

中华人民共和国国家标准

GB/T 25724—XXXX 代替 GB/T 25724-2010

公共安全视频监控数字视音频编解码技术 要求

Technical specifications for surveillance video and audio coding

(报批稿)

XXXX - XX - XX 发布

XXXX-XX-XX 实施

目 次

前	i			III
引言	i			. IV
1	范围	司		1
2	规范	5性引用文件		1
3	术语	· · · · · · · · · · · · · · · · · · ·		1
3	3. 1	术语和定义		1
3	3. 2	缩略语		. 11
4	约员	₹		. 12
4	1. 1	算术运算符		. 12
4	1.2	逻辑运算符		. 13
4	1.3	关系运算符		. 13
4	4.4	位运算符		. 13
4	1.5			
	1.6			
	1. 7		和表	
	1.8	_ , , _ , , , , , , , ,	字描述	
	1.9			
5	视步			
5	5. 1		出数据的格式	
	5. 2			
	5. 3			
	5. 4	· · · · · · · · · · · · · · · · · · ·		
6	音頻			
6	5. 1	- · · · · · -		
6	5. 2			
	5. 3			
6	5. 5	存储、传输接口	格式	258
附表	录 A	(规范性附录)	假设参考解码器(HRD)	264
附表	录 B	(规范性附录)	字节流的格式	267
附表	录 C	(规范性附录)	视频档次与级别	269
附表	录 D	(规范性附录)	视频可用性信息(VUI)	274
附表	录 E	(规范性附录)	补充增强信息(SEI)	277

附录F	(规范性附录)	智能分析数据描述	281
附录 G	(规范性附录)	音频档次和级别	293
附录H	(规范性附录)	异常声音事件类型定义	295
附录 I	(资料性附录)	VAD 检测	296
附录 J	(资料性附录)	噪声消除	300
参考文画	猌		311

前 言

本标准按照GB/T 1.1-2009给出的规则起草。

本标准代替GB/T 25724-2010《安全防范监控数字视音频编解码技术要求》。与GB/T 25724-2010相比,除编辑性修改外主要技术变化如下:

- ----修改了标准名称;
- ——增加了术语(见3.1.93~3.1.95)
- ----修改了编码单位结构(见5.1.3,2010年版的5.1.3);
- ----修改了码流的语法和语义(见5.2.3、5.2.4,2010年版的5.2.3、5.2.4);
- ----修改了安全参数集的语法和语义(见5.2.3.2.5、5.2.4.4.4,2010年版的5.2.3.2.3、5.2.4.4.3);
 - ----修改了参考图像的选择方法(见5.3.3.4,2010年版的5.3.3.4);
 - ----修改了帧内预测过程的内容(见5.3.4,2010年版的5.3.4);
 - ----修改了帧间预测过程的内容(见5.3.5,2010年版的5.3.5);
 - ----修改了变换量化与重建的内容(见5.3.6,2010年版的5.3.6);
 - ----修改了去块效应滤波过程的内容(见5.3.7,2010年版的5.3.7);
 - ----增加了样点自适应补偿(SAO)(见5.3.8);
 - ----增加了样点滤波补偿(见5.3.9);
 - ----修改了解析过程的内容(见5.4,2010年版的5.4);
 - ----修改了附录F,删除了变长码表,增加了智能分析数据描述(见附录F,2010年版的附录F)。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本标准由中华人民共和国公安部提出。

本标准由全国安全防范报警系统标准化技术委员会(SAC/TC100)归口。

本标准起草单位:公安部第一研究所、北京中星微电子有限公司、北京中盾安全技术开发公司、中星电子股份有限公司、杭州恒生数字设备科技有限公司、公安部安全与警用电子产品质量检测中心、山西中天信科技股份有限公司、千目聚云数码科技(上海)有限公司、北京欣博电子科技有限公司、杭州海康威视数字技术股份有限公司、湖南国科微电子股份有限公司、浙江大华技术股份有限公司、苏州科达科技股份有限公司、浙江宇视科技有限公司、天津天地伟业数码科技有限公司、北京联视神盾安防技术有限公司、北京智芯原动科技有限公司、上海熙菱信息技术有限公司。

本标准主要起草人:陈朝武、邓中翰、郅晨、邱嵩、余子龙、张韵东、董骞、昝劲文、欧阳甸、卢京辉、闫雪、林冬、施巨岭、查敏中、汪人瑞、梁敏学、黄麒麟、廖双龙、周文博、马莉、夏昌盛、曾娟鹃、李伟丽、卢玉华、胡建华、王磊、孙大瑞、俞海、段争志、刘文尧、吕卓逸、姜黎、卢虹、倪昕、马伟、王秦镜、章勇、邢培银、王大治、吴参毅。

本标准的历次版本发布情况为:

----GB/T 25724-2010。

引 言

在 GB/T 25724-2010 《安全防范监控数字视音频编解码技术要求》(以下简称 SVAC 标准)发布之前,国内、国际没有专门针对安全防范监控应用的视音频编解码标准,所有的视音频编解码标准,都是针对广播电视和大众娱乐方面的应用,在安全防范领域直接采用具有很大的不适应性。

SVAC 标准(2010 年版)于 2010 年 12 月 23 日发布, 2011 年 5 月 1 日实施。该标准是具有我国自主知识产权的、专门应用于安全防范视频监控技术领域的数字视音频编解码技术标准。该标准发布实施以后,国家标准委、公安部、工信部等部门高度重视标准的推广应用,支持成立了北京安防视音频编解码技术产业联盟(以下简称 SVAC 联盟),业内科研院所和广大企业围绕着 SVAC 产业链积极开展技术研发和产品应用。

在标准实施过程中发现,SVAC 标准在数据安全保护、提升压缩性能和编码效率、对智能化和大数据的支持等方面还有待补充和完善之处。为此,全国安全防范报警系统标准化技术委员会(代号SAC/TC100)组织公安部第一研究所和北京中星微电子有限公司等单位对 SVAC 标准进行了修订,使标准更具有先进性和可操作性。

近年来,视频监控系统建设应用已经从安全防范行业扩展到公共安全各行业、领域,已经成为新形势下维护国家安全和社会稳定的重要手段,在打击犯罪、治安防范、社会管理、服务民生等方面发挥着积极作用。本次修订充分考虑了公共安全视频监控联网与应用建设的需要,标准内容普遍适用于公共安全各行业、领域,因此标准名称变更为《公共安全视频监控数字视音频编解码技术要求》。

本标准主要技术特点有:

- a) 支持高精度视频数据编码,适应宽动态范围,保留更多的图像细节,满足忠实于场景的要求。 视频支持8比特~12比特数据;
- b) 支持多样化的帧内及帧间预测、变换量化、二进制算术编码等技术,获得更好的图像质量和更高的编码效率;
- c) 支持感兴趣区域(ROI)变质量编码,在传输网络带宽或数据存储空间有限的情况下,优先保证 ROI 图像质量,节省非 ROI 的开销,提供更符合监控需要的高质量视频编码,提高监控系统整体性能.
- d) 支持可伸缩性视频编码(SVC),对视频数据分层次编码,满足不同传输网络带宽和数据存储环境的需求;
- e) 支持代数码书激励线性预测(ACELP)和变换音频编码(TAC)切换的双核音频编码,既保证对语音信号具有较好的编码效果,也保证环境(背景)声音的编码效果;
- f) 支持声音识别特征参数的编码,避免编码失真对语音识别和声纹识别的影响;
- g) 支持绝对时间参考信息、智能分析信息等监控专用信息。监控专用信息通过专门语法与视音频 压缩编码数据一起传输和存储,规定了常用智能分析信息的携带方式,便于快速检索、分类查 询、视音频同步和监控数据的综合应用;
- h) 支持数据安全保护,加强了对国密算法的支持,完善了安全参数集,增添了摘要、签名算法的标识等内容,并对密钥及数字证书相关信息的携带做了规范定义,支持视频数据加密、认证功能。

相关专利情况说明

本标准的发布机构提请注意,声明符合本标准时,可能涉及到与5.2.3.1、5.2.3.2、5.2.4.2、5.2.4.4、5.2.4.7、6.1.2、6.1.4、6.2.6.1.3、6.2.6.1.4、10节中有关内容相关的专利的使用。

本标准的发布机构对于该专利的真实性、有效性和范围无任何立场。

该专利持有人已向本标准的发布机构表示,他愿意同任何申请人在合理且无歧视的条款和条件下,就专利授权许可进行谈判。该专利持有人的声明已在本标准的发布机构备案。相关信息可以通过以下联系方式获得:

专利持有人名称	联系地址
北京中星微电子有限公司	北京海淀学院路 35 号世宁大厦(100191)
北京中盾安全技术开发公司	北京海淀区首体南路1号(100048)
中星电子股份有限公司	天津经济技术开发区第四大街 80 号天大科技园 A1 座 2 层 (300457)
数维科技(北京)有限公司	北京海淀区中关村南大街 2 号 (100086)
武汉大学	湖北武汉市武汉大学(430079)

联系人: 曾娟鹃

通讯地址:北京海淀区学院路35号世宁大厦16层

邮政编码: 100191

电子邮件: zengjuanjuan@vimicro.com

电话: 010-68948888-8950

传真: 010-68944075

联系人: 李伟丽

通讯地址:北京海淀区首体南路1号

邮政编码: 100048

电子邮件: lwl@zhongdun.com.cn

电话: 010-68773553-6387 传真: 010-68773553-6215

请注意除上述专利外,本标准的某些内容仍可能涉及专利。本标准的发布机构不承担识别这些专利的责任。

公共安全视频监控数字视音频编解码技术要求

1 范围

本标准规定了公共安全视频监控应用的数字视音频编码、解码过程的技术要求。

本标准适用于公共安全领域的视音频实时压缩、传输、播放和存储等业务,其他需要视音频编解码的领域也可参考采用。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

rfc 3548 The Base16, Base32, and Base64 Data Encodings

3 术语、定义和缩略语

下列术语、定义和缩略语适用于本文件。

3.1 术语和定义

3. 1. 1

NAL 单元 NAL unit

一个语法结构,包含后续数据的类型指示和所包含的字节数,数据以RBSP形式出现,必要时其中还包括散布的防伪字节。

3. 1. 2

NAL 单元流 NAL unit stream

由NAL单元组成的序列。

3. 1. 3

保留 reserved

某些语法元素的特定取值,供中国安全防范监控数字视音频编解码技术标准工作组将来使用。符合本标准的比特流不应使用这些值,但是这些值将来可能在本标准的扩展版本中用到。

3. 1. 4

闭环基音搜索 closed-loop pitch search

即自适应码书搜索,从加权输入信号和长时预测滤波器状态估计基音延迟的过程。

3. 1. 5

比特流 bitstream

编码视音频及其相关数据,构成一个或多个编码视音频序列的比特序列。比特流既可用来表示NAL 单元流,也可表示字节流。

3. 1. 6

变换系数 transform coefficient

频率域的标量,与解码过程的反变换部分中一个特定的一维或二维频率索引相关联的系数。

3. 1. 7

变换系数幅值 transform coefficient level

一个与特定二维频率索引相关联的整数量值,解码过程中用于计算变换系数的值。

3. 1. 8

编码过程 encoding process

产生符合本标准的比特流的过程, 本标准对视频编码过程不做规定。

3. 1. 9

编码器 encoder

实现编码过程的实体,包括软件及硬件。

3. 1. 10

编码片 tile

一个矩形区域内部按照光栅扫描顺序排列的整数个树形编码单元。

3. 1. 11

编码视频序列 coded video sequence

按照解码顺序排列的IDR图像和紧随其后的零个或多个非IDR图像组成的图像序列。

3. 1. 12

编码图像 coded picture

一幅图像的编码表示。符合本标准的一个编码图像应是一个编码帧。

3. 1. 13

编码图像缓存区 coded picture buffer

一个先入先出缓存区, 其存储方式按解码顺序排列。

3. 1. 14

编码帧 coded frame

一个帧的编码表示。

3. 1. 15

残差 residual

样点或数据元素预测值与解码值之间的差值。

3. 1. 16

参考索引 reference index

参考图像的索引。

3. 1. 17

参考图像 reference picture

对解码顺序上后续图像的解码过程进行帧间预测的样点图像。

3. 1. 18

参考帧 reference frame

一个标记为参考图像的帧,用于解码过程中的帧间预测。

3. 1. 19

参数 parameter

序列参数集、图像参数集或安全参数集中的一个语法元素。参数也用于量化参数一词中。

3. 1. 20

层 layer

没有分支等级关系中的一组句法结构。高层包含低层。编码层指编码图像序列层、图像层、编码片层和编码单元层。对于可伸缩性视频编码图像,不同层的图像具有不同的可伸缩性(如不同的空间分辨率)。

3. 1. 21

代数码书 algebraic codebook

脉冲幅度和位置组成的一个集合。通过码字索引k按照一定的规则得到第k个激励码矢量的脉冲幅度和位置。

3. 1. 22

档次 profile

本标准中的一个特定语法子集。

3. 1. 23

电导频谱对 immittance spectral pair

线性预测系数的变换称为电导频谱对。将逆滤波器传输函数A(z)分解为一个偶对称和一个奇对称 多项式函数,该函数在单位圆上的根,即电导频谱对。

3. 1. 24

二进制位 bin

二进制位串中的1比特。

3. 1. 25

二进制位串 bin string

一串二进制位。二进制位串为二值化的语法元素值的二进制表示。

3. 1. 26

二值化 binarization

语法元素所有可能值与一组二进制位串之间的唯一映射。

3. 1. 27

反变换 inverse transform

解码过程的一部分,将变换系数矩阵转换为空域样点矩阵的过程。

3. 1. 28

防伪字节 emulation prevention byte

一个字节,其值等于0x03,可能在NAL单元中出现。防伪字节的出现可以保证在NAL单元的后续字节对齐的字节流中不会含有起始码前缀。

3. 1. 29

非参考图像 non-reference picture

不用于对任何其他图像讲行帧间编码的图像。

3. 1. 30

分量 component

图像的三个样点矩阵(一个亮度矩阵,两个色度矩阵)中的一个矩阵或矩阵中的单个样点。在音频部分,也指矢量中的元素或信号中的某些频率成分。

3 1 31

感知加权滤波 perceptual weighting filter

利用共振峰处的噪声掩蔽特性,在共振峰区域分配比较大的失真,来减少峰谷主观感觉噪声的滤波。

3. 1. 32

功率谱 power spectrum

信号通过傅立叶变换后得到幅度谱的平方。

3. 1. 33

光栅扫描 raster scan

矩形二维图像到一维图像的映射过程,一维图像的第一组值来自于二维图像最上边一行的从左到右扫描,然后依次是第二行、第三行等等。对于图像每行(由上到下)都是从左到右扫描的。

3. 1. 34

后向预测 backward prediction

使用显示顺序上在后的解码图像中的样点对当前图像中的样点进行预测。

3. 1. 35

划分 partitioning

将一个集合分为子集的过程。集合中的每个元素属于且只属于某一个子集。

3. 1. 36

基本层图像 base layer picture

不需要参考其他图像层信息即可以解码的图像。

3. 1. 37

级别 level

本标准中的一个特定档次中的参数取值的限定集合。一个档次可以包含一个或多个级别。对所有档次定义了一组相同的级别,不同档次的每个级别大部分特性都是通用的。对于一个独立的实现,在一定的约束条件下,可以支持多个级别。

3. 1. 38

即时解码刷新(IDR)图像 instantaneous decoding refresh (IDR) picture

一幅帧内解码图像。IDR 图像解码之后,解码顺序上所有后续的编码图像都可以不用根据任何在 IDR 图像之前解码的图像来进行帧间预测解码。每个编码视频序列的第一幅图像为 IDR 图像。

3. 1. 39

假设参考解码器 hypothetical reference decoder

一个假设的解码器模型,规定了对于符合本标准的NAL单元流或字节流的可变性的约束。

3. 1. 40

解码过程 decoding process

读入编码的比特流后产生解码图像或者音频数据的过程。

3. 1. 41

解码器 decoder

实现解码过程的实体,包括软件及硬件。

3. 1. 42

解码顺序 decoding order

解码过程中处理语法元素的顺序。

3. 1. 43

解码图像 decoded picture

通过解码一幅编码图像得到的图像。符合本标准的一幅解码图像应是一个解码帧。

3. 1. 44

解码图像缓存区 decoded picture buffer

保存解码图像的缓存区,用于附录A中规定的预测参考、输出重排序或输出延时等。

3. 1. 45

开环基音搜索 open-loop pitch search

直接从加权输入信号中估计最优基音延迟的过程。开环基音搜索简化了基音分析,并且将闭环基音搜索限定在开环基音搜索的延迟值附近。

3. 1. 46

可伸缩性视频编码 scalable video coding

编码序列中的图像具有一定的可伸缩性。具有可伸缩性的图像通常包含基本层图像和增强层图像。

3. 1. 47

块 block

在视频信号空间中,指一个 $M \times N$ ($M \to N$)的样点矩阵,或者一个 $M \times N$ 的变换系数矩阵。在音频信号空间中,指一个一维矢量。

3. 1. 48

亮度 luma

一个样点矩阵或单个样点,用于描述信号的单色表示。亮度所用符号为Y。

3. 1. 49

量化参数 quantization parameter

解码过程中对变换系数幅值进行反量化时使用的参数。

3. 1. 50

零输入响应 zero input response

滤波器当前输入为零时,由过去输入而产生的输出。

3. 1. 51

美尔 mel

一种非线性的频率刻度,根据主观音高进行划分。

3. 1. 52

美尔频率倒谱系数 mel-frequency cepstral coefficients

用FFT将时域信号转化到频域,对其对数能量谱依照Mel刻度分布的三角滤波器组进行卷积,对各个滤波器的输出构成的向量进行DCT得到的系数,即美尔频率倒谱系数。

3. 1. 53

内部采样频率 internal sampling frequency

音频编码器的采样频率,范围为12800Hz~38400Hz,采用Fs表示。

3. 1. 54

逆滤波器 inverse filter

去除信号短时相关性的滤波器。

3. 1. 55

频率索引 frequency index

与解码过程中反变换之前的变换系数相关的一维或二维索引。

3. 1. 56

起始码前缀 start code prefix

字节流中唯一等于0x000001的3个字节的序列,作为每个NAL单元的前缀。解码器可以利用起始码前缀的位置来确定一个新的NAL单元的开始和前一个NAL单元的结束。NAL单元中通过加入防伪字节来防止假冒的起始码前缀出现。

3. 1. 57

前向预测 forward prediction

使用显示顺序上在前的解码图像中的样点对当前图像中的样点进行预测。

3. 1. 58

色度 chroma

一个样点矩阵或单个样点,用于描述代表两个相对于基色的色差信号中的一个。色度所用符号为Cb和Cr。

3. 1. 59

二进制算术编码 binary arithmetic coding

一种熵编码方法,根据概率模型对二进制位进行编码,产生比特流。

3. 1. 60

声纹识别 voiceprint recognition

根据语音的声学特征识别该段语音所对应的说话人的过程。

3. 1. 61

数据比特串 string of data bits

语法元素的若干比特位的序列,出现在原始字节序列负载中原始字节序列负载截止位之前。在SODB中,最左边的比特位表示第一位即最高位,最右边的比特位表示最后一位即最低位。

3. 1. 62

双向预测 bidirectional prediction

使用显示顺序上在前及在后的解码图像中的样点对当前图像中的样点进行预测。

3. 1. 63

树形编码单元 coding tree unit

一个N×N的亮度样点块和相应的两个色度样点块。

3. 1. 64

图像 picture

源、编码或重构的图像数据的通称。符合本标准的一幅图像指一帧。

3. 1. 65

图像参数集 picture parameter set

一个语法结构,包含应用于一个或多个编码图像的语法元素。

3. 1. 66

维纳滤波器 wiener filter

根据最小均方误差准则,即滤波器的输出信号与期望信号之差的均方值最小,计算得到的最佳线性滤波器,称为维纳滤波器。

3. 1. 67

线性预测系数 LP coefficients

短时预测滤波器系数,也称为LPC系数。

3. 1. 68

序列参数集 sequence parameter set

一个语法结构,包含应用于一个或多个完整编码视频序列的语法元素。

3. 1. 69

音频超帧 audio superframe

由若干音频帧组成,目前本标准规定音频超帧中只包含一个音频帧。

3. 1. 70

音频子帧 audio subframe

音频帧的一部分,在 Fs/2采样频率下,由64个样点构成的数据块。

3. 1. 71

预测 prediction

使用预测值来提供当前解码的样点值或数据元素的估计。

3. 1. 72

预测值 predictor

以前解码的样点值或数据元素的线性组合。

3. 1. 73

语法结构 syntax structure

零个或多个语法元素按照规定顺序一起出现在比特流中。

3. 1. 74

语法元素 syntax element

比特流中表示数据的元素。

3. 1. 75

语音识别 speech recognition

根据语音的声学特征和语言模型,将该段语音翻译为文本的过程。

3. 1. 76

源 source

编码前视音频素材或者素材的某些属性。

3. 1. 77

原始字节序列负载 raw byte sequence payload

一个语法结构,包含整数个封装于NAL单元中的字节。RBSP或者为空,或者包含具有数据比特串形式的语法元素,其后跟随RBSP截止位和零个或多个连续的0值比特。

3. 1. 78

原始字节序列负载(RBSP)截止位 raw byte sequence payload (RBSP) stop bit

值为1的一比特,出现在原始字节序列负载(RBSP)中的数据比特串之后。RBSP中数据比特串的结束位置可以通过搜索RBSP中的RBSP截止位得到。

3. 1. 79

运动矢量 motion vector

二维矢量,用于帧间预测,表示匹配对象在解码图像和参考图像中的位置偏移。

3. 1. 80

增强层图像 enhance layer picture

需要参考其他图像层信息进行解码的图像。本标准中的一个增强层图像在解码时可以参考位于其下的图像层信息。

3. 1. 81

帧 frame

在视频信号空间中由一个亮度样点矩阵(Y)和两个可能存在的色度样点矩阵(Cb和Cr)构成。在音频信号空间中,作为音频处理的基本数据块。在Fs 采样频率下,512个样本构成一帧,在Fs /2 采样频率下,256个样本构成一帧。

3. 1. 82

帧间编码 inter coding

使用帧间预测对块或图像进行编码。

3. 1. 83

帧间预测 inter prediction

利用已解码的参考图像得到当前样点的预测值的过程。

3. 1. 84

帧间解码图像 inter decoded picture

使用帧内预测进行解码,或者根据先前解码的参考图像利用单前向预测、双前向预测或者双向预测进行解码的图像,对每个块进行帧间预测时最多使用两个运动矢量和参考索引。

3. 1. 85

帧内编码 intra coding

使用帧内预测对块或图像进行编码。

3. 1. 86

帧内解码图像 intra decoded picture

Ⅰ 图像

只使用帧内预测解码的图像。

3. 1. 87

帧内预测 intra prediction

利用同一图像中已解码的样点得到当前样点的预测值的过程。

3. 1. 88

字节 byte

连续的8比特,读写时左边第一位为最高位,右边第一位为最低位。表示为比特序列时,字节的最高有效位为第一位。

3. 1. 89

字节对齐 byte-aligned

从比特流的第一个比特开始的8的倍数的位置为字节对齐的位置。比特或字节或语法元素为字节对 齐的,指它出现在比特流中字节对齐的位置上。

3. 1. 90

字节流 byte stream

NAL单元流的封装,包含起始码前缀和附录B定义的NAL单元。

3. 1. 91

自适应码书 adaptive codebook

通过长时预测滤波器状态得到的码书, 由每个子帧自适应的激励矢量构成。

3. 1. 92

直流偏置 DC-offset

音频信号的直流分量。

3. 1. 93

安全前端设备 secure front end device

具备安全密码部件(如安全芯片,安全TF卡等)的视频监控前端设备。该设备能够利用证书存储和管理、密钥存储和管理、数据签名验签、数据加密等技术实现设备身份认证、视频签名、视频加密等功能。

3. 1. 94

视频加密密钥 video encryption key

安全前端设备随机产生的对称密钥,按照一定的规律变化,用于直接加密视频内容,实现视频传输的机密性保护。

3.1.95

视频密钥加密密钥 video key encryption key

安全前端设备维护的对称密钥,按照一定的规律变化,用于加密视频加密密钥,实现其传输的机密 性保护。

3.2 缩略语

ACELP: 代数码书激励线性预测(Algebraic Code Excited Linear Prediction)

ALF: 样点滤波补偿(Adaptive Loopfilter)

BWE: 带宽扩展(Bandwidth Extension)

CBR: 恒定比特率(Constant Bit Rate)

CPB: 编码图像缓存区(Coded Picture Buffer)

CRC: 循环冗余校验码(Cyclic Redundancy Code)

CTU: 树形编码单元(Coding Tree Unit)

DCT: 离散余弦变换(Discrete Cosine Transform)

DFT: 离散傅立叶变换(Discrete Fourier Transform)

DPB: 解码图像缓存区(Decoded Picture Buffer)

FFT: 快速傅立叶变换(Fast Fourier Transform)

FIR: 有限冲击响应(Finite Impulse Response)

GOP: 图像编码组(Group Of Pictures)

HRD: 假设参考解码器(Hypothetical Reference Decoder)

IDCT: 离散余弦逆变换(Inverse Discrete Cosine Transform)

IDFT: 离散傅立叶逆变换(Inverse Discrete Fourier Transform)

IDR: 即时解码刷新(Instantaneous Decoding Refresh)

IFFT: 快速傅立叶逆变换(Inverse Fast Fourier Transform)

ISF: 电导谱频率(Immittance Spectral Frequency)

ISP: 电导谱对(Immittance Spectral Pair)

LD: 低延时(Low Delay)

LP: 线性预测(Linear Prediction)

LPC: 线性预测编码(Linear Predictive Coding)

LSB: 最低有效位(Least Significant Bit)

LTP: 长时预测(Long Term Predictor)

MA: 滑动平均(Moving Average)

MB: 宏块(Macroblock)

MFCC: 美尔频率倒谱系数 (Mel-Frequency Cepstral Coefficients)

MSB: 最高有效位(Most Significant Bit)

MSVQ: 多级矢量量化(Multi-Stage Vector Quantization)

NAL: 网络抽象层(Network Abstraction Layer)

OFB: 输出反馈模式(Output Feedback)

PCM: 脉冲编码调制(Pulse Code Modulation)

RA: 随机访问(Random Access)

RBSP: 原始字节序列负载(Raw Byte Sequence Payload)

ROI: 感兴趣区域(Region Of Interest)

RPS: 参考图像集(Reference Picture Set)

SAO: 样点偏移补偿(Sample Adaptive Offset)

SEI: 补充增强信息(Supplement Enhancement Information)

SNR: 信噪比(Signal Noise Ratio)

SODB: 数据比特串(String Of Data Bits)

SVC: 可伸缩性视频编码(Scalable Video Coding)

TAC: 变换域音频编码(Transform Audio Coding)

TVC: 变换域矢量编码(Transform Vector Coding)

VAD: 语音活动检测(Voice Activity Detection)

VBR: 可变比特率(Variable Bit Rate)

VCL: 视频编码层(Video Coding Layer)

VQ: 矢量量化(Vector Quantization)

VUI: 视频可用性信息(Video Usability Information)

WPP: 波前并行处理(Wavefront Parallel Processing)

4 约定

4.1 算术运算符

算术运算符定义见表1。

表1 算术运算符定义

编号	符号	说明		
1	+	法运算		
2	-	减法运算(二元运算符)或取反(一元前缀运算符)		
3	×	乘法运算		
4	\otimes	卷积运算		
5	x^{y}	指数运算,表示 x 的 y 次幂。在不是表示指数的情况下也可表示上标		
6	/	法运算,不做截断或四舍五入		
7	•	除法运算,不做截断或四舍五入		
8	$\frac{x}{y}$	除法运算,不做截断或四舍五入		
9	$\sum_{i=x}^{y} f(i)$	自变量 i 取由 x 到 y (含 y)的所有整数值时,函数 f (i)的累加和		
10	х % у	模运算,x除以y的余数,其中x与y都是正整数		

在没有以插入括号来明确指定运算优先次序的情况下,遵守如下规则:

- a) 乘法和除法运算先于加法和减法运算;
- b) 乘法和除法运算从左到右进行;
- c) 加法和减法运算从左到右进行。

4.2 逻辑运算符

逻辑运算符定义见表 2。

表2 逻辑运算符定义

编号	符号	说明
1	&&	逻辑"与"运算
2		逻辑"或"运算
3	!	逻辑"非"运算
4	x ? y : z	如果 x 为真或非 0 值,则取值为 y; 否则取值为 z

4.3 关系运算符

关系运算符定义见表3。

表3 关系运算符定义

编号	符号	说明
1	>	大于
2	>=	大于或等于
3	<	小于
4	<=	小于或等于
5	==	等于
6	!=	不等于

4.4 位运算符

位运算符定义见表 4。

表4 位运算符定义

编号	符号	说明			
	0	按位"与"运算。对整数进行运算时,以整数的二进制补码形式进行操作。如果两个二进制运算			
1	&	数中一个位数小于另外一个,则较短的运算数高位加0补齐			
2	1	按位"或"运算。对整数进行运算时,以整数的二进制补码形式进行操作。如果两个二进制运算			
2		数中一个位数小于另外一个,则较短的运算数高位加0补齐			
3	~	按位"取反"运算。按位取反运算是单目运算,用来求一个位串信息按位的反,即为0的位,结			
3		果是 1; 为 1 的位,结果是 0			
4	^	安位"异或"运算。异或运算是求两个运算分量相应位值是否相异,相异的为1,相同的为0			
5	x >> y	将x以2的补码整数表示的形式向右移y位。仅当y取非负数时定义此运算。右移运算移入MSB的			
5		位应该等于移位运算前 x 的 MSB 的值			
6	x << y	将 x 以 2 的补码整数表示的形式向左移 y 位。仅当 y 取非负数时定义此运算。左移运算移入 LSB			
O	х 💉 У	的位值为 0			

4.5 赋值运算符

赋值运算定义见表5。

表5 赋值运算定义

编号	符号	说明			
1	=	赋值运算符			
2	++	曾,例如 x++相当于 x=x+1;当用于数组下标时,在自加运算前先求变量值			
3		递减,例如 x相当于 x=x-1; 当用于数组下标时,在自减运算前先求变量值			
4	+=	自加指定值,例如 x+=3 相当于 x=x+3, x+= (-3) 相当于 x=x+ (-3)			
5	-	自减指定值,例如 x-=3 相当于 x=x-3, x-=(-3) 相当于 x=x-(-3)			

4.6 数学函数

数学函数计算公式如下:

$$Abs(x) = \begin{cases} x, & x >= 0 \\ -x, & x < 0 \end{cases}$$

Ceil(x) 取不小于x的最小整数

$$Clip1Y(x) = Clip3(0, (1 << BitDepthY) - 1, x)$$

$$Clip1C(x) = Clip3(0, (1 << BitDepthC) - 1, x)$$

$$Clip3(x, y, z) = \begin{cases} x, & z < x \\ y, & z > y \\ z, & 其他 \end{cases}$$

Cos(x) 表示 x 的余弦函数

$$C_M^N = \frac{M!}{N!(M-N)!}$$
 表示从 M 个数中取出 N 个数的组合数

Exp(x) 表示 e 的 x 次幂

Floor(x) 取不大于x的最大整数

Ln(x) 取以 e 为底的 x 的对数

 $Log_{10}(x)$ 取以 10 为底的 x 的对数

Median(x, y, z) = x + y + z - Min(x, Min(y, z)) - Max(x, Max(y, z))

$$Min(x, y) = \begin{cases} x, & x \le y \\ y, & x > y \end{cases}$$

$$Max(x, y) = \begin{cases} x, & x >= y \\ y, & x < y \end{cases}$$

 $Round(x) = Sign(x) \times Floor(Abs(x) + 0.5)$

$$Sign(x) = \begin{cases} 1, & x >= 0 \\ -1, & x < 0 \end{cases}$$

Sin(x) 表示 x 的正弦函数

4.7 语法元素、变量和表

语法元素在比特流中以粗体字出现。当表格或正文中用到某个语法元素的值时,则以常规字体出现。 每个语法元素均表示为名称(所有字母小写,以下划线连接),和一到两个代表其编码表示方式的描述符。解码过程根据语法元素以及之前已解码的语法元素的取值进行解码。

某些情况下语法表可能使用根据语法元素值导出的其他变量的值。这些变量出现在语法表或正文中,以小写和大写混合的形式命名,并且名称中不含下划线。以大写字母开头的变量是根据当前语法结构和所有相关语法结构的解码导出的。

在某些情况下,语法元素值或变量值的识记名称与其数值等同。有时,识记名称与其值无关。二者的关联在正文中做出规定。识记名称由一组或多组字母由下划线连接而成。每组字母均以大写字母开头,可包括多个大写字母。

函数用名称来描述,函数名由语法元素名称和左右圆括号中的零个或多个以逗号(若有多个变量时) 分隔的变量名称(用于定义)或值(用于使用)构成。

一维的阵列称为数组,二维的阵列称为矩阵。阵列可以是语法元素,也可以是变量。下标或方括号可用来表示一个阵列的索引。对于一个矩阵,第一个下标为行(垂直)索引,第二个下标为列(水平)索引。使用方括号表示时,索引的顺序则正好相反。比如,一个矩阵S中的水平位置x和垂直位置y上的元素可表示为S[x, y]或S_{vx}。

单引号之间的一串比特值为二进制符号。例如,'10000100'表示一个第一位和倒数第三位等于1的8比特串。

十六进制符号,以前缀"0x"表示,当所表示的比特位数为4的整数倍时可替代二进制符号使用。例如,"0x84"表示一个第一位和倒数第三位等于1的8比特串。

不使用单引号括起来的或不带前缀"0x"的数值为十进制值。

条件语句中等于0的值代表假(FALSE)的情况,用其他非零值代表真(TRUE)。

4.8 逻辑运算符的文字描述

在正文中,含有逻辑运算符的下列伪码语句:

if (条件0)

语句0

else if (条件1)

语句1

• • • • • •

else /* 解释其他情况的注释 */

语句n

可描述如下:

- ——如果条件0,则语句0
- ——否则,如果条件1,语句1

——否则(说明性文字,表示其他情况),语句n

正文中的每个"如果·······否则,如果······否则······"语句都是由"······如下·····"或"······应用下列规则"引导的,后面紧跟"如果·····"。最后一个"如果······否则,如果······否则·····"语句的条件一般是"否则,·····"。交替出现的"如果······否则,如果······否则·····"语句可以通过将"······如下·····"或"······应用下列规则"和最后的"否则,·····"配对加以识别。

正文中,一个以下列伪码描述的逻辑运算语句:

```
if (条件0a && 条件0b)
 语句0
else if (条件1a | 条件1b)
 语句1
•••••
else
 语句n
可描述如下:
——如果下列所有条件为真,语句0
 ——条件0a
 ——条件0b
——否则,如果下列任何一个条件为真,语句1
 ---条件1a
 ——条件1b
___...
——否则, 语句n
正文中,一个以下列伪码描述的逻辑运算语句:
if (条件0)
 语句0
if (条件1)
 语句1
可描述如下:
——当条件0时,语句0
一一当条件1时,语句1
```

4.9 过程

过程用于描述语法元素的解码。所有属于当前语法结构的语法元素和大写的变量,以及相关的语法 结构,在过程的规范和调用中都是可用的。过程的规范中可能还含有明确指定为输入的小写的变量。每个规范均明确地规定了输出。输出可以是大写的变量,也可以是小写的变量。

在过程的规范中,一个特定宏块可用一个值与其宏块索引相等的变量名指代。

5 视频部分

5.1 编码比特流和输出数据的格式

5.1.1 比特流格式

本条规定NAL单元流和字节流之间的关系,二者均称为比特流。

NAL单元流格式由一系列称为NAL单元的语法结构组成,按照解码顺序排序。NAL单元流中NAL单元的解码顺序和内容是受约束的。

字节流可以用NAL单元流构造,通过将NAL单元按照解码顺序排列,并且为每个NAL单元添加一个起始码前缀和若干零值字节形成一个字节流。NAL单元流格式可以通过在字节流中搜索唯一的起始码前缀,从字节流格式中提取出来。除字节流格式以外,构造NAL单元的其他方法,本标准不做规定。字节流格式在附录B中规定。

5.1.2 图像格式

本条规定由比特流确定的源与已解码帧之间的关系。

比特流所表示的视频源是一系列按解码顺序排列的帧。

每个源或已解码帧都是由一个或多个视频样点阵列组成的:

- ——仅亮度(Y)(单色)的阵列;
- ——亮度和两个色度(YCbCr)的阵列;
- ——绿、蓝和红(GBR, 也称为RGB)的阵列;
- ——表示其他未定义的单色或三基色样点(例如 YZX, 也称为 XYZ)的阵列。

为了便于标记和命名,本标准不考虑实际使用的颜色表示方法,与这些阵列相关的变量和词语均指 亮度和色度,亮度阵列用Y表示,两个色度阵列分别用Cb和Cr表示。

本标准支持的色彩格式有4:2:0和4:2:2。

在4:2:0格式下,两个色度阵列的高度和宽度均为亮度阵列的一半。在4:2:2格式下,两个色度阵列的高度等于亮度阵列的高度,宽度为亮度阵列的一半。

除非特别说明,亮度和色度(当出现时)阵列的语法顺序为: 当三个分量的数据都出现时,首先是亮度阵列的数据,然后是Cb阵列数据,最后是Cr阵列数据。

视频序列中用来表示每个亮度或色度样点的比特位数至少为8,表示亮度阵列样点的比特位数和表示色度阵列样点的比特位数可能不相同。在4:2:0格式下,一帧中亮度和色度样点的垂直和水平相对位置如图1 所示。

× — 亮度样点的位置 O — 色度样点的位置

图1 帧图像中 4:2:0 亮度和色度样点垂直和水平位置

在4:2:2格式下,色度样点和对应的亮度样点处于同一位置上,帧中的样点位置如图2 所示。

× — 亮度样点的位置 O — 色度样点的位置

图2 帧图像中 4:2:2 亮度和色度样点的垂直和水平位置

一帧图像中左上角亮度样点的位置坐标(x, y)为(0, 0),样点每右移一列,x的取值增加1,样点每下移一行,y的取值增加1。

5.1.3 图像的空间分割

5.1.3.1 编码片的划分

本条规定一幅图像如何分割为编码片(Tile)和树形编码单元(CTU)。tile_enable等于0时,整帧图像只有一个编码片;tile_enable等于1时,图像被划分为多个编码片。编码片由一系列的树形编码单元组成。树形编码单元为编码的基本单元,每个树形编码单元包含一个亮度阵列及两个色度阵列。图像左上角的CTU的索引等于0,CTU在图像中的索引按照光栅扫描顺序递增。

将一幅图像从水平和垂直方向上分割为若干个矩形区域,每个矩形区域称为一个Tile。每个Tile 包含若干个CTU,其可以并行独立编解码。

图像宽度大于等于8个最大树形编码单元尺寸时,可以在水平方向上划分为多个Tile列。图像宽度超过64个最大树形编码单元尺寸时,必须划分为多个Tile列。每个Tile在水平方向至少包含4个CTU,最多包括64个CTU。图像在垂直方向上可以划分为多个Tile行,Tile行的个数可以等于1,2或者4。

)		1	2	3
	4	4		5	6	7

图3 编码片划分与顺序示意图

图 3 为图像的 Tile 划分示意图,图中图像被划分为 2 个 Tile 行和 4 个 Tile 列,每个 Tile 中包含 6×3 个树形编码单元。每个 Tile 的宽度和高度按照 Tile 的列数和行数决定。图像的宽度和高度分别按照 Tile 列数和行数均分,得到 Tile 的宽度和高度。当无法整除时,最右一列和最下一行的 Tile 与其他 Tile 宽

度和高度不同。

在码流中,图像中的所有Tile应按照光栅扫描顺序进行传输,每个Tile中的CTU也应按照在Tile中的光栅扫描顺序进行传输。

5.1.3.2 树形编码单元(CTU)、预测单元(PU)、变换单元(TU)

本条规定树形编码单元如何进一步划分为预测单元、变换单元。树形编码单元之间不应重叠,树形编码单元左上角的样点不应超出图像边界,树形编码单元右下角的样点可超出图像边界。

当序列参数集中的extended_sb_size_flag的取值等于1时,树形编码单元2N×2N的尺寸为128×128,当extended_sb_size_flag的取值等于0时,树形编码单元的尺寸为64×64。树形编码单元可划分为一个或多个预测单元,划分方式由编码树决定。每级的2N×2N尺寸的预测单元,可进一步划分为2N×2N、N×N、2N×N、N×2N等四种模式,如果该级划分为N×N,则进入下一级选择进一步的划分方式。对于64×64的树形编码单元,其编码树如图4 所示,预测单元共有13种尺寸:64×64、32×64、64×32、32×32、16×32、32×16、16×16、8×16、16×8、8×8、4×8、8×4、4×4。对于128×128的树形编码单元,其预测单元共有16种尺寸:128×128、64×128、128×64、64×64、32×64、64×32、32×32、16×32、32×16、16×16、8×16、16×8、8×8、4×8、8×4、4×4。

编码树的扫描顺序如图5 所示,矩形里的数字表示该块在编码时的处理顺序。

预测单元是帧内预测与帧间预测的基本单元。预测单元可进一步划分为一个或多个变换单元。 变换单元是进行变换/量化的基本单元。变换单元共有4种尺寸: 32×32、16×16、8×8、4×4。tx_mode不等于TX_MODE_SELECT时,变换单元的尺寸为tx_mode允许的适合预测单元的最大尺寸; tx_mode等于TX MODE SELECT时,变换单元的尺寸由tx size确定。

如果是帧间预测,预测块尺寸与预测单元相同。当预测单元小于等于64×64时,变换单元在预测单元内依据从左到右,从上到下的光栅扫描顺序扫描;当预测单元大于64×64时,先将预测单元以64×64为单位按光栅扫描进一步划分,然后在每一个64×64的划分内部,变换单元按光栅扫描顺序依次扫描。

如果是帧内预测,预测单元可以进一步拆分为多个相同尺寸的预测块,每一个预测块对应一个变换单元。当预测单元小于等于64×64时,预测块及其对应的变换单元依据从左到右,从上到下的光栅扫描顺序,当预测单元大于64×64时,先将预测单元以64×64为单位按光栅扫描进一步划分,然后在每一个64×64的划分内部,预测块及其对应的变换单元按光栅扫描顺序依次扫描。

图4 编码树划分方式

图5 编码树的扫描顺序

5.1.3.3 相邻块可用性的推导过程

图6 当前块与相邻块的空间位置关系

表6 块 A、B、C、D 和 E 的位置

块 A 右上角样点坐标		块 B 右上角样点坐标	块 C 右下角样点坐标	块 D 左下角样点坐标	块 E 左下角样点坐标	
	(x_0-1, y_1+1)	(x ₀ -1, y ₀)	(x_0-1, y_0-1)	(x_0, y_0-1)	(x_1+1, y_0-1)	

如果一相邻块X(X为A、B、C、D或E)在图像内并且该块应与当前块属于同一条带且属于同一Tile,则该相邻块标记为存在:否则标记为不存在。

如果一相邻块标记为不存在或者尚未解码,则该块标记为不可用;否则标记为可用。如果某样点所 在的块标记为不存在或者该样点尚未解码,则该样点标记为不可用;否则标记为可用。

5.1.3.4 感兴趣区域(ROI)的划分

一个图像中可划分出若干感兴趣区域(ROI),ROI的最小单位为8×8,并且同一预测单元内的样点应属于同一ROI区域。如果图像中存在ROI划分,对应图像参数集中的参数segmentation_enable的取值等于1,如果图像中不存在ROI划分,对应图像参数集中的参数segmentation_enable的取值应等于0。一个图像中的ROI区域可分为8个不同等级,该等级由样点所在块的segment_id指示。图像中不存在ROI划分时,所有样点所在块的segment_id应等于0。

5.2 语法和语义

5.2.1 以表格形式描述语法的方法

语法表格规定了所有允许的比特流的超集。附加的语法限定可能在其他条中直接或间接规定。

注:实际的解码器宜有识别比特流入口点的方法,并且可以分辨和处理不一致的比特流。分辨和处理错误以及类似情形的方法不在本标准中描述。

表7给出了描述语法的伪代码例子。规定了当syntax_element出现时,从比特流中解析语法元素,并将指针移向比特流中下一个语法元素位置上的过程。

表7 伪代码例程表

伪代码描述语言	描述符
/* 语句可以是一个关联某一语法类别的语法元素和描述符,或者用于说明语法元素的存在、类型和数值	
的表达式,下面给出两个例子。*/	
syntax_element	ue (v)
条件语句	
/* 花括号括起来的语句组是复合语句,在功能上视作单个语句。*/	
{	
语句	
语句	
}	
/* "while" 语句测试条件是否为 TRUE, 如果为 TRUE, 则重复执行循环体, 直到条件不为 TRUE。*/	
while(条件)	
语句	

/* "do ··· while" 语句先执行循环体一次,然后测试条件是否为TRUE,如果为TRUE,则重复执行循环	
体,直到条件不为 TRUE。*/	
do	
语句	
while(条件)	
/* "if ··· else" 语句首先测试条件,如果为 TRUE,则执行主要语句,否则执行另选语句。如果另选语	
句不需要执行,结构的 "else" 部分和相关的另选语句可忽略。*/	
if(条件)	
主要语句	
else	
另选语句	
/* "for" 语句首先执行最初语句,然后测试条件,如果条件为 TRUE,则重复执行主要语句和随后语句	
直到条件不为 TRUE。*/	
for(最初语句;条件;随后语句)	
主要语句	

5.2.2 语法函数和描述符的规范

5. 2. 2. 1 语法函数的规范

以下函数用于语法描述。这些函数假定解码器中存在一个比特流指针,这个指针指向比特流中解码过程要读取的下一比特的位置。具体要求如下:

byte_aligned()的规定:

- ——如果比特流的当前位置是在字节的边界,即比特流中的下一比特是字节的第一个比特,那么byte_aligned()的返回值为TRUE;
 - ——否则, byte_aligned()的返回值为 FALSE。

get_left_ae_bit_cnt()的规定:

- ——如果熵解码器中的计数器 count 等于 0 或 8 时,则通过固定概率 128 继续解析出 16 比特;
- ——如果 count 小于 8, 则通过固定概率 128 继续解析出 count+8 比特;
- ——如果 count 大于 8. 则通过固定概率 128 继续解析出 count 比特。

more_data_in_byte_stream(),在附录 B 规定的字节流 NAL 单元语法结构中使用,规定:

- ——如果字节流中后续还有更多数据, more_data_in_byte_stream()的返回值为 TRUE;
- ——否则, more data in byte stream()的返回值为 FALSE。

more_rbsp_data()的规定:

- ——如果在 rbsp_trailing_bits()之前的 RBSP 中有更多数据, more_rbsp_data()的返回值为 TRUE;
 - ——否则,more rbsp data()的返回值为 FALSE。

判断RBSP中是否有更多数据的方法不在本文件中规定。

next_bits(n)提供比特流中接下来的n个比特,不改变比特流指针。该函数使比特流中的下n个比特可见。当用在附录B规定的字节流中时,如果剩余的字节流已不足n个比特,next_bits(n)返回值为0。read bits(n)从比特流中读取下面的n个比特,并且将比特流指针向前移动n个比特。当n等于0时,

read bits(n)的返回值为0并且不移动比特流指针。

5. 2. 2. 2 描述符的规范

下述描述符规定了每个语法元素的解析过程:

- ae(v): 二进制算术编码语法元素。该描述符的解析过程在 5.4.2 中规定;
- b(8): 任意形式的 8 比特字节。该描述符的解析过程通过函数 read bits(8)的返回值来规定;
- f(n): n 位比特串(由左至右),左位在先,该描述符的解析过程通过函数 $read_bits(n)$ 的返回值来规定;
- i(n): n 位有符号整数。在语法表中,如果 n 是 'v',其比特数由其他语法元素值确定。解析过程由函数 read bits (n) 的返回值规定,该返回值用最高有效位在前的 2 的补码表示;
- se(v): 有符号整数指数哥伦布码编码的语法元素,左位在先。解析过程在5.4.3中定义;
- u(n): n 位无符号整数。在语法表中,如果 n 是'v',其比特数由其他语法元素值确定。解析过程由函数 read bits (n) 的返回值规定,该返回值用最高有效位在前的二进制表示;
- ue(v): 无符号整数指数哥伦布码编码的语法元素,左位在先。解析过程在5.4.3中定义。

5.2.3 以表格形式表示的语法

5. 2. 3. 1 NAL 单元语法

NAL单元语法见表8。

表8 NAL 单元语法表

nal_unit(NumBytesInNALunit) {	描述符
forbidden_zero_bit	f(1)
nal_ref_idc	u(1)
nal_unit_type	u(4)
encryption_idc	u(1)
authentication_idc	u(1)
NumBytesInPayload = 0	
for(i=1; i <numbytesinnalunit;)="" i++="" td="" {<=""><td></td></numbytesinnalunit;>	
if($i+2 < NumBytesInNALunit && next_bits(24) == 0x000003$) {	
<pre>payload_byte[NumBytesInPayload++]</pre>	b (8)
<pre>payload_byte[NumBytesInPayload++]</pre>	b (8)
i += 2	
emulation_prevention_three_byte $/*$ 应等于 $0x03$ */	f(8)
}	
else	
<pre>payload_byte[NumBytesInPayload++]</pre>	b (8)
}	

5. 2. 3. 2 RBSP 语法

5. 2. 3. 2. 1 序列参数集 RBSP 语法

序列参数集RBSP语法见表9。

表9 序列参数集 RBSP 语法表

<pre>seq_parameter_set_rbsp() {</pre>	描述符
profile_id	u(8)
level_id	u(8)
ldp_mode_flag	u(1)
frame_width_minus_1	u(16)
frame_height_minus_1	u(16)
chroma_format_idc	u(2)
bit_depth	u(2)
refs_per_frame	u(3)
frame_rate	u(3)
extended_sb_size_flag	u(1)
tile_enable	u(1)
wpp_enable	u(1)
sao_enable	u(1)
alf_enable	u(1)
roi_flag	u(1)
temporal_svc_flag	
<pre>if(temporal_svc_flag)</pre>	
layer_num minus_1	u(2)
spatial_svc_flag	u(2)
<pre>if(spatial_svc_flag){</pre>	
svc_ratio	u(3)
svc_mode	u(1)
}	
if (frame_rate >=4) {	
vui_parameters_present_flag	u(1)
<pre>if(vui_parameters_present_flag)</pre>	
vui_parameters()	
}	
rbsp_trailing_bits()	

5. 2. 3. 2. 2 图像参数集 RBSP 语法

图像参数集 RBSP 语法见表 10 。

表10 图像参数集 RBSP 语法表

pic parameter set rbsp() {	描述符
pro_parameter_bet_rosp() (1HVT 11

u(8)	,	u (8)
u (3)		u (3)
u(1)	1	u(1)
u(16	U	ı(16)
u(16	ט	ı(16)
u(1)	1	u(1)
u(1)	T	u(1)
u(3)	1	u (3)
u(2)	1	u (2)
u(2)	1	u (2)
u (5)	1	u (5)
u(1)	1	u(1)
u (6)	1	u (6)
; i++) {	ame; i++) {	
u(1)		u(1)
u(6)	T	u (6)
u(3)	1	u (3)
_num; i++)	res_num;i++)	
u (6)	1	u (6)
u(1)	Т	u(1)
u(1)	1	u(1)
e)	able)	
u(2)	Т	u (2)
u(6)		u (6)
u(3)		u (3)
u(1		u(1)

lf_delta_update	u(1)
<pre>if(lf_delta_update) {</pre>	
for(i=0;i<4;i++) {	
${\tt lf_ref_delta_enable[i]}$	u(1)
<pre>if(lf_ref_delta_enable[i]){</pre>	
${\tt lf_ref_deltas[i]}$	u (6)
lf_ref_deltas_sign[i]	u(1)
}	
}	
for(i=0;i<2;i++){	
lf_mode_delta_enable[i]	u(1)
if(lf_mode_delta_enable[i]){	
lf_mode_deltas[i]	u(6)
lf_mode_deltas_sign[i]	u(1)
}	
}	
}	
}	
if(sao_enable)	
for (compIdx=0; compIdx<3; compIdx++)	
picture_sao_enable[compIdx]	u(1)
if(alf_enable)	
read_alf ()	
base_qindex	u(8)
y_dc_delta_q_update_flag	u(1)
<pre>if(y_dc_delta_q_update_flag) {</pre>	
y_dc_delta_q	u(4)
y_dc_delta_q_sign	u(1)
}	
uv_dc_delta_q_update_flag	u(1)
<pre>if(uv_dc_delta_q_update_flag) {</pre>	
uv_dc_delta_q	u(4)
uv_dc_delta_q_sign	u(1)
}	
uv_ac_delta_q_update_flag	u(1)
<pre>if(uv_ac_delta_q_update_flag) {</pre>	
uv_ac_delta_q	u(4)
uv_ac_delta_q_sign	u(1)
}	
if(roi_flag)	
segmentation_enable	u(1)

segmentation_update_map	u(1)
if(segmentation_update_map){	u(1)
for (i=0; i<7; i++) {	
seg_tree_flag[i]	u(1)
if(seg_tree_flag)	u(1)
seg_tree_probs[i]	u (8)
seg_tree_probs[1]	u (o)
seg_temporal_update	u(1)
<pre>if(seg_temporal_update) {</pre>	2.(2)
for (i=0;i<3;i++) {	
seg_pred_flag[i]	u(1)
if(seg_pred_flag)	
seg_pred_probs[i]	u(8)
}	
}	
}	
seg_update_data	u(1)
<pre>if(seg_update_data) {</pre>	
seg_abs_delta	u(1)
for(i=0;i<8;i++){	
for(j=0;j<4;j++){	
feature_enable[i][j]	u(1)
if(feature_enable){	
${\color{red} \textbf{seg_feature_data}[\hspace{1pt} \textbf{i}\hspace{1pt}] [\hspace{1pt} \textbf{j}\hspace{1pt}]}$	u(v)
<pre>if(is_segfeature_signed[j])</pre>	
${\tt seg_feature_data_sign[i][j]}$	u(1)
}	
}	
}	
}	
f(tile_enable) {	
tile_cols_log2 = minLog2TileCols	
<pre>while(tile_cols_log2 < maxLog2TileCols) {</pre>	
increment_tile_cols_log2	u(1)
<pre>if(increment_tile_cols_log2 ==1)</pre>	
tile_cols_log2++	
else	
break;	

tile_rows_log2	u(1)
<pre>if(tile_rows_log2 ==1) {</pre>	
tile_rows_delta	u(1)
tile_rows_log2+= tile_rows_delta	
}	
}	
<pre>while(byte_aligned() == FALSE){</pre>	
reserved_bit	u(1)
}	
tx_mode	ae(v)
if(tx_mode==ALLOW_TX_32×32)	
tx_mode_delta	ae(v)
<pre>if(tx_mode==TX_MODE_SELECT) {</pre>	
for $(i=0; i<2; i++)$	
diff_update_prob_8×8	ae(v)
for(i=0;i<2;i++)	
for(j=0;j<2;j++)	
diff_update_prob_16×16	ae(v)
for $(i=0; i<2; i++)$	
for(j=0;j<3;j++)	
diff_update_prob_32×32	ae(v)
}	
for(t=TX_4 \times 4;t<= MAX_TX_SIZE;t++) {	
coef_update_prob_flag	ae (v)
<pre>if(coef_update_prob_flag){</pre>	
for(i=0;i<2;i++)	
for(j=0;j<2;j++)	
for $(k=0; k<6; k++)$	
for $(1=0; 1< (k == 0 ? 3 : 6); 1++)$	
for(m=0;m<3; m++)	
diff_update_prob_coef	ae(v)
}	
}	
for (k =0; k<3; k++)	
diff_update_prob_skip	ae(v)
if (frame_type == 1) {	
for(i=0;i<7;++i)	
for($j=0; j<3;++j$)	
diff_update_prob_flag	ae(v)
if(interp_filter_switchable)	
for(j=0;j<5;++j)	

for(i=0;i<3;++i)	
diff_switchable_interp_probs	ae(v)
for $(i=0; i<4; i++)$	
diff_intrainter_update_prob	ae(v)
not_single_ref	ae(v)
<pre>if(not_single_ref)</pre>	
not_compound_ref	ae(v)
<pre>if(frame_reference_mode==REFERENCE_MODE_SELECT)</pre>	
for $(i=0; i<5; ++i)$	
diff_inter_update_prob	ae(v)
<pre>if(frame_reference_mode!= COMPOUND_REFERENCE) {</pre>	
for(i=0;i<5;++i){	
${\tt diff_ref_update_prob[0]}$	ae(v)
diff_ref_update_prob[1]	ae(v)
}	
}	
if(frame_reference_mode==SINGLE_REFERENCE){	
for(i=0;i<5;++i)	
diff_ref_update_prob	ae(v)
}	
for $(j=0; j<4; j++)$	
for(i=0;i<36;++i)	
diff_mode_update_prob	ae(v)
for $(j=0; j<20; j++)$	
for(i=0;i<3;++i)	
diff_partition_update_prob	ae(v)
read_mv_prob()	ae(v)
}	
get_left_ae_bit_cnt()	
rbsp_trailing_bits()	

read_mv_prob()语法定义见表 11 。

表11 read_mv_prob 语法表

read_mv_prob(){	
for(j=0; j<3; j++)	
mv_joint_probs[j]	ae(v)
for(i=0;i<2;i++){	
mv_sign_prob[i]	ae(v)
for(j=0;j<10;j++)	
mv_class_probs[i][j]	ae(v)

mv_class0_bit_prob[i]	ae(v)
for(j=0;j<10;j++)	
mv_bits_prob[i][j]	ae (v)
}	
for(i=0;i<2;i++){	
for(j=0;j<2;j++)	
for (k=0; k<2; k++)	
mv_class0_fr_probs[i][j][k]	ae (v)
for(k=0;k<2;k++)	
$mv_fr_probs[i][k]$	ae(v)
}	
<pre>if(allow_high_precision_mv) {</pre>	
for(i=0;i<2;i++) {	
<pre>mv_class0_hp_prob[i]</pre>	ae(v)
mv_hp_prob[i]	ae(v)
}	
}	
}	

read_alf ()语法定义见表 12 。

表12 read_alf 语法表

read_alf () {	描述符
if(alf_enable ==1){	
for(compIdx=0;compIdx<3;compIdx++)	
picture_alf_enable[compIdx]	u(1)
if(picture_alf_enable[0]==1 picture_alf_enable[1]==1 picture_alf_enable[2]==1)	
alf_parameter_set()	
}	
}	

alf_parameter_set () 语法定义见表 13 。

表13 alf_parameter_set 语法表

<pre>alf_parameter_set(){</pre>	描述符
<pre>if(picture_alf_enable[0]==1) {</pre>	
alf_filter_num_minusl	u(4)
$for(i=0;i \leq alf_filter_num_minus1+1;i++) \\ \{$	
if(i>0 && alf_filter_num_minus1 != 15)	
alf_region_distance[i]	u(4)
for(j=0;j<10;j++)	
alf_coeff_luma[i][j]	se(v)
}	

}	
<pre>if(picture_alf_enable[1]==1)</pre>	
for(j=0; j<10; j++)	
alf_coeff_chroma[0][j]	se(v)
<pre>if(picture_alf_enable[2]==1)</pre>	
for(j=0;j<10;j++)	
alf_coeff_chroma[1][j]	se(v)
}	

5. 2. 3. 2. 3 安全参数集 RBSP 语法

安全参数集 RBSP 语法见表 14 。

表14 安全参数集 RBSP 语法表

ec_parameter_set_rbsp() {	描述符
encryption_flag	u(1)
authentication_flag	u(1)
<pre>if(encryption_flag) {</pre>	
encryption_type	u(4)
vek_flag	u(1)
iv_flag	u(1)
if(vek_flag) {	
vek_encryption_type	u(4)
evek_length_minus1	u(8)
evek	f(n)
vkek_version_length_minus1	u(8)
vkek_version	f(n)
}	
if(iv_flag) {	
iv_length_minus1	u(8)
iv	f(n)
}	
}	
<pre>if(authentication_flag) {</pre>	
hash_type	u(2)
hash_discard_p_pictures	u(1)
signature_type	u(2)
successive_hash_pictures_minus1	u(8)
camera_idc	f (152)
}	
if(vek_flag authentication_flag)	
camera_id	f(160)

rbsp_trailing_bits()	
}	

5. 2. 3. 2. 4 补充增强信息 RBSP 语法

补充增强信息 RBSP 语法见表 15 。

表15 补充增强信息 RBSP 语法表

sei_rbsp() {	描述符
do	
sei_message()	
<pre>while(more_rbsp_data())</pre>	
rbsp_trailing_bits()	
}	

补充增强信息消息语法见表 16 。

表16 补充增强信息消息语法表

sei_message() {	描述符
PayloadType = 0	
while(next_bits(8) == 0xFF) {	
ff_byte /* 应等于 0xFF */	f(8)
PayloadType += 255	
}	
last_payload_type_byte	u (8)
PayloadType += last_payload_type_byte	
PayloadSize = 0	
<pre>while(next_bits(8) == 0xFF) {</pre>	
ff_byte /* 应等于 0xFF */	f(8)
PayloadSize += 255	
}	
last_payload_size_byte	u(8)
PayloadSize += last_payload_size_byte	
sei_payload(PayloadType, PayloadSize)	
}	

5. 2. 3. 2. 5 编码片 RBSP 语法

编码片 RBSP 语法见表 17 。

表17 编码片 RBSP 语法表

tile_data_rbsp() {	描述符
if(tile_enable)	

tile_idx	ue (v)
for(n=0;n <ctu_num_in_tile;n++){< td=""><td></td></ctu_num_in_tile;n++){<>	
if(wpp_enable && (0 == n % SbCols))	
substream_len	u (32)
<pre>coding_tree_unit(n)</pre>	
if(sao_enable && (picture_sao_enable [0] picture_sao_enable [1]	
<pre>picture_sao_enable [2])) {</pre>	
if(MergeUpAvail MergeLeftAvail)	
sao_merge_flag	ae(v)
<pre>if(sao_merge_flag) {</pre>	
if(MergeUpAvail && MergeLeftAvail)	
sao_merge_type	ae(v)
else{	
for (compIdx =0; compIdx<3; compIdx++) {	
<pre>if(picture_sao_enable[compIdx]) {</pre>	
sao_mode[compIdx]	ae(v)
<pre>if(sao_mode[compIdx] != 0) {</pre>	
<pre>sao_type[compIdx]</pre>	ae(v)
<pre>if(sao_type[compIdx] == 0) {</pre>	
<pre>sao_start_band[compIdx]</pre>	ae(v)
for(j=0;j<4;j++){	
<pre>sao_offset_abs [compIdx][j];</pre>	ae(v)
<pre>if(sao_offset_abs [compIdx][j]!=0)</pre>	
<pre>sao_offset_sign [compIdx][j]</pre>	ae(v)
}	
}	
else {	
<pre>sao_edge_type[compIdx]</pre>	ae(v)
<pre>sao_edge_offset[compIdx][0]</pre>	ae(v)
<pre>sao_edge_offset[compIdx][1]</pre>	ae(v)
<pre>sao_edge_offset[compIdx][2]</pre>	ae(v)
<pre>sao_edge_offset[compIdx][3]</pre>	ae(v)
}	
}	
}	
}	
}	
}	
}	

for (compIdx =0; compIdx <3; compIdx++)	
alf_ctu_enable[compIdx]	ae(v)
}	
<pre>get_left_ae_bit_cnt()</pre>	
rbsp_trailing_bits()	
}	

5. 2. 3. 2. 6 认证数据 RBSP 语法

认证数据 RBSP 语法见表 18 。

表18 认证数据 RBSP 语法表

authentication_data_rbsp(){	描述符
frame_num	u(8)
if(spatial_svc_flag)	
spatial_el_flag	u(8)
authentication_data_length_minus1	u(8)
for(i=0;i< authentication_data_length_minus1+1;i++)	
authentication_data[i]	u(8)
rbsp_trailing_bits()	

5. 2. 3. 2. 7 流结尾 RBSP 语法

流结尾 RBSP 语法见表 19 。

表19 流结尾 RBSP 语法表

<pre>end_of_stream_rbsp() {</pre>	描述符
}	

5. 2. 3. 2. 8 RBSP 尾比特语法

RBSP 尾比特语法见表 20 。

表20 RBSP 尾比特语法表

<pre>rbsp_trailing_bits() {</pre>	描述符
rbsp_stop_one_bit /* 应等于 1 */	f(1)
<pre>while(!byte_aligned())</pre>	
rbsp_alignment_zero_bit /* 应等于 0 */	f(1)
}	

5. 2. 3. 3 CTU 语法

CTU 语法见表 21 。

表21 CTU 语法表

<pre>coding_tree_unit() {</pre>	描述符
if(hasCols hasRows)	
partition	ae(v)
if(ctu_dqp_enable &&bsize>= min_dqp_partition_size)	
iscoded = 0	
if (subsize < BLOCK_8×8)	
block(0)	
else{	
<pre>switch(partition) {</pre>	
case PARTITION_NONE:	
block(0)	
break	
case PARTITION_HORZ:	
block(0)	
block(1)	
break	
case PARTITION_VERT:	
block(0)	
block(1)	
break	
case PARTITION_SPLIT:	
<pre>coding_tree_unit(0)</pre>	
<pre>coding_tree_unit(1)</pre>	
<pre>coding_tree_unit(2)</pre>	
<pre>coding_tree_unit(3)</pre>	
break	
}	
}	

5. 2. 3. 4 块语法

块语法见表22。

表22 块语法

block(j) {	描述符
<pre>if(frame_type == 0) {</pre>	
<pre>if (segmentation_enable && segmentation_update_map)</pre>	
segment_id	ae(v)
if(segmentation_enable && FeatureEnabled[segment_id][SEG_LVL_SKIP])	

else	
skip_flag	ae(v)
$if(tx_mode == TX_MODE_SELECT \&\& bsize >= BLOCK_8 \times 8)$	
tx_size	ae (v)
switch (bsize) {	
case BLOCK_4×4:{	
for $(i=0; i<4; i++)$	
read_block_intra_luma_mode (i)	
break	
}	
case BLOCK_4×8:{	
<pre>read_block_intra_luma_mode (0)</pre>	
read_block_intra_luma_mode (1)	
break	
}	
case BLOCK_8×4:{	
<pre>read_block_intra_luma_mode (0)</pre>	
<pre>read_block_intra_luma_mode (1)</pre>	
break	
}	
default:	
<pre>read_block_intra_luma_mode (0)</pre>	
}	
read_block_intra_chroma_mode()	
else{	
if (segmentation_enable) {	
<pre>if (segmentation_update_map) {</pre>	
if (segmentation_temporal_update) {	
seg_id_predicted	ae(v)
if (!seg_id_predicted)	
segment_id	ae(v)
}	
else	
segment_id	ae(v)
}	
}	
if(segmentation_enable && FeatureEnabled[segment_id][SEG_LVL_SKIP])	
skip_flag = 1	

skip_flag	ae (v
if(!segmentation_enable !FeatureEnabled[segment_id][SEG_LVL_REF_FRAME])	
inter_block	ae (v)
if(tx_mode == TX_MODE_SELECT && MiSize >= BLOCK_8×8)	
tx_size	ae (v)
if(inter_block){	
<pre>if(!ref_segfeature_active) {</pre>	
<pre>if(frame_reference_mode == REFERENCE_MODE_SELECT)</pre>	
block_reference_mode	ae (v)
if(ref_per_frame>1)	
ref_frame	ae (v)
}	
<pre>if(!skip_segfeature_active) {</pre>	
if (bsize \geq = BLOCK_8 \times 8) {	
mv_mode	ae (v)
if (mv_mode == NEWMV) {	
for (ref = 0; ref < 1 + is_compound; ++ref) {	
mv_joint	ae (v)
<pre>if(mv_joint == MV_JOINT_HZVNZ mv_joint == MV_JOINT_HNZVNZ) {</pre>	
mvd_sign_0	ae (v)
mvd_value_0	ae (v)
}	
if (mv_joint == MV_JOINT_HNZVZ mv_joint == MV_JOINT_HNZVNZ) {	
mvd_sign_1	ae (v)
mvd_value_1	ae (v)
}	
}	
}	
}	
if (bsize <block_8×8) td="" {<=""><td></td></block_8×8)>	
for(i=0;i<2;i++){	
for(j=0;j<2;j++){	
mv_mode	ae (v)
if (mv_mode == NEWMV) {	
for (ref = 0; ref < 1 + is_compound; ++ref) {	
mv_joint	ae (v)
if(mv_joint == MV_JOINT_HZVNZ mv_joint == MV_JOINT_HNZVNZ){	
mvd_sign_0	ae (v)
mvd_value_0	ae (v)

mvd_sign_1	ae(v)
mvd_value_1	ae(v)
}	
}	
}	
}	
}	
}	
if(interp_filter_switchable)	
interp_filter_mode	ae (v)
}	
}	
else{// Intra block	
switch (bsize) {	
case BLOCK_4×4:{	
for $(i=0; i<4; i++)$	
read_block_intra_luma_mode (i)	
break	
}	
case BLOCK_4×8:{	
read_block_intra_luma_mode (0)	
<pre>read_block_intra_luma_mode (1)</pre>	
break	
}	
case BLOCK_8×4:{	
read_block_intra_luma_mode (0)	
<pre>read_block_intra_luma_mode (1)</pre>	
break	
}	
default:	
<pre>read_block_intra_luma_mode ()</pre>	
}	
read_block_intra_chroma_mode ()	
}	
}	
if (ctu_dqp_enable &&bsize>= min_dqp_partition_size &&! iscoded) {	
if(!skip_flag){	
dqp_abs	ae(v)
if(dqp_abs)	
dqp_sign	ae(v)
iscoded=1	

}	
}	
for (plane=0;plane<3;++plane) {	
if (!skip_flag) {	
i=0	
while (i < max_eob) {	
coeff_value[i]	ae(v)
if(coeff_value[i]==EOB)	
break	
else{	
<pre>while(coeff_value[i] == 0) {</pre>	
i++	
coeff_value[i]	ae(v)
}	
${f coeff_sign}[i]$	ae(v)
i++	
}	
}	
}	
}	
}	

read_block_intra_luma_mode ()语法定义见表23 。

表23 read_block_intra_luma_mode 语法表

<pre>read_block_intra_luma_mode (){</pre>	
prev_intra_luma_pred_flag	ae(v)
<pre>if(prev_intra_luma_pred_flag) {</pre>	
mpm_idx0	ae(v)
$if(mpm_idx0)$	
${\tt mpm_idx1}$	ae(v)
}	
else	
rem_pred_intra_mode	ae(v)
}	

read_block_intra_chroma_mode()语法定义见表24 。

表24 read_block_intra_chroma_mode 语法表

read_block_intra_chroma_mode (){	
uv_fllow_y_flag	ae(v)
if(uv_fllow_y_flag)	
chroma_intra_mode	ae(v)

}

5.2.3.5 监控扩展数据单元语法

5.2.3.5.1 监控扩展数据单元语法通则

监控扩展数据单元语法见表 25 。

表25 监控扩展数据单元语法表

<pre>surveillance_extension_rbsp() {</pre>	描述符
while(next_bits(8) != 0x80) {	
$if(next_bits(8) == 0x04)$	
time_extension()	
else if($next_bits(8) == 0x10$)	
gis_extension()	
else if(next_bits(8) == 0x11)	
analysis_ extension ()	
else if(next_bits(8) == 0x12)	
osd_extension()	
else	
reserved_extension()	
}	
surveillance_extension_stop_byte	f(8)
}	

5. 2. 3. 5. 2 绝对时间信息扩展语法

绝对时间信息扩展语法见表 26 。

表26 绝对时间信息扩展语法表

<pre>time_extension() {</pre>	描述符
extension_id	u(8)
extension_length	u(8)
hour_bits	u (5)
minute_bits	u(6)
second_bits	u(6)
second_fraction_bits	u (14)
ref_date_flag	u(1)
<pre>if(ref_date_flag) {</pre>	
year_minus2000_bits	u(7)
month_bits	u(4)
day_bits	u(5)

}	
}	

5. 2. 3. 5. 3 智能分析信息扩展语法

智能分析信息扩展语法见表 27 。

表27 智能分析信息扩展语法表

analysis_ extension(){	描述符
extension_id	u(8)
extension_length	u(16)
camera_id	f (160)
analysis_num	u (6)
$ \text{for} (i\text{=}0\text{;} i\text{< analysis_num;} i\text{++}) \{$	
analysis_id[i]	u(8)
description_type[i]	u(2)
data_length[i]	u(16)
for(j=0;j< data_length;j++)	
analysis_data[i][j]	u(8)
}	
while(byte_align()== FALSE)	
reserved_bit	u(1)
}	

5. 2. 3. 5. 4 OSD 信息扩展语法

OSD 信息扩展语法见表 28 。

表28 OSD 信息扩展语法表

<pre>osd_extension() {</pre>	描述符
extension_id	u(8)
extension_length	u(8)
sub_type	u(8)
code_type	u(8)
align_type	u(8)
char_size	u(8)
char_type	u(8)
top	u(16)
left	u(16)
len	u(8)
res	u (24)
osd_data	u(n)
}	

5.2.3.5.5 地理信息扩展语法

地理信息扩展语法见表 29 。

表29 地理信息扩展语法表

gis_extension(){	描述符
extension_id	u (8)
extension_length	u (8)
longitude_type	u(1)
longitude_degree	u (8)
longitude_fraction_bits	u (20)
latitude_type	u(1)
latitude_degree	u (8)
latitude_fraction_bits	u (20)
height	i (15)
speed	u (8)
yaw_degree	u (9)
reserverd	u (6)
}	

5.2.4 语义

5.2.4.1 概述

本条规定了与语法结构和语法结构中的语法元素相关的语义。当一个语法元素的语义用一个或一组表格表示时,表格中未指定的任何值都不应出现在比特流中,除非在本标准中另外规定。

5. 2. 4. 2 NAL 单元语义

NumBytesInNALunit 指示NAL单元的长度,单位为字节。一个NAL单元由单元头部分和单元负载部分组成,其中单元负载部分包含一个RBSP语法结构及可能存在的认证数据负载,同时还可能包含一些emulation_prevention_three_byte。在NAL单元解码时需要用到NumBytesInNALunit。为了能够推导出NumBytesInNALunit,需要对NAL单元的边界进行划分。附录B规定了一种用于字节流格式的划分方法。其他划分方法可能会在本标准之外给出。

forbidden_zero_bit指示视频流支持的SVAC标准的版本。forbidden_zero_bit应等于1。forbidden_zero_bit等于0表示该视频流支持GB/T 25724-2010标准。

nal_ref_idc 不等于0时,表示NAL单元的内容包含一个序列参数集,或一个图像参数集,或一个安全参数集,或一个参考图像的编码片。当一个编码图像的一个编码片NAL单元的nal_ref_idc等于0时,该编码图像的所有编码片NAL单元的nal_ref_idc都应等于0。

nal_unit_type 指示NAL单元中的RBSP数据结构的类型,见表30。VCL NAL单元是指那些nal_unit_type值等于1,2,3或者4的NAL单元。所有其他的NAL单元都称为非VCL NAL单元。

注1: VCL 的规定是为了有效的表示视频数据的内容。NAL 的规定则是为了数据的格式化,并提供头信息以便于存储或在多种通信信道上传输。每个 NAL 单元都包含整数字节。NAL 单元规定了一种既适用于面向分组系统又适用于比特流系统的通用格式。

在不影响nal_unit_type不等于5的NAL单元的解码过程和不影响本标准一致性的前提下, nal_unit_type等于5的NAL单元可以被解码器丢弃。

注2: 本标准不规定 nal_unit_type 为保留值 NAL 单元的解码过程。解码器可以忽略(从比特流中去除并丢弃)所有 nal_unit_type 为保留值的 NAL 单元的内容。

当一个编码片NAL单元的nal_unit_type值等于2时,编码同一图像的其他所有编码片NAL单元的nal_unit_type值都应相同,与之对应的SVC增强层编码图像的所有编码片NAL单元的nal_unit_type值都应等于4。这样的图像称作IDR图像。

NAL单元类型见表30。

表30 NAL 单元类型表

nal_unit_type	NAL单元中RBSP语法结构的内容
0	保留
1	非IDR图像的编码片
1	tile_data_rbsp()
0	IDR图像的编码片
2	tile_data_rbsp()
3	非IDR图像的SVC增强层编码片
3	tile_data_rbsp()
4	IDR图像的SVC增强层编码片
4	tile_data_rbsp()
5	监控扩展数据单元
J	<pre>surveillance_extension_rbsp()</pre>
6	补充增强信息
0	sei_rbsp()
7	序列参数集
1	<pre>seq_parameter_set_rbsp()</pre>
8	图像参数集
Ů	<pre>pic_parameter_set_rbsp()</pre>
9	安全参数集
	<pre>sec_parameter_set_rbsp()</pre>
10	认证数据
10	authentication_data_rbsp()
11	流结尾
	end_of_stream_rbsp()
12	保留
13	本标准第6章使用
14	保留
15	SVC增强层图像参数集
10	<pre>pic_parameter_set_rbsp()</pre>

encryption_idc 指示NAL单元是否加密。encryption_idc等于0表示该NAL单元中的RBSP没有加密,encryption_idc等于1表示该NAL单元中的RBSP以安全参数集中指定的加密方法加密,且RBSP的最后一个字节不加密。

authentication_idc 指示NAL单元是否认证。authentication_idc等于0表示该NAL单元未经认证,authentication_idc等于1表示该NAL单元以安全参数集中指定的认证方法认证。

当authentication_idc等于1时,编码比特流中必须携带绝对时间扩展信息,用于标识认证时间。payload_byte[i] 为一个NAL单元负载的第i个字节,等于rbsp_byte[j]。一个NAL单元负载定义为一个字节的有序序列,包括一个RBSP(如果encryption_idc等于1,则为RBSP加密后生成的字节序列)。rbsp_byte[j] 为一个RBSP的第j个字节。如果encryption_idc等于1,rbsp_byte[j]为RBSP加密后的字节序列的第j个字节,RBSP需要经过解密过程得到,解密过程不在本文件中规定。

- 一个RBSP定义为一个字节的有序序列,包含一个SODB,如下所述:
- ——如果SODB为空(长度为0比特),RBSP也为空;
- ——否则RBSP包括如下SODB:
 - RBSP 的第一个字节包括(最高位在前)8 比特的 SODB; RBSP 的下一个字节应包括接下来的8 比特的 SODB, 依此类推,直到剩下的 SODB 少于8 比特;
 - rbsp_trailing_bits()用于SODB之后,如下:
 - 最后 RBSP 字节中前面的(从最高位算起)比特包括 SODB 的剩下的比特(如果有的话);下一比特为单个 rbsp_stop_one_bit, 其值为 1, 并且当 rbsp_stop_one_bit 不是一个字节对齐的字节的最后一个比特时,后面应存在一个或多个 rbsp_alignment_zero_bit 以形成一个字节对齐。

具有这些RBSP属性的语法结构在语法表中用"_rbsp"后缀表示。这些结构在NAL单元中作为rbsp_byte[j]数据字节的内容携带。NAL单元到RBSP语法结构的关联见表30。

注3: 当 RBSP 的边界已知时,解码器能够通过将 RBSP 字节连接成比特串并丢弃最后(最右边的)一个等于 1 的比特 rbsp_stop_one_bit 以及随后的任何等于 0 的比特,从 RBSP 中解析出 SODB。解码过程所必须的数据包含在 RBSP 的 SODB 部分。

注4: 监控扩展数据单元也满足 RBSP 的语法结构, 其中的 surveillance_extension_stop_byte 相当于 rbsp_trailing_bits()。

emulation_prevention_three_byte 等于0x03。当一个emulation_prevention_three_byte出现在NAL单元中时,应被解码过程丢弃。NAL单元的最后一个字节不能等于0x00。在NAL单元中,下面的三字节序列不应在任何字节对齐的位置出现:

0x000000

0x000001

0x000002

在一个NAL单元中,除了下列序列,任何以0x000003开头的四字节的序列都不能出现在任何字节对 齐的位置:

0x00000300

0x00000301

0x00000302

0x00000303

注5: 当 nal_unit_type 等于 0 时,在设计编码器时要避免上面列出的三字节和四字节形式出现在 NAL 单元语法结构的开头,以免 emulation_prevention_three_byte 语法元素成为 NAL 单元的第三字节。

5. 2. 4. 3 NAL 单元的封装及约束

5. 2. 4. 3. 1 将 RBSP 封装为 NAL 单元

使用emulation prevention three byte将一个RBSP封装到一个NAL单元中的目的:

