

Year 12 Extension 1 Mathematics

Mini Examination

Wednesday April 8, 2009

Instructions

- There are four (4) questions, each worth 15 marks
- Attempt all questions
- Answer each question in a new booklet
- Show all necessary working
- Calculators are allowed in all sections
- 5 minutes reading time

Time Allowed: 90 minutes

Total Marks: 60

- (a) Consider the function $P(x) = x \ln 10x$.
 - (i) Show that a root exists between x = 3 and x = 4.

1

(ii) By choosing x = 3.6 as a first approximation and applying Newton's Method once determine a second approximation to this root.

2

(iii) Comment on the accuracy of your second approximation.

1

(iv) Why would Newton's Method have failed if x = 1 had been chosen as the first approximation?

1

- **(b)** If α , β and γ are the roots of $x^3 + 4x^2 + 8x + 16 = 0$, find the value of
 - (i) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

2

(ii) $\alpha^2 + \beta^2 + \gamma^2$

2

(c) The polynomial $P(x) = x^5 + 3x^4 - 10x^3 + 2x^2 + 9x - 5$ has a triple root at x = 1 and two other single roots. Determine the values of these other roots and express P(x) as a product of its factors.

3

(d) A polynomial $Q(x) = x^4 + px^3 + qx^2 - 5x + 1$ has a zero at x = 1. When Q(x) is divided by $x^2 + 2$ it has a remainder of 1 - 7x. Find p and q.

- (a) (i) Use the substitution $u = 1 x^6$ to find $\int \frac{x^5}{\sqrt{1 x^6}} dx$
 - (ii) Use the substitution $u = 1 + \log_e x$ to evaluate $\int_1^e \frac{dx}{x(1 + \log_e x)^2}$ 3
- (b) $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ lie on the parabola $x^2 = 4ay$. Normals to this parabola at P and Q meet at the point R.
 - (i) Prove that R has coordinates $[-apq(p+q), a(p^2+pq+q^2+2)]$ 4
 - (ii) If the normals intersect at right angles prove that the locus of R is the parabola $x^2 = a(y-3a)$.
 - (iii) Hence find the coordinates of the focus of the locus of R. 1

3

(a) Differentiate
$$y = \ln(x^3 \sqrt{x^2 + 1})$$

(b) Evaluate
$$\int_{1}^{3} \left(2x + \frac{3}{x^2}\right)^2 dx$$
 3

(c) Find the exact value of the area enclosed by the curve $y = \frac{e^x}{1 + e^x}$, the x-axis,

and the lines x = 0 and x = 1.

(d) ABCD is a rectangle drawn between the curve $y = e^{-x^2}$ and the x-axis.

- (i) Show that ABCD has area $2xe^{-x^2}$ units²
- (ii) Hence find the maximum area of such a rectangle.
- (e) Write down the derivative of $(x-1)e^x$ and use your result to evaluate $\int_{-1}^{1} xe^x dx$

(a) Prove by mathematical induction where n is a positive integer,

$$3^{3n} + 2^{n+2}$$
 is divisible by 5.

6

(b) For the curve $y = xe^{-x}$,

9

- (i) Determine the stationary point and the point of inflexion.
- (ii) Sketch the curve.
- (iii) From your sketch, show that the equation $xe^{-x} = k$ has
 - (α) Two roots if $0 < k < \frac{1}{e}$
 - (β) One real root if $k \le 0$
 - (γ) No real roots if $k > \frac{1}{e}$

END OF EXAMINATION