Examen partiel - Solutions

Problème 1 (8 points sur 35)

Soit f(t) la fonction suivante:

$$f(t) = \begin{cases} 0 & \text{si } t < -2 \\ 2+t & \text{si } -2 \le t < -a \\ 2-a & \text{si } -a \le t < a \\ 2-t & \text{si } a \le t < 2 \\ 0 & \text{si } t \ge 2 \end{cases}$$

avec $0 \le a \le 2$

Trouver la transformée de Fourier $F(\omega)$ de la fontion f(t) en utilisant <u>une</u> des deux méthodes proposées. Vous devez faire la question A <u>ou</u> la question B, mais pas les deux.

A- Considérer la fonction f(t) comme la différence de deux fonctions triangles bien choisies et trouver $F(\omega)$.

Solution: Nous avons $f(t) = 2 \operatorname{Tri}(t/2) - a \operatorname{Tri}(t/a)$

Par conséquent:

$$F(\omega) = 4Sa^{2}(\omega) - a^{2}Sa^{2}(\omega a/2)$$

B-Calculer la dérivée seconde de f(t) au sens des distributions et trouver $F(\omega)$.

Solution:

Examen partiel - Solutions

$$f'(t) = \begin{cases} 0 & \text{si } t < -2 \\ 1 & \text{si } -2 \le t < -a \\ 0 & \text{si } -a \le t < a \\ -1 & \text{si } a \le t < 2 \\ 0 & \text{si } t \ge 2 \end{cases}$$
 et
$$f''(t) = \delta(t+2) - \delta(t+a) - \delta(t-a) + \delta(t-2)$$

La transformée de Fourier de f''(t) est $-\omega^2 F(\omega)$ et celle de $\delta(t-\tau)$ est $e^{-j\omega\tau}$.

Donc:

$$-\omega^2 F(\omega) = e^{2j\omega} - e^{j\omega a} - e^{-j\omega a} + e^{-2j\omega}$$

Comme la fonction de départ est une fonction d'énergie finie la transformée de Fourier ne contient pas de distribution de Dirac.

D'où:

$$F(\omega) = \frac{1}{\omega^2} \left[-2\cos(2\omega) + 2\cos(\omega a) \right]$$
$$= \frac{2}{\omega^2} \left[-1 + 2\sin^2(\omega) + 1 - 2\sin^2(\omega a/2) \right]$$
$$= 4Sa^2(\omega) - a^2Sa^2(\omega a/2)$$

On retrouve donc bien le résultat de la question A.

Problème 2 (9 points sur 35)

a- Trouver la transformée de Fourier de la fonction: $f(t) = te^{-\beta t}U(t)$ avec $\beta > 0$.

Solution:

Nous savons que $e^{-\beta t}U(t) \Leftrightarrow \frac{1}{\beta + j\omega}$

Par conséquent nous aurons: $f(t) = te^{-\beta t}U(t) \Leftrightarrow j\frac{d}{d\omega} \left\{ \frac{1}{\beta + j\omega} \right\} = \frac{-j^2}{(\beta + j\omega)^2}$

D'où:

$$F(\omega) = \frac{1}{(\beta + j\omega)^2}$$

Examen partiel - Solutions

b- Quel est l'énergie totale de f(t)?

Solution:

L'énergie totale est donné par: $E = \int_{-\infty}^{+\infty} |f(t)|^2 dt$.

Nous aurons donc:
$$E = \int_{0}^{+\infty} t^2 e^{-2\beta t} dt = \frac{2}{(2\beta)^3} = \frac{1}{4\beta^3}$$
 (en utilisant $\int_{0}^{+\infty} t^2 e^{-at} dt = \frac{2}{a^3}$ avec $a > 0$)

L'énergie totale est:

$$E = \frac{1}{4\beta^3}$$

c- Quel est le pourcentage d'énergie contenue dans la bade de fréquence $-2\beta \le \omega \le 2\beta$?

Solution:

Pour calculer le pourcentage d'énergie contenue dans la bande de fréquence $-2\beta \le \omega \le 2\beta$ il faut tout d'abord calculer l'énergie contenue dans cette bande de

fréquence. La spectre d'énergie est:
$$E(\omega) = \frac{1}{2\pi} |F(\omega)|^2 = \frac{1}{2\pi} \frac{1}{(\beta^2 + \omega^2)^2}$$

