高等数学A(上)

第二章

本章重点

导数 — 描述函数变化快慢 微分 — 描述函数变化程度 微分学 — 基本概念是导数与微分

微分学

基本概念是导数与微分

中值定理

罗尔、拉格朗日、柯西

导 数

描述函数变化快慢

应用一

研究函数性质 及曲线性态

微分

描述函数变化程度

应用二

利用导数解决 实际问题

第二章 目录 CONTENTS

第一节 导数与微分的概念

第二节 导数与微分的运算性质

第三节 隐函数及由参数方程所确定的

函数的导数 相关变化率

第四节 高阶导数

第五节 微分中值定理与泰勒公式

第六节 洛必达法则

第七节 函数及其图像性态的研究

第7.1节 函数的单调性与曲线的凹凸性

一、函数单调性的判定

二、曲线的凹凸性与拐点

一、函数单调性的判定

1. 单调性的判别法

可见:函数的单调性与导数的符号密切相关.

问题:能否用导数的符号判别函数的单调性呢?

定理1 设函数y = f(x)在[a,b]上连续,在(a,b)内可导.

- (1)如果在(a,b)内f'(x) > 0,则函数y = f(x)在[a,b]上单调增加;
- (2)如果在(a,b)内f'(x) < 0,则函数y = f(x)在[a,b]上单调减少.

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$$
 $(x_1 < \xi < x_2)$

(1)若在
$$(a,b)$$
内, $f'(x) > 0$, 则 $f'(\xi) > 0$, $f'(x_2) > f(x_1)$.

- $\therefore y = f(x)$ 在[a,b]上单调增加.
- (2)若在(a,b)内, f'(x) < 0,则 $f'(\xi) < 0$, : $f(x_2) < f(x_1)$.
- $\therefore y = f(x)$ 在[a,b]上单调减少. 证毕

区间内个别点导数为零,不影响区间的单调性.

例如:

$$y = x^3, y' \Big|_{x=0} = 0$$
,但在 $(-\infty, +\infty)$ 上单调增加.

一般地,有如下定理:

定理2

设函数y = f(x)在[a,b]上连续,在(a,b)内可导.

- (1) 如果在(a,b)内 $f'(x) \ge 0$, 且等号仅在有限多个点处成立,则函数y = f(x)在[a,b]上单调增加.
- (2) 如果在(a,b)内 $f'(x) \le 0$, 且等号仅在有限多个点处成立, 则函数y = f(x)在[a,b]上单调减少. 参阅本节习题8

定理中的区间换成其它有限或无限区间, 结论仍然成立.

例1 判定函数 $y = x - \sin x$ 在 $[-\pi, \pi]$ 上的单调性.

解
$$y = x - \sin x$$
在 $[-\pi, \pi]$ 上连续,在 $(-\pi, \pi)$ 上可导,且 $y' = 1 - \cos x \ge 0$ 且等号仅在 $x = 0$ 成立.

:: 函数 $y = x - \sin x$ 在 $[-\pi, \pi]$ 上单调增加.

例2 讨论函数 $y = e^x - x - 1$ 的单调性.

解
$$y' = e^x - 1$$
. 又 z 定义域为 $(-\infty, +\infty)$.

2. 单调区间的求法

问题: 函数在定义区间上不是单调的,但在各个部分区间上单调.

若函数在其定义域的某个区间内是单调的,则该区间称为函数的单调区间.

驻点和不可导点,可能是单调区间的分界点.

求函数单调性的步骤

- (1) 求定义域;
- (2) 求导数;
- (3) 求驻点与不可导点;
- (4) 求相应区间的导数符号,判别增减性:

例3 确定函数 $f(x) = 2x^3 - 9x^2 + 12x - 3$ 的单调区间.

解 : 定义域为(-∞,+∞).

$$f'(x) = 6x^2 - 18x + 12 = 6(x - 1)(x - 2)$$

解方程 f'(x) = 0 得, $x_1 = 1$, $x_2 = 2$.

x	$(-\infty,1)$	(1,2)	(2,+∞)
f'(x)	+		+
f(x)	单增	单减	单增

单调增区间为 $(-\infty,1]$, $[2,+\infty)$. 单调减区间为 [1,2].

例4 确定函数 $f(x) = \sqrt[3]{x^2}$ 的单调性.

解 定义域为(-∞,+∞).

$$f'(x) = \frac{2}{3\sqrt[3]{x}}, \qquad (x \neq 0)$$

当x = 0时,导数不存在.

\boldsymbol{x}	$(-\infty,0)$	$(0,+\infty)$
f'(x)	_	+
f(x)	单减	单增

单调减区间为 (-∞,0],

单调增区间为 [0,+∞).

