Álgebra Linear e Geometria Analítica

8 - Recta e Plano

Departamento de Matemática FCT/UNL

Programa

- Matrizes
- 2 Sistemas de Equações Lineares
- Oeterminantes
- Espaços Vectoriais
- 6 Aplicações Lineares
- Valores e Vectores Próprios
- Produto Interno, Produto Externo e Produto Misto
- 6 Geometria Analítica

Definem uma recta:

- Dois pontos dessa recta
- Um ponto da recta e um vector paralelo a essa recta.

Definição

A um vector não nulo paralelo a uma recta r chamamos **vector director** da recta r.

Observação

Se A e B são dois pontos distintos de uma recta r, o vector \overrightarrow{AB} é um vector director da recta r.

Equação vectorial da recta

Dado um ponto $A(a_1, a_2, a_3)$ de uma recta r e um vector $u(u_1, u_2, u_3)$ director da recta r chamamos **equação vectorial da recta** r, à equação onde um qualquer ponto P(x, y, z) da recta r é dado por:

$$r: P = A + \lambda u, \lambda \in \mathbb{R}.$$

Atendendo a que

$$r:(x,y,z)=(a_1,a_2,a_3)+\lambda(u_1,u_2,u_3),\lambda\in\mathbb{R},$$

a equação anterior é ainda equivalente ao sistema:

Equações cartesianas da recta

$$\begin{cases} x = a_1 + \lambda u_1 \\ y = a_2 + \lambda u_2 \\ z = a_3 + \lambda u_3 \end{cases}, \lambda \in \mathbb{R}$$

que habitualmente designamos por equações paramétricas da recta r.

Para $u_1 \neq 0$, $u_2 \neq 0$ e $u_3 \neq 0$, temos

$$x = a_1 + \lambda u_1 \Longrightarrow \lambda = \frac{x - a_1}{u_1}$$
$$y = a_2 + \lambda u_2 \Longrightarrow \lambda = \frac{y - a_2}{u_2}$$
$$z = a_3 + \lambda u_3 \Longrightarrow \lambda = \frac{z - a_3}{u_3}$$

e portanto,

$$\frac{x - a_1}{u_1} = \frac{y - a_2}{u_2} = \frac{z - a_3}{u_3},$$

estas equações são designadas por equações normais da recta.

O que se passa se $u_1 = 0 \lor u_2 = 0 \lor u_3 = 0$?

Quando $u_3 \neq 0$ e considerando

$$m = \frac{u_1}{u_3}$$
 $n = \frac{u_2}{u_3}$ $p = a_1 - \frac{a_3 u_1}{u_3}$ $q = a_2 - \frac{a_3 u_2}{u_3}$

chamamos equações reduzidas da rectaao sistema

$$\left\{ \begin{array}{l} x=mz+p\\ y=nz+q \end{array} \right..$$

Definem um plano:

- Três pontos não colineares desse plano.
- Um ponto do plano e dois vectores não paralelos desse plano.
- Um ponto do plano e um vector perpendicular a esse plano.

Definição

Aos vectores não nulos paralelos a um plano π e não colineares chamamos vectores directores do plano π .

Observação

Se A e B e C são três pontos distintos e não colineares de um plano π , os vectores \overrightarrow{AB} e \overrightarrow{BC} são vectores directores do plano π .

Se u e v são vectores directores do plano π então o vector $u \times v$ é um vector perpendicular ao plano π .

Definição

Dado um ponto A de um plano π e dois vectores directores do plano π , $u(u_1, u_2, u_3)$ e $v(v_1, v_2, v_3)$ chamamos **equação vectorial do plano** π , à equação onde um qualquer ponto P do plano π é dado por :

$$\pi: P = A + \lambda u + \mu v, \lambda, \mu \in \mathbb{R}.$$

Equações cartesianas do plano

Atendendo a que π : $(x, y, z) = (a_1, a_2, a_3) + \lambda(u_1, u_2, u_3) + \mu(v_1, v_2, v_3), \lambda, \mu \in \mathbb{R}$, a equação anterior é ainda equivalente ao sistema:

Definição

$$\begin{cases} x = a_1 + \lambda u_1 + \mu v_1 \\ y = a_2 + \lambda u_2 + \mu v_2 \\ z = a_3 + \lambda u_3 + \mu v_3 \end{cases}, \lambda, \mu \in \mathbb{R}$$

que habitualmente designamos por equações paramétricas do plano π .

