Enrichments for higher categories

David KERN

Laboratoire Angevin de REcherche en MAthématiques — Séminaire doctoral

12th October 2018

Sommaire - Section 1: The algebraic structure of free objects

- 1 The algebraic structure of free objects
- Monoids and enrichments
 - Monoidal and enriched categories
 - Monads
- Categories up to homotopy

The free category functor

Let $Q = (\{vertices\}, \{arrows\})$ be a quiver. What is the "best" way to turn it into a category?

Need to freely add a composition operation, respecting associativity (and units)

The free category functor

Let $Q = (\{vertices\}, \{arrows\})$ be a quiver. What is the "best" way to turn it into a category?

- Need to freely add a composition operation, respecting associativity (and units)
- ▶ Free category $\mathcal{F}Q$ with

```
objects the vertices of Q morphisms \hom_{\mathcal{F}Q}(V_0,V_1)=\{\text{strings of composable arrows joining }V_0 \text{ to }V_1\}
```

Composition given by concatenation (and get identities as empty string)

The free category functor

Let $Q = (\{vertices\}, \{arrows\})$ be a quiver. What is the "best" way to turn it into a category?

- Need to freely add a composition operation, respecting associativity (and units)
- ▶ Free category $\mathcal{F}Q$ with

objects the vertices of Q

morphisms $\mathsf{hom}_{\mathcal{F}Q}(\mathit{V}_0, \mathit{V}_1) = \{\mathsf{strings} \ \mathsf{of} \ \mathsf{composable} \ \mathsf{arrows} \ \mathsf{joining} \ \mathit{V}_0 \ \mathsf{to} \ \mathit{V}_1\}$

Composition given by concatenation (and get identities as empty string)

Adjunction property

Let $\mathfrak C$ be a category. Any functor $\mathcal FQ \to \mathfrak C$ is determined by its action on Q, and any graph morphism $Q \to \mathfrak C$ extends uniquely (by concatenation):

 $\mathsf{hom}_{\mathfrak{Cat}}(\mathcal{F}Q,\mathfrak{C}) \simeq \mathsf{hom}_{\mathfrak{Quiver}}(Q,\mathcal{U}\mathfrak{C}) \qquad \text{(with \mathcal{U} the "underlying quiver" functor)}$

Free objects in general

Let $\mathcal{U} \colon \mathfrak{D} \to \mathfrak{C}$ be a "forgetful" functor.

For any object $X \in \mathfrak{C}$, the *free object of* \mathfrak{D} on X is $\mathcal{F}X \in \mathfrak{D}$ with $\eta_X \colon X \to \mathcal{U}\mathcal{F}X$ (in \mathfrak{C}) such that:

for any $Y \in \mathfrak{D}$ and any morphism $f: X \to \mathcal{U}Y$ in \mathfrak{C} , there is a unique $\overline{f}: \mathcal{F}X \to Y$ (in \mathfrak{D}) making the diagram commute (in \mathfrak{C})

Free objects in general

Let $\mathcal{U} \colon \mathfrak{D} \to \mathfrak{C}$ be a "forgetful" functor.

For any object $X \in \mathfrak{C}$, the *free object of* \mathfrak{D} on X is $\mathcal{F}X \in \mathfrak{D}$ with $\eta_X \colon X \to \mathcal{U}\mathcal{F}X$ (in \mathfrak{C}) such that:

for any $Y \in \mathfrak{D}$ and any morphism $f: X \to \mathcal{U}Y$ in \mathfrak{C} , there is a unique $\overline{f}: \mathcal{F}X \to Y$ (in \mathfrak{D}) making the diagram commute (in \mathfrak{C})

Examples

- ▶ \mathcal{U} : $\mathfrak{Dect}_k \to \mathfrak{Set}$ the forgetful "underlying set" functor; the free vector space k[S] on a set S is the k-linear span of its elements
- ▶ \mathcal{U} : $\mathfrak{CMlg}_k \to \mathfrak{Dect}_k$; the free commutative k-algebra on V is the symmetric tensor algebra: $\mathcal{U}(\mathsf{Sym}^{\bullet} V) \cong k \oplus V \oplus (V^{\otimes 2})_{\mathbb{S}_2} \oplus (V^{\otimes 3})_{\mathbb{S}_3} \oplus \cdots$

Remark: $\mathcal{F}X$ is functorial in X, giving $\mathcal{F} \colon \mathfrak{C} \to \mathfrak{D}$

Adjoint functors

Definition

An *adjunction* $\mathcal{F} \dashv \mathcal{G}$ between categories \mathfrak{C} and \mathfrak{D} is $\mathcal{F} \colon \mathfrak{C} \to \mathfrak{D}$ and $\mathcal{G} \colon \mathfrak{D} \to \mathfrak{C}$ with bijections

$$\phi_{X,Y} \colon \mathsf{hom}_{\mathfrak{D}}(\mathcal{F}X,Y) \simeq \mathsf{hom}_{\mathfrak{C}}(X,\mathcal{G}Y)$$

natural in $X \in \mathfrak{C}$ and $Y \in \mathfrak{D}$.

$\mathcal{U}\colon \mathfrak{D} \to \mathfrak{C}$ forgetful functor

$$\varphi_{X,Y} \colon \operatorname{\mathsf{hom}}(\mathcal{F}X,Y) \ni g \mapsto \mathcal{U}g \circ \eta_X \in \operatorname{\mathsf{hom}}(X,\mathcal{U}Y)$$

bijective by free property

$$\implies \mathcal{F} \colon \ \mathfrak{C} \xrightarrow{} \mathfrak{D} : \mathcal{U}$$

The algebra of adjunctions

$$\varphi_{X,\mathcal{F}X} \colon \mathsf{hom}_{\mathfrak{D}}(\mathcal{F}X,\mathcal{F}X) \xrightarrow{\cong} \mathsf{hom}_{\mathfrak{C}}(X,\mathcal{GF}X) \text{ maps } \mathsf{id}_{\mathcal{F}X} \mapsto \big(\eta_X \colon X \to \mathcal{GF}X\big)$$

▶ By functoriality of $\varphi \implies$ natural transformation $\eta \colon id_{\mathfrak{C}} \Rightarrow \mathcal{GF}$

Similarly, by $\Phi_{\mathcal{G}Y,Y}^{-1}$: $\mathsf{hom}(\mathcal{G}Y,\mathcal{G}Y) \xrightarrow{\simeq} \mathsf{hom}(\mathcal{F}\mathcal{G}Y,Y)$, get $\epsilon \colon \mathcal{F}\mathcal{G} \Rightarrow \mathsf{id}_{\mathfrak{D}}$

