ECOR 1055 Engineering Disciplines I

Robotics and Control

Dr. Chao Shen

Department of Systems and Computer Engineering
Carleton University

Agenda

- > About the Instructor
- > Robotic Systems and Automatic Control

Agenda

- > About the Instructor
- > Robotic Systems and Automatic Control

About the Instructor

- Dr. Chao Shen, Assistant Professor
 - Department of Systems and Computer Engineering
 - Website: https://carleton.ca/sce/people/shen/
 - Email: shenchao@sce.carleton.ca
 - Undergraduate Research Opportunities Available

Research Interests

Agenda

- > About the Instructor
- > Robotic Systems and Automatic Control

Robotics

■ What is robotics?

"Robotics is an **interdisciplinary** branch of electronics and communication, computer science and engineering. Robotics involves the **design**, **construction**, **operation** and **use** of robots. The field of robotics develops machines that can **automate** tasks that a human may or may not be able to do."

https://images.google.com/

Robotics

■ What is robotics?

Although being diverse in application and form, robots share three basic similarities when it comes to their construction:

- Robots all have some kind of mechanical construction, a frame, form or shape designed to achieve a particular task.
- Robots have electrical components that power and control the machinery.
- All robots contain some level of computer program code. A program is how a robot decides when or how to do something.

"A robotic system is a **computer system**, a system of systems, and a (automatic) control system."

Systems

□ Definition of a System

"A **system** is a combination of components acting together to perform a specific objective. A **component** is a single functioning unit of a system." (K. Ogata, 2004)

- Examples
 - Robots
 - Epidemics
 - Stock market
 - Thermostats
 - Traffic system
 - Power grids
 - Chemical processes

Systems

□ Definition of a System

"A **system** is a combination of components acting together to perform a specific objective. A **component** is a single functioning unit of a system." (K. Ogata, 2004)

Control Systems

□ Definition of a Control System

"A **control system** consists of subsystems and processes (or plants), assembled for the purpose of obtaining a desired output with desired performance." (N. Nise, 2010)

Control Systems

□ Definition of a Control System

"A **control system** consists of subsystems and processes (or plants), assembled for the purpose of obtaining a desired output with desired performance." (N. Nise, 2010)

Systems

□ Definition of a System

"A **system** is a combination of components acting together to perform a specific objective. A **component** is a single functioning unit of a system." (K. Ogata, 2004)

Control Systems

How do we control these robotic systems?

Modeling

□ Two types of modeling methods

First-principle methods (Mathematical models)
Based on physics: Newton's law, Kirchhoff laws,
Conservation of energy/momentum, etc.

$$\tau = D(q) \ddot{q} + C(q, \dot{q}) \dot{q} + G(q)$$

Data-driven methods (Empirical models)
Based on data: curve fitting, regression, interpolation, extrapolation, etc.

Modeling

□ Two types of modeling methods

First-principle methods (Mathematical models)

Pros: exact math equations, interpretability, robustness Cons: subject knowledge needed, simplicity vs. accuracy

Data-driven methods (Empirical models)

Pros: no subject knowledge needed, routine procedure Cons: poor interpretability, unknown working range

Modeling

□ Two types of modeling methods

> First-principle methods (Mathematical models)

Pros: exact math equations, interpretability, robustness Cons: subject knowledge needed, simplicity vs. accuracy

Data-driven methods (Empirical models)

Pros: no subject knowledge needed, routine procedure Cons: poor interpretability, unknown working range

What is simulation?

- ➤ Implementation of the **mathematical model** of the system in computer programs to determine the response of the system to different inputs of interest and system parameters to help the system design.
- It is cost effective to verify your design in simulator first.

What is simulation?

- ➤ Implementation of the **mathematical model** of the system in computer programs to determine the response of the system to different inputs of interest and system parameters to help the system design.
- It is cost effective to verify your design in simulator first.

HEV Optimal Control in Connected Environment

A benchmark challenge problem in 6th IFAC conference on Engine and Powertrain Control, Simulation and Modeling (ECOSM 2021)

X. Gong, et al., "Benchmark study on real-time energy optimization of HEVs under connected environment", IFAC-PapersOnline, vol.54, no. 10, pp. 356-362, 2021

□ A Simulink model for HEV Optimal Control

^{1. 2020/07/15,} the first verion of simulator is released

^{1. 2021/10(3)} the second version instance is remained. It remains that the contract of the con

Experiment

☐ Experimental validation and iterative design.

