LECTURE 6 - INFORMATIVE PRIORS

· WE HAVE PRIOR KNUWLEDGE ON D

OUR JOB TRANS'LATE PRIOR INFO INTO P(+) ["PRIOR ELICITATION"]

ELICITATION ERRORS (2) SPECIFICATION ERROR

P(H) IS OFTEN DERIVED

VIA AN ITERATIVE PROCESS

10 INITIAL DISCUSSION

20 DERIVATION OF A P(0)

4. IF EXPERT(S) HAPPY THEN STOP, OTHERWISE START

5 SENSITIVITY ANALYSIS

TRY DIFFERENT PRIDES

AND REPORT EFFECT ON

Posterior

CNAMPLE: "HIDDEN FIGURES" - ESTIMATING X STUDENTS CHEATINF IN EXAMS IN SCOTLAND DURING ZOZU TASK CREATE A PRIOR P(4) PRIOR INFO

N° OF CHEATERS CAUGHT 480

• DISCOVERY RATE ESTIMATE 0.535 [0.293,0.974] 95%. CI - DESTINATED # = 89+ [493, 1638] 95% CE OF CHEATERS $\frac{2}{5} = 897$ 3 = 8975=> POSS, BLE WAYS TO FIND SVITABLE P(0): A · SET P(O) ASYMMETRIC - GAMMA (a,b) PIND J. S SUCH THAT WHER & UPPER 2.5% QUANTILES ARE [493, 1638] &= log & 0 = 6.8 [6.2, 7.4] 954. CT | \$\int N(6.8, 0.3.62) => 0~ logN (6.8,0.3062) -> EXT (6.8) $6.6 \pm 1.36 \odot = [6.2,7.4]$ 6 = 0.306

AVERAGES WITHIN A DECISION THEORY APPROACH

•
$$\theta \in \Theta = PARATIETER$$

• $L(\theta, \theta) = ASSOCIATED LOSS FOR ESTIMATE θ

WHEN TRUE VALUE IS $\theta$$

- D WE CAN FORMALLY JUSTIFY DIFFERENT

=> BAYES ESTIMATE
$$\theta$$
 = VAZUE & THAT MINIMISES

THE POSTERIOR EXPECTED LOSS

 θ = MIN $E_{T}(L(\theta, \delta)) = MIN \int L(\theta, \delta)$

· L(0,2)=10-21

 $\theta \in \mathsf{M}^{\perp}(\theta)$

9 2 M. (8)

· L(0,2) [1 . f2 + 0

OF MIN ET (T(OIS)) = MIN [(OIS) HO] (1) $L(\theta, \theta) = (\theta - \theta)^2 = 7 \hat{\theta} = E_{\pi}(\theta) = POSTERIOR MEAN$

$$E_{\pi} \left[(\theta - a)^{2} \right] = F_{\pi} \left[(\theta - E_{\pi}(\theta)) + F_{\pi}(\theta) - a \right]^{2} \right] = E_{\pi} \left[(\theta - E_{\pi}(\theta))^{2} \right] + \left(E_{\pi}(\theta) - a \right)^{2} \right] + \left(E_{\pi}(\theta) - a \right)^{2} \right] + \left(E_{\pi}(\theta) - a \right)^{2} + \left($$