Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas

Produtos Notáveis - Parte 1

Oitavo Ano

Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto

03 de julho de 2015

Uma identidade algébrica é uma equação em que os dois membros são expressões algébricas e que é verdadeira se, e somente se, a igualdade é verdadeira para quaisquer valores que se atribua às variáveis envolvidas.

Produtos notáveis são identidades algébricas que merecem ser destacadas por conta da grande frequência com que aparecem quando operamos com expressões algébricas.

1 Quadrado da soma e quadrado da diferença de dois termos

Utilizando as propriedades comutativa e associativa da adição e multiplicação de números reais, além da propriedade distributiva da multiplicação em relação à adição, obtemos:

$$(x+y)^{2} = (x+y)(x+y)$$

$$= x(x+y) + y(x+y)$$

$$= (x^{2} + xy) + (yx + y^{2})$$

$$= x^{2} + 2xy + y^{2},$$

em que x e y são números reais quaisquer.

Fórmula para o quadrado da soma de dois termos:

$$(x+y)^2 = x^2 + 2xy + y^2.$$

Podemos interpretar geometricamente a fórmula para o quadrado da soma de dois termos desenhando um quadrado de lado x+y. Então, a área desse quadrado, que é igual a $(x+y)^2$, será dada também pela soma das áreas dos dois quadrados menores e dos dois retângulos que formam o quadrado maior de lado x+y (veja figura 1). Obtemos, assim,

$$(x+y)^2 = x^2 + 2xy + y^2.$$

Figura 1: Quadrado da soma de dois termos.

Exemplo 1. Desenvolvendo o quadrado $(a+2b)^2$, obtemos:

$$(a+2b)^2 = a^2 + 2a \cdot 2b + (2b)^2$$
$$= a^2 + 4ab + 4b^2.$$

Observe que, nos cálculos acima, o que fizemos foi substituir, na fórmula para $(x + y)^2$, x por a e y por 2b.

Exemplo 2. Se x é um número real tal que $x + \frac{1}{x} = 7$ calcule o valor de $x^2 + \frac{1}{x^2}$.

Solução. Utilizando a fórmula para $(x + y)^2$, com $\frac{1}{x}$ no lugar de y, obtemos

$$x + \frac{1}{x} = 7 \Longrightarrow \left(x + \frac{1}{x}\right)^2 = 7^2$$

$$\Longrightarrow x^2 + 2 \cdot \cancel{x} \cdot \frac{1}{\cancel{x}} + \left(\frac{1}{x}\right)^2 = 49$$

$$\Longrightarrow x^2 + 2 + \frac{1}{x^2} = 49$$

$$\Longrightarrow x^2 + \frac{1}{x^2} = 49 - 2 = 47.$$

Exemplo 3 (OCM). Existem inteiros positivos a e b tais $que \frac{a^2 + a}{b^2 + b} = 4$?

Solução. Suponhamos a existência de inteiros positivos a e b satisfazendo $\frac{a^2+a}{b^2+b}=4$. Então, temos

$$\frac{a^2 + a}{b^2 + b} = 4 \Longrightarrow a^2 + a = 4b^2 + 4b$$
$$\Longrightarrow a^2 + a + 1 = (2b)^2 + 2 \cdot 2b \cdot 1 + 1^2$$
$$\Longrightarrow a^2 + a + 1 = (2b + 1)^2.$$

Por outro lado, veja que

$$a^{2} < a^{2} + a + 1 < a^{2} + 2a + 1$$

= $a^{2} + 2 \cdot a \cdot 1 + 1^{2} = (a+1)^{2}$.

Portanto, a^2+a+1 não pode ser o quadrado de um número inteiro, pois encontra-se entre dois quadrados consecutivos.

Como chegamos a uma contradição, concluímos que a única possibilidade é que não existem tais inteiros a e b. \square

Agora, utilizando a fórmula para o quadrado da soma de dois termos, obtemos

$$(x - y)^{2} = [x + (-y)]^{2}$$
$$= x^{2} + 2x \cdot (-y) + (-y)^{2}$$
$$= x^{2} - 2xy + y^{2},$$

em que x e y são números reais quaisquer.

