Definície a vety lineárnej algebry použité v lineárnom programovaní

Vektory sú v tomto dokumente písané **tučnou kurzívou**, ostatné veličiny kurzívou (okrem číselných konštánt).

Definície

Lineárna kombinácia m vektorov z priestoru E^n :

Vektor \boldsymbol{x} je lineárnou kombináciou vektorov $\boldsymbol{x}_1, \, \boldsymbol{x}_2, \, \dots, \, \boldsymbol{x}_m \in E^n$, ak existujú reálne čísla $a_1, \, a_2, \, \dots, \, a_m$ také, že $x = \sum_{i=1}^m a_i \, x_i$.

Konvexná kombinácia m vektorov z priestoru E^n :

Vektor \boldsymbol{x} je lineárnou kombináciou vektorov $\boldsymbol{x}_1, \, \boldsymbol{x}_2, \, \dots, \, \boldsymbol{x}_m \in E^n$, ak existujú **nezáporné** reálne čísla

$$a_1, a_2, ..., a_m$$
 také, že $\mathbf{x} = \sum_{i=1}^{m} a_i \mathbf{x}_i$ a $\sum_{i=1}^{m} a_i = 1$.

Lineárna závislosť m vektorov z priestoru E^n :

Skupina vektorov $x_1, x_2, \dots, x_m \in E^n, m \ge 2$ je lineárne závislá, ak medzi nimi existuje aspoň jeden, ktorý je lineárnou kombináciou ostatných vektorov tejto skupiny.

Ak je m=1, potom skupina tvorená jediným vektorom je lineárne závislá, ak tento vektor je nulový vektor.

Lineárna nezávislosť m vektorov z priestoru E^n :

Vektory $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in \mathbf{E}^n$ sú lineárne nezávislé, ak nie sú lineárne závislé.

Báza vektorového priestoru

Každá lineárne nezávislá skupina vektorov, ktorá určuje priestor, sa nazýva báza tohto priestoru.

Hodnosť matice

Hodnosť matice je daná maximálnym počtom lineárne nezávislých riadkov matice.

Vety

- V1: Vektory $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in \mathbf{E}^n$ sú lineárne nezávislé práve vtedy keď, rovnica $\sum_{i=1}^{m} a_i \mathbf{x}_i = \mathbf{0}$ (tu je nula *n*-rozmerný vektor) má iba triviálne riešenie pre reálne čísla a_i , t.j. má riešenie iba pre všetky $a_i = 0$ (tu je nula číslo).
- **V2**: Ak je skupina vektorov $x_1, x_2, \dots, x_m \in E^n$ lineárne nezávislá, potom každá podskupina týchto vektorov je lineárne nezávislá.
- **V3**: Ak je skupina vektorov $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in \mathbf{E}^n$ lineárne nezávislá, potom žiaden z nich nie je nulový.
- V4: Každý vektor priestoru, v ktorom existuje báza, možno jednoznačne vyjadriť ako lineárnu kombináciu bázy.
- **V5**: Ak má vektorový priestor bázu tvorenú *n* vektormi, potom každá skupina o viac ako *n* vektoroch z toho istého vektorového priestoru je lineárne závislá.