Mini Project: 计算机生成和播放音乐

1. Objective

音乐文件有很多格式,但是其主要的数据(Data)部分,保存的都是一个 M * N 的矩阵(其中, N 为 通道数)。因此,对于一个乐谱,我们可以用计算机程序生成这样一个矩阵,并用计算机播放出来。本项目 的目标就是:

- 1. 理解音乐的基本要素,比如音调、节拍、音色、基频、和弦等,
- 2. 理解这些音乐要素如何反映在我们的数据中,
- 3. 通过 MATLAB 程序,将一张简谱转化成一段可以播放成音乐的数据,
- 4. 根据数据,产生可播放的音乐,
- 5. 根据数据,产生模仿某种乐器的音乐

2. 数字简谱

数字简谱是简易的记谱法,用基本音符 1、2、3、4、5、6、7 代表音阶中的 7 个基本级,读音为 do、re、mi、fa、sol、la、ti(中国为 si),英文由 C、D、E、F、G、A、B表示,休止以 0表示。图 1 为《天空之城》数字简谱。简谱中主要包含了数字音符和一些其他符号,比如点和横线,这些数字配合上符号决定了每个音的频率和持续时间长度,我们需要通过编码将其输入到程序中,并用来控制音乐的播放。

图 1.《天空之城》 数字简谱

2.1 音调

简谱中1、2、3、4、5、6、7(C、D、E、F、G、A、B)表示七种高低不同的音,我们称之为音调。 之所以会呈现不同音调,是因为他们分别对应不同频率的音波。表 1 为 C 调音符与频率对应表。

	1 (C)	2(D)	3(E)	4(F)	5(G)	6(A)	7(B)
低音	262	294	330	349	392	440	494
中音	523	587	659	698	784	880	988
高音	1046	1175	1318	1397	1568	1760	1976
相邻音符							
频率比	1.12	1.12	1.057	1.12	1.12	1.12	1.058
n+1/n							

表 1. C 调中音符与频率(取整后)对应表,单位为 Hz

从表 1 可以看出,低音频率为同一音符中音频率的一半,同样的,中音频率为同一音符高音频率的一 半。也就是说,对应的中音音符和低音音符之间,频率减半,而音程相差一个八度。记在简谱基本音符号 下面的小圆点,叫低音点,它表示将基本音符降低一个音组,即降低一个纯八度。记两个圆点表示将基本 音符号降低两个音组,即降低两个纯八度。记在简谱基本音符号上面的小圆点,叫高音点,它表示将基本 音符号升高一个音组,即升高一个纯八度。记两个圆点,表示升高两个音组,即升高两个纯八度。

同时,稍加计算,也可以发现,相邻音符之间的频率比, 2:1, 3:2, 5:4, 6:5, 7:6 的频率比值均为 1.12(2¹) 左右,而,4:3,1i:7则为 $1.057(2\frac{1}{12})$ 左右。由于相邻之间音符的频率比值不完全相等,要通过一个音符(比如 1) 来计算其他音符的频率有点困难,不过,进一步分析, $\frac{1i}{1} = \frac{1i}{7} \times \frac{7}{6} \times \frac{6}{5} \times \frac{5}{4} \times \frac{4}{3} \times \frac{3}{2} \times \frac{2}{1} = 2^{\frac{12}{12}} = 2$,这也符 合上面介绍的中音频率与低音频率之间的比值规律。因此,可以将一组音划分成十二等分,使得相邻音符 的频率比值为相等,即21/12,这样间隔12个音符以后频率翻倍,这种音律叫十二平均律,亦称"十二等程律",

其将世界上通用的一组音(八度)分成十二个半音音程($2^{\frac{1}{12}}$),因此,如果你知道了一组音中一个音符的频 率(比如1),那你就能计算出这一组音中其他音符的频率,在结合间隔八度相差一倍/一半的规律,你能计 算出简谱中其他所有音符的频率。图 2 举例说明了如何用十二平均律来计算一组音中所有音阶的频率。图 2 的例子中,主音设定为440Hz,以此为基准来计算12等份的其他音调。主音在乐理中有特别的含义,但在 这里,我们当前只需要简单的把它理解为一个基准,更具体的我们将在下一部分解释。而对应到基本音级 中,我们可以发现,3-4和7-li之间的间隔是一个半音,而其它相邻两个音之间的间隔都是全音(2个半 音),因此,我们也可以通过其中一个音符的频率来计算出其他音符的频率。

