

Introduction to Neuroscience

Kasia Pieczonka – PhD Student

University of Toronto

k.pieczonka@mail.utoronto.ca

Grey and White Matter

Grey Matter: Cerebral Cortex

Neuroanatomy

Frontal Lobe

- Prefrontal cortex
 - Responsible for higher order cognitive function (decision making, attention, planning)
- Primary motor cortex
 - Responsible for the initiation and execution of voluntary movement
- Premotor and supplementary motor areas
 - Responsible for the integration of signals related to motor planning
- Broca's area
 - Responsible for the motor aspects of speech

Parietal Lobe

Primary somatosensory cortex

- Responsible for the integration and conscious awareness of sensory signals related to pain, proprioception, temperature, tactile
- Somatosensory association cortex
 - Responsible for the analysis and processing of somatic stimuli

Posterior association area

 Responsible for the processing of visual and auditory stimuli

Occipital Lobe

- Primary visual cortex
 - o Responsible for visual perception
- Visual association area
 - Responsible for the recognition and interpretation of the visual images that we are seeing

Neuroanatomy

Primary auditory cortex

 Responsible for the reception and conscious awareness of auditory information

Auditory association cortex

 Responsible for the analysis and processing of auditory stimuli

• Wernicke's area

 Responsible for the understanding and comprehension of language

Primary olfactory cortex

 Responsible for the conscious awareness of smell

Neuroanatomy

Brodmann Areas

Deep Grey Nuclei

Thalamus

Relay center for all body senses except smell

Basal ganglia

- Responsible for motor control and learning
- Includes structures such as the caudate nucleus, putamen and globus pallidus

White Matter: Fiber Types

- 1. Commissural fibers connect hemispheres
- 2. Projection fibers connect the cerebral cortex to other structures in the brain
- 3. Association fibers connect structures within the same hemisphere

Neuron Structure

Resting Membrane Potential

At the resting potential, all voltage-gated Na⁺ channels and most voltage-gated K⁺ channels are closed. The Na⁺/K⁺ transporter pumps K⁺ ions into the cell and Na⁺ ions out.

Depolarization

In response to a depolarization, some Na⁺ channels open, allowing Na⁺ ions to enter the cell. The membrane starts to depolarize (the charge across the membrane lessens). If the threshold of excitation is reached, all the Na⁺ channels open.

Repolarization

At the peak action potential, Na⁺ channels close while K⁺ channels open. K⁺ leaves the cell, and the membrane eventually becomes hyperpolarized.

Action Potential

Neurotransmission

- 1 Axon potential arrives at the axon terminal.
- 2 Ca²⁺ influx via voltage-gated Ca²⁺ channels.
- Ca²⁺ induces exocytosis of neurotransmitters into the synaptic cleft.
- 4 Neurotransmitters bind to post-synaptic channels causing Na⁺ influx.
- 5 Depolarization and generation of an action potential.

Electroencephalography (EEG)

Neural Signaling Beta [12-30 Hz] MMMMMMMMM**Alpha** [8-12 Hz] **Theta** [4-8 Hz] Delta [1-4 Hz] 1 sec

EEG Signal

- Records electrical activity by measuring voltage differences in particular brain regions
 - (Remember that there are changes in voltage during neural signaling)
- Specifically, it records excitation in the dendrites of the post-synaptic neuron
- There are distinct EEG patterns during different cognitive processes

Event Related Potentials

Changes in electrical activity in response to a particular stimulus

1. Pick an electrode

- 1. Pick an electrode
- 2. Find the associated Brodmann area using the table

Table 2
Macro-anatomical and cytoarchitectonic variabilities of cortical projections in the 10–10 system