On en déduit que l'énergie contenue dans la bande de fréquence est:

$$E(-2\beta \le \omega \le 2\beta) = \frac{1}{2\pi} \int_{-2\beta}^{2\beta} \frac{d\omega}{(\beta^2 + \omega^2)^2} = \frac{1}{2\pi} \frac{1}{\beta^3} \int_{-2\beta}^{2\beta} \frac{d\omega/\beta}{(1 + (\omega/\beta)^2)^2} \text{ on pose } u = \omega/\beta$$

$$= \frac{1}{2\pi\beta^3} \int_{-2}^{2} \frac{du}{(1 + u^2)^2}$$

$$= \frac{1}{2\pi\beta^3} \left[\arctan(2) + \frac{2}{5} \right] \left(\text{en utilisant } \int_{-a}^{a} \frac{du}{(1 + u^2)^2} = \arctan(a) + \frac{a}{1 + a^2} \right)$$

A présent on peut calculer le pourcentage d'énergie contenue dans la bande:

$$\% E = \frac{E(-2\beta \le \omega \le 2\beta)}{E} = \frac{\frac{1}{2\pi\beta^3} \left[\arctan(2) + \frac{2}{5} \right]}{\frac{1}{4\beta^3}} = \frac{2}{\pi} \left[\arctan(2) + \frac{2}{5} \right] = \frac{3}{3.14} = 95,5\%$$

La réponse est donc:

$$%E = 95.5\%$$

Examen partiel - Solutions

Problème 3 (10 points sur 35)

Soit $f_p(t)$ la fonction périodique définie par $f_p(t) = t^2$ pour $-1 \le t < 1$

Le but de cet exercice est de trouver la transformée de Fourier de cette fonction périodique sans calculer les coefficients de la série de Fourier qui y est associée.

a- Donner la période et la pulsation propre de cette fonction. Solution:

$$T_0 = 2$$
 et $\omega_0 = \pi$

b- En calculant la dérivée seconde de $f_p(t)$ au sens des distributions, montrer que:

$$f_p''(t) = 2 - 4 \sum_{n=-\infty}^{+\infty} \delta(t-1-2n).$$

Solution:

On constate que la fonction $f_p(t)$ est continue. Par conséquent sa dérivée au sens des distributions sera la même que la dérivée au sens des fonctions.

Nous aurons: $f_p'(t) = 2t$ pour $-1 \le t < 1$

On peut constater que $f_p'(t)$ est une fonction discontinue aux points t = 2n + 1 et qu'au sens des fonction la dérivée de $f_p'(t)$ est constante et vaut 2.

Examen partiel - Solutions

Calculons le saut de $f'_p(t)$ aux points t = 2n + 1:

$$\sigma(f_p', 2n+1) = -4 \ \forall n$$

Nous pouvons maintenant calculer la dérivée de $f_p'(t)$ au sens des distributions:

$$f_p''(t) = 2 + \sum_{n = -\infty}^{+\infty} \sigma(f_p', 2n + 1) \delta(t - (2n + 1)) = 2 - 4 \sum_{n = -\infty}^{+\infty} \delta(t - (2n + 1))$$

On note $F(\omega)$ la transformée de Fourier de $f_p(t)$. c-Calculer la transformée de Fourier de l'équation trouvée en b-.

Solution:

Nous avons:

$$f_p''(t) \Leftrightarrow -\omega^2 F(\omega)$$

$$2 \Leftrightarrow 4\pi \delta(\omega)$$

$$\sum_{n=-\infty}^{+\infty} \delta(t - (2n+1)) \Leftrightarrow \sum_{n=-\infty}^{+\infty} e^{-j\omega(2n+1)}$$

La relation dans le domaine des fréquenciel est donc:

$$-\omega^2 F(\omega) = 4\pi\delta(\omega) - 4\sum_{n=-\infty}^{+\infty} e^{-j\omega(2n+1)}$$

Comme
$$\sum_{n=-\infty}^{+\infty} e^{-jn\tau\omega} = \frac{2\pi}{\tau} \sum_{n=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi n}{\tau}\right), \text{ nous aurons:}$$

$$\sum_{n=-\infty}^{+\infty} e^{-j\omega(2n+1)} = e^{-j\omega} \sum_{n=-\infty}^{+\infty} e^{-j2n\omega} = e^{-j\omega}\pi \sum_{n=-\infty}^{+\infty} \delta(\omega - n\pi) = \pi \sum_{n=-\infty}^{+\infty} e^{-jn\pi} \delta(\omega - n\pi) = \pi \sum_{n=-\infty}^{+\infty} (-1)^n \delta(\omega - n\pi)$$

Ainsi nous aurons:

$$-\omega^{2}F(\omega) = 4\pi\delta(\omega) - 4\pi\sum_{n=-\infty}^{+\infty}(-1)^{n}\delta(\omega - n\pi) = -4\pi\sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty}(-1)^{n}\delta(\omega - n\pi)$$

Examen partiel - Solutions

d- Trouver une solution particulière de l'équation c- et donner la solution générale.

