```
S PN=JP 5276007
S3 1 PN=JP 5276007
?
```

T S3/9/1

ئ

3/9/1

DIALOG(R)File 351:Derwent WPI

(c) 2006 The Thomson Corporation. All rts. reserv.

0006377942 - Drawing available WPI ACC NO: 1993-177151/ XRPX Acc No: N1993-135767

Integrated circuit device e.g. programmable logic device - has user-programmable power-down circuit for disabling particular circuit under control of user-specified state of input signal

Patent Assignee: NORTH AMERICAN PHILIPS CORP (PHIG); PHILIPS

GLOEILAMPENFAB NV (PHIG)

Inventor: BURTON E A

Patent Family (5 patents, 7 countries)

Patent

Application

Number Kind Date Number Kind Date Update

EP 544368 A2 19930602 EP 1992203577 A 19921120 199322 B
CA 2083624 A 19930528 CA 2083624 A 19921124 199333 E
JP 5276007 A 19931022 JP 1992313429 A 19921124 199347 E
US 5329178 A 19940712 US 1991799499 A 19911127 199427 E
EP 544368 A3 19931006 EP 1992203577 A 19921120 199510 E

Priority Applications (no., kind, date): US 1991799499 A 19911127

Patent Details

Number Kind Lan Pg Dwg Filing Notes EP 544368 A2 EN 7 3

Regional Designated States, Original: DE FR GB IT

CA 2083624 A EN

US 5329178 A EN 6 3

EP 544368 A3 EN

Alerting Abstract EP A2

The integrated circuit device includes a circuit (10) and power-down device (18) for disabling the circuit. The power-down device is user-programmable for reversibly disabling the circuit under control of a user-specified state of at least one input signal (20) supplied to the power-down device.

In addition the power-down device is programmable to disable the circuit under control of the input signal supplied to both the power-down device and the circuit

USE/ADVANTAGE - In particular for PLD's. Simple to implement, requires no additional I/0 pins, considerably reduces power consumption and renders device more versatile.

Equivalent Alerting Abstract US A

The integrated circuit device comprises a circuit and power-down device for disabling the circuit, in which the power-down device is user-programmable for reversibly disabling the circuit under control of a user-specified state of at least one input signal.

The circuit is disabled under control of a user-programmed combination of a number of input signals supplied to the power-down device.

ADVANTAGE - Reduced power consumption. Requires no additional I/O pins.

Title Terms /Index Terms/Additional Words: INTEGRATE; CIRCUIT; DEVICE; PROGRAM; LOGIC; USER; POWER; DOWN; DISABLE; CONTROL; SPECIFIED; STATE; INPUT; SIGNAL

Class Codes

International Classification (Main): H01L-023/58, H03K-019/00, H03K-019/173 (Additional/Secondary): H01L-027/02, H02J-001/00, H03K-019/177

US Classification, Issued: 307465000, 307296300, 307467000

File Segment: EPI; DWPI Class: U13; U21

Manual Codes (EPI/S-X): U13-E02; U21-C01E; U21-C03A2A

Original Publication Data by Authority

Canada

Publication No. CA 2083624 A (Update 199333 E)

Publication Date: 19930528

Assignee: PHILIPS GLOEILAMPENFAB NV (PHIG)

Inventor: BURTON E A

Language: EN

Application: CA 2083624 A 19921124 (Local application)

Priority: US 1991799499 A 19911127 Original IPC: H01L-23/58(A) H01L-27/02(B) Current IPC: H01L-23/58(A) H01L-27/02(B)

EPC

Publication No. EP 544368 A2 (Update 199322 B)

Publication Date: 19930602

**IC mit vom Benutzer festlegbaren programmierbaren Mitteln zum Abschalten der Versorgungsspannung

Integrated circuit device with user-programmable conditional power-down means

Circuit integre avec moyens conditionnels de mise hors service de

l'alimentation, programmables par l'utilisateur**

Assignee: N.V. Philips' Gloeilampenfabrieken, Groenewoudseweg 1, NL-5621 BA Eindhoven, NL (PHIG)

Inventor: Burton, Edward Allyn, c/o Int. Octrooibureau B.V., Prof.

