Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Рязанский государственный радиотехнический университет имени В.Ф. Уткина»

Кафедра ЭВМ

Отчет о лабораторной работе №2 **«Методы работы с моделями»** по дисциплине «Моделирование»

Выполнили:

ст. гр. 245 бригада №4 Сокол Илья Лапин Кирилл **Проверил:** доц. каф. ЭВМ Саблина В.А. **Цель работы:** изучение методов работы с моделями СМО на языке GPSS, способов задания условия окончания моделирования, формирования отчетов, переопределения параметров модели; изучение влияния квантования времени обслуживания и назначения приоритетов на качество работы СМО; изучение замкнутой СМО.

Практическая часть

1. СМО с квантованием времени обслуживания

Ознакомимся с моделью СМО с квантованием по времени. Данная модель имеет следующее графическое представление (рисунок 1.1):

Рисунок 1.1 – Графическое представление модели СМО с квантованием по времени

В соответствии с исходными данными из таблицы 1.1 отредактируем приведенную программу, описывающую работу модели СМО с квантованием по времени.

Таблица 1.1 – Исходные данные для СМО с квантованием по времени

Вариант	$M[T_1]$	$M[T_2]$	$M[T_3]$	$M[v_1]$	$M[v_2]$	$M[v_3]$
4	15	50	100	5	10	40

Ниже представлен листинг полученной программы:

```
; Задание таблицы табулирования времени пребывания транзакта в системе ТІМЕ ТАВLE M1,50,50,10

; Задание (кусочно-линейное) функции экспоненты EXP1

EXP1 FUNCTION RN1,C24

0,0/.1,.104/.2,.222/.3,.335/.4,.509/.5,.69/.6,.915
.7,1.2/.75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3
.92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5/.98,3.9
.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
```

```
; Квант процессорного времени q=1
OUANT VARIABLE 1
; Генератор заявок с приоритетом 1, M[T1]=15, M[v1]=5
GENERATE 15, FN$EXP1,,,1
                                  ; Генерируем заявки с приоритетом 1
                                    ; через интервалы времени
                                    ; (EXP1, M[T1]=15)
ASSIGN 1,5,EXP1
                                   ; Присваиваем первому
                                   ; параметру транзакта
                                    ; время обслуживания (EXP1, M[v1]=5)
TRANSFER , MET1
                                   ; Пересылаем транзакт в очередь
                                    ; (безусловная передача транзакта
                                    ; на метку МЕТ1)
; Генератор заявок с приоритетом 1, M[T2]=50, M[v2]=10
GENERATE 50, FN$EXP1,,,1
                                   ; Генерируем заявки с приоритетом 1
                                    ; через интервалы времени
                                   ; (EXP1, M[T2]=50)
ASSIGN 1,10,EXP1
                                   ; Присваиваем первому
                                    ; параметру транзакта
                                    ; время обслуживания (EXP1, M[v2]=10)
                                   ; Пересылаем транзакт в очередь
TRANSFER , MET1
; Генератор заявок с приоритетом 1, M[T3]=100, M[v3]=40
GENERATE 100, FN$EXP1,,,1
                                    ; Генерируем заявки с приоритетом 1
                                    ; через интервалы времени
                                    ; (EXP1, M[T3]=100)
ASSIGN 1,40,EXP1
                                   ; Присваиваем первому
                                    ; параметру транзакта
                                    ; время обслуживания (EXP1, M[v3]=40)
                                   ; Вход транзакта в очередь
MET1
         QUEUE QOPR
                                   ; Занимаем устройство OPR
         SEIZE OPR
         DEPART QOPR
                                    ; Выход транзакта из очереди
         TEST L V$QUANT, P1, MET2
                                   ; Если кванта не хватило
                                    ; q < остатка vi, то
         ADVANCE V$QUANT
                                    ; задерживаем заявку на время кванта ф
                                    ; иначе на метку МЕТ2
         RELEASE OPR
                                   ; Освобождаем устройство OPR
         ASSIGN 1-, V$QUANT
                                ; Вычитаем из времени обслуживания
                                   ; заявки vi квант времени q
         TRANSFER , MET1
                                   ; Передаем недообслуженный транзакт
                                   ; в очередь
         TABULATE TIME
FIN
                                   ; Занести значение времени
                                   ; пребывания транзакта в таблицу ТІМЕ
         TERMINATE 1
                                   ; Регистрация обслуженной заявки
                                    ; (увеличение счетчика обслуженных
                                    ; заявок и удаление заявки)
MET2
         ADVANCE P1
                                    ; Если кванта хватило, то задержка
                                    ; на остаток времени обслуживания
```

