Package 'psc'

December 12, 2024

December 12, 2021	
Type Package	
Title Personalised Synthetic Controls	
Version 1.1.0	
Maintainer Richard Jackson <richj23@liverpool.ac.uk></richj23@liverpool.ac.uk>	
Description Allows the comparison of data cohorts (DC) against a Counter Factual Model (CFM) and measures the difference in terms of an efficacy paramet plication of Personalised Synthetic Controls.	er. Allows the ap
License GPL-3	
Encoding UTF-8	
LazyData true	
RoxygenNote 7.3.2	
URL https://github.com/richjjackson/psc/	
BugReports https://github.com/richJJackson/psc/issues	
Depends R (>= 3.5.0)	
Imports mvtnorm, survival, enrichwith, stats, flexsurv, ggplot2, survminer	
Suggests knitr, rmarkdown, devtools	
VignetteBuilder knitr	
NeedsCompilation no	
Author Richard Jackson [cre, aut] (https://orcid.org/0000-0002-7814-5088	>)
Repository CRAN	
Date/Publication 2024-12-12 21:30:02 UTC	
Contents	
acc	

2 acc

acc		acc			
Index					2
					2
	surv.mod				2'
	-				_
	pscSumm				
	pscfit				
	pscEst.flexsurvieg . pscEst.glm				
	pscEst.flexsurvreg.				
	pscEst				2
	print.psc psc.object				20
					20
	plot.psc.count plot.psc.flexsurvreg				
	plot.psc.cont				19
	plot.psc.binary				18
	plot.psc				
	1				
	modelExtract.glm .				10
	modelExtract.flexsur				13
					14
	linPred				1
	lik.glm.mtc				13
	lik.glm				12
	lik.flexsurvreg.mtc				12
	lik.flexsurvreg				
	•				
	initParm.flexsurvreg		 	 	10
	initParm				
	data_match				
	dataSumm				
	dataComb.glm				
	dataComb.flexsurvre	eg	 	 	′
	dataComb		 	 	
	data		 	 	
	count.mod		 	 	

Description

Function to accept (or not) a proposed solution used as part of the MCMC procedure

```
acc(old, new)
```

bin.mod 3

Arguments

old a numeric value
new a numeric value

Details

A function for the evaluation of two likelihoods as part of the MCMC procedure

Value

returns the an evaluation of old/new > U where U is a draw from the uniform distribution

bin.mod

Example model for a survival outcome

Description

A generated model with a binary endpoint and a logistic link function. Data for the model were synthetically generated and are based on a dataset to evaulate the use of Sorafenib in HCC akin to the PROSASH model (see ?psc::surv.mod for more details)

Usage

bin.mod

Format

A model of class 'glm':

vi vascular invasion

ecog ECOG performance Status

logafp AFP - log scale

alb albumin

logcreat Creatinine - log scale

allmets metastesis

Source

simulated

4 cont.mod

coef.psc

Returns the coefficeint estimate of a psc object.

Description

Returns basic measures of the posterior distribution obtained from the pscfit.R function

Usage

```
## S3 method for class 'psc'
coef(object, ..., level = 0.05)
```

Arguments

object a 'psc' object ... not used

level the level at which credibility intervals are assessed, defaults to 0.05

Value

The summary of the posterior distribution for the efficacy parameter in terms of the median and 95

cont.mod

Example model for a survival outcome

Description

A generated model with a continuous data endpoint and a identity link function. Data for the model were synthetically generated and are based on a dataset to evaulate the use of Sorafenib in HCC akin to the PROSASH model (see ?psc::surv.mod for more details)

Usage

```
cont.mod
```

Format

```
A model of class 'glm':

ecog ECOG performance Status

logafp AFP - log scale

alb albumin

logcreat Creatinine - log scale
```

Source

simulated

count.mod 5

count.mod

Example model for a survival outcome

Description

A generated model with a count data endpoint and a log link function. Data for the model were synthetically generated and are based on a dataset to evaulate the use of Sorafenib in HCC akin to the PROSASH model (see ?psc::surv.mod for more details)

Usage

count.mod

Format

```
A model of class 'glm':
```

ecog ECOG performance Status

logafp AFP - log scale

alb albumin

logcreat Creatinine - log scale

Source

simulated

data

Example Dataset of patients with aHCC receiving Lenvetanib

Description

A dataset containing 100 simulated patients. Data are based on the data used to generate PROSASH survival model -see ?psc::surv.mod for more detials.

