

## Projektpraktikum Robotik und Automation I



#### **Agenda**



- Werkstück & Prüfaufgaben
- Aufbau
- Verwendete Software
- Unterschied Modell & Aufnahme

Christoph Jost, Marcus Conzelmann, Patrick Petersen

- Programmablauf
- Was wir gelernt haben
- Vorführung

#### Werkstück & Prüfaufgaben



- Maße 8x8cm
- 4x 5mm Bohrung
- 2x 7mm Bohrung
- Mittler Steg Maß 1mm
- Abmessung Werkstück (Toleranz 2mm)
- Bohrungen (Toleranz 2mm)
  - Existenz
  - Durchmesser
  - Korrekte Position
- Tiefe Kratzer und strukturelle Schäden





#### **Aufbau**



- 60 x 60 x 60 cm Aufbau
- Kamera: UI-1 460SE-C-HQ
  - **2048** x 1536
- Objektiv: Tamron 1:1,6 25mm
- 2 Lichter mit Diffusor



#### **Verwendete Software**



- AutoCAD
- Blender
- Visual Studio
- OpenCV
- IDS uEye SDK









#### **Unterschied Modell & Aufnahme**



- Perfekte Beleuchtung
  - Perfekte Kanten
  - Perfekte Genauigkeit

















#### Kalibrierung



- Bildvorverarbeitung
  - Maskieren der Werkstück-Pixel
    - Pixel mit Grauwert >= 70 werden auf 255 (weiß) gesetzt
    - Restliche Pixel auf 0 (schwarz)
  - Reduktion von Noise
    - Morphologische Erosion und Dilitation zur Reduktion von Noise an den Objektkanten
  - Kantendektion mit Canny
- Ermitteln der Kalibrierungsgröße Pixel-to-Centimeter (PX2CM)
  - Annahme: Kontur, die den Flächeninhalt des kleinsten, vollständig umschließenden Rechtecks maximiert ist die Kontur des Kalibrierungswerkstücks
  - Seitenlängen des Kalibrierungswerkstücks sind bekannt
  - PX2CM = Quotient aus längster Seite und längster bekannter Seitenlänge





#### Prüfen der Lage und Abmaße



Bildvorverarbeitung wie bei der Kalibrierung

Christoph Jost, Marcus Conzelmann, Patrick Petersen

- Überprüfen der Abmaße und Lage
  - Annahme: Kontur, die den Flächeninhalt des kleinsten, vollständig umschließenden Rechtecks maximiert ist die Kontur des Werkstücks
  - Uberprüfe alle Kanten auf vorgeschriebene Länge
  - Lage des umschließenden Rechtecks = Lage des Werkstücks





## Bohrungspositionen



Berechnung der Bohrungspositionen anhand Rechteck-Eckpunkten





- Anwendung eines Gauß-Filters
  - Rauschentfernung



Christoph Jost, Marcus Conzelmann, Patrick Petersen







- Entfernung von Hintergrund mittels Schwellwert
  - Bessere Erkennung von Bohrungen

Christoph Jost, Marcus Conzelmann, Patrick Petersen





- Maskierung pro erwarteter Bohrungsposition
  - Individuelle Schwellwerte für unterschiedliche Beleuchtung









- XOR von Schwellwertbild und Maskierung
  - Einzelne Detektion von Bohrungen



Hough Transformation zur Kreis-Detektion

Christoph Jost, Marcus Conzelmann, Patrick Petersen

## Bohrungsüberprüfung



- Existenz von Bohrung in Nähe der berechneten Bohrungsposition
- Zuordnung zu Bohrungsgrößen
- Anordnung der erkannten Bohrungsgrößen
- Markierung im Fehlerfall









#### Prüfen auf Beschädigungen



- Maskieren des Werkstücks
- Filtern
  - Guided Image Filter
- Kantendetektion mit Canny
- Kanten und Bohrungen entfernen
- Cluster finden
- Zusätzlich: Überprüfung des Stegs
  - **Threshold**

#### Was wir gelernt haben



- Simulation und Realität unterscheiden sich stark
  - Beleuchtung
  - Messgenauigkeit
- Gute Beleuchtung ist entscheidend
- Wahl der idealen Parameter/Schwellwerte aufwendig
  - Unterschiedliche Beleuchtung benötigt andere Werte
- Messungenauigkeiten summieren sich auf
  - 1mm Toleranz schwierig zu erzielen



# Vorführung