

Aula 5 – Decisão Racional sob Condições de Ignorância II

Teoria da Decisão - 2023.1

Lucas Thevenard

Respostas dos exercícios

T1.1 - Maximin

_	EDM1	EDM2	EDM3
Α	1000	5	0
В	15	5	500
С	35	40	30

T1.1 - Maximin

_	EDM1	EDM2	EDM3
Α	1000	5	0*
В	15	5 *	500
С	35	40	30*

T1.1 - Maximin

_	EDM1	EDM2	EDM3
Α	1000	5	0*
В	15	5 *	500
C**	35	40	30*

Solução (Maximin): Alternativa C

Opções

_	EDM1	EDM2	EDM3
Α	1000	5	0
В	15	5	500
С	35	40	30

	EDM1	EDM2	EDM3
Α	1000 - 1000	40 - 5	500 - 0
В	1000 - 15	40 - 5	500 - 500
С	1000 - 35	40 - 40	500 - 30

Opções

	EDM1	EDM2	EDM3
Α	1000	5	0
В	15	5	500
С	35	40	30

_	EDM1	EDM2	EDM3
Α	0	35	500
В	985	35	0
С	965	0	470

Opções

	EDM1	EDM2	EDM3
Α	1000	5	0
В	15	5	500
С	35	40	30

	EDM1	EDM2	EDM3
Α	0	35	500 ★
В	985*	35	0
С	965★	0	470

Opções

_	EDM1	EDM2	EDM3
Α	10	40	35
В	10	20	44
С	4	52	45

Arrependimento

	EDM1	EDM2	EDM3
A **	0	35	500 *
В	985*	35	0
С	965*	0	470

Solução (Minimax): Alternativa A

T1.3 - Regra do Otimismo

_	EDM1	EDM2	EDM3
Α	1000	5	0
В	15	5	500
С	35	40	30

$$V_x = aMax + (1-a)Min \mid a=0,1$$

T1.3 - Regra do Otimismo

_	EDM1	EDM2	EDM3
Α	1000	5	0
В	15	5	500
С	35	40	30

$$egin{aligned} V_x &= aMax + (1-a)Min \mid a = 0,1 \ V_A &= (0,1 imes 1000) + (0,9 imes 0) = 100 \ V_B &= (0,1 imes 500) + (0,9 imes 5) = 54,5 \ V_T &= (0,1 imes 40) + (0,9 imes 30) = 31 \end{aligned}$$

T1.3 - Regra do Otimismo

_	EDM1	EDM2	EDM3
A **	1000	5	0
В	15	5	500
С	35	40	30

$$egin{aligned} V_x &= aMax + (1-a)Min \mid a = 0,1 \ V_A &= (0,1 imes 1000) + (0,9 imes 0) = 100 \ V_B &= (0,1 imes 500) + (0,9 imes 5) = 54,5 \ V_T &= (0,1 imes 40) + (0,9 imes 30) = 31 \end{aligned}$$

