

ANSWER KEYS

1. (3)	2. (66)	3. (1)	4. (1)	5. (3)	6. (1)	7. (1)	8. (1)
9. (16)	10. (1)	11. (2)	12. (2)	13. (2)	14. (98)	15. (9)	16. (2)

//. mathongo //. mathongo //. mathongo //. mathongo //. mathongo //. mathongo //. mathongo

1. (3

Given
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = 15$$
 mathongo /// mathongo

$$\alpha + \beta = \frac{-\lambda}{3}, \ \alpha\beta = \frac{-1}{3} \Rightarrow \alpha^2\beta^2 = \frac{1}{9}$$
then $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{\lambda^2}{9} - 2\left(\frac{-1}{3}\right) = \frac{\lambda^2}{9} + \frac{2}{3}$

$$ho lpha^2 + eta^2 = rac{\lambda^2 + 6}{9}$$
 Mow $rac{1}{lpha^2} + rac{1}{eta^2} = 15 \Rightarrow rac{lpha^2 + eta^2}{lpha^2 eta^2} = 15$ mathongo /// mathongo /// mathongo ///

$$\Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\alpha^2 \beta^2} = 15 \Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\frac{1}{9}} = 15$$

$$\Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\alpha^2 \beta^2} = 15 \Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\frac{1}{9}} = 15$$

$$\Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\alpha^2 \beta^2} = 15 \Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\frac{1}{9}} = 15$$

$$\Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\alpha^2 \beta^2} = 15 \Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\frac{1}{9}} = 15$$

$$\Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\alpha^2 \beta^2} = 15 \Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\frac{1}{9}} = 15$$

$$\Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\alpha^2 \beta^2} = 15 \Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\frac{1}{9}} = 15$$

$$\Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\alpha^2 \beta^2} = 15 \Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\frac{1}{9}} = 15$$

$$\Rightarrow \frac{\lambda^2 + 6}{9} \times \frac{1}{\alpha^2 \beta^2} = \frac{1}{9} \times \frac{1}{9} \times \frac{1}{9} = \frac{1}{9} \times \frac{1}{9} \times \frac{1}{9} \times \frac{1}{9} = \frac{1}{9} \times \frac{1}{9}$$

$$\Rightarrow \lambda^2 + 6 = 15 \Rightarrow \lambda = \pm 3$$

$$\text{Now } 6(\alpha^3 + \beta^3)^2 = 6((\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2))^2 \text{ mathongo } \text{$$

$$= 6 \times 1 \times \left(\frac{15}{9} + \frac{1}{3}\right)^2$$

$$= 6 \times 1 \times (2)^2 = 6 \times 4 = 24 \times 9$$
 /// mathongo // mathongo

2. (66)

$$\frac{2}{x-1} - \frac{1}{x-2} = \frac{2}{k}$$

$$\frac{2x-4-x+1}{(x-1)(x-2)} = \frac{2}{k}$$
 mathongo /// mathongo // mathongo /// mathongo ///

$$kx+3k=2x^2-6x+4$$
 ngo /// mathongo /// math

$$\Rightarrow 2x^2 - (6+k)x + 3k + 4 = 0$$
For no real roots $D < 0$ mathongo /// mathongo // mathongo

$$egin{aligned} \Rightarrow ig(6+kig)^2 - 8ig(3k+4ig) < 0 \ \Rightarrow k^2 + 12k + 36 - 24k - 32 < 0 \end{aligned}$$

$$\Rightarrow k + 12k + 30 - 24k - 32 < 0$$

$$\Rightarrow (k-6)^2 - 32 < 0$$

$$\Rightarrow |k-6| < \sqrt{32}$$

$$\Rightarrow 6 + \sqrt{32} < k < 6 + \sqrt{32}$$
 mathongo /// mathongo // mat

Integral value of
$$k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11$$

$$Sum = \frac{11 \times 12}{2} = 66$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

