Step	Algorithm:		
1a			
4			
	where		
2			
3	while do		
2,3		٨	
5a			
	where		
6			
8			
5b			
7			
2			
	endwhile		
2,3		^ ¬()
1b			

Step	Algorithm: $[x, y] := \text{Sap_Dot_Var1_unb_var4}(x, y)$
1a	$a = \hat{a}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	where x_T has 0 rows, y_T has 0 rows $a = x_T^T y_T + \hat{a}$
3	while $m(x_T) < m(x)$ do
2,3	$a = x_T^T y_T + \widehat{a} \wedge m(x_T) < m(x)$
5a	$\left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\beta_1}\right)$
	where α_1 has 1 row, β_1 has 1 row
6	$a = x_T^T y_T + \widehat{a} = x_0^T y_0 + \widehat{a}$
8	$a = x_0^T y_0 + \alpha \beta + \widehat{a} = \alpha \beta + a$
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\beta_1}\right)$
7	$a = \left(\frac{x_0}{\alpha_1}\right)^T \left(\frac{y_0}{\beta_1}\right) + \widehat{a} = x_0^T y_0 + \alpha \beta + \widehat{a}$
2	$a = x_T^T y_T + \widehat{a}$
	endwhile
2,3	$a = x_T^T y_T + \widehat{a} \wedge \neg (m(x_T) < m(x))$
1b	$a = x^T y + \widehat{a}$

 $\textbf{Algorithm:} \ [x,y] := \texttt{Sap_Dot_Var1_unb_var4}(x,y)$

$$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$$

where x_T has 0 rows, y_T has 0 rows

while $m(x_T) < m(x)$ do

$$\left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\beta_1}\right)$$

where α_1 has 1 row, β_1 has 1 row

$$a = x_0^T y_0 + \alpha \beta + \widehat{a} = \alpha \beta + a$$

$$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\beta_1}\right)$$

endwhile

Step	Algorithm: $[x, y] := Sap_Dot_Var1_unb_var4(x, y)$
1a	$a = \hat{a}$
4	
	where
2	
3	while do
2,3	^
5a	
	where
6	
8	
5b	
7	
2	
	endwhile
2,3	$\wedge \neg ($
1b	$a = x^T y + \widehat{a}$

Step	Algorithm: $[x, y] := Sap_Dot_Var1_unb_var4(x, y)$
1a	$a = \hat{a}$
4	
	where
2	$a = x_T^T y_T + \widehat{a}$
3	while do
2,3	$a = x_T^T y_T + \widehat{a} \wedge$
5a	
6	where
8	
5b	
7	
2	$a = x_T^T y_T + \widehat{a}$
	endwhile
2	$a = x_T^T y_T + \widehat{a} \wedge \neg () $
1b	$a = x^T y + \widehat{a}$

Step	Algorithm: $[x, y] := Sap_Dot_Var1_unb_var4(x, y)$
1a	$a = \hat{a}$
4	
1	
	where
2	$a = x_T^T y_T + \widehat{a}$
3	while $m(x_T) < m(x)$ do
2,3	$a = x_T^T y_T + \widehat{a} \wedge m(x_T) < m(x)$
5a	
	where
6	
8	
5b	
7	
0	T
2	$a = x_T^T y_T + \widehat{a}$
	endwhile
2,3	$a = x_T^T y_T + \widehat{a} \wedge \neg (m(x_T) < m(x))$
1b	$a = x^T y + \widehat{a}$

Step	Algorithm: $[x, y] := SAP_DOT_VAR1_UNB_VAR4(x, y)$
1a	$a = \hat{a}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$a = x_T^T y_T + \widehat{a}$
3	while $m(x_T) < m(x)$ do
2,3	$a = x_T^T y_T + \widehat{a} \wedge m(x_T) < m(x)$
5a	
	where
6	
8	
5b	
7	
2	$a = x_T^T y_T + \widehat{a}$
	endwhile
2,3	$a = x_T^T y_T + \hat{a} \wedge \neg (m(x_T) < m(x))$
1b	$a = x^T y + \widehat{a}$

