2. Brojevni sustavi i kodovi

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
- binarna aritmetika
- modul i komplementi brojeva
- binarno množenje
- binarno kodiranje znamenki i simbola
- kodovi za zaštitu podataka

Tipovi i prikaz podataka

- prikaz podataka u digitalnom obliku
 niz bitova, bitovni vektor
- podaci se pohranjuju u registre:
 - ograničena veličina

- obično n bitova
- značenja bitovnog vektora:
 - broj
 - znak/simbol
 - specijalni znakovi: upravljački, instrukcije, ...

Tipovi i prikaz podataka

- bitovni vektor ~ "tipiziran":
 - pripada nekom tipu podataka (engl. data type)
 - nametanje discipline manipuliranja s podacima
- osnovni tipovi podataka:
 - brojevi: prirodni, cijeli, realni, ...
 - znak/simbol: pojedine abecede (~ znakovni kodovi)
 - specijalni znakovi ~ posebno značenje: logičke varijable, (procesorske) instrukcije
- značenje bitovnog vektora
 utvrđeno interpretacijom, kontekstom obrade

Tipovi i prikaz podataka

- zapis podataka (~ zapis bitovnog vektora):
 utvrđeni oblik = format
 - organizacija niza bitova (grupe bitova ~ polja)
 - značenje pojedinih bitova/grupa bitova
- najjednostavniji (numerički) zapis: prirodni binarni brojevi
 - vrijednost bita u broju = pozicija (mjesto) bita u binarnom vektoru
- posve općenito:
 pridruživanje značenja binarnom vektoru = kôd
 - broj
 - nešto drugo (~ simbol)

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
 - pozicijski brojevni sustavi
 - pretvorba iz jednog sustava u drugi sustav
 - oktalni i heksadekadski sustav
- binarna aritmetika
- modul i komplementi brojeva
- binarno množenje
- binarno kodiranje znamenki i simbola
- kodovi za zaštitu podataka

Pozicijski brojevni sustavi

- pozicija (mjesto) znamenke određuje njenu težinu ~faktor kojim se znamenka množi
- težina
 ~ potencija baze brojevnog sustava
- dekadski sustav: $234_{10} = 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
- baza sustava
 broj znamenki brojevnog sustava,
 može općenito biti bilo koji cijeli broj

Pozicijski brojevni sustavi

prikaz n-znamenkastih cijelih brojeva:

$$\begin{split} N_B &= a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_1 \cdot B^1 + a_0 \cdot B^0 \\ &= \sum_{i=0}^{n-1} a_i \cdot B^i \\ &= a_{n-1} a_{n-2} \dots a_1 a_0 \end{split}$$

B: baza ili korijen brojevnog sustava

$$a_i$$
: koeficijent uz i -tu potenciju (težinu); $a_i = \{0, 1, ..., B-1\}, i = 0, 1, ..., n-1 ~ znamenke$

Prikaz razlomljenih brojeva

princip prikaza kao za cijele brojeve:
 težine znamenki iza zareza ~ negativne potencije baze

$$n_{B} = a_{-1} \cdot B^{-1} + a_{-2} \cdot B^{-2} + \dots + a_{-(m-1)} \cdot B^{-m+1} + a_{-m} \cdot B^{-m}$$

$$= \sum_{i=-m}^{-1} a_{i} \cdot B^{i}$$

$$= 0, a_{-1} a_{-2} \dots a_{-(m-1)} a_{-m}$$

Miješani ili racionalni brojevi

prikaz s fiksnim zarezom (engl. fixed-point notation)
 "miješani" ili racionalni brojevi =
 cijeli broj + razlomljeni broj

$$\begin{split} N &= N_B + n_B \\ &= \sum_{i=-m}^{n-1} a_i \cdot B^i \\ &= a_{n-1} a_{n-2} \dots a_1 a_0, a_{-1} a_{-2} \dots a_{-(m-1)} a_{-m} \end{split}$$

- pretvorba:
 - posebno cjelobrojni dio broja
 - posebno razlomljeni dio broja

Neki brojevni sustavi

baza B	brojevni sustav	znamenke sustava (B)
2	binarni	0,1
3	ternarni	0,1,2
8	oktalni	0,1,2,3,4,5,6,7
10	dekadski	0,1,2,3,4,5,6,7,8,9
16	heksadekadski	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

	т	1	T	
dekadski	binarni	oktalni	heksadekadski	
0	0	0	0	
1	1	1	1	
2	10	2	2	
3	11	3	3	
4	100	4	4	
5	101	5	5	
6	110	6	6	
7	111	7	7	
8	1000	10	8	
9	1001	11	9	
10	1010	12	Α	
11	1011	13	В	
12	1100	14	С	
13	1101	15	D	
14	1110	16	E	
15	1111	17	F	
FFD Zamah Digitalas Iagilas 2000/0				

Pretvorba brojeva u različitim sustavima

- pretvorba *cijelog* dekadskog broja u neki drugi sustav
 uzastopno dijeljenje bazom tog sustava
 - ostaci dijeljenja s bazom ~ znamenke
 - ostatak prvog dijeljenja ~ najmanje značajna znamenka

Primjer:
$$N_{10} = d_{r-1}d_{r-2} \cdots d_1d_0 \rightarrow N_2 = b_{s-1}b_{s-2} \cdots b_1b_0$$

$$N_{10} = b_{s-1} \cdot 2^{s-1} + b_{s-2} \cdot 2^{s-2} + \cdots + b_1 \cdot 2^1 + b_0 \cdot 2^0$$

$$= 2 \cdot (b_{s-1} \cdot 2^{s-2} + b_{s-2} \cdot 2^{s-3} + \cdots + b_1 \cdot 2^0) + b_0$$

$$= 2 \cdot A_1 + b_0$$

Pretvorba dekadskog broja u binarni

Primjer: $345_{10} \rightarrow ?_2$

$$345:2=172$$

 $172:2=86$

$$86:2=43$$

$$43:2=21$$

$$21:2=10$$

$$10:2=5$$

$$5:2=2$$

$$2:2=1$$

$$1:2=0$$

$$\implies$$
 345₁₀ = 101011001₂

Pretvorba dekadskog broja u ternarni

Primjer: $345_{10} \rightarrow ?_3$

$$345:3=115$$
 0 1 $15:3=38$ 1 2 $12:3=4$ 0 $4:3=1$ 1 $1:3=0$ 1

$$\Rightarrow$$
 345₁₀ = 110210₃

Pretvorba dekadskog broja u heksadekadski

Primjer: $345_{10} \rightarrow ?_{16}$

$$345:16 = 21$$
 9
 $21:16 = 1$ 5
 $1:16 = 0$ 1

 $345_{10} = 159_{16}$

Pretvorba binarnog broja u dekadski

- "direktna" pretvorba:
 - odrediti dekadski zapis težina (~ potencija baze) izvornog sustava
 - pomnožiti vrijednost svake znamenke s odgovarajućom težinom
 - sumirati

