1.1 基本知识

1.1.1 集合

定义 1.1.1. f 的原像 f^{-1} 由谓纤维,

$$f^{-1}(C) = \{a \in A \mid f(a) \in C\}.$$

定义 1.1.2. f 为单射,如果 $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$ 。

定义 1.1.3. f 为满射,如果 f 映满 B。

定义 1.1.4. ƒ 为双射,如果它是单射与满射。

定义 1.1.5. f 有左逆, 如果有 g 满足 $g \circ f = I$ 。

定义 1.1.6. f 有右逆,如果有 h 满足 $f \circ h = I$ 。

定理 1.1.1. 设 $f: A \rightarrow B$, 则下列结论成立:

- 1. 左逆存在当且仅当 f 为单射;
- 2. 右逆存在当且仅当 f 为满射;
- 3. f 为双射当且仅当左右逆存在且相等;
- 4. 若 A 与 B 等大有限, f 为双射当且仅当 f 为单射当且仅当 f 为满射。

证明. 若左右逆存在且分别为 h, 则 g = fgg = hfg = h。

定义 1.1.7. A 到自身的双射谓置换。

定义 1.1.8. 二元关系为 $A \times A$ 上的子集, 若 $(a,b) \in R$ 则 $a \sim b$ 。

定义 1.1.9. 二元关系为等价关系,如果它满足对称性、自反性与传递性。

定义 1.1.10. a 的等价类是所有满足 $x \sim a$ 的元素。

定义 1.1.11. A 的划分是并为 A 的非空无交集族。

定理 1.1.2. 等价关系与划分等价。

1.1.2 整数

定理 1.1.3. Euclidean 算法可以得到最大公因数。

$$a = q_0b + r_0$$

$$b = q_1r_0 + r_1$$

$$r_0 = q_2r_1 + r_2$$

$$...$$

$$r_{n-2} = q_nr_{n-1} + r_n$$

$$r_{n-1} = q_{n+1}r_n$$

则 r_n 为最大公因数。

推论 1.1.1. $r_n = \gcd(a, b)$ 为 a 和 b 的线性组合。

定义 1.1.12. 只能被 1 和自身整除的数称为质数。

定理 1.1.4. 若质数 p|ab, 则 p|a 或 p|b。

证明. 若 $p \nmid a$, 则 $\gcd(a,p) = 1$ 故 ax + py = 1, abx + pby = b, 故 p|b。 \square

定理 1.1.5 (算术基本定理). 质因数分解存在且唯一。

定理 1.1.6. 定义 $\varphi(n) = \#(\{a \mid a \leq n, \gcd(a, n) = 1\}), \ 则$

$$\varphi(n) = \prod p_i^{\alpha_i - 1} (p_i - 1) = n \prod \left(1 - \frac{1}{p_i} \right).$$

证明. 鸽笼原理的直接应用。

1.1.3 剩余系

定义 1.1.13. 等价类 $\bar{a} = \{a + kn\}$ 记作 $\mathbb{Z}/n\mathbb{Z}$ 。

定理 1.1.7. $\mathbb{Z}/n\mathbb{Z}$ 上一般加减乘成立。

定理 1.1.8. $\mathbb{Z}/n\mathbb{Z}$ 的乘法群为

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\bar{a} \mid \gcd(a, n) = 1\}.$$

1.2 群论导论

1.2.1 群的定义

定义 1.2.1. 二元运算谓结合的, 若结合律成立。谓交换的, 若交换律成立。

例 1.2.1. 加、乘是交换、结合的。减法、叉乘既不交换也不结合。 $a \star b = (a+b)/2$ 以及 $a \star b = ab+1$ 交换但不结合。

定义 1.2.2. 若集合上有定义一结合且可逆的二元运算、则谓之群。

定义 1.2.3. 若相应的二元运算可逆,则谓 abelian 群。

例 1.2.2. \mathbb{Z} , \mathbb{Q} , \mathbb{R} 与 \mathbb{C} 关于加法成群。 $\mathbb{Q} - \{0\}$ 与 \mathbb{Q}^+ 等关于乘法成群。