3. 利用单调性证明不等式

$$\Rightarrow g(x) = x - \tan x$$
, $\iint g'(x) = 1 - \sec^2 x = -\tan^2 x < 0$,

$$\therefore g(x) 在 \left(0, \frac{\pi}{2}\right) 上 递减, \therefore g(x) < g(0) = 0, 即 x - \tan x < 0.$$

$$\therefore f(x)$$
在 $\left(0, \frac{\pi}{2}\right]$ 上单调递减, $\therefore f(x) \ge f\left(\frac{\pi}{2}\right) = 0$, $\therefore \frac{\sin x}{x} \ge \frac{2}{\pi}$. 证毕

二、曲线的凹凸性与拐点

1. 曲线凹凸性的定义

引入 函数f(x)在闭区间[a, b]上连续且单调增加,用一条曲线

连接起点和终点,则

仅有函数f(x)的单调性作图可能会产生很大偏差,还需讨论其弯曲方向,即凹凸性.

从几何上看:

凹弧

弦总在曲线的上方 切线总在曲线的下方 弦总在曲线的下方 切线总在曲线的上方 凸弧

设f(x)在区间 I上连续, 如果对I上任意两点 x_1 , x_2 ,

- (1) 恒有 $f(\frac{x_1 + x_2}{2}) < \frac{f(x_1) + f(x_2)}{2}$, 则称 f(x) 在 I 上的图形是 (向上)凹的(或凹弧);
- (2) 恒有 $f\left(\frac{x_1 + x_2}{2}\right) > \frac{f(x_1) + f(x_2)}{2}$, 则称 f(x)在 I 上的图形是 (向上)凸的(或凸弧).

2.曲线凹凸性的判定

定理3

如果f(x)在[a,b]上连续, 在(a,b)内具有一阶和二阶导数. 在 (a,b) 内,

- (1) 若f''(x) > 0,则f(x)在[a,b]上的图形是凹的;
- (2) 若f''(x) < 0,则f(x)在[a,b]上的图形是凸的.

例6 判定曲线 $y = \ln x$ 的凹凸性.

解 定义域为 (0,+∞).

$$y' = \frac{1}{x}, y'' = -\frac{1}{x^2} < 0,$$

:: 曲线 $y = \ln x$ 是凸的.

例7 判断曲线 $y = x^3$ 的凹凸性.

解 定义域为 $(-\infty, +\infty)$.

$$y' = 3x^2, y'' = 6x,$$

X	$(-\infty,0)$	0	$(0,+\infty)$
<i>y</i> "	1	0	+
у	口	拐点(0,0)	凹

连续曲线上凹弧与凸弧的分界点称为拐点.

3.求曲线 y = f(x) 拐点的一般步骤:

- (1) 求函数y = f(x)的定义域D;
- (2) 求出使f''(x) = 0的点以及f''(x)不存在的点;(拐点的可疑点)
- (3) 上述点将定义域D分割为若干开区间和孤立的点;
- (4) 在每个开区间上判断f''(x)的正负号,得其凹凸性和拐点.

例8 求曲线 $y = 3x^4 - 4x^3 + 1$ 的拐点.

解 定义域为 (-∞,+∞).

$$y' = 12x^3 - 12x^2$$
, $y'' = 36x(x - \frac{2}{3})$.
 $\Rightarrow y'' = 0$, $\Rightarrow x_1 = 0$, $x_2 = \frac{2}{3}$.

х	$(-\infty,0)$	0	$(0, \frac{2}{3})$	2/3	$(^2/_3, +\infty)$
f''(x)	+	0		0	+
f(x)	凹的	拐点(0,1)	凸的	拐点(² / ₃ , ¹¹ / ₂₇)	凹的

,课堂练习及提问

- 1. 问 $y = x^4$ 是否有拐点?
- 2. 问 $y = \sqrt[3]{x^2}$ 是否有拐点?

答案: 没有拐点.

4. 凹凸性的简单应用-证明不等式

证明 $\frac{e^x + e^y}{2} > e^{\frac{x+y}{2}}, (x \neq y).$ 例9

∴ 曲线
$$f(t) = e^t \mathbf{T}(-\infty, +\infty)$$
内是凹的.

$$\therefore \forall x, y \in (-\infty, +\infty), x \neq y$$
时,有 $\frac{f(x) + f(y)}{2} > f(\frac{x + y}{2}),$

即
$$\frac{e^x + e^y}{2} > e^{\frac{x+y}{2}}$$
, $(x \neq y)$. 曲线凹的定义

第7.2节 函数的极值与最大值最小值

一、函数的极值及其求法

二、最大值最小值问题

1. 函数极值的定义

设函数f(x)在点 x_0 的某邻域 $U(x_0)$ 内有定义,如果对于去心邻域 $U(x_0)$ 内的任一x,有

$$f(x) < f(x_0)(\vec{x}f(x)) > f(x_0)$$

定义

则称 $f(x_0)$ 是函数f(x)的一个极大值(或极小值).

