$$\sum_{n=1}^{\infty} n^2 (t \xi_n + (1-t) \eta_n)^2 \leq t^2 + (1-t)^2 + 2t (1-t) = 1,$$

T. e. z ∈ M.

Покажем, что ядро эллипсоида J (M) пусто. Действительно, пусть

в противном случае
$$x \in J(M) \subset M$$
, $y_0 = \left(1, \frac{1}{2^{\frac{2}{3}}}, \frac{1}{3^{\frac{2}{3}}}, \dots\right)$

$$\ldots, \frac{1}{n^{\frac{2}{3}}}, \ldots \in l_2$$
 и для некоторого $\mu > 0$ вектор $x + \mu y_0 \in M$,

т. е.
$$\sum_{n=1}^{\infty} n^2 \left| \xi_n + \frac{\mu}{n^{\frac{2}{3}}} \right|^2 \le 1$$
. Тогда $\left| \xi_n + \frac{\mu}{n^{\frac{2}{3}}} \right| \le \frac{1}{n}$ и $\left| \frac{\mu}{n^{\frac{2}{3}}} \right| \le \left| \xi_n + \frac{\mu}{n^{\frac{2}{3}}} \right| + \left| \xi_n \right| \le \frac{1}{n} + \frac{1}{n} = \frac{2}{n}$ ($\forall n \in \mathbb{N}$),

мбо если $x \in M$, то $|\xi_n| \le \frac{1}{n}$, $n \in N$. Таким образом, для любого $n \in N$ имеем $\mu \le \frac{2}{\sqrt[3]{n}}$, откуда $\mu = 0$. Полученное равенство противоречит допущению, что $\mu > 0$. Значит, ядро множества M пусто.

(2.) а) Является ли нормой функция $\mathbb{R}^1 \ni x \to |\arctan x|$?

б) Определяет ли в R2 норму функция

$$\mathbb{R}^2 \ni x = (\xi_1, \ \xi_2) \to ||x|| = |\xi_1| + |\xi_2|$$
?

Если да, то что представляет собой единичный шар в \mathbb{R}^2 относительно введенной нормы?

в) Показать, что функция

$$\mathbb{R}^n \ni x = (\xi_1, \ldots, \xi_n) \to \|x\|_p = \left(\sum_{k=1}^n |\xi_k|^p\right)^{\frac{1}{p}}$$

не является нормой на \mathbb{R}^n при $0 и <math>n \ge 2$.

<u>Решение.</u> а) Нет, не является, ибо не выполняется вторая аксиома нормы. Действительно, если взять $x = \sqrt{3}$, $\lambda = \frac{1}{3}$, то $\|\lambda x\| = 1$

=
$$arctg \frac{\sqrt{3}}{3} = \frac{\pi}{6}$$
, а $|\lambda| ||x|| = \frac{1}{3} arctg \sqrt{3} = \frac{1}{3} \cdot \frac{\pi}{3} = \frac{\pi}{9}$; поэтому $||\lambda x|| \neq |\lambda| ||x||$.

б) Да, определяет. Выполнение первых двух аксиом нормы очевидно. Нетрудно видеть, что выполняется также и третья аксиома: если $x = (\xi_1, \xi_2), y = (\eta_1, \eta_2)$, то

$$||x + y|| = |\xi_1 + \eta_1| + |\xi_2 + \eta_2| \le |\xi_1| + |\xi_2| + |\eta_1| + ||\eta_2|| = ||x|| + ||y||.$$

$$B[0, 1] = \{x = (\xi_1, \xi_2) \in \mathbb{R}^2 : |\xi_1| + |\xi_2| \leq 1\}$$

в \mathbb{R}^2 относительно введенной нормы представляет собой единичный квадрат с вершинами в точках (1, 0), (0, -1), (-1, 0), (0, 1), лежащих **ва** осях координат OX и OY.