3. (1)

$$\therefore \alpha, \beta \in \mathbb{R} \Rightarrow \text{ other root is } 1+2i$$
 // mathongo // mathongo

$$\beta = \text{product of roots} = (1-2i)(1+2i) = 5$$
 mathongo /// mathongo /// mathongo /// mathongo ///

$$\therefore \alpha - \beta = -7$$

5. (9) athongo ///.								
- ' '								
$x^2 - 12x + [x] + 31$								
$\{x\} = x^2 - 11x + 3$	31 _{mathongo}							
$0 \le x^2 - 11x + 31$ $x^2 - 11x + 30 < 0$	< 1							
$\mathbf{x} = 11\mathbf{x} + 30 < 0$ $\mathbf{x} \in (5,6)$								
so $[\mathbf{x}] = 5$								
$x^2 - 12x + 5 + 31 = 0$ $x^2 - 12x + 36 = 0$	= 0							
$x = 6$ but $x \in (5)$								
$\begin{array}{ll} \text{so} & \mathbf{x} \in \phi \\ \mathbf{m} = 0 \end{array}$								
3.7								
Now $x^2 - 5 x + 2 - 4 =$	mathongo							
$x \geq -2$								
$x^2 - 5x - 14 = 0$								
(x-7)(x+2) = 0)							
x=7,-2 $x<-2$								
$x^2 + 5x + 6 = 0$								
	nagthanga							
(x+3)(x+2) = 0 x = -3, -2								
$\mathbf{x} = \{7, -2$	-							
$matho n = 3$ $m^2 + mn + n^2 = n$	mathongo							
(2)								
The Given equation	is $x^2 + 9u^2 - 4$	4x +	3 = 0					
$\Rightarrow 9y^2 + 0y + (x^2 -$								
Make quadratic of	mailtan n	~//						
IVIAKE QUAUIALIC OF V	, we have $D >$	U As	it gives real va	alues				
		U As	it gives real va	alues				
$\Rightarrow 0-4 imes 9 imes (x^2-$	$-4x+3ig) \ge 0$							
$\Rightarrow 0-4 imes 9 imes (x^2-3x^2-3x-x+3)$	$-4x+3\big) \ge 0$ $0 \le 0$ thongo							
$\Rightarrow 0-4 imes 9 imes (x^2-3)$ $\Rightarrow x^2-3x-x+3$ $\Rightarrow (x-3)(x-1)\leq$	$(-4x+3) \ge 0$ $0 \le 0$ thongo							
$\Rightarrow 0-4 imes 9 imes (x^2-3)$ $\Rightarrow x^2-3x-x+3$ $\Rightarrow (x-3)(x-1)\leq x\in [1,3]$	$(-4x+3) \ge 0$ $(3 \le 0 \text{ thongo})$ (0 mathongo)							
$\Rightarrow 0-4 imes 9 imes (x^2-3)$ $\Rightarrow x^2-3x-x+3$ $\Rightarrow (x-3)(x-1)\leq x\in [1,3]$ Now making quadra	$(-4x + 3) \ge 0$ $(3 \le 0)$ though (0) mathongonatic in x equation	///. n is a	mathongo $x^2 - 4x + 3 + 3$	$9y^2$ =	mathongo = 0			
$\Rightarrow 0-4 imes 9 imes (x^2-3)$ $\Rightarrow x^2-3x-x+3$ $\Rightarrow (x-3)(x-1)\leq x\in [1,3]$ Now making quadra	$(-4x + 3) \ge 0$ $(3 \le 0 \text{ thongo})$ (0 mathongo) atic in x equation	///. n is a	mathongo $x^2 - 4x + 3 + 3$	$9y^2$ =	mathongo = 0			
$\Rightarrow 0-4 imes 9 imes (x^2-3)$ $\Rightarrow x^2-3x-x+3$ $\Rightarrow (x-3)(x-1) \le x \in [1,3]$ Now making quadra $D \ge 0$ $16-4 imes (3+9y^2) \ge 0$ $\Rightarrow 4-3-9y^2 \ge 0$	$(-4x + 3) \ge 0$ $(x \le 0)$ though $(x \le 0)$ though attic in $(x = 0)$ equation $(x \ge 0)$	///. n is a	mathongo $x^2-4x+3+$ mathongo	9y ² =	mathongo = 0 mathongo			
$\Rightarrow 0-4 imes 9 imes (x^2-3)$ $\Rightarrow x^2-3x-x+3$ $\Rightarrow (x-3)(x-1)\leq x\in [1,3]$ Now making quadra $D\geq 0$ $16-4 imes (3+9y^2)\geq 0$	$(-4x + 3) \ge 0$ $(x \le 0)$ though $(x \le 0)$ though attic in $(x = 0)$ equation $(x \ge 0)$	///. n is a	mathongo $x^2-4x+3+$ mathongo	9y ² =	mathongo = 0 mathongo			
$\Rightarrow 0 - 4 \times 9 \times (x^2 - 3x - x + 3)$ $\Rightarrow (x - 3)(x - 1) \le x \in [1, 3]$ Now making quadra $D \ge 0$ $16 - 4 \times (3 + 9y^2) \ge 0$ $\Rightarrow 4 - 3 - 9y^2 \ge 0$ $\Rightarrow 9y^2 \le 1$	$(-4x + 3) \ge 0$ $(x \le 0)$ though $(x \le 0)$ though attic in $(x = 0)$ equation $(x \ge 0)$	///. n is a	mathongo $x^2-4x+3+$ mathongo	9y ² =	mathongo = 0 mathongo			
