Dependências funcionais e normalização

Prof. Daniel S. Kaster

Departamento de Computação Universidade Estadual de Londrina dskaster@uel.br

Introdução

- Até então, foi uma modelagem conceitual utilizando o modelo Entidade-Relacionamento (Estendido)
 - Baseada em agrupamentos de atributos em relações através da intuição do projetista
 - Mapeado para o modelo relacional utilizando um algoritmo bem definido
- Entretanto, é necessário apresentar uma medida formal de qualidade de um projeto de banco de dados relacional
 - Dependências funcionais e normalização

O algoritmo de mapeamento EER->Relacional utiliza esses conceitos em sua concepção

Projeto de bancos de dados relacionais

- A teoria de dependências funcionais e de normalização é usada para projetar adequadamente um banco de dados relacional
 - Oferece mecanismos para analisar o projeto do banco de dados
 - Oferece métodos para corrigir problemas detectados
- No projeto de um banco de dados relacional, duas abordagens são possíveis
 - Bottom-up: partindo de atributos isolados e construindo gradativamente relações
 - Top-down: partindo de algumas relações e refinando-as

Dependências funcionais

- Uma Dependência Funcional (DF) é uma restrição entre dois conjuntos de atributos de um banco de dados
- Uma DF X→Y, entre dois conjuntos de atributos X e Y, que são subconjuntos de um mesmo esquema relacional R especifica a seguinte restrição sobre uma relação r(R)
 - Se t1[X]=t2[X], obrigatoriamente tem-se que t1[Y]=t2[Y]
 - Para quaisquer tuplas t1, t2 na relação r
 - Diz-se que Y é funcionalmente dependente de X ou que X determina funcionalmente Y

Dependências funcionais dependem do problema modelado

- Uma dependência funcional é uma propriedade da semântica dos atributos no problema modelado
- Ex: quais dependências funcionais são válidas para o esquema a seguir?

PROF DISC(codProfessor, nomeDisciplina, tituloLivroTexto)

Identificação de dependências funcionais

- Identifica-se inicialmente as DFs triviais para o problema modelado
- Deriva-se as DFs utilizando regras de inferência
 - 1) Reflexiva: se $X \supseteq Y$, então $X \rightarrow Y$
 - 2) Aumentativa: $\{X \rightarrow Y\} \Rightarrow XZ \rightarrow YZ$
 - 3) Transitiva: $\{X \rightarrow Y, Y \rightarrow Z\} \Rightarrow X \rightarrow Z$
 - 4) Decomposição: {X→YZ} ⇒ X→Z
 - 5) União ou aditiva: $\{X \rightarrow Y, X \rightarrow Z\} \Rightarrow X \rightarrow YZ$
 - 6) Pseudotransitiva: $\{X \rightarrow Y, WY \rightarrow Z\} \Rightarrow WX \rightarrow Z$
 - Regras 1 a 3 são legítimas e completas (regras de Armstrong)
 - Legítimas: qualquer DF derivada por essas regras satisfaz as outras DFs
 - Completas: essas regras permitem derivar qualquer DF possível

Normalização

- O processo de normalização proposto inicialmente por Codd, em 1972, realiza uma série de testes para certificar que um esquema de uma relação satisfaz uma determinada forma normal
 - A forma normal de um esquema relacional é a forma normal mais alta a que ele atende
- Consiste em analisar esquemas relacionais com base em suas chaves e dependências funcionais, de forma a
 - Minimizar redundâncias
 - Minimizar anomalias de atualização

Formas normais

Normalização por decomposição

- Propõe métodos para decompor esquemas que não satisfazem certas condições em esquemas relacionais menores que alcançam as propriedades desejadas (i.e. satisfazer à forma normal desejada)
 - Abordagem top-down
- Propriedades adicionais a serem satisfeitas no processo
 - Preservação de dependências
 - Garante que cada dependência funcional seja representada em alguma relação individual após a decomposição
 - Junção não aditiva (ou junção sem perdas)
 - Garante que o problema de geração de tuplas falsas não ocorra após a decomposição

