[ICCV 2019] ViSiL: Fine-grained Spatio-Temporal Video Similarity Learning

발표자: 이현주

Instagram

Youtube

TikTok

the problem of similarity estimation between pairs of videos

Overview

previous video retrieval approaches

: embed the whole frame or the whole video into a vector descriptor before the similarity estimation

→ lost fine-grained Spatio-Temporal relations between pairs of videos

Overview

Our ViSiL approach

: train CNN-based approach to calculate video-to-video similarity from refined frame-to-frame similarity matrices

→ consider both intra- and inter-frame relations

irrelevant videos

Figure 1. Depiction of the frame-to-frame similarity matrix and the CNN output of the ViSiL approach for two video pair examples: relevant videos that contain footage from the same incident (top), unrelated videos with spurious visual similarities (bottom).

Overview

Figure 2. Overview of the training scheme of the proposed architecture. A triplet of an anchor, positive and negative videos is provided to a CNN to extract regional features that are PCA whitened and weighted based on an attention mechanism. Then the Tensor Dot product is calculated for the anchor-positive and anchor-negative pairs followed by Chamfer Similarity to generate frame-to-frame similarity matrices. The output matrices are passed to a CNN to capture temporal relations between videos and calculate video-to-video similarity by applying Chamfer Similarity on the output. The network is trained with the triplet loss function. The double arrows indicate shared weights.

Preliminaries

Tensor Dot (TD)

$$\mathcal{A} \in \mathbb{R}^{N_1 imes N_2 imes K}$$
 $\mathcal{B} \in \mathbb{R}^{K imes M_1 imes M_2}$

$$\mathcal{C} = \mathcal{A} \cdot_{(i,j)} \mathcal{B}$$

$$\mathcal{C} \in \mathbb{R}^{N_1 \times N_2 \times M_1 \times M_2}$$

Chamfer Similarity (CS)

$$CS(x,y) = rac{1}{N} \sum_{i=1}^N \max_{j \in [1,M]} S(i,j)$$

ViSiL description: feature extraction

ViSiL description: frame-to-frame similarity

Figure 3. Illustration of frame-level similarity calculation between two video frames. In this example, the frames are near duplicates.

ViSiL description: video-to-video similarity

Two videos q, p with X and Y frames respectively.

$$\mathcal{S}_f^{qp} = \frac{1}{N^2} \sum_{i=1}^{N^2} \max_{j \in [1, N^2]} \mathcal{Q} \boldsymbol{\cdot}_{(3, 1)} \mathcal{P}^\top(\cdot, i, j, \cdot)$$

Туре	Kernel size / stride	Output size	Activ.
Conv	3×3/1	$X \times Y \times 32$	ReLU
M-Pool	2×2/2	$X/2 \times Y/2 \times 32$	
Conv	3×3/1	$X/2 \times Y/2 \times 64$	ReLU
M-Pool	2×2/2	$X/4 \times Y/4 \times 64$	
Conv	3×3/1	$X/4 \times Y/4 \times 128$	ReLU
Conv	1×1/1	$X/4 \times Y/4 \times 1$	

Table 1. Architecture of the proposed network for video similarity learning. For the calculation of the output size, we assume that two videos with total number of X and Y frames are provided.

$$CS_v(q, p) = \frac{1}{X'} \sum_{i=1}^{X'} \max_{j \in [1, Y']} Htanh(\mathcal{S}_v^{qp}(i, j)) \quad \mathcal{S}_v^{qp} \in \mathbb{R}^{X' \times Y'}$$

ViSiL description: Loss function

Target video similarity score : $CS_v(q, p)$

 (v, v^+, v^-)

Figure 3. The **Triplet Loss** minimizes the distance between an *anchor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

frame-to-frame similarity matrix similarity
$$\rightarrow 0.9$$
 visiL $\rightarrow 0.1$ visiL

irrelevant videos

Figure 1. Depiction of the frame-to-frame similarity matrix and the CNN output of the ViSiL approach for two video pair examples: relevant videos that contain footage from the same incident (top), unrelated videos with spurious visual similarities (bottom).

$$\mathcal{L}_{tr} = \max\{0, \mathbf{CS}_v(v, v^-) - \mathbf{CS}_v(v, v^+) + \gamma\}$$

$$\mathcal{L}_{reg} = \sum_{i=1}^{X'} \sum_{j=1}^{Y'} |\max\{0, \mathcal{S}_v^{qp}(i, j) - 1\}| + |\min\{0, \mathcal{S}_v^{qp}(i, j) + 1\}|$$

$$\mathcal{L} = \mathcal{L}_{tr} + r * \mathcal{L}_{reg}$$

Evaluation

The proposed approach is evaluated on four retrieval tasks, reporting mean Average Precision (mAP)

- NDVR (Near-Duplicate Video Retrieval)
- FIVR (Fine-grained Incident Video Retrieval)
- EVR (Event Video Retrieval)
- AVR (Action Video Retrieval)

Evaluation: Datasets

VCDB: used as training datasets, in order to make triplets.