Solução (Otimismo): Alternativa A

T1.4 - Postulado da Razão Insuficiente

_	EDM1	EDM2	EDM3
Α	1000	5	0
В	15	5	500
С	35	40	30

T1.4 - Postulado da Razão Insuficiente

_	EDM1	EDM2	EDM3
Α	1000	5	0
В	15	5	500
С	35	40	30

$$V_A = 1000 + 5 + 0 = 1005$$

$$V_B = 15 + 5 + 500 = 520$$

$$V_C = 35 + 40 + 30 = 105$$

T1.4 - Postulado da Razão Insuficiente

_	EDM1	EDM2	EDM3
A **	1000	5	0
В	15	5	500
С	35	40	30

$$V_A = 1000 + 5 + 0 = 1005$$

$$V_B = 15 + 5 + 500 = 520$$

$$V_C = 35 + 40 + 30 = 105$$

Solução (Razão Insuficiente): Alternativa A

Resultados da Tabela 1

• Maximin: Alternativa C

• Minimax: Alternativa A

• Regra do Otimismo: Alternativa A

• Postulado da Razão Insuficiente: Alternativa A

T2.1 - Maximin

	EDM1	EDM2	EDM3
Α	60	0	40
В	80	40	0
С	20	0	120

T2.1 - Maximin

_	EDM1	EDM2	EDM3
Α	60	0*	40
В	80	40	0*
С	20	0*	120

T2.1 - Maximin

_	EDM1	EDM2	EDM3
Α	60	-0-	40
В	80	40	-0-
С	20	-0-	120

T2.1 - Maximin

_	EDM1	EDM2	EDM3
Α	60	-0-	40*
В	80	40*	-0-
С	20*	-0-	120

T2.1 - Maximin

	EDM1	EDM2	EDM3
Α	60	-0-	-40 -
В	80	- 40 -	-0-
-C-	- 20 -	-0-	- 120 -

T2.1 - Maximin

	EDM1	EDM2	EDM3
Α	60*	-0-	-40 -
В	80 *	-40 -	-0-
-C-	- 20 -	-0-	- 120 -

T2.1 - Maximin

	EDM1	EDM2	EDM3
Α	60*	-0-	-40 -
B**	80 *	-40 -	-0-
-C-	- 20 -	-0-	- 120 -

Solução (Maximin): Alternativa B

Opções

	EDM1	EDM2	EDM3
Α	60	0	40
В	80	40	0
С	20	0	120

	EDM1	EDM2	EDM3
Α	80 - 60	40 - 0	120 - 40
В	80 - 80	40 - 40	120 - 0
С	80 - 20	40 - 0	120 - 120

Opções

	EDM1	EDM2	EDM3
Α	60	0	40
В	80	40	0
С	20	0	120

_	EDM1	EDM2	EDM3
Α	20	40	80
В	0	0	120
С	60	40	0

Opções

_	EDM1	EDM2	EDM3
Α	60	0	40
В	80	40	0
С	20	0	120

_	EDM1	EDM2	EDM3
Α	20	40	80 *
В	0	0	120 *
С	60 *	40	0

Opções

_	EDM1	EDM2	EDM3
Α	60	0	40
В	80	40	0
С	20	0	120

Arrependimento

	EDM1	EDM2	EDM3
Α	20	40	80 *
В	0	0	120*
C**	60*	40	0

Solução (Minimax): Alternativa C

T2.3 - Regra do Otimismo

_	EDM1	EDM2	EDM3
Α	60	0	40
В	80	40	0
С	20	0	120

$$V_x = aMax + (1-a)Min \mid a=0,25$$

T2.3 - Regra do Otimismo

_	EDM1	EDM2	EDM3
Α	60	0	40
В	80	40	0
С	20	0	120

$$egin{aligned} V_x &= aMax + (1-a)Min \mid a = 0,25 \ V_A &= (0,25 imes 60) + (0,3 imes 0) = 15 \ V_B &= (0,25 imes 80) + (0,3 imes 0) = 20 \ V_C &= (0,25 imes 120) + (0,3 imes 0) = 30 \end{aligned}$$

T2.3 - Regra do Otimismo

	EDM1	EDM2	EDM3
Α	60	0	40
В	80	40	0
C**	20	0	120

$$egin{aligned} V_x &= aMax + (1-a)Min \mid a = 0, 25 \ V_A &= (0, 25 imes 60) + (0, 3 imes 0) = 15 \ V_B &= (0, 25 imes 80) + (0, 3 imes 0) = 20 \ V_C &= (0, 25 imes 120) + (0, 3 imes 0) = 30 \end{aligned}$$

Solução (Regra do Otimismo): Alternativa C

T2.4 - Postulado da Razão Insuficiente

_	EDM1	EDM2	EDM3
Α	60	0	40
В	80	40	0
С	20	0	120

T2.4 - Postulado da Razão Insuficiente

_	EDM1	EDM2	EDM3
Α	60	0	40
В	80	40	0
С	20	0	120

$$V_A = 60 + 0 + 40 = 100$$

$$V_B = 80 + 40 + 0 = 120$$

$$V_C = 20 + 0 + 120 = 140$$

T2.4 - Postulado da Razão Insuficiente

_	EDM1	EDM2	EDM3
Α	60	0	40
В	80	40	0
C**	20	0	120

$$V_A = 60 + 0 + 40 = 100$$

$$V_B = 80 + 40 + 0 = 120$$

$$V_C = 20 + 0 + 120 = 140$$

Solução (Razão Insuficiente): Alternativa C

Resultados da Tabela 2

- Maximin: Alternativa B
- Minimax: Alternativa C
- Regra do Otimismo: Alternativa C
- Postulado da Razão Insuficiente: Alternativa C

