- Kako izgleda max-plus model ako strojevi mogu obrađivati *više* predmeta? Što ako postoji *više* agv-a?
- Kako početni uvjeti utječu na model?

Cilj: odrediti proceduru za određivanje max-plus modela za različite uvjete sustava

Određivanje max-plus modela pomoću paleta

Paleta - u proizvodnim sustavima: stvarno mjesto za smještaj predmeta - općenito: paket - nosioc informacije

Primjer: stroj koji može obrađivati samo jedan predmet (kapacitet = 1)

3 - otpuštanje

Paleta može biti "prazna" i "puna":

• puna paleta (drži predmet) – nalazi se na luku $x_1 \rightarrow x_2$

3 - otpuštanje

• prazna paleta (nema predmet) – nalazi se na luku $x_2 \rightarrow x_1$

Stroj kapaciteta jedan uvijek drži točno *jednu paletu na svom ciklusu*, koja je puna ili prazna, ovisno o tome da li stroj obrađuje predmet ili se priprema za obradu.

Određivanje max-plus modela pomoću paleta

Primjer: stroj koji može obrađivati *dva* predmeta (kapacitet = 2) – dvije palete na ciklusu

• stroj prazan, priprema se za prihvat predmeta

• stroj obrađuje jedan predmet, može primiti još jedan

• stroj obrađuje dva predmeta

Na ciklusu ovakvog resursa su uvijek dvije palete!

Veza palete – max-plus model:

PRAVILO: ako veza $x_1 \rightarrow x_2$ koja je težine a, drži p ($p \ge 0$) paleta, vrijedi:

$$x_2 = ax_1(k - p)$$

- uz poznatih onoliko početnih uvjeta koliki je p – početni uvjeti postavljaju se prema fizikalnom stanju sustava

3 - otpuštanje

$$x_1(k) = 3x_2(k)$$

 $x_2(k) = 2x_1(k-1)$
-poznat $\mathbf{x}(0) = [e \ \epsilon]^T$

3 - otpuštanje

$$x_1(k) = 3x_2(k-1)$$

 $x_2(k) = 2x_1(k)$
- poznat $\mathbf{x}(0) = [\epsilon \ e]^T$

$$x_1(k) = 3x_2(k-2)$$

 $x_2(k) = 2x_1(k)$
- poznat **x**(0), **x**(-1)

3 - otpuštanje

$$x_1(k) = 3x_2(k-1)$$

 $x_2(k) = 2x_1(k-1)$
- poznat **x**(0)

$$x_1(k) = 3x_2(k)$$

 $x_2(k) = 2x_1(k-2)$
- poznat **x**(0), **x**(-1)

Matrice sustava

1. način

$$\mathbf{A}_{0} = \begin{bmatrix} \varepsilon & \varepsilon \\ 2 & \varepsilon \end{bmatrix}, \mathbf{A}_{1} = \begin{bmatrix} \varepsilon & \varepsilon \\ \varepsilon & \varepsilon \end{bmatrix}, \mathbf{A}_{2} = \begin{bmatrix} \varepsilon & 3 \\ \varepsilon & \varepsilon \end{bmatrix}$$

$$\mathbf{A}_{0}^{\star} = \begin{bmatrix} e & \varepsilon \\ 2 & e \end{bmatrix}, \mathbf{A}_{0}^{\star} \otimes \mathbf{A}_{1} = \begin{bmatrix} \varepsilon & \varepsilon \\ \varepsilon & \varepsilon \end{bmatrix}, \mathbf{A}_{0}^{\star} \otimes \mathbf{A}_{2} = \begin{bmatrix} \varepsilon & 3 \\ \varepsilon & 5 \end{bmatrix}$$

$$\begin{bmatrix} x_{1}(k) \\ x_{2}(k) \end{bmatrix} = \begin{bmatrix} \varepsilon & 3 \\ \varepsilon & 5 \end{bmatrix} \begin{bmatrix} x_{1}(k-2) \\ x_{2}(k-2) \end{bmatrix}$$

