Centro de Investigación y Estudios Avanzados del IPN Unidad Tamaulipas Protocolo de tesis

Título: Estrategias para la exploración coordinada multi-VANT

Candidato: Luis Alberto Ballado Aradias Asesor: Dr. José Gabriel Ramírez Torres Co-Asesor: Dr. Eduardo Arturo Rodríguez Tello

15 de agosto de 2023

Resumen

La exploración multi-robot ha surgido como un enfoque prometedor para la generación eficiente del mapa de un medio ambiente desconocido. Un enfoque colaborativo entre múltiples robots ofrece una mayor eficiencia de exploración, una obtención de información más rápida y mayor robustez de ejecución, en comparación con implementaciones donde se emplea un único robot. Sin embargo, la exploración multi-robot plantea diversos desafíos que deben abordarse para su correcta implementación, como la comunicación, la colaboración y la fusión de datos.

En la última decada se ha tenido un aumento en la investigación y el desarrollo en el campo de los véhiculos aéreos no tripulados (VANTS), lo que ha dado lugar a importantes avances e innovaciones en esta área. Los sistemas multi-VANT permiten la adquisición simultánea de datos desde múltiples puntos de vista privilegiados, en comparación con robots terrestres, lo que permite mejorar la generación de mapas de entornos desconocidos. El uso de algoritmos de coordinación inteligente y la toma descentralizada de decisiones mejora la eficiencia y la robustez de estos sistemas. Además, un buen protocolo de comunicación permite una colaboración fluida entre los robots, mejorando su capacidad para navegar, explorar y adquirir datos de áreas grandes y complejas.

Asimismo, la integración de sensores de última generación mejora la precisión y confiabilidad de los sistemas multi-VANT, volviéndolos herramientas muy útiles en varios dominios, incluida la gestión de desastres, la agricultura de precisión, la inspección de infraestructura y la vigilancia militar [?,?] o en espectaculares animaciones aéreas [?].

La mayor parte de las aplicaciones actuales suelen carecer de autonomía, requiriendo la asistencia y vigilancia constantes de un usuario humano. Para que un robot se considere autónomo deberá tomar decisiones y realizar tareas sin necesidad de que alguien le diga qué hacer o guiarlo paso a paso. Tener la capacidad de percibir su entorno y usar la información para decidir cómo moverse son considerados altos niveles de autonomía. Para llegar a ello, el robot debe resolver primero problemas como su localización, construir el mapa de su entorno y posteriormente usarlo y navegar dentro de él.

El enfoque de este trabajo es la propuesta de una arquitectura descentralizada de software capaz de coordinar múltiples vehículos aéreos no tripulados (VANTS) con habilidades para la exploración, generación de mapas de áreas desconocidas y planificación de rutas para explorar eficientemente un área de interés, donde cada VANT participa de forma independiente y proactiva al cumplimiento de la misión. Este problema implica la toma de decisiones complejas, como asignar tareas de exploración a los robots, evitar colisiones y planificar rutas óptimas. Factores como la comunicación entre robots, la incertidumbre del entorno y las limitaciones de recursos de energía forman parte de los criterios considerados en este trabajo.

Palabras claves: estrategias multi-VANT, exploración multi-VANT, planificación de rutas multi-VANT, arquitectura de software multi-VANT.

Datos Generales

Título de proyecto

Estrategias para la exploración coordinada multi-VANT

Datos del alumno

Nombre: Luis Alberto Ballado Aradias

Matrícula: 220229860003

Dirección: Juan José de La Garza #909

Colonia: Guadalupe Mainero C.P. 87130

Teléfono (casa): +52 (833) 2126651

Teléfono (lugar de trabajo): +52 (834) 107 0220 + Ext Dirección electrónica: luis.ballado@cinvestav.mx URL: https://luis.madlab.mx

Institución

Nombre: CINVESTAV-IPN
Departamento: Unidad Tamaulipas

Dirección: Km 5.5 carretera Cd. Victoria - Soto la Marina.

Parque Científico y Tecnológico TECNOTAM,

Ciudad Victoria, Tamaulipas, C.P. 87130

Teléfono: (+52) (834) 107 0220

Beca de tesis

Institución otorgante: CONAHCYT

Tipo de beca: Maestría Nacional

Vigencia: Septiembre 2022 - Agosto 2024

Datos del asesor

Nombre: Dr. José Gabriel Ramírez Torres

Dirección: Km. 5.5 carretera Cd. Victoria - Soto la Marina

Parque Científico y Tecnológico TECNOTAM Ciudad Victoria, Tamaulipas, C.P. 87130

Teléfono (oficina): (+52) (834) 107 0220 Ext. 1014

Institución: CINVESTAV-IPN
Departamento adscripción: Unidad Tamaulipas
Grado académico: Doctorado en Mecánica

Nombre: Dr. Eduardo Arturo Rodríguez Tello

Dirección: Km. 5.5 carretera Cd. Victoria - Soto la Marina

Parque Científico y Tecnológico TECNOTAM Ciudad Victoria, Tamaulipas, C.P. 87130

Teléfono (oficina): (+52) (834) 107 0220 Ext. 1100

Institución: CINVESTAV-IPN

Departamento adscripción: Unidad Tamaulipas

Grado académico: Doctorado en Informática

Descripción del proyecto

El proyecto se centra en la problemática de la colaboración de múltiples vehículos aéreos no tripulados (VANTS) para tareas de exploración, con el objetivo de desarrollar y evaluar una arquitectura de software descentralizada en el que varios vehículos aéreos no tripulados trabajen de forma independiente y autónoma, pero coordinada con el resto de los vehículos, para explorar entornos desconocidos de manera eficiente.

