Chinese Reminder Theorem

Let m_1, m_2, \ldots, m_n be pairwise relatively prime positive integers and a1, a2, a_n arbitrary integers. Then the system

$$x = a_1 mod(m_1)$$

$$x = a_2 mod(m_2)$$

$$x = a_3 mod(m_3)$$

$$x = a_n mod(m_n)$$

has a unique solution modulo $m = m_1 m_2 ... m_n$. (That is , there is a solution x with $0 \le x < m$, and all other solutions are congruent modulo m to this solution.)

Proof: First let
$$M_k = \frac{m}{m_k}$$
 for $k = 1, 2, ..., n$.

That is, M_k is the product of the moduli except for m_k . Because m_i and m_k have no common factors greater than 1 when $i \neq k$, it follows that $gcd(m_k, M_k) = 1$. Consequently, by Theorem 3, we know that there is an integer y_k an inverse of M_k modulo m_k such that,

$$M_k y_k = 1 \pmod{m_k}$$

To construct a simultaneous solution, form the sum

$$X = a_1 M_1 y_1 + a_2 M_2 y_2 + ... + a_n M_n y_n$$

We will now show that x is a simultaneous solution. First, note that because $M_j \equiv 0 \pmod{m_k}$ whenever $j \neq k$, all terms except the kth term in this sum are congruent to $0 \pmod{m_k}$. Because $M_k y_k \equiv 1 \pmod{m_k}$ we see that,

$$x \equiv a_k M_k y_k \equiv a_k \pmod{m_k}$$

for k = 1, 2, ..., n. We have shown that x is a simultaneous solution to the n congruences.