Possibili Domande Prof. - FAQ

TEORIA FONDAMENTALE

Q1: Definizione operativa dei nodi di Leja discreti

D: Come definisci matematicamente la sequenza di Leja approssimata? **R:** Parto da ξ_0 = primo elemento della mesh XM. Iterativamente, dato $\{\xi_0,...,\xi_{s-1}\}$, scelgo:

$$\xi_s = \arg \max_{x \in XM} \prod_{i=0}^{s-1} |x - \xi_i|$$

Equivale a massimizzare $|\det(VDM(\xi_0,...,\xi_{s-1},x))|$ per la proprietà ricorsiva del determinante di Vandermonde.

Q2: Proprietà ricorsiva del determinante di Vandermonde

D: Spiega la formula ricorsiva che giustifica l'algoritmo DLP. **R:**

$$\det(\text{VDM}(\xi_0,...,\xi_s)) = \det(\text{VDM}(\xi_0,...,\xi_{s-1})) \cdot \prod_{} \{i=0\}^{\wedge} \{s-1\}(\xi_s - \xi_i)$$

Quindi massimizzare il determinante \equiv massimizzare la produttoria. Implementato in DLP.m linee 26-35.

Q3: Costante di Lebesgue: definizione e significato

D: Cosa misura Λ_n e perché è importante? **R:**

$$\Lambda_n = \max_{x \in I} \sum_{i=0}^n |\ell_i(x)|$$

Misura la stabilità: $\|f - p_n\|_{\infty} \le (1 + \Lambda_n) \cdot E_n(f)$. È il "fattore di amplificazione" degli errori di interpolazione. Implementata in leb_con.m.

Q4: Vantaggi dei nodi di Leja vs equispaziati

D: Perché i nodi di Leja sono superiori? **R:**

- Stabilità: Λ_n cresce logaritmicamente vs 2ⁿ/n per equispaziati
- Convergenza: Evitano il fenomeno di Runge
- Flessibilità: Estendibili iterativamente senza ricalcoli

IMPLEMENTAZIONE ALGORITMICA

Q5: Algoritmo DLP - Strategia della produttoria

D: Spiega l'implementazione di **DLP.m**. **R:**

```
for s = 2:d+1
  produttoria = prod(abs(x - dlp(1:s-1)), 2);
  [~, idx_max] = max(produttoria);
  dlp(s) = x(idx_max);
end
```

Complessità $O(N \cdot d^2)$: per ogni nuovo nodo, calcolo N produttorie di lunghezza crescente.

Q6: Algoritmo DLP2 - Fattorizzazione LU

D: Come funziona l'approccio LU con base di Chebyshev? **R:**

```
V = cos(acos(x) * (0:d)); % Vandermonde-Chebyshev 
[~, ~, P] = lu(V, 'vector'); % LU con pivoting 
dlp2 = x(P(1:d+1))'; % Primi d+1 pivot
```

Il pivoting di riga massimizza i sottodeterminanti \equiv estrazione Leja. Complessità $O(N \cdot d^2)$ ma con costanti migliori.

Q7: Perché la base di Chebyshev?

D: Motivazione per $V(i,j) = cos((j-1)arccos(x_i))$? **R:**

- Stabilità numerica: $|T_n(x)| \le 1$ su [-1,1]
- Ortogonalità: Miglior condizionamento vs base monomiale
- Robustezza: Evita overflow/underflow tipici di xⁿ

Q8: Clipping numerico in DLP2

D: Perché x = max(-1, min(1, x))?

R: Errori di rappresentazione floating-point possono dare |x| > 1, causando NaN in $a\cos(x)$. Il clipping preserva la validità matematica senza alterare la logica.

Q9: Vincolo "un solo ciclo" in leb_con

D: Come rispetti il vincolo implementativo?

R: Un unico for i=1:n per i nodi, tutto il resto vettorizzato:

```
lagrange_poly = prod((x - z(altri_nodi)) ./ (z(i) - z(altri_nodi)), 2);
```

Il prod(..., 2) opera per righe, restituendo un vettore colonna.

