ASSIGNMENT - 4

Date	30 Oct 2022
Team ID	PNT2022TMID38667
Project Name	Project – Early Detection of Chronic Kidney Disease using Machine Learning

1. Download the dataset .

2. Load the dataset into the tool.

	<pre>df = pd.read_csv("Mall_Customers.csv") df.head(10)</pre>						
ut[6]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	
	0	1	Male	19	15	39	
	1	2	Male	21	15	81	
	2	3	Female	20	16	6	
	3	4	Female	23	16	77	
	4	5	Female	31	17	40	
	5	6	Female	22	17	76	
	6	7	Female	35	18	6	
	7	8	Female	23	18	94	
	8	9	Male	64	19	3	
	9	10	Female	30	19	72	

```
In [7]: df.drop(['CustomerID'],axis=1,inplace=True)
df.head(10)
Out[7]:
             Gender Age Annual Income (k$) Spending Score (1-100)
          0
              Male
                     19
               Male
                                        16
                                                              6
          2 Female
                      20
             Female
                                         16
                      23
                                                              40
                      31
                                        19
                                                              3
               Male
                      64
                      30
             Female
```

3. Perform Below Visualizations.

• Univariate Analysis

• Bi- Variate Analysis

```
In [15]: sns.barplot(x='Age',y='Spending Score (1-100)',data=df)
Out[15]: <AxesSubplot:xlabel='Age', ylabel='Spending Score (1-100)'>
```


• Multi-Variate Analysis

4. Perform descriptive statistics on the dataset.

d	lf.des	cribe()		
_		Age	Annual Income (k\$)	Spending Score (1-100)
	count	200.000000	200.000000	200.000000
	mean	38.850000	60.560000	50.200000
	std	13.969007	26.264721	25.823522
	min	18.000000	15.000000	1.000000
	25%	28.750000	41.500000	34.750000
	50%	36.000000	61.500000	50.000000
	75%	49.000000	78.000000	73.000000
	max	70.000000	137.000000	99.000000

5. Check for Missing values and deal with them.

```
In [22]: df.isnull().sum()

Out[22]: Gender 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
dtype: int64
```

6. Find the outliers and replace them outliers.


```
In [26]: sns.boxplot(df['Annual Income (k$)'], orient='h')
Out[26]: <AxesSubplot:xlabel='Annual Income (k$)'>
```



```
In [31]: sns.boxplot(df['Spending Score (1-100)'], orient='h')
Out[31]: <AxesSubplot:xlabel='Spending Score (1-100)'>
```


7. Check for Categorical columns and perform encoding.

In [33]:	<pre>l_en = LabelEncoder() df['Gender'] = l_en.fit_transform(df['Gender']) df.head(10)</pre>				
Out[33]:		Condor	۸۵۰	Annual Income (k¢)	Spending Score (1-100)
		Gender	Age	Annual Income (Ka)	spending score (1-100)
	0	1	19	15.0	39
	1	1	21	15.0	81
	2	0	20	16.0	6
	3	0	23	16.0	77
	4	0	31	17.0	40
	5	0	22	17.0	76
	6	0	35	18.0	6
	7	0	23	18.0	94
	8	1	64	19.0	3
	9	0	30	19.0	72

8. Scaling the data.

9. Perform any of the clustering algorithms

Out[38]:

```
In [38]: df1 = pd.DataFrame(scaled_data, columns = df.columns)
    df1.head(10)
```

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1.0	0.019231	0.000000	0.387755
1	1.0	0.057692	0.000000	0.816327
2	0.0	0.038462	0.008493	0.051020
3	0.0	0.096154	0.008493	0.775510
4	0.0	0.250000	0.016985	0.397959
5	0.0	0.076923	0.016985	0.765306
6	0.0	0.326923	0.025478	0.051020
7	0.0	0.096154	0.025478	0.948980
8	1.0	0.884615	0.033970	0.020408
9	0.0	0.230769	0.033970	0.724490

10. Add the cluster data with the primary dataset

```
In [39]: df1['Cluster'] = pd.Series(res)
df1.head(10)
Out[39]:
                       Age Annual Income (k$) Spending Score (1-100) Cluster
          2 0.0 0.038462
                                 0.008493
                                                      0.051020
               0.0 0.096154
                                   0.008493
          4 0.0 0.250000
                                 0.016985
                                                      0.397959
               0.0 0.076923
                                   0.016985
                                                      0.765306
          6 0.0 0.326923
                                   0.025478
                                                      0.051020
               0.0 0.096154
                                   0.025478
                                                      0.948980
          8 1.0 0.884615
                                   0.033970
                                                      0.020408
               0.0 0.230769
                                   0.033970
                                                      0.724490
In [41]: df1['Cluster'].unique()
Out[41]: array([6, 4, 7, 5, 3, 2, 1, 0])
  In [42]: df1['Cluster'].value_counts()
 Out[42]:
                       39
                       29
                       24
                       22
                       18
               Name: Cluster, dtype: int64
```

11. Split the data into dependent and independent variables.

12. Split the data into training and testing

In [45]: X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=1)
X_train.head(10)

Out[45]:

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
116	0.0	0.865385	0.424628	0.428571
67	0.0	0.961538	0.280255	0.479592
78	0.0	0.096154	0.331210	0.520408
42	1.0	0.576923	0.203822	0.357143
17	1.0	0.038462	0.050955	0.663265
5	0.0	0.076923	0.016985	0.765306
127	1.0	0.423077	0.475584	0.959184
105	0.0	0.057692	0.399151	0.418367
48	0.0	0.211538	0.212314	0.418367
66	0.0	0.480769	0.280255	0.500000

In [46]: X_test.head(10)

Out[46]:

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
58	0.0	0.173077	0.263270	0.510204
40	0.0	0.903846	0.195329	0.346939
34	0.0	0.596154	0.152866	0.132653
102	1.0	0.942308	0.399151	0.591837
184	0.0	0.442308	0.713376	0.387755
198	1.0	0.269231	1.000000	0.173469
95	1.0	0.115385	0.382166	0.520408
4	0.0	0.250000	0.016985	0.397959
29	0.0	0.096154	0.118896	0.877551
168	0.0	0.346154	0.611465	0.265306

In [47]: y_train.head(10)

Out[47]:

	Cluster
116	7
67	7
78	4
42	5
17	6
5	4
127	1
105	4
48	4
66	7

13. Build the Model

```
In [49]: # classification algorithm
    classifier_model = SVC(decision_function_shape='ovo')
```

14. Train the Model

```
In [50]: classifier_model.fit(X_train,y_train.values.flatten())
Out[50]: SVC(decision_function_shape='ovo')
```

15. Test the Model

```
In [51]: pred_y = classifier_model.predict(X_test)
    pred_y[0:5]
Out[51]: array([4, 7, 7, 5, 0])
```

16. Measure the performance using Evaluation Metrics.

```
In [52]: print('Classification Report: ')
         print(classification_report(y_test, pred_y))
         Classification Report:
                       precision
                                    recall f1-score
                                                        support
                    0
                            1.00
                                                              5
                                      1.00
                                                1.00
                    1
                            1.00
                                      1.00
                                                1.00
                                                              6
                                                1.00
                                                              5
                    2
                            1.00
                                      1.00
                    3
                                                0.89
                                                              5
                            1.00
                                      0.80
                    4
                            1.00
                                      1.00
                                                1.00
                                                             15
                    5
                            0.90
                                      1.00
                                                0.95
                                                              9
                                                1.00
                    6
                            1.00
                                      1.00
                                                             4
                            1.00
                                      1.00
                                                1.00
                                                             11
                                                0.98
                                                             60
             accuracy
            macro avg
                            0.99
                                      0.97
                                                0.98
                                                             60
         weighted avg
                            0.98
                                      0.98
                                                0.98
                                                             60
```

```
In [53]: print('Confusion Matrix: ')
sns.heatmap(confusion_matrix(y_test,pred_y))
```

Confusion Matrix:

Out[53]: <AxesSubplot:>

