4. Sirfure, 1 could 3-1-10)	
ef A anyther foliation on m' is the equivalence class of a vector s.t. $\times \wedge \times' \leftarrow \exists f : \wedge \neg \neg \neg \exists f : \wedge \neg \neg \neg \exists f : \wedge \neg \neg$	Geld X
et $SC(\Lambda, S=hr(a))$ & an oriented surface the characteristic foliation S_{p} iven by $TS\Lambda$ S_{p}	of S ?
$(+ t_p) = s_p = 0$ $(+ t_p) $	
$S_{\xi} \Rightarrow Spand Sy \times = (x_2-y)_{0} + (y_2+x)_{0} - (x_2x_{y^2})_{0}$ \times \in \frac{1}{5}^2 \ldots \times \in \frac{1}{5}^2	
X(x1412)=0 (-1412) = (010, ±1)	
Identify $VS = S \times R$ $S \mapsto S \times O$ C i.e. $C = B_2 + U_2 d_2$ $C \mapsto T \in R / B_2 - frue on S$	
=	
ortet contra: Uz Bz + Bz A(duz-Bz) 20 -et l de an cren for a S	

(111) A for live connecting hypersolic posts not rorse-snale THOY! After a Co-perturbation

Het Sy 13 Nove-Smale proof: not cusy -> See dy-mand systems 4.3 Conver sulus (airoux) Deliscing) is called convex (=) 3 Contact vector Geld Y New 5 St. Y & S Ex: 5" x S" C (S" x 1722, Ker (cos(h b)dx - sh (hd)dy) Y= x dx 4727 Ly on = iz (don) + d(iy on) = on -) Y is a contest vector Greft Rx1 com sphen a (R), 90t) Sc (7,9) - closed 18 com (=)] $\psi: S^{1} \times \mathbb{R}$) M S.L. $P \mapsto \psi(p, 0)$ is the inclusion $S \mapsto M$ \mathbb{R} for \mathbb{R} - \mathbb{R} contact shorthing Proofs "E" Ty (de) o a contact with Livel of S =)" Let Y be a contact vector freeld SI. YAS $H:=\alpha(Y)$ defined near SLet $\psi: \bigcap \bigcap \mathbb{R}$ s.t. $\psi: \bigcap \bigcap \bigcap \mathbb{R}$ Y The contact vatir field corresponding to you H M:= tim of Y) TY(p,t)(d) = Y(p) = Y(Yx(p)) new) =) to YX D IR-Nov.