Un VANT, también conocido como dron o recientemente como sistema aéreo no tripulado (UAS), se refiere a una aeronave que opera sin un piloto humano a bordo. Los VANTS están equipados con sensores, sistemas de comunicación y computadoras a bordo que les permiten operar de forma autónoma o bajo control remoto. Estos vehículos pueden ser de diferentes tamaños, desde pequeños modelos hasta máquinas comerciales o militares más grandes[?].

En el contexto del proyecto de VANTS colaborativos para tareas de exploración descentralizada, estos vehículos autónomos se utilizarán para navegar y explorar entornos desconocidos. Al trabajar juntos de manera coordinada, los VANTS deberán compartir información, tareas y recursos, optimizando el proceso de exploración para una mayor eficiencia y cobertura.

El proyecto tiene como objetivo desarrollar e integrar distintos algoritmos y protocolos en una estrategia de control descentralizada, que permita que estos VANTS se comuniquen de manera efectiva, se distribuyan tareas de exploración, planifiquen trayectorias, eviten colisiones, para lograr una exploración colaborativa de un medio ambiente dado.

Al aprovechar el potencial de la colaboración multi-VANT, el proyecto tiene como propósito contribuir a los avances en las técnicas de exploración distribuida con agentes aéreos autónomos y expandir las aplicaciones potenciales de los VANTS en varios dominios.

Antecedentes y motivación para el proyecto

Los robots de servicio se están convirtiendo rápidamente en una parte esencial de las empresas que buscan formas innovadoras de atender a los clientes, mientras mejoran sus resultados de productividad, fuera del contexto industrial. Los **robots de servicio** generalmente se utilizan para ayudar a los empleados en sus tareas diarias para que puedan concentrarse en actividades más importantes [?].

Los VANTS se han vuelto cada vez más frecuentes en el mundo actual, encontrando aplicaciones en una amplia gama de industrias. En fotografía y video aéreas, los VANTS pueden obtener sorprendentes tomas aéreas para fines de filmación, bienes raíces, turismo y entretenimiento. En la agricultura, los VANTS se utilizan para el control de cultivos, la fumigación de precisión, mejorando la productividad y gestión de recursos. En el mantenimiento de infraestructuras los VANTS juegan un papel importante, ayudando en la inspeción de puentes, edificios, líneas eléctricas y tuberías, reduciendo así los riesgos y costos asociados con las inspecciones manuales. En misiones de búsqueda y rescate, donde ayudan en la localización de personas desaparecidas o en evaluaciones posteriores a un desastre, los VANTS han demostrado ser muy útiles.

La mayoría de estas aplicaciones son sencillas, estáticas, en espacios controlados y con rutas predeterminadas o bien en contextos de operación por control remoto por un usuario humano. Para aplicaciones más complejas, donde el robot debe responder de manera autónoma (con mínima intervención humana) a los cambios del medio ambiente, se requiere que el robot cuente con habilidades de identificación de contextos, planificación de tareas y manejo de mapas.

La importancia de la exploración con robots radica en su capacidad para superar los riesgos que enfrentan los humanos al exponerse a entornos desconocidos y peligrosos. Los robots se pueden diseñar para resistir a condiciones extremas, como las misiones espaciales[?], la exploración en aguas profundas[?] o áreas afectadas por desastres[?], donde la presencia humana puede no ser segura, permitiéndoles acceder a lugares de difícil acceso [?]. La exploración con robots amplía nuestro conocimiento e impulsa la innovación. Pero la vasta mayoría de los desarrollos en esta área de investigación se ha centrado en sistemas que emplean un único robot.

No se puede subestimar la importancia de utilizar sistemas con múltiples robots en las actividades de exploración, ya que su escalabilidad y adaptabilidad los hace adecuados en varios escenarios y entornos, que van desde misiones de pequeña escala a misiones de gran escala o demasiado complejas para un único robot. Los sistemas múlti-robot ofrecen beneficios que mejoran la efectividad y la eficiencia en este tipo de tareas. Así, emplear múltiples robots permite la cobertura simultánea de un área más grande, lo que resulta en una exploración más rápida y eficaz del entorno [?], lo que es extremadamente importante en aplicaciones donde el tiempo es crítico, como las misiones de búsqueda y rescate.

En un sistema multi-VANT, se puede colaborar intercambiar información y optimizar rutas para minimizar la redundancia y agilizar el proceso de exploración. Además, el uso de múltiples VANTS mejora la solidez de la misión, agregando tolerancia en caso de fallas. Si un VANT encuentra dificultades, otros VANTS pueden continuar la exploración, asegurando la continuidad de la misión y reduciendo el riesgo de fracaso de la misma. Además, los sistemas multi-VANT permiten la especialización de tareas, donde diferentes VANTS pueden equiparse con sensores o instrumentos especializados para recopilar datos específicos.

Pero el uso de sistemas multirobot trae consigo retos inherentes que deben abordarse. La coordinación y colaboración entre múltiples robots presenta desafíos en términos de comunicación, asignación de tareas y sincronización. Establecer canales de comunicación efectivos entre los robots es crucial para compartir información, coordinar acciones y evitar colisiones. Se requieren algoritmos de asignación de tareas para distribuir diferentes tareas de exploración entre los robots, teniendo en cuenta factores como la ubicación, las capacidades y los niveles de energía para optimizar la división del trabajo. Además, es fundamental garantizar la sincronización y evitar colisiones entre los robots en entornos dinámicos. Por otra parte, la integración y fusión de datos de múltiples robots plantea desafíos en términos de sincronización, confiabilidad y consistencia de datos, para combinar de manera efectiva los datos recopilados por los robots individuales en una representación coherente del entorno.

Durante la planificación de rutas seguras, se deben tomar en cuenta las restricciones de movimiento propias del robot, para que éste pueda ejecutar la trayectoria en el mundo real. Los problemas que emergen de la planificación de trayectorias es la escalabilidad y eficiencia computacional. Considerando mover un VANT en 3D que puede trasladarse y rotar, el problema consiste en optimizar trayectorias en 6 grados de libertad (DoF) empleando algoritmos que deben ejecutarse en tiempo real dentro de dispositivos computacionalmente limitados.