函数的极大值与极小值统称为极值.

使函数取得极值的点 x_0 (自变量)称为极值点.

由图可知,在一个区间内

- (1)函数的极值只是一点附近的最大值或最小值,是局部性的.
- (2)函数可能存在许多个极值,极小值可能大于某个极大值.
- (3)若f(x)在 x_0 点取得极值,则 $f'(x_0) = 0$ 或 $f'(x_0)$ 不存在.

(4) 驻点或者不可导点, 未必是极值点.

例如:

1.
$$f(x) = x^3, f'(0) = 3x^2|_{x=0} = 0$$
,
可见 $x = 0$ 是驻点,但不是极值点.

2.
$$f(x) = \sqrt[3]{x}$$
,

$$f'(0) = \lim_{x \to 0} \frac{\sqrt[3]{x} - 0}{x} = \lim_{x \to 0} \frac{1}{\frac{2}{x^{\frac{2}{3}}}} = \infty$$

可见x = 0为不可导点,但不是极值点.

问题: 如何判断驻点和不可导点是不是极值点呢?

2. 函数极值的求法

定理1 (必要条件) 费马引理

设函数f(x)在 x_0 处可导,且在 x_0 处取得极值,则 $f'(x_0) = 0$.

几何上(如下图),

若 x_0 是连续函数f(x)单增单减的分界点,则 x_0 必为极值点.

定理2(第一充分条件)极值第一判别法

设f(x)在 x_0 点连续,且在 x_0 的某去心邻域 $U(x_0,\delta)$ 内可导.

(2) 若
$$x \in (x_0 - \delta, x_0)$$
时, $f'(x) < 0$, 则 $f(x_0)$ 为极小值.

$$\overline{m}x \in (x_0, x_0 + \delta)$$
时, $f'(x) > 0$,

(3)若 $x \in U(x_0, \delta)$ 时, f'(x)的符号保持不变, 则 $f(x_0)$ 不是极值.

自证

求极值的步骤:

- (1) 求导数f'(x);
- (2) 求极值点的嫌疑点: 驻点和不可导点;
- (3) 检查 f'(x) 在嫌疑点左右的正负号,判断极值点;
- (4) 求极值.

(是极值点情形)

(不是极值点情形)

例1 求函数 $f(x) = (x-4)\sqrt[3]{(x+1)^2}$ 的极值.

解 (1) f(x)在 $(-\infty, +\infty)$ 内连续, 除 x = -1外处处可导.

- (3) 得到极值的嫌疑点为: 驻点x=1.不可导点x=-1.
- (4) 列表讨论

x	$(-\infty, -1)$	-1	(-1,1)	1	(1, +∞)
f'(x)	+	不可导		0	+
f(x)	↑	f _{极大} (-1) = 0	\	$f_{极小}(1)$ = $-3\sqrt[3]{4}$	1

对于驻点,有时还可以利用函数在该点处的二阶导数的正负号来判断极值点.

定理3 (第二充分条件) 极值第二判别法

设f(x)在 x_0 处具有二阶导数且 $f'(x_0) = 0$, $f'(x_0) \neq 0$.

$$(1)$$
若 $f''(x_0) < 0$,则 $f(x_0)$ 为 极大值.

$$(2)$$
若 $f''(x_0) > 0$, 则 $f(x_0)$ 为 极小值.

$$\lim_{x \to x_0} f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f'(x)}{x - x_0}$$

 $(1) 若<math>f''(x_0) < 0,$

存在 $\delta > 0$, 当 $0 < |x - x_0| < \delta$ 时, $\sqrt{\frac{f'(x)}{x - x_0}} < 0$

故当
$$x_0 - \delta < x < x_0$$
时, $f'(x) > 0$;

当
$$x_0 < x < x_0 + \delta$$
时, $f'(x) < 0$,

由第一判别法知f(x)在 x_0 取极大值.

(2) 类似可证. 证毕

极限的局部保号性

定理3 表明,如果 $f'(x_0)=0$.

$$\begin{cases} f''(x_0) < 0 & 则 f(x_0) 为 极大值. \\ f''(x_0) > 0 & 则 f(x_0) 为 极小值. \\ f''(x_0) = 0 & 用定理3无法判断(即第二充分条件失效),需要再用定理2判别(即用第一充分条件).$$

解 (1) f(x)在($-\infty$, $+\infty$)内连续且可导.

(2)
$$f'(x) = 6x(x^2 - 1)^2 = 0$$
, $4x + 1$, 4

(3)
$$f''(x) = 6(x^2 - 1)(5x^2 - 1)$$
.

