CS & IT ENGINEERING

Operating System

Memory Management

Lecture - 01

Recap of Previous Lecture

Topic

Banker's Resource Request Algorithm

Topic

Deadlock Detection

Topic

Recovery from Deadlock

Topics to be Covered

Topic

Memory Management

Topic

Memory Management Technique

Topic

Contiguous Memory Management Technique

Topic: Memory Management

1. Module of OS

Topic: Functions of Memory Management

- 1. Memory allocation => Allocate mem. to a new arriving process
- 2. Memory deallocation => Deallocate mem. from Completed process
- 3. Memory protection ⇒ A process while running can access only that memory which is allocated to it.

Topic: Goals of Memory Management minimum wastage of

Maximum Utilization of space

Ability to run larger programs with limited space

Topic: Memory Management Techniques

s for mem. ellocation to

Contiguous

entire process must be stoned on consecutive mem Cocations

Fixed partition Variable partitions Contiguous mmt Contiguous mmt

Non-contiguous

A process is divided into multiple parts and each part can be stored anywhere in memory.

paging

segmentation

Topic: Contiguous Memory Management

Entire process should be stored on consecutive memory locations

The memory is divided into fixed no. of partitions; and each partition can be used to accommodate exactly one process.

escample:- memory

05

150MB
120MB
250MB
15MB
15MB

Degree of multiprogramming is limited due to no. of partitions.

Assume a new process P1 with size 130 MB arrives and it is allocated in memory in partition of size 150 MB.

20 MB space wastage inside partition => Internal fragmentation

Internal tragmentation:

when space allocated to a process is more than it's required space; then the extra allocated space is wasted and that wastage of space is known as Internal fragmentation

Topic: Partition Allocation Policy

- 1. First fit: The first partition from starting which can store the process, is allocated.
- 2. Best fit:- The smallest partition which can be used to stone Best for fixed the process, is allocated.
 - 3. worst fit: The biggest partition is allocated.
 - 4. Next Fit: The first partition from previously allocated partition

Topic: Partition Allocation Policy

Size

example:-

2 processes

PI => 110 MB

P2 => 75 MB

	mm
80 MB	
120MB	
110 MB	
200MB	
75 MB	

	Partitio	n allocated	Total
	91	P2	fragmental
+ Co+	120 MB	80 MB	10+5=15 MB
First fit Best fit worst fit Next fit	110 MB 200 MB 120 MB	75.MB 120 MB 110 MB	0 90+45=135MB 10+35=45MB

Topic: Variable Partition Contiguous MMT

main memory does not have fixed partitions.

Whenever a new process arrives then a new partition, equal to the size of process is created and is allocated to the process.

Process will always get exact size memory as much as needed. Hence there is no any internal fragmentation.

After Compaction => PI

P3

P4 can be

P3

P4

allocated -> P4

NOW

SOME

External fragmentation: If enough space available to store a process but not consecutively hence due process cannot be stored. wastage of space here is known as external fregmentation. solution =) Compaction => Collect all allocated processes into one side of memory, so that all empty spaces will be in other side very-very time of memory collectively. Consuming

#Q. Consider the requests from processes in given order 300K, 25K, 125K, and 50K. Let there be two blocks of memory available of size 150K followed by a block size 350K. Which of the following partition allocation schemes can satisfy the above requests? (Variable partition MMT)

A Best fit but not first fit

B First fit but not best fit

Both First fit & Best fit

neither first fit nor best fit

[NAT]

#Q. Consider a fixed partition MMT where there are 5 partitions of size 100MB, 250MB, 200MB, 500MB and 300MB. All Partitions are initially empty. The following process requests are made in the given order:

Process	Size	First fit	Best fit	worst fit
P1	150MB	250 MB	200 MB	500MB
P2	400MB	500 MB	500 MB	
Р3	270MB	300 MB	300 MB	300 MB
P4	180MB	200 MB	250 MB	250 MB
P5	80MB	100 MB	100 MB	200 MB

Provide the following answers for First fit, Best fit and Worst Fit policies? Maximum degree of multiprogramming? 5 , 5 , 4 What is the total internal fragmentation size? 270MB , 270MB , 570 MB

#Q. Consider variable partition MMT where there are 4 partitions of size 250MB, 200MB, 500MB and 400MB. The following process requests are made in the given order:

Process	Size
P1	150MB
P2	400MB
P3	270MB
P4	180MB
P5	80MB
P6	50MB

Provide how the processes are stored for First fit, Best fit and Worst Fit policies?

2 mins Summary

Topic

Memory Management

Topic

Memory Management Technique

Topic

Contiguous Memory Management Technique

Happy Learning

THANK - YOU