Kernel Ridge Density Estimation in Smoothing Spline ANOVA Models: a Random Sketching Approach

October 18, 2023

1. Introduction

Let $X_1, \ldots, X_n \in [0,1]^r \stackrel{\text{def}}{=} \mathcal{X}$ be i.i.d. copies of a random vector X. We assume that the the density of X is $p_0(x) = e^{f_0(x)}$, i.e., for any Lebsgure measurable set $A \subset \mathcal{X}$, it holds that

$$\mathbb{P}(\boldsymbol{X} \in A) = \int_A p_0(\boldsymbol{x}) d\boldsymbol{x} = \int_A e^{f_0(\boldsymbol{x})} d\boldsymbol{x}.$$

.

Let us assume $f_0 \in \mathcal{H}$ for some reproducing kernel Hilbert space \mathcal{H} with reproducing kernel $R(\cdot, \cdot)$ and norm $\|\cdot\|_{\mathcal{H}}$. The following kernel ridge density estimator is widely used in the literature:

$$\widehat{f}_{KRD} = \operatorname*{argmin}_{f \in \mathcal{H}} \left\{ L_{n,\lambda}(f) := -\frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{X}_i) + \int_{\mathcal{X}} e^{f(\boldsymbol{x})} d\boldsymbol{x} + \lambda \|f\|_{\mathcal{H}}^2 \right\}.$$

By Riesz representation theorem, the analytic expression of the KRD estimator is $\hat{f}_{KRD}(\boldsymbol{x}) = \hat{c}_{KRD}^{\top} \boldsymbol{\Psi}(\boldsymbol{x})$, where

$$\hat{\boldsymbol{c}}_{KRD} = \operatorname*{argmin}_{\boldsymbol{c} \in \mathbb{R}^n} \left\{ -\frac{1}{n} \mathbf{1}^\top \boldsymbol{R} \boldsymbol{c} + \int_{\mathcal{X}} e^{\boldsymbol{c}^\top \boldsymbol{\Psi}(\boldsymbol{x})} d\boldsymbol{x} + \lambda \boldsymbol{c}^\top \boldsymbol{R} \boldsymbol{c} \right\},$$

and
$$\Psi(\boldsymbol{x}) = (R(\boldsymbol{X}_1, \boldsymbol{x}), \dots, R(\boldsymbol{X}_n, \boldsymbol{x}))^{\top} \in \mathbb{R}^n, \boldsymbol{R} = [R(\boldsymbol{X}_i, \boldsymbol{X}_j)] \in \mathbb{R}^{n \times n}.$$

To reduce computation, we consider a random sketching approach. Let $S \in \mathbb{R}^{p \times n}$ be a random sketching matrix with p << n. We consider the following random sketching estimator:

$$\widehat{f} = \operatorname*{argmin}_{f \in \mathcal{H}_S} L_{n,\lambda}(f),$$

where $\mathcal{H}_S = \{ f \in \mathcal{H} : f(\boldsymbol{x}) = \boldsymbol{c}^\top S \boldsymbol{\Psi}(\boldsymbol{x}) \text{ for } \boldsymbol{c} \in \mathbb{R}^p \}$. Hence it follows that $\hat{f}(\boldsymbol{x}) = \hat{\boldsymbol{c}}^\top S \boldsymbol{\Psi}(\boldsymbol{x})$, where

$$\widehat{\boldsymbol{c}} = \operatorname*{argmin}_{\boldsymbol{c} \in \mathbb{R}^p} \left\{ -\frac{1}{n} \mathbf{1}^\top R S^\top \boldsymbol{c} + \int_{\mathcal{X}} e^{\boldsymbol{c}^\top S \boldsymbol{\Psi}(\boldsymbol{x})} d\boldsymbol{x} + \lambda \boldsymbol{c}^\top S R S^\top \boldsymbol{c} \right\}.$$

Compare with the classical KRD, the random sketched estimator only requires estimating a p-dimensional vector.

2. Upper Bound

Assumption A. d

Lemma 1. If π_X is the uniform distribution over \mathcal{X} , then

$$\psi_{i}(\boldsymbol{x}) = \varphi_{i_1}(x_1)\varphi_{i_2}(x_2)\dots\varphi_{i_r}(x_r), \tag{2.1}$$

where $\varphi_1(x) = 1, \varphi_{2i}(x) = \sqrt{2}\sin(2i\pi x), \varphi_{2i+1}(x) = \sqrt{2}\cos(2i\pi x)$ for $i \in \mathbb{N}$.

Lemma 2. Under Assumption xxx, the following statements hold for some constant C > 0.

- (i) $\|\mathcal{W}_{\lambda}f\|_{L_2} \leq \|\mathcal{W}_{\lambda}f\|_{\lambda} \leq C\lambda^{1/2}\|f\|_{\mathcal{H}};$
- (ii) $\sup_{\boldsymbol{x}, \boldsymbol{x}' \in \mathcal{X}} |K(\boldsymbol{x}, \boldsymbol{x}')| \leq Ch^{-1}$;
- (iii) $||f||_{\sup} \le Ch^{-1/2}||f||_{\lambda}$, $||f||_{\sup} \le C||f||_{\mathcal{H}}$;
- (iv) $\|\mathcal{W}_{\lambda} f\|_{L_2} \leq \|f\|_{L_2}$;

Proof. (i) By definition, we have

$$\|\mathcal{W}_{\lambda}f\| = \sup_{\|g\|=1} \langle \mathcal{W}_{\lambda}f, g \rangle = \sup_{\|g\|=1} \lambda \langle f, g \rangle_{\mathcal{H}} \leqslant \lambda \|f\|_{\mathcal{H}} \sup_{\|g\|=1} \|g\|_{\mathcal{H}}.$$

Since $\|g\|^2 = V(g,g) + \lambda \|g\|_{\mathcal{H}}^2$, we see that $\lambda^{1/2} \|g\|_{\mathcal{H}} \leqslant \|g\| = 1$, which completes the proof.

(ii) By Assumption xxx, we have

$$|K(\boldsymbol{x}, \boldsymbol{x})| = \left| \sum_{\boldsymbol{i} \in \mathbb{I}} \frac{\psi_{\boldsymbol{i}}(\boldsymbol{x}) \psi_{\boldsymbol{i}}'(\boldsymbol{x})}{1 + \lambda/\rho_{\boldsymbol{i}}} \right| \leqslant \sum_{\boldsymbol{i} \in \mathbb{I}} \frac{C}{1 + \lambda/\rho_{\boldsymbol{i}}} = Ch^{-1}.$$

- (iii) Using statement (ii), we show that $|f(\boldsymbol{x})| = |\langle f, K_{\boldsymbol{x}} \rangle| \leqslant ||f|| ||K_{\boldsymbol{x}}|| = ||f|| \sqrt{K(\boldsymbol{x}, \boldsymbol{x})} \leqslant C||f||h^{-1/2}$. Similarly, we have $|f(\boldsymbol{x})| = |\langle f, R_{\boldsymbol{x}} \rangle_{\mathcal{H}}| \leqslant ||f||_{\mathcal{H}} ||R_{\boldsymbol{x}}||_{\mathcal{H}} = ||f||_{\mathcal{H}} \sqrt{R(\boldsymbol{x}, \boldsymbol{x})} \leqslant C||f||_{\mathcal{H}}$.
- (iv) For any $f \in \mathcal{H}$, it admits a series expansion $f = \sum_{i \in \mathbb{I}} c_i \psi_i$ with $c_i = V(f, \psi_i)$. Since $\mathcal{W}_{\lambda} \psi_i = \lambda \psi_i / (\lambda + \rho_i)$, we show that $\mathcal{W}_{\lambda} f = \sum_{i \in \mathbb{I}} c_i \lambda \psi_i / (\lambda + \rho_i)$ and

$$V(\mathcal{W}_{\lambda}f, \mathcal{W}_{\lambda}f) = \sum_{i \in \mathbb{I}} \frac{\lambda^2 c_i^2}{(\lambda + \rho_i)^2} \leqslant \sum_{i \in \mathbb{I}} c_i^2 = V(f, f).$$

Theorem 1. Upper bound

Proof. The result will be proved by contradiction. Let us assume that for some $\epsilon, B_{\epsilon} > 0$, it holds that $\mathbb{P}(E_{n,B}) \geq \epsilon$ for all $B \geq B_{\epsilon}$. Here $E_{n,B} = \{\|\hat{f} - \hat{f}_*\|_{\lambda} \geq B\delta_n, \|\hat{f}_* - f_0\|_{\lambda} \leq B\delta_n/K\}$ is an event for some 0 < K < B. W.L.O.G, we can assume $B_{\epsilon} \geq 1$.

On event $E_{n,B}$, the definition of \hat{f} implies that

$$\inf_{f \in \mathcal{H}_S: \|f - \hat{f}_*\|_{\lambda} \ge B\delta_n} L_{n,\lambda}(f) - L_{n,\lambda}(\hat{f}_*) \le 0.$$

By convexity of $f \to L_{n,\lambda}(f)$, it holds that

$$\inf_{f \in \mathcal{H}_S: \|f - \hat{f}_*\|_{\lambda} = B\delta_n} L_{n,\lambda}(f) - L_{n,\lambda}(\hat{f}_*) \leq 0.$$

Hence, there is a sequence $f_n \in \mathcal{H}_S$ such that $||f_n - \hat{f}_*||_{\lambda} = B\delta_n$ and $L_{n,\lambda}(f_n) - L_{n,\lambda}(\hat{f}_*) \leq 0$. Let $g_n = f_n - f_0$, and it follows from triangular inequality that

$$B(1-1/K)\delta_n \leqslant ||g||_{\lambda} \leqslant 2B\delta_n.$$

As a consequence, it holds on event $E_{n,B}$ that

$$L_{n,\lambda}(f_0 + g_n) - L_{n,\lambda}(f_0) \leqslant L_{n,\lambda}(\widehat{f}_*) - L_{n,\lambda}(f_0).$$

By direct examination, it follows that

$$\begin{split} &L_{n,\lambda}(f_{0}+g_{n})-L_{n,\lambda}(f_{0})\\ &=-\mathbb{P}_{n}g_{n}+\int_{\mathcal{X}}e^{f_{0}(\boldsymbol{x})}\left\{e^{g_{n}(\boldsymbol{x})}-1\right\}d\boldsymbol{x}+\lambda\|f_{0}+g_{n}\|_{\mathcal{H}}^{2}-\lambda\|f_{0}\|_{\mathcal{H}}^{2}\\ &=-\mathbb{P}_{n}g_{n}+\int_{\mathcal{X}}e^{f_{0}(\boldsymbol{x})}\left\{e^{g_{n}(\boldsymbol{x})}-1\right\}d\boldsymbol{x}+\lambda\|g_{n}\|_{\mathcal{H}}^{2}+2\lambda\langle f_{0},g_{n}\rangle_{\mathcal{H}}\\ &\stackrel{(i)}{\geqslant}-\kappa_{n}\|g_{n}\|_{\lambda}-\mathbb{P}g_{n}+\int_{\mathcal{X}}e^{f_{0}(\boldsymbol{x})}\left\{e^{g_{n}(\boldsymbol{x})}-1\right\}d\boldsymbol{x}+\lambda\|g_{n}\|_{\mathcal{H}}^{2}+2\lambda\langle f_{0},g_{n}\rangle_{\mathcal{H}}\\ &=-\kappa_{n}\|g_{n}\|_{\lambda}+\int_{\mathcal{X}}e^{f_{0}(\boldsymbol{x})}\left\{e^{g_{n}(\boldsymbol{x})}-1-g_{n}(\boldsymbol{x})-\frac{1}{2}g_{n}^{2}(\boldsymbol{x})\right\}d\boldsymbol{x}+\lambda\|g_{n}\|_{\mathcal{H}}^{2}+2\lambda\langle f_{0},g_{n}\rangle_{\mathcal{H}}+\frac{1}{2}\|g_{n}\|_{L_{2}}^{2}\\ &\stackrel{(ii)}{\geqslant}-\kappa_{n}\|g_{n}\|_{\lambda}-\frac{1}{4}\|g_{n}\|_{L_{2}}^{2}+\lambda\|g_{n}\|_{\mathcal{H}}^{2}+2\lambda\langle f_{0},g_{n}\rangle_{\mathcal{H}}+\frac{1}{2}\|g_{n}\|_{L_{2}}^{2}\\ &=-\kappa_{n}\|g_{n}\|_{\lambda}+\frac{1}{4}\|g_{n}\|_{L_{2}}^{2}+\lambda\|g_{n}\|_{\mathcal{H}}^{2}+2\lambda\langle f_{0},g_{n}\rangle_{\mathcal{H}}\\ &\stackrel{(iii)}{\geqslant}-\kappa_{n}\|g_{n}\|_{\lambda}+\frac{1}{4}\|g_{n}\|_{\lambda}^{2}-2\lambda\|f_{0}\|_{\mathcal{H}}\|g_{n}\|_{\lambda}, \end{split}$$

where xxx. By similar argument, we have

$$L_{n,\lambda}(\widehat{f_*}) - L_{n,\lambda}(f_0) \leqslant \kappa_n \|\widehat{f_*} - f_0\|_{\lambda} + \|\widehat{f_*} - f_0\|_{\lambda}^2 + 2\lambda \|f_0\|_{\mathcal{H}} \|\widehat{f_*} - f_0\|_{\mathcal{H}}$$

$$\stackrel{(i)}{\leqslant} B\kappa_n \delta_n / K + B^2 \delta_n^2 / K^2 + 2\lambda^{1/2} \|f_0\|_{\mathcal{H}} \delta_n / K.$$

Here xxx.

