- 1. In piramida patrulateră regulată VABCD se dau muchia VA = 5 și diagonala bazei AC = 8. Calculați distanța de la vârful V al piramidei la planul bazei.
 - a) 3; b) 4; c) 5; d) 6; e) 7; f) 8.

Soluție. Dacă O este piciorul înălțimii în planul ABCD, atunci OA = AC/2 = 4. Aplicând teorema lui Pitagora în triunghiul VOA, rezultă $VO = \sqrt{VA^2 - OA^2} = 3$.

- 2. Intr-un con circular drept unghiul format de o generatoare cu planul bazei este de 45° . Raza bazei fiind R=3 să se calculeze aria laterală a conului
 - a) $9\pi\sqrt{2}$; b) 9π ; c) π ; d) $9\pi\sqrt{3}$; e) π^2 ; f) 3π .

Soluție. Generatoarea are lungimea $R\sqrt{2} = 3\sqrt{2}$, deci aria laterală este $\pi RG = 9\pi\sqrt{2}$.

- 3. În sistemul cartezian Oxyz se consideră planul de ecuație x+y+z-3=0 și dreapta de ecuații x=y=z. Coordonatele punctului de intersecție dintre dreaptă și plan sunt
 - a) (1, 1, 1); b) (0, 0, 0); c) (1, 2, 3); d) (2, 3, 1); e) (2, 2, 2); f) (-1, -1, -1).

Soluție. Rezolvând sistemul $\begin{cases} x+y+z-3=0 \\ x=y=z \end{cases}$ rezultă x=y=z=1, deci punctul de intersecție are coordonatele (1,1,1).

- 4. Aria triunghiului, din planul xOy, determinat de punctele $O(0,0),\ A(4,0)$ și B(0,-3) este
 - a) 6; b) 12; c) 7; d) 5; e) 4; f) 3.

Soluție. Aria $\triangle OAB$ este $\begin{vmatrix} \frac{1}{2} & 0 & 0 & 1 \\ 4 & 0 & 1 \\ 0 & -3 & 1 \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & 4 & 0 \\ 0 & -3 & \end{vmatrix} = 6.$

5. In planul xOy se dau punctele A(4,0) şi B(2,2). Punctele A, B şi C sunt coliniare pentru C de coordonate a) (0,4); b) (0,-4); c) (0,0); d) (-2,2); e) (2,-2); f) (0,-1).

Soluție. Punctele A,B si $C(\alpha,\beta)$ sunt colineare dacă $\begin{vmatrix} 4 & 0 & 1 \\ 2 & 2 & 1 \\ \alpha & \beta & 1 \end{vmatrix} = 0$, deci dacă $-2\beta - 2\alpha + 8 = 0$. Singurul punct care satisface egalitatea este C(0,4).

- 6. Numărul soluțiilor ecuației $\sin x \cos x = 0$ situate în intervalul $[0, 2\pi]$ este
 - a) 2; b) 1; c) 3; d) 4; e) 0; f) o infinitate.

Soluție. Se observă că ecuația $\cos x = 0$ admite drept soluții $\{\frac{\pi}{2}, \frac{3\pi}{2}\} \subset [0, 2\pi]$, care însă nu satisfac ecuația din enunț. Deci $\cos x \neq 0$. Împărțind prin $\cos x$ ecuația dată, rezultă tg x = 1, deci soluțiile sunt $x \in \{\frac{\pi}{4}, \frac{5\pi}{4}\} \subset [0, 2\pi]$, deci ecuația admite două soluții în intervalul $[0, 2\pi]$.

- 7. Pentru numărul complex z = 1 + i, numărul z^2 este
 - a) 2i; b) -i; c) 1; d) 0; e) -1; f) 1-i.

Soluție. Avem $z^2 = (1+i)^2 = 1+2i-1=2i$.

- 8. Modulul numărului complex $z = \cos \frac{\pi}{3} + \mathrm{i} \sin \frac{\pi}{3}$ este
 - a) 1; b) 2; c) $\sqrt{2}$; d) $\frac{1}{\sqrt{3}}$; e) 3; f) 0.

Soluţie. Avem $|z| = \sqrt{\cos^2 \frac{\pi}{3} + \sin^2 \frac{\pi}{3}} = 1.$

- 9. Ecuația trigonometrică $\sin^2 x = 1$ are în intervalul $[\pi, 2\pi]$ soluția
 - a) $\left\{\frac{3\pi}{2}\right\}$; b) $\left\{\frac{5\pi}{4}, \frac{7\pi}{4}\right\}$; c) $\left\{\pi\right\}$; d) $\left\{\pi, 2\pi\right\}$; e) $\left\{\frac{7\pi}{4}\right\}$; f) $\left\{-\frac{\pi}{2}\right\}$.

