PROJECT REPORT

Emerging Methods for Early Detection of Forest Fires

SUBMITED BY TEAM ID: PNT2022TMID19957

Nakul Anand C	732219IT039
Vasanth K	732219IT060
Deepak K	732219IT013
Santhosh S	732219ITL06

TABLE OF CONTENTS

1 INTRODUCTION

- 1.1 PROJECT OVERVIEW
- 1.2 PURPOSE

2 LITERATURE SURVEY

- 2.1 EXISTING PROBLEM
- ` 2.2 REFERENCES
 - 2.3 PROBLEM STATEMENT DEFINITION

3 IDEATION AND PROPOSED SOLUTION

- 3.1 EMPATHY MAP CANVAS
- 3.2 IDEATION & BRAINSTORMING
- 3.3 PROPOSED SOLUTION
- 3.4 PROBLEM SOLUTION FIT

4 REQUIREMENT ANALYSIS

- **4.1 FUNCTIONAL REQUIREMENTS**
- **4.2 NON FUNCTIONAL REQUIREMENTS**

5 PROJECT DESIGN

- 5.1 DATA FLOW DIAGRAM
- 5.2 SOLUTION & TECHNICAL ARCHITECTURE
- **5.3 USER STORIES**

6 PROJECT PLANNING AND SCHEDULING

- **6.1 SPRINT PLANNING AND ESTIMATION**
- **6.2 SPRINT DELIVERY SCHEDULE**

7 CODING & SOLUTIONING

8 TESTING

8.1 TEST CASES

8.2 USER ACCEPTANCE TESTING

8.2.1 DEFECT ANALYSIS

8.2.2 TEST CASE ANALYSIS

9 RESULTS

9.1 PERFORMANCE METRICS

10 ADVANTAGES & DISADVANTAGES

ADVANTAGES

DISADVANTAGES

11 CONCLUSION

12 FUTURE SCOPE

APPENDIX

SOURCE CODE

GITHUB

PROJECT DEMO

INTRODUCTION

1.1 PROJECT OVERVIEW

Machine learning and deep learning play an important role in computer technology and artificial intelligence. With the use of deep learning and machine learning, human effort can be reduced in recognizing, learning, predictions and in many more areas.

Forest fire detection is the ability of computer systems to recognise

Fire from various region of forest, such as fire, smoke, and so on. This

project aims to let users take advantage of machine learning to reduce manual
tasks in Detecting the forest fire.

1.2 PURPOSE

The main aim of our project is detection and monitoring the forest fire

To minimize the effect of fire breakout by controlling in its early stage also to protect

Domestic by informing about the breakout to the respective forest department as early
as possible. We have implemented the IOT technology to achieve our objective.

LITERATURE SURVEY

2.1 EXISTING PROBLEM

Some of the relevant literary works in this field are briefed below:

The one fourth area of Karnataka is covered by forest, the forest and bio-diversity of the India are at the considerable chance and beneath enormous pressure. General causes of forest fire are extreme hot and aired weather, lightning and human carelessness. In order to protect these huge stretches of forest land, there need to be taken early caution measures to control of spreading fire

2.2 REFERENCES

1. A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing

- P. Barmpoutis, P. Papaioannou, K. Dimitropoulos, N. Grammalidis
- Environmental Science
- Sensors
- 2020

An overview of the optical remote sensing technologies used in early fire warning systems is presented and an extensive survey on both flame and smoke detection algorithms employed by each technology is provided.

2. Forest Fire Detection System using LoRa Technology

- N. Gaitan, Paula Hojbota
- Environmental Science
- 2020

This paper proposes a system capable of quickly detecting forest fires on long wide distance using LoRa (Long Range) technology based on LoRaWAN (Long Range Wide Area Network) protocol which is capable to connect low power devices distributed on large geographical areas.

3. Low Cost LoRa based Network for Forest Fire Detection

- <u>Roberto Vega-Rodríguez</u>, <u>Sandra Sendra</u>, <u>Jaime Lloret</u>, <u>Pablo Romero-Díaz</u>, <u>José Luis García-</u> Navas
- Computer Science, Environmental Science
 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)
- 2019

A low cost Long Range (LoRa) based network able to evaluate level of fire risk and the presence of a forest fire and the evaluation algorithm is based on the 3030-30 rule.

4. A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems

- F. Abid
- Environmental Science, Computer Science
- Fire Technology
- 2020

A comprehensive survey of the machine learning algorithms based forest fires prediction and detection systems is presented, highlighting the main issues and outcomes within each study.