Usage

data

6 dataComb

Format

A model of class 'flezsurvreg':

gamma cumulative baseline hazard parameters

vi vascular invasion

age60 patient age (centred at 60)

ecog ECOG performance Status

logafp AFP - log scale

alb albumin

logcreat Creatinine - log scale

allmets metastesis

ageVasInv centred age nested within vascular invasion

time survival time

cen censoring indicator

os survival time

count exapmple outcome for count data

trt exapmple identifier for mulitple treatment comparisons

aet Aetiology

Source

simulated

dataComb

A generic function for cleaning data ready for analysis

Description

A generic function for cleaning data ready for analysis

Usage

```
dataComb(CFM, DC, id = NULL, trt = NULL)
```

Arguments

CFM	a model object supplied to pscfit
DC	a dataset including covariates to match the CFM
id	to specify which observations in the data cohort should be evaluated. Defualts to 'NULL' i.e all observations
trt	used to specify multiple treatment effects. Defaults to NULL

dataComb.flexsurvreg 7

Value

datComb returns a list containing objects which detial the components of both the Counter Factual Model (CFM) and the Data Cohort (DC) the required exported components of the model and a cleaned data cohort.

Examples

```
bin.mod <- psc::bin.mod
data <- psc::data
dc <- dataComb(bin.mod,data)</pre>
```

dataComb.flexsurvreg Function for cleaning the data of a model with class 'flexsurvreg'

Description

The purpose of this function is to prepare the dataset and the counter-factual model for estimation and is the first step pf the pscfit.R process. The output is a complete-case dataset where the data names match the variables used in the CFM.

Usage

```
## S3 method for class 'flexsurvreg'
dataComb(CFM, DC, id = NULL, trt = NULL)
```

Arguments

CFM	a model object supplied to pscfit
DC	a dataset including covariates to match the CFM
id	a vector specifiying whether a subset of the dataset should be selected. Defaults to 'NULL' e.g. all data points included
trt	An optional additional vector denoting treatment allocations for multiple treatment comparisons. Defaults to 'NULL'

Value

a list containing objects which specifiy the required exported components of the model and a cleaned data cohort. Attributes include

- 'model.type' specifying the class of model to be used as the CFM
- 'model_extract' sepcifying the model componets required for estimation
- 'cov' a cleaned dataset of covariates
- 'outcome' a cleaned dataset containing the outcomes

8 dataSumm

dataComb.glm

Function for cleaning the data of a model with class 'flexsurvreg'

Description

The purpose of this function is to prepare the dataset and the counter-factual model for estimation and is the first step pf the pscfit.R process. The output is a complete-case dataset where the data names match the variables used in the CFM.

Usage

```
## S3 method for class 'glm'
dataComb(CFM, DC, id = NULL, trt = NULL)
```

Arguments

CFM	a model object supplied to pscfit
DC	a dataset including covariates to match the CFM
id	to specify which observations in the data cohort should be evaluated. Defualts to 'NULL' i.e all observations
trt	used to specify multiple treatment effects. Defaults to NULL

Value

a list containing objects which specifiy the required exported components of the model and a cleaned data cohort. Attirbutes of the 'cleaned' object include: Attributes include

