

(1) Publication number: 0 628 551 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 94304289.5

(22) Date of filing: 14.06.94

(5) Int. CI.⁵: **C07D 295/20**, C07D 295/22, C07D 207/26, C07D 211/14, C07D 211/22, C07D 211/46, A61K 31/445, A61K 31/50, A61K 31/54, C07D 211/70, C07D 213/74, C07D 239/42, C07D 241/20, C07D 279/12, C07D 401/04, C07D 401/12,

C07D 417/12, C07D 417/14

30 Priority: 14.06.93 JP 142361/93 06.06.94 JP 124087/94

(43) Date of publication of application : 14.12.94 Bulletin 94/50

Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IE IT LI LU MC
 NL PT SE

(1) Applicant: SHIONOGI & CO., LTD. 1-8, Doshomachi 3-chome, Chuo-ku Osaka-shi, Osaka-fu (JP)

(72) Inventor : Matsumura, Hiromu 15-10-839, Asahigaoka-cho Ashiya-shi, Hyogo-ken (JP) Inventor: Yano, Toshisada 5-19-18, Kita-ochial, Suma-ku Kobe-shi, Hyogo-ken (JP) Inventor: Hashizume, Hiroshi 1-1-1118, Ikeda-cho, Kita-ku Osaka-shi, Osaka (JP) Inventor: Eigyou, Masami 2-10-7, Shikanodai-nishi ikoma-shi, Nara-ken (JP) Inventor: Ohtani, Kohichi 5-8. Daishi-cho Kawachinagano-shi, Osaka (JP) Inventor: Arimura, Akinori 1-14-22-201, Abiko-nishi, Sumiyoshi-ku Osaka-shi, Osaka (JP)

(4) Representative: Nash, David Alian et ai Haseltine Lake & Co.
Hazlitt House
28 Southampton Bulidings
Chancery Lane
London WC2A 1AT (GB)

(54) Semicyclic urea derivatives as antihistaminic agents.

67) A compound represented by the following Formula 1:

$$Y^{3}$$
 Y^{1}
 $N - CONH - (CH2)k - N$
 Z^{1}
 $(R^{2})_{m^{1}}$
 $(R^{2})_{m^{1}}$
 $(R^{1})_{n^{1}} - R^{1}$
 $(R^{2})_{m^{1}}$
 $(R^{2})_{m^{1}}$

wherein Z^1 is C or N; m^1 is 0 when Z^1 is N and m^1 is 1 when Z^1 is C; R^3 can form a bond with R^2 when Z^1 is C; R^3 is O, SO_2 , or CH_2 ; n^1 is 0 or 1 when R^3 is O or SO_2 and R^3 is an integer of 0 to 3 when R^3 is R^3 is a group selected from the group consisting of a condensed aromatic ring, a substituted condensed aromatic ring, carboxyl, alkoxycarbonyl, and

$$-C \stackrel{R^{12}}{\underset{R^{13}}{\overbrace{}}}$$

wherein R^{11} is H or OH, or R^{11} can form a bond with R^2 when Z^1 is C and n^1 is O; R^{12} and R^{13} are Independently phenyl, substituted phenyl, a heterocyclic ring, or a substituted heterocyclic ring, or R^{12} and R^{13} can form a condensed ring; R^2 is H when forming no bond with R^3 or R^{11} ; R^3 is H when forming no bond with R^2 ; R^3 is an integer of 2 to 5; R^3 is a group selected from the group consisting of O, S, SO, SO, CH₂, and

$$Z^{2} - (A^{2})_{n^{2}} - R^{4}$$

wherein Z^2 is N or C; m^2 is 0 when Z^2 is N and m^2 is 1 when Z^2 is C; A^2 is O, SO_2 , or CH_2 ; n^2 is 0 or 1 when A^2 is O or SO_2 ; n^2 is an integer of 0 to 3 when A^2 is CH_2 ; R^4 is a group selected from the group consisting of alkyl, phenyl, substituted phenyl, a heterocyclic ring, a substituted heterocyclic ring, $-CO-R^{41}$, and

$$-C = \frac{R^{43}}{R^{44}}$$

wherein R^{41} is a group selected from the group consisting of OH, alkoxy, amino, arylalkyloxy, substituted amino, arylalkenyl, and substituted arylalkenyl; R^{42} is H or OH, or R^{42} can form a bond with R^{5} when Z^{2} is C and n^{2} is 0; R^{43} and R^{44} are independently phenyl, substituted phenyl, a heterocyclic ring, or a substituted heterocyclic ring; R^{5} is H when forming no bond with R^{42} ; Y^{2} is CH_{2} or CO; Y^{3} is CH_{2} 0 or phenylene; and R^{2} 1 is 0 or 1, or pharmaceutically acceptable salts thereof.

BACKGROUND OF THE INVENTION

1. Field of the Invention:

The present invention relates to a novel urea derivative containing a heterocyclic ring, and more specifically to a novel compound having an antihistaminic effect, useful as an antiallergic agent, and antiallergic agents containing the same.

2. Description of the Related Art:

10

15

5

in recent years, various kinds of compounds have been known as antihistaminic antiallergic agents. Examples of the compounds include thiazole derivatives disclosed in Japanese Laid-Open Patent Publication No. 63-225374, piperidine derivatives disclosed in Japanese Patent Publication No. 4-32821, phenyi derivatives disclosed in Japanese Patent Publication No. 2-28566, and piperazine derivatives disclosed in Japanese Laid-Open Patent Publication No. 63-188670.

Currently used antihistaminic agents useful as the above-mentioned antiallergic agents have strong antihistaminic effects, but involve some side effects on the central nervous system, such as sleepiness and ataxy. Considering these undesirable side effects, Improved antiallergic agents have been developed. In general, however, new compounds which alleviate undesirable side effects also have decreased antihistaminic effects. Thus, there is a need for compounds having high antihistaminic and antialiergic effects which do not have undesirable side effects.

SUMMARY OF THE INVENTION

The compound of this invention is represented by the following Formula I.

30

25

$$Y^{1}$$
 N - CONH-(CH₂) k^{1} - N Z^{1} (R²) m^{1} (I) (CH₂) k^{2} -Y²

wherein Z¹ is C or N; m^1 is 0 when Z¹ is N and m^1 is 1 when Z¹ is C; R^3 can form a bond with R^2 when Z¹ is C; R^3 is O, R^3 , or R^3 or R^3 is 0 or 1 when R^3 is O or R^3 or R^3 an integer of 0 to 3 when R^3 is R^3 is a group selected from the group consisting of a condensed aromatic ring, a substituted condensed aromatic ring, carboxyl, alkoxycarbonyl, and

40

$$-C < \frac{R^{12}}{R^{13}}$$

45

wherein R¹¹ is H or OH, or R¹¹ can form a bond with R² when Z¹ is C and n¹ is 0; R¹² and R¹³ are independently phenyl, substituted phenyl, a heterocyclic ring, or a substituted heterocyclic ring, or R¹² and R¹³ can form a condensed ring; R² is H when forming no bond with R³ or R¹¹; R³ is H when forming no bond with R²; k¹ is an integer of 2 to 5; Y¹ is a group selected from the group consisting of O, S, SO, SO₂, CH₂, and

50

$$(R^5)m^2$$

 $(A^2)n^2-R^4$

55

wherein Z² is N or C; m² is 0 when Z² is N and m² is 1 when z² is C; A² is O, SO₂, or CH₂; n² is 0 or 1 when A² is O or SO₂; n² is an integer of 0 to 3 when A² is CH₂; R⁴ is a group selected from the group consisting of alkyl, phenyl, substituted phenyl, a heterocyclic ring, a substituted heterocyclic ring, -CO-R⁴¹, and

$$-C < \frac{R^{42}}{R^{42}}$$

wherein R⁴¹ is a group selected from the group consisting of OH, alkoxy, amino, arylalkyloxy, substituted amino, arylalkenyl, and substituted arylalkenyl; R⁴² is H or OH, or R⁴² can form a bond with R⁵ when Z² is C and n² is 0; R⁴³ and R⁴⁴ are independently phenyl, substituted phenyl, a heterocyclic ring, or a substituted heterocyclic ring; R⁵ is H when forming no bond with R⁴²; Y² is CH₂ or CO; Y³ is (CH₂)₂ or phenylene; and k² is 0 or 1

The present invention also includes pharmaceutically acceptable salts of the above-mentioned compounds.

In one embodiment, the compound is represented by the following Formula I-1:

$$Y^{3}$$
 Y^{1}
 $N - CONH - (CH_{2})k^{1} - N$
 $C - (A^{1})n^{1} - R^{1}$
 $(I-1)k^{2} - Y^{2}$

wherein A^1 , R^1 , Y^1 , Y^2 , Y^3 , k^1 , k^2 , and n^1 are the same as defined above. In one embodiment, R^1 in Formula I is quinolyl or

wherein R¹⁴ is H, phenyl, or substituted phenyl; p¹ is an integer of 0 to 4; and X's are independently a group selected from the group consisting of Cl, F, CH₃, CN, and CH₂COOH.

In one embodiment, the compound is represented by the following Formula I-2:

$$Y^{3}$$
 Y^{1}
 N
 $-CONH-(CH2)k1-N$
 $C = C$
 R^{12}
 R^{13}

wherein R^{12} , R^{13} , Y^1 , Y^2 , Y^3 , k^1 , and k^2 are the same as defined above. In one embodiment, R^1 in Formula I is

5

15

20

25

30

35

40

45

5

10

15

20

25

30

45

wherein Y^4 is $(CH_2)k^3$ or CH_2 - Y^5 , where k^3 is an integer of 0 to 2, Y^5 is O, S, or NR⁵, where R⁵ is H or CH_3 ; p^1 is an integer of 0 to 4; and X's are independently a group selected from the group consisting of Cl, F, CH_3 , CN, and CH_2COOH .

In one embodiment, R⁴ in Formula I is a group selected from the group consisting of pyridyl, pyrimidinyl, imidazolyl, quinolyl, and

In one embodiment, the compound is represented by the following Formula I-3:

$$R^{43} = C = C \qquad N - CONH - (CH2)k1 - N \qquad Z1 - (A1)n1 - R1 \qquad (I-3)$$

wherein A¹, R¹, R², R³, R⁴², R⁴², Y², Y³, Z¹, k¹, k², m¹, and n¹ are the same as defined above. In one embodiment, the compound is represented by the following Formula I-4:

$$R^{3}$$

(R²)_m

(CH₂)_{k²-Y²}

(CH₂)_{k²-Y²}

(CH₂)_{k²-Y²}

(R²)_m

(R²)_m

(R²)_m

(R²)_m

(R²)_m

wherein A¹, R¹, R², R³, Y¹, Y², Z¹, k¹, k², m¹, and n¹ are the same as defined above.

In one embodiment, in Formula I, A1 is CH2 and R1 is carboxyl or alkoxycarbonyl.

In one embodiment, in Formula I, Z1 is N and n1 is 0.

In one embodiment, in Formula I, Z1 is C, A1 is O, and n1 is 1.

In one embodiment, in Formula I, y^2 is CH_2 , Y^3 is $(CH_2)_2$, and K^2 is 1. In one embodiment, in Formula I, Y^1 is S or CH_2 , y^2 is CO, and Y^3 is $(CH_2)_2$. In one embodiment, in Formula I, R^1 is represented by the following Formula:

 $-c < \frac{R^{12}}{R^{13}}$

wherein R11, R12 and R13 are the same as defined above.

5

10

15

25

30

35

45

50

55

The antiallergic agent of the present invention comprises an effective amount of the above-mentioned compounds or pharmaceutically acceptable salts thereof.

The composition of the present invention comprises the compound of claim 1 or pharmaceutically acceptable salts thereof and a carrier.

Thus, the invention described herein makes possible the advantages of (1) providing a novel compound having strong antihistaminic effects; (2) providing a novel compound having high affinity for a histamine receptor; (3) providing a novel compound having strong antihistaminic effects and having a low degree of migration to brain when the compound is administered; (4) providing a novel compound having a 5-lipoxygenase inhibiting effect; (5) providing a novel compound having inhibiting effects on various chemical mediators; and (6) providing antiallergic agents having excellent antihistaminic effects and decreased side effects.

