Logik

Äquival	Bezeichnung		
$A \wedge B$	$B \wedge A$	Kommutativ	
$A \vee B$	$B \vee A$	Kommutativ	
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Accordative	
$A \lor (B \lor C)$	$(A \lor B) \lor C$	Assoziativ	
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv	
$A \lor (B \land C)$	$(A \lor B) \land (A \lor C)$	Distributiv	
$A \wedge A$	A	T.A	
$A \lor A$	A	Idempotenz	
$\neg \neg A$	A	Involution	
$\neg (A \land B)$	$\neg A \vee \neg B$	Dr. Mongay	
$\neg (A \lor B)$	$\neg A \wedge \neg B$	De-Morgan	
$A \wedge (\mathbf{A} \vee B)$	A	A1	
$A \vee (\mathbf{A} \wedge B)$	A	Absorption	
$A \Rightarrow B$	$\neg \mathbf{A} \vee B$		
$\neg(A \Rightarrow B)$	$A \wedge \neg B$	Elimination	
$A \Leftrightarrow B$	$(A\Rightarrow B)\wedge (B\Rightarrow A)$		

Aussagenlogik

Aussage Satz/Formel entweder wahr oder falsch; "-form" bei zu wenig Infos.

Theoreme sind wahre Aussagen.

Junktoren

NEGATION $\neg A$ "Nicht" (!, ~, \rightarrow)

KONJUNKT. $A \wedge B$ "und" (&&, \Longrightarrow)

DISJUNKT. $A \lor B$ "oder" (||, \Rightarrow)

IMPLIKAT. $A \Rightarrow B$ "Wenn, dann" "B" $(\rightarrow$, if)

 $A \Rightarrow B$ "A hinreichend"

 $\mathcal{B} \Rightarrow \mathcal{A}$ "A notwendig"

 \ddot{A} QUIV. $\mathcal{A} \Leftrightarrow \mathcal{B}$ "Genau dann, wenn" $(\leftrightarrow, \equiv, ==, \uparrow)$ "

Wahrheitswertetabelle mit 2^n Zeilen für n Atome. Konstruktionssystematik: Frequenz pro Atom verdoppeln.

\mathcal{A}	В	$\neg A$	$\mathcal{A} \wedge \mathcal{B}$	$A \lor B$	$A \Rightarrow B$	$\mathcal{A} \Leftrightarrow \mathcal{B}$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Axiomatik

Axiome als wahr angenommene Aussagen; an Nützlichkeit gemessen. Anspruch, aber nach GÖDELS Unvollständigkeitssatz nicht möglich:

- Unabhängig
- Vollständig
- Widerspruchsfrei

Prädikatenlogik

Quantoren Innerhalb eines Universums:

EXISTENZQ. ∃ "Mind. eines"

Individuum $\exists !$ "Genau eines"

Allq. \forall "Für alle"

Quantitative Aussagen

Erfüllbar $\exists x F(x)$

Widerlegbar $\exists x \neg F(x)$

TAUTOLOGIE $\top = \forall x F(x)$ (alle Schlussregeln)

Kontradiktion $\perp = \forall x \neg F(x)$

Häufige Fehler

- Nicht voraussetzen, was zu beweisen ist
- Äquival. von Implikat. unterscheiden (Zweifelsfall immer Implikat.)

Naive Mengenlehre

Abzählbar $|M| \leq |\mathbb{N}|$

- Endliche Mengen, \emptyset , \mathbb{N} , \mathbb{Z} , \mathbb{Q}
- $M_{\text{abz.}} \wedge N_{\text{abz.}} \Rightarrow (M \cup N)_{\text{abz.}}$ (= $\{m_1, n_1, m_2, n_2, \dots\}$)
- $M_{abz.} \wedge N \subseteq M \Rightarrow N_{abz.}$

 $f(1) = 0, \mathbf{r}_{11} r_{12} r_{13} r_{14} \dots$

 $f(2) = 0, r_{21} \mathbf{r_{22}} r_{23} r_{24} \dots$

 $f(3) = 0, r_{31}r_{32} \mathbf{r_{33}} r_{34} \dots$

(CANTORS Diagonalargumente)

 $f(4) = 0, r_{41}r_{42}r_{43} \mathbf{r_{44}} \dots$

Mengen Zusammenfassung versch. Objekte "Elemente".

Element $x \in M$ "enthält"

Leere M. $\emptyset = \{\}$

Universum U

Einschränkung $\{x \mid F(x)\}$

Relationen

 $\begin{array}{l} \text{Gleichheit } M = N \\ \Leftrightarrow M \subseteq N \land N \subseteq M \end{array}$

Mächtigkeit

$$|M| egin{cases} = n & ext{endlich} \ M & ext{injekt.} \Leftrightarrow M ext{surj.} \ \geq \infty & ext{unendlich} \ = |N| \Leftrightarrow \exists f_{ ext{bijekt.}} : M o N \end{cases}$$

Operationen

Vereinig. $M \cup N$ $\Leftrightarrow \{x \mid x \in M \lor x \in N\}$

 $\begin{array}{ll} \text{SCHNITT } M \cap N \Leftrightarrow \{x \mid x \in M \land x \in N\} \ (=\emptyset \text{ ,,disjunkt"}) \end{array}$

DIFF. $M \setminus N \Leftrightarrow \{x \mid x \in M \land x \notin N\}$

Komplement M^{\complement} $\{x \mid x \notin M\}$ \bigcirc

Alle logischen Äquivalenzen gelten auch für die Mengenoperationen.

Häufige Fehler

• $\forall M:\emptyset\subseteq M$, nicht $\forall M:\emptyset\in M$

Ouantitative Relationen

Sei Indexmenge I und Mengen M_i $\forall i \in I$.

RING (Transitivität der Implikation)

Klassische Tautologien

 $A \vee \neg A$

 $A \wedge (A \Rightarrow B) \Rightarrow B$

 $(A \land B) \Rightarrow A$

 $A \Rightarrow (A \lor B)$

Negation (DE-MORGAN)

• $U = \emptyset^{\complement}$ nicht notwendig

Beweistechniken

A, zeige

(Kontraposition).

nommen

folgen.

