Software Requirements Specification (SRS)

For projects

1533 (CORAL VER2)

Version: 1.0

RESTRICTION OF USE, DUPLICATION, OR DISCLOSURE OF PROPRIETARY INFORMATION

This document contains proprietary information that is the sole property of DSIT. The document is submitted to the recipient for his use only. By receiving this document, the recipient undertakes not to duplicate the document or to disclose in part, or in whole any of the information contained herein to any third party without receiving beforehand written permission from DSIT.

B.A. Microwaves LTD.

10 Marconi St. P.O.B. 25482, Haifa 3125401

Tel. +972-4-8202715

Fax. +972-4-8202716

bamw@bamicrowaves.co.il www.bamicrowaves.co.il

Table of Contents

1	Cha	anges	3
2	Pro	ject 1533:	∠
	2.1	Introduction:	
	2.2	System block diagram	∠
	2.3	Objective	
	2.4	PLL configurations	
	2.5	Errors indications and system failures treatment	
	2.6	Synthesizer registers values	8
3	Hos	st PC serial control protocol	9
	3.1	Data / control directions	
	3.2	Host commands	
4	Sof	tware Update Session	12
	4.1	Software Update Messages	
5	Har	dware	
	5.1	MCU Schematic	14
	5.2	Microcontroller	15
	5.3	GPIO and Analog Pin Assignments	16

1 Changes

Name	Change	Version	Date
Roee Zinoue	First Edition.	1.0	25/01/18

2 Project 1533:

2.1 Introduction:

This document describes the SW operation of the CORAL VER2 unit.

The system will consist two RF channels:

Transmit channel: will output RF signal with unique pattern that generated by the on board MCU unit.

Receive channel: Will receive RF signal, if the signal match by his pattern to what expected the on board MCU will blink a connected LED to indicate about it.

Via serial connection we will able to control state of the transmitting / receiving and transmitting pattern. The system also have connect to MCU LEDs to indicate about the state of the system.

2.2 System block diagram

RX

2.3 Objective

Main object of the MCU is collection data and indicate the user system about the RF signals states.

Goals of the Tx channel:

- a. To configure synthesizer unit to transmit RF signals according to <u>"PLL configurations"</u> section.
- b. To indicate the system user about:
 - Advance power.
 - o If the signal latched by the on board synthesizer.
 - o Return power.
- c. Transfer Tx channel to stand-by mode (at this mode no transmission will occur).
- d. Turn on and off the power sensor.

Goals of the Rx channel:

- a. To receive RF signals according to "PLL configurations" section.
- b. Transfer Rx channel to stand-by mode (at this mode the system will not listen to any income RF signals).
- c. Change working frequency mode of the frequency RF signal.
- d. Turn on and off the RSSI sensor.

The above operation modes set by serial communication channel (using user inputs commands that set by terminal application).

The on board MCU unit also will start to collect samples data from on board ADC unit immediate after system initialize

Those samples will be written to MCU internal flash and will output them to user via serial channel at user request.

On system initialize the Rx / Tx frequencies will set on default values.

2.4 PLL configurations

The on board MCU need to configure on board PLL-Synthesizers to the following configurations:

Tx signals:

PLL parameters: PLL type: ADF4113

RF reference to PLL = 10 MHz

PRESCALER: 64

Frequencies steps: 10 kHz

Registers values:

prog = 0b11001001000000010010011 = 0xC90093prog = 0b000000000000111110100000 = 0x000FA0

Tx signals					
Description	Step size				
RF_{out} – Low	5.75 – 5.85 GHz	1 MHz			
RF_{out} – High	5.15 – 5.25 GHz	1 MHz			
$PLL_{\text{receive signal}} = \frac{RF_{out}}{2}$					
PLL – receive signal (Low)	2.575-2.625 GHz	0.5 MHz			
PLL – receive signal (High)	2.8625-2.9125 GHz	0.5 MHz			

Rx signals:

PLL parameters: PLL type: ADF4350

RF reference to PLL = 10 MHz

PRESCALER: 8

Frequencies steps: 10 kHz

IF FREQ=480MHz Registers values:

R1 = 0x08008321 R2 = 0x18005EC2 R3 = 0x0000004B3 R4 = 0x0085003C

R5 = 0x00580005

Rx signals						
Description	Range	Step size				
RF_{in} – Low	5.15-5.25 GHz	1 MHz				
RF_{in} – High	5.75-5.85 GHz	1 MHz				
$PLL_{\text{receive signal}} = \frac{(RF_{in} - 480 MHz)}{2}$						
PLL – receive signal (Low)	2.335-2.385 GHz	0.5 MHz				
PLL – receive signal (High)	2.6225-2.6725 GHz	0.5 MHz				

2.5 Errors indications and system failures treatment

The system have two connected LEDs that indicate about the following system states:

Green led:

This led indicate that certain system operation is set correctly. It will indicate about

- a. System initialize: the system initialize ok and ready to operate at stable state if the following tests will be pass:
 - Serial communication test: the on board MCU will send to host "start frame" and suppose to receive ACK.
 - The Flash on the MCU free space not reach to quarter of his limit size.
 - Connection to CPLD unit test: the on board MCU will send to the on board CPLD unit unique frame and suppose to receive ACK.

