

Visualisierung hyperbolischer Kachelungen

Jakob von Raumer | November 12, 2015

KARLSRUHER INSTITUT FÜR TECHNOLOGIE

Eschers Kunst

Figure: "'Circle Limit III" und "'Circle Limit IV" von M. C. Escher, 1959 und 1960

Eschers Kunst

- Eschers Werke waren inspiriert von Illustrationen in einem Buch von Coxeter
- Verwendete Holzschnitte zur Vervielfältigung der Kacheln
- Escher an seinen Sohn George:

I had an enthusiastic letter from Coxeter about my colored fish, which I sent him. Three pages of explanation of what I actually did It's a pity that I understand nothing, absolutely nothing of it.

Ziele

- Theoretische Grundlagen von hyperbolischen Kachelungen dokumentieren
- Geeignete Kacheln erstellen
- Algorithmen zum Replizieren von Kacheln implementieren

Vergleich: Euklidische und hyperbolische Geometrie

Euklidisch

- Für eine Gerade g gibt es genau eine zu g parallele Gerade durch einen Punkt p ∉ g.
- Ein Dreieck hat eine Innenwinkelsumme von π.

Hyperbolisch

- Für eine Gerade g gibt es mehr als eine zu g parallele Gerade durch einen Punkt p ∉ g.
- Ein Dreieck hat eine Innenwinkelsumme < π.

Vergleich: Euklidische und hyperbolische Geometrie

Länge eines Weges $\gamma: [0,1] \to \mathbb{H} := \{z \in \mathbb{C} \mid \Im(z) > 0\}$:

Euklidisch

Hyperbolisch

$$L(\gamma) = \int_0^1 |\gamma'(t)| \, \mathrm{d}t$$

$$L(\gamma) = \int_0^1 \frac{|\gamma'(t)|}{\Im(\gamma(t))} dt$$

Abstand zweier Punkte $a,b\in\mathbb{H}$ ist die Länge des kürzeste Weges zwischen ihnen.

Euklidisch

$$d(a,b) = |b-a|$$

Hyperbolisch

$$d(a,b) = \ln \frac{|a - \bar{b}| + |a - b|}{|a - \bar{b}| - |a - b|}$$

Geodätische auf der oberen Halbebene

Figure: Geodätische und Strecken auf der oberen Halbebene.

Von der oberen Halbebene zur Poincaré-Kreisscheibe

Die stetige Abb. $f: \mathbb{H} \to \mathbb{U}: z \mapsto \frac{z^{i+1}}{z+i}$ gibt uns eine beschränkte Darstellung von \mathbb{H} .

Figure : Geodätische auf der oberen Halbene und ihre Entsprechung auf der Poincaré-Kreisscheibe.

Das Klein-Beltrami-Modell

Figure : Ein Polygon, dargestellt in der Poincaré-Kreisscheibe und im Klein-Beltrami-Modell

Isometrien auf \mathbb{H}

Satz

Die Isometrien von $\mathbb H$ sind als Gruppe isomorph zu

$$\textit{PS}^*\textit{L}(2,\mathbb{R}) := \textit{S}^*\textit{L}(2,\mathbb{R})/\left\{\pm\textit{I}_2\right\}.$$

Die orientierungserhaltenden Isometrien auf \mathbb{H} sind als Gruppe isomorph zu $PSL(2,\mathbb{R}) := SL(2,\mathbb{R})/\{\pm l_2\}$.

$$\left(egin{array}{c} a & b \\ c & d \end{array}\right) \in PSL(2,\mathbb{R})$$
 entspricht der *Möbiustransformation* $z \mapsto rac{az+b}{cz+d}$ Beispiele:

- Verschiebung $z \mapsto z + 1$
- Streckung z → 2z
- Drehung $z \mapsto -\frac{1}{z}$

3 Typen von Transformationen

$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ ist	Spur	Fixpunkte	Grafik
elliptisch	a+d < 2	Einer in ⊞	
parabolisch hyperbolisch	a+d =2 $ a+d >2$	Einer im un- endlichen Zwei im un- endlichen	

3 Typen von Transformationen

$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ ist	Spur	Fixpunkte	Grafik
elliptisch	a + d < 2	Einer in $\mathbb H$	
parabolisch	a+d =2	Einer im un- endlichen	
hyperbolisch	a + d > 2	Zwei im un- endlichen	

3 Typen von Transformationen

$\frac{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}{\text{elliptisch}}$ parabolisch	Spur $ a+d < 2$ $ a+d = 2$	Fixpunkte Einer in III Einer im unendlichen	Grafik
hyperbolisch	a+d > 2	Zwei im un- endlichen	

Fuchssche und Kleinsche Gruppen

- **■** Eine diskrete Untergruppe Γ von $PS^*L(2,\mathbb{R})$, heißt *Kleinsche Gruppe*.
- Ist zusätzlich $\Gamma \leq PSL(2,\mathbb{R})$, so heißt Γ Fuchssche Gruppe.

