SCOM/ SRSI Video over HTTP

Ana Aguiar DEEC, FEUP 2018-19

Contents

- Why use HTTP to deliver video?
 - Any issues with this?
- Dynamic Adaptive Streaming over HTTP
- How to choose an appropriate data rate?
- How to choose a CDN cache?

Contents

- Why use HTTP to deliver video?
 - Any issues with this?
- Dynamic Adaptive Streaming over HTTP
- How to choose an appropriate data rate?
- How to choose a CDN cache?

Why stream over HTTP

- Can take advantage of CDN
- HTTP has solved the middlebox problem
- Well-established, simple and cheap
- Can take advantage of every improvement to HTTP

Contents

- Why use HTTP to deliver video?
 - Any issues with this?
- Dynamic Adaptive Streaming over HTTP
- How to choose an appropriate data rate?
- How to choose a CDN cache?

- Monia Ghobadi and Yuchung Cheng and Ankur Jain and Matt Mathis. "Trickle: Rate Limiting YouTube Video Streaming", Presented as part of the 2012 {USENIX} Annual Technical Conference ({USENIX} {ATC} 12)
- https://www.usenix.org/conference/atc12/tec hnical-sessions/presentation/ghobadi

Contents

- Why use HTTP to deliver video?
- Dynamic Adaptive Streaming over HTTP
- How to choose an appropriate data rate?
- How to choose a CDN cache?

Why DASH?

- Enable
 - Very high user experience
 - Deployment on top of HTTP and CDN
 - Adaptation based on network conditions, device and user preferences
 - Seamless switching
 - Client differentiation
 - Technology re-use
 - Support multiple types of streaming (live, on-demand, ...)
 - **—** ...
- See presentation for details of MPEG-DASH

Dynamic Adaptive Streaming over HTTP

- Framework to enable client side adaptation
- Media Description Profile
 - Redundant information of media streams
 - E.g. codec, language, DRM, resolution, bandwidth
 - Access and timing information
 - URLs and byte range of segments
 - Start time and duration
 - Live service: instructions to start playout

• ...

Scope of MPEG DASH

DASH Data Model

Some Vocabulary

- Period: time sequence
- Adaptation set: set of switchable representations
- Representation: encoded version of media
 - Audio/ video parameters
 - Codec, container
 - Bandwidth
 - URL construction
 - **—** ...
- Adaptation subset: enabes creator to restrict combination of adaptation sets

Switching Point Alignment

- Segments can use different representations
- Stream Access Points (SAP) enable seamless switching between representations

Challenges

- Bandwidth estimation
- Scheduling segment requests
- Adaptation logic

Contents

- Why use HTTP to deliver video?
- Dynamic Adaptive Streaming over HTTP
- How to choose an appropriate data rate?
- How to choose a CDN cache?

How to pick the streaming data rate?

- Depends on estimated available bandwidth
 - Too high: many re-buffering events
 - Too low: lower video quality
- Estimation is done above TCP
- Rate picking is usually conservative
- Rate picking algorithm is proprietary
 - Differs from provider to provider

How do Streaming Services work?

Service	Client	Segment	ТСР	Playout buffer	# bitrates
Α	browser	4s	persistent	Change request rate	9
В	PS3	8s	Non- persistent	Change TCP rcv window	6
С	PS3	Whole file	Open connection	Change TCP rcv window	7

Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh Johari. 2012. Confused, timid, and unstable: picking a video streaming rate is hard. In *Proceedings of the 2012 Internet Measurement Conference* (IMC '12). ACM, New York, NY, USA, 225-238. DOI: https://doi.org/10.1145/2398776.2398800

Experimental Setting

NetFPGA creates a controllable bottleneck

Video Behaviour with Competing Flow

Bandwidth should be divided in half among flows, but observations tell a different story

Is the adaptive rate algorithm guilty?

With rate adaptation

Forced manual rate

Reverse engineering throughput estimation

- Perceived throughput ≈ L/T
 - L: video segment size
 - T: time to download
 - Good approximation to chosen rate
- Hypothesis: Throughput measured by HTTP file transfer is not a good estimate of available bandwidth
 - Verify hypothesis. How?
 - Why?
 - Same or different problems for the 3 services?

Observing Service A Before Competing Flow

Observing Service A Before Competing Flow

- Playout buffer full -> segments requested every 4s: on-off scheduling
- On-off scheduling -> TCP cwin times out because of no activity
- Each request starts with closed window
- Short requests do not even open the window

Choice of data rates

Without competing flow

With competing flow

Observing Service A After Competing Flow

Throughput is low

Other Important Factors

- Client choice of rate
 - Conservative
- Segment size
 - Decreases when rate decreases
 - Leads to even lower throughput at lower rate
- All factors together cause downward spiral

Observing Service B

- Playback buffer full -> Stop removing data from TCP buffer
- TCP buffer full -> Zero window advertisements
- On-off behaviour
- Little data (<800kbps) between downloaded phases
- Low TCP throughput limits chosen video rate

500

500

1000

1500

Time (s)

2000

2500

Observing Service C

- Whole file download causes new TCP connection on rate change
- TCP connection opening causes low throughput
- Client goes back to lower rates

Reverse Engineering Rate Adaptation Algorithm

- Inferred from measurements
 - Use average of last 10 measured L/T
 - Add conservative factor ~40%
- Effect of changing different parameters
 - Conservative factor
 - Bandwith estimate
 - Bigger segments
 - Improve bandwidth estimates
 - Reduce impact of TCP dynamics

Rate Adaptation Algorithm

- Inferred measurements
- from
- Use average of last 10 measured L/T
- Add conservative factor ~40%
- Effect of changing different parameters
 - Conservative factor = 10%
 - Bandwith estimate
 - Bigger segments
 - Improve bandwidth estimates
 - Reduce impact of TCP dynamics

Rate Adaptation Algorithm

- Inferred measurements
- from
- Use average of last 10 measured L/T
- Add conservative factor ~40%
- Effect of changing different parameters
 - Conservative factor
 - Bandwith estimate using percentiles
 - Bigger segments
 - Improve bandwidth estimates
 - Reduce impact of TCF dynamics

Rate Adaptation Algorithm

- Inferred measurements
- from
- Use average of last 10 measured L/T
- Add conservative factor ~40%
- Effect of changing different parameters
 - Conservative factor
 - Bandwith estimate
 - Bigger segments
 - Improve bandwidth estimates
 - Reduce impact of TCP dynamics

Contents

- Why use HTTP to deliver video?
- Dynamic Adaptive Streaming over HTTP
- How to choose an appropriate data rate?
- How to choose a CDN cache?

Florian Wamser, Steffen Höfner, Michael Seufert, and Phuoc Tran-Gia. 2017. **Server and Content Selection for MPEG DASH Video Streaming with Client Information.** In Proceedings of the Workshop on QoE-based Analysis and Management of Data Communication Networks (Internet QoE '17). ACM, New York, NY, USA, 19-24. DOI: https://doi.org/10.1145/3098603.3098607

CONGESTION IN BEST EFFORT NETWORKS