Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

Zbierka úloh z Logiky pre informatikov

Ján KĽUKA, Júlia PUKANCOVÁ, Martin HOMOLA, Jozef ŠIŠKA

Letný semester 2019/2020

Posledná aktualizácia: 18. februára 2020

1 Atomické formuly

1.1 Sémantika atomických formúl

1.1.1 Príklad. Uvažujme jazyk \mathcal{L} logiky prvého rádu s množinami symbolov $\mathcal{C}_{\mathcal{L}} = \{\text{Anna, Boris, mama, oco}\}$ a $\mathcal{P}_{\mathcal{L}} = \{\text{dievča}^1, \text{chlapec}^1, \text{sestra}^2, \text{uprednostňuje}^3 \}$, pričom zamýšľaný význam predikátových symbolov je:

Predikát	Význam
dievča(x)	<i>x</i> je žena
chlapec(x)	x je chlapec
sestra(x, y)	<i>x</i> je sestra <i>y</i>
uprednostňuje (x, y, z)	x uprednostňuje y pred z

Preložte nasledujúce atomické formuly do čo najprirodzenejších výrokov v slovenčine:

(A_1) dievča(Anna)	(B_1) dievča(mama)	
(A_2) chlapec(Boris)	(B_2) chlapec(oco)	
(A_3) sestra(Anna, Boris)	(B_3) uprednostňuje (mama, Boris, Anna)	
(A_4) uprednostňuje(mama, Anna, Boris)	(B_4) uprednostňuje(oco, Boris, Anna)	
(A_5) uprednostňuje(Boris, Boris, Anna)		
Riešenie. Každú atomickú formulu zo zadania preložíme do vety v prirodzenom jazyku.		
(A_1) Anna je dievča.	(B_1) Mama je dievča.	
(A_2) Boris je chlapec.	(B_2) Oco je chlapec.	
(A_3) Anna je sestra Borisa.	(B_3) Mama uprednostňuje Borisa pred An-	
(A_4) Mama uprednostňuje Annu pred Bori-	nou.	
som.	(B_4) Oco uprednostňuje Borisa pred An-	
(A_5) Boris uprednostňuje samého seba pred	nou.	
Annou.	4	

1.1.2 Príklad. Koľko atomických formúl môžeme zostrojiť v jazyku \mathcal{L} z úlohy 1.1.1?

Riešenie. Počet atomických formúl v jazyku $\mathcal L$ závisí od počtu konštánt v jazyku $\mathcal L$ (teda od kardinality množiny $\mathcal C_{\mathcal L}$) a od jednotlivých arít jednotlivých predikátov z množiny $\mathcal P_{\mathcal L}$.

V jazyku \mathcal{L} máme $|\mathcal{C}_{\mathcal{L}}| = 4$.

Pomocou predikátového symbolu, ktorého arita je 1 teda môžeme vytvoriť v jazyku $\mathcal L$ 4 atomické formuly. Kedže unárne predikátové symboly máme v $\mathcal P_{\mathcal L}$

 \bigcirc Pomôcka. Vo všeobecnosti platí, že pre ľubovolný predikátový symbol $p \in \mathcal{P}_{\mathcal{L}}$ s aritou k a pre $|\mathcal{C}_{\mathcal{L}}| = n$ môžeme v jazyku \mathcal{L} vytvoriť n^k atomických formúl.

dva (dievča a chlapec), dokopy vytvoríme 8 atomických formúl.

Pre binárny predikátový symbol (sestra) vieme vytvoriť 4² atomických formúl, teda 16. K tejto možnosti treba prirátať aj rovnostné atomické formuly, ktoré vytvoríme pomocou symbolu rovnosti \doteq . Tento symbol je tiež binárny, a teda formúl bude opäť 16.

Analogicky pre ternárny predikátový symbol (uprednostňuje) vytvoríme $4^3 = 64$ atomických formúl.

