## **Trabalho final VHDL**

O objetivo do trabalho é descrever o circuito da Figura 1 utilizando VHDL conforme foi visto em aula. A linguagem VHDL é vasta e algumas sintaxes mais incomuns não foram tratadas, é permitido utilizar tudo que a linguagem tem disponível. Porém recomendo fortemente que caso utilizem alguma sintaxe que não foi vista em aula, testem bastante e garantam que ela se comporta da maneira que necessitam. Pois existem sintaxes que não são sintetizáveis.



Figura 1.

O circuito proposto, como foi discutido na aula em que apresentei o trabalho é capaz de executar uma serie operações semelhante a um microcontrolador. Isso foi baseado no microcontrolador teórico Neander, porém parte do circuito original do Neander foi descartado. O circuito final devera percorrer a memória com auxílio do Contador de Programa (PC) e executar as operações contidas em cada linha da memória. Conforme a ULA executa as operações, o registrador REG armazena o resultado até ser sobrescrito pela próxima operação. A unidade de controle (CONTROL) devera suprir o circuito com todos os sinais de controle em vermelho. A avaliação irá envolver a simulação do circuito, com atenção especial no registrador REG para averiguar a correta execução das operações.

## Memoria

A memória presente no circuito é 16x16 ou seja, 16 posições de 16 bits e os valores de cada posição são as seguintes. Cada linha possui 16 bits, onde os primeiros bits, os mais significativos compreendem a operação a ser executada e os próximos, os menos significativos são o operando. Os códigos a serem decodificados em operações estão dispostos na tabela menor.

| 00000000 00000000 |
|-------------------|
| 00000101 00000010 |
| 00000001 00000101 |
| 00000001 00001000 |
| 00000010 00000101 |
| 00000100 00000000 |
| 00000010 00001111 |
| 00000011 00000100 |
| 00000101 10101010 |
| 00000001 01000100 |
| 00000000 00000000 |
| 00000000 00000000 |
| 00000110 00000000 |
| 00000000 00000000 |
| 00000000 00000000 |
| 00000000 00000000 |

| Operação | Codigo    |
|----------|-----------|
| X + Y    | 0000 0001 |
| X and Y  | 0000 0010 |
| X or Y   | 0000 0011 |
| Not X    | 0000 0100 |
| Υ        | 0000 0101 |
| HALT     | 0000 0110 |

## <u>Avaliação</u>

A avaliação do trabalho será no formato de apresentação do código, circuito e simulação em sessões de 15 minutos contando com perguntas. Os alunos deverão realizar a simulação e a síntese do código para que seja possível visualizar o funcionamento do código. Os trabalhos deverão ser submetidos até dia 13 de fevereiro, as 11h59 conforme estará indicado no AVA, após esse dia as apresentações começam dia 14 em horários a combinar. Para facilitar a avaliação o projeto no quartus deve ser organizado de forma que haja um top level com uma entidade no formato indicado na Figura 2.



Figura 2.