2.3 PROBLEM STATEMENT DEFINITION

Some people know about the current issues are the most important ones because it is mostly a lot in the news but sometimes other big issues that change our lives are not mentioned in the news because they are issues that can hurt us in the long run or not really important for the modern public. One issue I can tell you about is the forest fires. Sometimes people don 't notice or now about the forest fires until it is talk in the news and it 's mostly because it has done a great damage.

CHAPTER 3 IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	To find emerging methods for early detection of forest fires using artificial intelligence.
2.	Idea / Solution description	In case of forest fire detection the burning substances are primarily identified as sceptical flame regions using a division strategy to expel the non-fire structures and results are verified by a deep learning model.
3.	Novelty / Uniqueness	Accurate and reliable recognition of sceptical flame regions by means of using YOLO v3 algorithm.
4.	Social Impact / Customer Satisfaction	 By using this method we can save environmental damage and lives of living beings. It is fast and accurate method to detect the fire easily and give an alert to the forest fire department simultaneously when the fire is detected.
5.	Business Model (Revenue Model)	The software platform to provide the fully autonomous processing of data received from the camera of UAV to obtain live feed in web App.
6.	Scalability of the Solution	It is mainly developed for detecting the forest fire across the world and useful in surveillance the different sections of the forest.

AS

3.4 PROBLEM SOLUTION FIT

1. CUSTOMER SEGMENT(S)

Define CS, fit into

Who is your customer? i.e. working parents of 0-5 y.o. kids

The forest resources which plays a vital role in sustaining lives on the earth, therefore to preserve them from unexpected outbreak of fire and smoke. The forest management team do need this device in fire prone areas.

6. CUSTOMER CONSTRAINTS

What constraints prevent your customers from taking action or limit their choices of solutions? i.e. spending power, budget, no cash, network connection, available devices.

Climatic changes and the greenhouses gases arethe reasons behind the destruction. Along with this the human factor to greedily use resources also play a vital reason for the forest fires.

5. AVAILABLE SOLUTIONS

CC

RC

Which solutions are available to the customers when they face the problem

or need to get the job done? What have they tried in the past? What pros & cons do these solutions have? i.e. pen and paper is an alternative to digital notetaking

Existing systems uses optical sensors for detecting forest fires. As fire is detected the sensors sends signal to the office of forest management. Among with that satellites are used to detect IR rays spotted in forest lands.

2 JOBS-TO-BE-DONE / PROBLEMS

Which jobs-to-be-done (or problems) do you USP address for your customers? There could be more than one; explore different sides.

The main problem that exists is

weather and climate by releasing large number of carbon

dioxide, carbon monoxide and fine particulate matter into the

What is the real reason that this problem exists? What is the back story behind the need to do this job?Le. customers have to do it because of the change in regulations.

9. PROBLEM ROOT CAUSE

- The reasons possible are:

 1. Due to natural causes- Lightning
- 2. Man-made causes- Naked flame, cigarette, electric spark

Thus, contineous care and monitoring is needed to preserve natural resources to save lives

7. BEHAVIOUR

What does your customer do to address the problem and get the job done? i.e. directly related: find the right solar panel installer, calculate usage and benefits; indirectly associated: customers spend free time on volunteering work (i.e. Greenpeace)

When fire is detected the system which is implemented to monitor the forests sets the alarm to ring, that is it gives the signal through which fire management team and the forest committee tries

to call off the fire. Thus, the aim is to recognize the fire as early as possible to prevent spread of fire which will cause further damage to control.

3 TRIGGERS

atmosphere.

What triggers customers to act? i.e. seeing their neighbor installing solar panels, reading about a more efficient solution in

The unconsious behavior towards burned cigarette left, chances of leaving the campfire remained burnt and electric supply being disrupted

4. EMOTIONS: BEFORE / AFTER

П

How do customers feel when they face a problem or a job and afterwards?

i.e. lost, insecure > confident, in control - use it in your communication strategy & design.

Wildfires can cause lot of stress since the factor that influence their direction and intensity are unpredictable and can change at anytime. People who have lived through wildfires can face dramatic mood swings, anxiety and mood-swings.

10 YOUR SOLUTION

If you are working on an existing business, write down your current solution first, fill in the canvas, and check how much it fits reality. If you are working on a new business proposition, then keep it blank until you fill in the canvas and come up with a solution that fits within customer limitations, solves a problem and matches customer behavior

To minimize these loses, we have proposed a solution to detect early detection of forest fires by using CCTV camera surveillance, which can detect fire in indoor and outdoor activities. Thus instant alerts has to be sent to the forest management office so that they can take further actions to disrupt the damage caused by the fire.

