Multiple Regression Analysis: Estimation

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + u$$

BS1802 Statistics and Econometrics

Jiahua Wu

382 Business School j.wu@imperial.ac.uk

Roadmap

- Regression analysis with cross-sectional data
 - The multiple regression analysis
 - Basics: estimation, inference, analysis with dummy variables
 - More technically involved: asymptotics, heteroskedasticity, specification and data issues
- Advanced topics
 - Limited dependent variable models
 - Panel data analysis
 - Regression analysis with time series data

Outline (Wooldridge, Ch. 2.4, 3.1 - 3.5)

- Definition of the multiple regression model
- Ordinary least squares (OLS) estimates
- Units of measurement and functional form
- Statistical properties of OLS estimators
- Reporting regression results

Outline

- Definition of the multiple regression model
- Ordinary least squares (OLS) estimates
- Units of measurement and functional form
- Statistical properties of OLS estimators
- Reporting regression results

Multiple Regression Model

Definition

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

- y: dependent variable (observable)
- x_1, \ldots, x_k : independent variables (observable)
- β_1, \ldots, β_k : slope parameters (to be estimated)
- β_0 : intercept parameter (to be estimated)
- u: error term or disturbance (unobservable)
- k: the number of independent variables
- The disturbance *u* represents factors other than *x*'s
- With the intercept β_0 , the unconditional mean of u can always be set to zero: E(u) = 0

Zero Conditional Mean Assumption

- Consider a simple regression model: $y = \beta_0 + \beta_1 x + u$
- If other factors in u are held fixed $(\Delta u = 0)$, the causal effect of x on y is β_1 :

$$\Delta y = \beta_1 \Delta x$$

- But under what condition u can be held fixed while x changes?
 - As x and u are treated as random variables, "u is fixed while x varying" is described as "the mean of u for any given x is the same (zero)"
 - The required condition is

$$E(u|x) = E(u) = 0,$$

which is known as zero-conditional-mean (ZCM) assumption

• ZCM implies that x and u are uncorrelated, i.e., Cov(x, u) = 0

Zero Conditional Mean Assumption: An Example

• Eg. The wage model

$$wage = \beta_0 + \beta_1 educ + u$$

 Suppose u represents inner ability, then ZCM assumption amounts to

$$Cov(educ, ability) = 0,$$

i.e., a person's education level is uncorrelated with her/his ability

Zero Conditional Mean Assumption: An Example

• Eg. The wage model

$$wage = \beta_0 + \beta_1 educ + u$$

 Suppose u represents inner ability, then ZCM assumption amounts to

$$Cov(educ, ability) = 0,$$

i.e., a person's education level is uncorrelated with her/his ability

 This is NOT true if, on average, people with higher ability choose to become more educated

Zero Conditional Mean Assumption

• For the multiple regression model, the ZCM assumption is

$$E(u|x_1,\ldots,x_k)=0$$

- It requires the average of *u* to be the same irrespective of the values of *x*'s
- It implies that the factors in u are uncorrelated with x_1, \ldots, x_k
- It is a key condition for the OLS estimators being unbiased
- It defines the population regression function (PRF) $E(y|x_1,...,x_k) = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$

Population Regression Function

The distribution of $y = \beta_0 + \beta_1 x + u$ is centred around E(y|x)

- Systematic part of y: E(y|x)
- Unsystematic part of y: u

Outline

- Definition of the multiple regression model
- Ordinary least squares (OLS) estimates
- Units of measurement and functional form
- Statistical properties of OLS estimators
- Reporting regression results

Observations on (x_1, \ldots, x_k, y)

- A random sample is a set of independent observations $\{(x_{i1}, x_{i2}, \dots, x_{ik}, y_i), i = 1, 2, \dots, n\}$
- At observation level, the model may be written as

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + u_i, \qquad i = 1, 2, \dots, n$$

where i is the observation index

• For a simple regression model,

12

Estimate Multiple Regression

The model

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + u_i, \qquad i = 1, 2, \dots, n$$

- Let $(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k)$ be estimates of $(\beta_0, \beta_1, \dots, \beta_k)$
- Corresponding residual is

$$\hat{u}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik}, \qquad i = 1, 2, \dots, n$$

