(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-126953 (P2000-126953A)

(43)公開日 平成12年5月9日(2000.5.9)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

B 2 3 P 23/02

B 2 3 P 23/02

Α

審査請求 未請求 請求項の数1 OL (全 9 頁)

(21)出願番号 特願平10-303483

(22)出願日

平成10年10月26日(1998, 10, 26)

(71)出願人 000133593

株式会社ツガミ

東京都港区浜松町1丁目1番11号

(72)発明者 菊池 克治

新潟県長岡市東蔵王1丁目1番1号 株式

会社ツガミ長岡工場内

(72)発明者 熊倉 慎介

新潟県長岡市東蔵王1丁目1番1号 株式

会社ツガミ長岡工場内

(74)代理人 100077850

弁理士 芦田 哲仁朗

(54) 【発明の名称】 複合加工工作機械

(57)【要約】

【課題】 X軸送りを可能にするとともにターニングホ ルダとミーリングホルダを同じ1本のツールスピンドル に取り付けて主軸と背面主軸に保持されたワークに対し て6面加工を行うことができる複合加工工作機械を提供 する。

【解決手段】 X軸スライド6に回転可能かつ割出可能 にB軸40を保持し、B軸40の先端に、ツールスピン ドル8を回転可能にかつ割出可能に保持したツールヘッ ド7を取り付ける。主軸2と向かい合って背面主軸11 配置し、主軸2とツールスピンドル8の回転を同期制御 させてワークWにホブ加工を含む6面加工を可能とす る。

2

【特許請求の範囲】

【請求項1】 ベッドと、該ベッドに固定され、ワーク を保持して回転するとともに回転制御する主軸を備えた 主軸台と、前記主軸を回転駆動する主軸モータと前記主 軸に向かい合って配置され、ワークを保持して回転する 背面主軸を備え、前記ベッドに対し水平なZ軸方向に移 動可能な背面主軸台と、前記ベッドに対し前記Z軸方向 に移動可能なZ軸スライドと、該Z軸スライドに前記Z 軸方向に直角なY軸方向に移動可能に保持されたY軸ス ライドと、該Y軸スライドに前記Z軸方向と該Y軸方向 とに直角なX軸方向に移動可能に保持されたX軸スライ ドと、該X軸スライドに前記Y軸を中心として回転可能 に保持されたB軸と、該B軸を割り出し回転させるB軸 割出機構と、前記B軸をX軸スライドに対して複数の回 転角度位置に固定する位置決めカップリングと、前記B 軸の先端に取り付けられたツールヘッドと、該ツールへ ッドに軸芯が前記B軸に直交させて回転可能に保持され たツールスピンドルであって、該ツールスピンドルを所 定の位置に割り出し、ロックする3ピースカップリング から成るロック機構を備えたツールスピンドルと、該ツ ールスピンドルを回転駆動するツールスピンドルモータ と、前記主軸モータとツールスピンドルモータの回転を 同期させる回転同期装置と、前記背面主軸台の上方に配 置された工具マガジンと、該工具マガジンと前記ツール スピンドルとの間に配置され、工具マガジン内の工具と ツールスピンドルに保持された工具とを交換する工具交 換装置とを有する複合加工工作機械。

1

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、ワークに対して種々の加工を可能とするために旋削作業に加えてマシニングセンタ的な作業も行うことができるようにした複合加工工作機械(ターニングセンタ)に関するものである。

[0002]

【従来の技術】従来、棒状のワークに種々の加工を行う場合、ターニングセンタが用いられる。例えば、図10に示すようなワークWの側面のフラット面201及びこのフラット面201にワークWの中心軸線からずれた位置に穴202を明け、更に歯車203を加工し、その上、主軸(図示せず)に保持されている側の端部204を加工する場合(6面加工)がある。フラット面201及び穴202の加工は、通常の標準スピンドルでは加工できず、専用のスピンドルを設けるか、ツールスピンドルを切り込み方向と直交する方向に移動させなければできない。歯車203の加工は、ホブ盤など別の機械で行うか、特開平4-269137号公報に記載されているように主軸とツールスピンドルの回転を同期させて行う。また、主軸に保持されている側の端部204の加工は、主軸と向かい合っている背面主軸にワークWを保持

