PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

A61K 31/80

 $\mathbf{A1}$

(11) Internationale Veröffentlichungsnummer:

WO 99/22745

(43) Internationales

Veröffentlichungsdatum:

14, Mai 1999 (14.05.99)

(21) Internationales Aktenzeichen:

PCT/EP98/06820

(22) Internationales Anmeldedatum: 28. Oktober 1998 (28.10.98)

(30) Prioritätsdaten:

197 48 659.2

4. November 1997 (04.11.97) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO. KG [DE/DE]; D-65926 Frankfurt am Main (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): LINKIES, Adolf, Heinz [DE/DE]; Textorstrasse 103, D-60596 Frankfurt am Main (DE). PASENOK, Sergej [DE/DE]; Am Flachsland 56, D-65779 Kelkheim (UA).

(81) Bestimmungsstaaten: AU, BR, CA, CN, CZ, HU, JP, KR MX, PL, RU, SK, TR, US, europäisches Patent (AT, BE CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassener Frist; Veröffentlichung wird wiederholt falls Anderunger eintreffen.

(54) Title: CROSS-LINKED COPOLYMERS CONTAINING AMINOPHOSPHONIUM GROUPS FOR MEDICAL APPLICATIONS

(54) Bezeichnung: AMINOPHOSPHONIUMGRUPPEN ENTHALTENDE VERNETZTE COPOLYMERE FÜR MEDIZINISCHE VER WENDUNGEN

(57) Abstract

The invention relates to copolymers used to produce pharmaceutical compositions, wherein said copolymers are made up of monomer base units A1,A2,A3 amounting to 100 wt. %, whereby a1: 5-97 wt. % is made up of monofunctional

$$NR^{3}R^{4}$$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{5}R^{6}$
(II)

unit A1 of general formula (II) where R1-R6 mean independently of each other hydrogen, C1-12-alkyl, C2-12-alkenyl, C4-8-cycloalky C₆-C₁₂-aryl, or R¹ and R², R³ and R⁴, R⁵ and R⁶ mean independently from each other and together C₃₋₇-alkylene, which can b interrupted by -O-, -NH- or $-N(C_{1-4}-alkyl)-$, Z=NH, $N(C_{1-20}-alkyl)$, CH_2 or $CH(C_{1-20}-alkyl)$, X means straight chain or branche C₁₋₃₀-alkylene, whereby one or several hydrogen atoms can be replaced by halogen which can be interrupted by 1-3 indirectly juxtapose radicals -O-, -S-, -COO-, -O-CO-, -NH-, -NH-CO-, -NR⁷-, -CO-, -CO-NH-, -NH-CO-NH-, -O-CO-NH-, -NH-CO-O-, -N+R⁷R⁸-B-, -P+R⁷R⁸R⁹R⁹a-B-, with R⁷-R⁹a independently from each other C₁₋₆-alkyl, -COC- or -CH=CH-, phenylene cyclohexylene, cyclopentylene, which can be substituted, B⁻ represents the anion of an acid, -Y- is a single bond, -O-, -COO--O-CO-, -NH-CO-, -CO-NR⁷-, -CO-NH-, -NR⁷-CO-, NH-CO-NH-, -NH-, NR⁷- with R⁷ C₁₋₁₆-alkyl or phenylene cyclohexylene, cyclopentylene which can be substituted, R¹⁰= hydrogen or C₁₋₄-alkyl; a2: 0-95 wt. % diffunctional base units A2 with structure similar to A1 and a3: 0-92 wt. % of one or several copolymerisable base units A3.

(57) Zusammenfassung

Copolymere aus den monomeren Grundbausteinen A1, A2 und A3, deren Menge insgesamt 100 Gew.—% ergibt, a1: 5 bis 97 Gew.—% monofunktionellen Grundbausteinen A1 der allgemeinen Formel (II), in der R¹ bis R6 unabhängig voneinander Wasserstoff, C₁₋₁₂–Alkyl, C₂₋₁₂–Alkenyl, C₄₋₈–Cycloalkyl, C₆₋₁₂–Aryl, C₇₋₁₃–Aralkyl, oder R¹ und R², R³ und R⁴, R⁵ und R6 unabhängig voneinander zusammen C₃₋₇–Alkylen, das durch –O-, –NH– oder –N(C₁₋₄–Alkyl)– unterbrochen sein kann, Z NH, N(C₁₋₂₀–Alkyl), CH₂ oder CH(C₁₋₂₀–Alkyl), X geradkettiges oder verzweigtes C₁₋₃₀–Alkylen, bei dem ein oder mehrere Wasserstoffatome durch Halogen ersetzt sein können, das durch 1 bis 3 nicht unmittelbar benachbarte Reste –O-, –S-, –COO-, –O-CO-, –NH-, –NR⁷-, –NH–CO-, –NR⁷-CO-, –CO-NR⁷-, –CO-NH-, –NH–CO-NH-, –O-CO-NH-, –NH–CO-O-, –N+R⁷R⁸-B-, –P+R⁷R⁸R⁹R⁹a-B- mit R⁷ bis R⁹a unabhängig voneinander C₁₋₆–Alkyl, –C≡C-oder –CH=CH-, Phenylen, Cyclohexylen, die substituiert sein können, unterbrochen sein kann, B⁻ das Anion einer Säure, –Y- eine Einfachbindung, –O-, –COO-, –O-CO-, –NH–CO-, –CO-NR⁷-, –CO-NH-, –NR⁷-CO-, –NH–CO-NH-, –O-CO-NH-, –NH-, –NR⁷- mit R⁷ C₁₋₁₆–Alkyl oder Phenylen, Cyclohexylen, Cyclopentylen, die substituiert sein können, R¹⁰ Wasserstoff oder C¹-4–Alkyl bedeuten, a2: 0 bis 95 Gew.—% difunktionellen Grundbausteinen A2 mit ähnlichem Aufbau wie A1 und a3: 0 bis 92 Gew.—% von einem oder mehreren copolymerisierbaren Grundbausteinen A3 werden zur Herstellung von pharmazeutischen Zusammensetzungen verwendet.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss der PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	\mathbf{SZ}	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	- TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	1T	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	- Japan - · · - · · · · ·	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neusecland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		
<u> </u>							

Beschreibung

10

15

20.

25

30

35

5 Aminophosphoniumgruppen enthaltende vernetzte Copolymere für medizinische Verwendungen

Die Erfindung betrifft die Verwendung Aminophosphoniumgruppen enthaltender Copolymere und diese enthaltende pharmazeutische Zusammensetzungen. Die Copolymere zeichnen sich dabei durch eine Gallensäure-Adsorberwirkung aus.

Gallensäuren bzw. deren Salze sind natürliche Detergentien und haben eine wichtige physiologische Funktion bei der Fettverdauung und bei der Fettresorption. Als Endprodukte des Cholesterinstoffwechsels werden sie in der Leber synthetisiert, in der Gallenblase gespeichert und von dort als Bestandteile der Galle in den Darm abgegeben, wo sie ihre physiologische Wirkung entfalten. Der größte Teil (ca. 85-90%) der sezernierten Gallensäuren (ca. 16 g/Tag) wird über den enterohepatischen Kreislauf vorzugsweise im terminalen lleum wieder von der Darmwand resorbiert und in die Leber zurücktransportiert, also recycliert. Nur 10-15 % der Gallensäuren werden mit den Faeces ausgeschieden. In der Leber kann über ein Regelkreissystem eine Verringerung der Gallensäuremenge durch Nachsynthese von Gallensäuren aus Cholesterin bis zu einem gewissen Grad ausgeglichen werden. Eine Verringerung des Lebercholesterinspiegels führt zur Steigerung der Aufnahme von Cholesterin aus dem Blutserum und senkt somit den Cholesterinspiegel im Blutserum. Letztlich kann also durch eine Unterbindung der Gallensäure-rückresorption durch geeignete Inhibitoren oder Gallensäureadsorber im Darm der enterohepatische Kreislauf unterbrochen und infolgedessen der Serumcholesterinspiegel im Blut gesenkt werden. Ein zu hoher

Serumcholesterinspiegel gilt in der Medizin als bedenklich, weil er zu Atherosklerose führt und damit das Herzinfarktrisiko steigt.

Es gibt viele Therapieansätze zur Behandlung der sogenannten Hypercholesterinämie. Einer dieser Ansätze ist die Unterbrechung des enterohepatischen Kreislaufs. Mit diesem Ansatz können ferner alle Krankheiten therapiert werden, bei denen eine Inhibierung der Gallensäurerückresorption im Dünndarm wünschenswert erscheint. Zur

WO 99/22745 PCT/EP98/06820

Bindung von Gallensäuren werden seit geraumer Zeit nicht resorbierbare Polymere therapeutisch genutzt. Insbesondere werden hierzu unlösliche zumeist vernetzte Polymere eingesetzt, die quaternisierte Stickstoffzentren enthalten. Polymere mit quaternisierten Phosphorzentren sind ebenfalls beschrieben. Derartige Verbindungen wirken ähnlich wie Anionenaustauscher. Sie binden einen Teil der im Darm vorkommenden Gallensäureanionen über vorwiegend ionische Wechselwirkungen und transportieren sie aus dem Darm ab.

In der US 5,427,777 sind beispielsweise verträgliche polymere Phosphoniumsalze beschrieben, in denen quaternisierte Phosphorzentren in einer Polymermatrix vorliegen. Die Phosphoratome sind an vier Alkylgruppen gebunden und durch Gegenionen neutralisiert. Als Anwendung wird die Behandlung von Hypercholesterinämie vorgeschlagen.

In der JP-A 56/122 803 sind Anionenaustauscherharze auf der Basis von Polyvinylchlorid beschrieben. Polyvinylchlorid wird mit Natriumazid und sodann mit einem Phosphin umgesetzt, so daß im Produkt Phosphiniminstrukturen vorliegen.

> Serum-Cholesterinspiegel senkende Copolymere von Diethylentriamin und 1-Chlor-2,3epoxypropan werden unter der Bezeichnung Colestipol vertrieben.

