Kajian Eksperimen Pengaruh Akselerasi Terhadap Performansi Pompa Hydram

A.A. Adhi Suryawan & Made Suarda

Jurusan Teknik Mesin , Universitas Udayana, Kampus Bukit Jimbaran Badung e-mail : adhi.suryawan@me.unud.ac.i

·

Abstrak

Pompa hidram merupakan pompa tanpa motor, yang mana dalam mekanisme kerjanya hanya menggunakan energi potensial. Dalam pompa hidram terdapat komponen yang disebut tabung udara. Sampai saat ini masih belum diketahui secara pasti berapa besar pengaruh tabung udara terhadap unjuk kerja pompa hidram. Untuk mengetahui pengaruh tabung udara terhadap unjuk kerja pompa hidram maka digunakan diagram indikator. Penelitian ini dilakukan dengan memvariasikan pompa hidram head delivery dan panjang pipa drive. Kemudian variabel yang diamati adalah unjuk kerja pada pipa drive dan pipa delivery pompa hidram. Dari hasil penelitian didapatkan tabung udara mampu mengurangi head akselerasi secara signifikan yang terjadi pada pipa delivery yaitu dari 0,35 meter menjadi 0,04 meter, sehingga air yang dipompakan ke penampunganmelalui pipa delivery lebih stabil, dan pada efisiensi juga terjadi peningkatan dari 17,03 % menjadi 52,99 %. Jadi tabung udara mempunyai pengaruh yang besar terhadap peningkatan unjuk kerja pompa hidram.

Kata kunci: Indikator, Ttabung udara, Head akselerasi, Ppompa hidram.

Abstract

Experimental Study of Acceleration Effect To Hydram Pump Performance

The hydram pump is a motorless pump, which is its working mechanism use potential energy only. The hydram pump consists of a component called an air vessel. Until now, it is not exactly known yet what is the effect of air vessel to performance of hydram pump. To get the effect of air vessel to performance of hydram pump can be used indicator diagram. This research carried out by use of head and the length variation of drive pipe of the hydram pump. Then, characteristic in drive pipe and delivery pipe of the hydram pump were observed. The results show that the use of the air vessel in the hydram pump able to decrease the acceleration head significantly which happened in delivery pipe, that is 0,35 meters to 0,04 meters, so that the pumped water to the reservoir through delivery pipe is more stable. In addition, the efficiency increase from 17,03% up to 52,99%. So, the air vessel gives a big effect to the performance of hydram pump.

Key words: Indicator diagram, Air vessel, Acceleration Head, Hydram pump.

1. Pendahuluan

Pompa hydram atau pompa impuls adalah suatu alat untuk mengalirkan air dari tempat yang rendah ke tempat yang lebih tinggi secara kontinyu dengan menggunakan energi potensial sumber air yang akan dialirkan sebagai daya drive, tanpa menggunakan sumber energi luar [6], menurut [2] pompa hydram disebut dengan motorless pump yaitu pompa yang tidak menggunakan energi listrik, yang bekerja secara otomatis dengan memanfaatkan energi aliran air ke tempat penampungan air kemudian dikuatkan dengan terjadinya efek palu air (water hammer). Mekanisme pada pompa hydram adalah dengan melipat-gandakan kekuatan pukulan air pada tabung udara dimana terjadi perubahan energi kinetik air menjadi tekanan dinamik yang menimbulkan water hammer. Tekanan dinamik

ini akan diteruskan ke dalam tabung udara yang berfungsi sebagai penguat akan tetapi pompa ini tidak dapat memompa semua air yang masuk, jadi sebagian air terpompa dan sebagian lagi terbuang melalui katup limbah [5].

