Bap. 1 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- **1.** Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица	1 $\alpha_1 =$	0.01; h =	2.80.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	26.34	5.72	12.93	8.99	4.81	19.05	14.94	23.51	1.73	13.32	5.51	16.65	20.68	31.00	1.03	17.65	6.49
X	5	2	4	5	3	6	3	2	4	3	4	5	3	6	5	6	8
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	12.41	19.33	5.70	12.99	10.17	21.00	1.67	10.93	1.73	12.75	12.59	29.61	8.19	10.51	23.98	27.41	0.43
X	5	1	7	5	2	3	3	4	2	3	4	5	4	5	4	7	4
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	15.25	16.33	8.75	18.72	8.45	3.66	16.00	5.87	2.55	15.46	17.60	22.69	1.94	9.65	1.53	14.61	
X	6	3	5	5	2	5	6	5	6	3	7	6	3	6	5	3	

Bap. 2 (83832020)

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- 6. Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.10; h = 1.20.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	11.51	9.84	8.84	0.20	11.74	12.17	13.26	0.54	9.52	9.20	11.88	9.95	0.02	0.95	10.45	1.33	9.26
X	1	1	5	0	3	5	6	0	4	3	5	6	0	0	4	0	1
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	7.99	9.36	8.53	11.52	11.09	0.80	9.56	9.27	10.03	11.42	8.56	10.00	9.27	9.64	12.14	10.87	11.61
X	3	4	4	3	4	0	3	3	6	1	4	5	2	5	6	3	6
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	6.98	8.85	13.26	11.46	11.02	9.51	0.49	10.55	10.82	0.96	9.62	11.86	9.52	8.26	10.89	11.69	
X	3	2	6	1	6	2	0	3	5	0	1	1	1	1	4	5	

Bap. 3 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- **1.** Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Ίa	блица	1 ($\alpha_1 = 0.2$	20; h =	2.00.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	6.43	9.28	12.93	6.04	15.07	12.19	3.99	8.79	16.07	1.57	6.58	7.36	12.68	7.31	8.12	5.72	5.69
X	5	4	1	5	3	3	1	4	4	0	4	5	1	4	6	1	2
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	4.38	2.40	9.69	18.52	2.58	2.85	16.48	8.58	9.07	9.79	6.26	5.82	8.95	9.02	10.91	1.56	11.26
X	2	0	4	6	5	0	5	6	1	2	0	3	5	5	1	6	2
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	13.71	3.56	6.54	9.82	9.87	11.31	16.08	13.35	12.25	5.98	13.60	18.65	13.36	6.54	0.84	4.88	
X	5	4	6	2	1	1	4	4	2	4	5	4	4	5	5	0	

Bap. 4 (83832020)

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия 1 α.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- ${f 6.}\$ Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.20; h = 2.00.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	6.09	15.53	15.03	11.63	15.72	18.55	2.93	7.71	10.02	10.59	10.69	13.03	11.19	10.74	1.19	13.51	10.59
X	3	4	2	2	2	4	0	1	1	1	1	1	1	3	3	1	3
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	11.55	10.33	7.22	7.52	12.40	7.65	6.59	8.62	5.97	15.57	14.03	11.04	16.32	12.37	7.41	11.61	6.91
X	3	1	2	2	2	3	2	4	1	1	1	2	2	2	1	2	2
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	13.10	5.27	12.83	11.01	6.53	0.86	11.57	17.69	7.82	7.60	14.55	8.77	5.20	4.18	11.55	7.47	
X	1	1	3	1	1	3	3	1	2	1	4	2	4	1	3	3	

