$\bigcup_{\alpha} \bigcap_{\beta} C_{\alpha\beta}$ languages Query Tables tods to obtain (10) 10 odd modify

5:20 / 41:20

Procedural VS Declaritive planguages: -> What we want & NOT how bo obtain it. > Clear instroctions on how to generale 10
onlyals given inpuls

Basic Relational operators: Chame one-rely MI 7 Chame 11 cid 12 11 2 13 NI cid, chame 1/2 13 Urany chame another - selv Relation is chame MI 11 12 M2

Ø

cid chame (210 T cramen, (Cust) Selection: Chame Unany Condition MI propositional logic stalement

(V, 1, 7) (10) n2 (id come (in) (Cname=ni) 1 (czip=21) (Cust)

19:55 / 41:20

Set-operations: (), (),

RIUR2 = { | a,

/ U= C| XC2XC3

 $R_1 \cap R_2 = \{[l, a, d]\}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, b]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_1 - R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$ $R_2 = R_1 - (R_1 \cap R_2) = \{[2, 5, 8, 7, 5]\} \quad \text{Relation is a Set-of-toples}$

Compatibility of Relations: RI(G,C2,C3), $RZ(G,C2) \rightarrow NOT$ Compatible · compatible $\frac{1}{2}\left(\frac{R_{2}\left(C_{1},C_{2},C_{5}\right)}{BAN}\right)$

Ø

Cross-product-/Cartesian-product: A,B RIXRZ CI CZ C3 Relation is a set of toples RIXPZ: AXB={(a,b),(a,b), (a,b),(a,b)) RI(81,72,73, -- 8m) X R2(51,52,53, --. m+n tople

RIXR2XR3

RXRXR

E- ADDITED

(i) 40:42 / 41:20 N

Autoplay (

Conditional Join: 0-joins C2 C3 da a RXIS = T RXIS R.CI CS.CY

Left-ouler join:

RIXIS = (RIXIS)

allesples from the left relation that failed the join with NULL values appended

1 a d 1 2 b B NULL

Left-ouler join:

all poples from the left relation that failed the join with NULL values appended

C2 C3 C4 (10)

П

RIXIS = (RIXIS) R(81,82, --- Yn) S(S1,52, - - - SM) 1, a, L NULL, NULL. (10) C1 C2 C3 2,6,B) X (NULL) (2,6,B,NULL Wikipedia

Right oulir join: c2 c3 c4 d) a 6 51,52...SM Q wikipedia

Full ouler join

RIXIS =

RIXISV

<u>c2 c3</u> c4 d a a 10)

C2 C3 JUUL Division Cat 10 (B) Customers whom

Completeress: you can represent any relational operators
using $\{U, -, X, T, T\}$ Complete set
of operators
in R4

Consider the relations r(A, B) and s(B, C), where s.B is a primary key and r.B is a foreign key referencing s.B.

Consider the query

 $Q: r\bowtie(\sigma_{B<5}(s))$

Let LOJ denote the natural left outer-join operation. Assume that r and s contain no null values.

Which one of the following is NOT equivalent to Q?

- 1. $\sigma_{B<5}$ (r \bowtie s) /
- 2. $\sigma_{B<5}$ (r LOJ s) \rightarrow ($d \mu \mu$) (δ) 4. $\sigma_{B<5}$ (r) LOJ s

12:55 / 22:22

d,4,a

Consider a database that has the relation schema CR(StudentName, CourseName). An instance of the schema CR is as given below.

The following query is made on the database.

T1
$$\leftarrow \pi_{\text{CourseName}}(\sigma_{\text{StudentName='SA'}}(CR))$$

The number of rows in T2 is

CaseName

CR	
StudentName	CourseName
SA	CA
SA	CB
SA	CC
SB'	CB
SB	CC
(SC	CA
SC	CB
SC	CC
SD	CA
SD	CB
SD	CC
SD	CD
SE	CD
X SE	CA
SE	CB
SF	CA
SF	CB
SF	CC

Consider two relations $R_i(A,B)$ with tuples (1,5), (3,7) and $R_i(A,C) = (1,7)$, (4,9). Assume that R(A,B,C) is the full natural outer join of R_i and R_i . Consider the following tuples of the form (A,B,C): a = (1,5,null), b = (1,null,7), c = (3,null,9), d = (4,7,null), e = (1,5,7), f = (3,7,null), g = (4,null,9). Which one of the following statements is correct?

Which one of the following statements is correct?

- 1.R contains a.b.e.f.g but not c.d.
- 2.R contains all a.b.c.d.e.f.g.
- 13 Contains e.f.g but not a.b.
- 4.R contains e but not f.g.

(9)

10)

R=RJXLR

R

Suppose (A, B) and (C,D) are two relation schemas. Let r1 and r2 be the corresponding relation instances.

B is a foreign key that refers to C in r2. If data in r1 and r2 satisfy referential integrity constraints,

(10)

which of the following is ALWAYS TRUE?

(A)
$$\Pi_{B}(\underline{r_{1}}) - \Pi_{C}(\underline{r_{2}}) = \emptyset$$

(B)
$$\Pi_{C}(r_{2}) - \Pi_{B}(r_{1}) = \emptyset$$

(C)
$$\Pi_{B}(r_{1}) = \Pi_{C}(r_{2})$$

(D)
$$\Pi_{B}(r_{1}) - \Pi_{C}(r_{2}) \neq \emptyset$$