Primjer:
$$10010_2 \rightarrow ?_{10}$$

$$10010_2 = 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0$$

= 1*16 + 1*2 = 18

$$\Rightarrow 10010_2 = 18_{10}$$

- računanje težina, množenjem znamenkama, pribrajanje
 ~ ∀ znamenku: Hornerova shema
 - posmak za 1 mjesto ~ množenje s 2
 - pribrajanje ~ "normiranje" na niže brojno mjesto

Hornerova shema:

- osnovni korak: $s_{s-1} = a_{s-1}$
- korak rekurzije: $s_{i-1} = 2 \cdot s_i + a_{i-1}$

$$\begin{split} N_2 &= b_{s-1} \cdot 2^{s-1} + b_{s-2} \cdot 2^{s-2} + \dots + b_1 \cdot 2^1 + b_0 \cdot 2^0 \\ &= 2 \cdot \left(2 \cdot \left(\dots \left(2 \cdot \left(\left(2 \cdot b_{s-1}\right) + b_{s-2}\right) + b_{s-3}\right) + \dots\right) + b_1\right) + b_0 \\ &= 2 \cdot \left(2 \cdot \left(\dots \left(2 \cdot \left(\left(2 \cdot a_{s-1} + b_{s-2}\right) + b_{s-3}\right) + \dots\right) + b_1\right)\right) + b_0 \\ &= 2 \cdot \left(2 \cdot \left(\dots \left(2 \cdot \left(\left(2 \cdot a_{s-2} + b_{s-3}\right) + b_{s-4}\right) + \dots\right) + b_1\right)\right) + b_0 \\ &= \dots \end{split}$$

algoritam:

- osnovni korak: $s_{s-1} = a_{s-1}$
- korak rekurzije: $s_{i-1} = 2 \cdot s_i + a_{i-1}$

$$\begin{aligned} s_{s-1} &= a_{s-1} \\ s_{s-2} &= 2 \cdot s_{s-1} + a_{s-2} \\ &= 2 \cdot a_{s-1} + a_{s-2} \\ s_{s-3} &= 2 \cdot s_{s-2} + a_{s-3} \\ &= 2^2 \cdot a_{s-1} + 2^1 \cdot a_{s-2} + a_{s-3} \\ s_{s-s} &= 2^{s-1} \cdot a_{s-1} + \dots + 2^{s-s} \cdot a_{s-s} \\ &= \sum_{s=0}^{s-1} a_i \cdot 2^i \end{aligned}$$

Primjer: $1101_2 = ?_{10}$

$$(((1 \cdot 2) + 1) \cdot 2 + 0) \cdot 2 + 1 = 13$$

Primjer: $10011101_2 \rightarrow ?_{10}$

$$(((1 \cdot 2 \cdot 2 \cdot 2 + 1) \cdot 2 + 1) \cdot 2 + 1) \cdot 2 \cdot 2 + 1 =$$

$$((9 \cdot 2 + 1) \cdot 2 + 1) \cdot 2 \cdot 2 + 1 =$$

$$(19 \cdot 2 + 1) \cdot 2 \cdot 2 + 1 =$$

$$39 \cdot 2 \cdot 2 + 1 = 157_{10}$$

postupak vrijedi za cijele brojeve

Oktalni i heksadekadski sustav

- pozicijski brojevni sustavi, baza 8 odnosno 16
- baza = potencija broja 2 ~ jednostavna pretvorba u binarni sustav
- veća baza

• •				•	
manıı	hrai	7n2man2	ノコ フコ	72NIC	hraia
\sim 111 a 1111	171()1	znamena	Na /a	701115	DI Ola
	\sim . \sim ,		· • • • • • • • • • • • • • • • • • • •		\sim 10 \sim

000

- oktalni sustav:
 - 001
 - znamenke 0-7

010

prikaz nizom od 3 bita

- 011
- 100
- 101
- 110

Oktalni i heksadekadski sustav

Primjer: $101111011001100_2 \rightarrow ?_8$

Primjer: $765432_8 \rightarrow ?_2$

7 6 5 4 3 2
111 110 101 100 011 010
765432
$$_8$$
 = 111110101100011010 $_2$

Heksadekadski sustav

- baza sustava 16:
 znamenke 0 "15", tj. 0-9, A, B,..., F
- znamenka ~ 4 bita = 1/2 okteta
- vrlo rasprostranjen brojevni sustav:
 - sažeti zapis binarnog:
 2 "heksa" znamenke ~ 1 oktet
 - jednostavna pretvorba

- 0 0000
- 1 0001
- 2 0010
- 3 0011
- 4 0100
- 5 0101
- 6 0110
- 7 0111
- 8 1000
- 9 1001
- A 1010
- B 1011
- C 1100
- D 1101
- E 1110
- F 1111

Heksadekadski sustav

Primjer: $01011110001110011100_2 \rightarrow ?_{16}$

0101 1110 0011 1001 1100 5 E 3 9 C 01011110001110011100₂ = 5E39C₁₆

Primjer: $76A4C2_{16} \rightarrow ?_2$

7 6 A 4 C 2 0111 0110 1010 0100 1100 0010 76A4C2₁₆ = 011101101010010011000010₂

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
- binarna aritmetika
 - binarno zbrajanje
 - binarno oduzimanje
- modul i komplementi brojeva
- binarno množenje
- binarno kodiranje znamenki i simbola
- kodovi za zaštitu podataka

- binarna aritmetika
 - ~ aritmetičke operacije u binarnom sustavu (zbrajanje, oduzimanje, množenje, dijeljenje):
 - specifičnosti u odnosu na dekadsku aritmetiku
 - binarno zbrajanje
 - ~ osnovna operacija u digitalnim sustavima (računalima)

- binarno zbrajanje
 - najjednostavnije
 zbrajanje dviju binarnih znamenki:

- rezultat: 2₁₀ = 10₂
 pojava *prijenosa* (engl. carry) na višu bitovnu poziciju
- oznake:

S: suma, zbroj; C: prijenos

- binarno zbrajanje dvaju binarnih brojeva :
 - općenito n-bitni binarni brojevi: a_{n-1}a_{n-2}...a_i...a₁a₀
 - prijenos pribrojiti *višoj* bitovnoj poziciji
 zbrajanje *triju* binarnih znamenki

	101111010	
\oplus	11011	
	101100001	$\overline{S_1}$
\oplus	11 1	C_1
	101010101	S ₂
\oplus	1	C_2
	100010101	S ₃
\oplus	1	C_4
	110010101	