(4) 对驻点逐一判别:

$$f''(-1) = f''(1) = 0,$$

定理4 (判别法的推广)

若函数f(x)在 x_0 点有直到 n 阶的导数,

且
$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, f^{(n)}(x_0) \neq 0,$$
则

(1)当n 为偶数时,

$$x_0$$
为极值点,且
$$\begin{cases} f^{(n)}(x_0) > 0$$
时, x_0 是极小值点.
$$f^{(n)}(x_0) < 0$$
时, x_0 是极大值点.

(2)当n 为奇数时, x_0 不是极值点.

\mathbf{H} 将 f(x) 在 x_0 点展开成带佩亚诺余项的泰勒公式, 可得

$$f(x) - f(x_0) = \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n)$$

(1)当n 为偶数,且 $f^{(n)}(x_0) > 0$ 时, $f^{(n)}(x_0) < 0$ 时,

$$x \in (x_0, x_0 + \delta)$$
 时, $f(x) > f(x_0)$ $f(x) < f(x_0)$

 x_0 是极小值点.

$$f(x) < f(x_0)$$

$$f(x) < f(x_0)$$

∴ *x*₀是极大值点.

(2)当n为奇数时,进行课堂提问得出结论.

极值的判别法(定理2—定理4)条件都是充分的.

当这些充分条件不满足时,不等于极值不存在.

$$f(x) = \begin{cases} 2 - x^2 \left(2 + \sin \frac{1}{x} \right), & x \neq 0, \\ 2, & x = 0 \end{cases}$$

f(0) = 2为极大值,但不满足定理2—4的条件.

三、最大值与最小值问题

在工程技术、科学实验和实际问题中,经常有这样的问题:

这样的问题在数学中有时可归结 为求某一函数 (称为目标函数) 的最大值或最小值问题.

根据自变量的取值范围,分以下两种情况讨论.

1. 闭区间上连续函数的最值(最大值或最小值)

在第1章中已经知道,

闭区间[a,b]上的连续函数必有最大值和最小值.

显然, 其最值只能在极值点或端点处达到.

求连续函数在闭区间上最值的步骤:

(1) 求f(x)在区间(a,b)内的极值可疑点: 驻点和不可导点

$$x_1, x_2, x_3, \cdots, x_m$$

(2) 最大值

$$M = \max\{f(x_1), f(x_2), \dots, f(x_m), f(a), f(b)\}$$

最小值

$$m = \min\{f(x_1), f(x_2), \dots, f(x_m), f(a), f(b)\}$$

注意:如果区间内只有一个极值,则这个极值就是最值.

例3 求函数 $f(x) = |x^2 - 3x + 2|$ 在[-3,4]上的最大值与最小值.

$$\mathbf{f}(x) = \begin{cases} x^2 - 3x + 2, & x \in [-3,1] \cup [2,4], \\ -x^2 + 3x - 2, & x \in (1,2). \end{cases}$$

$$\therefore f'(x) = \begin{cases} 2x - 3, & x \in (-3,1) \cup (2,4), \\ -2x + 3, & x \in (1,2), \\ \hline \text{ π $\notearth{$\tau$}$ } & x = 1 \ensuremath{\ensuremath$$

: 得到区间内部极值的可疑点: 驻点 $x = \frac{2}{3}$, 不可导点x = 1, x = 2.

$$f(-3) = 20, f(1) = 0, f\left(\frac{3}{2}\right) = \frac{1}{4}, f(2) = 0, f(4) = 6.$$
max min

2.开区间上连续函数最大值最小值的求法

若开区间上的连续函数满足下列两个条件:

- (1) f(x)在开区间有且仅有最大(小)值;
- (2) f(x)在开区间只有一个可能取得极值的点,

则可以断定这个极值点一定是函数的最大(小)值点.

实际问题求最值应注意

若目标函数只有唯一驻点,则该点的函数值即为所求的最值.

例4 铁路上 AB 段的距离为100km, 工厂C距A处20km, $AC \perp AB$, 要在AB线上选定一点D向工厂修一条公路. 已知铁路与公路每公里

货运价之比为3: 5, 为使货物从B运到工厂C的运费最省, 问D点应选在何处?

解 设AD = x (km),则 $CD = \sqrt{20^2 + x^2}$,总运费

$$y = 5k\sqrt{20^2 + x^2} + 3k(100 - x)(k$$
 为某一常数) $(0 \le x \le 100)$

$$y' = k \left(\frac{5x}{\sqrt{400 + x^2}} - 3 \right), \, \diamondsuit y' = 0, \, \nexists x = 15.$$

又
$$y''\Big|_{x=15} = 5k \frac{400}{(400+x^2)^{\frac{3}{2}}}\Big|_{x=15} > 0$$
, 所以 $x = 15$ 为唯一的极小值点,

从而为最小值点. 故AD = 15km时运费最省.