• $\exists x (P(x) \Rightarrow Q(x)) \not\Rightarrow \exists x P(x)$

• $\neg \exists x \exists y P(x,y) \Leftrightarrow \forall x \neg \exists y P(x,y)$

DIREKT $A \Rightarrow B$ Angenommen

B.

 $\neg B$,

 $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$

sammenführen. O.B.d.A = "Ohne

Angenommen $A \wedge \neg B$, zeige Kontradiktion. (Reductio ad absurdum)

FALLUNTERS. Aufteilen, lösen, zu-

Beschränkung der Allgemeinheit"

WIDERSPRUCH $(\neg A \Rightarrow \bot) \Rightarrow A$

Oder:

zeige

Ange-

 $\neg \exists x F(x) \Leftrightarrow \forall x \neg F(x)$

 $\neg \forall x F(x) \Leftrightarrow \exists x \neg F(x)$

Häufige Fehler

Achtung: Aus falschen Aussagen können wahre *und* falsche Aussagen

Bezeichnung

Modus ponens

Abschwächung

Ausgeschlossenes Drittes

$$A \Leftrightarrow B \Leftrightarrow C \Leftrightarrow \cdots$$
$$\equiv A \Rightarrow B \Rightarrow C \Rightarrow \cdots \Rightarrow \mathbf{A}$$

INDUKTION $F(n) \quad \forall n \geq n_0 \in \mathbb{N}$

- 1. Anfang: Zeige $F(n_0)$.
- 2. SCHRITT: Angenommen F(n) (Hypothese), zeige F(n+1) (Behauptung).

STARKE INDUKTION: Angenommen $F(k) \ \forall n_0 \le k < n \in \mathbb{N}.$

 $|M| \le |N| \Leftarrow \exists f_{\text{injekt.}} : M \to N$

Kardinalität ÄK. für Gleichmächtig-

• $M \subseteq N \Rightarrow |M| \le |N|$

keit

• $|M| \le |N| \Leftrightarrow \exists f_{\text{surj.}} : N \to M \text{ (AC)}$

$$\bigcup_{i \in I} M_i := \{ x \mid \exists i \in I : x \in M_i \}$$
$$\bigcap M_i := \{ x \mid \forall i \in I : x \in M_i \}$$

Neutrale Elemente

- $\bigcup_{i \in \emptyset} M_i = \emptyset$ ("hinzufügen")
- $\bigcap_{i \in \emptyset} M_i = U$ ("wegnehmen")

Potenzmenge

$$\mathcal{P}(M) := \{ N \mid N \subseteq M \}$$

Satz von CANTOR $|M| < |\mathcal{P}(M)|$

$$|\mathcal{P}(M)| = 2^{|M|} \quad (\in / \notin \text{binär})$$

- ullet Menge der Kardinalitäten ${\mathcal K}$ ist unendlich
- Satz von Hartogs (AC) (K, \preceq) ist Inverse Relation R^{-1} mit $R \in M \times$ total geordnet

$$|(0,1)| = |\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$$

Kontinuumshypothese

$$\nexists M: |\mathbb{N}| < |M| < |\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$$

Auswahlaxiom (AC)

Für Menge \mathcal{X} nicht-leerer Mengen:

$$\exists c: \mathcal{X} \to \bigcup \mathcal{X}$$
$$\forall X \in \mathcal{X} : c(X) \in X$$

Nutzung kennzeichnen!

• unabh. vom ZFC

Relationen

Kartesisches Produkt

$$X_1 \times \cdots \times X_n := \{(x_1, \cdots, x_n) \mid x_1 \in X_1, \cdots, x_n \in X_n\}$$

Relation \sim von/auf M nach N ist Teilmenge $R \subseteq M \times N$. $(R' \subseteq N \times P)$

$$m \sim n \Leftrightarrow (m, n) \in R$$

- \equiv Reflexiv $\forall x \in M : (\mathbf{x}, \mathbf{x}) \in R$ $\Leftrightarrow id_M \subseteq R$
- IRREFLEXIV $\forall x \in M : (x, x) \notin R$ $\Leftrightarrow \mathrm{id}_M \cap R = \emptyset$
- \equiv SYM. $\forall (x, y) \in R : (y, x) \in R$ $\Leftrightarrow R \subseteq R^{-1}$
- \leq ANTIS. $\forall x, y : ((x, y) \in R \land (y, x) \in$ $R) \Rightarrow \mathbf{x} = \mathbf{y}$ $\Leftrightarrow R \cap R' \subseteq \mathrm{id}_M$
- \equiv Transitiv $\forall \mathbf{x}, y, \mathbf{z} : ((x, y) \in R \land$ $(y,z) \in R$ \Rightarrow $(\mathbf{x},\mathbf{z}) \in R$ $\Leftrightarrow R; R \subseteq R$
- Vollst. $\forall \mathbf{x}, \mathbf{y} \in M : (x, y) \in R \vee$ $(y,x) \in R$ $\Leftrightarrow R \cup R^{-1} = M \times M$

Spezielle Relationen

 $\{(n,m) \in N \times M \mid (m,n) \in R\}$

Komposition R; R mit $R' \in N \times$ $\{(m,p)\in M\times P\mid \exists n\in N:(m,n)\in$ $R \wedge (n,p) \in R'$

LEERE RELATION Ø

IDENTITÄT ID $_M := \{(m, m) \mid m \in M\}$

Allrelation $M \times M$

 \ddot{A} OUIVALENZRELATION \equiv reflexiv, symmetrisch und transitiv. (Gleichheit***)

 \ddot{A} QUIVALENZKLASSE [m] auf Vertreter $m \in M$.

$$[m]_{\equiv} := \{x \in M \mid m \equiv x\}$$

$$\Leftrightarrow [m]_{\equiv} = [x]_{\equiv}$$

ZERLEGUNG $\mathcal{N} \subseteq \mathcal{P}(M)$ von M.

∅ ∉ N

- $M = \bigcup \mathcal{N}$
- $N \cap N' = \emptyset$ $(N, N' \in \mathcal{N} : N \neq N')$
- (Korrespondiert zur ÄR.)

