

Applying Constraint Programming to Multi-Skill Project Scheduling

Kenneth Young

Supervisors: Andreas Schutt and Thibaut Feydy

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

Activites

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

Constraints

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

Constraints

Activity constraint: Precedence relations between activities

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

Constraints

- Activity constraint: Precedence relations between activities
- Skill constraint: Activities require skills

What is the Multi-Skill Project Scheduling Problem (MSPSP)?

- Activites
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

Constraints

- Activity constraint: Precedence relations between activities
- Skill constraint: Activities require skills
- Worker constraint: Workers each have a variety of skills

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	\checkmark
DB Designer	✓	-	-	-
Webmaster	✓	✓	-	\checkmark

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	✓
DB Designer	✓	-	-	-
Webmaster	✓	\checkmark	-	\checkmark

Figure: Precedence Graph

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	✓
DB Designer	✓	-	-	-
Webmaster	✓	\checkmark	-	✓

Table: Skill Requirement

	A_1	A_2	<i>A</i> ₃	A_4
Programmer	-	1	2	1
DB Designer	1	-	-	1
Webmaster	1	1	-	-

Figure: Precedence Graph

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	✓
DB Designer	✓	-	-	-
Webmaster	✓	\checkmark	-	✓

Table: Skill Requirement

	A_1	A_2	A_3	A_4
Programmer	-	1	2	1
DB Designer	1	-	-	1
Webmaster	1	1	-	-

Figure: Precedence Graph

Figure: Schedule

Intro: Constraint Programming

Domain propagation

- Variables have domains of possible values
- Constraints reduce the size of these domains

Intro: Constraint Programming

Domain propagation

- Variables have domains of possible values
- Constraints reduce the size of these domains

Nogood learning

- Learn from failures
- Record these failures as constraints
- Use these constraints to make inferences

Intro: The Literature

- French research group
 - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
 - Exact branch and bound methods
 - Lower bounds
 - Adapted data from PSPLib

Intro: The Literature

- French research group
 - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
 - Exact branch and bound methods
 - Lower bounds
 - Adapted data from PSPLib
- Portuguese research group
 - Principal researchers: Bernardo Almeida, Isabel Correia, Francisco Saldanha-da-Gama
 - Constructive heuristics
 - Randomised search heuristics
 - Generated their own data

Intro: The Literature

- French research group
 - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
 - Exact branch and bound methods
 - Lower bounds
 - Adapted data from PSPLib
- Portuguese research group
 - Principal researchers: Bernardo Almeida, Isabel Correia, Francisco Saldanha-da-Gama
 - Constructive heuristics
 - Randomised search heuristics
 - Generated their own data
- Polish research group
 - Principal researchers: Myszkowski, Skowronski
 - Randomised search heuristics
 - Generated their own data

Intro: Timeline of the Literature

- French
- Portuguese
- Polish
- Other

Objective

- Objective
 - Minimise the total project duration

- Objective
 - ▶ Minimise the total project duration
- Two main decisions

- Objective
 - Minimise the total project duration
- Two main decisions
 - 1. Scheduling decisions
 - Activity start times

- Objective
 - Minimise the total project duration
- Two main decisions
 - 1. Scheduling decisions
 - Activity start times
 - 2. Assignment decisions
 - Workers to activities
 - Skill contribution of workers

• Precedence relations are respected

- Precedence relations are respected
- Workers perform only one activity at a time

- Precedence relations are respected
- Workers perform only one activity at a time
- Workers cannot multi-task

- Precedence relations are respected
- Workers perform only one activity at a time
- Workers cannot multi-task
- Skill requirement is satisfied
 - ▶ A worker for each skill must be present to perform the activity

- Precedence relations are respected
- · Workers perform only one activity at a time
- Workers cannot multi-task
- Skill requirement is satisfied
 - ▶ A worker for each skill must be present to perform the activity
- Redundant constraints

Model: Choice of Constraints

Unary Resource Constraint

• Each worker only performs one activity at a time

Model: Choice of Constraints

Unary Resource Constraint

Each worker only performs one activity at a time

Three equivalent ways of modelling

Model: Choice of Constraints

Unary Resource Constraint

• Each worker only performs one activity at a time

Three equivalent ways of modelling

1. Boolean satisfiability constraint using extra decision variable

Model: Choice of Constraints

Unary Resource Constraint

• Each worker only performs one activity at a time

Three equivalent ways of modelling

- 1. Boolean satisfiability constraint using extra decision variable
- 2. Disjunctive global constraint

Model: Choice of Constraints

Unary Resource Constraint

• Each worker only performs one activity at a time

Three equivalent ways of modelling

- 1. Boolean satisfiability constraint using extra decision variable
- 2. Disjunctive global constraint
- 3. Cumulative global constraint