Das Chlorid eines quartäre Ammoniumgruppen enthaltenden Styrol-Divinylbenzol-Copolymerisats, das als Anionenaustauscher zur Bindung von Gallensäuren bei Gallenstauung und Hypercholesterinämie wirksam ist, wird unter der Bezeichnung Cholestyramin vertrieben.

Die bekannten Verbindungen weisen Nachteile auf, die ihren Einsatz in der Therapie erschweren. Sie müssen in einer hohen Dosierung von etwa 10 bis 30 g pro Tag angewendet werden aufgrund der geringen Bindungsrate bzw. einer teilweisen Wiederfreisetzung der adsorbierten Gallensäuren im isotonen Darmmedium. Zudem weisen sie häufig einen fischartigen Geruch und einen sandartigen unangenehmen Geschmack verbunden mit einer sandigen Konsistenz auf. Teilweise müssen mehr als 50 Gew.-% des eingesetzten Arzneimittels an geschmacks- und geruchsverbessernden

5

20

25

Additiven zugesetzt werden. Hierdurch wird wiederum die Tagesdosis des Adsorbermedikaments erhöht.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Polymeren, die gegenüber den bekannten Mitteln verbesserte Eigenschaften bei der Behandlung von Hypercholesterinämie aufweisen und die Nachteile der bekannten Präparate vermeiden.

Die Aufgabe wird erfindungsgemäß gelöst durch Verwendung von Copolymeren aus den monomeren Grundbausteinen A1, A2 und A3, deren Menge insgesamt 100 Gew.- % ergibt

a1: 5 bis 97 Gew.-% monofunktionellen Grundbausteinen A1 der allgemeinen Formel (II)

$$NR^3R^4$$
 $R^1R^2N - P^+Z - X - Y - CR^{10} = CH_2$
 NR^5R^6
(II)

15

10

in der

Ζ

R¹ bis R⁶

unabhängig voneinander Wasserstoff, C_{1-12} -Alkyl, C_{2-12} -Alkenyl, C_{4-8} -Cycloalkyl, C_{6-12} -Aryl, C_{7-13} -Aralkyl, oder R^1 und R^2 , R^3 und R^4 , R^5 und R^6 unabhängig voneinander zusammen C_{3-7} -Alkylen, das durch -O-, -NH-, oder -N(C_{1-4} -Alkyl)- unterbrochen sein kann,

20

NH, $N(C_{1-20}$ -Alkyl), CH_2 oder $CH(C_{1-20}$ -Alkyl),

	WO 99/22745	;	4 P	CT/EP98/06820
		X	geradkettiges oder verzweigtes C_{1-30} -Alkylei oder mehrere Wasserstoffatome durch Haloweise Fluor ersetzt sein können, das durch	gene vorzugs-
5			unmittelbar benachbarte Reste -O-, -S-, -CC-NH-, -NR ⁷ -, -NH-CO-, -NR ⁷ -CO-, -CO-NR ⁷ -NH-CO-NH-, -O-CO-NH-, -NH-CO-O-, -N ⁺ R-P ⁺ R ⁸ R ⁹ R ^{9a} - B ⁻ mit R ⁷ bis R ^{9a} unabhängig	-, -CO-NH-, R ⁷ R ⁸ - B ⁻ ,
			C ₁₋₆ -Alkyl, -C≡C-, oder -CH=CH-, Phenylen,	
10			Cyclopentylen, die substituiert sein können, sein kann,	unterbrochen
		B ⁻	das Anion einer Säure,	
15		-Y-	eine Einfachbindung, -O-, -COO-, -O-CO-, - -CO-NR ⁷ -, -CO-NH-, -NR ⁷ -CO-, -NH-CO-NI NH-, -NR ⁷ - mit R ⁷ C ₁₋₆ -Alkyl oder Phenylen,	, -O-CO-NH-, -
			Cyclopentylen, die substituiert sein können,	und
		R ¹⁰	Wasserstoff oder C ₁₋₄ -Alkyl bedeuten,	
20	a2:	0 bis 95 Gew Formel (VII)	v% difunktionellen Grundbausteinen A2 der	allgemeinen
		H ₂ C=CR ¹¹ -E	-G-E-CR ¹¹ =CH ₂	(VII)
25		in der		
		R ¹¹	Wasserstoff oder C ₁₋₄ -Alkyl,	
30		E	eine Einfachbindung, -O-, -COO-, -O-CO-, -CO-NR ⁷ -, -CO-NH-, -NR ⁷ -CO-, -NH-CO-NNH-, -NR ⁷ - mit R ⁷ C ₁₋₆ -Alkyl, oder Phenyle Cyclopentylen, die substituiert sein könner	IH-, -O-CO-NH-, n, Cyclohexylen,

G

geradkettiges oder verzweigtes C₁₋₃₀-Alkylen, bei dem ein oder mehrere Wasserstoffatome durch Halogene vorzugsweise Fluor ersetzt sein können, das durch 1 bis 3 nicht unmittelbar benachbarte Reste -O-, -S-, -COO-, -O-CO-, -NH-, -NR⁷-, -NH-CO-, -NR⁷-CO-, -NH-CO-NH-, -O-CO-NH-, -NH-CO-O-, -N⁺R⁷R⁸- B⁻,

5

-P⁺R⁷R⁸R⁹R^{9a}- B⁻ mit R⁷ bis R⁹R^{9a} unabhängig voneinander

C₁₋₆-Alkyl, -C≡C-, oder -CH=CH-, Phenylen,

10

Cyclohexylen, Cyclopentylen, die substituiert sein können. unterbrochen sein kann, und

0 bis 97 Gew.-% von einem oder mehreren copolymerisierbaren **a**3: Grundbausteinen A3, zur Herstellung von pharmazeutischen Zusammen-

setzungen.

gemäß jedoch auch verzichtet werden.

15

Die Art des Copolymers ist dabei in weiten Grenzen unkritisch. Das Copolymer sollte physiologisch verträglich sein und im Magen oder Dünndarm während der normalen Verweilzeit nicht wesentlich verändert oder abgebaut werden. Zudem sollte das Copolymer vorzugsweise wasserunlöslich oder schwer löslich sein, da dann sichergestellt ist, daß es in vollem Umfang wieder ausgeschieden wird.

20

25

Als weitere copolymerisierbare Grundbausteine A3 kommen Vinylverbindungen wie Vinylacetate, Vinylchlorid, N,N-Dialkyl-vinylamine, Vinylphosphonsäuren, Vinylsulfonsäuren, Acrylate, Methacrylate, Acrylamide, Methacrylamide oder Styrol bzw. substituierte Styrole wie auch Acrylnitril, Methacrylnitril, Maleinsäureanhydrid, Vinylformamid, Vinylpyrrolidon, Vinylimidazol, Vinylpyridin, Allylammoniumverbindungen. Vinylphosphinsäuren, Diallylammoniumverbindungen N,N-Diallylvinylamine und andere derartige Monomere oder Gemische davon in Betracht. Zudem können die Grundbausteine A3 auch zwei oder mehr funktionelle Gruppen aufweisen, so daß sie vernetzende Eigenschaften bei der Polimerisation zeigen. Bevorzugte vinylische Grundbausteine A3 sind Acrylate, Methacrylate, Styrol, substituierte Styrole, Acrylnitril, Methacrylnitril

und Gemische davon. Auf die Mitverwendung der Grundbausteine A3 kann erfindungs-

WO 99/22745 6 PCT/EP98/06820

Das Molekulargewicht (M_n) der erfindungsgemäßen Copolymere beträgt vorzugsweise 1.000 bis 1.000.000.

Die Colymerisation folgt dabei nach üblichen Methoden, wie sie beispielsweise in
Houben-Weyl beschrieben sind. Sie kann thermisch, durch Radikalstarter, kationisch
oder anionisch eingeleitet werden. Vorzugsweise wird die Copolymerisation radikalisch
durchgeführt. Als Lösungsmittel können dabei die für Polymerisationen üblichen
Lösungsmittel eingesetzt werden. Auch Wasser kann als Lösungsmittel eingesetzt
werden, wenn die Ausgangsstoffe wasserlöslich sind. Bei der radikalischen Polymerisation empfehlen sich Azoinitiatioren wie 2,2'-Azobis(2-(2-imidazolin-2yl)propan)dihydrochlorid, die bei der Spaltung wasserlösliche ungiftige Bruchstücke
liefern.

Die Copolymerisation selbst erfolgt bei Raumtemperatur oder bei erhöhten Temperaturen. Zum reibungslosen Ablauf der Polymerisation sollte diese unter Schutzgas durchgeführt werden.

Unter Copolymer kann man auch ein gepfropftes Copolymer verstehen.

- Die Aufarbeitung der erhaltenen Polymere kann durch Filtration oder im Falle von wasserlöslichen Produkten durch Ultrafiltration erfolgen. Die Trocknung erfolgt durch geeignete Verfahren wie Gefriertrocknung.
- Zur Herstellung der polymerisierbaren Monomere eignen sich eine Vielzahl von
 Reaktionen. So lassen sich Imino-tris-dialkylaminophosphorane mit Alkylhalogeniden
 zu Tetrakisdialkylaminophosphoniumsalzen alkylieren, siehe R. Schwesinger, J.
 Willaredt, H. Schlemper, M. Keller, P. Schmidt, H. Fritz, Chem. Ber. 1994, 127, 2435 2454. Beispielsweise kann man Alkylierungsmittel mit einer olefinischen Gruppe wie
 Vinylbenzylchloride oder Allylhalogenide mit Tris(dialkylamino)iminophosphoranen

30 umsetzen:

Die Alkylierungsreaktion kann auch mit Di- oder Polyhalogenalkanen vorgenommen werden, wobei nur ein Halogenatom zur Reaktion gebracht wird und eines oder mehrere der verbleibenden Halogenatome mit einem geeigneten olefinischen Partner verknüpft werden. Eine derartige Umsetzung kann beispielsweise wie folgt erfolgen:

5

Es ist auch möglich, schon bei der Herstellung der Tris(dialkylamino)phosphorane aus Phosphorpentachlorid und Aminen eine oder mehrere polymerisierbare Gruppen ein zuführen. Dabei kann durch Umsetzung von Phosphorpentachlorid und Dialkylaminen zunächst ein Trisdialkylaminophosphordichlorid hergestellt werden. Dieses kann sodann durch Umsetzung mit einem primären Amin, das im Rest eine polymerisierbare Einheit enthält, zu den Tris(dialkylamino)iminophosphoranen umgesetzt werden.

