INTRODUCTION TO FINANCE

REVIEW OF STATISTICS

- ◆In a world with **uncertainty**, we typically describe possible future values or rates of return of a security and the relative likelihoods of these values by means of a **probability distribution** over future values or rates of returns.
- ◆For example, a **continuous distribution** is given by:

Probability

% Return

Discrete distribution - states of the world model

State	Prob.	Security Return in %			
		1	2	3	4
Expansion	0.10	5.00	3.50	6.00	2.50
Normal	0.40	7.00	4.50	5.00	-0.50
Recession	0.30	6.00	4.00	7.00	1.00
Depression	0.20	-2.00	0.00	4.00	13.00

① Expected Return:

$$E(\widetilde{R}_i) = \overline{R} = \sum_{s=1}^{S} p_s \widetilde{R}_{i,s}$$

where $E(\widetilde{R}_i) = \overline{R} = mean(expected)$ return

 $\widetilde{R}_{i,S}$ = unknown return of security i in state s

 p_S = probability of state s

S = total number of states occurring.

Examples:

$$E(\widetilde{R}_1) = 0.10 (5.0) + 0.40 (7.0) + 0.30 (6.0) + 0.20 (-2.0)$$

= 4.70%

$$E(\widetilde{R}_2) = 0.10 (3.5) + 0.40 (4.5) + 0.30 (4.0) + 0.20 (0)$$

= 3.35%

$$E(\widetilde{R}_3) = 0.10 (6.0) + 0.40 (5.0) + 0.30 (7.0) + 0.20 (4.0)$$

= 5.50%

$$E(\widetilde{R}_4) = 0.10 (2.5) + 0.40 (-0.5) + 0.30 (1.0) + 0.20 (13.0)$$

= 2.95%.

2 Spread of distribution of outcomes:

$$Std(\widetilde{R}_i) = \left\{ \sum_{s=1}^{S} p_s (\widetilde{R}_{i,s} - \overline{R})^2 \right\}^{1/2} = \sigma_i.$$

Note:
$$Var(\widetilde{R}_i) = \{Std(\widetilde{R}_i)\}^2 = \sigma_i^2$$
.

Examples:

$$\sigma_1^2 = 0.10 (5.0 - 4.7)^2 + 0.40 (7.0 - 4.7)^2 + 0.30 (6.0 - 4.7)^2 + 0.20 (-2.0 - 4.7)^2 = 11.61$$

$$\Rightarrow \sigma_1 = 3.41\%$$
.

$$\sigma_2^2 = 0.10 (3.5 - 3.35)^2 + 0.40 (4.5 - 3.35)^2 + 0.30 (4.0 - 3.35)^2 + 0.20 (0.0 - 3.35)^2 = 2.90.$$

$$\Rightarrow \sigma_2 = 1.70\%$$
.

$$\sigma_3$$
= Calculate

$$\sigma_4$$
= Calculate

3 Covariance:

$$\operatorname{Cov}(\widetilde{R}_{i},\widetilde{R}_{j}) = \left\{ \sum_{S=1}^{S} p_{S}(\widetilde{R}_{i,S} - \overline{R}_{i})(\widetilde{R}_{j,S} - \overline{R}_{j}) \right\} = \sigma_{i,j}.$$

- ♦ When the returns of securities i and j tend to deviate from their means in the same direction they are called **positively** correlated or they covary positively [that is, $Cov(\widetilde{R}_i, \widetilde{R}_j) > 0$].
- ♦ When they tend to deviate from their means in opposite directions, they are **negatively correlated** or they **covary negatively** [that is, $Cov(\widetilde{R}_i, \widetilde{R}_j) < 0$].
- ♦ When the returns of securities i and j are unrelated with each other, then $Cov(\widetilde{R}_i, \widetilde{R}_j) = 0$ and they are **uncorrelated**.

Examples:

$$\sigma_{1,2}$$
= 0.10 (5.0 - 4.7) (3.5 - 3.35)
+ 0.40 (7.0 - 4.7) (4.5 - 3.35)
+ 0.30 (6.0 - 4.7) (4.0 - 3.35)
+ 0.20 (-2.0 - 4.7) (0.0 - 3.35)
= 5.81.
 $\sigma_{1,3}$ = 0.10 (5.0 - 4.7) (6.0 - 5.5)
+ 0.40 (7.0 - 4.7) (5.0 - 5.5)
+ 0.30 (6.0 - 4.7) (7.0 - 5.5)
+ 0.20 (-2.0 - 4.7) (4.0 -5.5)
= 2.15.
 $\sigma_{1,4}$ = Calculate
 $\sigma_{2,3}$ = Calculate
 $\sigma_{2,4}$ = Calculate

4 Correlation--A "standardized" Covariance:

$$\rho_{i,j} = \frac{Cov(\tilde{R}_{i}, \tilde{R}_{j})}{Std(\tilde{R}_{i})Std(\tilde{R}_{i})} = \frac{\sigma_{i,j}}{\sigma_{i}\sigma_{j}},$$

where $-1 \le \rho_{i,j} \le +1$.

- •Since $Std(\widetilde{R}_i)$ and $Std(\widetilde{R}_j)$ are always positive, the sign of $\rho_{i,j}$ depends on the sign of $\sigma_{i,j}$.
- •What is the relation between $\rho_{i,j}$ and $\rho_{j,i}$?

S Regression Analysis:

• The general idea of a regression is that it involves fitting a line through a set of points. In particular, consider the following regression model:

$$\ddot{y} = \alpha + \beta \ddot{x} + \tilde{\epsilon}$$

where

 \ddot{y} = the value of the dependent variable \ddot{x} = the value of the independent variable

 $\varepsilon = a \text{ random error with } E(\varepsilon) = 0$

 α = the Y axis intercept

 β = the slope of the line.

The picture that we are trying to capture is as follows:

• In general the idea is that there is a linear relationship between y and x which is not quite exact.

Since we do not know the relationship we want to estimate α and β that minimize the sum of the deviations squared from the fitted line.

The best fit is given by the slope:

$$\beta_{y, x} = \frac{\text{Cov}(\widetilde{y}, \widetilde{x})}{\sigma_x^2} = \frac{\sigma_{yx}}{\sigma_x^2}.$$

• How would you write the relation between security 1 and

2?

- What is the relation between $\beta_{2,1}$ and $\beta_{1,2}$?
- What is the relation between $\beta_{2,1}$ and $\rho_{1,2}$?

Examples of Correlation and Regression:

Perfect Positive Correlation

$$\rho_{1,2} = \frac{\sigma_{1,2}}{\sigma_1 \sigma_2} = \frac{5.81}{(3.41)(1.70)} = 1.00.$$

<u>Note</u>: $\tilde{R}_2 = 1.00 + 0.50\tilde{R}_1$.

Less Than Perfect Correlation:

$$\rho_{1,3} = \frac{\sigma_{1,3}}{\sigma_1 \sigma_3} = \frac{2.15}{(3.41)(1.12)} = 0.563.$$

<u>Note</u>: $\tilde{R}_3 = 4.63 + 0.185\tilde{R}_1 + \tilde{e}_3$.

Perfect Negative Correlation

$$\rho_{1,4} = \frac{\sigma_{1,4}}{\sigma_1 \sigma_4} = \frac{-17.42}{(3.41)(5.11)} = -1.00.$$

<u>Note</u>: $\tilde{R}_4 = 10.00 - 1.50\tilde{R}_1$.