STATS 205: Homework Assignment 5

Brian Liu 6/10/2019

Solution to Problem 1

We say that two observations X_1 and X_2 are independent of one another with respect to a collection of events A if

$$Pr\{X_1 \in A \text{ and } X_2 \in B\} = Pr\{X_1 \in A\} Pr\{X_2 \in B\}$$

where A and B are any two not necessarily distinct sets of outcomes belonging to A^3 .

- 2.2.1 Independent Observations; Permutation, Parametric, and Bootstrap Tests of Hypotheses; Good, Phillip Ι

In deciding whether your own observations are exchangeable and a permutation test applicable, the key question is the one we posed in the very first chapter: Under the null hypothesis of no differences among the various experimental or survey groups, can we exchange the labels on the observations without significantly affecting the results?

- 2.2.2 Exchangeable Observations; Permutation, Parametric, and Bootstrap Tests of Hypotheses; Good, Phillip I

Solution to Problem 2

```
cysticerci <- c(28.9, 32.8, 12.0, 9.9, 15.0, 38.0, 12.5, 36.5, 8.6, 26.8)
worms_reco <- c(1.0, 7.7, 7.3, 7.9, 1.1, 3.5, 18.9, 33.9, 28.6, 25.0)
```

The null hypothesis is that the mean weight of introduced cysticerci has no correlation with the mean weight of worms recovered. That is,

$$H_0: \tau = 0$$

The alternative hypothesis is that the mean weight of introduced cysticerci is positively correlated with the mean weight of worms recovered. That is,

$$H_A: \tau > 0$$

To test the null hypothesis against the alternative hypothesis, we will use the Kendall test, a distribution-free test for independence based on signs.

```
cor.test(x = cysticerci, y = worms_reco, method = "kendall", alt = "greater")
##
##
   Kendall's rank correlation tau
```

```
## data: cysticerci and worms_reco
## T = 19, p-value = 0.7578
## alternative hypothesis: true tau is greater than 0
```

sample estimates:

```
## tau
## -0.155556
```

The p-value is 0.7578, which is not significant at the $\alpha = 0.05$ level. There is not enough evidence that the mean weight of introduced cysticerci is positively correlated with the mean weight of worms recovered.

Solution to Problem 3

```
cysticerci <- c(28.9, 32.8, 12.0, 9.9, 15.0, 38.0, 12.5, 36.5, 8.6, 26.8) worms_reco <- c(1.0, 7.7, 7.3, 7.9, 1.1, 3.5, 18.9, 33.9, 28.6, 25.0) cor.test(x = cysticerci, y = worms_reco, method = "kendall", alt = "greater") ## ## Kendall's rank correlation tau ## ## data: cysticerci and worms_reco ## T = 19, p-value = 0.7578 ## alternative hypothesis: true tau is greater than 0 ## sample estimates: ## tau ## -0.1555556

The estimate for \tau = -0.1555556.
```

Solution to Problem 4

```
brain_weight = c(515, 286, 469, 410, 461, 436, 479, 198, 389, 262, 536)
fiber_count = c(32500, 26800, 11410, 14850, 23640, 23820, 29840, 21830, 24650, 22500, 26000)
library(NSM3)
## Loading required package: combinat
##
## Attaching package: 'combinat'
## The following object is masked from 'package:utils':
##
##
       combn
## Loading required package: MASS
## Loading required package: partitions
## Loading required package: survival
## fANCOVA 0.5-1 loaded
## Registered S3 methods overwritten by 'ggplot2':
##
    method
                    from
##
     [.quosures
                    rlang
##
     c.quosures
                    rlang
     print.quosures rlang
kendall.ci(x=brain_weight, y=fiber_count, alpha = 0.1, type = 't', bootstrap = T, B = 1000)
```

Histogram of tau.hat


```
##
## 1 - alpha = 0.9 two-sided CI for tau:
## -0.2, 0.673
```

The confidence interval is (-0.234, 0.654) for this iteration. It may be different on a different iteration.

