Laboratorul 2: Funcții

Exerciții

- 1. Să se scrie o funcție poly2 care are patru argumente de tip Double, a,b,c,x și calculează a*x^2+b*x+c. Scrieți și signatura funcției (poly :: ceva).
- 2. Să se scrie o funcție eeny care întoarce "eeny" pentru input par și "meeny" pentru input impar. Hint: puteti folosi funcția even (puteți căuta pe https://hoogle.haskell.org/).

```
eeny :: Integer -> String
eeny = undefined
```

3. Să se scrie o funcție fizzbuzz care întoarce "Fizz" pentru numerele divizibile cu 3, "Buzz" pentru numerele divizibile cu 5 și "FizzBuzz" pentru numerele divizibile cu ambele. Pentru orice alt număr se întoarce șirul vid. Pentru a calcula modulo a două numere puteți folosi funcția mod. Să se scrie această funcție în 2 moduri: folosind if și folosind gărzi (condiții).

```
fizzbuzz :: Integer -> String
fizzbuzz = undefined
```

Recursivitate

Una dintre diferențele dintre programarea declarativă și cea imperativă este modalitatea de abordare a problemei iterării: în timp ce in programarea imperativă acesta este rezolvată prin bucle (while, for, ...), în programarea declarativă rezolvarea iterării se face prin conceptul de recursie.

Un avantaj al recursiei față de bucle este acela că usurează sarcina de scriere și verificare a corectitudinii programelor prin raționamente de tip inductiv: construiește rezultatul pe baza rezultatelor unor subprobleme mai simple (aceeași problemă, dar pe o dimensiune mai mică a datelor).

Un foarte simplu exemplu de recursie este acela al calculării unui element de index dat din secvența numerelor Fibonacci, definită recursiv de:

$$F_n = \left\{ \begin{array}{ll} n & \text{dacă } n \in \{0,1\} \\ F_{n-1} + F_{n-2} & \text{dacă } n > 1 \end{array} \right.$$

Putem transcrie această definiție direct in Haskell:

```
fibonacciEcuational n = fibonacciEcuational (n - 1) + fibonacciEcuational (n - 2)
```

4. Numerele tribonacci sunt definite de ecuattia

$$T_n = \begin{cases} 1 & \text{dacă } n = 1\\ 1 & \text{dacă } n = 2\\ 2 & \text{dacă } n = 3\\ T_{n-1} + T_{n-2} + T_{n-3} \text{ dacă } n > 3 \end{cases}$$

Să se implementeze functia tribonacci atât cu cazuri cât și ecuațional.

```
tribonacci :: Integer -> Integer
tribonacci = undefined
```

5. Să se scrie o funcție care calculează coeficienții binomiali, folosind recursivitate. Aceștia sunt determinați folosind urmatoarele ecuatii.

```
B(n,k) = B(n-1,k) + B(n-1,k-1)
B(n,0) = 1
B(0,k) = 0
binomial :: Integer -> Integer -> Integer
binomial = undefined
```

Liste

Functii utile: head, tail, take, drop, length

- 6. Să se implementeze următoarele funcții folosind liste:
- a) verifL verifică dacă lungimea unei liste date ca parametru este pară

```
verifL :: [Int] -> Bool
verifL = undefined
```

b) takefinal - pentru o listă dată ca parametru și un număr n, întoarce lista cu ultimele n elemente. Dacă lista are mai putin de n elemente, se intoarce lista nemodificată.

```
takefinal :: [Int] -> Int -> [Int]
takefinal = undefined
```

Cum trebuie să modificăm prototipul funcției pentru a putea fi folosită și pentru șiruri de caractere?

c) remove - pentru o listă și un număr n se întoarce lista din care se șterge elementul de pe poziția n. (Hint: puteți folosi funcțiile take și drop). Scriți si prototipul functiei.

Recursivitate pe Liste

Listele sunt definite inductiv: - vida [] - construită prin adăugarea unui element head unei liste existente tail (head:tail)

Recursivitatea pe liste se bazeaza pe definiția inductivă a lor.

Exemplu: Dată fiind o listă de numere întregi, să se scrie o funcție 'semiPareRec care elimină numerele impare și le injumătățește pe cele pare. De exemplu:

```
-- semiPareRec [0,2,1,7,8,56,17,18] == [0,1,4,28,9]
```

- 7. Exerciții: să se scrie urmatoarele funcții folosind recursivitate:
- a) myreplicate pentru un întreg n si o valoare v întoarce lista de lungime n ce are doar elemente egale cu v. Să se scrie și prototipul functiei.
- b) sum Imp - pentru o listă de numere întregi, calculează suma valorilor impare. Să se scrie și prototipul functiei.
- c) totalLen pentru o listă de șiruri de caractere, calculează suma lungimilor șirurilor care încep cu caracterul 'A'.

```
totalLen :: [String] -> Int
totalLen = undefined
```