These and other advantages of the present invention will become apparent to those skilled in the art upon reading and understanding the following detailed description.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The compound of the present invention is a compound represented by the following general Formula I:

$$Y^{3}$$
 V^{1}
 V^{1}
 V^{2}
 V^{2}
 V^{2}
 V^{1}
 V^{2}
 V^{2}
 V^{2}
 V^{2}
 V^{3}
 V^{2}
 V^{3}
 V^{4}
 V^{2}
 V^{2}
 V^{3}
 V^{4}
 V^{2}
 V^{4}
 V^{2}
 V^{4}
 V^{2}
 V^{4}
 V^{4

wherein Z¹ is C or N; m¹ is 0 when Z¹ is N and m¹ is 1 when Z¹ is C; R³ can form a bond with R² when Z¹ is C; A¹ is O, SO₂, or CH₂; n¹ is 0 or 1 when A¹ is O or SO₂ and n¹ is an integer of 0 to 3 when A¹ is CH₂; R¹ is a group selected from the group consisting of a condensed aromatic ring, a substituted condensed aromatic ring, carboxyl, alkoxycarbonyl, and

$$-C \stackrel{R^{12}}{\underset{R^{13}}{\overbrace{}}}$$

wherein R¹¹ is H or OH, or R¹¹ can form a bond with R² when Z¹ is C and n¹ is 0; R¹² and R¹³ are independently phenyl, substituted phenyl, a heterocyclic ring, or a substituted heterocyclic ring, or R¹² and R¹³ can form a condensed ring; R² is H when forming no bond with R³ or R¹¹; R³ is H when forming no bond with R²; k¹ is an integer of 2 to 5; Y¹ is a group selected from the group consisting of O, S, SO, SO₂, CH₂, and

$$Z^{2} - (A^{2})_{n^{2}} - R^{4}$$

wherein Z^2 is N or C; m^2 is 0 when Z^2 is N and m^2 is 1 when Z^2 is C; A^2 is O, SO_2 , or CH_2 ; n^2 is 0 or 1 when A^2 is O or SO_2 ; n^2 is an integer of 0 to 3 when A^2 is CH_2 ; R^4 is a group selected from the group consisting of alkyl, phenyl, substituted phenyl, a heterocyclic ring, a substituted heterocyclic ring, -CO- R^{41} , and

$$-C \stackrel{R^{43}}{\underset{R^{44}}{\overbrace{}}}$$

wherein R^{41} is a group selected from the group consisting of OH, alkoxy, amino, arylalkyloxy, substituted amino, arylalkenyl, and substituted arylalkenyl; R^{42} is H or OH, or R^{42} can form a bond with R^5 when Z^2 is C and $n^2 = 0$; R^{43} and R^{44} are independently phenyl, substituted phenyl, a heterocyclic ring, or a substituted heterocyclic ring; R^5 is H when forming no bond with R^{42} ; Y^2 is CH_2 or CO; Y^3 is $(CH_2)_2$ or phenylene; and K^2 is 0 or

In the above-mentioned Formula I, R³ can form a bond with R² when Z¹ Is C. Herein, the formation of a bond between R² and R³ means that Z¹ is double-bonded to its adjacent carbon constituting a ring. Thus, in that case, the compound of Formula I can be represented by the following Formula I-1:

$$Y^{3}$$
 Y^{1}
 $N - CONH - (CH_{2})k^{1} - N$
 $C - (A^{1})n^{1} - R^{1}$
 $(CH_{2})k^{2} - Y^{2}$
 $(CH_{2})k^{2} - Y^{2}$

where A1, R1, Y1, Y2, Y3, k1, k2, and n1 are the same as defined in Formula I.

5

10

15

20

25

40

45

50

55

When R¹ is a condensed aromatic ring, the condensed aromatic ring can contain at least one substituent thereon, where the condensed aromatic ring includes a condensed aromatic heterocyclic ring. Examples of the substituent include halogen, alkyl, aryl, cyano, carboxyalkyl, amino, and the like. Examples of the halogen include fluorine, chlorine, bromine, and iodine. The alkyl and alkyl in the carboxyalkyl refer to a straight-chain or branched-chain alkyl group having 1 to 5 carbon atoms. Examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, and the like. Examples of the aryl include phenyl, naphthyl, and the like, and the phenyl is preferred. The alkyl or aryl can be substituted by a substituent such as halogen. The substituent on the above-mentioned condensed aromatic ring is preferably selected from the group consisting of Cl, F, CH₃, CN, halogenated phenyl, and CH₂COOH. The condensed aromatic ring is preferably quinolyl or

where R¹⁴ is H, phenyl, or substituted phenyl; p¹ is an integer of 0 to 4; X's are independently a group selected from the group consisting of Cl, F, CH₃, CN, and CH₂COOH.

In the above Formula I, the alkoxy carbonyl represented by R¹ is a carbonyl group substituted by alkoxy. The alkoxy has 1 to 5 carbon atoms. Examples of the alkoxy include methoxy, ethoxy, propoxy, isopropoxy, butoxy, and the like.

A1 is preferably CH2 when R1 is carboxyl or alkoxycarbonyl.

 R^{11} can form a bond with R^2 , when Z^1 is C and $n^1 = 0$. Herein, the formation of a bond between R^2 and R^{11} means that R^1 is double-bonded to Z^1 . More specifically, this indicates that the compound of the present invention is represented by the following Formula I-2:

$$Y^{3}$$
 Y^{1}
 Y^{1}
 Y^{1}
 Y^{2}
 Y^{1}
 Y^{2}
 Y^{1}
 Y^{2}
 Y^{3}
 Y^{1}
 Y^{2}
 Y^{3}
 Y^{1}
 Y^{2}
 Y^{1}
 Y^{2}
 Y^{3}
 Y^{1}
 Y^{2}
 Y^{3}
 Y^{1}
 Y^{2}
 Y^{3}
 Y^{1}
 Y^{2}
 Y^{3}
 Y^{3

where R12, R13, Y1, Y2, y3, k1, and k2 are the same as defined in Formula I.

5

10

20

25

30

35

40

45

50

55

The substituted phenyl groups represented by R^{12} and R^{13} have at least one substituent thereon, independently. Examples of the substituents include the same substituents as those on the condensed aromatic ring represented by R^1 . The substituents on the phenyl groups are preferably selected from the group consisting of CI, F, CH₃, CN, and CH₂COOH.

The substituted heterocyclic rings represented by R¹² and R¹³ have at least one substituent thereon. Herein, the heterocyclic ring refers to five or six membered ring containing nitrogen, oxygen and/or sulfur as a heteroatom. Examples of the heterocyclic ring include furyl, thienyl, pyrimidinyl, pyridyl, isoxazolyl, thiazolyl. Pyridyl is preferred. Examples of the substituent on the heterocyclic ring include the same substituents as those on the condensed aromatic ring represented by R¹.

It is preferred that both R¹² and R¹³ are phenyl groups or substituted phenyl groups or at least one of R¹² and R¹³ is pyridyl.

R¹² and R¹³ can form a condensed ring. Herein, the formation of a condensed ring by R¹² and R¹³ means that carbon atoms of R¹² and R¹³ constitute carbon atoms of a condensed ring. This condensed ring may have at least one substituent thereron. Examples of the substituent on the condensed ring can be the same substituents as those on the condensed aromatic ring represented by R¹. In the case where R¹² and R¹³ form a condensed ring, R¹ is preferably a group represented by the following Formula:

where Y⁴ is $(CH_2)k^3$ or CH_2 -Y⁵, wherein k^3 is an integer of 0 to 2 and y⁵ is O, S, or NR⁵, wherein R⁵ is H or CH_3 ; p¹'s are independently integers of 0 to 4; X's are independently a group selected from the group consisting of Cl, F, CH₃, CN, and CH₂COOH.

In the above Formula I, when R⁴ is alkyl, the alkyl is a straight-chain or branched-chain alkyl group having 1 to 5 carbon atoms. Examples of the alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, and neopentyl. Methyl is preferred.

The substituted phenyl represented by R⁴ have at least one substituent thereon. Examples of the substituent include the same substituents as those on the condensed aromatic ring represented by R¹. The substituent on the phenyl is preferably aikyl or halogen.

The above-mentioned substituted heterocyclic ring represented by R⁴ has at least one substituent thereon. Herein, the heterocyclic ring refers to a cyclic group containing nitrogen, oxygen, and/or sulfur as a heteroatom, and the heterocyclic ring can be a condensed ring. Examples of the heterocyclic ring include five or six membered rings such as furyl, thlenyl, pyrimidinyl, pyridyl, and imidazolyl or condensed heterocyclic rings such as quinolyl and

5

10

15

25

30

45

55

Examples of the substituent on the heterocyclic ring include the same substituents as those on the condensed aromatic ring represented by R1.

When R⁴ is COR⁴¹ and R⁴¹ is alkoxy, R⁴¹ has 1 to 5 carbon atoms. Examples of alkoxy include methoxy, ethoxy, propoxy, isopropoxy, butoxy, tert-butoxy, pentyloxy, and the like.

The arylalkyloxy represented by R⁴¹ is an alkyloxy group substituted by aryl. Examples of the aryl include phenyl and the like. An alkyl in the alkyloxy has 1 to 5 carbon atoms, and methyl is preferred. Preferably, the arylalkyloxy represented R⁴¹ is benzhydryl.

The above-mentioned substituted amino group represented by R⁴¹ has 1 or 2 substituents. Examples of the substituent include alkyl, and the like. The alkyl is the same as defined in the alkyl represented by R⁴ and is preferably methyl. The amino group is preferably substituted by two substituents.

The above-mentioned arylalkenyl represented by R⁴¹ is an alkenyl group substituted by aryl. Examples of the aryl group include phenyl, and the like. The alkenyl group has 2 to 3 carbon atoms. Examples of the alkenyl group include ethenyl, propenyl, and the like. The arylalkenyl represented by R⁴¹ is preferably phenyl-ethenyl.

The above-mentioned substituted arylalkenyl represented by R⁴¹ is an alkenyl group substituted by aryl. The aryl group is substituted by at least one substituent. Examples of the aryl group and the alkenyl group inclues the same groups as those on the arylalkenyl represented by R⁴¹. Examples of the substituent on the aryl group include alkoxy, alkoxycarbonyloxy, and the like. The substitueted arylalkenyl represented by R⁴¹ is preferably 4-ethoxycarbonyloxy-3-methoxyphenylethenyl.

 R^{42} can form a bond with R^6 when Z^2 is C and $n^6 = 0$. The formation of a bond by R^{42} and R^6 means that R^4 is double-bonded to Z^2 . More specifically, this indicates that the compound of the present invention is represented by the following Formula I-3:

$$R^{43} = C = C = C = N - CONH - (CH2)k1 - N = Z1 - (A1)n1 - R1 (I-3)$$

$$R^{42} = (CH2)k2 - Y2$$

where A1, R1, R2, R3, R42, R43, Y2, Y3, Z1, k1, k2, m1 and n1 are the same as defined in Formula I.

The above-mentioned substituted phenyl group and substituted heterocyclic ring represented by R⁴³ and R⁴⁴, respectively are the same as defined in the substituted phenyl group and substituted heterocyclic ring represented by R¹² and R¹³.

Y³ can be phenylene. This phenylene is preferably o-phenylene. In the case where Y³ is o-phenylene, the compound of the present invention can be represented by the followina Formula I-4:

The compound of the present invention can be a pharmaceutically acceptable salt of the compound represented by Formula I.

Examples of the pharmaceutically acceptable salts include appropriate organic or inorganic acid salts such

as oxalate, maleate, tartarate, phosphate, acetate, benzoate, hydrochloride, nitrate, and hydroiodide.

The salts can be readly formed, for example, by the addition of a solution of a desired acid or its salt to a sloution of the compound represented by Formula I.

The compound represented by Formula I can be obtained, for example, by effecting the following reaction:

(II) (III)
$$Y^{3} \longrightarrow Y^{1} \longrightarrow Y$$

5

10

15

20

25

30

40

45

50

where A1, R1, R2, R3, Y1, Y2, Y3, k1, k2, m1, and n1 are the same as defined in Formula I; Q is halogen such as chlorine, bromine, and iodine.

In this method, Amine II is allowed to react with Isocyanate III in the presence of tertiary amine such as triethylamine, and if required, an organic solvent such as dichloromethane, chloroform, and acetonitrile at a temperature of 0 to 150°C to obtain Urea derivative IV. Urea derivative IV is allowed to react with Amine V to obtain Compound I of the present invention. The reaction between Urea derivative IV and Amine V is effected in an appropriate solvent at a temperature of 10 to 120°C, and more preferably 50 to 100°C. Examples of the solvent include acetonitrile, benzene, dimethyl sulfoxide, dimethyl formamide, chloroform, ethyl acetate, and tetrahydrofuran. If required, a base can be added as a neutralizing agent. Examples of the base include organic bases such as pyridine, triethylamine, and dimethylanlline or inorganic bases such as K_2CO_3 , NaH, and NaOH. In order to further allow the reaction to proceed, alkall metal iodide such as NaI and KI can be used.

