明細書

超音波溶着構造及び超音波溶着方法

技術分野

[0001] 本発明は、超音波による振動エネルギで溶着を行うための超音波溶着構造及び超音波溶着方法に関するものであり、特に、樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造及び超音波溶着方法に関するものである。

背景技術

- [0002] 従来から、熱可塑性樹脂によって構成された被加熱体を、超音波による振動エネルギで加熱することで他の樹脂や金属等の被接合体に固定する、超音波溶着が用いられている。この超音波溶着においては、ホーンと呼ばれる共振体を被加熱体に押し付けると共に、この共振体から高周波の機械的振動を加える。この機械的振動を受けた被加熱体は、その内部で振動エネルギが摩擦熱に変換されることによって温度上昇し、溶融して被接合体に固着される(例えば、特許文献1参照)。
- [0003] このような超音波溶着は、各種の産業分野で広く用いられている。例えば、自動車で使用されるアクチュエータにおいて、各構成部品を相互に固定するために、超音波溶着が用いられている。図26は、アクチュエータにおける超音波溶着の使用例を示すための斜視図、図27は、溶着部の溶着前の拡大斜視図、図28は、溶着部の溶着後の拡大斜視図である。これら図26~28に示すように、スキャン用の可動部100が、板バネ101を介して固定部102に固定されている。
- [0004] これら可動部100及び固定部102には、被加熱体として、柱状の樹脂(ボス)103 が設けられている。また、板バネ101の端部には、この板バネ101を固定用樹脂104で挟持することによって被接合体が構成されている。この固定用樹脂104には、被加熱体を挿通するための挿通孔が形成されている。そして、図27に示すように、樹脂103を挿通孔に挿通させた後、樹脂103の端部を超音波溶着にて溶融し、図28に示すように、樹脂103を固定用樹脂104に固着している。

[0005] 図29は、溶着部周辺の溶着前の縦断面図、図30は、溶着部周辺の溶着後の縦断面図をそれぞれ示す。この図29に示すように、ホーン106の底面には、樹脂103に接触する凹部106aが設けられており、さらに凹部106aの内側には、樹脂103に向けて突出する突起部106bが形成されている。これは、ホーン106の全体を軟化前の樹脂103に押し付けた場合には、ホーン106からの振動エネルギによって樹脂103にクラック等が生じ得て好ましくないため、まず突起部106bのみを樹脂103に押し付けることによって当該樹脂103の一部のみを軟化させ、その後に樹脂103の他の部分を徐々に軟化させることで、クラックの発生等を防止するためである。

2

- [0006] なお、被加熱体を構成する樹脂103としては、一般に、非晶性樹脂が用いられる。 これは、非晶性樹脂は、分子配列が不揃いで、軟化温度の範囲が広いため、樹脂1 03が徐々に軟化及び溶融し、かつ、超音波伝導特性が良いためである。
- [0007] 特許文献1:特開2000-79638号公報

発明の開示

発明が解決しようとする課題

- [0008] しかしながら、このような従来の超音波溶着には、各種の問題があった。すなわち、超音波溶着後、被加熱体である樹脂103に、ボイド(気泡)、リッジ(溶着部と非溶着部との界面剥離)、あるいは、クラック(亀裂)が生じることがあった。例えば、図30の縦断面図に示すように、溶着後の樹脂103には、ボイド107、リッジ108、クラック109がそれぞれ生じることがあった。
- [0009] このようにボイド107等が生じる主原因は、ある程度解明されている。図31は、従来の超音波溶着において生じ得る現象とその主原因との相関を示す図である。この図31に示すように、ボイド107は、樹脂103に印加する振動エネルギが大きすぎることが原因であると考えられている。この場合、樹脂103の一部のみが溶融して変形し、樹脂103の他の非溶融部分との間に空気を巻き込んでしまったり、樹脂103の内部に含まれる空気を気泡状に変化させてしまうと考えられる。
- [0010] また、リッジ108は、溶解した樹脂103の変形量が過大であるため、樹脂103が変形する際にその表面積変化がシワとして表出してしまったり、あるいは、溶解した樹脂103の変形方向が悪いため、溶解した樹脂103が溶解していない樹脂103と接触し

- 、両者の間に境界を形成してしまうために生じると考えられる。
- [0011] また、クラック109は、樹脂103に印加する振動エネルギが大きすぎたり、溶解した 樹脂103の変形量が過大であるため、樹脂103の基部等のように応力集中を起こし 易い部分において樹脂103が極小的に破壊されることで生じると考えられる。
- [0012] しかしながら、このように問題の主原因がある程度特定されていたにも関わらず、その主原因を取り除くための具体的な超音波溶着構造や超音波溶着方法は提案されていなかった。
- [0013] 特に、自動車部品のように、振動、湿度、及び、温度環境が苛酷な場所においては 、上記の如き問題が顕著に発生し得る可能性があり、超音波溶着構造及び超音波 溶着方法の改善が要望されていた。
- [0014] 本発明は、上記に鑑みてなされたものであって、溶着部分におけるボイド、リッジ、あるいは、クラックの発生を低減させることによってその耐久性を向上させることができる、超音波溶着構造及び超音波溶着方法を提供することを目的とする。 課題を解決するための手段
- [0015] 上述した課題を解決し、目的を達成するために、請求項1に記載の本発明は、樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、上記被接合体は、上記被加熱体を挿通するための挿通孔を備え、上記被接合体の挿通孔は、上記共振体に対向する側の内縁に、切欠き部を備えることを特徴とする。
- [0016] また、請求項2に記載の本発明は、請求項1に記載の本発明において、上記挿通 孔の切欠き部を、溶融状態の上記被加熱体を受容する受容部としたことを特徴とす る。
- [0017] また、請求項3に記載の本発明は、請求項1に記載の本発明において、上記挿通 孔の切欠き部を、当該挿通孔の内縁との接触によって上記被接合体の内部に生じる 応力を緩和するための応力緩和部としたことを特徴とする。
- [0018] また、請求項4に記載の本発明は、樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより

THIS PAGE BLANK (USPTO)

