PROJECT REPORT

Project Title: Predicting Plant Growth Stages with Environmental and Management Data Using Power BI

Team ID: PNT2025TMID06851

Team Size: 4

Team Leader: Madati Krishna Vamsi

Team member : Koritala Nagaraju

Team member: Govindu Krishna Sai

Team member: Haneesh Chowdary Ponduri

1.INTRODUCTON:

1.1 ProjectOverview:

Thisprojectaimstodevelopapredictive modelusing Power Bltofore cast plant growth stages based on environmental and management data. The goal is to provide farmers and agricultural managers with a data-driven tool to optimize crop yields, reduce resource waste, and improve decision-making.

1.2 <u>Purpose:</u>

- 1. **Enhancedecision-making:**Providefarmersandagriculturalmanagerswithadata-driventoolto inform decisions on irrigation, fertilization, pruning, and pest control.
- 2. **Optimizeresourceallocation:**Helpfarmersandagriculturalmanagersoptimizeresource allocation by identifying the most critical factors affecting plant growth.
- 3. **Reduceresourcewaste:**Minimizewastebyidentifyingthemosteffectivemanagementpractices and environmental conditions for optimal plant growth.
- 4. **Improvecropyieldprediction**:Developapredictivemodelthataccuratelyforecastsplantgrowth stages based on environmental and management data.

2IDEATIONPHASE:

2.1 PROBLEMSTATEMENT

Problem Statement	l am	I'm trying to	But	Because	Which makes me feel
(PS)	(Farmer)	50 WS		2	
PS-1	A farmer or	Predict plant	The data	There are	Which makes me feel:
	agricultural	growth	is	multiple	Overwhelmed and
	researcher	stages	complex,	factors like	uncertain about
		accurately	and	temperature	making timely
		using	traditiona	, soil	decisions
		environment	I analysis	moisture,	
		al and	methods	and	
		management	are time-	fertilization	
		data	consumin	that	
			g and	influence	
			error-	growth,	
			prone	making	
				manual	
				tracking	
				inefficient	
PS-2	An	Optimize	Integratin	Data sources	Frustrated and
	agricultural	crop yield by	g diverse	vary in	concerned about
	analyst or	accurately	environm	format and	inaccurate predictions
	farm	forecasting	ental and	quality,	affecting crop
	manager	plant growth	managem	requiring	productivity
		stages using	ent	significant	
		Power BI	datasets	preprocessin	
			into a	g and	
			single	expertise	

2.2 EmaphtyMap Canvas.

2.3 **Brainstorming:**

Step1: Team Gathering, Collaboration and Select the Problem Statement

Farmers and agritech companies struggle to predict plant growth stages accurately due to varying environmental conditions like soil type, sunlight exposure, water frequency, temperature, and humidity. Project Goal: Using Power BI, we aim to analyze plant growth patterns and provide data-driven insights to optimize farming strategies and improve crop yield and sustainability.

Step-3: Idea Prioritization

Step-3: Idea Prioritization

Idea	Priority Level (High/Medium/Low)	Reason for Priority
Data Cleaning & Transformation	High	Essential for accurate insights
Stacked Bar Chart (Soil Type vs Growth)	High	Shows key environmental impact
Scatter Plot (Sunlight vs Growth)	High	Helps find correlation
Decomposition Tree (Growth Analysis)	High	Breaks down key influencing factors
Card Visuals (Key Metrics)	High	Provides quick insights
Predictive Insights	Medium	Future enhancement
Advanced Al-based Predictions	Low	Needs further data exploration

3. RequirementAnalysis.

3.1 CustomerJourneyMap

3.2. Solution Requirement.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	user Registration and Authentication	users (Farner, agronomists admins) must be able to register and log in srcurely
FR-2	Plant data input	users must be able to input plant type planting date and Growth Observation
FR-3	Environmental Data collection	The system must fetch real-time weather and soil sensor data from APIs
FR-4	Growth stages prediction	The system must predict the current and upcoming growth stages of plants based on environmental and historical data
FR-5	Management Recommendation	The system should suggest irrigation fertilization and pest control actions based 0n plant 's growth stages
FR-6	Data storage and Retrieval	LL Input and output data must be stored and retrievable for future analysis
FR-7	User Dashboard	Users should have a Dashboard Displaying plant growth status
FR-8	Notification System	The system must send alerts to users about growth stages changes weather conditions, and management actions