• The sum of squared residuals (SSR)

$$SSR = \sum_{i=1}^{n} \hat{u}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i1} - \dots - \hat{\beta}_{k}x_{ik})^{2}$$

indicates the goodness of the estimates

Good estimates should make SSR small

Ordinary Least Squares (OLS)

- The OLS estimates $(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k)$ minimize the SSR
- Detailed steps
 - The first order conditions lead to

$$\frac{\partial SSR}{\partial \hat{\beta}_0} = -2 \cdot \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik}) = 0$$

$$\frac{\partial SSR}{\partial \hat{\beta}_j} = -2 \cdot \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \dots - \hat{\beta}_k x_{ik}) x_{ij} = 0$$

• Solve the system of k+1 equations

Ordinary Least Squares (OLS): Matrix Form

At observation level, the model may be written as

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + u_i, \qquad i = 1, 2, \dots, n$$

where i is the observation index

• Or collectively,

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,k} \\ 1 & x_{2,1} & \cdots & x_{2,k} \\ \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \cdots & x_{n,k} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$

- Matrix notation: $y = X\beta + u$
- OLS estimates: $\hat{\beta} = (X'X)^{-1}X'y$

Sample Regression Function (SRF)

• Once OLS estimates are obtained,

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_k x_{ik}$$

is the fitted value of y when $(x_1, \ldots, x_k) = (x_{i1}, \ldots, x_{ik})$

The OLS regression line or sample regression function (SRF) is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k,$$

which is an estimate of the PRF

• "Run a regression of y on x_1, \ldots, x_k ": use OLS to estimate the multiple regression model

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

Interpretation of SRF

 The OLS regression line or SRF can be written in the form of changes:

$$\Delta \hat{\mathbf{y}} = \hat{\beta}_1 \Delta \mathbf{x}_1 + \dots + \hat{\beta}_k \Delta \mathbf{x}_k$$

- The coefficient on x_j is the partial effect of x_j on y holding other x's fixed: $\Delta \hat{y} = \hat{\beta}_j \Delta x_j$
- $\hat{\beta}_j$ has a ceteris paribus interpretation when ZCM holds, i.e., factors in u are not correlated with x_j

PRF vs SRF

• The dependent variable *y* may be decomposed either as the sum of the SRF and the residual

$$y = \hat{y} + \hat{u}$$

or as the sum of the PRF and the disturbance

$$y = E(y|x) + u$$

PRF vs SRF

• For a simple regression model,

• Hope: SRF = PRF "on average" or "when n goes to infinity"

Goodness-of-Fit

- How well does x explain y? Or how well does the OLS regression line fit data?
- We may use the fraction of variation in y that is explained by x's (or by the SRF) to measure the goodness-of-fit

Goodness-of-Fit: Sum of Squares

- Each y_i may be decomposed into $y_i = \hat{y}_i + \hat{u}_i$
- Measure variations from \bar{y}
 - Total sum of squares (total variation in y_i):

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

• Explained sum of squares (variation in \hat{y}_i):

$$SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

• Sum of squared Residuals (variation in \hat{u}_i):

$$SSR = \sum_{i=1}^{n} \hat{u}_i^2$$

• It can be shown that SST = SSE + SSR

Goodness-of-Fit: R-Squared

• R-squared (coefficient of determination):

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

- larger R^2 , better fit
- $0 \le R^2 \le 1$

• Example 2.4.(wage1.RData) A sample of 526 people in the workforce. Regress *wage* on *educ*, and interpret the output.

- Example 2.4.(wage1.RData) A sample of 526 people in the workforce. Regress wage on educ, and interpret the output.
 - OLS SRF: n = 526

$$\widehat{\textit{wage}} = -0.90 + 0.54 \textit{educ}$$

- Example 2.4.(wage1.RData) A sample of 526 people in the workforce. Regress wage on educ, and interpret the output.
 - OLS SRF: n = 526

$$\widehat{\textit{wage}} = -0.90 + 0.54 \textit{educ}$$

- Interpretation
 - Slope of 0.54: each additional year of schooling increases the wage by \$0.54
 - Intercept of -0.90: fitted wage of a person with educ=0? SRF does poorly at low levels of education

- Example 2.4.(wage1.RData) A sample of 526 people in the workforce. Regress wage on educ, and interpret the output.
 - OLS SRF: n = 526

$$\widehat{\textit{wage}} = -0.90 + 0.54 \textit{educ}$$

- Interpretation
 - Slope of 0.54: each additional year of schooling increases the wage by \$0.54
 - Intercept of -0.90: fitted wage of a person with educ=0? SRF does poorly at low levels of education
- Predicted wage for a person with educ = 10?