Fórmula para o quadrado da diferença de dois termos:

$$(x - y)^2 = x^2 - 2xy + y^2.$$

Também podemos interpretar geometricamente a fórmula para o quadrado da diferença de dois termos. Neste caso, desenhamos um quadrado de lado x e, dentro dele, um quadrado de lado x-y, um retângulo de lados x-y e y, e um quadrado de lado y (veja a figura 2). Então, a área do quadrado maior, que por um lado vale x^2 , também é dada pela soma $(x-y)^2 + 2y(x-y) + y^2$, ou seja,

$$x^2 = (x - y)^2 + 2xy - 2y^2 + y^2.$$

Logo,

$$(x-y)^2 = x^2 - 2xy + y^2.$$

Figura 2: Quadrado da diferença de dois termos.

Exemplo 4. Desenvolvendo o quadrado $(p^2 - 3q)^2$, com o auxílio da fórmula para o quadrado da diferença entre dois termos, obtemos:

$$(p^2 - 3q)^2 = (p^2)^2 - 2p^2 \cdot 3q + (3q)^2$$
$$= p^4 - 6p^2q + 9q^2.$$

Exemplo 5. Sejam a e b números racionais positivos, tais que \sqrt{ab} é irracional. Mostre que a diferença $\sqrt{a} - \sqrt{b}$ também é irracional.

Solução. Primeiramente, observe que o quadrado de um número racional é ainda racional. Por contradição, suponhamos que $d=\sqrt{a}-\sqrt{b}$ seja racional. Então, d^2 também o será (uma vez que d^2 será representado pela fração cujos numerador e denominador são, respectivamente, iguais aos quadrados do numerador e do denominador da fração que representa d).

Utilizando novamente a fórmula para o quadrado da diferença entre dois termos, obtemos:

$$d^2 = \left(\sqrt{a} - \sqrt{b}\right)^2 = a - 2\sqrt{ab} + b,$$

ou seja,

$$\sqrt{ab} = \frac{a+b-d^2}{2}.$$

Essa última igualdade, por suavez, acarreta que \sqrt{ab} é racional, pois é dado por uma fração com numerador e denominador racionais. Mas isso contradiz o fato, assumido como hipótese, de que \sqrt{ab} é irracional. Concluímos, pois, que $\sqrt{a} - \sqrt{b}$ é irracional.

2 Quadrado da soma de três termos

Utilizando duas vezes a fórmula para o quadrado da soma de dois termos, obtemos:

$$(x+y+z)^2 = (x+y)^2 + 2(x+y)z + z^2$$

$$= (x^2 + 2xy + y^2) + (2xz + 2yz) + z^2$$

$$= x^2 + y^2 + z^2 + 2xy + 2xz + 2yz$$

$$= x^2 + y^2 + z^2 + 2(xy + xz + yz).$$

Também é possível interpretar geometricamente o quadrado da soma de três termos. Na figura 3, o quadrado maior, de lado x+y+z, tem área dada pela soma das áreas dos quadrados e retângulos que o compõem. São dois retângulos de área xy, dois de área xz e dois de área yz, além dos três quadrados menores, de áreas x^2 , y^2 e z^2 . Então, vê-se facilmente que

$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + xz + yz).$$

Figura 3: Quadrado da soma de três termos.

