UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS

TYPES AND SEMANTICS FOR PROGRAMMING LANGUAGES

Saturday 1 st April 2017

00:00 to 00:00

INSTRUCTIONS TO CANDIDATES

Answer QUESTION 1 and ONE other question.

Question 1 is COMPULSORY. If both QUESTION 2 and QUESTION 3 are answered, only QUESTION 2 will be marked.

All questions carry equal weight.

CALCULATORS MAY NOT BE USED IN THIS EXAMINATION

Year 4 Courses

Convener: ITO-Will-Determine External Examiners: ITO-Will-Determine

THIS EXAMINATION WILL BE MARKED ANONYMOUSLY

1. THIS QUESTION IS COMPULSORY

This question uses the library definition of list in Agda. Here is an informal definition of the predicates \in and \subseteq . (In Emacs, you can type \in as \setminus in and \subseteq as \setminus subseteq.)

here
$$x \in (x :: xs)$$
 there $x \in ys$ $x \in (y :: ys)$

$$keep \frac{xs \subseteq ys}{(x :: xs) \subseteq (x :: ys)} \qquad drop \frac{xs \subseteq ys}{xs \subseteq (y :: ys)}$$

(a) Formalise the definition above.

[10 marks]

- (b) Prove each of the following.
 - (i) $2 \in [1,2,3]$
 - (ii) $[1,3] \subseteq [1,2,3,4]$

[5 marks]

(c) Prove the following.

If $xs \subseteq ys$ then $z \in xs$ implies $z \in ys$ for all z.

[10 marks]

2. ANSWER EITHER THIS QUESTION OR QUESTION 3

You will be provided with a definition of intrinsically-typed lambda calculus in Agda. Consider constructs satisfying the following rules, written in extrinsically-typed style.

Typing:

$$\begin{array}{c|c} & \Gamma \vdash M \ \text{\$ Tree } A \\ \hline \Gamma \vdash M \ \text{\$ Tree } A \\ \hline \Gamma \vdash \text{leaf } M \ \text{\$ Tree } A \\ \hline \end{array} \quad \text{branch} \quad \frac{\Gamma \vdash N \ \text{\$ Tree } A}{\Gamma \vdash M \text{ branch } N \ \text{\$ Tree } A}$$

$$\begin{array}{c} \Gamma \vdash L \ \texttt{\$ Tree} \ A \\ \Gamma \ , \ x \ \$ \ A \vdash M \ \$ \ B \\ \hline \Gamma \ , \ y \ \$ \ \mathsf{Tree} \ A \ , \ z \ \$ \ \mathsf{Tree} \ A \vdash N \ \$ \ B \\ \hline \hline \Gamma \vdash \mathsf{case} \ L \ [\mathsf{leaf} \ x \ \Rightarrow \ M \mid y \ \mathsf{branch} \ z \ \Rightarrow \ N] \ \$ \ B \end{array}$$

Values:

$$\begin{array}{c|c} & & \text{Value } V \\ \text{V-leaf} & & \text{Value } V \\ \hline \text{Value (leaf } V) & & \text{V-branch} \\ \hline \end{array} \\ \begin{array}{c} \text{Value } V \\ \text{Value (} V \text{ branch } W) \\ \end{array}$$

Reduction:

$$\xi$$
-leaf $M \longrightarrow M'$

$$1 \text{leaf } M \longrightarrow 1 \text{leaf } M'$$

$$\frac{M \longrightarrow M'}{M \text{ branch } N \longrightarrow M' \text{ branch } N} \qquad \frac{\text{Value } V}{\xi \text{-branch}_2} \frac{N \longrightarrow N'}{V \text{ branch } N \longrightarrow V \text{ branch } N'}$$

$$\begin{array}{c|c} L \longrightarrow L' \\ \hline \operatorname{case} L \ [\operatorname{leaf} x \ \Rightarrow \ M \mid y \operatorname{branch} z \ \Rightarrow \ N] \longrightarrow \\ \operatorname{case} L' \ [\operatorname{leaf} x \ \Rightarrow \ M \mid y \operatorname{branch} z \ \Rightarrow \ N] \end{array}$$

$$\beta\text{-leaf} \dfrac{\text{Value }V}{\text{case (leaf }V) \text{ [leaf }x \ \Rightarrow \ M \ | \ y \text{ branch }z \ \Rightarrow \ N] \ \longrightarrow M \text{ [}x := V\text{]}}$$

(a) Extend the given definition to formalise the evaluation and typing rules, including any other required definitions. [12 marks]

(b)	Prove progress.	You will be	provided v	with a	proof of	progress	for the	simply-	
	typed lambda calculus that you may extend.								[<i>13 marks</i>]

Please delimit any code you add as follows.

- -- begin
- -- end

3. ANSWER EITHER THIS QUESTION OR QUESTION 2

You will be provided with a definition of inference for extrinsically-typed lambda calculus in Agda. Consider constructs satisfying the following rules, written in extrinsically-typed style that support bidirectional inference.

Typing:

$$\frac{\Gamma \vdash M \downarrow A}{\Gamma \vdash \operatorname{delay} M \downarrow \operatorname{Lift} A}$$

force
$$\Gamma \vdash L \uparrow \text{Lift } A$$

$$\Gamma \vdash \text{force } L \uparrow A$$

- (a) Extend the given definition to formalise the typing rules, and update the definition of equality on types.
- (b) Extend the code to support type inference for the new features. [15 marks]

Please delimit any code you add as follows.

- -- begin
- -- end

[10 marks]