2. način

Nova varijabla stanja:

$$x_3(k) = x_2(k-1)$$

Jednažbe:

$$\begin{aligned} & \mathbf{X}_1(k) = 3\mathbf{X}_3(k-1) \\ & \mathbf{X}_2(k) = 2\mathbf{X}_1(k) \\ & \mathbf{X}_3(k) = \mathbf{X}_2(k-1) \end{aligned} \mathbf{A}_0 = \begin{bmatrix} \boldsymbol{\epsilon} & \boldsymbol{\epsilon} & \boldsymbol{\epsilon} \\ 2 & \boldsymbol{\epsilon} & \boldsymbol{\epsilon} \\ \boldsymbol{\epsilon} & \boldsymbol{\epsilon} & \boldsymbol{\epsilon} \end{bmatrix}, \mathbf{A}_1 = \begin{bmatrix} \boldsymbol{\epsilon} & \boldsymbol{\epsilon} & 3 \\ \boldsymbol{\epsilon} & \boldsymbol{\epsilon} & \boldsymbol{\epsilon} \\ \boldsymbol{\epsilon} & \boldsymbol{e} & \boldsymbol{\epsilon} \end{bmatrix}, \mathbf{A}_0^{\top} = \begin{bmatrix} \boldsymbol{e} & \boldsymbol{\epsilon} & \boldsymbol{\epsilon} \\ 2 & \boldsymbol{e} & \boldsymbol{\epsilon} \\ \boldsymbol{\epsilon} & \boldsymbol{\epsilon} & \boldsymbol{e} \end{bmatrix}$$

$$\begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} = \begin{bmatrix} \varepsilon & \varepsilon & 3 \\ \varepsilon & \varepsilon & 5 \\ \varepsilon & e & \varepsilon \end{bmatrix} \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \\ x_3(k-1) \end{bmatrix}$$

- Primjer: a) postoje 2 AGV-a, u početnom stanju oba se pripremaju za x₁ b) stroj M3 može obrađivati 2 premeta, u početnom stanju drži (obrađuje) jedan predmet
- 1. Postaviti palete na ciklus svakog resursa da odgovaraju početnim uvjetima

2. Odrediti jednadžbe max-plus modela prema pravilima

$$x_{1}(k) = 6x_{5}(k-2)$$

$$x_{2}(k) = 5x_{1}(k) + 2x_{3}(k-1)$$

$$x_{3}(k) = 8x_{2}(k) + 3x_{4}(k-1)$$

$$x_{4}(k) = 13x_{3}(k) + 5x_{8}(k)$$

$$x_{5}(k) = 6x_{4}(k)$$

$$x_{6}(k) = 3x_{7}(k-1)$$

$$x_{7}(k) = 15x_{6}(k-1) + 4x_{2}(k)$$

$$x_{8}(k) = 3x_{7}(k)$$

Vektor(i) početnih stanja = ?
- zbog
$$(k - 2) \rightarrow \mathbf{x}(0)$$
 i $\mathbf{x}(-1)$
 $\mathbf{x}(-1) = [\epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon]^T$
 $\mathbf{x}(0) = [\epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon]^T$

Početno stanje \rightarrow palete \rightarrow max-plus model \rightarrow matrice \mathbf{A}_0 , \mathbf{A}_1 , ..., $\mathbf{A} \rightarrow$ ciklus sustava

Pitanje: Kako postaviti početno stanje da ciklus sustava bude što manji?

Fizičko ograničenje sustava = kapacitet resursa tj. broj paleta na svakom resursu

Prosječan ciklus sustava – λ

λ = max {duljina ciklusa / broj paleta na ciklusu} - kritični ciklus

- predstavlja maksimalnu srednju težinu ciklusa "matrice" sustava A
- palete se mogu "klizati " po *vlastitom ciklusu resursa* kako bi λ bio što manji
- n_p broj paleta na ciklusu

Ciklusi:

$$(x_1,x_2,x_3,x_4,x_5), n_p = 1 \rightarrow \lambda_1 = 38$$

 $(x_2,x_3), n_p=1 \rightarrow \lambda_2 = 10$
 $(x_3,x_4), n_p=1 \rightarrow \lambda_3 = 16$
 $(x_6,x_7), n_p=2 \rightarrow \lambda_4 = 9$
 $(x_1,x_2,x_7,x_8,x_4,x_5), n_p=1 \rightarrow \lambda_5 = 29$
 $(x_2,x_7,x_8,x_4,x_3), n_p=2 \rightarrow \lambda_6 = 8.5$
...