- Example 2.4.(wage1.RData) A sample of 526 people in the workforce. Regress *wage* on *educ*, and interpret the output.
 - OLS SRF: n = 526

$$\widehat{\textit{wage}} = -0.90 + 0.54 \textit{educ}$$

- Interpretation
 - Slope of 0.54: each additional year of schooling increases the wage by \$0.54
 - Intercept of -0.90: fitted wage of a person with educ=0? SRF does poorly at low levels of education
- Predicted wage for a person with educ = 10?
- $R^2 = 0.165$ indicates that 16.5% of variation in wage is explained by educ

Outline

- Definition of the multiple regression model
- Ordinary least squares (OLS) estimates
- Units of measurement and functional form
- Statistical properties of OLS estimators
- Reporting regression results

 How do OLS intercept and slope estimates change, if y is multiplied by a constant c?

- How do OLS intercept and slope estimates change, if y is multiplied by a constant c?
- Example 2.4 (wage1.RData)
 - > summary(lm(wage ~ educ, wage.data))

Coefficients:

• > summary(lm(100 * wage ~ educ, wage.data))

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -90.485 68.497 -1.321 0.187
educ 54.136 5.325 10.167 <2e-16 ***
```

30

- How do OLS intercept and slope estimates change, if y is multiplied by a constant c?
- Example 2.4 (wage1.RData)
 - > summary(lm(wage ~ educ, wage.data))

Coefficients:

• > summary(lm(100 * wage ~ educ, wage.data))

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -90.485 68.497 -1.321 0.187
educ 54.136 5.325 10.167 <2e-16 ***
```

 If y is multiplied by a constant c, all OLS intercept and slope estimates are also multiplied by c

• How do OLS intercept and slope estimates change, if x_j is multiplied by a constant c?

- How do OLS intercept and slope estimates change, if x_j is multiplied by a constant c?
- Example 2.4 (wage1.RData)
 - > summary(lm(wage ~ educ, wage.data))

Coefficients:

• > summary(lm(wage ~ I(100 * educ), wage.data))

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.9048516  0.6849678 -1.321  0.187
I(100 * educ)  0.0054136  0.0005325  10.167  <2e-16 ***
```

- How do OLS intercept and slope estimates change, if x_j is multiplied by a constant c?
- Example 2.4 (wage1.RData)
 - > summary(lm(wage ~ educ, wage.data))

Coefficients:

• > summary(lm(wage ~ I(100 * educ), wage.data))

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.9048516 0.6849678 -1.321 0.187
I(100 * educ) 0.0054136 0.0005325 10.167 <2e-16 ***
```

• If x_j is multiplied by a constant c, the slope estimate $\hat{\beta}_j$ is multiplied by 1/c. All other OLS estimates remain unchanged

• How does R^2 change when varying the units of measurement?

- How does R^2 change when varying the units of measurement?
- Example 2.4 (wage1.RData)
 - > summary(lm(wage ~ educ, wage.data))

Residual standard error: 3.378 on 524 degrees of freedom Multiple R-squared: 0.1648, Adjusted R-squared: 0.1632 F-statistic: 103.4 on 1 and 524 DF, p-value: < 2.2e-16

• > summary(lm(100 * wage ~ educ, wage.data))

Residual standard error: 337.8 on 524 degrees of freedom Multiple R-squared: 0.1648, Adjusted R-squared: 0.1632 F-statistic: 103.4 on 1 and 524 DF, p-value: < 2.2e-16

• > summary(lm(wage ~ I(100 * educ), wage.data))

Residual standard error: 3.378 on 524 degrees of freedom Multiple R-squared: 0.1648, Adjusted R-squared: 0.1632 F-statistic: 103.4 on 1 and 524 DF, p-value: < 2.2e-16

