Parametric Compound Cycloidal Reducer

By: Joshua Adcock Reducer version 2.00 Documentation version 1.00

Last updated on: 1/20/25

You can find the main project page on GitHub:

https://github.com/OrnithopterX/Parametric-compound-cycloid-reducer

STLs can be found on **Printables** and **Thingiverse**.

Required hardware:

Hardware type	Quantity	Value
Bearing	1x	25x37x7mm
Bearing	2x	10x15x4mm
Socket head bolt	4x	M3x25mm
Socket head bolt	6x	M3x18mm (for mounting test arm)
Locknut	6x	M3
Stepper motor	1x	NEMA 17, 5mm D shaft

Step 1.

- 2x, 10x15x4mm bearings
- cycloidal disk.stl

Step 2.

Parts required:

• eccentric shaft.stl

Step 3.

Parts required:

• Stepper motor

Step 4.

Parts required:

base.stl

Step 5.

Parts required:

None

The lower half of your Actuator is now complete! Set it aside for now.

Step 6.

- 6x, M3 lock nuts
- output shaft.stl

Step 7.

- 1x, 25x37x7mm bearing
- top mount.stl

Step 8.

- 6x, M3x18mm bolts
- test arm.stl
- output shaft lock.stl

Step 9.

- Lower half
- 4x, M3x25mm bolts

Step 10.

The Actuator is now finished!

