Signaux, Sons et Images pour l'Informaticien: Extraction de primitives dans les images

Diane Lingrand

Polytech SI3

2016 - 2017

Outline

- 1 Un premier détecteur de contour
- 2 Convolution
- 3 Dérivée première
- 4 Dérivée seconde
- 5 Approche Canny Deriche
- 6 Détection de points d'intérêt

Pourquoi extraire des primitives?

- détecter des objets dans une scène
- effectuer des mesures
- vers une compression vectorielle
- décrire une image
- reconnaître des objets

Quelles primitives

- contours
 - point à point
 - droites, lignes brisées, polygones
 - cercle, carré, ...
- points d'intérêt ou coins (corners)
- régions
 - intensité uniforme, texture, histogramme

Outline

- 1 Un premier détecteur de contour
- 2 Convolution
- 3 Dérivée première
- 4 Dérivée seconde
- 5 Approche Canny Deriche
- 6 Détection de points d'intérêt

Détecteur naïf

contours verticaux

$$\rightarrow$$

 $I_{cv}[i][j] = I[i][j] - I[i-1][j]$

 $I_{ch}[i][j] = I[i][j] - I[i][j-1]$

Tous les contours :

$$I_{\text{contours}}[i][j] = \sqrt{I_{cv}^2[i][j] + I_{ch}^2[i][j]}$$

Sur une image réelle

Bilan de ce détecteur

- inconvénients :
 - sensible au bruit
 - détecte trop de contours
 - détection + forte des contours horizontaux et verticaux que les contours obliques
- avantages :
 - facile à programmer
 - rapide

Outline

- 1 Un premier détecteur de contou
- 2 Convolution
- 3 Dérivée première
- 4 Dérivée seconde
- 5 Approche Canny Deriche
- 6 Détection de points d'intérêt

Convolution

Pour f et g fonctions discrètes :

$$f * g(x,y) = \sum_{u=-\infty}^{\infty} \sum_{v=-\infty}^{\infty} f(x,y)g(u-x,v-y)$$

• Convolution d'une image I_1 par un noyau K de dimension (2p+1)x(2q+1):

$$I_2[i][j] = \sum_{k=0}^{2p} \sum_{l=0}^{2q} I_1[i-k+p][j-l+q]K[k][l]$$

Retour au filtre naïf

Expression sous forme de convolution par 2 filtres :

$$\mathcal{K}_x = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \mathcal{K}_y = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Convolution en Java

```
BufferedImage biInput, biOutput;
[...]
float [] filtre = {-0.0f, 0.0f, 0.0f,
                    -1.0f, 1.0f, 0.0f,
                    -0.0f, 0.0f, 0.0f };
Kernel kernel = new Kernel(3, 3, filtre);
ConvolveOp cop = new ConvolveOp( kernel,
                 ConvolveOp.EDGE_NO_OP, null);
cop.filter(biInput, biOutput);
autre option : ConvolveOp.EDGE_ZERO_FILL
■attention au signe
```

Détection de contour

Contour idéal : marche

Outline

- 1 Un premier détecteur de contou
- 2 Convolution
- 3 Dérivée première
- 4 Dérivée seconde
- 5 Approche Canny Deriche
- 6 Détection de points d'intérêt

Filtre de Roberts (1965)

$$\frac{dI}{dx} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \frac{dI}{dy} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Module = force du contours :

$$\sqrt{(\frac{dI}{dx})^2 + (\frac{dI}{dy})^2}$$

ou

$$\max(\frac{dI}{dx}, \frac{dI}{dy})$$

Roberts en exemple

Sensibilité au bruit

- bruit = hautes fréquences
- concerne les termes en $e^{i2\pi fx}$
- \bullet dérivée première : la composante en f du bruit est multipliée par $2\pi f$
- ullet dérivée seconde : la composante en f du bruit est multipliée par $4\pi^2 f^2$
- il faut donc atténuer le bruit : lissage

Lissage par filtre moyenneur

En dimension 3x3:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} / 9$$

En dimension $(2p+1)\times(2p+1)$:

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ & \cdot & & \cdot \\ 1 & 1 & \dots & 1 \end{bmatrix} / (2p+1)^2$$

5x5

7x7

9×9

Lissage par filtre gaussien

$$G_{\sigma}(\mathbf{x}) = rac{1}{\sqrt{2\pi\sigma^2}}e^{(-rac{|\mathbf{x}|^2}{2\sigma^2})}$$

$$egin{bmatrix} 0 & 1 & 0 \ 1 & 4 & 1 \ 0 & 1 & 0 \end{bmatrix} / 8 & ext{ou} & egin{bmatrix} 1 & 1 & 1 \ 1 & 8 & 1 \ 1 & 1 & 1 \end{bmatrix} / 16$$

