NILAKSHAN KUNANANTHASEELAN

☑ nilakjhc@gmail.com │ ∰ https://nilakshankunananthaseelan.github.io │ ♥ Melbourne, Australia

OBJECTIVE: To leverage my expertise in developing scalable and efficient AI algorithms, multimodal large language models, and generative AI technologies to contribute to impactful research and innovation. I aim to push the boundaries of machine learning through the development of state-of-the-art solutions in deep learning, computer vision, and generative AI while collaborating with cross-functional teams to drive meaningful advancements in artificial intelligence that address real-world challenges.

EDUCATION

PhD in reading — Electrical and Computer Science Engineering

JAN 2023 - JUNE 2026 (EXPECTED)

Monash University, Australia

Focus: Personalizing foundational models via multimodal signals. | Advisor: Assoc/Prof Mehrtash Harandi

Bachelor of Science — Electronic and Telecommunication Engineering

Nov 2014 - Dec 2018

University of Moratuwa, Sri Lanka | Dean's Honour List | GPA: 3.8

TEACHING EXPERIENCE

Teaching Assistant — Monash University, Australia

Jan 2023 - Present

- ECE 4076/ECE 5176: Computer Vision (Semester 1 in 2023 and 2024)
- ECE 4179/ECE 5179/ECE 6179: Neural Networks and Deep Learning (Semester 2 in 2023 and 2024)

Work Experience

Graduate Research Assistant — Monash University, Australia

Jan 2023 - Present

- Language Grounded Visual Prompts for Enhanced Model Adaptation
 - Developed efficient machine learning algorithms leveraging multimodal signals to personalize foundational models for out-of-distribution (OOD) scenarios.
 - Addressed resource and data constraints in OOD adaptation by integrating world knowledge through multimodality.
 - Utilized model reprogramming techniques to adapt the CLIP model, improving its performance on vision-and-language tasks[LaViP Project] [2].
- Prompt-Guided Medical Image Segmentation:
 - Developed an algorithm for prompt-guided medical image segmentation by adapting the SAM model, leading to improved segmentation accuracy.
- Mixture of Experts (MoE) for Model Behavior Editing:
 - Explored the potential of the Mixture of Experts (MoE) frameworks to modify foundational model behaviour on specific concepts while retaining zero-shot capabilities on others.
 - Addressed challenges related to weight tampering and the impracticality of large-scale fine-tuning for continual edits.
- Reasoning Abilities of Multimodal Large Language Models (MLLMs):
 - Investigating the reasoning capabilities of MLLMs like LLaVA across different environments based on VisCoT dataset.

Teaching Assistant — Monash University, Australia

Jan 2023 - Present

- Assisted in delivering lectures and grading for ECE 4076/ECE 5176: Computer Vision and ECE 4179: Neural Networks and Deep Learning
- Developed supplementary materials and lab exercises to enhance student understanding.
- Mentored students in neural networks and deep learning projects.

Tech Lead, ML Research Team (Remote) — ExentAI, UK

June 2024 - Present

- Development of Multimodal LLM Applications:
 - Real Estate Document Analysis Copilot:

Led the development of a copilot system utilizing LLMs to analyze and extract information from real estate documents, and answer user queries.

Contract and Invoice Information System:

Designed and implemented an LLM-based system for processing contracts and invoices for reduced manual data entry time and improved information retrieval efficiency.

- Agent-based Retrieval-Augmented Generation (RAG) System for Financial Firms:

Developing a private Large Language Model (LLM) integrated with an agentic Retrieval-Augmented Generation (RAG) system, focusing on reducing response times, ensuring accurate value extraction, and improving trend visualization and forecasting capabilities.

Creating a document parser that effectively extracts structured and unstructured data from various documents and converts them into a format understandable by LLMs

Developing a fine-tuned model using proprietary financial datasets to replace the existing RAG-based QA system. Addressing privacy concerns by creating an agent-based solution to synthesize datasets using open-source models from **Meta** or **DeepSeek**, thereby avoiding the use of proprietary LLMs for generating high-quality synthetic data.

- Leveraging Small Agent Swarms for Basic NLP Tasks:

Developing a pipeline utilizing a multi-agent system composed of small open-source LLMs to perform basic Natural Language Processing (NLP) tasks, including sentiment analysis, keyword extraction, and named entity recognition.

• Research and Development:

Spearheaded the development of R&D components for various LLM-based tasks, focusing on integrating multimodal signals to enhance model performance.

Built Minimum Viable Products (MVPs) applications, facilitating rapid prototyping and iterative testing to meet client requirements.

Senior ML Research Engineer (Remote) — ExentAI, UK

June 2020 - Dec 2023

- Developed Domain-Specific Language Models:
 - Designed and implemented language models tailored for diverse text analytics tasks,
 - Deployed language models as scalable API services, facilitating seamless integration with various client platforms.
 - Implemented robust API endpoints using Flask and Docker, ensuring reliable and efficient model serving.
- Built OCR Pipeline:
 - Developed an Optical Character Recognition (OCR) pipeline to extract data from scanned documents and implemented a comprehensive solution for digitizing and organizing archival documents [Noolaham Foundation OCR Pipeline].
 - Leveraged Tesseract and Fast-SAM for image preprocessing and text extraction, ensuring high-quality data output.

