How many different 2-input truth tables can be constructed? Assume each has 1 output.

A. 4

B. 8

C. 12

D. 16

Commonly-used 2-input logic gates:

- AND, NAND
- OR, NOR
- XOR, XNOR

Can the truth table be obtained from a timing diagram?

Fig. 3.17 (taken from Wakerly)

Truth table from timing diagram

inputs			output
A	В	C	Z
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Incomplete truth table

These input combinations not in hoppen the times of diagram

	output		
A	В	C	Z
0	0	0	0
0	0	1	1
0	1	0	0
→ 0	1	1	?
1	0	0	0
7 1	0	1	?
1	1	0	1
1	1	1	1

A(B+C)' = AB' + AC' True or false?

A. True

B. False

```
A (B + C)'
= A (B' C')
= A B' C'
```

Are these two circuits algebraically equivalent?

A. Yes
B. No

The answer is Yes.

$$F = (X+Y')Z + X'YZ'$$

$$G = (X+Y'+Z')(X'+Z)(Y+Z)$$

$$= (X+Y'+Z')(X'Y + X'Z + YZ + ZZ)$$

$$= (X+Y'+Z')[X'Y + Z(X'+Y+1)]$$

$$= (X+Y'+Z')[X'Y + Z]$$

$$= XZ + Y'Z + X'YZ'$$

$$= (X+Y')Z + X'YZ'$$

= F

How many NAND gates are needed in total to replace all the gates?

Example: NAND gates replace AND, OR

By diagram

Figure 3-32

Tocci, Widmer, Moss. 10th ed.

Example: NAND gates replace AND, OR

By Boolean expression

Figure 3-32

Tocci, Widmer, Moss. 10th ed.

Universal gates <u>always</u> reduce the number of gates used. True or false?

A. True

B. False