(

- 、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、上記 共振体における上記被加熱体との接触面を略平面状に形成し、上記被加熱体は、 上記共振体に対して突状に形成された共振体連接部を備えることを特徴とする。
- [0019] また、請求項5に記載の本発明は、樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、上記共振体は、その底面から上記被加熱体側に突出する共振突起部を備え、上記共振体の上記共振突起部を、略半球状または略円錐状に形成したことを特徴とする。
- [0020] また、請求項6に記載の本発明は、樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、上記共振体は、その底面から上記被加熱体側に突出する共振突起部を備え、上記共振体に、その底面から上記共振突起部の基部に至る傾斜面を形成したことを特徴とする。
- [0021] また、請求項7に記載の本発明は、樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、上記共振体は、その底面から上記被加熱体側に突出する共振突起部を備え、上記被加熱体は、上記共振体に対して少なくとも凹状に形成された共振体受容部を備えることを特徴とする。
- [0022] また、請求項8に記載の本発明は、請求項7に記載の本発明において、上記共振 体の上記共振突起部を、略半球状に形成し、上記被加熱体の上記共振体受容部を 、上記略半球状の上記共振突起部を包含し得る径の略円錐状に形成したことを特徴 とする。
- [0023] また、請求項9に記載の本発明は、請求項7に記載の本発明において、上記共振 体受容部を、上記共振体の押し付け方向に沿った長穴状に形成したことを特徴とす る。
- [0024] また、請求項10に記載の本発明は、請求項7に記載の本発明において、上記共振

体受容部を、上記共振体の押し付け方向に沿って、かつ、上記被加熱体の底面に 至る貫通孔として形成したことを特徴とする。

- [0025] また、請求項11に記載の本発明は、請求項7~10のいずれか一つに記載の本発明において、上記共振体受容部の上縁に、切欠き部を備えることを特徴とする。
- [0026] また、請求項12に記載の本発明は、樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、上記被加熱体は、当該被加熱体の基部側に位置する太径部と、当該太径部よりも上記共振体側に位置するものであって、当該太径部よりも細径の細径部とを備えることを特徴とする。
- [0027] また、請求項13に記載の本発明は、請求項12に記載の本発明において、上記被接合体は、上記被加熱体を挿通するための挿通孔を備え、上記被加熱体における上記太径部と上記細径部との境界面を、当該被加熱体を上記挿通孔に挿通した状態における上記被接合体の上面よりも下方に配置したことを特徴とする。
- [0028] また、請求項14に記載の本発明は、樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、上記共振体は、その底面から上記被加熱体側に突出する略半球状又は略円錐状の共振突起部と、その底面から上記共振突起部の基部に至る傾斜面とを備え、上記被加熱体は、上記共振体の押し付け方向に沿って、かつ、上記被加熱体の底面に至る貫通孔状の共振体受容部形成を備えたことを特徴とする。
- [0029] また、請求項15に記載の本発明は、樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着方法であって、上記共振体における上記被加熱体との接合部分を加熱する予備加熱工程と、上記予備加熱工程にて加熱された上記接合部分を、上記被加熱体に押し付けて高周波振動を与える加熱工程とを備えることを特徴とする。

発明の効果

24 受容部

P 変曲面

発明を実施するための最良の形態

[0047] 以下に、本発明にかかる超音波溶着構造及び超音波溶着方法の各実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。

- [0048] 本発明に係る超音波溶着構造及び超音波溶着方法の実施例1について説明する。本実施例1は、概略的に、被接合体の挿通孔における、共振体に対向する側の内縁に、切欠き部を形成したことを等を特徴とし、特に、この切欠き部を、溶融状態の被加熱体を受容する受容部としたこと等を特徴とする。
- [0049] 図1は、本実施例1に係る超音波溶着装置を概略的に示す斜視図である。この図1に示すように、超音波溶着機1は、ブースター2、当該ブースター2の端部に設けられた共振体としてのホーン3、及び、当該ホーン3に対向するように配置された受治具4を備えて構成されている。このブースター2の内部には、図示しない振動子が設けられており、この振動子による振動がホーン3に伝達される。また、ブースター2は、図示しない加圧源によって加圧されて、受治具4に向かう方向(図示における下方であり、押し付け方向)に移動することで、その先端のホーン3を、受治具4の上面にセットされた被加熱体である樹脂10に押し付ける。このことにより、振動子による振動がホーン3を介して樹脂10に伝達され、ホーン3から樹脂10に高周波振動が与えられる。なお、図2は、本件出願人により解明された、従来の問題を生じる原因に対する対応策とその効果との関係を示す図であり、その一部又は全部の対応策が本実施例1〜10において達成されることになる。
- [0050] 次に、本実施例1において使用する被加熱体としての樹脂10について説明する。 図3は、樹脂の縦断面図である。この図3に示すように、樹脂10は、平板状の基部11 と、この基部11からホーン側に立上る柱状部12とを一体に備えて構成されている。より具体的には、基部11の肉厚T=2mm、柱状部12の直径W1=2.72mm、柱状部12の上端縁の面取り部の半径R1=0.2mm、柱状部12の全高H1=2.7mm、柱

状部12から基部11に至る接合部13の半径R2=0.5、一対の接合部13が形成する角度R3=43.6度である。この樹脂10は、非晶性樹脂により形成され、ポリカーボネートやABS(Acrylonitrile Butadiene Styrene)を用いることができ、より好ましくは、三菱エンジニアリングプラスチックス株式会社製の製品番号「S2000R」の高流動性樹脂を用いることができる。ただし、この樹脂10の形状は任意に変更可能である。

- [0051] 次に、本実施例1に係る超音波溶着構造について説明する。図4は、実施例1に係る超音波溶着構造の溶着前の縦断面図、図5は、実施例1に係る超音波溶着構造の溶着後の縦断面図である。図4に示すように、ホーン3は、基本的には図29に示す従来のホーンと同様の形状に形成されている。すなわち、ホーン3の底面には、樹脂に接触する凹部3aが設けられており、この凹部3aには、樹脂側に向けて突出する突起部3bが形成されている。
- [0052] 図4に示すように、被接合体は、図29に示す従来例と同様に板バネ20を固定用樹脂21で挟持して構成されており、この固定用樹脂21の平面の略中央には、樹脂を 挿通するための挿通孔23が形成されている。
- [0053] ここで、固定用樹脂21の挿通孔23は、そのホーン3に対向する側の内縁に、溶融 状態の樹脂を受容する受容部24を有する。すなわち、挿通孔23の内縁がその全周 に渡って切欠かれることにより、当該挿通孔23の上縁に、略円錐状の斜面を有する 空間としての受容部24が形成されている。
- [0054] この受容部24の機能は以下の通りである。すなわち、図5に示すように、ホーン3の振動エネルギにより溶融した樹脂10が受容部24に受容されることで、樹脂10と固定用樹脂21との相互の接触面積が増大して固着力が向上すると共に、樹脂10と固定用樹脂21との相互の接触部分が厚肉状になって強度が向上する。このことにより、従来の問題点の全部又は一部を解消し得る。なお、この機能を達成し得る限りにおいて、受容部24の形成角度や直径は任意に決定することができる。例えば、本実施例1においては円錐状の傾斜面を有するように受容部24を形成したが、方形状や半球状の空間部として形成してもよい。