Pompa hydram membutuhkan energi terjunan air dengan ketinggian lebih besar atau sama dengan 0,7 meter yang masuk ke dalam pompa [9]. Air mengalir melalui pipa drive ke dalam badan pompa dan keluar melalui katup limbah yang terbuka. Pada kecepatan yang mencukupi katup ini akan menutup dengan sangat cepat. Akibatnya, tekanan yang tinggi akan terjadi di dalam pompa, yang mana air hanya dapat keluar lewat katup tekan ke dalam tabung udara, yang selanjutnya mengkompresi udara yang ada dalam tabung sampai kecepatan aliran menjadi nol. Udara

dalam tabung udara yang telah dikompresi tadi akan menekan air dalam tabung tersebut kemudian mengalir melalui pipa delivery. Dalam mekanisme kerja tabung udara terjadi perubahan energi kinetik menjadi tekanan dinamis, yang berfungsi mengurangi akselerasi dan gesekan yang terjadi pada pompa hydram dan sebagai penguat tekanan, sehingga mampu mengangkat air ke pipa delivery secara kontinu pada kecepatan yang seragam. Dari studi literatur yang telah dilakukan, belum terdapat kajian yang mendasar tentang pengaruh tabung udara terhadap unjuk kerja pompa hydram. Penelitian ini bertujuan untuk mengetahui besarnya kontribusi tabung udara terhadap akselerasi dan gesekan pada pipa drive dan pipa delivery terhadap unjuk kerja pompa hydram. Sedangkan manfaat dari penelitian ini diharapkan unjuk kerja pompa hydram lebih baik dengan desain tabung udara yang tepat.

Sesuai dengan prinsip kerjanya, pompa hydram memanfaatkan penutupan tiba-tiba aliran air di dalam pipa untuk menghasilkan tekanan balik yang tinggi. Peningkatan tekanan yang terjadi akibat penutupan katup secara tiba-tiba dapat ditentukan dengan persamaan Joukowsky [8]:

$$\Delta H_p = \frac{c \, \mathbf{Q}_1 - \mathbf{v}_2}{g} \tag{1}$$

Dimana:

 ΔHp = kenaikan head tekanan (m)

v1 = kecepatan aliran air didalam pipa sebelum katup menutup (m/dt)

v2 = kecepatan aliran air didalam pipa sesudah katup menutup (m/dt)

c = kecepatan gelombang suara didalam air (m/dt) = 1.440 m/dt

g = percepatan gravitasi (9,81 m/dt2)

Akibat head terjunan air sumber air (Hs) didalam pipa drive akan mengalami percepatan dan melalui katup limbah. Percepatan tersebut akan ditentukan dari persamaan berikut :

$$a = \frac{v_2 - v_1}{\Delta t} \tag{2}$$

Dimana:

q = percepatan aliran air didalam pipa drive (m/dt2)

v1 = kecepatan sebelum katup pada pipa drive dibuka (m/dt)

v2 = kecepatan sesudah katup pada pipa drive dibuka (m/dt)

 Δt = selisih waktu (dt)

Siklus oprasi sistem pompa hydram terdiri dari tiga fase, yaitu : akselerasi, pemompaan, dan *recoil* [9]. Siklus ini dapat dilihat pada diagram hubungan antara kecepatan aliran pada pipa *drive* terhadap waktu.

Gambar 1. Diagram hubungan antara kecepatan pipa *drive* dengan waktu

(Sumber : Young, 1997)

Dimana T adalah periode dalam siklus pompa hydram ; T_a adalah waktu untuk fase akselerasi (percepatan) ; T_p adalah waktu untuk fase pemompaan ; T_r adalah waktu recoil ; u_c adalah kecepatan menutupnya katup impuls ; u_0 adalah kecepatan pada steady state.

