4. feladatsor: Relációk kompozíciója, függvények

1. feladat

Legyen $A = \{1, 2, 3\}, B = \{a, b, c, d, e, f\}, C = \{2, 4, 6, 8\}$ továbbá $R \subseteq A \times B, S \subseteq B \times C$, $R = \{(1, a), (1, b), (2, c), (2, f), (3, d), (3, e), (3, f)\} \text{ \'es } S = \{(a, 2), (a, 4), (c, 6), (c, 8), (d, 2), (d, 4), (c, 8), (d, 2), (d, 4), ($ (d,6),(f,8). Határozza meg az $S \circ R$ kompozíciót.

2. feladat

Legyen $A = \{1, 2, 3, 4, 5, 6, 7, 8\}; S, R \subseteq A \times A$. Határozza meg az $S \circ R$ kompozíciót.

- (a) $R = \{(1,2), (1,3), (2,2), (3,3), (3,4), (4,1)\}\$ és $S = \{(1,6), (2,3), (2,4), (3,1)\}\$
- (b) $R = \{(1,3), (1,4), (2,2), (2,4), (3,5), (5,6), (6,7)\}$ és $S = \{(1,2), (1,4), (2,3), (3,1), (3,2), (3,1), (3,2), (3,1), (3,2), (3$ (4,2), (4,6), (5,6), (7,2)
- (c) $R = \{(2,2), (2,4), (3,1), (3,4), (4,4), (5,3)\}\$ és $S = \{(2,6), (3,7), (5,1), (5,6), (5,8), (6,2), ($ (7,7)
- (d) $R = \{(6,1), (6,2), (7,3), (8,7)\}\$ és $S = \{(1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,3), (2,4), ($ (2,5), (2,6), (2,7), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4), (5,1), (5,3), (5,5),(7,1),(7,2)

Kommutatív-e a kompozíció? Határozza meg például az (a) esetben az $R \circ S$ kompozíciót.

3. feladat

Legyenek $R, S \subseteq A \times A$ szimmetrikus relációk. Bizonyítsuk be, hogy $R \circ S$ szimmetrikus akkor és csak akkor, ha $R \circ S = S \circ R$.

4. feladat

Legyen $R, S \subseteq \mathbb{R} \times \mathbb{R}$. Határozza meg az $S \circ R$ és $R \circ S$ kompozíciót.

(a)
$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 4x = y^2 + 6\} \text{ és } S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x - 1 = y\}$$

(b)
$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x = 2y\}$$
 és $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^3\}$

(c)
$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \frac{1}{x} = y^2\} \text{ és } S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \sqrt{x - 2} = 3y\}$$

(c)
$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \frac{1}{x} = y^2\} \text{ és } S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \sqrt{x - 2} = 3y\}$$

(d) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 - 6x + 5 = y\} \text{ és } S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 = y \land 2y = x\}$

5. feladat

Tekintsük a következő relációkat:

$$\begin{split} \rho &= \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid |x-y| \leq 3\}, \ \varphi = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 6x-1 = 4y+5\}, \\ \lambda &= \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 4 \mid 2x+3y\}, \ \alpha = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 1,5x-1,5 \leq y\} \\ \text{Határozza meg a következő kompozíciókat.} \end{split}$$

$$\rho \circ \varphi$$
 $\varphi \circ \lambda$ φ^3 $\alpha \circ \rho$ $\rho \circ \alpha$

6. feladat

Válasszuk ki a következő relációk közül a parciális függvényeket illetve a teljes függvényeket. Adja meg a függvények értelmezési tartományát, értékkészletét.

(a)
$$A = \{1, 2, 3, 4, 5\}, B = \{10, 11, 12, 13, 14\}, f \subseteq A \times B, f = \{(1, 11), (2, 11), (4, 12), (5, 10)\}$$

(b)
$$A = \{1, 2, 3, 4\}, B = \{a, b, c, d, e, f\}, f \subseteq A \times B, f = \{(1, a), (2, c), (3, e), (3, f), (4, a)\}$$

(c)
$$A = \{1, 2, 3, 4, 5\}, B = \{a, b, c, d, e, f\}, f \subseteq A \times B, f = \{(1, a), (4, e), (5, d)\}$$

(d)
$$A = \{1, 2, 3\}, B = \{1, 3, 5\}, f \subseteq A \times B, f = \{(1, 1), (2, 5), (3, 5)\}$$

7. feladat

Legyen $A=\{2,4,6,8\}; B=\{a,b,c\}; f_1,f_2,f_3\in A\to B$. Döntsük el, mely függvények szürjektívek.