Chave

- Um conjunto de atributos K é uma chave (candidata) de um esquema relacional R se
 - Todos os atributos de R são funcionalmente dependentes de K
- Os atributos que pertencem a alguma chave candidata de um esquema relacional R são chamados de atributos principais de R

Primeira forma normal (1FN)

- A 1FN exige que o domínio de um atributo inclua apenas valores atômicos (simples, indivisíveis) e que o valor de qualquer atributo em uma tupla tem que ser um valor simples do domínio deste atributo
- Ou seja, a 1FN não permite "relações dentro de relações" ou "relações como atributos de tuplas"
- Na verdade, a 1FN já faz parte da definição de uma relação, com atributos atômicos

Decomposições para a 1FN

Atributos multivalorados

- a) Separar em dois esquemas, relacionando-os via chave primária;
- b) Fazer uma chave primária combinada problema: redundância e anomalias;
- c) Criar atributos para cada valor possível problema: é preciso saber a quantidade máxima de atributos e podem haver muitos valores nulos.

Decomposições para a 1FN (cont.)

Atributos compostos

a) Separar em outro esquema relacional a relação aninhada (atributo composto), e fazer a chave primária deste esquema a combinação da chave primária da relação inicial e a chave parcial da relação aninhada

Neste exemplo, o atributo composto projetos é multivalorado

Segunda forma normal (2FN)

- A 2FN é baseada no conceito de dependência funcional total na chave
 - Uma dependência funcional X→Y é total se, com a remoção de qualquer atributo de X esta dependência não seja mais válida, ou seja, X é o conjunto mínimo de atributos em que esta dependência funcional é válida
- Ex: quais das DF a seguir são totais?
 - {CPF, pnum}→horas
 - {CPF, pnum} \rightarrow {pnome, plocal}

Decomposição para a 2FN

- Decompor a relação separando os atributos que têm dependência parcial da chave primária
- A chave primária dos novos esquemas é a parte da chave primária da relação inicial que define a dependência funcional parcial

Terceira forma normal (3FN)

- A 3FN é baseada no conceito de dependência transitiva
 - Uma dependência funcional X→Y em um esquema relacional R é uma dependência transitiva se existe um conjunto de atributos Z que não são uma chave candidata de R e nem um subconjunto de uma chave candidata de R e valem as dependências X→Z e Z→Y

Decomposição para a 3FN

 Decompor o esquema e criar um esquema relacional que inclua os atributos não-chave que determinam funcionalmente outros atributos não-chave

Definições gerais da 2FN e da 3FN

- Definição: Um esquema de relação R está na 2FN se cada atributo não principal A em R não for parcialmente dependente de qualquer chave (candidata) de R
- Definição: Um esquema de relação R está na 3FN se toda vez que uma dependência não trivial X→A se mantiver em R, então
 - a) X é superchave de R; ou
 - b) A é um atributo principal de R

Forma normal Boyce-Codd (FNBC)

- A FNBC foi proposta inicialmente como uma forma mais simples da 3FN, mas é mais restritiva que a 3FN
- Um esquema relacional que está na FNBC está automaticamente na 3FN, mas um esquema na 3FN não necessariamente satisfaz a FNBC
- Definição: Um esquema de relação R está na FNBC se toda vez que uma dependência não trivial X→A se mantiver em R, então
 - X é superchave de R

Decomposição para a FNBC

Ex:

- Suponha um banco de dados de lotes, identificados unicamente considerando-se todas as propriedades armazenadas (id_propriedade)
- Os lotes são numerados (num_lote) unicamente por cidade
- Além disso, suponha que o banco de dados de lotes armazena dados apenas de duas cidades (Londrina e Tamarana) e que as áreas de lotes em Londrina têm entre 200 m2 e 2500 m2 e em Tamarana têm entre 3000 m2 e 5000 m2
- Quais as dependências funcionais válidas nesse esquema relacional?
- Em que forma normal o esquema se encontra?