Devoir maison n°12 : Première fois. Stabilité géométrique

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Problème 1 - Première fois.

Partie A: Une fonction agissant sur les nombres entiers naturels.

Soit une fonction $\Delta: \mathbb{N} \to \mathbb{N}$ possédant les propriétés :

- (1) $\Delta(0) = \Delta(1) = 0$
- (2) Pour tout entier premier p, $\Delta(p) = 1$
- (3) Pour tous entiers a et b: $\Delta(a \times b) = b\Delta(a) + a\Delta(b)$
- 1) Soit p un nombre premier, n un entier naturel. On cherche à prouver que $\Delta(p^n)=np^{n-1}$.

Initialisation:

Pour n = 0, $\Delta(p^0) = \Delta(1) = 0$ d'après (1). Ce qui correspond à la formule.

Pour n=1, $\Delta(p^1)=\Delta(p)=1$ d'après (2). Or avec la formule on obtient $p^0=1,$ ce qui est donc correct.

Hérédité:

On suppose que $\Delta(p^n)=np^{n-1}$, cherchons à prouver que $\Delta(p^{n+1})=(n+1)p^n$.

$$\Delta(p^{n+1}) = \Delta(p \times p^n) = p^n \Delta(p) + p \Delta(p^n) = p^n + pnp^{n-1} = (n+1)p^n$$

Par principe de récurrence, $\Delta(p^n)=np^{n-1}$.

On remarque par ailleurs que $\Delta(p^p)=pp^{n-1}=p^p.$

- **2) a)** Soit p et q des nombres premiers distincts, m et n des entiers naturels supérieurs ou égaux à 1. $\Delta(p^m \times q^n) = q^n \Delta(p^m) + p^m \Delta(q^n)$ D'après la question précédente, on a alors : $mq^np^{m-1} + np^mq^{n-1} = (p^{m-1}q^{n-1})(mq+np)$
- **b)** $\Delta(10^n)=\Delta(2^n\times 5^n)$ Comme 2 et 5 sont premiers et distincts, n supérieur ou égal à 1, on a d'après la question précédente : $\Delta(2^n\times 5^n)=7n\big(2^{n-1}\times 5^{n-1}\big)$. $\Delta(10^n)$ est donc un multiple de 7 quand $n\geq 1$.
- **3) a)** On cherche à montrer que si $n\geq 2$ alors $\Delta(n)=\alpha_1q_1+\alpha_2q_2+...+\alpha_kq_k$ avec $q_{1...k}=\frac{n}{p_{1...k}}$.

Soit $n \geq 2$, On a donc, $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$ avec $p_{1...k}$ premier et $\alpha_{1...k} \in \mathbb{N}^*$.

Initialisations:

On suppose que k=1, que $n=p_1^{\alpha_1}$, alors $\Delta(n)=\alpha_1p_1^{\alpha_1-1}$ Or $q_1=\frac{n}{p_1}=p_1^{\alpha_1-1}$.

Donc $\Delta(n) = \alpha_1 q_1$

On suppose que k=2, que $n=p_1^{\alpha_1}p_2^{\alpha_2}$, alors d'après 2)a), $\Delta(n)=p_2^{\alpha_2}\alpha_1p_1^{\alpha_1-1}+p_1^{\alpha_1}\alpha_2p_2^{\alpha_2-1}=(p_1^{\alpha_1}p_2^{\alpha_2})\left(\frac{\alpha_1}{p_1}+\frac{\alpha_2}{p_2}\right)=\alpha_1q_1+\alpha_2q_2.$

Hérédité:

On suppose que $\Delta(m)=\alpha_1'q_1'+\alpha_2'q_2'+\ldots+\alpha_k'q_k'$ pour m pouvant s'écrire $m=p_1^{'\alpha_1'}\times p_2^{'\alpha_2'}\times\ldots\times p_k^{'\alpha_k'}.$

