SIG731 2023: Task 3P

Working with **numpy** Matrices (Multidimensional Data)

Last updated: 2023-11-24

Contents

1	Task	1
2	Artefacts	4

1 Task

Create a single Jupyter/IPython notebook (see the *Artefacts* section below for all the requirements), where you perform what follows.

- From https://github.com/gagolews/teaching-data/tree/master/marek, download the two following excerpts from the National Health and Nutrition Examination Survey (NHANES dataset) that give body measurements of adult males and females.
 - nhanes_adult_male_bmx_2020.csv,nhanes adult female bmx 2020.csv.
- 2. Read them as **numpy** matrices named male and female using numpy.genfromtxt. Each matrix consists of seven columns:
 - 1. weight (kg),
 - 2. standing height (cm),
 - 3. upper arm length (cm),
 - 4. upper leg length (cm),
 - 5. arm circumference (cm),
 - 6. hip circumference (cm),
 - 7. waist circumference (cm).
- 3. In both cases, add the eight column which stores the body mass indices of the participants.
- 4. On a **single** plot, draw two histograms: for male BMIs (top subfigure) and for female BMIs (bottom subfigure) **one below another**. Set the number of histogram bins to 20. Use matplotlib.pyplot.subplot to create two subplots in one figure. Call matplotlib.pyplot.xlim to make the **x-axis limits identical for both subfigures** (work out the appropriate limits yourself). For example:

5. Using a *single* call to matplotlib.pyplot.boxplot, draw a box-and-whisker plot giving the male and female BMIs, with **two boxes one below another** (on one plot) so that they can be compared to each other. Note that the boxplot function can be fed with a list of two vectors like [male_BMIs, female_BMIs]. For example:

6. Compute the basic numerical aggregates of the male and female BMIs (measures of location, dispersion, and shape). Report them in a readable format. Example formatting of the aggregates:

##			female	male
##	BMI	mean	30.10	29.14
##		${\sf median}$	28.89	28.27
##		min	14.20	14.91
##		max	67.04	66.50
##		std	7.76	6.31
##		IQR	10.01	7.73
##		skew	0.92	0.97

- 7. In your own words, describe the two distributions based on the results obtained in subtasks 4, 5, and 6 above (e.g., are they left-skewed, how they differ, which one has more dispersion, and so forth).
- 8. Draw a scatterplot matrix (pairplot) for the male heights, weights, waist circumferences, hip circumferences, and BMIs (these five columns only); see the pairplot function in section 7.4.3 of our book. Example output (yours can be more aesthetic):

9. Compute Pearson's *and* Spearman's correlation coefficients for all pairs of variables mentioned in subtask 8. Present/visualise these coefficients on two correlation heatmaps (with correlation coefficients printed inside the coloured cells); see the corrheatmap function in Section 9.1.2 of our book. Example outputs:

10. Discuss the findings from subtasks 8 and 9.

Important. Remember that this is an exercise where you demonstrate the mastery of **numpy** matrices, and not **pandas** data frames. The use of **pandas** is forbidden. You can use **scipy**, though.

All packages must be imported and data must be loaded at the beginning of the file (only once!).

2 Artefacts

Make sure that your notebook has a **readable structure**; in particular, that it is divided into sections. Use rich Markdown formatting (text in dedicated Markdown chunks – not just Python comments).

Do not include the questions/tasks from the task specification. Your notebook should read nicely and smoothly – like a report from data analysis that you designed yourself. Make the flow read natural (e.g., First, let us load the data on... Then, let us determine... etc.). Imagine it is a piece of work that you would like to

show to your manager or clients — you certainly want to make a good impression. Check your spelling and grammar. Also, use formal language.

At the start of the notebook, you need to provide: the **title** of the report (e.g., *Task 42: How Much I Love This Unit*), your **name**, **student number**, and **email address**.

Then, add 1–2 introductory paragraphs (an introduction/abstract – what the task is about).

Before each nontrivial code chunk, briefly **explain** what its purpose is. After each code chunk, **summarise and discuss the obtained results** (in a few sentences).

Conclude the report with 1-2 paragraphs (summary/discussion/possible extensions of the analysis etc.).

Checklist:

- 1. Header, introduction, conclusion (Markdown chunks).
- 2. Text divided into sections, all major code chunks commented and discussed in your own words (Markdown chunks).
- 3. Every subtask addressed/solved. In particular, all reference results that are part of the task specification have been reproduced (plots, computed aggregates, etc.).
- 4. The report is readable and neat. In particular:
 - all code lines are visible in their entirety (they are not too long),
 - code chunks use consecutive numbering (select *Kernel Restart and Run All* from the Jupyter menu),
 - rich Markdown formatting is used (# Section Title, * bullet list, 1. enumerated list, | table |, *italic*, etc.),
 - the printing of unnecessary/intermediate objects is minimised (focus on reporting the results specifically requested in the task specification).

Submissions which do not *fully* (100%) conform to the task specification *on* the cut-off date will be marked as FAIL.

Good luck!