Reeksamen på Økonomistudiet sommer 2017 **Makroøkonomi I**

(3-timers skriftlig prøve uden hjælpemidler)

16. august

Dette eksamenssæt består af 7 sider (inkl. forside).

OBS: Bliver du syg under selve eksamen på Peter Bangsvej, skal du kontakte et tilsyn, blive registreret som syg hos denne. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Opgave 1:

1.1

Forklar hvorfor de endogene og semi-endogene vækstmodeller (fra pensumkapitalerne 8 og 9) indeholder såkaldte skalaeffekter. Med udgangspunkt i Figur 1 (på side 7), diskutér om skalaeffekter er rimelige ud fra et empirisk synspunkt.

1.2

Balanceret vækst er en række historiske observationer relateret til udviklingen i økonomiske data (fx BNP pr. capita) over en lang tidshorisont på tværs af nogle lande. Forklar specifikt, hvad begrebet balanceret vækst indeholder. Diskutér med afsæt i Figur 2 (på side 7), og i relation til pensumbogens kapitel 2, om det er tilstræbelsesværdigt at få teoretiske vækstmodeller til at udvise balanceret vækst.

1.3

Figur 3 (på side 7) viser udviklingen i (log) BNP pr. capita fra år 1000 frem til i dag for forskellige regioner i verden. Den viser bl.a., at omkring den Industrielle Revolution (sidste halvdel af det 18. århundrede) sker der et brud i vækstraten for BNP pr. capita for nogle regioner. Diskutér om den Generelle Solowmodel (dvs. modellen i pensumbogens kapitel 5) er i stand til at forklare én udviklingen i BNP pr. capita som vist i Figur 3.

Opgave 2:

Ligningerne (1)-(9) udgør en Solowmodel for en *lille* åben økonomi med frie kapitalbevægelser og endogen videns/teknologisk-udvikling:

$$Y_t = K_t^{\alpha} (A_t L_{Yt})^{1-\alpha}, \ 0 < \alpha < 1,$$
 (1)

$$V_{t+1} = V_t + S_t, V_0 \text{ givet}, \tag{2}$$

$$S_t = sY_t^n, \ 0 < s < 1,$$
 (3)

$$Y_t^n = Y_t + \bar{r}F_t,\tag{4}$$

$$g_t^A = \frac{A_{t+1} - A_t}{A_t} = \bar{A}_t^{\mu} A_t^{\phi - 1} L_{At}^{\lambda}, \ 0 < \lambda, \mu, \phi < 1, \ A_0 \text{ givet}, \tag{5}$$

$$\bar{A}_{t+1} = (1 + g^W)\bar{A}_t, \, \bar{A}_0 \text{ givet},$$
 (6)

$$L_{Yt} + L_{At} = L_t, (7)$$

$$L_{At} = s_R L_t, \ 0 < s_R < 1, \tag{8}$$

$$L_{t+1} = (1+n)L_t, n > -1, L_0 \text{ givet.}$$
 (9)

Ligning (1) beskriver BNP som funktion af kapital (K_t) , produktionsarbejdere (L_{Yt}) og vidensniveauet (A_t) , der bestemmer arbejdernes produktivitet. Ligning (2) angiver, hvorledes formuen (V_t) udvikler sig over tid. Formuen er pr. definition lig med det indenlandske kapitalapparat (K_t) , samt nettofordringer på udlandet (F_t) ; dvs. $V_t \equiv K_t + F_t$. Den samlede opsparing i indlandet (S_t) antages at være en konstant andel (0 < s < 1) af nationalindkomsten (Y_t^n) , jvf. ligning (3). Ligning (4) fortæller, at nationalindkomsten er lig med summen af BNP (Y_t) og rentebetalingerne fra nettofordringerne på udlandet $(\bar{r}F_t)$, hvor \bar{r} er den internationale realrente. Ligning (5) angiver udviklingen i (indenlandsk) vidensniveau, hvor \bar{A}_t er udtryk for det internationale vidensniveau og L_{At} er antal (indenlandske) forskere. Parameteren μ kan fx fortolkes som graden, hvori landet er integreret i international vidensdeling. Ligningen (6) beskriver udviklingen i det internationale vidensniveau. Den samlede befolkning i indlandet er L_t , hvor andelen s_R er forskere og andelen $1 - s_R$ er produktionsarbejdere (jvf. ligningerne 7

og 8), og befolkningen udvikler sig over tid i følge ligning (9). Befolkningen antages ydermere fuldstændig immobil (dvs. ingen migration). Det antages, at den repræsentative virksomhed maksimerer profitten; der eksisterer faktormarkeder for fysisk kapital og arbejdskraft, og den offentlige sektor finansierer (indirekte) forskningssektoren. Der anvendes følgende definitionerne for variablene i pr. effektiv befolkningsenheder:

$$\tilde{k}_t \equiv \frac{K_t}{A_t L_t}, \ \tilde{y}_t \equiv \frac{Y_t}{A_t L_t}, \ \tilde{v}_t \equiv \frac{V_t}{A_t L_t}, \ \tilde{y}_t^n \equiv \frac{Y_t^n}{A_t L_t}.$$

2.1

Opstil den repræsentative virksomheds profitmaksimeringsproblem og find den inverse faktorefterspørgsel efter henholdsvist kapital og produktionsarbejdere.