1.1.3 Príklad. Uvažujme jazyk \mathcal{L} a atomické formuly z úlohy 1.1.1. Rozhodnite, ktoré z formúl $A_1, \ldots, A_5, B_1, \ldots, B_4$ sú pravdivé v štruktúre $\mathcal{M} = (D, i)$, kde

$$D = \{1,2,3,4,5\}$$

$$i(\mathsf{Anna}) = 1, \quad i(\mathsf{Boris}) = 2, \quad i(\mathsf{mama}) = 3, \quad i(\mathsf{oco}) = 4,$$

$$i(\mathsf{diev\check{ca}}) = \{1,5\},$$

$$i(\mathsf{chlapec}) = \{2,4,5\},$$

$$i(\mathsf{sestra}) = \{(3,4),(1,2)\},$$

$$i(\mathsf{uprednost\check{nuje}}) = \{(3,1,2),(3,2,1),(5,4,1),(5,3,5)\}.$$

Riešenie.

- (A_1) dievča(Anna) je pravdivé v \mathcal{M} , skrátene $\mathcal{M} \models$ dievča(Anna), pretože $i(\mathsf{Anna}) = 1 \in \{1,5\} = i(\mathsf{dievča}).$
- (A_2) $\mathcal{M} \models \text{chlapec}(\mathsf{Boris}), \text{pretože } i(\mathsf{Boris}) = 2 \in i(\mathsf{chlapec}).$
- (A_3) $\mathcal{M} \models \operatorname{sestra}(\operatorname{Anna},\operatorname{Boris}),$ pretože $(i(\operatorname{Anna}),i(\operatorname{Boris}))=(1,2)\in i(\operatorname{sestra}).$
- (A_4) $\mathcal{M} \models$ uprednostňuje(mama, Anna, Boris), pretože $(i(\text{mama}), i(\text{Anna}), i(\text{Boris})) \in i(\text{uprednostňuje}).$
- (A_5) uprednostňuje(Boris, Boris, Anna) nie je pravdivé v \mathcal{M} , skrátene $\mathcal{M} \not\models$ uprednostňuje(Boris, Boris, Anna), pretože $(i(\mathsf{Boris}), i(\mathsf{Boris}), i(\mathsf{Anna})) \not\in i(\mathsf{uprednostňuje}).$
- (B_1) \mathcal{M} $\not\models$ dievča(mama), pretože i(mama) \notin i(dievča).
- (B_2) \mathcal{M} ⊨ chlapec(oco), pretože i(oco) ∈ i(chlapec).

- (B_3) $\mathcal{M} \models \text{uprednostňuje}(\text{mama, Boris, Anna}),$ pretože $(i(\text{mama}), i(\text{Boris}), i(\text{Anna})) \in i(\text{uprednostňuje}).$
- (B_4) $\mathcal{M} \not\models \text{uprednostňuje}(\text{oco}, \text{Boris}, \text{Anna}),$ pretože $(i(\text{oco}), i(\text{Boris}), i(\text{Anna})) \notin i(\text{uprednostňuje}).$
- **1.1.4 Príklad.** Uvažujme opäť jazyk \mathcal{L} a atomické formuly z úlohy 1.1.1. Zostrojte štruktúry \mathcal{M}_1 , \mathcal{M}_2 a \mathcal{M}_3 pre jazyk \mathcal{L} tak, aby každá z nich *súčasne* bola modelom všetkých formúl A_1, \ldots, A_5 , ale nebola modelom žiadnej z formúl B_1, \ldots, B_4 a aby *zároveň*:

þ

- a) doména štruktúry \mathcal{M}_1 mala aspoň 6 prvkov;
- b) doména štruktúry \mathcal{M}_2 mala najviac 3 prvky;
- c) doména štruktúry \mathcal{M}_3 mala najviac 1 prvok.

Riešenie.

a) Štruktúra \mathcal{M}_1 s aspoň 5 prvkami v doméne:

$$\mathcal{M}_1 = (\{a,b,c,d,m,o\},i_1)$$

$$i_1(\mathsf{Anna}) = a, \quad i_1(\mathsf{Boris}) = b, \quad i_1(\mathsf{mama}) = m, \quad i_1(\mathsf{oco}) = o,$$

$$i_1(\mathsf{diev\check{c}a}) = \{a\},$$

$$i_1(\mathsf{chlapec}) = \{b\},$$

$$i_1(\mathsf{sestra}) = \{(a,b),(c,d)\},$$

$$i_1(\mathsf{uprednost\check{n}uje}) = \{(m,a,b),(o,a,b),(b,b,a)\}.$$

b) Štruktúra \mathcal{M}_2 s najviac 3 prvkami v doméne:

$$\begin{split} \mathcal{M}_2 &= (\{a,b,c\},i_2) \\ i_2(\mathsf{Anna}) &= a, \quad i_2(\mathsf{Boris}) = b, \quad i_2(\mathsf{mama}) = c, \quad i_2(\mathsf{oco}) = c, \\ i_2(\mathsf{diev\check{c}a}) &= \{a\}, \\ i_2(\mathsf{chlapec}) &= \{b\}, \\ i_2(\mathsf{sestra}) &= \{(a,b),(c,c)\}, \\ i_2(\mathsf{uprednost\check{n}uje}) &= \{(c,a,b),(b,b,a)\}. \end{split}$$

c) Nie je možné zostrojiť \mathcal{M}_3 tak, aby mala najviac 1 prvok a súčasne bola modelom všetkých formúl A_1, \ldots, A_5 , ale nebola modelom žiadnej z formúl B_1, \ldots, B_4 . Doména štruktúry nemôže byť prázdna, preto \mathcal{M}_3 by mala mať práve jeden prvok,

teda $\mathcal{M}_3 = (\{a\}, i_3)$ pre nejaký prvok a.

Problém nastáva už pri A_1 a B_1 . Keďže v doméne \mathcal{M}_3 je jediný prvok, musia ho pomenúvať všetky konštanty, teda $i_3(\mathsf{Anna}) = a$, ale aj $i_3(\mathsf{mama}) = a$. Aby bola A_1 pravdivá v \mathcal{M}_3 , potom musí byť $a \in i_3(\mathsf{diev\check{c}a})$, teda $i_3(\mathsf{diev\check{c}a})$ musí byť $\{a\}$. Zároveň má byť B_1 nepravdivá, teda $a \notin i_3(\mathsf{diev\check{c}a})$, čo nie je možné.

1.1.5 Uvažujme jazyk $\mathcal L$ logiky prvého rádu s množinami symbolov $\mathcal C_{\mathcal L}=\{\text{Alex}, \text{Beáta, Cyril, Dana, Edo, Gabika, oco}\}$ a $\mathcal P_{\mathcal L}=\{\text{žena}^1, \text{rodič}^2, \text{dieťa}^3, \text{starší}^2\}$, pričom zamýšľaný význam predikátových symbolov je:

Predikát	Význam
žena(x)	<i>x</i> je žena
rodič(x, y)	<i>x</i> je rodičom <i>y</i>
dieťa(u, x, y)	u je dieťaťom matky x a otca y
starší(x, y)	x je starší ako y

Preložte nasledujúce atomické formuly do čo najprirodzenejších výrokov v slovenčine:

(A_1) žena(Beáta)	(B_1) žena $(Alex)$
(A_2) žena $(Dana)$	(B_2) dieťa(Beáta, Gabika, oco)
(A_3) rodič(Dana, Alex)	(B_3) rodič(Edo, Edo)
(A_4) rodič(Dana, Beáta)	(B_4) starší(Beáta, Gabika)
(A_5) dieťa(Cyril, Gabika, Edo)	(B_5) starší(Gabika, Cyril)
(A_6) dieťa(Alex, Dana, Cyril)	(B_6) Cyril \doteq oco

- **1.1.6** Koľko atomických formúl môžeme zostrojiť v jazyku \mathcal{L} z úlohy 1.1.5?
- **1.1.7** Uvažujme jazyk $\mathcal L$ a atomické formuly z úlohy 1.1.5. Rozhodnite, ktoré z formúl $A_1,\ldots,A_6,B_1,\ldots,B_6$ sú pravdivé v štruktúre $\mathcal M=(D,i)$, kde

$$D = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$i(Alex) = 1, \quad i(Beáta) = 2, \quad i(Cyril) = 3, \quad i(Dana) = 4,$$

$$i(Edo) = 9, \quad i(Gabika) = 7, \quad i(oco) = 3,$$

$$i(žena) = \{1, 2, 3, 8\},$$

$$i(rodič) = \{(4, 1), (9, 9), (2, 3), (3, 4), (8, 7)\},$$

$$i(dieťa) = \{(3, 7, 9), (2, 7, 3), (8, 9, 1)\},$$

$$i(starši) = \{(2, 1), (2, 2), (2, 3), (2, 7), (3, 4), (7, 3), (8, 7)\}$$

- 🗣 Lepšiu predstavu o štruktúre často získate, keď si ju graficky znázorníte napríklad takto:
 - Každý objekt z domény znázornite ako uzol.

