抽象代數

群論

陽明交通大學應數系營隊

群論

群(Group)是一個集合,並且配上一個良好的二元運算,而群論 (Group Throry)是一們研究群這種結構的數學分支。群論在許多領域上有著廣泛的應用,以下介紹一些應用。

倍立方、化圓為方、三等分角等,尺規作圖問題。

我們都知道一元二次方程 $ax^2 + bx + c = 0$ 的解為

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

但是對於一元五次方程 $x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0$,可以用 群論證明,我們無法用根式解析解來表示。

除了數學上的應用外,在其他領域也有著廣泛的應用,例如

- 密碼學 (RSA 加密算法)
- 標準粒子模型中的對稱性

除了數學上的應用外,在其他領域也有著廣泛的應用,例如

粒子物理標準模型

- 密碼學 (RSA 加密算法)
- 標準粒子模型中的對稱性

Group

Definition 1.1: $\langle G, * \rangle$ 是一個集合 G 與一個二元運算 $*: G \times G \mapsto G$,滿足以下條件:

 \mathcal{G}_1 : 對於所有的 $a,b,c \in G$,

$$(a*b)*c = a*(b*c)$$
 結合律

 G_{0} : 存在一個元素 $e \in G$, 使得對於所有的 $a \in G$,

$$a*e=e*a=a$$
 單位元素

 G_3 : 對於每一個 $a \in G$, 存在一個元素 $a^{-1} \in G$, 使得

$$a*a^{-1} = a^{-1}*a = e$$
 反元素

Example:

- 整數集合 \mathbb{Z} 與加法運算+構成一個群。 $\langle \mathbb{Z}, + \rangle$ 單位元素為0,反元素為-a。
- 整數集合型與乘法運算率法在整數裡沒有反元素。
- ⟨ℚ,+⟩,⟨ℝ,+⟩ 是群。
- $C_3 = \{e, a, b\}$ 與下面的運算是一個群。

0	e	a	b
e	e	a	b
a	a	b	e
b	b	e	a

Definition 1.2: 讓G是一個群,定義|G|是G的元素個數,稱為G的 order。

Definition 1.3: 一個群G如果滿足交換率 i.e. 對於所有的 $a, b \in G$,

$$a * b = b * a$$

,則稱G是一個**交換群**(Abelian groups)。

Definition 1.2: 讓G是一個群,定義|G|是G的元素個數,稱為G的 order。

Definition 1.3: 一個群G如果滿足交換率 i.e. 對於所有的 $a,b \in G$,

$$a * b = b * a$$

,則稱G是一個**交換群**(Abelian groups)。

Example:

- 整數集合 Z 與加法運算 + 是一個交換群。
- C_3 的 order 為 3 。
- 可逆矩陣的集合與矩陣乘法是一個群,但不是交換群。

$$a * b = a * c \Rightarrow b = c$$

$$b * a = c * a \Rightarrow b = c$$

$$a * b = a * c \Rightarrow b = c$$

 $b * a = c * a \Rightarrow b = c$

Proof: 讓G是一個群, $a,b,c \in G$ 。假設a*b=a*c。

$$a * b = a * c$$

$$\Rightarrow b = a$$

$$a * b = a * c \Rightarrow b = c$$

 $b * a = c * a \Rightarrow b = c$

Proof: 讓G是一個群, $a,b,c\in G$ 。假設a*b=a*c。 因為 $a\in G$,所以a的反元素 a^{-1} 存在,且 $a*a^{-1}=a^{-1}*a=e$ 。

$$a * b = a * c$$

$$\Rightarrow a^{-1} * a * b = a^{-1} * a * c$$

$$\Rightarrow b = a$$

$$a * b = a * c \Rightarrow b = c$$

 $b * a = c * a \Rightarrow b = c$

Proof: 讓G是一個群, $a,b,c\in G$ 。假設a*b=a*c。 因為 $a\in G$,所以a的反元素 a^{-1} 存在,且 $a*a^{-1}=a^{-1}*a=e$ 。

$$a * b = a * c$$

$$\Rightarrow a^{-1} * a * b = a^{-1} * a * c$$

$$\Rightarrow b = a$$

$$a * b = a * c \Rightarrow b = c$$

 $b * a = c * a \Rightarrow b = c$

Proof: 讓G是一個群, $a,b,c\in G$ 。假設a*b=a*c。 因為 $a\in G$,所以a的反元素 a^{-1} 存在,且 $a*a^{-1}=a^{-1}*a=e$ 。

