1.Download the dataset: Dataset

2.Load the dataset

import numpy as np
import pandas as pd
df = pd.read_csv("Churn_Modelling.csv")

3.Perform Below Visualizations. Univariate Analysis

import seaborn as sns
sns.histplot(df.CreditScore,kde=True)

Bi -Variate Analysis

import seaborn as sns import matplotlib.pyplot as plt

 $sns.scatterplot(df.CreditScore, df.EstimatedSalary)\\ plt.ylim(0,15000)$

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

(0.0, 15000.0)

Multi -Variate Analysis

import seaborn as sns

df=pd.read_csv("Churn_Modelling.csv")
sns.pairplot(df)

4. Perform descriptive statistics on the dataset.

df=pd.read_csv("Churn_Modelling.csv") df.describe(include='all')

Row Num ber	Custo merl d	Surna me	Credi tScor e	Geog raph	•	d Age	e Te re	nu B ce	alan e	Num OfPr oduct	HasCr Card	IsActi veMe mber	Estim atedS alary	Exite d
coun	1000	1.00	1000	1000	1000	1000	1000	1000	1000	s) 1000	1000	1000	1000	1000
t	0.00	0000	0	0.00	0	0	0.00	0.00	0.00		0.00	0.00	0.00	0.00
•	000	e+04	O	0000	Ü	Ü	0000	0000	0000			0000	0000	0000
uniq	NaN	NaN	2932	NaN	3	2	NaN	NaN	NaN		NaN	NaN	NaN	NaN
ue														
top	NaN	NaN	Smit	NaN	Fran	Male	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
			h		ce									
freq	NaN	NaN	32	NaN	5014	5457	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
mea	5000	1.56	NaN	650.	NaN	NaN	38.9	5.01	7648	1.53	0.70	0.51	1000	0.20
n	.500	9094		5288			2180	2800	5.88	0200	550	5100	90.2	3700
	00	e+07		00			0		9288	3			3988	
													1	
std	2886	7.19	NaN	96.6	NaN	NaN	10.4	2.89	6239	0.58	0.45	0.49	5751	0.40
	.895	3619		5329			8780	2174	7.40	1654	584	9797	0.49	2769
	68	e+04		9			6		5202	2			2818	
df.cou	nt()													

RowNumber 10000

CustomerId 10000

Surname 10000

CreditScore 10000

Geography 10000

Gender 10000

Age 10000

Tenure 10000

Balance 10000

NumOfProducts 10000

HasCrCard 10000

IsActiveMember 10000

EstimatedSalary 10000

Exited 10000 dtype: int64

df['Geography'].value_counts()

France 5014 Germany 2509 Spain 2477

Name: Geography, dtype: int64

5. Handle the Missing values.

from ast import increment_lineno import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline sns.set(color_codes=True) df=pd.read_csv("Churn_Modelling.csv") df.head()

Row Num ber	Custo merl d	Surna me	Credi tScor e	Geog raph		d Age	9	Tenu re	Balan ce	Num OfPr oduct s	HasCr Card	IsActi veMe mber	Estim atedS alary	Exite d
0	1	1563 4602	Harg rave	619	Fran ce	Fem ale	42	2	0.00	-	1	1	1013 48.8 8	1
1	2	1564 7311	Hill	608	Spai n	Fem ale	41	1	8380 7.86		0	1	1125 42.5 8	0
2	3	1561 9304	Onio	502	Fran ce	Fem ale	42	8	1596 60.8 0		1	0	1139 31.5 7	1
3	4	1570 1354	Boni	699	Fran ce	Fem ale	39	1	0.00	2	0	0	9382 6.63	0
4	5	1573 7888	Mitc hell	850	Spai n	Fem ale	43	2	1255 10.8 2		1	1	7908 4.10	0

df.isnull().sum()

RowNumber 0
CustomerId 0
Surname 0
CreditScore 0
Geography 0
Gender 0
Age 0
Tenure 0
Balance 0
NumOfProducts 0
HasCrCard 0
IsActiveMember 0
EstimatedSalary 0
Exited 0
dtype: int64

6. Find the outliers and replace the outliers

import pandas as pd import matplotlib from matplotlib import pyplot as pyplot %matplotlib inline matplotlib.rcParams['figure.figsize']=(10,4) df=pd.read_csv("Churn_Modelling.csv") df.sample(5)

