Managing Data in Motion

Module Objectives

- 1 Use clone and Auto Loader for efficient copies and incremental ingestion
- Use native features in Spark and Delta Lake to deduplicate, enrich, and validate incremental data
- Combine traditional data modeling techniques with Databricks features to propagate updates through the Lakehouse
- Implement solutions that correctly manage dependencies between incremental datasets

Agenda

- Clone for Development and Data Backup
- Auto Loader
- Bronze Ingestion Patterns
- Promoting Bronze to Silver
- Streaming Deduplication
- Quality Enforcement
- Slowly Changing Dimensions in the Lakehouse
- Streaming Joins and Statefulness
- Stream-static Joins

Clone for Development and Data Backup

Clones:

- Create a replica of a target table
- At a point in time
- In a specific destination location

Basic Details

- Metadata is replicated
 - Schema
 - Constraints
 - Column descriptions
 - Statistics
 - Partitioning
- Clones have separate lineage
 - Changes to cloned table due not affect the source
 - Changes to the source during or after cloning are not reflected in the clone

Shallow Clones

- Zero-copy cloning
 - Only metadata is copied
 - Points to original data files
- Inexpensive and fast
- Not self-contained
 - Depend on sourced data files
 - If source data files are removed, shallow clone may break

Making Changes to the Shallow Clone

- Inserts to the cloned table write new data files
 - Files are recorded in the cloned table directory
- Updates, deletes, and optimizations also write new data files
 - Allows for easy testing without risking prod data

Removing Source Files

- Changes to the source table mark data files as no longer valid
- Vacuuming the source table will permanently remove these data files
- References to source data files will cause queries on the clone table to fail

Deep Clones

- Data is copied alongside metadata
- Copy is optimized, transactional, and robust
- Incrementally copies data files

Incremental Cloning

- Only newly written data files are copied
- Updates, deletes, and appends are automatically applied
- Data files will be identical in both tables after cloning

History and Time Travel

- Clones have separate versioning
 - History begins at version 0
 - New version recorded with updates (including incremental clone)
 - Metadata tracks source table version.
- Clones can have separate retention settings
 - Delta Lake default settings are tuned for performance
 - Increase log retention and deleted file retention for archiving
 - Clone copies source table properties, so will need to reset after each incremental clone
 - If you vacuum the source, a shallow clone is impacted but a deep clone is not.
- adatabrick you vacuum a clone, the original is not impacted.

Notebook: Using Clone with Delta Lake

Notebook: Auto Loader

Bronze Ingestion Patterns

Singleplex Ingestion

Multiplex Ingestion

Don't Use Kafka as Bronze

- Data retention limited by Kafka; expensive to keep full history
- All processing happens on ingest
- If stream gets too far behind, data is lost
- Cannot recover data (no history to replay)

Delta Lake Bronze

Notebook: Auto Load into Multiplex Bronze

Promoting Bronze to Silver

Silver Layer Objectives

- Validate data quality and schema
- Enrich and transform data
- Optimize data layout and storage for downstream queries
- Provide single source of truth for analytics

Schema Enforcement & Evolution

- Enforcement prevents bad records from entering table
 - Mismatch in type or field name
- Evolution allows new fields to be added
 - Useful when schema changes in production/new fields added to nested data
 - Cannot use evolution to remove fields
 - All previous records will show newly added field as Null
 - For previously written records, the underlying file isn't modified.
 - The additional field is simply defined in the metadata and dynamically read as null

Delta Lake Constraints

- Check NOT NULL or arbitrary boolean condition
- Throws exception on failure

ALTER TABLE tableName ADD CONSTRAINT constraintName

CHECK heartRate >= 0;

Alternative Quality Check Approaches

- Add a "validation" field that captures any validation errors and a null value means validation passed.
- Quarantine data by filtering non-compliant data to alternate location
- Warn without failing by writing additional fields with constraint check results to Delta tables

Notebook: Streaming from Multiplex Bronze

Notebook: Streaming Deduplication

Notebook: Quality Enforcement

Notebook: Promoting to Silver

Slowly Changing Dimensions in the Lakehouse

Fact Tables as Incremental Data

- Often is a time series
- No intermediate aggregations
- No overwrite/update/delete operations
- Append-only operations

Using Dimension Tables in Incremental Updates

- Delta Lake enables stream-static joins
- Each micro-batch captures the most recent state of joined Delta table
- Allows modification of dimension while maintaining downstream composability

Slowly Changing Dimensions (SCD)

Type 0: No changes allowed (static/append only)

E.g. static lookup table

Type 1: Overwrite (no history retained)

E.g. do not care about historic comparisons other than quite recent (use Delta Time Travel)

 Type 2: Adding a new row for each change and marking the old as obsolete

E.g. Able to record product price changes over time, integral to business logic.

