MA2.101: Linear Algebra (Spring 2022)

Quiz 1

April 18, 2022

Attention

- 1. Quiz is total of 100 points (75 points for in-class and 25 points for take-home).
- 2. Answer at least 3 questions in class ($75 = 25 \times 3$ points), where *-marked questions are mandatory. That is, the last two questions are to be answered in-class. Maximum time for in-class quiz is 45 minutes.
- 3. Remaining unanswered questions are going to be take-home (25 points), to be submitted before Monday (i.e., by 24 April 2022).

Question 1

Show that the set of all real 2×2 matrices of the form

$$\begin{bmatrix} a & b \\ -b & \mathbf{\lambda} \end{bmatrix}$$

where $a, b \in \mathbb{R}$, with the usual matrix operations, form a field.

Question 2

Find all solutions to the following system of equations:

$$x_1 + 2x_2 + x_3 + x_4 = 7 (1)$$

$$2x_1 + 4x_2 + 4x_3 -2x_4 = 24 (2)$$

$$3x_1 + 6x_2 + 9x_4 = 6. (3)$$

Notice that the system of linear equations is of the form AX = Y, where A and Y are known and one needs to solve for X. Use elementary row operations to derive row-reduced echelon form for A in order to solve for X.

Question 3

Let V be a vector space defined over the field of real numbers \mathbb{R} . Consider that $x,y,z\in V$. Show that the set $\{x,y,z\}$ of vectors is linearly independent if and only if the set $\{x+y,y+z,z+x\}$ of vectors is linearly independent.

Question 4*

Consider the vector space \mathbb{F}^4 defined over the field \mathbb{F} . Determine for each of the following subsets of \mathbb{F}^4 if they are subspace of \mathbb{F}^4 or not. Answers should include reasonable justification.

- 1. The set with its only element being the zero vector (0,0,0,0).
- 2. The set of vectors $(x_1, x_2, x_3, x_4) \in \mathbb{F}^4$ such that $x_1 + 3x_2 + 4x_3 + 5x_4 = 0$.
- 3. The set of vectors $(x_1, x_2, x_3, 0) \in \mathbb{F}^4$ such that $x_1 + 3x_2 + 4x_3 = 1$.
- 4. The set of vectors $(x_1, x_2, x_3, x_4) \in \mathbb{F}^4$ such that $x_1 = x_4$.

Question 5*

Derive the values of $a \in \mathbb{R}$ for which the following set of vectors spans the vector space \mathbb{R}^3 defined over \mathbb{R} :

$$\{(1,0,a),(1,2,-3),(a,1,0)\}.$$
 (4)