please hit the record button, Bridget

Increasing Publication Rate

2015 MEDLINE Baseline Number of Publications per Year

Islands of Knowledge

Therefore A implies C

Baseline LBD System

LBD Models and Components

System Components

- 1. Data Source
- 2. Preprocessing
- 3. Hypothesis Generation
- 4. Hypothesis Explanation

System Components

- 1. Data Source
- 2. Preprocessing
- 3. Hypothesis Generation
- 4. Hypothesis Explanation

Data Source (Corpus)

MEDLINE

- A repository of biomedical publications
- ~5,600 journals
- > 22,775,609 citations from 1809 to present
 - 13,835,206 contain an abstract
- We use 1975 onward
 - 2% of citations contained and abstract prior to that

</JournalIssue> <Title>Federal register</Title> <ISOAbbreviation>Fed Regist</ISOAbbreviation> </Journal> <articleTitle>Elimination of sanctions for refusal of vocational rehabilitation services without good cause. Final rule.</ArticleTitle> <Pagination> <MedlinePgn>40119-25</MedlinePgn> </Pagination> <Abstract> <AbstractText>We are amending our regulations to remove provisions relating to the imposition of benefit sanctions on account of a beneficiary's refusal of rehabilitation services. We are making these changes to reflect the repeal of sections 222(b) and 1615(c) of the Social Security Act (the Act). Prior to their repeal, these sections of the Act authorized the Commissioner of Social Security to impose sanctions against the benefits of a disabled or blind beneficiary who refused, without good cause, to accept rehabilitation services made available by a State vocational rehabilitation (VR) agency. The Ticket to Work and Work Incentives Improvement Act of 1999 repealed these sections of the Act, effective January 1, 2001. We are amending our regulations by removing rules and related provisions that are obsolete as a result of the repeal of these sections of the Act to conform our regulations to the changes in the statute.</AbstractText> </Abstract> < AuthorList Complete YN="Y"> <Author ValidYN="Y">

...

System Components

- 1. Data Source
- 2. Preprocessing
- 3. Hypothesis Generation
- 4. Hypothesis Explanation

Preprocessing

- Convert data from its raw form to a form accepted by the hypothesis generation step of LBD.
- It is often tightly coupled with the data source,
- Preprocessing steps:
 - Identify the terms:
 - Stop word removal
 - Text normalization
 - Named entity recognition
 - Identify the explicit relationships
 - Collecting co-occurrence information
 - Relation extraction.

Unified Medical Language System (UMLS)

UMLS

 Concept Hierarchy of Biomedical Terms

CUI

Concepts unique identifier

Semantic Type

Broad sets of terms

Semantic Group

Even broader sets of concepts

Text Processing Tools to Identify Terms

"Raynaud's Disease changes blood viscosity"

Compoundify – identifies compound words in text
 raynauds_disease changes blood_viscosity

MetaMap – maps text to CUIs

C0034734 changes C0005848

MedaCy – NER system to identify entities

[Raynaud's Disease: Disease] changes [blood viscosity: Symptom]

Text Processing Tools to Identify Relations

"Raynaud's Disease changes blood viscosity"

Text::NSP – extracts co-occurrence information
 raynauds_disease co-occurs blood_viscosity

• **SemRep** – extracts CUI Relation CUI triplets from text

C0034734 AFFECTS C0005848

ReLex – relation extraction system to identify relations

[Raynauds Disease: Disease] causes [blood viscosity: Symptom]

System Components

- 1. Data Source
- 2. Preprocessing
- 3. Hypothesis Generation
- 4. Hypothesis Explanation

Hypothesis Generation

The whole process of generating, filtering, and ranking hypotheses:

- 1. Term Generation
- 2. Term Filtering
- 3. Term Ranking

Hypothesis Generation

- 1. Term Generation
- 2. Term Filtering
- 3. Term Ranking

Term Generation

- Creates potential hypotheses
- Typically very noisy
- Examples include:
 - ABC model
 - Discovery patterns
 - Vector-based nearest neighbor searches
 - Discovery by analogy
 - Bibliometric linking
 - User interaction
 - Returning all terms in the vocabulary

ABC Hypothesis Generation

- A implies B, B implies C, therefore A implies C
- Relationships as:
 - Co-occurrence
 - Extracted relationships
- Limitations:
 - Co-occurrence isn't necessarily a relationship
 - Relation extraction misses relationships
 - ABCD, ABCDE?
 - Information Explosion

Hypothesis Generation Examples

- ABC Co-occurrence
- Discovery Patterns
- Discovery by Analogy
- Discovery Browsing

ABC Co-occurrence

- A co-occurs with B
- B co-occurs with C
- Find all A-B-C terms

Discovery Patterns

Find all Relationships such that:

- **Z** is a drug
- X is Raynaud's Disease
- X-Y is a stimulates relation
- Y-Z is an disrupts relation
- And X has no relation to

Raynaud's Disease

Discovery By Analogy

Why?

