Fundamentos Teóricos da Computação

CIÊNCIA DA COMPUTAÇÃO

Prof. Dr. João Paulo Aramuni

Sumário

- * Introdução às Gramáticas
- * Gramáticas Regulares
 - * Transformação em AFs
- * Gramáticas Livres de Contexto
 - * Técnicas de projeto de GLCs

Introdução às Gramáticas

* Introdução às Gramáticas

Introdução às Gramáticas

- * Gramáticas são uma outra forma de definir linguagens
 - * Existem diversos tipos de gramáticas. Cada tipo é diferido pela forma de suas regras.
 - * Neste curso estudaremos dois tipos de gramáticas
 - * Gramáticas Regulares
 - * Gramáticas Livre de Contexto
 - * As gramáticas nada mais são do que definições recursivas
 - * O elemento fundamental da gramática é a <u>regra</u>

Introdução às Gramáticas

- * Uma regra é um par ordenado (u, v) geralmente escrito na forma:
 - * $u \rightarrow v$
 - * Em que u e v são palavras que podem conter símbolos de dois alfabetos disjuntos
 - * Um com símbolos denominados *variáveis*
 - * Outro com símbolos denominados *terminais*
 - * As *variáveis* são símbolos auxiliares para gerar palavras da linguagem definida pela gramática
 - * O alfabeto da linguagem gerada só contém terminais

Regra

* Seja a regra:

$$aAB \rightarrow baA$$

- * Neste exemplo, usaremos letras maiúsculas para as variáveis e letras minúsculas para os terminais
- * Esta regra define que em qualquer palavra que contenha uma subpalavra aAB, esta subpalavra pode ser substituída por baA

Regra

* Seja a regra:

$$aAB \rightarrow baA$$

- * Assim, a partir da palavra *aABBaAB*, deriva-se:
 - * baABaAB, substituindo a primeira ocorrência de aAB
 - * aABBbaA, substituindo a segunda ocorrência de aAB

Derivação

- * A relação de derivação é representada usando ⇒
 - * Assim, temos uma possível cadeia de derivações como abaixo:

```
aABBaAB \Rightarrow baABaAB \quad (aAB \rightarrow baA)
\Rightarrow bbaAaAB \quad (aAB \rightarrow baA)
\Rightarrow bbaAbaA \quad (aAB \rightarrow baA)
```

Derivação

- * De uma gramática, consta um conjunto de regras e uma variável denominada *variável de partida*
 - * Todas as derivações devem ser iniciadas com uma palavra constituída apenas pela variável de partida
 - * As palavras geradas a partir da variável de partida de uma gramática são chamadas formas sentenciais
 - * Uma forma sentencial sem variáveis é chamada de sentença
- * A linguagem definida pela gramática é o conjunto de *sentenças* geradas pela gramática

- * Para uma gramática G, a linguagem gerada por ela é denotada por L(G). Seja a gramática G constituída pela variável de partida P e as seguintes regras:
 - 1. $P \rightarrow aAbc$
 - 2. $A \rightarrow aAbC$
 - $A \rightarrow \lambda$
 - 4. $Cb \rightarrow bC$
 - 5. $Cc \rightarrow cc$

* Toda derivação de *G* deve começar com a forma sentencial constituída pela variável de partida *P*. Um exemplo de derivação:

$$P \Rightarrow aAbc$$
 (regra 1)
 $\Rightarrow abc$ (regra 3)

* Toda derivação de *G* deve começar com a forma sentencial constituída pela variável de partida *P*. Um exemplo de derivação:

$$P \Rightarrow aAbc$$
 (regra 1)
 $\Rightarrow abc$ (regra 3)

* Isso mostra que abc é uma sentença da linguagem gerada por $G:abc\in L(G)$. Outro exemplo de derivação:

(regra 1)
(regra 2)
(regra 2)
(regra 3)
(regra 4)
(regra 4)
(regra 5)
(regra 4)
(regra 5)

- * Logo, $a^3b^3c^3 \in L(G)$
- * Na verdade, pode-se mostrar que $L(G) = \{ a^n b^n c^n \mid n \ge 1 \}$
- * Relembrar é viver:
 - * Essa linguagem <u>não</u> é regular, por esse motivo seria impossível construir um autômato finito que a reconheça. Para que o autômato possa "contar" (guardar em memória) quantos a's, b's, ou c's possua à palavra, seria necessário um autômato de pilha determinístico.

