1

1.1

The idea is to scan the array from left to right and update the maximum revenue meanwhile. See algorithm below for details.

```
Algorithm 1 Max Revenue-1,1(\boldsymbol{a})
                                                                                   \triangleright \boldsymbol{a} = \{a_1, a_2, a_3, \dots, a_n\}
 1: procedure Max Revenue-1,1(a):
        result \leftarrow 0, sum \leftarrow 0, i \leftarrow 1
                                                               ▷ sum is our current optimal to maintain
        while i < n+1 do
 3:
             sum \leftarrow sum + a_i
 4:
             if sum>result then
 5:
                 result \leftarrow sum
                                                                       ▶ Update the optimal subsequence
 6:
             if sum<0 then
 7:
                 sum \leftarrow 0
                                                       ▷ Discard the bad subsequence we do not want
 8:
             i \leftarrow i + 1
 9:
        return result
10:
```

Since our algorithm only requires us to scan the array once, clearly the time complexity is O(n).

1.2

The idea is still scanning the array from left to right once, but we will use an array s[n] to store the maximum revenue of a subsequence ending at position $i, i \in [n]$.

First we initialize $s_1, s_2, s_3, \ldots, s_L$. Then for each element $a_i, i \in [n]$, we need to update R - L + 1 elements in s[n], which are $s_{i+L}, s_{i+L+1}, \ldots, s_{i+R}$. The initialize rule and update rule are given in the algorithm below.

```
Algorithm 2 Max Revenue(L, R, \boldsymbol{a})
```

```
\triangleright \boldsymbol{a} = \{a_1, a_2, a_3, \dots, a_n\}
 1: procedure MAX REVENUE(L, R, \boldsymbol{a}):
          result \leftarrow 0, i \leftarrow 1 \ s_i \leftarrow 0, \forall i \in [n]
                                                                                                      \triangleright s is described above
          while i < L + 1 do
 3:
               if a_i > 0 then
 4:
                                                                              \triangleright Initialization for the first L elements
                    s_i \leftarrow a_i
 5:
               if a_i > \text{result then}
 6:
                    result\leftarrow a_i
                                                                                                          ▶ Update the result
 7:
 8:
               i \leftarrow i + 1
          i \leftarrow 1
 9:
10:
          while i + L < n + 1 do
               step \leftarrow L
11:
               while i+step< n+1 do
12:
                    if s_i + a[i + \text{step}] > s[i + \text{step}] then
13:
                         s[i+step] = s_i + a[i+step]
14:
                                                                                        \triangleright update the optimal result at i
                    if s[i+step] > result then
15:
                         result \leftarrow s[i+\text{step}]
16:
                    step \leftarrow step + 1
17:
18:
               i \leftarrow i + 1
          return result
19:
```

We need to do R - L + 1 updates at each round and there are n rounds in total, so the time complexity is O((R - L + 1)n). So with the difference between L and R approaching n, our algorithm actually becomes $O(n^2)$.

1.3

We still need to scan the array from left to right once, but instead of updating R - L + 1 elements at each iteration, we use a better strategy.

For each a_i , we look for the largest s_j , $i-R \le j \le i-L$ and use this largerst result to update s_i . Then by our algorithm in class, we can find all the largest s_j for our current a_i with only O(n) time. A detailed algorithm is given below.

```
Algorithm 3 Max Revenue(L, R, \boldsymbol{a})
```

```
\triangleright \boldsymbol{a} = \{a_1, a_2, a_3, \dots, a_n\}
 1: procedure MAX REVENUE(L, R, a):
          \text{result} \leftarrow 0, \ i \leftarrow 1 \ s_i \leftarrow 0, \forall i \in [n]
 3:
          while i < L + 1 do
               if a_i > 0 then
 4:
                                                                         ▶ Initialization is the same as algorithm 2
                    s_i \leftarrow a_i
 5:
               if a_i > \text{result then}
 6:
                                                                                                          ▶ Update the result
                    result\leftarrow a_i
 7:
               i \leftarrow i + 1
 8:
          i \leftarrow L + 1
 9:
          while i < n + 1 do
10:
               \max \leftarrow \text{k-Largest}(\boldsymbol{s}, i - R, i - L)
                                                                   \triangleright Algorithm in class to find max in O(1) time
11:
12:
               if \max + a_i > s_i then
13:
                    s_i \leftarrow \max + a_i
               if s_i > \text{result then}
14:
15:
                    result\leftarrow s_i
               i \leftarrow i+1
16:
17:
          return result
```

The reason why this algorithm is faster is that by using the k-Largest algorithm, we do not have to update R-L+1 times each round. We only need to look up the largest result before a certain element and the look up process is O(1) for each element. As a result, the total running time of our algorithm can be reduced to O(n).

2 Optimal Indexing for A Dictionary

Description of state transition equation:

In the algorithm below, we use $f(i, j), 1 \le i \le j \le n$ to denote the minimum of total number of comparisons of the best binary search tree consisting of $a_i, a_{i+1}, \ldots, a_j$.

We then use dynamic programming to calculate all the f(i, j) and our optimal result is f(1, n) after we finish the calculations.

Note that we define f(i, j) = 0 if i > j.

The algorithm can be described by the folloing state transition equation:

$$f(i,j) = \min_{i \le r \le j} \left\{ f(i,r-1) + f(r+1,j) + \sum_{k=i}^{j} w_k \right\} \quad 1 \le i \le j \le n$$

How we construct the optimal BST:

This equation only gives the criteria by which we pick the optimal BST each step, below is a detailed description of how the BST is constructed, for the completeness of our algorithm. We can always let T_{ij} be a sub-BST generated upon the process we calculate f(i, j).

For starters, T_{ii} , $i \in [n]$ denote a sub-BST with only one vertex a_i as the root. Then as we calculate the state transition equation, by finding the minimum

$$\min_{i \le r \le j} \left\{ f(i, r - 1) + f(r + 1, j) + \sum_{k=i}^{j} w_k \right\}$$

What we are actually doing is to find a new root a_r to serve as the father of sub-BST $T_{i,r-1}$ and $T_{r+1,j}$. By the time we calculate f(i,j) and construct T_{ij} , no matter which a_r we choose as the root, the left sub-BST $T_{i,r-1}$ and right sub-BST $T_{r+1,j}$ must have already been constructed. Also, their optimal value must already have been stored in f(i,r-1) and f(r+1,j). Although in some cases the sub-BST might be empty, these cases do not affect our process of construction.

To sum up, as our DP algorithm finished, an optimal binary search tree T_{1n} is generated by our description above and its minimal number of comparisons is given by f(1,n) meanwhile.