A New PET Reconstruction Formulation that Enforces Non-negativity in Projection Space for Bias Reduction in Y-90 Imaging

Hongki Lim^{1,2} Yuni K. Dewaraja² Jeffrey A. Fessler¹

¹Electrical Engineering and Computer Science University of Michigan

> ²Radiology University of Michigan

IEEE NSS/MIC 2017

Radioembolization

 A therapy that irradiates unresectable liver tumors with Y-90 (radioactive isotope) microspheres

Figure: Illustration of Radioembolization

(a) Zoomed out

(b) Zoomed in

Quantitative Imaging

- Importance of quantitative imaging after radioembolization
 - Establish absorbed dose versus outcome relationship for future treatment planning
 - Find unexpected extra-hepatic deposition

Figure: Illustration¹ of Positron Emission Tomography (PET) as quantitative imaging modality

¹Cherry, Simon R., and Saniiv S. Gambhir, "Use of positron emission tomography in animal research," ILAR journal 42.3 (2001): 219-232.

Particulars about Y-90 imaging

- Y-90: Radioisotope for radioembolization
 - Almost pure beta emitter
 - \bullet Very low probability of positron emission : 3.2 $\times 10^{-5}$
 - ¹⁷⁶Lu and Bremsstrahlung photons contribute to random coincidences
 - \rightarrow Low true coincidence counts & very high random fraction

Figure: Random coincidences in Y90 imaging

Particulars about Y-90 imaging

- Y-90: Radioisotope for radioembolization
 - Almost pure beta emitter
 - Very low probability of positron emission : 3.2×10^{-5}
 - 176Lu and Bremsstrahlung photons contribute to random coincidences
 - → Low true coincidence counts & very high random fraction

Figure: True/Random counts in measurement of our Y90 phantom study

Reported Problems

- Several Y-90 PET papers² reported bias in quantification
- Our in-house phantom study agreed with the results of those papers

Figure: Phantom study: Known activity deposition in each ROI

- Bias direction in calculation of the absorbed dose
 - Underestimation in hot (lesion) and warm (liver) region
 - \rightarrow Inaccurate absorbed dose-effect relationship
 - Overestimation in cold (no activity) region and total dose
 - → False alarm due to high extra-hepatic (i.e., lung) deposition

²Carlier, Thomas, et al. "Y90 PET imaging: Exploring limitations and accuracy under conditions of low counts and high random fraction." Medical physics 42.7 (2015): 4295-4309.

Formulation of emission tomography

Measurement follows Poisson statistical model:

$$Y_i \sim \mathrm{Poisson}(\bar{y}_i(x_{\mathrm{true}})), \quad i = 1, ..., n_d$$

where, $\bar{y}_i(x_{\mathrm{true}})) = \mathrm{E}[Y_i] = [Ax_{\mathrm{true}}]_i + \bar{r}_i = \sum_{j=1}^{n_p} a_{ij} x_{\mathrm{true},j} + \bar{r}_i$

• (Negative) Poisson log likelihood function f(x):

$$f(x) \stackrel{c}{=} \sum_{i=1}^{n_d} h_i([Ax]_i) = \sum_{i=1}^{n_d} \bar{y}_i(x) - y_i \log(\bar{y}_i(x))$$

Goal of conventional emission tomography:

$$\hat{x} = \underset{x}{\operatorname{argmin}} f(x)$$

subject to $x \ge 0$

Limitation of conventional constraint

• Cases in negative Poisson log-likelihood function

$$f(x) \stackrel{c}{=} \sum_{i=1}^{n_d} h_i([Ax]_i) = \begin{cases} [Ax]_i + \bar{r}_i - y_i \log([Ax]_i + \bar{r}_i), & y_i > 0, & [Ax]_i + \bar{r}_i > 0 \\ [Ax]_i + \bar{r}_i, & y_i = 0 \\ \infty, & y_i > 0, & [Ax]_i + \bar{r}_i \le 0 \end{cases}$$

Figure: $y_i > 0$ case

Figure: $v_i = 0$ case

Bias introduced in cold region

• Histogram in cold region (where there is no activity)

Proposed method

• Enforce non-negativity on projection space:

$$\hat{x} = \underset{x}{\operatorname{argmin}} f(x)$$
subject to $Ax + \bar{r} \ge 0$

