Probeklausur

Bearbeitung des Bonus-MC-Tests bis 12. 2. 2018, 23:59 Uhr

Hinweise zur Klausur:

- Klausurtermin: 23. 2. 2018 um 12 Uhr (Einlass) in RUD26 0'110 und 0'115.
- Nachklausurtermin: 28.3.2018 um 9 Uhr (Einlass) in RUD26 0'115 (die Nachklausur kann auch ohne Teilnahme an der ersten Klausur mitgeschrieben werden).
- Anmeldung in Agnes nur mit Übungsschein (d.h. 190 schriftliche Punkte sowie 70 Punkte in den MC-Tests in Moodle oder alter ÜS) bis 16.2.2018 (Klausur) bzw. 21.3.2018 (Nachklausur).
- Die Bearbeitungszeit wird 120 Minuten betragen.
- Bitte bringen Sie Ihren Studenten- und einen gültigen amtlichen Lichtbildausweis (Personalausweis, Reisepass oder Führerschein) mit.
- Als Hilfsmittel sind eigene Notizen (auch gedruckt) und Skript erlaubt. Bücher und elektronische Geräte (Taschenrechner, Handy etc.) sind **nicht** zugelassen.
- Am 21.2.2018 ab 9.30 Uhr findet in RUD26 0'307 eine Fragestunde statt.

Aufgabe 1 13 Punkte

Betrachten Sie die beiden folgenden DFAs M_1 und M_2 .

- (a) Geben Sie explizite Beschreibungen und reguläre Ausdrücke für die Sprachen $A=L(M_1)$ und $B=L(M_2)$ an.
- (b) Konstruieren Sie aus M_1 und M_2 einen DFA M_3 für die Sprache $A \cap B$. Verwenden Sie dazu das Verfahren aus der Vorlesung.
- (c) Geben Sie einen DFA M_4 für die Sprache $A \cup B$ an, der höchstens vier Zustände hat.

Aufgabe 2 18 Punkte

Betrachten Sie den folgenden DFA M und L = L(M).

- (a) Minimieren Sie M mit dem Verfahren aus der Vorlesung.
- (b) Geben Sie ein Repräsentantensystem für die Nerode-Relation \sim_L an.
- (c) Geben Sie 4 unterschiedliche Wörter x der Länge 4 an, für die $x \sim_L bbaaab$ gilt.

Aufgabe 3 16 Punkte

Betrachten Sie auf der Grundmenge $A = \{1, 2, 3, 4\}$ die Relationen

$$R = \{(1,2), (2,3), (3,2), (2,2), (3,3)\}$$
 und $S = Id_A \cup \{(2,3), (3,2)\}$.

- (a) Geben Sie an, wie viele Paare zu R und S jeweils mindestens hinzugefügt werden müssen, damit diese transitiv bzw. semikonnex werden.
- (b) Sind die Relationen $S' = S \setminus \{(3,2)\}$ bzw. $R' = R \cup Id_A$ Ordnungen? Falls nein, begründen Sie, falls ja, geben Sie (sofern vorhanden) das Infimum der Menge $\{2,3\}$ bezüglich der Ordnung an.
- (c) Geben Sie eine Relation P auf der Grundmenge $C = \{a, b, c, d\}$ mit $\{(c, a), (a, d)\} \subseteq P$ an, sodass (A, R) und (C, P) isomorph sind.

Aufgabe 4 22 Punkte

Die lexikographische Striktordnung < auf $\{0,1\}^*$ ist wie folgt definiert. Es ist x < y, falls gilt:

- |x| < |y| oder
- |x| = |y| und $\exists i \le |x| : x_1 \cdots x_{i-1} = y_1 \cdots y_{i-1}$ und $x_i < y_i$. Betrachten Sie die Sprachen

$$L_{1} = \{x \# y \mid x, y \in \{0, 1\}^{*}, |x| = |y|, x < y\} \quad \text{und}$$

$$L_{2} = \{x \# y \mid x, y \in \{0, 1\}^{*}, |x| = |y|, x < y^{R}\}.$$

- (a) Geben Sie eine eindeutige Typ-2-Grammatik für L_2 an und den Syntaxbaum für das Wort w=11000#10011 an.
- (b) Zeigen Sie, dass L_1 nicht kontextfrei ist. Betrachten Sie dazu Wörter der Form $0^l 1^l \# 0^{l-1} 10^l$.
- (c) Gibt es eine Sprache A mit $L_1 \cap A \in \mathsf{CFL} \setminus \mathsf{REG}$? Begründen Sie kurz.
- (d) Gibt es eine Sprache $A \in \mathsf{REG}$ mit $L_2 \cap A \notin \mathsf{CFL}$? Begründen Sie kurz.

Welche der folgenden Sprachen sind entscheidbar? Begründen Sie.

- (a) $L_1 = \{w \in \{0,1\}^* \mid L(M_w) = L(G) \text{ für eine kontextfreie Grammatik } G\}$
- (b) $L_2 = \{ w \in \{0, 1\}^* \mid L(M_w) = L(G) \text{ für eine Grammatik } G \}$
- (c) $L_3 = \{w \in \{0,1\}^* \mid M_w(w) \text{ führt zweimal hintereinander dieselbe Kopfbew. aus}\}$

Aufgabe 6 Für $n \in \mathbb{N}$ sei $S_n = \{a \in \{0,1\}^n \mid \#_1(a) = 1\}$ **20 Punkte** Geben Sie für folgende Probleme an, ob sie in P liegen oder NP-hart oder co-NP-hart sind. Begründen Sie.

- (a) **Gegeben:** Ein Graph G.
 - **Gefragt:** Enthält G zwei Pfade, sodass jeder Knoten von G auf genau einem dieser Pfade liegt?
- (b) **Gegeben:** Ein zusammenhängender Graph G.
 - **Gefragt:** Enthält G zwei Wege, sodass jede Kante von G von genau einem dieser Wege durchlaufen wird?
- (c) **Gegeben:** Eine aussagenlogische Formel F mit n Variablen.
- **Gefragt:** Ist $F \in SAT$ und gilt F(a) = 1 für alle $a \in S_n$?
- (d) **Gegeben:** Eine aussagenlogische Formel F mit n Variablen. **Gefragt:** Ist $F \in \text{TAUT}$ und gilt F(a) = 1 für alle $a \in S_n$?

Aufgabe 7 10 Punkte

Geben Sie **zusammenhängende** Graphen G_i für $i \in \{1,2\}$ mit den folgenden zusätzlichen Eigenschaften an:

- (a) G_1 hat genau 7 Knoten und $\chi(G_1) = 4$.
- (b) $G_2 \text{ mit } \alpha(G_2) = \beta(G_2) = 6.$

Aufgabe 8

Betrachten Sie den nebenstehenden Graphen G.

- 16 Punkte
 8
- (a) Bestimmen Sie folgende Parameter. Begründen Sie.
 - (1) $\mu(G) = \max\{\|M\| \mid M \text{ ist ein Matching in } G\},$
 - (2) $\omega(G) = \max\{\|C\| \mid C \text{ ist eine Clique in } G\}.$
- 14 1 9 7 2 9 13 6 3 10 5 4
- (b) Ist H_i für $i \in \{1, 2\}$ isomorph zu einem Subgraphen von G? Falls ja, geben Sie einen solchen Subgraphen G_i von G oder einen Isomorphismus von H_i nach G_i

an, falls nein, begründen Sie.

