Cogs 109: Modeling and Data Analysis

Midterm study guide and topic list

For the midterm exam on Tuesday 10/30 (in class):

- Calculators allowed but no smartphones. Calculators will not be necessary calculations will be relatively simple.
- There will not be any coding exercises. However, you may be asked to describe in words how you would perform a particular analysis.
- Content will be similar to HW1 through HW4. Anything covered in class up through Wednesday 10/24 is fair game. The corresponding textbook chapters are Ch. 1 through 5, although note that there are some topics in the book that we did not cover in class -- these will not be on the exam.
- If you understand the solution to all of the HWs and all of the lecture material, you should be in good shape.
- For additional practice, you could try to work out the exercises from the textbook that were not assigned on the HW. The following exercises are particularly relevant:
 - o Chapter 2, exercises 2-6
 - o Chapter 3, exercise 1
 - o Ch. 4, ex. 1, 2, 5, 8, 9
 - o Ch. 5, ex. 3, 4
- [Updated] 1 page (single sided) of handwritten notes are allowed.

Topics and keywords:

- 1. Types of models and modeling goals
 - a. Prediction and Inference
 - b. Parametric and Non-parametric models
 - c. Supervised and Unsupervised learning
 - d. Regression and Classification
 - e. Training and Testing Error
 - f. Flexible/Complex and Inflexible/Simple models
- 2. Given a model such as $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$, identify the predictors, response, parameters, and noise
- 3. Bias, variance, irreducible error, total error
- 4. Tradeoff between flexibility and interpretability of models
- 5. Training vs. testing error
- 6. Overfitting
- 7. Bayes' theorem: $P(Y|X) \propto P(X|Y)P(Y)$. Identify the prior, posterior and likelihood terms.
- 8. Regression
 - a. Leverage
 - b. Standard deviation, standard error
 - c. Confidence intervals
 - d. Null hypothesis, p-value, t-statistic
 - e. Residual
 - f. Multiple regression: Explain how and why the result of a multiple regression may be different depending on which predictors are included
 - g. Correlation, R^2
 - h. Dummy variables: Explain how to interpret the coefficients of a regression model with dummy variables representing categorical predictors
- 9. Classification
 - a. K-nearest neighbors
 - b. Logistic regression
 - c. LDA: Linear discriminant analysis

- d. Odds ratio, log-odds, logistic function
- e. Bayesian classifier
- f. Prior probability, posterior probability, data likelihood
- g. Decision boundary, decision threshold
- h. Confusion matrix
 - i. Errors: False positive, False negatives
 - ii. Sensitivity, specificity
- i. ROC analysis, ROC curve
- 10. Resampling and cross-validation
 - a. Validation set
 - b. Using cross-validation to compare models (e.g. linear vs. quadratic regression)
 - c. LOOCV, k-fold CV
 - d. Bootstrap resampling