FR-9	Admin control panel	Admins should manage plant growth models update environment data sources and oversee system performance
FR-10	Reports Analytis	users should be able to generate reports on plant growth history and environmental conditions

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Performance	The system should process data and generate predictions within 5 seconds
NFR-2	Scalability	The system must support multiple users and large datasets without performance Degradation
NFR-3	security	User authentication must use encryption and sensitive data should be securely stored
NFR-4	Availability	The system should 99.9 user-friendly with simple navigation and clear instruction
NFR-5	Usability	The interface should be user friendly with simple navigation and clear instruction
NFR-6	Data Accuracy	Predictions should have at least 85 present accuracy ,improving over time with machine learning
NFR-7	Interoperability	The system must integrate with third-party weather APIS and lot soil sensors

NFR-8	Maintainability	Sysstem updates and maintenance should be possible with minimal downtime
NFR-9	compliance	The system must adhere to agricultural data standards and privacy regulations

3.3 DataFlow Diagram.

Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

3.4 TechnologyStack.

Technology Stach for Plant growth stages

4.1 SolutionFit

4.2 PROPOSEDSOLUTION

SR.No.	Parameter	Description
1.	ProblemStatement(Problemtobe solved)	HowtoPredictPlantgrowthstages.Withenvironmentalandmanagementdata using Power BI.
2.	Idea/Solution description	UsePowerBItovisualizerelationshipsbetweenenvironmentalfactorsandplant growth stages. Identifykeyvariablesthatinfluencegrowthstagesthroughcorrelationanalysis. Dashboard Creation: Develop interactive dashboards that display: Currentenvironmentalconditions(temperature,humidity,soilmoisture). Cumulative GDD and predicted growth stages. Historicaltrendsofgrowthstagesagainstenvironmentalfactors.
3.	Novelty/Uniqueness	PowerBl'sinteractivedashboardsmakecomplexdataeasilyinterpretableforusers with varying levels of technical expertise. Visualelementssuchaschartsandmapshelpinquicklyidentifyingtrends and anomalies.
4.	SocialImpact/Customer Satisfaction	 Knowledge: The educational component of using Power BI dashboards helps farmers understand the relationship between environmental factors and plant growth, enhancing their agricultural knowledge and skills. Cost Savings: Efficientresource managementleads to reduced operational costs forfarmers. By minimizing inputs likewater and fertilizers, farmers can increase their profit margins.
5.	BusinessModel(RevenueModel)	The proposed solution of predicting plant growth stages using Power BI fits well intovarious business models that can generate revenue while providing significant value to farmers and agricultural businesses. By leveraging subscription services, consulting, partnerships, data monetization, and educational programs, the

		solutioncancreateasustainablerevenuestreamwhilecontributingtothe advancement of precision agriculture and improved farming practices.
6.	ScalabilityoftheSolution	Predictingplantgrowthstagesinvolvesutilizingmachinelearningmodels, suchas Random Forest and deep learning techniques, to analyze environmental and managementdata. Integrating the semodels with tools like Power Blcanenhance scalability by enabling real-time data visualization and decision-making in agricultural practices Data Collection: Gatherenvironmental data (temperature, humidity, soil moisture) and management data (fertilization, irrigation schedules) to create a comprehensive dataset. Integration with Power BI: Use Power BI to visualize the predictions and insights derived from the machinelearning models, allowing for better understanding and communication of results.

4.3 SOLUTIONARCHITECTURE:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Findthebesttechsolutiontosolveexistingbusinessproblems.
- Describethestructure, characteristics, behaviour, and other aspects of the software toproject stakeholders. 1. Identify business goals: Improve crop yields, reduce resource waste, and enhance decision-making.
- 2. Defineproblemstatement:Developapredictivemodeltoforecastplantgrowthstagesbasedonenvironmental and management data.
- 3. Gatherrequirements:Collectdataonenvironmentalfactors,managementpractices,andplantgrowthstages.