5

Setzt man anstelle von Phosphorpentachlorid Phosphorigsäuretrisdialkylamide ein, so kann man zu Verbindungen der allgemeinen Formel (II) gelangen, in denen Z eine Methylengruppe oder CH(C₁₋₂₀-Alkyl) ist. Eine beispielhafte Umsetzung ist:

$$R_2N = P + B = (CH_2)n = B$$
 $R_2N = P + B = (CH_2)n = B$
 $R_2N = P + CH_2)n = B$
 $R_2N = R_2N = R_$

Nachstehend werden geeignete Umsetzungen anhand der Reste der allgemeinen

Formel (I) erläutert. Die Synthese kann dabei von Monomervorläufern der allgemeinen Formel (III)

$$R^{1}R^{2}N \xrightarrow{P^{+}Z^{-}} (C_{1-30} - Alkylen) \xrightarrow{B} B$$
(III)

ausgehen, in der R¹ bis R⁶, Z und B⁻ die vorstehend angegebene Bedeutung haben und B eine Abgangsgruppe, wie Halogen, Tosylat, Mesylat, Triflat oder ein anderes geeignetes Perfluoralkylsulfonat, vorzugsweise

Halogen, insbesondere Chlor oder Brom ist. Diese Monomervorläufer sind herstellbar, insbesondere wenn Z N(C₁₋₂₀-Alkyl) bedeutet, durch Umsetzung von Verbindungen der allgemeinen Formel (IV)

5

$$R^{1}R^{2}N \longrightarrow P = N (C_{1-20}-Alkyl)$$

$$NR^{5}R^{6}$$
(IV)

mit Verbindungen der allgemeinen Formel B- $(C_{1-30}$ -Alkylen)-B, wobei R¹ bis R⁶ und B die vorstehend angegebene Bedeutung haben. Die Verbindungen der allgemeinen Formel (IV) sind, wie vorstehend beschrieben, durch Umsetzung von Phosphorpentachlorid mit den Aminen R¹R²NH, R³R⁴NH bzw. R⁵R⁶NH und anschließende Umsetzung mit H₂N(C₁₋₂₀-Alkyl) zugänglich.

Aus den Monomervorläufern der allgemeinen Formel (III) können die Grundbausteine der allgemeinen Formel (II)

$$R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$

in der R¹ bis R⁶, Z, X und B die vorstehend angegebene Bedeutung haben,

- -Y- eine Einfachbindung, -O-, -COO-, -O-CO-, -NH-CO-, -NR⁷-CO-, -CO-NR⁷-, -CO-NH-, -NH-CO-NH-, -O-CO-NH-, -NH-, -NR⁷- mit R⁷ C₁₋₆-Alkyl oder Phenylen, Cyclohexylen, Cyclopentylen, die substituiert sein können, und
- 15 R¹⁰ Wasserstoff oder C₁₋₄-Alkyl bedeuten, hergestellt werden.

Dazu werden Verbindungen der allgemeinen Formel (IV) mit Verbindungen der allgemeinen Formel (V)

umgesetzt, wobei R1 bis R6, R10, X, Y, B die vorstehend angegebene Bedeutung haben.

Vorzugsweise weisen die Monomere der allgemeinen Formel (II) dabei folgende Merkmale bzw. folgende Bedeutungen für die Reste auf:

R¹ bis R⁶ sind unabhängig voneinander C₁₋₆-Alkylreste;

5

- Z ist N(C₁₋₂₀-Alkyl) oder NH;
- X ist C₁₋₂₀-Alkylen, das durch 1 bis 3 der Reste -NH-, -N⁺R⁷R⁸-B- mit R⁷ und R⁸ unabhängig voneinander C₁₋₄-Alkyl unterbrochen ist;

10

B⁻ ist Halogenid.

Vorzugsweise weisen die Monomere der allgemeinen Formel (II) alle der vorstehenden Merkmale auf.

15

25

30

Die vorstehend angegebenen Alkyl- und Alkenylreste können linear oder verzweigt sein. Vorzugsweise handelt es sich um lineare Alkyl- und Alkenylreste.

Besonders bevorzugt sind R¹ bis R⁶ die gleichen C₁₋₆-Alkylreste, insbesondere Methyloder Ethylreste. Z ist vorzugsweise ein N(C₁₋₆-Alkyl) oder N(C₁₀₋₁₅-Alkyl), besonders bevorzugt ein N(C₁₋₂-Alkyl) oder N(C₁₁₋₁₄-Alkyl).

X ist vorzugsweise ein C_{1-20} -Alkylenrest, der durch eine Phenylengruppe oder einen Rest-N⁺R⁷R⁸- B⁻ mit R⁷ und R⁸ unabhängig voneinander C_{1-4} -Alkyl, besonders bevorzugt C_{1-2} -Alkyl, unterbrochen ist.

Ein ebenfalls besonders bevorzugter Rest X ist $(C_{1-20}$ -Alkylen)-N⁺R⁷R⁸- $(C_{1-10}$ -Alkylen) B mit R⁷ = R⁸ = Methyl oder Ethyl. C_{1-20} -Alkylen ist dabei vorzugsweise C_{4-16} -, insbesondere C_{4-12} -Alkylen. C_{1-10} -Alkylen ist dabei vorzugsweise C_{1-5} -Alkylen, besonders bevorzugt C_{1-3} -Alkylen.

B ist vorzugsweise Chlor oder Brom, B Bromid oder Chlorid.

Y in der allgemeinen Formel (II) ist vorzugsweise O-CO oder NH-CO. R¹⁰ ist dabei vorzugsweise Methyl oder Ethyl, insbesondere Methyl. Es handelt sich somit bei den Grundbausteinen der allgemeinen Formel (II) besonders bevorzugt um Methacrylamide.

5

Monomere der allgemeinen Formel (II), in der Z N(C₁₋₂₀-Alkyl) und X (C₁₋₂₀-Alkylen)-N⁺R⁷R⁸ -(C₁₋₁₀-Alkylen) B⁻ ist, werden vorzugsweise durch Umsetzung von Verbindungen der allgemeinen Formel (IV) wie sie vorstehend angegeben ist, mit Verbindungen der allgemeinen Formel B-(C₁₋₂₀-Alkylen)-B und anschließende Umsetzung mit einer Verbindung der allgemeinen Formel (VI)

$$R^{8}R^{7}N-(C_{1-10}-Alkylen)-Y-CR^{10}=CH_{2}$$
 (VI)

wobei R¹ bis R⁶10, Y und B die angegebene Bedeutung haben, hergestellt.

15

10

Die difunktionellen Grundbausteine A2 der allgemeinen Formel (VII)

$$H_2C=CR^{11}-E-G-E-CR^{11}=CH_2$$
 (VII)

20

mit den vorstehend angegebenen Bedeutungen der Reste können nach bekannten Verfahren hergestellt werden, wie sie beispielsweise in WO 96/22761 beschrieben sind.

25

Für Verbindungen der Grundbausteine A2, in denen G C₁₋₄₀-Alkylen ist, das durch 2 nicht unmittelbar benachbarte Reste -N⁺R⁷R⁸- B⁻ unterbrochen ist, kann die Herstellung durch Umsetzung einer Verbindung der allgemeinen Formel R⁸R⁷N-Alkylen-E-CR¹¹=CH₂ mit Verbindungen der allgemeinen Formel B-Alkylen-B erfolgen, wobei B ein Halogenatom, insbesondere Brom oder Chlor ist.

30

Wenn G (C_{1-10} -Alkylen)- $N^{+}R^{7}R^{8}$ -(C_{1-20} -Alkylen)- $N^{+}R^{7}R^{8}$ -(C_{1-10} -Alkylen) 2B⁻ ist, so kann die Herstellung aus einer Verbindung der allgemeinen Formel R⁸R⁷N-(C₁₋₁₀-Alkylen)-E-CR¹¹=CH₂ mit einer Verbindung der allgemeinen Formel B-(C₁₋₂₀-Alkylen)-B erfolgen. B ist dabei Halogen, vorzugsweise Chlor oder Brom.

Die Menge der Grundbausteine A1 beträgt vorzugsweise 30 bis 97 Gew.-%, besonders bevorzugt 40 bis 95 Gew.-%. Die Menge der Grundbausteine A2 beträgt vorzugsweise 3 bis 70 Gew.-%, besonders bevorzugt 5 bis 60

PCT/EP98/06820

Gew.-%. Die Menge der Grundbausteine A3 beträgt vorzugsweise 0 bis 50 Gew.-%, besonders bevorzugt 0 bis 40 Gew.-%.

Vorzugsweise weisen die Grundbausteine A2 eines oder mehrere der folgenden Merkmale auf:

- 10 R¹¹ ist Methyl;
 - CR¹¹-E ist CR¹¹-CO-NH oder CR¹¹-COO-;
- G ist C₁₋₄₀-Alkylen, das durch 2 nicht unmittelbar benachbarte Reste -N⁺R⁷R⁸- B⁻ unterbrochen ist.

