

自动化软件测试

陈振宇 南京大学软件学院 计算机软件新技术国家重点实验室 http://software.nju.edu.cn/zychen

2013/6/17 南京

梦想

100%自动化是软件测试的一个梦想!

Software Testing Research: Achievements, Challenges, Dreams, A. Bertolino, In Future of Software Engineering @ ICSE 2007

梦想与现实

软件测试

学术研究

- 顶级会议ICSE, FSE
 - 1/4-1/3测试相关 论文
- 以测试为主的权威 学术会议: ISSTA, ICST, ICSM, QSIC
- 软件测试相关论文 中一般以上与自动 化测试相关。

工业应用

- 2006年HP以45亿美 元现金收购Mercury
 - Loadrunner, Qtp, Diagnostics, Qc
- 2011年SOASTA获得3300 万美元投资,基于云端 测试应用
- 2012年Sauce Labs B 轮融资中获得 300 万 美元,基于Selenium

自动化测试

学术研究

工业应用

自动化测试生成

自动化测试执行

自动化测试选择

自动化测试修复

自动化测试扩增

2012/3/9

和京大学软件学院 软件学院

测试用例生成

和京大学软件学院 软件学院

自动化测试数据生成工具

工具名称	适用语言	特 点	是否工业化
JPF	Java语言	1.较为通用2.在执行过程汇中会存储参数的实际值,能够用于动态符号执行3.能够分析java字节码和状态图模型	目前已用于NASA的部分程序中,仍未完全工业化。
DART	C语言	1.结合了随机测试和模型检验技术,能够用于测试用例的生成2.采用了实际数值和随机化技术,增加了符号执行的精确度	目前已被BELL实验室和其他 扩展工具使用。
CUTE	C语言	1.适用于单元测试2.基于DART的扩展,可以用于多线程程序3.基本解决了指针限制,避免	目前主要用于几个开源程序检测,主要由学校的实验室进行
JCUTE	Java语言	了因指针分析而导致符号执行不准确的问题4. 结合了 <u>concolic execution</u> 和 dynamic partial order reduction来产生测试用例	研究,基本未实现工业化。
CREST	C语言	1.是一个concolic testing的开源工具 <u>2.</u> 使用启发式方法来选择程序执行路径3.易于扩展	目前已提供开源下载,下载量 有1500+且已用于多个团队的 研究。
SAGE	C语言	1.适用于集合测试2.适用于大规模程序	目前已经用于工业程序中,例 如在window 7的研发中
PEX	C#, VisualBasic, F#	1.用参数的实际数字以简化约束条件2.支持复杂数据类型的测试用例生成3.在寻找路径时使用不同的路径搜索方法以快速达到较高的覆盖。	目前已经下载了40000多次。 已经被微软的部分小组所使用。 可以同时用于学术研究或工业 使用。
EXE.	C语言	1.采用了符合和实际值结合的符号执行方法, 并且采用了位级存储2.使用启发式方法来选择 程序执行路径3.适用于对复杂程序的测试4.包 含了多个约束优化器,可以快速求解约束	目前已经集成在 <u>Visual Studio</u> 2011中,已经工业化。
KLEE.	C语言	1.是基于EXE的一个扩展工具2.相对于目前已有的工具,可以存储大量的并发状态3.拥有处理外部环境交换的能力	目前已经提供开源下载,可以 同时用于学术研究或工业使用。

自动化测试数据生成研究

```
main(){
    int t1 = randomInt();
    int t2 = randomInt();
    test me(t1,t2);
int double(int x) {return 2 * x; }
void test_me(int x, int y) {
 int z = double(x);
 if (z==y) {
    if (y == x+10)
       abort(); /* error */
```

Symbolic Execution

Path Constraint

Solve:
$$(2 * x == y) & (y == x +10)$$

Solution:
$$x = 10$$
, $y = 20$

create symbolic variables x, y

$$2 * x == y$$

$$y != x + 10$$

$$z = 2 * x$$

测试用例选择

- Regression Test Selection
 - -针对修改部分的测试
- Test Suite Reduction
 - 针对测试需求的用例集约简
- Test Case Prioritization
 - 针对测试需求的用例排序

• S. Yoo and M. Harman. Regression Testing Minimization, Selection and Prioritization: A Survey. STVR 2010.

