1 Inline-ματη

Normal: $A Ax\alpha + \chi b$ Sans: $A Ax\alpha + \chi b$ **Bold-Sans:** $A Ax\alpha + \chi b$ Normal: $A Ax\alpha + \chi b$ **Bold:** $A Ax\alpha + \chi b$

2 Display- $\mu \alpha \tau \eta$

Text in roman family

$$\sqrt{(a_1 + a_2 + \gamma)^2} = \sum_{i=1}^{2} a_i + \gamma \tag{1}$$

Text in sans family

$$\sqrt{(a_1 + a_2 + \gamma)^2} = \sum_{i=1}^2 a_i + \gamma$$
 (2)

Text in sans family, bold version

$$\sqrt{(a_1 + a_2 + \gamma)^2} = \sum_{i=1}^2 a_i + \gamma$$
 (3)

Text in roman family, bold version

$$\sqrt{(a_1 + a_2 + \gamma)^2} = \sum_{i=1}^{2} a_i + \gamma \tag{4}$$

3 Saved for sans math

FiraSans-TLF sl mb \boldsymbol{xxffBB}

Size of math and text letters should be identical.

4 Serif

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be

Table 1: Glyphs contained in the font "T1FiraSans-TLF/m/n" $\,$

	О	1	2	3	4	<i>'</i> 5	6	7	
'00x	0	1	^ 2	~ 3	4	" 5	6	7	″0x
	8	- 9	10	s ¹¹	ر 12	, 13	〈 14	> 15	
'02x	" 16	" 17	" 18	« 19	» 20	- 21	— ₂₂	23	″1x
′03x	fj 24	I 25	J 26	ff 27	fi 28	fl 29	ffi 30	ffl 31	
'04x	_ 32	! 33	" 34	# 35	\$ 36	% 37	& 38	, 39	" 0
′05x	(40) 41	* 42	+ 43	, 44	- 45	. 46	/ 47	″2x
'06x	0 48	1 49	2 50	3 51	4 52	5 53	6 54	7 55	″3x
	8 56	9 57	: 58	; 59	< 60	= 61	> 62	? 63	
	@ 64	A 65	B 66	C 67	D 68	E 69	F 70	G 71	" a
	H 72	I 73	J 74	K 75	L 76	M 77	N 78	O 79	″4x
	P 80	Q 81	R 82	S 83	T 84	U 85	V 86	W 87	" -
′13x	X 88	Y 89	Z 90	[91	\ 92] 93	^ ₉₄	_ 95	″5x
′14x	96	a 97	b 98	C 99	d 100	e 101	f 102	g ₁₀₃	" 0
′15x	h 104	i 105	j 106	k 107	l 108	m 109	n 110	O 111	″6x
′16x	p 112	q 113	r 114	S 115	t 116	U 117	V 118	W 119	" -
17x	X 120	y 121	Z 122	{ 123	124	} 125	~ 126	- 127	″7x
′20x	Ă 128	A 129	Ć 130	Č 131	Ď 132	Ě 133	Ę 134	Ğ 135	″0
'21x	Ĺ 136	Ľ 137	Ł 138	Ń 139	Ň 140	Ŋ 141	Ő 142	Ŕ 143	″8x
′22x	Ř 144	Ś 145	Š 146	Ş 147	Ť 148	Ţ 149	Ű 150	Ů 151	″0
′23x	Ÿ ₁₅₂	Ź 153	Ž 154	Ż 155	IJ 156	i ₁₅₇	đ ₁₅₈	§ 159	″9x
′24x	ă 160	ą 161	Ć 162	Č 163	ď 164	ě 165	ę 166	ğ ₁₆₇	″ A
′25x	ĺ 168	(169	ł 170	ń 171	ň 172	ŋ 173	ő 174	ŕ 175	"Ax
'26x	ř 176	Ś 177	Š 178	Ş 179	ť 180	ţ 181	ű 182	ů 183	″D
′27x	ÿ ₁₈₄	Ź 185	Ž 186	Ż 187	ij ₁₈₈	189	190 خ	£ 191	″Bx
′30x	À 192	Á 193	194	à 195	Ä 196	Å 197	Æ 198	Ç 199	" a
'31x	È 200	É 201	Ê 202	Ë 203	Ì 204	ĺ 205	Î 206	Ϊ 207	″Cx
′32x	Ð 208	Ñ 209	Ò 210	Ó 211	Ô 212	Õ 213	Ö 214	Œ 215	
′33x	Ø 216	Ù 217	Ú 218	Û 219	Ü 220	Ý 221	Þ 222	SS 223	″Dx
′34x	à 224	á 225	â 226	ã 227	ä 228	å 229	æ 230	Ç 231	" =
′35x	è 232	é 233	ê 234	ë 235	Ì 236	í 237	Î 238	ï 239	Ex
'36x	ð ₂₄₀	ñ ₂₄₁	Ò 242	Ó 243	Ô 244	Õ 245	Ö 246	© 247	" -
′37x	Ø 248	ù 249	Ú 250	û 251	Ü 252	ý ₂₅₃	þ ₂₅₄	ß 255	″Fx
	″8	″9	"A	″B	″C	″D	″E	″F	

written in of the original language. There is no need for special content, but the length of words should match the language.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-\alpha x^2}} dx \int_{-\infty}^\infty e^{-\alpha y^2} dy = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\sum_{k=0}^{\infty} a_0 q^k = \lim_{n \to \infty} \sum_{k=0}^{n} a_0 q^k = \lim_{n \to \infty} a_0 \frac{1 - q^{n+1}}{1 - q} = \frac{a_0}{1 - q}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you

information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Simplest form of the Central Limit Theorem: Let X_1, X_2, \cdots be a sequence of i.i.d. random variables with mean 0 and variance 1 on a probability space $(\Omega, \mathcal{F}, Pr)$. Then

$$\Pr\left(\frac{X_1+\cdots+X_n}{\sqrt{n}}\leq \nu\right)\to \mathfrak{N}(\nu):-\int_{-\infty}^{\nu}\frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}}\,\mathrm{d}t\quad\text{as }n\to\infty,$$

or, equivalently, letting $S_n := \sum_{1}^{n} X_k$

$$\mathbb{E} f\left(S_n \, / \, \sqrt{n}\right) \to \int_{-\infty}^{\infty} f(t) \frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}} \, \mathrm{d}t \quad \text{as } n \to \infty \text{, for every } f \in \mathrm{b} \mathcal{C}(\mathbb{R}).$$

$$4/3 = 1.333$$

5 Serif Bold

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no

information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$a\sqrt[n]{b} = \sqrt[n]{a^nb}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\int_0^\infty e^{-ax^2} dx = \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-ax^2}} dx \int_{-\infty}^\infty e^{-ay^2} dy = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no

information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Simplest form of the Central Limit Theorem: Let X_1, X_2, \cdots be a sequence of iid random variables with mean 0 and variance 1 on a probability space $(\Omega, \mathcal{F}, \Pr)$. Then

$$\Pr\left(\frac{X_1+\cdots+X_n}{\sqrt{n}}\leq \nu\right)\to \mathfrak{N}(\nu) := \int_{-\infty}^{\nu} \frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}} \,\mathrm{d}t \quad \text{as } n\to\infty,$$

or, equivalently, letting $S_n := \sum_{1}^{n} X_k$,

$$\mathbb{E}f\left(S_n / \sqrt{n}\right) \to \int_{-\infty}^{\infty} f(t) \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt \quad \text{as } n \to \infty, \text{ for every } f \in b\mathscr{C}(\mathbb{R}).$$

$$4/3 = 1.333$$

6 Sans Serif

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\sum_{k=0}^{\infty} a_0 q^k = \lim_{n \to \infty} \sum_{k=0}^{n} a_0 q^k = \lim_{n \to \infty} a_0 \frac{1 - q^{n+1}}{1 - q} = \frac{a_0}{1 - q}$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Simplest form of the Central Limit Theorem: Let X_1, X_2, \cdots be a sequence of iid random variables with mean 0 and variance 1 on a probability space $(\Omega, \mathcal{F}, Pr)$.

Then

$$\Pr\left(\frac{X_1+\cdots+X_n}{\sqrt{n}}\leq v\right)\to \mathfrak{N}(v):-\int_{-\infty}^v\frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}}\,\mathrm{d}t\quad\text{as }n\to\infty,$$

or, equivalently, letting $S_n := \sum_{1}^{n} X_{k}$

$$\mathbb{E} f\left(\mathsf{S}_n \ / \ \sqrt{n}\right) \to \int_{-\infty}^{\infty} f(t) \frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}} \, \mathrm{d}t \quad \text{as } n \to \infty \text{, for every } f \in \mathrm{b}\mathscr{C}(\mathbb{R}).$$

$$4/3 = 1.333$$

Encoding: T1, family: FiraSans-TLF, series: sl, shape: n, size: 10.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$a\sqrt[n]{b} = \sqrt[n]{a^n b}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-\alpha x^2} dx} \int_{-\infty}^\infty e^{-\alpha y^2} dy = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

$$\sum_{k=0}^{\infty} a_0 q^k = \lim_{n \to \infty} \sum_{k=0}^{n} a_0 q^k = \lim_{n \to \infty} a_0 \frac{1 - q^{n+1}}{1 - q} = \frac{a_0}{1 - q}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$X_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

7 Sans Serif Bold

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\frac{\sqrt[p]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$a\sqrt[n]{b} = \sqrt[n]{a^nb}$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{i=n} x_i = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Simplest form of the Central Limit Theorem: Let X_1, X_2, \cdots be a sequence of iid random variables with mean 0 and variance 1 on a probability space $(\Omega, \mathcal{F}, Pr)$. Then

$$\Pr\left(\frac{X_1+\cdots+X_n}{\sqrt{n}}\leq V\right)\to \mathfrak{N}(V):-\int_{-\infty}^V\frac{\mathrm{e}^{-t^2/2}}{\sqrt{2\pi}}\,\mathrm{d}t\quad \text{as }n\to\infty,$$

or, equivalently, letting $S_n := \sum_{1}^{n} X_k$,

$$\mathbb{E} f\left(\mathsf{S}_n \ / \ \sqrt{n}\right) \to \int_{-\infty}^{\infty} f(\mathsf{t}) \frac{\mathrm{e}^{-\mathsf{t}^2/2}}{\sqrt{2\pi}} \, \mathrm{d} \mathsf{t} \quad \text{as } n \to \infty, \text{ for every } f \in \mathsf{b} \mathscr{C}(\mathbb{R}).$$

$$4/3 = 1.333$$

Encoding: T1, family: FiraSans-TLF, series: mb, shape: n, size: 10.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\int_{-\infty}^\infty e^{-\alpha x^2}} dx \int_{-\infty}^\infty e^{-\alpha y^2} dy = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

$$\sum_{k=0}^{\infty} a_0 q^k = \lim_{n \to \infty} \sum_{k=0}^{n} a_0 q^k = \lim_{n \to \infty} a_0 \frac{1 - q^{n+1}}{1 - q} = \frac{a_0}{1 - q}$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial t^2}$$

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

$$\sqrt[8]{a} \cdot \sqrt[8]{b} = \sqrt[8]{ab}$$

8 Serif

8.1 Overview Serif

Default: $a\alpha\alpha b\beta G\Gamma P\Pi\alpha\beta$ mathnormal: $a\alpha b\beta G\Gamma P\Pi$ mathrm: $a\alpha b\beta G\Gamma P\Pi$ mathup: $a\alpha b\beta G\Gamma P\Pi$ mathit: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbft: $a\alpha b\beta G\Gamma P\Pi$

Default: $a\alpha\alpha b\beta G\Gamma P\Pi\alpha\beta$ mathnormal: $a\alpha b\beta G\Gamma P\Pi$ mathrm: $a\alpha\alpha b\beta G\Gamma P\Pi$ mathup: $a\alpha\alpha b\beta G\Gamma P\Pi$ mathit: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$

Default: $a\alpha\alpha b\beta G\Gamma P\Pi\alpha\beta$ mathnormal: $a\alpha b\beta G\Gamma P\Pi$ mathrm: $a\alpha b\beta G\Gamma P\Pi$ mathup: $a\alpha b\beta G\Gamma P\Pi$ mathit: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbfit: $a\alpha b\beta G\Gamma P\Pi$

Default: $a\alpha\alpha b\beta G\Gamma P\Pi\alpha\beta$ mathnormal: $a\alpha b\beta G\Gamma P\Pi$ mathrm: $a\alpha b\beta G\Gamma P\Pi$ mathup: $a\alpha b\beta G\Gamma P\Pi$ mathit: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$

8.2 Formulas Serif

α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, ς, τ, υ, φ, χ, ψ, ω, ε, Α, Β, Γ, Δ, Ε, Z, Η, Θ, Ι, Κ, Λ, Μ, Ν, Ξ, Ο, Π, Ρ, Σ, Τ, Υ, Φ, Χ, Ψ, Ω, Ε, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, ς, τ, υ, φ, χ, ψ, ω, ε, Α, Β, Γ, Δ, Ε, Z, Η, Θ, Ι, Κ, Λ, Μ, Ν, Ξ, Ο, Π, Ρ, Σ, Τ, Υ, Φ, Χ, Ψ, Ω, Ε, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, ς, τ, υ, φ, χ, ψ, ω, ε, Α, Β, Γ, Δ, Ε, Ζ, Η, Θ, Ι, Κ, Λ, Μ, Ν, Ξ, Ο, Π, Ρ, Σ, Τ, Υ, Φ, Χ, Ψ, Ω, Ε,

 α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ , o, π , ρ , σ , ζ , τ , υ , ϕ , χ , ψ , ω , ϵ , A, B, Γ , Δ , E, Z, H, Θ , I, K, Λ , M, N, Ξ , O, Π , P, Σ , T, Y, Φ , X, Ψ , Ω , F,

$$\alpha a > 0$$
, $\beta b + (3 \times 27)$, $\Gamma G = 7 < 8$, $\lambda a > 0$, $\beta b + (3 \times 27)$, $\Gamma G = 7 < 8$, λ

$$s \pm 3\gamma + y - 1 = 4 \times 7$$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

 $s \pm 3\gamma + y - 1 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

 $s \pm 3y + y - 1 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathbf{d}x = \left(\frac{27}{2}\right)$$

 $s \pm 3y + y - 1 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) dx = \left(\frac{27}{2}\right)$$

8.3 Math Alphabets Serif

Default

0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z, a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z, $A,B,\Gamma,\Delta,E,Z,H,\Theta,I,K,\Lambda,M,N,\Xi,O,\Pi,P,\Sigma,T,\Upsilon,\Phi,X,\Psi,\Omega,$ $\alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,\nu,\xi,o,\pi,\rho,\sigma,\tau,\upsilon,\phi,\chi,\psi,\omega,\epsilon,\vartheta,\varpi,\rho,\varsigma,\varphi,$

```
0.1.2.3.4.5.6.7.8.9.
                                             A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,
                                               a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,
                                             A, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, O, \Pi, P, \Sigma, T, \Upsilon, \Phi, X, \Psi, \Omega,
                                                \alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, \nu, \phi, \chi, \psi, \omega, \epsilon, \vartheta, \varpi, \rho, \zeta, \varphi,
Math Italic (\mathit)
                                                0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                                               A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,
                                               a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,
                                               A, B, `, ', E, Z, H, `, I, K, `, M, N, `, O, '', P, `, T, `, `, X, -, `,
                                                \alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, \nu, \phi, \chi, \psi, \omega, \epsilon, \vartheta, \varpi, \rho, \varsigma, \varphi,
Math Roman (\mathrm)
                                               0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                                               A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,
                                               a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,
                                               A, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, O, \Pi, P, \Sigma, T, \Upsilon, \Phi, X, \Psi, \Omega,
                                                \alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, \nu, \phi, \chi, \psi, \omega, \epsilon, \vartheta, \varpi, \varrho, \varsigma, \varphi,
Math Bold (\mathbf)
                                         0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                                         A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,
                                         a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,
                                         A,B,\Gamma,\Delta,E,Z,H,\Theta,I,K,\Lambda,M,N,\Xi,O,\Pi,P,\Sigma,T,\Upsilon,\Phi,X,\Psi,\Omega,
                                         \alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, \nu, \phi, \chi, \psi, \omega, \epsilon, \vartheta, \varpi, \varrho, \zeta, \varphi,
Caligraphic (\mathcal)
                                   \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{I}, \mathcal{H}, \mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{O}, \mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{F}, \mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{Y}, \mathcal{Z}, \mathcal{Y}, \mathcal{Z}, \mathcal{Y}, \mathcal{Z}, \mathcal{Z}
Script (\mathscr)
                                   \mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D}, \mathscr{E}, \mathscr{F}, \mathscr{G}, \mathcal{H}, \mathscr{I}, \mathscr{J}, \mathscr{K}, \mathscr{L}, \mathscr{M}, \mathscr{N}, \mathscr{O}, \mathscr{P}, \mathscr{Q}, \mathscr{R}, \mathscr{S}, \mathscr{T}, \mathscr{U}, \mathscr{V}, \mathscr{W}, \mathscr{X}, \mathscr{Y}, \mathscr{Z}, \mathscr{Y}, \mathscr{Z}, \mathscr{Y}, \mathscr{Z}, \mathscr{Y}, \mathscr{Y}
Fraktur (\mathfrak)
                                                                \mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{E}, \mathfrak{F}, \mathfrak{G}, \mathfrak{H}, \mathfrak{I}, \mathfrak{I}, \mathfrak{K}, \mathfrak{L}, \mathfrak{M}, \mathfrak{N}, \mathfrak{D}, \mathfrak{P}, \mathfrak{Q}, \mathfrak{R}, \mathfrak{E}, \mathfrak{T}, \mathfrak{U}, \mathfrak{V}, \mathfrak{W}, \mathfrak{X}, \mathfrak{Y}, \mathfrak{Z}, \mathfrak{Z}
                                                                a, b, c, d, e, f, g, h, i, j, t, l, m, n, o, p, q, r, s, t, u, v, w, r, h, z,
Blackboard Bold (\mathbb)
```

Math Normal (\mathnormal)

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

8.4 Character Sidebearings Serif

Default

```
\begin{split} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + \\ |N| + |E| + |O| + |\Pi| + |P| + |E| + |T| + |T| + |\Phi| + |X| + |\Psi| + |\Omega| + \\ |\alpha| + |\beta| + |\gamma| + |\delta| + |\epsilon| + |\zeta| + |\eta| + |\theta| + |\iota| + |\kappa| + |\lambda| + |\mu| + \\ |v| + |\xi| + |o| + |\pi| + |\rho| + |\sigma| + |\tau| + |v| + |\phi| + |\chi| + |\psi| + |\omega| + \\ |\varepsilon| + |\vartheta| + |\sigma| + |\varrho| + |\zeta| + |\varphi| + \end{split}
```

Math Roman (\mathrm)

$$\begin{split} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |\Lambda| + |M| + \\ |N| + |E| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |\Upsilon| + |\Phi| + |X| + |\Psi| + |\Omega| + \\ \end{split}$$

Math Bold (\mathbf)

$$\begin{split} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |T| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + \\ |N| + |\mathcal{Z}| + |O| + |II| + |P| + |\mathcal{Z}| + |T| + |\Upsilon| + |\Phi| + |X| + |\Psi| + |\Omega| + \\ \end{split}$$

Math Calligraphic (\mathcal)

$$\begin{split} |\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + |\mathcal{D}| + |\mathcal{E}| + |\mathcal{F}| + |\mathcal{G}| + |\mathcal{H}| + |\mathcal{I}| + |\mathcal{I}| + |\mathcal{H}| +$$

8.5 Superscript Positioning Serif

Default

$$\begin{split} A^2 + B^2 + C^2 + D^2 + E^2 + F^2 + G^2 + H^2 + I^2 + J^2 + K^2 + L^2 + M^2 + \\ N^2 + O^2 + P^2 + Q^2 + R^2 + S^2 + T^2 + U^2 + V^2 + W^2 + X^2 + Y^2 + Z^2 + \\ a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2 + j^2 + k^2 + l^2 + m^2 + \\ n^2 + o^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2 + v^2 + w^2 + x^2 + y^2 + z^2 + \\ A^2 + B^2 + \Gamma^2 + \Delta^2 + E^2 + Z^2 + H^2 + \Theta^2 + I^2 + K^2 + \Lambda^2 + M^2 + \\ N^2 + \Xi^2 + O^2 + \Pi^2 + P^2 + \Sigma^2 + T^2 + \Upsilon^2 + \Phi^2 + X^2 + \Psi^2 + \Omega^2 + \\ \alpha^2 + \beta^2 + \gamma^2 + \delta^2 + \epsilon^2 + \zeta^2 + \eta^2 + \theta^2 + \iota^2 + \kappa^2 + \lambda^2 + \mu^2 + \\ v^2 + \xi^2 + o^2 + \pi^2 + \rho^2 + \sigma^2 + \tau^2 + v^2 + \phi^2 + \chi^2 + \psi^2 + \omega^2 + \\ \varepsilon^2 + \vartheta^2 + \varpi^2 + \varrho^2 + \zeta^2 + \varphi^2 + \end{split}$$

Math Roman (\mathrm)

$$\begin{split} &A^2+B^2+C^2+D^2+E^2+F^2+G^2+H^2+I^2+J^2+K^2+L^2+M^2+\\ &N^2+O^2+P^2+Q^2+R^2+S^2+T^2+U^2+V^2+W^2+X^2+Y^2+Z^2+\\ &a^2+b^2+c^2+d^2+e^2+f^2+g^2+h^2+i^2+j^2+k^2+l^2+m^2+\\ &n^2+o^2+p^2+q^2+r^2+s^2+t^2+u^2+v^2+w^2+x^2+y^2+z^2+\\ &A^2+B^2+\Gamma^2+\Delta^2+E^2+Z^2+H^2+\Theta^2+I^2+K^2+\Lambda^2+M^2+\\ &N^2+\Xi^2+O^2+\Pi^2+P^2+\Sigma^2+T^2+\Upsilon^2+\Phi^2+X^2+\Psi^2+\Omega^2+\\ \end{split}$$

Math Bold (\mathbf)

$$A^{2} + B^{2} + C^{2} + D^{2} + E^{2} + F^{2} + G^{2} + H^{2} + I^{2} + J^{2} + K^{2} + L^{2} + M^{2} + N^{2} + O^{2} + P^{2} + Q^{2} + R^{2} + S^{2} + T^{2} + U^{2} + V^{2} + W^{2} + X^{2} + Y^{2} + Z^{2} + a^{2} + b^{2} + c^{2} + d^{2} + e^{2} + f^{2} + g^{2} + h^{2} + i^{2} + j^{2} + k^{2} + l^{2} + m^{2} + n^{2} + o^{2} + p^{2} + q^{2} + r^{2} + s^{2} + t^{2} + u^{2} + v^{2} + w^{2} + x^{2} + y^{2} + z^{2} + A^{2} + B^{2} + \Gamma^{2} + \Delta^{2} + E^{2} + Z^{2} + H^{2} + \Theta^{2} + I^{2} + K^{2} + \Lambda^{2} + M^{2} + N^{2} + \Xi^{2} + O^{2} + \Pi^{2} + P^{2} + \Sigma^{2} + T^{2} + \Upsilon^{2} + \Phi^{2} + X^{2} + \Psi^{2} + \Omega^{2} + \Omega^{2$$

