Alignment (I)

Bioinformatics Applications (PLPTH813)

Sanzhen Liu

2/16/2017

Tools for NGS data and R

FASTA/Q

```
@SEQ_ID
ATCAACTGATGCATC
+SEQ_ID
!''*(((***+))%
```

- Tools
- FASTQC: a tools to overview data (quantity and quality)
- seqtk: a FASTA/Q manipulation tool
- Trimmomatic: an efficient trimming tool

- own functions
- apply families
- basic statistical tests

Alignment algorithms

Aligner phylogeny

Outline

- Alignment overview
- Dot plot
- Dynamic alignment

(example: local alignment)

• BLAST

Sequence alignment

Sequence alignment is the approach of comparing the sequences of nucleotides or amino acids to identify regions of similarity.

Applications:

- 1. Measure relatedness between sequences
- 2. Identify homologous genes or duplication regions
- 3. Identify source of a sequence in a database
- 4. Locate the position of a sequence in the genome
- 5. etc.

Dot matrices in a single-base resolution

Dot plot comparison using windows

 Dot matrices for long sequences can be noisy due to insignificant matches

e.g., Put a dot only if at least 9 out of 10 nucleotides are identical.

window size = 10

min matches = 9

- Solution: use a window and a threshold
 - compare letter by letter within a window (have to choose window size)
 - require certain fraction of matches within window in order to display it with a dot

Dot plot with a window method

Window size = 4

Stringency = 3 (min matches)

Dot-plots (examples)

query is identical to reference and contains no repeats

deletion of "I" in query

deletion of a "R" in query

deletion of "IR" in query

inverstion

Rearrangement with disagreement

Outline

- Alignment overview
- Dot plot
- Dynamic alignment

(example: local alignment)

• BLAST

Local and global alignments

 Local alignment: to find similar sequence regions between sequences

```
C T G T T G C T G C
T G C T G
```

• Global alignment: to attempt to optimally align the entire length of two sequences.

```
C T G T T G C T G C
- T G - - - C T G -
```

Best (local) alignment

Question: How to determine which alignment is better?

```
Alignment 1: C T G T T G C T G C
T G T T G C T G C
Alignment 2: C T G T T G C T G C
T G - - C T G
```

Need a scoring scheme:

then, a score can be assigned to each alignment

Best (local) alignment

match +1; mismatch -1; gap -2

```
Alignment 1: C T G T T G C T G C
T G C T G

1 2 1 2 3 score = 3

Alignment 2: C T G T T G C T G
T G - - - C T G
1 2 0 -2 -4 -3 -2 -1 score = -1
```

match +1; mismatch -2; gap 0

A classic algorithm for local alignment – Smith-Waterman

List all possible alignments and to find a winner with the highest score?

Smith-Waterman (SW)

Using dynamic programming to find the best local alignment(s) between two sequences with respect to a scoring scheme

Scoring rule:

match +1; mismatch -1; gap -2 (γ)

- 1. Initialize top row and leftmost column to zero.
- 2. Fill in the table using the following formula

C[i-1, j-1]	C[i-1, j]
C[i, j-1]	C[i, j]

$$C[i,j] = \max \begin{cases} C[i-1,j-1] + score(s[i],t[j]) \\ C[i-1,j] - \gamma \\ C[i,j-1] - \gamma \\ 0 \end{cases}$$

Scoring rule:
$$score(s, t)$$
 match +1; mismatch -1; gap -2 (γ)

- 1. Initialize top row and leftmost column to zero.
- 2. Fill in the table using the following formula

C[i-1, j-1]	C[i-1, j]
C[i, j-1]	C[i, j]

$$C[i,j] = \max \begin{cases} C[i-1,j-1] + score(s[i],t[j]) & 0-1 \\ C[i-1,j]-\gamma & 0-2 \\ C[i,j-1]-\gamma & 0-2 \\ 0 & 0 \end{cases}$$

Scoring rule:
$$score(s, t)$$
 match +1; mismatch -1; gap -2 (γ)

- 1. Initialize top row and leftmost column to zero.
- 2. Fill in the table using the following formula

