$12a_{0435} (K12a_{0435})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -3u^{21} - 10u^{20} + \dots + 8b + 6, \ 6u^{21} + 21u^{20} + \dots + 8a - 18, \ u^{22} + 3u^{21} + \dots + 2u + 2 \rangle \\ I_2^u &= \langle -10u^{15}a - 44u^{15} + \dots + 23a - 60, \ -6u^{15}a - 7u^{15} + \dots - 18a - 1, \\ u^{16} - u^{15} - 3u^{14} + 4u^{13} + 6u^{12} - 9u^{11} - 5u^{10} + 12u^9 + 3u^8 - 11u^7 + u^6 + 8u^5 - u^4 - 5u^3 + 3u^2 + 2u - 1 \rangle \\ I_3^u &= \langle 2494307142u^{31} + 7215726931u^{30} + \dots + 4328817643b - 18964617036, \\ 4190268217u^{31} + 38131442460u^{30} + \dots + 60603447002a - 118490829071, \\ u^{32} + 3u^{31} + \dots - 24u - 7 \rangle \\ I_4^u &= \langle -4001108u^{23}a - 234438u^{23} + \dots + 6117289a - 712901, \\ 17866u^{23}a - 3017u^{23} + \dots + 14683a + 59324, \ u^{24} - u^{23} + \dots - 4u + 1 \rangle \\ I_5^u &= \langle -2a^3 + 12a^2 + 68b + 43a + 47, \ 2a^4 + 2a^3 + 9a^2 - 8a + 11, \ u + 1 \rangle \\ I_6^u &= \langle b + 1, \ u^2 + 2a + u, \ u^4 - u^2 + 2 \rangle \\ I_7^u &= \langle -2a^3 + 14a^2 + 105b + 74a + 69, \ 2a^4 + 4a^3 + 10a^2 + 9, \ u - 1 \rangle \\ I_8^u &= \langle b - 1, \ u^3 - u^2 + 2a - u - 1, \ u^4 + 1 \rangle \\ I_9^u &= \langle b, \ a + 1, \ u - 1 \rangle \\ I_{10}^u &= \langle -2au + 4b - 2a + u + 5, \ 4a^2 - 4a + 17, \ u^2 + 2u + 1 \rangle \end{split}$$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

$$I^u_{11} = \langle b+1, \ u+1 \rangle$$

$$I_1^v = \langle a, \ b-1, \ v+1 \rangle$$

- * 11 irreducible components of $\dim_{\mathbb C}=0,$ with total 156 representations. * 1 irreducible components of $\dim_{\mathbb C}=1$

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3u^{21} - 10u^{20} + \dots + 8b + 6, 6u^{21} + 21u^{20} + \dots + 8a - 18, u^{22} + 3u^{21} + \dots + 2u + 2 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{3}{4}u^{21} - \frac{21}{8}u^{20} + \dots + \frac{15}{4}u + \frac{9}{4} \\ \frac{3}{8}u^{21} + \frac{5}{4}u^{20} + \dots - 2u - \frac{3}{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{5}{4}u^{21} - \frac{33}{8}u^{20} + \dots + \frac{19}{4}u + \frac{9}{4} \\ \frac{5}{8}u^{21} + \frac{5}{2}u^{20} + \dots - \frac{7}{2}u - \frac{3}{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{5}{8}u^{21} - \frac{13}{8}u^{20} + \dots + \frac{5}{4}u + \frac{3}{2} \\ \frac{5}{8}u^{21} + \frac{5}{2}u^{20} + \dots - \frac{7}{2}u - \frac{3}{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{3}{8}u^{20} + \frac{9}{8}u^{19} + \dots + \frac{3}{4}u - \frac{1}{4} \\ -\frac{3}{8}u^{21} - \frac{5}{4}u^{20} + \dots + 2u + \frac{3}{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{3}{8}u^{20} + \frac{9}{8}u^{19} + \dots + \frac{3}{4}u - \frac{1}{4} \\ -\frac{1}{4}u^{20} - \frac{3}{4}u^{19} + \dots + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{4}u^{20} + \frac{3}{4}u^{19} + \dots + \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{4}u^{20} - \frac{3}{4}u^{19} + \dots + \frac{1}{2}u^{2} - \frac{1}{2}u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{4}u^{21} - \frac{3}{4}u^{20} + \dots + \frac{1}{2}u^{2} - \frac{1}{2}u \\ \frac{1}{4}u^{21} + \frac{3}{4}u^{20} + \dots + \frac{1}{2}u^{2} - \frac{1}{2}u \\ \frac{1}{4}u^{21} + \frac{3}{4}u^{20} + \dots + \frac{1}{2}u^{2} - \frac{1}{2}u \\ \frac{1}{4}u^{21} + \frac{3}{4}u^{20} + \dots + \frac{1}{2}u^{2} - \frac{1}{2}u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\begin{array}{l} -\frac{5}{4}u^{21} - \frac{9}{2}u^{20} - 6u^{19} + \frac{13}{4}u^{18} + \frac{41}{2}u^{17} + \frac{61}{4}u^{16} - 38u^{15} - \frac{295}{4}u^{14} + \frac{17}{4}u^{13} + 121u^{12} + \\ \frac{143}{2}u^{11} - \frac{449}{4}u^{10} - \frac{639}{4}u^9 + u^8 + 131u^7 + \frac{319}{4}u^6 - \frac{141}{4}u^5 - \frac{287}{4}u^4 - 36u^3 - \frac{3}{2}u^2 + 16u + \frac{21}{2}u^4 - \frac{143}{4}u^4 - \frac{143}{4$$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{22} + 9u^{21} + \dots + 12u + 4$
c_2, c_5, c_6 c_{12}	$u^{22} + 3u^{21} + \dots + 2u + 2$
c_3, c_4, c_8 c_{10}	$u^{22} - 3u^{21} + \dots - 2u + 2$
c_7, c_9	$u^{22} - 9u^{21} + \dots - 12u + 4$