Definição Formal

- * Uma gramática é uma quádrupla (V, Σ, R, P) , em que:
 - st V é um conjunto finito de elementos denominados variáveis;
 - * Σ é um alfabeto; $V \cap \Sigma = \emptyset$;
 - * R, um subconjunto de $(V \cup \Sigma)^+ \times (V \cup \Sigma)^*$ é um conjunto finito de pares ordenados chamados regras; e
 - * $P \in V$ é uma variável conhecida como <u>variável de partida</u>.

Observações

- * Variáveis serão escritas em letra maiúscula;
- * Terminais serão escritos em letra minúscula;
- * A linguagem gerada pela gramática é o conjunto de sentenças geradas pela gramática
 - * Sentenças não possuem variáveis!

Observações

- * É muito comum uma gramática ter duas ou mais regras com o mesmo lado esquerdo. Por exemplo, a gramática do Exemplo 1, tem as regras 2 e 3 com o mesmo lado esquerdo: A (slide 10).
- * Nesse caso, pode ser útil a abreviação, colocando-se apenas um lado esquerdo e também os lados direitos das várias regras separados por "|". As regras 2 e 3 do Exemplo 1 seriam substituídas por:

$$A \rightarrow aAbC \mid \lambda$$

- * Seja a gramática $G = (V, \Sigma, R, E)$, em que:
 - * $V = \{E, T, N, D\}$
 - * $\Sigma = \{+, -, (,), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - * R contém as seguintes regras:
 - * $E \rightarrow E + T \mid E T \mid T$
 - * $T \rightarrow (E) \mid N$
 - * $N \rightarrow DN \mid D$
 - * $D \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$

- * A gramática G gera expressões aritméticas contendo números na base decimal, operadores de soma e subtração e parênteses.
- * Por meio das três regras com E do lado esquerdo, pode-se gerar uma sequência de somas e/ou subtrações de Ts (termos); por exemplo:

$$E \Rightarrow E + T$$
 (regra $E \rightarrow E + T$)
 $\Rightarrow E - T + T$ (regra $E \rightarrow E - T$)
 $\Rightarrow E - T - T + T$ (regra $E \rightarrow E - T$)
 $\Rightarrow T - T - T + T$ (regra $E \rightarrow T$)

- * Observe como as regras são recursivas à esquerda, levando à produção de uma sequência da direita para a esquerda.
- * Entretanto, as regras responsáveis pela produção dos números das expressões são *recursivas* à *direita*, redundando na produção de número da esquerda para a direita. Por exemplo, para gerar um número de quatro dígitos, pode-se derivar:

$$N \Rightarrow DN$$
 (regra $N \rightarrow DN$)
 $\Rightarrow DDN$ (regra $N \rightarrow DN$)
 $\Rightarrow DDDN$ (regra $N \rightarrow DN$)
 $\Rightarrow DDDD$ (regra $N \rightarrow DN$)

- * E, em seguida, derivar os quatro dígitos usando-se as regras com D do lado esquerdo.
- * Observe também que a geração de parênteses se dá por recursão (no caso, indireta), a qual não pode ser classificada como recursão à esquerda nem à direita. Por exemplo, na derivação:

$$E \Rightarrow T + T$$
 (regra $E \rightarrow T$)
 $\Rightarrow T + T$ (regra $E \rightarrow T$)
 $\Rightarrow (E) + T$ (regra $T \rightarrow (E)$)

A variável E aparece (recursivamente) na forma sentencial entre "(" e ")".

Gramáticas Regulares

* Gramáticas Regulares

Gramáticas Regulares

* Uma GR é uma gramática (V, Σ, R, P) , em que cada regra tem uma das seguintes formas:

```
* X \rightarrow a;
```

*
$$X \rightarrow aY$$
;

*
$$X \rightarrow \lambda$$
;

- * Em que X,Y são variáveis e a é um símbolo do alfabeto
- * Toda GR gera uma linguagem regular

Gramáticas Regulares

* Uma característica interessante das GRs é o formato das formas sentenciais geradas: wA, sendo que w só tem terminais e A é uma variável.