Figure: $y_i = 0$ case with conventional constraint

Figure: $y_i = 0$ case with proposed constraint

Overview of our proposed method

• Histogram in cold region (where there is no activity)

Changing the formulation to solvable form

• To solve the new formulation, we introduce a function and a variable:

$$\begin{split} \hat{x} &= \mathop{\mathrm{arg\,min}}_{x} f(x) \text{ subject to } Ax + \bar{r} \geq 0 \\ \hat{x} &= \mathop{\mathrm{arg\,min}}_{x \in \mathbb{R}^{n_p}} f(x) + g(Ax + \bar{r}), \text{ where } g(v) = \begin{cases} \infty, & \text{any } v_i < 0 \\ 0, & \text{all } v_i \geq 0 \end{cases} \\ \hat{x} &= \mathop{\mathrm{arg\,min}}_{x \in \mathbb{R}^{n_p}} \min_{z \in \mathbb{R}^{n_d}} f(x) + g(z) \text{ subject to } Ax + \bar{r} - z = 0 \end{split}$$

• We form augmented Lagrangian based on above minimization problem:

$$\Psi(x,z,\lambda) = f(x) + g(z) + \lambda^{T} (Ax + \bar{r} - z) + \frac{\rho}{2} ||Ax + \bar{r} - z||_{2}^{2}$$

$$\stackrel{u=\lambda/\rho}{=} f(x) + g(z) + \frac{\rho}{2} ||Ax + \bar{r} - z + u||_{2}^{2} - \frac{\rho}{2} ||u||_{2}^{2}$$

How to solve?

• Solve minimization problem using ADMM³:

$$\begin{split} x^{(n+1)} &= \underset{x}{\operatorname{argmin}} \left(f(x) + \frac{\rho}{2} ||Ax + \bar{r} - z^{(n)} + u^{(n)}||_2^2 \right) \\ z^{(n+1)} &= \underset{z}{\operatorname{argmin}} \left(g(z) + \frac{\rho}{2} ||Ax^{(n+1)} + \bar{r} - z + u^{(n)}||_2^2 \right) \\ u^{(n+1)} &= u^{(n)} + (Ax^{(n+1)} + \bar{r} - z^{(n+1)}) \end{split}$$

- z-update: $z^{(n+1)} = [Ax^{(n+1)} + \bar{r} + u^{(n)}]_+$
- x-update: No analytical solution \rightarrow Iteratively update
- Adaptively tune the parameter ρ to achieve faster convergence⁴

³Boyd, Stephen, et al. "Distributed optimization and statistical learning via the alternating direction method of multipliers." Foundations and Trends in Machine Learning 3.1 (2011): 1-122.

⁴Xu, Zheng, Mrio AT Figueiredo, and Tom Goldstein. "Adaptive ADMM with spectral penalty parameter selection." arXiv preprint arXiv:1605.07246 (2016).

Details on x-update

- x-update: No analytical solution \rightarrow Iteratively update
 - Derived separable quadratic surrogate $Q_{h,j}(x_j;x^{(n)})$ for the Lagrangian penalty term $h(x) = \frac{\rho}{2}||Ax + \bar{r} z^{(n)} + u^{(n)}||_2^2$
 - Update along with the surrogate function $Q_{f,j}$ for f(x) using Newton's method
- Form of *x*-update:

$$\begin{aligned} x_{j}^{(n+1)} &= x_{j}^{(n)} - \frac{\frac{\partial Q_{f,j}(x_{j};x^{(n)})}{\partial x_{j}}|_{x_{j} = x_{j}^{(n)}} + \frac{\partial Q_{h,j}(x_{j};x^{(n)})}{\partial x_{j}}|_{x_{j} = x_{j}^{(n)}}}{\frac{\partial^{2} Q_{f,j}(x_{j};x^{(n)})}{\partial x_{j}^{2}} + \frac{\partial^{2} Q_{h,j}(x_{j};x^{(n)})}{\partial x_{j}^{2}}} \\ &= x_{j}^{(n)} - \frac{\sum_{i=1}^{n_{d}} (1 - \frac{y_{i}}{\bar{y}_{i}^{(n)}}) a_{ij} + \rho \sum_{i=1}^{n_{d}} a_{ij} ([Ax^{(n)}]_{i} + \bar{r}_{i} - z_{i}^{(n)} + u_{i}^{(n)})}{\sum_{i=1}^{n_{d}} \breve{c}_{i}^{(n)} a_{ij} a_{i} + \rho \sum_{i=1}^{n_{d}} a_{ij} a_{i}} \end{aligned}$$

