浙江大学 2014 - 2015 学年 春夏 学期 《 数字系统设计 I 》课程期中考试试卷

课程号: _111C0120 _, 开课学院: __信息与电子工程学系__

考试试卷: √A卷、B卷(请在选定项上打√)

考试形式: √)闭、开卷(请在选定项上打√),允许带 计算器 入场

考试日期: _2015_年_5_月_6_日, 考试时间: _120_分钟

诚信考试,沉着应考,杜绝违纪。

考生姓名:			学号:					K):		
题序			Ξ	四	五	六	七	八	总 分	
得分										
评卷人										

- 一、逻辑基础(共 15 分,得分_____)
- 1、(1)用卡诺图化简法将下列函数化为最简与或形式

$$Y(A,B,C,D) = \sum m(1,3,4,5,9,11,12,13)$$

(2)请问化简出的最简与或形式是否会存在竞争冒险?如果存在竞争冒险,那么发生在其他变量为何种取值的情况下,并试用增加冗余项的方法消除竞争冒险?
(2) 当 C=0, D=1 时, $Y=B+\overline{B}$,**存在文学们位**。

$$Y = B\overline{c} + \overline{B}D$$

$$Y = B\bar{c} + \bar{B}D + \bar{c}D$$
,
別在 $C = 0$, $D = 1$ 時, $Y \mp B + \bar{B} + 1 = 1$,
不愛 Bzin 彭化 地の。

2、(1)化简下式,最后的结果化为最简与或形式。

$$f(A,B,C,D) = \prod M_i(0,2,5,6,7,8,10,13,14,15)$$

- (2)将上式化简结果化为或非-或非形式。
- (3)试着添加一些无关项,令题 2-(1)的化简结果用一个异或门实现。

二、门电路(12分,得分___

1).Vx 最初为 1, 令 a=b=1。

2).Vx 最初为 0, 令 a= 1, b=0。

3).Vx 最初为 0, 令 a=b=0。

三、组合电路(33分,得分_____)

二进制

1、试设计一可逆的 4 位码转换电路。当控制信号 C=1 时,它将 8421 码转换为格雷码; C=0 时,它将格雷码转换为 8421 码。可以采用任何门电路实现。

解.

1 3 b2 b1 b0 192 92 9180	= () X, X,	Dxxx0	XX0 00 01 V/ 18	1 xx 0 01 11 10	×2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- LADT 1
0000 0001	X3X 00 01 11 10 0	00000	00000	010101	当金	打造
0011 0010		11 0 0 0 0	10000	10000		7 2 07
0101 0111	C=0 M () XX	(Dxx)	(b)xx0	Exite polities	×,-typti	7
1000 1100	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00	000101	x,l	
1010 1111	11 0000	110000	110000	10 101	₫ .	
1100 1010	10 13 = cg3+ cb	= X2 Y3=c 92+cb	Y=cg,tcb1	$\begin{cases} 10 \boxed{10} \boxed{10} \\ 70 \boxed{10} \boxed{10} \end{aligned}$ $\begin{cases} 70 \boxed{10} \boxed{10} \boxed{10} \boxed{10} $ $\begin{cases} 70 \boxed{10} \boxed$	6+Eb. 1×1>·c + (×.+)×	,0 x,0 x,) c
110 1001	所以 13—C03+C0	= X28X3,	=(x18x2)C+	(Klaviana) = (Klaviana)	•	
1111 1000			11 - 122005	m 4-11/4-1-19	L 741100	102

2、已知A和B分别为4位二进制变量,试使用一片74HC85四位比较器、一片74HC283四位加法器以及若干门电路实现如下功能:

$$S = |A - B|$$

74HC85 功能表

	COMPAR	ING INPUT	S	С	ASCADING	INPUTS	OUTPUTS			
A ₃ , B ₃	A ₂ , B ₂	A ₁ , B ₁	A ₀ , B ₀	I _{A>B}	I _{A<b< sub=""></b<>}	I _{A=B}	Q _{A>B}	Q _{A<b< sub=""></b<>}	Q _{A=B}	
A ₃ >B ₃	X	X	X	X	X	Х	Н	L.	L	
A ₃ <b<sub>3</b<sub>	x	X	×	X	X	X	<u> </u>	H	1:	
A ₃ =B ₃	A2>B2	X	×	X	X	X	F!	H		
A3=B3	A2 <b2< td=""><td>X</td><td>×</td><td>X</td><td>X</td><td>×</td><td> -</td><td>1.7</td><td>1.</td></b2<>	X	×	X	X	×	-	1.7	1.	
A ₃ =B ₃	A ₂ =B ₂	A _{1>B₁}	×	X	X	X	Н	L		
A3=B3	A2=B2	A ₁ <b<sub>1</b<sub>	×	X	X	X	-	H		
A ₃ =B ₃	A2=B2	A ₁ =B ₁	A _{0>} B ₀	X	X	X	H	H	15	
A3=B3	A2=B2	A1=B1	Ao∢Bo	X	X	X	L] [1.	
A3=B3	A2=B2	A ₁ =B ₁	A ₀ =B ₀	Н	L	L	H	15	1.	
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	L	H	L	-	H	l H	
A3=B3	A2=B2	A ₁ =B ₁	A ₀ =B ₀	L	_ L	H	<u> </u>	L		
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	Х	X	Н	Į Ļ	ļ.	H	
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	H	Н	L	L	L	1 -	
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A₀≃B₀	L	L	<u> </u>	H	<u> </u>		

解:
$$3A>B$$
0大,
 $S=A+\overline{B}+1=A-B$
 $3A0大.
 $S=B-A=\overline{A}+B+1$$

74HC283 功能表

PINS	CIN	Α,	A2	A ₃	A	B ₁	B ₂	B ₃	B ₄	Σ_1	12	Σз	Σ4	C _{OUT}
logic levels	L	T.	Н	L	Н	Н	L	L	Н	Н	Н	L	L	Н
active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

3、1950 年 Richard Hamming 发明了应用于计算机系统的汉明码。人们主要用汉明码 来错误检验及修正。对于每四个数据位 A、B、C、D,有三个奇偶校验位 P_1 、 P_2 、 P_3 。 定义如下:

$$P_1 = A \oplus B \oplus D$$

$$P_2 = A \oplus C \oplus D$$

$$P_3 = B \oplus C \oplus D$$

试用最少的 2 选 1 数据选择器来表示 P_1 、 P_2 、 P_3 , 并画出电路图。

- 4、设计一个无符号乘法器组合电路,用来将 4 位变量 $X_3X_2X_1X_0$ 乘上无符号常数 199=0xC7。器件选用加法器和逻辑门。
- (1)最少要用多少个的1位半加器,写出设计流程。

四、触发器和时序分析(20分,得分_____)

74HCT139 功能表(2-4 线译码器)

	INPUTS		OUTPUTS						
nĒ	nA ₀	nA ₁	n₹₀	n₹₁	n₹₂	n₹₃			
Τ	Х	Х	Н	Н	Н	Н			
L	L	L	L	Н	Н	Н			
L	Н	L	Н	L	Н	Н			
L	L	Н	Н	Н	L	Н			
L	Н	Н	Н	Н	Ħ	L			

题图 4.1 逻辑电路图

2、根据下列电路图画出时序图,假设门电路有一个单位的延时, Q_a 初始值为 0, 根据输入信号 D,画出 Q_1,Q_2,Q_a,Q_b,S,R 。

五、综合设计(20分,得分____)

一台自动贩卖机由一个状态机控制,它有三个输入信号 A、B、C。每当投入 10 便士、20 便士或 50 便士之后, A、B 或 C(每次只有一个)在时钟上升沿后立刻变为 1,并会在一个时钟周期内保持为 1。状态机有三个输出 X、Y、Z,各自代表给出一条巧克力棒、找回 10 便士和找回 20 便士。图 5.1 为该自动贩卖机的状态转换图,图中除了在状态转换箭头上已标注的外,其余输出信号均为 0。

- (1) 完成图 5.2 的时序图: 状态 S2:0序列用十进制数表示, 并画出 X、Y、Z的波形。
- (2) 推导出巧克力棒的价格。
- (3) 给出 X、Y、Z 的最简逻辑表达式。
- (4) 画出修改设计后的新状态转换图:与前面有相同的输入和输出信号,但巧克力棒的价格为40便士,且输出Y和Z不能同时为1。

题图 5.2 时序图

(2)由状态(0)的发放入20使生到达状态(2) 再放入20使生到达状态(4),再放入20使的出一年的东方棒,并回到状态(5), 所以20克力棒的60便士。

(3)
$$X = C \cdot \{ \{ \} \} + \{ \{ \} \} + \{ \{ \} \} \}$$

 $+ B \cdot \{ \{ \} \} + \{ \{ \} \} + \{ \{ \} \} \}$
 $= C (S_2 \cdot \{ \} \} + \{ \{ \} \} + \{ \{ \} \} \}) + B (S_2 \cdot \{ \}) + B (S_2 \cdot \{ \} \}) + B (S_2 \cdot \{ \}) + B$

