2024年度 専攻科 2S特別演習 電気工学分野 温度制御シミュレータをターゲットにした各種方式による PID パラメータ調整の試行

釧路工業高等専門学校 電子情報システム工学専攻 2年 泉 知成, 河江 蒼生, 坂本 尊, 福島 祥太, 森 隆志

2025年1月28日

目 次

1	演習の目的	2
2	選択した調整方法での作業プロセス 2.1 選択した調整方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3	計測および各種計算等の結果	4
4	結果	4
5	考察検討	4
6	役割分担	4

1 演習の目的

2 選択した調整方法での作業プロセス

本実験では、以下の2つの方法を使用して変数値の調整を行う.

2.1 選択した調整方法

- Ziegler & Nichols 限界感度法 (2.2)
- Ziegler & Nichols ステップ応答法 (2.3)

2.2 Ziegler & Nichols 限界感度法の作業プロセス

- 1. P のみを使用する様に設定する.(但し、I, D は 0 に)
- 2. 目標値を 100°C, 比例帯 (PB) も始めは大きく設定する.
- 3. 温度調節開始。
- 4. 温度が持続振動状(波形的な曲線)になるまで比例帯 PB を変えて試行する.
- 5. 持続振動状態になった時の周期 T_c と、PB から比例ゲイン K_{pc} を求める
- 6. PID 制御のパラメータを以下の計算式で求める.

$$K_p = 0.6 * K_{pc}$$

$$T_i = 0.5 * T_c$$

$$T_d = 0.125 * T_c$$

2.3 Ziegler & Nichols ステップ応答法の作業プロセス

- 1. ON/OFF を使用する様に設定する.
- 2. 目標値を 100°C に設定する.
- 3. 温度調節開始.
- 4. 温度の変化カーブを観測.
- 5. 観測結果からムダ時間 L, 勾配 R を求める.
- 6. PID 制御のパラメータを以下の計算式で求める.

$$P: \ K_p = \frac{1.2}{R*L},$$

$$I: \ T_i = 2*L,$$

$$D: \ T_d = 0.5*L$$

- 3 計測および各種計算等の結果
- 4 結果
- 5 考察検討
- 6 役割分担

参考文献

[1] author, title, publish, 2023.