Curso: Procesamiento Electrónico de Potencia ELEMENTOS PARA EL PROCESAMIENTO DE POTENCIA, continuación

Ing. Sergio A. Morales Hernández

Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Semestre 2021

AGENDA

ONSIDERACIONES PARA USAR SEMICONDUCTORES

• Supongan que se requiere utilizar un BJT como interruptor.

- Supongan que se requiere utilizar un BJT como interruptor.
- ¿Qué configuración básica usarían?

- Supongan que se requiere utilizar un BJT como interruptor.
- ¿Qué configuración básica usarían?
- Veamos qué sucede con las tensiones y corrientes asociadas a este proceso:

- Supongan que se requiere utilizar un BJT como interruptor.
- ¿Qué configuración básica usarían?
- Veamos qué sucede con las tensiones y corrientes asociadas a este proceso:

- Supongan que se requiere utilizar un BJT como interruptor.
- ¿Qué configuración básica usarían?

 Veamos qué sucede con las tensiones y corrientes asociadas a este proceso:

• Varios semiconductores, por su estructura interna, no "manejan" bien este tipo de transiciones.

- Varios semiconductores, por su estructura interna, no "manejan" bien este tipo de transiciones.
- Cuando se intenta realizar una conmutación muy rápida en un semiconductor no adecuado, se tiene un problema de incremento en la temperatura de la unión.

- Varios semiconductores, por su estructura interna, no "manejan" bien este tipo de transiciones.
- Cuando se intenta realizar una conmutación muy rápida en un semiconductor no adecuado, se tiene un problema de incremento en la temperatura de la unión.
- Para minimizar este problema, se recomienda utilizar una bobina y un capacitor.

- Varios semiconductores, por su estructura interna, no "manejan" bien este tipo de transiciones.
- Cuando se intenta realizar una conmutación muy rápida en un semiconductor no adecuado, se tiene un problema de incremento en la temperatura de la unión.
- Para minimizar este problema, se recomienda utilizar una bobina y un capacitor.
- La bobina se debe colocar en serie para limitar el efecto en el di/dt, y
 el capacitor se debe colocar en paralelo para atenuar el efecto dv/dt.

- Varios semiconductores, por su estructura interna, no "manejan" bien este tipo de transiciones.
- Cuando se intenta realizar una conmutación muy rápida en un semiconductor no adecuado, se tiene un problema de incremento en la temperatura de la unión.
- Para minimizar este problema, se recomienda utilizar una bobina y un capacitor.
- La bobina se debe colocar en serie para limitar el efecto en el di/dt, y
 el capacitor se debe colocar en paralelo para atenuar el efecto dv/dt.

- Varios semiconductores, por su estructura interna, no "manejan" bien este tipo de transiciones.
- Cuando se intenta realizar una conmutación muy rápida en un semiconductor no adecuado, se tiene un problema de incremento en la temperatura de la unión.
- Para minimizar este problema, se recomienda utilizar una bobina y un capacitor.
- La bobina se debe colocar en serie para limitar el efecto en el di/dt, y
 el capacitor se debe colocar en paralelo para atenuar el efecto dv/dt.

• Suponga que tenemos una configuración de transistores así:

• El anterior es el esquema de un inversor (CD-CA).

- El anterior es el esquema de un inversor (CD-CA).
- Los transistores T_1 y T_2 se activan simultáneamente, mientras los transistores T_3 y T_4 están apagados. Posteriormente, se invierten las condiciones.

- El anterior es el esquema de un inversor (CD-CA).
- Los transistores T₁ y T₂ se activan simultáneamente, mientras los transistores T₃ y T₄ están apagados. Posteriormente, se invierten las condiciones.
- La activación y desactivación de los MOSFET se hace con un sistema de control.

- El anterior es el esquema de un inversor (CD-CA).
- Los transistores T₁ y T₂ se activan simultáneamente, mientras los transistores T₃ y T₄ están apagados. Posteriormente, se invierten las condiciones.
- La activación y desactivación de los MOSFET se hace con un sistema de control.

- El anterior es el esquema de un inversor (CD-CA).
- Los transistores T_1 y T_2 se activan simultáneamente, mientras los transistores T_3 y T_4 están apagados. Posteriormente, se invierten las condiciones.
- La activación y desactivación de los MOSFET se hace con un sistema de control.; Funciona?

• Lo adecuado es realizar una activación entre compuerta y fuente, no entre compuerta y tierra.

- Lo adecuado es realizar una activación entre compuerta y fuente, no entre compuerta y tierra.
- Para hacer este tipo de aislamiento entre la parte de potencia y su control, se tienen básicamente dos formas:

- Lo adecuado es realizar una activación entre compuerta y fuente, no entre compuerta y tierra.
- Para hacer este tipo de aislamiento entre la parte de potencia y su control, se tienen básicamente dos formas:
 - Transformadores de pulsos.

- Lo adecuado es realizar una activación entre compuerta y fuente, no entre compuerta y tierra.
- Para hacer este tipo de aislamiento entre la parte de potencia y su control, se tienen básicamente dos formas:
 - Transformadores de pulsos.
 - Optoacopladores.

- Lo adecuado es realizar una activación entre compuerta y fuente, no entre compuerta y tierra.
- Para hacer este tipo de aislamiento entre la parte de potencia y su control, se tienen básicamente dos formas:
 - Transformadores de pulsos.
 - Optoacopladores.
- Sin embargo, actualmente existen circuitos integrados especiales para este aislamiento, conocidos como *driver*.

