

# Guru Gobind Singh College of Engineering and Research Centre, Nashik



| Expe | rimer | nt No | o: 01 |
|------|-------|-------|-------|
|      |       |       |       |

Write a program non-recursive and recursive program to calculate Fibonacci numbers and analyse their time and space complexity.

| Student Name:                     |             |                 |        |                                           |   |       |
|-----------------------------------|-------------|-----------------|--------|-------------------------------------------|---|-------|
| Class:                            | BE (Compute | er)             |        |                                           |   |       |
| Div:                              |             |                 |        | Batch:                                    |   |       |
| Roll No.:                         |             |                 |        |                                           |   |       |
| Date of Attendance (Performance): |             |                 |        |                                           |   |       |
| Date of Evaluation:               |             |                 |        |                                           |   |       |
| Marks (Grade)                     | A           | P               |        | W                                         | Γ | Total |
| Attainment of CO                  |             |                 |        |                                           |   |       |
| Marks out of 10                   |             |                 |        |                                           |   |       |
| CO Mapped                         | _           | nt an algorithm | that i | gorithm. follows one of ter, greedy, dyna |   |       |
| Signature of Subject Teacher      |             |                 |        |                                           |   |       |



**Experiment No: 02** 

#### **Guru Gobind Singh Foundation's**





| - |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

Write a program to solve a fractional Knapsack problem using a greedy method.

| Student Name:             |                                                                  |             |                 |                                                |       |  |  |
|---------------------------|------------------------------------------------------------------|-------------|-----------------|------------------------------------------------|-------|--|--|
| Class:                    | BE (Comput                                                       | ter)        |                 | <u>,                                      </u> |       |  |  |
| Div:                      |                                                                  |             | Batch:          |                                                |       |  |  |
| Roll No.:                 |                                                                  |             |                 |                                                |       |  |  |
| <b>Date of Attendance</b> |                                                                  |             |                 |                                                |       |  |  |
| (Performance):            |                                                                  |             |                 |                                                |       |  |  |
| Date of Evaluation:       |                                                                  |             |                 |                                                |       |  |  |
| Marks (Grade)             | A                                                                | P           | W               | T                                              | Total |  |  |
|                           |                                                                  |             |                 |                                                |       |  |  |
| Attainment of CO          |                                                                  |             |                 |                                                |       |  |  |
| Marks out of 10           |                                                                  |             |                 |                                                |       |  |  |
| CO Mapped                 |                                                                  |             |                 |                                                |       |  |  |
|                           | CO4: Analyze                                                     | performance | of an algorithm | 1.                                             |       |  |  |
|                           | CO5: Implement an algorithm that follows one of the following    |             |                 |                                                |       |  |  |
|                           | algorithm design strategies: divide and conquer, greedy, dynamic |             |                 |                                                |       |  |  |
|                           | programming, backtracking, branch and bound.                     |             |                 |                                                |       |  |  |
| Signature of              |                                                                  |             |                 |                                                |       |  |  |
| Subject Teacher           |                                                                  |             |                 |                                                |       |  |  |







**Experiment No: 03** 

Write a program to solve a 0-1 Knapsack problem using dynamic programming or branch and bound strategy.

| <b>Student Name:</b>      |                |                 |                 |                |         |  |  |
|---------------------------|----------------|-----------------|-----------------|----------------|---------|--|--|
| Class:                    | BE (Compu      | ter)            |                 |                |         |  |  |
| Div:                      |                |                 | Batch:          |                |         |  |  |
| Roll No.:                 |                |                 | ,               | ,              |         |  |  |
| <b>Date of Attendance</b> |                |                 |                 |                |         |  |  |
| (Performance):            |                |                 |                 |                |         |  |  |
| Date of Evaluation:       |                |                 |                 |                |         |  |  |
|                           | A P W T Total  |                 |                 |                |         |  |  |
| Marks (Grade)             |                |                 |                 |                |         |  |  |
| <b>Attainment of CO</b>   |                |                 |                 |                |         |  |  |
| Marks out of 10           |                |                 |                 |                |         |  |  |
| CO Mapped                 | CO4: Analyse   | performance of  | of an algorithm | 1.             |         |  |  |
|                           | CO5: Impleme   | ent an algorith | m that follows  | one of the fol | lowing  |  |  |
|                           | algorithm desi | ign strategies: | divide and con- | quer, greedy,  | dynamic |  |  |
|                           | programming,   | , backtracking, | branch and bo   | und            |         |  |  |
| Signature of              |                |                 |                 |                |         |  |  |
| <b>Subject Teacher</b>    |                |                 |                 |                |         |  |  |
|                           |                |                 | <u></u>         |                |         |  |  |



# Guru Gobind Singh College of Engineering and Research Centre, Nashik



**Experiment No: 04** 

Design n-Queens matrix having first Queen placed. Use backtracking to place remaining Queens to generate the final n-queen's matrix.

|                         | 1                                                                |                 |              |       |       |  |  |
|-------------------------|------------------------------------------------------------------|-----------------|--------------|-------|-------|--|--|
| <b>Student Name:</b>    |                                                                  |                 |              |       |       |  |  |
| Class:                  | BE (Comput                                                       | ter)            |              |       |       |  |  |
| Div:                    |                                                                  |                 | Batch:       |       |       |  |  |
| Roll No.:               |                                                                  |                 |              |       |       |  |  |
| Date of Attendance      |                                                                  |                 |              |       |       |  |  |
| (Performance):          |                                                                  |                 |              |       |       |  |  |
| Date of Evaluation:     |                                                                  |                 |              |       |       |  |  |
| Marks (Grade)           | A                                                                | P               | W            | T     | Total |  |  |
|                         |                                                                  |                 |              |       |       |  |  |
| <b>Attainment of CO</b> |                                                                  |                 |              |       |       |  |  |
| Marks out of 10         |                                                                  |                 |              |       |       |  |  |
| CO Mapped               |                                                                  | C               | C 1 '41      |       |       |  |  |
|                         | CO4: Analyse performance of an algorithm.                        |                 |              |       |       |  |  |
|                         | CO5: Implement an algorithm that follows one of the following    |                 |              |       |       |  |  |
|                         | algorithm design strategies: divide and conquer, greedy, dynamic |                 |              |       |       |  |  |
|                         | programming,                                                     | backtracking, l | oranch and b | ound. |       |  |  |
| Signature of            |                                                                  |                 |              |       |       |  |  |
| Subject Teacher         |                                                                  |                 |              |       |       |  |  |
|                         |                                                                  |                 |              |       |       |  |  |







