Skip to content FluidDomainSettings(bpy_struct)

```
base class — bpy_struct
```

class bpy.types.FluidDomainSettings(bpy_struct)

Fluid domain settings

adapt margin

Margin added around fluid to minimize boundary interference

TYPE:

int in [2, 24], default 4

adapt_threshold

Minimum amount of fluid a cell can contain before it is considered empty

TYPE:

float in [0, 1], default 0.02

additional_res

Maximum number of additional cells

TYPE:

int in [0, 512], default 0

alpha

Buoyant force based on smoke density (higher value results in faster rising smoke)

TYPE:

float in [-5, 5], default 1.0

beta

Buoyant force based on smoke heat (higher value results in faster rising smoke)

TYPE:

float in [-5, 5], default 1.0

Speed of the burning reaction (higher value results in smaller flames)

TYPE:

float in [0.01, 4], default 0.75

cache_data_format

Select the file format to be used for caching volumetric data

- UNI Uni Cache Uni file format (.uni).
- OPENVDB OpenVDB OpenVDB file format (.vdb).
- RAW Raw Cache Raw file format (.raw).

enum in ['UNI', 'OPENVDB', 'RAW'], default 'OPENVDB'

cache_directory

Directory that contains fluid cache files

```
TYPE:
```

string, default ", (never None)

cache_frame_end

Frame on which the simulation stops (last frame baked)

TYPE:

int in [-1048574, 1048574], default 250

cache frame offset

Frame offset that is used when loading the simulation from the cache. It is not considered when baking the simulation, only when loading it.

TYPE:

int in [-1048574, 1048574], default 0

cache_frame_pause_data

TYPE:

int in [-inf, inf], default 0

cache_frame_pause_guide

TYPE:

int in [-inf, inf], default 0

cache_frame_pause_mesh

TYPE:

int in [-inf, inf], default 0

cache_frame_pause_noise

TYPE:

int in [-inf, inf], default 0

cache_frame_pause_particles

TYPE:

int in $[-\inf]$, default 0

cache_frame_start

Frame on which the simulation starts (first frame baked)

TYPE:

int in [-1048574, 1048574], default 1

cache_mesh_format

Select the file format to be used for caching surface data

- UNI Uni Cache Uni file format (.uni).
- OPENVDB OpenVDB OpenVDB file format (.vdb).
- RAW Raw Cache Raw file format (.raw).

TYPE:

enum in ['UNI', 'OPENVDB', 'RAW'], default 'UNI'

cache_noise_format

Select the file format to be used for caching noise data

- UNI Uni Cache Uni file format (.uni).
- OPENVDB OpenVDB OpenVDB file format (.vdb).

• RAW Raw Cache – Raw file format (.raw).

TYPE:

enum in ['UNI', 'OPENVDB', 'RAW'], default 'OPENVDB'

cache particle format

Select the file format to be used for caching particle data

- UNI Uni Cache Uni file format (.uni).
- OPENVDB OpenVDB OpenVDB file format (.vdb).
- RAW Raw Cache Raw file format (.raw).

TYPE:

enum in ['UNI', 'OPENVDB', 'RAW'], default 'OPENVDB'

cache resumable

Additional data will be saved so that the bake jobs can be resumed after pausing. Because more data will be written to disk it is recommended to avoid enabling this option when baking at high resolutions.

TYPE:

boolean, default False

cache type

Change the cache type of the simulation

- REPLAY Replay Use the timeline to bake the scene.
- MODULAR Modular Bake every stage of the simulation separately.
- ALL All—Bake all simulation settings at once.

TYPE:

enum in ['REPLAY', 'MODULAR', 'ALL'], default 'REPLAY'

cell size

Cell Size

TYPE:

mathutils. Vector of 3 items in [-inf, inf], default (0.0, 0.0, 0.0), (readonly)

cfl condition

Maximal velocity per cell (greater CFL numbers will minimize the number of simulation steps and the computation time.)

