

		1	R	P	S	G	R	K	S	S	6	8	9	M	Q	A	F	R	I	
16	W	D	V	N	Q	K	T	F	Y	L	R	N	N	Q	L	V	A	G	Y	L
36	Q	G	P	N	V	N	L	E	E	K	I	D	V	V	P	I	E	P	H	A
56	L	F	L	G	I	H	G	G	K	M	C	L	S	C	V	K	S	G	D	E
														84						
76	T	R	L	Q	L	E	A	V	N	I	T	D	L	S	E	N	R	K	Q	D
96	K	R	F	A	F	I	R	S	D	S	G	P	T	T	S	F	E	S	A	A
116	C	P	G	W	F	L	C	T	A	M	E	A	D	Q	P	V	S	L	T	N
														141			170			
	M	P	D	E	G	V	M	V	T	K	F	Y	F	Q	E	D	E			

FIG. I

10 Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr
 20 Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp
 30 Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu Arg His Cys Leu
 40 Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu Arg His Cys Leu
 50 Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp
 60 Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp
 70 Arg Asp Thr Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu
 80 Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gln Thr Val His Leu Ser Cys Gln Gln
 90 Arg Asp Thr Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu
 100 Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gln Thr Val His Leu Ser Cys Gln Gln
 110 Lys Gln Asn Thr Val Cys Thr Cys His Ala Gln Phe Phe Leu Arg Glu Asn Glu Cys Val
 120 Lys Gln Asn Thr Val Cys Thr Cys His Ala Gln Phe Phe Leu Arg Glu Asn Glu Cys Val
 130 Ser Cys Ser Asn Cys Lys Lys Ser Leu Gln Cys Thr Lys Leu Cys Leu Pro Gln Ile Gln
 140 Ser Cys Ser Asn Cys Lys Lys Ser Leu Gln Cys Thr Lys Leu Cys Leu Pro Gln Ile Gln
 150 Ser Cys Ser Asn Cys Lys Lys Ser Leu Gln Cys Thr Lys Leu Cys Leu Pro Gln Ile Gln
 160 Ser Cys Ser Asn Cys Lys Lys Ser Leu Gln Cys Thr Lys Leu Cys Leu Pro Gln Ile Gln
 161 Asn

FIG.2

JUL 13 2004

FIG. 3

FIG. 5

FIG. 6

O 11 E
JUL 13 2004
SCHOOL OF ENGINEERING
UNIVERSITY OF TORONTO LIBRARY

FIG. 7

JUL 13 2004
SCEC/CERI
15110

FIG. 8

OIE
JUL 13 2004
SOCIÉTÉ

MW START 15 16 17 18 19 20 21 22

FIG. 9

PEGylated IL - 1ra i.v. in rats

FIG. 10

100000
10000
1000
100
10
1

100000
10000
1000
100
10
1

0 6 12 18 24 30 36

time, hr

OIP E 01152004 JUL 13 2004

PEGylated IL - 1ra s.c. in rats

FIG. 11

FIG.12

FIG.14

FIG. 16

FIG. 17

SOLUBILITY OF PEGYLATED IL-1 α
4/15/91 160MG/ML

FIG. 18

012 M
JUL 13 2004
SOLARIS
FAX

FIG.19