

# Preliminary concepts

#### Sets

Sets are well-defined collections of objects. Such Objects are called **elements if members** of the set. Vectors are sets of points, and matrices are sets of vectors.

## Belonging and inclusion

Belonging:

$$a \in A$$

A is a subset of B, or B includes A:

$$A \subset B$$

Two sets are equal if and only if they have the same elements.

### Set specification

D: the set of all dogs

d: dog

The set of all black dogs:

$$B=\{d\in D: d\ is\ black\}$$

or

$$B = \{d \in D | d \ is \ black\}$$

The colon alpha: or vertical bar alpha| read as "such that".

### Ordered pairs

**An unordered pair** is a set whose elements are x,y, and x,y=y,x. Therefore, presentation order does not matter, the set is the same.

In machine learning, we usually **do** care about the presentation order. So we need to define an ordered pair.

An **ordered pair** is denoted as (x,y), with x as the *the first coordinate* and y as the second coordinate. (x,y) 
eq (y,x).

### Relations

We can derive the idea of **relations** among sets or between elements and sets. In set theory, **relations** are defined as sets of ordered pairs, and denoted as R. We can express the relation between x and y as:

Further, for any  $z\in R$ , we can obtain the notions of **domain** and **range**. The domian is a set defined as:

$$domR = \{x : for some y (x R y)\}$$

This reads as: the values of x such that for at leat one element of  $y,\,x$  has a relation with y. The **range** is a set defined as:

$$ranR = \{y : for some x (x R y)\}$$

This reads as: the set formed by the values of y such that at least one element of x, x has a relation with y.

### **Fuctions**

A **function** from X to Y is a relation such that:

$$dom f = X$$
 such that for each  $x \in X$  there is a unique element of  $y \in Y$  with  $(x,y) \in f$ 

We can say that a function "transform" or "map" or "sent" x onto y, and for each "argument" x there is a unique value y that f "assumes" or "takes".

We typically denote a relation a relation or function or transformation or mapping from X onto Y as:

or

$$f(x) = y$$

Each value  $f\left(x
ight)$  maps uniquely onto one value of y.

For f:X o Y, the domain of f equals to X, but the range does not necessarily equals to Y. The range includes only the elements for which Y has a relation with X.

#### The ultimate goal of machien learning is learning functions from data.

The domain X is usually a vector (or set) of  $extit{variables}$  or  $extit{features}$  mapping onto a vector of  $extit{target values}.$