Crossings	Riley Polynomials at each crossing
$c_1, c_7, c_9 \ c_{11}$	$y^{22} + 15y^{21} + \dots - 144y + 16$
c_2, c_3, c_4 c_5, c_6, c_8 c_{10}, c_{12}	$y^{22} - 9y^{21} + \dots - 12y + 4$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.460930 + 0.893438I		
a = 0.684435 + 0.437574I	-4.71017 + 7.32959I	-5.39190 - 4.27146I
b = 1.153190 - 0.551408I		
u = -0.460930 - 0.893438I		
a = 0.684435 - 0.437574I	-4.71017 - 7.32959I	-5.39190 + 4.27146I
b = 1.153190 + 0.551408I		
u = 0.988250 + 0.370938I		
a = -1.03648 - 1.21462I	4.11009 - 3.23667I	2.24331 - 1.56003I
b = 1.065270 + 0.737606I		
u = 0.988250 - 0.370938I		
a = -1.03648 + 1.21462I	4.11009 + 3.23667I	2.24331 + 1.56003I
b = 1.065270 - 0.737606I		
u = -0.784487 + 0.839661I		
a = -0.861171 + 0.910993I	-5.88667 - 8.79084I	-4.97697 + 9.61140I
b = -1.104870 - 0.465097I		
u = -0.784487 - 0.839661I		
a = -0.861171 - 0.910993I	-5.88667 + 8.79084I	-4.97697 - 9.61140I
b = -1.104870 + 0.465097I		
u = 1.104870 + 0.465097I		
a = -0.25047 + 1.91615I	5.88667 + 8.79084I	4.97697 - 9.61140I
b = 0.784487 - 0.839661I		
u = 1.104870 - 0.465097I		
a = -0.25047 - 1.91615I	5.88667 - 8.79084I	4.97697 + 9.61140I
b = 0.784487 + 0.839661I		
u = 0.969240 + 0.733052I		
a = -0.502789 - 0.521520I	-2.94270 + 5.73222I	2.37742 - 7.71227I
b = -0.727531 + 0.091585I		
u = 0.969240 - 0.733052I		
a = -0.502789 + 0.521520I	-2.94270 - 5.73222I	2.37742 + 7.71227I
b = -0.727531 - 0.091585I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.599304 + 0.453735I		
a = 0.368330 - 0.822096I	0.42065 - 1.46148I	2.50513 + 4.69748I
b = 0.024798 + 0.642855I		
u = -0.599304 - 0.453735I		
a = 0.368330 + 0.822096I	0.42065 + 1.46148I	2.50513 - 4.69748I
b = 0.024798 - 0.642855I		
u = 0.727531 + 0.091585I		
a = 0.96246 - 1.93359I	2.94270 + 5.73222I	-2.37742 - 7.71227I
b = -0.969240 + 0.733052I		
u = 0.727531 - 0.091585I		
a = 0.96246 + 1.93359I	2.94270 - 5.73222I	-2.37742 + 7.71227I
b = -0.969240 - 0.733052I		
u = -1.153190 + 0.551408I		
a = -1.09782 + 0.94427I	4.71017 - 7.32959I	5.39190 + 4.27146I
b = 0.460930 - 0.893438I		
u = -1.153190 - 0.551408I		
a = -1.09782 - 0.94427I	4.71017 + 7.32959I	5.39190 - 4.27146I
b = 0.460930 + 0.893438I		
u = -1.065270 + 0.737606I		
a = -0.072097 + 0.382579I	-4.11009 - 3.23667I	-2.24331 - 1.56003I
b = -0.988250 + 0.370938I		
u = -1.065270 - 0.737606I		
a = -0.072097 - 0.382579I	-4.11009 + 3.23667I	-2.24331 + 1.56003I
b = -0.988250 - 0.370938I		
u = -1.201910 + 0.626745I		
a = 0.37093 - 2.17715I	-18.7771I	0. + 11.50649I
b = 1.201910 + 0.626745I		
u = -1.201910 - 0.626745I		
a = 0.37093 + 2.17715I	18.7771I	0 11.50649I
b = 1.201910 - 0.626745I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.024798 + 0.642855I		
a = 0.434669 - 0.256752I	-0.42065 - 1.46148I	-2.50513 + 4.69748I
b = 0.599304 + 0.453735I		
u = -0.024798 - 0.642855I		
a = 0.434669 + 0.256752I	-0.42065 + 1.46148I	-2.50513 - 4.69748I
b = 0.599304 - 0.453735I		

