Assignment 5

Advanced Algorithms & Data Structures PS

Christian Müller 1123410 Daniel Kocher, 0926293

April 18, 2016

Aufgabe 9

Proof.

Zu zeigen: Sei $m \le i$: x_i Vorfahre von $x_m \Leftrightarrow P_{min}(\{x_m, ..., x_i\}) = x_i$

i) " ⇐ "

Annahme: $P_{min}(\{x_m, ..., x_i\}) = x_i$

Knoten werden nach Prioritäten in den Suchbaum eingefügt \Rightarrow aus der Menge $\{x_m, ..., x_i\}$ wird x_i als erster eingefügt.

Für die Knoten x_k mit Schlüsseln k die vor x_i eingefügt wurden haben die Eigenschaft: $k < key(x_m)$ oder $k > key(x_i)$.¹.

Wenn $x_j \in \{x_m, ..., x_{i-1}\}$ eingefügt wird durchläuft x_j denselben Pfad wie x_i^2 und wird im linken Unterbaum von x_i eingefügt. Es gilt daher: x_j ist Nachfahre von x_i und insbesonders x_m ist Nachfahre von $x_i \implies x_i$ ist Vorfahre von x_m

ii) " ⇒ "

Sei: $P_{min}(\{x_m,...,x_i\}) = x_j$; Zeige: i = j

Annahme: x_i Vorfahre von x_m

Knoten werden nach Prioritäten in den Suchbaum eingefügt \Rightarrow aus der Menge $\{x_m, ..., x_i\}$ wird x_j als erster eingefügt.

Für die Knoten x_k mit Schlüssel k die vor x_i eingefügt wurden haben die Eigenschaft: $k < key(x_m)$ oder $k > key(x_i)$. Jeder Knoten x_l aus $\{x_m, ..., x_i\}$ mit $l \neq j$ muss beim Einfügen denselben Pfad durchlaufen wie x_j .

Falls $j \neq i, m$: x_m landet im linken Unterbaum von x_j und x_i im rechten Unterbaum von $x_j \implies x_i$ ist kein Vorfahr von x_m .

Falls j = m: x_i landet im rechten Unterbaum von $x_m \implies x_m$ ist Vorfahre von x_i

 $\implies j = i$

 $^{^1}$ Würde $key(x_m) \leq k \leq key(x_i)$ gelten wäre der Knoten mit dem Schlüsselk Teil der Menge $\{x_m,...,x_i\}$ und würde wegen $P_{min}(\{x_m,...,x_i\}) = x_i$ nach x_i eingefügt werden

²Es gilt für alle sich im Baum befindlichen Schlüssel $k \ k < key(x_m) \le key(x_j) \le key(x_i)$ oder $k > key(x_i) \ge key(x_j) \ge key(x_m)$