

About Zymergen

Designers/
Development Scientists

The Factory

What's the problem

1. Can express large design spaces

2. Compact format

3. Transferable

4. Structure preserving

DNA Specifications

1. Nested trees of functions

2. Leaves are collections of DNA sequences

- 3. Internals are string manipulating operations
- 4. Similar to an Abstract Syntax Tree

Abstract syntax trees 101

$$x = (1 * 2) + (3 * 4)$$

 $x = (2) + (3 * 4)$
 $x = (2) + (12)$
 $x = 2 + (12)$
 $x = 2 + 12$
 $x = 14$

Algebra can be modeled as an AST

$$x = (1 * 2) + (3 * 4)$$

DNA Specifications are ASTs

DNA Specifications are ASTs

DNA Specifications are ASTs

["AAGGAAAA",
"CCTTCCCC"]

Promoters + CDSs + Terminators

["AAGGAAAA", "CCTTCCCC"]

+ Homology arm list...

Functions can be parametric

Codon: Promoter Swapping

```
replacePromoter[x] (locateGenes(hostStrain, "YFG*"), promoters)
```


Codon: Promoter Swapping

replacePromoter[x] (locateGenes(hostStrain, "YFG*"), promoters)

How well do DNA Specifications work?

Demonstration of mapping

$$x = (1 * 2) + (3 * 4)$$

Promoters x CDSs x Terminators concat[x]() Promoters concat[x]()

CDSs

Demonstration of mapping