The algebra of adjunctions

 $\varphi_{X,\mathcal{F}X} \colon \mathsf{hom}_{\mathfrak{D}}(\mathcal{F}X,\mathcal{F}X) \xrightarrow{\cong} \mathsf{hom}_{\mathfrak{C}}(X,\mathcal{GF}X) \text{ maps } \mathsf{id}_{\mathcal{F}X} \mapsto \left(\eta_X \colon X \to \mathcal{GF}X\right)$

▶ By functoriality of $\varphi \implies$ natural transformation $\eta \colon id_{\mathfrak{C}} \Rightarrow \mathcal{GF}$

Similarly, by $\varphi_{\mathcal{G}Y,Y}^{-1}$: $\mathsf{hom}(\mathcal{G}Y,\mathcal{G}Y) \xrightarrow{\cong} \mathsf{hom}(\mathcal{F}\mathcal{G}Y,Y)$, get $\epsilon \colon \mathcal{F}\mathcal{G} \Rightarrow \mathsf{id}_{\mathfrak{D}}$

Notation: η and ε are called the *unit* and *counit* of the adjunction

ϵ and η determine the adjunction $\varphi,$ that is:

 $\mathcal F$ and $\mathcal G$ are adjoint iff there are $\epsilon\colon \mathcal F\mathcal G\Rightarrow \mathrm{id}_\mathfrak D$ and $\eta\colon \mathrm{id}_\mathfrak C\Rightarrow \mathcal G\mathcal F$ with the compatibility condition

$$\mathfrak{C} \xrightarrow{\mathcal{F}} \mathfrak{D} = \mathfrak{C} \xrightarrow{\mathfrak{id}_{\mathcal{F}}} \mathfrak{D}$$

From adjunctions to monads

Using the counit, we get a natural transformation

$$\mu \coloneqq \mathcal{G} \epsilon \mathcal{F} \colon (\mathcal{G} \mathcal{F}) \circ (\mathcal{G} \mathcal{F}) = \mathcal{G} \circ (\mathcal{F} \mathcal{G}) \circ \mathcal{F} \Rightarrow \mathcal{G} \mathcal{F}.$$

The endofunctor \mathcal{GF} on $\mathfrak C$ has a "multiplication" $\mu \colon (\mathcal{GF})^{\circ 2} \Rightarrow \mathcal{GF}$ and a "unit" $\eta \colon \mathrm{id}_{\mathfrak C} \Rightarrow \mathcal{GF}$ (associative and unital by compatibility condition)

Example: $\mathcal{U} \colon \mathfrak{D} \to \mathfrak{C}$ forgetful functor

 \mathcal{UF} creates a free object and forgets the added structure μ remembers reduction along this structure (e.g. $\mathcal{F}=k[-]$; μ is linear dependence)

From adjunctions to monads

Using the counit, we get a natural transformation

$$\mu \coloneqq \mathcal{G} \epsilon \mathcal{F} \colon (\mathcal{G} \mathcal{F}) \circ (\mathcal{G} \mathcal{F}) = \mathcal{G} \circ (\mathcal{F} \mathcal{G}) \circ \mathcal{F} \Rightarrow \mathcal{G} \mathcal{F}.$$

▶ The endofunctor \mathcal{GF} on $\mathfrak C$ has a "multiplication" $\mu\colon (\mathcal{GF})^{\circ 2}\Rightarrow \mathcal{GF}$ and a "unit" $\eta\colon \mathrm{id}_{\mathfrak C}\Rightarrow \mathcal{GF}$ (associative and unital by compatibility condition)

Example: $\mathcal{U} \colon \mathfrak{D} \to \mathfrak{C}$ forgetful functor

 \mathcal{UF} creates a free object and forgets the added structure μ remembers reduction along this structure (e.g. $\mathcal{F}=k[-]$; μ is linear dependence)

Similarly, $\mathcal{F}\eta\mathcal{G}$ is a comultiplication $\mathcal{F}\mathcal{G}\Rightarrow (\mathcal{F}\mathcal{G})^{\circ 2}$ on the counital $\mathcal{F}\mathcal{G}$ on $\mathfrak D$

 $\Longrightarrow \mathcal{GF}$ and \mathcal{FG} are an algebra and a cogebra for the composition products on $\mathfrak{EndoFun}(\mathfrak{C})$ and $\mathfrak{EndoFun}(\mathfrak{D})$

Sommaire - Section 2: Monoids and enrichments

- The algebraic structure of free objects
- Monoids and enrichments
 - Monoidal and enriched categories
 - Monads

Categories up to homotopy

Sommaire - Section 2: Monoids and enrichments

- 1 The algebraic structure of free objects
- Monoids and enrichments
 - Monoidal and enriched categories
 - Monads
- Categories up to homotopy

Definition

A monoidal structure on a category $\mathfrak V$ is a bifunctor $\otimes\colon \mathfrak V\times \mathfrak V\to \mathfrak V$ and a choice of object $1\in \mathfrak V$, with natural transformations expressing associativity and unitality

- lacktriangle A *braiding* is a natural isomorphism $au_{X,Y}\colon X\otimes Y\stackrel{\simeq}{\longrightarrow} Y\otimes X$
- Symmetric structure if $\tau_{X,Y}^{-1} = \tau_{Y,X}$

A monoidal functor $(\mathfrak{V}, \otimes, 1) \to (\mathfrak{N}, \boxtimes, I)$ is $\mathcal{F} \colon \mathfrak{V} \to \mathfrak{N}$ with $\mathcal{F}(X \otimes Y) \xrightarrow{\simeq} \mathcal{F}X \boxtimes \mathcal{F}Y$ (natural) and $\mathcal{F}(1) \xrightarrow{\simeq} I$

Definition

A monoidal structure on a category $\mathfrak V$ is a bifunctor $\otimes\colon \mathfrak V\times \mathfrak V\to \mathfrak V$ and a choice of object $1\in \mathfrak V$, with natural transformations expressing associativity and unitality

- lacktriangle A braiding is a natural isomorphism $au_{X,Y}\colon X\otimes Y\xrightarrow{\simeq} Y\otimes X$
- *Symmetric* structure if $\tau_{X,Y}^{-1} = \tau_{Y,X}$

A monoidal functor $(\mathfrak{V}, \otimes, 1) \to (\mathfrak{N}, \boxtimes, I)$ is $\mathcal{F} \colon \mathfrak{V} \to \mathfrak{N}$ with $\mathcal{F}(X \otimes Y) \xrightarrow{\simeq} \mathcal{F}X \boxtimes \mathcal{F}Y$ (natural) and $\mathcal{F}(1) \xrightarrow{\simeq} I$

Examples

 $ightharpoons (\mathfrak{Mod}_R, \otimes_R, R)$

Definition

A monoidal structure on a category $\mathfrak V$ is a bifunctor $\otimes \colon \mathfrak V \times \mathfrak V \to \mathfrak V$ and a choice of object $1 \in \mathfrak V$, with natural transformations expressing associativity and unitality