- Interpretáciu symbolu konštanty znázornite označením uzla týmto symbolom.
- Množinu interpretujúcu unárny predikát znázornite ako uzavretú krivku (napr. elipsu) označenú symbolom predikátu a obsahujúcu uzly, ktoré do tejto množiny patria.
- Dvojicu patriacu do interpretácie binárneho predikátu znázornite ako orientovanú hranu medzi uzlami označenú symbolom predikátu.
- n-ticu patriacu do interpretácie n-árneho predikátu pre n ≥ 3 znázornite ako n-uholník, ktorého vrcholy budú spojené hranami s príslušnými uzlami. Vhodne označte poradie prvkov v n-tici.

Pre každý predikát s aritou $n \ge 2$ je lepšie nakresliť si osobitný graf.

- **1.1.8 Príklad.** Uvažujme opäť jazyk \mathcal{L} a atomické formuly z úlohy 1.1.5. Zostrojte štruktúry \mathcal{M}_1 , \mathcal{M}_2 a \mathcal{M}_3 pre jazyk \mathcal{L} tak, aby každá z nich *súčasne* bola modelom všetkých formúl A_1, \ldots, A_6 , ale nebola modelom žiadnej z formúl B_1, \ldots, B_6 a aby *zároveň*:
 - a) doména štruktúry \mathcal{M}_1 mala aspoň 9 prvkov;
 - b) doména štruktúry \mathcal{M}_2 mala najviac 5 prvkov;
 - c) doména štruktúry \mathcal{M}_3 mala najviac 2 prvky.
- Všimnite si, že hoci každý symbol konštanty musí byť interpretovaný ako niektorý objekt domény (teda pomenúvať ho), nie všetky objekty musia byť pomenované a viacero symbolov konštánt môže pomenúvať ten istý objekt. Doména nemôže byť prázdna.

1.2 Formalizácia do jazyka atomických formúl

- **1.2.1 Príklad.** Sformalizujte nasledujúce výroky ako atomické formuly v *spoločnom* jazyku logiky prvého rádu \mathcal{L} . Zapíšte množiny symbolov tohto jazyka a vysvetlite zamýšľaný význam jeho predikátových symbolov.
- $({\cal A}_1)\,$ Jozef je profesor a Mária je profesorka.
- (A_2) Jozef je žemľovku. Žemľovka je múčnik.
- (A_3) Jozef má žemľovku rád, Mária ju naopak nemá rada vôbec.
- (A_4) Filoména je upratovačka.
- (A_5) Upratovačky aj profesori sú zamestnanci.

- (A_6) Filoména má menší plat ako Mária, ale väčší ako Jozef.
- (A_7) Jozef učí predmet dejiny antického Ríma v posluchárni P42.
- (A_8) Tento predmet si zapísali 3 študenti.
- (A_9) Chodí naň aj Filoména, ktorá je v skutočnosti jedným zo študentov Jozefovho predmetu.

 $\it Riešenie.$ Postupne sformalizujeme atomické výroky a budeme pritom dbať na to aby sme volili vhodný spoločný jazyk, a zbytočne ho nerozširovali. Tvrdenie (A_1) sa v skutočnosti skladá z dvoch atomických výrokov:

 A_{11} profesor(Jozef)

 $A_{1.1}$ profesor(Mária)

Všimnime si, že v prípade Márie sme nevytvorili nový predikátový symbol profesorka¹ ale rovnako ako v prípade Jozefa sme použili symbol profesor¹. Hoc v slovenčine na to máme dve samostatné slová, ich význam pre školskú doménu je rovnaký – je to symbol pre skupinu všetkých elementov domény, ktoré predstavujú profesorov. Ak by sme na napr. pýtali na všetkých profesorov, iste by me zahrnuli aj Máriu.