Effects of Changing Units of Measurement

- How does R^2 change when varying the units of measurement?
- Example 2.4 (wage1.RData)
 - > summary(lm(wage ~ educ, wage.data))

Residual standard error: 3.378 on 524 degrees of freedom Multiple R-squared: 0.1648, Adjusted R-squared: 0.1632 F-statistic: 103.4 on 1 and 524 DF, p-value: < 2.2e-16

> summary(lm(100 * wage ~ educ, wage.data))

Residual standard error: 337.8 on 524 degrees of freedom Multiple R-squared: 0.1648, Adjusted R-squared: 0.1632 F-statistic: 103.4 on 1 and 524 DF, p-value: < 2.2e-16

• > summary(lm(wage ~ I(100 * educ), wage.data))

Residual standard error: 3.378 on 524 degrees of freedom Multiple R-squared: 0.1648, Adjusted R-squared: 0.1632 F-statistic: 103.4 on 1 and 524 DF, p-value: < 2.2e-16

ullet The R^2 does not change when varying units of measurement

Nonlinear Relationship between x and y

• The OLS only requires the regression model

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

to be linear in parameters $(\beta_0, \beta_1, \dots, \beta_k)$

 Nonlinear relationships between y and x can be easily accommodated

Nonlinear Relationship between x and y: An Example

• Example 2.4 (wage1.RData) A better model to reflect the nonlinear relationship between *wage* and *educ* can be

$$\log(wage) = \beta_0 + \beta_1 educ + u.$$

9 > ggplot(data = wage.data, aes(x = educ, y = lwage)) +
geom_point() + stat_smooth(method = "lm")

Nonlinear Relationship between x and y: An Example

- > linear.m1 <- lm(wage ~ educ, data = wage.data)
 - > log.m1 <- lm(lwage ~ educ, data = wage.data)</pre>
 - > stargazer(linear.m1, log.m1, align = TRUE)

Dependent variable:	
wage	lwage
(1)	(2)
0.541*** (0.053)	0.083*** (0.008)
-0.905 (0.685)	0.584*** (0.097)
526 0.165	526 0.186
0.163	0.184
3.378	0.480
103.363***	119.582***
	wage (1) 0.541*** (0.053) -0.905 (0.685) 526 0.165 0.163 3.378

Note: *p<0.1; **p<0.05; ***p<0.01

Nonlinear Relationship between x and y: An Example

• For two observations $(educ_1, wage_1)$ and $(educ_2, wage_2)$, we have

$$\log(wage_1) = \beta_0 + \beta_1 educ_1 + u_1 \tag{1}$$

$$\log(wage_2) = \beta_0 + \beta_1 educ_2 + u_2 \tag{2}$$

• Subtracting (2) from (1),

$$\begin{split} \log(\textit{wage}_1) - \log(\textit{wage}_2) &= \beta_1(\textit{educ}_1 - \textit{educ}_2) + (\textit{u}_1 - \textit{u}_2) \\ \Rightarrow & \Delta \textit{wage}/\textit{wage}_2 = \beta_1 \Delta \textit{educ} + \Delta \textit{u} \end{split}$$

• When $\Delta u = 0$, the percentage change in the wage is approximately $\%\Delta wage = (100)\beta_1\Delta educ$.

Nonlinear Relationship between x and y

- Linear models are linear in parameters
- OLS applies to linear models no matter how x and y are defined
- ullet But be careful about the interpretation of eta

TABLE 2.3

Summary of Functional Forms Involving Logarithms

Model	Dependent Variable	Independent Variable	Interpretation of β_1
Level-level	У	х	$\Delta y = \beta_1 \Delta x$
Level-log	У	$\log(x)$	$\Delta y = (\beta_1/100)\% \Delta x$
Log-level	log(y)	x	$\%\Delta y = (100\beta_1)\Delta x$
Log-log	log(y)	$\log(x)$	$\%\Delta y = \beta_1 \% \Delta x$

Example: Returns to Education

• Example 3.2.(wage1.RData) Use *educ*, *exper*, *tenure* (years with current employer) to explain hourly wage.