$$\lambda = 38$$

Da li se može smanjiti ciklus?

$$\begin{array}{l} (x_1, x_2, x_3, x_4, x_5), \ n_p = 2 \longrightarrow \lambda_1 = 19 \\ (x_2, x_3), \ n_p = 1 \longrightarrow \lambda_2 = 10 \\ (x_3, x_4), \ n_p = 1 \longrightarrow \lambda_3 = 16 \\ (x_6, x_7), \ n_p = 1 \longrightarrow \lambda_4 = 18 \\ (x_1, x_2, x_7, x_8, x_4, x_5), \ n_p = 1 \longrightarrow \lambda_5 = 29 \\ (x_2, x_7, x_8, x_4, x_3), \ n_p = 1 \longrightarrow \lambda_6 = 17 \\ \dots \end{array}$$

$$x_1(k) = 6x_5(k-1)$$

 $x_2(k) = 5x_1(k) + 2x_3(k-1)$
 $x_3(k) = 8x_2(k) + 3x_4(k)$
 $x_4(k) = 13x_3(k-1) + 5x_8(k)$
 $x_5(k) = 6x_4(k)$
 $x_6(k) = 3x_7(k-1)$
 $x_7(k) = 15x_6(k) + 4x_2(k)$
 $x_8(k) = 3x_7(k)$
 $\mathbf{x}(0) = [\epsilon \epsilon \epsilon \epsilon \epsilon \epsilon \epsilon]^T$

Da li se može ovako smanjiti ciklus?

$$x_1(k) = 6x_5(k-1)$$

 $x_2(k) = 5x_1(k) + 2x_3(k)$
 $x_3(k) = 8x_2(k-1) + 3x_4(k)$
 $x_4(k) = 13x_3(k-1) + 5x_8(k)$
 $x_5(k) = 6x_4(k)$
 $x_6(k) = 3x_7(k-1)$
 $x_7(k) = 15x_6(k) + 4x_2(k)$
 $x_8(k) = 3x_7(k)$
 $\mathbf{x}(0) = [\varepsilon \ e \ \varepsilon \ e \ \varepsilon \ e \ \varepsilon]^T$

Zaglavljenje – ciklus bez paleta $(x_2, x_7, x_8, x_4, x_3) - n_p = 0 \rightarrow \lambda = \infty$

Matematički – nekauzalnost, ne vrijedi $A_0^{n+1} = [\varepsilon]$

Drugi primjer:

Ciklusi:

$$(x_1,x_2,x_3,x_4,x_5), n_p = 2 \rightarrow \lambda_1 = 19$$

 $(x_2,x_3), n_p=1 \rightarrow \lambda_2 = 10$
 $(x_3,x_4), n_p=1 \rightarrow \lambda_3 = 16$
 $(x_6,x_7), n_p=2 \rightarrow \lambda_4 = 9$
 $(x_1,x_2,x_7,x_8,x_4,x_5), n_p=2 \rightarrow \lambda_5 = 14.5$
 $(x_2,x_7,x_8,x_4,x_3), n_p=2 \rightarrow \lambda_6 = 8.5$

$$x_{1}(k) = 6x_{5}(k-2)$$

$$x_{2}(k) = 5x_{1}(k) + 2x_{3}(k-1)$$

$$x_{3}(k) = 8x_{2}(k) + 3x_{4}(k-1)$$

$$x_{4}(k) = 13x_{3}(k) + 5x_{8}(k)$$

$$x_{5}(k) = 6x_{4}(k)$$

$$x_{6}(k) = 3x_{7}(k-1)$$

$$x_{7}(k) = 15x_{6}(k-1) + 4x_{2}(k)$$

$$x_{8}(k) = 3x_{7}(k)$$

$$\mathbf{x}(-1) = [\mathbf{\epsilon} \ \mathbf{\epsilon} \ \mathbf{\epsilon}]^{\mathsf{T}}$$

