IMPROVEMENTS ON SPEECH RECOGNITION FOR FAST TALKERS

Author: M. Richardson, M. Hwang, A. Acero,

and X.D. Huang

Professor:陳嘉平

Repotor:葉佳璋

outline

- Introduction
- System Description and speech corpora Support
- Speak rate Determination
- The CLN Algorithm
- Experimental results
- Conclusion

Introduce

- Cepstrum length normalization(CLN)
- Improvements made by CLN and Maximum Likelihood Linear Regression
- Improvement by using shorter window shift in computing cepstra

System Description and speech corpora

- The speaker independent system built here consists of 6000 gender-dependent context.
- The feature used were 12 mel-frequency cepstrum coefficients(MFCC).
- Log energy and their fist and second order differences in 10ms time frames.
- The speaker independent acoustic training corpus comes from the 284-speaker(SI-284)

Speak rate Determination

Stretch the utterance

Phone-by-phone Length Stretching

Sentence-by-Sentence Length Streching

Phone-by-phone Length Stretching

$$\Gamma (x, \alpha, \beta) = \frac{\beta^{\alpha} x^{\alpha-1} e^{-x\beta}}{\Gamma (\alpha)}$$

Gamna distribution $\Gamma(x, \alpha_i, \beta_i)$

Mean
$$\mu_i = \frac{\alpha_i}{\beta_i}$$
 variance $\frac{\alpha_i}{\beta_i^2}$

Length-stretching factor
$$\rho_i = \frac{peak}{l_i}$$

$$peak \quad _{i} = \frac{\alpha_{i} - 1}{\beta_{i}}$$

Sentence-by-Sentence Length Stretching

$$\widetilde{\rho} = \underset{\rho}{\operatorname{argmax}} \{ p(\rho l_1 | \Gamma_1) p(\rho l_2 | \Gamma_2) ... p(\rho l_n | \Gamma_n) \}$$

$$\rho = \frac{\sum_{i=1}^{n} \alpha_{i}}{\sum_{i=1}^{n} \beta_{i} l_{i}}$$

Average peak
$$\rho = \frac{1}{n} \sum_{i=1}^{n} \rho_i$$

The CLN Algorithm

- Inserting/dropping frames uniformly in the speech segment.
- Repeating/deleting represent the steady state of each phone segment.
- Creating new frames by interpolating neighboring frames

Experimental resuts

CLN on the test data of fast Speech

CLN on the test data of normal speech

CLN on the test data of fast Speech

Training data \ test data	Original	Interpolation
Original	16.64%	13.90%

Table 1. Word error rates on dev-fast with and without MFCC interpolation.

CLN on the test data of normal Speech

Regular		H1dev94	
Original	MFCC	Original	MFCC
MFCCs	Interpolation	MFCCs	Interpolation
8.36%	8.20%	8.71%	8.78%

Table 2: Word error rates on the regular and h1dev94 data sets.

Evaluation and MLLR

Original	MFCC	MLLR on	MFCC
MFCC	Interpolation	Gaussian Means	Interpolation
			+ MLLR
18.34%	15.91%	16.03%	14.03%

Table 3: Word error rates on the *eval-fast* set. Combining MFCC interpolation and MLLR speaker adaptation yielded 23.5 % error rate reduction.

figure2

Figure 2: Combination of MFCC interpolation and MLLR adaptation.

Shringking Hamming Window Shift

Use a smaller window shift in generating the cepstrum

$$s' = \frac{s}{\rho}$$

New window shift is inversely proportional to speed factor