MATH 2LA3: Midterm 2 Summary Sheet

Orthogonal Matrices

 $Q_{n\times n}$ is an orthogonal matrix iff:

- 1. Columns of Q form an orthogonal set (all orthogonal to each other)
- 2. Magnitude of each column = 1

Properties:

- 1. $(Q\vec{x})^T(Q\vec{z}) = \vec{x}^T z$ (angle preserving)
- 2. $||Q\vec{x}|| = ||\vec{x}||$ (length preserving)
- 3. $Q^T = Q^{-1}$ (true iff Q is orthogonal)
- 4. Q is invertible
- 5. $\det(Q) = \pm 1$
- 6. $Q^TQ = I_n$

det(Q) = 1 for rotation det(Q) = -1 for reflection

Markov Chains

Let A be a regular transition matrix: $A = \begin{bmatrix} 0.1 & 0.6 \\ 0.9 & 0.4 \end{bmatrix}$

To find the long term probability the system will be at a particular state, find the eigenvector corresponding to $\lambda = 1$ and scale it to a probability vector \vec{p} .

$$[A|0] \sim \begin{bmatrix} 1 & \frac{-2}{3} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \vec{x} = x_2 \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix}$$

$$\Rightarrow \vec{p} = \frac{1}{\frac{2}{3}+1} \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix} \leftarrow \text{Long term } P(\text{in state 1})$$

$$\leftarrow \text{Long term } P(\text{in state 2})$$

Diagonalization

$$D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}$$

 $P = [\vec{\text{eigen}}_{\lambda_1} \quad \dots \quad \vec{\text{eigen}}_{\lambda_n}]$

A and D are similar and \tilde{A} is diagonalizable iff $A = PDP^{-1}$.

- A is similar to itself.

A is diagonalizable iff (equivalent statements):

- A has n linearly independent eigenvectors
- $\sum_{i} GM(\lambda_{i}) = n$. $GM(\lambda) :=$ number of eigenvectors for eigenvalue λ

A diagonalizable $\Leftrightarrow A^n = PD^nP^{-1}$

Orthogonal Compliment

Definition: if W is a subspace of \mathbb{R}^n , then W^{\perp} contains all vectors $\in \mathbb{R}^n$ perpendicular to W Properties:

1.
$$W^{\perp} = \text{Null}(A^T)$$

2.
$$\dim(W) + \dim(W^{\perp}) = n$$

3.
$$(W^{\perp})^{\perp} = W$$

4.
$$W \cap W^{\perp} = \{\vec{0}\}\$$

5.
$$(\mathbb{R}^n)^{\perp} = \{\vec{0}\}; \{\vec{0}\}^{\perp} = \mathbb{R}^n$$

Subspaces of \mathbb{R}^n :

- $\operatorname{Row}(A) = (\operatorname{Nul}(A))^{\perp}$
- $\operatorname{Nul}(A) = (\operatorname{Row}(A))^{\perp}$
- $\dim(\text{Row}(A)) = \text{Rank}(A)$
- $\dim(\text{Nul}(A)) = n \text{Rank}(A)$

Subspaces of \mathbb{R}^m :

- $\operatorname{Col}(A) = (\operatorname{Nul}(A^T))^{\perp}$
- $\operatorname{Nul}(A^T) = (\operatorname{Col}(A))^{\perp}$
- $\dim(\operatorname{Col}(A)) = \operatorname{Rank}(A)$
- $\dim(\operatorname{Nul}(A^T)) = m \operatorname{Rank}(A)$

Example: find a basis for Row(A)

$$\vec{v} = \begin{bmatrix} 1\\2\\1\\2 \end{bmatrix}$$
, and $A\vec{v} = \vec{0}$

 $A\vec{v} = \vec{0}$, so $\vec{v} \in \text{Nul}(A)$.