Holstlaan 6, NL-5656 AA Eindhoven, NL

Agent: Strijland, Wilfred et al, INTERNATIONAAL OCTROOIBUREAU B.V. Prof.

Holstlaan 6, NL-5656 AA Eindhoven, NL

Language: EN (7 pages, 3 drawings)

Application: EP 1992203577 A 19921120 (Local application)

Priority: US 1991799499 A 19911127

Designated States: (Regional Original) DE FR GB IT

Original IPC: H03K-19/00(A) Current IPC: H03K-19/00(A)

Original Abstract: An integrated circuit device is provided with user-programmable power-down means (18) for disabling a particular circuit (10) in the device under control of a user-specified state of an input signal (20) supplied to the device. In particular, for PLDs a power-down feature of this kind is simple to implement, requiring no

additional I/O pins on the device, considerably reduces power consumption and renders the device more versatile than prior art devices.

Claim:

* 1. An integrated circuit device comprising a circuit and power-down means for disabling the circuit, wherein the power-down means is user-programmable for reversibly disabling the circuit under control of a user-specified state of at least one input signal supplied to the power-down means.

Publication No. EP 544368 A3 (Update 199510 E)

Publication Date: 19931006

Assignee: PHILIPS GLOEILAMPENFAB NV (PHIG)

Inventor: BURTON E A

Language: EN

Application: EP 1992203577 A 19921120 (Local application)

Priority: US 1991799499 A 19911127

Original IPC: H03K-19/00(A) Current IPC: H03K-19/00(A)

Japan

Publication No. JP 5276007 A (Update 199347 E)

Publication Date: 19931022

INTEGRATED CIRCUIT DEVICE

Assignee: PHILIPS GLOEILAMPENFAB:NV (PHIG)

Inventor: BURTON EDWARD A

Language: JA

Application: JP 1992313429 A 19921124 (Local application)

Priority: US 1991799499 A 19911127

Original IPC: H03K-19/00(A) H02J-1/00(B) H03K-19/173(B) H03K-19/177(B) Current IPC: H03K-19/00(A) H02J-1/00(B) H03K-19/173(B) H03K-19/177(B)

United States

Publication No. US 5329178 A (Update 199427 E)

Publication Date: 19940712

Integrated circuit device with user-programmable conditional power-down means

Assignee: North American Philips Corporation (PHIG)

Inventor: Burton, Edward A., UT, US

Agent: Franzblau, Bernard

Language: EN (6 pages, 3 drawings)

Application: US 1991799499 A 19911127 (Local application)

Original IPC: H03K-19/173(A) Current IPC: H03K-19/173(A) Original US Class (main): 307465

Original US Class (secondary): 307296.3 307467

Original Abstract: An integrated circuit device is provided with user-programmable power-down means for disabling a particular circuit in the device under control of a user-specified state of an input signal supplied to the device. In particular, for PLDs a power-down feature of this kind is simple to implement, requiring no additional I/O pins on the device, considerably reduces power consumption and renders the device more versatile than prior art devices.

Claim:

1.An integrated circuit device comprising, a circuit and power-down means

for disabling the circuit, wherein the power-down means is operative to reversibly disable the circuit in response to at least one input signal supplied to the power-down means, and wherein the power-down means is user-programmable such that its response to a specific state of the input signal is specified by the user of the device.

?

