1 公理集合论

1.1 集合论概念

朴素集合论

具有给定性质的对象的全体定义为集合,集合与元素直觉的关系叫做属于。

公理集合论

给定集合论语言 $L = \{\epsilon\}$ 及该语言的一个模型 $< V, \epsilon>$ 。该模型的元素成为集合,二元谓词符号 ϵ 表示属于关系。

空集

Ø表示空集: ¬∃x(x ∈ Ø)

二元组

< a, b >表示二元组: {{a}, {a, b}}

例题:给出三元组的定义,并证明其合理性,即:

$$(a, b, c) = (x, y, z)$$
 当且仅当 $a = x, b = y, c = z$

三元组定义: $(a,b,c) = \{\{a\},\{a,b\},\{a,b,c\}\}$

假设存在另一个三元组 $(x,y,z) = \{\{x\},\{x,y\},\{x,y,z\}\}$ 使得(a,b,c) = (x,y,z),即:

$$\{\{a\},\{a,b\},\{a,b,c\}\} = \{\{x\},\{x,y\},\{x,y,z\}\}$$

则必有a = x,因为只有 $\{a\}$ 和 $\{x\}$ 元素个数为 1,他俩必相等

又因为 $\{a,b\} = \{x,y\}$ (元素个数为 2), a = x,则必有b = y

又因为 $\{a,b,c\} = \{x,y,z\}, a = x,b = y,$ 则必有c = z

所以该三元组的合理性得证

函数

func(a)表示 a 是一个函数,满足以下两个公式: $\Phi_1 \wedge \Phi_2$

 Φ_1 是公式: $\forall x (x \in a \rightarrow \exists uv(x = < u, v >))$

 Φ_2 是公式: $\forall uvw(< u, v > \in a \land < u, w > \in a \rightarrow v = w)$

定义域

dom(a)表示函数 a 的定义域:

$$dom(a) = \{u | \exists v (< u, v > \in a)\}$$

值域

ran(a) 表示函数 a 的值域:

$$ran(a) = \{v | \exists u (< u, v > \in a)\}$$

自然数

$$0 = \emptyset$$

$$0^+ = 0 \cup \{0\} = \{0\} = 1$$

$$1^+ = 1 \cup \{1\} = \{0,1\} = 2$$

$$2^+ = 2 \cup \{2\} = \{0,1,2\} = 3$$

. . .

平行公设:

第5公设也被称为平行公设,它等价于:

在同一平面, 过直线外一点, 有且仅有一条直线与此直线平行

1.2 集合论的 10 条公理

1.2.1 外延公理

$$\forall xy(\forall z(z \in x \leftrightarrow z \in y) \rightarrow x = y)$$

若两个集合元素相同,则这两个集合相等。

1.2.2 空集公理

$\exists \mathbf{x} \forall \mathbf{y} (\mathbf{y} \notin \mathbf{x})$

记上述 x 为Ø。空集公理保证了空集的存在性,根据外延公理可知,空集是唯一的。 空集的唯一性证明:

假设存在另一集合ø'是空集,

由 $\forall y(y \notin \emptyset)$ 可得: $\forall z(z \in \emptyset \rightarrow z \in \emptyset')$ (前提不成立,所以整个式子成立)

由 $\forall y(y \notin \emptyset')$ 可得: $\forall z(z \in \emptyset' \rightarrow z \in \emptyset)$

所以 \forall z(z ∈ Ø \leftrightarrow z ∈ Ø')

所以 $\emptyset = \emptyset'$

1.2.3 偶对公理

$$\forall xy \exists u \forall z (z \in u \leftrightarrow z = x \lor z = y)$$

记 \mathbf{u} 为 $\{\mathbf{x},\mathbf{y}\}$, 由此可知: 对于集合 \mathbf{x} , \mathbf{y} 存在一个仅以它们为元素的集合 $\{\mathbf{x},\mathbf{y}\}$ 。

例:
$$x = \{a, b\}, y = \{b, c\}$$
 $\{x, y\} = \{\{a, b\}, \{b, c\}\}$

1.2.4 并集公理

$$\forall \mathbf{x} \exists \mathbf{u} \forall \mathbf{y} (\mathbf{y} \in \mathbf{u} \leftrightarrow (\exists \mathbf{z} (\mathbf{z} \in \mathbf{x} \land \mathbf{y} \in \mathbf{z})))$$

由集合S的**所有元素的元素**组成的集合,叫做集合的并集合US。

例:
$$S = \{\{a, b\}, \{b, c\}\} \cup S = \{a, b, c\}$$

 $S = \{\{\{a\}, \{a, b\}\}, \{\{c\}, \{c, d\}\}\}$

 $US = \{\{a\}, \{a, b\}, \{c\}, \{c, d\}\}\ UUS = \{a, a, b, c, c, d\}$ (可以有重复元素)

一般意义下的A U B在严格意义下被写为U {A,B}, 即 A 和 B 的元素组成的集合:

$$\forall \{A, B\} \exists u \forall y (y \in u \leftrightarrow (\exists z (z \in x \land y \in z)) \leftrightarrow (((z \in A \lor z \in B) \land y \in z)))$$