Besonders bevorzugt sind in den Grundbausteinen A1 und A2 R¹⁰ und R¹¹ Methyl,

X ist $(C_{1-20}$ -Alkylen)-N⁺R⁷R⁸- $(C_{1-10}$ -Alkylen) B⁻,

20

5

 $\text{G ist } (\text{C}_{1\text{-}10}\text{-}\text{Alkylen}) - \text{N}^{+}\text{R}^{7}\text{R}^{8} - (\text{C}_{1\text{-}20}\text{-}\text{Alkylen}) - \text{N}^{+}\text{R}^{7}\text{R}^{8} - (\text{C}_{1\text{-}10}\text{-}\text{Alkylen}) \text{ 2B}^{-},$

Y ist NH-CO oder O-CO und

25 CR¹¹-E ist CR¹¹-CO-NH oder CR¹¹-COO-.

Dabei ist C_{1-20} -Alkylen besonders bevorzugt lineares C_{10-15} -Alkylen, insbesondere lineares C_{12} -Alkylen. C_{1-10} -Alkylen ist vorzugsweise lineares C_{2-5} -Alkylen, insbesondere lineares C_3 -Alkylen. R^7 und R^8 bedeuten insbesondere Methyl.

30

Das bedeutet, daß Grundbaustein A2 bis auf die Aminophosphoniumgruppen aus den gleichen Struktureinheiten wie Grundbaustein A1 aufgebaut ist.

Besonders bevorzugt werden in den erfindungsgemäßen Copolymeren nur Grundbausteine A1 und A2 eingesetzt.

Es wurde erfindungsgemäß gefunden, daß Polymere aus Tetrakisdialkylaminophosphoniumgruppen ein ausgezeichnetes Bindeverhalten gegenüber Gallensäuren aufweisen. Dieses Bindevermögen macht die Polymere zur Herstellung von Arzneimitteln einsetzbar, die zur Behandlung der Hypercholesterinämie dienen.

Die Copolymere werden zur Herstellung von pharmazeutischen Zusammensetzungen eingesetzt. Derartige pharmazeutische Zusammensetzungen enthalten neben den vorstehenden Polymeren in der Regel übliche Trägerstoffe, Hilfsmittel und/oder Zusatzstoffe. Bei diesen Trägerstoffen, Hilfsmitteln und Zusatzstoffen handelt es sich um pharmazeutisch verträgliche Stoffe.

15 Insbesondere werden die pharmazeutischen Zusammensetzungen zur Behandlung von Hypercholesterinämie und allgemeiner zur Beeinflussung des enterohepatischen Kreislaufes der Gallensäuren eingesetzt. Weitere Einsatzgebiete der pharmazeutischen Zusammensetzung sind die Beeinflussung der Lipidresorption, die Beeinflussung des Serumcholesterinspiegels, die Hemmung der Gallensäureresorption im gastrointestinalen Trakt und die Prävention arteriosklerotischer Erscheinungen.

Insbesondere werden die Copolymere zur Herstellung von pharmazeutischen Zusammensetzungen zur Behandlung von Hypercholesterinämie verwendet.

Die pharmazeutischen Zusammensetzungen bzw. Medikamente können zudem weitere Lipidsenker enthalten. Sie können in verschiedenen Dosierungsformen verabreicht werden, vorzugsweise oral in Form von Tabletten, Kapseln oder Flüssigkeiten bzw. Aufschlämmungen.

Die Messung der Adsorptionsaktivität der erfindungsgemäßen Polymere in bezug auf Gallensäure kann in einem in vitro Modell vorgenommen werden.

5

10

25

WO 99/22745 14 PCT/EP98/06820

Dazu wird die Substanz in einer wäßrigen Salzlösung, die den Verhältnissen im Dünndarm nahekommt, mit Glyko- und Taurocholsäure für eine bestimmte Zeit gerührt oder geschüttelt, und nach Filtration oder Zentrifugation werden die in der Lösung verbliebenen Mengen an Gallensäuren mittels HPLC bestimmt.

Durch Rühren des Filtrationsrückstandes mit wäßriger Salzlösung und Bestimmung der freigesetzten Gallensäuren in der Salzlösung mittels HPLC wird die Festigkeit der Adsorption bestimmt.

Die Erfindung wird nachstehend anhand von Beispielen näher erläutert.

15

BEISPIELE

5 Beispiel 1

6,6 g (32,6 mMol) Tris(diethylamino)ethyliminophosphoran und 32,8 g (100 mMol) Dibromdodecan werden in 10 ml Acetonitril gelöst. Es wird 6 Stunden bei 50 - 60°C und dann 9 Stunden bei 80°C gerührt. Das Acetonitril wird abdestilliert und der Rückstand mit Hexan verrührt. Der unlösliche Rückstand wird mit 20 ml DMF und 6,8 g (40 mMol) N-(3-N, N-Dimethylaminopropyl)methacrylamid versetzt. Nach 12 Stunden Rühren bei 60 - 70°C wird das DMF im Vakuum abdestilliert. Der Rückstand wird 2mal mit Ether und 6mal mit Essigsäureethylester verrührt. Nach Trocknen im Vakuum werden 10 g Sirup erhalten. Nach einer Säulenchromatographie erhält man 6 g Produkt.

25

¹H-NMR (CDCl₃) d = 8,1 (m, 1H, NH), 5,4 und 5,8 (2s, 2H, olefin. H), 3,0-3,6 (3 m, 6H, CH₂-N), 3,2 (s, 6H, N-CH₃, 3,2 (m, 16H, N-CH₂), 2,0 (s, 3H, CH₃), 1,2-2,1 (4m, 43H, aliphat. CH₂) ppm

5 $^{31}P-NMR (CDCl_3) d = 45 ppm (bs)$

6 g (7,6 mMoI) des wie vorstehend hergestellten Acrylamids und 1,5 g (2,3 mMoI) 1,12-Di(N,N-dimethyl-N-3-methacrylamidopropyl)dodecan-dibromid werden in 30 ml Wasser unter N₂ gelöst und bei 50-60°C gerührt. 200 mg 2,2'-Azobis(2-(2-imidazolin-2-yl)propan)dihydrochlorid werden in Portionen zugegeben. Nach 1 Stunde wird mit dem Ultraturrax dispergiert, und weitere 100 mg Radikalstarter werden zugesetzt. Nach 3 Stunden Rühren werden 100 ml NaCl-Lösung zugegeben. Anschließend wird mit Wasser ultrafiltriert, bis der Ansatz chloridfrei ist. Der Rückstand wird gefriergetrocknet. Ausbeute: 5,1 g Produkt.

10 Beispiel 2

70 g (210 mMol) Dibromdodecan und 13,3 g (70 mMol) Tris(dimethylamino)methyliminophosphoran werden in 70 ml Acetonitril gelöst und auf 50°C geheizt. Nach 6 Stunden Rührzeit wird abgekühlt und der Niederschlag abgesaugt, das Filtrat eingeengt und in 150 ml Wasser gelöst. Es wird 3mal mit Hexan extrahiert. Das Hexan wird verworfen. Die wäßrige Phase wird 5mal mit Dichlormethan extrahiert, die Dichlormethanphase über Natriumsulfat getrocknet und eingeengt. Ausbeute: 35 g.

10

5

¹H-NMR (DMSO D6) d = 3,4 (t, 2H, CH₂-Br), 3,0 (m, 2H, N-CH₂), 3,8-3,9 (2d, 21H, N-CH₃), 1,2-1,8 (4m, 20H, aliphat, CH₂) ppm.

2,0 g (3,8mMol) des Produktes werden in 20 ml DMF gelöst. Nach Zugabe von 0,65 g (3,8 mMol) N-(3-N, N-Dimethylaminopropyl)methacrylamid wird auf 80°C geheizt. Nach 8 Stunden Rührzeit werden nochmals 0,65 g (3,8 mMol) Amid zugegeben. Es wird 4 Stunden bei 100°C und 4 Stunden bei 120°C gerührt. Das DMF wird an der Ölpumpe

abdestilliert. Der Destillationsrückstand wird in 20 ml Dichlormethan gelöst und in ca. 200 ml Aceton langsam eingerührt. Weitere 500 ml Hexan werden zugegeben. Nach 30 Minuten Rührzeit wird der klare Überstand abdekantiert und verworfen, der Rückstand in 20 ml Dichlormethan gelöst und nochmals gefällt. Der Rückstand wird in 20 ml Wasser gelöst und 10mal mit Dichlormethan extrahiert. Das Dichlormethan wird verworfen. Die wäßrige Phase wird durch Chromatographie über eine XAD-16-Säule (Rohm & Haas) gereinigt. Zum Eluieren benutzt man zunächst Wasser, dem man steigende Mengen Isopropanol zusetzt.

Ausbeute: 1,0 g

10

5

 1 H-NMR (D₂O) d = 5,5 und 5,8 (2s, 2H, Olefin H), 2,9-3,4 (3m, 8H, N-CH₂), 3,1 (s, 6H, N-CH₃), 2,7-2,8 (2d, 21H, N-CH₃), 1,9 (s, 3H, CH₃, 1,3-2,1 (4m, 22H, aliphat. CH₂) ppm.

Die Polymerisation erfolgt analog Beispiel 1, wobei die Mengenverhältnisse Phosphoniumverbindung/Bismethacrylat variiert werden.

	Verbindung	Phosphonium-	(Gewichtsteile)	Bisacrylat	(Gewichtsteile)
		verbindung			
	2a	4		1	
20	2b	4		2	
	2c	4		3	
	2d	4		4	
	2e	3		4	
	2f -	2		4	•
25	2g	1 .		4	

5

10

15

20

17,3 g Phosphorpentachlorid werden in 80 ml Dichlormethan suspendiert. Bei -30°C werden 22,5 g Dimethylamin (flüssig) vorsichtig zugetropft. Nach 2 Stunden ist die Zugabe beendet und die Mischung wieder dünnflüssig. Nach 30 Minuten Nachrührzeit läßt man auf Raumtemperatur kommen. Nach 1 Stunde werden 46,3 g Dodecylamin innerhalb von 30 Minuten zugetropft. Die Temperatur steigt auf 40°C an. Nach 1 Stunde werden 57 g 50%ige Natronlauge zugetropft. Nach dem Abkühlen wird die Methylenchloridphase abgetrennt. Die Lösung wird 2mal mit Dichlormethan extrahiert. Nach dem Einengen erhält man 74 g Rohprodukt. Der Rückstand wird in 50 ml 40%ige Natronlauge gegeben und 3mal mit Diethylether extrahiert. Die organische Phase wird getrocknet, eingeengt und bei 0,1 mm destilliert. Bei ca. 148-170°C erhält man 17,6 g farbloses Produkt.