THIS PAGE BLANK (USPTO)

- [0055] 次に、本発明に係る超音波溶着構造及び超音波溶着方法の実施例2について説明する。本実施例2は、概略的に、共振体における被加熱体との接触面を略平面状に形成し、被加熱体は、共振体に対して突状に形成された共振体連接部を備えることを特徴とする。また本実施例2は、概略的に、被加熱体は、当該被加熱体の基部側に位置する太径部と、太径部よりも共振体側に位置するものであって、太径部よりも細径の細径部とを備えることを特徴とする。なお、特に説明なき構造及び方法については、上述した実施例1と同様であり、同一の構成を同一の符号を付して説明する。
- [0056] 図6は、本実施例2に係る超音波溶着構造の溶着前の縦断面図、図7は、実施例2 に係る超音波溶着構造の溶着後の縦断面図である。図6に示すように、樹脂10との 接触面である凹部3aは、突起が形成されておらず略平面状になるように形成されて いる。一方、樹脂10には、ホーン3に対して突状に形成された共振体連接部14が形 成されている。この共振体連接部14は、樹脂10と同一の材料にて一体に型成形さ れるもので、樹脂10の上面の略中央位置において、ホーン3に向けて略円錐状に立 ち上がるように形成されている。
- [0057] この共振体連接部14の機能は以下の通りである。すなわち、図29に示す従来例においては、ホーン3の底面に突起部106bを形成していた。この場合、突起部106bを軟化前の樹脂10に押し付けた状態においては、樹脂10が、その基部の両端及び突起部106bによって3点固定されることになる。したがって、水平方向における、樹脂10に対するホーン3の位置決めに誤差があった場合、この3点固定状態が不均衡になり、樹脂10に過剰な応力等を加えてクラック等の原因になり得る。一方、本実施例2のような構成では、樹脂10が、その基部の両端及び共振体連接部14によって3点固定されることになる。この場合、樹脂10に対するホーン3の位置決めに誤差が生じても、樹脂10側における3点の固定位置は常時同じであるため、3点固定状態を常に均衡に保つことができ、クラック発生等を低減できる。このことにより、従来の問題点の全部又は一部を解消し得る。
- [0058] なお、この機能を達成し得る限りにおいて、共振体連接部14の形成角度や直径は 任意に決定することができる。例えば、本実施例2においては共振体連接部14を円 錐状に形成したが、円柱状に形成してもよい。

- [0059] また、樹脂10は、太径部15及び細径部16を一体に備えて構成されている。このうち太径部15は、樹脂10の基部側に位置するもので、この基部に向かうにつれて徐々に太径になる傾斜部を介して、基部に接合されている。また細径部16は、太径部15よりもホーン3側に位置するものであって、太径部15よりも細径状に形成されている。なお、太径部15と細径部16との境界面を変曲面Pと定義すると、本実施例2においては、変曲面Pが固定用樹脂21の上面よりもホーン側に位置するように、樹脂10が形成されている。
- [0060] これら太径部15及び細径部16の機能は以下の通りである。すなわち、図29に示す従来例においては、樹脂10の円柱部分を略同一の径で形成していた。この場合、ホーン3からの振動エネルギによって、樹脂10の上部のみならず下部までも溶融してしまい、クラック等の原因になる。一方、本実施例3のような構成では、細径部16のみが溶融して固定用樹脂21との固着機能を達成する一方で、太径部15は溶融されることなく樹脂強度を維持するので、従来の問題点の全部又は一部を解消し得る。
- [0061] なお、この機能を達成し得る限りにおいて、太径部15及び細径部16の径や形状は任意に決定することができる。例えば、太径部15に対する細径部16の長さや径の比率を変更することができる。また、太径部15と細径部16との2段構成に限られず、さらに径の異なる部分を形成して3段以上の構成にしてもよい。

- [0062] 次に、本発明に係る超音波溶着構造及び超音波溶着方法の実施例3について説明する。本実施例3は、概略的に、共振体は、その底面から被加熱体側に突出する共振突起部を備え、被加熱体は、共振体に対して少なくとも凹状に形成された共振体受容部を備えることを特徴とする。また本実施例3は、概略的に、被加熱体は、当該被加熱体の基部側に位置する太径部と、太径部よりも共振体側に位置するものであって、太径部よりも細径の細径部とを備えることを特徴とする。なお、特に説明なき構造及び方法については、上述した実施例2と同様であり、同一の構成を同一の符号を付して説明する。
- [0063] 図8は、本実施例3に係る超音波溶着構造の溶着前の縦断面図、図9は、実施例3 に係る超音波溶着構造の溶着後の縦断面図である。図8に示すように、ホーン3は共

振突起部3cを備えて構成されている。この共振突起部3cは、ホーン3の底面の凹部3aの略中央から樹脂10に向けて突出するもので、図示の如く、縦断面形状を略半球状としている。

- [0064] 一方、樹脂10は、共振体受容部17を備えて構成されている。この共振体受容部17は、樹脂10の上面中央に形成されており、上記略半球状の共振突起部3cを包含し得るような略円錐状(凹状)に形成されている。すなわち、共振体受容部17の開口上部は、共振突起部3cの最大径よりも若干広くなるように形成されており、樹脂10の基部に至につれて徐々にその径を狭くしている。
- [0065] これら共振突起部3c及び共振体受容部17の機能は以下の通りである。すなわち、図29に示す従来例においては、ホーン3の底面に突起部106bを形成していた。その一方、樹脂10の上面は単なる平面状に形成されていた。このような構造において、水平方向における、樹脂10に対するホーン3の位置決めに誤差があった場合、この誤差に対する修正力が働かないので、誤差が許容されることなく溶着が進んでしまう。一方、本実施例3の構成では、ホーン3の位置決めに誤差があった場合においても、共振突起部3cが共振体受容部17によって受容され、この共振体受容部17によって適正位置へ修正するための修正力が働くので、適切な位置関係で溶着を進めることができ、従来の問題点の全部又は一部を解消し得る。特に、本実施例3においては、略半球状の共振突起部3cが略円錐状の共振体受容部17によってスムーズに導かれるため、ホーン3の位置決め誤差が円滑に修正される。なお、この機能を達成し得る限りにおいて、共振突起部3c及び共振体受容部17の形状は任意に決定することができる。例えば、共振突起部3cを略円錐状にしてもよい。

