#### Infinitesimal Calculations in Fundamental Groups

#### Benjamin Walter

University of the Virgin Islands

Algebraic Structures in Topology, June 2024 San Juan, Puerto Rico





1/22

Tree symbols and Lie coalgebras Letter Linking Topology 00000000 00000 00000

#### Infinitesimal Calculations in Fundamental Groups



arXiv:2403.20264

#### Joint work with:

Nir Gadish University of Michigan → Pennsylvania

• Aydin Ozbek University of Oregon

Dev Sinha University of Oregon



Elephant. (outside Hayden library, MIT)

#### Finite rooted trees

## Examples

### Finite rooted trees: Coproduct and subtrees

Removing an edge e from a tree T divides it into two subtrees:

- Branch subtree  $T_b^{\hat{e}}$  (with root given by vertex incident to e)
- Root subtree  $T_r^{\hat{e}}$

#### Example

B. Walter (UVI) Letter Linking AlgTopPR 2024 4/22

#### Finite rooted trees: Cobracket and Lie coalgebra

Consider the vector space spanned by trees.

#### Definition

- The coproduct of a tree cuts edges one at a time  $\Delta T = \sum_{e \in E(T)} \Delta_e T$
- The cobracket of a tree is the anti-commutative coproduct  $\ \ ]T[=\Delta T- au\Delta T$

#### Dual of [Chapoton-Livernet]

- Coproduct makes nonplanar trees into a preLie coalgebra.
- Cobracket makes nonplanar trees into a Lie coalgebra.

B. Walter (UVI) Letter Linking AlgTopPR 2024 5/22

#### Finite rooted trees: Free nilpotent Lie coalgebras

#### Proposition

The kernel of cobracket is spanned by the "root change" and "root Arnold" expressions

(root Arnold)







#### Corollary

Nonplanar trees modulo root change and Arnold ("Eil trees") is isomorphic to tensor algebra modulo shuffles. It models free nilpotent Lie coalgebras.

B. Walter (UVI) Letter Linking AlgTopPR 2024 6/22

#### Finite rooted trees $\leftrightarrow$ Symbols

The **symbol** for a tree is defined recursively (on subtrees) as follows:

- A tree with only one vertex  $T = \widehat{a}$  has symbol a.
- Otherwise T = b has symbol  $\lfloor \alpha_1 \rfloor \lfloor \alpha_2 \rfloor \cdots \lfloor \alpha_n \rfloor b$  where  $\alpha_1, \ldots, \alpha_n$  are the symbols for the branch subtrees  $A_1, \ldots, A_n$  above the root.



#### 0000000

### Non-Planar trees $\leftrightarrow$ Commutative symbols

**Non-planar** finite rooted trees. (Compare to "dendrices" in  $\infty$ -operad literature)

- Symbols for non-planar trees are commutative at corollas:  $\lfloor a \rfloor \lfloor b \rfloor c = \lfloor b \rfloor \lfloor a \rfloor c$

#### Example

Non-planar tree

can be written as any of the following

B. Walter (UVI) Letter Linking AlgTopPR 2024 8/22

## Symbols: Coproduct

Note: Cutting an edge from a tree corresponds to "excising a subsymbol".

#### Example

$$\Delta_{e} : \underbrace{3 \underbrace{4}^{4}}_{5} \longmapsto \underbrace{1}_{2}^{2} \otimes \underbrace{3}_{5}$$

$$T_{b}^{\hat{e}} \qquad T_{r}^{\hat{e}}$$

$$[3] \underbrace{[1][2]4}_{\psi} \underbrace{]5} \longmapsto \underbrace{[1][2]4}_{\psi} \otimes \underbrace{[3]5}_{T\hat{\psi}}$$

B. Walter (UVI) Letter Linking AlgTopPR 2024 9/22

## Symbols: Root change and root Arnold

#### Root change and root Arnold for symbols

(root change) 
$$|\alpha|\beta + \alpha|\beta|$$
,

(root Arnold) 
$$\lfloor \alpha \rfloor \lfloor \beta \rfloor \gamma + \lfloor \alpha \rfloor \beta \lfloor \gamma \rfloor + \alpha \lfloor \beta \rfloor \lfloor \gamma \rfloor$$

where  $\alpha$ ,  $\beta$ ,  $\gamma$  are expressions for subtrees.

