

$$xy = (2^{n/2} n_{L} + n_{A})(2^{n/2} j_{L} + j_{A})$$

$$= 2^{n} n_{L} + 2(n_{L} y_{A} + n_{A} y_{L}) + n_{A} y_{A}$$

$$T(n) = 4T(\frac{n}{2}) + \Theta(n) \Rightarrow T(n) = \Theta(n^2).$$

with Gauss trick:

$$T(n) = 3T(\frac{n}{2}) + \Theta(n) \Rightarrow T(n) = \Theta(n^{1.59})$$
.

everis.com

Titulació Mex	ge-Si	de Barcelona E.T.S. d'Enginyers de Camins, Canals i Ports de Barcelona Facultat d'Informàtica de Barcelona												
Cognoms	· Pagarita	Pàgina de												
Merge	- Sor													
*Alg.	Vec to	de n eleve	uta V[0,,n-1]											
Out put:	Vaul	o els elevreuls	ordenats crézenti											
uerges	ort (vla,	, n-i])												
else	merge	(mergesor 1/10,, 7/2], mergesort (V[2+1,-,n-])											
rel	V;													
* Cost:	T(n) =	$2 + \left(\frac{n}{2}\right) + \Theta(n)$	=> T(n) = 0 (n logn)											
* Execu	ple:	10 2 5 3 7 13 1 6												
		10 2 5 3 1 13 1 6												
	10	2 5 3												
		2 10 3 5												
		23510												
		1 2 3 5 6 7 10 13												

lower bound for sorting Lu nlogn based in comparisons can be dépicted as Sorting algorithms Pollowing the picture souls au a, a2 a3 three ankaz a, < a3? a,caz? 01,02,03 02,01,03 01 < 03? a3, a2, a1 2, a9, a1 the largest path from toot this case 3, is exactly the complexity of the algorithm The depth of parisons on to leaf, on t This way to looking at sorting algorithm is weful because it allows one to argue the werge sort is optimal, in the sense to Miniogn) comparisons are necessary to Here is the argument: Consider s Fach of ?Ls leaves corresponds to Tu fact each personal ion must the label of a leaf for the alg p a permulat appear there are ny permula hi leaves least Recall now that a binary tree of depth of hast at wort 29 leaves (Foot by induction) so the depth of the tree must be at least log(n).) = Rhogn). 7/2 Z log(?) log(n!) = Z (og(°) + 2 log(8) e = 1/2 2 109(2) = Il (nlogn)

	_	F	P		N	A	C	_(_	1								1	•		de Barcelona E.T.S. d'Enginyers de Camins, Canals i Ports de Barcelona											
itulació																					L		i Po	rts c	de E	Barc	elor	ıa				
ssignatura																					Facultat d'Informàtica de Barcelona Pàgina de											
cognoms							-		7					No	m								Pàgi	na .	4		_ d	e		_		
DNI			7																							7					_	
-	-1	B	0	N	A	-	(1			90			-		-			1	e	2	10	_	1	-		T	: L	2021	110	1
7															-			1								-		(of all	7	9	0
			7.6												1				1.					2	7	SU	_		11-	10	- 12	2
														6			-			+	-			7					-	+	-	
					1														1			2										
*	5	9	-		0	1	1,	-	1,	2	-1	3	1	1) ,		3,	1:	5/	2	1,	2	4	,	-	-						
					-	-	-		-							-	+	+	+	+	-	-	1	-						+	-	
					1													1														
						٥)					n		0															\pm			
*	Ŧ	-	=		4	/	1	-				n			1	-		+	+	+	-						-	+	+	+	-	
															_					1								1	1			
						F	n-	1	+	F	'n	-	2		n	>	1	+														
						-												+		+	-						+	-	+	+		
																											-					
*	d	re	2	<u></u>		92	as	Si		1	2	1	-	-a	P	id			CC	, · ·	_		le	S		P	>+	- 0	u	<u> </u>	e	_
	I	+	-	>	1			:1:	4							+	+	+		+	+						-	+	+	+	-	-
		30								0		. 1			0		(1	1			0		(
	1	100			+					d	8)	s		d	e	-11	0	-9	a	or a	a	0									
	I	:	3		2	0.6	94	n										+	+	+	-				1		-		+	-		
		7					F												-	-												
																				ļ					,				\pm			
*	I	u	P	le	u	•	0	1	1	a	ن	ó		-	-4	-]) i	5	C	1	2	-	d	0		a		e	c	المر	cè	
																				0		PC			1	-	0			()		
													_		>	*	7	2	01	-5	5	+		e	15		d	os	. 2	>17	- : ,	4
		-				-										+	0	0.5	46	+	1	ic	ie	0	1				+	-	-	-
																,		,		1						,						
	+++	+		-	+	-	+	-					_	-	-	-	F ₂	1	=	-	0	1	1		F	1			-	+	+	-

→ OBS: We have been too consider a basic step a stugle computer step ?f small nom as berg are being added, 32 bit numbers say. 0,694 h bits long, and 1
32 as n grows · "s about and this can Arithmetic operations on arbitrarily large numbers cannot possibly be performed in a single, constant time step

an NTT DATA Company Selecció en temps lineal (Floyd-Rivest) INPUT: Sequencia Sde u elements 06811 OUTPUT: le ésin element + petit de 5 &= n-1 - maxim _ wediana Algorisme: -> directe. 51 ~ 150 1) Dividir 5 en subconjunts de 5 elts. 51 NO 2) Calcular la mediana de cada subc. 3) Calcular m = mediana de "neclianas" (recursivament) 4) Separar S en Sn: x65 | x < m
51: x65 | x = m
53: x65 | x > m
53: x65 | x > m
53: 517 & Buscar & rec. en S1. 5; 15-11+152 >, k - mediana un

calcular k-151/-152/ en 53
Buscar
recursiv.

everis.com

≈ 1/4 elts sóu < m

$$T(n) \left\langle \begin{array}{c} T(n) \\ T(\frac{n}{n}) + T(\frac{3}{4}n) + \Theta(n) \\ T(\frac{n}{n}) \end{array} \right\rangle$$

claim:

Proof.

H.T. Cert per 1, ..., n-1.

$$T(n) \langle T(\frac{n}{5}) + T(\frac{3}{4}n) + Cn \rangle \langle \frac{20cn}{5} + \frac{3.20.c.n}{4} + \frac{100cn}{4} \rangle$$

$$= 4.c.n + 15.c.n + c.n$$

$$= 20 c.n. +$$