10^{-3}

We train two independent and equally initialized neural networks employing either Adam or LS/Adam optimizers.

Experiment #1: Simple smooth solution in 1D

- Relative errors:
 2.72% (Adam),
 0.19% (LS/Adam).
- Huge difference between LS/Adam and Adam alone from the very first training iteration
- Significant decrease difference of first Fourier modes when using LS/Adam compared to Adam alone.

Experiment #2: Smooth solution with high frequency in 1D

$$u^* = \sin(40x)\sin\left(\frac{x}{2}\right)$$

Discretization setup

Fully-connected NN with 3 hidden layers:

$$x \in \mathbb{R}^{d=1} \to \mathbb{R}^{64} \to \mathbb{R}^{64} \to \mathbb{R}^{N=64} \to \mathbb{R} \ni u^{\alpha, \mathbf{c}}(x)$$

- Activation function: tanh
- Fourier modes (test space discretization): M=128
- Iterations: 1,000
- Learning rate: 10^{-3}

We train two independent and equally initialized neural networks employing either Adam or LS/Adam optimizers.

Experiment #2: Smooth solution with high freq. in 1D (V1)

- Relative errors:
 99.99% (Adam),
 0.79% (LS/Adam).
- LS/Adam is able to decrease the loss, while Adam alone is not. This occurs due to an "slow" spectral bias of Adam.
- LS/Adam accelerates the overcoming of Adam's spectral bias.

Experiment #2: Smooth solution with high freq. in 1D (V2)

- Relative errors: 3.28% (Adam), 0.04% (LS/Adam).
- In the long-term run, Adam alone is able to "discover" (and therefore diminish) the most significant nodes.
- LS/Adam accelerates the overcoming of this spectral bias notably.

Experiment #3: Smooth solution with high freq. in 2D

$$u^* = \sin(10x)\sin(2y)e^{\frac{x+y}{2}}$$

Discretization setup

Fully-connected NN with 3 hidden layers:

$$(x,y) \in \mathbb{R}^{d=2} \to \mathbb{R}^{N=128} (3 \text{ times}) \to \mathbb{R} \ni u^{\alpha,c}(x,y)$$

- Activation function: tanh
- Fourier modes: $M = 64 \times 16$
- Iterations: 1,000
- Learning rate: 10^{-3}

We train two independent and equally initialized neural networks employing either Adam or LS/Adam optimizers.

Experiment #3: Smooth solution with high freq. in 2D

- Relative errors:
 29.24% (Adam),
 1.51% (LS/Adam).
- We observe a similar behavior as in the 1D case.

Experiment #3: Smooth solution with high freq. in 2D

- Relative errors:
 29.24% (Adam),
 1.51% (LS/Adam).
- We observe a similar behavior as in the 1D case.

References

Uriarte, C., Bastidas, M., Pardo, D., Taylor, J. M., & Rojas, S. (2024). Optimizing variational physics-informed neural networks using least squares. arXiv preprint arXiv:2407.20417.

Baharlouei, S., Taylor, J. M., Uriarte, C., & Pardo, D. (2024). A Least-Squares-Based Neural Network (LS-Net) for Solving Linear Parametric PDEs. arXiv preprint arXiv:2410.15089.