OS Term Project #1

Prof. Eun-Seok Ryu, TA: Jaeyeol Choi

Project 1: Simple scheduling

Programming assignment #1 due by Dec. 13. 2023 (11:59pm) KST

1. About Round-Robin CPU Scheduling

Round Robin (RR) scheduling algorithm is designed specifically for time-sharing systems. It is a preemptive version of first-come, first-served scheduling. Processes are dispatched in a first-in-first-out sequence, but each process can run for only a limited amount of time. This time interval is known as a time-slice or quantum. It is similar to FIFO scheduling, but preemption added to switches between processes.

Please implement a simulator for RR scheduling, including the ready queue and I/O queue. The parent process acts as the scheduler.

2. Basic explanations and requirements

-Parent	process:	
	Parent process creates 10 child processes.	
	Assume your own scheduling parameters: e.g., time quantum, and timer tick interval.	
	Parent process periodically receives ALARM signal by registering timer event. Students may want refer to setitimer system call. The ALARM signal serves as periodic timer interrupt (or time tick).	
	Parent process manages the ready queue and I/O queue.	
	 Elements of the queue should be pointer variables to structures holding information about each 	
	child process (e.g. pid, remaining CPU burst time) (think of PCB, though simpler).	
	The parent process performs scheduling of its child processes: The parent process accounts for the	
	remaining time quantum of all the child processes.	
	The parent process gives time slice to the child process by sending IPC message through msgq.	
	 Please note that there is msgget, msgsnd, msgrcv system calls, and IPC_NOWAIT flag. 	
	Decreases the remaining i/o burst time of processes in the i/o queue with every time tick.	
	Total running time should be more than 1 minute.	
-Child 1	process:	
	A child process simulates the execution of a user process.	
	Workload consists of infinite loop of dynamic CPU-burst and I/O-burst.	
	CPU burst is randomly determined at the time of child process creation.	
	When a child process receives a start IPC message from the parent process, it is considered to be running.	
	The CPU burst time decreases as much as the execution time.	
	About I/O operation:	

- At each dispatch, the 'creation' of I/O burst is determined randomly by a certain probability.
- o If an i/o burst is created,
 - The 'start time of I/O' is also randomly determined, as the 'I/O duration'.
 - The 'start time of I/O' come before the end of the time quantum while the process is in running state.

	 When 'start time of I/O' occurs, the next child process in the Information about the i/o is sent to the parent process via IP 	* *
	o Please refer to (option 0), (option 1), (option 2), (option 3) in section	
	If the CPU burst time of a child process ends before the time quantum, an I	
	parent.	8
- Loggii	•	
	The following contents are output for every time tick t:	
	(1) pid of the child process in running state, (2) list of processes in the ready	and i/o queue (3)
	remaining cpu burst time and i/o burst time for each process.	queue ana no queue, (3)
	Print out all the operations to the following file: schedule_dump.txt.	
	Students would like to refer to the following C-library function and system call	corintf open write
	close.	. Sprintr, open, write,
	Close.	
3. Opti	onal requirements	
- There	are three options for creating I/O burst time:	
	Option 0 (<i>Penalty</i>): Not considering I/O operations.	
	Option 1 (<i>Penalty</i>): When child process enters running state, whether to perform	rm i/o and i/o duration are
	randomly determined. After running for the designated time quantum, the cl queue if needed.	
	Option 2: When child process enters running state, 'whether to perform i/o', '	i/o duration', and 'i/o start
	time' are randomly determined for the process. When the i/o start time is reach	
	the i/o queue, and the parent process immediately dispatches another process i	_
	Option 3: When the process is created, i/o start times and each i/o duration	• •
	CPU burst time is allocated. (pre-defining 'total CPU burst time', 'i/o execution	
	execution from time x_2 to $y_2',$	1 717
- (Extra	score) Implementing priority queue:	
	Implement multi-level queues based on priority.	
	Different policies can be applied to each queue.	
	Refer the slide: Operating Systems 5_r1.pdf. pages 28 and 29	
	score) Writing experimental results in graphs and tables	
	Example: When time quantum parameter changes, how does average respons	e time and total evecution
	time differs?	e time and total execution
	time differs:	
4 6 1		1 4 4
4. Subi	nission: A .zip file containing source code, report (pdf), and schedule	<u>aump.txt</u> .
For th	e report (pdf), the following items should be included:	
	Shell scripts (commands) to build and execute the source code.	
	A table formatted below:	
	nether the code implementation is complete	O / X
Th	e setting of time quantum (which executed without errors)	ex) 50ms
	ether IPC message queue is used	O / X
	w the i/o operation is implemented (one of four options in section 3)	ex) option 2
Wł	ether the multi-level queue was implemented (extra score in section 3)	O / X
	Explanation of the code captured image of execution, and analysis of results.	
For the	source code, the following are recommended:	
	Implementation in C/C++, Building through gcc or g++ compiler in a Linux cenvironment.	or Windows WSL (WSL2)
Any qu	estion: jaeyeol816@gmail.com	

Office location: 70526