RELEASE OPR	; Освобождаем устройство OPR
TRANSFER ,FIN	; Конец обслуживания заявки

Запустим программу на выполнение при помощи команды START 200000, задав значение счетчика завершений равным 200000. В результате выполнения программы получим отчет, представленный на рисунке 1.2.

	START	TIME	206	END 3271	TIME .991	BLC 2	CKS	FACIL:	ITIES	STORA 0	GES		
	NAME EXP1 FIN MET1 MET2 OPR QOPR QUANT TIME				100 100 100	9.0 19.0	000 000 000 000 000 000						
LABEL		1 2 3 4 5	BLOCK T GENERAT ASSIGN TRANSFE GENERAT ASSIGN TRANSFE	E R E		1377 1377 1377 415 415	760 760 760 760 761 761		0 0 0 0				
MET1		7 8 9 10 11 12 13	GENERAT ASSIGN QUEUE SEIZE DEPART TEST ADVANCE RELEASE	E	2 2 2 2	206 206 20341 20341 20341 20341	560 560 560 550 50 50 549 549		0 10 1 0 0		0 0 0 0 0 0 0		
FIN		15 16	ASSIGN TRANSFE TABULAT TERMINA	R	1	8341	.49 .49 .49		0 0 0		0		
MET2		19 20	TERMINA ADVANCE RELEASE TRANSFE			2000	000		0 0		0 0 0		
FACILITY OPR		ENTRIES 2034150											
QUEUE QOPR		MAX CC	ONT. ENT										
TABLE TIME		MEAN 149.687	STD.DI 362.63										
				350 400	.000	-	4	00.000 50.000 00.000 50.000 00.000 50.000	0	28	84 27	67.5 76.6 82.1 85.9 88.5 90.4 91.8 93.0	9
CEC XN 200004	PRI 1	M1 2063166.1	AS:	SEM 0004	CURR	ENT 10	NEXT 11	PARA	METER 1	VAL	UE 0.545		
200011	1 .	2063275.2	266 20	0014		0	1		METER	VAL	UE		

Рисунок 1.2 – Результат выполнения программы модели СМО с квантованием по времени

Рассчитаем теоретическое значение коэффициента загрузки обслуживающего аппарата ho по формуле:

$$\rho = \frac{M[v_1]}{M[T_1]} + \frac{M[v_2]}{M[T_2]} + \frac{M[v_3]}{M[T_3]} = \frac{5}{15} + \frac{10}{50} + \frac{40}{100} \approx 0.933$$

Экспериментально было получено, что коэффициент загрузки обслуживающего аппарата равен 0.936. Таким образом, теоретическое и экспериментальное значения коэффициента загрузки обслуживающего аппарата совпадают с точностью до сотых.

Снимем зависимость среднего времени пребывания заявки в системе от величины кванта q=1,4,16,64 (таблица 1.2) и построим график (рисунок 1.3).

Таблица 1.2 – Зависимость среднего времени пребывания заявки в системе от величины кванта

Величина кванта <i>q</i>	Среднее время пребывания
De/in-inia Kbanta q	заявки в системе
1	149.687
4	160.406
16	203.655
64	282.741

Рисунок 1.3 – График зависимости среднего времени пребывания заявки в системе от величины кванта

При маленькой величине кванта система часто переключается между заявками, что позволяет быстро обслуживать короткие задачи и сразу же возвращать в очередь длинные, но уже с уменьшенным оставшимся временем обслуживания. Это обеспечивает низкое среднее время ожидания для всех заявок и высокую пропускную способность системы. Однако с ростом величины кванта длинные заявки надолго захватывают обслуживающий аппарат, вынуждая короткие заявки проводить в очереди больше времени. Это приводит к увеличению времени ожидания для всех заявок и к росту среднего времени пребывания заявок в системе.

