Topic: Number Theory

Lec-1

Course: Discrete Mathematics

Introduction

In the next sections we will review concepts from **Number Theory**, the branch of mathematics that deals with integer numbers and their properties.

We will be covering the following topics:

- Divisibility and Modular Arithmetic
- Prime Numbers, Greatest Common Divisors (GCD) and Euclidean Algorithm.
- Applications: solving congruences, applications, cryptography.

Divisibility

When dividing an integer by a second nonzero integer, the quotient may or may not be an integer.

For example, 12/3 = 4 while 9/4 = 2.25.

Definition

If a and b are integers with $a \neq 0$, we say that a divides b if there exists an integer c such that b = ac. When a divides b we say that a is a factor of b and that b is a multiple of a.

The notation $a \mid b$ denotes a divides b and $a \not\mid b$ denotes a does not divide b.

Back to the above examples, we see that 3 divides 12, denoted as $3 \mid 12$, and 4 does not divide 9, denoted as $4 \not\mid 9$.

Example. The following examples illustrate the concept of divisibility of integers: $13 \mid 182, -5 \mid 30, 17 \mid 289, 6 \mid 44, 7 \mid 50, -3 \mid 33, \text{ and } 17 \mid 0.$

Example. The divisors of 6 are ± 1 , ± 2 , ± 3 , and ± 6 . The divisors of 17 are ± 1 and ± 17 . The divisors of 100 are ± 1 , ± 2 , ± 4 , ± 5 , ± 10 , ± 20 , ± 25 , ± 50 , and ± 100 .

Proposition 1.3. If a, b, and c are integers with $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof. Since $a \mid b$ and $b \mid c$, there are integers e and f with ae = b and bf = c. Hence, bf = (ae)f = a(ef) = c, and we conclude that $a \mid c$. \square

Example. Since 11 | 66 and 66 | 198, Proposition 1.3 tells us that 11 | 198.

Proposition 1.4. If a, b, m, and n are integers, and if $c \mid a$ and $c \mid b$, then $c \mid (ma+nb)$.

Proof. Since $c \mid a$ and $c \mid b$, there are integers e and f such that a = ce and b = cf. Hence, ma + nb = mce + ncf = c(me + nf). Consequently, we see that $c \mid (ma + nb)$. \square

Example. Since 3 | 21 and 3 | 33, Proposition 1.4 tells us that 3 | (5.21 - 3.33) = 105 - 99 = 6.

The division algorithm

Let a be an integer and d a positive integer. Then, there are unique integers q and r, with $0 \le r < d$, such that a = dq + r.

- d is called the divisor,
- a is called the dividend;
- q is called the *quotient*; this can be expressed $q = a \operatorname{div} d$;
- r is called the *remainder*; this cane be expressed $r = a \mod d$;

Example:

If a=7 and d=3, then q=2 and r=1, since 7=(2)(3)+1. If a=-7 and d=3, then q=-3 and r=2, since -7=(-3)(3)+2.

Try a=57, d=9

a=-57, d=9

a=3,d=8

Greatest Common Divisors

Definition. The greatest common divisor of two integers a and b, that are not both zero, is the largest integer which divides both a and b.

The greatest common divisor of a and b is written as (a, b).

Example. The common divisors of 24 and 84 are ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , and ± 12 . Hence (24, 84) = 12. Similarly, looking at sets of common divisors, we find that (15, 81) = 3,(100, 5) = 5,(17, 25) = 1,(0, 44) = 44,(-6, -15) = 3, and (-17, 289) = 17.

We are particularly interested in pairs of integers sharing no common divisors greater than 1. Such pairs of integers are called *relatively prime*.

Definition. The integers a and b are called *relatively prime* if a and b have greatest common divisor (a, b) = 1.

Example. Since (25, 42) = 1, 25 and 42 are relatively prime.

Definition. Let $a_1, a_2,..., a_n$ be integers, that are not all zero. The greatest common divisor of these integers is the largest integer which is a divisor of all of the integers in the set. The greatest common divisor of $a_1, a_2,..., a_n$ is denoted by $(a_1, a_2,..., a_n)$.

Example. We easily see that (12, 18, 30) = 6 and (10, 15, 25) = 5.