- ——允许NAL单元中出现任意的SODB,但要防止在NAL单元中出现伪起始码;
- ——通过在RBSP的结尾查找其比特rbsp_stop_one_bit,以便能够识别NAL单元中SODB的结尾。 编码器通过下列步骤能够从一个RBSP中产生一个NAL单元:

从RBSP中查找字节对齐的下面二进制比特位串 '00000000 00000000 000000xx', 其中xx代表任意2 比特位串 '00'、'01'、'10'或'11',并且在其中插入一个等于0x03的字节,形成'00000000 00000000 00000011 000000xx', 得到的字节序列加上包含标识RBSP数据结构类型的NAL单元的单元头部分即形成了整个NAL单元。

该过程允许任何SODB在一个NAL单元中出现,同时可以确保:

- ——该NAL单元中没有字节对齐的伪起始码:
- ——无论是否字节对齐,在NAL单元中没有8个值为0的比特后跟随起始码的序列。

5. 2. 4. 3. 2 NAL 单元的顺序及其与编码图像和视频序列的关系

5. 2. 4. 3. 2. 1 序列、图像参数集 RBSP 的顺序及生效

一个序列参数集RBSP包括的参数可以被一个或多个图像或者包含缓存周期SEI消息的SEI NAL单元使用。每个序列参数集RBSP在被解码器收到的同时生效,并且会导致先前有效的序列参数集RBSP(如果有的话)失效。至多一个序列参数集RBSP在解码过程中的指定时刻为有效的。

当一个序列参数集RBSP被一个包含缓存周期SEI消息的SEI NAL单元使用时,该SEINAL单元应位于序列参数集RBSP之后。

图像参数集RBSP包括的参数可以被一个编码图像的编码片NAL单元使用。每个图像参数集RBSP在被解码器收到的同时生效,并且会导致先前有效的图像参数集RBSP(如果有的话)失效。对SVC的某一层图像而言,至多一个图像参数集RBSP在解码过程中的指定时刻为有效的。

对序列参数集和图像参数集中的语法元素值与其他语法元素之间的关系所作出的规定,仅针对有效 序列参数集和有效图像参数集。

在解码过程中,有效图像参数集和有效序列参数集的参数值应保持有效。

5. 2. 4. 3. 2. 2 安全参数集 RBSP 的生效

安全参数集RBSP包括一些参数,这些参数可以被一个或多个其他类型的NAL单元使用。在解码过程的开始,每个安全参数集RBSP在被解码器收到的同时生效,并且会导致先前有效的安全参数集RBSP(如果有的话)失效。当序列参数集的ldp_mode_flag等于1时,安全参数集应只出现在IDR图像前。至多一个安全参数集RBSP在解码过程中的指定时刻为有效的。

注: 在某些应用中,安全参数集也可以通过其他的可靠机制传送到解码器端。

5. 2. 4. 3. 2. 3 VCL NAL 单元的顺序及其与编码图像的关系

每个VCL NAL单元都是一个编码图像的一部分。

- 一个编码图像中的VCL NAL单元的顺序规定如下:
- ——一个图像的编码片顺序应按编码片的第一个 CTU 索引递增的顺序;
- ——一个图像的基本层图像参数集应位于一个编码图像的第一个 VCL NAL 单元之前;
- ——一个图像的增强层图像参数集与增强层VCL NAL单元应在对应的基本层图像的VCL NAL单元之后;
 - ——具有nal unit type等于6的NAL单元应位于编码图像的第一个VCL NAL单元之前;
 - ——具有nal_unit_type等于0,12,13及14的NAL单元不能位于编码图像的第一个VCL NAL单元之前。nal unit type等于7,8及9的NAL单元可作为编码图像的分界。

5. 2. 4. 4 原始字节序列负载及 RBSP 尾比特语义

5. 2. 4. 4. 1 序列参数集 RBSP 语义

序列参数集RBSP语义如下:

profile id 标识比特流支持的档次,取值定义见附录C。

level id 标识比特流支持的级别,取值定义见附录C。

ldp_mode_flag 等于1表示比特流为低延时模式,编码图像的编码顺序与显示顺序一致,帧间预测只使用前向预测;等于0表示比特流为RA模式,编码图像的编码顺序与显示顺序可能不一致,帧间预测可能使用前向预测和双向预测。

frame width minus 1 加1等于图像宽度的样点数。

frame height minus 1 加1等于图像高度的样点数。

图像尺寸参数计算如下:

FrameWidth = frame_width_minus_1 + 1

FrameHeight = frame_height_minus_1 + 1

MiCols = (FrameWidth + 7) >> 3

MiRows = (FrameHeight + 7) >> 3

SbCols = (MiCols + (1<<(3+ extended sb size flag))-1) >> (3 + extended sb size flag)

SbRows = (MiRows + (1 $\langle\langle$ (3+ extended sb size flag))-1) $\rangle\rangle$ (3 + extended sb size flag)

chroma_format_idc等于0表示编码图像的色度采样格式为4:2:0; 等于1表示编码图像的色度采样格式为4:2:2。

bit_depth表示图像样点的比特精度。bit_depth等于0表示图像样点比特精度BitDepth为8; bit_depth等于1表示图像样点比特精度BitDepth为10;bit_depth等于2表示图像样点比特精度BitDepth 为12,其余取值保留。

refs_per_frame 表示当前帧参考帧个数, refs_per_frame的值应为1~5。 frame rate 为3比特无符号数,用于标识编码图像的帧率,取值见表31。

表31 frame_rate 取值对应的帧率

frame_rate	帧率(fps)
0	25
1	30
2	50
3	60
4	由 WII 参数决定
5~7	保留

extended_sb_size_flag 等于 1 表示树形编码单元尺寸为 128×128; 等于 0 表示树形编码单元尺寸 为 64×64。

tile_enable等于0表示图像不会分割为多个编码片进行解码;等于1表示图像会分割为多个编码片进行解码。

wpp_enable等于1表示码流可支持WPP解码模式; 等于0表示码流不支持WPP解码模式。当 tile enable等于1时, wpp enable应等于0。

sao_enable 等于0表示不开启样点偏移补偿;等于1表示开启样点偏移补偿。

alf_enable 等于0表示不开启样点滤波补偿;等于1表示开启样点滤波补偿。

roi_flag 等于1表示编码视频序列中的图像允许进行分段编码;等于0表示编码视频序列中的图像 不进行分段编码。

temporal_svc_flag 等于0表示不支持时域可分级编码; 等于1表示支持时域可分级编码。

layer_num minus_1在temporal_svc_flag等于1时有效。layer_num minus_1 + 1表示时域分级编码的增强层的层级数目,layer num minus 1值应为0~3。

spatial_svc_flag等于1表示支持空域可分级编码,编码视频序列中的图像可包含nal_unit_type等于3和4的NAL单元;等于0表示不支持空域可分级编码,编码视频序列中的图像不包含nal_unit_type等于3和4的NAL单元。

svc_ratio 为3比特无符号整数,在spatial_svc_flag等于1时有效,用于指示增强层与基本层的宽度和高度比,如表32 所示。

svc_ratio	增强层与基本层的比例
0	4:3
1	2:1
2	4:1
3	6:1
4	8:1
5~7	保留

表32 svc ratio 取值和增强层与基本层的比例对应关系

svc_mode 等于0表示SVC空域增强层不使用层间预测进行编码; 等于1表示SVC空域增强层使用层间预测进行编码。

vui_parameters_present_flag 等于1表示后续码流中存在vui_parameters()语法结构,见附录D; 等于0表示后续码流中不存在vui_parameters()语法结构。

5. 2. 4. 4. 2 图像参数集 RBSP 语义

图像参数集RBSP语义描述如下:

frame num表示当前图像的图像顺序号的低8位。

layer_id表示当前帧所属时域SVC的层级号,取值范围应为0~4。高层级帧可参考低层级帧,低层级帧不能参考高层级帧。基本层的帧的layer id应为0。如果码流中不存在layer id,默认其取值等于0。

svc_roi_flag等于1表示支持增强层使用ROI编码;等于0表示不支持增强层使用ROI编码。如果码流中不存在svc_roi_flag,默认其取值等于0。当svc_mode等于0时,svc_roi_flag应等于0。

svc_top_left 在 svc_roi_flag 等于 1 时有效,表示增强层 ROI 区域的左上角的坐标索引,以 8×8 块为单位。

svc_bottom_right 在svc_roi_flag等于1时有效,表示增强层R0I区域的右下角的坐标索引,以8×8块为单位。

frame type 等于0表示当前解码帧为帧内预测帧; 等于1表示当前解码帧为帧间预测帧。

ctu_dqp_enable等于0表示CTU单元内部不能调整量化参数;等于1表示CTU单元内部允许调整量化参数。

min dqp partition size表示允许调整量化参数的预测单元的最小尺寸,见表33 。

表33 允许调整量化参数的预测单元的最小尺寸与 min dqp partition size 的对应关系

min_dqp_partition_size	extended_sb_size_flag=0	extended_sb_size_flag=1
0	BLOCK_64×64	BLOCK_128×128
1	BLOCK_32×32	BLOCK_64×64
2	BLOCK_16×16	BLOCK_32×32
3	BLOCK_8×8	BLOCK_16×16
4	N/A	BLOCK_8×8

refresh_frame_context 等于0表示不刷新当前帧的上下文模型;等于1表示刷新当前帧用到的图像参数集中包含的上下文模型;等于2表示刷新当前帧用到的所有上下文模型。当frame_type等于0时,refresh_frame_context应等于2。

frame context idx 表示解码当前帧所采用的上下文模型索引。

refresh_frame_flags 表示参考帧缓冲区更新标识, refresh frame flags 的值应为0~31。

update_rps_flag 表示是否更新RPS队列。update_rps_flag等于0表示当前帧的RPS在RPS列表中,直接从RPS列表获取;等于1表示当前帧的RPS不在RPS列表中,需要从码流中读取。

rps_idx 表示RPS的索引,当update_rps_flag等于1时表示从码流中读取的RPS存储在RPS队列中的位置,当update rps flag等于0时表示当前帧的RPS在RPS列表中的索引。rps idx的值应为0~63。

opt_minus_flag 标识参考帧OPTIONAL_REF所对应的delta_poc[2]的符号。opt_minus_flag等于1表示delta_poc[2]为负;等于0表示delta_poc[2]的符号为正。当ldp_mode_flag等于1时,opt_minus_flag应等于0。

delta_poc[i] 表示对应参考帧与当前帧的图像顺序号的差值,delta_poc[i]的值应为0~63。 refresh pictures num 表示需要刷新的参考帧数目。

allow_high_precision_mv 等于0表示亮度运动补偿为四分之一样点精度;等于1表示亮度运动补偿为八分之一样点精度。

interp_filter_switchale 等于0表示整帧图像使用固定的运动补偿插值滤波器; 等于1表示在CTU内部确定使用的运动补偿插值滤波器。

interp filter 表示使用的插值滤波器索引。

filter_level 表示环路滤波级别。

sharpness_level 表示环路滤波平滑度级别。

lf_delta_enable 等于0表示关闭环路滤波参数更新;等于1表示开启环路滤波参数更新。

lf_delta_update 表示环路滤波参数差值更新。

lf_ref_delta_enable[i] 表示参考帧相关环路滤波参数差值更新使能,等于0表示关闭参考帧相关环路滤波参数差值更新,等于1表示开启参考帧相关环路滤波参数差值更新。

lf_ref_deltas[i] 表示参考帧相关环路滤波参数差值。

lf_ref_deltas_sign[i] 表示参考帧相关环路滤波参数差值符号。

ref_deltas[i] = lf_ref_deltas[i] × lf_ref_deltas_sign[i]

lf_mode_delta_enable[i] 表示模式相关环路滤波参数差值更新使能,等于0表示关闭模式相关环路滤波参数差值更新,等于1表示开启模式相关环路滤波参数差值更新。

lf_mode_deltas[i] 表示模式相关环路滤波参数差值。

lf_mode_deltas_sign[i] 表示模式相关环路滤波参数差值符号。

mode_deltas[i] = lf_mode_deltas[i] × lf_mode_deltas_sign[i]

picture_sao_enable[i] 表示当前图像的亮度与色度分量是否开启样点自适应补偿。picture_sao_enable[i]等于0表示不开启,等于1表示开启。其中i等于0表示亮度分量;i等于1或2表示色度分量。

picture_alf_enable[i] 图像样点滤波补偿允许标志。表示当前图像的亮度与色度分量是否开启样点滤波补偿。picture_alf_enable[i]等于0则表示当前图像的第i个分量不应使用样点滤波补偿;等于1则表示当前图像的第i个分量使用样点滤波补偿。其中i等于0表示亮度分量;i等于1或2表示色度分量。

 $alf_filter_num_minus1$ 的值加 1 表示当前图像亮度分量样点滤波补偿滤波器的个数, alf filter num minus1 的值应为 $0\sim15$ 。

alf_region_distance[i] 表示亮度分量第 i 个样点滤波补偿滤波区域基本单元起始标号与第 i-1 个样点滤波补偿滤波区域基本单元起始标号间的差值。alf_region_distance[i]的取值范围应为 1~15。

如果比特流中不存在alf_region_distance[i],当i等于0时,则alf_region_distance[i]的值为0,当i不等于0且alf_filter_num_minus1的值为15时,则alf_region_distance[i]的值为1。比特流应满足 alf region distance[i] (i=0~alf filter num minus1)之和应小于等于15。

alf_coeff_luma[i][j]表示亮度分量第 i 个样点滤波补偿滤波器的第 j 个系数。从比特流中解码得到的 alf_coeff_luma[i][j](j=0 \sim 8)的取值范围应为 $-64\sim$ 63,alf_coeff_luma[i][9]的取值范围应为 $-1088\sim$ 1071。

alf_coeff_chroma[0][j]表示Cb分量第j个样点滤波补偿滤波器的系数。alf_coeff_chroma[1][j]表示Cr分量第j个样点滤波补偿滤波器的系数。AlfCoeffChroma[0][j]的值等于alf_coeff_chroma[0][j]的值,AlfCoeffChroma[1][j]的值等于alf_coeff_chroma[1][j]的值。AlfCoeffChroma[i][j](i=0~1, j=0~7)的取值范围应为-64~63,AlfCoeffChroma[i][9](i=0~1)的取值范围应为-1088~1071。

base_qindex 表示量化参数索引。base_qindex的值应为1~255。

 $y_dc_delta_q_update_flag$ 表 示 亮 度 直 流 系 数 量 化 参 数 差 值 更 新 标 志 。 $y_dc_delta_q_update_flag$ 等于0表示关闭亮度直流系数量化参数差值更新;等于1表示开启亮度直流系数量化参数差值更新。

y_dc_delta_q 表示亮度直流系数量化参数差值。

y_dc_delta_q_sign 表示亮度直流系数量化参数差值符号。

 $uv_dc_delta_q_update_flag$ 表示色度直流系数量化参数差值更新标志。 $uv_dc_delta_q_update_flag$ 等于0表示关闭色度直流系数量化参数差值更新;等于1表示开启色度直流系数量化参数差值更新。

uv_dc_delta_q 表示色度直流系数量化参数差值。

uv_dc_delta_q_sign 表示色度直流系数量化参数差值符号。

 $uv_ac_delta_q_update_flag$ 表示色度交流系数量化参数差值更新标志。 $uv_ac_delta_q_update_flag$ 等于0表示关闭色度交流系数量化参数差值更新;等于1表示开启色度交流系数量化参数差值更新。

uv_ac_delta_q 表示色度交流系数量化参数差值。

uv_ac_delta_q_sign 表示色度交流系数量化参数差值符号。

segmentation_enable 表示图像分段使能。segmentation_enable等于0表示关闭图像分段;等于1表示开启图像分段。如果码流中不存在segmentation_enable,默认其值等于0。

segmentation update map 表示更新图像分段图。

seg tree flag[i]等于1表示图像分段参数概率模型将更新;等于0表示图像分段参数将不更新。

seg_tree_probs[i]表示图像分段参数概率模型更新后的值。如果seg_tree_probs[i]在码流中不存在,默认其值等于255。

seg temporal update 表示时域图像分段更新。

 $seg_pred_flag[i]$ 等于1表示图像分段预测概率模型将更新;等于0表示图像分段预测概率模型将不更新。

seg_pred_probs[i] 表示图像分段预测概率模型更新后的值。如果seg_pred_probs[i]在码流中不存在,默认其值等于255。

seg_update_data 表示图像分段更新数据。

seg_abs_delta 表示图像分段数据差值。

feature enable[i][j] 表示图像分段特征使能。

seg_feature_data[i][j] 表示图像分段特征数据。

seg_feature_data_sign[i][j] 表示图像分段特征数据符号。如果seg_feature_data_sign在码流中不存在,默认其值等于0。

```
图像分段特征数据 features data[8][4]的计算方法如下:
is segfeature signed[4] = \{ 1, 1, 0, 0 \};
for (i=0; i<8; i++) {
  for (j=0; j<4; j++) {
    if(feature_enable[i][j]) {
      sign = 1;
      if(is_segfeature_signed(j) && seg_feature_data_sign[i][j])
        sign = -1
    features data[i][j] = sign × seg feature data[i][j]
}
increment_tile_cols_log2 表示是否增加 Tile 的列数,用于计算 tile_cols_log2。
tile_rows_log2 为Tile的行数标识,用于计算TileRows。
log2_tile_rows_flag 表示Tile行标志。
tile rows delta 用于计算 tile rows log2。
图像划分的 Tile 的相关参数计算如下:
 minLog2Ti1eCo1s = 0
while ((SbCols >> minLog2TileCols) > 64)
   minLog2TileCols ++
 \max Log 2TileCols = 0
 while ( (SbCols >> maxLog2 TileCols) >= 8)
   maxLog2TileCols ++
TileCols = 1 << tile cols log2
TileRows = 1 << tile rows log2
对第 c \wedge Tile \mathcal{D} (c=0..TileCols-1),其水平方向起始样点位置计算如下:
tile col start[c] = ((c \times SbCols)) >> tile cols log2)<<(6+extended sb size flag)
对第 r 个 Tile 行 (r=0...TileRows - 1),其垂直方向起始样点位置计算如下:
tile row start[r] = ((r \times SbRows) >> tile rows log2) << (6 + extended sb size flag)
当 tile_enable 等于 0 时, TileCols 和 TileRows 应等于 1。
reserved_bit 保留位,其值应等于0。
```

tx_mode 表示变换模式。tx_mode 等于 0 表示变换模式为 TX_4×4, 只支持 4×4 块变换, 最大变换尺寸 MAX_TX_SIZE 为 TX_4×4; tx_mode 等于 1 表示变换模式为 ALLOW_TX_8×8, 最大变换尺寸

MAX_TX_SIZE 为 TX_8×8; tx_mode 等于 2 表示变换模式为 ALLOW_TX_16×16, 最大变换尺寸 MAX_TX_SIZE 为 TX_16×16; tx_mode 等于 2 表示变换模式为 ALLOW_TX_32×32, 最大变换尺寸 MAX_TX_SIZE 为 TX_32×32。

tx_mode_delta 表示变换模式差值。如果tx_mode_delta在码流中不存在,默认其值等于0。如果tx_mode_delta等于1,则tx_mode等于4,变换模式为TX_MODE_SELECT。

diff update prob 8×8 表示8×8变换概率模型更新差值。

diff update prob 16×16 表示16×16变换概率模型更新差值。

diff_update_prob_32×32 表示32×32变换概率模型更新差值。

coef_update_prob_flag 表示残差系数概率模型更新标志。

diff_update_prob_coef 表示残差系数概率模型更新差值。

diff_update_prob_skip 表示跳过模式概率模型更新差值。

diff update prob flag 表示概率模型更新标志差值。

diff_switchable_interp_probs 表示帧间运动补偿插值滤波器概率模型差值。

diff_intrainter_update_prob 表示帧内帧间概率模型差值。

not_single_ref 等于0表示本帧使用前向单参考帧, frame_reference_mode取值为SINGLE_REFERENCE; not_single_ref等于1表示本帧可能使用双向参考模式。当refs_per_frame小于3时, not single ref应等于0, frame reference mode取值应为SINGLE REFERENCE。

not_compound_ref 在not_single_ref等于1时有效。not_compound_ref等于0表示本帧使用双向参考模式,frame_reference_mode取值为COMPOUND_REFERENCE,not_compound_ref等于1表示本帧的参考帧模式由块级的block reference mode决定,frame reference mode取值为REFERENCE MODE SELECT。

diff inter update prob 表示帧间编码概率模型更新差值。

diff_ref_update_prob 表示参考帧概率模型更新差值。

diff_mode_update_prob 表示模式概率模型更新差值。

diff_partition_update_prob 表示块划分概率模型更新差值。

mv joint probs 表示运动矢量分量编码类型的概率模型。

mv sign prob 表示运动矢量符号的概率模型。

mv_class_probs 表示mv_class的概率模型。

mv_class0_bit_prob 表示mv_class0_bit的概率模型。

mv_bits_prob 表示mv bits的概率模型。

mv_class0_fr_probs 表示mv_class0_fr的概率模型。

mv_fr_probs 表示mv_fr的概率模型。

mv class0 hp prob 表示mv class0 hp的概率模型。

mv_hp_prob 表示mv hp的概率模型。

上述概率模型的更新过程见5.4.2.2.2。

5. 2. 4. 4. 3 安全参数集 RBSP 语义

encryption_flag 等于1表示支持对图像编码片,或序列参数集,或图像参数集,或扩展数据单元进行加密,即NAL单元中的RBSP可能经过加密。encryption_flag等于0表示不支持对NAL单元中的RBSP进行加密。

authentication_flag 等于1表示支持对整帧图像数据内容进行认证,进行认证的NAL单元包括编码片,以及在该帧传输的序列参数集、图像参数集、安全参数集以及扩展数据单元。当支持对上述数据内容进行认证时,编码比特流中必须携带绝对时间扩展信息,且携带在编码比特流中的认证数据应经过Base64编码。认证数据通过nal_unit_type等于10的NAL单元传输。如果图像中存在authentication_idc

()

1

 $2 \sim 15$

等于1的编码片、序列参数集、图像参数集、安全参数集、扩展数据单元等,对一个图像中 authentication idc为1的NAL单元按解码顺序排列后进行认证产生该图像的摘要数据。 authentication flag等于0表示不支持对图像进行认证,编码比特流中不应包含nal unit type等于10 的NAL单元。

如果spatial svc flag等于1,对同一帧图像的基本层图像和增强层图像分别进行认证,增强层的 图像参数集与编码片按增强层进行认证,序列参数集、安全参数集以及扩展数据单元与基本层的图像参 数集及编码片一起按基本层进行认证。

encryption_type 指示加密所采用的算法,具体对应关系见表34。

encryption_type 加密算法 SM1

SM4

保留

表34 encryption type 与具体加密算法的对应关系

vek flag 等于 1 表示携带 vek; 等于 0 表示不携带 vek。

iv flag 等于 1 表示携带 iv; 等于 0 表示不携带 iv。

camera id 为 20 个字节的字符串,表示图像来源的摄像机 ID。

vek_encryption_type 指示密钥加密采用的算法,具体对应关系同 encryption type。

evek_length_minus1 为加密后的密钥长度减 1,以字节为单位。

evek 为加密后的密钥,用于加密计算,长度为 evek_length_minus1 加 1 字节。

vkek_version length_minusl 为加密密钥版本号长度减 1,以字节为单位。

vkek version 为加密密钥版本号,长度为 vkek version length minus1 加 1 字节。

iv_length_minus1为初始向量长度减1,以字节为单位。

iv 为初始向量,用于分组加密,长度为 iv length minusl 加 1 字节。

hash type 表示进行认证所采用的算法,见表 35。

表35 hash_type 与具体算法的对应关系

hash_type	认证算法	摘要数据长度 (byte)
0	SM3	32
1~3	保留	保留

hash discard p pictures 等于1表示对非IDR图像不进行认证;等于0表示对非IDR图像进行认证。 如果hash_discard_p_pictures不在码流中,默认其值等于1。不进行认证的图像中每个NAL单元的 authentication idc均应等于0。

successive_hash_pictures_minus1 加1表示按解码顺序进行数字签名的连续图像个数,且这些连 续图像仅限在一个IDR图像间隔中。successive hash pictures minus1的取值应为0~255。

如果successive_hash_pictures_minus1大于0,首先对按解码顺序连续的SuccessiveHashPictures 个图像的摘要数据产生树型摘要数据,再对树顶摘要数据进行数字签名。如图7 所示,n个图像的树顶 摘要数据是对前n-1个图像的树顶摘要数据和第n个图像的摘要数据排列后,按hash type所示的方法产 生的摘要数据。

图7 树型形摘要示意图

SuccessiveHashPictures = successive hash pictures minus1 + 1

注:安全参数集激活后的第一个进行认证的图像应为连续 SuccessiveHashPictures 个图像的第一个。一个 IDR 图像应为连续 SuccessiveHashPictures 个图像的第一个。如果一个 IDR 图像间隔中进行认证的图像不足 SuccessiveHashPictures,签名数据对应的摘要数据为前一个 IDR 图像间隔包含的所有的图像摘要数据。

如果successive_hash_pictures_minus1等于0,对每一个进行认证的图像的摘要数据进行数字签名。

signature_type 表示对图像的摘要数据进行数字签名的算法,见表36。

 signature_type
 签名算法

 0
 SM2

 1~3
 保留

表36 signature type 与具体签名算法的对应关系

camera idc 为 19 个字节的字符串,用于表示图像来源的摄像机的证书标识。

5. 2. 4. 4. 4 补充增强信息 RBSP 语义

补充增强信息(SEI)消息与图像的输出及显示有关,在VCL NAL单元的解码过程中不是必要的。

一个SEI NAL单元可以包括多个SEI消息。每个SEI消息中规定了SEI负载类型PayloadType和SEI负载长度PayloadSize。

ff byte 为一个等于0xFF的字节。

last_payload_type_byte 表示负载类型的最后一个字节。

last_payload_size_byte 表示负载长度的最后一个字节。

sei_payload的规定见附录E。

5. 2. 4. 4. 5 编码片 RBSP 语义

tile idx 表示当前Tile在图像中的索引。

substream_len 表示当前CTU行的编码码流长度,以字节为单位。

sao_merge_flag 表示当前CTU的SAO参数融合标志。sao_merge_flag等于0表示参数不融合;等于1表示参数融合,此时其SAO参数与其左侧相邻或者上方相邻的CTU的SAO参数相同。

sao_merge_type 等于1表示当前CTU的SAO参数使用左侧相邻的CTU的SAO参数;等于0表示当前CTU的SAO参数使用上方相邻的CTU的SAO参数。

sao_mode[compIdx]等于0表示当前CTU中第compIdx个分量的SA0模式为SA0_0FF;等于1表示当前CTU中第compIdx个分量的SA0模式由sao type[compIdx]确定。

sao_type[compIdx]等于0表示当前CTU中第compIdx个分量的SA0模式为SA0_B0;等于1表示当前CTU中第compIdx个分量的SA0模式为SA0_E0。

sao_start_band[compIdx]表示当前CTU中第compIdx个分量在SAO_BO模式下的起始补偿区间,取值应为0~31。

sao_offset_sign[compIdx][j] 表示 SAO_BO 模式下 sao_offset[compIdx][j] 的符号。 sao_offset_sign[compIdx][j]等于0表示对应的sao_offset[compIdx][j]的取值为正,等于1表示对应的sao_offset[compIdx][j]的取值为负。

sao_offset_abs[compIdx][j]表示SA0_B0模式下的补偿值sao_offset[compIdx][j]的绝对值,取值应为0~7。

sao_edge_type[compIdx] 表示当前CTU中第compIdx个分量在SAO_EO模式下的角度方向。sao_edge_type[compIdx]等于0表示 EO_0°; 等于1表示EO_90°; 等于2表示EO_135°; 等于3表示 EO_45°。

sao edge offset[compIdx][j]表示SAO EO模式下的对应的补偿值。

alf_ctu_enable[compIdx] 等于0表示当前CTU的第compIdx个分量不进行样点滤波补偿,alf ctu enable[compIdx]等于1表示当前CTU的第compIdx个分量进行样点滤波补偿。

5. 2. 4. 4. 6 认证数据 RBSP 语义

frame_num表示应包含认证数据的图像,该图像为在认证数据NAL单元之前最临近的frame_num与认证数据的frame_num相同的图像。successive_hash_pictures_minus1等于0时,frame_num指示认证数据对应的图像;大于0时,frame_num指示连续SuccessiveHashPictures个图像的最后一个。

spatial_el_flag等于1表示该认证数据为增强层签名数据,spactial_el_flag等于0表示该认证数据为基本层签名数据。如果spactial_el_flag在码流中不存在,默认其值等于0。

authentication_data_length_minusl 加1表示签名数据的长度,以字节为单位,取值应为0~255。authentication_data[i]为一个签名数据的第i个字节。

签名数据应经过Base64编码,Base64编码方法见rfc3548。

5. 2. 4. 4. 7 流结尾 RBSP 语义

流结尾RBSP表示按解码顺序,在流结尾RBSP之后没有任何其他的NAL单元。流结尾RBSP的内容为空。

5. 2. 4. 4. 8 RBSP 尾比特语义

rbsp_stop_one_bit 应等于1。 rbsp_alignment_zero_bit 应等于0。

5. 2. 4. 5 CTU 语义

partition 表示当前块划分类型,取值可能为PARTITION_NONE,PARTITION_HORZ,PARTITION_VERT和PARTITION_SPLIT中的一个。当前块在水平方向上属于图像内的部分小于等于块宽度的一半时,hasCols等于0,否则hasCols等于1;当前块在垂直方向上属于图像内的部分小于等于块高度的一半时,

hasRows等于0,否则hasRows等于1。当hasCols等于1或hasRows等于1时,partition通过码流解析获得;当hasCols和hasRows均等于0时,默认partition取值等于PARTITION SPLIT。

5.2.4.6 块语义

segment_id 表示当前段的编码,取值范围为 $0\sim7$ 。

seg id predicted 表示段的编码是否采用预测编码。

inter_block 表示当前块是否是帧间编码块。

skip_flag 表示当前块是否是跳过编码。

coeff_value 表示块系数的取值。

coeff_sign 表示块系数的符号。

 tx_size 表示当前块采用的变换矩阵尺寸。 tx_size 等于 0 表示变换矩阵为 $TX_4 \times 4$; 等于 1 表示变换矩阵为 $TX_8 \times 8$; 等于 2 表示变换矩阵为 $TX_16 \times 16$; 等于 3 表示变换矩阵为 $TX_32 \times 32$ 。

prev_intra_luma_pred_flag 表示亮度帧内预测模式是否位于帧内预测模式预测列表中,预测列表含5个最有可能的预测模式。

mpm_idx0等于0为表示当前亮度预测模式为预测列表中的第一个模式;等于1表示当前亮度预测模式不是预测列表中的第一个模式。

mpm_idx1 当 mpm_idx0 为 1 时,mpm_idx1+1 表示当前预测模式位于预测列表中的位置。mpm_idx1 取值应为 $0\sim3$ 。

rem_pred_intra_mode表示当前亮度预测模式在除预测列表中的5个预测模式外,剩余32个预测模式中的索引。rem pred intra mode取值应为 $0\sim31$ 。

 $uv_f11ow_y_f1ag$ 等于1表示色度帧内预测模式与其对应位置的亮度帧内预测模式一致, $uv_f11ow_y_f1ag$ 等于0表示色度帧内预测模式与其对应位置的亮度帧内预测模式不一致。

chroma_intra_mode 表示色度帧内预测模式索引。

block_reference_mode 表示当前块的参考帧模式,取值为SINGLE_REFERENCE或者COMPOUND_REFERENCE。如果block_reference_mode在码流中不存在,则block_reference_mode取值等于frame_reference_mode。如果block_reference_mode等于COMPOUND_REFERENCE,则is_compound等于1,否则is_compound等于0。

ref_frame 表示当前预测块参考帧索引。当block_reference_mode等于SINGLE_REFERENCE时,ref_frame有5种可能的取值,分别为DYNAMIC_REF,STATIC_REF,OPTIONAL_REF,DYNAMIC_REF_1和DYNAMIC_REF_2。当block_reference_mode等于COMPOUND_REFERENCE时,ref_frame有4种可能的取值,分别为DYNAMIC_REF,STATIC_REF,DYNAMIC_REF_1和DYNAMIC_REF_2。

mv_mode 表示运动矢量模式。mv_mode有4种可能的取值,分别为NEARESTMV,NEARMV , ZEROMV ,NEWMV。

mv_joint 表示运动矢量分量编码类型。

mvd sign 0、mvd sign 1 表示运动矢量与预测运动矢量差值的符号。

mvd_value_0、mvd_value_1 表示运动矢量与预测运动矢量的差值。当allow_high_precision_mv等于1且对应的PMV的水平分量与垂直分量均小于8时,usehp等于1,此时mvd_value0和mvd_value1为1/8样点精度,否则mvd_value0和mvd_value1为1/4样点精度。

interp_filter_mode 表示帧间运动补偿滤波器模式。interp_filter_mode取值为0~3,分别对应滤波器模式Regular、Smooth-1、Sharp和Smooth-2。

dqp_abs 表示量化系数差值的绝对值。如果dqp_abs在码流中不存在,默认取值为0。

dqp_sign 表示量化系数差值的符号。0代表负,1代表正。如果dqp_sign在码流中不存在,默认取值为0。

5.2.4.7 监控扩展数据单元语义

5.2.4.7.1 监控扩展数据单元语义通则

监控扩展数据单元用于传递监控相关信息,由扩展单元标识(extension_id)区分。有效的 extension id不应等于0x80。

注: extension_id 等于 0x05 的监控扩展数据单元用于本标准第 6 章。

监控扩展数据单元中的信息在图像解码过程中不是必要的。

surveillance_extension_stop_byte 应等于0x80。

5. 2. 4. 7. 2 绝对时间信息扩展语义

extension_id 为8位无符号整数。绝对时间信息扩展的标号extension_id应等于4。

extension_length 为8位无符号整数,表示extension_length之后的本扩展语法元素长度,以字节为单位。

hour bits 表示小时信息。hour bits取值应为0~23。

minute_bits 表示分钟信息。minute_bits取值应为0~59。

second_bits 表示秒信息。second bits取值应为0~59。

second_fraction_bits 表示秒的分数信息,以1/16384秒为单位。second_fraction_bits取值应为0~16383。

ref_date_flag 等于1表示绝对时间信息扩展中包含绝对日期参考信息,ref_date_flag等于0表示绝对时间信息扩展中不包含绝对日期参考信息。

year minus2000 bits 取值应为0~127, 加2000表示年份信息Year。计算如下:

Year = year minus2000 bits + 2000

month_bits 表示月份信息。month_bits取值应为1~12。

day_bits 表示日期信息。date_bits取值应为1~31。

5. 2. 4. 7. 3 智能分析信息扩展语义

extension_id 为8位无符号整数,智能分析信息扩展的标号extension_id应等于0x11。

extension_length 为16位无符号整数,表示extension_length之后的本扩展语法元素长度,以字节为单位。

camera id 为摄像机标识。

analysis_num 为图像分析结果的数量。

analysis_id[i] 为第i项图像分析结果的分析功能标识,其定义见表37。

analysis_id	定义
0x01	图像分析规则
0x02	运动目标检测
0x03	人员属性分析
0x04	机动车特征分析
0x05	人脸比对
0x06	车牌识别
0x07	绊线检测

表37 anlysis id 的取值定义

0x08	入侵检测
0x09	逆行检测
0x0A	徘徊检测
0x0B	遗留物检测
0x0C	目标移除检测
0x0D	目标数量统计
0x0E-0xFF	保留

description_type[i] 为第i项图像分析结果的描述形式,其取值定义见表38。

description_type	定义
0x00	保留
0x01	根据附录F表示
0x02	自定义表示
0x03	保留

表38 description_type 的取值定义

data_length[i] 为第i项图像分析结果描述内容的字节长度。 analysis_data[i][j] 为第i项图像分析结果描述内容的第j个字节。

5. 2. 4. 7. 4 OSD 信息扩展语义

extension_id 为8位无符号整数, OSD信息扩展的标号extension id应等于0x12。

extension_length 为8位无符号整数,表示extension_length之后的本扩展语法元素长度,以字节为单位。

sub_type 为 8 位无符号整数,表示 OSD 扩展信息子类型。可为不同的 OSD 信息分配不同的子类型,sub_type 等于 32 时,表示时间 OSD 信息; sub_type 等于 33 时,表示摄像机名称 OSD 信息; sub_type 等于 34 时,表示地点标注 OSD 信息。

注:同一个 sub_type 的扩展信息不能同时出现两个; 当相同类型的扩展信息出现时,后一个扩展信息总是覆盖前一个扩展信息。

code_type 为8位无符号整数,表示0SD字符的编码格式。code_type的值为0时,表示使用UTF-8编码。

align_type 为8位无符号整数,表示OSD字符的对齐格式。align_type的值等于0为左对齐; 等于1为右对齐。

char_size 为8位无符号整数,表示OSD字符字体大小,以样点为单位表示。

char_type 为8位无符号整数,表示0SD字符字符格式。char_type等于0为白底黑边;等于1为黑底白边;等于2为白色;等于3为黑色;等于4为自动反色。

top 为16位无符号整数,表示OSD字符信息上边界在图像画面中的位置,以样点为单位表示。

left 为16位无符号整数,表示OSD字符信息左边界在图像画面中的位置,以样点为单位表示。

len 为8位无符号整数,表示osd data占用的字节长度,取值应为0~243。

res 为8位无符号整数,取值应为0~255之间。

osd_data OSD字符数据。其中,定义'\n'为换行符,'\O'为结束符。osd_data的长度为len字节。

5. 2. 4. 7. 5 地理信息扩展语义

extension id 为8位无符号整数,地理信息扩展的标号extension id应等于0x10。

longitude_type 等于0表示东经; 等于1表示西经。

longitude_degree 为8位无符号整数,表示经度的度数。

longitude_fraction_bits 表示度的分数信息,以1/1048576度为单位,取值应为0~1048575。

latitude type 等于0表示北纬; 等于1表示南纬。

latitude_degree 为8位无符号整数,表示纬度的度数。

latitude_fraction_bits 表示度的分数信息,以1/1048576度为单位,取值应为0~1048575。 height 表示高度,单位为米。

speed 表示速度,单位为米/秒。

yaw_degree 表示方向角度数,0表示方向为正北,角度数沿顺时针方向递增。 reserverd 为保留比特位。

5.3 解码过程

5.3.1 视频解码器

视频解码流程示例见图8 。视频解码器接收编码比特流,对条带中的树形编码单元,经熵解码、逆扫描、反量化及反变换产生一组残差数据D',并根据码流中的信息通过帧内预测或帧间预测得到预测数据PRED,预测数据与残差数据通过计算生成重建图像F'。重建图像经去块效应滤波,样点偏移补偿(SAO)、样点滤波补偿(ALF)后产生最终的解码图像。

图8 解码流程示例

5.3.2 NAL 单元解码过程

NAL单元解码过程的输入为NAL单元,输出为封装在NAL单元中的RBSP语法结构。该过程为从NAL单元中提取出RBSP语法结构。如果encryption_idc等于1,则从NAL单元中提取RBSP语法结构时需对加密的RBSP进行解密处理,得到未加密的RBSP。该解密过程不在本文件中规定。

对 NAL 单元中的 RBSP 语法结构按照如下的方式进行解码:

- ——nal unit type 的值为 1, 2, 3 和 4 时 NAL 单元的解码过程, 见 5. 3. 3;
- ——nal_unit_type的值为1和2时NAL单元的帧内预测过程,见5.3.4;
- ——nal_unit_type的值为1时NAL单元中的的帧间预测过程,见5.3.5;
- ——nal_unit_type的值为1和2时NAL单元中的树形编码单元在去块效应滤波前变换系数的解码过程和图像重建过程,见5.3.6;
- ——nal unit type的值为1,2,3和4时NAL单元的重建图像的去块效应滤波过程,见5.3.7;

- ——nal unit type的值为1,2,3和4时NAL单元的重建图像的样点偏移补偿过程,见5.3.8;
- ——nal unit type的值为1,2,3和4时NAL单元的重建图像的样点滤波补偿过程,见5.3.9 ;
- ——nal_unit_type的值为3和4时NAL单元中的树形编码单元在去块效应滤波之前的解码过程,见 5.3.10;
- ——nal_unit_type的值为7,8和9时NAL单元中的RBSP分别为序列参数集,图像参数集及安全参数 集。有效的序列参数集、图像参数集及安全参数集用于其他NAL单元的解码过程;
- ——nal unit type的值为13的NAL单元的解码过程,见第6章;
- ——nal unit type的值为0,12,14和15的NAL单元的解码过程不在本标准规定。

5.3.3 图像解码过程

5.3.3.1 图像的分类和对应关系

编码视频序列中可能解码出以下三种图像:

- ——帧内解码图像(I图像);
- ——即时解码刷新图像(IDR 图像);
- ——帧间解码图像。

所有图像为帧图像。

符合本文件的I图像同时应为IDR图像。IDR图像解码之后,解码顺序上所有后续的编码图像均不用根据任何在该IDR图像之前解码的图像来进行帧间预测解码。每个编码视频序列的第一幅图像应为IDR图像。可通过nal_unit_type来识别一幅图像是否为IDR图像。

帧内解码图像和帧间解码图像均可作为参考图像。

编码图像序列以图像编码组(GOP)组成。连续编码的两帧图像的图像顺序号的差值应不大于16。参考图像支持分层与不分层结构。当temporal_svc_flag等0时,表示当前编码图像不支持时域分层编码;当temporal_svc_flag等1时,表示当前编码支持时域分层编码,此时在码流中的layer_id表示当前帧的时域SVC层级。处于同一层级的图像帧应按照显示顺序进行编码。低层级的帧(layer_id较小的帧)不能参考高层级的帧(layer_id较大的帧)。

RA模式下典型的分层结构如图9 所示:

图9 RA 模式下的时域 SVC 分层结构模型

RA模式下的解码顺序为0->8->4->2->6->1->3->5->7,层级结构可设为第0、8帧为第0层级(layer_id为0),第4帧为第1层级(layer_id为1),第2、6帧为第2层级(layer_id为2)第1、3、5、7帧为第3层级(layer_id为3)。第8帧参考第0帧,第4帧参考第0和第8帧,第2帧参考第0和第4帧,第6帧参考第4和第8帧,第1、3、5、7帧属于最高层级可以参考之前已经解码的所有帧。

LD模式下典型的分层结构如图10 所示:

图10 LD 模式下的时域 SVC 分层结构模型

LD模式下解码顺序为0->1->2->3->4->5->6-> 7->8,层级结构可设0、8帧为第0层级(layer_id为0),第4帧为第1层级(layer_id为1),第2、6帧为第2层级(layer_id为2),第1、3、5、7为第3层级(layer_id为3)。参考帧配置可以为:第1帧参考之前已经解码的所有帧,这里参考第0帧;第2帧参考之前已经解码的所有图像顺序号为偶数的帧,这里参考第0帧;第3帧参考之前已经解码的所有帧,这里参考第0、1、2帧;第4帧参考之前已经解码的所有图像顺序号为4的倍数的帧,这里参考第0帧;第5帧可以参考之前已经解码的所有帧,这里参考第2、3、4帧;第6帧参考之前已经解码的所有图像顺序号为2的倍数的帧,这里参考第4、5、6帧;第8帧参考之前已经解码的所有图像顺序号为8的倍数的帧,这里参考第0帧。

5.3.3.2 图像顺序号的解码过程

图像顺序号按照图像的显示顺序依次递增。当前帧的图像顺序号cur_frame_poc计算如下: cur_frame_poc = poc_msb + poc_lsb

其中,poc_1sb等于当前图像的frame_num。poc_msb在解码前或者当前帧为IDR帧时置为0,否则, 当前帧的poc_msb计算如下:

```
if((last_poc_lsb - poc_lsb)>= 128)
{
    poc_msb = poc_msb + 256
}
else if((poc_lsb - last_poc_lsb)>= 128)
{
    poc_msb = poc_msb - 256
    if(poc_msb < 0)
        poc_msb = 0
}
else
{
    poc_msb = poc_msb
}
其中last poc_lsb为编码顺序上前一帧图像的poc_lsb。</pre>
```

5.3.3.3 编码片的解码过程

编码片解码开始时,根据FrameWidth、FrameHeight、TileCols、TileRows、tile_idx可以计算出编码片起始的图像样点位置以及本编码片中包含的CTU个数(记作ctu_num_in_tile)。依次解码编码片中的CTU,解码ctu num in tile个CTU后,编码片解码结束。

5.3.3.4 参考图像选择

5.3.3.4.1 参考图像集

参考图像集(RPS)用于表示当前帧对应的各参考帧图像,每个RPS中的参考帧数量等于refs per frame。

每帧图像具有唯一的图像顺序标志poc。当前帧所用的第i个参考帧对应的poc计算如下:

poc_refframe[i] = cur_frame_poc - sign_ref[i] × delta_poc[i]

 $sign ref[i] = 1 \quad (i = 0, 1, 3, 4)$

sign ref[i] = Sign(0-opt minus flag) (i=2)

i 等于0~4分别对应参考帧DYNAMIC_REF、STATIC_REF、OPTIONAL_REF、DYNAMIC_REF_1和DYNAMIC_REF 2,其中只有OPTIONAL_REF参考帧有可能是后向参考帧,其他都应为前向参考帧。

当delta poc[i](i>0)等于delta poc[0]时,表示RPS中的第i个参考帧无效,

不同图像帧可以采用相同的RPS,因此采用队列来存储RPS,其中队列最大存储RPS个数为64个。当 update_rps_flag等于1,表示当前帧的RPS需要更新,应从码流中读取delta_poc计算出RPS,并存入RPS 队列,参考索引值为rps_idx。当update_rps_flag等于0表示当前帧的RPS在RPS队列,直接从RPS队列中获取,参考索引值为rps_idx。

5. 3. 3. 4. 2 参考帧缓冲区的刷新

参考帧缓冲区内最多可以存在8个参考帧。从码流中获取refresh_frame_flags, refresh_flag [i] 表示refresh_frame_flags从低位算起的第i个比特 , refresh_flag [i]对应RPS中第i个参考帧的刷新状态。如果refresh_flag [i]等于1,则当前帧解码完成后,对应的参考帧将从参考帧缓冲区中移除;如果refresh_flag [i]等于0,则解码完当前帧后,对应的参考帧将保留在参考帧缓冲区中。解码当前帧后,根据从码流获取的refresh_pictures_num以及之后的delta_poc,计算对应参考帧的图像顺序号,然后将对应参考帧从参考帧缓冲区中移除。

5.3.4 帧内预测过程

5.3.4.1 帧内预测模式

帧内预测模式共 37 种,取值为 $0\sim36$,如图 11 所示。luma_intra_mode 与 chroma_intra_mode 的取值与帧内预测模式的对应关系见表 39 和表 40 。

图11 帧内预测模式

表39 亮度块帧内预测模式

luma_intra_mode	帧内预测模式
0	DC_PRED
1	TM_PRED
2	PLAN_PRED
3~12	ANG_PRED
13	Vertical_PRED
14~26	ANG_PRED
27	Horizontal_PRED
28~36	ANG_PRED

表40 色度块帧内预测模式

chroma_intra_mode	帧内预测模式
0	DC_PRED
1	PLAN_PRED
2	Vertical_PRED
3	Horizontal_PRED
4	DM_PRED

表40中,DM_PRED表示当前色度块对应位置亮度块的预测模式,当对应的亮度块包含多个预测块时,为最后一个预测块的预测模式。当DM_PRED等于DC_PRED、PLAN_PRED、Vertical_PRED、Horizontal_PRED 其中的一种,则将表40 中对应索引的预测模式用TM_PRED代替,而DM_PRED本身不变。

5.3.4.2 帧内预测模式的确定

对每一个块(块尺寸可能为4×4、8×8、16×16、32×32)用以下方法确定其帧内预测模式:

- a) 如果当前块是亮度块,
 - 1) 根据当前块的左边块和上边块的预测模式构建预测列表 intra_candlis [i], i=0~4:
 - 如果左边块存在并且是帧内预测块,则将左边块的帧内预测模式赋值给 intraPredModeLeft; 否则intraPredModeLeft等于0(DC PRED)。
 - 如果上边块存在并且是帧内预测块,则将上边块的帧内预测模式赋值给 intraPredModeAbove; 否则intraPredModeAbove 等于0 (DC PRED)。
 - 令 PredMode0 等于 min(intraPredModeLeft, intraPredModeAbove), PredMode1 等于 max (intraPredModeLeft, intraPredModeAbove)。
- 当 PredMode0 等于 PredMode1 时,
 - ◆ 如果 PredMode0 大于 PLAN PRED, 预测列表的构建按如下方式进行:

```
intra candlis[0] = PredMode0
```

intra candlis[1] = DC PRED

intra_candlis[2] = TM_PRED

 $intra_candlis[3] = ((PredMode0+ 31) % 34) + 2$

intra candlis[4] = ((PredMode0-1) % 34) + 2

并且令 mpm contex idx=0。

◆ 否则, 按如下方式进行

intra candlis[0] = PredMode0

intra candlis[1] = PredMode0== DC PRED ? TM PRED:DC PRED

intra candlis[2] = PredModeO> TM PRED ? TM PRED: PLAN PRED

intra candlis[3] = V PRED

intra candlis[4] = H PRED

并且令 mpm contex idx=1。

- 当 PredMode0 不等于 PredMode1 时,
 - ◆ 如果 PredMode0 大于 PLAN PRED (即上边块和左边块都为角度预测时):

若 PredMode1- PredMode0 小于 4, 预测列表的构建按如下方式进行:

```
intra candlis[0] = (PredMode0+ PredMode1)>>1
```

intra candlis[1] = intra candlis[0]-2

intra_candlis[2] = intra_candlis[0]-1

intra_candlis[3] = intra_candlis[0]+1

intra_candlis[4] = PredMode1== ANG_36 ? H_PRED: intra_candlis[0]+2

并且令 mpm contex idx=2。

否则,若 PredModel- PredMode0 小于 12,按如下方式构建:

intra candlis[0] = (PredMode0+ PredMode1)>>1

intra_candlis[1] = PredMode0

intra candlis[2] = PredMode0+1

intra candlis[3] = PredMode1

intra candlis[4] = PredMode1-1

并且令 mpm_contex_idx= 3。

否则, 按如下方式构建:

intra candlis[0] = PredMode0

intra candlis[1] = TM PRED

intra_candlis[2] = PredMode0+1 intra_candlis[3] = PredMode1 intra_candlis[4] = PredMode1-1 并且令 mpm contex idx= 4。

◆ 否则, 预测列表的构建按如下方式进行:

若PredMode1大于ANG 3,

intra candlis[0] = PredMode0

intra candlis[1] = PredMode0==TM PRED? DC PRED:TM PRED

intra_candlis[2] = PredMode1-1

intra candlis[3] = PredMode1

intra_candlis[4] = PredMode1==ANG_36 ? H_PRED:(((PredMode1- 1) % 35) + 2)

并且令 mpm contex idx= 5。

否则,

intra candlis[0] = DC PRED

intra_candlis[1] = TM _PRED

intra candlis[2] = PLAN PRED

intra candlis[3] = PredMode1> PLAN PRED? PredMode1:V PRED

intra candlis[4] = H PRED

并且令 mpm_contex_idx= 6。

2) 计算 luma intra mode 的值:

如果码流中解析的 prev_intra_luma_pred_flag 的值为 1,则继续解析码流中的 mpm_idx0,如果 mpm_idx0为0,则 luma_intra_mode 等于 intra_candlis[0],如果 mpm_idx0为1,则继续解析码流中的 mpm idx1,luma intra mode 等于 intra candlis[1+mpm idx1]。

如果码流中解析的 prev_intra_luma_pred_flag 的值为 0,则从码流中解析出rem_pred_intra_mode,并对其值作如下调整:

遍历 i= 0~4 , 如果 rem_pred_intra_mode 大于 intra_candlis[i],则将 rem_pred_intra_mode 加 1, 最后令 luma intra mode 等于 rem pred intra mode。

根据 luma_intra_mode 的值,查表 39 得到亮度块帧内预测模式。

b) 如果当前块是色度块:

如果码流中解析的 uv_fllow_y_flag 的值为 1,则 chroma_intra_mode 等于 4; 否则,从码流中解析得到 chroma_intra_mode。

根据 chroma_intra_mode 的值,查表 40 得到色度块帧内预测模式。

5.3.4.3 帧内预测时相邻块参考样点可用性判断

对于帧内预测,预测块尺寸与变换块尺寸绑定,因变换只有 $M \times M$ 的变换,因而预测也只有 $M \times M$,以下取 M = N。相邻块可用性参见 5. 1. 3. 3。

5.3.4.4 亮度参考样点的获取

对于 $M \times N$ (M=N)的亮度块,当前块上边的参考样点记为 r[i],左边的参考样点记为 c[j],其中 r[0] = c[0] 。

用 *I* 表示当前块所在图像的补偿后(也就是滤波前)样点的亮度样值矩阵。 设当前块左上角样点在图像中的坐标是(x₀, y₀),其参考样点按以下规则获取:

- a) 初始化 r[i], c[j]为 $2^{bitdepth-1}$, $i = 0 \sim 2M$, $j = 0 \sim 2N$;
- b) 如果上边块可用,则 $r[i] = I[x_0 + i 1, y_0 1]$, $_{i = 1} \sim M$, $_{r[i]}$ 可用,否则 $_{r[i]}$ 不可用;
- c) 如果右上块可用,则 $r[i] = I[x_0 + i 1, y_0 1]$, $i = M+1 \sim 2M$, r[i] 可用,否则 r[i] 等于 r[M] ,r[i] 是否可用取决于 r[M] 是否可用,
- d) 如果左边块可用,则 $c[j] = I[x_0 1, y_0 + j 1]$, $j = 1 \sim N$, c[j]可用,否则 c[j]不可用;
- e) 如果左下块可用,则 $c[j] = I[x_0 1, y_0 + j 1]$, $j = N+1 \sim 2N$, c[j] 可用; 否则 c[j] 等于 c[N], c[j]是否可用取决于 c[N]是否可用
- f) 如果坐标为 (x_0-1,y_0-1) 的样点可用,则 $r[0]=I[x_0-1,y_0-1]$,r[0]可用,否则r[0]不可用。

5.3.4.5 色度参考样点的获取

色度参考样点与亮度参考样点的获取方法一致,只是亮度块变为对应的色度块。

5.3.4.6 预测样点的计算

各帧内预测模式下的亮度块和色度块的预测样点矩阵 predMatrix 导出如下:

- a) Horizontal_PRED predMatrix[x, y] = c[y+1] (x=0 \sim M-1, y=0 \sim N-1)
- c) TM_PRED predMatrix[x,y]=clip(r[x+1] + c [y+1] -r [0]) (x=0 \sim M-1, y=0 \sim N-1)
- d) DC PRED
 - 1) 如果 r[i], c[j] ($i=1 \sim M$, $j=1 \sim N$) 均可用,则

$$predMatri\{x,y\}$$
 = $(\sum_{i=1}^{M}r[i]+\sum_{j=1}^{N}c[j]+((M+N)>>1))/(M+N)$ 其中(x=0 ∼ M-1 , y=0 ∼

N-1)

- 2) 否则,如果 r[i]可用(i 等于 $1\sim M$),则 $predMatrix[x,y] = (\sum_{i=1}^{M} r[i] + (M >> 1)) >> \log_2(M)$ 其中($x=0 \sim M-1$, $y=0 \sim N-1$)
- 3) 否则,如果 c[j]可用(j 等于 1~N),则 $predMatrix[x,y] = (\sum_{i=1}^N c[i] + (N>>1)) >> \log_2(N)$ 其中 (x=0 ~ M-1 , y=0 ~ N-1)
- 4) 否则, $predMatri\{x,y\}=2^{BitDepth-1}$ 其中 (x=0 \sim M-1 , y=0 \sim N-1)
- e) PLAN PRED

ib_mult[5]={13, 17, 5, 11, 23}
ib shift[5]={7, 10, 11, 15, 19}

$$\begin{split} & \mathrm{i} \, \mathrm{a} = (r \, [\mathrm{M}] + \mathrm{c} \, [\mathrm{N}] \,\,) < < 4 \\ & \mathrm{i} \, \mathrm{m} + \mathrm{i} \, \mathrm{b} \, \mathrm{mul} \, \mathrm{t} \, [\mathrm{Log}_2(\mathrm{M}) - 2] \\ & \mathrm{i} \, \mathrm{sh} \, \mathrm{i} \, \mathrm{ft} \, \mathrm{f} \, \mathrm{Log}_2(\mathrm{M}) - 2] \\ & \mathrm{i} \, \mathrm{w} = \mathrm{i} \, \mathrm{b} \, \mathrm{mul} \, \mathrm{t} \, [\mathrm{Log}_2(\mathrm{N}) - 2] \\ & \mathrm{i} \, \mathrm{w} = \mathrm{i} \, \mathrm{b} \, \mathrm{sh} \, \mathrm{i} \, \mathrm{ft} \, [\mathrm{Log}_2(\mathrm{N}) - 2] \\ & i \, h = (\sum_{i=0}^{(N>s)^{1-1}} (i+1) \times (r[(M>>1)+1+i]-r[(M>>1)-1-i]) \\ & i \, v = (\sum_{j=0}^{(N>s)^{1-1}} (j+1) \times (c[(N>>1)+1+j]-c[(N>>1)-1-j]) \\ & i \, b = ((ih <<5) \times imh + (1 << (ish-1))) >> ish \\ & i \, c = ((iv <<5) \times imv + (1 << (isv-1))) >> isv \\ & predMatri \, [x, y] = Clipl((ia + (x - (M>>1) + 1) \times ib + (y - (N>>1) + 1) \times ic + 16) >> 5) \\ & (x = 0 \sim M - 1 \,\,, \,\, y = 0 \sim N - 1) \end{split}$$

f) ANG_PRED

初始化 r[-1]=c[1],r[-2]=c[2],c[-1]=r[1],c[-2]=r[2]。根据 $luma_intra_mode$ 的值查表 41 得到角度预测模式的预测方向 dx、dy 以及 xyaxis、xysign、imx、isx、imy 和 isy。

dx=dirDx[luma intra mode]

dy=dirDy[luma_intra_mode]

xyaxis=dirXYflag[luma_intra_mode]

xysign=dirXYsign[luma_intra_mode]

imx=div dxy[luma intra mode][0]

isx=div dxy[luma intra mode][1]

imy=div_dyx[luma_intra_mode][0]

isy=div dyx[luma intra mode][1]

- 1) 如果 xysign 小于 0,则
- 如果 xyaxis 等于 0,则有 $offset = (((y+1) \times imx \times 32) >> isx) ((y+1) \times imx >> isx)$ $iX = x + ((y+1) \times imx >> isx)$ iY = -1
- 如果 xyaxis 等于 1,则有

$$offset = (((x + 1) \times imy \times 32) >> isy) - ((x + 1) \times imy >> isy)$$
$$iX = -1$$
$$iY = y + ((x + 1) \times imy >> isy)$$

2) 如果 xysign 大于 0,则

$$offsetx = (((y + 1) \times imx \times 32) >> isx) - ((y + 1) \times imx >> isx)$$

$$iXx = x((y + 1) \times imx >> isx)$$

$$offsety = (((x + 1) \times imy \times 32) >> isy) - ((x + 1) \times im >> isy)$$

$$iYy = y - ((x + 1) \times imy >> isy)$$

- 如果 iYy 小于或等于-1, offset=offsetx, iX=iXx, iY=-1;
- 否则, offset=offsety, iX=-1, iY=iYy;
- 3) 如果 iY 等于-1:
- 如果 dx×dy 小于 0,则 iXn=iX+1,iXnP2=iX+2,iXnN1=iX-1;

- 如果 $dx \times dy$ 大于 0,则 iXn=iX-1, iXnP2=iX-2, iXnN1=iX+1; $predMatrix[x,y] = (r[iXnN1+1] \times (32 offset) + r[iX+1] \times (64 offset) + r[iXn+1] \times (32 + offset) + r[iXnP2+1] \times offset + 64) >> 7, (x = 0 \sim M 1, y = 0 \sim N 1)$
- 4) 如果 iX 等于-1:
- 如果 dx×dy 小于 0,则 iYn=iY+1,iYnP2=iY+2,iYnN1=iY-1;
- 如果 $dx \times dy$ 大于 0,则 iYn=iY-1,iYnP2=iY-2,iYnN1=iY+1; $predMatrix[x,y] = (c[iYnN1+1] \times (32 offset) + c[iY+1] \times (64 offset) + c[iYn+1] \times (32 + offset) + c[iYnP2+1] \times offset + 64) >> 7, (x = 0 \sim M 1, y = 0 \sim N 1)$

表41 角度预测模式对应的方向参数

luma_intra_mode	dirDx	dirDy	dirXYflag	dirXYsign	div_dxy	div_dyx	
DC	-	-	-	-	-	-	
TM	_	-	_	-	_	-	
PLAN	-	-	-	-	-	-	
3	11	-4	0	-1	{11, 2}	{93, 8}	
4	2	-1	0	-1	{2, 0}	{1, 1}	
5	11	-8	0	-1	{11, 3}	{93, 7}	
6	1	-1	0	-1	{1, 0}	{1, 0}	
7	13	-16	0	-1	{13, 4}	{315, 8}	
8	5	-8	0	-1	{5, 3}	{13, 3}	
9	7	-16	0	-1	{7, 4}	{9, 2}	
10	5	-16	0	-1	{5, 4}	{205, 6}	
11	3	-16	0	-1	{3, 4}	{171, 5}	
12	3	-32	0	-1	{3, 5}	{171, 4}	
Ver	-	-	-	-	-	-	
14	3	32	0	1	{3, 5}	{171, 4}	
15	3	16	0	1	{3, 4}	{171, 5}	
16	5	16	0	1	{5, 4}	{205, 6}	
17	7	16	0	1	{7, 4}	{9, 2}	
18	5	8	0	1	{5, 3}	{13, 3}	
19	13	16	0	1	{13, 4}	{315, 8}	
20	1	1	0	1	{1, 0}	{1, 0}	
21	16	13	0	1	{315, 8}	{13, 4}	
22	8	5	0	1	{13, 3}	{5, 3}	
23	16	7	0	1	{9, 2}	{7, 4}	
24	16	5	0	1	{205, 6}	{5, 4}	
25	16	3	0	1	{171, 5}	{3, 4}	
26	32	3	0	1	{171, 4}	{3, 5}	
Hor	_	-	_	-	_	_	

28	32	-3	1	-1	{171, 4}	{3, 5}
29	16	-3	1	-1	{171, 5}	{3, 4}
30	16	-5	1	-1	{205, 6}	{5, 4}
31	16	-7	1	-1	{9, 2}	{7, 4}
32	8	-5	1	-1	{13, 3}	{5, 3}
33	16	-13	1	-1	{315, 8}	{13, 4}
34	1	-1	1	-1	{1, 0}	{1, 0}
35	8	-11	1	-1	{93, 7}	{11, 3}
36	1	-2	1	-1	{1, 1}	{2, 0}

5.3.5 帧间预测过程

5.3.5.1 概述

本过程的输出为当前预测单元的帧间预测样点矩阵predMatrix,包含一个亮度矩阵predL,如果chroma_format_idc不等于0,还包含相应的色度样点矩阵predCb及predCr,分别对应色度分量Cb和Cr。

5.3.5.2 运动矢量

5. 3. 5. 2. 1 候选亮度运动矢量集导出

候选运动矢量PMV[0]和PMV[1]初始设置为 $\{0,0\}$ 。

按下述步骤进行搜索,满足条件的运动矢量加入候选运动矢量集。其中,第一个满足条件的MV(mvx, mvy)为候选运动矢量PMV[0],第二个满足条件且不同于PMV[0]的运动矢量为PMV[1]。当PMV[1]得到或下述所有步骤执行完成后,本过程结束。

第一步,按顺序搜索候选位置(Xc(i),Yc(i))($i=0\sim7$)的8x8块,如果该位置在图像内、且该块使用的某一参考帧与当前块的参考帧相同,则该块对应参考帧的MV加入候选运动矢量集。当所有候选位置均被搜完后,进入第二步。

其中,候选块相对于当前块(XO,YO)的位置根据当前块的sub_size查mv_ref_blocks得到。mv_ref_blocks[BLOCK_SIZES][MVREF_NEIGHBOURS] =

```
{
    {-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
    {{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
    {{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
    {{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
    {{-1, 0}, {0, -1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}, {-2, -2}},
    {{0, -1}, {-1, 0}, {1, -1}, {-1, -1}, {0, -2}, {-2, 0}, {-2, -1}, {-1, -2}},
    {{-1, 0}, {0, -1}, {-1, 1}, {-1, -1}, {-2, 0}, {0, -2}, {-2, -1}, {-1, -2}},
    {{-2, -1}, {-1, -2}},
    {{-1, 0}, {0, -1}, {-1, 1}, {1, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
    {{0, -1}, {-1, 0}, {2, -1}, {-1, -1}, {1, 1}, {0, -3}, {-3, 0}, {0, -3}, {-3, -3}},
    {{-1, 0}, {0, -1}, {-1, 2}, {2, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
    {{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
    {{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
    {{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
    {{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
    {{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
    {{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {-3, 0}, {0, -3}, {-3, -3}},
    {{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {-1, 0}, {0, -3}, {-3, 0}, {2, -1}},
    {{1, 0}, {0, -1}, {-1, 0}, {4, -1}, {-1, 0}, {-1, 0}, {0, -3}, {-1, 2}},
    {{1, 0}, {0, -1}, {-1, 0}, {4, -1}, {-1, 0}, {-1, 0}, {0, -3}, {-1, 0},
    {{1, 0}, {0, -1}, {-1, 0},
    {{1, 0}, {0, -1}, {-1, 0},
    {{1, 0}, {0, -1}, {-1, 0},
    {{1, 0}, {0, -1}, {-1, 0},
    {{1, 0}, {0, -1}, {-1, 0},
    {{1, 0}, {0, -1}, {-1, 0},
    {{1, 0}, {0, -1}, {-1, 0},
    {{1, 0}, {0, -1}, {-1, 0},
    {{1, 0}, {0, -1},
    {{1, 0}, {0, -1},
    {{1, 0}, {0, -1},
    {{1, 0}, {0, -1},
    {{1, 0}, {0, -1},
    {{1, 0}, {0, -1},
    {{1, 0}, {0, -1},
    {{1, 0}, {0, -1},
    {{1, 0}, {0, -1},
    {{1, 0}, {0, -1},
    {{1, 0
```

候选块的位置计算如下:

 $(Xc(i), Yc(i)) = (X0, Y0) + mv \text{ ref blocks[sub size]}[i] \times 8;$

其中,如果i小于2且当前块的sub size小于3,则取候选位置块中对应位置的块的MV作为候选MV。

第二步,如果解码顺序上前一帧中,与当前块相同位置的块使用的某一参考帧,与当前块的参考帧相同,则该块对应参考帧的MV加入候选运动矢量集。

第三步,按顺序搜索候选位置(Xc(i), Yc(i))(i=0~7)的 8×8 块,如果该位置在图像内且该块使用的某一参考帧与当前块的参考帧不同,则该块对应参考帧的 MV 加入候选运动矢量集。如果该参考帧与当前块参考帧的方向不同,则该块的 MV 符号取反后(-mvx, -mvy)加入候选运动矢量集。当所有候选位置均被搜完后,进入第四步。其中,候选位置与第一步相同。

第四步,如果解码顺序上前一帧中,与当前块相同位置的块使用的某一参考帧,与当前块的参考帧不同,则该块对应参考帧的MV加入候选运动矢量集。如果该参考帧与当前块参考帧的方向不同,则该块的MV符号取反后(-mvx,-mvv)加入候选运动矢量集。

5.3.5.2.2 亮度运动矢量导出

如果当前块的skip_flag等于1,则当前块的MV为{0,0},对应参考帧为DYNAMIC_REF。否则,如果当前块的block reference mode等于SINGLE REFERENCE,则:

- a) 如果当前块的 mv mode 为 ZEROMV, 则当前块的 MV 为 {0,0}。
- b) 如果当前块的 mv mode 为 NEARESTMV,则当前块的 MV 为 PMV[0]。
- c) 如果当前块的 mv mode 为 NEARMV,则当前块的 MV 为 PMV [1]。
- d) 如果当前块的 mv mode 为 NEWMV,则当前块的 MV 为 MVP[0] + MVD[0]。

如果当前块的block_reference_mode等于COMPOUND_REFERENCE,则当前块处于双向预测模式,帧间预测有两个参考帧,其中第一参考帧从码流中读取,第二参考帧固定为OPTIONAL_REF。两个参考帧中依次导出两个运动矢量,分别记为MV[0],MV[1]。

- a) 如果当前块的 mv mode 为 ZEROMV,则 MV[0]和 MV[1]均为 {0,0}。
- b) 如果当前块的 mv mode 为 NEARESTMV,则 MV[0]和 MV[1]均为 PMV[0]。
- c) 如果当前块的 mv mode 为 NEARMV,则 MV[0]和 MV[1]均为 PMV[1]。
- d) 如果当前块的 mv mode 为 NEWMV,则 MV[0]和 MV[1]分别为

MV[0] = PMV[0] + MVD[0]

MV[1] = PMV[1] + MVD[1]

5.3.5.3 参考样点的导出过程

5.3.5.3.1 亮度样点插值过程

图 12 给出了参考图像亮度分量整数样点、1/2 样点、1/4 样点和 1/8 样点的位置示意图,其中用大写字母标记的为整数样点位置,用小写字母标记的为 1/2、1/4 和 1/8 样点位置。亮度分量分数样点的值由 8 抽头滤波器生成。滤波器分为四种类型,分别为 Regular,Smooth-1,Sharp,Smooth-2,其对应的抽头系数由表 42 ~表 45 给出。当 interp_filter_switchale 等于 0 时,亮度样点插值采用的滤波器类型为 interp_filter; 当 interp_filter_switchale 等于 1 时,亮度样点插值采用的滤波器类型由 interp_filter mode 的取值决定。

图12 亮度分量整数样点、1/2、1/4和1/8样点的位置

表42	Regular	亮度插值滤波器抽头系数
-----	---------	-------------

分数样点位置	抽头系数(Regular 类型)
1/8	-1, 3, -9, 121, 19, -7, 2, 0
2/8	-1, 4, -15, 111, 38, -12, 4, -1
3/8	-1, 5, -18, 96, 59, -17, 5, -1
4/8	-1, 6, -19, 78, 78, -19, 6, -1
5/8	-1, 5, -17, 59, 96, -18, 5, -1
6/8	-1, 4, -12, 38, 111, -15, 4, -1
7/8	0, 2, -7, 19, 121, -9, 3, -1

表43 Smooth-1 亮度插值滤波器抽头系数

分数样点位置	抽头系数 (Smooth1 类型)
1/8	-2, -1, 28, 62, 42, 1, -2, 0
2/8	-2, -2, 23, 61, 47, 4, -3, 0
3/8	-1, -3, 17, 58, 52, 8, -3, 0

4/8	-1, -3, 13, 55, 55, 13, -3, -1
5/8	0, -3, 8, 52, 58, 17, -3, -1
6/8	0, -3, 4, 47, 61, 23, -2, -2
7/8	0, -2, 1, 42, 62, 28, -1, -2

表44	Sharp	亮度插值滤波器抽头系数
1×77	Orial P	九/又川田川心/以田川八/小――――――――――――――――――――――――――――――――――――

分数样点位置	抽头系数 (Sharp 类型)
1/8	-2, 5, -14, 126, 18, -7, 3, -1
2/8	-4, 9, -21, 116, 38, -14, 6, -2
3/8	-4, 10, -25, 101, 60, -20, 9, -3
4/8	-4, 11, -24, 81, 81, -24, 11, -4
5/8	-3, 9, -20, 60, 101, -25, 10, -4
6/8	-2, 6, -14, 38, 116, -21, 9, -4
7/8	-1, 3, -7, 18, 126, -14, 5, -2

表45 Smooth-2 亮度插值滤波器抽头系数

分数样点位置	抽头系数(Smooth2 类型)
1/8	-1, 7, 29, 46, 36, 12, 0, -1
2/8	-1, 5, 26, 46, 38, 14, 1, -1
3/8	-1, 4, 23, 44, 41, 17, 1, -1
4/8	-1, 2, 20, 43, 43, 20, 2, -1
5/8	-1, 1, 17, 41, 44, 23, 4, -1
6/8	-1, 1, 14, 38, 46, 26, 5, -1
7/8	-1, 0, 12, 36, 46, 29, 7, -1

运动补偿插值滤波器包含四种不同类型的系数,其插值的方法都是相同的,因此下面均参照Regular 类型抽头系数来描述,具体计算过程如下:

亮度分量样点位置 ab_0 , ac_0 , ac_0 , ac_0 , ae_0 , 的预测值由水平方向距离插值点最近的8个整数值滤波得到,计算方法如下:

$$ab'_{0,0}$$
=-A-3,0+3×A-2,0-9×A-1,0+121×A₀,0+19×A₁,0-7×A₂,0+2×A₃,0
 $ac'_{0,0}$ =-A-3,0+4×A-2,0-15×A-1,0+111×A₀,0+38×A₁,0-12×A₂,0+4×A₃,0-A₄,0
 $ad'_{0,0}$ =-A-3,0+5×A-2,0-18×A-1,0+96×A₀,0+59×A₁,0-17×A₂,0+5×A₃,0-A₄,0
 $ae'_{0,0}$ =-A-3,0+6×A-2,0-19×A-1,0+78×A₀,0+78×A₁,0-19×A₂,0+6×A₃,0-A₄,0
 $ab_{0,0}$, $ac_{0,0}$, $ad_{0,0}$, $ae_{0,0}$ 最终预测值计算方法如下:
 $ab_{0,0}$ = Clip1 (($ab'_{0,0}$ +64) >>7)

$$ad_{0,0} = \text{Clip1} ((ad'_{0,0} + 64) >>7)$$

 $ae_{0,0} = \text{Clip1} ((ae'_{0,0} + 64) >>7)$

 $ea_{0,0} = \text{Clip1} ((ea'_{0,0} + 64) >> 7)$

其中,样点位置 $af_{0,0}$, $ag_{0,0}$, $ah_{0,0}$ 的预测方式同与样点位置 $ab_{0,0}$, $ac_{0,0}$, $ad_{0,0}$ 的预测方法类似,均采用对应位置的插值系数计算获得。

亮度分量样点位置 $ba_{0,0}$, $ca_{0,0}$, $da_{0,0}$, $ea_{0,0}$ 的预测值由垂直方向距离插值点最近的 8 个整数值滤波得到,计算方法如下:

 $ba'_{0,0}$ =-A_{0,-3}+3×A_{0,-2}-9×A_{0,-1}+121×A_{0,0}+19×A_{0,1}-7×A_{0,2}+2×A_{0,3} $ca'_{0,0}$ =-A_{0,-3}+4×A_{0,-2}-15×A_{0,-1}+111×A_{0,0}+38×A_{0,1}-12×A_{0,2}+4×A_{0,3}-A_{0,4} $da'_{0,0}$ =-A_{0,-3}+5×A_{0,-2}-18×A_{0,-1}+96×A_{0,0}+59×A_{0,1}-17×A_{0,2}+5×A_{0,3}-A_{0,4} $ea'_{0,0}$ =-A_{0,-3}+6×A_{0,-2}-19×A_{0,-1}+78×A_{0,0}+78×A_{0,1}-19×A_{0,2}+6×A_{0,3}-A_{0,4} $ba_{0,0}$, $ca_{0,0}$, $da_{0,0}$, $ea_{0,0}$ 的最终预测值应该通过下列式子得到: $ba_{0,0}$ = Clip1(($ba'_{0,0}$ +64)>>7) $ca_{0,0}$ = Clip1(($ca'_{0,0}$ +64)>>7) $da_{0,0}$ = Clip1(($da'_{0,0}$ +64)>>7)

其中,样点位置 $fa_0,0$, $ga_0,0$, $ha_0,0$ 的预测方式同与样点位置 $ba_0,0$, $ca_0,0$, $da_0,0$ 的预测方式类似,均采用对应位置的插值系数计算获得。

其他亮度分量的分数样点,如: $bb_{0,0}$, $bc_{0,0}$... $bh_{0,0}$,... $hb_{0,0}$, $hc_{0,0}$,... $hh_{0,0}$, 需要使用整行的分数样点值($ab'_{0,0}$, $ac'_{0,0}$, $ad'_{0,0}$, $ae'_{0,0}$, $af'_{0,0}$, $ag'_{0,0}$, $ah'_{0,0}$) 来计算得出,计算方法如下:

 $bb'_{0,0} = -ab'_{0,-3} + 3 \times ab'_{0,-2} - 9 \times ab'_{0,-1} + 121 \times ab'_{0,0} + 19 \times ab'_{0,1} - 7 \times ab'_{0,2} + 2 \times ab'_{0,3}$ $cc'_{0,0} = -ac'_{0,-3} + 4 \times ac'_{0,-2} - 15 \times ac'_{0,-1} + 111 \times ac'_{0,0} + 38 \times ac'_{0,1} - 12 \times ac'_{0,2} + 4 \times ac'_{0,3} - ac'_{0,4}$ $ee'_{0,0} = -ae'_{0,-3} + 6 \times ae'_{0,-2} - 19 \times ae'_{0,-1} + 78 \times ae'_{0,0} + 78 \times ae'_{0,1} - 19 \times ae'_{0,2} + 6 \times ae'_{0,3} - ae'_{0,4}$ $hh'_{0,0} = 2 \times ah'_{0,-2} - 7 \times ah'_{0,-1} + 19 \times ah'_{0,0} + 121 \times ah'_{0,1} - 9 \times ah'_{0,2} + 3 \times ah'_{0,3} - ah'_{0,4}$ $bb_{0,0}$, $cc_{0,0}$, $ee_{0,0}$, $hh_{0,0}$ 最终预测值计算方法如下: $bb_{0,0} = \text{Clip1} ((bb' + 8192) >> 14)$ $cc_{0,0} = \text{Clip1} ((ee' + 8192) >> 14)$ $hh_{0,0} = \text{Clip1} ((hh' + 8192) >> 14)$

同样,其余亮度样点位置的预测方式也类似,均采用对应位置的插值系数计算获得。

5.3.5.3.2 色度样点插值过程

图 13 给出了参考图像色度分量整数样点、1/2 样点、1/4 样点、1/8 和 1/16 样点的位置示意图。 其中用大写字母标记的为整数样点位置,用小写字母标记的为 1/2、1/4、1/8 和 1/16 样点位置。色度 分量分数样点的值由 8 抽头滤波器生成。滤波器分为四种类型,分别为 Regular,Smooth-1,Sharp,

