5. 体とその標数

K を可換環とし、 0_K 、 1_K をそれぞれ K のゼロ元、単位元とする. もし K の 0_K でない元がすべて可逆元(つまり、任意の $a \in K$ について、 $a \neq 0_K$ ならば、ある $x \in K$ が存在して $ax = xa = 1_K$)ならば、K は体であるという. 元の個数が有限個の体を有限体、無限個の体を無限体と呼ぶ.

問題 5.1. 体は必ず整域になること (K が体のとき, $a,b \in K$, $ab = 0_K$ ならば $a = 0_K$ または $b = 0_K$) を示せ. ()

問題 5.2. R を、元の個数が有限個の可換環とする.

- (1) もし R が整域ならば, R は体であることを示せ. (
- (2) もし R の元の個数が素数ならば, R は体であることを示せ. (

[ヒント] (1) $a\in R,~a\neq 0$ のとき、写像 $f_a:R\to R,~r\mapsto ar$ が全単射になることを示せばよい.

注意. 問題 5.2~(1) は R の元の個数が無限個のときは必ずしも成立しない (例えば整数全体 $\mathbb Z$ は整域だが体ではない).

- 例. (1) 有理数全体 Q, 実数全体 R, 複素数全体 C は体である.
 - (2) p が素数のとき, $\mathbb{Z}/p\mathbb{Z}$ は体である.

問題 5.3. $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a,b \in \mathbb{Q}\}$ が体になることを示せ. ()

問題 5.4.

- (1) $n\in\mathbb{Z},$ n>1 のとき, $\mathbb{Z}/n\mathbb{Z}$ が体になるのは n が素数のときに限ることを示せ.
 - (2) 元の個数が素数でない有限体は存在するか?()

体の標数.

K を体とし、自然数 m に対して

$$m1_K = \underbrace{1_K + \dots + 1_K}_{m}$$

と置く. このときもし, $n1_K=0_K$ となる自然数 $n\ (\geq 1)$ が存在するならば, そのような n のうち最小のものを K の標数という. また, そのような n が存在しないときは K の標数は 0 とする. なお, 体 K の標数を $\operatorname{ch} K$ や $\operatorname{char} K$ などの記号で表すことがある $\operatorname{(ch, char}$ は $\operatorname{characteristic}$ (標数) の略).

問題 5.5. 体の標数は 0 でなければ素数であることを証明せよ.()

問題 5.6. 体 K の標数が p>0 なら、任意の $a,b\in K$ に対し $(a+b)^p=a^p+b^p$ が成り立つことを示せ. ()

R を可換環とする. R の部分環のうち, 体になっているものは R の部分体という. 問題 ${\bf 5.7.}$ L を体とする. K_1,K_2 が L の部分体ならば $K_1\cap K_2$ も L の部分体であることを示せ. ()

問題 5.8. 体 K の部分体が K のみであるとき, K を 素体という.

- (1) 素体は \mathbb{Q} または $\mathbb{Z}/p\mathbb{Z}$ (p: 素数) に同型 (環同型) であることを示せ. <math>()
- (2) 任意の体は素体を唯一つだけ含むことを示せ.()