МГТУ им. Н.Э. Баумана

Дисциплина электроника

Лабораторный практикум №1

по теме: «Исследование характеристик и параметров полупроводниковых диодов»

Работу выполнил:

студент группы ИУ7-35Б

Романов Семен

Работу проверил:

Цель работы - проведение экспериментальных *исследований* (натурных и модельных в программах схемотехнического анализа *MathCad 14* и *Micro-Cap 9*) полупроводникового диода с целью получения исходных данных для расчёта параметров модели полупроводникового диода и внесение модели в базу данных программ схемотехнического анализа.

Часть 1

Пункт №1

Для заданного диода марки KD510B, соответствующий моему варианту, проведем моделирование лабораторного стенда для получения BAX диода в программе Micro-Cap 12 как на прямой, так и на обратной ветвях по показанным ниже схемам:

• Схема для снятия ВАХ с прямой ветви

• Схема для снятия ВАХ с обратной ветви

Несмотря на то, что идеальных измерительных приборов не существует, амперметр должен обладать относительно малым сопротивлением, а вольтметр, наоборот, довольно значительным. При прямом включении диод имеет малое сопротивление, и, если параллельно к нему подключить вольтметр, то потери в токе будут не значительны, т.к. сопротивление вольтметра во много раз превышает сопротивление диода при прямом включении. При обратном включении сопротивления диода и вольтметра станут соизмеримы, и потери в токе окажутся весомыми. Поэтому следует точно измерить ток на ветви диода, вставив в нее амперметр, потерями напряжения можно пренебречь, т.к. падение напряжения на диоде при обратном включении будет гораздо больше потерь на амперметре.

DCINPUT1 - I(R2)*1

Для обратной схемы:

Для обратной схемы график оказался более линейным, поскольку ток при обратном течении через диод не идет

<u>Пункт №2</u>

Полученные данные BAX сохраняю в виде текстового файла в формате, пригодном для передачи данных в программу MCAD и строю график:

Для анализа нашей ВАХ и нахождения физических параметров диода воспользуемся программой MathCAD.

VAX := READPRN("c:/Program Files/Mathcad/output.DNO")

		0	1
VAX =	0	0	0
	1	0.02	8·10 ⁻⁶
	2	0.04	1.6·10 ⁻⁵
	3	0.06	2.4·10 ⁻⁵
	4	0.08	3.2·10 ⁻⁵
	5	0.1	4·10-5
	6	0.12	4.8·10 ⁻⁵
	7	0.14	5.6·10 ⁻⁵
	8	0.16	6.4·10 ⁻⁵
	9	0.18	7.2·10 ⁻⁵
	10	0.2	8·10 ⁻⁵
	11	0.22	8.8·10 ⁻⁵
	12	0.24	9.6·10 ⁻⁵
	13	0.26	1.04·10 ⁻⁴
	14	0.28	1.12·10 ⁻⁴
	15	0.3	

Пункт №3

Находим параметры диода в МСАD.

• Методом трех ординат

$$Id3 := max \Big(VAX^{\left< 1 \right>} \Big) \ Id3 = 0.104$$

$$nMax := match(Id3, VAX^{\langle 1 \rangle})$$

$$nMax = (50)$$

$$Ud3 := \left(VAX^{\left< 0 \right>} \right)_{50} \qquad Ud3 = 0.896$$

$$Ud1 := linterp \Biggl(VAX^{\left< 1 \right>} \,, \, VAX^{\left< 0 \right>} \,, \frac{Id3}{4} \Biggr) \qquad Ud1 = 0.681 \qquad Id1 := \frac{Id3}{4}$$

$$Ud2 := linterp \left(VAX^{\left< 1 \right>} \,, \, VAX^{\left< 0 \right>} \,, \frac{Id3}{2} \right) \qquad Ud2 = 0.759 \qquad Id2 := \frac{Id3}{2}$$

$$Rb := \left(\frac{Ud1 - 2 \cdot Ud2 + Ud3}{Id1} \right) \qquad \qquad Rb = 2.297$$

$$NFt := \frac{(3 \cdot Ud2 - 2 \cdot Ud1 - Ud3)}{ln(2)}$$

$$NFt = 0.026$$

$$\label{eq:Is0} \text{Is0} := \text{Id1} \cdot \text{exp} \bigg[\frac{(\text{Ud2} - 2 \cdot \text{Ud1})}{\text{NFt}} \bigg] \qquad \qquad \text{Is0} = 2.662 \times 10^{-12}$$