- ▶ A *braiding* is a natural isomorphism $\tau_{X,Y} \colon X \otimes Y \xrightarrow{\cong} Y \otimes X$
- *Symmetric* structure if $\tau_{X,Y}^{-1} = \tau_{Y,X}$

A monoidal functor $(\mathfrak{V}, \otimes, 1) \to (\mathfrak{N}, \boxtimes, I)$ is $\mathcal{F} \colon \mathfrak{V} \to \mathfrak{N}$ with $\mathcal{F}(X \otimes Y) \xrightarrow{\simeq} \mathcal{F}X \boxtimes \mathcal{F}Y$ (natural) and $\mathcal{F}(1) \xrightarrow{\simeq} I$

Examples

- $ightharpoons (\mathfrak{Mod}_R, \otimes_R, R)$
- $(\mathfrak{EndoSun}(\mathfrak{C}), \circ, \mathrm{id}_{\mathfrak{C}})$ is *strict* monoidal (strictly associative)

Definition

A monoidal structure on a category $\mathfrak V$ is a bifunctor $\otimes \colon \mathfrak V \times \mathfrak V \to \mathfrak V$ and a choice of object $1 \in \mathfrak V$, with natural transformations expressing associativity and unitality

- ▶ A *braiding* is a natural isomorphism $\tau_{X,Y} \colon X \otimes Y \xrightarrow{\cong} Y \otimes X$
- *Symmetric* structure if $\tau_{X,Y}^{-1} = \tau_{Y,X}$

A monoidal functor $(\mathfrak{V}, \otimes, 1) \to (\mathfrak{N}, \boxtimes, I)$ is $\mathcal{F} \colon \mathfrak{V} \to \mathfrak{N}$ with $\mathcal{F}(X \otimes Y) \xrightarrow{\simeq} \mathcal{F}X \boxtimes \mathcal{F}Y$ (natural) and $\mathcal{F}(1) \xrightarrow{\simeq} I$

Examples

- $ightharpoonspin (\mathfrak{Mod}_R, \otimes_R, R)$
- \blacktriangleright ($\mathfrak{Endo}\mathfrak{Fun}(\mathfrak{C})$, \circ , $\mathrm{id}_{\mathfrak{C}}$) is *strict* monoidal (strictly associative)
- ► Any category with finite products (1 is the final object)

Enriched categories

Definition

A $(\mathfrak{V}, \otimes, 1)$ -enriched category \mathfrak{C} has a set of objects $\mathsf{Ob}(\mathfrak{C})$ and, for any pair (A, B) of objects, an object $\underline{\mathsf{hom}}(A, B)$ of \mathfrak{V} , along with $\underline{\mathsf{hom}}(A, B) \otimes \underline{\mathsf{hom}}(B, C) \to \underline{\mathsf{hom}}(A, C)$, " $(f, g) \mapsto g \circ f$ " and $\mathrm{id}_A \colon 1 \to \underline{\mathsf{hom}}(A, A)$, all following the category axioms.

A \mathfrak{V} -functor $\mathcal{F} \colon \mathfrak{C} \to \mathfrak{D}$ is a map of sets $Ob(\mathfrak{C}) \to Ob(\mathfrak{D})$ and morphisms $\underline{hom}_{\mathfrak{C}}(A,B) \to \underline{hom}_{\mathfrak{D}}(\mathcal{F}A,\mathcal{F}B)$ in \mathfrak{V} with functoriality.

Examples

- ightharpoonup A category is a (\mathfrak{Set} , \times)-enriched category
- A \mathfrak{Mod}_R -enriched category is called an R-linear category. An R-algebra is an R-category with one object

Closure and self-enrichment

A closed symmetric monoidal category is $(\mathfrak{V}, \otimes, 1)$ such that, $\forall Y \in \mathfrak{V}$, the (endo)functor $-\otimes Y$ has a right adjoint [Y, -]:

$$\mathsf{hom}(X \otimes Y, Z) = \mathsf{hom}(X, [Y, Z])$$

Notation: the object [Y, Z] is called the *internal hom* from Y to Z

Closure and self-enrichment

A closed symmetric monoidal category is $(\mathfrak{V}, \otimes, 1)$ such that, $\forall Y \in \mathfrak{V}$, the (endo)functor $-\otimes Y$ has a right adjoint [Y, -]:

$$\mathsf{hom}(X \otimes Y, Z) = \mathsf{hom}(X, [Y, Z])$$

Notation: the object [Y, Z] is called the *internal hom* from Y to Z

Proposition

A closed monoidal structure gives a self-enrichment of \mathfrak{V} with $\underline{\mathsf{hom}}(-,-) = [-,-]$

- \blacktriangleright ($\mathfrak{Mod}_R, \otimes_R, R$), and the dg-derived category ($\mathsf{Ho}(\mathfrak{dgMod}_R), \otimes_R^{\mathbb{L}}, R[0]$)
- \blacktriangleright ($\mathfrak{Top}, \times, \mathsf{pt}$), and $\mathsf{Ho}(\mathfrak{Top})$
- lacktriangle (Cat, \times , pt) cartesian closed \Longrightarrow Cat-enriched category, *i.e.* (strict) 2-category

Sommaire - Section 2: Monoids and enrichments

- 1 The algebraic structure of free objects
- Monoids and enrichments
 - Monoidal and enriched categories
 - Monads
- Categories up to homotopy

Monoids in a monoidal category

Definition

A monoid in $(\mathfrak{V}, \otimes, 1)$ is $M \in \mathfrak{V}$ with $\mu \colon M \otimes M \to M$ and a generalised element $\eta \colon 1 \to M$, satisfying associativity and unitality

Comonoid = monoid in \mathfrak{V}^{op} : comultiplication $\delta \colon M \to M \otimes M$, counit $\epsilon \colon M \to 1$, coassociative and counital

Monoids in a monoidal category

Definition

A monoid in $(\mathfrak{V}, \otimes, 1)$ is $M \in \mathfrak{V}$ with $\mu \colon M \otimes M \to M$ and a generalised element $\eta \colon 1 \to M$, satisfying associativity and unitality

Comonoid = monoid in \mathfrak{V}^{op} : comultiplication $\delta \colon M \to M \otimes M$, counit $\epsilon \colon M \to 1$, coassociative and counital

Examples

- $lackbox{Monoids}$ in (\mathfrak{Set}, \times) are monoids. Monoids in monoids are commutative monoids.
- lacktriangle Monoids in \mathfrak{Mod}_R are R-algebras. (Commutative) monoids in \mathfrak{dgMod}_R are R-(c)dgas
- $\blacktriangleright \ \, \text{Monoids in } (\mathfrak{EndoFun}(\mathfrak{C}), \circ, id_{\mathfrak{C}}) \text{ are monads on } \mathfrak{C} \text{ (comonoids are comonads)}$

