Noyaux, SVM

Cours 5
ARF Master DAC

Nicolas Baskiotis

nicolas.baskiotis@lip6.fr
http://webia.lip6.fr/~baskiotisn

équipe MLIA, Laboratoire d'Informatique de Paris 6 (LIP6) Université Pierre et Marie Curie (UPMC)

S2 (2017-2018)

Plan

- Introduction
- Support Vector Machine : principe
- Intro à l'optimisation sous contraintes
- SVM : l'optimisation
- 5 The Kernel Trick le tour de passe-passe non linéaire

Données non séparables linéairement

Solutions

- Utiliser des fonctions non-linéaires (réseau de neurones)
- Augmenter les dimensions : projection des données dans un espace de dimension supérieure

3 / 26

Projection des données

Oui mais ...

- Quelle projection ?
- Et le sur-apprentissage ?
- Et les "mauvaises" données (le bruit) ?

Rappels géométriques

Plan

- Introduction
- 2 Support Vector Machine : principe
- Intro à l'optimisation sous contraintes
- 4 SVM : l'optimisation
- 5 The Kernel Trick le tour de passe-passe non linéaire

Se donner de la marge

Si séparable

- γ : distance entre l'hyperplan (frontière) et le point le plus proche
- Mise à l'échelle telle que en ce point $\mathbf{w}\mathbf{x} + b = \pm 1$

Se donner de la marge

Si séparable

- ullet γ : distance entre l'hyperplan (frontière) et le point le plus proche
- Mise à l'échelle telle que en ce point $\mathbf{w}\mathbf{x} + b = \pm 1$
- $\mathbf{x}_1 \mathbf{x}_2 = \gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}$
- $\bullet \ 1 = \mathbf{w}(\mathbf{x}_1 \mathbf{x}_2) = \gamma \frac{\mathbf{w}\mathbf{w}}{\|\mathbf{w}\|} = \gamma \|\mathbf{w}\|$

Se donner de la marge

Si séparable

- γ : distance entre l'hyperplan (frontière) et le point le plus proche
- Mise à l'échelle telle que en ce point wx + b = ±1
- $1 = \mathbf{w}(\mathbf{x}_1 \mathbf{x}_2) = \gamma \frac{\mathbf{w}\mathbf{w}}{\|\mathbf{w}\|} = \gamma \|\mathbf{w}\|$
- \Rightarrow Maximiser la marge \Leftrightarrow minimiser $\|\mathbf{w}\|$!
 - Nouvelle formulation : minimiser $\|\mathbf{w}\|$ tel que $(\mathbf{w}x^i + b)y^i \geq 1$ Problème d'optimisation quadratique convexe

Prendre en compte les erreurs

- Minimiser $\|\mathbf{w}\| + K$ #Erreurs tel que $(\mathbf{w}x^i + b)y^i \ge 1$
- Problème NP difficile (et les problèmes inhérents au coût 0-1).

Approche Support Vector Machine

- Introduire des variables "ressorts" (slack)
- Minimiser $\|\mathbf{w}\|^2 + K \sum_i \xi_i$ tel que $(\mathbf{w}\mathbf{x}^i + b)y^i \ge 1 - \xi_i, \, \xi_i \ge 0$
- Si la marge est plus grande que 1 \rightarrow pas de coût, sinon coût linéaire :

$$\begin{cases} \xi_i = 0 & \text{si } (\mathbf{w}\mathbf{x}^i + b)y^i \ge 1\\ \xi_i = 1 - (\mathbf{w}\mathbf{x}^i)y^i & \text{si } (\mathbf{w}\mathbf{x}^i + b)y^i < 1 \end{cases}$$

- $\xi_i = max(0, 1 (\mathbf{w}\mathbf{x}^i)y^i)$
- Pourquoi la constante K ? Comment la choisir ?

Approche Support Vector Machine

- Introduire des variables "ressorts" (slack)
- Minimiser $\|\mathbf{w}\|^2 + K \sum \xi_j$ tel que $(\mathbf{w}\mathbf{x}^i + b)y^i \ge 1 - \xi_i, \, \xi_i \ge 0$
- Si la marge est plus grande que 1 \rightarrow pas de coût, sinon coût linéaire :

$$\begin{cases} \xi_i = 0 & \text{si } (\mathbf{w}\mathbf{x}^i + b)y^i \ge 1\\ \xi_i = 1 - (\mathbf{w}\mathbf{x}^i)y^i & \text{si } (\mathbf{w}\mathbf{x}^i + b)y^i < 1 \end{cases}$$

- $\bullet \ \xi_i = max(0, 1 (\mathbf{w}\mathbf{x}^i)y^i)$
- Pourquoi la constante K ? Comment la choisir ?