Fórmula para o quadrado da soma de três termos:

$$(x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy + xz + yz).$$

Exemplo 6. Desenvolvendo a expressão $(x^2 + 2y + z^3)^2$ com o auxílio da fórmula anterior, obtemos:

$$(x^{2} + 2y + z^{3})^{2} = (x^{2})^{2} + (2y)^{2} + (z^{3})^{2}$$

$$+ 2[x^{2} \cdot 2y + x^{2}z^{3} + 2yz^{3}]$$

$$= x^{4} + 4y^{2} + z^{6} + 4x^{2}y + 2x^{2}z^{3} + 4yz^{3}.$$

3 Produto da soma pela diferença

Utilizando novamente as propriedades das operações aritméticas de números reais listadas anteriormente, obtemos:

$$(x+y)(x-y) = x(x-y) + y(x-y)$$

$$= (x^2 - xy) + (yx - y^2)$$

$$= x^2 - xy + xy - y^2$$

$$= x^2 - y^2.$$

em que x e y são números reais quaisquer. Então, temos:

Fórmula para o produto da soma pela diferença de dois termos:

$$(x+y)(x-y) = x^2 - y^2$$
.

Exemplo 7 (OBMEP - 2009). *Qual o valor da diferença* $5353^2 - 2828^2$?

- (a) 2525^2 .
- (b) 3535^2 .
- (c) 4545^2 .
- (d) 4565².
- (e) 5335^2 .

Solução. Veja que $5353 = 53 \cdot 101$ e $2828 = 28 \cdot 101$. Daí, aplicando a fórmula para o produto da soma pela diferença de dois termos, obtemos:

$$5353^{2} - 2828^{2} = 53^{2} \cdot 101^{2} - 28^{2} \cdot 101^{2}$$

$$= (53^{2} - 28^{2}) \cdot 101^{2}$$

$$= (53 + 28) \cdot (53 - 28) \cdot 101^{2}$$

$$= 81 \cdot 25 \cdot 101^{2} = 9^{2} \cdot 5^{2} \cdot 101^{2}$$

$$= (9 \cdot 5 \cdot 101)^{2} = 4545^{2}.$$

Portanto, a alternativa correta é o item c.

Exemplo 8. Detremine o quociente da divisão de $x^{16} - 1$ por $(x^8 + 1)(x^4 + 1)(x^2 + 1)(x + 1)$.

Demonstração. Aplicando a fórmula para o produto da soma pela diferença algumas vezes, temos:

$$x^{16} - 1 = x^{16} - 1^{16} = (x^8 - 1^8) (x^8 + 1^8)$$

$$= (x^4 - 1^4) (x^4 + 1^4) (x^8 + 1)$$

$$= (x^2 - 1^2) (x^2 + 1^2) (x^4 + 1) (x^8 + 1)$$

$$= (x - 1) (x + 1) (x^2 + 1) (x^4 + 1) (x^8 + 1).$$

Portanto, o quociente da divisão de $x^{16} - 1$ por $(x^8 + 1)(x^4 + 1)(x^2 + 1)(x + 1) é x - 1$.

Exemplo 9 (EUA). Se $x + \sqrt{x^2 - 1} + \frac{1}{x - \sqrt{x^2 - 1}} = 20$ determine o valor de

$$x^{2} + \sqrt{x^{4} - 1} + \frac{1}{x^{2} + \sqrt{x^{4} - 1}}$$

Demonstração. Observe que

$$(x - \sqrt{x^2 - 1})(x + \sqrt{x^2 - 1}) = x^2 - (\sqrt{x^2 - 1})^2$$
$$= x^2 - (x^2 - 1)$$
$$= x^2 - x^2 + 1 = 1.$$

Daí, obtemos:

$$\frac{1}{x - \sqrt{x^2 - 1}} = x + \sqrt{x^2 - 1}.$$

Portanto, temos

$$x + \sqrt{x^2 - 1} + \frac{1}{x - \sqrt{x^2 - 1}} = 20$$

$$\Rightarrow 2\left(x + \sqrt{x^2 - 1}\right) = 20$$

$$\Rightarrow x + \sqrt{x^2 - 1} = 10$$

$$\Rightarrow \sqrt{x^2 - 1} = 10 - x$$

$$\Rightarrow \left(\sqrt{x^2 - 1}\right)^2 = (10 - x)^2$$

$$\Rightarrow x^2 - 1 = 100 - 20x + x^2$$

$$\Rightarrow 20x = 101 \Rightarrow x = \frac{101}{20}.$$

Analogamente, temos

$$(x^{2} + \sqrt{x^{4} - 1}) (x^{2} - \sqrt{x^{4} - 1}) = (x^{2})^{2} - (\sqrt{x^{4} - 1})^{2}$$
$$= x^{4} - (x^{4} - 1)$$
$$= x^{4} - x^{4} + 1,$$

