Homework #3

Assign date: 2015-06-21 **Due date: 2015-07-01, 6pm**

Submission:

1. Please submit your results <u>in email</u> to the grader: 130301039@syuca.edu Chi Zhang

- 2. Please separate the written answers from the python code: you should submit 2 files in your email cs596-29-hw2_yourID#.doc & cs596-29-hw2_yourID#.py
- 3. 30 pts per day will be deducted for late submission

Problem 1) K-means clustering (20 pts.)

You are given the following 10 data points of height & weight:

ID	1	2	3	4	5	6	7	8	9	10
Height	66	73	72	70	74	68	65	64	63	67
Weight	170	210	165	180	185	155	150	120	125	140

Manually apply k-means algorithms to get 2 clusters. Please produce the center and grouping step by step, using the following parameters:

- a) Initialize with ID=1 and ID=2
- b) Assume Euclidean distance

Solution

In each iteration (EPOCH), we will calculate the Euclidean distance matrix from the 2 seeds to each node. The distance matrix will be used for comparison and inferring if a node belongs to Cluster 1 (represented by Seed 1) or Cluster 2 (represented by Seed 2), the result is recorded in last line of each matrix. Base on the result, new seeds will be calculated and used for next iteration until the Clusters do not change.

EPOCH 1

Seed 1: [66, 170] ∈ C1 Seed 2: [73, 210] ∈ C2

Distance between 2 seeds to each element:

+	ID=1	ID=2	ID=3	ID=4	ID=5	ID=6	ID=7	ID=8	ID=9	ID=10
Seed-1	0	40.6	7.8	10.8	17	15.1	20.0	50.0	45.1	30.0
Seed-2	40.6	0	45.0	30.1	25.0	55.2	60.5	90.5	85.6	70.3
Cluster	C1	C2	C1	C1	C1	C1	C1	C1	C1	C1

-> Base on above result of new clusterings, new seeds (mean) are computed: [67.666666666666667, 154.444444444446], and [73.0, 210.0]

EPOCH 2

Seed 1: $[67.66666666666667, 154.4444444444446] \in C1$

Seed 2: [73.0, 210.0] ∈ C2

Distance between 2 seeds to each element:

+	ID=1	ID=2	ID=3	ID=4	ID=5	ID=6	ID=7	ID=8	ID=9	ID=10
Seed-1	15.6	55.8	11.4	25.7	31.2	0.7	5.2	34.6	29.8	14.5
Seed-2	40.6	0	45.0	30.1	25.0	55.2	60.5	90.5	85.6	70.3
Cluster	C1	C2	C1	C1	C2	C1	C1	C1	C1	C1

-> Base on above result of new clusterings, new seeds (mean) are computed: [66.875, 150.625], and [73.5, 197.5]

EPOCH 3

Seed 1: [66.875, 150.625] ∈ C1

Seed 2: [73.5, 197.5] ∈ C2

Distance between 2 seeds to each element:

+	ID=1	ID=2	ID=3	ID=4	ID=5	ID=6	ID=7	ID=8	ID=9	ID=10
Seed-1	19.4	59.7	15.3	29.5	35.1	4.5	2.0	30.8	25.9	10.6
Seed-2	28.5	12.5	32.5	17.9	12.5	42.9	48.2	78.1	73.3	57.9
Cluster	C1	C2	C1	C2	C2	C1	C1	C1	C1	C1

-> Base on above result of new clusterings, new seeds (mean) are computed: [66.42857142857143, 146.42857142857142], and [72.3333333333333, 191.666666666666]

EPOCH 4

Seed 1: [66.42857142857143, 146.42857142857142] ∈ C1

Distance between 2 seeds to each element:

+	ID=1	ID=2	ID=3	ID=4	ID=5	ID=6	ID=7	ID=8	ID=9	ID=10
Seed-1	23.6	63.9	19.4	33.8	39.3	8.7	3.9	26.5	21.7	6.5
Seed-2	22.6	18.4	26.7	11.9	6.9	36.9	42.3	72.2	67.3	51.9
Cluster	C2	C2	C1	C2	C2	C1	C1	C1	C1	C1

-> Base on above result of new clusterings, new seeds (mean) are computed: [66.5, 142.5], and [70.75, 186.25]

EPOCH 5

Seed 1: $[66.5, 142.5] \in C1$

Seed 2: [70.75, 186.25] ∈ C2

Distance between 2 seeds to each element:

