AMRITA VISHWA VIDYAPEETHAM AMRITA SCHOOL OF COMPUTING, BENGALURU DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING IV SEMESTER AIE (February 2023 – June 2023)

21AIE212 – DESIGN AND ANALYSIS OF ALGORITHMS

COURSE PLAN (L-T-P-C: 2-0-3-3)

Course Objectives:

- To impart various design techniques for formulation of algorithm.
- To understand basic categories of algorithms.
- To understand and apply analysis of space and time complexity of algorithms and understand concept of growth rate.
- To deliver standard notations and representations of algorithmic complexity and known complexities.
- To comprehend basic complexity classes.
- To acquaint with will know tractable and intractable problems and map solutions to it.

Course Outcomes:

After completing this course student will be able to,

CO1	Develop an understanding of algorithmic strategies
CO2	Analyze and apply appropriate algorithmic technique for a given problem
CO3	Gain expertise on implementing standard algorithms on arrays, strings, trees and
	graphs
CO4	Map problems to known classes of tractable or intractable problems.

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	1		3	3	2	3	3	1	1
CO2	3	3	3	2	3	2			3	3	2	3	3	2	2
CO3	3	3	3	3	2	1			3	3	3	3	3	3	3
CO4	3	3	3	3	2	1			3	3	3	3	2	3	3

Lec Hrs	TOPICS	KEYWORDS	OBJECTIVE	Remarks	СО
1	Algorithm Analysis	Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving	To introduce the methods of analyzing an algorithm, flow charts and pseudo code. The assumption is part of it is covered in Data Structures		CO1
2 to 8	Analyzing Recursion	Fundamentals of the Analysis of Algorithmic Efficiency – Asymptotic Notations and Growth Rate – Empirical Analysis – Recursive and	Deriving and solving recurrence equation & relations. Method to solve them: Recursion tree,		CO1

		Non-Recursive Templates	Substitution, Master Method		
9 to 12	Sorting algorithms	Important Problem Types: Bubble sort, Insertion sort, Selection sort, Heap sort, Quick sort, Merge sort, Counting Sort, Bucket Sort, Radix sort	Understanding of sorting algorithms, their analysis and application	Analyze with worst, average, best case, In-place sorting, External memory sorting, stable sorting	CO1, CO2
13 to 15	Brute Force	Exhaustive Search and String Matching — Travelling Salesman Problem — knapsack Problem — Assignment Problem	Understand the Brute force approach and its analysis	Must understand the Naive approach	CO1, CO2
16 to 19	Divide and conquer Methodolog y	Binary Search – Merge Sort – Quick Sort – Heap Sort – Multiplication of Large Integers [Maximum sub array sum, Min-max]	Understand and apply the divide and conquer strategy from basic recursion, and analyzing it using recurrence analysis	Student must be able to identify if divide and conquer can be applied and design it appropriately	CO2 CO3
20 to 23	Greedy Algorithms	Container loading problem – Huffman Trees. Iterative Methods: The Simplex Method – Maximum Flow Problem, Stable Marriage Problem. [knapsack Problem & Fractional knapsack Problem]	Overview of greedy approach and analysis, demonstrating correctness of solution, proof by contradiction	Must be able to identify if a problem has greedy choice property and apply appropriately	CO2 CO3
24 to 27	Dynamic Programmin g	Principle of optimality – Coin Changing Problem– Optimal Binary Search Trees – Knapsack Problem and Memory functions.	Study of Dynamic Programming technique, designing a dynamic programming solution and derive the basic equations, and analyze running time.	Solve lot of problems to make students develop the ability to design dynamic programming solutions to a new problem	CO2 CO3

28 to 31	Backtrackin g	n-Quees problem – Hamiltonian Circuit Problem – Subset Sum Problem	To understand the techniques of backtracking	To make students develop the ability to design backtracking solutions	CO2 CO3
32 to 35	Branch and Bound	LIFO Search and FIFO Search – Assignment Problem – Knapsack Problem – Travelling Salesmen Problem	To understand the techniques of branch and bound for solving problems	Solve lot of problems to make students develop the ability to design branch and bound solutions to a new problem	CO2 CO3
36 to Graph 38 Algorithms		Maximum Matching in Bipartite Graphs, Computing a Binomial Coefficient – Floyd's Algorithm – Multi Stage Graph	Graph algorithms and analysis, ability to map a given problem to a graph and apply the right graph algorithm		CO3
39 to 40	Measuring Limitations	Lower Bound Arguments – P, NP: NP-Complete and NP Hard Problems	Introduction to NP Completeness		CO4
41 to 42	Approximat ion Algorithms	Algorithms for NP-Hard Problems – Travelling Salesman problem – Knapsack Problem Revisited	To understand the algorithms in terms of approximation		CO4
		End Semester	r Exam		

Textbooks / References:

- Analysis of Algorithms', Jeffrey J McConnel Jones and Barlett Publishers Inc.;2ns Revised edition, 2 November 2007.
- 'Introduction to the Design and Analysis of Algorithms', Anany Levin, Third Edition, Person Education, 2012.
- Algorithms Design and Analysis', Harsh Bhasin, Oxford University Press, 2016.
- Michael T Goodrich and Roberto Tamassia. Algorithm Design Foundations Analysis and Internet Examples. John Wiley and Sons, 2007.

Evaluation Plan: (70:30) OLD PATTERN

Component	Exam Name	Max	Weightage	Tentative Dates				
Name		Marks						
Quiz	Quiz-1	10	10	16 ^h March 2023				
(20 M)	Quiz-2	10	10	11 th May 2023				
Midterm Exam	Mid Term	50	20	24 th to 29 th April 2023				
(20 M)	Exam			_				
Assignment	Lab Test 1	10	10	5 th & 6 th April 2023				
(30 M)	Lab	10	10	10 th & 11 th May 2023				
	Assignment*			_				

	Mini	20	10	Decide of Topics /
	Project*			abstract submission— 1st
				Week of April 2023
				Final Demo – 24 th May
				2023 onwards
End Sem Exam (30 M)	End Sem	100	30	15 th June 2023 onwards

Modified Pattern:

Component	Exam Name	Max	Weightage	Tentative Dates
Name		Marks		
Quiz	Quiz-1	10	7.5	16 ^h March 2023
(20 M)	Quiz-2	10	7.5	11 th May 2023
	Assignment	5	5	
Midterm Exam	Mid Term	50	20	24 th to 29 th April 2023
(20 M)	Exam			-
Assignment	Lab Test 1	10	10	5 th & 6 th April 2023
(30 M)	Lab	10	10	10 th & 11 th May 2023
	Assignment*			
	Mini	20	10	Decide of Topics /
	Project*			abstract submission— 1st
	-			Week of April 2023
				Final Demo – 24 th May
				2023 onwards
End Sem Exam	End Sem	100	30	15 th June 2023 onwards
(30 M)				

*Mini Project Evaluation Components:

Problem Finalization and 1 Page abstract submission [NB: No Sorting] Group size – 3 Students (Note: Overlapping topics are not allowed) Problem Statement & alg. Strategy - 3 Marks literature – 7 Marks Implementation – 5 Marks
Presentation & Q&A – 5 Marks

*Lab Assignment Component:

Problem Statement will be provided
Group size – 3 Students (same mini project team)
Algorithmic technique – 3 Marks
Algorithm / Pseudo Code / Program – 5 Marks
Complexity of the algorithm – 2 Marks

[NB: In case of Plagiarism, will be evaluated for 5 Marks]