# Génétique d'association

Brigitte Mangin, Anne Genissel

Septembre 2011

### **Plan**

- **1** Introduction
- 2 Estimer le DL
  - Les mesures usuelles
  - Les nouvelles mesures
- Tester l'association
  - Les phénotypes "maladies"
  - Les phénotypes continus : le modèle le plus simple
  - Les phénotypes continus : un modèle plus réaliste
  - Estimations et tests dans le modèle réaliste
  - FDR
- La covariance génétique
- Pour finir



#### Contexte évolutif



Soit une population a un temps  $t_0$  avec apparition d'une nouvelle mutation

Au sein de cette même population a un temps  $(t_0 + T)$  ce site polymorphe a augmenté en fréquence

# **Objectif**



Quel est le polymorphisme causal?

- Tester une différence d'effet de l'allèle mutée par rapport à l'allèle sauvage
- en tout locus polymorphe







Les tests aux loci 3 et 4 sont identiques.

C'est le fait du déséquilibre de liaison (DL), que l'on exploite pour

- réduire le génotypage (TAG SNP)
- en conservant la "couverture" du génome (ou de la région génomique)



Introduction

# Définition du déséquilibre de liaison

### Déséquilibre gamétique

$$\pi_{ij} \neq \pi_{i+}\pi_{+j}$$

| Loci                       |         | $M_2$ |            | Total |            |
|----------------------------|---------|-------|------------|-------|------------|
|                            | Allèles |       | i          |       |            |
|                            |         |       |            |       |            |
| $M_{\scriptscriptstyle 1}$ | j       |       | $\pi_{ij}$ |       | $\pi_{+j}$ |
|                            |         |       |            |       |            |
| Total                      |         |       | $\pi_{i+}$ |       |            |

Liaison (physique)

Taux de recombinaison

$$\theta < 1/2$$



Déséquilibre de liaison : déséquilibre + liaison



Introduction

# Cas biallélique

$$D_{ij} = \pi_{ij} - \pi_{i+}\pi_{+j}$$

$$r^2 = \frac{D^2}{\pi_{1+}\pi_{+1}\pi_{2+}\pi_{+2}}$$

$$D' = \begin{cases} \frac{D}{\min(\pi_{1+}, \pi_{+2}, \pi_{2+}, \pi_{+1})} & \text{si } D > 0 \\ \frac{D}{\min(\pi_{1+}, \pi_{+1}, \pi_{2+}, \pi_{+2})} & \text{si } D < 0 \end{cases}$$

$$D \begin{cases} = D_{11} = D_{22} \\ = -D_{12} = -D_{21} \end{cases}$$

La covariance génétique

Mesure du 
$$\chi^2$$



### Un regard plus statistique

- $\Delta_{M_1,i}$  la dose d'allèle *i* au locus  $M_1$
- $\Delta_{M_2,j}$  la dose d'allèle j au locus  $M_2$

$$\textit{D}_{ij} = \textit{Cov}(\Delta_{\textit{M}_{1},i},\Delta_{\textit{M}_{2},j}) \quad \textit{r}_{ij}^{2} = \textit{Cor}^{2}(\Delta_{\textit{M}_{1},i},\Delta_{\textit{M}_{2},j})$$

### Pour des haplotypes (phase connue)

$$\Delta_{M_1,i} = 0 \text{ ou } 1 \qquad (\text{id } \Delta_{M_2,j})$$

### Pour des génotypes (phase inconnue)

$$\Delta_{M_1,i} = 0$$
, 1, 2 (id  $\Delta_{M_2,j}$ )

Rogers & Huff, Genetics, 2009

### **Estimation**

Soit l'observation des doses alléliques pour un échantillon de taille *N* 

$$\Delta_{M_{1},i} = \begin{pmatrix} \delta_{M_{1},i,1} \\ \vdots \\ \delta_{M_{1},i,n} \\ \vdots \\ \delta_{M_{1},i,N} \end{pmatrix} \begin{pmatrix} \delta_{M_{2},j,1} \\ \vdots \\ \delta_{M_{2},j,n} \\ \vdots \\ \delta_{M_{2},j,N} \end{pmatrix} = \Delta_{M_{2},j}$$

$$\hat{r}_{ij}^{2} = \widehat{Cor}^{2}(\Delta_{M_{1},i},\Delta_{M_{2},j})$$

où *Cor* est la corrélation empirique

### $\hat{r}^2$ est biaisé, $Esp(\hat{r}^2) \neq r^{2^{l}}$

- lorsque l'échantillon a une structure
- lorsque les individus sont fortement apparentés et d'apparentements contrastés

