Capítulo 8: Avaliação de Projetos

- ✓ Avaliação económica de projetos: indicadores
- ✓ Elaboração de um mapa de fluxos de caixa
- ✓ Projetos de investimento financiados por fundos alheios

Ficha de exercícios nº7

Valor Atual Líquido (VAL)

→ Método de avaliação muito popular.

⇒ Baseia-se nos princípios subjacentes ao cálculo do VP.

VAL =
$$\sum_{t=0}^{n} \frac{CF_t}{(1+i)^t} = \sum_{t=0}^{n} CF_t (1+i)^{-t}$$

n- horizonte do projeto; i-taxa de atualização; t- período de tempo CF- cash-flow no momento t (fluxo financeiro no momento t).

→ Depende da taxa de atualização considerada.

→ Regras de decisão:

Se VAL
$$> 0 \Rightarrow$$
 Aceitar

Se VAL
$$\leq 0 \Rightarrow$$
 Rejeitar

Se VAL =
$$0 \Rightarrow$$
 Indiferença

Considere um projecto com os cash-flows estimados apresentados no quadro seguinte:

Ano	0	1	2	3	4	5
CF	-100000	25000	25000	35000	35000	35000

Analise o projecto na óptica do VAL considerando a taxa de actualização igual a 10% e a 18%.

VAL
$$(10\%)$$
 = -100000 + 25000 $(1+0,1)^{-1}$ + 25000 $(1+0,1)^{-2}$ + 35000 $(1+0,1)^{-3}$ + 35000 $(1+0,1)^{-4}$ + 35000 $(1+0,1)^{-5}$ = 15322 €
VAL (18%) = -100000 + 25000 $(1+0,18)^{-1}$ + 25000 $(1+0,18)^{-2}$ + 35000 $(1+0,18)^{-3}$ + 35000 $(1+0,18)^{-4}$ + 35000 $(1+0,18)^{-5}$ = -6205 €

Decisão?

Taxa Interna de Rentabilidade (TIR)

⇒ Taxa de juro que torna o VAL igual a zero

$$\sum_{t=0}^{n} \frac{CF_{t}}{(1+TIR)^{t}} = \sum_{t=0}^{n} CF_{t} (1+TIR)^{-t} = 0$$

⇒ Cálculo independente da taxa de atualização, mas a tomada de decisão é feita comparando o valor da TIR com a taxa mínima de atratividade (TA) fixada pela empresa.

→ Regras de decisão:

Se TIR > TA \Rightarrow Aceitar

Se TIR < TA \Rightarrow Rejeitar

Se TIR = $TA \Rightarrow$ Indiferença

→ Representação gráfica do cálculo

⇒ Calcule a TIR e analise o projeto descrito no exemplo anterior.

$$-100000 + 25000(1+i)^{-1} + 25000(1+i)^{-2} + 35000(1+i)^{-3} + 35000(1+i)^{-4} + 35000(1+i)^{-5} = 0$$

$$i = TIR = 15,4\%$$

Decisão?

Período de Recuperação do Investimento (PRI)

⇒ Indicador simples que traduz o número de anos necessários para recuperar o investimento inicial de um projeto.

⇒ Assume que um projeto irá gerar recebimentos durante o seu tempo de vida e, em algum instante de tempo, os recebimentos totais irão igualar o custo inicial.

⇒ O cálculo pode ser feito considerando os CFs simples sem atualização (tempo de recuperação simples) ou considerando os CFs atualizados (tempo de recuperação atualizado).

⇒ Calcule o tempo de recuperação simples e atualizado para o projeto descrito anteriormente, para uma taxa mínima de atratividade de 10%

Tempo de recuperação simples

Ano	CF	Acumulado
0	-100000	-100000
1	25000	-75000
2	25000	-50000
3	35000	-15000
4	35000	20000
5	35000	55000

Interpolação linear: n=3,4 anos

n = 3 anos e 4 meses

Comparação de métodos

Período de Recuperação do Investimento (PRI)

- É um **método simples** e não um cálculo económico exato.
- No método simples **todos os custos e proveitos ocorridos** antes da recuperação são incluídos **sem considerar o seu valor no tempo**.
- Todos impactos económicos que ocorrem após o tempo de recuperação são ignorados.

