Context Free Grammars

What we want...

- We have seen how to create a lexer that transforms a source code over an alphabet Ω into a sequence of tokens, for example abc = $123 \rightarrow Identifier$, AssignmentOperator, Number (if we ignore the white spaces)
- In our next step, we want turn this sequence of tokens into a hierarchical structure called the syntax tree

In the same way we used REs to describe valid sequences of characters (=lexems) and to build a lexer, we will now use Context Free Grammars to describe valid sequences of tokens and build a parser

An Example

- The non-regular language over the alphabet $\{a,b\}$ $\{a^nb^n\mid n\in\mathbb{N}\}$ can be described by the following Context Free Grammar (CFG): $S\to a\ S\ b\mid \varepsilon$
- How it works:
 - 1. Start with S (S is called a *non-terminal* symbol)
 - 2. S can be derived to either ε (= a^0b^0) or to a S b
 - 3. a S b can be derived to $a \varepsilon b$ (= $a^1b^1 = ab$) or to a a S b b
 - 4. $a \ a \ S \ b \ b$ can be derived to $a \ a \ \varepsilon \ b \ b \ (= a^2 b^2)$ or to ...
- The derivation of a a b b can be represented as a syntax tree

Definition

- A CFG $G = < \Sigma, N, P, S >$ is defined by
 - An alphabet Σ of terminal symbols
 - A set N of non-terminal symbols (disjoint from Σ)
 - A set P of production rules of the form $A \to \alpha$ with
 - $A \in N$
 - $\alpha \in X^*$ for $X = N \cup \Sigma$
 - A start symbol $S \in N$
- In our example $S \rightarrow a S b \mid \varepsilon$, our CFG has
 - Terminal symbols $\Sigma = \{a, b\}$
 - Non-terminal symbol $N = \{S\}$
 - Two rules:

$$S \to a S b$$
$$S \to \varepsilon$$

Start symbol S

Context Free Languages

- Derivation $\alpha \Rightarrow \beta$ for a CFG $G = < \Sigma, N, P, S >$:
 - A sequence of terminal and non-terminal symbols

$$\alpha = \alpha_1 A \alpha_2$$

(where A is a non-terminal symbol) can be derived to

$$\beta = \alpha_1 \gamma \alpha_2$$

if there is a rule $A \rightarrow \gamma$. We write

$$\alpha \Rightarrow \beta$$

- If $\alpha_1 \in \Sigma^*$, we write $\alpha \Rightarrow_l \beta$ (leftmost derivation)
- If $\alpha_2 \in \Sigma^*$, we write $\alpha \Rightarrow_r \beta$ (rightmost derivation)
- The language L(G) generated by CFG G is given by:

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

- i.e., all $w \in L(G)$ can be obtained by starting at the start symbol S and applying rules until the result only consists of terminal symbols
- lacktriangle We say that a language L is context free if there is a CFG that generates it
- Note: $\{w \in \Sigma^* \mid S \Rightarrow^* w\} = \{w \in \Sigma^* \mid S \Rightarrow^*_l w\} = \{w \in \Sigma^* \mid S \Rightarrow^*_r w\}$

Analysis

- The sequence of rules $r_1, r_2, ...$ that we apply to achieve $S \Rightarrow^* w$ for a given grammar is called the analysis of w
- $S \Rightarrow_l^* w$ gives the leftmost analysis
- $S \Rightarrow_r^* w$ gives the rightmost analysis
- In the following, we will, for a more compact representation, give each rule a number and write the analysis as a sequence of numbers
 - Example for $S \rightarrow a S b \mid \varepsilon$

Rule 1: $S \rightarrow a S b$

Rule 2: $S \rightarrow \varepsilon$

Analysis of *aabb*: rule 1, rule 1, rule 2

Bigger example

A CFG for arithmetic expressions

$$E \rightarrow E + T \mid T$$
 (rule 1 and rule 2)
 $T \rightarrow T * F \mid F$ (rules 3 and 4)
 $F \rightarrow (E) \mid Number \mid Identifier$ (rules 5, 6, and 7)

■ Leftmost derivation of (89) * x:

$$E \stackrel{2}{\Rightarrow} T \stackrel{3}{\Rightarrow} T * F \stackrel{4}{\Rightarrow} F * F \stackrel{5}{\Rightarrow} (E) * F \stackrel{2}{\Rightarrow} (T) * F$$

$$\stackrel{4}{\Rightarrow} (F) * F \stackrel{6}{\Rightarrow} (Number) * F \stackrel{7}{\Rightarrow} (Number) * Identifier$$

■ Rightmost derivation of (89) * x:

$$E \stackrel{2}{\Rightarrow}_{l} T \stackrel{3}{\Rightarrow}_{l} T * F \stackrel{7}{\Rightarrow}_{l} T * Identifier \stackrel{4}{\Rightarrow}_{l} F * Identifier$$
$$\Rightarrow \cdots \Rightarrow (Number) * Identifier$$

Ambiguity

- Example: a programming language with if-then and if-then-else $S \rightarrow a \mid if \ b \ then \ S \mid if \ b \ then \ S \ else \ S$
- Exercise: What is the syntax tree of if b then a
- if b then S
- Now, more difficult: What is the syntax tree of if b then if b then a else a
- Two possible trees:

■ To which "if" does the "else" belong? (dangling else problem)

Ambiguous vs Unambiguous Grammar

- Every syntax tree represents exactly one $w \in L(G)$
- Every syntax tree corresponds to exactly one leftmost derivation $S \Rightarrow_I^* w$ and vice versa
- Every syntax tree corresponds to exactly one rightmost derivation $S \Rightarrow_r^* w$ and vice versa
- But as shown on the previous slide, a $w \in L(G)$ can have several derivations and, therefore, several syntax trees
- A CFG G is unambiguous if every $w \in L(G)$ has exactly one syntax tree. It is ambiguous otherwise.
- A language L is inherently ambiguous if every G with L(G) = L is ambiguous
- In general, it is <u>undecidable</u> whether a CFG is ambiguous or not!
- However, given a CFG G and $w \in \Sigma^*$, the problem $w \in C^*$ L(G) is decidable

Remark: Concrete Syntax Tree vs Abstract Syntax Tree

- In practice, a parser will return a "cleaned up" version of the syntax tree, called the Abstract Syntax Tree (AST)
- Usually, the AST is created by hand-written code during parsing
- Our if-then-else example:
 - Concrete Syntax Tree

• "Clean" version (AST):