$$\text{II. } I_2^u = \langle -10u^{15}a - 44u^{15} + \dots + 23a - 60, \ -6u^{15}a - 7u^{15} + \dots - 18a - 1, \ u^{16} - u^{15} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.161290au^{15} + 0.709677u^{15} + \cdots - 0.370968a + 0.967742 \\ 0.209677au^{15} + 0.822581u^{15} + \cdots + 0.967742a + 1.25806 \\ -0.145161au^{15} - 0.338710u^{15} + \cdots - 0.0161290a - 0.870968 \\ 0.2045161au^{15} + 0.483871u^{15} + \cdots + 0.951613a + 0.387097 \\ 0.145161au^{15} - 0.338710u^{15} + \cdots - 0.0161290a - 0.870968 \\ 0.145161au^{15} - 0.338710u^{15} + \cdots - 0.0161290a - 0.870968 \\ 0.12 = \begin{pmatrix} 0.709677au^{15} + 0.177419u^{15} + \cdots - 0.967742a - 0.758065 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{14} - \frac{1}{2}u^{13} + \cdots - u + \frac{3}{2} \\ -\frac{1}{2}u^{14} + \frac{1}{2}u^{13} + \cdots + u - \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{15} + \frac{1}{2}u^{14} + \cdots + u^{2} - \frac{3}{2}u \\ \frac{1}{2}u^{15} - \frac{1}{2}u^{14} + \cdots + u^{2} + \frac{3}{2}u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{15} + \frac{1}{2}u^{14} + \cdots + u^{2} - \frac{3}{2}u \\ \frac{1}{2}u^{15} - \frac{1}{2}u^{14} + \cdots + u^{2} - \frac{3}{2}u \\ \frac{1}{2}u^{15} - \frac{1}{2}u^{14} + \cdots + u^{2} - \frac{3}{2}u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$u^{15} - u^{14} - 4u^{13} + 3u^{12} + 12u^{11} - 8u^{10} - 19u^9 + 12u^8 + 22u^7 - 17u^6 - 13u^5 + 13u^4 + 6u^3 - 12u^2 - u + 4$$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{32} + 17u^{31} + \dots + 44u + 49$
c_2, c_5, c_6 c_{12}	$u^{32} + 3u^{31} + \dots - 24u - 7$
c_3, c_4, c_8 c_{10}	$(u^{16} + u^{15} + \dots - 2u - 1)^2$
c_{7}, c_{9}	$(u^{16} - 7u^{15} + \dots - 10u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_{11}	$y^{32} - 5y^{31} + \dots - 36432y + 2401$
c_2, c_5, c_6 c_{12}	$y^{32} - 17y^{31} + \dots - 44y + 49$
c_3, c_4, c_8 c_{10}	$(y^{16} - 7y^{15} + \dots - 10y + 1)^2$
c_7, c_9	$(y^{16} + 9y^{15} + \dots - 38y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.788317 + 0.682807I		
a = -0.595255 - 1.124710I	-3.11401 + 4.85157I	-1.81585 - 6.53900I
b = -1.117970 + 0.307163I		
u = 0.788317 + 0.682807I		
a = -0.180662 + 0.492331I	-3.11401 + 4.85157I	-1.81585 - 6.53900I
b = -0.017837 - 0.600078I		
u = 0.788317 - 0.682807I		
a = -0.595255 + 1.124710I	-3.11401 - 4.85157I	-1.81585 + 6.53900I
b = -1.117970 - 0.307163I		
u = 0.788317 - 0.682807I		
a = -0.180662 - 0.492331I	-3.11401 - 4.85157I	-1.81585 + 6.53900I
b = -0.017837 + 0.600078I		
u = -0.591599 + 0.705742I		
a = 0.585126 + 0.858286I	-6.35501 - 1.13134I	-7.11705 + 2.50814I
b = 1.139730 - 0.392250I		
u = -0.591599 + 0.705742I		
a = -1.06994 + 1.40604I	-6.35501 - 1.13134I	-7.11705 + 2.50814I
b = -1.212690 - 0.325469I		
u = -0.591599 - 0.705742I		
a = 0.585126 - 0.858286I	-6.35501 + 1.13134I	-7.11705 - 2.50814I
b = 1.139730 + 0.392250I		
u = -0.591599 - 0.705742I		
a = -1.06994 - 1.40604I	-6.35501 + 1.13134I	-7.11705 - 2.50814I
b = -1.212690 + 0.325469I		
u = 0.403938 + 0.782402I		
a = 0.537601 - 0.488130I	-2.07023 - 2.39915I	-2.79272 + 0.67092I
b = 1.066010 + 0.496333I		
u = 0.403938 + 0.782402I		
a = 0.323775 + 0.339818I	-2.07023 - 2.39915I	-2.79272 + 0.67092I
b = 0.239317 - 0.761969I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.403938 - 0.782402I		
a = 0.537601 + 0.488130I	-2.07023 + 2.39915I	-2.79272 - 0.67092I
b = 1.066010 - 0.496333I		
u = 0.403938 - 0.782402I		
a = 0.323775 - 0.339818I	-2.07023 + 2.39915I	-2.79272 - 0.67092I
b = 0.239317 + 0.761969I		
u = -1.043770 + 0.418403I		
a = -1.09608 + 1.20661I	5.51711 - 2.79176I	4.71062 + 5.20722I
b = 0.907771 - 0.788035I		
u = -1.043770 + 0.418403I		
a = -0.25905 - 1.76790I	5.51711 - 2.79176I	4.71062 + 5.20722I
b = 0.598541 + 0.903808I		
u = -1.043770 - 0.418403I		
a = -1.09608 - 1.20661I	5.51711 + 2.79176I	4.71062 - 5.20722I
b = 0.907771 + 0.788035I		
u = -1.043770 - 0.418403I		
a = -0.25905 + 1.76790I	5.51711 + 2.79176I	4.71062 - 5.20722I
b = 0.598541 - 0.903808I		
u = 1.034800 + 0.560504I		
a = 0.091624 - 0.769067I	-1.65289 + 4.78532I	0.50670 - 3.64348I
b = -1.296550 - 0.025732I		
u = 1.034800 + 0.560504I		
a = -1.47191 - 1.04844I	-1.65289 + 4.78532I	0.50670 - 3.64348I
b = 0.599452 + 0.525377I		
u = 1.034800 - 0.560504I		
a = 0.091624 + 0.769067I	-1.65289 - 4.78532I	0.50670 + 3.64348I
b = -1.296550 + 0.025732I		
u = 1.034800 - 0.560504I		
a = -1.47191 + 1.04844I	-1.65289 - 4.78532I	0.50670 + 3.64348I
b = 0.599452 - 0.525377I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.123030 + 0.603482I		
a = 0.144911 + 0.569988I	-2.94636 - 9.16484I	-1.24285 + 8.12303I
b = -1.337720 + 0.223376I		
u = -1.123030 + 0.603482I		
a = -0.02175 - 2.55717I	-2.94636 - 9.16484I	-1.24285 + 8.12303I
b = 1.013310 + 0.538962I		
u = -1.123030 - 0.603482I		
a = 0.144911 - 0.569988I	-2.94636 + 9.16484I	-1.24285 - 8.12303I
b = -1.337720 - 0.223376I		
u = -1.123030 - 0.603482I		
a = -0.02175 + 2.55717I	-2.94636 + 9.16484I	-1.24285 - 8.12303I
b = 1.013310 - 0.538962I		
u = -0.703289		
a = 1.00974 + 1.81316I	3.64868	-0.727360
b = -0.735566 - 0.789413I		
u = -0.703289		
a = 1.00974 - 1.81316I	3.64868	-0.727360
b = -0.735566 + 0.789413I		
u = 1.184280 + 0.595800I		
a = -1.039100 - 0.871887I	2.69734 + 13.02930I	2.99021 - 8.34283I
b = 0.316912 + 0.955765I		
u = 1.184280 + 0.595800I		
a = 0.19464 + 2.20969I	2.69734 + 13.02930I	2.99021 - 8.34283I
b = 1.122650 - 0.655206I		
u = 1.184280 - 0.595800I		
a = -1.039100 + 0.871887I	2.69734 - 13.02930I	2.99021 + 8.34283I
b = 0.316912 - 0.955765I		
u = 1.184280 - 0.595800I		
a = 0.19464 - 2.20969I	2.69734 - 13.02930I	2.99021 + 8.34283I
b = 1.122650 + 0.655206I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.397419		
a = -0.242245	-2.60497	2.24920
b = 1.14297		
u = 0.397419		
a = 3.93494	-2.60497	2.24920
b = -0.713658		

