CS 381 HW 8

Ankur Dhoot

November 18, 2016

$\mathbf{Q}\mathbf{1}$

(a) We can transform an instance of element uniqueness to closest pair in linear time as follows:

Given $X = \{v_1, v_2, ... v_n\}$, let $P = \{(v_1, v_1), (v_2, v_2) ... (v_n, v_n)\}$. The set P is then the corresponding instance of closest pair. It's obvious that this is just a linear time transform if we iterate through each point in X and create the corresponding point in P.

- (b) Given a solution to the instance P above, we can solve the element uniqueness problem in constant time. It's clear that the min-distance, δ , returned is 0 iff X contains some pair, v_i and v_j such that $v_i = v_j$. Thus, if $\delta = 0 \Rightarrow$ there is some non-unique pair in X, and the corresponding points in P are returned by the solution to closest pair. If $\delta > 0 \Rightarrow$ the elements of X are unique. Once we have the solution to P, checking the δ value is just a constant time check.
- (c) Suppose the time needed to solve closest pair is faster than \propto nlogn. Then, we can convert an instance of element uniqueness to closest pair in O(n) time, solve the closest pair instance in faster than \propto nlogn, and use the solution to solve the element uniqueness instance in constant time. Thus, the total running time needed to solve the element uniqueness problem becomes faster than \propto nlogn. But this contradicts our $\Omega(\text{nlogn})$ on the element uniqueness problem. Thus, closest pair cannot be faster than \propto nlogn (i.e closest pair is $\Omega(\text{nlogn})$).

$\mathbf{Q2}$

Graph corresponding to

```
(x1 \lor \neg x2 \lor x3) \land (x1 \lor x2 \lor \neg x3) \land (\neg x1 \lor x2 \lor \neg x3)
```

There is a clique in this graph corresponding to X1 from the top triple, X2 from the left triple, and \neg X3 from the right triple. Thus, the assignment X1 = 1, X2 = 1, and X3 = 0 is a satisfying assignment. (Note: This isn't the only satisfying assignment. X1 = 1, X2 = 1, X3 = 1 is also a satisfying assignment)