?[?] mencionan que la dificultad en la planificación de trayectorias para múltiples VANTS es inherente a la complejidad espacial del entorno y las maniobras que pueda realizar el VANT. La minimización de la longitud de las rutas y la seguridad del trayecto para todos los robots durante el vuelo son partes clave cuando se crea un planificador de trayectorias multi-VANT.

En últimas decadas se han propuesto diversas soluciones globales de planificación basadas en

Figura 1: Ilustra los retos multi-VANT

distintas técnicas de programación (Mixed Integer Linear Programming (MILP), Nonlinear programming (NP) y Dynamic Programming (DP)), pero su escala computacional crece exponencialmente conforme aumenta el espacio de búsqueda.

Otros métodos que han sido ampliamente trabajados son los Campos de Potencial Artificial por sus ventajas de cómputo en tiempo real. Desafortunadamente, éste método cae en mínimos locales de la función potencial, llegando a fallar para encontrar una solución.

También se han propuesto diversas técnicas de Inteligencia Computacional para el problema de planificación de trayectorias (Algoritmos Genéticos GA, Ant Colony Optimization (ACO) ? [?], Particle Swarm Optimization (PSO) y Evolucion Diferencial (DE)). Estos algoritmos han demostrado crear rutas navegables para los VANT y son apliamente usados para problemas de planificacion de rutas complejos. Desafortunadamente, estas técnicas requieren de amplios recursos computacionales, lo que las hace inadecuadas para implementar en los VANTS actuales.

Planteamiento del problema

Desarrollar una arquitectura descentralizada de control, implementada en cada uno de los miembros de un conjunto de $\mathcal V$ vehículos aéreos no tripulados, que refleje una estrategia de exploración multi-VANT para la exploración de un medio ambiente dado. El propósito de esta arquitectura de control es que cada uno de los VANT participe de manera independiente pero coordinada para reducir el tiempo total de exploración, colaborando y compartiendo información eficazmente con los demás miembros del equipo.

La estrategia propuesta debe tomar en cuenta las limitaciones de comunicación, sensores y energía, para distribuir las tareas de exploración entre todos los miembros del equipo de VANTs, así como establecer las trayectorias seguras para cada uno de ellos.

La solución debe tener en cuenta los obstáculos, los entornos dinámicos, las limitaciones de comunicación y la coordinación entre los VANTS para evitar colisiones. Para lograr una exploración eficiente y completa con un tiempo y recursos mínimos, el problema requiere la creación de algoritmos y técnicas de optimización.

La función objetivo tomará en cuenta distintos objetivos específicos del problema:

- Maximizar la cobertura del área de interés
- Minimizar el tiempo total requerido para cubrir el área de interés
- Maximizar la cantidad de información recolectada
- Asegurar la consistencia de la información recolectada y fusionada en un único mapa, compartido entre todos los robots

Con base en lo anterior, surgen las siguientes preguntas de investigación:

- ¿Qué acciones deberán de realizar los VANTS para explorar el espacio completo lo más rápido posible?
- ¿Cualés son los algoritmos mejor adaptados para ejecutar en equipos computacionalmente limitados?
- ¿Cómo asegurar que la nueva información que aporte cada uno de los VANTs se integre correctamente a la información ya conocida y se distribuya entre todos los miembros del equipo?

Hipótesis

La eficiencia de exploración y la cobertura de un área objetivo llevada a cabo por un grupo de VANTS se pueden mejorar empleando un enfoque coordinado, colaborativo y descentralizado. El sistema multi-VANT puede lograr una exploración más completa a través de la asignación efectiva de tareas, la planificación de la trayectoria y la coordinación. La hipótesis asume que la integración de múltiples VANTS con diversas capacidades conducirá a mejores resultados de exploración, incluida una mayor cobertura de área, una mejor recopilación de datos y un rendimiento general mejorado en comparación con un enfoque de un solo VANT.

Objetivos generales y específicos del proyecto

General

Diseñar una arquitectura de software descentralizada capaz de resolver los problemas de localización, mapeo, navegación y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

De manera más específica, se listan los siguientes objetivos:

- 1. Construcción de la arquitectura propuesta. Evaluar diferentes soluciones presentes en la literatura, asociadas con la coordinación multi-VANT, para valorizar aspectos como la comunicación, la evasión de obstáculos, la asignación de tareas y la sincronización de información. Basándose a esta valoración, construir una arquitectura descentralizada de software para la coordinación multi-VANT.
- 2. Evaluación de la propuesta. Emplear una herramienta de simulación de libre uso para robótica, para el desarrollo y puesta en marcha de la propuesta de arquitectura de software, para evaluar el desempleño de dicha arquitectura. Al emplear estándares actuales de modularidad de diseño, esta herramienta de simulación deberá permitir una transición directa, en trabajos futuros, a la implementación física de la arquitectura.
- 3. **Comparación y análisis**. Comparar y analizar los resultados obtenidos con enfoques existentes en la coordinación multi-VANT, mostrando las ventajas y desventajas de la estrategia propuesta, al compararla con otras soluciones propuestas en la literatura. Con base a estos análisis, proponer recomendaciones y pautas prácticas para la implementación y aplicación de la estrategias de coordinación multi-VANT en escenarios reales, considerando factores como la escalabilidad, la robustez y los recursos computacionales requeridos.

Metodología

Siguiendo los objetivos anteriores, la metodología propuesta se divide en tres etapas, iniciando en septiembre del 2023 y terminando en agosto del 2024. A continuación se detallan cada una de las actividades que se plantean realizar en cada una.