$$a * b = a * c$$

$$\Rightarrow a^{-1} * a * b = a^{-1} * a * c$$

$$\Rightarrow e * b = e * a$$

$$\Rightarrow b = a$$

Proof: 假設存在第二個單位元素 e_2 ,滿足對於所有 $a \in G$

$$e_2 * a = a * e_2 = a$$

因為 $e \in G$,所以

$$e_2 * a = a$$

Proof: 假設存在第二個單位元素 e_2 ,滿足對於所有 $a \in G$

$$e_2 * a = a * e_2 = a$$

因為 $e \in G$,所以

$$e_2 * e = e$$

Proof: 假設存在第二個單位元素 e_2 ,滿足對於所有 $a \in G$

$$e_2 * a = a * e_2 = a$$

因為 $e \in G$,所以

$$e_2 * e = e$$

$$= e_2$$

Proof: 假設存在第二個單位元素 e_2 ,滿足對於所有 $a \in G$

$$e_2 * a = a * e_2 = a$$

因為 $e \in G$,所以

我們得到 $e_2 = e$

$$e_2 * e = e$$

$$= e_2$$

Theorem 1.3: 讓G是一個群, $ab \in G$,那麼

$$(ab)^{-1} = b^{-1}a^{-1}$$

我們有時候會省略運算符號,寫成ab代表a*b。

Theorem 1.3: 讓G是一個群, $ab \in G$,那麼

$$(ab)^{-1} = b^{-1}a^{-1}$$

Proof: 我們直接相乘

$$(ab)b^{-1}a^{-1} = a(bb^{-1})a^{-1}$$

= aea^{-1}
= aa^{-1}
= e

根據反元素的定義, $(ab)^{-1} = b^{-1}a^{-1}$

我們只證明了 $(ab)^{-1}b^{-1}a^{-1}=e$,但是 $b^{-1}a^{-1}(ab)^{-1}=e$ 也是成立的。

置換群

Permutation Group

$$A = \{1, 2, 3, 4, 5\}$$

Figure 3: σ

Definition 2.1: 一個A的是**置換**是一個一一對應的函數 $\varphi: A \to A$ 。 (one-one and onto)

$$1 \rightarrow 3$$
 $2 \rightarrow 4$
 $3 \rightarrow 5$
 $4 \rightarrow 2$
 $5 \rightarrow 1$

Figure 4: 一個置換
$$\sigma$$

$$1 \rightarrow 2$$

$$2 \rightarrow 3$$

$$3 \rightarrow 2$$

$$4 \rightarrow 5$$

$$5 \rightarrow 1$$

Figure 5: 不是置換

置换的合成

Definition: 讓σ和τ是兩個置換,定義σ和τ的**合成**是一個新的置換σοτ,使得對於所有的 $a \in A$,

$$(\sigma \circ \tau)(a) = \sigma(\tau(a))$$

置换的合成

Definition: 讓σ和τ是兩個置換,定義σ和τ的**合成**是一個新的置換σοτ,使得對於所有的 $a \in A$,

$$(\sigma \circ \tau)(a) = \sigma(\tau(a))$$

$$(\sigma \circ \tau)(x) = \sigma(\tau(x))$$
$$A \xrightarrow{\tau} A \xrightarrow{\sigma} A$$

因為 σ 和 τ 都是一一對應的函數,所以 σ 。 τ 也是一一對應的函數。 所以 σ 。 τ 是一個置換。

Eaxmple 置換

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$

Eaxmple 置換

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} \qquad \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$

$$\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$$

Eaxmple 置換

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}$$

$$\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 1 & 3 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$$

$$\sigma = (1, 3, 5)(2, 4)$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix} = (1, 3, 5)(2, 4) = (3, 5, 1)(4, 2)$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} = (1, 2, 3, 4, 5) = (3, 4, 5, 1, 2)$$

$$\varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 5 & 3 \end{pmatrix} = (3, 4, 5)(1)(2) = (3, 4, 5)$$

$$\sigma = (1, 3, 5)(2, 4)$$

$$\sigma = (1, 3, 5)(2, 4)$$

$$\sigma = (1, 3, 5)(2, 4)$$

$$\sigma^{-1} = (5, 3, 1)(2, 4)$$

我們驗證 S_A 確實是一個群。 (單位元素、結合律、反元素)

我們驗證 S_A 確實是一個群。 (單位元素、結合律、反元素)

Remark: n個元素的集合的置換群計為 S_n 的 order 為n!。

我們驗證 S_A 確實是一個群。 (單位元素、結合律、反元素)

Remark: n個元素的集合的置換群計為 S_n 的 order 為n!。

Example:

上述的例子中,au和 σ 是 S_5 的元素。

 S_5 的 order 為5! = 120。 並且 σ 和 τ 的反元素

$$\sigma^{-1} = (5, 3, 1)(2, 4)$$

$$\tau^{-1} = (5, 4, 3, 2, 1)$$

空間對稱群

Symmetry Group

我們接下來考慮一個正三角形,他有那些對稱性?