The compound represented by Formula I-2 in which R^1 is double-bonded to Z^1 can be obtained, for example by effecting the following reaction:

$$(V-2)$$

Y

N - CONH-(CH₂)_k1-Q

HN

C - C-OH

R¹³

(CH₂)_k2-Y²

(CH₂)_k3-Y²

$$\begin{array}{c|c}
Y^{3} & R^{12} \\
Y^{1} & N - CONH - (CH_{2})_{k}^{1} - N & C - C - OH \\
(CH_{2})_{k}^{2} - Y^{2} & R^{13}
\end{array}$$

$$([-2])$$

20
$$Y^{\frac{1}{3}} N - CONH - (CH_2)k^{1} - N \qquad C = C$$

$$(CH_2)k^{2} - Y^{2}$$

$$(i-2)$$

where R¹², R¹³, Y¹, Y², Y³, k¹, and k² are the same as defined in Formula i; and Q is halogen such as chlorine, bromine, and lodine.

In this method, Urea derivative IV is first allowed to react with Amine V-2 having a hydroxyl group to obtain Compound i-2' of the present invention. The conditions for this reaction are the same as those used in the above-mentioned method. The resulting Compound I-2' is dehydrated to obtain Compound I-2 having a double bond of the present invention. This dehydration can be effected by treating Compound I-2' in an organic solvent in the presence of acid such as CF₃COOH, hydrochloric acid, acetic acid, and p-toiuenesulfonic acid at a temperature of 0 to 120°C. Examples of the organic solvent include methanol, ethanol, tetrahydrofuran, dimethylformamide, acetonitrile, benzene, toluene, and diethyl ether.

The effects of Compound I of the present invention and salts thereof as an antiallergic agents can be evaluated by various methods for measuring antiallergic activity, for example by conducting the following tests (1) and (2).

(1) Antihistaminic effect evaluation test in vitro

10

15

30

40

45

50

55

Histamine diphosphate and Compound I of the present invention or salts thereof are added to an ileum of a guinea pig in a saline solution. The concentration (at which the contraction of the ileum by histamine is inhibited by 50%) of Compound I of the present invention is measured.

(2) Histamine, receptor (H₁ receptor) in vitro binding inhibition test

As a standard material which binds to a H₁ receptor, pyrilamine is used. Compound I of the present invention is added with varying concentrations to a mixture containing a receptor sample prepared by homogenizing a cerebral cortex of a rat and [3H]-pyrilamine, and incubated. From radioactivity of [3H]-pyrilamine which is bound to the receptor sample, the concentration (IC₅₀) of Compound I inhibiting the specific binding of [3H]-pyrilamine to the receptor sample is measured to obtain an inhibition constant (KI).

Compound I of the present invention has a lower degree of migration to brain. Thus, Compound I has less side effects on the central nervous system such as sleepiness, because of its less frequent binding to the H₁ receptor in brain. The extent of migration of Compound I or salts thereof to the brain can be obtained by the following test method 3.

(3) H₁ receptor binding inhibition test ex vivo

A cerebral cortex of a mouse orally administered with Compound I of the present invention is homogenized to prepare a receptor sample. The receptor sample is incubated with [³H]-pyrilamine. From the radioactivity of [³H]-pyrilamine bound to the receptor sample, the inhibition of Compound I with respect to the specific biding of pyrilamine to the receptor sample is obtained.

As apparent from examples described later, Compound I of the present invention exhibits antihistaminic effects which are more excellent than those of known compounds such as terfenadine and oxatomide, and its migration to a brain is lower. This reveals that Compound I of the present invention and salts thereof can be used as an antihistaminic agent and can be applied to the prevention and treatment of allergic diseases such as bronchial asthma, allergic rhinitis, urticaria, atopic dermatitis, and eczema, involving less side effects.

Furthermore, Compound I of the present invention exhibits a repressing effect such as an excellent antagonistic effect on various chemical mediators in addition to histamine. For example, some of the embodiments of Compound I of the present invention have excellent 5-lipoxygenase inhibiting effects, and hence such compounds have effects such as anti-inflammatory effects.

The administration of a pharmaceutical composition containing Compound I of the present invention or salts thereof can be conducted by oral administration, parenteral administration, intrarectal administration, or topical administration. Oral administration or topical administration is preferred. The dose of Compound I or salts thereof is varied depending upon the specific embodiment of the compound, administration method, conditions and age of a patient. Typically, 0.005 to 40 mg/kg/day, and preferably 0.01 to 5 mg/kg/day are used. In general, Compound I or salts thereof can be administered in the form of a formulation prepared by mixing Compound I or salts thereof with a carrier for a formulation. As the carrier for a formulation, materials satisfying the following conditions are used: materials which are widely in use in the formulation field and do not react with the compound of the present invention and salts thereof. Examples of the carrier include lactose, glucose, mannitol, dextrin, cyclodextrin, starch, saccharose, magnesium aluminate metasilicate, synthetic aluminum silicate, crystal cellulose, sodium carboxymethyl cellulose, hydroxypropyl starch, calcium caroboxymethyl cellulose, ionic exchange resin, methylcellulose, gelatin, gum arabic, hydroxypropyl cellulose, hydroxypropyl cellulose with low substitution degree, hydroxypropylmethyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, light sllicic anhydride, magnesium stearate, talc, tragacanth gum, bentonite, beeswax, carboxyvinyi polymer, titanium oxide, sorbitan-aliphatic acid ester, sodium lauryl sulfate, glycerin, aliphatic acid-glycerin ester, purified lanolin, glycerogelatin, polysolbate, macrogol, vegetable oil, wax, liquid paraffin, white vaseline, fluorocarbon, nonionic surfactant, propylene glycol, and water. Examples of the formulation type include tablets, capsules, granules, powders, syrup, suspension, suppository, ointment, cream, gel, patch, inhalation, and injection. These formulations are prepared by the conventional methods. Liquid formulations can be prepared so as to be dissolved or suspended in water or other appropriate solvents when used. Tablets and granules can be coated by known method. Injection can be prepared by dissolving a pharmaceutically acceptable salt of Compound I in water. If required, the salt can be dissolved in a saline or in a glucose solution, and a buffer or preservatives can be further added. These formulations can contain Compound I or salts thereof in an amount of 0.2% or more, and preferably 0.5 to 70%. These formulations can further contain other therapeutically effective components.

Examples

35

40

45

50

55

5

10

Hereinafter, the present invention will be described by way of illustrative examples and reference examples.

Reference Example 1

Synthesis of 4-(3-chloropropylcarbamoyl)-3-oxothiomorpholine as an Intermediate The synthesis was conducted according to the following reaction scheme.

First, a mixture containing 14 g (119 mmol) of 3-oxothlomorpholine, 15 g (125 mmol) of chloropropyl isocyanate, and 0.5 ml of triethylamine was heated with stirring at 100°C for 9 hours. The reaction mixture was cooled. Then, the mixture thus obtained was purified by silica gel column chromatography using toluene-ethyl acetate (15/1 to 10/1 v/v) as an eluent to obtain 27 g of an oily product (yield: 96%). IR(CHCl₃)(cm⁻¹) 3300, 3001, 2950, 1710, 1668, 1540

NMR(CDCl₃) 2.053(quint. j=7Hz, 2H), 2.985(t, j=6Hz, 2H), 3.363(s, 2H), 3.487(q, j=7Hz, 2H), 3.602(t, j=6Hz,

2H), 4.214(t, j=6Hz, 2H), 9.05 to 9.03(m, 1H)

Example 1

5

25

35

40

45

50

Synthesis of 3-{4-(diphenylhydroxymethyl)-piperidin-1-yl)-propylcarbamoyl)-3-oxothiomorpholine(la') and its oxalate (la)

The synthesis was conducted according to the following reaction scheme.

First, 3.08 g (13 mmol) of 4-(3-chloropropylcarbamoyl)-3-oxothiomorpholine obtained in Reference Example 1 and 3.48 g (13 mmol) of α , α -diphenyl-4-piperidinomethanol were dissolved in 30 ml of acetonitrile. To this reaction mixture, 3.59 g (26 mmol) of K_2CO_3 and 1.08 g (6.5 mmol) of KI were added and heated with stirring at 90°C for 17 hours. Methylene chloride was added to the resulting mixture, washed, and dried, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography using dichloromethaneisopropanol (10/1 v/v) as an eluent to obtain 3.9 g of an oily product la' (yield: 64%). IR(CHCl₃)(cm⁻¹) 3607, 3299, 3058, 2949, 2811, 2741, 1706, 1665, 1599, 1540

NMR(CDCl₃)1.40 to 1.75(m, 4H), 1.784(quint, j=7Hz, 2H), 1.95 to 2.15(m, 2H), 2.20 to 2.50(m, 1H), 2.481(t, j=7Hz, 2H), 2.55 to 2.70(m, 1H), 2.962(t, j=6Hz, 2H), 2.90 to 3.10(m, 2H), 3.360(s, 2H), 3.368(q, j=7Hz, 2H), 4.191(t, j=6Hz, 2H), 7.10 to 7.55(m, 10H), 9.10 to 9.30(m, 1H)

Product Ia' was recrystallized from methanolisopropanol with conversion to an oxalate to obtain a purified product Ia as crystals having a melting point (d) of 161.0 to 162.5°C.

Elem. Anal. for C ₂₆ H ₃₃ N ₃ O ₃ S·1.5C ₂ H ₂ O ₄ FW 602.688						
Calc.(%) C,57.79; H,6.02; N,6.97; S,5.32						
Found(%) C,57.98; H,6.06; N,7.02; S,5.34						

Example 2

Synthesis of 3-{4-diphenylmetylidyne-piperidin-1-yl}-propylcarbamoyl-3-oxothiomorpholine (lb') and its oxalate (lb)

The synthesis was conducted according to the following reaction scheme.

First, 15 ml of CF₃COOH was added to 2 g (4.28 mmol) of Compound la' obtained in Example 1 and stirred at room temperature for 2 hours. CF₃COOH was removed under reduced pressure, and Na₂CO₃ aqueous solution was added to the mixture so as to be alkaline. Then the mixture was extracted with dichloromethane. An organic layer of the extract was washed with water and saturated brine in this order, and dried, and the solvent was removed. The residue was purified by silica gel column chromatography using dichloromethaneisopropanol (15/1 v/v) to obtain 1.26 g of an oily product lb' (yield: 87%).

IR(CHCl₃)(cm⁻¹) 3304, 3078, 2919, 2902, 2810, 1707, 1666, 1599, 1540

NMR(CDCl₃)1.767(quint, j=7Hz), 2.30 to 2.60(m, 10H), 2.953(t, j=6Hz, 2H), 3.330(s, 2H), 3.372(q, j=6Hz, 2H), 4.189(t, j=6Hz, 2H), 7.06 to 7.35(m, 10H), 9.0 to 9.15(m, 1H)

Product Ib' was recrystallized from methanolisopropanol with conversion to an oxalate to obtain a purified product Ib as crystals having a melting point (d) of 189.0 to 190.0°C.

Elem. Anal. for C ₂₈ H ₃₁ N ₃ O ₂ S·C ₂ H ₂ O ₄ FW 539.655						
Calc.(%)	Calc.(%) C,62.32; H,6.16; N,7.79; S,5.94					
Found(%)	C,62.41;	H,6.20;	N,7.83;	S,5.92		

Example 3

20

25

30

35

50

55

Synthesis of 4-{3-(4-benzhydryi-piperazin-1-yl)-propylcarbamoyl}-3-oxothiomorpholine (Ic') and its maleate (Ic)

The synthesis was conducted according to the following reaction scheme.

First, 2.5 g (10.6 mmol) of 4-(3-chloropropylcarbamoyl)3-oxothiomorpholine obtained in Reference Example 1 and 2.66 g (10.6 mmol) of 1-diphenylmethylpiperazine were dissolved in 25 ml of acetonitrile. To this mixture, 2.93 g (21.2 mmol) of K_2CO_3 and 0.88 g (5.3 mmol) of KI were added and heated with stirring at 90°C for 11.5 hours. Ethyl acetate was added to the reaction mixture, washed, and dried, and the solvent was removed. The residue was purified by silica gel column chromatography using dichloromethanelsopropanol (20/1 to 10/1 v/v) as an eluent to obtain 4.08 g of a crystalline product Ic' (yield: 85%). The product thus obtained was recrystallized with dichloromethane-ether to obtain crystals having a melting point of 79.60 to 81.5°C.

