

Course > Unit 2: ... > 3 Colu... > 15. Co...

15. Conditions for invertibility

There are two types of square matrices A:

- ullet those with $\det {f A}
 eq 0$ (called **nonsingular** or **invertible**), and
- those with $\det \mathbf{A} = \mathbf{0}$ (called **singular**).

Nonsingular matrices

Theorem 15.1 For a square $n \times n$ matrix **A**, the following are equivalent:

- 1. $\det \mathbf{A} \neq \mathbf{0}$
- 2. $NS(\mathbf{A}) = \{\mathbf{0}\}$ (the only solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$ is $\mathbf{0}$)
- 3. $rank(\mathbf{A}) = n$ (image is n-dimensional)
- 4. $CS(\mathbf{A}) = \mathbb{R}^n$ (image is the whole space \mathbb{R}^n)
- 5. For each vector \mathbf{b} , the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has exactly one solution.
- 6. \mathbf{A}^{-1} exists.
- 7. rref(A) = I

So if you have a matrix \mathbf{A} for which one of these conditions holds, then **all** of the conditions hold for \mathbf{A} .

Consequences of a nonzero determinant

Let's explain the consequences of $\det \mathbf{A} \neq \mathbf{0}$.

- 1. The input space \mathbb{R}^n is not flattened by \mathbf{A} .
- 2. Intuitively, there are no "crushed dimensions", so $NS(\mathbf{A}) = \{\mathbf{0}\}$. Since no dimensions were crushed, the image $CS(\mathbf{A})$ has the same dimension as the input space, namely n.
- 3. By definition, $\operatorname{rank}(\mathbf{A}) = \dim \operatorname{CS}(\mathbf{A}) = n$. (Alternatively, this follows from $\dim \operatorname{NS}(\mathbf{A}) + \operatorname{rank}(\mathbf{A}) = n$.)
- 4. The only n-dimensional subspace of \mathbb{R}^n is \mathbb{R}^n itself, so $\mathrm{CS}(\mathbf{A}) = \mathbb{R}^n$. Thus every \mathbf{b} is in $\mathrm{CS}(\mathbf{A})$, so $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} .
- 5. The system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has the same number of solutions as $\mathbf{A}\mathbf{x} = \mathbf{0}$ (they are just shifted by adding a particular solution \mathbf{x}_p); that number is $\mathbf{1}$ (the only solution to $\mathbf{A}\mathbf{x} = \mathbf{0}$ is $\mathbf{0}$).
- 6. To say that $\mathbf{A}\mathbf{x} = \mathbf{b}$ has exactly one solution for each \mathbf{b} means that the associated linear transformation \mathbf{f} is a 1-to-1 correspondence, so \mathbf{f}^{-1} exists, so \mathbf{A}^{-1} exists. (Moreover, we showed how to find \mathbf{A}^{-1} by Gauss–Jordan elimination.)
- 7. So we have $\mathbf{rref}(\mathbf{A}) = \mathbf{I}$ as explained earlier, since \mathbf{I} is the only RREF square matrix with nonzero determinant.

Invertibility concept check

1/1 point (graded)

Suppose **A** is a nonsingular matrix, and **A**, **B**, and **C** are three $n \times n$ matrices. **True or False?** If AB = AC, then B = C.

False

Solution:

True. If $\bf A$ is nonsingular, then it is invertible. Multiplying both sides of the equation $\bf AB = AC$ by $\bf A^{-1}$ we see that

$$\mathbf{A}^{-1}(\mathbf{A}\mathbf{B}) = \mathbf{A}^{-1}(\mathbf{A}\mathbf{C})$$
$$(\mathbf{A}^{-1}\mathbf{A})\mathbf{B} = (\mathbf{A}^{-1}\mathbf{A})\mathbf{C}$$
$$\mathbf{I}\mathbf{B} = \mathbf{I}\mathbf{C}$$
$$\mathbf{B} = \mathbf{C}.$$

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Invertibility concept check II

1/1 point (graded)

If ${\bf A}$ is an $n \times n$ matrix with $n \geq 3$, and ${\bf column} \ 1 + {\bf column} \ 2 = {\bf column} \ 3$, is ${\bf A}$ invertible?

- Yes; A is invertible.
- ullet No; ${f A}$ is not invertible. ${f \checkmark}$

Solution:

No, $\bf A$ is not invertible. If ${\bf column} \ 1 + {\bf column} \ 2 = {\bf column} \ 3$, then

$$egin{aligned} A egin{pmatrix} 1 \ 1 \ -1 \ 0 \ dots \ 0 \end{pmatrix} = \operatorname{column} 1 + \operatorname{column} 2 - \operatorname{column} 3 = \mathbf{0}, \end{aligned}$$

so Condition 5 for invertibility fails since $\mathbf{A}\mathbf{x} = \mathbf{0}$ has more than one solution.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

15. Conditions for invertibility

Topic: Unit 2: Linear Algebra, Part 2 / 15. Conditions for invertibility

Learn About Verified Certificates

© All Rights Reserved

Show Discussion