此外,简谱中还有升(降)调的符号#(b)号,升调表示比原音级高1个半音,降调同理,加上升降 调的话,7个音级就扩展到了十二平均律中的十二个音级,以C调为例,如图3所示。

总结一下,本节主要介绍在知道一个音符频率下,如何计算其他音符的频率。在十二平均律下,所有 音符之间的频率比值相等,因此可以通过这个倍数来计算。在 1-7 的七个基本音级中, 3-4、7-1i 的间隔 是半音($2^{\frac{1}{12}}$),而其它相邻两个音的间隔都是全音(2 个半音)($2^{\frac{1}{6}}$),因此我们只需要知道其他音符对应于 已知音符的位置关系,就可以通过这个频率间隔关系来计算。此外,如果相差了若干个八度,则应先计算

同一组七个音符的频率,再按照相差一个八度,频率翻倍或减半来计算。此外,简谱上出现的数字 1 - 7 加上升降调就有了 12 种音符,再加上上下的小圆点,就有了 12 x N(N个八度)种音符。因此在对简谱编码时,就要考虑用一种合适的方式将这 12 x N个音符输入进去。比如,用 3 个变量,分别控制 1 - 7 的基本音级、升降调、相差多少个八度;或者用 1 - 12 表示 1 - 7 的基本音级加上升降调,13 - 24 表示高一个八度,□12 - □1 表示低一个八度。此外还有考虑停顿(0)。对应不同的编码方式需要用不同的方式将简谱输入。每个人可以采用自己喜欢的方式进行编码。但是,在接下来的练习中,请务必在每个函数中提供注释介绍你的编码方式。

ヘ 十二平均律表

.

将主音设为a1(440Hz),来计算所有音的频率,结果如下 (为计算过程更清晰,分数不进行约分):

音程名称	间隔半音数	十二平均律的倍数	频率			
纯一度 (A ¹)	0	$2^0=1$	$440\times 1=440$			
增一度/ 小二度 (A# ¹ /Bb ¹)	1	$\sqrt[12]{2} = 2^{\frac{1}{12}} \approx 1.0594630943592952645618252949463$	$440 \times 2^{\frac{1}{12}} \approx 466.1637615180899164072031297762$			
大二度 (B ¹)	2	$\sqrt[6]{2} = 2^{\frac{2}{12}} \approx 1.1224620483093729814335330496792$	$440 \times 2^{\frac{2}{12}} \approx 493.8833012561241118307545418586$			
小三度 (C)	3	$\sqrt[4]{2} = 2^{\frac{3}{12}} \approx 1.1892071150027210667174999705605$	$440 \times 2^{\frac{3}{12}} \approx 523.2511306011972693556999870466$			
大三度 (C#)	4	$\sqrt[3]{2} = 2^{\frac{4}{12}} \approx 1.2599210498948731647672106072782$	$440 \times 2^{\frac{4}{12}} \approx 554.3652619537441924975726672023$			
纯四度 (D)	5	$\sqrt[12]{32} = 2^{\frac{5}{12}} \approx 1.3348398541700343648308318811845$	$440 \times 2^{\frac{5}{12}} \approx 587.3295358348151205255660277209$			
增四度/ 减五度 (D#/Eb)	6	$\sqrt{2} = 2^{\frac{6}{12}} \approx 1.4142135623730950488016887242097$	$440 \times 2^{\frac{6}{12}} \approx 622.2539674441618214727430386522$			
纯五度 (E)	7	$\sqrt[12]{128} = 2^{\frac{7}{12}} \approx 1.4983070768766814987992807320298$	$440 \times 2^{\frac{7}{12}} \approx 659.2551138257398594716835220930$			
小六度 (F)	8	$\sqrt[3]{4} = 2^{\frac{8}{12}} \approx 1.5874010519681994747517056392723$	$440 \times 2^{\frac{8}{12}} \approx 698.4564628660077688907504812795$			
大六度 (F#)	9	$\sqrt[4]{8} = 2^{\frac{9}{12}} \approx 1.6817928305074290860622509524664$	$440 \times 2^{\frac{9}{12}} \approx 739.9888454232687978673904190852$			
小七度 (G)	10	$\sqrt[6]{32} = 2^{\frac{10}{12}} \approx 1.781797436280678609480452411181$	$440 \times 2^{\frac{10}{12}} \approx 783.9908719634985881713990609195$			
大七度 (G#)	11	$\sqrt[12]{2048} = 2^{\frac{11}{12}} \approx 1.8877486253633869932838263133351$	$440 \times 2^{\frac{11}{12}} \approx 830.6093951598902770448835778670$			
纯八度 (A)	12	$2^1=2$	$440 \times 2 = 880$			