QUOTIENT (\mathbf{M}/\equiv) Sei \equiv ÄR. auf M. (ist Zerlegung)

$$(M/\equiv):=\{[m]_{\equiv}\mid m\in M\}$$

(Korrespondiert zur ÄK.)

Ordnungsrelation ≺ reflexiv, antisymmetrisch, transitiv

 $\text{Minimale } x \ \, \forall m \in M \, \backslash \, \{x\} : m \not \preceq x \quad \text{Surjektiv} \ \, \forall y \in Y \exists x \in X : \mathbf{y} = \mathbf{f}(\mathbf{x})$

Untere Schranken $m \in \downarrow X$ $\forall x \in X : m \prec x$

• $^{\downarrow}/_{\uparrow}\emptyset = M$

KLEINSTES $\min_{\prec} X \in X$

INFIMUM max $\downarrow X$

- $\inf\{x,y\} = x \wedge y$
- $\sup\{x,y\} = x \vee y$

TOTALE ORDNUNG + vollständig (Trichotomie)

Abbildungen

Abbildung f von X (Definitionsb.) nach Y (Werteb.) ordnet jedem $x \in X$ • $M \setminus Y \subseteq M \setminus X$ eindeutig ein $y \in Y$ zu.

Totalität $\forall x \in X \exists y \in Y : f(x) = y$

EINDEUTIGKEIT $\forall x \in X \forall a, b \in Y$: $f(x) = a \land f(x) = b \Rightarrow a = b$

$$\mathbf{f}:X\to Y$$

 $\mbox{Bilder} \ f(X') \quad = \quad \{f(x) \quad | \quad x \quad \in \quad \mbox{Verkettung} \quad f \circ g : A \to C$ X'} $X' \subseteq X$

Urbilder $f^{-1}(Y') = \{x \in X \mid f(x) \in Y'\} \quad Y' \subseteq Y$

GRAPH $gr(f) := \{(x, f(x)) | x \in X\}$

IDENTITÄT

$$id_A: A \to A$$

 $id_A(a) := a \quad \forall a \in A$

Umkehrfunktion $f^{-1}: Y \to X$ wenn f bijektiv und $(f \circ f^{-1})(y) = y$ bzw. f; $f^{-1} = id_X \wedge f^{-1}$; $f = id_X$ Für die Relation f^{-1} gilt:

• $x \in f^{-1}(\{f(x)\})$

- $f(f^{-1}(\{y\})) = \{y\}$ falls f surjek-
- Eigenschaften

INJEKTIV
$$\forall x_1, x_2 \in X :$$

 $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$

BIJEKTIV/INVERTIERBAR wenn injektiv und surjektiv

CANTOR-SCHRÖDER-BERNSTEIN

$$\left. \begin{array}{l} f: M \to N \\ g: N \to M \end{array} \right\} \text{injekt.} \\ \Rightarrow \exists B_{\text{bijekt.}}: M \to N \end{array}$$

Fixpunkt f(m) = mSei $X \subseteq Y \subseteq M$, $f: M \to N$

- $f(X) \subseteq f(Y)$ (Monotonie)
- $M \setminus (M \setminus X) = X$

KNASTER-TARSKI-Lemma Sei $X \subseteq \bullet$ Relationen R_i auf U $Y \subseteq M \Rightarrow f(X) \subseteq f(Y)$ (monoton), dann hat $f: \mathcal{P}(M) \to \mathcal{P}(M)$ einen Fixpunkt

$$(f \circ g)(a) = f(g(a))$$

(der Reihenfolge nach)

Verbände

Sei (M, \preceq) teilweise geordnet

$$\forall m, n \in M \exists^{\inf}/_{\sup} \{m, n\}$$

• Dann gilt Kommutativität, Assoziativität, Distributivität

Vollständig $\forall X \subseteq M : \exists^{\inf}/_{\sup}X$

- $\exists^{\min}/_{\max}M = \frac{\sup}/_{\inf}\emptyset$
- Jede endliche nicht-leere Menge ist vollständig

Distributivität

$$\forall x, y, z \in M :$$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$$

- Jede total geordnete Menge und alle Ketten ist distributiv
- Keine Unterstruktur isomorph zu M_3 ($l \vee (m \wedge r)$) oder N_5 ($l_{\perp} \vee (r \wedge l_{\perp})$)

Algebraische Strukturen

$$\mathcal{U} = (U, \langle R_1, \dots, R_k \rangle, \langle f_1, \dots, f_l \rangle, \langle g_1, \dots, g_m \rangle, \langle c_1, \dots, c_n \rangle)$$

des Types (k, l, m, n)

- Grundmenge *U*
- Binäre Funktionen f_i auf U
- Unäre Funktionen q_i auf U
- ullet Konstanten c_i auf U (Beschränken mögliche Isomorphismen)

Isomorphismus $\varphi: U \to U'$

- $\mathcal{U}, \mathcal{U}'$ gleichen Typs
- φ bijektiv
- $(u_1, u_2) \in R_i \Leftrightarrow (\varphi(u_1), \varphi(u_2)) \in R_i'$
- $\varphi(f_i(u_1,u_2)) = f_i'(\varphi(u_1),\varphi(u_2))$

- $\varphi(g_i(u)) = g_i'(\varphi(u))$
- $\varphi(c_i) = c'_i$

 φ ist ÄR. auf algebraischen Struktu- DISTRIBUTIVITÄT ren gleichen Typs

Unterstruktur \mathcal{U} von \mathcal{O}

- *U* und *O* gleichen Typs
- U ⊂ O
- $(u_1, u_2) \in R'_i \Leftrightarrow (u_1, u_2) \in R_i$
- $f'_i(u_1, u_2) = f_i(u_1, u_2)$
- $q_i'(u) = q_i(u)$
- $c'_i = c_i$

Analysis

Reelle Zahlen ℝ

Angeordnete Körper

(Gilt auch für \mathbb{Z} und \mathbb{Q})