 $III. \\ I_3^u = \langle 2.49 \times 10^9 u^{31} + 7.22 \times 10^9 u^{30} + \dots + 4.33 \times 10^9 b - 1.90 \times 10^{10}, \ 4.19 \times 10^9 u^{31} + 3.81 \times 10^{10} u^{30} + \dots + 6.06 \times 10^{10} a - 1.18 \times 10^{11}, \ u^{32} + 3u^{31} + \dots - 24u - 7 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0691424u^{31} - 0.629196u^{30} + \dots + 5.09515u + 1.95518 \\ -0.576210u^{31} - 1.66690u^{30} + \dots + 13.6541u + 4.38102 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.31998u^{31} - 1.85626u^{30} + \dots + 14.2925u + 3.82399 \\ 0.764257u^{31} + 1.39777u^{30} + \dots - 11.0342u - 4.57071 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.555723u^{31} - 0.458488u^{30} + \dots + 3.25831u - 0.746714 \\ 0.764257u^{31} + 1.39777u^{30} + \dots - 11.0342u - 4.57071 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.96512u^{31} - 3.38280u^{30} + \dots + 20.7810u + 3.76820 \\ -0.492623u^{31} + 0.0921529u^{30} + \dots - 2.15098u - 3.83210 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.840372u^{31} + 2.64684u^{30} + \dots - 26.7090u - 12.6433 \\ 1.25713u^{31} + 1.93691u^{30} + \dots - 14.6476u - 5.37793 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} \\ -1.12512u^{31} - 2.16999u^{30} + \dots + 18.0064u + 9.67358 \\ -1.12512u^{31} - 2.16999u^{30} + \dots + 18.0064u + 6.60742 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2.47704u^{31} - 5.18246u^{30} + \dots + 43.4878u + 18.4735 \\ -0.0370626u^{31} + 0.414110u^{30} + \dots + 4.30973u - 1.05809 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{12809110840}{4328817643}u^{31} - \frac{13563282326}{4328817643}u^{30} + \cdots + \frac{52698861274}{4328817643}u + \frac{1562043686}{4328817643}u^{30} + \cdots$$

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$(u^{16} + 7u^{15} + \dots + 10u + 1)^2$
c_2, c_5, c_6 c_{12}	$(u^{16} - u^{15} + \dots + 2u - 1)^2$
c_3, c_4, c_8 c_{10}	$u^{32} - 3u^{31} + \dots + 24u - 7$
c_7, c_9	$u^{32} - 17u^{31} + \dots - 44u + 49$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$(y^{16} + 9y^{15} + \dots - 38y + 1)^2$
c_2, c_5, c_6 c_{12}	$(y^{16} - 7y^{15} + \dots - 10y + 1)^2$
c_3, c_4, c_8 c_{10}	$y^{32} - 17y^{31} + \dots - 44y + 49$
c_{7}, c_{9}	$y^{32} - 5y^{31} + \dots - 36432y + 2401$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.316912 + 0.955765I		
a = -0.594910 - 0.749884I	-2.69734 + 13.02930I	-2.99021 - 8.34283I
b = -1.184280 + 0.595800I		
u = -0.316912 - 0.955765I		
a = -0.594910 + 0.749884I	-2.69734 - 13.02930I	-2.99021 + 8.34283I
b = -1.184280 - 0.595800I		
u = 0.735566 + 0.789413I		
a = 0.610019 + 0.324151I	-3.64868	-60.727363 + 0.10I
b = 0.703289		
u = 0.735566 - 0.789413I		
a = 0.610019 - 0.324151I	-3.64868	-60.727363 + 0.10I
b = 0.703289		
u = -0.598541 + 0.903808I		
a = 0.806587 - 0.526196I	-5.51711 - 2.79176I	-4.71062 + 5.20722I
b = 1.043770 + 0.418403I		
u = -0.598541 - 0.903808I		
a = 0.806587 + 0.526196I	-5.51711 + 2.79176I	-4.71062 - 5.20722I
b = 1.043770 - 0.418403I		
u = -1.14297		
a = 0.313189	2.60497	-2.24920
b = -0.397419		
u = -1.013310 + 0.538962I		
a = 1.25250 - 2.16110I	2.94636 - 9.16484I	1.24285 + 8.12303I
b = 1.123030 + 0.603482I		
u = -1.013310 - 0.538962I		
a = 1.25250 + 2.16110I	2.94636 + 9.16484I	1.24285 - 8.12303I
b = 1.123030 - 0.603482I		
u = 1.117970 + 0.307163I		
a = 0.24441 - 1.68999I	3.11401 + 4.85157I	1.81585 - 6.53900I
b = -0.788317 + 0.682807I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.117970 - 0.307163I		
a = 0.24441 + 1.68999I	3.11401 - 4.85157I	1.81585 + 6.53900I
b = -0.788317 - 0.682807I		
u = -1.066010 + 0.496333I		
a = 0.946001 - 0.739629I	2.07023 - 2.39915I	2.79272 + 0.67092I
b = -0.403938 + 0.782402I		
u = -1.066010 - 0.496333I		
a = 0.946001 + 0.739629I	2.07023 + 2.39915I	2.79272 - 0.67092I
b = -0.403938 - 0.782402I		
u = -0.239317 + 0.761969I		
a = -0.113323 + 0.767572I	2.07023 + 2.39915I	2.79272 - 0.67092I
b = -0.403938 - 0.782402I		
u = -0.239317 - 0.761969I		
a = -0.113323 - 0.767572I	2.07023 - 2.39915I	2.79272 + 0.67092I
b = -0.403938 + 0.782402I		
u = -0.907771 + 0.788035I		
a = 0.294677 - 0.312269I	-5.51711 + 2.79176I	-4.71062 - 5.20722I
b = 1.043770 - 0.418403I		
u = -0.907771 - 0.788035I		
a = 0.294677 + 0.312269I	-5.51711 - 2.79176I	-4.71062 + 5.20722I
b = 1.043770 + 0.418403I		
u = -0.599452 + 0.525377I		
a = -1.42712 + 0.46795I	1.65289 + 4.78532I	-0.50670 - 3.64348I
b = -1.034800 + 0.560504I		
u = -0.599452 - 0.525377I		
a = -1.42712 - 0.46795I	1.65289 - 4.78532I	-0.50670 + 3.64348I
b = -1.034800 - 0.560504I		
u = -1.139730 + 0.392250I		
a = -1.312740 + 0.374363I	6.35501 + 1.13134I	7.11705 - 2.50814I
b = 0.591599 - 0.705742I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.139730 - 0.392250I		
a = -1.312740 - 0.374363I	6.35501 - 1.13134I	7.11705 + 2.50814I
b = 0.591599 + 0.705742I		
u = 1.212690 + 0.325469I		
a = 0.01241 + 1.85223I	6.35501 + 1.13134I	7.11705 - 2.50814I
b = 0.591599 - 0.705742I		
u = 1.212690 - 0.325469I		
a = 0.01241 - 1.85223I	6.35501 - 1.13134I	7.11705 + 2.50814I
b = 0.591599 + 0.705742I		
u = 0.713658		
a = -1.79386	2.60497	-2.24920
b = -0.397419		
u = 1.296550 + 0.025732I		
a = 0.640754 + 1.142520I	1.65289 - 4.78532I	-0.50670 + 3.64348I
b = -1.034800 - 0.560504I		
u = 1.296550 - 0.025732I		
a = 0.640754 - 1.142520I	1.65289 + 4.78532I	-0.50670 - 3.64348I
b = -1.034800 + 0.560504I		
u = -1.122650 + 0.655206I		
a = -0.59706 + 1.99045I	-2.69734 - 13.02930I	-2.99021 + 8.34283I
b = -1.184280 - 0.595800I		
u = -1.122650 - 0.655206I		
a = -0.59706 - 1.99045I	-2.69734 + 13.02930I	-2.99021 - 8.34283I
b = -1.184280 + 0.595800I		
u = 1.337720 + 0.223376I		
a = -0.821632 - 1.066950I	2.94636 - 9.16484I	1.24285 + 8.12303I
b = 1.123030 + 0.603482I		
u = 1.337720 - 0.223376I		
a = -0.821632 + 1.066950I	2.94636 + 9.16484I	1.24285 - 8.12303I
b = 1.123030 - 0.603482I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.017837 + 0.600078I		
a = 0.371190 - 0.127131I	3.11401 - 4.85157I	1.81585 + 6.53900I
b = -0.788317 - 0.682807I		
u = 0.017837 - 0.600078I		
a = 0.371190 + 0.127131I	3.11401 + 4.85157I	1.81585 - 6.53900I
b = -0.788317 + 0.682807I		

