Généralités

Exercice 1.

Soit $f : \mathbb{R} \to \mathbb{R}$ une application croissante telle que $f \circ f = \mathrm{I} d_{\mathbb{R}}$. Prouver que $f = \mathrm{I} d_{\mathbb{R}}$.

EXERCICE 2.

Déterminer les applications $f: \mathbb{N} \to \mathbb{N}$ telles que $: \forall n \in \mathbb{N}, f(n) + f(f(n)) + f(f(f(n))) = 3n$.

Injectivité et surjectivité

EXERCICE 3.

Soit E un ensemble non vide et A et B deux parties de E.

1. Montrer que si $A \cap B = \emptyset$, alors pour toute partie X de E

$$(X \cup A) \cap (X \cup B) = X$$

- **2.** Soit l'application $f: \left\{ \begin{array}{ccc} \mathscr{P}(\mathsf{E}) & \longrightarrow & \mathscr{P}(\mathsf{E})^2 \\ \mathsf{X} & \longmapsto & (\mathsf{X} \cup \mathsf{A}, \mathsf{X} \cup \mathsf{B}) \end{array} \right.$
 - **a.** Montrer que f n'est pas surjective.
 - **b.** Montrer que f est injective si et seulement si $A \cap B = \emptyset$.

Exercice 4.

Soit $f: \mathbb{N} \to \mathbb{N}$ une application injective, telle que $\forall n \in \mathbb{N}, f(n) \leq n$. Montrer que $\forall n \in \mathbb{N}, f(n) = n$.

EXERCICE 5.

Soit $\alpha \in \mathbb{C} \setminus \mathbb{U}$. Pour $z \in \mathbb{C}$ tel que $\overline{\alpha}z + 1 \neq 0$, on pose $f(z) = \frac{z + \alpha}{\overline{\alpha}z + 1}$.

- **1.** Montrer que f est définie sur \mathbb{U} .
- **2.** Soit $z \in \mathbb{C}$ tel que $\overline{\alpha}z + 1 \neq 0$. Montrer que $z \in \mathbb{U}$ si et seulement si $f(z) \in \mathbb{U}$.
- **3.** Montrer que f induit une bijection de \mathbb{U} sur \mathbb{U} .

EXERCICE 6.

Soit $f : E \to F$ une application. Montrer que f est injective si et seulement si $f(A \cap B) = f(A) \cap f(B)$ pour tout couple $(A, B) \in \mathcal{P}(E)^2$.

EXERCICE 7.

Soient f et g deux applications d'un ensemble E dans lui-même, telles que $g \circ f \circ g = f$ et $f \circ g \circ f = g$.

- 1. On suppose que f est injective. Démontrer que f et g sont bijectives.
- 2. On suppose que g est surjective. Démontrer que f et g sont bijectives.

EXERCICE 8.

Soit f une application de \mathbb{N} dans \mathbb{N} vérifiant f(1) = 1 et telle que

$$\forall (m,n) \in \mathbb{N}^2$$
, $f(m+f(n)) = f(f(m)) + f(n)$

On rappelle que $\operatorname{Im} f = f(\mathbb{N})$ et on note \mathscr{F} l'ensemble des points fixes de f , c'est-à-dire

$$\mathscr{F} = \{a \in \mathbb{N}, f(a) = a\}$$

- **1.** Montrer que f(0) = 0.
- **2.** En déduire que $f \circ f = f$.
- **3.** Montrer que Im $f = \mathcal{F}$.
- **4.** Montrer que pour tout $a \in \mathcal{F}$, $a+1 \in \mathcal{F}$.
- **5.** En déduire que $\mathscr{F} = \mathbb{N}$ et en déduire f.

Exercice 9.

Le plan \mathscr{P} est muni d'un repère orthonormé direct. A est le point d'affixe 2. On définit une application $\mathscr{T}:\mathscr{P}\setminus\{A\}\to\mathscr{P}$ qui au point d'affixe z associe le point d'affixe $f(z)=2z+3+\frac{6}{z-2}$.

- 1. Étudier l'injectivité et la surjectivité de \mathcal{T} .
- 2. Déterminer l'ensemble des points de ${\mathscr P}$ invariants par ${\mathscr T}$.
- 3. Deux points m et m' de $\mathscr{P} \setminus \{A\}$ sont dits associés s'ils ont la même image par \mathscr{T} . Montrer que les points m et m', d'affixes respectifs z et z', sont associés si et seulement si z = z' ou (z-2)(z'-2) = 3.
- 4. On note $\mathscr E$ l'axe réel privé du point A. Déterminer l'ensemble $\mathscr T(\mathscr E)$.
- 5. Soient B et C les points d'affixes $7-4\sqrt{3}$ et $7+4\sqrt{3}$. Déterminer l'ensemble $\mathcal{T}^{-1}([BC])$.

