

PHYSICS

LEVEL

Chapter 2

DINÁMICA

PHYSICS

índice

01. MotivatingStrategy 🕥

02. HelicoTheory

 \triangleright

03. HelicoPractice

04. HelicoWorkshop

 \bigcirc

N

Introducción a la dinámica

El movimiento de los cuerpos fue analizado por Isaac Newton. Tanto en el espacio como en la tierra.

MOTIVATING STRATEGY

Herramienta Digital

https://edpuzzle.com/media/61a158e1c2 997342e73ec991

PLAY

HELICO THEORY

¿Qué estudia la dinámica?

Es una rama de la mecánica que estudia el movimiento mecánico de los cuerpos tomando en cuenta las causas que lo originan o modifican.

"La causa del movimiento acelerado es una fuerza resultante no nula"

Para comprender mejor el estudio de estos conceptos lo haremos a través de las leyes de newton:

Primera ley de Newton "Ley de la Inercia"

- ❖ La inercia es aquella propiedad por la cual todos los cuerpos tienden a mantener su estado inicial de reposo o su movimiento con velocidad constante (M.R.U.), es decir, tanto el módulo como la dirección de la velocidad tienden a mantenerse constantes.
- ❖ Para Newton todo cuerpo persevera en su estado de reposo o M.R.U. (Inercia) a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre el.

Segunda ley de Newton "Ley fundamental de la Dinámica"

El cambio de movimiento es directamente proporcional a la fuerza resultante impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.

Tambien: para fuerzas paralelas con la \vec{a} .

$$F_R = \sum (Fuerzas\ a\ favor\ de\ \vec{a}) - \sum (Fuerzas\ en\ contra\ de\ \vec{a})$$

CONCLUSIONES:

$$\vec{a} = \frac{\overrightarrow{F_R}}{m} \hat{u}$$

"Aceleración y Fuerza resultante siempre se dirigen en la misma dirección"

De forma práctica:

$$a = \frac{F_R}{m}$$

$$F_R = m \cdot a$$

a = módulo de la aceleración (m/s²) $F_R = m$ ódulo de la fuerza resultante (N) m = masa (kg)

Resolución de Problemas

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

N

Escriba verdadero (V) o falso (F) según corresponda.

- La aceleración tiene la misma dirección de la fuerza resultante.
- La aceleración es inversamente proporcional a la masa.
- La aceleración y la fuerza resultante son inversamente proporcionales.
- A) VFF

B) FVF

C) FFV

D) VVF

E) FFF

1. Aceleración y Fuerza resultante siempre se dirigen en la misma dirección.

2. A mayor masa, menor es la aceleración

3. Al tener ambas la misma dirección son directamente proporcionales

Respuesta: D

¿En cuál de los casos la aceleración es mayor si las masas de los bloques son de 2 kg y se encuentran en superficies lisas?

A) En I

B) En II

C) En III

- D) En I y III
- E) En todas es igual.

IMPORTANTE

Como la fuerza de gravedad se anula con la fuerza normal, analizaremos solo fuerzas horizontales.

- ✓ Analizando cada caso; para una misma masa la mayor $\overrightarrow{F_R}$ tendrá la mayor \vec{a} .
- ✓ Aplicamos: $F_R = \sum (Fuerzas\ a\ favor\ de\ \vec{a}) \sum (Fuerzas\ en\ contra\ de\ \vec{a})$

$$\begin{array}{c}
\text{(II)} \\
15 \text{ N} \\
\hline
2 \text{ kg} \\
\hline
\end{array} \rightarrow F_R = 15 N - 7 N = 8 N$$
(III)

Respuesta:

Caso II

En el gráfico mostrado, determine el módulo de la aceleración que experimenta el bloque. (m=3 kg)

- A) 4 m/s^2 B) 5 m/s^2 D) 6 m/s^2 E) 4 m/s^2
- C) 8 m/s^2

IMPORTANTE

Como la fuerza de gravedad se anula con la fuerza normal, analizaremos solo fuerzas horizontales.

