SUBSISTEMUL DE INTRARE/ IEȘIRE

Curs #8

- Magistrale
 - Standarde de magistrală
- Sistemul de I/E
- Mecanisme de comunicație

SUBSISTEMUL DE INTRARE/IEŞIRE

- 1. Magistrale conectează unitățile funcționale interne ale sistemului de calcul
- 2. Sistemul de I/E conectează dispozitivele de I/E

MAGISTRALE

- Magistrala este o cale electrică între mai multe unități funcționale. Se clasifică în:
 - magistrale interne în interiorul microprocesorului
 - magistrale externe în exteriorul microprocesorului

MAGISTRALE

- Pentru o magistrală se definește un protocol de magistrală (bus protocol) care precizează regulile de funcționare pe magistrală, anume:
 - semnificația semnalelor (date, adrese, control și stare)
 - nivelele electrice ale semnalelor
 - specificații mecanice și electrice

MAGISTRALE

- Primele calculatoare aveau o singură magistrală care trecea pe la toate componentele sistemului de calcul numită magistrala sistem (system bus).
 Calculatoarele noi au:
 - o magistrală specializată între microprocesor și memorie numită *magistrală de memorie*
 - una sau mai multe magistrale ce leagă microprocesorul cu dispozitivele de I/E, numite magistrale de I/E

 Gestiunea magistralei este realizată de un controlor de magistrală (bus controller)

- În raport cu inițierea unei operații de transfer pe magistrală, dispozitivele conectate la aceasta pot fi:
 - active (master)
 - pasive (slave)
- Relaţia dintre ele se numeşte master-slave. Masterul dă comenzi (activ), iar slave-ul le execută (pasiv).
- Memoria are rol de slave. Celelalte dispozitive pot fi master sau slave.

Exemple de relaţii master-slave:

Master	Slave	Operatie
UCP	Memoria	Prelucrarea instrucțiunilor și datelor
UCP	Dispozitiv de I/E	Inițializarea transferurilor de I/E
UCP	Coprocesor	UCP trimite instrucțiuni coprocesorului
Coprocesor	UCP	Coprocesorul prelucrează operanzii de la UCP
I/E	Memorie	Acces direct la memorie (DMA)

- Legatura la magistrală se face prin circuite specializate de amplificare a semnalelor:
 - bus driver (pentru dispozitivele master)
 - bus receiver (pentru dispozitivele slave)
 - bus transceiver (pentru dispozitivele cu dublu rol)

Perfomanțele magistralei

- Performanțele unei magistrale sunt legate de viteza de transfer și de lărgimea de bandă. Acestea sunt determinate de principalii parametri de proiectare, anume:
 - numarul de linii de adresă, de date și de control
 - frecvența ceasului
 - mecanismul de arbitraj
 - gestionarea întreruperilor
 - gestionarea erorilor

Clasificarea magistralelor

- În funcție de sincronizarea operațiilor de transfer, magistralele se împart în:
 - magistrale sincrone
 - magistrale asincrone

Magistrale sincrone

- Transferul datelor se face sincronizat dupa un semnal de ceas magistrala.
- Frecventa lui determina lungimea unui ciclu magistrala.
- Fiecare activitate se executa intr-un numar intreg de cicluri magistrala.
- De exemplu o operatie de R/W se executa in cel putin trei cicli magistrala (timpi pentru stabilire adrese, semnale de comanda si date propriu zise).
- O varianta de accelerare utilizeaza transferurile sincrone in blocuri de date (burst), indicandu-se adresa initiala si numarul de octeti de transferat.

Magistrale asincrone

- Nu exista un ceas master, iar ciclurile de magistrala pot avea orice lungime.
- Protocolul este format dintr-un set de semnale care se interblocheaza (handshaking).
- Se utilizeaza semnale suplimentare pentru realizarea unui dialog cu interblocare intre cele 2 dispozitive, master si slave, intre care se face transferul.
- Dialogul este independent de timp (semnalele se comanda reciproc), viteza de transfer adaptandu-se astfel automat la performantele dispozitivelor aflate in dialog.

