# Fake and real news dataset Kaggle

Link of the project:

<u>https://github.com/lmolinario/ML-Project-Fake-Real-News/tree/main</u>







#### **Objective:**

Distinguishing fake news from real news

#### Dataset:

fake-and-real-news-dataset (kaggle.com)

# Introduction



#### Tools:

Python, Pandas, scikit-learn, nltk



#### **Util modules:**

nlp, classifiers, import\_dataset, text\_representation ...

## Dataset description

#### Two files:

Fake.csv (23502 fake news article)

True.csv (21417 true news article)

#### Features:

Title: title of news

article

**Text**: body text of news article

Subject: subject of

news article

Date: publish date

of news article



# Dataset manipulation

True.csv and Fake.csv loaded as Pandas

Dataframe

Add new 'label' field

Creation of a unique News
Dataframe from the true
and fake news

Removed unused date column

0 = true news

1 = fake news



# Pre processing

- Extract the most meaningful information.
  - Append 'title' and 'text' into a new field 'title text'
  - Convert 'title\_text' to lowercase
  - Replace the non-alphanumeric characters with spaces
  - Remove words shorter than 3 characters
  - Lemmatization and stemming
  - Isolation of all unique words ('filtered\_unique') from 'filtered string'

```
['recent', 'puerto', 'govern', 'hard', 'debbi'...
['thousand', 'govern', 'hard', 'time', 'babb',...
['counsel', 'recent', 'matter', 'time', 'want'...
['counsel', 'recent', 'govern', 'chicago', 'ma...
['flat', 'giant', 'govern', 'past', 'want', 'c...
```

## Statistical analysis

- Identification of :
  - Total number of unique words: 41
  - Document with max words: id 43720 (46132 words):
  - Document with min words: id 33199 (28 words)
  - Document with max unique words: id 43923 (18196 words)
  - Document with min unique words: id 33199 (28 words)
  - Word cloud of the most common words,
  - Count plots of subjects in each class,
  - Count plot of the proportion of fake and true news in the mixed dataset.







# Strategy Design Pattern: modular text classification pipeline

#### **Key Features:**

- Abstract Class: Defines a common interface for data representation strategies.
- K-Fold Cross-Validation: Splits the data into training and testing sets.

#### **Data Representation Methods:**

#### **TokenizerRepresentation:**

- Method: Keras Tokenizer
- Process: Converts text to integers and pads sequences to a fixed length
- Usage: suitable for embedding layers in neural networks

#### TextVectorizationRepresentation:

- Method: TensorFlow's TextVectorization
- Process: Converts text to integers, pads sequences to a fixed length
- Usage: provides additional preprocessing capabilities

#### **TFIDFRepresentation**:

- Method: Scikit-learn's TfidfVectorizer
- Process: Converts text into TF-IDF numeric features
- Usage: Emphatizing the importance of words within the corpus

#### **Classification Strategies:**

- RandomForest: multiple decision trees
- NaiveBayes: binary classification
- MultiLayerPerceptronNet: Neural network-based using multi-layer perceptron for classification



# Performance Evaluation

#### Average Accuracy

Precision is the ratio of actual positive predictions to the total predicted positives.

#### Average recall

Recall is the ratio of true positive predictions to total actual positives.

# Average F1 Score

The F1 score is the harmonic mean of precision and recall.

# **Evaluation Analysis**

#### NaiveBayes

- Best Performance Metric: TF-IDF
- Why: Metrics are consistently high for TF-IDF, indicating that NaiveBayes works exceptionally well with this data representation. It shows significant improvements in precision, recall, and F1-score, highlighting its ability to leverage the importance-weighted word representation effectively.

#### PerceptronNet

- Best Performance Metric: TF-IDF
- Why: PerceptronNet exhibits the most dramatic improvement with TF-IDF, achieving near-perfect scores in all metrics. This suggests that PerceptronNet can capture and learn from the detailed features provided by TF-IDF, making it highly effective for this task.

#### RandomForest

- Best Performance Metric: TF-IDF
- Why: RandomForest maintains high performance across all data representations, with the best metrics for TF-IDF. The high F1-score indicates a good balance between precision and recall, suggesting that it effectively handles both false positives and false negatives. Its robust performance across different representations makes it a versatile choice.

Across the following data representations: ['Tokenizer', 'Vectorizer', 'TFIDF']

Average Precision values:

NaiveBayes: [0.5720542895892652, 0.5901571236861897, 0.9166550895271154]

PerceptronNet: [0.5174980026241675, 0.5245509339100118, 0.9925334849678796]

RandomForest: [0.8439982447841204, 0.8081358682813198, 0.9920351698830965]

Average Recall values:

NaiveBayes: [0.5718871781676648, 0.5902159235921273, 0.917258173970109]

PerceptronNet: [0.5960983325542836, 0.6034691675444028, 0.9925577766874021]

RandomForest: [0.8390318235615268, 0.7954277605238836, 0.9923320036700861]

Average F1-score values:

NaiveBayes: [0.571905327391753, 0.5901578289124286, 0.9168567773351598]

PerceptronNet: [0.5435357078070865, 0.5510214146955907, 0.9925451110501333]

RandomForest: [0.8400051801608613, 0.7962118669954023, 0.9921684616295635]

# Conclusion

Model with the Best Performance Overall

Random Forest consistently has high metrics across all representations, indicating robust performance regardless of the data representation used.

Why Random Forest Works Better?

**Ensemble Learning**: Uses multiple decision trees, reducing overfitting and improving generalization.

**Robustness**: Handles variance and bias balancing well by averaging multiple trees.

**Feature Importance**: Effectively handles high-dimensional data and identifies important features, improving performance across different data representations.