Math Calligraphic (\mathcal)

$$\mathcal{A}^{2} + \mathcal{B}^{2} + \mathcal{C}^{2} + \mathcal{B}^{2} + \mathcal{E}^{2} + \mathcal{F}^{2} + \mathcal{F}^{2} + \mathcal{G}^{2} + \mathcal{H}^{2} + \mathcal{F}^{2} + \mathcal{F}^{2} + \mathcal{H}^{2} + \mathcal{H}^{2}$$

8.6 Subscript Positioning Serif

Default

$$\begin{split} A_i + B_i + C_i + D_i + E_i + F_i + G_i + H_i + I_i + J_i + K_i + L_i + M_i + \\ N_i + O_i + P_i + Q_i + R_i + S_i + T_i + U_i + V_i + W_i + X_i + Y_i + Z_i + \\ a_i + b_i + c_i + d_i + e_i + f_i + g_i + h_i + i_i + j_i + k_i + l_i + m_i + \\ n_i + o_i + p_i + q_i + r_i + s_i + t_i + u_i + v_i + w_i + x_i + y_i + z_i + \\ A_i + B_i + \Gamma_i + \Delta_i + E_i + Z_i + H_i + \Theta_i + I_i + K_i + \Lambda_i + M_i + \\ N_i + \Xi_i + O_i + \Pi_i + P_i + \Sigma_i + T_i + \Upsilon_i + \Phi_i + X_i + \Psi_i + \Omega_i + \\ \alpha_i + \beta_i + \gamma_i + \delta_i + \epsilon_i + \zeta_i + \eta_i + \theta_i + \iota_i + \kappa_i + \lambda_i + \mu_i + \\ \nu_i + \xi_i + o_i + \pi_i + \rho_i + \sigma_i + \tau_i + v_i + \phi_i + \chi_i + \psi_i + \omega_i + \\ \varepsilon_i + \vartheta_i + \varpi_i + \varrho_i + \zeta_i + \varphi_i + \end{split}$$

Math Roman (\mathrm)

$$\begin{split} \mathbf{A}_{i} + \mathbf{B}_{i} + \mathbf{C}_{i} + \mathbf{D}_{i} + \mathbf{E}_{i} + \mathbf{F}_{i} + \mathbf{G}_{i} + \mathbf{H}_{i} + \mathbf{I}_{i} + \mathbf{J}_{i} + \mathbf{K}_{i} + \mathbf{L}_{i} + \mathbf{M}_{i} + \\ \mathbf{N}_{i} + \mathbf{O}_{i} + \mathbf{P}_{i} + \mathbf{Q}_{i} + \mathbf{R}_{i} + \mathbf{S}_{i} + \mathbf{T}_{i} + \mathbf{U}_{i} + \mathbf{V}_{i} + \mathbf{W}_{i} + \mathbf{X}_{i} + \mathbf{Y}_{i} + \mathbf{Z}_{i} + \\ \mathbf{a}_{i} + \mathbf{b}_{i} + \mathbf{c}_{i} + \mathbf{d}_{i} + \mathbf{e}_{i} + \mathbf{f}_{i} + \mathbf{g}_{i} + \mathbf{h}_{i} + \mathbf{i}_{i} + \mathbf{j}_{i} + \mathbf{k}_{i} + \mathbf{l}_{i} + \mathbf{m}_{i} + \\ \mathbf{n}_{i} + \mathbf{o}_{i} + \mathbf{p}_{i} + \mathbf{q}_{i} + \mathbf{r}_{i} + \mathbf{s}_{i} + \mathbf{t}_{i} + \mathbf{u}_{i} + \mathbf{v}_{i} + \mathbf{w}_{i} + \mathbf{x}_{i} + \mathbf{y}_{i} + \mathbf{z}_{i} + \\ \mathbf{A}_{i} + \mathbf{B}_{i} + \mathbf{\Gamma}_{i} + \mathbf{\Delta}_{i} + \mathbf{E}_{i} + \mathbf{Z}_{i} + \mathbf{H}_{i} + \mathbf{\Theta}_{i} + \mathbf{I}_{i} + \mathbf{K}_{i} + \mathbf{\Lambda}_{i} + \mathbf{M}_{i} + \\ \mathbf{N}_{i} + \mathbf{\Xi}_{i} + \mathbf{O}_{i} + \mathbf{\Pi}_{i} + \mathbf{P}_{i} + \mathbf{\Sigma}_{i} + \mathbf{T}_{i} + \mathbf{\Upsilon}_{i} + \mathbf{\Phi}_{i} + \mathbf{X}_{i} + \mathbf{\Psi}_{i} + \mathbf{\Omega}_{i} + \\ \end{split}$$

Math Bold (\mathbf)

$$\begin{aligned} &A_{i} + B_{i} + C_{i} + D_{i} + E_{i} + F_{i} + G_{i} + H_{i} + I_{i} + J_{i} + K_{i} + L_{i} + M_{i} + \\ &N_{i} + O_{i} + P_{i} + Q_{i} + R_{i} + S_{i} + T_{i} + U_{i} + V_{i} + W_{i} + X_{i} + Y_{i} + Z_{i} + \\ &a_{i} + b_{i} + c_{i} + d_{i} + e_{i} + f_{i} + g_{i} + h_{i} + i_{i} + j_{i} + k_{i} + l_{i} + m_{i} + \\ &n_{i} + o_{i} + p_{i} + q_{i} + r_{i} + s_{i} + t_{i} + u_{i} + v_{i} + w_{i} + x_{i} + y_{i} + z_{i} + \\ &A_{i} + B_{i} + \Gamma_{i} + \Delta_{i} + E_{i} + Z_{i} + H_{i} + \Theta_{i} + I_{i} + K_{i} + \Lambda_{i} + M_{i} + \\ &N_{i} + \Xi_{i} + O_{i} + \Pi_{i} + P_{i} + \Sigma_{i} + T_{i} + \Upsilon_{i} + \Phi_{i} + X_{i} + \Psi_{i} + \Omega_{i} + \end{aligned}$$

Math Calligraphic (\mathcal)

$$\begin{split} \mathscr{A}_i + \mathscr{B}_i + \mathscr{C}_i + \mathscr{D}_i + \mathscr{E}_i + \mathscr{F}_i + \mathscr{G}_i + \mathscr{H}_i + \mathscr{J}_i + \mathscr{J}_i + \mathscr{K}_i + \mathscr{L}_i + \mathscr{M}_i + \\ \mathscr{N}_i + \mathscr{O}_i + \mathscr{P}_i + \mathscr{Q}_i + \mathscr{R}_i + \mathscr{S}_i + \mathscr{T}_i + \mathscr{U}_i + \mathscr{V}_i + \mathscr{W}_i + \mathscr{X}_i + \mathscr{Y}_i + \mathscr{Z}_i + \\ \end{split}$$

8.7 Accent Positioning Serif

Default

Math Italic (\mathit)

$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{I} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{\Upsilon} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} +$$

$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{l} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{T} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} +$$

Math Calligraphic (\mathcal)

$$\hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{J} + \hat{J} + \hat{J} + \hat{H} +$$

8.8 Differentials Serif

 $\begin{aligned} \mathrm{d}A + \mathrm{d}B + \mathrm{d}C + \mathrm{d}D + \mathrm{d}E + \mathrm{d}F + \mathrm{d}G + \mathrm{d}H + \mathrm{d}I + \mathrm{d}J + \mathrm{d}K + \mathrm{d}L + \mathrm{d}M + \\ \mathrm{d}N + \mathrm{d}O + \mathrm{d}P + \mathrm{d}Q + \mathrm{d}R + \mathrm{d}S + \mathrm{d}T + \mathrm{d}U + \mathrm{d}V + \mathrm{d}W + \mathrm{d}X + \mathrm{d}Y + \mathrm{d}Z + \\ \mathrm{d}a + \mathrm{d}b + \mathrm{d}c + \mathrm{d}d + \mathrm{d}e + \mathrm{d}f + \mathrm{d}g + \mathrm{d}h + \mathrm{d}i + \mathrm{d}j + \mathrm{d}k + \mathrm{d}l + \mathrm{d}m + \\ \mathrm{d}n + \mathrm{d}o + \mathrm{d}p + \mathrm{d}q + \mathrm{d}r + \mathrm{d}s + \mathrm{d}t + \mathrm{d}u + \mathrm{d}v + \mathrm{d}w + \mathrm{d}x + \mathrm{d}y + \mathrm{d}z + \\ \mathrm{d}A + \mathrm{d}B + \mathrm{d}\Gamma + \mathrm{d}\Delta + \mathrm{d}E + \mathrm{d}Z + \mathrm{d}H + \mathrm{d}\Theta + \mathrm{d}I + \mathrm{d}K + \mathrm{d}\Lambda + \mathrm{d}M + \\ \mathrm{d}N + \mathrm{d}\Xi + \mathrm{d}O + \mathrm{d}\Pi + \mathrm{d}P + \mathrm{d}\Sigma + \mathrm{d}T + \mathrm{d}\Upsilon + \mathrm{d}\Phi + \mathrm{d}X + \mathrm{d}\Psi + \mathrm{d}\Omega + \\ \mathrm{d}\alpha + \mathrm{d}\beta + \mathrm{d}\gamma + \mathrm{d}\delta + \mathrm{d}\epsilon + \mathrm{d}\zeta + \mathrm{d}\eta + \mathrm{d}\theta + \mathrm{d}\iota + \mathrm{d}\kappa + \mathrm{d}\lambda + \mathrm{d}\mu + \\ \mathrm{d}v + \mathrm{d}\xi + \mathrm{d}o + \mathrm{d}\pi + \mathrm{d}\rho + \mathrm{d}\sigma + \mathrm{d}\tau + \mathrm{d}v + \mathrm{d}\phi + \mathrm{d}\chi + \mathrm{d}\psi + \mathrm{d}\omega + \\ \mathrm{d}\epsilon + \mathrm{d}\vartheta + \mathrm{d}\sigma + \mathrm{d}\varrho + \mathrm{d}\varsigma + \mathrm{d}\varphi + \mathrm{d} + \mathrm{d}\Theta + \mathrm{d}I + \mathrm{d}K + \mathrm{d}\Lambda + \mathrm{d}M + \\ \mathrm{d}\Lambda + \mathrm$

$$\begin{split} \partial A + \partial B + \partial C + \partial D + \partial E + \partial F + \partial G + \partial H + \partial I + \partial J + \partial K + \partial L + \partial M + \\ \partial N + \partial O + \partial P + \partial Q + \partial R + \partial S + \partial T + \partial U + \partial V + \partial W + \partial X + \partial Y + \partial Z + \\ \partial a + \partial b + \partial c + \partial d + \partial e + \partial f + \partial g + \partial h + \partial i + \partial j + \partial k + \partial l + \partial m + \\ \partial n + \partial o + \partial P + \partial q + \partial r + \partial S + \partial t + \partial u + \partial v + \partial w + \partial X + \partial y + \partial Z + \\ \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \\ \partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial \Upsilon + \partial \Phi + \partial X + \partial \Psi + \partial \Omega + \\ \partial \alpha + \partial \beta + \partial \gamma + \partial \delta + \partial \epsilon + \partial \zeta + \partial \eta + \partial \theta + \partial \iota + \partial \kappa + \partial \lambda + \partial \mu + \\ \partial v + \partial \xi + \partial o + \partial \pi + \partial \rho + \partial \sigma + \partial \tau + \partial v + \partial \phi + \partial \chi + \partial \psi + \partial \omega + \\ \partial \varepsilon + \partial \vartheta + \partial \varpi + \partial \varrho + \partial \zeta + \partial \varphi + \\ \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \\ \partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial \Upsilon + \partial \Phi + \partial X + \partial \Psi + \partial \Omega + \\ \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \\ \partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial \Upsilon + \partial \Phi + \partial X + \partial \Psi + \partial \Omega + \\ \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial C + \partial T + \partial \Upsilon + \partial \Phi + \partial C +$$

8.9 Slash Kerning Serif

 $A/2+B/2+C/2+D/2+E/2+F/2+G/2+H/2+I/2+J/2+K/2+L/2+M/2+N/2+B/2+C/2+D/2+E/2+F/2+G/2+H/2+I/2+J/2+K/2+L/2+M/2+N/2+O/2+P/2+Q/2+R/2+S/2+T/2+U/2+V/2+W/2+X/2+Y/2+Z/2+A/2+b/2+c/2+d/2+e/2+f/2+g/2+h/2+i/2+j/2+k/2+l/2+m/2+n/2+o/2+p/2+q/2+r/2+s/2+t/2+u/2+v/2+w/2+x/2+y/2+z/2+A/2+B/2+\Gamma/2+\Delta/2+E/2+Z/2+H/2+\Theta/2+I/2+K/2+A/2+M/2+N/2+E/2+O/2+H/2+P/2+E/2+T/2+Y/2+\Phi/2+X/2+\Psi/2+O/2+\Psi/2+O/2+\Psi/2+\$

8.10 Big Operators Serif

$$\sum_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \int_{i=1}^{n} x^{n} \oint_{i=1}^{n} x^{n}$$

$$\bigotimes_{i=1}^{n} x^{n} \bigoplus_{i=1}^{n} x^{n} \bigcap_{i=1}^{n} x^{n} \bigvee_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \bigcap_{i=1}^{n} x^{n}$$

8.11 Radicals Serif

$$\sqrt{x+y} \qquad \sqrt{x^2+y^2} \qquad \sqrt{x_i^2+y_j^2} \qquad \sqrt{\left(\frac{\cos x}{2}\right)} \qquad \sqrt{\left(\frac{\sin x}{2}\right)}$$

$$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}$$

8.12 Over- and Underbraces Serif

$$x \longrightarrow x+y \longrightarrow x^2+y^2 \longrightarrow x_i^2+y_j^2 \longrightarrow x+y \longrightarrow x_i+y_j \longrightarrow x_i^2+y_j^2$$

8.13 Normal and Wide Accents Serif

$$\dot{x}$$
 \ddot{x} \ddot{x} \bar{x} \bar{x}

 \hat{x} \check{x} \check{x} \check{x} \dot{x} \dot{x} \dot{x} \dot{x} \dot{x} \dot{x} \dot{x}

8.14 Long Arrows Serif

8.15 Left and Right Delimiters Serif

$$-(f) - -[f] - -|f| - -[f] - -\langle f \rangle - -\{f\} -$$

Using \left and \right.

$$-(f) - -[f] - -|f| - -|f| - -|f| - -|f| - -|f|$$

$$-)f(--)f[--/f/--|f| - -|f| - -|f|$$

8.16 Big-g-g Delimiters Serif

8.17 Binary Operators Serif

$x \pm y$	\pm	$x \cap y$	\cap	$x \diamond y$	\diamond	$x \oplus y$	\oplus
$x \mp y$	\mp	$x \cup y$	\cup	$x \triangle y$	\bigtriangleup	$x \ominus y$	\ominus
$x \times y$	\times	$x \uplus y$	\uplus	$x \nabla y$	\bigtriangledown	$x \otimes y$	\otimes
$x \div y$	\div	$x\sqcap y$	\sqcap	$x \triangleleft y$	\triangleleft	$x \oslash y$	\oslash
x*y	\ast	$x \sqcup y$	\sqcup	$x \triangleright y$	\triangleright	$x \odot y$	\odot
$x \star y$	\star	$x \lor y$	\vee	$x \triangleleft y$	\lhd	$x \bigcirc y$	\bigcirc
$x \circ y$	\circ	$x \wedge y$	\wedge	$x \triangleright y$	\rhd	$x \dagger y$	\dagger
$x \bullet y$	\bullet	$x \setminus y$	\setminus	$x \triangleleft y$	\unlhd	$x \ddagger y$	\ddagger
$x \cdot y$	\cdot	$x \wr y$	\wr	$x \trianglerighteq y$	\unrhd	x§ y	\S
x+y	+	x-y	_	$x \coprod y$	\aggreen amalg	$x^{\P}y$	\P

8.18 Relations Serif

```
x \le y
          \leq
                                                            x \equiv y
                                                                       \equiv
                                                                                     x \models y
                                                                                               \models
                              x \ge y
                                        \geq
                                                                       \sim
x \prec y
          \prec
                              x \succ y
                                        \succ
                                                            x \sim y
                                                                                     x \perp y
                                                                                               \perp
x \leq y
          \preceq
                              x \succeq y
                                        \succeq
                                                            x \simeq y
                                                                       \simeq
                                                                                     x \mid y
                                                                                               \mid
x \ll y
          \11
                                                                       \asymp
                                                                                     x \parallel y
                                                                                               \parallel
                              x \gg y
                                        \gg
                                                            x \simeq y
          \subset
                                        \supset
                                                                       \approx
                                                                                               \bowtie
x \subset y
                              x \supset y
                                                            x \approx y
                                                                                     x \bowtie y
x \subseteq y
          \subseteq
                              x \supseteq y
                                        \supseteq
                                                            x \cong y
                                                                       \cong
                                                                                               \Join
                                                                                     x \bowtie y
                                                                                               \smile
x \sqsubset y
          \sqsubset
                              x \supset y
                                        \sqsupset
                                                            x \neq y
                                                                       \neq
                                                                                     x \smile y
                                                                                               \frown
x \sqsubseteq y
          \sqsubseteq
                              x \supseteq y
                                        \sqsupseteq
                                                            x \doteq y
                                                                       \doteq
                                                                                     x - y
x \in y
          \in
                                        \ni
                                                                       \propto
                              x \ni y
                                                            x \propto y
                                                                                     x = y
                                        \dashv
x \vdash y
          \vdash
                              x \dashv y
                                                            x < y
                                                                                     x > y
x:y
```

8.19 Punctuation Serif

```
x,y , x;y ; x:y \colon x.y \ldotp x\cdot y \cdotp
```

8.20 Arrows Serif

$x \leftarrow y$	\leftarrow	$x \leftarrow y$	$\label{longleftarrow}$	$x \uparrow y$	\uparrow
$x \leftarrow y$	\Leftarrow	$x \leftarrow y$	\Longleftarrow	$x \uparrow y$	\Uparrow
$x \rightarrow y$	\rightarrow	$x \longrightarrow y$	$\label{longright} \$	$x \downarrow y$	\downarrow
$x \Rightarrow y$	\Rightarrow	$x \Longrightarrow y$	$ackslash ext{Longrightarrow}$	$x \downarrow y$	\Downarrow
$x \longleftrightarrow y$	$\$ leftrightarrow	$x \longleftrightarrow y$	\longleftrightarrow	$x \uparrow y$	\updownarrow
$x \Leftrightarrow y$	$ackslash ext{Leftrightarrow}$	$x \longleftrightarrow y$	\Longleftrightarrow	$x \updownarrow y$	\Updownarrow
$x \mapsto y$	\mapsto	$x \longmapsto y$	$\label{longmapsto} \$	$x \nearrow y$	\nearrow
$x \leftarrow y$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$x \hookrightarrow y$	$\$ hookrightarrow	$x \searrow y$	\searrow
$x \leftarrow y$	$\$ leftharpoonup	$x \rightarrow y$	\rightharpoonup	$x \swarrow y$	\swarrow
$x \leftarrow y$	$\$ leftharpoondown	$x \rightarrow y$	$\$ rightharpoondown	$x \setminus y$	\nwarrow
$x \rightleftharpoons y$	\rightleftharpoons	$x \leadsto y$	\leadsto		

8.21 Miscellaneous Symbols Serif

```
\ldots
                     x \cdots y
                               \cdots
                                                        \vdots
                                                                          x \cdot y
                                                                                   \ddots
x...y
                                                x:y
хХу
         \aleph
                               \prime
                                                x \forall y
                                                        \forall
                                                                                   \infty
                     x/y
                                                                          x \infty y
хħу
         \hbar
                     x\emptyset y
                               \emptyset
                                                x\exists y
                                                        \exists
                                                                          x \square y
                                                                                   \mathbb{Z}
         \imath
                               \nabla
                                                                                   \Diamond
хıу
                     x\nabla y
                                                x\neg y
                                                        \neg
                                                                          x \Diamond y
         \jmath
                     x\sqrt{y}
                               \surd
                                                xby
                                                        \flat
                                                                          x \triangle y
                                                                                   \triangle
хју
         \ell
                               \top
                                                        \natural
                                                                          x♣y
                                                                                   \clubsuit
x\ell y
                     x T y
                                                x 
atural y
         \wp
                     x \perp y
                               \bot
                                                        \sharp
                                                                          x \diamondsuit y
                                                                                   \diamondsuit
хюу
                                                x \sharp y
         \Re
                     x||y
                                                        \backslash
                                                                          x \nabla y
                                                                                   \heartsuit
x\Re y
                               1/
                                                x \setminus y
x\Im y
         \Im
                     x \angle y
                               \angle
                                                x\partial y
                                                        \partial
                                                                          x♠y
                                                                                    \spadesuit
                                                                                    !
х℧у
         \mho
                                                x|y
                                                                          x!y
                     x.y
```

8.22 Variable-Sized Operators Serif

```
\sum
                             \bigcap
                                           x \odot y
                                                    \bigodot
x \prod y
                             \bigcup
                                           x \otimes y
                                                    \bigotimes
        \prod
x \coprod y
        \coprod
                    x \mid y
                            \bigsqcup x \oplus y
                                                    \bigoplus
x \mid y
        \int
                    x \bigvee y
                            \bigvee
                                           x+y
                                                    \biguplus
                            \bigwedge
x \phi y
        \oint
```

8.23 Log-Like Operators Serif

```
x \operatorname{arccos} y = x \operatorname{cos} y
                           x \csc y
                                       x \exp y
                                                    xkery
                                                                  x \lim \sup y
                                                                                  x \min y
                                                                                              x \sinh y
x arcsin y
             x coshy
                           x \deg y
                                       x \gcd y
                                                    x \log y
                                                                   x \ln y
                                                                                  xPry
                                                                                              x \sup y
                           x \det y
                                       x hom y
                                                    x \lim y
                                                                   x \log y
x arctan y
              x \cot y
                                                                                  x \sec y
                                                                                              xtany
x argy
              x coth y
                           x \dim y = x \inf y
                                                    x \lim \inf y
                                                                  x \max y
                                                                                  x \sin y
                                                                                              x tanh y
```