в) В данном случае не выполняется третья аксиома нормы (т. е. неравенство треугольника). Действительно, возьмем вектор $x = (\frac{1}{2},$

 $(0, ..., 0) \in \mathbb{R}^n$ и вектор $y = (0, \frac{1}{2}, 0, ..., 0) \in \mathbb{R}^n$. Ясно, что $x \neq y$, но $\|x\|_p = \|y\|_p = \frac{1}{2}$ для любого $0 и <math>\|x\|_p + \|y\|_p = 1$. Однако.

$$\|x + y\|_p = \left\| \left(\frac{1}{2}, \frac{1}{2}, \dots, 0 \right) \right\|_p = \left(\frac{1}{2^p} + \frac{1}{2^p} \right)^{\frac{1}{p}} = 2^{\frac{1}{p} - 1}.$$

Поскольку $p \in (0; 1)$, то $\frac{1}{p} - 1 > 0$ и $2^{\frac{1}{p} - 1} > 1$. Следовательно, $\|x \pm y\|_p > \|x\|_p + \|y\|_p$

(3.) Являются ли нормами на множествах определения следующие функции:

a)
$$C[a; b] \ni x \rightarrow \max_{a \le t \le \frac{a+b}{2}} |x(t)|;$$

6)
$$C^{(1)}[a; b] \ni x \to |x(a)| + \max_{a \in A} |x'(t)|$$

6)
$$C^{(1)}[a; b] \ni x \to |x(a)| + \max_{a \le t \le b} |x'(t)|;$$

B) $C^{(1)}[a; b] \to |x(b) - x(a)| + \max_{a \le t \le b} |x'(t)|;$

Решение. а) Нет, ибо не выполняется первая аксиома нормы! еели ||x|| = 0, то $\max_{a \le t \le \frac{a+b}{2}} |x(t)| = 0$, т. е. x(t) = 0 на $\left[a; \frac{a+b}{2}\right]$,

но, вообще говоря, $x(t) \neq 0$ на отрезке [a; b].

б) Да, является. Проверим выполнение первой аксиомы. Если $x(t) \equiv 0$ на [a; b], то $|x(a)| + \max |x'(t)| = 0$. Обратно, если , x(a) | $+ \max |x'(t)| = 0$, то x(a) = 0 и x'(t) = 0 на [a; b]. Следовательно, $x(t) \equiv c$ (c = const). Так как x(a) = 0, то c = 0, т. е. x(t) = 0 Ha [a; b].

Выполнение остальных аксиом нормы очевидно.

в) В данном случае указанная функция нормой не является, ибо не вып зняется первая аксиома нормы. Действительно, если | x (b) — $-x(a) + \max |x'(t)| = 0$, to x(b) = x(a) + x'(t) = 0 ha [a; b]. Следовательно, x(t) = c(c = const). Взяв t = a, найдем, что c = x(a), т. е. x(t) = x(a) = x(b) на [a; b]. Если $x(a) \neq 0$, то $x(t) \not\equiv 0$ на [a; b].

V N4

4. а) Проверить, что нормы

$$||x||_1 = \max_{0 \le t \le 1} |x(t)|, \quad ||x||_2 = \left(\int_0^1 x^2(t) dt\right)^{\frac{1}{2}}$$

не эквивалентны в С [0; 1].

б) Будут ли эквивалентными в пространстве $C^{(1)}[a; b]$ нормы

$$||x||_{1} = \max_{0 \le t \le 1} |x(t)| + \max_{0 \le t \le 1} |x'(t)|$$

И

$$||x||_2 = \int_0^1 |x(t)| dt + \max_{0 \le t \le 1} |x'(t)|^2$$

Решение. а) Напомним, что две нормы, введенные на одном линейном пространстве, эквивалентны тогда и только тогда, когда из сходимости последовательности по одной из этих норм вытекает ее сходимость по другой норме и наоборот. В данном случае, например, последовательность x_n (t) = t^n сходится к нулю по норме $\| \cdot \|_2$, ибо

$$\|x_n\|_2 = \left(\int_0^1 t^{2n} dt\right)^{\frac{1}{2}} = \frac{1}{\sqrt{2n+1}} \to 0$$

при $n \to \infty$, но не сходится по норме $\|\cdot\|_1$, так как сходимость по норме $\|\cdot\|_1$ эквивалентна равномерной сходимости, а последовательность x_n (t) поточечно сходится к функции

$$x(t) = \begin{cases} 0, & 0 \le t < 1, \\ 1, & t = 1, \end{cases}$$

которая разрывна и не принадлежит пространству С [0; 1]. Следовательно, нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ не эквивалентны.