Etapa 1. Análisis y diseño de la solución propuesta

Esta etapa comprende la revisión de la literatura de manera más completa, que permita contar con la información necesaria para la elección de los mejores algoritmos para abordar cada una de las problemáticas asociadas con la coordinación de múiltiples robots en tareas de exploración, detectando áreas de oportunidad para el desarrollo de una estrategia descentralizada de coordinación. Una vez realizada la elección de los algoritmos que se usarán para la propuesta de arquitectura de software, se procederá a revisar y estudiar las arquitecturas para los robots colaborativos. Finalmente, se realizará el diseño de la arquitectura.

Las actividades específicas a realizarse en la etapa 1, son:

- **E1.A1. Revisión estado del arte**. Ampliar la revisión de la literatura sobre coordinación y exploración multi-VANT.
- **E1.A2.** Evaluación de aptitudes. Revisar y documentar los aspectos relevantes (asi como sus limitantes) que permiten la colaboración, coordinación y balanceo de la carga de trabajo multi-VANT.
- **E1.A3.** Selección de algoritmos. Seleccionar los algoritmos para planificación de trayectorias y exploración en ambientes desconocidos representativos para un entorno de computación restringida.

- **E1.A4.** Elaboración de solución. Definir la arquitectura de software para escenarios en aplicaciones multi-VANT apegadas a las especificaciones de computadora de placa reducida (Raspberry Pi, Esp32 ... etc.).
- **E1.A5. Documentación Etapa 1**. Elaborar la documentación de la revisión del estado del arte y del trabajo realizado que formará parte de la tesis.
- E1.A6. Revisión de tesis Etapa 1. Revisión y corrección de avances con los asesores.

Etapa 2. Implementación y validación

Esta etapa se centra en el desarrollo e implementación del diseño de la arquitectura de software para la coordinación multi-VANT, utilizando una herramienta de simulación de robots de libre acceso, cumpliendo estándares de modularidad de diseño.

Las actividades específicas a realizarse en la etapa 2, son:

- **E2.A1.** Selección del simulador. Al tener definida la arquitectura de software y conocer las estructuras de datos que se utilizarán, evaluar los diversos simuladores para robótica de libre uso. (Revisar temas de modelos 3D, dinámica del robot, representación del ambiente 3D, simulación de sensores).
- **E2.A2.** Visualización de datos. Conocer las herramientas para la visualización y telemetría y creación de un modelo 3D de acuerdo al simulador seleccionado.
- **E2.A3.** Control de desplazamientos. Crear movimientos y control de un VANT y múltiples VANTS, algoritmos que forman parte de la capa reactiva del VANT.
- **E2.A4.** Desarrollo de algoritmos de exploración. De acuerdo con la revisión del estado del arte, se implementará el algoritmo propuesto para la exploración con un VANT
- **E2.A5.** Implementación un solo VANT. Realizar pruebas y corregir errores con base a los desarrollos realizados.
- **E2.A6. Simulación un solo VANT**. Realizar pruebas de simulación con un solo VANT, de la solución propuesta.
- **E2.A7. Desarrollo de coordinación**. Al contar con la exploración y navegación exitosa de un solo VANT, se procede al desarrollo de coordinación multi-VANT.
- **E2.A8.** Implementación multi-VANT. Realizar pruebas y corrección de errores con base a los desarrollos realizados para la coordinación multi-VANT.
- **E2.A9. Simulación multi-VANT**. Realizar pruebas de simulación multi-VANT de la solución propuesta.
- **E2.A10.** Documentación Etapa 2. Elaborar la documentación del desarrollo e implementación de la propuesta de arquitectura de software para la coordinación multi-VANT que formará parte de la tesis.
- **E2.A11.** Revisión de tesis Etapa 2. Revisión y corrección de capítulos con los asesores.

Etapa 3. Evaluación experimental, resultados y conclusiones

Partiendo del prototipo y las simulaciones desarrolladas en la etapa anterior, en esta etapa se realizan todas las actividades relacionadas con la evaluación, compilación y análisis de resultados y la escritura de los capítulos restantes de la tesis.

Las actividades específicas a realizarse en la etapa 3 son:

- **E3.A1. Análisis comparativo de la solución**. Experimentos para evaluar el desempeño de la solución propuesta creada en la etapa anterior.
- **E3.A2.** Recopilación y análisis de resultados. Recabar la información de los resultados, realizar su análisis y generar la documentación correspondiente.
- **E3.A3. Documentación Etapa 3**. Elaborar la documentación de los resultados obtenidos y las conclusiones que formarán parte de la tesis.
- **E3.A4.** Revisión de tesis. Revisión y corrección de tesis con los asesores.
- **E3.A5.** Divulgación. De acuerdo a los progresos del trabajo tesis, se estará en total disposición para participar en espacios y foros donde se pueda hacer divulgación científica, cubriendo así los requisitos de retribución social de la institución.
- E3.A6. Proceso de titulación. Obtención del grado.

Infraestructura

Para el desarrollo de este proyecto de investigación se hará uso de un equipo de cómputo con las siguientes características:

- iMac (21.5-inch, Late 2015)
- Procesador 2.8 GHz Quad-Core Intel Core i5
- Memoria Ram 8 GB 1867 MHz DDR3
- Graphics Intel Iris Pro Graphics 6200 1536 MB
- Almacenamiento 1 TB

Cronograma de actividades (plan de trabajo)