$\Rightarrow 0 - 4 \times 9 \times (x^2 - 3x - x + 3)$ $\Rightarrow (x - 3)(x - 1) \le x \in [1, 3]$ Now making quadra $D \ge 0$ $16 - 4 \times (3 + 9y^2) \ge 0$ $\Rightarrow 4 - 3 - 9y^2 \ge 0$ $\Rightarrow 9y^2 \le 1$ $\Rightarrow y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$	$(-4x + 3) \ge 0$ $(x \le 0)$ though $(x \le 0)$ though $(x \le 0)$ though attic in $(x = 0)$ equation $(x \ge 0)$ mathong	///. n is a ///.	mathongo $x^2-4x+3+$ mathongo	///. 9y ² =	mathongo = 0 mathongo mathongo			
$\Rightarrow 0 - 4 \times 9 \times (x^2 - 3x - x + 3)$ $\Rightarrow (x - 3)(x - 1) \le x \in [1, 3]$ Now making quadra $D \ge 0$ $16 - 4 \times (3 + 9y^2) \ge 3$ $\Rightarrow 4 - 3 - 9y^2 \ge 0$ $\Rightarrow 9y^2 \le 1$ $\Rightarrow y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$	$(-4x + 3) \ge 0$ $(x \le 0)$ though $(x \le 0)$ though $(x \le 0)$ though attic in $(x = 0)$ equation $(x \ge 0)$ mathong	///. n is a ///.	mathongo $x^2-4x+3+$ mathongo	///. 9y ² =	mathongo = 0 mathongo mathongo			
$\Rightarrow 0 - 4 \times 9 \times (x^2 - 3x - x + 3)$ $\Rightarrow (x - 3)(x - 1) \le x \in [1, 3]$ Now making quadra $D \ge 0$ $16 - 4 \times (3 + 9y^2) \ge 3$ $\Rightarrow 4 - 3 - 9y^2 \ge 0$ $\Rightarrow 9y^2 \le 1$ $\Rightarrow y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$	$-4x+3) \ge 0$ $3 \le 0$ thongo 0 mathongo atic in x equation $0 \ge 0$ mathongo mathongo	///. ///. n is a	mathongo $x^2-4x+3+$ mathongo	9y ² =	mathongo mathongo mathongo mathongo			
$\Rightarrow 0 - 4 \times 9 \times (x^2 - 3x - x + 3)$ $\Rightarrow (x - 3)(x - 1) \le x \in [1, 3]$ Now making quadra $D \ge 0$ $16 - 4 \times (3 + 9y^2) \ge 3$ $\Rightarrow 4 - 3 - 9y^2 \ge 0$ $\Rightarrow 9y^2 \le 1$ $\Rightarrow y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$	$-4x+3) \ge 0$ $3 \le 0$ thongo 0 mathongo atic in x equation $0 \ge 0$ mathongo mathongo	///. ///. n is a	mathongo $x^2-4x+3+$ mathongo	9y ² =	mathongo mathongo mathongo mathongo			
$\Rightarrow 0 - 4 \times 9 \times (x^2 - 3x - x + 3)$ $\Rightarrow (x - 3)(x - 1) \le x \in [1, 3]$ Now making quadra $D \ge 0$ $16 - 4 \times (3 + 9y^2) \ge 0$ $\Rightarrow 4 - 3 - 9y^2 \ge 0$ $\Rightarrow 9y^2 \le 1$ $\Rightarrow y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$	$-4x+3) \ge 0$ $6 \le 0$ thongo 0 mathongo atic in x equation $0 \ge 0$ mathongo mathongo mathongo	///. ///. ///. ///.	mathongo mathongo $x^2 - 4x + 3 + $ mathongo mathongo mathongo	///. 9y ² = ///. ///.	mathongo mathongo mathongo mathongo mathongo			
$\Rightarrow 0 - 4 \times 9 \times (x^2 - 3x - x + 3)$ $\Rightarrow (x - 3)(x - 1) \le x \in [1, 3]$ Now making quadra $D \ge 0$ $16 - 4 \times (3 + 9y^2) \ge 0$ $\Rightarrow 4 - 3 - 9y^2 \ge 0$ $\Rightarrow 9y^2 \le 1$	$-4x+3) \ge 0$ $6 \le 0$ thongo 0 mathongo atic in x equation $0 \ge 0$ mathongo mathongo mathongo	///. ///. ///. ///.	mathongo mathongo $x^2 - 4x + 3 + $ mathongo mathongo mathongo	///. 9y ² = ///. ///.	mathongo mathongo mathongo mathongo mathongo			
$\Rightarrow 0 - 4 \times 9 \times (x^2 - 3x - x + 3)$ $\Rightarrow (x - 3)(x - 1) \le x \in [1, 3]$ Now making quadra $D \ge 0$ $16 - 4 \times (3 + 9y^2) \ge 0$ $\Rightarrow 4 - 3 - 9y^2 \ge 0$ $\Rightarrow 9y^2 \le 1$ $\Rightarrow y \in \left[\frac{-1}{3}, \frac{1}{3}\right]$	$-4x+3) \ge 0$ $3 \le 0$ thongo 0 mathongo atic in x equation $0 \ge 0$ mathongo mathongo mathongo mathongo mathongo	///. ///. n is a	mathongo mathongo $x^2 - 4x + 3 + $ mathongo mathongo mathongo mathongo	9y ² = ///.	mathongo mathongo mathongo mathongo mathongo mathongo			