其中 $\sqrt[12]{2} = 2^{\frac{1}{12}} \approx 1.0594630943593$

$$pprox rac{18}{17} = 1.05882 \ 99 \ {
m e}{
m f}{
m f}$$
 $pprox rac{107}{101} = 1.05941 \ 99.9 \ {
m e}{
m f}{
m f}{
m f}$ $pprox rac{11011}{10393} = 1.05946310 \ 100 \ {
m e}{
m f}{
m$

图 2. 十二平均律表

C调音符与频率对照表

音符 频率/Hz		音符 频	率/Hz	音符 频率/Hz		
低音1	262	中音1	523	高音1	1046	
低音1#	277	中音1#	554	高音1#	1109	
低音2	294	中音2	587	高音2	1175	
低音2#	311	中音2#	622	高音2#	1245	
低音3	330	中音3	659	高音3	1318	
低音4	349	中音4	698	高音4	1397	
低音4#	370	中音4#	740	高音4#	1480	
低音5	392	中音5	784	高音5	1568	
低音5#	415	中音5#	831	高音5#	1661	
低音6	440	中音6	880	高音6	1760	
低音6#	466	中音6#	932	高音6#	1865	
低音7	494	中音7	988	高音7	1976	

图 3. C调音符与频率对应表

MATLAB 练习 1: 编写函数

function freq = tone2freq(tone, noctave, rising)

% tone: 输入数字音符, 数值范围1到7

% noctave: 高或低八度的数量,数值范围整数。0表示中音,正数表示高noctave个八度,负数为低noctave个八度

% rising: 升或降调。1为升,-1为降,0无升降调

% freg为输出的频率

以 1=440 Hz 为主音,编写函数,要求能够输出 1-7 音符,高若干八度,低若干八度,以及升降调的频率。

2.2 调号

2.1 中,我们介绍了在已知 1 个音符的频率的前提下计算其他音符的频率。因此,我们需要前提知道这个音符的频率。在简谱的开头,我们会看到 1=C 或 1=D 这样的记号,这表示该简谱是以 C 调或 D 调来记谱的,同时也规定了该简谱中 1 的频率(主音)。C 调或 D 调就是我们一般所谓的调号,不同调号之间 1 的频率(主音)有一定的对应关系,这个关系我们通过表 2 来介绍。表 2 中,第一行我们给出了 C 大调下音符 1-7 的频率,第二行是这七个音符的数字符号和英文符号,剩下的行给出了 C-B 调中的主音频率。你会发现,C 调(1=C)中 1 的频率就是 C 调中 1 (C) 的频率(近乎于废话),D 调(1=D)中 1 的频率就是 C 调中 2(D) 的频率,E 调(1=E)中 1 的频率就是 C 调中 3(E)的频率,以此类推,也就是说,只要知道了 C 调的频率,同一组其他调的主音 1 的频率就可以按照这个音符对应 C 调中 1 的位置关系来计算,这样我们就能确定其他调的主音频率了。

