

COE 152: BASIC ELECTRONICS

Andrew Selasi Agbemenu

Outline ...

- Electronic Devices
 - Electronic Components: Resistors, Capacitors, Inductors, Voltage, Current
 - Nature of the atom. Basic Concepts of semiconductor charge carriers, Energy bands, Intrinsic and Extrinsic semiconductors. Carrier Transport: Diffusion current, drift current, mobility, conductivity and resistivity. Generation and recombination of carriers.
 - P-N junction Diode, Zener Diode, tunnel diode, p-l-n diode, avalanche photo diode, LED, BJT, JFET, MOSFET, Basics of LASERS
 - Introduction to IC fabrication

...Outline...

- Basic Analog Circuits:
 - Small Signal Equivalent circuits of diodes, BJTs, and MOSFETs.
 - Basic diode circuits: clipping, clamping, rectifier circuits
 - Basic BJT circuits: BJT characteristics, BJT configurations (CB, CC, CE), switching, Amplifiers: single and multi-stage. Frequency response of amplifiers

...Outline

- Basic Digital Cicuits:
 - Boolean Algebra
 - Basic Logic Gates: AND, OR, NOT, NAND, NOR
 - Digital IC Families: DTL, TTL, ECL, MOS, CMOS

Voltage (Adapted partly from University of Pennsylvania)

A battery positive terminal (+) and a negative terminal (-). The difference in charge between each terminal is the potential energy the battery can provide. Unit of measurement is volts (V)

Water Analogy

Voltage Sources

Current

 Current is the flow of electrons through a circuit. The unit of measurement is Ampere (A)

Resistance

- All materials have a resistance that is dependent on cross-sectional area, material type and temperature
- A resistor dissipates power in the form of heat

Capacitance

 A capacitor (Condenser) is used to store charge for a short time

• It is made up of two parallel conductive plate separated by an insulating material called a

...Capacitance

- Unit of capacitance is Farad (F)
- Farad is very large and usually measured in microfarad (µF), nanofarad (nF) or picofarad (pF)

$$C = \frac{Q}{V}$$

- Where Q is the charge measured in coulombs,
 C
- *V* is the potential difference across the plates and it is measured in volts, V

...Capacitance

- Where A is the overlapping area of the plates
- *d* is the distance between the two plate
- ε is the relative permitivity or the dielectric constant

...Capacitance

Properties

Characteristic Equations: $I = C \frac{dV}{dT}$

$$V = \frac{1}{C} \int I dT$$
 Integrating Charge (storage)

Markings

Polar vs Non-Polar

Values

Electrolytics mark (-) Tantalums mark (+)

Longer lead

Examples

Ceramic

Capacitor Charging

Capacitor Discharging

$$V=Ae^{-t/RC}$$

$$A = V_i$$

Inductance

- A passive element that stores energy in its magnetic field
- It is also know as choke, coil or reactor

Inductance

Symbols Variable (radio

Properties

Characteristic Equation:
$$V = L \frac{dI}{dT}$$

Examples

Any where you have wire. Motor windings have significant inductance Long leads also have small inductance

Design of Electronic Circuits

- Circuits should be designed to work, not made to work
- Design factors contributing to good circuit design
 - Minimum number of components
 - Minimum number of power supplies
 - · Low power dissipation and current drain
 - · Minimum size and weight of components

Breadboards

- Used for prototyping of electronic circuits
- They are solderless and can therefore be reused
- Stripboards are used to build soldered prototypes

Stripboard

Breadboards

Populated Breadboard

Populated Breadboard

Breadboard Layout

- Made up of two areas called strips
 - Terminal Strips
 - These areas hold most of the electronic components
 - · Bus strips
 - The bus strip contains two columns for the power supply