TYPE:

float in [0, 10], default 2.0

clipping

Value under which voxels are considered empty space to optimize rendering

TYPE:

float in [0, 1], default 1e-06

color grid

Smoke color grid

TYPE:

 $float \ array \ of \ 32 \ items \ in \ [-inf, inf], \ default \ (0.0, \ 0.0,$

color ramp

```
TYPE:
```

```
ColorRamp , (readonly)
```

color_ramp_field

Simulation field to color map

TYPE:

enum in ['NONE'], default 'NONE'

color_ramp_field_scale

Multiplier for scaling the selected field to color map

TYPE:

float in [0.001, 100000], default 1.0

delete_in_obstacle

Delete fluid inside obstacles

TYPE:

boolean, default False

density grid

Smoke density grid

TYPE:

display_interpolation

Interpolation method to use for smoke/fire volumes in solid mode

- LINEAR Linear Good smoothness and speed.
- $\bullet \ \ \mbox{CUBIC Cubic} \mbox{Smoothed high quality interpolation, but slower.}$
- \bullet CLOSEST Closest No interpolation.

TYPE:

```
enum in ['LINEAR', 'CUBIC', 'CLOSEST'], default 'LINEAR'
```

display_thickness

Thickness of smoke display in the viewport

TYPE:

float in [0.001, 1000], default 1.0

dissolve_speed

Determine how quickly the smoke dissolves (lower value makes smoke disappear faster)

TYPE:

```
int in [1, 10000], default 5
```

domain resolution

Smoke Grid Resolution

TYPE:

int array of 3 items in [-inf, inf], default (0, 0, 0), (readonly)

domain type

Change domain type of the simulation

- GAS Gas Create domain for gases.
- LIQUID Liquid Create domain for liquids.

TYPE:

```
enum in ['GAS', 'LIQUID'], default 'GAS'
```

effector_group

Limit effectors to this collection

TYPE:

Collection

effector weights

TYPE:

```
EffectorWeights, (readonly)
```

export_manta_script

Generate and export Mantaflow script from current domain settings during bake. This is only needed if you plan to analyze the cache (e.g. view grids, velocity vectors, particles) in Mantaflow directly (outside of Blender) after baking the simulation.

TYPE:

boolean, default False

flame_grid

Smoke flame grid

TYPE:

flame ignition

Minimum temperature of the flames (higher value results in faster rising flames)

TYPE:

```
float in [0.5, 5], default 1.5
```

flame max temp

Maximum temperature of the flames (higher value results in faster rising flames)

TYPE:

```
float in [1, 10], default 3.0
```

flame_smoke

Amount of smoke created by burning fuel

TYPE:

```
float in [0, 8], default 1.0
```

flame_smoke_color

Color of smoke emitted from burning fuel

TYPE:

```
mathutils.Color of 3 items in [0, inf], default (0.7, 0.7, 0.7)
```

flame_vorticity

Additional vorticity for the flames

TYPE:

float in [0, 2], default 0.5

flip ratio

PIC/FLIP Ratio. A value of 1.0 will result in a completely FLIP based simulation. Use a lower value for simulations which should produce smaller splashes.

TYPE:

float in [0, 1], default 0.97

fluid_group

Limit fluid objects to this collection

TYPE:

Collection

force collection

Limit forces to this collection

TYPE:

Collection

fractions distance

Determines how far apart fluid and obstacle are (higher values will result in fluid being further away from obstacles, smaller values will let fluid move towards the inside of obstacles)

TYPE:

float in [-5, 5], default 0.5

fractions threshold

Determines how much fluid is allowed in an obstacle cell (higher values will tag a boundary cell as an obstacle easier and reduce the boundary smoothening effect)

TYPE:

float in [0.001, 1], default 0.05

gravity

Gravity in X, Y and Z direction

TYPE:

mathutils. Vector of 3 items in [-1000.1, 1000.1], default (0.0, 0.0, -9.81)

gridlines_cell_filter

Cell type to be highlighted

- NONE None Highlight the cells regardless of their type.
- FLUID Fluid Highlight only the cells of type Fluid.
- OBSTACLE Obstacle Highlight only the cells of type Obstacle.
- EMPTY Empty Highlight only the cells of type Empty.
- \bullet $\,$ INFLOW $\,$ Inflow Highlight only the cells of type Inflow.
- \bullet $\,$ OUTFLOW $\,$ Outflow Highlight only the cells of type Outflow.