总结,本节主要介绍调号。调号确定了该简谱中1的频率,再结合上2.1中介绍的规律,就能算出整张简谱中所有音符的频率。所以,我们首先需要计算C调中7个音符的频率,然后计算其他调中的主音频率(如果简谱用其他调写的),最后再计算剩下的其他音符的频率。

~ \H \F \	261.5	202.5	220.5	2.40	201.5	4.40	40.4
C 调频率	261.5	293.5	329.5	349	391.5	440	494
C 调音符	1(C)	2(D)	3(E)	4(F)	5(G)	6(A)	7(B)
(英文名)	1(0)	2(D)	3(L)	7(1)	3(3)	0(11)	/(D)
C 调	1=C						
C 1/19	(261.5)						
D 调		1=D					
		(293.5)					
E 调			1=E				
上炯			(329.5)				
F 调				1=F			
L Nul				(349)			
G 调					1=G		
					(391.5)		
A 调						1=A	
						(440)	
В调							1=B
							(494)

表 2 不同调号主音频率,单位 Hz

MATLAB 练习 2: 在 2.1 函数的基础上,编写函数

function freq = tone2freq(tone, scale, noctave, rising)

% tone为输入数字音符, scale 为调号, noctave 为高低八度数量, rising为升降调, freq为输出的频率, 编写函数, 要求能够计算出一张简谱中任何一个音符的频率。

2.3 音符长短

简谱中, 音的长短是在基本音符的基础上加短横线和/或附点表示的。

1)短横线的用法有两种:写在基本音符右边的短横线叫增时线。增时线越多,音的时值就越长。不带增时线的基本音符叫四分音符,每增加一条增时线,表示延长一个四分音符的时间。

写在基本音符下面的短横线叫减时线。减时线越多,音就越短,每增加一条减时线,就表示缩短为原音符音长的一半。

2)写在音符右边的小圆点叫做附点,表示延长前面音符时值的一半。附点往往用于四分音符和少于四分音符的各种音符。带附点的音符叫附点音符。

在这里,我们也需要考虑编码的问题,如何将每个音符对应的持续时间输入,我们可以以 1s 的单个音符持续时长作为基准,加上一条增时线则时间变为 2,加上一条减时线则时间变为 0.5,小圆点同理。

3. 生成不同频率波形

在 MATLAB 中, 生成特定频率的波形一般用三角函数。

例 1:

fs = 8192; f = 1; T = 1/f;

t = linspace(0, T, fs);

Minor revisions are made with Prof. Yu Yajun's Course Materials. Her contributions are greatly acknowledged.

 $y = \sin(2*pi*f*t)$

以上代码生成了一个频率为 1Hz 的正弦波。

使用 sound 函数播放(用 help 命令了解 sound 函数用法),在例 1 后面添加以下代码: sound(y, fs);

你会发现,什么都听不到,因为,人类的听力频率范围是 20-20k Hz. 上面产生的正弦波频率太低了。将例 1 代码改成:

例 2:

fs = 8192; f = 440; T = 1/f;

t = linspace(0, 1, fs);

 $y = \sin(2*pi*f*t);$

plot(t,y);

sound(y, fs);

你会听到一个持续 1 秒的'du'的声音。波形如下图所示(右图为放大后):

如果需要调整持续时长,则要增加 t 的长度,将例 2 第二行改为: rhythm = 5;

t = linspace(0, rhythm, fs * rhythm);

使用 sound 函数播放,你会听到一个持续 5 秒的'du'的声音。2.3 节中介绍的符号决定了音乐中某个音符持续的时长,对应在上面代码中的 **rhythm.**以 4/4 拍(以四分音符为一拍,每小节四拍)为例,每个音符持续

时间设为 1/4 秒(可以自己定义),则延半拍(音符右边带小圆点)共持续 1/4+1/8 秒,一条减时线持续 1/8 秒,以此类推。

将数字简谱中的每个音符都转换成1-7表示的音级(频率),再结合每个音符持续的时长,在使用上面介绍到的代码,为每个音符生成对应的波形,将每个音符对应的波形连接在一起,你将得到一段简单的音乐,你可以使用sound函数播放,也可以使用audiowrite函数(使用help命令了解其用法)将其写入音乐文件中。

