Bits, Bytes, and Integers – Part 2

15-213: Introduction to Computer Systems 3rd Lecture, Sept. 5, 2017

Today's Instructor:

Randy Bryant

Summary From Last Lecture

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Encoding Integers

Unsigned

$$D_4 W^*Z + = \sum_{K=2}^{Y-3} Z_K \cdot 4^K$$

Two's Complement

$$D_4 V^*Z + = -Z_{Y-3} \cdot 4^{Y-3} + \sum_{k=2}^{Y-4} Z_k \cdot 4^k$$
Sign Bit

Two's Complement Examples (w = 5)

$$-16$$
 8 4 2 1
 $10 = 0$ 1 0 1 0 8+2 = 10
 -16 8 4 2 1
 $-10 = 1$ 0 1 1 0 $-16+4+2 = -10$

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

Sign Extension and Truncation

Sign Extension

Truncation

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

数据的运算

- · 高级语言程序中涉及的运算(以C语言为例)
 - 整数算术运算、浮点数算术运算
 - 按位、逻辑、移位、位扩展和位截断
- 指令集中涉及到的运算
 - 涉及到的定点数运算
 - ・算术运算
 - 带符号整数运算: 取负/符号扩展/算术移位/加/减/乘/除
 - 无符号整数运算: 0扩展/加/减/乘/除
 - ・逻辑运算
 - · 逻辑操作: 与/或/非/...
 - · 移位操作: 逻辑左移/逻辑右移
 - 涉及到的浮点数运算:加、减、乘、除
- · 基本运算部件ALU的设计

如何实现高级语言源程序中的运算?

- 计算机如何实现高级语言程序中的运算?
 - 将各类表达式编译(转换)为指令序列
 - 计算机直接执行指令来完成运算

例: C语言赋值语句 "f = (g+h) - (i+j);"中变量 $i \times j \times f \times g \times h$ 由编译器分别分配给MIPS寄存器 $st0 \sim st4$ 。寄存器 $st0 \sim st7$ 的编号对应 $stable st0 \sim st7$ 的编号对应 $stable st0 \sim st7$ 的编号对应stable stable stabl

```
000000 01011 01100 01101 00000 100000 add $t5, $t3, $t4 # g+h
000000 01000 01001 01110 00000 100000 add $t6, $t0, $t1 # i+j
000000 01101 01110 01010 00000 100010 sub $t2, $t5, $t6 # f =(g+h)-(i+j)
```

Unsigned Addition

Operands: w bits

U

True Sum: w+1 bits

U+V

Discard Carry: w bits

 $UADD_{W}(U, V)$

Standard Addition Function

- Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

unsigned char		1110	1001	E 9	223
	+	1101	0101	+ D5	+ 213
	1	1011	1110	1BE	446
		1011	1110	BE	190

Hex Decimanary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111
A B C D	10 11 12 13 14	1010 1011 1100 1101 1110

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum $\ge 2^w$
- At most once

True Sum

Two's Complement Addition

Operands: w bits

.1 bi+c

True Sum: w+1 bits

Discard Carry: w bits

 $TAdd_{W}(U, V)$

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

BE

-66

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

0 111...1

0 100...0

0 000...0

1 011...1

1 000...0

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$VCFF_Y*WX+ = \begin{cases} W+X+2^w & W+X < VO_{RP_Y} \text{ (NegOver)} \\ W+X & VO_{RP_Y} \le W+X \le VO_{CZ_Y} \\ W+X-2^w & VO_{CZ_Y} < W+X \text{ (PosOver)} \end{cases}$$

整数加减运算及其部件

- 补码加减运算公式
 - $-[A+B]_{\stackrel{?}{\not=} h} = [A]_{\stackrel{?}{\not=} h} + [B]_{\stackrel{?}{\not=} h} (MOD 2^n)$
 - $-[A-B]_{\dot{\lambda}|\dot{\lambda}} = [A]_{\dot{\lambda}|\dot{\lambda}} + [-B]_{\dot{\lambda}|\dot{\lambda}} (MOD 2^n)$
- 补码加减运算要点和运算部件
 - 加、减法运算统一采用加法来处理
 - 符号位(最高有效位MSB)和数值位一起参与运算
 - 直接用Adder实现两个数的加运算(模运算系统)

问题:模是多少?运算结果高位丢弃,保留低n位,相当于取模

2n

问题: 奶荷敦主要工作在于: 求[-B] *

当Sub为1时,做减法 当Sub为0时,做加法

Sub

问题:Adder中执行的

是什么运算?

相当于无符号数加!

重要认识1: 计算机中所有运 算都基于加法器实现!