例5 一束光线由空气中点A经过水面折射后到达水中点B. 已知光在空气中和水中传播的速度分别是 v_1 和 v_2 ,光线在介质中总是沿着耗时最少的路径传播. 试确定光线传播的路径.

解 如图: 设 $AO = h_1$, $BQ = h_2$, OQ = l, OP = x. 则A到B所需要的传播时间为

$$T(x) = \frac{\sqrt{h_1^2 + x^2}}{v_1} + \frac{\sqrt{h_2^2 + (l - x)^2}}{v_2}, x \in [0, l].$$

$$T'(x) = \frac{1}{v_1} \cdot \frac{x}{\sqrt{{h_1}^2 + x^2}} - \frac{1}{v_2} \cdot \frac{l - x}{\sqrt{{h_2}^2 + (l - x)^2}}, x \in [0, l].$$

$$\nabla : T''(x) = \frac{1}{v_1} \cdot \frac{{h_1}^2}{({h_1}^2 + x^2)^{\frac{3}{2}}} + \frac{1}{v_2} \cdot \frac{{h_2}^2}{[{h_2}^2 + (l - x)^2]^{\frac{3}{2}}} > 0, x \in [0, l].$$

- x_0 是T'(x)在[0,l]上的唯一零点.
- x_0 是T(x)在[0,l]上的最小值点.

又
$$x_0$$
满足 $T'(x) = 0$,即 $\frac{x_0}{v_1\sqrt{h_1^2 + x_0^2}} = \frac{l - x_0}{v_2\sqrt{h_2^2 + (l - x_0)^2}}$

记
$$\frac{x}{\sqrt{{h_1}^2 + x^2}} = \sin \theta_1$$
, $\frac{l - x}{\sqrt{{h_2}^2 + (l - x)^2}} = \sin \theta_2$. 于是

著名的折射定律

$$\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2}$$
 θ_1 入射角, θ_2 折射角.

例6 把一根直径为d的圆木锯成矩形梁, 问矩形截面的高h和宽b应 如何选择才能使梁的抗弯截面模量最大?

解 由力学分析知矩形梁的抗弯截面模量为

由实际意义可知,所求最值存在,而驻点只一个,故所求结果就是最好的选择.

例7 假设某工厂生产某产品x千件的成本是 $C(x) = x^3 - 6x^2 + 15x$,售出该产品x千件的收入是r(x) = 9x. 问是否存在一个能取得最大利润的生产水平? 如果存在,找出这个生产水平.

解 售出x千件产品的利润是

$$p(x) = r(x) - C(x) = -x^3 + 6x^2 - 6x, \quad x \ge 0.$$

由
$$p'(x) = -3x^2 + 12x - 6 = 0$$
, 得驻点 $x_1 = 2 - \sqrt{2}$, $x_2 = 2 + \sqrt{2}$.

$$\nabla p''(x) = -6x + 12, \ p''(x_1) > 0, p''(x_2) < 0.$$

故p(x)在 $x_2 = 2 + \sqrt{2}$ 处达到最大利润,而在 $x_1 = 2 - \sqrt{2}$ 处发生局部最大亏损.

在经济学中,导数被称为边际.

边际成本C'(x).

边际收入r'(x).

边际利润p'(x).

例7的结果表明:

在最大利润的生产水平上,

$$r'(x) = C'(x),$$

即边际收入等于边际成本.

第7.3节 函数图形的描绘

一、曲线的渐近线

二、函数图形的描绘

一、渐近线

定义

当曲线 y = f(x) 上的一动点 M 沿着曲线移向无穷点时, 如果点 M 到某定直线 L 的 距离 趋向于零,那么直线 L 就 称为曲线 y = f(x) 的一条渐近线.

例如: 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

有渐近线
$$\frac{x}{a} \pm \frac{y}{b} = 0$$

但抛物线 $y = x^2$ 无渐近线.

或为"纵坐标差"

1. 铅直渐近线 (垂直于 x 轴的渐近线)

如果
$$\lim_{x \to x_0^+} f(x) = \infty$$
 或 $\lim_{x \to x_0^-} f(x) = \infty$,则 $x = x_0$ 就是 $y = f(x)$ 的

一条铅直渐近线.

例如:
$$y = \frac{1}{(x+2)(x-3)}$$

有铅直渐近线两条:

$$x = -2$$
, $x = 3$.

2.水平渐近线(平行于 <math>x 轴的渐近线)

如果 $\lim_{x\to +\infty} f(x) = b$ 或 $\lim_{x\to -\infty} f(x) = b(b)$ 为常数), 则 y=b 就是

$$y = f(x)$$
 的一条水平渐近线.

