

Neural networks - one perceptron

- $z = \sum_{i=0}^{n_0} w_i x_i$
- y = f(z)
- ullet f non-linear activation function, often sigmoid σ

Non-linear activation function

- enables non-linearity in NNs
- sigmoid $\sigma(z) = 1/(1 + \exp(-z))$
- tanh = (exp(z) exp z)/(exp(z) + exp z)
- rectified linear unit $ReLU(z) = max\{0, z\}$
- ..
- softmax $(z_i) = \exp(z_i) / \sum_{j=1}^k \exp(z_j), i = 1, \dots, k$

- why more than one layer networks?
- XOR = exclusive OR
- cannot be calculated by only one perceptron
- which activation function?

X	1	<i>x</i> ₂	У
()	0	0
()	1	1
1	L	0	1
1		1	0

- why more than one layer networks?
- XOR = exclusive OR
- cannot be calculated by only one perceptron
- which activation function? Rel U

x_1	<i>x</i> ₂	У	h_1	h_2
0	0	0	0	-1 ightarrow 0
0	1	1	1	0
1	0	1	1	0
1	1	0	2	1

- why more than one layer networks?
- XOR = exclusive OR
- cannot be calculated by only one perceptron
- which activation function? Rel U

x_1	<i>x</i> ₂	У	h_1	h_2
0	0	0	0	-1 ightarrow 0
0	1	1	1	0
1	0	1	1	0
1	1	0	2	1

- why more than one layer networks?
- XOR = exclusive OR
- cannot be calculated by only one perceptron
- which activation function? Rel U

x_1	<i>x</i> ₂	У	h_1	h_2
0	0	0	0	-1 ightarrow 0
0	1	1	1	0
1	0	1	1	0
1	1	0	2	1

- why more than one layer networks?
- XOR = exclusive OR
- cannot be calculated by only one perceptron
- which activation function? Rel U

x_1	<i>x</i> ₂	У	h_1	h_2
0	0	0	0	-1 o 0
0	1	1	1	0
1	0	1	1	0
1	1	0	2	1

Feedforward (FF) neural networks

- for historic reasons also known as multi-layer perceptrons (MLP)
- diy: write CBOW, skip-gram, PV-DM and PV-DBOW as FF NN

Logistic regression as FF NN

- logistic regression is a NN without hidden layer (left figure)
- adding a hidden layer (right figure) maybe improve performance
- hidden layer allows for non-linear interactions between features
- power of deep learning, e.g., NN, is to learn feature interaction
- no need of complicated human-engineered features

Neural language model (NLM)

https://web.stanford.edu/~jurafsky/slp3/

predict next word using a sliding window (fixed length)

NLM vs. n-gram LM

I have to make sure that the cat gets fed. (not seen: dog gets fed)

- task: I forgot to make sure that the dog gets ...
- n-gram LM cannot predict "fed" (not seen)
- NLM finds similarity of embeddings of "cat" and "dog"
- NLM is able to generalize and predict "fed" after "dog" (not seen)

Training NNs

- for all training pairs (x, y)
 - forward step to find \hat{y}
 - compute loss $L(\hat{y}, y)$
 - update/optimize weights of output layer
 - assess the influence of (all) hidden nodes and update weights

Training NNs

- for all training pairs (x, y)
 - forward step to find \hat{y}
 - compute loss $L(\hat{y}, y)$
 - update/optimize weights of output layer
 - assess the influence of (all) hidden nodes and update weights this is the "critical" part (let us have a short excursion to backpropagation; for more details, cf., deep learning lecture)

Jonas Rieger