重要认识2:加法器不知道所运算的是 带符号数还是无符号数。

重要认识3:加法器不判定对错,总是 取低n位作为结果,并生成标志信息。

条件标志位(条件码CC)

所有其他运算都基于<mark>整数</mark>加/减运算器来实现。

整数加/减运算部件

问题: OF=? ZF=? SF=? CF=?

OF: 若A与B'同号但与Sum不同号,则1;否则0。SF: sum符号

ZF: 如Sum为0,则1,否则0。CF: Cout ⊕ sub

- ·零标志ZF、溢出标志OF、进/借位标志CF、符号标志SF称为条件标志。
- ·条件标志(Flag)在运算电路中产生,被记录到专门的寄存器中,以便在分支指令中被用来作为条件。
- · 存放标志的寄存器通常称为程序/状态字寄存器或标志寄存器。每个标志对应标志寄存器中的一个标志位。 如,IA-32中的EFLAGS寄存器

整数加减运算及其部件

unsigned int x=134; unsigned int y=246; int m=x; int n=y; unsigned int z1=x-y; unsigned int z2=x+y; int k1=m-n; int k2=m+n;

无符号数加减运算也用该部件执行

x和m的机器数一样: 1000 0110, y和n的机器数一样: 1111 0110

z1和k1的机器数一样: 1001 0000, CF=1, OF=0, SF=1

z1的值为144 (=134-246+256, x-y<0), k1的值为-112。

z2和k2的机器数一样: 0111 1100, CF=1, OF=1, SF=0

z2的值为124 (=134+246-256, x+y>256)

k2的值为124 (=134+246-256, x+y>128, 即正溢出)

结果说明什么?

仅k1的值正确!

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

		1110	1001		E9		223
*		1101	0101	*	D5	*	213
1100	0001	1101	1101	C	:1DD		47499
		1101	1101		DD		221

Signed Multiplication in C

Discard w bits: w bits

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

		1110	1001		E9		-23
*		1101	0101	*	D5	*	-43
0000	0011	1101	1101	()3DD		989
		1101	1101		DD		-35

22

整数的乘运算

- 高级语言中两个n位整数相乘得到的结果通常也是一个n位整数 ,也即结果只取2n位乘积中的低n位。
- 例如,在C语言中,参加运算的两个操作数的类型和结果的类型必须一致,如果不一致则会先转换为一致的数据类型再进行计算。

x² ≥ 0? 对于带符号整数,不一定! 例如,当n=4时, 5²=-7<0!

24

整数的乘运算

• X×Y的高n位可以用来判断溢出,规则如下:

- 无符号: 若高n位全0,则不溢出,否则溢出

- 带符号: 若高n位全0或全1且等于低n位的最高位,则不溢出。

运算	х	X	y	Y	$\mathbf{x} \times \mathbf{y}$	X×Y	р	P	溢出否
无符号乘	6	0110	10	1010	60	0011 1100	12	1100	溢出
带符号乘	6	0110	-6	1010	-36	1101 1100	-4	1100	溢出
无符号乘	8	1000	2	0010	16	0001 0000	0	0000	溢出
带符号乘	-8	1000	2	0010	-16	1111 0000	0	0000	溢出
无符号乘	13	1101	14	1110	182	1011 0110	6	0110	溢出
带符号乘	-3	1101	-2	1110	6	0000 0110	6	0110	不溢出
无符号乘	2	0010	12	1100	24	0001 1000	8	1000	溢出
带符号乘	2	0010	-4	1100	-8	<u>1111 1</u> 000	-8	1000	不溢出

整数的乘运算

- 通常硬件不判断乘法是否溢出,而是保留2n位乘积
- 分无符号数乘指令和带符号整数乘指令
- 乘法指令无法得到溢出标志或无法自动判断是否溢出,如果程序本身不采用防止溢出的措施,而且编译器也不生成相应的用于溢出处理的代码的话,就会发生一些由于整数溢出而带来的问题。
- 乘法指令的操作数长度为n,而乘积长度为2n,例如:
 - IA-32中,若指令只给出一个操作数SRC,则另一个源操作数 隐含在累加器AL/AX/EAX中,将SRC和累加器内容相乘,结 果存放在AX(16位时)或DX-AX(32位时)或EDX-EAX (64位时)中。
 - 在MIPS处理器中,带符号整数乘法指令mult会将两个32位带符号整数相乘得到的64位乘积置于两个32位内部寄存器Hi和Lo中,因此,可以根据Hi寄存器中的每一位是否等于Lo寄存器中的第一位来进行溢出判断。