answer regs and conditions				<u> </u>	
20. (2) athongo ///. mathongo //					
Given $ax^2 - 2bx + 15 = 0$ (i)					
Has repeated roots So $D=0$					
$4b^2-4 imes15 imes a=0$					
$\Rightarrow b^2 = 15a \dots$ (ii) Also given					
$x^2 - 2bx + 21 = 0$ Recommendation Recommendation	ootmathongo				
β					
Now α will satisfy both quadratic					
$ax^2-2bx+15=0\ \&\ x^2-2bx+21$	$_{\cdot}=0$				
Putting the value we get thought $a\alpha^2 - 2b\alpha + 15 = 0$					
$lpha^2 - 2b\alpha + 21 = 0$ - +					
$(a-1)\alpha^2 = 6$ $\alpha^2 = \frac{6}{a-1}$					
Now in equation (1) product of Root So $\frac{15}{a} = \frac{6}{a-1} \Rightarrow 2a = 5a - 5 \Rightarrow a = \frac{6}{a-1}$	$\alpha^2 = \frac{15}{a}$				
Now $b^2=15a\Rightarrow b^2=15 imes rac{5}{3}\Rightarrow b^2=15$ So $b=\pm 5$	=25				
Now in quadratic $x^2 - 2bx + 21 = 0$					
Putting the value of b we get					
$x^2 - 10x + 21 = 0 \implies (x - 7)(x - 3)$	=0				
So $x = 3$ or 7. mathongo 7.					
$x^2 + 10x + 21 = 0 \Rightarrow x = -3 \text{ or } x = -3 or $	7 mathongo				
So $\alpha^2 + \beta^2 = 3^2 + 7^2 = 9 + 49 = 58$ mathongo mathongo					

