

nada vale nem desconta.

(0.3)

Nome completo: ____

N.º aluno: _____ Curso: ____

IPEIO - PROBABILIDADES E ESTATÍSTICA

Ano Lectivo 2017/18

Teste 1 - 4 de abril de 2018

Duração: 1h15

1.	Admita que A , B e $P(A) = 0.2$, $P(B)$				ntos (Ω, \mathcal{F}) e que: mentos A e C são independentes.
(0.3)	(a) $V F P(C)$	= 0.3			
(0.3)	(b) \overline{V} \overline{F} $P(B A)$	(A) = 0.6			
(0.3)	(c) \overline{V} \overline{F} $P(A -$	-C) = 0.1			
2.	Sabe-se que quand	o um projecto é e om sucesso é de	ntregue a um cola	aborador formado	n formados na FCT-NOVA. o na FCT-NOVA a probabilidade qualquer outro colaborador essa
(0.3)	(a) Qual a proba na FCT-NOV	-	ojecto ser concret	izado com sucess	so e por um colaborador formado
	A 0.70	B 0.90	$\boxed{\mathtt{C}}$ 0.28	$\boxed{\mathtt{D}} 0.54$	E Nenhuma das anteriores
(0.3)	` '		a aleatória um nov concretizado com		ntre os colaboradores da empresa,
	lacksquare 0.82	B 0.90	$\boxed{\mathtt{C}}$ 0.62	$\boxed{ {\tt D} } \ 0.78$	E Nenhuma das anteriores
(0.3)		to tiver sido conclormado na FCT-N		qual a probabili	dade de ter sido realizado por um
	A 14/41	B 27/41	C 14/82	$\boxed{\mathrm{D}}$ $27/82$	E Nenhuma das anteriores

(d) Se a empresa tiver um total de 100 colaboradores e 10 forem selecionados de forma aleatória para

equipa é uma variável aleatória com distribuição:

formarem uma equipa, o número de colaboradores formados na FCT-NOVA que participam nessa

[A] Bin(10,0.6) [B] Bin(100,0.6) [C] H(100,60,10) [D] H(60,40,10) [E] Nenhuma das anteriores

Nas questões que se seguem e em cada alínea, apenas uma das respostas está correcta. Determine-a e assinale-a com uma cruz no quadrado correspondente. Uma resposta incorrecta desconta 0.1 valores e uma não resposta

3. Considere a seguinte função:

$$g(x) = \begin{cases} \frac{a}{b}, & x \in [0, b] \\ 0, & x \notin [0, b] \end{cases}$$

(a) $|\underline{V}|$ $|\underline{F}|$ Para a=1 e b=1, a função g é uma função densidade de probabilidade. (0.4)

(b) Considere X, uma v.a. com função densidade $f_X(x) = g(x)$ com a = 1 e b = 2.

i. A $P(X \le 1)$ é: (0.4)

A 1/5

B 1/4

C 1/3

D 1/2

| E | Nenhuma das anteriores

ii. Sabendo que $E[X^2] = 4/3$, a variância de X é: (0.4)

A 1/5

B 1/4

C 1/3

D 1/2

| E | Nenhuma das anteriores

4. O número de alunos de IPEIO que comparecem no horário de atendimento docente é uma variável aleatória com distribuição de Poisson, com valor médio de 2 por hora:

(0.4)(a) A probabilidade de numa hora de atendimento docente não comparecer nenhum aluno é:

 \Box e^{-2}

 $| C | e^{-3}$ $| D | e^{-4}$

E | Nenhuma das anteriores

(b) Em duas horas, o número esperado de alunos a comparecerem ao atendimento docente é: (0.4)

A 1

B 2

C 3

D 4

E Nenhuma das anteriores

(c) A probabilidade, do tempo entre chegadas consecutivas de alunos ao horário de atendimento, ser (0.3)inferior a 1 hora é:

 $\boxed{\textbf{A}} \int_0^1 2e^{-2x} dx \qquad \boxed{\textbf{B}} \int_0^1 \frac{e^{-\frac{x}{2}}}{2} dx \qquad \boxed{\textbf{C}} \int_0^1 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \qquad \boxed{\textbf{D}} \int_{-\infty}^1 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \qquad \boxed{\textbf{E}} \text{ Nenhuma das anteriores}$

