

Agafonova Ekaterina

Volkov Dmitry

Sidnov Kirill

- 1. Introduction
- 2. Related work
- 3. Methodology
- 4. Experiments and results
- 5. Conclusion and future work

IntroductionWhat is anomaly?

anomaly = outlier

IntroductionWhy self-supervised learning?

You don't need labels/oracle

IntroductionHow to represent data for detection?

embeddings

intrinsic data shape

embedding space projection

Related Work

➤ similarity <</p> predictor h stop-grad encoder f encoder f $x_1 \wedge$ $\wedge x_2$ image x

SimCLR

SimSiam

SwAV

projection

prediction

representation

view

Related work

Method	Top-1
Supervised	76.5
МоСо	60.6
PIRL	63.6
SIMCLR	69.3
MoCo v2	71.1
SIMSIAM	71.3
SWAV (w/o multi-crop)	71.8
BYOL	74.3
SwAV	75.3
BARLOW TWINS	73.2

Chen, 2020

Grill, 2020

Zbontar, 2021

Top-1 accuracy under linear evaluation on ImageNet. All models use a ResNet-50 encoder

Chen, T. et al.
A simple framework for contrastive learning of visual representations. CoRR, abs/2002.05709, 2020. https://arxiv.org/abs/2002.05709

Grill, J., et al.
Bootstrap your own latent: A new approach to self-supervised learning. CoRR, abs/2006.07733, 2020 https://arxiv.org/abs/2006.07733

Zbontar, J. et al.
Barlow twins: Self-supervised learning via redundancy reduction. CoRR, abs/2103.03230, 2021
https://arxiv.org/abs/2103.03230

Skoltech

MethodologyPipeline

MethodologyModel and augmentations

Why SimCLR and BarlowTwins?

- simple
- no predictor network
- do not use stop gradient operation
- no momentum encoder
- non-differential operations (clustering) free

Augmentations of CIFAR10

(h) Gaussian noise

(i) Gaussian blur

custom random non-rigid

Training results

SimCLR

SGD optimizer Ir=6e-3 momentum=0.9 weight_decay=5e-4 CosineAnnealingLR

BarlowTwins

SGD optimizer Ir = 0.06 momentum=0.9

	SimCLR	BarlowTwins
backbone	ResNet20	ResNet20
training time	2h	2h
epochs	100	150
implementation	Lightly	Lightly

+ custom ResNet-20 backbone

SimCLR

BarlowTwins

MethodologyScoring procedure

Metrics and results

- Euclidean distance (scipy.distance.cdist)
 - Sum of point2point distances between clouds
- MTopDiv

Skoltech

- Manifold Topology divergence
- Hausdorff distance

Hausdorff

CLASSES	SIMCLR	TWINS
BIRD	349.2	537.1
HORSE	456.1	543.3
DEER	483.6	279.4
SHIP	413.3	790.2
CAT	423.0	205.6
TRUCK	458.0	306.7
AUTOMOBILE	412.4	499.6
DOG	529.8	162.7
FROG	406.3	465.4
AIRPLANE	390.3	553.2

MTopDiv

CLASSES	SIMCLR	TWINS
DOG	0.21	0.12
FROG	0.12	0.48
AUTOMOBILE	0.21	0.44
DEER	0.29	0.29
HORSE	0.32	0.25
CAT	0.27	0.10
TRUCK	0.14	0.44
SHIP	0.32	0.59
BIRD	0.15	0.24
AIRPLANE	0.75	0.69

Conclusion and Future Work

- 1. Tried two contrastive models and two metrics on randomly augmented data
- 2. Proposed a pipeline for plausible data distinguishing
- Two classes were confused
- 4. Barlow Twins outperform SimCLR

Next steps:

- Training on multiclass
- Extend on other datasets
- Try different augmentations

Introduction