Type 0 and Type 1

user_id	street	name
1	123 Oak Ave	Sam
2	99 Jump St	Abhi
3	1000 Rodeo Dr	Kasey

Type 2

user_id	street	name	valid_from	current
1	123 Oak Ave	Sam	2020-01-01	true
2	99 Jump St	Abhi	2020-01-01	false
3	1000 Rodeo Dr	Kasey	2020-01-01	false
2	430 River Rd	Abhi	2021-10-10	true
3	1000 Rodeo Dr	Casey	2021-10-10	true

Applying SCD Principles to Facts

- Fact table usually append-only (Type 0)
- Can leverage event and processing times for append-only history

order_id	user_id	occurred_at	action	processed_time
123	1	2021-10-01 10:05:00	ORDER_CANCELLED	2021-10-01 10:05:30
123	1	2021-10-01 10:00:00	ORDER_PLACED	2021-10-01 10:06:30

Notebook: Type 2 SCD

Streaming Joins and Statefulness

The Components of a Stateful Stream

Output Modes

Mode	When Stateful Results Materialize
Append (default)	Only materialize after watermark + lateness passed
Complete	Materialize every trigger, outputs complete table
Update	Materialize every trigger, outputs only new values

Statefulness vs. Query Progress

- Many operations as specifically stateful (stream-stream joins, deduplication, aggregation)
- Some operations just need to store incremental query progress and are not stateful (appends with simple transformations, stream-static joins, merge)
- Progress and state are stored in checkpoints and managed by driver during query processing

Managing Stream Parameters

GOAL: Balance parameters for sustainable, optimized throughput

- Input Parameters
 - Control amount of data in each micro-batch
- State Parameters
 - Control amount of data required to calculate query results
- Output Parameters
 - Control number and size of files written

Reasoning about Stream Dimensions

Input Parameters

Limiting the input dimension

Why are input parameters important?

- Allows you to control the mini-batch size
- Defaults are large
 - Delta Lake: 1000 files per micro-batch
 - Pub/Sub & files: No limit to input batch size
- Optimal mini-batch size → Optimal cluster usage
- Suboptimal mini-batch size → performance cliff
 - Shuffle Spill

Per Trigger Settings

- File Source
 - maxFilesPerTrigger
- Delta Lake and Auto Loader
 - maxFilesPerTrigger
 - maxBytesPerTrigger
- Kafka
 - maxOffsetsPerTrigger

Shuffle Partitions with Structured Streaming

- Should match the number of cores in the largest cluster size that might be used in production
 - Number of shuffle partitions == max parallelism
- Cannot be changed without new checkpoint
 - Will lose query progress and state information
- Higher shuffle partitions == more files written
- Best practice: use Delta Live Tables for streaming jobs with variable volume

Tuning maxFilesPerTrigger

Base it on shuffle partition size

- Rule of thumb 1: Optimal shuffle partition size ~100-200 MB
- Rule of thumb 2: Set shuffle partitions equal to # of cores
- Use Spark UI to tune maxFilesPerTrigger until you get ~100-200
 MB per partition
- Note: Size on disk is **not** a good proxy for size in memory
 - Reason is that file size is different from the size in cluster memory

State Parameters

Limiting the state dimension

Limiting the state dimension

- State Store backed operations
 - Stateful (windowed) aggregations
 - Drop duplicates
 - Stream-Stream Joins
 - Delta Lake table or external system
 - Stream-Static Join / Merge

Why are state parameters important?

- Optimal parameters → Optimal cluster usage
- If not controlled, state explosion can occur
 - Slower stream performance over time
 - Heavy shuffle spill (Joins/Merge)
 - Out of memory errors (State Store backed operations)

Example Query

- Static Delta Lake table used in stream-static join
- State Store-backed windowed stateful aggregation

1. Main input stream

2. Join item category lookup

```
itemSalesSDF = (
   salesSDF
    .join( spark.table("items"), "item_id")
)
```

Aggregate sales per item per hour

State Store Parameters

- Watermarking
 - How much history to compare against
- Granularity
 - The more granular the aggregate key / window, the more state
- State store backend
 - RocksDB / Default

Stream-Static Join & Merge

- Join driven by streaming data
- Join triggers shuffle
- Join itself is stateless
- Control state information with predicate
- Goal is to broadcast static table to 2. streaming data
- Broadcasting puts all data on each node

1. Main input stream

2. Join item category lookup

```
itemSalesSDF = (
    salesSDF
    .join(
        spark.table("items")
        .filter("category='Food'), # Predicate
        on=["item_id"]
    )
)
```


Output Parameters

Limiting the output dimension

Why are output parameters important?

- Streaming jobs tend to create many small files
 - Reading a folder with many small files is slow
 - Poor performance for downstream jobs, self-joins, and merge
- Output type can impact state information retained
- Merge statements with full table scans increase state

Delta Lake Output Optimizations

- Optimized Writes
- Auto Compaction
- delta.tuneFileSizesForRewrites
- Insert-only merge

Traditional Writes

Optimized Writes

Notebook: Stream Static Joins

Module Recap

- 1 Use clone and Auto Loader for efficient copies and incremental ingestion
- Use native features in Spark and Delta Lake to deduplicate, enrich, and validate incremental data
- Combine traditional data modeling techniques with Databricks features to propagate updates through the Lakehouse
- Implement solutions that correctly manage dependencies between incremental datasets

databricks