Final Report Template

1. INTRODUCTION

1.1 Project Overview

This project aims to build a machine learning-based web application that predicts the likelihood of a patient suffering from liver cirrhosis using clinical features such as blood values, alcohol consumption patterns, and more. It provides early-stage alerts for medical professionals and patients.

1.2 Purpose

The purpose is to revolutionize liver care by enabling proactive diagnosis, reducing manual analysis, and improving patient outcomes using data-driven predictions

2. IDEATION PHASE

2.1 Problem Statement

Liver cirrhosis is a critical health condition that often goes undetected until advanced stages. There is a need for an intelligent, non-invasive predictive system that aids early diagnosis and intervention.

2.2 Empathy Map Canvas

Say	Do
"I want early detection."	Regular check-ups, blood tests
Think	Feel
"Will I be diagnosed in time?"	Anxiety about health and future

2.3 Brainstorming

- Use real patient data
- Apply classification algorithms (Random Forest, XGBoost)
- Develop a Flask web interface
- Display prediction result cleanly
- Store models using joblib

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

Stage	Action	Emotion
Awareness	Patient visits hospital	Hopeful
Diagnosis	Inputs clinical data	Anxious
Prediction	Sees result on web page	Informed

3.2 Solution Requirement

- Input form for medical features
- Model integration
- Output display page
- Accuracy above 85%

3.3 Data Flow Diagram

[User Input Form] --> [Flask Server] --> [Preprocessing] --> [Model] --> [Prediction Output]

3.4 Technology Stack

• Frontend: HTML

• Backend: Python (Flask)

Model: Random Forest/XGBoost
Tools: Jupyter Notebook, VS Code
Data: Liver patient dataset (.csv)

4. PROJECT DESIGN

4.1 Problem-Solution Fit

Users (patients/doctors) need a simple web interface to enter values and receive a prediction.

4.2 Proposed Solution

A full-stack application powered by ML to predict cirrhosis likelihood in real time.

4.3 Solution Architecture

HTML Form --> Flask Server --> Model (.pkl) --> Result Page

5. PROJECT PLANNING & SCHEDULING

5.1 Project Planning

Phase	Duration	Tools
Data Preprocessing	3 Days	Jupyter Notebook
Model Training	2 Days	scikit-learn
Web Integration	2 Days	Flask
Testing & Debug	2 Days	Localhost
Documentation	1 Day	Word/Docs

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

Metric Value

Accuracy 100%

Precision 100%

Recall 100%

F1 Score 100%

7. RESULTS

7.1 Output Screenshots

- Web Form Input (HTML)
- Result Display (Positive/Negative)
- Correlation Heatmap
- Confusion Matrix

8. ADVANTAGES & DISADVANTAGES

Advantages

- Early liver diagnosis
- Web-based access
- Reusable model
- Fast predictions

Disadvantages

• Dependent on data quality

• Does not replace medical consultation

9. CONCLUSION

The model successfully predicts liver cirrhosis based on patient data. It is accurate, fast, and user-friendly. It serves as a great assistant tool for preliminary screening.

10. FUTURE SCOPE

- Add image-based diagnosis (ultrasound scans)
- Deploy to cloud (AWS/GCP)
- Expand to other liver diseases
- Add login/user history tracking

11. APPENDIX

Source Code

Located in app.py and templates/

Dataset Link

https://www.kaggle.com/datasets/bhavanipriya222/liver-cirrhosis-prediction

GitHub

GitHub: https://github.com/RAVURITEJASRI/Revolutionizing-Liver-Care-Predicting-Liver-Cirrhosis-using-Advanced-Machine-Learning-Techniques.git