2:DataCollectionandIntegration

- 1. Environmentaldata: Collectdataontemperature, humidity, solarradiation, soil moisture, and weatherfore casts.
- 2. Managementdata:Collectdataonirrigation,fertilization,pruning,pestcontrol,andcropvariety.
- 3. Plantgrowthstagedata:Collectdataonplantgrowthstages,includingobservationaldataandsensorreadings.
- 4. Integratedatasources:Combinedatafromvarioussources,includingsensors,weatherstations,andfarm management systems.

3:DataAnalysisandModeling

- 1. Datapreprocessing:Clean,transform,andnormalizedataforanalysis.
- 2. Featureengineering: Extractrelevantfeatures from en viron mental and management data.
- 3. Modelselection: Chooseasuitable algorithm for predicting plant growth stages, such as decision trees, random for ests, or neural networks.
- 4. Modeltrainingandevaluation: Trainandevaluatethepredictive modelusing various metrics, including accuracy, precision, and recall.

SolutionDesign.

- 1. Definesolutionarchitecture:Designasolutionarchitecturethatintegratesthepredictivemodelwithauser- friendly interface.
- 2. Choosetechnologies:Selecttechnologies,includingPowerBI,AzureMachineLearning,andAzureIoTHub.
- 3. Designdatapipeline:Designadatapipelinethatintegratesdatafromvarioussourcesandfeedsitintothe predictive model.

5:ImplementationandDeployment

- 1. Implementpredictivemodel:ImplementthepredictivemodelusingAzureMachineLearning.
- 2. Develop user interface: Develop a user-friendly interface using Power BI that allows farmers and agricultural managers to input data and view predictions.
- 3. Deploysolution: Deploythesolution to a cloud-based platform, such as Azure.

5. PROJECT PLANNING AND SCHEDULING.

5.1 **Project Planning:**

Sprint	Functional Requirement(Epic)	User Story Number	User Story/Task	Story Points	Priority	Team Members
Sprint-1	Data collection and Integration.	USN-1	Gather relevant environmental data, including temperature, humidity, soil moisture, and light levels.	7	High	Krishna vamsi
	Data Preperation	USN-2	Cleans the collected data for analysis.	8	High	Nagaraju, Krishna vamsi
Sprint-2	Data Analysis and Modeling	USN-3	Utilize Power BI's analytical tools to explore relationships between environmental factors and plant growth stages.	5	Low	Krishna Sai
	Visualization Developnment	USN-4	Create interactive visualization for key metrics	6	Medium	Krishna vamsi, Nagaraju
	Dashboard Design	USN-5	Design user-friendly interfaces that allow stakeholders to easily access and interpret data	8	High	Krishna vamsi

			Incorporate visual elements such as charts, graphs, and map store present data effectively.			Nagaraju
Sprint-3	Implementation	USN-6	Provide training and support to users to ensure they can effectively utilize the dashboards for decision-making	7	Medium	Nagaraju , Haneesh
	Feedback		Gather feedback from stake holder on initial dashboard	6	Medium	Haneesh, Krishna sai
	Evaluation and Continuous Improvement	USN-7	Analyze user engagement with the dashboards and gather feedback for enhancements. Foster a culture of data-driven decision-making with in the organization to maximize the benefits of the project.	9	High	Krishna vamsi, Nagaraju, Haneesh, Krishna sai

Project Tracker, Velocity & Burn down Chart: (4Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	21	10Days	22Feb2025	03March2025	22	03March 2025
Sprint-2	20	10Days	04March 2025	13March2025	21	13March 2025

Sprint-3	15	3Days	13March 2025	14March 2025	14	14March 2025

Velocity:

Total Story Points Completed:56

Total Number of Sprints=3

Velocity=Total Story Points/Number of Sprints

Velocity=56/3=18.66

Burn down Chart:

A burn chart is graphical representation of work left do versus time. It is often used in agile software development methodologies such as Scrum. Burn down charts be applied to any project containing measurable progress over time.