3x3

5x5

7x7

Détecteur de Sobel (1970)

combine à la fois le lissage par le filtre mono-dimensionnel [1,2,1] et la dérivée selon une direction perpendiculaire au lissage, obtenue par le filtre [1,0,-1]

$$\frac{dI}{dx} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} / 4 \quad \frac{dI}{dy} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} / 4$$

Angle entre l'horizontale et la normale au contour :

$$\arctan\left(\left(\frac{dI}{dy}\right)/\left(\frac{dI}{dx}\right)\right)$$

Sobel en exemple

Détecteur de Prewitt (1970)

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} / 3, \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & -1 \end{bmatrix} / 3, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} / 3, \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix} / 3$$

Détecteur de Kirsch (1971)

$$\begin{bmatrix} 5 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & -3 & -3 \end{bmatrix} / 15, \begin{bmatrix} 5 & 5 & -3 \\ 5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix} / 15, \begin{bmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix} / 15, \begin{bmatrix} -3 & -3 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & -3 \end{bmatrix} / 15, \begin{bmatrix} -3 & -3 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & 5 \end{bmatrix} / 15, \begin{bmatrix} -3 & -3 & -3 \\ -3 & 0 & 5 \\ -3 & -3 & 5 \end{bmatrix} / 15, \begin{bmatrix} -3 & -3 & -3 \\ -3 & 5 & 5 \end{bmatrix} / 15, \begin{bmatrix} -3 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & 5 & -3 \end{bmatrix} / 15$$

Seuillage

Tous les points de contours sont détectés.

Seuil haut

Tous les points détectés sont des points de contours.

Seuillage par hystérésis

Outline

- 1 Un premier détecteur de contour
- 2 Convolution
- 3 Dérivée première
- 4 Dérivée seconde
- 5 Approche Canny Deriche
- 6 Détection de points d'intérêt

Laplacien

$$\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

Noyaux de convolution en connexité 4 ou 8 :

$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix} / 4 \quad \begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix} / 8$$

Laplace en exemple

Laplace en connexité 4

Laplace en connexité 8 après lissage gaussien (filtre 7x7)

Laplace en connexité 8

Lieux des passages par zéros

Laplacien DOG - Marr et Hildreth - années 80

Laplacien vu comme différence de 2 gaussiennes. Différence entre lissage gaussien 7x7 et 5x5 :

Outline

- 1 Un premier détecteur de contou
- 2 Convolution
- 3 Dérivée première
- 4 Dérivée seconde
- 5 Approche Canny Deriche
- 6 Détection de points d'intérêt

Un contour?

• contour idéal : somme d'un échelon de hauteur A et d'un bruit gaussien n de moyenne nulle et de variance n_0^2 :

$$I(x) = AU(x) + n(x)$$

- détecteur de contour : 3 qualités
 - Q₁: bonne détection
 - Q2: bonne localisation
 - Q₃ : faible multiplicité des maxima dus au bruit

Qualité 1 : bonne détection

Plus le filtre lisse le bruit, plus la détection est bonne : on cherche à maximiser le rapport signal sur bruit :

$$\Sigma = \frac{A \int_{-\infty}^{0} f(x) dx}{n_0 \sqrt{\int_{-\infty}^{\infty} f^2(x) dx}}$$

Qualité 2 : bonne localisation.

Moins le filtre lisse l'image, meilleure est la localisation : on cherche à minimiser la variance de la position des passages par zéro de la dérivée ce qui revient à maximiser :

$$\Lambda = \frac{A|f'(0)|}{n_0 \sqrt{\int_{-\infty}^{\infty} f'^2(x) dx}}$$

Qualité 3 : réponse unique.

On veut une réponse unique par contour. Il existe des cas où il est difficile de savoir si on est en présence de 2 contours distincts ou un seul contour bruité. On limite donc la distance entre 2 maxima par :

$$x_{\text{max}} = 2\pi \sqrt{\frac{\int_{-\infty}^{\infty} f'^2(x) dx}{\int_{-\infty}^{\infty} f''^2(x) dx}}$$

Filtrage optimal

C'est trouver f qui maximise le produit $\Lambda\Sigma$ sous la contrainte $x_{max}=k$, ce qui revient à une équation différentielle (on admettra le résultat) :

$$2f(x) = 2\lambda_1 f''(x) + 2\lambda_2 f'''(x) + \lambda_3 = 0$$

de solution générale :

$$f(x) = a_1 e^{\alpha x} \sin(\omega x) + a_2 e^{\alpha x} \cos(\omega x) + a_3 e^{-\alpha x} \sin(\omega x) + a_4 e^{-\alpha x} \cos(\omega x)$$

Il reste maintenant à déterminer les paramètres a_1 , a_2 , a_3 et a_4 .

