Project #2

Submit all work including computer codes

1. (40 points) Consider the neural network below with bias:

to classify two classes of linearly non-separable data on the plane.

Fig. 1 with bias included is expressed as:

$$v_1 = w_{11}^h x_{d1} + w_{12}^h x_{d2} - \theta_1,$$

$$v_2 = w_{21}^h x_{d1} + w_{22}^h x_{d2} - \theta_2,$$

$$z_1 = f(v_1),$$

$$z_2 = f(v_2),$$

$$y_1 = f(w_{11}^o z_1 + w_{12}^o z_2 - \theta_3),$$

where θ_1 , θ_2 , θ_3 are bias parameters; (x_{d1}, x_{d2}) is input data.

Download training_data.txt and test_data.txt from class website. The 1st column contains labels 0 and 1, the 2nd and 3rd columns store coordinates of the data points. The data points are plotted in Fig. 2. Left: training_data. Right: test_data. Colors for labels: 0 (red), 1 (blue).

- 1) Program gradient descent with exact formulas or use tensorflow (e.g. tf.train.GradientDescentOptimizer) to train the network in Fig. 1 (f = sigmoid) on training data.txt.
 - Training loss can be either square loss or log loss. Select proper learning rate and number of epochs to descend and reach a small loss value (as much as possible).
- 2) Print and plot training loss vs. epoch numbers.
- 3) Round the network output to 0 or 1, then compute and report test accuracy (percentage of correct label predictions) on test_data.txt.