8.24 Delimiters Serif

```
x(y)
                      x)y
                                           x \uparrow y
                                                     \uparrow
                                                                           x \uparrow y
                                                                                     \Uparrow
x[y]
       x]y
                                           x \downarrow y
                                                     \downarrow
                                                                           x \downarrow y
                                                                                     \Downarrow
x{y}
       \{
                      x}y
                             \}
                                           x \uparrow y
                                                     \updownarrow
                                                                           x \updownarrow y
                                                                                     \Updownarrow
                                                     \lceil
                                                                                     \rceil
x \mid y
       \lfloor
                     x \rfloor y
                             \rfloor
                                           x[y]
                                                                           xy
       \langle
                     x\rangle y
                             \rangle x/y
                                                                           x \setminus y
                                                                                     \backslash
x\langle y
                      x||y
x|y
                             \backslash I
```

8.25 Large Delimiters Serif

```
\rmoustache \rightarrowvert | \rmoustache \rightarrowvert | \
```

8.26 Math Mode Accents Serif

```
\hat{a} \hat{a} \hat{a} \cdot{a} \hat{a} \bar{a} \hat{a} \dot{a} \hat{a} \breve{a} \hat{a} \check{a} \hat{a} \grave{a} \hat{a} \vec{a} \hat{a} \ddot{a} \hat{a} \tilde{a}
```

8.27 Miscellaneous Constructions Serif

```
abc
       \widetilde{abc}
                               abc
                                      \widehat{abc}
       \overleftarrow{abc}
àbc
                              abć
                                      \overrightarrow{abc}
abc
       \overline{abc}
                               abc
                                      \underline{abc}
abc
       \overbrace{abc}
                                      \underbrace{abc}
                               abc .
                               √abc
\sqrt{abc}
       \sqrt{abc}
                                     \sqrt[n]{abc}
                               abc
xyz
f
       f,
                                      \frac{abc}{xyz}
```

8.28 AMS Delimiters Serif

 $x^{T}y$ \ullcorner $x^{T}y$ \urlcorner $x \perp y$ \llcorner $x \perp y$ \llcorner

8.29 AMS Arrows Serif

```
x \longrightarrow y
           \dashrightarrow
                                             x ←-- y
                                                        \dashleftarrow
x = y
           \leftleftarrows
                                             x \hookrightarrow y
                                                        \leftrightarrows
x \Leftarrow y
           \Lleftarrow
                                                        \twoheadleftarrow
                                             x \leftarrow y
x \leftarrow y
           \leftarrowtail
                                             x \notin y
                                                        \looparrowleft
x \leftrightharpoons y
           \leftrightharpoons
                                                        \curvearrowleft
                                             x \cap y
x \circlearrowleft y
           \circlearrowleft
                                             x \uparrow y
                                                        \Lsh
                                                         \upharpoonleft
x \uparrow \uparrow y
           \upuparrows
                                             x \mid y
           \downharpoonleft
                                                         \multimap
x \downarrow y
                                             x \rightarrow y
           \leftrightsquigarrow
                                            x \rightrightarrows y
                                                        \rightrightarrows
x \leftrightarrow y
x \rightleftharpoons y
           \rightleftarrows
                                                        \rightrightarrows
                                             x \rightrightarrows y
           \rightleftarrows
                                                        \twoheadrightarrow
x \rightleftharpoons y
                                             x \rightarrow y
           \rightarrowtail
                                                        \looparrowright
x \mapsto y
                                             x \Rightarrow y
           \rightleftharpoons
                                                        \curvearrowright
x \rightleftharpoons y
                                             x \cap y
           \circlearrowright
                                             x 
ightharpoonup y
                                                        \Rsh
x \circlearrowleft y
           \downdownarrows
                                                         \upharpoonright
x \downarrow \downarrow y
                                             x \mid y
x \mid y
           \downharpoonright
                                             x \rightsquigarrow y
                                                        \rightsquigarrow
```

8.30 AMS Negated Arrows Serif

```
x \leftrightarrow y \nleftarrow x \nrightarrow y \nrightarrow x \nleftrightarrow y \nRightarrow x \nleftrightarrow y \nleftrightarrow x \nleftrightarrow y \nLeftrightarrow
```

8.31 AMS Greek Serif

xfy \digamma xxy \varkappa

8.32 AMS Hebrew Serif

 $x \times y = x \cdot y = x \cdot$

8.33 AMS Miscellaneous Serif

хћу	\hbar	хћу	\hslash
$x \triangle y$	\vartriangle	$x \nabla y$	\triangledown
$x\Box y$	\square	$x \Diamond y$	\lozenge
x(S) y	\circledS	x∠y	\angle
x≰y	\measuredangle	x∄y	\nexists
х℧у	\mho	$x \pm y$	$\backslash \texttt{Finv}^u$
x $\ni y$	$\backslash \mathtt{Game}^u$	xk y	\Bbbk ^u
x y	\backprime	хØу	\varnothing
$x \blacktriangle y$	\blacktriangle	$x \nabla y$	\blacktriangledown
<i>x</i> ■ <i>y</i>	\blacksquare	<i>x</i> ♦ <i>y</i>	\blacklozenge
$x \bigstar y$	\bigstar	x∢y	\sphericalangle
xC y	\complement	хðу	\eth
x/y	$ackslash exttt{diagup}^u$	$x \setminus y$	\diagdown^u

^u Not defined in amssymb.sty, define using the \newsymbol command.

8.34 AMS Binary Operators Serif

x + y	\dotplus	$x \setminus y$	\smallsetminus
$x \cap y$	\Cap	$x \cup y$	\Cup
$x \overline{\wedge} y$	\barwedge	$x \vee y$	\veebar
$x \overline{\wedge} y$	\doublebarwedge	$x \boxminus y$	\boxminus
$x \boxtimes y$	\boxtimes	$x \square y$	\boxdot
$x \boxplus y$	\boxplus	x * y	\divideontimes
$x \ltimes y$	\ltimes	$x \rtimes y$	\rtimes
$x \setminus y$	\leftthreetimes	$x \angle y$	\rightthreetimes
$x \downarrow y$	\curlywedge	$x \land y$	\curlyvee
$x \ominus y$	\circleddash	$x \otimes y$	\circledast
$x \odot y$	\circledcirc	$x \cdot y$	\centerdot
$x \intercal y$	\intercal		

8.35 AMS Relations Serif

- $x \leq y$ \leqslant
- $x \lesssim y$ \lesssim
- $x \ge y$ \approxeq
- $x \ll y \setminus 111$
- $x \leq y$ \lesseqgtr
- x = y \doteqdot
- x = y \fallingdotseq
- x = y \backsimeq
- $x \in y$ \Subset
- $x \leq y$ \preccurlyeq
- $x \lesssim y$ \precsim
- $x \triangleleft y$ \vartriangleleft
- $x \models y \quad \forall x$
- $x \smile y$ \smallsmile
- x = y \bumpeq
- $x \ge y \setminus \text{geqq}$
- $x \geqslant y$ \eqslantgtr
- $x \gtrsim y$ \gtrapprox
- $x \gg y \setminus ggg$
- $x \geq y$ \gtreqless
- x = y \eqcirc
- $x \triangleq y$ \triangleq
- $x \approx y$ \thickapprox
- $x \ni y$ \Supset
- $x \succcurlyeq y$ \succcurlyeq
- $x \gtrsim y$ \succsim
- $x \triangleright y$ \vartriangleright
- $x \Vdash y \quad \forall x \mid \forall y$
- $x \parallel y$ \shortparallel
- $x \pitchfork y$ \pitchfork
- $x \triangleleft y$ \blacktriangleleft
- $x \ni y$ \backepsilon
- x:y \because

8.36 AMS Negated Relations Serif

$x \not< y$	\nless	$x \not \leq y$	\nleq
$x \not \leq y$	\nleqslant	$x \not \leq y$	\nleqq
$x \leq y$	\lneq		\lneqq
$x \leq y$	\lvertneqq		\label{lnsim}
$x \lessapprox y$	$\label{lnapprox}$	$x \not\prec y$	\nprec
$x \not \perp y$	\npreceq	$x \not\supset y$	\precnsim
$x \not\gtrsim y$	\precnapprox	<i>x</i> ~ <i>y</i>	\nsim
	\nshortmid	$x \nmid y$	\nmid
	\nvdash	$x \not\models y$	\nvDash
$x \not = y$	\ntriangleleft	$x \not \equiv y$	\n
$x \not\subseteq y$	\nsubseteq	$x \subsetneq y$	\subsetneq
$x \not\subseteq y$	\varsubsetneq	$x \subsetneq y$	\subsetneqq
$x \not\subseteq y$	\varsubsetneqq	$x \not> y$	\ngtr
$x \not\geq y$	\ngeq	$x \not\geq y$	\ngeqslant
$x \not \geq y$	\ngeqq		\gneq
$x \ngeq y$	\gneqq	$x \geqq y$	\gvertneqq
$x \gtrsim y$	\gnsim	$x \gtrapprox y$	\gnapprox
$x \not\succ y$	\nsucc		\nsucceq
$x \not \sqsubseteq y$	\nsucceqq	$x \not\gtrsim y$	\succnsim
<i>x</i>	$\scalebox{succnapprox}$	$x \not\cong y$	\ncong
хиу	\nshortparallel	$x \not\parallel y$	nparallel
$x \not\models y$	\nvDash	$x \not\Vdash y$	\nVDash
$x \not\triangleright y$	\ntriangleright	$x \not\trianglerighteq y$	\ntrianglerighteq
$x \not\supseteq y$	nsupseteq	$x \not\supseteq y$	\nsupseteqq
	\supsetneq	$x \ni y$	$\vert var supset neq$
$x \supseteq y$	\supsetneqq	$x \not\supseteq y$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

9 Serif Bold

9.1 Overview Serif Bold

Default: $aab\beta G\Gamma P\Pi \alpha\beta$ mathnormal: $a\alpha b\beta G\Gamma P\Pi$ mathrm: $a\alpha \alpha b\beta G\Gamma P\Pi$ mathup: $a\alpha \alpha b\beta G\Gamma P\Pi$ mathit: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$ mathbf: $a\alpha b\beta G\Gamma P\Pi$

Default: $a\alpha b\beta G\Gamma P\Pi$ mathnormal: $a\alpha b\beta G\Gamma P\Pi$ mathrm: $a\alpha b\beta G\Gamma P\Pi$ mathup: $a\alpha b\beta G\Gamma P\Pi$ mathit: $a\alpha b\beta G\Gamma P\Pi$

mathbf: ααbβGΓΡΠ mathbfit: ααbβGΓΡΠ

Default: $\alpha\alpha b\beta G\Gamma P\Pi$ mathnormal: $\alpha\alpha b\beta G\Gamma P\Pi$ mathrm: $\alpha\alpha b\beta G\Gamma P\Pi$ mathup: $\alpha\alpha b\beta G\Gamma P\Pi$ mathit: $\alpha\alpha b\beta G\Gamma P\Pi$ mathbf: $\alpha\alpha b\beta G\Gamma P\Pi$ mathbf: $\alpha\alpha b\beta G\Gamma P\Pi$

9.2 Formulas Serif Bold

α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, ς, τ, ν, φ, χ, ψ, ω, ε, Α, Β, Γ, Δ, Ε, Ζ, Η, Θ, Ι, Κ, Λ, Μ, Ν, Ξ, Ο, Π, Ρ, Σ, Τ, Υ, Φ, Χ, Ψ, Ω, Ε, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, ς, τ, ν, φ, χ, ψ, ω, ε, Α, Β, Γ, Δ, Ε, Ζ, Η, Θ, Ι, Κ, Λ, Μ, Ν, Ξ, Ο, Π, Ρ, Σ, Τ, Υ, Φ, Χ, Ψ, Ω, Ε, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, ς, τ, υ, φ, χ, ψ, ω, ε, Α, Β, Γ, Δ, Ε, Ζ, Η, Θ, Ι, Κ, Λ, Μ, Ν, Ξ, Ο, Π, Ρ, Σ, Τ, Υ, Φ, Χ, Ψ, Ω, Ε, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, ς, τ, υ, φ, χ, ψ, ω, ε, Α, Β, Γ, Δ, Ε, Ζ, Η, Θ, Ι, Κ, Λ, Μ, Ν, Ξ, Ο, Π, Ρ, Σ, Τ, Υ, Φ, Χ, Ψ, Ω, Ε, αα > 0, βb + (3 × 27), ΓG = 7 < 8, λ αα > 0, βb + (3 × 27), ΓG = 7 < 8, λ s ± 3γ + y - 1 = 4 × 7

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

 $s \pm 3\gamma + y - 1 \times 7$

$$\sum_{i=0}^{\infty} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x = \left(\frac{27}{2}\right)$$

 $s \pm 3y + y - 1 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathbf{d}x = \left(\frac{27}{2}\right)$$

$$s \pm 3\gamma + y - 1 \times 7$$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) dx = \left(\frac{27}{2}\right)$$

9.3 Math Alphabets Serif Bold

Default

 $\begin{aligned} &0,1,2,3,4,5,6,7,8,9,\\ &A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,\\ &a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,\\ &A,B,\Gamma,\Delta,E,Z,H,\Theta,I,K,\Lambda,M,N,\Xi,O,\Pi,P,\Sigma,T,\Upsilon,\Phi,X,\Psi,\Omega,\\ &\alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,\nu,\xi,o,\pi,\rho,\sigma,\tau,\upsilon,\phi,\chi,\psi,\omega,\epsilon,\vartheta,\varpi,\varrho,\varsigma,\varphi, \end{aligned}$

Math Normal (\mathnormal)

 $\begin{array}{l} 0,1,2,3,4,5,6,7,8,9, \\ A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z, \\ a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z, \\ A,B,\Gamma,\Delta,E,Z,H,\Theta,I,K,\Lambda,M,N,\Xi,O,\Pi,P,\Sigma,T,\Upsilon,\Phi,X,\Psi,\Omega, \\ \alpha,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,\nu,\xi,o,\pi,\rho,\sigma,\tau,v,\phi,\chi,\psi,\omega,\epsilon,\vartheta,\varpi,\varrho,\varsigma,\varphi, \end{array}$

Math Italic (\mathit)

0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z, a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z, $A,B,`,`,E,Z,H,`,I,K,`,M,N,`,O,`,P,`,T,`,`,X,^-,`,$ $a,\beta,\gamma,\delta,\epsilon,\zeta,\eta,\theta,\iota,\kappa,\lambda,\mu,\nu,\xi,o,\pi,\rho,\sigma,\tau,\nu,\phi,\chi,\psi,\omega,\epsilon,\vartheta,\varpi,\varrho,\varsigma,\varphi,$

Math Roman (\mathrm)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ, Δ, E, Z, H, Θ, I, K, Λ, M, N, Ξ, O, Π, P, Σ, T, Υ, Φ, X, Ψ, Ω, $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, v, \phi, \chi, \psi, \omega, \epsilon, \vartheta, \varpi, \varrho, \varsigma, \varphi,$

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,

 $A, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, O, \Pi, P, \Sigma, T, \Upsilon, \Phi, X, \Psi, \Omega,$

 $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, v, \phi, \chi, \psi, \omega, \epsilon, \vartheta, \varpi, \varrho, \zeta, \varphi,$

Caligraphic (\mathcal)

 $\mathscr{A}, \mathscr{B}, \mathscr{C}, \mathfrak{D}, \mathscr{E}, \mathscr{F}, \mathscr{G}, \mathscr{H}, \mathscr{I}, \mathscr{J}, \mathscr{K}, \mathscr{L}, \mathscr{M}, \mathscr{N}, 0, \mathscr{P}, 2, \mathscr{R}, \mathscr{S}, \mathscr{T}, \mathscr{U}, \mathscr{V}, \mathscr{W}, \mathscr{X}, \mathscr{Y}, \mathscr{Z},$

Script (\mathscr)

 $\mathscr{A}, \mathscr{B}, \mathscr{C}, \mathfrak{D}, \mathscr{E}, \mathscr{F}, \mathscr{G}, \mathscr{H}, \mathscr{I}, \mathscr{J}, \mathscr{K}, \mathscr{L}, \mathscr{M}, \mathscr{N}, \mathscr{O}, \mathscr{P}, \mathscr{Q}, \mathscr{R}, \mathscr{S}, \mathscr{T}, \mathscr{U}, \mathscr{V}, \mathscr{W}, \mathscr{X}, \mathscr{Y}, \mathscr{Z},$

Fraktur (\mathfrak)

Blackboard Bold (\mathbb)

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

9.4 Character Sidebearings Serif Bold

Default

$$|A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |I| + |m| + |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + |N| + |E| + |O| + |\Pi| + |P| + |E| + |T| + |T| + |\Phi| + |X| + |\Psi| + |\Omega| + |\alpha| + |\beta| + |\gamma| + |\delta| + |\epsilon| + |\zeta| + |\eta| + |\theta| + |\iota| + |\kappa| + |\lambda| + |\mu| + |v| + |\xi| + |o| + |\pi| + |\rho| + |\sigma| + |\tau| + |v| + |\phi| + |\chi| + |\psi| + |\omega| + |\epsilon| + |\partial| + |\varphi| + |\zeta| + |\varphi| + |\varphi|$$

$$\begin{split} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |I| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + \\ |N| + |\Xi| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |\Upsilon| + |\Phi| + |X| + |\Psi| + |\Omega| + \end{split}$$

$$\begin{split} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |T| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + \\ |N| + |\Xi| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |\Upsilon| + |\Phi| + |X| + |\Psi| + |\Omega| + \\ \end{split}$$

Math Calligraphic (\mathcal)

$$\begin{split} |\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + |\mathcal{D}| + |\mathcal{E}| + |\mathcal{F}| + |\mathcal{G}| + |\mathcal{H}| + |\mathcal{I}| + |\mathcal{I}| + |\mathcal{H}| +$$

9.5 Superscript Positioning Serif Bold

Default

$$\begin{split} A^2 + B^2 + C^2 + D^2 + E^2 + F^2 + G^2 + H^2 + I^2 + J^2 + K^2 + L^2 + M^2 + \\ N^2 + O^2 + P^2 + Q^2 + R^2 + S^2 + T^2 + U^2 + V^2 + W^2 + X^2 + Y^2 + Z^2 + \\ a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2 + j^2 + k^2 + I^2 + m^2 + \\ n^2 + o^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2 + v^2 + w^2 + x^2 + y^2 + z^2 + \\ A^2 + B^2 + \Gamma^2 + \Delta^2 + E^2 + Z^2 + H^2 + \Theta^2 + I^2 + K^2 + \Lambda^2 + M^2 + \\ N^2 + \Xi^2 + O^2 + \Pi^2 + P^2 + \Sigma^2 + T^2 + \Upsilon^2 + \Phi^2 + X^2 + \Psi^2 + \Omega^2 + \\ \alpha^2 + \beta^2 + \gamma^2 + \delta^2 + \epsilon^2 + \zeta^2 + \eta^2 + \theta^2 + \iota^2 + \kappa^2 + \lambda^2 + \mu^2 + \\ v^2 + \xi^2 + o^2 + \pi^2 + \rho^2 + \sigma^2 + \tau^2 + v^2 + \phi^2 + \chi^2 + \psi^2 + \omega^2 + \\ \varepsilon^2 + \vartheta^2 + \varpi^2 + \varrho^2 + \zeta^2 + \varphi^2 + \end{split}$$

$$\begin{split} A^2 + B^2 + C^2 + D^2 + E^2 + F^2 + G^2 + H^2 + I^2 + J^2 + K^2 + L^2 + M^2 + \\ N^2 + O^2 + P^2 + Q^2 + R^2 + S^2 + T^2 + U^2 + V^2 + W^2 + X^2 + Y^2 + Z^2 + \\ a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2 + j^2 + k^2 + I^2 + m^2 + \\ n^2 + o^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2 + v^2 + w^2 + x^2 + y^2 + z^2 + \\ A^2 + B^2 + \Gamma^2 + \Delta^2 + E^2 + Z^2 + H^2 + \Theta^2 + I^2 + K^2 + \Lambda^2 + M^2 + \\ N^2 + \Xi^2 + O^2 + \Pi^2 + P^2 + \Sigma^2 + T^2 + \Upsilon^2 + \Phi^2 + X^2 + \Psi^2 + \Omega^2 + \Phi^2 + X^2 + \Phi^2 + \Phi^2$$

$$\begin{split} A^2 + B^2 + C^2 + D^2 + E^2 + F^2 + G^2 + H^2 + I^2 + J^2 + K^2 + L^2 + M^2 + \\ N^2 + O^2 + P^2 + Q^2 + R^2 + S^2 + T^2 + U^2 + V^2 + W^2 + X^2 + Y^2 + Z^2 + \\ a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2 + j^2 + k^2 + l^2 + m^2 + \\ n^2 + o^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2 + v^2 + w^2 + x^2 + y^2 + z^2 + \\ A^2 + B^2 + \Gamma^2 + \Delta^2 + E^2 + Z^2 + H^2 + \Theta^2 + I^2 + K^2 + \Lambda^2 + M^2 + \\ N^2 + \Xi^2 + O^2 + \Pi^2 + P^2 + \Sigma^2 + T^2 + \Upsilon^2 + \Phi^2 + X^2 + \Psi^2 + \Omega^2 + \Delta^2 + \Delta^2$$

Math Calligraphic (\mathcal)

$$\mathcal{A}^{2} + \mathcal{B}^{2} + \mathcal{C}^{2} + \mathcal{D}^{2} + \mathcal{E}^{2} + \mathcal{F}^{2} + \mathcal{H}^{2} + \mathcal{H}^{2}$$

9.6 Subscript Positioning Serif Bold

Default

$$\begin{split} A_i + B_i + C_i + D_i + E_i + F_i + G_i + H_i + I_i + J_i + K_i + L_i + M_i + \\ N_i + O_i + P_i + Q_i + R_i + S_i + T_i + U_i + V_i + W_i + X_i + Y_i + Z_i + \\ a_i + b_i + c_i + d_i + e_i + f_i + g_i + h_i + i_i + j_i + k_i + l_i + m_i + \\ n_i + o_i + p_i + q_i + r_i + s_i + t_i + u_i + v_i + w_i + x_i + y_i + z_i + \\ A_i + B_i + \Gamma_i + \Delta_i + E_i + Z_i + H_i + \Theta_i + I_i + K_i + \Lambda_i + M_i + \\ N_i + \Xi_i + O_i + \Pi_i + P_i + \Sigma_i + T_i + \Upsilon_i + \Phi_i + X_i + \Psi_i + \Omega_i + \\ \alpha_i + \beta_i + \gamma_i + \delta_i + \epsilon_i + \zeta_i + \eta_i + \theta_i + \iota_i + \kappa_i + \lambda_i + \mu_i + \\ v_i + \xi_i + o_i + \pi_i + \rho_i + \sigma_i + \tau_i + v_i + \phi_i + \chi_i + \psi_i + \omega_i + \\ \varepsilon_i + \vartheta_i + \varpi_i + \varrho_i + \zeta_i + \varphi_i + \end{split}$$

$$\begin{split} A_i + B_i + C_i + D_i + E_i + F_i + G_i + H_i + I_i + J_i + K_i + L_i + M_i + \\ N_i + O_i + P_i + Q_i + R_i + S_i + T_i + U_i + V_i + W_i + X_i + Y_i + Z_i + \\ a_i + b_i + c_i + d_i + e_i + f_i + g_i + h_i + i_i + j_i + k_i + l_i + m_i + \\ n_i + o_i + p_i + q_i + r_i + s_i + t_i + u_i + v_i + w_i + x_i + y_i + z_i + \\ A_i + B_i + \Gamma_i + \Delta_i + E_i + Z_i + H_i + \Theta_i + I_i + K_i + \Lambda_i + M_i + \\ N_i + \Xi_i + O_i + \Pi_i + P_i + \Sigma_i + T_i + \Upsilon_i + \Phi_i + X_i + \Psi_i + \Omega_i + \\ \end{split}$$

$$\begin{split} A_i + B_i + C_i + D_i + E_i + F_i + G_i + H_i + I_i + J_i + K_i + L_i + M_i + \\ N_i + O_i + P_i + Q_i + R_i + S_i + T_i + U_i + V_i + W_i + X_i + Y_i + Z_i + \\ a_i + b_i + c_i + d_i + e_i + f_i + g_i + h_i + i_i + j_i + k_i + l_i + m_i + \\ n_i + o_i + p_i + q_i + r_i + s_i + t_i + u_i + v_i + w_i + x_i + y_i + z_i + \\ A_i + B_i + \Gamma_i + \Delta_i + E_i + Z_i + H_i + \Theta_i + I_i + K_i + \Lambda_i + M_i + \\ N_i + \Xi_i + O_i + \Pi_i + P_i + \Sigma_i + T_i + \Upsilon_i + \Phi_i + X_i + \Psi_i + \Omega_i + \end{split}$$