Akselerasi pada pipa *drive* terjadi saat katup limbah terbuka dan katup *delivery* tertutup. Pada kecepatan kritis tertentu (u_c) katup impuls menutup secara mendadak akibat gaya *hidrodinamik* yang mengatasi gaya gravitasi katup impuls, yang cenderung mempertahankan untuk tetap terbuka. Waktu yang diperlukan selama akselerasi (Ta) dari aliran yang tidak konstan adalah:

$$Ta = \left(\frac{v_c^2}{2g}\right) \left(\frac{L}{H'}\right) k_1 \tag{3}$$

Dimana:

Ta = waktu yang diperlukan untuk akselerasi (dt)

H' = tinggi sumber air dikurangi kerugian (m)

 k_1 = fungsi dari rasio kecepatan (a = v_c/v_l)

a = rasio kecepatan $(v_c/v_1) = 0.8$

L = panjang pipa drive (m)

Volume air keluar katup limbah setiap siklus selama akselerasi (Va)

$$V_{w} = \left(\frac{A_{1}v_{c}^{2}}{2g}\right) \left(\frac{L}{H'}\right) k_{1}$$
 (4)

Dimana:

 A_1 = luas penampang pipa *drive* (m²)

 k_1 = fungsi dari rasio kecepatan (a = v_c/v_l)

$$k_1 = \frac{\ln\left[\sqrt{+a}\right]}{a}$$

 V_w = volume air keluar dari katup limbah (m³)

Siklus pemompaan terjadi jika gelombang kejut akibat *water hammer* menjalar keatas dan bawah pipa *drive* pada kecepatan suara. Terbukanya katup *delivery* merupakan respon terhadap tiap denyut tekanan. Waktu pemompaan (Tp) dapat diketahui melalui persamaan berikut:

$$Tp = \frac{2L}{c}$$
 (5)

Volume pemompaan (Vp) tiap siklus dapat dicari dengan persamaan berikut, dengan asumsi tidak ada kerugian saat *delivery* adalah:

$$Vp = \frac{V_1 . v_c^2}{2.g.h_d} \tag{6}$$

Dimana:

 h_d = tinggi pemompaan (m)

 V_1 = volume pipa *drive* (m³)

 V_p = volume pemompaan (m³)

Daya atau tenaga yang dibutuhkan untuk menaikan air adalah berbanding lurus dengan laju air yang di pompa dikalikan dengan ketinggian pemompannya. Demikian juga daya yang tersedia pada aliran air yang disuplai untuk mengoprasikan pompa hydram berbanding lurus dengan besarnya laju air volumetric air yang disuplai dikalikan dengan ketinggian suplainya. Pompa hydram bekerja dengan memanfaatkan daya yang tersedia tersebut untuk membawa aliran ke tempat yang lebih tinggi, sehingga efisiensi pompa hydram dinyatakan sebagai persamaan D-Aubuisson [Taye, 1998], adalah sebagai berikut:

$$\eta_D = \frac{Q_D x H_D}{(Q_S + Q_D) x H_S} x 100\% \tag{7}$$

Dimana:

 η_D = efisiensi D-Aubuisson (%)

 Q_D = kapasitas pemompaan (m³/s)

 H_D = ketinggian pemompaan (m)

 Q_S = kapasitas air yang di suplay (m³/s)

 H_S = ketinggian suplai air (m)

Tabung udara bekerja sebelum pipa *delivery* dan fungsinya adalah :

- 1. Untuk mendapatkan suplai yang kontinu pada kecepatan yang seragam.
- 2. Untuk menyimpan energi yang diperlukan untuk menjalankan pompa (dengan menggunakan tabung udara akselerasi dan gesekan sedapat mungkin akan berkurang).

Diagram indikator adalah diagram yang menunjukan head tekanan dari cairan didalam tabung yang disesuaikan dengan beberapa posisi selama proses langkah *drive* dan langkah *delivery*. Diagram indikator juga menunjukan perbandingan antara head tekanan dengan panjang langkah (head tekanan diperlihatkan dalam arah y dan panjang langkah dalam arah x).