Remark: Define similarly modules and algebras over a monoid

Monads and adjunctions

Eilenberg-Moore category

An algebra over (\mathcal{T}, μ, η) is a functor A: $pt \to \mathfrak{C}$ (equivalently, $A \in \mathfrak{C}$) with ρ : $\mathcal{T}A \to A$ such that

$$\begin{array}{cccc} \mathcal{TTA} \xrightarrow{\mu_A} \mathcal{TA} & & \\ \mathcal{T}_{\rho\downarrow} & & \downarrow_{\rho} & \\ \mathcal{TA} \xrightarrow{\rho} & A & & & \\ \end{array} \quad \text{and} \quad \begin{array}{c} A \xrightarrow{\eta_A} \mathcal{TA} \\ \downarrow_{\rho} & \\ A & & \\ \end{array} \quad \text{commute}.$$

A morphism of \mathcal{T} -algebras $(A, \rho) \to (A', \rho')$ is $f \colon A \to A'$ compatible with ρ, ρ'

Monads and adjunctions

Eilenberg-Moore category

An *algebra* over (\mathcal{T}, μ, η) is a functor A: $pt \to \mathfrak{C}$ (equivalently, $A \in \mathfrak{C}$) with ρ : $\mathcal{T}A \to A$ such that

$$\begin{array}{cccc} \mathcal{TTA} \xrightarrow{\mu_A} \mathcal{TA} & & \\ \mathcal{T}_{\rho\downarrow} & & \downarrow_{\rho} & \\ \mathcal{TA} \xrightarrow{\rho} & A & & & \\ \end{array} \text{ and } \begin{array}{c} A \xrightarrow{\eta_A} \mathcal{TA} \\ \downarrow_{\rho} & \text{commute.} \\ A & & A & \\ \end{array}$$

A morphism of \mathcal{T} -algebras $(A, \rho) \to (A', \rho')$ is $f \colon A \to A'$ compatible with ρ, ρ'

The forgetful functor $\mathfrak{Alg}_{\mathcal{T}} \to \mathfrak{C}$, $(A, \rho) \mapsto A$ has a "free" left adjoint $C \mapsto (\mathcal{T}C, \mu_C)$. The monad for the adjunction is (universally) \mathcal{T} .

Remark: An adjunction $\mathcal{F}\colon \mathfrak{C} \xrightarrow{\perp} \mathfrak{D} : \mathcal{G}$ is said *monadic* if $\mathfrak{Alg}_{\mathcal{GF}} \simeq \mathfrak{D}$ $\Longrightarrow \mathfrak{Alg}_{\mathcal{GF}}$ measures how free \mathcal{F} is

Example: the ultrafilter monad I

Ultrafilters form a monad

 $\beta \colon \mathfrak{Set} \to \mathfrak{Set}, X \mapsto \{\mathsf{ultrafilters} \ \mathsf{on} \ X\} \simeq \mathsf{hom}_{\mathfrak{Bool}}(\mathcal{P}(X), 2)$

- ▶ $\eta_X(x)$ is the principal ultrafilter $\varpi_x = \{U \subset X \mid x \in U\}$
- $\blacktriangleright \ \mu_X \colon \beta \beta X \ni F \mapsto \left\{ U \subset X \mid \{G \in \beta X \mid U \in G\} \in F \right\} \in \beta X$

Example: the ultrafilter monad I

Ultrafilters form a monad

 $\beta \colon \mathfrak{Set} \to \mathfrak{Set}, X \mapsto \{\mathsf{ultrafilters} \ \mathsf{on} \ X\} \simeq \mathsf{hom}_{\mathfrak{Bool}}(\mathcal{P}(X), 2)$

- ▶ $\eta_X(x)$ is the principal ultrafilter $\varpi_x = \{U \subset X \mid x \in U\}$
- $\blacktriangleright \ \mu_X \colon \beta \beta X \ni F \mapsto \left\{ U \subset X \mid \{G \in \beta X \mid U \in G\} \in F \right\} \in \beta X$

Algebras over β

Let $\rho \colon \beta X \to X$ be a β -algebra. Topologise X with $U \subset X$ open if

$$\forall x \in U, \forall F \in \beta X, \rho(F) = x \implies U \in F$$

► The space *X* is a compactum (quasicompact–Hausdorff)

Example: the ultrafilter monad II

Properties (X a topological space)

A **net** in *X* is $v: I \to X$, *I* directed set. Converges to *x* if $\forall U \ni x, \exists i, \forall j \geq i, v_i \in U$

- ightharpoonup X is quasicompact iff every net has a convergent subnet
- ▶ *X* is Hausdorff iff no net can converge to two distinct limits

For X a compactum, define β -algebra structure $\rho \colon \beta X \to X$ by

$$\rho(F) = x$$
 unique limit point of F (i.e. filter {neighbourhoods of x } $\subset F$)

In fact $\mathfrak{Alg}_{\beta} \simeq \mathfrak{CHaus}$

Remarks (\beta regularises infinite sets)

- ▶ On a finite set every ultrafilter is principal, so the free β -algebra $\beta[n] \stackrel{\simeq}{\leftarrow} [n] : \eta_{[n]}$
- ► For any set X, βX is the (Stone–Čech) compactification of $(X, \tau_{\text{discrete}})$

Sommaire - Section 3: Categories up to homotopy

- The algebraic structure of free objects
- Monoids and enrichments
 - Monoidal and enriched categories
 - Monads
- Categories up to homotopy

The augmented simplex category

Category Δ_+ with objects $[n] = \{0 \le 1 \le \cdots \le n\}$ (seen as a category), with $[-1] = \emptyset$ arrows order-preserving, *i.e.* non-decreasing, functions (or simply functors) Note [-1] is initial

Also (non augmented) simplex catgory Δ without [-1]

The augmented simplex category

Category Δ_+ with objects $[n] = \{0 \le 1 \le \cdots \le n\}$ (seen as a category), with $[-1] = \emptyset$ arrows order-preserving, *i.e.* non-decreasing, functions (or simply functors) Note [-1] is initial

Also (non augmented) simplex catgory Δ without [-1]

Monoidal structure: $[n] \boxplus [m] := [n+m+1]$ (strict, but not symmetric!) [0] is a monoid: $[0] \boxplus [0] = [1] \xrightarrow{0,1\mapsto 0} [0]$

The augmented simplex category

Category Δ_+ with

objects
$$[n] = \{0 \le 1 \le \dots \le n\}$$
 (seen as a category), with $[-1] = \emptyset$ arrows order-preserving, *i.e.* non-decreasing, functions (or simply functors)

Also (non augmented) simplex catgory Δ without [-1]

Note [-1] is initial

Monoidal structure: $[n] \boxplus [m] := [n+m+1]$ (strict, but not symmetric!)

