Natural Numbers

July 14, 2016

We have each number and a bottom element, \bot that carries less information than a number. The only orderings we have are $\bot \sqsubseteq 0$, $\bot \sqsubseteq 1$, $\bot \sqsubseteq 2$, etc...

The set $\mathbb{N}_{\perp} = \{\perp\} \cup \mathbb{N}$ and the relation \sqsubseteq is defined as

$$\sqsubseteq = \{(\bot, \bot)\} \cup \{(\bot, n), (n, n) \mid n \in \mathbb{N}\}\$$

1 $\forall x \in \mathbb{N}_{\perp}. \perp \sqsubseteq x$

In the definition of our relation we have $\{(\bot, n) \mid n \in \mathbb{N}\}$ and (\bot, \bot) . so $\{(\bot, x) \mid x \in \mathbb{N}_\bot\} \subset \sqsubseteq$.

2 Prove \sqsubseteq is a partial order

For \sqsubseteq to be a partial order, it must be reflexive, antisymmetric and transitive.

Reflexivity \sqsubseteq is *reflexive* by definition, as we have $\{(x,x) \mid x \in \mathbb{N}_{\perp}\}$ as a subset of \sqsubseteq .

Antisymmetry When $x = \bot$, the only possible y we can have such that $y \sqsubseteq x$, is $y = \bot$, as $n \sqsubseteq \bot$ is not defined in the relation for any n. Therefore $x = y = \bot$.

When x = n, the only possible value of y is n, so x = y = n.

Therefore \sqsubseteq is antisymmetric

Transitivity If $x = \bot$, a possibility for y is y = n. Then we must have z = n for (y, z) to be in \sqsubseteq . Then we need $\bot \sqsubseteq n$, which we have, as we have (\bot, n) , for any $n \in \mathbb{N}$, defined in the relation. y can also be \bot . Then we have both options for z. When z = n, we should have $\bot \sqsubseteq n$, which we have, as we have (\bot, n) for any $n \in \mathbb{N}$ defined in the relation. When $z = \bot$, we just want $\bot \sqsubseteq \bot$, which is also in the definition of \sqsubseteq .

If x = n, then both y and z must also be equal to n for $x \sqsubseteq y$ and $y \sqsubseteq z$ to be defined. Therefore we should have $n \sqsubseteq n$. This is in the definition of \sqsubseteq .

Therefore \sqsubseteq is *transitive*.

All three properties hold, so \sqsubseteq is a partial order on \mathbb{N}_{\perp} .

3 All chains have a least upper bound (limit)

A chain formed from the set \mathbb{N}_{\perp} can be of three types

- $\bot \sqsubseteq \ldots \sqsubseteq \bot$, for any number of \bot s
- $n \sqsubseteq \ldots \sqsubseteq n$, for any number of n, where n is the same number each time
- $\bot \sqsubseteq \ldots \sqsubseteq \bot \sqsubseteq n \sqsubseteq \ldots \sqsubseteq n$, for any number of \bot s followed by any number of identical ns

For all chains $(\forall x. \ Chain(\mathbb{N}_{\perp}), \text{ when } \exists z \in \mathbb{N}_{\perp} \text{ we must prove} :$

- $\forall i.x_i \sqsubseteq z$
- $\forall y.(\forall i.x_i \sqsubseteq y) \Rightarrow z \sqsubseteq y$

We prove this by case analysis on the different chains, proving the two properties for each case:

 $\bot \sqsubseteq \ldots \sqsubseteq \bot$ For these chains, let $z = \bot$. The last element in the chain will always be \bot , so for every i we have $\bot \sqsubseteq \bot$. Therefore $\forall i.x_i \sqsubseteq \bot$.

For the second part, every element is \bot , so $x_i = \bot$ and $y = \bot$. Then we have $\bot \sqsubseteq \bot$ for $z \sqsubseteq y$. Therefore $\forall y. (\forall i.x_i \sqsubseteq y) \Rightarrow \bot \sqsubseteq y$ holds.

 $n \sqsubseteq \ldots \sqsubseteq n$ For the chains just containing n, let z = n. The last element in the chain will always be n, so for every n we have $n \sqsubseteq n$. Therefore $\forall i.x_i \sqsubseteq n$.

For the second part, every element is n, so $x_i = n$ and y = n. Then we have $n \sqsubseteq n$ for $z \sqsubseteq y$. Therefore $\forall y. (\forall i.x_i \sqsubseteq y) \Rightarrow n \sqsubseteq y$ holds.

 $\bot \sqsubseteq \ldots \sqsubseteq \bot \sqsubseteq n \sqsubseteq \ldots \sqsubseteq n$ For these chains, let z = n. The last element will be n. We have both $\bot \sqsubseteq n$ and $n \sqsubseteq n$ in the relation, so for any x, we have $x \sqsubseteq n$. Therefore $\forall i.x_i \sqsubseteq n$.

For the second part, $(\forall i.x_i \sqsubseteq y)$ is only true when y = n, so we only have to consider this case. Then we have $n \sqsubseteq n$ for $z \sqsubseteq y$. Therefore $\forall y.(\forall i.x_i \sqsubseteq y) \Rightarrow n \sqsubseteq y$ holds.

Now we have proved that there exists a lower bound, z, for every possible chain, so our set \mathbb{N}_{\perp} and partial order has a least upper bound for every chain in $Chain(\mathbb{N}_{\perp})$, the set of possible chains we can form with \mathbb{N}_{\perp} .

We have proved that \mathbb{N}_{\perp} with the ordering \sqsubseteq is a pointed poset with a least upper bound for all of its chains, so it must be a domain.