

planetmath.org

Math for the people, by the people.

the real numbers are indecomposable as a topological space

 ${\bf Canonical\ name} \quad {\bf The Real Numbers Are Indecomposable As A Topological Space}$

Date of creation 2013-03-22 18:30:59 Last modified on 2013-03-22 18:30:59

Owner joking (16130) Last modified by joking (16130)

Numerical id 12

Author joking (16130) Entry type Theorem Classification msc 54F99 Let \mathbb{R} be the set of real numbers with standard topology. We wish to show that if \mathbb{R} is homeomorphic to $X \times Y$ for some topological spaces X and Y, then either X is one point space or Y is one point space. First let us prove a lemma:

Lemma. Let X and Y be path connected topological spaces such that cardinality of both X and Y is at least 2. Then for any point $(x_0, y_0) \in X \times Y$ the space $X \times Y \setminus \{(x_0, y_0)\}$ with subspace topology is path connected.

Proof. Let $x' \in X$ and $y' \in Y$ such that $x' \neq x_0$ and $y' \neq y_0$ (we assumed that such points exist). It is sufficient to show that for any point (x_1, y_1) from $X \times Y \setminus \{(x_0, y_0)\}$ there exists a continous map $\sigma : I \to X \times Y$ such that $\sigma(0) = (x_1, y_1), \ \sigma(1) = (x', y')$ and $(x_0, y_0) \notin \sigma(I)$.

Let $(x_1, y_1) \in X \times Y \setminus \{(x_0, y_0)\}$. Therefore either $x_1 \neq x_0$ or $y_1 \neq y_0$. Assume that $y_1 \neq y_0$ (the other case is analogous). Choose paths $\sigma : I \to X$ from x_1 to x' and $\tau : I \to Y$ from y_1 to y'. Then we have induced paths:

$$\sigma': I \to X \times Y$$
 such that $\sigma'(t) = (\sigma(t), y_1);$

$$\tau': \mathcal{I} \to X \times Y$$
 such that $\tau'(t) = (x', \tau(t))$.

Then the path $\sigma' * \tau' : I \to X \times Y$ defined by the formula

$$(\sigma' * \tau')(t) = \begin{cases} \sigma'(2t) & \text{when } 0 \le t \le \frac{1}{2} \\ \tau'(2t - 1) & \text{when } \frac{1}{2} \le t \le 1 \end{cases}$$

is a desired path. \square

Proposition. If there exist topological spaces X and Y such that \mathbb{R} is homeomorphic to $X \times Y$, then either X has exactly one point or Y has exactly one point.

Proof. Assume that neither X nor Y has exactly one point. Now $X \times Y$ is path connected since it is homeomorphic to \mathbb{R} , so it is well known that both X and Y have to be path connected (please see http://planetmath.org/ProductOfPathConnectedSpentry for more details). Therefore for any point $(x,y) \in X \times Y$ the space $X \times Y \setminus \{(x,y)\}$ is also path connected (due to lemma), but there exists a real number $r \in \mathbb{R}$ such that $X \times Y \setminus \{(x,y)\}$ is homeomorphic to $\mathbb{R} \setminus \{r\}$. Contradiction, since $\mathbb{R} \setminus \{r\}$ is not path connected. \square