Elem. Anal. for C ₂₅ H ₃₂ N ₄ O ₂ S FW 452.622					
Calc.(%) C,66.34; H,7.13; N,12.38; S,7.08					
Found(%)	C,66.01;	H,7.16;	N,12.43;	S,6.94	

IR(CHCl₃)(cm⁻¹) 3298, 3064, 2942, 2815, 1707, 1666, 1599, 1540,

NMR(CDCl₃): 1.725(quint, j=5Hz, 2H), 2.30 to 2.65 (m, 10H), 2.962(t, j=6Hz, 2H), 3.337(s, 2H), 3.351(q, j=5Hz, 2H), 4.189(t, j=5Hz, 2H), 4.223(s, 1H), 7.10 to 7.50(m, 10H), 9.00 to 9.15(m, 1H)

Product Ic' was recrystallized from methanolisopropanol with conversion to a maleate to obtain a purified product Ic-1 as crystals having a melting point (d) of 176.5 to 177.5°C.

Elem. Anal. for C ₂₅ H ₃₂ N ₄ O ₂ S·2C ₄ H ₄ O ₄ FW 684.770						
Calc.(%) C,57.88; H,5.89; N,8.18; S,4.68						
Found(%) C,57.79; H,5.93; N,8.14; S,4.62						

Product Ic' was recrystallized from methanolisopropanol-diethyl ether with conversion to a hydrochloride to obtain a purified product Ic-2 as crystals having a melting point (d) of 210.0 to 213.0°C.

Elem. Anal. for C ₂₅ H ₃₂ N ₄ O ₂ S·2HCl FW 525.544						
Calc.(%) C,57.14; H,6.52; N,10.66; S,6.10; CI,13.49						
Found(%) C,52.63; H,5.66; N,14.51; S,13.23; CI,13.57						

IR(Nujol)(cm⁻¹) 3307(br), 2300(br), 1707, 1663, 1555, 1530, 1456

In each of the following Examples 4 to 84, Amine II which corresponds to the desired end product was allowed to react with Isocyanate III which also corresponds to the desired end product in accordance with the method described in Reference Example 1 to obtain Urea derivative IV. Then, Urea derivative IV was allowed to react with Amine V which corresponds to the desired end product in accordance with the method described in Example 1 and if required, the reaction product was dehydrated in accordance with the method described in Example 2 to obtain the following compounds.

Example 4

5

10

15

20

25

30

35

40

50

45 Recrystalized from methanol-isopropanol-diethyl ether M.p. 117.0-120.0°C(d)

Elem. Anal. for $C_{29}H_{37}N_{7}O \cdot 2C_{4}H_{4}O_{4}$ FW 731.851

IR(Nujol)(cm⁻¹) 3335,2380,2344,1698,1635,1583,1547

Example 5

5

15

25

35

45

65

NOONH(CH2)2 N

10 M.p. 159.0-160.5°C(d)

Elem. Anal. for C ₃₀ H ₃₆ N ₆ O·C ₂ H ₂ O ₄ FW 586.696					
Calc.(%) C,65.51; H,6.53; N,14.32					
Found(%) C,65.55; H,6.53; N,14.39					

IR(Nujol)(cm⁻¹) 1716,1655,1583,1544,1504,1451,1377, 1365,1244

20 Example 6

CH2N NCONH(CH2)3N

Recrystalized from methanol-isopropanol

30 M.p. 91.5-93.5°C(d)

Elem. Anal. for C ₂₇ H ₃₄ N ₄ O ₂ ·3/2C ₂ H ₂ O ₄ ·4/5H ₂ O FW 596.063						
Calc.(%) C,60.45; H,6.53; N,9.40						
Found(%) C,60.46; H,6.45; N,9.42						

IR(Nujol)(cm⁻¹) 3488,3308,2683,2541(br),1709,1662,1623, 1523,1468,1377,1210

40 Example 7

(1) NOONH(CH2)3-N

Recrystalized from ethyl acetate-diethyl ether

50 M.p. 158.0-159.5°C

Elem. Anal. for C ₃₁ H ₃₇ N ₅ O FW 495.672						
Calc.(%) C,75.12; H,7.52; N,14.13						
Found(%) C,75.10; H,7.56; N,14.04						

IR(CHCl₃)(cm⁻¹) 3274(br),3079,3056,3011,2893,1632,1597, 1564,1524,1482,1438,1240

Example 8

5

15

20

25

30

35

CONH(CH2)3N

Recrystalized from methanol-isopropanolM.p. 198.0-199.0°C(d)

Elem. Anal. for C₂₈H₃₃N₃O₃S·C₂H₂O₄ FW 557.670

Calc.(%) C,60.31; H,6.33; N,7.53; S,5.75

Found(%) C,60.18; H,6.34; N,7.58; S,5.68

IR(Nujol)(cm⁻¹) 3308,2738,2664,2607,2526,1669, 1667,1608,1599,1524,1495,1455,1386,1205

Example 9

CONH(CH₂)₃ N

Recrystalized from methanol-isopropanol M.p. 152.0-153.0°C(d)

Elem. Anal. for C₂₆H₃₁N₃O₂·C₄H₄O₄ FW 533.629

Calc.(%) C,67.53; H,6.61; N,7.87

Found(%) C,67.50; H,6.69; N,7.85

40 IR(Nujol)(cm⁻¹) 3314,2730,2603,2566,1707,1679,1618, 1528,1497

Example 10

NOONH(CH²)² N

Recrystalized from ethyl acetate-isopropanol M.p. 104.0-107.0°C(d)

55

45

Elem. Anal. for C ₂₉ H ₃₈ N ₇ OCl·C ₄ H ₄ O ₄ ·1/10H ₂ O FW 768.056						
Calc.(%) C,57.86; H,5.80; N,12.77; Cl,4.62						
Found(%) C,57.57; H,5.87; N,12.46; Ci,4.69						

IR(Nujol)(cm⁻¹) 3320,2300(br),1695(br),1623,1583,1547, 1494,1451

Example 11

10

15

5

CH3N NCONH(CH2)5 N

Recrystalized from methanol-isopropanol M.p. 145.0-147.0°C(d)

20

25

35

Elem. Anal. for C ₂₈ H ₃₄ N ₄ O ₃ ·2C ₂ H ₂ O ₄ ·4/5H ₂ O FW 645.069						
Calc.(%) C,55.86; H,6.19; N,8.69						
Found(%) C,55.99; H,6.54; N,8.48						

IR(Nujol)(cm⁻¹) 3318,2710(br),1703,1676,1636,1539,1496, 1456,1377,1219

30 Example 12

S NCONH(CH₂)3 N N

Recrystalized from methanol-isopropanol-diethyl ether M.p. 218.0-228.0°C(d)

Elem. Anal. for C ₂₅ H ₃₄ N ₄ OS·2HCl·1/10H ₂ O FW 513.362						
Caic.(%) C,58.49; H,7.11; N,10.91; S,6.25; Cl,13.81						
Found(%) C,58.72; H,7.26; N,10.59; S,5.41; Cl,13.37						

IR(Nujol)(cm⁻¹) 3348,2381(br),1633,1613,1531,1454,1427, 1399,1294,1251,1232

Example 13

50

55

Recrystalized from diethyl ether-isopropanol M.p. 160.0-161.0°C(d)

Elem. Anal. for C ₂₅ H ₃₁ N ₄ O ₂ SCl·2C ₄ H ₄ O ₄ FW 719.215							
Calc.(%)	Calc.(%) C,55.11; H,5.47; N,7.79; S,4.46; CI,4.93						
Found(%) C,55.05; H,5.52; N,7.93; S,4.41; Cl,4.98							

IR(Nujol)(cm⁻¹) 3268,2387(br),1705,1620,1533,1460,1385, 1346,1210

Example 14

5

10

25

30

15 CONH(CH2)3N CH

Recrystalized from diethyl ether-dichloromethane M.p. 148.0-149.0°C

Elem. Anal. for C ₂₆ H ₃₃ N ₃ O ₃ ·0.4C ₄ H ₁₀ O FW 465.22						
Calc.(%)	C,71.26;	H,8.02;	N,9.03			
Found(%)	C,70.95;	H,7.62;	N,9.55			

Example 15

35 NOONH(CH2)3NOO

40 Recrystalized from diethyl ether-ethyl acetate M.p. 124.5-125.5°C(d)

Elem. Anal. for C ₃₀ H ₃₈ N ₆ O ₂ FW 514.675						
Calc.(%)	C,70.01;	H,7.44;	N,16.33			
Found(%)	C,69.90;	H,7.44;	N,16.07			

IR(CHCl₃)(cm⁻¹) 3270,3030,2998,2948,2859,1634,1586, 1551,1496,1450

66

50

Example 16

5

10

M.p. 129.0-130.5°C(d)

15

Elem. Anal. for C ₂₁ H ₂₇ N ₅ O ₄ S ₂ FW 477.608					
Calc.(%)	C,52.81;	H,5.70;	N,14.66;	S,13.43	
Found(%)	C,52.63;	H,5.66;	N,14.51;	S,13.23	

20

 $IR(CHCl_3)(cm^{-1})\ 3298,1707,1666,1612,1598,1541,1494,\ 1460,1387,1340,1162$

Example 17

25

30

Recrystalized from methanol-isopropanol-diethyl ether M.p. 195.5-200.0°C(d)

35

Elem. Anal. for C ₃₉ H ₄₆ N ₄ O ₂ ·2HCl·1.5H ₂ O FW 702.770					
Calc.(%)	C,66.66;	H,7.31;	N,7.97;	CI,10.09	
Found(%)	C,66.69;	H,7.42;	N,7.97;	C1,9.92	

IR(Nujol)(cm⁻¹) 3364(br),2567(br),1635,1544,1494,1455, 1377,1347,1285,1255

Example 18

45

40

Recrystalized from isopropanol-diethyl ether M.p.118.0-123.0°C(d)

Elem. Anal. for C ₃₉ H ₄₄ N ₄ O·2C ₂ H ₂ O ₄ ·1/2H ₂ O FW 773.890						
Calc.(%)	C,66.74;	H,6.38;	N,7.24			
Found(%)	C,66.64;	H,6.48;	N,7.36			

IR(Nujol) (cm⁻¹) 3334(br), 2598(br),1723, 1626, 1548, 1492, 1456, 1378, 1285, 1254, 1206

10 Example 19

5

15

20

25

35

45

Recrystalized from Isopropanol-diethyl ether

M.p. 110.0-135.0°C(d)

Elem. Anal. for C ₂₆ H ₃₅ N ₃ O ₂ S·C ₂ H ₂ O ₄ ·1/2H ₂ O FW 552.694					
Calc.(%)	C,60.85;	H,6.93;	N,7.60;	S,5.80	
Found(%)	C,60.63;	H,6.84;	N,7.44;	S,4.94	

IR(Nujol) (cm⁻¹) 3362(br),2534 (br),1735,1633,1534,1448, 1378,1254,1235

30 Example 20

Recrystalized from methanol-isopropanol-diethyl ether M.p. 215.0-216.0°C(d)

Elem. Anal. for C ₂₅ H ₃₀ N ₄ O ₂ SF ₂ ·2HCl·1/2H ₂ O FW 570.533						
Calc.(%)	C,52.63;	H,5.83;	N,9.82;	S,5.62;	CI,12.43;	F,6.66
Found(%)	C,52.89;	H,5.77;	N,9.78;	S,5.83;	Cl,12.56;	F,6.88

IR(Nujol)(cm⁻¹) 3301,2817,1707,1666,1604,1540,1506, 1388,1232,1154

50 Example 21

SONH(CH2)ZN N-

Recrystalized from methanol-isopropanol M.p. 221.0-225.0°C(d)

Elem. Anal. for C ₂₄ H ₃₀ N ₄ O ₂ S·2HCl·1/4H ₂ O FW 516.021						
Calc.(%)	Calc.(%) C,55.86; H,6.35; N,10.86; S,6.21; CI,13.74					
Found(%)	C,55.81;	H,6.73;	N,10.78;	S,6.15;	CI,13.60	

IR(CHCl₃)(cm⁻¹) 3295,2816,1706,1668,1599,1528,1388, 1227,1155

Example 22

5

25

15 NCONH(CH₂)₃N N

Recrystalized from methanol-isopropanol-diethyl ether M.p. 115.0-125.0°C(d)

Elem. Anal. for C ₃₈ H ₄₅ N ₅ O·2C ₂ H ₂ O ₄ ·H ₂ O FW 785.901					
Caic.(%)	C,64.19;	H,6.54;	N,8.91		
Found(%)	C,64.03;	H,6.71;	N,8.74		

30 IR(Nujol)(cm⁻¹) 3317(br),2615(br),1723,1626,1549, 1455

Example 23

35 CONH(CH₂)₃N

45 Recrystalized from methanol-isopropanol M.p. 181.0-182.0°C(d)

Elem. Anal.	Elem. Anal. for C ₂₇ H ₃₀ N ₄ O ₂ SFCl·C ₂ H ₂ O ₄ ·1/2H ₂ O FW 628.124						
Calc.(%)	Calc.(%) C,55.45; H,5.30; N,8.92; S,5.10; Cl,5.64; F,3.02						
Found(%) C,55.62; H,5.42; N,8.80; S,5.11; Cl,5.78; F,3.36							

