(104031) אינפי 1מ' | תרגול 21 - יוליה

שם: איל שטיין

January 9, 2023

נושאי השיעור: חישוב נגזרת, פונקציות הפיכות, נגזרות מסדר גבוה, משפט פרמה

נושא ראשון - חישוב נגזרת:

. אם הגבול קיים אם $\lim_{n \to \infty} a_n$ חשבו צ"ל: חשבו

פתרון:

 $a_n = rac{a^{rac{1}{n}}-1}{rac{1}{n}}$: ניתן לכתוב את הסדרה כך: •

$$a_n = \frac{a^{\frac{1}{n}} - 1}{\frac{1}{n}} = \frac{a^{\frac{1}{n}} - a^0}{\frac{1}{n} - 0}$$

 $f:\mathbb{R}
ightarrow \mathbb{R}$ כאשר $f\left(x
ight) = a^{x}$ נגדיר •

 $.f'\left(x\right)=a^{x}\cdot ln\left(a\right)$ ומתקיים: \mathbb{R} ובכל f –

 $.f^{\prime}\left(0
ight) =ln\left(a
ight)$ בפרט *

• לפי הגדרת הנגזרת:

$$ln(a) = f'(0) = \lim_{x \to 0} \frac{a^x - a^0}{x - 0}$$

: מתקיים $x_n=rac{1}{n}\xrightarrow[n\to\infty]{}0$ עבור $0
eq x_n\xrightarrow[n\to\infty]{}0$ מתקיים אז לכל סדרה לכל סדרה אם הגבול קיים אז לכל סדרה אז לכל סדרה סדרה לפי

$$\lim_{n\to\infty}f'\left(x_{n}\right)=\lim_{n\to\infty}\frac{f\left(x_{n}\right)-f\left(0\right)}{x_{n}-0}=\lim_{n\to\infty}a_{n}=f'\left(0\right)=\ln\left(a\right)$$

נושא שני - פונקציות הפיכות:

תרגיל 2. פונקציות הפיכות:

- $g\left(x \right) = arctan\left(x \right)$ תהי •
- $g'\left(x
 ight)$ את כדי למצוא את כדי $g\left(x
 ight)=\left(\tan\left(x
 ight)
 ight)^{-1}$ -שתמש בעובדה ש-

פתרון:

- תזכורת משפט:
- $f'\left(x_{0}
 ight)
 eq0$ כך ש כך x_{0} כד הפיכה ורציפה בסביבת x_{0} גזירה ב- x_{0} הפיכה ורציפה הפיכה
 - : אז –
 - $y_0 = f(x_0)$ -גוירה ב- f^{-1} גוירה .1
 - $\left(f^{-1}
 ight)'(y_0)=rac{1}{f'(x_0)}=rac{1}{f'(f^{-1}(y_0))}$ ע מתקיים ע 2.
 - $f(x) = \tan(x)$ נסמן •
 - . וגם גזירה בכל נקודה בקטע. $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ רציפה f
 - $x\in\left(-rac{\pi}{2},rac{\pi}{2}
 ight)$ לכל $f'\left(x
 ight)=rac{1}{\cos^{2}\left(x
 ight)}$ *
- $g'\left(y
 ight)=\left(f^{-1}\left(y
 ight)
 ight)'$ את הנגזרת ולכן חפש לכן לכן בקטע בקטע בקטע מתקיימים המשפט מתקיימים בקטע (
 - ולכן לפי המשפט

$$g'(y) = (f^{-1}(y))' = \frac{1}{f'(arctan(y))}$$
$$= \frac{1}{\frac{1}{\cos^2(arctan(y))}}$$
$$= \cos^2(arctan(y))$$

 $\cos^2\left(lpha
ight) = rac{1}{1+ an^2(lpha)}$: לפי זהות טריגונומטרית *

: ולכן

$$\cos^{2}\left(arctan\left(y\right)\right) = \frac{1}{1 + \tan^{2}\left(arctan\left(y\right)\right)} = \frac{1}{1 + y^{2}}$$

 $.g'(x) = \frac{1}{1+y^2}$ ולכן •

נושא שלישי - נגזרות מסדר גבוה:

תרגיל 3.

י חשבו נגזרת מסדר עשר:

$$(x \cdot \sin(x))^{(10)}$$

פתרון:

- תזכורת כלל לייבניץ:
- : אם n גזירות לפחות פעמים אז המכפלה שלהם $(u\cdot g)$ אם גזירה לפחות פעמים ומתקיים u,g

$$(u \cdot g)^{(10)} = \sum_{k=0}^{n} \binom{n}{k} \left(u^{(n-k)} (x) \cdot g^{(k)} (x) \right)$$