# Des mesures qui corrigent ces biais $r_S^2, r_V^2, r_{VS}^2$

Mangin et al., Heredity, 2011

- lorsque la structure est connue (ou estimée) S
- lorsque l'apparentement est connu (ou estimé) V

Comme  $r^2$  (dans le modèle simple), ces nouvelles mesures sont liés à la puissance du test d'association (dans le modèle réaliste)

Introduction

### corrigée de la structure S

$$r_{S,ij}^2 = Corr^2(\Delta_{M_1,i}, \Delta_{M_2,j}; S)$$

### corrigée de l'apparentement V

$$r_{V,ij}^2 = Cor^2(V^{-1/2}\Delta_{M_1,i}, V^{-1/2}\Delta_{M_2,j})$$

### corrigée de la structure et de l'apparentement S, V

$$r_{VS,ij}^2 = Corr^2(V^{-1/2}\Delta_{M_1,i}, V^{-1/2}\Delta_{M_2,j}; S)$$

où Corr(X, Y; Z) dénote la corrélation partielle de X et Y lorsque Z est constant,

ou encore la corrélation des résidus  $\epsilon_X$  et  $\epsilon_Y$  des régressions linéaires  $X = S\beta + \epsilon_X$  et  $Y = S\beta' + \epsilon_Y$ 

### **Estimation**

Comme pour  $r^2$ , la corrélation est estimée par la corrélation empirique.

On utilise la matrice S de structure en K groupes de l'échantillon

Et/ou la matrice V de variancecovariance de l'échantillon

$$S = \begin{bmatrix} S_{1,1} & \dots & S_{1,K} \\ \vdots & \vdots & \vdots \\ S_{n,1} & \dots & S_{n,K} \\ \vdots & \vdots & \vdots \\ S_{N,1} & \dots & S_{N,K} \end{bmatrix}$$

$$V = \begin{bmatrix} V_{1,1} & \dots & V_{1,n} & \dots & V_{1,N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ V_{n,1} & \dots & V_{n,n} & \dots & V_{n,N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ V_{N,1} & \dots & V_{N,n} & \dots & V_{N,N} \end{bmatrix}$$
Package R: LDcc

Package R: LDcorSV

Les nouvelles mesures

Introduction

$$\Delta_{M_1,1} = \{ \underbrace{0,\dots,1}, \underbrace{0,\dots,0}, \underbrace{1,\dots,1}, \underbrace{0,\dots,0}, \underbrace{1},\dots,1, \underbrace{0},\dots,0}_{90 \text{ fois}} \underbrace{10 \text{ fois}}_{10 \text{ fois}}$$

$$\Delta_{M_2,1}^t = \{ \underbrace{0,\dots,0}, \underbrace{1,\dots,1}, \underbrace{1,0,\dots,1,0}, \underbrace{0,\dots,0}, \underbrace{1,\dots,1}_{10 \text{ fois}}, \underbrace{10 \text{ fois}}_{10 \text{ fois}}$$

$$\underbrace{10 \text{ fois}}_{10 \text{ fois}} \underbrace{10 \text{ fois}}_{10 \text{ fois}}$$

$$\hat{r}^2 = 0.4286$$
  $\hat{r}_S = 0$ 

Dans le premier groupe :  $\hat{r}^2 = 0$ Dans le deuxième groupe :  $\hat{r}^2 = 0$  Pour finir