Combining the above two displays, we have

$$\frac{1}{4} \|g_n\|_{\lambda}^2 \leq B\kappa_n \delta_n / K + B^2 \delta_n^2 / K^2 + 2\lambda^{1/2} \|f_0\|_{\mathcal{H}} \delta_n / K + \kappa_n \|g_n\|_{\lambda} + 2\lambda^{1/2} \|f_0\|_{\mathcal{H}} \|g_n\|_{\lambda}.$$

Since $x^2 \le A + Bx$ implies $x \le \sqrt{2A} + 2B \le 2\sqrt{A} + 2B$, the preceding leads to

$$||g_{n}||_{\lambda} \leq 4\sqrt{B\kappa_{n}\delta_{n}/K + B^{2}\delta_{n}^{2}/K^{2} + 2\lambda^{1/2}||f_{0}||_{\mathcal{H}}\delta_{n}/K} + 2(\kappa_{n} + 2\lambda^{1/2}||f_{0}||_{\mathcal{H}})}$$

$$\stackrel{(i)}{\leq} 4\sqrt{B^{2}\kappa_{n}\delta_{n}/K^{2} + B^{2}\delta_{n}^{2}/K^{2} + 2B^{2}\lambda^{1/2}||f_{0}||_{\mathcal{H}}\delta_{n}/K^{2}} + 2(\kappa_{n} + 2\lambda^{1/2}||f_{0}||_{\mathcal{H}})}$$

$$\leq 4BK^{-1}\sqrt{\kappa_{n}^{2} + \delta_{n}^{2} + \delta_{n}^{2} + ||f_{0}||_{\mathcal{H}}\lambda + ||f_{0}||_{\mathcal{H}}\delta_{n}^{2}} + 4BK^{-1}(\kappa_{n} + \lambda^{1/2}||f_{0}||_{\mathcal{H}})}$$

$$\leq 4BK^{-1}(2\delta_{n} + ||f_{0}||_{\mathcal{H}}^{1/2}\delta_{n} + 2\kappa_{n} + ||f_{0}||_{\mathcal{H}}\lambda^{1/2} + ||f_{0}||_{\mathcal{H}}^{1/2}\lambda^{1/2})$$

$$\leq (8 + ||f_{0}||_{\mathcal{H}} + ||f_{0}||_{\mathcal{H}}^{1/2})BK^{-1}(\delta_{n} + \kappa_{n} + \lambda^{1/2})$$

$$\stackrel{(ii)}{\leq} 2(8 + ||f_{0}||_{\mathcal{H}} + ||f_{0}||_{\mathcal{H}}^{1/2})BK^{-1}\delta_{n},$$

where xxx. Noting that $||g_n||_{\lambda} \ge B(1-1/K)\delta_n$ holds on event $E_{n,B}$, we conclude that

$$\mathbb{P}\left(B(1-1/K)\delta_{n} \leqslant \|g_{n}\|_{\lambda} \leqslant 2(8+\|f_{0}\|_{\mathcal{H}}+\|f_{0}\|_{\mathcal{H}}^{1/2})BK^{-1}\delta_{n}\right) \geqslant \mathbb{P}(E_{n,B}) \geqslant \epsilon,$$

for all $B \ge B_{\epsilon}$. Now, we can choose K such that

$$K-1 > 2(8 + ||f_0||_{\mathcal{H}} + ||f_0||_{\mathcal{H}}^{1/2}).$$

Hence, xxx implies that $0 \ge \epsilon$, which is a contradiction.

$$0 \leq L_{n,\lambda}(\hat{f}_{*}) - L_{n,\lambda}(f_{0} + g_{n})$$

$$= L_{n,\lambda}(\hat{f}_{*}) - L_{n,\lambda}(f_{0} + g_{n})$$

$$= \mathbb{P}_{n}\hat{f} - \mathbb{P}_{n}\hat{f}_{*} + \int_{\mathcal{X}} e^{\hat{f}_{*}(\boldsymbol{x})} d\boldsymbol{x} - \int_{\mathcal{X}} e^{\hat{f}(\boldsymbol{x})} d\boldsymbol{x} + \lambda \|\hat{f}_{*}\|_{\mathcal{H}}^{2} - \lambda \|\hat{f}\|_{\mathcal{H}}^{2}$$

$$\leq -\kappa_{n} \|\hat{f} - f_{0}\|_{L_{2}} + \kappa_{n} \|\hat{f}_{*} - f_{0}\|_{L_{2}} + \mathbb{P}(\hat{f} - \mathbb{P}\hat{f}_{*})$$

$$+ \int_{\mathcal{X}} e^{\hat{f}_{*}(\boldsymbol{x})} d\boldsymbol{x} - \int_{\mathcal{X}} e^{\hat{f}(\boldsymbol{x})} d\boldsymbol{x} + \lambda \|\hat{f}_{*}\|_{\mathcal{H}}^{2} - \lambda \|\hat{f}\|_{\mathcal{H}}^{2}$$

$$\leq C\kappa_{n} \|\hat{f}\|_{\mathcal{H}} + C\kappa_{n} \|\hat{f}_{*}\|_{\mathcal{H}} + \mathbb{P}\hat{f} - \mathbb{P}\hat{f}_{*} + \int_{\mathcal{X}} e^{\hat{f}_{*}(\boldsymbol{x})} d\boldsymbol{x} - \int_{\mathcal{X}} e^{\hat{f}(\boldsymbol{x})} d\boldsymbol{x} + \lambda \|\hat{f}_{*}\|_{\mathcal{H}}^{2} - \lambda \|\hat{f}\|_{\mathcal{H}}^{2}$$

$$-\mathbb{P}(\hat{f} - f_0) + \int_{\mathcal{X}} e^{f_0(\mathbf{x})} \left\{ e^{\hat{f}(\mathbf{x}) - f_0(\mathbf{x})} - 1 \right\} + \lambda \|\hat{f}\|_{\mathcal{H}}^2 - C\kappa_n \|\hat{f}\|_{\mathcal{H}}$$

$$\leq -\mathbb{P}(\hat{f}_* - f_0) + \int_{\mathcal{X}} e^{f_0(\mathbf{x})} \left\{ e^{\hat{f}_*(\mathbf{x}) - f_0(\mathbf{x})} - 1 \right\} + \lambda \|\hat{f}_*\|_{\mathcal{H}}^2 + C\kappa_n \|\hat{f}_*\|_{\mathcal{H}}$$

$$\leq C \|\hat{f}_* - f_0\|_{L_2}^2 + \lambda \|\hat{f}_*\|_{\mathcal{H}}^2 + C\kappa_n \|\hat{f}_*\|_{\mathcal{H}}$$

$$\leq C(\delta_n^2 + \lambda + \kappa_n).$$

$$\delta_n = n^{-\frac{2m}{2m+1}} +$$

Hence, it holds that

$$\|\widehat{f}\|_{\mathcal{H}}^2 \leqslant C(\delta_n^2/\lambda + 1 + \kappa_n/\lambda + \kappa_n^2/\lambda^2) = O_P(1).$$

$$\int_{\mathcal{X}} e^{f(\boldsymbol{x})} d\boldsymbol{x} - \int_{\mathcal{X}} e^{f_0(\boldsymbol{x})} d\boldsymbol{x}$$

Lemma 3.

Proof.

$$-\mathbb{E}\{g(\boldsymbol{X})\}-1+\int_{\mathcal{X}}e^{f_0(\boldsymbol{x})+g(\boldsymbol{x})}d\boldsymbol{x}=\int_{\mathcal{X}}e^{f_0(\boldsymbol{x})}\left\{e^{g(\boldsymbol{x})}-1-g(\boldsymbol{x})\right\}d\boldsymbol{x}\geqslant 0.$$

Lemma 4. $||f||_{\sup}^2 \leq Ch^{-1}(||f||_{L_2}^2 + \lambda ||f||_{\mathcal{H}}^2)$

Lemma 5. For any t > 0, it holds that $e^{-t}x^2/2 \le e^x - 1 - xe^tx^2/2$ when $x \in [-t, t]$

Proof. We only prove the lower bound as the upper bound can be proved similarly. Let g(x) = $e^x - 1 - x - e^{-t}x^2/2$, and it holds that

$$g'(x) = e^x - 1 - e^{-t}x.$$

When $x \in [0, t]$, the inequality $e^x - 1 \ge x \ge e^{-t}x$ implies $g'(x) \ge 0$. When $x \in [-t, 0]$, mean value theorem implies that

$$1 - e^x = e^0 - e^x = -xe^{sx} \geqslant -xe^{-t}$$

where $s \in [0,1]$. Therefore, we show that $g'(x) \leq 0$ when $x \in [-t,0]$. Therefore, it follows that $g(x) \geqslant 0 \text{ for all } x \in [-t, t]$

3. Some Lemmas

Lemma 6.

Proof. When $r=1, \{\phi_i, i \geq 1\}$ is the Fourier basis of \mathbb{S}_m , and $\langle \phi_k, \phi_s \rangle_{L_2} = \delta_{ks}$. Here, we use the fact that $\pi_{\boldsymbol{X}}$ is the uniform density. Direct examination leads to

$$\langle \phi_k, \phi_k \rangle_{\mathbb{S}_m} = \begin{cases} 1 & \text{if } k = 1, \\ (2i\pi)^{2m} & \text{if } k = 2i, 2i - 1 \text{ with } i \geqslant 1, \end{cases}$$

and $\langle \phi_k, \phi_s \rangle_{\mathbb{S}_m} = 0$ if $k \neq s$. Hence, we conclude that $\langle \phi_k, \phi_k \rangle_{\mathbb{S}_m} \approx k^{2m}$.

When r > 1, the definition of tensor product space implies $\{\psi_{i}, i \in \mathbb{I}_{q}\}$ is a basis of \mathcal{H} under $\langle \cdot, \cdot \rangle_{L_{2}}$. Moreover, since $\pi_{\mathbf{X}}$ is the uniform density, using the result of r = 1, we can verify $\langle \psi_{i}, \psi_{j} \rangle_{L_{2}} = \delta_{ij}$ and $\langle \psi_{i}, \psi_{j} \rangle_{\mathcal{H}} = \rho_{i}\delta_{ij}$ with $\rho_{i} \approx i^{2m}$.

$$\langle f, g \rangle = V(f, g) + \lambda \langle f, g \rangle_{\mathcal{H}}, \quad ||f||^2 = \langle f, f \rangle$$
 (3.1)

3.1. Modeling Continuous Variables

3.2. Modeling Discrete Variables

$$D(x,y) = I(x = y) = 1/S_i + \{I(x = y) - 1/S_i\}$$

$$\langle f, g \rangle_{\mathcal{H}_i} = \sum_{k=1}^{S_i} f(k)g(k)$$

$$\langle f, D_x \rangle_{\mathcal{H}_i} = \sum_{k=1}^{S_i} f(k) D_x(k) = f(x)$$

$$e_{i,1}(x) = 1,$$

3.3. Tensor Product Space

$$R^{(q)}(\boldsymbol{x}, \boldsymbol{y}) = \prod_{i=1}^{r} H(x_i, y_i) \times \prod_{i=r+1}^{r+d} D(x_i, y_i).$$

$$\mathbb{I} = \{ \mathbf{i} = (i_1, \dots, i_{r+d}) : i_1, \dots, i_r \in \mathbb{N}_+, i_k \in [S_k] \text{ for } k = r+1, \dots, r+d \}$$

$$\begin{split} & \mathbb{I}_{cc} = \{ \boldsymbol{i} \in \mathbb{I} : i_1 = 1 \text{ or } i_2 = 1 \}, \\ & \mathbb{I}_{cd} = \{ \boldsymbol{i} \in \mathbb{I} : i_1 = 1 \text{ or } i_{r+1} = 1 \}, \\ & \mathbb{I}_{dd} = \{ \boldsymbol{i} \in \mathbb{I} : i_{r+1} = 1 \text{ or } i_{r+2} = 1 \}, \end{split}$$

$$\rho_{\boldsymbol{i}} \asymp i_1^{-2m} \dots i_r^{-2m}$$

$$\psi_{i}(\mathbf{x}) = \phi_{i_{1}}(x_{1}) \dots \phi_{i_{r}}(x_{r}) e_{r+1, i_{r+1}}(x_{r+1}) \dots e_{r+d, i_{r+d}}(x_{r+d})$$

$$\langle f, g \rangle_{L_2} = \int_{\mathcal{X}} f(\boldsymbol{x}) g(\boldsymbol{x}) e^{f_0(\boldsymbol{x})} d\boldsymbol{x},$$

$$V(f, g) = \int_{\mathcal{X}} f(\boldsymbol{x}) g(\boldsymbol{x}) d\boldsymbol{x},$$

$$\langle f, g \rangle = V(f, g) + \lambda \langle f, g \rangle_{\mathcal{H}}$$

Let $\mathcal{D}_i = \{1, \dots, S_i\}$, let us define

$$\widehat{f} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{X}_i) + \int_{\mathcal{X}} e^{f(\boldsymbol{x})} d\boldsymbol{x} + \lambda \|f\|_{\mathcal{H}}^{2} \right\},$$

$$\widehat{f}^* = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} W_i f(\boldsymbol{X}_i) + \int_{\mathcal{X}} e^{f(\boldsymbol{x})} d\boldsymbol{x} + \lambda \|f\|_{\mathcal{H}}^{2} \right\},$$

$$L_{n,\lambda}(f) = -\frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{X}_i) + \int_{\mathcal{X}} e^{f(\boldsymbol{x})} d\boldsymbol{x} + \lambda \|f\|_{\mathcal{H}}^{2},$$

$$L_{n,\lambda}^{*}(f) = -\frac{1}{n} \sum_{i=1}^{n} W_i f(\boldsymbol{X}_i) + \int_{\mathcal{X}} e^{f(\boldsymbol{x})} d\boldsymbol{x} + \lambda \|f\|_{\mathcal{H}}^{2}.$$

$$\kappa_n \stackrel{\text{def}}{=} \sup_{f \in \mathcal{F}_1} |(\mathbb{P}_n - \mathbb{P})(f)| = O_P\left(\frac{1}{\sqrt{nh}}\right). \tag{3.2}$$

Assumption B. (i) $f_0 \in \mathcal{H}$ and $||f_0||_{\mathcal{H}} < \infty$.