Gambar 2. Diagram indikator ideal

Gambar 3. Pengaruh akselerasi dan gesekan (Sumber : Rajput, 2002)

Diagram indikator ideal seperti Gambar 2, adalah diagram indikator yang diperoleh dengan mengabaikan head loss dari gesekan dan akselerasi di dalam pipa drive dan pipa delivery, dimana garis EF menunjukan atmosfir head tekanan. Akibat pengaruh akselerasi pada pipa drive dan pipa delivery, diagram indikator berubah dari ABCD menjadi A'B'C'D', seperti pada Gambar 3. Akibat pengaruh gesekan pada pipa drive dan pipa delivery, menyebabkan perubahan bentuk diagram yang menyerupai parabola.

2. Metodelogi

Penelitian ini dilakukan dengan menguji pengaruh tabung udara terhadap performansi pompa hydram. Rancangan alat penelitiannya dapat dilihat pada Gambar 4. Pengujian dilakukan pada sistem pompa hydram, dengan ketinggian sumber air 1 meter, diameter pipa drive 1", diameter badan pompa 3", berat katup limbah 350 gr, panjang langkah 5 mm, dengan memvariasikan panjang pipa drive dan panjang pipa delivery. Pada saat pengujian, pompa hydram akan divariasikan dengan menggunakan tabung udara dan tanpa menggunakan tabung udara.

Gambar 4. Rancangan pompa hydram tanpa dan dengan menggunakan tabung udara

Secara garis besar prosedur pengujian akan dilakukan seperti yang ditunjukan diagram alir di bawah ini :

 Perubahan efisiensi yang terjadi pada pompa hydram (Δη)

Gambar 5. Skema Langkah Penelitian

3. Hasil dan Pembahasan

Gambar 6 menunjukkan grafik perbandingan antara kapasitas *delivery* maksimum pompa hydram

yang menggunakan tabung udara dengan yang tanpa menggunakan tabung udara. Terlihat bahwa kapasitas yang dihasilkan dengan memakai tabung udara lebih besar, ini disebabkan karena waktu yang dibutuhkan untuk memenuhi volume penampungan rata-rata lebih cepat dibandingkan yang tanpa menggunakan tabung udara.

Gambar 6. Kapasitas maksimum pompa hydram

Gambar 7. Efisiensi maksimum pompa hydram

Sedangkan Gambar 7 menunjukkan perbandingan efisiensi pompa hydram yang menggunakan dan tanpa menggunakan tabung udara. Kalau ditinjau dari banyaknya denyutan/frekuensi, yang memakai tabung udara jauh lebih sedikit menghasilkan denyutan, akibatnya air yang terbuang lebih sedikit, dan kalau ditinjau dari laju aliran, yang memaki tabung udara laju alirannya lebih stabil jadi air yang dipompakan lebih kontinu karena fungsi tabung udara bisa meredam akselerasi dan gesekan yang

terjadi sekecil mungkin, sehingga air yang mengalir bisa lebih kontinu. Dari pengujian yang dilakukan, efisiensi terbesar adalah yang memakai tabung udara dengan panjang pipa *drive* 6 meter dan tinggi pipa *delivery* 4 meter.

Gambar 8. Akselerasi maksimum pada pipa drive

Gambar 9. Akselerasi maksimum pada pipa delivery

Pada Gambar 8, terlihat bahwa akselerasi pada pipa *drive* lebih kecil dengan memakai tabung udara, ini dikarenakan tabung udara memang berfungsi untuk meredam percepatan yang terjadi. Jadi dengan akselerasi semakin kecil, kapasitas yang dihasilkan pada penampungan pipa *drive* juga semakin kecil. Sedangkan pada pipa *delivery* yang ditunjukan pada Gambar 9 berbanding terbalik dengan pipa *drive*. Ini disebabkan karena kecepatan fluida yang dihasilkan dengan memakai tabung udara lebih besar daripada yang tanpa menggunakan tabung udara.

