Шпаргалка по линейным моделям / Концепции

Cheatsheet (XeLaTeX)

Краткий справочник April 2, 2025

Contents

1	Линейная Регрессия (Linear Regression)	1
2	Логистическая Perpeccuя (Logistic Regression)	1

3 Регуляризация L1 и L2

1 Линейная Регрессия (Linear Regression)

Основная Идея

Простейшая модель для предсказания **непрерывного** значения (например, цены дома, температуры). Мы пытаемся найти наилучшую прямую (или гиперплоскость в многомерном случае), которая описывает зависимость между признаками (X) и целевой переменной (y).

Модель: $y \approx \hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_n x_n = \mathbf{w}^T \mathbf{x}$ Где \mathbf{w} вектор весов (параметров) модели, включая свободный член w_0 (bias term), \mathbf{x} - вектор признаков объекта (с добавленным $x_0 = 1$). Интерпретация весов: Коэффициент w_j показывает, на сколько в среднем изменится предсказание \hat{y} , если признак x_j увеличить на 1, при условии, что все остальные признаки остаются неизменными.

Функция Потерь: MSE (Mean Squared Error)

Чтобы понять, насколько хорошо наша прямая подходит к данным, мы измеряем ошибку. Самый частый способ - **Среднеквадратичная Ошибка (МSE)**. Мы суммируем квадраты разностей между реальными значениями (y_i) и предсказаниями модели (\hat{y}_i) и делим на количество примеров (m).

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2 = \frac{1}{m} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

Почему квадрат? Он штрафует большие ошибки сильнее и делает функцию потерь дифференцируемой.

Обучение: Идея Градиентного Спуска (GD)

Представьте, что MSE - это холмистая местность, а мы стоим где-то на склоне. Наша цель - найти самую низкую точку (минимум MSE). **Градиентный спуск (GD)** - это как катиться с горы:

- Смотрим, в каком направлении уклон самый крутой (градиент ∇MSE).
- Делаем небольшой шаг в **противоположном** направлении (антиградиент). Длина шага контролируется **скоростью обучения** (learning rate, α).
- Повторяем, пока не дойдем до дна (или почти).

Формула обновления весов: $\mathbf{w} := \mathbf{w} - \alpha \nabla_{\mathbf{w}} MSE(\mathbf{w})$ Варианты GD:

- Batch GD: Градиент считается по всей обучающей выборке на каждом шаге. Точно, но медленно на больших данных.
- Stochastic GD (SGD): Градиент считается по одному случайно выбранному примеру на каждом шаге. Быстро, шумно (может "прыгать" вокруг минимума), хорошо для очень больших данных и онлайн-обучения.
- Mini-batch GD: Компромисс. Градиент считается по небольшой случайной подвыборке (batch) на каждом шаге. Сочетает преимущества Batch и SGD. Самый популярный вариант.

Аналитическое Решение (Normal Equation)

Для линейной регрессии с MSE существует точное аналитическое решение, позволяющее найти оптимальные веса \mathbf{w} без итераций GD.

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Где ${\bf X}$ - матрица признаков (объекты по строкам, признаки по столбцам, с добавленным столбцом единиц), ${\bf y}$ - вектор целевых значений. Плюсы: Точно, не требует подбора learning rate. Минусы: Требует вычисления обратной матрицы $({\bf X}^T{\bf X})^{-1}$, что вычислительно сложно $(O(n^3)$, где n - число признаков) и может быть невозможно, если матрица вырождена (признаки линейно зависимы). Непрактично при очень большом числе признаков.

Основные Предположения Линейной Регрессии

Модель работает лучше всего, когда выполняются некоторые предположения (на собеседовании важно знать хотя бы названия):

- **Линейность:** Средняя зависимость y от X является линейной.
- **Независимость ошибок:** Ошибки предсказаний для разных наблюдений независимы.
- **Гомоскедастичность:** Разброс (варианция) ошибок одинаков для всех значений *X*. *Аналогия*: *толщина "облака" точек вокруг линии регрессии примерно одинакова по всей длине.*
- **Нормальность ошибок:** Ошибки распределены нормально (важно для построения доверительных интервалов).

Нарушение предположений не всегда делает модель бесполезной, но может влиять на надежность выводов.

Полиномиальная Регрессия

Что если зависимость нелинейная? Можно добавить полиномиальные признаки - степени существующих признаков (x^2,x^3) или их взаимодействия (x_1x_2) . Пример: $y \approx w_0 + w_1x + w_2x^2$. Важно: Модель все еще остается линейной по параметрам w! Мы просто применяем линейную регрессию к расширенному набору признаков $(1,x,x^2)$. Легко переобучается, требует регуляризации.

2 Логистическая Perpeccuя (Logistic Regression)

Основная Идея

Используется для задач **бинарной классификации** (ответ 0 или 1, "да" или "нет"). Вместо прямого предсказания класса, она моделирует **вероятность** принадлежности объекта к классу 1. *Аналогия*: предсказать не "сдал/не сдал" экзамен, а вероятность сдачи в зависимости от часов подготовки.

Сигмоида (Логистическая Функция)

Линейная комбинация признаков ($\mathbf{w}^T\mathbf{x}$) может дать любое вещественное значение. Чтобы получить вероятность (от 0 до 1), результат пропускают через сигмоидную функцию $\sigma(z)$:

$$\sigma(z) = rac{1}{1+e^{-z}}$$
 где $z = \mathbf{w}^T \mathbf{x}$

Предсказание модели: $\hat{p}=P(y=1|\mathbf{x})=\sigma(\mathbf{w}^T\mathbf{x})$. Решение о классе принимается по порогу (обычно 0.5): если $\hat{p}\geq 0.5$, то класс 1, иначе класс 0

Функция Потерь: LogLoss (Логарифмическая Функция Потерь)

MSE плохо подходит для вероятностей. Используется **LogLoss** (или Бинарная Кросс-Энтропия).

$$LogLoss = -\frac{1}{m} \sum_{i=1}^{m} [y_i \log(\hat{p}_i) + (1 - y_i) \log(1 - \hat{p}_i)]$$

Идея: Сильно штрафует модель, если она уверенно предсказывает неверный класс (например, дает $\hat{p}=0.99$, когда реальный класс y=0). Когда предсказание правильное, штраф маленький. Обучается также с помощью GD.

Softmax (для Мультиклассовой Классификации)

Если классов больше двух, используется обобщение логистической регрессии - **Softmax Regression**. Для каждого класса k вычисляется своя "оценка" $z_k=\mathbf{w}_k^T\mathbf{x}$. Затем эти оценки преобразуются в вероятности с помощью **функции Softmax**:

$$P(y=k|\mathbf{x})=\hat{p}_k=rac{e^{z_k}}{\sum_{i=1}^K e^{z_j}}$$
 для $k=1,\ldots,K$

Softmax гарантирует, что все \hat{p}_k будут от 0 до 1 и их сумма будет равна 1. Функция потерь - **Cross-Entropy Loss**.

3 Регуляризация L1 и L2

Что и Зачем?

Регуляризация - это техника борьбы с переобучением (overfitting) линейных (и не только) моделей. Переобучение происходит, когда модель слишком сложная и "запоминает" обучающие данные вместо того, чтобы выучить общие закономерности. Идея: Добавить к основной функции потерь (MSE или LogLoss) штраф за большие значения весов w. Аналогия: Мы не просто просим модель хорошо описать данные (минимизировать MSE/LogLoss), но и говорим ей: "Будь проще! Не усложняй без необходимости!" (штрафуем за большие веса).

$$J_{reg}(\mathbf{w}) = J_{original}(\mathbf{w}) + \lambda \cdot R(\mathbf{w})$$

Где $J_{original}$ - MSE или LogLoss, $R(\mathbf{w})$ - регуляризационный член, λ (lambda) - коэффициент регуляризации (гиперпараметр), контролирующий силу штрафа. Важно: Перед применением регуляризации признаки обычно масштабируют (стандартизируют или нормализуют), чтобы штраф не зависел от исходного масштаба признаков.

L2 Регуляризация (Ridge / Гребневая)

Штраф пропорционален сумме квадратов весов.

$$R_{L2}(\mathbf{w}) = \sum_{j=1}^{n} w_j^2$$

Примечание: Свободный член w_0 обычно не регуляризуют, т.к. он отвечает за общее смещение модели, а не за ее сложность взаимодействия с признаками. Эффект: Заставляет веса быть маленькими, но редко обнуляет их полностью. Уменьшает веса пропорционально их величине. Хорошо работает почти всегда. Аналогия: Родитель, который немного урезает карманные расходы всем детям (весам), особенно тем, кто тратит больше.

L1 Регуляризация (Lasso)

Штраф пропорционален сумме модулей весов.

$$R_{L1}(\mathbf{w}) = \sum_{j=1}^{n} |w_j|$$

Примечание: Свободный член w_0 обычно **не регуляризуют** по той же причине, что и в L2. **Эффект:** Может **обнулять** некоторые веса, эффективно производя **отбор признаков** (feature selection). Полезна, когда есть подозрение, что многие признаки неинформативны. Аналогия: Строгий родитель, который лишает карманных денег (обнуляет вес) некоторых детей (признаков) за провинности, а остальным может тоже немного урезать.

Связь с Bias-Variance Trade-off

Регуляризация - это инструмент управления компромиссом между смещением (bias) и разбросом (variance):

- Без регуляризации (\(\lambda = 0 \)): Модель может иметь низкое смещение (хорошо подходит к обучающим данным), но высокий разброс (сильно меняется при изменении данных, переобучается).
- С регуляризацией ($\lambda > 0$): Добавляя штраф, мы увеличиваем смещение (модель становится "проще", может хуже подходить к обучающим данным), но уменьшаем разброс (модель становится стабильнее, лучше обобщается на новые данные).

Подбор оптимального λ (через кросс-валидацию) позволяет найти баланс.