$$\begin{pmatrix} u_1' \\ u_2' \\ u_3' \end{pmatrix} = P^{-1} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} v_1' \\ v_2' \\ v_3' \end{pmatrix} = P^{-1} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix},$$

and by linearity, the coordinates

$$(\lambda u_1' + \mu v_1', \lambda u_2' + \mu v_2', \lambda u_3' + \mu v_3')$$

of $\lambda u + \mu v$ with respect to the basis (e'_1, e'_2, e'_3) are given by

$$\begin{pmatrix} \lambda u_1' + \mu v_1' \\ \lambda u_2' + \mu v_2' \\ \lambda u_3' + \mu v_3' \end{pmatrix} = \lambda P^{-1} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \mu P^{-1} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = P^{-1} \begin{pmatrix} \lambda u_1 + \mu v_1 \\ \lambda u_2 + \mu v_2 \\ \lambda u_3 + \mu v_3 \end{pmatrix}.$$

Everything worked out because the change of basis does not involve a change of origin. On the other hand, if we consider the change of frame from the frame $(O, (e_1, e_2, e_3))$ to the frame $(\Omega, (e_1, e_2, e_3))$, where $\overrightarrow{O\Omega} = (\omega_1, \omega_2, \omega_3)$, given two points a, b of coordinates (a_1, a_2, a_3) and (b_1, b_2, b_3) with respect to the frame $(O, (e_1, e_2, e_3))$ and of coordinates (a'_1, a'_2, a'_3) and (b'_1, b'_2, b'_3) with respect to the frame $(\Omega, (e_1, e_2, e_3))$, since

$$(a'_1, a'_2, a'_3) = (a_1 - \omega_1, a_2 - \omega_2, a_3 - \omega_3)$$

and

$$(b_1', b_2', b_3') = (b_1 - \omega_1, b_2 - \omega_2, b_3 - \omega_3),$$

the coordinates of $\lambda a + \mu b$ with respect to the frame $(O, (e_1, e_2, e_3))$ are

$$(\lambda a_1 + \mu b_1, \lambda a_2 + \mu b_2, \lambda a_3 + \mu b_3),$$

but the coordinates

$$(\lambda a_1' + \mu b_1', \lambda a_2' + \mu b_2', \lambda a_3' + \mu b_3')$$

of $\lambda a + \mu b$ with respect to the frame $(\Omega, (e_1, e_2, e_3))$ are

$$(\lambda a_1 + \mu b_1 - (\lambda + \mu)\omega_1, \lambda a_2 + \mu b_2 - (\lambda + \mu)\omega_2, \lambda a_3 + \mu b_3 - (\lambda + \mu)\omega_3),$$

which are different from

$$(\lambda a_1 + \mu b_1 - \omega_1, \lambda a_2 + \mu b_2 - \omega_2, \lambda a_3 + \mu b_3 - \omega_3),$$

unless $\lambda + \mu = 1$. See Figure 24.3.

Thus, we have discovered a major difference between vectors and points: The notion of linear combination of vectors is basis independent, but the notion of linear combination of points is frame dependent. In order to salvage the notion of linear combination of points, some restriction is needed: The scalar coefficients must add up to 1.