Instacart: Data Architecture & Analytics

1. Preparación del entorno de desarrollo

- 1. Entorno de trabajo
 - Desarrollo en un ambiente en local.
 - Uso de ambientes virtuales para manejo de dependencias.
- 2. Instalación de herramientas necesarias
 - **Python 3.x** (Version necesaria para las dependencias)
 - MySQL (Servidor en local)
 - Cliente de Snowflake (Libreria de python)
 - MageAl (para la orquestación de la tubería de datos).
 - Cualquier librería adicional para análisis (pandas, numpy, matplotlib) y visualizaciones (seaborn, plotly) si se necesitan.
- 3. Organización del proyecto

Estructura del proyecto:

```
├── data/  # Carpeta donde se guardan temporalmente los CSVs
├── scripts/  # Scripts de Python para la carga inicial
├── notebooks/  # Notebooks para EDA e insights discovery
├── data_pipeline_engine/  # Configuración y archivos de MageAI
├── docs/  # Documentación del proyecto
├── README.md  # Descripción general
└── requirements.txt # Dependencias de Python
```

2. Ingesta de datos a MySQL (Script en Python)

- 1. Descarga de los datasets
 - Los estudiantes deberán descargar los archivos CSV proporcionados (instacart_orders.csv, products.csv, order_products.csv, aisles.csv, departments.csv) desde la plataforma D2L.
- 2. Creación de la base de datos y tablas en MySQL
 - Elaborar un script en Python que:
 - Se conecte a MySQL (mediante pymysql, mysql-connector-python u otra librería).
 - Crear la base de datos si no existe: "instacart_db".
 - Cree las tablas necesarias (siguiendo la estructura de cada CSV).
 - Inserte los datos de cada CSV en la tabla correspondiente.

- o Debe manejar:
 - Tipos de datos adecuados (INT, VARCHAR, FLOAT, etc.).
 - Posibles claves primarias, foráneas, etc.

3. Ejecución del script

 Verificar que, con un solo comando, se ejecute todo el proceso de creación y carga de tablas, sin intervención adicional del usuario.

3. Creación de la tubería de datos a Snowflake con MageAl

1. Configuración de MageAl

- Crear un nuevo proyecto de MageAl.
- Ajustar la conexión a la base de datos MySQL (fuente) y la conexión a Snowflake (destino).

2. Construcción de la tubería (ELT)

- Definir un pipeline donde se extraen los datos de MySQL y se cargan directamente a Snowflake en el schema "RAW" en una base de datos "INSTACART DB".
- En esta etapa, se mueven los datos tal cual se encuentran en MySQL al entorno de Snowflake, sin transformaciones, con la finalidad de tener una "copia fiel" de los datos originales.

3. Validaciones iniciales

- Asegurarse de que en Snowflake queden creadas las tablas de "RAW" con los mismos nombres y columnas que en MySQL
- Verificar la consistencia en número de filas cargadas y ids presentes, data tests para verificar que ningun dato se perdio en la tuberia entre la fuente y raw.

4. Exploratory Data Analysis (EDA) en el schema RAW (Notebook)

1. Creación de un Notebook

 Utilizar un Jupyter Notebook que se conecte a Snowflake que se llame: "eda.ipynb".

2. Análisis exploratorio

- Inspeccionar cada tabla:
 - **Dimensión de los datos**: cuántas filas y columnas.
 - Estadísticos descriptivos básicos: promedio, conteo de valores únicos, minimos, maximos, desviacion estandar.

- **Distribuciones**: histogramas para valores numéricos.
- Identificación de problemas de calidad:
 - Datos ausentes (NaN, NULL).
 - Registros duplicados.
 - Inconsistencias en tipos de datos.
 - Posibles valores atípicos.

3. Conclusiones y plan de acción

- Documentar los hallazgos de la data sucia o problemáticas detectadas.
- o Proponer un plan de transformación y curación:
 - Limpieza de valores ausentes (imputación, eliminación).
 - Eliminación o consolidación de duplicados.
 - Conversión de tipos de datos o normalización.