On cherche à prouver que $\Delta(n)=\alpha_1q_1+\alpha_2q_2+\ldots+\alpha_kq_k+\alpha_{k+1}q_{k+1}$ pour n pouvant s'écrire sous la forme $n=p_1^{\alpha_1}\times p_2^{\alpha_2}\times\ldots\times p_k^{\alpha_k}\times p_{k+1}^{\alpha_{k+1}}.$

$$\begin{split} &\Delta(n) = \Delta(p_1^{\alpha_1}) \Bigg(\frac{n}{p_1^{\alpha_1}}\Bigg) + p_1^{\alpha_1} \Delta \Bigg(\frac{n}{p_1^{\alpha_1}}\Bigg) \text{ d'après 2)a)} \\ &= \alpha_1 \Bigg(n \frac{p_1^{\alpha_1-1}}{p_1^{\alpha_1}}\Bigg) + p_1^{\alpha_1} \Delta \Bigg(\underbrace{p_2^{\alpha_2} \times \ldots \times p_k^{\alpha_k} \times p_{k+1}^{\alpha_{k+1}}}_{\text{est un nombre comme } m}\Bigg) \end{split}$$

En faisant correspondre $m=rac{n}{p_1^{lpha_1}},$ $p_1'=p_2,$..., $p_k'=p_{k+1}$ et $\alpha_1'=\alpha_2,$..., $\alpha_k'=\alpha_{k+1},$ on a

$$\begin{split} \Delta(n) &= \alpha_1 q_1 + p_1^{\alpha_1} \bigg(\alpha_2 \frac{m}{p_2} + \ldots + \alpha_k \frac{m}{p_k} + \alpha_{k+1} \frac{m}{p_{k+1}} \bigg) \\ &= \alpha_1 q_1 + \alpha_2 q_2 + \ldots + \alpha_k q_k + \alpha_{k+1} q_{k+1} \end{split}$$

Par principe de récurrence, nous avons prouvé que quelque soit $k \in \mathbb{N}^*$ et par conséquent quelque soit $n \in \mathbb{N}$ avec $n \geq 2$, $\Delta(n) = \alpha_1 q_1 + ... + \alpha_k q_k$.

- **b)** Vérifions que $\Delta(n) = \alpha_1 q_1 + ... + \alpha_k q_k$ satisfait les propriétés (2) et (3) :
- (1) Pour p premier, $p=p^1:\Delta(p)=1\times \frac{p}{p}=1$. Cela correspond bien à la propriété (1).

Pour a et b des entiers naturels : $a=p_1^{\alpha_1}...p_k^{\alpha_k}$ $b=p_1'^{\alpha_1'}...p_{k'}'^{\alpha_{k'}'}$ D'une part, $\Delta(a\times b)=\Delta(a)\times b+a\times \Delta(b)=b\alpha_1\frac{a}{p_1}+...+b\alpha_k\frac{a}{p_k}+a\alpha_1'\frac{b}{p_1'}+...+a\alpha_{k'}'\frac{b}{p_{k'}'}=$ $\alpha_1 \frac{a \times b}{p_1} + \ldots + \alpha_k \frac{a \times b}{p_k} + \alpha_1' \frac{a \times b}{p_1'} + \ldots + \alpha_{k'}' \frac{a \times b}{p_{k'}'} \ldots$

Partie B: Étude de quelques images d'entiers par la fonction Δ .

4) a)

Calculons $\Delta(12)$. On a $12 = 2^2 \times 3$.

Donc d'après la formule, $\Delta(12)=2\frac{12}{2}+\frac{12}{3}=16$.

Calculons $\Delta(56)$. On a $56 = 2^3 \times 7$.

Donc d'après la formule, $\Delta(56) = 3\frac{56}{2} + \frac{56}{7} = 92$.

Calculons $\Delta(1001)$. On a $1001 = 7 \times 11 \times 13$.

Donc d'après la formule, $\Delta(1001) = \frac{1001}{7} + \frac{1001}{11} + \frac{1001}{13} = 311$.

