Cognoms i Nom: Grup: DNI:

Examen E1 (temes 2 i 3)

- Durada de l'examen: 1:15 hores.
- La solució de cada exercici s'ha d'escriure a l'espai reservat en el propi enunciat.
- No podeu usar calculadora, mòbil, apunts, etc.
- La solució de l'examen es publicarà a Atenea demà i les notes abans de les 12 de la nit del 9 d'octubre..

Pregunta 1) (Objectius 2.4) (1 punt)

Cada fila de la taula té 3 columnes amb: el vector X de 8 bits, X expressat en hexadecimal i el valor en decimal, X_u, que representa X interpretat como un nombre natural codificat en binari. Completeu totes las caselles buides.

Х	X (hexa)	Xu
10110100	В4	180
01100100	64	100

Criteri de valoració: -0.5 punts per cada fila amb algun error

Pregunta 2) (Objectius 2.1 i 2.2) (0.75 punts)

a) Escriviu la fórmula que dóna el valor d'un nombre natural en funció dels 5 dígits que el representen en el sistema convencional en base 3.

$$X_u = \sum_{i=0}^4 X_i * 3^i$$

Criteri de valoració: +0.25 punts si és correcte. Amb qualsevol error 0 punts.

b) Expresseu el rang dels nombres naturals que es poden representar en el sistema convencional en base 8 pel cas d'un vector X de 5 dígits.

$$0 \leq X_u \leq 8^5 - 1$$

Criteri de valoració: +0.25 punts si és correcte. Amb qualsevol error 0 punts.

c) Quin és el nombre natural de valor màxim que es pot representar en el sistema convencional en base 2 pel cas d'un vector X de 6 bits.

$$X_{\rm H} = 63$$

Criteri de valoració: +0.25 punts si és correcte. Amb qualsevol error 0 punts.

Pregunta 3) (Objectiu 2.2) (0.5 punts)

Quins dels següents nombres en decimal (0,1,7,15,16,25) es poden representar en binari utilitzant els següents nombres de bits.

1 bit: 0,1 4 bits: 0,1,7,15

Criteri de valoració: -0.25 punts per cada fila amb algun error.

Pregunta 4) (Objectiu 3.6 i 3.10) (1 punt)

a) Quantes portes And i Or, i de quantes entrades cada una, fan falta per implementar directament l'expressió en suma de minterms de la funció w de la següent taula de veritat.

а	b	С	w
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Nombre de portes And = $\begin{bmatrix} 5 \\ \end{bmatrix}$ de $\begin{bmatrix} 3 \\ \end{bmatrix}$ entrades.

Nombre de portes $Or = \boxed{1}$ de $\boxed{5}$ entrades.

Criteri de valoració: +0.25 punts per cada fila de portes correcta.

b) Indiqueu la mida mínima de la ROM per sintetitzar un circuit de 5 entrades i 4 sortides.

Nombre de paraules = 32

Bits per paraula = 4

Criteri de valoració: +0.25 punts per cada resposta (caixa) correcta

Pregunta 5) (*Objectiu 3.5 i 3.17*) (*1,5 punts*)

a)

Dibuixeu el mapa de Karnaugh amb les agrupacions adequades per obtenir l'expressió mínima en suma de productes de la funció w d'un circuit al que li correspon la següent taula de veritat:

a	b	C	d	W
0	0	0	0	1
0	0	0	1	1 0
0	0	1	0	x
0	0	1	1	Х 1
0	1	0	0	0 0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1 1 1	0	1	0	1 1 X 0
1	0	1	1	0
1	1	0	0	Х
1	1	0	1	Х 1 0
1 1	1	1	0	0
1	1	1	1	х

Dibuixeu el Mapa de Karnaugh on es vegi clarament els grups que heu escollit

Criteri de valoració: Si les agrupacions coincideixen amb la solució 1 punt. Si coincideixen 2 agrupacions i no n'hi cap d'incorrecta 0,5 punts.

b) Indiqueu l'expressió mínima en suma de productes de w

$$\mathbf{w} = \mathbf{!}\mathbf{b} \cdot \mathbf{!}\mathbf{d} + \mathbf{a} \cdot \mathbf{!}\mathbf{c} + \mathbf{!}\mathbf{a} \cdot \mathbf{!}\mathbf{b} \cdot \mathbf{c}$$

Criteri de valoració: Si expressió correcta 0,5 punts. Si hi ha algun error 0 punts.

