

WEDS Bio-inspired robot

Wei Li, **E**mily Lathrop, **D**awoon Kim,(**S**park) Zhaoliang Zheng

Design Inspiration

- ☐ Theo Jansen's Strandbeest
- ☐ Simplicity (less motors, less problems)
- ☐ Less energy needed
- ☐ Symmetry
- ☐ Certain gait

Animaris Currens Ventosa, Oostvoorne, Netherlands (1993). Courtesy of Theo Jansen.

Leg modeling

Before optimization:

After optimization:

Initial test after assembly

Challenges

- ☐ Friction in the joints
- Clearance and spacing given fixed length shafts
- ☐ Foot traction
- □ Legs locking

Adding springs

Wider feet + grip

- ☐ Increase stability by widening the foot
- ☐ Glue gun across the bottom for traction

0.3 m/s in both directions

Turning

Controls

Move forward in a straight line -

- leg.set_joint_pos(-number_of_revolutions*2*pi + pi/2, number_of_revolutions*pi + pi/2, 0,0,-10,10)
- \Box pi/2 is the home position (one pair of legs up, one down)
- ☐ 5 revolutions of the leg/meter (10 revolutions of the motor)

Turning -

Change current gain to different values for each motor (e.g.set_joint_pos(x1,x2,0,0, - 9,10))

Moving backwards -

☐ Flip sign for motor 1 and motor 2

Future Improvements

- Use better fitting bearings to reduce wiggle (unwanted leaning)
- Add more legs in various stages of the gait for stability and turning more efficiently
- Decrease mass by using aluminum shafts instead of steel
- Adding more motors for extra complexity
- Vary leg height to be able to step over obstacles