EXERCICE 10.

Les applications suivantes sont-elles injectives ? surjectives ? bijectives ?

1.
$$f_1: \mathbb{R} \longrightarrow \mathbb{R}$$
, $x \longmapsto f_1(x) = |x-2|$;

2.
$$f_2: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto f_2(x) = \frac{x}{x^2 + 1};$$

3.
$$f_3: \mathbb{R}_+ \longrightarrow \mathbb{R}$$
, $x \longmapsto f_3(x) = \frac{3x+1}{4x+1}$;

4.
$$f_4: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto x^3$$
;

5.
$$f_5: \mathbb{C} \longrightarrow \mathbb{C}, x \longmapsto x^3$$
.

Exercice 11.

Soient E un ensemble, A et B deux parties fixées de E, et Ψ l'application de $\mathscr{P}(E)$ dans $\mathscr{P}(A) \times$ $\mathcal{P}(B)$ définie par

$$\forall X \subset E$$
, $\Psi(X) = (X \cap A, X \cap B)$.

- **1.** Etude de l'injectivité de Ψ .
 - **a.** Calculer $\Psi(\emptyset)$.
 - **b.** Calculer $\Psi(\overline{A \cup B})$.
 - **c.** Prouver que Ψ est injective *si et seulement si* $A \cup B = E$.
- **2.** Etude de la surjectivité de Ψ .
 - **a.** Le couple (\emptyset, B) admet-il un antécédent par Ψ ?
 - b. Déterminer une condition nécessaire et suffisante sur A, B et E pour que Ψ soit surjective.

Exercice 12.

Soit $f: \mathbb{N} \to \mathbb{N}$ définie par

$$\begin{cases} f(n) &= n & \text{si } n \text{ est pair,} \\ f(n) &= \frac{n+1}{2} & \text{si } n \text{ est impair.} \end{cases}$$

Etudier l'injectivité et la surjectivité de f.

Images directes et réciproques

Exercice 13.

Dans chacun des cas suivants, déterminer l'image de l'ensemble I par la fonction f:

1.
$$I = [-5, 1[\text{ et } f(x) = \frac{5x - 2}{1 - x}]$$

1.
$$I = [-5, 1[\text{ et } f(x) = \frac{5x - 2}{1 - x}]$$
4. $I = [1, +\infty[\text{ et } f(x) = \frac{1}{(1 - x)^3}]$

2.
$$I = \left[\frac{1}{2}, 1\right]$$
 et $f(x) = \frac{5x^2 - 1}{1 - x}$.

2.
$$I = \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$$
 et $f(x) = \frac{5x^2 - 1}{1 - x}$. 5. $I =]-\pi, \pi[\setminus \left\{ -\frac{\pi}{2}; \frac{\pi}{2} \right\}$ et $f(x) = \tan x$.

3.
$$I =]-1, 1[$$
 et $f(x) = \frac{1}{(x-1)(x+1)}$.

Exercice 14.

Soit $f: E \to F$.

- 1. Montrer que f est injective si et seulement si pour toute partie A de E, $f^{-1}(f(A)) = A$.
- **2.** Montrer que f est surjective si et seulement si pour toute partie B de F, $f(f^{-1}(B)) = B$.

EXERCICE 15.

Soit $f : \mathbb{R} \longrightarrow \mathbb{R}$, $x \mapsto x^2$. Déterminer les ensembles suivants :

1.
$$f(\mathbb{R})$$
;

6.
$$f^{-1}([-4,4[);$$

2.
$$f([-3,2]);$$

7.
$$f^{-1}(f([0,1]))$$
;

3.
$$f([-3,3]);$$

8.
$$f(f^{-1}([-1,4]))$$
;

4.
$$f^{-1}([9,10]);$$

5. $f^{-1}([-5,-3]);$

9.
$$f(f^{-1}(\mathbb{R}_{-}))$$
.

Exercice 16.

Soit f l'application de \mathbb{C}^* dans \mathbb{C} définie par $f(z) = \frac{1}{z}$.

- **1.** *f* est-elle injective? surjective?
- **2.** On considère les ensembles $E = \{z \in \mathbb{C} \mid |z-1| = 1\}$ et $F = \{z \in \mathbb{C} \mid \operatorname{Re} z = \frac{1}{2}\}$.
 - a. Si on identifie C au plan, donner la nature géométrique de E et F, et donner leurs équations cartésiennes.
 - **b.** Vérifier que $f(E \setminus \{0\}) \subset F$.
 - **c.** Montrer que f induit une bijection de $E \setminus \{0\}$ sur F.