Introduction

$$\Delta_{M_1,1}^t = \left\{ \begin{array}{cc} \underline{1,\ldots,1}, & \underline{1,\ldots,1}, & \underline{0,\ldots,0} \\ 50 \text{ fois} & 10 \text{ fois} & 50 \text{ fois} \\ \text{clônes} \end{array} \right\}$$

$$\Delta_{M_2,1}^t = \left\{ \begin{array}{cc} \underline{1,\ldots,1}, & \underline{1,0,\ldots,1,0}, \\ 50 \text{ fois} & 30 \text{ fois} \\ \text{clônes} \end{array} \right\}$$

$$\hat{r}^2 = 0.217$$
  $\hat{r}_V = 0.001$ 

En ne gardant qu'un seul des clônes :  $\hat{r}^2 = 0.001$ 

# Bien estimer le DL, pourquoi?

### Pour limiter le génotypage

Deux SNP en fort DL apportent une information redondante, il n'est donc pas d'un grand intérêt de les génotyper tous les deux.

### Pour "couvrir" toute la région génomique d'intérêt

L'objectif est que tous les SNP non génotypés soient "couverts" par au moins un SNP génotypé en fort DL.

### **Tester l'association**

Comme pour la cartographie de gènes par analyse de liaison, deux cas :

### les phénotypes de maladie

le dispositif cas-contrôle

### les phénotypes continus

- modèle simple
- modèle corrigé des effets de la structure et de l'apparentement



Les phénotypes "maladies"

# Le dispositif cas-contrôle

|          | Marqueur | $M_{\scriptscriptstyle 1}$ |          | Total |            |
|----------|----------|----------------------------|----------|-------|------------|
|          | Allèles  |                            | i        |       |            |
| Cas      |          |                            | $N_{di}$ |       | $N_{d+}$   |
| malade   |          |                            | aı       |       | <i>u</i> + |
| Contrôle |          |                            | $N_{si}$ |       | $N_{s+}$   |
| sain     |          |                            |          |       |            |
| Total    |          |                            | $N_{+i}$ |       | N          |



### Utilisation de r<sup>2</sup>

Le phénotype "maladie" peut être vu comme un marqueur un peu particulier. Au lieu de la dose allélique à ce marqueur

$$\Delta_{l^m} = \begin{cases} 1 & \text{si malade} \\ 0 & \text{si sain} \end{cases}$$

On estimera alors  $r_i^2 = Cor^2(\Delta_{I^m}, \Delta_{M_1,i})$  par

$$\hat{r}_i^2 = \widehat{Cor}^2(\Delta_{I^m}, \Delta_{M_1,i})$$

# Sous l'hypothèse $H_0$ : { pas d'association allèle i avec la maladie }

$$\hat{r}_i^2 \sim \chi^2$$
 à 1 ddl

L'association du marqueur avec la maladie peut aussi être testée en utilisant le test classique du  $\chi^2$  dans une table de contingence.

# Puissance et mesure $r^2$

### Pritchard & Przeworski, Am. J. Hum.Genet., 2001

Nbre d'observations

### Pour des marqueurs bialléliques

 $N_1$   $N_2$   $N_3$   $N_4$ 



Pour avoir la même puissance, qu'au locus causal

$$N_i = N_4/r_{i4}^2$$

### Modèle linéaire

### Effet du SNP fixe

Cas d'individus homozygotes, sans donnée manquante pour le

$$\nearrow$$
 SNP $_n^I = 1$   $Y_{1k} = \mu + \theta^I + \epsilon_{1k}$ 

génotype :  $Y_n$ 

$$\searrow$$
 SNP<sub>n</sub> = 0  $Y_{0k} = \mu + \epsilon_{0k}$ 

Ce modèle se généralise aux cas de génotypes manquants inférés ou imputés, ainsi qu'aux individus hétérozygotes en choisissant une modélisation additive de l'effet du SNP, ou une modélisation avec effet de dominance.