"Prozac is to Depression as? is to Schizophrenia"

Using concept vectors, relation vectors, and vector operations we can arrive at a conclusion

Discovery Browsing

- Spark
 - A framework for 'Serendipitous Knowledge Discovery'

Discovery Browsing

Semantic MEDLINE

Fig. 3. Visualizing summarization results for Relaxin search, with Relaxin INTERACTS_WITH RXFP2 relation highlighted.

Hypothesis Generation

- 1. Term Generation
- 2. Term Filtering
- 3. Term Ranking

Term Filtering

- Term generation typically over-generates target terms
- Term filtering removes uninteresting or untrue terms
- Examples:
 - Term occurrence rate (too frequent or infrequent)
 - UMLS hierarchy to remove terms that are:
 - too broad or too similar to the start term
 - Not the desired semantic type
 - Information retrieval metrics and thresholds
 - Term Frequency-Inverse Document Frequency

True Target Terms

Hypothesis Generation

- 1. Term Generation
- 2. Term Filtering
- 3. Term Ranking

Term Ranking

- Ranks hypotheses based on their interestingness
- Too many Target Terms:
 - **51,931** target terms when replicating Raynaud's Disease Fish Oil discovery
 - Small world problem
- Information Retrieval ranks don't work
 - Rely on direct co-occurrences

Method 1: Linking Term Count (LTC)¹

- The best performing target term ranking measure
- The count of unique shared linking terms

count (B) =
$$2 = LTC$$

Target Terms

Term Ranking Methods

	Term Co-occurrence				
Gordon and Lindsay [51]	Relative Frequency*				
Hristovski, et al. [89]	Confidence*				
Hristovski, et al. [54]	Support				
Swanson, et al. [90]	Literature Cohesiveness (COH)				
Cole and Bruza [71]	Odds-Ratio				
Stegmann and Grohmann [91]	Equivalence Index				
Measures of Independence					
Yetisgen-Yildiz and Pratt [53, 88]	Z-Score				
Wren, et al. [87]	Mutual Information Measure (MIM)				
Cole and Bruza [71]	Log Likelihood (ll)				
Semantic Predication					
Hristovski, et al. [92]	Predication Frequency				
Wilkowski, et al. [74]	Degree Centrality				
Cameron, et al. [93]	Intra-Cluster Predication Similarity				
Nearest Neighbor Search					
Gordon and Dumais [64]	Cosine Distance				
Bruza, et al. [66]	Euclidean Distance				
Bruza, et al. [66]	Information Flow				
Implicit Term					
Hristovski, et al. [89]	$X \to Z$ Support				
Wren, et al. [87]	Average Mutual Information Measure (AMIM)				
Wren, et al. [87]	Minimum Mutual Information Measure (MMIM)				
Wren, et al. [87]	Average Minimum Weight (AMW)				
Swanson and Smalheiser [48]	Linking Term Count (LTC)				
Yetisgen-Yildiz and Pratt [88]	Linking Term Count-Average Minimum Weight (LTC-AMW)				
Rastegar, et al. [14]	Predicate Independence/Interdependence				

Linking Terms Starting Terms Designed for Ranking Implicit Terms

 $^{^{*}}$ Confidence and relative frequency are equivalent

Association Metrics

Collect Co-occurrences

Populate Contingency Table (observed values)

		stop	\neg stop	totals
	smoking	2955	75020	77975
	\neg smoking	308792	2712312165	2712620957
•	totals	311747	2712387185	2712698932

Calculate Association Measure

Association Score

Contingency Table of Observed Values

```
n<sub>11</sub> = count of "stop smoking"
n<sub>1p</sub> = count of "stop <anything>"
n<sub>p1</sub> = count of "<anything> smoking"
n<sub>pp</sub> = count of "<anything> <anything>"
```

 Other values can be computed from these four

$$n_{12}$$
 = "stop "
= n_{1p} - n_{11}
 n_{p2} = " "
= n_{pp} - n_{p1}
etc..