If all off the above tests will pass ok the green led will blink 3 times.

- b. System operation Advance power: Advanced power have received in the system transmitter. Green led will blink for 5 times.
- c. System operation synthesizer letch: the transmit synthesizer latched the configuration signals ok. Green led will blink for 7 times.
- d. System operation return power: the transmitter receive return power. The green led will blink for 9 times.
- e. Rx signals latch the Rx synthesizer receive RF signal that match the pattern of the sanded RF signal. Green led will blink for 11 times.

Red led:

This led indicate that certain system have failure on one of the requested operation. It will indicate about:

- a. Serial communication failure: The MCU sent to host "start frame" and not receive ACK for 30 seconds. Red led will blink 2 times.
- b. Flash memory failure: The Flash on the MCU free space reached to quarter or more of his limit size at this case the system will not store data at the flash until user will select to empty the flash space throw host serial application. Red led will blink 4 times.
- c. Connection to CPLD unit test failure: The MCU sent to CPLD unit "start frame" and not receive ACK for 30 seconds. Red led will blink 6 times.
- d. Synthesizer latch failure: If the on board MCU don't success to latch the selected frequency, the MCU will try to configure and send the digital words more 2 times. If after 3 times the frequency still not latched the red led will blink 8 times.

2.6 Synthesizer registers values

Note: Please check Analog devices datasheet to learn about the way of frequency in the sensitizer unit.

In order to configure the registers of both ADF4113 and ADF4350 we use Analog devices simulator (Int N-PLL software).

3 Host PC serial control protocol

The on board MCU unit will be controller by serial communication channel (based on RS-422) and via hyper terminal application. The following table will configure that commands that the host can send to the MCU.

3.1 Data / control directions

For both Rx and Tx the flow data / control direction can be describe as:

Frame description:

Each sending request command will begin with \$ char delimiter and end with <cr> (carriage return).

On each request the MCU will send ACK response command that start with "OK <cr>\$" and end with carriage return.

3.2 Host commands

#	Description	Command	Example		
		ommands			
1	Init TX system: init TX unit system, this command include carrier frequency that the system start to work with (Frequency will set in steps of 1 MHz and in	\$TI XXXX <cr> Frequency in MHz XXXX</cr>	\$TI 1230 <cr> Init Tx unit and set frequancy of 1230 MHz</cr>		
	allowed range).	фтг VVVV	ФТБ 4004		
2	Frequency change: set frequency of the TX unit (in steps of 1 MHz and in allowed range).	\$TF XXXX <cr> XXXX = Frequency in MHz</cr>	\$TF 1234 <cr> Set TX unit frequancy at 1234 MHz.</cr>		
3	Start / stop transmit: insert / stop TX unit to work at full operation mode.	\$TX 1 / 0 < cr> 1: ON 0: OFF Default: 0	\$TX 1 <cr> Set TX unit on.</cr>		
4	Get status: Get status from TX unit: Synth (PLL)t. Lock indication. Input power status. FREQ=XXXX (value in MHz). REV POWER =±XX (value in dB). FWD POWER =+XX (value in dB). TEMP=XX.X (value in Celsius degree). TRANSMIT= ON/OFF. LIGHT=ON/OFF. UNIT ID=XXX. UNIT DC=YYXX. SW VERSION= <string>. Input power status. UNIT TYPE=X (type T or R). BIT = ON/OFF. Each data value will be separate from each other with comma (",").</string>	\$TQ <cr></cr>	When we receive: 1, 1, 4230, N32, 22, 38.2, 1, 1, 123, 1234, S4321, 0, 1, 1. It will indicate that the system set on: Synth (PLL)= lock input power status on FREQ= 4230 MHZ REV POWER=-32 dB. FWD POWER=-32 dB. FWD POWER=22 dBm TEMP=38.2 c TRANMSIT=ON LIGHT=ON UNIT ID=123 UNIT DC=1234 SW VERSION=S4321 INPUT POWER=OFF UNIT TYPE=T BIT=ON		
5	BIT: start / stop status bit	\$TB 1 / 0 < cr> 1: ON 0: OFF Default: 0	\$TB 1 <cr></cr>		
6	Power range: select between high power and low power.	\$TP 1 / 0 <cr> 1: HIGH POWER 0: LOW POWER Default: 0</cr>	\$TP 1		

#	Description	Command	Example							
	RX commands									
1	Init RX system: init RX unit system, this command include carrier frequency that the system start to work with. (Frequency will set in steps of 1 MHz and in allowed range).	\$RI XXXX <cr> XXXX = Frequency in MHz</cr>	\$RI 1234 <cr></cr>							
2	Start / stop receive: insert / stop RX unit to work at full operation mode.	\$RX 1 / 0 < cr> 1: ON 0: OFF Default: 0	\$RX 1 <cr></cr>							
3	Get status: Get status from TX unit: Synt (PLL). Lock indication. Device temperature= XX.X (value in Celsius degree) Input power status (ON, OFF) FREQ=XXXX (value in MHz). RSSI=± XX (value in dBm). TEMP=XX.X (value in Celsius degree). LIGHT=ON/OFF. UNIT ID=XXX. UNIT DC=YYXX. SW VERSION= <string>. UNIT TYPE=X (type T or R). Compression point= XX (Value in dbm)</string>	\$RQ <cr></cr>	When we receive: 1, 38.2, 1, 1230, N32, 45.2, 1, 123, 1234, 000A, 0, 23 It will indicate that the system set on: Synth (PLL): lock. Device temp: 38.2 c. Input power: on. FREQ: 1230 (MHz). RSSI: -32 dBm. TEMP: 45.2 c. LIGHT: IN UNIT ID: 123 UNIT DC: 1234 SW VERSION: 10. UNIT TYPE: R. Compression point: 23 dBm.							
4	Frequency: set the RX unit frequency (in steps of 1 MHz and in the RX frequencies allowed range).	\$RF XXXX <cr> XXXX = Frequency in MHz</cr>	\$RF 1230 <cr> will set RX to work at 1230 MHz.</cr>							
5	Compression point: The command will set the point in -30 dbm or 0dbm	\$RC 1 / 0 <cr> 1: -30 dBm. 0: 0 dBm. Default: 0</cr>	\$RC 1 Set RX Compression point to work at -30 dBm.							

4 Software Update Session

The MFE software update component is a piece of software that is responsible for checking the integrity of the operational software, loading it and running it. The software update component is also responsible for getting a new software image from the host, verify its integrity and saving it to internal flash.

To start the software update process, a power up should be performed with the PROG_EN discrete line set to '0'. When PROG_EN equals '0' the software update process does not load the operational software from flash but instead waits for configuration data from the host.

The software update process will sample the PROG_EN discrete line for approx. TBD milliseconds. If while sampling the PROG_EN discrete its value does not equal '0' the software update process will load the operational software (if it exists) and jump to it.

As in the operational application, the communication channel is an RS422 Half Duplex, 1Mb/s communication channel as described in section 5.1. Also, the software update component also uses the RFFC1662 framing as described in section 5.3 and the message / response packet structure is the same.

To verify that the software update component has indeed loaded correctly, the host should request the version string from the MFE. The Version string form the MFE software update component is in the form of B.x where B denotes that this is a software update component version.

When starting a new flash programming operation, the software update process will start by erasing the flash sections affected by the data received, this step is destructive and data saved on that sector will be lost.

The software update component cannot update itself, in case that the software update component needs to be updated a physical access to the MFE will be needed (a PICit3 or similar debugger will be needed to program the MFE controller via ICSP).

Calibration parameters are not programmed via the software update process, and will not be effected by a software upgrade.

4.1 Software Update Messages

As stated above, the software update component uses the same communication channel, framing and message format as the operational software, this allows the host to use the same codebase for communicating with the MFE software update component .

The MFE software update component can receive the following messages:

- Version Request.
- Set Data Line.
- Get Data Line.
- Finished Update Process.

The MFE will respond with the following responses:

- Version Response.
- Data Line Status.
- Data Line Data.
- Ack.

5 Hardware

5.1 MCU Schematic

Fish cTMs->
Size Document Number Rev des Cot debts des Cot des

5.2 Microcontroller

Recommended PIC	PIC18F45K22 – 8 bit core
Operating voltage	3.3V
Inputs (TTL / converter)	TBD
Outputs (TTL / converter)	TBD
POR	Available
Internal clock	8MHz and up to 64Mhz
Pin count	40

Flash Memory

 The PIC microcontroller has 32Kbytes of internal flash memory. This memory will be used for both the software update component software and for the operational software.