IV. $I_4^u = \langle -4.00 \times 10^6 a u^{23} - 2.34 \times 10^5 u^{23} + \dots + 6.12 \times 10^6 a - 7.13 \times 10^5, \ 17866 u^{23} a - 3017 u^{23} + \dots + 14683 a + 59324, \ u^{24} - u^{23} + \dots - 4u + 1 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \\ 0 \\ 0 = \begin{pmatrix} 1 \\ 1.16226au^{23} + 0.0681008u^{23} + \cdots - 1.77698a + 0.207087 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \\ 0.358934au^{23} + 0.428803u^{23} + \cdots + 0.00310035a + 2.85834 \\ 0.358934au^{23} + 1.94641u^{23} + \cdots - 0.655544a - 1.58804 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.92220au^{23} + 2.37522u^{23} + \cdots - 0.652444a + 1.27030 \\ 0.358934au^{23} + 1.94641u^{23} + \cdots - 0.655544a - 1.58804 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0681008au^{23} - 0.726957u^{23} + \cdots - 0.207087a + 3.53863 \\ 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1.20509u^{23} - 0.359300u^{22} + \cdots - 1.96025u - 2.45787 \\ -0.633240u^{23} + 0.142840u^{22} + \cdots - 0.100893u - 1.14541 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.418980u^{23} - 0.263544u^{22} + \cdots + 0.0328972u - 3.47744 \\ -1.27357u^{23} - 0.0421915u^{22} + \cdots - 3.65599u - 0.159961 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.909380u^{23} - 0.724960u^{22} + \cdots - 2.64547u - 2.84420 \\ -1.49517u^{23} + 0.576740u^{22} + \cdots - 5.32860u + 0.203987 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{19748}{8177}u^{23} - \frac{17088}{8177}u^{22} + \dots + \frac{29544}{8177}u + \frac{7314}{8177}u^{23} + \dots$$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$(u^{24} + 13u^{23} + \dots + 4u + 1)^2$
c_2, c_5, c_6 c_{12}	$(u^{24} - u^{23} + \dots - 4u + 1)^2$
c_3, c_4, c_8 c_{10}	$(u^{24} + u^{23} + \dots + 4u + 1)^2$
c_7, c_9	$(u^{24} - 13u^{23} + \dots - 4u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_9 c_{11}	$(y^{24} - 5y^{23} + \dots + 48y + 1)^2$
$c_2, c_3, c_4 c_5, c_6, c_8 c_{10}, c_{12}$	$(y^{24} - 13y^{23} + \dots - 4y + 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.961597 + 0.331697I		
a = -1.14496 + 1.69023I	-1.20211I	0. + 5.63740I
b = -1.189900 + 0.171507I		
u = -0.961597 + 0.331697I		
a = 0.84372 - 4.00567I	-1.20211I	0. + 5.63740I
b = 0.961597 + 0.331697I		
u = -0.961597 - 0.331697I		
a = -1.14496 - 1.69023I	1.20211I	05.63740I
b = -1.189900 - 0.171507I		
u = -0.961597 - 0.331697I		
a = 0.84372 + 4.00567I	1.20211I	0 5.63740I
b = 0.961597 - 0.331697I		
u = 0.778724 + 0.569322I		
a = 0.310143 + 0.528976I	-3.11509 + 0.09361I	-1.99088 + 0.76204I
b = 1.165410 + 0.089633I		
u = 0.778724 + 0.569322I		
a = 1.36485 + 0.45718I	-3.11509 + 0.09361I	-1.99088 + 0.76204I
b = -0.313835 - 0.336199I		
u = 0.778724 - 0.569322I		
a = 0.310143 - 0.528976I	-3.11509 - 0.09361I	-1.99088 - 0.76204I
b = 1.165410 - 0.089633I		
u = 0.778724 - 0.569322I		
a = 1.36485 - 0.45718I	-3.11509 - 0.09361I	-1.99088 - 0.76204I
b = -0.313835 + 0.336199I		
u = 0.285725 + 0.889847I		
a = -0.370197 + 0.791357I	-7.58818I	0. + 5.13539I
b = -1.104540 - 0.597792I		
u = 0.285725 + 0.889847I		
a = -0.047959 - 0.506195I	-7.58818I	0. + 5.13539I
b = -0.285725 + 0.889847I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.285725 - 0.889847I		
a = -0.370197 - 0.791357I	7.58818I	0 5.13539I
b = -1.104540 + 0.597792I		
u = 0.285725 - 0.889847I		
a = -0.047959 + 0.506195I	7.58818I	0 5.13539I
b = -0.285725 - 0.889847I		
u = -0.384175 + 0.809134I		
a = 0.921449 - 0.770004I	-5.13898 + 3.88480I	-4.80561 - 4.17140I
b = 1.284660 + 0.258642I		
u = -0.384175 + 0.809134I		
a = -0.239861 - 1.323340I	-5.13898 + 3.88480I	-4.80561 - 4.17140I
b = -1.057630 + 0.470734I		
u = -0.384175 - 0.809134I		
a = 0.921449 + 0.770004I	-5.13898 - 3.88480I	-4.80561 + 4.17140I
b = 1.284660 - 0.258642I		
u = -0.384175 - 0.809134I		
a = -0.239861 + 1.323340I	-5.13898 - 3.88480I	-4.80561 + 4.17140I
b = -1.057630 - 0.470734I		
u = 0.564477 + 0.633261I		
a = 0.516201 + 0.752030I	-3.11509 - 0.09361I	-1.99088 - 0.76204I
b = 1.165410 - 0.089633I		
u = 0.564477 + 0.633261I		
a = 0.964141 - 0.773520I	-3.11509 - 0.09361I	-1.99088 - 0.76204I
b = -0.313835 + 0.336199I		
u = 0.564477 - 0.633261I		
a = 0.516201 - 0.752030I	-3.11509 + 0.09361I	-1.99088 + 0.76204I
b = 1.165410 + 0.089633I		
u = 0.564477 - 0.633261I		
a = 0.964141 + 0.773520I	-3.11509 + 0.09361I	-1.99088 + 0.76204I
b = -0.313835 - 0.336199I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.057630 + 0.470734I		
a = -1.191510 - 0.152615I	5.13898 + 3.88480I	4.80561 - 4.17140I
b = 0.384175 + 0.809134I		
u = 1.057630 + 0.470734I		
a = 0.88866 + 2.35743I	5.13898 + 3.88480I	4.80561 - 4.17140I
b = 0.998981 - 0.600305I		
u = 1.057630 - 0.470734I		
a = -1.191510 + 0.152615I	5.13898 - 3.88480I	4.80561 + 4.17140I
b = 0.384175 - 0.809134I		
u = 1.057630 - 0.470734I		
a = 0.88866 - 2.35743I	5.13898 - 3.88480I	4.80561 + 4.17140I
b = 0.998981 + 0.600305I		
u = -0.998981 + 0.600305I		
a = 0.231465 - 0.425028I	-5.13898 - 3.88480I	-4.80561 + 4.17140I
b = 1.284660 - 0.258642I		
u = -0.998981 + 0.600305I		
a = -0.35406 + 2.53701I	-5.13898 - 3.88480I	-4.80561 + 4.17140I
b = -1.057630 - 0.470734I		
u = -0.998981 - 0.600305I		
a = 0.231465 + 0.425028I	-5.13898 + 3.88480I	-4.80561 - 4.17140I
b = 1.284660 + 0.258642I		
u = -0.998981 - 0.600305I		
a = -0.35406 - 2.53701I	-5.13898 + 3.88480I	-4.80561 - 4.17140I
b = -1.057630 + 0.470734I		
u = -1.165410 + 0.089633I		
a = 0.357503 + 1.262090I	3.11509 + 0.09361I	1.99088 + 0.76204I
b = -0.564477 - 0.633261I		
u = -1.165410 + 0.089633I		
a = 0.766457 - 1.075240I	3.11509 + 0.09361I	1.99088 + 0.76204I
b = -0.778724 + 0.569322I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.165410 - 0.089633I		
a = 0.357503 - 1.262090I	3.11509 - 0.09361I	1.99088 - 0.76204I
b = -0.564477 + 0.633261I		
u = -1.165410 - 0.089633I		
a = 0.766457 + 1.075240I	3.11509 - 0.09361I	1.99088 - 0.76204I
b = -0.778724 - 0.569322I		
u = 1.189900 + 0.171507I		
a = 0.34082 - 1.84891I	-1.20211I	0. + 5.63740I
b = -1.189900 + 0.171507I		
u = 1.189900 + 0.171507I		
a = -1.64441 - 1.91838I	-1.20211I	0. + 5.63740I
b = 0.961597 + 0.331697I		
u = 1.189900 - 0.171507I		
a = 0.34082 + 1.84891I	1.20211I	0 5.63740I
b = -1.189900 - 0.171507I		
u = 1.189900 - 0.171507I		
a = -1.64441 + 1.91838I	1.20211I	0 5.63740I
b = 0.961597 - 0.331697I		
u = 1.104540 + 0.597792I		
a = 0.892047 + 0.655228I	7.58818I	0 5.13539I
b = -0.285725 - 0.889847I		
u = 1.104540 + 0.597792I		
a = -0.40619 - 2.06983I	7.58818I	0 5.13539I
b = -1.104540 + 0.597792I		
u = 1.104540 - 0.597792I		
a = 0.892047 - 0.655228I	-7.58818I	0. + 5.13539I
b = -0.285725 + 0.889847I		
u = 1.104540 - 0.597792I		
a = -0.40619 + 2.06983I	-7.58818I	0. + 5.13539I
b = -1.104540 - 0.597792I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.284660 + 0.258642I		
a = -1.06597 + 1.02549I	5.13898 + 3.88480I	4.80561 - 4.17140I
b = 0.998981 - 0.600305I		
u = -1.284660 + 0.258642I		
a = -0.02606 - 1.54767I	5.13898 + 3.88480I	4.80561 - 4.17140I
b = 0.384175 + 0.809134I		
u = -1.284660 - 0.258642I		
a = -1.06597 - 1.02549I	5.13898 - 3.88480I	4.80561 + 4.17140I
b = 0.998981 + 0.600305I		
u = -1.284660 - 0.258642I		
a = -0.02606 + 1.54767I	5.13898 - 3.88480I	4.80561 + 4.17140I
b = 0.384175 - 0.809134I		
u = 0.313835 + 0.336199I		
a = -0.69335 + 1.26837I	3.11509 - 0.09361I	1.99088 - 0.76204I
b = -0.564477 + 0.633261I		
u = 0.313835 + 0.336199I		
a = -2.21293 + 0.16381I	3.11509 - 0.09361I	1.99088 - 0.76204I
b = -0.778724 - 0.569322I		
u = 0.313835 - 0.336199I		
a = -0.69335 - 1.26837I	3.11509 + 0.09361I	1.99088 + 0.76204I
b = -0.564477 - 0.633261I		
u = 0.313835 - 0.336199I		
a = -2.21293 - 0.16381I	3.11509 + 0.09361I	1.99088 + 0.76204I
b = -0.778724 + 0.569322I		