	stop	\neg stop	totals	
smoking	2955	75020	77975	
\neg smoking	308792	2712312165	271262	0957
totals	311747	2712387185	271269	8932

	Y	\overline{Y}	totals
X	$n_{11} = XY$	$n_{12} = X\overline{Y}$	$n_{1p} = X *$
\overline{X}	$n_{21} = \overline{X}Y$	$n_{22} = \overline{XY}$	$n_{2p} = \overline{X} *$
totals	$n_{p1} = *Y$	$n_{p2} = *\overline{Y}$	$n_{pp} = **$

Indirect Ranking Measures

They don't take into account the whole picture

- Terms that only A co-occurs with
- Terms that only C co-occurs with
- Terms that co-occur with neither

Contingency Table to Co-occurrence Graph

	stop	\neg stop	totals	
smoking	2955	75020	77975	
¬ smoking	308792	2712312165	2712620)957
totals	311747	2712387185	2712698	8932

Collect co-occurrence information on implicit relations

- Linking term association
- Minimum weight association

Metric 1: Linking Term Association (LTA)

Metric 2: Minimum Weight Association (MWA)

Weighted Co-occurrence Graph

MWA

$$min(8,4) + min(3,5) = N11$$

 $1 + 2 + 8 = N1P$
 $4 + 5 + 7 = NP1$
 $|C| = NPP$

Association Metrics

Collect Co-occurrences

Populate Contingency Table (observed values)

	stop	\neg stop	totals
smoking	2955	75020	77975
\neg smoking	308792	2712312165	2712620957
totals	311747	2712387185	2712698932

Calculate Expected Values

	stop	\neg stop	totals
smoking	9	77966	77975
\neg smoking	311738	2712309219	2712620957
totals	311747	2712387185	2712698932

Calculate Association Measure

Association Score

N11 = 11

N1P = 8

NP1 = 9 + 7

NPP = |C|

N11 = sum of A and B N11s

N1P = sum of A N1Ps

NP1 = sum of B NP1s

NPP = all co-occurrences

Scenario

1) Group A and C terms

- 2) Collapse Edges
 - Keep only the unique among sets

- N11 = count of unique shared linking terms = LTC
- **N1P** = count of unique terms that set A co-occurs with
- **NP1** = count of unique terms that set C co-occurs with
- NPP = all possible unique terms (vocabulary size)

Shared B to C Set Association

 Set association between shared B terms and C terms

Shared B Set Association

 Set association between A's B terms and C's B terms

Hypothesis Generation

The whole process of generating, filtering, and ranking hypotheses:

- 1. Term Generation
- 2. Term Filtering
- 3. Term Ranking

System Components

- 1. Data Source
- 2. Preprocessing
- 3. Hypothesis Generation
- 4. Hypothesis Explanation

Hypothesis Explanation

- Explaining the reasons behind a hypothesis
- How the results of LBD are displayed

Hypothesis Explanation

- A target term list
- The articles in which the terms co-occur
- The relationship chain linking the terms

More Complex Graph Analysis

D. Cameron, R. Kavuluru, T. C. Rindflesch, A. P. Sheth, K. Thirunarayan, O. Bodenreider, Context-driven automatic subgraph creation for literaturebased discovery, Journal of Biomedical Informatics 54 (2015) 141–157.

Evaluation

Evaluation

- Discovery Replication
- Time Slicing Analysis
- Expert Evaluation
- User Studies
- Link Prediction

Discovery Replication

- Reproduce a discovery from the past
- Raynaud's Disease Fish Oil made in 1987

My system reproduced Raynaud's Disease – Fish Oil, and fish oil was ranked third

Time Slicing

Time Slicing

Pre-2000 texts

1. In gold
2. In gold
3. Out of gold
4. Out of gold
5. In gold
6. In gold
Hypothesis Ranking

My system produced 4 hypotheses in the gold standard and 2 out of the gold standard

Precision = 66%

Recall = 10% (made up)

Average Precision = 82 % (1/1 + 2/2 + 0 + 0 + 3/5 + 4/6)/4

Expert Evaluation

- 1. Using the system to propose new discoveries
- 2. Validating those discoveries
 - Expert Vetting
 - Publication and therefore peer review/scrutiny
 - Expert testimonial: A co-author (usually a doctor) attest to the discovery's validity
 - Support through other means such as micro-array analysis
 - Support through testing:
 - In-Vitro
 - In-Vivo
 - Clinical Trials

Expert Evaluation

- Strengths:
 - Proves that an LBD system works
 - Exposes LBD in that community
- Weaknesses:
 - Not quantitative
 - Not informative

