Identifying Hit Songs using Machine Learning

By: Prathap Rajaraman

Background

Motivation

 Hit songs can make an artist's career and make millions for record labels.

Objective

- A data driven classification approach to determine what makes a song popular
- Explore relationship between audio features and popularity

Data & Methodology

Data

- X variables: Audio Features for over 34,000 songs on Spotify dating back to 1985.
- Y variable: Binary indicator of whether or not song ever appeared on Spotify 100 or Billboard 100

Methodology

 Classification metrics ranging from Logistic Regression to Ensembling Algorithms considered

Modeling

- F1 and ROC-AUC analyzed
- Classification Algorithms Modeled:
 - Logistic Regression
 - Decision Tree
 - Random Forest
 - ADA Boost
 - XG Boost
- GridSearchCV and SkLearn used to tune hyperparameters and probability thresholds

Feature Engineering & Variable Selection

- Audio Features*
 - Duration (in m)
 - Energy
 - Acousticness
 - Instrumentalness
- Feature Engineered Variables
 - 4 Beats per Measure Indicator
 - Loudness below -10 dB Indicator
 - Energy x Dance interaction Variable

- Valence
- Speechiness
- Loudness (in dB)

Results

- XG Boost Won
- Similar scores as Random Forest but without overfitting
- 4% F1 and 4.5% ROC-AUC Boost over Logistic Regression

Model	Train F1	Test F1		
Logistic	0.792	0.788		
Decision Tree	0.868	0.777		
Random Forest	0.919	0.826		
ADA Boost	0.805	0.803		
XG Boost	0.845	0.824		

Algorithm in Action

Artist	Track	Energy	Valence	EnergyxDance	Prediction	Actual
Travis Scott	Goosebumps	0.593	0.808	0.499	Hit	Hit
Drake	Controlla	0.476	0.347	0.289	Non-Hit	Hit

The algorithm correctly applies audio features, but misses out on artist reputation

Conclusion

- The XGBoost algorithm is the best performing model
- With classification modeling, labels and producers are better equipped to know what constitutes a hit song
- Future Work:
 - Extract dataset that represents the true distribution of popular songs
 - Incorporate social media presence and artist popularity as an additional variable

Appendix

Probability Threshold

A threshold of 0.381 yields the highest F1 score for XGBoost

Confusion Matrix

