

HexaDisplay

2.º Teste de Introdução à Arquitetura de Computadores

Duração: 60 minutos

IST – LEIC-Taguspark 14 dezembro 2015

NOME	NÚMERO	

1. (1 + 2 + 1 valores) Considere o seguinte programa, que usa rotinas de interrupção para alterar o valor de um display hexadecimal.

PLACE 1000H
pilha: TABLE 100H
fim_pilha:

tab: WORD rot0
WORD 0
WORD rot2

8000H

1.° Semestre 2015/2016

PLACE 0

EQU

	MOV	R1, 1 ; contador
	MOV	SP, fim_pilha
	MOV	BTE, tab
	EIO	
	EI2	
	EI	
fim:	JMP	fim

rot0: PUSH R2

MOV R2, HexaDisplay

EI

SUB R1, 1; decrementa MOVB [R2], R1; atualiza display

POP R2

RFE

rot2: PUSH R2

MOV R2, HexaDisplay
ADD R1, 2 ; incrementa
MOVB [R2], R1 ; atualiza display

POP R2

RFE

- a) Do lado esquerdo, complete a zona de dados e o programa principal com o necessário para a pilha e as interrupções 0 e 2 funcionarem corretamente (rotinas no lado direito). Preencha apenas os espaços que entender serem necessários. O corpo do programa principal deve terminar em ciclo infinito (salto para a própria instrução);
- b) Suponha que os pedidos de interrupção 0 e 2 se alternam, com um segundo de intervalo, e que a interrupção 0 é a primeira a ser pedida. Indique de seguida a sequência dos 8 primeiros valores que aparecem no display;

0 2 1 3 2 4 3 5

c) Suponha agora que os pinos do PEPE da interrupção 0 e 2 ligam ao mesmo sinal externo (logo, as interrupções são pedidas exatamente ao mesmo tempo), que origina uma interrupção em cada segundo. Indique de seguida a sequência dos 8 primeiros valores que aparecem no display (recomeçando o programa). Justifique as diferenças face ao caso anterior.

3 2 4 3 5 4 6 5

A interrupção 0 é mais prioritária e é atendida primeiro. Mas a interrupção 2 fica pedida e é atendida ainda durante a execução de rot0, pois esta volta a permitir interrupções. Assim, ao contrário do caso anterior, o display é incrementado primeiro em rot2 e decrementado depois em rot0 (após rot2 retornar).

- 2. (2 + 1 valores) Agora que estamos quase no Natal decidiu renovar o seu portátil, substituindo o disco por um SSD (Solid State Drive). O seu disco tem 5400 rotações/minuto, 6 ms de *seek-time* (procura de pista) e taxa de leitura de dados de 100 MBytes/seg. O SSD tem um tempo de acesso de 0,1 ms e taxa de leitura de dados de 200 MBytes/seg. Considera-se que o setor é a unidade de leitura nos dois casos.
- a) Para ter uma ideia de quanto o seu PC vai melhorar, fez um pequeno *benchmark* que lê 1000 setores de 1 KByte cada um, distribuídos pelo dispositivo de forma <u>aleatória</u>, quer no disco, quer no SSD. Estime o tempo que demorará <u>aproximadamente</u> a execução do seu *benchmark* no caso do disco e do SSD e qual a ordem de grandeza de quantas vezes (N) o SDD será mais rápido.

O tempo de leitura de um setor no disco é, aproximadamente 11,5 ms, obtido pela soma de:

5,5 ms (latência rotacional de meia volta – uma volta são cerca de 11 ms, a 90 rot/seg, ou 5400 rot/min)

6 ms (latência de procura de pista)

0,01 ms (1 Kbyte a 100 Mbytes/seg) – desprezável face ao restante

Logo, no caso do disco os 1000 setores demorarão cerca de 11,5 segundos a ser lidos.

Para o SSD, cada setor leva aproximadamente 0,1 ms a ser lido, tempo obtido pela soma de:

0,1 ms (tempo para aceder a um setor)

0,005 ms (1 Kbyte a 200 Mbytes/seg) – desprezável face ao restante

A leitura dos 1000 setores demorará assim cerca de 0,1 segundos.

O SSD é cerca de 115 vezes mais rápido do que o disco neste benchmark.

b) Isto quererá dizer que o seu PC vai correr as aplicações N vezes mais rápido, em que N é o valor calculado na alínea anterior? <u>Justifique</u>;

Não, porque:

- as aplicações não usam apenas disco/SSD, pelo que pela lei de Amdahl apenas a parte que usa é melhorada;
- os ficheiros não costumam estar completamente espalhados pelo disco, pelo que nem todos os setores terão de sofrer uma procura de pista nem atraso de latência (o benchmark é claramente desfavorável para o disco).