Arbitrajul magistralei

- Deoarece atat procesorul cat si adaptoarele dispozitivelor de I/E pot dori simultan sa devina master pe magistrala, este necesara arbitrarea cererilor acestor dispozitive active.
- Arbitrarea magistralei se poate realiza:
 - centralizat (cu dispozitiv specializat ca arbitru de magistrala - unele microprocesoare pot avea incorporat un astfel de dispozitiv)
 - decentralizat, cu linii suplimentare pe magistrala
- Ambele variante asigura accesul la magistrala functie de prioritatile alocate initial dispozitivelor aflate in conflict.

Standarde de magistrală

ISA (Industry Standard Architecture)

 Setul de chip-uri ce implementeaza controller-ul de magistrala este conectat direct la magistrala interna a microprocesorului

ISA (Industry Standard Architecture)

- Suporta pana la 32 biti de date.
- Obs. Largimea de banda reala este 1 / 2 din cea teoretica, datorita protocoalelor de comunicatie conform carora se face transferul pe magistrala de I/E.
- Standardul ISA ofera suport DMA.
- Adaptorul DMA este un dispozitiv programabil ce poate efectua transferuri intre MI si dispozitivele periferice, in paralel cu functionarea CPU.
- In vederea initierii unui transfer direct, procesorul va incarca in registrele adaptorului DMA numarul dispozitivului I/E, adresa de memorie, numarul de octeti de transferat si sensul transferului. Pentru a indica incheierea operatiilor comandate, adaptorul DMA va lansa o intrerupere catre procesor.

MCA (MicroChannel Architecture)

- Este un standard pe 32 biti.
- Arhitectura este complet diferita si net superioara celei anterioare.
- A fost lansat de IBM in cadrul politicii de promovare pe piata a seriei de calculatoare PS/ 2.

EISA (Extended ISA)

- A fost creat ca reactie a restului industriei de calculatoare personale la MCA.
- Este o arhitectura pe 32 biti si care inglobeaza facilitatile necesare conectarii de procesoare multiple.
- Asigura, de asemenea o legatura mai rapida cu hard-discul (care poate avea fie adaptor EISA, fie poate fi conectat prin adaptor SCSI).

VLB (VESA- Video Electronics Standard Association- Local Bus)

- In acest caz, o parte din adaptoarele de I/E au acces la vitezele sporite ale magistralei procesorului.
- Este organizata pe 32 biti si ofera o rata maxima de transfer de 128-132 Moct/s.

PCI (Peripherial Component Interconnect Bus)

- Este o alternativa la VLB, dar presupune intercalarea unor punti (bridge) intre magistrala procesorului si magistrala de I/E.
- Datorita arhitecturii sale se mai numeste si magistrala mezanin.
- Transferul se realizeaza mai rapid, deoarece magistrala PCI lucreaza in paralel cu magistrala procesorului, fara sa o inlocuiasca (ex. In timp ce se executa un transfer CPU-Cache, pe PCI se pot executa alte transferuri).

PCMCIA (Personal Computer Memory Card International Association)

 A fost creata pentru calculatoarele portabile, ce contin placi de dimensiuni reduse.

AGP (Accelerated Graphics Port)

- Este o magistrala care faciliteaza capabilitati grafice de performanta, in special 3D.
- Aplicatiile 3D cer pe langa spatii mari de stocare a datelor necesare operatiei de refresh a monitorului si spatii mari de stocare pentru formatele speciale de date 3D (z-buffering, alpha blending, texture mapping). Standardul permite accelerarea aplicatiilor 3D.
- AGP adauga caracteristici noi acceleratoarelor grafice ca acces in conducta dedicat (dedicated pipelined access) la memoria primara si viteze mari de transfer, furnizand astfel largime mare de banda.
- Magistrala AGP nu inlocuieste magistrala PCI, ea este proiectata special pentru componente grafice punct la punct. Ea este separata de magistrala PCI si utilizeaza un conector separat.

USB (Universal Serial Bus)

- Este un standard de magistrala modern (1990) introdus pentru conectarea externa a dispozitivelor de viteza redusa (tastatura, mouse, scanner) la magistrala microprocesorului printr-un hub central (root hub).
- Hubul are socluri pentru dispozitivele de I/E sau la huburi de extindere. Astfel ca topologia unui sistem USB este un arbore cu radacina la hubul central.

