#### Lecture 21. Value Iteration

Lecturer: Jie Wang Date: Dec 20, 2021

### 1 Introduction

In this lecture, we shall introduce an algorithm—called value iteration—to solve for the optimal action-value function  $q_*$  (and thus the optimal policy  $\pi_*$ ). We further show the existence and uniqueness of  $q_*$  given a finite MDP.

All through this lecture, we assume that we have a perfect knowledge of the environment, i.e., the transition probabilities

$$\Pr(S_{t+1} = s', R_{t+1} = r | S_t = s, A_t = a), \forall s, s' \in \mathcal{S}, r \in \mathcal{R}, a \in \mathcal{A},$$
 (1)

which is abbreviated by p(s', r|s, a).

## 2 Bellman Optimality Equation

For  $s \in \mathcal{S}$  and  $a \in \mathcal{A}$ , the optimal action-value function is given by

$$q_*(s, a) = \max_{\pi} \mathbb{E}[G_t | S_t = s, A_t = a]$$

$$= \max_{\pi} \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s, A_t = a]$$

$$= \mathbb{E}[R_{t+1} | S_t = s, A_t = a] + \gamma \max_{\pi} \mathbb{E}[G_{t+1} | S_t = s, A_t = a].$$
(2)

As the transition probabilities in Eq. (1) are known, we can write the first term on the RHS of Eq. (2) as

$$\mathbb{E}[R_{t+1}|S_t = s, A_t = a] = \sum_r r \sum_{s'} p(s', r|s, a). \tag{3}$$

Moreover, the expectation in the second term on the RHS of Eq. (2) is

$$\mathbb{E}[G_{t+1}|S_t = s, A_t = a] = \sum_{s',a'} p(s', a'|s, a) \mathbb{E}[G_{t+1}|S_{t+1} = s', A_{t+1} = a', S_t = s, A_t = a]$$

$$= \sum_{s',a'} p(s'|s, a) p(a'|s', s, a) \mathbb{E}[G_{t+1}|S_{t+1} = s', A_{t+1} = a']$$

$$= \sum_{s',a'} p(s'|s, a) \pi(a'|s') q_{\pi}(s', a')$$

$$= \sum_{s'} p(s'|s, a) \sum_{a'} \pi(a'|s') q_{\pi}(s', a'). \tag{4}$$

Combining Eq. (3) and Eq. (4), Eq. (2) becomes

$$q_*(s,a) = \sum_r r \sum_{s'} p(s',r|s,a) + \gamma \max_{\pi} \sum_{s'} p(s'|s,a) \sum_{a'} \pi(a'|s') q_{\pi}(s',a'). \tag{5}$$

Notice that, the inner summand in the second term is a convex combination of  $q_{\pi}(s', a')$ . Thus, to maximize the second term, we can find an action that maximizes  $q_{\pi}(s', \cdot)$ . Specifically, we have

$$q_*(s, a) = \sum_r r \sum_{s'} p(s', r|s, a) + \gamma \max_{\pi} \sum_{s'} p(s'|s, a) \max_{a'} q_{\pi}(s', a').$$
 (6)





By further noticing the definition of  $q_*$ , we can write Eq. (6) as

$$q_*(s,a) = \sum_{r} r \sum_{s'} p(s',r|s,a) + \gamma \sum_{s'} p(s'|s,a) \max_{a'} q_*(s',a')$$

$$= \sum_{r,s'} p(s',r|s,a) (r + \gamma \max_{a'} q_*(s',a')). \tag{7}$$

Eq. (7) is the so-called **Bellman Optimality Equation** for the optimal action-value function  $q_*$ .

## 3 Existence and Uniqueness of $q_*$

In view of Eq. (7), an important question to ask is that, can we always find a  $q_*$  such that Eq. (7) holds? In other words, we need to discuss the existence of  $q_*$ .

Moreover, if we can ensure the existence of  $q_*$ , we shall be interested in its uniqueness. Indeed, in view of the definition of  $q_*$  in Eq. (2), if we can find the  $q_*$  function that satisfies Eq. (7), it must be unique.

