Chapter 26: Classification

Use Cases

- Predicting credit risk
- News classification
- Classifying human activity

Types of Classification

- Binary Classification
 - Image: cat/dog
- Multiclass Classification
 - Weather: sunny, rainy, cloudy
- Multilabel Classification
 - Genre

Classification Methods

- Logistic Regression
- Decision Trees
- Random Forests
- Gradient-boosted Trees
- Naïve Bayes

Model Scalability

Model	Features count	Training examples	Output classes
Logistic Regression	1 to 10 million	No limit	Features * Classes < 10 million
Decision Trees	1,000s	No limit	Features * Classes < 10,000s
Random Forests	10,000s	No limit	Features * Classes < 100,000s
Gradient-boosted Trees	1,000s	No limit	Features * Classes < 10,000s

Load Data

```
// in Scala
val bInput = spark.read.format("parquet").load("/data/binary-classification")
.selectExpr("features", "cast(label as double) as label")
```

Logistic Regression

- a linear method
- combines each of the individual features with specific weights
- outputs a probability of belonging to a particular class

hyperparameter	values	Description
family	multinomial, binary	

hyperparameter	values	Description
family	multinomial, binary	
elasticNetParam	0.0 to 1.0	Specifies the mix between L1 and L2 regularizations. 1 means L1 (sparse) and 0 means L2.

hyperparameter	values	Description
family	multinomial, binary	
elasticNetParam	0.0 to 1.0	Specifies the mix between L1 and L2 regularizations. 1 means L1 (sparse) and 0 means L2.
fitIntercept	true, false	true for un-normalized data

hyperparameter	values	Description
family	multinomial, binary	
elasticNetParam	0.0 to 1.0	Specifies the mix between L1 and L2 regularizations. 1 means L1 (sparse) and 0 means L2.
fitIntercept	true, false	true for un-normalized data
regParam	>= 0.0	Weight of regularization term corresponds to $\pmb{\lambda}$

hyperparameter	values	Description
family	multinomial, binary	
elasticNetParam	0.0 to 1.0	Specifies the mix between L1 and L2 regularizations. 1 means L1 (sparse) and 0 means L2.
fitIntercept	true, false	true for un-normalized data
regParam	>= 0.0	Weight of regularization term
standardization	true, false	

parameters	value	Description
maxIter	100 (default)	Total number of iterations over the data

parameters	value	Description
maxIter	100 (default)	Total number of iterations over the data
tol	1.0 E-6 (default)	Threshold to indicate sufficient optimization

parameters	value	Description
maxIter	100 (default)	Total number of iterations over the data
tol	1.0 E-6 (default)	Threshold to indicate sufficient optimization
weightCol	name of a column	weigh the labels that are correct more than the others

Prediction Parameters

Parameters	value	description
threshold	0.0 to 1.0	threshold probability for deciding a class

Prediction Parameters

Parameters	value	description
threshold	0.0 to 1.0	threshold probability for deciding a class
thresholds	array of threshold values	threshold probabilities for multiclass classification problem

```
import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression()
println(lr.explainParams()) // see all parameters
val lrModel = lr.fit(bInput)
```

```
import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression()
println(lr.explainParams()) // see all parameters
val lrModel = lr.fit(bInput)
println(lrModel.coefficients)
println(lrModel.intercept)
```

```
import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression()
println(lr.explainParams()) // see all parameters
val lrModel = lr.fit(bInput)
println(lrModel.coefficients)
println(lrModel.intercept)
import org.apache.spark.ml.classification.BinaryLogisticRegressionSummary
val summary = lrModel.summary
val bSummary = summary.asInstanceOf[BinaryLogisticRegressionSummary]
println(bSummary.areaUnderROC)
bSummary.roc.show()
bSummary.pr.show()
```

```
import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression()
println(lr.explainParams()) // see all parameters
val lrModel = lr.fit(bInput)
println(lrModel.coefficients)
println(lrModel.intercept)
import org.apache.spark.ml.classification.BinaryLogisticRegressionSummary
val summary = lrModel.summary
val bSummary = summary.asInstanceOf[BinaryLogisticRegressionSummary]
println(bSummary.areaUnderROC)
bSummary.roc.show()
bSummary.pr.show()
summary.objectiveHistory
```

