INTELIGÊNCIA COMPUTACIONAL

PROF. JOSENALDE OLIVEIRA

josenalde.oliveira@ufrn.br https://github.com/josenalde/ic

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS - UFRN

8-puzzle

Goal State
Empty space can be anywhere

Heurística: g: quantidade de movimentos

h: peças "fora" do lugar em relação ao objetivo

2048

Discussão sobre heurísticas e implementação:

https://programming-techniques.com/ask-68-what-is-the-optimal-algorithm-for-the-game-2048/

E o problema do caixeiro viajante (TSP)?

- Distância entre as cidades e a ordem em que são visitadas
- Cada cidade visitada uma única vez
- Problema de otimização
- Logística (Ifood, Uber etc.), fabricação, sequenciamento DNA etc.

Rota válida: Dax-Uran-Helge-Bulge

Rota inválida: Helge-Dax-Uran-Helge-Bulge

- E o problema do caixeiro viajante (TSP)?
- Por força bruta testa todas as combinações e ver a melhor!
 - Segue de depois avalia! Ruim!
- Com heurística, pensa antes de ir!

Exemplo: Se eu estou em uma cidade, vou para próxima cidade que possui o menor custo de caminhada

PROBLEMAS COMBINATORIAIS:

Variáveis de decisão inteiras ou binárias, onde as soluções são combinações factíveis dos dados de entrada. À medida que n cresce, o tempo cresce exponencialmente

Cidades	Combinações possíveis	
1	1	
2	2	
3	6	
4	24	ı
5	120	
6	720	И
7	5040	
8	40320	
9	362880	ı
10	3628800	1
11	39916800	I
12	479001600	
13	6227020800	
14	87178291200	
15	1307674368000	
16	20922789888000	
17	355687428096000	

E o problema do caixeiro viajante (TSP)?

Exemplos de heurísticas

Formulação padrão (1960)

Miller-Tucker-Zemlin

min
$$Z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} X_{ij}$$

sa
$$\sum_{i=1}^{n} x_{ij} = 1$$
, $j = 1, 2, ..., n$

$$\sum_{j=1}^{n} x_{ij} = 1, i = 1, 2, ..., n$$

$$u_i - u_j + nx_{ij} \le n - 1$$
 $\forall 2 \le i \ne j \le n$
 $x_{ij} \in \{0,1\}$ $\forall i,j$

Para dimensões elevadas, a resolução por métodos de programação matemática é proibitiva em termos de tempos computacionais. Portanto, a abordagem de solução heurística e de aproximação é mais útil para as aplicações que preferem o tempo de execução do algoritmo em relação à precisão do resultado

Heurísticas para resolver o problema do caixeiro viajante são métodos por meio dos quais a solução ótima para o TSP é procurada. Embora as heurísticas não possam garantir que a solução ótima seja encontrada, ou não ao menos em tempo real, um grande número delas encontrará uma solução próxima à ótima, ou mesmo encontrará uma solução ótima para certos casos do problema do caixeiro viajante.

Para avaliar o desempenho de um algoritmo, podemos verificar como o tempo de execução dele cresce conforme aumentamos o volume de dados oferecido como entrada. Um problema é intratável se o tempo necessário para resolvê-lo é considerado inaceitável para os requisitos do usuário. O problema do caixeiro viajante é um exemplo de problema intratável por algoritmos convencionais em uma busca exaustiva

- Heurísticas construtivas e de melhoria/refinamento
- Construtiva: Usando heurística construtiva constrói-se uma solução passo a passo (em geral do zero) segundo um conjunto de regras pré-estabelecido. Estas regras estão relacionadas com: a escolha do ciclo ou nó inicial da solução inicialização; um critério de escolha do próximo elemento a juntar à solução seleção; a escolha da posição onde esse novo elemento será inserido inserção. Na construtiva Gulosa, a cada passo é adicionado um único elemento, sendo este o melhor segundo a função objetivo/função de avaliação. O método termina quando todos os elementos forem inseridos na solução
- **Refinamento:** inicia com uma solução (viável) e tenta melhorar a solução, através de modificações nos elementos da solução corrente

- Para o TSP, exemplo de heurísticas construtivas
 - Inserção do vizinho mais próximo
 - Inserção mais barata
 - Algoritmo de Christofides
 - Método das economias (savings)
 - Método convex hull
- Para o TSP, exemplo de heurísticas de melhoria
 - 2-opt, 3-opt, etc.

