Opis struktury:

Użyta struktura będzie oparta na Find and Union. Dodatkowo trzymy jedną liczbę z, która mówi ile jest zbilansowancyh składowych w grafie, początkowo ustalona jest na n i stan każdej grupy(wierzchołka) jest zbalansowany.

Operacja Kolor:

Zmienia kolor w danym wierzchołku, oraz wysyła do reprezentanta wiadomość o zmianie. Każdy wierzchołek trzyma informacje o swoim kolorze i liczbie białych i czerwonych wierzchołków w grupie, której jest reprezentantem. Jeżeli reprezentant zauważy, że stan zbalansowania skłądowej dodaje 1 do z jeżeli się zbalansowała, odejmuje 1 wpp.

Operacja Dodaj:

Wykonuje operacje union w standardowej strukturze Find and Union. Dodatkowo przekazuje do nowego ojca informacje o liczbie czerowonych i białych wierzchołków w dołączonym drzewie. Jeżeli dołączone drzew było zbalansowane odejmujemy 1 od z. Jeżeli stan zbalansowanie drzewa do którego dołaczyliśmy aktualizujemy odpowiednio z.

Operacja ZbalansowaneSkładowe:

Zwraca z.

Złożoność:

Inicjalizacja:

Pamięciowa: O(n) jak w standardowym Find And Union Czasowa: O(n) trzeba tylko zainicjalizować wszystkie węzły

W pozostałych operacjach złożoność pamięciowa to O(1), bo nie tworzymy nic nowego.

Kolor:

Czasowa: amortyzowane O(\alpha(n)), aktualizacja siebie O(1) + operacja find

Dodaj:

Czasowa: amortyzowane O(\alpha(n)), aktualizacja nowego ojca O(1) + operacja union

ZbalansowaneSkładowe:

Łączna złożoność m operacji:

O(m \alpha(n))