TYPE:

enum in ['NONE', 'FLUID', 'OBSTACLE', 'EMPTY', 'INFLOW', 'OUTFLOW'], default 'NONE'

gridlines color field

A1 1 1 A11 A11 A

Simulation field to color map onto gridlines

- NONE None None.
- FLAGS Flags Flag grid of the fluid domain.
- RANGE Highlight Range Highlight the voxels with values of the color mapped field within the range.

TYPE:

```
enum in ['NONE', 'FLAGS', 'RANGE'], default 'NONE'
```

gridlines lower bound

Lower bound of the highlighting range

TYPE:

```
float in [-inf, inf], default 0.0
```

gridlines range color

Color used to highlight the range

TYPE:

float array of 4 items in [0, inf], default (1.0, 0.0, 0.0, 1.0)

gridlines_upper_bound

Upper bound of the highlighting range

TYPE:

```
float in [-inf, inf], default 1.0
```

guide_alpha

Guiding weight (higher value results in greater lag)

TYPE:

```
float in [1, 100], default 2.0
```

guide_beta

Guiding size (higher value results in larger vortices)

TYPE:

```
int in [1, 50], default 5
```

guide parent

Use velocities from this object for the guiding effect (object needs to have fluid modifier and be of type domain))

TYPE:

Object

guide_source

Choose where to get guiding velocities from

- DOMAIN Domain Use a fluid domain for guiding (domain needs to be baked already so that velocities can be extracted). Guiding domain be of any type (i.e. gas or liquid)..
- EFFECTOR Effector Use guiding (effector) objects to create fluid guiding (guiding objects should be animated and baked once set up completely).

TYPE:

```
enum in ['DOMAIN', 'EFFECTOR'], default 'DOMAIN'
```

guide_vel_factor

Guiding velocity factor (higher value results in greater guiding velocities)

```
TYPE:
                           float in [0, 100], default 2.0
has_cache_baked_any
            TYPE:
                           boolean, default False
has_cache_baked_data
            TYPE:
                           boolean, default False
has_cache_baked_guide
            TYPE:
                           boolean, default False
has_cache_baked_mesh
            TYPE:
                           boolean, default False
has_cache_baked_noise
            TYPE:
                           boolean, default False
has_cache_baked_particles
            TYPE:
                           boolean, default False
heat grid
            Smoke heat grid
            TYPE:
                            float\ array\ of\ 32\ items\ in\ [-inf,\ inf],\ default\ (0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\ 0.0,\
                           highres_sampling
            Method for sampling the high resolution flow
            TYPE:
                           enum in ['FULLSAMPLE', 'LINEAR', 'NEAREST'], default 'FULLSAMPLE'
is_cache_baking_any
            TYPE:
                           boolean, default False
is_cache_baking_data
            TYPE:
                           boolean, default False
is_cache_baking_guide
            TYPE:
                           boolean, default False
is_cache_baking_mesh
```

TYPE:

is cache baking noise

TYPE:

boolean, default False

is_cache_baking_particles

TYPE:

boolean, default False

mesh concave lower

Lower mesh concavity bound (high values tend to smoothen and fill out concave regions)

TYPE:

float in [0, 10], default 0.4

mesh concave upper

Upper mesh concavity bound (high values tend to smoothen and fill out concave regions)

TYPE:

float in [0, 10], default 3.5

mesh_generator

Which particle level set generator to use

- IMPROVED Final Use improved particle level set (slower but more precise and with mesh smoothening options).
- UNION Preview Use union particle level set (faster but lower quality).

TYPE:

enum in ['IMPROVED', 'UNION'], default 'IMPROVED'

mesh_particle_radius

Particle radius factor (higher value results in larger (meshed) particles). Needs to be adjusted after changing the mesh scale.

TYPE:

float in [0, 10], default 2.0

mesh scale

The mesh simulation is scaled up by this factor (compared to the base resolution of the domain). For best meshing, it is recommended to adjust the mesh particle radius alongside this value.

TYPE:

int in [1, 100], default 2

mesh smoothen neg

Negative mesh smoothening

TYPE:

int in [0, 100], default 1

mesh smoothen pos

Positive mesh smoothening

TYPE:

int in [0, 100], default 1

noise pos scale

```
Scale of noise (higher value results in larger vortices)
    TYPE:
          float in [0.0001, 10], default 2.0
noise_scale
    TYPE:
```

The noise simulation is scaled up by this factor (compared to the base resolution of the domain)

```
int in [1, 100], default 2
```

noise_strength

Strength of noise

TYPE:

float in [0, 10], default 1.0

noise_time_anim

Animation time of noise

TYPE:

float in [0.0001, 10], default 0.1

openvdb_cache_compress_type

Compression method to be used

- ZIP Zip Effective but slow compression.
- BLOSC Blosc Multithreaded compression, similar in size and quality as 'Zip'.
- NONE None Do not use any compression.