Model: Decision Variables

Decision Variables

 s_i Start time of activity $i \in V$

 o_{ij} 1 iff activities i and j overlap for $(i,j) \in U$

 x_{ir} 1 iff resource $r \in \mathcal{R}$ is assigned activity $i \in V$

 y_{irk} 1 iff resource $r \in \mathcal{R}$ contributes with skill $k \in \mathcal{L}$ to activity $i \in V$

Model

(6)

$$Min s_{n+1} \tag{1}$$

s.t.
$$s_i + p_i \leq s_j$$
 $\forall (i,j) \in E$ (2)

$$\neg o_{ij} \Leftrightarrow (s_i + p_i \le s_j) \lor (s_i + p_i \le s_i) \quad \forall (i, j) \in U$$
 (3)

$$(x_{ir} \wedge x_{jr}) \Rightarrow \neg o_{ij}$$
 $\forall (i,j) \in U, \ r \in \mathscr{R}V_i \cap \mathscr{R}V_j \ (4)$

$$\sum_{r \in \mathscr{R}V_i} y_{irk} = Req_{ik} \qquad \forall i \in V, \ k \in \mathscr{L}_i$$
 (5)

$$y_{irk} \leq 1$$
 $\forall i \in V, \ r \in \mathscr{R}V_i$

$$k \in \mathcal{L}_i | Mast_{rk} = 1$$

$$y_{irk} \leq Mast_{rk} \qquad \forall i \in V, \ r \in \mathscr{R}V_i, \ k \in \mathscr{L}$$
 (7)

$$y_{irk} \leq x_{ir}$$
 $\forall i \in V, r \in \mathcal{R}V_i, k \in \mathcal{L}_i$ (8)

$$s_i \ge 0 \qquad \forall i \in V$$
 (9)

Model: Redundent Constraints

$$\texttt{cumulative}(s, p, [Req_{ik} : i \in V], |\mathscr{R}_k|) \quad \forall k \in \mathscr{L} \quad (10)$$

$$\operatorname{cumulative}\left(s,\ p,\ \left[\sum_{k\in\mathscr{L}}\operatorname{Req}_{ik}:i\in V\ \right],\ m\right) \tag{11}$$

$$x_{ir} = 0 \quad \forall i \in V, \ r \in \mathcal{R} \backslash \mathcal{R} V_i$$
 (12)

$$y_{irk} = 0 \quad \forall i \in V, \ r \in \mathcal{R} \backslash \mathcal{R} V_i, \ k \in \mathcal{L}$$
 (13)

$$y_{irk} = 0 \quad \forall i \in V, \ r \in \mathcal{R}, \ k \in \mathcal{L} \setminus \mathcal{L}_i$$
 (14)

$$y_{irk} = 0 \ \forall r \in \mathcal{R}, \ k \in \mathcal{L} \backslash \mathcal{L}_r, \ i \in V$$
 (15)

DATA SIRO

- Generated our own data
 - equivalent to the Portuguese group's data

- Generated our own data
 - equivalent to the Portuguese group's data
- Small data set: 216 unique instances
 - 20 activities
 - 4 skills
 - ▶ 10-30 workers

- Generated our own data
 - equivalent to the Portuguese group's data
- Small data set: 216 unique instances
 - 20 activities
 - 4 skills
 - ▶ 10-30 workers
 - ▶ 13 unsolved

- Generated our own data
 - equivalent to the Portuguese group's data
- Small data set: 216 unique instances
 - 20 activities
 - 4 skills
 - ▶ 10-30 workers
 - 13 unsolved
- Large data set: 216 unique instances
 - 40 activities
 - 4 skills
 - 20-60 workers

- Generated our own data
 - equivalent to the Portuguese group's data
- Small data set: 216 unique instances
 - 20 activities
 - 4 skills
 - ▶ 10-30 workers
 - 13 unsolved
- Large data set: 216 unique instances
 - 40 activities
 - 4 skills
 - 20-60 workers
 - 211 unsolved

Data: Complexity Measures

- 1. Skill Factor
 - ▶ $SF \in \{1, 0.75, 0.5, variable\}$

Data: Complexity Measures

- 1. Skill Factor
 - $SF \in \{1, 0.75, 0.5, variable\}$
- 2. Network Complexity
 - $ightharpoonup NC \in \{1.5, 1.8, 2.1\}$

Data: Complexity Measures

- 1. Skill Factor
 - $SF \in \{1, 0.75, 0.5, variable\}$
- 2. Network Complexity
 - $ightharpoonup NC \in \{1.5, 1.8, 2.1\}$
- 3. Modified Resource Strength
 - varied over 3 values

$$MRS = \frac{m}{\sum_{i \in V} \sum_{k \in \mathscr{L}} Req_{ik}}$$

Experiments: Constraint Choice

Sample of 72 small instances

Experiments: Constraint Choice

Sample of 72 small instances

• Start times (s_i)

- Start times (s_i)
- Start times (s_i) , then worker assignment (x_{ir})

