교차구배제약조건을 리용한 3차원중자력결합해석방법

김성준, 조만길

지구물리탐사자료해석분야에서는 2개 또는 그 이상의 서로 다른 지구물리마당측정자료들을 결합하여 해석하는것이 하나의 추세로 되고있다.[1-3] 최근에는 결합역문제풀이의 목적함수에 교차구배제약조건을 첨가하여 결합해석방법들의 특성을 개선하기 위한 연구가 진행되고있다.[2, 4]

우리는 교차구배제약조건을 리용한 3차원중자력결합해석방법에 대한 연구를 진행하였다.

1. 방법의 원리

교차구배함수는 벡토르량으로서 두 물성파라메터 m_1 , m_2 의 구배벡토르의 벡토르적으로 정의되는 함수이다. 즉

$$\vec{t}(x, y, z) = \nabla m_1(x, y, z) \times \nabla m_2(x, y, z) \tag{1}$$

교차구배연구방법에 의하면 모형들의 구조적류사성은 교차구배함수벡토르 $\vec{t}(x,y,z)$ 가 령벡토르로 될 때 보장된다.[5]

3차원문제에서 교차구배함수의 x, y, z 성분들은 벡토르정의로부터 다음과 같이 표시된다.

$$\begin{cases} t_{x} = \frac{\partial m_{1}}{\partial y} \frac{\partial m_{2}}{\partial z} - \frac{\partial m_{1}}{\partial z} \frac{\partial m_{2}}{\partial y} \\ t_{y} = \frac{\partial m_{1}}{\partial z} \frac{\partial m_{2}}{\partial x} - \frac{\partial m_{1}}{\partial x} \frac{\partial m_{2}}{\partial z} \\ t_{z} = \frac{\partial m_{1}}{\partial x} \frac{\partial m_{2}}{\partial y} - \frac{\partial m_{1}}{\partial y} \frac{\partial m_{2}}{\partial z} \end{cases}$$
(2)

일반적인 비선형최량화문제는 식 (3)과 같은 목적함수를 식 (4)와 같은 제약조건밑에서 최소화하는 과정이다.

$$s(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_0)^T C_0^{-1} (\mathbf{x} - \mathbf{x}_0)$$
 (3)

$$f(\mathbf{x}) = 0 \tag{4}$$

여기서 x는 땅속의 두 물성파라메터 m과 지구물리마당 d를 포함한다. 즉

$$x = \begin{bmatrix} d \\ m \end{bmatrix} \tag{5}$$

그리고 x_0 은 사전정보, C_0 은 공분산행렬이다. f(x)는 일반적으로 물성값들과 측정자료의 련관성을 반영하는 함수이다.

이 함수에 교차구배제약조건을 첨부하고 식 (3)을 최소화하기 위하여 다음과 같은 반 복풀이식을 유도하였다.

$$\hat{\boldsymbol{m}}_{k+1} = \hat{\boldsymbol{m}}_{k} + N_{1}^{-1} [\boldsymbol{G}_{k}^{T} \boldsymbol{C}_{\boldsymbol{d}_{0}}^{-1} (\boldsymbol{d}_{0} - \boldsymbol{g}_{\boldsymbol{D}} (\hat{\boldsymbol{m}}_{k})) - \boldsymbol{C}_{\boldsymbol{m}_{0}}^{-1} (\hat{\boldsymbol{m}}_{k} - \boldsymbol{m}_{0})] - N_{1}^{-1} \boldsymbol{B}_{k}^{T} (\boldsymbol{B}_{k} N_{1}^{-1} \boldsymbol{B}_{k}^{T})^{-1} \times \{\boldsymbol{B}_{k} N_{1}^{-1} [\boldsymbol{G}_{k}^{T} \boldsymbol{C}_{\boldsymbol{d}_{0}}^{-1} (\boldsymbol{d}_{0} - \boldsymbol{g}_{\boldsymbol{D}} (\hat{\boldsymbol{m}}_{k})) - \boldsymbol{C}_{\boldsymbol{m}_{0}}^{-1} (\hat{\boldsymbol{m}}_{k} - \boldsymbol{m}_{0})] + \boldsymbol{g}_{\boldsymbol{m}} (\hat{\boldsymbol{m}}_{k})\}$$

$$(6)$$

여기서 d_0 은 관측자료, $g_D(\hat{m}_k)$ 는 정문제풀이함수, m_0 은 초기모형자료, C_{d_0} 과 C_{m_0} 은 각 관측자료와 초기모형자료의 공분산행렬, $\hat{m}_k = [(\hat{m}_1^k)^T(\hat{m}_2^k)^T]^T$ 는 k번째 반복단계에서의 모형의 물성값, $m_0 = [(m_1^{apr})^T(m_2^{apr})^T]^T$ 는 초기모형의 물성값이다. $N_1 = G_k^T C_{d_0}^{-1} G_k + C_{m_0}^{-1}$, $A_1 = \partial f / \partial m_1$, $A_2 = \partial f / \partial m_2$, $D_1 = \partial d / \partial m_1$, $D_2 = \partial d / \partial m_2$ 이고

$$\mathbf{g}_{m}(\hat{\mathbf{m}}_{k}) = \begin{bmatrix} \mathbf{t}_{x}(\hat{\mathbf{m}}_{1}^{k}, \ \hat{\mathbf{m}}_{2}^{k}) \\ \mathbf{t}_{y}(\hat{\mathbf{m}}_{1}^{k}, \ \hat{\mathbf{m}}_{2}^{k}) \\ \mathbf{t}_{z}(\hat{\mathbf{m}}_{1}^{k}, \ \hat{\mathbf{m}}_{2}^{k}) \end{bmatrix}, \quad \mathbf{G}_{k} = \begin{bmatrix} \mathbf{A}_{1} & 0 \\ 0 & \mathbf{A}_{2} \\ \mathbf{D}_{1} & 0 \\ 0 & \mathbf{D}_{2} \end{bmatrix},$$

 B_k 는 교차구배함수와 관련된 야꼬비얀행렬로서 다음과 같다.

$$\boldsymbol{B}_{k} = \begin{bmatrix} \boldsymbol{B}_{1x} & \boldsymbol{B}_{2x} \\ \boldsymbol{B}_{1y} & \boldsymbol{B}_{2y} \\ \boldsymbol{B}_{1z} & \boldsymbol{B}_{2z} \end{bmatrix}$$
 (7)

여기서 $\boldsymbol{B}_{1x}^{qj} = \partial \boldsymbol{t}_{x}^{q} / \partial \boldsymbol{m}_{1}^{j} (q = 1, 2, \cdots, n, j = 1, 2, \cdots, n)$ 이다.

 \boldsymbol{B}_{k} 의 나머지성분들도 마찬가지방법으로 표시된다.

2. 모형계산실험에 의한 방법의 믿음성평가

그림 1. 모형계산실험을 위한 립방체형이상체

우리는 확립된 방법의 믿음성을 검증하기 위한 모형계산실험을 진행하였다.

모형계산실험에서는 놓임위치와 크기가 서로 다른 2개의 립방체형이상체를 리용하였다.(그림 1) 100m×100m×80m 의 모형공간을 10m×10m×8m 의 요소블로크들로 분할하고 배경밀도와 자화세 기는 령으로 설정하였다.

큰 모형의 크기는 $20m \times 20m \times 20m$, 중심위치는 (50m, 80m, 60m)이고 작은 모형의 크기는 $20m \times 20m \times 10m$, 중심위치는 (50m, 30m, 20m)이며 모형체들의 유효밀도는 $3 \times 10^3 \, \text{kg/m}^3$, 유효자화세기는 1A/m로 주었다.

다음 이상체들이 만드는 중력이상 및 자기이상마당(그림 2)을 계산하고 이 이상마당자료에 교차구배제약조건을 적용하여 결합해석결과를 얻었다.(그림 3)

그림 3에서 보는바와 같이 교차구배제약조건을 리용한 3차원중자력결합해석결과는 밀 도 및 자화률모형들의 형태와 물성을 비교적 정확히 반영한다.

그림 2. 이상체들이 만드는 중력이상 및 자기이상마당 기) 중력이상마당, L) 자기이상마당

그림 3. 교차구배제약조건을 리용한 3차원중자력결합해석결과 기) 밀도모형, L) 자화률모형

맺 는 말

우리는 교차구배제약조건을 리용한 3차원중자력결합해석방법을 확립하고 모형계산실 험을 통하여 방법의 믿음성을 검증하였다.

참고문헌

- [1] P. A. Berdosian et al.; Geophysical Journal International, 170, 737, 2007.
- [2] L. A. Gallaro et al.; Journal of Geophysical Research, 109, BO3311, 2004.
- [3] L. A. Gallaro et al.; Geophysical Journal International, 169, 1261, 2007.
- [4] L. A. Gallaro; Geophysical Research Letters, 34, L1930, 2007.
- [5] F. Emilia et al.; Geophysics, 74, 4, L31, 2009.

주체107(2018)년 4월 5일 원고접수

3D Joint Interpretation Method of the Gravity and Magnetic Data under the Cross-Gradient Constraints

Kim Song Jun, Jo Man Gil

We applied the cross-gradient method to the 3D joint inversion of the gravity and magnetic data and verified the advantage of the method throughout the model calculation experiments.

Key words: cross-gradient, joint interpretation