RoHS

COMPLIANT

HALOGEN

FREE

GREEN

Vishay Semiconductors

Analog High Speed Coupler, High Noise Immunity, 1 MBd, 15 kV/μs

LINKS TO ADDITIONAL RESOURCES

DESCRIPTION

power module) drivers.

The SFH6345 is an optocoupler with a GaAlAs infrared emitting diode, optically coupled to an integrated photo detector consisting of a photo diode and a high speed transistor in a DIP-8 plastic package. The device is similar to the 6N135 but has an additional Faraday shield on the detector which enhances the input-output dV/dt immunity. Signals can be transmitted between two electrically separated circuits up to frequencies of 2 MHz. This an ideal solution for industrial communication bus isolation, as well

as isolated drive circuit applications such as IPM (intelligent

FEATURES

- High speed optocoupler without base connection
- Isolation test voltage: 5300 V_{RMS}
- GaAlAs emitter
- Integrated detector with photo diode and transistor
- High data transmission rate: 1 MBit/s
- TTL compatible
- Open collector output
- · Good CTR linearity relative to forward current
- Field effect stable
- Low coupling capacitance
- Very high common mode transient immunity dV/dt: $\geq 15 \text{ kV/}\mu\text{s}$ at $V_{CM} = 1500 \text{ V}$
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Data communications
- IGBT drivers
- Programmable controllers
- IPM (intelligent power module) drivers

AGENCY APPROVALS

- <u>UL</u>
- cUL
- DIN EN 60747-5-5 (VDE 0884-5), available with option 1
- CQC

ORDERING INFORMATION					
S F H 6 3 4 5 -	PACKAGE OPTION TAPE AND REEL Option 7 Option 9 Option 9 10.16 mm				
AGENCY CERTIFIED / PACKAGE	CMR (kV/µs)				
UL, cUL, CQC	≥ 15				
DIP-8	SFH6345				
SMD-8, option 7	SFH6345-X007T ⁽¹⁾				
SMD-8, option 9	SFH6345-X009T ⁽¹⁾				
UL, cUL, CQC, VDE (option 1)					
DIP-8	SFH6345-X001				
DIP-8, 400 mil, option 6	SFH6345-X016				
SMD-8, option 7	SFH6345-X017T				
SMD-8, option 9	SFH6345-X019T ⁽¹⁾				

Note

(1) Also available in tubes; do not add T to end

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
INPUT							
Reverse voltage		V_{R}	3	V			
DC forward current		I _F	25	mA			
Surge forward current	$t_p = 1 \mu s$, 300 pulses/s	I _{FSM}	1	Α			
Power dissipation		P _{diss}	45	mW			
OUTPUT							
Supply voltage		Vs	-0.5 to 30	V			
Output voltage		V _O	-0.5 to 25	V			
Output current		I _O	8	mA			
Power dissipation		P _{diss}	100	mW			
COUPLER							
Storage temperature range		T _{stg}	-55 to +150	°C			
Ambient temperature range		T _{amb}	-55 to +100	°C			
Junction temperature		Tj	125	°C			
Soldering temperature	max. 10 s, max. dip soldering: distance to seating plane ≥ 1.5 mm	T _{sld}	260	°C			

Note

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT							
Forward voltage	I _F = 16 mA	V_{F}	-	1.33	1.9	V	
Reverse current	V _R = 3 V	I _R	-	0.5	10	μA	
Capacitance	V _R = 0 V, f = 1 MHz	Co	-	30	-	pF	
Thermal resistance		R _{thja}	-	700	-	K/W	
OUTPUT							
Supply current, logic high	$I_F = 0 \text{ V}, V_O = \text{open}, V_{CC} = 15 \text{ V}$	I _{CCH}	-	0.01	1	μA	
		I _{CCH} (1)	-	0.01	2	μA	
Output current, output high	$I_F = 0 \text{ V}, V_O = V_{CC} = 5.5 \text{ V}$	I _{OH}	-	0.003	0.5	μA	
	I _F = 0 V, V _O = V _{CC} = 15 V	I _{OH}	-	0.01	1	μA	
		I _{OH} ⁽¹⁾	-	-	50	μA	
Collector emitter capacitance	V _{CE} = 5 V, f = 1 MHz	C _{CE}	-	3	-	pF	
Thermal resistance		R _{thja}	-	300	-	K/W	
COUPLER							
Coupling capacitance		C _C	-	0.6	-	pF	
Collector emitter saturation voltage	$I_F = 16 \text{ mA}, I_O = 2.4 \text{ mA}, V_{CC} = 4.5 \text{ V}$	V _{OL}	-	0.1	0.4	V	
Logic low supply current	$I_F = 16 \text{ mA}, V_O = \text{open}, V_{CC} = 15 \text{ V}$	I _{CCL}	-	80	200	μΑ	

