WF4133-Fisheries Science

Class14: Harvest, Gear, Effort, and **Yield Continued**

Housekeeping

- Group 4: Team Bass Thompson, Brady Char Bullock, Sierra Lee

 - Shannon, Ashley Nicole
 - May, Amy Renee
 - Group 5: Team Bluegill
 - Byrd, Steven Christoph Woodyard, Ethan T.
 - Hamid, Keaton Taylor Powell, Bonner Lee

Biomass & harvest dynamics

$$\frac{dBiomass}{dt} = r \cdot \frac{K - Biomass_{t}}{K} - effort \cdot catchability \cdot Biomass_{t}$$

$$\frac{dYield_{biomass}}{dt} = effort \cdot catchability \cdot Biomass_{t}$$

$$\frac{dYield_{economic}}{dt} = effort \cdot catchability \cdot Biomass_{t} \cdot Landing \ price$$

Optimal sustained yield (OSY) Maximize difference between maximum economic yield and cost Optimal sustained yield (OSY) Maximize difference between maximum economic yield and cost

Some assumptions

- · Market price is constant
- Realistic?
- · Market price declines with surplus
- · Accounting for price drops?
- · Lets leave that to the economists
- Take home-accounting for economics is important and a tool to minimize overfishing... at least in the long term

EFFORT & GEARS

Effort and gear

Two types of fishing gears

- 1. Active: fish are actively captured by gear
- 2. Passive: gear to which fish must swim and become stuck

Active gears

- 1. Seines
- 2. Trawls
- 3. Purse seines
- 4. Hand lining
- 5. Cast net

Seines

Effort: could be related to volume or area fished, lots of assumptions

- · Biomass per hectare
- · Biomass per haul
- · Biomass per volume

Trawls

Effort: could be related to volume or area fished

- · Biomass per day, landings per trip
- · Biomass per km
- · Biomass per hectares, biomass per volume
- · Lots of assumptions

Trawl

Purse seines

Effort: could be related to volume or area fished

- · Biomass per day, biomass per hectares, biomass per volume, lots of assumptions
- · Landings per trip

Handlining

Effort: not related to volume or area fished, related to hooks, time, trip length

- · Biomass per hook per hour
- Biomass per trip per trip length

Cast nets

Effort: not related to volume or area fished

- · Fish per cast
- · Biomass per cast

Journal Summary: Cast Nets are Useful Sampling Tools, and You Should Try One

Passive

- 1. Hoop & fyke nets
- 2. Gill nets
- 3. Traps
- 4. Long & trot lines

Effort associated with area, volume, time, distance, sets

Hoop & Fyke nets

Effort: not related to volume or area fished

- Fish or biomass per net, assuming fixed time
- Fish per hour: soak time not fixed
- · Fish per net night

Traps

Effort: related to time or trap

- Fish or biomass per net, assuming fixed time
- · Fish per hour: soak time not fixed
- · Fish per net night

Long & Trot Lines

Effort: related to soak time, length, # of hooks

- Fish or biomass per hook, fixed soak time
- Fish or biomass per meter, fixed soak time and hook density

Gill nets

Effort: not related to volume or area fished

- Fish or biomass per net, assuming fixed time
- · Fish per hour: soak time not fixed
- Fish per net night

AN EXAMPLE USING PADDLEFISH

Paddlefish

- Vulnerable status-International Union for Conservation of Nature (IUCN)
- Declines?
 - Habitat alteration
 - Harvest
 - Water quality

Life history

- Long lived
- Sexually mature late in life
- · Spawn in spring
 - Water temperature: 55 to 60 °F (13 to 16 °C)
 - Photoperiod increasing day length
 - Spring rise in river flow

Just down the road

Just down the road

Just down the road

5" Gill net

5" Gill net

Catchability & effort

- Set gill net for 30 minutes x 4
- 100 Paddlefish in pool
- Catch: 3,4,4,2

Example: Catch = 3

 $Catch = catchability \cdot effort \cdot Abundance$

 $3 = catchability \cdot 30 \cdot 100$

 $3 = catchability \cdot 3000$

 $\frac{3}{3000} = catchability$

0.001 = catchability

Example: Catch = 4

 $Catch = catchability \cdot effort \cdot Abundance$

 $4 = catchability \cdot 30 \cdot 100$

 $4 = catchability \cdot 3000$

 $\frac{4}{3000} = catchability$

0.0013 = catchability

Example: Catch = 2

 $Catch = catchability \cdot effort \cdot Abundance$

 $2 = catchability \cdot 300 \cdot 100$

 $2 = catchability \cdot 3000$

 $\frac{2}{3000} = catchability$

0.00067 = catchability

Catch

Catchability ~ 0.009925

Effort = 30 minutes

Population = 200

 $Catch = catchability \cdot effort \cdot Abundance$

 $Catch = 0.0009925 \cdot 30 \cdot 200$

Catch = 5.955

Catch

Catchability ~ 0.009925

Effort = 100 minutes

Population = 200

 $Catch = catchability \cdot effort \cdot Abundance$

 $Catch = 0.0009925 \cdot 100 \cdot 200$

Catch = 19.85

Catchability & effort

- · Passive or active gears
- · Links Catch to:
 - Effort
 - Catchability
 - Population

Why is it a good idea to link catch to effort?