Como referimos, se u e v são vectores directores do plano π então o vector $u \times v$ é um vector perpendicular ao plano π .

Sendo assim $u \times v$ é ainda perpendicular a qualquer vector do plano π .

Sendo $A(a_1, a_2, a_3)$ um ponto do plano π então, para qualquer ponto $P(x, y, z) \in \pi$ teremos que o vector \overrightarrow{AP} será sempre perpendicular ao vector $u \times v$, isto é $\overrightarrow{AP}|(u \times v) = 0$.

De facto, esta é uma caracterização dos pontos P do plano π . Assim dizer que $P \in \pi$ é equivalente a afirmar que

$$\begin{vmatrix} x - a_1 & y - a_2 & z - a_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = 0.$$

Os pontos do plano π são os pontos de \mathbb{R}^3 que são soluções da equação linear nas incógnitas x, y e z:

$$ax + by + cz + d = 0$$
.

A esta equação chamamos a equação geral do plano π .

Observação

A sequência (a,b,c) dos coeficientes das incógnitas x, y e z da equação geral de um plano π : ax+by+cz+d=0 é a sequência das coordenadas de um vector perpendicular ao plano π .

Sejam P e Q dois pontos de \mathbb{R}^3 . Define-se **distância entre os pontos** P e Q, e representa-se por $\mathrm{d}(P,Q)$, a norma do vector \overrightarrow{PQ} , isto é,

$$d(P,Q) = \|\overrightarrow{PQ}\|.$$

Sejam \mathcal{F}_1 e \mathcal{F}_2 pontos, rectas ou planos de \mathbb{R}^3 . Define-se **distância entre** \mathcal{F}_1 e \mathcal{F}_2 como

$$d(\mathcal{F}_1, \mathcal{F}_2) = \min\{d(P, Q): P \in \mathcal{F}_1, Q \in \mathcal{F}_2\}.$$

Observação

Se $\mathcal{F}_1 \cap \mathcal{F}_2 \neq \emptyset$ então $d(\mathcal{F}_1, \mathcal{F}_2) = 0$.

• Distância de um ponto P a uma recta \mathcal{R} :

$$d(P, \mathcal{R}) = \|\overrightarrow{AP}\| \operatorname{sen} \theta = \frac{\|\overrightarrow{AP}\| \|u\| \operatorname{sen} \theta}{\|u\|} = \frac{\|\overrightarrow{AP} \times u\|}{\|u\|}.$$

$$\theta = \measuredangle(u, \overrightarrow{AP})$$

• Distância de um ponto P a um plano \mathcal{P} :

$$d(P, P) = \|\overrightarrow{AP}\| |\cos \theta| = \frac{\|\overrightarrow{AP}\| \|w\| |\cos \theta|}{\|w\|} = \frac{|\overrightarrow{AP}| |w|}{\|w\|}$$

$$\theta = \measuredangle(\overrightarrow{AP}, w)$$

Posição relativa entre duas rectas \mathcal{R}_1 e \mathcal{R}_2 :

- (a) $\mathcal{R}_1 = \mathcal{R}_2$.
- (b) \mathcal{R}_1 e \mathcal{R}_2 são estritamente paralelas.

(c) \mathcal{R}_1 e \mathcal{R}_2 são concorrentes, isto é, a sua intersecção é um ponto.

(d) \mathcal{R}_1 e \mathcal{R}_2 são enviesadas.

 u_1 - vector com a direcção de \mathcal{R}_1

 u_2 - vector com a direcção de \mathcal{R}_2

 A_1 - ponto da recta \mathcal{R}_1

 u_1 e u_2 têm a mesma direcção \Longrightarrow (a) ou (b).

 u_1 e u_2 não têm a mesma direcção \Longrightarrow (c) ou (d).

(a) ou (b)?
$$A_1 \in \mathcal{R}_2 \Rightarrow$$
 (a), $A_1 \notin \mathcal{R}_2 \Rightarrow$ (b)

(c) ou (d)?
$$\mathcal{R}_1 \cap \mathcal{R}_2 \neq \emptyset \Rightarrow$$
 (c), $\mathcal{R}_1 \cap \mathcal{R}_2 = \emptyset \Rightarrow$ (d)

Distância entre duas rectas \mathcal{R}_1 e \mathcal{R}_2 :

Caso (a):
$$d(\mathcal{R}_1, \mathcal{R}_2) = 0$$
.

