

Fundação CECIERI - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP2 1° semestre de 2017 GABARITO

Observações:

- A prova é acompanhada de uma tabela da distribuição Normal
- É permitido o uso de máquina de calcular
- Todos os cálculos devem ser mostrados passo a passo para a questão ser considerada
- Utilize nos cálculos pelo menos cinco casas decimais arrendondando para duas só ao final
- Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas
- Você pode usar lápis para responder as questões
- Os desenvolvimentos e respostas devem ser escritas de forma legível
- Ao final da prova devolva as folhas de questões e as de respostas
- Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

1 - Primeira questão (1,5 pontos)

Verifique quais das funções abaixo são distribuições de probabilidade. Caso alguma não seja distribuição devido à constante de normalização, apresente a função normalizada.

a)
$$f(x)=x^2-sen(x); x \in [0,1]$$

Resolução:

Observe que esta função toma valores negativos para os valores próximos da origem. Portanto, não é distribuição de probabilidade.

b)
$$f(x)=x+\cos(x); x \in [0,\pi]$$

Resolução:

Esta função é não negativa em todo o intervalo. Integremos

$$\int_{0}^{\pi} \left[x + \cos(x) \right] dx = \int_{0}^{\pi} x \, dx + \int_{0}^{\pi} \cos(x) \, dx = \frac{x^{2}}{2} \Big|_{0}^{\pi} + \sin(x) \Big|_{0}^{\pi} = \frac{\pi^{2}}{2} + 0 = \frac{\pi^{2}}{2} .$$

Logo a função normalizada será

$$f(x) = \frac{2}{\pi^2} [x + \cos(x)]; x \in [0, \pi]$$
.

c)
$$f(x) = sen(x); x \in [0, \pi/2]$$

Resolução:

Claramente a função é não negativa no intervalo. Integremos

$$\int_{0}^{\pi/2} \operatorname{sen}(x) dx = -\cos(x)|_{0}^{\pi/2} = -\cos(\pi/2) + \cos(0) = 0 + 1 = 1 .$$

Esta função é distribuição de probabilidade no intervalo dado.

2 – Segunda questão (2,0 pontos)

Dada a função $6x-6x^2$:

a) Prove que esta função é uma distribuição de probabilidade no intervalo [0,1]; (0,5 ponto)

Resolução:

Escrevendo a função como 6x(1-x) verificamos que ela é não negativa no intervalo dado. Integremos

$$\int_{0}^{1} f(x) dx = \int_{0}^{1} (6x - 6x^{2}) dx = 6 \left[\int_{0}^{1} x dx - \int_{0}^{1} x^{2} dx \right] = 6 \left(\frac{x^{2}}{2} \Big|_{0}^{1} - \frac{x^{3}}{3} \Big|_{0}^{1} \right) = 6 \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{6}{6} = 1 .$$

b) Ache a média desta distribuição neste intervalo;

(0,5 ponto)

Resolução:

Pela definição de média teremos

$$\mu = \int_{0}^{1} x f(x) dx = \int_{0}^{1} x \left[6x - 6x^{2} \right] dx = 6 \left[\int_{0}^{1} x^{2} dx - \int_{0}^{1} x^{3} dx \right] = 6 \left(\frac{x^{3}}{3} \Big|_{0}^{1} - \frac{x^{4}}{4} \Big|_{0}^{1} \right) = 6 \left(\frac{1}{3} - \frac{1}{4} \right) = \frac{6}{12} = \frac{1}{2} .$$

Se você fizesse um gráfico verificaria que a função é simétrica em relação a $\frac{1}{2}$, daí a média ser esta.

c) Determine a variância desta distribuição neste intervalo;

(0.5 ponto)

Resolução:

Partindo da definição de variância teremos

$$\sigma^2 = \int_0^1 x^2 f(x) dx - \mu^2$$
,

calculemos a integral

$$\int_{0}^{1} x^{2} f(x) dx = \int_{0}^{1} x^{2} (6x - 6x^{2}) dx = 6 \left[\int_{0}^{1} x^{3} dx - \int_{0}^{1} x^{4} dx \right] = 6 \left(\frac{x^{4}}{4} \Big|_{0}^{1} - \frac{x^{5}}{5} \Big|_{0}^{1} \right) = 6 \left(\frac{1}{4} - \frac{1}{5} \right) = \frac{6}{20} = 0,3$$

então

$$\sigma^2 = 0.3 - \left(\frac{1}{2}\right)^2 = \frac{1}{20} = 0.05$$
.

d) Determine a moda desta distribuição neste intervalo.

(0,5 ponto)

Resolução:

A moda é o ponto (ou pontos) onde a probabilidade é máxima. Observe que a distribuição de probabilidade desta questão é um polinômio do segundo grau. O ponto de máximo deste polinômio é

$$x = \frac{-6}{2 \times (-6)} = \frac{1}{2}$$
,

valor que é a moda. O cálculo também pode ser feito via achar onde a derivada do polinômio se anula, o que é equivalente.

3 – Terceira questão (2,0 pontos)

Calcule as probabilidades solicitadas:

a) P(X > 1/5) para uma distribuição Normal de média 1/6 e variância 4/81;

Resolução:

Temos a expressão da probabilidade para a distribuição Normal dada por

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$
.

Aqui calcularemos inicialmente $P(X \le 1/5)$

$$P(X<1/5)=P\left(Z<\frac{1/5-1/6}{\sqrt{4/81}}\right)=P\left(Z<\frac{1/30}{2/9}\right)=P\left(Z<\frac{3}{20}\right)=P\left(Z<0,15\right)=0,0596$$
.

Teremos assim que a probabilidade solicitada será

$$P(X>0.15)=0.5-0.0596=0.4404$$
.

b) P(X < 1/9) para a distribuição Normal de média 1/7 e variância 9/49;

Resolução:

Aqui escreveremos

$$P(X<1/9) = P\left(Z < \frac{1/9 - 1/7}{\sqrt{9/49}}\right) = P\left(Z < -\frac{2/63}{3/7}\right) = P\left(Z < -\frac{2}{27}\right) \approx P\left(Z < -0.074\right)$$

ou seja,

$$P(X<1/9)\approx 0.5-P(Z<0.07)=0.5-0.0279=0.4721$$
.

c) P(1/9 < X < 1/5) para a distribuição Exponencial com $\alpha = 1/11$.

Resolução:

Aqui temos uma aplicação direta da probabilidade dada por

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b}$$

ou

$$P(1/9 < X < 1/5) = e^{-1/11 \times 1/9} - e^{-1/11 \times 1/5} = e^{-1/99} - e^{-1/55} \approx 0.9899 - 0.9820 = 0.0079$$
.

d) P(X > 1/5) para a distribuição da segunda questão;

Resolução:

Calculemos a probabilidade solicitada como

$$P(X>1/5) = \int_{1/5}^{1} f(x) dx = \int_{1/5}^{1} (6x - 6x^{2}) dx = 6 \left[\int_{1/5}^{1} x dx - \int_{1/5}^{1} x^{2} dx \right] = 6 \left(\frac{x^{2}}{2} \Big|_{1/5}^{1} - \frac{x^{3}}{3} \Big|_{1/5}^{1} \right)$$

ou ainda

$$P(X>1/5)=6\left[\left(\frac{1}{2}-\frac{1}{50}\right)-\left(\frac{1}{3}-\frac{1}{375}\right)\right]=6\left(\frac{12}{25}-\frac{124}{375}\right)=\frac{112}{125}=0,896$$
.

4 – Quarta questão (1,0 ponto)

Uma companhia de distribuição de energia elétrica tinha um sistema de autoatendimento para a retirada de segunda via de contas a pagar. Modelou-se a estatística do tempo gasto pelo cliente usando uma distribuição Exponencial. O tempo é medido em minutos. O parâmetro para o caso é igual a 4,2. Calcule a probabilidade que os atendimentos ocorrerem em menos de um minuto. **Resolução:**

Aqui usaremos diretamente a probabilidade dada para a distribuição Exponencial, ou seja,

$$P(a < X < b) = e^{-\alpha a} - e^{-\alpha b}$$
.

Usando os parâmetros dados teremos

$$P(X<1)=1-e^{-4.2\times 1}=1-e^{-4.2}=1-0.0149=0.9850$$
.

5 – Quinta questão (2,5 pontos)

Uma amostra de dez balas de uma fábrica de doces foi avaliada e obteve-se os valores em gramas: 3,63; 3,46; 3,74; 3,59; 3,54; 3,72; 3,55; 3,56; 3,54; 3,67. Calcule o intervalo de confiança para a média para esta massa de dados usando estimadores não viciados e consistentes para a média e a variância.

Resolução:

Usaremos os seguintes estimadores para a média e a variância que são <u>não viciados e</u> <u>consistentes</u>.

$$\bar{X} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \mathbf{e} \quad S^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \bar{X}^2 \right)$$

que são não viciados e consistentes. Teremos assim

$$\bar{X} = \frac{3,63+3,46+3,74+3,59+3,54+3,72+3,55+3,56+3,54+3,67}{10} = \frac{36}{10} = 3,6$$
.

Calculemos o somatório

$$\sum_{i=1}^{n} X_{i}^{2} = 3,63^{2} + 3,46^{2} + 3,74^{2} + 3,59^{2} + 3,54^{2} + 3,72^{2} + 3,55^{2} + 3,56^{2} + 3,54^{2} + 3,67^{2} = 129,6708$$

o que permite que escrevamos

$$S^2 = \frac{1}{9} (129,6708 - 10 \times 3,6^2) = \frac{0,0708}{9} \approx 0,0078 \Rightarrow S = \sqrt{0,0078} \approx 0,0887$$
.

Suporemos que podemos usar a distribuição Normal com esta massa de dados. Assim poderemos escrever

$$IC = \left[3.6 - z_{\gamma/2} \frac{0.0887}{\sqrt{10}}; 3.6 + z_{\gamma/2} \frac{0.0887}{\sqrt{10}} \right] = \left[3.6 - z_{\gamma/2} \times 0.028; 3.6 + z_{\gamma/2} 0.028 \right] .$$

Como não foi especificado o coeficiente de confiança, a resposta é esta. 6 – Sexta questão (1,0 ponto)

As correias de um automóvel tem as especificações como média de duração 20 000km e desvio padrão de 4 500 km. Calcule a probabilidade destas correias durarem mais de 25 000km. **Resolução:**

Será suposto que podemos usar a distribuição Normal. Para simplificar nossos cáculo trabalharemos como milhares de quilômetros no lugar de usarmos quilômetros. Calculemos

$$P(X>25) = P\left(Z > \frac{25 - 20}{4,5}\right) = P\left(Z > \frac{5}{4,5}\right) = P\left(Z > \frac{10}{9}\right) \approx P\left(Z > 1,11\right) = 0,5 - P\left(Z < 1,11\right) = 0,5 - 0,3665 = 0,1335$$

Tabela da distribuição Normal N(0,1)

\mathbf{Z}_{c}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.