Московский физико-технический институт (госудраственный университет)

Курс семинаров по предмету "Защита информации" Эссе

Алгоритм Rijndael

Глаз Роман Сергеевич Группа Б01-008а

Содержание

Принцип работы		
2.1	Крати	кое описание
2.2	Описа	ание процедуры трансформации round
	2.2.1	Про раундовые ключи
	2.2.2	Описание процедуры
2.3	Описа	ание вспомогательных процедур
	2.3.1	Процедура $AddRoundKey$
	2.3.2	Процедура SubBytes
	2.3.3	Процедура ShiftRows
	2.3.4	Процедура $\mathit{MixColumns}$
	2.3.5	Алгоритм генерации раундовых ключей KeyExpansion

1. Введение

Rijndael на данный момент является стандартом шифрования привительства США по результатам проведённого конкурса Advanced Encryption Standard, огранизованного Национальным институтом стандартов и технологий США.

Потребности принятия нового стандарта возникли из-за того, что предыдущий стандарт — $Data\ Encryption\ Standard$ — имел ключ длиной всего в 56 бит, что позволяло взломать шифр простым перебором ключей.

Алгоритм Rijndael стал настолько популярным, что даже производители процессоров Intel и AMD ввели аппаратную поддержку инструкций, ускоряющих работу Rijndael.

2. Принцип работы

2.1. Краткое описание

Пусть имеется набор входных данных I и ключ K, а B – количество 32-битных слов, из которых состоят ключ и входные данные, то есть $I=(i_1,\ldots,i_B,\ldots,i_{4B})$ и $K=(k_1,\ldots,k_V,\ldots,k_{4V})$. Возможные значения $B\colon 4,\,5,\,6,\,7$ и 8. Возможные значения $V\colon 4,\,5,\,6,\,7$ и 8.

Rijndael сводится к следующей формальной процедуре: получить согласно некоторым правилам шифро-текст $C = (c_1, \ldots, c_B, \ldots, c_{4B})$.

Введём понятие S (state) – текущее состояние алгоритма, которое в начале соответствует входным данным I, в процессе применения алгоритма соответствует некоторому промежуточному представлению, а после применения алгоритма – шифро-тексту C. S является матрицей размером $4 \times B$.

Алгоритм состоит из следующих процедур:

1. Исходные данные помещаются в текущее состояние S по следующему правилу:

$$S = \begin{vmatrix} s_{11} & s_{12} & \dots & s_{1B} \\ \dots & & & & \\ s_{41} & s_{42} & \dots & s_{4B} \end{vmatrix} = \begin{vmatrix} i_1 & i_2 & \dots & i_B \\ \dots & & & & \\ i_{3B+1} & i_{3B+2} & \dots & i_{4B} \end{vmatrix}$$
(1)

- 2. К состоянию S применяется процедура трансформации раунд (round) N_R 1 раз, где N_R может принимать значения от 10 до 14 включительно в зависимости от длины ключа K (10 раз соответствует минимальной длине ключа 128 бит и т.д.). Полное описание раунда изложено в главе 2.2.
- 3. К состоянию S применяется последний раунд N_R он немного отличается от предыдущих (подробнее об этом позже, см главу 2.2.2).
- 4. Состояние S благополучно копируется в шифро-текст C:

$$C: \begin{vmatrix} c_1 & c_2 & \dots & c_B \\ \dots & & & & \\ c_{3B+1} & c_{3B+2} & \dots & c_{4B} \end{vmatrix} = \begin{vmatrix} s_{11} & s_{12} & \dots & s_{1B} \\ \dots & & & \\ s_{41} & s_{42} & \dots & s_{4B} \end{vmatrix}$$
 (2)

2.2. Описание процедуры трансформации round

2.2.1. Про раундовые ключи

Для каждого раунда генерируется собственный раундовый ключ W_r размером B 32-битных слов, где r – номер раунда. Вместе с исходным шифро-ключом $W_0 = K$ имеем массив ключей размером $B \cdot (N_R + 1)$ 32-битных слов: $W = (W_0, \dots, W_{N_R})$.

Процедура генерации раундовых ключей W_r называется "Расширение ключа" (KeyExpansion, nodpobnee в главе 2.3.5).

2.2.2. Описание процедуры

Процедура round при $0 \le r < N_R$ над текущим состоянием S состоит из следующих этапов:

- 1. Применение процедуры "Сложить S с ключом раунда W_r " (AddRoundKey, no-дробнее в главе 2.3.1).
- 2. Применение процедуры "Использовать нелинейную таблицу замен для S" (SubBytes, $nodpobhee\ e\ главе\ 2.3.2$).
- 3. Применение процедуры "Сдвинуть строки в S" (ShiftRows, подробнее в главе 2.3.3).
- 4. Применение процедуры "Перемножить колонки S с полиномом" (MixColumns, $nodpobhee\ e\ главе\ 2.3.4$).

Процедура round при $r=N_R$, как уже было сказано, слегка отличается от предыдущих:

- 1. Применение процедуры "Сложить S с ключом раунда W_{N_R} " (AddRoundKey, no-дробнее в главе 2.3.1).
- 2. Применение процедуры "Использовать нелинейную таблицу замен для S" (SubBytes, $nodpobuee\ e\ главе\ 2.3.2$).
- 3. Применение процедуры "Сдвинуть строки в S" (ShiftRows, подробнее в главе 2.3.3).
- 4. Применение процедуры "Сложить S с ключом раунда" (AddRoundKey, подробнее в главе 2.3.1).

2.3. Описание вспомогательных процедур

2.3.1. Процедура AddRoundKey

TBD

2.3.2. Процедура SubBytes

TBD

2.3.3. Процедура ShiftRows

 TBD

2.3.4. Процедура MixColumns

TBD

2.3.5. Алгоритм генерации раундовых ключей KeyExpansion TBD

3. Список используемой литературы

- TBD
- TBD