Sprint	Day	TotalStoryPoints	StorypointsCompleted	RemainingStoryPoints
1	1	56	0	56
	2	56	0	56
	3	56	0	56
	4	56	0	56
	5	56	0	56
	6	56	0	56
	7	56	0	56
	8	56	0	56
	9	56	0	56
	10	56	21	35
2	1	56	21	35
	2	56	21	35
	3	56	21	35
	4	56	21	35
	5	56	21	35

	6	56	21	35
	7	56	21	35
	8	56	21	35
	9	56	21	35
	10	56	20	15
3	1	56	15	15
	2	56	15	15
	3	56	15	15
	4	56	15	15
	5	56	15	15
	6	56	15	15
	7	56	15	15
	8	56	15	15
	9	56	15	15
	10	56	15	0

6. FUNCTIONAL AND PERFORMANCE

6.1. Performance Testing

ModelPerformanceTesting:

Project teams hall fill the following information in model performance testing template.

S.No	Parameter	Screenshot/Values		
•				
1.	Data Rendered	14columnand193Rows.		


```
Temperature Range=
SWITCH(
 TRUE(),
 [Temperature]<15,"Low",
 [Temperature]>=15&&[Temperature]<25,"Moderate",
 [Temperature] >=25, "High" )
Humidity_Range=
SWITCH(
 TRUE(),
 [Humidity]<40, "Low",
 [Humidity]>=40&&[Humidity]<60,"Moderate",
 [Humidity] >= 60, "High"
```

```
Humidity Level Description =
SWITCH(
 TRUE(),
  [Humidity]<30,"VeryDry",
  [Humidity]>=30&&[Humidity]<50, "Dry",
  [Humidity]>=50&&[Humidity]<70,"Moderate",
  [Humidity] >= 70 && [Humidity] < 90, "Humid",
  [Humidity] >= 90, "Very Humid")
Temperature_Range_Description=
SWITCH(
 TRUE(),
  [Temperature]<10, "Very Cold",
  [Temperature]>=10&&[Temperature]<20,"Cold",
  [Temperature]>=20&&[Temperature]<30,"Moderate",
  [Temperature] >= 30 && [Temperature] < 40, "Warm",
```

```
[Temperature] >= 40, "Hot")
Growth Milestone Description =
SWITCH(
 [Growth_Milestone],
 0, "Early Stage",
 1,"MatureStage",
 "Unknown Stage"
Plant_Growth_Category=
SWITCH(
 [Growth_Milestone],
 0, "Initial Growth",
 1,"AdvancedGrowth",
 "Uncategorized"
```


7. RESULTS

7.1 Dashboard

Herearethekey observationsfromthe PowerBldashboardonPredictingPlantGrowthStages with Environmental and Management Data.

1. WaterFrequencyAccordingtoSoilType.

Description: This table displays the frequency of waterus age for different soil types. Soil

Types Indicated:

Loam

High:191.61

Moderate:205.65

Total:397.25

Sandy

High:215.43

Moderate:217.46

Total:432.88

Clay

High:280.24

Moderate:207.13

Total:487.37

Totals:

Weekly, Daily, and Bi-Weekly frequencies are showcased for each soil type, contributing to overall totals.

-Totalfrequencies for all soil types: 1,317.51.

- 2. AverageTemperatureandSumofTemperature-by-TemperatureRangeDescription*
- VisualizationType:Barchart.
- KeyPoints:
- Categories:Warm,Moderate,Cold,andTotal.
- Displaystrendsintemperatureaverages, categorized by ranged escriptions.
- Showschangesintemperatureacrossthesedefinedranges, indicating general climate patterns for plant growth.
- 3. TemperatureandItsDescriptionAccordingtoPlantGrowth*
 - -Components:
 - Keyinfluencersandtopsegmentsidentified.

