Chapter 4.3: Hyperbolic Functions

Expected Skills:

- Be able to define $\sinh x$ and $\cosh x$ in terms of exponential functions.
- Be able to determine the domain, range, and graph of $\sinh x$ and $\cosh x$.
- Be able to justify properties and solve equations involving the hyperbolic functions.
- Be able to compute limits and derivatives involving the hyperbolic functions.

Practice Problems:

- 1. Consider $f(x) = \sinh x$.
 - (a) Compute $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$
 - (b) Determine whether the graph of f(x) has any curvilinear asymptotes.
 - (c) Compute the x and y intercepts of f(x).
 - (d) Solve $\sinh x = 1$ for x.
 - (e) Show that $\frac{d}{dx}(\sinh x) = \cosh x$
 - (f) Find all intervals on which f(x) is increasing and those on which f(x) is decreasing.
 - (g) Find all intervals on which f(x) is concave up and those on which f(x) is concave down.
 - (h) Determine the coordinates of all local extrema (max/min) and all inflection points.
 - (i) Sketch the graph of f(x)
- 2. In order to verify the identity $\sinh 2x = 2 \sinh x \cosh x$ compute the following by appealing to the appropriate definitions.
 - (a) $\sinh 2x$
 - (b) $2 \sinh x \cosh x$
- 3. We define the **Hyperbolic Tangent** function to be $f(x) = \tanh x = \frac{\sinh x}{\cosh x}$.
 - (a) Express f(x) in terms of exponential functions.
 - (b) What is the domain of f(x)?
 - (c) Compute $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$.

- (d) Determine whether the graph of f(x) has any curvilinear asymptotes.
- (e) Find the coordinates of all x and y intercepts of f(x).
- (f) Find all x for which $f(x) = \frac{1}{2}$.
- 4. Compute an equation of the line which is tangent to $f(x) = \cosh x$ at the point where $x = \ln 2$.
- 5. Suppose $y = x \cosh x$. Compute $\frac{d^2y}{dx^2}$.