2019-2020A卷

一、计算题(共6小题,每小题10分,共60分)

1. 已知 a=527, b=1411,求最大公因子(a,b)和最小公倍数[a,b]。

解:

由辗转相除法:

$$527 = 0 \times 1411 + 527$$
 $1411 = 2 \times 527 + 357$
 $527 = 1 \times 357 + 170$
 $357 = 2 \times 170 + 17$
 $170 = 10 \times 17 + 0$

 \therefore (527, 1411) = 17

而

$$[a,b] = rac{ab}{(a,b)} = rac{527 imes 1411}{17} = 43741$$

- \therefore [527, 1411] = 43741
- 2. 利用勒让德符号判断同余方程 $x^2\equiv 30\pmod{41}$ 是否有解?

解:

勒让德符号为

$$\left(\frac{30}{41}\right) = \left(\frac{2}{41}\right) \left(\frac{5}{41}\right) \left(\frac{3}{41}\right)$$

$$\left(rac{2}{41}
ight) = \left(-1
ight)^{rac{40 imes 42}{8}} = 1$$

$$(5,41)=1$$
 $(3,41)=1$, 由二次互反律

$$\left(\frac{5}{41}\right) = (-1)^{\frac{4}{2}\frac{40}{2}}(\frac{1}{5}) = 1$$

$$\left(\frac{3}{41}\right) = (-1)^{\frac{2}{2}\frac{40}{2}}(\frac{2}{3}) = -1$$

$$\therefore \left(\frac{30}{41}\right) = 1 \cdot 1 \cdot (-1) = -1$$

:: 30不是模41的平方剩余,原式无解。

3. 求乘法群 \mathbf{F}_{23}^* 的所有生成元。

解:

 $\mathbf{F}_{23}^* = (Z/23Z)^*$ 为模23的简化剩余系

 $\varphi(23) = 22$,因此群阶为22.

由原根g性质, $g,g^2,\cdots,g^{\varphi(m)}$ 构成模m的简化剩余系

∴ 23的原根g = 5为一个 \mathbf{F}_{23}^* 生成元

一共有 $\varphi(22) = 10$ 个生成元,形式为 $g^{j}, (j, 22) = 1$

i = 1, 3, 5, 7, 9, 13, 15, 17, 19, 21

∴ 生成元 g^j 为5, 10, 20, 17, 11, 21, 19, 15, 7, 14.

4. 求解同余式组

$$\begin{cases} x \equiv 2 \pmod{3} \\ 3x \equiv 4 \pmod{5} \\ x \equiv 4 \pmod{7} \end{cases}$$

解:

解
$$3x \equiv 4 \pmod{5}$$
,得 $x \equiv 3 \pmod{5}$

因此原同余式组等价为

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 4 \pmod{7} \end{cases}$$

由CRT,

$$m = 3 \times 5 \times 7 = 105$$

$$M_{1}=5 imes7=35 \qquad M_{1}^{'}=2$$

$$M_{2}=3 imes7=21 \qquad M_{2}^{'}=1$$

$$M_{3}=3 imes 5=15 \qquad M_{3}^{'}=1$$

:. 原同余式组的解为
$$x \equiv 2 \times 35 \times 2 + 3 \times 21 + 4 \times 15 \pmod{105}$$

$$\therefore x \equiv 53 \pmod{105}$$

5. 求解同余式 $f(x) = 3x^4 + 17x^3 - 5x + 23 \mod 25$

解:

- (1) $f'(x) = 12x^3 + x^2 + 20 \mod 25;$
- (2) 验证 $f(x) = 3x^4 + 2x^3 + 3 \mod 5$ 的解为 $x_1 = 3 \mod 5$;
- (3) 将 x = 3 + 5t 代入方程

$$f(3) + f'(3) \cdot t \cdot 5 \equiv 0 \mod 25;$$

而 $f(3) \equiv 10 \mod 25$, $f'(3) \equiv 3 \mod 25$, 也即

$$10+3\cdot t\cdot 5\equiv 0\mod 25$$
 或 $2+3\cdot t\equiv 0\mod 5$

解得 $t \equiv 1 \mod 5$, 所以 $x = 3 + 5t \equiv 8 \mod 25$ 。

6. 假设椭圆曲线 $y^2=x^3+5x+3\pmod{11}$ 上的两点 $P=(x_1,y_1), Q=(x_2,y_2)$ 之和为 $P_3=(x_3,y_3)=P+Q
eq O$ 的计算公式为

$$x_3 = \lambda^2 - x_1 - x_2, \quad y_3 = (x_1 - x_3)\lambda - y_1$$

其中① $x_1\neq x_2$ 时, $\lambda=\frac{y_2-y_1}{x_2-x_1}$,② $x_1\neq x_2$,且 $Q\neq -P$ 时, $\lambda=\frac{3x_1^2+5}{2y_1}$.若P=(3,1),试求3P。

解:

首先计算 2P,因为

$$\lambda = rac{3x_1^2 + 5}{2y_1} = rac{3 imes 7^2 + 5}{2 imes 4} = 8;$$

所以

$$x_3 = \lambda^2 - x_1 - x_2 = 16^2 - 3 - 3 = 250 \equiv 8 \pmod{11};$$

 $y_3 = (x_1 - x_2)\lambda - y_1 = (3 - 250) \times 16 - 1 = -3953 \equiv 7 \pmod{11}$

故 2P = (8,7);

同理计算 3P = 2P + P = (8,7) + (3,1), 其中

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1} = 10;$$

因此容易得 3P = 2P + P = (8,7) + (3,1) = (1,8)。

二、证明题(共10分)

假定 a 和 b 是一个群 G 的两个元,并且 ab=ba。又假定 a 的阶是 m, b 的阶是 n ,并且(m,n)=1。证明:ab 的阶是 mn。

证明:

G 是一个群, $a,b \in G$, ab = ba, 由群封闭性, $ab \in G$.