Solution to Problem 5

```
cysticerci <- c(28.9, 32.8, 12.0, 9.9, 15.0, 38.0, 12.5, 36.5, 8.6, 26.8)
worms_reco <- c(1.0, 7.7, 7.3, 7.9, 1.1, 3.5, 18.9, 33.9, 28.6, 25.0)
```

The null hypothesis is that the mean weight of introduced cysticerci has no correlation with the mean weight of worms recovered. That is,

$$H_0: r_s < r_{s,\alpha}$$

The alternative hypothesis is that the mean weight of introduced cysticerci is *positively correlated with* the mean weight of worms recovered. That is,

$$H_A: r_s \geq r_{s,\alpha}$$

Otherwise, do not reject.

To test the null hypothesis against the alternative hypothesis, we will use the Spearman test, a distribution-free test for independence based on ranks.

```
# this method of performing the test was given in the textbook, but may not be done correctly here - he library(SuppDists) qSpearman(p = 0.05, r = 10)
```

```
## [1] -0.5393939
```

Since $r_{s,\alpha} = -0.5393939$, we will reject the null hypothesis only if $r_s \ge -0.5393939$.

Calculating r_s ,

```
cor(x = cysticerci, y = worms_reco, method = "spearman")
```

```
## [1] -0.2
```

Since $r_s = -0.2$ and $r_{s,\alpha} = -0.5393939$, the statement $r_s \ge r_{s,\alpha}$ is true. Thus, we reject the null hypothesis. There is sufficient evidence that the mean weight of introduced cysticerei is positively correlated with the mean weight of worms recovered.

NOTE: At this point, I tried to use cor.test() with method = "spearman" but I got a different result than I expected, and I'm not sure why. Maybe I'm interpreting the output incorrectly?

As shown on the slides,

```
cor.test(x = cysticerci, y = worms_reco, method = "spearman", alternative = "greater")

##

## Spearman's rank correlation rho

##

## data: cysticerci and worms_reco

## S = 198, p-value = 0.72

## alternative hypothesis: true rho is greater than 0

## sample estimates:

## rho

## -0.2
```

The p-value is 0.72, which is not significant at the $\alpha = 0.05$ level. There is not enough evidence that the mean weight of introduced cysticerci is positively correlated with the mean weight of worms recovered.

Solution to Problem 6

```
x = c(0, 5000, 10000, 15000, 20000, 25000, 30000, 100000)

y = c(0.924, 0.988, 0.992, 1.118, 1.133, 1.145, 1.157, 1.357)
```

The null hypothesis is that the mean weight of introduced cysticerci has no correlation with the mean weight of worms recovered. That is,

$$H_0: \beta = \beta_0$$
$$H_0: \beta = 0$$

The alternative hypothesis is that the mean weight of introduced cysticerci is *positively correlated with* the mean weight of worms recovered. That is,