Bap. 5 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- **1.** Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- ${f 6.}$ Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица 1	$\alpha_1 = 0$	0.02; h =	2.90.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	17.96	6.37	12.16	11.11	9.59	12.64	8.88	2.92	9.63	1.63	15.06	17.59	3.86	14.52	22.58	8.93	12.09
X	5	6	2	2	5	4	4	3	4	5	1	7	5	1	7	7	2
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	10.94	4.14	28.60	11.74	3.89	0.89	19.51	20.53	7.80	7.74	18.25	22.48	2.83	22.07	20.31	5.87	24.77
X	1	0	5	7	6	2	7	4	4	5	2	4	4	5	4	1	7
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	8.70	8.46	0.74	5.50	20.34	4.48	6.62	1.02	0.52	5.47	12.20	0.35	10.83	13.72	11.11	5.43	
X	3	2	7	6	1	6	3	7	0	2	1	2	4	1	0	5	

Bap. 6 (83832020)

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия 1 α.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- ${f 6.}\$ Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.10; h = 1.20.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	13.09	9.04	8.43	10.57	13.50	8.82	11.69	12.11	11.88	8.33	15.17	0.23	10.95	13.49	11.10	10.67	2.44
X	2	2	1	2	1	3	2	2	2	2	1	0	2	2	2	1	0
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	13.46	9.71	9.66	9.76	10.18	11.27	8.80	11.14	8.93	10.51	11.91	12.43	10.05	0.63	11.51	10.80	9.93
X	1	1	1	2	2	2	3	1	2	1	1	1	1	0	1	1	3
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	2.79	11.69	11.69	13.01	10.52	11.59	9.73	14.25	11.98	12.74	11.57	12.11	11.16	10.03	0.61	8.88	
X	0	1	1	2	2	1	2	1	1	1	2	2	1	1	0	3	

Bap. 7 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- **1.** Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица	1	$\alpha_1 =$	0.02; h =	= 1.90.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	10.14	5.60	14.08	12.00	5.14	6.96	14.80	8.53	12.28	21.42	15.09	7.18	16.13	10.17	11.61	12.85	16.24
X	5	9	7	2	9	2	9	3	2	6	6	3	3	9	8	6	9
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	9.60	8.16	12.81	1.89	13.51	11.22	8.46	3.90	11.75	15.47	3.61	6.51	1.76	10.28	0.27	14.13	2.94
X	5	8	3	0	8	9	9	0	7	8	0	5	0	5	0	3	0
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	4.58	9.19	7.55	7.44	8.77	7.75	16.39	3.25	12.12	8.42	1.36	2.79	13.46	4.57	0.35	14.86]
X	0	8	1	9	4	9	9	0	7	9	0	6	4	0	0	3	

Bap. 8 (83832020)

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия 1 α.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- ${f 6.}$ Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.10; h = 0.81.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	10.70	9.21	10.70	8.76	0.15	9.47	9.18	9.37	8.46	9.92	9.73	10.46	9.47	10.81	9.77	0.15	9.94
X	3	2	1	2	0	2	3	1	1	2	3	3	3	3	2	0	3
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	9.82	9.62	8.36	9.28	9.51	9.84	9.61	10.19	9.79	9.73	9.41	9.00	9.06	9.18	7.77	9.83	10.09
X	1	1	2	2	3	2	1	1	4	2	2	2	1	1	1	1	3
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	9.84	9.64	10.54	8.69	9.45	10.01	10.52	7.33	10.97	9.64	9.00	9.64	8.88	9.30	8.46	8.28	
X	2	2	3	4	4	3	3	4	3	2	2	3	2	3	1	2	

Bap. 9 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- **1.** Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- **4.** На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица	1	$\alpha_1 =$	0.05; h	= 1.80.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	11.37	0.71	11.45	3.53	11.08	14.16	11.26	11.08	8.01	7.50	9.30	12.58	14.13	8.33	11.74	3.05	0.15
X	1	0	5	0	2	1	1	5	3	1	2	1	3	3	3	0	0
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	0.06	5.56	10.82	13.65	12.00	8.28	10.58	2.89	10.04	8.11	15.66	9.82	6.15	2.82	4.76	8.32	6.31
X	0	0	4	5	5	2	2	0	3	3	4	1	2	0	1	2	0
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	11.55	9.68	10.66	6.08	16.81	4.37	9.84	11.06	8.24	17.47	0.74	10.54	10.91	5.46	10.00	9.09	
X	3	5	1	3	3	0	4	1	1	2	0	3	5	2	3	5	