### Les limites du modèle

- postulat du modèle : les observations sont indépendantes
- objectif de l'analyse : rechercher les SNPs qui sont causaux

### Modèle linéaire mixte

### Effet du SNP fixe + stucture fixe + covariance génétique

Cas d'individus homozygotes, sans donnée manquante pour le

$$\nearrow$$
 SNP<sub>n</sub> = 1  $Y_n = \mu + S_n \beta + \theta^I + G_n + \epsilon_n$ 

génotype :  $Y_n$ 

$$SNP_n^I = 0 \ Y_n = \mu + S_n \beta + G_n + \epsilon_n$$

- S<sub>n</sub> est la ligne correspondant à l'individu n dans la matrice de structure S
- G<sub>n</sub> est un valeur génétique de n. Soit
   G<sup>t</sup> = (G<sub>1</sub>,..., G<sub>n</sub>,..., G<sub>N</sub>), Var(G) = σ<sup>2</sup><sub>G</sub>Σ<sub>G</sub>

$$Var(Y) = \sigma_G^2 \Sigma_G + \sigma_\epsilon^2 Id$$

mêmes remarques pour la généralisation du modèle que pour le modèle simple

Les phénotypes continus : un modèle plus réaliste



La valeur des tests sur les marqueurs corrélés à la structure diminue.



Les phénotypes continus : un modèle plus réaliste

# Puissance et mesure $r_{VS}^2$

### Pour des marqueurs bialléliques



### Mangin et al., Heredity, 2011

Pour avoir la même puissance, qu'au locus causal

$$N_i = N_4/r_{VS_{iA}}^2$$

avec 
$$V = \sigma_G^2 \Sigma_G + \sigma_\epsilon^2 Id$$

La covariance génétique

Estimations et tests dans le modèle réaliste

Introduction

### Le modèle réaliste est un modèle linéaire mixte

$$Y_n = \mu + S_n \beta + SNP_n^I \theta^I + G_n + \epsilon_n$$

### Deux types de paramètres à estimer

- les paramètres entrant dans la variance de Y (composantes de la variance)
- les paramètres des effets fixes

# Les composantes de la variance $\sigma_G^2$ et $\sigma_\epsilon^2$

Elles sont estimées par ML (Maximum Likelihood) ou REML (Restricted ML)

Si on parle de vraisemblance, c'est que  $Y_n$  a une loi connue. Cette loi est une Gaussienne  $\Rightarrow$   $G_n$  et  $\epsilon_n$  sont aussi Gaussiens. C'est un postulat nécessaire pour le modèle mixte.

# Les composantes de la variance $\sigma_G^2$ et $\sigma_\epsilon^2$

Les estimateurs du maximum de vraisemblance sont des estimateurs biaisés (leur espérance n'est pas égale aux paramètres qu'il estiment).

### le REML

Méthode qui consiste à estimer par maximum de vraisemblance mais après avoir projeté Y sur l'espace orthogonal pour V aux effets fixes

### La différence entre ML et REML

..... juste une question de dénominateur ....

Exemple: 
$$Y_n = \mu + \epsilon_n$$
 pour  $n = 1, \dots, N$ 

$$\hat{\sigma}_{\epsilon}^{2^{ML}} = \frac{\sum (Y_n - \hat{\mu})^2}{N} \qquad \qquad \hat{\sigma}_{\epsilon}^{2^{REML}} = \frac{\sum (Y_n - \hat{\mu})^2}{N - 1}$$

### Algorithme de ML et/ou REML

Il n'existe pas de formule analytique pour calculer les estimateurs du ML ou du REML.

Les algorithmes qui résolvent cette question de maximisation, atteignent le maximum par itération successives. Ils prennent beaucoup de temps CPU, en particulier car la matrice de covariance génétique  $\Sigma_G$  doit être inversée. Et ils sont longs à converger.

Une autre approche consiste à ne pas maximiser la vraisemblance mais seulement une approximation de la vraisemblance, plus simple à maximiser. Cette approximation a cependant la propriété d'être équivalente asymptotiquement à la vraisemblance. Elle permet le "passage à l'échelle" c'est-à-dire tester des millions de SNP.

Introduction

### Tester l'effet d'un SNP dans

$$Y_n = \mu + S_n \beta + SNP_n^I \theta^I + G_n + \epsilon_n$$

### test de Wald

Le principe est de faire comme si la variance des observations était connue et d'utiliser l'estimateur et sa variance classiquement obtenus par les moindres carrés généralisés Pour estimer les composantes de la variance on utilise le REML.