 $IR(Nujol)(cm^{-1})\ 3273,2542,1714,1668,1625,1541,1513,\ 1459,1379,1205$

55

Example 24

5

15

25

35

10 Recrystalized from methanol-isopropanol M.p. 208.5-208.0°C(d)

Elem. Anal. for C ₂₁ H ₂₈ N ₄ O ₂ S·C ₂ H ₂ O ₄ ·1/5H ₂ O FW 492.169						
Calc.(%)	C,56.13;	H,5.82;	N,11.38;	S,6.51		
Found(%) C,56.12; H,5.79; N,11.36; S,6.40						

IR(Nujol)(cm⁻¹) 3283,2538(br),1701,1667,1639,1616,1555, 1460,1389,1255,1212

20 Example 25

S CONH(CH₂)₂N

Recrystalized from methanol-isopropanol M.p. 192.0-194.0°C(d)

Elem. Anal. for $C_{25}H_{31}N_3O_3S \cdot C_2H_2C_4$ FW 543.643

Calc.(%) C,59.65; H,6.12; N,7.73; S,5.90

Found(%) C,59.51; H,6.15; N,7.74; S,5.81

40 IR(Nujol)(cm⁻¹) 3316,2613(br),1721(sh),1670,1604,1533, 1456,1385,1207

Example 26

O NCONH(CH²)²N N

Recrystalized from methanol-isopropanol M.p. 221.0-223.0°C(d)

55

50

Elem. Anal. for C ₂₅ H ₃₄ N ₄ O ₂ ·2HCl·1/4H ₂ O FW 500.000						
Calc.(%)	C,60.06;	H,7.36;	N,11.21;	CI,14.18		
Found(%)	C,60.11;	Н,7.39;	N,11.11;	CI,14.09		

IR(CHCl₃)(cm⁻¹) 3338,2381 (br),1631,1531,1454,1249,1107

Example 27

10

15

25

30

35

45

55

5

CONH(CH₂)₃N

Recrystalized from methanol-isopropanol-diethylether

M.p. 203.0-204.0°C(d)

Elem. Anal. for C ₂₁ H ₂₈ N ₄ O ₂ S·C ₂ H ₂ O ₄ ·1/4H ₂ O FW 495.086					
Calc.(%) C,55.80; H,6.21; N,11.32; S,6.48					
Found(%) C,55.81; H,6.24; N,11.14; S,6.19					

IR(Nujol)(cm⁻¹) 3316(br), 2519(br), 1700, 1640, 1617, 1556, 1460,1387,1208

Example 28

S CONH(CH₂)₃N

Recrystalized from methanol-isopropanol M.p. 233.0-238.0°C(d)

Elem. Anal. for C ₂₈ H ₃₃ N ₃ O ₂ S·HCl FW 488.096					
Calc.(%)	C,63.98;	H,7.02;	N,8.61;	S,6.57;	CI,7.26
Found(%)	C,63.93;	H,7.14;	N,8.57;	S,6.45;	CI,6.28

IR(Nujol)(cm⁻¹) 3310,2481(br),1708,1660,1596,1529,1464, 1452,1386,1202,1122

50 Example 29

NCONH(CH₂)₃N

Recrystalized from methanol-isopropanol M.p. 120.0-125.0°C(d)

Elem. Anal. for C ₃₉ H ₄₈ N ₄ O·2C ₂ H ₂ O ₄ FW 766.898					
Calc.(%) C,67.35; H,6.57; N,7.31					
Found(%) C,67.05; H,6.96; N,7.15					

IR(Nujol)(cm⁻¹) 3332(br),2616(br),1725,1625,1546,1454, 1377,1206

Example 30

5

10

15

25

45

50

55

S_NCONH(CH₂₎₂N_N

Recrystalized from methanol-isopropanol M.p. 157.0-158.0°C(d)

Elem. Anal. f	Elem. Anal. for C ₂₄ H ₃₂ N ₄ OS·C ₂ H ₂ O ₄ ·1/2H ₂ O FW 523.656				
Calc.(%)	C,59.64;	H,6.74;	N,10.70;	S,6.12	
Found(%)	C,60.00;	Н,6.89;	N,10.65;	S,5.92	

IR(Nujol)(cm⁻¹) 3375,1728(br),1632,1598,1558,1465,1452, 1377,1254

30 Example 31

Recrystalized from methanol-isopropanol

ю М.р. 167.0-169.0°C(d)

Elem. Anal. for C ₂₆ H ₃₅ N ₃ O ₂ S·C ₂ H ₂ O ₄ FW 543.686				
Calc.(%)	C,61.86;	H,6.86;	N,7.73;	S,5.90
Found(%)	C,61.80;	H,7.02;	N,7.49;	S,5.39

IR(Nujol)(cm⁻¹) 3344(br),2736,2682(br),2621,2544,1718, 1621,1533,1454,1200

Example 32

Recrystalized from methanol-isopropanol-diethyl ether

M.p. 153.0-157.0°C(d)

Elem. Anal. for C ₂₅ H ₃₂ N ₄ O ₂ .2HCl.H ₂ O FW 511.496					
Calc.(%) C,58.71; H,7.09; N,10.95; CI,13.86					
Found(%) C,58.71; H,7.28; N,10.93; CI,13.95					

IR(Nujol)(cm⁻¹) 3380(br),3323,2461(br),1703,1678,1626, 1523,1456,1381,1255

Example 33

5

15

20

25

35

45

ONCONH(CHZ)Z NON-

Recrystalized from methanol-isopropanol M.p. 190.0-195.0°C(d)

Elem. Anal. for C ₂₄ H ₃₀ N ₄ O ₂ ·2HCl·H ₂ O FW 497.469					
Calc.(%) C,57.95; H,6.89; N,11.26; Cl,14.25					
Found(%) C,58.30; H,7.06; N,11.01; S,14.19					

IR(Nujol)(cm-1) 3300,2299(br),1713,1674,1548,1454,1433, 1384,1232

30 Example 34

S_NCONH(CH2)3 N_N-

Recrystalized from methanol-isopropanol-diethyl ether

40 M.p. 153.5-154.5°C(d)

Elem. Anal. for C ₂₆ H ₃₂ N ₄ OSF ₂ ·2C ₄ H ₄ O ₄ FW 708.768					
Calc.(%)	C,56.08;	H,5.70;	N,7.93;	S,4.54;	F,5.38
Found(%) C,56.15; H,5.70; N,7.81; S,4.53; F,5.56					

IR(Nujol)(cm⁻¹) 3335,2390(br), 1694,1625,1606,1580, 1546, 1511,1450,1359,1237

Example 35

NCSNH(CH₂)₂ N

Recrystalized from methanol-isopropanol M.p. 180.0-181.5°C(d)

Elem. Anal. for C ₂₅ H ₃₁ N ₃ O ₂ ·C ₂ H ₂ O ₄ FW 495.580					
Calc.(%) C,65.44; H,6.71; N,8.48					
Found(%) C,65.07; H,6.84; N,8.33					

¹⁰ IR(Nujol)(cm⁻¹) 3312,2670(br),1717,1646(br),1599,1523, 1463,1385,1268

Example 36

5

25

30

35

45

55

15 EICCCN NCONH(CH2)3 N N-

Recrystalized from isopropanol-diethyl ether M.p. 107.0-117.0°C(d)

	Elem. Anal. for C ₂₈ H ₃₉ N ₅ O ₃ ·2C ₂ H ₂ O ₄ ·H ₂ O FW 691.740					
Calc.	(%)	C,55.56;	H,6.56;	N,10.12		
Foun	d(%)	C,55.28;	H,6.38;	N,9.95		

IR(Nujol)(cm-1) 3396,2550(br),1723(sh), 1699,1620,1531, 1459,1236

Example 37

NCONH(CH2)2 N

Recrystalized from methanol-isopropanol

40 M.p. 222.0-223.0°C(d)

Elem. Anal. for C ₂₅ H ₃₁ N ₃ O ₃ ·C ₂ H ₂ O ₄ FW 511.579					
Calc.(%) C,63.39; H,6.50; N,8.21					
Found(%) C,63.36; H,6.58; N,8.23					

IR(Nujol)(cm⁻¹) 3300,2599(br),1710,1680,1596,1540,1452, 1383

50 Example 38

NCONH(CH2)2N N-

Recrystalized from methanol-diethyl ether

Elem. Anal. for C ₃₀ H ₃₈ N ₆ O·2C ₂ H ₂ O ₄ ·1.3H ₂ O FW 702.167						
Calc.(%)	Calc.(%) C,58.16; H,6.40; N,11.97					
Found(%) C,58.26; H,6.28; N,11.73						

IR(Nujol)(cm⁻¹) 3355(br),2620(br),1722,1640,1612,1538, 1454,1378,1262,1238,1214,1179

Example 39

5

25

30

45

15 NCONH(CH₂)_{2N}N-N-

20 Recrystalized from methanol-diethyl ether

Elem. Anal. for C ₂₉ H ₃₈ N ₆ O·2C ₂ H ₂ O ₄ ·1.7H ₂ O FW 695.346							
Calc.(%)	Calc.(%) C,57.00; H,6.29; N,12.09						
Found(%) C,57.08; H,6.08; N,11.56							

IR(Nujo!)(cm⁻¹) 3357(br),2620(br),1722,1641,1623,1540, 1456,1379,1262,1238

Example 40

35 t-81- SO₂N NCONH(CH₂)₃ N N- N-

Recrystalized from methanol-isopropanol
 M.p. 121.0-122.5°C(d)

Elem. Anal. for C ₃₅ H ₄₇ N ₅ O ₃ S·2C ₄ H ₄ O ₄ FW 850.007						
Calc.(%) C,60.76; H,6.52; N,8.24; S,3.77						
Found(%) C,60.62; H,6.63; N,8.03; S,3.60						

IR(Nujol) (cm⁻¹) 3307,2347(br),1694,1631,1580,1549,1453, 1348,1262,1174

Example 41

25 NCONH(CH2)3 N

Recrystalized from methanol-isopropanol M.p. 122.0-124.0°C(d)

Elem. Anal. for C ₃₁ H ₃₉ N ₅ O ₂ ·C ₂ H ₂ O ₄ ·2H ₂ O FW 639.839					
Calc.(%) C,61.96; H,7.09; N,10.95					
Found(%) C,61.90; H,6.58; N,10.54					

¹⁰ IR(Nujol)(cm⁻¹) 3511(sh),3377,2737,2681,2625,2543,1724, 1643,1617,1546,1377,1208

Example 42

15

5

20

Recrystalized from acetone-diethyl ether M.p. 122.0-125.0°C(d)

25

Elem. Anal. for C ₃₈ H ₄₈ N ₄ O ₄ S·C ₂ H ₂ O ₄ ·H ₂ O FW 740.922						
Calc.(%) C,61.60; H,7.07; N,7.56; S,4.33						
Found(%) C,61.93; H,6.92; N,7.45; S,4.01						

³⁰ IR(Nujol)(cm⁻¹) 3378(br),2734,2666,2620,2537,1718,1628, 1597,1540,1168

Example 43

35

45

Recrystalized from isopropanol-diethyl ether

Elem. Anal. for C ₃₀ H ₃₈ N ₆ OF ₂ ·5/2C ₄ H ₆ O ₆ ·1/2H ₂ O FW 918.886						
Calc.(%) C,52.29; H,5.70; N,9.15; F,4.14						
Found(%)	C,52.15;	H,6.01;	N,8.79;	F,3.94		

 $IR(Nujol) (cm^{-1}) 3371(br),1726,1602(br),1543,1505,1461, 1379,1221$

50 Example 44

EKCOCN NCONH(CH2)3N C

Recrystalized from isopropanol-diethyl ether M.p. 121.0-123.0°C(d)

Elem. Anal. for C ₂₉ H ₄₀ N ₄ O ₄ ·C ₂ H ₂ O ₄ ·H ₂ O FW 616.716						
Calc.(%) C,60.38; H,7.19; N,9.08						
Found(%) C,60.43; H,7.45; N,8.66						

IR(Nujol)(cm⁻¹) 3336,2719,2663,2626,2523,1693,1621, 1542,1460,1230

Example 45

5

10

20

Elem. Anal. for C₃₉H₄₈N₄O₂·2C₄H₈O₈·3/2H₂O FW 930.026

Calc.(%) C,60.70; H,6.61; N,6.02

IR(Nujol)(cm⁻¹) 3373,2587(br),1729,1601,1553,1455,1378, 1257,1124,1080

Found(%)

30 Example 46

35

45

C,60.48;

H,6.69;

N,5.77

M.p. 141.0-143.0°C(d)

Elem. Anal. for C ₃₉ H ₄₆ N ₄ O ₂ ·2C ₂ H ₂ O ₄ ·3/4H ₂ O FW 796.409						
Calc.(%) C,64.85; H,6.52; N,7.03						
Found(%) C,64.91; H,6.49; N,7.28						

IR(Nujol)(cm-1) 3394,2553(br),1751,1722,1618,1538, 1457,1377,1280,1233

50 Example 47

55 NCONH(CH₂)₃N N

M.p. 128.0-130.0°C(d)

Elem. Anal. for C ₃₈ H ₄₃ N ₅ OF ₂ ·2C ₂ H ₂ O ₄ ·1/2H ₂ 0 FW 812.874						
Calc.(%) C,62.06; H,5.95; N,8.62; F,4.67						
Found(%) C,62.19; H,6.10; N,8.63; F,4.88						

IR(Nujol)(cm-1)

5

10

15

25

30

35

45

55

3293,2441 (br),1784,1709,1693,1647,1553,1505,1454,1228

Example 48

0-ONCONH(CH2)3N-O-O-

Recrystalized from methanol-isopropanol-diethyl ether M.p. 151.0-153.0°C(d)

Elem. Anal. for C ₄₀ H ₄₇ N ₃ O ₃ ·C ₂ H ₂ O ₄ FW 707.873						
Calc.(%) C,71.27; H,6.98; N,5.94						
Found(%) C,71.27; H,7.07; N,5.96						

IR(Nujol)(cm⁻¹) 3400,2730,2658 (br),2550,1722,1695,1648, 1610,1527,1455,1200

Example 49

S NCONH(CH2)3N C

40 Recrystalized from methanol-isopropanol-diethyl ether M.p. 178.0-177.0°C(d)

Elem. Anal. for C ₂₆ H ₃₁ N ₃ O ₃ SF ₂ ·C ₂ H ₂ O ₄ FW 593.651							
Calc.(%)	Calc.(%) C,56.65; H,5.60; N,7.08; S,5.40; F,6.56						
Found(%) C,56.53; H,5.68; N,6.89; S,5.57; F,6.56							

IR(Nujol)(cm⁻¹) 3292,2742,2667,2533,2449,1697,1663, 1606,1542,1508,1457,1382,1223,1204,1181

Example 50

M.p. 113.0-118.0°C(d)

Elem. Anal. for C ₃₁ H ₃₇ N ₆ O ₂ F ₂ ·2C ₂ H ₂ O ₄ FW 729.740						
Calc.(%)	Calc.(%) C,57.61; H,5.66; N,9.60; F,5.21					
Found(%) C,57.90; H,6.27; N,8.95; F,4.93						

IR(Nujol)(cm⁻¹) 3357(br),2735,2663(br),2625,1716, 1625(br),1605,1541,1507,1459,1376,1226

Example 51

5

15

20

25

35

45

55

EIOCCH NCONH(CH2)3N C

Recrystalized from isopropanol-diethyl ether M.p. 151.0-152.0°C(d)

Anal. for C ₂₈ H ₃₈ N ₄ O ₄ F ₂ ·C ₂ H ₂ O ₄ ·1/2Et ₂ O FW 671.744						
Calc.(%) C,59.01; H,6.75; N,8.34; F,5.66						
Found(%) C,59.25; H,6.36; N,8.46; F,6.45						

 $IR(Nujol)(cm^{-1})\ 3360,2740,2670(br),2620,2540,1710,\ 1700,1625,1610,1540,1510,1460,1380,1230$

30 Example 52

Recrystalized from methanol-isopropanol-diethyl ether

w M.p. 114.0-116.0°C(d)

Elem. Anal. for C ₃₈ H ₄₃ N ₅ OF ₂ ·2C ₂ H ₂ O ₄ ·3/2H ₂ O FW 830.889				
Calc.(%)	C,60.71;	H,6.07;	N,8.43;	F,4.57
Found(%)	C,60.96;	H,6.18;	N,8.27;	F,4.10

IR(Nujol)(cm⁻¹) 3350(br),2610(br),1720,1700,1630,1610, 1550,1510,1450,1380,1280,1230

Example 53

NCONH(CH2)2N

Recrystalized from dichloromethane-diethyl ether M.p. 90.0-95.0°C

Elem. Anal. for C ₃₀ H ₃₅ N ₅ O-3/5H ₂ O FW 492.454				
Calc.(%)	C,73.17;	H,7.41;	N,14.22	
Found(%)	C,72.98;	H,7.43;	N,14.25	

IR(CHCl₃)(cm⁻¹) 3410(br),1640,1600,1570,1510,1480,1440, 1240

Example 54

5

10

25

30

35

45

15 (-3u- SO₂N NCONH(CH₂)₃N

Recrystalized from methanol-acetone M.p. 169.0-170.0°C(d)

Elem. Anal.	for C ₃₈ H ₄₈ N ₄ O	₃S⋅C₂H₂O₄⋅O	.3H₂O FW 7	10.296
Calc.(%)	C,64.26;	H,6.90;	N,7.89;	S,4.51
Found(%)	C,64.00;	H,6.90;	N,7.74;	S,4.39

IR(Nujol)(cm⁻¹) 3400,3330,2680,2600,2450,1780(sh),1715, 1640,1620,1595,1540,1460,1265,1175

Example 55

SO₂N NCONH(CH₂)₃N C

40 Recrystalized from methanol-isopropanol-diethyl ether M.p. 125.0-127.5°C(d)

Elem. Anal. for C ₃₅ H ₄₁ N ₅ O ₄ S·C ₂ H ₂ O ₄ ·1/2H ₂ O FW 726,854				
Calc.(%)	C,61.14;	H,6.10;	N,9.64;	S,4.41
Found(%)	C,61.29;	H,6.34;	N,9.23;	S,4.05

IR(Nujol)(cm⁻¹) 3350(br),2745,2880,2620,2550,1710,1700, 1620,1600,1540,1500,1450,1340,1265,1245

Example 56

Elem. Anal. for C ₃₅ H ₃₉ N ₅ O ₃ S·0.3C ₆ H ₆ FW 633.230				
Calc.(%)	C,69.80;	H,6.49;	N,11.06;	S,5.06
Found(%)	C,69.65;	H,6.62;	N,10.81;	S,4.67

IR(CHCl₃)(cm⁻¹) 3280,1640,1600,1520,1495,1340,1320, 1160,1145

Example 57

10

15

20

25

5

C:- NCGNH(CH2)3N -C-

Recrystalized from methanol-isopropanol-diethyl ether M.p. 119.0-121.0°C(d)

Elem.

Elem. Anal. for C ₃₂ H ₃₉ N ₄ O ₄ SCI·C ₂ H ₂ O ₄ ·1/2H ₂ O FW 710.251					
Calc.(%)	C,57.50;	н,5.96;	N,7.89;	S,4.51;	CI,4.99
Found(%)	C,57.48;	H,5.88;	N,7.82;	S,4.42;	CI,5.09

IR(Nujol)(cm⁻¹) 3350,2740,2670,2630,2540,1710,1700, 1620,1590(sh),1540,1460,1355,1170

Example 58

30

35

C:- SOZN NCONH(CH2)3N

Recrystalized from dichloromethane-diethyl ether M.p. 208.0-210.0°C

40

Elem. Anal. for C ₃₂ H ₃₇ N ₄ O ₃ SCI·1/5H ₂ O FW 596.796					
Calc.(%) C,64.40; H,6.32; N,9.39; S,5.37; Cl,5.94					
Found(%) C,64.34; H,6.35; N,9.39; S,5.32; Cl,6.25					

IR(CHCl₃)(cm⁻¹) 3270(br),1640,1590,1530,1480,1360,1280, 1260,1170

Example 59

50

55

45

M.p. 107.0-110.0°C(d)

Elem. Anal. for C ₃₃ H ₄₁ N ₅ O ₃ ·2C ₂ H ₂ O ₄ ·3/2H ₂ O FW 762.820					
Calc.(%) C,58.26; H,6.34; N,9.18					
Found(%) C,58.07; H,6.35; N,8.59					

IR(Nujol)(cm⁻¹) 3350(br),2600(br),1720,1700(sh), 1635, 1555,1450,1260,1210(br)

o Example 60

5

15

20

25

35

45

50

55

Recrystalized from methanol-isopropanol-diethyl ether M.p. 164.0-166.0°C(d)

Elem. Anal. for C ₂₉ H ₃₇ N ₇ O-3C ₂ H ₂ O ₄ -1/10H ₂ O FW 769.556				
Calc.(%)	C,54.63;	H,5.40;	N,12.74	
Found(%)	C,54.33;	H,5.74;	N,12.49	

IR(Nujol)(cm⁻¹) 3380,2540(br),1720,1700(sh), 1640,1605, 1515,1460,1250,1240

30 Example 61

M.p. 114.0-116.0°C(d)

Elem. Anal. for C ₃₁ H ₃₉ N ₅ O ₄ S·C ₂ H ₂ O ₄ ·2H ₂ O FW 703.817				
Calc.(%)	C,56.32;	H,6.44;	N,9.95;	S,4.56
Found(%)	C,56.23;	H,6.15;	N,10.37;	S,4.98

IR(Nujol)(cm⁻¹) 3350(br),2730,2870,2820,2540,1720, 1700,1630,1570,1540,1445,1420,1380,1350,1260

Example 62

SO2N NCONH(CH2)3N

Recrystalized from dichloromethane-diethyl ether-n-hexane M.p. 177.0-180.0°C

Elem. Anal. for C ₃₁ H ₃₇ N ₅ O ₃ S-1/10H ₂ O FW 561.537				
Calc.(%)	C,66.31;	H,6.68;	N,12.47;	S,5.71
Found(%)	C,66.13;	H,6.75;	N,12.18;	S,5.61

IR(CHCl₃)(cm⁻¹) 3270(br),1640,1600,1575,1525,1420,1360, 1170

Example 63

10

5

E:OOCN NCONH(CH2)3N

15

Recrystalized from dichloromethane-diethyl ether-n-hexane M.p. 128.0-133.0°C

20

25

Elem. Anal. for C ₂₉ H ₃₈ N ₄ O ₃ ·1/5H ₂ O FW 494.253				
Calc.(%)	C,70.47;	H,7.83;	N,11.34	
Found(%)	C,70.51;	H,7.81;	N,11.20	

⁵ IR(CHCl₃) (cm⁻¹) 3270(br),1685,1630,1520,1435,1250,1240

Example 64

30

N=NNCONH(CH₂)₃NOONH

35

Recrystalized from methanol-isopropanol-diethyl ether M.p. $159.0-160.0^{\circ}C(d)$

40

Elem. Anal. for C ₃₀ H ₃₈ N ₆ O ₂ .C ₂ H ₂ O ₄ ·1/2H ₂ O FW 613.719			
Calc.(%)	C,62.63;	H,6.73;	N,13.69
Found(%)	C,62.86;	H,6.68;	N,13.38

45

IR(Nujol)(cm⁻¹) 3410,3350(br),2745,2670(br),2620,2540, 1720,1695,1640,1620,1600,1580,1520,1460,1250

Example 65

50

55

Recrystalized from methanol-isopropanol-diethyl ether M.p. 170.0-172.5°C(d)

Elem. Anal. for C ₃₀ H ₃₇ N ₅ O ₄ S·C ₂ H ₂ O ₄ ·5/4H ₂ O FW 676.278					
Calc.(%)	C,56.83;	H,6.19;	N,10.36;	S,4.74	
Found(%) C,56.95; H,6.02; N,10.87					

IR(Nujol)(cm-1) 3350(br),2750,2690,1720,1700(sh),1655, 1535,1455,1410,1350,1260,1175

Example 66

10

5

15

Recrystalized from methanol-isopropanol-diethyl ether M.p. 157.5-158.5°C(d)

20

Elem. Anal. for C ₂₆ H ₃₅ N ₃ O ₃ ·C ₂ H ₂ O ₄ FW 527.622					
Calc.(%)	C,63.74;	H,7.07;	N,7.96		
Found(%) C,63.71; H,7.14; N,7.71					

25

 $IR(Nujol)(cm^{-1})\ 3400,3350(sh),2750,2690,2620,2550,1720,\ 1695,1650,1610,1515,1460,1195$

Example 67

30

35

M.p. 135.0-140.0°C(d)