	Cuatrimestre 1 ^a		Cuatrimestre 2 ^b			Cuatrimestre 3 ^c						
	1	2	3	4	1	2	3	4	1	2	3	4
Etapa 1												
E1.A1. Revisión literatura relevante ^d												
E1.A2. Selección de algoritmos												
E1.A3. Diseño de la arquitectura de software												
E1.A4. Documentación Etapa 1												
E1.A5. Revisión de tesis Etapa 1												
Etapa 2			•									
E2.A1. Selección Simulador												
E2.A2. Visualización de datos ^e												
E2.A3. Control de desplazamientos ^f												
E2.A4. Desarrollo de algoritmo de exploración												
E2.A5. Implementación y simulación ^g												
E2.A6. Desarrollo de coordinación												
E2.A7. Implementación y sumulación ^h												
E2.A8. Documentación Etapa 2												
E2.A9. Revisión de tesis Etapa 2												
Etapa 3												
E3.A1. Experimentación de solución												
E3.A2. Recopilación resultados												
E3.A3. Documentación Etapa 3												
E3.A4. Revisión de tesis												
E3.A5. Divulgación ⁱ												
E3.A6. Proceso de titulación												

^aCorrespondiente a los meses de Septiembre, Octubre, Noviembre, Diciembre del 2023

^bCorrespondiente a los meses de Enero, Febrero, Marzo, Abril del 2024

^cCorrespondiente a los meses de Mayo, Junio, Julio, Agosto del 2024

^dRevisión de alertas de trabajos relacionados sobre la exploración y colaboración multi-VANT, evaluación de aptitudes en trabajos recientes

^eVisualización Octomap en Simulador

^fUn VANT

[§]Se considera un solo agente que resuelva la tarea de exploración autónoma con evación de obstáculos

 $[^]h$ Se considerán los múltiples-VANT que resuelva la tarea de exploración autónoma con evación de obstáculos

¹Abierto a espacios de divulgación de acuerdo con las actividades de retribución social

Estado del arte

Las aplicaciones de la robótica industrial se han centrado en realizar tareas simples y repetitivas. La necesidad de robots con capacidad de identificar cambios en su entorno y reaccionar sin la intervención humana, da origen a los robots inteligentes. Aunado a ello, si deseamos que el robot se mueva libremente, los cambios en su entorno pueden aumentar rápidamente y complicar el problema de desarrollar un robot que muestre un comportamiento inteligente.

Uno de los desafíos clave en la colaboración de múltiples VANTS es la planificación de rutas. Se han desarrollado diversos algoritmos para optimizar la planificación de rutas dentro de la robótica móvil, minimizando los riesgos de colisión y mejorando la eficiencia de sus misiones. Estos algoritmos tienen en cuenta varios factores, como las restricciones del robot y las ubicaciones del objetivo, para generar trayectorias seguras y eficientes.

El objetivo principal de los algoritmos de navegación es el de guiar al robot desde el punto de inicio al punto destino. Los trabajos por ?[?], dieron respuesta a problematicas de navegación eficiente, que no requieren de una representación del medio ambiente y emplean, por lo tanto, pocos recursos computacionales y de memoria (algoritmos tipo bug).

Matemáticamente, el problema de planificación de rutas es resuelto a través del modelado del medio ambiente utilizando grafos, siendo un grafo una representación matemática de vértices y aristas. ?[?], al mejorar el algoritmo de Dijkstra para el robot Shakey, logró navegar en una habitación que contenía obstáculos fijos. El objetivo principal del algoritmo A* es la eficiencia en la planificación de rutas. El algoritmo D*, propuesto por ?[?], ha demostrado operar de manera eficiente ante obstáculos dinámicos; en comparación con el algoritmo A* que vuelve a ejecutarse al encontrarse con un obstáculo no previsto inicialmente, el algoritmo D* usa la información previa para buscar una nueva ruta hacia el objetivo.

El algoritmo RRT, propuesto por ?[?], es ampliamente usado para la planificación de rutas en robots modernos. El algoritmo construye de forma incremental una estructura de árbol mediante un muestreo aleatorio en el espacio de configuraciones, uniendo aleatoriamente nuevas posiciones al árbol existente hasta alcanzar la posición final. Las modificaciones realizadas al algoritmo RRT por ?[?], incorporando una heurística de costo por recorrer, permite encontrar rutas casi óptimas de manera eficiente. Este enfoque es ampliamente usado en problemas de navegación autónoma y planificación de movimiento.

Los recientes trabajos de ?[?], siguen demostrando la capacidad de implementación de algoritmos clásicos de planificación de trayectorias, como los grafos de visibilidad, para tareas en entornos conocidos y no conocidos, utilizando una representación del ambiente a base de poligonos, logrando un rápido planificador que también resuelve los obstáculos nuevos en el ambiente, logrando resultados comparables a las estategias más recientes como A*,D* e inclusive RRT*.

Además de la planificación de rutas, la coordinación de múltiples robots para la exploración requiere de una estrategia una comunicación efectiva, que garantice la coherencia del mapa que se va generando. Se han investigado diferentes protocolos de comunicación y estrategias de intercambio de información para permitir la colaboración. Algunos enfoques utilizan comunicación directa entre los robots, mientras que otros emplean una arquitectura de red donde los múltiples robots se comunican a través de una infraestructura descentralizada ?[?] mostrando la tolerancia a fallas en equipos para tareas de búsqueda y rescate.

En el Centro de Investigación y Estudios Avanzados del Institudo Politécnico Nacional Unidad Tamaulipas se han realizado investigaciones en el área de exploración multi-robot y diseño de

Método	Completez	Óptimo	Escalable	Notas
Grafo de visibilidad	✓	1	×	Mucho espacio libreMala escalabilidad
				■ El robot pasa cerca de obstaculos
Diagramas de Voronoi	✓	×	X	■ Espacio libre máximo
				 Rutas conservadoras
				 Mala escalabilidad
Campos de potencial artificial	1	X	Depende del ambiente	■ Fácil de implementar
				Suceptible a mínimos locales
Dijkstra/A*	✓	Grafo	X	 Más rápido que la búsqueda desinfor- mada
				A* usa una función heurística para impulsar la búsqueda de manera eficiente
				 Mala escalabilidad
PRM	1	Grafo	1	■ Eficiente para pro- blemas con consultas múltiples
				■ Completez probabi- lística
				■ Camino irregular
RRT	1	Х	1	■ Eficiente para proble- mas de consulta úni- ca
				■ Completez probabi- lística
				Camino irregular

Cuadro 1: Métodos para planificación de trayectorias usados en robótica móvil

prototipos de VANTS, lo cual sirve como antecedente para este trabajo. Este relevante desarrollo, propuesto por ?[?], tiene como objetivo principal el despliegue de una estrategia de coordinación para múltiples robots móviles basado en un enfoque de auto-ofertas. También se han desarrollado

trabajos de investigación ?[?] cuyos objetivos son la generación de mapas fotográficos utilizando vehículos aéreos no tripulados de baja altitud.

