

AGENDA

- 1. Business Problem / Data Problem
- 2. Stakeholder Identification
- 3. Process Workflow
- 4. Dataset Characteristics
- 5. Exploratory Data Analysis
- 6. Model Building & Selection
- 7. Model Deployment
- 8. Limitations

BUSINESS PROBLEM / DATA PROBLEM

- As carbon emissions from cars make a significant proportion of carbon emissions, policy makers need a quick method to assess and forecast carbon gas emissions emitted by automobiles in order to properly tax and disincentivize consumers from owning certain vehicles
- Collecting primary historical data from a specific geographic location, as many characteristics can impact carbon emissions.

STAKEHOLDER IDENTIFICATION

STRATEGY PLANNERS

... who need information on carbon gas emissions from automobiles

TAXATION OFFICE

... who need to know how much to tax automobiles

PROCESS WORKFLOW

Data Collection

Data Cleaning

Exploratory Data Analysis Pre processing & Feature Selection

Model Building & Selection

Deployment for Stakeholder Use

- Datasets sourced from Government of Canada – Open Government Data portal.
- Datasets were manipulated to fit into DataFrames, columns not needed were removed and final datasets merged.
- Statical and visual exploratory data analysis was conducted
- Categorical features were label encoded
- Data was scaled using StandardScaler
- Feature selection by RandomForest and PCA were used for some of the models to be built

- Assessment of model accuracy
- Selection of model to be deployed
- Model deployed via a webapp for easy use by stakeholders
- Webapp was stored in a docker container for easy reproduction

DATASET CHARACTERISTICS

Dataset statistics	
Number of variables	16
Number of observations	2891
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	361.5 KiB
Average record size in memory	128.0 B

Variable types		
Numeric	9	
Categorical	7	

• Data downloaded from: https://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64#wb-auto-6

EXPLORATORY DATA ANALYSIS

- Two-seater vehicles released highest amount of carbon gas emissions.
- Passenger vans had the highest mean carbon emissions released.

EXPLORATORY DATA ANALYSIS

• Cars with higher number of cylinders released the most carbon emissions.

EXPLORATORY DATA ANALYSIS – FEATURE CORRELATION

CO2 Emissions (g/km)

• Fuel consumption found to be most highly correlated with carbon emissions.

CO2 Emissions (g/km)	1.000000
Fuel Consumption Comb (L/100 km)	0.951656
Fuel Consumption City (L/100 km)	0.948930
Fuel Consumption Hwy (L/100 km)	0.917122
Engine Size_L	0.835887
Cylinders	0.834904
Smog Rating	-0.514353
Fuel Consumption Comb (mpg)	-0.910652
CO2 Rating	-0.954422

EXPLORATORY DATA ANALYSIS – FEATURE CORRELATION

• All 4 feature columns labelled "Fuel Consumption" are highly correlated.

EXPLORATORY DATA ANALYSIS – FEATURE CORRELATION

MODEL SELECTION

• Selected model can can predict price with an upper/lower bound of 16.71 CO2 g/km (7% of mean CO2 g/km of dataset)

Model Type	Features	R2	RMSE (CO2 Emissions (g/km))
Simple LR (Not Scaled)	1	0.87	21.08
Simple LR (Scaled)	1	0.87	21.08
Multi LR (Features Selected by RandomForest)	3	0.90	17.08
Multi LR (All features – not scaled)	7	0.92	16.71

RECOMMENDATIONS

- We propose a 4-tier carbon tax pricing system based on the quartiles of the dataset.
- An additional carbon tax for luxury cars with high number of cylinders.
- An additional carbon tax for passenger vans.

CO2 Emissions (g/km)

count	2339.000000
mean	254.582300
std	60.485776
min	94.000000
25%	213.000000
50%	252.000000
75%	294.000000
max	608.000000

MODEL DEPLOYMENT

- Our model was deployed onto a webapp that makes the predictions: https://share.streamlit.io/adireksa/streamlit-linregapp-project2/main/app.py
- The app was also stored into a docker container for easy reproducibility.

IMPROVEMENTS FOR FUTURE

- Model deployed should be able to calculate carbon tax amount per vehicle.
- Expand dataset to include hybrid vehicles and electric vehicles.
- Compare other more advanced models with higher accuracy.

Thank you