Example: Returns to Education

 Example 3.2.(wage1.RData) Use educ, exper, tenure (years with current employer) to explain hourly wage.
 OLS SRF:

$$log(wage) = .284 + .092educ + .004exper + .022tenure,$$
 where $n = 526$. $R^2 = 0.316$

- How to interpret the coefficient on educ?
 - Holding exper and tenure fixed, an extra year of education is predicted to increase log(wage) by 0.092 (or 9.2% increase in wage)
- Holding educ fixed, what is the effect of an individual staying at the same firm for an extra year on log(wage)?

Example: Returns to Education

 Example 3.2.(wage1.RData) Use educ, exper, tenure (years with current employer) to explain hourly wage.
 OLS SRF:

$$log(wage) = .284 + .092 educ + .004 exper + .022 tenure,$$
 where $n = 526$. $R^2 = 0.316$

- How to interpret the coefficient on educ?
 - Holding exper and tenure fixed, an extra year of education is predicted to increase log(wage) by 0.092 (or 9.2% increase in wage)
- Holding *educ* fixed, what is the effect of an individual staying at the same firm for an extra year on log(*wage*)?

$$\Delta log(wage) = .004 + .022 = .026$$

• $R^2 = 0.316$ indicates that 31.6% of variation in wage is explained by *educ*, *exper*, and *tenure*

Outline

- Definition of the multiple regression model
- Ordinary least squares (OLS) estimates
- Units of measurement and functional form
- Statistical properties of OLS estimators
- Reporting regression results

OLS Estimators

- A random sample, containing independent draws from the same population, is random
 - A data set is a realization of the random sample
- OLS "estimates" $(\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k)$ computed from a random sample is random, called the OLS estimators
- To make inference about the population parameters $(\beta_0, \beta_1, \dots, \beta_k)$, we need to understand the statistical properties of the OLS estimators
- In particular, we like to know the means and variances of the OLS estimators

Unbiasedness of OLS Estimators

Theorem (3.1)

With a "good" model (where certain conditions are satisfied), the OLS estimators are unbiased, i.e., $E(\hat{\beta}_j) = \beta_j$, j = 0, 1, ..., k

Unbiased estimators $(\hat{\beta}_0, \dots, \hat{\beta}_k)$

- They are "centred" around $(\beta_0, \ldots, \beta_k)$
- They correctly estimate $(\beta_0, \ldots, \beta_k)$ on average
- They will be "near" $(\beta_0, \ldots, \beta_k)$ for a "typical" sample

What if an irrelevant x is included?

- "Irrelevant" means the population coefficient of that variable is 0
- Eg. x_3 is irrelevant in the model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u.$$

The OLS estimators are unbiased: $E(\hat{\beta}_j) = \beta_j$, $j = 0, 1, \ldots, k$

- In particular, $E(\hat{\beta}_3) = \beta_3 = 0$
- ullet The estimate of eta_3 will "typically" be near 0

What if an irrelevant x is included?

- Example 3.2.(wage1.RData) Use *educ*, *exper*, *tenure* (years with current employer) to explain hourly wage. What if we include an irrelevant variable?
- > log.m2 <- lm(lwage ~ educ + exper + tenure, data = wage.
 data)</pre>
 - > irr <- rnorm(nrow(wage.data), mean = 0, sd = 1)</pre>
 - > log.m3 <- lm(lwage ~ educ + exper + tenure + irr, data =
 wage.data)</pre>
 - > stargazer(log.m2, log.m3, align = TRUE, no.space = TRUE)

What if an irrelevant x is included?

Dependent variable:		
	Depender	it variable:
	lwage	
	(1)	(2)
educ	0.092***	0.092***
	(0.007)	(0.007)
exper	0.004**	0.004**
	(0.002)	(0.002)
tenure	0.022***	0.022***
	(0.003)	(0.003)
irr		0.004
		(0.019)
Constant	0.284***	0.285***
	(0.104)	(0.104)
Observations	526	526
R^2	0.316	0.316
Adjusted R ²	0.312	0.311
Residual Std. Error	0.441 (df = 522)	0.441 (df = 521)
F Statistic	80.391*** (df = 3; 522)	60.193*** (df = 4; 521)
	at.	

Note:

p<0.1; **p<0.05; ***p<0.01

What if a relevant x is omitted?