- (a) $f_1 = \{(2, a), (4, b), (6, c), (8, a)\}$
- (b) $f_2 = \{(2, a), (4, b), (6, a), (8, b)\}$
- (c) $f_3 = \{(2, a), (4, a), (6, a), (8, a)\}$

8. feladat

Legyen $A=\{1,3,5\}; B=\{p,q,r,s\}; f_1,f_2,f_3\in A\to B$. Döntsük el, mely függvények injektívek.

- (a) $f_1 = \{(1, p), (3, q), (5, r)\}$
- (b) $f_2 = \{(1, s), (3, r), (5, s)\}$
- (c) $f_3 = \{(1,q), (3,q), (5,q)\}$

9. feladat

Legyen $f: \mathbb{R} \to \mathbb{R}$, f(x) := 3x - 4. Bizonyítsa be, hogy a függvény bijektív, majd határozza meg az inverzét.

10. feladat

Legyen $f: \mathbb{R} \to \mathbb{R}, f(x) := 3 - |x|$. Bizonyítsa be, hogy a függvény se nem injektív, se nem szürjektív.

11. feladat

Döntsük el, hogy az alábbi relációk közül melyek függvények.

- (a) $f \subseteq \mathbb{N} \times \mathbb{N}, xfy \iff x \mid y$
- (b) P a prímszámok halmaza, $f \subseteq P \times P, xfy \iff x \mid y$
- (c) $f \subseteq \{0, 3, 5\} \times \{1, 2, 5\}, xfy \iff xy = 0$
- (d) $f \subseteq \{1, 2, 5\} \times \{0, 3, 5\}, xfy \iff xy = 0$
- (e) $f \subseteq \mathbb{N} \times \mathbb{N}, xfy \iff$ tízes számrendszerben x ugyanazokból a számjegyekből áll mint y
- (f) $f \subseteq \mathbb{N} \times \mathbb{N}, xfy \iff 2x = y$
- (g) $f \subseteq \mathbb{Z} \times \mathbb{Z}, xfy \iff x^2 = y^2$
- (h) $f \subseteq \mathbb{N} \times \mathbb{N}, xfy \iff x^2 = y^2$
- (i) $f \subseteq \mathbb{R} \times \mathbb{R}, x f y \iff x^2 + y^2 = 9$

12. feladat

Döntsük el, hogy az alábbi relációk közül melyek függvények.

- (a) $f_1 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 7x = y^2\} \subseteq \mathbb{R} \times \mathbb{R}$
- (b) $f_2 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x = y^2 + 6y\} \subseteq \mathbb{R} \times \mathbb{R}$
- (c) $f_3 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 7x^2 6 = y\} \subseteq \mathbb{R} \times \mathbb{R}$
- (d) $f_4 = \{(x,y) \in \mathbb{R} \times \mathbb{R}_0^+ \mid y = |x|\} \subseteq \mathbb{R} \times \mathbb{R}_0^+$
- (e) $f_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = (x+4)^2\} \subseteq \mathbb{R} \times \mathbb{R}$
- (f) $f_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R}_0^+ \mid 2y = \sqrt{x}\} \subseteq \mathbb{R} \times \mathbb{R}_0^+$
- (g) $f_7 = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid 7 \mid x y\} \subseteq \mathbb{Z} \times \mathbb{Z}$
- (h) $f_8 = \{(x, y) \in (\mathbb{R} \setminus \{0\}) \times (\mathbb{R} \setminus \{0\}) \mid xy = 1\} \subseteq (\mathbb{R} \setminus \{0\}) \times (\mathbb{R} \setminus \{0\})$
- (i) $f_9 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid xy = 1\} \subseteq \mathbb{R} \times \mathbb{R}$
- (j) $f_{10} = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid |x y| \le 3\} \subseteq \mathbb{Z} \times \mathbb{Z}$
- (k) $f_{11} = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y(1 x^2) = x 1\} \subseteq \mathbb{R} \times \mathbb{R}$

(l) $f_{12} = \{(x,y) \in (\mathbb{R} \setminus \{1,-1\}) \times (\mathbb{R} \setminus \{1,-1\}) \mid y(1-x^2) = x-1\} \subseteq (\mathbb{R} \setminus \{1,-1\}) \times (\mathbb{R} \setminus \{1,-1\})$ Ha a reláció függvény, döntsük el, hogy injektív, szürjektív, bijektív-e illetve ha nem függvény, akkor reflexív, szimmetrikus, tranzitív-e.

Felhasznált irodalom

Láng Csabáné: Teljes indukció, logika, halmazok, relációk, függvények példatár. ELTE IK Komputeralgebra Tanszék

Csikós Pajor Gizella, Péics Hajnalka: Analízis elméleti összefoglaló és példatár. Bolyai Farkas Alapítvány

Rimán János: Matematikai analízis feladatgyűjtemény. EKF Líceum Kiadó

Koch-Gömöri Richárd, kgomoririchard@inf.elte.hu, kgomori.richard@gmail.com