By Eq. (7), we note that  $q_*$  is a **fixed point** of the Bellman optimality equation. Thus, a natural approach to explore the existence and uniqueness of  $q_*$  is the **Banach Fixed Point Theorem**, which is an important result on the so-called **contraction mapping**.

#### 3.1 Banach fixed point theorem

Before we introduce the Banach fixed point theorem, we first introduce contraction mapping.

**Definition 1** (Contraction Mapping). [1] Let (X, d) be a metric space. A mapping  $T: X \to X$  is called a *contraction mapping* on X if there is a positive real number  $\alpha < 1$  such that for any  $x, y \in X$ 

$$d(Tx, Ty) < \alpha d(x, y).$$

Geometrically, the images of any two points are getting closer under a contraction mapping with a ratio no larger than  $\alpha$ .

**Theorem 1** (Banach Fixed Point Theorem). Suppose that X is a nonempty complete metric space and  $T: X \to X$  is a contraction mapping on X. Then T has a unique fixed point.

To show the Banach fixed point theorem, we will first show that the contraction mapping T always admits a fixed point, that is, the existence of the fixed point of T. Then, we show that T admits only one fixed point.

*Proof.* (Existence) We first show that we can always find a  $x \in X$  such that Tx = x, i.e., x is one of the fixed points of T. The idea is that, starting from an arbitrary point  $x_0$ , we construct a sequence  $(x_k)$ ,  $k = 0, 1, \ldots$  by letting

$$x_k = Tx_{k-1}, k = 1, 2, \dots$$

We shall show that  $(x_k)$  is Cauchy. Once this is done, the sequence  $(x_k)$  converge to a point  $x \in X$ , as X is complete. Then, it suffices to show that Tx = x.

Let us now show that  $(x_k)$  is Cauchy. For notational convenience, let

$$C = d(x_1, x_0).$$





It is easy to see that

$$d(x_{k+1}, x_k) \le \alpha d(x_k, x_{k-1}) \le \dots \le \alpha^k d(x_1, x_0) = \alpha^k C, \, \forall, k = 1, 2, \dots$$
 (8)

For any integers m, n (WLOG, say m > n), the triangular inequality leads to

$$d(x_m, x_n) \le \sum_{i=0}^{m-n-1} d(x_{n+i+1}, x_{n+i}).$$
(9)

Combining the inequalities in (8) and (9), we have

$$d(x_m, x_n) \le \sum_{i=0}^{m-n-1} \alpha^{n+i} C = \alpha^n C \frac{1 - \alpha^{m-n}}{1 - \alpha} \le \alpha^n \frac{C}{1 - \alpha}.$$

Thus, for any  $\epsilon > 0$ , we can find an integer  $N \ge \frac{\log \epsilon (1-\alpha) - \log C}{\log \alpha}$  such that for any integers  $m, n \ge N$ , we have  $d(x_m, x_n) \le \epsilon$ . This shows that the sequence  $(x_k)$  is Cauchy, and thus there exists a point  $x \in X$  such that  $x_k \to x$ .

We next show that x is a fixed point of T. By the triangular inequality, we have

$$d(Tx, x) \le d(Tx, x_k) + d(x_k, x) \le \alpha d(x, x_{k-1}) + d(x_k, x), \forall k = 1, 2, \dots$$

By letting  $k \to \infty$ , the above inequality becomes

$$d(Tx, x) = 0,$$

which implies that Tx = x. We have shown that x is a fixed point of T.

(**Uniqueness**) Suppose that we can find another fixed point x' of T. We have

$$d(x, x') = d(Tx, Tx') \le \alpha d(x, x'),$$

which clearly leads to a contradiction as  $\alpha < 1$ . Thus, the contraction mapping T has only one fixed point.

#### 3.2 Application to the Bellman optimality equation

The Banach fixed point theorem is the working horse to analyze the existence and uniqueness of the solution—that is, the optimal action-value function  $q_*$ —to the Bellman optimality equation. To apply the Banach fixed point theorem, we need to identify 1) a complete metric space where  $q_*$  lies in and 2) a contraction mapping.

