Práctica 3. Interpolación y ajuste numérico de curvas

Universidad Nacional del Comahue Centro Regional Universitario Bariloche

Septiembre de 2016

Interpolación polinómica: métodos de Lagrange, Neville. Método de spline cúbico.

Nota: trate de resolver "TODOS" los ejercios en papel para luego comparar los resultados obtenidos con los métodos numéricos implementados.

1) Determine el valor de y(0) utilizando (a) Neville y (b) Lagrange

x	-1.2	0.3	1.1
y	-5.76	-5.61	-3.69

2) Encuentre el cero de y(x) dado por los valores de la siguiente tabla:

x	0	0.5	1	1.5	2	2.5	3
У	1.8421	2.4694	2.4921	1.9047	0.8509	-0.4112	-1.5727

Utilice interpolación de Lagrange con (a) tres y (b) cuatro primeros vecinos de los puntos.

3) Encuentre el valor de y(x) en los puntos $x=\frac{\pi}{4}$ y $x=\frac{\pi}{2}$. Utilice el método que crea más conveniente.

x	0	0.5	1	1.5	2
y	-0.7854	0.6529	1.7390	2.2071	1.9425

4) Determine el valor y(3,4) con el método de spline cúbico

\boldsymbol{x}	1	2	3	4	5
y	13	15	12	9	13

5) Calcule el cero de la función y(x) a partir de los siguientes datos:

x	0.2	0.4	0.6	0.8	1.0
y	1.150	0.855	0.377	-0.266	-1.049

Hint: reordene los datos tal que los valores de y sean ascendentes e invierta los ejes coordenados.

Ajuste de datos por mínimos cuadrados.

6) Ajuste los datos con regresión lineal y determine el valor de la desviación estándar.

x	-1.0	-0.5	0	0.5	1.0
y	-1.00	-0.55	0.00	0.45	1.00

7) Tres ensayos de tensión fueron realizados en una barra de aluminio. En cada ensayo la deformación (*strain*) fue medida en unidades de [mm/m] para diferentes valores de tensión (*stress*) y los resultados se resumen en la tabla de abajo.

Stress (MPa)	34.5	69.0	103.5	138.0
Strain (Test 1)	0.46	0.95	1.48	1.93
Strain (Test 2)	0.34	1.02	1.51	2.09
Strain (Test 3)	0.73	1.10	1.62	2.12

Utilice regresión lineal para estimar el módulo de elasticidad de la barra.

Hint: módulo de elasticidad = tensión / deformación

8) Corrección de calibración lineal. Se detectó un problema en las mediciones de temperatura de un equipo de uso crítico en el laboratorio. El mismo registra valores de temperatura a partir de interpolaciones lineales entre dos puntos sucesivos calculados a partir de una curva de calibración de temperatura $[C^{\circ}]$ como función de $\log 10(\text{Resistencia})$ $[\log 10(\Omega)]$. Dados los valores de temperatura medidos a partir de una curva de calibración no calibrada, se desea corregir con la calibración de fábrica los valores comprendidos entre 16-19 C° . Esto se debe a que sólo los puntos correspondientes a $17C^{\circ}$ y $18C^{\circ}$ se encuentran descalibrados. Utilice los datos de los archivos: calibrEquipoErrada, calibrEquipoFabrica, datosUtilizadoACorregir. Las columnas son Temperatura $[C^{\circ}]$, Resistencia $[\Omega]$ y $\log 10(\text{Resistencia})$ $[\log 10(\Omega)]$.

Hint: encuentre la relación de corrección y apliquela a cada intervalo (16-17C° y 17-18C°). La columna de Resistencia no se utiliza.

Referencias

[1] Numerical Methods in Engineering with Python 3 3rd Edition (2013). Cambridge University Press. Jaan Kiusalaas. ISBN-10: 1107033853 ISBN-13: 978-1107033856