Step	Algorithm: $[x, y] := SAP_DOT_VAR1_UNB_VAR4(x, y)$
1a	$a = \hat{a}$
4	$x o \left(\frac{x_T}{x_B}\right), y o \left(\frac{y_T}{y_B}\right)$
	where x_T has 0 rows, y_T has 0 rows
2	$a = x_T^T y_T + \widehat{a}$
3	while $m(x_T) < m(x)$ do
2,3	$a = x_T^T y_T + \widehat{a} \wedge m(x_T) < m(x)$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\beta_1}\right) $ where α_1 has 1 row, β_1 has 1 row
6	
8	
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\beta_1}\right)$
7	
2	$a = x_T^T y_T + \widehat{a}$
	endwhile
2,3	$a = x_T^T y_T + \widehat{a} \wedge \neg (m(x_T) < m(x))$
1b	$a = x^T y + \widehat{a}$

Step	Algorithm: $[x, y] := Sap_Dot_Var1_unb_var4(x, y)$
1a	$a = \hat{a}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$
	where x_T has 0 rows, y_T has 0 rows
2	$a = x_T^T y_T + \widehat{a}$
3	while $m(x_T) < m(x)$ do
2,3	$a = x_T^T y_T + \widehat{a} \wedge m(x_T) < m(x)$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\beta_1}\right) $ where α_1 has 1 row, β_1 has 1 row
6	$a = x_T^T y_T + \widehat{a} = x_0^T y_0 + \widehat{a}$
8	- · · · · · · · · · · · · · · · · · · ·
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\beta_1}\right)$
7	
2	$a = x_T^T y_T + \widehat{a}$
	endwhile
2,3	$a = x_T^T y_T + \widehat{a} \wedge \neg (m(x_T) < m(x))$
1b	$a = x^T y + \widehat{a}$

Step	Algorithm: $[x, y] := Sap_Dot_Var1_unb_var4(x, y)$
1a	$a = \hat{a}$
4	$x o \left(\frac{x_T}{x_B}\right), y o \left(\frac{y_T}{y_B}\right)$
	where x_T has 0 rows, y_T has 0 rows
2	$a = x_T^T y_T + \hat{a}$
3	while $m(x_T) < m(x)$ do
2,3	$a = x_T^T y_T + \widehat{a} \wedge m(x_T) < m(x)$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\beta_1}\right) $ where α_1 has 1 row, β_1 has 1 row
6	where a_1 has 1 low, β_1 has 1 low $a = x_T^T y_T + \widehat{a} = x_0^T y_0 + \widehat{a}$
8	$a = x_0^T y_0 + \alpha \beta + \hat{a} = \alpha \beta + a$
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\beta_1}\right)$
7	$a = \left(\frac{x_0}{\alpha_1}\right)^T \left(\frac{y_0}{\beta_1}\right) + \hat{a} = x_0^T y_0 + \alpha \beta + \hat{a}$
2	$a = x_T^T y_T + \widehat{a}$
	endwhile
2,3	$a = x_T^T y_T + \widehat{a} \wedge \neg (m(x_T) < m(x))$
1b	$a = x^T y + \widehat{a}$

Step	Algorithm: $[x, y] := Sap_Dot_Var1_unb_var4(x, y)$
	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
	while $m(x_T) < m(x)$ do
	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\beta_1}\right) $ where α_1 has 1 row, β_1 has 1 row
	$a = x_0^T y_0 + \alpha \beta + \widehat{a} = \alpha \beta + a$
	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\beta_1}\right)$
	endwhile

 $\textbf{Algorithm:} \ [x,y] := \texttt{Sap_Dot_Var1_unb_var4}(x,y)$

$$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$$

where x_T has 0 rows, y_T has 0 rows

while $m(x_T) < m(x)$ do

$$\left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\beta_1}\right)$$

where α_1 has 1 row, β_1 has 1 row

$$a = x_0^T y_0 + \alpha \beta + \widehat{a} = \alpha \beta + a$$

$$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\alpha_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\beta_1}\right)$$

endwhile