• Точный расчет параметров модели полупроводникового диода методом GIVEN MINERR

$$Iso_{...} := 0.0000001$$
 $Rb_{...} := 1$ $Ft := 0.02$ $m_{...} := 2$

$$Id1 := 0.070568 \quad Id2 := 0.033905 \quad Id3 := 0.0085164 \quad Id4 := 0.000677$$

$$Ud1 := 0.80959$$
 $Ud2 := 0.70624$ $Ud3 := 0.61161$ $Ud4 := 0.51943$

Given

$$Ud4 = Id4 \cdot Rb + ln \left(\frac{Is0 + Id4}{Is0} \right) \cdot m \cdot Ft \qquad \qquad Ud3 = Id3 \cdot Rb + ln \left(\frac{Is0 + Id3}{Is0} \right) \cdot m \cdot Ft$$

$$Ud2 = Id2 \cdot Rb + ln \left(\frac{Is0 + Id2}{Is0}\right) \cdot m \cdot Ft \qquad \qquad Ud1 = Id1 \cdot Rb + ln \left(\frac{Is0 + Id1}{Is0}\right) \cdot m \cdot Ft$$

$$Diod_P = \begin{pmatrix} 1.343 \times 10^{-11} \\ 2.202 \\ 1.703 \\ 0.017 \end{pmatrix}$$

Построение графика

$$\underline{\mathsf{Is0}} := \mathsf{Diod}_\mathsf{P}_0 \quad \underline{\mathsf{Rb}} := \mathsf{Diod}_\mathsf{P}_1 \quad \underline{\mathsf{NFt}} := \mathsf{Diod}_\mathsf{P}_2 \cdot \mathsf{Diod}_\mathsf{P}_3$$

Idiod :=
$$0, 10^{-5}$$
.. max $\left(VAX^{\langle 1 \rangle}\right)$

$$Udiod(Idiod) := Idiod \cdot Rb + NFt \cdot ln \left(\frac{Idiod + Is0}{Is0} \right)$$

Сравнение Вычисленной ВАХ модели и табличных данных

NFt1 :=
$$0.0255$$
 Is := $928.2 \cdot 10^{-15}$ Rb1 := 2.302

$$Idiod := VAX^{\left<\underline{1}\right>}$$

$$\underbrace{Udiod}_{}(Idiod) := Idiod \cdot Rb1 + NFt1 \cdot ln \left(\frac{Idiod + Is}{Is}\right)$$

$$Iproverka := \left(VAX^{\langle 1 \rangle}\right)_{40} \qquad \qquad Iproverka = 0.049$$

Udiod(Iproverka) =
$$0.743$$
 $\left(VAX^{(0)}\right)_{40} = 0.751$

		0
Idiod =	0	0
	1	8·10 ⁻⁶
	2	1.6·10 ⁻⁵
	3	2.4·10 ⁻⁵
	4	3.2·10 ⁻⁵
	5	4·10-5
	6	4.8·10 ⁻⁵
	7	5.6·10 ⁻⁵
	8	6.4·10 ⁻⁵
	9	7.2·10 ⁻⁵
	10	8·10 ⁻⁵
	11	8.8·10 ⁻⁵
	12	9.6·10 ⁻⁵
	13	1.04·10 ⁻⁴
	14	1.12·10 ⁻⁴
	15	

0 0-6 0-5
0-5
.0-5
0-5
0-5
.0-5
0-5
0-5
.0-5
0-5
0-5
0-5
0-4
.0-4

	1	0.02
	2	0.04
	3	0.06
	4	0.08
	5	0.1
(n)	6	0.12
$\mathrm{VAX}^{\left\langle 0\right\rangle }=$	7	0.14
	8	0.16
	9	0.18
	10	0.2
	11	0.22
	12	0.24
	13	0.26
	14	0.28
	15	
,		