5. Diseño de la tubería de transformación y modelado dimensional (star-schema)

1. Modelado dimensional

- Decidir cuáles tablas serán dimensiones (por ejemplo, dim_products, etc.) y cuál/es serán la(s) tabla(s) de hechos (fact_orders, etc.).
- o Definir claves primarias, foráneas y la relación en estrella (star-schema).
- Planificar las columnas que se van a incluir en cada dimensión y cada hecho (por ejemplo: order_id, user_id, métricas, etc).

2. Implementación de la transformación

- Crear una nueva tubería en MageAl o un flujo dentro de la misma, que:
 - 1. **Extraiga** datos del schema RAW.
 - 2. **Transforme** y limpie conforme al plan de acción del EDA:
 - Manejar valores faltantes.
 - Eliminar duplicados.
 - Generar columnas derivadas (por ejemplo, formato de fecha/hora).
 - Mapear a los tipos de datos correctos.
 - Modelar la tabla segun si es dimension o hecho (dimension o fact)
 - Cargar la tabla con el nombre correspondiente.
 - 3. **Cargue** los datos en las tablas finales del **schema CLEAN** en Snowflake, siguiendo el star-schema definido.

3. Validación de la tabla final

- Revisar que el número de registros y las relaciones concuerden con lo esperado después de la limpieza.
- Opcional: incluir métricas de calidad de datos (por ejemplo: cuántos registros fueron descartados, cuántos se corrigieron, etc.).

6. Análisis final para obtención de insights

Una vez los datos están en la capa **CLEAN** con un modelo dimensional, se debe realizar un Notebook llamado: "insights.ipynb" para responder a las siguientes preguntas:

1. Comportamiento de compra según día de la semana

• Analizar la distribución de órdenes por cada día (0 = domingo, 1 = lunes, etc.).

2. Comportamiento de compra según hora del día

• Evaluar la hora de las compras y ver la frecuencia por cada hora (0–23).

3. Comportamiento según hora del día y día de la semana

 Cruzar las dos variables para ver si hay días en que la compra por horas difiera del patrón general.

4. Distribución de las órdenes hechas por los clientes

 ¿Hay clientes que hacen más órdenes que otros? ¿Cuántas órdenes hace un cliente en promedio?

5. Top 20 productos más frecuentes

Contar la frecuencia con que aparecen los productos en las órdenes.

6. ¿Cuántos artículos se compran generalmente en un pedido?

Distribución de la cantidad de artículos por orden.

7. Top 20 artículos que se vuelven a pedir con más frecuencia

o Productos con mayor índice de reorder.

8. Proporción de pedidos que se vuelven a pedir para cada producto

 Para cada producto, calcular cuántas veces es "reordenado" respecto al total de pedidos del mismo.

9. Proporción de productos pedidos que se vuelven a pedir para cada cliente

 Cuántos productos vuelven a pedir los clientes en relación a la cantidad total de productos comprados por cliente.

10. Top 20 artículos que la gente pone primero en el carrito

 Orden por la columna add_to_cart_order = 1 para identificar los productos más comunes en primera posición.

7. Presentación y documentación

1. Codigo fuente:

- Versionado: Se debe usar Git/GitHub para el control de versiones del proyecto, subir el proyecto a un repositorio y publicar la URL en la tarea del D2L. Un unico repositorio para todo el proyecto.
 - Se revisara el ultimo commit hecho hasta antes de la hora de entrega

2. Reporte final, como si fuera para los directivos de la empresa

- Elaborar una presentación con los principales hallazgos y conclusiones.
- Destacar los puntos críticos del proyecto:
 - Cómo fue el proceso de limpieza y por qué.
 - Por qué se eligió un cierto diseño de star-schema.
 - Qué consideraciones de negocio influyeron en las transformaciones de datos.
- o Incluir gráficos y tablas que ilustren las respuestas a las preguntas anteriores.

3. Buenas prácticas

- Mantener la **reproducibilidad** del proyecto:
 - Scripts claros y bien comentados.
 - Documentar cada paso del pipeline en MageAl.
 - Añadir un README con instrucciones claras para correr cada componente.

8. Puntos extras (opcional)

- Seguridad: Asegurar que las credenciales de MySQL y Snowflake se manejen con cuidado (idealmente con variables de entorno, no en texto plano, y con privilegios limitados).
- Automatización: En la medida de lo posible, configurar la tubería de MageAl para que se ejecute de manera automática (por schedule), simulando un entorno de producción.