し直して行わなければならない。

【0003】従来は、ツールスピンドルを鉛直方向に移 動させるためにこれを支持しているスライドを、例え ば、特許第2731991号公報にあるように、互いに 傾斜する二つのX軸送り系の合成によりY軸送り(切り 込み方向と直交する鉛直方向送り)を行うようにしてい る。しかしながら、この方法は、Y軸送りが合成運動の ため、精度を出しにくいので、高精度加工を必要とする 場合は不向きである。これを防ぐために直接にY軸送り を行うことができるようにした図11に示す直交3軸ス ライド構造のものがある。図11において、切り込み方 向であるX軸は鉛直であって、この直交3軸スライド構 造は、Z軸スライド102、Y軸スライド103及びX 軸スライド104から成る。このX軸スライド104に 工具106,107を備えたツールヘッド105が取り 付けられている。Y軸スライド103のY軸送りによっ て、工具106,107で前記のフラット面201及び 穴202の加工を行うことができる。 そして、ツールへ ッド105には、例えば、回転工具106を取り付ける ツールスピンドルと、ターニング工具107を取り付け るツールスピンドルの2本のツールスピンドルが用意さ れている。

【0004】通常、回転工具106のツールホルダとターニング工具107のツールホルダは異なっており、工具マガジンを共用することはできない。また、ツールスピンドルが2本設けられているので、一つのツールスピンドルで加工しているとき、もう一本のツールスピンドルを常に監視し、背面主軸やスライド等と干渉することがないように制御する必要があり、このために背面主軸を取り付けるのが困難で、加工範囲が制限されていた。しかし、背面主軸を取り付けていないと6面加工はできない。

【0005】また、特開平4-269137号公報に記載された歯車加工の方法は、主軸からこれを回転駆動する駆動モータを切り離し、次いで主軸を割り出し回転させるためのC軸サーボモータに結合してから主軸とツールスピンドルの回転同期制御を行っているため、駆動系を切り換える時間的ロスが生じ、かつ、切り換えるための機械的な構造が複雑となるとともに、これがためにス40ペースを必要とするという問題がある。

[0006]

【発明が解決しようとする課題】この発明の課題は、高精度にY軸送りを可能にするとともにターニングホルダとミーリングホルダを同じ1本のツールスピンドルに取り付けて使用し、主軸に保持されたワークと背面主軸に保持されたワークの双方に対して加工を行う6面加工を可能とし、更に、歯車加工まで可能とする複合加工工作機械を提供することにある。

[0007]

50

【課題を解決するための手段】この課題を達するため、

本発明にかかる複合加工工作機械は、ベッドと、該ベッ ドに固定され、ワークを保持して回転するとともに回転 制御する主軸を備えた主軸台と、前記主軸を回転駆動す る主軸モータと前記主軸に向かい合って配置され、ワー クを保持して回転する背面主軸を備え、前記ベッドに対 し水平なZ軸方向に移動可能な背面主軸台と、前記ベッ ドに対し前記Z軸方向に移動可能なZ軸スライドと、該 Z軸スライドに前記Z軸方向に直角なY軸方向に移動可 能に保持されたY軸スライドと、該Y軸スライドに前記 Z軸方向と該Y軸方向とに直角なX軸方向に移動可能に 10 保持されたX軸スライドと、該X軸スライドに前記Y軸 を中心として回転可能に保持されたB軸と、該B軸を割 り出し回転させるB軸割出機構と、前記B軸をX軸スラ イドに対して複数の回転角度位置に固定する位置決めカ ップリングと、前記B軸の先端に取り付けられたツール ヘッドと、該ツールヘッドに軸芯が前記B軸に直交させ て回転可能に保持されたツールスピンドルであって、該 ツールスピンドルを所定の位置に割り出し、ロックする 3ピースカップリングから成るロック機構を備えたツー ルスピンドルと、該ツールスピンドルを回転駆動するツ ールスピンドルモータと、前記主軸モータとツールスピ ンドルモータの回転を同期させる回転同期装置と、前記 背面主軸台の上方に配置された工具マガジンと、該工具 マガジンと前記ツールスピンドルとの間に配置され、工 具マガジン内の工具とツールスピンドルに保持された工 具とを交換する工具交換装置とを有して構成される。

