92586 Computational Linguistics

10. Word2vec

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

21/04/2020

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020 1/29

Alberto Barrón-Cedeño (DIT-UniBO)

Introduction to Neural Networks

Considerations when building/training a network

First Keras neural network

Previously

92586 Computational Linguistics

21/04/2020

2/2

Table of Contents

- 1 Introduction
- Word Vectors
- 3 Computing word2vec representations
- 4 Pre-Trained Models

Alberto Barrón-Cedeño (DIT-UniBO)

Chapter 6 of Lane et al. (2019)

Introduction

92586 Computational Linguistics

21/04/2020 3/

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

4 /

Introduction

Previously

- Each token represents one dimension (BoW)
- Document- and corpus-based statistics (TF-IDF)
- Dimensional reduction (LSA)

Drawbacks

- Ignoring the (nearby) context of a word
- Ignoring the overall meaning of a statement

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

5 / 29

Introduction

Word vectors. Numerical vector representations of word semantics, or meaning, including literal and implied meaning (Lane et al., 2019, p. 182)

Math with words

q = "She invented something to do with physics in Europe in the early 20th century"

```
answer_vector = wv['woman'] + wv['Europe'] + \
                wv['physics'] + wv['scientist']
```

Even better:

```
answer_vector = wv['woman'] + wv['Europe'] + \
                wv['physics'] + wv['scientist'] -\
                wv['male'] - wv['man']
```

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

Word Vectors

Word Vectors

Intuition

Word2vec Mikolov et al. (2013)

- Learns the meaning of words by processing a large corpus¹
- The corpus is not labeled
- It is unsupervised

Can we train a neural network to predict word occurrences near a target w?

We don't care about the prediction (that's nice, but not important right here). We care about the resulting internal representation

¹And I mean large; e.g., 100B words from Google News Groups

Word Vectors

Vector Algebra (again)

Portland Timbers + Seattle − Portland =?

ourput_vector = wv['Seattle'] + wv['Portland Timbers'] - wv['Portland']

Seattle + portland timbers - portland = ?

Portland

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020 9 / 29

Word Vectors

21/04/2020

Vector Algebra (again)

- word2vec transforms token-occurrence vectors into lower-dimensional vectors
- The dimension is usually in the 100s (e.g., 100, 200)

Typical process

Input: Text Output: Text

- Compute vectors
- ② Do algebra
- Map back to text

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

10 / 29

Word Vectors

Some "typical" operations/properties

Gender $king + woman - man \rightarrow queen$

 $\vec{x}_{coffee} - \vec{x}_{coffees} \approx \vec{x}_{cup} - \vec{x}_{cups} \approx \vec{x}_{cookie} - \vec{x}_{cookies}$ PI/Sg

Locations San Francisco — California + Colorado \rightarrow Denver

Culture tortellini — Bologna + Valencia \rightarrow paella ? **Computing word2vec representations**

11 / 29

Alternatives to Build word2vec representations

skip-gram

Input one (target) word
Output context words

CBOW (continuous bag-of-words)

Input context words

Output one target word

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

13 / 29

Skip-Gram

Definition Skip-grams are *n*-grams that contain gaps (skips over intervening tokens)

Input one word

Output context words

Skip-Gram

Neural Network Structure

- *n* is the number of vector dimensions in the model
- M is the number of input/output neurons; M = |vocabulary|
- The output activation function is a **softmax** (typical in multi-class problems; $\sum_{M} = 1.0$)

Skip-Gram

Learning the Representations (1/3)

- $\bullet \ \ \text{Window size: 2 words} \rightarrow \text{5-grams}$
- Input: each token, from left to right
- Output: the context on the left and right (one at a time)

 $s = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_{10}$

 $[\ldots] w_{t-2} w_{t-1} w_t w_{t+1} w_{t+2} [\ldots]$

Skip-Gram

Learning the Representations (2/3)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

input	expected output			
w_t	W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}
Claude			Monet	painted
Monet		Claude	painted	the
painted	Claude	Monet	the	Grand
the	Monet	painted	Grand	Canal
Grand	painted	the	Canal	of
Canal	the	Grand	of	Venice
of	Grand	Canal	Venice	in
Venice	Canal	of	in	1908
in	of	Venice	1908	
1908	Venice	in		

(Lane et al., 2019, p. 194)

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

17 / 29

Skip-Gram

Learning the Representations (3/3)