Bap. 10 (83832020)

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия 1 α.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- 6. Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.01; h = 1.70.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	9.78	10.57	10.99	10.65	9.26	7.70	8.79	9.70	12.14	10.80	14.84	9.23	2.18	13.90	9.58	9.55	9.86
X	5	3	6	3	5	7	2	7	8	3	6	7	0	7	1	6	3
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	9.07	0.93	13.21	14.33	12.45	10.97	7.95	11.09	7.84	3.52	8.85	9.50	13.13	13.38	8.62	9.31	9.86
X	1	0	2	4	6	6	6	6	8	0	7	6	6	7	6	5	5
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	5.89	9.61	9.42	9.66	10.04	7.28	8.34	10.06	8.04	6.37	14.84	9.59	15.44	11.14	13.74	13.88	
X	6	8	8	7	7	8	2	1	1	3	7	5	4	5	1	2	

Bap. 11 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- **1.** Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет. **Таблина 1** $\alpha_1 = 0.20$: h = 3.00.

Ia	олица	T ($x_1 - 0.2$	20, n -	5. 00.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	10.75	4.51	20.50	22.37	4.63	12.65	2.56	30.41	3.39	15.97	20.21	17.36	13.40	24.61	3.48	15.51	27.17
X	4	3	2	5	1	3	3	3	2	4	4	3	3	4	2	3	4
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	18.42	25.72	7.64	4.83	9.05	20.89	17.99	11.17	4.10	5.84	20.94	24.04	15.53	20.06	6.98	11.77	13.98
X	3	4	0	2	2	3	3	2	1	3	1	4	3	3	5	4	1
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	1.78	16.55	18.27	9.79	24.16	10.73	0.78	25.92	29.26	13.04	4.10	8.28	5.92	6.72	2.69	3.10	
		_		_	_		_		_		_			_		_	1

Bap. 12 (83832020)

- **1.** Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- 6. Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Ta	блица	1 <i>c</i>	$\alpha_1 = 0.2$	20; h =	1.40.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	13.53	10.78	2.16	8.21	12.14	10.94	11.37	12.30	9.52	9.04	8.96	11.62	12.81	10.71	12.59	11.62	12.27
X	1	3	0	3	1	2	1	2	1	2	2	3	1	2	1	3	2
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	12.13	11.40	11.36	11.47	11.68	9.87	7.65	9.86	9.70	8.83	8.77	10.28	11.12	0.84	12.29	9.15	16.61
X	1	1	1	2	3	2	1	3	1	1	1	3	1	0	1	1	3
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	12.46	7.39	7.07	7.58	11.32	11.96	11.45	9.47	7.93	2.18	14.04	12.31	9.48	13.44	9.56	14.19	
X	1	3	2	1	2	1	2	2	1	0	2	1	2	1	1	2	

Bap. 13 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- **1.** Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет. Таблина 1 $\alpha_1 = 0.02$: h = 2.10

1a	.олица	1 ($x_1 = 0.0$	jz; n =	2.10.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	11.79	2.06	14.98	7.94	10.24	7.39	11.14	7.61	5.56	19.45	19.83	15.35	2.60	14.52	14.21	14.67	5.62
X	5	2	2	4	4	3	5	2	2	4	1	1	0	2	3	1	5
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	2.84	15.46	8.59	12.56	10.80	0.05	13.24	2.77	10.05	0.38	1.08	15.01	13.01	8.67	7.75	6.23	7.08
X	0	5	4	2	2	0	2	0	3	0	0	4	5	1	4	2	5
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	12.80	11.73	16.52	15.21	18.75	0.98	9.30	10.27	17.76	9.78	7.32	4.87	10.92	17.51	11.66	3.77	
X	5	3	1	3	1	0	3	3	2	5	5	2	2	5	2	4	

Bap. 14 (83832020)