例如:
$$y = \arctan x$$
,

有水平渐近线两条:

$$y = \frac{\pi}{2}, \qquad y = -\frac{\pi}{2}.$$

例1 求曲线 $y = \frac{1}{x-1} + 2$ 的渐近线.

$$\lim_{x\to\infty}\left(\frac{1}{x-1}+2\right)=2,$$

$$\therefore y = 2$$
为水平渐近线;

$$\lim_{x\to 1} \left(\frac{1}{x-1} + 2 \right) = \infty,$$

$$x = 1$$
为铅直渐近线.

3.斜渐近线

如果
$$\lim_{x \to +\infty} [f(x) - (ax + b)] = 0$$

或
$$\lim_{x \to -\infty} [f(x) - (ax + b)] = 0(a, b)$$
 为常数),

则 y = ax + b 就是 y = f(x) 的一条斜渐近线.

斜渐近线求法:

$$\lim_{x \to \infty} \frac{f(x)}{x} = a$$

$$\lim_{x \to \infty} [f(x) - ax] = b$$

$$y = ax + b$$
 是 $y = f(x)$ 的一条斜渐近线.

- ①和②有一个极限不存在,则可以断定 y = f(x) 不存在斜渐近线.
- 第四节 函数的单调性与曲线的凹凸性

例2 求 $y = \frac{x^3}{x^2 + 2x - 3}$ 的渐近线.

$$y = \frac{x^3}{(x+3)(x-1)} \therefore \lim_{x \to -3} f(x) = \infty, \quad \lim_{x \to 1} f(x) = \infty,$$

∴
$$x = -3\pi x = 1$$
 都是 y 的铅直渐近线.

$$\nabla : a = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2}{x^2 + 2x - 3} = 1,$$

$$b = \lim_{x \to \infty} [f(x) - ax] = \lim_{x \to \infty} \frac{-2x^2 + 3x}{x^2 + 2x - 3} = -2.$$

$$\therefore y = x - 2$$
 是曲线的斜渐近线.

二、函数图形的描绘

1.图形描绘的步骤

- (1) 确定函数y = f(x)的定义域,并考察其对称性及周期性;
- (2) 求f'(x)和 f''(x),并求出f'(x)及f''(x)为0和不存在的点;
- (3) 列表判别增减及凹凸区间, 求出极值和拐点;
- (4) 求渐近线;
- (5) 确定某些特殊点,描绘函数图形.

2. 作图举例

例3 画出函数 $f(x) = x^3 - x^2 - x + 1$ 的图形.

解 (1) 定义域为 $(-\infty, +\infty)$, 无奇偶性及周期性.

(2)
$$f'(x) = (3x + 1)(x - 1), f''(x) = 2(3x - 1).$$

令
$$f'(x) = 0$$
,得驻点 $x = -\frac{1}{3}$, $x = 1$.

令
$$f''(x) = 0$$
,得特殊点 $x = \frac{1}{3}$.

(3)列表确定函数升降区间, 凹凸区间及极值点与拐点:

х	$\left(-\infty, -\frac{1}{3}\right)$	$-\frac{1}{3}$	$\left(-\frac{1}{3},\frac{1}{3}\right)$	$\frac{1}{3}$	$\left(\frac{1}{3},1\right)$	1	(1,+∞)
f'(x)	+	0	ı	1	_	0	+
f"(x)	_	_	-	0	+	+	+
f(x)		极大值 32 27		拐点 $\left(\frac{1}{3}, \frac{16}{27}\right)$		极小值)

$$A (-1,0), B (0,1), C\left(\frac{3}{2}, \frac{5}{8}\right).$$

例4 描绘函数 $y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ 的图形.

解 (1) 定义域为 (-∞,+∞).

y为偶函数, 图形关于y轴对称.

(2)
$$\varphi'(x) = -\frac{x}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \varphi''(x) = -\frac{(x+1)(x-1)}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

令
$$\varphi'(x) = 0$$
,得驻点 $x = 0$,

$$\phi''(x) = 0$$
,得特殊点 $x = -1$, $x = 1$.

x	(-∞, -1)	-1	(-1,0)	0	(0,1)	1	(1,+∞)
$\varphi'(x)$	+	+	+	0	-	-	-
$\varphi''(x)$	+	0	_	_	_	0	+
$\varphi(x)$)	拐点 $\left(-1, \frac{1}{\sqrt{2\pi e}}\right)$		极大值 $\frac{1}{\sqrt{2\pi}}$		拐点 $\left(1, \frac{1}{\sqrt{2\pi e}}\right)$	

(4) :
$$\lim_{x \to \infty} \varphi(x) = \lim_{x \to \infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} = 0$$
, 得水平渐近线 $y = 0$.