Training

- The input/output is a one-hot vector
- n-1 iterations when using n-grams:

$$[\ldots] w_{t-2} w_{t-1} w_t w_{t+1} w_{t+2} [\ldots]$$

i	input	output	i	input	output		i	input	output
0	w_t	W_{t-2}	4	w_{t+1}	w_{t-1}	-	8	w_{t+2}	W_t
1	w_t	w_{t-1}	5	w_{t+1}	W_t		9	w_{t+2}	w_{t+1}
2	w_t	w_{t+1}	6	w_{t+1}	W_{t+2}		10	w_{t+2}	W_{t+3}
3	w_t	W_{t+2}	7	w_{t+1}	W_{t+3}		11	W_{t+2}	w_{t+4}

• To simplify the loss calculation, the softmax is converted to one-hot

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

18 / 29

Skip-Gram

Outcome

- The output layer can be ignored²
- Semantically similar words have similar vectors —they were trained to predict similar contexts
- The weights from input to hidden layer are used to compute embeddings

$$wv_w = dot(one_hot_w, W)$$

Skip-Gram

Embedding Computation

Three neuron

.06 = .32 .61

Resulting 3-D word vector

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

19 / 29 All

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

²Tweaking this procedure could result in a language model

CBOW

Definition Continuous bag-of-words

Input context words

Output target (centre) word

CBOW

Learning the Representations (1/3)

- ullet Window size: 2 words o 5-grams
- Input: multi-hot vector (sum of all one-hot vectors)
- Output: one-hot vector

 $s = w_1 w_2 w_3 w_4 w_5 w_6 w_7 w_8 w_9 w_{10}$

 $[\ldots] w_{t-2} w_{t-1} w_t w_{t+1} w_{t+2} [\ldots]$

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

22 / 29

CBOW

Learning the Representations (2/3)

Example: "Claude Monet painted the Grand Canal of Venice in 1908."

		inp	expected or	utput		
1	W_{t-2}	w_{t-1}	w_{t+1}	W_{t+2}	w_t	
			Monet	painted	Claude	
		Claude	painted	the	Monet	
(Claude	Monet	the	Grand	painted	
	Monet	painted	Grand	Canal	the	
	painted	the	Canal	of	Grand	
1	the	Grand	of	Venice	Canal	
(Grand	Canal	Venice	in	of	
(Canal	of	in	1908	Venice	
(of	Venice	1908		in	
,	Venice	in			1908	
				'		
(Lane	et al., 201	9, p. 194)				
Alberto Barrón-	Alberto Barrón-Cedeño (DIT-UniBO)		92586 Computat	ional Linguistics		21/04/2020

Skip-Gram

Learning the Representations (3/3)

Training

21 / 29

• The input is a multi-hot vector:

$$w_{t-2} + w_{t-1} + w_{t+2} + w_{t+2}$$

• The output is a one-hot vector w_t

Skip-Gram vs CBOW

Skip-gram

- Works well with small corpora
- Some high-frequency [2, 3]-grams are added as single terms (e.g., New_York, Chicago_Bears)
- ullet High-frequency tokens are subsampled (\sim to IDF over stopwords)
- Negative sampling. Not all weights are updated give a pair, just a few negative samples (much cheaper, roughly the same result)

CBOW

- Higher accuracy for frequent words
- Much faster to train

Alberto Barrón-Cedeño (DIT-UniBO) 92586 Computational Linguistics 21/04/2020 25 / 29 **Pre-Trained Models**

Alberto Barrón-Cedeño (DIT-UniBO) 92586 Computational Linguistics 21/04/2020 26 / 29

Some Pre-Trained Models

Model	Provider	Highlights
word2vec	Google	300D from English Google News articles
fastext	Facebook	157 languages from Wikipedia and Crawl
word2vec/GloVe	CNR	Italian embeddings from the Wikipedia

Considerations

- If you are working in other language than English, Google's provided word2vec is not an option
- If you need a domain-specific model, you will have to build your own

Next time

Hand-on word embeddings

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

21/04/2020

References

Lane, H., C. Howard, and H. Hapkem 2019. *Natural Language Processing in Action*. Shelter Island, NY: Manning Publication Co.

Mikolov, T., K. Chen, G. Corrado, and J. Dean 2013. Efficient estimation of word representations in vector space. In *Arxiv*.

Alberto Barrón-Cedeño (DIT-UniBO) 92586 Computational Linguistics 21/04/2020 29/29