

Rasterization

Want to do vector graphics on a raster device

Rasterization Primitives

- 2D/3D
 - Point, line
 - Triangle

Rasterization

- Converts
 - Primitives
 - With floating point vertices

- Into
 - Pixels
 - With integer coordinates

Rasterization of Lines

Drawing Lines

- Line is a series of pixel positions
- Intermediate discrete pixel positions calculated
- Staircase effect, "jaggies" (aliasing)

Line-Drawing Algorithms

- Line equation: $y = m \cdot x + b$
- Line path between two points:

$$m = \frac{y_1 - y_0}{x_1 - x_0}$$

$$b = y_0 - m \cdot x_0$$

Example

$$(x_0,y_0) = (20,41)$$

$$(x_1,y_1) = (30,44)$$

$$m = \frac{44-}{30-20} = \frac{3}{10}$$

$$b = 41 - \frac{3}{10} \cdot 20 = 35$$

$$y = \frac{3}{10} \cdot x + 35$$

X	у
21	$\frac{413}{10} \approx 41$
22	42
23	42
24	42
25	43
26	43
27	43
28	43
29	44
30	44

Example

X	у
21	$\frac{413}{10} \approx 41$
22	42
23	42
24	42
25	43
26	43
27	43
28	43
29	44
30	44

Example 2

$$(x_0,y_0) = (20,41)$$

$$(x_1,y_1) = (21,46)$$

X	y
21	46

$$m = \frac{46 - 41}{21 - 20} = \frac{5}{1} = 5$$

$$b = 41 - 5 \cdot 20 = -59$$

$$y = 5 \cdot x - 59$$

Résumé

- Quality
 - Works for some cases
 - If m < 1
- Performance
 - Division()
 - Round()
 - Floating point operation

DDA Line-Drawing Algorithm

- DDA (digital differential analyzer)
- Define $x_1 > x_0$ otherwise switch points

$$\Delta x = x_1 - x_0$$

- Check if |m| < 1
 - Iterate along x
 - Otherwise iterate along y

Résumé

- Quality
 - Works
- Performance
 - Division()
 - Round()
 - Floating point operation

Bresenham's Line Algorithm

- Faster than simple DDA
 - Incremental integer calculations
 - Each step decision if draw upper or lower pixel
 - We analyze |m| < 1 case, others analog to DDA

$$(x_0,y_0) = (10,11)$$

$$(x_1,y_1) = (13,13)$$

Bresenham's Line Algorithm

Bresenham's Line Algorithm

Bresenham's Line Algorithm (1/4)

$$y = m \cdot (x_k + 1) + b$$

$$\mathbf{y_{k+1}}$$
 $\mathbf{d_{lower}} = \mathbf{y} - \mathbf{y_k} =$

$$\mathbf{m} \cdot (\mathbf{x_k} + 1) + \mathbf{b} - \mathbf{y_k}$$

•
$$\mathbf{d_{upper}} = (y_k + 1) - \mathbf{y} =$$

$$y_k + 1 - \mathbf{m} \cdot (x_k + 1) - \mathbf{b}$$

$$\mathbf{d_{lower}} - \mathbf{d_{upper}} =$$

$$2\mathbf{m} \cdot (x_k + 1) - 2y_k + 2\mathbf{b} - 1 =$$

$$2\Delta y / \Delta x \cdot (x_k + 1) - 2y_k + 2\mathbf{b} - 1$$

Bresenham's Line Algorithm (2/4)

- $\mathbf{d_{lower}} \mathbf{d_{upper}} = 2\Delta y / \Delta x \cdot (x_k + 1) 2y_k + 2b 1$
- Multiply with Δx to avoid division $p_{\mathbf{k}} = \Delta x \cdot (\mathbf{d}_{lower} \mathbf{d}_{upper})$
- p_k same sign as $(d_{lower} d_{upper})$
- Use as decision parameter
- Make iterative

Bresenham: Example

Résumé

- Quality
 - Works
- Performance
 - No division()
 - No round()
 - No floating point operation
- Idea
 - Adaptable to circles, other curves
 - Narrow decision to simple/binary decision

Flood-Fill Algorithm

- Pixel filling of area
 - Start from interior point
 - "Flood" internal region
- Works for arbitrary shapes

Flood-Fill: Boundary and Seed Point

- Area must be distinguishable from boundaries
- Example
 - Area defined within multiple color boundaries

Simple Flood-Fill Algorithm

```
void floodFill4(x, y, newColor, oldColor) {
  color = getPixel(x, y);
  if (color == oldColor) {
    drawPixel (x, y, newColor);
    floodFill4 (x-1, y, newColor, oldColor); // left
    floodFill4 (x, y+1, newColor, oldColor); // up
    floodFill4 (x+1, y, newColor, oldColor); // right
    floodFill4 (x, y-1, newColor, oldColor); // down
```

Flood-Fill: Who is my Neighbour?