C[i-1, j-1]	C[i-1, j]
C[i, j-1]	C[i, j]

$$C[i,j] = \max \begin{cases} C[i-1,j-1] + score(s[i],t[j]) & 0+1 \\ C[i-1,j] - \gamma & 0-2 \\ C[i,j-1] - \gamma & 0-2 \\ 0 & 0 \end{cases}$$

Scoring rule: score(s, t) match +1; mismatch -1; gap -2 (γ)

- 1. Initialize top row and leftmost column to zero.
- 2. Fill in the table using the following formula

C[i-1, j-1]	C[i-1, j]
C[i, j-1]	C[i, j]

$$C[i,j] = \max \begin{cases} C[i-1,j-1] + score(s[i],t[j]) \\ C[i-1,j] - \gamma \\ C[i,j-1] - \gamma \\ 0 \end{cases}$$

SW example (cont.)

Question: to find the optimal local alignments between s and t.

s: CTGTTGCT

t: ATGCTGCA

To obtain the optimum local alignment,

- 3. Identify the highest scores in the matrix.
- 4. Then, go backwards to the cell with the highest score of the positions of (i-1, j), (i, j-1), and (i-1, j-1)
- 5. This procedure is repeated until a cell with zero value is reached.

	j	1	2	3	4	5	6	7	8	9
i			С	Т	G	Т	Т	G	С	Т
1		0	0	0	0	0	0	0	0	0
2	А	0	0	0	0	0	0	0	0	0
3	Т	0	0	1	0	1	1	0	0	1
4	G	0	0	0	2	0	0	2	0	0
5	С	0	1	0	0	1	0	0	3	0
6	Т	0	0	2	0	1	2	0	0	(4)
7	G	0	0	0	3	0	0	3	0	0
8	С	0	1	0	0	2	0	0	(4)	0
9	Α	0	0	0	0	0	1	0	0	0

s: CTGTTGCT s: CTGTTGCT

: ATGCTGCA t: ATGCTGCA

Global alignment – Needleman-Wunsch

Global alignments attempt to optimally align the entire length of two sequences.

+10 for match, -2 for mismatch, -5 for gap

s: CTGTTGCT t: ATGCTGCA

$$C[i,j] = \max \begin{cases} C[i-1,j-1] + s(s[i],t[j]) \\ C[i-1,j] - \gamma \\ C[i,j-1] - \gamma \end{cases}$$

t: ATGC-TGCA

	j	1	2	3	4	5	6	7	8	9
i			С	Т	G	Т	Т	G	С	Т
1		0	-5	-10	-15	-20	-25	-30	-35	-40
2	Α	-5	-2	-7	-12	-17	-22	-27	-32	-37
3	Т	-10	-7	8	3	-2	-7	-12	-17	-12
4	G	-15	-12	3	18	13	8	3	-2	-7
5	С	-20	-5	-2	13	16	11	6	13	8
6	Т	-25	-10	5	0	23	-26	21	16	23
7	G	-30	-15	0	15	18	21	36	31	26
8	С	-35	-20	-5	10	13	16	31	46	41
9	А	-40	-25	-10	5	8	11	26	41	44

BLAST (Basic Local Alignment Search Tool)

- The classic algorithm, Smith–Waterman algorithm, optimizes the similar measure. It ensured the best performance on accuracy and the most precise results with respect to its scoring scheme.
- However, Smith–Waterman algorithm is time-consuming and computational burdensome. It is not practical to apply it to align a query sequence to a large database.
- BLAST emphasizes on speed to make the algorithm practical on the huge genome databases.

Question

Could you recall the procedure of a BLAST job to achieve the BLAST alignment results? And what does NCBI actually provide?

BLAST+

- BLAST was first introduced by NCBI in 1989.
- NCBI introduced BLAST+ in 2009, which is faster and allows more flexibility in output formats and in the search input.
- It provides a variety of BLAST functions for both DNA and protein sequences.