б) Нормы | ⋅ | и | ⋅ | эквивалентны. Норма | ⋅ | подчинена норме | ⋅ | Действительно,

$$||x||_2 \leq \max_{0 \leq t \leq 1} |x(t)| + \max_{0 \leq t \leq 1} |x'(t)| = ||x||_1.$$

Следовательно, для того чтобы установить эквивалентность укаванных норм, достаточно (в силу теоремы 1 об эквивалентных нормах) установить полноту пространства $C^{(1)}$ [0; 1] относительно каждой из норм $\|\cdot\|_1$ и $\|\cdot\|_2$

Покажем, что пространство $C^{(1)}[0;1]$ полно относительно нормы $\|\cdot\|_1$. Пусть (x_k) — фундаментальная по норме $\|\cdot\|_1$ последовательность в $C^{(1)}[0;1]$, т. е. для любого $\varepsilon > 0$ существует $k_0 \in \mathbb{N}$ такое, что для всех $k > k_0$, $m > k_0$

$$\|x_{k}-x_{m}\|_{1}=\max_{0\leqslant t\leqslant 1}|x_{k}\left(t\right)-x_{m}\left(t\right)|+\max_{0\leqslant t\leqslant 1}|x_{k}^{'}\left(t\right)-x_{m}^{'}\left(t\right)|<8.$$

Используя критерий равномерной сходимости функциональной последовательности, из данного неравенства получаем, что существует

функция $x_0(t) \in C^{(1)}[0; 1]$ такая, что $x_k(t) \Rightarrow x_0(t)$, $x_k(t) \Rightarrow x_0(t)$ при $k \to \infty$ на [0; 1]. Это и означает, что последова гельность $(x_k) \subset C^{(1)}$ [0; 1] сходится по норме $\|\cdot\|_1$ к x_0 (t) \in С⁽¹⁾ [0; 1]. Если последовательность (x_k) фундаментальна по норме $\|\cdot\|_2$, то

для любого $\varepsilon > 0$ и всех $k > k_0$, $m > k_0$

$$\max_{0\leqslant t\leqslant 1}\left|\stackrel{\cdot}{x_{k}}\left(t\right)-\stackrel{\cdot}{x_{m}}\left(t\right)\right|<\varepsilon\ \text{ if }\int\limits_{0}^{1}\left|x_{k}\left(t\right)-x_{m}\left(t\right)\right|dt<\varepsilon.$$

Тогда последовательность $(x_k(t))$ равномерно на [0; 1] сходится к некоторой функции $\varphi_0(t)$ из C[0; 1], а последовательность $(x_k(t))$ сходится в L₁ [0; 1] (в силу полноты этого пространства) к функции x_0 (t). Следовательно (см. гл. 1, § 4), существует подпоследовательность $(x_{k_n}(t))$, сходящаяся к x_0 (t) почти всюду на [0; 1].

Пусть t_0 — такая точка из [0; 1], что $x_{k_n}(t_0) \to x_0(t_0)$ (при $n \to \infty$).

Интегрируя подпоследовательность ($x'_{k_n}(t)$) почленно, получим

$$x_{k_n}(t) - x_{k_n}(t_0) \to \int_{t_0}^t \varphi_0(\tau) d\tau \quad (\forall t \in [0; 1]).$$

Отсюда

$$\mathbf{x}_{k_n}(t) \rightarrow \mathbf{x}_0(t_0) + \int_{t_0}^t \varphi_0(\tau) d\tau \quad (\forall t \in [0; 1]),$$

7. e. $x_0(t) = c + \int \varphi_0(\tau) d\tau$ (почти всюду на [0; 1]).

Поскольку элементы пространства $L_1[0; 1]$ определяются с точ**но**стью до эквивалентности, а функция $c+\int \phi_0\left(au\right)d au$ абсолютно непрерывна на [0; 1], то x_0 (t) \in $C^{(1)}$ [0; 1] и x_0 (t) $= \varphi_0$ (t) (\forall $t \in$ [0; 1]). Кроме того, очевидно, $\|x_n - x_0\|_2 \to 0$ при $n \to \infty$.

Этим установлено, что пространство С(1) [0; 1] полно и относительно нормы $\|\cdot\|_2$. Таким образом, нормы $\|\cdot\|_1$, $\|\cdot\|_2$ эквивалентны.

Отметим, что эквивалентность норм | • | и | • | можно установить и непосредственно, проверив, что из сходимости последовательности $(x_n) \subset C^{(1)}$ [0; 1] по норме $\|\cdot\|_1$ вытекает ее сходимость по норме $\|\cdot\|_2$ и наоборот.

5. Будет ли полным пространство l_1 относительно нормы $||x||_1 =$

 $= \sup |\xi_k| (x = (\xi_k) \in l_1)$?

 \red{P} ешение. Как известно, пространство l_1 полно относительно нормы $\|x\|_2 = \sum_{k=1}^{\infty} |\xi_k|$. Кроме того, очевидно, норма $\|\cdot\|_1$ подчинена норме $\|\cdot\|_{2}$, т. е. $\|x\|_{1} \leqslant \|x\|_{2}$. Если бы пространство l_{1} было полным и относительно нормы | . | то. согласно теореме 1 об эквивалентных V6 28)

нормах, рассматриваемые нормы $\|\cdot\|_1$, $\|\cdot\|_2$ должны быть эквивалентными. Однако это не так. Действительно, последовательность $x_n = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}, 0, \dots, 0, \dots\right)$ сходится по норме $\|\cdot\|_1$ к нулевому

элементу $\binom{n}{\parallel} x_n \parallel_1 = \frac{1}{n} \to 0$, но эта же последовательность не является сходящейся в l_1 по норме $\parallel \cdot \parallel_2$, ибо она не фундаментальна

$$||x_n - x_{2n}||_2 = \sum_{k=1}^n \left| \frac{1}{n} - \frac{1}{2n} \right| + \sum_{k=n+1}^{2n} \frac{1}{2n} = 1.$$

Следовательно, пространство l_1 не полно по норме $\|\cdot\|_1$.

6. Выяснить, сходится ли в нормированном пространстве последовательность (x_n) , если:

a)
$$E = l_1, x_n = \left(\underbrace{0, \ldots, 0}_{n-1}, \frac{1}{n^{\sigma}}, \frac{1}{(n+1)^{\sigma}}, \ldots\right), \quad \sigma > 1;$$

6)
$$E = l_2, x_n = \left(\frac{1}{n}, 0, \dots, 0, 1, 0, 0, \dots\right);$$

B)
$$E = C^{(1)}[0; 1], x_n(t) = \frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2};$$

г)
$$E = L_1[0; 1]$$
, $x_n(t) = \begin{cases} e^{-\frac{t}{n}}, & \text{если } t - \text{нррационально}, \\ 0, & \text{если } t - \text{рационально}; \end{cases}$

$$\underline{\mathbf{A}}) \ E = \mathbf{L}_{2}[0; \ 1], \quad \mathbf{x}_{n}(t) = \begin{cases} \sqrt{n} - n\sqrt{n}t, \ t \in \left[0; \frac{1}{n}\right], \\ 0, \ t \in \left(\frac{1}{n}; \ 1\right]. \end{cases}$$

Решение. а) Последовательность (x_n) сходится в l_1 , ибо она фундаментальна в l_1 :

$$\rho(x_n, x_{n+p}) = \|x_n - x_{n+p}\| = \sum_{k=n}^{n+p-1} \frac{1}{k^{\sigma}} \leq \sum_{k=n}^{\infty} \frac{1}{k^{\sigma}} \to 0$$

при $n \to \infty$ равномерно относительно $p \in \mathbb{N}$.