Dalam pengujian pompa hydram tanpa tabung udara, dimana panjang pipa *drive* 6 meter, $H_{atm} = 10.3$ m, Panjang langkah (L_S) = 5 mm, maka dari hasil perhitungan dan pengolahan data didapat:

- Head *drive*: $h_{pdrv} = 1,0019054 \text{ m}$
- Head *delivery*: $(H_{del}) = 2,00024 \text{ m}$
- Akselerasi pada pipa *drive* : $a_{drv} = 0.0465 \,\text{m/s}^2$
- Head akibat akselerasi pada pipa drive: $h_{asdry} = 0.7m$
- Akselerasi pada pipa *delivery* : $a_{del} = 0,00793$ m/s²
- Head akibat akselerasi pada pipa delivery: $h_{asdel} = 0.354m$
- Head karena faktor gesekan pada pipa drive: $hf_{drv} = 0.005 \,\mathrm{m}$
- Head karena faktor gesekan pada pipa delivery: $hf_{del} = 0.001 \mathrm{m}$

Pada Gambar 10 dapat dilihat diagram indikator yang dipengaruhi oleh head akselerasi. Kordinat ST merupakan panjang langkah, EA menunjukan besarnya head pada pipa drive, EF merupakan head atmosfer, sedangkan DA menunjukan besarnya head pompa yang ada pada pipa delivery. Kemudian pada kordinat AA' dan BB' menunjukan besarnya head akselerasi yang terjadi pada pipa drive, sedangkan CC' dan DD' merupakan besarnya head akselerasi yang terjadi pada pipa delivery. Pada titik A merupakan kondisi pada saat check valve belum dibuka, kemudian pada titik B merupakan kondisi pada saat katup limbah terbuka. Pada titik C menunjukan kondisi pada saat katup limbah tertutup dan berakhir di titik D. Jadi untuk pompa hydram tanpa tabung udara, pada saat katup limbah terbuka head akselerasi pada pipa drive sebesar 0,7 meter, sedangkan pada pipa delivery pada saat katup tertutup head akselerasinya adalah 0,35 meter.

Gambar 10. Pengaruh head akselerasi, tanpa tabung udara

Pada Gambar 11 dapat dilihat diagram indikator yang dipengarui oleh head gesekan. Head pompa pada pipa delivery 2 meter dan panjang langkah 5 mm. Pada saat katup katup limbah terbuka besarnya head gesekan yang terjadi adalah 0,005 meter, sedangkan pada kondisi pada saat katup limbah tertutup besarnya head gesekan yang terjadi pada pipa delivery adalah 0,001 meter. Head akselerasi yang terjadi pada pipa drive lebih besar dari pada pipa delivery, Ini disebabkan karena kecepatan fluida yang terjadi pada pipa drive lebih besar dibandingkan kecepatan air yang terjadi pada pipa delivery.

Gambar 11. Pengaruh head gesekan, tanpa tabung udara

Sedangkan dalam pengujian pompa hydram tanpa tabung udara, dimana panjang pipa *drive* 6 meter,

 $H_{atm} = 10.3$ m, Panjang langkah (L_S) = 5 mm, maka dari hasil perhitungan dan pengolahan data didapat:

- Head $drive : h_{pdrv} = 1,001 \text{ m}$
- Head *delivery* : $h_{pdel} = 2,0012 \text{ m}$
- Akselerasi pada pipa *drive* : $a_{drv} = 0.015 \,\text{m/s}^2$
- Head akibat akselerasi pada pipa drive:

$$h_{asdry} = 0.5m$$

- Akselerasi pada pipa *delivery* : $a_{del} = 0.0152$ m/s²
- Head akibat akselerasi pada pipa delivery:

$$h_{asdel} = 0.04m$$

• Head karena faktor gesekan pada pipa drive :

$$hf_{drv} = 0.007 \,\mathrm{m}$$

• Head karena faktor gesekan pada panad $r^{i}X^{e}$ pengaruh head akselerasi $hf_{del}=0.001 \mathrm{m}$

Jadi pada pompa hydram dengan tabung udara, pada saat katup limbah terbuka besarnya head akselerasi pada pipa *drive* adalah 0,5 meter, sedangkan pada saat katup tertutup besarnya head akselerasi yang terjadi pada pipa *delivery* adalah 0,04 meter. Selisih besarnya head akselerasi yang terjadi pada pipa *drive* tanpa dan dengan menggunakan tabung udara adalah 0,7 meter dan 0,5 meter, sedangkan pada pipa *drive* terjadi perbedaan yang cukup signifikan yaitu 0,35 meter dan 0,04 meter. Hal ini disebabkan karena tabung udara mampu meredam akselerasi sekecil mungkin, sehingga air yang mengalir ke penampungan pipa *delivery* lebih stabil atau kontinu. Jadi pengaruh tabung udara sangat besar dalam meningkatkan unjuk kerja pompa hydram.