把上面正三角形的對稱性的置換收集起來,我們得到一個群,稱為正三角形的**對稱群** D_3 。

那 D_3 的 order 是多少?只有6個嗎?

$$e = (1)(2)(3)(4)$$

$$\rho_1 = (1, 2, 3, 4)$$

$$\rho_2 = (1, 3)(2, 4)$$

$$\rho_3 = (1, 4, 3, 2)$$

$$\tau_1 = (1)(2, 4)(3)$$

$$\tau_2 = (1, 3)(2)(4)$$

$$\tau_3 = (1, 2)(4, 3)$$

$$\tau_4 = (1, 4)(2, 3)$$

 mD_4 的 order 是多少? 只有8個嗎?

$$e = (1)(2)(3)(4)$$

$$\rho_1 = (1, 2, 3, 4)$$

$$\rho_2 = (1, 3)(2, 4)$$

$$\rho_3 = (1, 4, 3, 2)$$

$$\tau_1 = (1)(2, 4)(3)$$

$$\tau_2 = (1, 3)(2)(4)$$

$$\tau_3 = (1, 2)(4, 3)$$

$$\tau_4 = (1, 4)(2, 3)$$

如何計算空間對稱群

- 1. 先找到圖形的不動點c
- 2. 畫一條通過不動點的直線。
- 3. 假設有m個對稱稱使得這條線不動,而條線在對稱性下會被打到 n個不同的位子。
- 4. 那麼這個對稱群的 order 就是 $n \times m$ 。
- 下一節會證明這個方法是正確的。

如何計算空間對稱群

正n邊形的對稱群的 order 是多少?。 立方體的有多少不同的旋轉。

群作用

Group Action

Definition 4.1: 一個群 $\langle G, * \rangle$ 對一個集合A的作用是一個映射 $\varphi: G \times A \to A$,滿足以下條件:

- 1. 對於所有 $a \in A$ $\varphi(e,a) = a$
- 2. 對於所有 $a \in A$ 和 $g, h \in G$, $\varphi(g * h, a) = \varphi(g, \varphi(h, a))$

在這個情況下,我們稱A是一個G-set。

為了簡化,我們有時候會省略運算符號,寫成ga代表 $\varphi(g,a)$ 。所以上述的條件可以寫成

$$ea = a$$
$$(gh)a = g(ha)$$

像是在上一章節中,我們考慮了對稱群 D_3 對正三角形的作用。

Example

$$\rho_1 = (1, 2, 3) \in D_3$$

$$\tau = (1)(2,3) \in D_3$$

Theorem 4.1: 讓X是一個G-set。如果 $gx_1 = gx_2$,那 $x_1 = x_2$

Proof: 假設 $gx_1=gx_2$,那麼 $g^{-1}gx_1=g^{-1}gx_2$,所以 $ex_1=ex_2$,所以 $x_1=x_2$ 。 ■

Remark: 如果 $x \neq y$, 那 $gx \neq gy$

Proof: 自反性、對稱性、傳遞性

Proof: 自反性、對稱性、傳遞性

自反性:對於所有的 $x \in X$, $x \sim x$, 因為ex = x。

Proof: 自反性、對稱性、傳遞性

自反性:對於所有的 $x \in X$, $x \sim x$, 因為ex = x。

對稱性:如果 $x \sim y$,那麼存在 $g \in G$,使得gx = y,所以 $g^{-1}y = x$,所以 $y \sim x$ 。

Proof: 自反性、對稱性、傳遞性

自反性:對於所有的 $x \in X$, $x \sim x$, 因為ex = x。

對稱性:如果 $x \sim y$,那麼存在 $g \in G$,使得gx = y,所以 $g^{-1}y = x$,所以 $y \sim x$ 。

傳遞性:如果 $x\sim y$ 且 $y\sim z$,那麼存在 $g,h\in G$,使得gx=y且hy=z,所以 hgx=z,所以 $x\sim z$ 。

Definition 4.3: 讓X是一個G-**set**,每一個在 Therorem 4.2 下的等價類稱為一個**軌道**。 如果 $x \in X$,包含x的分割是x的軌道,記作 G_x 。