Distribuições discretas					
Distribuição	f. probabilidade	Suporte	Valor médio	Variância	
H(N,M,n)	$C_k^M C_{n-k}^{N-M} / C_n^N$	$\max(0, M+n-N) \le k \le \min(M, n)$	nM/N	$\frac{nM\left(N-M\right)\left(N-n\right)}{N^{2}\left(N-1\right)}$	
$Bin\left(n,p\right)$	$C_k^n p^k \left(1 - p\right)^{n - k}$	$0 \le k \le n$	np	np(1-p)	
$P(\lambda)$	$e^{-\lambda}\lambda^k/k!$	$k \in \mathbb{N}_0$	λ	λ	

	D	istribuições contínuas		
Distribuição	f. densidade	Suporte	Valor médio	Variância
$Exp(\lambda)$	$\lambda e^{-\lambda x}$	$x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$N\left(\mu,\sigma^2\right)$	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	$x \in \mathbb{R}$	μ	σ^2

Resolva a questão seguinte no espaço disponível e indicando todos os passos e justificações.

- 5. O tempo necessário para um qualquer aluno resolver o 1º teste de IPEIO, é uma variável aleatória X com distribuição normal de valor médio $\mu = 60$ minutos e desvio padrão $\sigma = 5$ minutos.
- (0.4) (a) Calcule a probabilidade de um aluno terminar o teste em menos de 50 minutos.
- (0.4) (b) Calcule o tempo t, após o qual apenas 2.5% dos alunos ainda não terminaram o teste.
- (0.4) (c) Calcule a probabilidade de a média dos tempos de resolução do teste de 10 alunos ser superior a 60 minutos.
- (0.4) (d) Suponha agora, que o tempo que cada teste leva a ser corrigido segue uma distribuição exponencial de valor médio 15 minutos. Calcule a probabilidade **aproximada** do docente precisar de mais de 1600 minutos para corrigir um total de 100 testes.

N.º aluno: _____ Curso: _

IPEIO - PROBABILIDADES E ESTATÍSTICA

Ano Lectivo 2017/18

2018

h15

	UNIVERSIDADE NOVA DE LISBOA	Teste 1 - 4 de abril de 2
	Departamento de Matemática	Duração: 1
N T		
INOI	me completo:	

Nas questões que se seguem e em cada alínea, apenas uma das respostas está correcta. Determine-a e assinale-a com uma cruz no quadrado correspondente. Uma resposta incorrecta desconta 0.1 valores e uma não resposta nada vale nem desconta.

1.	Admita que $A, B \in C$ são acontecimentos de um espaço de acontecimentos (Ω, \mathcal{F}) e que:
	$P\left(A\right)=0.4,P\left(B\right)=0.4,P\left(A B\right)=0.3,P\left(A\cap C\right)=0.1$ e os acontecimentos A e C são independentes de la contecimento della con

- (a) $\nabla F P(C) = 0.25$ (0.3)
- (b) V = F P(B|A) = 0.3(0.3)
- (c) V = F P (A C) = 0.1(0.3)
 - 2. Numa determinada empresa de I&D, 60% dos seus colaboradores foram formados na FCT-NOVA. Sabe-se que quando um projecto é entregue a um colaborador formado na FCT-NOVA a probabilidade de ser concluido com sucesso é de 90%, já quando é entregue a um qualquer outro colaborador essa probabilidade desce para 60%.
- (0.3)(a) Qual a probabilidade de um projecto ser concretizado com sucesso e por um colaborador formado na FCT-NOVA?
 - $A \mid 0.70$
- B 0.90
- C 0.28
- D 0.54
- E Nenhuma das anteriores
- (b) Tendo sido distribuido de forma aleatória um novo projecto por entre os colaboradores da empresa, (0.3)qual a probabilidade deste ser concretizado com sucesso?
 - A 0.82
- B 0.90
- C 0.62
- D 0.78
- E Nenhuma das anteriores
- (c) Se um projecto tiver sido concluido com sucesso, qual a probabilidade de não ter sido realizado por (0.3)um colaborador formado na FCT-NOVA?
 - A 12/39
- B 27/39 C 12/78 D 27/78
- E Nenhuma das anteriores
- (0.3)(d) Se a empresa tiver um total de 100 colaboradores e 10 forem selecionados de forma aleatória para formarem uma equipa, o número de colaboradores formados na FCT-NOVA que participam nessa equipa é uma variável aleatória com distribuição:
 - \blacksquare Bin(10, 0.6) \blacksquare Bin(100, 0.6) \blacksquare H(100, 60, 10) \blacksquare H(60, 40, 10) \blacksquare Nenhuma das anteriores