Período de Recuperação do Investimento (PRI)

- O tempo de recuperação pode apontar para conclusões diferentes das obtidas com métodos envolvendo uma maior fundamentação teórica.
- É de fácil aplicação e compreensão.
- Permite analisar a velocidade com que o dinheiro é recuperado, e deste modo avaliar a liquidez do projeto, o seu risco e a disponibilidade de fundos para outros investimentos.
- Deverá ser utilizado como complemento de outros métodos.

Valor Atual Líquido (VAL)

- É conceptualmente superior ao tempo de recuperação.
- Não ignora o período de vida do projeto nem qualquer CF, tendo assim em consideração todos os impactos económicos do projeto.
- Tem em consideração o valor do dinheiro no tempo e deste modo valoriza mais os fluxos financeiros imediatos em detrimento dos posteriores.
- Implica o conhecimento prévio de uma taxa de atualização apropriada, sendo muito sensível à escolha desta taxa.

Valor Atual Líquido (VAL)

- A utilização da expressão simples no cálculo do VAL pressupõe a constância da taxa de atualização, embora seja possível alterar a expressão de modo a considerar variações dessa taxa no tempo.
- Não tem em consideração a solvabilidade do projeto.

Taxa Interna de Rendibilidade (TIR)

- É conceptualmente superior ao tempo de recuperação.
- Não ignora o período de vida do projeto nem qualquer CF, tendo assim em consideração todos os impactos económicos do projeto.
- Tem em consideração o valor do dinheiro no tempo e deste modo valoriza mais os fluxos financeiros imediatos em detrimento dos posteriores.

Taxa Interna de Rendibilidade (TIR)

- Não implica o conhecimento prévio de uma taxa de atualização apropriada. Esta poderá ser uma vantagem significativa na comparação de projetos alternativos. No entanto na tomada de decisão de investimento ou não implica o conhecimento da taxa mínima de atratividade exigida ao projeto.
- Fornece um valor relativo (taxa) o que permite contornar o problema de escala dos projetos.
- Pode apresentar alguma complexidade no cálculo e podem existir TIR múltiplas.
- . Assume implicitamente que CFs recuperados são reinvestidos à mesma TIR.

17

Elaboração de um mapa dos fluxos de caixa de um projeto

Demonstração de resultados

Mapa dos fluxos de caixa

Fluxo de caixa líquido

Exemplo

Uma pequena empresa de fabricação de ferramentas está a considerar investir num centro de maquinação computorizado. Se o novo sistema for adquirido, o qual custa 125 000€, irá gerar receitas anuais de 100 000€ e implicará custos anuais com trabalhadores de 20 000€, de 12 000€ em materiais e de 8 000€ em encargos gerais de fabrico.

Exige, também, um investimento em fundo de maneio no valor de 23 331€, que será recuperado no final do quinto ano. O equipamento a adquirir pode ser amortizado pelo método das quotas constantes em 8 anos.

Sabe-se, também, que a empresa estima um custo de capital de 15% e que a taxa de imposto sobre os lucros é de 25%. Com base nos critérios da **VAL**, da **TIR** e do **PRI**, ajuíze sobre a **viabilidade económico-financeira** deste projeto de investimento.

Dados do Exercícios

```
Investimento = ICF = 125 000
Receitas = Proveitos = 100 000
Mão de Obra = 20 000
Materiais = 12 000
Gastos Gerais Fabrico (GGF) = 8 000
Investimento Fundo de Maneio (IFM) = 23 331
n (anos para amortização) = 8
Custo Capital = TA = 15%
Imposto sobre o lucro = t = 25%
```

Indicadores:

VAL (Valor Atual Liquido)=?
TIR (Taxa Interna Rentabilidade) =?
PRI (Período Recuperação Investimento)=?

