

JARINGAN SARAF TIRUAN

ADALINE (Adaptive Linear Neuron)

Pendahuluan

- Model ADALINE (Adaptive Linear Neuron) ditemukan oleh Widrow & Hoff (1960).
- Arsitekturnya mirip dengan perceptron. Beberapa masukan (dan sebuah bias) dihubungkan langsung dengan sebuah neuron keluaran. Perbedaan dengan perceptron adalah dalam hal cara modifikasi bobotnya.
- Bobot dimodifikasi dengan aturan delta (sering juga disebut least mean square).

• Selama pelatihan, fungsi aktivasi yang dipakai adalah fungsi identitas

$$net = \sum_{i} x_{i} w_{i} + b$$

$$y = f (net) = net = \sum_{i} x_{i} w_{i} + b$$

• Error adalah Kuadrat selisih antara target (t) dan keluaran jaringan (f (net)), bobot dimodifikasi sedemikian hingga errornya minimum.

$$E = t - f(net)^{2} = \left(t - \left(\sum_{i} x_{i} w_{i} + b\right)\right)^{2}$$

• Perubahan bobot adalah : $\Delta w_i = \alpha(t-y)x_i$ dengan α merupakan bilangan positip kecil (umumnya diambil = 0,1)

Algoritma pelatihan ADALINE adalah sebagai berikut:

Inisialisasi semua bobot dan bias (umumnya w_i = b = 0)

Tentukan laju pemahaman (= α). Untuk penyederhanaan, biasanya α diberi nilai kecil (= 0.1)

Tentukan toleransi kesalahan yang diijinkan

- 2. Selama $\max_{i} \Delta w_{i} >$ batas toleransi, lakukan :
 - a. Set aktivasi unit masukan $x_i = s_i$ (i = 1, ..., n)
 - b. Hitung respon unit keluaran : net = $\sum_{i} x_i w_i + b$

$$y = f (net) = net$$

c. Perbaiki bobot pola yang mengandung kesalahan (y ≠ t) menurut persamaan :

$$w_i$$
 (baru) = w_i (lama) + α (t - y) x_i

$$b (baru) = b (lama) + \alpha (t - y)$$

- Setelah proses pelatihan selesai, ADALINE dapat dipakai untuk pengenalan pola.
- Untuk itu, umumnya dipakai fungsi threshold bipolar (meskipun tidak menutup kemungkinan digunakan bentuk lainnya). Caranya adalah sebagai berikut:
 - Inisialisasi semua bobot dan bias dengan bobot dan bias hasil pelatihan
 - 2. Untuk setiap input masukan bipolar x, lakukan :
 - a. Set aktivasi unit masukan $x_i = s_i$ (i = 1, ..., n)
 - b. Hitung net vektor keluaran :

$$net = \sum_{i} x_i w_i + b$$

c. Kenakan fungsi aktivasi:

$$y = \begin{cases} 1 & \text{jika net } \ge 0 \\ -1 & \text{jika net } < 0 \end{cases}$$

Contoh:

Gunakan model ADALINE untuk mengenali pola fungsi logika "dan" dengan masukan dan target bipolar :

Ması	ukan	Target
x ₁	X 2	t
1	1	1
1	-1	-1
-1	1	-1
-1	-1	-1

Gunakan batas toleransi = 0.05 dan $\alpha = 0.1$

Penyelesaian

Dengan α = 0.1, maka perubahan bobotnya $\Delta w_i = \alpha(t - f(nett))x_i = 0.1(t - y)x_i$. Iterasi untuk epoch-1 tampak pada table:

Masukan		y =			Perubahan	Bobot Baru			
$(x_1 \ x_2 \ 1)$	t	net	f (net)	t-y	$(\Delta w_1 \Delta w_2$	Δb)	(w	v_1 w_2	b)
			Inisia	lisasi			(0	0	0)
(1 1 1)	1	0	0	1	(0.1 0.1	0.1)	(0.1	0.1	0.1)
(1 -1 1)	-1	0.1	0.1	-1.1	(-0.11 0.11	-0.11)	(-0.01	0.21	-0.01)
(-1 1 1)	-1	0.21	0.21	-1.21	(0.12 -0.12	-0.12)	(0.11	0.09	-0.13)
(-1 -1 1)	-1	-0.33	-0.33	-0.67	(0.07 0.07	-0.07)	(0.18	0.16	-0.2)

Lanjutan....