• Inserção do vizinho mais próximo: Construir uma rota adicionando, a cada passo, a cidade mais próxima da última cidade inserida e que ainda não foi visitada

1) Distância total: 1
 Cid.
 1
 2
 3
 4
 5
 6

 1
 0
 2
 1
 4
 9
 1

 2
 2
 0
 5
 9
 7
 2

 3
 1
 5
 0
 3
 8
 6

 4
 4
 9
 3
 0
 2
 6

 5
 9
 7
 8
 2
 0
 2

 6
 1
 2
 6
 6
 2
 0

Distância total: 2

• Inserção do vizinho mais próximo: Construir uma rota adicionando, a cada passo, a cidade mais próxima da última cidade inserida e que ainda não foi visitada

5)

Cid.	1	2	3	4	5	6
1	0	2	1	4	9	1
2	2	0	5	9	7	2
3	1	5	0	3	8	6
4	4	9	3	0	2	6
5	9	7	8	2	0	2
6	1	2	6	6	2	0

i	j	d_{ij}
5	2	7

Distância total: 7+7=14

6)	Cid.	1	2	3	4	5	6
	1	0	2	1	4	9	1
	2	2	0	5	9	7	2
	3	1	5	0	3	8	6
	4	4	9	3	0	2	6
	5	9	7	8	2	0	2
	6	1	2	6	6	2	0

Distância total: 14+2=16

Problema da mochila

 Vários itens que gostaria de levar em uma mochila

- Cada item com um peso e um benefício (valor)
- Há uma capacidade limite de peso
- Deve-se carregar itens com o máximo valor total sem superar o limite de peso

• Problema da mochila – exemplo de heurística

Seja, então, uma mochila de capacidade b=23 e os 5 objetos da tabela abaixo, com os respectivos pesos e benefícios.

Objeto (j)	1	2	3	4	5
Peso (w_j)	4	5	7	9	6
Benefício (p_j)	2	2	3	4	4

Construamos uma solução para esse problema usando a seguinte idéia: adicionemos à mochila a cada passo, o objeto mais valioso por unidade de peso e que não ultrapasse a capacidade da mochila. Reordenando os objetos de acordo com a relação p_j/w_j , obtemos:

Objeto (j)	5	1	4	3	2
Peso (w_j)	6	4	9	7	5
Benefício (p_j)	4	2	4	3	2
(p_j/w_j)	0.67	0.50	0.44	0.43	0.40

Representemos uma solução s por um vetor binário de n posições.

Problema da mochila – exemplo de heurística

Passo 1 : Adicionemos, primeiramente, o objeto 5, que tem a maior relação p_j/w_j $s=(00001)^t$ f(s)=4 Peso corrente da mochila =6 < b =23

 ${\bf Passo~2}:$ Adicionemos, agora, o objeto 1, que tem a segunda maior relação p_j/w_j $s=(10001)^t$ f(s)=6 Peso corrente da mochila = 10 < b = 23

f(s): benefício

Passo 3 : Adicionemos, agora, o objeto 4, que tem a terceira maior relação p_j/w_j $s=(10011)^t$ f(s)=10 Peso corrente da mochila = 19 < b = 23

Passo 4: O objeto a ser alocado agora seria o terceiro. No entanto, esta alocação faria superar a capacidade da mochila. Neste caso, devemos tentar alocar o próximo objeto com a maior relação p_j/w_j , que é o objeto **2**. Como também a alocação desse objeto faria superar a capacidade da mochila e não há mais objetos candidatos, concluímos que a solução anterior é a solução final, isto é: $s^* = (10011)^t$ com $f(s^*) = 10$.

https://rosettacode.org/wiki/Knapsack_problem/Unbounded

META HEURÍSTICAS

- Uma meta-heurística é um método heurístico para resolver de forma genérica problemas de otimização (normalmente da área de otimização combinatória). Meta-heurísticas são geralmente aplicadas a problemas para os quais não se conhece algoritmo eficiente (veja problemas NP-completos).
- As **metaheurísticas são** procedimentos que guiam outras **heurísticas**, ou seja, procedimentos computacionais, usualmente de busca local, explorando o espaço de soluções além do ótimo local. As **metaheurísticas** consideram boas características das soluções encontradas para explorar novas regiões promissoras.