- 'model.type' specifying the class of model to be used as the CFM
- 'model_extract' sepcifying the model componets required for estimation
- 'cov' a cleaned dataset of covariates
- 'outcome' a cleaned dataset containing the outcomes

dataSumm

A function which provides basic summary information of a matrix x

Description

A function which provides basic summaries of data provided within a data frame of covariets. Summaries are in the form of frequencies of counts and associated percentages for categorical data and median (IQR) for continuous data. Intended for use with the pscCFM.R function to define the setting in which a model has been generated

```
dataSumm(x)
```

data_match 9

Arguments

x a matrix of covariates

Details

Categorical/Character data are summarised by a table and Continuous data are summarised as median (IQR)

data_match

A function to ensure that data from the cfm and data cohort are compatible

Description

The purpose of this function is to run a series of checks to ensure that the data included in the data cohort is comparable to the counter-factual model

Usage

```
data_match(cfm.data, dc.data)
```

Arguments

cfm. data a model object supplied to pscfit

dc.data a dataset including covariates to match the CFM

Value

a dataset which is checked and compatible with the CFM

initParm

Fucntion for estimating initial parameter values 'flexsurvreg'

Description

A generic function for estimating the initial parameters for estimation as part of the pscfti.R function. Parameter estimates are obtained using standard optomisation methods provided by the 'optim' set of functions. For a single parameter a Brent method is applied. For multiple treatment comparisons the 'BFGS' method is applied.

```
initParm(CFM, DC_clean, trt)
```

10 initParm.flexsurvreg

Arguments

CFM A counter-factual model

DC_clean a cleaned dataset obsect obtained using dataComb.flexsurvreg

trt An optional additional vector denoting treatment allocations for multiple treat-

ment comparisons. Defaults to 'NULL'

Details

This function takes the liklihood for a 'flexsurvreg' model and uses 'optim' to fit the likelihood.

Value

an 'optim' output giving the parameter values to be supplied as a starting value for the mcmc routine.

initParm. flexsurvreg Fucntion for estimating initial parameter values 'flexsurvreg'

Description

Fucntion for estimating initial parameter values 'flexsurvreg'

Usage

```
## S3 method for class 'flexsurvreg'
initParm(CFM, DC_clean, trt = NULL)
```

Arguments

CFM A counter-factual model

DC_clean a cleaned dataset obsect obtained using dataComb.flexsurvreg

trt An optional additional vector denoting treatment allocations for multiple treat-

ment comparisons. Defaults to 'NULL'

Details

This function takes the liklihood for a 'flexsurvreg' model and uses 'optim' to fit the likelihood.

Value

an 'optim' output giving the parameter values to be supplied as a starting value for the mcmc routine.

initParm.glm 11

initParm.glm	Fucntion for estimating initial parameter values 'flexsurvreg'	

Description

Fucntion for estimating initial parameter values 'flexsurvreg'

Usage

```
## S3 method for class 'glm'
initParm(CFM, DC_clean, trt = trt)
```

Arguments

CFM A counter-factual model

DC_clean a cleaned dataset obsect obtained using dataComb.flexsurvreg

trt An optional additional vector denoting treatment allocations for multiple treat-

ment comparisons. Defaults to 'NULL'

Details

This function takes the liklihood for a 'flexsurvreg' model and uses 'optim' to fit the likelihood.

Value

an 'optim' output giving the parameter values to be supplied as a starting value for the mcmc routine.

lik.flexsurvreg Likelihood function for a psc model of class 'flexsurvreg'	
--	--

Description

A function which defines the likelihood for a PSC model where the Counter Factual Model (CFM) takes the form of a 'flexsurvreg' object and an efficacy parameter (β) is being estimated. For more details on fitting please see 'pscfit and 'pscEst

Usage

```
lik.flexsurvreg(beta, DC_clean)
```

Arguments

beta a parameter to be estimate

DC_clean a cleaned dataset including covariates to match the CFM

lik.glm

Details

A likelihood function for use by pscfit for a model of class 'flexsurvreg'

lik.flexsurvreg.mtc Likelihood function for a psc model of class 'flexsurv' with multiple treatment comparisons