Smooth-2,其对应的抽头系数由表 46 ~表 49 给出。色度样点插值采用的滤波器类型与对应位置的 亮度样点插值滤波器相同。

	<i>pa</i> 0,-1	<i>pb</i> 0,-1	<i>pc</i> 0,-1	pd 0,-1	<i>pe</i> 0,-1	<i>pf</i> _{0,-1}	<i>pg</i> 0,-1	<i>ph</i> 0,-1	<i>pi</i> 0,-1	<i>pj</i> 0,-1	<i>pk</i> 0,-1	<i>pl</i> 0,-1	<i>pm</i> 0,-1	<i>pn</i> 0,-1	<i>po</i> 0,-1	<i>pp</i> 0,-1	
ap -1,0	В о, о	ab 0,0	ac 0,0	ad 0,0	ae 0,0	af 0,0	ag 0,0	ah 0,0	<i>ai</i> 0,0	<i>aj</i> 0,0	ak 0,0	a/ 0,0	<i>am</i> 0,0	an 0,0	ao 0,0	<i>ap</i> 0,0	B 1, 0
<i>bp</i> -1,0	<i>ba</i> 0,0	<i>bb</i> 0,0	<i>bc</i> 0,0	<i>bd</i> 0,0	<i>be</i> 0,0	<i>bf</i> 0,0	<i>bg</i> 0,0	<i>bh</i> 0,0	<i>bi</i> 0,0	<i>bj</i> 0,0	<i>bk</i> 0,0	<i>b</i> / _{0,0}	<i>bm</i> 0,0	<i>bn</i> 0,0	<i>bo</i> 0,0	<i>bp</i> 0,0	<i>ba</i> 1,0
<i>cp</i> -1,0	ca 0,0	<i>cb</i> 0,0	CC 0,0	cd 0,0	<i>ce</i> 0,0	<i>cf</i> 0,0	<i>cg</i> 0,0	<i>ch</i> 0,0	<i>ci</i> 0,0	<i>cj</i> 0,0	ck 0,0	c/ _{0,0}	<i>cm</i> 0,0	<i>CN</i> 0,0	CO 0,0	<i>cp</i> 0,0	CA 1,0
<i>dp</i> -1,0	da 0,0	<i>db</i> 0,0	dc 0,0	<i>dd</i> 0,0	de 0,0	<i>df</i> 0,0	dg 0,0	dh 0,0	di 0,0	<i>dj</i> 0,0	dk 0,0	d/ 0,0	dm 0,0	dn 0,0	do 0,0	<i>dp</i> 0,0	da 1,0
ep -1,0	ea 0,0	<i>eb</i> 0,0	<i>ec</i> 0,0	<i>ed</i> 0,0	<i>ee</i> 0,0	<i>ef</i> 0,0	<i>eg</i> 0,0	<i>eh</i> 0,0	<i>ei</i> 0,0	<i>ej</i> 0,0	ek 0,0	<i>el</i> 0,0	<i>em</i> 0,0	<i>en</i> 0,0	<i>eo</i> 0,0	<i>ep</i> 0,0	ea 1,0
<i>fp</i> -1,0	<i>fa</i> 0,0	fb 0,0	fc 0,0	fd 0,0	<i>fe</i> 0,0	ff 0,0	fg 0,0	<i>fh</i> 0,0	fi 0,0	<i>fj</i> 0,0	<i>fk</i> 0,0	<i>f</i> / _{0,0}	fm 0,0	fn 0,0	fo 0,0	<i>fp</i> 0,0	fa 1,0
<i>gp</i> -1,0	ga 0,0	<i>gb</i> 0,0	<i>gc</i> 0,0	gd 0,0	ge 0,0	<i>gf</i> 0,0	gg 0,0	gh 0,0	<i>gi</i> 0,0	<i>gj</i> 0,0	gk 0,0	g/ _{0,0}	gm 0,0	<i>gn</i> 0,0	go 0,0	<i>gp</i> 0,0	ga 1,0
<i>hp</i> -1,0	<i>ha</i> 0,0	<i>hb</i> 0,0	<i>hc</i> 0,0	hd 0,0	<i>he</i> 0,0	<i>hf</i> 0,0	hg 0,0	<i>hh</i> 0,0	<i>hi</i> 0,0	<i>hj</i> 0,0	hk 0,0	<i>h</i> / _{0,0}	<i>hm</i> 0,0	<i>hn</i> 0,0	<i>ho</i> 0,0	<i>hp</i> 0,0	<i>ha</i> 1,0
<i>ip</i> -1,0	<i>ia</i> 0,0	<i>ib</i> 0,0	<i>ic</i> 0,0	id 0,0	<i>ie</i> 0,0	<i>if</i> 0,0	<i>ig</i> 0,0	<i>ih</i> 0,0	<i>ii</i> 0,0	<i>ij</i> 0,0	<i>ik</i> 0,0	<i>il</i> 0,0	<i>im</i> 0,0	<i>in</i> 0,0	<i>io</i> 0,0	<i>ip</i> 0,0	<i>ia</i> 1,0
<i>jp</i> -1,0	<i>ja</i> 0,0	<i>jb</i> 0,0	<i>jc</i> 0,0	jd 0,0	<i>je</i> 0,0	<i>jf</i> 0,0	<i>jg</i> 0,0	<i>jh</i> 0,0	<i>ji</i> 0,0	<i>jj</i> 0,0	<i>jk</i> 0,0	<i>j </i> 0,0	<i>jm</i> 0,0	<i>jn</i> 0,0	<i>jo</i> 0,0	<i>jp</i> 0,0	<i>ja</i> 1,0
<i>kp</i> -1,0	ka 0,0	<i>kb</i> 0,0	<i>kc</i> 0,0	<i>kd</i> 0,0	ke 0,0	kf 0,0	<i>kg</i> 0,0	<i>kh</i> 0,0	<i>ki</i> 0,0	<i>kj</i> 0,0	<i>kk</i> 0,0	k/ 0,0	km 0,0	<i>kn</i> 0,0	<i>ko</i> 0,0	<i>kp</i> 0,0	ka 1,0
<i>lp</i> -1,0	<i>la</i> 0,0	<i>1b</i> 0,0	<i> C</i> 0,0	<i>Id</i> 0,0	<i>le</i> 0,0	/f 0,0	<i>lg</i> 0,0	/h 0,0	/i 0,0	<i>lj</i> 0,0	<i>lk</i> 0,0	// _{0,0}	<i>lm</i> 0,0	<i>In</i> 0,0	<i>lo</i> 0,0	<i>lp</i> 0,0	<i>la</i> 1,0
<i>mp</i> -1,0	<i>ma</i> 0,0	mb 0,0	<i>mc</i> 0,0	md 0,0	<i>me</i> 0,0	mf 0,0	mg 0,0	<i>mh</i> 0,0	mi 0,0	mj 0,0	mk 0,0	<i>m</i> / _{0,0}	<i>mm</i> 0,0	<i>mn</i> 0,0	<i>mo</i> 0,0	mp 0,0	<i>ma</i> 1,0
<i>np</i> -1,0	<i>na</i> 0,0	<i>nb</i> 0,0	<i>nc</i> 0,0	nd 0,0	<i>ne</i> 0,0	<i>nf</i> 0,0	ng 0,0	<i>nh</i> 0,0	<i>ni</i> 0,0	<i>nj</i> 0,0	nk 0,0	<i>n</i> / _{0,0}	<i>nm</i> 0,0	<i>nn</i> 0,0	<i>no</i> 0,0	<i>np</i> 0,0	<i>na</i> 1,0
<i>op</i> -1,0	0 a 0,0	<i>ob</i> 0,0	OC 0,0	od 0,0	<i>0e</i> 0,0	of 0,0	og 0,0	oh 0,0	<i>0i</i> 0,0	<i>oj</i> 0,0	ok 0,0	0/0,0	om 0,0	<i>on</i> 0,0	00 0,0	<i>op</i> 0,0	0a 1,0
<i>pp</i> -1,0	<i>pa</i> 0,0	<i>pb</i> 0,0	<i>pc</i> 0,0	pd 0,0	<i>pe</i> 0,0	pf 0,0	<i>pg</i> 0,0	ph 0,0	pi 0,0	<i>pj</i> 0,0	pk 0,0	p/ _{0,0}	<i>pm</i> 0,0	<i>pn</i> 0,0	<i>po</i> 0,0	<i>pp</i> 0,0	pa 1,0
	B 0, 1	ab 0,1	<i>ac</i> 0,1	ad 0,1	ae 0,1	af 0,1	ag 0,1	ah 0,1	<i>ai</i> 0,1	<i>aj</i> 0,1	ak 0,1	a/ 0,1	am 0,1	<i>an</i> 0,1	<i>ao</i> 0,1	<i>ap</i> 0,1	B 1, 1

图13 色度分量整数样点、1/2、1/4、1/8 和 1/16 样点的位置

表46 色度插值滤波器抽头系数-1

分数样点位置	抽头系数(Regular 类型)
1/16	0, 1, -4, 125, 9, -4, 1, 0
2/16	-1, 3, -9, 121, 19, -7, 2, 0
3/16	-1, 4, -12, 117, 28, -10, 3, -1
4/16	-1, 4, -15, 111, 38, -12, 4, -1
5/16	-1, 5, -17, 104, 49, -15, 4, -1
6/16	-1, 5, -18, 96, 59, -17, 5, -1
7/16	-1, 6, -18, 87, 69, -19, 5, -1
8/16	-1, 6, -19, 78, 78, -19, 6, -1
9/16	-1, 5, -19, 69, 87, -18, 6, -1
10/16	-1, 5, -17, 59, 96, -18, 5, -1
11/16	-1, 4, -15, 49, 104, -17, 5, -1
12/16	-1, 4, -12, 38, 111, -15, 4, -1
13/16	-1, 3, -10, 28, 117, -12, 4, -1
14/16	0, 2, -7, 19, 121, -9, 3, -1
15/16	0, 1, -4, 9, 125, -4, 1, 0

表47 色度插值滤波器抽头系数-2

分数样点位置	抽头系数(Smooth1 类型)
1/16	-3, -1, 31, 63, 39, 1, -2, 0
2/16	-2, -1, 28, 62, 42, 1, -2, 0
3/16	-2, -1, 25, 62, 44, 3, -3, 0
4/16	-2, -2, 23, 61, 47, 4, -3, 0
5/16	-2, -2, 20, 59, 50, 6, -3, 0
6/16	-1, -3, 17, 58, 52, 8, -3, 0
7/16	-1, -3, 15, 56, 54, 11, -3, -1
8/16	-1, -3, 13, 55, 55, 13, -3, -1
9/16	-1, -3, 11, 54, 56, 15, -3, -1
10/16	0, -3, 8, 52, 58, 17, -3, -1
11/16	0, -3, 6, 50, 59, 20, -2, -2
12/16	0, -3, 4, 47, 61, 23, -2, -2
13/16	0, -3, 3, 44, 62, 25, -1, -2
14/16	0, -2, 1, 42, 62, 28, -1, -2
15/16	0, -2, 1, 39, 63, 31, -1, -3

表48 色度插值滤波器抽头系数-3

分数样点位置	抽头系数(Sharp 类型)
1/16	-1, 3, -8, 127, 10, -4, 1, 0
2/16	-2, 5, -14, 126, 18, -7, 3, -1
3/16	-3, 7, -18, 122, 28, -11, 5, -2
4/16	-4, 9, -21, 116, 38, -14, 6, -2
5/16	-4, 10, -24, 109, 49, -17, 8, -3
6/16	-4, 10, -25, 101, 60, -20, 9, -3
7/16	-4, 11, -25, 91, 71, -22, 10, -4
8/16	-4, 11, -24, 81, 81, -24, 11, -4
9/16	-4, 10, -22, 71, 91, -25, 11, -4
10/16	-3, 9, -20, 60, 101, -25, 10, -4
11/16	-3, 8, -17, 49, 109, -24, 10, -4
12/16	-2, 6, -14, 38, 116, -21, 9, -4
13/16	-2, 5, -11, 28, 122, -18, 7, -3
14/16	-1, 3, -7, 18, 126, -14, 5, -2
15/16	0, 1, -4, 10, 127, -8, 3, -1

分数样点位置	抽头系数(Smooth2 类型)
1/16	-1, 8, 31, 47, 34, 10, 0, -1
2/16	-1, 7, 29, 46, 36, 12, 0, -1
3/16	-1, 6, 28, 46, 37, 13, 0, -1
4/16	-1, 5, 26, 46, 38, 14, 1, -1
5/16	-1, 4, 25, 45, 39, 16, 1, -1
6/16	-1, 4, 23, 44, 41, 17, 1, -1
7/16	-1, 3, 21, 44, 42, 18, 2, -1
8/16	-1, 2, 20, 43, 43, 20, 2, -1
9/16	-1, 2, 18, 42, 44, 21, 3, -1
10/16	-1, 1, 17, 41, 44, 23, 4, -1
11/16	-1, 1, 16, 39, 45, 25, 4, -1
12/16	-1, 1, 14, 38, 46, 26, 5, -1
13/16	-1, 0, 13, 37, 46, 28, 6, -1
14/16	-1, 0, 12, 36, 46, 29, 7, -1
15/16	-1, 0, 10, 34, 47, 31, 8, -1

表49 色度插值滤波器抽头系数-4

色度分量样点运动补偿插值方法与亮度分量类似,也是先对整数样点所在的行或列进行插值,再利用其结果对其余分数样点位置进行插值。同亮度插值一样,下面均参照 Regular 类型抽头系数来描述。例如,图 13 中的 *aho,o*, *hao,o*, *hho,o* 计算方法如下:

 $ah'_{0,0} = -B_{-3,0} + 6 \times B_{-2,0} - 18 \times B_{-1,0} + 87 \times B_{0,0} + 69 \times B_{1,0} - 19 \times B_{2,0} + 5 \times B_{3,0} - B_{4,0}$ $ha'_{0,0} = -B_{0,-3} + 6 \times B_{0,-2} - 18 \times B_{0,-1} + 87 \times B_{0,0} + 69 \times A_{0,1} - 19 \times B_{0,2} + 5 \times B_{0,3} - B_{0,4}$

ah o, o, ha o, o 最终预测值计算方法如下:

 $ah \, o, o = \text{Clip1} \, ((ah' \, o, o + 64) >> 7)$

 $ha \, o, o = \text{Clip1} \, ((ha'o, o + 64) >> 7)$

其他色度分量的分数样点,如: $bb \circ o$, $bc \circ o$... $bh \circ o$, $hc \circ o$, $hc \circ o$, ... $hh \circ o$, 需要使用第一步中计算的整数样点位置的行的分数样点值($ab' \circ o$, $ac' \circ o$, $ad' \circ o$, $ae' \circ o$, $af' \circ o$, $ag' \circ o$, $ah' \circ o$) 来计算得出,计算方法如下:

 $hh'o, o = -ah'o, -3 + 6 \times ah'o, -2 - 19 \times ah'o, -1 + 78 \times ah'o, o + 78 \times ah'o, 1 - 19 \times ah'o, 2 + 6 \times ah'o, 3 - ah'o, 4$ hho, o 的最终预测值计算方法如下:

 $hh_{0,0} = \text{Clip1} ((hh'_{0,0} + 8192) >> 14)$

同样,其余色度样点位置的预测方式也类似,均采用对应位置的插值系数计算获得。

5.3.6 变换系数解码过程以及图像重建过程

5.3.6.1 概述

本条所述过程在去块滤波过程之前进行,包括块系数解析,逆扫描,反量化,反变换和重建。 逆扫描的输入为由块解析生成的数组QuantCoeffArray,输出为量化系数矩阵QuantCoeffMatrix。

反量化的输入为量化系数矩阵QuantCoeffMatrix,当前块的量化参数QP,输出为反量化后的变换系数矩阵CoeffMatrix。

反变换的输入为4×4或8×8或16×16或32×32变换系数矩阵CoeffMatrix,输出为4×4或8×8或16×16或32×32残差样点矩阵ResidueMatrix。

重建过程的输入为残差样点矩阵ResidueMatrix和预测样点矩阵predMatrix,输出为重建样点矩阵RecMatrix。

5.3.6.2 块系数解析

设置max_eob为当前块中的样点个数,块系数数组QuantCoeffArray初始化为全0,块系数索引i等于0。块解析按如下步骤进行:

第一步,解析coeff_value[i],其过程见5.4.2,如果该值为E0B,则索引值大于等于i的块系数均为0,块解析过程结束,否则进入下一步;

第二步,如果coeff_value[i]等于0,则QuantCoeffArray[i]等于0,块系数索引i增加1,继续解析下一个coeff value[i],直至解析到一个coeff value[i]大于0后进入下一步;

第三步,获得coeff_sign[i],如果coeff_sign[i]等于0,块系数QuantCoeffArray[i]的取值等于coeff value[i];如果coeff sign[i]等于1,块系数QuantCoeffArray[i]的取值等于-coeff value[i];

第四步,块系数索引i增加1。如果当前块中的所有系数均已解析出,块解析过程结束,否则回到第一步。

5.3.6.3 逆扫描

设QuantCoeffArray数组中某元素的地址为k,通过逆扫描找到地址为k的单元对应的列号i和行号j,然后将QuantCoeffArray[k]赋给QuantCoeffMatrix[i,j]。根据块尺寸及编码模式的不同,扫描方式定义如图14。

当编码块采用帧间编码或编码块为色度块或编码块采用无损编码模式时,根据块尺寸,分别采用4×4扫描、8×8扫描、16×16扫描和32×32扫描。

当编码块采用帧内编码且为亮度块时:

- 1) 若 luma_intra_mode 的取值大于等于 9 小于等于 17 时,根据块尺寸分别采用 4×4 行扫描、8 ×8 行扫描、16×16 行扫描和 32×32 扫描;
- 2) 若 luma_intra_mode 的取值大于等于 24 小于等于 31 时,根据块尺寸分别采用 4×4 列扫描、8 ×8 列扫描、16×16 列扫描和 32×32 扫描;
- 3) 否则,根据块尺寸,分别采用 4×4 扫描、8×8 扫描、16×16 扫描和 32×32 扫描。

a) 4×4 扫描

_		0	1	2	3		i
	0	0	1	4	2		1
	1	5	3	6	8		
	2	9	7	12	10		
	3	13	11	14	15		
						•	
		j					

b) 4×4 行扫描

c) 4×4列扫描

	0	1	2	3	4	5	6	7		:
0	0	8	1	16	9	2	17	24		i
1	10	3	18	25	32	11	4	26		
2	33	19	40	12	34	27	5	41		
3	20	48	13	35	42	28	21	6		
4	49	56	36	43	29	7	14	50		
5	57	44	22	37	15	51	58	30		
6	45	23	52	59	38	31	60	53		
7	46	39	61	54	47	62	55	63		
									•	
j	j									

d) 8×8扫描

0 1 2 3 4 5 6 7 0 0 1 2 8 9 3 16 10 1 4 17 11 24 5 18 25 12 2 19 26 32 6 13 20 33 27 3 7 34 40 21 28 41 14 35 4 48 42 29 36 49 22 43 15 5 56 37 50 44 30 57 23 51 6 58 45 38 52 31 59 53 46 7 60 39 61 47 54 55 62 63										
1 4 17 11 24 5 18 25 12 2 19 26 32 6 13 20 33 27 3 7 34 40 21 28 41 14 35 4 48 42 29 36 49 22 43 15 5 56 37 50 44 30 57 23 51 6 58 45 38 52 31 59 53 46		0	1	2	3	4	5	6	_7_	
2 19 26 32 6 13 20 33 27 3 7 34 40 21 28 41 14 35 4 48 42 29 36 49 22 43 15 5 56 37 50 44 30 57 23 51 6 58 45 38 52 31 59 53 46	0	0	1	2	8	9	3	16	10	
3 7 34 40 21 28 41 14 35 4 48 42 29 36 49 22 43 15 5 56 37 50 44 30 57 23 51 6 58 45 38 52 31 59 53 46	1	4	17	11	24	5	18	25	12	
4 48 42 29 36 49 22 43 15 5 56 37 50 44 30 57 23 51 6 58 45 38 52 31 59 53 46	2	19	26	32	6	13	20	33	27	
5 56 37 50 44 30 57 23 51 6 58 45 38 52 31 59 53 46	3	7	34	40	21	28	41	14	35	
6 58 45 38 52 31 59 53 46	4	48	42	29	36	49	22	43	15	
	5	56	37	50	44	30	57	23	51	
7 60 39 61 47 54 55 62 63	6	58	45	38	52	31	59	53	46	
	7	60	39	61	47	54	55	62	63	
•										
i		i i								

78

e) 8×8 行扫描

	0	1	2	3	4	5	6	7	
0	0	8	16	1	24	9	32	17	
1	2	40	25	10	33	18	48	3	
2	26	41	11	56	19	34	4	49	
3	27	42	12	35	20	57	50	28	
4	5	43	13	36	58	51	21	44	
5	6	29	59	37	14	52	22	7	
6	45	60	30	15	38	53	23	46	
7	31	61	39	54	47	62	55	63	
									•

f) 8×8 列扫描

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	16	1	32	17	2	48	33	18	3	64	34	49	19	65	80
1	50	4	35	66	20	81	96	51	5	36	82	97	67	112	21	52
2	98	37	83	113	6	68	128	53	22	99	114	84	7	129	38	69
3	100	115	144	130	85	54	23	8	145	39	70	116	101	131	160	146
4	55	86	24	71	132	117	161	40	9	102	147	176	162	87	56	25
5	133	118	177	148	72	103	41	163	10	192	178	88	57	134	149	119
6	26	164	73	104	193	42	179	208	11	135	89	165	120	150	58	194
7	180	27	74	209	105	151	136	43	90	224	166	195	181	121	210	59
8	12	152	106	167	196	75	137	225	211	240	182	122	91	28	197	13
9	226	168	183	153	44	212	138	107	241	60	29	123	198	184	227	169
10	242	76	213	154	45	92	14	199	139	61	228	214	170	185	243	108
11	77	155	30	15	200	229	124	215	244	93	46	186	171	201	109	140
12	230	62	216	245	31	125	78	156	231	47	187	202	217	94	246	141
13	63	232	172	110	247	157	79	218	203	126	233	188	248	95	173	142
14	219	111	249	234	158	127	189	204	250	235	143	174	220	205	159	251
15	190	221	175	236	237	191	206	252	222	253	207	238	223	254	239	255

g) 16×16扫描

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	2	16	3	17	4	18	32	5	33	19	6	34	48	20
1	49	7	35	21	50	64	8	36	65	22	51	37	80	9	66	52
2	23	38	81	67	10	53	24	82	68	96	39	11	54	83	97	69
3	25	98	84	40	112	55	12	70	99	113	85	26	41	56	114	100
4	13	71	128	86	27	115	101	129	42	57	72	116	14	87	130	102
5	144	73	131	117	28	58	15	88	43	145	103	132	146	118	74	160
6	89	133	104	29	59	147	119	44	161	148	90	105	134	162	120	176
7	75	135	149	30	60	163	177	45	121	91	106	164	178	150	192	136
8	165	179	31	151	193	76	122	61	137	194	107	152	180	208	46	166
9	167	195	92	181	138	209	123	153	224	196	77	168	210	182	240	108
10	197	62	154	225	183	169	211	47	139	93	184	226	212	241	198	170
11	124	155	199	78	213	185	109	227	200	63	228	242	140	214	171	186
12	156	229	243	125	94	201	244	215	216	230	141	187	202	79	172	110
13	157	245	217	231	95	246	232	126	203	247	233	173	218	142	111	158
14	188	248	127	234	219	249	189	204	143	174	159	250	235	205	220	175
15	190	251	221	191	206	236	207	237	252	222	253	223	238	239	254	255

h) 16×16 行扫描

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	16	32	48	1	64	17	80	33	96	49	2	65	112	18	81
1	34	128	50	97	3	66	144	19	113	35	82	160	98	51	129	4
2	67	176	20	114	145	83	36	99	130	52	192	5	161	68	115	21
3	146	84	208	177	37	131	100	53	162	224	69	6	116	193	147	85
4	22	240	132	38	178	101	163	54	209	117	70	7	148	194	86	179
5	225	23	133	39	164	8	102	210	241	55	195	118	149	71	180	24
6	87	226	134	165	211	40	103	56	72	150	196	242	119	9	181	227
7	88	166	25	135	41	104	212	57	151	197	120	73	243	182	136	167
8	213	89	10	228	105	152	198	26	42	121	183	244	168	58	137	229
9	74	214	90	153	199	184	11	106	245	27	122	230	169	43	215	59
10	200	138	185	246	75	12	91	154	216	231	107	28	44	201	123	170
11	60	247	232	76	139	13	92	217	186	248	155	108	29	124	45	202
12	233	171	61	14	77	140	15	249	93	30	187	156	218	46	109	125
13	62	172	78	203	31	141	234	94	47	188	63	157	110	250	219	79
14	126	204	173	142	95	189	111	235	158	220	251	127	174	143	205	236
15	159	190	221	252	175	206	237	191	253	222	238	207	254	223	239	255
:	j															

i) 16×16列扫描

i) 32×32 扫描

图14 4×4、8×8、16×16、32×32 块的逆扫描

5.3.6.4 系数反量化

5.3.6.4.1 量化参数

量化参数QPIndex的取值应为0~255。帧解码开始时, QPIndex 初始设置为base_qindex。 每个解码块的QPIndex计算如下:

QPIndex= QPIndex + dqp_sign ? dqp_abs : -dqp_abs

亮度 DC 系数量化参数 QPY_dc 以 QPIndex、y_dc_delta_q 与 BitDepthY 为索引查表 50 ~表 52 得到, QPY_dc 为查表得到的 QP_dc, 其中 index= Clip3(0,255,QPIndex+y_dc_delta_q)。 亮度 AC 系数量化参数 QPY_ac 以 QPIndex、y_ac_delta_q 与 BitDepthY 为索引查表 53 ~表 55 得到, QPY_ac 为查表得到

的 QP_ac, 其中 index= Clip3(0,255,QPIndex)。色度 DC 系数量化参数 QPC_dc 以 QPIndex、uv_dc_delta_q 与 BitDepthY 为索引查表 50 ~表 52 得到,QPC_dc 为查表得到的 QP_dc,其中 index= Clip3(0,255,QPIndex+uv_dc_delta_q)。色度 AC 系数量化参数 QPC_ac 以 QPIndex、uv_ac_delta_q 与 BitDepthY 为索引查表 53 ~表 55 得到,QPC_ac 为查表得到的 QP_ac,其中 index= Clip3(0,255,QPIndex+uv_ac_delta_q)。

表50 BitDepth=8时, QP_dc与index=QPIndex+dc_delta_q的映射关系

index	0	1	2	3	4	5	6	7
QP_dc	4	8	8	9	10	11	12	12
index	8	9	10	11	12	13	14	15
QP_dc	13	14	15	16	17	18	19	19
index	16	17	18	19	20	21	22	23
QP_dc	20	21	22	23	24	25	26	26
index	24	25	26	27	28	29	30	31
QP_dc	27	28	29	30	31	32	32	33
index	32	33	34	35	36	37	38	39
QP_dc	34	35	36	37	38	38	39	40
index	40	41	42	43	44	45	46	47
QP_dc	41	42	43	43	44	45	46	47
index	48	49	50	51	52	53	54	55
QP_dc	48	48	49	50	51	52	53	53
index	56	57	58	59	60	61	62	63
QP_dc	54	55	56	57	57	58	59	60
index	64	65	66	67	68	69	70	71
QP_dc	61	62	62	63	64	65	66	66
index	72	73	74	75	76	77	78	79
QP_dc	67	68	69	70	70	71	72	73
index	80	81	82	83	84	85	86	87
QP_dc	74	74	75	76	77	78	78	79
index	88	89	90	91	92	93	94	95
QP_dc	80	81	81	82	83	84	85	85
index	96	97	98	99	100	101	102	103
QP_dc	87	88	90	92	93	95	96	98
index	104	105	106	107	108	109	110	111
QP_dc	99	101	102	104	105	107	108	110
index	112	113	114	115	116	117	118	119
QP_dc	111	113	114	116	117	118	120	121
index	120	121	122	123	124	125	126	127
QP_dc	123	125	127	129	131	134	136	138
index	128	129	130	131	132	133	134	135
QP_dc	140	142	144	146	148	150	152	154

index	136	137	138	139	140	141	142	143
QP_dc	156	158	161	164	166	169	172	174
index	144	145	146	147	148	149	150	151
QP_dc	177	180	182	185	187	190	192	195
index	152	153	154	155	156	157	158	159
QP_dc	199	202	205	208	211	214	217	220
index	160	161	162	163	164	165	166	167
QP_dc	223	226	230	233	237	240	243	247
index	168	169	170	171	172	173	174	175
QP_dc	250	253	257	261	265	269	272	276
index	176	177	178	179	180	181	182	183
QP_dc	280	284	288	292	296	300	304	309
index	184	185	186	187	188	189	190	191
QP_dc	313	317	322	326	330	335	340	344
index	192	193	194	195	196	197	198	199
QP_dc	349	354	359	364	369	374	379	384
index	200	201	202	203	204	205	206	207
QP_dc	389	395	400	406	411	417	423	429
index	208	209	210	211	212	213	214	215
QP_dc	435	441	447	454	461	467	475	482
index	216	217	218	219	220	221	222	223
QP_dc	489	497	505	513	522	530	539	549
index	224	225	226	227	228	229	230	231
QP_dc	559	569	579	590	602	614	626	640
index	232	233	234	235	236	237	238	239
QP_dc	654	668	684	700	717	736	755	775
index	240	241	242	243	244	245	246	247
QP_dc	796	819	843	869	896	925	955	988
index	248	249	250	251	252	253	254	255
QP_dc	1022	1058	1098	1139	1184	1232	1282	1336

表51 BitDepth=10时,QP_dc与index=QPIndex+dc_delta_q的映射关系

index	0	1	2	3	4	5	6	7
QP_dc	4	9	10	13	15	17	20	22
index	8	9	10	11	12	13	14	15
QP_dc	25	28	31	34	37	40	43	47
index	16	17	18	19	20	21	22	23
QP_dc	50	53	57	60	64	68	71	75
index	24	25	26	27	28	29	30	31
QP_dc	78	82	86	90	93	97	101	105
index	32	33	34	35	36	37	38	39

	1	1	T	T	T	T	T	T
QP_dc	109	113	116	120	124	128	132	136
index	40	41	42	43	44	45	46	47
QP_dc	140	143	147	151	155	159	163	166
index	48	49	50	51	52	53	54	55
QP_dc	170	174	178	182	185	189	193	197
index	56	57	58	59	60	61	62	63
QP_dc	200	204	208	212	215	219	223	226
index	64	65	66	67	68	69	70	71
QP_dc	230	233	237	241	244	248	251	255
index	72	73	74	75	76	77	78	79
QP_dc	259	262	266	269	273	276	280	283
index	80	81	82	83	84	85	86	87
QP_dc	287	290	293	297	300	304	307	310
index	88	89	90	91	92	93	94	95
QP_dc	314	317	321	324	327	331	334	337
index	96	97	98	99	100	101	102	103
QP_dc	343	350	356	362	369	375	381	387
index	104	105	106	107	108	109	110	111
QP_dc	394	400	406	412	418	424	430	436
index	112	113	114	115	116	117	118	119
QP_dc	442	448	454	460	466	472	478	484
index	120	121	122	123	124	125	126	127
QP_dc	490	499	507	516	525	533	542	550
index	128	129	130	131	132	133	134	135
QP_dc	559	567	576	584	592	601	609	617
index	136	137	138	139	140	141	142	143
QP_dc	625	634	644	655	666	676	687	698
index	144	145	146	147	148	149	150	151
QP_dc	708	718	729	739	749	759	770	782
index	152	153	154	155	156	157	158	159
QP_dc	795	807	819	831	844	856	868	880
index	160	161	162	163	164	165	166	167
QP_dc	891	906	920	933	947	961	975	988
index	168	169	170	171	172	173	174	175
QP_dc	1001	1015	1030	1045	1061	1076	1090	1105
index	176	177	178	179	180	181	182	183
QP_dc	1120	1137	1153	1170	1186	1202	1218	1236
index	184	185	186	187	188	189	190	191
QP_dc	1253	1271	1288	1306	1323	1342	1361	1379
index	192	193	194	195	196	197	198	199
QP_dc	1398	1416	1436	1456	1476	1496	1516	1537

index	200	201	202	203	204	205	206	207
QP_dc	1559	1580	1601	1624	1647	1670	1692	1717
index	208	209	210	211	212	213	214	215
QP_dc	1741	1766	1791	1817	1844	1871	1900	1929
index	216	217	218	219	220	221	222	223
QP_dc	1958	1990	2021	2054	2088	2123	2159	2197
index	224	225	226	227	228	229	230	231
QP_dc	2236	2276	2319	2363	2410	2458	2508	2561
index	232	233	234	235	236	237	238	239
QP_dc	2616	2675	2737	2802	2871	2944	3020	3102
index	240	241	242	243	244	245	246	247
QP_dc	3188	3280	3375	3478	3586	3702	3823	3953
index	248	249	250	251	252	253	254	255
QP_dc	4089	4236	4394	4559	4737	4929	5130	5347

表52 BitDepth=12 时, QP_dc 与 index=QPIndex+dc_delta_q 的映射关系

index	0	1	2	3	4	5	6	7
QP_dc	4	12	18	25	33	41	50	60
index	8	9	10	11	12	13	14	15
QP_dc	70	80	91	103	115	127	140	153
index	16	17	18	19	20	21	22	23
QP_dc	166	180	194	208	222	237	251	266
index	24	25	26	27	28	29	30	31
QP_dc	281	296	312	327	343	358	374	390
index	32	33	34	35	36	37	38	39
QP_dc	405	421	437	453	469	484	500	516
index	40	41	42	43	44	45	46	47
QP_dc	532	548	564	580	596	611	627	643
index	48	49	50	51	52	53	54	55
QP_dc	659	674	690	706	721	737	752	768
index	56	57	58	59	60	61	62	63
QP_dc	783	798	814	829	844	859	874	889
index	64	65	66	67	68	69	70	71
QP_dc	904	919	934	949	964	978	993	1008
index	72	73	74	75	76	77	78	79
QP_dc	1022	1037	1051	1065	1080	1094	1108	1122
index	80	81	82	83	84	85	86	87
QP_dc	1136	1151	1165	1179	1192	1206	1220	1234
index	88	89	90	91	92	93	94	95
QP_dc	1248	1261	1275	1288	1302	1315	1329	1342
index	96	97	98	99	100	101	102	103

QP_dc	1368	1393	1419	1444	1469	1494	1519	1544
index	104	105	106	107	108	109	110	111
QP_dc	1569	1594	1618	1643	1668	1692	1717	1741
index	112	113	114	115	116	117	118	119
QP_dc	1765	1789	1814	1838	1862	1885	1909	1933
index	120	121	122	123	124	125	126	127
QP_dc	1957	1992	2027	2061	2096	2130	2165	2199
index	128	129	130	131	132	133	134	135
QP_dc	2233	2267	2300	2334	2367	2400	2434	2467
index	136	137	138	139	140	141	142	143
QP_dc	2499	2532	2575	2618	2661	2704	2746	2788
index	144	145	146	147	148	149	150	151
QP_dc	2830	2872	2913	2954	2995	3036	3076	3127
index	152	153	154	155	156	157	158	159
QP_dc	3177	3226	3275	3324	3373	3421	3469	3517
index	160	161	162	163	164	165	166	167
QP_dc	3565	3621	3677	3733	3788	3843	3897	3951
index	168	169	170	171	172	173	174	175
QP_dc	4005	4058	4119	4181	4241	4301	4361	4420
index	176	177	178	179	180	181	182	183
QP_dc	4479	4546	4612	4677	4742	4807	4871	4942
index	184	185	186	187	188	189	190	191
QP_dc	5013	5083	5153	5222	5291	5367	5442	5517
index	192	193	194	195	196	197	198	199
QP_dc	5591	5665	5745	5825	5905	5984	6063	6149
index	200	201	202	203	204	205	206	207
QP_dc	6234	6319	6404	6495	6587	6678	6769	6867
index	208	209	210	211	212	213	214	215
QP_dc	6966	7064	7163	7269	7376	7483	7599	7715
index	216	217	218	219	220	221	222	223
QP_dc	7832	7958	8085	8214	8352	8492	8635	8788
index	224	225	226	227	228	229	230	231
QP_dc	8945	9104	9275	9450	9639	9832	10031	10245
index	232	233	234	235	236	237	238	239
QP_dc	10465	10702	10946	11210	11482	11776	12081	12409
index	240	241	242	243	244	245	246	247
QP_dc	12750	13118	13501	13913	14343	14807	15290	15812
index	248	249	250	251	252	253	254	255
QP_dc	16356	16943	17575	18237	18949	19718	20521	21387

表53 BitDepth=8时, QP_ac与index=QPIndex+ac_delta_q的映射关系

	0	1	2	3	4	5	6	7
index			-					
QP_ac	4	8	9	10	11	12	13	14
index	8	9	10	11	12	13	14	15
QP_ac	15	16	17	18	19	20	21	22
index	16	17	18	19	20	21	22	23
QP_ac	23	24	25	26	27	28	29	30
index	24	25	26	27	28	29	30	31
QP_ac	31	32	33	34	35	36	37	38
index	32	33	34	35	36	37	38	39
QP_ac	39	40	41	42	43	44	45	46
index	40	41	42	43	44	45	46	47
QP_ac	47	48	49	50	51	52	53	54
index	48	49	50	51	52	53	54	55
QP_ac	55	56	57	58	59	60	61	62
index	56	57	58	59	60	61	62	63
QP_ac	63	64	65	66	67	68	69	70
index	64	65	66	67	68	69	70	71
QP_ac	71	72	73	74	75	76	77	78
index	72	73	74	75	76	77	78	79
QP_ac	79	80	81	82	83	84	85	86
index	80	81	82	83	84	85	86	87
QP_ac	87	88	89	90	91	92	93	94
index	88	89	90	91	92	93	94	95
QP_ac	95	96	97	98	99	100	101	102
index	96	97	98	99	100	101	102	103
QP_ac	104	106	108	110	112	114	116	118
index	104	105	106	107	108	109	110	111
QP_ac	120	122	124	126	128	130	132	134
index	112	113	114	115	116	117	118	119
QP_ac	136	138	140	142	144	146	148	150
index	120	121	122	123	124	125	126	127
QP_ac	152	155	158	161	164	167	170	173
index	128	129	130	131	132	133	134	135
QP_ac	176	179	182	185	188	191	194	197
index	136	137	138	139	140	141	142	143
QP_ac	200	203	207	211	215	219	223	227
index	144	145	146	147	148	149	150	151
QP_ac	231	235	239	243	247	251	255	260
index	152	153	154	155	156	157	158	159
QP_ac	265	270	275	280	285	290	295	300
index	160	161	162	163	164	165	166	167

QP_ac	305	311	317	323	329	335	341	347
index	168	169	170	171	172	173	174	175
QP_ac	353	359	366	373	380	387	394	401
index	176	177	178	179	180	181	182	183
QP_ac	408	416	424	432	440	448	456	465
index	184	185	186	187	188	189	190	191
QP_ac	474	483	492	501	510	520	530	540
index	192	193	194	195	196	197	198	199
QP_ac	550	560	571	582	593	604	615	627
index	200	201	202	203	204	205	206	207
QP_ac	639	651	663	676	689	702	715	729
index	208	209	210	211	212	213	214	215
QP_ac	743	757	771	786	801	816	832	848
index	216	217	218	219	220	221	222	223
QP_ac	864	881	898	915	933	951	969	988
index	224	225	226	227	228	229	230	231
QP_ac	1007	1026	1046	1066	1087	1108	1129	1151
index	232	233	234	235	236	237	238	239
QP_ac	1173	1196	1219	1243	1267	1292	1317	1343
index	240	241	242	243	244	245	246	247
QP_ac	1369	1396	1423	1451	1479	1508	1537	1567
index	248	249	250	251	252	253	254	255
QP_ac	1597	1628	1660	1692	1725	1759	1793	1828

表54 BitDepth=10时, QP_ac与index=QPIndex+ac_delta_q的映射关系

index	0	1	2	3	4	5	6	7
QP_ac	4	9	11	13	16	18	21	24
index	8	9	10	11	12	13	14	15
QP_ac	27	30	33	37	40	44	48	51
index	16	17	18	19	20	21	22	23
QP_ac	55	59	63	67	71	75	79	83
index	24	25	26	27	28	29	30	31
QP_ac	88	92	96	100	105	109	114	118
index	32	33	34	35	36	37	38	39
QP_ac	122	127	131	136	140	145	149	154
index	40	41	42	43	44	45	46	47
QP_ac	158	163	168	172	177	181	186	190
index	48	49	50	51	52	53	54	55
QP_ac	195	199	204	208	213	217	222	226
index	56	57	58	59	60	61	62	63
QP_ac	231	235	240	244	249	253	258	262

index	64	65	66	67	68	69	70	71
QP_ac	267	271	275	280	284	289	293	297
index	72	73	74	75	76	77	78	79
QP_ac	302	306	311	315	319	324	328	332
index	80	81	82	83	84	85	86	87
	337	341	345	349	354	358	362	367
QP_ac index	88	89	90	91	92	93	94	95
	371	375	379	384	388	392	396	401
QP_ac index	96	97	98	99	100	101	102	103
	409	417	425	433		449	458	466
QP_ac					441			
index	104	105	106	107	108	109	110	111
QP_ac	474	482	490	498	506	514	523	531
index	112	113	114	115	116	117	118	119
QP_ac	539	547	555	563	571	579	588	596
index	120	121	122	123	124	125	126	127
QP_ac	604	616	628	640	652	664	676	688
index	128	129	130	131	132	133	134	135
QP_ac	700	713	725	737	749	761	773	785
index	136	137	138	139	140	141	142	143
QP_ac	797	809	825	841	857	873	889	905
index	144	145	146	147	148	149	150	151
QP_ac	922	938	954	970	986	1002	1018	1038
index	152	153	154	155	156	157	158	159
QP_ac	1058	1078	1098	1118	1138	1158	1178	1198
index	160	161	162	163	164	165	166	167
QP_ac	1218	1242	1266	1290	1314	1338	1362	1386
index	168	169	170	171	172	173	174	175
QP_ac	1411	1435	1463	1491	1519	1547	1575	1603
index	176	177	178	179	180	181	182	183
QP_ac	1631	1663	1695	1727	1759	1791	1823	1859
index	184	185	186	187	188	189	190	191
QP_ac	1895	1931	1967	2003	2039	2079	2119	2159
index	192	193	194	195	196	197	198	199
QP_ac	2199	2239	2283	2327	2371	2415	2459	2507
index	200	201	202	203	204	205	206	207
QP_ac	2555	2603	2651	2703	2755	2807	2859	2915
index	208	209	210	211	212	213	214	215
QP_ac	2971	3027	3083	3143	3203	3263	3327	3391
index	216	217	218	219	220	221	222	223
QP_ac	3455	3523	3591	3659	3731	3803	3876	3952
index	224	225	226	227	228	229	230	231

QP_ac	4028	4104	4184	4264	4348	4432	4516	4604
index	232	233	234	235	236	237	238	239
QP_ac	4692	4784	4876	4972	5068	5168	5268	5372
index	240	241	242	243	244	245	246	247
QP_ac	5476	5584	5692	5804	5916	6032	6148	6268
index	248	249	250	251	252	253	254	255
QP_ac	6388	6512	6640	6768	6900	7036	7172	7312

表55 BitDepth=12时,QP_ac与index=QPIndex+ac_delta_q的映射关系

		1						
index	0	1	2	3	4	5	6	7
QP_ac	4	13	19	27	35	44	54	64
index	8	9	10	11	12	13	14	15
QP_ac	75	87	99	112	126	139	154	168
index	16	17	18	19	20	21	22	23
QP_ac	183	199	214	230	247	263	280	297
index	24	25	26	27	28	29	30	31
QP_ac	314	331	349	366	384	402	420	438
index	32	33	34	35	36	37	38	39
QP_ac	456	475	493	511	530	548	567	586
index	40	41	42	43	44	45	46	47
QP_ac	604	623	642	660	679	698	716	735
index	48	49	50	51	52	53	54	55
QP_ac	753	772	791	809	828	846	865	884
index	56	57	58	59	60	61	62	63
QP_ac	902	920	939	957	976	994	1012	1030
index	64	65	66	67	68	69	70	71
QP_ac	1049	1067	1085	1103	1121	1139	1157	1175
index	72	73	74	75	76	77	78	79
QP_ac	1193	1211	1229	1246	1264	1282	1299	1317
index	80	81	82	83	84	85	86	87
QP_ac	1335	1352	1370	1387	1405	1422	1440	1457
index	88	89	90	91	92	93	94	95
QP_ac	1474	1491	1509	1526	1543	1560	1577	1595
index	96	97	98	99	100	101	102	103
QP_ac	1627	1660	1693	1725	1758	1791	1824	1856
index	104	105	106	107	108	109	110	111
QP_ac	1889	1922	1954	1987	2020	2052	2085	2118
index	112	113	114	115	116	117	118	119
QP_ac	2150	2183	2216	2248	2281	2313	2346	2378
index	120	121	122	123	124	125	126	127
QP_ac	2411	2459	2508	2556	2605	2653	2701	2750

index	128	129	130	131	132	133	134	135
QP_ac	2798	2847	2895	2943	2992	3040	3088	3137
index	136	137	138	139	140	141	142	143
QP_ac	3185	3234	3298	3362	3426	3491	3555	3619
index	144	145	146	147	148	149	150	151
QP_ac	3684	3748	3812	3876	3941	4005	4069	4149
index	152	153	154	155	156	157	158	159
QP_ac	4230	4310	4390	4470	4550	4631	4711	4791
index	160	161	162	163	164	165	166	167
QP_ac	4871	4967	5064	5160	5256	5352	5448	5544
index	168	169	170	171	172	173	174	175
QP_ac	5641	5737	5849	5961	6073	6185	6297	6410
index	176	177	178	179	180	181	182	183
QP_ac	6522	6650	6778	6906	7034	7162	7290	7435
index	184	185	186	187	188	189	190	191
QP_ac	7579	7723	7867	8011	8155	8315	8475	8635
index	192	193	194	195	196	197	198	199
QP_ac	8795	8956	9132	9308	9484	9660	9836	10028
index	200	201	202	203	204	205	206	207
QP_ac	10220	10412	10604	10812	11020	11228	11437	11661
index	208	209	210	211	212	213	214	215
QP_ac	11885	12109	12333	12573	12813	13053	13309	13565
index	216	217	218	219	220	221	222	223
QP_ac	13821	14093	14365	14637	14925	15213	15502	15806
index	224	225	226	227	228	229	230	231
QP_ac	16110	16414	16734	17054	17390	17726	18062	18414
index	232	233	234	235	236	237	238	239
QP_ac	18766	19134	19502	19886	20270	20670	21070	21486
index	240	241	242	243	244	245	246	247
QP_ac	21902	22334	22766	23214	23662	24126	24590	25070
index	248	249	250	251	252	253	254	255
QP_ac	25551	26047	26559	27071	27599	28143	28687	29247

5.3.6.4.2 反量化

本条定义根据量化参数QP(QPY_dc或QPY_ac或QPC_dc或QPC_ac)将4×4、8×8、16×16、32×32量 化系数矩阵QuantCoeffMatrix转换为4×4、8×8、16×16、32×32变换系数矩阵CoeffMatrix的过程。

变换系数矩阵CoeffMatrix的元素wji由量化系数矩阵QuantCoeffMatrix的元素valji经下式得到:

 $w_{ji} = (val_{ji} \times QP) \gg dq_shift,$

其中 $tx_size = 4 \times 4$ 时, $dq_shift=0$, i, j=0…3;

 $tx_size = 8 \times 8$ 时, $dq_shift=0$, i, j=0...7;

 $tx_size = 16 \times 16$, 时dq_shift=0, i, j=0…15;

 $tx size = 32 \times 32$, 时dg shift=1, i, j=0…31。

5.3.6.5 反变换

5.3.6.5.1 4×4 反变换

4×4反变换分为行反变换和列反变换,行/列反变换均可为dct的反变换或者adst的反变换。其组合形式有:{idct_idct}、{idct_iadst}、{iadst_idct}、{iadst_iadst}。

其中4×4IADST变换核矩阵为:

$$DST_4 = \begin{bmatrix} 5283 & 9929 & 13377 & 15212 \\ 13377 & 13377 & 0 & -13377 \\ 15212 & -5238 & -13377 & 9929 \\ 9929 & -15212 & 13377 & -5283 \end{bmatrix}$$

4×4IDCT 变换核矩阵为:

$$DCT_{4} = \begin{bmatrix} 11585 & 11585 & 11585 & 11585 \\ 15137 & 6270 & -6270 & -15137 \\ 11585 & -11585 & -11585 & 11585 \\ 6270 & -15137 & 15137 & -6270 \end{bmatrix}$$

4×4 反变换步骤如下:

对变换系数矩阵进行水平反变换, 如果反变换形式为 iadst, T4=DST4; 如果反变换形式为 idct, 则 $T_4=DCT_4$:

$$H' = (CoeffMatrix \times T_4^T + 2^{13}) >> 14$$

其中, T4 为 4×4 反变换矩阵, T4T 为 T4 的转置矩阵, H 表示水平反变换后的中间结果。对矩阵 H 进行垂直反变换,如果反变换形式为 iadst,则 T4=DST4;如果反变换形式为 idct,则 T4= DCT4;

$$H = (T_4 \times H' + 2^{13}) >> 14$$

其中,H 表示反变换后的 4×4 矩阵。从符合本部分的比特流中解码得到的 H 矩阵元素取值范围应为 $-2^{4+BitDepth}\sim(2^{4+BitDepth}-1)$ 。

残差样点矩阵 ResidueMatrix 的元素 rji 计算如下:

5.3.6.5.2 8×8 反变换

8×8反变换分为行反变换和列反变换分别进行,行/列反变换都可以为dct的反变换或者adst的反变换。其组合形式有: {idct_idct}、 {idct_iadst}、 {iadst_idct}、 {iadst_iadst}。

其中8×8IADST变换核矩阵为:

$$DST_8 = \begin{bmatrix} 1606 & 4756 & 7723 & 10394 & 12665 & 14449 & 15679 & 16305 \\ 4756 & 12665 & 16305 & 14449 & 7723 & -1606 & -10394 & -15679 \\ 7723 & 16305 & 10394 & -4756 & -15679 & -12665 & 1606 & 14449 \\ 10394 & 14449 & -4756 & -16305 & -1606 & 15679 & 7723 & -12665 \\ 12665 & 7723 & -15679 & -1606 & 16305 & -4756 & -14449 & 10394 \\ 14449 & -1606 & -12665 & 15679 & -4756 & -10394 & 16305 & -7723 \\ 15679 & -10394 & 1606 & 7723 & -14449 & 16305 & -12665 & 4756 \\ 16305 & -15679 & 14449 & -12665 & 10394 & -7723 & 4756 & -1606 \end{bmatrix}$$

8×8IDCT 变换核矩阵为:

$$DCT_8 = \begin{bmatrix} 11585 & 11585 & 11585 & 11585 & 11585 & 11585 & 11585 \\ 16069 & 13623 & 9102 & 3196 & -3196 & -9102 & -13623 & -16069 \\ 15137 & 6270 & -6270 & -15137 & -15137 & -6270 & 6270 & 15137 \\ 13623 & -3196 & -16069 & -9102 & 9102 & 16069 & 3196 & -13623 \\ 11585 & -11585 & -11585 & 11585 & 11585 & -11585 & -11585 & 11585 \\ 9102 & -16069 & 3196 & 13623 & -13623 & -3196 & 16069 & -9102 \\ 6270 & -15137 & 15137 & -6270 & -6270 & 15137 & -15137 & 6270 \\ 3196 & -9102 & 13623 & -16069 & 16069 & -13623 & 9102 & -3196 \end{bmatrix}$$

8×8反变换步骤如下:

a) 对变换系数矩阵进行水平反变换,如果反变换形式为iadst,T8=DST8;如果反变换形式为idct,则T₈=DCT₈;

$$H' = (CoeffMatrix \times T_8^T + 2^{13}) >> 14$$

其中,T₈为8×8反变换矩阵,T₈^T为T₈的转置矩阵,H'表示水平反变换后的中间结果。

b) 对矩阵H'进行垂直反变换,如果反变换形式为iadst,则T_s=DST_s;如果反变换形式为idct,则T_s=DCT_s:

$$H = (T_8 \times H' + 2^{13}) >> 14$$

其中,H表示反变换后的8×8矩阵。从符合本部分的比特流中解码得到的H矩阵元素取值范围应为 $-2^{5+BitDepth}$ $\sim (2^{5+BitDepth} - 1)$ 。

c) 残差样点矩阵ResidueMatrix的元素rji计算如下:

5.3.6.5.3 16×16 反变换

16×16反变换分为行反变换和列反变换分别进行,行/列反变换均可为dct的反变换或者adst的反变换。其组合形式有: {idct_idct}、{idct_iadst}、{iadst_idct}、{iadst_iadst}。

其中16×16IADST变换核矩阵为:

804 2404 3981 5520 7005 8423 9760 11003 12140 13160 14053 14811 15426 15893 16207 16364 2404 7005 11003 14053 15893 16364 15426 13160 9760 5520 804 -3981 -8423 -12140 -14811 -16207 3981 11003 15426 16207 13160 7005 -804 -8423 -14053 -16364 -14811 -9760 -2404 5520 12140 15893 5520 14053 16207 11003 804 -9760 -15893 -14811 -7005 3981 13160 16364 12140 2404 -8423 -15426 7005 15893 13160 804 -12140 -16207 -8423 5520 15426 14053 2404 -11003 -16364 -9760 3981 14811 8423 16364 7005 -9760 -16207 -5520 11003 15893 3981 -12140 -15426 -2404 13160 14811 804 -14053 9760 15426 -804 -15893 -8423 11003 14811 -2404 -16207 -7005 12140 14053 -3981 -16364 -5520 13160 11003 13160 -8423 -14811 5520 15893 -2404 -16364 -804 16207 3981 -15426 -7005 14053 9760 -12140 $DST_{16} =$ 12140 9760 -14053 -7005 15426 3981 -16207 -804 16364 -2404 -15893 5520 14811 -8423 -13160 11003 13160 5520 -16364 3981 14053 -12140 -7005 16207 -2404 -14811 11003 8423 -15893 804 15426 -9760 14053 804 -14811 13160 2404 -15426 12140 3981 -15893 11003 5520 -16207 9760 7005 -16364 8423 14811 - 3981 - 9760 16364 - 11003 - 2404 14053 - 15426 5520 8423 - 16207 12140 804 - 13160 15893 - 7005 15426 -8423 -2404 12140 -16364 13160 -3981 -7005 14811 -15893 9760 804 -11003 16207 -14053 5520 15893 -12140 5520 2404 -9760 14811 -16364 14053 -8423 804 7005 -13160 16207 -15426 11003 -3981 16207 -14811 12140 -8423 3981 804 -5520 9760 -13160 15426 -16364 15893 -14053 11003 -7005 2404 16364 -16207 15893 -15426 14811 -14053 13160 -12140 11003 -9760 8423 -7005 5520 -3981 2404 -804

16×16idct 变换核矩阵为:

 $DCT_{16} =$

[11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 16305 15679 14449 12665 10394 7723 4756 1606 -1606 -4756 -7723 -10394 -12665 -14449 -15679 -16305 16069 13623 9102 3196 -3196 -9102 -13623 -16069 -16069 -13623 -9102 -3196 3196 9102 13623 16069 15679 10394 1606 - 7723 - 14449 - 16305 - 12665 - 4756 4756 12665 16305 14449 7723 - 1606 - 10394 - 15679 15137 6270 -6270 -15137 -15137 -6270 6270 15137 15137 6270 -6270 -15137 -15137 -6270 6270 15137 14449 1606 - 12665 - 15679 - 4756 10394 16305 7723 - 7723 - 16305 - 10394 4756 15679 12665 - 1606 - 14449 13623 -3196 -16069 -9102 9102 16069 3196 -13623 -13623 3196 16069 9102 -9102 -16069 -3196 13623 12665 - 7723 - 15679 1606 16305 4756 - 14449 - 10394 10394 14449 - 4756 - 16305 - 1606 15679 7723 - 12665 11585 - 11585 - 11585 11585 11585 - 11585 - 11585 11585 11585 - 11585 - 11585 11585 11585 11585 - 11585 11585 10394 - 14449 - 4756 16305 - 1606 - 15679 7723 12665 - 12665 - 7723 15679 1606 - 16305 4756 14449 - 10394 9102 - 16069 3196 13623 - 13623 - 3196 16069 - 9102 - 9102 16069 - 3196 - 13623 13623 3196 - 16069 9102 7723 - 16305 10394 4756 - 15679 12665 1606 - 14449 14449 - 1606 - 12665 15679 - 4756 - 10394 16305 - 7723 6270 -15137 15137 -6270 -6270 15137 -15137 6270 6270 -15137 15137 -6270 -6270 15137 -15137 6270 4756 - 12665 16305 - 14449 7723 1606 - 10394 15679 - 15679 10394 - 1606 - 7723 14449 - 16305 12665 - 4756 3196 -9102 13623 -16069 16069 -13623 9102 -3196 -3196 9102 -13623 16069 -16069 13623 -9102 3196 1606 - 4756 7723 - 10394 12665 - 14449 15679 - 16305 16305 - 15679 14449 - 12665 10394 - 7723 4756 - 1606

16×16反变换步骤如下:

a) 对变换系数矩阵进行水平反变换,如果反变换形式为iadst,则T₁₆=DST₁₆; 如果反变换形式为idct,则T₁₆=DCT₁₆:

$$H' = (CoeffMatrix \times T_{16}^T + 2^{13}) >> 14$$

其中, T₁₆为16×16反变换矩阵, T₁₆^T为T₁₆的转置矩阵, H'表示水平反变换后的中间结果。

b) 对矩阵H'进行垂直反变换,如果反变换形式为iadst,则T₁₆=DST₁₆;如果反变换形式为idct,则T₁₆=DCT₁₆:

$$H = (T_{16} \times H' + 2^{13}) >> 14$$

其中,H表示反变换后的 16×16 矩阵。从符合本部分的比特流中解码得到的H矩阵元素取值范围应为 $-2^{6+BitDepth}\sim(2^{6+BitDepth}-1)$ 。

c) 残差样点矩阵ResidueMatrix的元素rii计算如下:

5.3.6.5.4 32×32 反变换

32×32 反变换分为行反变换和列反变换分别进行,行/列反变换都只能为 dct 的反变换 32×32 IDCT变换核矩阵为

$$DCT_{32} = \begin{bmatrix} DCT_{116\times32} & DCT_{R16\times32} \end{bmatrix}$$

11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 $16364\ 16207\ 15893\ 15426\ 14811\ 14053\ 13160\ 12140\ 11003\ \ 9760\ \ 8423\ \ 7005\ \ 5520\ \ 3981\ \ 2404\ \ \ 804$ $16305\ 15679\ 14449\ 12665\ 10394\quad 7723\quad 4756\quad 1606\ -1606\ -4756\ -7723-10394-12665-14449-15679-16305$ 16207 14811 12140 8423 3981 -804 -5520 -9760-13160-15426-16364-15893-14053-11003 -7005 -2404 $16069\ 13623\ \ 9102\ \ 3196\ -3196\ -9102\ -13623\ -16069\ -13623\ -9102\ -3196\ \ 3196\ \ 9102\ 13623\ 16069$ $15893\ 12140\ \ 5520\ -2404\ -9760-14811-16364-14053\ -8423\ \ -804\ \ 7005\ 13160\ 16207\ 15426\ 11003\ \ 3981$ $15426 \quad 8423 \quad -2404 - 12140 - 16364 - 13160 \quad -3981 \quad 7005 \quad 14811 \quad 15893 \quad 9760 \quad -804 - 11003 - 16207 - 14053 \quad -55201 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 - 14053 -$ 15137 - 6270 - 6270 - 15137 - 15137 - 6270 - 6270 - 15137 - 15137 - 6270 - 6270 - 6270 - 15137 - 15137 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - 6270 - $14449 \quad 1606 - 12665 - 15679 - 4756 \quad 10394 \quad 16305 \quad 7723 - 7723 - 16305 - 10394 \quad 4756 \quad 15679 \quad 12665 - 1606 - 14449 \quad 10367 - 10394 \quad 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10367 - 10$ 14053 - 804 - 14811 - 13160 - 2404 + 15426 + 12140 - 3981 - 15893 - 11003 - 5520 + 16207 - 9760 - 7005 - 16364 - 8423 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 12007 - 120013623 - 3196 - 16069 - 9102 - 9102 - 16069 - 3196 - 13623 - 13623 - 3196 - 16069 - 9102 - 9102 - 16069 - 3196 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 13623 - 1362 $13160 - 5520 - 16364 - 3981\ 14053\ 12140 - 7005 - 16207 - 2404\ 14811\ 11003 - 8423 - 15893\ - 804\ 15426\ 9760$ $12665 - 7723 - 15679 \quad 1606 \quad 16305 \quad 4756 - 14449 - 10394 \quad 10394 \quad 14449 - 4756 - 16305 - 1606 \quad 15679 \quad 7723 - 12665 - 16305 - 1606 \quad 15679 \quad 12665 - 1606 - 1606 \quad 12665 - 1606 - 1606 - 1606 \quad 12665 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606 - 1606$ $12140 - 9760 - 14053 \quad 7005 \quad 15426 - 3981 - 16207 \quad 804 \quad 16364 \quad 2404 - 15893 - 5520 \quad 14811 \quad 8423 - 13160 - 11003 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 - 1200 -$ 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 11585 - 115811003 - 13160 - 8423 14811 5520 - 15893 - 2404 16364 -804 - 16207 3981 15426 -7005 -14053 9760 12140 $10394-14449-4756\ 16305-1606-15679\ \ 7723\ 12665-12665-7723\ 15679\ \ 1606-16305\ \ 4756\ 14449-10394$ $9760 - 15426 - 804\ 15893 - 8423 - 11003\ 14811\ 2404 - 16207\ 7005\ 12140 - 14053 - 3981\ 16364 - 5520 - 13160$ $9102 - 16069 \quad 3196 \quad 13623 - 13623 - 3196 \quad 16069 - 9102 \quad -9102 \quad 16069 - 3196 - 13623 \quad 13623 \quad 3196 - 16069 \quad 9102 \quad -9102 \quad -91$ $8423 - 16364 \ 7005 \ 9760 - 16207 \ 5520 \ 11003 - 15893 \ 3981 \ 12140 - 15426 \ 2404 \ 13160 - 14811 \ \ 804 \ 14053$ $7723 - 16305\ 10394\ \ 4756 - 15679\ 12665\ \ 1606 - 14449\ 14449\ - 1606 - 12665\ 15679\ - 4756 - 10394\ 16305\ - 7723$ $7005 - 15893\ 13160 - 804 - 12140\ 16207 - 8423 - 5520\ 15426 - 14053\ 2404\ 11003 - 16364\ 9760\ 3981 - 14811$ $6270 - 15137 \ 15137 - 6270 - 6270 \ 15137 - 15137 \ 6270 \ 6270 - 15137 \ 15137 - 6270 - 6270 \ 15137 - 15137 \ 6270$ $5520 - 14053\ 16207 - 11003 \\ 804 \quad 9760 - 15893\ 14811 \\ -7005 - 3981\ 13160 \\ -16364\ 12140 \\ -2404 - 8423\ 15426 \\ $ $4756 - 12665 \ 16305 - 14449 - 7723 - 1606 - 10394 \ 15679 - 15679 \ 10394 - 1606 - 7723 \ 14449 - 16305 \ 12665 - 4756 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12665 \ 16305 - 12$ 3981 - 1100315426 - 1620713160 - 7005 - 804 - 8423 - 1405316364 - 14811 - 9760 - 2404 - 552012140 - 15893164 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 - 14811 $2404 - 7005\ 11003 - 14053\ 15893 - 16364\ 15426 - 13160\ \ 9760\ - 5520\ \ \ 804\ \ 3981\ - 8423\ 12140 - 14811\ 16207$ $1606 - 4756 \quad 7723 - 10394 \\ 12665 - 14449 \\ 15679 - 16305 \\ 16305 - 15679 \\ 14449 - 12665 \\ 10394 - 7723 \\ 4756 - 1606 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10394 - 10394 \\ 10$ $804 - 2404 \quad 3981 - 5520 \quad 7005 - 8423 \quad 9760 - 11003 \\ 12140 - 13160 \\ 14053 - 14811 \\ 15426 - 15893 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 16207 - 16364 \\ 1620$

 $DCT_{216\times32} =$

 $DCT_{R16\times32} =$

11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 11585 $-804 \ -2404 \ -3981 \ -5520 \ -7005 \ -8423 \ -9760 -11003 -12140 -13160 -14053 -14811 -15426 -15893 -16207 -16364 -12407 -12$ -16305 - 15679 - 14449 - 12665 - 10394 - 7723 - 4756 - 1606 - 1606 - 4756 - 7723 - 10394 - 12665 - 14449 - 15679 - 16305 - 1 $2404 \quad 7005 \quad 11003 \quad 14053 \quad 15893 \quad 16364 \quad 15426 \quad 13160 \quad 9760 \quad 5520 \quad 804 \quad -3981 \quad -8423 - 12140 - 14811 - 16207 \quad 12011 \quad 120111 \quad 12011 \quad 1$ $16069\ 13623\ 9102\ 3196\ -3196\ -9102\ -13623\ -16069\ -13623\ -9102\ -3196\ 3196\ 9102\ 13623\ 16069$ $-3981-11003-15426-16207-13160-7005\\ 804842314053163641481197602404-5520-12140-15893120140-120140$ -15679 - 10394 - 1606 - 7723 - 14449 - 16305 - 12665 - 4756 - 4756 - 12665 - 16305 - 14449 - 7723 - 1606 - 10394 - 15679 - 12679 - 1 $5520\ 14053\ 16207\ 11003 \quad 804\ -9760-15893-14811\ -7005\ 3981\ 13160\ 16364\ 12140\ 2404\ -8423-15426$ $15137 \quad 6270 \quad -6270 \quad 15137 \quad 15137 \quad -6270 \quad 6270 \quad 15137 \quad 15137 \quad 6270 \quad -6270 \quad 15137 \quad 15137 \quad -6270 \quad 6270 \quad 15137 \quad$ -7005 - 15893 - 13160 -804 12140 16207 8423 -5520 -15426 -14053 -2404 11003 16364 9760 -3981 -14811-14449 -1606 12665 15679 4756 -10394 -16305 -7723 7723 16305 10394 -4756 -15679 -12665 1606 14449 $8423\ 16364\ 7005\ -9760-16207\ -5520\ 11003\ 15893\ 3981-12140-15426\ -2404\ 13160\ 14811\ 804-14053$ 13623 - 3196 - 16069 - 9102 - 9102 - 16069 - 3196 - 13623 - 13623 - 3196 - 16069 - 9102 - 9102 - 16069 - 3196 - 13623 - 1362 $-9760 - 15426 \\ 804 \\ 15893 \\ 8423 - 11003 - 14811 \\ 2404 \\ 16207 \\ 7005 - 12140 - 14053 \\ 3981 \\ 16364 \\ 5520 - 13160 \\ 13160 \\ \phantom{-$ -12665 7723 15679 -1606 -16305 -4756 14449 10394 -10394 -14449 4756 16305 1606 -15679 -7723 12665 $11003\ 13160\ -8423-14811\ \ 5520\ 15893\ -2404-16364\ \ -804\ 16207\ \ 3981-15426\ \ -7005\ 14053\ \ 9760-12140$ 11585 - 1158 $-12140 \\ -9760 \\ 14053 \\ 7005 \\ -15426 \\ -3981 \\ 16207 \\ 804 \\ -16364 \\ 2404 \\ 15893 \\ -5520 \\ -14811 \\ 8423 \\ 13160 \\ -11003 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1300 \\ 1200$ $-10394\ 14449\ 4756-16305\ 1606\ 15679\ -7723-12665\ 12665\ 7723-15679\ -1606\ 16305\ -4756-14449\ 10394$ $13160 \quad 5520 - 16364 \quad 3981 \quad 14053 - 12140 \quad -7005 \quad 16207 \quad -2404 - 14811 \quad 11003 \quad 8423 - 15893 \quad 804 \quad 15426 \quad -9760 \quad 1200 \quad 120$ $9102 - 16069 \quad 3196 \quad 13623 - 13623 \quad -3196 \quad 16069 \quad -9102 \quad -9102 \quad 16069 \quad -3196 - 13623 \quad 13623 \quad 3196 - 16069 \quad -9102 \quad$ $-14053 \quad -804 \quad 14811 - 13160 \quad -2404 \quad 15426 - 12140 \quad -3981 \quad 15893 - 11003 \quad -5520 \quad 16207 \quad -9760 \quad -7005 \quad 16364 \quad -8423 \quad -842$ $-7723\ 16305-10394\ -4756\ 15679-12665\ -1606\ 14449-14449\ \ 1606\ 12665-15679\ \ 4756\ 10394-16305\ \ 7723$ $6270 - 15137 \ 15137 \ - 6270 \ - 6270 \ 15137 - 15137 \ 6270 \ 6270 - 15137 \ 15137 \ - 6270 \ - 6270 \ 15137 - 15137 \ 6270$ - 15426 | 8423 | 2404 - 12140 | 16364 - 13160 | 3981 | 7005 - 14811 | 15893 | - 9760 | - 804 | 11003 - 16207 | 14053 | - 5520 $-\ 4756\ 12665-16305\ 14449\ -\ 7723\ -\ 1606\ 10394-15679\ 15679-10394\ 1606\ 7723-14449\ 16305-12665\ 4756$ $15893 - 12140 \quad 5520 \quad 2404 \quad -9760 \quad 14811 - 16364 \quad 14053 \quad -8423 \quad 804 \quad 7005 - 13160 \quad 16207 - 15426 \quad 11003 \quad -3981 \quad 12007 - 1$ 3196 - 9102 13623 - 16069 16069 - 13623 | 9102 - 3196 - 3196 | 9102 - 13623 16069 - 16069 13623 - 9102 | 3196 $-1606 \quad 4756 \quad -7723 \quad 10394 - 12665 \quad 14449 - 15679 \quad 16305 - 16305 \quad 15679 - 14449 \quad 12665 - 10394 \quad 7723 \quad -4756 \quad 1606 \quad 1006 \quad 1$

32×32反变换步骤如下:

a) 对变换系数矩阵进行水平反变换, T32=DCT32:

$$H' = (CoeffMatrix \times T_{32}^T + 2^{13}) >> 14$$

其中,T₃₂为32×32反变换矩阵,T₃₂^T为T₃₂的转置矩阵,H'表示水平反变换后的中间结果。

b) 对矩阵H'进行垂直反变换, T32=DCT32:

$$H = (T_{32} \times H' + 2^{13}) >> 14$$

其中,H表示反变换后的 32×32 矩阵。从符合本部分的比特流中解码得到的H矩阵元素取值范围应为 $-2^{6+BitDepth}\sim(2^{6+BitDepth}-1)$ 。

c) 残差样点矩阵ResidueMatrix的元素rji计算如下:

$$r_{ii} = (h_{ii} + 2^5) >> 6$$
 $(i,j = 0...31)$

5.3.6.6 重建

本过程的输入为残差样值矩阵 ResidueMatrix 和预测样点矩阵 predMatrix,输出为重建样点矩阵 RecMatrix。

- a) 如果当前块为 Intra 块类型, 重建样点矩阵 RecMatrix 计算如下: RecMatrix[x,y] = Clip1(predMatrix[x,y] + ResidueMatrix[x,y])
- b) 如果当前块为 Inter 块类型,采用 Single 预测模式,重建样点矩阵 RecMatrix 计算如下: RecMatrix[x,y] = Clip1(predMatrix[x,y] + ResidueMatrix[x,y])
- c) 如果当前块为 Inter 块类型,采用 Compound 预测模式,并且有两帧参考图像,重建样点矩阵 RecMatrix 计算如下:

5.3.7 去块效应滤波过程

8

5.3.7.1 进行滤波的边界及滤波的顺序

如果filter_level大于0,在位于去块效应滤波过程之前的图像重建过程完成以后,对整幅重建图像调用去块效应滤波过程。去块效应滤波过程以编码单元为单位对图像中的所有的编码单元按照光栅扫描的顺序进行。否则将不进行调用去块效应滤波过程。

在一个编码单元内,对亮度和色度分别做去块效应滤波,去块效应滤波的单位是滤波块。对于每个树形编码单元以及每个分量按滤波块尺寸进行划分进行滤波,亮度滤波块的尺寸是8×8。色度滤波块的尺寸是8×8。每个滤波块包括一条垂直边界和一条水平边界。先滤波纵向的边界,从编码单元的左侧的边界开始,按照从左到右的顺序进行处理,然后滤波横向的边界,从编码单元的上部边界开始,按照从上到下的顺序进行处理。

图 15 表示图像的树形编码单元尺寸为 64×64, 滤波块尺寸为 8×8, 根据 5. 3. 7. 2 判断是否需要滤波,如果需要则根据 5. 3. 7. 4 采用对应的方式进行滤波。

图15 块边界去块滤波示意图

- 注 1: 因为在解码当前编码单元时,下边与右边的编码单元数据没有解码出来,因此先做上一行编码单元的滤波。
- 注 2: 帧内预测使用去块效应滤波前的重建图像样点值。
- 注 3: 当前滤波块的垂直边界的滤波过程中修改的样值作为水平边界滤波过程的输入。

满足以下条件之一的边界不需要滤波:

- a) 待滤波边界是图像边界:
- b) 待滤波边界既不是编码单元的边界,又不是预测单元的边界也不是变换块的边界。

5.3.7.2 块边界阈值的推导过程

块边界阈值的推导过程如下:

a) 根据图像参数集中的 filter_level 计算得到每个编码块单元在不同情况下的 cu_filter_level 值。

首先计算每个segment对应的delta,不同的segment_id、不同的参考帧、不同的块模式对应不同的delta值。通过在图像参数集中filter_level的基础上,增加delta最终获得数组lvl_lookup[8][6][2]的值。具体实现如下:

```
scale = 1 << (filter_level >> 5)
for (seg_id=0; seg_id<8; seg_id++) {
 lvl seg = filter level
 if(feature enable[seg id][1]) {
    data = features data[seg id][1]
    lvl_seg = clip3(seg_abs_delta == 1 ? data : filter_level + data, 0, 63)
 if(!lf delta enable)
    1vl lookup[seg id][6][2] = {lvl seg, lvl seg, ...}
    intra lvl = lvl seg + ref deltas[0] \times scale
    [1vl lookup[seg id][0][0] = clip3(intra lvl, 0, 63)
    for (ref=1; ref<6; ++ref) {
      for (mode=0; mode<2; ++mode) {</pre>
        inter lvl = lvl seg + ref deltas[ref] × scale + mode deltas[mode] × scale
        lvl_lookup[seg_id][ref][mode] = clip3(inter_lvl, 0, 63)
     }
   }
```

根据当前编码块的对应的segment_id、参考帧类型ref_frame、预测模式mode作为索引即可以计算得到当前编码块的cu_filter_level。当块的预测模式为帧内预测时,mode等于0;当预测模式为帧间预测时,如果当前编码块的mv_mode为ZERO_MV,则mode等于0,否则mode等于1。cu_filter_level等于1vl_lookup[segment_id][ref_frame][mode]。

b) 根据 sharpness_level 计算不同的 cu_filter_level 对应的阈值参数 limit、blimit、thresh 的值。

根据sharpness_level的取值阈值,参数数组limit[64]、blimit[64]、thresh[64]的计算过程如下

所示:

```
for(lvl=0; lvl<= 63; lvl++) {
  block_inside_limit = lvl >>((sharpness_level > 0) + (sharpness_level > 4))
  if((sharpness_lvl>0) && (block_inside_limit > (9 - sharpness_level)))
    block_inside_limit = (9 - sharpness_level);
  if(block_inside_limit < 1)
    block_inside_limit = 1
  limit[lvl] = block_inside_limit
  blimit[lvl] = 2 × (lvl + 2) + block_inside_limit
  thresh[lvl] = (lvl >> 4)
}
```

根据当前编码块的 cu_filter_level 作为索引即可得到当前编码块的滤波阈值参数 limit、blimit 和 thresh。

5.3.7.3 块边界滤波方法的推导过程

图16 表示块p和块q在水平或垂直边界两侧的16个样点(边界用黑色粗线表示)。

图16 8×8 块水平边界或垂直边界两侧的样点

根据 5.3.7.2 计算出每个编码块的 cu_filter_level,以及对应的阈值参数 limit, blimit 和 thresh,并据此计算出确定滤波方法的三个参数 mask, flat, flat2 的取值,方法如下:

```
mask = 0
mask = (abs(p3 - p2) > limit) \times -1
mask \mid= (abs(p2 - p1) > 1imit) \times -1
mask = (abs(p1 - p0) > limit) \times -1
mask \mid= (abs(q1 - q0) > limit) \times -1
mask = (abs(q2 - q1) > 1imit) \times -1
mask = (abs(q3 - q2) > 1imit) \times -1
mask = (abs(p0 - q0) \times 2 + abs(p1 - q1) / 2 \rightarrow blimit) \times -1
mask ~= mask
flat = 0
flat = (abs(p1 - p0) > thresh) \times -1
flat = (abs(q1 - q0) > thresh) \times -1
flat = (abs(p2 - p0) > thresh) \times -1
flat = (abs(q2 - q0) > thresh) \times -1
flat = (abs(p3 - p0) > thresh) \times -1
flat = (abs(q3 - q0) > thresh) \times -1
flat ~= flat
flat2 = {^{\sim}}flat
```

```
flat2 |= (abs(p4 - p0) > thresh) \times -1 flat2 |= (abs(q4 - q0) > thresh) \times -1 flat2 \stackrel{\sim}{=} flat2
```

5.3.7.4 高强度滤波过程

其中 op2~op0、oq0~oq2 对应 p2~p0、q0~q2 滤波后的样点值。

5.3.7.5 中等强度滤波过程

如果 flat2 等于 0, flat 与 mask 等于 1, 则执行中等强度滤波过程:

```
op2 = ROUND_POWER_OF_TWO (p3 + p3 + p3 + 2 \times p2 + p1 + p0 + q0, 3)
op1 = ROUND_POWER_OF_TWO (p3 + p3 + p2 + 2 \times p1 + p0 + q0 + q1, 3)
```

op0 = ROUND POWER OF TWO (p3 + p2 + p1 + 2
$$\times$$
 p0 + q0 + q1 + q2, 3)

$$oq0 = ROUND POWER OF TWO (p2 + p1 + p0 + 2 \times q0 + q1 + q2 + q3, 3)$$

$$oq1 = ROUND POWER OF TWO (p1 + p0 + q0 + 2 \times q1 + q2 + q3 + q3, 3)$$

$$oq2 = ROUND POWER OF TWO (p0 + q0 + q1 + 2 \times q2 + q3 + q3 + q3, 3)$$

其中op2 \sim op0、oq0 \sim oq2对应p2 \sim p0、q0 \sim q2滤波后的样点值,ROUND_POWER_OF_TWO(value, n) 定义为(((value) + (1 << ((n) - 1))) >> (n))。

5.3.7.6 低强度滤波过程

如果 flat2 等于 0, flat 与 mask 只有其中一个等于 1, 则执行低强度滤波过程:

```
shift = BitDepth - 8
ps1 = p1 - (0x80 << shift)
ps0 = p0 - (0x80 << shift)
qs0 = q0 - (0x80 << shift)
qs1 = q1 - (0x80 << shift)
thresh = thresh << shift
```

hev $= (Abs(p1 - p0) > thresh) \times (-1)$

hev $= (Abs(q1 - q0) > thresh) \times (-1)$

filter = Clip3((ps1 - qs1), (-128) << shift, (128 << shift) -1) & hev

filter = Clip3((filter + $3 \times (qs0 - ps0)$), (-128)<<shift, (128<<shift)-1) & mask

filter1 = Clip3((filter + 4), (-128) << shift, (128 << shift) -1) >> 3

filter = ROUND POWER OF TWO (filter1, 1) & ~hev

oq0 = Clip3(qs0 - filter1, (-128) << shift, (128 << shift) -1) + (0x80 << shift)

 $op0 = Clip3(ps0 + filter2, (-128) \le shift, (128 \le shift) - 1) + (0x80 \le shift)$

 $oq1 = Clip3(qs1 - filter, (-128) \le shift, (128 \le shift) - 1) + (0x80 \le shift)$

op1 = Clip3(ps1 + filter, (-128)<<shift, (128<<shift)-1) + (0x80 << shift) 其中BitDepth 为图像的样点比特精度, op1、op0、oq0、oq1对应p1、p0、q0、q1滤波后的样点值。

5.3.8 样点偏移补偿

5.3.8.1 概述

如果sao enable等于1,调用样点偏移补偿(SAO)过程。

如果sao_component_on[Y], sao_component_on[U], sao_component_on[V]的取值为1,则对对应分量进行SAO操作。如果三个参数全为0,则本帧数据跳过SAO操作。

根据5.3.8.2导出样点偏移补偿单元,根据5.3.8.3导出与当前样点偏移补偿单元对应的样点偏移补偿信息,然后按照5.3.8.4对当前样点偏移补偿单元内各个样点的各分量进行操作,得到偏移后样点值。

5.3.8.2 样点偏移补偿单元导出

SAO 操作以树形编码单元为单位,根据当前树形编码单元的区域按下列步骤得到当前样点偏移补偿单元的区域:

图17 SAO 单元区域的导出

- ——将当前树形编码单元所在样点区域的亮度区域与色度区域均(上图中黑色虚线所包含的矩形区域)向左移四个样点单位,再向上移四个样点单位,得到区域S1(由上图中的E1,E2,E3,E4 四个部分组成的矩形区域);
- ——如果区域 S1 超出当前图像边界,则将超出边界部分去除(例:如当前树形编码单元为左边界的树形编码单元,则去除上图中的 E2,E3 部分;如当前树形编码单元为上边界的树形编码单元,则去除上图中的 E2,E4 部分,),得到区域 S2;否则令 S2 等于 S1;
- ——如果当前树形编码单元 C 包含图像最右列的样点且不包含图像最下行的样点,则将区域 S2 的右边界向右扩展至图像的右边界(即将上图中的 E5(若存在),则 E6 纳入当前 SA0 区域),得到区域 S3;
- ——否则,如果当前树形编码单元 C 包含图像最下行的样点且不包含图像最右列的样点,则将区域 S2 的下边界向下扩展至图像的边界(即将上图中的 E7(若存在),则 E8 纳入当前 SA0 区域),得 到区域 S3;