V.
$$I_5^u = \langle -2a^3 + 12a^2 + 68b + 43a + 47, \ 2a^4 + 2a^3 + 9a^2 - 8a + 11, \ u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0294118a^{3} - 0.176471a^{2} - 0.632353a - 0.691176 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.205882a^{3} + 0.764706a^{2} + 0.573529a + 1.16176 \\ -0.235294a^{3} - 0.588235a^{2} - 0.941176a - 0.470588 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0294118a^{3} + 0.176471a^{2} - 0.367647a + 0.691176 \\ -0.235294a^{3} - 0.588235a^{2} - 0.941176a - 0.470588 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0588235a^{3} + 0.352941a^{2} + 0.264706a - 0.617647 \\ -0.235294a^{3} - 0.588235a^{2} - 0.941176a + 1.52941 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.323529a^{3} - 0.0588235a^{2} - 1.04412a + 0.602941 \\ 0.323529a^{3} + 0.0588235a^{2} + 1.04412a + 0.397059 \\ -0.323529a^{3} + 0.0588235a^{2} + 1.04412a + 0.602941 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.323529a^{3} + 0.0588235a^{2} + 1.04412a + 0.602941 \\ -0.323529a^{3} + 0.0588235a^{2} + 1.04412a - 0.602941 \\ -0.323529a^{3} - 0.0588235a^{2} + 1.04412a - 0.602941 \\ -0.323529a^{3} - 0.0588235a^{2} - 1.04412a + 0.602941 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{16}{17}a^3 + \frac{40}{17}a^2 + \frac{64}{17}a + \frac{100}{17}$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$(u^2 - u + 2)^2$
c_2, c_5, c_6 c_{12}	$u^4 - u^2 + 2$
c_3, c_7, c_8 c_9	$(u+1)^4$
c_4,c_{10}	$(u-1)^4$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$(y^2 + 3y + 4)^2$
c_2, c_5, c_6 c_{12}	$(y^2 - y + 2)^2$
$c_3, c_4, c_7 \\ c_8, c_9, c_{10}$	$(y-1)^4$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.525702 + 0.830780I	4.11234 - 5.33349I	6.00000 + 5.29150I
b = -0.978318 - 0.676097I		
u = -1.00000		
a = 0.525702 - 0.830780I	4.11234 + 5.33349I	6.00000 - 5.29150I
b = -0.978318 + 0.676097I		
u = -1.00000		
a = -1.02570 + 2.15366I	4.11234 + 5.33349I	6.00000 - 5.29150I
b = 0.978318 - 0.676097I		
u = -1.00000		
a = -1.02570 - 2.15366I	4.11234 - 5.33349I	6.00000 + 5.29150I
b = 0.978318 + 0.676097I		

