1. Question 1:

Proof: I negate this statement and show the new one is true, which implies the original one is false. The negated statement is as follows.

$$(\forall m \in N)(\forall n \in N)(3m + 5n \neq 12)$$

I delineate every case of m and n.

If m=1 then $5n \neq 9$, which is true as 5|9 is false.

If m=2 then $5n\neq 6$, which is true as 5|6 is false.

If $m \ge 3$ then $12 - 3m \le 3$. 5|12 - 3m is false which is equivalent to $5n \ne 12 - 3m$.

In every case of m and n I showed $3m + 5n \neq 12$ is true. Thus, the negated statement is true which is equivalent to saying the original statement, $(\exists m \in N)(\exists n \in N)(3m + 5n = 12)$, is false. Q.E.D.

2. Question 2:

Proof: The statement can be expressed as below.

$$(\forall a \in Z)(\exists q \in Z)[(a-2) + (a-1) + (a) + (a+1) + (a+2) = 5q]$$

(a-2)+(a-1)+(a)+(a+1)+(a+2)=5q is equivalent to 5a=5q. Then the statement is the same as saying

$$(\forall a \in Z)(\exists q \in Z)[a = q]$$

which is true because I can find at least one q for every possible a. Q.E.D.

3. Question 3:

Proof: I show every possible case of n and prove this statement is true.

$$n^2 + n + 1 = n(n+1) + 1$$
 (By algebra.)

For every integer n > 0, n(n + 1) yields even number and adding 1 to it leads to odd number.

For every integer $n \leq -2$, n(n+1) yields even number and adding 1 to it leads to odd number.

For integer $n = \{-1, 0\}$, n = -1 yields 1 and n = 0 yields 1.

For every case of integer, $n^2 + n + 1$ yields odd number. Q.E.D.

4. Question 4:

Proof: I logically express the statement as below.

$$(\forall k \in N)(\exists n \in Z)[2k-1 \Rightarrow (4n+1|2k-1 \vee 4n+3|2k-1)]$$

In order to prove this statement is true, either 4n + 1|2k - 1 or 4n + 3|2k - 1 has to be true given 2k - 1 is true.

Suppose 2k-1 is true. Then for all natural number k, we can always find an integer 2n to equal either k-1 or k-2. (e.g. if k=3, then k-1=2, k-2=1. Then, n=1 makes 2n=2 which equals k-1=2.)

Because 2n always equals either k-1 or k-2 for all k, then either 4n+1|2k-1 or 4n+3|2k-1 always becomes true: i.e. if 2n=k-1 then 4n+1 becomes 2k-1, which makes 4n+1|2k-1 true. if 2n=k-2 then 4n+3 becomes 2k-1, which makes 4n+3|2k-1 true.

Consequence is true for every natural number as I can find an adequate integer n. Thus, the implication is true. Q.E.D.

5. Question 5:

Proof: I consider every possible case to prove the statement.

Every integer n is one of 3q, 3q + 1, 3q + 2 where $q \in \mathbb{Z}$.

If n = 3q, then 3|n. n is divisible by 3.

If n = 3q + 1, then n + 2 = 3q + 3. n + 2 is divisible by 3.

If n = 3q + 2, then n + 4 = 3q + 6. n + 4 is divisible by 3.

For every possible n, I showed that at least n, n+2, n+4 is divisible by 3. Q.E.D.

6. Question 6:

Proof: For all natural number n, I pick three numbers where each is 2 from the next: e.g. $\{1,3,5\}$, $\{2,4,6\}$. Under this setting, every possible set can be expressed as $(\forall x \in N)(\{x,x+2,x+4\})$.

If x > 3, then at least one element in every set is divisible by 3. Thus, there are no prime triple sets in x > 3.

If $x \leq 3$, then the remaining sets are $\{1, 3, 5\}$, $\{2, 4, 6\}$, $\{3, 5, 7\}$. The only prime triple among these sets is $\{3, 5, 7\}$. Q.E.D.

7. Question 7:

Proof: I use mathematical induction to prove the statement.

Let
$$A(n)$$
 be $\sum_{i=1}^{n} 2^{i} = 2^{n+1} - 2$.

A(1) is $2 = 2^{1+1} - 2$ which is true. Initial step is finished.

We move onto the Induction step. I must show $(\forall n \in N)(A(n) \Rightarrow A(n+1))$ is true.

 $\sum_{i=1}^{n} 2^{i} = 2^{n+1} - 2$, by the induction hypothesis

$$\sum_{i=1}^{n} 2^{i} + 2^{n+1} = 2^{n+1} - 2 + 2^{n+1}$$
, by algebra

$$\sum_{i=1}^{n+1} 2^i = 2 \cdot 2^{n+1} - 2 = 2^{n+2} - 2$$
, by rearrangement

Given A(n) holds I showed A(n+1), which is $\sum_{i=1}^{n+1} 2^i = 2^{n+2} - 2$, is true. By the principle of mathematical induction, the statement is true. Q.E.D.

8. Question 8:

Proof: I can logically express the statement as below.

$$(\forall M > 0)(\lim_{n \to \infty} a_n \to L \Rightarrow \lim_{n \to \infty} Ma_n \to ML)$$

To show this implication is true, I look at the consequent first and see if it can be derived from antecedent.

The consequent part is equivalent to saying

$$(\forall \epsilon > 0)(\exists n \in N)(\forall m \ge n)[|Ma_m - ML| < \epsilon]$$

Because M > 0, $|Ma_m - ML| = |M||a_m - L| = M|a_m - L|$. Then I can simplify the consequent part as below.

$$(\forall \epsilon > 0)(\exists n \in N)(\forall m \ge n)[|a_m - L| < \frac{\epsilon}{M}]$$

If antecedent is true, it means for every $\epsilon > 0$ we can find an n such that $|a_m - L| < \epsilon$. Let $\epsilon' = \frac{\epsilon}{M}$. ϵ' is one of a kind of ϵ . Given the antecedent is true, then finding n such that $|a_m - L| < \epsilon'$ is also true.

As a result, if antecedent is true then consequent is true. Q.E.D.

9. Question 9:

Proof: Let the interval A_n be $\left(-\frac{1}{n}, \frac{1}{n}\right)$. Then, $(\forall n \in N)(A_n \supset A_{n+1})$ is true.

Also, $\bigcap_{n=1}^{\infty} A_n = \emptyset$ is true because the interval $A_{\infty} = (-\frac{1}{\infty}, \frac{1}{\infty}) = (0, 0) = \{x | 0 < x < 0\}$ is an empty set. Because A_{∞} is an empty set, it must be that $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

Thus, the interval $A_n = (-\frac{1}{n}, \frac{1}{n})$ satisfies both properties. Q.E.D.

10. **Question 10**:

Proof: Let the interval A_n be $[1, 1 + \frac{1}{n}]$. Then, $(\forall n \in N)(A_n \supset A_{n+1})$ is true.

Also, $\bigcap_{n=1}^{\infty} A_n = 1$ is true because the interval $A_{\infty} = [1, 1 + \frac{1}{\infty}] = [1, 1] = \{x | 1 \le x \le 1\}$ is a set with one element.

Thus, the interval $A_n = [1, 1 + \frac{1}{n}]$ satisfies both properties. Q.E.D.