EXAMEN DE AUTÓMATAS (2° Grado en Informática, Junio-2018)

Apellidos, nombre: DNI: GRUPO: 1/2/3/PCEO

¿Has presentado las prácticas? señala NO / SI / Año anterior

Instrucciones: este ENUNCIADO debe entregarse al salir (los folios en sucio se entregan, pero aparte).

Todos los apartados y subaparatados deben ir claramente indicados. Las faltas ortográficas restan puntos. Un examen desordenado y poco legible resta puntos.

Parte I: PREGUNTAS TIPO TEST. Total 3 puntos sobre 10: respuesta bien +0.3 y respuesta mal -0.15.

- 1. Dadas dos cadenas v y w, indica la respuesta **verdadera**:
 - a) Si v y w comparten el mismo prefijo, sufijo y subcadena entonces v=w.
 - b) Siempre podemos encontrar un prefijo de v que sea sufijo de w. Verdadero: $v = \lambda \cdot x$ y $w = x \cdot \lambda$
 - c) La cadena v es prefijo de w cuando $v = w \cdot x$.
- 2. Dados los lenguajes L_1 y L_2 , indica la respuesta **verdadera**:
 - a) Si L_1 es finito entonces $L_1 \cup L_2$ es también finito.
 - b) Si L_1 es finito entonces sucede que L_1^* es siempre infinito Falso: $L_1 = \{\lambda\}$ entonces $L_1^* = \{\lambda\}$ es finito.
 - c) Si L_1 y L_2 son finitos y $L_1 \neq L_2 \neq \emptyset$ entonces $(L_1 \cup L_2)^*$ es siempre infinito. Verdadero: $L_1 \neq L_2 \neq \emptyset$ implica que uno de los dos es distinto de $\{\lambda\}$ por tanto $(L_1 \cup L_2)^*$ es necesariamente infinto.
- 3. Sean $M = (Q, V, \delta, q_0, F)$ y $M' = (Q', V', \delta', q'_0, F')$ dos autómatas finitos deterministas, indica la respuesta **verdadera**:
 - a) Si Q=Q' y $\delta=\delta'$ entonces M y M' son equivalentes
 - b) $L(M') = \overline{L(M)}$ si F' = Q F.
 - c) Si δ se define como $\delta: Q \times V \cup \{\lambda\} \to \mathcal{P}(Q)$ entonces M es no determinista. Verdadero: –
- 4. En relación a las expresiones regulares R_1 y R_2 , indica la respuesta **verdadera**:
 - a) $R_1 \circ R_2 = \emptyset \iff R_1 = \emptyset$
 - b) $L(R_1) \subseteq L(R_2) \Rightarrow R_1 | R_2 = R_1$
 - c) $R_1^* = (R_1 \circ R_1^* | \lambda)^*$ Verdadero: $(R_1 \circ R_1^* | \lambda)^* = (R_1 \circ R_1^* | \lambda) \stackrel{prop13}{=} R_1^*$
- 5. Gracias al Teorema de Kleene podemos decir que:
 - a) Si M es un AF, existe un autómata mínimo equivalente a M.
 - b) Únicamente cuando M es un AFD se puede obtener una expresión regular R tal que L(M) = L(R) .
 - c) Sea R una expresión regular, puedo encontar un AFND tal que L(M) = L(R). Verdadero: cc
- 6. Indica cuál de los siguientes conjuntos de reglas pertenecen a una gramática es regular:
 - a) $P = \{S \rightarrow Aa \mid bA \rightarrow S\}.$
 - b) $P = \{S \rightarrow aS \mid \lambda\}$. Verdadero
 - c) $P = \{S \rightarrow aSa \mid b\}.$
- 7. Sea G una GLC y $L_1 = \{a^nba^n \mid n \geq 0\}$. Indica el conjunto de reglas P para que $L_1 = L(G)$:
 - a) $P = \{S \rightarrow aSa \mid b\}$ Verdadero
 - b) $P = \{S \rightarrow aSa \mid aAa, A \rightarrow aAa \mid b\}$ Falso: no acepta b
 - c) $P = \{S \to aSa \mid A \mid b, A \to aAa \mid \lambda\}$ Falso: acepta λ
- 8. Sean dos GLC $G_1 = (V_{N_1}, V_T, S_1, P_1)$ y $G_2 = (V_{N_2}, V_T, S_2, P_2)$, indica la respuesta **verdadera**:
 - a) $G_{union} = (V_{N_1} \cup V_{N_2} \cup \{S\}, V_T, S, P_1 \cup P_2 \cup \{S \rightarrow S_2 \mid S_1\})$ Verdadera
 - b) $G_{union} = (V_{N_1} \cup V_{N_2} \cup \{S\}, V_T, S, P_1 \cup P_2 \cup \{S \rightarrow S_1 \ S_2\})$
 - c) $G_{union} = (V_{N_1} \cup \{S\}, V_T, S, \{S \rightarrow S_1 \mid S_2\} \cup P_1)$
- 9. Acerca del algoritmo de transformación GLCtoAP indica la respuesta verdadera:
 - a) Tiene como entrada una GLC y como salida un autómata de pila con aceptación por estado final.
 - b) Tiene como entrada una GLC y como salida un autómata de pila no determinista con aceptación por estado final.
 - c) Tiene como entrada una GLC y como salida un autómata de pila no determinista con aceptación por pila vacía. Verdadera
- 10. Sea el lenguaje $L_1 = \{a^n b^n \mid n \ge 0\}$ indica la respuesta **verdadera**:
 - a) L_1 es un lenguaje regular y puede ser generado por una gramática regular y por una GLC.
 - b) L₁ es libre de contexto y puede ser generado por una GLC pero no por una sensible al contexto.
 - c) L₁ no se puede definir con una expresión regular pero puede ser generado por una GLC. Verdadera