Let W = Nul(A), so $W^{\perp} = \text{Row}(A)$

 $\Rightarrow \text{Nul}(\vec{v}^T)$ is a basis for Row(A).

$$\operatorname{Nul}(\begin{bmatrix} 1 & 2 & 1 & 2 \end{bmatrix}) = \left\{ \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\0\\1 \end{bmatrix} \right\}$$
$$= \text{basis for } \operatorname{Row}(A)$$

Matrix Properties

 $A_{m \times n} \Rightarrow \text{transformation } \vec{x} \to A\vec{x} \text{ is from } \mathbb{R}^n \to \mathbb{R}^m$ Rank(A) + nullity(A) = n

Determinants
$$\det(AB) = \det(A) \det(B)$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(A^{-1}) = \det(A)^{n-1}$$

$$\det(A^{-1}) = \det(A)$$

$$\det(A^{-1}) = \det(A)$$

$$\det(A^{-1}) = \det(A)$$

$$\det(A^{-1}) = \det(A)$$

$$\det(A_{\text{tringl}}) = \prod_{i=1}^{n} A_{(i,i)}$$

$$\det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$
Inverse
$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A^{-1})^{-1} = A$$

$$(kA^{-1}) = \frac{1}{k}A$$

$$(A^{-1})^{-1} = I_n$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
Transpose
$$(A^T)^T = A$$

$$(AB)^T = B^T A^T$$

$$(kA^T) = kA^T$$

$$(A+B)^T = A^T + B^T$$

Eigenvalues and Eigenvectors

The Eigenvalues of a triangular or diagonal matrix are along the main diagonal.

-
$$AM(\lambda = 0) = nullity(A)$$

To **Find Eigenvalues** of
$$A = \begin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix}$$

Solve
$$|A - \lambda I_n| = 0 \Leftrightarrow \begin{bmatrix} -5 - \lambda & 2 \\ -9 & 6 - \lambda \end{bmatrix} = 0$$

To Find Eigenvectors for λ_i , solve:

$$\begin{bmatrix} -5 - \lambda_i & 2 & 0 \\ -9 & 6 - \lambda_i & 0 \end{bmatrix}$$

Dot Product

$$-\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = (u_1)(v_1) + (u_2)(v_2)$$
$$-\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$

- $\vec{u} \cdot \vec{u} = (||\vec{u}||)^2$
- $-\vec{u} \cdot \vec{v} = 0 \Leftrightarrow \vec{u}, \vec{v} \text{ orthogonal} \Leftrightarrow ||\vec{u}|| + ||\vec{v}|| = ||\vec{u} + \vec{v}||$ $-(\vec{a} + \vec{b}) \cdot (\vec{c} + \vec{d}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{d} \vec{c} + \vec{d} \cdot \vec{d} +$

$$- (\vec{a} + \vec{b}) \cdot (\vec{c} + \vec{d}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{c} +$$

$$|| \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} || = \sqrt{v_1^2 + v_2^2}$$

Span

Def The span of a set of vectors is the set of linear combinations of the vectors.

Check if $\vec{w} \in \text{span}\{\vec{u}, \vec{v}\}$:

$$\begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \end{bmatrix} \vec{w} \in \text{span}\{\vec{u}, \vec{v}\} \text{ iff that system has a solution.}$$

Check if span $\{\vec{u}, \vec{v}, \vec{w}\} = \mathbb{R}^3$:

(equivalent to $\operatorname{col}[\vec{u}, \vec{v}, \vec{w}] = \mathbb{R}^3$)

$$\begin{bmatrix} u_1 & v_1 & w_1 \\ v_2 & v_2 & w_2 \end{bmatrix}$$

 u_2 v_2 w_2 True iff that matrix has a pivot in each

 u_3 v_3 w_3

row/column

Injectivity and Surjectivity

Injective: (one-to-one)

- 1. $f(x) = f(y) \leftarrow x = y$ (map to the same point)
- 2. rank(A) = n
- 3. pivot in every column

Surjective: (onto)

- 1. $\forall \vec{b} \in \mathbb{R}^m, \exists \vec{x} \in \mathbb{R}^n \text{ such that } f(\vec{x}) = \vec{b}$
- 2. rank(A) = m
- 3. pivot in every row