21. (25) thongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///	
Let $f(x){=}(x-lpha)(x-eta)$	
It is given that $f(0)=p\Rightarrow \alpha\beta=p$ mathongo mathon	
Now let us assume that α is the common root of $f(x)=0$ and $fofofof(x)=0$	
fofofof(x)=0	
$\Rightarrow fofofof\left(lpha ight) =0$	
$ \Rightarrow fofof(0) = 0 $ mathongo /// mathongo // m	
$\Rightarrow \ fof(p){=}\ 0$	
So, $f(p)$ is either α or β . Though M mathong M mathon M	
Now assuming $(p-\alpha)(p-\beta)=\alpha$	
$\Rightarrow (\alpha \beta - \alpha)(\alpha \beta - \beta) = \alpha \Rightarrow (\beta - 1)(\alpha - 1)\beta = 1$ mathongo /// mathongo // mathong	
$\Rightarrow rac{eta}{3} = 1 \left(ext{as } (1-lpha)(1-eta) = rac{1}{3} ight)$	
So, $\beta = 3$ go /// mathongo // mathongo /	
Now finding α by putting the value of β in $(1-\alpha)(1-\beta)=\frac{1}{3}$,	
$\Rightarrow (1-\alpha)(1-3) = \frac{1}{3}$ mathongo /// mathongo // mathongo	
So, $f(x) = \left(x - \frac{7}{5}\right)(x - 3)$	
So, $f(x) = \left(x - \frac{7}{6}\right)(x - 3)$ mathong with mathon with math	
So, $f(-3) = \left(-3 - \frac{7}{6}\right)(-3 - 3) = 25$	
22. (3) As there is exactly one root between 0 and 1, ngo /// mathongo /// mathongo /// mathongo /// mathongo ///	
$f(0)\!\cdot\! f(1)\! \leq 0$	
$\Rightarrow 2(\lambda^2 + 1 - 4\lambda + 2) \le 0 \Rightarrow 2(\lambda^2 - 4\lambda + 3) \le 0$ mathongo /// mathongo // mathon	
$\Rightarrow (\lambda - 1)(\lambda - 3) \le 0$	
$\Rightarrow \lambda \in [1,\ 3]$	
$ ightarrow \lambda \in [1, \ 3]$ But at $\lambda = 1$, both roots are 1 .	
So, $\lambda \neq 1, \lambda \in (1,3]$	
23. (3) mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo	
$x^3 - 2x^2 + 2x - 1 = 0$	
x - 2x + 2x - 1 = 0 $x = 1$ satisfying the equation 30 //////// mathongo //// mathongo ///////// mathongo ///////////////////////////////////	
$x = 1$ satisfying the equation $x = 1$ is factor of $x^3 - 2x^2 + 2x - 1$	
$=(x+1)(x^2-x+1)=0$ ongo /// mathongo // matho	
$x=1,rac{1+i\sqrt{3}}{2},rac{1-i\sqrt{3}}{2}$	
$x=1, -\omega^2, -\omega$ mathongo w. m	
sum of 162^m power of roots	
$=(1)^{162}+\left(-\omega^2 ight)^{162}+(-\omega)^{162}$	
$=(1)^{162}+\left(-\omega^2 ight)^{162}+\left(-\omega ight)^{162} = 1+\left(\omega ight)^{324}+\left(\omega ight)^{162} = 1+\left(\omega ight)^{324}+\left(\omega ight)^{162} = 1+\left(\omega ight)^{324}+\left(\omega ight)^{324} = 1+\left(\omega ight)^{324} = 1+\left(\omega ight)^{324}+\left(\omega ight)^{324}+\left$	
= 1 + 1 + 1 = 3	