Math Calligraphic (\mathcal)

$$\mathcal{A}_i + \mathcal{B}_i + \mathcal{C}_i + \mathcal{D}_i + \mathcal{E}_i + \mathcal{F}_i + \mathcal{G}_i + \mathcal{H}_i + \mathcal{J}_i + \mathcal{J}_i + \mathcal{H}_i + \mathcal{L}_i + \mathcal{M}_i + \mathcal{N}_i + \mathcal{O}_i + \mathcal{P}_i + \mathcal{Q}_i + \mathcal{R}_i + \mathcal{F}_i + \mathcal{T}_i + \mathcal{V}_i + \mathcal{V}_i + \mathcal{W}_i + \mathcal{X}_i + \mathcal{Y}_i + \mathcal{Z}_i + \mathcal$$

9.7 Accent Positioning Serif Bold

Default

Math Italic (\mathit)

$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{I} + \hat{m} + \hat{\ell} + \hat{\wp} + \hat{i} + \hat{J} + \hat{i} \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{r} + \hat{r} + \hat{E} + \hat{Z} + \hat{H} + \hat{r} + \hat{I} + \hat{K} + \hat{r} + \hat{M} + \\ \hat{N} + \hat{m} + \hat{O} + \hat{r} + \hat{P} + \hat{r} + \hat{T} + \hat{r} + \hat{r} + \hat{X} + \hat{r} + \hat{r} + \\ \hat{a} + \hat{\beta} + \hat{r} + \hat{\delta} + \hat{\epsilon} + \hat{\xi} + \hat{r} + \hat{\theta} + \hat{\theta} + \hat{t} + \hat{r} + \hat{\lambda} + \hat{\mu} + \\ \hat{v} + \hat{\xi} + \hat{o} + \hat{\pi} + \hat{\rho} + \hat{\sigma} + \hat{r} + \hat{r} + \hat{v} + \hat{\phi} + \hat{\chi} + \hat{\psi} + \hat{\omega} + \\ \hat{\epsilon} + \hat{\vartheta} + \hat{\sigma} + \hat{\varrho} + \hat{\varsigma} + \hat{\varsigma} + \hat{\varphi} + \end{aligned}$$

Math Roman (\mathrm)

 $\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{I} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{\Upsilon} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} +$

Math Bold (\mathbf)

 $\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{l} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{T} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} +$

Math Calligraphic (\mathcal)

$$\hat{A} + \hat{\mathcal{B}} + \hat{\mathcal{C}} + \hat{\mathcal{D}} + \hat{\mathcal{E}} + \hat{\mathcal{F}} + \hat{\mathcal{G}} + \hat{\mathcal{H}} + \hat{\mathcal{J}} + \hat{\mathcal{J}} + \hat{\mathcal{L}} + \hat{\mathcal{L}} + \hat{\mathcal{M}} + \hat{\mathcal{L}} + \hat{\mathcal{H}} + \hat{\mathcal{L}} + \hat{\mathcal{H}} + \hat{\mathcal{L}} + \hat{\mathcal{L}}$$

9.8 Differentials Serif Bold

$$\begin{split} \partial A + \partial B + \partial C + \partial D + \partial E + \partial F + \partial G + \partial H + \partial I + \partial J + \partial K + \partial L + \partial M + \\ \partial N + \partial O + \partial P + \partial Q + \partial R + \partial S + \partial T + \partial U + \partial V + \partial W + \partial X + \partial Y + \partial Z + \\ \partial a + \partial b + \partial c + \partial d + \partial e + \partial f + \partial g + \partial h + \partial i + \partial j + \partial k + \partial I + \partial m + \\ \partial n + \partial o + \partial p + \partial q + \partial r + \partial s + \partial t + \partial u + \partial v + \partial w + \partial x + \partial y + \partial z + \\ \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \\ \partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial \Upsilon + \partial \Phi + \partial X + \partial \Psi + \partial \Omega + \\ \partial \alpha + \partial \beta + \partial \gamma + \partial \delta + \partial \epsilon + \partial \zeta + \partial \eta + \partial \theta + \partial \iota + \partial \kappa + \partial \lambda + \partial \mu + \\ \partial \nu + \partial \xi + \partial o + \partial \pi + \partial \rho + \partial \sigma + \partial \tau + \partial v + \partial \phi + \partial \chi + \partial \psi + \partial \omega + \\ \partial \epsilon + \partial \theta + \partial \sigma + \partial \rho + \partial \zeta + \partial \psi + \partial \psi + \partial \lambda + \partial \mu + \\ \partial \Lambda + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \\ \partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial \Upsilon + \partial \Phi + \partial X + \partial \Psi + \partial \Omega + \partial \Lambda + \partial M + \\ \partial \Lambda + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \\ \partial \Lambda + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \\ \partial \Lambda + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \\ \partial \Lambda + \partial A + \partial A$$

9.9 Slash Kerning Serif Bold

 $A/2+B/2+C/2+D/2+E/2+F/2+G/2+H/2+I/2+J/2+K/2+L/2+M/2+N/2+D/2+P/2+Q/2+R/2+F/2+G/2+H/2+I/2+J/2+K/2+L/2+M/2+N/2+O/2+P/2+Q/2+R/2+S/2+T/2+U/2+V/2+W/2+X/2+Y/2+Z/2+A/2+b/2+c/2+d/2+e/2+f/2+g/2+h/2+i/2+j/2+k/2+l/2+m/2+n/2+o/2+p/2+q/2+r/2+s/2+t/2+u/2+v/2+w/2+x/2+y/2+z/2+A/2+B/2+F/2+A/2+E/2+Z/2+H/2+O/2+I/2+K/2+A/2+M/2+N/2+E/2+D/2+F/2+Z/2+H/2+O/2+I/2+K/2+A/2+M/2+N/2+E/2+O/2+H/2+P/2+E/2+T/2+T/2+P/2+X/2+\Psi/2+$

9.10 Big Operators Serif Bold

$$\sum_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \int_{i=1}^{n} x^{n} \oint_{i=1}^{n} x^{n}$$

$$\bigotimes_{i=1}^{n} x^{n} \bigoplus_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \bigvee_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \bigcap_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n}$$

9.11 Radicals Serif Bold

$$\sqrt{x+y} \qquad \sqrt{x^2+y^2} \qquad \sqrt{x_i^2+y_j^2} \qquad \sqrt{\left(\frac{\cos x}{2}\right)} \qquad \sqrt{\left(\frac{\sin x}{2}\right)}$$

$$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}$$

9.12 Over- and Underbraces Serif Bold

$$x \longrightarrow x+y \longrightarrow x^2+y^2 \longrightarrow x_i^2+y_j^2 \longrightarrow x \longrightarrow x_i+y \longrightarrow x_i^2+y_j^2$$

9.13 Normal and Wide Accents Serif Bold

$$\dot{x} \ \ddot{x} \ \ddot{x} \ \bar{x} \ \overline{x} \ \overline{x} \ \tilde{x} \$$

 \hat{x} \check{x} \check{x} \acute{x} \dot{x} \dot{x} \ddot{x} \ddot{x}

9.14 Long Arrows Serif Bold

9.15 Left and Right Delimiters Serif Bold

$$-(f) - -[f] - -|f| - -|f| - -\langle f \rangle - -\{f\} -$$

Using \left and \right.

$$-(f) - -[f] - -|f| - -|f| - -\langle f \rangle - -\{f\} -$$

$$-)f(--)f[--/f/--\backslash f \backslash --/f \backslash --\backslash f/-$$

9.16 Big-g-g Delimiters Serif Bold

9.17 Binary Operators Serif Bold

$x \pm y$	\pm	$x \cap y$	\cap	$x \diamond y$	\diamond	$x \oplus y$	\oplus
$x \mp y$	\mp	$x \cup y$	\cup	$x \triangle y$	\bigtriangleup	$x \ominus y$	\ominus
$x \times y$	\times	$x \uplus y$	\uplus	$x \nabla y$	\bigtriangledown	$x \otimes y$	\otimes
$x \div y$	\div	$x\sqcap y$	\sqcap	$x \triangleleft y$	\triangleleft	$x \oslash y$	$\orall oslash$
x * y	\ast	$x \sqcup y$	\sqcup	$x \triangleright y$	\triangleright	$x \odot y$	\odot
$x \star y$	\star	$x \lor y$	\vee	$x \triangleleft y$	\lhd	$x \bigcirc y$	\bigcirc
$x \circ y$	\circ	$x \wedge y$	\wedge	$x \triangleright y$	\rhd	$x \dagger y$	\dagger
$x \bullet y$	\bullet	$x \setminus y$	\setminus	$x \triangleleft y$	\unlhd	$x \ddagger y$	\ddagger
$x \cdot y$	\cdot	$x \wr y$	\wr	$x \trianglerighteq y$	\unrhd	x§ y	\S
x + y	+	x-y	_	$x \coprod y$	\amalg	$x \P v$	\P

9.18 Relations Serif Bold

```
x \le y
          \leq
                                                            x \equiv y
                                                                       \equiv
                                                                                     x \models y
                                                                                               \models
                              x \ge y
                                        \geq
x \prec y
          \prec
                              x \succ y
                                        \succ
                                                            x \sim y
                                                                       \sim
                                                                                     x \perp y
                                                                                               \perp
x \leq y
          \preceq
                              x \succeq y
                                        \succeq
                                                            x \simeq y
                                                                       \simeq
                                                                                     x \mid y
                                                                                               \mid
                                                                       \asymp
                                                                                               \parallel
x \ll y
          \11
                              x \gg y
                                                            x \times y
                                                                                     x \parallel y
                                        \gg
          \subset
x \subset y
                              x\supset y
                                        \supset
                                                            x \approx y
                                                                       \approx
                                                                                     x\bowtie y
                                                                                               \bowtie
x \subseteq y
          \subseteq
                              x \supseteq y
                                        \supseteq
                                                            x \cong y
                                                                       \cong
                                                                                     x \bowtie y
                                                                                               \Join
                                                            x \neq y
                                                                                               \smile
x \sqsubset y
          \sqsubset
                              x \supset y
                                        \sqsupset
                                                                       \neq
                                                                                     x \smile y
x \sqsubseteq y
          \sqsubseteq
                              x \supseteq y
                                        \sqsupseteq
                                                            x \doteq y
                                                                       \doteq
                                                                                               \frown
                                                                                     x - y
          \in
                                        \ni
                                                                       \propto
x \in y
                              x \ni y
                                                            x \propto y
                                                                                     x = y
          \vdash
                              x \dashv y
                                        \dashv
                                                                                               >
x \vdash y
                                                            x < y
                                                                       <
                                                                                     x > y
x:y
```

9.19 Punctuation Serif Bold

```
x,y , x;y ; x:y \colon x.y \ldotp x\cdot y \cdotp
```

9.20 Arrows Serif Bold

$x \leftarrow y$	\leftarrow	$x \longleftarrow y$	$\label{longleftarrow}$	$x \uparrow y$	\uparrow
$x \leftarrow y$	\Leftarrow	$x \leftarrow y$	\Longleftarrow	$x \uparrow y$	\Uparrow
$x \rightarrow y$	\rightarrow	$x \longrightarrow y$	$\label{longright} \$	$x \downarrow y$	\downarrow
$x \Rightarrow y$	\Rightarrow	$x \Longrightarrow y$	$ackslash ext{Longrightarrow}$	$x \downarrow y$	\Downarrow
$x \longleftrightarrow y$	\leftrightarrow	$x \longleftrightarrow y$	\longleftrightarrow	$x \uparrow y$	\updownarrow
$x \Leftrightarrow y$	\Leftrightarrow	$x \Longleftrightarrow y$	\Longleftrightarrow	$x \updownarrow y$	\Updownarrow
$x \mapsto y$	\mapsto	$x \longmapsto y$	\longmapsto	$x \nearrow y$	\nearrow
$x \leftarrow y$	\hookleftarrow	$x \hookrightarrow y$	\hookrightarrow	$x \setminus y$	\searrow
$x \leftarrow y$	\leftharpoonup	$x \rightarrow y$	\rightharpoonup	$x \not y$	\swarrow
$x \leftarrow y$	\leftharpoondown	$x \rightarrow y$	\rightharpoondown	$x \setminus y$	\nwarrow
$x \rightleftharpoons y$	\rightleftharpoons	$x \leadsto y$	\leadsto		

9.21 Miscellaneous Symbols Serif Bold

```
x \cdot y
                                \cdots
                                                 x:y
                                                         \vdots
                                                                                      \ddots
x \dots y
          \ldots
                      x \cdots y
хХу
          \aleph
                      x/y
                                \prime
                                                 x \forall y
                                                         \forall
                                                                            x \infty y
                                                                                      \infty
хħу
          \hbar
                      x \emptyset y
                                \emptyset
                                                 x\exists y
                                                         \exists
                                                                            x\Box y
                                                                                      \mathbb{Z}
          \imath
                      x\nabla y
                                \nabla
                                                 x \neg y
                                                                            x \Diamond y
                                                                                      \Diamond
хıу
                                                         \neg
          \jmath
                                \surd
                                                         \flat
                                                                                      \triangle
                      x\sqrt{y}
                                                 xby
                                                                            x\Delta y
хју
          \ell
                      xTy
                                \top
                                                 x \nmid y
                                                         \natural
                                                                            x - y
                                                                                      \clubsuit
x\ell y
хру
          \wp
                      x \perp y
                                \bot
                                                 x \sharp y
                                                         \sharp
                                                                            x \diamondsuit y
                                                                                      \diamondsuit
          \Re
                      x||y
                                1/
                                                         \backslash
                                                                            x \nabla y
                                                                                      \heartsuit
x\Re y
                                                 x \setminus y
                                \angle
x\Im y
          \Im
                      x \angle y
                                                 x \partial y
                                                         \partial
                                                                            x \spadesuit y
                                                                                      \spadesuit
х℧у
          \mho
                                                 x|y
                                                                            x!y
                      x.y
```

9.22 Variable-Sized Operators Serif Bold

```
x \sum y
         \sum
                              \bigcap
                                              x \odot y
                                                        \bigodot
x \prod y
                               \bigcup
                                                        \bigotimes
         \prod
                      x \mid y
                                              x \otimes y
                      x \bigsqcup y
         \coprod
                              \bigsqcup
                                              x \oplus y
                                                        \bigoplus
                      x \bigvee y
x \mid y
         \int
                              \bigvee
                                              x+y
                                                        \biguplus
         \oint
                              \bigwedge
x \phi y
                      x \wedge y
```

9.23 Log-Like Operators Serif Bold

```
x arccos y
             x \cos y
                         x \csc y
                                    x \exp y
                                                xkery
                                                             x \lim \sup y
                                                                            x \min y
                                                                                       x sinh y
                         x \deg y
                                    x \gcd y
                                                x \log y
                                                              x \ln y
                                                                            x Pry
x arcsin y
             x \cosh y
                                                                                       x \sup y
x arctany
             x \cot y
                         x \det y
                                    x hom y
                                                x \lim y
                                                              x \log y
                                                                            x \sec y
                                                                                       xtany
x argy
             x cothy
                         xdimy
                                    xinfy
                                                x \lim \inf y
                                                             x \max y
                                                                            x \sin y
                                                                                       xtanhy
```

9.24 Delimiters Serif Bold

```
x(y)
                    x)y
                            )
                                          x \uparrow y
                                                  \uparrow
                                                                        x \uparrow y
                                                                                \Uparrow
x[y]
       x]y
                            ]
                                          x \downarrow y
                                                   \downarrow
                                                                        x \downarrow y
                                                                                 \Downarrow
x{y}
       \{
                            \}
                                          x \uparrow y
                                                  \updownarrow
                                                                       x \updownarrow y
                                                                                 \Updownarrow
                    x}y
x|y
       \lfloor
                    x|y
                            \rfloor
                                         x[y]
                                                   \lceil
                                                                        x]y
                                                                                 \rceil
                                                                                 \backslash
       \langle
                    x\rangle y
                            \rangle
                                         x/y
                                                                        x \setminus y
x\langle y
x|y
                    x||y
```

9.25 Large Delimiters Serif Bold

```
 \ \rmoustache \int \lmoustache \) \rgroup \
 \arrowvert \| \Arrowvert \| \bracevert \]
```

9.26 Math Mode Accents Serif Bold

```
\hat{a} \hat{a} \dot{a} \acute{a} \bar{a} \bar{a} \dot{a} \dot{a} \ddot{a} \breve{a} \ddot{a} \check{a} \ddot{a} \grave{a} \ddot{a} \vec{a} \ddot{a} \ddot{a} \ddot{a} \tilde{a}
```

9.27 Miscellaneous Constructions Serif Bold

```
abc
       \widetilde{abc}
                               abc
                                      \widehat{abc}
abc
       \overleftarrow{abc}
                               abc
                                      \overrightarrow{abc}
abc
       \overline{abc}
                                      \underline{abc}
                               abc
                                      \underbrace{abc}
abc
       \overbrace{abc}
                                abc
√abc
                               \"abc
                                      \sqrt[n]{abc}
       \sqrt{abc}
                               abc
f
       f,
                                      \frac{abc}{xyz}
                               \overline{xyz}
```

9.28 AMS Delimiters Serif Bold

 x^Ty \ullcorner x^Ty \urlcorner x_Ly \llcorner x_Ly \llcorner

9.29 AMS Arrows Serif Bold

```
x \longrightarrow y
           \dashrightarrow
                                            x ←-- y
                                                       \dashleftarrow
           \leftleftarrows
                                            x \leftrightarrows y
                                                       \leftrightarrows
x = y
           \Lleftarrow
x \in y
                                            x \leftarrow y
                                                       \twoheadleftarrow
           \leftarrowtail
                                                       \looparrowleft
x \leftarrow y
                                            x \notin y
                                                       \curvearrowleft
           \leftrightharpoons
x \leftrightharpoons y
                                           x \cap y
           \circlearrowleft
                                           x \uparrow y
x \circlearrowleft y
x \uparrow \uparrow y
           \upuparrows
                                                       \upharpoonleft
                                            x \mid y
           \downharpoonleft
                                                       \multimap
x \mid y
                                            x \rightarrow y
           \leftrightsquigarrow x \rightrightarrows y
                                                       \rightrightarrows
x \leftrightarrow y
           \rightleftarrows
                                                       \rightrightarrows
x \rightleftharpoons y
                                            x \rightrightarrows y
           \rightleftarrows
                                                       \twoheadrightarrow
x \rightleftharpoons y
                                            x \rightarrow y
x \mapsto y
           \rightarrowtail
                                            x \rightarrow y
                                                       \looparrowright
           \rightleftharpoons
                                                       \curvearrowright
x \rightleftharpoons y
                                            x \cap y
                                           x \upharpoonright y
x \circ y
           \circlearrowright
                                                       \Rsh
                                                       \upharpoonright
x \!\downarrow \!\downarrow y
           \downdownarrows
                                            x \mid y
           \downharpoonright
                                                       \rightsquigarrow
x \mid y
                                            x \leadsto y
```

9.30 AMS Negated Arrows Serif Bold

```
x \leftrightarrow y \nleftarrow x \nrightarrow y \nrightarrow x \nleftrightarrow y \nRightarrow x \nleftrightarrow y \nleftrightarrow x \nleftrightarrow y \nLeftrightarrow
```

9.31 AMS Greek Serif Bold

 $x \in y$ \digamma $x \times y$ \varkappa

9.32 AMS Hebrew Serif Bold

9.33 AMS Miscellaneous Serif Bold

хћу	\hbar	хћу	\hslash
$x \triangle y$	\vartriangle	$x \nabla y$	$\$ triangledown
$x\Box y$	\square	$x \Diamond y$	\lozenge
x(S) y	\circledS	x∠y	\angle
x∡y	\measuredangle	x∄y	\nexists
х℧у	\mho	$x \pm y$	$ackslash extsf{Finv}^u$
xĐ y	$\backslash \mathtt{Game}^u$	xk y	$ackslash Bbbk^u$
x y	\backprime	xØy	$\$ varnothing
$x \blacktriangle y$	\blacktriangle	$x \nabla y$	\blacktriangledown
x■y	\blacksquare	<i>x</i> ♦ <i>y</i>	\blacklozenge
$x \star y$	\bigstar	<i>x</i> ∢ <i>y</i>	\sphericalangle
xC y	\complement	хðу	\eth
x/y	$ackslash exttt{diagup}^u$	$x \setminus y$	$ackslash ext{diagdown}^u$

[&]quot; Not defined in amssymb.sty, define using the \newsymbol command.