実施例 4

[0066] 次に、本発明に係る超音波溶着構造及び超音波溶着方法の実施例4について説明する。本実施例4は、概略的に、被接合体は、被加熱体を挿通するための挿通孔を備え、被加熱体における太径部と細径部との境界面を、当該被加熱体を挿通孔に挿通した状態における被接合体の上面よりも下方に配置したことを特徴とする。また、本実施例4は、概略的に、被接合体の挿通孔は、共振体に対向する側の内縁に、切欠き部を備え、この切欠き部を、当該挿通孔の内縁との接触によって上記被接合

体の内部に生じる応力を緩和するための応力緩和部としたことを特徴とする。なお、特に説明なき構造及び方法については、上述した実施例3と同様であり、同一の構成を同一の符号を付して説明する。

- [0067] 図10は、本実施例4に係る超音波溶着構造の溶着前の縦断面図、図11は、実施 例4に係る超音波溶着構造の溶着後の縦断面図である。図10に示すように、ホーン 3の底面には、従来と同様、樹脂10に接触する凹部3bが設けられており、この凹部3 bには、樹脂側に向けて突出する突起部3bが形成されている。
- [0068] また、樹脂10は、太径部15及び細径部16を一体に備えて構成されている。特に、 太径部15と細径部16との境界面である変曲面Pは、固定用樹脂21の上面よりも下 方側に配置されている。すなわち、実施例2~3の場合に比べて、太径部15に対す る細径部16の長さを長くすることにより、変曲面Pを下げている。
- [0069] このような変曲面Pの機能は以下の通りである。すなわち、最も構造変化の激しい変曲面Pを固定用樹脂21で保持した状態で溶着できるので、変曲面Pを安定的に保持することができ、従来の問題点の全部又は一部を解消し得る。特に、変曲面Pを固定用樹脂21の上面よりも上方に配置した場合(実施例2~3の場合)に比べて、ボイドやリッジの発生を低減することができる。
- [0070] なお、この機能を達成し得る限りにおいて、太径部15及び細径部16の径や形状は 任意に決定することができる。例えば、太径部15に対する細径部16の長さや径の比 率を変更することができる。また、太径部15と細径部16との2段構成に限られず、さ らに径の異なる部分を形成して3段以上の構成にしてもよい。また、変曲面Pは、固定 用樹脂21の上面と下面との間であることが好ましいが、固定用樹脂21の下面よりも 下方側に配置してもよい。
- [0071] また、固定用樹脂21の挿通孔23には、応力緩和部25が設けられている。この応力緩和部25は、実施例1と同様に、挿通孔23における共振体に対向する側の内縁を切欠くことで形成されている。ただし、この応力緩和部25は、実施例1の受容部に比べて小さく、例えば、RO. 2mm程度である。
- [0072] この応力緩和部25の機能は以下の通りである。すなわち、実施例2〜3においては 、樹脂10の溶解後、挿通孔23の内縁に切欠きがないため、この内縁が樹脂10の表

面に接触する。したがって、樹脂10における挿通孔23の周辺部に応力集中が生じ、 クラック等を発生させる原因になり得る。一方、本実施例4においては、内縁が切欠か れて応力緩和部25が形成されているので、樹脂10の溶解後、この内縁が樹脂10の 表面に接触しない。あるいは、接触した場合においても、この接触により生じ得る応 力が従来よりも軽減される。したがって、樹脂10における挿通孔23の周辺部での応 力集中を回避でき、クラック等を低減できる。なお、この機能を達成し得る限りにおい て、応力緩和部25の径や形状は任意に決定することができる。

- [0073] 次に、本発明に係る超音波溶着構造及び超音波溶着方法の実施例5について説 明する。本実施例5は、概略的に、共振体は、その底面から被加熱体側に突出する 共振突起部を備え、この上記共振突起部を、略半球状または略円錐状に形成したこ とを特徴とする。さらに、本実施例5は、概略的に、共振体に、その底面から共振突起 部の基部に至る傾斜面を形成したことを特徴とする。なお、特に説明なき構造及び方 法については、上述した実施例4と同様であり、同一の構成を同一の符号を付して説 明する。
- [0074] 図12は、本実施例5に係るホーン3の共振突起部の縦断面図、図13は、実施例5 に係る超音波溶着構造の溶着前の縦断面図、図14は、実施例5に係る超音波溶着 構造の溶着後の縦断面図である。図12に示すように、ホーン3には、凹部3aが形成 されており、この凹部3aには、縦断面形状を略半球状とする共振突起部3dが設けら れている。この共振突起部3dは、図8の共振突起部3cと異なり、その底面を凹部3a の底面よりも下方に突出させるように形成されている。また、ホーン3には、傾斜面3e が形成されている。この傾斜面3eは、ホーン3及び共振突起部3dと一体に形成され るもので、ホーン3の凹部の底面から、共振突起部3dの基部に至る緩やかな連続面 である。この共振突起部3dの具体的寸法例は、図12に示すように、その球面状の半 径R4を0.3mm、図示の高さH1とH2をそれぞれ0.7mm及び0.5mmとする。
- [0075] この共振突起部3d及び傾斜面3eの機能は下記の通りである。すなわち、最初に共 振突起部3dを樹脂10に押し付けることで、樹脂10の一部のみを軟化させて徐々に 溶着を進めることができる。特に、傾斜面3eが共振体受容部18を押圧することによっ

て、この押圧力が傾斜面3eの傾斜に対応した外側向きの分力を生じさせ、軟化された樹脂10を外側に倒す。そして、この倒された樹脂10が固定用樹脂21の上面に固着することで、固定を行うことができる。このように押圧力から派生した分力を用いることで、ホーン3の押圧力を従来より弱めることができ、弱い力で溶着を行うことができるので、過大押圧力によって生じていた問題を解消でき得る。

