

Examen du 06/01/2023 Durée 1h30

Tout appareil électronique interdit.

Les seuls documents autorisés sont les formulaires des équivalences sur les expressions booléennes et des règles de la Déduction Naturelle.

Inscrire votre numéro d'anonymat sur votre copie.

Exercice 1 (2+2+1=5 points)

Soit F la formule : $(\exists x (s_1(s_2(x, s_3(y))) \land \forall y s_4(s_5(x, y)))) \Rightarrow \forall z s_6(z, y).$

- 1. Dire pour chacun des symboles s_i s'il correspond à un prédicat ou une fonction, unaire ou binaire.
- 2. Calculer F2 = F[y := h(x, z)].
- 3. Donner une clôture universelle de la formule F2.

Exercice 2 (0,5+0,5+2+(1,5+1,5))=6 points)

Soit $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \mathcal{F}_2$ un ensemble de symboles de fonction avec $\mathcal{F}_0 = \{a, b\}, \mathcal{F}_1 = \{f\}$ et $\mathcal{F}_2 = \{g\}$.

1. Particulariser la définition de l'ensemble de termes $\mathcal{T}_0(\mathcal{F})$.

On définit une structure M dont le domaine d'interprétation est l'ensemble $\mathbb N$ comme suit :

$$a^{\mathbf{M}} = 1$$
 $f^{\mathbf{M}} : \mathbb{N} \to \mathbb{N}$ $g^{\mathbf{M}} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
 $b^{\mathbf{M}} = 2$ $f^{\mathbf{M}}(n) = n^2$ $g^{\mathbf{M}}(n_1, n_2) = n_1 \times n_2,$

- 2. Calculer $[g(f(g(a,b)), g(f(a), f(b)))]^{\mathbf{M}}$.
- 3. Montrer pour tout terme $t \in \mathcal{T}_0(\mathcal{F})$, il existe un entier n tel que $[t]^{\mathbf{M}} = 2^n$.
- 4. Nous considérons maintenant les prédicats p et q, une variable x et la formule $F = (p(f(x)) \land q(g(x,b))) \Rightarrow p(g(f(x),a))$.
 - (a) Définir une structure \mathbf{M}_1 et une valuation v_1 telle $[F]_{v_1}^{\mathbf{M}_1} = 1$. Justifier votre réponse.
 - (b) Définir une structure \mathbf{M}_2 et une valuation v_2 telle $[F]_{v_2}^{\mathbf{M}_2} = 0$. Justifier votre réponse.

Exercice 3 (4+4=8 points)

Avec les règles de la déduction naturelle prouver les deux formules ci-dessous (on pourra utiliser les règles dérivées du formulaire).

$$(\neg \forall x \, \neg p(x)) \Rightarrow \exists x \, p(x) \qquad \text{(preuve P1)}$$
$$((\neg \forall x \, \neg p(x)) \land (\forall x \, (p(x) \Rightarrow q(x)))) \Rightarrow \exists x \, q(x) \qquad \text{(vous pouvez utiliser la preuve P1)}$$

Exercice 4 (2+(1,5+1,5)=5 points)

Soit F la formule $(A \Rightarrow B) \land (\neg B \Rightarrow \neg A)$.

- 1. Etant donné une structure \mathbf{M} , en utilisant un raisonnement équationnel, calculer et simplifier l'expression booléenne $[F]^{\mathbf{M}}$ en fonction de $\mathbf{I}_{\mathbf{M}}(A)$ et $\mathbf{I}_{\mathbf{M}}(B)$.
- 2. Déterminer :
 - (a) une formule satisfiable G telle que $G \models F$ et $F \not\models G$? (justifier)
 - (b) une formule H (différente de F) telle que $F \not\equiv H$? (justifier)

Exercice 5 ((2+2)+2=6 points)

