各类积分的关系

April 21, 2018

Outline

曲线积分与路径无关

全微分

Gauss公式与散度 Gauss公式

曲线积分与路径无关

D: 平面连通区域,连接A, B的两条路径: C_1 , C_2 , if

$$\int_{C_1} P dx + Q dy = \int_{C_2} P dx + Q dy,$$

称曲线积分与路径无关。

Theorem (2)

D: 单连通, P, Q: 有一阶连续偏导数,则以下四命题等价: (1) $\forall (x,y) \in D$, $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

$$(1) \, \forall (x,y) \in D, \, \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

(2)
$$\forall D$$
内逐段光滑的闭曲线 C ,有 $\oint_C Pdx + Qdy = 0$

$$(3)$$
 $\int_{C(AB)} Pdx + Qdy$ 与路径无关,只与起点 A ,终点 B 有关

$$(4)$$
 日 二元函数 $u(x,y)$, s.t. $du = Pdx + Qdy$

Remark:

If D复连通,则上述结论不一定成立。

例6. 计算
$$I = \int_C (x^2y + 3xe^x)dx + (\frac{1}{3}x^3 - y\sin y)dy$$
, C : 摆线 $x = t - \sin t$, $y = 1 - \cos t$, $A(2\pi, 0)$ 到 $O(0, 0)$.

例7. A 质点(0,1),对M引力大小 $\frac{k}{r^2}$,方向:M指向A, M 沿 $y = \sqrt{2x - x^2}$,自 $B(2,0) \rightarrow O(0,0)$,求A对M做的功W.

求全微分

Definition

若函数u(x,y)的全微分du = Pdx + Qdy,则称u(x,y)是表达式Pdx + Qdy的一个原函数。

If P(x,y), Q(x,y) (D: 单连通) 具有一阶连续偏导数,则Pdx + Qdy在D内存在原函数 $\Leftrightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,且

$$u(x,y) = \int_{(x_0,y_0)}^{(x,y)} P(x,y) dx + Q(x,y) dy + C.$$

Theorem (3 曲线积分基本定理)

D: 单连通区域,P, Q连续,ifu是Pdx+Qdy的一个原函数, \forall $A(x_1,y_1)$, $B(x_2,y_2)\in D$,则

$$\int_{C(AB)} P dx + Q dy = u(x_2, y_2) - u(x_1, y_1) = u(x, y)|_{(x_1, y_1)}^{(x_2, y_2)}.$$

怎么求? 与路径无关

例8. 验证: $\frac{xdy - ydx}{x^2 + y^2}$ 在右半平面(x > 0)内是某函数的全微分,并求出一个这样的函数.

例9. 求f(x), s.t. $\int_{(0,0)}^{(1,1)} (e^x + f(x))ydx - f(x)dy$ 与路径无关。假设f(x)连续可微,且 $f(0) = \frac{1}{2}$,求此曲线积分的值.

Definition

If $\exists u(x,y)$ s.t. du = P(x,y)dx + Q(x,y)dy 则 称 P(x,y)dx + Q(x,y)dy = 0 为全微分方程or恰当方程。 通解: u(x,y) = C or $\int_{x_0}^x P(x,y_0)dx + \int_{y_0}^y Q(x,y)dy = C$ If P, Q 有一阶连续偏导数, Pdx + Qdy = 0 为全微分方程 $\Leftrightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

例10. 求解 $(x^2 + 2xy - y^2)dx + (x^2 - 2xy - y^2)dy = 0$.

Gauss公式与散度

Theorem (4 高斯(Gauss)定理)

设(1) Ω : 分片光滑曲面Σ为边界曲面的空间有界闭域; (2) $\vec{F} = \{P, Q, R\}, P, Q, R$ 在 Ω 上有一阶连续偏导数,

$$\Rightarrow \iint_{\Sigma} \vec{F} \cdot \overrightarrow{dA} = \iint_{\Sigma} P dy \wedge dz + Q dz \wedge dx + R dx \wedge dy$$
$$= \iiint_{\Omega} (\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}) dx dy dz$$

Σ: 取外侧。

例11. 计算 $I = \iint_{\Sigma} x^3 dy \wedge dz + y^3 dz \wedge dx + z^3 dx \wedge dy$, Σ: 球面 $x^2 + y^2 + z^2 = a^2$ 的内侧.

例12. Ω 由 $z=a^2-x^2-y^2$, z=0 围成, Σ : Ω 表面外侧。证明: Ω 的体积为

$$V = \iint_{\Sigma} x^2 y z^2 dy \wedge dz - x y^2 z^2 dz \wedge dx + z (1 + x y z) dx \wedge dy.$$