Homework 6b (Problem numbers from textbook)

4.13 Given the Euler angle transformation $R = R_{z,\psi}R_{y,\theta}R_{z,\phi}$, show that $\frac{d}{dt}R = S(\omega)R$ where

$$\omega = \{c_{\psi}s_{\theta}\dot{\phi} - s_{\psi}\dot{\theta}\}i + \{s_{\psi}s_{\theta}\dot{\phi} + c_{\psi}\dot{\theta}\}j + \{\dot{\psi} + c_{\theta}\dot{\phi}\}k$$

The components of i, j, k, respectively, are called the **nutation**, spin, and **precession**.

4.15 Two frames $o_0x_0y_0z_0$ and $o_1x_1y_1z_1$ are related by the homogeneous transformation

$$H = \left[\begin{array}{cccc} 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

A particle has velocity $v_1(t) = [3, 1, 0]^T$ relative to frame $o_1x_1y_1z_1$. What is the velocity of the particle in frame $o_0x_0y_0z_0$?