ПЛАНИМЕТРИЯ

Свойства и признаки параллельных прямых

- 1) Если две прямые параллельны одной и той же прямой, то они параллельны между собой.
 - 2) Две прямые, перпендикулярные одной и той же прямой, параллельны.
- 3) Если две параллельные прямые пересечь третьей, то образованные при этом внутренние накрест лежащие углы равны (углы 1 и 3); соответственные углы равны (углы 1 и 2); вертикальные углы равны (углы 3 и 2); внутренние односторонние углы в сумме составляют 180° (углы 1 и 4).

- 4) Если при пересечении двух прямых третьей образуются равные внутренние накрест лежащие углы, то прямые параллельны.
- 5) Если при пересечении двух прямых третьей образуются равные соответственные углы, то прямые параллельны.
- 6) Если при пересечении двух прямых третьей сумма внутренних односторонних углов равна 180°, то прямые параллельны.

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки $(A_1A_2 = A_2A_3)$, то они отсекают равные отрезки и на другой его стороне $(B_1B_2 = B_2B_3)$.

Обобщенная теорема Фалеса. Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.

ТРЕУГОЛЬНИК

Признаки равенства треугольников

- 1) Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны.
- 2) Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны.
- 3) Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то треугольники равны.

Признаки равенства прямоугольных треугольников

- 1) По двум катетам.
- 2) По катету и гипотенузе.
- 3) По гипотенузе и острому углу.
- 4) По катету и острому углу.

Теорема о сумме углов треугольника и следствия из неё

- 1) Сумма внутренних углов треугольника равна 180°.
- 2) Внешний угол треугольника равен сумме двух внутренних не смежных с ним углов.
- 3) Сумма внутренних углов выпуклого n-угольника равна $180^{\circ}(n-2)$.
- 4) Сумма внешних углов n-угольника равна 360°.
- 5) Угол между биссектрисами смежных углов равен 90° .
- 6) Биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны.

Основные свойства и признаки равнобедренного треугольника

- 1) Углы при основании равнобедренного треугольника равны.
- 2) Если два угла треугольника равны, то он равнобедренный.
- 3) В равнобедренном треугольнике медиана, биссектриса и высота, проведённые к основанию, совпадают.

4) Если в треугольнике совпадает любая пара отрезков из тройки: медиана, биссектриса, высота, то он является равнобедренным.

Неравенство треугольника и следствия из него

- 1) Сумма двух сторон треугольника больше его третьей стороны.
- 2) Сумма звеньев ломаной больше отрезка, соединяющего начало первого звена с концом последнего.
 - 3) Против большего угла треугольника лежит большая сторона.
 - 4) Против большей стороны треугольника лежит больший угол.
 - 5) Гипотенуза прямоугольного треугольника больше катета.
 - 6) Если из одной точки проведены к прямой перпендикуляр и наклонные, то
 - а) перпендикуляр короче наклонных;
 - б) большей наклонной соответствует большая проекция и наоборот.

Средняя линия треугольника: отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника.

Теорема о средней линии треугольника: средняя линия треугольника параллельна стороне треугольника и равна её половине.

Теоремы о медианах треугольника

- 1) Медианы треугольника пересекаются в одной точке (эта точка называется центром тяжести треугольника) и делятся этой точкой в отношении 2:1, считая от вершины треугольника, $AM = 2MA_1$, $BM = 2MB_1$, $CM = 2MC_1$.
- 2) Медиана треугольника делит его на два равновеликих треугольника (на треугольники с равными площадями), например, $S_{\Delta ABB_1} = S_{\Delta CBB_1}$.
- 3) Все медианы треугольника делят его на 6 равновеликих треугольников, т.е.

$$S_{\Delta AMB_1} = S_{\Delta AMC_1} = S_{\Delta BMC_1} = S_{\Delta BMA_1} = S_{\Delta CMA_1} = S_{\Delta CMB_1}.$$

- 4) Если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный.
- 5) Медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.

Свойство серединных перпендикуляров к сторонам треугольника: серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром окружности, описанной около треугольника.

Теорема о высотах треугольника: прямые, содержащие высоты треугольника, пересекаются в одной точке.

Теорема о биссектрисах треугольника: биссектрисы треугольника пересекаются в одной точке, которая является центром окружности, вписанной в треугольник.

Свойство биссектрисы треугольника: биссектриса треугольника делит его сторону на отрезки, пропорциональные прилежащим сторонам, т.е. $\frac{BK}{VC} = \frac{AB}{AC}$.

Длина биссектрисы треугольника находится по формуле $AK = \sqrt{AB \cdot AC - BK \cdot CK}$.

Признаки подобия треугольников

1) Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.

 Π ланиметрия $\underline{\text{http://math100.ru}}$

2) Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого, а углы, заключённые между этими сторонами, равны, то треугольники подобны.