Formulation

- Minimiser : $\|\mathbf{w}\|^2 + K \sum \ell(y^i, \mathbf{w}\mathbf{x}^i + b)$
- Avec $\ell(y, \hat{y}) = max(0, 1 y\hat{y}) \rightarrow \text{Hinge Loss }!$
- ullet Et $\|\mathbf{w}\|^2 o$ terme de régularisation pour controler le sur-apprentissage.

Plan

- Introduction
- Support Vector Machine : principe
- Intro à l'optimisation sous contraintes
- 4 SVM : l'optimisation
- 5 The Kernel Trick le tour de passe-passe non linéaire

Optmisation avec contraintes

Permet de résoudre les problèmes de type :

minimiser_x $f(\mathbf{x})$ avec un ensemble de contraintes $c_i(\mathbf{x}) \leq 0$

Optimisation avec contraintes d'égalité

Formulation et intuition

• Problème du type : $\min_{\mathbf{x}} f(\mathbf{x}) \text{ tq } g(\mathbf{x}) = 0$

Optimisation avec contraintes d'égalité

Formulation et intuition

- Problème du type : $min_x f(x) tq g(x) = 0$
- Au point optimal \mathbf{x}_0 , $\nabla f(\mathbf{x}_0) = \lambda \nabla g(\mathbf{x}_0)$, les gradients sont alignés
 - ▶ soit \mathbf{x}_0 est un minimum de $f \to \lambda = 0$
 - soit en $suivant\ g$, la valeur de f ne change pas \to g tangente à l'isocourbe de f

Un outil magique : le lagrangien

Multiplicateurs de Lagrange

- Fonction auxiliaire : $\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) \lambda g(\mathbf{x})$ dont on cherche l'optimum (λ : multiplicateur de Lagrange)
- On cherche $\nabla \mathcal{L}_{\mathbf{x},\lambda}(\mathbf{x},\lambda) = 0$, soit
 - $\frac{\partial \mathcal{L}}{\partial \lambda} = 0 = g(\mathbf{x})$ (contrainte d'égalité)
 - $\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = 0 = \nabla_{\mathbf{x}} f(\mathbf{x}) = \lambda \nabla_{\mathbf{x}} g(\mathbf{x})$

Remarques

- Condition nécessaire mais pas suffisante! (le signe du déterminant du Hessien donne la condition suffisante)
- Généralisable à un nombre quelconques de contraintes : introduire autant de multiplicateurs que de contraintes

Optimisation avec contraintes d'inégalité

Formulation

 $\min_{\mathbf{x}} f(\mathbf{x})$ tel que $c_1(\mathbf{x}) \leq 0, \dots c_n(\mathbf{x}) \leq 0$ et $g_1(\mathbf{x}) = 0, \dots, g_m(\mathbf{x}) = 0$

Multiplicateurs de Lagrange - formulation duale

- Pour chaque contrainte d'inégalité c_i , on introduit une variable $\lambda_i \geq 0$
- ullet Pour chaque contrainte d'égalité g_j , on introduit une variable μ_j
- Formulation duale : $\mathcal{L}(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) + \sum_i \lambda_i c_i(\mathbf{x}) + \sum_j \mu_j g_j(\mathbf{x})$

Condition nécéssaire d'optimalité de Karush Kuhn Tucker (KKT)

Si $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ est optimal, alors

- $\nabla \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = 0$ (stationarité)
- $\forall i \ c_i(\mathbf{x}^*) \leq 0, \ \forall j \ g_j(\mathbf{x}^*) = 0$ (admissibilité primale)
- $\forall i \lambda_i^* \geq 0$ (admissibilité duale)
- $\lambda_i^* c_i(\mathbf{x}^*) = 0$ (complémentarité)

Plan

- Introduction
- Support Vector Machine : principe
- Intro à l'optimisation sous contraintes
- SVM : l'optimisation
- 5 The Kernel Trick le tour de passe-passe non linéaire

La recette magique

Dans le cas simple (sans variables slack)

Le problème primal

 $\mathsf{minimiser}_{\mathbf{w},b} \quad \frac{1}{2} \|\mathbf{w}\|^2 \ \mathsf{tel} \ \mathsf{que} \ y^i(\mathbf{w}\mathbf{x}^i + b) \geq 1$