✓ Aplicamos:

$$F_R = \sum (Fuerzas\ a\ favor\ de\ \vec{a}) - \sum (Fuerzas\ en\ contra\ de\ \vec{a})$$

$$\rightarrow F_R = 36 N - 12 N = 24 N$$

✓ Por la 2da Ley de Newton

$$a=\frac{F_R}{m}$$

$$\rightarrow a = \frac{F_R}{m} = \frac{24 \, N}{3 \, \text{kg}}$$

$$\rightarrow a = 8 m/s^2$$

Respuesta: $a = 8 \text{ m/s}^2$

Un grupo de niños aplican fuerza a un bloque de 2 kg según la gráfica mostrada. Determine el módulo de la aceleración que se genera sobre dicho bloque.

- A) 5 m/s^2 B) 15 m/s^2 D) 10 m/s^2 E) 8 m/s^2
- C) 6 m/s^2

IMPORTANTE

Como la fuerza de gravedad se anula con la fuerza normal, analizaremos solo fuerzas horizontales.

✓ Aplicamos:

$$F_R = \sum (Fuerzas\ a\ favor\ de\ \vec{a}) - \sum (Fuerzas\ en\ contra\ de\ \vec{a})$$

$$\rightarrow F_R = 40 N + 10 N - 20 N = 30 N$$

✓ Por la 2da Ley de Newton

$$a=\frac{F_R}{m}$$

$$\rightarrow a = \frac{F_R}{m} = \frac{30 \, N}{2 \, \text{kg}}$$

$$\rightarrow a = 15 \, m/s^2$$

Respuesta:

 $a = 15 \text{ m/s}^2$

Para determinar la aceleración de un cuerpo aplicamos la segunda ley de newton que relaciona a la masa, la aceleración y la fuerza resultante; según la gráfica, el bloque mostrado es de 1 kg. Determine el módulo de la aceleración que se genera sobre dicho bloque.

 $(g = 10 m/s^2)$

- A) 6 m/s^2 B) 8 m/s^2 C) 2 m/s^2
- D) 12 m/s^2 E) 10 m/s^2

✓ Realizamos el D.C.L.

✓ Aplicamos:

$$F_R = \sum (Fuerzas \ a \ favor \ de \ \vec{a}) - \sum (Fuerzas \ en \ contra \ de \ \vec{a})$$

$$\rightarrow F_R = 50 N - 28 N - Fg_{Bloque} = 22 N - 10 N = 12 N$$

✓ Por la 2da Ley de Newton

$$a = \frac{F_R}{m}$$

$$\to a = \frac{F_R}{m} = \frac{12 \, N}{1 \, \text{kg}}$$

$$\rightarrow a = 12 m/s^2$$

Respuesta:

Problemas Propuestos

Problema 06

Problema 07

Problema 08

Problema 09

Problema 10

Problema 07

Problema 08

M

El bloque mostrado es de 4 kg. Determine el módulo de la aceleración que se genera sobre dicho bloque.

- A) 1 m/s^2
- B) 2 m/s^2
- C) 3 m/s^2

- D) 4 m/s^2
- E) 5 m/s^2

El bloque mostrado es de 3 kg. Determine el módulo de la aceleración que se genera sobre dicho bloque.

A) 2 m/s^2

D) 3 m/s^2

- B) 1 m/s^2
- E) 4 m/s^2
- C) 5 m/s^2

A) 2 m/s^2

dicho bloque.

- B) 4 m/s^2
- C) 6 m/s^2

- D) 7 m/s^2
- E) 8 m/s^2

M

Según las leyes de Isaac Newton la aceleración de los cuerpos no solo depende la fuerza aplicada sino también su masa; según la gráfica mostrada, determine el módulo de la aceleración que experimenta el bloque que es elevado verticalmente.

$$(g = 10 m/s^2)$$

- A) 0.5 m/s^2 B) 1 m/s^2
- C) $1.5 \,\mathrm{m/s^2}$
- D) 3 m/s^2 E) 4 m/s^2

En un experimento en un laboratorio donde se le aplica 2 fuerzas externas al bloque de 10 kg según la gráfica. Determine el módulo de la aceleración que se genera sobre dicho bloque.

- A) 0.5 m/s^2 B) 1 m/s^2
- C) 2 m/s^2
- D) 3 m/s^2 E) 5 m/s^2