Sedangakan pada saat katup limbah terbuka besarnya head gesekan yang terjadi pada pipa *drive* adalah 0,007 meter, sedangkan pada saat katup tertutup besarnya head gesekan pada pipa *delivery* adalah 0,001 meter. Jika dibandingkan head yang diakibatkan oleh gesekan pada pipa *drive* yang menggunakan dan tanpa menggunakan tabung udara cenderung sama. Jadi tabung udara tidak mempengaruhi gesekan yang terjadi pada pipa *drive* maupun pipa *delivery*.

Kesimpulan

Dari hasil pengujian dan pembahasan yang sudah dilakukan, maka dapat ditarik kesimpulan yaitu:

 Tabung udara dapat mengurangi head akselerasi pada pipa drive dari 0,7 meter tanpa menggunakan tabung udara menjadi 0,5 meter dengan tabung udara, sedangkan pada pipa delivery berkurang sangat signifikan dari 0,35 meter menjadi 0,04 meter. Jadi tabung udara mempunyai pengaruh yang besar terhadap peningkatan unjuk kerja pompa hydram, yaitu meningkatkan kapasitas

- pemompaan dari $0,00005~\text{m}^3/\text{s}$ menjadi $0,00131~\text{m}^3/\text{s}$ dan meningkatkan efisiensi dari 17,03~% menjadi 52,99~%.
- 2. Besarnya head gesekan pada pipa drive yang tanpa menggunakan tabung udara adalah 0,005 meter dan pada pipa delivery besarnya 0,001 meter. Sedangkan head gesekan pada pipa drive dengan menggunakan tabung udara adalah 0,007 meter dan pada pipa delivery adalah 0,001 meter. jadi tabung udara tidak berpengaruh terhadap terjadinya head gesekan pada pipa drive maupun pada pipa delivery.

Daftar Pustaka

- [1] Diamer, P. dan M. Chi, 2002, *Hydroulic Ram Hanbook*, Zhejiang University of Technology, China.
- [2] Jennings, G.D., 1996, Hydroulic Ram Pump, North Carolina Cooperative Extension Service, North Carolina.
- [3] Kahangire, P., 1990, *The Hydroulic Ram Pump Project*, Water Develoyment Departement, Uganda, Canada.
- [4] Rajput, R. K., 2002, A Textbook of Fluid Mechaniics and Hydroulic Machines, S1 Version, S. Chad and Company Ltd, New Delhi.
- [5] San, G.S., 2003, Studi Karakteristik Volume Tabung Udara dan Beban Katup Limbah Terhadap Efisiensi Pompa Hidroulic Ram, [Online, diakses: tanggal 15-6-2006], URL:http://www.allspeeds.co.uk
- [6] Taye, T., 1998, *Hydroulic Ram Pump*, Journal of the ESME, Vol. II, Addis Ababa, Ethiopia.
- [7] Tessema, A.A., 2000, hydraulic Ram Pump System Design and Application, [Online, diakses: tanggal 5-6-2006], URL: http://home.att.net~africantech/ESME/hydram2/Hydram2
- [8] Torishima., 1968, *Torishima Pump Hanbook*, Penerbit Torishima Pump, MFG. Co. Ltd.
- [9] Young, B., 1996, Design of Homologous Ram Pump, Journal of Fluids Engineering, Vol. 119, Papua New Guinea University of Technology, Papua New Guinea.