[0] is a monoid: [0] \boxplus [0] = [1] $\xrightarrow{0,1\mapsto0}$ [0]

Universal property: cobar construction

Let (\mathfrak{C}, \otimes) be a strict monoidal category with a monoid M. There is a unique monoidal functor $\mathcal{B}_{\mathfrak{C}}(M)_{\bullet} \colon \Delta_{+} \to \mathfrak{C}$ sending [0] to M (and generally [n] to $M^{\otimes (n+1)}$)

(Co)simplicial objects

Face maps δ_i : $[n] \mapsto [n+1], \{0 \le \cdots \le n\} \mapsto \{0 \le \cdots \le i-1 \le i+1 \le \cdots \le n+1\}$ Degeneracy maps σ_j : $[n] \twoheadrightarrow [n-1], \{0 \le \cdots \le n\} \mapsto \{0 \le \cdots \le j \le j \le \cdots \le n-1\}$

Every morphism in Δ factors uniquely as degeneracies followed by faces

An augmented (co)simplicial object in $\mathfrak C$ is a functor $X_{ullet}\colon \Delta_+^{\mathrm{op}} \to \mathfrak C$ (or $\Delta_+ \to \mathfrak C$):

(Co)simplicial objects

Face maps δ_i : $[n] \mapsto [n+1], \{0 \le \cdots \le n\} \mapsto \{0 \le \cdots \le i-1 \le i+1 \le \cdots \le n+1\}$ Degeneracy maps σ_j : $[n] \twoheadrightarrow [n-1], \{0 \le \cdots \le n\} \mapsto \{0 \le \cdots \le j \le j \le \cdots \le n-1\}$

Every morphism in Δ factors uniquely as degeneracies followed by faces

An augmented (co)simplicial object in $\mathfrak C$ is a functor $X_{\bullet} \colon \Delta_{+}^{\text{op}} \to \mathfrak C$ (or $\Delta_{+} \to \mathfrak C$): Given by diagram of $X_n = X_{\bullet}([n])$ with faces $d^n = X_{\bullet}(\delta_n)$ (resp. cofaces d_n) and degeneracies $s^n = X_{\bullet}(\sigma_n)$ (resp. codegeneracies s_n)

Cobar resolution

$$\mathcal{B}_{\mathfrak{C}}(M)_{\bullet}(\Delta) = 1 \xrightarrow{\eta} M \xrightarrow{\underset{\eta \otimes \mathrm{id}}{\mathrm{id} \otimes \eta}} M^{\otimes 2} \xrightarrow{\underset{-\mathrm{id} \otimes \eta \otimes \mathrm{id}}{\mathrm{id} \otimes \mu}} \xrightarrow{\underset{-\mathrm{id} \otimes \eta \otimes \mathrm{id}}{\mathrm{id} \otimes \mu}} \cdots$$

Simplicial categories and simplicial enrichments

- $\mathfrak C$ a simplicially enriched category. \Longrightarrow Define simplicial object $\mathfrak C_{\bullet}\colon \Delta^{\mathrm{op}} \to \mathfrak C\mathfrak a\mathfrak t$ with $\mathrm{Ob}(\mathfrak C_i) = \mathrm{Ob}(\mathfrak C)$ and $\mathrm{hom}_{\mathfrak C_i}(X,Y) = \underline{\mathrm{hom}}_{\mathfrak C}(X,Y)_i$
- lacktriangle Conversely, $\Delta^{\mathrm{op}} o \mathfrak{Cat}$ with constant objects gives an \mathfrak{sSet} -category

Simplicial categories and simplicial enrichments

- $\mathfrak C$ a simplicially enriched category. \Longrightarrow Define simplicial object $\mathfrak C_{\bullet}\colon \Delta^{\mathrm{op}}\to \mathfrak C\mathfrak a\mathfrak t$ with $\mathrm{Ob}(\mathfrak C_i)=\mathrm{Ob}(\mathfrak C)$ and $\mathrm{hom}_{\mathfrak C_i}(X,Y)=\underline{\mathrm{hom}}_{\mathfrak C}(X,Y)_i$
- ightharpoonup Conversely, $\Delta^{\mathrm{op}}
 ightarrow \mathfrak{Cat}$ with constant objects gives an \mathfrak{sSet} -category

The nerve problem

 \mathfrak{C} a category. Its nerve $N_{\bullet}(\mathfrak{C}) \in \mathfrak{sSet}$ has $N_i(\mathfrak{C}) = \mathsf{hom}_{\mathfrak{Cat}}([i], \mathfrak{C})$: strings of i composable morphisms. It is 2-coskeletal: determined by $N_{<1}$ (as $\mathfrak{Qvr}^{\mathsf{unit}} = \mathfrak{s}_{<1}\mathfrak{Set}$)

E.g.: M a monoid, $\mathbb{B}M$ its 1-object category. Then $N_{ullet}(\mathbb{B}M) = \mathcal{B}^{\mathfrak{Set}}(M)_{ullet}$ is the bar resolution

Simplicial categories and simplicial enrichments

- lacktriangledown $\mathfrak C$ a simplicially enriched category. \Longrightarrow Define simplicial object $\mathfrak C_{ullet}\colon \Delta^{\mathrm{op}} \to \mathfrak C\mathfrak a\mathfrak t$ with $\mathrm{Ob}(\mathfrak C_i) = \mathrm{Ob}(\mathfrak C)$ and $\mathrm{hom}_{\mathfrak C_i}(X,Y) = \underline{\mathrm{hom}}_{\mathfrak C}(X,Y)_i$
- lackbox Conversely, $\Delta^{\mathrm{op}}
 ightarrow \mathfrak{Cat}$ with constant objects gives an \mathfrak{sSet} -category

The nerve problem

 \mathfrak{C} a category. Its nerve $N_{\bullet}(\mathfrak{C}) \in \mathfrak{sSet}$ has $N_i(\mathfrak{C}) = \mathsf{hom}_{\mathfrak{Cat}}([i], \mathfrak{C})$: strings of i composable morphisms. It is 2-coskeletal: determined by $N_{<1}$ (as $\mathfrak{Qvr}^{\mathsf{unit}} = \mathfrak{s}_{<1}\mathfrak{Set}$)

E.g.: M a monoid, $\mathbb{B}M$ its 1-object category. Then $N_{ullet}(\mathbb{B}M) = \mathcal{B}^{\mathfrak{Set}}(M)_{ullet}$ is the bar resolution

The left adjoint of $N_{\bullet} \colon \mathfrak{Cat} \to \mathfrak{sSet}$ ("fundamental category") only depends on 0-, 1- and 2-simplices

How to define the nerve of an set-category, or the "correct" fundamental category of a simplicial set?