• Eg. When x_2 is omitted from the true model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u.$$

- It becomes: $y = \beta_0 + \beta_1 x_1 + v$, with $v = \beta_2 x_2 + u$
- ullet The estimated model is $ilde{y} = ilde{eta}_0 + ilde{eta}_1 extbf{x}_1$
- It can be shown that OLS is biased: $E(\tilde{\beta}_1) = \beta_1 + \beta_2 \tilde{\delta}$, where $\beta_2 \tilde{\delta}$ is known as omitted variable bias and $\tilde{\delta}$ is the coefficient of regressing x_2 on x_1
- The omitted variable bias is zero in two special cases
 - when $\beta_2 = 0$ or
 - when $\tilde{\delta}=0$

Omitted Variable Bias

- The OLS estimators will generally be biased
- The direction and size of bias depend on how the omitted is related to the included

	$Corr(x_1, x_2) > 0$	$Corr(x_1, x_2) < 0$
$\beta_2 > 0$ $\beta_2 < 0$	Positive bias Negative bias	Negative bias Positive bias

• In practice, the knowledge about the signs of β_2 and $Corr(x_1, x_2)$ is useful for interpreting estimation result

Omitted Variable Bias: An Example

- Example 3.2.(wage1.RData) Use educ, exper, tenure (years with current employer) to explain hourly wage. What if we omit exper in the model?
- > log.m2 <- lm(lwage ~ educ + exper + tenure, data = wage.
 data)</pre>
 - > log.m4 <- lm(lwage ~ educ + tenure, data = wage.data)</pre>
 - > stargazer(log.m2, log.m4, align = TRUE, no.space = TRUE)

Omitted Variable Bias: An Example

	Dependent variable:		
	(1)	(2)	
educ	0.092***	0.087***	
	(0.007)	(0.007)	
exper	0.004**		
	(0.002)		
tenure	0.022***	0.026***	
	(0.003)	(0.003)	
Constant	0.284***	0.404***	
	(0.104)	(0.092)	
Observations	526	526	
R^2	0.316	0.309	
Adjusted R ²	0.312	0.306	
Residual Std. Error	0.441 (df = 522)	0.443 (df = 523)	
F Statistic	80.391*** (df = 3; 522)	116.674*** (df = 2; 523)	

Note:

 $^*p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Variance of OLS Estimators

Theorem (3.2)

With a "good" model, the variances of the OLS estimators are given by

$$Var(\hat{\beta}_j) = \frac{\sigma^2}{SST_j(1 - R_j^2)}, \qquad j = 1, \dots, k,$$

where $SST_j = \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2$, $\bar{x}_j = n^{-1} \sum_{i=1}^n x_{ij}$, and R_j^2 is the R-squared from regressing x_j on all other independent variables.

- The larger σ^2 , the greater $Var(\hat{\beta}_i)$
- The larger the variation in x_j , the smaller $Var(\hat{\beta}_j)$
- ullet The larger R_j^2 , the greater $Var(\hat{eta}_j)$

Variance of OLS Estimators: Impact of σ^2

```
> x <- rnorm(100, mean = 1, sd = 2)
> y1 <- x + rnorm(100, mean = 1, sd = 2)
> y2 <- x + rnorm(100, mean = 1, sd = 8)
> m1 <- lm(y1 ~ x)
> m2 <- lm(y2 ~ x)
> stargazer(m1, m2, align = TRUE, no.space = TRUE)
```

Variance of OLS Estimators: Imapct of σ^2

	Dependent variable:	
	y1	y2
	(1)	(2)
×	0.948***	0.947**
	(0.107)	(0.427)
Constant	1.001***	1.510
	(0.264)	(1.048)
Observations	100	100
R^2	0.442	0.048
Adjusted R ²	0.437	0.038
Residual Std. Error (df = 98)	2.158	8.582
F Statistic (df $= 1$; 98)	77.769***	4.910**
Note:	*p<0.1; **p<0.05; ***p<0.01	

Variance of OLS Estimators: Imapct of SST_j

```
> x1 <- rnorm(100, mean = 1, sd = 1)
> y1 <- x1 + rnorm(100, mean = 1, sd = 8)
> x2 <- rnorm(100, mean = 1, sd = 8)
> y2 <- x2 + rnorm(100, mean = 1, sd = 8)
> m1 <- lm(y1 ~ x1)
> m2 <- lm(y2 ~ x2)
> stargazer(m1, m2, align = TRUE, no.space = TRUE)
```