Un resultado interesante es el propuesto por ?[?], del Cinvestav Unidad Guadalajara, que se centra en las posibilidades de navegación autónoma de un VANT. También, el trabajo propuesto por ?[?], tiene como objetivo el desarrollo de arquitectura para un único VANT en tareas de exploración. Ninguno de estos trabajos aborada la exploración multi-VANT.

La exploración de un ambiente desconocido empleando múltiples vehículos aéreos no tripulados es un área relativamente nueva y con mucho crecimiento en los últimos años. Se han abordado una variedad de temas distintos para lograr la exploración autónoma, desde la planificación de rutas para múltiples robots en tareas de exploración ?[?], estrategias para la coordinación y protocolos de comunicación. Diversos estudios multi-VANT se han realizado para tareas como el monitoreo ambiental ?[?], agricultura de presición ?[?] y operaciones de búsqueda y rescate ?[?].

La dirección en que apunta el estado del arte actualmente se puede atribuir a los avances en tecnología en la última década. Investigadores de diversas áreas, que incluyen las ciencias computacionales y la ingeniería, han contribuido al crecimiento de este campo.

Las bases para la exploración autónoma e inovaciones son heredadas de algoritmos ya empleados en la robótica móvil. [ver cuadro ??]. Uno de los primeros trabajos en la exploración con robots, es la propuesta de fonteras ?[?], donde define como una frontera a la línea entre las zonas exploradas y las no exploradas de un área de interés. Durante la navegación la información percibida por el robot crece, moviendo las fronteras hasta que no existan más fronteras. En el trabajo de ?[?], se combina la estrategia basada en fronteras con técnicas de planificación de trayectorias Lazy Theta* en un VANT.

Trabajos como el de ?[?] han logrado optimizar problemas de alta dimensionalidad como el control de navegación para un robot con cuatro patas, haciendo uso de aprendizaje por refuerzo y con ayuda de simulaciones, logrando obtener un esquema de control que le permiten al robot resolver el problema de navegación. Sin embargo, al momento de probar el esquema en un robot real, el robot no pudo hace un paso correcto. Este problema se debe a la distancia que existe entre la simulación y la realidad, en particular al no considerar las incertidumbres en las lecturas de los sensores.

Pero las simulaciones permiten demostrar el correcto funcionamiento de los esquemas de control. A través de simulaciones híbridas e introduciendo ruidos estocásticos en las simulaciones, es posible lograr resultados muy prometedores, como en el caso de éxito en el DARPA Subterranean Challenge[?], que utiliza una exploración basada en grafos y un mapa de ocupación (OctoMap) para simular el entorno tridimensional.

En lo que respecta a la organización de la arquitectura de control, ?[?] obtiene resultados muy interesantes empleando una arquitectura secuencial con capas de proyección, decisión y control posterior a un procesamiento de imagen, con uso de algoritmos para la estimación de un mapa, logrando navegar en entornos extremadamente complejos a altas velocidades.

A lo largo del desarrollo de la robotica móvil se ha mostrado que estrategias de control basadas en comportamientos (behavior-based) pueden presentar un mejor desempeño que las arquitecturas secuenciales ?[?]. Estas arquitecturas están organizadas en capas paralelas, cada una codificando un comportamiento distinto, en la que el robot sensa su entorno y reacciona a los estímulos. La respuesta final del robot es una combinación de las distintas respuestas activadas por los sensores. Este enfoque permite al robot resolver situaciones complejas a través de soluciones computacio-

nales compactas y que requieren de pocos recursos, como la navegación y evadir obstáculos no previstos.

Un enfoque muy recurrente para abordar problemas complejos, como la planificación de trayectorias, la fusión de datos y la distribución de tareas, es el uso de las metaheurísticas Bio-inspirada. Estas estrategias se inspiran en sistemas y procesos biológicos para resolver problemas complejos de optimización. Existen varios tipos de metaheurísticas bio-inspiradas:

- 1. **Algoritmos Genéticos (GA)**. Propuestos por J. Holland, se basan en los principios de selección natural, usando operadores como la cruza, mutación y selección. Mantiendo una población de las posibles soluciones iterando para encontrar la solución cercana a la solución óptima.
- 2. **Particle Swarm Optimization (PSO)**. Propuestos por Eberhart y Kennedy, inspirado en el comportamiento de parvadas de pájaros y cardumen de peces, el algoritmo involucra una población de partículas que se mueven en un espacio de búsqueda. Cada partícula ajusta su posición según su propia solución y la solución de toda la población.
- 3. Ant Colony Optimization (ACO). Propuesto por M. Dorigo, inspidado en el comportamiento de búsqueda de alimento de las hormigas, imita la comunicación y toma de decisiones colectiva de las hormigas, puede ser usado para encontrar caminos dentro de un grafo.
- 4. **Firefly Algorithm (FA)**. Propuesto por X. Yang, sigue el modelo de los patrones intermitentes de las luciérnagas, el algoritmo emula el comportamiento de atracción y repulsión de las luciérnagas.