Homotopy coherent diagrams

Back to the free category construction $\mathcal{F}\colon\thinspace \mathfrak{Qvr} \ \ \ \ \ \ \ \ \mathfrak{Cat}\ \colon \mathcal{U}$

- $\qquad \qquad \textbf{Comonad $\mathcal{F}\mathcal{U}$ on \mathfrak{C}at, with bar resolution $\mathcal{B}^{\mathfrak{E}n\mathfrak{doSun}(\mathfrak{C}at)}(\mathcal{F}\mathcal{U})_{\bullet} \colon \Delta^{op} \to \mathfrak{EndoSun}(\mathfrak{C}at) }$
- $\begin{array}{l} \bullet \ \, \text{Both} \, \mathcal{U} \, \, \text{and} \, \, \mathcal{F} \, \, \text{are identity on objects} \, \implies \, \text{simplicial categories} \\ \mathfrak{C}^+_{\bullet} \coloneqq \mathcal{B}^{\mathfrak{Cndo}\mathfrak{Fun}(\mathfrak{Cat})}(\mathcal{FU})_{\bullet}(\mathfrak{C}) \end{array}$

Definition

I a category, C an &Set-category.

A homotopy coherent diagram of shape $\mathfrak I$ in $\mathfrak C$ is an $\mathfrak s\mathfrak S\mathfrak e\mathfrak t$ -functor $\mathfrak I^+_ullet \to \mathfrak C$

$$[2] = \left(\begin{array}{c} 0 < 2) = (1 < 2) \circ (0 < 1) \\ \hline 0 < 1 & 1 \xrightarrow{1 < 2} 2 \end{array}\right)$$

Homotopy coherent diagrams

Back to the free category construction $\mathcal{F}\colon \operatorname{\mathfrak{Qvr}} \stackrel{\smile}{\swarrow} \operatorname{\mathfrak{Cat}} : \mathcal{U}$

- $lackbox{ }$ Comonad \mathcal{FU} on Cat, with bar resolution $\mathcal{B}^{\mathfrak{Endo}\mathfrak{Fun}(\mathfrak{Cat})}(\mathcal{FU})_{ullet}$: $\Delta^{op} o \mathfrak{Endo}\mathfrak{Fun}(\mathfrak{Cat})$
- $\begin{array}{l} \bullet \ \, \text{Both} \, \mathcal{U} \, \, \text{and} \, \, \mathcal{F} \, \, \text{are identity on objects} \, \implies \, \text{simplicial categories} \\ \mathfrak{C}^+_{\bullet} \coloneqq \mathcal{B}^{\mathfrak{E}\mathfrak{n}\mathfrak{do}\mathfrak{Fun}(\mathfrak{Cat})}(\mathcal{F}\mathcal{U})_{\bullet}(\mathfrak{C}) \end{array}$

Definition

I a category, C an sSet-category.

A homotopy coherent diagram of shape $\mathfrak I$ in $\mathfrak C$ is an $\mathfrak s\mathfrak S\mathfrak e\mathfrak t$ -functor $\mathfrak I^+_ullet \to \mathfrak C$

$$[2] = \left(\begin{array}{cccc} 0 & \overbrace{0 < 1) = (1 < 2) \circ (0 < 1)} \\ 0 & \overbrace{0 < 1} \end{array}\right) \qquad \text{and} \qquad [2]_{\bullet}^{+} = [2]_{\leq 1}^{+} = \left(\begin{array}{cccc} 0 & \overbrace{0 < 2} \\ 0 & \overbrace{1} & 2 \end{array}\right)$$

The homotopy coherent nerve

- ▶ By abstract nonsense (density theorem), any $X_{\bullet} \in \mathfrak{sSet}$ is $\varinjlim_{\Delta_{\bullet}^n \to X_{\bullet}} \Delta_{\bullet}^n$, where
 - $\Delta^n_ullet\colon \Delta^{\operatorname{op}} o \mathfrak{Set}$ is the representable $\operatorname{hom}(-,[n])$
- We define the fundamental \mathfrak{sSet} -category $\mathfrak{D}_{\infty}(X_{ullet})\coloneqq \varinjlim_{\Delta_{ullet}^n \to X_{ullet}} [n]_{ullet}^+$

The homotopy coherent nerve

- ▶ By abstract nonsense (density theorem), any $X_{\bullet} \in \mathfrak{sSet}$ is $\varinjlim_{\Delta_{\bullet}^n \to X_{\bullet}} \Delta_{\bullet}^n$, where
 - $\Delta^n_ullet\colon \Delta^{\operatorname{op}} o \mathfrak{Set}$ is the representable $\operatorname{hom}(-,[n])$
- We define the fundamental \mathfrak{sSet} -category $\mathfrak{D}_{\infty}(X_{\bullet}) \coloneqq \varinjlim_{\Delta_{\bullet}^{n} \to X_{\bullet}} [n]_{\bullet}^{+}$
- ▶ By the Yoneda lemma, $X_n = \text{hom}(\Delta_{\bullet}^n, X_{\bullet})$
- ▶ To have $\varpi_{\infty} \dashv N_{\Delta}$, we set $N_{\Delta}(\mathfrak{C})_n = \text{hom}(\Delta^n_{\bullet}, N_{\Delta}(\mathfrak{C})_{\bullet}) := \text{hom}(\varpi_{\infty}(\Delta^n_{\bullet}), \mathfrak{C})$
- \implies an n-simplex in $N_{\Delta}(\mathfrak{C})$ is a string of n homotopy composable morphisms of \mathfrak{C}

Interpretation

 $N_\Delta \mathfrak{C}$ is a combinatorial representation of \mathfrak{C} exhibiting its structure of ∞ -category

Bonus

23/22

Sommaire - Section 4: More on monadic algebra

More on monadic algebra

Comparison of models

24/22

Nerve and realisation

$$\mathcal{I}\colon \mathfrak{D} \to \mathfrak{C} \text{ a functor. Define an adjoint pair } |-|: \ \mathfrak{Fun}(\mathfrak{D}^{op}, \overset{\bullet}{\mathfrak{Set}}) \ \bot \ \overset{}{\smile} \ \mathfrak{C} : \mathcal{N}_{\mathcal{I}} \text{ with: }$$

$$\mathcal{N}_{\mathcal{I}}(C) \colon \mathfrak{D}^{\mathrm{op}} \xrightarrow{\mathcal{I}^{\mathrm{op}}} \mathfrak{C}^{\mathrm{op}} \xrightarrow{\mathsf{hom}_{\mathfrak{C}}(-,C)} \mathfrak{Set}$$