Rozoberme si ešte dve alternatívne riešenia, ktoré ale nie sú správne. Prvým je formula je(Jozef, profesor). Čo by v tomto prípade znamenal konštantný symbol profesor? Zmysel slova profesor v danej vete nie je konkrétny profesor, ale skupina všetkých profesorov. Preto je správne voliť predikátový symbol. Z podobných dôvodov je rovnako formula Jozef ≐ profesor nesprávna. Keby sme profesorov zapisovali týmto spôsobom, v skutočnosti by boli všetci profesori stotožnení do jedného objektu domény, čo v tomto prípade celkom určite nechceme.

Sformalizujme teraz formulu (A_2) , prvú časť zapíšeme dvoma atomickými formulami:

 $A_{2,1}$ je(Jozef, porcia278)

 $A_{2.2}$ žemľovka(porcia278)

Keďže Jozef je nejakú konkrétnu porciu jedla, zvolíme si pre ňu nový konštantný symbol. Zvolili sme porcia278 (môže ísť o 278. porciu vydanú v ten deň v školskej jedálni). Druhou formulou sme následne povedali, že táto porcia patrí medzi (všetky) žemľovky, čo vyjadruje predikát žemľovka 1 . Výborne sa nám tu hodil predikát je 2 , ktorý sme zvažovali a napokon za vrhli pri tvrdení (A_1). Zamýšľaný význam je ale tentoraz iný.

Všimnime si druhú časť tvrdenia (A_2) , teda že žemľovka je múčnik. Ide o všeobecné tvrdenie, ktoré nevieme atomickými formulami v jeho všeobecnom význame vyjadriť – náš jazyk je na to zatiaľ príliš obmedzený. Môžeme ale aspoň o všetkých konkrétnych žemľovkách, povedať, že sú zároveň múčniky. Keďže v celej úlohe (aj nižšie) máme len jednu konkrétnu žemľovku, bude to iba jedna atomická formula:

 $A_{2,3}$ múčnik(porcia278)

Na obmedzenia jazyka atomických formúl narazíme aj v nasledujúcom tvrdení, ktoré sformalizujeme nasledovne:

 A_{31} má_rád_žemľovku(Jozef)

 $A_{3,2}$ nemá_rád_žemľovku(Mária)

Opäť vidíme, že vo formálnom jazyku nerobíme rozdiel medzi mužským a ženským rodom. Tiež si všimnime, že tu nejde o vzťah medzi Jozefom a nejakou konkrétnou porciou žemľovky ako v prípade $(A_{2.1})$, ale ide tu vlastnosť mať rád žemľovku vo všeobecnosti. Toto vieme najlepšie vyjadriť unárnym predikátovým symbolom má_rád_žemľovku 1 .

Venujme teraz pozornosť Márii, ktorá nemá rada žemľovku. Žiadalo by sa, aby sa vlastnosti mať rád a nemať rád žemľovku navzájom vylučovali. Toto ale s atomickými formulami vyjadriť nevieme (potrebovali by sme k tomu logickú spojku – negáciu). Použijeme teda zatiaľ samostatný a *nezávisl*ý predikátový symbol nemá_rád_žemľovku¹.

Ďalšie dve tvrdenia teraz poľahky sformalizujeme v súlade s tým, čo už sme videli vyššie:

 A_4 upratovačka(Filoména)

 $A_{5,1}$ zamestnanec(Jozef)

 $A_{5,2}$ zamestnanec(Mária)

 $A_{5,3}$ zamestnanec(Filoména)

Tvrdenie (A_5) je opäť všeobecné tvrdenie, preto v jazyku atomických formúl aspoň vymenujeme všetkých konkrétnych zamestnancov.

Všimnime si, že tentoraz sme zvolili ženský rod pre predikátový symbol upratovačka¹. Nevadí to, pokiaľ ho konzistentne použijeme aj v prípade mužov-upratovačov. Dôležité je len to aby sme pre tú istú vec konzistentne stále používali ten istý predikátový symbol.