3. (3 valores) Considere o seguinte sistema de descodificação de endereços utilizado por um processador de <u>bus</u> de dados de 8 bits e bus de endereços de 16 bits. Preencha a tabela com os bits de endereço a que cada dispositivo deve ligar, a sua capacidade (decimal) e os endereços de início e de fim (em <u>hexadecimal</u>) em que esse dispositivo está ativo (<u>não considerando endereços de acesso repetido</u> - espelhos).

Dispositivo	Bits de endereço	Capacidade (bytes) (decimal)	Início (hexadecimal)	Fim (hexadecimal)
Descodificador	A12-A14			
RAM	A0-A11	4 K	0000Н	0FFFH
Periférico	A0-A6	128	3000H	307FH
ROM1	A0-A9	1 K	5000H	53FFH
ROM2	A0-A8	512	7000H	71FFH

4. (2 valores) Considere a seguinte tabela de verdade, relativa a uma função de quatro entradas e uma saída. Simplifique a respetiva função, preenchendo a tabela de Karnaugh e escrevendo a expressão algébrica mais simplificada que lhe é equivalente.

D	()		
	C	В	A
0	0	0	0
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	0
0	0	0	1
1	0	0	1
0	1	0	1
1	1	0	1
0	0	1	1
1	0	1	1
0	1	1	1
1	1	1	1
0 1 0 1 0 1 0 1 0 1 0	1 0 0 1 1 0 0 1 1 0 0	0 0 1 1 1 0 0 0 0 1 1 1	

$$Z = \overline{A}\overline{D} + B\overline{C} + \overline{A}\overline{C}$$

5. (2 + 1 valores) Pretende-se implementar um controlador microprogramado para um microondas. O diagrama de estados seguinte indica os 4 estados possíveis, as saídas relevantes em cada estado e os eventos que podem fazer o controlador transitar de estado. Há três sensores (P - porta aberta, B - botão ligado e T - tempo acabou) e três dispositivos a controlar (lâmpada, magnetrão e campainha de fim de tempo). O temporizador de funcionamento é mecânico (só o sensor indica o fim). As negações nos sinais dos sensores permitem testar as condições negadas.

a) Preencha a tabela seguinte com os valores necessários para implementar o controlador. Cada estado é implementado por um ciclo que testa cada um dos sensores relevantes, podendo mudar de estado (saltar para a primeira microinstrução doutro estado). Indique apenas os sinais relevantes em cada ciclo de relógio e deixe em branco as restantes células.

Endereço na ROM	Estado	Microinstruções	LAMP	MAGN	CAMP	SEL_MICRO_ SALTO	MICRO_SAL TO
0	Daaliaada	Muda para Ligado se botão ligar				В	2
1	Desligado	Mantém estado se porta fechada				nP	0
2		Muda para Porta Aberta se porta abrir	SIM	SIM		P	5
3	Ligado	Muda para Acabou se fim de tempo	SIM	SIM		T	7
4		Caso contrário, mantém estado	SIM	SIM		1	2
5	Danta Abanta	Muda para Desligado se porta fechar	SIM			nP	0
6	Porta Aberta	Caso contrário, mantém estado	SIM			1	5
7	Acabou	Muda para Desligado			SIM	1	0

- 6. (1 + 2 valores) Suponha que a *cache* do PEPE (processador com 16 bits de endereço, <u>endereçamento de byte</u>) é de mapeamento direto, usa blocos de 8 palavras e tem 7 bits de etiqueta.
 - a) Quantos blocos pode a cache armazenar, se estiver completamente cheia?

32

b) Suponha que o processador acedeu ao endereço 1234H, ficando o respetivo valor em cache, e que logo a seguir acedeu a outro endereço, do qual conhece apenas os dígitos de maior e menor peso (8 e A). Indique possíveis dígitos intermédios do endereço, em duas situações:

• O segundo valor acedido <u>retira</u> o primeiro da cache

8 **2 3** A H

• O segundo valor acedido não retira o primeiro da cache

8 **2 4** A H

7. (2 valores) Imagine um processador com endereçamento de byte, capaz de endereçar um espaço virtual de 000 000H até FFF FFFH, enquanto o espaço de endereçamento físico vai de 0000H até FFFFH, mas só há RAM de 0000H até 8000H. As páginas virtuais têm uma dimensão de 100H bytes. A TLB é totalmente associativa de 8 entradas e tem atualmente o conteúdo da tabela seguinte (algumas posições estão vazias, isto é, não inicializadas).

Posição da TLB	Bit validade	N.º página virtual (hexadecimal)	N.º página física (hexadecimal)
0	0	3B9	1F
1	1	207	31
2	1	2A0	3E
3	1	1EF	0F
4	1	4B8	1F
5	0	0C3	1D
6	1	C31	1B
7	0	A25	0C

Preencha a tabela seguinte para este computador e para este conteúdo da TLB.

Número de bits do espaço virtual	24
Número de páginas virtuais	64K
Número de páginas físicas	80H
Endereço virtual que corresponde ao endereço físico 1F3AH	4B83AH