Решения на задачите от контролно 2 по ЕАИ на специалност "Информатика", проведено на 13 януари 2024 г.

Задача 1. Да се построи безконтекстна граматика за езика $L = (\mathcal{L}(\mathcal{N}) \cup \{ab, b, \varepsilon\}) \cdot \mathcal{L}(G)^*$ като се използват изучавани конструкции или се докаже коректността на граматиката, където:

$$G = \langle \{a, b\}, \{S, X\}, S, \{S \to aSb \mid XX, X \to a \mid SS\} \rangle$$

$$\mathcal{N} = \langle \{a, b\}, \{s, f_1, f_2\}, s, \Delta, \{f_1, f_2\} \rangle$$

$$\Delta(s, a) = \{f_1, f_2\}, \Delta(s, b) = \{f_2\}, \Delta(f_1, a) = \{f_1\}, \Delta(f_1, b) = \{s\}$$

Решение. Получаваме граматика за L, като използваме изучавани конструкции по следния начин:

1.
$$G_1 = \langle \{a, b\}, \underbrace{\{S_1, F_1, F_2\}}_{V_1}, S_1, \underbrace{\{S_1 \rightarrow aF_1 \mid aF_2 \mid bF_2, F_1 \rightarrow aF_1 \mid bS_1 \mid \varepsilon, F_2 \rightarrow \varepsilon\}}_{R_1} \rangle$$
 3a $\mathcal{L}(\mathcal{N})$

2.
$$G_2 = \langle \{a, b\}, \underbrace{\{S_2\}}_{V_{\varepsilon}}, S_2, \underbrace{\{S_2 \to ab \mid b \mid \varepsilon\}}_{P_{\varepsilon}} \rangle$$
 3a $\{ab, b, \varepsilon\}$

3.
$$G_3 = \langle \{a, b\}, \underbrace{\{S_3\} \cup V_1 \cup V_2}_{V_2}, S_3, \underbrace{\{S_3 \rightarrow S_1 \mid S_2\} \cup R_1 \cup R_2}_{R_2} \rangle$$
 3a $\mathcal{L}(\mathcal{N}) \cup \{ab, b, \varepsilon\}$

4.
$$G_4 = \langle \{a, b\}, \underbrace{\{S_4, S, X\}}_{V_4}, S_4, \underbrace{\{S \rightarrow aSb \mid XX, X \rightarrow a \mid SS\} \cup \{S_4 \rightarrow S_4S \mid \varepsilon\}}_{R_4} \rangle$$
 3a $\mathcal{L}(G)^*$

5.
$$G_5 = \langle \{a, b\}, \{S_5\} \cup V_3 \cup V_4, S_5, \{S_5 \to S_3 S_4\} \cup R_3 \cup R_4 \rangle$$
 sa L

Задача 2. Да се построи безконтекстна граматика G за езика $L = \{\alpha \# \beta \mid \alpha, \beta \in \{a,b\}^* \ u \mid \beta|_b = 2|\alpha|_a\}$ u да се докаже, че построената граматика разпознава дадения език.

Решение. Можем да построим следната граматика за *L*:

$$S \rightarrow bS \mid Sa \mid aSbAb \mid \#$$

$$A \to aA \mid \varepsilon$$

Ясно е, че $\mathcal{L}_G(A) = \{a\}^*$. Направо ще покажем, че:

$$S \underset{G}{\overset{*}{\Rightarrow}} \alpha \& \alpha \in \{a, b, \#\}^* \iff \alpha \in L$$

- (⇒) Доказваме с индукция по дължината на извода:
 - ако $S \stackrel{0}{\underset{G}{\rightleftharpoons}} \alpha$, то $\alpha = S \notin \{a, b, \#\}^*$ \checkmark
 - ако $S \overset{n+1}{\underset{G}{\rightleftharpoons}} \alpha \in \{a,b\}^*$, то има $\beta \in \{S,A,a,b\}^*$, за което $S \underset{G}{\Rightarrow} \beta$ и $\beta \overset{n}{\underset{G}{\rightleftharpoons}} \alpha$
 - 1 сл. $\beta=\#$ тогава $\alpha=\#\in L$.
 - 2 сл. $\beta=bS$ тогава има $\gamma\in\{a,b\}^*$, за което $S\stackrel{n}{\underset{G}{\Rightarrow}}\gamma$ и $\alpha=b\gamma$. По (ИП) $\gamma\in L$, откъдето $\gamma=\gamma_1\#\gamma_2$, където $\gamma_1,\gamma_2\in\{a,b\}^*$ и $|\gamma_2|_b=2|\gamma_1|_a$. Тогава $|\gamma_2|_b=2|b\gamma_1|_a$, откъдето $\alpha=b\gamma=b\gamma_1\#\gamma_2\in L$.
 - 3 сл. $\beta=Sa$ аналогичен на 2 сл.
 - 4 сл. $\beta=aSbAb$ тогава има $\gamma\in\{a,b\}^*$ и $n_1,n_2,k\in\mathbb{N},$ за които $S\overset{n_1}{\underset{G}{\rightleftharpoons}}\gamma,\,A\overset{n_2}{\underset{G}{\rightleftharpoons}}a^k,\,\alpha=a\gamma ba^kb$ и $n=n_1+n_2.$ По (ИП) $\gamma\in L$, откъдето $\gamma=\gamma_1\#\gamma_2,$ където $\gamma_1,\gamma_2\in\{a,b\}^*$ и $|\gamma_2|_b=2|\gamma_1|_a.$ Тогава понеже имаме $|\gamma_2ba^kb|_b=2+|\gamma_2|_b=2+2|\gamma_1|_a\overset{\gamma\in L}{\underset{G}{\rightleftharpoons}}2|a\gamma_1|_a,$ думата $\alpha=a\gamma ba^kb=a\gamma_1\#\gamma_2ba^kb\in L.$

- (⇐) Доказваме с индукция по $|\alpha|$:
 - ако $|\alpha|=0$, то $\alpha=\varepsilon\notin L$ 🗸
 - ако $|\alpha|=n+1$ и $\alpha\in L$, то $\alpha=\beta\#\gamma$ и $|\gamma|_b=2|\beta|_a$ и имаме следните възможности:
 - 1 сл. $\beta=\gamma=\varepsilon$ тогава $\alpha=\#,$ и тъй като $S\to_G\#,$ имаме $S\underset{G}{\overset{*}{\Rightarrow}}\#$ е извод за $\alpha.$
 - 2 сл. $\beta = b\beta_1$ тогава $|\gamma|_b = 2|\beta|_a = 2|b\beta_1|_a = 2|\beta_1|_a$, откъдето $\beta_1 \# \gamma \in L$ по (ИП) $S \overset{*}{\underset{G}{\Rightarrow}} \beta_1 \# \gamma$. Извода за α е $S \overset{*}{\underset{G}{\Rightarrow}} bS \overset{*}{\underset{G}{\Rightarrow}} b\beta_1 \# \gamma$.
 - 3 сл. $\gamma = \gamma_1 a$ аналогичен на 2 сл.
 - 4 сл. $\beta = a\beta_1$ и $\gamma = \gamma_1 ba^k b$ за някое $k \in \mathbb{N}$ докато 2 сл. и 3 сл. не се изключват взаимно, за да попаднем в него, трябва да не сме в нито един от останалите. Имайки поне едно a в β изисква поне две b в γ за да компенсират. Тъй като $|\gamma|_b = |\gamma_1 ba^k b|_b = 2 + |\gamma_1|_b$ и $2|\beta|_a = 2|a\beta_1|_a = 2 + |\beta_1|_a$, имаме $|\gamma_1|_b = 2|\beta_1|_a$, откъдето $\beta_1 \# \gamma_1 \in L$. Тогава по (ИП), имаме $S \stackrel{*}{\Rightarrow} \beta_1 \# \gamma_1$. Извода за α е $S \stackrel{*}{\Rightarrow} aSbAb \stackrel{*}{\Rightarrow} aSba^k b \stackrel{*}{\Rightarrow} a\beta_1 \# \gamma_1 ba^k b$.

Задача 3. Да се докаже, че езикът $L = \{\alpha \# a^{|\beta|_a} b^{|\alpha|_b} \# \beta \mid \alpha, \beta \in \{a,b\}^*\}$ не е безконтекстен.

Решение. Нека $p \ge 1$. Тогава $\alpha = b^p \# a^p b^p \# a^p \in L$ и $|\alpha| \ge p$. Нека $xyuvw = \alpha$, като $|yuv| \le p$ и $|yv| \ge 1$. Понеже $|yuv| \le p$, думата yv не може да обхваща букви от два несъседни сектора от еднакви букви (без да броим #). Тогава на лице са следните възможности:

- 1 сл. yv съдържа # тогава $xy^0uv^0w\notin L$, защото няма да има две срещания на #.
- 2 сл. $yv=a^{t_1}b^{t_2}$ за някой $t_1,t_2\in\mathbb{N},$ където $1\leq t_1+t_2\leq p$ тогава $xy^0uv^0w=b^p\#a^{p-t_1}b^{p-t_2}\#a^p\notin L,$ защото $t_1>0$ или $t_2>0$ т.е. $p\neq p-t_1$ или $p\neq p-t_2.$
- 3 сл. $yv=b^{t_1}a^{t_2}$ за някои $t_1,t_2\in\mathbb{N}$, където $1\leq t_1+t_2\leq p$ тогава в зависимост от местоположението на yv в xyuvw, имаме $xy^0uv^0w=b^{p-t_1}\#a^{p-t_2}b^p\#a^p$ или $xy^0uv^0w=b^p\#a^pb^{p-t_1}\#a^{p-t_2}$, но и в двата случая $xuw\notin L$, защото $t_1>0$ или $t_2>0$ т.е. $p\neq p-t_1$ или $p\neq p-t_2$.

Tъй като L не удовлетворява условията от лемата за покачване, той не е безконтекстен.