Fonctions indicatrices

Exercice 17.

Soient A, B $\in \mathcal{P}(E)$. On définit la *différence symétrique* de A et B par :

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

1. Montrer que $\forall A, B \in \mathcal{P}(E)$,

$$\mathbb{1}_{A\Delta B} = (\mathbb{1}_A - \mathbb{1}_B)^2.$$

2. Montrer que $\forall A, B, C \in \mathscr{P}(E)$,

$$A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$$

3. Montrer que $\forall A, B, C \in \mathcal{P}(E)$

$$(A\Delta B)\Delta C = A\Delta (B\Delta C)$$

EXERCICE 18.

Soient A, B, C trois ensembles. On pose $X = A \cup (B \cap C)$ et $Y = (A \cup B) \cap C$.

- 1. Déterminer les fonctions indicatrices de X et Y en fonction de celles de A, B et C.
- **2.** En déduire à quelle condition nécessaire et suffisante (portant sur A et C) les ensembles X et Y sont égaux.

Calcul de limites

Exercice 19.

Voici un peu d'entraînement sur la méthode de la quantité conjuguée.

1. Démontrer que

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} = 1.$$

2. Soient m, n des entiers positifs. Etudier

$$\lim_{x\to 0}\frac{\sqrt{1+x^m}-\sqrt{1-x^m}}{x^n}.$$

3. Démontrer que

$$\lim_{x \to 0} \frac{1}{x} (\sqrt{1 + x + x^2} - 1) = \frac{1}{2}.$$

EXERCICE 20.

Calculer lorsqu'elles existent les limites suivantes

1.
$$\lim_{x\to 0} \frac{x^2 + 2|x|}{x}$$
;

5.
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$$
;

$$2. \lim_{x \to -\infty} \frac{x^2 + 2|x|}{x};$$

6.
$$\lim_{x \to +\infty} \sqrt{x+5} - \sqrt{x-3}$$
;

3.
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 3x + 2};$$

7.
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$$
;

4.
$$\lim_{x \to \pi} \frac{\sin^2(x)}{1 + \cos(x)}$$
;

8.
$$\lim_{x \to 1} \frac{x-1}{x^n-1}$$
.

Dérivabilité

Exercice 21.

Soit f une application dérivable de \mathbb{R} dans \mathbb{R} .

- **1.** Si f est paire ou impaire, que peut-on dire de la parité de f', de $f^{(n)}$ pour $n \in \mathbb{N}$?
- **2.** Si f est périodique, que peut-on dire de la périodicité de f', de $f^{(n)}$ pour $n \in \mathbb{N}$?

EXERCICE 22.

Etudier la dérivabilité et calculer les dérivées des fonctions suivantes.

1.
$$f: x \mapsto \sqrt{x^4 - x^2}$$

3.
$$h: x \mapsto \ln(\sqrt{x^2-1}-1)$$

2.
$$g: x \mapsto e^{\sqrt{x^2 + x + 1}}$$

4.
$$i: x \mapsto \ln(1 - \sqrt{\cos x})$$

Exercice 23.★

1. Déterminer deux réels a et b tels que $\forall x \neq \pm 1$,

$$\frac{1}{1-x^2} = \frac{a}{1+x} - \frac{b}{1-x}.$$

2. Calculer la dérivée n-ième sur $\mathbb{R} \setminus \{\pm 1\}$ de la fonction

$$f(x) = \frac{1}{1 - x^2}.$$

Exercice 24.★

Soit $\alpha \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, calculer la dérivée n-ième de

$$x \mapsto e^{x \cos(\alpha)} \cos(x \sin(\alpha)).$$

Etude de fonctions

Exercice 25.

- **1.** Tracer la courbe représentative de la fonction $f: x \in \mathbb{R} \mapsto x^3 3x$.
- 2. Sans calculs, tracer les courbes représentatives des fonctions suivantes :

$$g: x \in \mathbb{R} \mapsto f(x+2)-1$$
 $h: x \in \mathbb{R} \mapsto 2f\left(\frac{x}{2}\right)$ $i: x \in \mathbb{R} \mapsto \frac{1}{2}f(2x-2)+1$

Exercice 26.

On considère la fonction réelle définie par $f(x) = \frac{\ln x}{x^2}$ et $\mathscr C$ sa courbe représentative. Montrer que le point (1,0) est le seul point de la courbe où la tangente est parallèle à la droite d'équation y = x.

