MATH 241

Chapter 4

SECTION 4.1: AREAS AND DISTANCES

Contents

Divide and Conquer Wi	th the	Righ	t En	dpo	int	Rule	e! .							
Divide and Conquer Wi	th the	Left	End	poin	nt R	ule!								
Sigma Notation														
Taking the Limit!														

Created by: Pierre-Olivier Parisé Fall 2022

Area Problem

What is the area of the following shapes?

<u>Trick:</u> Use simpler shapes, such as rectangles, to approximate the area.

EXAMPLE 1. Using rectangles, approximate the area of the region S under the graph of $y = x^2$ between x = 0 and x = 1. Go to Desmos: https://www.desmos.com/calculator/

$$\Delta x = \frac{1-0}{2} = 0.5$$

= 0.625

[0,0.5] & [0.5,1]

Step2) (hoose Rightend point $x_1 = 0.5$, $x_2 = 0.5 + 0.5 = 1$

Step3) Praw rectangles.

 $h_1 = f(x_1) = 0.5^2 = 0.25$, $h_2 = f(x_2) = 1^2 = 1$ Slep4) Add area rectangles:

A 2 h, Dx + hz. Dx = 0.25.0.5 + 1.0.5

Divide and Conquer With the Right Endpoint Rule!

Suppose we want to compute the area of a region S bounded by the graph of some function y = f(x).

Step I Subdivide the region S into n strips of equal width $\Delta x = (b-a)/n$.

STEP II Choose the right-end point for all subintervals: $x_1 = a + \Delta x, x_2 = a + 2\Delta x, \dots, x_{n-1} = a + (n-1)\Delta x, x_n = b.$

 $\underline{\text{Step III}}$ Approximate by adding the area of each rectangle:

$$R_n = f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x.$$

Divide and Conquer With the Left Endpoint Rule!

Suppose we want to compute the area of a region S bounded by the graph of some function y = f(x) from x = a to x = b.

Step I Subdivide the region S into n strips of equal width $\Delta x = (b-a)/n$.

STEP II Choose the left-end point for all subintervals: $x_0 = a, x_1 = a + \Delta x, \dots, x_{n-2} = a + (n-2)\Delta x, x_{n-1} = a + (n-1)\Delta x.$

STEP III Approximate by adding the area of each rectangle:

$$L_n = f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x.$$

Sigma Notation

We use the symbol \sum to write a summation of numbers compactly:

$$\sum_{i=k}^{n} a_i$$

Example 2.

- a) Expand $\sum_{i=1}^{7} i$.
- **b)** Write $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$ with the Sigma notation.
- c) Write 1+3+5+7+9+11+13 with the Sigma notation.

<u>Useful Sum Formulas:</u>

•
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2};$$

•
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
;

•
$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$
.

Taking the Limit!

EXAMPLE 3. Show that the area of the region S in Example 1 is 1/3. In other words, show that

$$Area(S) = \lim_{n \to \infty} R_n = 1/3.$$

General definition of Area: The area of the region S lying under the graph of a function y = f(x) from x = a to x = b is given by

• Area(S) =
$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} \left(f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x \right)$$

• Area(S) =
$$\lim_{n \to \infty} L_n = \lim_{n \to \infty} \left(f(x_0) \Delta x + f(x_1) \Delta x + \dots + f(x_{n-1}) \Delta x \right)$$

THE DISTANCE PROBLEM

If an object move at constant velocity, then the distance between the start and finish line is easy to compute:

 $Distance = Velocity \times \Delta Time .$

What do we do if the velocity is not constant?

EXAMPLE 4. Suppose the odometer on our car is broken and we want to estimate the distance driven over a 30-second time interval. We take speedometer readings every five seconds and record them in the following table:

Time (s)	0	5	10	15	20	25	30
Velocity (ft/s)	25	31	35	43	47	45	41

Remark:	<u>:</u>						
• Th	ne total distar	nce is given b	by the area	under the cu	rve of the v	elocity funct	ion!