- ——否则,如果当前树形编码单元 C 同时包含图像最右列的样点和最下行的样点,则将区域 S2 的右边界向右扩展至图像的右边界后,再将新区域的下边界向下至图像的下边界,(将 E5(若存在),E6,E7(若存在),E8,E9 均纳入当前 SA0 区域)得到区域 S3;
- ——否则, 令 S3 等于 S2;
- ——将区域 S3 作为当前样点偏移补偿单元的区域。

5.3.8.3 样点偏移补偿信息导出

下述信息用于样点偏移补偿过程:参数融合标志sao_merge_flag、融合类型sao_merge_type、样点偏移补偿合并模式sao_merge_mode、样点偏移补偿模式sao_mode[compIdx]、样点偏移补偿值sao_offset[compIdx][j]、样点偏移补偿边缘模式类型sao_edge_type[compIdx]、样点偏移补偿区间模式类型的起始偏移子区间sao_start_band[compIdx]等。

如果当前树形编码单元不是图像或者Tile的左边界的树形编码单元,MergeLeftAvail等于1,否则MergeLeftAvail等于0。如果当前树形编码单元不是图片的上边界树形编码单元,MergeUpAvail等于1,否则MergeUpAvail等于0。

根据MergeLeftAvail、 MergeUpAvail、sao_merge_flag及sao_merge_type的值查表56 得到样点偏移补偿合并模式sao merge mode。

MergeLeftAvail	MergeUpAvail	sao_merge_flag	sao_merge_type	sao_merge_mode	
0	0	-	-	SAO_NON_MERGE	
1		0	-	SAO_NON_MERGE	
1	0	1	-	SAO_MERGE_LEFT	
0 1	1	0	-	SAO_NON_MERGE	
U		1	-	SAO_MERGE_UP	
		0	-	SAO_NON_MERGE	
1	1	1	1	1	SAO_MERGE_LEFT
		1	0	SAO_MERGE_UP	

表56 样点偏移补偿合并模式

如果sao_merge_mode的值为'SAO_MERGE_LEFT', sao_mode[compIdx](compIdx=0,1,2)的值等于左侧相邻CTU的样点偏移补偿单元的sao_mode[compIdx]的值,当前CTU的SAO参数使用左侧相邻CTU的SAO参数,等于0表示当前CTU的SAO参数使用上方相邻CTU的SAO参数

如果sao_merge_mode值为'SAO_MERGE_UP', sao_mode[compIdx] (compIdx=0, 1, 2)的值等于上方相邻CTU样点偏移补偿单元的sao mode[compIdx]的值,当前CTU的SAO参数使用上方相邻CTU的SAO参数。

如果sao_merge_mode的值为'SAO_NON_MERGE',则首先从码流中解析得到sao_mode[compIdx]的值,再根据sao mode[compIdx]的值从码流中获取相应的其他信息:

- ——如果 sao_mode[compIdx]的值为'SAO_BO',则从码流中解析得到 sao_start_band[compIdx],并 有:
 - sao_offset[compIdx][j]=sao_offset_abs[compIdx][j] \times Sign(0-sao_offset_sign[compIdx] [j]) (j=0 \sim 3);
- ——如果 sao_mode[compIdx]的值为'SAO_EO',则从码流中解析得到 sao_edge_offset[compIdx][j] (j=0~3) 和 sao_edge_type[compIdx],并有:
 - sao_offset[compIdx][j] = sao_edge_offset[compIdx][j];
- ——如果 sao_mode[compIdx]的值为'SAO_OFF',则不需要从码流继续读取该分量的 SAO 信息。

5.3.8.4 SAO 操作步骤

5. 3. 8. 4. 1 SAO BO 操作

如果样点偏移补偿单元的 sao_mode [i]为'SAO_BO',则将样点取值划分为 32 个相等的区间,区间依次为 $0\sim31$,只对落入其中 4 个连续区间的样点值进行偏移补偿操作,每个区间对应一个偏移值,如图 18 。

图18 B0 示意图

其具体操作如下:

a) 第一步,根据样点的 i 分量值大小所处的范围查表 57 得到该分量对应的 SaoOffset[i]。

表57 样点取值范围对应的偏移值

样点取值范围	偏移值(SaoOffset)
$\label{eq:saoBandPos} $$ SaoBandPos[i][0] << shift -1 $$ shift -1 $$ $$$	sao_offset[i][0]
$SaoBandPos[i][1] << shift \sim SaoBandPos[i][1] << shift + (2^ shift -1)$	sao_offset[i][1]
SaoBandPos[i][2]<< shift ~ SaoBandPos[i][2]<< shift + (2^ shift -1)	sao_offset[i][2]
$SaoBandPos[i][3] << shift ~ SaoBandPos[i][3] << shift + (2^ shift -1)$	sao_offset[i][3]

表中:

shift = BitDepth-5

SaoBandPos [i][0] = sao start band[i]

SaoBandPos [i][1] = (sao_start_band[i]+1)% 32

SaoBandPos [i][2] = (sao_start_band[i]+2)% 32

SaoBandPos [i][3] = (sao_start_band[i]+3)% 32

b) 第二步, 当前样点的 i 分量偏移后取值 y[i]计算如下:

y[i]=Clip3(x[i]+SaoOffset[i], 0, (1 << BitDepth)-1)

其中 x[i]是该样点的 i 分量在去块滤波后的值。

5. 3. 8. 4. 2 SAO_EO 操作

如果样点偏移补偿单元的 sao mode[i]为 'SAO EO'则进行以下操作:

a) 第一步,根据 sao_edge_type[i]的值确定与当前样点 c 相邻的样点 a 和 b,如图 19 所示; 如果 a 或 b 不在当前 Tile 内或者 a 或 b 不在当前图像内,则不改变样点 c 的值。

图19 当前样点和相邻样点的位置关系

b) 第二步,根据表 58 ,利用当前样点 c 的在去块效应滤波后的 i 分量值 xc 与相邻样点 a 和 b 的滤波后样点 i 分量值 xa 和 xb 的关系确定当前样点 i 分量的 SaoOffset[i]。

表58 相邻样点取值与偏移补偿值的对应关系

样点分量值的关系		偏移补偿值(SaoOffset[i])
Valley	xc < xa && xc < xb	sao_offset[i][0]
Half valley	(xc < xa && xc==xb) (xc == xa && xc < xb)	sao_offset[i][1]
Half peak	(xc > xa && xc==xb) (xc == xa && xc > xb)	sao_offset[i][2]
peak	xc > xa && xc > xb	sao_offset[i][3]
flat	其他	0

图20 样点 c 与其相邻样点 a 和 b 的关系

c) 第三步, 当前样点的 i 分量在偏移补偿后的取值 y[i]计算如下:

 $v[i]=Clip3(x[i]+Sao0ffset[i], 0, (1 \le BitDepth)-1)$

其中 x[i]是该样点的 i 分量在去块效应滤波后的取值。

5.3.8.4.3 SAO OFF 操作

如果sao_mode[compIdx](compIdx可以为0,1,2代表三个不同的分量)为SAO_0FF,或当前样点是图像的边界,则将去块滤波后样点对应分量的值直接作为偏移后该样点分量的值。

5.3.9 样点滤波补偿

5.3.9.1 概述

如果picture_alf_enable [comp_idx]的值为0,则将偏移后样点分量的值直接作为解码图像中样点分量的值,否则,对相应的偏移后样点分量进行样点滤波补偿。其中comp_idx等于0表示亮度分量;等于1表示Cb分量;等于2表示Cr分量。

样点滤波补偿的单位是由树形编码单元导出的样点滤波补偿单元,按照光栅扫描顺序依次处理。首

先根据5.3.9.2解码各分量的样点滤波补偿系数,然后根据5.3.9.3导出样点滤波补偿单元,根据5.3.9.4 确定当前样点滤波补偿单元亮度分量的样点滤波补偿系数索引,最后根据5.3.9.5对样点补偿滤波单元的亮度和色度分量进行样点滤波补偿,得到解码图像的样点。

5.3.9.2 样点滤波补偿系数解码

样点滤波补偿系数的解码过程如下:

a) 从比特流中解析得到亮度样点的第 i 组补偿系数 alf_coeff_luma[i][j](i=0~alf_filter_num_minus1, j=0~8)。对系数 alf_coeff_luma[i][9](即图 19 的系数 C9) 做以下处理:

alf_coeff_luma[i][9]+ =
$$64 - \sum_{i=0}^{8} 2 \times \text{alf_coeff_luma}[i][j]$$

其中 $alf_{coeff_{luma}}[i][j](j=0\sim8)$ 的位宽是 7 位,取值应为 $-64\sim63$ 。经上述处理后 $alf_{coeff_{luma}}[i][9]$ 的取值应为 $0\sim127$ 。

b) 根据 alf_region_distance[i] (i>1) 得到亮度分量样点滤波补偿系数索引数组(记作alf_coeff_idx_tab [16]):

```
count = 0
alf_coeff_idx_tab[0] = 0
for(i=1; i < alf_filter_num_minus1+1; i++) {
    for(j=0; j < alf_region_distance[i]-1; j++) {
        alf_coeff_idx_tab [count+1] = alf_coeff_idx_tab [count]
        count = count+1
    }
    alf_coeff_idx_tab [count+1] = alf_coeff_idx_tab [count] + 1
    count = count + 1
}
for(i=count; i < 16; i++)
    alf coeff_idx_tab [i] = alf_coeff_idx_tab [count]</pre>
```

c)从比特流中解析得到色度样点的补偿系数 alf_coeff_chroma[0][j]和 alf_coeff_chroma [1][j] (j=0~8)。对系数 alf_coeff_chroma [0][9]和 alf_coeff_chroma [1][9] (即图 19 的系数 C9),分别做以下处理:

alf_coeff_chroma[i][9]+ =
$$64 - \sum_{i=0}^{8} 2 \times \text{alf_coeff_chroma}[i][j], i = 0,1$$

其中 alf_coeff_chroma [i][j] (j=0 \sim 7) 的位宽是 7 位,取值应为-64 \sim 63。经上述处理后 alf coeff chroma [i][9]的取值应为 0 \sim 127。

图21 样点滤波补偿系数

5.3.9.3 导出样点滤波补偿单元

根据当前树形编码单元按下列步骤导出样点滤波补偿单元:

- ——将当前树形编码单元 C 所在样点区域超出图像边界的部分删除,得到样点区域 D;
- ——如果区域 D 的下边界所在样点不属于图像的下边界,将亮度分量和色度分量样点区域 D 的下边界向上收缩四行,得到区域 E1;否则,令 E1 等于 D;
- ——如果区域 E1 的上边界所在样点属于图像的上边界令 E2 等于 E1; 否则,将亮度分量和色度分量样点区域 E1 的上边界向上扩展四行,得到区域 E2;
- ——将区域 E2 作为当前样点滤波补偿单元。图像的第一行样点为图像的上边界,最后一行样点为图像的下边界。亮度分量和色度分量样点区域(D, E1, E2)的第一行样点为区域的上边界,最后一行样点为区域的下边界。

5.3.9.4 确定亮度分量样点滤波补偿单元样点滤波补偿系数索引

```
根据以下方法计算当前亮度分量样点滤波补偿单元的样点滤波补偿系数索引,记作filter_idx:
horizontal_size = width_minus_1 + 1
vertical_size = height_minus_1 + 1
如果 extended_sb_size_flag 等于 1, ctu_size_in_bit 等于 6, 否则 ctu_size_in_bit 等于 5
x_interval = ((((horizontal_size + (1 << ctu_size_in_bit) - 1) >> ctu_size_in_bit) + 1) >> 2) << ctu_size_in_bit
y_interval = ((((vertical_size + (1 << ctu_size_in_bit) - 1) >> ctu_size_in_bit) + 1) >> 2) << ctu_size_in_bit
if (x_interval == 0 && y_interval == 0)
    index = 15
else if (x_interval == 0)
    index = Min(3, y/ y_interval) × 4 + 3
else if (y_interval == 0)
    index = Min(3, x/ x interval) + 12
```

else

index = Min(3, y/ y_interval) \times 4 + Min(3, x/ x_interval)

filter_idx = alf_coeff_idx_tab [region_table[index]]

其中 region_table[16]= $\{0, 1, 4, 5, 15, 2, 3, 6, 14, 11, 10, 7, 13, 12, 9, 8\}$,(x, y)是导出当前样点滤波补偿单元的树形编码单元左上角样点在图像中的坐标。

5.3.9.5 样点滤波操作

如果 **alf_ctu_enable**[comp_idx][ctu_index]等于 1,则对 comp_idx 分量进行样点滤波补偿,否则不进行样点补偿滤波。如果样点滤波补偿过程中用到了样点滤波补偿单元外的样点,则按照如下方式处理:

- ——如果当前样点滤波补偿单元左边界或右边界为图像边界,则样点滤波补偿单元左边界或右边界外的样点分别用样点滤波单元内距离该样点最近的样点代替;
- ——样点滤波补偿单元上边界和下边界外的样点分别用样点滤波单元内距离该样点最近的样点代替:

样点滤波补偿单元亮度分量的样点滤波补偿操作如下:

$$ptmp = alf_coeff_luma[filter_idx][9] \times p(x, y) +$$

$$\sum_{j=0}^{8} 2 \times \text{alf_coeff_luma[filter_idx]}[j] \times (p(x-hor[j], y-ver[j]) + p(x+hor[j], y+ver[j]))$$

ptmp =
$$(ptmp + 32) >> 6$$

p' $(x,y) = Clip3(0, (1 << BitDepth) - 1, ptmp)$

其中,p(x,y)为偏移后样点,p'(x,y)为重建样点,hor[j]和 ver[j](j=0~7) 见表 59 。

j的值	hor[j]的值	ver[j]的值
0	0	3
1	0	2
2	1	1
3	0	1
4	1	-1
5	3	0
6	2	0
7	1	0

表59 样点补偿滤波坐标偏移值

5.3.10 空域可伸缩性视频编码(SVC)增强层编码片中 CTU 的解码过程

5.3.10.1 概述

解码nal_unit_type值为3和4的增强层编码片NAL单元中的树形编码单元时,调用本过程。空域SVC的增强层与基本层之间的图像宽度比与高度比支持4:3,2:1,4:1,6:1和8:1,由svc ratio决定。

当svc_mode等于0时,增强层的解码不使用跨层预测,只使用增强层内的帧间或帧内预测,解码过程与基本层相同。其帧内预测过程同5.3.4,帧间预测过程同5.3.5,重建过程同5.3.6,

当svc_mode等于1时,增强层的解码过程中使用层内预测和跨层预测,解码过程见5.3.10.3, 当svc roi flag等于1时,增强层的解码过程见5.3.10.5。

5.3.10.2 低分辨率层图像样点到对应位置的高分辨率层图像样点的插值计算

从低分辨率图像样点到对应位置的高分辨率图像样点的插值计算,通过以下数组实现: svac2 sub pel filters 8[]

```
{ 0,
      0, 0, 128, 0, 0, 0, 0
\{0, 1, -5, 126, 8, -3, 1, 0\},\
\{-1, 3, -10, 122, 18, -6, 2, 0\}
\{-1, 4, -13, 118, 27, -9, 3, -1\},\
\{-1, 4, -16, 112, 37, -11, 4, -1\},\
\{-1, 5, -18, 105, 48, -14, 4, -1\},\
\{-1, 5, -19, 97, 58, -16, 5, -1\},\
\{-1, 6, -19, 88, 68, -18, 5, -1\},\
\{-1, 6, -19, 78, 78, -19, 6, -1\},\
\{-1, 5, -18, 68, 88, -19, 6, -1\},\
\{-1, 5, -16, 58, 97, -19, 5, -1\},\
\{-1, 4, -14, 48, 105, -18, 5, -1\},\
\{-1, 4, -11, 37, 112, -16, 4, -1\},\
\{-1, 3, -9, 27, 118, -13, 4, -1\},\
\{0, 2, -6, 18, 122, -10, 3, -1\},\
\{0, 1, -3, 8, 126, -5, 1, 0\}
```

设低分辨率图像的宽高分别为src_w和src_h,高分辨率图像的宽高分别为dst_w和dst_h。factor_x和factor_y为根据色度采样格式和块类型确定的缩放因子。计算出每个样点对应的缩放比例:

```
factor = (Y ? 1 : 2);
x_q4 = x × (16 / factor) × src_w / dst_w;
y_q4 = y × (16 / factor) × src_h / dst_h;
```

根据缩放比例x_q4和y_q4,分别在插值数组中选择相应的插值系数,进行水平和垂直的插值计算,得到高分辨率图像样点。

5. 3. 10. 3 svc mode 等于 1 时增强层的预测及图像重建过程

本过程输入为增强层码流,对应基本层解码图像及各8x8块的MV,输出为增强层的重构图像。 增强层的残差样点由码流解析生成的残差系数矩阵经逆扫描,反量化及反变换过程得到,具体过程见 5.3.6.2~5.3.6.5。

增强层预测矩阵的计算方式如下:

增强层的参考图像集应与基本层的参考图像集对应,即相同的参考帧类型对应同一图像的增强层和基本层。另外,根据增强层图像的参考帧类型来判断是跨层预测还是层内预测:

- ——如果参考帧为static_ref,则增强层采用跨层预测。使用基本层解码图像经5.3.10.2插值放大后的图像作为参考帧,并根据运动矢量计算得到预测矩阵,其中运动矢量的计算过程见5.3.10.4;
 - ——如果参考帧类型不是static_ref,则增强层采用层内预测,帧间预测同5.3.5,得到预测矩阵。

增强层的重建过程同5.3.6.6。

5.3.10.4 跨层预测时运动矢量的计算

跨层预测且当在增强层与基本层的宽度比和高度比为2:1时,基本层放大后图像中每个16×16块中各8×8块的亮度运动矢量由基本层图像中对应的8×8块的亮度运动矢量进行如下扩展获得:

 $EL MV = BL MV \times 2$

EL REF = BL REF

其中 EL_MV 和 EL_REF 分别为增强层的 MV 和参考帧类型, BL_MV 和 BL_REF 分别为基本层的 MV 和参考帧类型。

增强层在进行候选运动矢量集导出且当增强层与基本层的宽度比和高度比等于2:1时,在5.3.5.2.1 节中第一步与第二步之间插入一个步骤:如果基本层放大后的当前块相同位置的块使用的参考帧与当前块的参考帧相同,则该块对应的基本层扩展放大后的MV加入候选运动矢量集。当增强层与基本层的宽度比和高度比为2:1时,候选运动矢量集的导出过程同5.3.5.2.1。

5. 3. 10. 5 svc_roi_flag 等于 1 时增强层的预测及重建过程

当svc_roi_flag等于1时,增强层支持ROI解码。ROI区域的预测及重建过程同5.3.10.3,非ROI区域的重建样点矩阵的取值等于相邻低分辨率层的对应位置的块的样点矩阵,经5.3.10.2插值后生成的样点矩阵。

5.4 解析过程

5.4.1 概述

本过程的输入为 RBSP 的比特流,输出为语法元素值。

对于 5.2.3 中的语法元素, ae(v)解析过程见 5.4.2, ue(v)、se(v)的解析过程见 5.4.3。

5.4.2 算术码解析过程

5.4.2.1 概述

本过程的输入为为RBSP的比特流。本过程的输出为语法元素值。

ae(v)描述的语法元素解析过程如下:

- a) 对Tile进行解析前,首先进行初始化,还会对一些语法元素的概率表进行更新,见5.4.2.2; 如果wpp enable等于1,在每CTU行解析开始前,需要重新初始化算术解码器,见5.4.2.2.3;
- b) 对二进制位串进行解析, 见5.4.2.4:
 - 1) 二进制位串中每个二进制位的索引号为binIdx,对应概率的获取见5.4.2.4.4;
 - 2) 根据ctxIdx解析二进制位, 见5.4.2.4.5;
 - 3) 完成一个二进制位的解析后,将得到的二进制位串与二值化过程得到的二进制位串集合进 行比较。如果得到的二进制位串与集合中某个二进制位串相匹配,则输出相应语法元素值; 否则继续解析二进制位。

ae(v)描述的语法元素解析过程用伪代码描述如下:

```
if ( 当前语法元素为编码片的第一个ae(v)语法元素 ) {
    初始化算术码解码器
}
binIdx = -1
do {
    binIdx++
    得到与binIdx对应的ctxIdx
```

得到与ctxIdx对应的概率模型prob 根据prob解析二进制位 } while ((b₀,..., b_{binIdx})不是语法元素的二进制位串) 输出语法元素值

5.4.2.2 初始化

本过程的输出为算术码上下文变量和算术解码器的内部变量。 当开始解析5.3.3的数据时,调用5.4.2.2.1和5.4.2.2.2的处理过程。

5. 4. 2. 2. 1 初始化概率模型

本过程的输出是初始化后算术码上下文变量所对应的prob,即二进制位解析所需的概率值。该变量通过binIdx、treeIdx及ctxIdx索引。

comp用来表示MV的概率表索引。comp为0表示垂直坐标,comp为1表示水平坐标。对于每个上下文变量,应初始化每个ctxIdx索引所对应的概率状态。初始化过程所涉及的语法元素概率表见表60。

表60 初始化过程所涉及的语法元素概率表汇总

语法元素	概率表
alf_ctu_enable	表 61
partition	表 62~表 63
skip_flag	表 64
inter_block	表 65
tx_size	表 66
prev_intra_luma_pred_flag	表 67
uv_fllow_y_flag	表 68
block_reference_mode	表 69
ref_frame	表 70~表 71
mv_mode	表 72~表 74
mv_joint	表 75
mvd_sign_0和mvd_sign_1	表 76
mvd_value_0和mvd_value_1	表 77~表 83
interp_filter_mode	表 84
dqp_abs	表 85
coef_value	表 86~表 96

语法元素alf_ctu_enable的初始概率表见表61

表61 alf_ctu_enable_prob

ALT Ju	binIdx
ctxIdx	0
0	229
1	115

2	25
3	9

frame_type等于1时,语法元素partition的初始概率表见表62 ,frame_type等于0时,语法元素partition的初始概率表见表63 。

表62 inter_partition_prob

		treeIdx			
ctxIdx	0	1	2		
		8×8 -> 4×4			
0 (a/l both not split)	199	122	141		
1 (a split, l not split)	147	63	159		
2 (1 split, a not split)	148	133	118		
3 (a/l both split)	121	104	114		
	16×16 -> 8×8				
4 (a/l both not split)	174	73	87		
5 (a split, 1 not split)	92	41	83		
6 (1 split, a not split)	82	99	50		
7 (a/l both split)	53	39	39		
	$32\times32 \rightarrow 16\times16$				
8 (a/l both not split)	177	58	59		
9 (a split, 1 not split)	68	26	63		
10 (1 split, a not split)	52	79	25		
11 (a/l both split)	17	14	12		
	64×64 -> 32×32				
12 (a/1 both not split)	222	34	30		
13 (a split, 1 not split)	72	16	44		
14 (1 split, a not split)	58	32	12		
15 (a/l both split)	10	7	6		
	128×128 -> 64×64				
16 (a/l both not split)	220	33	28		
17 (a split, l not split)	70	15	43		
18 (1 split, a not split)	57	31	11		
19 (a/l both split)	9	6	6		

表63 intra_partition_prob

	treeIdx		
ctxIdx	0	1	2
	8×8 -> 4×4		
0 (a/l both not split)	158	97	94

1 (a split, l not split)	93	24	99
2 (1 split, a not split)	85	119	44
3 (a/l both split)	62	59	67
		16×16 -> 8×8	
4 (a/l both not split)	149	53	53
5 (a split, l not split)	94	20	48
6 (1 split, a not split)	83	53	24
7 (a/l both split)	52	18	18
		$32\times32 \rightarrow 16\times16$	
8 (a/l both not split)	150	40	39
9 (a split, l not split)	78	12	26
10 (1 split, a not split)	67	33	11
11 (a/l both split)	24	7	5
	64×64 -> 32×32		
12 (a/l both not split)	174	35	49
13 (a split, 1 not split)	68	11	27
14 (1 split, a not split)	57	15	9
15 (a/l both split)	12	3	3
	128×128 -> 64×64		
16 (a/l both not split)	160	32	45
17 (a split, 1 not split)	65	10	23
18 (1 split, a not split)	54	12	8
19 (a/l both split)	11	2	2

语法元素skip_flag使用的初始概率表见表64。

表64 skip_prob

ctxIdx	binIdx	
Ctx1dx	0	
0	192	
1	128	
2	64	

语法元素inter_block的初始概率表见表65。

表65 intra_inter_prob

ctxIdx	binIdx	
	0	
0	9	
1	102	
2	187	

3	225
	1

MAX_TX_SIZE 取值不同时, 语法元素 tx_size 的初始概率表见表 66 。

表66 tx_probs

	binIdx		
ctxIdx	0	1	2
		TX_32×32	
0	3	136	37
1	5	52	13
	TX_16×16		
0	20	152	
1	15	101	
	TX_8×8		
0	100		
1	66		——

语法元素prev_intra_luma_pred_flag的初始概率表见表67。

表67 mpm_flag_probs

	binIdx	
ctxIdx	0	
0	80	
1	84	
2	110	
3	128	
4	128	
5	110	
6	80	

语法元素uv_fllow_y_flag的初始概率表见表68。

表68 uv_fllow_y_prob

ctxIdx	binIdx	
	0	
0	175	

语法元素block_reference_mode的初始概率表见表69。

表69 comp_inter_prob

ctxldx	binldx

GB/T 25724—XXXX

	0
0	239
1	183
2	119
3	96

语法元素ref_frame在COMPOUND_REFERENCE模式下的初始概率表见表70 ,在SINGLE_REFERENCE模式下的初始概率表见表71 。

表70 comp_ref_prob

T.1	binIdx		
ctxIdx	0	1	2
0	50	50	50
1	126	126	126
2	123	123	123
3	221	221	221
4	226	226	226

表71 single_ref_prob

- + - T J	binIdx			
ctxIdx	0	1	2	3
0	33	16	16	16
1	77	74	74	74
2	142	142	142	142
3	172	170	170	170
4	238	247	247	247

语法元素mv_mode用到三个初始概率表,分别见表72 ~表74 。

表72 newmv_mode_prob

	binIdx	
ctxIdx	0	
0	200	
1	180	
2	150	
3	150	
4	110	
5	70	
6	60	

表73 zeromv_mode_prob

ctxIdx	binIdx
	0
0	192
1	64

表74 refmv_mode_prob

ctxIdx	binIdx
	0
0	220
1	220
2	200
3	200
4	180
5	128
6	1
7	250

运动矢量解析相关的初始概率表见表75 ~表83 。

表75 mv_joint_probs

ctxIdx	treeIdx		
CUXIUX	0	1	2
0	190	155	212

表76 mv_sign_probs

comp	binIdx		
comp	0		
0	128		
1	128		

表77 mv_bits_probs

	binIdx									
comp	0	1	2	3	4	5	6	7	8	9
0	136	140	148	160	176	192	224	234	234	240
1	136	140	148	160	176	192	224	234	234	240

表78 mv_class0_bit_probs

o o mo	binIdx
comp	0
0	216
1	208

表79 mv_class_probs

o o mro	treeIdx									
comp	0	1	2	3	4	5	6	7	8	9
0	224	144	192	168	192	176	192	198	198	245
1	216	128	176	160	176	176	192	198	198	208

表80 mv_class0_fr_probs

comp	10 h:+	treeIdx				
	mv_class0_bit	0	1	2		
0	0	128	128	64		
0	1	96	112	64		
1	0	128	128	64		
1	1	96	112	64		

表81 mv_class0_hp_probs

comp	binIdx
	0
0	160
1	160

表82 mv_fr_probs

comp	treeIdx				
	0	1	2		
0	64	96	64		
1	64	96	64		

表83 mv_hp_probs

a a m	binIdx
comp	0
0	128
1	128

语法元素 interp_filter_mode 的初始化概率表见表 84 。

表84 switchable_interp_prob

	treeIdx				
ctxIdx	0	1	2		
0	235	192	128		
1	36	243	208		
2	34	16	128		
3	36	243	48		
4	149	160	128		

语法元素dqp_abs的初始概率表见表85。

表85 dqp_abs_prob

ctxIdx	treeIdx							
Ctxtdx	0	1	2	3	4	5	6	
0	180	190	161	144	138	124	79	
1	121	133	161	107	80	100	50	

语法元素 coef_value 的解析,包含 token 和 extra 的计算。token 的计算需要用到 coef_probs 概率表和 svac2_pareto8_full 概率表; extra 的计算需要用到 svac2_cat1_prob、svac2_cat2_prob、svac2_cat3_prob、svac2_cat4_prob、svac2_cat5_prob 和 svac2_cat6_prob 概率表。coef_probs 的上下文模型共有 6 个维度的信息: TX_SIZES、PLANE_TYPES、REF_TYPES、COEF_BANDS、COEFF_CONTEXTS、binIdx。

表86 coef_probs 4×4

DI ANE TYDES	DEE TYDES	COEE DANIDO	. + T J		binIdx		
PLANE_TYPES	REF_TYPES	COEF_BANDS	ctxIdx	0	1	2	
			0	195	29	183	
		0	1	84	49	136	
			2	8	42	71	
			0	31	107	169	
	Intra	1	1	35	99	159	
			1	2	17	82	140
Y plane			3	8	66	114	
			4	2	44	76	
			5	1	19	32	
			0	40	132	201	
		0	1	29	114	187	
		2	2	13	91	157	
			3	7	75	127	

		4	3	58	95
		5	1	28	95 47
		0	69	142	221
		1	42	122	201
		2	15	91	159
	3	3	6		
				67	121
		4	1	42	77
		5	1	17	31
		0	102	148	228
		1	67	117	204
	4	2	17	82	154
		3	6	59	114
		4	2	39	75
		5	1	15	29
		0	156	57	233
		1	119	57	212
	5	2	58	48	163
	Ū	3	29	40	124
		4	12	30	81
		5	3	12	31
	0	0	191	107	226
		1	124	117	204
		2	25	99	155
		0	29	148	210
		1	37	126	194
	1	2	8	93	157
	1	3	2	68	118
		4	1	39	69
		5	1	17	33
		0	41	151	213
Inter		1	27	123	193
	_	2	3	82	144
	2	3	1	58	105
		4	1	32	60
		5	1	13	26
		0	59	159	220
		1	23	126	198
		2	4	88	151
	3	3	1	66	114
		4	1	38	71
		5	1	18	34

			0	114	100	000
			0	114	136	232
			1	51	114	207
		4	2	11	83	155
			3	3	56	105
			4	1	33	65
			5	1	17	34
			0	149	65	234
			1	121	57	215
		5	2	61	49	166
			3	28	36	114
			4	12	25	76
			5	3	16	42
			0	214	49	220
		0	1	132	63	188
		2	42	65	137	
		0	85	137	221	
			1	104	131	216
		1	2	49	111	192
			3	21	87	155
			4	2	49	87
			5	1	16	28
		2	0	89	163	230
			1	90	137	220
			2	29	100	183
			3	10	70	135
			4	2	42	81
UV plane	Intra		5	1	17	33
			0	108	167	237
			1	55	133	222
			2	15	97	179
		3	3	4	72	135
			4	1	45	85
			5	1	19	38
			0	124	146	240
			1	66	124	224
			2	17	88	175
		4	3	4	58	122
			4	1	36	75
			5	1	18	37
			0	141	79	241
		5	1	126	70	227

			2	66	58	182
			3	30	44	136
			4	12	34	96
			5	2	20	47
			0	229	99	249
		0	1	143	111	235
			2	46	109	192
			0	82	158	236
			1	94	146	224
			2	25	117	191
		1	3	9	87	149
			4	3	56	99
			5	1	33	57
			0	83	167	237
		2	1	68	145	222
			2	10	103	177
			3	2	72	131
			4	1	41	79
			5	1	20	39
			0	99	167	239
	Inter		1	47	141	224
		0	2	10	104	178
		3	3	2	73	133
			4	1	44	85
			5	1	22	47
			0	127	145	243
			1	71	129	228
		4	2	17	93	177
		4	3	3	61	124
			4	1	41	84
			5	1	21	52
			0	157	78	244
			1	140	72	231
		F	2	69	58	184
		5	3	31	44	137
			4	14	38	105
			5	8	23	61

表87 coef_probs 8×8

PLANE_TYPES REF_TYPES COEF_BANDS ctxIdx binIdx	I LAND III DO	ILLI III LO	COEF_BANDS	ctxIdx	
--	---------------	-------------	------------	--------	--

				0	1	2
			0	125	34	187
		0	1	52	41	133
			2	6	31	56
			0	37	109	153
			1	51	102	147
			2	23	87	128
		1	3	8	67	101
			4	1	41	63
			5	1	19	29
			0	31	154	185
			1	17	127	175
			2	6	96	145
		2	3	2	73	114
			4	1	51	82
	Intra		5	1	28	45
		3	0	23	163	200
			1	10	131	185
			2	2	93	148
			3	1	67	111
Y plane			4	1	41	69
i piane			5	1	14	24
		4	0	29	176	217
			1	12	145	201
			2	3	101	156
			3	1	69	111
]	4	1	39	63
			5	1	14	23
			0	57	192	233
			1	25	154	215
		5	2	6	109	167
		J	3	3	78	118
			4	1	48	69
			5	1	21	29
			0	202	105	245
		0	1	108	106	216
			2	18	90	144
	Inter		0	33	172	219
		1	1	64	149	206
			2	14	117	177
			3	5	90	141

			4	2	61	95
			5	1	37	57
			0	33	179	220
			1	11	140	198
			2	1	89	148
		2	3	1	60	104
			4	1	33	57
			5	1	12	21
			0	30	181	221
			1	8	141	198
			2	1	87	145
		3	3	1	58	100
			4	1	31	55
			5	1	12	20
			0	32	186	224
		4	1	7	142	198
			2	1	86	143
			3	1	58	100
			4	1	31	55
			5	1	12	22
			0	57	192	227
			1	20	143	204
		5	2	3	96	154
		5	3	1	68	112
			4	1	42	69
			5	1	19	32
			0	212	35	215
		0	1	113	47	169
			2	29	48	105
			0	74	129	203
			1	106	120	203
		1	2	49	107	178
		1	3	19	84	144
UV plane	Intra		4	4	50	84
			5	1	15	25
			0	71	172	217
			1	44	141	209
		2	2	15	102	173
			3	6	76	133
			4	2	51	89
			5	1	24	42

0 64 185	1 931
	231
1 31 148	216
3 2 8 103	175
3 3 74	131
4 1 46	81
5 1 18	30
0 65 196	235
1 25 157	221
4 2 5 105	174
3 1 67	120
4 1 38	69
5 1 15	30
0 65 204	238
1 30 156	224
2 7 107	177
5 3 2 70	124
4 1 42	73
5 1 18	34
0 225 86	251
0 1 144 104	235
2 42 99	181
0 85 175	239
1 112 165	229
2 29 136	200
1 3 12 103	162
4 6 77	123
5 2 53	84
0 75 183	239
1 30 155	221
Inter 2 3 106	171
2 3 1 74	128
4 1 44	76
5 1 17	28
0 73 185	240
1 27 159	222
2 2 107	172
3 3 1 75	127
4 1 42	73
5 1 17	29
4 0 62 190	238
1 1 1	222

	2	2	107	172
	3	1	72	122
	4	1	40	71
	5	1	18	32
	0	61	199	240
	1	27	161	226
5	2	4	113	180
5	3	1	76	129
	4	1	46	80
	5	1	23	41

表88 coef_probs 16×16

DI ANE TYPE	DEE TYDEC	COEE DANDS	. + . T d		binIdx	
PLANE_TYPES	REF_TYPES	COEF_BANDS	ctxIdx	0	1	2
			0	7	27	153
		0	1	5	30	95
			2	1	16	30
			0	50	75	127
			1	57	75	124
		1	2	27	67	108
		3	10	54	86	
		4	1	33	52	
		5	1	12	18	
			0	43	125	151
			1	26	108	148
		2	2	7	83	122
Y plane	Y plane Intra	2	3	2	59	89
i prane	IIItIa		4	1	38	60
			5	1	17	27
			0	23	144	163
			1	13	112	154
		3	2	2	75	117
		3	3	1	50	81
			4	1	31	51
			5	1	14	23
			0	18	162	185
			1	6	123	171
		4	2	1	78	125
			3	1	51	86
			4	1	31	54

			5	1	1.4	23
				1	14	
			0	15	199	227
			1	3	150	204
		5	2	1	91	146
			3	1	55	95
			4	1	30	53
			5	1	11	20
		0	0	19	55	240
		0	1	19	59	196
			2	3	52	105
			0	41	166	207
			1	104	153	199
		1	2	31	123	181
			3	14	101	152
			4	5	72	106
			5	1	36	52
		2	0	35	176	211
			1	12	131	190
			2	2	88	144
			3	1	60	101
			4	1	36	60
			5	1	16	28
			0	28	183	213
	Inter	3	1	8	134	191
			2	1	86	142
			3	1	56	96
			4	1	30	53
			5	1	12	20
			0	20	190	215
			1	4	135	192
		4	2	1	84	139
			3	1	53	91
			4	1	28	49
			5	1	11	20
			0	13	196	216
			1	2	137	192
		5	2	1	86	143
			3	1	57	99
			4	1	32	56
			5	1	13	24
UV plane	Intra	0	0	211	29	217

			1	96	47	156
			2	22	43	156
			0	78		87 193
			1	111	120 116	186
			2	46	102	164
		1	3	15	80	128
			4	2	49	76
			5	1	18	28
			0	71	161	203
			1	42	132	192
			2	10	98	150
		2	3	3	69	109
			4	1	44	70
		5	1	18	29	
			0	57	186	211
		1	30	140	196	
	3	2	4	93	146	
		3	1	62	102	
		4	1	38	65	
		5	1	16	27	
			0	47	199	217
		4	1	14	145	196
			2	1	88	142
			3	1	57	98
			4	1	36	62
			5	1	15	26
			0	26	219	229
			1	5	155	207
		5	2	1	94	151
		υ	3	1	60	104
			4	1	36	62
			5	1	16	28
			0	233	29	248
		0	1	146	47	220
			2	43	52	140
			0	100	163	232
	Inter		1	179	161	222
		1	2	63	142	204
		<u> </u>	3	37	113	174
			4	26	89	137
			5	18	68	97

	0	85	181	230
	1	32	146	209
2	2	7	100	164
2	3	3	71	121
	4	1	45	77
	5	1	18	30
	0	65	187	230
	1	20	148	207
3	2	2	97	159
3	3	1	68	116
	4	1	40	70
	5	1	14	29
	0	40	194	227
	1	8	147	204
4	2	1	94	155
4	3	1	65	112
	4	1	39	66
	5	1	14	26
	0	16	208	228
	1	3	151	207
5	2	1	98	160
J	3	1	67	117
	4	1	41	74
	5	1	17	31

表89 coef_probs 32×32

DI ANE TYPES	REF_TYPES	CODE DANDS	ctxIdx		binIdx			
PLANE_TYPES	KLI_III LS	COEF_BANDS	Ctx1ax	0	1	2		
			0	17	38	140		
		0	1	7	34	80		
			2	1	17	29		
			0	37	75	128		
		1	41	76	128			
V 1	V. 1	1	2	26	66	116		
Y plane	Intra		3	12	52	94		
			4	2	32	55		
			5	1	10	16		
			0	50	127	154		
		2	1	37	109	152		
					2	16	82	121

	1			1	1	
			3	5	59	85
			4	1	35	54
			5	1	13	20
			0	40	142	167
			1	17	110	157
		3	2	2	71	112
		3	3	1	44	72
			4	1	27	45
			5	1	11	17
			0	30	175	188
			1	9	124	169
		,	2	1	74	116
		4	3	1	48	78
			4	1	30	49
			5	1	11	18
			0	10	222	223
		5	1	2	150	194
			2	1	83	128
			3	1	48	79
			4	1	27	45
			5	1	11	17
		0	0	36	41	235
			1	29	36	193
			2	10	27	111
			0	85	165	222
			1	177	162	215
		1	2	110	135	195
			3	57	113	168
			4	23	83	120
			5	10	49	61
			0	85	190	223
	Inter		1	36	139	200
			2	5	90	146
		2	3	1	60	103
			4	1	38	65
			5	1	18	30
			0	72	202	223
			1	23	141	199
		3	2	2	86	140
			3	1	56	97
			4	1	36	61
	<u>I</u>	<u> </u>	l	l		

			_		1.0	
			5	1	16	27
			0	55	218	225
			1	13	145	200
		4	2	1	86	141
			3	1	57	99
			4	1	35	61
			5	1	13	22
			0	15	235	212
			1	1	132	184
		5	2	1	84	139
			3	1	57	97
			4	1	34	56
			5	1	14	23
			0	181	21	201
		0	1	61	37	123
			2	10	38	71
		1	0	47	106	172
			1	95	104	173
			2	42	93	159
			3	18	77	131
			4	4	50	81
			5	1	17	23
			0	62	147	199
			1	44	130	189
		0	2	28	102	154
		2	3	18	75	115
1117 1	T 4		4	2	44	65
UV plane	Intra		5	1	12	19
			0	55	153	210
			1	24	130	194
		0	2	3	93	146
		3	3	1	61	97
			4	1	31	50
			5	1	10	16
			0	49	186	223
			1	17	148	204
		_	2	1	96	142
		4	3	1	53	83
			4	1	26	44
			5	1	11	17
		5	0	13	217	212

			1	2	136	180
			2	1	78	124
			3	1	50	83
		4	1	29	49	
			5	1	14	23
			0	197	13	247
		0	1	82	17	222
			2	25	17	162
			0	126	186	247
			1	234	191	243
			2	176	177	234
		1	3	104	158	220
			4	66	128	186
			5	55	90	137
			0	111	197	242
		İ	1	46	158	219
			2	9	104	171
		2	3	2	65	125
			4	1	44	80
			5	1	17	91
			0	104	208	245
	Inter		1	39	168	224
		9	2	3	109	162
		3	3	1	79	124
			4	1	50	102
			5	1	43	102
			0	84	220	246
			1	31	177	231
		4	2	2	115	180
		4	3	1	79	134
			4	1	55	77
			5	1	60	79
			0	43	243	240
			1	8	180	217
		_	2	1	115	166
		5	3	1	84	121
			4	1	51	67
			5	1	16	6

表90 svac2_pareto8_full

	treeIdx									
ctxIdx	0	1	2	3	4	5	6	7		
0	3	86	128	6	86	23	88	29		
1	6	86	128	11	87	42	91	52		
2	9	86	129	17	88	61	94	76		
3	12	86	129	22	88	77	97	93		
4	15	87	129	28	89	93	100	110		
5	17	87	129	33	90	105	103	123		
6	20	88	130	38	91	118	106	136		
7	23	88	130	43	91	128	108	146		
8	26	89	131	48	92	139	111	156		
9	28	89	131	53	93	147	114	163		
10	31	90	131	58	94	156	117	171		
11	34	90	131	62	94	163	119	177		
12	37	90	132	66	95	171	122	184		
13	39	90	132	70	96	177	124	189		
14	42	91	132	75	97	183	127	194		
15	44	91	132	79	97	188	129	198		
16	47	92	133	83	98	193	132	202		
17	49	92	133	86	99	197	134	205		
18	52	93	133	90	100	201	137	208		
19	54	93	133	94	100	204	139	211		
20	57	94	134	98	101	208	142	214		
21	59	94	134	101	102	211	144	216		
22	62	94	135	105	103	214	146	218		
23	64	94	135	108	103	216	148	220		
24	66	95	135	111	104	219	151	222		
25	68	95	135	114	105	221	153	223		
26	71	96	136	117	106	224	155	225		
27	73	96	136	120	106	225	157	226		
28	76	97	136	123	107	227	159	228		
29	78	97	136	126	108	229	160	229		
30	80	98	137	129	109	231	162	231		
31	82	98	137	131	109	232	164	232		
32	84	98	138	134	110	234	166	233		
33	86	98	138	137	111	235	168	234		
34	89	99	138	140	112	236	170	235		
35	91	99	138	142	112	237	171	235		
36	93	100	139	145	113	238	173	236		
37	95	100	139	147	114	239	174	237		
38	97	101	140	149	115	240	176	238		

199 101 140 151 115 241 177 238				ı	<u> </u>	ı	<u> </u>	ı	
10	39	99	101	140	151	115	241	177	238
105	40	101	102	140	154	116	242	179	239
43	41	103	102	140	156	117	242	180	239
44 109 104 141 162 119 244 185 241 45 111 104 141 164 119 244 186 241 46 113 104 142 166 120 245 187 242 47 114 104 142 168 121 245 188 242 48 116 105 143 170 122 246 190 243 49 118 105 143 171 122 246 191 243 50 120 106 143 173 123 247 192 244 51 121 106 143 175 124 247 193 244 51 121 106 143 175 124 247 193 244 51 128 106 145 181 127 248 196	42	105	103	141	158	118	243	182	240
45 111 104 141 164 119 244 186 241 46 113 104 142 166 120 245 187 242 47 114 104 142 168 121 245 188 242 48 116 105 143 170 122 246 190 243 49 118 105 143 171 122 246 190 243 50 120 106 143 173 123 247 192 244 51 121 106 143 175 124 247 193 244 52 123 107 144 177 125 248 195 244 53 125 107 144 178 125 248 195 244 54 127 108 145 180 126 249 197	43	107	103	141	160	118	243	183	240
46 113 104 142 166 120 245 187 242 47 114 104 142 168 121 245 188 242 48 116 105 143 170 122 246 190 243 49 118 105 143 171 122 246 191 243 50 120 106 143 173 123 247 192 244 51 121 106 143 175 124 247 192 244 51 121 106 143 175 124 247 192 244 52 123 107 144 177 125 248 195 244 53 125 107 144 178 125 248 196 244 54 127 108 145 180 126 249 197	44	109	104	141	162	119	244	185	241
47 114 104 142 168 121 245 188 242 48 116 105 143 170 122 246 190 243 49 118 105 143 171 122 246 191 243 50 120 106 143 173 123 247 192 244 51 121 106 143 175 124 247 192 244 52 123 107 144 177 125 248 195 244 53 125 107 144 178 125 248 196 244 54 127 108 145 180 126 249 197 245 55 128 108 145 181 127 249 198 245 56 130 109 145 183 128 249 199	45	111	104	141	164	119	244	186	241
48 116 105 143 170 122 246 190 243 49 118 105 143 171 122 246 191 243 50 120 106 143 173 123 247 192 244 51 121 106 143 175 124 247 193 244 52 123 107 144 177 125 248 196 244 53 125 107 144 178 125 248 196 244 54 127 108 145 180 126 249 197 245 55 128 108 145 181 127 249 198 245 56 130 109 145 183 128 249 199 245 57 132 109 145 184 128 249 200	46	113	104	142	166	120	245	187	242
49 118 105 143 171 122 246 191 243 50 120 106 143 173 123 247 192 244 51 121 106 143 175 124 247 193 244 52 123 107 144 177 125 248 195 244 53 125 107 144 178 125 248 196 244 54 127 108 145 180 126 249 197 245 55 128 108 145 181 127 249 198 245 56 130 109 145 183 128 249 199 245 57 132 109 145 184 128 249 290 245 58 134 110 146 186 129 250 201	47	114	104	142	168	121	245	188	242
50 120 106 143 173 123 247 192 244 51 121 106 143 175 124 247 193 244 52 123 107 144 177 125 248 195 244 53 125 107 144 178 125 248 196 244 54 127 108 145 180 126 249 197 245 55 128 108 145 181 127 249 198 245 56 130 109 145 183 128 249 199 245 57 132 109 145 184 128 249 199 245 58 134 110 146 186 129 250 201 246 59 135 110 146 187 130 250 202	48	116	105	143	170	122	246	190	243
51 121 106 143 175 124 247 193 244 52 123 107 144 177 125 248 195 244 53 125 107 144 178 125 248 196 244 54 127 108 145 180 126 249 197 245 55 128 108 145 181 127 249 198 245 56 130 109 145 183 128 249 199 245 57 132 109 145 184 128 249 200 245 58 134 110 146 186 129 250 201 246 59 135 110 146 187 130 250 202 246 60 137 111 147 189 131 251 202	49	118	105	143	171	122	246	191	243
52 123 107 144 177 125 248 195 244 53 125 107 144 178 125 248 196 244 54 127 108 145 180 126 249 197 245 55 128 108 145 181 127 249 198 245 56 130 109 145 183 128 249 199 245 57 132 109 145 184 128 249 200 245 58 134 110 146 186 129 250 201 246 59 135 110 146 187 130 250 202 246 60 137 111 147 189 131 251 203 246 61 138 111 147 190 131 251 204	50	120	106	143	173	123	247	192	244
53 125 107 144 178 125 248 196 244 54 127 108 145 180 126 249 197 245 55 128 108 145 181 127 249 198 245 56 130 109 145 183 128 249 199 245 57 132 109 145 184 128 249 200 245 58 134 110 146 186 129 250 201 246 59 135 110 146 187 130 250 202 246 60 137 111 147 189 131 251 203 246 61 138 111 147 190 131 251 204 246 62 140 112 147 192 132 251 205	51	121	106	143	175	124	247	193	244
54 127 108 145 180 126 249 197 245 55 128 108 145 181 127 249 198 245 56 130 109 145 183 128 249 199 245 57 132 109 145 184 128 249 200 245 58 134 110 146 186 129 250 201 246 59 135 110 146 187 130 250 202 246 60 137 111 147 189 131 251 203 246 61 138 111 147 190 131 251 204 246 62 140 112 147 192 132 251 205 247 63 141 112 147 193 132 251 206	52	123	107	144	177	125	248	195	244
55 128 108 145 181 127 249 198 245 56 130 109 145 183 128 249 199 245 57 132 109 145 184 128 249 200 245 58 134 110 146 186 129 250 201 246 59 135 110 146 187 130 250 202 246 60 137 111 147 189 131 251 203 246 61 138 111 147 190 131 251 204 246 62 140 112 147 192 132 251 205 247 63 141 112 147 193 132 251 206 247 64 143 113 148 194 133 251 207	53	125	107	144	178	125	248	196	244
56 130 109 145 183 128 249 199 245 57 132 109 145 184 128 249 200 245 58 134 110 146 186 129 250 201 246 59 135 110 146 187 130 250 202 246 60 137 111 147 189 131 251 203 246 61 138 111 147 190 131 251 204 246 62 140 112 147 192 132 251 205 247 63 141 112 147 193 132 251 206 247 64 143 113 148 194 133 251 207 247 65 144 113 148 195 134 251 207	54	127	108	145	180	126	249	197	245
57 132 109 145 184 128 249 200 245 58 134 110 146 186 129 250 201 246 59 135 110 146 187 130 250 202 246 60 137 111 147 189 131 251 203 246 61 138 111 147 190 131 251 204 246 62 140 112 147 192 132 251 205 247 63 141 112 147 193 132 251 206 247 64 143 113 148 194 133 251 207 247 65 144 113 148 195 134 251 207 247 66 146 114 149 197 135 252 208	55	128	108	145	181	127	249	198	245
58 134 110 146 186 129 250 201 246 59 135 110 146 187 130 250 202 246 60 137 111 147 189 131 251 203 246 61 138 111 147 190 131 251 204 246 62 140 112 147 192 132 251 205 247 63 141 112 147 193 132 251 206 247 64 143 113 148 194 133 251 207 247 65 144 113 148 195 134 251 207 247 66 146 114 149 197 135 252 208 248 67 147 114 149 198 135 252 210	56	130	109	145	183	128	249	199	245
59 135 110 146 187 130 250 202 246 60 137 111 147 189 131 251 203 246 61 138 111 147 190 131 251 204 246 62 140 112 147 192 132 251 205 247 63 141 112 147 193 132 251 206 247 64 143 113 148 194 133 251 207 247 65 144 113 148 195 134 251 207 247 66 146 114 149 197 135 252 208 248 67 147 114 149 198 135 252 209 248 68 149 115 149 199 136 252 210	57	132	109	145	184	128	249	200	245
60 137 111 147 189 131 251 203 246 61 138 111 147 190 131 251 204 246 62 140 112 147 192 132 251 205 247 63 141 112 147 193 132 251 206 247 64 143 113 148 194 133 251 207 247 65 144 113 148 195 134 251 207 247 66 146 114 149 197 135 252 208 248 67 147 114 149 198 135 252 209 248 68 149 115 149 199 136 252 210 248 69 150 115 149 200 137 252 210	58	134	110	146	186	129	250	201	246
61 138 111 147 190 131 251 204 246 62 140 112 147 192 132 251 205 247 63 141 112 147 193 132 251 206 247 64 143 113 148 194 133 251 207 247 65 144 113 148 195 134 251 207 247 66 146 114 149 197 135 252 208 248 67 147 114 149 198 135 252 209 248 68 149 115 149 199 136 252 210 248 69 150 115 149 200 137 252 210 248 70 152 115 150 201 138 252 211	59	135	110	146	187	130	250	202	246
62 140 112 147 192 132 251 205 247 63 141 112 147 193 132 251 206 247 64 143 113 148 194 133 251 207 247 65 144 113 148 195 134 251 207 247 66 146 114 149 197 135 252 208 248 67 147 114 149 198 135 252 209 248 68 149 115 149 199 136 252 210 248 69 150 115 149 200 137 252 210 248 70 152 115 150 201 138 252 211 248 71 153 115 150 202 138 252 212	60	137	111	147	189	131	251	203	246
63 141 112 147 193 132 251 206 247 64 143 113 148 194 133 251 207 247 65 144 113 148 195 134 251 207 247 66 146 114 149 197 135 252 208 248 67 147 114 149 198 135 252 209 248 68 149 115 149 199 136 252 210 248 69 150 115 149 200 137 252 210 248 70 152 115 150 201 138 252 211 248 71 153 115 150 202 138 252 212 248 72 155 116 151 204 139 253 213 249 73 156 116 151 205 139 253	61	138	111	147	190	131	251	204	246
64 143 113 148 194 133 251 207 247 65 144 113 148 195 134 251 207 247 66 146 114 149 197 135 252 208 248 67 147 114 149 198 135 252 209 248 68 149 115 149 199 136 252 210 248 69 150 115 149 200 137 252 210 248 70 152 115 150 201 138 252 211 248 71 153 115 150 202 138 252 212 248 72 155 116 151 204 139 253 213 249 73 156 116 151 205 139 253 213 249 75 159 117 151 206 140 253	62	140	112	147	192	132	251	205	247
65 144 113 148 195 134 251 207 247 66 146 114 149 197 135 252 208 248 67 147 114 149 198 135 252 209 248 68 149 115 149 199 136 252 210 248 69 150 115 149 200 137 252 210 248 70 152 115 150 201 138 252 211 248 71 153 115 150 202 138 252 212 248 72 155 116 151 204 139 253 213 249 73 156 116 151 205 139 253 213 249 74 158 117 151 206 140 253 214	63	141	112	147	193	132	251	206	247
66 146 114 149 197 135 252 208 248 67 147 114 149 198 135 252 209 248 68 149 115 149 199 136 252 210 248 69 150 115 149 200 137 252 210 248 70 152 115 150 201 138 252 211 248 71 153 115 150 202 138 252 212 248 72 155 116 151 204 139 253 213 249 73 156 116 151 205 139 253 213 249 74 158 117 151 206 140 253 214 249 75 159 117 151 207 141 253 215 249 76 161 118 152 208 142 253	64	143	113	148	194	133	251	207	247
67 147 114 149 198 135 252 209 248 68 149 115 149 199 136 252 210 248 69 150 115 149 200 137 252 210 248 70 152 115 150 201 138 252 211 248 71 153 115 150 202 138 252 212 248 72 155 116 151 204 139 253 213 249 73 156 116 151 205 139 253 213 249 74 158 117 151 206 140 253 214 249 75 159 117 151 207 141 253 215 249 76 161 118 152 208 142 253 216 249 77 162 118 152 209 142 253	65	144	113	148	195	134	251	207	247
68 149 115 149 199 136 252 210 248 69 150 115 149 200 137 252 210 248 70 152 115 150 201 138 252 211 248 71 153 115 150 202 138 252 212 248 72 155 116 151 204 139 253 213 249 73 156 116 151 205 139 253 213 249 74 158 117 151 206 140 253 214 249 75 159 117 151 207 141 253 215 249 76 161 118 152 208 142 253 216 249 77 162 118 152 209 142 253 216 249 78 163 119 153 210 143 253	66	146	114	149	197	135	252	208	248
69 150 115 149 200 137 252 210 248 70 152 115 150 201 138 252 211 248 71 153 115 150 202 138 252 212 248 72 155 116 151 204 139 253 213 249 73 156 116 151 205 139 253 213 249 74 158 117 151 206 140 253 214 249 75 159 117 151 207 141 253 215 249 76 161 118 152 208 142 253 216 249 77 162 118 152 209 142 253 216 249 78 163 119 153 210 143 253 217 249	67	147	114	149	198	135	252	209	248
70 152 115 150 201 138 252 211 248 71 153 115 150 202 138 252 212 248 72 155 116 151 204 139 253 213 249 73 156 116 151 205 139 253 213 249 74 158 117 151 206 140 253 214 249 75 159 117 151 207 141 253 215 249 76 161 118 152 208 142 253 216 249 77 162 118 152 209 142 253 216 249 78 163 119 153 210 143 253 217 249	68	149	115	149	199	136	252	210	248
71 153 115 150 202 138 252 212 248 72 155 116 151 204 139 253 213 249 73 156 116 151 205 139 253 213 249 74 158 117 151 206 140 253 214 249 75 159 117 151 207 141 253 215 249 76 161 118 152 208 142 253 216 249 77 162 118 152 209 142 253 216 249 78 163 119 153 210 143 253 217 249	69	150	115	149	200	137	252	210	248
72 155 116 151 204 139 253 213 249 73 156 116 151 205 139 253 213 249 74 158 117 151 206 140 253 214 249 75 159 117 151 207 141 253 215 249 76 161 118 152 208 142 253 216 249 77 162 118 152 209 142 253 216 249 78 163 119 153 210 143 253 217 249	70	152	115	150	201	138	252	211	248
73 156 116 151 205 139 253 213 249 74 158 117 151 206 140 253 214 249 75 159 117 151 207 141 253 215 249 76 161 118 152 208 142 253 216 249 77 162 118 152 209 142 253 216 249 78 163 119 153 210 143 253 217 249	71	153	115	150	202	138	252	212	248
74 158 117 151 206 140 253 214 249 75 159 117 151 207 141 253 215 249 76 161 118 152 208 142 253 216 249 77 162 118 152 209 142 253 216 249 78 163 119 153 210 143 253 217 249	72	155	116	151	204	139	253	213	249
75 159 117 151 207 141 253 215 249 76 161 118 152 208 142 253 216 249 77 162 118 152 209 142 253 216 249 78 163 119 153 210 143 253 217 249	73	156	116	151	205	139	253	213	249
76 161 118 152 208 142 253 216 249 77 162 118 152 209 142 253 216 249 78 163 119 153 210 143 253 217 249	74	158	117	151	206	140	253	214	249
77 162 118 152 209 142 253 216 249 78 163 119 153 210 143 253 217 249	75	159	117	151	207	141	253	215	249
78 163 119 153 210 143 253 217 249	76	161	118	152	208	142	253	216	249
	77	162	118	152	209	142	253	216	249
79 164 119 153 211 143 253 217 249	78	163	119	153	210	143	253	217	249
	79	164	119	153	211	143	253	217	249

80	166	120	153	212	144	254	218	250
81	167	120	153	212	144	254	219	250
82	168	120	153	213	146	254	220	250
83	169	121	154	213	146	254	220	250
84	171	122	155	215	147	254	221	250
85	172	122	155	216	147	254	221	250
86	173	123	155	217	148	254	222	250
87	174	123	155	217	149	254	222	250
88	176	124	156	218	150	254	223	250
89	177	124	156	219	150	254	223	250
90	178	125	157	220	151	254	224	251
91	179	125	157	220	151	254	224	251
92	180	126	157	221	152	254	225	251
93	181	126	157	221	152	254	225	251
94	183	127	158	222	153	254	226	251
95	184	127	158	223	154	254	226	251
96	185	128	159	224	155	255	227	251
97	186	128	159	224	155	255	227	251
98	187	129	160	225	156	255	228	251
99	188	130	160	225	156	255	228	251
100	189	131	160	226	157	255	228	251
101	190	131	160	226	158	255	228	251
102	191	132	161	227	159	255	229	251
103	192	132	161	227	159	255	229	251
104	193	133	162	228	160	255	230	252
105	194	133	162	229	160	255	230	252
106	195	134	163	230	161	255	231	252
107	196	134	163	230	161	255	231	252
108	197	135	163	231	162	255	231	252
109	198	135	163	231	162	255	231	252
110	199	136	164	232	163	255	232	252
111	200	136	164	232	164	255	232	252
112	201	137	165	233	165	255	233	252
113	201	137	165	233	165	255	233	252
114	202	138	166	233	166	255	233	252
115	203	138	166	233	166	255	233	252
116	204	139	166	234	167	255	234	252
117	205	139	166	234	167	255	234	252
118	206	140	167	235	168	255	235	252
119	206	140	167	235	168	255	235	252
120	207	141	168	236	169	255	235	252

121	208	141	168	236	170	255	235	252
122	209	142	169	237	171	255	236	252
123	209	143	169	237	171	255	236	252
124	210	144	169	237	172	255	236	252
125	211	144	169	237	172	255	236	252
126	212	145	170	238	173	255	237	252
127	213	145	170	238	173	255	237	252
128	214	146	171	239	174	255	237	253
129	214	146	171	239	174	255	237	253
130	215	147	172	240	175	255	238	253
131	215	147	172	240	175	255	238	253
132	216	148	173	240	176	255	238	253
133	217	148	173	240	176	255	238	253
134	218	149	173	241	177	255	239	253
135	218	149	173	241	178	255	239	253
136	219	150	174	241	179	255	239	253
137	219	151	174	241	179	255	239	253
138	220	152	175	242	180	255	240	253
139	221	152	175	242	180	255	240	253
140	222	153	176	242	181	255	240	253
141	222	153	176	242	181	255	240	253
142	223	154	177	243	182	255	240	253
143	223	154	177	243	182	255	240	253
144	224	155	178	244	183	255	241	253
145	224	155	178	244	183	255	241	253
146	225	156	178	244	184	255	241	253
147	225	157	178	244	184	255	241	253
148	226	158	179	244	185	255	242	253
149	227	158	179	244	185	255	242	253
150	228	159	180	245	186	255	242	253
151	228	159	180	245	186	255	242	253
152	229	160	181	245	187	255	242	253
153	229	160	181	245	187	255	242	253
154	230	161	182	246	188	255	243	253
155	230	162	182	246	188	255	243	253
156	231	163	183	246	189	255	243	253
157	231	163	183	246	189	255	243	253
158	232	164	184	247	190	255	243	253
159	232	164	184	247	190	255	243	253
160	233	165	185	247	191	255	244	253
161	233	165	185	247	191	255	244	253

	Т	1	ı	1	ı	ı	ı	ı
162	234	166	185	247	192	255	244	253
163	234	167	185	247	192	255	244	253
164	235	168	186	248	193	255	244	253
165	235	168	186	248	193	255	244	253
166	236	169	187	248	194	255	244	253
167	236	169	187	248	194	255	244	253
168	236	170	188	248	195	255	245	253
169	236	170	188	248	195	255	245	253
170	237	171	189	249	196	255	245	254
171	237	172	189	249	196	255	245	254
172	238	173	190	249	197	255	245	254
173	238	173	190	249	197	255	245	254
174	239	174	191	249	198	255	245	254
175	239	174	191	249	198	255	245	254
176	240	175	192	249	199	255	246	254
177	240	176	192	249	199	255	246	254
178	240	177	193	250	200	255	246	254
179	240	177	193	250	200	255	246	254
180	241	178	194	250	201	255	246	254
181	241	178	194	250	201	255	246	254
182	242	179	195	250	202	255	246	254
183	242	180	195	250	202	255	246	254
184	242	181	196	250	203	255	247	254
185	242	181	196	250	203	255	247	254
186	243	182	197	251	204	255	247	254
187	243	183	197	251	204	255	247	254
188	244	184	198	251	205	255	247	254
189	244	184	198	251	205	255	247	254
190	244	185	199	251	206	255	247	254
191	244	185	199	251	206	255	247	254
192	245	186	200	251	207	255	247	254
193	245	187	200	251	207	255	247	254
194	246	188	201	252	207	255	248	254
195	246	188	201	252	207	255	248	254
196	246	189	202	252	208	255	248	254
197	246	190	202	252	208	255	248	254
198	247	191	203	252	209	255	248	254
199	247	191	203	252	209	255	248	254
200	247	192	204	252	210	255	248	254
201	247	193	204	252	210	255	248	254
202	248	194	205	252	211	255	248	254
L	i							

	T	1	1		1	1	1	1
203	248	194	205	252	211	255	248	254
204	248	195	206	252	212	255	249	254
205	248	196	206	252	212	255	249	254
206	249	197	207	253	213	255	249	254
207	249	197	207	253	213	255	249	254
208	249	198	208	253	214	255	249	254
209	249	199	209	253	214	255	249	254
210	250	200	210	253	215	255	249	254
211	250	200	210	253	215	255	249	254
212	250	201	211	253	215	255	249	254
213	250	202	211	253	215	255	249	254
214	250	203	212	253	216	255	249	254
215	250	203	212	253	216	255	249	254
216	251	204	213	253	217	255	250	254
217	251	205	213	253	217	255	250	254
218	251	206	214	254	218	255	250	254
219	251	206	215	254	218	255	250	254
220	252	207	216	254	219	255	250	254
221	252	208	216	254	219	255	250	254
222	252	209	217	254	220	255	250	254
223	252	210	217	254	220	255	250	254
224	252	211	218	254	221	255	250	254
225	252	212	218	254	221	255	250	254
226	253	213	219	254	222	255	250	254
227	253	213	220	254	222	255	250	254
228	253	214	221	254	223	255	250	254
229	253	215	221	254	223	255	250	254
230	253	216	222	254	224	255	251	254
231	253	217	223	254	224	255	251	254
232	253	218	224	254	225	255	251	254
233	253	219	224	254	225	255	251	254
234	254	220	225	254	225	255	251	254
235	254	221	226	254	225	255	251	254
236	254	222	227	255	226	255	251	254
237	254	223	227	255	226	255	251	254
238	254	224	228	255	227	255	251	254
239	254	225	229	255	227	255	251	254
240	254	226	230	255	228	255	251	254
241	254	227	230	255	229	255	251	254
242	255	228	231	255	230	255	251	254
243	255	229	232	255	230	255	251	254
L								

244	255	230	233	255	231	255	252	254
245	255	231	234	255	231	255	252	254
246	255	232	235	255	232	255	252	254
247	255	233	236	255	232	255	252	254
248	255	235	237	255	233	255	252	254
249	255	236	238	255	234	255	252	254
250	255	238	240	255	235	255	252	255
251	255	239	241	255	235	255	252	254
252	255	241	243	255	236	255	252	254
253	255	243	245	255	237	255	252	254
254	255	246	247	255	239	255	253	255
255	255	246	247	255	239	255	253	255

在token大于等于5时,需要计算extra。

token等于5时,extra使用svac2_cat1_prob概率表,见表91。

表91 svac2_cat1_prob

otr	binIdx
ctx	0
0	159

token等于6时,extra使用svac2_cat2_prob概率表,见表92。

表92 svac2_cat2_prob

at v	binI	dx	
ctx	0	1	
0	165	145	

token等于7时, extra使用svac2_cat3_prob概率表, 见表93。

表93 svac2_cat3_prob

o t v		binIdx	
ctx	0	1	2
0	173	148	140

token等于8时, extra使用svac2_cat4_prob概率表, 见表94。

表94 svac2_cat4_prob

o t v	binIdx						
ctx	0	1	2	3			
0	176	155	140	135			

token等于9时,extra使用svac2_cat5_prob概率表,见表95。

表95 svac2_cat5_prob

0.4.11	binIdx						
ctx	0	1	2	3	4		
0	180	157	141	134	130		

token等于10时,extra使用svac2_cat6_prob概率表,见表96。

表96 svac2_cat6_prob

o t v		binIdx												
ctx	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	254	254	254	252	249	243	230	196	177	153	140	133	130	129

下述语法元素使用固定概率值128进行解析: tx_mode, tx_mode_delta, coeff_update_prob_flag, not_single_ref, not_compound_ref, sao_merge_flag, sao_merge_type, sao_mode, sao_type, sao_start_band, sao_offset_abs, sao_offset_sign, sao_edge_type, sao_edge_offset[compIdx][0], sao_edge_offset[compIdx][1], sao_edge_offset[compIdx][2], sao_edge_offset[compIdx][3], coeff_sign, mpm_idx0, mpm_idx1, rem_pred_intra_mode, chroma_intra_mode.