 $\mathbf{x}(0) = [\mathbf{\epsilon} \ \mathbf{\epsilon} \ \mathbf{e} \ \mathbf{e} \ \mathbf{e} \ \mathbf{e} \ \mathbf{e} \ \mathbf{e}]^{\mathsf{T}}$

Stvarna vremena:

k	1	2	3	4	5	6
X ₁	6	6	44	60	82	
X ₂	11	21	49	65	87	
X ₃	19	35	57	73	95	
X ₄	32	48	70	86	108	
X ₅	38	54	76	92	114	
x ₆	3	18	28	56	72	
X ₇	15	25	53	69	91	
x8	18	28	56	72	94	

Δ								
x ₁	0	38	16	22	16	22	16	
X ₂	10	28	16	22	16	22	16	
X ₃	16	22	16	22	16	22	16	
X ₄	16	22	16	22	16	22	16	
X ₅	16	22	16	22	16	22	16	
X ₆	15	10	28	16	22	16	22	
X ₇	10	28	16	22	16	22	16	
x8	10	28	16	22	16	22	16	

Da li se može smanjiti ciklus?

Ciklusi:

$$\begin{array}{l} (x_1, x_2, x_3, x_4, x_5), \ n_p = 3 \longrightarrow \lambda_1 = 38/3 \\ (x_2, x_3), \ n_p = 1 \longrightarrow \lambda_2 = 10 \\ (x_3, x_4), \ n_p = 1 \longrightarrow \lambda_3 = 16 \\ (x_6, x_7), \ n_p = 2 \longrightarrow \lambda_4 = 9 \\ (x_1, x_2, x_7, x_8, x_4, x_5), \ n_p = 2 \longrightarrow \lambda_5 = 14 \\ (x_2, x_7, x_8, x_4, x_3), \ n_p = 1 \longrightarrow \lambda_6 = 17 \end{array}$$

$$x_{1}(k) = 6x_{5}(k-2)$$

$$x_{2}(k) = 5x_{1}(k) + 2x_{3}(k-1)$$

$$x_{3}(k) = 8x_{2}(k) + 3x_{4}(k)$$

$$x_{4}(k) = 13x_{3}(k-1) + 5x_{8}(k)$$

$$x_{5}(k) = 6x_{4}(k)$$

$$x_{6}(k) = 3x_{7}(k-1)$$

$$x_{7}(k) = 15x_{6}(k-1) + 4x_{2}(k)$$

$$x_{8}(k) = 3x_{7}(k)$$

$$\mathbf{x}(-1) = [\mathbf{\epsilon} \, \mathbf{\epsilon} \, \mathbf{\epsilon} \, \mathbf{\epsilon} \, \mathbf{\epsilon} \, \mathbf{\epsilon} \, \mathbf{\epsilon} \, \mathbf{\epsilon}]^{\mathsf{T}}$$

 $\mathbf{x}(0) = [\mathbf{\epsilon} \, \mathbf{\epsilon} \, \mathbf{e} \, \mathbf{\epsilon} \, \mathbf{e} \, \mathbf{e} \, \mathbf{e} \, \mathbf{\epsilon} \, \mathbf{\epsilon}]^{\mathsf{T}}$

Stvarna vremena:

k	1	2	3	4	5	6
X ₁	6	6	35	52	69	
X ₂	11	28	45	62	79	
X ₃	26	43	60	77	94	
X ₄	23	40	57	74	91	
X ₅	29	46	63	80	97	
x ₆	3	18	35	52	69	
X ₇	15	32	49	66	83	
x8	18	35	52	69	86	

Δ					
X ₁	0	29	17	17	
X ₂	17	17	17	17	
x ₃	17	17	17	17	
X ₄	17	17	17	17	
x ₅	17	17	17	17	
x ₆	15	17	17	17	
x ₇	17	17	17	17	
x8	17	17	17	17	

Zaglavljenje – ciklus bez paleta – $n_p = 0 \rightarrow ciklus = \infty$

Kako se može povećati ciklus?