- SegmentPerformance:Avisualrepresentationshowingaspecificsegment'sperformance measurement (20.24).
- *4.GrowthMilestoneCountAccordingtoSoilType*
- *VisualizationType:Barchart.
- *SoilTypes:
 - Loam, Sandy, and Clayareshown with respective counts of growthmilestones.
 - Reflectshowdifferentsoiltypesofimpactagriculturaloutcomesintermsofgrowthmilestones.
- *5.SumofGrowthMilestonebyFertilizerType*
- *VisualizationType:Piechart.
- *FertilizerTypes:
 - -Organic(22.92%), Chemical(29.85%), None(47.94%).
 - Showsthedistributionofgrowthmilestonesbasedonfertilizertypeutilized.
- *6.AverageHumiditybyHumidityLevelDescription*

- *VisualizationType:Linechart.
- *HumidityLevels:
 - CategorizedasHumid,Moderate,andDry.
- Illustratesthetrendsinaveragehumidityacrossthedefinedcategories,importantfor understanding plant care and health.

Thesevisualizationscollectivelyprovideinsightsintothecorrelationbetweensoiltypes,water frequency, temperature, fertilizer types, and humidity levels to plant growth metrics.

7.2REPORT

KeyMetrics

- 1. Average Sunlight Hours: 6.83 hours.
- -AverageHumidity:58.10%
- -AverageTemperature:25.08°C
- 2. SoilTypeAnalysis.
- -AverageSunlightHoursbySoilType:
 - -Clay:7.27hours(31.34%)
 - -Sandy:6.76hours(35.58%)
 - -Loam:6.41hours(33.08%)
- 3. HumidityLevelInsights.
- HumidityLevels:
 - Highest:Humidat74.02%
 - Moderate:60.10%
 - Lowest:Dryat41.23%

- TheHumidclassificationshowedasignificantincrease(+79.53%)comparedtoDry.
- 4. Growth Milestone Analysis.
- GrowthMilestoneCountbyHumidityLevel:
 - Moderate: Highest count at 54
 - Dry:27
 - Humid:Lowestat15
 - Moderateconditionsyieldedsignificantlybettergrowthoutcomes.
- 5. WaterFrequencyImpact.
- GrowthMilestonePercentagebyWaterFrequency:
- Daily
- Bi-weekly
- Weekly
- 6. TemperatureInsights:TemperatureInfluence:Thedecreaseintemperaturewasheavilyimpacted by the Temperature Range Description, especially noted when conditions were classified as cold, whichledtoadecreaseof9.70%.OverallFindings-Soiltype,humidity,andtemperature

interactively influence plant growth milestones. Optimal conditions are characterized by moderate humidity and adequate sunlight, indicating a path for future cultivation strategies.

8.ADVANTAGES&DISADVANTAGES

Advantages:

Predicting plant growth stages using environmental and management data can enhance agricultural efficiency by optimizing resource use and improving yield forecasts. However, challengesincludedataqualityissues,thecomplexityofmodelingbiologicalprocesses,andthe needforcontinuousdataupdatestomaintainaccuracy.*AdvantagesofPredictingPlantGrowth Stages*

- 1. OptimizedResourceManagement:
- Enablespreciseapplicationofwater, fertilizers, and pesticides, reducing wasteand costs.
- 2. ImprovedYieldForecasting:
 - Helpsfarmersanticipateharvesttimesandplanaccordingly, leading to bettermarket strategies.

- 3. EnhancedDecision-Making:
 - Providesactionableinsightsthatcanguideagriculturalpracticesandinterventions.
- 4. Data-DrivenInsights:
- Utilizeshistoricalandreal-timedatatomakeinformedpredictions,improvingoverallfarm management.
- 5. Sustainability:
- Supportsenvironmentallyfriendlypracticesbyminimizingresourceoveruseandpromoting efficient farming techniques.

Disadvantages:

- 1. DataQualityIssues:
- Inaccurateorincompletedatacanleadtounreliablepredictions, affecting decision-making.
- 2. ComplexityofBiologicalProcesses:

- Plantgrowthisinfluencedbynumerousvariables, making it challenging to create accurate models.

3. NeedforContinuousDataUpdates:

- Requiresongoingdatacollectionandanalysistomaintainpredictionaccuracy, which can be resource-intensive.