Fundamentalbereiche

Definition

Eine abgeschlossene Teilmenge $F \subseteq \mathbb{H}$ heißt Fundamentalbereich von Γ , falls gilt:

- $\Gamma \cdot F := \bigcup_{T \in \Gamma} T(F) = \mathbb{H}.$
- Für alle $T \in \Gamma$ schneiden sich F und T(F) höchstens im Rand.

Ist F ein Fundamentalbereich von Γ , dann heißt $\{T(F) \mid T \in \Gamma\}$ Kachelung.

Fuchssche Gruppen: Elliptische und parabolische Untergruppen

- *Elliptische Untergruppe*: $\langle T \rangle \leq \Gamma$ mit T elliptisch
- Parabolische Untergruppe: $\langle T \rangle \leq \Gamma$ mit T parabolisch
- Zueinander konjugierte, maximale elliptische oder parabolische Untergruppen haben die selbe Ordnung. Diese heißt Periode von Γ

Der Bahnenraum einer Fuchsschen Gruppe

Die Signatur einer Fuchsschen Gruppe

Definition

Sei Γ eine Fuchssche Gruppe mit Perioden

 $m_1, \ldots, m_n \in \mathbb{N}_0 \cup \{\infty\}, \ m_1 \leq \ldots \leq m_n \ \text{und Geschlecht} \ g \in \mathbb{N}_0.$

Dann heißt der Vektor $(g, m_1, ..., m_n)$ die *Signatur* von Γ.

Funktionsumfang des Programms

Das Programm soll Kachelungen erzeugen, die

- von einer Fuchsschen Gruppe mit gegebener Signatur induziert werden oder
- aus Polygonen mit einer gegebenen Folge von Innenwinkeln $\frac{2\pi}{m_i}$ besteht.

Polygone zur Kachelung durch Spiegelungen

$$\beta_i = \frac{2\pi}{m_i}$$

$$\lim_{t\to 0} \theta_i = \pi$$

$$\lim_{r\to 1}\theta_i=0$$

$$\Rightarrow$$
 Finde $r_0 \in (0,1)$
sodass $\sum_{i=0}^{n} \theta_i = 2\pi$.

0.2 0.2 0.4 0.6 0.8 R

Polygone zur Kachelung durch Fuchssche Gruppen

Replizierungs-Algorithmus von Dunham

- Basiert auf einer Tiefensuche.
- Ein "kombinatorischer" Algorithmus: Vorgehen hängt nur von den Eckenvalenzen des Polygons ab.

Der Algorithmus kann beliebige Polygone replizieren, außer:

- Wenn der zu vervielfältigende Fundamentalbereich dreieckig ist,
- oder wenn eine Ecke eine Valenz von 3 hat.

Suchbäume des Dunham-Algorithmus

Aufteilung der Kachelung in Ebenen

Suchbäume des Dunham-Algorithmus

Grundsätzliches Vorgehen:

- Transformiere jede Kachel mit den Transformationen, die auf kantenadjazente Kacheln abbilden
- Verwerfe schon getroffene Kacheln

Drei Datenstrukturen:

- Liste inactivePolys: Schon expandierte Polygone
- Prioritätsliste activePolys: Zu expandierende Polygone
- Hash-Menge midpoints: Schon getroffene Mittelpunkte

Drei Datenstrukturen:

- Liste inactivePolys: Schon expandierte Polygone
- Prioritätsliste activePolys: Zu expandierende Polygone
- Hash-Menge midpoints: Schon getroffene Mittelpunkte

Drei Datenstrukturen:

- Liste inactivePolys: Schon expandierte Polygone
- Prioritätsliste activePolys: Zu expandierende Polygone
- Hash-Menge midpoints: Schon getroffene Mittelpunkte

Laufzeitvergleich

Laufzeitvergleich

Ausblick

Offene Fragen und Aufgaben sind:

- Auflösung der Einschränkungen des Dunham-Algorithmus
- Optimierung der Approximationsverfahren beim Erstellen der Basispolygone
- Auf das Basispolygon gelegte Vektorgrafik replizieren