- 1. Soit F la formule $\forall x ((\exists y \, p(x,y)) \Rightarrow q(x))$.
 - (a) Proposer une structure \mathbf{M}_1 telle $[F]_v^{\mathbf{M}_1} = 1$ (quelle que soit la valuation v). Justifier votre réponse.
 - (b) Proposer une structure \mathbf{M}_2 telle $[F]_v^{\mathbf{M}_2} = 0$ (quelle que soit la valuation v). Justifier votre réponse.
- 2. Soit la structure \mathbf{M} telle que $|\mathbf{M}| = \mathbb{IN}$, $p^{\mathbf{M}} = \{x \mid \text{est pair}\}$, $q^{\mathbf{M}} = \{(x,y) \mid y = x+1\}$. Donner une formule G telle que $[G]_v^{\mathbf{M}} = 1$ (quelle que soit la valuation v) et contenant au moins une occurrence :
 - de chacune des variables x et y
 - de chacun des quantificateurs \exists et \forall
 - de chacun des prédicats p et q Justifier votre réponse.

Corrigé de l'examen 1ère session du 06/01/2023

- ► CORRIGÉ DE L'EXERCICE 1.
- 1. $s_1 \in \mathcal{P}_1, s_2 \in \mathcal{F}_2, s_3 \in \mathcal{F}_1, s_4 \in \mathcal{P}_1, s_5 \in \mathcal{F}_2, s_6 \in \mathcal{P}_2.$
- 2. Pour substituer y par h(x,z) dans la formule :

$$F = (\exists x (s_1(s_2(x, s_3(y))) \land \forall y s_4(s_5(x, y)))) \Rightarrow \forall z s_6(z, y)$$

Il faut d'abord renommer les occurrences liées de x et z dans les sous-formules contenant une occurrence libre de y. On obtient :

$$(\exists x_1 (s_1(s_2(x_1, s_3(y))) \land \forall y s_4(s_5(x_1, y)))) \Rightarrow \forall z_1 s_6(z_1, y)$$

Seules les occurrences libres de y dans F sont ensuite substituées par h(x,z):

$$F[y := h(x, z)] = (\exists x_1 (s_1(s_2(x_1, s_3(h(x, z)))) \land \forall y \ s_4(s_5(x_1, y)))) \Rightarrow \forall z_1 \ s_6(z_1, h(x, z))$$

- 3. Les variables libres de F2 sont x et z, la clôture universelle est donc $\forall x \, \forall z \, F2$.
- ► Corrigé de l'exercice 2.
- 1. Définition inductive de $\mathcal{T}_0(\mathcal{F})$:

$$a \in \mathcal{T}_0(\mathcal{F}).$$

 $b \in \mathcal{T}_0(\mathcal{F}).$

Si $t \in \mathcal{T}_0(\mathcal{F})$, alors $f(t) \in \mathcal{T}_0(\mathcal{F})$.

Si t_1 et $t_2 \in \mathcal{T}_0(\mathcal{F})$, alors $g(t_1, t_2) \in \mathcal{T}_0(\mathcal{F})$.

2

$$\begin{split} [g(f(g(a,b)),g(f(a),f(b)))]^{\mathbf{M}} &= g^{\mathbf{M}}(f^{\mathbf{M}}(g^{\mathbf{M}}(a^{\mathbf{M}},b^{\mathbf{M}})),g^{\mathbf{M}}(f^{\mathbf{M}}(a^{\mathbf{M}}),f^{\mathbf{M}}(b^{\mathbf{M}}))) \\ &= g^{\mathbf{M}}(f^{\mathbf{M}}(g^{\mathbf{M}}(1,2)),g^{\mathbf{M}}(f^{\mathbf{M}}(1),f^{\mathbf{M}}(2))) \\ &= g^{\mathbf{M}}(f^{\mathbf{M}}(2),g^{\mathbf{M}}(1,4)) = g^{\mathbf{M}}(4,4) = 16 \end{split}$$