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- ${f 6.}$ Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

\mathbf{Ta}	блица	1 ($\alpha_1 = 0.0$	02; h =	1.40												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	10.74	11.69	9.88	7.36	13.76	9.17	2.71	3.61	5.33	14.19	7.47	1.90	5.18	11.38	4.59	0.96	3.32
X	2	1	2	2	1	1	0	0	2	1	1	0	0	1	2	0	0
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	12.34	4.07	0.40	1.11	0.36	10.01	9.91	0.62	8.70	4.13	9.98	8.72	8.36	7.64	11.67	5.64	11.23
X	2	0	0	0	0	1	2	0	2	0	1	1	1	2	1	2	1
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	10.75	5.19	6.73	11.98	8.29	12.64	1.56	9.08	10.35	2.04	11.34	13.55	1.12	9.09	7.49	3.66]
X	1	2	2	1	1	1	0	2	2	0	1	1	0	2	1	0	

Bap. 15 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- **1.** Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- **7.** Интерпретировать полученные результаты. Написать отчет. **Таблина 1** $\alpha_1 = 0.20$: h = 1.40.

\mathbf{Ta}	блица	1 ($\alpha_1 = 0.5$	20; h =	1.40.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	11.99	11.74	8.78	12.04	13.65	0.88	10.43	8.40	0.29	6.96	9.24	6.80	7.97	5.74	7.60	13.32	1.42
X	3	1	2	2	4	0	4	1	0	1	1	2	4	1	2	3	0
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	3.02	1.26	9.44	2.33	9.44	2.50	10.59	11.86	12.71	10.62	1.52	2.22	7.92	0.77	1.97	7.68	14.08
X	0	0	3	0	3	0	4	2	3	3	0	0	1	0	0	4	4
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	7.49	11.68	10.51	9.76	9.24	11.08	13.71	7.51	1.54	6.96	10.94	1.86	8.82	9.68	11.27	0.62	
v	2	4	- 2	1	2	9	9	1	0	2	2	Ω	- 2	1	2	Ω]

Bap. 16 (83832020)

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия 1 α.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- ${f 6.}\$ Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- **7.** Интерпретировать полученные результаты. Написать отчет.

Ta	блица	1 6	$\alpha_1 = 0.2$	20; h =	2.50.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	5.39	5.23	1.38	13.49	7.81	27.46	2.19	0.84	16.08	16.89	9.15	8.03	16.03	11.34	9.54	17.15	19.39
X	0	7	8	5	0	6	8	4	6	1	5	2	3	8	6	5	6
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	7.27	6.65	10.74	20.94	6.79	4.72	15.87	1.19	0.73	6.64	14.27	9.61	12.08	13.02	6.56	15.10	6.51
X	3	1	7	8	0	2	4	0	2	7	2	5	8	5	5	1	6
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	8.45	1.84	8.25	17.44	14.86	0.73	15.26	8.15	8.27	7.85	0.64	8.10	21.53	17.87	12.97	5.80	
X	2	1	6	1	7	4	2	0	7	5	0	5	3	7	5	2	

Bap. 17 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет. Таблина 1 $\alpha_1 = 0.01$: h = 2.60.

Ia	олица	T ($x_1 - 0.0$	$\sigma_1, \kappa -$	2.00.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	3.74	3.14	6.50	11.05	11.31	4.40	13.00	9.01	8.21	13.06	14.03	8.61	10.55	28.05	12.64	14.28	2.02
X	3	4	3	4	4	1	1	3	2	1	3	4	4	3	2	4	4
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	11.10	11.80	10.61	7.33	11.62	8.22	0.44	10.04	5.34	21.79	18.83	9.19	11.21	10.78	19.98	8.40	18.62
X	3	4	5	3	3	2	4	4	3	2	2	4	2	5	2	4	3
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50]
Y	4.31	3.50	13.87	16.72	10.93	6.43	15.79	14.80	8.19	15.71	8.53	6.92	6.13	8.95	16.12	3.50	