(5) 确定某些特殊点,描绘函数图形.

$$\varphi(0) = \frac{1}{\sqrt{2\pi}}, \ \varphi(1) = \frac{1}{\sqrt{2\pi e}}, \quad \varphi(2) = \frac{1}{\sqrt{2\pi e^2}}.$$

例5 描绘函数 $y = 1 + \frac{36x}{(x+3)^2}$ 的图形.

解 (1)定义域为 $(-\infty, -3)$, $(-3, +\infty)$. 无奇偶、周期和对称性.

$$f'(x) = \frac{36(3-x)}{(x+3)^3}, \ f''(x) = \frac{72(x-6)}{(x+3)^4}.$$

令
$$f'(x) = 0$$
,得驻点 $x = 3$,

令
$$f''(x) = 0$$
, 得特殊点 $x = 6$.

x = -3是函数的间断点.

(2)列表确定函数升降区间,凹凸区间及极值点与拐点:

х	$(-\infty, -3)$	-3	(-3,3)	3	(3,6)	6	(6,+∞)
f'(x)	_	不存在	+	0	ı	ı	_
f''(x)	_	不存在	_	_	-	0	+
f(x)		不存在		极大值 4		拐点 $\left(6, \frac{11}{3}\right)$	

$$(3) : \lim_{x \to +\infty} f(x) = 1, \lim_{x \to -3} f(x) = -\infty,$$

: 得水平渐近线 y = 1 ,铅直渐近线 x = -3 .

(4) 确定某些特殊点,描绘函数图形.

$$f(3) = 4$$
, $f(6) = \frac{11}{3}$, $f(0) = 1$, $f(-1) = -8$, $f(-9) = -8$, $f(-15) = -\frac{11}{4}$.

$$f(-9) = -8, f(-15) = -\frac{11}{4}.$$

第7.4节 曲率

一、弧微分

二、曲率及其计算公式

三、曲率圆与曲率半径

*四、曲率中心的计算公式 渐屈线与渐伸线

一、弧微分

设函数f(x)在区间(a,b)内具有连续导数.如图, $A(x_0,y_0)$ 为基点,

规定:

- (1)曲线的正向与x增大的方向一致;
- (2)弧长 $s = |\widehat{AM}| = s(x),$ 当AM的方向与曲线正向一致时, s取正号,相反时,s取负号.

于是s = s(x)是单调增函数

$$\because \frac{\Delta s}{\Delta x} = \frac{\widehat{MN}}{\Delta x} = \frac{\widehat{MN}}{|MN|} \cdot \frac{|MN|}{\Delta x}$$

$$= \frac{\widehat{MN}}{|MN|} \cdot \frac{\sqrt{(\Delta x)^2 + (\Delta y)^2}}{\Delta x}$$

$$=\pm\frac{\widehat{MN}}{|MN|}\cdot\sqrt{1+(\frac{\Delta y}{\Delta x})^2}$$

$$\because \frac{\mathrm{d}s}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\Delta s}{\Delta x} = \sqrt{1 + (y')^2}$$

$$\lim_{\Delta x \to 0} \frac{\widehat{MN}}{|MN|} = \pm 1 \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'$$

弧微分公式

若曲线由参数方程表示:
$$\begin{cases} x = x(t), \\ y = y(t), \end{cases}$$

则弧长微分公式为: $ds = \sqrt{(x'(t))^2 + (y'(t))^2} dt$

几何意义:

$$ds = |MT|$$

$$\frac{\mathrm{d}x}{\mathrm{d}s} = \cos\alpha; \quad \frac{\mathrm{d}y}{\mathrm{d}s} = \sin\alpha$$

二、曲率及其计算公式

1. 曲率的定义

曲率是描述曲线局部性质(弯曲程度)的量.

弧段弯曲程度 越大转角越大

转角相同弧段 越短弯曲程度越大

$$\left|\widehat{MM'}\right| = |\Delta s|,$$

 $M \to M'$ 切线转角为 $|\Delta \alpha|$.

定义

弧段
$$\Delta s$$
上的平均曲率为 $\bar{K} = \left| \frac{\Delta \alpha}{\Delta s} \right|$.
 $\triangle M$ 处的曲率为 $K = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right| = \left| \frac{\mathrm{d} \alpha}{\mathrm{d} s} \right|$.

直线上任意点处的曲率为0.