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-276007

(43)公開日 平成5年(1993)10月22日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FI	技術表示箇所
H03K	19/00	Α	8941-5 J		
H 0 2 J	1/00	307 F	7373-5G		
H03K	19/173	101	7827-5 J		
	19/177		7827 – 5 J		

審査請求 未請求 請求項の数16(全 6 頁)

		7	野食請求 未請氷 請氷項の数16(全 6 貝)
(21)出願番号	特顏平4-313429	(71)出願人	590000248 エヌ・ベー・フィリップス・フルーイラン
(22)出願日	平成4年(1992)11月24日		ペンファブリケン N. V. PHILIPS' GLOEIL
(31)優先権主張番号	07/799499		AMPENFABRIEKEN
(32)優先日	1991年11月27日		オランダ国 アインドーフェン フルーネ
(33)優先権主張国	米国 (US)		ヴァウツウエッハ 1
		(72)発明者	エドワード アライン バートン
		1	アメリカ合衆国 ユタ州 84042 リンド
			ン エス 1025 イー 168
		(74)代理人	弁理士 杉村 暁秀 (外5名)
		I	

(54) 【発明の名称】 集積回路装置

(57)【要約】

【目的】 集積回路装置を従来のものより一層汎用性で 使いやすいものとするパワーダウン手段付き集積回路装 置を提供することにある。

【構成】 集積回路装置に、この装置に供給される入力信号のユーザ指定状態の制御の下で装置内の特定の回路をディセーブルするユーザプログラマブルパワーダウン手段を設ける。このパワーダウン手段は特に PLDに対し実現が簡単であるり、追加の I / O ピンを必要とせず、且つ電力消費を著しく低減すると共に装置を従来のものより一層汎用性に富むものにする。

【特許請求の範囲】

【請求項1】 回路と、該回路をディセーブルするパワ ーダウン手段とを具える集積回路装置において、前記パ ワーダウン手段はこの手段に供給される少なくとも1つ の入力信号のユーザ指定状態の制御の下で前記回路を可 逆的にディセーブルするようユーザがプログラムし得る ことを特徴とする集積回路装置。

【請求項2】 前記パワーダウン手段はこの手段及び前 記回路の両方に供給される入力信号の制御の下で前記回 路をディセーブルするようプログラムし得ることを特徴 10 する複数の第2プログラマブル論理ゲートを具えること とする請求項1記載の装置。

前記回路は前記パワーダウン手段に供給 【請求項3】 される複数の入力信号の、ユーザがプログラムした組合 せの制御の下でディセーブルされることを特徴とする請 求項1記載の装置。

【讃求項4】 前記パワーダウン手段は複数の入力信号 のうちの少なくとも一つである前記回路の出力信号の制 御の下で前配回路をディセーブルするようプログラムし 得ることを特徴とする請求項3記載の装置。

前記パワーダウン手段は複数の入力信号 20 【請求項5】 のうちの少なくとも一つである前記回路に供給される別 の入力信号の制御の下で前記回路をディセーブルするよ うプログラムし得ることを特徴とする請求項3記載の装 磴。

【請求項6】 前記パワーダウン手段は複数の入力信号 のうちの一つである前記回路からの出力信号と、複数の 入力信号のうちの少なくとも他の一つである前記回路の 別の入力信号との組合せの制御の下で前記回路をディセ ープルするようプログラムし得ることを特徴とする請求 項3記載の装置。

【請求項7】 前記パワーダウン手段は複数の入力信号 のうちのもう一つの入力信号である、装置の外部アクセ ス入力端子を経て供給される信号の制御の下で前記回路 をディセーブルするようプログラムし得ることを特徴と する請求項4記載の装置。

【請求項8】 前記パワーダウン手段は複数の入力信号 のうちのもう一つの入力信号である、装置の外部アクセ ス入力端子を経て供給される信号の制御の下で前記回路 をディセーブルするようプログラムし得ることを特徴と する請求項5記載の装置。

【簡求項9】 入力信号の前記ユーザ指定状態は高論理 状態及び低論理状態のうちの選択した一方の状態である ことを特徴とする請求項1記載の装置。

【請求項10】 複数の入力信号の各々のユーザ指定状 態は高論理状態、低論理状態及び無関係状態のうちの選 択した一つの状態であることを特徴とする請求項3記載 の装置。

