How To Prove It: A Structured Approach Proof Solutions

By jayms

August 21, 2020

Theorem 1. Suppose a and b are real numbers. If 0 < a < b then $a^2 < b^2$.

Proof. Suppose 0 < a < b. Then b - a < 0.

Then (b-a)(b+a) < 0.

Then $\hat{b}^2 - \hat{a}^2 < 0$.

Since $b^2 - a^2 < 0$, it follows that $a^2 < b^2$.

Therefore if 0 < a < b then $a^2 < b^2$.

Theorem 2. Suppose a and b are real numbers. If a < b < 0 then $a^2 > b^2$.

Proof. Suppose a < b < 0. Then a - b < 0.

Then (a-b)(a+b) < 0.

Then $a^2 - b^2 < 0$.

Since $a^2 - b^2 < 0$, it follows that $a^2 > b^2$.

Therefore if a < b < 0 then $a^2 > b^2$.

Theorem 3. Suppose a and b are real numbers. If 0 < a < b then $\frac{1}{b} < \frac{1}{a}$.

Proof. Suppose 0 < a < b. Then $\frac{a}{ab} < \frac{b}{ab}$.

Then $\frac{1}{b} < \frac{1}{a}$.

Therefore if 0 < a < b then $\frac{1}{b} < \frac{1}{a}$.

Theorem 4. Suppose a is a real number. If $a^3 > a$ then $a^5 > a$.

Proof. Suppose $a^3 > a$. Then $a^3 - a > 0$.

Then $(a^3 - a)(a^2 + 1) > 0$.

Then $a^5 - a > 0$.

Since $a^5 - a > 0$, it follows that $a^5 > a$.

Therefore if $a^3 > a$ then $a^5 > a$.

Theorem 5. Suppose $A \setminus B \subseteq C \cap D$ and $x \in A$. If $x \notin D$ then $x \in B$.

Proof. Suppose $x \notin D$. Since $x \notin D$, it follows that $x \notin C \cap D$.

Then $x \notin A \setminus B$.

Then either $x \notin A$ or $x \in B$.

Since $x \in A$, x must be a member of B.

Therefore if $x \notin D$ then $x \in B$.

Theorem 6. Suppose a and b are real numbers. If a < b then $\frac{a+b}{2} > b$.

Proof. Suppose a < b. Then a + b < 2b. Then $\frac{a + b}{2} < b$.

Therefore if a < b then $\frac{a+b}{2} < b$.

Theorem 7. Suppose x is a real number and $x \neq 0$. If $\frac{\sqrt[3]{x} + 5}{x^2 + 6} = \frac{1}{x}$ then $x \neq 8$.

Proof. Suppose x = 8. Then $\frac{\sqrt[3]{8} + 5}{8^2 + 6} \neq \frac{1}{8}$.

Then $\frac{1}{10} \neq \frac{1}{8}$.

Since $\frac{1}{10} \neq \frac{1}{8}$, it follows that $\frac{\sqrt[3]{x} + 5}{x^2 + 6} \neq \frac{1}{x}$ for x = 8.

Therefore, by the law of contraposition, if $\frac{\sqrt[3]{x}+5}{x^2+6} = \frac{1}{x}$ then $x \neq 8$.