40

Elem. Anal. for C ₃₂ H ₃₇ N ₄ O ₄ SClF ₂ ·C ₂ H ₂ O ₄ ·1/2H ₂ O FW 746.232						
Calc.(%)	C,54.73;	H,5.40;	N,7.51;	S,4.30;	Cl,4.75;	F,5.09
Found(%)	C,54.94;	H,5.29;	N,7.47;	S,4.70;	CI,5.10;	F,5.13

IR(Nujol)(cm⁻¹) 3375(br),2740,2680,2620,2550,1720,1700, 1630,1605,1540,1510,1460,1220,1170

Example 68

50

45

55

Recrystalized from methanol-isopropanol-diethyl ether M.p. 145.0-147.5°C(d)

Elem. Anal. for C ₃₆ H ₄₆ N ₄ O ₄ SF ₂ ·C ₂ H ₂ O ₄ ·1/4H ₂ O FW 763.391						
Calc.(%) C,59.79; H,6.40; N,7.34; S,4.20; F,4.98						
Found(%) C,59.60; H,6.34; N,7.30; S,4.36; F,4.96						

IR(Nujol) (cm⁻¹) 3370(br),2740,2680,2630,2550,1720,1700, 1630,1610,1540,1510,1460,1350,1220,1170

Example 69

10

15

5

EICOCH NCONH(CH2) 24 N

Recrystalized from methanol-isopropanol-diethyl ether M.p. 130.5-134.0°C(d)

20

Elem. Anal. for C ₂₇ H ₃₇ N ₆ O ₃ ·C ₂ H ₂ O ₄ FW 571.678				
Calc.(%) C,60.93; H,7.23; N,12.25				
Found(%)	C,59.06;	H,7.02;	N,11.08	

IR(Nujol)(cm⁻¹) 3370(br),2670,2530,1760(sh),1700,1620, 1600,1560,1455,1380,1250,1240

Example 70

30

35

25

6-BROOCH NCONH(CH5)2N

Recrystalized from methanol-isopropanol-diethyl ether M.p. 150.5-151.5°C(d)

40

45

Elem. Anal. for C ₃₁ H ₄₄ N ₄ O ₄ ·C ₂ H ₂ O ₄ FW 626.755					
Calc.(%) C,63.24; H,7.40; N,8.94					
Found(%) C,63.21; H,7.35; N,8.80					

IR(Nujol)(cm⁻¹) 3400,3380,2740,2680,2620,2530,1720, 1695,1670,1640,1600(sh),1545,1455,1415,1240

Example 71

50

55

Recrystalized from dichloromethane-diethyl ether M.p. 148.5-150.0°C

Elem. Anal. for C ₃₁ H ₄₂ N ₄ O ₃ ·C ₂ H ₂ O ₄ FW 518.70					
Calc.(%)	C,71.78;	H,8.16;	N,10.80		
Found(%) C,71.44; H,8.17; N,10.73					

IR(CHCl₃)(cm⁻¹) 3275(br),1685,1630,1600(sh),1525,1420, 1250,1240,1170

Example 72

10

5

NCONH(CH₂)₃N

15

Elem. Anal. for C ₃₄ H ₄₁ N ₅ O·2C ₂ H ₂ O ₄ FW 715.809					
Calc.(%) C,63.76; H,6.34; N,9.78					
Found(%) C,63.47; H,6.61; N,9.99					

20

 $IR(Nujol)(cm^{-1})\ 3300(br), 2570(br), 1720, 1700(sh), 1630,\ 1550, 1455, 1380, 1250$

25 Example 73

30

35

Elem. Anal. for C ₃₈ H ₄₂ N ₄ O·2C ₂ H ₂ O ₄ ·1/2H ₂ O FW 759.863					
Calc.(%)	C,66.39;	H,6.23;	N,7.37		
Found(%) C,66.10; H,6.52; N,7.32					

40

IR(Nujol)(cm⁻¹) 3330(br),2600(br),1720,1630,1540,1495, 1455,1380,1285,1255,1205

Example 74

45

50

Recrystalized from methanol-isopropanol M.p. 197.0-198.0°C(d)

55

Elem. Anal. for C ₂₉ H ₃₄ N ₆ OF ₂ ·C ₄ H ₄ O ₄ ·H ₂ O FW 654.719					
Calc.(%)	C,60.54;	H,6.16;	N,12.84;	F,5.80	
Found(%)	C,60.53;	H,5.94;	N,12.04;	F,5.47	

IR(Nujol)(cm⁻¹) 3270,2600,2520(br),1710,1690,1640, 1580,1540,1500,1475,1435,1275,1220,1200

Example 75

10

15

25

30

35

5

NCONH(CH2)3N C

Recrystalized from methanol-isopropanol

20 M.p. 124.0-126.0°C(d)

Elem. Anal. for C ₄₀ H ₄₅ N ₃ O ₂ ·C ₂ H ₂ O ₄ ·H ₂ O FW 707.873						
Calc.(%)	C,71.27;	H,6.98;	N,5.94			
Found(%)	Found(%) C,71.17; H,6.77; N,5.83					

IR(Nujol)(cm⁻¹) 3350(br),2730,2680,2620,2545,1720,1700, 1625,1600(sh),1540,1450,1375,1235,1190

Example 76

Recrystalized from methanol-isopropanol-diethyl ether M.p. 153.0-154.0°C

^

Elem. Anal. for C ₂₆ H ₃₄ N ₄ O ₂ ·C ₂ H ₂ O ₄ ·1/2l-PrOH·1/3H ₂ O FW 560.671					
Calc.(%)	C,63.26;	H,7.31;	N,10.00		
Found(%) C,63.29; H,7.44; N,9.82					

IR(Nujol)(cm⁻¹) 3472,3285,2606,2548,1712,1679,1639, 1554,1489,1452

Example 77

50

55

45

Recrystalized from methanol-isopropanol-diethyl ether M.p. 112.0-114.0°C

Elem. Anal. for C ₂₈ H ₃₉ N ₅ O ₃ ·2C ₂ H ₂ O ₄ ·1.4H ₂ O FW 698.947				
Calc.(%) C,54.99; H,6.60; N,10.02				
Found(%)	C,55.02;	H,6.40;	N,9.92	

IR(KBr)(cm⁻¹) 3412,2933,2567,1738,1634,1545,1497,1455

Example 78

5

15

20

25

30

35

40

45

50

55

Recrystalized from methanol-isopropanol-diethyl ether M.p. 150.0-160.0°C(d)

Elem. Anal. 1 740.903	Elem. Anal. for C ₄₀ H ₄₃ N ₃ O·C ₄ H _e O ₆ ·0.5H ₂ O FW 740.903			
Calc.(%) C,71.33; H,6.80; N,5.6				
Found(%)	C,71.41;	H,7.10;	N,5.46	

IR(Nujol)(cm⁻¹) 3440,3330,1745,1715,1600,1545,1450

Example 79

Recrystalized from methanol-isopropanol-diethyl ether M.p. $160.0\text{-}181.0^{\circ}\text{C}(d)$

Elem. Anal. for C ₂₇ H ₃₈ N ₄ O ₂ ·C ₂ H ₂ O ₄ ·1/3H ₂ O FW 544.647				
Calc.(%) C,63.95; H,7.16; N,10.2				
Found(%)	C,63.93;	H,7.40;	N,9.89	

IR(Nujol)(cm⁻¹) 3300,1710,1680,1550,1455,1375

Example 80

SC2N NCONH(CH2)2N

Recrystalized from isopropanol-diethyl ether M.p. 147.0-148.5°C

Elem. Anal. for C ₃₄ H ₃₇ N ₅ O ₃ S·1/10H ₂ O FW 597.570			
Calc.(%)	C,68.34;	H,6.27;	N,11.72
Found(%)	C,68.15;	H,6.38;	N,11.68

IR(Nujol)(cm⁻¹) 3411,1638,1598,1508,1341,1261,1162,1144

Example 81

10

15

20

30

35

40

45

55

5

Elem. Anal. for C₃₄H₃₉N₅O₄S·C₂H₂O₄·5/4H₂O FW 726.339 Calc.(%) C,59.53; H,6.04; N,9.64; S,4.41 Found(%) C,59.35; H,5.90; N,10.14; S,4.60

IR(Nujol)(cm⁻¹) 3395,1719,1644,1544,1455,1339,1264, 1162,1145

Example 82 25

Elem. Anal.for $C_{27}H_{37}N_5O_3\cdot 3HCl\cdot 1/2i$ -PrOH·7/10H₂O FW 631.667 Calc.(%) C,54.19; H,7.24; N,11.09; CI,16.84 C,53.92; Found(%) H,7.13; N,11.38; CI,16.54

IR(KBr) (cm⁻¹) 3421,2933,2567,1738,1634,1545,1497,1455

Example 83

Recrystalized from ethyl acetate M.p.136.5-139.0°C

> Elem. Anal. for C₂₉H₄₂N₆O₂·7/10H₂O FW 519.306 Calc.(%) C,67.07; H,8.42; N,16.18 H,8.29;

C,67.05;

N,16.27

IR(CHCl₃) (cm⁻¹) 3286,1636,1523,1493,1451,1403

Found(%)

Example 84

5

15

20

30

35

55

H=COOCH2CN NCCN+(C+2)2N C

Recrystalized from methanol M.p. 166.5-167.5°C(d)

Elem. Anal. for C ₂₉ H ₃₈ N ₄ F ₂ O ₄ ·2C ₂ H ₂ O ₄ ·2/5H ₂ O FW 731.924				
Calc.(%)	C,54.15;	H,5.89;	N,7.65;	F,5.19
Found(%)	C,54.10;	H,5.82;	N,7.59;	F,5.13

IR(Nujoi)(cm-1) 3433,2741,2669,2627,2549,1749,1710, 1693,1648,1605,1460,1440,1402

Example 85

Recrystalized from methanol-isopropanol M.p. 148.0-150.0°C(d)

Elem. Anal. f	Elem. Anal. for C ₂₈ H ₃₆ N ₄ F ₂ O ₄ ·3/2C ₂ H ₂ O ₄ ·H ₂ O FW 683.688				
Calc.(%)	C,54.46;	H,6.04;	N,8.19;	F,5.56	
Found(%)	C,54.55;	H,5.98;	N,8.34;	F,5.40	

IR(Nujol)(cm⁻¹) 3415,2738,2666,2625,2546,1908,1735, 1716,1695,1606,1546, 1508,1459,1405

40 Example 86

Evaluation of antihistaminic effects in vitro

The following experiments were conducted in accordance with the method of R. Magnus (Arch. F.D. Ges. Physiol., 102: 123-151, 1904). Ileums derived from guinea pigs were respectively soaked in a saline solution at 37°C. Then, histamine diphosphate and a subject compound which had been obtained in the Examples shown in Table 1 were added to each saline solution so that the concentrations of histamine diphosphate and the subject compound are 0.5 μg/ml and 0.03 to 10 μg/ml, respectively. The ileum generally contracts by histamine; however, in the case where the subject compound is present, the antagonistic effect of the subject compound on histamine inhibits the contraction of the ileum. The contraction degree of the ileum was measured at each concentration of the added subject compound, and the concentration IC₅₀ of the subject compound which inhibited 50% submaximal contraction of the ileum by histamine was obtained. The submaximal contraction was obtained in the case where the subject compound was not added. The obtained concentration IC₅₀ was shown in Table 1. Table 1 also shows the measurements regarding the known antihistaminic agents, terphenadine and oxatomide. When the value of IC₅₀ is lower, the subject compound has stronger antihistaminic effects.

Example 87

H₁ receptor binding inhibition test in vitro

In order to evaluate the affinity of the compound of the present invention for a H₁ receptor, the following experiment was conducted.

Three month old Sic-Wistar rats were killed by decapitation, and its cerebral cortex was rapidly removed. The cerebral cortex was homogenized with about 20 times its volume of 50 mM of ice-cooled Na/K phosphate buffer (pH 7.5). The homogenate was centrifuged at 40000 g for 10 minutes, and then, resuspended in the buffer. This process was repeated three times, and the resulting suspension was kept in a refrigerator at -80°C. This sample was thawed at 4°C before experiment. Then, the homogenate was centrifuged and resuspended to obtain a receptor sample. The compound of the present invention listed in Table 1 was added in the range of 0.1 nM to 100 μ M to a mixture of the receptor sample and [³H]-pyrilamine (4 nM) and incubated at 25°C for 30 minutes. The reaction was stopped by dilution and filtration. The radioactivity of [³H]-pyrilamine bound to the receptor sample on the filter paper was measured by a liquid scintillation counter. The specific binding of [³H]-pyrilamine to the receptor sample was obtained by subtracting the non-specific binding from the total bindings. Using the concentration IC50 of the compound of the present invention inhibiting 50% specific binding of [³H]-pyrilamine to the receptor sample, an inhibition constant Ki was obtained from the following equation.

$$Ki = \frac{IC_{50}}{1 + C/Kd}$$

where C is the concentration of [3H]- pyrilamine; and Kd is the dissociation constant.

