Notes: Computer Age Statistical Inference – Ch 15 Multiple Testing

Yingbo Li

04/08/2022

1

Table of Contents

Classical (Before Computer Age) Multiple Testing Corrections

Bonferroni Correction

Family-wise Error Rate

False Discovery Rates

Benjamini-Hochberg FDR control

An empirical Bayes view

Local False Discovery Rates

Empirical Null

Background and notations

- Before computer age, multiple testing may only involve 10 or 20 tests. With the emerge of biomedical (microarray) data, multiple testing may need to evaluate several thousands of tests
- Notations
 - N: total number of tests, e.g., number of genes.
 - $-z_i$: the z-statistic of the *i*-th test. Note that if we perform tests other than z-test, say a t-test, then we can use inverse-cdf method to transform the t-statistic into a z-statistic, like below

$$z_i = \Phi^{-1} \left[F_{df}(t_i) \right],$$

where Φ is the standard normal cdf, and F is a t distribution cdf.

- $-I_0$: the indices of the true H_{0i} , having N_0 members. Usually, majority of hypotheses are null, so $\pi_0 = N_0/N$ is close to 1.
- Hypotheses: standard normal vs normal with a non-zero mean

$$H_{0i}: z_i \sim \mathsf{N}(0,1) \longleftrightarrow H_{1i}: z_i \sim \mathsf{N}(\mu_i,1)$$

where μ_i is the effect size for test i

Example: the prostate data

- A microarray data of
 - -n=102 people, 52 prostate cancer patients and 50 normal controls
 - $-\ N=6033\ {
 m genes}$

Figure 1: Histogram of 6033 z-values, with the scaled standard normal density curve in red

Classical multiple testing method 1: Bonferroni bound

• For an overall significance level α (usually $\alpha=0.05$), with N simultaneous tests, the Bonferroni bound rejects the ith null hypothesis H_{0i} at individual significance level

$$p_i \le \frac{\alpha}{N}$$

- Bonferroni bound is quite conservative!
 - For prostate data N=6033 and $\alpha=0.05$, the p-value rejection cutoff is very small: $p_i \leq 8.3 \times 10^{-6}$

Classical multiple testing method 2: FWER control

 The family-wise error rate is the probability of making even one false rejection

$$FWER = P(reject any true H_{0i})$$

 Bonferroni's procedure controls FWER, i.e., Bonferroni bound is more conservative than FWER control

$$\begin{aligned} \mathsf{FWER} &= P\left\{ \cup_{i \in I_0} \left(p_i \leq \frac{\alpha}{N} \right) \right\} \leq \sum_{i \in I_0} P\left(p_i \leq \frac{\alpha}{N} \right) \\ &= N_0 \frac{\alpha}{N} \leq \alpha \end{aligned}$$

FWER control: Holm's procedure

1. Order the observed *p*-values from smallest to largest

$$p_{(1)} \le p_{(2)} \le \ldots \le p_{(i)} \ldots \le p_{(N)}$$

2. Let i_{max} to be the largest index i such that

$$p_{(i)} \leq \mathsf{Threshold}(\mathsf{Holm's}) = \frac{\alpha}{N-i+1}, \text{ for all } i \leq i_{\max}$$

- 3. Reject null hypotheses $H_{0(i)}$ for all $i \leq i_{max}$
 - FWER is usually still too conservative for large N, since it was originally developed for $N \leq 20$

An R function to implement Holm's procedure

```
## A function to obtain Holm's procedure p-value cutoff
## TO BE CORRECTED!
holm = function(pi, alpha=0.1){
 N = length(pi)
 idx = order(pi)
 reject = which(pi[idx] <= alpha/(N - 1:N + 1))
 return(idx[reject])
## Download prostate data's z-values
link = 'https://web.stanford.edu/~hastie/CASI files/DATA/pro
prostz = c(read.table(link))$V1
## Convert to p-values
prostp = 1 - pnorm(prostz)
```

Illustrate Holm's procedure on the prostate data

[1] 1.771839e-05

```
## Apply Holm's procedure on the prostate data
results = holm(prostp)
## Total number of rejected null hypotheses
r = length(results); r
## [1] 6
## The largest z-value among non-rejected nulls
sort(prostz, decreasing = TRUE)[r + 1]
## [1] 4.13538
## The smallest p-value among non-rejected nulls
sort(prostp)[r + 1]
```

False discovery proportion

- FDR control is a more liberal criterion (compared with FWER), thus it has become standard for large N multiple testing problems.
- False discovery proportion

$$\mathsf{Fdp}(\mathcal{D}) = \begin{cases} a/R, & \text{if } R \neq 0 \\ 0, & \text{if } R = 0 \end{cases}$$

- A decision rule \mathcal{D} rejects R out of N null hypotheses
- a of those are false discoveries (unobservable)

