Experiment-1

Alm: To study features of 8085 microprocessor. Study the architecture and pin diagram of 8085 misoprocessor. Write a brief description of 8085 simulatos.

INTEL 8085 MICSOPROCESSOS: -

INTEL 8085 miowoprocessor was developed by INTEL in 1975.

Il is a 8bit NMOS microprocessos. It is a 40 Pin IC, fobricated on a single line.

8085 microphocessos succeded its predections since it requires only one power supply of +5V.

The maximum frequency of the processon is 3mm, & monumum; is 500tz.

There are 5 interrupts. There are 16 address Poine, which implies the memory is 216=64kb.

. 110 is 8bit oddiess, implies 256 post address.

At has on this controller. It also provides on this the general The data bus & address bus one mullipliered.

To elementiple external hardware is sequised. Also external tuning credit is sequired.

GNU SIMULATOR 8085: GNUSM 8085 is a graphical simulator, assembles & debugger for the Intel 8085 uprocessor for unux & windows.

- SIMPLE EDITOR COMPONENT WITH SYNTAX HIGHLIGHTING.
- KEYAAD TO INPUT Assembly language instructions
- . easy view of registers contents
- easy view of flag contents.
- nexedecimal to decimal convertor
- 4 nbyle instruction is the number of n memory location required to store the instruction

- MOU is lbyte ms - MVI is 2 byte inst - LDA is 3 byte inst

Printettuse of 8085. microprocesson:

Can be divided into 5 groups:

- 1. Arithematic Logical unit Group:
 - 1. Accumulator:
 - 1. 8bit register
 - 2. General Purpose
 - 2. Temp Reg:
 - 1. not available for the user
 - 2. used internally by microprocessor
 - 3. Example are W, and Z
 - 3. Flag flip-flops
 - 4. Instruction Register
 - 5. ALU:
 - 1. Inputs are Accumulator and Temp reg
 - 2. It performs arithematic operations
- 2. Register Group
- 3. Interrupt Control Group:
 - 1. 5 interrupts are there and one acknowledgement
- 4. Serial I/O Control Group:
 - 1. SOD
 - 2. SID
- 5. Timing and Control Group:
 - 1. Instruction register:
 - used for internally usage
 - instruction are stored here
 - 2. Instruction decoder and machine cycle encoding:
 - when opcode is availabl for instruction
 - operands are not accepted
 - non programmable register
 - bit pattern is accepted from IR
 - and sends it to Timing and Control
 - 3. Timing and Control:
 - Control Section
 - generates "microsteps" to perform the instruction
 - Clock input and sychronizing
 - communication between peripheral and 8085

Flag Register

- 8bit register
- Sign Flag, Zero Flag, Auxillary Carry Flag, Parity Flag, Carry Flag
- 8 bit register shows the status of the microprocessor before/after an operation
 S (circuits) 7 (zero flee) AC (cyvillers corrected) P (cerity flee)
- S (sign flag), Z (zero flag), AC (auxillary carry flag), P (parity flag) & CY (carry flag)

Figure 2: Flag Register

- Carry Flag:
 - used when carry is generated
 - acts as 9th bit
 - borrow bit in difference
- Auxillary Flag:
 - Carry is generated at lower nibble, to upper nibble then this flag is set
 - used internally only
 - binary to binary conversion
- Zero Flag:
 - if operation result is zero, this flag is set
- · Sign Flag
 - set if negative, reset if positive, that is for MSB bit
 - used to indicate the sign of data in accumulator
- Parity Flag:
 - used to indicate the parity of result, if the result contains even no. of "1" then the flag is set, if odd the reset

Types of register

- temp: W and z:
 - used internally
 - for calculation purposes
- General Purpose: B, C, D, E, H, L:
 - to form register pair of 16bit
 - 8bit register
 - programmable by user
- Special purpose:
 - Stack Pointer:
 - * used for execution of programs
 - * points to memory address to fetch next instruction
 - * store the information cpu
 - * works in lifo
 - * 16bit address used to define starting point
 - * tracks the data stored
 - Program Counter:
 - * increments by one when fetching next instruction
 - * at start, it set at 0
 - * it is of 16bit, since 8085 contains 16 address line using which any memory location can be accessed. Hence 16bit are sufficient
 - Incremental/ Decrementer address latch:
 - * used in co-ordination with above two
 - * to increment and decrement infro
 - 16bit registers

PIN DIAGRAMS-

- 40 pin IC
- can be divided into 10 types:
 - Address Data bus 21 to 28:
 - * ouptut tristate signal used as higher order 16bit signal
 - \ast unidirection signals, only address is given by 8085 to peripheral devices
 - * Reset, hold, halt
 - Multiplexed Address data Bus 12 to 19:
 - * input/output tristate signal, address in data
 - * lower order 8bit signal
 - * used as data bus later on
 - * less pins are required because of multiplexing
 - * demultiplexing is required which is disadvantage, hence more time and circuit is required.
 - Control Signals :
 - * 30th (ALE) demultiplexing of lower order data bus
 - * $34 (IO/\overline{M})$ Input/Output Memory, gives status of operation mode
 - * $32 (\overline{RD}) \text{ READ}$
 - * 31 (\overline{WR}) WRITE
 - * 35 (READY) input to microprocessor from lower peripheral to faster microprocessor and synchronizes it and check if data transfer is ready
 - Status Pins: Gives Stauts of what operation is performed
 - $* 29 (S_0)$
 - $* 33 (S_1)$

S1	S0	Operation
0	0	Hatl
0	1	Write
1	0	Read
1	1	Fetch

- Clock Signal:
 - * 37 Clock out input signal used as internal clock
 - * 1 : connected to crystal
 - * 2:
- Interupt Signal:
 - \ast 6 Trap: level high signal, edge triggered, level triggered, highest priority, non maskable interrupt
 - * 7 RST 7.5: Restart interuptts, active high, edge or level triggered, maskable interrupt
 - * 8 RST 6.5
 - * 9 RST 5.5
 - * 10 INTR: Interrupt request
 - * 11 \overline{INTA}

- Serial Signal :
 - $\ast\,$ 5 SID: input signal for software contro
 - $\ast\,$ 4 SOD: output signal
- DMA Request Signal: Direct memory access
 - * 39 HOLD: active high, used by other control to access data signals and address signals, input signal
 - * 38 HLDA: acknowledgment signal to HOLD
- RESET Singal:
 - * 3 RESET OUT:
 - \ast 35 RESET IN: used to clear program counter to 00000
- Power Supply:
 - * VCC: 5v
 - $\ast\,$ VSS: Ground