- binarno zbrajanje dvaju binarnih brojeva :
 - *n*-bitni binarni *brojevi* općenito promatrati *i*-ti bit

$$S_i = A_i \oplus B_i \oplus C_{i-1}$$

 $C_i = ?$

posebna tablica zbrajanja
 Primjer: prethodni

$$\begin{array}{c} & 101111010 \\ + & 11011 \\ \hline & 1100101 \end{array}$$

A_i	B_i	C_{i-1}	Si	C_{i}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- binarno oduzimanje dvaju binarnih znamenki :
 - diferencija = minuend suptrahend

minuend	0	1	1	0
suptrahend	-0	-0	-1	-1
	0	1	0	1 1
				C: posudba

b a	0	1
0	0	1
1	11	0

D: diferencija

- *n*-bitni binarni *brojevi* općenito promatrati *i*-ti bit
- diferencija = suma !!!

$$D_{i} = A_{i} \oplus B_{i} \oplus C_{i-1}$$

$$C_{i} = ?$$

- posebna tablica oduzimanja
- stvarna izvedba
 ~ pribrajanje komplementa broja (vidi kasnije)

A_{i}	Bi	C_{i-1}	Di	C_{i}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
- binarna aritmetika
- modul i komplementi brojeva
 - prikaz brojeva u modulu
 - komplementi brojeva
 - zbrajanje i oduzimanje komplementom
- binarno množenje
- binarno kodiranje znamenki i simbola
- kodovi za zaštitu podataka

Prikaz brojeva u modulu

- digitalni sustavi (računala):
 - pohranjivanje brojeva u registrima

- ograničeni broj mjesta
 ~ n-znamenkasti brojevi
- broj mogućih *n*-znamenkastih brojeva kod baze B:

Bⁿ = m : *modul* ~ broj stanja registra, "kapacitet" registra od n mjesta

 $W = B^n - 1$: najveći *n*-znamenkasti broj

Prikaz brojeva u modulu

- prikaz n-znamenkastih brojeva:
 - ograničenje na brojeve < m = Bⁿ
 - grafički prikaz ~"brojna kružnica"

Prikaz brojeva u modulu

- prikaz *n*-znamenkastih brojeva:
 - interpretacija relacije

$$b = a \pmod{m}$$

"b je ostatak dijeljenja broja a s modulom m"

Primjeri:

$$23 \mod 17 = 6$$

$$35 \mod 16 = 3$$

Modulo-aritmetika

- umjesto jednakosti relacija kongruencije,
 - npr. za m = 10:

$$1 \equiv 1 \equiv 11 \equiv -9 \equiv 21 \equiv -19 \equiv \dots$$

općenito:

$$a \equiv a + k \cdot 10, \quad k = \dots -2, -1, 0, 1, 2, \dots$$

Primjer: zbrajanje i oduzimanje mod 10:

$$4+5 \equiv 9 \equiv 19 \equiv -1 \equiv \dots$$
 $5-4 \equiv 11 \equiv -9 \equiv \dots$
 $5+5 \equiv 0 \equiv 10 \equiv -10 \equiv \dots$ $5-5 \equiv 0 \equiv 10 \equiv -10 \equiv \dots$
 $6+5 \equiv 1 \equiv 11 \equiv -9 \equiv \dots$ $5-6 \equiv 9 \equiv 19 \equiv -1 \equiv \dots$

Modulo-aritmetika

zapis proizvoljnog izraza:
 radi jasnoće se na kraju izraza piše (mod m)

npr.
$$5 \equiv 15 \pmod{10}$$

algebarski izrazi, npr:

$$a \equiv b + 2 \pmod{10}$$

jednadžbu zadovoljavaju:

$$a = b + 2, b - 8, b + 12, b - 18, ...$$

- komplementi brojeva:
 - u odnosu na *modul* brojevnog sustava m = Bⁿ
 određen brojem mjesta n za prikaz brojeva u registru
 - u odnosu na najveći n-znamenkasti broj W = Bⁿ − 1
- značaj komplementa brojeva:
 - pojednostavljivanje obavljanja aritmetičkih operacija
 - npr. korištenje istog sklopovlja za obavljanje zbrajanja i oduzimanja

• $\forall a, 0 \leq a < m, \exists komplement \overline{a}$:

$$a + \overline{a} = m$$

• komplement srodan pojmu *suprotnog* broja (-a):

$$a + (-a) = 0$$
$$a + \overline{a} \equiv 0 \pmod{m}$$

- korist od komplementa:
 - oduzimanje pretvara u zbrajanje!

$$a-b = a-b+0 \equiv (a-b)+(b+\overline{b})$$
$$= a+(-b+b)+\overline{b} = a+\overline{b}$$
$$a-b \equiv a+\overline{b}$$

 omogućuje korištenje istog sklopovlja za zbrajanje i oduzimanje

- B-komplement
 - ~ komplement u odnosu na $m = B^n$:

$$\overline{N}_B \equiv B^n - N = m - N = W - N + 1$$

B = 10: 10-komplement

$$n=2: (35)_{10} = 10^2 - 35 = 65$$

$$n=3: (35)_{10} = 10^3 - 35 = 965$$

• *B* = 2: *2-komplement*

$$\overline{(010101)_2} = 2^6 - 010101 = 1000000 - 010101 = 101011$$

vrijedi: komplement komplementa je sam broj

$$\overline{\overline{N}}_{B} = (\overline{B^{n} - N})_{B} = B^{n} - (B^{n} - N) = N$$

praktični algoritam za dobivanje 2-komplementa:

"Počev od najmanje značajnog bita broja, invertirati svaki bit nakon prve 1."

Primjer:

 $00010110 \rightarrow 11101010$

 $00100101 \rightarrow 11011011$

- (B-1)-komplement
 - ~ komplement u odnosu na W

$$\overline{N} \equiv B^n - N - 1 = \overline{N}_B - 1 = W - N$$

• B = 10: *9-komplement*

n = 2:
$$\overline{(35)} = 10^2 - 35 - 10^0 = 64 = (10^2 - 10^0) - 35 = 99 - 35$$

n = 3: $\overline{(35)} = 10^3 - 35 - 10^0 = 964 = (10^3 - 10^0) - 35 = 999 - 35$

• B = 2: 1-komplement

$$\overline{(010101)} = 2^6 - 010101 - 1 = 1111111 - 010101 = 101010$$

- dobivanje (B-1)-komplementa:
 - svaku znamenku broja oduzeti od W = B − 1
 - dobivanje 1-komplementa
 - ~ komplementiranje (inverzija) pojedinih bitova: vrlo jednostavna sklopovska izvedba!
- dobivanje 2-komplementa iz 1-komplementa:

$$\overline{B_2} = \overline{B_1} + 1$$

 u odnosu na B-komplement je kod (B-1)-komplementa znamenka najmanje težine umanjena za 1

- razlika D = M S za *binarne* brojeve:
 ~ računanjem komplementa:
 - 1-komplement ~ komplement svih pojedinačnih bitova
 - 2-komplement ~ 1-komplement + 1
- potreban sklop koji podržava:
 - zbrajanje
 - komplementiranje (inverziju) svih bitova u broju
- u nastavku: oduzimanje komplementom u proizvoljnoj bazi B

• oduzimanje B-komplementom: računanje $M + \overline{S}_R$ sklopom!