TYPE:

```
enum in ['ZIP', 'BLOSC', 'NONE'], default 'BLOSC'
```

openvdb data depth

Bit depth for fluid particles and grids (lower bit values reduce file size)

TYPE:

```
enum in ['NONE'], default 'NONE'
```

particle_band_width

Particle (narrow) band width (higher value results in thicker band and more particles)

TYPE:

```
float in [0, 1000], default 3.0
```

particle max

Maximum number of particles per cell (ensures that each cell has at most this amount of particles)

TYPE:

```
int in [0, 1000], default 16
```

particle_min

Minimum number of particles per cell (ensures that each cell has at least this amount of particles)

TYPE:

```
int in [0, 1000], default 8
```

particle_number

Particle number factor (higher value results in more particles)

TYPE:

```
int in [1, 5], default 2
```

particle_radius

Particle radius factor. Increase this value if the simulation appears to leak volume, decrease it if the simulation seems to gain volume.

TYPE:

```
float in [0, 10], default 1.0
```

particle randomness

Randomness factor for particle sampling

TYPE:

```
float in [0, 10], default 0.1
```

particle_scale

The particle simulation is scaled up by this factor (compared to the base resolution of the domain)

TYPE:

```
int in [1, 100], default 1
```

resolution_max

Resolution used for the fluid domain. Value corresponds to the longest domain side (resolution for other domain sides is calculated automatically).

TYPE:

```
int in [6, 10000], default 32
```

show_gridlines

Show gridlines

TYPE:

boolean, default False

show_velocity

Visualize vector fields

TYPE:

boolean, default False

simulation method

Change the underlying simulation method

- FLIP FLIP Use FLIP as the simulation method (more splashy behavior).
- APIC APIC Use APIC as the simulation method (more energetic and stable behavior).

TYPE:

```
enum in ['FLIP', 'APIC'], default 'FLIP'
```

slice axis

- AUTO Auto Adjust slice direction according to the view direction.
- X X Slice along the X axis.
- Y Y Slice along the Y axis.
- Z Z Slice along the Z axis.

TYPE:

```
enum in ['AUTO', 'X', 'Y', 'Z'], default 'AUTO'
```

slice depth

Position of the slice

TYPE:

float in [0, 1], default 0.5

$slice_per_voxel$

How many slices per voxel should be generated

TYPE:

float in [0, 100], default 5.0

sndparticle boundary

How particles that left the domain are treated

- DELETE Delete Delete secondary particles that are inside obstacles or left the domain.
- PUSHOUT Push Out Push secondary particles that left the domain back into the domain.

TYPE:

enum in ['DELETE', 'PUSHOUT'], default 'DELETE'

sndparticle bubble buoyancy

Amount of buoyancy force that rises bubbles (high value results in bubble movement mainly upwards)

TYPE:

float in [0, 100], default 0.5

sndparticle_bubble_drag

Amount of drag force that moves bubbles along with the fluid (high value results in bubble movement mainly along with the fluid)

TYPE:

float in [0, 100], default 0.6

sndparticle combined export

Determines which particle systems are created from secondary particles

- OFF Off-Create a separate particle system for every secondary particle type.
- SPRAY FOAM Spray + Foam Spray and foam particles are saved in the same particle system.
- SPRAY BUBBLES Spray + Bubbles Spray and bubble particles are saved in the same particle system.
- FOAM_BUBBLES Foam+Bubbles Foam and bubbles particles are saved in the same particle system.
- SPRAY_FOAM_BUBBLES Spray + Foam + Bubbles Create one particle system that contains all three secondary particle types.