[0008]

【発明の実施の形態】以下、この発明の実施の形態を図面に基づいて説明する。図1は、この発明の複合加工工作機械(以下、ターニングセンタという)の斜視図である。図2はツールスピンドルの縦断面図で、図3はツールスピンドルのカップリングを示す斜視図である。図4及び図5はX軸スライド及びその周辺の縦断面図で、図6はターニングツールを取り付けて行われる一つの加工パターンを示す概略図である。図7はホブ加工のブロック図で、図8はホブ加工を行う状態を示す加工部の概略正面図で、図9はホブ加工のフローチャートである。

【0009】図1に基づいて、この発明のターニングセンタを説明する。1は箱形をしたベッドで、その上に主軸2を回転可能に保持した主軸台3が載せられている。4はZ軸スライドで、ベッド1上の案内に沿ってZ軸方向(主軸2の軸線方向で、矢印Z方向)に移動可能となっている。5はY軸スライドで、前記Z軸スライド4に載せられ、Y軸方向(Z軸と直角な方向で、矢印Y方向)に移動可能となっている。6はX軸スライドで、前記Y軸スライド5の垂直案内面に沿ってX軸方向(Y軸とZ軸に直角な鉛直方向で、ワークに対する切り込み方向であり、矢印X方向)に移動可能となっている。7はツールヘッドで、先端にツール9を取り付けたツールスピンドル8を回転可能に保持している。

4

【0010】図2に示すように、ツールスピンドル8 は、上下の軸受20によってツールヘッド7に回転可能 に支持され、第1のカップリング片21を有している。 ツールヘッド7には、後述のように、第1のカップリン グ片21に整合する第2のカップリング片22が取り付 けられている。23は第1のピストンで、先端に、両カ ップリング片21及び22と係脱してツールスピンドル 8をロック、アンロックする第3のカップリング片24 を取り付けており、これらカップリング片21,22, 24で3ピースカップリングを構成している。25はシ リンダで、第1のピストン23を矢印a方向に移動可能 に保持し、更にその小径部には第2のピストン26を同 様な方向に移動可能に保持している。27は軸受20を 取り付けるためのカラーで、第2のピストン26の上方 への移動を制限するストッパとしての役目も成してい る。31は案内ピンで、一端が第2のカップリング片2 2に固定され、他端は第1のピストン23に入り込んで 第2のカップリング片22と第3のカップリング片24 の位相を一致させるとともに、第1のピストン23が上 下に移動する際の案内となっている。シリンダ25及び 両ピストン23,26によって3個のシリンダ室28, 29,30が構成されている。32は切換弁で、一方に 油圧源(図示せず)から圧油を送るPポート33、圧油 をドレン (図示せず) に返すTポート34が接続され、 他方にパイプ35、36が接続されている。パイプ35 はシリンダ室28に接続され、パイプ36はシリンダ室 29,30に接続されている。