Bap. 18 (83832020)

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия 1 α.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- ${f 6.}$ Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Ta	блица	1 <i>c</i>	$\alpha_1 = 0.0$	05; h =	2.10.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	11.58	18.35	6.55	6.26	2.10	7.73	3.17	0.07	5.03	5.97	5.03	12.48	15.91	0.08	4.07	7.96	10.38
X	5	5	4	3	6	2	2	4	0	0	2	1	5	0	5	6	4
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	9.67	25.36	13.44	13.41	9.54	12.93	5.91	1.85	2.89	13.21	0.54	9.86	12.20	16.41	16.05	14.22	5.42
X	0	3	5	3	3	2	1	0	5	2	0	6	3	4	2	2	1
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	5.64	8.98	6.92	13.91	12.99	3.13	20.01	8.49	12.31	14.01	12.08	5.12	15.93	10.59	9.97	12.98	
X	0	4	1	6	4	0	5	4	3	5	2	5	4	3	1	3	

Bap. 19 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- **1.** Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица	1 α_1	= 0.02; h	n = 2.20.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	12.44	4.72	3.82	7.41	7.78	2.47	7.74	9.58	4.80	13.63	11.96	5.00	6.52	12.73	9.39	2.90	1.85
X	3	0	8	3	7	7	1	5	5	7	6	2	5	2	3	1	5
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	9.95	7.90	4.43	3.75	10.65	8.63	8.35	0.43	7.51	15.89	10.89	1.22	8.49	8.66	7.33	14.23	5.67
X	8	2	0	0	8	6	5	2	7	4	3	0	1	8	8	6	4
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	2.94	3.99	10.81	7.71	16.99	12.76	14.38	8.95	7.69	14.74	19.62	12.95	2.64	3.37	2.57	2.19	
X	0	6	3	0	5	2	1	8	2	7	2	1	0	6	0	0	

Bap. 20 (83832020)

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- ${f 6.}\$ Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.01; h = 2.50.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	4.53	10.15	14.53	15.48	18.95	8.57	13.52	6.41	10.07	0.10	5.93	11.98	24.55	11.10	13.62	15.46	9.08
X	1	3	1	0	1	2	3	2	4	0	4	1	4	1	3	3	0
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	1.67	0.12	13.41	21.42	9.56	10.80	12.48	11.93	7.60	7.72	13.44	5.23	7.76	11.22	17.91	5.59	23.48
X	0	0	1	3	1	2	3	3	2	3	2	4	1	4	4	0	3
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	7.85	8.67	19.34	8.40	3.16	18.90	1.58	11.05	9.93	15.61	8.78	12.98	5.79	15.92	4.52	7.87	
X	2	1	4	2	0	3	2	4	3	4	3	2	1	4	0	0	

Bap. 21 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

\mathbf{Ta}	блица	1 6	$\alpha_1 = 0.2$	20; h =	2.60.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	5.39	12.18	13.55	16.56	7.13	7.04	8.29	12.87	11.66	9.42	16.95	12.32	13.39	9.51	7.38	15.19	4.07
X	2	3	3	1	3	3	2	2	1	1	2	2	3	3	1	1	4
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	23.23	8.23	10.78	11.98	14.93	11.19	9.37	19.14	10.66	13.73	13.42	9.91	4.63	13.34	4.48	21.26	11.82
X	2	1	1	1	2	2	2	3	2	2	3	2	3	1	3	2	2
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50]
V	1 16	18 42	2.59	13 30	26.98	1.82	1 94	21.09	12.27	12.79	3 22	5.70	8 25	2.76	14 13	6.08	

Bap. 22 (83832020)

