Homework 1 Stat 215A, Fall 2015

Due: Tuesday September 8, 11:00 AM Please hand in a hard copy along with your lab 1

1 Hypothesis testing, the t-distribution

Imagine we observe $(x_1, y_1), \ldots, (x_n, y_n)$ where (x_i, y_i) are multivariate normal with mean $(\mu_x, \mu_y), Var(x_i) = Var(y_i) = \sigma^2$ and correlation ρ . We are interested in testing the null hypothesis that $\mu_x = \mu_y$. Under the null hypothesis we know

$$t = \frac{(\bar{x} - \bar{y})}{s_{pooled}\sqrt{2/n}}$$

is distributed as a Student's t with 2n-2 degrees of freedom. Where s_{pooled} is the pooled sample standard deviation. See any undergraduate text (or Wikipedia page "Student's t-test") if you are unfamiliar with the t distribution.

- 1. Write s_{pooled} in terms of x_i, y_i, \bar{x} and \bar{y} (this is a standard definition)
- 2. What is the expectation of s_{pooled}^2 ?
- 3. The statement above (on the t-statistic) isn't quite right. Are any additional assumptions needed?

Consider doing a paired t-test with the same data. The test statistic here is

$$t_{paired} = \frac{(\bar{x} - \bar{y})}{s_{diff}\sqrt{1/n}}.$$

- 4. Write s_{diff} in terms of x_i, y_i, \bar{x} and \bar{y} . (another standard definition)
- 5. What distribution does t_{paired} have?
- 6. What is the expectation of s_{diff}^2 ?
- 7. Compare $s_{diff}^2 \frac{1}{n}$ to $s_{pooled}^2 \frac{2}{n}$. When is $s_{diff}^2 \frac{1}{n} < s_{pooled}^2 \frac{2}{n}$? When is $E(s_{diff}^2 \frac{1}{n}) < E(s_{pooled}^2 \frac{2}{n})$?
- 8. From these computations, what do you learn?

2 Questions from Freedman

In Freedman, do questions 1 - 5 and 9 starting on page 13. This may sound like a lot of work. However, once you do the reading, each question should have a straight-forward answer.

Please look into the following map: http://www.ph.ucla.edu/epi/snow/snowmap1_1854_lge.htm. This is the map made by John Snow regarding the Broad Street pump. Each small block marks a cholera patient.

- How would you transform this display into numerical measures?
- What would be gained quantifying the effects? What would be lost?