$$M + \overline{S}_B = M + (B^n - S) = (M - S) + B^n = D + B^n$$

$$D = (M + \overline{S}_B) - B^n$$

$$D = M + \overline{S}_B$$

dva slučaja:

•
$$M > S \Rightarrow D > 0$$

•
$$M < S \Rightarrow D < 0$$

- $M > S \Rightarrow D > 0$ $M + \overline{S}_B = M + B^n - S = D + B^n = D + W + 1 > W$
 - $M + \overline{S}_B > W$: preljev (engl. overflow) ~ zanemaruje se!
 - sadržaj registra: $M + \overline{S}_B B^n \equiv M + \overline{S}_B$
 - znamenka najviše težine Bⁿ nije upisana
 bila bi n+1 znamenka!
 - preljev narušava jednakost, ali ne i kongruenciju!
 - sadržaj registra je upravo traženi rezultat:

$$(M+\overline{S}_B)-B^n=(D+B^n)-B^n=D$$

Primjer: B = 2, n = 8 (8-bitno "binarno" računalo)

$$W = B^n - 1 = 2^8 - 1 = 256 - 1 = 255$$

$$D = 3 - 2 \Rightarrow M = 3, S = 2$$

$$\overline{S}_{B} = B^{n} - S = 256 - 2 = 254$$

$$M + \overline{S}_{B} = 3 + 254 = 257 > W$$

$$257 \equiv 1$$

preljev!

broj u registru!

registri: A = 3, B = 2

1 x inverzija bitova

• $M < S \implies D < 0$

$$M + \overline{S}_B = D + B^n = D + W + 1 \le W$$

- $M + \overline{S}_R \leq W$: *nema* preljeva
- sadržaj registra: $M + \overline{S}_{R}$
- oduzimanje Bⁿ od rezultata: $D = (M + \overline{S}_R) B^n$
 - oduzeti komplement
 - negativni predznak

$$D = (M + S_B) - B^n$$

$$= -(B^n - (M + \overline{S}_B))$$

$$= -(B^n - X)$$

$$= -\overline{X}_B$$

$$= -(M + \overline{S}_B)_B$$

registri: A = 2, B = 3

A: 00000010 B: 00000011
$$\overline{B}_2 = 111111101$$

A+ \overline{B}_2 : 00000010

+ 11111111

novi sadržaj registra A

$$-(11111111)_{2} = -00000001$$
traženi rezultat

složenost operacije:

3 x zbrajanje

2 x inverzija bitova

- algoritam oduzimanja B-komplementom:
 - pribrojiti minuendu komplement suptrahenda
 - ako se pojavi preljev, to je rezultat
 - ako nema preljeva, još jednom komplementirati te promijeniti predznak

Operacije nad brojevima s predznakom

- prikaz negativnih brojeva:
 - predznak i veličina
 - predznak i 1-komplement
 - predznak i 2-komplement
- zapis brojeva s predznakom:
 - veličina broja ~ iznos
 - predznak
 - ~ još jedan bit: najznačajniji (najlijeviji) bit
 - tipično:

bit predznaka

Prikaz brojeva s predznakom

- prikaz brojeva predznakom i veličinom:
 - odvojeno manipuliranje predznaka i veličine
 - relativno složeno izvođenje računskih operacija
 - problem "negativne nule"

Primjer: prikaz jednim oktetom

$$+63 = 001111111$$
 $-63 = 101111111$
 $+114 = 01110010$ $-114 = 11110010$
 $+0 = 00000000$ $-0 = 10000000$

Prikaz brojeva s predznakom

- prikaz brojeva predznakom i 1-komplementom:
 - slično prikazu predznakom i 2-komplementom
 komplementiranje predznaka i veličine zajedno
 - (također!) problem "negativne nule"

Primjer: prikaz jednim oktetom

$$+63 = 001111111$$
 $-63 = 11000000$
 $+114 = 01110010$ $-114 = 10001101$
 $+0 = 00000000$ $-0 = 111111111$

Prikaz brojeva s predznakom

- prikaz brojeva predznakom i 2-komplementom:
 - pozitivni brojevi: predznak i veličina
 - negativni brojevi: predznak i 2-komplement
 - komplementiranje predznaka i veličine zajedno
 - nema problema "negativne nule"
 nula je jedinstvena!

Primjer: prikaz jednim oktetom

$$+63 = 001111111$$
 $-63 = 11000001$
 $+114 = 01110010$ $-114 = 10001110$
 $+0 = 00000000$ $-0 = 00000000$

Usporedba 1 i 2 komplementa

- prikaz predznakom i 2-komplementom praktičniji!
 - nema "negativne nule"
 - asimetrični raspon
 pozitivnih i negativnih brojeva
 ~ nula je "pozitivna"

broj	predznak i veličina	2- komplement	1- komplement	
-8	-	1000	-	
-7	1111	1001	1000	
-6	1110	1010	1001	
-5	1101	1011	1010	
-4	1100	1100	1011	
3	1011	1101	1100	
-2	1010	1110	1101	
-1	1001	1111	1110	
0	0000 ili 1000	0000	0000 ili 1111	
1	0001	0001	0001	
2	0010	0010	0010	
3	0011	0011	0011	
4	0100	0100	0100	
5	0101	0101	0101	
6	0110	0110	0110	
7	0111	0111	0111	

Aritmetički preljev

- zbrajanje u 2-komplementu
 - moguća pojava aritmetičkog preljeva (engl. arithmetic overflow) zbog "nedostatka" 1 bita
 - pribrojnici istog predznaka (+ ili –),
 a predznak rezultata se razlikuje (– ili +)
 - suma premašuje broj mjesta veličine (n-1)
 - potreba detekcije aritmetičkog preljeva

Aritmetički preljev

- oduzimanje u 2-komplementu:
 - kod dobivanja suptrahenda 2-komplementa moguća promjena predznaka!
 - 2-komplement suptrahenda pribrojiti minuendu

Primjer:

preljev se zanemaruje *nema* preljeva!(rezultat je negativan:1 na najznačajnijem mjestu)

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
- binarna aritmetika
- modul i komplementi brojeva
- binarno množenje
- binarno kodiranje znamenki i simbola
- kodovi za zaštitu podataka

Binarno množenje

- binarno množenje
 - ~ prema pravilima za dekadsko množenje:

Binarno množenje

- mogućnosti ostvarivanja binarnog množenja:
 - uzastopna zbrajanja
 - parcijalna množenja s 2 (~ "posmak") i zbrajanje $M = m_3 m_2 m_1 m_0 \rightarrow$ multiplikand

$$N = n_3 n_2 n_1 n_0 \rightarrow \text{multiplikator}$$

$$M \times N = M \cdot (n_3 \cdot 2^3 + n_2 \cdot 2^2 + n_1 \cdot 2^1 + n_0 \cdot 2^0)$$

$$= M \cdot n_3 \cdot 2^3 + M \cdot n_2 \cdot 2^2 + M \cdot n_1 \cdot 2^1 + M \cdot n_0 \cdot 2^0$$

$$= \sum_{i=0}^{3} M \cdot n_i \cdot 2^i$$

• efikasnije primjenom *Hornerove sheme*:

$$M \times N = ((M \cdot n_3 \cdot 2 + M \cdot n_2) \cdot 2 + M \cdot n_1) \cdot 2 + M \cdot n_0, n_i \in \{0,1\}$$