T3.1 - Maximin

_	EDM1	EDM2	EDM3
Α	40	88	20
В	104	90	8
С	80	70	20

T3.1 - Maximin

_	EDM1	EDM2	EDM3
Α	40	88	20*
В	104	90	8*
С	80	70	20*

T3.1 - Maximin

	EDM1	EDM2	EDM3
Α	40	88	- 20 -
В	-104 -	-90 -	-8-
С	80	70	- 20 -

T3.1 - Maximin

_	EDM1	EDM2	EDM3
Α	40*	88	- 20 -
В	-104 -	-90 -	-8-
С	80	70 *	- 20 -

T3.1 - Maximin

_	EDM1	EDM2	EDM3
Α	40*	88	- 20 -
В	-104 -	- 90 -	-8-
C**	80	70 *	- 20 -

Solução (Maximin): Alternativa C

Opções

	EDM1	EDM2	EDM3
Α	40	88	20
В	104	90	8
С	80	70	20

Arrependimento

	EDM1	EDM2	EDM3
Α	104 - 40	90 - 88	20 - 20
В	104 - 104	90 - 90	20 - 8
С	104 - 80	90 - 70	20 - 20

Opções

_	EDM1	EDM2	EDM3
Α	40	88	20
В	104	90	8
С	80	70	20

Arrependimento

_	EDM1	EDM2	EDM3
Α	64	2	0
В	0	0	12
С	24	20	0

Opções

_	EDM1	EDM2	EDM3
Α	40	88	20
В	104	90	8
С	80	70	20

Arrependimento

_	EDM1	EDM2	EDM3
Α	64*	2	0
В	0	0	12*
С	24*	20	0

Opções

_	EDM1	EDM2	EDM3
Α	40	88	20
В	104	90	8
С	80	70	20

Arrependimento

	EDM1	EDM2	EDM3
Α	64*	2	0
B**	0	0	12*
С	24*	20	0

Solução (Minimax): Alternativa B

T3.3 - Regra do Otimismo

_	EDM1	EDM2	EDM3
Α	40	88	20
В	104	90	8
С	80	70	20

$$egin{aligned} V_A &= (0,7 imes 88) + (0,3 imes 20) = 67.6 \ V_B &= (0,7 imes 90) + (0,3 imes 8) = 65.4 \end{aligned}$$

 $V_C = (0, 7 \times 80) + (0, 3 \times 20) = 62$

 $V_x = aMax + (1-a)Min \mid a=0,7$

T3.3 - Regra do Otimismo

_	EDM1	EDM2	EDM3
A **	40	88	20
В	104	90	8
С	80	70	20

$$egin{aligned} V_x &= aMax + (1-a)Min \mid a = 0,7 \ V_A &= (0,7 imes 88) + (0,3 imes 20) = 67.6 \ V_B &= (0,7 imes 90) + (0,3 imes 8) = 65.4 \ V_C &= (0,7 imes 80) + (0,3 imes 20) = 62 \end{aligned}$$

Solução (Regra do Otimismo): Alternativa A

T3.4 - Postulado da Razão Insuficiente

_	EDM1	EDM2	EDM3
Α	40	88	20
В	104	90	8
С	80	70	20

T3.4 - Postulado da Razão Insuficiente

_	EDM1	EDM2	EDM3
Α	40	88	20
В	104	90	8
С	80	70	20

$$V_A = 40 + 88 + 20 = 148$$

$$V_B = 104 + 90 + 8 = 202$$

$$V_C = 80 + 70 + 20 = 170$$

T3.4 - Postulado da Razão Insuficiente

_	EDM1	EDM2	EDM3
Α	40	88	20
B**	104	90	8
С	80	70	20

$$V_A = 40 + 88 + 20 = 148$$

$$V_B = 104 + 90 + 8 = 202$$

$$V_C = 80 + 70 + 20 = 170$$

Solução (Razão Insuficiente): Alternativa B

Resultados da Tabela 3

- Maximin: Alternativa C
- Minimax: Alternativa B
- Regra do Otimismo: Alternativa A
- Postulado da Razão Insuficiente: Alternativa B

Exercício 2: Há alguma diferença entre os métodos de solução?

_	EDM1	EDM2	EDM3
Α	1	3	6
В	4	10	11
С	3	8	9

- Não, pois $B \succ C \succ A$.
- A alternativa A é estritamente dominada pela alternativa B, que, por sua vez, é estritamente dominada pela alternativa C. Logo, qualquer método irá escolher a alternativa C.

Exercício 2: Há alguma diferença entre os métodos de solução?

