	De	uoun	ee 3	ego	une	N	14	1,4	÷			(X						
6	9	: R"	-> R	m x	e R"		Ju	Su	A J.X			1					A		
		Э×		0			0						A.						
	Q	ououe	ee	1-6	10		<u> </u>	2.5	è		4	20	51			XA.			
	0	aer	, x	eR",	m	0	5	ex ax	2 =	a	-							-	
		a = (a	, a.,)1		1)(ar	k)	= 0			= 1	n			X		
0		X = (X,,	., × ") [T	Dx:	0						79.				
		arx =	الم الم	$a_i x_i$		7					T			A	100	99	(9)		
		Ecu	ufr	igero (uee	2	(at	<u>x</u>)	uou		lece	ese	:/:						
		D(as	*)	= (200	(X))	· 2	Ox.))	-)	5	(a)	(x))			
		Ecu (2) (a! (2) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	a	, a	,) () ``°	L _L		1	a.					a	ba .			
		AeR	a		3 3 4				-		351							•	
	(8)		-			0		X		ŽX.		n	4		Acr	- 1	17	¥	
6	1	1 = []	. a	Q.,,) ;	Χ =	X, :		Ax	=	X .	N	a,:	:		in	ou	ge.	
		2(A))	(2 ₁₁	. a.,,		= A	a x	· ·				0	X	A	N		
		Эx	17	= 1	λ _{pd} ,					1									
	3	AEF	Zuxu,	×ε	R",	no	2	DX	(x)	= ;	xr(A'	+ A)	C	~	our	uo	n
0		ecu		4" = L	1 , m	0	20	OX	x)	= 2	λ ^F /	4	M	4	14			12	
					31				2	7.7	7			X	17				

$$X = (X_{i}, ..., X_{in})^{T}$$

$$A = \begin{pmatrix} \alpha_{ii} & \alpha_{in} \\ \vdots & \vdots \\ \alpha_{mi} & \alpha_{in} \end{pmatrix}$$

$$X^{T}A \times = \sum_{j=1}^{n} \sum_{i=1}^{M} \alpha_{ij} \times_{i} \times_{j}$$

$$\frac{\mathcal{D}(X^{T}AX)}{\mathcal{D}X_{i}} = \sum_{i=1}^{n} \alpha_{i1} \times_{i} + 2\alpha_{ii} \times_{i} + \sum_{j=1}^{n} \alpha_{ij} \times_{j}$$

$$\frac{\mathcal{D}(X^{T}AX)}{\mathcal{D}X_{ii}} = \sum_{i=1}^{n} \alpha_{ii} \times_{i} \times_{i} + 2\alpha_{iii} \times_{i} + \sum_{j=1}^{n} \alpha_{ij} \times_{j}$$

$$\frac{\mathcal{D}(X^{T}AX)}{\mathcal{D}X_{ii}} = \sum_{i=1}^{n} \alpha_{ii} \times_{i} \times_{i} + \sum_{j=1}^{n} \alpha_{ij} \times_{j}$$

$$\frac{\mathcal{D}(X^{T}AX)}{\mathcal{D}X_{ii}} = \sum_{i=1}^{n} \alpha_{ii} \times_{i} \times_{i} + \sum_{j=1}^{n} \alpha_{ij} \times_{j}$$

$$\frac{\mathcal{D}(X^{T}AX)}{\mathcal{D}X_{ii}} = \sum_{i=1}^{n} \alpha_{ii} \times_{i} \times_{i} + \sum_{j=1}^{n} \alpha_{ij} \times_{j}$$

$$\frac{\mathcal{D}(X^{T}AX)}{\mathcal{D}X_{ii}} = \sum_{i=1}^{n} \alpha_{ii} \times_{i} \times_{i} + \sum_{j=1}^{n} \alpha_{ij} \times_{j}$$

$$\frac{\mathcal{D}(X^{T}AX)}{\mathcal{D}X_{ii}} = \sum_{i=1}^{n} \alpha_{ii} \times_{i} \times_{i} + \sum_{j=1}^{n} \alpha_{ij} \times_{j}$$

$$\frac{\mathcal{D}(X^{T}AX)}{\mathcal{D}X_{ii}} = \sum_{i=1}^{n} \alpha_{ii} \times_{i} \times_{i} + \sum_{j=1}^{n} \alpha_{ij} \times_{j}$$

$$\frac{\mathcal{D}(X^{T}AX)}{\mathcal{D}X_{ii}} = \sum_{i=1}^{n} \alpha_{ii} \times_{i} \times_{i} \times_{i} \times_{i} \times_{i}$$

$$\frac{\mathcal{D}(X^{T}AX)}{\mathcal{D}X_{ii}} = \sum_{i=1}^{n} \alpha_{ii} \times_{i} \times_{i}$$

. 7	· u. pojuyio	cupole	que la , re	o afre	QF=A	
	D (×FA×)	× (A + A) = 2× A			
@	XER", mo	3 11 × 11 =	2×5	(skid	1,03	
	11 × 11 = (x, x)	,				
6	$\frac{\partial x ^2}{\partial x_i} = 27$	(; =>	D IIXIIL	(2×1,, 2)	(u) =>	
6	=> 2 (x,			170	-18/-	
6	ecu g-cu	\$ fit 100 7.5]			diog (g	
	$g(x) = (g_1(x), 1)$, g, (x)))'		3 4	22
		(X _n)	2×4 : 2q(×n) 2 q×4	F.u. g(x OF X live uye woluou	j rge	jŧi, r
0		g'(X,,)	= diag (g'	(x))	201	
6	ecce h: R" - 2g(h(x)) =	7 Rm , q:	Rmo RP	XERM, ro		
	h = (h, (x, h m (x,	.,×.,)	g = (g, (h,	(,, h, m)		

2g(h) =	2g. (h)		29.1	h (x))			0		
	Dap Ch	1(4())	290	(h(x))	3	NAME OF	(N, N)	Jaly	
Dh =	1 2 h.	2 h	4	2 40		2 46	Å -	14 8	
J×	Dhm Dx,	$\frac{\partial h}{\partial x}$	and and	X.S.			12/		
Dg (h		$\sum_{i=1}^{m} g_{ih}$	·hix		i=1	9 4:	hix		
ο×		ني ي ي ي	·hix	44.5	m	geh;	·hix		
rys		· hix	=	Oh;	· Dx	1		100	
Tym	ujeu yro u	e no	ofrage	og(h)	u	Dh(x) Dx cocus		Cufru	0.
		1 TH 5	19	o C					<u>u</u>
				A 3	ilbar		1000		
		Med .							-
		1-4-5	11 5 1				a mil		

Mago novere spagneur u necesse g(B) = ||XB - y||'
u lusticre 200 j3 = 029 min ||XB - y||' Aluxins
punemen X X B = X y Paneme: Dg(β) = 2(xβ-y) x $\frac{\mathcal{D}'g(\beta)}{\mathcal{D}_{\beta}\Gamma\mathcal{D}_{\beta}} = \frac{\mathcal{D}(\frac{\mathcal{D}_{\beta}(\beta)}{\mathcal{D}_{\beta}\Gamma})}{\mathcal{D}_{\beta}\Gamma} = \frac{\mathcal{D}(\mathcal{L}(\chi_{\beta}-y)\chi)}{\mathcal{D}_{\beta}\Gamma}$ $= \frac{\mathcal{D}(2\beta^{r} \times r \times - y^{r} \times)}{\mathcal{D}\beta^{r}} = 2x^{r} \times$ Trogospicues no surspense g'3 =0 => 2(x3 -y) x =0 XBX = UX BTXTX- YTX =0 XTXB = XTy - nofu. cur. mu. yj-Bayroe eun X coront uz run. mz. croed, ro ouf. xxx >0 s.u. xxx - mospuye Tpouve. le roige u.c. e. yp. uner equal. puneune. 13* Dro rorue: max were min. 9"5 = 2 XX >0 => xxx >0 - cue. norf. C. Z. 70 => =) rocue 3* - con min Trocceo fuer possence le pag remotre

```
g(13) = g(13*) + (g'| 13 = 13*, h) + = (g"| h, h) + ...
   Forgo o So Sugue 200 g(B) > g(B*) =>
        B* - wos. min.
    Tue Sue cause & D/2. N. 1.
N4.
   y~ N(XB, 5°I) - noju.
  B~ N(O, EI) - aufnopur from.
  Puneue:
 1 Anocrej. from. B
   p(Bly)~p(y|B)Ti(B) = exp(-1/2(y-xB) = (y-xB)).
  · exp(-1/2 (B-0) /T [(B-0))=
  = exp(- 1/20 11 y -x311 - 1/22 11 3112) - anow. promy. B
  F = arg max P(y1B) T(B) = arg max A =
  = 0 2g max (log A) = 0 2g max (- 1/25 - 1/4 x Bll - 1/22 11 Bll) =
  = org mox - (1/26-11y-xB11 + 1/22-11/311) =
 = arg min (1/15-114-x311 + 1/12-113112) =
```