Körperaxiome $(\mathbb{R}, +, *)$ $a, b, c \in \mathbb{R}$

Addition $(\mathbb{R}, +)$

ASSOZIATIVITÄT a + (b+c) = (a+b) + c

KOMMUTATIVITÄT a+b=b+a

NEUTRALES ELEMENT NULL $a+0=a \quad 0 \in \mathbb{R}$

INVERSES "NEGATIV" $a + (-a) = 0 \quad (-a) \in \mathbb{R}$

MULTIPLIKATION $(\mathbb{R}, *)$

Assoziativität a*(b*c) = (a*b)*c • $\frac{a}{b} \stackrel{*d}{=} \frac{ad}{bd}$

Kommutativität a*b=b*a

NEUTRALES ELEMENT EINS $a * 1 = a \quad 1 \in \mathbb{R} \setminus \{0\}$

INVERSES "KEHRWERT" $a*(a^{-1}) = 1$ $a \neq \mathbf{0}, (a^{-1}) \in \mathbb{R}$

 $\mathbf{a} * (b+c) = \mathbf{a} * b + \mathbf{a} * c$

Totale Ordnung

Transitivität $a < b \land b < c \Rightarrow a < c$

TRICHOTOMIE Entweder a < b oder a = b oder b < a \Rightarrow Irreflexivität ($a < b \Rightarrow a \neq b$)

ADDITION $a < b \Rightarrow a + c < b + c$

MULTIPLIKATION $a < b \Rightarrow a * c < b * c \quad 0 < c$

Bei Additiver oder Multiplikativer Inversion dreht sich die Ungleichung.

ARCHIMEDES Axiom

 $\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$

Teilbarkeit

 $a|b \Leftrightarrow \exists n \in \mathbb{Z} : b = a * n$

 $(\Rightarrow \sqrt{2} \notin \mathbb{Q}$, da mit $\frac{a}{1} = \sqrt{2}$ nicht teilerfremd)

Häufige Fehler

- Nicht durch Null teilen/kürzen
- Nicht -x < 0 annehmen
- Multiplikation mit negativen Zahlen kehrt Ungleichungen

Operationen

Brüche

- \bullet $\frac{a}{b} * \frac{c}{d} = \frac{ac}{bd}$
- \bullet $\frac{a}{a} + \frac{b}{a} = \frac{a+b}{a}$
- $\frac{a}{b} + \frac{c}{d} = \frac{ad+cb}{bd}$

Wurzeln $b^n = a \Leftrightarrow b = \sqrt[n]{a}$

- $\sqrt[n]{\mathbf{a} * \mathbf{b}} = \sqrt[n]{\mathbf{a}} * \sqrt[n]{\mathbf{b}}$
- $\sqrt[n]{\sqrt[m]{a}} = \sqrt[n*m]{a}$
- $\sqrt[n]{a} < \sqrt[n]{b}$ 0 < a < b
- $\sqrt[n+1]{a} < \sqrt[n]{a}$ 1 < a
- $\sqrt[n]{a} < \sqrt[n+1]{b}$ 0 < a < 1

$$\sqrt[n]{a^n} = |a| \quad a \in \mathbb{R}$$

Potenzen $a^{\frac{x}{y}} = \sqrt[y]{a^x}$

- $a^{\mathbf{x}} * b^{\mathbf{x}} = (a * b)^{\mathbf{x}}$
- $\bullet \ a^x * a^y = a^{x+y}$
- $\bullet (a^x)^y = a^{x*y}$

Dezimaldarstellung

GAUSS-Klammer $[y] := \max\{k \in$ $\mathbb{Z} \mid k \leq y \} = |y|$

$$[y] = k \Leftrightarrow k \leq y < k+1$$

Existenz $\forall x \geq 0 \exists ! (a_n)_{n \in \mathbb{N}} \text{ mit }$

- $a_n \in \{0, \dots, 9\} \quad \forall n \in \mathbb{N}$
- $\bullet \ \sum_{i=0}^{n} \frac{a_{i}}{10^{i}} \le x < \sum_{i=0}^{n} \frac{a_{i}}{10^{i}} + \frac{1}{10^{n}} \forall n \in \mathbb{N}_{0}$

Die Umkehrung gilt mit Lemma:

$$x = \sum_{n=0}^{\infty} \frac{a_n}{10^n}$$

Lemma x > 0, $(a_n)_{n \in \mathbb{N}}$ Dezi. von x

$$\neg(\exists N \in \mathbb{N} \forall n \ge N : a_n = 9)$$

 $x \in \mathbb{Q} \Leftrightarrow (a_n)_{n \in \mathbb{N}}$ periodisch

Intervalle

Sei $A \subseteq \mathbb{R}, A \neq \emptyset, a_0 \in A$.

Geschlossen $[a;b]:=\{x\in\mathbb{R}\mid a\leq$ ("Ecken sind mit enthalten")

OFFEN $(a; b) := \{x \in \mathbb{R} \mid a < x < b\}$ (Bei ∞ immer offen, da $\infty \notin \mathbb{R}$)

Kleinstes/Größtes Element

MINIMUM $min(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a_0} \le a$

MAXIMUM $\max(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a} \leq a_0$ $(\nexists^{\min}/_{\max}(a;b))$

Beschränktheit *A* heißt

Oben beschränkt $\exists s \in \mathbb{R} \forall a \in A$: $\mathbf{a} \leq s$

Unten beschränkt $\exists s \in \mathbb{R} \forall a \in A$: $\mathbf{s} \leq a$

Vollständigkeit

INFIMUM (KLEIN) $\inf(A)$ $:= \max\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{s} \leq a\}$

SUPREMUM (GROSS) $\sup(A)$ $:= \min\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{a} \le s\}$

Vollständigkeitsaxiom $\exists \sup(A)$.

