ME 564 Homework 4

Due date: 11/11/2020

Problem 1: Using power series to solve the initial value problem. (40 points)

$$(x^2 + 1)y'' + 2xy' = 0, y(0) = 0, y'(0) = 1$$

Problem 2: Inverted pendulum

The equation of motion for a free pendulum ($\tau = 0$) is:

$$mL^2\theta^{\prime\prime} = mgLsin\theta$$

where mL^2 is the mass moment of inertial of the system, θ'' is the angular acceleration of the pendulum, and $mgLsin\theta$ is the torque that drives the angular acceleration.

If $\frac{g}{L} = 1$, the equation of motion of the pendulum becomes:

$$\theta'' = \sin\theta$$

- 1) For ODE $\theta'' = sin\theta$, is $\theta = 0$, $\omega = \theta' = 0$ a critical point in the phase plane? If yes, what type of critical point is it? Show all your calculation. (20 points)
- 2) If a feedback torque $\tau=-2\theta-1\omega$ is applied at the end of the bar, the equation of motion becomes $\theta''=sin\theta-2\theta-1\omega$. Is $\theta=0$, $\omega=0$ a critical point? If yes, what type of critical point is it? Is it stable or unstable? Show all your calculation. (30 points)
- 3) For the inverted pendulum with feedback torque applied same as on question 2), using ode45 to solve the I.V.P. with initial conditions $\theta(0) = 0$, $\omega(0) = 1$ and plot the trajectory in the phase plane for 0 < t < 20s. (Attach the plot with your pdf and upload your code.) (10 points)