#### Proposition

Root change and root Arnold span the Liebniz expressions

$$\sum_{i} \lfloor \alpha_{1} \rfloor \cdots \lfloor \alpha_{i-1} \rfloor \alpha_{i} \lfloor \alpha_{i+1} \rfloor \cdots \lfloor \alpha_{n} \rfloor$$

B. Walter (UVI) Letter Linking AlgTopPR 2024 10 / 22

#### Historical Note

Symbols appeared in computations before we noticed connection to trees!

#### Definition

Tree symbols are nested parenthesization expressions such that each nesting contains exactly one ("free") element which is not further parenthesized.

• W- and Shiri. The left greedy Lie algebra basis and star graphs. Involve, 9(5):783–795, 2016.



• Monroe and Sinha. Linking of letters and the lower central series of free groups. Comm. Alg., 50(9):3678–3703, 2022.



Note: using the containment partial ordering converts to dendrices. O: Faces? Horns?

#### Discrete functions

Subsumes and generalizes Monroe and Sinha.

Idea: "Knot theory in groups"

Let's tackle the word problem (distinguishing words in groups) like knot theory! Given a word of length n presenting a group element  $g \in G$ , make functions assigning a number to each position of the word and build (finite type) "word invariants"!

#### Definition

Write  $[n] = \{1, 2, \dots, n\}$ .

A **d-function** is a map  $f:[n] \to \mathbb{Q}$ .

The **integral** of a d-function is  $\int_{[n]} f = \sum_{i=1}^{n} f(i)$ .

#### Discrete indicator functions on words

Setup: Free group  $F=\langle S \rangle$  and word  $w=s_1^{\varepsilon_1}\cdots s_n^{\varepsilon_n}$  ( $s_i\in S$  and  $\varepsilon_i=\pm 1$ ).

#### Definition

The letter  $a \in S$  has **indicator function on** w given by  $A(i) = \begin{cases} \varepsilon_i & \text{if } s_i = a \\ 0 & \text{otherwise.} \end{cases}$ 

A **counting function** is a linear combination of indicator functions.

#### Example

Suppose 
$$w = aba^{-1}b^{-1}$$
.

B. Walter (UVI) Letter Linking AlgTopPR 2024 13/22

Letter Linking

#### Cobounding discrete functions on letters in words

Setup: Free group  $F = \langle S \rangle$ , word  $w = s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n}$ , and d-function  $f : [n] \to \mathbb{Q}$ 

#### Definition

The **cobounding of** f **on** w is the d-function  $\lfloor f \rfloor(i) = \begin{cases} \int_{[i-1]} f & \text{if } \varepsilon_i = 1 \\ \int_{[i]} f & \text{if } \varepsilon_i = -1 \end{cases}$ 

- If  $\int_{[n]} f = 0$  then we say  $\lfloor f \rfloor$  is a **closed cobounding**.
- Otherwise  $\lfloor f \rfloor$  is an **open cobounding**.

#### Remark

This is the **discrete anti-derivative** with a small twist accounting for whether letters are generators or inverses.

B. Walter (UVI) Letter Linking AlgTopPR 2024 14/22

### Visual intuition for cobounding

#### Example

We visualize the **closed cobounding** |A| on  $aaba^{-1}ba^{-1}$  as follows.

#### Example

We visualize the **open cobounding** |A| on  $aaba^{-1}b$  as follows.

Graph 
$$A - a - b - a^{-1} - b - a$$
 of  $A$ 

Graph 
$$a - a - b - a^{-1} - b$$

B. Walter (UVI) Letter Linking AlgTopPR 2024 15 / 22

#### (Combinatorial) Braiding product and linking product

#### Definition

The (combinatorial) **letter braiding product** of f and g is the pointwise product  $\lfloor f \rfloor g$ . If  $\lfloor f \rfloor$  is a closed cobounding, we say this is a **linking product**.