- [0076] 次に、本発明に係る超音波溶着構造及び超音波溶着方法の実施例6について説明する。本実施例6は、概略的に、共振体は、その底面から被加熱体側に突出する共振突起部を備え、被加熱体は、共振体に対して少なくとも凹状に形成された共振体受容部を備えることを特徴とする。特に、この共振体受容部を、共振体の押し付け方向に沿った長穴状に形成している。さらに、本実施例6は、概略的に、共振体に、その底面から共振突起部の基部に至る傾斜面を形成したことを特徴とする。また、本実施例6は、概略的に、被接合体の挿通孔は、共振体に対向する側の内縁に、切欠き部を備え、この切欠き部を、挿通孔の内縁との接触によって上記被接合体の内部に生じる応力を緩和するための応力緩和部としたことを特徴とする。なお、特に説明なき構造及び方法については、上述した実施例5と同様であり、同一の構成を同一の符号を付して説明する。
- [0077] 図15は、実施例6に係る超音波溶着構造の溶着前の縦断面図、図16は、実施例6に係る超音波溶着構造の溶着後の縦断面図である。図15に示すように、樹脂10には、実施例3の場合と同様に、ホーン3に対して少なくとも凹状に形成された共振体受容部18が形成されている。ただし、この共振体受容部18は、実施例3の場合と異なり、図13に示すように、ホーン3の押し付け方向(図示における上下方向)に略沿った長穴状(円筒空間状)に形成されている。なお、この共振体受容部18の底部は、固定用樹脂21の上面よりもやや上方に位置している。
- [0078] これら共振突起部3d、共振体受容部18、及び、傾斜面3eの機能は下記の通りである。すなわち、最初に共振突起部3dを樹脂10に押し付けることで、樹脂10の一部のみを軟化させて徐々に溶着を進めることができる。特に、傾斜面3eが共振体受容部18を押圧することによって、この押圧力が傾斜面3eの傾斜に対応した外側向きの

分力を生じさせ、軟化された樹脂10を外側に倒す。また、共振体受容部18が長穴 状なので、軟化された樹脂10を一層容易に倒すことができる。そして、この倒された 樹脂10が固定用樹脂21の上面に固着することで、固定を行うことができる。このよう に押圧力から派生した分力を用いることで、ホーン3の押圧力を従来より弱めることが でき、弱い力で溶着を行うことができるので、過大押圧力によって生じていた問題を 解消でき得る。なお、共振体受容部18を形成した分だけ、樹脂10の総量が減ること になるが、樹脂10が倒れることで、樹脂10の大部分が固定用樹脂21の上面に乗る ことになり、所要の固定力を得ることができる。

[0079] なお、この機能を達成し得る限りにおいて、共振突起部3d、共振体受容部18、及び、傾斜面3eの形状は任意に決定することができる。例えば、共振体受容部18は、角柱状の空間部として形成してもよい。また、共振体受容部18の底部を、固定用樹脂21の上面より下方に配置してもよい。また、本実施例6においては、さらに固定用樹脂21の下部に座繰り部16bを設けてあり、これによって樹脂10の基部の曲率を大きくして、過度の応力集中等を回避することができる。

- [0080] 次に、本発明に係る超音波溶着構造及び超音波溶着方法の実施例7について説明する。本実施例7は、概略的に、実施例6と同様であるが、共振体受容部を、共振体の押し付け方向に沿って、かつ、被加熱体の底面に至る貫通孔として形成したことを特徴とする。なお、特に説明なき構造及び方法については、上述した実施例6と同様であり、同一の構成を同一の符号を付して説明する。
- [0081] 図17は、実施例7に係る超音波溶着構造の溶着前の縦断面図、図18は、実施例7に係る超音波溶着構造の溶着後の縦断面図である。図17に示すように、樹脂10には、実施例6の場合と同様に、ホーン3に対して少なくとも凹状に形成された共振体受容部19が形成されている。ただし、この共振体受容部19は、実施例6の場合と異なり、ホーン3の押し付け方向に沿って、かつ、樹脂10の底面に至る貫通孔として形成されている。
- [0082] これら共振突起部3d、共振体受容部19、及び、傾斜面3eの機能は下記の通りである。 すなわち、実施例6の場合と同様に、押圧力から派生した分力によって樹脂3

を固定用樹脂21の方へ倒すことで、固着を行うことができる。ここで、実施例6のように、共振体受容部19を実施例6のような長穴状に形成した場合、樹脂型には共振体受容部19に対応した棒状部を設ける必要があり、特に、その棒状部を一端支持にて固定しておく必要がある。しかしながら、このような一端支持構造は外力に弱く、棒状部が湾曲等し易いために、共振体受容部19を形成することが困難である。一方、本実施例7においては、共振体受容部19が貫通状であるために、その樹脂型のための棒状部を両端支持にて固定することができるので、共振体受容部19の成型が容易である。

- [0083] 次に、本発明に係る超音波溶着構造及び超音波溶着方法の実施例8について説明する。本実施例8は、概略的に、実施例7と同様であるが、共振体における被加熱体との接合部分を加熱する予備加熱工程と、加熱工程にて加熱された接合部分を、被加熱体に押し付けて高周波振動を与える加熱工程とを備えることを特徴とする。なお、特に説明なき構造及び方法については、上述した実施例7と同様であり、同一の構成を同一の符号を付して説明する。
- [0084] 図19は、本実施例8に係る超音波溶着装置を概略的に示す斜視図、図20は、実施例8に係る超音波溶着構造の溶着前の縦断面図、図21は、実施例8に係る超音波溶着構造の溶着後の縦断面図である。これら各図に示すように、超音波溶着機1は、ヒータ5を備えて構成されている。このヒータ5は、ホーン3を加熱するための加熱手段である。具体的には、ヒータ5は、遠赤外線加熱による間接加熱を行う加熱手段であることが好ましく、例えば、セラミックヒータを用いることができる。これは、遠赤外線加熱とすることで、加熱部分の制御が容易になり、かつ、間接加熱とすることで、ホーン3の振動を不用意に妨げないためである。
- [0085] 本実施例8においては、まず最初に、ホーン3をヒータ5で加熱する(予備加熱工程)。この加熱温度の上限値は、樹脂10のガラス転位温度(転位点)より下に設定される。これは、ガラス転位温度以上に加熱してしまった場合には、樹脂10が溶融してしまい、振動エネルギが伝導しなくなって、振動エネルギによる溶融という本来の超音波溶着の機能を却って阻害し得るからである。また、加熱温度の下限値は、樹脂10

