CSE 251A: Machine learning Winter 2021

Programming project 2 — Coordinate Descent

Name: Xuanyu Chen

PID: A53306915

I. Description

Coordinate descent is a simple and useful approach to solve an unconstrained optimization problem. Coordinate descent algorithms solve optimization problems by successively performing approximate minimization along coordinate directions. If f is a k-dimensional function, we can minimize f by successively minimizing each of the individual dimensions of f while holding the values of f in the other dimensions fixed. The primary advantage of this approach is that it takes an arbitrarily complex k-dimensional problem and reduces it to a collection of f one-dimensional problems.

II. Pseudocode

Algorithm 1 Coordinate Descent

- 1. **Input**:
 - α: a positive constant, the step-size for every update in one coordinate
 - θ: threshold
 - N: maximum number of iterations
 - F: bool, if False means the loss value is not optimal, True means optimal
- 2. Output: vector w and optimal loss value $f(w^t)$
- 3. **Procedure COORDINATEDESCENT**
- 4. set $t \leftarrow 0$ and choose $w^0 \in \mathbb{R}^d$
- 5. $loss \leftarrow f(w^0)$
- 6. **while** (F == False) & (t < N):
- 7. choose index $i_t \in \{1, 2, ..., d\}$ which is $argmax_{i_t}abs([\nabla f(w^t)]_{i_t})$
- 8. $I.append(i_t)$
- 9. $w^{t+1} \leftarrow w^t \alpha [\nabla f(w^t)]_{i_t}$;
- 10. $newloss \leftarrow f(w^{t+1})$
- 11. **while** (loss newloss) $< \theta$:
- 12. choose index $i_t \in \{1, 2, ..., d\} \& i_t \notin I$ which is $argmax_{i_t} abs([\nabla f(w^t)]_{i_t})$
- 13. $I.append(i_t)$
- 14. $w^{t+1} \leftarrow w^t \alpha_t [\nabla f(w^t)]_{i_t};$
- 15. $newloss \leftarrow f(w^{t+1})$
- 16. **if** len(I) == len(w):
- 17. $F \leftarrow True$
- 18. break
- 19. $loss \leftarrow newloss$
- 20. $t \leftarrow t + 1$;

III. Experimental results

The optimal log-loss calculated based on the Logistic Regression function (with parameter C = 50) from scikit-learn package is 0.02102.

Here are the results calculated by my Coordinate Descent algorithm:

Table 1.

Max-Iteration	500	1500	5000	7000	9000
alpha	0.1	0.1	0.1	0.1	0.1
threshold	1e-3	1e-4	1e-5	1e-6	1e-6
Log-loss	0.475	0.158	0.0589	0.048	0.0386
iterations	403	1500	4622	7000	9000

Figure 1. (First 100 iterations)

Figure 2. (Last 500 iterations)

IV. Critical evaluation

- (1) In my Coordinate Descent algorithm, I choose the index of coordinate which maximizes the first derivative of function f. I also tried to use the method of choosing the index of coordinate randomly. It turns out that the difference between these two methods is not such big like I imagined before. In the future, I may try to use other smarter method to select the coordinate index so that $L(w^t)$ can approach to L^* more quickly and better.
- (2) Through my experiment, the "initial starting point" and the original data influence my algorithm a lot. If I use a vector containing all zeros as my initial weight, then it turns out that my final outcome is pretty bad. Moreover, I use MinMaxScaler() function to standardize the original data so that $L(w^t)$ can approach to L^* better.
- (3) For every coordinate-dimension update, my step size is constant. Intuitively, the update step size will decrease as iteration goes on. I have read a paper about *Adam Optimization Algorithm* before and it inspired me that my future improvements could include updating step size in real time.