2. 曲率的计算公式

设
$$y = f(x)$$
二阶可导, : $\tan \alpha = y'$ (设 $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$),

$$\alpha = \arctan y'$$
,

$$\therefore d\alpha = \frac{y''}{1 + y'^2} dx, \qquad 曲率的 计算公式$$

$$\nabla : ds = \sqrt{1 + y'^2} dx : K = \left| \frac{d\alpha}{ds} \right| = \frac{|y''|}{(1 + y'^2)^{\frac{3}{2}}}$$

曲率公式说明:

(1)当
$$|y'|$$
 << 1 时,有曲率近似计算公式 $K = \frac{|y''|}{3} \approx |y''|$. $(1 + y'^2)^{\frac{3}{2}}$

(2)若曲线由参数方程
$$\begin{cases} x = x(t), & \text{给出,则} K = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}. \end{cases}$$

(3)若曲线方程为
$$x = \varphi(y)$$
,则 $K = \frac{|x''|}{(1 + x'^2)^{\frac{3}{2}}}$.

例1 计算等边双曲线xy = 1在点(1,1)处的曲率.

$$x' = -\frac{1}{x^2}, \ y'' = \frac{2}{x^3},$$

$$\therefore K = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}} \bigg|_{x=1,y=1}$$

$$=\frac{2}{[1+(-1)^2]^{\frac{3}{2}}}=\frac{\sqrt{2}}{2}.$$

例2 抛物线 $y = ax^2 + bx + c$ 上哪一点的曲率最大?

$$x = 2ax + b, y'' = 2a,$$

$$\therefore K = \frac{|2a|}{[1 + (2ax + b)^2]^{\frac{3}{2}}}.$$

显然, 当
$$x = -\frac{b}{2a}$$
时, K 最大.

即抛物线在顶点处的曲率最大.

$$\left(-\frac{b}{2a}, -\frac{b^2-4ac}{4a}\right)$$

三、曲率圆与曲率半径

设曲线 y = f(x) 在点M(x,y) 处的曲率为 $K(K \neq 0)$.

在点 M 处的曲线的法线上,在凹的一侧取一点 D,

定义

使
$$|DM| = \frac{1}{K} = \rho$$
.

以 D 为圆心, ρ 为半径作圆(如图),

称此圆为曲线在点 M 处的曲率圆(密切圆).

D — 曲率中心, ρ — 曲率半径.

注意:

(1)曲线上一点处的曲率半径与曲线在该点处的曲率互为倒数.

即
$$\rho = \frac{1}{K}$$
, $K = \frac{1}{\rho}$.

- (2)曲线上某点处的曲率圆与曲线有如下密切关系:
 - ①有公切线; ②凹向一致; ③曲率相同.
- (3)曲线上一点处的曲率圆弧可近似代替该点附近曲线弧 (称为曲线在该点附近的二次近似).

例3 设工件内表面的截线为抛物线 $y = 0.4x^2$. 现要用砂轮磨削其内表面,问选择直径多大的砂轮比较合适?

$$y' = 0.8x, \quad y'' = 0.8.$$

由例2可知, 抛物线在顶点(0,0)处曲率最大,

$$\therefore K = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}} = 0.8, \therefore \rho = \frac{1}{K} = 1.25.$$

抛物线顶点处 的曲率半径

:: 选用砂轮的半径不得超过1.25单位长, 即直径不得超过2.50单位长.

*四、曲率中心的计算公式 渐屈线与渐伸线

1.曲率中心的计算公式

设曲线方程为y = f(x),且 $y'' \neq 0$,求曲线上点M处的曲率半径

及曲率中心 $D(\alpha,\beta)$ 的坐标公式.

设点M处的曲率圆方程为

$$(\xi - \alpha)^2 + (\eta - \beta)^2 = R^2$$

故曲率半径公式为
$$R = \frac{1}{K} = \frac{(1+y'^2)^{\frac{3}{2}}}{|y''|}$$

曲率中心 $D(\alpha,\beta)$ 的坐标 α,β 满足方程组

$$\begin{cases} (x - \alpha)^2 + (y - \beta)^2 = R^2, & (\because M(x, y))$$
在曲率圆上)
$$y' = -\frac{x - \alpha}{y - \beta}, & (\because DM \perp MT) \end{cases}$$

由此可得曲率中心公式

2. 渐屈线与渐伸线

当点M(x,y)沿曲线y = f(x)移动时,

相应的曲率中心的轨迹G

称为曲线C的渐屈线,

曲线C称为曲线G的渐伸线.

曲率中心公式可看成渐屈线的参数方程(参数为x).

例5 求摆线 $\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t) \end{cases}$ 的渐屈线方程.

解
$$y' = \frac{\sin t}{1 - \cos t}, \ y'' = \frac{-1}{a(1 - \cos t)^2}$$
 代入曲率中心公式, 得

摆线
$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t) \end{cases}$$

半径为a的圆周沿直线无滑动地滚动时,

其上定点M的轨迹即为摆线.