(

のヤング率を20%程度低下させるのに必要な最低温度である。これは、ヤング率を20%以上低下した場合に、樹脂10の軟化が始まり、後述する本実施例8の効果が、経験上、発揮され得るからである。具体的な数値例としては、樹脂10の溶融点が140度である場合、100~110度にホーン3を加熱する。なお、必ずしもホーン3の全体を加熱する必要はなく、少なくとも、樹脂10との接合部分を加熱すればよい。

- [0086] 次に、加熱されたホーン3を、樹脂10に押し付け、高周波振動を与えることにより、 熱溶着を行う(加熱工程)。このことにより、ホーン3の熱で樹脂10を軟化させつつ、 高周波振動による加熱を行い、図21の如き溶着を行うことができる。
- [0087] ここで、高周波振動に加えて、ホーン3の熱で溶着を行うことの効果は以下の通りである。すなわち、従来は、加熱の前後において、ホーン3の振動ストロークを単に一定にしており、かつ、振動ストロークを比較的大きくしていた。この場合、初期においては、樹脂10のヤング率が高いため問題がないが、ヤング率が下がった後においても、振動ストロークが比較的大きいままで落ちないために、樹脂10に対する加熱が過度になり、樹脂10が溶けすぎて劣化する原因になっていた。これに対して、本実施例8においては、ホーン3の振動ストロークはやはり一定にするが、振動ストロークを従来に比べて全体として小さくする。そして、樹脂10のヤング率が高い溶着初期においては、ホーン3の熱で樹脂10を軟化させ、ヤング率が下がった後は、従来に比べて全体として小さな振動ストロークによって超音波溶着を行う。すなわち、ヤング率が下がる前までは、樹脂10を加熱するために比較的大きい振動ストロークを与え、ヤング率が一旦下がった後は、樹脂10のそれ以上の加熱は不要であるため、樹脂10を変形させるための振動エネルギのみを与える。したがって、樹脂10が過度に加熱されず、ボイド等を低減させ得る。
- [0088] また、本実施例8においては、発振周波数を高くして、樹脂上方のみを加熱対象に限定している。これは、樹脂10の上部の細径部のみを軟化できればよいためである。具体的には、一般的には、発振周波数は28~40kHz程度であるが、本実施例8においては、ホーン3の発振周波数を40kHz前後にしている。
- [0089] また、ホーン3の制御は、加圧力と、振動時間管理又は振動ストローク管理との2つの制御条件にて行うのが一般的であるが、本実施例8においては、加圧力と振動スト

ローク管理とで管理を行っている。これは、振動時間管理よりも振動ストローク管理を 行う方が、樹脂10に過大な振動が加わることを防止するためのストローク制御を直接 的に行うことができるからである。

[0090] また、ホーン3の発振タイミングとしては、ホーン3を樹脂10に接触させる前に発振を開始する前発振と、ホーン3を樹脂10に接触させた後で発振を開始する後発振とがあるが、本実施例8においては、後発振を採用している。これは、ホーン3を樹脂10に接触させた時点で当該ホーン3に反動(リバウンド)が生じ得るため、この反動がなくなるのを待ってから振動を開始することで、安定した振動エネルギを樹脂10に伝達するためである。

実施例9

- [0091] 次に、本発明に係る超音波溶着構造及び超音波溶着方法の実施例9について説明する。本実施例9は、概略的に、実施例8と同様であるが、共振体受容部の上縁に、切欠き部を備えることを特徴とする。なお、特に説明なき構造及び方法については、上述した実施例8と同様であり、同一の構成を同一の符号を付して説明する。
- [0092] 図22は、実施例9に係る超音波溶着構造の溶着前の縦断面図、図23は、実施例9 に係る超音波溶着構造の溶着後の縦断面図である。これら各図に示すように、樹脂 10に貫通状に形成された共振体受容部19の上縁には、その全周に渡り、切欠き部 19aが形成されている。したがって、水平方向に関して、樹脂10に対するホーン3の 位置がずれた場合においても、ホーン3の共振突起部3dが、切欠き部19aによって 共振体受容部19の内側に導かれ、位置ずれを緩和することができる。なお、この機 能を達成し得る限りにおいて、切欠き部19aの形状は任意である。

- [0093] 次に、本発明に係る超音波溶着構造及び超音波溶着方法の実施例10について 説明する。本実施例10は、概略的に、実施例9と同様であるが、ホーン3の共振突起 部を、略半球状に形成したことを特徴とする。なお、特に説明なき構造及び方法につ いては、上述した実施例9と同様であり、同一の構成を同一の符号を付して説明する
- [0094] 図24は、実施例10に係る超音波溶着構造の溶着前の縦断面図、図25は、実施例

10に係る超音波溶着構造の溶着後の縦断面図である。これら各図に示すように、ホーン3の凹部3aには、共振突起部3fが形成されている。この共振突起部3fは、その基部から下方に至る傾斜面に連続する緩やかな円錐形状の頂部を有する。したがって、水平方向に関して、樹脂10に対するホーン3の位置がずれた場合においても、ホーン3の共振突起部3fにおける広範な頂部のいずれかの部分が共振体受容部19に接し、この頂部が切欠き部19aによって共振体受容部19の内側に導かれ、位置ずれを緩和することができる。なお、この機能を達成し得る限りにおいて、共振突起部3fの詳細形状は任意である。

[0095] これまで、本発明の各実施例について説明したが、これら各実施例における具体的構成及び方法は、特許請求の範囲に記載した各発明の技術的思想の範囲内において、任意に改変および改良することができる。例えば、説明中や図示で示した具体的数値は概算値であり、他の値を取り得る。

産業上の利用可能性

[0096] 以上のように、本発明にかかる超音波溶着構造及び超音波溶着方法は、柱状の被加熱体を被接合体に加熱溶着するために有用であり、特に、溶着部分におけるボイド、リッジ、あるいは、クラックの発生を低減させることによってその耐久性を向上させるための超音波溶着構造及び超音波溶着方法に適している。