Expert Evaluation

- Strengths:
 - Proves that an LBD system works
 - Exposes LBD in that community
- Weaknesses:
 - Not quantitative
 - Not informative

User Studies

- User studies determine what users like and dislike about a system
- Determine how a system is used, and how it can be improved
- People use an LBD system, and:
 - Complete questionnaires
 - Are monitored
 - Are interviewed

• Example:

• Smalheiser, et al. perform a five year study involving a group of 120 voluntary researchers. Researchers filled out notebooks describing their use of Arrowsmith; weekly phone calls were made to monitor their progress. This, combined with "unsolicited" suggestions from web users were used to improve the web-interface, guide development of their system, and discovered novel ways the system was being used.

User Studies

• Strengths:

- User studies are critical for understanding how LBD systems are actually being used.
- User studies ensure the LBD tools we develop are both usable and useful

Weaknesses:

- Subjective
- Not quantitative
- Not automated or replicable.

Review and Example System

- Preprocessing:
 - Convert MEDLINE to SemMedDB
- Term Generation
 - ABC Linking of relationships
- Term Filtering
 - Remove terms that occur in more than 150,000 articles
 - Remove terms for which the start-target LTC > 1000
 - Keep only 'Disease' semantic types
- Term ranking
 - Use cosine distance between start and target co-occurrence vectors
- Evidence Collection
 - Find ABC relationship paths linking the terms
- Hypothesis Display
 - Visually display the top 10 ranked discoveries and the relationships linking them

Questions?

Backup slides

Link Prediction

- Relax the true/false discovery assumptions.
 - They don't look at whether a system can make true, actual discoveries but rather if it can or can't predict links in a graph
- Evaluation with ROC curves
- Receiver operating characteristic (ROC) curves:
 - Plot the tradeoff between true and false positive rates
 - typically to evaluate the performance of binary classifiers
 - They require a dataset with true and false samples
 - Generated by varying some parameter (typically a threshold) and calculating the true and false positive rates at different values of this parameter.
 - The area under the ROC curve (AUROC) can be calculated to provide a single number to summarize a system's performance

Link Prediction

- Link prediction to compare different target term ranking algorithms
- SemMedDB
- Time sliced:
 - Training: 1975-2009
 - True samples are term pairs in 2010+, not in training
 - False are term pairs that do not occur in either dataset

Proposed vs Baseline Systems

Automatic Functional Group Discovery

Implicit Association Ranking of Sets

2.

Linking Term Count Ranking

Natural Language

Knowledge as Unstructured Text

ABC Hypothesis Generation

Three Primary Innovations (proposed works)

Neural Hypothesis Generation

Rumelhart Network

- Language Learning:
 - Monitor the internal representations as learning progressed
- It generalizes as it learns
- Learns internal representations hierarchically
 - All birds can fly
 - later learns: that most birds can fly, but ostriches can't
- Happens through similarities between the internal distributed representations

Functional Pathways

- Doctors found how fish oil treats Raynaud's Disease
- Weeber, et al. manually replicated this with LBD¹

¹Weeber, Marc, et al. "Using concepts in literature-based discovery: Simulating Swanson's Raynaud–fish oil and migraine–magnesium discoveries." *Journal of the Association for Information Science and Technology* 52.7 (2001): 548-557.

Hierarchical Clustering

LBD

NADP **Enzymes** Antigen Clonindine Clonindine ACTH and ...

Interactive Exploratory Interface

Interactive Exploratory Interface

In Summary, LBD is:

- What?
 - Automated methods to find connections between disjoint fields
- Why?
 - There are millions of new scholarly publications per year
 - Increased specialization and narrowing of disciplines
 - Can guide research and produce new knowledge
- How?
 - Through text mining and natural language processing

Motivation

LBD Applications

Drug Discovery

Drug Repurposing

Adverse Event Prediction

LBD provides a better understanding of drug mechanisms, interactions, and side effects

Drug Discovery

Expensive

Costs \$500 million to \$2 billion to develop new drugs

Time Consuming

• Takes 10 – 15 years

Difficult

Success rate is less than 10%

Drug Repurposing

On the rise

~30% of newly approved drugs

Approved Drugs Exist

• ~4,000 drugs approved for human use

Saves Money

• may reduce costs by 50%

Adverse Event Prediction

Caused by:

Normal use, misuse, discontinuation of medication

Common

ADEs account for ~12% of all emergency room visits

Deadly

ADEs kill people