- 4-connected means, that a connection is only valid in these 4 directions
- 8-connected means, that a connection is valid in these 8 directions

Flood-Fill: Connectedness

4-connected

8-connected

Flood-Fill: Connectedness

4-connected

8-connected

Bad Behavior of Simple Flood-Fill

- Danger of stack overflow (recursion!)
- Memory inefficient

recursion sequence

Span Flood-Fill Algorithm

- Incremental horizontal fill (e.x.: left to right)
- Recursive vertical fill (e.x.: first up then down)
- More efficent methods possible, but more complex

Triangle Rasterization

Direct rendering of filled triangles

Scan Converting a Triangle

Edge Walking

Edge Equations

Barycentric Coordinates

Edge Walking

- 1. Sort vertices in y
- 2. Walk down edges from extremal y-point
- 3. Compute spans
- 4. Switch in 3rd edge
- Repeat 2 and 3 until lowest point

Possible Cases

Left or right y middle point

2 highest/lowest points

Edge Equations

- Defines positive/negative half-spaces
- Reverse spaces by multiplication by -1
- $\bullet \quad E(x,y) = Ax + By + C$
- Value for pixels?
 - $E(P_x, P_y)$

Given 2 points $\binom{x_0}{y_0}\binom{x_1}{y_1}$, compute A,B,C

1. Setup equation system

$$Ax_0 + By_0 + C = 0$$
 $Ax_1 + By_1 + C = 0$

2. Matrix representation

$$\begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} + \begin{bmatrix} C \\ C \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = -C \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

3. Solve

$$\begin{bmatrix} A \\ B \end{bmatrix} = \frac{-c}{\begin{vmatrix} x_0 & y_0 \\ x_1 & y_1 \end{vmatrix}} \begin{bmatrix} \begin{vmatrix} 1 & y_0 \\ 1 & y_1 \\ x_0 & 1 \\ x_1 & 1 \end{bmatrix} = \frac{-c}{x_0 y_1 - y_0 x_1} \begin{bmatrix} y_1 - y_0 \\ x_0 - x_1 \end{bmatrix}$$

4. Choose *C*

Edge Equations for the Triangle

$$E_0(x, y) = A_0 x + B_0 y + C_0$$

$$E_1(x, y) = A_1 x + B_1 y + C_1$$

$$E_2(x,y) = A_2x + B_2y + C_2$$

Testing Pixels

- Find bounding box
- Test $\bigcap (E_i > 0)$ for each pixel
- Happy?

Barycentric Coordinates of P

■ Define
$$P = C + u\overrightarrow{CA} + v\overrightarrow{CB}$$

 $= uA + vB + (1 - u - v)C$
 $= uA + vB + wC$ with $1 = u + v + w$

Triangle can also be 3d

BC – Special Points

Barycentric Coordinates – Invariance

BC – Inside Triangle Test

- Also outside triangle
- In triangle if (u, v, w) all same sign
 - For CCW $(u, v, w) \ge 0$

1.2	1.0	0.8	0.6	0.4	0.2	0.0	-0.2
-1.4	-1.2	-1.0	-0.8	-0.6	- <mark>0.4</mark>	-0.2	0.0
1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
1.2	1.0	0.8	0.6	0.4	0.2	0.0	-0.2
-1.2	-1.0	-0.8	-0.6	- <mark>0.4</mark>	-0.2	0.0	0.2
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1.2	1.0	0.8	0.6	0.4	0.2	0.0	- <mark>0.2</mark>
-1.0	-0.8	-0.6	- <mark>0.4</mark>	-0.2	0.0	0.2	0.4
0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
1.2	1.0	0.8	0.6	0.4	0.2	0.0	- <mark>0.2</mark>
-0.8	-0.6	-0.4	- <mark>0.2</mark>	0.0	0.2	0.4	0.6
0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
1.2	1.0	0.8	0.6	0.4	0.2	0.0	- <mark>0.2</mark>
-0.6	- <mark>0.4</mark>	-0.2	0.0	0.2	0.4	0.6	0.8
0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
1.2	1.0	0.8	0.6	0.4	0.2	0.0	-0.2
-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0
0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1.2	1.0	0.8	0.6	0.4	0.2	0.0	-0.2
-0.2	0.0	0.2	0.4	0.6	0.8	1.0	1.2
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.2	1.0	0.8	0.6	0.4	0.2	0.0	-0.2
0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4
-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2

Interpolation with Barycentric Coordinates

- Interpolate per point attributes over the triangle
 - Colors
 - z-values
 - texture coordinates
 - **...**
- Given barycentric coordinates P = uA + vB + wC
- Attribute value for a point P on a triangle
- $P_{attrib} = uA_{attrib} + vB_{attrib} + wC_{attrib}$

Barycentric Coordinates – Color Interpolation

- P = uA + vB + wC
- $P = u\langle Green \rangle + v\langle Blue \rangle + w\langle Red \rangle$
- A.k.a. Gouraud interpolation

Barycentric Coordinates – Texture Interpolation

- \blacksquare P = uA + vB + wC
- $P(u,v) = uA_{(u_0,v_0)} + vB_{(u_1,v_1)} + wC_{(u_2,v_2)}$

Barycentric Coordinates of P (2D)

$$P = C + u\overrightarrow{CA} + v\overrightarrow{CB}$$

$$(\overrightarrow{CA} \quad \overrightarrow{CB}) \begin{pmatrix} u \\ v \end{pmatrix} = P - C$$

$$(A - C \quad B - C) \begin{pmatrix} u \\ v \end{pmatrix} = P - C$$

Barycentric Coordinates of P (2D)

Cramer's Rule

$$\binom{u}{v} = \frac{1}{|A-C-B-C|} \begin{pmatrix} |P-C-B-C| \\ |A-C-P-C| \end{pmatrix}$$

Point is inside triangle iff (means if and only if)

$$u \ge 0 \cap v \ge 0 \cap (u+v) \le 1$$