5. 4. 2. 2. 2 概率表的更新

每帧图像的编码片开始解码前,会根据条件选择是否对语法元素的概率表进行更新。此部分分为两个部分: svac2_diff_update_prob部分和update_mv_probs部分,见5. 4. 2. 2. 2. 1和5. 4. 2. 2. 2. 2节。

5. 4. 2. 2. 1 svac2_diff_update_prob

svac2_diff_update_prob 部 分 用 以 更 新 tx_probs、switchable_interp_prob、newmv_prob、zeromv_prob、refmv_prob、comp_inter_prob、single_ref_prob、comp_ref_prob、coef_probs、skip_probs、alf_ctu_enable_prob、intra_inter_prob、partition_prob和abs_delta_q_prob的概率表。

- ——此过程的输入为原始的概率值prob。
- ——此过程的输出为更新后的概率值prob。

过程如下:

```
svac2_diff_update_prob(prob) {
    update_prob = ae(252)
    if(update_prob==1) {
        deltaProb = decode_term_subexp();
        prob = inv_remap_prob(deltaProb, prob);
    }
}
```

首先使用固定概率 252 通过 ae(v)解码出 1bit。若为 0 则无概率更新,采用默认初始化的概率值;若为 1 则表示概率做了更新,继续解码并计算出所采用的新的概率。

概率更新分为两步,第一步解码得到概率数组的索引deltaProb:

```
decode_term_subexp() {
```

```
bit= ae(128)
if (bit == 0) {
 sub_exp_val= u(4)
 return sub_exp_val
bit= ae(128)
if (bit = 0) {
 sub_exp_val_minus_16 = u(4)
 return (sub_exp_val_minus_16+ 16)
bit= ae(128)
if (bit == 0) {
 sub_exp_val_minus_32 = u(5)
 return (sub_exp_val_minus_32+ 32)
sub_exp_val = u(7)
if (sub_exp_val < 65) {
 return (sub_exp_val + 64)
bit= ae(128)
return (sub_exp_val << 1) - 1 + bit
```

第二步根据索引deltaProb,得到最终的概率:

```
inv_remap_prob(deltaProb, prob) {
    m = p
    v = delp
    v = inv_map_table[ v ]
    m--
    if ( (m << 1) <= 255 )
        m = 1 + inv_recenter_nonneg( v, m )
    else
        m = 255 - inv_recenter_nonneg( v, 255 - 1 - m )
    return m
}</pre>
```

inv_map_table的定义如下:

```
inv_map_table[254] =
            45, 58, 71, 84, 97, 110, 123, 136, 149, 162, 175, 188,
6, 19, 32,
201, 214, 227, 240, 253,
                                                             9, 10,
                        0,
                            1,
                                 2,
                                      3,
                                          4,
                                                    7,
11, 12,
        13, 14,
                      16, 17, 18,
                                    20,
                                        21,
                                             22,
                                                  23,
                                                      24, 25,
                                                                26,
                 15,
27, 28,
         29,
             30,
                 31,
                      33,
                                    36, 37, 38,
                                                 39,
                                                                42,
                           34,
                               35,
                                                      40,
                                                          41,
```

```
43,
   44,
         46,
              47,
                   48,
                        49,
                             50, 51, 52,
                                            53, 54,
                                                      55,
                                                           56,
                                                                57,
                                                                     59,
60, 61,
         62,
              63,
                   64,
                        65,
                             66,
                                  67,
                                       68,
                                            69,
                                                 70,
                                                      72, 73,
                                                                74, 75,
                                                                    91,
76, 77,
              79,
                   80,
                        81,
                                            86,
                                                 87,
                                                      88,
                                                           89,
                                                                90,
         78,
                             82,
                                  83,
                                       85,
                             99, 100, 101, 102, 103, 104, 105, 106, 107,
92, 93,
         94,
              95,
                   96,
                        98,
108, 109, 111, 112, 113,
                        114, 115, 116, 117, 118, 119, 120, 121, 122, 124,
125, 126, 127, 128, 129,
                        130, 131, 132, 133, 134, 135, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 148, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172,
173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 189,
190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 205,
206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221,
222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
238, 239, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252
};
```

inv_recenter_nonneg(v, m) 计算如下:

```
if ( v > 2 * m )
  return v

if ( v & 1 )
  return m - ((v + 1) >> 1)

return m + (v >> 1)
```

5. 4. 2. 2. 2. 2 update mv probs

update_mv_probs 部 分 用 以 更 新 mv_joint_probs 、 mv_sign_probs 、 mv_bits_probs 、 mv_class0_bit_probs、mv_class0_fr_probs、mv_class0_hp_probs、mv_fr_probs和mv hp probs的概率表。

- ——此过程的输入为原始的概率值prob。
- ——此过程的输出为更新后的概率值prob。

过程如下:

```
update_mv_probs(prob) {
  for(i=0;i < n;i++) {
    update_prob = ae(252)
    if(update_prob==1) {
      prob[i] = (u(7) << 1) | 1
    }
  }
}</pre>
```

n为概率表的元素个数。

首先使用固定概率 252 通过 ae(v)解码出 1bit。若为 0则无概率更新,采用默认初始化的概率值;若为 1则表示概率做了更新,继续解码并计算出所采用的新的概率。

5. 4. 2. 2. 3 初始化算术码解码器

range、count、value、buffer、buffer_end 为算术解码器的变量。range 的位宽为 8 比特,value 位宽为 32 比特。算术解码器的初始化用如下

```
buffer end = 码流地址 + 码流字节长度
   range = 255
   value = 0
   count = -8
第二步,执行算术解码器的重整化过程:
   buffer t = buffer
   buffer start = buffer
   value t = value
   count t = count
   1oop\ end = 0
   shift = 16 - count
   bytes_left = buffer_end - buffer
   bits left = bytes left \times 8
   x = shift + 8 - bits left
    if(x \ge 0)
       count t += 0x40000000
       loop\_end = x
   }
   if (x < 0 \mid | \text{ bits left}) {
       while (shift \geq= loop end) {
            count t += 8
            value t = *buffer t++ << shift
            shift = 8
       }
   buffer += buffer_t - buffer_start
```

第一步,变量初始化:

buffer = 码流地址

第三步,使用固定概率 128 通过 ae(v)解码 1bit,如等于 0,算术解码器初始化成功,否则算术解码器初始化失败。

5.4.2.3 二值化

各语法元素的二值化过程如下:

value = value_t
count = count t

hasRows 与 hasCols 均等于 1 时,语法元素 partition 的取值与二进制位串的对应关系见表 97 ,hasRows 等于 0 且 hasCols 等于 1 时,语法元素 partition 的取值与二进制位串的对应关系见表 98 ,hasRows 等于 1 且 hasCols 等于 0 时,语法元素 partition 的取值与二进制位串的对应关系见表 99 。

表97 hasRows 和 hasCols 均等于 1 时 partition 与二进制位串的关系

partition	二进制位串					
PARTITION_NONE	0					
PARTITION_HORZ	1	0				
PARTITION_VERT	1	1	0			
PARTITION_SPLIT	1	1	1			
binIdx	0	1	2			

表98 hasCols 等于 1 时 partition 与二进制位串的关系

partition	二进制位串
PARTITION_HORZ=1	1
PARTITION_SPLIT=3	0
binIdx	0

表99 hasRows 等于 1 时 partition 与二进制位串的关系

partition	二进制位串
PARTITION_VERT=2	1
PARTITION_SPLIT=3	0
binIdx	0

语法元素 segment_id 的值与二进制位串的关系见表 100 。

表100 segment_id 与二进制位串的关系

segment_id	二进制位串				
0	0 0 0				
1	0	0	1		
2	0	1	0		
3	0	1	1		
4	1	0	0		
5	1	0	1		
6	1	1	0		
7	1	1	1		
binIdx	0	1	2		

seg_id_predicted 与二进制位串的关系见表 101 。

表101 seg_id_predicted 与二进制位串的关系

seg_id_predicted 取值	二进制位串
0	0
1	1

语法元素 tx_size 的值与二进制位串的关系见表 102 。

表102 变换块大小语法元素与二进制位串的关系

tx_size	二进制位串			
TX_4×4	0			
TX_8×8	1	0		
TX_16×16	1	1	0	
TX_32×32	1	1	1	
binIdx	0	1	2	

skip_flag与二进制位串的关系见表103。

表103 skip_flag 与二进制位串的关系

skip_flag 取值	二进制位串	
0	0	
1	1	
binIdx	0	

inter_block与二进制位串的关系见表104。

表104 inter_block 与二进制位串的关系

inter_block 取值	二进制位串	
0	0	
1	1	
binIdx	0	

prev_intra_luma_pred_flag与二进制位串的关系见表105。

表105 prev_intra_luma_pred_flag 与二进制位串的关系

prev_intra_luma_pred_flag 取值	二进制位串	
0	0	
1	1	
binIdx	0	

uv_fllow_y_flag 与二进制位串的关系见表 106 。

表106 uv_fllow_y_flag 与二进制位串的关系

uv_fllow_y_flag 取值	二进制位串
0	0

1	1
binIdx	0

帧间参考帧模式REFERENCE_MODE语法元素与二进制位串的关系见表107。

表107 block_reference_mode 与二进制位串的关系

block_reference_mode	二进制位串			
SINGLE_REFERENCE = 0	0			
COMPOUND_REFERENCE = 1	1	0		
REFERENCE_MODE_SELECT = 2	1	1		
binIdx	0	1		

ref_frame值与二进制位串的关系见表108 和表109 。

如果block_reference_mode 等于SINGLE_REFERENCE,那么参考帧类型ref_frame二值化见表108 ; 如果block_reference_mode 等于COMPOUND_REFERENCE,那么参考帧类型ref_frame二值化见表109 。

表108 SINGLE_REFERENCE 模式下 ref_frame 与二进制位串的关系

ref_per_frame	ref_frame		二进制位串			
2	DYNAMIC_REF	0				
	STATIC_REF	1				
3	DYNAMIC_REF	0				
	STATIC_REF	1	0			
	OPTIONAL_REF	1	1			
4	DYNAMIC_REF	0				
	STATIC_REF	1	0			
	OPTIONAL_REF	1	1	0		
	DYNAMIC_REF_1	1	1	1		
5	DYNAMIC_REF	0				
	STATIC_REF	1	0			
	OPTIONAL_REF	1	1	0		
	DYNAMIC_REF_1	1	1	1	0	
	DYNAMIC_REF_2	1	1	1	1	
	binIdx	0	1	2	3	

表109 COMPOUND_REFERENCE 模式下 ref_frame 与二进制位串的关系

ref_per_frame	ref_frame	二进制位串		
3	DYNAMIC_REF	0		
	STATIC_REF	1		
4	DYNAMIC_REF	0		
	STATIC_REF	1	0	

	DYNAMIC_REF_1	1	1	
5	DYNAMIC_REF	0		
	STATIC_REF	1	0	
	DYNAMIC_REF_1	1	1	0
	DYNAMIC_REF_2	1	1	1
binIdx		0	1	2

mv_mode 的值与二进制位串的关系见表 110 。

表110 mv_mode 与二进制位串的关系

mv_mode	二进制位串			
NEARESTMV	1	1	0	
NEARMV	1	1	1	
ZEROMV	1	0		
NEWMV	0			
binIdx	0	1	2	

interp_filter_mode 的值与二进制位串的关系见表 111 。

表111 interp_filter_mode 与二进制位串的关系

interp_filter_mode	二进制位串			
0 (Regular)	0			
1 (Smooth-1)	1	0		
2 (Sharp)	1	1		
3 (Smooth-2)	1	1	1	
binIdx	0	1	2	

编码块尺寸小于 8×8 或 $is_{compound}$ 等于 1 时, mv_{joint} 的值与二进制位串的关系见表 112 。

表112 mv_joint 与二进制位串的关系-1

mv_joint	二进制位串		
MV_JOINT_HNZVNZ = 0	0		
Both components nonzero	U		
MV_JOINT_HNZVZ = 1,	1	0	
Vert zero, hor nonzero	1	U	
MV_JOINT_HZVNZ = 2,	1	1	0
Hor zero, vert nonzero	1	1	U
MV_JOINT_ZERO = 3	1	1	1
Zero vector	1	1	1
binIdx	0	1	2

如果编码块尺寸不小于 8×8 且 is_compound 等于 0 时, mv_j oint 的值与二进制位串的关系见表 113 。

表113 mv_joint 与二进制位串的关系-2

mv_joint	二进制位串		
MV_JOINT_HNZVNZ = 0	0		
Both components nonzero	U		
MV_JOINT_HNZVZ = 1,	1	0	
Vert zero, hor nonzero	1	U	
MV_JOINT_HZVNZ = 2,	1	1	
Hor zero, vert nonzero	1	1	
binIdx	0	1	

mvd_sign_0 和 mvd_sign_1 与二进制位串的关系见表 114 。

表114 mvd_sign_0 和 mvd_sign_1 与二进制位串的关系

mvd_sign_0	mvd_sign_1	二进制位串
0	0	0
1	1	1
b	0	

mvd_value_0 和 mvd_value_1 的二值化,使用 ae(v)解析非零部分的整数样点部分所对应的 mv_class, 其取值与二进制位串的关系见表 115 。

表115 mv_class 与二进制位串的关系

mv_class				二进制位串			
$MV_CLASS_0 = 0$	0						
MV_CLASS_1 = 1	1	0					
MV_CLASS_2 = 2	1	1	0	0			
MV_CLASS_3 = 3	1	1	0	1			
MV_CLASS_4 = 4	1	1	1	0	0		
MV_CLASS_5 = 5	1	1	1	0	1		
MV_CLASS_6 = 6	1	1	1	1	0		
MV_CLASS_7 = 7	1	1	1	1	1	0	0
MV_CLASS_8 = 8	1	1	1	1	1	0	1
MV_CLASS_9 = 9	1	1	1	1	1	1	0
MV_CLASS_10 = 10	1	1	1	1	1	1	1
binIdx	0	1	2	3	4	5	6

而后根据 mv_c lass 的值进行 ae(v) 解析其整数样点位置偏移 d,d 二值化后的二进制串的长度见表 116 ,取值为 d 的二进制补码值,高位在前。

表116 d的解码长度与 mv_class 的关系

mv_class	d 的解码长度
$MV_CLASS_0 = 0$	1
MV_CLASS_1 = 1	1
$MV_CLASS_2 = 2$	2
$MV_CLASS_3 = 3$	3
$MV_CLASS_4 = 4$	4
MV_CLASS_5 = 5	5
$MV_CLASS_6 = 6$	6
$MV_CLASS_7 = 7$	7
MV_CLASS_8 = 8	8
MV_CLASS_9 = 9	9
MV_CLASS_10 = 10	10

最后 ae(v)解析非零部分的分数样点的位置偏移 fr, fr 的值与二进制位串的关系见表 117。

表117 fr 与二进制位串的关系

fr	二进制位串			
0	0			
1	1	0		
2	1	1	0	
3	1	1	1	
binIdx	0	1	2	

hp 与二进制位串的关系见表 118。

表118 hp 与二进制位串的关系

usehp	hp	二进制位串
0	1	无
0	1	无
1	0	0
1	1	1

usehp等于1表示MV使用高精度部分。

由 ae(v)解析出的 mv_class 计算 MV 偏移的基准:

 $mv_class_base = mv_class ? 2 << (mv_class + 2) : 0$

由 ae(v)解析出的 d 和 fr 计算 MV 在基准上的偏移, 其中 hp 高精度部分, 默认为 1:

offset = $(d << 3) \mid (fr << 1) \mid hp$

mvd_value_0 或 mvd_value_1 的值即等于(mv_class_base+offset+1)。

 dqp_abs 与二进制位串的关系见表 119。当 dqp_abs 大于 7 时, dqp_abs 减 7 后的部分用 0 阶指数 哥伦布码。

表119 dqp_abs 与二进制位串的关系

dqp_abs		二进制位串					
0	0						
1	1	0					
2	1	1	0				
3	1	1	1	0			
4	1	1	1	1	0		
5	1	1	1	1	1	0	
6	1	1	1	1	1	1	0
7	1	1	1	1	1	1	1
binIdx	0	1	2	3	4	5	6

dqp sign 与二进制位串的关系见表 120。

表120 dqp_sign与二进制位串的关系

dqp_sign	二进制位串
0	0
1	1
binIdx	0

alf_ctu_enable 与二进制位串的关系见表 121。

表121 alf_ctu_enable 与二进制位串的关系

alf_ctu_enable	二进制位串	
0	0	
1	1	
binIdx	0	

块系数 coeff_value 的二值化,包括 token 和 extra 两个部分。当 coeff_value 等于 EOB 或者小于 5 时,coeff_value 等于 token。当 coffe_value 大于 5 时,对应关系如下:

coeff_value=3+2^ (token-4) +extra

连续 N (N>=0) 个等于 0 的系数与一个非零系数可以用一组 token 和 extra 表示。

token 的第一个二进制位为 EOB 指示位,如果该位为 0,表示对应的 token 为 EOB,见表 122 。EOB解析使用 binIdx 等于 0 的 coef_probs 概率表。

EOB 指示位后为 0 系数指示位,长度为 N,对应的 token 等于 0,见表 123 。判断 token 是否为 0 的解析,使用 binIdx 等于 1 的 coef_probs 概率表。

表122 EOB 与二进制位串的关系

token	token EOB 指示二进制位
EOB	0
非EOB	1
binIdx	0

表123 0系数指示位与二进制位串的关系

token	token 0 系数指示二进制位
0	0
非0	1
binIdx	0

token 与二进制位串的对应关系见表 124 ,其中, binIdx 等于 0 的位为 0 系数指示位。解析 binIdx 等于 1 的位使用 binIdx 等于 2 的 coef_probs 概率表, 之后的位解析使用 svac2_pareto8_full 概率表。

token	二进制位串					
0	0					
1	1	0				
2	1	1	0	0		
3	1	1	0	1	0	
4	1	1	0	1	1	
5	1	1	1	0	0	
6	1	1	1	0	1	
7	1	1	1	1	0	0
8	1	1	1	1	0	1
9	1	1	1	1	1	0
10	1	1	1	1	1	1
binIdx	0	1	2	3	4	5

表124 token 与二进制位串的关系

extra 二值化的位串长度与 token 取值的对应关系见表 125 ,取值为 extra 的二进制补码值,高位在前。

Token	extra 二进制位串长度
0	无
1	无
2	无
3	无
4	无
5	1
6	2
7	3
8	4
9	5
10	14

表125 extra 二值化的位串长度与 token 的对应关系

tx_mode_delta, coeff_update_prob_flag, not_single_ref, not_compound_ref, sao_merge_flag, sao_merge_type, sao_mode, sao_type, sao_offset_sign, coeff_sign, mpm_idx0,

rem_pred_intra_mode, sao_edge_offset[compIdx][1], sao_edge_offset[compIdx][2]的取值等于0时,二进制位串为'0';等于1时,二进制位串为'1'。

tx_mode, sao_edge_type, mpm_idx1, chroma_intra_mode的二进制位串的长度为2, 取值为语法元素值的二进制补码值, 高位在前。

sao_offset_abs的二进制位串的长度为3,取值为语法元素值的二进制补码值,高位在前。sao start band的二进制位串的长度为5,取值为语法元素值的二进制补码值,高位在前。

sao_edge_offset[compIdx][0], sao_edge_offset[compIdx][3]的二进制位串等于其值对应的0阶 无符号指数哥伦布码。

5. 4. 2. 4 二进制位串解析

5.4.2.4.1 概述

本过程的输入是 5. 4. 2. 2 节的初始化 ctx 索引所对应的概率状态以及算术解码引擎中的内部状态变量。

本过程的输出是二进制码值。

5.4.2.4.2 相关术语和定义

block size	编码块的尺寸	
AvailU	为1,上边块可用;为0,上边块不可用。	
AvailL	为1,左边块可用;为0,左边块不可用。	
AboveIntra	为 1,上边块为 Intra; 为 0,上边块非 Intra。	
LeftIntra	为 1,左边块为 Intra; 为 0,左边块非 Intra。	
AboveSegIdPredicted	上边块的 seg_id_predicted	
LeftSegIdPredicted	左边块的 seg_id_predicted	
AboveSkip	为 1,上边块为 skip; 为 0,上边块非 skip。	
LeftSkip	为 1, 左边块为 skip; 为 0, 左边块非 skip。	
maxTxSize	最大变换尺寸	
AboveTxSize	上边块的变换尺寸	
LeftTxSize	左边块的变换尺寸	
idy	子块的纵向坐标	
idx	子块的横向坐标	
AbovePredMode	上块的预测模式	
LeftPredMode	左块的预测模式	
为 1,上块为 single reference 模式; 为 0,上边块为 compound reference 模式		
LeftSingle	为 0, 左块为 compound reference 模式;	
CompFixedRef	参考帧预测时根据上下文得到的参考帧类型	
single reference 模式下,对于 binIdx 等于 3 和 4 的情况,值分别为 OPTIC		
CurSelectRef	DYANMIC_REF_1	
AboveInter	为 1, 上边块为 inter; 为 0, 上边块非 inter。	

LeftInter	为1,左边块为inter;为0,左边块非inter。
AboveInterpFilter	上边块的 interp_filter_mode
LeftInterpFilter	左边块的 interp_filter_mode
tx_size	变换块尺寸
С	coefs 系数的计数值
plane	0表示亮度,1表示色度
is_plane_y	为1表示为亮度;为0表示色度。
tx_type	变换类型
AboveAlfEnable	为1,上块自适应滤波有效;为0,则无效。
LeftAlfEnable	为 0, 左块自适应滤波有效; 为 0, 则无效。
above_seg_context[]	上行块的 ctx
left_seg_context[]	左列块的 ctx
AboveMode[]	上块的预测模式
LeftMode[]	左块的预测模式
CurMode[]	当前块的预测模式
AboveRefFrame[]	上块的参考帧
LeftRefFrame[]	左块的参考帧
mode_context[]	参考帧模式的上下文索引
CurRefFrame[]	当前块的参考帧
AboveNonzeroContext[]	上行的非零系数上下文索引
LeftNonzeroContext[]	左列的非零系数上下文索引

5. 4. 2. 4. 3 treeIdx 的计算过程

一些语法元素在查找概率表时,需要使用 treeIdx 和对应数组计算出对应的 binIdx。

这些语法元素包括: partition、segment_id、mv_joint、mvd_value_0 和 mvd_value_1、interp_filter_mode、dqp_abs及token。

partition:

在 hasRows 和 hasCols 均等于 1 时,使用以下数组,计算 binIdx 所对应的 treeIdx。

```
partition_tree[ 6 ] = {
    -0, 2,
    -1, 4,
    -2, -3
}
```

segment_id: 使用 segment_tree:

```
segment_tree[ 14 ] = {
  2, 4, 6, 8, 10, 12,
  0, -1, -2, -3, -4, -5, -6, -7
}
```

interp_filter_mode: 使用 interp_filter_tree:

```
interp_filter_tree[ 6 ] = {
    -0, 2,
    4, -2,
    -1, -3
}
```

mv_joint: 树的选择依赖于 is_compound:

- ——如果 is_compound 等于 1,选择 mv_joint_tree。
- ——否则如果 is_compound 等于 0, 选择 mv_joint_tree2。

```
mv_joint_tree[6] = {
    -0, 2,
    -1, 4,
    -2, -3
};
```

```
mv_joint_tree2[4] = {
    -0, 2,
    -1, -2
};
```

mvd_value_0 和 mvd_value_1 主要有 mv_class、mv_class0_fp 和 mv_fp 需要通过 treeIdx 计算 binIdx。

mv_class: 使用 mv_class_tree:

```
mv_class_tree[20] = {
    -0, 2,
    -1, 4,
    6, 8,
    -2, -3,
    10, 12,
    -4, -5,
    -6, 14,
    16, 18,
    -7, -8,
    -9, -10,
};
```

mv_class0_fp 和 mv_fp: 均使用 mv_fp_tree:

```
mv_fp_tree[ 6 ] = {
    -0, 2,
    -1, 4,
    -2, -3
}
```

token:

在使用 svac2_pareto8_ful1[ctx][treeIdx]概率表计算时, 需要使用 coeff_subtree_high:

<pre>coeff_subtree_high[16] = {</pre>	
2, 6,	/* 0 = LOW_VAL */
-2, 4,	/* 1 = TWO */
-3, -4,	/* 2 = THREE */
8, 10,	/* 3 = HIGH_LOW */

-5, -6,	/* 4 = CAT_ONE */
12, 14,	/* 5 = CAT_THREEFOUR */
-7, -8,	$/*$ 6 = CAT_THREE */
-9, -10	$/*$ 7 = CAT_FIVE */
}	

上述变量解析时, treeIdx 通过如下计算得到:

设T为整型数组组成的树,P为变量所对应的概率表。初始令treeIdx等于0,n等于0。

以treeIdx索引获得的概率按照5.4.2.4.5 解析出一个二进制位B。如果语法元素解析完成,则本过程结束,否则令n等于 T[n + B], treeIdx等于n>>1,继续获取下一个二进制位的概率进行解析。

5. 4. 2. 4. 4 概率选择过程

此过程的输入为语法元素的 binIdx 及 treeIdx,输出为解析该语法元素二进制位所用的概率值 prob。

以下为各个语法元素的概率计算:

alf ctu enable:

概率等于 alf_ctu_enable_prob[ctx], 其中 ctx 的计算如下:

```
if(AvailL && AvailU)
  ctx = AboveAlfEnable && LeftAlfEnable ? 3: AboveAlfEnable || LeftAlfEnable
else if(Avail | AvailU)
  ctx = 2*(AvailL ? LeftAlfEnable : AboveAlfEnable)
else
  ctx = 1
```

partition:

如果 frame_type 等于 0,概率值等于 intra_partition_probs[ctx][treeIdx]; 否则,概率值等于 inter partition probs[ctx][treeIdx]。

在hasRows和hasCols均等于1的情况下,索引二进制位对应的概率的treeIdx的计算见5.4.2.4.3节; 当hasCols等于1且hasRows等于0时,treeIdx等于1;当hasRows等于1且hasCols等于0时,treeIdx等于2。 索引 ctx 的值根据如下方式计算得到:

```
above = 0
left = 0
bsl = mi_width_log2_lookup[bsize]
bs = 1 << bsl
for (i = 0; i < bs; i++) {
    above |= above_seg_context [i]
    left |= left_seg_context [i]
}
above = (above & bs) > 0
left = (left & bs) > 0
ctx = (left * 2 + above) + bsl * 4
```

```
mi_width_log2_lookup[BLOCK_SIZES] =
```

 $\{0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4\};$

segment_id:

概率等于 seg_tree_probs[treeIdx], 其中 treeIdx 的计算见 5.4.2.4.3 节。

seg_id_predicted:

概率等于 seg_pred_probs[ctx], 其中 ctx 的计算如下:

ctx = 0 if(AvailU)

ctx += AboveSegIdPredicted

if(AvailL)

ctx += LeftSegIdPredicted

skip_flag:

概率等于 skip_prob[ctx], 其中 ctx 的计算如下:

ctx = 0

if(AvailU)

ctx += AboveSkip

if(AvailL)

ctx += LeftSkip

inter block:

概率等于 intra_inter_prob[ctx], 其中 ctx 的计算如下:

if(AvailU && AvailL)

ctx = (LeftIntra && AboveIntra) ? 3 : LeftIntra || AboveIntra

else if (AvailU || AvailL)

ctx = 2 * (AvailU ? AboveIntra : LeftIntra)

else

ctx = 0

tx_size:

概率值等于 tx_probs[MAX_TX_SIZE][ctx][binIdx]得到,其中 ctx 的计算如下:

above = maxTxSize

left = maxTxSize

if (AvailU && !AboveSkip)

above = AboveTxSize

if (AvailL && !LeftSkip)

left = LeftTxSize

if (!AvailL)

left = above

if (!AvailU)

above = left

ctx = (above+left) > maxTxSize

maxTxSize 由编码树划分的预测块尺寸决定,见表 126。

表126 maxTxSize 与预测块尺寸的关系

maxTxSize	partitiond block size
TX_4×4	BLOCK_4×4
TX_4×4	BLOCK_4×8
TX_4×4	BLOCK_8×4
TX_8×8	BLOCK_8×8
TX_8×8	BLOCK_8×16
TX_8×8	BLOCK_16×8
TX_16×16	BLOCK_16×16
TX_16×16	BLOCK_16×32
TX_16×16	BLOCK_32×16
TX_32×32	BLOCK_32×32
TX_32×32	BLOCK_32×64
TX_32×32	BLOCK_64×32
TX_32×32	BLOCK_64×64
TX_32×32	BL0CK_64×128
TX_32×32	BL0CK_128×64
TX_32×32	BL0CK_128×128

prev_intra_luma_pred_flag:

概率等于 mpm_flag_probs[ctx], 其中 ctx 的计算如下:

```
if(AbovePredMode == LeftPredMode) {
  if (LeftPredMode > 2)
    ctx = 0
  else
    ctx = 1
} else {
  {\tt mode0} = {\tt LeftPredMode} > {\tt AbovePredMode} : {\tt LeftPredMode}
  mode1 = LeftPredMode > AbovePredMode ? LeftPredMode : AbovePredMode
  if (mode0 > 2) {
    \texttt{if}\,(\texttt{mode1} \;\; \texttt{-} \;\; \texttt{mode0} \;\; \langle \;\; 4)
      ctx = 2
    else if(mode1 - mode0 < 12)
      ctx = 3
    else
      ctx = 4
  }else {
    if(mode1 == 3)
      ctx = 5
    else
      ctx = 6
```

uv_fllow_y_flag:

概率固定为175。

block_reference_mode:

概率等于 comp_inter_prob[ctx], 其中 ctx 的计算如下:

```
if ( AvailU && AvailL ) {
 if ( AboveSingle && LeftSingle )
   ctx = (AboveRefFrame[ 0 ] == CompFixedRef) ^ (LeftRefFrame[ 0 ] == CompFixedRef)
  else if ( AboveSingle )
   ctx = 2 + (AboveRefFrame[ 0 ] == CompFixedRef || AboveIntra)
  else if ( LeftSingle )
   ctx = 2 + (LeftRefFrame[ 0 ] == CompFixedRef | LeftIntra)
  else
   ctx = 4
} else if ( AvailU ) {
  if (AboveSingle)
   ctx = AboveRefFrame[ 0 ] == CompFixedRef
 else
   ctx = 3
} else if ( AvailL ) {
  if (LeftSingle)
   ctx= LeftRefFrame[ 0 ] == CompFixedRef
 else
   ctx = 3
} else {
  ctx = 1
```

ref_frame

根据 block_reference_mode 分为 compound reference 模式和 single reference 模式。 compound reference 模式一共有 3 个 binIdx 的 ctxIdx 要计算; single reference 模式一共有 4 个 binIdx 的 ctxIdx 要计算。

compound reference 模式下 binIdx 等于 0 的情况:

概率等于 comp ref prob[ctx][0], ctx 的计算如下:

```
VarRefIdx = 0
if (AvailU && AvailL ) {
  if (AboveIntra && LeftIntra ) {
    ctx = 2
  } else if (LeftIntra ) {
    if (AboveSingle )
    ctx = 1 + 2 * ((AboveRefFrame[ 0 ] == STATIC_REF) ||
        (AboveRefFrame[ 0 ] == DYNAMIC_REF_1) || (AboveRefFrame[ 0 ] == DYNAMIC_REF_2))
    else
```

```
ctx = 1 + 2 * ((AboveRefFrame[ VarRefIdx ] == STATIC_REF) | |
            (AboveRefFrame[ VarRefIdx ] == DYNAMIC REF 1) |
            (AboveRefFrame[ VarRefIdx ] == DYNAMIC_REF_2))
 } else if ( AboveIntra ) {
   if (LeftSingle)
      ctx = 1 + 2 * ((LeftRefFrame[ 0 ] == STATIC REF) ||
        (LeftRefFrame[ 0 ] == DYNAMIC_REF_1) || (LeftRefFrame[ 0 ] == DYNAMIC_REF_2))
   else
     ctx = 1 + 2 * ((LeftRefFrame[ VarRefIdx ] == STATIC REF) |
            (LeftRefFrame[ VarRefIdx ] == DYNAMIC_REF_1) |
            (LeftRefFrame[ VarRefIdx ] == DYNAMIC_REF_2))
  } else {
    vrfa = AboveSingle ? AboveRefFrame[ 0 ] : AboveRefFrame[ VarRefIdx ]
   vrfl = LeftSingle ? LeftRefFrame[ 0 ] : LeftRefFrame[ VarRefIdx ]
   if (vrfa == vrfl && ((vrfa == STATIC_REF) || (vrfa == DYNAMIC_REF_1) || (vrfa == DYNAMIC_REF_2)) ) {
     ctx = 0
   } else if (LeftSingle && AboveSingle ) {
      if ( (vrfa == OPTIONAL_REF && vrfl == DYNAMIC_REF ||
          (vrf1 == OPTIONAL_REF && vrfa == DYNAMIC_REF )
       ctx = 4
      else if ( vrfa == vrfl || (vrfl == DYNAMIC_REF && vrfa == DYNAMIC_REF))
       ctx = 3
      else
      ctx = 1
   } else if (LeftSingle | AboveSingle ) {
     vrfc = LeftSingle ? vrfa : vrfl
     rfs = AboveSingle ? vrfa : vrfl
      if (((vrfc == STATIC_REF) || (vrfc == DYNAMIC_REF_1) || (vrfc == DYNAMIC_REF_2)) && ! ((vrfs ==
STATIC REF) || (vrfs == DYNAMIC REF 1) || (vrfs == DYNAMIC REF 2)) )
       ctx = 1
      else if (((rfs == STATIC REF) || (rfs == DYNAMIC REF 1) || (rfs == DYNAMIC REF 2)) && ! ((vrfc ==
STATIC_REF) || (vrfc == DYNAMIC_REF_1) || (vrfc == DYNAMIC_REF_2)) )
       ctx = 2
      else
   } else if (((vrfa == STATIC_REF) || (vrfa == DYNAMIC_REF_1) || (vrfa == DYNAMIC_REF_2)) && ((vrf1 ==
STATIC_REF) || (vrf1 == DYNAMIC_REF_1) || (vrf1 == DYNAMIC_REF_2))) {
     ctx = 4
   } else {
     ctx = 2
```

```
} else if ( AvailU ) {
 if (AboveIntra) {
   ctx = 2
 } else {
   if (AboveSingle)
   ctx = 3 * (!((AboveRefFrame[ 0 ] == STATIC_REF) || (AboveRefFrame[ 0 ] == DYNAMIC_REF_1) ||
(AboveRefFrame[ 0 ] == DYNAMIC REF 2)))
   else
     ctx = 4 * (!((AboveRefFrame[ VarRefIdx ] == STATIC_REF) || (AboveRefFrame[ VarRefIdx ] ==
DYNAMIC_REF_1) || (AboveRefFrame[ VarRefIdx ] == DYNAMIC_REF_2)))
} else if ( AvailL ) {
 if (LeftIntra ) {
  ctx = 2
 } else {
   if (LeftSingle)
     ctx = 3 * (!((LeftRefFrame[ 0 ] == STATIC_REF) || (LeftRefFrame[ 0 ] == DYNAMIC_REF_1) ||
(LeftRefFrame[ 0 ] == DYNAMIC_REF_2)))
   else
   ctx = 4 * (!((LeftRefFrame[ VarRefIdx ] == STATIC_REF) || (LeftRefFrame[ VarRefIdx ] ==
DYNAMIC_REF_1) | (LeftRefFrame[ VarRefIdx ] == DYNAMIC_REF_2)))
} else {
  ctx = 2
```

compound reference 模式下 binIdx 等于 1 的情况:

概率等于 comp_ref_prob[ctx][1], ctx 的计算如下:

```
VarRefIdx = 0
if ( AvailU && AvailL ) {
  if ( AboveIntra && LeftIntra ) {
    ctx = 2
  } else if ( LeftIntra ) {
    if ( AboveSingle )
    ctx = 1 + 2 * (AboveRefFrame[ 0 ] == STATIC_REF)
    else
    ctx = 1 + 2 * (AboveRefFrame[ VarRefIdx ] == STATIC_REF)
} else if ( AboveIntra ) {
    if ( LeftSingle )
    ctx = 1 + 2 * (LeftRefFrame[ 0 ] == STATIC_REF)
    else
```

```
ctx = 1 + 2 * (LeftRefFrame[ VarRefIdx ] == STATIC_REF)
} else {
 vrfa = AboveSingle ? AboveRefFrame[ 0 ] : AboveRefFrame[ VarRefIdx ]
 vrfl = LeftSingle ? LeftRefFrame[ 0 ] : LeftRefFrame[ VarRefIdx ]
 if ( vrfa == vrf1 && STATIC_REF == vrfa ) {
   ctx = 0
 } else if ( LeftSingle && AboveSingle ) {
   if ( (vrfa == STATIC_REF && vrfl == STATIC_REF) )
    ctx = 4
   else if ( vrfa == STATIC_REF | vrfl == STATIC_REF )
    else if (vrfa == DYNAMIC_REF || vrfl == DYNAMIC_REF)
     ctx = 1 + (vrfa == vrf1)
    else
     ctx = 1
 } else if ( LeftSingle || AboveSingle ) {
   vrfc = LeftSingle ? vrfa : vrfl
   rfs = AboveSingle ? vrfa : vrfl
   if ( vrfc == STATIC_REF && rfs == STATIC_REF )
     ctx = 4
    else if ( vrfc == STATIC_REF && rfs != STATIC_REF )
    else if ( vrfc != STATIC_REF && rfs == STATIC_REF )
    ctx = 2 + (!vrfc == DYNAMIC_REF)
     if (vrfc == DYNAMIC_REF || rfs == DYNAMIC_REF)
      ctx = 2
     else
       ctx = 1
 } else {
   if (vrfa == STATIC_REF && vrf1 == STATIC_REF)
    else if (vrfa == STATIC_REF || vrfl == STATIC_REF)
     ctx = 3
    else if (vrfa != STATIC_REF && vrfl != STATIC_REF)
    else
     ctx = 2
```

```
} else if ( AvailU ) {
 if (AboveIntra) {
   ctx = 2
 } else {
   if ( !AboveSingle )
     ctx = 4 * (AboveRefFrame[ VarRefIdx ] != STATIC REF)
     if(AboveRefFrame[0] == STATIC_REF)
      ctx = 3
     else if(AboveRefFrame[0] == DYNAMIC_REF)
      ctx = 2
     else
       ctx = 1
 }
} else if ( AvailL ) {
 if (LeftIntra ) {
   ctx = 2
 } else {
   if (! LeftSingle)
     ctx = 4 * (LeftRefFrame [ VarRefIdx ] != STATIC_REF)
   else {
     if(LeftRefFrame [0] == STATIC_REF)
      ctx = 3
     else if(LeftRefFrame [0] == DYNAMIC_REF)
      ctx = 2
     else
      ctx = 1
 }
} else {
 ctx = 2
```

compound reference 模式下 binIdx 等于 2 的情况:

概率等于 comp_ref_prob[ctx][2], ctx 的计算如下:

```
VarRefIdx = 0
if ( AvailU && AvailL ) {
  if ( AboveIntra && LeftIntra ) {
    ctx = 2
  } else if ( LeftIntra ) {
    if ( AboveSingle )
```

```
ctx = 1 + 2 * (AboveRefFrame[ 0 ] == DYNAMIC_REF_1)
   else
     ctx = 1 + 2 * (AboveRefFrame[ VarRefIdx ] == DYNAMIC_REF_1)
 } else if ( AboveIntra ) {
   if (LeftSingle)
     ctx = 1 + 2 * (LeftRefFrame[ 0 ] == DYNAMIC REF 1)
     ctx = 1 + 2 * (LeftRefFrame[ VarRefIdx ] == DYNAMIC_REF_1)
  } else {
   vrfa = AboveSingle ? AboveRefFrame[ 0 ] : AboveRefFrame[ VarRefIdx ]
   vrfl = LeftSingle ? LeftRefFrame[ 0 ] : LeftRefFrame[ VarRefIdx ]
   if ( vrfa == vrfl && DYNAMIC_REF_1 == vrfa ) {
     ctx = 0
   } else if ( LeftSingle && AboveSingle ) {
     if ( (vrfa == DYNAMIC_REF_1 && vrfl == DYNAMIC_REF_1) )
      ctx = 4
     else if ( vrfa == DYNAMIC_REF_1 || vrf1 == DYNAMIC_REF_1 )
     else if (((vrfa == DYNAMIC_REF) || (vrfa == STATIC_REF)) || ((vrf1 == DYNAMIC_REF) || (vrf1 ==
STATIC REF)))
       ctx = 1 + (vrfa == vrf1)
      else
       ctx = 1
   } else if ( LeftSingle | AboveSingle ) {
      vrfc = LeftSingle ? vrfa : vrfl
     rfs = AboveSingle ? vrfa : vrfl
      if ( vrfc == DYNAMIC_REF_1 && rfs == DYNAMIC_REF_1 )
      else if ( vrfc == DYNAMIC_REF_1 && rfs != DYNAMIC_REF_1 )
       ctx = 3
      else if ( vrfc != DYNAMIC REF 1 && rfs == DYNAMIC REF 1 )
       ctx = 2 + (!((vrfc == DYNAMIC_REF) | (vrfc == STATIC_REF)))
      else if(vrfc != DYNAMIC_REF_1 && rfs != DYNAMIC_REF_1) {
       if (((vrfc == DYNAMIC_REF) || (vrfc == STATIC_REF)) || ((rfs == DYNAMIC_REF) || (rfs == STATIC_REF)))
         ctx = 2
       else
         ctx = 1
     }
   } else {
      if (vrfa == DYNAMIC_REF_1 && vrf1 == DYNAMIC_REF_1)
       ctx = 4
```

```
else if (vrfa == DYNAMIC_REF_1 || vrf1 == DYNAMIC_REF_1)
      ctx = 3
     else if (vrfa != DYNAMIC_REF_1 && vrf1 != DYNAMIC_REF_1)
      ctx = 1
     else
       ctx = 2
  }
} else if ( AvailU ) {
 if ( AboveIntra ) {
   ctx = 2
 } else {
   if ( !AboveSingle )
    ctx = 4 * (AboveRefFrame[ VarRefIdx ] != DYNAMIC_REF_1)
   else {
     if(AboveRefFrame[0] == DYNAMIC_REF_1)
     else if(((AboveRefFrame[ 0 ] == DYNAMIC_REF) || (AboveRefFrame[ 0 ] == STATIC_REF)))
      ctx = 2
     else
       ctx = 1
  }
 }
} else if ( AvailL ) {
 if (LeftIntra ) {
  ctx = 2
 } else {
   if (! LeftSingle)
     ctx = 4 * (LeftRefFrame [ VarRefIdx ] != DYNAMIC_REF_1)
   else {
    if(LeftRefFrame [0] == DYNAMIC_REF_1)
     else if(((LeftRefFrame[ 0 ] == DYNAMIC_REF) || (LeftRefFrame[ 0 ] == STATIC_REF)))
      ctx = 2
     else
       ctx = 1
  }
 }
} else {
 ctx = 2
```

single reference 模式下 binIdx 等于 0 的情况:

概率等于 single_ref_prob[ctx][0], ctx 的计算如下:

```
if ( AvailU && AvailL ) {
 if ( AboveIntra && LeftIntra ) {
   ctx = 2
 } else if (LeftIntra ) {
   if (AboveSingle)
    ctx = 4 * (AboveRefFrame[ 0 ] == DYNAMIC_REF)
   else
    ctx = 1 + (AboveRefFrame[ 0 ] == DYNAMIC_REF || AboveRefFrame[ 1 ] == DYNAMIC_REF)
 } else if ( AboveIntra ) {
   if (LeftSingle)
     ctx = 4 * (LeftRefFrame[ 0 ] == DYNAMIC_REF)
     ctx = 1 + (LeftRefFrame[ 0 ] == DYNAMIC REF | LeftRefFrame[ 1 ] == DYNAMIC REF)
 } else {
   if ( !AboveSingle && !LeftSingle ) {
     ctx = 1 + (AboveRefFrame[ 0 ] == DYNAMIC_REF || AboveRefFrame[ 1 ] == DYNAMIC_REF ||
                LeftRefFrame[ 0 ] == DYNAMIC_REF | LeftRefFrame[ 1 ] == DYNAMIC_REF)
   } else if ( !AboveSingle || !LeftSingle ) {
     rfs = AboveSingle ? AboveRefFrame[ 0 ] : LeftRefFrame[ 0 ]
     crf1 = AboveSingle ? LeftRefFrame[ 0 ] : AboveRefFrame[ 0 ]
     crf2 = AboveSingle ? LeftRefFrame[ 1 ] : AboveRefFrame[ 1 ]
     if ( rfs == DYNAMIC_REF )
       ctx = 3 + (crf1 == DYNAMIC_REF | | crf2 == DYNAMIC_REF)
     else
       ctx = crf1 == DYNAMIC_REF | crf2 == DYNAMIC_REF
   } else {
     ctx = 2 * (AboveRefFrame[ 0 ] == DYNAMIC_REF) + 2 * (LeftRefFrame[ 0 ] == DYNAMIC_REF)
} else if ( AvailU ) {
 if ( AboveIntra ) {
   ctx = 2
 } else { // inter
   if (AboveSingle)
    ctx = 4 * (AboveRefFrame[ 0 ] == DYNAMIC_REF)
   else
     ctx = 1 + (AboveRefFrame[ 0 ] == DYNAMIC_REF | | AboveRefFrame[ 1 ] == DYNAMIC_REF)
 else if ( AvailL ) {
```

```
if ( LeftIntra ) {
    ctx = 2
} else {
    if ( LeftSingle )
      ctx = 4 * (LeftRefFrame[ 0 ] == DYNAMIC_REF)
    else
      ctx = 1 + (LeftRefFrame[ 0 ] == DYNAMIC_REF || LeftRefFrame[ 1 ] == DYNAMIC_REF)
} else {
    ctx = 2
}
```

single reference 模式下 binIdx 等于 1 的情况:

概率等于 single_ref_prob[ctx][1], ctx 的计算如下:

```
if ( AvailU && AvailL ) {
 if ( AboveIntra && LeftIntra ) {
   ctx=2
 } else if (LeftIntra ) {
   if (AboveSingle) {
     if ( AboveRefFrame[ 0 ] == DYNAMIC_REF )
       ctx=3
     else
       ctx= 4 * (AboveRefFrame[ 0 ] == STATIC_REF)
   } else {
      \mathtt{ctx=}\ 1\ +\ 2\ *\ (\texttt{AboveRefFrame}[0]\ ==\ \texttt{STATIC\_REF}\ |\ |\ \ \texttt{AboveRefFrame}[1]\ ==\ \texttt{STATIC\_REF})
 } else if ( AboveIntra ) {
   if (LeftSingle) {
     if ( LeftRefFrame[ 0 ] == DYNAMIC_REF )
       ctx=3
     else
       ctx= 4 * (LeftRefFrame[ 0 ] == STATIC_REF)
   } else {
      ctx= 1 + 2 * (LeftRefFrame[ 0 ] == STATIC_REF || LeftRefFrame[ 1 ] == STATIC_REF)
 } else {
   if ( !AboveSingle && !LeftSingle ) {
     if (AboveRefFrame[0] == LeftRefFrame[0] && AboveRefFrame[1] == LeftRefFrame[1])
       ctx= 3 * (AboveRefFrame[ 0 ] == STATIC_REF || AboveRefFrame[ 1 ] == STATIC_REF)
     else
       ctx=2
   } else if ( !AboveSingle || !LeftSingle ) {
```

```
rfs = AboveSingle ? AboveRefFrame[ 0 ] : LeftRefFrame[ 0 ]
     crf1 = AboveSingle ? LeftRefFrame[ 0 ] : AboveRefFrame[ 0 ]
      crf2 = AboveSingle ? LeftRefFrame[ 1 ] : AboveRefFrame[ 1 ]
      if ( rfs == STATIC REF )
       ctx= 3 + (crf1 == STATIC_REF || crf2 == STATIC_REF)
      else if ( rfs == OPTIONAL REF )
       ctx= crf1 == STATIC_REF || crf2 == STATIC_REF
      else
       ctx= 1 + 2 * (crf1 == STATIC_REF | | crf2 == STATIC_REF)
 } else {
   if ( AboveRefFrame[ 0 ] == DYNAMIC_REF && LeftRefFrame[ 0 ] == DYNAMIC_REF ) {
     ctx=3
   } else if ( AboveRefFrame[ 0 ] == DYNAMIC_REF ) {
     ctx= 4 * (LeftRefFrame[ 0 ] == STATIC_REF)
   } else if ( LeftRefFrame[ 0 ] == DYNAMIC_REF ) {
     ctx= 4 * (AboveRefFrame[ 0 ] == STATIC_REF)
   } else {
     ctx= 2 * (AboveRefFrame[0] == STATIC_REF) + 2 * (LeftRefFrame[0] == STATIC_REF)
} else if ( AvailU ) {
  if ( AboveIntra || (AboveRefFrame[ 0 ] == DYNAMIC_REF && AboveSingle) )
   ctx=2
 else if (AboveSingle)
   ctx= 4 * (AboveRefFrame[ 0 ] == STATIC_REF)
  else
   ctx= 3 * (AboveRefFrame[ 0 ] == STATIC_REF || AboveRefFrame[ 1 ] == STATIC_REF)
} else if ( AvailL ) {
  if (LeftIntra || (LeftRefFrame[ 0 ] == DYNAMIC_REF && LeftSingle) )
   ctx = 2
 else if (LeftSingle)
   ctx = 4 * (LeftRefFrame[ 0 ] == STATIC_REF)
 else
   ctx = 3 * (LeftRefFrame[ 0 ] == STATIC_REF | LeftRefFrame[ 1 ] == STATIC_REF)
} else {
  ctx = 2
```

single reference 模式下 binIdx 分别等于 2 和 3 的情况:

概率分别等于 single_ref_prob[ctx][2]和 single_ref_prob[ctx][3], ctx 的计算如下:

```
if(CurSelectRef == OPTIONAL_REF) {
```

```
is_opt_ref = 1
if ( AvailU && AvailL ) {
           if ( AboveIntra && LeftIntra ) {
                    ctx = 2
           } else if (LeftIntra) {
                    if ( AboveSingle ) {
                                if (AboveRefFrame[ 0 ] == CurSelectRef) {
                                       ctx = 4
                                   } else {
                                              if (is_opt_ref) {
                                                         if (AboveRefFrame[ 0 ] == DYANMIC_REF_1)
                                                          else
                                                             ctx = 3
                                              } else {
                                                           \hspace{0.1cm} 
                                                                   ctx = 0
                                                          else
                                                                  ctx = 2
                                   }
                      } else {
                                   ctx = 1 + 2 * (AboveRefFrame[ 0 ] == CurSelectRef || AboveRefFrame[ 1 ] == CurSelectRef)
          } else if (AboveIntra) {
                       if (LeftSingle) {
                                   if (LeftRefFrame[ 0 ] == CurSelectRef) {
                                              ctx = 4
                                 } else {
                                              if (is_opt_ref) {
                                                        if (LeftRefFrame[ 0 ] == DYANMIC_REF_1)
                                                                   ctx = 0
                                                          else
                                                              ctx = 3
                                                          if (LeftRefFrame[ 0 ] == DYANMIC_REF_2)
                                                            ctx = 0
                                                           else
                                                                   ctx = 2
```

```
} else {
   ctx = 1 + 2 * (LeftRefFrame[ 0 ] == CurSelectRef || LeftRefFrame[ 1 ] == CurSelectRef)
} else {
 if ( !AboveSingle && !LeftSingle ) {
   if(AboveRefFrame[ 0 ] == LeftRefFrame[ 0 ] && AboveRefFrame[ 1 ] == LeftRefFrame[ 1 ]){
     ctx = 3*(AboveRefFrame[ 0 ]== CurSelectRef || AboveRefFrame[ 1 ]== CurSelectRef ||
              LeftRefFrame[ 0 ] == CurSelectRef | LeftRefFrame[ 1 ] == CurSelectRef)
   } else {
     ctx = 2
 } else if( !AboveSingle || !LeftSingle ) {
   rfs = AboveSingle ? AboveRefFrame[ 0 ] : LeftRefFrame[ 0 ]
   crf1 = AboveSingle ? LeftRefFrame[ 0 ] : AboveRefFrame[ 0 ]
   crf2 = AboveSingle ? LeftRefFrame[ 1 ] : AboveRefFrame[ 1 ]
   if ( rfs == CurSelectRef )
     ctx = 3 + (crf1 == CurSelectRef | | crf2 == CurSelectRef)
   else {
     if (is_opt_ref)
       ctx = 2
     else {
       if (rfs == DYNAMIC_REF_2)
         ctx = 2 * (crf1 == CurSelectRef || crf2 == CurSelectRef)
       else
        ctx = 2
     }
 } else {
   if (is_opt_ref)
     ctx = 2 * (AboveRefFrame[ 0 ] == OPTIONAL_REF) + 2 * (LeftRefFrame[ 0 ] == OPTIONAL_REF)
     if (AboveRefFrame[ 0 ] == DYNAMIC_REF_1 && LeftRefFrame[ 0 ] == DYNAMIC_REF_1)
      ctx = 4
     else if (AboveRefFrame[ 0 ] == DYNAMIC_REF_1 && LeftRefFrame[ 0 ] != DYNAMIC_REF_1)
     else if (AboveRefFrame[ 0 ] != DYNAMIC_REF_1 && LeftRefFrame[ 0 ] == DYNAMIC_REF_1)
      ctx = 3
     else
       ctx = 2
```

```
}
} else if ( AvailU ) {
 if ( AboveIntra || (AboveRefFrame[ 0 ] != CurSelectRef && AboveSingle)) {
   ctx = 2
 } else if (AboveSingle) {
   ctx = 4 * (AboveRefFrame[ 0 ] == CurSelectRef)
 } else {
   if (is_opt_ref) {
     if( AboveRefFrame[ 0 ] == DYNAMIC_REF_1 || AboveRefFrame[ 1 ] == DYNAMIC_REF_1 )
      ctx = 1
     else
       ctx = 2
     if( AboveRefFrame[ 0 ] == DYNAMIC_REF_1 || AboveRefFrame[ 1 ] == DYNAMIC_REF_1 )
      ctx = 3
     else if( AboveRefFrame[ 0 ] == DYNAMIC_REF_2 || AboveRefFrame[ 1 ] == DYNAMIC_REF_2 )
       ctx = 1
     else
       ctx = 2
} else if ( AvailL ) {
 if (LeftIntra || (LeftRefFrame[ 0 ] != CurSelectRef && LeftSingle)) {
   ctx = 2
 } else if (LeftSingle) {
   ctx = 4 * (LeftRefFrame[ 0 ] == CurSelectRef)
 } else {
   if (is_opt_ref) {
     if(LeftRefFrame[ 0 ] == DYNAMIC_REF_1 || LeftRefFrame[ 1 ] == DYNAMIC_REF_1 )
       ctx = 1
     else
       ctx = 2
   } else {
     if(LeftRefFrame[ 0 ] == DYNAMIC_REF_1 || LeftRefFrame[ 1 ] == DYNAMIC_REF_1 )
     else if(LeftRefFrame[ 0 ] == DYNAMIC_REF_2 || LeftRefFrame[ 1 ] == DYNAMIC_REF_2 )
       ctx = 1
     else
       ctx = 2
```

```
}
} else {
  ctx = 2
}
```

mv_mode

解析 binIdx 等于 0 的二进制位时,概率等于 newmv mode prob[ctx], ctx 的计算如下:

```
mode_ctx = mode_context[CurRefFrame[0]]
if (ref_frame[1]>NONE)
mode_ctx &= (mode_context[CurRefFrame[1]] | 0x00FF)

if (block_size<BLOCK_8X8)
mode_ctx &= 0x00FF;
ctx = mode_ctx & ((1 << ZEROMV_OFFSET) - 1)</pre>
```

解析 binIdx 等于 1 的二进制位时,概率等于 zeromv_mode_prob[ctx], ctx 的计算如下:

```
mode_ctx = mode_context[CurRefFrame[0]]
if(ref_frame[1]>NONE)
mode_ctx &= (mode_context[CurRefFrame[1]] | 0x00FF)

if(block_size<BLOCK_8X8)
mode_ctx &= 0x00FF;
ctx = (mode_ctx >> ZEROMV_OFFSET) & ((1 << (REFMV_OFFSET - ZEROMV_OFFSET)) - 1)</pre>
```

解析 binIdx 等于 2 的二进制位时,概率等于 refmv mode prob[ctx], ctx 的计算如下:

```
mode_ctx = mode_context[CurRefFrame[0]]
if(ref_frame[1]>NONE)
mode_ctx &= (mode_context[CurRefFrame[1]] | 0x00FF)

if(block_size<BLOCK_8×8)
mode_ctx &= 0x00FF;
ctx = (mode_ctx >> REFMV_OFFSET) & ((1 << (8 - REFMV_OFFSET)) - 1)</pre>
```

mv_joint:

概率等于 mv_joint_probs[treeIdx], 其中 treeIdx 的计算过程见 5.4.2.4.3。

mvd_sign_0:

概率等于 mv_sign_probs[0]。

mvd sign 1:

概率等于 mv_sign_probs[1]。

 mvd_value_0 和 mvd_value_1 : 通过以下信息计算得到,分别对应 comp 为 0 和 1 的情况。

comp 用来索引以下概率表,为 0表示垂直坐标,为 1表示水平坐标。

使用的概率表包括 mv_bits_probs、mv_class_probs、mv_class0_fr_probs、mv_class0_hp_prob、mv_fr_probs 和 mv_hp_prob。

mv_class:

概率等于 mv class probs[comp] [treeIdx]。

d:

在 mv class 等于 0 时,概率通过 mv class 0 bit probs [comp] 得到;

在 mv_class 不等于 0 时,概率通过 mv_bits_probs[comp][bit_offset]得到。

fr:

在 mv_class 等于 0 时,概率通过 mv_class0_fr[comp][mv_class0_bit][treeIdx]得到; 在 mv_class 不等于 0 时,概率通过 mv_fr_probs[comp][treeIdx]得到。 treeIdx 的计算过程见 5.4.2.4.3。

hp:

在 mv_class 等于 0 时,概率通过 mv_class0_hp_prob[comp]得到; 在 mv_class 不等于 0 时,概率通过 mv_hp_prob[comp]得到。

interp_filter_mode:

概率等于 switchable_interp_prob[ctx][treeIdx], treeIdx 的计算过程见 5.4.2.4.3, ctx 的计算如下:

```
leftInterp = ( AvailL && LeftInter ) ? LeftInterpFilter : 3
aboveInterp = ( AvailU && AboveInter ) ? AboveInterpFilter : 3
if ( leftInterp == aboveInterp )
   ctx = leftInterp
else if ( leftInterp == 3 && aboveInterp != 3 )
   ctx = aboveInterp
else if ( leftInterp != 3 && aboveInterp == 3 )
   ctx = leftInterp
else
   ctx = 3
```

dqp_abs

概率等于 dqp abs prob[ctx][treeIdx], treeIdx 的计算过程见 5. 4. 2. 4. 3, ctx 的计算如下:

```
ctx = last_dqindex ! = 0
```

last_dqindex 为上一个解码出来的 dqp_abs。

coeff value:

coeff_value 通过 token 和 extra 计算得到。

亮度系数的 token 的概率根据 coef_probs[tx_size][0][inter_block][band][ctx][binIdx]或者 svac2_pareto8_full[ctx][treeIdx]确定。

band根据tx size查表获取:

```
if(tx_size == TX_4×4)
band = coefband_trans_4×4[c]
else
band = coefband_trans_8×8plus[c]
```

表127 coefband trans 4×4

```
coefband_trans_4×4[16] = {
    0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5,
}
```

表128 coefband_trans_8×8plus

```
coefband_trans_8×8plus[1024] ={
    0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
```

4,	4	, 4,	4,	4,	5,										
						IN	DEX-	+1	a11	va	lue	s a	re	fil	led as 5
		, 5,													
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
		, 5,													
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,
		, 5,													
		, 5,													
_	_	, 5,	_	_	_	_	_	_	_	_	_	_	_		
-		5,													•
		5,													
_	_	5,			_	_	_	_	_	_	_	_	_	_	_
_	_	, 5,				_	_	_	_	_	_	_	_	_	
		5,													
		5,													
5,	5	, 5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	5,	b,

ctx 通过如下计算得到:

```
if(c=0) {
  numpts = 1 << tx_size
  above = 0

left = 0

for(i=0;i<numpts;i++) {
  above |= AboveNonzeroContext[i]
  left |= LeftNonzeroContext[i]
  }
  ctx = above + left
} else {
  ctx = ( 1 + TokenCache[ nb[ MAX_NEIGHBORS * c + 0 ] ] + TokenCache[ nb[ MAX_NEIGHBORS * c + 1 ] ] ) >> 1
}
```

nb 通过如下计算查表得到:

```
if(inter_block || !is_plane_y) {
```

```
if(tx\_size == TX\_4 \times 4) {
    nb = default\_scan\_4 \times 4\_neighbors
 } else if(tx_size==TX_8\times8) {
    nb = default\_scan\_8 \times 8\_neighbors
 } else if(tx_size == TX_16 \times 16) {
    nb = default scan 16 \times 16 neighbors
 } else {
    nb = default\_scan\_32 \times 32\_neighbors
} else {
 if(tx\_size == TX\_4 \times 4) {
   if (tx_type == ADST_DCT) {
      nb = row_scan_4 \times 4_neighbors
   } else if(tx_type == DCT_ADST) {
      nb = col\_scan\_4 \times 4\_neighbors
    } else {
      nb = default\_scan\_4 \times 4\_neighbors
 } else if(tx_size==TX_8\times8) {
    if (tx\_type == ADST\_DCT) {
      nb = row_scan_8 \times 8_neighbors
    } else if(tx_type == DCT_ADST) {
      nb = col\_scan\_8 \times 8\_neighbors
    } else{
      nb = default\_scan\_8 \times 8\_neighbors
 } else if(tx_size == TX_16 \times 16) {
    if (tx\_type == ADST\_DCT) {
      nb = row_scan_16 \times 16_neighbors
   } else if(tx_type == DCT_ADST) {
      nb = col\_scan\_16 \times 16\_neighbors
    } else {
      nb = default_scan_16×16_neighbors
 } else {
    nb = default_scan_32 \times 32_neighbors
```

表129 default_scan_4×4_neighbors

```
default_scan_4×4_neighbors[17 * MAX_NEIGHBORS] =
```

表130 col_scan_4×4_neighbors

```
col_scan_4×4_neighbors[17 * MAX_NEIGHBORS] =
{
    0, 0, 0, 0, 4, 4, 0, 0, 8, 8, 1, 1, 5, 5, 1, 1, 9, 9, 2, 2, 6, 6, 2, 2, 3,
    3, 10, 10, 7, 7, 11, 11, 0, 0,
};
```

表131 row scan 4×4 neighbors

```
row_scan_4×4_neighbors[17 * MAX_NEIGHBORS] =
{

    0, 0, 0, 0, 0, 0, 1, 1, 4, 4, 2, 2, 5, 5, 4, 4, 8, 8, 6, 6, 8, 8, 9, 9, 12,
    12, 10, 10, 13, 13, 14, 14, 0, 0,
};
```

表132 col_scan_8×8_neighbors

表133 row scan 8×8 neighbors

```
row_scan_8×8_neighbors[65 * MAX_NEIGHBORS] =
{

0, 0, 0, 0, 1, 1, 0, 0, 8, 8, 2, 2, 8, 8, 9, 9, 3, 3, 16, 16, 10, 10, 16, 16,

4, 4, 17, 17, 24, 24, 11, 11, 18, 18, 25, 25, 24, 24, 5, 5, 12, 12, 19, 19,

32, 32, 26, 26, 6, 6, 33, 33, 32, 32, 20, 20, 27, 27, 40, 40, 13, 13, 34, 34,

40, 40, 41, 41, 28, 28, 35, 35, 48, 48, 21, 21, 42, 42, 14, 14, 48, 48, 36,

36, 49, 49, 43, 43, 29, 29, 56, 56, 22, 22, 50, 50, 57, 57, 44, 44, 37, 37,

51, 51, 30, 30, 58, 58, 52, 52, 45, 45, 59, 59, 38, 38, 60, 60, 46, 46, 53,

53, 54, 54, 61, 61, 62, 62, 0, 0,
```

};

表134 default_scan_8×8_neighbors

```
default_scan_8×8_neighbors[65 * MAX_NEIGHBORS] =

{

0, 0, 0, 0, 0, 0, 0, 8, 8, 1, 8, 1, 1, 9, 16, 16, 16, 2, 9, 2, 2, 10, 17, 17,

24, 24, 24, 3, 10, 3, 3, 18, 25, 25, 32, 11, 18, 32, 32, 4, 11, 26, 33, 19,

26, 4, 4, 33, 40, 12, 19, 40, 40, 5, 12, 27, 34, 34, 41, 20, 27, 13, 20, 5,

5, 41, 48, 48, 48, 28, 35, 35, 42, 21, 28, 6, 6, 6, 13, 42, 49, 49, 56, 36,

43, 14, 21, 29, 36, 7, 14, 43, 50, 50, 57, 22, 29, 37, 44, 15, 22, 44, 51,

51, 58, 30, 37, 23, 30, 52, 59, 45, 52, 38, 45, 31, 38, 53, 60, 46, 53, 39,

46, 54, 61, 47, 54, 55, 62, 0, 0,

};
```

表135 col_scan_16×16_neighbors

```
col scan 16×16 neighbors[257 * MAX NEIGHBORS] =
    0, 0, 0, 16, 16, 32, 32, 0, 0, 48, 48, 1, 1, 64, 64,
    17, 17, 80, 80, 33, 33, 1, 1, 49, 49, 96, 96, 2, 2, 65, 65,
    18, 18, 112, 112, 34, 34, 81, 81, 2, 2, 50, 50, 128, 128, 3, 3,
    97, 97, 19, 19, 66, 66, 144, 144, 82, 82, 35, 35, 113, 113, 3, 3,
    51, 51, 160, 160, 4, 4, 98, 98, 129, 129, 67, 67, 20, 20, 83, 83,
    114, \ 114, \ 36, \ 36, \ 176, \ 176, \ 4, \ 4, \ 145, \ 145, \ 52, \ 52, \ 99, \ 99, \ 5, \ 5,
    130, 130, 68, 68, 192, 192, 161, 161, 21, 21, 115, 115, 84, 84, 37, 37,
    146, 146, 208, 208, 53, 53, 5, 5, 100, 100, 177, 177, 131, 131, 69, 69,
    6, 6, 224, 224, 116, 116, 22, 22, 162, 162, 85, 85, 147, 147, 38, 38,
    193, 193, 101, 101, 54, 54, 6, 6, 132, 132, 178, 178, 70, 70, 163, 163,
    209, 209, 7, 7, 117, 117, 23, 23, 148, 148, 7, 7, 86, 86, 194, 194,
    225, 225, 39, 39, 179, 179, 102, 102, 133, 133, 55, 55, 164, 164, 8, 8,
    71, 71, 210, 210, 118, 118, 149, 149, 195, 195, 24, 24, 87, 87, 40, 40,
    56, 56, 134, 134, 180, 180, 226, 226, 103, 103, 8, 8, 165, 165, 211, 211,
    72, 72, 150, 150, 9, 9, 119, 119, 25, 25, 88, 88, 196, 196, 41, 41,
    135, 135, 181, 181, 104, 104, 57, 57, 227, 227, 166, 166, 120, 120, 151, 151,
    197, 197, 73, 73, 9, 9, 212, 212, 89, 89, 136, 136, 182, 182, 10, 10,
    26, 26, 105, 105, 167, 167, 228, 228, 152, 152, 42, 42, 121, 121, 213, 213,
    58, 58, 198, 198, 74, 74, 137, 137, 183, 183, 168, 168, 10, 10, 90, 90,
    229, 229, 11, 11, 106, 106, 214, 214, 153, 153, 27, 27, 199, 199, 43, 43,
    184, 184, 122, 122, 169, 169, 230, 230, 59, 59, 11, 11, 75, 75, 138, 138,
    200, 200, 215, 215, 91, 91, 12, 12, 28, 28, 185, 185, 107, 107, 154, 154,
    44, 44, 231, 231, 216, 216, 60, 60, 123, 123, 12, 12, 76, 76, 201, 201,
    170, 170, 232, 232, 139, 139, 92, 92, 13, 13, 108, 108, 29, 29, 186, 186,
```

```
217, 217, 155, 155, 45, 45, 13, 13, 61, 61, 124, 124, 14, 14, 233, 233,

77, 77, 14, 14, 171, 171, 140, 140, 202, 202, 30, 30, 93, 93, 109, 109,

46, 46, 156, 156, 62, 62, 187, 187, 15, 15, 125, 125, 218, 218, 78, 78,

31, 31, 172, 172, 47, 47, 141, 141, 94, 94, 234, 234, 203, 203, 63, 63,

110, 110, 188, 188, 157, 157, 126, 126, 79, 79, 173, 173, 95, 95, 219, 219,

142, 142, 204, 204, 235, 235, 111, 111, 158, 158, 127, 127, 189, 189, 220,

220, 143, 143, 174, 174, 205, 205, 236, 236, 159, 159, 190, 190, 221, 221,

175, 175, 237, 237, 206, 206, 222, 222, 191, 191, 238, 238, 207, 207, 223,

223, 239, 239, 0, 0,
```

表136 row_scan_16×16_neighbors

```
row_scan_16×16_neighbors[257 * MAX_NEIGHBORS] =
    0, 0, 0, 0, 1, 1, 0, 0, 2, 2, 16, 16, 3, 3, 17, 17,
    16, 16, 4, 4, 32, 32, 18, 18, 5, 5, 33, 33, 32, 32, 19, 19,
    48, 48, 6, 6, 34, 34, 20, 20, 49, 49, 48, 48, 7, 7, 35, 35,
    64, 64, 21, 21, 50, 50, 36, 36, 64, 64, 8, 8, 65, 65, 51, 51,
    22, 22, 37, 37, 80, 80, 66, 66, 9, 9, 52, 52, 23, 23, 81, 81,
    67, 67, 80, 80, 38, 38, 10, 10, 53, 53, 82, 82, 96, 96, 68, 68,
    24, 24, 97, 97, 83, 83, 39, 39, 96, 96, 54, 54, 11, 11, 69, 69,
    98, 98, 112, 112, 84, 84, 25, 25, 40, 40, 55, 55, 113, 113, 99, 99,
    12, 12, 70, 70, 112, 112, 85, 85, 26, 26, 114, 114, 100, 100, 128, 128,
    41, 41, 56, 56, 71, 71, 115, 115, 13, 13, 86, 86, 129, 129, 101, 101,
    128, 128, 72, 72, 130, 130, 116, 116, 27, 27, 57, 57, 14, 14, 87, 87,
    42, 42, 144, 144, 102, 102, 131, 131, 145, 145, 117, 117, 73, 73, 144, 144,
    88, 88, 132, 132, 103, 103, 28, 28, 58, 58, 146, 146, 118, 118, 43, 43,
    160, 160, 147, 147, 89, 89, 104, 104, 133, 133, 161, 161, 119, 119, 160, 160,
    74, 74, 134, 134, 148, 148, 29, 29, 59, 59, 162, 162, 176, 176, 44, 44,
    120, 120, 90, 90, 105, 105, 163, 163, 177, 177, 149, 149, 176, 176, 135, 135,
    164, 164, 178, 178, 30, 30, 150, 150, 192, 192, 75, 75, 121, 121, 60, 60,
    136, 136, 193, 193, 106, 106, 151, 151, 179, 179, 192, 192, 45, 45, 165, 165,
    166, 166, 194, 194, 91, 91, 180, 180, 137, 137, 208, 208, 122, 122,
                                                                         152,
    208,
         208, 195, 195, 76, 76, 167, 167, 209, 209, 181, 181, 224, 224, 107, 107,
    196, 196, 61, 61, 153, 153, 224, 224, 182, 182, 168, 168, 210, 210, 46, 46,
    138, 138, 92, 92, 183, 183, 225, 225, 211, 211, 240, 240, 197, 197, 169, 169,
    123, 123, 154, 154, 198, 198, 77, 77, 212, 212, 184, 184, 108, 108,
                                                                         226,
    199, 199, 62, 62, 227, 227, 241, 241, 139, 139, 213, 213, 170, 170,
                                                                         185,
                                                                              185,
    155, 155, 228, 228, 242, 242, 124, 124, 93, 93, 200,
                                                          200, 243, 243, 214, 214,
    215, 215, 229,
                   229, 140, 140, 186, 186, 201, 201, 78, 78,
                                                               171, 171,
                                                                         109,
                                                                              109,
    156, 156, 244, 244, 216, 216, 230, 230, 94, 94, 245, 245, 231, 231, 125, 125,
```

表137 default_scan_16×16_neighbors

```
default_scan_16×16_neighbors[257 * MAX_NEIGHBORS] =
    0, 0, 0, 0, 0, 16, 16, 1, 16, 1, 1, 32, 32, 17, 32,
    2, 17, 2, 2, 48, 48, 18, 33, 33, 48, 3, 18, 49, 64, 64, 64,
    34, 49, 3, 3, 19, 34, 50, 65, 4, 19, 65, 80, 80, 80, 35, 50,
    4, 4, 20, 35, 66, 81, 81, 96, 51, 66, 96, 96, 5, 20, 36, 51,
    82, 97, 21, 36, 67, 82, 97, 112, 5, 5, 52, 67, 112, 112, 37, 52,
    6, 21, 83, 98, 98, 113, 68, 83, 6, 6, 113, 128, 22, 37, 53, 68,
    84, 99, 99, 114, 128, 128, 114, 129, 69, 84, 38, 53, 7, 22, 7, 7,
    129, 144, 23, 38, 54, 69, 100, 115, 85, 100, 115, 130, 144, 144, 130, 145,
    39, 54, 70, 85, 8, 23, 55, 70, 116, 131, 101, 116, 145, 160, 24, 39,
    8, 8, 86, 101, 131, 146, 160, 160, 146, 161, 71, 86, 40, 55, 9, 24,
    117, 132, 102, 117, 161, 176, 132, 147, 56, 71, 87, 102, 25, 40, 147, 162,
    9, 9, 176, 176, 162, 177, 72, 87, 41, 56, 118, 133, 133, 148, 103, 118,
    10, 25, 148, 163, 57, 72, 88, 103, 177, 192, 26, 41, 163, 178, 192, 192,
    10, 10, 119, 134, 73, 88, 149, 164, 104, 119, 134, 149, 42, 57, 178, 193,
    164, 179, 11, 26, 58, 73, 193, 208, 89, 104, 135, 150, 120, 135, 27, 42,
    74, 89, 208, 208, 150, 165, 179, 194, 165, 180, 105, 120, 194, 209, 43, 58,
    11, 11, 136, 151, 90, 105, 151, 166, 180, 195, 59, 74, 121, 136, 209, 224,
    195, 210, 224, 224, 166, 181, 106, 121, 75, 90, 12, 27, 181, 196, 12, 12,
    210, 225, 152, 167, 167, 182, 137, 152, 28, 43, 196, 211, 122, 137, 91, 106,
    225, 240, 44, 59, 13, 28, 107, 122, 182, 197, 168, 183, 211, 226, 153, 168,
    226, 241, 60, 75, 197, 212, 138, 153, 29, 44, 76, 91, 13, 13, 183, 198,
    123, 138, 45, 60, 212, 227, 198, 213, 154, 169, 169, 184, 227, 242, 92, 107,
    61, 76, 139, 154, 14, 29, 14, 14, 184, 199, 213, 228, 108, 123, 199, 214,
    228, 243, 77, 92, 30, 45, 170, 185, 155, 170, 185, 200, 93, 108, 124, 139,
    214, 229, 46, 61, 200, 215, 229, 244, 15, 30, 109, 124, 62, 77, 140, 155,
    215, 230, 31, 46, 171, 186, 186, 201, 201, 216, 78, 93, 230, 245, 125, 140,
    47, 62, 216, 231, 156, 171, 94, 109, 231, 246, 141, 156, 63, 78, 202, 217,
    187, 202, 110, 125, 217, 232, 172, 187, 232, 247, 79, 94, 157, 172, 126, 141,
    203, 218, 95, 110, 233, 248, 218, 233, 142, 157, 111, 126, 173, 188, 188, 203,
    234, 249, 219, 234, 127, 142, 158, 173, 204, 219, 189, 204, 143, 158, 235,
```

```
250, 174, 189, 205, 220, 159, 174, 220, 235, 221, 236, 175, 190, 190, 205,
236, 251, 206, 221, 237, 252, 191, 206, 222, 237, 207, 222, 238, 253, 223,
238, 239, 254, 0, 0,
```

表138 default_scan_32×32_neighbors

```
default_scan_32 × 32_neighbors[1025 * MAX_NEIGHBORS] =
    0, 0, 0, 0, 0, 32, 32, 1, 32, 1, 1, 64, 64, 33, 64,
    2, 33, 96, 96, 2, 2, 65, 96, 34, 65, 128, 128, 97, 128, 3, 34,
    66, 97, 3, 3, 35, 66, 98, 129, 129, 160, 160, 160, 4, 35, 67, 98,
    192, 192, 4, 4, 130, 161, 161, 192, 36, 67, 99, 130, 5, 36, 68, 99,
    193, 224, 162, 193, 224, 224, 131, 162, 37, 68, 100, 131, 5, 5, 194, 225,
    225, 256, 256, 256, 163, 194, 69, 100, 132, 163, 6, 37, 226, 257, 6, 6,
    195, 226, 257, 288, 101, 132, 288, 288, 38, 69, 164, 195, 133, 164, 258, 289,
    227, 258, 196, 227, 7, 38, 289, 320, 70, 101, 320, 320, 7, 7, 165, 196,
    39, 70, 102, 133, 290, 321, 259, 290, 228, 259, 321, 352, 352, 352, 197, 228,
    134, 165, 71, 102, 8, 39, 322, 353, 291, 322, 260, 291, 103, 134, 353, 384,
    166, 197, 229, 260, 40, 71, 8, 8, 384, 384, 135, 166, 354, 385, 323, 354,
    198, 229, 292, 323, 72, 103, 261, 292, 9, 40, 385, 416, 167, 198, 104, 135,
    230, 261, 355, 386, 416, 416, 293, 324, 324, 355, 9, 9, 41, 72, 386, 417,
    199, 230, 136, 167, 417, 448, 262, 293, 356, 387, 73, 104, 387, 418, 231, 262,
    10, 41, 168, 199, 325, 356, 418, 449, 105, 136, 448, 448, 42, 73, 294, 325,
    200, 231, 10, 10, 357, 388, 137, 168, 263, 294, 388, 419, 74, 105, 419, 450,
    449, 480, 326, 357, 232, 263, 295, 326, 169, 200, 11, 42, 106, 137, 480, 480,
    450, 481, 358, 389, 264, 295, 201, 232, 138, 169, 389, 420, 43, 74, 420, 451,
    327, 358, 11, 11, 481, 512, 233, 264, 451, 482, 296, 327, 75, 106, 170, 201,
    482, 513, 512, 512, 390, 421, 359, 390, 421, 452, 107, 138, 12, 43, 202, 233,
    452, 483, 265, 296, 328, 359, 139, 170, 44, 75, 483, 514, 513, 544, 234, 265,
    297, 328, 422, 453, 12, 12, 391, 422, 171, 202, 76, 107, 514, 545, 453, 484,
    544, 544, 266, 297, 203, 234, 108, 139, 329, 360, 298, 329, 140, 171, 515,
    546, 13, 44, 423, 454, 235, 266, 545, 576, 454, 485, 45, 76, 172, 203, 330,
    361, 576, 576, 13, 13, 267, 298, 546, 577, 77, 108, 204, 235, 455, 486, 577,
    608, 299, 330, 109, 140, 547, 578, 14, 45, 14, 14, 141, 172, 578, 609, 331,
    362, 46, 77, 173, 204, 15, 15, 78, 109, 205, 236, 579, 610, 110, 141, 15, 46,
    142, 173, 47, 78, 174, 205, 16, 16, 79, 110, 206, 237, 16, 47, 111, 142,
    48, 79, 143, 174, 80, 111, 175, 206, 17, 48, 17, 17, 207, 238, 49, 80,
    81, 112, 18, 18, 18, 49, 50, 81, 82, 113, 19, 50, 51, 82, 83, 114, 608, 608,
    484, 515, 360, 391, 236, 267, 112, 143, 19, 19, 640, 640, 609, 640, 516, 547,
    485, 516, 392, 423, 361, 392, 268, 299, 237, 268, 144, 175, 113, 144, 20, 51,
    20, 20, 672, 672, 641, 672, 610, 641, 548, 579, 517, 548, 486, 517, 424, 455,
```

```
393, 424, 362, 393, 300, 331, 269, 300, 238, 269, 176, 207, 145, 176, 114,
145, 52, 83, 21, 52, 21, 21, 704, 704, 673, 704, 642, 673, 611, 642, 580,
611, 549, 580, 518, 549, 487, 518, 456, 487, 425, 456, 394, 425, 363, 394,
332, 363, 301, 332, 270, 301, 239, 270, 208, 239, 177, 208, 146, 177, 115,
146, 84, 115, 53, 84, 22, 53, 22, 22, 705, 736, 674, 705, 643, 674, 581, 612,
                              426, 457, 395, 426, 333, 364, 302, 333, 271,
         519, 550, 457, 488,
550,
302, 209,
         240, 178,
                    209, 147, 178, 85, 116, 54, 85, 23, 54, 706, 737, 675,
706, 582,
          613, 551,
                    582, 458, 489, 427, 458, 334, 365, 303, 334, 210, 241,
179, 210, 86, 117, 55, 86, 707, 738, 583, 614, 459, 490, 335, 366, 211, 242,
87, 118,
         736,
              736, 612, 643, 488, 519, 364, 395, 240, 271, 116, 147, 23, 23,
768, 768, 737, 768, 644, 675, 613, 644, 520, 551, 489, 520, 396, 427, 365,
396, 272,
         303, 241, 272, 148, 179, 117, 148, 24, 55, 24, 24, 800, 800, 769,
                    707, 645,
                              676, 614, 645, 552, 583, 521, 552, 490, 521,
800, 738,
          769,
               676,
428, 459,
          397,
               428,
                    366, 397,
                              304, 335, 273, 304, 242, 273, 180, 211, 149,
180, 118,
         149,
               56, 87, 25, 56, 25,
                                   25, 832, 832, 801, 832, 770, 801, 739,
770, 708, 739, 677, 708, 646, 677, 615, 646, 584, 615, 553, 584, 522, 553,
                              398, 429, 367,
491, 522,
         460,
               491, 429, 460,
                                             398,
                                                   336, 367, 305, 336, 274,
305, 243, 274,
               212, 243, 181, 212, 150, 181, 119, 150, 88, 119, 57, 88, 26,
57, 26, 26, 833, 864, 802, 833, 771, 802, 709, 740, 678, 709, 647, 678, 585,
616, 554, 585, 523, 554, 461, 492, 430, 461, 399, 430, 337, 368, 306, 337,
275, 306, 213, 244, 182, 213, 151, 182, 89, 120, 58, 89, 27, 58, 834, 865,
                    679, 710, 586, 617, 555, 586, 462, 493, 431, 462, 338,
803, 834,
         710,
              741,
    307,
         338,
                              214, 90, 121, 59, 90, 835, 866, 711, 742, 587,
369,
               214,
                    245, 183,
618, 463,
          494,
               339,
                    370, 215,
                              246, 91, 122, 864, 864, 740, 771, 616, 647,
    523,
          368,
               399,
                    244, 275,
                              120, 151, 27, 27, 896, 896, 865, 896, 772, 803,
492,
741, 772,
         648,
               679,
                    617, 648, 524, 555, 493, 524, 400, 431, 369, 400, 276,
307, 245,
         276,
               152,
                    183, 121, 152, 28, 59, 28, 28, 928, 928, 897, 928, 866,
897, 804, 835,
              773,
                    804, 742, 773, 680, 711, 649, 680, 618, 649, 556, 587,
525, 556,
         494,
               525,
                    432,
                         463,
                              401, 432, 370, 401, 308,
                                                        339, 277, 308, 246,
         215, 153,
277, 184,
                    184, 122,
                              153, 60, 91, 29, 60, 29,
                                                        29, 960, 960, 929,
                              867, 805, 836, 774, 805,
960, 898,
         929.
                    898,
                         836,
                                                        743, 774, 712, 743,
              867,
681, 712, 650, 681,
                    619, 650,
                              588, 619, 557, 588, 526, 557, 495, 526, 464,
495, 433,
         464,
               402,
                    433,
                         371,
                              402, 340, 371,
                                             309, 340,
                                                        278, 309, 247, 278,
216, 247, 185, 216, 154, 185,
                              123, 154, 92, 123, 61, 92, 30, 61, 30, 30,
961, 992, 930,
              961,
                    899,
                         930, 837, 868, 806, 837, 775,
                                                        806, 713, 744, 682,
               589,
                              589, 527, 558,
713, 651,
         682,
                    620, 558,
                                             465, 496, 434, 465, 403, 434,
341, 372,
         310, 341, 279, 310, 217, 248, 186, 217, 155, 186, 93, 124, 62, 93,
31, 62, 962, 993, 931, 962, 838, 869, 807, 838, 714, 745, 683, 714, 590, 621,
559, 590, 466, 497, 435, 466, 342, 373, 311, 342, 218, 249, 187, 218, 94,
        94, 963, 994, 839, 870, 715, 746, 591, 622, 467, 498, 343, 374, 219,
125. 63.
250, 95, 126, 868, 899, 744, 775, 620, 651, 496, 527, 372, 403, 248,
                                                                      279,
```

104	1.55	000	001	0.00	000	77.0	007	7.15	770	CEO	600	CO1	CEO	500
			931,											
559,			404,											
932,	963,	-	932,	-	-					-			-	
684,	622,	653,	560,	591,	529,	560,	498,	529,	436,	467,	405,	436,	374,	405,
312,	343,	281,	312,	250,	281,	188,	219,	157,	188,	126,	157,	964,	995,	933,
964,	902,	933,	871,	902,	840,	871,	809,	840,	778,	809,	747,	778,	716,	747,
685,	716,	654,	685,	623,	654,	592,	623,	561,	592,	530,	561,	499,	530,	468,
499,	437,	468,	406,	437,	375,	406,	344,	375,	313,	344,	282,	313,	251,	282,
220,	251,	189,	220,	158,	189,	127,	158,	965,	996,	934,	965,	903,	934,	841,
872,	810,	841,	779,	810,	717,	748,	686,	717,	655,	686,	593,	624,	562,	593,
531,	562,	469,	500,	438,	469,	407,	438,	345,	376,	314,	345,	283,	314,	221,
252,	190,	221,	159,	190,	966,	997,	935,	966,	842,	873,	811,	842,	718,	749,
687,	718,	594,	625,	563,	594,	470,	501,	439,	470,	346,	377,	315,	346,	222,
253,	191,	222,	967,	998,	843,	874,	719,	750,	595,	626,	471,	502,	347,	378,
223,	254,	872,	903,	748,	779,	624,	655,	500,	531,	376,	407,	252,	283,	904,
935,	873,	904,	780,	811,	749,	780,	656,	687,	625,	656,	532,	563,	501,	532,
408,	439,	377,	408,	284,	315,	253,	284,	936,	967,	905,	936,	874,	905,	812,
843,	781,	812,	750,	781,	688,	719,	657,	688,	626,	657,	564,	595,	533,	564,
502,	533,	440,	471,	409,	440,	378,	409,	316,	347,	285,	316,	254,	285,	968,
999,	937,	968,	906,	937,	875,	906,	844,	875,	813,	844,	782,	813,	751,	782,
720,	751,	689,	720,	658,	689,	627,	658,	596,	627,	565,	596,	534,	565,	503,
534,	472,	503,	441,	472,	410,	441,	379,	410,	348,	379,	317,	348,	286,	317,
255,	286,	969,	1000	938	, 969	, 907,	, 938,	, 845,	876	, 814,	, 845,	, 783,	, 814	, 721,
752,	690,	721,	659,	690,	597,	628,	566,	597,	535,	566,	473,	504,	442,	473,
411,	442,	349,	380,	318,	349,	287,	318,	970,	1001	, 939,	, 970,	, 846,	, 877	, 815,
846,	722,	753,	691,	722,	598,	629,	567,	598,	474,	505,	443,	474,	350,	381,
319,	350,	971,	1002	847	, 878,	, 723,	, 754,	, 599,	630	, 475,	, 506,	, 351,	, 382	, 876,
907,	752,	783,	628,	659,	504,	535,	380,	411,	908,	939,	877,	908,	784,	815,
753,	784,		691,											
971,	909,		878,							785,		723,		200
630,		-	599,	-									-	•
,														, 786,
724,			724,											
538,														, 942,
849,			849,											
			<u> </u>		<u>_</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					, 881,
819,		-	757,	-										
														, 663,
			943,											
571,	-	-	944,	-	-					-			-	
														, 945,
696,	141,	000,	090,	004,	000,	014,	000,	JII,	014,	510,	JII,	<i>310</i> ,	1001	, 710,

976, 9	14, 945	, 883,	914,	852,	883,	821,	852,	790,	821,	759,	790,	728,	759,
697, 7	28, 666	, 697,	635,	666,	604,	635,	573,	604,	542,	573,	511,	542,	977,
1008,	946, 97	7, 915	, 946,	853,	884,	822,	853,	791,	, 822,	729,	760,	698,	729,
667, 6	98, 605	, 636,	574,	605,	543,	574,	978,	1009,	, 947,	978,	854,	885,	823,
854, 7	30, 761	, 699,	730,	606,	637,	575,	606,	979,	1010,	855,	886,	731,	762,
607, 6	38, 884	, 915,	760,	791,	636,	667,	916,	947,	885,	916,	792,	823,	761,
792, 6	68, 699	, 637,	668,	948,	979,	917,	948,	886,	917,	824,	855,	793,	824,
762, 7	93, 700	, 731,	669,	700,	638,	669,	980,	1011,	, 949,	980,	918,	949,	887,
918, 8	56, 887	, 825,	856,	794,	825,	763,	794,	732,	763,	701,	732,	670,	701,
639, 6	70, 981	, 1012	, 950,	981,	919,	950,	857,	888,	, 826,	857,	795,	826,	733,
764, 7	702, 733	, 671,	702,	982,	1013,	951,	982,	858,	, 889,	827,	858,	734,	765,
703, 7	34, 983	, 1014	, 859,	890,	735,	766,	888,	919,	, 764,	795,	920,	951,	889,
920, 7	96, 827	, 765,	796,	952,	983,	921,	952,	890,	921,	828,	859,	797,	828,
766, 7	97, 984	, 1015	, 953,	984,	922,	953,	891,	922,	, 860,	891,	829,	860,	798,
829, 7	67, 798	, 985,	1016,	954,	985,	923,	954,	861,	, 892,	830,	861,	799,	830,
986, 1	017, 95	5, 986	, 862,	893,	831,	862,	987,	1018	8, 863	3, 894	, 892	, 923	3, 924,
955, 8	93, 924	, 956,	987,	925,	956,	894,	925,	988,	1019,	957,	988,	926,	957,
895, 9	26, 989	, 1020	, 958,	989,	927,	958,	990,	102	1, 959	990), 991	, 102	22, 0, 0,
};													

Token_Cache为32×32的表,其值的初始化由token决定,token[scan[c]]与token关系如下:

表139 token[scan[c]]与 token 的关系

token	token[scan[c]]
0	0
1	1
2	2
3	3
4	3
5	4
6	4
7	5
8	5
9	5
10	5
11	5

svac2_pareto8_full[ctx] [treeIdx]中ctx的计算如下:

ctx = prob[2] - 1

prob[2]是 binIdx 等于 2 的 coef_probs 的概率表。

treeIdx 的计算过程见 5.4.2.4.3。

extra 会使用到 svac2_cat1_prob[binIdx]、svac2_cat2_prob[binIdx]、svac2_cat3_prob[binIdx]、

svac2_cat4_prob[binIdx]、svac2_cat5_prob[binIdx]和 svac2_cat6_prob[binIdx]概率表,均通过 binIdx 索引得到对应的概率值,具体对应概率表见 5.4.2.2.1。

5.4.2.4.5 二进制位解析

此过程的输入为range、count、value、buffer、buffer_end以及概率值prob,输出为bit即解码出的二进制位。其中,range的位宽为8比特,value位宽为32比特。

二进制位的解析过程如下:

第一步,如果count的值小于0,执行算术解码器的重整化过程,与5.4.2.2初始化中的重整化过程相同:

