

OBJETIVOS

Comparar el comportamiento de la cantidad de premios recibidos por los distintos géneros de la industria cinematográfica.

Identificar si existe relación entre la recepción de premios y otras variables.

Analizar si hay posibilidades de que una película reciba o no un premio.

TAREAS REALIZADAS

EDA Y DATA WRANWLING

FEATURE ENGINEERING

REDUCCIÓN DE DIMENSIONALIDAD

ALGORITMOS DE CLASIFICACION

ANÁLISIS PRELIMINAR DE DATOS

DICCIONARIO DE VARIABLES

<pre>print(df_peliculas.dtypes)</pre>	
Título Género Año Director Duración Calificación Ingresos (millones) Presupuesto (millones) País Premios Espectadores Críticas Positivas Críticas Negativas Popularidad Recaudación en DVD (millones) Resultado (millones) Criticas Premios_binario genero_binario genero_label Categoria	object object category object object float64 float64 float64 int64 int64 int64 float64 float64 float64 float64 float64 float64 category
dtype: object	8)

ANÁLISIS PRELIMINAR DE DATOS

DETECCIÓN DE DUPLICADOS, NULOS Y ERRÓNEOS

```
# Detección y tratamiento de valores nulos
valores_nulos = df_peliculas.isnull().sum()
print(valores nulos)
Título
Género
Director
Duración
Calificación
Ingresos (millones)
Presupuesto (millones)
País
Premios
Espectadores
Críticas Positivas
Críticas Negativas
Popularidad
Recaudación en DVD (millones)
dtype: int64
```

No hay valores nulos, duplicados ni erróneos

```
# Detección y tratamiento de valores NaN
valores_NaN = df_peliculas.isna().sum()
print(valores NaN)
Título
Género
Año
Director
Duración
Calificación
Ingresos (millones)
Presupuesto (millones)
País
Premios
Espectadores
Críticas Positivas
Críticas Negativas
Popularidad
Recaudación en DVD (millones)
dtype: int64
```

```
# Análisis datos duplicados

valores_duplicados = df_peliculas.duplicated().sum()
print (valores_duplicados)
0
```

ANÁLISIS PRELIMINAR DE DATOS

ANÁLISIS ESTADÍSTICO PRELIMINAR

Análisis estadístico preliminar

df_peliculas.describe()

	Calificación	Ingresos (millones)	Presupuesto (millones)	Premios	Espectadores	Críticas Positivas	Críticas Negativas	Popularidad	Recaudación en DVD (millones)	Resultado (millones)	Criticas
count	2000.000000	2000.00000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000
mean	4.899800	9.96965	17.357900	5.019000	511094.616500	75.359500	29.643500	4.980850	2.497050	-4.891200	45.716000
std	2.900113	5.86335	7.267939	3.159688	286494.162803	14.639447	11.659648	2.941201	1.460021	9.564332	18.781739
min	0.000000	0.00000	5.000000	0.000000	1123.000000	50.000000	10.000000	0.000000	0.000000	-28.000000	0.000000
25%	2.400000	4.90000	10.900000	2.000000	274333.500000	63.000000	19.000000	2.400000	1.200000	-11.800000	32.000000
50%	5.000000	9.90000	17.300000	5.000000	508741.500000	75.500000	29.000000	4.900000	2.500000	-5.100000	46.000000
75%	7.400000	15.10000	23.800000	8.000000	758798.250000	88.000000	40.000000	7.600000	3.800000	1.900000	60.000000
max	10.000000	20.00000	30.000000	10.000000	999530.000000	100.000000	50.000000	10.000000	5.000000	19.100000	89.000000

ANÁLISIS PRELIMINAR DE DATOS

ANÁLISIS DE CORRELACIÓN ENTRE VARIABLES

ANÁLISIS PRELIMINAR DE DATOS

ANÁLISIS DE LA VARIABLE TARGET "PREMIOS"

MEDIDAS DE TENDENCIA CENTRAL

MEDIA **5,019**

MEDIANA > 5

 $\begin{array}{c|c} \text{MODA} & \Rightarrow & \mathbf{1} \end{array}$

DISTRIBUCIÓN DE LA VARIABLE

El test de Shapiro indica que los datos de la variable target no siguen una distribución normal

ANÁLISIS PRELIMINAR DE DATOS

ANÁLISIS DE LA VARIABLE TARGET "PREMIOS"

DETECCIÓN DE OUTLIERS

Gráficamente no se observan valores atípicos

El cálculo del MAD arroja que no existen valores outliers en la variable target.

ANÁLISIS DE HIPÓTESIS

¿A medida que pasan los años, más premios se entregan?

<u>Hipótesis nula:</u> No existe relación entre las variables año y premios

<u>Hipótesis alternativa</u>: Existe relación entre las variables año y premios

Coeficiente de Spearman: -0.18948259600000783

P-valor: 0.21798703796320967

ANÁLISIS DE HIPÓTESIS

¿Existe relación entre la popularidad, las críticas obtenidas y la recepción de premios?

