In []:

In [21]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [22]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\18_world-data-2023.csv")
a
```

Out[22]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Call Cc
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	9
1	Albania	105	AL	43.10%	28,748	9,000	11.78	35
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	21
3	Andorra	164	AD	40.00%	468	NaN	7.20	37
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	24
190	Venezuela	32	VE	24.50%	912,050	343,000	17.88	5
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	8
192	Yemen	56	YE	44.60%	527,968	40,000	30.45	96
193	Zambia	25	ZM	32.10%	752,618	16,000	36.19	26
194	Zimbabwe	38	ZW	41.90%	390,757	51,000	30.68	26

195 rows × 35 columns

In [23]:

a=a.head(10)

Out[23]:

Land rea(Km2)	Armed Forces size	Birth Rate	Calling Code	Capital/Major City	Co2- Emissions	 Out of pocket health expenditure	Physicians per thousand	Popula
652,230	323,000	32.49	93.0	Kabul	8,672	 78.40%	0.28	38,041
28,748	9,000	11.78	355.0	Tirana	4,536	 56.90%	1.20	2,854
2,381,741	317,000	24.28	213.0	Algiers	150,006	 28.10%	1.72	43,053
468	NaN	7.20	376.0	Andorra la Vella	469	 36.40%	3.33	77
1,246,700	117,000	40.73	244.0	Luanda	34,693	 33.40%	0.21	31,825
443	0	15.33	1.0	St. John's, Saint John	557	 24.30%	2.76	97
2,780,400	105,000	17.02	54.0	Buenos Aires	201,348	 17.60%	3.96	44,938
29,743	49,000	13.99	374.0	Yerevan	5,156	 81.60%	4.40	2,957
7,741,220	58,000	12.60	61.0	Canberra	375,908	 19.60%	3.68	25,766
83,871	21,000	9.70	43.0	Vienna	61,448	 17.90%	5.17	8,877

In [24]:

to find a.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 35 columns):
#
     Column
                                                 Non-Null Count Dtype
     _ _ _ _ _
                                                 -----
0
    Country
                                                 10 non-null
                                                                 object
1
    Density
                                   10 non-null
(P/Km2)
                                                    object
2
    Abbreviation
                                                 10 non-null
                                                                 object
3
    Agricultural Land( %)
                                                 10 non-null
                                                                 object
4
    Land Area(Km2)
                                                                 object
                                                 10 non-null
5
    Armed Forces size
                                                 9 non-null
                                                                 object
    Birth Rate
                                                                 float64
6
                                                 10 non-null
7
    Calling Code
                                                 10 non-null
                                                                 float64
8
                                                                 object
    Capital/Major City
                                                 10 non-null
9
    Co2-Emissions
                                                 10 non-null
                                                                 object
10 CPI
                                                 9 non-null
                                                                 object
11 CPI Change (%)
                                                 9 non-null
                                                                 object
12 Currency-Code
                                                 10 non-null
                                                                 object
13 Fertility Rate
                                                 10 non-null
                                                                 float64
    Forested Area (%)
                                                 10 non-null
                                                                 object
                                                 10 non-null
15
    Gasoline Price
                                                                 object
    GDP
 16
                                                 10 non-null
                                                                 object
    Gross primary education enrollment (%)
 17
                                                 10 non-null
                                                                 object
    Gross tertiary education enrollment (%)
                                                 9 non-null
                                                                 object
19
    Infant mortality
                                                 10 non-null
                                                                 float64
20 Largest city
                                                 10 non-null
                                                                 object
    Life expectancy
 21
                                                 9 non-null
                                                                 float64
22
    Maternal mortality ratio
                                                 9 non-null
                                                                 float64
    Minimum wage
                                                 9 non-null
                                                                 object
24 Official language
                                                 10 non-null
                                                                 object
 25
    Out of pocket health expenditure
                                                 10 non-null
                                                                 object
 26 Physicians per thousand
                                                 10 non-null
                                                                 float64
27
    Population
                                                 10 non-null
                                                                 object
    Population: Labor force participation (%)
 28
                                                 8 non-null
                                                                 object
 29
    Tax revenue (%)
                                                 9 non-null
                                                                 object
30
    Total tax rate
                                                 9 non-null
                                                                 object
31
    Unemployment rate
                                                 8 non-null
                                                                 object
32
                                                 10 non-null
    Urban population
                                                                 object
33
    Latitude
                                                 10 non-null
                                                                 float64
34 Longitude
                                                 10 non-null
                                                                 float64
dtypes: float64(9), object(26)
memory usage: 2.9+ KB
```