Labels	Macro-anatomical variabilities	Main macro-anatomical structures	Main BA	Cytoarchitectonic (Brodmann) variabilities
Fp1	GFS (65%) GFM (35%)	Superior frontal G	10	10 (100%)
Fpz	GFd (66%) SI (17%) GFM (17%)	Medialis frontal G	10	10 (100%)
Fp2	GFS (75%) GFM (25%)	Superior frontal G	10	10 (100%)
AF7	GFM (100%)	Middle frontal G	10	10 (75%), 46 (25%)
AF3	GFS (56%) GFM (44%)	Superior frontal G	9	9 (75%), 10 (19%), 8 (6%)
AFz	GFS (75%) GFd (19%) SI (6%)	Superior frontal G	9	9 (62,5%), 6 (12,5%), 8 (19%), 10 (6%)
AF4	GFS (75%) GFM (25%)	Superior frontal G	9	9 (69%), 10 (25%), 8 (6%)
AF8	GFM (81%) GFS (13%) GFI (6%)	Middle frontal G	10	10 (81%), 49 (19%)
-7	GFI (100%)	Inferior frontal G	45	45 (56%), 47 (38%), 46 (6%)
F5	GFM (88%) GTS (6%) GFI (6%)	Middle frontal G	46	46 (50%), 9 (38%), 45 (6%), 22 (6%)
F3	GM (75%) GFS (25%)	Middle frontal G	8	8 (75%), 6 (19%), 46 (6%)
-1	GFS (88%) GFM (12%)	Superior frontal G	6	6 (63%), 8 (31%), 9 (6%)
Z	GFS (81%) SI (19%)	Superior frontal G	6	6 (81,5%), 8 (12,5%), 9 (6%)
-2	GFS (75%) GFM (25%)	Superior frontal G	6	6 (69%), 8 (31%)
4	GFM (63%) GFS (31%) GPREC (6%)	Middle frontal G	8	8 (69%), 6 (6%), 9 (25%)
6	GFM (75%) GFI (25%)	Middle frontal G	9	9 (43,5%), 46 (37,5%), 45 (19%)
8	GFI (88%) GFM (12%)	Middle frontal G	45/47	45 (37,5%), 47 (37,5%), 46 (25%)
T7	GTS (82%) GTM (12%) GFI (6%)	Superior temporal	22	22 (75,5%), 21 (12,5%), 38 (6%), 44 (6%)
C5	GPREC (63%) GFI (37%)	Precentral G	6	6 (63%), 9 (25%), 44 (6%), 45 (6%)
FC3	GFM (63%) GPREC (37%)	Middle frontal G	6	6 (75%), 4 (12,5%), 8 (12,5%)
C1	GFS (88%) GFM (12%)	Superior frontal G	6	6 (100%)
Cz	SI (50%) GFS (31%) GFM (19%)	Interhemispheric sulcus	6	6 (100%)
C2	GFS (56%) GFd (38%) GPREC (6%)	Superior frontal G	6	6 (100%)
C4	GFM (75%) GPREC (19%) GPSTC (6%)	Middle frontal G	6	6 (82%), 123 (6%), 8 (6%), 9 (6%)
C6	GPREC (63%) GFI (25%) GFM (6%) GPSTC (6%)	Precentral G	6	6 (56,5%), 9 (19,5%), 43 (6%), 44 (6%), 45 (6%), 8 (6%
T8	GTS (81%) GTM (13%) GPREC (6%)	Superior temporal G	22	22 (75%), 21 (13%), 38 (6%), 44 (6%)
7	GTM (69%) GTS (19%) GPSTC (12%)	Middle temporal G	21	21 (81,5%), 22 (12,5%), 43 (6%)
5	GPSTC (69%) LPI (25%) GPREC (6%)	Postcentral G	123	123 (44%), 40 (37,5%), 43 (12,5%), 6 (6%)
3	GPSTC (69%) GPREC (19%) LPI (12%)	Postcentral G	21	21 (62,5%), 22 (25%), 20 (6,5), 42 (6%)
1	GPREC (63%) GPSTC (25%) GFS (13%)	Precentral G	4/6	4 (37,5%), 6 (37,5%), 123 (25%)
Cz	SI (81%) GFS (6%) GFM (6%) LPARAC (6%)	Interhemispheric scissure	4	4 (62,5%), 6 (37,5%)
C2	GPREC (63%) GPSTC (25%) GFS (13%)	Precentral G	123	123 (56,5%), 40 (25,5%), 4 (12,5%), 6 (6%)
C4	GPSTC (81%) GPREC (13%) LPI (6%)	Postcentral G	123	123 (81,5%), 6 (12,5), 40 (6%)
C6	GPSTC (50%) LPI (25%) GPREC (25%)	Postcentral G	123/40	123 (25%), 40 (25%), 4 (12,5%), 6 (12,5%),