例 1.2.3. 向量空间、 $\mathbb{Z}/n\mathbb{Z}$ 关于加法成群。 $(\mathbb{Z}/n\mathbb{Z})^{\times}$ 关于乘法成群。

定义 1.2.4. (a,b) 在保留两个分量上的运算构成新的群,谓其直积。

命题 1.2.1. 对于群 G 和运算 \star , 成立下列结论:

- 1. 群的单位元唯一;
- 2. 逆元 a⁻¹ 唯一;
- 3. $(a^{-1})^{-1} = a$;
- 4. $(a \star b)^{-1} = b^{-1} \star a^{-1}$;
- $5. a_1 \star a_2 \star \cdots \star a_n$ 可随意添加括号。

证明. 最后一条注意括号必定将表达式先分割成两部分,归纳即可。 □

命题 1.2.2. 对于群, ax = b 与 ya = b 有唯一解 (不一定相等)。

只有在上述广义结合律被证明后,不添加括号的表达式才能没有歧义。

定义 1.2.5. x 的阶 |x| 谓满足 $x^n = 1$ 的最小正整数,不存在时取无穷。

例 1.2.4. 一阶元仅有单位元。($\mathbb{R}-\{0\}$)[×] 中 (-1) 为二阶元,其他非 1 元素为无穷阶。 $\mathbb{Z}/9\mathbb{Z}$ 中 $\overline{6}$ 为三阶元。($\mathbb{Z}/7\mathbb{Z}$)[×] 中 2 为三阶元。

定义 1.2.6. 群 G 的乘法表谓 a_ia_i 全体构成的矩阵。

1.2.2 二面体群

定义 1.2.7. 二面体群 D_{2n} 谓正 n-边形全体对称操作的集合。

鉴于对称操作可以视为函数,显然 D_{2n} 构成群。每个对称都可以由顶点 1 的目标序号 i 以及顶点 0 的目标序号确定,前者有 n 个选择而之后后者有两个。故 $|D_{2n}|=2n$ 。

命题 1.2.3. 对原子旋转 ρ 与横轴反射 r, 成立

- 1. $|\rho| = n \, \mathbb{L} \, |r| = 2$;
- 2. $r \neq \rho^i$;
- 3. $\rho r = r \rho^{-1} \perp \rho^i r = r \rho^{-i}$.

借此可以化简 r 与 ρ 的任意组合。

生成元和关系

定义 1.2.8. 子集 S 生成群 G, 如果 G 中任何元素都可以写成 S 的元素及 其逆的积,记作 $G = \langle S \rangle$ 。

鉴于有限阶群的元素阶数有限,逆表示为积,故 G 可写成 S 中的积。

定义 1.2.9. 生成元之间的方程谓关系。

例如 $\rho^n = 1$, $r^2 = 1$ 与 $\rho r = r \rho^{-1}$ 是关系, 实际上 D_{2n} 的其他关系都可以由它们导出。

定义 1.2.10. 群的表达谓生成元和关系,记作 $G = \langle S|R_i \rangle$ 。

例如,
$$D_{2n} = \langle \rho, r | \rho^n = 1, r^2 = 1, \rho r = r \rho^{-1} \rangle$$
。

例 1.2.5. $X=\langle x,y|x^n=y^2=1, xy=yx^2\rangle$,则 $x=yx^2y=yxy\cdot yxy=x^4$,故 $x^3=1$,发生崩塌。

例 1.2.6. $X = \langle x, y | x^4 = y^3 = 1, xy = y^2 x^2 \rangle$, 则发生全盘崩塌。

证明. 只证 $x^3 = y^2 x^4$, 就有 x = y = 1。注意 $yxy = x^2$ 推出 $xyxy = x^3$,

$$x^{3} = y^{2}x^{2}y^{-1} \cdot y^{2}x^{2}y^{-1} \cdot y^{2}x^{2}y^{-1}$$

$$= y^{2}x^{2}y \cdot x^{2}y \cdot x^{2}y^{-1}$$

$$= xy \cdot yx \cdot xyx \cdot xy^{-1}$$

$$= y^{2}x^{2} \cdot yx \cdot y^{2}x^{4}y^{-1}$$

$$= y^{2}x^{2}yxy = y^{2}x^{4}.$$