Las metaheurísticas han demostrado ser efectivas para resolver una amplia gama de problemas de optimización; sin embargo, su adopción en el campo de la robótica móvil se ve limitada por varias razones.

- Complejidad y restricciones en tiempo real: la robótica a menudo implica la toma de decisiones en tiempo real, donde los robots deben responder rápidamente a entornos cambiantes. Las metaheurísticas suelen requerir extensos recursos computacionales y temporales para converger en una solución óptima, lo que puede no ser factible en aplicaciones de robótica en tiempo real, particularmente en vehículos aéreos con limitado poder de cómputo. El control y la planificación en tiempo real en robótica a menudo requieren algoritmos de baja complejidad computacional, como la planificación clásica o los enfoques de control reactivo.
- Soluciones deterministas: en aplicaciones de robótica, especialmente las que involucran tareas críticas para la seguridad o control preciso, se prefieren las soluciones deterministas y predecibles a las soluciones estocásticas que ofrecen las metaheurísticas. Las metaheurísticas brindan soluciones aproximadas con diversos grados de optimización, que pueden no ser adecuadas para tareas que requieren un control preciso o garantías de seguridad.
- Optimización basada en modelos: muchos problemas de robótica se pueden resolver de manera efectiva utilizando técnicas de optimización basadas en modelos. Con modelos dinámicos conocidos y restricciones ambientales, los métodos basados en modelos, como el control óptimo o la optimización de la trayectoria, pueden proporcionar soluciones analíticas o numéricas con un rendimiento garantizado. Estos enfoques pueden explotar la estructura del problema y las restricciones específicas, lo que lleva a soluciones más eficientes y confiables en comparación con las metaheurísticas de propósito general.
- Algoritmos de tareas específicas: la robótica a menudo implica tareas y dominios específicos que se han estudiado ampliamente, lo que da como resultado algoritmos específicos de tareas

adaptados a esos dominios. Estos enfoques personalizados a menudo son más eficientes y efectivos para resolver los problemas específicos abordados en robótica, lo que hace que las metaheurísticas de propósito general sean menos atractivas.

Limitaciones de hardware y energía: los sistemas de robótica suelen tener recursos de hardware limitados y, a menudo, están limitados por el consumo de energía. Las metaheurísticas, que a menudo requieren una mayor cantidad de recursos o extensos tiempos de ejecución para alcanzar la convergencia, pueden no ser adecuadas para plataformas robóticas con recursos limitados.

Sin embargo, es importante tener en cuenta que ciertamente hay áreas dentro de la robótica donde las metaheurísticas se han aplicado con éxito, como la planificación de rutas de robots en entornos complejos, la robótica de enjambres o la asignación de tareas en sistemas de múltiples robots. Los enfoques híbridos que combinan metaheurísticas con optimización basada en modelos o algoritmos específicos de tareas pueden aprovechar las fortalezas de ambos y proporcionar soluciones efectivas para aplicaciones en la robótica.

Los primeros trabajos multi-VANT se encuentran en las aportaciones de ?[?], que hacen uso de un VANT con la propuesta de dos planificadores de trayectorias con un control proporcional con retroalimentación y basados en RRT*, para conseguir una representación del mundo en 2D empleando un sensor tipo LiDAR. Por otra parte, los trabajos de ?[?] también hacen una representación del entorno en 2D, haciendo uso de algoritmos que trabajan en mapas densos tipo grid, y del algoritmo D* lite para la planificación de trayectorias. ?[?] hacen uso de una exploración con fronteras a partir de una navegación auntónoma aplicando un algoritmo tipo bug para el seguimiento de una pared, empleando campos de potencial artificial para una planificación local en un mapa de ocupación tipo grid. Estos trabajos demostraron la navegación autónoma de vehículos aéreos no tripulados y que estos pueden seguir puntos de referencia en el mapa, evitar obstáculos y llevar a cabo tareas de exploración en entornos complejos.

Con la llegada de las primeras cámaras capaces de obtener valores de profundidad (RGB-D), y con mayores capacidades de almacenamiento en menos espacio, nos permiten tratar el medio ambiente a través de representaciones tridimensionales. Podemos citar por ejemplo la propuesta de estructura de datos basada en grafos octrees por ?[?] con una baja complejidad en el orden logaritmico. En 2013 se introdujo un nuevo concepto para la representación de mapas 3D basados en esos principios, haciendo que la representación de entornos 3D se realice de manera eficiente para aplicaciones en robótica donde se necesitan algoritmos rápidos. Los Mapas Volumetricos Probabilisticos (PVM) representan un entorno 3D usado para tareas de navegación autónoma. Los trabajos de ?[?] y el Centro Aeroespacial Alemán(DLR) introducen los OctoMaps, que se utilizan para representar mapas tridimensionales como subdivisiones marcadas como ocupadas, desocupadas y desconocidas, para aplicaciones de navegación. En recientes trabajos ?[?] proponen dar solución a los cuellos de botella que se presentan en el OctoMap buscando acelerar los tiempos de cómputo en la construcción de mapas a partir de la implementación de Aceleradores Gráficos GPU.

Los trabajos de ?[?] hacen uso de la representación del entorno por medio de "voxel", la versión tridimensional de la rejilla de ocupación empleada en robótica móvil terrestre, para planificar trayectorias de exploración para un VANT, basado en fronteras y con un esquema reactivo de navegación.

?[?] proponen el uso del mapa centrando al robot en un circulo tridimensional de tamaño fijo, plantea el problema de replanificación local como la optimización de una función de costo con un término que penaliza las desviaciones de posición y velocidad de la trayectoria de referencia. La

trayectoria de referencia es construida como curva de Bezier uniforme, simplificando el cálculo.

