Machine Learning from Data

Lecture 5: Spring 2021

Today's Lecture

- Training Vs Testing
 - The Two Questions of Learning
 - Theory of Generalization (Ein ≈ Eout)
 - An Effective Number of Hypotheses

- 1. Can we make sure that $E_{\text{out}}(g)$ is close enough to $E_{\text{in}}(g)$? $E_{\text{in}}(g) \simeq E_{\text{out}}(g)$
- 2. Can we make $E_{\rm in}(g)$ small enough?

 $E_{\rm in}$: training (eg. the practice exam)

 E_{out} : testing (eg. the real exam)

There is a tradeoff when picking $|\mathcal{H}|$.

- \mathcal{B}_m are events (sets of outcomes); they can overlap.
- If the B_m overlap, the union bound is loose.
- If many h_m are similar, the \mathcal{B}_m overlap

 There are "effectively" fewer than $|\mathcal{H}|$ hypotheses,.
- We can replace $|\mathcal{H}|$ by something smaller.

Meaning of cardinality of H? How did H come in?

Effective Number of Hypothesis

- We need a way to measure the diversity of H.
- A simple idea:
 - Fix any set of N data points.
 - If H is diverse it should be able to implement all functions . . . on these N points.

Similarity

The Growth Function

		ı	dichot ony
	[u]	NZ	W3 7
hI	-	+	+
hr	_	+	+
1			
~q		+	+

(N-points) Another Example S > dichotomy Restriction of the hypothesis set h to the points x, x, x, -- x, H (M, M, -- NN) = 38/8 is implemented by h ENY

Quantify the complexity of K on 21, 22-2 NN Using [H(x, 2N)] $\leq 2^N$? al: What n, 12---nn should we use to compute the complexity of a hypothesis set? bound for complexity useful? Q2: Is this

Woust case Analysis $m_{\mathcal{H}}(N) = man \left| \mathcal{N}(x_1 x_2 - - x_N) \right|$ $m_n(N) \leq 2^N$

Ams2 Error bar:

$$\sqrt{\frac{1}{2N}} \lim_{N \to \infty} 2(N)$$

J201 8

 $\frac{1}{20N} \frac{1}{8} \frac{1}{2N} \frac{1}{2N} \frac{1}{8} \frac{1}{2N} \frac{1}{$

Dichotomies in 2-D Perceptron

Example - Growth Functions

2-D Perceptron Model

 $M_{H}(N) = 8$ $= 2^{N}$

Has Perception mp magni

Nt points Nt 1 regions mulw) = Nt1 Worst Case 2^N

Positive Rectangles in 2-D

$$m_{H}(N) = m_{N}(4) = 16(2^{N})$$

 $m_{H}(5)$ $\angle 2$

Summarize

Effective no. -> K,N 2N

		N=4					
		1	2	3	4	5	
/ A	2-D perceptron	2	4	8	14		
1	1-D pos. ray	2	3	4	5		
	2-D pos. rectangles	2	4	8	16	$(<2^5)\cdots$	

• $m_{\mathcal{H}}(N)$ drops below 2^N - there is hope for the generalization bound.

• A break point is any n for which $m_{\mathcal{H}}(n) < 2^n$.

Definition: Shatter a Data Set

N

Can

Au possible dicholomius (2^N)

Himpumur

Finding Jonness A dicholomoss Land Compter Language Combinatorial Puzzle

2 points are shattered

No Pair of Points is Shattered

If N = 4 how many possible dichotomys with no 2 points shattered?

Thanks!