False discovery rate

False discovery rates

$$\mathsf{FDR}(\mathcal{D}) = E\{\mathsf{Fdp}(\mathcal{D})\}\$$

 \bullet A decision rule ${\mathcal D}$ controls FDR at level q, if

$$\mathsf{FDR}(\mathcal{D}) \leq q$$

 $-\ \ q$ is a prechosen value between 0 and 1

Benjamini-Hochberg FDR control

1. Order the observed *p*-values from smallest to largest

$$p_{(1)} \le p_{(2)} \le \ldots \le p_{(i)} \ldots \le p_{(N)}$$

2. Let i_{max} to be the largest index i such that

$$p_{(i)} \leq \mathsf{Threshold}(\mathcal{D}_q) = \frac{q}{N}i, \text{ for all } i \leq i_{\max}$$

- 3. Reject null hypotheses $H_{0(i)}$ for all $i \leq i_{max}$
 - Default choice q = 0.1
 - Theorem: if the p-values are independent of each other, then the above procedure controls FDR at level q, i.e.,

$$\mathsf{FDR}(\mathcal{D}_q) = \pi_0 q \leq q, \quad \mathsf{where} \ \pi_0 = N_0/N$$

- Usually, majority of the hypotheses are truly null, so π_0 is near 1

An R function to implement Benjamini-Hochberg FDR control

```
## A function to obtain Holm's procedure p-value cutoff
## TO BE CORRECTED!
bh = function(pi, q=0.1){
  N = length(pi)
  idx = order(pi)
  reject = which(pi[idx] <= q/N * (1:N))

return(idx[reject])
}</pre>
```

Illustrate Benjamini-Hochberg FDR control on the prostate data

```
## Apply Holm's procedure on the prostate data
results = bh(prostp)
## Total number of rejected null hypotheses
r = length(results); r
## [1] 28
## The largest z-value among non-rejected nulls
sort(prostz, decreasing = TRUE)[r + 1]
## [1] 3.293507
## The smallest p-value among non-rejected nulls
sort(prostp)[r + 1]
```

[1] 0.0004947302

Comparing Holm's FWER control and Benjamini-Hochberg FDR control

• In the usual range of interest, large N and small i, the ratio

$$\frac{\mathsf{Threshold}(\mathcal{D}_q)}{\mathsf{Threshold}(\mathsf{Holm's})} = \frac{q}{\alpha} \left(1 - \frac{i-1}{N}\right) i$$

increases with i almost linearly

• The figure below is about the prostate data, with $\alpha=q=0.1$

Question about the FDR control procedure

- 1. Is controlling a rate (i.e., FDR) as meaningful as controlling a probability (of Type 1 error)?
- 2. How should q be chosen?
- 3. The control theorem depends on independence among the *p*-values. What if they're dependent, which is usually the case?
- 4. The FDR significance for one gene depends on the results of all other genes. Does this make sense?

Two-groups model

- Each of the N cases (e.g., genes) is
 - either null with prior probability π_0 ,
 - or non-null with probability $\pi_1=1-\pi_0$
- For case i, its z-value z_i under H_{ij} for j=0,1 has density $f_j(z)$, cdf $F_j(z)$, and survival curve

$$S_j(z) = 1 - F_j(z)$$

The mixture survival curve

$$S(z) = \pi_0 S_0(z) + \pi_1 S_1(z)$$

Bayesian false-discovery rate

• Suppose the observation z_i for case i is seen to exceed some threshold value z_0 (say $z_0=3$). By Bayes' rule, the Bayesian false-discovery rate is

$$\begin{aligned} \mathsf{Fdr}(z_0) &= P(\mathsf{case}\; i \; \mathsf{is} \; \mathsf{null} \mid z_i \geq z_0) \\ &= \frac{\pi_0 S_0(z_0)}{S(z_0)} \end{aligned}$$

 The "empirical" Bayes reflects in the estimation of the denominator: when N is large,

$$\hat{S}(z_0) = \frac{N(z_0)}{N}, \quad N(z_0) = \#\{z_i \ge z_0\}$$

An empirical Bayes estimate of the Bayesian false-discovery rate

$$\widehat{\mathsf{Fdr}}(z_0) = \frac{\pi_0 S_0(z_0)}{\hat{S}(z_0)}$$

Connection between Fdr and FDR controls

• Since $p_i = S_0(z_i)$ and $\hat{S}(z_{(i)}) = i/N$, the FDR control \mathcal{D}_q algorithm

$$p_{(i)} \le \frac{i}{N} \cdot q$$

becomes

$$S_0(z_{(i)}) \le \hat{S}(z_{(i)}) \cdot q,$$

After rearranging the above formula, we have its Bayesian Fdr bounded

$$\widehat{\mathsf{Fdr}}(z_0) \le \pi_0 q \tag{1}$$

 The FDR control algorithm is in fact rejecting those cases for which the empirical Bayes posterior probability of nullness is too small

