Artificial Intelligence CS-401

Chapter # 02

Dr. Hafeez Ur Rehman

(Email: hafeez.urrehman@nu.edu.pk)

Rational Agents (Chapter 2)

Act Rationally Approach

Today's Outline

- Agents and Environments
- ☐ Autonomy, Rationality & Omniscience
- PEAS (Performance measure, Environment, Actuators, Sensors)
- Environment types
- Agent types

Agent Definition (1)

- An agent is an entity which is:
 - Situated in some environment.
 - 2. Autonomous, in the sense that it can act without direct intervention from humans or other software processes, and controls over its own actions and internal state.
 - **3. Flexible** which means:
 - *Responsive (reactive)*: agents should perceive their environment and respond to changes that occur in it;
 - Proactive: agents should not simply act in response to their environment, they should be able to exhibit opportunistic, goaldirected behavior and take the initiative when appropriate;
 - Social: agents should be able to interact with humans or other artificial agents

"A Roadmap of agent research and development", N. Jennings, K. Sycara, M. Wooldridge (1998)

Agent Definition (2)

 "An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through effectors/actuators."

Russell & Norvig

Agent Visualization

 An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through

Agent Example...

Human agent:

- eyes, ears, and other organs for sensors;
- hands, legs, mouth, and other body parts for actuators

Robotic agent:

- cameras and infrared range finders for sensors
- various motors for actuators

Perception

Perception is the result of the function
 see: S → P

where

- P is a (non-empty) set of percepts (perceptual inputs).
- Then, the action becomes:

action: $P^* \rightarrow A$

which maps sequence of percepts to actions

Perception ability

where

E: is the set of different perceived states

Two different states $s_1 \in S$ and $s_2 \in S$ (with $s_1 \neq s_2$) are indistinguishable if see(s_1) = see(s_2)

Agent Function & Program

 The agent function maps from percept histories to actions:

$$[f: \mathcal{P}^* \rightarrow \mathcal{A}]$$

- The agent program is an implementation of f that runs on the physical architecture to produce f
- agent = architecture + program

Example: Vacuum-cleaner world

- Percepts: location and contents, e.g., [A,Dirty]
- Actions: Left, Right, Suck, NoOp
- Agent's function → look-up table
 - For many agents this is a very large table

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:

Autonomy in Agents

The autonomy of an agent is the extent to which its behaviour is determined by its own experience, rather than knowledge of designer.

- Extremes
 - No autonomy ignores environment/data
 - Complete autonomy must act randomly/no program
- Example: baby learning to crawl
- Ideal: design agents to have some autonomy
 - Possibly become more autonomous with experience

Rational agents

- Rationality: What is rational at any given time depends on four things i.e.
 - 1. Performance measure that defines success
 - 2. Agents prior knowledge of environment
 - 3. Actions that agent can perform
 - 4. Agent's **percept** sequence to date
- Rational Agent: For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Rationality vs Omniscience

- Rational is different from omniscience
 - Percepts may not supply all relevant information
 - E.g., in card game, don't know cards of others.
- Rational is different from being perfect
 - Rationality maximizes expected outcome while perfection maximizes actual outcome.
- To design a rational agent you need to specify it's task environment.

Specifying the Task Environments

- Task Environment are essentially the problems to which rational agents are the solutions.
- In designing an agent the first step must always be to specify the task environment as fully as possible a.k.a PEAS (Performance measure, Environment, Actuators, Sensors)
- Example (Automated Taxi): Consider, e.g., the task of designing an automated taxi driver agent:
 - 1. Performance measure: Safe, fast, legal, comfortable trip, maximize profits
 - 2. Environment: Roads, other traffic, pedestrians, customers
 - Actuators: Steering wheel, accelerator, brake, signal, horn
 - **4. Sensors:** Cameras, sonar, speedometer, GPS, odometer, engine sensors, keyboard

PEAS - Example # 02

Agent: Part-Picking Robot

- Performance measure: Percentage of parts in correct bins
- 2. Environment: Conveyor belt with parts, bins
- 3. Actuators: Jointed arm and hand
- 4. Sensors: Camera, joint angle sensors

Environment types

- Fully observable vs. partially observable
- Deterministic vs. stochastic
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Single agent vs. multi-agent
- Known vs. unknown

Fully observable vs. partially observable

- Do the agent's sensors give it access to the complete state of the environment?
 - For any given world state, are the values of all the variables known to the agent?

Examples

Poker Game (Partially)

Backgammon (Fully)

A task environment is effectively fully observable if the sensors detect all aspects that are *relevant* to the choice of action; relevance, in turn, depends on the performance measure.

Examples

Cross Word (Fully)

Part Picking Robot (Partially)

Deterministic vs. stochastic

- Is the next state of the environment completely determined by the current state and the agent's action?
 - Is the transition model deterministic (unique successor state given current state and action) or stochastic (distribution over successor states given current state and action)?
 - Strategic: the environment is deterministic except for the actions of other agents

Episodic vs. sequential

- Is the agent's experience divided into unconnected episodes, or is it a coherent sequence of observations and actions?
 - Does each problem instance involve just one action or a series of actions that change the world state according to the transition model?

Episodic (vs. sequential):

- Is the choice of current action
 - Dependent on previous actions?
 - If not, then the environment is episodic
- In non-episodic environments:
 - Agent has to plan ahead:
 - Current choice will affect future actions

Static vs. dynamic

- Is the world changing while the agent is thinking?
 - Semidynamic: the environment does not change with the passage of time, but the agent's performance score does

Discrete vs. continuous

- Does the environment provide a fixed number of distinct percepts, actions, and environment states?
 - Are the values of the state variables discrete or continuous?
 - Percepts and actions of the agent are discrete or continuous?
 - Time can also evolve in a discrete or continuous fashion

Single-agent vs. multiagent

Is an agent operating by itself in the environment?

Known vs. unknown

- Are the rules of the environment (transition model and rewards associated with states) known to the agent?
 - Strictly speaking, not a property of the environment, but of the agent's state of knowledge

Summary

	Observable	Deterministic Episodic		Static	Discrete	Agents
Cross Word	Fully	Deterministic	Sequential	Static	Discrete	Single
Poker	Partially	Stochastic	Sequential	Static	Discrete	Multi
Backgammon	Fully	Stochastic	Sequential	Static	Discrete	Multi
Taxi driver	Partially	Stochastic	Sequential	Dynami	c Conti	Multi
Part picking robot	Partially	Stochastic	Episodic	Dynami	c Conti	Single
Image analysis	Fully	Deterministic	Episodic	Semi	Conti	Single

Agent Types

- Five basic types in order of increasing generality:
 - 1. Simple reflex agents
 - 2. Reflex agents with state/model
 - 3. Goal-based agents
 - 4. Utility-based agents
 - 5. Learning based Agents

Simple Reflex Agents


```
function Reflex-Vacuum-Agent ([location, status]) returns an action if status = Dirty then return Suck else if location = A then return Right else if location = B then return Left
```

Simple Reflex Agents

- Simple but very limited intelligence.
- Action does not depend on percept history, only on current percept.
- Therefore no memory requirements.

Infinite loops if environment partially observable

- Suppose vacuum cleaner does not observe location. What do you do given location = clean? Left of A or right of B -> infinite loop.
- Agent will behave like fly buzzing around window or light.
- Possible Solution: Randomize action (flip a coin to decide action).
- Chess openings, endings
 - Lookup table (not a good idea in general)
 - 35¹⁰⁰ entries required for the entire game

States: Beyond Reflexes

 Recall the agent function that maps from percept histories to actions:

$$[f: \mathcal{P}^{\star} \rightarrow \mathcal{A}]$$

- An agent program can implement an agent function by maintaining an internal state.
- The internal state can contain information about the state of the external environment.
- The state depends on the history of percepts and on the history of actions taken:

[$f: \mathcal{P}^*, \mathcal{A}^* \to \mathcal{S} \to \mathcal{A}$] where \mathcal{S} is the set of states.

Model-based reflex agents

- 1. Know how world evolves
 - Overtaking car gets closer from behind
- 2. How agents actions affect the world
 - Wheel turned clockwise takes you right

```
function Reflex-Agent-With-State( percept) returns action
    static: state, a description of the current world state
        rules, a set of condition-action rules

state ← UPDATE-State(state, percept)
    rule ← Rule-Match(state, rules)
    action ← Rule-Action[rule]
    state ← UPDATE-State(state, action)
    return action
```

Goal-based agents

- Knowing state and environment? Enough?
 - Taxi can go left, right, straight
- Have a goal
 - A destination to get to
- Uses knowledge about a goal to guide its actions
 - E.g., Search, planning
- Modified brake behaviour in case of rain

Goal-based agents

- Reflex agent breaks when it sees brake lights. Goal based agent reasons
 - Brake light -> car in front is stopping -> I should stop -> I should use brake

Utility-based agents

- Goals are not always enough
 - Many action sequences get taxi to destination
 - Consider other things. How fast, how safe.....
- A Utility function maps a state onto a real number which describes the associated degree of "happiness", "goodness", "success".
- Where does the utility measure come from?
 - Economics: money.
 - Biology: number of offspring.
 - Your life?

Utility-based agents

Learning agents

- Performance element is what was previously the whole agent
 - Input sensor
 - Output action
- Learning element
 - Modifies performance element.

Learning agents

- Critic: how the agent is doing
 - Input: checkmate?
 - Fixed
- Problem generator
 - Tries to solve the problem differently instead of optimizing.
 - Suggests exploring new actions -> new problems.

Learning agents(Taxi driver)

- Performance element
 - How it currently drives
- Taxi driver Makes quick left turn across 3 lanes
 - Critics observe shocking language by passenger and other drivers and informs bad action
 - Learning element tries to modify performance elements for future
 - Problem generator suggests experiment out something called Brakes on different Road conditions
- Exploration vs. Exploitation
 - Learning experience can be costly in the short run
 - shocking language from other drivers
 - Less tip
 - Fewer passengers

End of Lecture