Chapter 2

Mike Desgrottes

October 2020

Theorem 1. Prove that the empty set is a subset of every set.

Proof. Let W be a set, then $W \mid J\emptyset = W \implies \emptyset \subset W$

Theorem 2. A complex number is said to be algebraic if there are integers $a_0, ..., a_n$ not all zero such that

$$a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0$$

. Prove that the set of all algebraic numbers is countable.

Proof. For each $N \in \mathbb{N}$, the number of polynomials such that $n + |a_0| + |a_1| + ... + |a_n| = N$ is finite. Hence the number of roots of these polynomial is also finite. Let $U_{n,N}$ be the set of roots of polynomial such that

$$n + |a_0| + |a_1| + \dots + |a_n| = N$$

and let $U_n = \bigcup_{i=1}^{\infty} U_{n,i}$. The map

$$n + |a_0| + ... + |a_n| \rightarrow (n, a_0, ..., a_n)$$

ensure that U_n is isomorphic to \mathbb{Z}^{n+1} . U_n and $\bigcup_{n=1}^{\infty} U_n$ is countable.

Theorem 3. Prove that there exists real numbers which are not algebraic.

Proof. Let A be the set of all algebraic numbers. A is countable. As $\mathbb R$ is uncountable, $\mathbb R$ cannot be a subset of A

Theorem 4. Prove that the set of irrational numbers is uncountable.

Proof. $\mathbb{R} = \mathbb{Q} \bigcup \mathbb{I}$ implies that \mathbb{I} contains an uncountable set.

Theorem 5. Construct a bounded set of real numbers with exactly 3 limit points.

Proof.
$$\left\{\frac{1}{n}:n\in\mathbb{N}\right\}\bigcup\left\{1+\frac{1}{n}:n\in\mathbb{N}\right\}\bigcup\left\{2+\frac{1}{n}:n\in\mathbb{N}\right\}$$
 with limit points $\{0,1,2\}$

Theorem 6. Let K be a subset of real numbers with 0 and 1/n. Prove that K is compact directly from definition.

Proof. Let $\bigcup_{i=1}^{\infty} U_i$ be an open cover of K. There exists i such that $0 \in U_i$. This interval will contain infinitely many element of K. Thus, there are only finitely many number of elements not in U_i . The finite subcover $U_i \bigcup (\bigcup_{n=1}^m U_n)$ is finite subcover of K.

Theorem 7. Construct a compact set of real numbers whose limit points form a countable set.

Proof. Let
$$U_i = \{i + \frac{1}{n} : n \in \mathbb{N}\}$$
, then $\{0\} \bigcup \mathbb{N} \bigcup (\bigcup_{n=1}^{\infty} U_n)$

Theorem 8. Give an example of an open cover of (0,1) which has no finite subcover.

Proof.
$$\bigcup_{n=1}^{\infty} (0,1-\frac{1}{n})$$

Theorem 9. (a) If A and B are disjoint closed(open) sets in some metric space X, prove that they are separated.

- (b) Fix $p \in X$, $\delta > 0$, define A to be the set of all $q \in X$ for which $|x y| < \delta$, define B similarly, with <. Prove that A and B are separated.
 - (c) Prove that every connected metric space with at least two points is uncountable.
- *Proof.* (a) Closed sets contains their limit points and $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. If A and B are disjoint open set, then their complement is closed and the result follows.
- (b) $A = \{x \in X : |x p| < \delta\}$ and $B = \{x \in X : |x p| > \delta\}$ are disjoint open sets and hence are separated.
- (c) Let $c \in \mathbb{R}$ such that there is no pair of points in A such that their distance is c. By previous excersies, we can separate X, which is a contradiction. Therefore, for all real numbers, there exists a $y \in A$ such that |x-y|=c which implies it contains an uncountable set.

Theorem 10. A metric space is separable if it contains a countable dense subset. Show that \mathbb{R}^k is separable. Proof. \mathbb{Q}^k is a countable dense subset of \mathbb{R}^k .

Theorem 11. Prove that every seperable metric space has a countable base.

Proof. The metric space have a countable dense subset E. Hence between any two elements in X, there exists an element of E. Take (y-r,r+y) with r,y being rational. The set of these interval is countable and contains x.

Theorem 12. Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable.

Proof. Let $\delta > 0$, then we pick $x_1 \in X$, and having chosen $x_1, ..., x_j$, we pick x_{j+1} such that $|x_j - x_{j+1}| \ge \delta$. The sequence we chose is an infinite subset of X and has limit point. Therefore, it must terminate at a finite point. $U_i = (x_i - \delta, x_i + \delta)$ are finite open sets that cover X. The triangle inequality prevent any element of X to be too close to two points of U_i . Hence, every point in X belongs to at least one U_i . $\bigcup_{i=1}^{\infty} U_i$ with $\delta = 1/n$ is a countable dense subset.

Theorem 13. Prove that every compact metric space K has a countable base, and that K is therefore separable.

Proof. The set $A_x = (x - \frac{1}{n}, x + \frac{1}{n})$ form an open cover of K and hence it contains a finite subcover. So, for each n, there exists a finite set of points such that neighborhood around those points with radius 1/n cover K. By previous exercise, it is separable.