Preuves générées automatiquement (le script est sur Github). 12

b) Cherchons les solutions de $\Delta(x) = 0$ avec $x \in \mathbb{N}$.

Si x=0 ou x=1 alors d'après (1), $\Delta(x)=0$.

Si $x\geq 2,$ $\Delta(x)=\alpha_1q_1+\ldots+\alpha_kq_k.$ Or $\alpha_{1\ldots k}\in\mathbb{N}^*$ et $q_{1\ldots k}=\frac{x}{p_{1\ldots k}},$ comme $x,p_{1\ldots k}\in\mathbb{N}^*$ alors $q_{1\ldots k}>0.$ Ainsi comme somme de nombres tous strictements positifs, $\Delta(x)>0.$

Les seules solutions à $\forall x \in \mathbb{N}, \Delta(x) = 0$ sont $\{0, 1\}$.

Nous avons également prouvé que pour tout $x \ge 2$ alors $\Delta(x) > 0$.

c) Cherchons les solutions de $\Delta(x) = 1$ avec $x \in \mathbb{N}$.

Si x = 0 ou x = 1 alors d'après (1), $\Delta(x) = 0$.

Si x est premier alors d'après (2), $\Delta(x) = 1$.

Si x n'est pas premier et différent de 0 et 1, alors on peut écrire x sous la forme $x=p\times b$ avec p premier et $b\in\mathbb{N},b\geq 2$. En effet si b=0 alors x=0 et si b=1 alors x est premier, ce qui n'est pas autorisé. D'après la question précédente, $\Delta(b)>0$. On a donc :

$$\Delta(x) = \Delta(p \times b) = b\Delta(p) + p\Delta(b) = \underbrace{b}_{\geq 2} + \underbrace{p}_{\geq 2} \underbrace{\Delta(b)}_{> 0}$$

Par addition d'un nombre supérieur ou égal à 2 avec un nombre strictement supérieur à 0, $\Delta(x)>2.$

Les seules solutions à $\forall x \in \mathbb{N}, \Delta(x) = 1$ sont donc l'ensemble des nombres premiers.

d) Nous cherchons à prouver que 2 et 3 ne possèdent pas d'antécédent par Δ .

Soit $n \in \mathbb{N}$. Si n = 0 ou n = 1 alors $\Delta(n) = 0$ et si n est premier alors $\Delta(n) = 1$. On considère donc tous les $n \geq 2$ et qui ne sont pas premiers.

On peut alors réécrire n comme le produit de deux entiers naturels différents de 0 et 1 : $n=a\times b$. On a alors :

$$\Delta(n) = \Delta(a \times b) = \Delta(a) \times \underbrace{b}_{\geq 2} + \underbrace{a}_{\geq 2} \times \Delta(b)$$

Or nous avons prouvé précédement que les seules solutions à l'équation $\Delta(x)=0$ sont 0 et 1. Comme a et b sont différents de 0 et 1 on a :

$$\Delta(n) = \underbrace{\Delta(a)}_{\geq 1} \times \underbrace{b}_{\geq 2} + \underbrace{a}_{\geq 2} \times \underbrace{\Delta(b)}_{\geq 1}$$

La valeur minimale de $\Delta(n)$ est donc 4 quand n est différent de 0 et 1 et n'est pas premier.

 $^{^{1}\}text{Par exemple}: \text{Calculons } \Delta(987654321). \text{ On a } 987654321 = 3^{2} \times 17^{2} \times 379721. \text{ Donc d'après la formule,} \\ \Delta(987654321) = 2\frac{987654321}{3} + 2\frac{987654321}{17} + \frac{987654321}{379721} = 774633441.$

²(Pourquoi écrire les preuves à la main alors qu'on peut passer 5 fois plus de temps à coder le script qui le fait automatiquement ?)