Folgen

Folge $(\mathbf{a_n})_{\mathbf{n} \in \mathbb{N}}$ in A ist eine Abb. f: $\mathbb{N} \to A \text{ mit } a_n = f(n).$

ARITHMETISCHE FOLGE $a_{n+1} = a_n + a_n$ $a_n = a + (n-1) * d \quad d, a \in \mathbb{R}$

GEOMETRISCHE FOLGE $a_{n+1} = a_n * q$ $a_n = q^n \quad q \in \mathbb{R}$

Rekursion a_n ist auf \mathbf{a}_{n-1} definiert.

$$a_{n+1} = F(n, a_n) \quad \forall n \in \mathbb{N}$$

 $F: A \times \mathbb{N} \to A$

Primfaktorzerlegung $n \in \mathbb{N}, n \geq 2$

$$\exists p_1, \dots, p_n \in \mathbb{P} : n = \mathbf{p_1} * \dots * \mathbf{p_n}$$

Summen und Produkte

SUMME $\sum_{i=1}^{n} i = 1 + 2 + \cdots + n$

PRODUKT $\prod_{i=1}^{n} i = 1 * 2 * 3 * \cdots * n$

FAKULTÄT $n! = \prod^n i$ (0! = 1)

Gaussche Summe $n \in \mathbb{N}$

$$\sum_{i=1}^{n} i = \frac{n * (n+1)}{2}$$

Geom. Summe $q \in \mathbb{R} \setminus \{0\}, n \in \mathbb{N}_0$

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

BERNOULLI Unglei. $n \in \mathbb{N}_0, x \ge -1$

$$(1+x)^n \ge 1 + nx$$

Binom. Koeff. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- Rechnen: $\frac{n>k}{0<(n-k)}$
- $\binom{n}{0} = \binom{n}{n} = 1$
- $\bullet \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

Binomischer Satz $n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} * a^{n-k}b^k$$

Grenzwerte

$$\textbf{Betrag} \quad |x| := \left\{ \begin{array}{ccc} & x & 0 \leq x \\ - & x & x < 0 \end{array} \right.$$

Lemma
$$|x * y| = |x| * |y|$$

Dreiecksungleichung
$$|x + y| \le |x| + |y|$$

UMGEKEHRTE DREIECKSUNGLEICHUNG

$$||x| - |y|| \le |x - y|$$

Konvergenz

Sei
$$(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}, a\in\mathbb{R}$$
.

$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow$$

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} n \ge n_0 :$$

$$|\mathbf{a}_n - \mathbf{a}| \le \epsilon$$

$$(a - \epsilon \le a_n \le a + \epsilon)$$

•
$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow \lim_{n \to \infty} a_n = a$$

Beschränkt + monoton ⇒ konvergent:

$$\lim_{n\to\infty}a_n=\begin{cases}\inf\{a_n\mid n\in\mathbb{N}\} & (a_n)_{\mathit{fall}.}\\ \sup\{a_n\mid n\in\mathbb{N}\} & (a_n)_{\mathit{steig}.}\end{cases}\qquad \lim_{n\to\infty}a_n=a, \lim_{n\to\infty}b_n=b$$

Nullfolgen $\lim_{n\to\infty} a_n = \mathbf{0}$

•
$$\lim_{n\to\infty} \frac{1}{n^k} = 0$$
 $k \in \mathbb{N}$

•
$$\lim_{n\to\infty} nq^n = \mathbf{0}$$

FOLGEN GEGEN 1

•
$$\lim_{n\to\infty} \sqrt[n]{a} = 1$$
 $a>0$

•
$$\lim_{n\to\infty} \sqrt[n]{n} = 1$$

Bestimmt Divergent

$$\begin{array}{c} a_n \xrightarrow{n \to \infty} \infty \Leftrightarrow \\ \forall R > 0 \exists n \geq n_0 \in \mathbb{N} : a_n \geq R \\ a_n \xrightarrow{n \to \infty} -\infty \Leftrightarrow \\ \forall R < 0 \exists n \geq n_0 \in \mathbb{N} : a_n \leq R \end{array}$$

$$\lim_{n \to \infty} q^n \begin{cases} = 0 & (-1; 1) \\ = 1 & = 1 \\ \ge \infty & > 1 \\ \text{div.} & \le -1 \end{cases}$$

Monotonie

MONOTON FALLEND $a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$

Beschränktheit

$$\exists k>0 \forall n\in\mathbb{N}: |\mathbf{a_n}|\leq \mathbf{k}$$

- Konvergent ⇒ beschränkt
- Unbeschränkt ⇒ divergent

Grenzwertsätze

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$$

•
$$a_n \xrightarrow{n \to \infty} a \land a_n \xrightarrow{n \to \infty} b$$

 $\Rightarrow a = b$ (Max. einen Grenzw.)

•
$$a = \mathbf{0} \wedge (b_n)_{beschr.}$$

 $\Leftrightarrow \lim_{n \to \infty} a_n b_n = \mathbf{0}$

•
$$a_n \le b_n \Leftrightarrow a \le b$$
 (nicht <)

$$\bullet \lim_{n \to \infty} \begin{cases} a_n \pm b_n = a \pm b \\ a_n * b_n = a * b \\ a_n * c = a * c \\ \sqrt[k]{a_n} = \sqrt[k]{a} \\ |a_n| = |a| \end{cases}$$

Einschachtelungssatz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

$$\forall n \ge N \in \mathbb{N} : \mathbf{a_n} \le \mathbf{c_n} \le \mathbf{b_n}$$

$$(\exists) \lim_{n \to \infty} c_n = \mathbf{a}$$

Spezielle Folgen

Teilfolge streng mnt. Folge $(b_k)_{n\in\mathbb{N}}$ $\operatorname{mit}(n_k)_{k\in\mathbb{N}}$, sodass $b_k = \mathbf{a_{nk}} \quad \forall k \in \mathbb{N}$.

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} a_{nk} = a$$

(da n_k mnt. steigend)

$$\forall (a_n)_{n\in\mathbb{N}}\exists (a_{n\,k})_{k\in\mathbb{N}_{mnt.}}$$

(nicht streng!)

