

1956年, 5MB IBM Hard Disk

Magnetic Disk

- Hard disks and floppy disks
- Organized into cylinders, tracks, and sectors.

MAGNETIC DISUS

Disks

Parameter	IBM 360-KB floppy disk	WD 18300 hard disk
Number of cylinders	40	10601
Tracks per cylinder	2	12
Sectors per track	9	281 (avg)
Sectors per disk	720	35742000
Bytes per sector	512	512
Disk capacity	360 KB	18.3 GB
Seek time (adjacent cylinders)	6 msec	0.8 msec
Seek time (average case)	77 msec	6.9 msec
Rotation time	200 msec	8.33 msec
Motor stop/start time	250 msec	20 sec
Time to transfer 1 sector	22 msec	17 μsec

Disk parameters for the original IBM PC floppy disk and a Western Digital WD 18300 hard disk

Disk Hardware

- Physical geometry of a disk with two zones
- A possible virtual geometry for this disk

Redundant Array of Independent Disk (RAID)

• Key idea: data are distributed over the drives, to allow parallel operation.

Disk Formatting

- A low-level format operation should be done on a disk before the disk can be used.
- Each track consists of a number of sectors, with short gaps between the sectors.

512 Bytes

16 Bytes

Preamble	Data	ECC
----------	------	-----

A disk sector

Cylinder Skew

Cylinder skew: the position of sector 0 on each track is offset from the previous track when the low-level format is laid down.

Problem

A drive rotates in 10msec, and each track contains 500 sectors. If the track-to-track seek time is 0.8msec, what should the cylinder skew set to?

Disk Interleaving

Motivation: when the copy to memory is complete (need some time cost), the controller will have to wait almost an entire rotation time for the second sector to come around again.

- (a) No interleaving;
- (b) Single interleaving;
- (c) Double interleaving.

Problem

Consider a magnetic disk consisting of 16 heads and 400 cylinders. This disk has four 100-cylinder zones with the cylinders in different zones containing 160,200,240, and 280 sectors, respectively. Assume that each sector contains 512 bytes, average seek time between adjacent cylinders is 1 msec, and the disk rotates at 7200 RPM. Calculate the:

- (a) disk capacity;
- (b) optimal track skew;
- (c) maximum data transfer rate.

Disk Arm Scheduling Algorithms

- Time required to read or write a disk block determined by 3 factors
 - Seek time
 - Rotational delay
 - Actual transfer time
- Seek time dominates
- Error checking is done by controllers

Disk Arm Scheduling Algorithms: (Shortest Seek First, SSF)

Requests: 11, 1, 36, 16, 34, 9, and 12

Shortest Seek First (SSF) disk scheduling algorithm

Disk Arm Scheduling Algorithms: (Elevator Algorithm)

Requests: 11, 1, 36, 16, 34, 9, and 12

Problem

Disk requests come in to the disk driver for cylinders 10, 22, 20,

- 2, 40, 6, and 38, in that order. A seek takes 6 msec per cylinder moved. How much seek time is needed for:
- (a) First-come, first served.
- (b)Closest cylinder next.
- (c)Elevator algorithm (initially moving upward).

In all cases, the arm is initially at cylinder 20.

Check Points

- ① Briefly describe the structure of a disk.
- ② What is cylinder skew?
- 3 What is interleaving?
- 4 What are the three factors that determine the time of reading data from disk?
- ⑤ Briefly describe two disk arm scheduling algorithms?