Binarno množenje

Primjer: množenje 4-bitnih brojeva Hornerovom shemom

$$M = 1011_2 \equiv 11_{10}$$

$$N = 1001_2 \equiv 9_{10}$$

$$P = M \times N = 01100011_2 \equiv 99_{10}$$

$$n_0 = 1 \longrightarrow 1 0 1 1$$
 $n_1 = 0 \longrightarrow 0 0 0 0$
 $n_2 = 0 \longrightarrow 0 0 0 0$
 $n_3 = 1 \longrightarrow 1 0 1 1$
 $n_3 = 1 \longrightarrow 1 0 1 1$
 $n_3 = 1 \longrightarrow 1 0 0 0 1 1$

$$P = M \times N = \left((M \cdot n_3 \cdot 2 + M \cdot n_2) \cdot 2 + M \cdot n_1 \right) \cdot 2 + M \cdot n_0, n_i \in \{0,1\}$$

$$= \left\langle \left\langle \left\langle \mathbf{10110} + 0000 \right\rangle 0 + 0000 \right\rangle 0 + 1011 \right\rangle$$

$$= \left\langle \left\langle \left\langle \mathbf{101100} \right\rangle + 0000 \right\rangle 0 + 1011 \right\rangle$$

$$= \left\langle \mathbf{1011000} \right\rangle + 1011$$

$$= 1100011$$
označava da se podatak unutar za posmiče za jedno mjesto ulijevo, o na desnoj strani se dopisuje bit 0

označava da se podatak unutar zagrade posmiče za jedno mjesto ulijevo, odnosno na desnoj strani se dopisuje bit 0

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
- binarna aritmetika
- modul i komplementi brojeva
- binarno množenje
- binarno kodiranje znamenki i simbola
 - dekadski kodovi
 - znakovni kodovi
 - Grayev kod
- kodovi za zaštitu podataka

Binarno kodiranje znamenki i simbola

- princip kodiranja binarnim riječima:
 - izražavanje simbola/znakova u *binarnom* obliku, radi dalje obrade digitalnim sklopom
 binarno *kodiranje*
 - kôd: skup kodnih riječi s pridruženim značenjima
 - kodna riječ: niz bitova kojem se pridaje neko značenje
 - abeceda: skup svih simbola prikazanih kodnim riječima
 - znakovi : elementi abecede

Binarno kodiranje znamenki i simbola

- princip kodiranja binarnim riječima:
 - broj simbola = broj različitih prikaza
 - → broj bitova kodnih riječi

K simbola:
$$n \ge Id K [bit]$$
, $Id x = log_2 x$
 $2^n > K$

n bitova: N = 2ⁿ mogućih kombinacija

pridruživanje kodne riječi prvom simbolu	N načina
pridruživanje kodne riječi drugom simbolu	N-1 način
pridruživanje kodne riječi trećem simbolu	N-2 načina

pridruživanje kodne riječi K-tom simbolu N-(K-1)

$$N \cdot (N-1) \cdot (N-2) \cdot \dots \cdot (N-(K-1)) = \frac{N!}{(N-K)!} = V_N^{(K)}$$

Binarno kodiranje znamenki i simbola

- dekadski kodovi
 - ~ binarni prikaz dekadskih znamenki
 - $n \ge 4$ bita; $2^3 < 10 < 2^4$
 - n = 4 bita~ 16 kombinacija
 - broj 4-bitnih kodova ~ mogući broj kodiranja: $V_{16}^{(10)} = \frac{16!}{6!} = 29,059 \cdot 10^9$
 - odabrati kodove s povoljnim svojstvima!

- svojstva dekadskih kodova:
 - aditivnost
 - veza između kodne riječi
 i prikazane dekadske znamenke
 - samokomplementarnost
 (engl. self-complementing)
 - ~ veza kodnih riječi po parovima

- težinski kod:
 - zbroj težina = vrijednost prikazane znamenke

$$N = \sum_{i=0}^{n-1} a_i \cdot w_i + D$$

N: dekadski ekvivalent

w_i: i-ta težina

a_i: koeficijent za i-tu težinu

D: konstanta pomaka

- samokomplementirajući kod:
 - ~ 9-komplement dekadskog broja zamjenom 0 i 1 u kodnoj riječi:
 - korisno kod binarno-dekadske aritmetike
 - težinski je kod samokomplementirajući ako:

$$\sum_{i} w_{i} = 9$$

- kod 8421,
 BCD (engl. Binary Coded Decimal)
 - prvih 10 binarnih brojeva
 - težine: 8, 4, 2, 1
 - neupotrijebljene kombinacije: 1010÷1111

	2 ³	2 ²	2 ¹	2 0
	8	2 ² 4	2	2 ⁰
0	0	0 0 0 1 1 1	0 0 1 1 0 1 1	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
1 2 3 4 5 6 7 8 9	0	1	1	1
8	1	0	0	0
9	0 0 0 0 0 0 0 1 1 1 1 1	0	0	0 1 0 1 0 1 0 1 0 1 0 1
	1			0
	1	0	1	1
	1	1	0	0
	1	0 0 1 1	0	1
	1	1	1 0 0 1	0
	1	1	1	1

- kod 2421 (Aikenov kod)
 - težinski kodtežine: 2, 4, 2, 1
 - samokomplementirajući kod:
 0-9, 1-8, 2-7, 3-6, 4-5
 - prvih i zadnjih pet 4-bitnih brojeva
 - neupotrijebljene kombinacije: 0101÷1010

	2	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
1 2 3 4	0	0	1	1
4	0 0 0 0	1	1 1 0	1 0 1 0
	0	1	0	1
	0	1	0 1 1 0	1 0 1 0
	0	1 1 0	1	1
	1	0	0	0
	1	0	0	
	0 0 0 1 1	0	1	1 0
5	1	0	1	
6	1	1	0	0
7	1	1	0	1 0 1 0
6 7 8 9	1 1 1 1	1 1 1	0 0 1	0
9	1	1	1	1

Dekadski kodovi

- kod XS-3 (Stibitzov kod)
 - kod 8421,
 s "prekoračenjem" (ekscesom) od 3
 - uz D = 3~ težinski kod
 - ne postoji 0000: detekcije prekida kod prijenosa
 - neupotrijebljene kombinacije: 0000÷0010, 1101÷1111
 - simetrična tablica koda
 ~ samokomplementirajući kod!