Häufungspunkt *h* mit einer Teilfolge

$$\lim_{n \to \infty} a_{n\,k} = h$$

• $\lim_{n\to\infty} a_n = a \Leftrightarrow \exists ! : h = a$

BOLZANO-WEIERSTRASS

$$(a_n)_{n\in\mathbb{N}}_{beschr.}\Rightarrow \exists h_{H\ddot{a}uf.}$$

(Beschränkte Teilfolgen besitzen mind. einen Häufungspunkt)

CAUCHY-Folge

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 :$$

 $|a_n - a_m| \le \epsilon$

(Konv. ohne bekannten Grenzwert)

Vollständigkeit von \mathbb{R}

$$(a_n)_{n\in\mathbb{N}_{\mathsf{CAUCHY}}}\Leftrightarrow\exists\lim_{n\to\infty}a_n$$

$$(\exists \lim_{n \to \infty} a_n \Rightarrow (a_n)_{n \in \mathbb{N}_{CAUCHY}}$$

$$\Rightarrow (a_n)_{n \in \mathbb{N}_{beschr.}}$$

$$\Rightarrow \exists h \quad \text{(BW)}$$

$$\Rightarrow \lim_{n \to \infty} a_n = h)$$

Stetigkeit

Berührungspunkt $D \subseteq \mathbb{R}, a \in \mathbb{R}$

$$a$$
 BP. von D

$$\Leftrightarrow \exists (x_n)_{n \in \mathbb{N}} \text{ in } D : x_n \xrightarrow{n \to \infty} a$$
$$\Leftrightarrow \forall \delta > 0 \exists x \in D : |x - a| \le \delta$$

Grenzwert gegen Stelle $f: D \rightarrow$ $\mathbb{R}, y \in \mathbb{R}, a$ BP. von D

$$\lim_{x \to a} f(x) = y$$

$$\Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } D:$$

$$x_n \xrightarrow{n \to \infty} a \Rightarrow f(x_n) \xrightarrow{n \to \infty} y$$

$$\Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 \forall x \in D:$$

$$|x - a| \le \delta \Rightarrow |f(x) - y| \le \epsilon$$

(Grenzwertsätze gelten analog)

STETIG AN STELLE f stetig bei a

$$\lim_{x \to a} f(x) = f(a)$$

$$\Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } D:$$

$$x_n \xrightarrow{n \to \infty} a \Rightarrow f(x_n) \xrightarrow{n \to \infty} f(a)$$

$$\Leftrightarrow \forall \epsilon > 0 \exists \delta > 0 \forall x \in D:$$

$$|x - a| \le \delta \Rightarrow |f(x) - f(a)| \le \epsilon$$

(U.A. stetig: Summen, Produkte, Ouotienten, Verkettungen stetiger Fkt. und Polynome)

EINSEITIGER GRENZWERT $x_0^{<}/_{>}a \in$

$$\lim_{x \nearrow /_{\searrow} a} f(x) = y$$

$$\Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } D:$$

$$(x_n \xrightarrow{n \to a} a \land \forall n : \mathbf{x_n}^{<} /_{>} \mathbf{a})$$

$$\Rightarrow f(x_n) \xrightarrow{n \to \infty} y$$

$$\Leftrightarrow \lim_{x \to a} f(x) = y \land x_0^{<} /_{>} a \in D$$

Grenzwert gegen ∞ D schränkt

$$\lim_{x \to \infty} f(x) = y$$

$$\Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } D:$$

$$x_n \xrightarrow{n \to \infty} \infty \Rightarrow f(x_n) \xrightarrow{n \to \infty} y$$

$$\Leftrightarrow \forall \epsilon > 0 \exists x_0 \in \mathbb{R} \forall x \in D:$$

$$x \ge x_0 \Rightarrow |f(x) - y| \le \epsilon$$

 $GRENZWERT = \infty$

$$\lim_{x \to a} f(x) = \infty$$

$$\Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \text{ in } :$$

$$x_n \xrightarrow{n \to \infty} a \Rightarrow f(x_n) \xrightarrow{n \to \infty} \infty$$

$$\Leftrightarrow \forall R > 0 \exists \delta > 0 \forall x \in D :$$

$$|x - a| \le \delta \Rightarrow f(x) \ge R$$

Eigenschaften stetiger **Funktionen**

LEMMA
$$f(a) > \eta \Rightarrow \forall x \exists \delta > 0 \in D \cap [a - \delta, a + \delta] : f(x) > \eta$$

ZWISCHENWERT $[a;b] \subseteq \mathbb{R}, f$: $[a;b] \to \mathbb{R}$ stetig, $f(a) \neq f(b)$

$$f(a) < c < f(b)$$

$$\Rightarrow \exists \xi \in (a; b) : f(\xi) = c$$

KOROLLAR $f(a) * f(b) < 0 \Rightarrow \exists \xi \in$ $(a;b): f(\xi) = 0$ (versch. Vorzeichen)

SATZ

$$f:[a;b] o \mathbb{R}$$
 stetig
$$\Rightarrow f \text{ beschränkt}$$

$$\Rightarrow \exists^{\min}/_{\max}\{f(x) \mid x \in [a;b]\}$$

SATZ Sei I Intervall, $I, J \subseteq \mathbb{R}, f: I \rightarrow$ J stetig, strg. mnt (\Rightarrow injektiv), surjektiv

$$\Rightarrow J \text{ Intervall}$$

$$\Rightarrow f \text{ bijektiv}$$

$$\Rightarrow f^{-1}: J \to I \text{ stetig}$$

Reihen

unbe- Reihe $(s_n)_{n\in\mathbb{N}} = \sum_{k=1}^{\infty} a_k$ mit Gliedern $(a_k)_{k\in\mathbb{N}}$.

*n*te Partialsumme $s_n = \sum_{k=1}^n a_k$

Grenzwert ebenfalls $\sum_{k=1}^{\infty} a_k$, falls s_n konvergiert

Spezielle Reihen

GEOM. $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q} \quad q \in (-1; 1)$

HARMON. $\sum_{k=1}^{\infty} \frac{1}{k}$ divergent

Allg. Harmon. $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ konver- Wurzel $a_n \geq 0$ $\forall n \in \mathbb{N}$ giert $\forall \alpha > 1$