Filtre de Canny (1986)

Le filtre de Canny est un filtre impair à réponse impulsionnelle finie défini sur l'intervalle [-M; +M] ce qui signifie que h est nul en dehors de cet intervalle et que la dérivée est continue. Il impose également une pente de S à l'origine. Il en suit les contraintes suivantes :

$$f(0) = 0$$
; $h(M) = 0$; $f'(M) = 0$; $f(-x) = -f(x)$; $f'(0) = S$

permettant de déterminer les 4 coefficients ai.

Par une optimisation numérique, Canny détermina que $\Sigma\Lambda=1.12$ est un compromis optimal. Pour une mise en pratique concrète, l'implémentation se réalise à l'aide de la dérivée d'une gaussienne. On obtient alors $\Sigma\Lambda=0.92$ et k = 0.51.

Filtre de Deriche (1987)

Le filtre de Deriche est un filtre à réponse impulsionnelle infinie. Les contraintes sont alors les suivantes :

$$f(0) = 0$$
; $f(+\infty) = 0$; $f'(0) = S$; $f'(+\infty) = 0$

Ces contraintes permettent à nouveau de déterminer les coefficients a_i :

$$a_1 = a_2 = a_4 = 0$$
 et $\omega a_3 = S$

d'où la solution :

$$h(x) = \frac{S}{\omega} e^{-\alpha|x|} \sin(\omega x)$$

On obtient alors :

$$\Lambda = \sqrt{2\alpha} \qquad \Sigma = \sqrt{\frac{2\alpha}{\alpha^2 + \omega^2}}
\Sigma \Lambda = \frac{2\alpha}{\alpha^2 + \omega^2} \qquad k = \sqrt{\frac{\alpha^2 + \omega^2}{5\alpha^2 + \omega^2}}$$
(1)

Deriche (suite)

Deriche a déterminé qu'en prenant α très grand devant ω , on obtient des résultats optimaux : $\Lambda\Sigma=2$ et k=0.44. Il a également montré que pour une valeur de k identique au filtre de Canny, le filtre de Deriche affiche une valeur de performance $\Lambda\Sigma$ bien meilleure (1.4 au lieu de 1.12 soit 90%). Pour des valeurs optimales, on va prendre dans la suite α très grand devant ω ce qui revient à prendre ω petit d'où, au premier ordre :

$$\sin(\omega x) = \omega x$$

Implémentation récursive du filtre de Deriche

Le filtre dériveur optimal se présente sous la forme $Se^{-\alpha|x|}|x|$ donnant lieu aux filtres bidimensionnels :

$$SS_x(m, n) = kme^{-\alpha|m|}k(\alpha|n|+1)e^{-\alpha|n|}$$

 $SS_y(m, n) = k(\alpha|m|+1)e^{-\alpha|m|}kne^{-\alpha|n|}$

L'intégrateur de ce filtre est un filtre de lissage : $S(\alpha|x|+1)e^{-\alpha|x|}$ d'équation en 2D :

$$SS(m,n) = k(\alpha|m|+1)e^{-\alpha|m|}k(\alpha|n|+1)e^{-\alpha|n|}$$

On obtient également le Laplacien sous la forme :

$$LL(m,n) = e^{-\alpha|m|}e^{-\alpha|n|} - k\alpha|m|e^{-\alpha|m|}.k\alpha|n|e^{-\alpha|n|}$$

avec $k=\frac{1-e^{-2\alpha}}{2\alpha e^{-\alpha}}$. Il convient dans ce cas de calculer deux résultats intermédiaires r_1 et r_2 puis de faire la différence entre ces deux images afin d'obtenir l'image du Laplacien.

