Introduction to Cryptography – LMAT2450 Practical Lesson 1

Yaobin Shen (yaobin.shen@uclouvain.be) Clément Hoffmann (clement.hoffmann@uclouvain.be)

Exercise 1 (Perfect secrecy.)

We define the following encryption scheme for messages, keys and ciphertexts in $\mathcal{M} = \mathcal{C} = \mathcal{K} = \mathbb{Z}_n$, where \mathbb{Z}_n is essentially the integers in the interval [0, n) (in fact $(\mathbb{Z}_n, +)$ forms a group):

- Gen outputs a key $k \in \mathcal{K}$ selected uniformly at random.
- $\operatorname{Enc}_k(m) := k + m \mod n$
- $\operatorname{Dec}_k(c) := c k \mod n$

Suppose messages are drawn from \mathcal{M} according to the binomial distribution. More precisely $M \sim \text{Bi}(n-1,p)$ for some probability p which means that $\forall m \in \mathcal{M} : \Pr[M=m] = \binom{n-1}{m} p^m (1-p)^{n-1-m}$.

- 1. Show that the encryption scheme above is perfectly secret.
- 2. Evaluate Pr[C = c] for every $c \in \mathcal{C}$.
- 3. Evaluate $\Pr[K = k | C = c]$ for every $k \in \mathcal{K}$ and $c \in \mathcal{C}$.

Exercise 2 (Negligible functions.)

- 1. Let f be a negligible function in n. Show that $q: n \mapsto 1000 \cdot f(n)$ is negligible too.
- 2. Show that the function $n \mapsto n^{-\log(n)}$ is negligible in n.

Exercise 3 (Efficiency.)

Explain why the function that maps n on a sequence of "1" of length $\lfloor \sqrt{n} \rfloor$ cannot be evaluated by any efficient algorithm in the size of the entry.

An example of such algorithm is given in Algorithm 1.

Algorithm 1 Example of algorithm

Require: $n \ge 0$ Ensure: A sequence of \sqrt{n} "1" for i = 0 to $\lfloor \sqrt{n} \rfloor$ do Print '1' end for

Hint: see n as a power of 2.

Exercise 4 (Security model.)

Let ϵ denote a negligible function. Remember that $\Pi := \langle \text{Gen, Enc, Dec} \rangle$ has indistinguishable multiple encryption in the presence of eavesdroppers if \forall PPT \mathcal{A} , \exists ϵ :

$$\Pr[\mathsf{PrivK}^{\mathsf{mult}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \epsilon(n)\,,$$

where $\mathsf{PrivK}^{\mathsf{mult}}_{\mathcal{A},\Pi}(n)$ is defined as follows.

- 1. \mathcal{A} outputs $M_0 = (m_0^1, \dots, m_0^t), M_1 = (m_1^1, \dots, m_1^t)$
- 2. Choose $k \leftarrow \text{Gen}(1^n)$ and $b \leftarrow \{0,1\}$, and send $(\text{Enc}_k(m_b^1), \ldots, \text{Enc}_k(m_b^t))$ to \mathcal{A}
- 3. \mathcal{A} outputs b'
- 4. Define $\mathsf{PrivK}^{\mathsf{mult}}_{\mathcal{A},\Pi}(n) := 1 \text{ iff } b = b'$

Also remember that $\Pi := \langle \text{Gen}, \text{Enc}, \text{Dec} \rangle$ has indistinguishable encryption under a chosen-plaintext attack if $\forall \text{ PPT } \mathcal{A}, \exists \epsilon :$

$$\Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1] \leq \frac{1}{2} + \epsilon(n)\,,$$

where $\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n)$ is defined as follows.

- 1. Choose $k \leftarrow \text{Gen}(1^n)$
- 2. \mathcal{A} is given oracle access to $\operatorname{Enc}_k(\cdot)$
- 3. \mathcal{A} outputs $m_0, m_1 \in \mathcal{M}$
- 4. Choose $b \leftarrow \{0,1\}$ and send $\operatorname{Enc}_k(m_b)$ to \mathcal{A}
- 5. A is again given oracle access to $\operatorname{Enc}_k(\cdot)$
- 6. \mathcal{A} outputs b'
- 7. Define $\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{cpa}}(n) := 1 \text{ iff } b = b'$

Define the concept of indistinguishable multiple encryption under a chosen-plaintext attack.