Invertible Matrix Theorem

- 1. A is row-equivalent to the $n \times n I_n$.
- 2. A has n pivot positions.
- 3. The equation Ax = 0 has only the trivial solution x = 0.
- 4. The columns of A form a linearly independent set.
- 5. The linear transformation $x \mapsto Ax$ is one-to-one.
- 6. For each column vector b in \mathbb{R}^n , the equation Ax = b has a unique solution.
- 7. The columns of A span \mathbb{R}^n .
- 8. The linear transformation $x \mapsto Ax$ is a surjection.
- 9. There is an $n \times n$ matrix C such that $CA = I_n$.
- 10. There is an $n \times n$ matrix D such that $AD = I_n$.
- 11. The transpose matrix A^T is invertible.
- 12. The columns of A form a basis for \mathbb{R}^n .
- 13. The column space of A is equal to \mathbb{R}^n .
- 14. The dimension of the column space of A is n.
- 15. The rank of A is n.
- 16. The null space of A is $\{0\}$.
- 17. The dimension of the null space of A is 0.
- 18. 0 fails to be an eigenvalue of A.
- 19. The determinant of A is not zero.
- 20. The orthogonal complement of the column space of A is $\{0\}$.
- 21. The orthogonal complement of the null space of A is \mathbb{R}^n .
- 22. The row space of A is \mathbb{R}^n .

Least Squares

- $\hat{x} = (A^T A)^{-1} A^T \vec{b}$
- Normal equations for $A\vec{x} = \vec{b}$: $A^T A \vec{x} = A^T \vec{b}$
- $A^T A \vec{x} = A^T \vec{b}$ has same solutions as \hat{x} .
- $-A\hat{x} = proj_w \vec{b}$
- $\hat{x} = R^{-1}Q^T\vec{b}$, where A = QR factorization
- $-\hat{x} = \vec{x}$ s.t. $A\hat{x}$ is as close as possible to \vec{b}

Projections

- Projection matrices are symmetric.
- $proj_{\vec{u}}\vec{v} = \frac{\vec{v} \cdot \vec{u}}{||\vec{u}||^2}\vec{u}$
- $proj_w \vec{b} = P\vec{b}, w = col(A)$
- $P_{\text{Row}(A)} = I P_{\text{Col}(A)}$
- $-\vec{v} \in \text{Nul}(A) \Rightarrow \forall \vec{u} \text{ s.t. } \vec{u} \cdot \vec{v} = 0, \vec{u} \in \text{Row}(A)$
- $\vec{v} \in w \Leftrightarrow proj_w \vec{v} = \vec{v}$, so $P\vec{v} = \vec{v} \Rightarrow v \in Nul(A)$
- $-\vec{v} \in w^{\perp} \Leftrightarrow proj_w \vec{v} = 0$, so $P\vec{v} = 0 \Rightarrow v \in Col(A)$
- $Rank(P_{subspace}) = dim(subspace)$
- $||P_{\text{Row}(A)}\vec{x}||$ is shortest distance from \vec{x} to Nul(A)
- $P = A(A^TA)^{-1}A^T$ In general (subspace)
- $P = \frac{(\vec{a})(\vec{a}^T)}{(\vec{a}^T)(\vec{a})}$ (for line only)

Shortcut for Orthonormal vectors:

 $P\vec{b} = (\vec{a_1} \cdot \vec{b})\vec{a_1} + (\vec{a_2} \cdot \vec{b})\vec{a_2} + \dots + (\vec{a_n} \cdot \vec{b})\vec{a_n}$

Shortcut for Orthogonal vectors:

 $Pb = proj_{\vec{a_1}}b + proj_{\vec{a_2}}b + ... + proj_{\vec{a_n}}b$

Example: $P_W \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$, find W

$$\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \notin W, \vec{b} \notin W^{\perp}$$

so $\vec{z} = \vec{b} - P\vec{b}$, and $\vec{z} \in W^{\perp}$

$$\vec{z} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} - \begin{bmatrix} 0\\-2\\-2 \end{bmatrix} = \begin{bmatrix} 1\\3\\3 \end{bmatrix} \Rightarrow W \text{ given by } x+3y+3z=0$$

