RAID stands for Redundant Array of Inexpensive (Independent) Disks.

On most situations you will be using one of the following four levels of RAIDs.

- RAID o
- RAID 1
- RAID 5
- RAID 10 (also known as RAID 1+0)

In all the diagrams mentioned below:

- A, B, C, D, E and F represents blocks
- p1, p2, and p3 represents parity

RAID LEVEL o

RAID 0 – Blocks Striped. No Mirror. No Parity.

Following are the key points to remember for RAID level o.

- Minimum 2 disks.
- Excellent performance (as blocks are striped).
- No redundancy (no mirror, no parity).
- Don't use this for any critical system.

RAID LEVEL 1

RAID 1 – Blocks Mirrored. No Stripe. No parity.

Following are the key points to remember for RAID level 1.

- Minimum 2 disks.
- Good performance (no striping. no parity).
- Excellent redundancy (as blocks are mirrored).

RAID LEVEL 5

RAID 5 - Blocks Striped. Distributed Parity.

Following are the key points to remember for RAID level 5.

- Minimum 3 disks.
- Good performance (as blocks are striped).
- Good redundancy (distributed parity).
- Best cost effective option providing both performance and redundancy.
 Use this for DB that is heavily read oriented. Write operations will be slow.

RAID LEVEL 10

RAID 10 – Blocks Mirrored. (and Blocks Striped)

Following are the key points to remember for RAID level 10.

- Minimum 4 disks.
- This is also called as "stripe of mirrors"
- Excellent redundancy (as blocks are mirrored)
- Excellent performance (as blocks are striped)
- If you can afford the dollar, this is the BEST option for any mission critical applications (especially databases).