

Detecting Brain Tumours

Joel Koch and Bastian Schuchardt

Introduction to the Problem

- Classify malignant & benign brain tumours
 - High accuracy for implementation in medicine
- Two doctors need to check which type of tumour
 - → Replace 2nd doctor with ML model
- Train CNN for malignant/benign tumours

The Dataset

- "Brain Tumor" kaggle dataset
- 3762 images with labels

DOI: 10.34740/KAGGLE/DSV/1370629

License: CC BY-NC-SA 4.0

- First order features:
 - Mean, variance, std. deviation, skewness, kurtosis
- Second order features:
 - contrast, energy, angular second moment (ASM), entropy, homogeneity, dissimilarity, correlation, coarseness

Network architecture

activation: relu

optimizer: adam

learning rate = 0.005

loss: Sparse Categorical Crossentropy

metrics = accuracy

Results

Accuracy: 90.56 %

Mean Squared Error: 0.0944

F1-Score: 0.91

Hyperparameter Optimization / Overtraining checks

- Overtraining was reduced already
 - difference between train & validation was much bigger
- To reduce overtraining:
 - Architecture complexity reduced
 - Introduced Dropout layers
 - Changed learning rate

Achieved better accuracy with more overtraining

Hyperparameter Optimization / Overtraining checks

- Filters = [24, 48, 72]
- Dense units = [4, 8, 12]
- Dropout = [.3, .4, .5]

- → bigger Dropout
- → increase dense units
- → check again with filters

Alternative Method

Comparing image recognition vs. binary classification

	SVM	Logistic Regression	K-NN
Accuracy	98.01%	97.88%	97.61%
Mean Squared Error	0.0199	0.0212	0.0239

Conclusion

- CNN reached good performance with a lot of overtraining
- Reducing overtraining will be the next key task
- Accuracy needs to be increased
 - Run model with more epochs
- Binary classification methods achieve better results than CNN (so far)