Lenguajes Regulares

Diego Sarceño

25 de febrero de 2022

Cerradura bajo la Concatenación

La clase de lenguajes regulares es cerrada bajo la operación de concatenación. (Lenguajes bajo el mismo alfabeto.)

Idea de la Demostración

Dados dos lenguajes A_1 y A_2 , se define la concatenación como

$$A_1 \circ A_2 = A_1 A_2 = \{ xy | x \in A_1 \land y \in A_2 \}.$$

Con esta definición en mente, se trabajará parecido al caso de la union, con la salvedad de que en vez de ser AFDs serán AFNDs. Se tomarán N_1 y N_2 AFNDs que reconozcan a A_1 y A_2 . Se construirá un AFND que acepte estados como si fueran partidos en dos pedazos, en concreto, pedazos que acepte N_1 y el otro pedazo lo acepte N_2 .

Visualización de la Idea

Ya con esta idea, lo que vamos a hacer (visualmente) es:

Ya con esto, se definen los AFNDs $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ y $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$. Ahora construímos N como $N = (Q, \Sigma, \delta, q_1, F_2)$:

Ya con esto, se definen los AFNDs $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ y $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$. Ahora construímos N como $N = (Q, \Sigma, \delta, q_1, F_2)$:

• $Q = Q_1 \cup Q_2$, dado que queremos tener todos los estados de ambos autómatas.

Ya con esto, se definen los AFNDs $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ y $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$. Ahora construímos N como $N = (Q, \Sigma, \delta, q_1, F_2)$:

- $Q = Q_1 \cup Q_2$, dado que queremos tener todos los estados de ambos autómatas.
- El alfabeto no cambia.

Ya con esto, se definen los AFNDs $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ y $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$. Ahora construímos N como $N = (Q, \Sigma, \delta, q_1, F_2)$:

- $\mathbf{Q}=Q_1\cup Q_2$, dado que queremos tener todos los estados de ambos autómatas.
- 2 El alfabeto no cambia.
- **3** La función de transición se vuelve una función por casos, tomando $x \in \Sigma$ y $q \in Q$

$$\delta(q,x) = \begin{cases} \delta_1(q,x) & q \in Q_1 \quad \text{y} \quad q \notin F_1 \\ \delta_1(q,x) & x \neq \varepsilon \\ \delta_2(q,x) \cup \{q_2\} & q \in F_1 \quad \text{y} \quad x = \varepsilon \\ \delta_2(q,x) & q \in Q_2 \end{cases}$$

Ya con esto, se definen los AFNDs $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ y $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$. Ahora construímos N como $N = (Q, \Sigma, \delta, q_1, F_2)$:

- $Q = Q_1 \cup Q_2$, dado que queremos tener todos los estados de ambos autómatas.
- 2 El alfabeto no cambia.
- **3** La función de transición se vuelve una función por casos, tomando $x \in \Sigma$ y $q \in Q$

$$\delta(q,x) = \left\{ egin{array}{ll} \delta_1(q,x) & q \in Q_1 & \mathsf{y} & q \notin F_1 \ \delta_1(q,x) & x
eq arepsilon \ \delta_2(q,x) \cup \{q_2\} & q \in F_1 & \mathsf{y} & x = arepsilon \ \delta_2(q,x) & q \in Q_2 \end{array}
ight.$$

1 El estado inicial es el de N_1 y los estados de aceptación son los de N_2 .

N Acepta toda cadena de A_1A_2

Tomamos una cadena $w=x_1\cdot x_ny_1\cdots y_m$, se tiene que la parte $x_1\cdots x_n$ es reconocida por N_1 y $y_1\cdots y_m$ reconocido por N_2 . Como no se agregaron estados extras a los de N_1 y N_2 y N_3 son todos los estados de N_3 y N_3 entonces las dos sucesiones existentes N_3 entonces las cadenas de N_3 entonces el lenguaje es regular.

Cerradura bajo la Clausura de Kleene

La clase de lenguajes regulares es cerrada bajo la Clausura de Kleene.

Idea de la Demostración

Dado el lenguaje A, la clausura de Kleene se define como

$$A^* = \{x_0 x_1 \cdots x_n \mid n \ge 0, \quad x_i \in A\},\$$

Para esta prueba, se agregará un nuevo estado inicial (que también será de aceptación), puesto que es necesario aceptar la cadena vacía; además, el conjunto de estados de aceptación debe estar conectado con el estado inicial del autómata original. Esto será más claro en la siguiente diapositiva.