ou seja,

$$\frac{1}{x^2 + \sqrt{x^4 - 1}} = x^2 - \sqrt{x^4 - 1}.$$

Daí,

$$x^{2} + \sqrt{x^{4} - 1} + \frac{1}{x^{2} - \sqrt{x^{4} - 1}}$$

$$= x^{2} + \sqrt{x^{4} - 1} + x^{2} - \sqrt{x^{4} - 1}$$

$$= 2x^{2} = 2 \cdot \left(\frac{101}{20}\right)^{2} = 2 \cdot \frac{101^{2}}{20^{2}} = 2 \cdot \frac{10201}{400} = \frac{10201}{200}.$$

Exemplo 10. Simplifique a expressão

$$\left(\sqrt{5} + \sqrt{6} + \sqrt{7}\right) \cdot \left(\sqrt{5} + \sqrt{6} - \sqrt{7}\right)$$

$$\cdot \left(\sqrt{5} - \sqrt{6} + \sqrt{7}\right) \cdot \left(-\sqrt{5} + \sqrt{6} + \sqrt{7}\right).$$

Solução. Utilizendo as fórmulas para o quadrado da soma, quadrado da diferença e produto da soma pela diferença de dois termos, obtemos:

$$\left(\sqrt{5} + \sqrt{6} + \sqrt{7}\right) \cdot \left(\sqrt{5} + \sqrt{6} - \sqrt{7}\right)$$

$$\cdot \left(\sqrt{5} - \sqrt{6} + \sqrt{7}\right) \cdot \left(-\sqrt{5} + \sqrt{6} + \sqrt{7}\right)$$

$$= \left(\sqrt{5} + \sqrt{6} + \sqrt{7}\right) \cdot \left(\sqrt{5} + \sqrt{6} - \sqrt{7}\right)$$

$$\cdot \left[\sqrt{7} + \left(\sqrt{5} - \sqrt{6}\right)\right] \cdot \left[\sqrt{7} - \left(\sqrt{5} - \sqrt{6}\right)\right]$$

$$= \left[\left(\sqrt{5} + \sqrt{6}\right)^2 - \left(\sqrt{7}\right)^2\right] \cdot \left[\left(\sqrt{7}\right)^2 - \left(\sqrt{5} - \sqrt{6}\right)^2\right]$$

$$= \left[(5 + 2\sqrt{30} + 6) - 7\right] \cdot \left[7 - \left(5 - 2\sqrt{30} + 6\right)\right]$$

$$= \left(2\sqrt{30} + 4\right) \cdot \left(2\sqrt{30} - 4\right)$$

$$= \left(2\sqrt{30}\right)^2 - 4^2 = 2^2 \cdot 30 - 16 = 120 - 16 = 104.$$

4 Cubo da soma e cubo da diferença de dois termos

Mais uma vez utilizando as propriedades da adição e multiplicação de números reais citadas anteriormente, além da fórmula para o quadrado da soma de dois termos, obtemos:

$$(x+y)^3 = (x+y)(x+y)^2$$

$$= (x+y)(x^2 + 2xy + y^2)$$

$$= x(x^2 + 2xy + y^2) + y(x^2 + 2xy + y^2)$$

$$= x \cdot x^2 + x \cdot 2xy + x \cdot y^2 + y \cdot x^2 + y \cdot 2xy + y \cdot y^2$$

$$= x^3 + 2x^2y + xy^2 + x^2y + 2xy^2 + y^3$$

$$= x^3 + 3x^2y + 3xy^2 + y^3,$$

em que x e y são números reais quaisquer.

