Prelab3.

1. Design Specification

4-bit synchronous binary up counter

Input : clk, ret_n

Output: q

Q will count 0 to 15

2. Design Implementation

$$D = q + 1$$

@(negedge rst_n), q = 4'b0000

 $@(posedge\ clk),\ q=d$


```
D flip-flop with reset
```

always @(posedge clk or negedge rst_n)

begin

 $if(rst_n == 0)$

q <= 4'b0000;

else

 $q \ll d$;

end

3. simulation

clk	Rst_n	q
0	1	X
1	0	0
0	1	0
1	1	1
0	1	1
1	1	2
0	1	2
1	1	3
0	1	3
1	1	4
0	1	4
1	1	5
0	1	5
1	1	6
0	1	6
1	1	7
0	1	7
1	1	8
0	1	8
1	1	9
0	1	9
1	1	10
0	1	10
1	1	11

0	1	11	
1	1	12	
0	1	12	
1	1	13	
0	1	13	
1	1	14	
0	1	14	
1	1	15	
0	1	15	
1	1	0	