Some Important Rules Of Differential & Integral Calculus

Differentiation Rules			Intregration Rules	
1.	$\frac{d}{dx}(c) = 0$	1.	$\int 0 dx = 0 + c$	
2.	$\frac{d}{dx}x = 1$	2.	$\int dx = x + c$	
3.	$\frac{d}{dx} c x = c$	3.	$\int c dx = cx + i$	
4.	$\frac{d}{dx}x^n = nx^{n-1}$	4.	$\int x^n \ dx = \frac{x^{n+1}}{n+1} + c$	
5.	$\frac{d}{dx}\frac{1}{x^n} = -\frac{n}{x^{n+1}}$	5.	$\int \frac{1}{x^n} dx = -\frac{1}{(n-1)x^{n-1}} + c$	
6.	$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$	6.	$\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + c$	
7.	$\frac{d}{dx}e^x = e^x$	7.	$\int e^x dx = e^x + c$	
8.	$\frac{d}{dx}e^{mx} = m e^{mx}$	8.	$\int e^{mx} dx = \frac{1}{m} e^{mx} + c$	
9.	$\frac{d}{dx}a^x = a^x \ln a$	9.	$\int a^x dx = \frac{a^x}{\ln a} + c$	
10.	$\frac{d}{dx}\ln x = \frac{1}{x}$	10.	$\int \frac{1}{x} dx = \ln x + c$	
11.	$\frac{d}{dx}\log_a x = \frac{1}{x}\log_a e$	11.		
12.	$\frac{d}{dx}\sin x = \cos x$	12.	$\int \sin x dx = -\cos x + c$	
13.	$\frac{d}{dx}\cos x = -\sin x$	13.	$\int \cos x dx = \sin x + c$	
14.	$\frac{d}{dx} \tan x = \sec^2 x$	14.	$\int \sec^2 x \ dx = \tan x + c$	
15.	$\frac{d}{dx}\cot x = -\csc^2 x$	15.	$\int \csc^2 x dx = -\cot x + c$	
16.	$\frac{d}{dx}\sec x = \sec x \tan x$	16.	$\int \sec x \tan x = \sec x + c$	
17.	$\frac{d}{dx}\csc x = -\csc x \cdot \cot x$	17.	$\int \csc x \cot x = -\csc x + c$	
18.	$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$	18.	$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + c$	

19.	$\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$	19.	$\int -\frac{1}{\sqrt{1-x^2}} dx = \cos^{-1} x + c$
20.	$\frac{a}{dx} \tan^{-1} x = \frac{1}{1+x^2}$	20.	$\int \frac{1}{1+x^2} dx = \tan^{-1} x$
21.	$\frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}$ $\frac{d}{dx}\sec^{-1}x = \frac{1}{x\sqrt{x^2-1}}$	21.	
22.	$\frac{d}{dx}\sec^{-1}x = \frac{1}{x\sqrt{x^2 - 1}}$	22.	$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + c$
23.	$\frac{d}{dx}\csc^{-1}x = -\frac{1}{x\sqrt{x^2 - 1}}$	23.	$\int \cos mx dx = \frac{\sin mx}{m} + c$
24.	$\frac{d}{dx}(uv) = u\frac{d}{dx}(v) + v\frac{d}{dx}(u)$	24.	$\int (uv) dx = u \int v dx$
			$-\int \left[\frac{d}{dx}(u) \cdot \int v dx\right] dx + c$
25.	$\frac{d}{dx}$	25.	$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$
26.	$\frac{d}{dx}$	26.	$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + c(x > a)$
27.	$\frac{d}{dx}$	27.	$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left \frac{a + x}{a - x} \right + c \left\{ x < a \right\}$
28.	$\frac{d}{dx}$	28.	$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln x + \sqrt{x^2 + a^2} + \epsilon$
29.	$\frac{d}{dx}$	29.	$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln x + \sqrt{x^2 - a^2} + c$
30.	$\frac{d}{dx}$	30.	$\int \frac{1}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + c \qquad (x < a)$
31.	$\frac{d}{dx}$	31.	$\int \frac{1}{\sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \frac{x}{a} + c$
32.	$\frac{d}{dx}$	32.	$\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$
33.	$\frac{d}{dx}$	33.	$\int \cot x dx = \log \sin x + c$
34.	$\frac{d}{dx}$	34.	$\int \tan x dx = \ln \sec x + c$
35.	$\frac{d}{dx}$	35.	$\int \sin mx dx = -\frac{\cos mx}{m} + c$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$

$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$

$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$

$$\int e^x [f(x) + f'(x)] dx = f(x) e^x + C$$