Выключим в модели квантование времени обслуживания, задав значение кванта равным 400. В результате получим среднее время пребывания заявки в системе, представленное на рисунке 1.4.

TABLE	MEAN	STD.DEV.	RANGE		RETRY	FREQUENCY	CUM. %
TIME	309.292	304.520			0		
			-	50.000		39213	19.61
		50.000	-	100.000		21839	30.53
		100.000	-	150.000		18625	39.84
		150.000	-	200.000		16110	47.89
		200.000	-	250.000		13671	54.73
		250.000	-	300.000		12102	60.78
		300.000	-	350.000		10077	65.82
		350.000	-	400.000		8661	70.15
		400.000	-	450.000		7653	73.98
		450.000				52049	100.00

Рисунок 1.4 – Среднее время пребывания заявки в системе с выключенным квантованием

Таким образом, при отключенном квантовании времени обслуживания среднее время пребывания заявки в системе составляет 309.292, что больше всех значений полученных ранее (даже значения при q = 64).

Квантование дает такой эффект, так как позволяет эффективно разделять длительные задачи на отдельные «сегменты», что обеспечивает более справедливое распределение ресурсов обслуживающего аппарата. Благодаря этому короткие заявки, требующие меньше времени на обработку, получают возможность быстрее проходить через систему, не дожидаясь завершения длительных операций.

Установим q=1 и назначим приоритеты так, чтобы самый высокий приоритет был у заявок с меньшей трудоемкостью. В результате выполнения такой программы выводится следующий отчет (рисунок 1.5):

	STAR	0.000	1	END 2063233	TIME .845	BLO 2	CKS 1	FACILIT	TIES	STORAGES 0		
	N	AME				VALU	E					
	EXP1 FIN MET1 MET2				100	01.0 17.0 9.0	00 00 00					
	OPR QOPR QUANT				100 100	04.0	00 00					
	TIME				100	00.0	00					
LABEL				K TYPE RATE			COUN		ENT CO	UNT RETRY		
		2	ASSI	GN		1377	58		0	0		
		3	TRAN	SFER		1377	58		0			
				RATE		415			0			
				GN		415			0			
		6	TRAN	SFER		415			0	0		
		7	GENE	RATE		206	60		0	0		
MET1			QUEU	GN	2	0341	20		8	0		
TILLI						0341			1			
		11	DEPA	E RT	_	0341			ō	0		
		12	TEST		2	0341	11		0	0		
		13	ADVA	NCE	1	8341	11 11		0	0		
			RELE		1	8341	11		0	0		
			ASSI			8341			0	0		
				SFER					0			
FIN				LATE		2000			0			
MET2				INATE NCE		2000			0			
HE12			RELE			2000			0			
				SFER		2000			0			
FACILITY OPR										INTER RETR 0 0		
QUEUE QOPR										AVE.(-0 4 8.3		
TABLE TIME		MEAN 88.906	ST:	.321					0	Y FREQUENC		
					_	-		50.000		171814 10039	85.91	
				50	.000	-	1	.00.000		10039	90.93	
					.000			200.000		3174 1758	92.51 93.39	
					.000					1362	94.07	
					.000		3	300.000		1362 977	94.56	
					.000		3	350.000		831	94.98	
				350	.000	-	4	00.000		745	95.35	
				400	.000	-	4	50.000		659	95.68	
				450	.000		_			8641	100.00	
CEC XN	PRI	M1		ASSEM	CURR	ENT	NEXT	PARA	METER	VALUE	_	
200010	3	2063228.	481	200010		10	11	L	1	1.13	7	
FEC XN	PRI	BDT		ASSEM	CURR	ENT	NEXT	PARA	METER	VALUE		
FEC XN 200012 199990 200011	3	2063252.	955	200012		0	1					
199990	1	2063272.	644	199990		0	7	7				
200011	2	2063296.	030	200011		0	4	ł				
1 F Do	OT 7 177 -								O 177	nn 017		\.