【 請求項11】 前記回路は第1プログラマブル論理ゲ ートのアレイを具え、前記パワーダウン手段は第2プロ グラマブル論理ゲートを具えることを特徴とする請求項 50 ーダウン手段は、この手段に供給される少なくとも一つ

1 記載の装置。

【請求項12】 前記回路は第1プログラマブル論理ゲ ートの複数のアレイを具え、前記パワーダウン手段は前 記複数のアレイを並列にパワーダウンする第2プログラ マブル論理ゲートを具えることを特徴とする請求項1記 載の装置。

2

【請求項13】 前記回路は第1プログラマブル論理ゲ ートの複数のアレイを具え、前記パワーダウン手段は前 記複数のアレイのうちの選択したアレイをパワーダウン を特徴とする請求項1記載の装置。

【請求項14】 前記パワーダウン手段は動作不能にプ ログラムし得ることを特徴とする請求項1記載の装置。

【請求項15】 前記回路は該回路を電源から切離すこ とによりディセーブルすることを特徴とする請求項1記 載の装置。

【請求項16】 前記パワーダウン手段は再プログラム し得ることを特徴とする請求項1記載の装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、回路と、該回路を可逆 的にディセーブルするパワーダウン手段とを具える集積 回路装置に関するものである。

[0002]

【従来の技術】集積回路装置のパワーダウン手段は装置 内の回路をディセーブルすることにより電力消費又は電 磁放射のような項目を減少させるものである。所定のパ ワーダウン条件が存在する限り回路はディセーブルした まゝに維持される。パワーダウン条件が除去されると、 30 回路は再びエネーブルされる。

【0003】例えば、メモリ回路チップはCE信号(チ ップエネーブル)がなくなるとパワーダウンされ、CE 信号が再び現われるとパワーアップされる。東芝MOS メモリ製品の 1989 年ハンドブックのD3ページに、CE 1 及び CE2信号の固定の組合せに応答してパワーダウン されるメモリチップが示されている。この従来技術は回 路のパワーダウンをトリガするのに所定の特徴の入力信 号を必要とすることを教示している点に注意されたい。 この所定の特徴又は固定の組合せは製造中に装置に組み 40 込まれる。

[0004]

【発明が解決しようとする課題】本発明の目的は、本発 明の集積回路装置を、従来のものより一層汎用性があり 使いやすいものとするパワーダウン手段を具えた集積回 路装置を提供することにある。

[0005]

【課題を解決するための手段】この目的のために、本発 明は回路と、該回路をディセーブルするパワーダウン手 段とを具えた新規な集積回路装置を提供する。このパワ

の入力信号のユーザがプログラムした状態の制御の下で 回路を可逆的にディセーブルするようユーザがプログラ ムし得るものである。

【0006】従って、ユーザが、パワーダウン手段をプ ログラミングすることによって回路をパワーダウンする 条件を装置に導入する。例えば論理環境に応じて、ユー ザはパワーダウン手段を高論理入力信号に応答するよ う、又は低論理入力信号に応答するようプログラムする ことができる。複数の入力信号を使用することができる 場合には、ユーザはパワーダウン手段を高論理状態、低 10 論理状態及び"ドントケア"状態の特定の組合せに応答 するようプログラムすることができる。更に、ユーザは パワーダウン手段を、回路に供給される入力信号、回路 により出力される出力信号、どこか他のオリジンからの 入力信号、又はそれらの組合せに応答して回路をディセ ーブルするようプログラムすることもできる。このアー キテクチャは以下に説明するようにプログラマブルロジ ック装置に特に重要である。

[0007]