Magistrala VME (Versa Module Eurocard)

 Standardele de magistrala prezentate sunt utilizate la calculatoarele personale (PC-uri).
 Pentru calculatoarele de tip mainframe, utilizate la sistemele mari, industriale, se utilizeaza standardul VME.

Magistrala VME (Versa Module Eurocard)

- Este derivata din magistrala de tip backplane utilizata la sistemele bazate pe microprocesoare Motorola.
- Obs. La calculatoarele compatibile IBM PC adaptorul de magistrala se afla pe placa de baza (motherboard). La mainframe-uri se utilizeaza backplane-ul care nu contine circuite active, iar adaptorul de magistrala se afla pe o placa speciala, conectata la backplane, ca toate celelalte placi din sistem.
- Ulterior a fost adaptata la formatul de placi Eurocard.

Magistrala VME (Versa Module Eurocard)

- Obiectivele urmarite la proiectarea acestui standard au fost:
 - interoperabilitate asigurata prin modul de definire a standardului
 - performanta ridicata deoarece este asincrona si se adapteaza vitezelor dispozitivelor implicate in transfer
 - siguranta ridicata oferita prin proiectare mecanica dar si prin protocolul de transfer.
- Arhitectura magistralei VME ne prezinta o familie de 3 magistrale:
 - VME magistrala ce leaga procesorul, memoria si sistemul de I/E
 - VSB leaga procesorul cu memoria locala
 - VMS magistrala seriala pentru comunicatiile si semnalele de sincronizare intre mai multe procesoare.

• Sistemul de l/E este componenta sistemului de calcul ce realizează comunicarea acestuia cu mediul extern.

- Fiecare echipament de l/E e însoțit de:
- 1. interfața hardware (*controller sau adaptor*) formata dintr-o serie de componente electronice ce asigura compatibilizarea nivelelor de semnal cu standardele de magistrala utilizate, precum si o prima prelucrare logica a acestora.
- 2. interfața software (*driver*) ce asigura o prelucrare logica si compatibilizarea semnificatiei semnalelor de la iesirea interfetei hard cu standardele soft ale sistemului de operare.

- Fiecare adaptor al unui dispozitiv de I/E contine (cel puţin) 2 regiştri. Unul va fi utilizat pentru transferul datelor, iar celalalt va contine informatii de comanda si stare.
- O informatie de stare esentiala este conditia ready, care arata daca adaptorul a incheiat operatia comandata si este pregatit sa preia o noua comanda.
- O operatie de I/E se executa prin transferul informatiilor de control si stare precum si a datelor propriu-zise intre procesor si registrele adaptorului.
- Transferul datelor intre procesor si adaptor are loc daca adaptorul este ready, adica a incheiat o operatie de intrare si are date pregatite pentru transfer in registrul de date, sau a incheiat o operatie de iesire si poate accepta alte date in registrul de date.

- Exista doua categorii de arhitecturi ale sistemelor de I/E utilizate la sistemele de calcul moderne:
 - canale de date
 - DMA

Canale de date

- Canalele de date se utilizeaza in special la calculatoarele de tip mainframe, cu arhitecturi complexe, conectate in retele cu utilizatori multiplii, frecventa operatiilor de I/E este foarte mare, iar magistrala foarte solicitata.
- La aceste sisteme se utilizeaza calculatoare specializate pe realizarea transferurilor de I/E, numite canale de I/E.
- Arhitectura unui sistem cu canale de I/E presupune existenta unor magistrale specializate, independente:
 - o magistrala pentru accesul CPU la memorie,
 - magistrala de I/E prin care CPU comunica cu canalele,
 - magistrala memoriei prin care canalele comunica cu memoria.

Canale de date

- Un canal de date este de fapt un procesor de I/E la care sunt atasate toate dispozitivele de I/E. Acesta va executa un program special, comunicat de CPU si destinat executarii unui transfer complex.
- Se va executa urmatoarea succesiune de operatii:
 - CPU transmite canalului programul de I/E.
 - Canalul executa operatiile, realizand transferuri directe intre memoria principala si sistemul de I/E.
 - Canalul semnalizeaza, printr-o intrerupere la procesor, incheierea transferului.