Cálculos adicionais

Amortização = Investimento / anos para amortização Amortização = 125 000/ 8 = 15 625

- \square Lucro tributável = Proveitos Σ custos
- ☐ Imposto sobre o lucro = t × Lucro Tributável (LT) = 0, 25 × LT
- ☐ Resultado Liquido = Lucro Tributável Imposto sobre o lucro

Demonstração de Resultados

	Ano 0	Ano 1	Ano 2	Ano 3	Ano 4	Ano 5
Proveitos		100.000	100.000	100.000	100.000	100.000
Custos:						
Materiais diretos		12.000	12.000	12.000	12.000	12.000
Mão-de-obra direta		20.000	20.000	20.000	20.000	20.000
Gastos gerais de fabrico		8.000	8.000	8.000	8.000	8.000
Amortizações		15.625	15.625	15.625	15.625	15.625
Juros						
Lucro tributável		44.375	44.375	44.375	44.375	44.375
Imposto sobre o lucro		11.094	11.094	11.094	11.094	11.094
Resultado líquido		33.281	33.281	33.281	33.281	33.281

Cálculos adicionais

VRICF (Valor Residual Investimento Capital Fixo)= = Σ ICF (Investimento Capital Fixo) - Σ Amortizações

VRIFM (Valor Residual Investimento Fundo de Maneio)= = Σ IFM (Investimento Fundo de Maneio)

Mapa dos Fluxos de Caixa

Atividades operacionais						
Resultado líquido		33.281	33.281	33.281	33.281	33.281
Amortizações		15.625	15.625	15.625	15.625	15.625
Atividades de investimento						
Investim. em Capital Fixo (ICF)	(125.000)					
Inv. em Fundo de Maneio (IFM)	(23.331)					
Valor residual ICF (VRICF)						46.875
Valor residual IFM (VRIFM)						23.331
Atividades de financiamento						
Empréstimos obtidos						
Reembolso de empréstimos						
Fluxo de caixa do projeto	(148.331)	48.906	48.906	48.906	48.906	119.112

Cálculo do VAL, sendo a taxa de atualização (TA) de 15%:

$$VAL = -148 \ 331 + 48 \ 906 \ (1+0.15)^{-1} + 48 \ 906 \ (1+0.15)^{-2} + 48 \ 906 \ (1+0.15)^{-3} + 48 \ 906 \ (1+0.15)^{-3} + 48 \ 906 \ (1+0.15)^{-4} + 119 \ 112 \ (1+0.15)^{-5}$$

VAL = 50514.29 €

Decisão?

 $VAL > 0 \Rightarrow Aceitar$

Cálculo da TIR:

$$-148\ 331 + 48\ 906\ (1+i)^{-1} + 48\ 906\ (1+i)^{-2} + 48\ 906\ (1+i)^{-3} + 48\ 906\ (1+i)^{-4} + 119\ 112\ (1+i)^{-5} = 0$$

$$i = TIR = 26.8\%$$

 $TIR > TA \implies Aceitar$

Decisão?

Cálculo do PRI:

Ano	CF	Acumulado
0	- 148 331	- 148 331
1	48 906	- 99 425
2	48 906	- 50 519
3	48 906	- 1 613
4	48 906	47 293
5	119 112	166 405

Interpolação linear: n=3,03 anos

n = 3 anos

Conclusão

Projeto viável, uma vez que o VAL é positivo e a TIR é maior que a TA. Recupera ao final de 3 anos.

E quando os projetos de investimento são financiados por fundos alheios?

- ⇒ Muitas empresas utilizam uma combinação de dívida e capitais próprios para financiar os seus investimentos em capital fixo
- ⇒ O rácio dívida-investimento representa a percentagem do investimento total que é financiado por fundos alheios
- ⇒ Ex: um rácio de dívida de 0.3 significa que 30% do investimento inicial é financiado por fundos que se pediram emprestados, e o restante provém dos capitais próprios da empresa

Exemplo

Uma pequena empresa de fabricação de ferramentas está a considerar investir num centro de maquinação computorizado. Se o novo sistema for adquirido, o qual custa 125 000€, irá gerar receitas anuais de 100 000€ e implicará custos anuais com trabalhadores de 20 000€, de 12 000€ em materiais e de 8 000€ em encargos gerais de fabrico.

Exige, também, um investimento em fundo de maneio no valor de 23 331€, que será recuperado no final do quinto ano. O equipamento a adquirir pode ser amortizado pelo método das quotas constantes em 8 anos.

Exemplo (Cont.)

Metade do investimento no novo equipamento é financiada através de endividamento (rácio de dívida igual a 0.5). O empréstimo será reembolsado em 5 prestações anuais iguais, a uma taxa de juro de 10% ao ano.