14,6 g werden in 50 ml Acetonitril vorgelegt. Dann werden bei -60°C 44,3 g
Dibromdodecan in Portionen zugegeben. Dann läßt man auf Raumtemperatur
kommen. Nach 24 Stunden bei Raumtemperatur gießt man in 1 l Hexan und decantiert
vom Rückstand. Der Rückstand wird mehrfach mit Hexan digeriert und getrocknet. 25 g
Ausbeute.

Der gesamte Rückstand wird in 80 ml DMF gelöst und mit 6,5 g N-(3-(Dimethylami-no)propyl)methacrylamid 8 Stunden bei 70°C gerührt. Danach wird das DMF im Vakuum abdestilliert. Der Rückstand wird in Aceton gelöst und in 1 l Hexan eingerührt. Das ausgefällte Produkt wird über eine XAD-16-Säule (Rohm & Haas) gereinigt. Eluent: Wasser, das allmählich mit Isopropanol bis zum Verhältnis 7:3 verdünnt wird. Die Produktfraktionen werden eingeengt und gefriergetrocknet.

Ausbeute: 25,5 g Öl.

5

10

¹H NMR: (CDCl₃ d = 8,2 (t, 1H, NH), 5,4 und 6,0 (2s, 2H, olefin. H), 3,3 (s, 6H, CH₃-N) 3,0, 3,5 und 3,7 (3m, 10H, CH₂-N), 2,8 (2d, 18H, CH₃-N), 2,0 (s, 3H, CH₃), 1,2-2,3 (5m, 42H, aliphat. CH₂), 0,9 (t, 3H, CH₃) ppm.

Die Polymerisation erfolgt analog Beispiel 1, wobei die Mengenverhältnisse Phosphoniumverbindung/Bismethacrylat variiert werden.

	Verbindung	Phosphonium-	(Gewichtsteile)	<u>Bisacrylat</u>	(Gewichtsteile)
5		verbindung			
	3a	4		1	
	3b	4		2	
	3c	4		3	
	3d	4		4	
10	3e	3		4	
	3f	2		4	
	3g	1		4	

Beispiel 4

15

$$\begin{array}{c} P \\ N - P \\ N \end{array} \begin{array}{c} CI \\ N - P \\ N \end{array} \begin{array}{c} CI \\ CH_2 \\ N \end{array} \begin{array}{c} CH_3 \\ CH_2 \\ N \end{array} \begin{array}{c} CI \\ CH_2 \\ N \end{array} \begin{array}{c} CH_3 \\ CH_2 \\ N \end{array} \begin{array}{c} CI \\ N \end{array} \begin{array}{c} CI \\ CH_2 \\ N \end{array} \begin{array}{c} CI \\$$

20

25

Es werden 4 g olefinisches Phosphoniumsalz aus Beispiel 8 und 4 g N-Vinylformamid in 10 ml Wasser gelöst. Nach Durchleiten von Stickstoff wird auf ca. 60°C geheizt und 50 mg. 2,2'-Azobis[2(2-imidazolin-2-yl)propan]dihydrochlorid zugegeben. Nach 10 Minuten wird die Lösung stark viskos und es wird nochmals 80 ml Wasser zugegeben. Die Lösung wird weitere 5 Stunden bei 60°C gehalten. Anschließend werden 50 ml gesättigte Kochsalzlösung dazugegeben Es wird ultrafiltriert bis das Permeat NaCl-frei ist. Das Retentat wird gefriergetrocknet.

30

Auswaage: 5,0 g.

5

Es werden 2 g olefinisches Phosphonium salz aus Beispiel 8 und 0,2 g 50%iges

Divinylbenzol in 10 ml Methanol gelöst. Nach Durchleiten von Stickstoff wird auf ca. 60°C geheizt und es werden 50 mg 2,2'-Azobis[2(2-imidazolin-2-yl)propan]dihydrochlorid zugegeben. Nach einer Stunde werden nochmals 50 mg Starter zugegeben. Die trübe Lösung wird weitere 6 Stunden bei 60°C gehalten. Nach 60 Std. werden langsam unter Rühren 20 ml gesättigte. NaCl-Lösung zugegeben, wobei Klumpen ausfallen, die bei weiterer Methanolzugabe wieder in Lösung gehen. Es wird ultrafiltriert bis das Permeat NaCl-frei ist (anfangs MeOH/Wassergemisch später Wasser). Das Retentat wird gefriergetrocknet.

Auswaage =1,5 g

Es werden 2 g monomeres Phosphoniumsalz aus Beispiel 8 und 0,2 g

Triethylenglycoldivinylether in 10 ml Wasser gelöst. Nach Durchleiten von Stickstoff wird auf ca. 50°C geheizt und 50 mg 2,2'-Azobis[2(2-imidazolin-2-

yl)propan]dihydrochlorid zugegeben. Nach 30 Minuten fällt Polymer aus, es werden nochmals 50 mg Starter und 10 ml Wasser zugegeben. Die Suspension wird weitere 4 Stunden bei 50°C gehalten. Nach 24 Std. bei RT werden langsam unter Rühren 20 ml gesättigte. NaCl-Lösung zugegeben, wobei Klumpen ausfallen, die unter weiterer Methanolzugabe zum Teil löslich werden. Es wird ultrafiltriert bis das Permeat NaCl-frei ist (anfangs MeOH/Wassergemisch später Wasser). Das Retentat wird gefriergetrocknet.

Auswaage =1,8 g

5

10

21 g Phosphorpentachlorid werden unter Stickstoff in 200 ml Dichlormethan bei -30°C vorgelegt. Es werden 25 g Dimethylaminhydrochlorid bei -20°C zugegeben. Nach 15 Minuten werden 83 ml Triethylamin bei -30°C unter guter Kühlung zugetropft. Nach dem Zutropfen läßt man auf Zimmertemperatur kommen. Eine Stunde wird bei Raumtemperatur weitergerührt. Dann wird eine Lösung von 19 g Dodecylamin und 33 ml Triethylamin in 50 ml Dichlormethan zugetropft und 2 Stunden gekocht. Nach dem Abkühlen werden 140 g 60% ige KOH zugetropft. 15 Danach wird 15 Minuten gerührt. Anschließend wird die organische Phase abgetrennt. Die organische Phase wird eingeengt und mit Hexan verrührt. Der Überstand wird eingeengt und destilliert.

Kp: 152-160 °C bei 0,05mm.

20

Ausbeute 31,1 g

5

34,6 g Iminophosphoran aus Beispiel 7 und 122 g Dibromhexan werden bei 0°C zusammengegeben und dann 4 Stunden bei 10°C gerührt. Anschließend wird noch 5 Stunden bei 26°C gerührt. Der Überschuß von Dibromhexan wird nach 24 Std. abdestilliert und der Rückstand 3x mit Hexan ausgerührt. Die Hexanphasen werden verworfen. Der Rückstand wird an der Ölpumpe getrocknet.

15

Auswaage 61,3 g.

Die 61,3 g Rückstand werden mit 0,5 g Hydrochinon und 27,3 g N-[3(Dimethylamino)propyl]-methacrylamid in 20 ml Acetonitril gerührt. Nach 4 Tagen bei
Raumtemperatur wird 18 Std. auf 30-35°C erwärmt. Nach dem Einengen wird der
Rückstand in Diisopropylether eingerührt. Der kristalline Niederschlag wird
abgesaugt und mit Diisopropyläther gewaschen. Anschließend wird er aus Aceton
umkristallisiert.

25 Auswaage 44,3 g = 58,2 %

 1 H-NMR: (CDCl₃) δ = 5,6 und 6,0 (2s,2H, olefin.H), 3,6-3,8 (m,4H, NCH₂), 3,4-3,6(m, 2H, NCH₂) , 3,3 (s,6H,NCH₃), 2,9-3,1 (d, 18H, NCH₃),2,0 (s,3H, CH₃), 1,8-2,2 (ms, 30H, CH₂), 0,9 (t,3H,CH₃) ppm.

5 Beispiel 9

10

25

Es werden 2 g olefinisches Phosphoniumsalz aus Beispiel 8 und 0,4 g Bisacrylamid in 10 ml Wasser und 15 ml Methanol gelöst. Nach Durchleiten von Stickstoff wird auf ca. 50°C geheizt und es werden 50 mg 2,2'-Azobis[2(2-imidazolin-2-yl)propan]dihydrochlorid zugegeben. Nach 1 Stunde werden nochmals 50 mg Starter zugegeben und es wird weitere 2 Stunden bei 70°C gerührt. Dann werden nochmals 100 mg Starter zugegeben und weitere 3 Stunden bei 70°C gerührt. Dann werden 50 ml gesättigte Kochsalzlösung zugegeben. Es wird anschließend ultrafiltriert bis das

Permeat NaCI-frei ist (anfangs MeOH/Wassergemisch später Wasser). Das Retentat

Auswaage =1,4 g

wird gefriergetrocknet.

Beispiel 10A

2 g olefinisches Phosphoniumsalz aus Beispiel 10 C werden in 25 ml Wasser gelöst und mit 500 mg Tripropylenglycoldiacrylat versetzt. Nach Durchleiten von Stickstoff wird auf ca. 60°C geheizt und 100 mg 2,2'-Azobis[2(2-imidazolin-2-yl))propan]dihydrochlorid zugegeben. Nach 30 Minuten fällt Polymer aus. Nach 30 Minuten werden nochmals 100 mg Starter zugegeben und der Ansatz mit dem Ultrarührer durchgerührt. Die Suspension wird weitere 4 Stunden bei 60°C gerührt. Es wird langsam unter Rühren 20 ml ges. NaCl-Lösung zugegeben, wobei zäher Niederschlag ausfällt, der bei Methanolzugabe gelöst wird. Es wird ultrafiltriert bis das Permeat frei von NaCl ist (anfangs MeOH/Wassergemisch später Wasser). Das Retentat wird gefriergetrocknet.

15 Auswaage =2,1 g

Beispiel 10 B

5

10

15

20

Es werden 2 g olefinisches Phosphoniumsalz aus Beispiel 8 und 0,37 ml 60%ige wäßrige Diallyldimethylammoniumchloridiösung in 5 ml Wasser gelöst. Nach Durchleiten von Stickstoff wird auf ca. 60°C geheizt und 50 mg 2,2'-Azobis[2(2-imidazolin-2-yl)propan]dihydrochlorid zugegeben. Nach 20 Minuten wird die klare Lösung dickflüssig und nach weiteren 30 Minuten fest. Nach 30 Minuten werden nochmals 50 mg Starter und 10 ml Wasser zugegeben und es wird mit dem Ultrarührer durchgerührt. Die Suspension ist gut rührbar und wird weitere 4 Stunden bei 60°C gehalten. Danach werden langsam unter Rühren 20 ml ges. NaCl-Lösung zugegeben, wobei Klumpen ausfallen, die unter weiterer Methanolzugabe wieder in Lösung gehen. Es wird ultrafiltriert bis das Permeat NaCl-frei ist (anfangs MeOH/Wassergemisch später Wasser). Das Retentat wird gefriergetrocknet.

Auswaage =1,5 g

Beispiel 10 C

5

31,2 g Phosphorpentachlorid werden unter Stickstoff in 500 ml Dichlormethan bei - 30°C vorgelegt. Eine Mischung aus 63 ml Pyrrolidin und 102 ml Triethylamin wird bei

-30°C unter guter Kühlung zugetropft . Nach dem Zutropfen läßt man auf Zimmertemperatur kommen. Eine Stunde wird bei Raumtemperatur und kurz bei Rückfluß weitergerührt. Dann wird eine Lösung von 27,9 g Dodecylamin in 60 ml Dichlormethan zugetropft und 4 Stunden gekocht. Nach dem Abkühlen wird eine Lösung von 125 g KOH (85%ig) in 85 ml Wasser zugetropft. Danach wird 15 Minuten gerührt. Anschließend wird die organische Phase abgetrennt. Die organische Phase wird eingeengt und destilliert.

Kp: 190-200 °C bei 0,02mm.

10

5

Ausbeute 41 g =64 %

41 g Iminophosphoran und 73,2 g Dibromhexan werden bei 0°C zusammengegeben und dann 1 Stunde bei 10°C gerührt. Anschließend wird noch 30 Stunden bei RT gerührt. Der Überschuß von Dibromhexan wird abdestilliert und der Rückstand 2x mit Hexan ausgerührt. Die Hexanphasen werden verworfen. Der Rückstand wird an der Ölpumpe getrocknet.

Auswaage 63 g.

20

25

Die 63 g Rückstand werden mit 0,3 g Hydrochinon und 24 g N-[3-(Dimethylamino)propyl]-methacrylamid in 50 ml Acetonitril 8 Stunden bei 40-50°C gerührt und 60 Std. stehen gelassen. Nach dem Einengen wird der Rückstand in Methyl-tert.-Butylether eingerührt. Der kristalline Niederschlag wird abgesaugt und mit Methyl-tert.-Butylether gewaschen. Anschließend wird er aus Aceton umkristallisiert.

Auswaage 39,5 g = 50,1 %

30

35

0,7 g Phosphoniumsalz und 0,13 g Acrylsäure werden in 5 ml Wasser gelöst. Nach Durchleiten von Stickstoff wird auf ca. 60°C geheizt und 50 mg 2,2'-Azobis[2(2-imidazolin-2-yl)propan]dihydrochlorid zugegeben. Nach 15 Minuten fällt Polymer aus. Es werden nochmals 50 mg Starter und 5 ml Wasser zugegeben und der Ansatz mit

dem Ultrarührer durchgerührt. Die Suspension wird weitere 4 Stunden bei 60°C gerührt. Es wird langsam unter Rühren 10 ml ges. NaCl-Lösung zugegeben, wobei ein Klumpen ausfällt, der bei Methanolzugabe in Lösung geht. Es wird ultrafiltriert, bis das Permeat NaCl-frei ist (anfangs MeOH/Wassergemisch später Wasser). Das Retentat wird gefriergetrocknet.

Auswaage =0,7 g

10

Gallensäureadsorption

Versuchsbedingungen

1:Herstellung der Salz-Lösung

a) Stammlösung: 160 g 5 KCI 4 g Na₂HPO₄, 2H₂O 28 g 4 g KH₂PO₄ auf 1 I H₂O b) Gebrauchslösung - Standard 10 Die Stammlösung wird 1:20 mit Wasser verdünnt und die Gallensäuresalze werden hinzugefügt. Gallensäuresalze: 8 mmol/l Na-Glycocholat/Na-Taurocholat = 2/1 5,33 mmol/l Na-Glycocholat (bCA) 2,60 g/l 15

NaCl

2,67 mmol/l Na-Taurocholat (TCA) 1,43 g/l 137 mmol/l NaCl 8,00 g/i 2,7 mmol/l 0,20 g/l KCI 8,0 mmol/l 1,40 g/l Na₂HPO₄, 2H₂O 1,45 mmol/l 0,20 g/l

20

2:Adsorption

Die Polymerprobe wird gewogen und die Standardlösung zugegeben, so daß man eine Konzentration von 5 mg Polymer/ml Standard hat.

(10 mg/2ml) 25

Die Lösungen werden 2 Stunden bei Raumtemperatur gerührt.

Danach werden die Lösungen filtriert (0,2 µm)

Vergleich: Colestyramin

Der pH-Wert vom Filtrat wird überprüft.

KH₂PO₄

WO 99/22745 34 PCT/EP98/06820

3:HPLC-Messung

Säule: RP 18 Licrospher 5µm (250 x 4 mm)

Eluent: 900 ml Acetonitril

1100 ml H₂O

5 6,8 g Tetrabutylammoniumhydrogensulfat

Durchfluß: 1 ml/min

Detektion: 210 nm

Injektionvolume: 5µl

Retentionszeit:

GCA 4 min

10 TCA 5 min

Standard und Proben werden 3 mal eingespritzt.

4:Berechnung

Fläche Standard - Fläche Probe

15 Ads% = ----- * 100

Fläche Standard

Gallensäuredesorption Versuchsbedingungen

1:Gebrauchslösungen

. 5

a: Standardlösung: wie bei der Adsorptionsbestimmung

b: Salzlösung: Standardlösung ohne Gallensäuren

NaCl	8,00 g/l	137,00 mmol/l
KCI	0,20 g/l	2,70 mmol/l
Na ₂ HPO ₄ , 2H ₂ O	1,40 g/l	8,00 mmol/l
KH₂PO₄	0,20 g/l	1,45 mmol/l

2:Durchführung

10

15

20

Die Polymerprobe wird gewogen und die Standardlösung zugegeben, so daß man eine Konzentration von 5 mg Probe/ml Standardlösung hat. (50 mg/10ml).

Diese Lösung wird 2 Stunden bei Raumtemperatur gerührt.

Danach wird sie filtriert über Membranfiltration (0,45µm).

A:Filtrat:Adsorptionbestimmung

B:Filterkuchen

Filter mit Filterkuchen in ein Glasgefäß geben.

Gleiche Volumina Salzlösung wie Standardlösung zugeben.

2 Stunden bei Raumtemperatur rühren.

Danach filtrieren über Membranfiltration.

a:Filtrat:Desorptionbestimmung

b:Filterkuchen:Vorgang wiederholen wie B.

Manche Polymerproben lassen sich schwer filtrieren oder kleben an der Wand. 25 In diesem Fall wird die Lösung bei 4500 U/min zentrifugiert anstatt filtriert.

3:Gallensäurebestimmung

GCA und TCA Nachweis über HPLC Messung (siehe Adsorptionsbestimmung)

5 **4:Adsorption**

10 **5:Desorption**

15

Bei diesen Messungen ergaben sich folgende Werte:

Verbindung aus Beispiel	Adsorption GCA	TCA	Desorption GCA	Description TCA
1	79%	91%	20%	9%
2d	72%	87%	30%	14%

GCA: Glykocholsäure

20 TCA: Taurocholsäure

Patentansprüche

- 1. Verwendung von Copolymeren aus den monomeren Grundbausteinen A1, A2 und A3, deren Menge insgesamt 100 Gew.-% ergibt
 - a1: 5 bis 97 Gew.-% monofunktionellen Grundbausteinen A1 der allgemeinen Formel (II)

$$R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$
 $R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$

10

in der

Χ

R¹ bis R⁶

unabhängig voneinander Wasserstoff, C₁₋₁₂-Alkyl, C₂₋₁₂-Alkenyl, C₄₋₈-Cycloalkyl, C₆₋₁₂-Aryl, C₇₋₁₃-Aralkyl, oder R¹ und R², R³ und R⁴, R⁵ und R⁶ unabhängig voneinander zusammen C₃₋₇-Alkylen, das durch -O-, -NH- oder -N(C₁₋₄-Alkyl)- unterbrochen sein kann,

15

Z NH, N(C₁₋₂₀-Alkyl), CH₂ oder CH(C₁₋₂₀-Alkyl),

20

geradkettiges oder verzweigtes C₁₋₃₀-Alkylen, bei dem ein oder mehrere Wasserstoffatome durch Halogen ersetzt sein können, das durch 1 bis 3 nicht unmittelbar benachbarte

PCT/EP98/06820

WO 9	9/22	274	15
------	------	-----	----

38

Reste -O-,-S-, -COO-, -O-CO-, -NH-, -NR⁷-, -NH-CO-, -NR⁷- CO-, -CO-NR⁷-, -CO-NH-, -NH-CO-NH-, -O-CO-NH-, -NH-CO-O-, -N $^{+}$ R⁷R⁸- B-, -P $^{+}$ R⁷R⁸R⁹R^{9a}- B- mit R⁷ bis R^{9a} unabhängig voneinander C₁₋₆-Alkyl, -C \equiv C- oder -CH=CH-, Phenylen, Cyclohexylen, Cyclopentylen, die substituiert sein können, unterbrochen sein kann,