9.34 AMS Binary Operators Serif Bold

$x \dotplus y$	\dotplus	$x \setminus y$	\smallsetminus
$x \cap y$	\Cap	$x \uplus y$	\Cup
$x \overline{\wedge} y$	\barwedge	$x \vee y$	\veebar
$x \overline{\wedge} y$	\doublebarwedge	$x \boxminus y$	\boxminus
$x \boxtimes y$	\boxtimes	$x \square y$	\boxdot
$x \boxplus y$	\boxplus	x * y	\divideontimes
$x \ltimes y$	\ltimes	$x \rtimes y$	\rtimes
$x \lambda y$	\leftthreetimes	$x \wedge y$	\rightthreetimes
$x \curlywedge y$	\curlywedge	$x \land y$	\curlyvee
$x \ominus y$	\circleddash	$x \otimes y$	\circledast
$x \odot y$	\circledcirc	$x \cdot y$	\centerdot
$x \intercal y$	\intercal		

9.35 AMS Relations Serif Bold

- $x \leq y$ \leqslant
- $x \lesssim y$ \lesssim
- $x \cong y$ \approxeq
- $x \ll y \setminus 111$
- $x \leq y$ \lesseqgtr
- $x \doteq y \quad \forall x \in Y$
- x = y \fallingdotseq
- $x \simeq y$ \backsimeq
- $x \in y$ \Subset
- $x \preccurlyeq y$ \preccurlyeq
- $x \lesssim y$ \precsim
- $x \triangleleft y$ \vartriangleleft
- $x \models y$ \vDash
- $x \smile y$ \smallsmile
- x = y \bumpeq
- $x \ge y$ \geqq
- $x \geqslant y$ \eqslantgtr
- $x \geq y$ \gtrapprox
- $x \gg y \setminus ggg$
- $x \geq y$ \gtreqless
- x = y \eqcirc
- $x \triangleq y$ \triangleq
- $x \approx y$ \thickapprox
- $x \ni y$ \Supset
- $x \succcurlyeq y$ \succcurlyeq
- $x \succsim y$ \succsim
- $x \triangleright y$ \vartriangleright
- $x \Vdash y$ \Vdash
- $x \parallel y$ \shortparallel
- $x \pitchfork y$ \pitchfork
- $x \triangleleft y$ \blacktriangleleft
- $x \ni y$ \backepsilon
- x : y \because

9.36 AMS Negated Relations Serif Bold

$x \not< y$	\nless	$x \not \leq y$	\nleq
$x \not \leq y$	\nleqslant	$x \not \leq y$	\nleqq
$x \leq y$	\lneq	$x \not\subseteq y$	\lneqq
$x \leq y$	\lvertneqq	$x \lesssim y$	\lnsim
$x \lessapprox y$	$\label{lnapprox}$	$x \not\prec y$	\nprec
$x \not \leq y$	\npreceq	$x \not \supset y$	\precnsim
$x \ngeq y$	\precnapprox	$x \not\sim y$	\n
xiy	\nshortmid	$x \nmid y$	\nmid
$x \not\vdash y$	\nvdash	$x \not\vDash y$	\nvDash
$x \not = y$	\ntriangleleft	<i>x</i> ⊉ <i>y</i>	\ntrianglelefteq
$x \not\subseteq y$	\nsubseteq	$x \subsetneq y$	\subsetneq
$x \not\subseteq y$	\varsubsetneq	$x \subsetneq y$	\subsetneqq
$x \not\subseteq y$	\varsubsetneqq	$x \not\geq y$	\ngtr
$x \not\geq y$	\ngeq	$x \not \geq y$	\ngeqslant
$x \not \geq y$	\ngeqq	$x \geqslant y$	\gneq
$x \ngeq y$	\gneqq	$x \geqq y$	\gvertneqq
$x \gtrsim y$	\gnsim	$x \ngeq y$	\gnapprox
$x \not\succ y$	\nsucc		\nsucceq
$x \not \sqsubseteq y$	\nsucceqq	$x \not\subset y$	\succnsim
$x \not\geq y$	$\scalebox{succnapprox}$	$x \not\cong y$	\ncong
хиу	\nshortparallel	$x \not\parallel y$	nparallel
$x \not\vDash y$	\nvDash	$x \not\Vdash y$	\nVDash
$x \not\triangleright y$	\ntriangleright		\ntrianglerighteq
$x \not\supseteq y$		$x \not\supseteq y$	\nsupseteqq
	\supsetneq	$x \not\supseteq y$	\varsupsetneq
$x \supseteq y$	\supsetneqq	$x \not\supseteq y$	\varsupsetneqq

10 Sans serif

10.1 Overview Sans serif

Default: ααbβGΓΡΠαβ mathnormal: ααbβGΓΡΠ mathrm: αααbβGΓΡΠ mathup: αααbβGΓΡΠ mathit: ααbβGΓΡΠ mathbf: ααbβGΓΡΠ mathbf: ααbβGΓΡΠ

Default: $\alpha\alpha b\beta G\Gamma P\Pi$ mathnormal: $\alpha\alpha b\beta G\Gamma P\Pi$ mathrm: $\alpha\alpha b\beta G\Gamma P\Pi$ mathup: $\alpha\alpha b\beta G\Gamma P\Pi$ mathit: $\alpha\alpha b\beta G\Gamma P\Pi$

mathbf: **ααbβGΓΡΠ** mathbfit: **ααbβGΓΡΠ**

Default: $\alpha\alpha b\beta G\Gamma P\Pi$ mathnormal: $\alpha\alpha b\beta G\Gamma P\Pi$ mathrm: $\alpha\alpha b\beta G\Gamma P\Pi$ mathup: $\alpha\alpha b\beta G\Gamma P\Pi$ mathit: $\alpha\alpha b\beta G\Gamma P\Pi$ mathbf: $\alpha\alpha b\beta G\Gamma P\Pi$ mathbf: $\alpha\alpha b\beta G\Gamma P\Pi$

10.2 Formulas Sans serif

 $\alpha,\,\beta,\,\gamma,\,\delta,\,\epsilon,\,\zeta,\,\eta,\,\theta,\,\iota,\,\kappa,\,\lambda,\,\mu,\,\nu,\,\xi,\,o,\,\pi,\,\rho,\,\sigma,\,\zeta,\,\tau,\,\upsilon,\,\phi,\,\chi,\,\psi,\,\omega,\,\digamma,\,A,\,B,\,\Gamma,\,\Delta,\,E,\,Z,\,H,\,\Theta,\,I,\,K,\,\Lambda,\,M,\,N,\,\Xi,\,O,\,\Pi,\,P,\,\Sigma,\,T,\,Y,\,\Phi,\,X,\,\Psi,\,\Omega,\,F,$

 $\alpha,\,\beta,\,\gamma,\,\delta,\,\epsilon,\,\zeta,\,\eta,\,\theta,\,\iota,\,\kappa,\,\lambda,\,\mu,\,\nu,\,\xi,\,o,\,\pi,\,\rho,\,\sigma,\,\varsigma,\,\tau,\,\upsilon,\,\phi,\,\chi,\,\psi,\,\omega,\,\varsigma,\,A,\,B,\,\Gamma,\,\Delta,\,E,\,Z,\,H,\,\Theta,\,I,\,K,\,\Lambda,\,M,\,N,\,\Xi,\,O,\,\Pi,\,P,\,\Sigma,\,T,\,Y,\,\Phi,\,X,\,\Psi,\,\Omega,\,F,$

 α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ , σ , π , ρ , σ , ζ , τ , υ , ϕ , χ , ψ , ω , φ , A, B, Γ , Δ , E, Z, H, Θ , I, K, Λ , M, N, Ξ , O, Π , P, Σ , T, Y, Φ , X, Ψ , Ω , F,

 $\pmb{\alpha}a > 0$, $\pmb{\beta}b + (3 \times 27)$, $\pmb{\Gamma}G = 7 < 8$, $\pmb{\lambda}$

 $\alpha a > 0$, $\beta b + (3 \times 27)$, $\Gamma G = 7 < 8$, λ

 $s \pm 3y + y - 1 = 4 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathbf{d}x = \left(\frac{27}{2}\right)$$

 $s \pm 3\gamma + y - 1 \times 7$

$$\sum_{i=0}^{n} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) dx = \left(\frac{27}{2}\right)$$

 $s \pm 3y + y - 1 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathbf{d}x = \left(\frac{27}{2}\right)$$

$$s\pm 3\gamma + y - 1\times 7$$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) dx = \left(\frac{27}{2}\right)$$

10.3 Math Alphabets Sans serif

Default

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ, Δ, E, Z, H, Θ, I, K, Λ, M, N, Ξ, Ο, Π, P, Σ, T, Y, Φ, X, Ψ, Ω, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, τ, υ, φ, χ, ψ, ω, ε, ϑ , ω, ρ, ς, φ ,

Math Normal (\mathnormal)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ, Δ, E, Z, H, Θ, I, K, Λ, M, N, Ξ, Ο, Π, P, Σ, T, Y, Φ, X, Ψ, Ω, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, τ, υ, φ, χ, ψ, ω, ε, θ, ω, ρ, ς, φ,

Math Italic (\mathit)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ, Δ, E, Z, H, Θ, I, K, Λ, M, N, Ξ, Ο, Π, P, Σ, Τ, Y, Φ, X, Ψ, Ω, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, τ, υ, φ, χ, ψ, ω, ε, ϑ , ω, ρ, ς, φ ,

Math Roman (\mathrm)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,
A, B, Γ , Δ , E, Z, H, Θ , I, K, Λ , M, N, Ξ , O, Π , P, Σ , T, Υ , Φ , X, Ψ , Ω , α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ , o, π , ρ , σ , τ , υ , ϕ , χ , ψ , ω , ε , ϑ , ϖ , ϱ , ς , φ ,

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,

A, B, Γ , Δ , E, Z, H, Θ , I, K, Λ , M, N, Ξ , O, Π , P, Σ , T, Y, Φ , X, Ψ , Ω ,

 $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, \nu, \phi, \chi, \psi, \omega, \varepsilon, \vartheta, \omega, \rho, \zeta, \varphi,$

Caligraphic (\mathcal)

$$\mathcal{A}$$
, \mathcal{B} , \mathcal{C} , \mathcal{D} , \mathcal{E} , \mathcal{F} , \mathcal{G} , \mathcal{H} , \mathcal{J} , \mathcal{J} , \mathcal{H} , \mathcal{M} , \mathcal{N} , \mathcal{O} , \mathcal{P} , \mathcal{Q} , \mathcal{R} , \mathcal{F} , \mathcal{T} , \mathcal{U} , \mathcal{V} , \mathcal{W} , \mathcal{X} , \mathcal{Y} , \mathcal{Z} , Script (\mathscr)

$$\mathcal{A}$$
 , \mathcal{B} , \mathcal{C} , \mathcal{D} , \mathcal{E} , \mathcal{F} , \mathcal{G} , \mathcal{H} , \mathcal{J} , \mathcal{J} , \mathcal{K} , \mathcal{L} , \mathcal{M} , \mathcal{N} , \mathcal{O} , \mathcal{P} , \mathcal{Q} , \mathcal{R} , \mathcal{F} , \mathcal{T} , \mathcal{U} , \mathcal{V} , \mathcal{W} , \mathcal{X} , \mathcal{Y} , \mathcal{Z}

Fraktur (\mathfrak)

$$\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{E}, \mathfrak{F}, \mathfrak{G}, \mathfrak{H}, \mathfrak{I}, \mathfrak{I}, \mathfrak{K}, \mathfrak{L}, \mathfrak{M}, \mathfrak{N}, \mathfrak{D}, \mathfrak{P}, \mathfrak{Q}, \mathfrak{R}, \mathfrak{G}, \mathfrak{T}, \mathfrak{U}, \mathfrak{V}, \mathfrak{W}, \mathfrak{X}, \mathfrak{Y}, \mathfrak{Z}, \mathfrak{A}, \mathfrak{G}, \mathfrak{C}, \mathfrak{I}, \mathfrak{G}, \mathfrak{H}, \mathfrak{G}, \mathfrak{I}, \mathfrak{H}, \mathfrak{I}, \mathfrak{H}, \mathfrak{H}, \mathfrak{H}, \mathfrak{n}, \mathfrak{n}, \mathfrak{o}, \mathfrak{p}, \mathfrak{q}, \mathfrak{r}, \mathfrak{s}, \mathfrak{t}, \mathfrak{u}, \mathfrak{v}, \mathfrak{w}, \mathfrak{x}, \mathfrak{y}, \mathfrak{z}, \mathfrak{g}, \mathfrak{g}$$

Blackboard Bold (\mathbb)

$$\mathbb{A}, \mathbb{B}, \mathbb{C}, \mathbb{D}, \mathbb{E}, \mathbb{F}, \mathbb{G}, \mathbb{H}, \mathbb{I}, \mathbb{J}, \mathbb{K}, \mathbb{L}, \mathbb{M}, \mathbb{N}, \mathbb{O}, \mathbb{P}, \mathbb{Q}, \mathbb{R}, \mathbb{S}, \mathbb{T}, \mathbb{U}, \mathbb{V}, \mathbb{W}, \mathbb{X}, \mathbb{Y}, \mathbb{Z}, \mathbb{Z}, \mathbb{C}$$

10.4 Character Sidebearings Sans serif

Default

$$\begin{aligned} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |T| + |A| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + \\ |N| + |\Xi| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |Y| + |\Phi| + |X| + |\Psi| + |\Omega| + \\ |a| + |\beta| + |\gamma| + |\delta| + |\epsilon| + |\zeta| + |\eta| + |\theta| + |\iota| + |\kappa| + |\lambda| + |\mu| + \\ |v| + |\xi| + |o| + |\pi| + |\rho| + |\sigma| + |\tau| + |\psi| + |\psi| + |\omega| + \\ |\epsilon| + |\theta| + |\omega| + |\rho| + |\zeta| + |\varphi| + \end{aligned}$$

$$\begin{aligned} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |I| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + \\ |N| + |\Xi| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |\Upsilon| + |\Phi| + |X| + |\Psi| + |\Omega| + \end{aligned}$$

$$\begin{aligned} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |I| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |T| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + \\ |N| + |E| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |Y| + |\Phi| + |X| + |\Psi| + |\Omega| + \\ \end{aligned}$$

Math Calligraphic (\mathcal)

$$|\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + |\mathcal{D}| + |\mathcal{E}| + |\mathcal{F}| + |\mathcal{G}| + |\mathcal{H}| + |\mathcal{I}| + |\mathcal{I}| + |\mathcal{H}| + |$$

10.5 Superscript Positioning Sans serif

Default

$$A^{2} + B^{2} + C^{2} + D^{2} + E^{2} + F^{2} + G^{2} + H^{2} + I^{2} + J^{2} + K^{2} + L^{2} + M^{2} + N^{2} + O^{2} + P^{2} + Q^{2} + R^{2} + S^{2} + T^{2} + U^{2} + V^{2} + W^{2} + X^{2} + Y^{2} + Z^{2} + Q^{2} + D^{2} + C^{2} + D^{2} + C^{2} + D^{2} + D^{2$$

$$\begin{split} A^2 + B^2 + C^2 + D^2 + E^2 + F^2 + G^2 + H^2 + I^2 + J^2 + K^2 + L^2 + M^2 + \\ N^2 + O^2 + P^2 + Q^2 + R^2 + S^2 + T^2 + U^2 + V^2 + W^2 + X^2 + Y^2 + Z^2 + \\ a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2 + j^2 + k^2 + I^2 + m^2 + \\ n^2 + o^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2 + v^2 + w^2 + x^2 + y^2 + z^2 + \\ A^2 + B^2 + \Gamma^2 + \Delta^2 + E^2 + Z^2 + H^2 + \Theta^2 + I^2 + K^2 + \Lambda^2 + M^2 + \\ N^2 + \Xi^2 + O^2 + \Pi^2 + P^2 + \Sigma^2 + T^2 + \Upsilon^2 + \Phi^2 + X^2 + \Psi^2 + \Omega^2 + \Omega^2$$

$$A^{2} + B^{2} + C^{2} + D^{2} + E^{2} + F^{2} + G^{2} + H^{2} + I^{2} + J^{2} + K^{2} + L^{2} + M^{2} + N^{2} + O^{2} + P^{2} + Q^{2} + R^{2} + S^{2} + T^{2} + U^{2} + V^{2} + W^{2} + X^{2} + Y^{2} + Z^{2} + O^{2} + D^{2} + C^{2} + D^{2} + D^{2$$

Math Calligraphic (\mathcal)

$$\mathcal{A}^2 + \mathcal{B}^2 + \mathcal{C}^2 + \mathcal{D}^2 + \mathcal{E}^2 + \mathcal{F}^2 + \mathcal{G}^2 + \mathcal{H}^2 + \mathcal{J}^2 + \mathcal{J}^2 + \mathcal{H}^2 + \mathcal$$

10.6 Subscript Positioning Sans serif

Default

$$\begin{aligned} &A_{i} + B_{i} + C_{i} + D_{i} + E_{i} + F_{i} + G_{i} + H_{i} + I_{i} + J_{i} + K_{i} + L_{i} + M_{i} + N_{i} + O_{i} + P_{i} + Q_{i} + R_{i} + S_{i} + T_{i} + U_{i} + V_{i} + W_{i} + X_{i} + Y_{i} + Z_{i} + A_{i} + D_{i} + C_{i} + d_{i} + e_{i} + f_{i} + g_{i} + h_{i} + i_{i} + j_{i} + k_{i} + l_{i} + m_{i} + N_{i} + O_{i} + p_{i} + q_{i} + r_{i} + S_{i} + t_{i} + u_{i} + v_{i} + w_{i} + x_{i} + y_{i} + z_{i} + A_{i} + B_{i} + \Gamma_{i} + \Delta_{i} + E_{i} + Z_{i} + H_{i} + O_{i} + I_{i} + K_{i} + \Lambda_{i} + M_{i} + N_{i} + \Xi_{i} + O_{i} + \Pi_{i} + P_{i} + \Sigma_{i} + T_{i} + Y_{i} + \Phi_{i} + X_{i} + \Psi_{i} + \Omega_{i} + A_{i} + P_{i} + P$$

$$\begin{split} A_i + B_i + C_i + D_i + E_i + F_i + G_i + H_i + I_i + J_i + K_i + L_i + M_i + \\ N_i + O_i + P_i + Q_i + R_i + S_i + T_i + U_i + V_i + W_i + X_i + Y_i + Z_i + \\ a_i + b_i + c_i + d_i + e_i + f_i + g_i + h_i + i_i + j_i + k_i + l_i + m_i + \\ n_i + o_i + p_i + q_i + r_i + s_i + t_i + u_i + v_i + w_i + x_i + y_i + z_i + \\ A_i + B_i + \Gamma_i + \Delta_i + E_i + Z_i + H_i + \Theta_i + I_i + K_i + \Lambda_i + M_i + \\ N_i + \Xi_i + O_i + \Pi_i + P_i + \Sigma_i + T_i + \Upsilon_i + \Phi_i + X_i + \Psi_i + \Omega_i + \\ \end{split}$$

$$\begin{aligned} A_{i} + B_{i} + C_{i} + D_{i} + E_{i} + F_{i} + G_{i} + H_{i} + I_{i} + J_{i} + K_{i} + L_{i} + M_{i} + \\ N_{i} + O_{i} + P_{i} + Q_{i} + R_{i} + S_{i} + T_{i} + U_{i} + V_{i} + W_{i} + X_{i} + Y_{i} + Z_{i} + \\ a_{i} + b_{i} + c_{i} + d_{i} + e_{i} + f_{i} + g_{i} + h_{i} + i_{i} + j_{i} + k_{i} + l_{i} + m_{i} + \\ n_{i} + o_{i} + p_{i} + q_{i} + r_{i} + s_{i} + t_{i} + u_{i} + v_{i} + w_{i} + x_{i} + y_{i} + z_{i} + \\ A_{i} + B_{i} + \Gamma_{i} + \Delta_{i} + E_{i} + Z_{i} + H_{i} + \Theta_{i} + I_{i} + K_{i} + \Lambda_{i} + M_{i} + \\ N_{i} + \Xi_{i} + O_{i} + \Pi_{i} + P_{i} + \Sigma_{i} + T_{i} + Y_{i} + \Phi_{i} + X_{i} + \Psi_{i} + \Omega_{i} + \end{aligned}$$

Math Calligraphic (\mathcal)

$$\mathcal{A}_i + \mathcal{B}_i + \mathcal{C}_i + \mathcal{D}_i + \mathcal{E}_i + \mathcal{F}_i + \mathcal{G}_i + \mathcal{H}_i + \mathcal{J}_i + \mathcal{J}_i + \mathcal{H}_i + \mathcal$$

10.7 Accent Positioning Sans serif

Default

Math Italic (\mathit)

$$\begin{split} \hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{l} + \hat{m} + \hat{\ell} + \hat{\wp} + \hat{i} + \hat{J} + \hat{i} \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{Y} + \hat{\Phi} + \hat{x} + \hat{\Psi} + \hat{\Omega} + \\ \hat{\alpha} + \hat{\beta} + \hat{\gamma} + \hat{\delta} + \hat{\epsilon} + \hat{\xi} + \hat{\zeta} + \hat{\eta} + \hat{\theta} + \hat{i} + \hat{\kappa} + \hat{\lambda} + \hat{\mu} + \\ \hat{v} + \hat{\xi} + \hat{o} + \hat{\pi} + \hat{\rho} + \hat{\sigma} + \hat{\tau} + \hat{v} + \hat{\phi} + \hat{\chi} + \hat{\Psi} + \hat{\omega} + \\ \hat{\epsilon} + \hat{\vartheta} + \hat{\omega} + \hat{\rho} + \hat{\varsigma} + \hat{\varsigma} + \hat{\varphi} + \end{split}$$

Math Roman (\mathrm)

$$\begin{split} \hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{I} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{T} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} + \end{split}$$

Math Bold (\mathbf)

$$\begin{split} \hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{J} + \hat{k} + \hat{l} + \hat{m} + \\ \hat{n} + \hat{O} + \hat{P} + \hat{Q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{O} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{Y} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} + \end{split}$$

Math Calligraphic (\mathcal)

$$\hat{\mathcal{A}} + \hat{\mathcal{B}} + \hat{\mathcal{C}} + \hat{\mathcal{D}} + \hat{\mathcal{E}} + \hat{\mathcal{F}} + \hat{\mathcal{G}} + \hat{\mathcal{H}} + \hat{\mathcal{J}} + \hat{\mathcal{J}} + \hat{\mathcal{L}} + \hat{\mathcal{L}} + \hat{\mathcal{M}} + \hat{\mathcal{N}} + \hat{\mathcal{O}} + \hat{\mathcal{P}} + \hat{\mathcal{D}} + \hat{\mathcal{R}} + \hat{\mathcal{L}} + \hat{\mathcal{R}} + \hat{\mathcal{L}} + \hat{\mathcal{M}} + \hat{\mathcal{L}} + \hat{\mathcal{$$

