Análisis Matemático I Clase 10: Aplicaciones de la derivada: linealización, diferenciales e introducción a extremos locales

Pablo D. Ochoa

Facultad de Ingeniería Universidad Nacional de Cuyo.

Abril, 2024

Objetivo de la clase: se espera que el estudiante comience a aplicar el concepto de derivada para resolver múltiples situaciones prácticas.

Si realizamos un acercamiento al punto P, obtenemos la imagen:

Así, cerca del punto de tangencia, las gráficas de la función y de la recta tangente se vuelven indistinguibles. Esto implica que es posible utilizar la ecuación de la recta tangente para obtener buenas aproximaciones de la función f.

Definción de Linealización

Sea f una función derivable en x=a. Definimos la linealización de f en a como la función:

$$L(x) = f'(a)(x - a) + f(a).$$

En general, cerca del punto a, la linealización es una buena aproximación de la función f.

Ejemplo: determine la linealización de:

$$f(x) = \sqrt{1+x}$$

en el punto x = 0.

Solución:

$$f'(x) = \frac{1}{2}(1+x)^{-1/2}.$$

Además, f(0) = 1 y f'(0) = 1/2. Luego la linealización de f en x = 0 es:

$$L(x) = f'(0)(x-0) + f(0) = \frac{1}{2}x + 1.$$

La linealización de una función en un punto x=a se puede utilizar para aproximar los valores de la función cerca del punto a:

Aproximación	Valor verdadero	Valor verdadero – aproximación
$\sqrt{1.2} \approx 1 + \frac{0.2}{2} = 1.10$	1.095445	<10 ⁻²
$\sqrt{1.05} \approx 1 + \frac{0.05}{2} = 1.025$	1.024695	<10 ⁻³
$\sqrt{1.005} \approx 1 + \frac{0.005}{2} = 1.00250$	1.002497	<10 ⁻⁵

En las próximas diapositivas vamos a estudiar más profundamente la aproximación que brinda la linealización a la función.

Ejercicio: Utilice la linealización en un punto adecuado para obtener una aproximación del valor de

$$f(x) = \frac{x}{x+1}$$

en el punto x = 1.3.

Sea y = f(x) una función derivable en x = a. Cuando nos movemos de x = a al punto x = a + dx, la función experimenta un cambio dado por:

$$\Delta y = f(a + dx) - f(a).$$

Por otro lado, el cambio en la recta tangente L está dado por:

$$\Delta L = f'(a)dx$$

Dado que la recta L representa una aproximación de f para valores cercanos a x=a tenemos:

$$\Delta y \approx \Delta L$$
.

Es decir:

$$f(a+dx)-f(a)\approx f'(a)dx$$
 o: $f(a+dx)\approx f(a)+f'(a)dx$.

Definición de Diferencial

La expresión:

$$\Delta L = f'(a)dx$$
.

recibe el nombre de Diferencial de f en a y se simboliza por df o dy:

$$dy = f'(a)dx$$
.

Así, el diferencial de f en x = a es el cambio que experimenta la recta tangente a (a, f(a)) cuando x pasa de a a a + dx.

Ejemplo: supongamos que un disco metálico de radio r=10cm se somete a una fuente de calor y se dilata uniformemente hasta alcanzar un radio de r=10.1cm. Utilizando diferenciales estime el cambio en el área del disco y compárelo al cambio real.

Ejemplo: supongamos que un disco metálico de radio r=10cm se somete a una fuente de calor y se dilata uniformemente hasta alcanzar un radio de r=10.1cm. Utilizando diferenciales estime el cambio en el área del disco y compárelo al cambio real.

Ejemplo: la función área en términos del radio del disco es:

$$A(r)=\pi r^2.$$

Queremos estimar el cambio del área cuando r pasa de 10 cm a 10.1 cm. Entonces el cambio en la variable independiente, que llamaremos dr es:

$$dr = 10.1 - 10 = 0.1 \, \mathrm{cm}.$$

Luego, una aproximación del cambio en el área es:

$$\Delta A = A(10.1) - A(10) \approx dA = A'(10)dr = 2\pi.10 \text{ cm}.0.1 \text{ cm} = 2\pi \text{ cm}^2.$$

Ahora el cambio real es:

$$A(10.1) - A(10) = 2.01\pi \text{ cm}^2.$$

Sensibilidad al cambio

La ecuación:

$$df = f'(x)dx$$

indica qué tan sensible es el valor de f a un cambio en los valores de x. Cuanto mayor sea el valor de f'(x) mayor será el efecto de un cambio dado por dx.