- 3. Raisonnement par récurrence sur t.
- (B) Si t=a, alors $[a]^{\mathbf{M}}=1=2^0$ et si t=b, alors $[b]^{\mathbf{M}}=2=2^1$
- (I) Soient t_1 et t_2 deux termes, en supposant, par hypothèse de récurrence, que $[t_1]^{\mathbf{M}} = 2^{n_1}$ et $[t_2]^{\mathbf{M}} = 2^{n_2}$, avec n_1 et $n_2 \in \mathbb{N}$ il vient :

$$[f(t_1)]^{\mathbf{M}} = f^{\mathbf{M}}([t_1]^{\mathbf{M}})$$

$$= f^{\mathbf{M}}(2^{n_1}) \qquad \text{(par hypothèse de récurrence)}$$

$$= (2^{n_1})^2$$

$$= 2^{2*n_1} \qquad \text{avec } 2*n_1 \in \mathbb{N}$$

$$[g(t_1, t_2)]^{\mathbf{M}} = g^{\mathbf{M}}([t_1]^{\mathbf{M}}, [t_2]^{\mathbf{M}})$$

$$= g^{\mathbf{M}}(2^{n_1}, 2^{n_2}) \qquad \text{(par hypothèse de récurrence)}$$

$$= 2^{n_1} * 2^{n_2} = 2^{n_1 + n_2} \qquad \text{avec } n_1 + n_2 \in \mathbb{N}$$

4.

$$\begin{split} [F]_v^{\mathbf{M}} &= \underline{[(p(f(x)) \land q(g(x,b))) \Rightarrow p(g(f(x),a))]_v^{\mathbf{M}}} \\ &= \underline{[(p(f(x)) \land q(g(x,b)))]_v^{\mathbf{M}}} + [p(g(f(x),a))]_v^{\mathbf{M}} \\ &= \underline{[(p(f(x))]_v^{\mathbf{M}}.[q(g(x,b))]_v^{\mathbf{M}} + [p(g(f(x),a))]_v^{\mathbf{M}}} \\ &= \underline{[(p(f(x))]_v^{\mathbf{M}} + [q(g(x,b))]_v^{\mathbf{M}} + [p(g(f(x),a))]_v^{\mathbf{M}}} \\ &= \underline{[(p(f(x))]_v^{\mathbf{M}} + [q(g(x,b))]_v^{\mathbf{M}} + [p(g(f(x),a))]_v^{\mathbf{M}}} \\ &= \underline{p^{\mathbf{M}}(f^{\mathbf{M}}(v(x))) + q^{\mathbf{M}}(g^{\mathbf{M}}(v(x),b^{\mathbf{M}})) + p^{\mathbf{M}}(g^{\mathbf{M}}(f^{\mathbf{M}}(v(x)),a^{\mathbf{M}}))} \end{split}$$

4.a. Considérons \mathbf{M}_1 identique à $\mathbf{M}, p_1^{\mathbf{M}}, q^{\mathbf{M}_1}$ et v_1 quelconques. On a alors

$$[F]_{v_1}^{\mathbf{M}_1} = \overline{p^{\mathbf{M}_1}(f^{\mathbf{M}_1}(v_1(x)))} + \overline{q^{\mathbf{M}_1}(g^{\mathbf{M}_1}(v_1(x), b^{\mathbf{M}_1}))} + p^{\mathbf{M}_1}(g^{\mathbf{M}_1}(f^{\mathbf{M}_1}(v_1(x)), a^{\mathbf{M}_1}))$$

$$= \overline{p^{\mathbf{M}_1}((v_1(x))^2)} + \overline{q^{\mathbf{M}_1}(g^{\mathbf{M}_1}(v_1(x), 2))} + p^{\mathbf{M}_1}(g^{\mathbf{M}_1}(f^{\mathbf{M}_1}(v_1(x)), 1))$$

$$= \overline{p^{\mathbf{M}_1}((v_1(x))^2)} + \overline{q^{\mathbf{M}_1}(2 * v_1(x))} + p^{\mathbf{M}_1}((v_1(x))^2) = 1$$