10.8 Differentials Sans serif

```
dA + dB + dC + dD + dE + dF + dG + dH + dI + dJ + dK + dL + dM +
dN + dO + dP + dQ + dR + dS + dT + dU + dV + dW + dX + dY + dZ +
da + db + dc + dd + de + df + dg + dh + di + dj + dk + dl + dm +
dn + do + dp + dq + dr + ds + dt + du + dv + dw + dx + dy + dz +
dA + dB + d\Gamma + d\Delta + dE + dZ + dH + d\Theta + dI + dK + d\Lambda + dM +
dN + d\Xi + dO + d\Pi + dP + d\Sigma + dT + dY + d\Phi + dX + d\Psi + d\Omega + d\Omega
dv + d\xi + do + d\pi + d\rho + d\sigma + d\tau + d\nu + d\phi + d\chi + d\psi + d\omega + d\phi
d\varepsilon + d\vartheta + d\omega + d\rho + d\varsigma + d\varphi +
dA+dB+d\Gamma+d\Delta+dE+dZ+dH+d\Theta+dI+dK+d\Lambda+dM+
dN + d\Xi + dO + d\Pi + dP + d\Sigma + dT + d\Upsilon + d\Phi + dX + d\Psi + d\Omega + d\Omega
\partial A + \partial B + \partial C + \partial D + \partial E + \partial F + \partial G + \partial H + \partial I + \partial J + \partial K + \partial L + \partial M + \partial C 
\partial N + \partial O + \partial P + \partial Q + \partial R + \partial S + \partial T + \partial U + \partial V + \partial W + \partial X + \partial Y + \partial Z + \partial C 
\partial a + \partial b + \partial c + \partial d + \partial e + \partial f + \partial q + \partial h + \partial i + \partial j + \partial k + \partial l + \partial m + \partial c + \partial c + \partial d + \partial e 
\partial n + \partial o + \partial p + \partial q + \partial r + \partial s + \partial t + \partial u + \partial v + \partial w + \partial x + \partial y + \partial z 
\partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \partial A 
\partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial Y + \partial \Phi + \partial X + \partial \Psi + \partial \Omega 
\partial \alpha + \partial \beta + \partial \gamma + \partial \delta + \partial \epsilon + \partial \zeta + \partial \eta + \partial \theta + \partial \iota + \partial \kappa + \partial \lambda + \partial \mu + \partial \alpha + \partial \beta + \partial \gamma 
\partial \mathbf{v} + \partial \boldsymbol{\xi} + \partial \mathbf{o} + \partial \boldsymbol{\pi} + \partial \boldsymbol{\rho} + \partial \boldsymbol{\sigma} + \partial \boldsymbol{\tau} + \partial \mathbf{u} + \partial \boldsymbol{\phi} + \partial \mathbf{x} + \partial \boldsymbol{\psi} + \partial \boldsymbol{\omega} + \partial \boldsymbol{\phi}
\partial \varepsilon + \partial \vartheta + \partial \varpi + \partial \rho + \partial \varsigma + \partial \varphi +
\partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \partial A 
     \partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial \Upsilon + \partial \Phi + \partial X + \partial \Psi + \partial \Omega + \partial \Psi + \partial \Psi
```

10.9 Slash Kerning Sans serif

```
 \frac{1}{A} + \frac{1}{B} + \frac{1}{C} + \frac{1}{D} + \frac{1}{E} + \frac{1}{F} + \frac{1}{G} + \frac{1}{H} + \frac{1}{I} + \frac{1
```

A/2 + B/2 + C/2 + D/2 + E/2 + F/2 + G/2 + H/2 + I/2 + J/2 + K/2 + L/2 + M/2 + N/2 + O/2 + P/2 + Q/2 + R/2 + S/2 + T/2 + U/2 + V/2 + W/2 + X/2 + Y/2 + Z/2 + a/2 + b/2 + c/2 + d/2 + e/2 + f/2 + g/2 + h/2 + i/2 + j/2 + k/2 + L/2 + m/2 + n/2 + o/2 + p/2 + g/2 + r/2 + s/2 + t/2 + u/2 + v/2 + w/2 + x/2 + y/2 + z/2 + A/2 + B/2 + F/2 + A/2 + E/2 + Z/2 + H/2 + O/2 + I/2 + K/2 + A/2 + M/2 + N/2 + E/2 + Z/2 + T/2 + Y/2 + O/2 + X/2 + W/2 + A/2 + W/2 + A/2 + D/2 + C/2 + C/2 + T/2 + Y/2 + O/2 + X/2 + W/2 + D/2 + C/2 + C/2

10.10 Big Operators Sans serif

$$\sum_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \int_{i=1}^{n} x^{n} \oint_{i=1}^{n} x^{n}$$

$$\bigotimes_{i=1}^{n} x^{n} \bigoplus_{i=1}^{n} x^{n} \bigwedge_{i=1}^{n} x^{n} \bigvee_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n}$$

10.11 Radicals Sans serif

$$\sqrt{x+y} \qquad \sqrt{x^2+y^2} \qquad \sqrt{x_i^2+y_j^2} \qquad \sqrt{\left(\frac{\cos x}{2}\right)} \qquad \sqrt{\left(\frac{\sin x}{2}\right)}$$

$$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}$$

10.12 Over- and Underbraces Sans serif

$$\overbrace{x}$$
 $\overbrace{x+y}$ $\overbrace{x^2+y^2}$ $\overbrace{x_i^2+y_j^2}$ \underbrace{x} $\underbrace{x+y}$ $\underbrace{x_i+y_j}$ $\underbrace{x_i^2+y_j^2}$

10.13 Normal and Wide Accents Sans serif

$$\dot{x} \quad \ddot{x} \quad \overline{x} \quad \overline{x} \quad \overline{x} \quad \tilde{x} \quad$$

10.14 Long Arrows Sans serif

 $\longleftarrow \longrightarrow \longleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \Longleftrightarrow \Longleftrightarrow \Longrightarrow \Longleftrightarrow$

10.15 Left and Right Delimiters Sans serif

$$-(f)--[f]--|f]--\lceil f\rceil--\langle f\rangle--\{f\}-$$

Using \left and \right.

$$-(f) - -[f] - -|f| - -|f| - -\langle f \rangle - -\{f\} -$$

$$-)f(--|f| - -/f/ - -\langle f \rangle - -\langle f \rangle - -\langle f \rangle -$$

10.16 Big-g-g Delimiters Sans serif

10.17 Binary Operators Sans serif

10.18 Relations Sans serif

```
\equiv
x \le y
          \leq
                              x \ge y
                                        \geq
                                                            x \equiv y
                                                                                   x \models y
                                                                                              \models
X < Y
          \prec
                              X > Y
                                        \succ
                                                            X \sim Y
                                                                      \sim
                                                                                    X \perp y
                                                                                              \perp
                              x \geq y
                                        \succeq
                                                                      \simeq
                                                                                    x \mid y
                                                                                              \mid
X \leq y
          \preceq
                                                            x \simeq y
X \ll y
          \11
                              X \gg y
                                                                      \asymp
                                                                                    x \parallel y
                                                                                              \parallel
                                        \gg
                                                            X \times Y
          \subset
                                                                      \approx
                                                                                              \bowtie
X \subset Y
                              X\supset Y
                                        \supset
                                                            x \approx y
                                                                                    X \bowtie Y
                                                                      \cong
X \subseteq Y
          \subseteq
                              x \supseteq y
                                        \supseteq
                                                            x \cong y
                                                                                    x \bowtie y
                                                                                              \Join
X \sqsubset Y
          \sqsubset
                              X \supset Y
                                        \sqsupset
                                                            x \neq y
                                                                      \neq
                                                                                    x \smile y
                                                                                              \smile
          \sqsubseteq
                                        \sqsupseteq
                                                            x \doteq y
                                                                      \doteq
                                                                                              \frown
X \sqsubseteq y
                             x \supseteq y
                                                                                    x \frown y
X \in \mathcal{Y}
          \in
                              X \ni Y
                                        \ni
                                                                      \propto
                                                                                   x = y
                                                            X \propto Y
          \vdash
                              X \dashv Y
                                        \dashv
                                                                                    X > V
X \vdash Y
                                                            x < y
                                                                      <
X: y
```

10.19 Punctuation Sans serif

```
x,y, x;y; x:y \colon x.y \ldotp x\cdot y \cdotp
```

10.20 Arrows Sans serif

$x \leftarrow y$	\leftarrow	$x \leftarrow\!$	$\label{longleftarrow}$	$x \uparrow y$	\uparrow
$x \leftarrow y$	\Leftarrow	$x \longleftarrow y$	\Longleftarrow	$x \uparrow y$	\Uparrow
$X \rightarrow Y$	\rightarrow	$x \longrightarrow y$	$\label{longright} \$	$x \downarrow y$	\downarrow
$x \Rightarrow y$	\Rightarrow	$x \Longrightarrow y$	$ackslash ext{Longrightarrow}$	$x \downarrow y$	\Downarrow
$x \leftrightarrow y$	$\$ leftrightarrow	$x \longleftrightarrow y$	$\label{longleftrightarrow}$	x	\updownarrow
$x \Leftrightarrow y$	$ackslash ext{Leftrightarrow}$	$x \Longleftrightarrow y$	\Longleftrightarrow	<i>x</i>	\Updownarrow
$x \mapsto y$	\mapsto	$x \longmapsto y$	$\label{longmapsto} \$	x	\nearrow
$x \leftarrow y$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$x \hookrightarrow y$	\h ookrightarrow	x ∖ y	\searrow
<i>x</i>	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$x \rightarrow y$	$\$ rightharpoonup	x ∠ y	\swarrow
$X \leftarrow Y$	$\$ leftharpoondown	$X \rightarrow Y$	$\$ rightharpoondown	x	\nwarrow
$x \rightleftharpoons y$	$\$ rightleftharpoons	x ⊶ y	\leadsto		

10.21 Miscellaneous Symbols Sans serif

```
\cdots
                                       x:y
                                                            x <sup>∵</sup>. y
x . . . y
       \ldots
                 x \cdots y
                                             \vdots
                                                                    \ddots
xℵy
        \aleph
                 χ⁄y
                          \prime
                                       x∀y
                                             \forall
                                                            x∞y
                                                                    \infty
        \hbar
xħy
                 хØу
                         \emptyset
                                       х∃у
                                             \exists
                                                                    \mathbb{Z}
                                                            X\square y
        \imath
                         \nabla
                                                                    \Diamond
                 x\nabla y
                                       X \neg y
                                             \neg
                                                            x◊y
Xıy
        \jmath
                         \surd
                                       xby
                                             \flat
                                                                    \triangle
ХЈУ
                 x√y
                                                            X\triangle V
xℓy
       \ell
                 x \top y
                         \top
                                       хկу
                                             \natural
                                                            х♣у
                                                                    \clubsuit
                                                                    \diamondsuit
хюу
        \wp
                 x \perp y
                         \bot
                                       x‡y
                                             \sharp
                                                            x≎y
xRey
       \Re
                 x||y
                         1/
                                       x\y
                                             \backslash
                                                            х♡у
                                                                    \heartsuit
                                              \partial
                                                                    \spadesuit
xImy
       \Im
                 x∠y
                          \angle
                                       х∂у
                                                            х♠у
х℧у
        \mho
                                              x!y
                                                                    !
                                       x|y
                 X.y
```

10.22 Variable-Sized Operators Sans serif

```
\sum
                             \bigcap
                                            X \odot y
                                                     \bigodot
                     X()y
x \prod y
         \prod
                     χl
                             \bigcup
                                            x \otimes y
                                                     \bigotimes
         \coprod
                                            x \oplus y
                                                     \bigoplus
                    x \mid y
                             \bigsqcup
                             \bigvee
                                            x + y
                                                     \biguplus
x \mid y
         \int
                     x \setminus y
                     x \wedge y
x ∮ y
         \oint
                             \bigwedge
```

10.23 Log-Like Operators Sans serif

```
X COS V
                           X CSC V
                                       x \exp y
                                                   x ker y
                                                                  x lim sup y
                                                                                  x \min y
                                                                                             x sinh y
x arcsin y
              x \cosh y \quad x \deg y
                                      x gcd y
                                                   x lg y
                                                                  x \ln y
                                                                                  x Pr y
                                                                                             x sup y
                                       x hom y
                                                   x lim y
                                                                  x log y
x arctan y
              x cot y
                           x det y
                                                                                  x sec y
                                                                                             x tan y
              x coth y
                          x \operatorname{dim} y \quad x \operatorname{inf} y
                                                   x lim inf y
                                                                  x \max y
                                                                                             x \tanh y
x arg y
                                                                                  x sin y
```

10.24 Delimiters Sans serif

```
x(y
      (
                    x)y
                          )
                                        x \uparrow y
                                                 \uparrow
                                                                     x \uparrow y
                                                                              \Uparrow
x[y
      xy
                          ]
                                        x \downarrow y
                                                 \downarrow
                                                                     x \downarrow y
                                                                              \Downarrow
                                                \updownarrow
      \{
                                        \Updownarrow
x{y
                    x}y
                          \}
                                                                     x \updownarrow y
      \lfloor
                          \rfloor
                                                 \lceil
                                                                              \rceil
x \mid y
                   x|y
                                       xΓy
                                                                     x y
      \langle
                          \rangle
                                       x/y
                                                                     X \setminus y
                                                                              \backslash
X\langle y
                    x\rangle y
x|y
                    x||y
                           \backslash I
```

10.25 Large Delimiters Sans serif

10.26 Math Mode Accents Sans serif

```
\hat{a} \hat{a} \hat{a} \cdot{a} \bar{a} \bar{a} \hat{a} \dot{a} \tilde{a} \breve{a} \tilde{a} \check{a} \hat{a} \grave{a} \bar{a} \vec{a} \tilde{a} \ddot{a} \tilde{a} \tilde{a}
```

10.27 Miscellaneous Constructions Sans serif

```
abc
       \widetilde{abc}
                              abc
                                     \widehat{abc}
àbc
       \overleftarrow{abc}
                              abc
                                     \overrightarrow{abc}
abc
       \overline{abc}
                              abc
                                     \underline{abc}
abc
       \overbrace{abc}
                              abc
                                     \underbrace{abc}
                               ∜abc
√abc
      \sqrt{abc}
                                     \sqrt[n]{abc}
                              <u>abc</u>
xvz
f′
       f,
                                     \frac{abc}{xyz}
```

10.28 AMS Delimiters Sans serif

 $x^{T}y$ \ulcorner $x^{T}y$ \urcorner $x_{L}y$ \llcorner $x_{L}y$ \llcorner

10.29 AMS Arrows Sans serif

```
\dashrightarrow
                                        x ←-- y
                                                  \dashleftarrow
X \longrightarrow V
          \leftleftarrows
x \sqsubseteq y
                                        x \subseteq y
                                                  \leftrightarrows
x \in y
          \Lleftarrow
                                        \twoheadleftarrow
X \leftarrow Y
          \leftarrowtail
                                        \looparrowleft
x \leftrightharpoons y
          \leftrightharpoons
                                                  \curvearrowleft
                                        X \cap Y
          \circlearrowleft
                                                  \Lsh
хоу
                                        хἡу
          \upuparrows
                                                  \upharpoonleft
x \uparrow \uparrow y
                                        x 1 y
x \downarrow y
          \downharpoonleft
                                        x \rightarrow y
                                                  \multimap
x ↔ y
          \leftrightsquigarrow X \rightrightarrows Y
                                                  \rightrightarrows
                                                  \rightrightarrows
x \rightleftarrows y
          \rightleftarrows
                                        x \rightrightarrows y
x \rightleftharpoons y
          \rightleftarrows
                                                  \twoheadrightarrow
                                        X \rightarrow Y
          \rightarrowtail
                                        X \rightarrow Y
                                                  \looparrowright
X \rightarrow Y
          \rightleftharpoons
                                                  \curvearrowright
x \rightleftharpoons y
                                        X \cap Y
хоу
          \circlearrowright
                                        ХЬЛ
                                                  \Rsh
x \downarrow \downarrow y
          \downdownarrows
                                        x \mid y
                                                  \upharpoonright
          \downharpoonright
                                                  \rightsquigarrow
x \mid y
                                        x ⊶ y
```

10.30 AMS Negated Arrows Sans serif

```
x \leftrightarrow y \nleftarrow x \nrightarrow y \nrightarrow x \nleftrightarrow y \nRightarrow x \nleftrightarrow y \nleftrightarrow x \nleftrightarrow y \nleftrightarrow
```

10.31 AMS Greek Sans serif

```
xfy \digamma xxy \varkappa
```

10.32 AMS Hebrew Sans serif

10.33 AMS Miscellaneous Sans serif

xħy	\hbar	хћу	\hslash
$X \triangle y$	$\$ vartriangle	x⊽y	$\$ triangledown
$x\Box y$	\square	x◊y	\lozenge
хSу	\circledS	x∠y	\angle
x∡y	\measuredangle	x∄y	\nexists
х℧у	\mho	х∃у	$ackslash ext{Finv}^u$
хӘу	$\backslash \mathtt{Game}^u$	x k y	$ackslash Bbbk^u$
<i>x</i> \ <i>y</i>	\backprime	хØу	$\$ varnothing
x▲y	\blacktriangle	x▼y	\blacktriangledown
x∎y	\blacksquare	x∳y	\blacklozenge
x★y	\bigstar	x∢y	\sphericalangle
xC y	\complement	хðу	\eth
x/y	$ackslash exttt{diagup}^u$	$x \setminus y$	\diagdown^u

^u Not defined in amssymb.sty, define using the \newsymbol command.

10.34 AMS Binary Operators Sans serif

x + y	\dotplus	$X \setminus Y$	\slash smallsetminus
$x \cap y$	\Cap	$x \cup y$	\Cup
<i>x</i> <u>⊼</u> <i>y</i>	\barwedge	<i>x</i> ⊻ <i>y</i>	\veebar
$x \overline{\wedge} y$	\doublebarwedge	$x \boxminus y$	\boxminus
$X \boxtimes Y$	\boxtimes	$x \odot y$	\boxdot
$x \boxplus y$	\boxplus	<i>x</i> ∗ <i>y</i>	\divideontimes
$x \ltimes y$	\ltimes	$x \rtimes y$	\rtimes
$x \setminus y$	\leftthreetimes	$x \wedge y$	\rightthreetimes
$X \downarrow Y$	\curlywedge	X Y y	\curlyvee
$x \ominus y$	\circleddash	$X \otimes y$	\circledast
$x \odot y$	\circledcirc	<i>x</i> • <i>y</i>	\centerdot
<i>x</i> T <i>y</i>	\intercal		

10.35 AMS Relations Sans serif

- $x \le y$ \leqslant
- $x \lesssim y$ \lesssim
- $x \approx y$ \approxeq
- $x \ll y \setminus 111$
- $x \leq y$ \lesseggtr
- $x \doteq y \setminus doteqdot$
- x = y \fallingdotseq
- $x \simeq y$ \backsimeq
- $x \in y \setminus Subset$
- $x \leq y$ \preccurlyeq
- $x \lesssim y$ \precsim
- $x \triangleleft y$ \vartriangleleft
- $x \models y \quad \forall Dash$
- $x \smile y$ \smallsmile
- x = y \bumpeq
- $x \ge y \setminus \text{geqq}$
- $x \geqslant y$ \eqslantgtr
- $x \gtrsim y$ \gtrapprox
- $x \gg y \setminus ggg$
- $x \geq y$ \gtreqless
- $x = y \setminus \text{eqcirc}$
- $x \triangleq y$ \triangleq
- $x \approx y$ \thickapprox
- $x \ni y \setminus \text{Supset}$
- $x \succcurlyeq y$ \succcurlyeq
- $x \gtrsim y$ \succsim
- $x \triangleright y$ \vartriangleright
- $x \Vdash y$ \Vdash
- $X \parallel Y$ \shortparallel
- $x \pitchfork y$ \pitchfork
- $x \triangleleft y$ \blacktriangleleft
- $x \ni y$ \backepsilon
- x∵y \because

10.36 AMS Negated Relations Sans serif

	\-7		\-7
x≮y	\nless	x≰y	\nleq
	\nleqslant		
$x \leq y$	\label{lneq}	<i>x</i> ≨ <i>y</i>	\lneqq
<i>x</i> ≨ <i>y</i>	$lem:lemma_lemma$	<i>x</i> ≲ <i>y</i>	\label{lnsim}
x ≨ y	$\label{lnapprox}$	$x \not\prec y$	\nprec
$x \not \leq y$	\npreceq	<i>x</i> ⋨ <i>y</i>	\precnsim
x ≨ y	\precnapprox	<i>x</i> ≁ <i>y</i>	\n
хíу	\nshortmid	x∤y	\nmid
x⊬y	\nvdash	x ⊭ y	\nvDash
<i>x</i> ⋪ <i>y</i>	\ntriangleleft	<i>x</i> ⊈ <i>y</i>	\ntrianglelefteq
<i>x</i> ⊈ <i>y</i>	\nsubseteq	<i>x</i> ⊊ <i>y</i>	\subsetneq
$x \subsetneq y$	\varsubsetneq	x ⊊ y	\subsetneqq
<i>x</i> ≨ <i>y</i>	\varsubsetneqq	x≯y	\ngtr
<i>x</i> ≱ <i>y</i>	\ngeq	x≱y	\ngeqslant
x ≹ y	\ngeqq	$x \ge y$	\gneq
$x \ngeq y$	\gneqq	$x \geq y$	\gvertneqq
$x \gtrsim y$	\gnsim	x ≩ y	\gnapprox
$x \not\succ y$	\nsucc	<i>x</i> ≱ <i>y</i>	\nsucceq
<i>x</i>	\nsucceqq	x	\succnsim
x ‰ y	\succnapprox	$x \not\cong y$	\ncong
хиу	\nshortparallel	<i>x</i> ∦ <i>y</i>	nparallel
x ⊭ y	\nvDash	x⊮y	\nVDash
x ≯ y	\ntriangleright	x ≱ y	\ntrianglerighteq
<i>x</i> ⊉ <i>y</i>	\nsupseteq	x ⊉ y	\nsupseteqq
x ⊋ y	\supsetneq	$x \supseteq y$	
x⊋y	\supsetneqq	x⊋y	
<i>+</i> '	1 11	+ /	1 11

11 Sans serif bold

11.1 Overview Sans serif bold

Default: $\alpha\alpha b\beta G\Gamma P\Pi \alpha\beta$ mathnormal: $\alpha\alpha b\beta G\Gamma P\Pi$ mathrm: $\alpha\alpha b\beta G\Gamma P\Pi$ mathup: $\alpha\alpha b\beta G\Gamma P\Pi$ mathit: $\alpha\alpha b\beta G\Gamma P\Pi$ mathbf: $\alpha\alpha b\beta G\Gamma P\Pi$ mathbft: $\alpha\alpha b\beta G\Gamma P\Pi$

Default: $\alpha\alpha b\beta G\Gamma P\Pi$ mathnormal: $\alpha\alpha b\beta G\Gamma P\Pi$ mathrm: $\alpha\alpha b\beta G\Gamma P\Pi$ mathup: $\alpha\alpha b\beta G\Gamma P\Pi$ mathit: $\alpha\alpha b\beta G\Gamma P\Pi$

mathbf: **ααbβGΓΡΠ** mathbfit: **ααbβGΓΡΠ**

Default: $\alpha\alpha b\beta G\Gamma P\Pi$ mathnormal: $\alpha\alpha b\beta G\Gamma P\Pi$ mathrm: $\alpha\alpha b\beta G\Gamma P\Pi$ mathup: $\alpha\alpha b\beta G\Gamma P\Pi$ mathit: $\alpha\alpha b\beta G\Gamma P\Pi$ mathbf: $\alpha\alpha b\beta G\Gamma P\Pi$ mathbf: $\alpha\alpha b\beta G\Gamma P\Pi$

