Speciation

Introduction to Evolution and Scientific Inquiry Dr. Stephanie J. Spielman; spielman@rowan.edu

To study speciation, we must define "species"

- Speciation is the process by which new species form, from an ancestral species
- There are many definitions ("concepts") that have been proposed for species

- 1. Morphological Species Concept
- 2. Phylogenetic Species Concept
- 3. Ecological Species Concept
- 4. Biological Species Concept (the main one we use)

Morphological Species Concept

Defines species based on different morphologies (appearance)

Commonly used in <u>museum collections</u> which have a single species specimen, and similarly <u>fossil data</u>

- But it has major problems:
 - Sexual dimorphism misleads
 - Sometimes there are geographic variants
 - Morphologically different life stages

MSC tends to oversplit or undersplit species

"Cryptic Species"

Phylogenetic Species Concept

- Defines species as "tips" on evolutionary trees (phylogenies)
 - Stay tuned 1-2 weeks for phylogenies!

Figure 16-1 Evolutionary Analysis, 4/e © 2007 Pearson Prentice Hall, Inc.

Ecological Species Concept

 Defines species based occupying the same niche (adapted to same ecological resources)

Hawaiian Honeycreepers

Biological Species Concept (BSC) (this one!!!!!)

Most commonly, researchers use this species concept to *delimit* species

"Species are groups of actually or potentially <u>interbreeding</u> populations which are <u>reproductively isolated</u> from other such groups." - Ernst Mayr (1942)

Formal definition: Two organisms are the same species if they successfully mate AND produce fertile offspring

One species becomes two when....

- A barrier to mating forms
 - Leads to reproductive isolation

- Populations start to evolve separately as independent lineages
 - Gain separate mutations
 - Experience different selection pressures, differences in strength of genetic drift → different alleles go to fixation

 Over enough time, genetic differences accumulate and species are unable to mate entirely

Isolation mechanisms (barriers) prevent gene exchange

Over time, populations that stop exchanging genes will **diverge** and accumulate **differences**. If these differences **prevent successful mating**, speciation has occurred.

Pop quiz!! Is speciation the goal of successful evolution?

NO. Evolution does not have any goals at all.

Types of isolation mechanisms/barriers to mating

Prezygotic barriers

Prevent zygote from being formed in the first place

Postzygotic barriers

Prevent a formed zygote from being viable

Reminder: zygote = sperm + egg fused into a single cell

Types of prezygotic barriers

- Barriers which prevent mating in the first place
 - <u>Temporal isolation</u>: different times of emergence
 - <u>Ecological isolation</u>: live in different habitats
 - <u>Behavioral isolation</u>: Divergence of mating behaviors (bird songs, frog chirps)

- Barriers which prevent a successful mating (even if attempted)
 - Mechanical isolation: morphological incompatibility ("parts don't fit")

Example of temporal reproductive isolation

Examples of behavioral isolation (strongly related to female preference!!)

Types of postzygotic barriers

- Gametic mortality
 - sperm transferred but does not fertilize eggs
- Zygotic mortality
 - egg is fertilized but zygote dies

- Hybrid inviability or sterility
 - Hybrid offspring is either inviable (incomplete development) or sterile (looks fine but can't reproduce)

The genetic basis of postzygotic barriers: Hybrid inviability

Example: Single gene locus

New population alleles produce LOW FITNESS hybrids

Red and blue alleles are incompatible in F₁ hybrids.

Example: Two gene loci interact (epistasis!)

New population alleles when combined produce LOW FITNESS hybrids

Testing the evolution of isolation mechanisms

"Reproductive isolation as a consequence of adaptive divergence..."

REPRODUCTIVE ISOLATION AS A CONSEQUENCE OF ADAPTIVE DIVERGENCE I DROSOPHILA PSEUDOOBSCURA

Pleiotropy: another fancy vocabulary word

- Pleiotropy: when a gene affects more than one phenotype.
 - Phenotype 1: Food metabolism
 - Phenotype 2: Mating preference

 Genes involved with *Drosophila* adapting to different food sources also affected mating preferences

A prezygotic barrier to mating formed because of genes related to **food** metabolism

The relationship between reproductive isolation and genetic distance

- Genetic distance example:
 - o Species 1: ACCTAAGGCC
 - Species 2: ACCTACGGCA
 - o 3/10 differ = **0.3 genetic distance**
- Also called P-distance
 - Proportion of differences

 Genetic distance can be is > 1 when more than 1 mutation occurs at each DNA position

Zimmer/Emlen, Evolution: Making Sense of Life, 3e, © 2020 W. H. Freeman and Company photo by Antagain / E+ / Getty Images

Figure 13.14 This graph shows how reproductive isolation evolved among species of Drosophila. The genetic distance (D) between two species increases with time. It takes roughly a million years for D to reach a value of 1. By then, a typical pair of Drosophila species no longer interbreeds. (Data from Coyne and Orr 2004)

We call this process cladogenesis

Lineage ~ population (interbreeding group of organisms of the same species)

Two main models of speciation (there are others)

- **Allopatric speciation**: Species form in **different** environments
 - o allopatric = live in non-overlapping geographic areas

- **Sympatric speciation**: Species form in the **same** environment
 - sympatic = live in the same geographic area

Which do you think is more common? Why?

Allopatric speciation

A single species diverges over time due to geographic barriers.

Zimmer/Emlen, Evolution: Making Sense of Life, 3e, © 2020 W. H. Freeman and Company

Figure 13.8 Allopatric speciation is the result of geographic isolation. A: Here, a population begins with a continuous geographic range. It contains genetic variation, but gene flow ensures that new mutations can spread across the range once they arise. B: A river divides the population into two subpopulations. C: The change of allele frequencies in the two subpopulations is no longer linked. They become increasingly divergent. D: The river later dries up, allowing the two subpopulations to make contact. During their separation, reproductive barriers may evolve, reducing the gene flow between the two subpopulations.

Allopatric speciation can occur via <u>dispersal</u> or <u>vicariance</u>

Geographic separation does not always lead to full speciation

- Successful allopatric speciation relies on incipient species remaining isolated if/when re-introduced
 - Incipient species = two populations in the process of diverging into two species

Re-introduction is called secondary contact

Upon secondary contact, incipient species could...

Secondary contact can reinforce speciation

- Low fitness hybrids means incipient species will not merge back up
- This is analogous to disruptive selection:
 - Hybrids have lowest fitness
 - Incipient species individuals have high fitness

("heterozygotes" analogy)

("homozygotes" analogy)

Character displacement is common in secondary

Reproductive character displacement

 When sympatric and allopatric populations of a species, or two very closely related species*, differ in traits crucial to reproduction

- Signifies that selection is acting to limit the extent of hybridization
 - Be careful with logic!!
 - When we observe **co-existing species/populations that are extremely similar**, it is likely due to character displacement "allowing" coexistence.
 - Without displacement, hybridization would occur and likely lead to <u>reticulation</u>

• This is one reason why hybrids may not observed in secondary contact zones - "extra" selection prevents them from mating

Character Displacement in *Hydrobia* mud snails in Denmark

Shell length is used for **MATE RECOGNITION!**

Sympatric speciation

Speciation <u>WITHOUT</u> a geographic barrier

QUESTION: Do you expect isolation mechanisms to be stronger in allopatric or sympatric speciation?

Sympatric speciation is very rarely observed

One clear example is speciation in cichlid fish

Species and speciation as a continuum

divergence = genetic change