第二步,执行decode过程得到bit,该过程用伪代码描述如下:

```
bit = 0
split = (range \times prob + (256 - prob)) >> 8;
value t = value
count t = count
range_t = split
bigsplit = split << 24
if (value t >= bigsplit) {
 range t = range - split
 value t = value t - bigsplit
 bit = 1
shift = norm[range t]
range t <<= shift
value t <<= shift
count_t -= shift
value = value t
count = count t
range = range t
第三步,如果 bit 的值为 0,则二进制位为'0',如果 bit 的值为 1,则二进制位为'1'。
```

5.4.3 ue (v) 与 se(v)的解析过程

5.4.3.1 k 阶指数哥伦布码

解析 k 阶指数哥伦布码时,首先从比特流的当前位置开始寻找第一个非零比特,并将找到的零比特个数记为 leadingZeroBits, 然后根据 leadingZeroBits 计算 CodeNum。用伪代码描述如下:

```
leadingZeroBits = -1
for ( b = 0; ! b; leadingZeroBits++ )
    b = read_bits(1)
    CodeNum = 2<sup>leadingZeroBits + k</sup> - 2<sup>k</sup> + read_bits(leadingZeroBits + k)
```

表 140 给出了 0 阶、1 阶、2 阶和 3 阶指数哥伦布码的结构。指数哥伦布码的比特串分为"前缀"和"后缀"两部分。前缀由 leadingZeroBits 个连续的'0'和一个'1'构成。后缀由 leadingZeroBits

+ k 个比特构成,即表中的 xi 串,i 的范围为从 0~ (leadingZeroBits + k - 1),每个 xi 的值为 0 或 1。

表140 k 阶指数哥伦布码表

阶数	码字结构	CodeNum 取值范围
	1	0
	0 1 x0	12
k = 0	0 0 1 x1 x0	3…6
	0 0 0 1 x2 x1 x0	7…14
	1 x0	01
	0 1 x1 x0	2…5
k = 1	0 0 1 x2 x1 x0	6…13
	0 0 0 1 x3 x2 x1 x0	14…29
	1 x1 x0	03
	0 1 x2 x1 x0	4…11
k = 2	0 0 1 x3 x2 x1 x0	12…27
	0 0 0 1 x4 x3 x2 x1 x0	2859
	1 x2 x1 x0	0…7
	0 1 x3 x2 x1 x0	8···23
k = 3	0 0 1 x4 x3 x2 x1 x0	24…55
	0 0 0 1 x5 x4 x3 x2 x1 x0	56…119

5. 4. 3. 2 ue (v)

ue(v)描述的语法元素使用0阶无符号指数哥伦布码,其语法元素其语法元素的取值等于CodeNum。

5. 4. 3. 3 se(v)

se(v)描述的语法元素使用 0 阶指数哥伦布码,其语法元素的取值与 CodeNum 的映射关系见表 141 ;

表141 se(v)中 CodeNum 与语法元素取值的映射关系

CodeNum	语法元素值
0	0
1	1
2	- 1
3	2
4	- 2
5	3

6	- 3
k	$(-1)^{k+1} \times \text{Ceil}(k \div 2)$

6 音频部分

6.1 总体描述

6.1.1 模拟信号和数字信号之间转换

模拟信号和数字信号之间的转换描述如下:

- a) 模拟信号到数字线性 PCM 信号转换:
 - 一一麦克风;
 - 一一输入电平调节设备;
 - 一一抗混叠滤波器;
 - ——采样保持设备,采样频率为 16kHz、24kHz、32kHz 和 48kHz;
 - ——模拟信号转换为 16 比特数字线性 PCM, 采用二进制补码表示。
- b) 数字线性 PCM 信号到模拟信号转换:
 - ——16 比特数字线性 PCM 信号转换为模拟信号;
 - ——转换保持设备;
 - 一一补偿重建滤波器;
 - 一一输出电平调节设备;
 - ——耳机或喇叭。

6.1.2 编解码框架的描述

图 22 和图 23 给出了音频编码器和解码器框图。

图22 音频编码器框图

图23 音频解码器框图

在编码器端,输入声音信号首先经过异常事件检测器,如果检测到异常(比如尖叫声、枪声、爆炸声等),将检测结果传递给编码参数控制模块,编码参数控制模块将根据检测到的事件的重要性设置音频编码器的编码参数,以实现变质量音频编码。音频编码器低频和高频用不同的方法进行编码,低频使用基于ACELP和TAC切换的双核编码器进行编码,高频用相当少的比特进行BWE编码。识别特征参数编码提供两种编码模式:直接编码模式和预测编码模式。直接编码模式直接对提取识别特征参数进行矢量量化;而预测编码模式则需要对音频编码器的码流进行解码得到重建信号,重建信号和原始信号分别提取识别特征参数,使用重建信号识别特征参数作为原始信号识别特征参数的预测,最后对预测残差进行矢量量化。如果输入信号采样频率不是16kHz,则输入信号先经过采样频率转换模块,转换为16kHz采样的信号,再进行识别特征参数提取。对于预测编码模式,由于重建信号和原始信号之间存在一定的延迟,为了保证所提取的识别特征参数在时间上对应关系,需要经过同步模块同步。最后音频码流、识别特征参数码流、异常事件信息、声源定向信息和绝对时间信息复用成一路码流。

在解码器端,先进行解复用以得到音频码流、识别特征参数码流、异常事件信息、声源定向信息和绝对时间信息。然后音频解码器直接解码输出重建音频信号;识别特征参数解码器从码流中解码出识别特征参数,如果当前编码模式是直接编码模式,则解码得到的就是最终的识别特征参数;如果当前解码模式是预测编码模式,则解码得到的是识别特征参数的残差,需对音频解码器输出的重建信号,先经过采样频率转换模块,转换为16kHz采样的信号,再提取识别特征参数作为预测值,最后这两部分相加就得到了最终的识别特征参数。

6.1.3 音频编解码描述

图24 给出了双核音频编码器流程图。输入音频信号首先经过预处理,分成两个频带,分别是低频信号和高频信号,采样频率都是 Fs/2。然后低频信号使用基于ACELP和TAC切换的双核编码器,ACELP 是基于时域预测编码技术,适合语音信号和瞬态信号,TAC是基于变换域编码技术,更适合音乐信号和稳态信号。高频信号使用BWE进行编码。最后将低频参数、高频参数和编码模式信息复用成一路码流。

图25 给出了双核音频解码器流程图。首先通过码流解复用,得到低频参数、高频参数和编码模式信息。然后低频参数通过ACELP和TAC双核解码,高频参数通过BWE解码。解码后低频信号和高频信号通过后处理恢复成全带信号。

图24 双核音频编码器流程图

图25 双核音频解码器流程图

6.1.4 识别特征参数编码描述

图26 给出了识别特征参数编码框图,整个框架主要分为两个模块:特征提取和特征压缩。16kHz 采样频率的宽带语音信号先进行去直流偏置,噪声消除,波形预处理,再进行倒谱计算,最后对得到的 倒谱特征进行去信道干扰的均衡处理。VAD模块检测语音帧和非语音帧,输出1比特的VAD标志位,同识别特征参数合并压缩,具体VAD算法描述参见附录I。识别特征参数选取的是13维MFCC系数和一个对数能量系数,构成一个14维的特征矢量。特征提取时帧长为25ms(16kHz采样频率下400个样本),帧移为10ms(16kHz采样频率下160个样本)。特征压缩模块使用矢量量化对特征矢量或残差矢量进行量化。

图26 识别特征参数编码框图

识别特征参数编码提供两种编码模式:直接编码模式和预测编码模式。直接编码模式直接对提取特征进行矢量量化;而预测编码模式则需要对音频编码器的码流进行解码得到重建信号,重建信号和原始信号分别提取识别特征参数,使用重建信号识别特征参数作为原始信号识别特征参数的预测,最后对预测残差进行矢量量化。

详细编码过程见6.2.6。

6.2 编码器功能描述

6.2.1 预处理

6.2.1.1 采样频率转换

音频信号的输入采样频率有16kHz、24kHz、32kHz和48kHz,需要将各种不同采样频率的输入信号在编码之前的预处理中进行重采样,转换为内部采样频率 Fs。同理,在解码的后处理中同样需要采样频率转换。

6.2.1.2 低频信号和高频信号分解

采样频率为 Fs 的输入信号通过截止频率在 Fs /4 的低通滤波器,再作 2 倍临界下采样,得到 Fs /2 采样低频信号 $x_{LF}(n)$;同样,经过截止频率在 Fs /4 的高通滤波器,再作 2 倍临界下采样,得到 Fs /2 采样高频信号 $x_{HF}(n)$,见图 27 。

L--- 音频超帧长度

图27 低频和高频信号分解框图

6.2.1.3 低频信号高通滤波

低频信号经过高通滤波器,目的是为了滤掉不需要的低频成分。高通滤波器的传递函数如下:

$$H_{h1}(z) = \frac{b_0 - b_1 z^{-1} + b_2 z^{-2}}{1 - a_1 z^{-1} + a_2 z^{-2}}$$
 (1)

式中的滤波器系数取决于采样频率。

6.2.2 低频信号编码概述

6. 2. 2. 1 ACELP 和 TAC 双核编码

Fs/2频率采样的低频信号($0\sim Fs/4$ 频带)使用基于ACELP和TAC切换的双核编码器。ACELP属于时域预测的编码技术,适合语音信号和瞬态信号编码。TAC属于变换域的编码技术,更适合典型的音乐信号和稳态信号编码,本标准采用了其中一种称为TVC的变换域编码技术。

6. 2. 2. 2 ACELP 和 TVC 的时间图

ACELP和TVC双核编码的输入是按 Fs /2频率采样的单声道信号,以连续256个采样点组成一帧进行处理。每帧可采用两种模式编码,采用哪一种取决于信号特征,见图28 所示。在ACELP模式中,采用ACELP核编码。在TVC模式中,采用TVC核编码,由于TVC是变换编码技术,需要加下一帧的前32个样本用于帧重叠。

图28 帧类型的时间图

6. 2. 2. 3 ACELP 和 TVC 的闭环模式选择

音频帧首先使用多种模式分别编码,然后选择最好的模式。选择的标准是加权信号 $x_w(n)$ 和合成加权信号 $\hat{x}_w(n)$ 间的分段信噪比均值。子帧的分段信噪比公式如下:

$$segSNR_{i} = 20\log_{10} \left\{ \frac{\sum_{n=0}^{N-1} x_{w}^{2}(n)}{\sum_{n=0}^{N-1} (x_{w}(n) - \hat{x}_{w}(n))^{2}} \right\}$$
 (2)

式中:

N —— 子帧长度 (64 个样点)。

每帧分段信噪比均值计算公式如下:

$$\overline{segSNR} = \frac{1}{N_{SF}} \sum_{i=0}^{N_{SF}-1} segSNR_i \cdots (3)$$

式中:

Nsf —— 音频帧中子帧的数目,本标准规定 Nsf 的值是 4。

6.2.3 ACELP 编码

6.2.3.1 预加重

输入到 ACELP 核编码的信号,通过一阶的预加重滤波器 $H_{emph}(z)$,见 6. 2. 3. 3。

6. 2. 3. 2 LP 分析和量化

6.2.3.2.1 线性预测分析

线性预测分析是用 16 阶线性预测器作短时分析,采用莱文逊一杜宾(Levinson-Durbin)算法进行线性预测系数求解,对每帧分析一次得到一组线性预测系数。线性预测系数在编码前要先转化为 ISF系数,然后再进行量化。LP 合成滤波器的传递函数如下:

$$H(z) = \frac{1}{\hat{A}(z)} = \frac{1}{1 + \sum_{i=1}^{m} \hat{a}_{i} z^{-i}}$$
 (4)

式中:

 \hat{a}_{i} —— 量化后的线性预测系数, m=16 是预测阶数。

LP 分析首先用 384 个样本的非对称窗加权预加重后的信号 s (n), 计算自相关系数, 用莱文逊一杜宾算法求 LP 系数, 然后转换为 ISP 系数并在 ISP 域插值, 最后转到 ISF 域量化。

384 个样本的 LP 分析帧结构如图 29 所示, 其中 256 个样本来自第 n 帧, 64 个样本来自第 n-1 帧, 64 个样本来自第 n+1 帧。第 n 帧分析窗与第 n-1 帧分析窗有 128 个样本的重叠。因此 LP 分析需要前瞻 64 个样本。

图29 线性预测分析帧结构图

6.2.3.2.2 加窗和自相关函数的计算

分析窗采用重心在第四个子帧的非对称窗,该窗由两部分组成,第一部分是半个海明(Hamming)窗,第二部分是 1/4 余弦窗,公式为:

$$w(n) = \begin{cases} 0.54 - 0.46\cos(\frac{2n\pi}{2L_1 - 1}), & n = 0, \dots, L_1 - 1\\ \cos(\frac{2\pi(n - L_1)}{4L_2 - 1}), & n = L_1, \dots, L_1 + L_2 - 1 \end{cases}$$
(5)

式中:

 $L_1 = 256$, $L_2 = 128$.

设加窗后信号为s'(n),则有

式中:

w(n) —— 加窗函数;

s(n) — 预加重后的信号。

s'(n) 对应的自相关函数为

$$r(k) = \sum_{n=k}^{383} s'(n)s'(n-k), \qquad k = 0, \dots, 16 \dots (7)$$

然后用滞后窗 $w_{lag}(i)$ 乘自相关函数使其具有60Hz的带宽扩展,滞后窗 $w_{lag}(i)$ 的表达式为

$$w_{lag}(i) = \exp\left[-\frac{1}{2}\left(\frac{2\pi f_0 i}{f_s}\right)^2\right], \qquad i = 1, \dots, 16 \dots (8)$$

土中.

 $f_0 = 60$ Hz — 扩展的带宽;

 $f_s = 12.8 \text{kHz}$ — 采样频率。

另外r(0)乘以白噪声校正因子 1.0001。最后得到修正后的自相关函数r'(k):

$$r'(k) = \begin{cases} 1.0001r(0), & k = 0\\ r(k)w_{lag}(k), & k = 1, \dots, 16 \end{cases}$$
 (9)

6. 2. 3. 2. 3 用莱文逊—杜宾算法求解 LP 系数

用修正后的自相关函数r'(k) 求解线性预测系数 a_k , $k=1,\cdots,16$, 即求解下述方程组:

$$\sum_{k=1}^{16} a_k r'(|i-k|) = -r'(i), \qquad i = 1, \dots, 16 \dots (10)$$

该方程组可用莱文逊一杜宾算法求解,算法计算步骤如下:

$$E(0) = r'(0);$$

$$for(i = 1; i <= 16; + + i)$$

$$\{ k_i = -\left[r'(i) + \sum_{j=1}^{i-1} a_j^{i-1} r'(i-j)\right] / E(i-1);$$

$$a_i^{(i)} = k_i;$$

$$for(j = 1; j <= i-1; + + j)$$

$$\{ a_j^{(i)} = a_j^{(i-1)} + k_i a_{i-j}^{(i-1)};$$

$$\}$$

$$E(i) = \left(1 - k_i^2\right) E(i-1);$$

$$\}$$

最后得到线性预测系数 $a_j = a_j^{(16)}$, $j = 1, \dots, 16$ 。 线性预测系数转化成 ISP 系数,以便于量化和内插。

6. 2. 3. 2. 4 LP 系数转换为 ISP 系数

对于 16 阶线性预测器来说, ISP 系数就是下面这组多项式的根:

$$F_1'(z) = A(z) + z^{-16}A(z^{-1})$$
 (12)

$$F_2'(z) = A(z) - z^{-16}A(z^{-1})$$
 (13)

多项式 $F_1'(z)$ 和 $F_2'(z)$ 分别为对称和反对称多项式。它们的根在单位圆上,而且相互交替出现。其中 $F_2'(z)$ 有两个根分别为 z=1 ($\omega=0$) 和 z=-1 ($\omega=\pi$)。为了消除这两个根,定义两个新的多项式记作 $F_1(z)$ 和 $F_2(z)$:

$$F_2(z) = F_2'(z)/(1-z^{-2})$$
 (15)

多项式 $F_1(z)$ 和 $F_2(z)$ 分别有8个和7个共轭复根在单位圆上 $\left(e^{\pm ja_i}\right)$,由下面的式子表示:

$$F_1(z) = (1 + a_{16}) \prod_{i=0,2,\dots,14} (1 - 2q_i z^{-1} + z^{-2}) \cdots (16)$$

$$F_2(z) = (1 - a_{16}) \prod_{i=1}^{n} (1 - 2q_i z^{-1} + z^{-2}) \cdots (17)$$

式中:

 q_i ——ISP 系数, $q_i = \cos(\omega_i)$, $i = 0, \dots, 15$;

 ω_i ——ISF 系数,ISF 系数满足顺序特性,即 $0 < \omega_0 < \omega_1 < \cdots < \omega_{14} < \pi$;

 a_{16} ——最后一阶线性预测系数, $q_{15} = a_{16}$ 。

由下面递推关系得到 $F_1(z)$ 和 $F_2(z)$ 多项式的系数 $f_1(i)$ 和 $f_2(i)$:

$$for(i = 0; i <= 7; + + i)$$
{
$$f_{1}(i) = a_{i} + a_{m-i};$$

$$f_{2}(i) = a_{i} - a_{m-i} + f_{2}(i - 2);$$
}
$$f_{1}(8) = 2a_{8};$$
(18)

式中:

m=16——预测器阶数;

$$f_2(-2) = f_2(-1) = 0$$

ISP 系数的求解过程描述如下:

首先将 0 到 π 初分成 100 点,找到符号变化的区间。然后使用切比雪夫多项式法在每个区间求根,符号变换的区间进一步细分为 4 个子区间。使用这个方法得到的根是 ISP 系数。

多项式 $F_1(z)$ 和 $F_2(z)$ 在 $z=e^{j\omega}$ 处可表示为

$$C_1(x) = \sum_{i=0}^{7} (f_1(i)T_{8-i}(x) + f_1(8)/2) \quad \text{fil} \quad C_2(x) = \sum_{i=0}^{6} (f_2(i)T_{8-i}(x) + f_2(7)/2) \dots (20)$$

式中:

 $T_m = \cos(m\omega)$ —— 切比雪夫多项式第 m 个根。

多项式C(x)在 $x = \cos(\omega)$ 处的递归计算如下:

$$for(k = n_f - 1; k \le 1; - - k)$$

$$\{b_k = 2xb_{k+1} - b_{k+2} + f(n_f - k); \dots (21)$$

$$\}$$

$$C(x) = xb_1 - b_2 + f(n_f)/2;$$

对于多项式 $C_1(x)$, $n_f=8$; 对于多项式 $C_2(x)$, $n_f=7$; 迭代初始值 $b_{nf}=f(0)$ 和 $b_{nf+1}=0$ 。

6. 2. 3. 2. 5 ISP 系数转换为 LP 系数

一旦 ISP 系数被量化和内插,将被再次转回到 LP 系数。具体转换过程如下:

根据已量化和内插的 ISP 系数,用公式(16)、(17)求 $F_1(z)$ 和 $F_2(z)$ 的系数,用 $q_i = \cos(\omega_i)$, $i = 0, \cdots, m-1$ (其中 m=16)迭代计算系数 $f_i(i)$:

$$for(i = 2; i \le m/2; + i)$$
{
$$f_{1}(i) = -2q_{2i-2}f_{1}(i-1) + 2f_{1}(i-2);$$

$$for(j = i-1; j \le 2; - j)$$

$$f_{1}(j) = f_{1}(j) - 2q_{2i-2}f_{1}(j-1) + f_{1}(j-2);$$

$$f_{1}(1) = f_{1}(1) - 2q_{2i-2};$$
}

式中:

初始值 $f_1(0) = 1$, $f_1(1) = -2q_0$ 。

同理, 计算 $f_2(i)$, 只是需要用 q_{2i-1} 代替公式(22)中的 q_{2i-2} ,用 m/2-1 代替 m/2, 初始值变为 $f_2(0)=1$, $f_2(1)=-2q_1$ 。

求出 $f_1(i)$, $i = 0, \dots, m/2$ 和 $f_2(i)$, $i = 0, \dots, m/2 - 1$ 即得到 $F_1(z)$ 和 $F_2(z)$ 的系数, $F_2(z)$ 再乘以 $1 - z^{-2}$ 就得到 $F_2(z)$ 。 那么 $F_1(z)$ 和 $F_2(z)$ 多项式的系数 $f_1'(i)$ 和 $f_2'(i)$ 为:

$$f_2'(i) = f_2(i) - f_2(i-2), \quad i = 2, \dots, m/2 - 1$$

$$f_1'(i) = f_1(i), \qquad i = 0, \dots, m/2$$
(23)

 $F_1^{'}(z)$ 和 $F_2^{'}(z)$ 分别乘以 $1+q_{m-1}$ 和 $1-q_{m-1}$, 多项式系数最终变为:

$$f_{2}'(i) = (1 - q_{m-1})f_{2}'(i),$$
 $i = 0, \dots, m/2 - 1$ (24)
 $f_{1}'(i) = (1 + q_{m-1})f_{1}'(i),$ $i = 0, \dots, m/2$

由于 $F_1(z)$ 和 $F_2(z)$ 分别是对称和反对称多项式,根据关系式 $A(z) = (F_1(z) + F_2(z))/2$,最后得到 LP 系数:

$$a_{i} = \begin{cases} 0.5f_{1}'(i) + 0.5f_{2}'(i), & i = 1, \dots, m/2 - 1\\ 0.5f_{1}'(i) - 0.5f_{2}'(i), & i = m/2 + 1, \dots, m - 1\\ 0.5f_{1}'(m/2), & i = m/2\\ q_{m-1}, & i = m \end{cases}$$
(25)

6. 2. 3. 2. 6 ISP 系数的量化

ISP系数在量化之前先要转换为频域的ISF系数。ISF系数表达式为:

$$f_i = \begin{cases} \frac{f_s}{2\pi} \arccos(q_i), & i = 0, \dots, 14\\ \frac{f_s}{4\pi} \arccos(q_i), & i = 15 \end{cases}$$
 (26)

式中:

 $f_i \in [0,6.4]$ kHz —— ISF 系数;

f_s = 12.8 kHz —— 采样频率。

ISF 矢量表示为 $f' = [f_0, f_1, \dots, f_{15}]$, t 表示矢量的转置。

用一阶 MA 预测法, 先求出当前帧的 ISF 预测残差矢量, 然后量化 ISF 预测残差矢量。

定义z(n)为去均值后的当前帧 ISF 矢量。预测残差矢量为r(n),其表达式为:

$$z(n) = isf_n - mean_isf$$
 (27)

$$r(n) = z(n) - p(n) \quad \cdots \qquad (28)$$

式中:

isf , —— 第 n 帧的 ISF 矢量;

mean_isf —— ISF 矢量均值;

p(n) —— 第 n 帧的预测 ISF 矢量。

由一阶 MA 预测法得到:

$$p(n) = \frac{1}{3}\hat{r}(n-1)$$
 (29)

式中:

 $\hat{r}(n-1)$ — 前一帧量化后的 ISF 残差矢量。

为了利用 ISF 系数的帧内相关性,将 16 个 ISF 残差系数(矢量 VQ1)按照其索引号的奇偶顺序分为两组,如下所示:

分组l: res_isf_0 , res_isf_2 , res_isf_4 , res_isf_6 , res_isf_8 , res_isf_{10} , res_isf_{12} , res_isf_{14}

分组2: res_isf₁, res_isf₃, res_isf₅, res_isf₇, res_isf₉, res_isf₁₁, res_isf₁₃, res_isf₁₅

将 res_isf_0 , res_isf_2 , res_isf_4 三个系数组成子矢量 VQ2, res_isf_6 , res_isf_8 , res_isf_1 0 三个系数组成子矢量 VQ3,分别对 VQ2 和 VQ3 进行矢量量化,VQ2 矢量量化需要 VQ3 50 比特,VQ3 50 大量量化需要 VQ3 50 比特;

$$VQ2 = \{res_isf_0, res_isf_2, res_isf_4\} \not\exists VQ3 = \{res_isf_6, res_isf_8, res_isf_{10}\} \cdots \cdots (30)$$

量化采用的误差准则为均方量化误差准则,见下式:

$$E = \sum (res_isf_i - res_isf_i^q)^2, \quad i = \{0, 2, \dots, 10\} \dots (31)$$

量化得到对应的最佳量化矢量为VQ'2和VQ'3:

 $VQ^{'}2 = \{res_isf_0^{\ q}, res_isf_2^{\ q}, res_isf_4^{\ q}\}$ 和 $VQ^{'}3 = \{res_isf_6^{\ q}, res_isf_8^{\ q}, res_isf_{10}^{\ q}\}$ ……… (32) 利用 $VQ^{'}2$ 的 $res_isf_0^{\ q}$ 和 $res_isf_2^{\ q}$ 对 VQ1 的 res_isf_1 系数进行预测,并计算相应的残差 $res_isf_1^{\ q}$ 。

$$res_isf_1^{predict} = \theta + \alpha_0 \times res_isf_0^{q} + \beta_2 \times res_isf_2^{q} \dots$$

$$res_isf_1^{'} = res_isf_1 - res_isf_1^{predict}$$

$$(33)$$

式中:

 θ —— ISF 系数均值;

 α_0 , β_2 —— 预测系数。

将矢量 VQ1 中的 res_isf_{12} , res_isf_{14} 和 res_isf_{14} 组成子矢量 VQ4, 并对矢量 VQ4 进行矢量量化,得到对应的最佳量化矢量 VQ4, VQ4 矢量量化需要 9 比特:

$$VQ4 = \{res_isf_{12}, res_isf_{14}, res_isf_{1}^{'}\}$$

$$VO'4 = \{res_isf_{12}^{q}, res_isf_{14}^{q}, res_isf_{14}^{q}\}$$
(34)

至此 16 维矢量 VQ1 中已经有下列 ISF 残差系数进行了矢量量化:

量化前: res_isf_0 , res_isf_2 , res_isf_4 , res_isf_6 , res_isf_8 , res_isf_{10} , res_isf_{12} , res_isf_{14} , res_isf_1

量化后: $res_isf_0^q$, $res_isf_2^q$, $res_isf_4^q$, $res_isf_6^q$, $res_isf_8^q$, $res_isf_{10}^q$, $res_isf_{12}^q$, $res_isf_{14}^q$, $res_isf_1^q$

剩余的七个未量化 ISF 残差系数组成子矢量 VQ5,利用上述量化的 ISF 残差系数对 VQ5 进行预测,并计算相应的残差子矢量 VQ6:

$$res_isf_{i}^{predict} = \theta_{i} + \alpha_{i-1} \times res_isf_{i-1}^{q} + \beta_{i+1} \times res_isf_{i+1}^{q}, i = 3,5,7,9,11,13$$

$$res_isf_{i}^{'} = res_isf_{i} - res_isf_{i}^{predict}, \quad i = 3,5,7,9,11,13$$
(35)

式中:

res_isf; predict —— 第 i 个 ISF 残差系数的预测值;

res isf; —— 第 i 个 ISF 残差系数与其预测值的残差;

 θ_i —— ISF 系数均值;

 α_{i-1} 和 β_{i+1} — 预测系数。

将 VQ6 分为如下两个矢量:

$$VQ7 = \{res_isf_3, res_isf_5, res_isf_7\}$$

$$VQ8 = \{res_isf_9, res_isf_{11}, res_isf_{13}, res_isf_{15}\}$$
(36)

对 VQ7 矢量和 VQ8 矢量分别进行矢量量化, VQ7 需要 9 比特量化, VQ8 需要 9 比特量化。

对 16 维 ISF 残差系数进行矢量量化总共需要的比特数: VQ2 需要 10 比特,VQ3 需要 9 比特,VQ4 需要 9 比特,VQ7 需要 9 比特,VQ8 需要 9 比特。总共需要 46 比特。

6. 2. 3. 2. 7 ISP 系数的插值

定义 $q^{(n)}$ 是第 n 帧 LP 分析得到的 ISP 矢量, $q^{(n-1)}$ 是第 n-1 帧 LP 分析得到的 ISP 矢量。每个子帧的 ISP 矢量 $q^{(n)}$ 插值如下:

$$q_1^{(n)} = 0.55q^{(n-1)} + 0.45q^{(n)}$$

$$q_2^{(n)} = 0.2q^{(n-1)} + 0.8q^{(n)}$$

$$q_3^{(n)} = 0.04q^{(n-1)} + 0.96q^{(n)}$$

$$q_4^{(n)} = q^{(n)}$$
(37)

得到每个子帧的 ISP 系数后,再将 ISP 系数转换为 LP 系数得到每个子帧的 LP 滤波器。 上面的插值公式既用于量化前的 ISP 系数,也用于量化后的 ISP 系数。

6.2.3.3 感知加权

对信号进行感知加权滤波处理,感知加权处理后的输出信号用于后续处理环节。 感知加权滤波器形式如下:

$$W(z) = \frac{A(z/\gamma_1)}{H_{emph}(z)}$$
 (38)

式中:

 $\gamma_1 = 0.92$;

 $H_{emph}(z)$ — 预加重滤波器。

当信号的高频能量小于低频能量时,进行高频预加重滤波,用来提升信号的高频部分,预加重滤波 器形式为:

$$H_{emph_hi}(z) = 1 - \mu_1 z^{-1}$$
 (39)

当信号的低频能量小于高频能量时,进行低频预加重滤波,用来提升信号的低频部分,预加重滤波器形式为:

$$H_{emph\ low}(z) = 1 + \mu_2 z^{-1}$$
 (40)

预加重滤波器系数 μ_1 取 0.68, μ_2 取 0.18。在高频预加重和低频预加重模式切换时,为了避免出现切换噪声,需要进行过渡平滑。具体为将预加重滤波器的系数在一定范围内渐次平滑过渡到另一模式。此外,编码器端需要编码 1 比特预加重模式信息,以告诉解码器感知加权滤波器中预加重采用的模式。规定此标志位为 0 时,表示高频预加重,为 1 时,表示低频预加重。

解码时使用逆感知加权滤波器, 逆感知加权滤波器形式如下:

$$\frac{1}{W(z)} = \frac{H_{emph}(z)}{A(z/\gamma_1)} \tag{41}$$

6.2.3.4 ACELP 激励编码

6.2.3.4.1 开环基音搜索

6.2.3.4.1.1 自相关函数序列的计算

开环基音搜索每两个子帧估计一次基音周期。进行开环基音搜索是为了估计出一个比较准确的基音 周期,从而降低闭环基音周期搜索的复杂度。

开环基音周期搜索基于感知加权后的信号进行分析。加权信号 $s_w(n)$ 在进行基音周期搜索之前,先

使用四阶 FIR 滤波器 $H_{decim2}(z)$ 进行滤波,然后再进行 2 倍下采样处理,得到信号 $s_{wd}(n)$ 进行开环基音 周期搜索。

归一化的自相关函数, 计算如下:

$$corr' = \frac{\sum_{n=0}^{63} s_{wd}(n) s_{wd}(n - delay)}{\sqrt{\sum_{n=0}^{63} s_{wd}^{2}(n) \sum_{n=0}^{63} s_{wd}^{2}(n - delay)}}$$

(42)

式中:

s_{wd}(*n*) ──感知加权域中降采样信号;

delay ——基音周期候选值,搜索范围同内部采样频率 F_s 相关,当 F_s =25. 6kHz 时,范围为 19 \sim 115; corr' ——对应于该候选值的自相关函数。

为了降低复杂度, 计算 corr = sign(corr')×corr'×corr'代替公式(42)中自相关函数, 其中 sign(corr')代表 corr'的符号。

对于每个基音周期候选值,计算自相关函数值,然后从中选取最多六个满足以下关系的基音周期候选值:

- a) 该候选值对应的自相关函数值大于前一个候选值对应的自相关函数值,并且大于后一个候选值 对应的自相关函数值;
- b) 对于满足条件 a)的基音周期候选值,选取其对应自相关函数最大的最多六个值(若出现自相 关函数值相同,则候选值较小的优先)按其对应的自相关函数值从大到小排列保存,并保存其 对应的基音周期候选值序列。

由以上两个条件确定有序自相关函数序列 max corr[6]以及对应基音周期候选值序列 peakpos[6]。

6.2.3.4.1.2 基音周期全局参考确定

引入基音周期全局参考 global_pitch 进行辅助判断,使基音周期具有平滑性。基音周期全局参考确定方法如图 30 所示,具体描述如下:

利用 6.2.3.4.1.1 确定的基音周期候选值序列 peakpos[6] 以及自相关函数序列 max corr[6]。

首先选择与前帧的基音周期全局参考接近的基音周期候选值,对其相应的自相关函数值乘以 1.2 进行加权。重新排列基音周期候选值序列 peakpos[6]以及自相关函数序列 max corr[6]。

然后对 *peakpos* [6] 以及 max *corr*[6] 消除基音周期加倍。倍周期的消除采用的是固定加权方法,其目的是找出一个最佳基音周期候选值,算法为:

- a) 设定最佳的基音周期候选值为自相关函数最大值对应的基音周期候选值。考察基音周期候选序列,对每一个基音周期候选值,选择一个自相关函数值的缩放因子。根据基音周期候选值的大小来选择缩放因子,当基音周期候选值大于阈值 25 时,选择缩放因子为 1.2;否则,选择缩放因子为 1.11;
- b) 比较该基音周期候选值对应的自相关函数值与自相关函数值序列中的最大值和缩放因子的比值,若同时满足:
 - 1) 当前考虑的基音周期候选值小于当前最佳的基音周期;
 - 2) 当前基音周期候选值对应的自相关函数值大于自相关函数序列中的最大值和缩放因子的比值。

则设定基音周期最佳候选值为当前的基音周期候选值。如此循环,直至基音周期候选值序列中的每一个基音周期候选值计算完成;

c) 判断自相关函数序列中的最大值对应的基音周期候选值是否为当前最佳基音周期候选值的加倍。若是,保持当前的基音周期最佳候选值;否则,设定自相关函数序列中最大值对应的基音

周期候选值作为最佳基音周期候选值。

得到了最佳基音周期候选值后,要进行可靠的基音周期全局参考确定。确定基音周期全局参考的算法为:

- a) 满足以下四个条件之一,即可确定可靠的基音周期参考:
 - 1) 基音周期候选值序列中,自相关函数最大值并不是最佳基音周期候选对应的自相关函数值的加倍,并且最佳的基音周期候选值同当前的基音周期全局参考(延续前一帧)的差值绝对值小于 8:
 - 2) 自相关函数序列中的最大值与其他值的比值均大于 1.7;
 - 3) 基音周期候选值序列中存在基音周期候选值为最佳基音周期候选值的加倍;
 - 4) 当前的基音周期全局参考(延续前一帧)是当前最佳基音周期候选值的加倍,并且自相关函数的最大值要大于阈值 0.36。
- b) 如果当前帧能确定可靠的基音周期参考,则为新的基音周期全局参考;否则,当前帧要延续前一帧的基音周期全局参考。如果满足以下三个条件之一,则强制基音周期全局参考为0:
 - 1) 自相关函数最大值小于 0.15;
 - 2) 保持基音周期全局参考的帧数超过2帧;
 - 3) 弱自相关函数的帧数超过1帧。

图30 基音周期全局参考确定流程

6.2.3.4.1.3 基音周期最终确定

在确定基音周期时候,利用自相关函数序列以及其对应的基音周期候选序列,将分三种情况确定最终的基音周期,具体方法见图 31 所示:

图31 基音周期确定流程

- a) 基音周期最佳候选值与基音周期全局参考的差值的绝对值小于 5,并且基音周期全局参考大于 12。此时直接输出最佳基音周期值作为基音周期。
 - b) 最大自相关函数值小于阈值 0.15。

语音段信号的相关程度比较小,不易判断出明显的基音周期。当前的基音周期搜索没有实际意义, 只是为闭环基音搜索提供一个最大程度去除长时相关性的参考。因而直接输出自相关函数最大值对应的 基音周期搜索候选值作为基音周期。

c) 无法明显判断基音周期。

引入一个基音周期确定参考值(trkp),该值用来对最后的基音周期的确定起到参考的作用,该值确定的步骤如下:

- 1) 若基音周期全局参考非零, trkp 值设定为基音周期的全局参考;
- 2) 否则, 若前一帧基音周期确定值非零, 则 trkp 值设定为前一帧基音周期确定值。
- 3) 否则, trkp 值设定为上一个不为 0 的基音周期全局参考。若上一个不为 0 的基音周期全局参 考保持超过 3 帧,则 trkp 值强制为 0。

利用上述的条件确定的trkp值,对整个基音周期候选序列进行搜索。找到基音周期候选值最接近trkp的一个值,将其对应的自相关函数加倍,并重新排序自相关函数值。最后将自相关函数最大的基音周期候选值作为基音周期输出。

6.2.3.4.2 脉冲响应计算

脉冲响应是指感知加权合成滤波器(见公式(43))的脉冲响应h(n)。脉冲响应每个子帧计算一次,将滤波器 $A(z/\gamma_1)$ 的系数用零扩展后,通过滤波器 $1/\hat{A}(z)$ 和滤波器 $1/H_{emph}(z)$ 得到脉冲响应h(n)。

$$H(z)W(z) = \frac{A(z/\gamma_1)}{\hat{A}(z)H_{emph}(z)} \qquad (43)$$

6.2.3.4.3 目标信号计算

目标信号 x(n) 定义为加权信号 $s_w(n)$ 与感知加权合成滤波器 H(z)W(z) 零输入响应 \hat{s}_0 的差,即:

$$x(n) = s_w(n) - \hat{s}_0 \qquad (44)$$

6.2.3.4.4 自适应码书

6.2.3.4.4.1 闭环基音周期搜索

闭环基音搜索的准则是使原始信号和重建信号之间加权均方误差最小,即使 R(k) 最大。

$$R(k) = \frac{\sum_{n=0}^{63} x(n) y_k(n)}{\sqrt{\sum_{n=0}^{63} y_k^2(n)}}$$
 (45)

式中:

x(n) ——目标信号;

 $y_k(n)$ ——延时 k 的滤波激励(即过去激励与 h(n) 的卷积, $y_k(n) = h(n) \otimes exc(n-k)$)。

搜索范围限制在开环基音搜索值附近,对于第一和第三子帧,使用相应开环基音值 T_{op} 附近的值,而对于第二和第四子帧,使用前一子帧分数延时 T_{i} 的整数部分 $floor(T_{i})$ 附近的值。

先计算搜索范围的第一个延时 t_{\min} 的卷积 $y_k(n)$,对其他整数延时 $k=t_{\min}+1,\cdots,t_{\max}$ 用下面公式递归计算:

$$y_k(n) = y_{k-1}(n-1) + exc(-k)h(n), \qquad n = 0, \dots, 63 \dots (46)$$

式中:

exc(k), $k = -(231 + 17), \dots, 63$ —— 激励缓冲器的值;

 $y_{k-1}(-1) = 0$.

在搜索阶段 exc(n), $n=0,\cdots,63$ 是未知的,而且只有基音延迟小于 64 才需要,为使搜索简单化,将 LP 残差存入 exc(n) 使公式(46)对所有延迟都有效。

确定最佳整数闭环延时后,则在最佳整数闭环延时附近按 1/4 样本分辨率搜索分数基音延时。内插归一化系数 R(k),并搜索其最大值得到的分数基音周期。搜索使用的 FIR 插值滤波器为海明窗 sinc 函数,截断在 ± 15 处,滤波器的截止频率(-3dB)为 5.063kHz。

确定分数基音延时后,在其对应的整数延时k和小数延时t处内插过去的激励exc(n)来计算自适应码书激励v(n):

$$v(n) = \sum_{i=0}^{15} (exc(n-k-i)b_{64}(t+4i) + exc(n-k+1+i)b_{64}(4(i+1)-t)), \qquad n = 0, \dots, 63 \qquad t = 0, \dots, 3 \quad (47)$$

式中:

内插滤波器 b_{64} — 海明窗 sinc 函数,截断在 ± 63 处,滤波器的截止频率(-3dB)为6.016kHz。

6. 2. 3. 4. 4. 2 自适应码书激励的滤波

由于宽带信号的周期性不一定会扩展到高频部分,所以为了改善宽带信号下自适应码书的性能,需要对自适应码书激励信号进行滤波。

首先,对公式(47)计算得到的自适应码书激励v(n) 做低通滤波得到其低频部分 $v_{-low}(n)$,其计算过程如下:

$$v_{low}(n) = \sum_{k=-1}^{1} b(k)v(n-k), \quad n = 0, \dots, 63 \dots$$
 (48)

式中:

b(-1) = b(1) = 0.26, b(0) = 0.48

然后, 计算自适应码书激励v(n)的高频部分v high(n):

$$v_high(n) = v(n) - v_low(n),$$
 $n = 0, \dots, 63 \dots (49)$

计算 LP 残差信号 r(n):

$$r(n) = s(n) + \sum_{i=1}^{16} \hat{a}_i s(n-i),$$
 $n = 0, \dots, 63 \dots (50)$

式中:

s(n) —— 经过预加重的信号;

 \hat{a} . —— 量化的线性预测系数。

计算 LP 残差信号 r(n) 与自适应码书激励 v(n) 的高频部分 v high(n) 的互相关 corr:

$$corr = \frac{\sum_{n=0}^{63} r(n) \times v_{high}(n)}{\sqrt{\sum_{n=0}^{63} r^{2}(n) \times \sum_{n=0}^{63} v_{high}^{2}(n)}}$$
(51)

比较相关corr 与给定阈值 $\alpha = 0.19$ 的大小,并计算自适应码书增益:

a) 若 $corr > \alpha$,则最终的自适应码书激励信号为 v(n) ; 令加权合成信号为 synth(n) ,则有 $synth(n) = h(n) \otimes v(n)$,此时增益 g_n 为 (其中 x(n) 为目标信号):

$$g_{p} = \frac{\sum_{n=0}^{63} x(n) \times synth(n)}{\sum_{n=0}^{63} synth^{2}(n)}$$
 (52)

b) 若 $corr \le \alpha$,则最终的自适应码书激励信号为 $v_low(n)$; 令加权合成信号为 synth'(n) ,则 有 $synth'(n) = h(n) \otimes v_low(n)$ 。此时增益大小 g_p 为:

$$g_{p} = \frac{\sum_{n=0}^{63} x(n) \times synth'(n)}{\sum_{n=0}^{63} (synth'(n))^{2}}$$
 (53)

自适应码书增益 g_p 范围为[0,1.2],对于一些特殊的相关性很强的信号(例如,正弦信号),需要限制 g_p 范围在[0,0.95],以保证 LP 滤波器的稳定。通过检测每帧量化前的 ISF 系数之间的最小距离小于 60Hz,来保证 LP 滤波器的稳定。如果检测到 LP 滤波器可能处于不稳定状态,则限制 g_p 不超过 0.95,以防止滤波器发散。

在编码码流中使用1比特来标识自适应码书激励信号是否使用低通滤波。

6.2.3.4.5 代数码书

6.2.3.4.5.1 代数码书结构

代数码书结构采用的是正负交错脉冲设计。每个子帧的 64 个样本位置被分为 4 个轨道,每个轨道 16 个位置。每个轨道的脉冲个数由对应的码率所决定,具体码书结构见表表 142 所示。

轨道	位置
1	0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60
2	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61
3	2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
4	3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63

表142 代数码书结构

6. 2. 3. 4. 5. 2 10. 8kbps 模式

10. 8kbps 模式下,代数码书矢量有 4 个脉冲,每个脉冲的幅度为+1 或−1。每个子帧的 64 个位置被分为 4 个轨道,每个轨道包含 1 个脉冲,见表 143 所示(脉冲 Pi 的序号 i 表示搜索顺序)。

 轨道
 脉冲
 位置

 1
 P0
 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60

 2
 P1
 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61

 3
 P2
 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62

 4
 P3
 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63

表143 10.8kbps 代数码书脉冲结构

每个轨道中 1 个脉冲的位置需要 4 比特编码,脉冲符号用 1 比特编码,4 个脉冲总共需要 $4\times(4+1)=20$ 比特。

6. 2. 3. 4. 5. 3 12. 4kbps 模式

12. 4kbps 模式下,代数码书矢量有 6 个脉冲,每个脉冲的幅度为+1 或−1。每个子帧的 64 个位置被分为 4 个轨道,其中轨道 1 和轨道 2 各包含 2 个脉冲,其余轨道各包含 1 个脉冲,见表 144 所示。

轨道	脉冲									位	置							
1	P0, P1	0,	4,	8,	12,	16,	20,	24,	28,	32,	36,	40,	44,	48,	52,	56,	60	
2	P2, P3	1,	5,	9,	13,	17,	21,	25,	29,	33,	37,	41,	45,	49,	53,	57,	61	
3	P4	2,	6,	10,	14,	18,	22,	26,	30,	34,	38,	42,	46,	50,	54,	, 58,	62	
4	P5	3,	7,	11,	15,	19,	23,	27,	31,	35,	39,	43,	47,	51,	55,	, 59,	63	

表144 12. 4kbps 代数码书脉冲结构

轨道 1 和轨道 2 中各有 2 个脉冲,各需要 $2\times4+1=9$ 比特。轨道 3 和轨道 4 中各有 1 个脉冲,各需要 4+1=5 比特,6 个脉冲总共需要 $2\times9+2\times5=28$ 比特。

6. 2. 3. 4. 5. 4 14. 0kbps 模式

14. 0kbps 模式下,代数码书矢量有 8 个脉冲,每个脉冲的幅度为+1 或-1。每个子帧的 64 个位置被分为 4 个轨道,每个轨道各包含 2 个脉冲,见表 145 所示。

轨道	脉冲									位	置							
1	P0, P1	0,	4,	8,	12,	16,	20,	24,	28,	32,	36,	40,	44,	48,	52,	56,	60	
2	P2, P3	1,	5,	9,	13,	17,	21,	25,	29,	33,	37,	41,	45,	49,	53,	57,	61	
3	P4, P5	2,	6,	10,	14,	18,	22,	26,	30,	34,	38,	42,	46,	50,	54,	58,	62	
4	P6, P7	3,	7,	11,	15,	19,	23,	27,	31,	35,	39,	43,	47,	51,	55,	59,	63	

表145 14.0kbps 代数码书脉冲结构

每个轨道中 2 个脉冲共需要 9 比特编码, 8 个脉冲总共需要 4×9=36 比特。

6. 2. 3. 4. 5. 5 15. 6kbps 模式

15. 6kbps模式下,代数码书矢量有10个脉冲,每个脉冲的幅度为+1或-1。每个子帧的64个位置被分为4个轨道,其中轨道1和轨道2各包含3个脉冲,轨道3和轨道4各包含2个脉冲,见表146 所示。

 轨道
 脉冲
 位置

 1
 P0, P1, P2
 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60

 2
 P3, P4, P5
 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61

 3
 P6, P7
 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62

 4
 P8, P9
 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63

表146 15.6kbps 代数码书脉冲结构

轨道 1 和轨道 2 中各有 3 个脉冲,各需要 13 比特编码,轨道 3 和轨道 4 中各有 2 个脉冲,各需要 9 比特,10 个脉冲总共需要 $2\times13+2\times9=44$ 比特。

6. 2. 3. 4. 5. 6 17. 2kbps 模式

17. 2kbps 模式下,代数码书矢量有 12 个脉冲,每个脉冲的幅度为+1 或-1。每个子帧的 64 个位置

被分为4个轨道,每个轨道各包含3个脉冲,见表147 所示。

表147 17. 2kbps 代数码书脉冲结构

轨	脉冲	位置	
道			
1	P0, P1, P2	0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60	
2	P3, P4, P5	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61	
3	P6, P7, P8	2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62	
4	P9, P10, P11	3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63	

每个轨道中3个脉冲各需要13比特编码,12个脉冲总共需要4×13=52比特。

6. 2. 3. 4. 5. 7 19. 6kbps 模式

19. 6kbps 模式下,代数码书矢量有 16 个脉冲,每个脉冲的幅度为+1 或-1。每个子帧的 64 个位置被分为 4 个轨道,每个轨道各包含 4 个脉冲,见表 148 所示。

表148 19.6kbps 代数码书脉冲结构

轨道	脉冲	位置	
1	P0, P1, P2, P3	0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60	
2	P4, P5, P6, P7	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61	
3	P8, P9, P10, P11	2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62	
4	P12, P13, P14, P15	3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63	

每个轨道各有 4 个脉冲, 各需要 16 比特编码, 16 个脉冲总共需要 4×16=64 比特。

6. 2. 3. 4. 5. 8 21. 2kbps 模式

21. 2kbps模式下,代数码书矢量有18个脉冲,每个脉冲的幅度为+1或-1。每个子帧的64个位置被分为4个轨道,其中轨道1和轨道2各包含5个脉冲,轨道3和轨道4各包含4个脉冲,见表149 所示。

表149 21. 2kbps 代数码书脉冲结构

轨道	脉冲	位置																
1	P0, P1, P2, P3, P4	0,	4,	8,	12,	16,	20,	24,	28,	32,	36,	40,	44,	48,	52,	56,	60	
2	P5, P6, P7, P8, P9	1,	5,	9,	13,	17,	21,	25,	29,	33,	37,	41,	45,	49,	53,	57,	61	
3	P10, P11, P12, P13	2,	6,	10,	14,	18,	22,	26,	30,	34,	38,	42,	46,	50,	54,	58,	62	
4	P14, P15, P16, P17	3,	7,	11,	15,	19,	23,	27,	31,	35,	39,	43,	47,	51,	55,	59,	63	

轨道1和轨道2中各有5个脉冲,各需要20比特编码,轨道3和轨道4中各有4个脉冲,各需要16比特,18个脉冲总共需要2×20+2×16=72比特。

6. 2. 3. 4. 5. 9 24. 4kbps 模式

24. 4kkbps模式下,代数码书矢量有24个脉冲,每个脉冲的幅度为+1或-1。每个子帧的64个位置被分为4个轨道,每个轨道各包含6个脉冲,见表150 所示。

轨道	脉冲	位置					
1	P0, P1, P2, P3, P4, P5	0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60					
2	P6, P7, P8, P9, P10, P11	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61					
3	P12, P13, P14, P15, P16, P17	2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62					
4	P18, P19, P20, P21, P22, P23	3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63					

表150 24. 4kbps 代数码书脉冲结构

每个轨道各有6个脉冲,各需要22比特编码,24个脉冲总共需要4×22=88比特。

6.2.3.4.6 代数码书搜索前的预滤波

为提高合成信号质量,增强特定的频谱成分,在代数码书搜索前使用了预滤波器。该滤波器由两部分组成,一个是周期增强部分 $1/(1-0.85z^{-T})$ (T表示基音延时的整数部分),用来增强合成信号的谐波结构;另一个是频谱倾斜部分,同 6. 2. 3. 1 中预加重滤波器有关。如果预加重滤波器为高频预加重,则频谱倾斜滤波器为 $(1-0.3z^{-1})$;如果预加重滤波器为低频预加重,则频谱倾斜滤波器为 $(1+0.3z^{-1})$ 。

6.2.3.4.7 代数码书搜索

代数码书搜索是按子帧进行,其搜索准则是使加权的输入信号和加权的合成信号之间的均方误差最小。搜索前需要对自适应码书闭环搜索中使用的目标矢量进行更新,具体方法是将原来的目标矢量减去自适应码书的贡献:

$$x_0'(n) = x_0(n) - g_p y_1(n) \cdots (54)$$

式中:

 $x_0'(n)$ ——更新后的用于代数码书搜索的目标矢量;

 $x_0(n)$ ——用于自适应码书闭环搜索的第一级目标矢量;

g,, ——未量化的自适应码书增益;

 $y_1(n) = v(n) \otimes h(n)$ ——自适应码矢量与感知加权合成滤波器脉冲响应的卷积。

令 g_c 表示未量化的代数码书增益, $y_2(n) = c(n) \otimes h(n)$ 表示代数码书矢量与感知加权合成滤波器脉冲响应的卷积,则使用如下平方误差

$$e = \sum_{n=0}^{N-1} [x_0'(n) - g_c y_2(n)]^2$$
 (55)

式中:

N---子帧长度。

最小的 g_c 为 (通过 e 对 g_c 的偏导数为零得到):

$$g_{c} = \frac{\sum_{n=0}^{N-1} x_{0}'(n) y_{2}(n)}{\sum_{n=0}^{N-1} y_{2}^{2}(n)}$$
 (56)

将得到的 g_c 代入公式(55)得最小平方误差为:

$$e_{\min} = \sum_{n=0}^{N-1} x_0^{2}(n) - \frac{\left[\sum_{n=0}^{N-1} x_0^{1}(n) y_2(n)\right]^2}{\sum_{n=0}^{N-1} y_2^{2}(n)}$$
 (57)

选择使 e_{\min} 最小的代数码书激励矢量,即选择使公式(57)右边第二项最大的代数码书激励矢量作 为合成信号的最佳激励。

若索引为k的代数码书激励矢量为 c_k ,将公式(57)右边第二项转换为矩阵形式:

$$Q_{k} = \frac{(\dot{x_{0}}' H c_{k})^{2}}{c_{k}' H' H c_{k}} = \frac{(d' c_{k})^{2}}{c_{k}' \Phi c_{k}} = \frac{(R_{k})^{2}}{E_{k}}$$
 (57)

 $d = H'x_0'$ — 目标矢量 $x_0'(n)$ 和脉冲响应 h(n) 的互相关; $\Phi = H'H$ — h(n) 的自相关矩阵。

矢量d和矩阵 Φ 在码书搜索前可预先计算为:

$$d(n) = \sum_{i=n}^{63} x_0^{'}(i)h(i-n), \qquad n = 0, \dots, 63 \qquad (58)$$

$$\phi(i,j) = \sum_{n=j}^{63} h(n-i)h(n-j), \quad i = 0, \dots, 63, \quad j = i, \dots, 63 \dots (59)$$

因为代数码矢量只有少量的非零脉冲,所以公式(58)中的分子表示为:

$$C = \sum_{i=0}^{N_p - 1} a_i d(m_i)$$
 (60)

式中:

 m_i —— 第i 个脉冲的位置;

 a_i —— 第i个脉冲的幅度;

 N_n — 脉冲的个数。

公式(58)的分母表示为:

$$E = \sum_{i=0}^{N_p - 1} \phi(m_i, m_i) + 2 \sum_{i=0}^{N_p - 2} \sum_{i=i+1}^{N_p - 1} a_i a_j \phi(m_i, m_j)$$
 (61)

由于 d(n) 和 $\phi(i,j)$ 的值在码书搜索前已经计算好, a_i 的值为 1 或-1,所以码书搜索时仅进行简单的 加减运算,这样大幅度降低码书搜索的运算量。

为了简化搜索过程,先通过参考信号b(n)做脉冲幅度的预判决,即设置某位置上的脉冲幅度等于 b(n) 在这个位置上的符号。参考信号 b(n) 的计算公式如下:

$$b(n) = \frac{res'_{LTP}(n)}{\sqrt{\sum_{i=0}^{63} res'_{LTP}(i) res'_{LTP}(i)}} + \frac{d(n)}{\sqrt{\sum_{i=0}^{63} d(i)d(i)}}, \qquad n = 0, \dots, 63 \dots$$
(62)

$$res_{LTP}^{'}(n) = res_{LTP}(n) \otimes w(n)$$
 (63)

式中:

w(n) —— 谱倾斜滤波器 $(1-0.3z^{-1})$ 的脉冲响应;

res_m(n) —— 长时预测后的残差信号,即减去自适应码书贡献的LP残差信号。

参考信号 b(n) 可以预测脉冲的位置,从而降低搜索复杂度。每个轨道对应16个不同的脉冲位置,每个不同位置对应一个 b(n) 值。在同一轨道内,依据 b(n) 绝对值的大小,从小到大对 b(n) 进行排序,记录下8个 b(n) 绝对值最大值对应的脉冲位置。后续进行搜索时,可以直接对这8个脉冲位置进行搜索。

为简化搜索过程,在码书搜索前需要用符号信息修正d(n)和 $\phi(i,j)$ 。

第 1 步, 计算出符号信息 $s_b(n) = sign[b(n)]$ 和信号 $d'(n) = d(n)s_b(n)$;

第2步,用符号信息修正 $\phi(i,j)$,即 $\phi'(i,j) = s_h(i)s_h(j)\phi(i,j)$ 。

则公式(61)和式(62)可分别转化为:

$$C = \sum_{i=0}^{N_p - 1} d'(m_i)$$
 (64)

$$E = \sum_{i=0}^{N_p-1} \phi'(m_i, m_i) + 2 \sum_{i=0}^{N_p-2} \sum_{j=i+1}^{N_p-1} \phi'(m_i, m_j)$$
 (65)

按照从上往下顺序,依次搜索每一个轨道中的所有脉冲,在搜索完一个轨道的所有脉冲后,再开始搜索下一个轨道的脉冲。在搜索时,每次搜索确定同一轨道的两个脉冲,当一个轨道上剩余脉冲个数为一个时,可以与相邻下一轨道的第一个脉冲进行组合搜索。接着从下一轨道剩余的脉冲中确定两个脉冲继续搜索。

为了具体描述搜索方法,下面就以一个轨道两个脉冲的情形进行介绍,脉冲轨道划分见表 151 所示。

轨道 (Tx)	脉冲	位置
1 (TO)	P0, P1	0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60
2 (T1)	P2, P3	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61
3 (T2)	P4, P5	2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62
4 (T3)	P6, P7	3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63

表151 脉冲轨道示意

假设脉冲轨道1到4分别用T0、T1、T2和T3表示,在轨道T0中,搜索脉冲P0和P1。脉冲P0的位置由脉冲位置参考信号b(n)在T0中的8个最大值所对应的位置中进行搜索确定。脉冲P1在轨道T0中的16个位置进行全搜索,总的搜索次数为: $8\times16=128$ (次)。在脉冲P0和P1搜索完成以后,判断轨道T0中是否还有未搜索脉冲,本实例中,轨道T0的所有脉冲已经搜索完毕,接下来开始搜索轨道T1的脉冲。最佳脉冲的判断准则是使公式(58)取值最大。

在轨道T1、T2和T3中的搜索方法与轨道T0中的方法相同。当四个轨道的所有脉冲搜索完毕之后,整个搜索过程结束,输出所有脉冲的最佳位置和符号。整个搜索过程中脉冲搜索顺序为: P0-P1、P2-P3、P4-P5和P6-P7,搜索次数为: 8×16×4=512(次)。最后,再依次搜索脉冲起始位置(P0的位置)在轨道T1、T2和T3的情形。总搜索次数为: 512×4=2048(次)。

6. 2. 3. 4. 8 代数码书矢量的编码

6. 2. 3. 4. 8. 1 代数码书矢量的编码过程

对每个轨道搜索出的脉冲使用分类组合索引编码,编码过程如下:

- a) 对轨道上需要编码的脉冲按照位置进行统计,获得有脉冲位置的数目pos_num(设pos_num的值为N)、有脉冲位置在轨道上的分布P(N)和各个有脉冲位置上的脉冲数目SU(N);
- b) 按照有脉冲位置的数目pos_num确定第一索引I1。第一索引表示了在相同有脉冲位置的数目条件下,有脉冲位置在轨道上全部可能的分布情况;
- c) 按照有脉冲位置在轨道上的分布P(N)确定第二索引I2:
- d) 按照各个有脉冲位置上的脉冲数目SU(N)确定第三索引I3;
- e) 最后生成编码索引Index(N),编码索引包括第一、二、三索引和脉冲符号索引信息。

分类组合索引编码步骤见 $6.2.3.4.8.2\sim6.2.3.4.8.6$ 。图32 给出了分类组合索引编码的处理流程。

图32 代数码书分类组合索引编码流程框图

6.2.3.4.8.2 预处理(脉冲统计)

对轨道上需要编码的脉冲按照位置进行统计,获得有脉冲位置的数目,有脉冲位置在轨道上的分布 和各个有脉冲位置上的脉冲数目。

对轨道上需要编码的脉冲按照位置进行统计时,还需要获得各个有脉冲位置的脉冲符号信息。脉冲符号矢量S(N) = $\{s(0), s(1), \dots, s(N-1)\}$ 表示各个有脉冲位置的脉冲符号信息,s(n)表示p(n)位置的脉冲符号。采用s(n) =0表示正脉冲,s(n) =1表示负脉冲的编码方法。

6. 2. 3. 4. 8. 3 第一索引 I1 (按位置数分类)

按照有脉冲位置的数目pos_num=N确定第一索引I1。

每个轨道上共有16个位置。编码的脉冲数目为6时,有脉冲的位置数分别是1、2、3、4、5、6,与 其对应的第一索引分别为0x1E0000、0x1D0000、0x1C0000、0x080000、0x100000、0x000000;编码的脉 冲数目为5时,有脉冲位置的数目分别为1、2、3、4、5,与其对应的第一索引分别为0x00000、0x08000、0x10000、0x20000、0x40000;编码的脉冲数目为4时,有脉冲位置的数目分别为1、2、3、4,与其对应的第一索引分别为0x0000、0x2000、0x4000、0x8000;编码的脉冲数目为3时,有脉冲位置的数目分别为1、2、3,与其对应的第一索引分别为0x1C00、0x1800、0x0000;编码的脉冲数目为2时,有脉冲位置的数目分别为1、2,与其对应的第一索引分别为0x1E0、0x000;编码的脉冲数目为1时,有脉冲位置的数目为1,与其对应的第一索引是0x00。

6.2.3.4.8.4 第二索引 I2(位置编码)

第二索引 I2 指示当前有脉冲位置的分布情况。

将有脉冲位置在轨道上的分布对应为一个 N 维脉冲位置矢量 P (N):

式中:

P(N) 的可能组合样本数为 C_M^N 。这些可能的组合样本按 p(0) 小的矢量排列在前,p(0) 相同时,p(1) 小的矢量排列在前,后面依次类推顺序排列。这样所有可能的脉冲位置矢量就有了一个大小为 C_M^N 排序表。一个 N 维脉冲位置矢量 P(N) 在排序表的位置序号就是第二索引 I2,计算公式如下:

$$I2 = C_M^N - C_{M-p(0)}^N + \sum_{n=1}^{N-1} \left[C_{M-p(n-1)-1}^{N-n} - C_{M-p(n)}^{N-n} \right] \quad \cdots$$
 (67)

式中:

 C_M^N —— I2 全部可能的取值数,I2 的值从 0 开始计数,且 I2 \in [0, C_M^N —1]。

6.2.3.4.8.5 第三索引 13 (按有脉冲位置上脉冲数量分布分类)

SU(N)与 P(N)是同维度的矢量,但受限于 su(0)+su(1)+···+su(N-1)= ω ,且 ω 的数值通常不大,一般为 $1\sim6$,因此 SU(N)的可能组合样本数 Class(N)较小。SU(N)与第三索引 I3 关系在高维度情况下采用查询关系,在低维度情况采用计算关系。在某些极端情况下,例如 N=1 或 N= ω ,此时 SU(N)只有一种可能情况,无须由 I3 进行指示,可不编码 I3。索引 I3 的值从 0 开始计数,且 $13\in[0,Class(N)-1]$ 。

6.2.3.4.8.6 编码索引生成

由于 I2、I3 一般不能表示为 2 的整数幂, 所以 I2、I3 合并成 I23, 合并公式如下:

$$I23 = I3 \times C_M^N + I2$$
 (68)

编码索引 Index (N) 还包含各个脉冲符号索引 s (n) 的信息,长度为 N 的脉冲符号矢量 S (N) 字段被添加到编码索引的最后 N 位。

编码索引 Index (N) 的表示如下:

$$Index(N) = I1 + I23 \times 2^{N} + s(0) \times 2^{N-1} + s(1) \times 2^{N-2} + \dots + s(N-1) + \dots$$
 (69)

6. 2. 3. 4. 8. 7 各个脉冲数量下的索引编码的比特分配情况

各种情况下脉冲索引编码的比特详细分配情况见表 152 ~表 157 。

表152 6脉冲比特分配表

脉冲	编码		比特													
位置数	起始值	21	20	19	18	17	16	15		6	5	4	3	2	1	0
6	0x000000	0	0	0			J	2			s(0)	s(1)	s(2)	s(3)	s (4)	s (5)
5	0x100000	0	1		I3×4368 + I2							s(3)	s (4)			
4	0x080000	0	0	1		$13 \times 1820 + 12$						s(2)	s(3)			
3	0x1C0000	0	1	1	1	0	0			132	×560 +	I2		s(0)	s(1)	s(2)
2	0x1D0000	0	1	1	1	1 0 1 13×120 + 12					s(0)	s(1)				
1	0x1E0000	0	1	1	1 1 0 I2							s(0)				

表153 5脉冲比特分配表

脉冲	编码			比特								
位置数	起始值	19	18	17	16 15 14 6 5 4 3 2					1	0	
5	0x40000	0	1		I2 s(0) s(1) s(2)						s(3)	s(4)
4	0x20000	0	0	1	1 $13 \times 1820 + 12$ $s(0)$ $s(1)$						s(2)	s(3)
3	0x10000	0	0	0	1 I3×560 + I2 s(0)					s(1)	s(2)	
2	0x08000	0	0	0	0 1 13×120 + 12					s(0)	s(1)	
1	0x00000	0	0	0	0 0 12						s(0)	

表154 4脉冲比特分配表

脉冲	编码			比特									
位置数	起始值	15	14	13	13 12 11 10 6 5 4 3 2							1	0
4	0x8000	1		I2 s(0) s(1)							s(2)	s(3)	
3	0x4000	0	1	I3×560 + I2 s(0)							s(1)	s(2)	
2	0x2000	0	0	1	1 I3×120 + I2						s(0)	s(1)	
1	0x0000	0	0	0	0 0 12							s(0)	

表155 3脉冲比特分配表

脉冲	编码			比特										
位置数	起始值	12	11	10	9	8	7	6	5	4	3	2	1	0
3	0x0000	0		I2 s(0) s(1)							s(1)	s(2)		
2	0x1800	1	1	0 I3×120 + I2 s(0					s(0)	s(1)				
1	0x1C00	1	1	1	I2					s(0)				

表156 2脉冲比特分配表

脉冲	编码	比特								
位置数	起始值	8	8 7 6 5 4 3 2 1 0							0
2	0x000	0	I2 s(0) s(1)						s(1)	

|--|

表157 单脉冲比特分配表

脉冲	编码	比特				
位置数	起始值	4	3	2	1	0
1	0x00	I2 s(0)				

6.2.3.4.9 自适应和代数码书增益量化

每个子帧的自适应码书和代数码书增益使用 7 比特进行联合矢量量化,其中自适应码书增益 g_n 直 接量化,代数码书增益 g_c 通过对校正因子 γ 和每帧的代数码书平均能量 \overline{E}_s 进行量化来实现。每帧的代 数码书平均能量使用 2 比特量化。

设 $E_s(n)$ 是第n个子帧代数码书激励矢量的能量,计算公式如下:

$$E_s(n) = 10\log_{10}\left(\frac{1}{N}g_c^2\sum_{i=0}^{N-1}c^2(i)\right) = 20\log_{10}(g_c) + E_i$$
 (71)

式中:

№64 —— 子帧的长度;

c(*i*) —— 代数码书激励矢量;

E, 是按下式计算的能量值:

$$E_{i} = 10\log_{10}\left(\frac{1}{N}\sum_{i=0}^{N-1}c^{2}(i)\right)$$
 (72)

计算代数码书平均能量 \bar{E}_s 并量化,然后用于计算代数码书预测增益 g_s :

$$g_c' = 10^{0.05(\overline{E}_s - E_t)}$$
 (73)

上式是从公式 $\overline{E}_s = 20\log_{10}(g_c) + E_i$ 中推导出的。

代数码书增益g。和预测增益g。之间的校正因子 γ 由下式得到:

$$\gamma = g_c / g_c' \qquad (74)$$

每个子帧的自适应码书增益 g_p 和代数码书增益的校正因子 γ 采用7比特联合矢量量化,码书的搜 索准则使原始信号和重建信号之间加权均方误差最小,计算公式见下:

$$E = \frac{1}{N} \sum_{n=0}^{N-1} [x_0(n) - \hat{g}_p y_1(n) - \hat{g}_c y_2(n)]^2$$
 (75)

式中:

 $x_0(n)$ —— 自适应码书搜索的目标信号;

 $v_1(n)$ —— 自适应码书矢量同感知加权合成滤波器脉冲响应的卷积;

v₂(n) —— 代数码书矢量同感知加权合成滤波器脉冲响应的卷积;

 \hat{g}_{p} —— 量化的自适应码书增益; \hat{g}_{c} —— 量化的代数码书增益。

代数码书平均能量 \overline{E} 。的计算和量化过程如下:

首先计算每个子帧 LP 预测残差的能量:

$$E_{res}(n) = 10 \log_{10} \left(\frac{1}{N} \sum_{i=0}^{N-1} r^2(i) \right)$$
 (76)

然后计算每帧的平均残差能量:

$$\overline{E}_{res} = \frac{1}{4} \sum_{n=0}^{3} E_{res}(n)$$
 (77)

从残差能量中减掉自适应码书的贡献,得到每帧的代数码书平均能量 \overline{E}_s 。这通过减掉每帧开环基音搜索得到的归一化自相关能量平均值实现,即:

$$\overline{E}_s = \overline{E}_{res} - 10\overline{R}$$
 (78)

:中步

R — 开环基音搜索得到的归一化自相关能量平均值。

平均能量 \overline{E}_s 每帧用 2 比特量化,有 4 个量化级别: 18,30,42,54。通过每次对 \overline{E}_s 加上 12 (量化索引加 1) 迭代,来限制 \overline{E}_s 量化范围 $(E_{max}-27)<\overline{E}_s\leq 54$ 。其中 E_{max} 是 4 个子帧中 $E_{res}(n)$ 最大值。

6.2.4 TVC 编码

6. 2. 4. 1 TVC 编码过程

TVC 编码过程见图 33 。

变换域矢量编码技术(TVC)编码步骤简述如下:

- a) 音频输入信号通过感知加权滤波器得到目标信号;
- b) 加自适应窗:
- c) 通过 FFT 变换将时域信号变换到频域;
- d) 在变换域中,进行峰值预整形和缩放因子调整,以减少低频噪声;
- e) 对预整形后的信号进行基于变长分裂表矢量量化;
- f) 增益平衡和峰值逆整形;
- g) 逆时频变换,将频域信号变换到时域,得到量化后的时域信号;
- h) 计算和量化全局增益;
- i) 加自适应窗和重叠加,以减少因变换域量化而引起的块效应;
- j) 为下一帧保存重叠信号;
- k) 重建信号通过逆感知加权滤波器和LP分析滤波器得到激励信号,以更新ACELP的自适应码书, 允许TVC和ACELP模式之间切换。

编码码流需要传输四个参数:噪声因子、缩放因子、频谱的量化值、全局增益。6.2.4.2~6.2.4.12 将详细阐述编码算法工作流程。

图33 TVC 编码过程图

6.2.4.2 计算目标信号

对输入的信号进行感知加权滤波得到目标信号,后续计算都针对目标信号进行,感知加权滤波器传输函数如下:

$$W(z) = \frac{\hat{A}(z/\gamma_1)}{H_{emph}(z)}$$
 (79)

式中:

 $\gamma_1 = 0.92;$

 $\hat{A}(z)$ —— 由量化系数构成的 LP 滤波器;

 $H_{emph}(z)$ — 预加重滤波器。

感知加权滤波器的详细描述见6.2.3.3。

6.2.4.3 加自适应窗

自适应窗的具体窗型同上一帧编码模式以及编码模式切换有关。假设 L_1 frame表示当前帧输入信号的长度; L_2 表示当前帧自适应窗的长度; L_1 表示与上一帧重叠的样本长度; L_2 表示与下一帧重叠的样本长度。

上一帧使用 ACELP 编码时, 自适应窗如图 34 所示:

 $L_1 = 16;$

 L_2 =16;

L_frame=256;

L=288。

图34 上一帧 ACELP 编码时自适应窗

图 34 中自适应窗的窗函数为:

$$w_1(n) = 1, \quad n = 0, \dots, L - L_2 - 1$$

$$w_2(n) = \cos(2\pi n/(4L_2)), \quad n = 0, \dots, L_2 - 1$$
(80)

因为当前帧与下一帧的重叠部分长度为 L_2 ,所以当下一帧还是TVC编码时,下一帧帧头所加的窗长要和 L_2 、长度一致。

上一帧使用 TVC 编码时, 自适应窗如图 35 所示:

 L_1 =16 (上一帧由 ACELP 切换为 TVC 编码) 或 32 (上一帧没有发生模式切换);

 L_2 =32;

L_frame=256;

L=288。

图35 上一帧 TVC 编码时自适应窗

图 35 中对应自适应窗的窗函数为:

$$w_1(n) = \sin(2\pi n/(4L_1)),$$
 $n = 0, \dots, L_1 - 1$
 $w_2(n) = 1,$ $n = 0, \dots, L - L_1 - L_2 - 1 \dots (81)$
 $w_3(n) = \cos(2\pi n/(4L_2)),$ $n = 0, \dots, L_2 - 1$

6.2.4.4 时频变换

加窗信号通过 DFT 变换到频域:

$$X(k) = \sum_{n=0}^{L_{DFT}-1} x(n)e^{\frac{-2 jnk\pi}{L_{DFT}}}$$
 (82)

式中:

 L_{DET} —— DFT变换长度,取288个样本,具体实现可以使用基9的FFT快速算法。

6.2.4.5 峰值预整形

峰值预整形算法见图 36 所示:

图36 峰值预整形算法流程

处理步骤如下:

- a) 计算频谱的幅值 $M(n) = \sqrt{\text{Re}^2(n) + \text{Im}^2(n)}$;
- b) 标记前 1/4 频谱中的峰值集合 $\{p_i\}$, p_i 定义为整形频谱段幅值的局部最大值。若 M(n) > M(m), $\forall m \in [n-j, n+j]$, $m \neq n$,则 $M(n) \in \{p_i\}$ 表示一个 2 j+1 点局部的最大值,实际中 j选择为 1;
- c) 计算参考值 $ref_{max} = \sqrt{E_{max}/8}$, E_{max} 为前 1/4 频谱中划分八维频谱矢量块的最大能量;
- d) 计算峰值 p_i 的放大因子 $R_i = \left(ref_{\max} / p_i\right)^{1/2}$ 。如果 $R_i > R_{i-1}$,则 $R_i = R_{i-1}$,以保证放大因子的递减性.
- e) 在峰值集合 $\{p_i\}$ 中除去 ref_{max} 相关的峰值点,保证 ref_{max} 的不变性。对剩余的峰值点 p_i 进行放大 $p_i = p_i R_i$ 。

该模块通过提升低频峰值,达到减小低频中较小峰值处量化噪声的目的。由于只对少量的频谱点进 行放大,对全局增益影响很小。

6.2.4.6 噪声因子量化

预整形的频谱 X 划分成 K=N/8 个八维矢量。定义 B_k 为第 k 个矢量, $k=0,1,\cdots,K-1$ 。计算 B_k 的能量 E_k 为:

$$E_k = \max(2, \sum_{m=0}^{7} B_k[m] B_k[m]) \cdots$$
 (83)

根据 E 得到消耗比特数的初始估计:

$$R_k(1) = 5\log_2(\frac{E_k}{2})$$
 (84)

比特消耗估计迭代:

初始条件:设fac=128,offset=0和nbits_max= $0.95 \times (b_{max} - K)$, b_{max} 表示频谱量化可用比特数。 迭代执行10次:

- a) offset = offset + fac;
- b) $nbits = \sum_{k=1}^{K} \max(0, R_k(1) offset)$;
- c) if (nbits <= nbits_max) offset = offset fac;</pre>
- d) fac = fac / 2:

迭代过程完成后,确定了参数 offset 值,再进行下面的迭代:

初始条件: nbits = 0; n = 1; 迭代过程: for (k = K / 2;k<=K-1;++k)

```
\begin{array}{lll} tmp = R_{k}(1) & - & offset; \\ if & (tmp < 5) \\ \{ & & nbits = nbits + tmp; \\ & n = n + 1; \\ \} \end{array}
```

迭代过程完成后, nbits = nbits/n。 噪声因子计算:

$$\delta_{noise} = 10^{\frac{\log_{10}(2)}{10}(nbits-5)}$$
 (85)

噪声因子范围在 $0.1\sim0.8$ 之间,使用 3 比特量化,量化索引为 $idx = floor((8-10\times\delta_{noise})+0.5)$ 。

6.2.4.7 缩放因子控制

选择合适的缩放因子对整个频谱的不同部分进行调整,使各缩放因子控制的频带内量化噪声的分布更合理。TVC 采用两个缩放因子 g_1 和 g_2 分别对频谱样值进行调整,最终对调整后的频谱样值进行量化。缩放因子调整见图 37 。

图37 两个缩放因子的调整算法

假设频谱样值序列为 $X(0,1,\dots,N)$, 先将整个频带等分为低频带 $X(0,1,\dots,N/2)$ 和高频带 $X(N/2+1,\dots,N)$,消耗比特数的估计函数为 b=cons(X,N,g) , b_{max} 表示频谱量化可用比特数。按照下列步骤调整缩放因子:

- a) 选择 $g = g_0$, 使得全频带的比特消耗 $b_0 = cons(X(0,1,\dots,N),N,g_0)$ 满足 $b_0 < b_{max}$ 且最小化 $(b_{max} b_0)$,则 g_0 将作为两个缩放因子调整的基准值;
- b) 计算低频带的比特消耗 $b_i = cons(X(0,1,\dots,N/2),N/2,g_0)$;
- c) 选择 $g = g_2$,使得高频带的比特消耗 $b_h = cons(X(N/2, \dots, N), N/2, g_2)$ 满足 $b_h < b_{max} b_l$ 且最小化 $(b_{max} b_l b_h)$;
- d) 选择 $g = g_1$,使得低频带的比特消耗 $b_l = cons(X(0,1,\dots,N/2),N/2,g_1)$,满足 $b_l < b_{max} b_h$ 且最 小化 $(b_{max} b_l b_h)$;
- e) 用缩放因子 g_1 和 g_2 对序列 X 进行缩放。缩放后的频谱为 $X' = [X(0,1,\cdots,N/2)/g_1,X(N/2+1,\cdots,N)/g_2]$,最后将 X'送入矢量量化器;
- f) 对 ⁸/_g, 进行 7 比特编码传输,为了保持编码比特数不变,应相应减少量化可用比特数。

6.2.4.8 变长分裂表矢量量化

6.2.4.8.1 变长分裂表矢量量化过程

TVC 使用格型量化器量化经过缩放的频谱 X',频谱划分成八维矢量,使用由 Gosset 格子集(又称为 RE_s)构成的矢量码表量化。格的生成矩阵 G 产生一个格中的所有点,C=kG,k 是由整数值组成的行矢量,C 就是产生的格点。为了生成满足给定码率的矢量码表,只考虑位于给定半径的球面上的格点。使用多个不同的半径,就可以生成多码率码表。

基于分裂表的矢量量化方法框图见图 38 ,图中的变量 header 表示码头, split header 表示分裂量的码头, even flag 则表示偶标志位。基于分裂表的矢量量化方法过程如下:

- a) 在格中找到待编码数据x的最近邻点y;
- b) 判断 y 是否在基础码书 C 中,如果在,则直接计算索引 i,并编码输出到码流;
- c) 若y不在基础码书 C 中,判断y是否属于 2Ds。如果y属于 2Ds,则将其减 1,置偶标志位 (even_flag)为1;如果y不属于 2Ds,则使用分裂表编码;
- d) 再判断 y 是否在基础码书 C 中,如果在,则直接计算索引 i,并编码输出到码流;如果不在,则使用分裂表编码;
- e) 使用分裂表编码时,将 y 中的每一个分量 y(i) 分裂为 c(i) 与分裂表中的某一个值 y'(i) 的和。要选择合适的 y'(i) 使得 c(i) 的绝对值最小,并且使得生成的八个 c(i) 组成的八维矢量为基础码书 C 中的某一矢量 c 。分裂之后再检测八个 y'(i) 值的大小,若均小于等于一级扩展阈值,则采用一级扩展编码方式,否则采用二级扩展编码方式。

图38 基于分裂表的矢量量化方法编码示意图

基于分裂表的矢量量化方法,首先判断待编码数据是否在基础码书中,如果在则直接利用基础码书编码;否则,尝试将其分裂为基础码书中的码字和分裂表中一个分裂量的和,再对基础码字和分裂量分别编码。详细过程见 6. 2. 4. 8. 2 至 6. 2. 4. 8. 5 。

6.2.4.8.2 寻找最近邻点

将预整形后的频谱数据分组,每八个数为一组,组成一个八维的矢量 x ,在格中寻找与该矢量最接近的点,即最近邻点 y 。

6.2.4.8.3 基础码书的选取

如果编码矢量不在基础码书中,基于分裂表的矢量量化方法尝试进行分裂处理。为适应分裂处理,选取如下的 RE_0 基础码书:

$$RE_8 = 2D_8 \cup \{2D_8 + (1,1,\dots,1)\}$$
 其中 $D_8 = \{(x_1,x_2,\dots,x_8) \in Z^8 | x_1 + \dots + x_8$ 为偶