Рисунок 1.5 – Результат выполнения программы с корректно назначенными приоритетами

Таким образом, в случае корректного назначения приоритетов и q=1 среднее время пребывания заявки в системе (равное 80.906) в несколько раз

меньше среднего времени пребывания заявки в системе при одинаковых приоритетах всех заявок и q=1 (равного 149.687).

2. Замкнутая сетевая модель СМО

Ознакомимся с замкнутой сетевой моделью СМО. Данная модель имеет следующее графическое представление (рисунок 2.1):

Рисунок 2.1 – Графическое представление замкнутой сетевой модели СМО

В соответствии с исходными данными из таблицы 2.1 отредактируем приведенную программу, описывающую работу замкнутой сетевой модели СМО.

Таблица 2.1 – Исходные данные для замкнутой сетевой модели СМО

Вариант	$M[v_1]$	$M[v_2]$	$M[v_3]$	P
4	100	200	50	0.8

Ниже приведен листинг полученной программы:

```
; Задание функции EXP1 табличным способом
EXP1 FUNCTION RN1,C24
0,0/.1,.104/.2,.222/.3,.335/.4,.509/.5,.69/.6,.915
.7,1.2/.75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3
.92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5/.98,3.9
.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8

; Генерируем 3 заявки, которые поступают
; в очередь устройства OPR1
GENERATE ,,,3

МЕТ1 QUEUE QOPR1
SEIZE OPR1 ; Занимаем устройство OPR1
```

	DEPART QOPR1	
	ADVANCE 100, FN\$EXP1	
	RELEASE OPR1	; Освобождаем устройство OPR1
	TRANSFER 0.200,,MET3	; Передаем заявку в устройство OPR3
		; с вероятностью 0.2 и в устройство
		; OPR2 с вероятностью 0.8
	QUEUE QOPR2	
	SEIZE OPR2	; Занимаем устройство OPR2
	DEPART QOPR2	
	ADVANCE 200, FN\$EXP1	; Обслуживаем заявку в OPR2
	RELEASE OPR2	; Освобождаем устройство OPR2
	TRANSFER ,MET1	; Передаем заявку обратно в
		; очередь устройства OPR1
MET3	QUEUE QOPR3	
	SEIZE OPR3	; Занимаем устройство OPR3
	DEPART QOPR3	
	ADVANCE 50, FN\$EXP1	; Обслуживаем заявку в OPR3
	RELEASE OPR3	; Освобождаем устройство OPR3
	mpanceep Mem1	Description
	TRANSFER ,MET1	; Возвращаем заявку в
		; очередь устройства OPR1
CENTEDAG	TE 100000	. 22-22-22 - 22-22-22 - 22-22-22
_		; Задание времени моделирования
TERMINA	4TT T	

Запустим программу на выполнение при помощи команды START 1. В результате выполнения программы получим отчет, представленный на рисунке 2.2.

		TIME 0.000		END TIME				STORA 0	GES	
	EXP1 MET1 MET3 OPR1 OPR2 OPR3 QOPR1 QOPR2 QOPR3	AME		100 100 100 100	VALUE 000.000 2.000 14.000 002.000 004.000 006.000 001.000 003.000 005.000					
LABEL		LOC	BLOCK T	YPE 1	ENTRY COL	UNT CURR	ENT C	OUNT R	ETRY	
			GENERAT		3		0		0	
MET1		2	QUEUE		568		0		0	
			SEIZE		568		0		0	
		4	DEPART		568		0		0	
			ADVANCE		568		0		0	
		6	RELEASE		568		0		0	
			TRANSFE		568		0		0	
			OUEUE		453		2		0	
		9	SEIZE		451		0		0	
			DEPART		451		0		0	
			ADVANCE		451		1		0	
			RELEASE		450		0		0	
			TRANSFE		450		0		0	
MET3			QUEUE		115		o		0	
11210			SEIZE		115		o		0	
			DEPART		115		0		0	
			ADVANCE		115		o		0	
		_	RELEASE		115		0		0	
			TRANSFE		115		0		0	
			GENERAT		1		0		0	
			TERMINA		1		0		0	
					-		·			
FACILITY		ENTRIES								
OPR1			0.587	103.	391 1	0	0		0	
OPR2		451			730 1		0	0	0	2
OPR3		115	0.053	45.	761 1	0	0	0	0	0
QUEUE		MAX CO	ONT. ENTE	Y ENTRY	O AVE C	ONT. AVI	E.TIME	תעב ז	E. (-0)	RETRY
OOPR1			0 56		0.4					
QOPR2		2		3 105	1.0	53 23	32.452	2 30	02.588	0
QOPR3				15 105			5.344		61.461	
		-								
FEC XN	DDT	RDT	7.00	SEM CURF	PNT NEV	יי בארם	METER	777.7	THE	
						I PARAL	LLIEK	VA.	LOE	
5		100031.8		5 0						
5	U	200000.0	700	5 (20					

Рисунок 2.2 — Результат выполнения программы замкнутой сетевой модели СМО

Зафиксируем для каждой СМО загрузки, среднюю длину очереди и среднее время ожидания (таблица 2.2).

Таблица 2.2 – Экспериментальные результаты для 3 заявок

	CMO_1	CMO_2	CMO_3			
Загрузка	0.587	0.856	0.053			
Средняя длина очереди	0.445	1.053	0.006			
Среднее время ожидания	78.394	232.452	5.344			

Повторим моделирование для 6, 9 и 12 заявок в модели и зафиксируем экспериментальные результаты для каждой СМО в сводной таблице 2.3.

Таблица 2.3 – Сводная таблица экспериментальных результатов

	Количество	Загрузка	Средняя	Среднее время
	заявок в модели	Загрузка	длина очереди	ожидания
	3	0.587	0.445	78.394
CMO ₁	6	0.673	0.997	152.372
CIVIO	9	0.644	1.190	191.012
	12	0.634	1.152	183.117
	3	0.856	1.053	232.452
	6	0.968	3.292	629.477
CIVIO2	9	0.981	6.121	1209.673
	12	0.995	9.155	1763.893
	3	0.053	0.006	5.344
CMO ₃	6	0.065	0.005	4.183
C1/103	9	0.061	0.003	2.655
	12	0.060	0.005	4.382

Построим графики изменения рассмотренных параметров как функций числа заявок в модели (рисунок 2.3).

Рисунок 2.3 – Графики зависимостей параметров от числа заявок

Наиболее критичной ситуация складывается для СМО₂, которая явно является "узким местом" всей системы. Уже при минимальной нагрузке (3 заявки) её загрузка достигает 0.856. С ростом количества заявок до 12 этот показатель приближается к единице (0.995), что означает практически полную загрузку обслуживающего аппарата. Такая перегрузка закономерно приводит к росту очереди - с 1.053 до 9.155 заявок, и соответствующему увеличению времени ожидания с 232.452 до 1763.893 единиц времени. Характер роста этих показателей указывает на то, что СМО₂ не справляется с поступающей нагрузкой.

В отличие от СМО₂, СМО₁ демонстрирует более стабильное поведение. Её загрузка колеблется в диапазоне 0.587-0.673, достигая максимума при 6 заявках и несколько снижаясь при дальнейшем увеличении нагрузки. Средняя длина очереди растет умеренными темпами с 0.445 до 1.190-1.152 заявок, а время ожидания увеличивается с 78.394 до 183.117-191.012 единиц. Такой характер изменения параметров свидетельствует о том, что СМО₁ способна адаптироваться к возрастающей нагрузке.

Наиболее благополучная ситуация наблюдается в СМО₃, которая остается практически незагруженной на всех режимах работы. Её загрузка не превышает 6.5%, длина очереди колеблется в пределах 0.003-0.006 заявок, а время ожидания не превышает 5.344 единиц. Эти показатели указывают на то, что данный ресурс системы используется крайне неэффективно и представляет собой резерв производительности.

Вывод

Были изучены методы работы с моделями СМО на языке GPSS, способы задания условия окончания моделирования, формирование отчетов, переопределение параметров модели; было изучено влияние квантования времени обслуживания и назначения приоритетов на качество работы СМО; была изучена замкнутая СМО.