++			44					4	_
	•	•			-				
TD-1	וד ו כ–חד	D=3 ID=4	TD=5	TD-6	TD-7	א-מד	ן פ−חד	TD-10	
10-1	10-2 1	J-J ID-4	1 -0-0	10-0	10-7	10-0	10-0	10-10	
+======+=====+		+	·						_

•	Seed-1	•	•	•	•	•	•	•	•	•	
İ	Seed-2	16.9	23.9	21.3	6.3	3.5	31.4	36.7	66.6	61.7	46.4
İ	Cluster	C2	C2	C2	C2	C2	C1	C1	C1	C1	C1

-> Base on above result of new clusterings, new seeds (mean) are computed: [65.4, 138.0], and [71.0, 182.0]

EPOCH 6

Seed 1: [65.4, 138.0] ∈ C1 Seed 2: [71.0, 182.0] ∈ C2

Distance between 2 seeds to each element:

•	ID=1	ID=2	ID=3	ID=4	ID=5	ID=6	ID=7	ID=8	ID=9	ID=10
+=======- Seed-1	32.0	72.4	27.8	42.2	47.8	17.2	12.0	18.1	13.2	2.6
Seed-2	13	28.1	17.0	2.2	4.2	27.2	32.6	62.4	57.6	42.2
Cluster	C2	C2	C2	C2	C2	C1	C1	C1	C1	C1

-> Base on above result of new clusterings, new seeds (mean) are computed: [65.4, 138.0], and [71.0, 182.0]

After we **Epoch 6**, the Cluster members do not change anymore, so we know Epoch 5/6 has the final result with 2 clusters:

- Cluster 1: Node {6, 7, 8, 9, 10}
- Cluster 2: Node {1, 2, 3, 4, 5}

Problem 2) Agglomerative clustering (20 pts.)

Using the same 10 data points of height & weight as in Problem-1, apply agglomerative clustering manually. Produce the distance matrix and the resulting dendogram. Use the following assumptions:

- a) Euclidean distance
- b) Single linkage for cluster dissimilarity

Solution

Agglomerative: initially every point is a cluster of its own and we merge cluster until we end-up with one unique cluster containing all points.

Single link: distance between two clusters is the shortest distance between a pair of elements from the two clusters.

For each k - we recalculate the distance matrix, and merge 2 nodes into 1 node (representing new cluster).

We start with k=10, i.e. each point is a cluster.

k=10 +----+

0 	40.6 0788 1008 5	7.81 0249 6759	10.7 7032 9614 3	17.0 	15.1 3274 5950 4	20.0 2498 4394 5	50.0 3998 4012 8	45.0 9988 9135 1	30.0 1666 2039 6
+====== 40.6 08	0	45.0 11	30.1 50	25.0 20	55.2 27	60.5 31	90.4	85.5 86	70.2 57
7.81	45.0 11	0	15.1 33	20.1 00	10.7 70	16.5 53	45.7 06	41	25.4 95
10.7	30.1 50	15.1 33	0	6.40 3	25.0 80	30.4 14	60.2 99	55.4 44	40.1 12
17	25.0 20	20.1 00	6.40 3	0	30.5 94	36.1 39	65.7 65	61	45.5 41
15.1	55.2 27	10.7 70	25.0 80	30.5 94	0	5.83 1	35.2 28	30.4 14	15.0 33
20.0	60.5 31	16.5 53	30.4 14	36.1 39	5.83 1	0	30.0 17	25.0 80	10.1 98
50.0	90.4 49	45.7 06	60.2	65.7	35.2 28	30.0 17	0	5.09	20.2
45.1	85.5 86	41	55.4 44	61	30.4 14	25.0 80	5.09 9	0	15.5 24
30.0	70.2 57	25.4 95	40.1 12	45.5 41	15.0 33	10.1 98	20.2 24	15.5 24	0

k=9

0 1	40.60 78810 085	+ 7.810 24967 591	10.77 03296 143	17.0	15.13 27459 504	49843 945	61.72 69089 274	! :
40.60 8	 0 			25.02 0			115.6 57	
7.810	45.01 1	0 	15.13 3	20.10	10.77	16.55 3	56.10 4	25.49 5
10.77	30.15 0	15.13 3	0	6.403	25.08 0	30.41 4	75.46 2	40.11
17	25.02 0	20.10 0	6.403	0	30.59 4	36.13 9	82.81 0	45.54 1
15.13	55.22 7	10.77 0	25.08 0	30.59 4	0	5.831	42.06 1	15.03
20.02	60.53	16.55 3	30.41 4	36.13 9	5.831	0	35.03 1	10.19
61.72	115.6 57	56.10 4	75.46 2	82.81	42.06 1	35.03 1	0	22.13
30.01	70.25	25.49	40.11	45.54	15.03	10.19	22.13	0

7	:	7	5	2	1	3	8	2	1 1
k=8	+-	+-							
@ 		40.607 881008 5	7.810 49675		10.770 329614 3	17.0	21.494 836265	61.726 908927 4	30.016 662039 6
40.6 	608 808	0	45.01 	==+= 1	30.150 	25.020	75.228	115.65 7	70.257
7.81	.0	45.011	0	ļ	15.133	20.100	16.272	56.104	25.495
10.7	70	30.150	15.13	3	0	6.403	35.052	75.462	40.112
17		25.020	20.10	0	6.403	0	42.545	82.810	45.541
21.4	95	75.228	16.27	2	35.052	42.545	0	54.904	14.877
61.7	'27 	115.65 7	56.10	+ - 4 	75.462	82.810	54.904	0	22.132
30.0	17	70.257	25.49	 - 5	40.112	45.541	14.877	22.132	0
	+		T	+-					

k=7

+	+				L	
 0 	0085	7.8102496 7591 +=======	3304	21.494836 265	9274	0396
40.608	:					70.257
7.810	45.011	0	21.354	16.272	56.104	25.495
	34.645 	21.354	0	54.996	115.503	54.968
21.495	1	16.272	54.996	0	54.904	14.877
61.727	115.657	56.104	115.503	54.904	0	22.132
30.017	70.257	25.495	54.968	14.877	22.132	0
+	+	+				+

k=6

0	68	68	24.41990187 28	33	97
54.476 	0				70.257
24.395	34.645	0	54.996	115.503	54.968
24.420	75.228	54.996	0		14.877
84.468		115.503	54.904	0	22.132
34.404	70.257	54.968	14.877	22.132	0

k=5

•	•	•	•	84.4680917433 .
54.476	+======== 0 +			115.657
24.395		0	71.027	115.503
34.228		71.027	0	51.252
	115.657	115.503	51.252	0

k=4

4		L	L	L
į		48.5938237752		125.182321436
	48.594	0	87.830	115.657
	64.727	87.830	0	51.252
1	125.182	115.657	51.252	0
7		r		r

k=3

	+	
0	82.3284543958	142.982492917
82.328		+======+ 51.252
142.982	51.252	0

k=2

+				4632695	•
+===	=====	=+:	======	======	=+
14	0.325		0		
+		-+			- +

Dendogram

Problem 3) Model Evaluation (20 pts.)

We are given the following classification results for a cancer screening test. Please derive the evaluation parameters:

- a) Accuracy
- b) Specificity
- c) Sensitivity
- d) Precision
- e) Recall

Actual / Prediction	test = positive	test = negative	Total
cancer = yes	90	210	300
cancer = no	140	9560	9700
Total	230	9770	10000

Solution

Actual / Prediction	test = positive	test = negative	Total
cancer = yes	TP = 90	FN = 210	300
cancer = no	FP = 140	TN = 9560	9700
Total	230	9770	10000

TP = 90

FN = 210

FP = 140

TN = 9560

F1 =
$$P*R / 2(P+R)$$

= 0.084

Problem 4) Python program (40 pts)

Take the sk-learn sample code *cluster_kmeans.py* discussed in the class that is used for clustering iris dataset. Make the following changes:

- 1. In addition to using PCA to reduce features from 4 to 2, also evaluate using the original feature pairs (1,2) and (3, 4).
- 2. For all the 3 clustering settings (original, (1,2), (3,4)), calculate the clustering quality CQ = IE / EV as defined in the class:

$$IV = \sum_{C} \sum_{x \in C} d(x, c) \quad \text{and} \quad EV = \frac{1}{N} \sum_{i} \sum_{j} \delta(C(x_i) \neq C(x_j)) d(x_i, x_j)$$

Output:

3 plots of k-means clustering results for PCA, features (1,2), and features (3,4). 3 CQ values for PCA, features (1,2), and features (3,4).

Solution

IV: 19831.5213 EV: 2.2027 CQ: 9003.2777

IV: 12872.9967 EV: 1.4206 CQ: 9061.7792

IV: 24422.1216 EV: 3.0034 CQ: 8131.4968