CS1231 Review 13

- 1. If n is composite, then it has a divisor d with $1 < d \le \sqrt{n}$.
- 2. If n does not have positive divisor d with $1 < d \le \sqrt{n}$, then \underline{N} is \underline{Prime} .
- 3. Two integers a, b are relatively prime (coprime) if $\frac{2cd}{b} = \frac{1}{2cd} = \frac{1}{2c$
- 4. If $a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$ and $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$, then $\gcd(a, b) = \frac{p_1^{b_1} (a_1, b_2)}{p_2^{b_2} \dots p_n^{b_n}}$.
- 5. Base b Expansion of Integers Let b(>1) be an integer. If $n \in \mathbb{N}$, then it can be expressed uniquely in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_0 b^0$$

$$\textbf{e.g.} \quad \textbf{3} = | \textbf{x} \textbf{2}^1 + | \textbf{x} \textbf{2}^0 \quad \textbf{3} = (| \textbf{1} \textbf{1})_{\textbf{2}}$$
where $k \in \mathbb{Z}^*$ and $0 \le a_i < b$ for $i = 0, \dots, k$ and $a_k \ne 0$.

The Base b Expansion of n is denoted as $(A_k Q_{k-1} - \cdots Q_b)_b$

- 6. Binary Expansion: The base 2 expansion.
- 7. Modular Exponentiation. Find $b^n \operatorname{Mod} m$.
 - (1) compute $n = (a_k \dots a_1 a_0)_2$.
 - (2) Compute $r_0 = b, r_1 = b^2, r_2 = b^4, \dots, r_k = b^{2^k} \text{ Mod } m$.
 - (3) $b^n \text{ Mod } m = r_0^{a_0} r_1^{a_1} \cdots r_k^{a_k} \text{ Mod } m$.
- 8. (The Euclidean Algorithm) If $a \mod b = r$, then $\gcd(a,b) = \gcd(b,r)$ $\gcd(a,b) = \gcd(b,r)$ $\gcd(a,b) = \gcd(a,b)$. Then $\gcd(a,b) = \gcd(a,b)$. Then $\gcd(a,b) = \gcd(a,b)$.
- 1 = 900(12,5) 1 = 125 + 5t

an inverse of 12 is

LI Wei Email: matliw@nus.edu.sg