- * A GR abaixo gera a linguagem:
- * $L(G) = \{ w \in \{a,b,c\}^* \mid w \text{ não contém abc } \}$
- * $G = (\{A,B,C\}, \{a,b,c\}, R, A)$, em que R é:
 - * $A \rightarrow aB \mid bA \mid cA \mid \lambda$
 - * $B \rightarrow aB \mid bC \mid cA \mid \lambda$
 - * $C \rightarrow aB \mid bA \mid \lambda$

Transformando GRs em AFs

- * É possível transformar uma Gramática Regular em um AF, ou vice-versa
 - * Cada estado de um AF corresponde a uma variável da gramática
 - * Cada regra da gramática é utilizada para criar uma transição entre os estados
 - * Uma regra da forma $A \rightarrow aB$, gera uma transição do estado A para o estado B sob o símbolo a
 - * A variável de partida corresponde ao estado inicial
 - * Qualquer variável que possa ser substituída por λ corresponde a um estado final
 - * Qualquer variável que possa ser substituída por apenas um símbolo de Σ leva a um estado final que não possui transições saindo dele

- * A gramática do exemplo 3 corresponde ao AFD abaixo:
- * (Poderia ser um AFN, neste caso foi escolhido AFD)

* Gramáticas Livres de Contexto

- * GLCs geram Linguagens Livres de Contexto
 - * Todas as Linguagens Regulares são também Livres de Contexto
 - * Muitas Linguagens de Programação são LLCs
- * GLCs são a base para projeto e implementação de Compiladores
 - Especificação de Linguagens
 - * Entrada para programas que geram Analisadores Sintáticos Automaticamente (YACC, Bison, etc.)

* Regras para a vida:

"Toda gramática regular é livre de contexto, mas nem toda gramática livre de contexto é regular."

"Toda linguagem regular é livre de contexto, mas nem toda linguagem livre de contexto é regular."

* Regras para a vida:

"Uma linguagem é dita ser uma linguagem livre de contexto se existe uma gramática livre de contexto que a gera."

"Uma linguagem é dita ser uma linguagem sensível ao contexto se existe uma gramática sensível ao contexto que a gera."

Definição

* Uma GLC é uma gramática (V, Σ, R, P) , em que cada regra tem a forma:

*
$$X \rightarrow w$$
;

- * Em que $X \in V$
- * $w \in (V \cup \Sigma)^*$
- * Ou seja, cada regra só pode ter uma variável do lado esquerdo e, no lado direito, pode ter variáveis ou terminais

Definição

* Para um GLC, em cada passo de uma derivação deve-se escolher, na forma sentencial, a variável A a ser substituída pelo lado direito de uma regra com A do lado esquerdo. Ao se fazer tal substituição, diz-se que A é <u>expandida</u>.

* Seja a GLC $G = (\{P\}, \{0,1\}, R, P)$, cujas únicas duas regras de R são:

*
$$P \rightarrow 0P1 \mid \lambda$$

* A Linguagem L(G) é:

*
$$L(G) = \{0^n 1^n \mid n \in \mathbb{N}\}$$

* Seja a GLC $G = (\{P\}, \{0,1\}, R, P)$, cujas únicas duas regras de R são:

- * $P \rightarrow 0P1 \mid \lambda$: Exemplo de GLC que não é uma GR
- * A Linguagem L(G) é:
 - * $L(G) = \{0^n 1^n \mid n \in \mathbb{N}\}$: Exemplo de LLC que não é uma LR

Exemplo 5 – Análise da Regra

- Sejam duas regras
 - * $P \rightarrow 0P1 \mid \lambda$
- * Toda forma sentencial gerada por estas regras
 - * Possui a mesma quantidade de 0s e 1s
 - * A primeira metade é composta de 0s
 - * A segunda metade é composta de 1s
- * A última regra aplicada é sempre uma substituição de P por λ