Row Num	Custo merl	Surn ame	Credi tScor		•	d Age	2	Tenu re	Balan ce	Num OfPr	HasC rCard	IsActi veMe	Estim atedS	Exite d
ber	d		е	У						oduct		mber	alary	
										S				
648	649	1563	Ston	438	Fran	Fem	36	4	0.00	2	1	0	6442	0
		3064	ebra		ce	ale							0.50	
			ker											
4872	4873	1564	Guer	790	Spai	Male	32	3	0.00	1	1	0	9104	0
		5937	in		n								4.47	
74	7432	1570	Upjo	678	Fran	Male	38	3	0.00	2	1	0	6656	0
		5379	hn		ce								1.60	
sns.bo	xplot(x=	-'Credit	Score'.	data=df	7)									

7. Check for Categorical columns and perform encoding.

df=pd.read_csv("Churn_Modelling.csv") df.columns

import pandas as pd import numpy as np

headers=['RowNumber','CustomerID','Surname','CreditScore','Geography',

'Gender', 'Age', 'Tenure', 'Balance', 'NumofProducts', 'HasCard'

'IsActiveMember', 'EstimatedSalary', 'Exited']

import seaborn as sns

df.head()

Row Num ber	Custo merl d	Surna me	Credi tScor e		•	ıd Ag	e	Tenu re	Balan ce	Num OfPr oduct	HasCr Card	IsActi veMe mber	Estim atedS alary	Exite d
										S				
0	1	1563	Harg	619	Fran	Fem	42	2	0.00	1	1	1	1013	1
		4602	rave		ce	ale							48.8	
													8	
1	2	1564	Hill	608	Spai	Fem	41	1	8380) 1	0	1	1125	0
		7311			n .	ale			7.86				42.5	
													8	

2	3	1561 9304	Onio	502	Fran ce	Fem ale	42	8	1596 60.8 0	3	1	0	1139 31.5 7	1
3	4	1570 1354	Boni	699	Fran ce	Fem ale	39	1	0.00	2	0	0	9382 6.63	0
4	5	1573 7888	Mitc hell	850	Spai n	Fem ale	43	2	1255 10.8 2	1	1	1	7908 4.10	0

```
#Splitting the Dataset into the Independent Feature Matrix: X = df.iloc[:,:-1].values print(X)
[[1 15634602 'Hargrave' ... 1 1 101348.88]
[2 15647311 'Hill' ... 0 1 112542.58]
[3 15619304 'Onio' ... 1 0 113931.57]
...
[9998 15584532 'Liu' ... 0 1 42085.58]
[9999 15682355 'Sabbatini' ... 1 0 92888.52]
```

[10000 15628319 'Walker' ... 1 0 38190.78]]

```
#Extracting the Dataset to Get the Dependent Vector
Y = df.iloc[:, -1].values
print(Y) [1 0 1 ... 1 1 0]
```

9. Scale the independent variables

from sklearn.preprocessing import StandardScaler

```
object= StandardScaler()
# standardization
scale=object.fit_transform(x)
print(scale)
[[-0.78321342]
[-0.60653412]
[-0.99588476]
...
[-1.47928179]
[-0.11935577]
[-0.87055909]]
```

from sklearn.model_selection import train_test_split

split the dataset

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.05, random_state=0)

X_train

```
array([[800, 15567367, 'Tao', ..., 0, 1, 103315.74],
[1070, 15628674, 'Iadanza', ..., 1, 0, 31904.31],
[8411, 15609913, 'Clark', ..., 1, 0, 113436.08],
...,
[3265, 15574372, 'Hoolan', ..., 1, 0, 181429.87],
[9846, 15664035, 'Parsons', ..., 1, 1, 148750.16],
[2733, 15592816, 'Udokamma', ..., 1, 0, 118855.26]], dtype=object)
```

```
Y train
array([0, 1, 0, ..., 0, 0, 1])
X_test
array([[9395, 15615753, 'Upchurch', ..., 1, 1, 192852.67],
[899, 15654700, 'Fallaci', ..., 1, 0, 128702.1],
[2399, 15633877, 'Morrison', ..., 1, 1, 75732.25],
[492, 15699005, 'Martin', ..., 1, 1, 9983.88],
[2022, 15795519, 'Vasiliev', ..., 0, 0, 197322.13],
[4300, 15711991, 'Chiawuotu', ..., 0, 0, 3183.15]], dtype=object)
Y_test
array([0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1,
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,
0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
```