Caso (b): $d(\mathcal{R}_1, \mathcal{R}_2)$ é a distância de um ponto qualquer de \mathcal{R}_1 à recta \mathcal{R}_2 (ou de um ponto qualquer de \mathcal{R}_2 à recta \mathcal{R}_1).

Caso (c):
$$d(\mathcal{R}_1, \mathcal{R}_2) = 0$$
.

Caso (d): Considere-se um plano \mathcal{P}_1 contendo a recta \mathcal{R}_1 e paralelo à recta \mathcal{R}_2 . A $d(\mathcal{R}_1, \mathcal{R}_2)$ é a distância de um ponto qualquer de \mathcal{R}_2 ao plano \mathcal{P}_1 .

Posição relativa entre uma recta \mathcal{R} e um plano \mathcal{P} :

(a) $\mathcal{R} \subseteq \mathcal{P}$.

(b) \mathcal{R} é estritamente paralela ao plano \mathcal{P} .

(c) A intersecção entre \mathcal{R} e \mathcal{P} é um ponto.

u - vector com a direcção da recta $\mathcal R$

w - vector perpendicular ao plano ${\mathcal P}$

A - ponto da recta ${\mathcal R}$

$$u \mid w = 0 \Longrightarrow (a) \text{ ou (b)}.$$

$$u \mid w \neq 0 \Longrightarrow (c)$$
.

(a) ou (b)?
$$A \in \mathcal{P} \Rightarrow$$
 (a), $A \notin \mathcal{P} \Rightarrow$ (b)

Exemplo

Consideremos fixado um referencial ortonormado e directo $(O; e_1, e_2, e_3)$ de \mathbb{R}^3 .

Seja \mathcal{R} a recta de equações normais

$$x = 2$$
 e $\frac{y-3}{2} = \frac{z}{4}$

e \mathcal{P} o plano que passa pelos pontos

$$A = (1, 0, -1), B = (2, 2, 0) e C = (1, 1, 1).$$

Vejamos que \mathcal{R} é estritamente paralela a \mathcal{P} .

Recta e Plano - Exemplos

Exemplo

Determinemos um vector u com a direcção de \mathcal{R} e um vector w perpendicular a \mathcal{P} . Conforme referimos, \mathcal{R} é paralela a \mathcal{P} (podendo ser coincidente ou estritamente paralela) se, e só se,

$$u \mid w = 0.$$

Para obter u basta determinar dois pontos distintos da recta \mathcal{R} , por exemplo,

$$D = (2,3,0)$$
 e $E = (2,1,-4)$

e considerar, por exemplo,

$$u = \overrightarrow{DE} = (0, -2, -4).$$

Recta e Plano - Exemplos

Exemplo

Consideremos, por exemplo, $w = \overrightarrow{AB} \times \overrightarrow{AC}$. Como $\overrightarrow{AB} = (1, 2, 1)$ e $\overrightarrow{AC} = (0, 1, 2)$ tem-se

$$w = \overrightarrow{AB} \times \overrightarrow{AC} = (3, -2, 1).$$

$$\left(\text{Mnemónica:} \; \left| \begin{array}{ccc} e_1 & e_2 & e_3 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{array} \right| = 3e_1 - 2e_2 + 1e_3. \right)$$

Assim,

$$u \mid w = (0, -2, -4) \mid (3, -2, 1) = 0 \times 3 + (-2) \times (-2) + (-4) \times 1 = 0$$

e, portanto, \mathcal{R} é paralela a \mathcal{P} .

Recta e Plano - Exemplos)

Para determinarmos se $\mathcal{R}\subset\mathcal{P}$ ou se \mathcal{R} é estritamente paralela a \mathcal{P} temos de considerar um ponto qualquer de \mathcal{R} e verificar se pertence ou não ao plano \mathcal{P} .

