Compact sets

Def By an open cover of a set E in a metric space X we mean a collection f Gal of open subsets such that $E \subset UG_a$.

Def A subset K is compact if every open cover of K contains a finite subcover. i.e. if G_{∞} is an open cover of K, when can find finite indicis $\alpha_1, \alpha_2, \dots, \alpha_K = 3.t.$ $K \subset \bigcup_{i=1}^K G_{\infty}.$

Example A finite set is compact

Thin Compact subsets of a metric space are closed.

Proof PEK. Inbd Vppp, Wpg st. Vpn Wp=p.

They Closed subsets of compact subsets are compact.

Proof E closed in a compact K. Any $\{G_a\}$ open over of E which E^c is an open connot K. $\{G_a\}$ UE^c has a finite conver of $K \Rightarrow \{G_a\}$ has a finite conver of E.

Thus If E is an infinite subset of K, when E has a limit pt in K.

Goal: Then (Heine-Borel) Let E be a subset of IRT. Then the following are equivelent.

Thu Let $K \in \mathbb{Z}_{70}$. If $\{I_n\}$ is a coffeition of k-rells such that $I_n > I_{n+1}$, then $\bigcap_{n \in I} I_n$ is not empty.

Proof only do she rase when k=1. In = $[a_n, b_n]$ sup $a_n \in J_n b_m \Rightarrow \exists x \in A_n$. $a_n \leq \sup_{n \in A_n} a_n \in x \leq \inf_{n \in A_n} b_n \leq b_n$

$$\Rightarrow \times (\bigcap_{n \geq 1} \mathbb{I}_n \cdot \bowtie$$

Rmk for general K, $I_n = [a_{n_1}, b_{n_2}] \times [a_{n_1}, b_{n_2}] \times \cdots \times [a_{n_K}, b_{n_K}]$, when save argument works.

Thus Every K-cell is compact.

Proof Argue by construction. There is a cover $\{G_d\}$ of a k-cell I without finite subseque. Only do the case k=2.

Heep subdividing, get a sequence of k-cells $\{I_u\}$ such that $I_n \supset I_{nm}$ and $\{G_\alpha\}$ has no finite subcover of each I_α . By the last Thm, $\exists x \in \bigcap_{n=1}^\infty I_n$. Say $x \in G_\alpha$, $f_n = I_\alpha$ and $f_n = I_\alpha$ and $f_n = I_\alpha$. So contained in G_α . Can find some $I_m \subset V_r \subset G_\alpha$. A contradiction G_α .

Proof of Heine-Borel. $a) \Rightarrow b$: As E bounded, can find a k-cell containy E. $b) \Rightarrow c$ has a freedy been proved.

$$(0) \Rightarrow (a)$$

Thun (Weierstrass) Every bounded in-finite subset of IRt hous a limit point on IRt.

Connected Sets

Def A set EcX is said to be connected if E is not a curion of two nonempty Separated open sets.

Thun A subset E of IR is connected if and only if $x \in E, y \in E, x < z < y$, then $z \in E$.

Proof If E convected, $(-\infty, 2) U(2, +\infty)$ conjust cover E, $\Rightarrow 2 \in E$.

If E has this property can be seperated two open subsets, $\frac{1}{2}$

