

Taller Open Source: Análisis y visualización de datos con Python en Google Colab

Agenda

Presnetación

(20 min) ¿Por qué Python en Colab?

Hands-on

(60 min) Actividad en grupos sobre Notebook.

Puesta en común y Conclusiones

(20 minutos) Comentarios sobre el trabajo realizado y recursos para seguir.

Python para Análisis de Datos

Análisis de Datos

Procesamiento

Visualización

Análisis de Datos

¿Que lenguaje uso?

Alto Nivel Bajo

Nivel

MATLAB'

Herramientas para análisis de Datos

Existe una gran variedad de programas y lenguajes disponibles para trabajar con datos.

Herramientas para análisis de Datos

Existe una gran variedad de programas y lenguajes disponibles para trabajar con datos.

Herramientas para análisis de Datos

Existe una gran variedad de programas y lenguajes disponibles para trabajar con datos.

Pero muchas no son Open Source ...

Herramientas para análisis de Datos

Existe una gran variedad de programas y lenguajes disponibles para trabajar con datos.

Pero muchas no son Open Source ...

Python vs R

Which Programming Language Do You Use on a Regular Basis?

Python still dominates among Kaggle users, and the majority of R users also use Python.

https://www.kaggle.com/etsc9287/python-vs-r-the-data-science-rivalry

Python vs R

Which Programming Language Do You Use on a Regular Basis?

Python still dominates among Kaggle users, and the majority of R users also use Python.

https://www.kaggle.com/etsc9287/python-vs-r-the-data-science-rivalry

Usando Python en Google Colab

Google Colab

Entorno de Desarrollo Gratuito

- Web based (Corre en el navegador)
- Interactivo
- Usa IPython
- Basado en Jupyter Notebook (.ipynb)

Google Colab

Entorno de Desarrollo Gratuito

- Web based (Corre en el navegador)
- Interactivo
- Usa IPython
- Basado en Jupyter Notebook (.ipynb)
- Comnzó siendo Open Source...

Google Colab

Entorno de Desarrollo Gratuito

- Web based (Corre en el navegador)
- Interactivo
- Usa IPython
- Basado en Jupyter Notebook (.ipynb)
- Comnzó siendo Open Source...

pero ya no lo es

Google Colab - Tipos de celdas

Celdas de Código

- Código ejecutable
- Corre en un Entorno (IPython)

[3] listita = [0,1,2,3,4] listita

$$[\rightarrow [0, 1, 2, 3, 4]]$$

Celdas de texto

- Texto enriquecido
- Formato con Markdown

Primera Edicion

Google Colab - Tipos de Kernel

Entorno Local

- Corre en nuestra computadora
- Control total del entorno de ejecución (ej. Conda)
- Usa RAM y procesadores de nuestra PC

Entorno remoto

- Corre en un servidor de Google
- Hardware poderoso disponible (variedad)
- Límite de tiempo
- Code
 Plug and Play

Google Colab - Almacenamiento

Integracion con Drive

- Se guardan
 automaticamente los notebooks.
- Se puede leer y guardar archivos en carpetas de Google Drive

Integración con Github

- Conexión práctica hacia y desde repositorios
- Mas Info: Próximo Taller
 Open Source

Dataset y objetivos

- Adquisición de imágenes a 20 Hz (Video)
- Movimiento en una caja de 50cm x 50cm
- Coordenadas en el plano X Y en función del tiempo

- Adquisición de imágenes a 20 Hz (Video)
- Movimiento en una caja de 50cm x 50cm
- Coordenadas en el plano X Y en función del tiempo


```
11900 lines (11900 sloc) | 83.4 KB

1 190,88

2 195,81

3 200,74

4 206,66

5 213,59

6 221,52

7 230,45

8 238,40

9 244,37

10 250,34
```

Preguntas a responder:

- A) ¿Qué cantidad del tiempo se encuentra el ratón en el centro del recinto (total y porcentaje)?
- B) ¿Se mueve más rápido cuando está en el centro del recinto?
- C) ¿Se mueve más rápido en la primer, segunda o tercer parte del experimento?
- D) ¿Qué lugares del recinto habitó más tiempo el ratón?

Algunas no son usuales en el campo.

Hands-on

Grupos aleatorios de 4 personas

Uno comparte pantalla y trabajan juntos.

Discutir explicaciones y código

No solo avanzar sino también ir entendiendo.

Completar ejercicios y probar

Que sea lo más interactivo posible, prueben modificar partes del código.

Leer explicaciones

Si se traban y no pueden avanzar con algo, me llaman a la sala.

Crear la carpeta de trabajo en su Google Drive!

Todos los archivos están en:
https://drive.google.com/drive/folde
rs/10GPkJRmOQRcqcHMrOhoimK
1TvUceg C?usp=sharing

Copiar el Notebook y mouse_data.txt a su carpeta de trabajo en su drive

Recursos (Como seguir)

Material en la web

Libro

https://jakevdp.github.io /PythonDataScienceHan dbook/

Kaggle!

https://www.kaggle.com/

Towards Data Science

https://towardsdatascien
ce.com/

Próximos Talleres Open Source

• Git en Github - 7/9

Control de versionado y desarrollo colaborativo

• Arduino - 15/9

Placa controladora

Diseño CAD e Impresión - 22/9

Fabricación 3D

Muchas Gracias!

Gonzalo Uribarri •

@gonzaur