

The Annals of Probability
 2006, Vol. 34, No. 4, 1641–1643
 DOI: 10.1214/009117906000000160
 © Institute of Mathematical Statistics, 2006

CORRECTION NOTE
TYPICAL CONFIGURATION FOR ONE-DIMENSIONAL
RANDOM FIELD KAC MODEL¹

BY MARZIO CASSANDRO, ENZA ORLANDI AND PIERRE PICCO

Università di Roma, Università di Roma Tre and CPT-CNRS

Estimate (3.39) which appears in the proof of Proposition 3.4 in [*Ann. Probab.* **27** (1999) 1414–1467] is wrong. We present below a corrected proof which introduces an extra factor 2 in equations (3.34) and (3.35). This has no consequence in the rest of the paper since Proposition 3.4 is used to estimate only ratios; see (3.23) and (3.25).

In Proposition 3.4 in [1], the condition $m \in \{-1, -1 + 2/|B|, -1 + 4/|B|, \dots, 1 - 2/|B|, 1\}$ has to be added. This is harmless since Proposition 3.4 is used for proving Proposition 3.1, where this assumption is done. Moreover, (3.34) and (3.35) must be replaced respectively by

$$(1.1) \quad \Psi_{z,\alpha,m} = \frac{2}{\sqrt{2\pi|B|}\sigma_z} \left(1 \pm \frac{66}{|B|\sigma_z^2} \right)$$

and

$$(1.2) \quad \Psi_{z,\alpha,m} = \frac{2}{\sqrt{2\pi|B|}\sigma_z} \left(1 \pm \frac{66}{g(|B|)} \right).$$

Below we outline the arguments to get (1.2), the case of (1.1) is similar.

In the proof of Proposition 3.4, inequality (3.39) is clearly wrong for $k = \pm\pi$. Since, for $y \in [0, 1]$, we have $|ye^{-2ik} + (1 - y)|^2 = 1 - 2y(1 - y)(1 - \cos(2k))$ and $1 - s \leq e^{-s}$ for all $s \in \mathbb{R}$, it is easy to see that

$$(1.3) \quad \left| \frac{\cosh(x \pm ik)}{\cosh(x)} \right| \leq \exp \left[-\frac{1 - \cos(2k)}{4 \cosh^2 x} \right]$$

Received June 2005; revised September 2005.

¹Supported by CNR-CNRS-Project 8.005, INFM-Roma; MURST/Cofin 01-02/03-04.

AMS 2000 subject classifications. 60K35, 82B20, 82B43.

Key words and phrases. Phase transition, random walk, random environment, Kac potential.

This is an electronic reprint of the original article published by the Institute of Mathematical Statistics in *The Annals of Probability*, 2006, Vol. 34, No. 4, 1641–1643. This reprint differs from the original in pagination and typographic detail.

that replaces (3.39). Then, using $\cos(x) \leq 1 - \frac{x^2}{2} + \frac{x^4}{4!}$, it can be checked that, for $k \in [0, \pi]$,

$$(1.4) \quad 1 - \cos(2k) \geq 2 \left(1 - \frac{\pi^2}{12}\right) (k^2 \wedge (k - \pi)^2),$$

from which one gets, for $k \in [0, \pi]$,

$$(1.5) \quad |\Phi(z, \alpha, k)| \leq \exp \left[-\frac{(1 - \pi^2/12)(k^2 \wedge (k - \pi)^2)}{2} |B| \sigma_z^2 \right],$$

where $\Phi(z, \alpha, k)$ is defined in (3.38) and σ_z is defined in (3.28) in [1]. Formula (1.5) replaces (3.40) in [1]. As a consequence, (3.41) has to be replaced by

$$(1.6) \quad \tilde{\mathcal{E}}_\rho = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbb{1}_{\{\rho < |k| \leq \pi - \rho\}} \Phi(z, \alpha, -k) e^{ikm|B|} dk.$$

Then choosing as in [1], $\rho = (\sigma_z \sqrt{|B|})^{-1} f(|B|)$ with

$$(1.7) \quad f(|B|) = \sqrt{\frac{2}{1 - \pi^2/12} \log g(|B|)},$$

where g is as in Proposition 3.4 in [1], one gets

$$(1.8) \quad |\tilde{\mathcal{E}}_\rho| \leq \frac{1}{\sqrt{2\pi|B|}\sigma_z} \left(\frac{2}{\sqrt{\pi(1 - \pi^2/12) \log g(|B|)}} \right) \frac{1}{g(|B|)},$$

that replaces (3.48) in [1]. Calling as in [1] [see (3.45)],

$$(1.9) \quad \Psi_{z, \alpha, m}(\rho) = \frac{1}{2\pi} \int_{-\rho}^{\rho} e^{ik|B|m} \Phi(z, \alpha, k) dk,$$

introducing the two quantities

$$(1.10) \quad \begin{aligned} I_2 &= \frac{1}{2\pi} \int_{-\pi}^{-\pi+\rho} e^{ik|B|m} \Phi(z, \alpha, k) dk, \\ I_3 &= \frac{1}{2\pi} \int_{\pi-\rho}^{\pi} e^{ik|B|m} \Phi(z, \alpha, k) dk. \end{aligned}$$

After simple algebra, using that $m = -1 + \frac{2l}{|B|}$ for some $l \in \mathbb{Z}$ and elementary change of variables, one gets the crucial relation

$$(1.11) \quad I_2 + I_3 = \Psi_{z, \alpha, m}(\rho).$$

Now $\Psi_{z, \alpha, m}$ defined in (3.37) satisfies

$$(1.12) \quad \Psi_{z, \alpha, m} = 2\Psi_{z, \alpha, m}(\rho) + \tilde{\mathcal{E}}_\rho.$$

The extra factor 2 we mention in the abstract is the one in (1.12). Using the same computations done after (3.45) in [1], one gets (1.2).

REFERENCE

[1] CASSANDRO, M., ORLANDI, E. and PICCO, P. (1999). Typical configurations for one-dimensional random field Kac model. *Ann. Probab.* **27** 1414–1467. [MR1733155](#)

M. CASSANDRO
DIPARTIMENTO DI FISICA
UNIVERSITÀ DI ROMA “LA SAPIENZA”
INFM-SEZ. DI ROMA. P. LE A. MORO
00185 ROMA
ITALY
E-MAIL: cassandra@roma1.infn.it

E. ORLANDI
DIPARTIMENTO DI MATEMATICA
UNIVERSITÀ DI ROMA TRE
L.GO S.MURIALDO 1
00156 ROMA
ITALY
E-MAIL: orlandi@mat.uniroma3.it

P. PICCO
CPT, UMR CNRS 6207
UNIVERSITÉ DE PROVENCE AIX-MARSEILLE 1
UNIVERSITÉ DE LA MEDITERRANÉE AIX-MARSEILLE 2
ET UNIVERSITÉ DE TOULON ET DU VAR
LUMINY, CASE 907, 13288
MARSEILLE CEDEX 9
FRANCE
E-MAIL: picco@cpt.univ-mrs.fr