請求の範囲

[1] 樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、

上記被接合体は、上記被加熱体を挿通するための挿通孔を備え、

上記被接合体の挿通孔は、上記共振体に対向する側の内縁に、切欠き部を備えること、

を特徴とする超音波溶着構造。

[2] 上記挿通孔の切欠き部を、溶融状態の上記被加熱体を受容する受容部としたこと

を特徴とする請求項1に記載の超音波溶着構造。

[3] 上記挿通孔の切欠き部を、当該挿通孔の内縁との接触によって上記被接合体の内部に生じる応力を緩和するための応力緩和部としたこと、

を特徴とする請求項1に記載の超音波溶着構造。

[4] 樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、

上記共振体における上記被加熱体との接触面を略平面状に形成し、

上記被加熱体は、上記共振体に対して突状に形成された共振体連接部を備えること、

を特徴とする超音波溶着構造。

[5] 樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、

上記共振体は、その底面から上記被加熱体側に突出する共振突起部を備え、 上記共振体の上記共振突起部を、略半球状または略円錐状に形成したこと、 を特徴とする超音波溶着構造。

[6] 樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体か

(

ら当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体 に加熱溶着する超音波溶着構造であって、

上記共振体は、その底面から上記被加熱体側に突出する共振突起部を備え、 上記共振体に、その底面から上記共振突起部の基部に至る傾斜面を形成したこと

を特徴とする超音波溶着構造。

[7] 樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、

上記共振体は、その底面から上記被加熱体側に突出する共振突起部を備え、

上記被加熱体は、上記共振体に対して少なくとも凹状に形成された共振体受容部を備えること、

を特徴とする超音波溶着構造。

[8] 上記共振体の上記共振突起部を、略半球状に形成し、

上記被加熱体の上記共振体受容部を、上記略半球状の上記共振突起部を包含し 得る径の略円錐状に形成したこと、

を特徴とする請求項7に記載の超音波溶着構造。

[9] 上記共振体受容部を、上記共振体の押し付け方向に沿った長穴状に形成したこと

を特徴とする請求項7に記載の超音波溶着構造。

[10] 上記共振体受容部を、上記共振体の押し付け方向に沿って、かつ、上記被加熱体の底面に至る貫通孔として形成したこと、

を特徴とする請求項7に記載の超音波溶着構造。

- [11] 上記共振体受容部の上縁に、切欠き部を備えること、 を特徴とする請求項7~10のいずれか一つに記載の超音波溶着構造。
- [12] 樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、

THIS PAGE BLANK (USPTO)

上記被加熱体は、当該被加熱体の基部側に位置する太径部と、当該太径部よりも 上記共振体側に位置するものであって、当該太径部よりも細径の細径部とを備えること、

を特徴とする超音波溶着構造。

[13] 上記被接合体は、上記被加熱体を挿通するための挿通孔を備え、

上記被加熱体における上記太径部と上記細径部との境界面を、当該被加熱体を上記挿通孔に挿通じた状態における上記被接合体の上面よりも下方に配置したこと

を特徴とする請求項12に記載の超音波溶着構造。

[14] 樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着構造であって、

上記共振体は、その底面から上記被加熱体側に突出する略半球状又は略円錐状の共振突起部と、その底面から上記共振突起部の基部に至る傾斜面とを備え、

上記被加熱体は、上記共振体の押し付け方向に沿って、かつ、上記被加熱体の底面に至る貫通孔状の共振体受容部形成を備えたこと、

を特徴とする超音波溶着構造。

[15] 樹脂にて形成された柱状の被加熱体に共振体を押し付けると共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の被接合体に加熱溶着する超音波溶着方法であって、

上記共振体における上記被加熱体との接合部分を加熱する予備加熱工程と、

上記予備加熱工程にて加熱された上記接合部分を、上記被加熱体に押し付けて 高周波振動を与える加熱工程と、

を備えることを特徴とする超音波溶着方法。

[図1]

[図2]

印加する 溶解した樹脂の エネルギの低減 変形量の低減
\bigcirc
\bigcirc

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

[図9]

[図10]

[図11]

[図12]

[図13]

[図14]

[図15]

[図16]

[図17]

[図18]

[図19]

[図20]

[図21]

[図22]

[図23]

[図24]

[図25]

[図26]

[図27]

[図28]

[図29]

[図30]

[図31]

原因現象	印加する エネルギが過大	溶解した樹脂の 変形量が過大	溶解した樹脂の 変形方向が悪い
ボイド			
リッジ			
クラック			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/001608

	ATION OF SUBJECT MATTER B29C65/08, B29C65/56		
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEA	ARCHED		
	entation searched (classification system followed by cla B29C65/00-65/82, F16B5/00-5/1		
Jitsuyo S Kokai Jit	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1996-2005 Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
C. DOCUMENT	IS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app		Relevant to claim No.
Х	JP 2-130130 A (Emerson Electron 18 May, 1990 (18.05.90), Page 2, lower right column, lupper left column, line 9; Fi & US 4859378 A Column 2, lines 21 to 51; Fig & CA 1328969 C & EP	ine 2 to page 3, gs. 1, 2	1-3
х	US 5435863 A (BRNSON ULTRASON 25 July, 1995 (25.07.95), Column 6, lines 27 to 58; Fig (Family: none)		1-3
X A	JP 7-117134 A (Takayoshi IWAG 09 May, 1995 (09.05.95), Par. Nos. [0014] to [0023]; F (Family: none)		5,7,9 4,6,8,10,11, 14
X Further doc	numents are listed in the continuation of Box C.	See patent family annex.	
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family	
Date of the actual completion of the international search 26 April, 2005 (26.04.05)		Date of mailing of the international sear 17 May, 2005 (17.05	
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer	
Facsimile No.		Telephone No.	

Form PCT/ISA/210 (second sheet) (January 2004)

International application No.

PCT/JP2005/001608

Continuation of Box No.III of continuation of first sheet(2)

The common matter pertaining to Claims 1-3, Claim 4, Claims 5-11 and 14, Claims 12 and 13, and Claim 15 is an ultrasonic welding structure wherein a heated body is heated and welded to a specified joined body by pressing a resonance body against a columnar heated body formed of a resin and providing high-frequency vibration from the resonance body to the heated body.

However, since the result of search reveals that the ultrasonic welding structure is not novel since it is disclosed in the following documents.