11.2 Formulas Sans serif bold

 $\alpha,\,\beta,\,\gamma,\,\delta,\,\epsilon,\,\zeta,\,\eta,\,\theta,\,\iota,\,\kappa,\,\lambda,\,\mu,\,\nu,\,\xi,\,o,\,\pi,\,\rho,\,\sigma,\,\zeta,\,\tau,\,\upsilon,\,\phi,\,\chi,\,\psi,\,\omega,\,\varsigma,\,A,\,B,\,\Gamma,\,\Delta,\,E,\,Z,\,H,\,\theta,\,I,\,K,\,\Lambda,\,M,\,N,\,\Xi,\,O,\,\Pi,\,P,\,\Sigma,\,T,\,Y,\,\Phi,\,X,\,\Psi,\,\Omega,\,F,$

 $\alpha,\,\beta,\,\gamma,\,\delta,\,\epsilon,\,\zeta,\,\eta,\,\theta,\,\iota,\,\kappa,\,\lambda,\,\mu,\,\nu,\,\xi,\,o,\,\pi,\,\rho,\,\sigma,\,\varsigma,\,\tau,\,\upsilon,\,\phi,\,\chi,\,\psi,\,\omega,\,\digamma,\,A,\,B,\,\Gamma,\,\Delta,\,E,\,Z,\,H,\,\Theta,\,I,\,K,\,\Lambda,\,M,\,N,\,\Xi,\,O,\,\Pi,\,P,\,\Sigma,\,T,\,Y,\,\Phi,\,X,\,\Psi,\,\Omega,\,F,$

 α , β , γ , δ , ϵ , ζ , η , θ , ι , κ , λ , μ , ν , ξ , o, π , ρ , σ , ζ , τ , υ , ϕ , χ , ψ , ω , ϵ , A, B, Γ , Δ , E, Z, H, Θ , I, K, Λ , M, N, Ξ , O, Π , P, Σ , T, Y, Φ , X, Ψ , Ω , F,

 $\alpha a > 0$, $\beta b + (3 \times 27)$, $\Gamma G = 7 < 8$, λ

 $\alpha a > 0$, $\beta b + (3 \times 27)$, $\Gamma G = 7 < 8$, λ

 $s \pm 3y + y - 1 = 4 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) dx = \left(\frac{27}{2}\right)$$

 $s \pm 3\gamma + y - 1 \times 7$

$$\sum_{i=0}^{\infty} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) dx = \left(\frac{27}{2}\right)$$

 $s \pm 3y + y - 1 \times 7$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) \, \mathbf{d}x = \left(\frac{27}{2}\right)$$

$$s \pm 3\gamma + y - 1 \times 7$$

$$\sum_{i=0}^{N} x^{i}$$

$$\int_{-\infty}^{\infty} x f(x) dx = \left(\frac{27}{2}\right)$$

11.3 Math Alphabets Sans serif bold

Default

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ, Δ, E, Z, H, Θ, I, K, Λ, M, N, Ξ, Ο, Π, P, Σ, T, Y, Φ, X, Ψ, Ω, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, τ, υ, φ, χ, ψ, ω, ε, θ, ω, ρ, ζ, φ,

Math Normal (\mathnormal)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ, Δ, E, Z, H, Θ, I, K, Λ, M, N, Ξ, Ο, Π, P, Σ, T, Y, Φ, X, Ψ, Ω, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, τ, υ, φ, χ, ψ, ω, ε, θ, ω, ρ, ς, φ,

Math Italic (\mathit)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ, Δ, E, Z, H, Θ, I, K, Λ, M, N, Ξ, Ο, Π, P, Σ, T, Y, Φ, X, Ψ, Ω, α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, ν, ξ, ο, π, ρ, σ, τ, υ, φ, χ, ψ, ω, ε, θ, ω, ρ, ς, φ,

Math Roman (\mathrm)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, A, B, Γ, Δ, E, Z, H, Θ, I, K, Λ, M, N, Ξ, O, Π, P, Σ, T, Υ, Φ, X, Ψ, Ω, $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, v, \phi, \chi, \psi, \omega, \epsilon, \vartheta, \varpi, \varrho, \varsigma, \varphi,$

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,

 $A, B, \Gamma, \Delta, E, Z, H, \Theta, I, K, \Lambda, M, N, \Xi, O, \Pi, P, \Sigma, T, Y, \Phi, X, \Psi, \Omega$

 $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \xi, o, \pi, \rho, \sigma, \tau, \upsilon, \phi, \chi, \psi, \omega, \varepsilon, \vartheta, \omega, \rho, \varsigma, \varphi,$

Caligraphic (\mathcal)

 $\mathcal{A},\mathcal{B},\mathcal{C},\mathfrak{D},\mathcal{E},\mathcal{F},\mathcal{G},\mathcal{H},\mathcal{I},\mathcal{I},\mathcal{X},\mathcal{L},\mathcal{M},\mathcal{N},\mathcal{O},\mathcal{P},\mathcal{Q},\mathcal{R},\mathcal{S},\mathcal{T},\mathcal{U},\mathcal{V},\mathcal{W},\mathcal{X},\mathcal{Y},\mathcal{Z},$

Script (\mathscr)

$$\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{I}, \mathcal{I}, \mathcal{K}, \mathcal{L}, \mathcal{M}, \mathcal{N}, \mathcal{O}, \mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{F}, \mathcal{T}, \mathcal{U}, \mathcal{V}, \mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{Z}$$

Fraktur (\mathfrak)

 $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{E}, \mathfrak{F}, \mathfrak{G}, \mathfrak{H}, \mathfrak{I}, \mathfrak{I}, \mathfrak{K}, \mathfrak{L}, \mathfrak{M}, \mathfrak{N}, \mathfrak{D}, \mathfrak{P}, \mathfrak{Q}, \mathfrak{R}, \mathfrak{G}, \mathfrak{T}, \mathfrak{U}, \mathfrak{V}, \mathfrak{W}, \mathfrak{X}, \mathfrak{Y}, \mathfrak{Z}, \mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d}, \mathfrak{e}, \mathfrak{f}, \mathfrak{g}, \mathfrak{h}, \mathfrak{i}, \mathfrak{j}, \mathfrak{k}, \mathfrak{l}, \mathfrak{m}, \mathfrak{n}, \mathfrak{o}, \mathfrak{p}, \mathfrak{q}, \mathfrak{r}, \mathfrak{s}, \mathfrak{t}, \mathfrak{u}, \mathfrak{v}, \mathfrak{w}, \mathfrak{x}, \mathfrak{y}, \mathfrak{z}, \mathfrak{g}$

Blackboard Bold (\mathbb)

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,

11.4 Character Sidebearings Sans serif bold

Default

$$\begin{aligned} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |T| + |A| + |E| + |Z| + |H| + |O| + |I| + |K| + |A| + |M| + \\ |N| + |E| + |O| + |\Pi| + |P| + |E| + |T| + |Y| + |O| + |X| + |\Psi| + |\Omega| + \\ |a| + |\beta| + |y| + |\delta| + |E| + |\zeta| + |\eta| + |O| + |I| + |K| + |A| + |\mu| + \\ |v| + |\xi| + |O| + |\pi| + |\rho| + |\sigma| + |\tau| + |v| + |\phi| + |\chi| + |\psi| + |\omega| + \\ |\varepsilon| + |\partial| + |\omega| + |\rho| + |\zeta| + |\phi| + \end{aligned}$$

$$\begin{aligned} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |J| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |I| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |\Gamma| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + \\ |N| + |E| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |\Upsilon| + |\Phi| + |X| + |\Psi| + |\Omega| + \end{aligned}$$

$$\begin{aligned} |A| + |B| + |C| + |D| + |E| + |F| + |G| + |H| + |I| + |I| + |K| + |L| + |M| + \\ |N| + |O| + |P| + |Q| + |R| + |S| + |T| + |U| + |V| + |W| + |X| + |Y| + |Z| + \\ |a| + |b| + |c| + |d| + |e| + |f| + |g| + |h| + |i| + |j| + |k| + |l| + |m| + \\ |n| + |o| + |p| + |q| + |r| + |s| + |t| + |u| + |v| + |w| + |x| + |y| + |z| + \\ |A| + |B| + |T| + |\Delta| + |E| + |Z| + |H| + |\Theta| + |I| + |K| + |A| + |M| + \\ |N| + |E| + |O| + |\Pi| + |P| + |\Sigma| + |T| + |Y| + |\Phi| + |X| + |\Psi| + |\Omega| + \\ \end{aligned}$$

Math Calligraphic (\mathcal)

$$\begin{aligned} |\mathcal{A}| + |\mathcal{B}| + |\mathcal{C}| + |\mathcal{D}| + |\mathcal{E}| + |\mathcal{F}| + |\mathcal{G}| + |\mathcal{H}| + |\mathcal{I}| + |\mathcal{I}| + |\mathcal{I}| + |\mathcal{H}| +$$

11.5 Superscript Positioning Sans serif bold

Default

$$\begin{array}{l} A^2+B^2+C^2+D^2+E^2+F^2+G^2+H^2+I^2+J^2+K^2+L^2+M^2+\\ N^2+O^2+P^2+Q^2+R^2+S^2+T^2+U^2+V^2+W^2+X^2+Y^2+Z^2+\\ a^2+b^2+c^2+d^2+e^2+f^2+g^2+h^2+i^2+j^2+k^2+I^2+m^2+\\ n^2+o^2+p^2+q^2+r^2+s^2+t^2+u^2+v^2+w^2+x^2+y^2+z^2+\\ A^2+B^2+\Gamma^2+\Delta^2+E^2+Z^2+H^2+\Theta^2+I^2+K^2+\Lambda^2+M^2+\\ N^2+\Xi^2+O^2+\Pi^2+P^2+\Sigma^2+T^2+Y^2+\Phi^2+X^2+\Psi^2+\Omega^2+\\ a^2+\beta^2+\gamma^2+\delta^2+\epsilon^2+\zeta^2+\eta^2+\theta^2+\iota^2+\kappa^2+\lambda^2+\mu^2+\\ v^2+\xi^2+o^2+\pi^2+\rho^2+\sigma^2+\tau^2+v^2+\phi^2+\chi^2+\psi^2+\omega^2+\\ \epsilon^2+\vartheta^2+\omega^2+\rho^2+\zeta^2+\varphi^2+\end{array}$$

$$\begin{split} A^2 + B^2 + C^2 + D^2 + E^2 + F^2 + G^2 + H^2 + I^2 + J^2 + K^2 + L^2 + M^2 + \\ N^2 + O^2 + P^2 + Q^2 + R^2 + S^2 + T^2 + U^2 + V^2 + W^2 + X^2 + Y^2 + Z^2 + \\ a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2 + j^2 + k^2 + I^2 + m^2 + \\ n^2 + o^2 + p^2 + q^2 + r^2 + s^2 + t^2 + u^2 + v^2 + w^2 + x^2 + y^2 + z^2 + \\ A^2 + B^2 + \Gamma^2 + \Delta^2 + E^2 + Z^2 + H^2 + \Theta^2 + I^2 + K^2 + \Lambda^2 + M^2 + \\ N^2 + \Xi^2 + O^2 + \Pi^2 + P^2 + \Sigma^2 + T^2 + \Upsilon^2 + \Phi^2 + X^2 + \Psi^2 + \Omega^2 + \Omega^2$$

$$A^{2} + B^{2} + C^{2} + D^{2} + E^{2} + F^{2} + G^{2} + H^{2} + I^{2} + J^{2} + K^{2} + L^{2} + M^{2} + N^{2} + O^{2} + P^{2} + Q^{2} + R^{2} + S^{2} + T^{2} + U^{2} + V^{2} + W^{2} + X^{2} + Y^{2} + Z^{2} + a^{2} + b^{2} + c^{2} + d^{2} + e^{2} + f^{2} + g^{2} + h^{2} + i^{2} + j^{2} + k^{2} + l^{2} + m^{2} + n^{2} + o^{2} + p^{2} + q^{2} + r^{2} + s^{2} + t^{2} + u^{2} + v^{2} + w^{2} + x^{2} + y^{2} + z^{2} + A^{2} + B^{2} + \Gamma^{2} + \Delta^{2} + E^{2} + Z^{2} + H^{2} + \Theta^{2} + I^{2} + K^{2} + \Lambda^{2} + M^{2} + N^{2} + \Xi^{2} + O^{2} + \Pi^{2} + P^{2} + \Sigma^{2} + T^{2} + Y^{2} + \Phi^{2} + X^{2} + \Psi^{2} + \Omega^{2} + \Omega^{2$$

Math Calligraphic (\mathcal)

$$\mathcal{A}^{2} + \mathcal{B}^{2} + \mathcal{C}^{2} + \mathcal{D}^{2} + \mathcal{E}^{2} + \mathcal{F}^{2} + \mathcal{L}^{2} + \mathcal{M}^{2} + \mathcal{N}^{2} + \mathcal{O}^{2} + \mathcal{P}^{2} + \mathcal{P}^{2}$$

11.6 Subscript Positioning Sans serif bold

Default

$$\begin{aligned} A_{i} + B_{i} + C_{i} + D_{i} + E_{i} + F_{i} + G_{i} + H_{i} + I_{i} + J_{i} + K_{i} + L_{i} + M_{i} + \\ N_{i} + O_{i} + P_{i} + Q_{i} + R_{i} + S_{i} + T_{i} + U_{i} + V_{i} + W_{i} + X_{i} + Y_{i} + Z_{i} + \\ a_{i} + b_{i} + c_{i} + d_{i} + e_{i} + f_{i} + g_{i} + h_{i} + i_{i} + j_{i} + k_{i} + l_{i} + m_{i} + \\ n_{i} + o_{i} + p_{i} + q_{i} + r_{i} + s_{i} + t_{i} + u_{i} + v_{i} + w_{i} + x_{i} + y_{i} + z_{i} + \\ A_{i} + B_{i} + \Gamma_{i} + \Delta_{i} + E_{i} + Z_{i} + H_{i} + \Theta_{i} + I_{i} + K_{i} + \Lambda_{i} + M_{i} + \\ N_{i} + \Xi_{i} + O_{i} + \Pi_{i} + P_{i} + \Sigma_{i} + T_{i} + Y_{i} + \Phi_{i} + X_{i} + \Psi_{i} + \Omega_{i} + \\ \alpha_{i} + \beta_{i} + \gamma_{i} + \delta_{i} + \varepsilon_{i} + \zeta_{i} + \eta_{i} + \theta_{i} + \iota_{i} + \kappa_{i} + \lambda_{i} + \mu_{i} + \\ v_{i} + \xi_{i} + o_{i} + \pi_{i} + \rho_{i} + \sigma_{i} + \tau_{i} + \upsilon_{i} + \psi_{i} + \omega_{i} + \\ \varepsilon_{i} + \vartheta_{i} + \omega_{i} + \rho_{i} + \zeta_{i} + \varphi_{i} + \end{aligned}$$

$$\begin{split} A_{i} + B_{i} + C_{i} + D_{i} + E_{i} + F_{i} + G_{i} + H_{i} + I_{i} + J_{i} + K_{i} + L_{i} + M_{i} + \\ N_{i} + O_{i} + P_{i} + Q_{i} + R_{i} + S_{i} + T_{i} + U_{i} + V_{i} + W_{i} + X_{i} + Y_{i} + Z_{i} + \\ a_{i} + b_{i} + c_{i} + d_{i} + e_{i} + f_{i} + g_{i} + h_{i} + i_{i} + j_{i} + k_{i} + l_{i} + m_{i} + \\ n_{i} + o_{i} + p_{i} + q_{i} + r_{i} + s_{i} + t_{i} + u_{i} + v_{i} + w_{i} + x_{i} + y_{i} + z_{i} + \\ A_{i} + B_{i} + \Gamma_{i} + \Delta_{i} + E_{i} + Z_{i} + H_{i} + \Theta_{i} + I_{i} + K_{i} + \Lambda_{i} + M_{i} + \\ N_{i} + \Xi_{i} + O_{i} + \Pi_{i} + P_{i} + \Sigma_{i} + T_{i} + \Upsilon_{i} + \Phi_{i} + X_{i} + \Psi_{i} + \Omega_{i} + \\ \end{split}$$

$$A_{i} + B_{i} + C_{i} + D_{i} + E_{i} + F_{i} + G_{i} + H_{i} + I_{i} + J_{i} + K_{i} + L_{i} + M_{i} + N_{i} + O_{i} + P_{i} + Q_{i} + R_{i} + S_{i} + T_{i} + U_{i} + V_{i} + W_{i} + X_{i} + Y_{i} + Z_{i} + A_{i} + B_{i} + C_{i} + A_{i} + E_{i} + F_{i} + G_{i} + H_{i} + H_{i$$

Math Calligraphic (\mathcal)

$$\mathcal{A}_i + \mathcal{B}_i + \mathcal{C}_i + \mathcal{D}_i + \mathcal{E}_i + \mathcal{F}_i + \mathcal{G}_i + \mathcal{H}_i + \mathcal{J}_i + \mathcal{J}_i + \mathcal{H}_i + \mathcal$$

11.7 Accent Positioning Sans serif bold

Default

$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{l} + \hat{m} + \\ \hat{n} + \hat{O} + \hat{P} + \hat{q} + \hat{r} + \hat{S} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{Z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{O} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{Y} + \hat{O} + \hat{X} + \hat{\Psi} + \hat{\Omega} + \\ \hat{\alpha} + \hat{\beta} + \hat{\gamma} + \hat{\delta} + \hat{\epsilon} + \hat{\zeta} + \hat{\eta} + \hat{O} + \hat{i} + \hat{\kappa} + \hat{\lambda} + \hat{\mu} + \\ \hat{v} + \hat{\xi} + \hat{O} + \hat{\pi} + \hat{P} + \hat{O} + \hat{\tau} + \hat{v} + \hat{\phi} + \hat{\chi} + \hat{\Psi} + \hat{\omega} + \\ \hat{\epsilon} + \hat{\vartheta} + \hat{\sigma} + \hat{\sigma} + \hat{c} + \hat{c} + \hat{\sigma} + \end{aligned}$$

Math Italic (\mathit)

$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{I} + \hat{J} + \hat{k} + \hat{I} + \hat{m} + \hat{\ell} + \hat{\wp} + \hat{I} + \hat{J} + \hat{I} \\ \hat{n} + \hat{O} + \hat{p} + \hat{q} + \hat{r} + \hat{S} + \hat{t} + \hat{u} + \hat{V} + \hat{w} + \hat{x} + \hat{y} + \hat{Z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{O} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{Y} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} + \\ \hat{\alpha} + \hat{\beta} + \hat{\gamma} + \hat{\delta} + \hat{\epsilon} + \hat{\zeta} + \hat{\eta} + \hat{\theta} + \hat{I} + \hat{K} + \hat{\lambda} + \hat{\mu} + \\ \hat{v} + \hat{\xi} + \hat{O} + \hat{\pi} + \hat{\rho} + \hat{O} + \hat{\tau} + \hat{U} + \hat{\phi} + \hat{\chi} + \hat{\Psi} + \hat{\omega} + \\ \hat{\epsilon} + \hat{\vartheta} + \hat{\sigma} + \hat{\rho} + \hat{\varsigma} + \hat{\varsigma} + \hat{\varphi} +$$

Math Roman (\mathrm)

$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{i} + \hat{j} + \hat{k} + \hat{I} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{\Theta} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{\Upsilon} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} +$$

Math Bold (\mathbf)

$$\hat{0} + \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} + \hat{7} + \hat{8} + \hat{9} + \\ \hat{A} + \hat{B} + \hat{C} + \hat{D} + \hat{E} + \hat{F} + \hat{G} + \hat{H} + \hat{I} + \hat{J} + \hat{K} + \hat{L} + \hat{M} + \\ \hat{N} + \hat{O} + \hat{P} + \hat{Q} + \hat{R} + \hat{S} + \hat{T} + \hat{U} + \hat{V} + \hat{W} + \hat{X} + \hat{Y} + \hat{Z} + \\ \hat{a} + \hat{b} + \hat{c} + \hat{d} + \hat{e} + \hat{f} + \hat{g} + \hat{h} + \hat{I} + \hat{J} + \hat{k} + \hat{I} + \hat{m} + \\ \hat{n} + \hat{o} + \hat{p} + \hat{q} + \hat{r} + \hat{s} + \hat{t} + \hat{u} + \hat{v} + \hat{w} + \hat{x} + \hat{y} + \hat{z} + \\ \hat{A} + \hat{B} + \hat{\Gamma} + \hat{\Delta} + \hat{E} + \hat{Z} + \hat{H} + \hat{O} + \hat{I} + \hat{K} + \hat{\Lambda} + \hat{M} + \\ \hat{N} + \hat{\Xi} + \hat{O} + \hat{\Pi} + \hat{P} + \hat{\Sigma} + \hat{T} + \hat{Y} + \hat{\Phi} + \hat{X} + \hat{\Psi} + \hat{\Omega} + \end{aligned}$$

Math Calligraphic (\mathcal)

$$\hat{\mathcal{A}} + \hat{\mathcal{B}} + \hat{\mathcal{C}} + \hat{\mathcal{D}} + \hat{\mathcal{E}} + \hat{\mathcal{F}} + \hat{\mathcal{G}} + \hat{\mathcal{H}} + \hat{\mathcal{J}} + \hat{\mathcal{J}} + \hat{\mathcal{J}} + \hat{\mathcal{L}} + \hat{\mathcal{M}} + \hat{\mathcal{J}} + \hat{\mathcal{D}} + \hat{\mathcal{$$

11.8 Differentials Sans serif bold

```
dA + dB + dC + dD + dE + dF + dG + dH + dI + dJ + dK + dL + dM +
dN + dO + dP + dQ + dR + dS + dT + dU + dV + dW + dX + dY + dZ +
da + db + dc + dd + de + df + dg + dh + di + dj + dk + dl + dm +
dn + do + dp + dq + dr + ds + dt + du + dv + dw + dx + dy + dz +
dA + dB + d\Gamma + d\Delta + dE + dZ + dH + d\Theta + dI + dK + d\Lambda + dM +
dN + d\Xi + dO + d\Pi + dP + d\Sigma + dT + dY + d\Phi + dX + d\Psi + d\Omega +
dv + d\xi + do + d\pi + d\rho + d\sigma + d\tau + d\nu + d\phi + d\chi + d\psi + d\omega +
d\varepsilon + d\vartheta + d\omega + d\rho + d\varsigma + d\varphi +
dA + dB + d\Gamma + d\Delta + dE + dZ + dH + d\Theta + dI + dK + d\Lambda + dM +
dN + d\Xi + dO + d\Pi + dP + d\Sigma + dT + d\Upsilon + d\Phi + dX + d\Psi + d\Omega +
        \partial A + \partial B + \partial C + \partial D + \partial E + \partial F + \partial G + \partial H + \partial I + \partial J + \partial K + \partial L + \partial M + \partial C 
        \partial N + \partial O + \partial P + \partial Q + \partial R + \partial S + \partial T + \partial U + \partial V + \partial W + \partial X + \partial Y + \partial Z + \partial C 
        \partial a + \partial b + \partial c + \partial d + \partial e + \partial f + \partial g + \partial h + \partial i + \partial j + \partial k + \partial l + \partial m + \partial h 
        \partial n + \partial o + \partial p + \partial q + \partial r + \partial s + \partial t + \partial u + \partial v + \partial w + \partial x + \partial y + \partial z 
        \partial A + \partial B + \partial \Gamma + \partial \Delta + \partial E + \partial Z + \partial H + \partial \Theta + \partial I + \partial K + \partial \Lambda + \partial M + \partial A 
        \partial N + \partial \Xi + \partial O + \partial \Pi + \partial P + \partial \Sigma + \partial T + \partial Y + \partial \Phi + \partial X + \partial \Psi + \partial \Omega + \partial \Psi + \partial \Psi
```

