Q3.3) X m.s. SEX, at iso(S). WTS: at 25 => QF iso(X) (at iso (S) (=) dist (a, S) {a}) +0 & a +5 > (=) Assure $a \in \partial S$. Here $dist(a, S) = dist(a, S^c) = 0$. a = iso(5) given, so a + 5 m) a + 5 => 5= 5 = 1{a} =) dist (a, 5 ({ a}) = 0 by (x). Also 5 ({ a}) EXX a gields that alist (a, X 18a}) < dist (a, S ({a}) = 0 =) elist (a, X19a3) = 0. This implies that a & iso(X). (=) = ppose a & iso(x). Thus dist(a, X)(a) = 0 also given that at iso(S), dist(a, SIgas) =: 170. WTS: a E &S, i.e. dist(a,S) = dist(a,Sc)=0. Clearly, at iso(5) => a & S => dist(a, S) =0. So me shall show that dist (a, sc) = 0. Let ZEr/2. Py the defor of dist (·, x) = inf{d(·, o)} 3 y E X\{q} s.t. d(y,a) < dist(a, X){a})+ E. Notice that if y ∈ S\{a} (X){a} then $d(y,a) \leq E \leq r/2 < r = dist(a, S)$ {a} a contradiction, so y must lie in (X12a3) 1 (512a3) = X15 = S. Hence of E can be taken orbitrary, we deduce

that winf { al(y, a)} = 0 (=> dist(a, 5°) =0. By (1) & (2), a ∈ ds. Q3.5) Recall: e is a non-empty finite collection of subsets of a m.s. X. Then (i) 2(UE) = U{2A [A E E] & (ii) 2(ME) = U{2A [A E E] With reference to these we show that: noF; & JAF; or not; \$ 00F; when F; CX j=1,2,-,n. For instance let F1 = (0,1) & F2 = (1,2) with X = 12 eqriped with Euclidean metric. Thus 2F1 = {0,1} & 7F2 = {1,2} in which case noti & anti. Mouner, for Fielog1] = 513 & F2 = (1,12) ~> ~> ~> ~> ~> F; & d d UF; = {1} Q3.6) Consider A = { 1/n: ne IN }. Then 3 A = AU {0}. Q.3.7) F: set of frees from [0,1] to [0,1] with metric ol(f,g) = = = p { |f(x) - g(x) | : x \ [0,1] } e: collection of constant functions in 7. WTS: 20=0. First, e Cde: Let ke e, me will show i) dist(k, e)=0 which & immediately follows as ke & & ii) dist(k, ec)=0 This also follows because for any 270 we can find feed s.t. d(k,f) < \(\xi\) = \(\xi\) = \(\xi\) = \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\) \(\xi\) = \(\xi\ K+2 for To show DECE, let f & De. Tren dist (f, e) = dist(f, e) = 0 The 1 with the e. So suppose f & e, then 3 x, y & [0,1] s.t. f(x) + f(y). Let |f(x)-f(y)| = c. Since

dist(f, e) = 0, given E70 3 k & e s.t. d(f,k) < E. Choose E= 4/2 and s-pp-se d(fik) < E f- s.m. k & C. By defunction of d, $\frac{c}{2} = \frac{|f(x) - f(y)|}{2} \leq \frac{|f(x) - k|}{2} + \frac{|k - f(y)|}{2} \geq d(f(k)) < \epsilon = \frac{c}{2}$ my c < c, a contradiction. Thus f & e. Q.3.11) it Nn, (Xi, Ti) non-empty m.s., I is a conserving metric on P = ITXi . SEP, we explore the relatraship between opsiel & 2xxi(s) , it No through an exemp-Take $Xj = \mathbb{R}$, $\forall j = \text{deuc}$, j = 1,2. I.e., $P = \mathbb{R}^2$ and let 5 = { (x1y): (x-2)2+ (y-2)2 < 1 x14 = 1R} 3p5 = { (xig) & 1R2 : (x-2)2 + (y-2)2 = 1} $\frac{\partial}{\partial x} = \frac{1}{2} (x_1 y_1 + y_2) = \frac{1}{2} (x_1 y_2 + y_2) = \frac{1}$ get π, ((2,3)) = 2 & θχ,π,(s). 5, milarly, T2(5) = (1,3) -> 2x2 (5) = {1,3} and $3 \in \partial_{X_1} \pi_1(S) & 1 \in \partial_{X_2} \pi_2(S)$ yet $(3,1) \notin \partial_p(S)$ since dist ((31),5) > 0. So no inclusion conclusion can be drawn. metric Note: Some d(a,b) = ((a,-b)2+ (a2-b2)2) 12 is a conserving : max { |xi-yi| : i + |N2 } = |xj-yj| = \(|xj-yj|^2 \le \((x1-yi)^2 + (x2-y2)^2 \) \(\frac{1}{2} \) < 1x1-y11+ |x2-y21, olove. Q 3.12) WTS: every countable subset Vet IR has INTS = \$. SE 38. olefn: Int(S) = S(2S The statement is true for Enclidean metric: (IR, disrek metric) \rightarrow int (Q) = Q \ dQ = Q + ϕ as there is no