Theorem 4.3: 讓 X 是一個 G-set, $x \in X$,那麼 x 的軌道 $G_x = \{gx \mid g \in G\}$ 。

Fixed point, Stabilizers subgroup

Definition 4.2: 讓X是一個G-set, 讓 $x \in X$, $g \in G$ 。我們定義;

$$\operatorname{Stab}_G(x) = \{ g \in G \mid gx = x \}$$
$$X^g = \{ x \in X \mid gx = x \}$$

 $\operatorname{Stab}_{G}(x)$ 稱為x的穩定子群, X^{g} 稱為g的不動點。

Fixed point, Stabilizers subgroup

Definition 4.2: 讓X是一個G-set, 讓 $x \in X$, $g \in G$ 。我們定義;

$$\operatorname{Stab}_G(x) = \{ g \in G \mid gx = x \}$$
$$X^g = \{ x \in X \mid gx = x \}$$

 $\operatorname{Stab}_{G}(x)$ 稱為x的穩定子群, X^{g} 稱為g的不動點。

•
$$X^e = X$$

Theorem 4.4 (軌道-穩定子定理 (Orbit-Stabilizer Theorem)): 讓G是一個有限群,讓X是一個 G-set, $x \in X$,那麼 $|G| = |G_x||\operatorname{Stab}_G(x)|$ 。

定義 $f:G\to G_x$, f(g)=gx 。 我們證明每一個在 G_x 裡的元素都被打到 $|\mathrm{Stab}_G(x)|$ 這麼多次。

給定一個 $y \in G_x$,那麼存在 $h \in G$ 使得y = hx。

定義 $f:G\to G_x$, f(g)=gx。 我們證明每一個在 G_x 裡的元素都被打到 $|\operatorname{Stab}_G(x)|$ 這麼多次。

給定一個 $y \in G_x$,那麼存在 $h \in G$ 使得y = hx。

我們先證明這個引理: $f(g) = y \iff h^{-1}g \in \operatorname{Stab}_{G}(x)$ 。

定義 $f:G\to G_x$, f(g)=gx。 我們證明每一個在 G_x 裡的元素都被打到 $|\operatorname{Stab}_G(x)|$ 這麼多次。

給定一個 $y \in G_x$,那麼存在 $h \in G$ 使得y = hx。

我們先證明這個引理: $f(g) = y \iff h^{-1}g \in \operatorname{Stab}_G(x)$ 。

 \Rightarrow :如果f(g)=y,那麼gx=hx,所以 $h^{-1}gx=x$,所以 $h^{-1}g\in \operatorname{Stab}_G(x)$ 。

定義 $f:G\to G_x$, f(g)=gx。 我們證明每一個在 G_x 裡的元素都被打到 $|\operatorname{Stab}_G(x)|$ 這麼多次。

給定一個 $y \in G_x$,那麼存在 $h \in G$ 使得y = hx。

我們先證明這個引理: $f(g) = y \iff h^{-1}g \in \operatorname{Stab}_G(x)$ 。

 \Rightarrow :如果f(g)=y,那麼gx=hx,所以 $h^{-1}gx=x$,所以 $h^{-1}g\in\operatorname{Stab}_G(x)$ 。

 \Leftarrow :如果 $h^{-1}g\in \operatorname{Stab}_G(x)$,那麼 $h^{-1}gx=x$,所以gx=hx,所以f(g)=y。

接著我們來討論有多少 $g \in G$ 使得 $h^{-1}g \in \operatorname{Stab}_G(x)$ 。

接著我們來討論有多少 $g \in G$ 使得 $h^{-1}g \in \operatorname{Stab}_G(x)$ 。

$$h^{-1}g \in \operatorname{Stab}_{G}(x) \iff \exists \tilde{g} \in \operatorname{Stab}_{G}(x) \ s.t. \ h^{-1}g = \tilde{g}$$
$$\iff \exists \tilde{g} \in \operatorname{Stab}_{G}(x) \ s.t. \ g = h\tilde{g}$$
$$\iff g \in \{h\tilde{g} \mid \tilde{g} \in \operatorname{Stab}_{G}(x)\}$$