REs集合中所有数据之和是4的倍数,并且奇偶性相同。

基础码书 Q_0 , Q_2 , Q_3 , Q_4 和 inv_Q_4 的特征码字定义见表 158。

表158 基础码书的特征码字定义

	лын этон это ш				
特征码字	$Q_{\scriptscriptstyle 0}$	$Q_{\scriptscriptstyle 2}$	Q_3	Q_4	inv_Q_4
(0,0,0,0,0,0,0,0)	√				
(2, 0, 0, 0, 0, 0, 0, 0)		√	√		
(1, 1, 1, 1, 1, 1, 1)		√	√		
(2, 2, 0, 0, 0, 0, 0, 0)		√	√		
(2, 2, 2, 2, 0, 0, 0, 0)			√		
(3, 1, 1, 1, 1, 1, 1)			√		
(4, 0, 0, 0, 0, 0, 0, 0)			√		
(3, 3, 1, 1, 1, 1, 1, 1)				√	
(1, 1, 3, 3, 3, 3, 3, 3)					√
(4, 2, 2, 0, 0, 0, 0, 0)			√		
(3, 3, 3, 1, 1, 1, 1, 1)				√	
(1, 1, 1, 3, 3, 3, 3, 3)					√
(4, 4, 0, 0, 0, 0, 0, 0)			√		
(5, 1, 1, 1, 1, 1, 1, 1)				√	
(3, 3, 3, 3, 1, 1, 1, 1)				√	
(5, 3, 1, 1, 1, 1, 1, 1)				√	
(6, 2, 0, 0, 0, 0, 0, 0)			√		
(5, 3, 3, 1, 1, 1, 1, 1)				√	
(5, 5, 1, 1, 1, 1, 1, 1)				√	
(7, 1, 1, 1, 1, 1, 1, 1)				√	
(7, 3, 1, 1, 1, 1, 1, 1)				√	
(3, 3, 3, 3, 3, 3, 3, 1)				√	
(3, 3, 3, 3, 3, 3, 3, 3)				√	
(9, 1, 1, 1, 1, 1, 1, 1)				√	
(11, 1, 1, 1, 1, 1, 1, 1)				√	
(13, 1, 1, 1, 1, 1, 1, 1)				√	

不同的基础码书是用一个不同长度的二进制数来标识的,即基础码书的标识位 header,具体的表示方式如下:

header = 0 基础码书为 Q_0 header = 10 基础码书为 Q_2 header = 1100 基础码书为 Q_3 header = 1110 基础码书为 Q_4 header = 11111110 基础码书为 inv Q_4

6. 2. 4. 8. 4 基础码书编码

a) 直接编码

首先在基础码书中查找格中x的最近邻点y。如果在基础码书 Q_0 , Q_2 , Q_3 , Q_4 中,则直接计算码字y 在基础码书中的索引 i。将索引 i 和基础码书的标识位 header 打包输出,输出格式见图 39 。由于基础码书 Q_0 只包括一个特征码字(0,0,0,0,0,0,0),因此只编码码书的 header,不编码码书索引。

图39 Q2, Q3, Q4 输出编码格式

索引 i 的计算和编码过程如下:

- ——分解初始矢量,获得符号和初始矢量绝对值;
- ——对符号进行编码, 获得符号编码;
- ——对初始绝对值矢量进行分层组合编码,获得绝对值矢量编码;
- ——组合符号编码及绝对值矢量编码,获得初始矢量的编码;
- ——初始矢量的编码加上矢量所属特征码字在整个基础码书中偏移量,得到基础码书的索引。

b) 特殊特征码字的编码

在对基础码书 inv_Q_4 进行搜索时,若检测到待编码数据符合特殊特征码字(1, 1, 1, 3, 3, 3, 3, 3) 或(1, 1, 3, 3, 3, 3, 3),则将其进行位反转为(3, 3, 3, 1, 1, 1, 1, 1) 和(3, 3, 1, 1, 1, 1, 1, 1),并置反转标志位,即给数据加码头 header:"11111110"。然后按直接编码方法计算(3, 3, 3, 1, 1, 1, 1, 1) 和(3, 3, 1, 1, 1, 1, 1) 在码书 Q_4 中的索引,此时的输出格式见图 40 。

图40 特殊特征码字的输出编码格式

c) 2D₈ 数据的奇化编码

在对基础码书进行搜索时,若码字 y 不在基础码书中,则还需判断它是否为 $2D_8$ 数据。若为 $2D_8$ 数据,则置偶标志位为 1,即 even flag=1。

置偶标志位后,将 y 的每一个分量都减 1,得到一个各分量均为奇数的矢量。此时再判断码字 y 是否在基础码书 Q_4 中。若在,则按直接编码方法计算其在 Q_4 中的索引作为输出;若为特殊特征码字,

GB/T 25724—XXXX

则按特殊特征码字的编码方法编码; 若仍不在基础码书中, 则使用分裂表编码。

d) 基于缓存的常见特征码字快速码书搜索

基于缓存的快速码书搜索方法,是借鉴缓存使用机理的一种 VQ 快速搜索方法。该方法基于 RE。格 矢量量化中八位一组有许多是重复的数据,如果能够有效击中这些重复的数据,那么将大大提高搜 索速度,并在可能的范围内节省比特。编码流程如图 41 所示。主要步骤如下所示:

图41 基于缓存的快速码书搜索编码流程图

第1步:确定 RE。数据

将预整形后的频谱数据分组,每八个数为一组,根据就近原则将这八个数量化为 RE。集合上的点。

第2步:确定缓存类型数据和缓存空间

将码书中出现机率最高的特征码字选出来,遇到这类数据时便对其进行与缓存相关的操作,这些数据称之为缓存类型数据。选取特征码字为(1,1,1,1,1,1,1,1)和(2,2,0,0,0,0,0,0)的数据作为缓存类型数据。选取了16个空间作为缓存空间,即如果用二进制表示,需要4比特。

编码时遇到这类数据,在缓存中查找是否有与其相同的数据。如果待编数据不是缓存类型数据,则直接计算其码书索引并输出到码流。如果是缓存类型数据,则将其缓存序列号输出到码流。

第3步:编码时缓存中的数据操作

当判断得知待编码数据为缓存类型后,在缓存中查找是否有与其相同的数据。如果有,称之为"击中",没有则称之为"未击中"。对于击中了的数据,输出其相应的缓存序列号;对于未击中的数据则将其放入缓存中。此时如果缓存已占满,则需要有一个数据被替换出来。采用的替换原则是:如果数据刚入缓存,则编号为4;如果缓存中的数据被击中,则沉入最底部,编号为16;编号为1的数据,最先被替换,每次数据被击中或者刚进来,编号都会有所改变。

具体操作过程见图 42 。leader1 到 leader16 及 New leader 均为特征码字的标号。

							leader 1
1	leader 1		1	leader 1		1	leader 2
2	leader 2		2	leader 2		2	leader 4
3	leader 3		3	leader 4		3	leader 5
4	leader 4		4	leader 5		4	new leader
•••	•••		•••			•••	
14	leader 14	·	14	leader 15	·	14	leader 15
15	leader 15		15	leader 16		15	leader 16
16	leader 16		16	leader 3		16	leader 3

a): 某状态下缓存数据存放情况 b): 特征码字 leader 3 被击中后数据更新情况 c): 在 b) 状态下新的数据进来后未被击中时缓存数据替换情况

图42 缓存中的数据替换过程

图42 a)为某状态下缓存中的数据存储情况。图中16个缓存空间均已填满。第1列为缓存空间编号,第2列为所存的特征码字。此时,若下一个数据与缓存中的某个数据相同,即击中该特征码字。比如击中第3个特征码字1eader3,则进行被击中数据沉入底部的操作,见图40 b)所示。1eader3沉入第16个缓存空间,而1eader3之后的数据均往上浮1个位置,1eader4上浮到了第3个空间,leader16上浮到了第15个空间。对于未击中的情况,则见图42 c)所示。图42 c)表示新进来1个缓存数据后未被击中时缓存数据的更新过程。新数据进入第4个缓存空间,原来第4个空间里的数据上浮到第3个空间,第3个空间里的数据上浮到第2个空间,第2个空间里的数据上浮到第1个空间,而原来第1个空间里的数据则被替换出来了,不再存放在缓存中。第5个空间到第16个空间里的数据则不作变动。

而在实际的编解码过程中,只是改变缓存空间的编号,并不变换数据在缓存中的存放位置。具体过程见图43 所示。图43 与图42 表示的是同样的过程。

1	leader 1	1	leader 1	4	new leader
2	leader 2	2	leader 2	1	leader 2
3	leader 3	16	leader 3	16	leader 3
4	leader 4	3	leader 4	2	leader 4
	•••		•••	3	leader 5
				•••	•••
14	leader 14	13	leader 14	13	leader 14
15	leader 15	14	leader 15	14	leader 15
16	leader 16	15	leader 16	15	leader 16

a): 某状态下缓存数据存放情况 b): 特征码字 leader 3 被击中后数据更新情况 c): 在 b) 状态下新的数据进来后未被击中时缓存数据替换情况

图43 实际编码中缓存数据替换过程

图43 a)为某状态下缓存里的数据存放情况,图43 b)表示击中特征码字leader 3后缓存中的数据处理过程,图43 c)表示未击中情况下新存入1个数据的过程。与图43 不同的是,这里并不改变

GB/T 25724—XXXX

数据在缓存中的存放位置,而只改变空间的编号。具体过程为: 击中编号为3的特征码字时,与它相应的缓存编号变为16,而原来编号从4~16的特征码字的编号都相应减1;未击中时,将新特征码字存入原来编号为1的特征码字的位置,而原来编号为1的特征码字则被替换,不再存放在缓存中,原来编号为2、3、4的特征码字编号都减1,其余特征码字对应的编号不变。

第 4 步: 缓存标识位的编码

为了表示特征码字是否被击中,需要在码流中增加缓存标识位,可通过修改基础码书的标识位 header 实现。修改后的 header 表示如下:

header = 0 基础码书为 Q_0 header = 10 基础码书为 Q_2

header = 1100 基础码书为 Q₃

header = 1101 数据为击中了的缓存数据

header = 1110 基础码书为 Q₄

第5步:编码输出

对缓存类型数据的编码输出,如果击中了,则输出其在缓存中的地址,见图 43 a)~b),击中了 leader 3,则输出为 leader 3 在缓存中的地址编号 "3";若未击中,则计算其码书索引作为输出。

6.2.4.8.5 使用分裂表的编码

对于待编码数据未在基础码书中(也包括奇化后仍不在基础码书中的 2D₈数据和非特殊特征码字), 使用分裂表进行编码。

一个码字由于其分量的绝对值太大,不在基础码书中。对于这样的矢量编码方法是:将绝对值大的分量减去一个分裂量,得到一个绝对值足够小的差,使这个差成为基础码书中的一个码字。将这个码字在基础码书中的索引和在分裂表中分裂量的索引编码输出。

分裂表的编码见图 38 所示,在分裂表扩展处理过程中,包括两个扩展级编码方式:一级扩展编码、二级扩展编码。下面分别对两个扩展级的编码方法进行具体描述:

a) 一级扩展编码:

一级扩展编码采用等比特数来编码各维分裂量。一级扩展分裂码表见表 159 所示,分裂量取 0 或 4 两种数值。表中第三列为用二进制编码的分裂量索引,即取分裂量 0 时,编码输出为索 引 "0";取分裂量 4 时,编码输出为索引 "1"。这样,对于一个八维矢量中的八个分量,每一个分量都需要 1 比特来表示其分裂量的索引,共 8 比特。

一级扩展编码输出格式如图 44 所示,包括码头、偶标志位(even_flag)、基础码书的索引 i 和分裂量的索引 k 组成,其中码头如表 159 所示:

表159	—级扩展编码的分裂码表
75 I DA	

分裂量索引	分裂量	分裂量索引编码 (二进制)
0	0	0
1	4	1

码头	偶标志位	基础码书索引i	分裂量索引k(8比特)
----	------	---------	-------------

图44 一级扩展编码的输出编码格式

表160 一级扩展编码的码头定义表

码头编码 (二进制)	码头编码 (十六进制)	基础码书
11110	0x1E	Q_4
1111110	0x7E	\mathbf{Q}_3
1111111110	0x3FE	inv_Q_4

b) 二级扩展编码:

- 二级扩展编码采用不等长比特数来编码各维分裂量。二级扩展编码的分裂码表如表 161 所示,列出了二级扩展使用的分裂级 k0 及 $k2\sim k5$ 中的分裂量定义,k6、k7 依此类推。表中各个分裂量的大小为 4 的整数倍。
- 二级扩展使用的分裂表包括各个不同的级别,给各个级别的分裂表再定义一个码头信息,即分裂量码头(split header),定义如表 161。

表161 二级扩展编码的分裂码表

分裂 量索 引	k0中 分裂 量	k0中 分裂量 索引编码 (二进制)	k2中 分裂 量	k2中 分裂量 索引编码 (二进制)	k3中 分裂 量	k3中 分裂量 索引编码 (二进制)	k4中 分裂 量	k4中 分裂量 索引编码 (二进制)	k5中 分裂 量	k5中 分裂量 索引编码 (二进制)
0	0	无	4	0	12	00	28	000	60	0000
1			8	1	16	01	32	001	64	0001
2					20	10	36	010	68	0010
3					24	11	40	011	72	0011
4							44	100	76	0100
5							48	101	80	0101
6							52	110	84	0110
7							56	111	88	0111
8									92	1000
9									96	1001
10									100	1010
11									104	1011
12								-	108	1100
13									112	1101
14									116	1110
15									120	1111

分裂量码头编码 (二进制)	分裂量码头编码 (十六进制)	分裂级
0	0x0	k0
10	0x2	k2
110	0x6	k3
1110	0xE	k4
11110	0x1E	k5
111110	0x3E	k6
1111110	0x7E	k7

表162 二级扩展编码的分裂量码头表

若取分裂量为0时,即该维数据未进行分裂,则输出一个比特"0"作为分裂量码头来标识,且无需输出分裂量在k0中的索引;若取分裂量为4时,该分裂量在k2中,编码输出其分裂量码头索引"10",以及其在k2中的索引"0";若取分裂量为20时,该分裂量在k3中,编码输出其分裂量码头索引"110",以及其在k3中的索引"10"。

二级扩展编码输出格式如图45 ,包括码头、偶标志位(even_flag)、基础码书的索引、8个分量的分裂量码头,以及对应的8个分裂量索引。二级扩展编码的码头定义如表163 所示。

如果某一个分裂量码头为"0"时,其对应的索引不需要编码,占用0比特。分裂量索引的长度依据分裂量码头而定,分裂量在k0, k2~k7中时,所消耗的比特数如表164 所示。

码头	偶标 志位	基础 码书 索引i	第一个分量的分裂量码头	第一个分 量的分裂 量索引	第二个分 量的分裂 量码头	第二个分 量的分裂 量索引	•••••	第八个分 量的分裂 量码头	第八个分 量的分裂 量索引
----	----------	-----------------	-------------	---------------------	---------------------	---------------------	-------	---------------------	---------------------

图45 二级扩展编码的输出编码格式

表163 二级扩展编码的码头定义表

码头编码(二进制)	码头编码(十六进制)	基础码书
111110	0x3E	Q_4
11111110	0xFE	${\sf Q}_3$
111111111	0x3FF	inv_Q_4

表164 分裂量所消耗比特数表

分裂级	分裂量码头消耗比特数	分裂量索引消耗比特数	单个分裂量消耗的总比特数
k0	1	0	1
k2	2	1	3
k3	3	2	5
k4	4	3	7
k5	5	4	9
k6	6	5	11
k7	7	6	13

6.2.4.9 增益平衡

由于对不同频带样值采用了不同的缩放因子,重建信号时需要消除缩放因子的影响,即增益平衡。假设量化后输出的频谱样值为 $X_a(1,2,\cdots,N)$,则增益平衡后输出值为:

$$X_{balance} = \left[X_q(0,1,\dots,N/2), \quad \frac{g_2}{g_1} X_q(N/2+1,N/2+2,\dots,N) \right] \dots (86)$$

6.2.4.10 峰值逆整形

峰值逆整形的原理见峰值预整形部分,算法流程见图 46 所示。

图46 峰值逆整形示意图

处理步骤如下:

- a) 标记频谱中的峰值集合 $\{p_i\}$ 。 p_i 定义为整形频谱段幅值的局部最大值;
- b) 计算参考值 ref_{max} 。这里的参考值应该与峰值预整形中一致;
- c) 计算峰值 p_i 的缩小因子 $R_i = ref_{max} / p_i$;
- d) 在峰值集合 $\{p_i\}$ 中除去 ref_{max} 相关的峰值点(保证 ref_{max} 的不变性)。对剩余的峰值点 p_i 进行缩小 $p_i=p_i/R_i$ 。

6. 2. 4. 11 逆时频变换

量化频谱 $\hat{X}(k)$ 进行逆变换得到时域量化信号 $\hat{x}(n)$, IDFT 变换定义如下:

$$\hat{x}(n) = \frac{1}{L_{DFT}} \sum_{k=0}^{L_{DFT}-1} \hat{X}(k) e^{\frac{2 j n k \pi}{L_{DFT}}}$$
 (87)

式中:

 L_{DFT} —— IDFT 变换的长度,等于 288 个样本点。具体实现时可使用 IFFT。

6. 2. 4. 12 计算和量化全局增益

最佳全局增益使得量化加权信号与原始加权信号之间的均方误差最小。假设原始加权信号为x,量化加权信号为 \hat{x} ,则最佳全局增益如下:

$$g^* = \frac{\sum_{n=0}^{L_{DFT}-1} x(n)\hat{x}(n)}{\sum_{n=0}^{L_{DFT}-1} \hat{x}(n)\hat{x}(n)}$$
(88)

增益 g^* 使用对数量化为7比特索引值,具体过程如下:

- a) 计算量化加权信号能量: $E = \sum_{n=0}^{L_{DFT}-1} \hat{x}^2(n)$;
- b) 计算 RMS 值: $rms = 4\sqrt{\frac{E}{L_{DFT}}}$;
- c) 计算归一化的增益: $G = g^* \times rms$;
- d) 计算索引: $index = floor(28 \log_{10} G + 0.5)$;
- e) if (index < 0) index =0; if (index > 127) index = 127.

在编码器和解码器端,量化的全局增益 \hat{g}^* 计算如下:

$$\hat{g}^* = 10^{\frac{index}{28}} / rms \cdots (89)$$

6.2.5 高频信号编码(BWE)

高频信号编码框图见图 47 所示,图中 I 表示每个音频超帧所包含子帧的个数,当音频超帧长度为 512 时,I=4。高频信号是指输入信号中频率大于 Fs/4 的信号分量,高频信号的带宽取决于输入信号的采样频率。

图47 高频编码框图

编码步骤如下:

a) 低频和高频分析滤波器

低频信号的分析滤波器 $\hat{A}_{LF}(z)$ 直接从低频编码器获得。

高频信号的分析滤波器 $\hat{A}_{HF}(z)$: 对高频信号 $x_{HF}(i,n)$ 的每帧(256 个样本)求取一组八阶的 LP 系数,将 LP 系数转换为 ISP 系数,ISP 系数又进一步变换成 ISF 系数并用 9 比特量化。每个子帧(64 个样本)按照 6. 2. 3. 2. 7 插值公式(37)对 ISP 系数进行内插,这样就得到高频信号的分析滤波器 $\hat{A}_{HF}(z)$ 。

b) 残差计算

低频信号 $x_{LF}(i,n)$ 通过量化的分析滤波器 $\hat{A}_{LF}(z)$ 得到低频残差 $e_{LF}(i,n)$;高频信号 $x_{HF}(i,n)$ 通过量化的分析滤波器 $\hat{A}_{HF}(z)$ 得到高频残差 $e_{HF}(i,n)$;

c) FFT 变换

低频残差 $e_{LF}(i,n)$ 经过 FFT 变换得到低频残差谱 $E_{LF}(i,k)$, FFT 变换长度采用 64 点。高频残差 $e_{HF}(i,n)$ 也经过 FFT 变换得到高频残差谱 $E_{HF}(i,k)$, FFT 变换长度也采用 64 点。

d) 频谱拷贝

低频信号在时间上以 64 点为一个子帧,在频率上将低频残差谱 $E_{LFL}(i,k)$ 等分为低低频残差谱 $E_{LFL}(i,k)$ 和低高频残差谱 $E_{LFH}(i,k)$ 。因为低低频残差谱 $E_{LFL}(i,k)$ 存在很强的弦性,所以在高频拷贝中不用。而是将低高频残差谱 $E_{LFH}(i,k)$ 复制两次来得到估计的高频残差谱 $\widetilde{E}_{HF}(i,k)$ 。

e) 高频信号的时频栅格划分

当低频编码器使用 ACELP 时,高频信号的时频划分总是采用最高时间分辨率,即 64 点;相应的频率分辨率最小,其时频划分见图 48 所示。

当低频编码器使用 TAC 时,高频的时频栅格划分依赖于超帧长度。当超帧长度为 512 时,只能使用图 48 的时频栅格划分结构。

f) 增益计算

由低频残差信号代替高频残差信号,然后计算重建高频残差信号和原始高频残差信号之间增益因子: 先分别计算两个信号所对应栅格覆盖的时频数据的能量,最后计算能量比值,并转换以

dB 为单位。这样每个超帧就得到 I 个增益($g_0,g_1,g_2,\cdots,g_{I-1}$)。

g) 增益调整

对每个时频划分块,判断原始信号和拷贝信号的弦性,如果原始信号有弦而拷贝信号无弦,则 对相应块的增益进行适当的减小,以防止噪声水平过分抬高。

h) 增益矢量量化编码

最后每个超帧的连续4个增益系数组成一个增益矢量,并用7比特进行量化。

图48 时频栅格划分图

每个超帧 BWE 参数的总比特消耗为: $16 \times (I/4)$, 其中包括 I/4 组高频 LP 系数 (每组 9 比特),以及 I/4 个增益矢量(每个矢量 7 比特)。

6.2.6 识别特征参数编码

6.2.6.1 识别特征参数提取

6.2.6.1.1 去直流偏置

信号经过高通滤波器,目的是为了滤掉信号中的直流分量。高通滤波器的传递函数如下:

$$H_{h1}(z) = \frac{b_0 - b_1 z^{-1} + b_2 z^{-2}}{1 - a_1 z^{-1} + a_2 z^{-2}}$$
 (90)

式中:

 $a_1 = -1.98889;$

 $a_2 = 0.98895$;

 $b_0 = 0.99446$;

 $b_1 = -1.98892;$

 $b_2 = 0.99446$

6.2.6.1.2 噪声消除

噪声消除模块主要作用是降低背景噪声,提高信号的信噪比。无论语音识别还是声纹识别算法,噪声对识别结果影响很大。因此在识别特征参数提取之前,应先对信号进行降噪处理。噪声消除算法描述 参见附录 J。

6.2.6.1.3 波形预处理

6. 2. 6. 1. 3. 1 基音周期搜索

波形预处理应用于降噪后的信号。降噪模块的输出(每帧 160 个样本)存储在包含 480 个样本的缓

GB/T 25724—XXXX

存中,波形预处理模块处理的窗大小 N_{in} 为缓存中前 400 个样本。图 49 描述了波形预处理模块的原理。

图49 波形预处理原理框图

利用信号的归一化自相关对降噪后的信号估计基音周期,归一化自相关计算如下:

$$corr = \frac{\sum_{n=0}^{239} s_{nr}(n) s_{nr}(n - delay)}{\sqrt{\sum_{n=0}^{239} s_{nr}^{2}(n) \sum_{n=0}^{239} s_{nr}^{2}(n - delay)}}, \quad 40 \le delay \le 160 \dots (91)$$

详细基音周期搜索算法描述见6.2.3.4.1。

6.2.6.1.3.2 候选基频波峰位置搜索

在波形预处理窗内搜索绝对值最大的M个样本点所对应的位置作为候选基频波峰位置,记为: Pc[i], $i=1,2,\cdots,M$; 按该位置所对应的信号样本绝对值从大到小顺序排列。

$$Pc[1], \cdots, Pc[M] = \underset{\substack{n=0,\cdots,L-1\\n=0,\cdots,L-1}}{\operatorname{garg\,max}} \left(|s_{nr}(n)| \right)$$
 (92)

式中:

M=3.

6.2.6.1.3.3 最佳基频波峰位置确定

该模块用来通过基音周期和候选基频波峰位置来确定最佳基频波峰位置,根据基音周期Tp在本帧范围内延拓出的所有对应位置上样本的平均幅度值,计算每个候选基频波峰位置:

$$Mp_avg[i] = \frac{\left|\sum_{j} s(Pc[i] + j \times Tp)\right|}{D}, \quad i = 1, \dots, M$$
 (93)

式中:

D——满足 $0 \le Pc[i] + j \times Tp \le N_m$ −1的j的个数;

 $Mp_avg[i]$ ——根据第i个候选基频波峰位置所计算的平均幅度值,M为候选基频波峰位置个数。假设最佳的基频波峰位置为 Pf,则:

$$Pf = \underset{i=1 \dots M}{\arg\max} (Mp _avg[i]) \cdots (94)$$

6. 2. 6. 1. 3. 4 波形加权

波形加权就是将基频波峰位置附近的信号提升,其他位置的信号减小,从而起到提高信噪比同时增 强基频的作用。方法是在该帧信号内的每个基音周期内用窗函数加权。波峰附近的权值大,其他位置的 权值小,同时窗函数要尽量保证处理后的信号连续。见图50 所示。

L----窗函数的长度:

Tp ——基音周期;

Pf ——最佳的基频波峰位置。

图50 波形加权处理框图

窗函数的定义为:

$$w_{swp}(n) = \begin{cases} 0.8, & n = 0\\ 1.0, & n = 1\\ 1.2, & 2 \le n \le 0.6Tp\\ 1.0, & n = 0.6Tp + 1\\ 0.8, & 0.6Tp + 2 \le n \le Tp - 1 \end{cases}$$
(95)

按照每个基音周期进行加权:

$$s_{swp}(n) = w_{swp}(i) \times s_{nr}(n), \quad n = Pf_n + i - 2, \quad 0 \le i < Tp_1$$

$$Pf_n + Tp_1 = Tp_2 \qquad (96)$$

第一个基音周期和最后一个基音周期边界处理,保证 $0 \le n < N_{in}$ 。 Pf_n 表示按基音周期扩展的基 频波峰位置, 其初值通过下面公式获得

$$Pf_n = Pf$$

$$While(Pf_n > 0) Pf_n = Tp (97)$$

6. 2. 6. 1. 4 倒谱计算

6. 2. 6. 1. 4. 1 对数能量计算

对波形加权后的信号 $s_{swp}(n)$ 的每帧能量参数取对数:

$$\ln E = \begin{cases} \ln(E_{swp}), & E_{swp} \ge E_{THRESH} \\ \ln(E_{THRESH}), & E_{swp} < E_{THRESH} \end{cases}$$

$$E_{THRESH} = \exp(-1), & E_{swp} = \sum_{n=0}^{N_{in}-1} S_{swp}(n) \times S_{swp}(n)$$

$$(98)$$

$$E_{THRESH} = \exp(-1)$$
, $E_{swp} = \sum_{n=0}^{N_{in}-1} S_{swp}(n) \times S_{swp}(n) \dots$ (99)

6.2.6.1.4.2 预加重

预加重滤波器处理后的信号 $s_{swp\ pe}(n)$:

$$s_{swp-pe}(n) = s_{swp}(n) - 0.9 \times s_{swp}(n-1) \cdots (100)$$

GB/T 25724—XXXX

式中:

 $s_{swp-pe}(-1)$ —— 上一帧的最后一个样本,如果是第一帧,则其值为0。

6.2.6.1.4.3 加窗

对预加重处理模块输出信号进行加窗处理,窗类型为长度 $N_{in}=400$ 的海明窗:

$$s_{swp_{-w}}(n) = \left[0.54 - 0.46 \times \cos\left(\frac{2\pi \times (n+0.5)}{N_{in}}\right)\right] \times s_{swp_{-pe}}(n), \quad 0 \le n \le N_{in} - 1 \dots (101)$$

6. 2. 6. 1. 4. 4 FFT 变换和功率谱估计

通过后面补零将 N_{in} 个样本扩展为512个样本。用长度 $N_{FFT}=512$ 的FFT计算出信号频谱 $X_{swp}(bin)$

$$X_{swp}(bin) = FFT \left\{ s_{swp_{-}w}(n) \right\}, \quad 0 \le bin \le N_{FFT} / 2 \quad \cdots$$
 (102)

相应的功率谱 $P_{swp}(bin)$ 为:

6.2.6.1.4.5 Mel 滤波

Mel 滤波模块将线性频率频谱表示为 Mel 刻度频谱。信号有效频带位于 f_{start} 与 f_{samp} / 2之间,在 Mel 域分为 K_{FB} 个子带,每个子带对应一个三角形频率窗,相邻子带有 50%重叠。

定义 FFT 索引 $bin = N_{FFT}$ 对应的频率是 f_{samp} ,则线性频率转换为 FFT 索引公式为:

$$index\{f\} = round\left\{\frac{f}{f_{samp}} \times N_{FFT}\right\} \cdots (104)$$

Mel 函数计算公式如下:

$$Mel\{x\} = \Lambda \times \log_{10}\left(1 + \frac{x}{\mu}\right) = \lambda \times \ln\left(1 + \frac{x}{\mu}\right), \quad \lambda = \frac{\Lambda}{\ln(10)} \quad \dots \quad (105)$$

Mel 反函数计算公式如下:

$$Mel^{-1}{y} = \mu \times \left(exp\left(\frac{y}{\lambda}\right) - 1\right)$$
 (106)

为了将 Mel 域的频带等间隔划分,通过计算 Mel 函数得到滤波器的中心频率。图 51 给出了线性 频率和 Mel 频率之间的映射关系。

图51 线性频率和 Mel 频率映射

$$f_{centr}(k) = Mel^{-1} \left\{ Mel \left\{ f_{start} \right\} + k \times \frac{Mel \left\{ f_{samp} / 2 \right\} - Mel \left\{ f_{start} \right\}}{K_{FB} + 1} \right\}, 1 \le k \le K_{FB} \quad \dots \quad (107)$$

式中:

 $f_{start} = 64Hz;$

 $f_{samp} = 16000 Hz;$

 $\mu = 700$;

 $\Lambda = 2595$:

 $\lambda = 1127$;

 $K_{FB} = 32$ °

将 Mel 滤波器的中心频率表示为 FFT 索引:

$$bin_{centr}(k) = index\{f_{centr}(k)\} = round\left\{\frac{f_{centr}(k)}{f_{samp}} \times N_{FFT}\right\}, \quad 1 \le k \le K_{FB} \quad \cdots \quad (108)$$

对第 k 个 Mel 子带,频率窗可分两个部分。前一部分(频率为 $f_{centr}(k-1) < f < f_{centr}(k)$) 宜增加权重,后一部分(频率为 $f_{centr}(k) < f < f_{centr}(k+1)$) 宜降低权重,对功率谱 $P_{swp}(bin)$ 加上这些频率窗。根据每个子带中频谱线相对于中心频率的位置,计算每个子带的频率窗权重。

$$W_{left}(i,k) = \frac{i - bin_{centr}(k-1) + 1}{bin_{centr}(k) - bin_{centr}(k-1) + 1}, \quad 1 \le k \le K_{FB}, bin_{centr}(k-1) \le i \le bin_{centr}(k)$$

$$W_{right}(i,k) = 1 - \frac{i - bin_{centr}(k)}{bin_{centr}(k+1) - bin_{centr}(k) + 1}, \quad 1 \le k \le K_{FB}, bin_{centr}(k) < i \le bin_{centr}(k+1)$$

$$\dots (109)$$

其他情况下,权重值为0。

Mel 滤波器的输出为每个子带的功率谱值 $P_{swp}(bin)$ 的加权和,公式如下:

$$E_{FB}(k) = \sum_{i=bin_{contr}(k-1)}^{bin_{contr}(k)} W_{left}(i,k) \times P_{swp}(i) + \sum_{i=bin_{contr}(k)+1}^{bin_{contr}(k+1)} W_{right}(i,k) \times P_{swp}(i), \quad 1 \le k \le K_{FB} \quad \cdots \quad (110)$$

6.2.6.1.4.6 高频聚合

6.2.6.1.4.5 求出了 32 个子带的 Mel 滤波后的输出,由于高频信号容易受到噪声的干扰,较多的子带划分影响了参数的鲁棒性,因此将高频的 9 个子带聚合成 3 个子带,聚合方法采用加权平均的方法:

$$E_{FB}(24) = \frac{\alpha E_{FB}(24) + \beta E_{FB}(25) + \gamma E_{FB}(26)}{\alpha + \beta + \gamma}$$
 (111)

$$E_{FB}(25) = \frac{\alpha E_{FB}(27) + \beta E_{FB}(28) + \gamma E_{FB}(29)}{\alpha + \beta + \gamma}$$
(112)

$$\alpha + \beta + \gamma
E_{FB}(26) = \frac{\alpha E_{FB}(30) + \beta E_{FB}(31) + \gamma E_{FB}(32)}{\alpha + \beta + \gamma}$$
(113)

式中:

 $\alpha = \beta = \gamma = 1$ •

6. 2. 6. 1. 4. 7 非线性变换(计算对数)

对 Mel 滤波器的输出取对数

$$S_{FB}(k) = \ln(E_{FB}(k)), \quad 1 \le k \le K_{FB} \dots$$
 (114)

式中:

 $K_{FB} = 26$.

限制对数滤波器组的输出不能小于-1。

6. 2. 6. 1. 4. 8 DCT 变换

对非线性变换模块的输出作 DCT 得到 13 个倒谱系数。

$$c(i) = \sum_{k=1}^{K_{FB}} S_{FB}(k) \times \cos\left(\frac{i \times \pi}{K_{FB}} \times (k - 0.5)\right), \quad 0 \le i \le 12 \dots (115)$$

式中:

 $K_{FR} = 26$.

6. 2. 6. 1. 4. 9 倒谱计算输出

倒谱计算得到的特征矢量由 14 个系数组成: 1 个对数能量系数 $\ln E$ 和 13 个倒谱系数 c(0)到 c(12)。 对数能量系数和倒谱系数 c(0) 都表示信号短时能量。

6. 2. 6. 1. 4. 10 去信道干扰

对于卷积特性的信道干扰,在倒谱域为相加。因此将信号倒谱系数减去信道倒谱系数,即可得到去除信道干扰后均衡的信号倒谱系数。

$$c_{eq}(i) = c(i) - TranCep(i), \quad i = 1, \dots, 12 \dots$$
 (116)

式中:

 $c_{ea}(i)$ — 均衡的信号倒谱系数;

TranCep(i) —— 信道倒谱系数, 初值为 0。

采用低通滤波的方法来估计信道倒谱分量TranCep(i),可采用一阶 IIR 滤波。

$$TranCep(i) = TranCep(i)(1-\alpha) + (c(i) - RefCep(i))\beta_1 + c(i)\beta_2$$
 (117)

式中:

RefCep(i) — 均衡信道下的语音信号倒谱特征矢量的统计均值。如下:

RefCep(1) = -6.618909, RefCep(2) = 0.198269, RefCep(3) = -0.740308,

RefCep(4) = 0.055132, RefCep(5) = -0.227086, RefCep(6) = 0.144280,

RefCep(7) = -0.112451, RefCep(8) = -0.146940, RefCep(9) = -0.327466,

RefCep(10) = 0.134571, RefCep(11) = 0.027884, RefCep(12) = -0.114905,

 α —— IIR 低通滤波器的参数,且满足当信噪比 *SNR* ≥ 0dB 时, α =0.01; 否则, α =0.005。

 β_1 和 β_2 —— β_1 + β_2 = α ,且满足,当 SNR 高时, β_1 >> β_2 ;当 SNR 低时, β_1 << β_2 ,见表165 设

置。

表165 低通滤波器系数定义表

SNR (dB)	SNR>20	15≤SNR<20	10≤SNR<15	5≤SNR<10	0≤SNR<5	-10≤SNR<0	SNR<-10
$oldsymbol{eta}_1$	100% α	90%α	80%α	70% α	50%α	20% α	0
$oldsymbol{eta_2}$	0	10%α	20% α	30% α	50%α	80% α	100%α

SNR 由噪声消除模块提供,如果得不到 SNR,则将参数设置为: $\alpha = 0.01$; $\beta_1 = \alpha$; $\beta_2 = 0$.

6.2.6.2 识别特征参数压缩

6. 2. 6. 2. 1 特征矢量

特征矢量就是 6.2.6.1 中从每个短时分析帧中提取的参数,包括 12 个 MFCC 系数:

式中:

t ——帧索引;

特征失量还包括 MFCC 系数 c(0,t), 对数能量系数 $\ln E(t)$ 和 VAD 标志位。

最终编码的特征矢量表示如下:

$$y(t) = \begin{bmatrix} C_{eq}(t) \\ VAD(t) \\ c(0,t) \\ \ln E(t) \end{bmatrix}$$
 (119)

6. 2. 6. 2. 2 矢量量化

特征矢量 v(t) 使用分裂的矢量量化。14 个系数(c(1)到 c(12), c(0)和 1nE)两个 1 组,被 分成7组,每组都用独立的VQ码书进行量化,VAD标志位作为1个独立比特进行传输。矢量量化所使 用的量化失真度量是加权欧氏距离:

$$d_{j}^{i,i+1} = \begin{bmatrix} y_{i}(t) \\ y_{i+1}(t) \end{bmatrix} - q_{j}^{i,i+1}$$
 (120)

$$d_{j}^{i,i+1} = \begin{bmatrix} y_{i}(t) \\ y_{i+1}(t) \end{bmatrix} - q_{j}^{i,i+1}$$

$$idx^{i,i+1}(t) = \underset{0 \le j \le (N^{i,i+1} - 1)}{\operatorname{arg \, min}} \left\{ (d_{j}^{i,i+1})^{T} W^{i,i+1} (d_{j}^{i,i+1}) \right\}, \qquad i = \{0,2,4,\cdots,12\} \quad \cdots \quad (121)$$

式中:

 $q_i^{i,i+1}$ —— 码书 $Q^{i,i+1}$ 的第 j 个码字;

 $(N^{i,i+1}-1)$ —— 码书大小;

 $W^{i,i+1}$ —— 码书 $O^{i,i+1}$ 的加权矩阵:

 $idx^{i,i+1}(t)$ —— 量化 $[y_i(t), y_{i+1}(t)]^T$ 所得到的码书索引。

加权矩阵 $W^{12,13}$ 如下:

$$W^{12,13} = \begin{bmatrix} 0.000717185 & 0 \\ 0 & 1 \end{bmatrix}$$
 (122)

其他加权矩阵为单位阵(即对角线元素为1,其他为0)。

识别特征编码提供两种编码模式,因此矢量量化的码表也需要两组:一组是直接量化特征矢量(见 表 166),另一组是量化残差矢量(见表 167)。

码书大小 量化子矢量 码书 $Q^{0, 1}$ 64 [c (1), c (2)] 64 [c (3), c (4)] [c (5), c (6)] 64 $Q^{6, 7}$ 64 [c (7), c (8)] $Q^{8, 9}$ 64 [c (9), c (10)] $Q^{\overline{10, 11}}$ 32 [c (11), c (12)] $Q^{12, 13}$ 256 [c (0), lnE]

表166 直接编码模式下量化码表

表167 预测编码模式下量化码表

	_	Ţ
码书	码书大小	量化子矢量
$Q^{0, 1}$	16	[c (1), c (2)]
Q ^{2, 3}	16	[c (3), c (4)]
${\sf Q}^{4,5}$	16	[c (5), c (6)]
Q ^{6, 7}	16	[c (7), c (8)]
Q ^{8, 9}	16	[c (9), c (10)]
Q ^{10, 11}	8	[c (11), c (12)]
$Q^{12, 13}$	64	[c (0), lnE]

6.2.7 打包格式

6.2.7.1 音频编码参数打包

512个样本点音频帧的编码参数被写入了1个二进制包,包的具体格式同编码模式相关,见图52 所示。打包的编码参数包括:4比特的模式信息,5比特填充位(填充"11111"),1比特的感知加权标志,ACELP参数或TVC参数,以及高频编码参数。对于ACELP编码模式,模式位为0;对于TVC编码模式,模式位为1;其他模式位保留,以备将来扩展。

TVC模式

图52 音频帧编码参数的数据格式

6.2.7.2 识别特征参数打包

在 6. 2. 6. 2. 2 对每帧得到的特征矢量进行矢量量化,只需传输码书索引,1 比特的 VAD 标志和 1 个 CRC 校验和。对于直接编码模式,使用 4 比特的 CRC 校验和(CRC 生成多项式为 $g(X)=1+X+X^4$);对于预测编码模式,使用 2 比特的 CRC 校验和(CRC 生成多项式为 $g(X)=1+X+X^2$)。每帧识别特征参数压缩后打包格式见图 53 和图 54 所示。

图53 直接编码模式帧的数据格式(48比特)

比特	8	7	6	5	4	3	2	1	字节
		idx	$^{2,3}(t)$			idx ⁽	$^{0,1}(t)$		1
		idx	5,7(t)			idx	1,5(t)		2
		idx ^{10,11} (t)		VAD(t)		idx [§]	$^{3,9}(t)$		3
	(CRC			idx ¹²	^{2,13} (t)			4

图54 预测编码模式帧的数据格式(32 比特)

- 6.3 解码器功能描述
- 6.3.1 低频信号解码
- 6.3.1.1 ACELP 解码

6.3.1.1.1 ACELP 解码过程

解码器解码接收到的参数并合成得到重建信号,见图55 所示。

图55 ACELP 解码合成框图

6.3.1.1.2 解码 LP 滤波器参数

接收到的 ISP 索引用来重构已量化的 ISP 系数,然后按照 6.2.3.2.7 中 ISP 系数的插值方法计算每个子帧的 ISP 系数。对于每个子帧,插值后 ISP 系数被转换为 LP 系数,用于 LP 合成滤波器来重建信号。

6.3.1.1.3 解码自适应码书矢量

接收到的自适应码书索引(基音延迟索引)用来搜索基音延迟的整数部分和小数部分。自适应码书 矢量 v(n) 使用过去的激励 u(n) 通过 FIR 滤波器来生成。接收到的 LTP 滤波标志被用来确定解码的 自适应码书矢量是 $v_1(n) = v(n)$ 还是 $v_2(n) = 0.26v(n) + 0.48v(n-1) + 0.26v(n-2)$ 。

6.3.1.1.4 解码代数码书矢量

接收到的代数码书索引用来求取激励脉冲的位置、幅度以及代数码书矢量 c(n)。如果基音延迟的整数部分小于子帧长度 64,则通过自适应滤波器 F(z) 对 c(n) 进行基音周期锐化滤波。F(z) 定义见 6. 2. 3. 4. 6 中预滤波器。

6.3.1.1.5 解码自适应和代数码书增益

接收到的增益索引提供了自适应码书增益 \hat{g}_p ,代数码书增益校正因子 $\hat{\gamma}$ 和代数码书的平均能量 E_s 。代数码书增益的重建过程为:

- a) 按 6.2.3.4.9 中公式 (72) 求得代数码书激励矢量的能量 E_i ;
- b) 按 6.2.3.4.9 中公式 (73) 代数码书的预测增益 g'_c ;
- c) 得到量化的代数码书增益 $\hat{g}_c = \hat{\gamma} g'_c$

6.3.1.1.6 代数码书增益平滑

代数码书增益平滑先计算当前帧的 ISF 参数变化因子,并对当前帧的代数码书增益进行初始化修正; 然后按照 ISF 参数变化因子确定当前帧的状态; 最后利用初始化修正后的代数码书增益以及当前帧的平滑因子,对当前帧的代数码书增益进行平滑。具体步骤如下:

a) 计算ISF变化因子isf diff, 计算公式为:

$$isf \ diff = \frac{\sum_{i=0}^{14} (isf \ new_i - isf \ old_i)^2}{400000}$$
 (123)

式中:

isf _new —— 当前帧的ISF; isf _old —— 上一帧的ISF。

b) 对代数码书增益 \hat{g}_{ϵ} 进行初始化修正

$$g_0 = \begin{cases} \max(g_{-1}, \hat{g}_c / 1.06), & \hat{g}_c > g_{-1} \\ \min(g_{-1}, \hat{g}_c \times 1.06), & \hat{g}_c \le g_{-1} \end{cases}$$
(124)

式中:

g。—— 当前帧初始化修正后的代数码书增益;

g_1 — 前一帧初始化修正后的代数码书增益。

c) 根据isf diff 将当前帧分为两类状态,根据不同状态类型,用不同平滑因子进行的增益平滑。

$$\hat{g}_{c} = \begin{cases} 0.17g_{0} + 0.83\hat{g}_{c}, & isf_diff > 0.58 \\ 0.83g_{0} + 0.17\hat{g}_{c}, & isf_diff \leq 0.58 \end{cases}$$
(125)

6.3.1.1.7 激励信号生成

每个子帧的激励信号 $\hat{u}(n)$ 由下式得到:

$$\hat{u}(n) = \hat{g}_p v(n) + \hat{g}_c c(n), \quad n = 0, \dots, 63 \dots$$
 (126)

6.3.1.1.8 信号合成

每个子帧的重建信号通过下式计算:

$$\hat{s}(n) = \hat{u}(n) - \sum_{i=1}^{16} \hat{\alpha}_i \ \hat{s}(n-i), \quad n = 0, \dots, 63 \dots$$
 (127)

式中:

 $\hat{\alpha}_i$ ——子帧的 LP 系数。

6.3.1.1.9 合成信号基音增强

在低码率下,解码音频信号仍会有一定的噪声,因此采取后处理滤波以抑制噪声。基音增强技术通过增强基频及其整数倍数的各谐波分量,抑制位于非谐波分量处的噪声,以提高解码信号的感知质量。 基音增强后处理只针对ACELP模式解码的低频合成信号,对于TAC模式解码信号不进行此后处理。

该基音增强后处理算法见图 56 所示。

T — 解码信号的基音周期;

Gain — 解码信号的基音增益。

图56 基音增强后处理算法框图

T由该子帧解码的闭环基音周期给出。基音跟踪模块为避免出现跟踪倍数基音周期问题,需要计算延迟为 T/2 处信号的归一化自相关值。如果该归一化自相关值大于 0.95,则将 T/2 作为后处理中的基音周期值。

该后处理算法按每64个样点子帧对解码信号 $\hat{s}(n)$ 进行处理,具体过程如下:

a) 计算解码信号的基音增益Gain: 确定相邻基音周期的信号能量比值,该比值的计算公式为:

$$E_c = \sqrt{\frac{\sum_{n=0}^{63} \hat{s}^2(n)}{\sum_{n=0}^{63} \hat{s}^2(n-T)}}$$
 (128)

将该比值 E_c 与从码流中解码获得的基音增益进行比较,取其中较小的一个作为最终解码信号的基音增益Gain。

b) 判断a)中计算的能量比值 E_c 是否超过预定阈值 E_t 。若超过,则执行c),进行基音增强滤波处理,否则不进行基音增强滤波处理,直接将解码信号 $\hat{s}(n)$ 作为最终的信号 $s_E(n)$ 输出。

$$s_{E}(n) = \begin{cases} \hat{s}(n), & E_{c} < E_{t} \\ \hat{s}(n) \otimes h(n), & E_{c} \ge E_{t} \end{cases}$$
 (129)

式中:

h(n)——基音增强滤波器的脉冲响应函数;

E. — 预定阈值, 其值固定为0.6

c) 基音增强滤波

基音增强滤波器的传输函数如下:

$$H(z) = G_1(1 + \lambda z^{-T})$$
 (130)

式中:

 G_1 —— 滤波器的全局增益;

λ — 局部调整因子,其值固定为 0.1。

全局增益 G_1 的计算公式为:

$$G_1 = \frac{1}{1 + \lambda \times Gain} \qquad \dots \tag{131}$$

式中:

Gain —— a)中计算的基音增益。

基音增强滤波的输出信号:

$$s_E(n) = G_1(\hat{s}(n) + \lambda \times \hat{s}(n-T)) \quad \cdots \qquad (132)$$

6.3.1.2 TVC 解码

6.3.1.2.1 TVC 解码过程

TVC 解码过程见图 57 所示。

解码器获得的码流信息:缩放因子,量化频谱值,全局增益和噪声因子。

TVC 的解码步骤简述如下:

- a) 解包, 获取 TVC 编码参数;
- b) 量化频谱值进行基于变长分裂表的反矢量量化;
- c) 增益平衡, 消除缩放因子的影响;
- d) 峰值逆整形;
- e) 逆时频变换,信号由频域变换到时域,得到的时域信号与全局增益相乘;
- f) 加自适应窗和重叠加,为下一帧保存重叠信号,自适应窗的窗长和窗型定义见 6.2.4.3;
- g) 通过逆感知加权滤波器得到合成音频信号;
- h) 如果上一帧使用 ACELP 模式编码,那么需要进行帧间平滑处理。

图57 TVC 解码过程图

6.3.1.2.2 量化频谱解码

频谱的矢量量化,TVC 使用了基础码书编码、一级分裂扩展编码和二级分裂扩展编码三种方法,详见 6.2.4.8。因此在解码中,需要根据不同编码方法进行解码操作。首先解包码流中的编码参数,通过每组数据中参数 header 值来判断这组数据使用的是哪种编码方法。如果为基础码书编码,则根据 header和索引 i 的值直接计算码字 y,然后由偶标志位来判断是否对码字进行加 1 的处理,并将其输出;如果为分裂表编码,则先计算相对应的基础码书中的码字 c,再加上分裂量还原为 y,然后由偶标志位判断是否进行加 1 的处理,最后输出 y。图 58 给出了量化频谱解码流程。

图58 量化频谱解码过程图

6.3.1.2.3 解码噪声因子

噪声因子采用 3 比特量化,见 6. 2. 4. 6。对接收到的 3 比特编码索引($0 \le idx \le 7$)),解码的噪声因子为 $\delta_{noise} = 0.1 \times (8 - idx)$ 。对于 $K/6 \le k \le K$ 范围内的频谱矢量,如果解码的频谱矢量为零矢量,则使用下面的 8 维随机矢量代替:

 $\delta_{\tiny{noise}} \times [\cos\theta_1 \quad \sin\theta_1 \quad \cos\theta_2 \quad \sin\theta_2 \quad \cos\theta_3 \quad \sin\theta_3 \quad \cos\theta_4 \quad \sin\theta_4] \cdots \cdots (133)$ 式中相位 θ_1 , θ_2 , θ_3 和 θ_4 是随机选取。

6.3.1.2.4 增益平衡及峰值逆整形

反量化频谱值通过增益平衡,即通过解码得到的两个缩放因子信息,消除缩放因子的影响,经峰值 逆整形和逆时频变换后得到时域信号,最后乘以全局增益即可得到重建的时域信号,其对应解码框图见图 59 所示。增益平衡见 6. 2. 4. 9,峰值逆整形见 6. 2. 4. 10,逆时频变换见 6. 2. 4. 11,全局增益因子的反量化见 6. 2. 4. 12。

图59 增益平衡和频谱逆整形的解码框图

6.3.1.2.5 帧间平滑处理

如果上一帧采用 ACELP 编码, 为了消除编码模式切换的影响,则需要对上一帧 ACELP 解码得到的音频信号和当前帧 TVC 解码得到的音频信号的重叠部分进行加窗和重叠相加操作。重叠部分采用的三角窗如图 60 ,对 TVC 帧重叠的音频信号用 $w_1(n)$ 加权,对 ACELP 帧重叠的音频信号用 $w_2(n)$ 加权,其定义如下所示:

图60 帧间平滑处理示意图

6.3.2 高频信号解码

6.3.2.1 高频信号解码过程

高频信号解码使用一种带宽扩展机制,并且需要用到低频信号解码中的一些数据,高频信号解码过程见图 61 所示。高频信号解码分为两步:计算高频激励信号和合成滤波。解码过程为:对低频激励信号进行增益调整得到高频的激励信号,然后通过高频 LP 合成滤波器得到合成信号。

图61 高频解码过程

6.3.2.2 高频参数解码

高频解码的参数包括: ISF 参数和增益参数。ISF 参数用来生成合成滤波器 1/Â_{HF}(z),增益参数用

GB/T 25724—XXXX

来对低频激励信号进行整形。

ISF 矢量 isf_hf_q 编码使用的是基于预测的 MSVQ。定义 2 比特索引 i_1 表示第一级码书索引,7 比特索引 i_2 表示第二级码书,则

isf hf q =
$$cb1(i_1)$$
 + $cb2(i_2)$ + mean isf hf + $\mu_{isf hf}$ × mem isf hf ······ (135)

式中:

 $cb1(i_1)$ —— 第一级码书的第 i_1 个码矢量;

cb2(i2) —— 第二级码书的第 i2个码矢量;

mean isf hf —— ISF 矢量的平均值;

 $\mu_{isf hf} = 0.5$ — 预测系数;

mem isf hf —— ISF 预测器的存储器,它的更新如下:

mem_isf_hf = isf_hf_q - mean_isf_hf (mem_isf_hf 初始值为 0)

解码的 ISF 参数先转换为 ISP 系数,再按照 6.2.3.2.7 中 ISP 系数的插值方法计算每个子帧 ISP 系数,然后将插值后的 ISP 系数转换为 LP 系数,用于 LP 合成滤波器来重建信号。

根据 4 维的高频残差增益 VQ 码表的 7 比特索引, 残差增益解码公式如下:

式中:

cb_gain_hf (idx) —— 码书 cb_gain_hf 的第 idx 个码矢量。

最终每个子帧的高频增益转换线性表示为 $10^{s_i/20}$ 。通过增益与相应低频拷贝频谱乘积获得高频残差分量,最后通过高频合成滤波输出高频信号。

6.3.3 解码后处理

将 Fs/2 采样的低频解码信号 $\hat{x}_{LF}(n)$ 和高频解码信号 $\hat{x}_{HF}(n)$ 经过上采样恢复到 Fs 采样频率,然后相加就得到全带输出信号,见图 62 。

图62 低频和高频信号合成

如果输出信号的采样频率不同于Fs,则需要进行采样频率转换。

6.3.4 识别特征参数的解码

从编码码流中提取码书索引,VAD标志位以及CRC校验和。根据码书索引,从VQ码书中查找得到估计矢量。

$$\begin{bmatrix} \hat{y}_i(t) \\ \hat{y}_{i+1}(t) \end{bmatrix} = q_{idx^{i,i+1}(t)}^{i,i+1}, \quad i = \{0,2,4,\cdots,12\}$$
(137)

在直接编码模式下,估计矢量就是解码的识别特征参数。在预测编码模式下,估计矢量只是残差矢量,需要对音频解码器输出的重建音频信号提取特征矢量,最后同解码得到的残差矢量相加得到解码的识别特征参数。

6.4 比特分配描述

6.4.1 音频编码器的比特分配描述

表168 和表169 给出了ACELP和TVC编码模式下音频码流的比特分配表,这些表给出了音频编码器产生的比特流的顺序,在输出比特时编码器先输出每个编码参数的MSB。

表168 ACELP 编码模式下的比特分配表

单位: bit/帧

		比特 (MSB-LSB)						
描述	488	424	392	344	312	280	248	216
模式位	b0 - b3	b0 - b3	b0 - b3	b0 - b3	b0 - b3	b0 - b3	b0 - b3	b0 - b3
填充位	b4 - b8	b4 - b8	b4 - b8	b4 - b8	b4 - b8	b4 - b8	b4 - b8	b4 - b8
感知加权标志位	b9	b9	b9	b9	b9	b9	b9	b9
第1个ISP子矢量	b10 - b19	b10 - b19	b10 - b19	b10 - b19	b10 - b19	b10 - b19	b10 - b19	b10 - b19
第2个ISP子矢量	b20 - b28	b20 - b28	b20 - b28	b20 - b28	b20 - b28	b20 - b28	b20 - b28	b20 - b28
第3个ISP子矢量	b29 - b37	b29 - b37	b29 - b37	b29 - b37	b29 - b37	b29 - b37	b29 - b37	b29 - b37
第4个ISP子矢量	b38 - b46	b38 - b46	b38 - b46	b38 - b46	b38 - b46	b38 - b46	b38 - b46	b38 - b46
第5个ISP子矢量	b47 - b55	b47 - b55	b47 - b55	b47 - b55	b47 - b55	b47 - b55	b47 - b55	b47 - b55
平均能量索引	b56 - b57	b56 - b57	b56 - b57	b56 - b57	b56 - b57	b56 - b57	b56 - b57	b56 - b57
				子帧 1				
自适应码书索引	b58 - b66	b58 - b66	b58 - b66	b58 - b66	b58 - b66	b58 - b66	b58 - b66	b58 - b66
LTP 滤波标志	b67	b67	b67	b67	b67	b67	b67	b67
代数码书索引	b68 - b155	b68 - b139	b68 - b131	b68 - b119	b68 - b111	b68 - b103	b68 - b95	b68 - b87
码书增益索引	b156 - b162	b140 - b146	b132 - b138	b120 - b126	b112 - b118	b104 - b110	b96 - b102	b88 - b94
			=	子帧 2				
自适应码书索引	b163 - b168	b147 - b152	b139 - b144	b127 - b132	b119 - b124	b111 - b116	b103 - b108	b95 - b100
LTP 滤波标志	b169	b153	b145	b133	b125	b117	b109	b101
代数码书索引	b170 - b257	b154 - b225	b146 - b209	b134 - b185	b126 - b169	b118 - b153	b110 - b137	b102 - b121
码书增益索引	b258 - b264	b226 - b232	b210 - b216	b186 - b192	b170 - b176	b154 - b160	b138 - b144	b122 - b128
			=	子帧 3				
自适应码书索引	b265 - b273	b233 - b241	b217 - b225	b193 - b201	b177 - b185	b161 - b169	b145 - b153	b129 - b137
LTP 滤波标志	b274	b242	b226	b202	b186	b170	b154	b138
代数码书索引	b275 - b362	b243 - b314	b227 - b290	b203 - b254	b187 - b230	b171 - b206	b155 - b182	b139 - b158
码书增益索引	b363 - b369	b315 - b321	b291 - b297	b255 - b261	b231 - b237	b207 - b213	b183 - b189	b159 - b165
			=	子帧 4				_
自适应码书索引	b370 - b375	b322 - b327	b298 - b303	b262 - b267	b238 - b243	b214 - b219	b190 - b195	b166 - b171
LTP 滤波标志	b376	b328	b304	b268	b244	b220	b196	b172
代数码书索引	b377 - b464	b329 - b400	b305 - b368	b269 - b320	b245 - b288	b221 - b256	b197 - b224	b173 - b192
码书增益索引	b465 - b471	b401 - b407	b369 - b375	b321 - b327	b289 - b295	b257 - b263	b225 - b231	b193 - b199
			一	宽扩展				
高频 ISP 索引	b472 - b480	b408 - b416	b376 - b384	b328 - b336	b296 - b304	b264 - b272	b232 - b240	b200 - b208
高频增益索引	b481 - b487	b417 - b423	b385 - b391	b337 - b343	b305 - b311	b273 - b279	b241 - b247	b209 - b215

表169 TVC 编码模式下的比特分配表

单位: bit/帧

		比特 (MSB-LSB)						
描述	488	424	392	344	312	280	248	216
模式位	b0 - b3	b0 - b3	b0 - b3	b0 - b3	b0 - b3	b0 - b3	b0 - b3	b0 - b3
填充位	b4 - b8	b4 - b8	b4 - b8	b4 - b8	b4 - b8	b4 - b8	b4 - b8	b4 - b8
感知加权标志位	b9	b9	b9	b9	b9	b9	b9	b9
第1个ISP子矢量	b10 - b19	b10 - b19	b10 - b19	b10 - b19	b10 - b19	b10 - b19	b10 - b19	b10 - b19
第2个ISP子矢量	b20 - b28	b20 - b28	b20 - b28	b20 - b28	b20 - b28	b20 - b28	b20 - b28	b20 - b28
第3个ISP子矢量	b29 - b37	b29 - b37	b29 - b37	b29 - b37	b29 - b37	b29 - b37	b29 - b37	b29 - b37
第4个ISP子矢量	b38 - b46	b38 - b46	b38 - b46	b38 - b46	b38 - b46	b38 - b46	b38 - b46	b38 - b46
第5个ISP子矢量	b47 - b55	b47 - b55	b47 - b55	b47 - b55	b47 - b55	b47 - b55	b47 - b55	b47 - b55
噪声因子	b56 - b58	b56 - b58	b56 - b58	b56 - b58	b56 - b58	b56 - b58	b56 - b58	b56 - b58
全局增益	b59 - b65	b59 - b65	b59 - b65	b59 - b65	b59 - b65	b59 - b65	b59 - b65	b59 - b65
缩放因子	b66 - b72	b66 - b72	b66 - b72	b66 - b72	b66 - b72	b66 - b72	b66 - b72	b66 - b72
代数 VQ 参数	b73 - b471	b73 - b407	b73 - b375	b73 - b327	b73 - b295	b73 - b263	b73 - b231	b73 - b199
	带宽扩展							_
高频 ISP 索引	b472 - b480	b408 - b416	b376 - b384	b328 - b336	b296 - b304	b264 - b272	b232 - b240	b200 - b208
高频增益索引	b481 - b487	b417 - b423	b385 - b391	b337 - b343	b305 - b311	b273 - b279	b241 - b247	b209 - b215

6.4.2 识别特征参数编码的比特分配描述

见 6.2.7.2 的描述。

6.5 存储、传输接口格式

6.5.1 编码模式和码率

表 170 规定了音频编码的编码模式和码率。

表170 编码模式和码率

编码模式	每帧比特数	25.6kHz 码率(kbps)
0	216	10.8
1	248	12. 4
2	280	14. 0
3	312	15. 6
4	344	17. 2
5	392	19. 6
6	424	21. 2
7	488	24. 4

每个音频帧由 512 个样本组成,但时间长度却依赖于内部采样频率 Fs ,表 171 列出了音频编码器支持的内部采样频率。

内部采样频率索引	内部采样频率(Hz)	帧长度 (ms)	内部采样频率因子
0	保留	保留	保留
1	12800	40	1/2
2	16000	32	5/8
3	24000	21. 33	15/16
4	25600	20	1
5	32000	16	5/4
6	38400	13. 33	3/2

表171 内部采样频率和对应的每帧时长

表 171 中的最后一列采样频率因子=内部采样频率/25600。内部采样频率索引在码流中用来指明 每帧使用了哪种内部采样频率。

表 172 列出的音频编码的帧类型用来表示每个音频帧的编码模式和字节数。编码帧类型和内部采样频率这两个参数共同决定了编码码率。

帧类型	编码模式	25.6kHz码率	每帧字节数
		(kbps)	
0	0	10.8	27
1	1	12. 4	31
2	2	14. 0	35
3	3	15. 6	39
4	4	17. 2	43
5	5	19. 6	49
6	6	21. 2	53
7	7	24. 4	61
8~15		保留	

表172 音频编码的帧类型

识别特征参数编码提供两种编码模式:直接编码模式和预测编码模式。直接编码模式码率为4.8kbps,对应每帧数据48比特,而预测编码模式码率为3.2kbps,对应每帧数据32比特。

码流数据打包时,为了节省帧头开销,每个帧头后紧跟一个音频超帧数据。每个音频超帧由若干音频帧组成,目前本标准规定音频超帧中只包含一个音频帧。在每个音频超帧数据中,先打包所有的音频帧码流,再打包所有的识别特征参数帧码流。由于识别特征参数帧的时间长度和音频帧的时间长度并不相同,因此在帧头中编码1比特标志位来表示当前音频超帧包括了N帧的识别特征参数码流还是N+1帧的识别特征参数码流。N取值同音频编码的内部采样频率和音频超帧的长度有关,计算如下:

$$N = Floor($$
 超帧的样本点数
内部采样频率 (Hz)×0.01)

音频支持两种码流格式: RAW 格式和 NAL 格式。NAL 格式是在 RAW 格式上增加了 NAL 层封装。字节流 NAL 单元语法见 5. 2. 3. 1。

6.5.2 音频数据 RAW 格式

6.5.2.1 音频数据单元格式

音频数据单元 audio_data_unit() 定义见表 173 所示,一个音频数据单元打包一个音频超帧数据。

表173 音频数据单元的格式

audio_data_unit () {	描述符	说明
audio_frame_header ()		帧头,包括编码参数和码流标志位
if (extension_flag)		
audio_frame_extension_header ()		扩展帧头,包括编码扩展信息
audio_frame_data ()		音频超帧数据,包括音频码流和识别特征参数码流
}		

帧头 audio_frame_header () 定义见表 174 所示。

表174 帧头格式

audio_frame_header () {	描述符	说明
version_id	u (1)	编码器的版本号,0表示1.0,其他值保留
profile-id	u (2)	码流的档次,档次定义见表 G.1
level_id	u (4)	码流的级别,级别定义见表 G. 2
bitstream_type	u (1)	码流的内容: 0表示只有音频码流,1表示有音频码流和识别特
		征参数码流
isf_index	u (3)	音频编码采用的内部采样频率索引,具体索引定义见表 92
frame_type	u (4)	音频编码的帧类型,具体帧类型定义见表 93
extension_flag	u (1)	扩展帧头标志位: 0表示不编码, 1表示编码
}		

扩展帧头 audio_frame_extension_header() 定义见表 175 所示。

表175 扩展帧头格式

<pre>audio_frame_extension_header () {</pre>	描述符	说明
feature_type	u (2)	编码的识别特征参数: 0表示 MFCC, 其他值保留
feature_mode	u (1)	识别特征参数的编码模式: 0表示直接编码, 1表示预测编码
feature_bs_flag u (1)		音频超帧中识别特征参数码流帧数的标志位: 0表示 N 帧识别特征
		参数码流,1 表示 N+1 帧识别特征参数码流
nof time flog	u (1)	编码绝对时间信息标志位: 0表示不编码,1表示编码。规定绝对
ref_time_flag u (1)		时间表示音频超帧的第1个样本的时间
event_flag	u (1)	编码异常声音事件类型标志位: 0表示不编码,1表示编码。
direction_flag	u (1)	编码声源定向信息标志位: 0表示不编码, 1表示编码
reserve_bit	u (1)	保留位,固定为0
if (ref_time_flag) {		

hour_bits	u (5)	小时信息,取值范围在0~23之间(包括0和23)	
minute_bits	u (6)	分钟信息,取值范围在0~59之间(包括0和59)	
second_bits	u (6)	秒信息,取值范围在0~59之间(包括0和59)	
second_fraction_bits	u (14)	秒的分数信息,以 $1/16384~s$ 为单位,取值范围在 $0\sim16383$ 之间(包括 0 和 16383)	
ref_date_flag	u (1)	编码日期信息标志位: 0表示不编码, 1表示编码	
if (ref_date_flag) {			
year_minus2000_bits	u (7)	加 2000 表示年份信息, Year = year_minus2000_bits + 2000, 取值范围在 0~127 之间(包括 0 和 127)	
month_minusl_bits	u (4)	加 1 表示月份信息,Month = month_minus1_bits + 1,取值范 在 0~11 之间(包括 0 和 11)	
date_minus1_bits	u (5)	加 1 表示日期信息,Date = date_minus1_bits + 1,取值范围在 0~30 之间(包括 0 和 30)	
}			
}			
if (event_flag)			
abnormal_sound_event_type	u (8)	异常声音事件类型,具体类型定义见表 H. 1,取值范围应在 0~25 之间(包括 0 和 255)	
if (direction_flag) {			
azimuth	u (8)	声源定向的水平方向角,编码格式见 6.5.2.2	
elevation	u (8)	声源定向的仰角,编码格式见 6. 5. 2. 2	
}			

6.5.2.2 声源定向信息编码格式

声源定向信息包括水平方向的方位角 α 和垂直方向的仰角 β ,角度定义见图 63 所示,角度有效范围为 $0^\circ\sim 359^\circ$ (360°等效于 0°)。方位角和仰角分别使用 8 比特编码,有效范围 $0\sim 255$,编码角度的分辨率为 1.40625° 。

图63 麦克风阵列的坐标系统

编码时角度量化公式为:

$$\hat{\alpha} = round(\alpha/1.406\ 25)$$
 $\hat{\beta} = round(\beta/1.406\ 25)$

解码时角度的反量化公式为:

$$\alpha' = round(\hat{\alpha} \times 1.406\ 25)$$
 $\beta' = round(\hat{\beta} \times 1.406\ 25)$

如果前后相邻两帧的声源定向信息没有变化,则置当前帧的扩展帧头中 direction_flag 为零,即当前帧的扩展帧头中不编码声源定向信息,当前帧的声源定向信息同前一帧。

6.5.3 音频数据 NAL 格式

6. 5. 3. 1 音频数据 RBSP 单元

字节流 NAL 单元语法见 5. 2. 3. 1 , 定义 nal_unit_type 等于 13 的 NAL 单元负载为音频数据 RBSP 单元 audio_data_rbsp ()。

音频数据 RBSP 单元 audio_data_rbsp () 定义见表 176 。

表176 音频数据 RBSP 单元

audio_data_rbsp () {	描述符	说明
for (i=0; i <audio_unit_num; i++)="" td="" {<=""><td></td><td>audio_unit_num 表示一个音频数据 RBSP 单元包括的音频数据 单元个数,取值范围应该在 1~256 之间(包括 1 和 256)</td></audio_unit_num;>		audio_unit_num 表示一个音频数据 RBSP 单元包括的音频数据 单元个数,取值范围应该在 1~256 之间(包括 1 和 256)
audio_data_unit ()		音频数据单元
}		
rbsp_trailing_bits ()		表示 RBSP 字节流的结束
}		

6.5.3.2 音频数据的绝对时间扩展单元

音频数据采用 NAL 格式后,为了同视频部分保持一致,绝对时间信息将采用单独的 NAL 单元来传输。音频数据单元 audio_data_unit()中不包括绝对时间信息,即 audio_frame_ extension _header()中 ref_time_flag 置为零。

基于 5.2.3.5 中定义的监控扩展数据单元 surveillance_extension_rbsp(), 定义扩展单元标识(extension_id)等于 5 的监控扩展数据单元包含音频数据的绝对时间信息。

音频数据的绝对时间扩展单元 audio_time_extension()定义见表 177 ,其中绝对时间信息中未加说明的各语法元素定义同表 26 。

说明 audio_time_extension () { 描述符 extension_id u (8) 固定为5 u (5) hour_bits minute bits u (6) u (6) second_bits second_fraction_bits u (14) ref_date_flag u (1) if (ref date flag) { year_minus2000_bits u (7) month minusl bits u (4) date_minusl_bits u (5) 绝对时间所对应的音频数据 RBSP 单元中的音频数据单元的序 u (8) 号,规定绝对时间表示所对应音频数据单元的第1个样本的时 frame num 间,取值范围应该在0~255之间(包括0和255)

表177 音频数据的绝对时间扩展单元

在音频NAL单元传输和存储时,规定音频绝对时间的NAL单元同后面最靠近的音频数据的NAL单元保持对应关系,不允许改变这两个NAL单元的先后顺序。

附 录 A (规范性附录) 假设参考解码器(HRD)

A. 1 概述

本附录定义了假设参考解码器(以下简称HRD)。每一组HRD参数确定一个HRD操作模式。HRD包含一个编码图像缓存区(CPB),一个瞬时解码器和一个解码图像缓存区(DPB),见图A.1。

图A.1 假设参考解码器(HRD)

CPB 大小(比特数)为 CpbSize[SchedSelIdx], DPB 的大小(帧数)为 Max(1,

max_dec_frame_buffering)。HRD 可被某缓存周期 SEI 消息进行初始化。一旦初始化后,随后的缓存周期 SEI 消息不能再初始化 HRD。如果序列参数集改变,则 HRD 需重新初始化。在初始化后,CPB 与 DPB 均为空。编码图像数据按规定的到达时间表注入 CPB 中。图像序号以 n 表示,从 0 开始,在解码过程中,每当一个图像解码完毕,图像序号加 1。当在 CPB 移除时间到达时,图像数据被移除并由实时解码过程进行实时解码,并放入到 DPB 中。如果该图像需要在 CPB 移除时间时输出,并且为非参考图像,则不放入 DPB 中。DPB 可包含多个帧缓存,这些图像或作为后续解码图像的参考图像,或保留等待以后输出(重排序或延时)。对于放入 DPB 的图像,在其从 DPB 输出时,或不再作为参考图像时,从 DPB 中移除。CPB 的操作在 A. 2 中规定,DPB 的操作在 A. 3 中规定。

本附录中所有的操作都为实数操作,不存在舍入误差,例如 HRD 缓存区中的比特数可以不是整数值。HRD 使用两种的时间基准为:一个是 90kHz 时钟,只在 HRD 收到缓存周期 SEI 消息时使用;另一个是序列参数集中定义的时钟,其时钟基准定义为,tc = num_units_in_tick ÷ time_scale,可以认为是图像采样的最短时间间隔。

注:缓存周期SEI消息,及其周期内的编码图像数据,应关联于相同的序列参数集。如果码流中包括多序列参数集, 其HRD参数应一致。

A.2 编码图像缓存区(CPB)

A. 2.1 编码图像到达时间

图像 n 的第一个比特进入 CPB 的时间定义为起始到达时间 t_{ai} (n),最后一个比特进入 CPB 的时间定义为最终到达时间 t_{af} (n)。图像 n 的第一个比特最早进入 CPB 的时间定义为最早到达时间 t_{ai} , earliest (n)。 t_{ai} (n) 的计算如下:

如果为第一幅图像,即图像0,则 tai(0) = 0;

否则(为图像n, n > 0), 按照如下规则:

- —— 如果 $cbr_flag[SchedSelIdx]$ 等于 1,即恒定比特率情况下, tai(n) = taf(n-1)
- —— 否则 (cbr_flag[SchedSelIdx]等于 0), 变比特率情况下,

$$t_{ai}(n) = Max(t_{af}(n-1), t_{ai,earliest}(n))$$

$$t_{ai,\,earliest}(n) = t_c \times \sum_{m=0}^{n-1} cpb_removal_delay[m]$$

其中 cpb removal delay(n)见 D. 2.2 定义。

taf(n)的计算如下:

$$t_{af}(0) = b(0) \div BitRate[SchedSelIdx]$$

$$t_{af}(n) = t_{ai}(n) + b(n) \div BitRate[SchedSelIdx]$$

其中 b(n) 为图像 n 的码字长度。

如果图像 n 与图像 n-1 的序列参数集不同,HRD 参数需要重新初始化。如果图像 n 重新初始化了 HRD 参数,则有

- —— BitRate[SchedSelIdx]在 tai(n)时更新;
- —— 对于 CpbSize[SchedSelIdx],如果 CpbSize[SchedSelIdx]的新值超过原 CPB 的大小,在 tai (n) 时更新;
- —— 否则 CpbSize [SchedSelIdx]的新值在 tr(n)时更新。

A. 2. 2 编码图像移除时间

图像 n 从 CPB 中移除的标定时间定义为标定移除时间 $t_{r,n}(n)$,从 CPB 中移除的实际时间定义为实际移除时间 $t_r(n)$ 。

tr,n(n)的计算如下:

对于图像 0,

对于图像 n,

$$t_{r,n}(n) = t_{r,n}(n-1) + t_c \times cpb_removal_delay(n)$$

 $t_{r,n}$ (n-1) 为当前缓存周期前一个图像的标定移除时间, $cpb_removal_delay(n)$ 为与图像 n 关联的图像 定时 SEI 消息中规定的 $cpb_removal_delay$ 的值。如果图像 n 为未初始化 HRD 的缓存周期的第一个图像,则上式中的 $t_{r,n}$ (n-1) 为前一个缓存周期的最后一个图像的标定移除时间。

tr(n)的计算如下:

如果 low delay hrd flag 等于 0 或 $t_{r,n}(n) >= t_{af}(n)$,

$$t_r(n) = t_{r,n}(n)$$

否则 (low_delay_hrd_flag 等于 1 或 tr,n(n) 〈 taf(n)),

$$t_r(n) = t_{r,n}(n) + t_c \times Ceil((t_{af}(n) - t_{r,n}(n)) \div t_c)$$

后一种情况防止 b(n) 很大时的非正常移除。

A.3 解码图像缓存区(DPB)

A. 3. 1 图像的输出和移除

图像 n 解码后,其 DPB 输出时间 to, dpb (n)如下:

$$t_{o, dpb}(n) = t_{r}(n) + t_{c} \times dpb_output_delay(n)$$

如果无延迟, $t_{0,dpb}(n) = t_r(n)$,当前图像直接输出。如果为参考图像,则还需将当前图像存储于DPB中;否则($t_{0,dpb}(n) > t_r(n)$),当前图像延迟输出,并存储于DPB。

当满足如下两个条件时, DPB 中的某图像 m 将被移除:

a) 图像 m 不作为后续解码图像的参考图像;

b) 图像 m 的 DPB 输出时间小于或等于 CPB 中当前图像 n 的移除时间,即 $t_{0,dph}$ (m) <= tr(n)。 当帧缓存里所有数据从 DPB 里移除后,DPB 填充度减 1。

A. 3. 2 IDR图像的插入

如果解码图像为 IDR 图像, 有如下操作:

- a) 所有在 DPB 中的图像均不作为后续解码图像的参考图像;
- b) 当其不是第一幅 IDR 图像,且根据序列参数集得到的 FrameWidth,FrameHeight,max_dec_frame_buffering 的值与前面图像对应的序列参数集中定义的值不同时,DPB 中所有的帧缓存清空且不输出,DPB 填充度重置为 0。

A. 3. 3 图像的标记和存储

如果当前图像为参考图像,或者为非参考图像但 to, dpb (n) > tr (n),则需要把当前图像存储于 DPB 中。如果需要存储,则当前解码图像存在一个空的帧缓存中, DPB 填充度加 1。

附 录 B (规范性附录)字节流的格式

B.1 概述

本附录规定了字节流格式的语法与语义,用于将NAL单元流生成有序的字节流,并且NAL单元边界位置应能够从字节流中被识别。对于面向比特的传送,字节流中的比特顺序起始于第一个字节的MSB,处理至第一个字节的LSB,然后为第二个字节的MSB,以此类推。

字节流格式由一系列字节流NAL单元语法结构组成。每个字节流NAL单元语法结构包含有一个起始码前缀,后面跟随一个NAL单元。字节流NAL单元语法结构中可能包含一个额外的zero_byte语法元素,也可能包含一个或多个额外的trailing_zero_8bits语法元素。第一个字节流NAL单元语法结构中还可能包含一个或多个额外的leading zero 8bits语法元素。

B. 2 字节流NAL单元语法与语义

B. 2. 1 字节流NAL单元语法

字节流 NAL 单元语法见表 B.1

表B. 1 字节流 NAL 单元语法表

<pre>byte_stream_nal_unit(NumBytesInNALunit) {</pre>	描述符
while(next_bits(24) != 0x000001 && next_bits(32) != 0x00000001)	
leading_zero_8bits /* 应等于 0x00 */	f(8)
if(next_bits(24) != 0x000001)	
zero_byte /* 应等于 0x00 */	f(8)
start_code_prefix_one_3bytes /* 应等于 0x000001 */	f (24)
nal_unit(NumBytesInNALunit)	
while(more_data_in_byte_stream() && next_bits(24) != 0x000001 && next_bits(32) != 0x0000001)	
trailing_zero_8bits /* 应等于 0x00 */	f(8)
}	

B. 2. 2 字节流NAL单元语义

字节流 NAL 单元中 NAL 单元的顺序应遵循 NAL 单元解码顺序,见 5.2.4.3.2。

leading_zero_8bits 应等于 0x00。

注: leading_zero_8bits语法元素只能在流的第一个字节流NAL单元里出现。

zero byte 应等于 0x00。

当下述任一个条件满足时,应有 zero byte 语法元素。

- —— NAL 单元中的 nal unit type 等于 7 (序列参数集) 或 8 (图像参数集)。
- —— 字节流 NAL 单元中包含一个基本编码图像的的第一个 NAL 单元,见 5.2.4.3.2.3。

start_code_prefix_one_3bytes 为一个3字节的固定值序列,等于0x000001,该语法元素称为起

始码前缀。

trailing_zero_8bits 应等于 0x00。

B. 3 字节流NAL单元解码过程

本过程的输入为字节流,该字节流由一系列字节流 NAL 单元语法结构组成。

本过程的输出为一系列的 NAL 单元。

在解码过程开始时,解码器把其当前位置初始化为字节流的起始位置。然后提取并丢弃每一个 leading_zero_8bits 语法元素 (如果存在的话),并相应移动当前位置,直到当前位置紧接的四个字节为 0x00000001。