【0011】図2の状態では、Pポート33からの圧油がシリンダ室28へ流入されており、力P1によって第301ピストン23は下方に移動し、力P2によって第2のピストン26は上方に移動し、3ピースカップリングが噛み合ってツールスピンドル8をロックする。3ピースカップリングは、例えば、図3に示すように第1のカップリング片21のテーパ面21aと第2のカップリング片22のテーパ面21aと第2のカップリング片22のテーパ面で正四角錘台状を構成し、第3のカップリング片24もこれらと係合する相補的なテーパ面としている。正四角錘台状のため、ツールスピンドル8の割り出し角度は90°毎になるが、正多40角錘台に形成することによって各種の割り出しを行うことができる。ツールスピンドル8にはツール9がホルダ9Aを介して公知の方法で取り付けられている。

【0012】図4及び5に示すように、ツールヘッド7がX軸スライド6に割り出し可能に取り付けられている。X軸スライド6内には、Y軸方向の軸線を有するB軸40が、その軸線を中心として回転自在(この回転方向をB軸方向という)に保持されている。B軸40の先端フランジ部40Aにはツールヘッド7が一体に取り付けられ、後端には歯車40Bが取り付けられている。歯 車40Bはモータ38からの歯車39と噛み合い、B軸

50

40をB軸方向に回転させる。フランジ部40AとX軸 スライド6が対向する面には、係合離脱可能な3ピース カップリング片41、42、43が設けられている。こ のカップリング片41,42とカップリング片43は互 いに噛み合う多数の歯と溝を有し、噛み合った時はB軸 40の回転を阻止するが、離脱した時はB軸40の回転 を可能とする。カップリング片41はフランジ部40A に取り付けられ、カップリング片42はX軸スライド6 に取り付けられ、カップリング片43はピストン44に 取り付けられ、ピストン44が移動することによって上 10 記の係脱を可能とする。カップリング片41,42,4 3に形成された歯の数及び位置は、B軸40を多数の異 なる回転角度位置で固定することができるように定めら れており、例えば、360枚の歯と溝を設けることによ って、ツールヘッド7をB軸方向に1°ピッチで割り出 すことができるようになっている。このカップリング片 41, 42, 43はB軸40をX軸スライド6に対して 複数の回転角度位置に固定する位置決めカップリングを 構成する。

【0013】ピストン44の内側にピストン45を同軸 に嵌合させ、ピストン44とピストン45とでシリンダ 室46,47を構成している。ピストン45の後端45 BとX軸スライド6との間に別のシリンダ室48が設け られている。図4の状態は、油圧源(図示せず)に接続 されているPポート51が切換弁50によってシリンダ 室47に接続され、油圧力によってピストン44を矢印 A方向に前進させ、カップリング片43がカップリング 片41,42と噛み合って、B軸40の回転を阻止して いる。切換弁50を図5の状態に切り換えると、Pポー ト51はシリンダ室46へ接続され、ピストン44を図 4の矢印Aの方向とはとは逆方向へ後退させ、カップリ ング片43がカップリング片41,42と離脱し、B軸 40の回転を可能とする。モータ38を駆動して歯車3 9,40Bを介してB軸40を割り出し回転させる。こ こで、シリンダ室48内には後端45BとX軸スライド 6との間にスプリング49を介在させ、ピストン45を 矢印Bの方向へ前進させ、その先端45Aがカップリン グ片41のフランジ面に弱く突き当て、僅かな摩擦力に よって、B軸40を、例えば0.001°のような高精 度に割り出し回転することができるようになっている。 これらのモータ38、歯車39,40B、スプリング4 9はB軸40の割出機構を構成する。

【0014】B軸40の1°ピッチ毎の割り出し後は、前記したように図4の如く切換弁50を切り換えてピストン44を前進させ、カップリング片43をカップリング片41,42に噛み合わせて位置決め固定させる。0.001°割り出し後は、切換弁55を図5の如く切り換え、油圧源(図示せず)からのPポート56が切換弁55によってシリンダ室48に接続され、油圧力によってピストン45を矢印Bの方向に前進させ、ピストン