Hipótesis nula: No existe relación entre las variables premios, popularidad y críticas Hipótesis alternativa: Existe relación entre las variables premios, popularidad y críticas

Coeficiente de Pearson: -0.007065761096766035 P-valor: 0.7521567217775721

Coeficiente de Pearson: 0.0012503294066048198

P-valor: 0.9554362126679201

Premios - Críticas

Premios -Popularidad

ANÁLISIS DE HIPÓTESIS

El género dramático, ¿es el género más premiado?

Premios por género 1000 800 Premios 400 200 Género

Hipótesis nula: No existe relación entre las variables premios y género

<u>Hipótesis alternativa</u>: Existe relación entre las variables premios y género

Coeficiente de Spearman: -0.357575757575755

P-valor: 0.3103760917056799

ANÁLISIS DE HIPÓTESIS

El género dramático, ¿es el género más premiado?

Hipótesis nula: No existe relación entre las variables premios y género

<u>Hipótesis alternativa:</u> Existe relación entre las variables premios y género

Coeficiente de Spearman: -0.7939393939393938

P-valor: 0.0060999233136969115

ANÁLISIS DE HIPÓTESIS

¿Existe relación entre los premios recibidos por el género fantasía/animación en relación al género dramático a lo largo de la historia?

Coeficiente de Spearman: 0.1793279878979584

P-valor: 0.2441185101894924

Hipótesis nula: No existe relación entre las variables premios y género, para los géneros específicos drama y fantasía/animación Hipótesis alternativa: Existe relación entre las variables premios y género, para los géneros específicos drama y fantasía/animación

FEATURE ENGINEERING

ENCODEO DE LAS VARIABLES

ENCODEO MANUAL VARIABLE "PREMIOS"

```
# Recuento

df_peliculas['Premios_binario'].value_counts(dropna=False)

1   1841
0   159
```

LABEL ENCODE VARIABLE "GÉNEROS"

FEATURE ENGINEERING

Name: Categoria, dtype: int64

FEATURE BINNING

CATEGORIZACIÓN DE LA VARIABLE "PREMIOS"

```
# Agrego columna para categorizar las peliculas segun los premios recibidos y convertir la columna a variable categórica
#"Muy Ganadoras": (9 <= valor <= 10)
#"Medianamente Ganadoras": (4 <= valor <= 8)
#"Poco Ganadoras": (0 <= valor <= 3)

cortes = [0, 3, 8, 10]
nombres = ["Poco Ganadoras", 'Medianamente Ganadoras', 'Muy Ganadoras']
df_peliculas['Categoria'] = pd.cut(df_peliculas['Premios'], bins=cortes, labels=nombres)
value_counts = df_peliculas['Categoria'].value_counts().sort_values()
value_counts

Muy Ganadoras 364
Poco Ganadoras 573
Medianamente Ganadoras 904
```

REDUCCIÓN DE DIMENSIONALIDAD

PCA

```
print(lista_componentes)
print(modelo_pca.explained_variance_ratio_.round(2))

['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9', 'PC10']
[0.2  0.18  0.11  0.1  0.1  0.1  0.09  0.09  0.02  0. ]
```

No puede aplicarse PCA, ya que la mayoría de las variables numéricas se comportan como categóricas y la varianza acumulada no es significativa.

MCA

	eigenvalue	% of variance	% of variance (cumulative)
component			
0	0.007	0.65%	0.65%
1	0.006	0.58%	1.23%
2	0.006	0.58%	1.81%
3	0.006	0.57%	2.38%
4	0.006	0.56%	2.94%
5	0.006	0.55%	3.49%

