Continuity

2.4.1

point	cont.	right-cout.	left-cont.	discont.	type of discout.
X=-2	No	NO	YES	YES	JUMP
X = 1	NO	NO	NO	Yes	REMOVABLE
x = 4	No	YES	NO	YES	INFINITE

2.4.2
(a)
$$|Y| = |X| = 1$$

lim $|Y| = |X| = 1$
 $|X| = |X| = 1$

lim $|Y| = |X| = 1$
 $|X| = |X| = 1$

we can substitute

lim $|Y| = |X| = 1$
 $|X| = 1$
 $|X| = 1$

As all three numbers are defined and equal, we get:

Auswer: YES, $|Y| = |X| = 1$

to (b) For any k both kx+2 for x>-1 and k^2x^2 for x<-1 are continuous as polynomials. So, f(x) is continuous for all x if and only if it is continuous at x=-1. f(-1)=-k+2 lim $f(x)=\lim_{x\to -1^+} (kx+2)=-k+2$ $x\to -1^+$ $x\to -1^+$ lim $f(x)=\lim_{x\to -1^-} k^2x^2=k^2$ $x\to -1^ x\to -1^$