3) Если три стороны одного треугольника соответственно пропорциональны трём сторонам другого, то треугольники подобны.

Признаки подобия прямоугольных треугольников

- 1) Они имеют по равному острому углу.
- 2) Катеты одного треугольника пропорциональны катетам другого треугольника.
- 3) Гипотенуза и катет одного треугольника пропорциональны гипотенузе и катету другого треугольника.

Площади подобных треугольников: отношение площадей подобных треугольников равно квадрату коэффициента подобия. Отношение сторон подобных треугольников равно отношению любых соответствующих линейных размеров.

Теорема Пифагора и теорема, обратная теореме Пифагора

- 1) Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов, т.е. $AB^2 = AC^2 + BC^2$, где $\angle C = 90^\circ$.
- 2) Если квадрат стороны треугольника равен сумме квадратов двух других его сторон, то треугольник прямоугольный.

В прямоугольном треугольнике

- 1) Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе.
- 2) Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
- 3) Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему.
- 4) Котангенс острого угла прямоугольного треугольника равен отношению прилежащего катета к противолежащему.
- 5) Катет прямоугольного треугольника, лежащий против угла 30° , равен половине гипотенузы.
- 6) Если катет прямоугольного треугольника равен половине гипотенузы, то угол, противолежащий этому катету, равен 30° .

Планиметрия http://math100.ru

7) В прямоугольном треугольнике медиана проведенная к гипотенузе равна половине гипотенузы (CO = BO = AO) и разбивает треугольник на два равнобедренных треугольника AOC и BOC.

8) Центр окружности описанной вокруг прямоугольного треугольника находится на середине гипотенузы: $R = \frac{c}{2}$; $r = \frac{a+b-c}{2} = p-c$, где a, b-c катеты, а c-c гипотенуза прямоугольного треугольника; c-c гипотенуза прямоугольного треугольника; c-c гипотенуза прямоугольного треугольника; c-c гипотенуза прямоугольного треугольника.

9) В прямоугольном треугольнике синус одного острого угла равен косинусу другого, а тангенс соответственно котангенсу, т.е. $\sin A = \cos B$, $\cos A = \sin B$, $\tan A = \cot B$, $\cot A = \cot B$.

Подобие в прямоугольном треугольнике:

Теорема синусов:

Теоремы синусов и косинусов:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

R - радиус описанной окружности

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Как найти косинус угла в треугольнике:

$$CosA = \frac{b^2 + c^2 - a^2}{2bc}$$

 Π ланиметрия $\underline{\text{http://math100.ru}}$

Следствие из теоремы косинусов: сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон, т.е. $d_1^2 + d_2^2 = 2(a^2 + b^2)$, где d_1 и d_2 диагонали параллелограмма, а a и b стороны параллелограмма.

Формула для медианы треугольника: если m_c — медиана треугольника, проведенная к стороне c, то $m_c = \frac{1}{2} \sqrt{2a^2 + 2b^2 - c^2}$, где a и b — остальные стороны треугольника.

Формулы площади треугольника

- 1) Площадь треугольника равна половине произведения основания на высоту, т.е. $S = \frac{1}{2}ah$.
- 2) Площадь треугольника равна половине произведения двух его сторон на синус угла между ними, т.е.

$$S = \frac{1}{2}ab\sin\alpha.$$

3) Площадь треугольника равна произведению его полупериметра на радиус вписанной окружности, т.е.

$$S=p\ r\,,$$
 где $p=rac{a+b+c}{2}$ — полупериметр, а r — радиус вписанной окружности.

- 4) Площадь треугольника равна произведению трёх его сторон, делённому на учетверённый радиус описанной окружности, $S = \frac{ab\,c}{4R}$, где R радиус описанной окружности.
 - 5) Формула Герона: $S = \sqrt{p(p-a)(p-b)(p-c)}$, где p полупериметр.

Вневписанная окружность. Окружность называют окружностью, вневписанной в треугольник, или вневписанной окружностью, если она касается одной стороны треугольника и продолжений двух других сторон. У каждого треугольника существуют три вневписанных окружности. Центр вневписанной окружности, изображенной на рисунке, лежит в точке пересечения биссектрисы внутреннего угла A и двух биссектрис внешних углов B и C, а окружность касается стороны BC. Радиус вневписанной окружности, касающейся стороны BC, вычисляется по формуле $r = \frac{S}{p - BC}$, где S – площадь треугольника ABC, а p – его полупериметр.

Теорема Менелая, Чевы и Птолемея:

ЧЕТЫРЕХУГОЛЬНИКИ

Площадь выпуклого четырехугольника равна половине произведения диагоналей на синус угла между ними: $S = \frac{1}{2} \, d_1 \, d_2 \sin \phi \, .$

Параллелограмм. Параллелограммом называется четырёхугольник, противоположные стороны которого попарно параллельны.

