Pipelined Control

Data Hazards in ALU Instructions

Consider this sequence:

```
sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)
```

- •We can resolve hazards with forwarding
 - •How do we detect when to forward?

Dependencies & Forwarding

CSULB

Detecting the Need to Forward

- ■Pass register numbers along pipeline
 - e.g., ID/EX.RegisterRs = register number for Rs sitting in ID/EX pipeline register
- •ALU operand register numbers in EX stage are given by
 - ID/EX.RegisterRs, ID/EX.RegisterRt
- Data hazards when
 - la. EX/MEM.RegisterRd = ID/EX.RegisterRs
 - Ib. EX/MEM.RegisterRd = ID/EX.RegisterRt
 - 2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
 - 2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

CSULB

Detecting the Need to Forward

CSULB

Detecting the Need to Forward

- •But only if forwarding instruction will write to a register!
 - ■EX/MEM.RegWrite, MEM/WB.RegWrite
- And only if Rd for that instruction is not \$zero
 - EX/MEM.RegisterRd ≠ 0, MEM/WB.RegisterRd ≠ 0

CSULB

Forwarding Conditions

■EX hazard

- if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10
- if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = I0

MEM hazard

- if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01
- if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

Mux control	Source	Explanation
ForwardA = 00	ID/EX	The first ALU operand comes from the register file.
ForwardA = 10	EX/MEM	The first ALU operand is forwarded from the prior ALU result.
ForwardA = 01	MEM/WB	The first ALU operand is forwarded from data memory or an earlier ALU result.
ForwardB = 00	ID/EX	The second ALU operand comes from the register file.
ForwardB = 10	EX/MEM	The second ALU operand is forwarded from the prior ALU result.
ForwardB = 01	MEM/WB	The second ALU operand is forwarded from data memory or an earlier ALU result.

CSULB

Double Data Hazard

Consider the sequence:

add \$1,\$1,\$2 add \$1,\$1,\$3

add \$1,<mark>\$1</mark>,\$4

- Both hazards occur
 - Want to use the most recent
- Revise MEM hazard condition
 - Only fwd if EX hazard condition isn't true

Revised Forwarding Condition

add \$1,\$1,\$2 add \$1,\$1,\$3 add \$1,\$1,\$4

MEM hazard

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

CSULB

Datapath with Forwarding

CSULB