JP 2000-351159 A (NOK Kabushiki Kaisha)

19 December, 2000 (19.12.00), paragraphs [0011] - [0018], Figs. 1, 2,

JP 3217922 B2 (Takashimaya Nippatsu Kogyo Co., Ltd.), 15 October, 2001 (15.10.01),

paragraphs [0006] - [0010], Figs. 1-5,

JP 2528671 Y2 (Kasai Kogyo Co., Ltd.), 12 March, 1997 (12.03.97),

Claim of utility model, Figs. 1-9

Since the ultrasonic welding structure makes no contribution over the prior art, it is not a special technical feature in the meaning of the second sentence of PCT Rule 13.2.

Accordingly, the special technical features of Claims 1-3 are that the joined body comprises the through hole for inserting the heated body therein and the through hole comprises the cutout part at the inner edge thereof on the opposite side of the resonance body in the ultrasonic welding

The special technical features of Claim 4 is that the contact part of the resonance body with the heated body is formed in an approximately flat shape and the heated body comprises a resonance body connection part projectedly formed on the resonance body in the ultrasonic welding

The special technical features of Claims 5-11 and 14 are that the resonance body comprises a resonance projected part projected from the bottom face thereof to the heated body side in the ultrasonic welding

The special technical features of Claims 12 and 13 are that the heated body comprises a large diameter part positioned on the base part side of the heated body and a small diameter part positioned on the resonance body side of the large diameter part and smaller in diameter than the large diameter part in the ultrasonic welding structure.

The special technical features of Claims 15 are that a preliminary heating step for heating the joined portion of the resonance body with the heated body and a heating step for providing high-frequency vibration by pressing the joined portion heated in the preliminary heating step against the heated body are applied to the ultrasonic welding structure.

As a result, there is no technical relation involving the same or corresponding special technical features among Claims 1-3, Claim 4, Claims 5-11 and 14, Claims 12 and 13, and Claim 15.

A. 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl. 7 B29C 65/08, B29C 65/56

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.7 B29C 65/00 - 65/82, F16B 5/00 - 5/12

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2-130130 A (エマーソン・エレクトリック・カンパニー) 1990.05.18, 第2頁右下欄第2行一第3頁左上欄第9行, 第1, 2図 & US 4859378 A, 第2欄第21-51行, FIG. 1, 2 & CA 1328969 C & EP 366593 A2	1-3

▽ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

26.04.2005

国際調査報告の発送日

17. 5. 2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員)

4F | 9344

斎藤 克也

電話番号 03-3581-1101 内線 3430

C (続き)	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	US 5435863 A (BRNSON ULTRASONICS CORPORATION) 1995.07.25, 第6欄第27-58行, FIG. 10, 11 (ファミリーなし)	1-3
. X . A	JP 7-117134 A (岩男隆義) 1995.05.09, 段落【0014】-【0023】, 図1-4 (ファミリーなし)	5, 7, 9
		10, 11,
X A	JP 2528671 Y2 (河西工業株式会社) 1997.03.12, 段落【0008】-【0016】, 図1-4 & JP 5-41764 U	7, 9, 12 4, 8, 10, 11, 13, 14
Α	JP 10-230378 A(松下電器産業株式会社)1998.09.02, 特許請求の範囲 (ファミリーなし)	15
A	JP 2001-171008 A (河西工業株式会社) 2001.06.26, 特許請求の範囲 (ファミリーなし)	15

第Ⅱ概) 1	請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)
法第89 成しな		第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作った。
1. 1		請求の範囲 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
2. 3		請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 1		請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅲ概	ă_	発明の単一性が欠如しているときの意見(第1ページの3の続き)
-		べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 ページ参照
,		
1. 5	7	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. N		追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
з. Г	-	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. Г	-	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加制 ·	F	至手数料の異議の申立てに関する注意 フ 追加調査手数料の納付と共に出願人から異議申立てがあった。 - 追加調査手数料の納付と共に出願人から異議申立てがなかった。

請求の範囲1-3,請求の範囲4,請求の範囲5-11,14,請求の範囲12,13及び 請求の範囲15に共通の事項は、樹脂にて形成された柱状の被加熱体に共振体を押し付けると 共に、当該共振体から当該被加熱体に高周波振動を与えることにより、当該被加熱体を所定の 被接合体に加熱溶着する超音波溶着構造である。

しかしながら、調査の結果、上記超音波溶着構造は、以下の文献のそれぞれに開示されているから、新規ではないことが明らかとなった。

JP 2000-351159 A (エヌオーケー株式会社)

2000.12.19,段落【0011】-【0018】,図1,2

JP 3217922 B2 (高島屋日発工業株式会社) 2001.10.15,

段落【0006】-【0010】, 図1-5

JP 2528671 Y2 (河西工業株式会社) 1997.03.12,

実用新案登録請求の範囲, 図1-9

結果として、上記超音波溶着構造は先行技術の域を出ないから、PCT規則13.2の第2 文の意味において、上記超音波溶着構造は特別な技術的特徴ではない。

よって、請求の範囲1-3は、上記超音波溶着構造において、上記被接合体は、上記被加熱体を挿通するための挿通孔を備え、上記被接合体の挿通孔は、上記共振体に対向する側の内縁に、切欠き部を備えることを、特別な技術的特徴としている。

請求の範囲4は、上記超音波溶着構造において、上記共振体における上記被加熱体との接触 面を略平面状に形成し、上記被加熱体は、上記共振体に対して突状に形成された共振体連接部 を備えることを、特別な技術的特徴としている。

請求の範囲5-11,14は、上記超音波溶着構造において、上記共振体は、その底面から上記被加熱体側に突出する共振突起部を備えることを、特別な技術的特徴としている。

請求の範囲12,13は、上記超音波溶着構造において、上記被加熱体は、当該被加熱体の 基部側に位置する太径部と、当該太径部よりも上記共振体側に位置するものであって、当該太 径部よりも細径の細径部とを備えることを、特別な技術的特徴としている。

請求の範囲15は、上記超音波溶着構造において、上記共振体における上記被加熱体との接合部分を加熱する予備加熱工程と、上記予備加熱工程にて加熱された上記接合部分を、上記被加熱体に押し付けて高周波振動を与える加熱工程と、を備えることを、特別な技術的特徴としている。

したがって、請求の範囲1-3,請求の範囲4,請求の範囲5-11,14,請求の範囲12,13及び請求の範囲15の間に同一又は対応する特別な技術的特徴を含む技術的な関係はない。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.