Como (3,-2,1) é um vector perpendicular a $\mathcal P$ e $\mathcal P$ passa no ponto A=(1,0,-1), uma equação geral do plano $\mathcal P$ será

$$3x - 2y + 1z + d = 0$$

com

$$d = -(3 \times 1 - 2 \times 0 + 1 \times (-1)) = -2.$$

Recta e Plano - Exemplos

Exemplo

Atendendo à equação geral do plano ${\cal P}$

$$3x - 2y + z - 2 = 0$$

concluímos que o ponto da recta \mathcal{R} , D=(2,3,0), não pertence ao plano \mathcal{P} pois

$$3\times 2-2\times 3+0-2\neq 0.$$

Logo \mathcal{R} é estritamente paralela a \mathcal{P} .

Distância entre uma recta \mathcal{R} e um plano \mathcal{P} :

Caso (a):
$$d(\mathcal{R}, \mathcal{P}) = 0$$
.

Caso (b): $d(\mathcal{R}, \mathcal{P})$ é a distância de um ponto qualquer da recta \mathcal{R} ao plano \mathcal{P} .

Caso (c):
$$d(\mathcal{R}, \mathcal{P}) = 0$$
.

Posição relativa entre dois planos \mathcal{P}_1 e \mathcal{P}_2 :

- (a) $\mathcal{P}_1 = \mathcal{P}_2$.
- (b) \mathcal{P}_1 e \mathcal{P}_2 são estritamente paralelos.

(c) A intersecção dos planos \mathcal{P}_1 e \mathcal{P}_2 é uma recta.

 w_1 - vector perpendicular ao plano \mathcal{P}_1 .

 w_2 - vector perpendicular ao plano \mathcal{P}_2 .

 A_1 - ponto do plano \mathcal{P}_1 .

 w_1 e w_2 têm a mesma direcção \Longrightarrow (a) ou (b).

 w_1 e w_2 não têm a mesma direcção \Longrightarrow (c).

(a) ou (b)? $A_1 \in \mathcal{P}_2 \Rightarrow$ (a), $A_1 \notin \mathcal{P}_2 \Rightarrow$ (b)

Distância entre dois planos \mathcal{P}_1 e \mathcal{P}_2 :

Caso (a):
$$d(\mathcal{P}_1, \mathcal{P}_2) = 0$$
.

Caso (b): $d(\mathcal{P}_1, \mathcal{P}_2)$ é a distância de um ponto qualquer de \mathcal{P}_1 ao plano \mathcal{P}_2 (ou de um ponto qualquer de \mathcal{P}_2 ao plano \mathcal{P}_1).

Caso (c):
$$d(\mathcal{P}_1, \mathcal{P}_2) = 0$$
.

Problemas métricos: ângulos

Ângulo de duas rectas \mathcal{R}_1 e \mathcal{R}_2 :

Define-se como o menor dos ângulos formados por duas rectas complanares \mathcal{R}_1' e \mathcal{R}_2' , uma com a direcção de \mathcal{R}_1 e a outra com a direcção de \mathcal{R}_2 .

u - vector com a direcção de \mathcal{R}_1 (e de \mathcal{R}'_1).

v - vector com a direcção de \mathcal{R}_2 (e de \mathcal{R}_2').

$$\theta = \measuredangle(\mathcal{R}_1, \mathcal{R}_2) = \arccos \frac{|u \mid v|}{\|u\| \|v\|}.$$

Problemas métricos: ângulos

Ângulo de uma recta \mathcal{R} e um plano \mathcal{P} :

Define-se como sendo o complementar do ângulo formado pela recta $\mathcal R$ com uma recta $\mathcal S$ perpendicular ao plano $\mathcal P$.

$$\cos \alpha = \frac{|u||w|}{\|u\|\|w\|} = \sin \theta.$$

Problemas métricos: ângulos

Ângulo de dois planos \mathcal{P}_1 e \mathcal{P}_2 :

Define-se como sendo o ângulo formado por duas rectas \mathcal{R}_1 e \mathcal{R}_2 , com \mathcal{R}_1 perpendicular a \mathcal{P}_1 e \mathcal{R}_2 perpendicular a \mathcal{P}_2 .

 w_1 - vector perpendicular a \mathcal{P}_1 .

 w_2 - vector vector perpendicular a \mathcal{P}_2 .

$$\measuredangle(\mathcal{P}_1,\mathcal{P}_2) = \arccos \frac{|w_1 \mid w_2|}{\|w_1\| \|w_2\|}.$$