Notes

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

 $^{^{(1)}}$ T_{amb} = 0 °C to 70 °C, unless otherwise specified, typical values T_{amb} = 25 °C

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION SYMBOL MIN. TYP. MAX. UNIT					
Current transfer ratio	$I_F = 16 \text{ mA}, V_O = 0.4 \text{ V}, V_{CC} = 4.5 \text{ V}$	CTR	19	30	-	%
	$I_F = 16 \text{ mA}, V_O = 0.5 \text{ V}, V_{CC} = 4.5 \text{ V},$ $T_{amb} = 0 \text{ °C to } 70 \text{ °C}$	CTR	15	1	-	%

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Propagation delay time (high to low), see Fig. 1	I_F = 16 mA, V_{CC} = 5 V, R_L = 1.9 k Ω	t _{PHL}	-	0.3	0.8	μs
Propagation delay time (low to high), see Fig. 1	$I_F = 16 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 1.9 \text{ k}\Omega$	t _{PLH}	-	0.3	0.8	μs

Fig. 1 - Switching Times (Typ.)

COMMON MODE TRANSIENT IMMUNITY (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Common mode transient immunity (high), see Fig. 2	$I_{O} = 0$ mA, $V_{CM} = 1500 V_{P-P}$, $R_{L} = 1.9 \text{ k}\Omega$, $V_{CC} = 5 \text{ V}$	CM _H	15 000	30 000	-	V/µs
Common mode transient immunity (low), see Fig. 2	$I_{O} = 16$ mA, $V_{CM} = 1500$ V_{P-P} , $R_{L} = 1.9$ k Ω , $V_{CC} = 5$ V	CM _L	15 000	30 000	-	V/µs

Fig. 2 - Common Mode Transient Immunity

www.vishay.com

Vishay Semiconductors

SAFETY AND INSULATION RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Climatic classification	According to IEC 68 part 1		55 / 100 / 21				
Pollution degree	According to DIN VDE 0109		2				
Comparative tracking index	Insulation group IIIa	CTI	175				
Maximum rated withstanding isolation voltage	According to UL1577, t = 1 min	V _{ISO}	5300	V_{RMS}			
Maximum transient isolation voltage	According to DIN EN 60747-5-5	V_{IOTM}	8000	V _{peak}			
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	V _{IORM}	890	V _{peak}			
Isolation resistance	$T_{amb} = 25 ^{\circ}\text{C}, V_{IO} = 500 \text{V}$	R _{IO}	≥ 10 ¹²	Ω			
Isolation resistance	$T_{amb} = 100 ^{\circ}\text{C}, V_{IO} = 500 \text{V}$	R _{IO}	≥ 10 ¹¹	Ω			
Output safety power		P _{SO}	500	mW			
Input safety current		I _{SI}	300	mA			
Input safety temperature		T _S	175	°C			
Creepage distance	DIP-8		≥ 7	mm			
Clearance distance	DIP-8		≥ 7	mm			
Creepage distance	DIP-8, 400 mil, option 6		≥8	mm			
Clearance distance	DIP-8, 400 mil, option 6		≥8	mm			
Creepage distance	SMD-8, option 7		≥8	mm			
Clearance distance	SMD-8, option 7		≥ 8	mm			
Creepage distance	SMD-8, option 9		≥8	mm			
Clearance distance	SMD-8, option 9		≥ 8	mm			
Insulation thickness		DTI	≥ 0.4	mm			

Note

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 4 - Permissible Forward LED Current vs. Temperature

As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with
the safety ratings shall be ensured by means of protective circuits.

Fig. 5 - Permissible Power Dissipation vs. Temperature

Fig. 6 - Output Current vs. Output Voltage

Fig. 7 - Output Current vs. Temperature

Fig. 8 - Propagation Delay vs. Ambient Temperature

Fig. 9 - Logic High Output Current vs. Temperature

Fig. 10 - Small Signal Current Transfer Ratio vs. Input Current

PACKAGE DIMENSIONS (in millimeters)

DIP-8

DIP-8, Option 6

SMD-8, Option 7

SMD-8, Option 9

PACKAGE MARKING

Fig. 11 - SFH6345

Notes

- XXXX = LMC (lot marking code)
- The VDE logo is only marked on option 1 parts
- Tape and reel suffix (T) is not part of the package marking

PACKAGING INFORMATION (in millimeters)

Fig. 12 - Tape and Reel Packing for SMD-8, Option 7 (1000 pieces on reel)

Fig. 13 - Tape and Reel Packing for SMD-8, Option 9 (1000 pieces on reel)

SOLDER PROFILES

Fig. 14 - Wave Soldering Double Wave Profile According to J-STD-020 for DIP-8 Devices

Fig. 15 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020 for SMD-8 Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited

Conditions: T_{amb} < 30 °C, RH < 85 %

Moisture sensitivity level 1, according to J-STD-020

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.