Decision Tree

- An interpretable models for performing classification
- Simple decision models that works like humans
- Structure with all the inputs and follows a set of branches to make a prediction
- Easy to reason, easy to inspect
- Supports multiclass classification

Decision Tree

- An interpretable models for performing classification
- Simple decision models that works like humans
- Structure with all the inputs and follows a set of branches to make a prediction
- Easy to reason, easy to inspect
- Supports multiclass classification
- Overfit data quickly

hyperparameter	values	Description
maxDepth	Default is 5	To avoid overfitting

hyperparameter	values	Description
maxDepth	Default is 5	To avoid overfitting
maxBins	Value >= 2 && Value >= number of categories	More bins gives a higher level of granularity

hyperparameter	values	Description
maxDepth	Default is 5	To avoid overfitting
maxBins	Value >= 2 && Value >= number of categories	More bins gives a higher level of granularity
impurity	entropy or gini (default)	determine whether or not the model should split at a particular leaf node

hyperparameter	values	Description
maxDepth	Default is 5	To avoid overfitting
maxBins	Value >= 2 && Value >= number of categories	More bins gives a higher level of granularity
impurity	entropy or gini (default)	determine whether or not the model should split at a particular leaf node
minInfoGain	default is zero	determines the minimum information gain that can be used for a split

hyperparameter	values	Description
maxDepth	Default is 5	To avoid overfitting
maxBins	Value >= 2 && Value >= number of categories	More bins gives a higher level of granularity
impurity	entropy or gini (default)	determine whether or not the model should split at a particular leaf node
minInfoGain	default is zero	determines the minimum information gain that can be used for a split
minInstancePerNode	any value greater than 1	controlling max depth and overfitting

parameters	value	Description
checkpointInterval	-1 or any value > 0	A value of 10 means the model will get checkpointed every 10 iterations. Set this to -1 to turn off checkpointing

Prediction Parameters

Parameters	value	description
threshold	0.0 to 1.0	threshold probability for deciding a class
thresholds	array of threshold values	threshold probabilities for multiclass classification problem

```
// in Scala
import
org.apache.spark.ml.classification.DecisionTreeClassifier
val dt = new DecisionTreeClassifier()
println(dt.explainParams())
val dtModel = dt.fit(bInput)
```

Random Forest and Gradient Boosted Trees

- extensions of decision trees
- wisdom of the crowds

Random Forest and Gradient Boosted Trees

- extensions of decision trees
- wisdom of the crowds
- random forest: averaging responses to make prediction
- gradient boosted tree: making weighted prediction

hyperparameter	values	Description
numTrees	int	number of trees to train
featureSubsetStrategy	auto,all, sqrt, log2, 1<=n<=number of features	how many features to consider for split

hyperparameter	values	Description
numTrees	int	number of trees to train
featureSubsetStrategy	auto,all, sqrt, log2, 1<=n<=number of features	how many features to consider for split
lossType	logistic loss (till now)	loss function to minimize
maxIter	100 (default)	number of iterations on data
stepSize	0 to 1; default 0.1	learning rate

- Unshaded parameters are only available for random forest
- Shaded parameters are only available for gradient boosted tree

parameters	value	Description
checkPointInterval	same as decision trees	

Prediction Parameters

Parameters	value	description		
same as decision trees				

```
import
org.apache.spark.ml.classification.RandomForestClassifier
val rfClassifier = new RandomForestClassifier()
println(rfClassifier.explainParams())
val trainedModel = rfClassifier.fit(bInput)

import org.apache.spark.ml.classification.GBTClassifier
val gbtClassifier = new GBTClassifier()
println(gbtClassifier.explainParams())
val trainedModel = gbtClassifier.fit(bInput)
```

Bayes' Theorem

Bayes' theorem is stated mathematically as the following equation: [17]

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$

where A and B are events and $P(B) \neq 0$.

