TRƯỜNG ĐẠI HỌC BÁCH KHOA TP.HCM THI HỌC KỲ I, 2012 – 2013 (05/06/2013) 218023 – Động Lực Học và Điều Khiển

LƯU Ý:

- Đề thi gồm 4 câu
- Thời lượng thi: 90 phút
- Sinh viên được phép sử dụng tài liệu giấy.

Câu 1 (3 điểm)

Cho hệ thống hồi tiếp âm như hình vẽ

$$G_C(s) = \frac{K}{s}; G(s) = \frac{1}{(s^2 + 7s + 16)}$$

- a. Xác định điều kiện của K để hệ thống ổn định (1đ)
- b. Vẽ quỹ đạo nghiệm số của hệ thống khi K=0 \rightarrow + ∞ (2đ)

Câu 2 (2 điểm)

Hãy xác định thông số của bộ điều khiển PID sao cho hệ thống thỏa mãn yêu cầu:

Hệ có cặp nghiệm phức với $=0.55~v\grave{a}~\omega_n=15$.

Hệ số vận tốc $K_v = 90$

Câu 3 (3 điểm)

Thiết kế khâu hiệu chỉnh $G_C(s)$ sao cho đáp ứng quá độ của hệ thống sau khi hiệu chỉnh thỏa POT<35%, tqđ<1 s, (tiêu chuẩn 5%)

Câu 4 (2 điểm)

Cho đối tượng mô tả phương trình trạng thái

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

$$A = \begin{bmatrix} 3 & -4 & -7 \\ 2 & -9 & 1 \\ 4 & 8 & -3 \end{bmatrix}, B = \begin{bmatrix} 4 \\ 3 \\ -2 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

Hãy xác định luật điều khiển u(t) = r(t) - k.x(t) sao cho hệ thống kín có cặp cực phức với $\xi = 0.75$, $\omega_n = 25$ và cực thứ ba là cực thực tại -15.

(Cán bộ coi thi không giải thích gì thêm)

Chủ nhiệm bộ môn

Phạm Công Bằng

Giáo viên ra đề

TRƯỜNG ĐẠI HỌC BÁCH KHOA TP.HCM ĐÁP ÁN ĐỀ THI HỌC KỲ I, 2012 – 2013 (05/06/2013)

218023 – Động Lực Học và Điều Khiển

Câu 1 (3 điểm)

a. Xác định điều kiện của K để hệ thống ổn định:

Phương trình đặc trưng của hệ: (1đ)

0.5đ

$$1+G_c(s)G(s)=0$$

$$\Rightarrow 1 + \frac{K}{s} x \frac{1}{(s^2 + 7s + 16)} \times = 0$$

$$\Rightarrow s^3 + 7s^2 + 16s + K = 0$$

Lập bảng Routh

0.5đ

s ³	1	16
s ²	7	K
s ¹	16 - K/7	0
s ⁰	K	0

Vây 0 < K > 112

b. Vẽ quỹ đạo nghiệm số (2đ)

Phương trình đặc trưng của hệ

0.5đ

$$1 + \frac{K}{s(s^2 + 7s + 16)} = 0$$

Các cực: n = 3 ($p_1 = 0$; $p_2 = -3.5000 + 1.9365i$; $p_3 = -3.5000 - 1.9365i$)

Không có zero: m = 0

Đề thi số:

FL053

Góc giữa tiệm cận và trục thực

0.5đ

$$\alpha = \frac{(2l+1)\pi}{n-m} = \frac{(2l+1)\pi}{3-0}$$

$$\Rightarrow \alpha = \frac{\pi}{3}(l=0), \alpha = -\frac{\pi}{3}(l=-1) \text{ và } \alpha = \pi(l=1)$$

Giao điểm giữa các tiệm cận và trục thực

$$OA = \frac{\sum c wc - \sum zero}{n - m} = -2.3333$$

Xác định điểm tách nhập

0.5đ

$$-2.6667 va - 2.0000$$

Giao điểm của QĐNS với trục ảo $K_{gh}=0$ và 112

Giao diem voi truc ao:

0 + 4.0000i; 0 - 4.0000i; 0

Góc xuất phát: -61.045 và 61.045

Quỹ đạo nghiệm số

0.5đ

Câu 2 (2 điểm)

Hàm truyền bộ điều khiển PID cần thiết kế:

0.5 d

$$G_c(s) = K_p + \frac{K_I}{s} + K_D s$$

Hệ số vận tốc của hệ sau khi hiệu chỉnh:

$$K_V = \lim_{s \to 0} s. G_c(s). G(s) = \lim_{s \to 0} s \left(K_p + \frac{K_I}{s} + K_D s \right) \left(\frac{120}{s^2 + 15s + 80} \right)$$

Theo yêu cầu đề bài $K_V = 90$

$$\Rightarrow K_I = 60$$

Phương trình đặc trưng của hệ sau khi hiệu chỉnh:

0.5 đ

$$1 + \left(G_c K_p + \frac{K_I}{s} + K_D s\right) \left(\frac{120}{s^2 + 15s + 80}\right) = 0$$

$$s^3 + (15 + 120K_D)s^2 + (80 + 120K_P)s + 120K_I = 0$$
 (1)

Phương trình đặc trung mong muốn có dạng:

0.5 đ

$$(s+a)(s^2+2\xi\omega_n s+\omega_n^2)=0$$

$$\Rightarrow s^3+(33/2+a)s^2+(33/2a+255)s+255a=0 \quad (2)$$

Cân bằng hệ số 2 phương trình (1) và (2), suy ra:

0.5 đ

$$\begin{cases} 120K_D = 3/2 + a \\ 80 + 120K_p = \frac{33}{2a} - 145 \implies \begin{cases} a = 32 \\ K_P = 5.6083 \\ K_D = 0.27917 \end{cases}$$

Kết luận:

$$G_c(s) = 5.6083 + \frac{60}{s} + 0.27917s$$

Câu 3 (3 điểm)

$$POT = exp\left(-\frac{\xi\pi}{\sqrt{1-\xi^2}}\right) < 0.35$$

Sau khi tính toán, hệ số $\implies \xi > 0.31694$

Chọn $\xi = 0.5$

Sau khi tính toán, hệ số $\implies \omega n > 6$

0.5đ

Chợn $\omega n = 9$

Voi
$$Kc = 4.86002$$
 0.5đ

Tìm ra cực của khâu hiệu chỉnh p1=8.04988

0.5đ

Tìm ra zero của khâu hiệu chinh z1=10.06226

0.5đ

Vậy khâu hiệu chinh sớm pha cần thiết kế là:

0.5 d

4.86002*(s+10.06226)/(s+8.04988)

Đề thi số:

FL053

Câu 4 (2 điểm)

Phương trình đặc trưng của hệ thống kín: 0.5 ddet[sI - A + BK] = 0[4*k1+s-3, 4*k2+4, 4*k3+7][3*k1-2, 3*k2+s+9, 3*k3-1] [-2*k1-4, -2*k2-8, s-2*k3+3] $\implies 6*k1 + 131*k2 + 126*k3 + 19*s + 50*k1*s + 6*k2*s + 28$ 0.5 đ $*k3*s + 4*k1*s^2 + 3*k2*s^2 - 2*k3*s^2 + 9*s^2 + s^3$ + 347 (1) 0.5 dPhương trình đặc trưng mong muốn: $(s+10)(s^2+2\xi\omega_n s+\omega_n^2)=0$ $\Rightarrow s^3 + (105 * s^2)/2 + (2375 * s)/2 + 9375 = 0$ (2) 0.5 dCân bằng 2 phương trình trên, ta được: $K_1 = 489/2692$ $K_2 = 394433/10768$ $K_3 = 722715/21536$

K = [489/2692 394433/10768 722715/21536]