				43 (12,5%), 2 (12,5%)
8	GTM (56%) GTS (38%) GTI (6%)	Middle temporal G	4	4 (50%), 123 (25%), 6 (25%)
TP7	GTM (82%) GTI (12%) GTS (6%)	Middle temporal G	21	21 (50%), 37 (25%), 22 (19%), 20 (6%)
P5	GTS (5%) GSM (24%) GTM (13%) LPI (13%)	Superior temporal G	22	22 (44%), 40 (37,5%), 39 (12,5%), 21 (6%)
P3	LPI (75%) GPSTC (13%) LPS (6%) GA (6%)	Inferior parietal L	40	40 (82%), 123 (6%), 5 (6%), 39 (6%)
P1	LPS (50%) GPSTC (50%)	Postcentral G-Superior parietal L	7	7 (62,5%), 5 (31,5%), 123 (6)
CPz	GPSTC (44%) SI (38%) PC (18%)	Postcentral G	7	7 (56%), 5 (19%), 123 (12,5%), 4 (12,5%)
CP2	GPSTC (56%) LPS (44%)	Postcentral G	5	5 (62,5%, 7 (25%), 123 (12,5%)
CP4	LPI (88%) GPSTC (12%)	Inferior parietal L	40	40 (77,5%), 123 (12,5%)
P6	GSM (38%) GTS (38%) LPI (24%)	Superior temporal G-GSM	40	40 (62,5%0), 22 (37,5%)
TP8	GTM (56%) GTI (31%) GTS (13%)	Middle temporal G	21	21 (62,5%), 22 (12,5%), 20 (12,5%), 37 (12,5%)
7	GOM (38%) GTM (25%) GTI (25%) GTS (6%) GF (6%)	Middle occipital G	37	37 (44%), 19 (38%), 39 (18%)
25	GTM (56%) GA (13%) GOM (13%) GSM (6%)	Middle temporal G	39	39 (62,5%), 19 (19%), 37 (12,5%), 40 (6%)
	GTS (6%) LPI (6%)			, , , , , , , , , , , , , , ,
P3	LPI (38%) PC (25%) GA (19%) LPS (12%) GTM (6%)	Inferior parietal L	39	39 (37,5%), 7 (25%), 19 (25%), 40 (12,5%)
21	PC (50%) LPS (44%) GPSTC (6%)	Precuneus	7	7 (87,5%), 19 (12,5%)
Pz	PC (62%) LPS (19%) SI (19%)	Precuneus	7	7 (88%), 5 (6%), 19 (6%)
2	PC (63%) LPS (31%) GPSTC (6%)	Precuneus	7	7 (81,5%), 19 (12,5%), 5 (6%)
4	LPI (31%) GA (31%) LPS (19%) PC (13%) GOS (6%)	Inferior parietal L	39	39 (31%), 7 (25%), 40 (25%), 19 (19%)
6	GTM (69%) GA (13%) LPI (6%) GTS (6%) GOM (6%)	Middle temporal G	39	39 (75,5%), 19 (12,5%), 40 (6%), 37 (6%)
8	GTI (44%) GOM (31%) GTM (19%) GTS (6%)	Inferior temporal G	19	19 (56%), 37 (19%), 20 (12,5), 39 (12,5%)
07	GOM (63%) GOI (31%) GA (6%)	Middle occipital G	19	19 (62,5%), 18 (31%), 39 (6,5%)
03	GOM (50%) PC (18%) C (13%) GOS (13%) GTM (6%)	Middle occipital G	19	19 (75,5%), 7 (6%), 39 (6%), 18 (12,5%)
Oz	C (69%) PC (25%) LPS (6%)	Cuneus	19	19 (56%), 18 (25%), 7 (19%)
204	GOM (38%) GOS (19%) GTM (19%) C (12%) LPS (6%)	Middle occipital G	19	19 (69%), 39 (12,5%), 18 (12,5%), 7 (6%)
	PC (6%)			() () () . ()
208	GOM (44%) GOI (44%) GOS (6%) GTM (6%)	Middle occipital G	19	19 (69%), 18 (31%)
00	GOM (38%) C (19%) GL (19%) GOI (19%) PC (5%)	Middle occipital G	18	18 (81%), 19 (19%)
Oz	C (98%) GL (5%) GOM (6%)	Cuneus	18	18 (62,5), 17 (31%), 19 (6,5%)
02	C (38%) GOM (31%) GL (25%) GOI (6%)	Cuneus	18	18 (81%), 19 (19%)
V4	C (30%) GOM (31%) GL (23%) GOM (0%)	Culicus	10	10 (01/0), 13 (13/0)

- 1. Pick an electrode
- 2. Find the associated Brodmann area using the table
- 3. Lookit up! ©

Thank you!