测试用例选择研究

	t1	t2	t3	••••
r1	1	1	0	
r2	0	1	1	
r3	1	0	1	
r4	1	1	0	
r5	0	0	1	
• • • •				

劉學? 實題? 软件工程?

测试用例选择假设

• 测试用例过多,无法在指定时间执行完。

云计算的出现

• 旧的测试用例能够在新版本软件执行。

测试用例修复

Edit

Cut

Copy

Paste

(a) The Original GUI.

(c) The Original EFG.

(b) The Modified GUI.

(d) The Modified EFG.

和京大学软件学院 WANDING UNIVERSITY: SOFTWARE INSTITUTE

测试用例修复研究

Fig. 2. The New Regression Testing Method.

Atif Memon. Automatically Repairing Event Sequence-Based GUI Test Suites for Regression Testing, TOSEM, 2008

测试用例修复

• EFG模型的测试脚本修复

• 完备的EFG模型

即完备EFG。是短期斷对象 是漏识別还是已删除

和京大学 软件学

自动化错误定位

Test Cases

mid() {	3,3,5	,2,3	2,1	5,5	3,4	ر در
int x,y,z,m;	ω,	<u> </u>	က်	5,	5,	o,
1: read("Enter 3 numbers:",x,y,z);	•	•	•	•	•	
2: m = z;	•	•	•	•	•	
3: if (y <z)< td=""><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td></td></z)<>	•	•	•	•	•	
4: if (x <y)< td=""><td>lige</td><td>•</td><td></td><td><u>D</u></td><td></td><td>diodidii</td></y)<>	lige	•		<u>D</u>		diodidii
$5: \qquad m = y;$	iloc	•		5010		الماممان
6: else if (x <z)< td=""><td>•</td><td></td><td></td><td></td><td>•</td><td></td></z)<>	•				•	
7: m = y;	•					
8: else	•		•	•		
9: if (x>y)	IIDC		•			
m = y;	URE	I G II	•	991		
11: else if (x>z)	lige		ligi	<u>poi</u>		
12: m = x;	libb		liği	501	Siiiii	
<pre>13: print("Middle number is:", m);</pre>	•	•	•	•	•	5165616
}	Р	Р	Р	Р	Р	01001011
	1188		IIIGII	140		

Results:

Name	Formula	Name	Formula
Jaccard	$\frac{a_{ef}}{a_{ef} + a_{nf} + a_{ep}}$	Anderberg	$\frac{a_{ef}}{a_{ef} + 2(a_{nf} + a_{ep})}$
Sørensen-Dice	$\frac{2a_e}{2a_{ef} + a_{nf}}$	D	$\frac{2a_{ef}}{a_{ef} + a_{nf} + a_{ep}}$
Kulczynski1	$\frac{a_{ef}}{a_{nf} + a_{ep}}$	ϵ zynski 2	$\frac{1}{2} \left(\frac{a_{ef}}{a_{ef} + a_{nf}} + \frac{a_{ef}}{a_{ef} + a_{ep}} \right)$
Russell and Rao	$\frac{a_{ef}}{a_{ef} + a_{nf} + a_{ep} + a_{ef}}$	amann	$\frac{a_{ef} + a_{np} - a_{nf} - a_{ep}}{a_{ef} + a_{nf} + a_{ep} + a_{np}}$
Simple Matching	$\frac{a_{ef} + a_{np}}{a_{ef} + a_{nf} + a_{ef}}$	1	$\frac{2(a_{ef} + a_{np})}{2(a_{ef} + a_{np}) + a_{nf} + a_{ep}}$
M1	$\frac{a_{ef}+q}{a_{nf}}$	M.	$\frac{a_{ef}}{a_{ef} + a_{np} + 2(a_{nf} + a_{ep})}$
Rogers & Tanimoto	$\frac{a_{ef} + a_{np}}{a_{ef} + a_{np} + 2(a_{nf} + a_{ep})}$	Goodman	$\frac{2a_{ef} - a_{nf} - a_{ep}}{2a_{ef} + a_{nf} + a_{ep}}$
Hamming etc	a + a	Euclid	$-\sqrt{a_{-1}} + a_{np}$
1 4	tie, Tsong Chen, Fei-Ch	ing Kuo, Baowe	en Xu
0.0222012	tical Analysis of the Ris		0 (0)
Spectrum-L	Based Fault Localization	n, accepted by	TOSEM (1-10)
Tarantula	$\frac{\frac{a_{ef} + a_{nf}}{a_{ef}}}{\frac{a_{ef}}{a_{ef} + a_{nf}} + \frac{a_{ep}}{a_{ep} + a_{np}}}$	Zoltar	$\frac{a_{ef}}{a_{ef} + a_{nf} + a_{ep} + \frac{10000a_{nf}a_{ep}}{a_{ef}}}$
Ample	$\left \frac{a_{ef}}{a_{ef} + a_{nf}} - \frac{a_{ep}}{a_{ep} + a_{np}} \right $	Wong1	a_{ef}