Implémentation du filtre de Deriche :

Phase 1

```
pour m variant de 0 à w : pour n variant de 0 à h : y_1(m,n) = a_1 l_1(m,n) + a_2 l_1(m,n-1) + b_1 y_1(m,n-1) + b_2 y_1(m,n-2) n variant de (h-1) à 0 : y_2(m,n) = a_3 l_1(m,n+1) + a_4 l_1(m,n+2) + b_1 y_2(m,n+1) + b_2 y_2(m,n+2) pour n variant de 0 à (h-1) : r(m,n) = c_1(y_1(m,n) + y_2(m,n))
```

Phase 2

```
pour n variant de 0 à h :

pour m variant de 0 à w :

y_1(m,n) = a_5 r(m,n) + a_6 r(m-1,n) + b_1 y_1(m-1,n) + b_2 y_1(m-2,n)

pour m variant de (w-1) à 0 :

y_2(m,n) = a_7 r(m+1,n) + a_8 r(m+2,n) + b_1 y_2(m+1,n) + b_2 y_2(m+2,n)

pour m variant de 0 à w :

b_2(m,n) = c_2(y_1(m,n) + y_2(m,n))
```

Paramètres des filtres de Deriche

	Lissage	Dérivée selon x	Dérivée selon y	Laplace 1	Laplace 2
k	$\frac{(1-e^{-\alpha})^2}{1+2\alpha e^{-\alpha}-e^{-2\alpha}}$	$\frac{(1-e^{-\alpha})^2}{1+2\alpha e^{-\alpha}-e^{-2\alpha}}$	$\frac{(1-e^{-\alpha})^2}{1+2\alpha e^{-\alpha}-e^{-2\alpha}}$	$\frac{1-e^{-2\alpha}}{2\alpha e^{-\alpha}}$	$\frac{1-e^{-2\alpha}}{2\alpha e^{-\alpha}}$
a_1	k	0	k	1	0
a ₂	$ke^{-lpha}(lpha-1)$	1	$ke^{-lpha}(lpha-1)$	0	1
a ₃	$ke^{-lpha}(lpha+1)$	-1	$ke^{-lpha}(lpha+1)$	e^{-lpha}	1
a ₄	$-ke^{-2\alpha}$	0	$-ke^{-2\alpha}$	0	0
<i>a</i> ₅	k	k	0	1	0
a ₆	$ke^{-lpha}(lpha-1)$	$k e^{-lpha}(lpha-1)$	1	0	1
a ₇	$ke^{-lpha}(lpha+1)$	$ke^{-lpha}(lpha+1)$	-1	e^{-lpha}	1
a ₈	$-ke^{-2lpha}$	$-ke^{-2lpha}$	0	0	0
b_1	$2e^{-\alpha}$	$2e^{-\alpha}$	$2e^{-\alpha}$	$e^{-\alpha}$	$2e^{-\alpha}$
b_2	$-e^{-2\alpha}$	$-e^{-2\alpha}$	$-e^{-2\alpha}$	0	$-e^{-2\alpha}$
<i>c</i> ₁	1	$-(1-e^{-lpha})^2$	1	1	$\frac{1-e^{-2\alpha}}{2}$
<i>c</i> ₂	1	1	$-(1-e^{-lpha})^2$	1	$\frac{1-e^{-2\alpha}}{2}$

Outline

- 1 Un premier détecteur de contou
- 2 Convolution
- 3 Dérivée première
- 4 Dérivée seconde
- 5 Approche Canny Deriche
- 6 Détection de points d'intérêt

Détection de points d'intérêt

Deux approches:

- en deux étapes :
 - chaînage des points de contours
 - recherche des points de courbure maximale
- recherche directe en fonction des intensités de l'image
 - Harris et Stephens

Détecteur de Harris et Stephens (1988)

$$\mathcal{O} = \det(\widehat{C}(x, y)) - k \left(\operatorname{trace}(\widehat{C}(x, y))\right)^2$$

$$\widehat{C}(x,y) = \begin{pmatrix} (\widehat{\frac{\partial I(x,y)}{\partial x}})^2 & \widehat{\frac{\partial I(x,y)}{\partial x}} \widehat{\frac{\partial I(x,y)}{\partial x}} \\ \frac{\partial I(x,y)}{\partial x} \widehat{\frac{\partial I(x,y)}{\partial x}} & (\widehat{\frac{\partial I(x,y)}{\partial y}})^2 \end{pmatrix} \text{ avec } k = 0.04$$

^ : lissage gaussien

- calcul des dérivées premières avec lissage gaussien
- ullet calcul de ${\cal O}$
- seuillage

SIFT (Lowe 1999)

SIFT = Scale Invariant Feature Transform

- Détecteur
 - multi-échelles
 - utilise le laplacien DOG (différents niveaux de lissage gaussiens)
- Descripteur
 - description des orientations des contours dans le voisinage

Descripteur SIFT

- vecteur de 128 entiers
- 4 étapes :
 - détection des points d'intérêts
 - orientation des gradients dans le voisinage (16x16 pixel en 4x4 blocs)
 - histogramme des orientations (quantifié sur 8 valeurs) par blocs de 4x4 pixels
 - 8x4*4=128
 - normalisation