Свойства и признаки параллелограмма

- 1) Диагональ разбивает параллелограмм на два равных треугольника.
- 2) Противоположные стороны параллелограмма попарно равны.
- 3) Противоположные углы параллелограмма попарно равны.
- 4) Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам.
- 5) Если противоположные стороны четырёхугольника попарно равны, то этот четырёхугольник параллелограмм.
- 6) Если две противоположные стороны четырёхугольника равны и параллельны, то этот четырёхугольник параллелограмм.
- 7) Если диагонали четырёхугольника делятся точкой пересечения пополам, то этот четырёхугольник параллелограмм.

Свойство середин сторон четырёхугольника. Середины сторон любого четырёхугольника являются вершинами параллелограмма, площадь которого равна половине площади четырёхугольника.

Формулы площади параллелограмма

- 1) Площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне, т.е. $S=a\,h$.
- 2) Площадь параллелограмма равна произведению двух смежных сторон на синус угла между ними, т.е.

$$S = ab \sin \alpha$$
.

Прямоугольник. Прямоугольником называется параллелограмм, у которого все углы прямые. Площадь прямоугольника равна произведению двух смежных сторон.

Свойства и признаки прямоугольника

- 1) Диагонали прямоугольника равны.
- 2) Если диагонали параллелограмма равны, то этот параллелограмм прямоугольник.

Квадрат. Квадратом называется прямоугольник, все стороны которого равны.

Ромб. Ромбом называется четырёхугольник, все стороны которого равны.

Свойства и признаки ромба

- 1) Диагонали ромба перпендикулярны.
- 2) Диагонали ромба делят его углы пополам.
- 3) Если диагонали параллелограмма перпендикулярны, то этот параллелограмм ромб.
- 4) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм ромб.

Формулы площади ромба

- 1) Площадь ромба равна произведению стороны на высоту, т.е. S = a h .
- 2) Площадь ромба равна произведению двух сторон на синус угла между ними, т.е.

$$S = a^2 \sin \alpha$$
.

3) Площадь ромба равна половине произведения диагоналей, т.е. $S = \frac{1}{2} d_1 d_2$.

Планиметрия http://math100.ru

Трапеция. Трапецией называется четырёхугольник, у которого только две противоположные стороны (основания) параллельны. Средней линией трапеции называется отрезок, соединяющий середины непараллельных сторон (боковых сторон). Трапеция, у которой боковые стороны равны, но не параллельны, называется равнобедренной или равнобокой.

Теорема о средней линии трапеции. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Свойства трапеции

- 1) Диагонали трапеции разбивают ее на четыре треугольника с общей вершиной. Площади треугольников, прилежащих к боковым сторонам, равны: $S_{\Delta\!A\!B\!O} = S_{\Delta\!D\!C\!O}$.
- 2) В любой трапеции с непараллельными боковыми сторонами середины оснований (точки M и N), точка пересечения диагоналей (точка O) и точка пересечения прямых, на которых лежат боковые стороны (точка K), лежат на одной прямой.
 - 3) В равнобокой трапеции углы при основании равны.
 - 4) В равнобокой трапеции диагонали равны.
- 5) В равнобокой трапеции высота BH, опущенная на большее основание AD из конца меньшего основания BC, делит его на два отрезка, один из которых равен полуразности оснований $AH = \frac{AD BC}{2}$, а другой их полусумме $DH = \frac{AD + BC}{2}$, (т.е. средней линии трапеции).

- 6) Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой.
- 7) Во всякой трапеции с непараллельными боковыми сторонами отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований.
 - 8) Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.
- 9) Трапецию можно описать около окружности тогда и только тогда, когда сумма оснований равна сумме боковых сторон.
 - 10) Окружность, вписанная в равнобокую трапецию, касается оснований в их серединах.

Формула площади трапеции

Площадь трапеции равна произведению полусуммы оснований на высоту, $S = \frac{a+b}{2}h$.

Если четырехугольник вписан в окружность, то сумма противолежащих углов равна 180° , т.е. $\angle A + \angle C = \angle B + \angle D = 180^{\circ}$. Верно и обратное: если сумма противолежащих углов четырехугольника равна 180° , то около этого четырехугольника можно описать окружность.

Около параллелограмма можно описать окружность тогда и только тогда, когда этот параллелограмм прямоугольник.

Если четырехугольник описан около окружности, то суммы противолежащих сторон равны, т.е. AB+CD=BC+AD. Верно и обратное: если в выпуклом четырехугольнике суммы длин противолежащих сторон равны, то в этот четырехугольник можно вписать окружность.

Планиметрия http://math100.ru

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом.

