for-loop assignment

DataCamp showed you the most simple way to use for-loops in R, perhaps in ways that weren't very useful. Here's an example of a way that I use for-loops in order to evaluate the prediction interval (confidence intervals for predictions) of my dengue fever forecasts. Start off by reading in the annual-dengue-data.csv that you downloaded from Moodle.

1.	Separate the data into train_data and test_data, with train_data containing the years 2000-2009
1.	and test_data containing the years 2010-2014.
2.	Fit a linear model for dengue_rate in train_data using all of the variables except for year and assign it to dengue_fit.
3.	Check out your model fit. What's the strongest predictor of your data?
4.	Predict the values of dengue_rate for test_data and have the output include standard errors (use ?predict.lm to see the options). Assign it to dengue_preds.
5.	This one is the tricky part if you've never done it before. Make a for-loop that creates a prediction interval for each value in dengue_preds using the mean and standard error (there are a couple ways of doing this).
6.	How often does the 95% prediction interval cover the observed value?
7.	If you have time, can you find a linear model that makes better prediction intervals?