4. Some Lemmas

Lemma 7. If 2mk > 1 and $\lambda \to 0$, then it follows that

$$\begin{split} \sum_{\boldsymbol{i} \in \mathbb{I}} \frac{1}{(1 + \lambda i_1^{2m} \dots i_r^{2m})^k} & \asymp \lambda^{-\frac{1}{2m}} [\log(1/\lambda)]^{r-1}, \\ \sum_{\boldsymbol{i} \in \mathbb{I}_{cc}} \frac{1}{(1 + \lambda i_1^{2m} \dots i_r^{2m})^k} & \asymp \lambda^{-\frac{1}{2m}} [\log(1/\lambda)]^{r-2}, \\ \sum_{\boldsymbol{i} \in \mathbb{I}_{cd}} \frac{1}{(1 + \lambda i_1^{2m} \dots i_r^{2m})^k} & \asymp \lambda^{-\frac{1}{2m}} [\log(1/\lambda)]^{r-1}, \\ \sum_{\boldsymbol{i} \in \mathbb{I}_{cd}} \frac{1}{(1 + \lambda i_1^{2m} \dots i_r^{2m})^k} & \asymp \lambda^{-\frac{1}{2m}} [\log(1/\lambda)]^{r-1}. \end{split}$$

Proof. This is xxx.

5. Lower Bound

Lemma 8. There is a constant $c_{m,r} > 0$ depending on m,r such that if $||f||_{\mathcal{H}} \leq c_{m,r}$, then it holds that $\log(1+f) \in \mathcal{H}$ and $||\log(1+f)||_{\mathcal{H}} \geq ||f||_{\mathcal{H}}/4$.

Proof. If f = 0, the statements hold trivially. It suffices to consider the case when $f \neq 0$. By Lemma 2.2 in Lin (2000), there is a constant $C_{m,r} \geq 1$ depending on m, r such that

$$||f^2||_{\mathcal{H}} \leqslant C_{m,r} ||f||_{\mathcal{H}}^2.$$

Let $c_{m,r} > 0$ be a small constant such that $C_{m,r}c_{m,r} \leq 1/3$, and the above inequality implies that

$$||f^k||_{\mathcal{H}} \leqslant C_{m,r}^{k-1} ||f||_{\mathcal{H}}^k \leqslant C_{m,r}^{k-1} c_{m,r}^k \leqslant C_{m,r}^k c_{m,r}^k \leqslant 3^{-k}.$$

Let us define a sequence of functions

$$g_n(x) = \sum_{k=0}^n \frac{(-1)^k [f(x)]^{k+1}}{k+1}.$$

By direct examination, it holds that

$$\|g_n - g_{n+s}\|_{\mathcal{H}} \leqslant \sum_{k=n+1}^{n+s} \frac{3^{-(k+1)}}{k+1} \leqslant \sum_{k=n+1}^{\infty} 3^{-(k+1)} \leqslant 3^{-(n+1)} \to 0 \quad \text{as } n, s \to \infty.$$

Therefore, we show that g_n is a Cauchy sequence in \mathcal{H} . Since \mathcal{H} is complete, there is a limit $g \in \mathcal{H}$ such that $\|g_n - g\|_{\mathcal{H}} \to 0$. In addition, Lemma 2(iii) implies that $\|g_n - g\|_{\sup} \to 0$.

Finally, let us verify g = f. Since Lemma 2(iii) implies that $||f||_{\sup} \leq C||f||_{\mathcal{H}} \leq Cc_{m,k}$ for some C > 0 depending on m, r, we can choose $c_{m,k} > 0$ small enough such that $||f||_{\sup} \leq 1/2$. Hence, it follows from Taylor's expansion of $\log(1+x)$ that $||g_n - \log(1+f)||_{\sup} \to 0$. By the uniqueness of limit in supremum norm, we conclude that $g = \log(1+f) \in \mathcal{H}$, which is the first statement.

For the second statement, the Taylor's expansion of $\log(1-x)$ implies that

$$||g_{n} - f||_{\mathcal{H}} = \left\| \sum_{k=1}^{n} \frac{(-1)^{k} f^{k+1}}{k+1} \right\|_{\mathcal{H}} \leq \sum_{k=1}^{n} \frac{1}{k+1} C_{m,r}^{k} ||f||_{\mathcal{H}}^{k+1}$$

$$= C_{m,r}^{-1} \sum_{k=0}^{n} \frac{1}{k+1} C_{m,r}^{k+1} ||f||_{\mathcal{H}}^{k+1} - ||f||_{\mathcal{H}}$$

$$\leq C_{m,r}^{-1} \sum_{k=0}^{\infty} \frac{1}{k+1} C_{m,r}^{k+1} ||f||_{\mathcal{H}}^{k+1} - ||f||_{\mathcal{H}}$$

$$= -C_{m,r}^{-1} \log \left(1 - C_{m,r} ||f||_{\mathcal{H}} \right) - ||f||_{\mathcal{H}}.$$

Combining the above inequality and triangular inequality, it holds that

$$||g_n||_{\mathcal{H}} \ge ||f||_{\mathcal{H}} - ||g_n - f||_{\mathcal{H}} \ge 2||f||_{\mathcal{H}} + C_{m,r}^{-1} \log \left(1 - C_{m,r} ||f||_{\mathcal{H}}\right)$$

$$\stackrel{\text{(i)}}{\ge} 2||f||_{\mathcal{H}} - \frac{3}{2}||f||_{\mathcal{H}} = \frac{1}{2}||f||_{\mathcal{H}},$$

where (i) is is due to $\log(1-x) \ge -3x/2$ when $x \in [0,1/3]$ and the fact that $C_{m,r} ||f||_{\mathcal{H}} \le 1/3$. Since $||g_n - g||_{\mathcal{H}} \to 0$ and $||f||_{\mathcal{H}} > 0$, we conclude that $||g||_{\mathcal{H}} \ge ||f||_{\mathcal{H}}/4$.

Lemma 9. Assume $f, g \in \mathcal{H}$ such that $||f||_{\sup} \leq C$ and $||g||_{\sup} \leq C$, then it holds that

$$e^{-2C}V(f-g, f-g) \le V(e^f - e^g, e^f - e^g) \le e^{2C}V(f-g, f-g).$$

Proof. By Taylor expansion, it holds that

$$|e^{f(\boldsymbol{x})} - e^{g(\boldsymbol{x})}| = e^{u}|f(\boldsymbol{x}) - g(\boldsymbol{x})| \leqslant e^{C}|f(\boldsymbol{x}) - g(\boldsymbol{x})|,$$

where u = u(x) is a value between f(x) and g(x). Therefore, we have

$$V(e^f - e^g, e^f - e^g) = \int_{\mathcal{X}} |e^{f(\boldsymbol{x})} - e^{g(\boldsymbol{x})}|^2 d\boldsymbol{x} \leqslant e^{2C} \int_{\mathcal{X}} |f(\boldsymbol{x}) - g(\boldsymbol{x})|^2 d\boldsymbol{x} = e^{2C} V(f - g, f - g),$$

which is the upper bound. The lower bound can be proved similarly.

Lemma 10. Suppose that $f \in \mathcal{H}$ satisfies $\int_{\mathcal{X}} f(\boldsymbol{x}) d\boldsymbol{x} = 0$. Let w_f be a normalizing constant such that $\int_{\mathcal{X}} e^{f(\boldsymbol{x}) + w_f} d\boldsymbol{x} = 1$. There is a universal constant $B \in (0,1]$ such that for all f with $||f||_{\sup} \leq B$, the following statements hold:

(i).
$$|w_f| \leq 2V(f, f)$$
;
(ii). $\left| e^{f(\boldsymbol{x}) + w_f} - 1 - \left(f(\boldsymbol{x}) + w_f \right) \right| \leq |f(\boldsymbol{x}) + w_f|^2 \text{ for all } \boldsymbol{x} \in \mathcal{X}.$

Proof. Noting that

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2}, \quad \lim_{x \to 0} \frac{\log(1 + x)}{x} = 1, \quad \lim_{x \to 0} \frac{\log(1 - x)}{x} = -1$$

there is a $B \in (0,1]$ such that

$$|e^x - 1 - x| \le x^2, \text{ for all } |x| \le 3B,$$

$$\frac{1}{2}x \le \log(1+x) \le 2x, \text{ for all } 0 \le x \le 3B,$$

$$-2x \le \log(1-x) \le -\frac{1}{2}x, \text{ for all } 0 \le x \le 3B.$$

Hence, if $||f||_{\sup} \leq B$, it holds that

$$|e^{-w_f} - 1| = \left| \int_{\mathcal{X}} e^{f(\boldsymbol{x})} dx - 1 \right| = \left| \int_{\mathcal{X}} e^{f(\boldsymbol{x})} dx - \int_{\mathcal{X}} \left(1 + f(\boldsymbol{x}) \right) d\boldsymbol{x} \right| \leqslant \int_{\mathcal{X}} f^2(\boldsymbol{x}) d\boldsymbol{x} = V(f, f).$$

which further leads to $1 - V(f, f) \le e^{-w_f} \le 1 + V(f, f)$. Taking logarithm and using the fact that $V(f, f) \le B^2 \le B$, we see that

$$-2V(f,f) \leqslant -\log(1+V(f,f)) \leqslant w_f \leqslant -\log(1-V(f,f)) \leqslant 2V(f,f),$$

which is the first statement.

Moreover, the above inequality implies that

$$|f(x) + w_f| \le ||f||_{\sup} + |w_f| \le \delta + 2V(f, f) \le B + 2B^2 \le 3B.$$

Hence, we have

$$\left| e^{f(\boldsymbol{x}) + w_f} - 1 = (f(\boldsymbol{x}) + w_f) \right| \leq |f(\boldsymbol{x}) + w_f|^2,$$

for all $x \in \mathcal{X}$, which proves the second statement.

Lemma 11.

$$\begin{aligned} |\{\boldsymbol{i} \in \mathbb{I} : i_1 \dots i_{r+d} \leqslant C\}| &\approx [\log(C)]^{r-1}C, \\ |\{\boldsymbol{i} \in \mathbb{I}_{cc} : i_1 \dots i_{r+d} \leqslant C\}| &\approx [\log(C)]^{r-1}C, \\ |\{\boldsymbol{i} \in \mathbb{I}_{cd} : i_1 \dots i_{r+d} \leqslant C\}| &\approx [\log(C)]^{r-1}C, \\ |\{\boldsymbol{i} \in \mathbb{I}_{dd} : i_1 \dots i_{r+d} \leqslant C\}| &\approx [\log(C)]^{r-1}C, \end{aligned}$$

Proof. This is xxx

Lemma 12. For $(a_1, \ldots, a_r)^{\top} \in \mathbb{R}^r$, it follows that

$$\int_{\substack{y_1 \dots y_r \leqslant C \\ y_1 \dots y_r \geqslant 1}} y_1^{a_1} \dots y_r^{a_r} dy_1 \dots dy_r \asymp [\log(C)]^{N_{\max}-1} C^{a_{\max}+1}.$$

Here $a_{\max} = \max_{1 \leq i \leq r} a_i$ and $N_{\max} = \sum_{i=1}^r I(a_i = a_{\max})$.

Proof. Let $b_1 < b_2 < \ldots < b_p$ be the unique values among a_1, \ldots, a_r . For simplicity, we assume that p=3. The proof of $p \neq 3$ can be done similarly. Due to the symmetry, we always can relabel the indexes so that $a_1 = \ldots = a_{s_1} = b_1$, $a_{s_1+1} = \ldots = a_{s_2} = b_2$, and $a_{s_2+1} = \ldots = a_{s_3} = b_3$, where $s_1, s_2 - s_1, s_3 - s_2$ are the numbers of a_i 's that equals b_1, b_2 , and b_3 , respectively. In particular, we have $a_{\max} = b_3$, $r = s_3$, $N_{\max} = s_3 - s_2$ when p=3. Let I be the desired integral, and direct examination leads to

$$I = \int_{\substack{y_1 \dots y_{s_3} \leqslant C \\ y_1, \dots, y_r \geqslant 1}} y_1^{b_1} \dots y_{s_1}^{b_1} y_{s_1+1}^{b_2} \dots y_{s_2}^{b_2} y_{s_2+1}^{b_3} \dots y_{s_3}^{b_3}$$

$$\approx \int_{1}^{C} \int_{1}^{z_{s_3}} \dots \int_{1}^{z_2} z_1^{-1} \dots z_{s_1-1}^{-1} z_{s_1}^{b_1-b_2-1} z_{s_1+1} \dots z_{s_2-1}^{-1} z_{s_2}^{b_2-b_3-1} z_{s_2+1}^{-1} \dots z_{s_3-1}^{-1} z_{s_3}^{b_3}.$$

Using the fact that $b_i < b_{i+1}$, similar argument as in the proof of Lemma 7, we can show that

$$I \asymp \int_{1}^{C} [\log(z_{s_3})]^{s_3 - s_2 - 1} z_{s_3}^{b_3} dz_{s_3} \asymp [\log(C)]^{s_3 - s_2 - 1} C^{b_3 + 1}.$$

Since $N_{\text{max}} = s_3 - s_2$ and $a_{\text{max}} = b_3$, the result follows.

Lemma 13. For $(a_1,\ldots,a_r)^{\top} \in (0,\infty)^r$ and $(b_1,\ldots,b_r)^{\top} \in \mathbb{R}^r$, we have

$$\int_{\substack{x_1^{a_1} \dots x_r^{a_r} \leq C \\ x_1, \dots, x_r \geqslant 1}} x_1^{b_1} \dots x_r^{b_r} dx_1 \dots dx_r \simeq [\log(C)]^{N_* - 1} C^{\frac{b_* + 1}{a_*}}.$$

Here (a_*, b_*) satisfies $(b_* + 1)/a_* = \max_{1 \le i \le r} (b_i + 1)/a_i$ and $N_* = \sum_{i=1}^r I(a_i = a_*, b_i = b_*)$.