Description

A function which defines the likelihood for a PSC model where the Counter Factual Model (CFM) takes the form of a 'flexsurvreg' object and a mulitple efficacy parameters (β) is being estimated. For more details on fitting please see 'pscfit and 'pscEst

Usage

```
lik.flexsurvreg.mtc(beta, DC_clean)
```

Arguments

beta a parameter to be estimate

DC_clean a cleaned dataset including covariates to match the CFM

Details

A likelihood function for use by pscfit for a model of class 'flexsurvreg' where multiple treatment comparisons are required

lik.glm

Likelihood function for a psc model of class 'glm'

Description

A function which defines the likelihood for a PSC model where the Counter Factual Model (CFM) takes the form of a 'glm' object and an efficacy parameter (β) is being estimated. For more details on fitting please see 'pscfit and 'pscEst

Usage

```
lik.glm(beta, DC_clean)
```

Arguments

beta a parameter to be estimate

DC_clean a cleaned dataset including covariates to match the CFM

Details

A likelihood function for use by pscfit for a model of class 'glm'

lik.glm.mtc

ment comparisons	lik.glm.mtc	Likelihood function for a psc model of class 'glm' with multiple treat- ment comparisons
------------------	-------------	---

Description

A function which defines the likelihood for a PSC model where the Counter Factual Model (CFM) takes the form of a 'glm' object and a mulitple efficacy parameters (β) is being estimated. For more details on fitting please see 'pscfit and 'pscEst

Usage

```
lik.glm.mtc(beta, DC_clean)
```

Arguments

beta a parameter to be estimate

DC_clean a cleaned dataset including covariates to match the CFM

Details

A likelihood function for use by pscfit for a model of class 'flexsurvreg' where multiple treatment comparisons are required

Description

A function which created a linear predictor from a model and an external dataset. If required, linear predictors will be provided on the response scale. For a survival outcome, this will take the form of median survival estimates.

Usage

```
linPred(DC_clean, resp = FALSE)
```

Arguments

DC_clean a cleaned data obhject created using dataComb()

resp detailing whether the linear predictor should be returned on the natural or re-

sponse level. Defaults to the natural scale (resp=F)

Details

A function which combines the data from the data cohort against the model parameters of the PSC

14 modelExtract

Value

Extracts the linear predictor from a object containing both a counter factual model and a data cohort which is created using the dataComb() fucntion.

Examples

```
library(psc)
library(survival)
surv.mod <- psc::surv.mod
data <- psc::data
dc <- dataComb(surv.mod,data)
lp <- linPred(dc)</pre>
```

modelExtract

A generic function for extracting model information

Description

A generic function for extracting model information

Usage

```
modelExtract(CFM)
```

Arguments

 CFM

a model of class either 'glm' or 'flexsurvreg'

Details

A function for extracting the model information required for using pscfit

Value

a list of extracted model components

```
modelExtract.flexsurvreg
```

A generic function for extracting model information

Description

This function extracts model information for use with the pscfit.R function.

Usage

```
## S3 method for class 'flexsurvreg'
modelExtract(CFM)
```

Arguments

CFM

a model of class 'flexsurvreg'

Details

A function for extracting the model information required for using pscfit

Value

a list of extracted model components. Included are

- model.frame a dataset of the covareits used to create the model
- cov_co: covariate coefficients
- sig: variance-covariance matrix
- haz_co: hazard parameter coefficients
- k: number of knots
- knots: knot position
- lam: lambda parameter
- form: model formula

16 modp

modelExtract.glm

A generic function for extracting model information

Description

A generic function for extracting model information

Usage

```
## S3 method for class 'glm'
modelExtract(CFM)
```

Arguments

CFM

a model of class 'glm'

Details

A function for extracting the model information required for using pscfit

Value

a list of extracted model components. Included are

- model.frame a dataset of the covareits used to create the model
- cov_co: covariate coefficients
- sig: variance-covariance matrix
- form: model formulafamily: model family
- out.nm: outcome covariates names

modp

modp

Description

A function which rrturns either the input value (if positive) or zero (if negative)

