1. Consider the relation instance of R(a,b,c).

a	b	c
a_1	b_1	c_1
a_1	b_1	c_2
a_2	b_1	c_1
a_2	b_1	c_3

(a) (5) Which of the following FDs hold for this instance of R?

- (i) $a \rightarrow b$ YES
- NO

NO

NO

NO

NO

- (ii) $a \rightarrow c$
- YES NO

 $(iii) \quad b \rightarrow a \qquad \quad YES$

- $\text{(iv)} \quad b \to c$
- YES NO

 $(v) \quad c \to a \qquad YES$

- $(vi) \quad c \to b$
- YES NO

- (vii) ac \rightarrow b YES
- (viii) bc \rightarrow a
- YES NO

(ix) $ab \rightarrow c$ YES

- (x) $abc \rightarrow a$
- YES NO

(b) (0.5) What is a key for R?

(a) (2) Consider a relation R1(a,b,c,d,E) with functional dependencies $a,b \to c$ and $c,d \to E$. Suppose there are at most 2 different values for each of a, b, and d. What's the maximum number of different values for E?

- i. 2
- ii. 4
- iii. 8

iv. insufficient information to determine answer

(b) (0.5) What is a key for R1?

2. (2) In the relation WORK(ssn,pno,date,hours), what real-world constraint is captured by $ssn, pno \rightarrow date$?

- (a) An employee cannot work on multiple projects on the same date.
- (b) An employee cannot work on the same project on different dates.
- (c) An employee must work on all projects on the same date.
- (d) none of the above information can be inferred from the fd.