ESCENARIO: PRUEBAS DE BATEO.

Comienzan la temporada de beisbol y los coach de bateo someten a los jugadores a las prácticas correspondientes, para controlar el rendimiento de los jugadores en esta área, se quiere desarrollar una aplicación que será alimentada con la siguiente data:

Nombre del Bateador, Altura inicial del batazo (m), Velocidad de salida de la pelota (m/s) y el Angulo de Salida (en grados).

Enunciado:

Crear un programa en Python 3.6, que reciba como entrada la data anterior y determine y muestre por consola el nombre del bateador e indique donde cayó la pelota, "Dentro del campo", "En los jardines" o "Fuera del campo (Jomerun)".

Requerimientos mínimos:

- 1. Definir las siguientes funciones:
 - a. Que calcule la distancia horizontal máxima (xmax)
 - b. Que calcule la altura máxima (ymax)
 - c. Que determine la situación del batazo.
- 2. El programa principal deberá capturar por teclado los datos requeridos e invocar las funciones definidas para mostrar los resultados pedidos.

Consideraciones:

- Las dimensiones del terreno de juego son:
 - Distancia entre el Home y la segunda base: 36.88 metros.
 - ❖ Distancia entre el Home y el muro y la segunda base: 128.49 metros.
 - Altura del muro: 3.5 metros.
- Aceleración de gravedad: 9.81 m/seg².
- Para determinar la situación del batazo:
 - Si la longitud del batazo es menor que la distancia entre Home y segunda <u>"Cayo en el Campo"</u>.
 - Si la longitud del batazo es mayor que la distancia entre Home y segunda y menor que el largo del campo, o, mayor que el largo del campo y la altura menor a la altura del muro <u>"Cayo en los Jardines"</u>
 - Si la longitud del batazo es mayor que el largo del campo y la altura del batazo mayor que la altura del muro "Cayo fuera del campo: Jonrón".
- > Si consideramos **Yo** la altura inicial del batazo, **Vo** la velocidad de salida de la pelota, **α** el Angulo de salida del batazo y **Q** la aceleración de gravedad, tenemos:
 - Distancia máxima horizontal: $xMax = \frac{V_0^2 sen(2\alpha)}{g}$ (metros)
 - Altura máxima: $yMax = Y_0 + xMax \ tg(\alpha) \frac{g \ xMax^2}{2V_0^2 \cos(\alpha^2)}$ (metros)
- > El ángulo del batazo debe estar en radianes cuando se calculen las funciones trigonométricas.
- Para las funciones trigonométricas usaremos *math.sin(radianes)*, *math.tan(radianes)* y *math.cos(radianes)* para el cálculo del seno, tangente y coseno respectivamente de la librería Math para el valor de pi *usaremos math.pi*.
- > Datos de prueba:

Listado de Bateadores			
Nombre	Altura	Velocidad	Angulo
Pedro	0.54	24.20	83.50
Andrez	0.78	70.00	69.00
Roberto	0.87	36.70	53.00
Frank	0.78	37.10	48.90
Canseco	0.98	75.00	15.00

Salida del programa:

Pedro	Cayo	dentro del campo
Andrez	Cayo	en los jardines
Roberto	Cayo	fuera del parque
Frank	Cayo	fuera del parque
Canseco	Cayo	fuera del parque