Usage

modp(x)

Arguments

Χ

a numberic vector

plot.psc 17

Details

A fucntion which returns a version of x with negative values replacd with 0

Value

a numeric vector with negative values replaced with 0

plot.psc

Function for Plotting PSC objects

Description

A function which illsutrates the predicted response under the Counter Factual Model (CFM) and the observed response under the experimental treatment(s). Form of the output will depend on the form of the CFM used

Usage

```
## S3 method for class 'psc'
plot(x, ...)
```

Arguments

```
x an object of class 'psc'
... not used
```

Details

This function plots the expected response of the control treatment along with the observe response rates of the experimental arms

Value

a survival plot corresponding to the psc fit

Examples

```
bin.mod <- psc::bin.mod
data <- psc::data
bin.psc <- pscfit(bin.mod,data,nsim=3000)
plot(bin.psc)</pre>
```

18 plot.psc.cont

plot.psc.binary

Function for Plotting PSC objects

Description

A function which illustrates the predicted response under the counter factual model and the observed response under the experimental treatment(s).

Usage

```
## S3 method for class 'psc.binary' plot(x, ...)
```

Arguments

```
x an object of class 'psc'
... not used
```

Details

This function plots the expected response of the control treatment along with the observe response rates of the experimental arms

Value

a survival plot corresponding to the psc fit

Examples

```
bin.mod <- psc::bin.mod
data <- psc::data
bin.psc <- pscfit(bin.mod,data,nsim=3000)
plot(bin.psc)</pre>
```

plot.psc.cont

Function for Plotting PSC objects

Description

A function which illsutrates the predicted response under the counter factual model and the observed response under the experimental treatment(s).

```
## S3 method for class 'psc.cont' plot(x, ...)
```

plot.psc.count 19

Arguments

```
x an object of class 'psc'
... not used
```

Details

This function plots the expected response of the control treatment along with the observe response rates of the experimental arms

Value

a survival plot corresponding to the psc fit

Examples

```
cont.mod <- psc::cont.mod
data <- psc::data
cont.psc <- pscfit(cont.mod,data,nsim=3000)
plot(cont.psc)</pre>
```

plot.psc.count

Function for Plotting PSC objects #' A function which illsutrates the predicted response under the counter factual model and the observed response under the experimental treatment(s).

Description

Function for Plotting PSC objects #' A function which illustrates the predicted response under the counter factual model and the observed response under the experimental treatment(s).

Usage

```
## S3 method for class 'psc.count' plot(x, ...)
```

Arguments

```
x an object of class 'psc'
... not used
```

Details

This function plots the expected response of the control treatment along with the observe response rates of the experimental arms

Value

a survival plot corresponding to the psc fit

20 print.psc

Examples

```
count.mod <- psc::count.mod
data <- psc::data
count.psc <- pscfit(count.mod,data,nsim=3000)
plot(count.psc)</pre>
```

plot.psc.flexsurvreg Function for Plotting PSC objects

Description

Function for Plotting PSC objects

Usage

```
## S3 method for class 'psc.flexsurvreg' plot(x, ...)
```

Arguments

x an object of class 'psc'
... not used

Details

making use of 'ggsurvplot' in the survminer package, this function plots the expected survival funtion for the 'control' treatment estimated from the CFM along with the Kaplan Meier estimates of the observed events

Value

a survival plot corresponding to the psc fit

print.psc

Personalised Synthetic Controls - print

Description

Personalised Synthetic Controls - print

```
## S3 method for class 'psc'
print(x, ...)
```

psc.object 21

Arguments

x an object of class 'psc'

... not used

Value

printing psc results

psc.object

Fitted psc object

Description

An object returned by the pscfit function, inheriting from class psc and representing a fitted personlised synthetic control model.