ANALISI SPERIMENTALE

Q10: Scelta della funzione test f(x) = 1/(x-1.3)

D: Perché questa specifica funzione?

R:

- Singolarità critica: A distanza 0.3 dal bordo destro
- Stress calibrato: Destabilizza equispaziati ma non distrugge tutto
- Analiticità: Convergenza teorica possibile, ma raggio limitato
- **Discriminanza**: Permette di vedere chiaramente le differenze

Q11: Parametri sperimentali: N=10000, d=50

D: Giustificazione delle scelte numeriche?

R:

- N=10000: Discretizzazione sufficientemente fine (Δx=0.0002), requisito 10⁴-10⁵
- d=50: Range che mostra il fenomeno di Runge senza problemi numerici estremi
- Trade-off: Massima informazione, minimo costo computazionale

Q12: Interpretazione grafico errori di interpolazione

D: Spiega l'andamento: Leja stabile, equispaziati esplosivi.

R:

- d < 20: Entrambi stabili, differenze marginali
- d ∈ [20,35]: Emerge superiorità Leja
- d ∈ [35,50]: Fenomeno di Runge per equispaziati
- Saturazione: Leja raggiunge precisione macchina (~10⁻¹⁶)

Q13: Crescita della costante di Lebesgue

D: Cosa indica il grafico semilogaritmico di Λ_n ?

R: Crescita **moderata** per Leja vs crescita **esplosiva** (2ⁿ/n) per equispaziati. Le oscillazioni sono naturali: aggiungere un nodo può temporaneamente migliorare la distribuzione.

Q14: Crossover temporale DLP vs DLP2

D: Quando e perché DLP2 diventa più efficiente?

R: Intorno a d \approx 30-40. DLP ha overhead per produttoria, DLP2 ha setup LU ma scala meglio. Conferma le previsioni teoriche O(N·d²) vs costanti diverse.

IMPLEMENTAZIONE DETTAGLIATA

Q15: Pipeline di interpolazione completa

D: Passi esatti per il test di interpolazione?

R:

- 1. **Selezione nodi**: nodi = algoritmo_migliore(x, d)
- 2. Costruzione V: V = cos(acos(z) * (0:length(z)-1))
- 3. Risoluzione: c = V \ f(z)
- 4. Valutazione: p = cos(acos(x) * (0:length(z)-1)) * c
- 5. **Errore**: max(abs(p f(x)))

Q16: Perché \ invece di inv(V)*f_z ?

D: Motivazione per l'operatore backslash?

R: I usa LU con pivoting parziale (o decomposizioni più stabili). Calcolare esplicitamente l'inversa è numericamente sconsigliato e computazionalmente più costoso.

Q17: Gestione della distintività dei nodi

D: Come eviti nodi duplicati in DLP?

R: Se ripetessi un nodo già presente, la produttoria conterrebbe un fattore zero, non sarebbe mai massima. La greedy naturalmente seleziona nodi distinti.

Q18: Costruzione matrice di Vandermonde

D: Dimensioni e struttura di V?

R:

- DLP test: V è (d+1)×(d+1), quadrata per interpolazione
- **DLP2 setup**: V è N×(d+1), rettangolare per selezione nodi
- Righe: Punti di valutazione, Colonne: Gradi polinomiali

ANALISI NUMERICA AVANZATA

Q19: Condizionamento e stabilità numerica

D: Come gestisci i problemi di mal condizionamento? **R:**

- Base di Chebyshev: Intrinsecamente meglio condizionata
- Intervallo [-1,1]: Standard per polinomi ortogonali
- Clipping: Prevenzione di domini non validi
- LU con pivoting: Stabilità numerica automatica

Q20: Complessità computazionale dettagliata

D: Analisi asintotica precisa degli algoritmi?

R:

- **DLP**: O(N·d²) d iterazioni, ognuna con N produttorie di lunghezza O(d)
- DLP2: O(N·d²) costruzione V + O(min(N,d)³) LU
- leb_con: O(N·d²) N valutazioni, ognuna con d produttorie
- In pratica: DLP2 più efficiente per d > √N

Q21: Estensioni e limitazioni

D: Come estenderesti a casi più generali?

R:

- Intervalli [a,b]: Trasformazione affine a [-1,1]
- 2D/3D: Prodotti tensoriali o norme multivariate
- Pesi: Integrazione con misure non uniformi
- Adattività: Stima errore per aggiunta dinamica nodi

Q22: Validazione sperimentale

D: Come verifichi la correttezza dell'implementazione? **R:**

- Test regressione: Confronto con implementazioni note
- **Proprietà teoriche**: Crescita Λ_n, distribuzione spaziale
- Casi limite: Gradi bassi, funzioni polinomiali esatte
- Consistency check: DLP vs DLP2 su stessi input

DOMANDE CRITICHE E AVANZATE

Q23: Fenomeno di Runge: spiegazione meccanica

D: Perché precisamente gli equispaziati falliscono?

R: L'errore di interpolazione è amplificato da Λ_n . Per equispaziati, $\Lambda_n \approx 2^n/n$ cresce esponenzialmente. Anche se $E_n(f) \to 0$, il prodotto $(1+\Lambda_n)E_n(f)$ può esplodere.

Q24: Ottimalità teorica dei nodi di Leja

D: I Leja sono ottimali nel senso di Lebesgue?

R: Non necessariamente ottimali, ma **quasi-ottimali**. I nodi di Chebyshev sono teoricamente ottimali per Λ_n , ma i Leja hanno il vantaggio dell'estendibilità nested.

Q25: Interpretazione dei picchi temporali

D: Fluttuazioni nei tempi per d≈45-50?

R: Effetti di:

• Cache misses: Pattern di accesso memoria

Pivoting complexity: Variabilità nel numero di scambi

Garbage collection: Allocazioni temporanee
 Non inficiano la validità dell'analisi asintotica.

Q26: Saturazione a precisione macchina

D: Cosa indica il plateau a ~10⁻¹⁶ nei Leja?

R: Barriera fisica: Errori di roundoff dominano l'errore di interpolazione. Oltre questo livello, l'accuratezza è limitata dalla rappresentazione IEEE 754 double precision.

Q27: Scelta dell'algoritmo "più efficiente" per Λ_n

D: Non è metodologicamente inconsistente?

R: È pragmatico e conforme ai requisiti. Alternative:

- Usare sempre DLP2 per purezza metodologica
- Calcolare Λ_n per entrambi e confrontare
 La traccia non specifica, quindi la scelta è accettabile.

Q28: Robustezza dell'implementazione

D: Gestione di casi edge e validazione input? **R:**

```
% Validazioni presenti:

if isempty(z) || isempty(x)

if ~isvector(x) || ~isscalar(d) || d < 0

if length(x) < d+1
```

Copertura completa dei casi limite ragionevoli.

Q29: Interpretazione del successo sperimentale

D: Cosa dimostrano concretamente i risultati?

R:

1. Efficienza: DLP2 superiore per gradi alti

2. Stabilità: Leja mantengono Λ_n controllata

3. Accuratezza: Superiori su f(x)=1/(x-1.3) nel 80%+ dei casi

4. Robustezza: Degradazione graceful vs esplosione equispaziati

Q30: Rilevanza pratica e applicazioni

D: Quando useresti nodi di Leja in applicazioni reali? **R:**

- Interpolazione adattiva: Aggiunta incrementale di nodi
- Riduzione modelli: Costruzione ROM stabili
- Quadratura numerica: Integrazione su nodi nested
- Uncertainty quantification: Chaos polinomiali robusti

FRASI READY-TO-USE PER OGNI GRAFICO

Grafico Tempi:"Il crossover conferma l'analisi di complessità: DLP2 ha overhead iniziale ma scala meglio, diventando dominante per d > 30-40."

Grafico Costante Lebesgue: "La crescita logaritmica moderata dimostra la stabilità intrinseca dei nodi di Leja, con oscillazioni naturali dovute alla dinamica non-monotona dell'aggiunta di nodi."

Grafico Errori: "L'esplosione degli equispaziati evidenzia il fenomeno di Runge, mentre i Leja mantengono convergenza fino alla saturazione a precisione macchina."