Canale de date

- Functie de viteza de transfer a dispozitivelor atasate, exista doua tipuri de canale de I/E:
 - canal multiplexor, la care se atasaza dispozitive lente (imprimante, terminale), canal care realizeaza, in paralel, operatii din programe de transfer pentru mai multe din dispozitivele conectate la el.
 - canal selector, la care se atasaza dispozitivele rapide (discuri) si care realizeaza un singur transfer la un moment dat.
- Avantajul acestei organizari consta in transferarea de la CPU catre procesorul de I/E a responsabilitatii majoritatii operatiilor legate de transferul datelor intre periferice si memoria principala.

DMA (acces direct la memorie)

- Calculatoarele personale (PC-uri) au o structura mai simpla a sistemului de I/E.
- Acestea sunt organizate in jurul unor magistrale la care se conecteaza principalele module ale sistemului: placa de baza (procesor, memorie, controller-e pentru dispozitivele standard mai putin placa video) si controller-ele dispozitivelor de I/E.

DMA (acces direct la memorie)

- Adaptoarele dispozitivelor ce transfera blocuri de date (discuri) realizeaza acces direct la memorie (DMA), adica transfera blocuri de caractere direct intre disc si memoria principala, fara a ocupa timpul procesorului central.
- Aceasta schema este utilizata pentru perifericele rapide si presupune eliberarea CPU de detaliile de realizare a transferului propriu-zis a unui grup de informatii intre adaptorul dispozitivului de I/E si memoria principala.
- Aceasta functie a CPU este preluata de DMA, dispozitiv conectat la magistrala sistemului.

DMA (acces direct la memorie)

- Chip-ul DMA va contine cel putin 4 registrii care vor fi incarcati, de catre programul ce se executa pe procesor, cu urmatoarele informatii ce definesc transferul:
 - adresa de memorie la care se face transferul,
 - numarul de octeti sau cuvinte ce trebuie transferat (contor),
 - identificarea, in spatiul adreselor de I/E, a dispozitivului de I/E cu care se face transferul,
 - sensul transferului (citire = intrare, scriere = iesire).

Mecanisme de comunicaţie

Mecanisme de comunicaţie

- Comunicaţia intre doua echipamente se realizeaza prin transmiterea semnalelor de la un echipament la celalalt.
- Cel care transmite se numeste transmitator, iar celalalt receptor. Pentru transmisia la distanta se utilizeaza modem-uri.
- Cele doua parti trebuie sa respecte regulile impuse de protocolul de comunicare implementat.
- Exista doua tipuri de transmisie:
 - sincrona
 - asincrona

Mecanisme de comunicaţie

- Este necesar un mecanism pentru realizarea sincronizarii operatiilor de transfer intre 2 calculatoare, astfel incat informatiile receptionate sa fie identice cu cele emise pe linia seriala.
- Sincronizarea se poate face fie prin sincronizarea semnalelor de tact ale celor doua parti (suport hard), fie prin continutul mesajului transmis (suport soft).
- Transmisiile sincrone necesita o operatie de sincronizare initiala si promisiunea de stabilitate a ceasurilor la cele 2 parti. Datele sunt transmise continuu, iar pentru perioadele de pauza se transmite codul unui caracter special (idle).
- Transmisiile asincrone realizeaza sincronizarea la nivelul fiecarui cod (octet), atasand acestuia biti suplimentari. Intre transmisia a 2 octeti linia este pe "1" (asigura detectarea purtatoarei), primul bit va fi bitul de START (= 0), urmeaza un numar predefinit de biti de date si 1 sau 2 biti de STOP (=1).

Moduri de transmisie

- simplex exista un fir de date si transmisia datelor se face intr-un singur sens, in sens invers circuland doar semnale de confirmare (ACK)
- semi-duplex un fir de date, iar transmisia se face in ambele sensuri, alternativ, conform unui protocol. Exista si fire separate pe care se realizeaza protocolul.
- duplex cu fire separate de date pentru fiecare directie, iar transmisia se face in ambele sensuri simultan. Pentru protocol exista fire separate.