 $\partial \alpha + \partial \beta + \partial \gamma + \partial \delta + \partial \varepsilon + \partial \zeta + \partial \eta + \partial \theta + \partial \iota + \partial \kappa + \partial \lambda + \partial \mu + \partial \nu + \partial \xi + \partial \sigma + \partial \pi + \partial \rho + \partial \sigma + \partial \tau + \partial \nu + \partial \phi + \partial \chi + \partial \psi + \partial \omega + \partial \phi + \partial \phi$

$$\begin{split} \partial \mathbf{A} + \partial \mathbf{B} + \partial \mathbf{\Gamma} + \partial \Delta + \partial \mathbf{E} + \partial \mathbf{Z} + \partial \mathbf{H} + \partial \mathbf{\Theta} + \partial \mathbf{I} + \partial \mathbf{K} + \partial \Lambda + \partial \mathbf{M} + \\ \partial \mathbf{N} + \partial \mathbf{\Xi} + \partial \mathbf{O} + \partial \mathbf{\Pi} + \partial \mathbf{P} + \partial \mathbf{\Sigma} + \partial \mathbf{T} + \partial \mathbf{\Upsilon} + \partial \mathbf{\Phi} + \partial \mathbf{X} + \partial \mathbf{\Psi} + \partial \mathbf{\Omega} + \partial \mathbf{\Psi} + \partial \mathbf{W} + \partial \mathbf$$

11.9 Slash Kerning Sans serif bold

 $\partial \varepsilon + \partial \vartheta + \partial \omega + \partial \rho + \partial \zeta + \partial \varphi +$

```
 1/A + 1/B + 1/C + 1/D + 1/E + 1/F + 1/G + 1/H + 1/I + 1/I + 1/K + 1/L + 1/M + 1/N + 1/O + 1/P + 1/Q + 1/R + 1/S + 1/T + 1/U + 1/V + 1/W + 1/X + 1/Y + 1/Z + 1/a + 1/b + 1/c + 1/d + 1/e + 1/f + 1/g + 1/h + 1/i + 1/j + 1/k + 1/l + 1/m + 1/n + 1/o + 1/p + 1/q + 1/r + 1/s + 1/t + 1/u + 1/v + 1/w + 1/x + 1/y + 1/z + 1/A + 1/B + 1/\Gamma + 1/A + 1/E + 1/Z + 1/H + 1/O + 1/I + 1/K + 1/\Lambda + 1/M + 1/N + 1/E + 1/O + 1/\Pi + 1/P + 1/\Sigma + 1/T + 1/Y + 1/O + 1/X + 1/\Psi + 1/O + 1/A + 1/B + 1/Y + 1/S + 1/S + 1/S + 1/S + 1/S + 1/O + 1/M + 1/F + 1/F
```

 $A/2+B/2+C/2+D/2+E/2+F/2+G/2+H/2+I/2+J/2+K/2+L/2+M/2+N/2+D/2+P/2+Q/2+R/2+S/2+T/2+U/2+V/2+W/2+X/2+Y/2+Z/2+A/2+D/2+C/2+d/2+e/2+f/2+g/2+h/2+i/2+j/2+k/2+I/2+m/2+a/2+b/2+c/2+d/2+e/2+f/2+g/2+h/2+i/2+j/2+k/2+I/2+m/2+n/2+o/2+p/2+q/2+r/2+s/2+t/2+u/2+v/2+w/2+x/2+y/2+z/2+A/2+B/2+F/2+A/2+E/2+Z/2+H/2+O/2+I/2+K/2+A/2+M/2+N/2+E/2+D/2+F/2+Z/2+H/2+O/2+I/2+K/2+A/2+M/2+N/2+E/2+O/2+H/2+D/2+T/2+Y/2+D/2+X/2+\Psi$

11.10 Big Operators Sans serif bold

$$\sum_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n} \int_{i=1}^{n} x^{n} \oint_{i=1}^{n} x^{n}$$

$$\bigotimes_{i=1}^{n} x^{n} \bigoplus_{i=1}^{n} x^{n} \bigwedge_{i=1}^{n} x^{n} \bigvee_{i=1}^{n} x^{n} \bigoplus_{i=1}^{n} x^{n} \bigcup_{i=1}^{n} x^{n} \prod_{i=1}^{n} x^{n}$$

11.11 Radicals Sans serif bold

$$\sqrt{x+y} \qquad \sqrt{x^2+y^2} \qquad \sqrt{x_i^2+y_j^2} \qquad \sqrt{\left(\frac{\cos x}{2}\right)} \qquad \sqrt{\left(\frac{\sin x}{2}\right)}$$

$$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}$$

11.12 Over- and Underbraces Sans serif bold

$$x \quad x+y \quad x^2+y^2 \quad x_i^2+y_j^2 \quad x \quad x+y \quad x_i+y_j \quad x_i^2+y_j^2$$

11.13 Normal and Wide Accents Sans serif bold

$$\dot{x}$$
 \ddot{x} \ddot{x}

11.14 Long Arrows Sans serif bold

$$\leftarrow \rightarrow \leftrightarrow \leftarrow \rightarrow \leftarrow \leftarrow \Rightarrow \Leftrightarrow \Longleftrightarrow$$

11.15 Left and Right Delimiters Sans serif bold

$$-(f) - -[f] - -|f| - -|f| - -\langle f \rangle - -\{f\} -$$

Using \left and \right.

$$-(f) - -[f] - -[f] - -[f] - -(f) - -\{f\} -$$

- $)f(-)f[--/f/--f] - -/f/--f/-$

11.16 Big-g-g Delimiters Sans serif bold

11.17 Binary Operators Sans serif bold

$x \pm y$	\pm	$x \cap y$	\cap	x ⋄ y	\diamond	$x \oplus y$	\oplus
$x \mp y$	\mp	$x \cup y$	\cup	$X \triangle y$	\bigtriangleup	$x \ominus y$	$\operatorname{\backslash} \mathtt{ominus}$
$\mathbf{x} \times \mathbf{y}$	\times	x ⊎ y	\uplus	$x \nabla y$	\bigtriangledown	$x \otimes y$	\otimes
x ÷ y	\div	$x \sqcap y$	\sqcap	x ⊲ y	\triangleleft	$X \oslash Y$	\oslash
x * y	\ast	$x \sqcup y$	\sqcup	x ⊳ y	\triangleright	x ⊙ y	\odot
$x \star y$	\star	$x \vee y$	\vee	$x \triangleleft y$	\lhd	$x \bigcirc y$	\bigcirc
$x \circ y$	\circ	$x \wedge y$	\wedge	x ⊳ y	\rhd	x † y	\dagger
$x \bullet y$	\bullet	x \ y	\setminus	$x \triangleleft y$	\unlhd	x ‡ y	\ddagger
$x \cdot y$	\cdot	x≀y	\wr	x ⊵ y	\unrhd	x§y	\S
x + y	+	x – y	_	x∐y	\amalg	x¶y	\P

11.18 Relations Sans serif bold

```
x \leq y
                            x \ge y
                                                         x \equiv y \setminus \text{equiv}
                                                                                          \models
         \leq
                                      \geq
                                                                               x \models y
x < y
          \prec
                            x > y
                                      \succ
                                                         x \sim y
                                                                  \sim
                                                                               X \perp y
                                                                                          \perp
x \leq y
          \preceq
                            x \geq y
                                      \succeq
                                                         x \simeq y
                                                                  \simeq
                                                                               x \mid y
                                                                                          \mid
x \ll y
         \11
                                                                                          \parallel
                            x \gg y
                                      \gg
                                                         \mathbf{x} \times \mathbf{y}
                                                                  \asymp
                                                                               x \parallel y
X \subset Y
          \subset
                            X\supset Y
                                      \supset
                                                         x \approx y
                                                                  \approx x \bowtie y
                                                                                         \bowtie
x \subseteq y
          \subseteq
                            x ⊇ y
                                      \supseteq
                                                         x \cong y
                                                                  \cong
                                                                               x \bowtie y
                                                                                          \Join
          \sqsubset
                                      \sqsupset
                                                         x \neq y
X \sqsubset Y
                            X \supset Y
                                                                  \neq
                                                                               x \sim y
                                                                                          \smile
x \sqsubseteq y
         \sqsubseteq x \supseteq y
                                      \sqsupseteq x \doteq y
                                                                  \doteq
                                                                                          \frown
                                                                               x \smile y
                                                                  \propto x = y
         \in
                                      \ni
x \in y
                            X \ni y
                                                         X \propto y
          \vdash
                            X \dashv y
                                      \dashv
                                                         x < y <
                                                                               x > y
                                                                                          >
x ⊢ y
x:y
```

11.19 Punctuation Sans serif bold

```
x,y , x;y ; x:y \colon x.y \ldotp x\cdot y \cdotp
```

11.20 Arrows Sans serif bold

$x \leftarrow y$	\leftarrow	$x \leftarrow y$	\longleftarrow	x↑y	\uparrow
$x \leftarrow y$	\Leftarrow	$x \longleftarrow y$	\Longleftarrow	$x \uparrow y$	\Uparrow
$x \rightarrow y$	\rightarrow	$x \longrightarrow y$	$\label{longright} \$	$x \downarrow y$	\downarrow
$x \Rightarrow y$	\Rightarrow	$x \Longrightarrow y$	\Longrightarrow	$x \downarrow y$	\Downarrow
$x \leftrightarrow y$	$\$ leftrightarrow	$x \longleftrightarrow y$	\longleftrightarrow	x	\updownarrow
$x \Leftrightarrow y$	$ackslash ext{Leftrightarrow}$	$x \Longleftrightarrow y$	\Longleftrightarrow	x	\Updownarrow
$x \mapsto y$	\mapsto	$x \mapsto y$	\longmapsto	x∕y	\nearrow
$x \leftarrow y$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$x \hookrightarrow y$	\hookrightarrow	x ∖ y	\searrow
x	\leftharpoonup	$x \rightarrow y$	\rightharpoonup	x ∠ y	\swarrow
$x \leftarrow y$	\leftharpoondown	$x \rightarrow y$	\rightharpoondown	хқу	\nwarrow
$x \rightleftharpoons y$	\rightleftharpoons	x ⊶ y	\leadsto		

11.21 Miscellaneous Symbols Sans serif bold

x y	\ldots	$x \cdots y$	\cdots	x:y	\vdots	$x \cdot y$	\ddots
хҞу	\aleph	x _' y	\prime	х∀у	\forall	x∞y	\infty
xhy	\hbar	хØу	\emptyset	х∃у	\exists	x□y	\Box
XIY	$\$ imath	х⊽у	\nabla	$x \neg y$	\neg	x◊y	\Diamond
$x_{J}y$	$\$ jmath	х√у	\surd	xby	\flat	x∆y	\triangle
xℓy	\ell	x⊤y	\top	хկу	\n	x♣y	\clubsuit
хюу	/wp	$x \perp y$	\bot	x#y	\sharp	x◊y	\diamondsuit
xRey	\Re	x y	\1	<i>x</i> \ <i>y</i>	\backslash	х♡у	\heartsuit
xImy	\Im	x∠y	\angle	х∂у	$\operatorname{ar{partial}}$	хфу	\spadesuit
x℧y	\mbox{mho}	x.y	•	x y	1	x!y	!

11.22 Variable-Sized Operators Sans serif bold

```
x \sum y
        \sum
                          \bigcap
                                        х⊙у
                                                \bigodot
                   x()y
х∏у
        \prod
                          \bigcup
                                        x \otimes y
                                                \bigotimes
                                                \bigoplus
х∐у
        \coprod
                   x \mid y
                          \bigsqcup
                                        x \oplus y
                   x \lor y
                          \bigvee
                                        x (+) y
                                                \biguplus
x [ y
        \int
x∮y
        \oint
                   x \wedge y
                          \bigwedge
```

11.23 Log-Like Operators Sans serif bold

```
x arccos y
            x cos y
                        X CSC V
                                  x exp y
                                             x ker y
                                                          x lim sup y
                                                                        x min y
                                                                                  x sinh y
x arcsin y
            x cosh y
                       x deg y
                                  x gcd y
                                             x lg y
                                                          x ln y
                                                                        x Pr y
                                                                                  x sup y
x arctan y
            x cot y
                        x det y
                                  x hom y
                                             x lim y
                                                          x log y
                                                                        x sec y
                                                                                  x tan y
             x coth y
                       x \dim y \quad x \inf y
                                             x lim inf y
x arg y
                                                          x max y
                                                                        x sin y
                                                                                  x tanh y
```

11.24 Delimiters Sans serif bold

```
x(y
                  x)y
                         )
                                             \uparrow
                                     x \uparrow y
                                                                x \uparrow y
                                                                         \Uparrow
x[y
      x]y
                         ]
                                     x \downarrow y
                                             \downarrow
                                                                x \downarrow y
                                                                         \Downarrow
                                     x \updownarrow y
x{y
      \{
                  x}y
                         \}
                                             \updownarrow
                                                                x Û y
                                                                         \Updownarrow
x[y
      \lfloor
                  x]y
                         \rfloor x[y
                                             \lceil
                                                                x]y
                                                                         \rceil
                         \rangle
                                                                         \backslash
x⟨y
      \langle
                  x⟩y
                                    x/y
                                                                x\v
x|y
                  x||y
                         \backslash I
```

11.25 Large Delimiters Sans serif bold

```
        \rmoustache
        ∫
        \lmoustache
        )
        \rgroup
        (
        \lgroup

        |
        \arrowvert
        |
        \bracevert
```

11.26 Math Mode Accents Sans serif bold

```
\hat{a} \hat{a} \acute{a} \acute{a} \bar{a} \bar{a} \acute{a} \dot{a} \breve{a} \breve{a} \breve{a} \check{a} \grave{a} \grave{a} \vec{a} \vec{a} \ddot{a} \ddot{a} \tilde{a} \tilde{a}
```

11.27 Miscellaneous Constructions Sans serif bold

```
abc
       \widetilde{abc}
                              abc
                                     \widehat{abc}
abc
       \overleftarrow{abc}
                              abć
                                     \overrightarrow{abc}
abc
       \overline{abc}
                              abc
                                     \underline{abc}
abc
       \overbrace{abc}
                               abc
                                     \underbrace{abc}
√abc
                               ∜abc
      \sqrt{abc}
                                     \sqrt[n]{abc}
                              <u>abc</u>
xvz
f
       f,
                                     \frac{abc}{xyz}
```

11.28 AMS Delimiters Sans serif bold

 $x^{T}y$ \ulcorner $x^{T}y$ \urcorner $x_{L}y$ \llcorner $x_{L}y$ \llcorner

11.29 AMS Arrows Sans serif bold

x y	ackslashdashrightarrow	x ← y	\d
x = y	\leftleftarrows	$x \leftrightarrows y$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$x \in y$	\Lleftarrow	<i>x</i>	\twoheadleftarrow
$x \leftarrow y$	\leftarrowtail	<i>x</i>	\looparrowleft
$x \leftrightharpoons y$	$\$ leftrightharpoons	$\mathbf{x} \cap \mathbf{y}$	\curvearrowleft
x O y	\circlearrowleft	х¶у	\Lsh
x ↑↑ y	\upuparrows	x 1 y	\upharpoonleft
$x \downarrow y$	\downharpoonleft	<i>x</i> → <i>y</i>	$\mbox{\tt multimap}$
x <i>↔</i> y	\leftrightsquigarrow	$x \rightrightarrows y$	\rightrightarrows
$x \rightleftharpoons y$	$\$ rightleftarrows	$x \rightrightarrows y$	$\$ rightrightarrows
$x \rightleftharpoons y$	$\$ rightleftarrows	$x \rightarrow y$	\twoheadrightarrow
$x \rightarrow y$	\rightarrowtail	$x \rightarrow y$	\looparrowright
$x \rightleftharpoons y$	$\$ rightleftharpoons	$x \cap y$	$\c vearrow right$
хоу	\circlearrowright	x → y	\Rsh
$x \downarrow \downarrow y$	\downdownarrows	x	\upharpoonright
$x \mid y$	\downharpoonright	x ⊶ y	\rightsquigarrow

11.30 AMS Negated Arrows Sans serif bold

```
x \leftrightarrow y \nleftarrow x \nrightarrow y \nrightarrow x \nleftrightarrow y \nRightarrow x \nleftrightarrow y \nleftrightarrow x \nleftrightarrow y \nLeftrightarrow
```

11.31 AMS Greek Sans serif bold

```
xfy \digamma xxy \varkappa
```

11.32 AMS Hebrew Sans serif bold

 $x \exists y$ \beth $x \exists y$ \daleth $x \exists y$ \gimel

11.33 AMS Miscellaneous Sans serif bold

xhv	\hbar	хħу	\hslash
•		,	•
$x \triangle y$	$\$ vartriangle	х⊽у	$\$ triangledown
x□y	\square	х◊у	\lozenge
x(S)y	\circledS	x∠y	\angle
x∡y	\measuredangle	х∄у	\nexists
xฃy	\mho	x∃y	$\backslash \mathtt{Finv}^u$
x∂y	$\backslash \mathtt{Game}^u$	x k y	$ackslash Bbbk^u$
<i>x</i> \ <i>y</i>	\backprime	x∅y	$\vert varnothing$
x▲y	\blacktriangle	х▼у	\blacktriangledown
x∎y	\blacksquare	x♦y	\blacklozenge
x★y	\bigstar	x∢y	\sphericalangle
хСу	\complement	хðу	\eth
x/y	$ackslash exttt{diagup}^u$	<i>x</i> ∕ <i>y</i>	$ackslash ext{diagdown}^u$

[&]quot; Not defined in amssymb.sty, define using the \newsymbol command.

11.34 AMS Binary Operators Sans serif bold

x + y	\dotplus	$x \setminus y$	$\sl mall setminus$
$x \cap y$	\Cap	$x \cup y$	\Cup
<i>x</i>	\barwedge	x ⊻ y	\veebar
x ¯ y	\doublebarwedge	$x \boxminus y$	\boxminus
$x \boxtimes y$	\boxtimes	<i>x</i> ⊡ <i>y</i>	\boxdot
$x \boxplus y$	\boxplus	<i>x</i> * <i>y</i>	\divideontimes
$x \ltimes y$	\ltimes	$x \times y$	\rtimes
$x \setminus y$	\leftthreetimes	$x \times y$	\rightthreetimes
$x \perp y$	\curlywedge	$x \land y$	\curlyvee
$x \ominus y$	\circleddash	<i>x</i> ⊗ <i>y</i>	\circledast
<i>x</i> ⊚ <i>y</i>	\circledcirc	$x \cdot y$	\centerdot
x + y	\intercal		

11.35 AMS Relations Sans serif bold

- $x \le y$ \leqslant
- $x \lesssim y$ \lesssim
- $x \approx y$ \approxeq
- $x \ll y \setminus 111$
- $x \leq y$ \lesseqgtr
- x = y \doteqdot
- x = y \fallingdotseq
- $x \simeq y$ \backsimeq
- $x \in y$ \Subset
- $x \leq y$ \preccurlyeq
- $x \lesssim y$ \precsim
- $x \triangleleft y$ \vartriangleleft
- $x \models y \quad \forall \text{Dash}$
- $\mathbf{x} \smile \mathbf{y}$ \smallsmile
- x = y \bumpeq
- $x \ge y$ \geqq
- $x \geqslant y$ \eqslantgtr
- $x \gtrsim y$ \gtrapprox
- $x \gg y \setminus ggg$
- $x \geq y$ \gtreqless
- x = y \eqcirc
- $x \triangleq y$ \triangleq
- $x \approx y$ \thickapprox
- $x \ni y$ \Supset
- $x \succcurlyeq y$ \succcurlyeq
- $x \gtrsim y$ \succsim
- $x \triangleright y$ \vartriangleright
- $x \Vdash y$ \Vdash
- x | y \shortparallel
- $x \pitchfork y$ \pitchfork
- $x \triangleleft y$ \blacktriangleleft
- $x \ni y$ \backepsilon
- x ∵ y \because

11.36 AMS Negated Relations Sans serif bold

```
x≰y
x \not< y \setminus \text{nless}
                                            \nleq
x \not\leq y \nleqslant
                                  x \not \leq y \setminus \text{nleqq}
x \leq y \setminus lneq
                                x \leq y \setminus \text{lneqq}
x \leq y \lvertneqq
                                x \lesssim y \setminus lnsim
x ≨ y \lnapprox
                                  x \not\prec y \nprec
                                 x \gtrsim y \precnsim
x \not \leq y \npreceq
                                x ≁ y \nsim
x ≈ y \precnapprox
x r y \nshortmid
                                x∤y
                                            \nmid
x \not\vdash y \quad \ \nvdash
                                 x⊭y
                                            \nvDash
x \not = y \ntriangleleft x \not = y \ntrianglelefteq
x \not\subseteq y \nsubseteq
                                           \subsetneq
                                  x ⊊ y
                                  x \subsetneq y \subsetneqq
x \subsetneq y \setminus \text{varsubsetneq}
x \nsubseteq y \varsubsetneqq x \not\geqslant y \ngtr
x \not\geq y \setminus \text{ngeq}
                                 x \not\geq y \ngeqslant
x ≱y \ngeqq
                                x \geq y \setminus gneq
x \geq y \setminus \text{gneqq}
                                x \ge y
                                            \gvertneqq
x \gtrsim y \setminus \text{gnsim}
                                \mathbf{x} \gtrapprox \mathbf{y} \setminus \text{gnapprox}
x \not\succ y \setminus \text{nsucc}
                                x ≱y \nsucceq
x ≱y \nsucceqq
                                 x \gtrsim y \setminus \text{succnsim}
                                  x \not\cong y \setminus \text{ncong}
x ‰ y \succnapprox
         \nshortparallel x \not\parallel y \nparallel
х и у
x ⊭ y \nvDash
                                  x⊮y
                                           \nVDash
x \not\triangleright y \ntriangleright x \not\trianglerighteq y
                                            \ntrianglerighteq
x \not\supseteq y \nsupseteq x \not\supseteq y
                                            \nsupseteqq
x \supseteq y \supsetneq
                                x \supseteq y \varsupsetneq
                               x \supseteq y \varsupsetneqq
x \supseteq y \supsetneqq
```