Cuando nos movemos de a a a+dx, es posible describir el cambio en f de tres maneras:

	Real	Estimado
Cambio absoluto	$\Delta f = f(a + dx) - f(a)$	df = f'(a) dx
Cambio relativo	$rac{\Delta f}{f(a)}$	$\frac{df}{f(a)}$
Cambio porcentual	$\frac{\Delta f}{f(a)} \times 100$	$\frac{df}{f(a)} \times 100$

Sensibilidad al cambio

Ejemplo: Suponga que necesita calcular la profundidad de un pozo de agua a partir de la ecuación $s(t)=16t^2$, midiendo el tiempo que tarda en caer una roca al agua. ¿Qué tan sensibles serán sus cálculos a un error de 0.1 s. en la medición del tiempo?

Sensibilidad al cambio

Ejemplo: Suponga que necesita calcular la profundidad de un pozo de agua a partir de la ecuación $s(t)=16t^2$, midiendo el tiempo que tarda en caer una roca al agua. ¿Qué tan sensibles serán sus cálculos a un error de 0.1 s. en la medición del tiempo?

Solución. Calculamos primero el diferencial de *s*:

$$ds = 32.t.dt.$$

Si se comete un error de 0.1 s en la medición del tiempo entonces la sensibilidad viene dada por:

$$ds = 3.2t$$
.

Observar que a medida que el tiempo t es mayor, la sensibilidad en la medición de la profundidad también es mayor. De hecho, si se obtuvo una medición de t=2 s, entonces la sensibilidad es:

$$ds = 6.4$$
m.

Si se hubiera tenido una medición de t = 6 s, entonces:

$$ds = 19.2 \text{m}.$$

Objetivo de las próximas clases

En las próximas clases, vamos a aplicar las teorías de límites y de derivación para realizar trazados de curvas y = f(x) con precisión. **Límites:** hemos visto que se aplican para detectar:

- puntos de continuidad de la función,
- asíntotas verticales, horizontales y oblicuas,
- discontinuidades de la función.

Derivadas: veremos que se aplican para:

- ullet determinar dónde la función f alcanza sus valores máximos y mínimos.
- detectar intervalos donde la función crece y donde decrece.
- ullet estudiar la curvatura 'hacia arriba' o 'hacia abajo' de la gráfica de f.
- determinar dónde se presenta un cambio de curvatura (punto de inflexión)

Extremos relativos o locales

Extremos locales o relativos

Sea f una función definida en un dominio D. Decimos que f tiene un máximo local o relativo en el punto c si existe un intervalo abierto (c-r,c+r) centrado en c tal que:

$$f(x) \leq f(c)$$

para todo x que pertenezca a D y a (c-r,c+r). De forma similar, decimos que f tiene un mínimo local o relativo en el punto c si existe un intervalo abierto (c-r,c+r) centrado en c tal que:

$$f(x) \ge f(c)$$

para todo x que pertenezca a D y a (c - r, c + r).

Extremos relativos o locales

Introducción a extremos locales.

Observación: En este curso no consideraremos en detalle extremos absolutos, sólo locales, dar una idea de qué son. Explicar que los extremos absolutos son siempre locales.

¿Cómo determinar extremos relativos en funciones continuas?

Observar el siguiente gráfico:

¿Cómo determinar extremos en funciones continuas?

Candidatos a ser puntos donde f tiene un extremo relativo:

- Puntos x donde f'(x) = 0.
- Puntos donde f' no existe.
- Puntos que no son interiores al dominio de f (generalmente, serán los extremos del dominio de f).

¿Cómo determinar extremos en funciones continuas?

Candidatos a ser puntos donde f tiene un extremo relativo:

- Puntos x donde f'(x) = 0.
- Puntos donde f' no existe.
- Puntos que no son interiores al dominio de f (generalmente, serán los extremos del dominio de f).

Punto Crítico

Sea $f:(a,b)\to\mathbb{R}$. Decimos que $c\in(a,b)$ es un punto crítico de f si f'(c)=0 o si f'(c) no existe.

Así, los candidatos en donde la función tiene extremos son los puntos críticos y los puntos que no son interiores al dominio.

A continuación, discutiremos más sobre extremos locales e iniciaremos el camino para encontrarlos. Esto será terminado la próxima clase.

No en todos los puntos críticos hay extremos