VI.
$$I_6^u = \langle b+1, \ u^2+2a+u, \ u^4-u^2+2 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{2} - \frac{1}{2}u \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{2} - \frac{1}{2}u + 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{2} - \frac{1}{2}u \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}u^{2} + \frac{1}{2}u \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} + u \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} - u \\ u^{3} - u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2 4$

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_{11} \\ c_{12}$	$(u-1)^4$
c_{2}, c_{6}	$(u+1)^4$
$c_3, c_4, c_8 \ c_{10}$	$u^4 - u^2 + 2$
c_{7}, c_{9}	$(u^2 + u + 2)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_8 c_{10}	$(y^2 - y + 2)^2$
c_{7}, c_{9}	$(y^2 + 3y + 4)^2$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.978318 + 0.676097I		
a = -0.739159 - 0.999486I	-4.11234 + 5.33349I	-6.00000 - 5.29150I
b = -1.00000		
u = 0.978318 - 0.676097I		
a = -0.739159 + 0.999486I	-4.11234 - 5.33349I	-6.00000 + 5.29150I
b = -1.00000		
u = -0.978318 + 0.676097I		
a = 0.239159 + 0.323389I	-4.11234 - 5.33349I	-6.00000 + 5.29150I
b = -1.00000		
u = -0.978318 - 0.676097I		
a = 0.239159 - 0.323389I	-4.11234 + 5.33349I	-6.00000 - 5.29150I
b = -1.00000		

VII.
$$I_7^u = \langle -2a^3 + 14a^2 + 105b + 74a + 69, 2a^4 + 4a^3 + 10a^2 + 9, u - 1 \rangle$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8

Crossings	u-Polynomials at each crossing
c_1, c_{11}	$(u^2+1)^2$
c_2, c_5, c_6 c_{12}	$u^4 + 1$
c_{3}, c_{8}	$(u-1)^4$
c_4, c_7, c_9 c_{10}	$(u+1)^4$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$(y+1)^4$
c_2, c_5, c_6 c_{12}	$(y^2+1)^2$
$c_3, c_4, c_7 \\ c_8, c_9, c_{10}$	$(y-1)^4$

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.207107 + 0.914214I	4.93480	8.00000
b = -0.707107 - 0.707107I		
u = 1.00000		
a = 0.207107 - 0.914214I	4.93480	8.00000
b = -0.707107 + 0.707107I		
u = 1.00000		
a = -1.20711 + 1.91421I	4.93480	8.00000
b = 0.707107 - 0.707107I		
u = 1.00000		
a = -1.20711 - 1.91421I	4.93480	8.00000
b = 0.707107 + 0.707107I		

VIII.
$$I_8^u = \langle b-1, \ u^3-u^2+2a-u-1, \ u^4+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{3} + \frac{1}{2}u^{2} + \frac{1}{2}u + \frac{1}{2} \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{3} - \frac{1}{2}u^{2} - \frac{1}{2}u + \frac{1}{2} \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{3} - \frac{1}{2}u^{2} - \frac{1}{2}u - \frac{1}{2} \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{3} - \frac{1}{2}u^{2} + \frac{1}{2}u - \frac{1}{2} \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ -u^{3} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -u^{3} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_{11}	$(u-1)^4$
c_3, c_4, c_8 c_{10}	$u^4 + 1$
c_5,c_{12}	$(u+1)^4$
c_7, c_9	$(u^2+1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_8 c_{10}	$(y^2+1)^2$
c_{7}, c_{9}	$(y+1)^4$