- Start times (s_i)
- Start times (s_i) , then worker assignment (x_{ir})
- Start times (s_i) , then contribution of each worker (y_{irk})

- Start times (s_i)
- Start times (s_i) , then worker assignment (x_{ir})
- Start times (s_i) , then contribution of each worker (y_{irk})
- Naïve activity-based

Experiments: Small Data Set

- Tested on all 216 small instances.
- Time limit of 300 seconds

Experiments: Small Data Set

- Tested on all 216 small instances
- Time limit of 300 seconds

search strategy	#no soln	%gap	#optimal	%optimal	avg. runtime
default	0	0.00	216	100.00	3.25s
start	0	2.50	215	99.54	1.26s
start then worker	0	0.00	216	100.00	2.89s
start then skill	0	0.00	216	100.00	1.63s
naïve activity-based	0	2.50	215	99.54	0.82s

Experiments: Small Data Set

- Tested on all 216 small instances.
- Time limit of 300 seconds

search strategy	#no soln	%gap	#optimal	%optimal	avg. runtime
default	0	0.00	216	100.00	3.25s
start	0	2.50	215	99.54	1.26s
start then worker	0	0.00	216	100.00	2.89s
start then skill	0	0.00	216	100.00	1.63s
naïve activity-based	0	2.50	215	99.54	0.82s
activity smallest	0	0.00	216	100.00	0.45s

- Tested on all 216 large instances
- Time limit of 300 seconds

- Tested on all 216 large instances
- Time limit of 300 seconds

variable selection	#nodes	#props	#no soln	%gap	#opt	%opt	opt rt.	total rt.
naive	6,568k	375m	0	60.36	13	6.02	98.15	287.85
smallest	734k	71m	0	53.29	15	6.94	103.51	286.35
smallest_largest	814k	73m	0	55.50	7	3.24	70.71	292.57
first_fail	1,037k	80m	0	67.48	8	3.70	113.33	293.09

- Tested on all 216 large instances
- Time limit of 300 seconds

variable selection	#nodes	#props	#no soln	%gap	#opt	%opt	opt rt.	total rt.
naive	6,568k	375m	0	60.36	13	6.02	98.15	287.85
smallest	734k	71m	0	53.29	15	6.94	103.51	286.35
smallest_largest	814k	73m	0	55.50	7	3.24	70.71	292.57
first_fail	1,037k	80m	0	67.48	8	3.70	113.33	293.09
smallest wth UB	715k	69m	5	54.18	16	7.41	78.88	283.62
	1							

- Tested on all 216 large instances
- Time limit of 300 seconds

variable selection	#nodes	#props	#no soln	%gap	#opt	%opt	opt rt.	total rt.
naive	6,568k	375m	0	60.36	13	6.02	98.15	287.85
smallest	734k	71m	0	53.29	15	6.94	103.51	286.35
smallest_largest	814k	73m	0	55.50	7	3.24	70.71	292.57
first_fail	1,037k	80m	0	67.48	8	3.70	113.33	293.09
smallest wth UB	715k	69m	5	54.18	16	7.41	78.88	283.62
smallest $(fixed)$	3,962k	409m	0	50.18	24	11.11	55.45	272.83

Time limit of 3600 seconds

Time limit of 3600 seconds

measure	value	#nodes	#props	%gap	#opt	%opt	opt rt.	total rt.
SF	1	36m	4,254m	48.35	7	12.96	257.55	3166.72
	0.75	47m	4,296m	49.63	4	7.41	545.44	3373.74
	0.5	32m	4,468m	42.06	20	37.04	782.20	2556.37
	var	45m	4,302m	49.82	5	9.26	130.97	3278.79
NC	1.5	41m	5,007m	57.33	8	11.11	819.48	3291.05
	1.8	42m	4,381m	46.09	11	15.28	558.06	3135.26
	2.1	36m	3,602m	38.99	17	23.61	446.41	2855.40
MRS	#1	37m	6,083m	76.93	14	19.44	327.52	2963.68
	#2	42m	4,154m	43.36	8	11.11	913.89	3301.54
	#3	39m	2,753m	23.94	14	19.44	599.07	3016.49
Overall		40m	4,330m	47.92	36	16.67	563.43	3093.90

Applied the constraint programming solver chuffed to the MSPSP

- Applied the constraint programming solver chuffed to the MSPSP
- Generated a set of benchmark instances

- Applied the constraint programming solver chuffed to the MSPSP
- Generated a set of benchmark instances
- Found an effective model formulation

- Applied the constraint programming solver chuffed to the MSPSP
- Generated a set of benchmark instances
- Found an effective model formulation
- Solved all small instances

Future Work

Apply activity-based search to the large dataset

Future Work

- Apply activity-based search to the large dataset
- Create a more structured search procedure in chuffed

Acknowledgements

- Dr. Andreas Schutt
- Dr. Thibaut Feydy
- Adrian Goldwaser

Thanks for listening!

Questions?