Research Intern — Computational and Integrative Pathology Group, Northwestern University Feb 2021 - June 2023

• Breast Cancer Survival Analysis:

Prepared and processed breast cancer datasets for survival analysis, ensuring high data quality and integrity. Developed multi-task learning models to predict patient survival outcomes and implemented domain-adversarial training techniques to enhance model generalization across diverse data distributions.

• Hyperparameter Tuning and Model Optimization:

Created a tailored hyperparameter tuning package using **Ray** for automating the optimization process and enhancing model reliability and accuracy in survival data analysis through systematic parameter adjustments and optimization strategies.

Senior ML Research Engineer (Remote) — Analog Inference, USA

Mar 2019 - Nov 2022

- Developed Optimized Models for Deep Learning Accelerators:
 - Developed and implemented deep learning models for diverse computer vision tasks, enhancing system accuracy and robustness under varying analog hardware constraints.
 - Developed specialized algorithms for optimizing models on deep learning accelerators, incorporating techniques like quantization, compression, pruning, and noise compensation.
- \bullet Implementation of Integer-Only Models:
 - Implemented integer-only versions of models such as **ResNet**, **FCN**, **YOLOv5**, **MIPNet**, and **Person-ReID** to overcome hardware constraints and enable execution on analog accelerators.
 - Developed algorithms for quantization and pruning tailored to specific hardware constraints.
 - Created a model structure prediction tool that automates the implementation of corresponding hardware models.

Undergraduate Research Intern (Remote) — CooperLab

Feb 2018 - Oct 2019

- Developed Region-Based Object Detector and Classifier:
 - Created and deployed a region-based object detector and classifier specifically designed for counting white blood cells in non-neoplastic samples [1].
 - Utilized machine learning algorithms and computer vision techniques to accurately identify and count white blood cells, achieving a median AUC of 0.9591 and a median error rate of 6.04%.
 - Seamlessly integrated the developed model with **HistomicsTK**, enhancing the accuracy and efficiency of white blood

Projects

Graduate Research Assistant — Prompt-Guided Medical Image Segmentation May 2024 - October 2024

• Adapted the Segment Anything Model (SAM) for medical image segmentation using model reprogramming techniques. Achieved competitive performance compared to MedSAM, trailing by 0.15 points in multi-organ segmentation and, outperforming MedSAM by 7.57 points in the binary class segmentation task.

Graduate Research Assistant — Mixture of Experts for Editing Foundational Model Continually July 2024 - Present

• Developed a LoRA-based Mixture of Experts (MoE) algorithm for the **CLIP** model to continually modify its behaviour while retaining zero-shot capabilities for remaining concepts.

By optimizing with only the selected concepts, our baseline algorithm removes 95% of concept knowledge while retaining the knowledge of remaining concepts with a loss of 10% across three steps of continual editing.

We aim to improve the baseline to assist the unlearning in multimodal models such as LLaVA where CLIP/SigLIP-based encoders are utilized.

SKILLS AND INTERESTS

Machine Learning & AI: Finetuning Large Vision-and-Language Models, Multimodal Large Language Models (MLLMs), Visual Programming, Computer Vision, Model Adaptation, Parameter-Efficient Fine-Tuning (PEFT), Mixture of Experts (MoE), Retrieval-Augmented Generation (RAG), In-Context Learning

Programming Languages: Python, MATLAB, C++

Frameworks & Libraries: PyTorch, TensorFlow, Keras, OpenCV, MLflow, LLaMaIndex, LangChain, LangGraph, Qdrant

Tools & Technologies: CUDA, Flask, Docker, Git, LATEX, HTML, Bootstrap, Inkscape

Grants and Awards

Jan 2023 Monash International Research Student Graduate Scholarship

Nov 2023 - Jun 2024 Research grant by Monash eResearch: "Personalizing Foundational Models via Multimodality", Computing units worth A\$33K

Feb 2024 Student Scholar Program grant by AAAI: "LaViP: Language Grounded Visual Prompts"

July 2024 - Present Research grant by Monash eResearch: "Personalizing Foundational Models via Multimodality", Computing units worth A\$47K

SELECTED PUBLICATIONS

- [1] Ramraj Chandradevan, Ahmed A. Aljudi, Bradley R. Drumheller, Nilakshan Kunananthaseelan, Mohamed Amgad, David A. Gutman, Lee A.D. Cooper, and David L. Jaye. Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells. *Laboratory Investigation*, 100(1):98–109, 2020.
- [2] Nilakshan Kunananthaseelan, Jing Zhang, and Mehrtash Harandi. Lavip: Language-grounded visual prompting. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 2840–2848, 2024.