#### Example

| $\underline{\hspace{1cm}}$ | b  | c   | $a^{-1}$ | $b^{-1}$     | $c^{\text{-}1}$ | b   | b   |
|----------------------------|----|-----|----------|--------------|-----------------|-----|-----|
| 2A + B                     | 1  | 0   | -2       | -1           | 0               | 1   | 1   |
| 2A+B                       | ^O | ^ 1 | -1^      | $-2\hat{\ }$ | $-2^{}$         | ^-2 | ^_1 |
| -C                         | 0  | -1  | 0        | 0            | 1               | 0   | 0   |
| 2A+B (-C)                  | 0  | -1  | 0        | 0            | -2              | 0   | 0   |

B. Walter (UVI) Letter Linking AlgTopPR 2024 16/22

### Letter configurations and letter linking

#### Definition

The value of a d-function f on a word w of length n is  $f(w) = \int_{[n]} f$ .

#### Example

- A(w) counts (with sign) occurrences of the letter a in w.
- $\lfloor A \rfloor B(w)$  counts (with sign) pairs a followed by b in w. If linking product, this equals a count of b between a-a- $^1$  pairs.
- $\lfloor \lfloor A \rfloor B \rfloor C(w)$  counts triplets a then b then c in w.

  If linking product, this is nesting c between b-b-1 pairs each between a-a-1 pairs.
- More generally if  $\tau$  is a tree of indicator functions, then  $\tau(w)$  counts " $\tau$ -configurations" of letters in w. (Convert tree  $\to$  partial order w/ root maximal)

B. Walter (UVI) Letter Linking AlgTopPR 2024 17/22

#### Theorems

#### Definition

A **letter braiding function** is a nested braiding product (tree) of counting functions.

#### Proposition

Letter braiding functions are well-defined invariants on free groups.

#### Theorem

Letter braiding functions whose cobrackets vanish on relations are well-defined on  $\langle \, S \, | \, R \, \rangle$ .

#### Theorem

Length filtration of braiding functions is dual to lower central series of group.

B. Walter (UVI) Letter Linking AlgTopPR 2024 18/22

### Background, I

#### Definition

**Harrison cohomology**  $H_{\mathcal{E}}^*(X)$  is homology of Harrison complex  $\mathcal{E}(C^*X)$ , where  $C^*X$  is a commutative model for cochains on X (such as  $A_{PL}$ ).

 $\mathcal{E}$  is the "bar complex" for commutative algebras. We can make it with trees!

#### Proposition (classical)

For  $n \geq 1$ , there is a canonical isomorphism  $H^{n-1}_{\mathcal{E}}(S^n) \cong H^n(S^n) \xrightarrow{\cong} \mathbb{Q}$ 

#### Definition

The Hopf pairing 
$$H^{n-1}_{\mathcal{E}}(X) imes \pi_n(X) o \mathbb{Q}$$
 is  $\big\langle \gamma, \, [f] \big\rangle = \int_{S^n} f^* \gamma$ 

#### Background, II

 Sinha and W-. Lie coalgebras and rational homotopy theory II: Hopf invariants. Trans. Am. Math. Soc., 365(2):861–883, 2013.



#### Theorem [SW 13]

For rational simply connected spaces, the Hopf pairing is well defined, perfect, and respects Lie algebra / coalgebra structures.

To compute  $\langle \gamma, [f] \rangle$  directly

- Use  $f:S^n \to X$  to pull back  $\gamma \in H^{n-1}_{\mathcal E}(X)$  to  $\gamma^* f \in H^{n-1}_{\mathcal E}(S^n)$
- Find a cohomologous form of weight 0 ("weight reduce")
- Evaluate on the fundamental class of  $S^n$

#### Infinitesimal calculations in fundamental groups

#### Theorem [GOSW 24]

The Hopf pairing  $H^0_{\mathcal{E}}(X) \times \pi_1(X) \to \mathbb{Q}$  is well defined and identifies  $H^0_{\mathcal{E}}(X)$  as the "universal Lie dual" of the group  $\pi_1(X)$ .

