

Universidade do Minho Dep. de Matemática e Aplicações

Fórmulas trigonométricas úteis

1.
$$\sin^2 x + \cos^2 x = 1$$
.

2.
$$\operatorname{tg} x = \frac{\operatorname{sen} x}{\operatorname{cos} x}$$
, $\operatorname{cotg} x = \frac{\operatorname{cos} x}{\operatorname{sen} x}$.

3.
$$\sec x = \frac{1}{\cos x}$$
, $\csc x = \frac{1}{\sin x}$.

4.
$$\sin 2x = 2 \sin x \cos x$$
.

5.
$$\cos 2x = \cos^2 x - \sin^2 x$$
.

6.
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
, $\sin^2 x = \frac{1 - \cos 2x}{2}$.

	$\pi/6$	$\pi/4$	$\pi/3$
sen	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$
cos	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2

	0	$\pi/2$	π	$3\pi/2$
sen	0	1	0	-1
cos	1	0	-1	0

Fórmulas hiperbólicas úteis

$$\begin{array}{cccc}
ch : & \mathbb{R} & \longrightarrow & \mathbb{R} \\
 & x & \longmapsto & \frac{e^x + e^{-x}}{2}
\end{array}$$

1.
$$\cosh^2 x - \sinh^2 x = 1$$
.

2.
$$\operatorname{th} x = \frac{\operatorname{sh} x}{\operatorname{ch} x}$$
, $\operatorname{coth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x}$.

3.
$$\operatorname{sech} x = \frac{1}{\operatorname{ch} x}$$
, $\operatorname{cosech} x = \frac{1}{\operatorname{sh} x}$.

4.
$$sh 2x = 2 sh x ch x$$
.

5.
$$\operatorname{ch} 2x = \operatorname{ch}^2 x + \operatorname{sh}^2 x$$
.

6.
$$\cosh^2 x = \frac{\cosh 2x + 1}{2}$$
, $\sinh^2 x = \frac{\cosh 2x - 1}{2}$.

Dep. de Matemática e Aplicações

Algumas propriedades das funções trigonométricas

1.
$$\forall a \in \mathbb{R} \quad \sin^2 a + \cos^2 a = 1$$

2.
$$\forall a \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$$
 $1 + \operatorname{tg}^2 a = \sec^2 a$

3.
$$\forall a \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}$$
 $1 + \cot^2 a = \csc^2 a$

4.
$$\forall a \in \mathbb{R}$$
 sen $(-a) = -\text{sen } a$ (sen é impar)

5.
$$\forall a \in \mathbb{R} \quad \cos(-a) = \cos a \quad (\cos \text{ é par})$$

6.
$$\forall a \in \mathbb{R}$$
 $\cos(\frac{\pi}{2} - a) = \sin a$ e $\sin(\frac{\pi}{2} - a) = \cos a$

7.
$$\forall a \in \mathbb{R} \quad \text{sen} (a + 2\pi) = \text{sen } a \quad \text{(sen tem periodo } 2\pi)$$

8.
$$\forall a \in \mathbb{R} \quad \cos(a+2\pi) = \cos a \quad (\cos \text{ tem periodo } 2\pi)$$

9.
$$\forall a, b \in \mathbb{R}$$
 $\operatorname{sen}(a+b) = \operatorname{sen} a \cos b + \operatorname{sen} b \cos a$

10.
$$\forall a, b \in \mathbb{R}$$
 $\cos(a+b) = \cos a \cos b - \sin b \sin a$

11.
$$\forall a, b \in \mathbb{R}$$
 $\cos a - \cos b = -2 \sin \frac{a-b}{2} \sin \frac{a+b}{2}$

12.
$$\forall a, b \in \mathbb{R}$$
 $\operatorname{sen} a - \operatorname{sen} b = 2 \operatorname{sen} \frac{a-b}{2} \cos \frac{a+b}{2}$

Algumas propriedades das funções hiperbólicas

$$\begin{array}{cccc}
ch : & \mathbb{R} & \longrightarrow & \mathbb{R} \\
 & x & \longmapsto & \frac{e^x + e^{-x}}{2}
\end{array}$$

1.
$$\forall a \in \mathbb{R}$$
 $\operatorname{ch}^2 a - \operatorname{sh}^2 a = 1$

$$2. \ \forall a \in \mathbb{R} \qquad \operatorname{th}^2 a + \operatorname{sech}^2 a = 1$$

3.
$$\forall a \in \mathbb{R} \setminus \{0\}$$
 $\coth^2 a - \operatorname{cosech}^2 a = 1$

4.
$$\forall a \in \mathbb{R}$$
 $\operatorname{sh}(-a) = -\operatorname{sh} a$ (a função sh é impar)

5.
$$\forall a \in \mathbb{R}$$
 ch $(-a) = \operatorname{ch} a$ (a função ché par)

6.
$$\forall a, b \in \mathbb{R}$$
 $\operatorname{sh}(a+b) = \operatorname{sh} a \operatorname{ch} b + \operatorname{sh} b \operatorname{ch} a$

7.
$$\forall a, b \in \mathbb{R}$$
 $\operatorname{ch}(a+b) = \operatorname{ch} a \operatorname{ch} b + \operatorname{sh} b \operatorname{sh} a$

8.
$$\forall n \in \mathbb{N} \quad \forall a \in \mathbb{R} \qquad (\operatorname{ch} a + \operatorname{sh} a)^n = \operatorname{ch} (na) + \operatorname{sh} (na)$$