Méthodes Statistiques

Corrigé de l'exercice 36

Sur une portion d'autoroute où la vitesse est limitée à $110 \ km/h$, on effectue un contrôle de vitesse sur 12 véhicules, on observe une vitesse moyenne $\bar{x}=123.61 \ km/h$ avec un écart-type $s=13.47 \ km/h$. Au vu de ces observations, peut-on conclure, au seuil 5%, que la limitation de vitesse n'est pas respectée en moyenne? On suppose que la vitesse d'un véhicule suit une loi normale.

On fait l'hypothèse H_0 suivante :

 $H_0: m = 110$

La question posée nous conduit à faire un test unilatéral, autrement dit à considérer l'hypothèse H_1 suivante :

 $H_1: m \ge 110$

La statistique du test, lorsque la variance σ^2 est inconnue, est :

$$T = \frac{\bar{X} - m}{s / \sqrt{n}} = \frac{\sqrt{n} \left(\bar{X} - m\right)}{s}$$

On obtient ici :

$$T = \frac{\sqrt{12} \left(123.61 - 110\right)}{13.47} = 3.5$$

On sait que, sous l'hypothèse H_0 , la statistique T suit une loi de Student à n-1=11 degrés de liberté :

$$T \sim t(n-1)$$

La table de la loi de Student pour 11 degrés de liberté nous donne le quantile u_c associé à la probabilité 95% :

$$u_c=1.796$$

Puisque 3.5 > 1.796, on rejette l'hypothèse H_0 , au risque 5% de se tromper.La limitation de vitesse n'est pas respectée.