Analisis Data Eksploratif Pertemuan 3

Persebaran Data

Ringkasan Numerik

Ukuran Persebaran Data

Ukuran Penyebaran Data

Diberikan hasil pengukuran 2 contoh Jus Jeruk (dalam Liter) yang dikemas dalam botol oleh Perusahaan A dan Perusahaan B.

JUS A	0,97	1,00	0,94	1,03	1,06
JUS B	1,06	1,01	0,88	0,91	1,14

- ightharpoonup Diperoleh rata-rata masing masing $\overline{x_A}=1{,}00$ dan $\overline{x_B}=1{,}00$
- ➤ Nampak dari table tersebut bahwa isi jus jeruk A "lebih seragam" dibanding jus jeruk B.

Artinya jika harus memilih antara A dan B, mana yang harus dipilih? Kenapa?

Range / Jangkauan/ Wilayah $RANGE = X_{max} - X_{min}$

Contoh:

- 1. Nilai IQ lima orang anggota keluarga: 108, 112, 127, 118, 113. Maka Range-nya adalah 19.
- 2. Dari contoh pengemasan Jus Jeruk A dan B sebelumnya, diperoleh Range A = 0,12 dan Range B=0,26. Artinya, data B "lebih menyebar" dibanding data A.

Lanjutan....

- Range bukan ukuran keragaman yang baik terutama apabila ukuran populasinya besar.
- Range memperhatikan nilai-nilai ekstrem tetapi tidak mengatakan apapun untuk sebaran data diantara nilai-nilai ekstrem tersebut.

Gugus A	3	4	5	6	8	9	10	12	15
Gugus B	3	7	7	7	8	8	8	9	15

• Gugus A & B mempunyai $\bar{X}=Me=8$ tetapi data A sangat variatif dari 3-15, sedangkan data B datanya cenderung terletak di sekitar pusat datanya.

Sifat Range

- 1. Jika dari observasi x_i dibentuk observasi baru $y_i = x_i \pm a$ dan a bilangan positif sebarang, maka $Range(y_i) = Range(x_i)$.
- 2. Jika dari observasi x_i dibentuk observasi baru z_i dengan $z_i = bx_i$ dan b sebarang bilangan real maka $Range(z_i) = b \cdot Range(x_i)$

Sebaran Tengah

- Bagian tengah data dapat digunakan untuk mengetahui sebaran data.
- Sebaran tengah tidak terpengaruh oleh nilai ekstrim sehingga dapat dikatakan sebagai sebaran yang Robust (Tangguh).
- Rumus:

$$d_q(x) = q_A - q_B$$

Dengan q_A dan q_B berturut-turut menyatakan quartil atas dan bawah.

Contoh

Diberikan data observasi sebagai berikut

Jika diurutkan diperoleh

Diperoleh

$$q_B = \text{data ke-} \frac{(n+1)}{4} = \text{data ke-2} = 217$$

$$q_A = \text{data ke-} \frac{3(7+1)}{4} = \text{data ke-}6 = 304$$

Sehingga diperoleh
$$d_q(x) = 304 - 217 = 87$$

- Sebaran tengah merupakan sebaran yang penting dan sering digunakan dalam eksplorasi data
- Hal ini disebabkan karena sebaran tengah mudah untuk diperoleh dan Tangguh terhadap outlier

Ragam / Variansi

- \triangleright Diberikan data populasi sebanyak N data $x_1, x_2, x_3, ..., x_N$
- ightharpoonup Dengan rata-rata populasinya μ maka variansi dari data populasi tersebut didefinisikan dengan

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \mu)^2}{N}$$

Contoh...

Diberikan data sebagai berikut :

Gugus A	3	4	5	6	8	9	10	12	15
Gugus B	3	7	7	7	8	8	8	9	15

Diperoleh
$$\sigma_A^2 = \frac{124}{9} \operatorname{dan} \sigma_B^2 = \frac{78}{9}$$

Karena $\sigma_A^2 > \sigma_B^2$ artinya data A lebih beragam daripada data B.

Simpangan Baku/Standar Deviasi

$$SD = \sigma = \sqrt{\sigma^2}$$

• Contoh:

Dengan contoh sebelumnya, didapat simpangan baku untuk gugus

A dan gugus B berturut-turut adalah $\frac{2}{3}\sqrt{31}$ dan $\frac{2}{3}\sqrt{17}$

Ragam/Variansi Sampel

• Diberikan data $x_1, x_2, x_3, \dots, x_n$ maka variansi sampelnya adalah

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

Dengan $\bar{x} : rata - rata \ sampel$

Contoh....

Harga 1 bungkus kopi instan dengan berat 200 gram di 4 toko kelontong yang dipilih secara acak di San Diego menunjukkan bahwa kenaikan harga dari bulan sebelumny yaitu 12, 15, 17, 20 sen. Tentukan ragamnya!

Jawab:

$$\bar{x} = \frac{12 + 15 + 17 + 20}{4} = 16 \text{ sen}$$

$$s^{2} = \frac{\sum_{i=1}^{4} (x_{i} - 16)^{2}}{4 - 1} = \frac{(12 - 16)^{2} + (15 - 16)^{2} + (17 - 16)^{2} + (20 - 16)^{2}}{3} = \frac{34}{3}$$

Sifat Variansi

Jika \bar{x} adalah hasil pembulatan suatu bilangan decimal maka akan diperoleh eror yang cukup besar sehingga perlu diberikan rumus yang baru yang tidak melibatkan penghitungan \bar{x} yaitu

$$s^{2} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}{n(n-1)}$$

Sifat Variansi

1. Jika dari observasi x_i dibentuk observasi baru $y_i=x_i\pm a,\ a>0$, dan \bar{x} menyatakan rata-rata observasi x_i dan $y_i=\bar{y}\pm a$ maka Var(y)=Var(x)

2. Jika dari observasi x_i dibentuk observasi baru $y_i=x_i\pm a$, a>0, dan \bar{x} menyatakan rata-rata observasi x_i dan $y_i=\bar{y}\pm a$ maka

$$Var(y) = b \cdot Var(x)$$

Note Untuk Variansi

- Variansi memiliki kelebihan karena Seluruh data digunakan dalam penghitungan
- Variansi tidak menarik (secara eksploratif) karena terpengaruh oleh data outlier/ekstrim

Contoh

Tentukan ragam untuk data 3,4, 5, 6, 6, 7 yang merupakan banyaknya ikan trout yang tertangkap oleh 6 orang nelayan yang diambil secara acak pada 19 Juni 1981 di suatu Danau.

Jawab:

Banyak ikan (x_i)	Nilai x_i^2
3	9
4	16
5	25
6	36
6	36
7	49
Jumlah = 31	Jumlah = 171

$$s^{2} = \frac{6.\sum_{i=1}^{6} x_{i}^{2} - (\sum_{i=1}^{6} x_{i})^{2}}{6(6-1)}$$

$$= \frac{6.171 - 31^{2}}{6.5} = \frac{65}{30}$$

$$= 2,17$$

Simpangan Rata-rata / Deviasi Rata-rata

$$SR = \frac{\sum_{i=1}^{n} |x_i - \bar{x}|}{n}$$

Contoh;

Tentukan simpangan rata-rata dari data berikut : 7,6,8,7,6,10,5

Jawab:

$$\bar{x} = \frac{49}{7} = 7$$

$$SR = \frac{|7 - 7| + |6 - 7| + |8 - 7| + |7 - 7| + |6 - 7| + |10 - 7| + |5 - 7|}{7} = \frac{8}{7}$$