4.b. Considérons \mathbf{M}_2 telle que $a^{\mathbf{M}_2} = 2$, $b^{\mathbf{M}_2} = 1$, $f^{\mathbf{M}_2} = f^{\mathbf{M}}$, $g^{\mathbf{M}_2} = g^{\mathbf{M}}$, $p^{\mathbf{M}_2} = \{x \mid x \text{ est impair}\}$, $q^{\mathbf{M}_2} = \{x \mid x \text{ est multiple de } 3\}$ et $v_2(x) = 3$. On a alors

$$\begin{split} [F]_{v_2}^{\mathbf{M}_2} &= \overline{p^{\mathbf{M}_2}(f^{\mathbf{M}_2}(v_2(x)))} + \overline{q^{\mathbf{M}_2}(g^{\mathbf{M}_2}(v_2(x), b^{\mathbf{M}_2}))} + p^{\mathbf{M}_2}(g^{\mathbf{M}_2}(f^{\mathbf{M}_2}(v_2(x)), a^{\mathbf{M}_2})) \\ &= \underline{p^{\mathbf{M}_2}(f^{\mathbf{M}_2}(3))} + \overline{q^{\mathbf{M}_2}(g^{\mathbf{M}_2}(3, 1))} + p^{\mathbf{M}_2}(g^{\mathbf{M}_2}(f^{\mathbf{M}_2}(3), 2)) \\ &= \overline{p^{\mathbf{M}_2}(9)} + \overline{q^{\mathbf{M}_2}(3)} + p^{\mathbf{M}_2}(18) = \overline{1} + \overline{1} + 0 = 0 \end{split}$$

► Corrigé de l'exercice 3.

► Corrigé de l'exercice 4.

1.
$$[F]^{\mathbf{M}} = [(A \Rightarrow B) \land (\neg B \Rightarrow \neg A)]^{\mathbf{M}}$$

$$= (\overline{[A]^{\mathbf{M}}} + [B]^{\mathbf{M}}) \cdot (\overline{[B]^{\mathbf{M}}} + \overline{[A]^{\mathbf{M}}})$$

$$= (\overline{[A]^{\mathbf{M}}} + [B]^{\mathbf{M}}) \cdot ([B]^{\mathbf{M}} + \overline{[A]^{\mathbf{M}}})$$

$$= (\overline{[A]^{\mathbf{M}}} + [B]^{\mathbf{M}}) \cdot (\overline{[A]^{\mathbf{M}}} + [B]^{\mathbf{M}})$$

$$= \overline{[A]^{\mathbf{M}}} + [B]^{\mathbf{M}} = \overline{\mathbf{I}_{\mathbf{M}}(A)} + \mathbf{I}_{\mathbf{M}}(B)$$

2.a. Soit G = B,

- Soit une structure \mathbf{M} telle que $\mathbf{I}_{\mathbf{M}}(B) = 1$ alors $[F]^{\mathbf{M}} = \overline{\mathbf{I}_{\mathbf{M}}(A)} + \mathbf{I}_{\mathbf{M}}(B) = 1$, donc $G \models F$ Soit une structure \mathbf{M} telle que $\mathbf{I}_{\mathbf{M}}(B) = 0$ et $\mathbf{I}_{\mathbf{M}}(A) = 0$ alors $[F]^{\mathbf{M}} = 1$ et $[G]^{\mathbf{M}} = 0$, donc
- 2.b. Considérons $H = \neg A \lor B$, pour toute structure \mathbf{M} , $[H]^{\mathbf{M}} = \overline{\mathbf{I}_{\mathbf{M}}(A)} + \mathbf{I}_{\mathbf{M}}(B) = [F]^{\mathbf{M}}$, donc $H \not \models F$

► CORRIGÉ DE L'EXERCICE 5.

5.1.
$$[F]_{v}^{\mathbf{M}} = [\forall x ((\exists y \, p(x, y)) \Rightarrow q(x))]_{v}^{\mathbf{M}}$$

$$= \prod_{m \in |\mathbf{M}|} [(\exists y \, p(x, y)) \Rightarrow q(x)]_{v[x \leftarrow m]}^{\mathbf{M}}$$

$$= \prod_{m \in |\mathbf{M}|} \left(\overline{[(\exists y \, p(x, y))]_{v[x \leftarrow m]}^{\mathbf{M}}} + [q(x)]_{v[x \leftarrow m]}^{\mathbf{M}} \right)$$

$$= \prod_{m \in |\mathbf{M}|} \left(\overline{\sum_{n \in |\mathbf{M}|} [p(x, y)]_{v[x \leftarrow m][y \leftarrow n]}^{\mathbf{M}}} + [q(x)]_{v[x \leftarrow m]}^{\mathbf{M}} \right)$$