Answer the 4 questions about the FDR control

- (Rate vs probability) FDR control does relate to the posterior probability of nullness
- 2. (Choice of q) We can set q according to the maximum tolerable amount of Bayes risk of nullness, usually after taking $\pi_0 = 1$ in (1)
- 3. (Independence) Most often the z_i , and hence the p_i , are correlated. However even under correlation, $\hat{S}(z_0)$ is still an unbiased estimator for $S(z_0)$, making $\widehat{\mathsf{Fdr}}(z_0)$ nearly unbiased for $\mathsf{Fdr}(z_0)$.
 - There is a price to be paid for correlation, which increases the *variance* of $\hat{S}(z_0)$ and $\widehat{\text{Fdr}}(z_0)$
- 4. (Rejecting one test depending on others) In the Bayes two-group model, the number of null cases z_i exceeding some threshold z_0 has *fixed* expectation $N\pi_0S_0(z_0)$. So an increase in the number of z_i exceeding z_0 must come from a heavier right tail for $f_1(z)$, implying a greater posterior probability of non-nullness $\operatorname{Fdr}(z_0)$.
 - This emphasizes the "learning from the experience of others"

Local false discovery rates

- Having observed test statistic z_i equal to some value z_0 , we should be more interested in the probability of nullness given $z_i=z_0$ than $z_i\geq z_0$
- Local false discovery rate

$$\begin{aligned} \mathsf{fdr}(z_0) &= P(\mathsf{case}\; i \; \mathsf{is} \; \mathsf{null} \mid z_i = z_0) \\ &= \frac{\pi_0 f_0(z_0)}{f(z_0)} \end{aligned}$$

• After drawing a smooth curve $\hat{f}(z)$ through the histogram of the z-values, we get the estimate

$$\widehat{\mathsf{fdr}}(z_0) = \frac{\pi_0 f_0(z_0)}{\widehat{f}(z_0)}$$

- the null proportion π_0 can either be estimated or set equal to 1

A fourth-degree log polynomial Poisson regression fit to the histogram, on the prostate data

- Solid line is the local $\widehat{\mathsf{fdr}}(z)$ and dashed lines are tail-area $\widehat{\mathsf{Fdr}}(z)$
- 27 genes on the right and 25 one the left have $\widehat{\mathsf{fdr}}(z_i) \leq 0.2$

The default cutoff for local fdr

• The cutoff $\widehat{\text{fdr}}(z_i) \leq 0.2$ is equivalent to

$$\frac{f_1(z)}{f_0(z)} \ge 4\frac{\pi_0}{\pi_1}$$

• Assuming $\pi_0 \ge 0.9$, this makes the factor factor quite large

$$\frac{f_1(z)}{f_0(z)} \ge 36$$

This is "strong evidence" against the null hypothesis in Jeffrey's scale of evidence for the interpretation of Bayes factors

Bayes factor	Evidence for M_1
< 1	negative
1-3	barely worthwhile
3-20	positive
20-150	strong
> 150	very strong

Relation between the local and tail-area fdr's

Since

$$\mathsf{Fdr}(z_0) = E\left(\mathsf{fdr}(z) \mid z \ge z_0\right)$$

Therefore

$$\mathsf{Fdr}(z_0) < \mathsf{fdr}(z_0)$$

• Thus, the conventional significant cutoffs are

$$\widehat{\mathsf{Fdr}}(z) \le 0.1$$

$$\widehat{\mathsf{fdr}}(z) \leq 0.2$$

Empirical null

- Large scale applications may allow us to empirically determine a more realistic null distribution than $H_{0i}:z_i\sim {\sf N}(0,1)$
- In the police data, a N(0,1) curve is too narrow for the null. Actually, an MLE fit to central data gives $N(0.10,1.40^2)$ as the empirical null

Empirical null estimation

- The theoretical null $z_i \sim N(0,1)$ is not completely wrong, but needs adjustment for the dataset at hand
- Under the two-group model, with $f_0(z)$ normal but not necessarily standard normal

$$f_0(z) \sim \mathsf{N}(\delta_0, \sigma_0^2),$$

to compute the local $\mathrm{fdr}(z)=\pi_0f_0(z)/f(z)$, we need to estimate three parameters $(\delta_0,\sigma_0,\pi_0)$

- Our key assumption is that π₀ is large, say π₀ ≥ 0.9, and most of the z_i near 0 are null.
- The algorithm locfdr begins by selecting a set A_0 near z=0 and assumes that all the z_i in A_0 are null
- Maximum likelihood based on the numbers and values of z_i in \mathcal{A}_0 yield the empirical null estimates $(\hat{\delta}_0, \hat{\sigma}_0, \hat{\pi}_0)$

References

- Efron, Bradley and Hastie, Trevor (2016), Computer Age Statistical Inference. Cambridge University Press
- Links to the prostate data
 - The 6033×102 data matrix: *prostmat.csv*
 - The 6033 z-values: *prostz.txt*
- A list of FDR methods in R: http://www.strimmerlab.org/notes/fdr.html