π

错误定位假设

```
mid() {
    int x,y,z,m;
    read("Enter 3 numbers:",x,y,z);
1:
2:
    m = z;
3:
    if (y < z)
       if (x < y)
4:
5:
              m = y;
6:
    else if (x<z)
7:
              m = y;
   else
8:
       if (x>y)
9:
10:
              m = y;
11:
    else if (x>z)
12:
              m = x;
13: print("Middle number is:", m);
```

PROPERTY.

學公面於

怎么破?

博士和博士后研究

- 博士: 关于模型检测中的极小化抽象
- 博士后: 布尔逻辑测试研究
 - 逻辑故障模型
 - TOSEM 2011, SAC 2008
 - 测试用例集约简
 - SAC2008, SEKE2008, QSIC2008

歌等

翻翻

经金服务

2008年8月

寻找新研究方向

• 容易发论文

跨领域研究

• 有一定基础

然份测版

• 有一些兴趣

创器学习中测试用例选择

2009年

研究生

经费

Failure Proximity

基于软件行为聚类分析的测试用例选择

简单示例

- Distance
 - Hamming distance
 - D(t1,t2)=4
 - D(t1,t3)=3
 - D(t1,t2) > D(t1,t3)
 - [t1,t3] is more likely to be in same cluster than [t1,t2]
- The failure
 proximity of each
 test is computed by
 the function call
 trace.

	t1	t2	t3	t4
f1	$\sqrt{1}$	0	$\sqrt{1}$	0
f2	1	1	0	1
f3	0	1	0	1
f4	1	1	1	0
f5	1	0	1	1
f6	0	0	1	1
f7	1	1	0	1/

012/3/9 杭办

研究问题

- 测试用例选择: 根据软件的某种属性度量进行多样性选择
 - 属性:语句,分支,定义-引用等
 - 度量: 覆盖
- 挑战:
 - 错误检测能力
 - 可伸缩性
- 属性简单: 如何构造更丰富的属性?
- 度量简单: 如何构造更丰富的度量?

该方向的研究成果

- 2009年启动
- 2010年获资助(赵志宏)
- 2010年: ICST, QSIC, SEKE
- 2011年: ICST, IJSEKE
- 2012年: ICSE, SEKE, SERE
- 2013年: IJSEKE, 《计算机学报》...
- 5项发明专利 (授权2项)
- 软件著作权

和京大学软件学院 软件学院

早期研究成果

Original Version Run

Collect

Function Call Profiles

Compute

Euclidean Distance

一种基于聚类分析的回归测试用例 选择方法(201010212473X)

一种测试用例聚类取样方法 (2010101398484)

工业应用

实证研究

- 不同距离是否影响结果?
 - -海明距离 vs. 欧式距离
- 不同聚类算法是否影响结果?
 - Hierarchy algorithms
 - Partition algorithms
 - Density algorithms

关于聚类测试选择方法的实证研究. 《计算机学报》

实证研究

- 不同距离是否影响结果?
 - -海明距离 vs. 欧式距离
- 不同聚类算法是否影响结果?
 - Hierarchy algorithms
 - Partition algorithms
 - Density algorithms