45の先端45Aをカップリング片41のフランジ面に強く突き当て、摩擦力によりB軸40を回転しないように固定することができる。なお、ピストン45の先端45Aのフランジ面とカップリング片41のフランジ面は、平坦な面となっており、0.001°毎の任意の回転角度位置でB軸40を固定することができる。固定を解除するには、切換弁55を図4の如く切り換えてPポート56を塞ぐ。

【0015】図1において、背面主軸台10は、背面主軸11を回転可能に保持している。背面主軸台10はベッド1上のZ軸方向の案内面に沿ってZ軸方向に移動することができ、背面主軸11は主軸2に向かって近づき、主軸2にチャックされているワークを背面主軸11にチャックすることができる。12は架台で、その上方に工具交換装置13及び交換アーム14が取り付けられており、また多数の工具を収納している工具マガジン15は機械上部正面側に配置されており、作業者が移動することなく正面から工具を取り替えることができる等操作を行い易くしている。工具交換装置13、交換アーム14、工具マガジン15は公知のもので、公知の方法でツールスピンドル8のツール9と工具マガジン15のツールとを交換する。

【0016】図7を参照して主軸2とツールスピンドル 8の制御回路を説明する。主軸2にはビルトインモータ (主軸モータ)60が設けられている。ビルトインモー タ60は主軸2を回転駆動するほか、回転制御も可能と なっている。61はブレーキで、例えば、歯車加工(ホ ブ加工)等を行った際に発生する主軸2の振動を防止 し、また、サーボの剛性を上げるようになっている。6 2は主軸2に取り付けられたエンコーダ等から成る位置 センサで、主軸2の回転位置を検出し、検出した回転位 置をNC装置70のNC部71へ入力する。ツールスピ ンドル8にも同様の位置センサ66が取り付けられ、ツ ールスピンドルモータ65によって回転されるツールス ピンドル8の回転位置を検出し、同様にNC部71へ入 力する。NC装置70はNC部71の他に、スイッチ7 4を有する切換制御部72、主軸2を回転制御したり、 位置決め制御したり、ツールスピンドル8と同期制御し 40 たりする主軸回路部73から成る。

【0017】次に、上記構成の複合加工工作機械の動作を説明する。Y軸加工は、ツールスピンドル8にエンドミル等の回転工具を取り付け、ツールスピンドル8のロックを解除し、回転工具を回転可能にする。ビルトインモータ60によって主軸2を割り出し、加工する面201(図10参照)が回転工具と対面する位置でブレーキ61によって主軸2を固定する。ここで回転工具をツールスピンドルモータ65によって回転させながらY軸スライド5をY軸方向に移動させてフラット面201を加工する。また、エンドミルをドリルに交換してY軸スラ

8

イド5をY軸方向に所定量移動させ、更にX軸スライド6をX軸方向に移動させて穴202を加工する。このようにして簡単にY軸加工を行うことができる。

7

【0018】図6は、主軸2に保持されているワークW 1と背面主軸11に保持されているワークW2を同じターニングツール76により加工する例を示す。実線の矢印は切削しているときのターニングツール76の移動状態を示し、点線の矢印は非切削のときのターニングツール76の移動状態を示している。ツールスピンドル8を180°割り出し、ロックすることによって図6に示す10加工が可能であり、従来のツールスピンドルのように工具交換を行う必要がないため、加工時間が短くなる利点がある。このように2つのワークを主軸2と背面主軸11にチャックしておいて、同一ターニングツールを割り出すだけでそれで両ワークを加工できる。また、主軸2にチャックされたワークを背面主軸11にチャックし直すことで主軸2側の端部204(図10参照)の加工も行うことができ、6面加工を可能にする。