Usage

```
psc.object
```

Format

An object of class NULL of length 0.

Author(s)

Richard Jasckson (<richj23@liverpool.ac.uk>)

pscEst

Function for performing estimation procedures in 'pscfit'

Description

Function for performing estimation procedures in 'pscfit'

Usage

```
pscEst(CFM, DC_clean, nsim, start, trt)
```

Arguments

CFM a model object supplied to pscfit

DC_clean a cleaned dataset ontained using dataComb().

nsim the number of MCMC simulations to run

start the stating value for

trt an optional vector denoting treatment allocations where mulitple treatment com-

parisons are bieng made

22 pscEst.flexsurvreg

Details

Define the set of model parameters B to contain Γ which summarize the parameters of the CFM. Prior distributions are defined for B using a multivariate normal distribution $\pi(B) \sim MVN(\mu, \Sigma)$ where μ is the vector of coefficient estimates from the validated model and Σ is the variance-covariance matrix. This information is taken directly from the outputs of the parametric model and no further elicitation is required. The prior distirbution for the efficacy parameter $(\pi(\beta))$ is set as an uniformative N(0, 1000).

Ultimately the aim is to estimate the posterior distribution for β conditional on the distribution of B and the observed data. A full form for the posterior distribution is then given as

$$P(\beta|B,D) \propto L(D|B,\beta)\pi(B)\pi(\beta)$$

Please see 'pscfit' for more details on liklihood formation.

For each iteration of the MCMC procedure, the following algorithm is performed

- 1. Set and indicator s=1, and define an initial state based on prior hyperparameters for $\pi(B)$ and $\pi(\beta)$ such that $b_s = \mu and \tau_s = 0$
- 2. Update s = s + 1 and draw model parameters b_s from $\pi(B)$ and an draw a proposal estimate of β from some target distribution
- 3. Estimate $\Gamma(i,S) = \nu^T x_i$ where ν is the subset of parameters from b_s which relate to the model covariates and define 2 new likelihood functions $\Theta(s,1) = L(D|B = b_s, \beta = \tau(s-1))$ & $\Theta(s,2) = L(D|B = b_s, \beta = \tau_s)$
- 4. Draw a single value ψ from a Uniform (0,1) distribution and estimate the condition $\omega = \Theta(s,1)/\Theta(s,2)$. If $\omega > \psi$ then accept τ_s as belonging to the posterior distribution $P(\beta|B,D)$ otherwise retain $\tau(s-1)$
- 5. Repeat steps 2-4 for the required number of iterations

The result of the algorithm is a posterior distribution for the log hazard ratio, β , captures the variability in B through the defined priors $\pi(\beta)$.

Value

A matrix containing the draws form the posterior distribution

pscEst.flexsurvreg Function for estimating initial parameter values 'flexsurvreg'

Description

A function which performs the Bayesian MCMC estimation procedure for estimating the efficacy parameter (β) using personalised sunthetic controls methodology.

```
## S3 method for class 'flexsurvreg'
pscEst(CFM, DC_clean, nsim, start, trt = trt)
```

pscEst.glm 23

Arguments

CFM a model object supplied to pscfit

DC_clean a cleaned dataset ontained using dataComb().

nsim the number of MCMC simulations to run

start the stating value for

trt an optional vector denoting treatment allocations where multiple treatment com-

parisons are being made

Details

An MCMC routine for fitting a psc model

Value

A matrix containing the draws form the posterior distribution

pscEst.glm Function for estimating initial parameter values 'flexsurvreg'

Description

A function which performs the Bayesian MCMC estimation procedure for estimating the efficacy parameter (β) using personalised sunthetic controls methodology.