б) В данном случае

$$\rho^{2}(x_{n}, x_{n+1}) = \|x_{n} - x_{n+1}\|^{2} = \left(\frac{1}{n} - \frac{1}{n+1}\right)^{2} + 2 > 2,$$

 \mathbf{r} . е. последовательность (x_n) не является сходящейся в l_s .

в) Последовательность $(x_n(t))$ сходится к функции x(t) = 0, нбо $x_n(t) \Rightarrow 0$ при $n \to \infty$ и

$$\lim_{n\to\infty} \sup_{t\in[0;1]} |x_n^t(t)| = \lim_{n\to\infty} \sup_{t\in[0;1]} |t^n(1-t)| = \lim_{n\to\infty} \frac{n^n}{(n+1)^{n+1}} = 0,$$

$$\mathbf{v}$$
. **e.** $\mathbf{u} x_n'(t) \Rightarrow 0$ при $n \to \infty$ Этим установлено, что
$$\|x_n\| = \max_{t \in [0,1]} |x_n(t)| + \max_{t \in [0,1]} |x_n'(t)| = \max_{t \in [0,1]} \left| \frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2} \right| + \max_{t \in [0,1]} |t^n(1-t)| \to 0$$

при $n \to \infty$.

г) Отметим, что каждая функция x_n (t) интегрируема по Лебегу (ибо она измерима и ограничена), но не интегрируема по Риману (она разрывна на множестве положительной меры). Последовательность $(x_n(t))$ сходится в $L_1[0; 1]$ к функции x(t) = 1. Действительно,

$$\|x_n - 1\| = \int_0^1 |x_n(t) - 1| dt = \int_0^1 (x_n(t) - 1) dt = -1 + \int_0^1 x_n(t) dt =$$

$$= -1 + \int_0^1 e^{-\frac{t}{n}} dt = -1 + \frac{e^{-\frac{1}{n}} - 1}{-\frac{1}{n}} \to 0$$

при $n \to \infty$ (здесь мы воспользовались тем, что интегралы Лебега от эквивалентных функций совпадают, а функция x_n (t) эквивалентна ϕ ункции e^{-n}).

д) Последовательность (x_n) не сходится в L_2 [0; 1], так как она не фундаментальна. Действительно, для произвольных $n, p \in \mathbb{N}$ имеем

$$\rho^{2}(x_{n}, x_{n+p}) = \|x_{n} - x_{n+p}\|^{2} =$$

$$= \int_{0}^{\frac{1}{n+p}} (\sqrt{n+p} - (n+p)\sqrt{n+p}t - \sqrt{n}t + n\sqrt{n}t)^{2} dt +$$

$$+ \int_{\frac{1}{n+p}}^{\frac{1}{n}} (\sqrt{n-n}\sqrt{n}t)^{2} dt = \frac{2}{3} - \frac{\sqrt{n}}{\sqrt{n+p}} + \frac{1}{3} \cdot \frac{n\sqrt{n}}{(n+p)\sqrt{n+p}}.$$

Если взять p = n, то, как нетрудно подсчитать,

$$\rho^{2}(x_{n}, x_{2n}) = \frac{4\sqrt{2}-5}{6\sqrt{2}} > 0.$$

7. Пусть $L = \left\{ x = (\xi_k) \in E : \sum_{k=1}^{\infty} \xi_k = 0, \ \xi_k \in \mathbb{R} \right\}$. Образует ли Lподпространство в пространстве E, если:

a) $E = l_1$; 6) $E = l_p (p > 1)$?

Решение. a) Очевидно, L — линейное многообразие в l_1 . Пусть последовательность $x_n = (\xi_1^{(n)}, \, \xi_2^{(n)}, \, \dots, \, \xi_k^{(n)}, \, \dots) \in L$ и $x_n \to x_0 =$ $=(\xi_1^{(0)},\,\xi_2^{(0)},\,\ldots,\,\xi_n^{(0)},\,\ldots)$ при $n\to\infty$ в l_1 , т. е. для любого $\epsilon>0$