La variance "supposée connue" est

$$\widehat{V} = \hat{\sigma}_G^{2^{REML}} \Sigma_G + \hat{\sigma}_\epsilon^{2^{REML}}$$
ld

Le test au locus  $I = \frac{(\hat{\theta}^I - \theta^I)^2}{var(\hat{\theta}^I)}$ 

suit asymptotiquement une loi de  $\chi^2(1)$  sous l'hypothèse  $H_0$ : { pas d'association }

### Tester l'effet d'un SNP dans

$$Y_n = \mu + S_n \beta + SNP_n^l \theta^l + G_n + \epsilon_n$$

### test du rapport de vraisemblance (ML)

Pour faire ce test on utilise le ML jamais le REML

$$RV = \frac{sup_{\mu,\beta,\theta^l=0,\sigma_G^2,\sigma_\epsilon^2}V(Y;\mu,\theta^l=0,\sigma_G^2,\sigma_\epsilon^2)}{sup_{\mu,\beta,\theta^l,\sigma_G^2,\sigma_\epsilon^2}V(Y;\mu,\theta^l,\sigma_G^2,\sigma_\epsilon^2)}$$

 $-2 \ln(RV)$  suit asymptotiquement une loi de  $\chi^2(1)$  sous l'hypothèse  $H_0$ : { pas d'association }

FDR

### Des millions de tests ....

### Tests multiples non indépendants

Que ce soit pour les phénotypes binaires ou continus, un test d'association est affectué par SNP. Chacun de ces tests sous l'hypothèse  $H_0$ : { pas d'association } est comparé un  $\chi^2$  à 1 degré de liberté. Mais d'un SNP à un autre, les tests ne sont pas indépendants.

### Bonferroni trop conservateur

⇒ On ne peux pas utiliser la correction de Bonferroni car elle conduit à un test beaucoup trop conservateur, donc très très peu de puissance, donc pas de détection.

### **FDR**



Introduction

# Lorsque le pedigree est connu

### Le coefficient d'apparentement (coancestry)

Weir et al., Nature Rev Genet, 2006

$$\rho_{ij} = \sum_{a} (1 - F_a) (1/2)^{n_a}$$

a ancêtre commun de i et j

 $n_a$  le nbre d'individus du pedigree sur le chemin le plus court de i à j en passant par a

F coefficient de consanguinité de a



#### Exemple

Si D et E non consanguins,  $\rho_{4E} = 2(1/2)^5$ 



# Lorsque la covariance génétique est estimée avec les marqueurs

| Estimateur | Principe                                            | Plusieurs<br>Populations | Matrice<br>Kinship |
|------------|-----------------------------------------------------|--------------------------|--------------------|
| AIS        | Proba (IBS)                                         | *                        | $\odot$            |
| BNO        | Proba(IBD)=Proba (IBS)-<br>correction               | <b>V</b>                 | (3)                |
| WAIS       | Proba(IBD)=Proba (IBS)-<br>correction               |                          | $\odot$            |
| LOI        | Proba(IBD)=Corrélation des<br>fréquences alléliques | *                        | (3)                |
| MIL        | Max de vraisemblance                                | *                        | $\odot$            |

Software: CoCoa, Maenhout et al., Bioinformatics, 2009



Introduction

### Matrice d'apparentement, (kinship)



Une matrice semi-définie positive (sdp) dont les éléments sont compris entre 0 et 1



### La structure

Voir la partie du cours de "génétique des populations"

# Les logiciels

- ASREML, générique pour les modèles mixtes, dans R, maximise la vraisemblance, test du rapport de vraisemblance
- EMMA, spécifique de "association mapping", dans R, maximise une approximation de la vraisemblance, test de Wald
- Tassel, spécifique de "association mapping", java, propose les 2 types de maximisations et de tests
- Plink, spécifique de "association mapping", pas de modèle mixte, plutôt spécifique des applications en génétique humaine



# Résultats d'un modèle

### Manhattan plot





# Résultats de plusieurs modèles

Différentes matrices de structure, différentes matrices de covariance génétique



