POLLO SHIBA – SPECIFICHE SOFTWARE

Estratto e rimaneggiato dal documento abstract.odg:

Il server si presenta come una applicazione Linux, con un piccolo logo ed una interfaccia grafica (UI) per il game-master (user). L'applicazione permetterà di configurare una logica di gioco (attivazione dei laser a comando, seguendo pattern temporali o casuali, temporizzazione dei livelli), l'applicazione avrà anche un Monitor ausiliario in cui visualizzare alcuni aspetti di gioco

Lo stato della stanza sarà controllato in real-time e visualizzato in una mappa con una semplice interfaccia grafica stile videogame. [1]

Sarà possibile caricare diverse configurazioni di gioco ed operare con intervento umano. [2]

Nel software sono introdotti concetti di base di game design come best score, best time, leaderboard e varie altre da implementare [3] Schema generico, estratto dal documento abstract.odg

Un laser maze in cui gli elementi della stanza (pagina 2, F-R-E-B) vegono configurati e pilotati da un software di gestione (server, gestione livelli, enigmi, temporizzazione) e visualizzazione su schermo

Viewport Server side User interface (UI) [1]

SCHERMO 1

SCHERMO 2

Server side User interface (UI) [1]

ROOM: fornisce una vista grafica dello stato degli agenti in campo. [1]

CONTROL BOARD: permette di pilotare gli agenti in campo in tempo reale e di eseguire azioni scriptate (laser temporizzati, pattern, timer) [2]

MSG BOX: terminale di controllo delle interazioni con gli agenti sul campo e low-level debugger

Descrizione Hardware ed elementi di gioco [2]:

B Pulsante: descrizione

F Mattonella: descrizione

Emitter: descrizione

Receiver: descrizione

Qui scriviamo il funzionamento e la logica dei vari elementi:

Definizione Messaggi alle station

Questa è una parte un po piu tecnica che compilerò io in un secondo momento

Descrizione Livelli di gioco [3]

Scriviamo qui le logiche di gioco: marvin ha accennato a livello facile-difficile-estremo.

Descrizione task di gioco.

Generazione leaderboard dei giocatori.

Schema generico di una sessione di gioco e cose cosi

Descrizione Game Screen e Grafiche [3]:

Qui ci mettiamo la leaderboard, una eventuale grafica, Il nome del gioco, il timer, insomma è uno schermo per il pubblico

Si puo usare un monitor o un proiettore, si puo mettere in una lobby O waiting room

Roadmap astratta

Fase 1: toymodel (circa 8 ore)

In questa fase generiamo:

- -La documentazione del progetto citato e del codice associato:
- -un prototipo di interfaccia grafica in python3, con modulo pygame.
- -Uno schema di descrizione del campo attraverso un config file
- -Un sistema di messaging semplificato da visualizzare in msgbox

Fase 2: fattorizzazione (circa 20 ore)

Questa fase è quasi completamente di coding, in cui il codice viene rifattorizzato in una versione software stabile, viene eseguito il bugfixing e viene presentata la versione del codice definitiva.

Fase 3: interfaccia (tra 10 e 20 ore)

In questa fase si sviluppa e testa lo stato dell'interfaccia con stations e altri impianti hardware. Queste ore sono dedicate al tempo di Sviluppo e interfaccia con i sistemi hardware e sono correlate allo stato di Avanzamento del lavoro di Edo

Fase 4: azione sul campo e manutenzione (? ore)
Fase di test, pronto intervento, manutenzione, da specificare bene
Insieme