- 1. Trobeu els polinomis de Taylor d'ordre 4 en el punt indicat per a les funcions següents:
 - (a) $f(x) = e^{2x}$ en el punt a = 0,
 - (b) $f(x) = x^5 + x^3 + x$ en els punts a = 0 i a = 1,
 - (c) $f(x) = e^{x^2} + \sin x$ al punt a = 0,
 - (d) $f(x) = x \log x$ al punt a = 1,
 - (e) $f(x) = 2x^4 x + 1$ als punt a = 0 i a = 1.
- **2.** (a) Calculeu els desenvolupaments de Taylor amb restes de Lagrange d'ordres 1 i 3 de la funció cosinus en l'origen.
 - (b) Demostreu que $1-\frac{x^2}{2} \leq \cos x \leq 1-\frac{x^2}{2}+\frac{x^4}{24}$, per a tot $x \in \mathbb{R}$.
- 3. Proveu les desigualtats següents:
 - (a) $1 + \frac{x}{2} \frac{x^2}{8} \le \sqrt{1+x} \le 1 + \frac{x}{2}$, per a tot $x \ge 0$,
 - (b) $x \frac{x^2}{2} \le \log(1+x) \le x$, per a tot $x \ge 0$.
- 4. Utilitzeu els desenvolupaments de Taylor adients per a calcular els límits següents:
 - (a) $\lim_{x \to 0} \frac{\cos x e^{-x^2/2}}{x^4}$
 - (b) $\lim_{x \to 1} \frac{\log x (x 1)}{x 1}$
 - (c) $\lim_{x \to 0} \frac{\sin x^3 \tan x^2}{\log^5 (1+x)}$
 - (d) $\lim_{x \to \pi/2} \frac{\cos x \log(2x/\pi)}{(x \pi/2)^2}$
- **5.** Siguin $m,n\in\mathbb{N}$. Discutiu l'existència dels límits següents i calculeu el seu valor quan existeixin.

(a)
$$\lim_{x\to 0} \frac{(e^{x^2}-1-x^2)^m}{x^{2n}}$$

(b)
$$\lim_{x \to 0} \frac{(\log(1+x) - x + \frac{x^2}{2})^m}{(1 - \cos x)^n}$$