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.707107 + 0.707107I		
a = 1.207110 + 0.500000I	-4.93480	-8.00000
b = 1.00000		
u = 0.707107 - 0.707107I		
a = 1.207110 - 0.500000I	-4.93480	-8.00000
b = 1.00000		
u = -0.707107 + 0.707107I		
a = -0.207107 - 0.500000I	-4.93480	-8.00000
b = 1.00000		
u = -0.707107 - 0.707107I		
a = -0.207107 + 0.500000I	-4.93480	-8.00000
b = 1.00000		

IX.
$$I_9^u = \langle b, a+1, u-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -2\\1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_6, c_{11}, c_{12}	u
c_3, c_8	u-1
c_4, c_7, c_9 c_{10}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_{11}, c_{12}	y
c_3, c_4, c_7 c_8, c_9, c_{10}	y-1

Solutions to I_9^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	3.28987	12.0000
b = 0		

X.
$$I_{10}^u = \langle -2au + 4b - 2a + u + 5, \ 4a^2 - 4a + 17, \ u^2 + 2u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\2u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}au + \frac{1}{2}a - \frac{1}{4}u - \frac{5}{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u\\-2u-2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}au + \frac{3}{4}a + \frac{17}{8}u + \frac{25}{8}\\au + a - \frac{1}{2}u - \frac{3}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{3}{4}au + \frac{7}{4}a + \frac{13}{8}u + \frac{13}{8}\\au + a - \frac{1}{2}u - \frac{3}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{5}{4}au + \frac{9}{4}a - \frac{13}{8}u - \frac{21}{8}\\-2u - 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} au + a - \frac{9}{2}u - \frac{11}{2}\\-au - a + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -3u - 2\\3u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -au - a + \frac{5}{2}u + \frac{9}{2}\\au + a + \frac{5}{2}u + \frac{3}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -au - a + \frac{7}{2}u + \frac{9}{2}\\au + a + \frac{3}{2}u + \frac{3}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_{10}, c_{11}, c_{12}	$(u-1)^4$
c_2, c_3, c_6 c_7, c_8, c_9	$(u+1)^4$

Crossings		Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	$(y-1)^4$	

Solutions to I_{10}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.50000 + 2.00000I	0	0
b = -1.00000		
u = -1.00000		
a = 0.50000 + 2.00000I	0	0
b = -1.00000		
u = -1.00000		
a = 0.50000 - 2.00000I	0	0
b = -1.00000		
u = -1.00000		
a = 0.50000 - 2.00000I	0	0
b = -1.00000		

XI.
$$I_{11}^u = \langle b+1, \ u+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a+1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a - 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_{11}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$u = \cdots$		
$a = \cdots$	0	0
$b = \cdots$		

XII.
$$I_1^v = \langle a, \ b-1, \ v+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_{11}	u-1
$c_3, c_4, c_7 \\ c_8, c_9, c_{10}$	u
c_5, c_{12}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_{11}, c_{12}	y-1
c_3, c_4, c_7 c_8, c_9, c_{10}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

XIII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u(u-1)^{13}(u^{2}+1)^{2}(u^{2}-u+2)^{2}(u^{16}+7u^{15}+\cdots+10u+1)^{2}$ $\cdot (u^{22}+9u^{21}+\cdots+12u+4)(u^{24}+13u^{23}+\cdots+4u+1)^{2}$ $\cdot (u^{32}+17u^{31}+\cdots+44u+49)$
c_2, c_6	$ u(u-1)^{5}(u+1)^{8}(u^{4}+1)(u^{4}-u^{2}+2)(u^{16}-u^{15}+\cdots+2u-1)^{2} $ $ (u^{22}+3u^{21}+\cdots+2u+2)(u^{24}-u^{23}+\cdots-4u+1)^{2} $ $ (u^{32}+3u^{31}+\cdots-24u-7) $
c_{3}, c_{8}	$u(u-1)^{5}(u+1)^{8}(u^{4}+1)(u^{4}-u^{2}+2)(u^{16}+u^{15}+\cdots-2u-1)^{2}$ $\cdot (u^{22}-3u^{21}+\cdots-2u+2)(u^{24}+u^{23}+\cdots+4u+1)^{2}$ $\cdot (u^{32}-3u^{31}+\cdots+24u-7)$
c_4, c_{10}	$ u(u-1)^{8}(u+1)^{5}(u^{4}+1)(u^{4}-u^{2}+2)(u^{16}+u^{15}+\cdots-2u-1)^{2} $ $ \cdot (u^{22}-3u^{21}+\cdots-2u+2)(u^{24}+u^{23}+\cdots+4u+1)^{2} $ $ \cdot (u^{32}-3u^{31}+\cdots+24u-7) $
c_5, c_{12}	$ u(u-1)^{8}(u+1)^{5}(u^{4}+1)(u^{4}-u^{2}+2)(u^{16}-u^{15}+\cdots+2u-1)^{2} $ $ \cdot (u^{22}+3u^{21}+\cdots+2u+2)(u^{24}-u^{23}+\cdots-4u+1)^{2} $ $ \cdot (u^{32}+3u^{31}+\cdots-24u-7) $
c_7, c_9	$u(u+1)^{13}(u^2+1)^2(u^2+u+2)^2(u^{16}-7u^{15}+\cdots-10u+1)^2$ $\cdot (u^{22}-9u^{21}+\cdots-12u+4)(u^{24}-13u^{23}+\cdots-4u+1)^2$ $\cdot (u^{32}-17u^{31}+\cdots-44u+49)$

XIV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_9 c_{11}	$y(y-1)^{13}(y+1)^{4}(y^{2}+3y+4)^{2}(y^{16}+9y^{15}+\cdots-38y+1)^{2}$ $\cdot (y^{22}+15y^{21}+\cdots-144y+16)(y^{24}-5y^{23}+\cdots+48y+1)^{2}$ $\cdot (y^{32}-5y^{31}+\cdots-36432y+2401)$
c_2, c_3, c_4 c_5, c_6, c_8 c_{10}, c_{12}	$y(y-1)^{13}(y^2+1)^2(y^2-y+2)^2(y^{16}-7y^{15}+\cdots-10y+1)^2$ $\cdot (y^{22}-9y^{21}+\cdots-12y+4)(y^{24}-13y^{23}+\cdots-4y+1)^2$ $\cdot (y^{32}-17y^{31}+\cdots-44y+49)$