* Seja a GLC $G = (\{P\}, \{0,1\}, R, P)$, cujas regras de R são:

*
$$P \rightarrow 0P0 \mid 1P1 \mid 0 \mid 1 \mid \lambda$$

* A Linguagem L(G) é:

*
$$L(G) = \{w \in \{0,1\}^* \mid w = w^r\}$$

Exemplo 6 – Análise da Regra

- Sejam as regras
 - * $P \rightarrow 0P0 \mid 1P1 \mid 0 \mid 1 \mid \lambda$
- st Toda forma sentencial gerada por estas regras é da forma $wPw^{
 m r}$
- * Á última regra aplicada pode ser uma substituição de P por:
 - * 0 Neste caso o símbolo do meio será 0;
 - * 1 Neste caso o símbolo do meio será 1;
 - * λ Neste caso a palavra terá tamanho par.

* Seja a GLC $G = (\{P\}, \{0,1\}, R, P)$, cujas regras de R são:

*
$$P \rightarrow 0P1P \mid 1P0P \mid \lambda$$

* A Linguagem L(G) é:

 $L(G) = \{w \in \{0,1\}^* \mid w \text{ tem um número igual de 0s e 1s}\}$

Um olhar para o futuro

- * Seja a GLC $G = (\{P\}, \{0,1\}, R, P)$, cujas regras de R são:
 - * $P \rightarrow 0P1P \mid 1P0P \mid \lambda$: Gramática ambígua
- * A Linguagem L(G) é:

 $L(G) = \{w \in \{0,1\}^* \mid w \text{ tem um número igual de 0s e 1s}\}$

Exemplo 7 – Análise da Regra

- * Sejam as regras
 - * $P \rightarrow 0P1P \mid 1P0P \mid \lambda$
- * Toda forma sentencial gerada por estas regras tem a mesma quantidade de 0s e 1s, pois cada regra tem a mesma quantidade de 0s e 1s
 - st G gera somente palavras de L
- * Mas G produz todas as palavras de L?
 - * Toda palavra de L é da forma:
 - * $w = \lambda \text{ (regra 3)}$
 - * w = 0y e y = x1z (regra 1)
 - * w = 1y e y = x0z (regra 2)
 - * x e z têm a mesma quantidade de 0s e 1s

GLCs e Autômatos de Pilha

- * Seja a GLC $G = (\{P\}, \{0,1\}, R, P)$, cujas regras de R são:
 - * $P \rightarrow 0P1P \mid 1P0P \mid \lambda$
- * A Linguagem L(G) é:
 - * $L(G) = \{w \in \{0,1\}^* \mid w \text{ tem um número igual de 0s e 1s} \}$
- * O AP correspondente à GLC é:

GLCs e Autômatos de Pilha

* Regras para a vida:

"É sempre possível obter uma GLC que gera a linguagem reconhecida por um AP."

* Seja a GLC $G = (\{E,T,F\}, \{t,+,*,(,)\}, R, E)$, cujas regras de R são:

*
$$E \rightarrow E+T \mid T$$

* $T \rightarrow T * F \mid F$
* $F \rightarrow (E) \mid t$

- * A Linguagem L(G) é uma linguagem para expressões aritméticas
- st Essa gramática G contém a essência da especificação da sintaxe das expressões aritméticas das linguagens de programação usuais

Exemplo 8 – Análise da Regra

- * Sejam as regras
 - * $E \rightarrow E + T \mid T$
 - * E: Expressão aritmética
 - * Um ou mais termos somados
 - * $T \rightarrow T^*F \mid F$
 - * *T* : Termo
 - * Um ou mais fatores multiplicados
 - * $F \rightarrow (E) \mid t$
 - * *F* : Fator
 - * Um terminal ou expressão entre parênteses

Árvores de Derivação

- * Um tipo de grafo muito comum em computação é a árvore. Uma árvore pode ser definida como sendo um grafo acíclico conexo. Na maioria das aplicações, existe um vértice especial denominado raiz.
- * A árvore de derivação guarda a história da derivação de uma forma sentencial a partir de uma gramática
 - * Duas derivações são equivalentes se correspondem à mesma AD
- * A cada derivação corresponde uma única AD
 - * Uma AD, geralmente, corresponde a várias derivações

