MCAC 302: Design and Analysis of Algorithms

Neelima Gupta

ngupta@cs.du.ac.in

September 7, 2020

In comparison based sorting, values of the elements do not matter; it is only their relative ordering that matters. Thus an algorithm takes roughly the same amount of time on <2,3,1,9,8> and on <12,112,1112,11112,20000>.

► What is the best that any Comparison Sort can do in the worst case?

- ► What is the best that any Comparison Sort can do in the worst case?
- ▶ We will show that we can not do better than $(n \log n)$. That is, it is $\Omega(n \log n)$.

- ► What is the best that any Comparison Sort can do in the worst case?
- ▶ We will show that we can not do better than $(n \log n)$. That is, it is $\Omega(n \log n)$.
- ► What is the best that any Comparison Sort can do in the best case?

- ► What is the best that any Comparison Sort can do in the worst case?
- ▶ We will show that we can not do better than $(n \log n)$. That is, it is $\Omega(n \log n)$.
- ► What is the best that any Comparison Sort can do in the best case?
- ▶ It is trivial to see that it is $\Omega(n)$.

▶ Decision trees provide an abstraction of comparison sorts

¹Figure from CSLR

- Decision trees provide an abstraction of comparison sorts
 - ► A decision tree represents the comparisons made by the algorithm. Every thing else ignored.

- Decision trees provide an abstraction of comparison sorts
 - ► A decision tree represents the comparisons made by the algorithm. Every thing else ignored.
 - Let's draw the decision tree for Insertion Sort on an input of size 3 i.e. $\{x_1, x_2, x_3\}$

- Decision trees provide an abstraction of comparison sorts
 - ► A decision tree represents the comparisons made by the algorithm. Every thing else ignored.
 - Let's draw the decision tree for Insertion Sort on an input of size 3 i.e. $\{x_1, x_2, x_3\}$

- Decision trees provide an abstraction of comparison sorts
 - A decision tree represents the comparisons made by the algorithm. Every thing else ignored.
 - Let's draw the decision tree for Insertion Sort on an input of size 3 i.e. $\{x_1, x_2, x_3\}$

1

► Comparison tree is typically a binary tree.

- Decision trees provide an abstraction of comparison sorts
 - ► A decision tree represents the comparisons made by the algorithm. Every thing else ignored.
 - Let's draw the decision tree for Insertion Sort on an input of size 3 i.e. $\{x_1, x_2, x_3\}$

- Comparison tree is typically a binary tree.
- ► What do the leaves represent?

- Decision trees provide an abstraction of comparison sorts
 - A decision tree represents the comparisons made by the algorithm. Every thing else ignored.
 - Let's draw the decision tree for Insertion Sort on an input of size 3 i.e. $\{x_1, x_2, x_3\}$

- ► Comparison tree is typically a binary tree.
- ▶ What do the leaves represent? All possible arrangements of the input elements.

- Decision trees provide an abstraction of comparison sorts
 - ► A decision tree represents the comparisons made by the algorithm. Every thing else ignored.
 - Let's draw the decision tree for Insertion Sort on an input of size 3 i.e. $\{x_1, x_2, x_3\}$

- ► Comparison tree is typically a binary tree.
- ▶ What do the leaves represent? All possible arrangements of the input elements.
- ► At least how many leaves must be there?

¹Figure from CSLR

- Decision trees provide an abstraction of comparison sorts
 - A decision tree represents the comparisons made by the algorithm. Every thing else ignored.
 - Let's draw the decision tree for Insertion Sort on an input of size 3 i.e. $\{x_1, x_2, x_3\}$

- Comparison tree is typically a binary tree.
- ▶ What do the leaves represent? All possible arrangements of the input elements.
- At least how many leaves must be there? at least n!.

¹Figure from CSLR

- For a given algorithm:
 - ► One decision tree for each n

- For a given algorithm:
 - ► One decision tree for each n
 - ► Tree paths are all possible execution traces.

- For a given algorithm:
 - One decision tree for each n
 - ► Tree paths are all possible execution traces.
 - ► What represents the number of comparisons done by the algorithm in the worst case?

- For a given algorithm:
 - One decision tree for each n
 - ► Tree paths are all possible execution traces.
 - ► What represents the number of comparisons done by the algorithm in the worst case? The length of the longest path from the root to a leaf the height.
- ► For *n* elements, what's the length of the longest path in a decision tree for insertion sort?