- ?[?] hacen uso de un mapa híbrido formado con la combinación de un mapa 3D con un mapa global en 2D, usan un planificador A* en un grafo híbrido con la información 3D y 2D, formulan un problema de programación cuádratica para la generación de trayectorias agregando un término en la función de costo sobre el error entre la trayectoria y los segmentos de línea del camino. La trayectoria se representa como un polinomio de séptimo orden, donde la asignación de tiempo a cada segmento utiliza un perfil de velocidad trapezoidal.
- ?[?] hacen uso de un planificador global offline para generar rutas, en la navegación usan un planificador local seleccionando las nuevas guías y un algoritmo A* para buscar la distancia mínima hacia esas nuevas guías. Utilizan un polinomio por partes de octavo orden para la representación de la trayectoria.
- ?[?] presentan algoritmos para la exploración autónoma, construyendo un árbol aleatorio de exploración rápida RRT a partir de nuevos puntos, buscando el camino que minimize la incertidumbre del robot con los puntos de referencia del mapa, mientras una segunda ejecución del algoritmo RRT encuentra el camino hacia el punto de vista seleccionado minimizando la incertidumbre del robot y los puntos de referencia.
- **?**[?] aborda el problema de mínimos locales de la función de potencial empleada para la navegación, agregando objetivos secundarios para escapar de dichos mínimos. Los autores hacen uso de tablas hash que proporcionan una representación del entorno con rápidos tiempos de inserción y consulta de complejidad constante.
- ?[?] hacen uso de distancias euclidianas para facilitar la información de distancia de los obstáculos resultando cosotsas de procesar en tiempo real, propone reducir la trayectoria dentro del espacio libre con restricciones, plantean una programación cuadrática (QP) utilizando una base de Bernstein para representar la trayectoria como curvas de Bezier por partes,
- ?[?] hacen uso de un mapa global 2D para guiar la exploración basada en consultad de proximidad, hacen uso de un planificador 2D con el algoritmo A*, hacen uso de una primitiva de movimiento 3D que maximiza el progreso euclidiano hacia el objetivo considerando las probabilidades de colsión
- ?[?] hacen uso del algoritmo RRT insertando valores altos a los vertices con mayores ganancias de información que son usados como objetivos de planificación de rutas.
- ?[?] presenta una solución de navegación para enjambres de pequeños multi-VANTS que exploran entornos desconocidos sin señal de GPS de forma centralizada. Éste trabajo propone el algoritmo Swarm Gradient Bug (SGBA), que maximiza la cobertura al hacer que los robots se muevan en diferentes direcciones lejos del punto de partida. Los robots navegan por el entorno y enfrentan obstáculos estáticos sobre la marcha mediante la odometría visual y algoritmos tipo BUG para el seguimiento de paredes. Además, se comunican entre sí para evitar colisiones y maximizar la eficiencia de la búsqueda. Para regresar al punto de partida, los robots realizan una búsqueda de gradiente hacia una señal Bluetooth de baja potencia.
- ?[?] usan una representación local del mapa como un KD-Tree de un mapa representado en voxels, mientras que un grafo topológico representa todo el entorno explorado.

En recientes trabajos ?[?] ha demostrado descentralizar la tarea de SLAM para la creación de mapas en tareas de exploración eliminando el bloque de optimización, haciendo uso de técnicas de machine learning teach and repeat.

- ?[?] presenta una arquitectura de control para un VANT, con la habilidad de explorar y navegar hacia objetivos, utilizando una representación de octomaps y un planificador global de tipo RRT.
- ?[?] presentan una arquitectura descentralizada multi-VANT, hacen uso de una descomposición HGrid para la representación del entorno, logran equilibrar la repartición de tareas formulando la distribución de tareas de exploración como un problema tipo Vehicle Routing Problem. Cada VANT actualiza constantemente la ruta extrayendo información para la planificación de la exploración. Proponen una arquitectura en tres capas (Percepción, Coordinación y Exploración), la generación de trayectoria es basada por curvas de bezier generando trayectorias suaves y seguras en tiempo real.

REFERENCIA	MAPA	Planificador de rutas	Generación trayectoria	MULTI-VANT
?[?]	Octomap	Basado en fronteras	Control directo de velocidad	X
?[?]	Cuadrícula egocéntrica	Offline RRT*	Curvas de Bezier	Х
?[?]	mapa 3D-Local y 2D-Global	A*	Progración cuadrática	Х
?[?]	3D voxel array TSDF	A*	Optimización cuadrática	Х
?[?]	Octomap	NBVP	Control directo de velocidad	Х
?[?]	Voxel Hashing TSDF	NBVP	Optimización cuadrática	Х
?[?]	Mapa de cuadrícula	Método de marcha rápida	Optimización cuadrática	Х
?[?]	Busqueda basada en visibilidad	2D A*	Control MPC	Х
?[?]	Octomap	NBVP	Control directo de velocidad	Х
?[?]	NA	SGBA	Control directo de velocidad	Х
?[?]	KD Tree + Mapa en Voxel	Búsqueda en Grafo	Movimientos suaves	Х
?[?]	Octree	RRT	Basado en contornos	Х
?[?]	Octomap HGrid	NBVP	Control directo de velocidad	✓

Cuadro 2: Trabajos relacionados

Contribuciones o resultados esperados

- 1. Documentación, y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas
 - Algoritmo para crear formaciones
 - Protocolos de comunicación y coordinación multi-VANT
- 2. Simulación de solución
 - Simulaciones detalladas en diversos escenarios 3D
 - Métricas como tiempo de respuesta, consumo de energía y la capacidad de adaptación a diferentes escenarios.
- 3. Tesis impresa.

Fecha de inicio

Fecha de terminación

Septiembre de 2023

Agosto de 2024

Firma del alumno:	

Comité de aprobación del tema de tesis

Dr. José Gabriel Ramírez Torres	
Dr. Eduardo Arturo Rodríguez Tello	
Dr. Ricardo Landa Becerra	
Dr. Mario Garza-Fabre	