- . אם ניקח אצלנו $g=\sin\left(x\right)$,u=x אם ניקח אצלנו •
- $k\geq 2$ אם $u^{(k)}=0$ וכל הנגזרות u''=0ו וu'(x)=1 אם -
- $g^{(4)}=\sin{(x)}-i$ ו- $g'''(x)=-\cos{(x)}$, $g''(x)=-\sin{(x)}$, $g'(x)=\cos{(x)}$ נקבל: $g(x)=\sin{(x)}$ פעבור $g^{(4k+m)}=g^{(m)}$ ה-
 - :עשר פעמים ונקבל $x\cdot\sin\left(x\right)$ את ינגזור את $x\cdot\sin\left(x\right)$

$$(x \cdot \sin(x))^{(10)} = {10 \choose 0} x \cdot \sin^{(10)}(x) + (x)' \cdot \sin^{(9)}(x) \cdot {10 \choose 1}$$

$$(x \cdot \sin(x))^{(10)} = \underbrace{\begin{pmatrix} 10 \\ 0 \end{pmatrix}}_{=1} \cdot x \cdot \underbrace{\sin^{(10)}}_{=-\sin(x)} (x) + \underbrace{(x)'}_{=1} \cdot \underbrace{\sin^{(9)}}_{=\cos(x)} \cdot \underbrace{\begin{pmatrix} 10 \\ 1 \end{pmatrix}}_{=10}$$

$$= 1 \cdot x \cdot (-\sin(x)) + 1 \cdot \cos(x) \cdot 10$$

תרגיל 4. נכון או לא נכון:

- a אז f רציפה בסביבה של f(x) אם f(x) אם .1
 - (א) הטענה לא נכונה.
 - : לדוגמא i

$$f(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ -x^2 & x \notin \mathbb{Q} \end{cases}$$

.aב ב-הגבול f גזירה קיים אז f גזירה ב-2 .2

(א) הטענה לא נכונה.

: לדוגמא i.

$$f(x) = \begin{cases} x+1 & x \ge 0 \\ x & x < 0 \end{cases}$$

- $x \neq 0$ לכל f'(x) = 1 אי.
- $\lim_{x\to 0} f'(x) = 1$ בי. ולכן
- גי. אבל כאשר x=0 הפונקציה f לא רציפה ולכן לא גזירה.

.0-ב גוירה היים אז $\lim_{x \to 0} \frac{f(x)}{x^2} = L$ גוירה ב-0 וקיים גבול .3

(א) הטענה נכונה.

(ב) נבדוק את הגזירות ב-0:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$

- $f\left(0
 ight)=\lim_{x
 ightarrow0}f\left(x
 ight)$, רציפה, fרא שבל מכיוון אבל אבל הא וודעים מהו לא יודעים מהו $f\left(0
 ight)$
- $\lim_{x o 0}f\left(x
 ight)=\lim_{x o 0}\underbrace{\frac{f\left(x
 ight)}{x^{2}}}_{ o L}\cdot\underbrace{x^{2}}_{ o 0}$ אי. לפי חשבון גבולות ניתן לומר ש

 $f\left(0
ight)=0$ ובגלל רציפות ווה $\lim_{x
ightarrow0}f\left(x
ight)=0$ בי. כלומר

$$\lim_{x o 0} rac{f(x) - 0}{x - 0} = \lim_{x o 0} rac{f(x) - f(0)}{x - 0}$$
 :כעת הגבול

:ונקבל ב $\frac{x}{x}$ ונקבל i.

$$\lim_{x \to 0} \underbrace{\frac{f(x)}{f(x)}}_{x^2} \cdot \underbrace{x}_{\to 0} = 0$$

$$f'(0) = 0$$
 (ד) ולכן

נושא רביעי - משפט פרמה:

משפט 5.

- . מתקבל קיצון מקומי. ב- x_0 כך שבנקודה x_0 מתקבל קיצון מקומי. \star
 - $.f'(x_0) = 0$ אזי •

- דוגמה $D\left(x
ight)$ היא דיריכלה - $f\left(x
ight)=x^{2}\cdot D\left(x
ight)$ היא דיריכלה

- f'(0)=0 כי x=0 היא גזירה ב
- היא מקבלת ב-0 מינימום מקומי.
- לכן אם נחפש מינימום ומקסימום בקטע, נבדוק את הנקודות הפנימיות.
- . או אם הנגזרת) או אם $f'\left(x\right)=0$ או פנימית פנימית בנקודה בנקודה בנקודה או הקיצון יכול להתקבל בנקודה פנימית אם

תרגיל 7. - לנסות לבד

- $a_1, a_2, \dots a_n > 0$ יהיו •
- $(a_1)^x + (a_2)^x + \ldots + (a_n)^x \geq n$ מתקיים: $x \in [-1,1]$ שלכל •

 $a_1 \cdot a_2 \cdot \ldots \cdot a_n = 1$ צ"ל:

פתרון:

- $n=\left(a_{1}\right)^{0}+\left(a_{2}\right)^{0}+\ldots+\left(a_{n}\right)^{0}\geq n$ מכיוון ש- x=0 גקבל שעבור $0\in\left[-1,1\right]$ מכיוון ש-
 - . היא פונקציה $f\left(x\right)=\left(a_{1}\right)^{x}+\left(a_{2}\right)^{x}+\ldots+\left(a_{n}\right)^{x}$ היא פונקציה הערה: הערה: