-Neha Surti

Module 5-Memory Organization

- Location
- Capacity Unit of transfer
 - Access method
 - Performance
- Physical type Physical characteristics
- Organization

Location

- CPU
- Internal
- External

Capacity

- Word size
- Number of words

Unit of transfer

- Internal Usually governed by data bus width
- External Usually a block which is much larger than a w
- Addressable unit Smallest location which can be unique addressed

Sequential

- Start at the beginning and read through in order
- Access time depends on location of data and previous locati
- e.g., tape

Jirect

- Individual blocks have unique address
- Access is by jumping to vicinity plus sequential search
- Access time depends on location and previous location
- e.g., disk

method

Access

Random

- Individual addresses identify locations exactly
- Access time is independent of location or previous access
- e.g., RAM

Associative

- Data is located by a comparison with contents of a portion c
- Access time is independent of location or previous access
- e.g., cache

Performance

Access time

 Time between presenting the address and getting valid data

Memory Cycle time

- Time may be required for the memory to "reco before next access
- Cycle time is access + recovery

Transfer Rate

• Rate at which data can be moved

Physical Types

Magnetic - Disk & Tape Semiconductor - RAM Optical - CD & DVD

Characteristics Physical

- Decay
- Erasable

Volatility

- Power consumption

Organization

- Physical arrangement of bits into words
 - Not always obvious
 - e.g., interleaved

EPROM Types of memory Types of RAM and ROM

Random Access Memory (RAM)

- The programs and data that the CPU requires during the execution of a program are sto this memory.
- It is a volatile memory as the data is lost when the power is turned off.
- Types
- 1. Static RAM (SRAM)
- -It is a form of a semiconductor
- -It is widely used in microprocessors
- -SRAM comprised of flip flops
- 2. Dynamic RAM (DRAM)
- -It is made of Capacitors and has smaller data life span than Static RAM.
- -DRAM changes its state from 0 to 1 over a period of time, due to the slow leaka charge from the capacitor.
- -To prevent this, DRAM requires an external memory refresh, which rewrites the the capacitors, restoring them to their original charge.

Read-Only Memory (ROM)

- It is used to permanently store data that does not need to be modified.
- ROM is non-volatile memory, which means that the data stored in it is retained even w power is turned off.
- Types
- 1. PROM (Programmable read-only memory)
- -It can be programmed by the user.
- -Once programmed, the data and instructions in it cannot be changed.
- EPROM (Erasable Programmable read-only memory) $^{\rm i}$
- -It can be reprogrammed.
- -To erase data from it, expose it to ultraviolet light.
- EEPROM (Electrically erasable programmable read-only memory)
- The data can be erased by applying an electric field, with no need for ultraviolet

| Memory Hierarchy

Cache Memory

Three-level cache organization

Cache and Main Memory

Cache Mapping Techniques

Direct Mapping

Associative Mapping

Set-Associative Mapping

Cache Mapping

Main Memory Size: 64 words i.e. (0, 1, ..., 63)

Block Size: 4 words

No. of Blocks in MM: 64/4 = 16

64 words E

 $\log_2 64 = \log_2 2^6$

0

= 6 bits

10	7	=	15	2	25	27	In.	35	39	45	47	51	55	59	63
2	9	0	¥	16	22	26	30	34	38	42	46	20	54	88	62
1	-40	0.	13	11	21	25	29	12	37	¥	45	49	53	27	19
0	*	9	12	91	20	24	28	32	38	9+	**	46	52	95	9
0	-	2	3	4	2	9	7	8	6	10	=	12	13	14	15

Cache Size: 16 words

Block Size: 4 wo

Block Size = Line

Line Size: 4 words

No. of Lines in Cache: 16/4 = 4 i.e. 0, 1, 2, 3

4 Lines

$$\log_2 4 = \log_2 2^2$$

$$=$$
 2 bits

Direct Memory Mapping

Direct Memory Mapping

Associative Mapping

Set Associative Mapping

Cache coherence

- Caches in multiprocessing environment introduce the cache coherence problem.
- multiple processors maintain locally cached copies of a unique-shared memory location In a shared memory multiprocessor with a separate cache memory for each processor, local modification of the location can result in globally inconsistent view of memory.
- Cache coherence schemes prevent this problem by maintaining a uniform state for each cached block of data.

Causes of Cache inconsistency

Sharing of writable data

Process migration

I/O activity

Inconsistency after Process migration Processors

Write policies

Hit

- Write-through policy
 - Write-back policy

Miss

- Write Allocate
- Write Around

Thank You