Realisations of simplicial sets: $\mathfrak{D} = \Delta$

- $ightharpoonup \mathcal{I} \colon \Delta \to \mathfrak{Cat}$ the inclusion: $\mathcal{N}_{\mathcal{I}}$ is the nerve
- $ightharpoonup \mathcal{I} \colon \Delta \to \mathfrak{Top}, [n] \mapsto |\Delta^n| \colon \mathcal{N}_{\mathcal{I}}$ is the singular complex, |-| geometric realisation

Remark |-| is the left Kan extension of \mathcal{I} along the Yoneda embedding:

The codensity monad I

Dense and codense functors

- ▶ A functor \mathcal{F} : $\mathfrak{C} \to \mathfrak{D}$ is *dense* if every object D of \mathfrak{D} is canonically a colimit $\varinjlim_{\mathcal{F}(\mathfrak{C})/D} \mathcal{F}C$, with $\mathcal{F}(\mathfrak{C})_{/D}$ the comma category of morphisms $\mathcal{F}C \to D$, $C \in \mathfrak{C}$
- $lackbox{ Equivalently, } \mathcal{N}_{\mathcal{F}} \colon \mathfrak{D} o \mathfrak{Fun}(\mathfrak{C}^{op},\mathfrak{Set}) \text{ is fully faithful}$

Density theorem: the Yoneda embedding is dense

 $ightharpoonup \mathcal{F}$ is *codense* if every D is $\varprojlim_{D/\mathcal{F}(\mathfrak{C})} \mathcal{F}C$

The codensity monad I

Dense and codense functors

- ▶ A functor \mathcal{F} : $\mathfrak{C} \to \mathfrak{D}$ is *dense* if every object D of \mathfrak{D} is canonically a colimit $\varinjlim_{\mathcal{F}(\mathfrak{C})/D} \mathcal{F}C$, with $\mathcal{F}(\mathfrak{C})_{/D}$ the comma category of morphisms $\mathcal{F}C \to D$, $C \in \mathfrak{C}$
- $lackbox{ Equivalently, } \mathcal{N}_{\mathcal{F}} \colon \mathfrak{D} o \mathfrak{Fun}(\mathfrak{C}^{op},\mathfrak{Set}) \text{ is fully faithful}$

Density theorem: the Yoneda embedding is dense

- $ightharpoonup \mathcal{F}$ is *codense* if every D is $\varprojlim_{D/\mathcal{F}(\sigma)} \mathcal{F}C$
- $\blacktriangleright \ \, \text{There is a functor} \,\, \mathcal{N}^{\mathcal{F}} \colon \mathfrak{D} \to \mathfrak{Fun}(\mathfrak{C}, \mathfrak{Set})^{op} \,\, \text{with} \,\, \mathcal{N}^{\mathcal{F}}(D) \colon C \mapsto \mathsf{hom}_{\mathfrak{D}}(D, \mathcal{F}C)$
- ▶ Right adjoint $\pitchfork \mathcal{F} \colon \mathfrak{Fun}(\mathfrak{C}, \mathfrak{Set})^{\mathsf{op}} \to \mathfrak{D}$

Definition

The *codensity monad* of \mathcal{F} is the monad $\mathcal{N}^{\mathcal{F}} \circ (- \pitchfork \mathcal{F})$ of the adjunction

The codensity monad II

Properties and examples

Main properties

- $ightharpoonup \mathcal{F}$ is codense iff its codensity monad is the identity
- lacktriangle The codensity monad is the right Kan extension of ${\mathcal F}$ along itself
- ightharpoonup If $\mathcal F$ has a left adjoint $\mathcal L$, its codensity monad is $\mathcal F\mathcal L$

The codensity monad II

Properties and examples

Main properties

- $ightharpoonup \mathcal{F}$ is codense iff its codensity monad is the identity
- ightharpoonup The codensity monad is the right Kan extension of ${\mathcal F}$ along itself
- \blacktriangleright If \mathcal{F} has a left adjoint \mathcal{L} , its codensity monad is \mathcal{FL}
- lacktriangle The functor $\mathfrak{Cat}^{op}_{/\mathfrak{D}} o \mathfrak{Monad}(\mathfrak{D})$ is right adjoint to the Eilenberg–Moore algebra functor
- ▶ The forgetful inclusion $\mathfrak{Cat}^{\mathsf{monadic}}_{/\mathfrak{D}} \hookrightarrow \mathfrak{Cat}^{\mathsf{w/} \, \mathsf{cod.} \, \mathsf{mon.}}$ has a left adjoint mapping $\mathcal{F} \colon \mathfrak{C} \to \mathfrak{D}$ to the forgetful functor $\mathfrak{Alg}(\mathcal{N}^{\mathcal{F}} \circ (- \pitchfork \mathcal{F})) \to \mathfrak{D}$

The codensity monad II

Properties and examples

Main properties

- $ightharpoonup \mathcal{F}$ is codense iff its codensity monad is the identity
- ightharpoonup The codensity monad is the right Kan extension of ${\mathcal F}$ along itself
- \blacktriangleright If \mathcal{F} has a left adjoint \mathcal{L} , its codensity monad is \mathcal{FL}
- lacksquare The functor $\mathfrak{Cat}^{\mathrm{op}}_{/\mathfrak{D}} o \mathfrak{Monad}(\mathfrak{D})$ is right adjoint to the Eilenberg–Moore algebra functor
- ▶ The forgetful inclusion $\mathfrak{Cat}^{\mathsf{monadic}}_{/\mathfrak{D}} \hookrightarrow \mathfrak{Cat}^{\mathsf{w/} \, \mathsf{cod.} \, \mathsf{mon.}}_{/\mathfrak{D}}$ has a left adjoint mapping $\mathcal{F} \colon \mathfrak{C} \to \mathfrak{D}$ to the forgetful functor $\mathfrak{Alg}(\mathcal{N}^{\mathcal{F}} \circ (- \pitchfork \mathcal{F})) \to \mathfrak{D}$
- ▶ The codensity monad of FinSet \hookrightarrow Set is the ultrafilter monad β
- lacktriangle The codensity monad of $\mathfrak{Vect}_k^{\mathrm{fin.dim.}} \hookrightarrow \mathfrak{Vect}_k$ is the double dualisation monad $(-)^{\vee\vee}$

Sommaire - Section 5: Comparison of models

4 More on monadic algebra

Comparison of models

Homotopy categories and derived functors

Goal

 \mathfrak{M} a category with \mathcal{W} a wide class of morphisms ("weak equivalences", written $\overset{\sim}{\to}$) The localisation $\mathfrak{M} \xrightarrow{\ell} \mathfrak{M}[\mathcal{W}^{-1}]$ is the universal (initial) functor sending the weak equivalences to isomorphisms Want to understand the homotopy category $\mathsf{Ho}(\mathfrak{M},\mathcal{W}) \coloneqq \mathfrak{M}[\mathcal{W}^{-1}]$