整数溢出漏洞

说明以下程序存在什么漏洞,引起该漏洞的原因是什么。

```
/* 复制数组到堆中, count为数组元素个数 */
int copy array(int *array, int count) {
   int i;
   /* 在堆区申请一块内存 */
   int *myarray = (int *) malloc(count*sizeof(int));
   if (myarray == NULL)
      return -1;
   for (i = 0; i < count; i++)
      myarray[i] = array[i];
   return count;
      当参数count很大时,则
      count*sizeof(int)会溢出。
      如count=230+1时,
      count*sizeof(int)=4.
```

2002年, Sun Microsystems公 司的RPC XDR库带的xdr array 函数发生整数溢出漏洞,攻击者 可利用该漏洞从远程或本地获取 root权限。

攻击者可构造特殊参数来触发整 数溢出,以一段预设信息覆盖一 个已分配的堆缓冲区,造成远程 服务崩溃或者改变内存数据并执 行任意代码。

堆 (heap) 中大量 数据被破坏!

变量与常数之间的乘运算

整数乘法运算比移位和加法等运算所用时间长得多,通常一次乘法运算需要10个左右时钟周期,而一次移位、加法和减法等运算只要一个或更少的时钟周期,因此,编译器在处理变量与常数相乘时,往往以移位、加法和减法的组合运算来代替乘法运算。

例如,对于表达式x*20,编译器可以利用 20=16+4=2⁴+2²,将x*20转换为(x<<4)+(x<<2),这 样,一次乘法转换成了两次移位和一次加法。

 不管是无符号数还是带符号整数的乘法,即使乘积溢出时 ,利用移位和加减运算组合的方式得到的结果都是和采用 直接相乘的结果是一样的。

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

K

Examples

- u << 3
- (u << 5) (u << 3) == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

变量与常数之间的除运算

- 对于整数除法运算,由于计算机中除法运算比较复杂,而且不能用流水线方式实现,所以一次除法运算大致需要30个或更多个时钟周期。为了缩短除法运算的时间,编译器在处理一个变量与一个2的幂次形式的整数相除时,常采用右移运算来实现。
- 无符号数除法采用逻辑右移方式,带符号整数采用算术右移方式。
- 结果一定取整数,能整除时,直接右移得到结果。

```
例如,12/4=3: 0000 1100>>2=0000 0011
-12/4=-3: 1111 0100 >>2=1111 1101
```

不能整除时,其商采用朝零方向舍入的方式,也就是截断方式,即:移出的低位数直接丢弃。带符号负整数则不对! (需加偏移量(2^k-1), 然后再右移 k 位,低位截断)

无符号整数: 14/4=3: 0000 1110>>2=0000 0011

带符号整数: -14/4=-3: 1111 0010 >>2=1111 1100=-4≠-3

纠偏: k=2, 故(-14+2²-1)/4=-3: 1111 0101>>2=1111 1101=-3

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
у >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\lceil \mathbf{x} / 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Negation: Complement & Increment

Negate through complement and increase

$$~x + 1 == -x$$

Example

■ Observation: ~x + x == 1111...111 == -1

$$x = 15213$$

	Decimal	Hex		Bina	ary
x	15213	3B	6D	00111011	01101101
~x	-15214	C4	92	11000100	10010010
~x+1	-15213	C4	93	11000100	10010011
У	-15213	C4	93	11000100	10010011

Complement & Increment Examples

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	0000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

x = TMin

	Decimal	Hex	Binary
x	-32768	80 00	10000000 00000000
~x	32767	7F FF	01111111 11111111
~x+1	-32768	80 00	10000000 000000000

Canonical counter example

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- Don't use without understanding implications
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
. . . .
```

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- Data type size t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?</p>

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension
- Do Use In System Programming
 - Bit masks, device commands,...

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
```

Representing Pointers

int
$$B = -15213$$
;
int *P = &B

Different compilers & machines assign different locations to objects

Even get different results each time run program

Representing Strings

char S[6] = "18213";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format.
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
80 4 836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)

Deciphering Numbers

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

0x12ab 0x000012ab 00 00 12 ab ab 12 00 00

Integer C Puzzles

Initialization

x < 0	\Rightarrow	$((x*2) < 0) \qquad \times$
ux >= 0		✓
x & 7 == 7	\Rightarrow	(x << 30) < 0
ux > -1		×
x > y	\Rightarrow	-x < -y ✗
x * x >= 0		X
x > 0 &	\Rightarrow	$x + y > 0 \qquad \qquad X$
x >= 0	\Rightarrow	-x <= 0 ✓
x <= 0	\Rightarrow	-x >= 0
(x -x) >> 31 == -1		
$ux \gg 3 == ux/8$		
$x \gg 3 == x/8$		
x & (x-1) != 0		

Summary

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary