MATH7501: Week 7 Practical Questions

[. B) definition. for every E>0, = a & (E)>0 s.t. if octal < SG,
then |fortherese.

Problem 1. Suppose that a > 0 is a fixed constant. Using the definition of a limit, prove that if

$$\lim_{x \to 0} f(x) = \ell \text{ then } \lim_{x \to 0} f(ax) = \ell.$$

Problem 2. For some constant a, compute

$$\lim_{x \to a} \frac{x^2 - a^2}{x - a} \text{ and } \lim_{x \to a} \frac{x^3 - a^3}{x - a}.$$

Problem 3. Using the squeeze principle, compute

$$\lim_{x \to 0} (x^4 + x^2) \cos \left(\frac{1}{x^2}\right) \sin (x^3 + x).$$

Problem 4. For some constant a, suppose that $\lim_{x\to a} f(x) = 3$ and $\lim_{x\to a} g(x) = 2$, for functions f(x) and g(x). Evaluate:

- (a) $\lim_{x\to a} \left[3f(x) + (g(x))^2 \right]$.
- **(b)** $\lim_{x\to a} (g(x))^{-1}$.
- (c) $\lim_{x\to a} \sqrt{3f(x) + 8g(x)}$.

Problem 5. Let $f(x) = e^{1/x}$. Argue that $\lim_{x\to 0^+} f(x) = \infty$ and evaluate $\lim_{x\to 0^-} f(x)$.

Problem 6. Let $f(x) = e^x$. Prove that $\lim_{x \to -\infty} f(x) = 0$ and $\lim_{x \to \infty} f(x) = \infty$.

Problem 7. Compute $\lim_{x\to\infty} f(x)$ for

$$f(x) = \frac{4x^{2023} + 4}{3x^{2023} + x^{1011}}.$$

Problem 8. Consider the function

$$f(x) = \begin{cases} x^2 - x + 1 & \text{if } x \le 1, \\ ax^2 + 1 & \text{if } x > 1. \end{cases}$$

Determine the value of a that makes f(x) continuous for all $x \in \mathbb{R}$.

Problem 9. Let f(x) and g(x) be continuous functions from domain [a, b] to co-domain \mathbb{R} . Suppose that f(a) < g(a) and f(b) > g(b). Prove that there exists a $c \in (a, b)$ such that f(c) = g(c).

Problem 10. Use the intermediate value theorem to prove that there exists a $c \in (0,1)$ such that $f(x) = xe^x - 2 = 0$ and approximate the value c using three loops of the bisection method algorithm with initial values a = 0 and b = 1.