2.2

Pga. antagelsen om frie kapitalbevægelser, vil den indenlandske realrente til alle tidspunkter være lig med den internationale realrente $(r_t = \bar{r})$. Vis at BNP pr. effektiv befolkning og reallønnen (til en produktionsarbejer) er givet ved:

$$\tilde{y} = \left(\frac{\alpha}{\bar{r}}\right)^{\frac{\alpha}{1-\alpha}} (1 - s_R), \tag{10}$$

$$w_t = (1 - \alpha) \left(\frac{\alpha}{\bar{r}}\right)^{\frac{\alpha}{1 - \alpha}} A_t. \tag{11}$$

2.3

Vis at modellen indebærer følgende transitionsligning for vækstraten i det nationale vidensniveau:

$$g_{t+1}^{A} = \left(1 + g^{W}\right)^{\mu} (1+n)^{\lambda} \frac{g_{t}^{A}}{\left(1 + g_{t}^{A}\right)^{1-\phi}}.$$
 (12)

Vis herefter vha. relevante diagrammer, hvorledes g_t^A (for $g_0^A < g^{A^*}$) udvikler sig over tid under antagelsen, at vækstraten *altid* konvergerer mod sin steady-state værdi ($g_{t+1}^A = g_t^A = g^{A^*} > 0$).

2.4

Vis at steady-state vækstraten er givet ved:

$$g^{A*} = (1 + g^W)^{\frac{\mu}{1 - \phi}} (1 + n)^{\frac{\lambda}{1 - \phi}} - 1. \tag{13}$$

Udled under hvilken betingelse, at det indenlandske vidensniveau (i steady state) vokser hurtigere end det internationale vidensniveau. Er sådan en betingelse rimelig ift. modellens antagelser? Begrund.

2.5

Vis at udviklingen i formuen pr. effektiv befolkning kan skrives som:

$$\tilde{v}_{t+1} = \frac{1}{(1+n)(1+g_t^A)} \left((1+s\bar{r})\,\tilde{v}_t + s(1-s_R)\,(1-\alpha)\left(\frac{\alpha}{\bar{r}}\right)^{\frac{\alpha}{1-\alpha}} \right). \tag{14}$$

Under antagelserne $s\bar{r} < n + g_t^A + ng_t^A$ og $g_0^A < g^{A*}$, skitsér i et fasediagram, hvorledes formuen pr. effektiv befolkning udvikler sig. Kan antagelsen $s\bar{r} < n + g_t^A + ng_t^A$ beskrives som rimelig? Begrund.

2.6

Vis at steady-state vækststien for national indkomsten pr. befolkning $(y_t^{n*} = \tilde{y}^{n*}A_t)$ kan skrives som:

$$\ln y_t^{n*} \approx \ln \left((1 - \alpha) \left(\frac{\alpha}{\bar{r}} \right)^{\frac{\alpha}{1 - \alpha}} (1 - s_R) + \bar{r} \tilde{v}^* \right) - \frac{1}{1 - \phi} \ln g^{A*} + \frac{1}{1 - \phi} \left(\mu \ln \bar{A}_0 + \lambda \ln s_R + \lambda \ln L_0 \right) + \frac{1}{1 - \phi} \left(\mu g^W + \lambda n \right) t.$$

$$(15)$$

Vis og forklar (med vægt på intuition), hvordan denne steady-state vækststi påvirkes af en stigning i befolkningsvækstraten (n). Find til sidst det optimale niveau for s_R .

2.7

Antag nu, at ligning (5) erstattes med:

$$g_t^A = \bar{A}_t^{\mu} A_t^{\phi - 1} (s_w w_t)^{\lambda}, \ 0 < \lambda, \mu, \phi < 1, \ A_0 \text{ givet.}$$
 (16)

Det vil sige, at forskningssektoren nu er afhængig af (bl.a.), hvor mange resurser (som en andel, $0 < s_w < 1$, af reallønnen, w_t), der tilføres sektoren og ikke antal forskere (som sådan), hvilket betyder vi nu antager at $s_R = 0$. Find transitionsligning for vækstraten i det nationale vidensniveau og forklar hvordan denne udvikler sig over tid. Beskriv forskelle/ligheder mellem denne model og modellen givet ved ligningerne (1)-(9).

Noter: Denne figur viser sammenhængen mellem den årlige gennemsnitlige vækstrate i BNP pr. capita (over perioden 1940-2000), og (log) befolkningsstørrelse i 1940. Den stiplede linje er den bedste rette linje (OLS). Observationerne er lande.

Noter: Denne figur viser udviklingen i (log) BNP pr. capita fra år 1820 til 2010 for Frankrig.

Noter: Denne figur viser udviklingen i (log) BNP pr. capita fra år 1000 til 2000 for forskellige regioner i verden, fx: Vesteuropa, Asien, Vestlige offshoots (dvs. USA, Canada, osv.).