CC_WEB_VIDEO: NDVR

FIVR-5K: FIVR

EVVE: EVR

ActivityNet: AVR

Experiments: frame-to-frame similarity

Features	Dims.	DSVR	CSVR	ISVR
MAC [33]	2048	0.747	0.730	0.684
SPoC [1]	2048	0.735	0.722	0.669
R-MAC [33]	2048	0.777	0.764	0.707
GeM [12]	2048	0.776	0.768	0.711
iMAC [20]	3840	0.755	0.749	0.689
L ₂ -iMAC	4x3840	0.814	0.810	0.738
L ₂ -iMAC	4x512	0.804	0.802	0.727
L ₃ -iMAC	9x3840	0.838	0.832	0.739
L ₃ -iMAC	9x256	0.823	0.818	0.738

Table 2. mAP comparison of proposed feature extraction and similarity calculation against state-of-the-art feature descriptors with dot product for similarity calculation on FIVR-5K. Video similarity is computed based on CS on the derived similarity matrix.

Experiments: Ablation study

Task	DSVR	CSVR	ISVR
$ViSiL_f$	0.838	0.832	0.739
$ViSiL_f+W$	0.844	0.837	0.750
$ViSiL_f+W+A$	0.856	0.848	0.768
$ extstyle{ViSiL}_{sym}$	0.830	0.823	0.731
$ViSiL_v$	0.880	0.869	0.777

Table 3. Ablation studies on FIVR-5K. W and A stand for whitening and attention mechanism respectively.

\mathcal{L}_{reg}	DSVR	CSVR	ISVR
Х	0.859	0.842	0.756
✓	0.880	0.869	0.777

Table 4. Impact of similarity regularization on the performance of the proposed method on FIVR-5K.

Experiments: comparison with state-of-the-art

Method	cc_web	cc_web*	cc_web_c	$cc_{ ext{-}}web^*_c$
DML [21]	0.971	0.941	0.979	0.959
CTE [28]	0.996			_
DP [7]	0.975	0.958	0.990	0.982
TN [32]	0.978	0.965	0.991	0.987
$ViSiL_f$	0.984	0.969	0.993	0.987
ViSiL _{sym}	0.982	0.969	0.991	0.988
$ViSiL_v$	0.985	0.971	0.996	0.993

Table 5. mAP of three ViSiL setups and SoA methods on four different versions of CC_WEB_VIDEO. (*) denotes evaluation on the entire dataset, and subscript c that the cleaned version of the annotations was used.

Run	DSVR	CSVR	ISVR
LBoW [20]	0.710	0.675	0.572
DP [7]	0.775	0.740	0.632
TN [32]	0.724	0.699	0.589
$ViSiL_f$	0.843	0.797	0.660
ViSiL _{sym}	0.833	0.792	0.654
$ViSiL_v$	0.892	0.841	0.702

Table 6. mAP comparison of three ViSiL setups and state-of-theart methods on the three tasks of FIVR-200K.

Experiments: comparison with state-of-the-art

Method	mAP		per event class											
LAMV[2]	0.536	0.715	0.383	0.158	0.461	0.387	0.277	0.247	0.138	0.222	0.273	0.273	0.908	0.691
LAMV+QE [2]	0.587	0.837	0.500	0.126	0.588	0.455	0.343	0.267	0.142	0.230	0.293	0.216	0.950	0.776
$ViSiL_f$	0.589	0.889	0.570	0.169	0.432	0.345	0.393	0.297	0.181	0.479	0.564	0.369	0.885	0.799
ViSiL _{sym}	0.610	0.864	0.704	0.357	0.440	0.363	0.295	0.370	0.214	0.577	0.389	0.266	0.943	0.702
$ViSiL_v$	0.631	0.918	0.724	0.227	0.446	0.390	0.405	0.308	0.223	0.604	0.578	0.399	0.916	0.855

Table 7. mAP comparison of three ViSiL setups with the LAMV [2] on EVVE. The ordering of events is the same as in [28]. Our results are reported on a subset of the videos (\approx 80% of the original dataset) due to unavailability of the full original dataset.

mAP	M-4L-1	A D
0.705	Method	mAP
	ViSiL f	0.652
0.209		0.745
0.621		377.12
0.648	ViSiL _v	0.710
	0.705 0.209	0.705 0.209 0.621

Table 8. mAP comparison of three ViSiL setups and four publicly available retrieval methods on ActivityNet based on the reorganization from [10].

Conclusion

ViSiL: a network that learns to compute similarity between pairs of videos

Key contributions

- a) a frame-to-frame similarity computation scheme that captures similarities at regional level
- b) a supervised video-to-video similarity computation scheme that analyzes the frame-to-frame similarity matrix to robustly establish high similarities between video segments of the compared videos.

video similarity computation method that is accounting for both the fine-grained spatial and temporal aspects of video similarity

감사합니다 👍