of \in IR with olist (9, 9) = dist(9, 9) = 0 in the discrete metric (no $q \in Q$ & $q \in Q^c$ at the same time). Metric To see the statement is valid for the Euclidean case, let $S \subset IR$ be countable and assume int(S) $\neq \emptyset$. Thus \exists a \in S with a \notin \exists S dist(a, S^c) \neq O. Thus write dist(a, S^c) = C > O. This gives that $(a-c/2, a+c/2) \cap S = \emptyset$ \Rightarrow $(a-c/2, a+c/2) \subset S$. Since the interval (a-c/2, a+c/2) contains an uncontable, may elements for c > O, this contradicts the fact that S is countable.

dicts the fact that S is countable. 3.15) X m.s. A CX. Is $\partial A = \partial \overline{A}$ $\partial \overline{A}$. $\overline{A} = A \cup \partial A$. Nonexample: (IR, euc), $A = \overline{Q}$, $\partial \overline{Q} = \overline{R} \neq \overline{Q}$. $= \partial R = \partial \overline{Q}$.

3.16) \times m.s. $S \subseteq X$. WTS: diam(S°) \Rightarrow lead not be the same as diam(S).

diam(S): $\text{sup} \{d(s_1, s_2) : s_1, s_2 \in S\}$. Take $S = [1, 2] \cup \{5\}$ & X = 11 then $S^\circ = (1, 2)$ my diam $S^\circ = 1$ but diam S = d(1, 5)= 4.

3.17) \times m.s. $S\subseteq X$ wts: $\overline{S}=acc(S)U_{iSO}(S)$ (2): Let $x \in iso(S)$ then $x \in S \subset \overline{S}=SU\partial S$, and when $x \in acc(S)$, two coses possible: if $x \in S$ then when $x \in acc(S)$, two coses possible: if $x \in S$ then alone, otherwise, i.e., if $x \notin S$, that is $x \in S^c$ we have dist $(x,S^o)=0$. Also since $x \in acc(S)$, dist $(x,S^o)=0$. So $x \in \partial S \subseteq X$.

(C): When $x \in S$ $dist(x, S \setminus \{x\}) = 0 \Rightarrow x \in acc(S)$ when $x \in ds \setminus S$, then $dist(x, S \setminus \{x\}) = 0 \Rightarrow x \in acc(S) \Rightarrow x \in RHS$. 3.18) (X, d) m.s. A, B ⊆ X, WTS: dist(Ā, B) = dist(A, B)

i.e. wor inf { d(a,b): a ∈ A, b ∈ B} = inf { d(ā,b): ā ∈ Ā, b ∈ B}

Since Ā⊇A & B⊇B, obist(Ā, B) < dist(A, B) follows at one.

(since we take inf over a larger set) - For the part it

suffices to show the following:

Given £70 ∃ a ∈ A, b ∈ B s.t. d(a,b) < dist(Ā, B) + € (takip)

inf of this obist(Ā, B) < dist(Ā, B) follows when €→0)

Clearly, for 2,70 $\exists \overline{a} \notin \overline{A}$, $\overline{b} \in \overline{B}$ s.t. $d(\overline{a},\overline{b}) < dist(\overline{A},\overline{B}) + \overline{\epsilon}_1$ & for 22>0 $\exists a \in A$, $b \in B$ s.t. $d(a_1\overline{a}) < \overline{\epsilon}_2 & d(b_1\overline{b}) < \overline{\epsilon}_2$ Let $\underline{\epsilon}_1 = 2/2$ & $\underline{\epsilon}_2 = 2/4$ to get

 $d(a,b) \leq d(a,\overline{a}) + d(\overline{a},\overline{b}) + d(\overline{b},b) < dist(\overline{A},\overline{B}) + \varepsilon$.