- P(A|B) is a conditional probability: the probability of event A occurring given that B is true. It is also called the posterior probability of A given B.
- P(B|A) is also a conditional probability: the probability of event B occurring given that A is true. It can also be interpreted as the likelihood of A given a fixed B because P(B|A) = L(A|B).
- P(A) and P(B) are the probabilities of observing A and B respectively without any given conditions; they are known as the prior probability and marginal probability.

https://en.wikipedia.org/wiki/Bayes%27 theorem

Naive Bayes

- A collection of classifiers based on Bayes' theorem
- All features are independent of one another (core assumption)
- Commonly used in text or document classification

Naive Bayes

- A collection of classifiers based on Bayes' theorem
- All features are independent of one another (core assumption)
- Commonly used in text or document classification
- Two different model types:
 - Multivariate Bernoulli model: variables represent the existence of a term in a document
 - Multinomial model: the total counts of terms are used
- All input features must be non-negative.

Model Hyperparameters

hyperparameter	values	Description
modelType	bernoulli or multinomial	To avoid overfitting
weightCol		Allows weighing different data points differently

Training Parameters

parameters	value	Description
smoothing	default value is 1	helps smooth out categorical data and avoid overfitting on the training data

Prediction Parameters

Parameters	value	description
threshold	0.0 to 1.0	threshold probability for deciding a class
thresholds	array of threshold values	threshold probabilities for multiclass classification problem

Example

```
// in Scala
import org.apache.spark.ml.classification.NaiveBayes
val nb = new NaiveBayes()
println(nb.explainParams())
val trainedModel = nb.fit(bInput.where("label != 0"))
```

Evaluators

- Binary Classification Metrics
 - BinaryClassificationEvaluator:
 - areaUnderROC
 - areaUnderPR (Area under Precision Recall)
- Multiclass Classification Metrics
 - MulticlassClassificationEvaluator:
 - f1
 - weightedPrecision
 - weightedRecall
 - accuracy
- Multilabel Classification Metrics

```
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
val out = model.transform(bInput)
.select("prediction", "label")
.rdd.map(x => (x(0).asInstanceOf[Double], x(1).asInstanceOf[Double]))
val metrics = new BinaryClassificationMetrics(out)
```

```
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
val out = model.transform(bInput)
.select("prediction", "label")
.rdd.map(x => (x(0).asInstanceOf[Double], x(1).asInstanceOf[Double]))
val metrics = new BinaryClassificationMetrics(out)

metrics.areaUnderPR
metrics.areaUnderROC
println("Receiver Operating Characteristic")
metrics.roc.toDF().show()
```

One vs Rest Classifier

- Some Mllib models do not support multiclass classification
- One vs rest classifier
- Implemented as an estimator

```
import org.apache.spark.ml.classification.{LogisticRegression, OneVsRest}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
// load data file
val inputData = spark.read.format("libsvm")
.load("data/mllib/sample_multiclass_classification_data.txt")
// generate the train/test split.
val Array(train, test) = inputData.randomSplit(Array(0.8, 0.2))
// instantiate the base classifier
val classifier = new LogisticRegression().setMaxIter(10).setTol(1E-6).setFitIntercept(true)
// instantiate the One Vs Rest Classifier.
val ovr = new OneVsRest().setClassifier(classifier)
// train the multiclass model.
val ovrModel = ovr.fit(train)
// score the model on test data.
val predictions = ovrModel.transform(test)
// obtain evaluator.
val evaluator = new MulticlassClassificationEvaluator().setMetricName("accuracy")
// compute the classification error on test data.
val accuracy = evaluator.evaluate(predictions)
println(s"Test Error = ${1 - accuracy}")
```

Multilayer Perceptron

- based on neural networks
- a configurable number of layers and layer sizes
- Discuss it later.