Machine Discovery Homework2 Report

Team members

- B03902010 耿宗揚
 - Model Design
 - Program Optimization
- B03902015 簡瑋德
 - o Model Design
 - o Report
- B03902086 李鈺昇
 - Feature Extraction Testing
 - Report

Environmental Settings

- Linux linux3 4.8.4-1-ARCH #1 SMP PREEMPT
- Python 3.5.2
- theano 0.9.0
- Screenshot

Model

- Assumptions
 - \circ For each pair (u, i), there's a feature vector $v \in \mathbb{R}^8$ representing the attributes of the pair
 - $\circ \ P(pair(u,i) = true|w,b) = \sigma(w^Tv-b) \quad \text{, where } w \in R^8 \text{ is the weight vector, } b \in R \text{ is the bias and } \sigma(s) = \frac{1}{1+e^{-s}} \quad \text{is the sigmoid active function}$
 - About 50% of the pairs in the prediction file are true, while the others are false
- Features

We only consider those items with nonzero link counts, and omit the others.

- Item count ratio of user: $\frac{\text{# items owned by user}}{\text{total link counts of all items}}$
- 1[user is one of the owners of item]
- 1[user is a friend to any owner of item]
- 1[any owner of item is a friend to user]
- 1[the item belongs to any category of some item the user owns]
- o Ratio of users that like this item: $\frac{\text{the likes of the item}}{\text{number of users}}$
- # people who are friends to the user
 # users

 # people whom the user is a friend to
 # users

^{*} We consider friendship to be directed, so the 3rd and 4th features are considered separately. Likewise, the 7th and 8th features are considered separately.

- Parameters Initialization Let $w_0 = [1, 1, \ldots, 1]^T$ with length 8 (number of features) and $b_0 = 1$. This is due to our belief that all the features are in positive correlation with the predicted probability.
- Cost/Loss Function
 - We want to maximize the probability difference between the pairs that seem to be true and the other pairs
 - $\circ \ L = -\sum_{p \in D} P(p = true|w,b) + \sum_{p \in D^{'}} P(p = true|w,b) \quad \text{, where } D \text{ is the set of pairs } \\ \text{with higher probability, and } D^{'} = \{pairs \text{ in prediction file}\} \setminus D \text{ and } |D| \approx |D^{'}|$
- Updating Parameters
 - We use gradient descent algorithm to update the parameters
 - $\circ\,$ In each interation, we calculate the cost function for all the pairs in prediction file with parameters w and b
 - $\circ \ \ \text{Update} \ w^{'} = w \eta \frac{\delta L(D,D^{'},w,b)}{\delta w} \ \ \text{and} \ b^{'} = b \eta \frac{\delta L(D,D^{'},w,b)}{\delta b} \ , \ \text{where} \ \eta \ \text{is the learning rate}$ (value = 0.0005)

Performance

- Iteration = 30
- Threshold = The Median of $P(p_1), P(p_2), \dots, P(p_n)$, where $p_1, p_2, \dots, p_n \in P(p_n)$
- Case 1
 - \circ p = true if and only if P(p) > Threshold
 - Accuracy = 97.5%
- Case 2
 - \circ p = true if and only if $P(p) \ge Threshold$
 - Accuracy = 98.1%
- ScreenShot

References

- theano (http://deeplearning.net/software/theano/): A Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently
- ACM 2013 paper (http://dl.acm.org/citation.cfm?id=2487614): Unsupervised link prediction using aggregative statistics on heterogeneous social networks