Cmput 466 / 551

Summary

R Greiner University of Alberta

-

What we covered (I)

- Machine Learning intro [½]
 - What it is... why relevant...
 - Supervised learning
 - ... steps ...
- Foundations [1]
 - Simple estimation (MLE)
- Linear Regression [1]
 - Minimize L2 loss direct matrix computation
 - Gradient descent
 - Connection to Gaussian Error model
 - Different basis functions

4

What we covered (II)

- Evaluation (supervised learning) [1]
 - Training set error ≠ "real" error
 - Hold out set... cross-validation ...
 - In-fold feature selection / parameter setting
- Overfitting [1]
 - Bias-variance tradeoff
 - Regularization ... L2
 - ... just Bayesian MAP ...
 - L1-regularization (NOT: feature selection,...)

What we covered (III)

- Linear Classifiers [2 ½]
 - Perceptron noiseless, margin, dual, ...
 - LMS gradient descent (Newton-Raphson)
 - Logistic Regression P(y|x)
 - LDA, FDA, ... P(y,x)
- Support Vector Machines [2 ½]
 - Primal/Dual, Lagrange Multipliers, KKT
 - Max Margin
 - Quadratic programming
 - Kernels!
 - Different expressiveness, ok-complexity (using Dual)
 - Classification ... or Regression

-

What we covered (IV)

- Neural Nets [1 ½]
 Gen'l Multi-layered Feed-forward (logistic)
 - Motivation, Definition
 - Expressibility
 - Training: Gradient descent, Backpropagation
- Useful tricks [1]
 - Conjugate Gradient
 - Line Search
- Other aspects [½]
 - Auto-Encoders
 - Example
 - Not: Deep learning

What we covered (V)

- Decision Trees [2]
 - Motivation, Definition
 - Expressibility
 - Training:
 - Greedy
 - Info Gain, ...
 - Avoiding overfitting
 - Minimum Description Length
 - Chi²
 - PostPruning
 - Validation set
 - Re-represent (rule sets)

- Issues:
 - real values
 - other splitting,
 - attribute costs
 - missing values
 - Why missing?

What we covered (VI)

- Formal Model of Learnability (PAC) [1]
 - Motivation, Framework (Protocol)
 - Sample complexity
 - Computation complexity
 - Probably Approximately Correct
 - Union bounds; Chernoff/Hoeffding inequality
 - Just O(.) ... but insightful!
 - Consistency filtering algorithm
 - Learning Conjunctions, k-CNFs, ...
 - Covering algorithm
 - Learning Decision-Lists
 - How sample-size depends on expressibility
 - Trade-off
- Not: Errors in data (unrealizable), sequential algorithms, ...
- Not: ∞ space ... VC Dimension

What we covered (VII)

- Imbalanced data (in general)
- Cost Curves [1]
 - Guest lecture: R Holte

What we covered (VIII)

- Probability Foundation [1]
 - Foundations
 - Dutch-book arguments
 - MLE ... and issues ⇒ Bayesian Framework
 - Beta (for Binomial) ... conjugate prior ... "smoothing"
 - Estimation for Gaussians

What we covered (IX)

- Bayesian Belief Nets: Intro [2]
 - Motivation, Framework
 - Conditional + Just relevant ⇒ Belief Net
 - Conditional independence
 - Semantics of directed graph structure
 - d-separation
 - Useful generalization of CP-tables
 - Inference
 - Naïve Bayes, ...
 - Complexity... NP-hard but with special cases
 - Max Expected Utility

V

What we covered (X)

- Belief Nets: Learn Parameters [1]
 - Here: "learning" = density estimation
 - Generative model
 - Complete data
 - Frequentist: Trivial (MLE = observed frequency)
 - Bayesian: Trivial (MAP ≈ observed frequency)
 - BDe prior
 - Incomplete data
 - Gradient descent
 - Expectation Maximization
 - Gibbs

4

What we covered (XI)

- Hidden Markov Model [1]
 - Inference... Filtering, Prediction, Likelihood, ...
 - Extensions
 - Learn parameters
- Belief Nets: Learn Structure [0]
 - General situation: Score-based
 - Find structure that is best, for its best Cptable
 - Find parents that are VERY informative about child
 - Tree-structured
 - Simple Chow-Liu Algorithm ... efficient
 - Tree-augmented Naïve Bayes
 - Bayesian framework, to "avoid" overfitting
 - Margin probability of structure (over all parameters)

What we covered (XII)

- Principal Component Analysis (PCA) [1/2]
 - Goal: reduce dimensions...while preserving variance
 - Relation to Eigen-vector/value
 - Eg: Eigenfaces
 - Where PCA is useful... or not

What we DID NOT cover

- Imbalanced data (in general)
- Ensemble methods
- Deep learning
- PCA
- Clustering
- Reinforcement learning

Issues

- Text book ?
 - Is there a better one?
 - Is it needed?
 - Note that HTF is ON-LINE (free)
- Coursera assignments (?)
 - Too easy? Useful? ...
- No lab ... did not seem needed?
- Project ?
 - Useful?
 - Is there a better way to do it?
- "Losing" 2 lectures for presentations
 - Use Lab time for additional lectures?

Any feedback?

- If you have ideas / feedback / comments
 - What material to remove? ... add?
 - Assignments? Coursera or otherwise?
 - **...**
- Contact me:
 - rgreiner@ualberta.ca