【実施例】図面を参照して本発明を実施例につき詳細に 20 説明する。図1は本発明の集積回路装置の全体プロック 図を示す。この装置は第1データ入力信号を受信するデ ータ入力端12と、データ出力信号を出力するデータ出力 端14とを有する回路10を具える。回路10は更にパワーダ ウン制御入力端16を有する。この制御入力端16に供給さ れる制御信号は回路10をディセーブルする。この装置は 更にパワーダウン手段18を具える。パワーダウン手段18 は第2入力信号を受信する信号入力端20と、このパワー ダウン手段18をプログラミングするプログラム信号を受 信するプログラム入力端22とを有する。パワーダウン手 30 段18は更に制御入力端16に接続された制御出力端24を有 する。

【0008】パワーダウン手段18はプログラム入力端22 からプログラム信号を供給することによりプログラムさ れる。プログラム信号の特徴によりパワーダウン手段18 の特定の状態、例えば論理状態が指定される。一旦プロ グラムされると、パワーダウン手段18は入力端20におけ る指定した状態を有する第2入力信号にのみ応答する。 即ち、プログラムした特定の状態と第2入力信号の指定 の状態との組合せによりパワーダウン手段18が制御入力 40 端16を介して回路10をディセーブルするか否かが決ま る。パワーダウン手段18は1つ以上のヒューズ又はアン チヒューズを切ることによりプログラムにすることがで きる。或は又、パワーダウン手段18は EEPROM セル、SR AMセル又は DRAM セルのようなプログラマプルメモリセ ルを用いてプログラマブルにすることもできる。

【0009】パワーダウン手段18は入力端20に受信され る複数の第2入力信号により制御可能にすることができ る。例えば、ある論理回路環境においてはユーザは、パ ワーダウン手段18を活動させるにはパワーダウン手段18 50 すべき条件は指定のゲートを通常の方法でプログラミン

に供給される複数の第2入力信号が高論理状態、低論理 状態及びドントケア状態の特定の組合せでなければなら ないようにプログラムすることができる。

【0010】回路10のディセーブルは種々の方法、例え ば回路10をその電源(図示せず)から切り離すことによ り生じさせることができる。或は又、回路10をデータ入 カ端12の入力信号に応答し得ない所定の状態にセットす ることもできる。後者の場合には、回路10を例えばスタ ンパイ状態、即ち回路10内の揮発性メモリ(図示せず) に記憶させたデータを保持するには十分であるがデータ 処理部を作動させるには不十分な低電流駆動状態にセッ トすることができる。更に他の実施例では、データ入力 端12の入力信号を阻止し、回路10がこれら入力信号を処 理しないようにすることにより回路を非動作状態にする こともできる。

【0011】データ入力端12と信号入力端20との間の破 線26は、回路10とパワーダウン手段18が完全に又は部分 的に同一の入力信号を受信してもよいことを示す。即 ち、データ入力端12に供給される第1データ入力信号の 少なくともいくつかを信号入力端20に供給される第2入 力信号の少なくともいくつかと同一にすることができ る。

【0012】破線28は、データ出力端14のデータ出力信 号を信号入力端20に供給してもよいことを示す。このよ うにすると、回路10内で発生した信号と回路10の外部か ら信号入力端20に受信される信号との組合せがパワーダ ウン手段18を制御するようになる。この場合には、回路 10からのデータ出力信号は、例えばマクロ(図示せず) を経て供給することができる。マクロは当該技術分野に おいてはユーザプログラマブル信号構成プロックとして 公知である。ユーザは、マクロをプログラミングするこ とによって、例えばデータ出力端14のデータ出力信号を クロック制御の下でラッチすべきか、反転すべきか、論 理的に組合せるべきか、又はトグルすべきかを指定する ことができる。マクロは回路がパワーダウンされるとき データ出力信号を保持する。このアーキテクチャは、パ ワーダウン(及び再びパワーアプップ)すべき回路10 (例えばPLD) にバイポーラトランジスタを用いると共に マクロに相補型の FETを用いて BiCMOS に実現すること ができる。

