Course: Cryptography Instructor: Dr. Odelu Vanga University: IIIT Sri City

Practice Problems

- 1. Evaluate the following:
 - (a). 2109 (mod 21)
 - (b). $19^{-1} \pmod{1001}$
 - (c). $-101 \pmod{1001}$
 - (d). Find the x and y such that 1001x + 2001y = d, where d = GCD(1001, 2001). Show each step to find d as well as x and y.
- 2. Prove that, $a \pmod{m} = b \pmod{m}$ iff $a \equiv b \mod m$. Hint use the definition of congruent modulo, then we have m|(b-a).
- 3. Use the exhaustive key search to decrypt the following ciphertext, which was encrypted using shift cipher

BEEAKFYDJXUQYHYJIQRYHTYJIQFBQDUYJIIKFUHCQD

- 4. Suppose that k = (5, 21) is a key in an Affine Cipher over Z_{31} .
 - (a). Express the decryption function $D_k(y)$ in the form of $D_k(y) = ay + b$, where $a, b \in Z_{31}$.
 - (b). Prove $D_k(E_k(x)) = x$ for all $x \in Z_{31}$.
- 5. Prove that the equation $ax = 1 \pmod{b}$ has unique solution if GCD(a, b) = 1.
- 6. If an encryption function E_k is identical to the decryption function D_k , then the key k is called an involutory key.
 - (a). Find all the involutory keys in the shift cipher over Z_{26} .
 - (b). Suppose that k = (a, b) is a key in an Affine Cipher over Z_n . Prove that k is an involutory key iff $a^{-1} \pmod{n} = a$ and $b(a+1) \equiv 0 \pmod{n}$
- 7. Determine the inverse of the matrices over Z_{29} :

$$\begin{pmatrix} 1 & 11 & 12 \\ 4 & 23 & 2 \\ 17 & 15 & 9 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

8. An Affine-Hill Cipher is the following modification of a Hill Cipher: Let m be a positive integer, and define $\mathcal{P} = \mathcal{C} = (Z_{26})^m$. In this cryptosystem, a key k consists of a pair (L, b), where L is an $m \times m$ invertible matrix over Z_{26} , and $b \in (Z_{26})^m$. For $x = (x_1, x_2, \ldots, x_m) \in \mathcal{P}$ and $k = (L, b) \in \mathcal{K}$, we compute $y = E_k(x) = (y_1, y_2, \ldots, y_m)$ by means of the formula y = xL + b. Hence, if $L = (l_{i,j})$ and $b = (b_1, b_2, \ldots, b_m)$, then

$$(y_1, y_2, \dots, y_m) = (x_1, x_2, \dots, x_m) \begin{pmatrix} l_{1,1} & l_{1,2} & \dots & l_{1,m} \\ l_{2,1} & l_{2,2} & \dots & l_{2,m} \\ \vdots & \vdots & \vdots & \vdots \\ l_{m,1} & l_{m,2} & \dots & l_{m,m} \end{pmatrix} + (b_1, b_2, \dots, b_m)$$

Suppose adversary learned that the plaintext

adisplayed equation

is encrypted to give the ciphertext

DSRMSIOPLXLJBZULLM

and adversary also knows that m=3. Determine the key, showing all the computations.

9. We describe a special case of a *Permutation Cipher*. Let m, n be positive integers. Write out the plaintext, by rows, in $m \times n$ rectangles. Then form the ciphertext by taking the columns of these rectangles. For example, if m = 4, n = 3, then we would encrypt the plaintext *cryptography* by forming the following rectangle:

cryp togr aphy

The ciphertext would be CTAROPYGHPRY.

- (a). Describe how Bob will decrypt a cyphertext (given values for m and n).
- (b). Decrypt the following ciphertext, which was obtained by using this method of encryption:

MYAMRARUYIQTENCTORAHROYWDSOYEOUARRGDERNOGW

10. Test the following cipher generated with *monoalphabetic* or *polyalphabetic* cipher, and find the key length using Kasiski test and confirm using Index of Coincidence

KSMEHZBBLKSMEMPOGAJXSEJCSFLZSY

Then, recover the keyword.