Proof. Change of variable leads to

$$\int_{\substack{x_1^{a_1} \dots x_r^{a_r} \leqslant C \\ x_1, \dots, x_r \geqslant 1}} x_1^{b_1} \dots x_r^{b_r} \simeq \int_{\substack{y_1 \dots y_r \leqslant C \\ y_1, \dots, y_r \geqslant 1}} y_1^{\frac{b_1+1}{a_1}-1} \dots y_1^{\frac{b_r+1}{a_r}-1}.$$

Using Lemma 12, we complete the proof.

Lemma 14. For any $\boldsymbol{\beta} = (\beta_1, \dots, \beta_r)^{\top} \in \mathbb{B}_q$, let $a_i = (m - \beta_i)/m$ for $i = 1, \dots, r$. Moreover, define $\mathbb{J} = \{ \boldsymbol{i} \in \mathbb{I} : i_1^{a_1} \dots i_r^{a_r} \leq C \}$. Then it follows that

$$\sum_{i \in \mathbb{T}} i_1^{2(m-\beta_1)} \dots i_r^{2(m-\beta_r)} \asymp [\log(C)]^{N_{\max} \wedge q - 1} C^{2m + \frac{m}{m - \beta_{\max}}}.$$

Here $\beta_{\max} = \max_{1 \le i \le r} \beta_i$ and $N_{\max} = \sum_{i=1}^r I(\beta_i = \beta_{\max})$.

Proof. For any $A \subseteq \{1, ..., r\}$, we define $\mathbb{J}_A = \{i \in \mathbb{J} : i_k > 1 \text{ for all } k \in A \text{ and } i_k = 1 \text{ for all } k \notin A\}$. By the definition, it follows that

$$\sum_{i \in \mathbb{J}} i_1^{2(m-\beta_1)} \dots i_r^{2(m-\beta_r)} \leqslant \sum_{A: |A| \leqslant q} \sum_{i \in \mathbb{J}_A} i_1^{2(m-\beta_1)} \dots i_r^{2(m-\beta_r)}.$$

For any $A = \{k_1, \ldots, k_s\}$ with $s = |A| \leq q$, it follows that

$$\sum_{i \in \mathbb{J}_A} i_1^{2(m-\beta_1)} \dots i_r^{2(m-\beta_r)} = \sum_{\substack{i_{k_1}^{a_{k_1}} \dots i_{k_s}^{a_{k_s}} \leqslant C \\ i_{k_1}, \dots, i_{k_s} \geqslant 1}} i_{k_1}^{2(m-\beta_{k_1})} \dots i_{k_s}^{2(m-\beta_{k_s})}$$

$$\stackrel{\text{(i)}}{\lesssim} [\log(C)]^{N_{\max} \wedge q - 1} C^{2m + \frac{m}{m - \beta_{\max}}}.$$

Here (i) is due to integration approximation and Lemma 13. Hence, we show that

$$\sum_{i \in \mathbb{I}} i_1^{2(m-\beta_1)} \dots i_r^{2(m-\beta_r)} \lesssim [\log(C)]^{N_{\max} \wedge q - 1} C^{2m + \frac{m}{m - \beta_{\max}}},$$

which is the upper bound.

To establish the lower bound, noting that $\beta \in \mathbb{B}_q$, we may assume $\beta_1, \ldots, \beta_q \geqslant 0$ and $\beta_{q+1} = \ldots = \beta_r = 0$ for simplicity. Let $A_0 = \{1, \ldots, q\}$, then it follows that

$$\sum_{i \in \mathbb{J}} i_1^{2(m-\beta_1)} \dots i_r^{2(m-\beta_r)} \quad \gtrsim \quad \sum_{i \in \mathbb{J}_{A_0}} i_1^{2(m-\beta_1)} \dots i_r^{2(m-\beta_r)}$$

$$= \quad \sum_{\substack{i_1^{a_1} \dots i_q^{a_q} \leqslant C \\ i_1, \dots, i_q \geqslant 1}} i_1^{2(m-\beta_1)} \dots i_q^{2(m-\beta_q)}$$

$$\stackrel{\text{(i)}}{\cong} \quad [\log(C)]^{N_{\max} \land q-1} C^{2m + \frac{m}{m-\beta_{\max}}},$$

where (i) is due to Lemma 13 and integration approximation. Hence, we prove the lower bound. Finally, the upper bound and lower bound together lead to the desired result. \Box

Lemma 15. Fro any $\boldsymbol{\beta} = (\beta_1, \dots, \beta_r)^{\top} \in \mathbb{B}_q$, let $a_i = (m - \beta_i)/m$ for $i = 1, \dots, r$. Moreover, define $\mathbb{J} = \{ \boldsymbol{i} \in \mathbb{I} : i_1^{a_1} \dots i_r^{a_r} \leq C \}$. Then it follows that

$$\sum_{i \in \mathbb{I}} i_1^{-2\beta_1} \dots i_r^{-2\beta_r} \approx [\log(C)]^{N_{\min} \wedge q - 1} C^{\frac{m(1 - 2\beta_{\min})}{(m - \beta_{\min})}}.$$

Here $\beta_{\min} = \min_{1 \leq i \leq r} \beta_i$ and $N_{\min} = \sum_{i=1}^r I(\beta_i = \beta_{\min})$.

Proof. The proof is similar to that of Lemma 14. Hence, we omit it.

Theorem 2. Let $\Omega = \{ f \in \mathcal{H} : ||f||_{\mathcal{H}} \leq 1, \int_{\mathcal{X}} e^{f(\boldsymbol{x})} d\boldsymbol{x} = 1 \}$, there is a constant C > 0 free of n such that

$$\inf_{\widehat{f}} \sup_{f \in \Omega} \mathbb{E}_f \left\{ \int_{\mathcal{X}} \left| \widehat{f}(\boldsymbol{x}) - f(\boldsymbol{x}) \right|^2 d\boldsymbol{x} \right\} \geqslant C \left(\frac{n}{\lceil \log(n) \rceil^{q-1}} \right)^{-\frac{2m}{2m+1}}.$$

Here the infimum is taking over all estimators based on n i.i.d. observations, and \mathbb{E}_f is to indicate that the expectation is with respect to observations X_1, \ldots, X_n generated from the density $p_f = e^f$.

Proof of Theorem 2. Let us define

$$\mathbb{J} = \left\{ i \in \mathbb{I}_r : i_1^a \dots i_q^a \leqslant N, i_1, \dots, i_q \geqslant 1, i_{q+1} = \dots = i_r = 1, \min\{i_1, \dots, i_q\} > 1 \right\}$$

and $d = \sum_{i \in \mathbb{J}} i_1^{2m} \dots i_q^{2m}$. Here $N \approx \left(n[\log(n)]^{1-q}\right)^{1/(2m+1)}$ is an integer. By Lemmas 11 and 14, we have

$$|\mathbb{J}| \approx [\log(N)]^{q-1}N, \quad d \approx [\log(N)]^{q-1}N^{2m+1}.$$
 (5.1)

For any binary sequence $b = \{b_i : i \in \mathbb{J}\} \in \{0,1\}^{|\mathbb{J}|}$ and constant c > 0 small enough, let us define

$$p_{\boldsymbol{b}}(\boldsymbol{x}) = \frac{c}{\sqrt{d}} \sum_{\boldsymbol{i} \in \mathbb{J}} b_{\boldsymbol{i}} \psi_{\boldsymbol{i}}(\boldsymbol{x}) + 1, \quad f_{\boldsymbol{b}}(\boldsymbol{x}) = \log \left(p_{\boldsymbol{b}}(\boldsymbol{x}) \right),$$

which corresponds to density and log density. It can be verified that $\int_{\mathcal{X}} p_{\boldsymbol{b}}(\boldsymbol{x}) d\boldsymbol{x} = 1$. Moreover, for all $\boldsymbol{b} \in \{0,1\}^{|\mathbb{J}|}$, it follows that

$$||p_{\boldsymbol{b}} - 1||_{\mathcal{H}}^2 \approx \frac{c^2}{d} \sum_{\boldsymbol{i} \in \mathbb{J}} b_{\boldsymbol{i}}^2 \rho_{\boldsymbol{i}}^{-1} \lesssim \frac{c^2}{d} \sum_{\boldsymbol{i} \in \mathbb{J}} i_1^{2m} \dots i_q^{2m} \stackrel{(\mathbf{i})}{=} c^2,$$

where (i) comes from the definition of d. Hence, if c > 0 is small enough, we have $||p_b - 1||_{\sup} \leq 1/2$, which further leads to

$$1/2 \leqslant p_{\boldsymbol{b}}(\boldsymbol{x}) \leqslant 2, \quad \text{for all } \boldsymbol{x} \in \mathcal{X}.$$
 (5.2)

By Lemma 8, we can choose c > 0 small enough such that

$$f_{\boldsymbol{b}} = \log(p_{\boldsymbol{b}}) = \log(1 + (p_{\boldsymbol{b}} - 1)) \in \mathcal{H}, \text{ for all } \boldsymbol{b} \in \{0, 1\}^{|\mathbb{J}|}.$$

Furthermore, Varshamov-Gilbert bound (Lemma 2.9 in Tsybakov, 2008) implies that there is a collection $\mathcal{B} \subseteq \{0,1\}^{|\mathbb{J}|}$ such that $\boldsymbol{b}_0 = (0,0,\ldots,0) \in \mathcal{B}, |\mathcal{B}| \geqslant 2^{|\mathbb{J}|/8}$ and $\sum_{\boldsymbol{i} \in \mathbb{J}} (b_{\boldsymbol{i}} - \widetilde{b}_{\boldsymbol{i}})^2 \geqslant |\mathbb{J}|/8$ for any different $\boldsymbol{b}, \widetilde{\boldsymbol{b}} \in \mathcal{B}$. By Taylor's theorem, we see that

$$|f_{\boldsymbol{b}}(\boldsymbol{x}) - f_{\tilde{\boldsymbol{b}}}(\boldsymbol{x})| = \left| \log \left(p_{\boldsymbol{b}}(\boldsymbol{x}) \right) - \log \left(p_{\tilde{\boldsymbol{b}}}(\boldsymbol{x}) \right) \right|$$

$$= \frac{1}{\left| sp_{\boldsymbol{b}}(\boldsymbol{x}) + (1-s)p_{\tilde{\boldsymbol{b}}}(\boldsymbol{x}) \right|} \left| p_{\boldsymbol{b}}(\boldsymbol{x}) - p_{\tilde{\boldsymbol{b}}}(\boldsymbol{x}) \right| \stackrel{\text{(I)}}{\geqslant} \frac{1}{2} \left| p_{\boldsymbol{b}}(\boldsymbol{x}) - p_{\tilde{\boldsymbol{b}}}(\boldsymbol{x}) \right|,$$

where $s \in [0, 1]$, and (i) is due to (5.2). Hence, it follows that

$$\int_{\mathcal{X}} \left| f_{\boldsymbol{b}}(\boldsymbol{x}) - f_{\tilde{\boldsymbol{b}}}(\boldsymbol{x}) \right|^{2} d\boldsymbol{x} \geqslant \frac{1}{4} \int_{\mathcal{X}} \left| p_{\boldsymbol{b}}(\boldsymbol{x}) - p_{\tilde{\boldsymbol{b}}}(\boldsymbol{x}) \right|^{2} d\boldsymbol{x}$$

$$= \frac{c^{2}}{4d} \int_{\mathcal{X}} \left| \sum_{\boldsymbol{i} \in \mathbb{J}} (b_{\boldsymbol{i}} - \tilde{b}_{\boldsymbol{i}}) \psi_{\boldsymbol{i}}(\boldsymbol{x}) \right|^{2} d\boldsymbol{x}$$

$$= \frac{c^{2}}{4d} \sum_{\boldsymbol{i} \in \mathbb{J}} (b_{\boldsymbol{i}} - \tilde{b}_{\boldsymbol{i}})^{2} \gtrsim \frac{|\mathbb{J}|}{d} \stackrel{\text{(i)}}{=} N^{-2m}, \tag{5.3}$$

for all different $b, \widetilde{b} \in \mathcal{B}$. Here (i) comes from (5.1).

Similarly, we can show that

$$KL(p_{b}, p_{b_{0}}) = \int_{\mathcal{X}} p_{b}(\boldsymbol{x}) \log \left(\frac{p_{b}(\boldsymbol{x})}{p_{b_{0}}(\boldsymbol{x})} \right) d\boldsymbol{x}$$

$$= \int_{\mathcal{X}} p_{b}(\boldsymbol{x}) \log \left(p_{b}(\boldsymbol{x}) \right) d\boldsymbol{x}$$

$$\leq \int_{\mathcal{X}} p_{b}(\boldsymbol{x}) \left(p_{b}(\boldsymbol{x}) - 1 \right) d\boldsymbol{x}$$

$$= \int_{\mathcal{X}} \left(p_{b}(\boldsymbol{x}) - 1 \right)^{2} d\boldsymbol{x}$$

$$= \frac{c^{2}}{d} \sum_{i \in \mathbb{I}} b_{i} \leq \frac{c^{2}}{d} |\mathbb{J}| \stackrel{\text{(i)}}{\simeq} \frac{c^{2}}{d} [\log(N)]^{q-1} N \approx N^{-2m}. \tag{5.4}$$

Here (i) comes from (5.1). By the choice of N, we have

$$KL(p_{\mathbf{b}}, p_{\mathbf{b}_0}) \lesssim N^{-2m} \simeq \frac{[\log(N)]^{q-1}N}{n} \simeq \frac{\log(|\mathcal{B}|)}{n} \simeq \frac{|\mathbb{J}|}{n}.$$
 (5.5)

Combining Fano's Lemma (Lemma 2.10 in Tsybakov, 2008) with (5.3)-(5.5), we show that the lower bound is N^{-2m} , which completes the proof after substituting the value of N.