Fórmula para o cubo da soma de dois termos:

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3.$$

Por vezes, utilizaremos a fórmula para o cubo da soma de dois termos da seguinte forma:

$$(x+y)^3 = x^3 + y^3 + 3xy(x+y).$$

Exemplo 11. Utilizando a fórmula para o cubo da soma de dois termos podemos expandir a expressão $(2a^2 + 3b)^3$. Para tanto, substituímos, na fórmula acima, x por $2a^2$ e y por 3b, obtendo:

$$(2a^{2} + 3b)^{3} = (2a^{2})^{3} + 3 \cdot (2a^{2})^{2} \cdot (3b)$$

$$+ 3 \cdot (2a^{2}) \cdot (3b)^{2} + (3b)^{3}$$

$$= 8a^{6} + 3 \cdot 4a^{4} \cdot 3b + 3 \cdot 2a^{2} \cdot 9b^{2} + 27b^{3}$$

$$= 8a^{6} + 36a^{4}b + 54a^{2}b^{2} + 27b^{3}.$$

Exemplo 12. Se a e b são números reais positivos, mostre que $4(a^3 + b^3) \ge (a + b)^3$.

Prova. Utilizando a fórmula para o cubo da soma de dois termos, obtemos

$$4(a^{3} + b^{3}) \ge (a + b)^{3} \iff 4(a^{3} + b^{3})$$

$$\ge a^{3} + b^{3} + 3ab(a + b)$$

$$\iff 3(a^{3} + b^{3}) \ge 3ab(a + b)$$

$$\iff a^{3} + b^{3} \ge ab(a + b)$$

$$\iff a^{3} + b^{3} \ge a^{2}b + ab^{2}$$

$$\iff a^{3} + b^{3} - a^{2}b - ab^{2} > 0.$$

Agora, observe que

$$a^{3} + b^{3} - a^{2}b - ab^{2} = a^{3} - a^{2}b + b^{3} - ab^{2}$$

$$= a^{2}(a - b) - b^{2}(a - b)$$

$$= (a^{2} - b^{2})(a - b)$$

$$= (a + b)(a - b)(a - b)$$

$$= (a + b)(a - b)^{2} \ge 0,$$

pois
$$a + b > 0$$
 e $(a - b)^2 > 0$.

Aplicando a fórmula para o cubo da soma de dois termos a $(x-y)^3 = (x+(-y))^3$, obtemos:

$$(x-y)^3 = (x + (-y))^3$$

= $x^3 + 3x^2(-y) + 3x(-y)^2 + (-y)^3$
= $x^3 - 3x^2y + 3xy^2 - y^3$.

Fórmula para o cubo da diferença de dois termos:

$$(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3.$$

Exemplo 13. Utilizando a fórmula para o cubo da diferença de dois termos, com 2x no lugar de x e $\frac{1}{5}$ no lugar de y, podemos expandir a expressão $\left(2x - \frac{1}{5}\right)^3$, obtendo:

$$\left(2x - \frac{1}{5}\right)^3 = (2x)^3 - 3 \cdot (2x)^2 \cdot \left(\frac{1}{5}\right)$$
$$+ 3 \cdot (2x) \cdot \left(\frac{1}{5}\right)^2 - \left(\frac{1}{5}\right)^3$$
$$= 8x^3 - \frac{12x^2}{5} + \frac{6x}{25} - \frac{1}{125}.$$

5 Cubo da soma de três termos

Aplicando a fórmula para o cubo da soma de dois termos duas vezes e utilizando as propriedades usuais das operações aritméticas, obtemos:

$$(x+y+z)^3 = [(x+y)+z]^3$$

$$= (x+y)^3 + z^3 + 3(x+y)z[(x+y)+z]$$

$$= x^3 + y^3 + 3xy(x+y) + z^3$$

$$+ 3(x+y)[(x+y)z+z^2]$$

$$= x^3 + y^3 + z^3 + 3(x+y)[xy+xz+yz+z^2]$$

$$= x^3 + y^3 + z^3$$

$$+ 3(x+y)[x(y+z)+z(y+z)]$$

$$= x^3 + y^3 + z^3 + 3(x+y)(x+z)(y+z).$$

Fórmula para o cubo da soma de três termos:

$$(x+y+z)^3 = x^3 + y^3 + z^3 + 3(x+y)(x+z)(y+z).$$

Exemplo 14. Se a, b e c são números reais que satisfazem a+b+c=0, mostre que $a^3+b^3+c^3=3abc$.

