סיכום מבני נתונים

סיבוכיות	פעולות מוגדרות	מבנה נתונים
O(1)	Create(S) creates an empty stack	מחסנית
O(1)	Push(S,x) insert x into the stack	טוב כשצריכים את האיברים בצורת
O(1)	Pop(S) extracts the last inserted item (returns void)	LIFO
O(1)	Is_Empty(S) boolean true if stack is empty	
O(1)	Top(S) returns the top item on the stack	
O(1)	Create(Q) Creates an empty Queue	תור
O(1)	Head(O) Returns the first member in the Queue	טוב כשצריכים את האיברים בצורת
O(1)	Enqueue(Q,x) Insert x into the Queue	FIFO
O(1)	Dequeue(Q) Extract the first member in the Queue (returns void)	
O(1)	Is empty(Q) Boolean returns true if Queue is empty	
O(1)	הכנסה והוצאה של איבר בהינתן מצביע למקום המתאים	רשימה מקושרת
O(n)	הפנסת התובאת סי, אובר בת נוק מבב כי למקום תפונא ב חיפוש איבר	יש גם רשימה מעגלית ודו כיוונית
O(log(n))	הכנסת איבר	AVL עץ חיפוש
$O(\log(n))$	הוצאת איבר	
$O(\log(n))$	חיפוש איבר	בנים הוא לכל היותר 1
O(log(n))	הכנסת איבר	(B+ עץ 2-3 (עץ
$O(\log(n))$	הוצאת איבר	עץ חיפוש שבו לכל צומת 2 או 3 בנים.
$O(\log(n))$	חיפוש איבר	זהו עץ +B מדרגה 3.
O(log(n))	הכנסת איבר	Rank tree - עץ דרגות
$O(\log(n))$	הוצאת איבר	תומך במציאת אינדקס של איבר
$O(\log(n))$	חיפוש איבר	בסיבוכיות לוגריתמית
$O(\log(n))$	יי פוס אב. מציאת אינדקס של איבר (כמה איברים יש לפניו)	
~O(log(n))	הכנסת איבר	רשימת דילוגים
$\sim O(\log(n))$	הוצאת איבר	חסרון: סיבוכיות ממוצעת
$\sim O(\log(n))$	חיפוש איבר	יתרון: מימוש פשוט
~O(1)	הכנסת איבר	Hash Table
~O(1)	הוצאת איבר	יתרון: זמן ממוצע (O(1). חסרון: יש
~O(1)	חיפוש איבר	לדעת מראש סדר גודל מספר מפתחות
O(1)	Makeset(i) Return new set with single element i	Union/Find
O(log(n))	Find(i) Returns the set that i belongs to	מימוש בעזרת עצים הפוכים
O(1)	Union(p,q) returns a new group containing all elements of groups p,q	
~O(m)	סיבוכיות משוערכת (לא אמיתית!) ל m פעולות שוערכת (לא אמיתית!) ל	
O(1)	Make_heap(Q) Create an empty Heap	Heap
O(n)	Make_heap(Q,A) Create a Heap from an array (עץ כמעט שלם)	טוב כאשר צריכים לקבל את האיבר
O(log(n))	Insert(x,Q) Insert x into the heap	הגדול או הקטן ביותר מהר. זהו לא עץ
$O(\log(n))$	Max(Q) Returns the maximal/minimal value in the heap	חיפוש. מציאת איבר ב O(n).
$O(\log(n))$	Del_max(Q) Deletes the maximal/minimal value in the heap	
O(s)	s הכנסת מחרוזת באורך	Trie
O(s)	און די אוון די s הוא און די s הוצאת מחרוזת באורך s הוצאת מחרוזת באורך	טוב כאשר עובדים עם מחרוזות של
O(s)	s חרוזת באורך	תווים או ספרות
O(s)	א פוט פווד הוו באודן 3 מציאת מחרוזת מינימום לקסיקוגרפי באורך s	
O(s)	s יצירת עץ סיומות מתוך מחרוזת באורך	עץ סיומות (Suffix Tree)
O(k)	צרוז ען סרפוון בווור ווו בווורן k מווררוזת באורך	(During 1100) 11111110 B
$O(L_1+L_2)$	מציאת תת מחרוזת משותפת למחרוזות באורך L ₁ , L ₂	
\cup (\mathbf{L}_1 \mathbf{L}_2)	ם און ווון נוחו וווג באווגפון זיוו ווווי באווי ווווי באווי ווווי באווי ווויי באווי ווויי באווי ווויי באווי ווויי	

סיכום סיבוכיות

הפונקציה $(n_0 \le n_0 \le n_0)$ כך שלכל (c,n_0) אם קיימים קבועים $(c,n_0 \le n_0 \le n_0 \le n_0 \le n_0 \le n_0 \le n_0 \le n_0$ מתקיים:

 $f(n)=O(g(n)) \Leftrightarrow f(n) \le c * g(n)$

מהווה חסם עליון אסימפטוטי. g(n)

אותו הדבר רק הפוך לגבי חסם תחתון (אומגה).