Tvrdenie (A_6) odpovedá 2 atomickým formulám:

 $A_{6.1}$ má_väčší_plat_ako(Mária, Filoména)

 $A_{6,2}$ má_väčší_plat_ako(Filoména, Jozef)

Všimnime si, že sme zaviedli len jeden predikátový symbol má_väčší_plat_ako², ale úmy-selne sme vyhli zavedeniu analogického symbolu má_menší_plat_ako². Ide tu totiž o dva vzťahy, ktoré sú navzájom inverzné. Takéto dva predikátové symboly by však boli od seba nezávislé, teda ak by platilo má_väčší_plat_ako(Mária, Filoména) nijako by z toho nevyplývalo, že platí aj má_menší_plat_ako(Filoména, Mária). Toto ale zrejme nie je zamýšľané. Jazyk atomických formúl nemá dostatočnú silu na to, aby sme mohli dva navzájom inverzné predikáty nejako vyjadriť. Musíme si preto vystačiť s jedným predikátom a používať ho vždy správnym smerom.

Tvrdenie (A_7) by nám už teraz nemalo robiť žiadne problémy. Musíme len správne rozpoznať všetky konkrétne objekty, o ktorých tvrdenie hovorí. Vyjde nám pri tom, že učí bude ternárny predikátový symbol. U dvoch nových konštantných symbolov, ktoré pre tieto objekty zavedieme, z tvrdenia tiež vyčítame do akej "skupiny" patria, čo vyjadríme samostatnými atomickými formulami:

```
A_{7.1} učí(Jozef, DAR, P42)

A_{7.2} predmet(DAR)

A_{7.3} poslucháreň(P42)
```

Z ďalšieho tvrdenia vieme, že Dejiny antického Ríma majú zapísané traja študenti. Nepoznáme ich mená, napriek tomu si môžeme zvoliť vhodné nové konštantné symboly \S_1, \dots, \S_3 :

```
A_{8.1} študent(\S_1)

A_{8.2} študent(\S_2)

A_{8.3} študent(\S_3)

A_{8.4} má_zapísaný(\S_1, DAR)

A_{8.5} má_zapísaný(\S_2, DAR)

A_{8.6} má_zapísaný(\S_3, DAR)
```

No a nakoniec ešte potrebujeme doplniť, že na tento predmet chodí aj Filoména. Opäť si uvedomme, že obe tieto tvrdenia zrejme referujú na ten istý vzťah medzi študentom a predmetom, preto nepridáme nový predikát, napr. chodiť_na². Okrem toho z tvrdenia (A_8) vieme, že predmet má troch študentov, preto ak chceme vylúčiť, že by Filoména mohla byť už štvrtým študentom, použijeme rovnosť:

```
A_{9.1} má_zapísaný(Filoména, DAR)
A_{9.2} š<sub>1</sub> \doteq Filoména
```

Všimnime si, že vďaka sémantike rovnosti bude teraz Filoména a \S_1 ten istý objekt. Preto je formula $(A_{9,1})$ vďaka $(A_{9,2})$ zbytočná, a môžeme ju vyhodiť.

Uvedieme ešte množiny konštantných a predikátových symbolov, ktoré sme použili: $\mathcal{C}_{\mathcal{L}} = \{ \mathsf{DAR}, \mathsf{Filoména}, \mathsf{Jozef}, \mathsf{Mária}, \mathsf{porcia278}, \mathsf{P42}, \S_1, \S_2, \S_3 \} \ a \ \mathcal{P}_{\mathcal{L}} = \{ \mathsf{múčnik}^1, \mathsf{žemľovka}^1, \mathsf{je}^2, \mathsf{má_rád_žemľovku}^1, \mathsf{nemá_rád_žemľovku}^1, \mathsf{poslucháreň}^1, \mathsf{predmet}^1, \mathsf{profesor}^1, \mathsf{upratovačka}^1, \mathsf{zamestnanec}^1, \mathsf{má} \ \mathsf{väčší} \ \mathsf{plat} \ \mathsf{ako}^2, \mathsf{má} \ \mathsf{zapísaný}^2, \mathsf{učí}^3 \}. \ A \ \mathsf{vysvetlime} \ \mathsf{ich} \ \mathsf{význam}$

