Σκουρτσή Δήμητρα Άννα el18044

3^η σειρά ασκήσεων Τεχνητή Νοημοσύνη

Λσκηση 1^η:

1.

(0,-1,4): B

(4,0,-1): A

(2,2,-1): B

(3,-1,0): A

(-2,1,-3): B

(0,-2,-1): A

Αρχικό διάνυσμα βαρών (w_0 , w_1 , w_2 , w_3) = (1,1,-1,-1), β =0.2, και f η βηματική

۸.	Λ	B:	1
н.	u.	о.	

ЕПОХН	X _K	y ĸ	$\mathbf{w}_{K}^{T}\mathbf{x}_{K}$	$f(\mathbf{w}_{K}^{T}\mathbf{x}_{K})$	$y_{K^-} f(w_K^T x_K)$	$\beta(y_{K}-f(w_{K}^{T}x_{K}))x_{K}$	Νέα βάρη
1	(1, 0, -1, 4)	1	-2	0	1-0= 1	(0.2, 0, -0.2, 0.8)	(1.2, 1, -1.2, -0.2)
1	(1, 4, 0, -1)	0	5.4	1	0-1= -1	(-0.2, -0.8, 0, 0.2)	(1, 0.2, -1.2, 0)
1	(1, 2, 2, -1)	1	-1	0	1-0= 1	(0.2, 0.4, 0.4, -0.2)	(1.2, 0.6, -0.8, -0.2)
1	(1, 3, -1, 0)	0	3.8	1	0-1= -1	(-0.2, -0.6, 0.2, 0)	(1, 0, -0.6, -0.2)
1	(1, -2, 1, -3)	1	1	1	1-1= 0	(0, 0, 0, 0)	(1, 0, -0.6, -0.2)
1	(1, 0, -2, -1)	0	2.4	1	0-1= -1	(-0.2, 0, 0.4, 0.2)	(0.8, 0, -0.2, 0)
2	(1, 0, -1, 4)	1	1	1	1-1= 0	(0, 0, 0, 0)	(0.8, 0, -0.2, 0)
2	(1, 4, 0, -1)	0	0.8	1	0-1= -1	(-0.2, -0.8, 0, 0.2)	(0.6, -0.8, -0.2, 0.2)
2	(1, 2, 2, -1)	1	-1.6	0	1-0= 1	(0.2, 0.4, 0.4, -0.2)	(0.8, -0.4, 0.2, 0)
2	(1, 3, -1, 0)	0	-0.6	0	0-0= 0	(0, 0, 0, 0)	(0.8, -0.4, 0.2, 0)
2	(1, -2, 1, -3)	1	1	1	1-1= 0	(0, 0, 0, 0)	(0.8, -0.4, 0.2, 0)
2	(1, 0, -2, -1)	0	1.2	1	0-1= -1	(-0.2, 0, 0.4, 0.2)	(0.6, -0.4, 0.6, 0.2)
3	(1, 0, -1, 4)	1	0.8	1	1-1=0	(0, 0, 0, 0)	(0.6, -0.4, 0.6, 0.2)
3	(1, 4, 0, -1)	0	-1.2	0	0-0= 0	(0, 0, 0, 0)	(0.6, -0.4, 0.6, 0.2)
3	(1, 2, 2, -1)	1	0.8	1	1-1= 0	(0, 0, 0, 0)	(0.6, -0.4, 0.6, 0.2)
3	(1, 3, -1, 0)	0	-1.2	0	0-0= 0	(0, 0, 0, 0)	(0.6, -0.4, 0.6, 0.2)
3	(1, -2, 1, -3)	1	2.6	1	1-1=0	(0, 0, 0, 0)	(0.6, -0.4, 0.6, 0.2)
3	(1, 0, -2, -1)	0	-0.8	0	0-0= 0	(0, 0, 0, 0)	(0.6, -0.4, 0.6, 0.2)

Η διαδικασία σταματάει αφού πέρασε μια εποχή και τα βάρη δεν άλλαξαν.

Άρα τα τελικά βάρη είναι $(w_0, w_1, w_2, w_3) = (0.6, -0.4, 0.6, 0.2)$.

2.

Για το διάνυσμα (-1, 2, 2) έχουμε:

 x_K : (1, -1, 2, 2), (w_0 , w_1 , w_2 , w_3) = (0.6, -0.4, 0.6, 0.2)

 $W_K^T x_K = 0.6 + 0.4 + 1.2 + 0.4 = 2.6$

 $f(\mathbf{w}_{K}^{\mathsf{T}}\mathbf{x}_{K}) = 1$

Άρα το διάνυσμα (-1, 2, 2) ταξινομείται, από το εκπαιδευμένο perceptron, στην κλάση Β.

Άσκηση 2^{η} :

 $\begin{array}{lll} d_1\colon (0,\, -1,\, 4)\colon B & \qquad & q\colon (-1,\, 2,\, 2)\\ d_2\colon (4,\, 0,\, -1)\colon A & & & \\ d_3\colon (2,\, 2,\, -1)\colon B & & \\ d_4\colon (3,\, -1,\, 0)\colon A & & \\ d_5\colon (-2,\, 1,\, -3)\colon B & & \\ d_6\colon (0,\, -2,\, -1)\colon A & & & \end{array}$

Για την απόσταση ισχύει distance(x,y) = $\sqrt{(y_1-x_1)^2+(y_2-x_2)^2+(y_3-x_3)^2}$ distance(q,d₁)= $\sqrt{(0-(-1))^2+((-1)-2)^2+(4-2)^2}$ = 3.7417 distance(q,d₂)= $\sqrt{(4-(-1))^2+(0-2)^2+((-1)-2)^2}$ = 6.1644 distance(q,d₃)= $\sqrt{(2-(-1))^2+(2-2)^2+((-1)-2)^2}$ = 4.2423 distance(q,d₄)= $\sqrt{(3-(-1))^2+((-1)-2)^2+(0-2)^2}$ = 5.3852 distance(q,d₅)= $\sqrt{((-2)-(-1))^2+(1-2)^2+((-3)-2)^2}$ = 5.1962 distance(q,d₆)= $\sqrt{(0-(-1))^2+((-2)-2)^2+((-1)-2)^2}$ = 5.0990

Ο ταξινομητής πλησιέστερου γείτονα με βάση τις παραπάνω αποστάσεις επιλέγει ως κοντινότερο γείτονα τον d_1 , ο οποίος ανήκει στην κλάση B, και άρα ταξινομεί το διάνυσμα (-1, 2, 2) στην κλάση B

Ο ταξινομητής 3 πλησιέστερων γειτόνων με βάση τις παραπάνω αποστάσεις επιλέγει ως τους 3 κοντινότερους γείτονες τους: d_1 , ο οποίος ανήκει στην κλάση B

d₃, ο οποίος ανήκει στην κλάση Β

d₆, ο οποίος ανήκει στην κλάση Α

Άρα ταξινομεί το διάνυσμα (-1, 2, 2) στην κλάση δηλαδή που ανήκει η πλειοψηφία των 3 κοντινότερων γειτόνων του, δηλαδή στην κλάση Β.

Άσκηση 3^η:

51% άντρες στη χώρα

- 1. Η πιθανότητα κάποιος που επιλέχθηκε να είναι άνδρας είναι 51% αφού στη χώρα υπάρχουν 51% άνδρες και η επιλογή γίνεται τυχαία άρα είναι ανεξάρτητα. P(A|E)=P(A) = 0.51
- 2. P(K|A) = 0.095, $P(K|\Gamma) = 0.017$

Άσκηση 4^{η} :

 $A_1 = 0.2/x_1 + 1/x_2 + 0.8/x_3$ $A_2 = 1/y_1 + 0.09/y_2$ $B = 0.7/z_1 + 1/z_2$ Κανόνας: αν η X είναι A_1 και η Y είναι σχετικά A_2 , τότε η Z είναι B

Θέλουμε το Y να είναι σχετικά A_2 άρα θα εφαρμόσουμε έναν λεκτικό τροποποιητή στην A_2 που θα μας δώσει ένα νέο ασαφές σύνολο, το HA_2 , στο οποίο είναι ένα στοιχείο όταν αυτό το στοιχείο είναι σχετικά A_2 . Αφού θέλουμε να είναι σχετικά θα χρησιμοποιήσουμε τη συνάρτηση $h(a) = \sqrt{a}$ και ισχύει $HA_2(x) = h(A_2(x))$. Άρα $HA_2 = 1/y_1 + 0.3/y_2$

Ο ασαφής κανόνας ερμηνεύεται ως: το $\langle X,Y,Z \rangle$ είναι R, όπου $R(x,y,z) = J_{\min}\left(i\big(A_1(x),HA_2(y)\big),B(z)\right)$ $J_{\min}\left(i\big(A_1(x),HA_2(y)\big),B(z)\right) = \min\{i\big(A_1(x),HA_2(y)\big),B(z)\}$ Με χρήση του συνήθη τελεστή τομής $i\big(A_1(x),HA_2(y)\big) = 0.2/x_1,y_1 + 0.2/x_1,y_2 + 1/x_2,y_1 + 0.3/x_2,y_2 + 0.8/x_3,y_1 + 0.3/x_3,y_2$

$$\begin{split} \mathsf{A}\rho\alpha\,R(x,y,z) &= \, \min\!\!\left\{i\!\left(A_1(x),HA_2(y)\right)\!,B(z)\right\} = 0.2/\mathsf{x}_1,\!\mathsf{y}_1,\!\mathsf{z}_1 + 0.2/\mathsf{x}_1,\!\mathsf{y}_1,\!\mathsf{z}_2 + 0.2/\mathsf{x}_1,\!\mathsf{y}_2,\!\mathsf{z}_1 + 0.2/\mathsf{x}_1,\!\mathsf{y}_2,\!\mathsf{z}_2 + 0.7/\mathsf{x}_2,\!\mathsf{y}_1,\!\mathsf{z}_1 + 1/\mathsf{x}_2,\!\mathsf{y}_1,\!\mathsf{z}_2 + 0.3/\mathsf{x}_2,\!\mathsf{y}_2,\!\mathsf{z}_1 + 0.3/\mathsf{x}_2,\!\mathsf{y}_2,\!\mathsf{z}_2 + 0.7/\mathsf{x}_3,\!\mathsf{y}_1,\!\mathsf{z}_1 + 0.8/\mathsf{x}_3,\!\mathsf{y}_1,\!\mathsf{z}_2 + 0.3/\mathsf{x}_3,\!\mathsf{y}_2,\!\mathsf{z}_1 + 0.3/\mathsf{x}_3,\!\mathsf{y}_2,\!\mathsf{z}_2 + 0.3/\mathsf{x}_3,\!\mathsf{z}_2,\!\mathsf{z}_2 + 0.3/\mathsf{x}_3,\!\mathsf{z$$

Αν $X=x_2$ και $Y=y_1$ τότε το ασαφές σύνολο εξόδου του συστήματος είναι $B'=0.7/z_1+1/z_2$