接著我們來討論有多少 $g \in G$ 使得 $h^{-1}g \in \operatorname{Stab}_G(x)$ 。

$$h^{-1}g \in \operatorname{Stab}_{G}(x) \iff \exists \tilde{g} \in \operatorname{Stab}_{G}(x) \ s.t. \ h^{-1}g = \tilde{g}$$
$$\iff \exists \tilde{g} \in \operatorname{Stab}_{G}(x) \ s.t. \ g = h\tilde{g}$$
$$\iff g \in \{h\tilde{g} \mid \tilde{g} \in \operatorname{Stab}_{G}(x)\}$$

所以, $f(g)=y \Longleftrightarrow g \in \{h\tilde{g}\mid \tilde{g}\in \operatorname{Stab}_G(x)\}$ 。因此,每個 $y\in G_x$ 都 $|\operatorname{Stab}_G(x)|$ 個 $g\in G$ 使得 f(g)=y。 所以, $|G|=|G_x||\operatorname{Stab}_G(x)|$ 。

伯恩賽德引理 (Burnside's Lemma)

Theorem 4.5 (伯恩賽德引理): 讓G是一個有限群,讓X是一個G-set。讓r是X的軌道數,那麼

$$r \cdot |G| = \sum_{g \in G} |X^g|$$

伯恩賽德引理 (Burnside's Lemma)

Theorem 4.5 (伯恩賽德引理): 讓G是一個有限群,讓X是一個G-set。讓r是X的軌道數,那麼

$$r\cdot |G| = \sum_{g\in G} |X^g|$$

我們通過雙重計數來證明這個引理。考慮所有滿足gx = x的序組(g,x),我們用兩種方式計數這些序組,這樣就會有一個很自然的等式。

Proof

我們考慮序組(g,x),其中gx=x。假設這樣的序組有N個。 對於每一個 $g\in G$,我們計算 (g,x)的數量,這個數量是 $|X^g|$ 。所以

$$N = \sum_{g \in G} |X^g|$$

Proof

我們考慮序組(g,x),其中gx=x。假設這樣的序組有N個。 對於每一個 $g\in G$,我們計算 (g,x)的數量,這個數量是 $|X^g|$ 。所以

$$N = \sum_{g \in G} |X^g|$$

另一方面,對於每一個 $x \in X$,我們計算(g,x)的數量,這個數量是 $|\operatorname{Stab}_G(x)|$ 。所以

$$N = \sum_{x \in X} |\mathrm{Stab}_G(x)|$$

根據 軌道穩定子定理 Thm , $|\operatorname{Stab}_G(x)||G_x| = |G|$,所以,

$$N = \sum_{x \in X} |\mathrm{Stab}_G(x)| = \sum_{x \in X} \frac{|G|}{|G_x|} = |G| \sum_{x \in X} \frac{1}{|G_x|}$$

對於在相同軌道的元素, $|G_x|$ 是相同的。讓 \mathcal{O} 是一個軌道,我們有

$$\sum_{x \in \mathcal{O}} \frac{1}{|G_x|} = \sum_{x \in \mathcal{O}} \frac{1}{|\mathcal{O}|} = 1$$

因此,

$$\sum_{x \in X} \frac{1}{|G_x|} = (\text{軌道的數量})$$

$$N = |G| \cdot ($$
軌道的數量 $) = |G| \cdot r$

$$r \cdot |G| = \sum_{g \in G} |X^g|$$

用4個顏色對一個正三角形的三個邊進行著色,有幾種不同的著色方法?(兩種著色方式被認為是相同的,如果他們可以通過旋轉、鏡射相互變換)

用4個顏色對一個正三角形的三個邊進行著色,有幾種不同的著色方法?(兩種著色方式被認為是相同的,如果他們可以通過旋轉、鏡射相互變換)

我們讓 $G = D_3$ 是三角型的對稱群,X是所有著色的結果($|X| = 4^3$),所以我們要求X在G下有幾個軌道。根據前的討論,我們知道|G| = 6,然後我們計算不動點的個數:

$$|X^{\rho_0}| = 4^3$$

$$|X^{\rho_1}| = 4$$

$$|X^{\rho_2}| = 4$$

$$|X^{\tau_1}| = 4^2$$

$$|X^{\tau_2}| = 4^2$$

$$|X^{\tau_3}| = 4^2$$

根據伯恩賽德引理,我們有

$$6r = 4^3 + 4 + 4 + 4^2 + 4^2 + 4^2 = 120$$
$$r = 20$$

所以正三角形的相異著色方法有20種。

著色多項式

我們考慮我們有n個顏色,幫一個有對稱性的圖形上色,我們假設在對稱性下有r種上色方式。讓X是所有上色方法的集合,讓G是該圖形的對稱群,根據博恩賽德引理,我們有

$$r = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

其中 X^g 是在g下的不動點的集合。

著色多項式

我們考慮我們有n個顏色,幫一個有對稱性的圖形上色,我們假設在對稱性下有r種上色方式。讓X是所有上色方法的集合,讓G是該圖形的對稱群,根據博恩賽德引理,我們有

$$r = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

其中 X^g 是在g下的不動點的集合。

$$g = \underbrace{(1,2,3)(5,4)...(\#,\#)}_{m_g}$$

「每個循環內的顏色都一樣」 $|X^g| = n^{m_g}$

著色多項式

我們考慮我們有n個顏色,幫一個有對稱性的圖形上色,我們假設在對稱性下有r種上色方式。讓X是所有上色方法的集合,讓G是該圖形的對稱群,根據博恩賽德引理,我們有

$$r = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

其中 X^g 是在g下的不動點的集合。

$$g = \underbrace{(1,2,3)(5,4)...(\#,\#)}_{m_q}$$

「每個循環內的顏色都一樣」 $|X^g| = n^{m_g}$

$$r = \frac{1}{|G|} \sum_{g \in G} |X^g| = \frac{1}{|G|} \sum_{g \in G} n^{m_g}$$

我們考慮有n個顏色,對一個正四邊形的頂點上色,我們要求在對稱性下有幾種不同的著色方法。

我們考慮有n個顏色,對一個正四邊形的頂點上色,我們要求在對稱性下有幾種不同的著 色方法。

我們讓 $G = D_4$ 是正四邊形的對稱群,X是所有著色的結果 $(|X| = n^4)$,我們知道|G| = 8

我們考慮有n個顏色,對一個正四邊形的頂點上色,我們要求在對稱性下有幾種不同的著 色方法。

我們讓 $G=D_4$ 是正四邊形的對稱群,X是所有著色的結果 $(|X|=n^4)$,我們知道|G|=8

- 單位變換 $m_q = 4$
- 2個 $m_g=1$ 的旋轉(90°,270°),e.x. g=(1,2,3,4)
- 1個 $m_q = 2$ 的旋轉 (180°) ,e.x. g = (1,2)(3,4)
- 2個 $m_q = 3$ 的鏡射(對角線的鏡射), e.x. g = (1)(3)(2,4)
- 2個 $m_g = 2$ 的鏡射(中線的鏡射), e.x. g = (1,3)(2,4)

所以我們有

$$r = \frac{1}{8}(n^4 + 2n + n^2 + 2n^3 + 2n^2)$$
$$r = \frac{1}{8}(n^4 + 2n^3 + 3n^2 + 2n)$$

我們現在有n個顏色,幫一個正六面體上色,可以通過旋轉變換得到 視為相同的著色方式。總共有多少種不同的著色方式?

我們讓G=D是正六面體的對稱群,X是所有著色的結果($|X|=n^6$),我們知道 |G|=24

我們讓G=D是正六面體的對稱群,X是所有著色的結果($|X|=n^6$),我們知道 |G|=24

- 單位變換 $m_q = 4$
- 2個 $m_q = 1$ 的旋轉 $(90^{\circ}, 270^{\circ})$,e.x. g = (1, 2, 3, 4)
- 1個 $m_g = 2$ 的旋轉 (180°) ,e.x. g = (1,2)(3,4)
- 2個 $m_q = 3$ 的鏡射(對角線的鏡射), e.x. g = (1)(3)(2,4)
- 2個 $m_q = 2$ 的鏡射(中線的鏡射), e.x. g = (1,3)(2,4)

所以我們有

$$r = \frac{1}{24}(n^6 + 6n^3 + 3n^4 + 6n^3 + 8n^2)$$
$$r = \frac{1}{24}(n^6 + 3n^4 + 12n^3 + 8n^2)$$

在旋轉的對稱姓下,用n個顏色對一個正四面體的邊上色,總共有多少種不同的著色方式?

我們讓G是正四面體的對稱群,我們通過軌道-穩定子定理,我們可以得到|G|=12

我們討論裡面的對置換:

- 單位變換:(1)(2)(3)(4)(5)(6)
- 8個以一面中點的垂線為轉軸的旋轉:(1,2,3)(4,5,6)
- 3個以過兩對邊中點的轉軸旋轉:(1)(6)(2,4)(5,3)

所以我們有

$$r = \frac{1}{12} (n^6 + 8n^2 + 3n^4)$$