The Euclidean Algorithm. Let $r_0 = a$ and $r_1 = b$ be nonnegative integers with $b \neq 0$. If the division algorithm is successively applied to obtain $r_j = r_{j+1}q_{j+1} + r_{j+2}$ with $0 < r_{j+2} < r_{j+1}$ for j = 0,1,2,...,n-2 and $r_n = 0$, $d = b q_1 + r_2$ $Q < r_2 < b$

then $(a, b) = r_{n-1}$, the last nonzero remainder.

Example. To find (252, 198), we use the division algorithm successively to obtain

$$252 = 1.198 + 54$$

 $198 = 3.54 + 36$
 $54 = 1.36 + 18$
 $36 = 2.18$

Hence (252, 198) = 18.

Theorem (A)

If a and b are positive integers, then there exist integers s and t such that $\gcd(a,b)=sa+tb$.

Example:

$$\gcd(252,198) = 18 = 4 \cdot 252 - 5 \cdot 198$$

Consider the steps of the Euclidean algorithm for gcd(252, 198):

$$252 = 1 \cdot 198 + 54$$

$$198 = 3 \cdot 54 + 36$$

$$54 = 1 \cdot 36 + 18$$

$$36 = 2 \cdot 18$$

$$\gcd(252, 198) = 18 = 54 - 1 \cdot 36$$

$$= 54 - 1(198 - 3 \cdot 54) = 4 \cdot 54 - 1 \cdot 198$$

$$= 4 \cdot (252 - 1 \cdot 198) - 1 \cdot 198 = 4 \cdot 252 - 5 \cdot 198$$

Therefore, $gcd(252, 198) = 4 \cdot 252 - 5 \cdot 198$.

The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic. Every positive integer can be written uniquely as a product of primes, with the prime factors in the product written in order of nondecreasing size.

Example. The factorizations of some positive integers are given by

$$240 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 = 2^4 \cdot 3 \cdot 5, 289 = 17 \cdot 17 = 17^2, 1001 = 7 \cdot 11 \cdot 13$$
.

To describe, in general, how prime factorizations can be used to find greatest common divsors, let min(a, b) denote the smaller or minimum, of the two numbers a and b. Now let the prime factorizations of a and b be

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}, \quad b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n},$$

$$(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)},$$

Modular Arithmetic

Definition

If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a-b. We use the notation $a \equiv b \pmod{m}$ if this is the case, and $a \not\equiv b \pmod{m}$, otherwise.

Example: 10 and 26 are congruent modulo 8, since their difference is 16 or -16, which is divisible by 8. When dividing 10 and 26 by 8 we get $10 = 1 \cdot 8 + 2$ and $26 = 4 \cdot 8 + 2$. So $10 \mod 8 = 2 = 26 \mod 8$. Settings to activate Windo

Example. We have $22 \equiv 4 \pmod{9}$, since $9 \mid (22-4) = 18$. Likewise $3 \equiv -6 \pmod{9}$ and $200 \equiv 2 \pmod{9}$.

Congruences often arise in everyday life. For instance, clocks work either modulo 12 or 24 for hours, and modulo 60 for minutes and seconds, calendars work modulo 7 for days of the week and modulo 12 for months. Utility meters often operate modulo 1000, and odometers usually work modulo 100000.

Let m be a positive integer. The integers a and b are congruent modulo m if and only if there is an integer k such that a=b+km

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a+c \equiv b+d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Let m be a positive integer and let a and b be integers. Then,

$$(a+b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m$$

$$ab \mod m = ((a \mod m)(b \mod m)) \mod m$$

Proposition 3.2. Let m be a positive integer. Congruences modulo m satisfy the following properties:

- (i) Reflexive property. If a is an integer, then $a \equiv a \pmod{m}$.
- (ii) Symmetric property. If a and b are integers such that $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$.
- (iii) Transitive property. If a, b, and c are integers with $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Proof.

- (i) We see that $a \equiv a \pmod{m}$, since $m \mid (a-a) = 0$.
- (ii) If $a \equiv b \pmod{m}$, then $m \mid (a-b)$. Hence, there is an integer k with km = a b. This shows that (-k)m = b a, so that $m \mid (b-a)$. Consequently, $b \equiv a \pmod{m}$.
- (iii) If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $m \mid (a-b)$ and $m \mid (b-c)$. Hence, there are integers k and ℓ with km = a b and $\ell m = b c$. Therefore, $a c = (a-b) + (b-c) = km + \ell m = (k+\ell)m$. Consequently, $m \mid (a-c)$ and $a \equiv c \pmod{m}$. \square

Theorem 3.1. If a, b, c, and m are integers with m > 0 such that $a \equiv b \pmod{m}$, then

- (i) $a+c \equiv b+c \pmod{m}$,
- (ii) $a-c \equiv b-c \pmod{m}$,
- (iii) $ac \equiv bc \pmod{m}$.

Example. Since $19 \equiv 3 \pmod{8}$, it follows from Theorem 3.1 that $26 = 19 + 7 \equiv 3 + 7 = 10 \pmod{8}$, $15 = 19 - 4 \equiv 3 - 4 \equiv -1 \pmod{8}$, and $38 = 19 \cdot 2 \equiv 3 \cdot 2 = 6 \pmod{8}$.

What happens when both sides of a congruence are divided by an integer? Consider the following example.

Example. We have $14 = 7.2 \equiv 4.2 = 8 \pmod{6}$. But $7 \not\equiv 4 \pmod{6}$.

Theorem 3.2. If a, b, c and m are integers such that m > 0, d = (c, m), and $ac \equiv bc \pmod{m}$, then $a \equiv b \pmod{m/d}$.

Proof. If $ac \equiv bc \pmod{m}$, we know that $m \mid (ac-bc) = c(a-b)$. Hence, there is an integer k with c(a-b) = km. By dividing both sides by d, we have (c/d)(a-b) = k(m/d). Since (m/d,c/d) = 1, from Proposition 2.1 it follows that $m/d \mid (a-b)$. Hence, $a \equiv b \pmod{m/d}$. \square

Example. Since $50 \equiv 20 \pmod{15}$ and (10,5) = 5, we see that $50/10 \equiv 20/10 \pmod{15/5}$, or $5 \equiv 2 \pmod{3}$.

Corollary 3.1. If a, b, c, and m are integers such that m > 0, (c,m) = 1, and $ac \equiv bc \pmod{m}$, then $a \equiv b \pmod{m}$.

Example. Since $42 \equiv 7 \pmod{5}$ and $(5,7) \equiv 1$, we can conclude that $42/7 \equiv 7/7 \pmod{5}$, or that $6 \equiv 1 \pmod{5}$.

Theorem 3.3. If a, b, c, d, and m are integers such that m > 0, $a \equiv b \pmod{m}$, and $c \equiv d \pmod{m}$, then

- (i) $a+c \equiv b+d \pmod{m}$,
- (ii) $a-c \equiv b-d \pmod{m}$,
- (iii) $ac \equiv bd \pmod{m}$.

Example. Since $13 \equiv 8 \pmod{5}$ and $7 \equiv 2 \pmod{5}$, using Theorem 3.3 we see that $20 = 13 + 7 \equiv 8 + 2 \equiv 0 \pmod{5}$, $6 = 13 - 7 \equiv 8 - 7 \equiv 1 \pmod{5}$, and $91 = 13 \cdot 7 = 8 \cdot 2 = 16 \pmod{5}$.

Theorem 3.5. If a, b, k, and m are integers such that k > 0, m > 0, and $a \equiv b \pmod{m}$, then $a^k \equiv b^k \pmod{m}$.

Proof. Because $a \equiv b \pmod{m}$, we have $m \mid (a - b)$. Since $a^k - b^k = (a-b)(a^{k-1} + a^{k-2}b + \cdots + ab^{k-2} + b^{k-1})$,

we see that $(a-b)|(a^k-b^k)$. Therefore, from Proposition 1.2 it follows that $m|(a^k-b^k)$. Hence, $a^k\equiv b^k\pmod{m}$. \square

Example. Since $7 \equiv 2 \pmod{5}$, Theorem 3.5 tells us that $343 = 7^3 \equiv 2^3 \equiv 8 \pmod{5}$.