4. TechnicalExpertiseRequired:

- Farmersmayneedtrainingtoeffectivelyusepredictivetoolsandinterpretresults, which can barrier to adoption.

5. CostofImplementation:

- Initialsetupandmaintenanceofpredictiveanalyticssystemscanbeexpensive,particularlyfor small-scale farmers.

9. CONCLUSION:

TheintegrationofenvironmentalandmanagementdatatopredictplantgrowthstagesusingPower BI presents a transformative opportunity for modern agriculture. By leveraging advanced data analytics, farmers and agricultural managers can gain valuable insights into the growth patterns of theircrops, enabling them to make informed decisions that enhance productivity and sustainability.

The advantages of this approach are significant. Optimized resource management leads to cost savings and reduced environmental impact, while improved yield forecasting allows for better planning and market positioning. Data-driven insights empower farmers to adapt their practices based on real-time conditions, ultimately fostering a more resilient agricultural system.

However, the challenges associated with this predictive modeling cannot be overlooked. Issues related to data quality, the complexity of biological processes, and the need for continuous data updates require careful consideration. Additionally, the technical expertise needed to effectively utilizePowerBlandinterpretthe results may posebarriersforsomeusers, particularly small-scale farmers.

In conclusion, while predicting plant growth stages using Power BI offers substantial benefits, successful implementation hinges on addressing the associated challenges. By investing in data quality, user training, and ongoing support, the agricultural sector can harness the full potential of predictive analytics, leading to enhanced crop management, increased yields, and a more sustainablefutureforfarming. Astechnology continues to evolve, the integration of predictive

analytics into agricultural practices will likely become increasingly essential, paving the way for smarter, more efficient farming methods.

10. FUTURESCOPE

Thefuturescopeofpredictingplantgrowthstageswithenvironmentalandmanagementdatausing Power BI is promising. As data analytics technology advances, the integration of real-time environmental data and management practices will enhance predictive accuracy, enabling more precise crop management and improved decision-making for farmers. Future Scope: Predicting Plant Growth Stages with Environmental and Management Data Using Power BI.

1.Enhanced Data Integration: The future will see improved integration of diverse data sources, includingsatelliteimagery, IoTsensors, and weatherfore casts, allowing for amore comprehensive understanding of plant growth dynamics

2. Machine Learning Advancements:

The application of advanced machine learning algorithms, such as deep learning, will refine predictive models, leading to higher accuracy in forecasting growth stages and potential yield outcomes.

3. User-FriendlyInterfaces:

Development of more intuitive interfaces in Power BI will facilitate easier access to predictive analyticsforfarmers, regardless of their technical expertise, promoting wide radoption of data-driven practices.

4. Real-TimeMonitoring:

The incorporation of real-time monitoring systems will enable farmers to receive immediate feedback on plant health and growth conditions, allowing for timely interventions and adjustments in management practices.

5. Sustainability Focus: As sustainability becomes increasingly important, predictive analytics will helpoptimizeresourceuse, reducewaste, and minimize environmental impact, aligning agricultural practices with global sustainability goals.

6. Collaboration and Knowledge Sharing:

Future developments may foster greater collaboration among farmers, researchers, and agronomists, leading to share dinsights and best practices that enhance the overall effectiveness of predictive modeling in agriculture.

7. Policyand Economic Implications:

The insights gained from predictive analytics could influence agricultural policies and economic strategies, promoting investments intechnology and infrastructure that support data-driven farming.

Insummary,thefutureofpredictingplantgrowthstagesusingPowerBlissettoevolvesignificantly, driven by technological advancements and a growing emphasis on sustainable agricultural practices. This evolution will empower farmers to make informed decisions, ultimately leading to enhanced productivity and resilience in the agricultural sector.

11. APPENDIX

Dataset Link: https://www.kaggle.com/datasets/gororororo23/plant-growth-data-classification

GITHUB Link: https://github.com/KRISHNAVAMSI599/Predicting-Plant-Growth-Stages-with-Environmental-and-Management-Data-Using-Power-Bl

Demo Link: https://drive.google.com/file/d/1qp5oYhMJf06XG9sxyU-BEj4I1MPLqDol/view