解码器此时重复执行下述按步骤的过程,对字节流中每一个 NAL 单元语法结构进行提取与解码,直到字节流中最后一个 NAL 单元也已经解码:

- a) 当字节流里的紧接的四个字节构成四字节序列 0x00000001,对比特流中下一个字节(为zero_byte 语法元素)进行提取并丢弃时,字节流的当前位置设为紧接被丢弃的字节的字节位置:
- b) 提取与丢弃比特流中下一个三字节序列(为 start_code_prefix_one_3bytes),且比特流当前 位置设为此紧接被丢弃的3字节序列的字节的位置;
- c) NumBytesInNALunit 设为自当前字节位置起至满足下述任一条件的位置的最后一个字节,且包括最后一个字节的编号;
 - 1) 一个三字节序列的排列等于 0x000000, 或
 - 2) 一个三字节序列的排列等于 0x000001, 或
 - 3) 字节流的结束。
- d) 该 NumBytesInNALunit 字节从比特流中移除,字节流的当前位置前移 NumBytesInNALunit 字节。 这个字节序列为 nal unit(NumBytesInNALunit),并用 NAL 单元解码过程进行解码;
- e) 当字节流中的当前位置不为字节流的结尾,且字节流中一个字节不是等于 0x0000001 开始的三字节序列,也不是等于 0x00000001 开始的四字节序列,解码器提取并丢弃每一个trailing_zero_8bits 语法元素,并相应移动当前位置,直到字节流里的当前位置接下的四个字节构成四字节的序列 0x00000001 或已至字节流的结尾。
- 注: 字节流的结束的判断方法不在本标准中规定。

附 录 C (规范性附录) 视频档次与级别

C.1 概述

档次与级别规定了对比特流的限制,因此也限制了比特流解码所需的能力。每一个档次定义了一个算法特征的子集,并限定所有与该档次一致的解码器均应支持。每一个级别定义了对本标准中的语法元素取值的限制集合。相同的级别定义集合用于所有的档次,但单独的应用对所支持的档次可能支持不同的级别。一般来说,对于特定的一个档次,不同的级别对应于对解码器负荷和存储器容量的不同要求。

本附录描述了视频不同档次和级别所对应的各种限制。所有未被限定的语法元素和参数可以取任何本标准所允许的值。如果一个解码器能对某个档次和级别所规定的语法元素的所有允许值正确解码,则称此解码器在这个档次和级别上符合本标准。如果一个比特流中不存在某个档次和级别所不允许的语法元素,并且其所含有的语法元素的值不超过此档次和级别所允许的范围,则认为此比特流在这个档次和级别上符合本标准。

profile id和level id定义了比特流的档次和级别。

注:解码器不应因为profile_id或level_id的取值落在本标准所规定的值之间,就推定这个值所代表的能力处于规定的档次与级别之间。

C. 2 视频档次

C. 2.1 视频档次的定义

视频档次的定义见表C.1。

profile_id档次0x00禁止0x11基准档次0x22保留0x33高级档次

表C.1 视频档次

C. 2. 2 基准档次

比特流若与基准档次相一致,应遵循如下限制:

- ——profile id的值应为0x11;
- ——NAL单元流中不应包含nal unit type的取值为3、4和15的NAL单元;
- ——序列参数集中的参数ldp mode flag的取值应为1;
- ——序列参数集中的参数chroma format idc的取值应为1;
- ——序列参数集中的参数bit depth的取值应为0;
- ——序列参数集中的参数refs per frame的取值应不大于3;
- ——序列参数集中的参数extended sb size flag的取值应为0;
- ——序列参数集中的参数alf enable的取值应为0;

- 一一序列参数集中的参数spatial_svc_flag的取值应为0;
- ——解码所需的参考帧缓冲区个数应不大于4。

profile_id的取值为0x11时,比特流与基准档次相一致。基准档次的比特流支持的级别包括6.0,7.0和8.0。

C. 2. 3 高级档次

比特流若与高级档次相一致,应遵循如下限制:

- ——profile id的值应为0x33;
- ——序列参数集中的参数ldp_mode_flag的取值应为0或1;
- ——序列参数集中的参数chroma_format_idc的取值应为0或1;
- ——序列参数集中的参数bit depth的取值应在0~2之间,包括0和2;
- ——序列参数集中的参数refs per frame的取值应不大于5;
- ——序列参数集中的参数extended sb size flag的取值应为0或1;
- ——序列参数集中的参数alf enable的取值应为0或1;
- 一一序列参数集中的参数spatial_svc_flag的取值应为0或1;
- ——解码所需的参考帧缓冲区个数应不大于8。

profile_id的取值为0x33时,比特流与高级档次相一致。高级档次支持的级别有6.0, 6.2, 7.0, 7.2, 8.0和8.2。

C.3 视频级别

C. 3. 1 视频级别的定义

视频级别的定义见表C.2。

表C. 2 视频级别

level_id	级别
0x00	禁止
0x40	6. 0
0x42	6. 2
0x50	7.0
0x52	7. 2
0x60	8. 0
0x62	8. 2
其他	保留

C. 3. 2 级别的参数限制

不同级别对应的参数限制见表C.3 ~表C.5。

表C.3 级别的参数限制

₹ ₩.		级别		
参数	6. 0	6. 2		
每行最大样点数	1, 920	1, 920		
每帧最大行数	1, 088	1, 088		
每秒最大帧数	30	30		
亮度样点速率	62, 668, 800	62, 668, 800		
最大比特率 MaxBR (bps)	15, 000, 000	25, 000, 000		
图像格式	4:2:0	4:2:0 或 4:2:2		
DPB 最大容量 MaxDPB(kB)	12, 240	24, 480		
CPB 最大容量 MaxCPB (kB)	20, 000	40, 000		

表C. 4 级别的参数限制

₹ ₩.	级别		
参数	7.0	7.2	
每行最大样点数	2, 592	2, 592	
每帧最大行数	1, 944	1, 944	
每秒最大帧数	30	30	
亮度样点速率	151, 165, 440	151, 165, 440	
最大比特率 MaxBR (bps)	30, 000, 000	50, 000, 000	
图像格式	4:2:0	4:2:0 或 4:2:2	
DPB 最大容量 MaxDPB (kB)	29, 525	59, 049	
CPB 最大容量 MaxCPB (kB)	40, 000	80, 000	

表C.5 级别的参数限制

⇔₩ ,		级别		
参数	8.0	8. 2		
每行最大样点数	4, 096	4, 096		
每帧最大行数	2, 304	2, 304		
每秒最大帧数	30	30		
亮度样点速率	283, 115, 520	283, 115, 520		
最大比特率 MaxBR (bps)	50, 000, 000	80, 000, 000		
图像格式	4:2:0	4:2:0 或 4:2:2		
DPB 最大容量 MaxDPB (kB)	56, 624	113, 248		
CPB 最大容量 MaxCPB (kB)	80,000	160, 000		

注:表C.3 ~表C.5 中DPB最大容量(MaxDPB)以4:2:0格式8比特样点为例。其中1kB等于1024字节。

附录 D (规范性附录) 视频可用性信息(VUI)

D.1 视频可用性信息(VUI)语法

D. 1. 1 视频可用性信息(VUI)参数语法

VUI 参数语法见表 D.1 。

表D.1 VUI参数语法表

vui_parameters() {	描述符
timing_info_present_flag	u(1)
<pre>if(timing_info_present_flag) {</pre>	
num_units_in_tick	u (32)
time_scale	u (32)
fixed_frame_rate_flag	u(1)
}	
hrd_parameters_present_flag	u(1)
<pre>if(hrd_parameters_present_flag)</pre>	
hrd_parameters()	
<pre>if(hrd_parameters_present_flag)</pre>	
low_delay_hrd_flag	u(1)
max_dec_frame_buffering	ue(v)
}	

D. 1. 2 假设参考解码器(HRD)参数语法

HRD 参数语法见表 D. 2 。

表D. 2 HRD 参数语法表

hrd_parameters() {	描述符
cpb_cnt_minus1	ue (v)
bit_rate_scale	u (4)
cpb_size_scale	u(4)
<pre>for(SchedSelIdx = 0; SchedSelIdx <= cpb_cnt_minus1; SchedSelIdx++) {</pre>	
<pre>bit_rate_value_minus1[SchedSelIdx]</pre>	ue(v)
cpb_size_value_minus1[SchedSelIdx]	ue(v)
cbr_flag[SchedSelIdx]	u(1)
}	
initial_cpb_removal_delay_length_minus1	u (5)

pb_removal_delay_length_minus1	u (5)
dpb_output_delay_length_minus1	u (5)
}	

D.2 视频可用性信息(VUI)语义

D. 2. 1 视频可用性信息(VUI)参数语义

timing_info_present_flag 等于 1 表示 num_units_in_tick, time_scale 和 fixed_frame_rate_flag 在码流中存在, timing_info_present_flag 等于 0 表示不存在上述参数。

num_units_in_tick 表示在频率为 time_scale Hz 的 clock tick 计数器的时间单元的个数。该值应大于 0,一个时钟 tick 为编码数据表示的最小时间间隔。例如,如果视频信号的频率为(30 000 ÷ 1001) Hz,time_scale 可以是 30 000,num_units_in_tick 可以是 1001。

 $time_scale$ 表示一秒钟内时间单元的总数。该值应大于 0。例如,一个时钟频率为 27MHz 的定时系统的 $time_scale$ 应为 27 000 000。

fixed_frame_rate_flag 等于 1,表示连续图像的 HRD 输出时间的时域间隔是固定的,该间隔为 num units in tick ÷ time scale。fixed frame rate flag 等于 0 则表示无此限制。

hrd_parameters_present_flag 等于 1 表示码流中后面紧跟 HRD 参数。否则表示后续码流中不存在 HRD 参数。另外,两个临时变量 HrdBpPresentFlag(用于缓存周期 SEI 消息)和CpbDpbDelaysPresentFlag(用于图像定时 SEI 消息)的取值应与hrd parameters present flag 相同。

low_delay_hrd_flag 定义了 HRD 的一种操作模式。当 fixed_frame_rate_flag 等于 1 时, low delay hrd flag 应等于 0。

max_dec_frame_buffering 定义了 HRD DPB 的帧缓存的最大个数。其取值范围从 0 到 MaxDPB,如果码流中没有该语法元素,则为 MaxDPB(见附录 C)。

D. 2. 2 假设参考解码器(HRD)参数语义

cpb_cnt_minus1 加 1 定义了可供选择的 CPB 参数的个数。cpb_cnt_minus1 的取值范围为 0~31(包括 0 和 31)。如果 low_delay_hrd_flag 等于 1,cpb_cnt_minus1 应等于 0。如果码流中没有cpb cnt minus1,则默认其值等于 0。

bit_rate_scale, bit_rate_walue_minus1[SchedSelIdx] 两个参数一起定义了第 SchedSelIdx 个 CPB 的最大输入码率。bit_rate_value_minus1[SchedSelIdx]的取值范围 0~(2³² - 2)(包括 0 和 2³² - 2),并且随索引号 SchedSelIdx 的变大而变大。码率公式为:

BitRate[SchedSelIdx] = (bit_rate_value_minus1[SchedSelIdx] + 1) \times 2^(6 + bit_rate_scale) 如果bit_rate_value_minus1[SchedSelIdx]不存在,则默认其值等于1200 \times MaxBR。

cpb_size_scale, cpb_size_value_minus1[SchedSelIdx] 两个参数一起定义了第 SchedSelIdx 个 CPB 的 CPB 的大小。cpb_size_value_minus1[SchedSelIdx]的取值范围 0~(2³² - 2)(包括 0 和 2³² - 2),并且随索引号 SchedSelIdx 的变大而变小。CPB 大小公式为:

CpbSize[SchedSelIdx] = (cpb_size_value_minus1[SchedSelIdx] + 1) \times 2^(4 + cpb_size_scale) 如果 cpb_size_value_minus1[SchedSelIdx]不存在,则默认其值等于 1200 \times MaxCPB。

cbr_flag[SchedSelIdx] 定义了第 SchedSelIdx 个 CPB 参数定义的 HRD 工作模式。如果其值等于 0,则为可变比特率模式 (VBR),如果其值等于 1,则为恒定比特率模式 (CBR)。如果码流中不存在 cbr_flag[SchedSelIdx],则默认其值等于 0。

initial_cpb_removal_delay_length_minusl 加 1 等于缓存周期 SEI 消息中的语法元素

initial_cpb_removal_delay[SchedSelIdx] 的 码 字 长 度 。 如 果 码 流 中 不 存 在 initial_cpb_removal_delay_length_minus1,则默认其值等于 23。

cpb_removal_delay_length_minus1 加1等于图像定时 SEI 消息中的语法元素 cpb_removal_delay 的码字长度。如果码流中不存在 cpb_removal_delay_length_minus1,则默认其值等于 23。

dpb_output_delay_length_minus1 加 1 等于图像定时 SEI 消息中的语法元素 dpb_output_delay 的码字长度。如果码流中不存在 dpb_output_delay_length_minus1,则默认其值等于 23。

附录E (规范性附录) 补充增强信息(SEI)

E.1 补充增强信息(SEI)语法

E.1.1 补充增强信息(SEI)负载语法

SEI 负载语法见表 E.1 。

表E.1 SEI 负载语法表

sei_payload(PayloadType, PayloadSize) {	描述符
<pre>if(PayloadType == 0)</pre>	
buffering_period(PayloadSize)	
<pre>else if(PayloadType == 1)</pre>	
pic_timing(PayloadSize)	
<pre>else if(PayloadType == 2)</pre>	
spherical_pano_video_parameter_set(PayloadSize)	
else	
reserved_sei_message(PayloadSize)	
<pre>if(!byte_aligned()) {</pre>	
bit_equal_to_one /* 应等于 1 */	f(1)
<pre>while(!byte_aligned())</pre>	
bit_equal_to_zero /* 应等于 0 */	f(1)
}	
}	

E. 1. 2 缓存周期SEI消息语法

缓存周期 SEI 消息语法见表 E. 2 。

表E. 2 缓存周期 SEI 消息语法表

buffering_period(PayloadSize) {	描述符
if(HrdBpPresentFlag) {	
for(SchedSelIdx = 0; SchedSelIdx <= cpb_cnt_minus1; SchedSelIdx++)	
<pre>initial_cpb_removal_delay[SchedSelIdx]</pre>	u (v)
}	
}	

E. 1. 3 图像定时SEI消息语法

图像定时 SEI 消息语法见表 E.3 。

表E. 3 图像定时 SEI 消息语法表

<pre>pic_timing(PayloadSize) {</pre>	描述符
<pre>if(CpbDpbDelaysPresentFlag) {</pre>	
cpb_removal_delay	u (v)
dpb_output_delay	u (v)
}	
}	

E. 1. 4 全景视频参数SEI消息语法

全景视频参数 SEI 消息语法见表 E. 4 。

表E. 4 全景视频参数 SEI 消息语法表

spherical_pano_video_parameter_set(PayloadSize){	描述符
spherical_pano_flag	u(1)
<pre>if(spherical_pano_flag) {</pre>	
projection_type	u(2)
<pre>if(projection_type == 0) {</pre>	
arrangement_raster_mode	u(10)
arrangement_matrix_mode	u(2)
}	
fullpano_width_inpixel	u(16)
fullpano_height_inpixel	u(16)
croppedarea_left_inpixel	u(16)
croppedarea_top_inpixel	u(16)
stereo_mode	u(2)
horizontal_angle_range	se(v)
pitch_angle_up_limit	se(v)
pitch_angle_down_limit	se(v)
initial_viewazimuth_angle	se(v)
initial_view_pitch_angle	se(v)
initial_view_roll_angle	se(v)
display_width_inpixels	u (8)
display_height_inpixels	u(8)
initial_horizonal_view_angle	u(8)
horizontal_view_angle_max	u(8)
horizontal_view_angle_min	u (8)
name_len	u(8)
for(i=0;i <name_len;i++){< td=""><td></td></name_len;i++){<>	
stitching_software_name[i]	u(8)
}	

camera_count	ue (v)
}	
}	

E.2 补充增强信息(SEI)负载语义

E. 2. 1 缓存周期SEI消息语义

如果应用需要,缓存周期 SEI 消息应与 IDR 图像一起出现。该消息提供 HRD 初始化信息。

initial_cpb_removal_delay[SchedSelIdx] 定义了在 HRD 初始化以后第一个缓存周期的第 SchedSelIdx 个 CPB 的初始延迟,即从图像的第一个比特到达 CPB 的时间,到该图像的数据开始从 CPB 移除的时间。其码字长度为 initial_cpb_removal_delay_length_minus1 + 1,本标准规定以 90kHz 为单位。

该值应大于 0, 并小于 90000 × CpbSize[SchedSelIdx] ÷ BitRate[SchedSelIdx]。

E. 2. 2 图像定时SEI消息定义

cpb_removal_delay 定义了该 SEI 消息关联的图像从 CPB 中移除前等待的时间。该值还可以用来计算图像数据到达 CPB 的最早的可能时间。该码字长度为 cpb_removal_delay_length_minus1 + 1。

对于码流中的第一个图像, cpb_removal_delay 应为 0。

dpb_output_delay 定义了图像数据从 CPB 中移除后到解码图像从 DPB 输出的等待时间,用来计算图像的 DPB 输出时间。其码字长度为 dpb output delay length minus1 + 1。

E. 2. 3 全景视频参数SEI消息定义

spherical_pano_flag 球面全景视频标识位, 0 - 其他,1 - 球面全景视频。projection_type 投影方式标识位,0 - 立方体,1 - 圆柱,2 - 棱锥。

arrangement_raster_mode 当 projection_type = 0, 即投影方式为立方体时, 6 个正方形图像(前、后、左、右、上和下,索引值分别为: 1、2、3、4、5 和 6) 按照光栅排列的方式。取值范围: $0\sim719$, 共 720 种排列方式。

arrangement_matrix_mode 当 projection_type = 0,即投影方式为立方体时,6 个正方形图像的排列方式。取值范围: $0\sim3$,共 4 种数组类型: $0\sim3$,在 $0\sim3$,在 $0\sim3$,并 $0\sim3$,于 $0\sim3$,

fullpano_width_inpixel 指示一帧全部图像(单目二维视频:包含一幅图像;双目三维视频:包含两幅图像)的宽度,单位为样点个数。

fullpano_height_inpixel 指示一帧全部图像(单目二维视频:包含一幅图像;双目三维视频:包含两幅图像)的高度,单位为样点个数。

croppedarea_left_inpixel 指示一幅全景图像左侧被裁掉的列数,单位为样点个数。

croppedarea_top_inpixel 指示一幅全景图像顶部被裁掉的行数,单位为样点个数。

stereo_mode 立体影像模式及画面布局标识位,0 - 单目二维视频,1 - 双目三维左右排列视频,2 - 双目三维上下排列视频。

croppedarea_width_inpixel 指示一幅全景图像的宽度,单位为样点个数。

croppedarea_height_inpixel 指示一幅全景图像的高度,单位为样点个数。

croppedarea_width_inpixel 和 croppedarea_height_inpixel 的取值根据 stereo_mode 的值按照下表进行设置:

表E.5 XXXXX

	单目二维视频	双目三维左右排列视频	双目三维上下排列视频
	(stereo_mode = 0)	(stereo_mode = 1)	(stereo_mode = 2)
croppedarea_width_inpixel	fullpano_width_inpixel - croppedarea_left_inpixel	fullpano_width_inpixe1/2 - croppedarea_left_inpixe1	fullpano_width_inpixel - croppedarea_left_inpixel
croppedarea_height_inpixel	fullpano_height_inpixel - croppedarea_top_inpixel	fullpano_height_inpixel - croppedarea_top_inpixel	fullpano_height_inpixel/2 - croppedarea_top_inpixel

horizontal_angle_range 全景图像水平方向的环绕度数,以度为单位,取值范围是 0~360。

pitch_angle_up_limit 全景图像俯仰角的上限,其值必须大于等于 pitch_angle_down_limit,以度为单位,取值范围是-90~90。

pitch_angle_down_limit 全景图像俯仰角的下限,其值必须小于等于 pitch_angle_up_limit,以度为单位,取值范围是-90~90。

initial_viewazimuth_angle 初始显示画面中心的水平方位角度,取值范围是一horizontal_angle_range $/2^{\sim}$ horizontal_angle_range $/2^{\circ}$ borizontal_angle_range $/2^{\circ}$ 当取值为 0 时,如果 projection_type = 0,则初始显示画面中心的水平方位角度设置为裁剪之后图像的中心列所对应的水平方位角度;如果 projection_type = 1,则初始显示画面中心的水平方位角度设置为裁剪之后向前图的中心列所对应的水平方位角度。

 $initial_view_pitch_angle$ 初始显示画面中心的俯仰角,以度为单位,取值范围是pitch_angle_down_limit $^{\sim}$ pitch_angle_up_limit。

initial_view_roll_angle 绕显示画面中心旋转的角度,以度为单位,取值范围是-180~180。

display_width_inpixels 指示显示画面的图像宽度,单位为样点个数。

display_height_inpixels 指示显示画面的图像高度,单位为样点个数。

initial_horizonal_view_angle 指示画面显示的初始水平视角,以度为单位。

horizontal_view_angle_max 指示画面显示的最大水平视角,以度为单位,其值应小于等于 180。

horizontal_view_angle_min 指示画面显示的最小水平视角,以度为单位,其值应大于 0。

name_len 指示拼接软件名称的长度。

stitching_software_name 表示拼接软件的名称。

camera_count 指示拍摄全景图像的摄像机个数。

附 录 F (规范性附录) 智能分析数据描述

用于描述图像智能分析的结果。包括图像分析规则、目标检测与特征分析、目标识别、行为分析、目标数量统计的描述方式。

F.1 智能分析数据语法

F. 1. 1 图像分析规则

analysis_rule() {	
object_min_width_minus1	u(16)
object_min_height_minus1	u(16)
min_dura_time	u(16)
max_dura_time	u(32)
line_num	u(8)
trigger_direction	u(2)
invade_action_type	u(4)
face_similarity	u(8)
density_unit	u(2)
}	

F. 1. 2 运动目标检测

Moving_object_detection() {	
object_num	u(8)
analysis _level	u(1)
$\label{eq:for_identity} for(i=0;i < object_num;i++) \{$	
object_id[i]	u (16)
object_width_minus1 [i]	u(16)
object_height_minusl [i]	u(16)
<pre>position_top_left_x [i]</pre>	u(16)
position_top_left_y [i]	u (16)
object_color[i]	u(8)
object_sort[i]	u(3)
if(object_sort==0x03){	
vehicle_sort[i]	u(3)
vehicle_info_id[i]	u(8)
}	

if(analysis _level==0x01){	
object_speed_val[i]	u(16)
object_speed_rad[i]	u (9)
object_traipnt_x[i]	u(16)
object_traipnt_y[i]	u(16)
}	
}	
<pre>while(byte_aligned() == FALSE){</pre>	
reserved_bit	u(1)
}	
}	

F. 1. 3 人员属性分析

<pre>Human_property_analysis() {</pre>	
human_num	u(8)
for(i=0;i< human_num;i++){	
human_id[i]	u (16)
human_property_num[i]	u (8)
for(j=0;j< property_num;i++){	
human_property[i, j]	u (8)
}	
}	
}	

F. 1. 4 机动车特征分析

Vehicle_property_analysis() {	
vehicle_num	u (8)
for($i=0; i \le vehicle_num; i++$) {	
<pre>vehicle_id[i]</pre>	u (16)
${\tt vehicle_property_num[i]}$	u (8)
<pre>for(j=0;j< property_num;i++) {</pre>	
${\tt vehicle_property[i,j]}$	u (8)
}	
}	
}	

F. 1. 5 人脸比对

face_match() {	
face_num	u(8)
for(i=0;i< face_num;i++){	
face_id[i]	u(16)

<pre>face_similarity[i]</pre>	u(8)
}	
}	

F. 1. 6 车牌识别

<pre>vehicle_licence_recognition() {</pre>	
vehicleLicence_num	u(8)
analysis _level	u(1)
for(i=0;i< vehicleLicence_num;i++) {	
<pre>vehicle_licence_type[i]</pre>	u(4)
vehicle_licence_color[i]	u(2)
<pre>vehicle_licence_no[i]</pre>	u (64)
if(analysis _level==0x01){	
<pre>vehicle_licence_modify_flag[i]</pre>	u(1)
<pre>vehicle_licence_cover_flag[i]</pre>	u(1)
}	
}	
<pre>while(byte_aligned() == FALSE){</pre>	
reserved_bit	u(1)
}	
}	

F. 1. 7 绊线检测

pass_extension() {	描述符
pass_num	u(8)
for(i=0; i <pass_num;)="" i++="" td="" {<=""><td></td></pass_num;>	
object_category	u(2)
object_size	u(2)
moving_direction	u(4)
position_top_left_x[i]	u(16)
position_top_left_y[i]	u(16)
position_width_minus1[i]	u(16)
position_height_minus1[i]	u(16)
}	
}	

F. 1. 8 入侵检测

invade_extension() {	描述符
invade_num	u (8)
for(i=0; i <invade_num;)="" i++="" td="" {<=""><td></td></invade_num;>	
object_category	u(2)

object_size	u(2)
moving_direction	u (4)
position_top_left_x[i]	u(16)
position_top_left_y[i]	u(16)
position_width_minus1[i]	u(16)
position_height_minus1[i]	u (16)
}	
}	

F. 1. 9 逆行检测

retrograde_extension() {	描述符
retrograde_num	u (8)
for(i=0; i< retrograde_num; i++) {	
object_category	u(2)
object_size	u(2)
moving_direction	u(4)
position_top_left_x[i]	u (16)
position_top_left_y[i]	u (16)
position_width_minus1[i]	u (16)
position_height_minus1[i]	u (16)
}	
}	

F. 1. 10 徘徊检测

hover_extension() {	描述符
hover_num	u (8)
for(i=0; i< hover_num; i++) {	
object_category	u (2)
object_size	u (2)
moving_direction	u (4)
position_top_left_x[i]	u(16)
position_top_left_y[i]	u (16)
position_width_minus1[i]	u(16)
position_height_minus1[i]	u(16)
}	
}	

F. 1. 11 遗留物检测

remnant_extension() {	描述符
remnant_num	u (8)
for(i=0; i< remnant_num; i++) {	

object_category	u(2)
object_size	u(2)
object_color	u (4)
position_top_left_x[i]	u (16)
position_top_left_y[i]	u (16)
${\tt position_width_minus1[i]}$	u(16)
position_height_minus1[i]	u(16)
}	
}	

F. 1. 12 目标移除检测

<pre>moveout_extension() {</pre>	描述符
moveout_num	u (8)
for(i=0; i< moveout_num; i++) {	
object_category	u(2)
object_size	u(2)
object_color	u (4)
position_top_left_x[i]	u (16)
position_top_left_y[i]	u (16)
position_width_minus1[i]	u (16)
position_height_minus1[i]	u (16)
}	
}	

F. 1. 13 目标数量统计

object_statistics() {	描述符
begin_time	u(32)
end_time	u(32)
object_num	u(16)
person_num	u(16)
face_num	u(16)
vehicle_num	u(16)
thing_num	u(16)
object_density_abs	u(2)
person_density_abs	u(2)
face_density_abs	u(2)
vehicle_density_abs	u(2)
thing_density_abs	u(2)
object_density_rlt	u(8)
person_density_rlt	u (8)
face_density_rlt	u(8)

vehicle_density_rlt	u (8)
thing_density_rlt	u (8)
total_object_flowrate	u (16)
person_object_flowrate	u (16)
vehicle_object_flowrate	u (16)
reserved_bits	u (6)
}	

F. 2 智能分析信息扩展语义

F. 2. 1 图像分析规则

object_min_width_minus1加1和object_min_height_minus1加1等于目标的最小宽度和最小高度。 min_dura_time表示最小持续时间,单位为秒。

max dura time表示最大持续时间,单位为秒。

line num表示包含绊线的条数。

trigger_direction表示触发方向,0为从左到右,1为从右到左,2位任意方向。

invade_action_type表示入侵行为的类型,如表F.1 所示。

 invade_action_type取值
 含义

 0
 进入区域

 1
 离开区域

 2
 区域內出现

 3
 区域內消失

 4
 在区域内

 5∼15
 自定义

表F. 1 invade action type 的取值说明

face_similarity为人脸相似度,取值为百分比,取值不带百分号,大于该值认为是人脸。density_unit为密度检测数值单位,0为密度等级,1为密度百分比,2为个数,其余数值保留。

F. 2. 2 运动目标检测

object_num为8位无符号整数,表示识别出的目标数量。

analysis_level为1位无符号整数,表示分析级别。analysis_level等于0表示基本级别, analysis level等于1表示高级。

object id[i]为16位无符号整数,表示第i个目标的编号。

object_width_minus1[i]加1和object_height_minus1[i]加1分别等于第i个目标的宽度和高度。以样点为单位计算的第i个目标的宽度、高度为:

以样点为单位计算的第i个目标的宽度、高度为:

 $objectWidthInSample[i] = object_width_minus1[i] + 1\\$

objectHeightInSample[i] = object_height_minus1[i] + 1

position_top_left_x[i]和position_top_left_y[i]分别表示第i个目标的左上角的横坐标值、纵坐标值。以样点为单位计算的第i个目标的左上角位置的横坐标值、纵坐标值为:

objectTopLeftSamplePositionX[i] = position_top_left_x[i]
objectTopLeftSamplePositionY[i] = position_top_left_y[i]

object_color[i]为8位无符号整数,表示第i个目标的主体颜色编号。

黑
白
灰
红
蓝
黄
橙
棕
绿
紫
青
粉
透明
其他

object_sort[i]为3位无符号整数,表示第i个目标的类别。

0x01	人员
0x02	人脸
0x03	机动车
0x04	非机动车
0x05	物品
0x06	场景

vehicle_sort[i]为3位无符号整数,表示第i个目标如果为车辆时车辆分类信息。

0x01	客车
0x02	货车
0x03	其他车辆

vehicle_info_id[i]为11位无符号整数,表示第i个目标如果为车辆时车辆详细信息编号。 object_speed_val[i]为16位无符号整数,表示第i个目标的运动速度,单位为样点数/秒。 object_speed_rad[i]为9位无符号整数,表示第i个目标运动方向,以角度为单位,取值范围[0,359],水平向右为0,逆时针转动时角度增加。

object_traipnt_x[i]为16位无符号整数,表示第i个目标的运动轨迹点X坐标,单位为样点值。object_traipnt_y[i]为16位无符号整数,表示第i个目标的轨迹点Y坐标,单位为样点值。

object_traipnt_x[i]和object_traipnt_y[i]分别表示第i个目标的运动轨迹点的横坐标值、纵坐标值。以样点为单位计算的第i个目标的运动轨迹点位置的横坐标值、纵坐标值为:

objectTraipntSamplePositionX[i] = object_traipnt_x[i]

objectTraipntSamplePositionY[i] = object_traipnt_y[i] reserved_bit应等于0。

F. 2. 3 人员属性分析

human_num为8位无符号整数,表示识别出的人员数量。 human_id[i]为16位无符号整数,表示识别出的第i个人员编号。 human_property_num[i]为8位无符号整数,表示识别出的第i个人员的属性数量。 human_Property[i,j]为8位无符号整数,表示识别出的第i个人员的第j个属性。

F. 2. 4 机动车特征分析

vehicle_num为8位无符号整数,表示识别出的车辆数量。 vehicle_id[i]为16位无符号整数,表示识别出的车辆编号。 vehicle_property_num[i]为8位无符号整数,表示识别出的第i个车辆的属性数量。 vehicle_property[i,j]为8位无符号整数,表示识别出的第i个车辆的第j个属性。

F. 2. 5 人脸比对

face_num为8位无符号整数,表示识别出的符合比对条件的人脸数量。face_id[i]为16位无符号整数,表示识别出的第i个人脸编号。face_similarity[i]为8位无符号整数,表示人脸相似度。

F. 2. 6 车牌识别

vehicle_licence_num为8位无符号整数,表示识别出的车牌数量。 vehicle_licence_type[i]为4位无符号整数,表示识别出的第i个车牌种类。

0x00	大型汽车号牌
0x01	小型汽车号牌
0x02	使、领馆汽车号牌
0x03	港澳入出境车号牌
0x04	教练汽车号牌
0x05	警用汽车号牌
0x06	武警汽车号牌
0x07	军用汽车号牌
reserved	其他

vehicle_licence_color[i]为2位无符号整数,表示识别出的第i个车牌颜色。

0x00	蓝色
0x01	白色
0x02	黄色
0x03	黑色

vehicle_licence_no[i]为8位字符串,表示识别出的第i个车牌编号。 vehicle_licence_modify_flag[i]为1位无符号整数,等于1表示车牌有涂改;等于0表示车牌无涂

改。

vehicle_licence_cover_flag[i]为1位无符号整数,等于1表示车牌有遮挡;等于0表示车牌无遮挡。

reserved_bit应等于0。

F. 2. 7 绊线检测

pass num 指示通过警戒线目标的个数。

object_category指示通过警戒线目标的类别,object_category等于0表示人,object_category等于1表示车,object_category等于2表示其他物体。

object_size 指示通过警戒线目标的尺寸,object_size等于0表示小尺寸,object_size等于1表示中等尺寸,object_size等于2表示大尺寸,object_size等于3表示巨大尺寸。

moving_direction 指示通过警戒线目标的运动方向,moving_direction等于0表示北,moving_direction等于1表示东北,moving_direction等于2表示东,moving_direction等于3表示东南,moving_direction等于4表示南,moving_direction等于5表示西南,moving_direction等于6表示西,moving_direction等于7表示西北,moving_direction等于8表示上,moving_direction等于9表示右上,moving_direction等于10表示右下,moving_direction等于11表示下,moving_direction等于12表示左下,moving_direction等于13表示左上,moving_direction等于14表示左,moving_direction等于15表示右。

position_top_left_x[i]和position_top_left_y[i]分别表示第i个通过警戒线目标的左上角的横坐标值、纵坐标值。以样点为单位计算的第i个通过警戒线目标的左上角位置的横坐标值、纵坐标值为:

```
passTopLeftSamplePositionX[i] = position_top_left_x[i]
passTopLeftSamplePositionY[i] = position_top_left_y[i]
```

position_width_minus1[i]加1和position_height_minus1[i]加1分别等于第i个通过警戒线目标的宽度和高度。以样点为单位计算的第i个通过警戒线目标的宽度、高度为:

```
passWidthInSample[i] = position_width_minus1[i] + 1
passHeightInSample[i] = position_height_minus1[i] + 1
```

F. 2. 8 入侵检测

invade_num 指示进入禁入区域目标的个数。

object_category指示进入禁入区域目标的类别,object_category等于0表示人,object_category等于1表示车,object_category等于2表示其他物体。

object_size 指示进入禁入区域目标的尺寸,object_size等于0表示小尺寸,object_size等于1表示中等尺寸,object_size等于2表示大尺寸,object_size等于3表示巨大尺寸。

moving_direction 指示进入禁入区域目标的运动方向,moving_direction等于0表示北,moving_direction等于1表示东北,moving_direction等于2表示东,moving_direction等于3表示东南,moving_direction等于4表示南,moving_direction等于5表示西南,moving_direction等于6表示西,moving_direction等于7表示西北,moving_direction等于8表示上,moving_direction等于9表示右上,moving_direction等于10表示右下,moving_direction等于11表示下,moving_direction等于12表示左下,moving_direction等于13表示左上,moving_direction等于15表示右。

position_top_left_x[i]和position_top_left_y[i]分别表示第i个进入禁入区域目标的左上角的横坐标值、纵坐标值。以样点为单位计算的第i个进入禁入区域目标的左上角位置的横坐标值、纵坐标值为:

```
passTopLeftSamplePositionX[i] = position_top_left_x[i]
passTopLeftSamplePositionY[i] = position top left y[i]
```

position_width_minus1[i]加1和position_height_minus1[i]加1分别等于第i个进入禁入区域目标的宽度和高度。以样点为单位计算的第i个进入禁入区域目标的宽度、高度为:

```
passWidthInSample[i] = position_width_minus1[i] + 1
passHeightInSample[i] = position height minus1[i] + 1
```

F. 2. 9 逆行检测

retrograde_num 指示向反方向运动目标的个数。

object_category指示向反方向运动目标的类别,object_category等于0表示人,object_category等于1表示车,object_category等于2表示其他物体。

object_size 指示向反方向运动目标的尺寸,object_size等于0表示小尺寸,object_size等于1表示中等尺寸,object_size等于2表示大尺寸,object_size等于3表示巨大尺寸。

moving_direction 指示向反方向运动目标的运动方向,moving_direction等于0表示北,moving_direction等于1表示东北,moving_direction等于2表示东,moving_direction等于3表示东南,moving_direction等于4表示南,moving_direction等于5表示西南,moving_direction等于6表示西,moving_direction等于7表示西北,moving_direction等于8表示上,moving_direction等于9表示右上,moving_direction等于10表示右下,moving_direction等于11表示下,moving_direction等于12表示左下,moving_direction等于13表示左上,moving_direction等于15表示右。

position_top_left_x[i]和position_top_left_y[i]分别表示第i个向反方向运动目标的左上角的横坐标值、纵坐标值。以样点为单位计算的第i个向反方向运动目标的左上角位置的横坐标值、纵坐标值为:

```
passTopLeftSamplePositionX[i] = position_top_left_x[i]
passTopLeftSamplePositionY[i] = position_top_left_y[i]
```

position_width_minus1[i]加1和position_height_minus1[i]加1分别等于第i个向反方向运动目标的宽度和高度。以样点为单位计算的第i个向反方向运动目标的宽度、高度为:

```
passWidthInSample[i] = position_width_minus1[i] + 1
passHeightInSample[i] = position_height_minus1[i] + 1
```

F. 2. 10 徘徊检测

hover num 指示在警戒区域徘徊运动目标的个数。

object_category指示在警戒区域徘徊运动目标的类别, object_category等于0表示人, object category等于1表示车, object category等于2表示其他物体。

object_size 指示在警戒区域徘徊运动目标的尺寸,object_size等于0表示小尺寸,object_size等于1表示中等尺寸,object_size等于2表示大尺寸,object_size等于3表示巨大尺寸。

moving_direction 指示在警戒区域徘徊运动目标的运动方向,moving_direction等于0表示北,moving_direction等于1表示东北,moving_direction等于2表示东,moving_direction等于3表示东南,moving_direction等于4表示南,moving_direction等于5表示西南,moving_direction等于6表示西,moving_direction等于7表示西北,moving_direction等于8表示上,moving_direction等于9表示右上,moving_direction等于10表示右下,moving_direction等于11表示下,moving_direction等于12表示左下,moving_direction等于13表示左上,moving_direction等于15表示右。

position_top_left_x[i]和position_top_left_y[i]分别表示第i个在警戒区域徘徊运动目标的左上角的横坐标值、纵坐标值。以样点为单位计算的第i个在警戒区域徘徊运动目标的左上角位置的横坐标值、纵坐标值为:

```
passTopLeftSamplePositionX[i] = position_top_left_x[i]
passTopLeftSamplePositionY[i] = position_top_left_y[i]
```

position_width_minus1[i]加1和position_height_minus1[i]加1分别等于第i个在警戒区域徘徊运动目标的宽度和高度。以样点为单位计算的第i个在警戒区域徘徊运动目标的宽度、高度为:

```
passWidthInSample[i] = position_width_minus1[i] + 1
passHeightInSample[i] = position_height_minus1[i] + 1
```

F. 2. 11 遗留物检测

remnant num 指示警戒区域内遗留物的个数。

object_category指示警戒区域内遗留物的类别,object_category等于0表示人,object_category等于1表示车,object_category等于2表示其他物体。

object_size 指示警戒区域内遗留物的尺寸,object_size等于0表示小尺寸,object_size等于1表示中等尺寸,object_size等于2表示大尺寸,object_size等于3表示巨大尺寸。

刃的颜色。
IJĽ)

01	黑
02	白
03	灰
04	红
05	蓝
06	黄
07	橙
08	棕
09	绿
10	紫
11	青
12	粉
13	透明
15	其他

position_top_left_x[i]和position_top_left_y[i]分别表示第i个警戒区域内遗留物的左上角的横坐标值、纵坐标值。以样点为单位计算的第i个警戒区域内遗留物的左上角位置的横坐标值、纵坐标值为:

```
passTopLeftSamplePositionX[i] = position_top_left_x[i]
passTopLeftSamplePositionY[i] = position top left y[i]
```

position_width_minus1[i]加1和position_height_minus1[i]加1分别等于第i个警戒区域内遗留物的宽度和高度。以样点为单位计算的第i个警戒区域内遗留物的宽度、高度为:

```
passWidthInSample[i] = position_width_minus1[i] + 1
```

passHeightInSample[i] = position_height_minus1[i] + 1

F. 2. 12 目标移除检测

moveout num 指示警戒区域内移除目标的个数。

object_category 指示警戒区域内移除目标的类别, object_category等于0表示人, object_category等于1表示车, object_category等于2表示其他物体。

object_size 指示警戒区域内移除目标的尺寸,object_size等于0表示小尺寸,object_size等于1表示中等尺寸,object_size等于2表示大尺寸,object_size等于3表示巨大尺寸。

object color	: 指示警戒区域内移除目标的颜色。
--------------	-------------------

01	黑
02	白
03	灰
04	红
05	蓝
06	黄
07	橙
08	棕
09	绿
10	紫
11	青
12	粉
13	透明
15	其他

position_top_left_x[i]和position_top_left_y[i]分别表示第i个警戒区域内移除目标的左上角的横坐标值、纵坐标值。以样点为单位计算的第i个警戒区域内移除目标的左上角位置的横坐标值、纵坐标值为:

```
passTopLeftSamplePositionX[i] = position_top_left_x[i]
passTopLeftSamplePositionY[i] = position top left y[i]
```

position_width_minus1[i]加1和position_height_minus1[i]加1分别等于第i个警戒区域内移除目标的宽度和高度。以样点为单位计算的第i个警戒区域内移除目标的宽度、高度为:

```
passWidthInSample[i] = position_width_minus1[i] + 1
passHeightInSample[i] = position height minus1[i] + 1
```

F. 2. 13 目标数量统计

begin_time 表示统计开始时间,对连续视频有效,取值等于从公元 1970 年 1 月 1 日 0 时整至该值所表示的实际时间的秒数。

end_time 表示统计结束开始时间,对连续视频有效,取值等于从公元 1970 年 1 月 1 日 0 时整至该值所表示的实际时间的秒数。

object_num 表示目标总数。

person_num 表示目标为人员的总数。

face_num 表示目标为人脸的总数。 vehicle_num 表示目标为车辆的总数。 thing_num 表示目标为物体的总数。

object_density_abs 表示区域内目标密度等级,取值如表 F. 2 所示。person_density_abs 表示区域内人员密度等级,取值如表 F. 2 所示。face_density_abs 表示区域内人脸密度等级,取值如表 F. 2 所示。vehicle_density_abs 表示区域内车辆密度等级,取值如表 F. 2 所示。thing_density_abs 表示区域内物体密度等级,取值如表 F. 2 所示。

取值	含义
0	很稀疏
1	稀疏
2	密集
3	很密集

表F. 2 目标密度取值与含义对应关系表

object_density_rlt 表示区域内目标相对密度,取值为百分比,不含百分号。person_density_rlt 表示区域内人员相对密度,取值为百分比,不含百分号。face_density_rlt 表示区域内人脸相对密度,取值为百分比,不含百分号。vehicle_density_rlt 表示区域内车辆相对密度,取值为百分比,不含百分号。thing_density_rlt 表示区域内物体相对密度,取值为百分比,不含百分号。total_object_flowrate 表示时间段内的目标总个数。person_object_flowrate 表示时间段内的人员总个数。vehicle_object_flowrate 表示时间段内的人员总个数。reserved_bits应等于0。

附 录 G (规范性附录) 音频档次和级别

G. 1 概述

本附录描述了不同档次和级别所对应的各种限制。档次与级别规定了对比特流的限制,因此也限制了比特流解码所需的能力。每个档次定义了一个算法特征的子集,并限定所有与该档次一致的解码器都应支持。每个级别定义了对本标准中的语法要素取值的限制集合。相同的级别定义集合用于所有的档次,但单独的应用对所支持的档次可能支持不同的级别。一般来说,对于特定的一个档次,不同的级别对应于对解码器负载和存储器容量的不同要求。

如果一个解码器能对某个档次和级别所规定的语法元素正确解码,则称此解码器在这个档次和级别 上符合本标准。如果比特流中不存在某个档次和级别所不允许的语法元素,并且其所含有的语法元素的 值不超过此档次和级别所允许的范围,则认为此比特流在这个档次和级别上符合本标准。

profile_id和level_id定义了比特流的档次和级别。

注:解码器不宜因为profile_id或level_id的取值落在本标准所规定的值之间,就推定这个值所代表的能力处于规定好的档次与级别之间。

G.2 音频档次

音频档次主要定义编码器所包括的主要编码工具,目前分3个档次:简单档次、主要档次和高级档次。profile_id 采用2比特表示,0表示禁止,1表示简单档次、2表示主要档次,3表示高级档次。具体定义见表 G.1。

编码工具	简单档次	主要档次	高级档次
ACELP	支持	支持	支持
BWE	支持	支持	支持
TVC	不支持	不支持	支持
识别特征参数的直接编码模式	不支持	支持	支持
识别特征参数的预测编码模式	不支持	不支持	支持

表G.1 音频档次定义

G. 3 音频级别

音频级别主要限制编码参数取值和编解码延迟,level_id 采用 4 比特表示,共 16 个级别,见表 G. 2 和表 G. 3 。

表G. 2 音频级别定义

level_id	级别
0	禁止

1	1.0
2	1.1
3	1. 2
4∼15	保留

表G. 3 音频级别 1.0~1.2 参数限制

参数	级别		
	1.0	1.1	1.2
内部采样频率(kHz)	12.8和16	24 和 25.6	32 和 38.4
音频超帧样本点数	512	512	512
最大编解码延迟 (ms)	60	40	30
最大比特率(bit/s)	23050	34000	48610

注1:编解码延迟包括:1个超帧长度 + LPC分析窗前瞻样本 + 其他延迟(如采样频率转换等)。

注2: 比特率指RAW格式码率,包括帧头和扩展帧头开销。

附 录 H (规范性附录) 异常声音事件类型定义

异常声音事件类型定义见表H.1 。

表H. 1 异常声音事件类型定义

事件类型	事件描述
0	正常声音事件(包括闹市噪声,汽车噪声,高斯噪声和正常人说话声等)
1	人的尖叫声、救命声
2	枪声
3	爆炸声
4	报警声
5	玻璃破碎声
6∼255	保留

附录 I (资料性附录) VAD 检测

I.1 概述

VAD检测将输入的音频信号分为两类:语音和非语音(噪声或静音)。识别特征参数提取时需要检测每帧信号的类别,将来模式识别模块会根据信号的类别,将非语音帧信号的识别特征参数丢掉。识别模块在对识别特征参数进行后处理时,需要连续的帧参数计算识别特征参数的一阶导数和二阶导数,因此识别特征参数提取时需要保留非语音帧信号的识别特征参数。

I.2 VAD检测介绍

VAD 检测包含两个阶段:第一阶段是基于帧的检测阶段,内部包含三种检测方式;第二阶段为决策阶段。第一阶段的每种检测结果都存储在循环缓冲中,用来分析并得出语音的似然值。第二阶段的最终决策结果需要参考缓冲中的最初几帧,所以该阶段提供了预测机制。同时,此阶段还提供了延迟释放机制,延迟释放的持续时间同语音的似然值相关。

1.3 检测阶段

VAD 检测采用的参数是语音开始时的能量加速度,该参数具有较好噪声鲁棒性。这种加速度可以通过以下三种方法来计算:

方法 1: 全带频谱检测法

全带频谱测量法采用的参数,是通过两阶段维纳滤波器中第一阶段所得出的 Mel 域维纳滤波器系数 (见 J. 8)。对 Mel 域维纳滤波器系数求和后再平方的值作为输入值 input。每帧的处理步骤如下所示:

- a) if(frame<15&&Acceleration<2.5) tracker= MAX(tracker, input);
- b) if (input < tracker × UpperBound&&input > tracker × LowerBound)

Tracker= $a \times tracker + (1-a) \times input$;

- c) if(input<tracker×Floor)
 tracker=b×tracker+(1-b)×input;</pre>
- d) if(input>tracker × threshold)

return true;

else

return false;

式中:

a=0.8;

b=0.97;

UpperBound=1.5;

LowerBound=0.75;

Floor=0.5;

threshold=1.65;

tracker —— 噪声能量估计值;

Acceleration — 测量的加速度,可以通过连续输入的二阶差分来估计,但本检测算法通过跟踪连续输入的两个平均数 $0 \times mean + 1 \times input$ 和

((frame-1)×mean+1×input)/frame的比率来估计。

方法 2: 子带频谱检测法

子带频谱检测法的输入是由方法 1 中产生的第二,第三和第四 Mel 域维纳滤波器系数的平均值。检测器对每帧的处理步骤如下所示:

- a) $input = p \times currentInput + (1-p) \times Pr eviousInput;$
- b) if(Frame < 15) trac ker = MAX(trac ker, input);
- c) $if(input < trac \ker \times UpperBound \& \& input > trac \ker \times LowerBound)$ $trac \ker = a \times trac \ker + (1-a) \times input;$
- d) $if(input < trac \ker \times Floor)$ $trac \ker = b \times trac \ker + (1-b) \times input;$
- e) $if(input > trac \text{ ker} \times threshold)$

return true;

else

return false;

式中:

p=0.75;

threshold=3.25, 其他参数和方法1中相同。

方法 3: 频谱方差检测法

频谱方差检测法的输入部分是由每帧全带范围内线性频率维纳滤波器系数的方差构成。方 差的计算公式为:

$$\frac{1}{N_{SPEC}} \sum_{bin=0}^{N_{SPEC}-1} (H_2(bin))^2 - \left(\sum_{bin=0}^{N_{SPEC}-1} H_2(bin)\right)^2 / N_{SPEC}^2 \quad \cdots$$
 (I.1)

式中:

 $N_{SPEC} = N_{FFT} / 4$;

 $H_{2}(bin)$ —— 线性频率维纳滤波器系数。

方法 3 的第一步同方法 2 的 b);第二步到第四步同方法 1 的 b)~d),其中 Lower Bound=0. 85,Floor=0. 25,其他参数不变。

1.4 决策阶段

VAD 决策算法输入为 I. 3 讨论的三种方法输出的结果。这三种方法得到结果 true 或 false(T 或 F),并将其存储在缓冲中。连续帧得出的结果会不断填充缓冲。该过程提供了缓冲模式的上下文分析。只有缓冲填满了有效结果之后,VAD 决策算法才会进行输出。该过程导致了值为缓冲长度减一的帧延迟。

对于一个 N=7 帧的缓冲,最新的结果存放在第 N 个位置。有后续结果进入时,缓冲中的值向左平移,见图 I.1 所示。

图 I.1 VAD 缓冲区示意图

VAD 决策算法处理步骤如下所示:

步骤 1: $V_N = Measurement1$ or Measurement2 or Measurement3

由全带频谱检测法、子带频谱检测法和频谱方差检测法得出的值有一个为 true 时, V_N 的结果也是 true,并将 V_N 存储到位置为 N 的缓冲中。

步骤 2:

$$M = MAX \begin{cases} C + +, & V_i = true \\ C = 0, & V_i = false \end{cases}, \quad 1 < i < N \end{cases}$$
 (I.2)

决策算法分析缓冲中的结果,并寻找出缓冲内值为 true 的最长连续序列。在寻找过程中,如果下一个值为 true 时,算子 C 加 1,反之下一个值为 false 时,C 清零。整个缓冲扫描结束后,将算子 C 的最大值赋给 M。例如,序列 T T F T T T F 扫描后,M 的值为 3。

步骤 3: $if(M \ge S_P \&\& T < L_s)$

 $T = L_{c}$;

 S_P 为"可能是语音"的阈值,对应着第二步得出的 true 值连续序列最大值 M≥3 的情况。如果延迟释放计时器 T 小于 L_s ,则给 T 赋值短延迟释放时间(L_s =5 帧)。

步骤 4: $if(M \ge S_L \&\& F > F_S)$

 $T = L_M$;

else if $(M \ge S_T)$

 $T = L_L$;

 S_L 为"近似为语音"的阈值,对应着第二步得出的 true 值连续序列最大值 M 大于等于 4 的情况。如果当前帧序号 F 在初始导入安全周期 F_s (35 帧)之外,则给 T 赋值中延迟释放时间 T (L_M =23 帧),否则,给 T 赋值长延迟释放时间 T (L_L =50 帧),这样做的目的是,防止语音过早出现引起检测器的初始化噪声估计值太大。

步骤 5: $if(M < S_P \&\& T > 0)$

T--;

如果M没有达到阈值 S_p 时,将T减一。因此T只有在语音不存在的情况才会下减少。

步骤 6: *if* (*T* > 0)

return true;

else

return false;

如果T大于0时,输出为true(语音帧);否则,输出为false(非语音帧)。

步骤 7: 在下一帧到达之前,缓冲区左移以接受新的输入帧。

从上面的 VAD 决策过程来看,输出的语音或非语音判决应用于即将离开缓冲区的帧,相应的预测机制如图 I.2 所示。

图1.2 预测机制下缓冲区示意图

GB/T 25724—XXXX

在 t 时刻时,缓冲区已经被 7 帧数据填满,第 6 帧和第 7 帧的 V_N 为 true。基于上述决策算法,第一帧的决策结果为 false(非语音帧)。在 t+1 时刻时,缓冲区左移并移出第一帧,新的第 8 帧 V_N 结果为 true。应用决策算法,第二帧的决策结果为 true(语音帧)。当有新帧到达时,对于第 3,4,5 帧也会得到同样的结果。这样就形成了一个 4 帧的短时预测(使用第 6、7、8 帧的结果对第 2、3、4、5 帧进行预测)。

附 录 J (资料性附录) 噪声消除

J. 1 概述

噪声消除算法主要作用是降低背景噪声,提高信号的信噪比。无论语音识别还是声纹识别算法,噪声对识别结果影响很大。因此在识别特征参数提取之前,应先对信号进行降噪处理。

J. 2 Mel域两阶段维纳(Wiener)滤波器

基于维纳滤波器的噪声消除算法由两阶段组成,见图J.1。输入信号通过第一阶段的降噪处理后,在第二阶段根据处理后信号的信噪比进行噪声消除。

图J. 1 噪声消除流程图

输入信号首先按照帧的大小进行切分,然后在频谱估计模块中计算出每帧的线性频谱估计。在功率 谱平均值模块内,对信号频谱按帧进行平滑处理。在维纳滤波器设计模块中,根据当前帧的频谱估计和 噪声谱估计(噪声谱估计是通过VAD检测的噪声帧进行估计),计算出频域维纳滤波器系数。线性维纳滤波器系数经过Mel滤波器组进行滤波处理,得到了Mel域维纳滤波器。然后通过Mel域IDCT计算Mel域维纳滤波器的脉冲响应。最后,将每阶段的输入信号通过维纳滤波器进行滤波。在图J.1中,第二阶段的输入信号就是第一阶段的输出信号。此外,第二阶段中增益调整模块的主要功能是对噪声消除的增益进行控制。

J. 3 缓冲

噪声消除模块中输入信号以帧为单位,每帧长度为10ms(160个样本)。噪声消除过程中的每阶段都

GB/T 25724—XXXX

需要一个大小为四帧的缓冲区(frame0~frame3)。当有新帧输入时,这两个缓冲区依次移动一帧。新输入帧被放置在第一个缓冲区的frame3位置上。

首先,对第一个缓冲区中的frame1(样本160~319)进行降噪,并把降噪后的帧放在第二个缓冲区中的frame3位置上。然后,对第二个缓冲区中的frame1作降噪处理,此帧是噪声消除模块的输出。因此,噪声消除的每阶段都有2帧(20ms)的延迟。在每阶段中,频谱估计的窗长为25ms(样本120~519)。图 J. 2 给出两阶段噪声消除过程的缓冲区示意图。

图J. 2 两阶段噪声消除过程的缓冲区示意图

J. 4 频谱估计

输入信号被分成 N_{in} 个样本的重叠帧,帧长为 25 ms (N_{in} =400) 并且有 10 ms (160 个样本) 的帧移。 每帧 $s_{in}(n)$ 都要作加窗处理,采用长为 N_{in} 的汉宁(Hanning)窗,见式 J. 1 所示。

$$s_w(n) = s_{in}(n) \times w_{Hann}(n), \quad 0 \le n \le N_{in} - 1 \dots$$
 (J. 1)

$$w_{Hann}(n) = 0.5 - 0.5 \times \cos\left(\frac{2 \times \pi \times (n+0.5)}{N_{in}}\right)$$
 (J. 2)

 N_{in} 和 N_{FFT} -1之间的样本补零, N_{FFT} = 512 是 FFT 长度

$$s_{FFT}(n) = \begin{cases} s_w(n), & 0 \le n \le N_{in} - 1 \\ 0, & N_{in} \le n \le N_{FFT} - 1 \end{cases}$$
 (J. 3)

对 $s_{FFT}(n)$ 进行FFT,以求出频谱:

$$X(bin) = FFT\{s_{FFT}(n)\} \cdots (J. 4)$$

式中:

bin —— FFT 频率索引。

计算功率谱 P(bin):

$$P(bin) = |X(bin)|^{2}, \quad 0 \le bin \le N_{FFT} / 2 \cdots (J.5)$$

再对功率谱 P(bin)进行平滑处理:

$$P_{in}(bin) = \frac{P(2 \times bin) + P(2 \times bin + 1)}{2}, \quad 0 \le bin \le N_{FFT} / 4$$

$$P_{in}(N_{FFT} / 4) = P(N_{FFT} / 2)$$
(J. 6)

平滑处理后,功率谱的长度缩短为 $N_{SPEC} = N_{FET}/4+1$ 。

J.5 功率谱平均值

对连续 T_{PSD} 帧求其功率谱 $P_{in}(bin)$ 的平均值,见图J.3。

图J. 3 功率谱平均值

功率谱平均值为:

$$P_{in_PSD}(bin,t) = \frac{1}{T_{PSD}} \sum_{i=0}^{T_{PSD}-1} P_{in}(bin,t-i), \qquad 0 \le bin \le N_{SPEC} - 1 \cdot \cdot \cdot \cdot \cdot (J.7)$$

式中:

 $T_{PSD} = 2;$

t —— 帧索引。

J.6 噪声估计的VAD

根据帧索引t, 计算出每帧的遗忘因子 lambdaLTE:

$$if (t < NB_FRAME_THRESHOLD_LTE)$$

$$lambdaLTE = 1 - 1/t;$$

$$else$$

$$lambdaLTE = LAMBDA_LTE;$$

$$(J. 8)$$

式中:

 $NB_FRAME_THRESHOLD_LTE$ =10; $LAMBDA_LTE$ =0. 97 \circ

输入信号 $s_{in}(n)$ 的连续M个(M=160)样本的对数能量 frameEn 为:

```
frameEn = 0.5 + \frac{16}{\ln 2} \times \ln \left( \frac{\left(64 + \sum_{i=0}^{M-1} s_{in}(n)^{2}\right)}{64} \right) (J. 9)
```

```
用 frameEn 更新 meanEn:
```

```
if((frameEn - meanEn) < SNR \_THRESHOLD \_UPD \_LTE) || (t < MIN \_FRAME))
            if((frameEn < meanEn) || (t < MIN FRAME))
              meanEn = meanEn + (1 - lambdaLTE) \times (frameEn - meanEn);
                                                                                        ··· (J. 10)
            else
              meanEn = meanEn + (1 - lambdaLTEhigherE) \times (frameEn - meanEn);
            if(meanEn < ENERGY FLOOR)
              meanEn = ENERGY \_FLOOR;
   式中:
   SNR _THRESHOLD _UPD _LTE =20;
   ENERGY _FLOOR = 80;
   MIN FRAME = 10;
   lambdaLTEhigherE =0.99.
   根据 frameEn 和 meanEn 这两个参数,确定当前帧是语音帧( flagVAD<sub>Nest</sub> =1 ) 还是噪声帧
(flagVAD_{Nest} = 0):
                             if(t > 4)
                               if ((frameEn - meanEn) > SNR _THRESHOLD _VAD)
                                 flagVAD_{Nest} = 1;
                                 nbSpeechFrame = nbSpeechFrame + 1;
                               else
                                {
                                 if (nbSpeechFrame > MIN _ SPEECH _ FRAME _ HANGOVER)
                                   hangOver = HANGOVER;
                                                                                         ··· (J. 11)
                                 nbSpeechFrame = 0;
                                 if(hangOver!=0)
                                   hangOver = hangOver - 1;
                                   flagVAD_{Nest} = 1;
                                 else
                                   flagVAD_{Nest} = 0;
                                }
                             }
```

```
MIN SPEECH FRAME HANGOVER = 4;
     HANGOVER =15;
     nbSpeechFrame , meanEn , flagVAD<sub>Nest</sub> , hangOver 初始化为0。
J. 7 维纳滤波器设计
     根据帧索引t,得到每帧的遗忘因子lambdaNSE:
     If (t<NB FRAME THRESHOLD NSE)
       1ambdaNSE=1-1/t;
     else
       lambdaNSE=LAMBDA NSE;
     式中:
     NB \_FRAME \_THRESHOLD \_NSE = 100;
     LAMBDA NSE = 0.99.
     已知VAD中的flagVAD_{Next},通过下面的公式得出第一阶段的噪声谱估计:
     \left(P_{noise}^{1/2}(bin,t_n) = \max(lambdaNSE \times P_{noise}^{1/2}(bin,t_n-1) + (1-lambdaNSE) \times P_{in\_PSD}^{1/2}(bin,t_n), EPS\right) \cdots (J. 12)
     P_{noise}^{1/2}(bin,t) = P_{noise}^{1/2}(bin,t_n)
     式中:
     EPS = \exp (-10.0);
     t_n —— 上一个非语音帧的索引;
     P_{in PSD}(bin,t_n) — 功率谱平均值;
     P_{in-PSD}^{1/2}(bin,-1) 初始化为 EPS。
     第二阶段中,通过以下步骤得到噪声谱估计:
              if(t < 11)
                lambdaNSE = 1 - 1/t;
                P_{noise}(bin, t) = lambdaNSE \times P_{noise}(bin, t - 1) + (1 - lambdaNSE) \times P_{in-PSD}(bin, t);
              }
              else
              {
                upDate = 0.9 + 0.1 \times P_{in\_PSD}(bin, t) / (P_{in\_PSD}(bin, t) + P_{noise}(bin, t - 1))
                           \times (1 + 1/(1 + 0.1 \times P_{in\ PSD}(bin, t) / P_{noise}(bin, t - 1)));
                 P_{noise}(bin, t) = P_{noise}(bin, t-1) \times upDate;
              if(P_{noise}^{1/2}(bin,t) < EPS)
                P_{noise}^{1/2}(bin,t) = EPS;
```

式中:

降噪信号谱估计:

SNR THRESHOLD VAD=15;

$$P_{den}^{1/2}(bin,t) = BETA \times P_{den3}^{1/2}(bin,t-1) + (1 - BETA) \times T \Big[P_{in-PSD}^{1/2}(bin,t) - P_{noise}^{1/2}(bin,t) \Big] \cdots (J. 13)$$

式中, $P_{den}^{1/2}(bin,-1)$ 初始化为0,BETA等于0.98,阈值函数T为:

$$T[z(bin,t)] = \begin{cases} z(bin,t), & z(bin,t) > 0 \\ 0, & z(bin,t) \le 0 \end{cases}$$
 (J. 14)

因此, 先验信噪比 $\eta(bin,t)$ 为:

$$\eta(bin,t) = \frac{P_{den}(bin,t)}{P_{noise}(bin,t)} \tag{J. 15}$$

滤波器传递函数 H(bin,t):

$$H(bin,t) = \frac{\sqrt{\eta(bin,t)}}{1 + \sqrt{\eta(bin,t)}}$$
 (J. 16)

已知H(bin,t),便可对降噪信号谱估计进行更新:

$$P_{den2}^{1/2}(bin,t) = H(bin,t)P_{in_PSD}^{1/2}(bin,t)$$
 (J. 17)

更新后的先验信噪比 $\eta_2(bin,t)$ 为:

$$\eta_2(bin,t) = \max\left(\frac{P_{den2}(bin,t)}{P_{noise}(bin,t)}, \quad \eta_{TH}^2\right)$$
 (J. 18)

式中:

 η_{TH} =0.079432823(对应的SNR为-22dB)。

相应地,滤波器传递函数 $H_2(bin,t)$ 更新为:

$$H_2(bin,t) = \frac{\sqrt{\eta_2(bin,t)}}{1 + \sqrt{\eta_2(bin,t)}}, \quad 0 \le bin \le N_{SPEC} - 1 \dots$$
 (J. 19)

根据 $H_2(bin,t)$ 得出降噪信号谱 $P_{den3}^{1/2}(bin,t)$:

$$P_{den3}^{1/2}(bin,t) = H_2(bin,t)P_{in}^{1/2}(bin,t)\cdots$$
 (J.20)

J.8 Mel滤波

首先对线性频率维纳滤波器系数 $H_2(bin)$, $0 \le bin \le N_{SPEC}$ -1,作平滑处理,之后转化为 Mel 频率刻度。通过对 $H_2(bin)$ 作半重叠三角形频率窗处理后,估计出 Mel 域维纳滤波器系数 $H_{2_mel}(k)$ 。为了得出 Mel 子带的中心频率 $bin_{centr}(k)$,线性频率表 f_{lin} 通过下面的公式转化为 Mel 刻度:

$$MEL\{f_{lin}\} = 2595 \times \log_{10}(1 + f_{lin}/700)$$
 (J. 21)

第 k 子带的中心频率 $f_{mel}(k)$:

$$f_{centr}(k) = 700 \times \left(10^{\frac{f_{mel}(k)}{2595}} - 1\right), \quad 1 \le k \le K_{FB} \dots$$
 (J. 22)

式中:

K_{FB} =32, 并且:

$$f_{mel}(k) = k \times \frac{MEL\{f_{lin_samp}/2\}}{K_{FR} + 1}$$
 (J. 23)

式中:

 f_{lin_samp} =16kHz —— 采样频率。

两个边缘子带的中心频率 $f_{centr}(0)$ 和 $f_{centr}(K_{FB}+1)=f_{lin_samp}$ / 2 加在 K_{FB} =32 子带上。因此,一共要计算 K_{FB} +2=34 个 Me1 域维纳滤波器系数。中心频率所对应的 FFT 频率为:

$$bin_{centr}(k) = round \left(\frac{f_{centr}(k)}{f_{lin_samp}} \times 2 \times (N_{SPEC} - 1) \right)$$
 (J. 24)

下面计算三角形频率窗W(k,i)。

 $1 \le k \le K_{FB}$ 的窗函数计算如下:

$$W(k,i) = \frac{i - bin_{centr}(k-1)}{bin_{centr}(k) - bin_{centr}(k-1)}, \quad bin_{centr}(k-1) + 1 \le i \le bin_{centr}(k) \cdot \cdots \cdot (J. 25)$$

$$W(k,i) = 1 - \frac{i - bin_{centr}(k)}{bin_{centr}(k+1) - bin_{centr}(k)}, \quad bin_{centr}(k) + 1 \le i \le bin_{centr}(k+1) \cdot \cdots \quad (J. 26)$$

i 取其他值时W(k,i)=0。

k=0 的窗函数计算如下:

$$W(0,i) = 1 - \frac{i}{bin_{centr}(1) - bin_{centr}(0)}, \quad 0 \le i \le bin_{centr}(1) - bin_{centr}(0) - 1 \cdots (J. 27)$$

i取其他值时W(0,i)=0。

 $k = K_{FB} + 1$ 的窗函数计算如下:

$$W(K_{FB} + 1, i) = \frac{i - bin_{centr}(K_{FB})}{bin_{centr}(K_{FB} + 1) - bin_{centr}(K_{FB})}, \quad bin_{centr}(K_{FB}) + 1 \le i \le bin_{centr}(K_{FB} + 1) \cdots (J.28)$$

i取其他值时 $W(K_{FB}+1,i)=0$ 。

Mel 域维纳滤波器系数 $H_{2 \text{ mel}}(k)$ 在 $0 \le k \le K_{FB} + 1$ 时,计算公式如下:

$$H_{2_{-mel}}(k) = \frac{1}{\sum_{k=0}^{N_{SPEC}-1} W(k,i)} \sum_{i=0}^{N_{SPEC}-1} W(k,i) \times H_{2}(i) \dots (J.29)$$

J.9 增益调整

第一阶段降噪处理中,根据降噪信号的功率谱 $P_{den3}(bin,t)$ 计算降噪信号的能量 $E_{den}(t)$ 如下:

$$E_{den}(t) = \sum_{bin=0}^{N_{SPEC}-1} P_{den3}^{1/2}(bin, t) \cdots$$
 (J. 30)

第二阶段降噪处理中,根据噪声功率谱 $P_{noise}(bin,t)$ 计算噪声能量:

$$E_{noise}(t) = \sum_{bin=0}^{N_{SPEC}-1} P_{noise}^{1/2}(bin, t) \cdots (J. 31)$$

通过连续三帧的降噪信号的能量和噪声能量可估计出平滑后的信噪比:

$$\begin{aligned} Ratio &= \frac{E_{den}(t-2) \times E_{den}(t-1) \times E_{den}(t)}{E_{noise}(t) \times E_{noise}(t)}; \\ if (Ratio > 0.00001) \\ &SNR_{over}(t) = 20/3 \times \log_{10}(Ratio); \\ else \\ &SNR_{over}(t) = -100/3; \end{aligned} \tag{J. 32}$$

为了

$$\begin{split} &if\left(\left(\left(SNR_{over}(t)-SNR_{lower_track}(t-1)\right)<10\right)\parallel(t<10)\right)\\ &SNR_{low_track(t)}=\lambda_{SNR}(t)\times SNR_{low_track}(t-1)+(1-\lambda_{SNR}(t))\times SNR_{over}(t);.....(\text{J. }33)\\ &else\\ &SNR_{low_track}(t)=SNR_{low_track}(t-1); \end{split}$$

式中:

SNR_{low_track} —— 初始化为 0;

 $\lambda_{SMR}(t)$ —— 遗忘因子, 计算如下:

$$if(t < 10)$$

$$\lambda_{SNR}(t) = 1 - 1/t;$$

$$else$$

$$if(SNR_{over}(t) < SNR_{low_track}(t))$$

$$\lambda_{SNR}(t) = 0.95;$$

$$else$$

$$\lambda_{SNR}(t) = 0.99;$$

$$(J. 34)$$

增益调整主要目的在于: 当处理纯噪声帧时,需采用相对较大的降噪增益; 而处理包含语音的噪声帧时,需要采用相对较小的降噪增益。对当前信噪比 $SNR_{over}(t)$ 和低信噪比跟踪值 $SNR_{low_track}(t)$ 进行比较,同时更新维纳滤波器增益调整系数 $\alpha_{GF}(t)$,计算如下:

```
 if(E_{den}(t) > 100) 
 \{ if(SNR_{over}(t) < (SNR_{low\_track}(t) + 3.5)) 
 \{ \alpha_{GF}(t) = \alpha_{GF}(t-1) + 0.15; 
 if(\alpha_{GF}(t) > 0.8) 
 \alpha_{GF}(t) = 0.8; 
 \} 
 else 
 \{ \alpha_{GF}(t) = \alpha_{GF}(t-1) - 0.3; 
 if(\alpha_{GF}(t) < 0.1) 
 \alpha_{GF}(t) = 0.1; 
 \}
```

式中:

 $\alpha_{GF}(0) = 0.8$ °

第二阶段的维纳滤波器系数乘以增益调整系数 $\alpha_{GF}(t)$:

$$H_{2\ mel\ GF}(k,t) = (1-\alpha_{GF}(t)) + \alpha_{GF}(t) \times H_{2\ mel}(k,t), \quad 0 \le k \le K_{FB} + 1 \cdots (\text{J. 36})$$

式中,系数 $\alpha_{GF}(t)$ 的取值在 $0.1\sim0.8$ 之间。

J.10 Mel域IDCT

维纳滤波器的时域脉冲响应 $h_{WF}(n)$ 通过 Mel 域维纳滤波器系数 $H_{2_mel}(k)$ (第二阶段为 $H_{2_mel_GF}(k)$, 见公式(J. 36))进行 Mel 域 IDCT 得到:

$$h_{WF}(n) = \sum_{k=0}^{K_{FB}+1} H_{2_mel}(k) \times IDCT_{mel}(k,n), \quad 0 \le n \le K_{FB} + 1$$
 (J. 37)

式中:

*IDCT*_{mel}(k,n) ── Mel 域 IDCT 函数。

具体推导如下:

首先, $1 \le k \le K_{FB}$ 频带的各自中心频率为:

$$f_{centr}(k) = \frac{1}{\sum_{i=0}^{N_{SPEC}-1} W(k,i)} \sum_{i=0}^{N_{SPEC}-1} W(k,i) \times i \times \frac{f_{samp}}{2 \times (N_{SPEC}-1)}$$
 (J. 38)

式中:

 f_{samp} =16kHz —— 采样频率;

 $f_{centr}(0) = 0 \text{ kHz};$

GB/T 25724—XXXX

$$f_{centr}(K_{FB}+1)=f_{samp}/2$$
。
则, $IDCT_{mel}(k,n)$ 为:

$$IDCT_{mel}(k,n) = \cos\left(\frac{2 \times \pi \times n \times f_{centr}(k)}{f_{samp}}\right) \times df(k), \quad 0 \le k \le K_{FB} + 1, \quad 0 \le n \le K_{FB} + 1 \cdots$$
 (J. 39)

式中:

 $f_{centr}(k)$ —— Mel 子带 k 所对应的中心频率。

df(k)为:

$$df(k) = \frac{f_{centr}(k+1) - f_{centr}(k-1)}{f_{samp}}, \quad 1 \le k \le K_{FB}$$

$$df(0) = \frac{f_{centr}(1) - f_{centr}(0)}{f_{samp}} \qquad (J. 40)$$

$$df(K_{FB} + 1) = \frac{f_{centr}(K_{FB} + 1) - f_{centr}(K_{FB})}{f_{samp}}$$

维纳滤波器的脉冲响应扩展到 $0 \le k \le 2 \times (K_{FB} + 1)$:

$$h_{WF_mirr}(n) = \begin{cases} h_{WF}(n), & 0 \le n \le K_{FB} + 1 \\ h_{WF}(2 \times (K_{FB} + 1) + 1 - n), & K_{FB} + 2 \le n \le 2 \times (K_{FB} + 1) \end{cases}$$
 (J. 41)

J. 11 维纳滤波

根据 $h_{WF mirr}(n)$ 得出因果的脉冲响应 $h_{WF caus}(n,t)$:

$$\begin{cases} h_{WF_caus}(n,t) = h_{WF_mirr}(n+K_{FB}+1,t), & n=0,\cdots,K_{FB} \\ h_{WF_caus}(n,t) = h_{WF_mirr}(n-K_{FB}-1,t), & n=K_{FB}+1,\cdots,2\times(K_{FB}+1) \end{cases} \cdots (J.42)$$

截断后脉冲响应 h_{WF} trunc(n,t) 为:

$$h_{WE} = true(n,t) = h_{WE} = caus(n+K_{ER}+1-(FL-1)/2,t), \quad n=0,\dots,FL-1\dots$$
 (J. 43)

滤波器长度 FL等于 17。截断后脉冲响应加汉宁窗处理:

$$h_{WF_{-w}}(n,t) = \left\{0.5 - 0.5 \times \cos\left(\frac{2 \times \pi \times (n+0.5)}{FL}\right)\right\} \times h_{WF_{-trunc}}(n,t), \quad 0 \le n \le FL - 1 \dots (J.44)$$

这样,输入信号 s_m 经过脉冲响应 $h_{WF_w}(n,t)$ 的维纳滤波器后就得到降噪信号 s_m :

$$s_{nr}(n) = \sum_{i=-(FL-1)/2}^{(FL-1)/2} h_{WF_{-w}}(i + (FL-1)/2) \times s_{in}(n-i), \quad 0 \le n \le M-1 \dots$$
 (J. 45)

式中:

FL =17 —— 滤波器长度; M =160 —— 帧移样本数。

参考文献

- [1] ISO/IEC IS 14496-1. Information Technology-Generic coding of audio-visual objects. Part1:Systems. Nov. 1998
- [2] ISO/IEC IS 14496-2. Information Technology-Generic coding of audio-visual objects. Part2:Visual. Nov. 1998
 - [3] ISO/IEC JCT1/SC29 WG11 N3342. Overview of MPEG-7 standard. Maui, 1999
- [4] ISO/IEC JCT1/SC29 WG11 and ITU-T SG26 Q.6 (JVT-K051, Version3 of ISO/IEC 14496-10E). 12th Meeting Redmond, U. S. A, Jul. 2004
- [5] 3GPP TS 26.290, Version 7.0.0, "Extended Adaptive Multi-Rate Wideband (AMR-WB+) codec; Transcoding functions", Mar. 2007
- [6] 3GPP TS 26.190, Version 7.0.0, "AMR Wideband speech codec; Transcoding functions", Jun. 2007
- [7] ETSI ES 202 050, Version 1.1.5, "Distributed Speech Recognition; Advanced Front-end Feature Extraction Algorithm; Compression Algorithm", Jan. 2007
- [8] ETSI ES 202 212, Version 1.1.2, "Distributed Speech Recognition; Extended Advanced Front-end Feature Extraction Algorithm; Compression Algorithm, Back-end Speech Reconstruction Algorithm", Nov. 2005
 - [9] 姚天任, 孙洪. 现代数字信号处理. 武汉: 华中理工大学出版社, 1999
- [10] A. V. 奥本海姆, R. W. 谢弗. 离散时间信号处理. 2 版. 刘树棠, 黄建国, 译. 西安: 西安交通大学出版社, 2001
 - [11] 鲍长春. 低比特率数字语音通信编码基础. 北京: 北京工业大学出版社, 2001
 - [12] 张贤达,现代信号处理.2版.北京:清华大学出版社,2002
 - [13] 赵力. 语音信号处理. 北京: 机械工业出版社, 2003
- [14] 夸特尔瑞. 离散时间语音信号处理—— 原理与应用. 赵胜辉等, 译. 北京: 电子工业出版社, 2004
 - [15] 王炳锡, 王洪. 变速率语音编码. 西安:西安电子科技大学出版社,2004
 - [16] 胡航. 语音信号处理. 3 版. 哈尔滨: 哈尔滨工业大学出版社, 2005
 - [17] 程佩清. 数字信号处理教程. 3 版. 北京:清华大学出版社,2007
 - [18] 吴家安, 现代语音编码技术. 北京: 科学出版社, 2007
- [19] ITU-T Draft Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H. 264 | ISO/IEC 14496-10 AVC). 7th Meeting: Pattaya, Thailand, 7-14 Mar. 2003
 - [20] Abdul H. Sadka. Compressed Video Communications. Hohn Wiley & Sons, Ltd. England. 2002
 - [21] Kenneth. R. Castleman. Digital Image Processing. 北京.清华大学出版社. 1998
- [22] Iain E. G. Richardson. H. 264 and MPEG-4 Video Compression. Hohn Wiley & Sons, Ltd. England. 2002
- [23] J.H. Conway and N.J.A. Sloane, "A fast encoding method for lattice codes and quantizers," IEEE Trans. Inform. Theory, vol. IT-29, no. 6, pp. 820-824, Nov. 1983
- [24] F. Jabloun and A.E. Cetin, "The Teager Energy Based Feature Parameters for Robust Speech Recognition in Noise," Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing,

Mar. 1999

- [25] L.B. Almeida and F.M. Silva, "Variable-Frequency Synthesis: An Improved Harmonic Coding Scheme," Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, San Diego, CA, May 1984
- [26] M. Xie and J. P. Adoul, "Embedded algebraic vector quantization (EAVQ) with application to wideband audio coding," IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Atlanta, GA, U.S.A, vol. 1, pp. 240-243, 1996
- [27] T. Ganchev, N. Fakotakis, and G. Kokkinakis, "Comparative evaluation of various MFCC implementations on the speaker verification task," 10th International Conference on Speech and Computer (SPECOM), Vol. 1, pp. 191-194, 2005
 - [28] GB/T 20090.10 《信息技术 先进音视频编码 第10部分:移动语音与音频编码》
- [29] Adrian Grange, Peter de Rivaz, and Jonathan Hunt, "VP9 Bitstream & Decoding Process Specification", 2016
 - [30] 万帅 杨付正. 新一代高效视频编码H. 265/HEVC[M]. 北京: 电子工业出版社, 2014