Parte II: PROBLEMAS. Total 7 puntos.

- 1. 2.0 puntos | Sean los siguientes lenguajes:
 - $L_1 = \{ w \ ab \ w' \mid w, w' \in \{a, b\}^* \},$
 - \bullet L_2 cadenas de aes y bes con un número impar de aes.
 - a) (1.0p) Diseña los AF para los lenguajes L_1, L_2 y $L_1 \cup L_2$.
 - b) (1.0p) Diseña la expresión regular ER_1 para el lenguaje $\overline{L_2}$.

SOLUCION

a) Autómata

 L_1

 L_2

 $L_1 \cup L_2$

b) Expresión regular:

 $\overline{L_2}$ son cadenas pares de aes. $ER_1 = (b|ab^*a)^*$

2. 1.5 puntos Dado el siguiente autómata, obtén el autómata determinista mínimo equivalente utilizando el algoritmo visto en clase.

SOLUCION

Inaccesibles: q_5 y q_6 son inaccesibles

Estados equivalentes = Tras obtener la tabla triangular $q_1 \equiv q_2$ y $q_3 \equiv q_4$.

3. 2.0 puntos Sea la gramática G_3 con las siguientes reglas de producción:

$$S \rightarrow aS \mid A \mid aBa$$

$$A \rightarrow aaA \mid aB \mid aA \mid \lambda$$

$$B \rightarrow Ba$$

- a) (0.5p)Demuestra que G_3 es ambígua.
- b) (0.5p)Indica cuál es el lenguaje generado por G_3 y define una gramática regular equivalente.
- c) (1p)Obtén una gramática propia equivalente utilizando los algoritmos vistos en clase.

SOLUCION

a) Ambigua: dos árboles de derivación distintos con la cadena aa.

b

En realidad se trata del lenguaje $L = \{a^i | i \ge 0\}$ (es decir la expresión regular a^*). Por lo tanto:

$$S \to aA \mid \lambda$$

c)

a) Gramática propia.

1 Eliminar Inútiles

1.1 Eliminar Inaccesibles. $V_{ac} = \{S, A, B\}$. Todas son accesibles.

1.2 Eliminar Improductivas $V_{pro} = \{S,A\}$ elimino $B \to Ba, A \to aB$ y $S \to aBa$.

$$S \rightarrow aS \mid A$$
$$A \rightarrow aaA \mid aA \mid \lambda$$

2 Elimino lambda reglas $V_{anu} = \{S, A\}$

$$S' \to S \mid \lambda$$

$$S \to aS \mid a \mid A$$

$$A \to aaA \mid aA \mid aa \mid a$$

(Regla S' puesto que S aparece en parte derecha de la regla.)

3 Elimino unitarias $V_{uni}(S') = \{S\},\, V_{uni}(S) = \{A\}$, $V_{uni}(A) = \emptyset$

$$S' \rightarrow aS \mid a \mid aaA \mid aA \mid aa \mid \lambda$$
$$S \rightarrow aS \mid a \mid aaA \mid aA \mid aa$$
$$A \rightarrow aaA \mid aA \mid aa \mid a$$

4. 1.5 puntos Obten un autómata de pila AP_4 que acepte el lenguaje $L_4 = \{0^{3n}1^n0 \mid n \ge 0\}$ por aceptación por pila vacía para el lenguaje

SOLUCION