Visualización de la Idea

Tomando $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, y se construye $N = (Q, \Sigma, \delta, q_o, F)$, donde

Tomando $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, y se construye $N=(Q,\Sigma,\delta,q_o,F)$, donde $\mathbf{0} \quad Q=Q_1\cup\{q_o\}$

Tomando $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, y se construye $N = (Q, \Sigma, \delta, q_o, F)$, donde

- **1** $Q = Q_1 \cup \{q_o\}$
- **2** Tomando $q \in Q$ y $a \in \Sigma_{\varepsilon}$

$$\delta(q,x) = \begin{cases} \delta_1(q,x) & q \in Q_1, \quad q \notin F \\ \delta_1(q,x) & q \in F, \quad a \neq \varepsilon \\ \delta_1(q,x) \cup \{q_1\} & a = \varepsilon \\ \{q_1\} & q = q_o \quad a = \varepsilon \\ \emptyset & q = q_o \quad a \neq \varepsilon \end{cases}$$

Tomando $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, y se construye $N = (Q, \Sigma, \delta, q_o, F)$, donde

- **1** $Q = Q_1 \cup \{q_o\}$
- **2** Tomando $q \in Q$ y $a \in \Sigma_{\varepsilon}$

$$\delta(q,x) = \left\{egin{array}{ll} \delta_1(q,x) & q \in Q_1, & q
otin F \ \delta_1(q,x) & q \in F, & a
eq arepsilon \ \delta_1(q,x) \cup \{q_1\} & a = arepsilon \ \{q_1\} & q = q_o & a = arepsilon \ & q = q_o & a
eq arepsilon \ \end{array}
ight.$$

Estado inicial q_o

Tomando $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, y se construye $N = (Q, \Sigma, \delta, q_o, F)$, donde

- **1** $Q = Q_1 \cup \{q_o\}$
- **2** Tomando $q \in Q$ y $a \in \Sigma_{\varepsilon}$

$$\delta(q,x) = \left\{egin{array}{ll} \delta_1(q,x) & q \in Q_1, & q
otin F \ \delta_1(q,x) & q \in F, & a
eq arepsilon \ \delta_1(q,x) \cup \{q_1\} & a = arepsilon \ \{q_1\} & q = q_o & a = arepsilon \ & q = q_o & a
eq arepsilon \ \end{array}
ight.$$

- Stado inicial q_o
- **4** $F = F_1 \cup \{q_o\}$

N Acepta toda candena de A*

Para esto tenemos dos casos

N Acepta toda candena de A*

Para esto tenemos dos casos

① Se tiene únicamente la cadena vacía ε , la cual es claramente aceptada, por construcción.

N Acepta toda candena de A^*

Para esto tenemos dos casos

- Se tiene únicamente la cadena vacía ε , la cual es claramente aceptada, por construcción.
- ② Tomando la cadena $w = w_1 \cdots w_m$, w_j reconocido por N_1 y $w_j = x_1 \cdots x_{n_j}$ donde n_j nos sirve para distinguir cadenas de distinta longitud.

N Acepta toda candena de A^*

Para esto tenemos dos casos

- Se tiene únicamente la cadena vacía ε , la cual es claramente aceptada, por construcción.
- ② Tomando la cadena $w = w_1 \cdots w_m$, w_j reconocido por N_1 y $w_j = x_1 \cdots x_{n_j}$ donde n_j nos sirve para distinguir cadenas de distinta longitud.
 - Tomaremos el caso base m=1, el cual se cumple por construcción de los w_j , entonces suponiendo que funciona para m=k, se tiene que la cadena $w=w_1\cdots w_k$ es reconocida por N.

N Acepta toda candena de A^*

Para esto tenemos dos casos

- Se tiene únicamente la cadena vacía ε , la cual es claramente aceptada, por construcción.
- ② Tomando la cadena $w = w_1 \cdots w_m$, w_j reconocido por N_1 y $w_j = x_1 \cdots x_{n_j}$ donde n_j nos sirve para distinguir cadenas de distinta longitud.

Tomaremos el caso base m=1, el cual se cumple por construcción de los w_j , entonces suponiendo que funciona para m=k, se tiene que la cadena $w=w_1\cdots w_k$ es reconocida por N.

Lo que implica que existe una sucesión de estados

$$R_0,\ldots,R_n\in Q$$
, con $n=\sum_{j=1}^k n_j$.

N Acepta toda candena de A*

Ahora tomando la cadena $w'=w_1\cdots w_kw_{k+1}$, se tiene que la máquina N reconoce toda la subcadena $w_1\cdots w_k$ y al momento de llegar al estado R_n y consumir una ε -transición se tiene que $R_{n+1}\in \delta(R_n,\varepsilon)$, y se llega al estado base.

N Acepta toda candena de A*

Ahora tomando la cadena $w'=w_1\cdots w_kw_{k+1}$, se tiene que la máquina N reconoce toda la subcadena $w_1\cdots w_k$ y al momento de llegar al estado R_n y consumir una ε -transición se tiene que $R_{n+1}\in \delta(R_n,\varepsilon)$, y se llega al estado base.

Por lo que, la cadena w' es reconocida por N. Concluyendo la prueba.

GRACIAS POR SU ATENCIÓN < 3