Sabe-se, também, que a empresa estima um custo de capital de 15% e que a taxa de imposto sobre os lucros é de 25%.

Com base nos critérios da VAL, da TIR e do PRI, ajuíze sobre a viabilidade económico-financeira deste projeto de investimento.

Demonstração de Resultados

	Ano 0	Ano 1	Ano 2	Ano 3	Ano 4	Ano 5
Proveitos		100.000	100.000	100.000	100.000	100.000
Custos						
Materiais directos		12.000	12.000	12.000	12.000	12.000
Mão-de-obra directa		20.000	20.000	20.000	20.000	20.000
Gastos gerais de fabrico		8.000	8.000	8.000	8.000	8.000
Amortizações		15.625	15.625	15.625	15.625	15.625
Juros		6.250	5.226	4.100	2.861	1.499
Lucro tributável		38.125	39.149	40.275	41.514	42.876
Imposto sobre o lucro		9.531	9.787	10.069	10.378	10.719
Resultado líquido		28.594	29.362	30.206	31.1351	32.157

Cálculo da Prestação (A)

VPA = 62.500€ (50% do valor do investimento no novo equipamento = 125 000€)

i = 10%

n = 5 anos

 $VPA = A \times F_{AP, 10\%, 5}$

 $62.500 = A \times 3.7908$

A = 16.487€

Tabela 4

Mapa de Reembolso da Dívida

Ano	Capital em dívida no início	Prestação (A)	Amortização do empréstimo	Juro (10%)	Capital em dívida no fim
1	62.500	16.487	10.237	6.250	52.263
2	52.263	16.487	11.261	5.226	41.002
3	41.002	16.487	12.387	4.100	28.614
4	28.614	16.487	13.626	2.861	14.988
5	14.988	16.487	14.988	1.499	0

Prestação = Amortização do empréstimo + Juro
Juro = 10% * Capital em dívida no início
Capital em dívida no fim = Capital em dívida no início – Amortização do empréstimo

Mapa dos Fluxos de Caixa

Atividades operacionais						
Resultado líquido		28.594	29.362	30.206	31.135	32.157
Amortizações		15.625	15.625	15.625	15.625	15.625
Atividades de investimento						
Inv. em Capital Fixo	(125.000)					
Inv. em Fundo de Maneio	(23.331)					
Valor residual ICF						46.875
Valor residual IFM						23.331
Atividades de financiamento						
Empréstimos obtidos	62.500					
Reembolso de empréstimos		(10.237)	(11.261)	(12.387)	(13.626)	(14.988)
Fluxo de caixa do projecto	(85.831)	33.981	33.725	33.444	33.134	103.000

⇒ Cálculo do VAL, sendo a taxa de atualização (TA) de 15%:

VAL =
$$-85\ 831 + 33\ 981\ (1+0.15)^{-1} + 33\ 725\ (1+0.15)^{-2} + 33\ 444\ (1+0.15)^{-3} + 33\ 134\ (1+0.15)^{-4} + 103\ 000\ (1+0.15)^{-5}$$

VAL = 61 362,29 €

Decisão?

⇒ Cálculo da TIR:

$$VAL = 0$$

$$-85\ 831\ +\ 33\ 981\ (1+i)^{-1}\ +\ 33\ 725\ (1+i)^{-2}\ +\ 33\ 444\ (1+i)^{-3}\ +\ 33\ 134\ (1+i)^{-4}\ +$$

$$103\ 000\ (1+i)^{-5}=0$$

$$i = TIR = 37.39\%$$

Decisão?

$$TIR > TA \Rightarrow Aceitar$$

Interpolação:

-18125

0 PRI

15319

⇒ Cálculo do PRI:

$$-18125-0 / 2-x = -18125-15319 / 2-3$$
 $-18125/2-x = -33444/-1$
 $18125 = 33444x - 66888$
 $X = 2,54$

Ano	CF	Acumulado
0	-85 831	- 85 831
1	33 981	- 51 850
2	33 725	- 18 125
3	33 444	15 319
4	33 134	48 453
5	103 000	151 453

Interpolação linear: n=2,54 anos

n = 2 anos e 7 meses

Conclusão

Projeto viável, uma vez que o VAL é positivo e a TIR é maior que a TA. Recupera ao final de 2 anos e 7 meses.