Lemma

- $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ konvergent
 - $-\sum_{\substack{k=1\\ \infty}}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$
 - $-\mathbf{c}*\sum_{k=1}^{\infty}\mathbf{a}_{k}=\sum_{k=1}^{\infty}\mathbf{c}*\mathbf{a}_{k}$
- $\exists N \in \mathbb{N} : (\sum_{k=N}^{\infty} a_k)_{\text{konv.}} \Rightarrow (\sum_{k=1}^{\infty} a_k)_{\text{konv.}}$ (Es reicht spätere Glieder zu betrachten)
- $\begin{array}{l} \bullet \ (\sum_{k=1}^{\infty} a_k)_{\mathrm{konv.}} \\ \Rightarrow \ \forall N \in \mathbb{N} \ : \ (\sum_{k=N}^{\infty} a_k)_{\mathrm{konv.}} \\ \Rightarrow \lim_{N \to \infty} \sum_{k=N}^{\infty} a_k = 0 \end{array}$

Konvergenzkriterien

CAUCHY

$$\Leftrightarrow (\sum_{k=1}^{n} a_{k})_{n \in \mathbb{N}} \text{ CAUCHY}$$

$$(\sum_{k=1}^{\infty} a_{k})_{\text{konv.}}$$

$$\Leftrightarrow \forall \epsilon > 0 \exists n_{0} \in \mathbb{N} \forall n > m > n_{0} :$$

$$|\sum_{k=1}^{n} a_{k}| \leq \epsilon$$

Notwendig

$$(\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \Rightarrow \lim_{n \to \infty} a_n = 0$$

$$\lim_{n \to \infty} a_n \neq 0 \Rightarrow (\sum_{n=1}^{\infty} a_n)_{\text{div.}}$$

Beschränkt $a_n \geq 0 \ (\Rightarrow mnt.) \ \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} a_n)_{beschr.} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{konv.}$$

MAJORANTE $0 \le \mathbf{a_n} \le \mathbf{b_k} \quad \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} b_n)_{\text{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}}$$

Quotient $a_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \begin{cases} < 1 \to (\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \\ > 1 \to (\sum_{n=1}^{\infty} a_n)_{\text{div.}} \end{cases}$$

$$\lim_{n \to \infty} \sqrt[n]{a_n} \begin{cases} < 1 \to (\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \\ > 1 \to (\sum_{n=1}^{\infty} a_n)_{\text{div.}} \end{cases} \bullet x < y \Rightarrow \exp(x) < \exp(x)$$

$$(\sum_{n=1}^{\infty} |a_n|)_{\text{konv.}} \Rightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}}$$

$$|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$$

(Dreiecksungleichung)

LEIBNIZ $(a_n)_{n\in\mathbb{N}}$ mnt. Nullfolge

$$\left(\sum_{n=1}^{\infty} (-1)^n * a_n\right)_{\text{konv.}}$$

Grenzwert $a_n, b_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n \to \infty} \frac{a_n}{b_n} > 0 \Rightarrow$$
 $(\sum_{n=1}^{\infty} a_n)_{\mathrm{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} b_n)_{\mathrm{konv.}}$

Exponentialfunktion

$$\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{x!} = e^x$$

- $\lim_{n \to \infty} a_n \neq 0 \Rightarrow (\sum_{n=0}^{\infty} a_n)_{\text{div.}} \qquad exp(1) = e \approx 2,71828 \notin \mathbb{Q}$ $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$

$$\exp(x) * \exp(y) = \exp(x + y)$$

CAUCHY-Produkt

$$(\sum_{n=1}^{\infty} b_n)_{\text{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \qquad (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

- $\frac{1}{\exp(x)} = \exp(-x)$
- $x < y \Rightarrow \exp(x) < \exp(y)$

$$\exp_a(x) := \exp(x * \log a) = a^x$$

- a > 1 ⇒ strng. mnt. steigend
- $0 < a < 1 \Rightarrow$ strng. mnt. fallend
- $0 < a \neq 1 \Rightarrow \exp_a : \mathbb{R} \to \mathbb{R}^+$ bijektiv

Logarithmen

$$\log = \exp^{-1}: \mathbb{R}^+ \to \mathbb{R}$$

- $\log 1/x = -\log x$
- $\log x/y = \log x \log y$
- $\log x^r = r * \log x$

$$\log(x * y) = \log x + \log y$$

$$\log_a x = \frac{\log x}{\log a} = \exp_a^{-1}$$

Trigonometrische Funktionen

$$\sin x := \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$

$$\cos x := \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

(beide absolut konvergent, $0^0 := 1$)

•
$$|\sin/\cos x| \le 1$$

- $\sin -x = -\sin x$
- $\cos -x = \cos x$
- = $\sin(x)\cos(y)$ + \bullet $\sin(x + y)$ $\cos(x)\sin(y)$
- \bullet cos(x + y) $= \cos(x)\cos(y) \sin(x)\sin(y)$
- $\sin 2x = 2\sin(x)\cos(x)$
- $\cos 2x = \cos^2 x \sin^2 x$
- $\bullet \sin^2 x + \cos^2 x = 1$
- $\sin x \sin y = 2\cos(\frac{x+y}{2})\sin(\frac{x-y}{2})$
- $\cos x \cos y = 2\sin(\frac{x+y}{2})\sin(\frac{y-x}{2})$

$$\pi:\cos\frac{\pi}{2}=0$$

- $\sin/\cos(x+2\pi) = \sin/\cos x$
- $\sin/\cos(x+\pi) = -\sin/\cos x$
- $\sin/\cos(x+\frac{\pi}{2}) = \cos/\sin x$
- $\sin x = 0 \quad \forall k \in \mathbb{Z} : x = k\pi$
- $\cos x = 0$ $\forall k \in \mathbb{Z} : x = (2k+1) * \frac{\pi}{2}$

$$\tan x := \frac{\sin x}{\cos x}$$

Differenzierbarkeit

$$D\subseteq\mathbb{R},\,f:D\to\mathbb{R},\,a\in D$$
BP von $D\setminus\{a\}$

Differenzierbar an der Stelle a, falls

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} =: f'(x)$$
$$= \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

- Differenzierbar bei $a \Rightarrow$ stetig bei a
- SUMMENREGEL (f+g)'(a) = f'(a) +g'(a)
- FAKTORREGEL (c * f)'(a) = c * f'(a)