Comme 0, 1 et les nombres premiers ne donnent ni 2 ni 3 par Δ nous avons prouvé que 2 et 3 ne possèdent pas d'antécédents par Δ .

Tout entier entier naturel n n'a donc pas au moins un antécédent par Δ .

e) Calculons $\Delta(8)$. On a $8=2^3$.

Donc d'après la formule, $\Delta(8) = 3\frac{8}{2} = 12$.

Nous avons donc $\Delta(8) > 8$. La propriété $\forall n \in \mathbb{N}, \Delta(n) \leq n$ est fausse.

5) a) Montrons que pour deux nombres p et q premiers, $\Delta(p \times q) = p + q$. D'après les propriétés (1) et (2) :

$$\Delta(p\times q)=q\Delta(p)+p\Delta(q)=p+q$$

b) On considère les entiers naturels 3 et 4.

Calculons $\Delta(12)$. On a $12=2^2\times 3$. Donc d'après la formule, $\Delta(12)=2\frac{12}{2}+\frac{12}{3}=16$.

Or $3+4=7\neq 16$. La propriété $\forall n,m\in\mathbb{N}, \Delta(n\times m)=n+m$ est donc fausse.

6) a) Considérons les nombres 2 et 3. Comme 2, 3 et 2 + 3 = 5 sont premiers, on a :

$$\Delta(2+3) = 1 \neq \Delta(2) + \Delta(3) = 2$$

La propriété $\forall n, m \in \mathbb{N}, \Delta(n+m) = \Delta(n) + \Delta(m)$ est donc fausse.

b) Soient $a,b\in\mathbb{N}$ tel que $\Delta(a+b)=\Delta(a)+\Delta(b)$. Soit $k\in\mathbb{N}$. D'après la propriété (3) :

$$\begin{split} \Delta(ka+kb) &= \Delta(k(a+b)) = \Delta(k)(a+b) + k\Delta(a+b) \\ &= \Delta(k)a + \Delta(k)b + k\Delta(a) + k\Delta(b) \\ &= (a\Delta(k) + k\Delta(a)) + (b\Delta(k) + k\Delta(b)) \\ \Delta(ka+kb) &= \Delta(ka) + \Delta(kb) \end{split}$$

Partie C : Les points fixes de la fonction

7) a) Soit p un nombre premier. Soit m un entier naturel multiple de p^p . Soit n un entier naturel tel que $m = np^p$.

Considérons $\Delta(p^p)$, d'après la question 1), $\Delta(p^p)=pp^{p-1}=p^p$

$$\Delta(m) = \Delta(np^p) = p^p \Delta(n) + n \Delta(p^p) = p^p (n + \Delta(n))$$

Nous avons prouvé que $\Delta(m)$ est un multiple de p^p .

b) Soit $m \in \mathbb{N}, m \geq 2$. Supposons que $p^{\alpha} \mid m$ pour p premier et $1 \leq \alpha < p$ (avec α maximal). Notons $m = np^{\alpha}$ avec $n \in \mathbb{N}$ non divisible par p. Alors

 $^{^{3}\}Delta$ n'est pas surjective.

$$\begin{split} \Delta(m) &= n\Delta(p^{\alpha}) + p^{\alpha-1}\Delta(n) \\ &= np^{\alpha-1} + p^{\alpha}\Delta(n) \\ &= p^{\alpha-1}(n + p\Delta(n)) \end{split}$$

Donc $p^{\alpha-1}$ divise $\Delta(m)$. Cependant, comme n n'est pas divisible par $p, n+p\Delta(n)$ non plus et $\Delta(m)$ n'est pas divisible par p^{α} . La puissance de p dans la décomposition de $\Delta(m)$ est donc bien $\alpha-1$.

8) Résolvons $\Delta(x) = x$ avec $x \in \mathbb{N}$.

Si x=0 alors $\Delta(0)=0$. 0 est solution. Si x=1 alors $\Delta(1)=0$.