Usage

```
## S3 method for class 'glm'
pscEst(CFM, DC_clean, nsim, start, trt = trt)
```

Arguments

CFM a model object supplied to pscfit

DC_clean a cleaned dataset ontained using dataComb().

nsim the number of MCMC simulations to run

start the stating value for

trt an optional vector denoting treatment allocations where multiple treatment com-

parisons are being made

Details

An MCMC routine for fitting a psc model

Value

a matrix containing the draws form the posterior distribution

24 pscfit

pscfit

Personalised Synthetic Controls model fit

Description

Function which allows comparison of a data cohort against a parametric Counter Factual Model (CFM). The function allows models of the type 'flexsurvreg' and 'glm' to be supplied. The function performs by calculating the linear predictor as a combination of the CFM and the dataset supplied and then selects a likelihood based on the type of model specified. Likelihood is estimated using a Baysian MCMC procedure wherebey the parameters of the CFM acts as informative priors.

Usage

```
pscfit(CFM, DC, nsim = 5000, id = NULL, trt = NULL)
```

Arguments

CFM	An R model object of class 'glm' or 'flexsurvspline'
DC	A dataset including columns to match to covariates in the model
nsim	The number of simulations for the MCMC routine
id	Numeric vector stating which patient(s) from the dataset should be included in the analysis. Defaults to all patients
trt	An optional vector denoting treatment allocations for multiple treatment comparisons. Defaults to NULL.

Details

Model currently supports estimation of more than one treatment (using the 'trt') option and esitmation restricted to sub-groups of the data cohort (using the 'id' option.

the pscfit function compares a dataset ('DC') against a parametric model. This is done by selecting a likelihood which is identified by the type of CFM that is supplied. At present, two types of model are supported, a flexible parmaeteric survival model of type 'flexsurvreg' and a geleneralised linear model of type 'glm'.

Where the CFM is of type 'flexsurvreg' the likelhood supplied is of the form:

$$L(D|\Lambda, \Gamma_i) = \prod_{i=1}^n f(t_i|\Lambda, \Gamma_i)^{c_i} S(t_i|\Lambda, \Gamma_i)^{(1-c_i)}$$

Where Λ defines the cumulative baseline hazard function, Γ is the linear predictor and t and c are the event time and indicator variables.

Where the CFM is of the type 'glm' the likelihood supplied is of the form:

$$L(x|\Gamma_i) = \prod_{i=1}^n b(x|\Gamma_i) \exp\left\{\Gamma_i^T t(x) - c(\Gamma_i)\right\}$$

pscSumm 25

Where b(.), t(.) and c(.) represent the functions of the exponential family. In both cases, Γ is defined as:

$$\Gamma = \gamma x + \beta$$

Where γ are the model coefficients supplied by the CFM and β is the parameter set to measure the difference between the CFM and the DC.

Estimation is performed using a Bayesian MCMC procedure. Prior distributions for Γ (& Λ) are derived directly from the model coefficients (mean and variance covariance matrix) or the CFM. A bespoke MCMC routine is performed to estimate β . Please see '?mcmc' for more detials.

For the standard example where the DC contains information from only a single treatment, trt need not be specified. Where comparisons between the CFM and multiple treatments are require, a covariate of treamtne allocations must be specified sperately (using the 'trt' option).

Value

a object of class 'psc' with attributes model.type, the cleaned Dataset and the posterior distribution of the fitted model

Attributes include

- A 'cleaned' dataset including extracted components of the CFM and the cleaned DC included in the procedure
- An object defining the class of model (and therefore the procedure applied see above)
- A matrix containing the draws of the posterior distributions

Examples

```
library(psc)
library(survival)
data("surv.mod")
data("data")
surv.psc <- pscfit(surv.mod,data)</pre>
```

pscSumm

Personalised Synthetic Controls - summary

Description

A function which provides a summary of a DC_clean object. To be used either in conjunction with dataComb.R or summary.psc.R

```
pscSumm(DC_clean)
```

26 summary.psc

Arguments

DC_clean a cleaned dataset ontained using dataComb().

