

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

Eksempel 1

Løs likningen

$$\cos x = -\frac{\sqrt{3}}{2}$$

Svar:

Av tabellen ser vi at $\cos\frac{\pi}{6}=\frac{\sqrt{3}}{2}$. Av figuren ser vi at $\frac{5\pi}{6}$ er $\frac{\pi}{6}$ speilet gjennom vertikalaksen. Altså har cosinusverdien til $\frac{\pi}{6}$ og $\frac{5\pi}{6}$ samme tallverdi, men motsatt fortegn. Dermed er $\frac{5\pi}{6}$ en løsning av likningen. Av figuren ser vi at $-\frac{5\pi}{6}$ er $\frac{5\pi}{6}$ speilet gjennom horisontalaksen. Følgelig er ogå $-\frac{5\pi}{6}$ en løsning. Så legger vi merke til at om vi starter på $\frac{5\pi}{6}$, og går en hel runde rundt sirkelen, så kommer vi til et tall med samme cosinusverdi som $\frac{5\pi}{6}$. Det samme gjelder for $-\frac{5\pi}{6}$. Altså er

$$x = \frac{5\pi}{6} + 2\pi n \qquad \lor \qquad -\frac{5\pi}{6} + 2\pi n$$

hvor $n \in \mathbb{N}$. Dette kan vi kortere skrive som

$$x = \pm \frac{5\pi}{6} + 2\pi n$$