$$H_A: \beta > \beta_0$$
$$H_A: \beta > 0$$

To test the null hypothesis against the alternative hypothesis, we will use the Theil test, a distribution-free test for the slope of the regression line.

```
library(NSM3)
theil(x, y, alpha=0.05, beta.0=0, type = "u")
                                                                          0
1.3
1.2
                   0 0 9
1.0
             0
       0
    0e+00
                 2e+04
                               4e+04
                                            6e+04
                                                          8e+04
                                                                       1e+05
\#\# Alternative: beta greater than 0
## C = 28, C.bar = 1, P = 0
## beta.hat = 0
## alpha.hat = 0.975
##
## 1 - alpha = 0.95 upper bound for beta:
## -Inf, 0
theil.fit = theil (x,
  у,
  beta.0 = 0,
  slopes=TRUE,
  type = "u",
  doplot = FALSE)
theil.fit
## Alternative: beta greater than 0
## C = 28, C.bar = 1, P = 0
## beta.hat = 0
## alpha.hat = 0.975
##
## All slopes:
## i j
                S.ij
## 1 2 1.280000e-05
  1 3 6.800000e-06
   1 4 1.293333e-05
   1 5 1.045000e-05
##
   1 6 8.840000e-06
  1 7 7.766667e-06
## 1 8 4.330000e-06
## 2 3 8.000000e-07
## 2 4 1.300000e-05
## 2 5 9.666667e-06
```

```
## 2 6 7.850000e-06
## 2 7 6.760000e-06
## 2 8 3.884211e-06
## 3 4 2.520000e-05
## 3 5 1.410000e-05
## 3 6 1.020000e-05
## 3 7 8.250000e-06
## 3 8 4.055556e-06
## 4 5 3.000000e-06
## 4 6 2.700000e-06
## 4 7 2.600000e-06
## 4 8 2.811765e-06
## 5 6 2.400000e-06
## 5 7 2.400000e-06
## 5 8 2.800000e-06
## 6 7 2.400000e-06
## 6 8 2.826667e-06
## 7 8 2.857143e-06
##
##
## 1 - alpha = 0.95 upper bound for beta:
## -Inf, 0
theil.output = theil(x,
  у,
  beta.0 = 0,
  slopes=TRUE,
  type = "u", doplot = FALSE, alpha = .05)
c(theil.output$L, theil.output$U)
## [1] -Inf
```

TODO: Interpret these results correctly.

Solution to Problem 7

```
height = c(42.8, 63.5, 37.5, 39.5, 45.5, 38.5, 43.0, 22.5, 37.0, 23.5, 33.0, 58.0)
weight = c(40.0, 93.5, 35.5, 30.0, 52.0, 17.0, 38.5, 8.5, 33.0, 9.5, 21.0, 79.0)
heart_catheter_length = c(37.0, 49.5, 34.5, 36.0, 43.0, 28.0, 37.0, 20.0, 33.5, 30.5, 38.5, 47.0)

cor.test(x = height, y = heart_catheter_length, method = "pearson")

##
## Pearson's product-moment correlation
##
## data: height and heart_catheter_length
## t = 5.8936, df = 10, p-value = 0.0001524
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6216270 0.9663721
## sample estimates:
## cor
## 0.8811691
```

```
cor.test(x = weight, y = heart_catheter_length, method = "pearson")

##

## Pearson's product-moment correlation

##

## data: weight and heart_catheter_length

## t = 6.3033, df = 10, p-value = 8.871e-05

## alternative hypothesis: true correlation is not equal to 0

## 95 percent confidence interval:

## 0.6568763 0.9700971

## sample estimates:

## cor

## 0.8938226
```

From the Pearson correlation tests, there is *strong evidence* that, individually, height and weight contribute to the determination of heart catheter length.

```
library(Rfit)
r.01 <- rfit(heart_catheter_length ~ height)</pre>
f.01 <- rfit(heart_catheter_length ~ height + weight)</pre>
first_drop_test <- drop.test(f.01, r.01)</pre>
first_drop_test
##
## Drop in Dispersion Test
                    p-value
## F-Statistic
       1.55202
                    0.24429
##
r.02 <- rfit(heart_catheter_length ~ weight)</pre>
second_drop_test <- drop.test(f.01, r.02)</pre>
second_drop_test
##
## Drop in Dispersion Test
## F-Statistic
                    p-value
                   0.907007
##
      0.014435
```

However, based on the large p-values from the Drop in Dispersion tests, there is *not enough evidence* to suggest that height or weight contribute significantly over each other to the determination of heart catheter length.

Note

From the textbook problem,

Treating length of heart catheter as the *independent* variable, test for the importance of height and weight in *determining* the required catheter length.

If height and weight are the *determiners* of length of heart catheter, length of heart catheter must be the *dependent* variable.