【0013】本発明は広範囲の異なる機能の集積回路に 適用し得るが、PLD の分野に特に有利である。一般に、 PLD は入力信号に対しさまざまなブール関数演算を実行 し得るようにユーザが選択的にプログラムし得る多数の 論理ゲートを具えている。

【0014】本発明では、PLD内の一つ以上の指定した 論理ゲートを、特定の入力信号又は特定の組合せの入力 信号の受信時における PLD内の全論理ゲートセクション のパワーダウン制御用に確保する。指定のゲートを活動

グすることにより容易に実現することができる。

【0015】ワイヤードロジックに基づく PLDはこのアーキテクチャに特に有利である。既知のように、ワイヤードロジック回路は高電力消費であるが極めて高速である。本発明のパワーダウン手段はユーザの指定した状態で電力消費を制御する。従って、本発明によるワイヤードロジック PLDはラップトップコンピュータのようなポータブル形電池電源式電子装置に適用するのに好適なものとなる。

【0016】PLD は任意の種類の電子データ処理システ 10 ムを構成するための本質的に汎用性のピルディングプロックを構成する。これがため、本発明によればこれらの汎用装置を用いてシステムを実現する際にシステム設計者に速度と電力消費の要件に関し一層高い設計自由度を与えることができる。

【0017】図2は本発明によるPLDの一例を示す。PLD は論理ゲートセクション10,20及び30に機能的に配置されたプログラマブル論理ゲート(図示せず)を具えている。論理ゲートセクション10~30は入力信号を受信する入力端40,50及び60と、出力信号を出力する出力端7200,80及び90を具える。論理ゲートセクション10~30は電源手段100により給電される。セクション10は電源手段100に直接接続するが、セクション20及び30はそれぞれスイッチ110及び120を介して電源手段100に結合する。セクション10はそれぞれ指定された出力端130及び140を経てスイッチ110及び120を制御する。

【0018】セクション10~30の論理ゲートはユーザが 通常の方法でプログラムする。セクション10内の1以上 の指定した論理ゲートのプログラムした状態によって、 入力端40の入力信号が指定した出力端130 及び140 の出 30 力信号をどのように制御するかが決まる。即ち、入力端 40の入力信号が指定した論理ゲートのプログラム状態に より決められた所定の論理値である場合にスイッチ110 及び120 が活動される。

【0019】セクション10内の指定の論理ゲートは PLD 装置の既存の一部分であるため、慣例の PLD装置に加えて、PLD の応用性を高めるために必要とされる素子の数が極めて少なくて済む。特に、スイッチ110,120及びこれらスイッチと指定された出力端130,140との間の相互接続リード線を付加するだけでユーザプログラマブルバ 40ワーダウン機能を生起させることができる。このアーキテクチャは追加のI/Oピンを必要とせず、また集積回路装置の慣例のI/Oピンの機能の変更も必要としない点に注意されたい。

【0020】指定の論理ゲートは慣例の PLD回路にスイッチ110, 120と一緒に付加してもよい。この方法はプログラマブル論理ゲートの慣例の機能編成を保持すると共に、プログラミング中において指定の論理ゲート以外の論理ゲートを選択する選択機構を明確に編成されたまゝにしておくことができる。

【0021】セクション10は単一論理ゲートを具え、セクション20~30は多数の論理ゲートを具えるものとし得る。各セクション20~30内の1つを除く全てのゲートを別の設計オプションに従って編成すれば、出力70~90を依然として限定された方法で制御することができ、例えば所定の論理状態にセットすることができる。PLD はセクション20~30を同時に、又は互に独立にディセーブル