RAM Memory

 The PIC microcontroller has 1536 bytes of internal RAM, the software will use this memory for its stack & heap.

Peripherals support:

- o Connectivity: 2-UART, 2-SPI, 2-I2C2-MSSP(SPI/I2C).
- o ADC: 28 ch, 10-bit.

5.3 GPIO and Analog Pin Assignments

		SCHEMATIC		RX	
MCU NET	1/0	NET	TX FUNCTION	FUNCTION	EXPLAIN
					RS422 Control
RC7/RX1	1	RS422RX	RS422_RX	RS422_RX	RX
RD4/AN24/SDO2			NC	NC	
RD5/AN25		RS422EN	NC	NC	
RD6/AN26/TX2	0	EN	POWER_EN	POWER_EN	
RD7/AN27/RX2		N16785247	STBY_IN	STBY_IN	When HI unit goes into STBy (EN=0). If Low the according to Software word)
Vss1	1	GND POWER	SIDI_IN	SIDI_IIV	word)
Vdd1		MCU 3p3V			
RB0/INT0/AN12	0	PWR CNTRL	PA ON		operating when negative power supply is ok and when software control used
RB1/INT1/AN10		N16949169	NC	NC	
RB2/INT2/AN8		N16920411	NC	NC	
RB3/CCP2/AN9	0	LED LIGHT EN	MET EN	MET EN	when Hi enables EXTERNAL METER BACKLIGHT
NC1					
NC2					
	0	LED C3	1.ED .C3	LED C3	Blinks when not locked , Lights up when PLL
RB4/AN11	0	LED_S2	LED_S2	LED_S2	locked

RB5/AN13/CCP3 RB6/PGC	0	LED_S1 PGC	LED_S1 PGC	LED_S1 PGC	IN TX : on in full power . Blinks in low power mode , IN RX : Blinks when below RSSI THRESHHOLD, Lights above
RB7/PGD		PGD	PGD	PGD	
M\C\L\R\/RE3		MCLR	MCLR	MCLR	
RA0/AN0 RA1/AN1	0	DAC_LDAC	DAC_LDAC	DAC_LDAC	Controls DAC AD5312ARMZ for: TX: PORT A: analog voltage
RA2/AN2	0	DAC_SYNC	DAC_SYNC	DAC_SYNC	according to measured output power TX: PORT B:
RA3/AN3	0	DAC_CLK	DAC CLK	DAC_CLK	Set negative voltage according to software control . HI
RA4/C1OUT	0	DAC_DATA	DAC_DATA	DAC_DATA	RX: PORT A: analog voltage according to measured RSSI , outputs 1,11,111,1111 , PORT B: Not used
RA5/AN4/C2OUT	IAN	RREV	RREV	RSSI	TX: Analog input detecting REV power for reading through

					software .RX : RSSI
					TX : Analog
					input for FWD
					power to
					show on
					meter and in
					software.RX:
REO/AN5	IAN	FFWR	FFWR	FFWR	not used
					Reads
					Temperature
					parameters ,
254/22/6					reads in status
RE1/AN6	IAN	TMP	TMP	TMP	
					Monitors
					voltage , if Above
			VG_MONITO		?Thereshhold ,
RE2/AN7	IAN	N16785439	R	NC	PA ON is off
Vdd2	1/314	MCU_3p3V	I N	140	1 A_011 13 011
Vss2		GND POWER			
1552		0.10 0.112			8MHZ
					EXTERNAL
OSC1/RA7		OSC1	OSC1	OSC1	CRYSTAL
OSC2/RA6		OSC2	OSC2	OSC2	
					IN TX: ADF
					4113 , IN RX :
					ADF4350 (
					Need to
					decrease
RCO	I	SYNTH_LD	SYNTH_LD	SYNTH_LD	480MHz IF)
NC3					
NC4				_	
RC1/CCP2	0	SYNTH_LE	SYNTH_LE	SYNTH_LE	
RC2/CCP1/AN14	0	SYNTH_CLK	SYNTH_CLK	SYNTH_CLK	
RC3/SCL/SCL1/SCK1	0	SYNTH_DATA	SYNTH_DATA	SYNTH_DATA	
RD0/AN20/SCL2/SCK2					
RD1/AN21/CCP4/SDA2/SDI					
2		N1678585842			
DD2/44/22		N4.6705000			TX ONLY,
RD2/AN22		N16785806	HILO		When "1" the

					tx power is set to low . When "0" Controlled by software
RD3/AN23					
RC4/SDA1/SDI1/AN16					
RC5/AN17/SDO1		N1678585824			
RC6/TX1/AN18	ı	RS422TX	RS422_TX	RS422_TX	RS422 Control TX