_	EDM1	EDM2	EDM3
- A -	-1-	-3-	-6-
B**	4	10	1
-C-	-3-	-8-	-9-

Solução (Todos os métodos): Alternativa B

Roteiro da aula

- Critérios de racionalidade e decisões coletivas
- Decisão sob ignorância na Teoria da Justiça de Rawls
- Críticas aos métodos de solução sob condições de ignorância

1. Critérios de racionalidade e decisões coletivas

Ordenação de preferências

- Completude: para quaisquer opções A e B, ao menos uma das seguintes opções deve valer: $A \succsim B$, ou $A \preceq B$.
- Reflexividade: indivíduos são indiferentes a opções idênticas, ou seja, qualquer opção A é tão boa quanto ela mesma, portanto: $A\sim A$.
- Transitividade: as opções devem poder ser ordenadas de forma não circular, obedecendo à regra da transitividade: $A \succsim B \succsim C \implies A \succsim C$.

Decisões coletivas (votação)

- Problema da agregação de preferências
- Paradoxo de Condorcet
 - Indivíduo 1: $A \succ B \succ C$
 - \circ Indivíduo 2: $B \succ C \succ A$
 - Indivíduo 3: $C \succ A \succ B$
- Resultado da votação: $A \succ B \succ C \succ A$ (viola a transitividade)
 - Teorema de Arrow: processos de votação ordinais não conseguem garantir a preservação de um grupo de propriedades desejáveis.

Condições desejáveis em sistemas de votação (Arrow)

- Sistema não-ditatorial: preferências de múltiplos indivíduos devem ser consideradas.
- **Domínio irrestrito (universalidade)**: o sistema deve produzir um único conjunto completo de ordenação de todas as preferências dos indivíduos.
 - Todas as preferências devem ser consideradas,
 - Conjuntos de preferências idênticas devem produzir a mesma ordenação.
- Independência de alternativas irrelevantes: a ordenação de pares de alternativas deve depender apenas da ordenação das duas alternativas envolvidas.

Condições desejáveis em sistemas de votação (Arrow)

- Monotonicidade (associação positiva): cada indivíduo não deve ser capaz de prejudicar uma alternativa por avaliá-la melhor.
- Não-imposição (soberania cidadã): todas as formas de ordenação devem ser potencialmente possíveis.
- Eficiência de pareto (unanimidade): se todos preferem uma opção a outra, o resultado social deve refletir essa preferência.

Condições desejáveis em sistemas de votação (Arrow)

- Sistema não-ditatorial
- Domínio irrestrito (universalidade)
- Independência de alternativas irrelevantes
- Monotonicidade (associação positiva)
- Não-imposição (soberania cidadã)
- Eficiência de pareto (unanimidade)

Mas o que isso significa?

2. Decisão sob ignorância na Teoria da Justiça de Rawls

Leitura do trecho de Teoria da Justiça

Teoria da Justiça de Rawls

- Posição original e véu da ignorância: Decisão sob condição de ignorância.
- Por que adotar o método Maximin?
 - Ignorância radical: Impossibilidade de atribuir probabilidades, de estabelecer valorações cardinais ou mesmo de considerar todos os Estados do Mundo.
 - Indivíduos devem justificar suas opções e preferem garantir um mínimo necessário.
 - Seria irracional assumir riscos intoleráveis.
- **Princípio da diferença**: avaliação das instituições com base em seus efeitos sobre os indivíduos menos favorecidos pela distribuição social.

Harsanyi

- Refutação do método Maximin: Decisões morais não deveriam ser tomadas com base nos piores cenários possíveis, mas sim com base na utilidade esperada das alternativas disponíveis.
 - Exemplo: decisão entre um emprego ruim em Nova lorque ou um emprego melhor em Chicago.
- Implicações imorais do Princípio da Diferença em certos casos.
 - Exemplo: Doação de órgãos deve privilegiar os mais enfermos?
- Probabilidades subjetivas (bayesianas) X Probabilidades empíricas (frequentismo).

HARSANYI, John. Can the Maximin Principle Serve as a Basis for Morality? A Critique of John Rawls's Theory. The American Political Science Review, Vol. 69, No. 2 (Jun., 1975), pp. 594-606.

Outras críticas?

- Decorrências da ignorância radical não são completamente exploradas por Ralws.
- É possível evitar riscos intoleráveis?
 - Dilema das vítimas invisíveis (Jean Tirole).
- É possível avaliar as consequências? Nossas preferências seriam estáticas?
 - Forma de neo-kantianismo? A Teoria da Justiça pode se apartar de um contexto histórico-cultural?
 - Perspectiva do estruturalismo histórico (Foucault): relações de poder situadas historicamente moldam nossa forma de conceber a realidade, influenciando nossas ideias e preferências.