For example:

blastp

blastp	Traditional BLASTP to compare a protein query to a protein database
blastp-short	BLASTP optimized for queries shorter than 30 residues

blastn

blastn	Traditional BLASTN requiring an exact match of 11
blastn-short	BLASTN program optimized for sequences shorter than 50 bases

BLAST algorithm

1. Make k-tuple words (seeds) of the query sequence.

```
CTGTTGCTCGTCTCGGGACTGT
CTG
TGT
GTT
```

2. List possible matching words for **each k-tuple word** & remove low-scoring words

```
k mismatch
CTG 0
ATG 1
TTG 1 high-scoring words
GTG 1
CAG 1
...
AAG 2
Database sequence
```

- 3. Compare the high-scoring words to the database sequences to identify exact matches
- 4. Extend the exact matches to both directions on the database sequences to obtain high-scoring segment pairs (HSPs)

Command line based BLAST

Step 1:

- Computer/server
- Install the "BLAST+" software package
- Make databases of collected sequences

Step 2:

Run BLAST searching with your query sequences on the server

Step 1: Create a database

makeblastdb

A program to create a BLAST database

```
makeblastdb -in MG1655.fasta -out MG1655 -dbtype nucl
```

Database files were generated:

```
---output---
MG1655.nhr
MG1655.nin
MG1655.nsq
```

Step 2: BLAST a query to a DNA database

blastn

blastn -query MG1655dnaseq.fa -db MG1655

```
---output---
Query= MG1655 partial
Length=280
                                                 Score
Sequences producing significant alignments:
                                                 (Bits) Value
qi|556503834|ref|NC 000913.3| Escherichia coli str. K-12 substr... 518
                                                     1e-147
> gi|556503834|ref|NC 000913.3| Escherichia coli str. K-12 substr.
MG1655, complete genome
Length=4641652
Score = 518 \text{ bits } (280), Expect = 1e-147
Identities = 280/280 (100%), Gaps = 0/280 (0%)
Strand=Plus/Plus
          TAGAAAATGCCCATGGCAAGAATAATACCGTCCAGAGCGAAATAACCCACGTTGTGCAGG
Query 1
          Sbjct
                                                     10420
    10361 TAGAAAATGCCCATGGCAAGAATAATACCGTCCAGAGCGAAATAACCCACGTTGTGCAGG
Query 61
                                                     120
         TTAAGCAGAATGGTGGTCATGCCGAAGCCCATCAGGCCCAGCGGTGCCGGATTAGCCAAC
          Sbjct
    10421 TTAAGCAGAATGGTGGTCATGCCGAAGCCCATCAGGCCCAGCGGTGCCGGATTAGCCAAC
                                                     10480
Query 121
         180
          Sbjct
         10540
Query 181
          GAATAACTGTAGTGTTTTCAGGGCGCGCATAATAATCAGCCAGTGGGGCAGTGTCTACG
                                                     240
          10541 GAATAACTGTAGTGTTTTCAGGGCGCGCATAATAATCAGCCAGTGGGGCAGTGTCTACG
    241
         ATCTTTTGAGGGGAAAATGAAAATTTTCCCCGGTTTCCGG
                                       280
Query
          Sbjct 10601 ATCTTTTGAGGGGAAAATGAAAATTTTCCCCGGTTTCCGG
                                       10640
```

Select output format

blastn -query MG1655dnaseq.fa -db MG1655 -outfmt 6

query id	subject id	% identity	alignment length	mismatches	gap opens	q. start	q. end	s. start	s. end	evalue	bit score
MG1655_pa	gi 556503834 ref NC_000913.3	100	280	0	0	1	280	10361	10640	1.00E-147	518

E-value

• **E-value** is a parameter that describes the number of hits that one can "expect" to see by chance when searching a database of a particular size. It is used to describe the significance (instead of a p-value) of each sequence alignment hit.

For example, E-value = 1 means that in a database of the similar size 1 match with a similar score would be obtained simply by chance.

The lower the E-value, the more "significant" the match is.

Score and Bit scores

- In the context of sequence alignments, a score is a numerical value that describes the overall quality of an alignment.
- The bit-score is a rescaled alignment score to indicate the alignment quality, which is independent of the size of the search database.
- The higher the score/bit-score, the better alignment is.