实证对象

表 1: 目标程序相关属性

Program Name	Number of functions			Modified version
Flex	148	10459	567	5
Space	136	6199	13585	33

和京大学软件学院 www.guniversity·software.institute

实证设计

图 1: 聚类测试选择流程

实证结果

-海明距离

和京大学软件学院 软件学院

实证结果 --欧式距离

和京大学软件学院 软件学院

实证结果-距离影响分析

图 3: 执行剖面的影响分析

程序 聚类方法		K-means	DBScan	DBScan2	Hierarchical
Flex	h	1	1	1	0
	p-value	0.000014	0.018098	0.00037	0.404789
Space	h	1	0	1	
2012/3/9	p-value	0.002895	0.933260	0.0093896	

实证结果-聚类算法影响分析

实证结果-聚类算法影响分析

Flex-函数调用与否剖面的方差分析结果($F_{0.01}(3,76)$ = 4.0502)

	V1	V2	V3	V4	V5
F值	18.435	39.885	31.478	41.756	17.604

表 5: Flex-函数调用次数剖面的方差分析结果($F_{0.01}(3,76)$ = 4.0502)

	V1	V2	V3	V4	V5
F值	12.341	17.292	27.616	17.787	31.354

	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11
F 值	18.598	32.520	23.941	24.542	57.474	18.035	17.429	1.975	8.932	24.987	99.808
	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22
F 值	59.087	58.654	63.692	29.735	72.203	75.981	35.311	36.092	36.344	55.325	101.827
	V23	V24	V25	V26	V27	V28	V29	V30	V31	V32	V33
F 值	146.463	19.403	53.400	22.766	22.349	23.763	244.738	289.358	597.559	26.729	13.455

表 7 : Space 函数调用次数剖面的方差分析结果($F_{0.01}(2,57)$ = 4.9981)

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11
F 值	43.285	23.371	22.532	46.308	115.998	17.443	38.459	9.263	2.452	44.046	36.456
	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22
F 值	78.534	77.249	123.392	62.044	84.329	59.118	56.713	27.161	38.775	101.340	100.728
	V23	V24	V25	V26	V27	V28	V29	V30	V31	V32	V33
F 僅 ⁰¹⁷	^{2/3} 48.914	37.683	40.257	35.928	36.984 机	^州 13.058	86.800	71.730	60.977	49.566	15.355

M京大学软件学院

Slice Filtering

Fig. 1. A Framework of Cluster Test Selection

Zhenyu Chen, Yongwei Duan, Zhihong Zhao, Baowen Xu, Ju Qian: Using Program Slicing to Improve the Efficiency and Effectiveness of Cluster Test Selection. IJSEKE 21(6): 759-777 (2011)

切片过滤示例

Table 1. A Simple Example of Slice Filtering

No.	Statement	Slice	t_1	t_2	t_3
			(1,6)	(2,0)	(7,6)
	viod f (int m, int n){				
1	int $a=0$, $b=0$, $c=0$, $d=0$;	*	•	•	•
2	if(m < n)	*	•	•	•
3	a=1;	*	•		
	else				
4	b=1;			0	0
5	while(a>0){ $/* (a>=0)*/$	*	•	•	•
6	c=c+a;	*	•		
7	a=a-1;	*	•		
8	printf("%s",c);	*	•	•	•
9	$if(n>0)$ {		0	0	0
10	b=n-5;		0		0
11	$while(b>0){}$		0		0
12	d=d+b;		0		0
13	b=b-1;		0		0
14	printf("%s",d);		0		0
	}				

Note: The modification is in the statement s_5 . \star denotes the statement in the program slice. \bullet denotes the statement remained by slice filtering. \circ denotes the statement removed by slice filtering.