Exemplo de Derivação

- * t * (t + t)
 - * 11 passos de derivação
 - * Número de vértices internos

Exemplo de Derivação

* Neste instante, tem-se duas opções para continuar a derivação:

$$E \Rightarrow T$$
 (regra $E \rightarrow T$)
 $\Rightarrow T * F$ (regra $T \rightarrow T * F$)
 $\Rightarrow F * F$ (regra $T \rightarrow F$)
 $E \Rightarrow T$ (regra $E \rightarrow T$)
 $\Rightarrow T * F$ (regra $T \rightarrow T * F$)
 $\Rightarrow T * (E)$ (regra $F \rightarrow (E)$)

* À esquerda, a primeira, e à direita, a segunda.

Ambiguidade de GLCs

- * Uma GLC é denominada ambígua quando existe mais de uma AD para alguma sentença que ela gera
- * Observe, no entanto, que a gramática é dita ambígua, não a $\underline{\text{linguagem}}$ que ela gera nem as $\underline{\text{sentenças}}$ para as quais haja mais de uma AD
- * Uma linguagem livre de contexto é inerentemente ambígua se somente pode ser gerada por gramáticas ambíguas

- * Seja a GLC $G = (\{E\}, \{t, +, *, (,)\}, R, E)$, cujas regras de R são:
 - * $E \rightarrow E + E \mid E^*E \mid (E) \mid t$
 - * Derivar t + t * t

* Primeira árvore, derivação:

```
E \Rightarrow E + E \qquad (regra E \rightarrow E + E)
\Rightarrow t + E \qquad (regra E \rightarrow t)
\Rightarrow t + E * E \qquad (regra E \rightarrow E * E)
\Rightarrow t + t * E \qquad (regra E \rightarrow t)
\Rightarrow t + t * t \qquad (regra E \rightarrow t)
```

* Segunda árvore, derivação:

```
E \Rightarrow E * E (regra E \rightarrow E * E)
\Rightarrow E + E * E (regra E \rightarrow E + E)
\Rightarrow t + E * E (regra E \rightarrow t)
\Rightarrow t + t * E (regra E \rightarrow t)
\Rightarrow t + t * t (regra E \rightarrow t)
```

- * DME Derivação mais à Esquerda
 - * Em cada passo, expande-se a variável mais à Esquerda
- * DMD Derivação mais à Direita
 - * Em cada passo, expande-se a variável mais à Direita

- * Uma derivação é dita mais à esquerda (DME) se em cada passo é expandida a variável mais à esquerda.
- * É dita mais à direita (DMD) se em cada passo é expandida a variável mais à direita.

- * Existe uma única DME e uma única DMD correspondentes a uma AD:
- * Para obter a DME a partir de uma AD, basta ir gerando os passos de derivação à medida em que se percorre a AD visitando primeiro as subárvores à esquerda, antes de visitar as subárvores à direita;
- * Para obter a DMD, visita-se primeiro as subárvores à direita.

- * Assim sendo, pode-se dizer que:
- * uma GLC é ambígua se, e somente se, existe mais de uma DME para alguma sentença que ela gere;
- * Uma GLC é ambígua se, e somente se, existe mais de uma DMD para alguma sentença que ela gere;

* No caso do Exemplo 9, haviam duas DMEs para a mesma sentença t + t * t

```
* \{0^n1^n \mid n >= 0\} \cup \{0^n1^{2n} \mid n >= 0\};

* \{0^m1^n \mid m >= n\};

* \{0^m1^n \mid m > n\};
```

*
$$\{0^{n}1^{n} \mid n >= 0\} \cup \{0^{n}1^{2n} \mid n >= 0\};$$

$$\operatorname{Para} \{0^{n}1^{n} \mid n \geq 0\} \cup \{0^{n}1^{2n} \mid n \geq 0\}:$$

$$P \to A \mid B$$

$$A \to 0A1 \mid \lambda$$

$$B \to 0B11 \mid \lambda$$

```
* \{0^m1^n\mid m>=n\}; \operatorname{Para}\ \{0^m1^n\mid m>=n\}: P\to 0P1\mid 0P\mid 0\mid \lambda
```

```
* \{0^m1^n\mid m>n\}; \operatorname{Para}\ \{0^m1^n\mid m>n\}: P\to 0P1\mid 0P\mid 0
```

* Seja a gramática *G*, cujas regras são:

$$P \rightarrow aPb \mid aaPb \mid \lambda$$

- * Mostre que G é ambígua.
- * Construa uma gramática não ambígua equivalente a G.
- * A gramática *G* gera a linguagem:

$$L = \{a^n b^k \mid k \le n \le 2k\}$$

* Seja a gramática *G*, cujas regras são:

$$P \rightarrow aPb \mid aaPb \mid \lambda$$

- * Mostre que G é ambígua.
- * *G* é ambígua, pois existem duas derivações mais à esquerda da palavra aaabb;
- * $P \Rightarrow aPb \Rightarrow aaaPbb \Rightarrow aaabb$
- * $P \Rightarrow aaPb \Rightarrow aaaPbb \Rightarrow aaabb$

* Seja a gramática *G*, cujas regras são:

$$P \rightarrow aPb \mid aaPb \mid \lambda$$

- * Construa uma gramática não ambígua equivalente a G.
- * $P \rightarrow aPb \mid X$
- * $X \rightarrow aaXb \mid \lambda$
- * Não é possível trocar *X* por a*P*b. Dessa forma, tirou-se a ambiguidade.

Primeira Técnica de Projeto para GLCs

* GLC da união de Linguagens

*
$$L = L_1 \cup L_2$$

- * Construa a Gramática G_I para a Linguagem L_I , com a variável de partida sendo P_I ;
- st Construa a Gramática G_2 para a Linguagem L_2 , com a variável de partida sendo P_2 ;
- * Combine as duas GLCs em uma GLC com variável de partida P e todas as regras das gramáticas G_1 e G_2 , adicionando-se a regra:
 - * $P \rightarrow P_1 \mid P_2$
- * Cuidado!! Para esta técnica funcionar, não pode haver variáveis repetidas entre as gramáticas, ou seja:

$$V_1 \cap V_2 = \emptyset$$

* GLC para a linguagem:

$${0^n1^n \mid n \ge 0} \cup {0^n1^{2n} \mid n \ge 0};$$

- * Regras para a primeira linguagem:
 - * $P_I \rightarrow 0P_I 1 \mid \lambda$
- * Regras para a segunda linguagem:
 - * $P_2 \rightarrow 0P_211 \mid \lambda$
- * Regra para a GLC da união:
 - * $P \rightarrow P_1 \mid P_2$

Segunda Técnica de Projeto para GLCs

* GLC da união de Linguagens

*
$$L = L_1 L_2$$

- * Construa a Gramática G_I para a Linguagem L_I , com a variável de partida sendo P_I ;
- st Construa a Gramática G_2 para a Linguagem L_2 , com a variável de partida sendo P_2 ;
- * Combine as duas GLCs em uma GLC com variável de partida P e todas as regras das gramáticas G_1 e G_2 , adicionando-se a regra:
 - * $P \rightarrow P_1 P_2$
- * Cuidado!! Para esta técnica funcionar, não pode haver variáveis repetidas entre as gramáticas, ou seja:

$$V_1 \cap V_2 = \emptyset$$

* GLC para a linguagem:

$${0^n1^n \mid n \ge 0}{0^n1^{2n} \mid n \ge 0};$$

- Regras para a primeira linguagem:
 - * $P_1 \rightarrow 0P_11 \mid \lambda$
- * Regras para a segunda linguagem:
 - * $P_2 \rightarrow 0P_211 \mid \lambda$
- * Regra para a GLC da união:
 - * $P \rightarrow P_1 P_2$

*
$$L_1 = \{0^n 1^k / 2n \le k \le 3n\};$$

*
$$L_2 = \{a^n b^k c^m / k = 2n + m\};$$

*
$$L_3 = (L_1 \cup L_2)^2$$
.

Obrigado.

joaopauloaramuni@gmail.com joaopauloaramuni@fumec.br