5.1.a. Considérons la structure \mathbf{M}_1 telle que $|\mathbf{M}_1| = \mathbb{N}$ et $p^{\mathbf{M}_1} = \{(x,y) \mid x \neq y, y \geq 2 \text{ et y divise x}, y \geq 1 \}$ $q^{\mathbf{M}_1} = \{x \mid x \text{ n'est pas premier}\}, \text{ on alors}:$ $-\text{soit } [q(x)]_{v[x \leftarrow m]}^{\mathbf{M}_1} = 1,$

$$- \operatorname{soit} [q(x)]_{v[x \leftarrow m]}^{\mathbf{M}_1} = 1,$$

— soit
$$[q(x)]_{v[x \leftarrow m]}^{\mathbf{M}_1} = 0$$
, m est donc premier et il n'existe pas d'entier (autre que 1 et m) qui divise m , on a donc $[p(x,y)]_{v[x \leftarrow m][y \leftarrow n]}^{\mathbf{M}_1} = 0$ pour tout entier n donc $\sum_{n \in |\mathbf{M}_1|} [p(x,y)]_{v[x \leftarrow m][y \leftarrow n]}^{\mathbf{M}_1} = 1$

Donc
$$\overline{\sum_{n \in |\mathbf{M}_1|} \left[(\exists y \, p(x,y)) \right]_{v[x \leftarrow m][y \leftarrow n]}^{\mathbf{M}_1}} + \left[q(x) \right]_{v[x \leftarrow m]}^{\mathbf{M}_1} = 1 \text{ pour tout entier } n \text{ et } [F]_v^{\mathbf{M}_1} = 1 \text{ pour toute}$$

valuation v.

x n'est pas premier}, on a alors :

$$\begin{aligned} & - [q(x)]_{v[x \leftarrow 3]}^{\mathbf{M}_2} = 0 \\ & - [p(x,y)]_{v[x \leftarrow 3][y \leftarrow 3]}^{\mathbf{M}_2} = 1 \text{ donc } \sum_{n \in |\mathbf{M}_2|} [p(x,y)]_{v[x \leftarrow 3][y \leftarrow n]}^{\mathbf{M}_2} = 1 \text{ et } \frac{\sum_{n \in |\mathbf{M}_2|} [p(x,y)]_{v[x \leftarrow 3][y \leftarrow n]}^{\mathbf{M}_2} = 0 \\ & \text{n peut en déduire que } [(\exists y \, p(x,y)) \Rightarrow q(x)]_{v[x \leftarrow 3]}^{\mathbf{M}_2} = 0 \text{ et } [F]_{v}^{\mathbf{M}_2} = 0 \text{ pour toute valuation } v. \end{aligned}$$

On peut en déduire que $[(\exists y \, p(x,y)) \Rightarrow q(x)]_{v[x \leftarrow 3]}^{\mathbf{M}_2} = 0$ et $[F]_v^{\mathbf{M}_2} = 0$ pour toute valuation v.

5.2. Soit la formule $G = \forall x \,\exists y \, ((p(x) \land q(x,y)) \Rightarrow \neg p(y))$ $[(p(x) \land q(x,y)) \Rightarrow \neg p(y)]_{v[x \leftarrow m][y \leftarrow m+1]}^{\mathbf{M}} = 1 \text{ pour tout } m \in \mathbb{N} \text{ donc } [\exists y ((p(x) \land q(x,y)) \Rightarrow \neg p(y)]_{v[x \leftarrow m]}^{\mathbf{M}} = 1 \text{ pour tout } m \in \mathbb{N} \text{ donc } [\forall x \,\exists y \, ((p(x) \land q(x,y)) \Rightarrow \neg p(y))]_v^{\mathbf{M}} = 1 \text{ pour toute valuation } v$