L.A. Paul

- Professora de filosofia e ciência cognitiva em Yale.
- Escreveu o livro "Transformative
 Experience" (2014) e o paper "What
 you can't expect when you're
 expecting" (2015).

3. Críticas aos modelos de decisão sob condição de ignorância

Quais são os principais problemas do método Maximin?

Maximin

- Método extremamente conservador.
- Impede a consideração das melhores oportunidades de ganho.
- Não considera todas as alternativas.

	EDM1	EDM2
Α	1.5	1.75
В	1	900

_	EDM1	EDM2	EDM3	•••	EDM99	EDM100
Α	10	10	10	• • •	10	10
В	9	20	20	•••	20	20

Quais são os principais problemas do método Minimax?

Minimax

 Ao contrário do maximin, neste método pode haver influência excessiva de alternativas melhores

	EDM1	EDM2
Α	300	300
В	-100	900

_	EDM1	EDM2	EDM3	•••	EDM99	EDM100
Α	10	10	10	•••	10	10
В	20	5	5	• • •	5	5

Minimax

 Permutações dos mesmos resultados de uma alternativa de decisão entre os Estados do mundo podem levar a soluções diferentes.

_	EDM1	EDM2	EDM3
Α	0	1	3
В	0	1	3
С	3	0	1

EDM1	EDM2	EDM3
3	0	0
3	0	0
0	1	2

 A inclusão de uma alternativa que não é escolhida pode mudar a solução do problema.

_	EDM1	EDM2	EDM3
Α	0	10	4
В	5	2	10

EDM1	EDM2	EDM3	
5	0	6	
0	8	0	

_	EDM1	EDM2	EDM3
Α	0	10	4
В	5	2	10
С	10	5	1

EDM1	EDM2	EDM3
10	0	6
5	8	0
0	5	9

Minimax

- Ao contrário do maximin, neste método pode haver influência excessiva de alternativas melhores
- Permutações dos mesmos resultados de uma alternativa de decisão entre os Estados do mundo podem levar a soluções diferentes.
- A inclusão de uma alternativa que não é escolhida pode mudar a solução do problema.

Quais são os principais problemas da Regra do Otimismo?

Regra do Otimismo

- Necessidade de escolher o nível de otimismo (arbitrário).
- Considera apenas parte das opções.
- Pode se reverter em max-max ou maxmin:
 - Quando adotamos níveis de otimismo 1 ou 0;
 - Quando as melhores alternativas ou as piores são idênticas

	EDM1	EDM2	EDM3	EDM4
Α	0	1	1	11
В	0	10	10	10

_	EDM1	EDM2	EDM3	EDM4
Α	10	9	9	1
В	10	2	2	2

Quais são os principais problemas do Postulado da Razão Insuficiente?

Postulado da Razão Insuficiente

- Presunção de que as alternativas são equiprováveis.
- Presume neutralidade entre os cenários equiprováveis: pode ser um tratamento inadequado de riscos muito altos.

_	EDM1	EDM2	EDM3
Α	-200	150	150
В	0	45	45

Conclusão geral sobre métodos de decisão racional sob condições de ignorância

- Todos os métodos enfrentam limitações.
 - Para utilizá-los é necessário entender qual método melhor se aplica ao problema analisado.
 - Sistema de votação dos métodos não funciona (pode incorrer no mesmo problema indicado por Arrow).

Paradoxo de condorcet na composição de métodos

Vamos considerar, no exemplo a seguir, como os três métodos ordenariam as alternativas, tomadas duas a duas (considerando um nível de otimismo de 0,5).

_	EDM1	EDM2	EDM3
Α	1	14	13
В	-1	17	11
С	0	20	6

Método	A vs. B	B vs. C	A vs. C
Maximin	Α	С	Α
Minimax	В	В	Α
Otimismo	В	С	С

Chegamos a a um resultado que viola a transitividade, pois: $C \succ B \succ A \succ C$

Conclusão geral sobre métodos de decisão racional sob condições de ignorância

- Todos os métodos enfrentam limitações.
 - Para utilizá-los é necessário entender qual método melhor se aplica ao problema analisado.
 - Sistema de votação dos métodos não funciona (pode incorrer no mesmo problema indicado por Arrow).
- Limites de racionalidade em casos de ignorância profunda.
 - Método maximin é o único que admite uma escala ordinal de preferências.
 - Problema das experiências transformativas não tem solução na literatura.