Theorem 3.6. If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,..., $a \equiv b \pmod{m_k}$ where $a,b,m_1, m_2,...,m_k$ are integers with $m_1,m_2,...,m_k$ positive, then

$$a \equiv b \pmod{[m_1, m_2, ..., m_k]},$$

where $[m_1, m_2, ..., m_k]$ is the least common multiple of $m_1, m_2, ..., m_k$.

Corollary 3.2. If $a \equiv b \pmod{m_1}$, $a \equiv b \pmod{m_2}$,..., $a \equiv b \pmod{m_k}$ where a and b are integers and $m_1, m_2, ..., m_k$ are relatively prime positive integers, then

$$a \equiv b \pmod{m_1 m_2 \cdots m_k}.$$

In our subsequent studies, we will be working with congruences involving large powers of integers. For example, we will want to find the least positive residue of 2^{644} modulo 645. If we attempt to find this least positive residue by first computing 2^{644} , we would have an integer with 194 decimal digits, a most undesirable thought. Instead, to find 2^{644} modulo 645 we first express the exponent 644 in binary notation:

$$(644)_{10} = (1010000100)_2$$
.

Next, we compute the least positive residues of $2,2^2,2^4,2^8,...,2^{512}$ by successively squaring and reducing modulo 645. This gives us the congruences

We can now compute 2⁶⁴⁴ modulo 645 by multiplying the least positive residues of the appropriate powers of 2. This gives

$$2^{644} = 2^{512+128+4} = 2^{512}2^{128}2^4 \equiv 256 \cdot 391 \cdot 16$$

= $1601536 \equiv 1 \pmod{645}$. Activate Wind Go to Settings to

We have just illustrated a general procedure for modular exponentiation, that is, for computing b^N modulo m where b, m, and N are positive integers. We first express the exponent N in binary notation, as $N = (a_k a_{k-1} ... a_1 a_0)_2$. We then find the least positive residues of $b, b^2, b^4, ..., b^{2^k}$ modulo m, by successively squaring and reducing modulo m. Finally, we multiply the least positive residues modulo m of b^{2^l} for those j with $a_j = 1$, reducing modulo m after each multiplication.

Linear Congruences

A congruence of the form

$$ax \equiv b \pmod{m}$$
,

How can we solve it, i.e. find all integers x that satisfy it?

One possible method is to multiply both sides of the congruence by an inverse \overline{a} of $a \pmod{m}$ if one such inverse exists: \overline{a} is an **inverse** of $a \pmod{m}$ if $\overline{a}a \equiv 1 \pmod{m}$.

Example:

5 is an inverse of $3 \pmod{7}$, since $5 \cdot 3 \equiv 15 \equiv 1 \pmod{7}$. Using this we can solve:

$$3x \equiv 4 \pmod{7}$$

$$5 \cdot 3x \equiv 5 \cdot 4 \pmod{7}$$

$$1 \cdot x \equiv 20 \pmod{7}$$

$$x \equiv 6 \pmod{7}$$

Substitute back into the original linear congruence to check that 6 is a solution:

$$3 \cdot 6 \equiv 18 \equiv 4 \pmod{7}$$
.

For a simple example, you can easily check by inspection that the linear congruence

$$6x \equiv 4 \pmod{10}$$

has solutions x = 4, 9. Already we see a difference from ordinary algebra: linear congruences can have more than one solution!

Are these the *ONLY* solutions? No. In fact, any integer which is congruent to either 4 or 9 mod 10 is also a solution. You should check this for yourself now.

So any integer of the form 4 + 10k or of the form 9 + 10k where $k \in \mathbb{Z}$ is a solution to the given linear congruence. The above linear congruence has infinitely many integer solutions.

Theorem 20.1.7: A linear congruence $ax \equiv b \mod m$ has solutions if and only if $gcd(a, m) \mid b$. (in which case it has precisely gcd(a, m) different solutions modulo m)

Examples:

a) Solve $14x \equiv 21 \mod 35$. Note: gcd(14,35)=7, which divides 21, so there should be 7 solutions modulo 35.

Solutions mod 35: $x \equiv 4, 9, 14, 19, 24, 29, or 34 \mod 35$

b) Solve $14x \equiv 16 \mod 35$.

To be continued.....

Thanks for watching Have a nice day