Answer Reys and Solutions	JEE Main Crash Course
24. (2) athongo ///. mathongo ///. mathongo ///. mathongo ///. Given:	
$S = \left\{ x : \left(\sqrt{3} + \sqrt{2}\right)^{x^2 - 4} + \left(\sqrt{3} - \sqrt{2}\right)^{x^2 - 4} = 10 \right\}$	
Now, mathong $\sqrt{3} - \sqrt{2} = \frac{\left(\sqrt{3} + \sqrt{2}\right)\left(\sqrt{3} - \sqrt{2}\right)}{\sqrt{3} + \sqrt{2}} = \frac{\sqrt{3}}{\sqrt{3} + \sqrt{2}}$ mathong $\sqrt{3}$	
So, athong $\left(\sqrt{3}+\sqrt{2}\right)^{x^2-4}+\left(\sqrt{3}-\sqrt{2}\right)^{x^2-4}=10$ mathong $\left(\sqrt{3}+\sqrt{2}\right)^{x^2-4}$	
$\Rightarrow \left(\sqrt{3}+\sqrt{2}\right)^{x^2-4}+\left(\frac{1}{\sqrt{3}+\sqrt{2}}\right)^{x^2-4}=10$	
Put $\left(\sqrt{3}+\sqrt{2}\right)^{x^2-4}=u$, then $u+rac{1}{u}=10$	
$\Rightarrow u^2-10u+1=0$ mathongo $\Rightarrow u=rac{10\pm\sqrt{100-4}}{2}$ mathongo $\Rightarrow u=\frac{10\pm\sqrt{100-4}}{2}$	
$\Rightarrow u = 5 \pm \sqrt{24}$ $\Rightarrow u = 5 \pm 2\sqrt{3}\sqrt{2}$ mathongo /// mathongo /// mathongo	
$\Rightarrow u = \left(\sqrt{3} \pm \sqrt{2}\right)^2$ mathongo $\Rightarrow \left(\sqrt{3} + \sqrt{2}\right)^{x^2 - 4} = \left(\sqrt{3} \pm \sqrt{2}\right)^2$ mathongo $\Rightarrow \left(\sqrt{3} + \sqrt{2}\right)^{x^2 - 4} = \left(\sqrt{3} \pm \sqrt{2}\right)^2$	
So, $\left(\sqrt{3}+\sqrt{2}\right)^{x^2-4}=\left(\sqrt{3}+\sqrt{2}\right)^2$ and $\left(\sqrt{3}+\sqrt{2}\right)^{x^2-4}=\left(\frac{1}{\sqrt{3}+\sqrt{2}}\right)^2$	
Therefore, $x^2-4=2\ \&\ x^2-4=-2\ \text{mg}$ mathongo $x=\pm\sqrt{6}\ \&\ x=\pm\sqrt{2}$	
So, $S = \left\{ \sqrt{6}, \sqrt{2}, -\sqrt{6}, -\sqrt{2} \right\}$ mathongo mathongo	
Hence, $n(S)=4$ /// mathongo /// mathongo /// mathongo	

