Real Analysis II: Riemann-Stieltjes Integral

Arjun Vardhan

† Created: 10th January 2022 Last updated: 25th February 2022

Definition and Existence of the Integral 1

- Let [a,b] be an interval. A partition of [a,b] is a finite set of points $x_0,x_1,...,x_n$, where $a=x_0\leq$ $x_1 \le ... \le x_{n-1} \le x_n = b$. Here $\Delta x_i = x_i - x_{i-1}$, (i = 1, 2, ..., n).
- $\mathbb{P}(I)$ denotes the set of all partitions of an interval I.
- Let P, Q be partitions. Q is called a refinement of P if $P \subseteq Q$.
- Let f be a bounded real function defined on [a, b]. For each partition P of [a, b], let:
 - 1. $M_i = \sup f(x), (x_{i-1} \le x \le x_i)$
 - 2. $m_i = \inf f(x), (x_{i-1} \le x \le x_i)$
 - 3. $U(P, f) = \sum_{i=1}^{n} M_i \Delta x_i$ 4. $L(P, f) = \sum_{i=1}^{n} m_i \Delta x_i$

 - 5. $\overline{\int_a^b} f = \inf \{ U(P, f) : P \in \mathbb{P}([a, b]) \}$
 - 6. $\int_{a}^{b} f = \sup \{ L(P, f) : P \in \mathbb{P}([a, b]) \}$

Here, U(P,f) and L(P,f) are called upper and lower sums respectively. $\overline{\int_a^b} f$ and $\int_a^b f$ are called the upper and lower integrals.

- Since f is bounded on [a,b], there exist $M,m\in\mathbb{R}$ such that $m\leq f(x)\leq M$ for all $x\in[a,b]$. Thus $m(b-a) \le L(P,f) \le U(P,f) \le M(b-a)$, for any partition P of [a,b].
- Let $P,Q \in \mathbb{P}(I)$. If Q is a refinement of P, then $L(P,f) \leq L(Q,f)$ and $U(P,f) \geq L(Q,f)$ U(Q,f). Proof: Suppose $Q=P\cup\{x^*\}$. Then $x^*\in[x_{i-1},x_i]$ for some $x_i\in P$. Let $w_1=x_i$ $\inf \{f(x) : x \in [x_{i-1}, x^*] \}$ and $w_2 = \inf \{f(x) : x \in [x^*, x_i] \}$. Since $w_1 \ge m_i$ and $w_2 \ge m_i$, $L(Q, f) \ge m_i$ L(P,f). If Q contains k more points than P, then repeat this reasoning k times. The proof for U(Q, f) is analogous.
- For all $P,Q \in \mathbb{P}(I)$, $L(P,f) \leq U(Q,f)$. Proof: $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$. Thus $L(P,f) \leq Q$ $L(P \cup Q, f) \le U(P \cup Q, f) \le U(Q, f)$.
- If $\overline{\int_a^b} f$ and $\int_a^b f$ are equal, then we say that f is Riemann integrable on [a,b]. Their common value is denoted by $\int_a^b f$.
- R(I) denotes the set of all Riemann integrable functions on an interval I.
- Riemann Criterion for Integrability: Let f be bounded on interval I. $f \in R(I)$ if and only if for every $\epsilon > 0$ there exists a partition P such that $U(P,f) - L(P,f) < \epsilon$. *Proof:* Suppose that given $\epsilon > 0$, there exists partition P such that $U(P,f) - L(P,f) < \epsilon$. Since $U(P,f) \ge \int f$ and $-L(P,f) \ge \int f$, $\int f - \int f \le U(P,f) - L(P,f) < \epsilon$. Thus $\int f = \int f$ and $f \in R(I)$. Conversely, suppose $f \in R(I)$. Let $\epsilon > 0$. Since $\int f = \overline{\int} f$, there exists a partition P_1 such that $U(P_1,f)<\int f+\frac{\epsilon}{2}$ and a partition P_2 such that $L(P_2,f)>\int f-\frac{\epsilon}{2}$. Thus, $U(P_1,f)-L(P_2,f)<\epsilon$. Let $P = P_1 \cup P_2$. Then $U(P, f) \leq U(P_1, f)$ and $-L(P, f) \leq -L(P_2, f)$. So $U(P, f) - L(P, f) \leq -L(P, f)$ $U(P_1, f) - L(P_2, f) < \epsilon$.
- Corollary: Let $\epsilon > 0$. If there exists a partition $P \in \mathbb{P}(I)$ such that $U(P,f) L(P,f) < \epsilon$, then $U(Q,f)-L(Q,f)<\epsilon$ for every refinement Q of P.

2 Properties of the Integral

- All constant functions are Riemann-integrable. Proof: Let $\alpha \in \mathbb{R}$ and let $f(x) = \alpha$ for all $x \in [a,b]$. Let $P \in \mathbb{P}[a,b]$, $P = \{a = x_0, x_1, ..., x_{n-1}, x_n = b\}$. Then $M_i = m_i = \alpha$ for all $1 \le i \le n$. Thus, $U(P,f) = L(P,f) = \alpha(b-a)$. Therefore $\int_a^b f = \alpha(b-a)$.
- If f,g are Riemann integrable on [a,b], then so are pf+qg $(p,q\in\mathbb{R}), |f|, f^2, fg,$ and $\frac{f}{g}$ (provided g is bounded away from 0, i.e, there exists an m>0 such that |g(x)|>m on [a,b]).
 - 1. $\int_{a}^{b} (pf + qg) = p \int_{a}^{b} g + q \int_{a}^{b} g$. Proof:
 - 2. |f|. Proof:
 - 3. f^2 . Proof:
 - 4. fg. Proof:
 - 5. $\frac{f}{g}$. Proof:
- 3 Integration and Differentiation
- 4 Integration of Vector-valued Functions
- 5 Rectifiable Curves