Theorem 3. Let $\Omega = \{ f \in \mathcal{H} : ||f||_{\mathcal{H}} \leq 1, \int_{\mathcal{X}} e^{f(x)} dx = 1 \}$, there is a constant C > 0 free of nsuch that

$$\inf_{\widehat{f}} \sup_{f \in \Omega} \mathbb{E}_f \left\{ \int_{\mathcal{X}} \left| \partial^{\beta} \widehat{f}(\boldsymbol{x}) - \partial^{\beta} f(\boldsymbol{x}) \right|^2 d\boldsymbol{x} \right\} \geqslant C \left(\frac{n}{[\log(n)]^{q-1}} \right)^{-\frac{2(m-\beta)}{2m+1}}.$$

Here the infimum is taking over all estimators based on n i.i.d. observations, and \mathbb{E}_f is to indicate that the expectation is with respect to observations X_1, \ldots, X_n generated from the density $p_f = e^f$.

Proof of Theorem 3. Since $\beta \in \mathbb{B}_q$ with $\beta_1, \ldots, \beta_r \in \{0, \beta\}$ and $\sum_{i=1}^r I(\beta_i > 0) = q$, by symmetry, we can assume $\beta_1 = \ldots = \beta_q = \beta$ and $\beta_{q+1} = \ldots = \beta_r = 0$. Let us define $a = (m - \beta)/m$, $d = \sum_{i \in \mathbb{J}} i_1^{2(m-\beta)} \ldots i_q^{2(m-\beta)}$, and

$$\mathbb{J} = \{ \mathbf{i} \in \mathbb{I}_r : i_1^a \dots i_q^a \leqslant N, i_1, \dots, i_q \geqslant 1, i_{q+1} = \dots = i_r = 1, \mathbf{i} \neq (1, 1, \dots, 1) \}.$$

Here $N = (n[\log(n)]^{1-q})^{(m-\beta)/(2m^2+m)}$ is an integer. By Lemmas 11 and 14, we have

$$|\mathbb{J}| \simeq [\log(N)]^{q-1} N^{\frac{m}{m-\beta}}, \quad d \simeq [\log(N)]^{q-1} N^{2m + \frac{m}{m-\beta}}.$$
 (5.6)

For any binary sequence $\boldsymbol{b} = \{b_{\boldsymbol{i}} : \boldsymbol{i} \in \mathbb{J}\} \in \{0,1\}^{|\mathbb{J}|}$ and constant c > 0 small enough, let us define

$$f_{\boldsymbol{b}}(\boldsymbol{x}) = \frac{c}{\sqrt{d}} \sum_{\boldsymbol{i} \in \mathbb{I}} b_{\boldsymbol{i}} i_1^{-\beta} \dots i_q^{-\beta} \psi_{\boldsymbol{i}}(\boldsymbol{x}), \quad p_{\boldsymbol{b}}(\boldsymbol{x}) = e^{f_{\boldsymbol{b}}(\boldsymbol{x}) + w_{\boldsymbol{b}}},$$

where w_b is a normalizing constant such that $\int_{\mathcal{X}} e^{f_b(x) + w_b} dx = 1$.

It can be verified that $\int_{\mathcal{X}} p_{\boldsymbol{b}}(\boldsymbol{x}) d\boldsymbol{x} = 1$. Moreover, for all $\boldsymbol{b} \in \{0,1\}^{|\mathbb{J}|}$, it follows that

$$\|f_{\boldsymbol{b}}\|_{\sup}^{2} \lesssim \|f_{\boldsymbol{b}}\|_{\mathcal{H}}^{2} \asymp \frac{c^{2}}{d} \sum_{\boldsymbol{i} \in \mathbb{I}} b_{\boldsymbol{i}}^{2} i_{1}^{-2\beta} \dots i_{q}^{-2\beta} \rho_{\boldsymbol{i}}^{-1} \lesssim \frac{c^{2}}{d} \sum_{\boldsymbol{i} \in \mathbb{I}} i_{1}^{2(m-\beta)} \dots i_{q}^{2(m-\beta)} \stackrel{\text{(ii)}}{=} c^{2},$$

where (i) is due to Lemma 2(iii), and (ii) comes from the definition of d. Hence, if c > 0 is small enough, Lemma 10 implies the following statements:

$$|w_{\boldsymbol{b}}| \leq 2V(f_{\boldsymbol{b}}, f_{\boldsymbol{b}}), \quad \left| e^{f_{\boldsymbol{b}}(\boldsymbol{x}) + w_{\boldsymbol{b}}} - 1 - \left(f_{\boldsymbol{b}}(\boldsymbol{x}) + w_{\boldsymbol{b}} \right) \right| \leq |f_{\boldsymbol{b}}(\boldsymbol{x}) + w_{\boldsymbol{b}}|^2 \text{ for all } \boldsymbol{x} \in \mathcal{X}.$$
 (5.7)

Furthermore, Varshamov-Gilbert bound (Lemma 2.9 in Tsybakov, 2008) implies that there is a collection $\mathcal{B} \subseteq \{0,1\}^{|\mathbb{J}|}$ such that $\boldsymbol{b}_0 = (0,0,\ldots,0) \in \mathcal{B}, |\mathcal{B}| \geqslant 2^{|\mathbb{J}|/8}$ and $\sum_{i \in \mathbb{J}} (b_i - \widetilde{b}_i)^2 \geqslant |\mathbb{J}|/8$ for any different $\boldsymbol{b}, \widetilde{\boldsymbol{b}} \in \mathcal{B}$. Hence, we have

$$\int_{\mathcal{X}} \left| \partial^{\beta} f_{\boldsymbol{b}}(\boldsymbol{x}) - \partial^{\beta} f_{\tilde{\boldsymbol{b}}}(\boldsymbol{x}) \right|^{2} d\boldsymbol{x} = \frac{c^{2}}{d} \int_{\mathcal{X}} \left| \sum_{i \in \mathbb{J}} (b_{i} - \tilde{b}_{i}) i_{1}^{-\beta} \dots i_{q}^{-\beta} \partial^{\beta} \psi_{i}(\boldsymbol{x}) \right|^{2} d\boldsymbol{x}$$

$$\stackrel{\text{(i)}}{\approx} \frac{c^{2}}{d} \sum_{i \in \mathbb{J}} (b_{i} - \tilde{b}_{i})^{2} \gtrsim \frac{|\mathbb{J}|}{d} \stackrel{\text{(ii)}}{\approx} N^{-2m}, \tag{5.8}$$

for all different $b, \tilde{b} \in \mathcal{B}$. Here (i) is due to xxx, and (ii) comes from (5.6).

By direct examination, we have

$$KL(p_{b}, p_{b_{0}}) = \int_{\mathcal{X}} p_{b}(\boldsymbol{x}) \log \left(\frac{p_{b}(\boldsymbol{x})}{p_{b_{0}}(\boldsymbol{x})} \right) d\boldsymbol{x}$$
$$= \int_{\mathcal{X}} e^{f_{b}(\boldsymbol{x}) + w_{b}} \left(f_{b}(\boldsymbol{x}) + w_{b} \right) d\boldsymbol{x} = A_{b} + B_{b},$$

where

$$A_{\mathbf{b}} = \int_{\mathcal{X}} \left\{ e^{f_{\mathbf{b}}(\mathbf{x}) + w_{\mathbf{b}}} - 1 - \left(f_{\mathbf{b}}(\mathbf{x}) + w_{\mathbf{b}} \right) \right\} \left(f_{\mathbf{b}}(\mathbf{x}) + w_{\mathbf{b}} \right) d\mathbf{x},$$

$$B_{\mathbf{b}} = \int_{\mathcal{X}} \left\{ 1 + \left(f_{\mathbf{b}}(\mathbf{x}) + w_{\mathbf{b}} \right) \right\} \left(f_{\mathbf{b}}(\mathbf{x}) + w_{\mathbf{b}} \right) d\mathbf{x}.$$

Using (5.7), it holds that

$$|A_{\boldsymbol{b}}| \leq \int_{\mathcal{X}} \left| e^{f_{\boldsymbol{b}}(\boldsymbol{x}) + w_{\boldsymbol{b}}} - 1 - \left(f_{\boldsymbol{b}}(\boldsymbol{x}) + w_{\boldsymbol{b}} \right) \right| \left| f_{\boldsymbol{b}}(\boldsymbol{x}) + w_{\boldsymbol{b}} \right| d\boldsymbol{x},$$

$$\stackrel{(i)}{\leq} \left(\|f_{\boldsymbol{b}}\|_{\sup} + |w_{\boldsymbol{b}}| \right) \left\{ \int_{\mathcal{X}} \left(f_{\boldsymbol{b}}(\boldsymbol{x}) + w_{\boldsymbol{b}} \right)^2 d\boldsymbol{x} \right\}$$

$$\stackrel{(ii)}{\leq} \int_{\mathcal{X}} f_{\boldsymbol{b}}^2(\boldsymbol{x}) d\boldsymbol{x} + w_{\boldsymbol{b}}^2 \leq \int_{\mathcal{X}} f_{\boldsymbol{b}}^2(\boldsymbol{x}) d\boldsymbol{x},$$

where (i), (ii) and (iii) are to (5.7) and the fact that $V(f_b, f_b) \leq ||f_b||_{\mathcal{H}}^2 \lesssim c^2$. Using similar arguments, we can show that

$$|B_{\boldsymbol{b}}| \stackrel{\text{(i)}}{=} \left| w_{\boldsymbol{b}} + \int_{\mathcal{X}} \left(f_{\boldsymbol{b}}(\boldsymbol{x}) + w_{\boldsymbol{b}} \right)^2 d\boldsymbol{x} \right| \lesssim \int_{\mathcal{X}} f_{\boldsymbol{b}}^2(\boldsymbol{x}) d\boldsymbol{x},$$

where (i) uses the fact that $\int_{\mathcal{X}} f_{\boldsymbol{b}}(\boldsymbol{x}) dx = 0$. Combining the above three inequalities, we conclude that

$$KL(p_{b}, p_{b_{0}}) \lesssim \int_{\mathcal{X}} f_{b}^{2}(\boldsymbol{x}) d\boldsymbol{x}$$

$$= \frac{c^{2}}{d} \int_{\mathcal{X}} \left| \sum_{i \in \mathbb{J}} b_{i} i_{1}^{-\beta} \dots i_{q}^{-\beta} \psi_{i}(\boldsymbol{x}) \right|^{2} d\boldsymbol{x}$$

$$= \frac{c^{2}}{d} \sum_{i \in \mathbb{J}} b_{i} i_{1}^{-2\beta} \dots i_{q}^{-2\beta}$$

$$\leq \frac{c^{2}}{d} \sum_{i \in \mathbb{J}} i_{1}^{-2\beta} \dots i_{q}^{-2\beta} \stackrel{\text{(i)}}{\simeq} \frac{c^{2}}{d} [\log(N)]^{q-1} N^{\frac{(1-2\beta)m}{m-\beta}} \stackrel{\text{(ii)}}{\simeq} N^{-2m-\frac{2m\beta}{m-\beta}}. \tag{5.9}$$

Here (i) is due to Lemma 15, and (ii) follows from the definition of d. By the choice of N, we have

$$KL(p_{\boldsymbol{b}}, p_{\boldsymbol{b}_0}) \lesssim N^{-2m - \frac{2m\beta}{m-\beta}} \lesssim \frac{\left[\log(N)\right]^{q-1} N^{\frac{m}{m-\beta}}}{n} \approx \frac{\log(|\mathcal{B}|)}{n} \approx \frac{|\mathbb{J}|}{n}.$$
 (5.10)

Combining Fano's Lemma (Lemma 2.10 in Tsybakov, 2008) with (5.8)-(5.10), we show that the lower bound is N^{-2m} , which completes the proof after substituting the value of N.