Variance of OLS Estimators: Imapct of SST_j

	Dependent variable:		
	y1	y2	
	(1)	(2)	
×1	1.861**		
	(0.711)		
×2	` ′	1.056***	
		(0.107)	
Constant	0.016	0.906	
	(1.040)	(0.818)	
Observations	100	100	
R^2	0.065	0.497	
Adjusted R ²	0.056	0.492	
Residual Std. Error (df = 98)	7.737	8.060	
F Statistic (df = 1; 98)	6.851**	96.798***	
Note:	*p<0.1; **p<0.05; ***p<0.01		

©Jiahua Wu/BS1802 Statistics and Econometrics/Imperial College Business School

Variance of OLS Estimators: Impact of R_j^2

```
> x1 <- rnorm(100, mean = 1, sd = 2)
> x2 <- x1 + rnorm(100, mean = 1, sd = 1)
> x3 <- x1 + rnorm(100, mean = 1, sd = 8)
> y1 <- x1 + x2 + rnorm(100, mean = 1, sd = 8)
> y2 <- x1 + x3 + rnorm(100, mean = 1, sd = 8)
> m1 <- lm(y1 ~ x1 + x2)
> m2 <- lm(y2 ~ x1 + x3)
> stargazer(m1, m2, align = TRUE, no.space = TRUE)
```

Variance of OLS Estimators: Impact of R_j^2

	Dependent variable:		
	y1	y2	
	(1)	(2)	
×1	1.515*	1.069***	
	(0.888)	(0.373)	
×2	0.900		
	(0.802)		
×3		0.837***	
		(0.092)	
Constant	-0.439	2.039**	
	(1.187)	(0.832)	
Observations	100	100	
R^2	0.281	0.539	
Adjusted R^2	0.266	0.530	
Residual Std. Error ($df = 97$)	7.958	7.195	
F Statistic (df = 2 ; 97)	18.942***	56.783***	
Note:	*p<0.1; **p<0.05; ***p<0.01		

©Jiahua Wu/BS1802 Statistics and Econometrics/Imperial College Business School

Multicollinearity

- \bullet The larger R_j^2 , the greater $Var(\hat{\beta}_j)$
 - R_i^2 is the R-squared from regressing x_j on all other x's
 - The more variation in x_j is explained by other x's, the larger is R_i^2
- High correlation between two or more independent variables is known as multicollinearity

Estimation of σ^2

ullet As the residual approximates u, the estimator of σ^2 is

$$\hat{\sigma}^2 = \frac{SSR}{n - (k+1)} = \frac{\sum_{i=1}^{n} \hat{u}_i^2}{n - (k+1)}$$

- The degrees of freedom (df) for the regression is n-(k+1)=# of observations # of estimated coefficients
- ullet $\hat{\sigma}=\sqrt{\hat{\sigma}^2}$ is known as the standard error of the regression

Outline

- Definition of the multiple regression model
- Ordinary least squares (OLS) estimates
- Units of measurement and functional form
- Statistical properties of OLS estimators
- Reporting regression results

Reporting Regression Results

- Good practice (minimum)
 - Report estimated coefficients AND standard errors
 - Report R-squared
 - Report sample size
 - Report in equation-form if the number of equations is small
 - Eg. Log wage model (standard errors are in brackets):

$$\log(wage) = .284 + .092 educ + .0041 exper + .022 tenure$$

$$n = 526$$
, $R^2 = .316$

Report in table-form

Reporting Regression Results

```
lm(formula = bwght ~ cigs, data = data)
Residuals:
```

```
Min 1Q Median 3Q
                           Max
-96.772 -11.772 0.297 13.228 151.228
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 119.77190 0.57234 209.267 < 2e-16 ***
                            -5.678 16e-08 ***
    -0.51377 0.090
cigs
Signif. codes: 0 *** 0.001
                                    0.05 . 0.1 1
```

Residual standard error: 20.13 or degrees of freedom us Multiple R-squared: 0.02273, R-squared: 0.02202 F-statistic: 32.24 on 1 and 13 DF, %alue: 1.662e-08