 $f(n)=\Omega(g(n)) \Leftrightarrow f(n)\geq c*g(n)$

 $f(n) = \theta(g(n)) \Leftrightarrow f(n) = O(g(n)) \&\& f(n) = \Omega(g(n))$

פתרון רקורסיות:

שיטת ההצבה: שיטה שנועדה רק להוכיח סיבוכיות שניחשנו מראש. הוכחה בעזרת אינדוקציה.

שיטת האיטרציות: פותחים את הרקורסיה כסכום איברים התלויים בתנאי ההתחלה וב-n.

שיטת המאסטר: פותרת רקורסיות מהצורה: T(n)=aT(n/b)+f(n) כאשר 1 ≥ b > 1 ו 1 ≥ b > 1 פונקציה.

(n) מוגדרת עבור שלמים אי שליליים.

שיטת הפתרון:

 $x=\log_b(a)$ משב .1

 $T(n) = \theta(n^x)$ אזי $f(n) < c * n^{x-\varepsilon}$ אם 2.

 $T(n) = \theta(n^x \log(n))$ אזי $f(n) = c * n^x$.3

 $T(n) = \theta(f(n))$ געם k < 1 קבוע אזי $a*f(n/b) \le k*f(n)$ וגם $f(n) > c*n^{x+\epsilon}$ אם .4

מעבר על עצים:

ימני בן ימני :Pre-Order פודם על השורש, אז בן שמאלי

ואז בן ימני <u>In-order</u>: קודם בן שמאלי, אז שורש, ואז בן ימני

ימני, ואז שורש. <u>Post-Order</u>:

מיונים:

יווע מראש סופי וידוע מראש איברים בעלי ערכים זהים) בו ניתן להשתמש כאשר תחום הערכים א סופי וידוע מראש - Counting Sort (Bucket Sort) O(n+k) - סיבוכיות סיבוע).

סכום סדרה חשבונית:

סכום טור הנדסי מתכנס:

 $S = \frac{a1 \cdot \left(q^n - 1\right)}{a - 1}$ ככום סדרה הנדסית:

ולכן Bucket-Sort אזי ניתן למיינם מספרים בעלי $O(d^*(n+b))$ אזי ניתן למיינם בסיבוכיות ספרות בבסיס b אזי ניתן למיינם בסיבוכיות ספרות בסיס $O(d^*(n+b))$ משתמש ב-הינו מיון יציב.

אמיתית. $\theta(n*log(n))$ נותן סיבוכיות ממוצעת של $\theta(n*log(n))$ ואם ניתן למצוא חציון ב Pivot בבחירה אקראית - Quick-Sort O(n*log(n)) בניית ערימת מינימום מהאיברים למיון, ואז הוצאתם אחד אחד מהקטן לגדול. סיבוכיות - Heap-Sort

פונקציות ערבול יעילות:

1. שיטת המודולו

.2 אשר לחזקה קרוב שאינו שאינו מספר מספר $h(x)=x \mod m$

2. שיטת הכפל בקבוע בין 0 ל-1.

 $h(k) = | m \cdot (a \cdot k \mod 1) |$

א. הכפל את המפתח k ב- a.

ב. קח רק את השבר העשרוני של התוצאה.

ג. הכפל אותו ב-m (פקטור גודל טבלת ערבול) ועגל כלפי מטה.

3. פונקצית ערבול למחרוזות ארוכות:

T[0..255] למערך 0-255 למערך אקראית מעל המספרים א. הכנס פרמוטציה

0..255 בתחום מצאת a_1 התוצאה הראשונה s_1 במחרוזת בין Bitwise xor ב. בצע

. בשלב אסר בעע בער הוא הוא a_{i-1} כאשר לבין $T[a_{i-1}]$ במחרוזת בין באות בין Bitwise xor ג. בשלב ה-ו בצע בשלב האות אות בין האות בין

ה. (אוצאת הערבול היא תוצאת ה xor עם האות האחרונה של מחרוזת המפתח כלומר: xor עם אוצאת ה ד. תוצאת פונקצית הערבול היא תוצאת ה

4. קבוצה אוניברסלית

m א. בחר גודל טבלת ערבול ראשוני

T[0..r] למערך למערך 0..m-1 ב. הכנס פרמוטציה אקראית מעל

key[0..r] אותו במערך r+1 הלקים ואכסן אותו במערך

ג. שבוו את המפוחול
$$1+1$$
 הלקים האכטן אותו במעון $h(x) = \left(\sum_{i=0}^{r} \text{key}[i] \cdot T[i]\right) \text{mod m}$