Solution:

En remarquant que $\omega^2 \delta(\omega - n\pi) = n^2 \pi^2 \delta(\omega - n\pi)$, on obtient aisément qu'une solution particulière de cette équation est:

$$H(\omega) = 4\pi \sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty} \frac{\left(-1\right)^n}{n^2 \pi^2} \delta(\omega - n\pi)$$

La solution générale est donc:

$$F(\omega) = H(\omega) + C_0 \delta(\omega) + C_1 \delta'(\omega)$$

e- En utilisant le fait que $f_p(t)$ est une fonction périodique et en calculant $F_{s\acute{e}rie}(0)$, donner l'expression de la transformée de Fourier de $f_p(t)$

Solution:

Comme la fonction f(t) est périodique nous savons que:

$$F(\omega) = 2\pi \sum_{n=-\infty}^{+\infty} F_{s\acute{e}rie}(n) \delta(\omega - n\omega_0)$$

Par conséquent, nous aurons:

- $F_{s\acute{e}rie}(n) = \frac{2(-1)^n}{n^2\pi^2}$ pour tout $n \neq 0$
- $C_1 = 0$ puisqu'il n'y a aucun terme en δ' et

•
$$C_0 = 2\pi F_{s\acute{e}rie}(0) = 2\pi \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} f(t) dt = \pi \int_{-1}^{1} t^2 dt = \frac{2\pi}{3}$$
.

La transformée de Fourier de f(t) est donc

$$F(\omega) = 2\pi \sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty} \frac{2(-1)^n}{n^2 \pi^2} \delta(\omega - n\pi) + \frac{2\pi}{3} \delta(\omega)$$

Examen partiel - Solutions

Problème 4 (8 points sur 35)

a- Calculer la tranformée de Fourier $F(\omega)$ du signal $f(t) = m(t)\cos(\omega_0 t)$ en fonction de la transformée de Fourier $M(\omega)$ de m(t).

Solution:

Comme $\cos(\omega_0 t) = \frac{1}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t})$ nous aurons:

$$F(\omega) = \frac{1}{2} \{ M(\omega - \omega_0) + M(\omega + \omega_0) \}$$

On suppose que le spectre d'amplitude de $M(\omega)$ est à support borné (c'est à dire que $|M(\omega)| = 0$ pour $|\omega| \ge b$).

Sa représentation est donnée ci -dessous.

On suppose que $\omega_0 > b$

b-Représenter le spectre d'amplitude de $F(\omega)$.

Solution:

Comme $\omega_0 > b$ on va retrouver le spectre d'amplitude de $M(\omega)$ dédoubler aux fréquences: $+\omega_0$ et $-\omega_0$.

Examen partiel - Solutions

c-Donner la transformée de Fourier $G(\omega)$ de $g(t) = f(t)\cos(\omega_0 t)$.

Indication: on pourra se servir du fait que $\cos^2(\omega_0 t) = \frac{\cos(2\omega_0 t) + 1}{2}$

Solution:

Nous aurons:
$$g(t) = m(t)\cos^2(\omega_0 t) = \frac{1}{2}m(t)\{\cos(2\omega_0 t) + 1\}$$

Par conséquent:

$$G(\omega) = \frac{1}{2}M(\omega) + \frac{1}{4}(M(\omega - 2\omega_0) + M(\omega + 2\omega_0))$$

d-Représenter le spectre d'amplitude de $G(\omega)$. Comment faudrait-il faire pour retrouver le spectre d'amplitude de $M(\omega)$?

Solution:

On peut constater que par filtrage passe bas on retrouve le spectre de $M(\omega)$

GEL19962: Analyse des signaux **Examen partiel - Solutions**

Question bonus (2points) On suppose maintenant que $\omega_0 < b$

e-Représenter le spectre d'amplitude de $F(\omega)$.

Solution:

On peut constater cette fois-ci que le spectre déplacé en $+\omega_0$ vient chevaucher celui déplacé en $-\omega_0$.

On obtient donc finalement le résultat suivant:

GEL19962: Analyse des signaux **Examen partiel - Solutions**

f- Représenter le spectre d'amplitude de $G(\omega)$. Peut-on encore retrouver le spectre d'amplitude de $M(\omega)$?

Solution:

Comme dans le cas où $\omega_0 > b$ On va retrouver la moitié du spectre d'amplitude de $M(\omega)$ centré en 0 et le quart du spectre d'amplitude de $M(\omega)$ aux fréquences $+2\omega_0$ et $-2\omega_0$. Le problème est que les parties de spectre en $+2\omega_0$ et $-2\omega_0$ viennent chevaucher le spectre centré en 0. La figure ci-après explique bien ce qui se passe:

On obtient donc:

On constate donc qu'il est impossible de retrouver le spectre de $M(\omega)$.