**Experiment No: 05** 

Write a program for analysis of quick sort by using deterministic and randomized variant.

| Student Name:  Class:  BE (Computer)  Div:  Batch:  Roll No.:  Date of Attendance (Performance):  Date of Evaluation:  Marks (Grade) Attainment of CO Marks out of 10  CO Mapped  CO4: Analyse performance of an algorithm.  CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound.  Signature of Subject Teacher |                           |                                   |              |                                    |                  |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------|--------------|------------------------------------|------------------|-------|
| Div:  Roll No.:  Date of Attendance (Performance):  Date of Evaluation:  Marks (Grade)  Attainment of CO Marks out of 10  CO Mapped  CO4: Analyse performance of an algorithm.  CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound.  Signature of                                                              | <b>Student Name:</b>      |                                   |              |                                    |                  |       |
| Roll No.:  Date of Attendance (Performance):  Date of Evaluation:  Marks (Grade) Attainment of CO Marks out of 10  CO Mapped  CO4: Analyse performance of an algorithm.  CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound.  Signature of                                                                     | Class:                    | BE (Compute                       | er)          |                                    |                  |       |
| Date of Attendance (Performance):  Date of Evaluation:  Marks (Grade) Attainment of CO Marks out of 10  CO Mapped  CO4: Analyse performance of an algorithm.  CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound.  Signature of                                                                                | Div:                      |                                   |              | Batch:                             |                  |       |
| (Performance):  Date of Evaluation:  Marks (Grade) Attainment of CO Marks out of 10  CO Mapped  CO4: Analyse performance of an algorithm.  CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound.  Signature of                                                                                                   | Roll No.:                 |                                   |              |                                    |                  |       |
| Date of Evaluation:  Marks (Grade) Attainment of CO Marks out of 10  CO Mapped  CO4: Analyse performance of an algorithm.  CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound.  Signature of                                                                                                                   | <b>Date of Attendance</b> |                                   |              |                                    |                  |       |
| Marks (Grade) Attainment of CO Marks out of 10  CO Mapped  CO4: Analyse performance of an algorithm.  CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound.  Signature of                                                                                                                                        | (Performance):            |                                   |              |                                    |                  |       |
| Marks (Grade) Attainment of CO Marks out of 10  CO Mapped  CO4: Analyse performance of an algorithm.  CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound.  Signature of                                                                                                                                        | Date of Evaluation:       |                                   |              |                                    |                  |       |
| CO Mapped  CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound.  Signature of                                                                                                                                                                                                                                   | Marks (Grade)             | A                                 | P            | W                                  | T                | Total |
| CO Mapped  CO4: Analyse performance of an algorithm.  CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound.  Signature of                                                                                                                                                                                        | Attainment of CO          |                                   |              |                                    |                  |       |
| CO4: Analyse performance of an algorithm.  CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound.  Signature of                                                                                                                                                                                                   | Marks out of 10           |                                   |              |                                    |                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO Mapped                 | CO5: Implement design strategies: | an algorithm | that follows one onquer, greedy, c | of the following |       |
| Subject Teacher                                                                                                                                                                                                                                                                                                                                                                                                                        | Signature of              |                                   |              |                                    |                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Subject Teacher</b>    |                                   |              |                                    |                  |       |







**Experiment No: 06** 

Mini Project - Write a program to implement matrix multiplication. Also implement multithreaded matrix multiplication with either one thread per row or one thread per cell. Analyze and compare their performance.

| <b>Student Name:</b>       |                                                                                                                                                                                                                       |   |        |   |       |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|---|-------|--|--|
| Class:                     | BE (Computer)                                                                                                                                                                                                         |   |        |   |       |  |  |
| Div:                       |                                                                                                                                                                                                                       |   | Batch: |   |       |  |  |
| Roll No.:                  |                                                                                                                                                                                                                       |   |        |   |       |  |  |
| Date of Attendance         |                                                                                                                                                                                                                       |   |        |   |       |  |  |
| (Performance):             |                                                                                                                                                                                                                       |   |        |   |       |  |  |
| <b>Date of Evaluation:</b> |                                                                                                                                                                                                                       |   | T      | T | T     |  |  |
| Marks (Grade)              | A                                                                                                                                                                                                                     | P | W      | Т | Total |  |  |
| <b>Attainment of CO</b>    |                                                                                                                                                                                                                       |   |        |   |       |  |  |
| Marks out of 10            |                                                                                                                                                                                                                       |   |        |   |       |  |  |
|                            | CO4: Analyze performance of an algorithm. CO5: Implement an algorithm that follows one of the following algorithm design strategies: divide and conquer, greedy, dynamic programming, backtracking, branch and bound. |   |        |   |       |  |  |
| Signature of               |                                                                                                                                                                                                                       |   |        |   |       |  |  |
| Subject Teacher            |                                                                                                                                                                                                                       |   |        |   |       |  |  |