Soluţie. Avem $\sin^2 x = 1 \Leftrightarrow \sin x \in \{\pm 1\}$. Dar $x \in [\pi, 2\pi]$, deci $x = \frac{3\pi}{2}$.

10. In triunghiul ABC se dau : $\hat{A} = 45^{\circ}$, $AC = \sqrt{2}$ și AB = 1. Atunci latura BC are lungimea

a) 1; b) 2; c) 3; d)
$$\sqrt{3-\sqrt{2}}$$
; e) $3+\sqrt{6}$; f) $3-\sqrt{2}$.

Soluţie. Aplicând teorema cosinusului, obţinem $BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos 45^\circ \Leftrightarrow BC^2 = AB^2 + AC^2 - AB \cdot AC \cdot \cos 45^\circ$ $1 \Rightarrow BC = 1$.

11. In triunghiul ABC se dau $\hat{C} = 30^{\circ}$ și înălțimea AD = 2. (D se află pe dreapta BC.) Atunci latura ACare lungimea

a) 4; b) 2; c) 3; d) 5; e)
$$\sqrt{3}$$
; f) 1.

Soluţie. Avem $AC = AD/\sin \hat{C} = \frac{2}{1/2} = 4$.

12. Produsul scalar al vectorilor $\bar{u} = \bar{i} - 3\bar{j} + 4\bar{k}$ și $\bar{v} = 2\bar{i} - \bar{j} - \bar{k}$ este

Solutie. Avem $\bar{u} \cdot \bar{v} = 1 \cdot 2 + (-3) \cdot (-1) + 4 \cdot (-1) = 2 + 3 - 4 = 1$.

13. Modulul (norma, lungimea) vectorului $\bar{v} = 2\bar{i} - \bar{j} + 2\bar{k}$ este

a) 3; b) 5; c)
$$-3$$
; d) 4; e) 6; f) 0.

Solutie. Obtinem $|\bar{v}| = \sqrt{2^2 + 1^2 + 2^2} = 3$.

14. Un cerc care contine punctul M(3, 4) are ecuatia

a)
$$x^2+y^2-25=0$$
; b) $x^2+y^2-6x-8y+3=0$; c) $x^2+y^2-7=0$; d) $x^2+y^2-x=0$; e) $x^2+y^2-y=0$; f) $x^2+y^2-1=0$.

d)
$$x^2 + y^2 - x = 0$$
; e) $x^2 + y^2 - y = 0$; f) $x^2 + y^2 - 1 = 0$.

Soluţie. Se observă că singura ecuație verificată de punctul (3,4) este $x^2 + y^2 - 25 = 0$.

15. Suma semiaxelor elipsei de ecuație $\frac{x^2}{4} + \frac{y^2}{9} = 1$ este

Soluție. Avem $a^2 = 4$, $a > 0 \Rightarrow a = 2$ și $b^2 = 9$, $b > 0 \Rightarrow b = 3$, deci suma semiaxelor este a+b=2+3=5.

16. Se dau vectorii $\bar{u} = \bar{i} + 3\bar{j}$, $\bar{v} = 6\bar{i} - 4\bar{j}$, $\bar{w} = 5\bar{i} - \bar{j}$. Să se calculeze vectorul $\bar{s} = \bar{u} + \bar{v} - \bar{w}$.

a)
$$\bar{s} = 2\bar{i}$$
; b) $\bar{s} = \bar{0}$; c) $\bar{s} = 12\bar{i} - 2\bar{j}$; d) $\bar{s} = 10\bar{i} - 8\bar{j}$; e) $\bar{s} = 3\bar{j}$; f) $\bar{s} = -\bar{i} - \bar{j}$.

Soluție. Avem $\bar{u} + \bar{v} - \bar{w} = \bar{i} + 3\bar{j} + 6\bar{i} - 4\bar{j} - 5\bar{i} + \bar{j} = 2\bar{i}$.

17. Fiecare din diagonalele fetelor unui cub are lungimea $2\sqrt{2}$. Atunci volumul cubului este

a) 8; b)
$$16\sqrt{2}$$
; c) $8\sqrt{2}$; d) 4; e) 10; f) 6.

Soluție. Latura cubului este $2\sqrt{2}/\sqrt{2}=2$, deci volumul cubului este $2^3=8$.

18. Dreapta, din planul xOy, de ecuație x + y - 3 = 0 conține punctul A de coordonate

a)
$$(2, 1)$$
; b) $(2, -1)$; c) $(-2, 1)$; d) $(-2, -1)$; e) $(2, 2)$; f) $(2, -2)$.

Soluție. Singurul punct care satisface condiția x + y - 3 = 0 are coordonatele (2, 1).