【0019】次に、前記した制御回路及びB軸割り出し機構を使用してワークに歯車加工(ホブ加工)を行う場合を説明する。図8に示すように、ツールスピンドル8にホブ工具75を取り付け、主軸2に保持しているワークWに対してホブ工具75が所定の進み角となるようにツールスピンドル8の軸線E-Eの角度を調整する。この調整は前記したB軸割り出し機構によって行われる。この状態で、ツールスピンドル8及びホブ工具75を回転させ、それに同期させて主軸2及びワークWを回転させ、ホブ工具75をY軸方向に送ってワークWに切り込むことによりホブ加工を行うことができる。16は、ワークWをセンタ支持するセンタである。

【0020】図9のフローチャートを参照して、ステッ プS1で、まず、スイッチ74を回転制御側に切り換え て主軸2を回転制御して、ワークWにターニングツール 76で旋盤加工を行う(ステップS2)。NC部71で ホブ加工が指令されると、スイッチ74は同期制御側に 切り替わり、ホブ加工を開始する。即ち、ステップS3 でターニングツール76をホブ工具75に交換し、ホブ 工具75をワークWのホブ加工開始点に位置決めする。 NC部71よりホブ加工モードが指令され(ステップS 4)、一連のホブ加工サイクルが実施される。スイッチ 40 74が同期制御側に切り替わり、主軸2とツールスピン ドル8の回転がワークWにホブ加工を行えるように同期 制御される状態となる(ステップS5)。次に、主軸2 にブレーキ61を働かせる。このブレーキ61はホブ加 工が行えるように回転するが、ホブ加工時に発生する振 動を防止するとともにサーボの剛性を上げるために弱く 働かせる(ステップS6)。次に、ホブ工具75とワー クWの歯車203との位相を合わせるため、主軸2とツ ールスピンドル8を回転させ、位置センサ62,66に よってそれぞれ原点に復帰させる(ステップS7)。原 50

点復帰後も、主軸2の回転位置は位置センサ62で常に NC部71へ入力され、ツールスピンドル8の回転位置 も同様に位置センサ66で常にNC部71へ入力され、 スイッチ74を経由して主軸回路部73で同期を取りな がらビルトインモータ60、ツールスピンドルモータ6 5へ出力し、同期回転を続ける(ステップS8)。Z軸 スライド4を2軸方向に移動させてホブ工具75を2軸 移動させ(ステップS9)、ワークWにホブ加工を行う (ステッフ°S10)。Z軸移動が終了したら(ステッ プS11)、ワークWに所定の歯車203が形成される まで切り込みが完了したか否かをチェックし(ステップ S12)、切り込みが完了していないときは、Y軸スラ イド5をY軸方向に移動させて所定の切り込みを行い、 再度ステップS9に戻りホブ加工を続行する。切り込み が完了するとホブ加工を終了する。なお、スイッチ74 を位置決め制御側に切り換えた場合は、主軸2を所定の 位置に位置決めすることになり、前記の通り、例えば図 10に示すフラット面201のミーリング加工を行う。 この場合、主軸2を固定するためにブレーキ61を強く 働かせる。

[0021]

【発明の効果】以上のように構成された本発明の複合加 工工作機械によれば、Y軸送りを直交3軸スライドのY 軸スライドによって直接行うことができるので、Y軸送 りが正確で、ワークのフラット面の加工を高精度に行 え、また、このフラット面にワークの中心軸線からずれ た位置に穴を高精度に明ける等Y軸送りを必要とする加 工を精度良く行うことができるという効果がある。ま た、ツールスピンドルを割り出しすることができるの で、同じ一つのツールスピンドルにターニングツールと 回転工具を取り付けることができ、かつ、ツールスピン ドルが1本のため、干渉問題を心配することが全くな く、ツールを配置することができるので、背面主軸を設 けることが可能で、6面加工を容易に行うことができる 効果がある。更に、主軸モータを切り換えることなく、 主軸の回転をツールスピンドルの回転と同期制御が可能 のため、駆動系を切り換える時間的ロスもなく、また、 切り換えるための機械的構造が不要であり、スペースを 要しないという効果もある。