		0u	
25. (25) thongo /// mathongo /// mathongo			
Given,			
$\log_2(9^{2\alpha-4}+13) - \log_2(3^{2\alpha-4} \cdot \frac{5}{2}+1) = 2$ thouse			
Now let $3^{2\alpha-4} = t$, so the equation becomes,			
$\log_2(t^2+13) - \log_2(\frac{5t}{2}+1) = 2$ mathongo			
$egin{align} \Rightarrow \log_2rac{(t^2+13)}{\left(rac{5t}{2}+1 ight)} &= 2 \ \Rightarrow rac{(t^2+13)}{\left(rac{5t}{2}+1 ight)} &= 2^2 \ \end{pmatrix}$			
$\Rightarrow t^2 + 13 = 10t + 4$ mathongo /// mathongo			
$\Rightarrow t^2 - 10t + 9 = 0$			
t = 1 or 9 mathongo mathongo so,			
$3^{2lpha-4}=1 ext{ or } 9$ $\Rightarrow 3^{2lpha-4}=3^0 ext{ or } 3^2$			
$\Rightarrow 2\alpha - 4 = 0 \text{ or } 2$ $\Rightarrow \alpha = 2, 3$			
Now, $\mathbf{x}^2-2ig(\sum_{lpha\in s}lphaig)^2\mathbf{x}+\sum_{a\in s}(lpha+1)^2eta=0$ when $\mathbf{x}^2-2ig((2+3)^2xig)+(3^2+4^2)eta=0$			
$\Rightarrow x^2 - 50x + 25\beta = 0$ mathonic			
Now for real roots $D \geq 0 \text{ ongo} \qquad \text{mathongo}$ $\Rightarrow 50^2 - 4 \times 25\beta \geq 0$			
$ ightarrow 50 - 2eta \geq 0$ mathongo $ ightarrow 30 = 30 = 30$ mathongo $ ightarrow 30 = 30 = 30$			
So, maximum value of β is 25. 26. (13) We have, $a+b+c=1$, $ab+bc+ca=2$ and ab	///. mathongo $pc=3$		
Now, $a^2 + b^2 + c^2 = (a + b + c)^2 - 2\Sigma ab = -3$			
$egin{align} ext{Now, } a^2+b^2+c^2&=(a+b+c)^2-2arSigma ab=-3 \ \Rightarrow (ab+bc+ca)^2&=arSigma (ab)^2+2abcarSigma a \ \Rightarrow arSigma (ab)^2&=-2 \ \end{pmatrix}$			
So, $a^4 + b^4 + c^4 = \left(a^2 + b^2 + c^2\right)^2 - 2\Sigma(ab)^2$			
$50, u^2 + b^2 + c^2 = (u^2 + b^2 + c^2)^2 - 22(ub)^2$ $= 9 - 2(-2)$			
= 9 - 2(-2) /// = 13.hongo /// mathongo /// mathongo			

27. (2) Let
$$e^{2x}=t$$
 // mathongo /// math

$$\Rightarrow t^2 + \frac{1}{t^2} - \left(t + \frac{1}{t}\right) + 3 = 0$$
 /// mathongo /// mathongo /// mathongo /// mathongo ///

$$\Rightarrow \left(t + \frac{1}{t}\right)^2 - \left(t + \frac{1}{t}\right) - 5 = 0$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Putting (t + (1/t)) = a, the equation becomes-

$$a^2-a-5=0$$
 mathong mathon m

So,
$$a=(t+(1/t))=\frac{1+\sqrt{21}}{2}$$
 mathong with mathon with mathon of the mathon of the

$$e^{(2x)} + \left(\frac{1}{e^{(2x)}}\right) = \frac{1+\sqrt{21}}{2}$$
 mathongo /// mathongo

So, two real solutions and this, graph of the function given cuts x-axis 2 times

$$e^{4x}+8e^{3x}+13e^{2x}-8e^x+1=0,\ x\in R$$
Now let $e^x=t$ we get,

$$t^4 + 8t^3 + 13t^2 - 8t + 1 = 0$$

Now divide complete equation by t^2

Mathongo

Mathongo

Mathongo

Mathongo

Mathongo

$$\Rightarrow t^2 + \frac{1}{t^2} + 8\left(t - \frac{1}{t}\right) + 13 = 0$$

$$\Rightarrow \left(t - \frac{1}{t}\right)^2 + 8\left(t - \frac{1}{t}\right) + 15 = 0$$
/// mathongo // mathon

$$\Rightarrow \left(t - rac{1}{t}
ight) + 8\left(t - rac{1}{t}
ight) + 15 = 0$$
Now let $t - rac{1}{t} = z$ we get,

$$\Rightarrow z^2 + 8z + 15 = 0 \ \Rightarrow z = -3, -5$$

$$\Rightarrow$$
 $z=-3,-5$

So, $t-\frac{1}{t}=-3$ or $t-\frac{1}{t}=-5$ when $t=0$ mathon $t=0$ mathon

$$3 + t = \frac{-3 \pm \sqrt{13}}{2}, \frac{-5 \pm \sqrt{29}}{2}$$
 mothons with a mathon of the mathon of t

So,
$$e^x = \frac{-3+\sqrt{13}}{2}$$
, $\frac{-3+\sqrt{29}}{2} = \alpha$, β (rejecting negative values as exponential is positive function)

And both
$$\frac{-3+\sqrt{13}}{2}$$
 and $\frac{-5+\sqrt{29}}{2} \in (0,1)$ mathong $\frac{1}{2}$ mathong \frac

