NPDE PG03 实验报告

刘行 PB22000150

2025年10月3日

1 问题描述

本实验研究一维对流方程的初值问题:

$$\begin{cases} u_t = u_x, & -\infty < x < \infty, t > 0, \\ u(x, 0) = \sin(2\pi x), & -\infty < x < \infty \end{cases}$$

该方程的精确解为 $u(x,t) = \sin(2\pi(x+t))$.

对空间区域 [0,1] 做均匀剖分, 其中 $x_j=j\cdot h,\,j=0,1,2,...,J$, 空间步长 $h=\frac{1}{J}$. 令 $\lambda=\frac{\Delta t}{h}$. 对时间区域 $[0,t_{end}]$ 做均匀剖分, 且时间步长为: $\Delta t=\lambda\cdot h$, 其中 λ 为常数.

实验分为两个部分:问题 1 研究不同数值方法在时间演化过程中的表现,问题 2 研究 Lax-Wendroff 方法在不同网格密度下的收敛性.

2 数值方法

本实验采用三种数值方法求解对流方程: FTCS (Forward Time Central Space) 方法, Lax-Friedrichs 方法和 Lax-Wendroff 方法.

2.1 FTCS 方法

FTCS 方法采用时间前差和空间中心差分离散方程:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x}$$

整理得迭代格式:

$$u_j^{n+1} = u_j^n + \frac{\lambda}{2} \left(u_{j+1}^n - u_{j-1}^n \right)$$

该方法简单直观, 但对对流方程是不稳定的.

2.2 Lax-Friedrichs 方法

Lax-Friedrichs 方法通过引入数值耗散来稳定格式:

$$u_j^{n+1} = \frac{1}{2} \left(u_{j+1}^n + u_{j-1}^n \right) - \frac{\lambda}{2} \left(u_{j+1}^n - u_{j-1}^n \right)$$

该方法具有一阶精度, 具有较强的数值耗散性.

2.3 Lax-Wendroff 方法

Lax-Wendroff 方法通过 Taylor 展开和方程本身构造二阶精度格式:

$$u_{j}^{n+1} = u_{j}^{n} - \frac{\lambda}{2} \left(u_{j+1}^{n} - u_{j-1}^{n} \right) + \frac{\lambda^{2}}{2} \left(u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n} \right)$$

该方法具有二阶精度,数值耗散较小但可能存在数值振荡.

3 数值实验结果及分析

3.1 问题 1: 不同数值方法的时间演化比较

取 $\lambda = 0.5$, J = 80, 分别计算 t = 0.1, 0.4, 0.8, 1.0 时刻的数值解. 使用 FTCS, Lax-Friedrichs 和 Lax-Wendroff 三种方法, 并与精确解比较.

	衣	1: 円越 1	数阻结果 $(\lambda = 0.5)$	(0, J = 80)
间	t	方法	L_2 误差	L_{∞} 访

时间 t	方法	L_2 误差	L_{∞} 误差
	FTCS	1.24×10^{-2}	1.24×10^{-2}
0.1	Lax-Friedrichs	1.16×10^0	1.15×10^0
	Lax-Wendroff	1.18×10^{0}	1.18×10^{0}
	FTCS	5.06×10^{-2}	5.06×10^{-2}
0.4	Lax-Friedrichs	1.11×10^0	1.10×10^{0}
	Lax-Wendroff	1.19×10^{0}	1.18×10^{0}
	FTCS	1.04×10^{-1}	1.04×10^{-1}
0.8	Lax-Friedrichs	1.66×10^{0}	1.66×10^{0}
	Lax-Wendroff	1.91×10^0	1.90×10^{0}
	FTCS	1.31×10^{-1}	1.31×10^{-1}
1.0	Lax-Friedrichs	3.10×10^{-1}	3.09×10^{-1}
	Lax-Wendroff	4.90×10^{-3}	4.84×10^{-3}

图 1: 问题 1: 不同数值方法在时间演化过程中的比较 $(\lambda = 0.5, J = 80)$

从数值结果和图像可以看出: FTCS 方法虽然误差较小, 但理论上对对流方程是不稳定的, 观察到的较好结果可能是计算时间短不稳定性还未体现. 前两个实验也有类似的现象, 已经进行过分析. Lax-Friedrichs 方法具有明显的数值耗散, 波的振幅随时间衰减, 同时存在相位误差. Lax-Wendroff 方法在 t=1.0 时表现最佳, 此时波传播了完整周期, 数值解与精确解几乎重合.

3.2 问题 2: Lax-Wendroff 方法的网格收敛性分析

取 $\lambda = 0.5$, t = 1.0, 分别取 J = 10, 20, 40, 80, 160, 使用 Lax-Wendroff 方法计算数 值解.

٠.	= <u> </u>	(71 0.5, 0	110, Ball Trelle
	网格数 J	L_2 误差	L_{∞} 误差
	10	3.17×10^{-1}	2.83×10^{-1}
	20	8.04×10^{-2}	7.58×10^{-2}
	40	1.98×10^{-2}	1.93×10^{-2}
	80	4.90×10^{-3}	4.84×10^{-3}
	160	1.22×10^{-3}	1.21×10^{-3}

表 2: 问题 2 数值结果 ($\lambda = 0.5, t = 1.0$, Lax-Wendroff 方法)

图 2: 问题 2: Lax-Wendroff 方法在不同网格密度下的数值解与精确解比较 ($\lambda=0.5,t=1.0$)

从数值结果可以看出,随着网格密度增加 (J 增大), Lax-Wendroff 方法的数值误差显著减小. 当 J=10 时,数值解与精确解存在明显差异,出现数值振荡; 当 J=80 和 J=160 时,数值解与精确解几乎完全重合.误差分析表明, Lax-Wendroff 方法具有二阶收敛精度,当网格足够细时能够很好地逼近精确解.

4 结论

本实验通过对流方程的数值求解, 比较了 FTCS, Lax-Friedrichs 和 Lax-Wendroff 三种数值方法的性能. 实验结果表明: FTCS 方法虽然简单但不稳定; Lax-Friedrichs 方法稳定但具有强数值耗散; Lax-Wendroff 方法精度最高, 在足够细的网格下能够很好地逼近精确解. 数值方法的选取需要综合考虑稳定性, 精度和计算效率等因素, 针对具体问题选择合适的方法.