	2 ³	2 ²	2 ¹	2 0
	2 ³ 8 0 0	2 ² 4	2	1
	0	0	0	1 0 1 0
	0	0	0	1
	0	0	1	0
0	0	0 1 1 1 0 0	0 0 1 1 0	1 0
1	0	1	0	0
2	0	1	0	1
3	0	1	1	0
4	0	1	1	1
5	1	0	0	0
6	1	0	0	1
7	1	0	1	0
0 1 2 3 4 5 6 7 8 9	1	0	0 1 0 0 1 1	1
9	1	1	0	1 0 1 0 1 0
	1	1	0 1	1 0
	0 0 1 1 1 1 1 1	1	1	0
	1	1	1	1

Dekadski kodovi

- bikvinarni kod
 - težinski 7-bitni kod (2+5=7)
 - kodne riječi s dvije 1:
 - otkrivanje pogrešaka
 - ne ako je pogreška samokompenzirajuća
 - velika zalihost:
 - ~ 10 od 128 mogućih kombinacija

	5	0	4	3	2	1	0
0	0	1	0	0	0	0	1
1	0	1	0	0	0	1	0
2	0	1	0	0	1	0	0
3	0	1	0	1	0	0	0
4	0	1	1	0	0	0	0
5	1	0	0	0	0	0	1
6	1	0	0	0	0	1	0
7	1	0	0	0	1	0	0
8	1	0	0	1	0	0	0
9	1	0	1	0	0	0	0

Znakovni kodovi

- prikaz skupa znakova:
 - prikaz slova i znamenki:
 - "grafički"
 "alfa-numerički" znakovi, interpunkcije, simboli, ...
 - upravljački znakovi
- standardizirani znakovni kodovi: npr. 7-bitni (128 kombinacija) ASCII: ISO IS 646, ITU-T/CCITT No. 5

Znakovni kodovi

 kod ASCII (engl. American Standard Code for Information Interchange):

$$'A' - 'Z' : 41-5A_H$$

$$'a' - 'z' : 61-7A_H$$

Primjer:

$$A = 100\ 0001 = 41_{H}$$

$$a = 110\ 0001 = 61_{H}$$

$$* = 010\ 1010 = 2A_{H}$$

				: *	0	0	(· 1	0	1 0	,	1	1
				: 5	0	1	0	1	C	1	0	1
					0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	0	3	Р	-3	р
0	C	0	1	1	SOH	DC 1	!	1	Α	Q	а	q
Û	0	1	0	2	STX	DC2	"	2	В	R	b	r
0	C	1	1	3	ETX	DC 3	#/£	3	С	S	С	s
0	1	0	0	4	EOT	DC4	u/s	4	D	Т	d	t
0	1	0	1	5	ENQ	NAK	%	5	Ε	J	е	u
0	1	1	0	6	A C K	SYN	&	6	F	٧	f	V
0	1	1	1	7	BEL	ETB	-	7	G	3	g	W
1	0	0	0	8	ВS	CAN	(8	I	Х	h	X
1	0	0	1	9	нт	EM)	9	Ι	Y	i	У
1	0	1	0	10	L F	SUB	*	:	J	Z	j	Z
1	0	1	1	11	V T	ESC	+	;	K	3	k	3
1	1	0	0	12	F F	154	,	<	L	3	l	3
1	1	0	1	13	CR 1	1\$3	-	=	М	-3	m	3
1	1	1	0	14	s o	IS2		>	N	₹3	n	.3
1	1	1	1	15	SI	IS1	/	?	0	-	0	DEL

Grayev kod

kod s *minimalnom* promjenom

 ograničavanje pogreški pri slijednoj promjeni npr. direktno očitavanje položaja

susjedne kodne riječi
 razlika u samo 1 bitu

Grayev kod

- izgradnja koda:
 - ~ *zrcaljenje* u jednom bitovnom mjestu: *reflektirani* kod

Grayev kod

- svojstva Grayevog koda:
 - susjedne kodne riječi
 razlika u samo jednom bitu ("jedinična distanca")
 - izgradnja koda:~ zrcaljenje
 - u jednom bitovnom mjestu: reflektirani kod
 - netežinski kod
 - binarni, ali i "dekadski"
 ~ XS-3 Grayev kod

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
- binarna aritmetika
- modul i komplementi brojeva
- binarno množenje
- binarno kodiranje znamenki i simbola
- kodovi za zaštitu podataka
 - princip otkrivanja i ispravljanja pogrešaka, distanca i zalihost
 - paritet, jednostruko i višestruko ispitivanje pariteta
 - Hammingovi kodovi

- prijenos podataka, pohranjivanje podataka
 utjecaj smetnji: moguća pojava pogreške
 - pogreška
 - ~ neželjena promjena jednog/više bitova u kodnoj riječi
 - *jednostruka* pogreška
 - ~ promjena vrijednosti jednog bita $(0 \rightarrow 1 \text{ ili } 1 \rightarrow 0)$
 - višestruka pogreška ~ više bitova
 - rezultat djelovanja pogrešaka
 neispravna, ali i ispravna kodna riječ!
 - dobivena kodna riječ ispravna
 ~ otkriti da je došlo do pogreške!!!

- princip otkrivanja (i ispravljanja) pogrešaka
 razlika kodnih riječi u > 1 bita
- distanca kodnih riječi (R. W. Hamming)
 "udaljenost" dviju kodnih riječi:
 - najmanji broj bitova u kojima se dvije kodne riječi razlikuju
 - broj bitova koje treba promijeniti da se jedna kodna riječ pretvori u drugu ~ pogreška ostaje neotkrivena !!!

- računanje distance kodnih riječi
 - broj različitih bitovnih mjesta dviju kodnih riječi:
 c = a ⊕ b (zbrajanje po bitovima, nema prijenosa!)
 d = aritmetička suma "1" u c
 - formalno:

$$c = a \oplus b = (a_{n-1} \oplus b_{n-1}, a_{n-2} \oplus b_{n-2}, ..., a_0 \oplus b_0)$$

$$d = |c| = |a \oplus b|$$

|x|: težina kodne riječi (engl. weight), broj jedinica u kodnoj riječi

- minimalna distanca koda d_{min}
 ~ najmanji razmak između dvije kodne riječi:
 - kod 8421: $d_{min} = 1$
 - bikvinarni kod: $d_{min} = 2$
 - Grayev kod: $d_{min} = d = 1$
- kod pruža zaštitu od t pogrešaka

$$t=d_{min}-1$$
 $d_{min} \ge (t+1)$

 kodovi s d_{min} > 1
 postoji zalihost (redundancija), R: snaga zaštite, višak informacije

n: duljina kodne riječi

k < n: broj informacijskih bitova

r=n-k: broj zaštitnih bitova

$$R = \frac{r}{n} \qquad R = 1 - \frac{ldN_p}{ldN} \quad (ldX = \log_2 X)$$

ukupni broj kodnih riječi

$$N_p = 2^k < 2^n = N$$

ukupan broj mogućih kombinacija od n bitova

- veći broj bitova od minimalno potrebnih za prikaz informacije; npr. bikvinarni kod
- kodna riječ = bitovi + zaštitni bitovi
- sistematski kodovi
 zaštitni bitovi nakon informacijskih

