Le second degré

1^{re} Spécialité mathématiquesAlgèbre - Démonstrations

I. Les fonctions polynômes du second degré

1 Forme canonique

Démonstration :

Soit
$$f(x) = ax^2 + bx + c$$

$$= a\left[x^2 + \frac{b}{a}x\right] + c$$

$$= a\left[x^2 + \frac{2b}{2a}x + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2\right] + c \quad \text{(identit\'e remarquable)}$$

$$= a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}\right] + c$$

$$= a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$$

$$= a(x - \alpha) + \beta \text{ avec } \alpha = \frac{-b}{2a} \text{ et } \beta = \frac{-b^2}{4a} + c = f(\alpha)$$

2. Sens de variation

Démonstration de la propriété sur le sens de variation :

• 1er cas : a>0Soient x_1 et x_2 deux réels de l'intervalle $]-\infty;\alpha[$ tels que $x_1< x_2<\alpha.$

$$x_1-\alpha < x_2-\alpha < 0$$

$$(x_1-\alpha)^2 > (x_2-\alpha)^2 \text{ car } x_1-\alpha \text{ et } x_2-\alpha \text{ sont n\'egatifs}$$

$$a(x_1-\alpha)^2 > a(x_2-\alpha)^2 \text{ car } a>0$$

$$a(x_1-\alpha)^2+\beta > a(x_2-\alpha)^2+\beta$$

$$f(x_1)>f(x_2)$$

Donc f est strictement décroissante sur $]-\infty;\alpha[$.

Soient x_1 et x_2 deux réels de l'intervalle $[\alpha; \infty[$ tels que $\alpha < x_1 < x_2.$

$$0 \leq x_1 - \alpha < x_2 - \alpha$$

$$(x_1 - \alpha)^2 < (x_2 - \alpha)^2 \text{ car } x_1 - \alpha \text{ et } x_2 - \alpha \text{ sont positifs}$$

$$a(x_1 - \alpha)^2 < a(x_2 - \alpha)^2 \text{ car } a > 0$$

$$a(x_1 - \alpha)^2 + \beta < a(x_2 - \alpha)^2 + \beta$$

$$f(x_1) < f(x_2)$$

Donc f est strictement croissante sur $[\alpha; \infty[$.

 $\bullet \ 2^{\mathrm{\grave{e}me}} \ \mathrm{cas} : \ a < 0$

Soient x_1 et x_2 deux réels de l'intervalle $]-\infty;\alpha[$ tels que $x_1 < x_2 < \alpha.$

$$x_1-\alpha < x_2-\alpha < 0$$

$$(x_1-\alpha)^2 > (x_2-\alpha)^2 \text{ car } x_1-\alpha \text{ et } x_2-\alpha \text{ sont positifs}$$

$$a(x_1-\alpha)^2 < a(x_2-\alpha)^2 \text{ car } a < 0$$

$$a(x_1-\alpha)^2+\beta < a(x_2-\alpha)^2+\beta$$

$$f(x_1) < f(x_2)$$

Donc f est strictement croissante sur $]-\infty;\alpha[$.

Soient x_1 et x_2 deux réels de l'intervalle $[\alpha; \infty[$ tels que $\alpha < x_1 < x_2.$

$$0 \leq x_1 - \alpha < x_2 - \alpha$$

$$(x_1 - \alpha)^2 < (x_2 - \alpha)^2 \text{ car } x_1 - \alpha \text{ et } x_2 - \alpha \text{ sont positifs}$$

$$a(x_1 - \alpha)^2 > a(x_2 - \alpha)^2 \text{ car } a < 0$$

$$a(x_1 - \alpha)^2 + \beta > a(x_2 - \alpha)^2 + \beta$$

$$f(x_1) > f(x_2)$$

Donc f est strictement décroissante sur $[\alpha; \infty[$.

II. Factorisation d'une fonction du second degré et équation du second degré

1-2. Factorisation - Résolution des équation du second degré

Démonstration :

Pour $f(x) = ax^2 + bx + c$, on a vu que f(x) peut s'écrire sous la forme $f(x) = a(x + \frac{b}{2a}) + \frac{-b}{4a} + c$.

$$\begin{aligned} \operatorname{Donc} f(x) &= a \left(x + \frac{b}{2a} \right) + \frac{-b}{4a} + \frac{4ac}{4a} \\ &= a \left[\left(x + \frac{b}{2a} \right)^2 + \frac{-b^2}{4a^2} + \frac{4ac}{4a^2} \right] \\ &= a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right] \\ \operatorname{On pose} \Delta &= -b^2 - 4ac \\ &= a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right] \end{aligned}$$

- 1^{er} cas : $\Delta < 0$ Si $\Delta < 0$ alors f(x) > 0 pour tout $x \in \mathbb{R}$ (si a > 0) ou f(x) < 0 pour tout $x \in \mathbb{R}$ (si a < 0). Donc f(x) = 0 n'admet pas de solution et f(x) n'est pas factorisable.
- $2^{\text{ème}}$ cas : $\Delta=0$ Si $\Delta=0$ alors $f(x)=a(x+\frac{b}{2a})^2$ ou $f(x)=a(x-\alpha)^2$ avec $\alpha=\frac{-b}{2a}$. Donc l'équation f(x)=0 admet une solution (double) α et f(x) est factorisable ou $f(x)=a(x-\alpha)^2$.

• $3^{\mathrm{\`e}me}$ cas : $\Delta>0$

Si
$$\Delta > 0$$
 alors $f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \left(\frac{\sqrt{\Delta}}{2a} \right)^2 \right]$
$$= a \left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a} \right) \left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a} \right)$$
$$= a \left(x - \frac{-b - \sqrt{\Delta}}{2a} \right) \left(x - \frac{-b + \sqrt{\Delta}}{2a} \right)$$

Donc f(x) est factorisable en $f(x)=a(x-x_1)(x-x_2)$ avec $x_1=\frac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\frac{-b+\sqrt{\Delta}}{2a}$. L'équation f(x)=0 admet deux solutions x_1 et x_2 .

3. Somme et produit des racines

<u>Démonstration</u>:

$$\begin{aligned} \text{Calculons } x_1+x_2&=\frac{-b-\sqrt{\Delta}}{2a}+\frac{-b+\sqrt{\Delta}}{2a}\\ &=\frac{-b-\sqrt{\Delta}-b+\sqrt{\Delta}}{2a}\\ &=\frac{-2b}{2a}\\ &=\frac{-b}{a} \end{aligned}$$

Calculons
$$x_1 \times x_2 = \frac{-b - \sqrt{\Delta}}{2a} \times \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{(-b - \sqrt{\Delta})(-b + \sqrt{\Delta})}{4a^2}$$

$$= \frac{(-b)^2 - (\sqrt{\Delta})^2}{4a}$$

$$= \frac{b^2 - \Delta}{4a^2}$$

$$= \frac{b^2 - (b^2 - 4ac)}{4a^2}$$

$$= \frac{b^2 - b^2 + 4ac}{4a^2}$$

$$= \frac{c}{a}$$