TYPE:

enum in ['OFF', 'SPRAY FOAM', 'SPRAY BUBBLES', 'FOAM BUBBLES', 'SPRAY FOAM BUBBLES'], default 'OFF'

sndparticle life max

Highest possible particle lifetime

TYPE:

float in [0, 10000], default 25.0

sndparticle_life_min

Lowest possible particle lifetime

TYPE:

sndparticle_potential_max_energy

Upper clamping threshold that indicates the fluid speed where cells no longer emit more particles (higher value results in generally less particles

TYPE:

float in [0, 1000], default 5.0

sndparticle_potential_max_trappedair

Upper clamping threshold for marking fluid cells where air is trapped (higher value results in less marked cells)

TYPE:

float in [0, 1000], default 20.0

sndparticle_potential_max_wavecrest

Upper clamping threshold for marking fluid cells as wave crests (higher value results in less marked cells)

TYPE:

float in [0, 1000], default 8.0

sndparticle potential min energy

Lower clamping threshold that indicates the fluid speed where cells start to emit particles (lower values result in generally more particles)

TYPE:

float in [0, 1000], default 1.0

sndparticle potential min trappedair

Lower clamping threshold for marking fluid cells where air is trapped (lower value results in more marked cells)

TYPE:

float in [0, 1000], default 5.0

sndparticle_potential_min_wavecrest

Lower clamping threshold for marking fluid cells as wave crests (lower value results in more marked cells)

TYPE:

float in [0, 1000], default 2.0

sndparticle potential radius

Radius to compute potential for each cell (higher values are slower but create smoother potential grids)

TYPE:

int in [1, 4], default 2

sndparticle sampling trappedair

Maximum number of particles generated per trapped air cell per frame

TYPE:

int in [0, 10000], default 40

sndparticle sampling wavecrest

Maximum number of particles generated per wave crest cell per frame

TYPE:

int in [0, 10000], default 200

sndparticle update radius

Radius to compute position update for each particle (higher values are slower but particles move less chaotic)

```
TYPE:
```

int in [1, 4], default 2

start point

Start point

TYPE:

mathutils. Vector of 3 items in [-inf, inf], default (0.0, 0.0, 0.0), (readonly)

surface_tension

Surface tension of liquid (higher value results in greater hydrophobic behavior)

TYPE:

float in [0, 100], default 0.0

sys_particle_maximum

Maximum number of fluid particles that are allowed in this simulation

TYPE:

int in [0, inf], default 0

temperature_grid

Smoke temperature grid, range 0 to 1 represents 0 to 1000K

TYPE:

 $float \ array \ of \ 32 \ items \ in \ [-inf, inf], \ default \ (0.0, \ 0.0,$

$time_scale$

Adjust simulation speed

TYPE:

float in [0.0001, 10], default 1.0

timesteps_max

Maximum number of simulation steps to perform for one frame

TYPE:

int in [1, 100], default 4

timesteps_min

Minimum number of simulation steps to perform for one frame

TYPE:

int in [1, 100], default 1

use adaptive domain

Adapt simulation resolution and size to fluid

TYPE:

boolean, default False

use_adaptive_timesteps

Automatically decide when to perform multiple simulation steps per frame

TYPE:

boolean, default True

use_bubble_particles Create bubble particle system TYPE: boolean, default False $use_collision_border_back$ Enable collisions with back domain border TYPE: boolean, default False use_collision_border_bottom Enable collisions with bottom domain border TYPE: boolean, default False use_collision_border_front Enable collisions with front domain border TYPE: boolean, default False use collision border left Enable collisions with left domain border TYPE: boolean, default False use collision border right Enable collisions with right domain border TYPE: boolean, default False use_collision_border_top Enable collisions with top domain border TYPE: boolean, default False use_color_ramp Render a simulation field while mapping its voxels values to the colors of a ramp or using a predefined color code TYPE: boolean, default False

use diffusion

Enable fluid diffusion settings (e.g. viscosity, surface tension)

TYPE:

boolean, default False

use_dissolve_smoke

Let smoke disappear over time

TVDF.

```
LILE.
         boolean, default False
use_dissolve_smoke_log
    Dissolve smoke in a logarithmic fashion. Dissolves quickly at first, but lingers longer.
    TYPE:
         boolean, default True
use_flip_particles
    Create liquid particle system
    TYPE:
         boolean, default False
use_foam_particles
    Create foam particle system
    TYPE:
         boolean, default False
use\_fractions
    Fractional obstacles improve and smoothen the fluid-obstacle boundary
    TYPE:
         boolean, default False
use_guide
    Enable fluid guiding
    TYPE:
         boolean, default False
use_mesh
    Enable fluid mesh (using amplification)
    TYPE:
         boolean, default True
use noise
    Enable fluid noise (using amplification)
    TYPE:
         boolean, default False
use_slice
    Perform a single slice of the domain object
    TYPE:
         boolean, default False
```

$use_speed_vectors$

Caches velocities of mesh vertices. These will be used (automatically) when rendering with motion blur enabled.