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- 2. Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 3. Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора X рассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- **5.** Провести анализ ошибок. На базе ошибок построить гистограмму с шагом *h*. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- 6. Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Ta	$ extbf{Taблицa} extbf{1} \qquad lpha_1 = 0.05; \ h = 1.80.$																
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	13.21	13.31	9.26	8.85	9.07	12.76	17.10	7.83	9.51	15.75	5.97	12.37	10.68	1.98	6.31	4.45	8.00
X	1	3	8	2	6	4	4	4	3	1	8	6	8	0	0	5	5
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	11.61	10.08	7.22	10.16	4.08	9.99	11.38	9.95	3.82	8.65	16.23	3.25	6.97	7.65	6.23	10.86	8.93
X	5	1	0	7	7	9	5	9	0	6	4	2	7	7	2	6	4
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	15.18	1.97	9.47	9.46	15.82	9.13	11.71	6.71	8.22	8.30	13.53	7.90	12.26	5.39	11.51	14.03	
X	2	0	4	1	7	8	7	9	1	7	3	7	1	3	6	9	

Bap. 23 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- **1.** Построить графически зависимость переменных Y_i от уровней фактора X.
- ${f 2}.$ Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1 - \alpha$.
- **3.** Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора Xрассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- 5. Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

1a	олица	1 ($x_1 = 0.2$	20; n =	1.80.			
No	1	2	3	4	5	6	7	ſ
3.7	10 66	F 00	14.00	11 04	0.04	2.70	0.71	Г

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	10.66	5.09	14.92	11.84	9.84	3.70	8.71	11.71	7.41	7.33	14.93	9.67	12.99	6.82	4.77	9.56	12.02
X	4	3	3	4	6	0	2	5	4	7	3	4	3	5	2	2	3
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	10.18	16.65	8.14	6.24	8.77	5.22	13.82	9.53	15.28	12.86	10.66	7.75	8.96	4.09	10.84	10.84	8.37
X	2	3	4	3	6	5	3	2	4	2	3	2	3	4	4	3	1
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	13.32	12.59	13.07	13.59	15.05	9.11	10.89	9.19	6.50	17.39	1.04	4.49	14.98	10.86	10.51	9.75	
X	6	3	3	3	4	4	5	3	6	3	4	6	3	4	3	5	

Bap. 24 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от уровня фактора X (простая группировка).

- 1. Построить графически зависимость переменных Y_i от уровней фактора X.
- ${f 2}.$ Сформулировать модели однофакторного дисперсионного анализа зависимости значений Y от уровней фактора X в центральной параметризации. Является ли дизайн данного эксперимента сбалансированным? Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- **3.** Сформулировать модель однофакторного дисперсионного анализа когда наибольший уровнень фактора Xрассматривается как базовый. Построить МНК оценки параметров и несмещенную оценку дисперсии. В предположении нормальности ошибок построить доверительные интервалы для параметров уровня доверия $1-\alpha$.
- 4. На основании результатов, полученных в предыдущих пунктах проверить визуально монотонность влияния величины фактора X на результат. Построить графически оценку зависимости уровней фактора X на результат. Как данная зависимость согласуется с результатами пункта 1, если наложить один график на другой.
- 5. Провести анализ ошибок. На базе ошибок построить гистограмму с шагом h. Оценить расстояние полученной оценки до класса центрированных нормальных распределений по Колмогорову.
- **6.** Составить таблицу дисперсионного анализа. Проверить значимость влияния фактора X на результаты эксперимента.
- 7. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.10; h = 1.60.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	12.79	3.86	9.00	6.50	12.04	7.67	12.17	8.26	12.42	12.51	9.56	11.14	15.16	13.82	8.20	13.36	12.56
X	4	2	3	4	2	4	3	4	5	5	4	5	2	3	5	3	3
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	10.52	9.90	10.76	8.12	5.52	8.63	12.11	7.99	8.32	5.76	11.92	13.17	10.00	8.35	6.69	7.40	11.76
X	5	5	5	5	3	4	5	4	4	7	4	3	6	6	4	6	7
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	6.83	8.37	10.34	11.49	11.05	9.71	11.04	9.62	12.01	10.49	9.70	5.34	16.35	9.65	5.70	11.24	
X	6	5	4	5	5	3	6	4	4	4	6	5	5	5	4	3	