Fonction de Lagrange

- $L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 \sum_i \alpha_i (y^i (\mathbf{w} \mathbf{x}^i + b) 1)$
- Si w, b sont des minimums, alors il existe α_i ≥ 0 tel que le gradient du lagrangien soit nul.
- Condition d'optimalité (Karush Kuhn Tucker) :

$$\alpha_i(y^i(\mathbf{w}\mathbf{x}^i+b)-1)=0 \to \begin{cases} \alpha_i=0\\ \alpha_i>0 \Rightarrow (y^i(\mathbf{w}\mathbf{x}^i+b)-1)=0 \end{cases}$$

16 / 26

Résolution

Lagrangien

•
$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_i \alpha_i (y^i (\mathbf{w} \mathbf{x}^i + b) - 1)$$

Dérivées

- $\nabla_{\mathbf{w}} L(\mathbf{w}, b, \alpha) = \mathbf{w} \sum_{i} \alpha_{i} y^{i} \mathbf{x}^{i} = 0$
- $\nabla_b L(\mathbf{w}, b, \alpha) = \sum_i \alpha_i y^i = 0$
- maximiser $_{\alpha} \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^i y^j < \mathbf{x}^i, \mathbf{x}^i > + \sum_i \alpha_i$ tel que $\sum \alpha_i y^i = 0$ et $\alpha_i \geq 0$.

Remarques importantes

- $\mathbf{w} = \sum_i \alpha_i y^i \mathbf{x}^i$: le vecteur de poids est une combinaison linéaire des exemples d'apprentissage !
- If y a (même beaucoup) de α_i qui sont nuls \Rightarrow exemples non pris en compte (normal ?)
- La solution ne fait intervenir que des produits scalaires

Dans le cas compliqué (avec slack)

Le problème primal

minimiser_{w,b} $\frac{1}{2} \|\mathbf{w}\|^2 + K \sum_i \xi_i$ tel que $y^i(\mathbf{w}\mathbf{x}^i + b) \ge 1 - \xi_i$ et $\xi_i \ge 0$

Lagrangien

•
$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + K \sum_i \xi_i - \sum_i \alpha_i (y^i (\mathbf{w} \mathbf{x}^i + b) + \xi_i - 1) - \sum_i \eta_i \xi_i$$

Dérivées

•
$$\nabla_{\mathbf{w}} L(\mathbf{w}, b, \alpha, \xi, \eta) = w - \sum_{i} \alpha_{i} y^{i} x^{i} = 0$$

•
$$\nabla_b L(\mathbf{w}, b, \alpha, \xi, \eta) = \sum_i \alpha_i y^i = 0$$

•
$$\nabla_{\xi} L(\mathbf{w}, b, \alpha, \xi, \eta) = K - \alpha_i - \eta_i = 0$$

$$\begin{array}{ll} \Rightarrow \; \mathsf{maximiser}_{\alpha} \;\; -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^i y^j < \mathbf{x}^i, \mathbf{x}^j > + \sum_i \alpha_i \\ \mathsf{tel} \; \mathsf{que} \; \sum \alpha_i y^i = 0 \; \mathsf{et} \; \alpha_i \in [0,K]. \end{array}$$

Condition d'optimalité (KKT) :

$$\begin{cases} \alpha_i(y^i(\mathbf{w}\mathbf{x}^i + b) + \xi_i - 1) = 0 \\ \eta_i \xi_i = 0 \end{cases} \rightarrow \begin{cases} \alpha_i = 0 \Rightarrow y^i(wx^i + b) \ge 1 \\ 0 < \alpha_i < K \Rightarrow (y^i(\mathbf{w}\mathbf{x}^i + b) - 1) = 1 \\ \alpha_i = K \Rightarrow (y^i(\mathbf{w}\mathbf{x}^i + b) - 1) \le 1 \end{cases}$$

19 / 26

Plan

- Introduction
- Support Vector Machine : principe
- Intro à l'optimisation sous contraintes
- 4 SVM : l'optimisation
- 5 The Kernel Trick le tour de passe-passe non linéaire

LE détail important

Dans toutes les formulations

- minimiser_{w,b} $\frac{1}{2} ||\mathbf{w}||^2 + K \sum_i \xi_i$ tel que $y^i(\mathbf{w}\mathbf{x}^i + b) \ge 1 \xi_i$ et $\xi_i \ge 0$
- maximiser $_{\alpha}$ $-\frac{1}{2}\sum_{i,j}\alpha_{i}\alpha_{j}y^{i}y^{j}<\mathbf{x}^{i},\mathbf{x}^{j}>+\sum_{i}\alpha_{i}$ tel que $\sum \alpha_i y^i = 0$ et $\alpha_i \in [0, K]$.
- \bullet $f(\mathbf{x}) = \sum_{i} \alpha_{i} y_{i} < \mathbf{x}^{i}, \mathbf{x} > +b$