Also, for $\mathcal{F} \colon (\mathfrak{M}, \mathcal{W}) \to \mathfrak{N}$, compute the derived functors

$$\mathbb{R}\mathcal{F} = \mathsf{Lan}_{\ell}\,\mathcal{F} \colon \, \mathsf{Ho}(\mathfrak{M},\mathcal{W}) \to \mathfrak{N} \quad \text{or} \quad \mathbb{L}\mathcal{F} = \mathsf{Ran}_{\ell}\,\mathcal{F} \colon \, \mathsf{Ho}(\mathfrak{M},\mathcal{W}) \to \mathfrak{N}$$

General construction

$$\mathsf{hom}_{\mathsf{Ho}(\mathfrak{M},\mathcal{W})}(M,M') = \left\{ M \overset{\in \mathcal{W}}{\longleftarrow} M_1 \to M_2 \overset{\in \mathcal{W}}{\longleftarrow} \cdots \overset{\in \mathcal{W}}{\longleftarrow} M' \right\}$$

Very unwieldy model (possibly not even locally small)

Model structures

A model structure on $(\mathfrak{M},\mathcal{W})$ consists of two classes \mathcal{C} (cofibrations) and \mathcal{F} (fibrations) satisfying conditions $((\mathcal{C},\mathcal{W}\cap\mathcal{F}))$ and $(\mathcal{W}\cap\mathcal{C},\mathcal{F})$ must be weak factorisation systems)

In particular

- ▶ Say $M \in \mathfrak{M}$ is cofibrant if $\emptyset \to M$ is a cofibration, fibrant if $M \to *$ is a fibration
- ► For every M there is a cofibrant QM with $QM \xrightarrow{\sim} M$ and a fibrant $\mathcal{R}M$ with $M \xrightarrow{\sim} \mathcal{R}M$, both functorially in M

Model structures

A model structure on $(\mathfrak{M},\mathcal{W})$ consists of two classes \mathcal{C} (cofibrations) and \mathcal{F} (fibrations) satisfying conditions $((\mathcal{C},\mathcal{W}\cap\mathcal{F}))$ and $(\mathcal{W}\cap\mathcal{C},\mathcal{F})$ must be weak factorisation systems)

In particular

- ▶ Say $M \in \mathfrak{M}$ is cofibrant if $\emptyset \to M$ is a cofibration, fibrant if $M \to *$ is a fibration
- ► For every M there is a cofibrant QM with $QM \xrightarrow{\sim} M$ and a fibrant $\mathcal{R}M$ with $M \xrightarrow{\sim} \mathcal{R}M$, both functorially in M

Provides a left deformation $\mathcal{Q} \colon \mathfrak{M} \to \mathfrak{M}_{cof} \subset \mathfrak{M}$ and a right deformation $\mathcal{R} \colon \mathfrak{M} \to \mathfrak{M}_{fib} \subset \mathfrak{M}$, with $\mathcal{Q} \stackrel{\sim}{\Rightarrow} id_{\mathfrak{M}}$ and $id_{\mathfrak{M}} \stackrel{\sim}{\Rightarrow} \mathcal{R}$

Theorem

- $lackbox{Ho}(\mathfrak{M},\mathcal{W})\simeq ig\{ ext{"homotopy" classes of maps in }\mathfrak{M}_{cf} ext{ full subcat. on fibrant-cofibrant}ig\}$
- $ightharpoonup \mathbb{L}\mathcal{F} = \mathcal{F} \circ \mathcal{Q} \text{ and } \mathbb{R}\mathcal{F} = \mathcal{F} \circ \mathcal{R}$

Models for higher categories

Spaces as ∞-groupoids

- lacktriangle Model structure on \mathfrak{Top} with $\mathcal W$ the weak homotopy equivalences
- ► Similar model structure on \$Set whose fibrant objects are the Kan complexes

Nerve and realisation induce an equivalence of homotopy theories

Models for higher categories

Spaces as ∞-groupoids

- lacktriangle Model structure on \mathfrak{Top} with $\mathcal W$ the weak homotopy equivalences
- ▶ Similar model structure on \$Get whose fibrant objects are the Kan complexes

Nerve and realisation induce an equivalence of homotopy theories

- Joyal There is a model structure on \$\mathcal{S}\epsilon\tag{t}\$ whose fibrant objects are quasi-categories (weak Kan complexes)
- Bergner Model structure on $\mathfrak{Cat}_{\mathfrak{sGet}}$ with fibrant objects locally Kan \mathfrak{sGet} -categories, \mathcal{W} functors inducing equivalences of $\mathsf{Ho}(\mathfrak{sGet},\mathcal{W}_\mathsf{Kan})$ -categories

Models for higher categories

Spaces as ∞-groupoids

- lacktriangle Model structure on \mathfrak{Top} with $\mathcal W$ the weak homotopy equivalences
- ▶ Similar model structure on \$Get whose fibrant objects are the Kan complexes

Nerve and realisation induce an equivalence of homotopy theories

- Joyal There is a model structure on set whose fibrant objects are quasi-categories (weak Kan complexes)
- Bergner Model structure on $\mathfrak{Cat}_{\mathfrak{sGet}}$ with fibrant objects locally Kan \mathfrak{sGet} -categories, \mathcal{W} functors inducing equivalences of $\mathsf{Ho}(\mathfrak{sGet},\mathcal{W}_\mathsf{Kan})$ -categories
 - Lurie The adjunction $\varpi_{\infty} \dashv N_{\Delta}$ induces an equivalence of homotopy categories

Model-independence in ∞-cosmoi

An ∞ -cosmos $\mathfrak K$ is (roughly) a $\mathfrak Q\mathfrak C\mathfrak a\mathfrak t$ -enriched category of fibrant objects Much of ∞ -category theory can be done in the homotopy 2-category of $\mathfrak K$

Virtual profunctor equipment

 ∞ -cosmoi admit a calculus of "bimodules" $\mathfrak{C} \nrightarrow \mathfrak{D}$, called profunctors, which are (fibrations defining) ∞ -functors " $\mathfrak{D}^{op} \times \mathfrak{C} \to \mathfrak{Grpd}_{\infty}$ "

► Abstracts the internal hom functors

Model-independence Any notion that can be encoded in terms of the virtual equipment can be transported along cosmological 2-equivalences

 \implies Constructions appropriately performed in any ∞ -cosmos equivalent to \mathfrak{QCat} are valid for all models of ∞ -categories