3. Considere a seguinte função:

$$g\left(x\right) = \left\{ \begin{array}{ll} \frac{a}{b}, & x \in [0, b] \\ 0, & x \notin [0, b] \end{array} \right.$$

(a) |V| | F| Para a = 1 e b = 1, a função g é uma função densidade de probabilidade. (0.4)

(b) Considere X, uma v.a. com função densidade $f_X(x) = g(x)$ com a = 1 e b = 4.

i. A $P(X \le 1)$ é: (0.4)

> A 1/5 B 1/4

C 1/3

D 1/2

| E | Nenhuma das anteriores

ii. Sabendo que $E[X^2] = 16/3$, a variância de X é: (0.4)

 $\boxed{\mathbf{A}} 1/3$

B 2/3

C 1

D | 4/3

| E | Nenhuma das anteriores

4. O número de alunos de IPEIO que comparecem no horário de atendimento docente é uma variável aleatória com distribuição de Poisson, com valor médio de 3 por hora:

(0.4)(a) A probabilidade de numa hora de atendimento docente não comparecer nenhum aluno é:

 \Box e^{-2}

 $| C | e^{-3}$ $| D | e^{-4}$

E | Nenhuma das anteriores

(b) Em duas horas, o número esperado de alunos a comparecerem ao atendimento docente é: (0.4)

A 8

B 6

C 4

 $D \mid 2$

E Nenhuma das anteriores

(c) A probabilidade, do tempo entre chegadas consecutivas de alunos ao horário de atendimento, ser (0.3)inferior a 1 hora é:

 $\boxed{\textbf{A}} \int_0^1 2e^{-2x} dx \qquad \boxed{\textbf{B}} \int_0^1 3e^{-3x} dx \qquad \boxed{\textbf{C}} \int_0^1 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \qquad \boxed{\textbf{D}} \int_{-\infty}^1 \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx \qquad \boxed{\textbf{E}} \ \text{Nenhuma das anteriores}$

Distribuições discretas					
Distribuição	f. probabilidade	Suporte	Valor médio	Variância	
H(N,M,n)	$C_k^M C_{n-k}^{N-M} / C_n^N$	$\max(0, M+n-N) \le k \le \min(M, n)$	nM/N	$\frac{nM\left(N-M\right)\left(N-n\right)}{N^{2}\left(N-1\right)}$	
$Bin\left(n,p\right)$	$C_k^n p^k \left(1 - p\right)^{n - k}$	$0 \le k \le n$	np	np(1-p)	
$P(\lambda)$	$e^{-\lambda}\lambda^k/k!$	$k \in \mathbb{N}_0$	λ	λ	

	D	istribuições contínuas		
Distribuição	f. densidade	Suporte	Valor médio	Variância
$Exp(\lambda)$	$\lambda e^{-\lambda x}$	$x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$N\left(\mu,\sigma^2\right)$	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	$x \in \mathbb{R}$	μ	σ^2

Resolva a questão seguinte no espaço disponível e indicando todos os passos e justificações.

- 5. O tempo necessário para um qualquer aluno resolver o 1º teste de IPEIO, é uma variável aleatória X com distribuição normal de valor médio $\mu = 60$ minutos e desvio padrão $\sigma = 5$ minutos.
- (0.4) (a) Calcule a probabilidade de um aluno terminar o teste em menos de 50 minutos.
- (0.4) (b) Calcule o tempo t, após o qual apenas 2.5% dos alunos ainda não terminaram o teste.
- (0.4) (c) Calcule a probabilidade de a média dos tempos de resolução do teste de 10 alunos ser superior a 60 minutos.
- (0.4) (d) Suponha agora, que o tempo que cada teste leva a ser corrigido segue uma distribuição exponencial de valor médio 15 minutos. Calcule a probabilidade **aproximada** do docente precisar de mais de 1600 minutos para corrigir um total de 100 testes.