6. Density Estimation

$$L_{n,\lambda}(f) = -\frac{1}{n} \sum_{i=1}^{n} f(\mathbf{X}_i) + \int_{\mathcal{X}} e^{f(\mathbf{x})} d\mathbf{x} + \lambda ||f||_{\mathcal{H}}^{2}.$$

$$DL_{n,\lambda}^{*}(f)g = -\frac{1}{n} \sum_{i=1}^{n} W_{i}g(\mathbf{X}_{i}) + \int_{\mathcal{X}} e^{f(\mathbf{x})}g(\mathbf{x})d\mathbf{x} + \langle W_{\lambda}f, g \rangle$$

$$= \langle -\frac{1}{n} \sum_{i=1}^{n} W_{i}K_{\mathbf{X}_{i}} + u_{f} + W_{\lambda}f, g \rangle$$

$$\stackrel{\text{def}}{=} \langle S_{n,\lambda}(f), g \rangle,$$

$$D^{2}L_{n,\lambda}^{*}(f)g_{1}g_{2} = \int_{\mathcal{X}} e^{f(\mathbf{x})}g_{1}(\mathbf{x})g_{2}(\mathbf{x})d\mathbf{x} + \langle W_{\lambda}g_{1}, g_{2} \rangle,$$

$$S_{n,\lambda}(f) = -\frac{1}{n} \sum_{i=1}^{n} W_{i}K_{\mathbf{X}_{i}} + u_{f} + W_{\lambda}f, \text{ where } \langle u_{f}, g \rangle = \int_{\mathcal{X}} e^{f(\mathbf{x})}g(\mathbf{x})d\mathbf{x},$$

$$DS_{n,\lambda}(f)g_{1}g_{2} = \int_{\mathcal{X}} e^{f(\mathbf{x})}g_{1}(\mathbf{x})g_{2}(\mathbf{x})d\mathbf{x} + \langle W_{\lambda}g_{1}, g_{2} \rangle,$$

$$S_{\lambda} = \mathbb{E}(S_{n,\lambda}),$$

$$\langle S_{\lambda}(f), g \rangle = -\mathbb{E}\{g(\mathbf{X})\} + \langle h_{f} + W_{\lambda}f, g \rangle,$$

$$\langle S_{\lambda}(f_{0}), g \rangle = -\mathbb{E}\{g(\mathbf{X})\} + \langle h_{f_{0}} + W_{\lambda}f_{0}, g \rangle$$

$$= -\mathbb{E}\{g(\mathbf{X})\} + \int_{\mathcal{X}} e^{f_{0}(\mathbf{x})}g(\mathbf{x})d\mathbf{x} + \langle W_{\lambda}f_{0}, g \rangle$$

$$= \langle W_{\lambda}f_{0}, g \rangle,$$

$$S_{\lambda}(f_{0}) = W_{\lambda}f_{0}.$$

$$\frac{\|S_{n,\lambda}(f+g) - S_{n,\lambda}(f) - h\|}{\|g\|} =$$

$$||S_{n,\lambda}(f+g) - S_{n,\lambda}(f) - Ag|| = \sup_{\|u\|=1} \langle S_{n,\lambda}(f+g) - S_{n,\lambda}(f) - Ag, u \rangle$$
$$= \sup_{\|u\|=1} \langle h_{f+g} - h_f + W_{\lambda}g - Ag, u \rangle$$

$$\langle Bg, u \rangle = \int_{\mathcal{X}} e^{f(\boldsymbol{x})} g(\boldsymbol{x}) u(\boldsymbol{x}) dx$$

$$\left| \langle h_{f+g} - h_f - Bg, u \rangle \right| = \left| \int_{\mathcal{X}} \left(e^{f(\boldsymbol{x}) + g(\boldsymbol{x})} - e^{f(\boldsymbol{x})} - e^{f(\boldsymbol{x})} g(\boldsymbol{x}) \right) u(\boldsymbol{x}) d\boldsymbol{x} \right|$$

$$\leq \sqrt{\int_{\mathcal{X}} \left(e^{f(\boldsymbol{x}) + g(\boldsymbol{x})} - e^{f(\boldsymbol{x})} - e^{f(\boldsymbol{x})} g(\boldsymbol{x}) \right)^{2} d\boldsymbol{x}} \sqrt{\int_{\mathcal{X}} u^{2}(\boldsymbol{x}) d\boldsymbol{x}}$$

$$\leq \sqrt{\int_{\mathcal{X}} \left(e^{f(\boldsymbol{x}) + g(\boldsymbol{x})} - e^{f(\boldsymbol{x})} - e^{f(\boldsymbol{x})} g(\boldsymbol{x}) \right)^{2} d\boldsymbol{x}} \times \|u\|$$

$$\leq \sqrt{\int_{\mathcal{X}} \left(e^{f(\boldsymbol{x}) + g(\boldsymbol{x})} - e^{f(\boldsymbol{x})} - e^{f(\boldsymbol{x})} g(\boldsymbol{x}) \right)^{2} d\boldsymbol{x}}.$$

Since $\|g\| \to 0$ implies $\|g\|_{\sup} \to 0$, it holds that

$$\lim_{\|g\|\to 0} \sup_{\boldsymbol{x}\in\mathcal{X}} \left| \frac{e^{g(\boldsymbol{x})} - 1 - g(\boldsymbol{x})}{g(\boldsymbol{x})} \right| = 0.$$

Hence, we show that

$$\int_{\mathcal{X}} \left(e^{f(\boldsymbol{x}) + g(\boldsymbol{x})} - e^{f(\boldsymbol{x})} - e^{f(\boldsymbol{x})} g(\boldsymbol{x}) \right)^{2} d\boldsymbol{x} = \int_{\mathcal{X}} e^{2f(\boldsymbol{x})} \left(\frac{e^{g(\boldsymbol{x})} - 1 - g(\boldsymbol{x})}{g(\boldsymbol{x})} \right)^{2} g^{2}(\boldsymbol{x}) d\boldsymbol{x} \\
\leqslant e^{2\|f\|_{\sup}} \sup_{\boldsymbol{x} \in \mathcal{X}} \left| \frac{e^{g(\boldsymbol{x})} - 1 - g(\boldsymbol{x})}{g(\boldsymbol{x})} \right| \int_{\mathcal{X}} g^{2}(\boldsymbol{x}) d\boldsymbol{x} \\
\leqslant e^{2\|f\|_{\sup}} \sup_{\boldsymbol{x} \in \mathcal{X}} \left| \frac{e^{g(\boldsymbol{x})} - 1 - g(\boldsymbol{x})}{g(\boldsymbol{x})} \right| \|g\|^{2}.$$

By xxx, we see that

$$\lim_{\|g\|\to 0} \sup_{\|u\|=1} \frac{\left|\langle h_{f+g} - h_f - Bg, u \rangle\right|}{\|g\|} \leqslant e^{\|f\|_{\sup}} \lim_{\|g\|\to 0} \sqrt{\sup_{\boldsymbol{x}\in\mathcal{X}} \left|\frac{e^{g(\boldsymbol{x})} - 1 - g(\boldsymbol{x})}{g(\boldsymbol{x})}\right|} = 0.$$

We show that

$$DS_{n,\lambda}(f)g_1g_2 = \int_{\mathcal{X}} e^{f(\boldsymbol{x})}g_1(\boldsymbol{x})g_2(\boldsymbol{x})d\boldsymbol{x} + \langle \mathcal{W}_{\lambda}g_1, g_2 \rangle,$$

$$DS_{\lambda}(f)g_1g_2 = DS_{n,\lambda}(f)g_1g_2.$$

Lemma 16. Suppose that $\lim_{n\to\infty} \|g_n\|_{\sup} = 0$ and $\|f\|_{\sup} < \infty$, then it holds that

$$\left| \int_{\mathcal{X}} e^{f(\boldsymbol{x})} \left(e^{g_n(\boldsymbol{x})} - 1 - g_n(\boldsymbol{x}) \right) d\boldsymbol{x} - \frac{1}{2} \int_{\mathcal{X}} e^{f(\boldsymbol{x})} g_n^2(\boldsymbol{x}) d\boldsymbol{x} \right| \leqslant c_n \int_{\mathcal{X}} e^{f(\boldsymbol{x})} g_n^2(\boldsymbol{x}) d\boldsymbol{x},$$

where

$$c_n = \sup_{\boldsymbol{x}: g_n(\boldsymbol{x}) \neq 0} \left| \frac{e^{g_n(\boldsymbol{x})} - 1 - g_n(\boldsymbol{x}) - \frac{1}{2}g_n^2(\boldsymbol{x})}{g_n^2(\boldsymbol{x})} \right| \to 0.$$

Proof. Since $||g_n||_{\sup} \to 0$, L'Hopital's rule implies that

$$\lim_{n\to\infty} \sup_{\boldsymbol{x}:g_n(\boldsymbol{x})\neq 0} \left| \frac{e^{g_n(\boldsymbol{x})} - 1 - g_n(\boldsymbol{x}) - \frac{1}{2}g_n^2(\boldsymbol{x})}{g_n^2(\boldsymbol{x})} \right| = 0.$$

Hence, it holds that

$$\int_{\mathcal{X}} e^{f(\boldsymbol{x})} \left(e^{g_n(\boldsymbol{x})} - 1 - g_n(\boldsymbol{x}) - \frac{1}{2} g_n^2(\boldsymbol{x}) \right) d\boldsymbol{x}$$

$$\leqslant \int_{\mathcal{X}} e^{f(\boldsymbol{x})} \left| e^{g_n(\boldsymbol{x})} - 1 - g_n(\boldsymbol{x}) - \frac{1}{2} g_n^2(\boldsymbol{x}) \right| d\boldsymbol{x}$$

$$= \int_{\boldsymbol{x}: g_n(\boldsymbol{x}) \neq 0} e^{f(\boldsymbol{x})} \left| \frac{e^{g_n(\boldsymbol{x})} - 1 - g_n(\boldsymbol{x}) - \frac{1}{2} g_n^2(\boldsymbol{x})}{g_n^2(\boldsymbol{x})} \right| g_n^2(\boldsymbol{x}) d\boldsymbol{x}$$

$$\leqslant \sup_{\boldsymbol{x}: g_n(\boldsymbol{x}) \neq 0} \left| \frac{e^{g_n(\boldsymbol{x})} - 1 - g_n(\boldsymbol{x}) - \frac{1}{2} g_n^2(\boldsymbol{x})}{g_n^2(\boldsymbol{x})} \right| \int_{\mathcal{X}} e^{f(\boldsymbol{x})} g_n^2(\boldsymbol{x}) d\boldsymbol{x}.$$

Lemma 17. Suppose that $\lim_{n\to\infty} \|g_n\|_{\sup} = 0$ and $\|f\|_{\sup} < \infty$, then it holds that

$$\left| \int_{\mathcal{X}} e^{f(\boldsymbol{x})} \left(e^{g_n(\boldsymbol{x})} - 1 \right) g_n(\boldsymbol{x}) d\boldsymbol{x} - \int_{\mathcal{X}} e^{f(\boldsymbol{x})} g_n^2(\boldsymbol{x}) d\boldsymbol{x} \right| \leqslant c_n \int_{\mathcal{X}} e^{f(\boldsymbol{x})} g_n^2(\boldsymbol{x}) d\boldsymbol{x},$$

where

$$c_n = \sup_{\boldsymbol{x}: g_n(\boldsymbol{x}) \neq 0} \left| \frac{e^{g_n(\boldsymbol{x})} - 1 - g_n(\boldsymbol{x})}{g_n(\boldsymbol{x})} \right| \to 0.$$

Proof. The proof is similar to that of Lemma 16, and we omit it.

Theorem 4. Under xxx, if $nh^2 \to \infty$ and $\lambda \to 0$, then it holds that

$$\|\widehat{f} - f_0\|^2 = O_P\left(\lambda + \frac{1}{nh}\right).$$

Proof. The result will be proved by contradiction. Let us assume that for some $\delta, B_{\delta} > 0$, it holds that $\mathbb{P}(E_{n,B}) \geq \delta$ for all $B \geq B_{\delta}$. Here $E_{n,B} = \{\|\hat{f} - f_0\| \geq B(\kappa_n + \lambda^{1/2})\}$ is an event.

On event $E_{n,B}$, the definition of \hat{f} implies that

$$\inf_{f:\|f-f_0\|\geqslant B(\kappa_n+\lambda^{1/2})} L_{n,\lambda}(f) - L_{n,\lambda}(f_0) < 0.$$

By convexity of $f \to L_{n,\lambda}(f)$, it holds that

$$\inf_{f:\|f-f_0\|=B(\kappa_n+\lambda^{1/2})} L_{n,\lambda}(f) - L_{n,\lambda}(f_0) < 0.$$

This implies that there is a sequence $g_n \in \mathcal{H}$ such that $||g_n|| = B(\kappa_n + \lambda^{1/2})$ and $0 > L_{n,\lambda}(f_0 + g_n) - L_{n,\lambda}(f_0)$. As a consequence, it holds on event $E_{n,B}$ that

$$0 > L_{n,\lambda}(f_0 + g_n) - L_{n,\lambda}(f_0)$$

$$= -\frac{1}{n} \sum_{i=1}^n g_n(\boldsymbol{X}_i) + \int_{\mathcal{X}} \left(e^{f_0(\boldsymbol{x}) + g_n(\boldsymbol{x})} - e^{f_0(\boldsymbol{x})} \right) d\boldsymbol{x} + \lambda \|f_0 + g_n\|_{\mathcal{H}}^2 - \lambda \|f_0\|_{\mathcal{H}}^2$$

$$= -\frac{1}{n} \sum_{i=1}^n g_n(\boldsymbol{X}_i) + \int_{\mathcal{X}} e^{f_0(\boldsymbol{x})} \left(e^{g_n(\boldsymbol{x})} - 1 \right) d\boldsymbol{x} + \lambda \|g_n\|_{\mathcal{H}}^2 + 2\lambda \langle f_0, g_n \rangle_{\mathcal{H}}$$

$$= -\mathbb{P}_n g_n + \mathbb{P} g_n + \int_{\mathcal{X}} e^{f_0(\boldsymbol{x})} \left(e^{g_n(\boldsymbol{x})} - 1 - g_n(\boldsymbol{x}) \right) d\boldsymbol{x} + \lambda \|g_n\|_{\mathcal{H}}^2 + 2\lambda \langle f_0, g_n \rangle_{\mathcal{H}}$$

$$= -(\mathbb{P}_n - \mathbb{P}) g_n + \int_{\mathcal{X}} e^{f_0(\boldsymbol{x})} \left(e^{g_n(\boldsymbol{x})} - 1 - g_n(\boldsymbol{x}) - \frac{1}{2} g_n^2(\boldsymbol{x}) \right) d\boldsymbol{x} + \frac{1}{2} \langle g_n, g_n \rangle_{L_2}$$

$$+ \lambda \|g_n\|_{\mathcal{H}}^2 + 2\lambda \langle f_0, g_n \rangle_{\mathcal{H}}.$$

$$(6.1)$$

Noting that $||g_n||_{\sup} \leq CBh^{-1/2}(\kappa_n + \lambda^{1/2}) = o_P(1)$ for some C > 0 due to Lemma 2(iii), it follows from that

$$\frac{1}{2} \langle g_n, g_n \rangle_{L_2} + \lambda \|g_n\|_{\mathcal{H}}^2 \stackrel{\text{(i)}}{\leqslant} \kappa_n \|g_n\| + c_n \langle g_n, g_n \rangle_{L_2} + 2\lambda \|f_0\|_{\mathcal{H}} \|g_n\|_{\mathcal{H}}
\stackrel{\text{(ii)}}{\leqslant} \kappa_n \|g_n\| + c_n \langle g_n, g_n \rangle_{L_2} + C\lambda^{1/2} \|g_n\|.$$
(6.2)

Here (i) makes use of Lemma 16, (3.2), (6.1), and Cauchy–Schwarz inequality, and (ii) is due to the definition of $\|\cdot\|$ in (3.1). Since $c_n = o_P(1)$ by Lemma 16, we can assume $|c_n| \leq 1/4$. Therefore, the above inequality implies that the following holds on event $E_{n,B}$:

$$\frac{1}{4} \|g_n\|^2 \stackrel{\text{(i)}}{=} \frac{1}{4} V(g_n, g_n) + \frac{1}{4} \lambda \|g_n\|_{\mathcal{H}}^2
\stackrel{\text{(ii)}}{\leq} (1/2 - |c_n|) V(g_n, g_n) + \frac{1}{4} \lambda \|g_n\|_{\mathcal{H}}^2
\stackrel{\text{(iii)}}{\leq} C(1/2 - |c_n|) \langle g_n, g_n \rangle_{L_2} + \frac{C}{4} \lambda \|g_n\|_{\mathcal{H}}^2 \stackrel{\text{(iv)}}{\leq} C \kappa_n \|g_n\| + C^2 \lambda^{1/2} \|g_n\|,$$

where (i) is due to the definition of $\|\cdot\|$ in (3.1), (ii) follows since $|c_n| \leq 1/4$, (iii) makes use of Assumption B, and (iv) is from (6.2). Therefore, the above inequality implies the following holds on event $E_{n,B}$:

$$||g_n|| \le (4C + C^2)(\kappa_n + \lambda^{1/2}).$$

However, since $||g_n|| = B(\kappa_n + \lambda^{1/2})$ on event $E_{n,B}$, it implies that

$$0 < \delta \le \mathbb{P}(E_{n,B}) \le \mathbb{P}\left(\|g_n\| \le (4C + C^2)(\kappa_n + \lambda^{1/2})\right) = \mathbb{P}(B < 4C + C^2).$$

The above inequality holds for all $B \ge B_{\delta}$, which is a contradiction.