Maksimum Δw_i = 0.07 > toleransi, maka iterasi dilanjutkan untuk epoch kedua, yang tampak pada table

Masukan			y =		Perub	ahan	Bobot	Во	bot Ba	ıru
$(x_1 \ x_2 \ 1)$	t	net	f (net)	t-y	(Δw)	Δw_2	Δb)	(w	v_1 w_2	b)
			Inisia	lisasi				(0.18	0.16	-0.2)
(1 1 1)	1	0.14	0.14	0.86	(0.09	0.09	0.09)	(0.26	0.24	-0.11)
(1 -1 1)	-1	-0.09	-0.09	-0.91	(-0.09	0.09	-0.09)	(0.17	0.33	-0.2)
(-1 1 1)	-1	-0.04	-0.04	-0.96	(0.1	-0.1	-0.1)	(0.27	0.24	-0.3)
(-1 -1 1)	-1	-0.8	-0.8	-0.2	(0.02	0.02	-0.02)	(0.29	0.26	-0.32)

Maksimum Δw_i = 0.02 < toleransi, maka iterasi dihentikan dan bobot terakhir yang diperoleh (w1 = 0.29, w2 = 0.26 dan b = -0.32) merupakan bobot yang digunakan dalam pengenalan polanya

Lanjutan...

Pengenalan pola fungsi "dan" menggunakan bobot hasil pelatihan. Perhatikan bahwa fungsi aktivasi yang dipakai berbeda dengan fungsi aktivasi pada pelatihan.

Dalam pengenalan pola, fungsi aktivasinya adalah:

	$\int 1$	jika net ≥ 0
y =	-1	jika net < 0

Mass	ukan	net	у		
X ₁	X 2				
1	1	0.23	1		
1	-1	-0.29	-1		
-1	1	-0.35	-1		
-1	-1	-0.87	-1		

Tampak bahwa keluaran jaringan tepat sama dengan targetnya. Disimpulkan bahwa pola dapat dikenali dengan sempurna menggunakan bobot hasil pelatihan

Contoh:

Menggunakan $\alpha = 0.2$,

Masukan		y =			Perubahan Bobot			Bobot Baru		
$(x_1 \ x_2 \ 1)$	t	net	f (net)	t-y	(Δw)	$_{1}\Delta w_{2}$	Δb)	(v	V ₁ W ₂	b)
			Inisia	lisasi				(0	0	0)
(1 1 1)	1	0	0	1	(0.2	0.2	0.2)	(0.2	0.2	0.2)
(1 -1 1)	-1	0.2	0.2	-1.2	(-0.24	0.24	-0.24)	(-0.04	0.44	-0.04)
(-1 1 1)	-1	0.44	0.44	-1.44	(0.29	-0.29	-0.29)	(0.25	0.15	-0.33)
(-1 -1 1)	-1	-0.73	-0.73	-0.27	(0.05	0.05	-0.05)	(0.3	0.21	-0.38)

- Maksimum $\Delta w_i = 0.05$ = toleransi, maka iterasi dihentikan dan bobot terakhir yang diperoleh (w1 = 0.3, w2 = 0.21 dan b = -0.38) merupakan bobot yang digunakan dalam pengenalan polanya. Dengan cara seperti perhitungan tabel 6.4, dapat dicek bahwa bobot yang diperoleh akan mengenali semua pola dengan benar
- Dari contoh tampak bahwa penggunaan α yang lebih besar akan menyebabkan iterasi menjadi lebih cepat. Akan tetapi penggunaan α yang terlalu besar akan menyebabkan iterasi melompat terlalu jauh sehingga melewati bobot optimalnya.

Soal Latihan:

• Gunakan ADALINE untuk mengenali fungsi logika "dan" dengan 3 buah masukan (= 0.5 dan toleransi = 0.1).