TYPE:

boolean, default False

use_spray_particles

```
Create spray particle system
    TYPE:
         boolean, default False
use tracer particles
    Create tracer particle system
    TYPE:
         boolean, default False
use viscosity
    Simulate fluids with high viscosity using a special solver
    TYPE:
         boolean, default False
vector_display_type
    ullet NEEDLE Needle — Display vectors as needles.
    • STREAMLINE Streamlines - Display vectors as streamlines.
    • MAC MAC Grid - Display vector field as MAC grid.
    TYPE:
         enum in ['NEEDLE', 'STREAMLINE', 'MAC'], default 'NEEDLE'
vector field
    Vector field to be represented by the display vectors
    • FLUID VELOCITY Fluid Velocity - Velocity field of the fluid domain.
    • GUIDE_VELOCITY Guide Velocity - Guide velocity field of the fluid domain.
    • FORCE Force - Force field of the fluid domain.
    TYPE:
         enum in ['FLUID_VELOCITY', 'GUIDE_VELOCITY', 'FORCE'], default 'FLUID_VELOCITY'
vector_scale
    Multiplier for scaling the vectors
    TYPE:
         float in [0, 1000], default 1.0
vector_scale_with_magnitude
    Scale vectors with their magnitudes
    TYPE:
         boolean, default False
vector_show_mac_x
```

Show X-component of MAC Grid

boolean, default True

Show Y-component of MAC Grid

boolean, default True

TYPE:

TYPE:

vector show mac y

```
vector_show_mac_z
   Show Z-component of MAC Grid
   TYPE:
       boolean, default True
velocity grid
   Smoke velocity grid
   TYPE:
       velocity_scale
   Factor to control the amount of motion blur
   TYPE:
       float in [0, inf], default 1.0
viscosity_base
   Viscosity setting: value that is multiplied by 10 to the power of (exponent*-1)
   TYPE:
       float in [0, 10], default 1.0
viscosity_exponent
   Negative exponent for the viscosity value (to simplify entering small values e.g. 5*10^-6)
   TYPE:
       int in [0, 10], default 6
viscosity value
   Viscosity of liquid (higher values result in more viscous fluids, a value of 0 will still apply some viscosity)
   TYPE:
       float in [0, 10], default 0.05
vorticity
   Amount of turbulence and rotation in smoke
   TYPE:
       float in [0, 4], default 0.0
classmethod bl rna get subclass(id, default=None)
   PARAMETERS:
       id (str) – The RNA type identifier.
   RETURNS:
       The RNA type or default when not found.
   RETURN TYPE:
        bpy.types.Struct subclass
classmethod bl rna get subclass py(id, default=None)
   PARAMETERS:
       id (str) – The RNA type identifier.
```

DESTINATO

KETUKNS:

The class or default when not found.

RETURN TYPE:

type

Inherited Properties

• bpy struct.id data

Inherited Functions

- bpy struct.as pointer
- bpy_struct.driver_add
- bpy struct.driver remove
- bpy_struct.get
- bpy struct.id properties clear
- bpy_struct.id_properties_ensure
- bpy_struct.id_properties_ui
- bpy_struct.is_property_hidden
- bpy struct.is property overridable library bpy struct.property unset
- bpy_struct.is_property_readonly
- bpy_struct.is_property_set

- bpy struct.items
- bpy_struct.keyframe_delete
- bpy struct.keyframe insert
- bpy_struct.keys
- bpy struct.path from id
- bpy_struct.path_resolve
- bpy_struct.pop
- bpy_struct.property_overridable_library_set
- bpy_struct.type_recast
- bpy struct.values

References

• FluidModifier.domain settings

Previous FloorConstraint(Constraint) Report issue on this page

Copyright © Blender Authors Made with Furo

FluidEffectorSettings(bpy stru