Toy Monte Carlo: Dimuon Decay

Department of physics, NCKU

Chao Tsung Wu

Yi Yang

Date: 2021/07/05

Toy Monte Carlo

- Monte Carlo method: a computational algorithm use randomness to solve problems that might be deterministic in principle.
- We use it to simulate the process during particle scattering from the high energy collision statistically.
- I analysis the data (analogy with the process of muons decay from specific particle after the collision) constructed by some random variables obeys some particular distributions.

Toy Monte Carlo

• Here, a "event" is defined by each unknown (for me) mass particle decays into two muons.

Dimuon pairs

• Goals

Find out the unknown mass particle

Plot p_T distribution of pure signal

Toy Monte Carlo: Steps

Reconstruct Mass distribution

Find out the unknown mass particle

Fitting

Get the mass window

Sideband Subtraction

Draw p_T distribution of total signal (under the mass window) & background (outside the mass window)

Fitting Method

Different p_T ranges: Reconstruct Mass distribution

Fitting

 p_T distribution of pure signal

Reconstruct Mass Distribution

Conservation of Relativistic Energy

$$E_{total} = \sqrt{(p_{z\,mu1}sinh\,\eta_1\,)^2 + p_{T\,mu1}^2 + m_{mu1}^2} + \sqrt{(p_{z\,mu2}sinh\,\eta_2\,)^2 + p_{T\,mu2}^2 + m_{mu2}^2}$$

Conservation of Relativistic Momentum

$$P_{total} = \sqrt{{P_x}^2 + {P_y}^2 + {P_z}^2} \text{ with } \begin{cases} P_x = p_{T \ mu1} cos\phi_1 + p_{T \ mu2} cos\phi_2 \\ P_y = p_{T \ mu1} sin\phi_1 + p_{T \ mu2} sin\phi_2 \\ P_z = p_{T \ mu1} sinh \ \eta_1 + p_{T \ mu2} sinh \ \eta_2 \end{cases}$$

Conservation of Relativistic Momentum

$$\mathbf{m} = \sqrt{E_{total}^2 - P_{total}^2}$$

The Results of Mass Distribution

Fitting

Mass Reconstruction

Sideband Subtraction

• Draw the p_T distribution of pure signal from p_T distribution of signal + background and background.

$$p_T$$
_pure = p_T _signal - p_T _BG_normalized
 p_T _BG_normalized = $factor \times p_T$ _BG
 $factor = \frac{c}{A+B}$

The Results of Sideband Subtraction

Fitting Method

Choose P_T range from $7 \sim 36 \text{ GeV/c}$

Cut the P_T at range 1 GeV/c: 7~8,, 35~36 GeV/c

Mass distributions

Fitting Method

Fittings

P_T distribution

of events of pure signal from p_2 in array:

$$Y = [\#1, ..., \#N] \rightarrow Yaxis$$

Middle points of P_T range:

$$X = \left[\frac{1}{2}j(j+1)\right] \longrightarrow Xaxis_{11}$$

Comparing Two Results of Methods

- The Monte Carlo data has P_T dependence.
- They are pretty match from the ratio comparison.