Solução. Observando que $a+b=-c,\,a+c=-b$ e b+c=-a e utilizando a fórmula para o cubo da soma de três termos, temos:

$$0 = (a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(a+c)(b+c)$$

$$\implies 0 = a^3 + b^3 + c^3 + 3(-c)(-b)(-a)$$

$$\implies 0 = a^3 + b^3 + c^3 - 3cba$$

$$\implies a^3 + b^3 + c^3 = 3abc.$$

6 Soma e diferença de cubos

Mais uma vez fazendo uso das propriedades que as operações aritméticas com números reais satisfazem, obtemos os produtos notáveis abaixo.

$$(x-y)(x^2 + xy + y^2) = x(x^2 + xy + y^2) - y(x^2 + xy + y^2)$$
$$= (x^3 + \cancel{x}\cancel{y} + \cancel{x}\cancel{y}^2) - (\cancel{x}\cancel{y} + \cancel{x}\cancel{y}^2 + y^3)$$
$$= x^3 - y^3.$$

Fórmula para a diferença de dois cubos:

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2}).$$

$$\begin{split} (x+y)(x^2-xy+y^2) &= x(x^2-xy+y^2) + y(x^2-xy+y^2) \\ &= (x^3-\cancel{x^2y}+\cancel{xy^2}) + (\cancel{x^2y}-\cancel{xy^2}+y^3) \\ &= x^3+y^3. \end{split}$$

Fórmula para a soma de dois cubos:

$$x^{3} + y^{3} = (x+y)(x^{2} - xy + y^{2}).$$

Exemplo 15. Aplicando a fórmula para a diferença de dois cubos, temos:

$$1 = 6 - 5 = \left(\sqrt[3]{6}\right)^3 - \left(\sqrt[3]{5}\right)^3$$

$$= \left(\sqrt[3]{6} - \sqrt[3]{5}\right) \left[\left(\sqrt[3]{6}\right)^2 + \sqrt[3]{6} \cdot \sqrt[3]{5} + \left(\sqrt[3]{5}\right)^2 \right]$$

$$= \left(\sqrt[3]{6} - \sqrt[3]{5}\right) \left(\sqrt[3]{6^2} + \sqrt[3]{6 \cdot 5} + \sqrt[3]{5^2}\right)$$

$$= \left(\sqrt[3]{6} - \sqrt[3]{5}\right) \left(\sqrt[3]{36} + \sqrt[3]{30} + \sqrt[3]{25}\right),$$

donde concluímos que

$$\frac{1}{\sqrt[3]{6} - \sqrt[3]{5}} = \sqrt[3]{36} + \sqrt[3]{30} + \sqrt[3]{25}.$$

Dicas para o Professor

Recomendamos que sejam utilizadas duas sessões de 50min para cada uma das seções 1, 3 e 4, e uma sessão de 50min para as demais seções que compõem esta aula (possivelmente discutindo mais exemplos, os quais podem ser encontrados na bibliografia sugerida). Ao longo de toda a aula, é importante chamar a atenção dos alunos para as propriedades das operações aritméticas que são utilizadas para a dedução da fórmula de cada produto notável. Ressalte também a diferença entre "quadrado da soma" e "soma de quadrados", "cubo da soma" e "soma de cubos", etc.

Sugestões de Leitura Complementar

A. Caminha. Tópicos de Matemática Elementar, Volume 1: Números Reais. Rio de Janeiro, Editora S.B.M., 2013.