- dvije skupine zaštitnih kodova:
 - s mogućnošću otkrivanja pogrešaka
 ~ EDC (engl. Error Detecting Codes):
 d_{min} ≥ t + 1 za otkrivanje t pogrešaka
 - s mogućnošću ispravljanja pogrešaka
 ~ ECC (engl. Error Correcting Codes):
 d_{min} ≥ 2 t + 1 za ispravljanje t pogrešaka

- geometrijski prikaz kodnih riječi/koda
 ~ kubusi u n-dimenzijskom prostoru
 - 0-kubus ~ točka
 - 1-kubus ~ dužina
 - 2-kubus ~ kvadrat
 - 3-kubus ~ kocka
 - n-kubus ~ "hiperkocka"

geometrijski prikaz kodnih riječi/koda

Primjer: n-kubus \rightarrow 3-kubus

1. za 2^n uzoraka: $d_{min} = 1$

2. za $\{100, 011\}$: $d_{min} = 3$

otkriva 2 pogreške:

010, 111, 001

110, 101, 000

ispravlja 1 pogrešku:

110, 101, 000

001, 111, 010

- paritet ~ najjednostavniji način zaštite
 - dodati paritetni bit
 - ~ tipično osmi bit riječi iz ASCII koda:

$$\mathbf{p}$$
 b₆b₅b₄ b₃b₂b₁b₀

nova kodna riječ mora imati paran/neparan broj jedinica
 paran/neparan paritet

ZNAK		PARI	TET
		PARNI	NEPARNI
Α	100 0001	0 100 0001	1 100 0001
a	110 0001	1 11 0 0001	0 110 0001
*	010 1010	1 010 1010	0 010 1010

 "vertikalna" (poprečna) paritetna zaštita (engl. Vertical Redundancy Check, VRC)
 otkrivanje neparnih pogrešaka

- višestruko ispitivanje pariteta:
 - zahtjev: povećati moć zaštite!
 - veći broj paritetnih ispitivanja
 "nezavisna" (ortogonalna)
 - veći broj zaštitnih bitova
 veća zalihost
 - više mogućnosti:
 - dvodimenzijski kod
 - Hammingov kod

- dvodimenzijski kod
 - ~ 2D matrica informacijskih bitova ("pravokutni" kod)
- uzdužna i poprečna paritetna zaštita:
 - kodna riječ ← paritetni bit
 - cijelom bloku kodnih riječi ←
 paritetna riječ, BCC (engl. Block Check Character)
 - ~ "horizontalna" (uzdužna) paritetna zaštita (engl. Longitudinal Redundancy Check, LRC)
 - ispravljanje jednostruke pogreške

Primjer: zaštita dvodimenzijskim kodom kodnih riječi iz ASCII koda

parni VRC i LRC						
Α	а	*	BCC			
0	1	1	X			
1	1	0	0			
0	1	1	0			
0	0	0	0			
0	0	1	1			
0	0	0	0			
0	0	1	1			
1	1	0	0			

$$R = \frac{m+n+1}{(m+1)(n+1)}$$

(n: broj riječi, m: broj bitova u riječi)

~ prevelika zalihost za relativno ograničenu moć zaštite!

- sustavni mehanizam za izgradnju *niza* kodova za ispravljanje pogrešaka
 R.W. Hamming, 1950.
- princip
 višestruko (nezavisno) paritetno ispitivanje
- bolja efikasnost kodiranja
 ~ manja zalihost (usp. dvodimenzijski kod)
- naročito popularan Hammingov kod za ispravljanje jednostruke pogreške ~ tipična primjena: pohranjivanje podataka (memorijski sklopovi)

- nezavisna paritetna ispitivanja
 ne mogu se dobiti kombinacijom preostalih
- princip izgradnje kodne riječi:
 - "nezavisna" (ortogonalna) ispitivanja
 - "nezavisni" (ortogonalni) smještaj zaštitnih bitova
- "nezavisna" (ortogonalna) ispitivanja:
 - svaki zaštitni bit "pokriva" (= štiti) drugi podskup bitova podatka
 - svaki bit podatka zaštićen s više zaštitnih bitova

- "nezavisni" (ortogonalni) smještaj zaštitnih bitova:
 - postaviti ih na mjesta koja se ne mogu dobiti kombinacijama drugih zaštitnih bitova: 2ⁱ

1	2	3	4	5	6	7
C0	C1	k1	C2	k2	k3	k4

svaki zaštitni bit C_i "pokriva" svoje pozicije
 one bitove čiji redni broj pozicije sadrži 2ⁱ

	1	2	3	4	5	6	7
C2:	CO	C1		C2			
C1:	C0	C1		C2			
C0:	C0	C1		C2		_	

 preostala mjesta redom "popunjavati" bitovima (korisnih) podataka k_i

	1	2	3	4	5	6	7
C2:	CO	C1		C2	k2	k3	k4
C1:	CO	C1	k1	C2		k3	k4
C0:	C0	C1	k1	C2	k2		k4

- paritetna zaštita provodi se za grupu podatkovnih bitova {k_i} i pripadni zaštitni bit C_i
 - ~ višestruka "nezavisna" (ortogonalna) ispitivanja:

$$\{C_0, k_1, k_2, k_4\}; \{C_1, k_1, k_3, k_4\}; \{C_2, k_2, k_3, k_4\}$$

 svaki zaštitni bit C_i "pokriva" pozicije u čijem se rednom broju pojavljuje 2ⁱ:

POZICIJA	nema pogreške	1	2	3	4	5	6	7
C ₂	0	0	0	0	1	1	1	1
C ₁	0	0	1	1	0	0	1	1
C ₀	0	1	0	1	0	1	0	1
		Co	C ₁	k ₁	C ₂	k ₂	k ₃	k ₄

Primjer: računanje paritetne zaštite Hammingovog koda

podatkovna kodna riječ: 0101₂

• *parni* paritet:

<u> </u>	•
C1	:
C0	:

C2:	CC
C1:	CC
<u> </u>	n

C1

0	C2		0	1
0	C2	1		1

• *neparni* paritet:

C2:

C1 :	•

C0:

1	2	3	4	5	6	7
C0	C1		1	1	0	1
C0	0	0	C2		0	1
1	C1	0	C2	1		1

- povoljna redundancija Hammmingovog koda
 odnos zaštitnih i informacijskih bitova:
 - jednostruka pogreška na jednom od n mjesta
 - bez pogrešaka

$$2^{r} \ge k + r + 1$$
, $n = k + r$

BROJ INFORMACIJSKIH BITOVA k (≤)	BROJ ZAŠTITNIH BITOVA r	DULJINA KODNE RIJEČI n = k + r		
1	2	3		
4	3	7		
11	4	15		
26	5	31		
57	6	63		
120	7	127		

oznaka koda: (n, k)