- PRODUKTREGEL (f * g)'(a) = f'(a) *g(a) + f(a) * g'(a)
- REZIPROKREGEL $(1/f)'(a) = -\frac{g'(a)}{a^2(a)}$
- QUOTIENTENREGEL (f/g)'(a) $\frac{f'(a)*g(a)-f(a)*g'(a)}{g^2(a)}$
- KETTENREGEL $(f \circ g)'(a) = f'(g(a)) *$ g'(a)
- UMKEHRFUNKTION $(f^{-1})'(b)$ $1/f'(f^{-1}(b))$

f'	f	F
0	a	ax + c
1	x	$\frac{1}{2}x^2 + c$
$-1/x^{2}$	1/x	ln(x) + c
$\frac{1}{2\sqrt{x}}$	\sqrt{x}	$\frac{2}{3}x\sqrt{x} + c$
$ax^a - 1$	x^a	$\frac{1}{a+1}x^a + 1 + c$
$\cos x$	$\sin x$	$-\cos(x) + c$
$-\sin x$	$\cos x$	$\sin(x) + c$
e^x	e^x	e^x
$a^x \ln a$	a^x	
$\frac{1}{x \ln a}$	$\log_a x$	

Sei $f, g: [a, b] \to \mathbb{R}$ diffbar und ste-

Satz von ROLLE

$$f(a) = f(b) \Rightarrow \exists \xi \in (a, b) : f'(\xi) = 0$$

Mittelwertsatz

$$\exists \xi \in (a,b) : f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

$$\exists \xi \in (a,b)$$
:

$$f'(\xi)(g(b) - g(a)) = g'(\xi)(f(b) - f(a))$$

Monotonie

- $(\forall x \in D : f(x) \leq 0) \Rightarrow f$ mnt. fal-
- $(\forall x \in D : f(x) < 0) \Rightarrow f$ strng. mnt.
- f (nicht streng) mnt. fallend $\Rightarrow \forall x \in$ D: f'(x) < 0

Höhere Ableitungen

n-MAL ABLEITBAR $\exists f', f'', \dots, f^{(n)}$

STETIG ABLEITBAR Ableitung stetig

Extrema

Lokales Extrema

$$\exists \epsilon > 0 \forall x \in D \cap (x_0 - \epsilon, x_0 + \epsilon) :$$

$$f(x_0)^{\leq}/_{\geq} f(x)$$

Ist D Intervall und x_0 innerer Punkt Unter-Oberintegral $f:[a,b] \to \mathbb{R}$ und lokales Extremum:

$$\Rightarrow f'(x_0) = 0$$

(Achtung: Umkehrung nicht notwendig!)

Sei zusätzlich $f'(x_0) = 0$ und f 2mal ableitbar:

- $f''(x_0) < 0 \Rightarrow x_0$ lokales Maximum schränkt
- $f''(x_0) > 0 \Rightarrow x_0$ lokales Minimum

Taylor-Polynome

diff.-bar

$$T_{n,a}^f(x) = \sum_{k=0}^n \frac{f^{(k)}(n)}{k!} (x-a)^k \qquad |x-y| \le \delta \Rightarrow |f(x) - f(y)| \le \epsilon$$

 $\textbf{Restglied} \ \ \textbf{(Lagrange)} \quad f \quad n \ + \ 1\text{-mal} \quad \bullet \quad f:[a,b] \to \mathbb{R} \ \text{stetig} \Rightarrow f \ \text{stetig}$ diff.-bar

$$R_n(x) = f(x) - T_{n,a}^f(x)$$

$$\Rightarrow \exists \xi \in (x, a) :$$

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

Integralrechnung

Unterteilung $(x_i)_{i=0}^n \in [a,b]$ mit a = $x_0 < x_i < x_n = b$ (nicht notwendigerweise äquidistant)

Treppenfunktion $\varphi:[a,b]\to\mathbb{R}$ mit $\bullet \mid \int f\mid \leq \int |f|$ $\exists (x_i)_{i=0}^n \in [a,b] \forall (x_{i-1},x_i) : \varphi(x) =$ $konst. = c_i$

Integral der Treppenfunktion

$$I(\varphi) = \sum_{i=1}^{n} c_i (x_i - x_{i-1})$$

Sei $\varphi, \psi \in T[a, b], c \in \mathbb{R}$

- $\varphi + \psi \in T[a, b], c\varphi \in T[a, b]$
- $I(\varphi + psi) = I(\varphi) + I(\psi), I(c\varphi) =$
- $\varphi < \psi \Rightarrow I(\varphi) < I(\psi)$

beschränkt

$$\begin{array}{lll} \text{Unteri.} \ U(f) &=& \sup\{I(\varphi) &|& \varphi \in \\ T[a,b] \wedge \varphi \leq f\} \end{array}$$

$$\begin{array}{lll} \text{Oberi.} & O(f) &=& \inf\{I(\psi) &|& \psi &\in \\ & T[a,b] \wedge \psi \geq f\} \end{array}$$

RIEMANN-Integral $f:[a,b] \to \mathbb{R}$ be-

$$U(f) = O(f) = \int_{a}^{b} f$$

Sei $I\subseteq\mathbb{R},\,a\in I,\,f:I\to\mathbb{R}$ n-mal Gleichmäßig Stetig $D\subseteq\mathbb{R},\,f:D\to diff$ her

$$\forall \epsilon > 0 \exists \delta > 0 \forall x, y \in D :$$
$$|x - y| \le \delta \Rightarrow |f(x) - f(y)| \le \epsilon$$

- f glm. stetig $\Rightarrow f$ stetig

RIEMANN'sche Summe f, g $[a,b] \to \mathbb{R} \ (\Rightarrow \text{glm.}) \text{ stetig}$

$$s_n(f) = \frac{b-a}{n} \sum_{i=1}^n f(a+i\frac{b-a}{n})$$
$$\lim_{n \to \infty} s_n(f) = \int_a^b f$$

- $\int f + q = \int f + \int q$
- $f \leq g \Rightarrow \int f \leq \int g$
- $\int_a^b f = \int_a^c f + \int_a^b f$ a < c < b

Mittelwertsatz $f:[a,b] \to \mathbb{R}$ stetig

$$\exists c \in [a,b] : f(c) = \frac{1}{b-a} \int_a^b f$$
bzw. $A = \int_a^b f = (b-a)f(c)$