- For a given algorithm:
 - ► One decision tree for each n
 - ► Tree paths are all possible execution traces.
 - ► What represents the number of comparisons done by the algorithm in the worst case? The length of the longest path from the root to a leaf the height.
- ► For *n* elements, what's the length of the longest path in a decision tree for insertion sort? For merge sort?

- For a given algorithm:
 - One decision tree for each n
 - ► Tree paths are all possible execution traces.
 - ► What represents the number of comparisons done by the algorithm in the worst case? The length of the longest path from the root to a leaf the height.
- ► For *n* elements, what's the length of the longest path in a decision tree for insertion sort? For merge sort?
- ► What is the asymptotic height of any decision tree for sorting n elements?

- For a given algorithm:
 - ► One decision tree for each n
 - ► Tree paths are all possible execution traces.
 - ► What represents the number of comparisons done by the algorithm in the worst case? The length of the longest path from the root to a leaf the height.
- ► For *n* elements, what's the length of the longest path in a decision tree for insertion sort? For merge sort?
- ► What is the asymptotic height of any decision tree for sorting n elements?
- Answer: We will prove that it is at least (nlgn).

- Thm: Any decision tree that sorts n elements has height $\Omega(nlgn)$.
 - ► What's the minimum # of leaves?

- Thm: Any decision tree that sorts n elements has height $\Omega(nlgn)$.
 - ▶ What's the minimum # of leaves? Answer: n!. That is, if ℓ is the number of leaves then $\ell \geq n!$.

- Thm: Any decision tree that sorts n elements has height $\Omega(nlgn)$.
 - ▶ What's the minimum # of leaves? Answer: n!. That is, if ℓ is the number of leaves then $\ell > n!$.
 - ► What's the maximum # of leaves of a binary tree of height h?

- Thm: Any decision tree that sorts n elements has height $\Omega(nlgn)$.
 - ▶ What's the minimum # of leaves? Answer: n!. That is, if ℓ is the number of leaves then $\ell > n!$.
 - ▶ What's the maximum # of leaves of a binary tree of height h? For $h=1, \ell < 2^1$,

- Thm: Any decision tree that sorts n elements has height $\Omega(n|gn)$.
 - ▶ What's the minimum # of leaves? Answer: n!. That is, if ℓ is the number of leaves then $\ell \geq n!$.
 - ► What's the maximum # of leaves of a binary tree of height h?

For $h = 2, \ell \le 2^2$,

- Thm: Any decision tree that sorts n elements has height $\Omega(nlgn)$.
 - ▶ What's the minimum # of leaves? Answer: n!. That is, if ℓ is the number of leaves then $\ell \geq n!$.
 - ► What's the maximum # of leaves of a binary tree of height h?

For general $h, \ell \leq 2^h$ (can be proved by induction on h),

▶ Thus, $n! \le \ell \le 2^h$

- ▶ Thus, $n! \le \ell \le 2^h$
- ▶ Taking logarithms: $lg(n!) \le h$

- ▶ Thus, $n! \le \ell \le 2^h$
- ▶ Taking logarithms: $lg(n!) \le h$
- ▶ By Stirling's approximation: $n! > (\frac{n}{e})^n$ ⇒ $\log n! > n \log n - n \log e = \theta(n \log n)$

- ▶ Thus, $n! \le \ell \le 2^h$
- ▶ Taking logarithms: $lg(n!) \le h$
- ▶ By Stirling's approximation: $n! > (\frac{n}{e})^n$ ⇒ $\log n! > n \log n - n \log e = \theta(n \log n)$
- ▶ Thus, $\log n! = \Omega(n \lg n)$ and hence $h = \Omega(n \lg n)$.

- ▶ Thus, $n! \le \ell \le 2^h$
- ▶ Taking logarithms: $lg(n!) \le h$
- ▶ By Stirling's approximation: $n! > (\frac{n}{e})^n$ ⇒ $\log n! > n \log n - n \log e = \theta(n \log n)$
- ▶ Thus, $\log n! = \Omega(n \lg n)$ and hence $h = \Omega(n \lg n)$.
- ▶ Thus the minimum height of a decision tree is $\Omega(nlgn)$

- ▶ Thus, $n! \le \ell \le 2^h$
- ▶ Taking logarithms: $lg(n!) \le h$
- ▶ By Stirling's approximation: $n! > (\frac{n}{e})^n$ ⇒ $\log n! > n \log n - n \log e = \theta(n \log n)$
- ▶ Thus, $\log n! = \Omega(n \lg n)$ and hence $h = \Omega(n \lg n)$.
- ▶ Thus the minimum height of a decision tree is $\Omega(nlgn)$
- Thus the time to sort n elements based only on comparisons without using any extra information, like values, in the worst case, is $\Omega(nlgn)$.

- ▶ Thus, $n! \le \ell \le 2^h$
- ▶ Taking logarithms: $lg(n!) \le h$
- ▶ By Stirling's approximation: $n! > (\frac{n}{e})^n$ ⇒ $\log n! > n \log n - n \log e = \theta(n \log n)$
- ▶ Thus, $\log n! = \Omega(n \lg n)$ and hence $h = \Omega(n \lg n)$.
- ▶ Thus the minimum height of a decision tree is $\Omega(nlgn)$
- Thus the time to sort n elements based only on comparisons without using any extra information, like values, in the worst case, is $\Omega(nlgn)$.
- ► Corollary: Mergesort is asymptotically optimal in the category of comparison sort algorithms.

Can we do better by using some extra information?

Suppose we are given n integers in the range $1 \dots m$. Can we sort faster?

Can we do better by using some extra information?

Suppose we are given n integers in the range $1 \dots m$. Can we sort faster?

Answer is Yes. We can sort them in O(n) time. Let us see with the help of an example.

Example 1

4 5 2 0 4 2	0	2

Example 1

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

|--|

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

					4	5	
Output							

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

				4	4	5		
Output								

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

					2	4	4	5
--	--	--	--	--	---	---	---	---

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

		2	2	4	4	5		
Outnut								

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

	2	2	2	4	4	5			
Output									

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

	0	2	2	2	4	4	5	
Outnut								

In	dex	0	1	2	3	4	5
	unt	2	0	3	0	2	1

Frequency Table

0	0	2	2	2	4	4	5
			Out	put			

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

0	0	2	2	2	4	4	5
			Out	put			

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

The algorithm is called Count Sort since we sort by counting.

0	0	2	2	2	4	4	5
			Out	put			

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

The algorithm is called Count Sort since we sort by counting. We will no more write pseudo-codes and we will talk about the algorithms at abstract level.

Example 2: Count Sort with Satellite Data

Sort the following pincodes on their last digit.

110014	110005	110002	110020	110004	110022	110010	110012		
Example 2									

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

Example 2: Count Sort with Satellite Data

Sort the following pincodes on their last digit.

110014	110005	110002	110020	110004	110022	110010	110012			
	Example 2									

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

Index	0	1	2	3	4	5
Count	2	2	5	5	7	8

Cumulative Frequency Table

Example 2: Count Sort with Satellite Data

Sort the following pincodes on their last digit.

110014	110005	110002	110020	110004	110022	110010	110012			
	Example 2									

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

Index	0	1	2	3	4	5
Count	2	2	5	5	7	8

Cumulative Frequency Table

CF[i] gives us the number of elements with last digit $\leq i$. Thus, this gives us the last location where such elements should be stored. Let us first understand this concept on Example 1.

4	5	2	0	4	2	0	2		
- 14									

Example 1

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

[4	5	2	0	4	2	0	2		
	F									

Example 1

Index	0	1	2	3	4	5
Count	2	0	3	0	2	1

Frequency Table

Index	0	1	2	3	4	5
Count	2	2	5	5	7	8

Cumulative Frequency Table

Count

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	1	2	4	5	7	8

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	1	2	3	5	7	8

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	1	2	3	5	6	8

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	0	2	3	5	6	8

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	0	2	2	5	6	8

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	0	2	2	5	6	7

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	0	2	2	5	5	7

Updated Cumulative Frequency Table

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	1	2	4	5	7	8

Updated Cumulative Frequency Table

Count

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	1	2	3	5	6	8

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	0	2	3	5	6	8

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	0	2	2	5	6	8

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	0	2	2	5	6	7

Updated Cumulative Frequency Table

Index	0	1	2	3	4	5
Count	0	2	2	5	5	7

Updated Cumulative Frequency Table

Count Sort Algorithm

```
input: Array: A[1...n], Range R of keys say 0...m-1 output: Sorted Array A
```

Count-Sort(A, R)

- 1. Compute the frequencies.
- 2. Compute the cumulative frequencies.
- Scan the input in reverse order. For every scanned element x, get it's location i from the CFT and write x in the ith location of the output array and decrement the value corresponding to x in CFT by 1.
- 4. Copy the output array to the input array.

▶ Let [1 ... m] or [0 ... m - 1] (doesn't really matter) be the range in which the keys lie.

- Let $[1 \dots m]$ or $[0 \dots m-1]$ (doesn't really matter) be the range in which the keys lie.
 - ► What is the key in Eg. 2?

- Let $[1 \dots m]$ or $[0 \dots m-1]$ (doesn't really matter) be the range in which the keys lie.
 - ► What is the key in Eg. 2?
 - ► What is it's range?

- Let $[1 \dots m]$ or $[0 \dots m-1]$ (doesn't really matter) be the range in which the keys lie.
 - ► What is the key in Eg. 2?
 - ► What is it's range?
- ► Time Complexity of Count Sort:

- Let $[1 \dots m]$ or $[0 \dots m-1]$ (doesn't really matter) be the range in which the keys lie.
 - ► What is the key in Eg. 2?
 - ► What is it's range?
- Time Complexity of Count Sort:
 - ► Time to compute the frequencies?

- Let $[1 \dots m]$ or $[0 \dots m-1]$ (doesn't really matter) be the range in which the keys lie.
 - ► What is the key in Eg. 2?
 - ► What is it's range?
- Time Complexity of Count Sort:
 - ► Time to compute the frequencies?
 - ► Time to compute the cumulative frequencies?

- Let $[1 \dots m]$ or $[0 \dots m-1]$ (doesn't really matter) be the range in which the keys lie.
 - ► What is the key in Eg. 2?
 - ► What is it's range?
- Time Complexity of Count Sort:
 - ► Time to compute the frequencies?
 - ► Time to compute the cumulative frequencies?
 - ► Time to write the output?

- Let $[1 \dots m]$ or $[0 \dots m-1]$ (doesn't really matter) be the range in which the keys lie.
 - ► What is the key in Eg. 2?
 - ► What is it's range?
- Time Complexity of Count Sort:
 - ► Time to compute the frequencies?
 - ► Time to compute the cumulative frequencies?
 - ► Time to write the output?
- How much extra-space does it take? Is it in-place?

- Let $[1 \dots m]$ or $[0 \dots m-1]$ (doesn't really matter) be the range in which the keys lie.
 - ► What is the key in Eg. 2?
 - ► What is it's range?
- Time Complexity of Count Sort:
 - ► Time to compute the frequencies?
 - ► Time to compute the cumulative frequencies?
 - ► Time to write the output?
- How much extra-space does it take? Is it in-place?
- Is it stable?

- Let $[1 \dots m]$ or $[0 \dots m-1]$ (doesn't really matter) be the range in which the keys lie.
 - ► What is the key in Eg. 2?
 - ► What is it's range?
- Time Complexity of Count Sort:
 - ► Time to compute the frequencies?
 - ► Time to compute the cumulative frequencies?
 - ► Time to write the output?
- ► How much extra-space does it take? Is it in-place?
- ► Is it stable?
- ▶ Given a set of elements drawn from the Capital English alphabet set $\{A, B, ... Z\}$. Can Count sort be used to sort them?

- Let $[1 \dots m]$ or $[0 \dots m-1]$ (doesn't really matter) be the range in which the keys lie.
 - ► What is the key in Eg. 2?
 - ► What is it's range?
- Time Complexity of Count Sort:
 - ► Time to compute the frequencies?
 - ► Time to compute the cumulative frequencies?
 - Time to write the output?
- How much extra-space does it take? Is it in-place?
- ► Is it stable?
- ▶ Given a set of elements drawn from the Capital English alphabet set $\{A, B, ... Z\}$. Can Count sort be used to sort them? What is m?

- Let $[1 \dots m]$ or $[0 \dots m-1]$ (doesn't really matter) be the range in which the keys lie.
 - ► What is the key in Eg. 2?
 - ► What is it's range?
- Time Complexity of Count Sort:
 - ► Time to compute the frequencies?
 - ► Time to compute the cumulative frequencies?
 - ► Time to write the output?
- ► How much extra-space does it take? Is it in-place?
- ► Is it stable?
- ▶ Given a set of elements drawn from the Capital English alphabet set $\{A, B, ... Z\}$. Can Count sort be used to sort them? What is m? What is the time complexity?