Формула Герона для четырёхугольника, около которого можно описать окружность: $S = \sqrt{(p-a)(p-b)(p-c)(p-d)}$, где a, b, c, d – стороны этого четырёхугольник, p – полупериметр, а S – площадь.

МНОГОУГОЛЬНИКИ

Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой, содержащей его сторону. При этом сама прямая считается принадлежащей полуплоскости.

Сумма углов выпуклого n-угольника равна $180^{\circ}(n-2)$.

Если в многоугольник можно вписать окружность, то его площадь $S=p\,r$, где p- полупериметр многоугольника, а r- радиус вписанной окружности.

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.

Рассмотрим правильный шестиугольник ABCDEF: внутренние углы правильного шестиугольника равны 120° , поэтому диагонали AD, BE и CF разбивают шестиугольник на 6 равных равносторонних треугольников. Площадь шестиугольника равна площади одного из этих треугольников умноженная на 6. Диагонали AD, BE и CF в два раза больше стороны шестиугольника. Диагональ AC перпендикулярна сторонам CD и AF, поэтому ее можно найти по теореме

Пифагора из ΔACD или ΔACF . Радиус описанной окружности равен стороне шестиугольника, а радиус вписанной окружности половине диагонали AC.

ОКРУЖНОСТЬ И КРУГ

Окружностью называется множество всех точек плоскости, находящихся на равном положительном расстоянии от некоторой точки этой же плоскости. Эта точка называется **центром окружности**, а данное расстояние **радиусом окружности**.

Отрезок, соединяющий две точки окружности, называется **хордой**. Диаметр, делящий хорду пополам, перпендикулярен ей. Равные хорды окружности равноудалены от ее центра; равноудаленные от центра окружности хорды равны. C

Центральным углом в окружности называется угол с вершиной в ее центре (это $\angle AOB$). Часть окружности, расположенная внутри центрального угла, называется дугой окружности, соответствующей этому центральному углу. Градусной мерой дуги окружности называется градусная мера соответствующего ей центрального угла.

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным в окружность (это $\angle ACB$). Угол, вписанный в окружность, равен половине соответствующего центрального угла, т.е. $\angle AOB = 2\angle ACB$.

Вписанные угла, опирающиеся на одну и ту же дугу, равны ($\angle ACB = \angle ADB$).

Касательная к окружности: если из точки к окружности проведены две касательные, то длины отрезков от этой точки до точек касания равны (AM = AN) и прямая, проходящая через центр окружности и эту точку, обладает свойством: $\angle MAO = \angle NAO$.

Касательная перпендикулярна радиусу, проведённому к точке касания ($OA \perp AB$).

Мера угла между касательной и хордой, имеющими общую точку на окружности, равна половине градусной меры дуги стягиваемой этой хордой, т.е. $\angle AOC = 2 \angle BAC$.

Говорят, что две окружности касаются, если они имеют единственную общую точку (точку касания).

- 1) Точка касания двух окружностей лежит на линии центров этих окружностей.
- 2) Окружности радиусов r и R с центрами O_1 и O_2 касаются внешним образом тогда и только тогда, когда $R+r=O_1O_2$.
- 3) Окружности радиусов r и R (r < R) с центрами O_1 и O_2 касаются внутренним образом тогда и только тогда, когда $R-r=O_1O_2$.
- 4) Окружности с центрами O_1 и O_2 касаются внешним образом в точке K. Некоторая прямая касается этих окружностей в различных точках A и B и пересекается с общей касательной, проходящей через точку K, в точке C. Тогда $\angle AKB = 90^\circ$ и $\angle O_1CO_2 = 90^\circ$ и CA = CB = CK.
- 5) Отрезок общей внешней касательной AB к двум касающимся окружностям радиусов r и R равен отрезку общей внутренней касательной CD, заключённому между общими внешними касательными и эти отрезки $AB = CD = MN = 2\sqrt{Rr}$.

Длина окружности радиуса R равна $L = 2\pi R$.

Площадь круга радиуса R равна $S = \pi R^2$.

Длина дуги
$$L_{{\scriptscriptstyle AB}} = 2\,\pi\,R\,rac{lpha}{360}\,.$$

Площадь сектора $S_{OAB} = \pi R^2 \frac{\alpha}{360}$.

Свойство отрезков секущих:

Внутреннее пересечение:

$$2) \angle AOC = \frac{\Box BD + \Box AC}{2}$$

$$2) \leq AOC = \frac{SD - SAC}{2}$$

Свойство квадрата отрезка касательной:

1)
$$OC^2 = OA \cdot OB$$

 $2) \angle AOC = \frac{\Box BC - \Box AC}{2}$

квадрат отрезка касательной равен произведению отрезков секущей

угол между касательной и секущей