Gram-Schmidt Process

Gram-Schmidt Process: (orthogonalize basis)

 $\vec{v_1} = \vec{x_1}$ (remember to normalize at end)

$$\vec{v_2} = \vec{x_2} - \frac{\vec{x_2} \cdot \vec{v_1}}{\vec{v_1} \cdot \vec{v_1}} \vec{v_1}$$

$$\vec{v_p} = \vec{x_p} - \frac{\vec{x_p} \cdot \vec{v_1}}{\vec{v_1} \cdot \vec{v_1}} \vec{v_1} - \frac{\vec{x_p} \cdot \vec{v_2}}{\vec{v_2} \cdot \vec{v_2}} \vec{v_2} - \dots \frac{\vec{x_p} \cdot \vec{v_{p-1}}}{\vec{v_{p-1}} \cdot \vec{v_{p-1}}} \vec{v_{p-1}}$$
QR Factorization (A = QR):

 $A_{n\times q}$ has independent columns. Apply Gram-Schmidt on columns to get $\{\vec{v_1},...,\vec{v_q}\}$, then normalize to $\{\vec{u_1}, ..., \vec{u_q}\}$

- $-Q = [\vec{u_1}, .., \vec{u_q}]$
- $R = Q^T A$
- $R_{(i,j)} = u_i \cdot a_j \ (R_{q \times q} \text{ will be upper triangular})$

Orthogonal Diagonalization & Spec. Decomp.

- $A = QDQ^T$ for orthogonal Q
- A is orthogonally diagonalizable iff $A = A^T$
- Symmetric A has n real eigenvalues, w/ multiplicity
- Eigen for different λ orthogonal
- $A^T = A \Rightarrow A\vec{x} = (A\vec{x})^T$

Spectral Decomposition:

$$\vec{A} = \sum_{i=1}^{n} \lambda_i \vec{u_i} \vec{u_i}^T \Leftrightarrow (Q = [\vec{u_1}, \vec{u_2}, ..., \vec{u_n}])$$

Quadratic Forms of Symmetric Matrices

 $A_{n\times n}$ has quadratic form $Q(\vec{x}) = \vec{x}^T A \vec{x}$ for $\vec{x} \in \mathbb{R}^n$

$$Q(x) = a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 \Leftrightarrow A = \begin{bmatrix} a_1 & \frac{a_2}{2} \\ \frac{a_2}{2} & a_2 \end{bmatrix}$$

- Definite: $Q(x) < 0 \forall x \neq 0 \Leftrightarrow \lambda < 0 \forall \lambda$
- Semidefinite: $Q(x) < 0 \forall x \neq 0 \Leftrightarrow \lambda < 0 \forall \lambda$
- + Definite: $Q(x) > 0 \forall x \neq 0 \Leftrightarrow \lambda > 0 \forall \lambda$
- + Semidefinite: $Q(x) > 0 \forall x \neq 0 \Leftrightarrow \lambda > 0 \forall \lambda$
- Definite matrices are symmetric
- Q(x) of $A_{n\times n}$ has $n x_i^2$ terms
- $||\vec{x}|| = 1 \Rightarrow \min Q(\vec{x}) = \min(\lambda), \max Q(\vec{x}) = \max(\lambda)$
- Max occurs at $\vec{x} = \frac{1}{||\text{eigen}||}$ eigen for $\max(\lambda)$

Principal Axes Theorem:

Symmetric A has orthogonal change of vars $\vec{x} = P\vec{y}$, transforms $\vec{x}^T A \vec{x}$ into $\vec{y}^T Q \vec{y}$ w/ no cross-prod term. - After change of vars, coeff's on y_i^2 are eigenvalues

Orthogonal Decomposition \overline{W} a subspace of $\mathbb{R}^n \Leftrightarrow y = \hat{y} + z$, s.t. $\hat{y} \in W, z \in W^{\perp}$ $\hat{y} = proj_{u_1}y + ... + proj_{u_p}y = proj_Wy = \sum_{i=1}^p \frac{y \cdot u_i}{||u_i||^2}$