BLAST+ remote service

blastn -query MG1655dnaseq.fa -db nt -outfmt 6 -remote 501 hits

blastn -query MG1655dnaseq.fa -db nt -outfmt 6 -evalue 1e-100 -remote

168 hits

Extract sequences or subsequences

blastdbcmd

Extract sequences from the database

```
# Use Gi ID to search*
```

blastdbcmd -db MG1655 -entry 556503834 -range 150-220

```
---output---
```

>gi|556503834|ref|NC_000913.3|:150-220 Escherichia coli str. K-12 substr. MG1655, complete genome

AGCGCACAGACAGATAAAAATTACAGAGTACACAACATCCATGAAACGCATTAGCACCACCATTACCACCA

^{*} Database formatting needs to be a little different:

BLAST tools

Table 1. Key features of the BLAST search pages in the "Basic BLAST" category

Search page	Query & database combination	Alignment type	Programs & functions (default program in bold)
nucleotide blast	nucleotide vs nucleotide	nucleotide vs nucleotide	<u>megablast</u> : for sequence identification, intra-species comparison <u>discontiguous megablast</u> : for cross-species comparison, searching with coding sequences <u>blastn</u> : for searching with shorter queries, cross-species comparison
protein blast	Protein vs protein	protein vs protein	blastp: general sequence identification and similarity searches DELTA-BLAST [2]: protein similarity search with higher sensitivity than blastp PSI-BLAST: iterative search for position-specific score matrix (PSSM) construction or identification of distant relatives for a protein family PHI-BLAST: protein alignment with input pattern as anchor/constraint
blastx	nucleotide (translated) vs protein	protein vs protein	<u>blastx</u> : for identifying potential protein products encoded by a nucleotide query
tblastn	protein vs nucleotide (translated)	protein vs protein	tblastn: for identifying database sequences encoding proteins similar to the query
tblastx	nucleotide (translated) vs nucleotide (translated)	protein vs protein	tblastx: for identifying nucleotide sequences similar to the query based on their coding potential

DNA nucleotide database

Table 2. Contents of the common BLAST sequence databases

Database	Туре	Content
nr (nt)	Nucleotide	All GenBank + EMBL + DDBJ + PDB sequences, excluding sequences from PAT, EST, STS, GSS, WGS, TSA and phase
default		0, 1 or 2 HTGS sequences, partially non-redundant.
refseq_rna	Nucleotide	Curated (NM_, NR_) plus predicted (XM_, XR_) sequences from NCBI Reference Sequence Project.
refseq_genomic	Nucleotide	Genomic sequences from NCBI Reference Sequence Project.
chromosome	Nucleotide	Complete genomes and complete chromosomes from the NCBI Reference Sequence project.
Human G+T	Nucleotide	The genomic sequences plus curated and predicted RNAs from the current build of the human genome.
Mouse G+T	Nucleotide	The genomic sequences plus curated and predicted RNAs from the current build of the mouse genome.
est	Nucleotide	Database of GenBank + EMBL + DDBJ sequences from EST division
HTGS	Nucleotide	Unfinished High Throughput Genomic Sequences; Sequences: phases 0, 1 and 2
wgs	Nucleotide	Assemblies of Whole Genome Shotgun sequences.
pat	Nucleotide	Nucleotides from the Patent division of GenBank.
pdb	Nucleotide	Nucleotide sequences from the 3-dimensional structure records from Protein Data Bank.
alu_repeats	Nucleotide	Selected Alu repeats from REPBASE, suitable for identifying Alu repeats from query sequences. See "Alu alert" by
		Claverie and Makalowski, Nature 371: 752 (1994).
TSA	Nucleotide	Transcriptome Shotgun Assemblies, assembled from RNA-seq SRA data
16S microbial	Nucleotide	16S Microbial rRNA sequences from Targeted Loci Project

Protein database

nr default	Protein	Non-redundant GenBank CDS translations + RefSeq + PDB + SwissProt + PIR + PRF, excluding those in PAT, TSA, and env_nr.
refseq_protein	Protein	Protein sequences from NCBI Reference Sequence project.
swissprot	Protein	Last major release of the UniProtKB/SWISS-PROT protein sequence database (no incremental updates).
pat	Protein	Proteins from the Patent division of GenBank.
pdb	Protein	Protein sequences from the 3-dimensional structure records from the Protein Data Bank.
env_nr	Protein	Protein sequences translated from the CDS annotation of metagenomic nucleotide sequences.
tsa_nr	Protein	Protein sequences translated from CDSs annotated on transcriptome shotgun assemblies.

ftp://ftp.ncbi.nlm.nih.gov/pub/factsheets/HowTo_BLASTGuide.pdf