Lecture 20

Type II Error and Power; Inference on Two Population Means

STAT 8010 Statistical Methods I October 7, 2019

> Whitney Huang Clemson University

Type II Error and Power; Inference on Two Population Means
20.1

Type II Error and Power; Inference on Two Population Means
20.1

Notes

Agenda

- 1 Type I & Type II Errors
- 2 Sample Size Determination
- Duality of Hypothesis Test with Confidence Interval
- Inference on Two Population Means

Notes			

Review: Hypothesis Testing

- State the null H_0 and the alternative H_a hypotheses
 - $H_0: \mu = \mu_0$ vs $H_a: \mu > \mu_0 \Rightarrow$ Upper-tailed
 - $H_0: \mu = \mu_0 \text{ vs } H_a: \mu < \mu_0 \Rightarrow \text{Lower-tailed}$
 - $H_0: \mu = \mu_0$ vs $H_a: \mu \neq \mu_0 \Rightarrow$ Two-tailed
- Ompute the test statistic

$$t^* = rac{ar{\chi}_n - \mu_0}{s/\sqrt{n}}$$
 (σ unknown); $z^* = rac{ar{\chi}_n - \mu_0}{\sigma/\sqrt{n}}$ (σ known)

- Identify the rejection region(s) (or compute the P-value)
- Oraw a conclusion

We do/do not have enough statistical evidence to conclude H_a at α significant level

Type II Error and Power; Inference on Two Population Means
UNIVERSIT

Notes				

Region Region and P-Value Methods

Type I & Type II Errors

- Type I error: $\mathbb{P}(\text{Reject } H_0|H_0 \text{ is true}) = \alpha$
- Type II error: $\mathbb{P}(\text{Fail to reject } H_0|H_0 \text{ is false}) = \beta$

The relationship between α and β : $\alpha \downarrow \beta \uparrow$ and vice versa

Notes

Notes

Type II Error and Power

- \bullet The type II error, $\beta,$ depends upon the true value of μ (let's call it μ_a)
- \bullet We use the formula below to compute β

$$eta(\mu_{a}) = \mathbb{P}(z^{*} \leq z_{lpha} - rac{|\mu_{0} - \mu_{a}|}{\sigma/\sqrt{n}})$$

• The power (PWR): $\mathbb{P}(\text{Reject } H_0|H_0 \text{ is false}) = 1 - \beta.$ Therefore $\text{PWR}(\mu_a) = 1 - \beta(\mu_a)$

Question: What increases Power?

Notes

Sample Size Determination

Suppose that we wish to determine what sample size is required to detect the difference between a hypothesized mean and true mean $\mu_0 - \mu_a$, denoted by Δ , with a given power 1 $-\beta$ and specified significance level α and known standard deviation σ . We can use the following formulas

$$n = \sigma^2 \frac{(z_{\alpha} + z_{\beta})^2}{\Lambda^2}$$
 for a one-tailed test

$$n pprox \sigma^2 rac{(z_{lpha/2} + z_eta)^2}{\Delta^2}$$
 for a two-tailed test

Type II Error and Power; Inference on Two Population Means
Sample Size Determination

Example

An existing manufacturing process produces, on average, 100 units of output per day. A pilot plant is used to evaluate a possible process change. Suppose the Company CEO wants to know if yield is increased. The CEO uses $\alpha=0.05$ and the sample mean (n=25) is 103. Do we have sufficient evidence to conclude that the mean yield exceeds 100 if $\sigma=10?$

- **1** $H_0: \mu = 100 \text{ vs. } H_a: \mu > 100$
- $z_{obs} = \frac{103-100}{10/\sqrt{25}} = 1.5$
- $igoplus The cutoff value of the rejection region is $z_{0.05} = 1.645$. Therefore we do not have enough evidence to conclude that the new process mean yield exceeds 100$

Notes

Example Cont'd

Suppose the true true mean yield is104.

• What is the power of the test?

$$\beta(\mu = 104) = \mathbb{P}\left(Z \le z_{0.05} - \frac{|100 - 104|}{10/\sqrt{25}}\right)$$
$$= \mathbb{P}(Z \le 1.645 - 4/2) = \mathbb{P}(Z \le -0.355)$$
$$= \Phi(-0.355) = 0.3613$$

Therefore, the power is 1 - 0.3613 = 0.6387

 What sample size is required to yield a power of 0.8 with a significance level of 0.05?

$$n = \sigma^2 \frac{(z_{0.05} + z_{0.2})^2}{\Delta^2} = 10^2 \frac{(1.645 + 0.8416)^2}{4^2} = 38.6324$$