The complete metric space Recall that, we consider finite MDPs in this lecture, i.e.,  $|\mathcal{S}|$ ,  $|\mathcal{A}|$ , and  $|\mathcal{R}|$  are all finite. We can see that  $q_*$  lies in  $\mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$ . If we equip  $\mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$  with an arbitrary norm  $\|\cdot\|$ , it becomes a complete normed vector space, i.e., a Banach space. Thus,  $(\mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}, d)$  is a complete metric space with its metric induced by the norm, i.e.,  $d(x, y) = \|x - y\|$ .

**The contraction mapping** In view of the Bellman optimality equation in Eq. (7), for any function  $q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$ , we define

$$Tq(s, a) = \sum_{r, s'} p(r, s'|s, a)(r + \gamma \max_{a'} q(s', a')), \ \forall s, s' \in \mathcal{S}, \ a, a' \in \mathcal{A}.$$
 (10)

We show that the mapping T defined in Eq. (10) is a contraction mapping.





**Lemma 1.** For a finite MDP, the mapping T in Eq. (10) is a contraction mapping.

*Proof.* We consider the complete metric space  $(\mathbb{R}^{|\mathcal{S}|\times|\mathcal{A}|}, d)$ , where  $d(q_1, q_2) = ||q_1 - q_2||_{\infty}$  for any  $p, q \in \mathbb{R}^{|\mathcal{S}|\times|\mathcal{A}|}$ . Then,

$$||Tq_{1} - Tq_{2}||_{\infty} = \max_{s,a} |Tq_{1}(s,a) - Tq_{2}(s,a)|$$

$$= \gamma \max_{s,a} \sum_{r,s'} p(r,s'|s,a) |\max_{a'} q_{1}(s',a') - \max_{a'} q_{2}(s',a')|$$

$$\leq \gamma \max_{s,a} \sum_{s'} p(s'|s,a) \max_{a'} |q_{1}(s',a') - q_{2}(s',a')|$$

$$\leq \gamma \max_{s,a} \max_{s'} \max_{a'} |q_{1}(s',a') - q_{2}(s',a')|$$

$$= \gamma \max_{s',a'} |q_{1}(s',a') - q_{2}(s',a')|$$

$$= \gamma ||q_{1} - q_{2}||_{\infty},$$

which completes the proof.

In view of the complete metric space  $(\mathbb{R}^{|\mathcal{S}|\times|\mathcal{A}|},d)$  with  $d(x,y)=\|x-y\|_{\infty}$  for all  $x,y\in\mathbb{R}^{|\mathcal{S}|\times|\mathcal{A}|}$  and Lemma 1, a direct application of the Banach fixed point theorem leads to the existence and uniqueness of its solution, i.e., the optimal action-value function  $q_*$ . We rigorously formalize this result in the theorem as follows.

**Theorem 2.** For a finite MDP, the Bellman optimality equation admits a unique solution.

#### 4 Value Iteration

We have shown that the Bellman optimality equation always admits a unique solution. The next question is how to find the solution, i.e., the optimal action-value function  $q_*$ .

Indeed, the Banach fixed point theorem is not only a powerful tool to show the existence and uniqueness of the solution to a system of equations, but also a successive approximation approach to find the solution. Inspired by the proof of the Banach fixed point theorem, we have the so-called value iteration algorithm to find  $q_*$  as follows.

#### Algorithm 1 Value Iteration

```
Input: an initial vector v \in \mathbb{R}^{|\mathcal{S}|}, an initial matrix q \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}
Output: \pi(s) = \operatorname{argmax}_{a \in \mathcal{A}} \sum_{s', r} p(s', r|s, a)(r + v(s')), \forall s \in \mathcal{S}
 1: repeat
 2:
           for s \in \mathcal{S} do
                 for a \in \mathcal{A} do
  3:
                      q(s, a) = \sum_{s', r} p(s', r|s, a)(r + v(s'))
  4:
                 end for
  5:
                 v(s) = \max_a q(s, a)
  6:
           end for
  7:
  8: until convergence
```







# References

 $[1] \ \ \text{E. Kreyszig}. \ \textit{Introductory Functional Analysis with Applications}. \ \ \text{John Wiley \& Sons Inc.}, \ 1978.$