

Presentación del equipo

Edwar Mauricio
Carrillo
Programador y
documentador

Valentina Giraldo
Programadora y
redactor de
información

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

Tres caminos que reducen tanto el riesgo de acoso como la distancia

Algoritmo de solución

Explicación del algoritmo

Algoritmo de Dijkstra

Dijkstra es un algoritmo que se encarga de hallar el camino más corto dentro de un grafo, donde se tiene un origen y un destino, los cuales se representan con vértices y aristas. Este a partir de los costos es por donde va seleccionando la ruta a tomar, con el fin de mostrar al final la que sea más corta y genere un valor mínimo de costo en comparación de otros caminos que gastan más y que al igual llegan al destino seleccionado.

Complejidad del algoritmo

		Complejidad de la memoria
Dijsktra	$O(V ^2 + E) = O(V ^2)$	O(V)

Complejidad en tiempo y memoria del nombre del algoritmo. V son los vertices y E son las aristas.

Primer camino que minimiza la distancia

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	7.744 m	0.73

Distancia y riesgo de acoso para el camino que minimiza la distancia. Tiempo de ejecución de 79.09 segundos.

Segundo camino que minimiza el riesgo v = r

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	10.622 m	0.50

Distancia y riesgo de acoso para el camino que minimiza el riesgo v = r. Tiempo de ejecución de 78.35 segundos.

Tercer camino que minimiza el riesgo y la distancia v = d + 100r

Origen	Destino	Distancia (metros)	Riesgo de acoso (entre 0 y 1)
Universidad EAFIT	Universidad Nacional	11.315 m	0.74

Distancia y riesgo de acoso para el camino que minimiza el riesgo y la distancia v = d + 100r. Tiempo de ejecución de 80.13 segundos.

Comparación visual de los tres caminos

OPCIÓN	VARIABLES
Camino más corto	V = d
Camino más seguro	V = r
Camino más corto y seguro	V = d + 100r

Direcciones de trabajo futuras

Softwares

Aplicaciones como Waze que generen respuestas en tiempo real

Proyecto integrador 1

Páginas web o aplicaciones

Bases de datos

Consideración de otros riesgos y variables

Grafos dentro
de las bases
de datos

Proyecto integrador 2

Incluir algoritmos de Machine Learning

Informe aceptado en OSF.IO

Noreña, Valentina G, Edwar M C Carvajal, Mauricio Toro, and Andrea Serna. 2022. "REDUCCIÓN DE ACOSO CALLEJERO A TRAVÉS DE UN ALGORITMO DE RUTAS ALTERNAS." OSF. November 10. osf.io/7cp3g.