DAR - predmet Dejiny antického Ríma;

```
Filoména, Jozef, Mária – konkrétne osoby z tvrdení v zadaní;
porcia278 – porcia jedla, ktorú Jozef je;
P42 – poslucháreň P42

š<sub>1</sub>,...,š<sub>3</sub> – traja študenti, ktorí sú zapísaní na Dejiny antického Ríma;
múčnik¹, žemľovka¹ – prvky pre ktoré je predikát splnený sú múčniky, resp. žemľovky;
je² – jesť (kto, čo);
má_rád_žemľovku¹ – vlastnosť mať rád žemľovku;
nemá_rád_žemľovku¹ – (zamýšľaná) opačná vlastnosť nemať rád žemľovku;
poslucháreň¹, predmet¹ – prvky sú posluchárne, resp. predmety;
profesor¹, študent¹ – byť profesorom, resp. študentom;
upratovačka¹ – byť upratovačkou alebo upratovačom;
zamestnanec¹ – byť zamestnancom;
má_väčší_plat_ako² – mať väčší plat (osoba s väčším platom, osoba s menším platom);
má_zapísaný² – mať zapísaný predmet (kto, ktorý predmet);
učí³ – učiť predmet v posluchárni (kto, ktorý predmet, kde).
```

Ako je vidieť z riešenia, symboly jazyka pridávame priebežne, podľa potreby. Vo vypracovaných zadaniach však býva zvykom uviesť ich na začiatku spolu s vysvetlením ich významu.

1.2.2 Sformalizujte nasledujúce výroky ako atomické formuly v *spoločnom* jazyku logiky prvého rádu \mathcal{L} . Zapíšte množiny symbolov tohto jazyka a vysvetlite zamýš-ľaný význam jeho predikátových symbolov.

þ

- (A_1) Peter je muž.
- (A_2) Peter je študent.
- (A_3) Lucia je žena.
- (A_4) Je to študentka.
- (A_5) Lucia je staršia ako Peter.
- (A_6) Matematika je povinný predmet.
- (A_7) Matematiku učí Eugen.
- (A_8) Peter má rád Matematiku.

- (A_9) Peter a Lucia sú od neho mladší.
- (A_{10}) Peter dostal z Matematiky od Eugena známku A.
- (A_{11}) Eugen má rád Luciu.
- (A_{12}) Aj keď má Lucia z Matematiky (od neho) známku "dostatočný".
- (A₁₃) Známka "dostatočný" je len iný názov pre E-čko, a podobne "výborný" značí to isté ako A-čko.
- (A_{14}) Lucia má rada Petra.
- (A_{15}) Lucia nemá rada Matematiku.
- (A_{16}) Eugen sa má rád.
- (A_{17}) Všetci študenti majú radi Telocvik.
- **1.2.3** Sformalizujte nasledujúce výroky ako atomické formuly v *spoločnom* jazyku logiky prvého rádu \mathcal{L} . Zapíšte množiny symbolov tohto jazyka a vysvetlite zamýš-ľaný význam jeho predikátových symbolov. Snažte sa o to aby počet predikátových symbolov bol čo najmenší, nevytvárajte dva symboly s tým istým významom. Vytvorte štruktúru tak, aby výroky skupiny A boli všetky pravdivé a výroky skupiny B všetky nepravdivé.
- (A_1) Janka je dievča a Jurko je chlapec.
- (A_2) Chlapci a dievčatá sú deti.
- (A_3) Ňufko je Jankine zvieratko.
- (A_4) Je to myš.
- (A_5) Ňufko je veľký. Je väčší než Jurkov škrečok Chrumko.
- (A_6) Jurko si Chrumka kúpil sám.
- $(A_7)\,$ Jurko v noci chodí kŕmiť potkana Smraďocha.
- (A_8) Smraďoch však v skutočnosti je Ňufko, ktorý v tme vyzerá ako potkan.
- (A_9) Všetky deti majú rady zvieratká, ktorá vlastnia, a tiež tie, ktoré kŕmia.
- (B_1) Janka sa Smraďocha bojí.
- (B₂) Jurko má rád potkany, nebojí sa ich.
- (B_3) Ňufko je menší ako Chrumko.
- (B_4) Janka má rada Jurka.
- (B_5) Ňufko a Chrumko sú deti.
- (B_6) Ňufka a Chrumka deťom kúpila ich mama.