Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2009/2010

AL2 - Algebra 2: Gruppi, Anelli e Campi Prof. F. Pappalardi Tutorato 11 - 4 Gennaio 2010

Matteo Acclavio, Luca Dell'Anna

www.matematica3.com

Esercizio 1.

Nell'anello dei polinomi K[X] si consideri il polinomio $f(X) = X^2 + X + 1$

- Decomporre il polinomio nei casi in cui $K = \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{C}, \mathbb{R}$.
- Detto I l'ideale generato da f(X), si dica quando K[X]/I è un campo.

Esercizio 2.

Effettuare la divisione euclidea tra 13 + 18i e 5 + 3i in $\mathbb{Z}[i]$. Mostrare che i possibili quozienti (ed i rispettivi resti) sono quattro.

Esercizio 3.

Dimostrare che se x è irriducibile (primo) allora anche tutti i suoi elementi associati sono irriducibili (primi).

Esercizio 4.

Sia R un anello commutativo ed unitario. Siano I, J due suoi ideali. Sia $I+J:=\{x+y \text{ con } x\in I, y\in J\}$. Sia $\phi:R\longrightarrow R/I\times R/J$, l'applicazione definita come $\phi(r):=(r+I,r+J)$ per ogni $r\in R$.

- Si dimostri che I + J è un ideale di R.
- Si dimostri che ϕ è un omomorfismo unitario di anelli.
- Si dimostri che ϕ è suriettivo se e solo se I + J = R.
- Si dimostri che il nucleo di ϕ è $I \cap J$.
- Nel caso $R=\mathbb{Z},\,I=5\mathbb{Z},J=12\mathbb{Z},$ si dimostri che $\mathbb{Z}/60\mathbb{Z}=\mathbb{Z}/5\mathbb{Z}\times\mathbb{Z}/12\mathbb{Z}.$

Esercizio 5.

Si consideri il polinomio $f(X) = X^3 + X + 1 \in \mathbb{Q}[X]$.

• Verificare che f(X) è irriducibile in $\mathbb{Q}[X]$.

• Sia θ una radice reale di f(X) (dire perché esiste); si consideri l'estensione $\mathbb{Q}(\theta)$ di \mathbb{Q} ; esprimere ciascuno dei seguenti elementi attraverso la base $\{1, \theta, \theta^2\}$: $\theta^4, \quad \theta^5, \quad 3\theta^5 - \theta^4 + 2, \quad (\theta^2 + 2\theta + 2)^{-1}$.

Esercizio 6.

Sia
$$f(X) := 2X^3 + X^2 + 1$$
 e $A := \mathbb{Z}_3[X]/(f(X))$.

- Mostrare che A ha zero divisori;
- Mostrare che $\alpha := X^3 + (f(X))$ è invertibile in A e determinare il suo inverso.

Esercizio 7.

Siano
$$f_a(X) = X^3 + X^2 + X + a \in \mathbb{Z}_3[X]$$
 ed $I_a = (f_a(X))$.

- Determinare per quali valori di a in \mathbb{Z}_3 l'anello quoziente $R_a = \mathbb{Z}_3[X]/I_a$ è un campo.
- Mostrare che $(X^5 X^4) + I_2$ è invertibile in R_2 e calcolare il suo inverso.

Esercizio 8.

Sia K un campo e consideriamo l'anello $A=K[X;Y]/(X^2;Y^2).$

- Dette x e y le classi di A determinate da X e Y, provare che ogni elemento di A si può esprimere in un unico modo nella forma: axy + bx + cy + d con $a, b, c, d \in K$
- Calcolare il prodotto tra due elementi di A generici.
- Determinare gli zero divisori di A.
- Determinare gli invertibili di A.