In [25]:

```
# to display summary of statastic
a.describe()
```

Out[25]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	Li
coun	t 10.000000	10.000000	10.000000	10.000000	9.000000	9.000000	10.000000	10.0
meai	18.512000	181.400000	2.512000	16.090000	74.788889	124.888889	2.671000	17.
sto	1 10.754729	149.167467	1.416622	18.504321	7.376897	206.621904	1.738387	31.′
miı	7.200000	1.000000	1.270000	2.700000	60.800000	5.000000	0.210000	-38.4
25%	11.985000	55.750000	1.650000	3.575000	74.900000	15.000000	1.330000	-4.
50%	14.660000	153.000000	1.875000	8.300000	76.700000	39.000000	3.045000	30.9
75%	22.465000	327.250000	2.830000	17.825000	78.500000	112.000000	3.890000	40.8
max	40.730000	376.000000	5.520000	51.600000	82.700000	638.000000	5.170000	47.
4								•

In [26]:

```
# to display colum heading
a.columns
```

Out[26]:

In [27]:

sns.pairplot(a)

Out[27]:

<seaborn.axisgrid.PairGrid at 0x198b6d6dee0>

In [28]:

```
sns.displot(a["Fertility Rate"])
```

Out[28]:

<seaborn.axisgrid.FacetGrid at 0x198ba15df40>

In [29]:

Out[29]:

	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code
0	60	AF	58.10%	652,230	323,000	32.49	93.0
1	105	AL	43.10%	28,748	9,000	11.78	355.0
2	18	DZ	17.40%	2,381,741	317,000	24.28	213.0
3	164	AD	40.00%	468	NaN	7.20	376.0
4	26	AO	47.50%	1,246,700	117,000	40.73	244.0
5	223	AG	20.50%	443	0	15.33	1.0
6	17	AR	54.30%	2,780,400	105,000	17.02	54.0
7	104	AM	58.90%	29,743	49,000	13.99	374.0
8	3	AU	48.20%	7,741,220	58,000	12.60	61.0
9	109	AT	32.40%	83,871	21,000	9.70	43.0

In [30]:

```
sns.heatmap(b.corr())
```

Out[30]:

<AxesSubplot:>

In [46]:

```
x=a[['Density\n(P/Km2)','Birth Rate', 'Calling Code']]
y=a['Density\n(P/Km2)']
```

In [47]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [48]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[48]:

LinearRegression()

In [49]:

```
lr.intercept_
```

Out[49]:

-5.684341886080802e-14

```
In [50]:
```

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[50]:

Co-efficient

Density\n(P/Km2) 1.000000e+00

Birth Rate 4.002689e-17 **Calling Code** -4.293771e-18

In [51]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[51]:

<matplotlib.collections.PathCollection at 0x198bad7fd30>

In [52]:

```
lr.score(x_test,y_test)
```

Out[52]:

1.0

In [53]:

```
lr.score(x_train,y_train)
```

Out[53]:

1.0

In [54]:

```
from sklearn.linear_model import Ridge,Lasso
```

```
In [55]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[55]:
Ridge(alpha=10)
In [56]:
rr.score(x_test,y_test)
Out[56]:
0.9999931833661889
In [57]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[57]:
Lasso(alpha=10)
In [58]:
la.score(x_test,y_test)
Out[58]:
0.9999771729246785
In [63]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[63]:
ElasticNet()
In [66]:
en.coef_
Out[66]:
array([ 9.99796728e-01, -0.00000000e+00, -5.38771499e-06])
In [67]:
en.intercept_
Out[67]:
0.016560087217570185
```

```
In [74]:
prediction=en.predict(x_test)
prediction
Out[74]:
array([163.98119771, 104.9933039, 17.01281353])
In [75]:
en.score(x_test,y_test)
Out[75]:
0.999999948600505
EVALUATION METRICS
In [76]:
from sklearn import metrics
In [78]:
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
Mean Absolute Error: 0.012770639772059647
In [80]:
print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))
Mean Squared Error 0.0001875167799535862
In [81]:
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
Root Mean Squared Error 0.013693676641194147
In [ ]:
```