شبکههای عصبی و یادگیری عمیق دکتر صفابخش

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران) دانشکده مهندسی کامپیوتر

رضا آدینه پور ۴۰۲۱۳۱۰۵۵

تمرین اول شبکه Perceptron و Adalin ۲ فروردین ۱۴۰۳

دانشکده مهندسی کامپیوتر

شبکههای عصبی و یادگیری عمیق

تمرين اول

رضا آدینه پور ۴۰۲۱۳۱۰۵۵

■ سوال اول - نظری

همانگونه که در کلاس درس آشنا شدهاید، واحد پردازشی پرسپترون و آدالاین امکان دریافت ورودی، توانهای متعدد آن و حاصل ضرب ورودی ها را داشته و میتواند مسئله دستهبندی خطی را حل نمایند. در این سوال، قصد بدست آوردن وزنهای یک نرون پردازشی پرسپترونی را به صورت نطری و با محاسبات دستی داریم.

شکل a-۱ شکل شکل a-۱

شكل ١: مسئله مورد بحث

۱. شکل a-1 را برای دسته بندی مسئله دودویی درنظر بگیرید. معماری نورون مورد نظر را توضیح داده و وزنهای آن را بدست آورید.

پاسخ

در این شبکه، ورودی/خروجی ها با مربع های نارنجی، نورون ها با دایره سبز و تابع فعال ساز با مربع آبی نشان داده شده است. تعداد دیتا ورودی شبکه ۲ است. x_1 و x_2 بایاس این شبکه با x_2 نشان داده شده است. وزن های شبکه نیز با x_1 نشان داده شده است. بنابر این بردار ورودی و وزنهای شبکه به صورت زیر است:

$$X = \begin{bmatrix} x_0 = 1 \\ x_1 \\ x_2 \end{bmatrix} \quad W = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

طبق تئوری شبکههای عصبی میدانیم خروجی نرون به صورت زیر محاسبه میشود: (در اینجا برای انجام محاسبات ساده، تابع فعالساز درنظر گرفته نشده است)

$$\hat{y} = W^T X = \sum_{i=0}^{2} w_i x_i = w_0 x_0 + w_1 x_1 + w_2 x_2 \xrightarrow{x_0 = 1} w_0 + w_1 x_1 + w_2 x_2$$

طبق شکل a-1 دو نقطه از خط جدا کننده دو کلاس را داریم. بنابراین میتوان معادله خط را به صورت زیر نوشت. میدانیم معادله خط به صورت زیر تعریف می شود:

$$y - y_0 = m(x - x_0)$$

که در آن m شیب خط است و به صورت زیر $\frac{\Delta y}{\Delta x}$ تعریف می شود. با جاگذاری یک از نقاط در معادله خط، می توان معادله خط را بدست آورد.

$$P_1 = \begin{bmatrix} 2.5\\0 \end{bmatrix} \ P_2 = \begin{bmatrix} 0\\2.8 \end{bmatrix}$$

$$m = \frac{2.8 - 0}{0 - 2.5} = -1.12 \to y - 0 = -1.12(x - 2.5) \to \boxed{y = -1.12x + 2.8}$$

حالا اگر معادله خروجی نورون را به صورت زیر مرتب کنیم، میتوان از مقایسه با مقادله خط بدست آمده وزنهای شبکه را تعیین کرد.

$$x_1 = \frac{-w_2}{w_1}x_2 - \frac{w_0}{w_1}, \quad x_2 = \frac{-w_1}{w_2}x_1 - \frac{w_0}{w_2}$$

در اینجا به دلیل آنکه دو معادله و ۳ مجهول (w_0, w_1, w_2) داریم، نیاز است که یکی از وزن ها را فرض کرده و دو وزن دیگر را بدست آورد.

$$\begin{split} \frac{-w_2}{w_1} &= -1.12 \to w_2 = 1.12w_1 \\ \frac{-w_0}{w_1} &= 2.8 \to w_0 = -2.8w_1 \\ \to \begin{cases} w_2 - 1.12w_1 = 0 \\ -2.8w_1 - w_0 = 0 \end{cases} \quad \text{assume} \quad w_0 &= 2.8 \to w_1 = -1, w_2 = -1.12 \end{split}$$

ذکر این نکته الزامیست که این جواب، یکتا نمیباشد و برحسب اینکه مقدار w_0 را چه انتخاب کنیم، مقدار ۲ وزن دیگر متفاوت می شود.

۲. حال شکل b-1 را درنظر بگیرید. چرا مسئله جداپذیر خطی نیست؟ چگونه میتوان آنر را در قالب حل چند مسئله خطی حل نمود؟ معماری پیشنهادی خودتان را رسم و وزنهای موجود در آن را با انجام محاسبات بدست آورید. معماری شما میتواند حاصل از کنار هم چیدن و پشت هم چیدن یک یا چند نورون پرسپترونی باشد.

پاسخ سلام