和京大学 软件学院walling university · SOFTWARE INSTITUTE

Dimensionality Reduction --statement

Fig. 2. DR of Statement: Mean 24.77%, Max 48.61%, Min 2.93%

M系大多软件学院 WING UNIVERSITY·SOFTWARE INSTITUTE

Matrix Reduction --statement

Fig. 3. MR of Statement: Mean 10.55%, Max 48.50%, Min 0.33%

Dimensionality Reduction --block

Fig. 4. DR of Block: Mean 39.75%, Max 70.97%, Min:6.07%

和京大学 软件学院wink university·software institute

Matrix Reduction --block

Fig. 5. MR of Block: Mean 16.56%, Max 70.82%, Min 0.57%

Effectiveness Evaluation

F-measure

$$F = \frac{2 \times recall \times precision}{recall + precision}$$

半监督学习动机

- Distance
 - D(t1,t2)=4
 - D(t1,t3)=3
 - D(t1,t2) > D(t1,t3)
- But, actually:
 - t1 and t2 triggered by a same fault.
 - t3 is a passing test.
 - D(t1,t2) < D(t1,t3)
- What should we do?
 - Transformation

	t1	t2	t3	t4
f1	1	0	1	0
f2	1		0	
f3	0	1	0	1
f4	1	1	1	0
f5	1	0	1	1
f6	0	0	1	1
f7	1	1	0	1

半监督学习动机

Regression testing is always a step by step process.

• How to use the information in previous step to improve the cluster and selection in next step?

聚类

- Clustering is a grouping process to achieve
 - maximize similarity in the same clusters (Internal)
 - maximize dissimilarity between clusters (External)
- K-means (Weka)

$$J_{kmeans} = \sum_{j=1}^{k} \sum_{x_i \in C_j} ||x_i - \mu_j||^2$$

基于约束的半监督聚类

- Use pair-wise constrains to label partial data.
 - Must-Link:

- Cannot -Link:

基于约束的半监督聚类

- Use pair-wise constrains to label partial data.
 - Must-Link: two data items must be in a same cluster.
 - Tests triggered by some same faults.
 - Tests triggered by some similar faults.
 - Cannot –Link: two data items cannot be in a same cluster.
 - Passing tests and failing tests.
 - Tests triggered by different faults.

半监督 K-means

- x_i is a test, represented by feature vector.
 - For example, $x_i = (0,1, 1, 0, 0, 1)$
- w is a weight matrix for transformation.
- y_i is a test transformed from x_i by w.

$$-y_i = w^T x_i$$

• Find a w to max the objective function

$$J(\boldsymbol{w}) = \frac{1}{2n_C} \sum_{(\boldsymbol{x}_i, \boldsymbol{x}_j) \in C} (y_i - y_j)^2$$
$$-\frac{\beta}{2n_M} \sum_{(\boldsymbol{x}_i, \boldsymbol{x}_j) \in M} (y_i - y_j)^2$$

半监督 K-means

 To use the information of many unlabeled data, we use the following extended objective function

$$J(\boldsymbol{w}) = \frac{1}{2n^2} \sum_{i,j} (\boldsymbol{w}^T \boldsymbol{x}_i - \boldsymbol{w}^T \boldsymbol{x}_j)^2$$

$$+ \frac{\alpha}{2n_C} \sum_{(\boldsymbol{x}_i, \boldsymbol{x}_j) \in C} (\boldsymbol{w}^T \boldsymbol{x}_i - \boldsymbol{w}^T \boldsymbol{x}_j)^2$$

$$- \frac{\beta}{2n_M} \sum_{(\boldsymbol{x}_i, \boldsymbol{x}_j) \in M} (\boldsymbol{w}^T \boldsymbol{x}_i - \boldsymbol{w}^T \boldsymbol{x}_j)^2$$

和京大学软件学院 软件学院

方法框架

实验设计

- K-means clustering
- Select randomly tests from each cluster until 10 tests are fault-revealing tests.
- Get pair-wise constraints
 - Must-link
 - Cannot-Link
- Transformation w (D. Zhang SDM'05)
- Loop: next K-means clustering.