Therefore, the required sample size is 39

Population Means
CLEMS IN T
Sample Size Determination

Notes

Duality of Hypothesis Test with Confidence Interval

There is an interesting relationship between CIs and hypothesis tests. If H_0 is rejected with significance level α then the corresponding confidence interval does not contain the value μ_0 targeted in the hypotheses with the confidence level $(1-\alpha)$, and vice versa

Type II Error and Power; Inference on Two Population Means

CLEMS STORY

Type I & Type II Errors

Sample Size Determination

Duality of Hypothosis Test with Confidence Interval

Inference on Two Population Means

Notes

Notes

Hypothesis testing at α level	$(1-\alpha)$ -level Confidence Interval
$H_0: \mu = \mu_0 \text{ vs. } H_a: \mu \neq \mu_0$	$\bar{X} \pm t(\alpha/2, n-1)s/\sqrt{n}$
$H_0: \mu = \mu_0 \text{ vs. } H_a: \mu > \mu_0$	$(\bar{X}-t(\alpha/2,n-1)s/\sqrt{n},\infty)$
$H_0: \mu = \mu_0 \text{ vs. } H_a: \mu < \mu_0$	$(-\infty, \bar{X} + t(\alpha/2, n-1)s/\sqrt{n})$

20.10

Comparing Two Population Means

- We often interested in comparing two groups (e.g.)
 - Does a particular pesticide increase the yield of corn per acre?
 - Do men and women in the same occupation have different salaries?
- The common ingredient in these questions: They can be answered by conducting statistical inferences of two populations using two (independent) samples, one from each of two populations

20.	1	1	

Notation

- Parameters:
 - Population means: μ_1, μ_2
 - Population standard deviations: σ_1, σ_2
- Statistics:
 - Sample means: \bar{X}_1, \bar{X}_2
 - Sample standard deviations: s_1, s_2
 - Sample sizes: n_1, n_2

Type II Error and Power; Inference on Two Population Means
CLEMS N
Inference on Two Population Means

Natas			
Notes			
-			
-			

Statistical Inference for $\mu_{1}-\mu_{2}$

- Point estimate: $\bar{X}_1 \bar{X}_2$
- Interval estimate: Need to figure out $\sigma_{\bar{X}_1 \bar{X}_2}$
- Hypothesis Testing:
 - Upper-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 > 0$
 - Lower-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 < 0$
 - Two-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 \neq 0$

Type II Error and Power; Inference on Two Population Mean CLE MS Type I & Type II & Type II

20.1

Confidence Intervals for $\mu_1 - \mu_2$

If we are willing to **assume** $\sigma_1 = \sigma_2$, then we can "pool" these two (independent) samples together to estimate the common σ using s_ρ :

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

We can then derive the (estimated) standard error of $\bar{X}_1 - \bar{X}_2$, which takes the following form

$$\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

With CLT (assuming sample sizes are sufficiently large), we obtain the (1 $-\alpha$) × 100% CI for $\mu_1 - \mu_2$:

$$\underbrace{\bar{X}_1 - \bar{X}_2}_{\text{point estimate}} \pm t(\alpha/2, n_1 + n_2 - 1)s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Type II Error and Power; Inference on Two Population Mean

CLEIVIS IN TY

Errors Sample Size

Sample Size Determination

Duality of Hypothesis Test with Confidence

Inference on Two Population Means

....

Notes

Notes

Notes

Confidence Intervals for $\mu_1 - \mu_2$: What if $\sigma_1 \neq \sigma_2$?

• We will use s_1^2, s_2^2 as the estimates for σ_1^2 and σ_2^2 to obtain the standard error:

$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

 The formula for the degrees of freedom is somewhat complicated:

$$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

• We can then construct the (1 $- \alpha$) \times 100% CI for $\mu_1 - \mu_2$:

$\bar{X}_1 - \bar{X}_2$	$\pm t(\alpha/2, \text{ df calcul})$	ated from above)	$\frac{s_1^2}{n_1}$ +	$\frac{s_2^2}{n_2}$		
point estimate	margin of orror					

ver; Inference on Two ulation Means

CLEMS N

Errors

Sample Size
Determination

Ouality of Hypothesis Test with Confidence

nference on Two

e or on Test ence or Two Means

Summary

In this lecture, we learned

- Type II error β and power 1 $-\beta$
- Sample size determination for given α , β , $\Delta = |\mu_{\rm a} \mu_{\rm 0}|$
- The Duality of hypothesis test with confidence interval
- $\bullet \ \ \text{Point/Interval estimate for} \ \mu_1 \mu_2 \\$

In next lecture we will learn

- Test if $\sigma_1 = \sigma_2$
- \bullet Hypothesis Testing for $\mu_{\rm 1}-\mu_{\rm 2}$

Il Error and er; Inference on Two ation Means	Notes
MS#N	
nce on Two ation Means	
20.16	

Notes		
Notes		