Praveen Madupu Mb: +91 98661 30093 Sr. Database Administrator

SQL Server database backups behave before and after encryption, what changes in backup size, and how the transfer rate parameter is affected.

\$\iiii 1. Backup Size Before and After Encryption

SQL Server offers backup encryption (introduced in SQL Server 2014) which encrypts the backup file at the time of creation using a certificate or asymmetric key.

What Changes After Encryption

Aspect	Before Encryption	After Encryption	
Backup File Size		Slightly larger compared to compressed unencrypted backups (5-10% overhead) because encryption reduces compressibility.	
II		Backup compression still works but achieves lower ratio (encrypted data is almost incompressible).	
Security		Requires certificate/private key used for encryption — improves security.	

Key Point:

- If you use **Compression + Encryption** together → Compression happens **first**, then encryption.
- That means you still benefit from compression, but final .bak file will be slightly larger than the compressed one without encryption.

2. Transfer Rate Parameter in SQL Server Backups

SQL Server shows backup throughput as MB/sec in SSMS or in the output of BACKUP DATABASE.

This is the **Transfer Rate** parameter.

Example:

BACKUP DATABASE [MyDB] TO DISK = 'D:\Backup\MyDB_Enc.bak' WITH ENCRYPTION (ALGORITHM = AES 256, SERVER CERTIFICATE = MyBackupCert), COMPRESSION, STATS=10;

Sample Output:

10 percent processed.

20 percent processed.

Processed 1200 pages for database 'MyDB', file 'MyDB_Data' on file 1.

Processed 3 pages for database 'MyDB', file 'MyDB_Log' on file 1.

BACKUP DATABASE successfully processed 1203 pages in 3.421 seconds (2.830 MB/sec).

Here 2.830 MB/sec is the transfer rate.

Factors Affecting Transfer Rate

Factor	Impact	
Encryption Algorithm	AES_256 is most secure but slightly slower than AES_128.	
CPU Performance	Encryption is CPU-intensive — weak CPUs reduce backup throughput.	
Disk Speed (I/O)	Slow backup destination disk can become a bottleneck.	
Compression	Can actually increase throughput (less data written to disk).	
Network Speed (if backing up to network share)	Latency and bandwidth limit transfer rate.	

★ 3. Steps to Measure Backup Size & Transfer Rate (Before vs After Encryption)

Step 1: Run Backup Without Encryption

BACKUP DATABASE [MyDB]

TO DISK = 'D:\Backup\MyDB NoEnc.bak'

WITH COMPRESSION, STATS=10;

• Note **final backup file size** from Windows Explorer or:

EXEC master.dbo.xp_fileexist 'D:\Backup\MyDB_NoEnc.bak';

Check transfer rate in SQL output.

Step 2: Run Backup With Encryption

First, create a **Database Master Key** and **Certificate** (one-time setup):

USE master;

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'StrongPasswordHere';

CREATE CERTIFICATE MyBackupCert

WITH SUBJECT = 'Database Backup Encryption Certificate';

Then run encrypted backup:

BACKUP DATABASE [MyDB]

TO DISK = 'D:\Backup\MyDB_Enc.bak'

WITH ENCRYPTION (ALGORITHM = AES_256, SERVER CERTIFICATE = MyBackupCert),

COMPRESSION, STATS=10;

• Again, note backup size & transfer rate.

III Expected Results

Test	Backup Size	Transfer Rate
Before Encryption (Compressed)	Smallest size (depends on data compression ratio)	Highest MB/sec (less CPU cost)
IISlightly larger (5–10% overhead)		Slightly lower MB/sec (depends on CPU load & encryption algorithm)
	Significantly larger (because encryption makes compression impossible later)	Similar or slightly slower throughput

Praveen Madupu Mb: +91 98661 30093 Sr. Database Administrator

3

@ Best Practices

- Always use compression + encryption together → best size & security tradeoff.
- Monitor CPU usage during encrypted backups avoid running during peak load if CPU-bound.
- Test different algorithms (AES_128, AES_256, TRIPLE_DES) → choose the best balance between security & speed.
- Measure transfer rate over several runs → disk caching or network congestion can cause variations.

Here's a **practical sample comparison table** for a ~1 TB database backup showing **before vs after encryption** with real-world style numbers. This will help your DBA team understand the impact on **backup size** and **transfer rate** during benchmarking.

III Sample Comparison: Backup Size & Transfer Rate

Scenario	=		Transfer Rate (MB/sec)	Notes
Uncompressed, No Encryption	1,024 GB (≈ 1 TB)	N/A	160 MB/sec	Fastest write but huge file size, no security.
Compressed, No Encryption	270 GB	~3.8x reduction	l210 MB/sec	Compression reduces I/O → higher throughput.
. ·	1,040 GB (≈ +1.5%)	N/A	140 MB/sec	Encryption overhead slows backup slightly.
	285 GB (≈ +5.5%)	~3.6x reduction	190 MB/sec	Best balance — slightly bigger than compressed-only but secured.

Interpretation of Results

- Backup Size Impact:
 - Encryption increases file size by ~5–10% when combined with compression.
 - Without compression, encrypted files are nearly same size as source data.
- Transfer Rate Impact:
 - Encryption adds CPU overhead → slightly reduces MB/sec (10–15% drop typical).
 - o Compression usually offsets some performance hit (less data written).

X Benchmarking Tips

Run Multiple Tests at different times of day to factor in CPU/Disk contention.

Capture Backup History from msdb.dbo.backupset:

SELECT

database_name, backup_start_date, backup_finish_date,

backup size/1024/1024/1024 AS BackupSize GB,

compressed_backup_size/1024/1024/1024 AS CompressedSize_GB,

DATEDIFF(SECOND, backup start date, backup finish date) AS Duration Seconds,

(compressed_backup_size / 1024.0 / 1024.0) /

NULLIF(DATEDIFF(SECOND, backup_start_date, backup_finish_date), 0) AS TransferRate_MBsec

FROM msdb.dbo.backupset

WHERE database name = 'MyDB'

ORDER BY backup start date DESC;

Praveen Madupu Mb: +91 98661 30093 Sr. Database Administrator

4

This gives actual size, compression ratio, and transfer rate for historical backups.

Monitor CPU Usage:

- Use sys.dm_exec_requests and sys.dm_os_performance_counters to see CPU pressure during backup.
- o If CPU is saturated, consider AES_128 (faster) instead of AES_256 for non-regulated environments.

Here's the **visual comparison bar chart** — showing backup size (GB) vs transfer rate (MB/sec) across the four scenarios. This makes it easy for your DBA team to present encryption impact on both size and speed.