12/3/9

JING UNIVERSITY: SOFTWARE INSTITUTE

THE STATE OF TWARE INSTITUTE

Multi-label Learning

- Why do we need multi-label learning? Disadvantage of Single Label Learning:
- 1 may produce incomplete learning results
- 2. single label learning in a multi-label task may damage the training process

Yang Feng and Zhenyu Chen. Multi-label Software Behavior Learning. ICSE 2012 NIER track. (17.7%)

多标签行为学习框架

Each input xi in X^T is run on P and the corresponding execution of xi is collected. The label information of each xi in X^T will be obtained by diagnosing the failures or other ways.

In order to collect the execution information, the program *P* is instrumented in advance.

Each input xi in X^T is run on P and the corresponding execution of xi is collected. The label information of each xi in X^T will be obtained by diagnosing the failures or other ways.

In single-label software behavior learning, X^T with its single-label information will be used to train C_S multi-label data are omnipresent in real applications. Hence, it usually randomly select one label to train C_S . For a new input x, C_S outputs one label for x. Multi-label learning is a generalization of single-label learning. It uses multi-label data to train C_M , which can output one or more labels for new x.

实验结果1

ID	F1	F2	F3	F4	G1	G2	G3
Ver	2.5.1	2.5.2	2.5.3	2.5.4	2.2	2.3	2.4
L	14	9	11	5	7	4	9
X	552	237	542	560	781	158	784
NM	544	113	542	559	324	29	675
AL	6.68	1.98	5.22	4.89	1.42	1.18	3.54

Note:

- 1、 "F*" and "G*" denote the version of Flex and Grep
- 2, "Ver" is the version number
- 3. L and X denote the numbers of faults and the number of all failing inputs, respectively
- 4、 "NM" denotes the number of multi-label failing inputs
- 5 "AL" denotes the average of L

实验结果2

工业应用?

- 基于软件行为聚类分析的测试用例选择技术
 - 获得了基金支持
 - 培养了一批学生
 - -初步的工业应用
 - 建立了研究声誉
- 逻辑测试/测试用例选择
 - 博士后工作的延续
- 电子商务精准营销分析
 - -工业应用尝试

测试用例演化

和京大学软件学院 软件学院

测试用例演化框架

张智轶,陈振宇,徐宝文,杨瑞. 测试用例演化研究进展. 软件学报. **2012**, **24(4)**

在线测试系统

- 自动化+半自动化
- 全流程测试服务
 - 测试生成(半自动化)
 - 测试执行(自动化)
 - 测试选择(自动化)
 - 测试修复(半自动化)
 - 测试扩增(半自动化)
- Web应用+移动应用

测试用例修复的挑战

- 挑战1: 不完全模型
 - 代码常常不能获取,黑盒测试。
 - 由于逆向工程技术的限制,我们难以 取得所有的对象及其关系。
- 挑战2: 对象异构表示
 - 测试脚本/测试模型中相同对象的表示 方法不同。

A京大学软件学院

CAR:测试用例修复框架

CAR: Computer-Aided Repairing of GUI Test Scripts

测试脚本失效

自动修复

1 Window("PMS").Button("Remove").Click 2 Window("PMS").Menu("File").Menu("Save project").Select

 $Window("PMS").Dialog("Remove\ Member?").Button("OK").Click$

人工确认

Window("PMS").Field("Instruction").Set "A project for test."

from: Window("PMS").Field("Instruction")

to: Window("PMS").Field("Description").

人工添加

- 1 Window("PMS").Button("Add").Click 2 Window("PMS").Dialog("Add Member").Field("Name").Set "N" 3 Window("PMS").Dialog("Add Member").Field("Role").Set "Tester" 4 Window("PMS").Dialog("Add Member").Button("OK").Click
- 新版本中添加成员类型
- Member Type

Window("PMS").Dialog("Member Type").Field("Type").Set "1"

和京大学软件学院 软件学院

知识积累

	<u>-</u>
1	Window("PMS").Menu("File").Meanu("Create project").Select
2	Window("PMS").Field("Title").Set "ProjTest"
3	Window("PMS").Field("Instruction").Set "To test creating project."
4	Window("PMS"). $Button("Add")$. $Click$
5	Window("PMS").Dialog("Add Member").Field("Name").Set "M"
6	$Window("PMS").Dialog("Add\ Member").Field("Role").Set\ "Manager"$
7	$Window("PMS").Dialog("Add\ Member").Button("OK").Click$

Thanks to the knowledge of "Field('Description')", CAR could automatically change line 3 in Table 3 to a correct statement.

