Quantum Hadamard Edge Detection

Manuel Di Agostino

12 febbraio 2025 Università di Parma

Background

Edge detection

Quantum computing

Circuiti quantistici

Quantum Image Processing

Implementazione

Creazione del circuito

Error handling

Risultati

Background

Edge detection

Quantum computing

Circuiti quantistici

Quantum Image Processing

Implementazione Creazione del circuito Error handling

Risultat

Background

Edge detection

Quantum computing Circuiti quantistici Quantum Image Processing

Implementazione Creazione del circuito Error handling

Risultat

Edge detection

- Goal: identificare oggetti in un'immagine, tramite contorni
- Ma anche:
 - o estrazione di texture, pattern
 - o motion recognition
 - o image restoration

Soluzioni classiche

- Lavorano sull'immagine in scala di grigi
- Approssimano il gradiente dell'intensità
- Utilizzano operatori convolutivi (kernel)

Filtri di Sobel

- Fu introdotto negli anni '60 [1]
- Applica due kernel di convoluzione

$$\mathbf{G_x} = \underbrace{\begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix}}_{\text{direzione orizzontale}}, \quad \mathbf{G_y} = \underbrace{\begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}}_{\text{direzione verticale}}$$

Filtri di Sobel

- Fu introdotto negli anni '60 [1]
- Applica due kernel di convoluzione

$$\mathbf{G_x} = \underbrace{\begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix}}_{\text{direzione orizzontale}}, \quad \mathbf{G_y} = \underbrace{\begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}}_{\text{direzione verticale}}$$

• Il nuovo valore di intensità del pixel $p_{j,k}$ è

$$\tilde{p}_{j,k} = \sqrt{G_x(p_{j,k})^2 + G_y(p_{j,k})^2}$$

Filtri di Sobel

Figura 1: Applicazione orizzontale del kernel di Sobel.

Complessità lineare rispetto al numero di pixel!

Background

Edge detection

Quantum computing

Circuiti quantistici

Quantum Image Processing

Implementazione Creazione del circuito Error handling

Risultat

Sistemi quantistici

- Unità di informazione: qubit
- Notazione di Dirac

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \quad \alpha, \beta \in \mathbb{C}$$

Verificano

$$|\alpha|^2 + |\beta|^2 = 1$$

Sistemi quantistici

- Unità di informazione: qubit
- Notazione di Dirac

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{vmatrix} \alpha \\ \beta \end{vmatrix}, \quad \alpha, \beta \in \mathbb{C}$$

Verificano

$$|\alpha|^2 + |\beta|^2 = 1$$

• Sistemi di più qubit descritti utilizzando il prodotto tensore

$$|\psi_1\rangle = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}, \quad |\psi_2\rangle = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix},$$

$$|\psi_1\rangle \otimes |\psi_2\rangle = \begin{bmatrix} a_1 \begin{bmatrix} b_1 \\ b_2 \\ b_1 \\ b_2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a_1b_1 \\ a_1b_2 \\ a_2b_1 \\ a_2b_2 \end{bmatrix}.$$

Background

Edge detection

Circuiti quantistici

Quantum Image Processing

Implementazione Creazione del circuito Error handling

Risultat

Quantum gate

 L'azione di un quantum gate è modellata matematicamente tramite l'applicazione di una matrice complessa unitaria ad uno stato quantistico

$$|\psi'\rangle = U|\psi\rangle$$

Quantum gate

 L'azione di un quantum gate è modellata matematicamente tramite l'applicazione di una matrice complessa unitaria ad uno stato quantistico

$$|\psi'\rangle = U|\psi\rangle$$

- Porte rilevanti:
 - o Gate di Pauli

$$\sigma_{\mathsf{x}} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \sigma_{\mathsf{y}} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad \sigma_{\mathsf{z}} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Gate di Hadamard

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Background

Edge detection
Quantum computing
Circuiti quantistici

Quantum Image Processing

Implementazione Creazione del circuito Error handling

Risultat

Quantum Image Processing

Due obiettivi principali:

- Codifica dell'immagine nei circuiti
 - o Flexible Representation of Quantum Images (FRQI) [2]
 - Novel Enhanced Quantum Representation (NEQR) [3]
 - Quantum Probability Image Encoding (QPIE) [4]

Quantum Image Processing

Due obiettivi principali:

- Codifica dell'immagine nei circuiti
 - o Flexible Representation of Quantum Images (FRQI) [2]
 - Novel Enhanced Quantum Representation (NEQR) [3]
 - Quantum Probability Image Encoding (QPIE) [4]
- Algoritmi di processamento
 - o QSobel [5]
 - Quantum Hadamard Edge Detection (QHED) [4]

- Valori di intensità dei pixel codificati nelle ampiezze di probabilità dello stato quantistico
- Immagine di N pixel. Qubit necessari:

$$n = \lceil log_2 N \rceil$$

Figura 2: (2a) rappresentazione classica, (2b) rappresentazione quantistica.

- Pixel numerati utilizando stringhe binarie
- Intensità normalizzate secondo

$$c_i = \frac{I_i}{\sqrt{\sum_k I_k^2}}$$

• Nell'esempio (2b) si ottiene

$$|\mathsf{Img}\rangle = c_0|00\rangle + c_1|01\rangle + c_2|10\rangle + c_3|11\rangle = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

• Nell'esempio (2b) si ottiene

$$|\mathsf{Img}\rangle = c_0|00\rangle + c_1|01\rangle + c_2|10\rangle + c_3|11\rangle = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

• Generalizzando per *n* qubit

$$|\mathsf{Img}
angle = \sum_{i=1}^{2^n} c_i |i
angle = egin{bmatrix} c_0 \ c_1 \ dots \ c_{\mathcal{N}-2} \ c_{\mathcal{N}-1} \end{bmatrix}$$

Quantum Hadamard Edge Detection i

- Fa uso della QPIE
- Idea di base: utilizzare il gate di Hadamard sul qubit q_0

$$I_{2^{n-1}} \otimes H_0 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & -1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 1 & \dots & 0 & 0 \\ 0 & 0 & 1 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & -1 \end{bmatrix}$$

Quantum Hadamard Edge Detection ii

Applicando questa trasformazione a |Img> si ottiene lo stato

$$(I_{2^{n-1}} \otimes H_0) \cdot \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_{N-2} \\ c_{N-1} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} c_0 + c_1 \\ c_0 - c_1 \\ c_2 + c_3 \\ c_2 - c_3 \\ \vdots \\ c_{N-2} + c_{N-1} \\ c_{N-2} - c_{N-1} \end{bmatrix}$$

che esplicita il gradiente di coppie (pari) di pixel adiacenti

• Questo è riconducibile a

$$rac{1}{\sqrt{2}}(\ket{\mathsf{sum}}\otimes\ket{0}+\ket{\mathsf{dif}}\otimes\ket{1})$$

ullet Punto chiave: misurare il circuito a condizione che q_0 sia nello stato |1
angle

QHED: variazione i

- È possibile calcolare in una sola passata il gradiente di coppie pari e dispari di pixel
- Idea: qubit aggiuntivo inizializzato in $|+\rangle$

$$|\mathsf{Img}
angle \otimes rac{(|0
angle + |1
angle)}{\sqrt{2}} = rac{1}{\sqrt{2}} egin{bmatrix} c_0 \ c_1 \ c_1 \ c_2 \ c_2 \ dots \ c_{N-1} \ c_{N-1} \end{bmatrix}$$

QHED: variazione ii

Applicando uno shift allo stato iniziale

$$D_{2^{n+1}} = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 1 & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \end{bmatrix}$$

QHED: variazione iii

Si ottiene lo stato

$$D_{2^{n+1}} \cdot \begin{bmatrix} c_0 \\ c_0 \\ c_1 \\ c_1 \\ c_2 \\ c_2 \\ \vdots \\ c_{N-1} \\ c_{N-1} \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ c_1 \\ c_2 \\ c_2 \\ \vdots \\ c_{N-1} \\ c_{N-1} \\ c_0 \end{bmatrix}$$

QHED: variazione iv

Infine

$$(I_{2^{n}} \otimes H_{a}) \cdot \begin{bmatrix} c_{0} \\ c_{1} \\ c_{1} \\ c_{2} \\ \vdots \\ c_{N-1} \\ c_{0} \end{bmatrix} = \begin{bmatrix} c_{0} + c_{1} \\ c_{0} - c_{1} \\ c_{1} + c_{2} \\ c_{1} - c_{2} \\ c_{2} + c_{3} \\ c_{2} - c_{3} \\ \vdots \\ c_{N-1} + c_{0} \\ c_{N-1} - c_{0} \end{bmatrix}$$

Background

Edge detection

Quantum computing

Circuiti quantistici

Implementazione Creazione del circuito Error handling

Risultat

Background

Edge detection

Quantum computing

Circuiti quantistici

Quantum Image Processing

Implementazione

Creazione del circuito

Error handling

Risultat

Normalizzazione dell'immagine

Normalizazione dell'immagine

```
1 def amplitude_encode(img_data):
2  # Calculate the RMS value
3  rms = np.sqrt(np.sum(np.sum(img_data**2, axis=1)))
4  # Create normalized image
5  image_norm = []
6  for arr in img_data:
7  for ele in arr:
8  image_norm.append(ele / rms)
9  # Return the normalized image as a numpy array
10  return np.array(image_norm)
11
12  # Get the amplitude ancoded pixel values
13  image_norm_h = amplitude_encode(image)
```

Il circuito

Strutturazione

```
1 from qiskit import *
2 from qiskit import transpile
3 from qiskit_aer import Aer
4
5 # Create the circuit for horizontal scan
6 qc_h = QuantumCircuit(total_qb)
7 qc_h.initialize(image_norm_h, range(1, total_qb))
8 qc_h.h(0)
9 qc_h.unitary(D2n_1, range(total_qb))
10 qc_h.h(0)
```

• Immagine di esempio 16x16 in input

Figura 3: Confronto tra l'immagine originale (3a) e l'immagine normalizzata (3b).

• Circuito risultante

Codifica tramite gate

• Per un'immagine 2x2

Background

Edge detection

Quantum computing

Circuiti quantistici

Quantum Image Processing

Implementazione

Creazione del circuito

Error handling

Risultat

La gestione degli errori

- È stata utilizzata la classe NoiseModel di Qiskit
- Dati estrapolati dal backend reale ibm_kyiv

Background

Edge detection

Quantum computing

Circuiti quantistici

Quantum Image Processing

Implementazione

Creazione del circuito

Error handling

Risultati

Esecuzione ideale

Inizialmente esecuzione simulata in ambiente ideale, tramite
statevector_simulator

Esecuzione con rumore

• Successivamente è stato aggiunto il modello di rumore

Esecuzione con rumore

- Successivamente è stato aggiunto il modello di rumore
- Generale miglioramento all'aumentare del numero di shots

Il transpiling

- Transpiling oneroso, anche per immagini 4x4
- Per un'immagine 2x2, profondità del circuito risultante pari a 64

Figura 4: Simulazione con rumore con variazione sul numero di shots, immagine 2x2

Complessità spaziale e computazionale

Sia $N = 2^n$, $n \in \mathbb{N}$ la dimensione dell'immagine.

Algoritmo	Costo Spaziale	Costo Computazionale ¹
Classici	$\mathcal{O}(N=2^n)$	$\mathcal{O}(N=2^n)$
QSobel	$\mathcal{O}(2n+1)$	$\mathcal{O}(n^2)$
QHED	$\mathcal{O}(n+1)$	$\mathcal{O}(1)$

Tabella 1: Confronto tra il costo spaziale e computazionale di diversi algoritmi

¹In riferimento al solo calcolo dei gradienti.

Bibliografia i

- [1] Irwin Sobel e Gary Feldman. «An Isotropic 3x3 Image Gradient Operator». In: (1968). Presented at the Stanford Artificial Intelligence Laboratory (SAIL). URL: https://www.researchgate.net/publication/281104656_An_Isotropic_3x3_Image_Gradient_Operator.
- [2] Phuc Q. Le, Fangyan Dong e Kaoru Hirota. «A flexible representation of quantum images for polynomial preparation, image compression, and processing operations». In: *Quantum Information Processing* 10.1 (2011), pp. 63–84. DOI: 10.1007/s11128-010-0177-y. URL: https://doi.org/10.1007/s11128-010-0177-y.

Bibliografia ii

- [3] Yi Zhang et al. «NEQR: a novel enhanced quantum representation of digital images». In: Quantum Information Processing 12.8 (2013), pp. 2833–2860. DOI: 10.1007/s11128-013-0567-z. URL: https://doi.org/10.1007/s11128-013-0567-z.
- [4] Xi-Wei Yao et al. «Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment». In: Physical Review X 7.3 (2017), p. 031041. DOI: 10.1103/PhysRevX.7.031041. URL: https://doi.org/10.1103/PhysRevX.7.031041.
- [5] Yi Zhang et al. «QSobel: A novel quantum image edge extraction algorithm». In: Science China Information Sciences 57.11 (2014), pp. 1–9. DOI: 10.1007/s11432-014-5158-9. URL: https://doi.org/10.1007/s11432-014-5158-9.