设 ab 的阶为 k, $(ab)^k = e$.

根据题干, $a^m = b^n = e$, 因此 $(a^m)^n (b^n)^m = e$.

由群元阶的性质: $k \mid mn$.

而 $(ab)^k = a^k b^k = e$. 所以 b^k 也是 a^k 的逆元.

设 a 的逆元 a^{-1} ,于是 $(aa^{-1})^k = e = a^k a^{-k}$.

所以 $(a^{-1})^k=a^{-k}$ 也是 a^k 逆元. 根据群逆元的唯一性, $b^k=a^{-k}$.

所以 $(b^n)^k = b^{kn} = (a^{-k})^n$, 注意到 $b^n = e$.

所以 $a^{-kn} = e$.

所以 $m \mid (-kn) \Leftrightarrow m \mid kn$,又根据题干 (m,n) = 1.

所以 $(m, kn) = (m, k) = m \Rightarrow m \mid k$.

同理, a^k 也是 b^k 的逆元, 于是 $a^k=b^{-k}$, 由 $a^m=e\Rightarrow a^{km}=b^{-km}=e$.

所以 $n \mid km$, (n, km) = n, 又 (m, n) = 1, $(n, km) = (n, k) = n \Rightarrow n \mid k$.

由于 $m \mid k$, $n \mid k$, 所以 $[m, n] \mid k$.

而 (m,n)=1,因此 [m,n]=mn,所以 $mn \mid k$.

又之前有 $k \mid mn$, $mn \mid k$,

 $\therefore k = mn$. 综上,ab 的阶 k = mn.

三、应用题(每小题 15 分,共 30 分)

1. 构造有限域 $GF(16)=\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15\}$ (其中模多项式为 $m(x)=x^4+x+1$ 的加法表和乘法表。(填表即可)

加法表

\oplus	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0																
1																
2																
3																

乘法表

\otimes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0																
1																
2																
3																

解:

\oplus	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	0	3	2	5	4	7	6	9	8	11	10	13	12	15	14
2	2	3	0	1	6	7	4	5	10	11	8	9	14	15	12	13
3	3	2	1	0	7	6	5	4	11	10	9	8	15	14	13	12

乘法表

\otimes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	0	2	4	6	8	10	12	14	3	1	7	5	11	9	15	13
3	0	3	6	5	12	15	10	9	11	8	13	14	7	4	1	2

2.著名 RSA 公钥密码加密系统如下:

- ① 随机选择两个大素数 p 和 q, 而且保密;
- ② 计算 n = pq, 将 n 公开;
- ③ 计算欧拉函数 arphi(n)=(p-1)(q-1) ,并对 arphi(n) 保密;
- ④ 随机选取正整数 $e \in (1, \varphi(n))$ 且有 $(e, \varphi(n)) = 1$,并将 e 公开;
- ⑤ 根据 $ed \equiv 1 \mod \varphi(n)$, 求出 d, 并对 d 保密;
- ⑥ 加密运算: $C=M^e \mod n$; ⑦ 解密运算: $M=C^d \mod n$ 。

现令公钥 n=133, e=101。 问: (1)若待加密的明文 M=83,求相应的密文 C; (2)若待加密的明文 C=131,求相应的密文 M

解:

密文 $C = M^e \mod n = 83^{101} \mod 133 = 125;$

用反复平方法计算, $101 = (1100101)_2$

(1)
$$n_0 = 1$$
, $a_0 = 83$, $b_1 = 83^2 \equiv 106 \pmod{133}$

(2)
$$n_1 = 0$$
, $a_1 = a_0 = 83$, $b_2 = b_1^2 \equiv 64$

(3)
$$n_2=1,\ a_2=a_1\times b_2=125,\ b_3=b_2^2\equiv 106$$

(4)
$$n_3 = 0$$
, $a_3 = a_2 = 125$, $b_4 = b_3^2 \equiv 64$

(5)
$$n_4=0,\ a_4=a_3=125,\ b_5=b_4^2\equiv 106$$

(6)
$$n_5 = 1$$
, $a_5 = a_4 \times b_5 = 83$, $b_6 = b_5^2 \equiv 64$

(7)
$$n_6 = 1$$
, $a_6 = a_5 \times b_6 = 125$

(2) 首先用广义欧几里得算法求出私钥 d=77; 则相应的明文 $M=C^d \mod n=131^{77} \mod 133=(-2)^{77} \mod 133=101$ 。