するよう設計することができる。

6

【0022】図3は本発明のPLDに用いる論理ゲートセクションの一例のトランジスタ回路図を示す。このセクションは行270 及び280 と列290、300、及び310 に機能的に配置されたプログラマブルセル210、220、230、240、250 及び260を具える。セル210 は既知のタイプのものであり、電源電圧Vccと列290 の出力端子292 との間に直列に配置されたヒューズ212 及びnpnトランジスタ214を有する。トランジスタ214は行270の行入力端子272に接続されたベース電極を有する。セル220~260は関連する行入力端子272、282と、関連する列出力端子292、302、312との間に同様に配置された同一のヒューズ及びトランジスタを具える。列出力端子292及び302をそれぞれFET 296及び306の主電流通路を経てブルダウン手段294及び304にそれぞれ接続する。列出力端子312はプルダウン手段314に接続する。

【0023】図3のセクションのアーキテクチャはワイヤードロジックの一例である。例えば入力端子272~282の各々における入力信号をこの信号と関連する入力電圧がほぼVcc又はアース電圧であるとき高論理H又は低論理Lであるものとすると、このセクションはワイヤードOR機能を示す。また、高論理H及び低論理Lがそれぞれアース電圧及びVcc電圧に対応する場合にはワイヤードAND機能が実現される。一般に、PLDを動作させるには複数の対の相補論理入力信号が使用される点に注意されたい。PLDのプログラミングは通常の方法でヒューズを選択的に切り、PLDが複数の入力信号のうちの選択した信号のスイッチングに影響されないようにすることにより達成される。

【0024】列310は列290~300をディセーブルするパワーダウン手段として機能する。入力端子272~282における入力信号の特定のパターンの受信時に出力端子312はこのパターンと関連する指定の出力電圧を出力する。この出力電圧は素子316に供給され、この素子が制御信号をFET296~306に供給する。この素子316がこの出力電圧に行なう論理演算に応じてFET296~306がターンオン又はターンオフし、列290~300をそれぞれエネーブル又はディセーブルする。特定のパターンが存在する限り、この状態が維持される。

【0025】プルダウン手段 294~314 の各々は例えば 各別の抵抗又は格別の能動電流源、例えばマルチ出力電 流ミラーの格別の出力電流支路を具えるものとすること 50 ができる。素子316 は使用する論理極性及び FET296 ~

306 の導電型に応じてインパータ又は非反転パッファを 具えるものとすることができる。列310 は論理ゲートの 2以上のセクション、例えば全てのセクションを制御す るようにすることができる。従来既知のように、図3に 示す論理ゲートのアレイは AND-ORプレーンを実現する ために別の論理ゲートのアレイ(図示せず)と物理的に 一体に形成することができる。

【0026】素子314 自体は、例えばヒューズを切るこ とによりプログラムし得る又は永久に不作動にし得る部 分とすることができる。この場合、そのセクションを慣 10 100 電源手段 例の論理アレイとして入力信号の可能な全てのパターン に応動させる機会が提供される。このように、PLD の第 1部分を慣例の如く処理するように選択すると共に、別 の部分を入力信号に応答して交互にディセーブル又はエ ネーブルされるようにすることができる。

【図面の簡単な説明】

- 【図1】本発明による集積装置の全体概略図である。
- 【図2】本発明による PLD装置のブロック図である。
- 【図3】本発明による PLD装置の詳細回路図である。

【符号の説明】

10 回路

12 データ入力端

14 データ出力端

- 16 パワーダウン制御入力端
- 18 パワーダウン手段
- 20 信号入力端
- 22 プログラム入力端
- 10, 20, 30 論理ゲートセクション
- 40, 50, 60 入力端
- 70, 80, 90 出力端
- - 110, 120 スイッチ
 - 130, 140 指定出力端子
 - 210, 220, 230, 240, 250, 260 プログラマブルセル

8

- 270, 280 行
- 272, 282 行入力端子
- 290, 300, 310 列
- 292, 302, 312 列出力端子
- 294, 304, 314 プルダウン手段
- 296, 306 FET
- 20 310 パワーダウン手段
 - 316 インパータ又は非反転パッファ

【図1】

[図2]

[図3]