On considère maintenant $x \geq 2$. On a donc :

$$\begin{split} \Delta(x) &= x \Leftrightarrow \alpha_1 \frac{x}{p_1} + \ldots + \alpha_k \frac{x}{p_k} = x \\ &\Leftrightarrow \frac{\alpha_1}{p_1} + \ldots + \frac{\alpha_k}{p_k} = 1 \quad (*) \end{split}$$

- S'il existe au moins un $i \in [\![1,k]\!]$ tel que $\alpha_i \geq p_i$:

Si k > 1 alors :

$$\underbrace{\frac{\alpha_1}{p_1}}_{>0} + \ldots + \underbrace{\frac{\alpha_i}{p_i}}_{\geq 1} + \ldots + \frac{\alpha_k}{p_k} = 1$$

Par somme de nombres tous strictements positifs avec un terme supérieur à 1, cette expression n'est jamais vrai quelque soient les valeurs de $\alpha_{1...k}$ et $p_{1...k}$ respectant les conditions.

Si k=1 alors i=1 d'où $\alpha_1 \geq p_1$ et :

$$\underbrace{\frac{\alpha_1}{p_1}}_{>1} = 1$$

Si $\alpha_1>p_1\Leftrightarrow \frac{\alpha_1}{p_1}>1$ alors la condition n'est pas remplie.

Donc on a $\alpha_1 = p_1$. Comme nous avons déjà prouvé que $\Delta(p^p) = p^p$ à la question 1), sont solution $\{p^p \mid p \in \mathbb{N} \text{ et } p \text{ premier}\}.$

• Si pour tout $i \in [1, k], \alpha_i < p_i$:

A fortiori, la puissance de p_1 dans la décomposition de m est $1 \leq \alpha_1 < p_1$. Par l'exercice précédent, la puissance de p_1 dans $\Delta(m)$ est donc de α_1-1 exactement. Mais $\Delta(m)=m$, et c'est une contradiction. Ce cas est donc impossible.

Nous avons donc démontré que les seules solutions à $\Delta(x) = x$ sont :

$$\mathcal{S} = \{ p^p \mid p \in \mathbb{N} \text{ et } p \text{ premier} \} \cup \{ 0 \}$$

Problème 2 - Stabilité géométrique

Dans tout le problème, soit ε et q deux réels strictements positifs. On considère une suite $(x_n)_{n\in\mathbb{N}}$ de réels telle que $x_0>0$ et pour tout entier naturel $n,0\leq x_{n+1}-qx_n\leq \varepsilon$.

1) Pour tout entier naturel n, on pose $b_n=x_{x+1}-qx_n$. Montrons que pour tout entier naturel $n\geq 1$, on a $x_n=q^nx_0+q^{n-1}b_0+q^{n-2}b_1+\ldots+qb_{n-2}+b_{n-1}$.

$$\begin{split} q^n x_0 + q^{n-1} b_0 + q^{n-2} b_1 + \ldots + q b_{n-2} + b_{n-1} \\ &= q^n x_0 + \sum_{k=0}^{n-1} q^{n-k-1} b_k \\ &= q^n x_0 + \sum_{k=0}^{n-1} q^{n-k-1} x_{k+1} - \sum_{k=0}^{n-1} q^{n-k} x_k \\ &= \text{en posant } l = k+1 \\ &= q^n x_0 + \sum_{l=1}^n q^{n-l} x_l - \sum_{k=0}^{n-1} q^{n-k} x_k \\ &= q^n x_0 + x_n - q^n x_0 + \underbrace{\sum_{l=1}^n q^{n-l} x_l - \sum_{k=1}^n q^{n-k} x_k}_{\text{s'annule}} \\ &= x_n \end{split}$$

Nous avons montré que pour tout entier naturel $n \ge 1$, on a :

$$x_n = q^n x_0 + q^{n-1} b_0 + q^{n-2} b_1 + \ldots + q b_{n-2} + b_{n-1}$$

- **2)** On suppose que 0 < q < 1.
 - a)