40 【図面の簡単な説明】

【図1】本発明の複合加工工作機械の斜視図である。

【図2】本発明のツールスピンドルの縦断面図である。

【図3】本発明のツールスピンドルのカップリングを示す斜視図である。

【図4】本発明のX軸スライド及びその周辺の縦断面図 である。

【図5】図4と同様の縦断面図である。

【図6】ターニングツールを取り付けて一つの加工パターンを示す概略図である。

【図7】主軸とツールスピンドルの制御回路を示すブロ

		(6)		特開2000-126953
9				1 0
ック図である。			26	第2のピストン
【図8】ホブ加工を行う状態を示す加工部の概略正面図			32	切換弁
である。			38	モータ
【図9】ホブ加工のフローチャートである。			39,40B	歯車
【図10】加工されるワークの斜視図である。			41,42,43	カップリング片
【図11】従来の直交3軸スライド構造を示す斜視図で			46, 47, 48	シリンダ室
ある。			60	ビルトインモータ(主軸モー
【符号の説明】			タ)	
2	主軸		62,66	位置センサ
5	Y軸スライド	10	65	ツールスピンドルモータ
6	X軸スライド		7 2	切換制御部
7	ツールヘッド		7 3	主軸回路部
8	ツールスピンドル		7.4	スイッチ
1 1	背面主軸		7 5	ホブ工具
1 3	工具交換装置		76	ターニングツール
1 5	工具マガジン		W, W1, W2	ワーク
2 1	第1のカップリング片		201	フラット面
22	第2のカップリング片		202	穴
23	第1のピストン		203	歯車
24	第3のカップリング片	20	204	端部
25	シリンダ			

[31]

【図5】

【図6】

【図7】

【図9】

DERWENT-ACC-NO: 2000-380700

DERWENT-WEEK: 200033

COPYRIGHT 2008 DERWENT INFORMATION LTD

TITLE: Compound process machine tool for rod-shaped

workpiece

INVENTOR: KIKUCHI K; KUMAKURA S

PATENT-ASSIGNEE: TSUGAMI KK[TSUG]

PRIORITY-DATA: 1998JP-303483 (October 26, 1998)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE

JP 2000126953 A May 9, 2000 JA

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO APPL-DATE

JP2000126953A N/A 1998JP- October 26,

303483 1998

INT-CL-CURRENT:

TYPE IPC DATE

CIPP B23P23/02 20060101

ABSTRACTED-PUB-NO: JP 2000126953 A

BASIC-ABSTRACT:

NOVELTY - A tool changing device (13), provided between a tool magazine (15) and a tool spindle (8) which holds tools, changes tools in the tool magazine to which a back fast head stock is provided in upward position. A rotation synchronizer synchronizes the rotation of a main shaft motor and a tool spindle motor. The tool spindle motor performs the rotation driving of the tool spindle.

DESCRIPTION - The tool spindle has a lock mechanism with three coupling pieces which position the tool spindle in lock position. The main shaft motor performs the rotation driving of the main shaft (2) of a fast head stock which controls the rotation of a workpiece held on a bed by the back main shaft (11) of the back fast head stock.

USE - For rod-shaped workpiece.

ADVANTAGE - Eliminates possibility of interference since it uses only one tool spindle. Performs easily a 6 coat process by providing back main shaft. Enables accurate processing of workpiece with high precision. Reduces time loss of switching drive system rotation of main shaft since rotation and synchronous control of tool spindle are possible. Eliminates need of mechanical structure for switching.

DESCRIPTION OF DRAWING(S) - The figure shows the perspective diagram of the compound process machine tool.

Main shaft (2)

Tool spindle (8)

Back main shaft (11)

Tool changing device (13)

Tool magazine (15)

CHOSEN-DRAWING: Dwg.1/11

TITLE-TERMS: COMPOUND PROCESS MACHINE TOOL

ROD SHAPE WORKPIECE

DERWENT-CLASS: P56

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: 2000-286139