CNN Architectures

Slides adapted from Stanford CS231n Mingchen Gao Last time: Deep learning frameworks

- (1) Easily build big computational graphs
- (2) Easily compute gradients in computational graphs
- (3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, etc)

Today: CNN Architectures

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....

- NiN (Network in Network)
- Wide ResNet
- ResNeXT
- Stochastic Depth

- DenseNet
- FractalNet
- SqueezeNet

Review: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Case Study: AlexNet [Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = **35K**

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

ZFNet

[Zeiler and Fergus, 2013]

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

Case Study: VGGNet [Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet)

-> 7.3% top 5 error in ILSVRC'14

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexN	۷et
-------	-----

Softmax		
FC 1000		
FC 4096		
FC 4096		
Pool		
3x3 conv, 512		
3x3 conv, 512		
3x3 conv, 512		
Pool		
3x3 conv, 512		
3x3 conv, 512		
3x3 conv, 512		
Pool		
3x3 conv, 256		
3x3 conv, 256		
Pool		
3x3 conv, 128		
3x3 conv, 128		
Pool		
3x3 conv, 64		
3x3 conv, 64		
Input		

Softmax		
FC 1000		
FC 4096		
FC 4096		
Pool		
3x3 conv, 512		
Pool		
3x3 conv, 512		
Pool		
3x3 conv, 256		
3x3 conv, 256		
Pool		
3x3 conv, 128		
3x3 conv, 128		
Pool		
3x3 conv, 64		
3x3 conv, 64		
Input		

VGG16

VGG19

Case Study: GoogLeNet [Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!12x less than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

Case Study: GoogLeNet [Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depth-wise

Q: What is the problem with this? [Hint: Computational complexity]

Reminder: 1x1 convolutions

Case Study: GoogLeNet [Szegedy et al., 2014]

Naive Inception module

Inception module with dimension reduction

Case Study: ResNet [He et al., 2015]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

Case Study: ResNet [He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Case Study: ResNet

[He et al., 2015]

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

Case Study: ResNet

[He et al., 2015]

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6% top 5 error) -- better than "human performance"! (Russakovsky 2014)

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Beyond ResNets...

Densely Connected Convolutional Networks

[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse

Efficient networks...

SqueezeNet: AlexNet-level Accuracy With 50x Fewer Parameters and <0.5Mb Model Size

[landola et al. 2017]

- Fire modules consisting of a 'squeeze' layer with 1x1 filters feeding an 'expand' layer with 1x1 and 3x3 filters
- AlexNet level accuracy on ImageNet with 50x fewer parameters
- Can compress to 510x smaller than AlexNet (0.5Mb)

Figure copyright Landola, Han, Moskewicz, Ashraf, Dally, Keutzer, 2017. Reproduced with permission.

Summary: CNN Architectures

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....

- NiN (Network in Network)
- Wide ResNet
- ResNeXT
- Stochastic Depth

- DenseNet
- FractalNet
- SqueezeNet

Summary: CNN Architectures

- VGG, GoogLeNet, ResNet all in wide use, available in model zoos
- ResNet current best default
- Trend towards extremely deep networks
- Significant research centers around design of layer / skip connections and improving gradient flow
- Even more recent trend towards examining necessity of depth vs.
 width and residual connections