Exercice 27.

Montrer que l'équation $x \ln x = 1$ admet une unique solutions sur \mathbb{R}_+^* .

Exercice 28.

Montrer que la fonction définie par

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $x \longmapsto f(x) = 2xe^x$

induit une bijection de [0,1] sur un ensemble à déterminer.

Exercice 29.

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{x}{x^2 + 1}$.

- **1.** *f* est-elle injective? surjective?
- 2. Montrer que f induit une bijection de $[1,+\infty[$ sur un intervalle de \mathbb{R} à préciser.

Exercice 30.★★

Soit $f: x \mapsto \sqrt{|x^2-1|}$. Etudier la fonction f, puis représenter f graphiquement. On précisera les tangentes remarquables ainsi que les asymptotes.

Exercice 31.

Etudier les fonctions suivantes. On précisera également leurs images.

1.
$$f: x \mapsto x^x$$

3.
$$f: x \mapsto \sqrt{1+x^2}$$

$$2. \ f: x \mapsto \frac{\ln x}{x}$$

4.
$$f: x \mapsto \sin x - \frac{1}{3} \sin 3x$$

Exercice 32.

Soient $f: x \in \mathbb{R} \mapsto \sqrt{x^2 + x + 1}$ et \mathscr{C}_f sa courbe représentative dans un repère orthonormé.

- **1.** Donner l'ensemble de définition de f.
- 2. Calculer f(-1-x) pour tout $x \in \mathbb{R}$. En déduire sans justification une symétrie de \mathscr{C}_f .
- 3. Justifier que f est dérivable sur \mathbb{R} . Calculer sa dérivée. En déduire les variations de f que l'on présentera dans un tableau de variations. On précisera les limites de f aux bornes de son ensemble de définition
- **4.** Montrer que \mathscr{C}_f admet une asymptote oblique en $+\infty$ dont on déterminera une équation. En déduire sans calcul que \mathscr{C}_f admet également une asymptote oblique en $-\infty$ dont on précisera une équation.
- **5.** Préciser la position de \mathscr{C}_f par rapport à ses asymptotes.
- **6.** Tracer \mathscr{C}_f . On fera figurer les asymptotes et les tangentes remarquables.

EXERCICE 33.

Soit $n \in \mathbb{N}^*$. Déterminer en fonction de n le nombre de solutions de l'équation $x^n \ln x = -\frac{1}{n^2}$.

Exercice 34.

Soit $k \in \mathbb{R}_+^*$. Déterminer le nombre de solutions réelles de l'équations $e^x = 1 + kx$.

EXERCICE 35.

On considère la fonction réelle $f: x \mapsto \frac{(x+1)^2}{2x-1}$.

- 1. Etudiez f, déterminez ses éventuelles asymptotes, puis tracez la courbe \mathscr{C}_f .
- 2. Prouvez que \mathcal{C}_f possède un centre de symétrie.

Inégalités

Exercice 36.

Montrer que pour tout $x \in \mathbb{R}$, $\cos x \ge 1 - \frac{x^2}{2}$.

Exercice 37.

Montrer que pour tout $x \in \left[0, \frac{\pi}{2}\right]$

$$x \le \frac{2}{3}\sin x + \frac{1}{3}\tan x$$

Exercice 38.

Montrer que pour tout $x \in \mathbb{R}_+$

$$\frac{8\sin x - \sin(2x)}{6} \leqslant x$$

Minorant, majorant, minimum, maximum

Exercice 39.

Les fonctions suivantes sont-elles majorées, minorées, bornées? Justifier.

1.
$$f: x \in \mathbb{R} \mapsto e^x \sin x$$

3.
$$h: x \in \mathbb{R} \mapsto (1 + \sin x) \ln(1 + x^2)$$

2.
$$g: x \in \mathbb{R} \to \frac{2\sin x + 3\cos x^2}{1 + e^x}$$
 4. $i: x \in \mathbb{R} \mapsto e^{-x^2}\sin x$

$$4. \ i: x \in \mathbb{R} \mapsto e^{-x^2} \sin x$$

Exercice 40.

Les fonctions suivantes admettent-elles un minimum ou un maximum?

$$1. \ f: x \in \mathbb{R} \mapsto e^{-x^2}$$

3.
$$h: x \in \mathbb{R}_+ \mapsto e^{-x} \sqrt{x}$$
.

$$2. \ g: x \in \mathbb{R}_+^* \mapsto \frac{\ln x}{x}$$

4.
$$i: x \in \mathbb{R}_+^* \mapsto x + \frac{a}{x}$$
 où $a \in \mathbb{R}_+^*$