#### Corollary

- The Hopf pairing realizes the rational duality between  $H^0_{\mathcal{E}}(X)$  and the Malcev Lie algebra of  $\pi_1(X)$ .
- Cobracket in  $H^0_{\mathcal{E}}(X)$  is compatible with BCH product in  $\pi_1(X)$ .

Generalizes Magnus expansion, Fox derivatives, Chen iterated integrals. Quasi-isomorphism invariant. Computational. Algorithmic. Compare to "Lie Models I & II" [BFMT] and [Rivera-Zeinalian].

B. Walter (UVI) Letter Linking AlgTopPR 2024 21/22

### Letter linking is Hopf pairing!

#### Approximately:

- Given  $G=\langle\,S\,|\,R\,
  angle$ , make  $X\simeq\ \bigvee_S S^1\ \coprod_R\ \big\{D^2\big\}_R\ \operatorname{So}\,\pi_1(X)\cong G$
- $\mathcal{E}(C^*X)$  is trees of (linear comb. of) bump forms on the "generator circles"
- Cycles  $\gamma \in \mathcal{E}(C^*X)$  are equivalent to trees of counting functions from S
- Words  $w \in G$  are maps  $w: S^1 \to \bigvee_S S^1 \subset X$ , yielding  $[w] \in \pi_1(X)$
- Pullbacks  $w^*\gamma$  are trees of bump forms on  $S^1$  with positive mass at generators s and negative mass at inverses  $s^{\text{-}1}$  (recall "visual intuition" slide!)
- Cobounding operation performs weight reduction in  $\mathcal{E}(C^*X)$
- Summing all values performs evaluation on  $S^1$

# Many thanks!





slides

 $H^0(\mathcal{K},\mathcal{K}_n; \mathbb{R})$ 

## Finite type (Vassiliev) knot invariants.

**Recall:** singularity of knot resolves as "over-crossing" — "under-crossing"



Conjecture:  $H^0(\mathcal{K}; \mathbb{R})$ Bi-algebra structure "Symbol"  $H^0(\Gamma_3; \mathbb{R}) \leftarrow H^0(\mathcal{K}, \mathcal{K}_4; \mathbb{R})$  $H^0(\Gamma_2; \mathbb{R}) \longleftarrow H^0(\mathcal{K}, \mathcal{K}_3; \mathbb{R})$  $H^0(\Gamma_1; \mathbb{R}) \longleftarrow H^0(\mathcal{K}, \mathcal{K}_2; \mathbb{R})$  $H^0(\Gamma_0; \mathbb{R}) \neq H^0(\mathcal{K}, \mathcal{K}_1; \mathbb{R})$ Finite-Type

**Invariants** 

Functions vanishing on knots with n singularities **Power Series**  $dx^3 \leftarrow a + bx + cx^2 + dx^3$  $|cx^2| \leftarrow a + bx + |cx^2|$  $bx \leftarrow a + bx$ 

**Analogy** 

**Big picture (for experts)** 

## Do knot theory with words in group

Malcev completion

## Calculus in Groups

## Fun(G, $G^{[n]}$ ; $\mathbb{R}$ )

Functions vanishing on *n*-fold bracket words

# 00

Lie algebra

structure





# Series

**Lower Central** 

$$G^{[4]} = [G, [G, [G, G]]] \longrightarrow G^{[4]} / G^{[5]}$$

$$G^{[3]} = [G, [G, G]] \longrightarrow G^{[3]} / G^{[4]}$$

$$G^{[2]} = [G, G] \longrightarrow G^{[2]} / G^{[3]}$$

$$G \longrightarrow G / [G, G] = \Gamma_1$$

# Group

Dualize!

**Invariants** 

**Power Series Analogy**