6.1. Derivative Estimation

Lemma 18. If $m > \beta_{\max}$, then $V(\partial^{\beta} f, \partial^{\beta} f) \leq \lambda^{-\frac{\beta_{\max}}{m}} ||f||^2$ for all $f \in \mathcal{H}$.

Proof. Let $\psi_{i}(x) = \phi_{i_1}(x_1) \dots \phi_{i_r}(x_r)$, where $\phi'_{i}s$ are the Fourier basis functions in (2.1). For any $f \in \mathcal{H}$, it follows that $f = \sum_{i \in \mathbb{I}_q} c_i \psi_i$ for some sequence c_i 's. Therefore, it follows that

$$V(\partial^{\beta} f, \partial^{\beta} f) = V\left(\sum_{\boldsymbol{i} \in \mathbb{I}_q} c_{\boldsymbol{i}} \partial^{\beta} \psi_{\boldsymbol{i}}, \sum_{\boldsymbol{i} \in \mathbb{I}_q} c_{\boldsymbol{i}} \partial^{\beta} \psi_{\boldsymbol{i}}\right) \stackrel{\text{(ii)}}{=} \sum_{\boldsymbol{i} \in \mathbb{I}_q} c_{\boldsymbol{i}}^2 V\left(\partial^{\beta} \psi_{\boldsymbol{i}}, \partial^{\beta} \psi_{\boldsymbol{i}}\right) \stackrel{\text{(ii)}}{=} \sum_{\boldsymbol{i} \in \mathbb{I}_q} c_{\boldsymbol{i}}^2 i_1^{2\beta_1} \dots i_r^{2\beta_r}.$$

Here (i) is due to the fact that $\partial^{\beta}\psi_{i}$'s are orthogonal under $V(\cdot, \cdot)$, and (ii) follows from xxx. By Lemma xxx, it holds that

$$||f||^2 = \sum_{i \in \mathbb{I}_q} c_i^2 (1 + \lambda/\rho_i) \approx \sum_{i \in \mathbb{I}_q} c_i^2 (1 + \lambda i_1^{2m} \dots i_r^{2m}).$$

The desired result will follow if we prove the following inequality

$$\lambda^{\frac{\beta_{\max}}{m}} i_1^{2\beta_1} \dots i_r^{2\beta_r} \lesssim 1 + \lambda i_1^{2m} \dots i_r^{2m} \tag{6.3}$$

for all $\boldsymbol{i} = (i_1, \dots, i_r)^{\top} \in \mathbb{I}_q$. If $\lambda^{\frac{\beta_{\max}}{m}} i_1^{2\beta_1} \dots i_r^{2\beta_r} \leq 1$, then (6.3) holds. If $\lambda^{\frac{\beta_{\max}}{m}} i_1^{2\beta_1} \dots i_r^{2\beta_r} > 1$, then we have

$$\lambda^{\frac{\beta_{\max}}{m}}i_1^{2\beta_1}\dots i_r^{2\beta_r} \overset{\text{(i)}}{\leqslant} (\lambda^{\frac{\beta_{\max}}{m}}i_1^{2\beta_1}\dots i_r^{2\beta_r})^{\frac{m}{\beta_{\max}}} = \lambda i_1^{\frac{2m\beta_1}{\beta_{\max}}}\dots i_r^{\frac{2m\beta_r}{\beta_{\max}}} \leqslant \lambda i_1^{2m}\dots i_r^{2m},$$

where (i) is due to $m > \beta_{\text{max}}$. Therefore, we verify (6.3).

Theorem 5. Under Assumptions xxx, it holds that

$$\int_{\mathcal{X}} \left(\partial^{\beta} \widehat{f}(\boldsymbol{x}) - \partial^{\beta} f_0(\boldsymbol{x}) \right)^2 d\boldsymbol{x} = O_P \left(\lambda^{1 - \frac{\beta_{\max}}{m}} + n^{-1} \lambda^{-\frac{1 + 2\beta_{\max}}{2m}} [\log(n)]^{q-1} \right).$$

As a consequence, if $\lambda = (n[\log(n)]^{1-q})^{-2m/(2m+1)}$, it follows that

$$\int_{\mathcal{X}} \left(\partial^{\beta} \widehat{f}(\boldsymbol{x}) - \partial^{\beta} f_0(\boldsymbol{x}) \right)^2 d\boldsymbol{x} = O_P \left\{ \left(\frac{n}{[\log(n)]^{q-1}} \right)^{-\frac{2(m-\beta_{\max})}{2m+1}} \right\}.$$

Proof. Combining Theorem 4 and Lemma 18, we conclude that

$$V(\hat{c}^{\beta}\hat{f} - \hat{c}^{\beta}f_0, \hat{c}^{\beta}\hat{f} - \hat{c}^{\beta}f_0) \leqslant \lambda^{-\beta_{\max}/m} \|\hat{p} - p_0\|^2 = O_P\left(\lambda^{1-\beta_{\max}/m} + \frac{1}{nh\lambda^{\beta_{\max}/m}}\right).$$

Using the above inequality and the fact that $h^{-1} \simeq \lambda^{-\frac{1}{2m}} [\log(1/\lambda)]^{q-1}$ from Lemma 7, we complete the proof.

7. Uniform Convergence

Let $\xi_1, \ldots, \xi_n \in \mathbb{R}^d$ be a sequence of i.i.d. random vectors, and Let \mathcal{F} be a class of functions from \mathbb{R}^d to \mathbb{R} . The Rademacher complexity of \mathcal{F} is defined as

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E} \left\{ \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n r_i f(\xi_i) \right\},$$

where r_1, \ldots, r_n is a sequence of i.i.d. Rademacher random variables. For simplicity, let us define

$$\mathbb{P}(f) = \mathbb{E}\{f(\xi_1)\}, \quad \mathbb{P}_n(f) = \frac{1}{n} \sum_{i=1}^n f(\xi_i).$$

Lemma 19. Let \mathcal{F} be a class of functions, then it holds that $\mathbb{E}(\sup_{f \in \mathcal{F}} |(\mathbb{P} - \mathbb{P}_n)(f)|) \leq 4\mathcal{R}_n(\mathcal{F})$.

Proof. Let ξ'_1, \ldots, ξ'_n be an independent sample from ξ_1, \ldots, ξ_n . Using Jensen's inequality and the standard symmetrization trick in empirical process, it follows that

$$\mathbb{E}\left(\sup_{f\in\mathcal{F}}(\mathbb{P}-\mathbb{P}_n)(f)\right) = \mathbb{E}\left(\sup_{f\in\mathcal{F}}\left[\mathbb{P}(f) - \mathbb{P}_n(f)\right]\right)$$

$$= \mathbb{E}\left(\sup_{f\in\mathcal{F}}\left[\mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n f(\xi_i')\right) - \frac{1}{n}\sum_{i=1}^n f(\xi_i)\right]\right)$$

$$\leqslant \mathbb{E}\left(\sup_{f\in\mathcal{F}}\left[\frac{1}{n}\sum_{i=1}^n [f(\xi_i') - f(\xi_i)]\right]\right)$$

$$= \mathbb{E}\left(\sup_{f\in\mathcal{F}}\left[\frac{1}{n}\sum_{i=1}^n r_i[f(\xi_i') - f(\xi_i)]\right]\right)$$

$$\leqslant 2\mathbb{E}\left(\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^n r_if(\xi_i)\right) = 2\mathcal{R}_n(\mathcal{F}),$$

where r_1, \ldots, r_n are Rademacher random variables. Similarly, we can show that

$$\mathbb{E}\left(\sup_{f\in-\mathcal{F}}(\mathbb{P}-\mathbb{P}_n)(f)\right) \leqslant 2\mathbb{E}\left(\sup_{f\in-\mathcal{F}}\frac{1}{n}\sum_{i=1}^n r_i f(\xi_i)\right) = 2\mathbb{E}\left(\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^n -r_i f(\xi_i)\right)$$

$$\stackrel{\text{(i)}}{=} 2\mathbb{E}\left(\sup_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^n r_i f(\xi_i)\right) = 2\mathcal{R}_n(\mathcal{F}),$$

where (i) holds as r_i and $-r_i$ have the same distribution. Noting that

$$\mathbb{E}\left(\sup_{f\in\mathcal{F}}|(\mathbb{P}-\mathbb{P}_n)(f)|\right)\leqslant \mathbb{E}\left(\sup_{f\in\mathcal{F}}(\mathbb{P}-\mathbb{P}_n)(f)\right)+\mathbb{E}\left(\sup_{f\in\mathcal{F}}(\mathbb{P}-\mathbb{P}_n)(f)\right),$$

the proof is completed by combining the above three inequalities.

Lemma 20.

$$\mathbb{E}\left(\sup_{f\in\mathcal{F}_M}|(\mathbb{P}_n-\mathbb{P})(f)|\right) \leqslant \frac{CM}{\sqrt{nh}}.$$

where $\mathcal{F}_M = \{f : f \in \mathcal{H}, ||f|| \leq M\}$, and C > 0 is a universal constant.

Proof. We use constant C > 0 to denote a universal constant. Let $\zeta_i = X_i$, and direct examination implies that

$$\mathcal{R}_{n}(\mathcal{F}_{M}) = \mathbb{E}\left(\sup_{f \in \mathcal{F}_{M}} \frac{1}{n} \sum_{i=1}^{n} r_{i} f(\boldsymbol{X}_{i})\right) \\
= \mathbb{E}\left(\sup_{f \in \mathcal{F}_{M}} \frac{1}{n} \langle f, \sum_{i=1}^{n} r_{i} K_{\boldsymbol{X}_{i}} \rangle\right) \\
\leqslant \frac{1}{n} \sup_{f \in \mathcal{F}_{M}} \|f\| \mathbb{E}\left(\left\|\sum_{i=1}^{n} r_{i} K_{\boldsymbol{X}_{i}}\right\|\right) \\
\leqslant \frac{M}{n} \sqrt{\mathbb{E}\left(\left\|\sum_{i=1}^{n} r_{i} K_{\boldsymbol{X}_{i}}\right\|^{2}\right)} \\
= \frac{M}{n} \sqrt{\sum_{i=1}^{n} \mathbb{E}\left\{K(\boldsymbol{X}_{i}, \boldsymbol{X}_{i})\right\}} = M \sqrt{\frac{\mathbb{E}\left\{K(\boldsymbol{X}_{1}, \boldsymbol{X}_{1})\right\}}{n}} \stackrel{\text{(i)}}{\leqslant} \frac{CM}{\sqrt{nh}}, \tag{7.1}$$

where (i) follows from Lemma 2. Finally, using Lemma 19 and (7.1), it follows that

$$\mathbb{E}\left(\sup_{f\in\mathcal{F}_M}|(\mathbb{P}-\mathbb{P}_n)(f)|\right)\leqslant\frac{CM}{\sqrt{nh}},$$

which completes the proof.

Proof of (3.2). These are direct consequences of Lemma 20 with M=1.

Lemma 21. Suppose that $Y_n \in [0, B_1]$ and $\liminf_{n \to \infty} \mathbb{E}(Y_n) = B_2$ for some $B_1, B_2 > 0$, then there is a constant $\delta > 0$ such that $\liminf_{n \to \infty} \mathbb{P}(Y_n \ge \delta) \ge \delta$.

Proof. Assume the statement is false. Then there is a sequence $\delta_k \to 0$ such that $\liminf_{n\to\infty} \mathbb{P}(Y_n \ge \delta_k) < \delta_k$. Hence, it holds that

$$\mathbb{E}(Y_n) = \mathbb{E}\left(Y_n I(Y_n \geqslant \delta_k)\right) + \mathbb{E}\left(Y_n I(Y_n < \delta_k)\right) \leqslant B_1 \mathbb{P}(Y_n \geqslant \delta_k) + \delta_k.$$

Taking limit, we have

$$B_2 = \liminf_{n \to \infty} \mathbb{E}(Y_n) \leqslant B_1 \liminf_{n \to \infty} \mathbb{P}(Y_n \geqslant \delta_k) + \delta_k \leqslant (B_1 + 1)\delta_k.$$

Since $\delta_k \to 0$, we lead to a contradiction.