Window("PMS").Field("Description").Set "To test creating project." Thanks to the knowledge of "Dialog('Member Type')", CAR could automatically add the following statement between line 4 and 5 in Table 3.

Window("PMS").Dialog("Member Type").Field("Type").Set "1"

实验设计

• Q1: 测试脚本失效比例

· Q2: 自动化修复的成功率

• Q3: CAR的修复效果

• Q4: CAR的修复成本

Table 4: Basic Information

Applications	TSs in Pool	Selected TS s	All Widgets	Modified Widgets		Unusable TS s	
Applications	1 58 111 1 001	beletted 1 bs	All Widgets	Changed	Deleted	#	%
Crossword Sage	1070	105	80	5	4	88	83.8
PDFsam	1025	148	184	2	0	148	100
OmegaT	1297	129	519	21	0	129	100

A京大学软件学院

事件模型是否完整

Table 5: Completeness Degree of Initial Model

Application	Total Recognize		Percent
	Events #	Events #	
Crossword Sage	3931	475	12%
PDFsam	4456	2908	65%
OmegaT	4656	1619	35%

CAR的修复成功率

Table 6: Repairing Results

Application	Unusable	Jnusable Repaired	
	TSs #	TSs #	
Crossword Sage	88	45	51%
PDFsam	148	133	90%
OmegaT	129	106	82%

和京大学软件学院 WANDING UNIVERSITY: SOFTWARE INSTITUTE

失败原因分析

CAR的修复成本

Table 7: Time Cost Effectiveness (minutes)

Application	Repairing	Creation	Ratio
CrossowrdSage	29.4	1317	2.2%
PDFsam	29.0	1342	2.2%
OmegaT	71.7	1415	5.1%

知识积累效果

Crowdsourcing (众包)

- The act of outsourcing tasks, traditionally performed by an employee or contractor, to an undefined, large group of people or community (a "crowd"), through an open call.
- Problem solving, innovation and design (e.g. innocentive.com, yourencore.com)
- Content and image contributing (e.g.WikiPedia, iStockphoto)
- Remote freelance (general) staffing (e.g. oDesk.com, mturk.com)

MARING UNIVERSITY·SOFTWARE INSTITU

众测

- 传统测试
- 人工测试
- 自动化测试
- 适合众测的类型?

Crowdsourced Testing

- Access to diverse platforms, languages, and people (demographically and geographically)
- Real insights from the real world, not just made up test case results
- Testing done by hundreds of people at the same time
- Rapid feedback right away
- Beta testing
- Usability testing
- Small companies, start-ups that don't have and can't afford their
- own testing resources

A京大学软件学院

众测任务

- Android端拼音输入法
 - 功能测试
- 百度浏览器
 - 功能测试与易用性测试
- 百度影音播放器
 - 性能测试与易用性测试

12/3/9

开发者社交网络分析

开发者的关系和软件缺陷/质量是否存在某种联系?

- ☐ Windows binary (*.dll)
- O Developer

开发者社交网络分析

- 如何建立开发者社交网络?
- 如何分析开发者社交网络的演化?
- 开发者社交网络的特性?
- 开发者社交网络对软件维护的应用
 - 软件维护组织
 - 缺陷预测
 - Bug报告分配
 - -测试用例选择

当前研究课题

- 测试用例演化
 - 在线测试系统
 - 学术研究+工业应用
- 开发者社交网络分析
 - 学术研究
- 面向行业的数据分析
 - -工业应用

团队成员

- 博士生
 - 张智轶(11)、房春荣(12)、何铁科(12) 、汪亚斌(13)、冯洋(13)
 - 时清凯(14)、张伟强(14)
 - 苏超(15)
- 硕士生
 - 高则宝、邹云潇、都兴中、惠成峰、 魏帅、沈毅、孙一、豆梦宇
 - 冯奕彬、卢依宁、钱程、
- 本科生

is大多软件学院ware institution

Thanks