Pregunta 6) (*Objectius 3.5 i 3.17*) (*1 punt*)

Donat l'esquema del següent circuit (inclosa la taula de veritat del bloc B1) completeu la taula de veritat de la sortida w i escriviu l'expressió lògica en suma de minterms de w.

Taula veritat w

-uu-	La vo				
X	у	Z	W		
0	0	0	1		
0	0	1	0		
0	1	0	1		
0	1	1	1		
1	0	0	1		
1	0	1	0		
1	1	0	0		
1	1	1	1		

Tau	Taula veritat B1								
а	b	C	d						
0	0	1	1						
0	1	0	1						
1	0	0	1						
1	1	1	0						

Expressió en suma de minterms de W:

 $|x\cdot|y\cdot|z| + |x\cdot y\cdot|z| + |x\cdot y\cdot z| + |x\cdot|y\cdot|z| + |x\cdot y\cdot z|$

Examen E1 IC-17-18-Q1

Cognoms i Nom: Grup: DNI:

Criteri de valoració: +0.5 punts: Taula de veritat correcta, binari. Si hi ha algun error a la taula un 0 en tot l'exercici.+0.5 punts: Expressió en suma de minterms correcta, binari

Pregunta 7) (*Objectiu 3.13*) (*1,25 punts*)

Donat l'esquema del circuit de la pregunta anterior, escriviu el camí crític (tots si n'hi ha més d'un) i el temps de propagació del circuit. Els temps de propagació del bloc B1 (a la taula) i de las portes són: $Tp_{(Not)} = 10$, $Tp_{(And-2)} = 20$, $Tp_{(Or-2)} = 20$ i $Tp_{(Xor-2)} = 40$ u.t. Per exemple, si el camí que va de Y a W y passa pel bloc B, per la porta XOR i per la porta OR fos un camí crític, s'indicaria de la següent forma: Y \rightarrow B1_{b-d} \rightarrow XOR_2 \rightarrow OR-2 \rightarrow W.

Temps de propagació de B1

Тр	С	d		v-\And 2\B1 -\Vor 2\Or 2\w
а	40	30	Camins Crítics =	$x \rightarrow And 2 \rightarrow B1_{a-d} \rightarrow Xor 2 \rightarrow Or 2 \rightarrow W$
b	60	40	Camins Crucs =	y→And-2→B1 _{a-d} →Xor-2→Or-2→w

Tp del circuit =

110

Criteri de valoració: +0.75 punts pels 2 camins correctes. Si només indiquen un cami +0,5 punts +0.5 punts si Tp és correcte, però només si el camí és correcte, si no 0.

Pregunta 8) (Objectiu 3.12) (1.5 punts)

Completeu el següent cronograma dels senyals de l'esquema lògic considerant que els temps de propagació de les portes son: $Tp_{(Not)} = 10$, $Tp_{(And-2)} = 20$, $Tp_{(Or-2)} = 20$ u.t. Heu d'operar adequadament amb les zones ombrejades (no se sap el valor que tenen) i heu de posar un senyal ombrejat quan no sabeu si val 0 o 1.

0		50			00		15	50		
x										
v										
z										
а										
b										
w				-	-	 	 ••••••			

Criteri de valoració: +0.5 punts per cada fila correcta, binari

Pregunta 9) (*Objectius 3.2 i 3.11*) (*1,5 punts*)

Implementeu amb una ROM un circuit que calculi el producte de dos nombres naturals de 2 bits. El bus de entrada A és un vector de 2 bits (a_1a_0) que representa al nombre natural A_u . Igualment, el bus de entrada B és un vector de 2 bits (b_1b_0) que representa un altre nombre natural B_u . El bus de sortida W és un vector de 4 bits ($w_3w_2w_1w_0$) que codifica el valor natural del resultat $W_u = A_u * B_u$. *Nota: l'asterisc és l'operació de multiplicació*.

Dibuixeu la implementació del circuit usant només una ROM i indicant clarament el seu contingut. L'ordre de les entrades del circuit (de major a menor pes) ha de ser el següent: $a_1a_0b_1b_0$

Criteri de valoració:

-0.5 punts per cada fila incorrecta. Cada fila binaria. (3 o més files incorrectes és un 0).

Si falten les indicacions de l'ordre de les files de la rom: -0.25 punts. Si falten les indicacions del pes de les entrades: 0 punts de la pregunta.