Hence, there are two solution and both are negative. /// mothongo /// mothongo /// mothongo /// mothongo /// mothongo ///

a mystleense //							
9. (9) athongo //							
Given: $x^7 + 3x^5 - 13x^3 - 3x^6 + 3x^4 - 3x^6 + 3x^4 - 3x^6 + 3x^6 - 3x^6 + 3x^6 - $	$-15x = 0$ $13x^2 - 15) = 0$						
So, $x = 0$ is one o Now,	fthamat						
$\left(x^6+3x^4-13x^2 ight.$ Put $x^2=t$, then w	(-15) = 0						
$t^3 + 3t^2 - 13t - 1$							
$\Rightarrow (t-3)ig(t^2+6tig)$							
$\Rightarrow (t-3)(t+1)(t$							
So, $t = 3, t = -1,$	•						
Now we are gettin							
$x^2=3, x^2=-1, x^3$ $\Rightarrow x=\pm\sqrt{3}, \ \pm x^3$							
From the given co	ndition $ lpha_1 {\geq} lpha_2 $	$ \geq .$	$\ldots \ge lpha_7 $				
We can clearly say	that $ lpha_7 =0$ and	1					
and $ \alpha_6 = \sqrt{5} = \alpha $							
and $ \alpha_4 = \sqrt{3} = \alpha $	α_3 and hongo						
$ \alpha_2 {=1}{=} \alpha_1 $							
So we can have,	/ mathongo						
$lpha_1=\sqrt{5}i,\ lpha_2=-$							
$lpha_4 = -\sqrt{3}, \ lpha_5 = 0$	$i,~lpha_6=-i$						
$\alpha_i = 0$							
Hence, $lpha_1lpha_2-lpha_3lpha_4+lpha_5$	mathongo						
$lpha_1lpha_2-lpha_3lpha_4+lpha_5 \ = 5-(-3)+1=9$							
mathongo //							

Troundido 7/4.							
Consider the equation							
It has two roots (not							
Either $\alpha = \beta$ or $\alpha \neq$		77. Historige					
Case (1) If $\alpha = \beta$, th	en it is repeated	d root. Given than	α^2 –	2 is also root			
So, $\alpha=lpha^2-2$							
$\Rightarrow (\alpha+1)(\alpha-2)=$	= 0						
$\Rightarrow (\alpha + 1)(\alpha - 2) = 0$ $\Rightarrow \alpha = -1 \text{ or } \alpha = 2$	mathongo						
When $\alpha = -1$ then (
$\alpha=2$ then $(a,b)=(-1)^{-1}$	-4,4)						
Case (2) If $\alpha \neq \beta$, th	en four possibil	lities are there					
(I) $\alpha = \alpha^2 - 2$ and β	$eta=eta^2-2$						
Here (α, β) = $(2, -1)$	or $(-1, 2)$						
Hence $(a, b) = (-(\alpha - (-1) - (-1)))$	(+ eta), lpha eta)						
(II) $\alpha = \beta^2 - 2$ and	$eta=lpha^2-2$						
Then $\alpha - \beta = \beta^2 - \alpha$	$lpha^2 = (eta - lpha)(eta)$	$(+\alpha)$ mathongo					
Since $\alpha \neq \beta$ we get α							
$\alpha + \beta = (\alpha + \beta)^2 -$	2lphaeta-4						
Thus $-1=1-2lphaeta$							
lphaeta=-1. Therefore							
=(1,-1)							
(III) $\alpha = \alpha^2 - 2 = \beta$ $\Rightarrow \alpha = -\beta$	eta^2-2 and $lpha eq$	β					
$\Rightarrow \alpha = -\beta$							
Thus $lpha=2, eta=-2$							
lpha=-1, eta=1							
Therefore $(a, b) = (0,$							
(IV) $\beta = \alpha^2 - 2 = \beta$	eta^2-2 and $lpha eq$	β is same as (III)					
Therefore we get 6 pa	airs of (a, b)						
Which are $(2, 1), (-4)$	(4,4),(-1,-2),(1, -1), (0, -4), (0, -4)	-1)				