• $\breve{c}_{i}^{(n)}$ denotes optimal curvature⁵

⁵Fessler, Jeffrey A., and Hakan Erdogan. "A paraboloidal surrogates algorithm for convergent penalized-likelihood emission image reconstruction." Nuclear Science Symposium. 1998. Conference Record. 1998 IEEE. Vol. 2. IEEE. 1998.

Regularization

• Add regularization term to cost function:

$$\hat{x} = \arg\min_{x} f(x) + \beta R(x)$$

subject to $Ax + \bar{r} \ge 0$ (proposed)
or $x \ge 0$ (conventional),

where
$$R(x) = \sum_{k=1}^{K} \frac{([Cx]_k)^2}{2}$$
, C is a $K \times n_p$ finite differencing matrix.

- Benefit of adding regularization
 - To penalize the roughness and control the noise (varying β value)
 - ullet Cost function becomes strictly convex ightarrow unique solution⁶

⁶Ahn, Sangtae, and Jeffrey A. Fessler. "Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms." IEEE Transactions on Medical Imaging 22.5 (2003): 613-626.

Experimental setting

Simulation conditions

	Patient A	Patient B
Y-90 Injection (GBq)	3.9	0.9
True Prompts	675K	97K
Random Prompts	3.3M	1.7M
Total Prompts	3.9M	1.8M
Random Fraction (%)	83	95

^{*} Random Fraction = (Random prompts / Total prompts) imes 100

Digital phantom and projection

Underestimation in hot/warm region (lesion/liver) solved?

• Plot: Activity Recovery(%) in Liver vs Iteration (Initial x is 0)

• Comparison between regularized methods

	$x \ge 0$	$Ax + \bar{r} \geq 0$
Activity Recovery in Liver	89.5%	94.8%

Table: Result averaged 4 different cases (varying β value, simulation condition: Patient A,B)

Underestimation in hot/warm region (lesion/liver) solved?

• Plot: Contrast Recovery(%) in Hot Spot vs Iteration (Initial x is 0)

• Comparison between regularized methods

	$x \ge 0$	$Ax + \bar{r} \geq 0$
Contrast Recovery in Hot Spot	105.0%	98.9%

Table: Result averaged 4 different cases (varying β value, simulation condition: Patient A,B)

• Activity recovery is similar to each other

Overestimation in cold (no activity) region solved?

• Plot: Contrast Recovery(%) in Cold Spot vs Iteration (Initial x is 0)

• Comparison between regularized methods

	$x \ge 0$	$Ax + \bar{r} \geq 0$
Contrast Recovery in Cold Spot	81.5%	92.2%

Table: Result averaged 4 different cases (varying β value, simulation condition: Patient A,B)

Estimated measurement mean comparison

- Comparison between y (a realization of measurement) and $\bar{y}(x^{(n)})$ (estimated measurement mean)
 - Estimated measurement with constraint $x \ge 0$ is always above \bar{r} .

Figure: A realization of measurement

Figure: Estimated measurement with x > 0.

Figure: Estimated measurement with $Ax + \bar{r} \ge 0$.

Conclusion

- Applicable to other low true count rates and high random fractions imaging situations
 - Ion-beam therapy
- Comparison between related works⁷ is shown in our recent paper submitted to Physics in Medicine & Biology (in review process)
 - Our proposed algorithm is distinct in avoiding modifying or approximating the Poisson log-likelihood used in the data term.
- Remained challenges and Future work
 - Computation time: Takes $\times 1.63$ time more than reconstruction with $x \ge 0$ \rightarrow Implement and test ordered subsets version
 - Apply to the real measurement data with time of flight information
- This work is supported by NIH grant R01EB022075

⁷Van Slambrouck, Katrien, et al. "Bias reduction for low-statistics PET: maximum likelihood reconstruction with a modified Poisson distribution." IEEE transactions on medical imaging 34.1 (2015): 126-136.