Value

psc summary results including an estimate of the linear predictor combing the data and the model, an estimate of patient level response and summary statistics of the average responses for the sythenthic and observed populations

Examples

```
library(psc)
library(survival)
data("surv.mod")
data("data")
dc <- dataComb(surv.mod,data)
pscSumm(dc)</pre>
```

summary.psc

Personalised Synthetic Controls - summary

Description

A generic function to provide a summary of a 'psc' object obtained from pscfit.R

Usage

```
## S3 method for class 'psc'
summary(object, ...)
```

Arguments

```
object an object of class 'psc'
... not used
```

Value

A summary of a psc object obtained using pscSumm and a copy of the pscfit object

Examples

```
library(psc)
library(survival)
data("surv.mod")
data("data")
psc.ob <- pscfit(surv.mod,data)
summary(psc.ob)</pre>
```

surv.mod 27

surv.mod

Example model for a survival outcome

Description

A generated model with a survival endpoint and a cuymulative hazard function estimated using flexible parametric splines. Data for the model were synthetically generated and are based on a dataset to evaulate the use of Sorafenib in HCC akin to the PROSASH model

Usage

surv.mod

Format

```
A model of class 'flezsurvreg':
gamma cumulative baseline hazard parameters
vi vascular invasion
age60 patient age (centred at 60)
ecog ECOG performance Status
logafp AFP - log scale
alb albumin
logcreat Creatinine - log scale
allmets metastesis
ageVasInv centred age nested within vascular invasion
time survival time
cen censoring indicator
os survival time
count exapmple outcome for count data
trt exapmple identifier for mulitple treatment comparisons
aet Aetiology
```

Source

simulated

References

Using prognostic and predictive clinical features to make personalised survival prediction in advanced hepatocellular carcinoma patients undergoing sorafenib treatment. Berhane S, et al., Br J Cancer. 2019 Jul;121(2):117-124

28 surv_fpm

surv_fpm	A function to obtain survival estimates from a flexible parametric model
----------	--

Description

This function provides basic survival estimates from a flexible parametric survival model

Usage

```
surv_fpm(DC_clean, beta = 0, s = NULL)
```

Arguments

DC_clean a cleaned dataset ontained using dataComb().

beta a parameter to determine if the survival probabilities should be adjusted by some

(log) hazard ratio. Defaults to beta=0, i.e. no adjustment.

s if specified will return the time at which some threshold is passed (e.g. s=0.5 for

median survival time)

Details

A fucntion which extracts survival probabilities from a flexsurvreg object

Value

a list of times and assoicated survival probabilities

Examples

```
library(psc)
library(survival)
data("surv.mod")
data("data")
dc <- dataComb(surv.mod,data)
s_est <- surv_fpm(dc)</pre>
```

Index

```
* datasets
                                                  plot.psc.count, 19
    bin.mod, 3
                                                  plot.psc.flexsurvreg, 20
    cont.mod, 4
                                                  print.psc, 20
    count.mod, 5
                                                  psc.object, 21
    data, 5
                                                  pscEst, 21
    psc.object, 21
                                                  pscEst.flexsurvreg, 22
    surv.mod, 27
                                                  pscEst.glm, 23
                                                  pscfit, 24
acc, 2
                                                  pscSumm, 25
bin.mod, 3
                                                  summary.psc, 26
                                                  surv.mod, 27
coef.psc, 4
                                                   surv_fpm, 28
cont.mod, 4
count.mod, 5
data, 5
data_match, 9
dataComb, 6
dataComb.flexsurvreg, 7
{\tt dataComb.glm}, \textcolor{red}{8}
dataSumm, 8
initParm, 9
initParm.flexsurvreg, 10
initParm.glm, 11
lik.flexsurvreg, 11
lik.flexsurvreg.mtc, 12
lik.glm, 12
lik.glm.mtc, 13
linPred, 13
modelExtract, 14
modelExtract.flexsurvreg, 15
modelExtract.glm, 16
modp, 16
plot.psc, 17
plot.psc.binary, 18
plot.psc.cont, 18
```