The results are shown in Table 1. The smaller the value that Ki is, the stronger affinity the compound has for the histamine receptor.

Example 88

25

20

5

H₁ receptor binding inhibition test ex vivo

In order to evaluate the migration of the compound of the present invention to the brain, the following experiment was conducted.

Five Slc-ddY male mice were used as one group. First, 10 mg/kg of the compound of the present invention was orally administered to each mouse. The mouse were killed by decapitation 60 minutes after the administration and each cerebral cortex was removed. Each cerebral cortex was frozen on dry ice and kept in a refrigerator at -80°C. Before the experiment, each cerebral cortex was homogenized with about 10 times its volume of 50 mM of Na/K phosphate buffer (pH 7.5). A mixture of each cerebral cortex was further diluted 6 times and used as a receptor sample. A mixture of each receptor sample and [³H]-pyrilamine (4 nM) was incubated at 25°C for 30 minutes. The reaction was stopped by dilution and filtration. The radioactivity of [³H]-pyrilamine bound to the receptor sample on the filter paper was measured by a liquid scintillation counter. The specific binding of [³H]-pyrilamine to the receptor sample was obtained by subtracting the non-specific binding from the total bindings. The non-specific binding was obtained under the conditions of containing 10 μM of non-radioactive pyrilamine. The amount of protein was measured by DC protein assay (Biolad), and the inhibition of the compound of the present invention to the specific binding of [³H]-pyrilamine per 1 mg of protein was measured. The results are shown in Table 1. The lower the inhibition is, the lower migration to a brain the compound has.

45

50

55

Table 1

_	Compound	Antihistaminic effect IC _{6p} (µg/ml)	Affinity for H ₁ receptor in vitro Ki (μΜ)	[3H]-labeled pyrllamine binding inhibition ex vivo (%)
5	Terfenadine	22.367	0.33	9
	Oxatoamide	1	0.066	17
	Example 5	0.442	0.094	0
10	Example 15	0.0595	0.043	6
	Example 39	0.119	0.06	4
	Example 43	0.216	0.057	14
15	Example 45	0.621	0.22	6
	Example 49	0.0244	0.027	9
	Example 50	0.0817	0.042	2
20	Example 51	0.427	0.038	0
	Example 53	1.764	0.12	0
	Example 55	1.142	0.018	0
25	Example 56	1.376	0.14	0
	Example 61	0.196	0.049	6
	Example 70	0.0889	0.032	2
30	Example 71	1.122	0.15	7
	Example 79	0.042	0.042	5

From Table 1, the compound of the present invention was confirmed to have high affinity for the histamine receptor and low migration to the brain. Thus, it is considered that the compound of the present invention involves less side-effects while having strong antihistaminic effects.

The compound of the present invention has a repressing effect such as an antagonistic effect on various chemical mediators in addition to histamine.

As described above, according to the present invention, a novel compound useful as an antiallergic agent is provided. The compound has a strong antihis-taminic effect and involvies less side effects. The compound of the present invention can also be used in various fields because of its repressing effect such as an antagonistic effect on various chemical mediators.

Various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the scope and spirit of this invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description as set forth herein, but rather that the claims be broadly construed.

Claims

1. A compound represented by the following Formula I:

55

35

$$Y^{1}$$
 N -CONH-(CH₂) k^{1} -N Z^{1} (R²) m^{1} (I)

0

wherein Z¹ is C or N; m¹ is 0 when Z¹ is N and m¹ is 1 when Z¹ is C; R³ can form a bond with R² when Z¹ is C; A¹ is O, SO₂, or CH₂; n¹ is 0 or 1 when A¹ is O or SO₂ and n¹ is an integer of 0 to 3 when A¹ is CH₂; R¹ is a group selected from the group consisting of a condensed aromatic ring, a substituted condensed aromatic ring, carboxyl, alkoxycarbonyl, and

$$-c = R^{11}$$

wherein R¹¹ is H or OH, or R¹¹ can form a bond with R² when Z¹ is C and n¹ is 0; R¹² and R¹³ are independently phenyl, substituted phenyl, a heterocyclic ring, or a substituted heterocyclic ring, or R¹² and R¹³ can form a condensed ring; R² is H when forming no bond with R³ or R¹¹; R³ is H when forming no bond with R²; k¹ is an integer of 2 to 5; Y¹ is a group selected from the group consisting of O, S, SO, SO₂, CH₂, and

$$Z^{2}$$
 $(R^{5})m^{2}$ $(A^{2})n^{2}-R^{4}$

wherein Z² is N or C; m² is 0 when Z² is N and m² is 1 when Z² is C; A² is O, SO₂, or CH₂; n² is 0 or 1 when A² is O or SO₂; n² is an integer of 0 to 3 when A² is CH₂; R⁴ is a group selected from the group consisting of alkyl, phenyl, substituted phenyl, a heterocyclic ring, a substituted heterocyclic ring, -CO-R⁴¹, and

$$-c = \frac{R^{43}}{R^{44}}$$

wherein R⁴¹ is a group selected from the group consisting of OH, alkoxy, amino, arylalkyloxy, substituted amino, arylalkenyl, and substituted arylalkenyl; R⁴² is H or OH, or R⁴² can form a bond with R⁵ when Z² is C and n² is 0; R⁴³ and R⁴⁴ are independently phenyl, substituted phenyl, a heterocyclic ring, or a substituted heterocyclic ring; R⁵ is H when forming no bond with R⁴²; Y² is CH₂ or CO; Y³ is (CH₂)₂ or phenylene; and k² is 0 or 1, or pharmaceutically acceptable salts thereof.

2. The compound according to claim 1 represented by the following Formula I-1:

$$Y^3$$

 Y^1 N - CONH-(CH₂) k^1 -N C - (A¹) n^1 -R¹ (I-1)

wherein A1, R1, Y1, Y2, Y3, k1, k2, and n1 are the same as defined in claim 1.

3. The compound according to claim 1, wherein R1 is quinolyl or

5

10

15

20

25

30

35

40

45

50

58

wherein R¹⁴ is H, phenyl, or substituted phenyl; p¹ is an integer of 0 to 4; and X's are independently a group selected from the group consisting of Cl, F, CH₃, CN, and CH₂COOH.

4. The compound according to claim 1 represented by the following Formula I-2:

$$Y^3$$
 Y^1
 $N - CONH - (CH_2)_{K^1} - N$
 $C = C$
 R^{12}
 R^{13}

wherein R12, R13, Y1, Y2, Y3, k1, and k2 are the same as defined in claim 1.

5. The compound according to claim 1, wherein R1 is

wherein Y⁴ is $(CH_2)k^3$ or CH_2 -Y⁵, where k^3 is an integer of 0 to 2, Y⁵ is O, S, or NR⁵, where R⁵ is H or CH₃; p¹ is an integer of 0 to 4; and X's are independently a group selected from the group consisting of Cl, F, CH₃, CN, and CH₂COOH.

6. The compound according to claim 1, wherein R⁴ is a group selected from the group consisting of pyridyl, pyrimidinyl, imidazolyl, quinolyl, and

7. The compound according to claim 1 represented by the following Formula I-3:

wherein A^1 , R^1 , R^2 , R^3 , R^{43} , R^{42} , Y^2 , Y^3 , Z^1 , k^1 , k^2 , m^1 , and n^1 are the same as defined in claim 1.

8. The compound according to claim 1 represented by the following Formula I-4:

10

15

20

25

35

45

50

 $\begin{array}{c|c}
 & R^{3} \\
Y^{1} & N - CONH - (CH_{2})_{k}^{1} - N \\
\hline
 & Z^{1} - (A^{1})_{n}^{1} - R^{1}
\end{array}$ (I-4)

wherein A1, R1, R2, R3, Y1, Y2, Z1, k1, k2, m1, and n1 are the same as defined in claim 1.

- 9. The compound according to claim 1, wherein A1 is CH2 and R1 is carboxyl or alkoxycarbonyl.
- 10. The compound according to claim 1, wherein Z¹ is N and n¹ is 0.
- 30 11. The compound according to claim 1, wherein Z¹ is C, A¹ is O, an n¹ is 1.
 - 12. the compound according to claim 1, wherein R1 is represented by the following Formula:

$$-c \stackrel{R^{12}}{\underset{R^{13}}{\overbrace{}}}$$

wherein R¹¹, R¹², and R¹³ are the same as defined in claim 1.

- 13. The compound according to claim 12, wherein R12 and R13 are phenyl or substituted phenyl.
- 14. The compound according to claim 12, wherein at least one of R¹² and R¹³ is pyridyl.
- 15. The compound according to claim 1, wherein Y^3 is $(CH_2)_2$.
- 16. The compound according to claim 15, wherein Y^2 is CH_2 and k^2 is 1.
- 17. A compound according to claim 15, wherein Y1 is S or CH2, and Y2 is CO.
 - 18. An antiallergic agent containing an effective amount of a compound according to claim 1 or pharmaceutically acceptable salts thereof.
- 19. A composition comprising the compound according to claim 1 or pharmaceutically acceptable salts thereof and a carrier.

EUROPEAN SEARCH REPORT

Application Number EP 94 30 4289

Category	Citation of document with in of relevant pa	ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL5)
D,A	EP-A-0 224 919 (FUJ * page 1 - page 2, & JP-A-63 225 374 (ISAWA) 10 June 1987 line 26 *)	1-19	C07D295/20 C07D295/22 C07D207/26
P,A	EP-A-0 580 398 (SHI * the whole documen	ONOGI) 26 January 1994 t *	1-19	C07D211/14 C07D211/22 C07D211/46
P,A	EP-A-0 597 112 (KYO * page 1 - page 2,	TO) 18 May 1994 line 21 *	1-19	A61K31/445 A61K31/50 A61K31/54 C07D211/70
X	EP-A-0 526 434 (BOE February 1993 * claim 1 *	HRINGER INGELHEIM) 3	1,8,10, 12-14,19	C07D213/74 C07D239/42 C07D241/20
X	CHEMICAL ABSTRACTS, 13 May 1991, Columb abstract no. 185435 E. ZARA-KACZIAN ET. 1-aryl-1,4-dihydro- with piperazine rin having potential an	us, Ohio, US; AL. 'Synthesis of 3(2H)-isoquinolines g in the side chain	1	C07D279/12 C07D401/04 C07D401/12 C07D417/12 C07D417/14
	* abstract * ACTA CHIM. HUNG., vol.127, no.4, 1990 pages 607 - 627	•		TECHNICAL FIELDS SEARCHED (Int.Cl.5)
A	pages 2028 - 2032 D. A. WALSH ET. AL. antiallergic Activi	1990, WASHINGTON US 'Synthesis and ty of N-[2-(Dimethylami piperazinecarboxamide	1-19	
		-/		
	The present search report has b	-		
	Place of scarch THE HAGUE	Date of completion of the search 27 September 199	4 K1s	isler, B
X : par Y : par doc	CATEGORY OF CITED DOCUMES ticularly relevant if taken alone ticularly relevant if combined with an ument of the same category thological background	NTS T: theory or princip E: earlier patent do after the filling d	le underlying the current, but published ate in the application	invention lished on, or

EUROPEAN SEARCH REPORT

Application Number EP 94 30 4289

A		indication, where appropriate, assages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL5)
.,	EP-A-0 129 207 (80) December 1984 * the whole documen	EHRINGER INGELHEIM) 27	1-19	
D,A	EP-A-0 277 725 (ROI * page 1 - page 2, & JP-A-63 188 670 (BINS) 10 August 1988 line 55 * ()	1-19	
A	EP-A-0 373 226 (TA) * page 2, line 17 -	(HO) 20 June 1990 r page 6, line 2 *	1-19	
A	EP-A-0 304 330 (SH) * the whole documer	IONOGI) 22 February 1989	1-19	
A	EP-A-0 309 043 (JAN * abstract *	ISSEN) 29 March 1989	1-19	
A	EP-A-0 445 701 (SHI 1991 * the whole documer	ONOGI) 11 September	1-19	
				TECHNICAL FIELDS SEARCHED (Int.Cl.5)
		*		
			ĺ	
Ì				
	The present search report has b	een drawn up for all claims		•
	Place of search	Date of completion of the search	<u> </u>	Exeminer
	THE HAGUE	27 September 1994	Kis	sler, B
X : part Y : part doc A : tech	CATEGORY OF CITED DOCUME icularly relevant if taken alone icularly relevant if combined with an ument of the same category inological background written disciosure	E : earlier patent doc	te the application Fother reasons	invention shed on, or