Primjer: Hammingov kod za zaštitu ASCII znakova

• $k = 7 \Rightarrow r = 4 \Rightarrow n = k + r = 11$ ~ Hammingov kod (11,7)

1	2	3	4	5	6	7	8	9	10	11
C0	C1	k1	C2	k2	k3	k4	C3	k5	k6	k7

uzorak "pokrivanja" zaštitnih bitova

	1	2	3	4	5	6	7	8	9	10	11
C0:	CO	C1	k1	C2	k2		k4	C3	k5		k7
C1:	C0	C1	k1	C2		k3	k4	C3		k6	k7
C2:	C0	C1		C2	k2	k3	k4	C3			
C3:	C0	C1		C2				C 3	k5	k6	k7

Primjer: efikasnost zaštite Hammingovim kodom

- poruka sastavljena od 100 ASCII (7-bitnih!) znakova
- zaštita dvodimenzijskim kodom:

$$k = 100 \cdot 7 = 700 r = 100 \cdot 1 + 8 = 108 n = k + r = 808$$
 $\Rightarrow R = \frac{r}{n} = \frac{108}{808} = 13,36\%$

zaštita Hammingovim kodom:

$$\begin{vmatrix}
k = 100 \cdot 7 = 700 \\
2^9 = 512 < 700 < 1024 = 2^{10} \\
\Rightarrow r = 10 \\
n = k + r = 710
\end{vmatrix}
\Rightarrow R = \frac{r}{n} = \frac{10}{710} = 1,4\%$$

• izračunavanje zaštitnih bitova za *parni* paritet

POZICIJA	nema pogreške	1	2	3	4	5	6	7
C ₂	0	0	0	0	1	1	1	1
C ₁	0	0	1	1	0	0	1	1
Co	0	1	0	1	0	1	0	1
		C ₀	C ₁	k ₁	C ₂	k ₂	k ₃	k ₄

$$C_0 \oplus k_1 \oplus k_2 \oplus k_4 = 0 \qquad \Rightarrow \qquad C_0 = k_1 \oplus k_2 \oplus k_4$$

$$C_1 \oplus k_1 \oplus k_3 \oplus k_4 = 0 \qquad \Rightarrow \qquad C_1 = k_1 \oplus k_3 \oplus k_4$$

$$C_2 \oplus k_2 \oplus k_3 \oplus k_4 = 0 \qquad \Rightarrow \qquad C_2 = k_2 \oplus k_3 \oplus k_4$$

• izračunavanje zaštitnih bitova za *neparni* paritet

POZICIJA	nema pogreške	1	2	3	4	5	6	7
C ₂	0	0	0	0	1	1	1	1
C ₁	0	0	1	1	0	0	1	1
Co	0	1	0	1	0	1	0	1
		Co	C ₁	k ₁	C ₂	k ₂	k ₃	k ₄

$$C_0 \oplus k_1 \oplus k_2 \oplus k_4 \oplus 1 = 0$$

$$\rightarrow$$
 $C_0=k_1\oplus k_2\oplus k_4\oplus 1$

$$C_1 \oplus k_1 \oplus k_3 \oplus k_4 \oplus 1 = 0$$

$$C_1 \oplus k_1 \oplus k_3 \oplus k_4 \oplus 1 = 0$$
 \longrightarrow $C_1 = k_1 \oplus k_3 \oplus k_4 \oplus 1$

$$C_2 \oplus k_2 \oplus k_3 \oplus k_4 \oplus 1 = 0$$

$$\rightarrow$$
 $C_2=k_2\oplus k_3\oplus k_4\oplus 1$

Primjer: zaštita ASCII znaka A (41_H)

$$n = 11, k = n - r = 7 \Rightarrow r = 4$$

$$C_0 = k_1 \oplus k_2 \oplus k_4 \oplus k_5 \oplus k_7 \rightarrow C_0 = 0$$

$$C_1 = k_1 \oplus k_3 \oplus k_4 \oplus k_6 \oplus k_7 \Rightarrow C_1 = 0$$

$$C_2 = k_2 \oplus k_3 \oplus k_4$$
 \rightarrow $C_2 = 0$ $C_3 = k_5 \oplus k_6 \oplus k_7$ \rightarrow $C_3 = 1$

$$\rightarrow$$
 $C_2 = 0$

$$C_3 = k_5 \oplus k_6 \oplus k_7$$

$$\bullet$$
 C₃ = 1

$$\Rightarrow$$
 001 0000 1001

$$X = C_3 C_2 C_1 C_0 = 1 0 1 0$$

 $Y = C_3' C_2' C_1' C_0' = 1 0 0 0$

mjesto pogreške:

$$X \oplus Y = 0010_2 = 2_{10}$$

- sindrom
 - ~ uzorak zaštitnih bitova (X ⊕ Y) koji ukazuje na mjesto pojave pogreške

Primjer:

sindrom = 2 ~ drugi bit kodne riječi je pogrešan!

sindrom = 0 ~ nema pogreške!

- Hammingov kod za ispravljanje jednostruke pogreške:
 - distanca d = 3
 - kod za ispravljanje "nezavisnih pogrešaka"
 rezultat djelovanja "bijelog šuma"
 - efikasan kod, jer je R mali

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 2: Digitalni podaci: tipovi, operacije, algoritmi.
- tipovi i prikaz podataka: str. 31
- brojevni sustavi: str. 31-42
- binarna aritmetika: str. 42-45
- modul i komplementi brojeva: str. 45-56
- binarno množenje: str. 56-57
- binarno kodiranje znamenki i simbola: str. 57-64
- kodovi za zaštitu podataka: str. 64-75

Zadaci za vježbu (1)

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 2: Digitalni podaci: tipovi, operacije, algoritmi.
- binarno kodiranje znamenku i simbola: 2.8, 2.11-2.14
- kodovi za zaštitu podataka: 2.15-2.19
- brojevni sustavi: 2.1-2.7
- modul i komplementi brojeva: 2.9-2.10

Zadaci za vježbu (2)

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 1: Zaštitno kodiranje. Brojevni sustavi. Dekadski kodovi; Cjelina 8: Digitalna aitmetika.
- pretvorba brojeva u različitim sustavima:
 - riješeni zadaci: 1.12 1.14 (samo cjelobrojni dio)
 - zadaci za vježbu: 1, 7-9 (str. 23)
- digitalna aritmetika:
 - riješeni zadaci: 8.1-8.6
 - zadaci za vježbu: 1, 7-9 (str. 23)
- modul i komplementi brojeva:
 - zadaci za vježbu: 1-4, 7-8 (str. 280-281)
- znakovni kodovi:
 - riješeni zadaci: 1.15 1.19
- kodovi za zaštitu podataka:
 - riješeni zadaci: 1.1 1.11
 - zadaci za vježbu: 2-6 (str.23)