21 / 26

LE détail important

Dans toutes les formulations

- minimiser_{w,b} $\frac{1}{2} \|\mathbf{w}\|^2 + K \sum_i \xi_i$ tel que $y^i(\mathbf{w}\mathbf{x}^i + b) \ge 1 \xi_i$ et $\xi_i \ge 0$
- maximiser $_{\alpha} \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^i y^j < \mathbf{x}^i, \mathbf{x}^i > + \sum_i \alpha_i$ tel que $\sum \alpha_i y^i = 0$ et $\alpha_i \in [0, K]$.
- Ce qui importe c'est le produit scalaire!

Pourquoi donc?

Non linéarité -> projection

- On veut considérer une projection $\phi: \mathbb{R}^n \to \mathbb{R}^{n'}, \ n << n'$
- Mais n' peut être vraiment très grand! (projection polynomiale, gaussienne)
- ⇒ Problèmes :
 - Computationels
 - Sur-apprentissage
 - Est-on obligé de calculer explicitement $\phi(x)$?

Le produit scalaire

Pour le SVM, on a besoin :

- $\bullet < \mathbf{w}, \mathbf{x} > \Rightarrow < \mathbf{w}', \phi(\mathbf{x}) >$, mais en fait \mathbf{w} s'exprime à partir de $\phi(\mathbf{x})$
- \bullet < \mathbf{x} , $\mathbf{x} > \Rightarrow < \phi(\mathbf{x}), \phi(\mathbf{x} >)$
- et c'est tout !
- ⇒ Peut-on calculer directement ce produit scalaire ?

Exemple: projection polynomiale

- $\bullet < \phi(\mathbf{x})\phi(\mathbf{x}') > = 1 + 2\sum_{i} x_{i}x'_{i} + \sum_{i} \sum_{j} x_{i}x'_{i}x_{j}x'_{j} = 1 + 2\mathbf{x}\mathbf{x}' + (\mathbf{x}\mathbf{x}')^{2} = (1 + \mathbf{x}\mathbf{x}')^{2}$

S2 (2017-2018)

23 / 26

Les noyaux

Définition

- Forme généralisée de produit scalaire : $k(\mathbf{x}, \mathbf{x}') = <\phi(\mathbf{x}), \phi(\mathbf{x}')>$
- Noyaux admissibles : tous ceux qui peuvent se mettre sous la forme d'un produit scalaire de deux projections (il existe ϕ tel que . . .).
- Mathématiquement : fonction semi-définie positive : pour toute fonction f carré intégrable, $\int_{x,x'} f(x)k(x,x')f(x')dxdx' > 0$.
- Ou, sur un échantillon $\{x^1, \dots, x^n\}$, si k est symétrique et pour tout $c_i \in \mathbb{R}$, $\sum_{i,j} c_i c_j k(x_i, x_j) \ge 0$.

Opération

Si k, k' sont des noyaux, alors sont aussi des noayux:

- k(x, x') + k'(x, x')
- k(x, x') * k'(x, x')
- k(f(x), f'(x))
- f(k(x, x')) pour f polynome
- \bullet exp(k(x,x'))

Quelques exemples

- Noyau gaussien : $k(x, x') = exp(-\|x x'\|^2/\sigma^2)$
- Bag of words pour une phrase
- Noyau de convolution : $k(x, x') = \sum_{w \in x} \sum_{w' \in x'} k'(w, w')$
- Noyau sur les arbres, les graphes . . .
- Penser aux noyaux comme une mesure de similarité entre deux objets !
 - si éloignés → 0 (produit scalaire orthogonal)
 - si proche → valeur maximale (vecteurs alignés)

Conclusion

- Mythe: Les SVMs fonctionnent parce que l'on projette en très haute dimension
- ⇒ alors on aurait besoin de bien plus de données
 - Combiné à la contrainte de marge.
 - On retrouve une forme générique des problèmes d'apprentissage :
 R(f) = ∑ ℓ(f(xⁱ), yⁱ) + Ω(f),
 avec ℓ une fonction de coût (risque empirique) et Ω une régularisation
 sur la complexité de la fonction f.
 - Permet de régler le sur-apprentissage (ou de manière équivalent de contraindre la classe de fonction considérée).