Managing Tiny Tasks for Data-Parallel, Subsampling Workloads

Sundeep Kambhampati, **Jaimie Kelley**, Christopher Stewart, William C. L. Stewart, Rajiv Ramnath
The Ohio State University, Nationwide Children's Hospital

Accuracy versus Speed

- Data is growing faster than processor clock rates.
 - Discrete objects from the real world: DNA samples, event clicks, user reviews, communications, etc.
- Subsampling workloads process only a portion of a data set (i.e., random sample).
- Subsampling speeds up data processing by doing less work but decreases accuracy.

Motivating Example: EAGLET

Subsampling on Data-Parallel Platforms

- Discrete data objects partition across nodes.
- For mean and other stats, objects are processed independently.
- Subsampling on data-parallel platforms:
 - 1. Partition samples across nodes.
 - 2. Map tasks randomly subsample partitions at runtime to compute statistics.
 - 3. Reduce tasks compute statistics using map results.

Task Sizing

- Map task size is configurable
 - Affects cache miss rate
 - Affects startup costs
- How to configure the size of a map task to reduce latency.
- Subsampling data-parallel tasks
- Task sizing for subsampling workloads
- Pressures of scheduling tiny tasks
- Our platform for task sizing

Task Sizing Example: EAGLET

Problem: Size tasks to minimize latency?

Job latency is a function of task size.

Our Approach: Tiny Tasks

- What is a tiny task?
 - − ↑ task size → cache miss rate increases sharply

- Finding sharp increases in cache miss rate:
 - Workload: EAGLET, 230 MB, 400 individuals
 - Hardware: Intel Sandy Bridge
 - 6 dual cores, 1.5 MB L2, 15 MB L3
 - Monitoring: Oprofile

Cache Miss Increases

Overheads

- Startup costs
 - Workload: Hello World, tasks == map slots

- Hardware: 72 core cluster
 - 6 dual-core Intel Sandy Bridge processors

- Subsampling data-parallel tasks
- Task sizing for subsampling workloads
- Pressures of scheduling tiny tasks
- Our platform for task sizing

Overheads: Platforms

Hadoop is widely used in practice for map reduce workloads.

Codename	Core	Task-level Failures	Full Distributed File System	Java
Vanilla Hadoop	Hadoop	Yes	Yes	Yes
Job-level Hadoop	Hadoop	No	Yes	Yes
Lite Hadoop	Hadoop	No	No	Yes
BashReduce	Unix Utilities	No	No	No

BashReduce is a very lightweight implementation of map reduce.

Overheads: Startup Costs

Data-Parallel Platform

Startup Costs: BashReduce < Hadoop

Task Sizing Algorithm

- 1. Pick random samples and run the tiniest task
- 2. Collect misses
- 3. Loop, increasing task size and using new random samples
- 4. Keep comparing miss rates
- 5. Use the task size right before a large increase in cache miss rate.
- Subsampling data-parallel tasks
- Task sizing for subsampling workloads
- Pressures of scheduling tiny tasks
- Our platform for task sizing

Cache Miss Increases

Task Sizing: Workloads

Workload	EAGLET	Netflix (High confidence)	Netflix (Low Confidence)
Description	Genetic study on Bi-Polar Disorder	User movie ratings	User movie ratings
BashReduce Task Sizing	2.5 MB	1 MB	1 MB
Tiniest Task Sizing	588.8 KB	118 KB	118 KB
Largest Task Sizing	1 TB	2 GB	2 GB

1: Xeon 12 cores/node, 2.0 GHz, 15 MB L2, 32 GB Memory

2: Xeon 12 cores/node, 2.3 GHz, 15 MB L2, 32 GB Memory

3: Opteron 32 cores/node, 2.3 GHz, 32 MB L2, 64 GB Memory

Largest Job Run: Eaglet, with 1 TB

Task Sizing: Evaluation

Our Task Sizing has **consistent higher throughput**.

Type 1 hardware

Task Sizing: Evaluation

Type 2 Hardware

Task Sizing: Evaluation

Service Level Objective Bound

Type 2 Hardware

Conclusion

- 1. Subsampling workloads benefit from task sizing to reduce cache miss rates and runtime costs.
- 2. We measure **startup costs** on tiny tasks for existing data-parallel platforms.
- 3. We implemented an algorithm to size tasks at sharp increases in cache miss rate within the BashReduce scheduler to reduce runtime overheads.
- 4. We validate our improved BashReduce against existing data-parallel platforms across multiple workloads.