No se logra una varianza acumulada significativa

MODELO DE CLASIFICACIÓN

APLICACIÓN DE ALGORITMOS: ANÁLISIS DE MÉTRICAS

VARIABLES INDEPENDIENTES: GÉNERO, POPULARIDAD, CRÍTICAS, CALIFICACIÓN Y ESPECTADORES

	ALGORITMO REGRESION LOGISTICA				KN	IN		ÁBOL DECISIÓN			SVM				LIGHT GBM		
		VALIDACIO	SMOTE	VALIDACION	GRIDS	EARCH	RANDOMIZE	VALIDACION	GRIDS	EARCH	RANDOMIZE	VALIDACION	GRIDS	SEARCH	RANDOMIZE	HALVING G	RIDSEARCH
	MÉTRICA	NSIMPLE	SMOTE	SIMPLE	SINSMOTE	CONSMOTE	DISEARCH	SIMPLE	SINSMOTE	CONSMOTE	NSMOTE DSEARCH	SIMPLE	SINSMOTE	CONSMOTE	DSEARCH	SINSMOTE	CONSMOTE
PRECISION	0 - No recibe premio	0,00	0,08	0,00	0,00	0,09	0,00	0,05	0,00	0,10	0,00	0,00	0,00	0,09	0,00	0,00	0,06
PRECISION	1 - Recibe premio	0,92	0,92	0,92	0,92	0,93	0,92	0,92	0,92	0,94	0,92	0,92	0,92	0,93	0,92	0,92	0,92
RECALL	0 - No recibe premio	0,00	0,38	0,00	0,00	0,45	0,00	0,06	0,00	0,62	0,00	0,00	0,00	0,60	0,00	0,00	0,15
NECALL	1 - Recibe premio	1,00	0,61	1,00	1,00	0,59	1,00	0,90	1,00	0,51	1,00	1,00	1,00	0,46	1,00	1,00	0,81
F1-SCORE	0 - No recibe premio	0,00	0,13	0,00	0,00	0,14	0,00	0,06	0,00	0,17	0,00	0,00	0,00	0,15	0,00	0,00	0,09
FI-3CORE	1 - Recibe premio	0,96	0,73	0,96	0,96	0,72	0,96	0,91	0,96	0,66	0,96	0,96	0,96	0,61	0,96	0,96	0,86
	ACCURACY	0,92	0,59	0,92	0,92	0,58	0,92	0,83	0,92	0,52	0,92	0,92	0,92	0,47	0,92	0,92	0,76

	ALGORITMO		RANDON	XG BOOST			
MÉTRICA		VALIDACION	GRID S	EARCH	RANDOMIZE	HALVING G	RID SEARCH
		SIMPLE	SIN SMOTE	CON SMOTE	D SEARCH	SIN SMOTE	CON SMOTE
PRECISION	0 - No recibe premio	0,00	0,00	0,09	0,00	0,00	0,08
FILECISION	1 - Recibe premio	0,92	0,92	0,93	0,92	0,92	0,92
RECALL	0 - No recibe premio	0,00	0,00	0,45	0,00	0,00	0,19
NECALL	1 - Recibe premio	1,00	1,00	0,62	1,00	1,00	0,81
F1-SCORE	0 - No recibe premio	0,00	0,00	0,15	0,00	0,00	0,11
1 - Recibe premio		0,96	0,96	0,74	0,96	0,96	0,86
,	ACCURACY	0,92	0,92	0,61	0,92	0,92	0,76

MEJORES ALTERNATIVAS

MODELO DE CLASIFICACIÓN

RANDOM FOREST

VARIABLES
INDEPENDIENTES
DEFINIDAS POR EL
MODELO

	precision	recall	f1-score	support
0 1	0.12 0.93	0.26 0.83	0.16 0.88	47 553
accuracy macro avg weighted avg	0.52 0.87	0.54 0.79	0.79 0.52 0.82	600 600 600

[mpo	rtancia de los predictores	en el modelo
	predictores	importancia
4	Espectadores	0.104021
9	Resultado (millones)	0.095566
7	Popularidad	0.089314
8	Recaudación en DVD (millones)	0.088267
2	Ingresos (millones)	0.086476
10	Criticas	0.086089
0	Año	0.084102
1	Calificación	0.081218
3	Presupuesto (millones)	0.079629
6	Críticas Negativas	0.072619
5	Críticas Positivas	0.072402
12	genero_label	0.053920
11	genero_binario	0.006378

MÉTRICAS CON MEJORA DE HIPERPARÁMETROS, STRATIFIED K-FOLD Y APLICACIÓN DE SMOTE PARA BALANCEO

MODELO DE CLASIFICACIÓN

XG BOOST

VARIABLES
INDEPENDIENTES
DEFINIDAS POR EL
MODELO

	precision	recall	f1-score	support
0	0.08	0.13	0.10	47
1	0.92	0.88	0.90	553
accuracy			0.82	600
macro avg	0.50	0.50	0.50	600
weighted avg	0.86	0.82	0.84	600

	predictores	importancia
11	genero_label	0.11
3	Espectadores	0.10
7 R	ecaudación en DVD (millones)	0.10
9	Criticas	0.09
5	Críticas Negativas	0.09
4	Críticas Positivas	0.09
0	Calificación	0.08
8	Resultado (millones)	0.08
1	Ingresos (millones)	0.08
2	Presupuesto (millones)	0.08
6	Popularidad	0.07
10	genero_binario	0.03

MÉTRICAS CON MEJORA DE HIPERPARÁMETROS, STRATIFIED K-FOLD Y APLICACIÓN DE SMOTE PARA BALANCEO

CONCLUSIONES

LAS MEJORES MÉTRICAS EN EL MODELO DE CLASIFICACÓN SE OBTUVIERON CON LOS ALGORITMOS RANDOM FOREST Y XG BOOST, DEFINIENDO LAS VARIABLES INDEPENDIENTES SEGÚN SU IMPORTANCIA EN EL MODELO, DE ESTA FORMA CON LA MEJORA DE HIPERPARÁMETROS, LA ESTRATIFICACION Y EL BALANCEO DE CLASES SE LOGRA OBTENER UN BUEN RENDIMIENTO DE AMBOS MODELOS.