5

B⁻ das Anion einer Säure,

10

eine Einfachbindung, -O-, -COO-, -O-CO-, -NH-CO-, -CO-NR⁷-, -CO-NH-, -NR⁷-CO-, -NH-CO-NH-, -O-CO-NH-, -NH-, -NR⁷- mit R⁷ C₁₋₆-Alkyl oder Phenylen, Cyclohexylen, Cyclopentylen, die substituiert sein können, Wasserstoff oder C₁₋₄-Alkyl bedeuten,

R¹⁰

-Y-

0 bis 95 Gew.-% difunktionellen Grundbausteinen A2 der allgemeinen

a2: 0 bis 95 Gev Formel (VII)

H₂C=CR¹¹-E-G-E-CR¹¹=CH₂

(VII)

20

15

in der

 R^{11}

G

Wasserstoff oder C₁-4-Alkyl,

25

eine Einfachbindung, -O-, -COO-, -O-CO-, -NH-CO-, -NR⁷-CO-, -NH-CO-NH-, -O-CO-NH-, -NH-, -NR⁷- mit R⁷ C₁₋₆-Alkyl, oder Phenylen, Cyclohexylen, Cyclopentylen, die substituiert sein können,

30

geradkettiges oder verzweigtes C_{1-30} -Alkylen, bei dem ein oder mehrere Wasserstoffatome durch Halogen ersetzt sein können, das durch 1 bis 3 nicht unmittelbar benachbarte Reste -O-, -S-, -COO-,-O-CO-, -NH-, -NR⁷-, -NH-CO-, -NR⁷-CO-, -NH-CO-NH-, -O-CO-NH-, -NH-CO-O-, -N $^+$ R⁷R⁸- B $^-$, -P $^+$ R⁷R⁸R⁹R^{9a}- B $^-$ mit R⁷ bis R^{9a} unabhängig voneinander C_{1-6} -Alkyl, -C \equiv C- oder -

CH=CH-, Phenylen, Cyclohexylen, Cyclopentylen, die substituiert sein können, unterbrochen sein kann, bedeuten, und

- 5 0 bis 92 Gew.-% von einem oder mehreren copolymerisierbaren Grundbausteinen A3 zur Herstellung von pharmazeutischen Zusammensetzungen.
 - Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß das Copolymer eines oder mehrere der folgenden Merkmale aufweist:
- 10 R¹ bis R⁶ sind unabhängig voneinander C₁₋₆-Alkylreste;
 - Z ist N(C₁₋₂₀-Alkyl) oder NH;
- X ist C₁₋₂₀-Alkylen, das durch 1 bis 3 der Reste -NH-, -N⁺R⁷R⁸-B⁻ mit R⁷ und R⁸ unabhängig voneinander C₁₋₄-Alkyl unterbrochen ist;
 - B⁻ ist Halogenid;
 - das Polymer ist unter physiologischen Bedingungen schwer oder nicht wasserlöslich.
 - Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Copolymer Grundbaustein A2 eines oder mehrere der folgenden Merkmale aufweist:
 - 25 R¹¹ ist Methyl;
 - CR¹¹-E ist CR¹¹-CO-NH oder CR¹¹-COO-;
 - G ist C₁₋₄₀-Alkylen, das durch 2 nicht unmittelbar benachbarte Reste -N⁺R⁷R⁸- B⁻ unterbrochen ist.
 - 4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß im Copolymer Grundbaustein A1 eines oder mehrere der folgenden Merkmale aufweist:

20

- X ist $(C_{1-20}$ -Alkylen)-N⁺R⁷R⁸- $(C_{1-10}$ -Alkylen) B⁻ mit R⁷ = R⁸ = Methyl oder Ethyl;
- Y ist NH-CO oder O-CO;

5

- R¹⁰ ist Methyl.
- 5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß im Copolymer R¹⁰ und R¹¹ Methyl

10

- $X = (C_{1-20}\text{-Alkylen})\text{-N}^{+}R^{7}R^{8}\text{-}(C_{1-10}\text{-Alkylen}) = B^{-},$
- G $(C_{1-10}\text{-Alkylen})\text{-N}^{+}R^{7}R^{8}$ - $(C_{1-20}\text{-Alkylen})\text{-N}^{+}R^{7}R^{8}$ - $(C_{1-10}\text{-Alkylen})$ 2B⁻,

- Y NH-CO und oder O-CO;
- CR¹¹-E CR¹¹-CO-NH oder CR¹¹-COO- bedeuten.
- 20 6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß im Copolymer C₁₋₂₀-Alkylen lineares C₄₋C₁₂-Alkylen und C₁₋₁₀-Alkylen lineares C₃-Alkylen ist und R⁷ und R⁸ Methyl bedeuten.
- 7. Pharmazeutische Zusammensetzung, enthaltend Copolymere, wie sie in einem der Ansprüche 1 bis 6 definiert sind, neben üblichen Trägerstoffen, Hilfsmitteln und/oder Zusatzstoffen.
- 8. Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung nach Anspruch 7, dadurch gekennzeichnet, daß ein Copolymer, wie es in einem der Ansprüche 1 bis 6 definiert ist, durch radikalische, anionische oder kationische Polymerisation der Grundbausteine A1, A2 und gegebenenfalls A3 hergestellt wird und das Copolymer mit den Trägerstoffen, Hilfsmitteln und/oder Zusatzstoffen konfektioniert wird.

41

- 9. Verwendung von Copolymeren, wie sie in einem der Ansprüche 1 bis 6 definiert sind, zur Herstellung von pharmazeutischen Zusammensetzungen zur Entfernung von Gallensäuren aus dem enterohepatischen Kreislauf.
- 5 10. Verwendung von Copolymeren, wie sie in einem der Ansprüche 1 bis 6 definiert sind, zur Herstellung von pharmazeutischen Zusammensetzungen zur Verminderung der Gallensäureresorption im gastrointestinalen Trakt.
- Verwendung von Copolymeren, wie sie in einem der Ansprüche 1 bis 6 definiert
 sind, zur Herstellung von pharmazeutischen Zusammensetzungen zur
 Behandlung von Hypercholesterinämie.
 - 12. Verwendung von Copolymeren, wie sie in einem der Ansprüche 1 bis 6 definiert sind, zur Herstellung von pharmazeutischen Zusammensetzungen zur Verminderung der Lipidresorption.
 - 13. Verwendung von Copolymeren, wie sie in einem der Ansprüche 1 bis 6 definiert sind, zur Herstellung von pharmazeutischen Zusammensetzungen zur Senkung des Serumcholesterinspiegels.
 - 14. Verwendung von Copolymeren, wie sie in einem der Ansprüche 1 bis 6 definiert sind, zur Herstellung von pharmazeutischen Zusammensetzungen zur Prävention arteriosklerotischer Erscheinungen.

15

INTERNATIONAL SEARCH REPORT

International application No. PCT/EP 98/06820

IPC 6 A	IFICATION OF SUBJECT MATTER 6: 51K31/80		
According t	o International Patent Classification (IPC) or to both nat	ional classification and IPC	
B. FIELDS	SEARCHED		
Minimum de IPC 6 A6	ocumentation searched (classification system followed b 1K	y classification symbols)	
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	d in the fields searched
Electronic d	ata base consulted during the international search (name	of data base and, where practicable, se	arch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropria	ite, of the relevant passages	Relevant to claim No.
Y	EP 0 559 079 A (SYMPHAR SA) 8 September 1993 (08.09.93) See page 1. lines 1-4 and lines 30-35, and formula (I). page 21, lines 40-50, Claims 1 and 13		1-14
Y	WO 97 02037 A (BENTZEN CRAIG LEIGH; GGLLIN YVES (CH); DIEP VINH VAN (CH); 23 January 1997 (23.01.97) See abstract, page 1, lines 1-12, page 4, formula (1), page 38, last abstract	UYON N)	1-14
A	US 5 427 777 A (ST PIERRE LEON E ET AL) 27 June 1995 (27.06.95) cited in the application See abstract, column 1, last abstract with column 2, lines 1-62		1-14
- Ever	her documents are listed in the continuation of Box C.	X See patent family	y annex.
* Spec "A" document "E" earling "L" document "C" document "O" document "P" document "P" document "P" document	cial categories of cited documents: ument defining the general state of the art which is not consi- d to be of particular relevance ier document but published on or after the international filing	"T" later document published after the interpriority date and not in conflict with a cited to understand the principle or the considered novel or cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive stable with the document of particular relevance; the considered to involve an inventive stable with one or more other such do being obvious to a person skilled in the "&" document member of the same patents."	ternational filing date or the application but heory underlying the invention e claimed invention cannot be hered to involve an inventive he claimed invention cannot be ep when the document is compourments, such combination he art
Date of th 25 Februa	e actual completion of the international search ry 1999 (25.02.99)	Date of mailing of the international se 04/03/1999 (04.03.99)	arch report
	I mailing address of the ISA/ Patent Office No.	Authorized officer Stolner, A Telephone No.	
<u> </u>			

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte onal Application No PCT/EP 98/06820

Patent document cited in search report	-	Publication date	Patent family member(s)	Publication date
EP 0559079	A	08-09-1993	CH 683996 A AT 156829 T AU 3394793 A CA 2091031 A DE 69312984 D DE 69312984 T DK 559079 T ES 2108772 T FI 930974 A GR 3025268 T JP 6049083 A NO 303783 B NZ 247056 A SG 43831 A US 5424303 A	30-06-1994 15-08-1997 09-09-1993 06-09-1997 12-03-1998 30-03-1998 01-01-1998 06-09-1993 27-02-1998 22-02-1994 31-08-1998 28-08-1995 14-11-1997 13-06-1995 23-09-1993
WO 9702037	A	23-01-1997	ZA 9301473 A AU 6418596 A BG 102215 A CA 2225391 A CN 1193913 A CZ 9704220 A EP 0835116 A NO 976128 A PL 324341 A SK 178397 A	23-09-1993 05-02-1997 30-09-1998 23-01-1997 23-09-1998 14-10-1998 15-04-1998 10-02-1998 25-05-1998 03-06-1998
US 5427777	Α	27-06-1995	CA 2063499 A	,C 20-09-1993