Performance Evaluation

□ Performance Evaluation

- Control Theory = How do we pick the input signal u?
- Objectives:
 - Stability
 - Tracking
 - Robustness
 - Disturbance Rejection
 - Optimality

Performance Evaluation

ARS applications are often Safety Critical

(a) Autonomous Driving

(b) UAVs

 We strive to develop the systematic design methodology for ARS to guarantee safety.

Control System Design

□ The Basic Building Blocks

- State = Representation of what the system is currently doing
- Dynamics = Description of how the state changes
- Reference = What we want the system to do
- Output = Measurement of (some aspect of the) system
- Input = Control signal
- Feedback = Mapping from outputs to inputs

- Why ARS?
 - Efficient and capable
 - Cost-effective and safe
- Examples of ARS

(a) UAVs

(b) MRs

(c) AUVs

Source: www.grandviewresearch.com

■ Filming & Photography

Precision Agriculture

Figure: The exploding size of UAV market.

Inspection & Maintenace

Surveilliance & Monitoring

Mapping & Surveying

Others

Figure: A search and rescue mission for multi-robot systems.

Navigation

Control

Endurance

Where am I?

Which way should I take to get to the destination?

How can I follow the way?

How do I take maneuvers to adapt to the surroundings?

How do I mange my power?

Can I work longer by optimizing the use of power?

Communication

Perception

Autonomy

How do I communicate with my coworkers?

How do I handle the latency?

How do I fuse sensor information?

What can I interpret from the sensor information?

How do I make decisions based on all information I have to better perform a task?

The Integrated Planning and Control Problem

 In marine archaeological applications, we encounter the problem of autonomous navigation in a constrained workspace.

The Integrated Planning and Control Problem

- Planning: To avoid collisions, limited sensing, good for tracking
- Tracking: Complex dynamics, limited actuation, convergence

The Integrated Planning and Control Problem

 With appropriate choice of reference velocity, the system dynamics can be partially decoupled.

We could solve the original problem by distributed optimization.

¹C. Shen and Y. Shi, "Distributed Implementation for Nonlinear Model Predictive Tracking Control of an AUV", *Automatica*, vol. 115, pp. 108863, 2020

Energy Efficient Control System Design Problem

 The Control System Could Be Energy-Aware to Improve the Endurance of AUVs

Vision-Based Control for UAVs

Pose-Based Visual Servo and Image-Based Visual Servo

Maintaining the object in FOV is important.

¹Y. Gao, X. Wang, E. Honsch, R. Ma, C. Shen, M. Chen, Y. Lu, J. Liang, and J. Wu, "High-Performance Visual Object Tracking for Embedded Vision Systems", AltumView Systems Inc., Canada. *Published in October 2019*, US20190304105A1.

AI-Enhanced Visual Simultaneous Localization and Mapping

(e) The robot to perform SLAM

(f) SLAM result with text detection

Al in Robotic Systems

AI-Enhanced Visual Simultaneous Localization and Mapping

(g) The robot is lost track

(h) Recover the localization

¹R. Ma, C. Shen, M. Chen, Y. Lu, J. Liang, and J. Wu, "Semantic SLAM based on Robust Scene Text Detection and Recognition", AltumView Systems Inc., Canada. *Submitted to US Patent and Trademark Office*, 2020.

Al in Robotic Systems

Human Behavior Understanding

Original Camera View

¹C. Shen, Y. Gao, J. Zheng, A. Au, D. Zhang, E. Honsch, M. Chen, and J. Liang, "Real-Time Violence Detection using Al-enabled Computer Vision", AltumView Systems Inc., Canada. Submitted to US Patent and Trademark Office, 2020.

Intelligent Robotic Team

Autonomy of Cooperative ARS

AI-based CV and advanced control opened up new dimensions for UAV applications

Summary

- ☐ Introduction of robotic systems from a control system perspective.
- □ Robotic applications and related design problems.

Takeaway Messages

- Robotic systems are inherently computer systems.
- Robotics are machines that automate the tasks, which essentially describe an automatic control system.
- The broad robot control system design needs to solve many complex problems including sensing, perception, navigation, planning, and control.
- AI and advanced control theories present powerful tools to extend the robot ability and improve performance.