 $\bigcup \emptyset = \emptyset$

证明: 将 $\mathbf{x} = \emptyset$, $\mathbf{u} = \bigcup \emptyset$ 代入并集公式可知:

 $\forall y (y \in \cup \emptyset \leftrightarrow (\exists \mathbf{z} (\mathbf{z} \in \emptyset \land y \in \mathbf{z})))$

因为∃ $\mathbf{z}(\mathbf{z} \in \emptyset \land \mathbf{y} \in \mathbf{z})$)是永假的,所以 $\forall \mathbf{y}(\mathbf{y} \notin \emptyset)$

所以 $U \phi = \phi$

 $\cup \{\emptyset\} = \emptyset$

证明: 将 $\mathbf{x} = \{\emptyset\}$, $\mathbf{u} = \cup \{\emptyset\}$ 代入并集公式可知:

$$\forall y (y \in \bigcup \{\emptyset\} \leftrightarrow (\exists \mathbf{z} (\mathbf{z} \in \{\emptyset\} \land y \in \mathbf{z})))$$

 $\exists \mathbf{z}(\mathbf{z} \in \{\emptyset\} \land \mathbf{y} \in \mathbf{z})$)等值于 $\mathbf{y} \in \emptyset$,是永假的,所以 $\forall \mathbf{y}(\mathbf{y} \notin \bigcup \{\emptyset\})$

所以∪ {ø} = ø

1.2.5 子集公理

假设 Φ 是集合论语言的一个公式,仅出现自由变元 x_1, \dots, x_n, z ,不出现变元y,则:

$$\forall x_1, \dots, x_n \forall x \exists y \forall z (z \in y \leftrightarrow z \in x \land \Phi)$$

对于给定的 x_1, \dots, x_n, z ,这样定义的集合y被记为:

$$y = \{z \in \boldsymbol{x} | \Phi \}$$

这样定义的集合y是x子集($y \subseteq x$),可以理解为集合x中满足公式 ϕ 的元素构成的集合成为x的子集。

1.2.6 幂集公理

$$\forall x \exists y (\forall z (z \in y \leftrightarrow z \subseteq x))$$

集合x的所有子集z构成的集合y称为x的幂集,记为 $\rho(x)$ 。

1.2.7 无穷公理

$$\exists \mathbf{x} (\emptyset \in \mathbf{x} \land (\forall \mathbf{y} (\mathbf{y} \in \mathbf{x} \rightarrow \mathbf{y}^+ \in \mathbf{x})))$$

y⁺表示集合y U {y}

1.2.8 替换公理

假设 θ 是命题逻辑中的公式,仅出现自由变元 $x_1, \dots, x_n, u, z,$ 不出现变元y,则:

$$\forall x_1, \dots, x_n \forall x (\psi \rightarrow \exists y \forall z (z \in y \leftrightarrow \exists u \in x \land \theta[u, z]))$$

 ψ 是以下公式:

$$\forall \mathbf{u} \in \mathbf{x} \forall z_1 z_2 (\theta[\mathbf{u}, z_1] \land \theta[\mathbf{u}, z_2] \rightarrow z_1 = z_2)$$

这里的集合 y 就是替换公理得到的新集合,记为:

$$\{z|\exists u(u \in x \land \theta[u,z])\}$$

语言说明:基于一个已知集合 x 与一个特殊的单射函数 θ ,可以得到一个新集合 y。 $\theta[x,y]$ 表示输入为 x 输出为 y。

1.2.9 正规公理

$$\forall \mathbf{x} (\mathbf{x} \neq \emptyset \rightarrow \exists \mathbf{y} (\mathbf{y} \in \mathbf{x} \land \mathbf{y} \cap \mathbf{x} = \emptyset))$$

正规公理保证了**不存在**这样的集合: $\mathbf{x} = \{\mathbf{x}\}$

1.2.10 选择公理

通俗来讲:根据一个由非空集合组成的集合 S,从 S 的元素集合中分别抽出一个元

素组成的集合。

1.3 公理的应用

- 1. 外延公理用于判定集合相等
- 2. 正规公理用于判定集合属于关系
- 3. 其他公理用于证明集合存在性,常用替换公理

1.4 例题

例 1: 证明可数符号表上有限长字符串的集合是可数的

证明: 假设给定的可数符号表是集合 A, 则:

长度为 1 的字符串集合 $S_1 = A$

长度为 2 的字符串集合 $S_2 = \{ab | a, b \in A\}$

. . .

每个 S_i 都是可数的,并且 S_i 的个数也是可数的,所以可数个可数集合的并集也是可数的。

例 2: 证明空集是函数

func(a)表示 a 是一个函数,满足以下两个公式: $\Phi_1 \wedge \Phi_2$

 Φ_1 是公式: $\forall x(x \in a \rightarrow \exists uv(x = < u, v >))$

 Φ_2 是公式: $\forall uvw(< u, v > \in a \land < u, w > \in a \rightarrow v = w)$

若 a 为空集,则 $Φ_1$ 和 $Φ_2$ 的前提都不成立,所以 $Φ_1$ 和 $Φ_2$ 成立,所以空集是个函数。

例 3: 对于集合 a 及 b, 则它们的交集是集合由子集公理可知:

 $\forall x \exists y \forall z (z \in y \leftrightarrow z \in x \land \Phi)$

 $\diamondsuit x = a, \phi \exists z \in b,$ 得

 $\forall a \forall b \exists y \forall z (z \in y \leftrightarrow z \in a \land z \in b)$

此时的集合y就是集合 a 及 b 的交集

例 4: 对于集合 x 及 y,它们的卡氏积 $x \times y = \{ < u, v > | u \in x, v \in y \}$ 是集合根据子集定理可知,存在这样的集合 u

$$\mathbf{x} \times \mathbf{y} = \{ \mathbf{w} | \mathbf{w} \in \mathbf{c} \land \Phi(\mathbf{w}) \}$$

其中:

c 是集合: $\rho(\rho(\mathbf{x}) \cup \rho(\mathbf{x} \cup \mathbf{y}))$

 $\Phi(w)$ 是公式: $\exists uv(u \in \mathbf{X} \land v \in \mathbf{y} \land w = \langle u, v \rangle)$

例 5: 证明: 存在无限集合{0,{1},{{2}},{{{3}}},...}

已知自然数集合ω,根据替换公理,只要构造一个从ω到上述集合的单射函数即 可证明上述集合存在。

定义函数θ[x,y]满足以下条件:

$$(x = 0 \rightarrow y = x) \land (x \neq 0 \rightarrow \exists f(\Psi_1 \land \Psi_2 \land y = f(x)))$$

其中:

 Ψ_1 是公式: func(f) \wedge (x = min(dom(f)) \rightarrow f(x) = x)

 Ψ_2 是公式: $\forall u(u \in dom(f) \land u^+ \in dom(f) \rightarrow f(u^+) = \{f(u)\})$

则对任意 $n \in \omega$,都存在唯一的一个 f

对任意 $n \in \omega$,存在唯一a,满足 $\theta[n,a]$

则根据选择公理可知,存在集合 u:

$$u = \{a | n \in \omega \land \theta[n, a]\}$$

u即为要证集合

说明:

公式 Ψ_1 定义了 f 的定义域与初值f(0) = 0

公式
$$\Psi_2$$
定义了 $f(n) = \{f(n-1)\} = \{\{f(n-1)\}\} = \{...\{f(n-k)\}...\}$

比如:
$$\{1\} = f(2)$$
, $dom(f) = \{1,2\}$

$$\{\{2\}\} = f(4), \text{ dom}(f) = \{2,3,4\}$$

例 6: 证明: $\forall mn(m \in \omega \land n \in \omega \land m^+ = n^+ \rightarrow m = n)$

假设 m,n 是两个自然数,满足 $m^+ = n^+$,则根据定义可知:

$$m \cup \{m\} = n \cup \{n\}$$

若m ≠ n:

由 $m \in m \cup \{m\}$ 知 $m \in n \cup \{n\}$,又因为 $m \neq n$,所以 $m \notin \{n\}$,所以 $m \in n$

同理可知: n∈m

这时集合 $x = \{m, n\}$ 不满足正规公理:

$$\forall \mathbf{x} (\mathbf{x} \neq \emptyset \rightarrow \exists \mathbf{y} (\mathbf{y} \in \mathbf{x} \land \mathbf{y} \cap \mathbf{x} = \emptyset))$$

因为 $m \cap x = \{n\}, n \cap x = \{m\}$

所以 x 不是一个集合,所以m = n

例 7: 证明ω ∉ ω

假设 $\omega \in \omega$,则存在集合 $\mathbf{x} = \{\omega\}$ 不满足正规公理:

$$\forall \mathbf{x} (\mathbf{x} \neq \emptyset \rightarrow \exists \mathbf{y} (\mathbf{y} \in \mathbf{x} \land \mathbf{y} \cap \mathbf{x} = \emptyset))$$

因为 ω \cap { ω } = ω

所以假设不成立

2 自然数逻辑理论

2.1 归纳集

2.1.1 定义

满足以下两个条件的集合u称为归纳集:

$$\emptyset \in \mathbf{u} \land (\forall a (a \in \mathbf{u} \rightarrow a^+ \in \mathbf{u}))$$

其中a+表示集合a∪{a}

2.1.2 公式

以lnd(x)表示以下公式:

$$\emptyset \in \mathbf{x} \land \forall y (y \in \mathbf{x} \rightarrow y^+ \in \mathbf{x})$$

所以x是一个归纳集当且仅当lnd(x)成立。

2.1.3 性质

- 1. 两个归纳集的并集以及交集还是归纳集。
- 2. 若存在集合{0,1,2,...},则它是一个归纳集。
- 3. 归纳集也是一个无限集,无穷公理保证这样无限集合是存在的,且不唯一。

2.1.4 自然数集合

自然数集合是最小的归纳集ω,满足以下公式:

$$\operatorname{Ind}[\boldsymbol{\omega}] \wedge \forall \mathbf{x} (\operatorname{Ind}[\mathbf{x}] \to \boldsymbol{\omega} \subseteq \mathbf{x})$$

Eg:证明: $U\omega = \omega$

证明:

 $\forall n \in \omega$,因为 $n \in n^+, n^+ \in \omega \rightarrow n \in U \omega$

 $\forall x \in U \omega$, $\exists n \in \omega$, 使得 $x \in n$, 所以 $x \in \omega$