7.1. Approximation GCV

$$\widehat{f}_{\lambda} = \operatorname*{argmin}_{f \in \mathcal{H}_S} \left\{ -\frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{X}_i) + \int_{\mathcal{X}} e^{f(\boldsymbol{x})} d\boldsymbol{x} + \lambda \|f\|_{\mathcal{H}}^{2} \right\},$$

$$\mathcal{H}_S = \left\{ f \in \mathcal{H} : f(\boldsymbol{x}) = \boldsymbol{c}^{\top} S \boldsymbol{\Psi}(\boldsymbol{x}) \text{ for } \boldsymbol{c} \in \mathbb{R}^p \right\}.$$

$$\widehat{f}_{\lambda,-i} = \operatorname*{argmin}_{f \in \mathcal{H}_S} \left\{ -\frac{1}{n-1} \sum_{j=\neq i} f(\boldsymbol{X}_j) + \int_{\mathcal{X}} e^{f(\boldsymbol{x})} d\boldsymbol{x} + \lambda \|f\|_{\mathcal{H}}^2 \right\},$$

 $S \in \mathbb{R}^{m \times n}, S^{\top} c$

$$\begin{split} Q_{\lambda}(\boldsymbol{c}) &= -\frac{1}{n} \mathbf{1}^{\top} R S^{\top} \boldsymbol{c} + \int_{\mathcal{X}} e^{\boldsymbol{c}^{\top} S \boldsymbol{\Psi}(\boldsymbol{x})} d\boldsymbol{x} + \lambda \boldsymbol{c}^{\top} S R S^{\top} \boldsymbol{c}, \\ Q_{\lambda,-i}(\boldsymbol{c}) &= -\frac{1}{n-1} (\mathbf{1} - e_i)^{\top} R S^{\top} \boldsymbol{c} + \int_{\mathcal{X}} e^{\boldsymbol{c}^{\top} S \boldsymbol{\Psi}(\boldsymbol{x})} d\boldsymbol{x} + \lambda \boldsymbol{c}^{\top} S R S^{\top} \boldsymbol{c}, \end{split}$$

Let $\hat{c}_{\lambda} = \operatorname{argmin}_{c \in \mathbb{R}^p} Q_{\lambda}(c)$ and $\hat{c}_{\lambda,-i} = \operatorname{argmin}_{c \in \mathbb{R}^p} Q_{\lambda,-i}(c)$. Hence, it follows that xxx.

$$\begin{split} \dot{Q}_{\lambda}(\boldsymbol{c}) &= -\frac{1}{n} SR\boldsymbol{1} + \int_{\mathcal{X}} e^{\boldsymbol{c}^{\top} S\boldsymbol{\Psi}(\boldsymbol{x})} S\boldsymbol{\Psi}(\boldsymbol{x}) d\boldsymbol{x} + 2\lambda SRS^{\top}\boldsymbol{c}, \\ \dot{Q}_{\lambda,-i}(\boldsymbol{c}) &= -\frac{1}{n-1} SR(\boldsymbol{1}-e_i) + \int_{\mathcal{X}} e^{\boldsymbol{c}^{\top} S\boldsymbol{\Psi}(\boldsymbol{x})} S\boldsymbol{\Psi}(\boldsymbol{x}) d\boldsymbol{x} + 2\lambda SRS^{\top}\boldsymbol{c}, \\ &= -\frac{1}{n-1} SR(\boldsymbol{1}-e_i) + \dot{Q}_{\lambda}(\boldsymbol{c}) + \frac{1}{n} SR\boldsymbol{1} \\ &= -\frac{1}{n(n-1)} SR\boldsymbol{1} + \frac{1}{n-1} SRe_i + \dot{Q}_{\lambda}(\boldsymbol{c}), \\ \ddot{Q}_{\lambda}(\boldsymbol{c}) &= \ddot{Q}_{\lambda,-i}(\boldsymbol{c}) = S \left\{ \int_{\mathcal{X}} e^{\boldsymbol{c}^{\top} S\boldsymbol{\Psi}(\boldsymbol{x})} \boldsymbol{\Psi}(\boldsymbol{x}) \boldsymbol{\Psi}^{\top}(\boldsymbol{x}) d\boldsymbol{x} + 2\lambda R \right\} S^{\top}. \end{split}$$

$$\begin{split} \ddot{Q}(\widetilde{\boldsymbol{c}})(\boldsymbol{c} - \widetilde{\boldsymbol{c}}) &= -\dot{Q}(\widetilde{\boldsymbol{c}}), \\ \ddot{Q}(\widetilde{\boldsymbol{c}})\boldsymbol{c} &= -\dot{Q}(\widetilde{\boldsymbol{c}}) + \ddot{Q}(\widetilde{\boldsymbol{c}})\widetilde{\boldsymbol{c}}. \end{split}$$

$$L_{f,g}(t) = \int_{\mathcal{X}} e^{f(\boldsymbol{x}) + tg(\boldsymbol{x})} d\boldsymbol{x},$$

$$\dot{L}_{f,g}(t) = \int_{\mathcal{X}} g(\boldsymbol{x}) e^{f(\boldsymbol{x}) + tg(\boldsymbol{x})} d\boldsymbol{x},$$

$$\dot{L}_{f,g}(0) = \int_{\mathcal{X}} g(\boldsymbol{x}) e^{f(\boldsymbol{x})} d\boldsymbol{x} = \mu_f(g),$$

$$\ddot{L}_{f,g}(t) = \int_{\mathcal{X}} g^2(\boldsymbol{x}) e^{f(\boldsymbol{x}) + tg(\boldsymbol{x})} d\boldsymbol{x},$$

$$\ddot{L}_{f,g}(0) = \int_{\mathcal{X}} g^2(\boldsymbol{x}) e^{f(\boldsymbol{x})} d\boldsymbol{x} = V_f(g),$$

$$\int_{\mathcal{X}} e^{f(\boldsymbol{x})} d\boldsymbol{x} = L_{\widetilde{f}, f - \widetilde{f}}(1) \approx L_{\widetilde{f}, f - \widetilde{f}}(0) + \mu_{\widetilde{f}}(f - \widetilde{f}) + \frac{1}{2} V_{\widetilde{f}}(f - \widetilde{f})$$
$$= \mu_{\widetilde{f}}(f) - V_{\widetilde{f}}(f, \widetilde{f}) + \frac{1}{2} V_{\widetilde{f}}(f) + \text{const.}$$

$$-\frac{1}{n-1} \sum_{j \neq i} f(\mathbf{X}_j) + \mu_{\widetilde{f}}(f) - V_{\widetilde{f}}(f, \widetilde{f}) + \frac{1}{2} V_{\widetilde{f}}(f) + \lambda \|f\|_{\mathcal{H}}^2.$$

$$-\frac{1}{n}\sum_{j=1}^{n}f(\boldsymbol{X}_{j})+\mu_{\widetilde{f}}(f)-V_{\widetilde{f}}(f,\widetilde{f})+\frac{1}{2}V_{\widetilde{f}}(f)+\lambda\|f\|_{\mathcal{H}}^{2}.$$

Since $\dot{Q}_{\lambda}(\hat{c}_{\lambda}) = 0$, it follows that

$$\begin{split} \widehat{\boldsymbol{c}}_{\lambda,-i} &\approx \widehat{\boldsymbol{c}}_{\lambda} - \ddot{\boldsymbol{Q}}_{\lambda,-i}^{-1}(\widehat{\boldsymbol{c}}_{\lambda})\dot{\boldsymbol{Q}}_{\lambda,-i}(\widehat{\boldsymbol{c}}_{\lambda}) \\ &= \widehat{\boldsymbol{c}}_{\lambda} - \ddot{\boldsymbol{Q}}_{\lambda}^{-1}(\widehat{\boldsymbol{c}}_{\lambda})\left(-\frac{1}{n(n-1)}SR\mathbf{1} + \frac{1}{n-1}SRe_i + \dot{\boldsymbol{Q}}_{\lambda}(\widehat{\boldsymbol{c}}_{\lambda})\right) \\ &= \widehat{\boldsymbol{c}}_{\lambda} + \frac{1}{n(n-1)}\ddot{\boldsymbol{Q}}_{\lambda}^{-1}(\widehat{\boldsymbol{c}}_{\lambda})SR\mathbf{1} - \frac{1}{n-1}\ddot{\boldsymbol{Q}}_{\lambda}^{-1}(\widehat{\boldsymbol{c}}_{\lambda})SRe_i. \end{split}$$

$$\begin{split} \widehat{f}_{\lambda,-i}(\boldsymbol{X}_i) &\approx \boldsymbol{\Psi}^\top(\boldsymbol{X}_i) S^\top \widehat{c}_{\lambda,-i} \\ &= \widehat{f}_{\lambda}(\boldsymbol{X}_i) + \frac{1}{n(n-1)} \boldsymbol{\Psi}_{\lambda}^\top(\boldsymbol{X}_i) S^\top \ddot{Q}_{\lambda}^{-1}(\widehat{c}_{\lambda}) SR\mathbf{1} - \frac{1}{n-1} \boldsymbol{\Psi}^\top(\boldsymbol{X}_i) S^\top \ddot{Q}_{\lambda}^{-1}(\widehat{c}_{\lambda}) SRe_i \\ &= \widehat{f}_{\lambda}(\boldsymbol{X}_i) - \frac{1}{n-1} \boldsymbol{\Psi}^\top(\boldsymbol{X}_i) S^\top \ddot{Q}_{\lambda}^{-1}(\widehat{c}_{\lambda}) SR\left(e_i - \mathbf{1}/n\right) \\ &= \widehat{f}_{\lambda}(\boldsymbol{X}_i) - \frac{1}{n-1} \left(\boldsymbol{\Psi}(\boldsymbol{X}_i) - R\mathbf{1}/n\right)^\top S^\top \ddot{Q}_{\lambda}^{-1}(\widehat{c}_{\lambda}) SR\left(e_i - \mathbf{1}/n\right) \\ &- \frac{1}{n(n-1)} \mathbf{1}^\top R^\top S^\top \ddot{Q}_{\lambda}^{-1}(\widehat{c}_{\lambda}) SR\left(e_i - \mathbf{1}/n\right) \\ &= \widehat{f}_{\lambda}(\boldsymbol{X}_i) - \frac{1}{n-1} \left(Re_i - R\mathbf{1}/n\right)^\top S^\top \ddot{Q}_{\lambda}^{-1}(\widehat{c}_{\lambda}) SR\left(e_i - \mathbf{1}/n\right) \\ &- \frac{1}{n(n-1)} \mathbf{1}^\top R^\top S^\top \ddot{Q}_{\lambda}^{-1}(\widehat{c}_{\lambda}) SR\left(e_i - \mathbf{1}/n\right) \\ &= \widehat{f}_{\lambda}(\boldsymbol{X}_i) - \frac{1}{n-1} \left(e_i - \mathbf{1}/n\right)^\top R^\top S^\top \ddot{Q}_{\lambda}^{-1}(\widehat{c}_{\lambda}) SR\left(e_i - \mathbf{1}/n\right) \\ &- \frac{1}{n(n-1)} \mathbf{1}^\top R^\top S^\top \ddot{Q}_{\lambda}^{-1}(\widehat{c}_{\lambda}) SR\left(e_i - \mathbf{1}/n\right) \end{split}$$

$$\frac{1}{n} \sum_{i=1}^{n} \widehat{f}_{\lambda,-i}(\boldsymbol{X}_{i}) \approx \frac{1}{n} \sum_{i=1}^{n} \widehat{f}_{\lambda}(\boldsymbol{X}_{i}) - \frac{1}{n(n-1)} \sum_{i=1}^{n} \left(e_{i} - \mathbf{1}/n\right)^{\top} R^{\top} S^{\top} \ddot{Q}_{\lambda}^{-1}(\widehat{\boldsymbol{c}}_{\lambda}) SR\left(e_{i} - \mathbf{1}/n\right)
= \frac{1}{n} \sum_{i=1}^{n} \widehat{f}_{\lambda}(\boldsymbol{X}_{i}) - \frac{1}{n(n-1)} \sum_{i=1}^{n} \left(e_{i} - \mathbf{1}/n\right)^{\top} R^{\top} S^{\top} \ddot{Q}_{\lambda}^{-1}(\widehat{\boldsymbol{c}}_{\lambda}) SR\left(e_{i} - \mathbf{1}/n\right)
= \frac{1}{n} \sum_{i=1}^{n} \widehat{f}_{\lambda}(\boldsymbol{X}_{i}) - \frac{1}{n(n-1)} Tr\left\{ (I - P_{1}) R^{\top} S^{\top} \ddot{Q}_{\lambda}^{-1}(\widehat{\boldsymbol{c}}_{\lambda}) SR(I - P_{1}) \right\}.$$

Here $P_1 = I - \mathbf{1} \mathbf{1}^{\top} / n$.

Minimize

$$AGCV(\lambda) = -\frac{1}{n} \sum_{i=1}^{n} \hat{f}_{\lambda}(\boldsymbol{X}_{i}) + \int_{\mathcal{X}} e^{\hat{f}_{\lambda}(\boldsymbol{x})} d\boldsymbol{x} + \frac{1}{n(n-1)} Tr \left\{ (I - P_{1}) R^{\top} S^{\top} \ddot{Q}_{\lambda}^{-1}(\hat{\boldsymbol{c}}_{\lambda}) SR(I - P_{1}) \right\}$$

$$GCV(\lambda) = -\frac{1}{n} \sum_{i=1}^{n} \hat{f}_{\lambda,-i}(\mathbf{X}_i) + \int_{\mathcal{X}} e^{\hat{f}_{\lambda}(\mathbf{x})} d\mathbf{x}$$

References

Lin, Y. (2000). Tensor product space anova models. Annals of Statistics, 28(3):734–755.
 Tsybakov, A. B. (2008). Introduction to Nonparametric Estimation. Springer Science & Business Media.