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONALER RECHERCHENBERICHT

Int. Jonales Aktenzeichen PCT/EP 98/06820

A. KLASSIF IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES A61K31/80	<u></u>	
Nach der Inte	ernationalen Patentklassifikation (IPK) oder nach der nationalen Klassifi	kation und der IPK	
	RCHIERTE GEBIETE		
Recherchier IPK 6	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $A61K$	·	
	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sowe		
Während de	ar internationalen Recherche konsultierte elektronische Datenbank (Nam	e der patenbank und evil. Verwendere 3	acribe gillie)
C. ALS WE	ESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe d	er in Betracht kommenden Teile	Betr. Anspruch Nr.
Υ	EP 0 559 079 A (SYMPHAR SA) 8. September 1993 *siehe Seite 1, Zeilen 1-4 und Zei 30-35, sowie Formel (I), Seite 21, 40-50, Ansprüche 1 und 13*		1-14
Y	WO 97 02037 A (BENTZEN CRAIG LEIGH GELLIN YVES (CH); DIEP VINH VAN (C 23. Januar 1997 *siehe Zusammenfassung, Seite 1, Z 1-12, Seite 4, Formel (I), Seite 3 letzter Absatz*	1-14	
A	US 5 427 777 A (ST PIERRE LEON E 27. Juni 1995 in der Anmeldung erwähnt *siehe Zusammenfassung, Spalte 1, Absatz mit Spalte 2, Zeilen 1-62*		1-14
	eitere Veröffentlichungen sind der Fortsetzung von Feld C zu trehmen	X Siehe Anhang Patentfamilie	
° Besonde "A" Veröf aber "E" ältere Ann "L" Veröf sche and soli aus "O" Verö eine "P" Verö	ere Kategorien von angegebenen Veröffentlichungen : " ffentlichung, die den allgemeinen Stand der Technik definiert, r nicht als besonders bedeutsam anzusehen ist es Dokument, das jedoch erst am oder nach dem internationalen neldedatum veröffentlicht worden ist "ffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- einen zu lassen, oder durch die das Veröffentlichungsdatum einer eren im Recherchenbericht genannten Veröffentlichung belegt werden oder die aus einem anderen besonderen Grund angegeben ist (wie geführt) iffentlichung, die sich auf eine mündliche Offenbarung, e Benutzung, eine Ausstellung oder andere Maßnahmen bezieht iffentlichung, die-vor dem internationalen Anmeldedatum, aber nach in beanspruchten Prioritätsdatum veröffentlicht worden ist	kann nicht als auf erfinderischer Tätig werden, wenn die Veröffentlichung m Veröffentlichungen dieser Kategorie in diese Verbindung für einen Fachman "&" Veröffentlichung, die Mitglied derselbe	t worden ist und mit der ur zum Verständnis des der oder der ihr zugrundeliegenden utung; die beanspruchte Erfindung chung nicht als neu oder auf achtet werden utung; die beanspruchte Erfindung keit berühend betrachtet teiner oder mehreren anderen verbindung gebracht wird und naheliegend ist
Datum de	es Abschlusses der internationalen Recherche	Absendedatum des internationalen R	echerchenberichts
Name	25. Februar 1999	04/03/1999 Bevollmächtigter Bediensteter	
ivame ur	Europäisches Patentamt, P.B. 5816 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Stoltner, A	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inte onales Aktenzeichen
PCT/EP 98/06820

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0559079 A	08-09-1993	CH 683996 A AT 156829 T AU 3394793 A CA 2091031 A DE 69312984 D DE 69312984 T DK 559079 T ES 2108772 T FI 930974 A GR 3025268 T JP 6049083 A NO 303783 B NZ 247056 A SG 43831 A US 5424303 A ZA 9301473 A	30-06-1994 15-08-1997 09-09-1993 06-09-1993 18-09-1997 12-03-1998 30-03-1998 01-01-1998 06-09-1993 27-02-1994 31-08-1998 28-08-1995 14-11-1997 13-06-1995 23-09-1993
WO 9702037 A	23-01-1997	AU 6418596 A BG 102215 A CA 2225391 A CN 1193913 A CZ 9704220 A EP 0835116 A NO 976128 A PL 324341 A SK 178397 A	05-02-1997 30-09-1998 23-01-1997 23-09-1998 14-10-1998 15-04-1998 10-02-1998 25-05-1998 03-06-1998
US 5427777 A	27-06-1995	CA 2063499 A,C	20-09-1993

Formblatt PCT/ISA/210 (Anhang Patentlamilie)(Juli 1992)

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶:

A61K 31/80

A1

- (11) Internationale Veröffentlichungsnummer:
- (43) Internationales Veröffentlichungsdatum:

14. Mai 1999 (14.05.99)

WO 99/22745

(21) Internationales Aktenzeichen:

PCT/EP98/06820

- (22) Internationales Anmeldedatum: 28. Oktober 1998 (28.10.98)
- (30) Prioritätsdaten:

197 48 659.2

4. November 1997 (04.11.97)

- (71) Anmelder (für alle Bestimmungsstaaten ausser US): AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO. KG [DE/DE]; D-65926 Frankfurt am Main (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): LINKIES, Adolf, Heinz [DE/DE]; Textorstrasse 103, D-60596 Frankfurt am Main (DE). PASENOK, Sergej [UA/DE]; Am Flachsland 56, D-65779 Kelkheim (DE).

CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen

- (54) Title: CROSS-LINKED COPOLYMERS CONTAINING AMINOPHOSPHONIUM GROUPS FOR MEDICAL APPLICATIONS
- (54) Bezeichnung: AMINOPHOSPHONIUMGRUPPEN ENTHALTENDE VERNETZTE COPOLYMERE FÜR MEDIZINISCHE VER WENDUNGEN

(57) Abstract

The invention relates to copolymers used to produce pharmaceutical compositions, wherein said copolymers are made up of monomer base units A1,A2,A3 amounting to 100 wt. %, whereby al: 5-97 wt. % is made up of monofunctional

$$R^{1}R^{2}N - P^{+}Z - X - Y - CR^{10} = CH_{2}$$
 B. (II)

unit A1 of general formula (II) where R^1-R^6 mean independently of each other hydrogen, C_{1-12} -alkyl, C_{2-12} -alkenyl, C_{4-8} -cycloalk C_6 — C_{12} —aryl, or R^1 and R^2 , R^3 and R^4 , R^5 and R^6 mean independently from each other and together C_{3-7} —alkylene, which can interrupted by $-O_-$, $-NH_-$ or $-N(C_{1-4}$ —alkyl)—, Z=NH, $N(C_{1-20}$ —alkyl), CH_2 or $CH(C_{1-20}$ —alkyl), X means straight chain or branch C₁₋₃₀—alkylene, whereby one or several hydrogen atoms can be replaced by halogen which can be interrupted by 1-3 indirectly juxtapos radicals -O-, -S-, -COO-, -O-CO-, -NH-, -NR⁷-, -NH-CO-, -NR⁷-CO-, -CO-NR⁷-, -CO-NH-, -NH-CO-NH-, -O-CO-NH-, -NH-CO-O-, -N+R⁷R⁸-B-, -P+R⁷R⁸R⁹R⁹R³-B-, with R⁷-R⁹a independently from each other C₁₋₆-alkyl, -COC- or -CH=CH-, phenyleness of the color o cyclohexylene, cyclopentylene, which can be substituted, B- represents the anion of an acid, -Y- is a single bond, -O-, -COC -O-CO-, -NH-CO-, -CO-NH-, -NR⁷-, -CO-NH-, -NR⁷-CO-, -NH-CO-NH-, -NH-, NR⁷- with R⁷ C₁₋₁₆-alkyl or phenylene, cyclopentylene which can be substituted, R¹⁰= hydrogen or C₁₋₄-alkyl; a2: 0-95 wt. % difunctional base units A2 with R¹⁰- with R structure similar to A1 and a3: 0-92 wt. % of one or several copolymerisable base units A3.

(57) Zusammenfassung

Copolymere aus den monomeren Grundbausteinen A1, A2 und A3, deren Menge insgesamt 100 Gew.—% ergibt, a1: 5 bis 97 Gew.—% monofunktionellen Grundbausteinen A1 der allgemeinen Formel (II), in der-R¹ bis R6 unabhängig voneinander Wasserstoff, C₁₋₁₂-Alkyl C₂₋₁₂-Alkenyl, C₄₋₈-Cycloalkyl, C₆₋₁₂-Aryl, C₇₋₁₃-Araikyl, oder R¹ und R², R³ und R⁴, R⁵ und R⁶ unabhängig voneinander zusammer C₃₋₇-Alkylen, das durch –O-, –NH– oder –N(C₁₋₄-Alkyl)– unterbrochen sein kann, Z NH, N(C₁₋₂₀-Alkyl), CH₂ oder CH(C₁₋₂₀-Alkyl), X geradkettiges oder verzweigtes C₁₋₃₀-Alkylen, bei dem ein oder mehrere Wasserstoffatome durch Halogen ersetzt sein können, das durch 1 bis 3 nicht unmittelbar benachbarte Reste –O-, –S-, –COO-, –O-CO-, –NH-, –NR⁷-, –NH-CO-, –NR⁷-CO-, –CO-NR⁷-, –CO-NH-, –NH-CO-NH-, –NH-CO-, NH-, –NH-CO-, NH-, –NH-CO-, NH-, –NH-CO-, NH-, –NH-CO-, –NH-CO-,

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss de PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenica	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland .	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugosławien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
СМ	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	ΚZ	Kasachstan	RO	Rumänien		
Cz	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan'		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		