2.2 第一归纳法

2.2.1 推论

假设 $\Phi(x)$ 是集合论的一个语句,只包含一个自由变元x,且

$$\Phi[0] \land \forall x (x \in \omega \land \Phi[x] \rightarrow \Phi[x^+])$$

则对任意自然数n,都有 $\phi[n]$ 成立。

即只要证明 $\Phi[0]$ 成立,并且在假设 $\Phi[x]$ 成立的情况下能够证明 $\Phi[x^+]$ 成立,则 Φ 对于自然数集合恒成立。

2.2.2 例题

例 1: 证明对任意的 $n \in \omega$ 有 $n^+ \neq 0$ 证明:

考虑以下公式 $\phi[x]$:

$$\neg x^+ = 0$$

 $\Phi[0]$ 显然成立,因为 $0^+ = \{0\}$,不是空集0.

若 $\mathbf{m} \in \omega$ 且 $\Phi[m]$ 成立,则 m^+ 不是空集, $(m^+)^+ = m^+ \cup \{m^+\}$ 也不是空集,所以 $\Phi[m^+] = \neg((m^+)^+ = 0)$ 也成立。

由归纳法可知 $\Phi[x]$ 对任意自然数恒成立。

例 2: 对于任意的 $m \in \omega$,若 $n \in m$,则 $n \in \omega$ 。证明:

考虑以下公式 $\phi[x]$:

$$\forall y (y \in x \rightarrow y \in \omega)$$

因为0是空集,所以 $y \in 0$ 是假的,所以 $\Phi[0]$ 成立

若 $m \in \omega$ 且 Φ [m]成立,

对于 $y \in m^+ = m \cup \{m\} \rightarrow y = m 或 y \in m$

若y = m, 由 $m \in \omega$ 可知, $y \in \omega$

若y ∈ m, 由 $\Phi[m]$ 可知, y ∈ ω

所以 $\Phi[m^+]$ 也成立

例 3: 对于任意的 $a,b,c \in \omega$,若 $a \in b,b \in c$,则 $a \in c$ 。证明:

考虑以下公式 $\Phi[x]$:

$$\forall yz(y \in z \land z \in x \rightarrow y \in x)$$

Ф[0]显然成立,因为0是空集,前提是假的。

若m \in ω且 Φ [m]成立

对于
$$z \in m^+ = m \cup \{m\} \rightarrow z = m 或 z \in m$$

若z = m,则 $y \in z = m$,所以 $y \in m^+$

若z ∈ m, 由 Φ [m]可知, y ∈ m, 所以 y ∈ m⁺

所以 $\Phi[m^+]$ 也成立

2.3 第二归纳法

2.3.1 定义

假设 $\Phi(x)$ 是集合论的一个语句,只包含一个自由变元x,且

$$\forall x \Big(\forall y \Big(y \in x \to \Phi(y) \Big) \to \Phi(x) \Big)$$

成立,则对任意自然数 n,都有 $\Phi(n)$ 成立

证明:考虑集合

$$\mathbf{u} = \{ n \in \omega | \forall y (y \in n \to \Phi(n)) \}$$

只要证明任意自然数都属于集合 \mathbf{u} ,这样对任意 $\mathbf{n} \in \omega$, $\Phi(\mathbf{n})$ 都成立

当n = 0 时, $\forall y (y \in 0 \rightarrow \Phi(n))$ 恒成立,所以 $0 \in \mathbf{u}$

当 $n \in \mathbf{u}$ 时, $\Phi(n)$ 成立

2.4 递归定义

2.4.1 递归定义的合理性

假设a是一个集合,f是一个函数,则存在一个函数r满足:

- 1) $dom(r) = \omega$
- 2) r(0) = a
- 3) $\forall m \in \omega$,都有 $r(m^+) = f(r(m))$

2.4.2 例题

例 1: 证明存在集合{0,{0},{{0}},...}

证明:

取
$$a = 0$$
,公式f为f(x) = {x}

由递归定义的合理性可知,存在函数 r 满足:

$$r(0) = 0$$

$$r(1) = f(r(0)) = \{0\}$$

$$r(2) = f(r(1)) = \{\{0\}\}\$$

. . .

所以r的值域即为上述集合

2.4.3 推广

假设 $\Phi(x,y)$ 是集合论语言的一个函数型公式,即满足:

- 1) $\forall x \exists y \Phi(x, y)$
- 2) $\forall xyz (\Phi(x, y) \land \Phi(x, z) \rightarrow y = z)$

这时记相应于x的y为 x_{o} 。

多元迭代函数:

假设 a 是一个集合,f(x,y)是二元函数,则存在一个函数 r 满足:

- 1) $dom(r) = \omega$
- 2) r(0) = a
- 3) \forall m \in ω,都有r(m^+) = f(r(m), m)

3 命题逻辑的两个推理系统

3.1 Hilbert 推理系统

公理:

1.
$$A \rightarrow (B \rightarrow A)$$

2.
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

3.
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

规则:

$$\frac{A,A\to B}{B}$$
 (\mathbb{H} A, A \to B \vdash B)

推演序列:

假设 Γ 是公式集合,公式序列 $\langle A_1,A_2,...,A_n\rangle$ 被称为 Γ -推演序列,当且仅当:

- 1. 或者 A_i ∈ Γ
- 2. 或者A_i是公理
- 3. 或者存在j, k < i, A_i 可由 A_i , A_k 应用规则得到

可证性:

若存在 Γ -推演序列,它的最后一个公式是A,则称A是 Γ 可证的,记为 Γ $\vdash A$ 。

Eg1:证明: ├A → A

1.
$$A_1: A \to ((A \to A) \to A)$$
 公理 1

2.
$$A_2: A \rightarrow (A \rightarrow A)$$
 公理 1

3.
$$A_3: A_1 \rightarrow (A_2 \rightarrow (A \rightarrow A))$$
 公理 2

4.
$$A_4: A_2 \rightarrow (A \rightarrow A)$$
 规则

5.
$$A_5: A \rightarrow A$$
 规则

所以 $\vdash A \rightarrow A$

3.2 推理系统二

公理:

$A \vdash A$

规则(只列了常用的几个):

$$\cdot \frac{\Sigma \vdash A}{\Sigma, \Sigma' \vdash A}$$

单调性: 若A ├B, 则A,C ├B

$$\begin{array}{ccc} & & & \underline{\Sigma, \neg A \vdash B \perp \Sigma, \neg A \vdash \neg B} \\ & & & \underline{\Sigma \vdash A} \end{array}$$

反证法: $(\Sigma, \neg A)$ 矛盾

$$\frac{\Sigma \vdash A \perp \Sigma \vdash A \rightarrow B}{\Sigma \vdash B}$$

三段论

$$\begin{array}{ccc} & & \Sigma, A \vdash B \\ \hline \Sigma \vdash A \rightarrow B \end{array}$$

演绎定理

可证性:有限次应用公理和规则生成 $\Sigma \vdash A$,则称 $\Sigma \vdash A$ 可证。

Eg1: 证明: ¬¬A ├A

1. ¬¬A ├¬¬A

公理

2. ¬¬A, ¬A ├¬¬A

单调性

3. ¬A ├¬A

公理

4. ¬¬A, ¬A ├¬A

单调性

5. ¬¬A ├A

2,4 应用反证法规则

3.3 性质

3.3.1 紧致性

给定公式集合 Σ 和公式A,若 $\Sigma \vdash A$,则存在有限的 $\Gamma \subseteq \Sigma$,使得 $\Gamma \vdash A$

3.3.2 协调性

给定命题逻辑的公式集合 Σ ,若存在公式 A,使得 $\Sigma \vdash A$ 且 $\Sigma \vdash A$,则称 Σ 是不协调的。

3.3.3 一些定义

公式的真值:

假设 v 是一个赋值,A 是公式,可以根据真值表定义v(A)=1 集合的真值:

假设 Γ 是一个公式集合, 定义 $v(\Gamma) = 1$ 为: 对每个 $A \in \Gamma$, 都有 v(A) = 1

▶ 定义:

假设 Γ 是一个公式集合,A是公式, Γ ►A为:

对任意的赋值 v, 当 $v(\Gamma) = 1$ 时, v(A) = 1

3.3.4 可靠性和完备性

可靠性: 若 $\Sigma \vdash A$, 则 $\Sigma \models A$

完备性: 若 $\Sigma \models A$, 则 $\Sigma \models A$

3.4 规则的独立性证明

证明方式:

- 1. 修改逻辑联结词的定义,使得其他规则都成立,但该规则不成立。则该规则 独立于其他规则。
- 若某个规则可以证明一个推演,而不使用该规则,该推演不可证明。则称该规则是独立的

弱推演系统:

1. $A \rightarrow (B \rightarrow A)$

2.
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

3. $(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$

Eg1: 证明规则 1 独立于规则 2、3

证明:

重新定义规则: 真值取值 $\{0,1,2\}$, \rightarrow 和¬定义如下:

\rightarrow	0	1	2	П
0	0	2	2	2
1	2	2	0	0
2	0	0	0	0

定义: $\Gamma \models A \Rightarrow v(\Gamma) = 0 \perp v(A) = 0$

$$\stackrel{\,\,{}_{\sim}}{=}$$
 v(A) = 0, v(B) = 1 $\stackrel{\,\,{}_{\sim}}{=}$ 1 $\stackrel{\,\,{}_{\sim}}$

所以规则1不成立

在这种情况下,规则 2、3 都成立,但规则 1 不成立,所以规则 1 独立于规则 2、3

Eg2: 证明规则 3 独立于规则 1、2 证明:

重新定义规则: →和¬定义如下:

\rightarrow	0	1	Γ
0	0	1	0
1	0	0	0

定义: $\Gamma \vdash A$ 为 $v(\Gamma) = 0$ 且 v(A) = 0

所以规则3不成立

在这种情况下,规则1、2都成立,但规则3不成立,所以规则3独立于规则1、2

3.5 例题

Eg1: 完备性证明: 若 ├A, 则 ├A

证明:

假设 A 中出现的所有命题变元 $p_1, p_2, ..., p_n$, v 是一个真值赋值, 定义文字 $L_{v,i}$:

$$L_{v,i} = \begin{cases} p_i, & v(p_i) = 1 \\ \neg p_i, & v(p_i) = 0 \end{cases}$$

因为 \vdash A,所以 A 永真,所以v(A) = 1,所以 $L_{v,1},...,L_{v,n} \vdash$ A

对于任意赋值 v, $L_{v,1},...,L_{v,n}$ \vdash A

因为 A 永真,所以: $L_{v,1},...,L_{v,n-1},p_n \vdash A$ $L_{v,1},...,L_{v,n-1},\neg p_n \vdash A$

所以 $L_{v,1},...,L_{v,n-1}$ \vdash A

由上可知, 若 A 永真, 则对任意赋值 v 都有:

 $L_{v,1}, \dots, L_{v,n} \vdash A$

 $L_{v,1}, \dots, L_{v,n-1} \vdash A$

0 0 0

 $L_{v,1} \vdash A$

ŀΑ

4 命题逻辑的完备性

4.1 定义

完备性定理: 在命题逻辑中, 假设A是公式, 有以下结论:

若 ►A,则 ⊢A

极大协调集合:

满足以下条件的公式集合Σ被称为极大协调的:

- 1. Σ是协调的
- 2. 对任意的A $\notin \Sigma$, 公式集合 $\Sigma \cup \{A\}$ 是不协调的

证明: $\Sigma = \{A|v(A) = 1\}$ 是一个极大协调集

证:

4.2 性质

对任意公式集合 Σ 和公式 A, B, 若 Σ 是极大协调集合, 有以下性质:

- 1. $A \in \Sigma$ 当且仅当 $\Sigma \vdash A$
- 2. $\neg A \in \Sigma$ 当且仅当 $A \notin \Sigma$

证明: 先证若 $\neg A \in \Sigma$ 则 $A \notin \Sigma$

所以A \notin Σ

再证明若 $A \notin \Sigma$,则¬ $A \in \Sigma$

因为 $A \notin \Sigma$,所以 $\Sigma \cup \{A\}$ 是不协调的,所以 $\Sigma \vdash \neg A$,所以 $\neg A \in \Sigma$

3. $A \land B \in \Sigma$ 当且仅当 $A \in \Sigma$ 并且 $B \in \Sigma$

证明: 先证充分性:

因为 $A \wedge B \in \Sigma$,所以 $\Sigma \vdash A \wedge B$

因为 $A \land B \vdash A$, $A \land B \vdash B$, 所以 $\Sigma \vdash A$, $\Sigma \vdash B$, 所以 $A \in \Sigma$ 并且 $B \in \Sigma$ 再证必要性:

 $A \in \Sigma$, $B \in \Sigma \to \Sigma \vdash A$, $\Sigma \vdash B \to \Sigma \vdash A \land B \to A \land B \in \Sigma$

4. AVB \in Σ 当且仅当 A \in Σ 或者 B \in Σ

若Σ是极大协调集合,定义赋值 v 使得:

$$v(p) = 1$$
 当且仅当 $p \in \Sigma$

则对任意的公式 A, v(A) = 1 当且仅当 A $\in \Sigma$

例题 1: 假设 Σ 是协调的公式集合,则存在极大协调集 Σ' ,使得 $\Sigma \subseteq \Sigma'$ 证明:

假设仅有可数个命题变元,则全部公式可以列举为: B_0, B_1, B_2, \dots 按照以下方式定义集合 Σ_n :

1.
$$\Sigma_0 = \Sigma$$

2.
$$\Sigma_{n+1}$$
 $\left\{ \begin{array}{ccc} \Sigma_n \cup \{B_n\}, & \Xi \Sigma_n \cup \{B_n\}$ 是协调的 $\Sigma_n & ,$ 否则

根据定义可知,所有 Σ_n 都是协调的。

定义
$$\Sigma' = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \cup ...$$

此时 $\Sigma \subseteq \Sigma'$,下面证明 Σ' 是极大协调集

假设 Σ [']是不协调的

则 $\Sigma' \vdash A \land \neg A$

则存在公式 $A_1, ..., A_m \in \Sigma'$,使得 $A_1, ..., A_m \vdash A \land \neg A$

假设这些 $A_1, ..., A_m$ 都属于某个 $\Sigma_n, 则 \Sigma_n \vdash A \land \neg A$,这与定义中 Σ_n 的协调性相矛盾,所以 Σ' 是协调的

对于任意公式 $\mathbf{A} \notin \Sigma'$,可以假设它是 $\mathbf{B_n}$,则 $\Sigma_{\mathbf{n}} \cup \{\mathbf{B_n}\}$ 是不协调的, $\Sigma' \cup \{\mathbf{A}\}$ 是不协调的,所以 Σ' 是极大的。

例题 2: 完备性证明: 对任意公式集合 Σ 与公式 A ,若 Σ $\vdash A$,则 Σ $\vdash A$

证明: 假设 Σ \vdash A不成立,这时 Σ \cup $\{\neg A\}$ 是协调的,因而可以扩充为极大协调集 Σ'

由 Σ' 可以定义赋值: $\mathbf{v}(\mathbf{A}) = 1$ 当且仅当 $\mathbf{A} \in \Sigma'$ 赋值 \mathbf{v} 具有以下性质:

- 1. $v(\Sigma) = 1$, 因为 $\Sigma \subseteq \Sigma'$
- 2. $\neg A \in \Sigma'$, 所以 $v(\neg A) = 1$, 所以v(A) = 0

这与 $\Sigma \models A$ 相矛盾,所以 $\Sigma \models A$

5 命题直觉主义逻辑

5.1 公理系统

在命题逻辑的自然推演系统中,将反证法规则替换为两个规则:

直觉反证法:

不协调前提:

若 Σ \vdash A D Σ \vdash ¬A, 则 Σ \vdash B

其中 Σ 是命题逻辑公式的集合,上述两条规则是相互独立的。

5.2 *c*_

 Σ 是命题逻辑公式集合, A 是命题逻辑公式, 称 Σ \vdash A是 c_- 可演算的, 当且仅当存在: $\Sigma_i \vdash A_i (i=0,1,...,n), \ \$ 使得 $\Sigma_n \vdash A_n$ 是 $\Sigma \vdash$ A,并且对每个 i,有 $\Sigma_i \vdash A_i$ 满足:

- 1) 或者是某种规则
- 2) 或者存在 j<i, $\Sigma_i \vdash A_i$ 是通过 $\Sigma_j \vdash A_j$ 应用规则推导出的
- 3) 或者存在 j, k<i, $\Sigma_i \vdash A_i$ 是通过 $\Sigma_j \vdash A_j$ 和 $\Sigma_k \vdash A_k$ 应用规则推导出的

若 Σ \vdash A 是 c _ 可演算的,记为 Σ \vdash c A

若 Σ \vdash_{c} A且 Σ \vdash_{c} ¬A,则称 Σ 是不协调的

Eg1: 证明A ├_c¬¬A

1. A ⊢A

2. A, ¬A ├A

A ├B 可推出 A, C ├B

3. ¬A ├¬A

4. A, ¬A ├¬A

5. $A \vdash_{c} \neg \neg A$

2,4 直觉反证法: $A \vdash_c \neg (\neg A)$

Eg2: 证明A \rightarrow B $\vdash_c \neg$ B $\rightarrow \neg$ A

1.
$$A \rightarrow B \vdash A \rightarrow B$$

2.
$$A \rightarrow B, A \vdash A \rightarrow B$$

- 3. A ├A
- 4. $A \rightarrow B, A \vdash A$
- 5. $A \rightarrow B, A \vdash B$

2,4

6.
$$A \rightarrow B, A, \neg B \vdash B$$

- 7. ¬B ├¬B
- 8. $A \rightarrow B, A, \neg B \vdash \neg B$
- 9. $A \rightarrow B, \neg B \vdash \neg A$

6,8 直觉反证法

10. $A \rightarrow B \vdash \neg B \rightarrow \neg A$

左侧可以当右侧的前提

5.3 不协调性的应用

若公式集合 $\Sigma \cup \{A\}$ 是不协调的,则 $\Sigma \vdash \neg A$

Eg1: $\neg A \land \neg B \vdash \neg (A \lor B)$

 $\neg A \land \neg B \vdash \neg A \land \neg B$

 $A \vee B \vdash A \vee B$

 $\neg A \land \neg B, A \lor B \vdash (\neg A \land A) \lor (\neg B \land B)$

所以集合 $\{\neg A \land \neg B, A \lor B\}$ 不协调

所以 $\neg A \land \neg B \vdash \neg (A \lor B)$

5.4 分层模型

直觉主义逻辑的一个模型 K 是指一个二元组 < V, R >, 其中:

- 1) 非空集合 V 是每个命题变元元素对应于命题逻辑的一个赋值
- 2) R是V上的一个二元关系,具有自反性和传递性
- 3) 对于任意的命题变元 p 及赋值 $v_1, v_2 \in K$,有: 若 $v_1(p) = 1$ 且 $v_1 R v_2$,则 $v_2(p) = 1$ 。

注意: 分层模型的赋值情况并不是任意取值的,要满足对于(v,w), $w(p) \ge v(p)$

自反性: 对任意 $v \in V$, $(v,v) \in R$

传递性: 对任意 $a,b,c \in V$, 若(a,b), $(b,c) \in R$, 则 $(a,c) \in R$

记 $v(p) = p^{K,v}$

在分层模型下,真值的计算比较特殊:

对于给定的分层模型 $K = \langle V, R \rangle$,假设 $v \in V$, $(v, w) \in R$ 对于命题变元的任意公式:

1.
$$(A \land B)^{K,v} = 1$$
当且仅当 $A^{K,v} = 1$ 且 $B^{K,v} = 1$

- 2. $(A \lor B)^{K,v} = 1$ 当且仅当 $A^{K,v} = 1$ 或 $B^{K,v} = 1$
- 3. $(A \rightarrow B)^{K,v} = 1$ 当且仅当对**任意vRw的w**,若 $A^{K,w} = 1$ 则 $B^{K,w} = 1$
- 4. $(A \leftrightarrow B)^{K,v} = 1$ 当且仅当**对任意vRw的w**, $A^{K,w} = 1$ 等价于 $B^{K,w} = 1$
- 5. $(\neg A)^{K,v} = 1$ 当且仅当对**任意vRw的w**, $A^{K,w} = 0$

与和或不需要考虑其他赋值w

5.5 习题

例题 1: 证明 $\frac{\Sigma, A \vdash B \perp \Sigma, A \vdash \neg B}{\Sigma \vdash \neg A}$

证:假设 $\Sigma \vdash \neg A$ 不成立,则存在分层模型 $K = < V, R > D_V \in V$,

使得:
$$\Sigma^{K,v} = 1 且 (\neg A)^{K,v} = 0$$

要使 $(\neg A)^{K,v} = 0$,则存在 $w \in V$, $A^{K,w} = 1$,此时 $\Sigma^{K,w} = 1$

所以($\Sigma \cup A$) $^{K,w} = 1$

再根据 Σ , $A \vdash B$ 且 Σ , $A \vdash \neg B$ 可知, $B^{K,w} = 1$ 且 $(\neg B)^{K,w} = 1$,这显然是矛盾的所以假设不成立

例题 2: 证明
$$\frac{\Sigma \vdash A \perp L \Sigma \vdash A \rightarrow B}{\Sigma \vdash B}$$

证:要想证 $\Sigma \vdash B$,等价于证对任意分层模型 $K = < V, R > 及任意 v \in V$,

当
$$\Sigma^{K,v}=1$$
时, $B^{K,v}=1$ 由 Σ 卜A可知, $\Sigma^{K,v}=1$,则 $A^{K,v}=1$

由
$$\Sigma \vdash A \to B$$
可知, $\Sigma^{K,v} = 1$,则 $(A \to B)^{K,v} = 1$

又因为
$$A^{K,v} = 1$$
,所以 $B^{K,v} = 1$

所以当
$$\Sigma^{K,v} = 1$$
时, $B^{K,v} = 1$,原式成立

非 c_{-} 可证明例题

例题 3:证明下式不可证: $\neg A \rightarrow B \vdash_c \neg B \rightarrow A$

假设A,B分别为命题变元p,q,构造模型K = < V,R >,使得:

$$V = \{v, w\} \ R = \{(v, v), (v, w), (w, w)\}$$

其中:

a) 赋值 v 使得
$$v(p) = 0$$
 及 $v(q) = 0$

b) 赋值w使得w(p) = 1 及
$$v(q) = 0$$

则真值情况如下:

	v	W
A	0	1
В	0	0
¬A	0	0
¬B	1	1
$\neg A \rightarrow B$	1	1

$\neg B \rightarrow A$	0	1
$\neg A \rightarrow B \vdash_c \neg B \rightarrow A$	0	1

所以存在赋值使得 $\left(\neg A \rightarrow B \mid_{c} \neg B \rightarrow A\right)^{K,v} = 0$ 所以原式不可证

例题 4:
$$\vdash_c \neg \neg A \rightarrow A$$

假设A为命题变元p,构造模型K =< V,R >,使得:

$$V = \{v, w\} \ R = \{(v, v), (v, w), (w, w)\}$$

其中:

- a) 赋值 v 使得v(p) = 0
- b) 赋值w使得w(p) = 1
- c) 则真值情况如下:

	v	w
A	0	1
¬A	0	0
¬¬A	1	1
$\neg\neg A \to A$	0	1

所以存在赋值使得 $(\neg\neg A \rightarrow A)^{K,v} = 0$ 所以原式不可证

例题 5: $\vdash_{c} A \lor \lnot A$ (与和或求真值时不需要考虑关系 R 对应的赋值w)

假设A为命题变元p,构造模型K =< V,R >,使得:

$$V = \{v, w\} \ R = \{(v, v), (v, w), (w, w)\}\$$

其中:

- a) 赋值 v 使得v(p) = 0
- b) 赋值w使得w(p) = 1

则真值情况如下:

	V	W
A	0	1
¬A	0	0
$A \lor \neg A$	0	1

所以存在赋值使得 $(A \lor \neg A)^{K,v} = 0$ 所以原式不可证

5.6 分层模型的相关性质

假设 Σ 是命题逻辑公式集合,A 是命题逻辑公式,定义 Σ = $_c$ A 为 : 对任意分层模型K=<V,R>, $v\in V$,当 Σ $^{K,v}=1$ 时, $A^{K,v}=1$

性质:

1. 真值的传递性

假设 A 是命题逻辑公式,对于给定的分层模型K =< V,R > ,假设 v,w \in V 满足vRw,则:当 $A^{K,v}=1$ 时 $A^{K,w}=1$ (A 是一个公式)证明:

- 1) 假设 A 是命题变元 p,则由分层模型的定义可知当 $p^{K,v}=1$ 时 $p^{K,w}=1$
- 2) 令 $A = \neg B$,当 $A^{K,v} = 1$ 时 $\neg B^{K,v} = 1$,所以对所有的vRv', $B^{K,v'} = 0$ 对于赋值w而言,对于所有的wRw',由关系的传递性可知:vRw', 所以 $B^{K,w'} = 0$,所以 $\neg B^{K,w} = 1$,即 $A^{K,w} = 1$
- 2. 直觉主义的可靠性

若
$$\Sigma \vdash_{c} A$$
,则 $\Sigma \models_{c} A$