MATLAB 练习 3 编写函数

function waves = gen wave(tone, scale, noctave, rising, rhythm, fs)

% tone为数字音符, scale为调号, noctave为高低八度数量, rising为升降调, rhythm为节拍, 即每个音符持续时长, fs为采样频率,

将图1中的《天空之城》 数字简谱转换成波形文件。

4 音量波动

考虑到乐器演奏时,振动会有衰减,不会以固定幅度持续振动,因此一个包络衰减函数能够更加真实的模拟音乐的产生:

waves = y.*exp(-x/rhythm));

在例2第三行后面增加这样一行代码,对单个音符的波形进行指数衰减,新的波形如下图所示:

当然,也有很多别的衰减函数或许能带来更加真实的听感,如线性衰减,平方衰减等,甚至可以尝试下其他的波动。同时,这种衰减也可以在一个节拍内的几个音符中进行,比如单个音符的波形加一个衰减函数,几个音符的波形连在一起后再加上一个衰减函数。

MATLAB 练习 4: 尝试使用不同的衰减函数对练习 2 中输出结果进行处理,使用 sound 函数播放并比较其听感,使用 plot 函数画出其波形并分析其播放效果,并选择其中你认为最好的。

5. 泛音/不同乐器的音色区别

前面我们讲的乐谱中的音调都是指音乐的基频。而用乐器演奏音乐时,除了发出乐谱中的基频声音外,由于乐器的发声原理,还产生数量不等的驻波。驻波是指,当一根琴弦两端被固定时,我们拨动琴弦,琴弦振动部分的长度必然是半波长的整数倍,即,发出的声音频率包含基频以及基频的整数倍谐频。

Minor revisions are made with Prof. Yu Yajun's Course Materials. Her contributions are greatly acknowledged.

图 5. 驻波原理

所以乐器弹奏时会产生包括基频和若干整数倍频率的谐频,而主要的能量集中于基频。对于 2 倍、3 倍、4 倍、5 倍……的谐频,不同乐器这些谐频的能量比例各不相同。如果我们调整这个比例,将产生音色完全不同的声波:

```
fs = 8192; f = 220; T = 1/f;

rhythm = 1;

t = linspace(0, rhythm, fs * rhythm);

y = 0.8*sin(2*pi*f*t)+0.1*sin(2*pi*2*f*t)+ ...

0.05*sin(2*pi*3*f*t)+0.05*sin(2*pi*4*f*t);

%waves = y.*exp(-x/rhythm);

plot(t,y);

axis([0 0.01 -1 1]);
```

如果用上面这段程序来产生某个音符的波形,得到的新的波形将如图所示,使用 sound 函数播放,你会发现,其音色明显与 2 中不同,将所有音符转化成波形(这里的包络衰减可以保留),再将这些音符连起来,试听以下整段音乐的音质,你会发现,跟单纯的基频生成的音乐有明显区别。

MATLAB 练习 5: 在练习 3 的基础上,尝试不同的谐波能量比例,用 plot 分析其波形以及频谱波形,并分析产生的音乐的音色差别。选择你喜欢的音色,将你喜欢的一首音乐转换成 wav 格式的音乐。

6. 实验要求

- 1. 完成 MATLAB 练习 1-5,包括代码,结果,观察,分析等。
- 2. 完成完整的代码(包含音符频率计算(tone2freq),单个音符波形数据生成(gen_wave),整个简谱波形数据生成(gen_music)共三个函数文件,以及将波形数据保存成音乐文件(建议 wav 格式)的脚本文件),从一份简谱生成一段音乐数据,尝试调整代码中的包络衰减、谐波能量比例等,并分析其对听感的影响,尝试模拟某种乐器的声音,并给出结果分析。
- 3. 概括通过这个项目的联系,你的心得体会、所思所想。
- 4. 提交文件清单: 1) pdf 格式实验报告一份,包含代码,图片(必须)以及分析过程;2)源代码压缩包,包含上文提到的三个函数和一个脚本文件。简谱数据文件以及最终保存下来的音乐文件。