# Comparison of Graph Processing Systems

Tuesday, 20<sup>th</sup> October 2020

### **Motivation and Goal**

- graph processing becomes increasingly important in academic and industrial environments
- many problems modeled with graphs, e.g., machine learning and data mining
- many business models are based on graphs, e.g., viral marketing or Google's search engine
- graph sizes increase to several billion edges
- → performance, parallelism and distribution of graph algorithms becomes more important

Main Goal: Comparison of five graph processing systems in their performance on different graphs and algorithms.

### Overview

- 1. Preliminaries
  - Basics
  - Computation Styles
  - Hugepages
- 2. Frameworks
- 3. Evaluation
  - Research vs. Production Case
  - Results
- 4. Conclusion and Outlook

### **Preliminaries**

#### Graphs

A weighted, directed graph is the tuple G = (V, E, w) where the vertex set is  $V \subseteq \mathbb{N}$  and the E is the edge set with

$$E \subseteq \{(x, y) \mid x, y \in V, x \neq y\}$$

and  $w: E \to \mathbb{R}$  is a mapping of edge to a weight.



#### **Algorithms**

Single-Source Shortest-Paths (SSSP): find the shortest path from a starting vertex to every other vertex

**Breadth-first search (BFS):** find a node outgoing from a starting vertex, by increasing maximum hop count step-wise

PageRank (PR): link analysis algorithm; weighs vertices, measuring their relative importance

# Push Style



- · reads active vertex, writes neighborhood
- more efficient, if only few active vertices at the same time
- more efficient, if neighborhoods of active vertices do not overlap

# Pull Style



- reads neighborhood, writes active vertex
- → only one write and many read operations
  - less synchronization in parallel implementations needed
  - more efficient, if many vertices active at the same time

# Hugepages

- most systems use virtual memory management
  - represents an abstraction to hardware memory
  - virtual memory is organized in pages
  - translations of virtual memory to physical memory are cached, because every translation takes time
- typically, memory pages are 4 KiB in size
- hugepages can be several MiB in size → reduce number of cache misses
- especially noticeable in very memory intensive applications

## Frameworks

| Framework | Version    | NUMA     | Dist.    | Features                                                                              | Notes                                      |  |  |
|-----------|------------|----------|----------|---------------------------------------------------------------------------------------|--------------------------------------------|--|--|
| ■ Galois  | 29.06.2020 | ✓        | ( < )    | general purpose library de-<br>signed for parallel program-<br>ming, Hugepage support | distributed using Gluon                    |  |  |
| ■ Gemini  | 02.11.2016 | <b>√</b> | <b>✓</b> | distributed message-based approach from scratch                                       | version contains bugs that had to be fixed |  |  |
| ■ Giraph  | 08.05.2020 | X        | ✓        | built on Apache Hadoop                                                                | BFS is not natively supported              |  |  |
| ■ Ligra   | 14.08.2019 | ✓        | Х        | dynamically switches between push and pull style                                      |                                            |  |  |
| ■ Polymer | 28.08.2018 | ✓        | Χ        | optimizes data layout and memory access strategies                                    |                                            |  |  |

### **Evaluation**

#### Machines

vsflash1-5,

- 96 cores, of which 48 virtual
- 256 GB of RAM each<sup>1</sup>
- Ubuntu 18.04.2 LTS

#### Measurements

- execution time: time from start to finish of the console command
- calculation time: time the framework actually executed the algorithm
- · executed each test case 10 times

#### Graphs

Both rMat graphs are synthetic, others are real-world data sets; Flickr: 24MB, rMat28: 76GB



<sup>&</sup>lt;sup>1</sup>one machine only 128 GB

### **Production Case**

#### running system: multiple calculations on a single graph

- graph data stays loaded between calculations
- → short calculation times should be preferred
  - Not main focus of this presentation!<sup>2</sup>

### Research Case

- individual calculation cases: possibly new graph for each calculation
- frequently changing algorithm
- → framework should be relatively fast on different algorithms
- → overall small execution times should be preferred

<sup>&</sup>lt;sup>2</sup>see paper for details

### **Production Case Distributed**





- Giraph is fastest on SSSP and BFS on the real world graphs
- Giraph has problems with synthetic graphs
- Gemini is fastest on PR, with Giraph on second place

### Research Case Distributed





- Galois Push is faster than Pull in all cases
- Both Galois implementations fastest on SSSP or BFS
- Gemini is fastest on PR in almost all cases

# Research Case Single Node





- Giraph is either slowest or requires too much RAM (>256 GB)
- Galois is fastest in almost all cases, second fastest is Ligra
- Gemini and Polymer are comparably slow

# Galois With Hugepages

|            | Calc Time (s) |      | Exec Time (s) |      |            | Calc Time (s) |      | Exec Time (s |    |  |  |
|------------|---------------|------|---------------|------|------------|---------------|------|--------------|----|--|--|
| Graph      | w/o           | w/   | w/o           | w/   | Graph      | w/o           | w/   | w/o          |    |  |  |
| flickr     | 0.01          | 0.01 | 0.3           | 0.2  | flickr     | 0.01          | 0.01 | 0.3          | (  |  |  |
| orkut      | 0.10          | 0.02 | 8.0           | 0.5  | orkut      | 0.06          | 0.02 | 0.7          | (  |  |  |
| wikipedia  | 0.38          | 0.11 | 1.8           | 1.1  | wikipedia  | 0.17          | 0.03 | 1.7          | -  |  |  |
| twitter    | 2.47          | 0.94 | 10.8          | 5.1  | twitter    | 0.77          | 0.11 | 8.7          | 9  |  |  |
| rMat27     | 4.50          | 1.39 | 16.0          | 6.4  | rMat27     | 0.65          | 0.13 | 19.2         | 8  |  |  |
| friendster | 4.70          | 1.78 | 14.4          | 7.5  | friendster | 1.01          | 0.14 | 20.4         | 13 |  |  |
| rMat28     | 9.77          | 3.34 | 27.8          | 13.1 | rMat28     | 1.15          | 0.24 | 46.0         | 16 |  |  |
| (a) SSSP   |               |      |               |      |            | (b) PR Pull   |      |              |    |  |  |

- Hugepages reduce both calculation and execution time on all algorithms
- $\rightarrow$  Execution times can be up to 3× shorter

# Multithreaded Speedup of Galois



- Speedups can be significant, with and without hugepages
- Speedup of PR not to the same degree as on SSSP (2.5× vs. 15×)

80

100

### Conclusion and Outlook

Generally: 1) performance highly dependent on the framework, algorithm and data set 2) single node almost always preferrable, as long as RAM is sufficient

#### **Production Case**

- Giraph is very fast on distributed systems (especially SSSP and BFS)
- · Gemini is fast for distributed PR
- Gemini and Ligra are good options for single node

#### **Research Case**

 Galois is fastest in almost all cases; further improvements with hugepages possible

#### Outlook

- → incorporate new frameworks and new algorithms
- → explore range of settings and other implementations
- → repeat similar tests in the future: frameworks are updated and new ones are introduced

## **Additional Data**



Figure 6: Average times for SSSP on a single computation node



Figure 7: Average times for SSSP on the distributed cluster



Figure 8: Average times for BFS on a single computation node



Figure 9: Average times for BFS on the distributed cluster



Figure 10: Average times for PR on a single computation node



Figure 11: Average times for PR on the distributed cluster



Figure 12: Calculation time speedups on SSSP



Figure 13: Calculation time speedups on PR Pull