HF 上の Δ_1 関係と recursive の同値性

でぃぐ

2019年10月21日

命題 1. $f:\omega^k \rightharpoonup \omega$ を部分再帰的関数とする.このとき f は ω^{k+1} の部分集合であるが,これは HF 上 Σ_1 である.

証明. まず初期関数について示す.

zero について: これは論理式 $\varphi(y) \equiv y = 0$ で定義されるのでよい.

射影 I_i^k について: これは論理式 $\varphi(\vec{x},y) \equiv \bigwedge_{j < k} (x_j \in \omega) \land y = x_i$ で定義されるのでよい.

後続者 succ について: これは論理式 $\varphi(x,y) \equiv x \in \omega \land y = S(x)$ で定義されるのでよい.

次に HF 上 Σ_1 な ω 上の部分関数が合成・原始再帰・最小化で閉じることを示す.

合成について: 関数 g_0,\ldots,g_{k-1},h が論理式 $\psi_0,\ldots,\psi_{k-1},\theta$ で定義されるとする. このとき合成関数

$$f(\vec{x}) \simeq h(g_0(\vec{x}), \dots, g_{k-1}(\vec{x}))$$

は論理式

$$\varphi(\vec{x}, y) \equiv (\exists a_0) \dots (\exists a_{k-1}) (\theta(a_0, \dots, a_{k-1}, y) \land \psi_0(\vec{x}, a_0) \land \dots \land \psi_{k-1}(\vec{x}, a_{k-1}))$$

で定義される. よってよい.

原始再帰について: 関数 g,h が論理式 ψ,θ で定義されるとする. このとき次の原始再帰で定義される f を考える:

$$f(0, \vec{x}) \simeq g(\vec{x}),$$

$$f(n+1, \vec{x}) \simeq h(n, \vec{x}, f(n, \vec{x})).$$

すると f は論理式

$$\varphi(n, \vec{x}, y) \equiv (\exists w)(w : n+1 \to \omega \land \psi(\vec{x}, w(0)) \land (\forall i < n)(\theta(i, \vec{x}, w(i), w(i+1))) \land y = w(n))$$

で定義される. よってよい.

最小化について: 関数 g が論理式 ψ で定義されるとする. このとき次の最小化で定義される f を考える:

$$f(\vec{x}) \simeq (\mu z) g(\vec{x}, z).$$

すると f は論理式

$$\varphi(\vec{x}, y) \equiv \psi(\vec{x}, y, 0) \land (\forall z < y)(\exists n)(n \neq 0 \land \psi(\vec{x}, z, n))$$

で定義される. よってよい.

系 2. $A \subseteq \omega^k$ について A が recursively enumerable ならば、A は HF $\perp \Sigma_1$.

証明. A が recursively enumerable ならある recursive な関数 f があって

$$A = \{ \vec{x} \in \omega^k \mid (\exists y \in \omega) f(\vec{x}, y) = 1 \}$$

となる. f を定義する Σ_1 論理式 ψ をとれば論理式

$$\varphi(\vec{x}) \equiv (\exists y) \psi(\vec{x}, y, 1)$$

により A は定義される.

逆を示すために次が重要になる.

補題 3. ω 上の二項関係 E を

 $nEm \iff m$ の二進展開の下から n 桁目が 1

と定める. そして再帰で $\chi: \omega \to HF$ を

$$\chi(m) = \{\chi(n) \mid nEm\}$$

とおく. このとき

- 1. $E \bowtie \text{recursive.}$
- 2. $\chi:(\omega,E)\to (HF,\in)$ は同型写像.
- 3. χ の逆写像 χ^{-1} の ω への制限は recursive.

証明. 1 は明らか. 2 と 3 を示す. Γ : HF $\rightarrow \omega$ を次で再帰的に定める:

$$\Gamma(a) = \sum_{b \in a} 2^{\Gamma(b)}.$$

このとき Γ が χ の逆写像になっていること,すなわち $\Gamma \circ \chi = \mathrm{id}_{\omega}, \chi \circ \Gamma = \mathrm{id}_{\mathrm{HF}}$ がそれぞれ関係 E と ϵ に関する帰納法で証明できる.すると χ が同型になっていることは定義より容易にわかる. Γ の定義を見れば,これの ω への制限が recursive なことも明らか.

命題 4. どんな Δ_0 論理式 φ に対してもある recursive な集合 A があって任意の $\vec{x} \in \omega$ について

$$HF \models \varphi(\chi(x_0), \dots, \chi(x_{k-1})) \iff (x_0, \dots, x_{k-1}) \in A$$

証明. 論理式の複雑さに関する帰納法.

論理式 x=y については $\{(x,y)\in\omega^2|x=y\}$ でよい. 論理式 $x\in y$ については補題 3 の E でよい. 論理結合子の場合は明らか.

 $\varphi \equiv (\exists y \in x_0) \psi(\vec{x}, y)$ のときは ψ に対する recursive な集合を B として,

$$A = \{(x_0, \dots, x_{k-1}) \in \omega^k \mid (\exists y < x_0)(yEx_0 \land (\vec{x}, y) \in B)\}$$

とすればよい.

命題 5. $A \subseteq \omega^k$ が HF 上 Σ_1 ならば, A は recursively enumerable である.

証明. A が論理式 $(\exists y)\varphi(\vec{x},y)$ で定義されるとする. すると命題 4 より recursive な B がとれて

$$\text{HF} \models \varphi(\vec{x}, y) \iff (\chi^{-1}(x_0), \dots, \chi^{-1}(x_{k-1}), \chi^{-1}(y)) \in B$$

となる. よって.

$$(x_0, \dots, x_{k-1}) \in A \iff (\exists y \in \omega)((\chi^{-1}(x_0), \dots, \chi^{-1}(x_{k-1}), y) \in B)$$

となるので、Aは recursively enumerable である.

系2と命題5より次が得られる.

定理 6. $A \subseteq \omega^k$ について、HF 上 Σ_1 であることと recursively enumerable であることは同値.

recursively enumerable かつ補集合が recursively enumerable であれば recursive であったのを思い出すと次の系を得る.

系 7. $A \subseteq \omega^k$ について、HF 上 Δ_1 であることと recursive であることは同値.

参考文献

[1] K. Kunen. *The Foundations of Mathematics*. Mathematical logic and foundations. College Publications, 2009.