Mesh Analysis

Kirchoff's Current Law

 Definition: At any junction, the total current entering = total current leaving

- Equation form: $\sum I_{in} = \sum I_{out}$
- Basis: Conservation of charge

$$I1 + I2 = I3$$

Kirchoff's Voltage Law

- **Definition:** The sum of all voltages around any closed loop in a circuit is zero.
- Equation form: $\sum V = 0$
- Meaning: Energy is conserved—voltage rises (sources) are balanced by voltage drops (loads).
- Rule of thumb: When you go around a loop, add rises as positive, drops as negative.

$$5v - 3.59v - 1.41v = 0v$$

- We can would out the current and voltage drop across every part of this
- Our first step is to split our circuit into loops
- We usually put the direction for our loops based on the sources in it

- Each of these loops has their own current, so we can assign a current to each loop:
 - L_1 has I_1 in the loop
 - L_2 has I_2 in the loop
- We can draw on our circuit the current flows
- We know where both loops interact, we must add the current according to KCL
- This means:
 - R_1 has I_1 going through it
 - R_3 has I_2 going through it
 - R_2 has $I_1 + I_2$ going through it

- Based on Kirchoff's Voltage Law we know that the voltage drop across all the components in a loop must equal the voltage we put in
- We also know that V = IR
- Therefore, we can make an equation for the voltage drop across both loops

- For Loop L1:
- We have a 28v source, and 2 resistors in the loop
- So we can write this for the loop:
- $\sum V_{source} = \sum V_{drop}$
- $B_1 = I_1 R_1 + (I_1 + I_2) R_2$
- $28 = 4I_1 + 2(I_1 + I_2)$

- For Loop L2:
- We have a 7v source, and 2 resistors in the loop
- So we can write this for the loop:
- $\sum V_{source} = \sum V_{drop}$
- $B_2 = I_2 R_3 + (I_1 + I_2) R_2$
- $7 = 1I_2 + 2(I_1 + I_2)$

•
$$L_1$$
: 28 = $4I_1 + 2(I_1 + I_2)$

•
$$L_2$$
: 7 = $1I_2 + 2(I_1 + I_2)$

• This leaves us two simultaneous equations $\mathbf{B}_1 = \mathbf{28V}$ meaning we can then work out I_1 and I_2

 You can solve these how you like but for this example I'm using substitution

• We start by rearranging L_1 to give us one of the current values (either I_1 or I_2)

•
$$L_1$$
: 28 = $4I_1 + 2(I_1 + I_2)$

 We can expand out our brackets and then combine like terms

•
$$L_1$$
: 28 = $4I_1 + 2I_1 + 2I_2$

•
$$L_1$$
: 28 = $6I_1 + 2I_2$

•
$$L_1$$
: 28 = $6I_1 + 2I_2$

• Let's make this all equal to I_1 :

•
$$L_1$$
: 28 - 2 I_2 = 6 I_1

•
$$L_1$$
: $\frac{28-2I_2}{6} = I_1$

• We can now plug this into L_2

•
$$L_1$$
: $\frac{28-2I_2}{6} = I_1$

•
$$L_2$$
: 7 = $1I_2 + 2(I_1 + I_2)$

 First let's expand the brackets again and collect like terms

•
$$L_2$$
: 7 = $1I_2 + 2I_1 + 2I_2$

•
$$L_2$$
: 7 = $2I_1 + 3I_2$

•
$$L_1$$
: $\frac{28-2I_2}{6} = I_1$

•
$$L_2$$
: 7 = 3 I_2 + 2 I_1

Let's plug it in

•
$$L_2$$
: 7 = $3I_2 + 2(\frac{28 - 2I_2}{6})$

Then let's expand the brackets

•
$$L_2$$
: 7 = $3I_2 + \frac{56-4I_2}{6}$

•
$$L_2$$
: 7 = $3I_2 + \frac{56 - 4I_2}{6}$

• Let's get I_2 by itself by rearranging the equation

•
$$42 = 18I_2 + 56 - 4I_2$$

•
$$-14 = 14I_2$$

•
$$I_2 = -1A$$

 Having a negative current is fine, it just means its flowing the opposite way

•
$$I_2 = -1A$$

 We can plug this value back into the other equation we have

•
$$\frac{28-2(-1)}{6} = I_1$$

•
$$\frac{30}{6} = I_1$$

•
$$I_1 = 5A$$