8. CHANNELS of BEHAVIOUR

8.1 ONLINE

What kind of actions do customers take online? Extract online channels from #7

2 OFFLINE

What kind of actions do customers take offline? Extract offline channels from #7 and use them for customer development.

Online Detection: Thus the chatbot or the API canconnect through internet to feed you with the current status of the forest.

Offline Detection: Thus, the forest management can send notice to the nearby residential areas or the media can bring the awareness through news, radio.

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FUNCTIONAL REQUIREMENTS:

-Following are the functional requirements of the proposed solution

Sn. No	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)					
1.	User Registration	Registration through G-mail.					
2.	User Confirmation	Confirmation through OTP. Confirmation through mail.					
3.	User Login	Can login through credentials.					
4.	User Feed	The live update of the forestcover is sent to user if there is any detection of fire					
5.	User Profile	The workers profile created to give the forest management live track of the forest.					
6.	User Alert	The user receives thequick response through alert sound or Messages, if any fire is detected.					
7.	User Application	Along with the forest management team the citizens residing nearby forest can also download the application for alerts.					

NON-FUNCTIONAL REQUIREMENTS:

-Following are the non-functional requirements of the proposed solution.

Sn. No.	Non-Functional Requirement	Description			
1.	Usability	Monitoring possible danger areas and early fire detection can greatly reduce the response time and potential damage.			
2.	Security	The environment is more secure.			
3.	Reliability	The installment of model is safe.			
4.	Performance	Model will achieve high accuracy.			
5.	Availability	Build model is available all the time.			
6.	Scalability	The instant alerts received by the forest team is ensured.			

CHAPTER 5 PROJECT DESIGN

Data Flow Diagram

5.2 SOLUTION & TECHNICAL ARCHITECTURE

5.3 USER STORIES

User Type	Functional Requirement	User Story	User Story / Task	Acceptance criteria	Priority	Release
	(Epic)	Number				
			As a user, the	The live video		
Forest	Setting up a	USN-1	forest	captured can be	High	Sprint-1
Management	camera		management	monitored		
Team			team has to			
			survey the forest			
			by adding camera			
			to the fire prone			
			areas.			
			As a user, the	The camera sends		
		USN-2	forest	video or image to the	High	Sprint-2
			management	forest centre		
			team can get			
			video feed which			
			is used for			
			processing			
		LIONIO	Along with forest	They can also get the	1	Out of A
		USN-3	team, the NGO	view of the live	Low	Sprint-1
			can also get	monitoring of forest		
			access of the			
			video to take			
			some early			
			measurement of forest fires.			
	Image					
Technical	Image Classification	USN-4	By using CNN	The model should be	Medium	Sprint-2
Team	Classification	0311-4	Model, the images captured	able to identify the difference between	Mediaiii	Spriint-2
Team			by the camera is	fire and a normal		
			classified	smoke		
			accordingly by	SHOKE		
			testing & training			
			the model			
			The recorded	Therefore, by using		
	Using Open	USN-5	video is under	CNN we can		
	CV		monitoring	determine the input		
			continuously to	layer, classify the	High	Sprint-2
			determine the	hidden layers and		·
			detection of early	send warnings through		
			video	output layer		
			Thus, after	Thus, the immediate		
Alert Team	Dashboard	USN-6	successful	response which is		
			detection of fire	required for earlier	High	
			by processing	determination through		Sprint-2
			images. This, API	sending quick		
			sends the alert by	responses		
			buzzing the alarm			
			and sends			
			messages through chatbot			
			They play the	They take the		
Fire	Twilio API		most important	following measures to	High	Sprint-2
Management			role to cool the	-	-	•

			fire and manage the excess spread of fire further	stop fire from spreading		
User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Media & Nearby Residing People	News, Radio, Alerts,	USN-7	Protecting wildlife, human from the disaster caused	Thus, helping unit should be sent to protect lives	Medium	Sprint-2

CHAPTER 6 PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Import the Required, Collecting the Dataset	USN-1	To analyse the fire prone areas and to set the surveillance camera to collect and observe the region continuously for early detection.	2	High	Nakul Anand C Vasanth K Deepak K Santhosh S
Sprint-2	Training & Testing of model	USN-2	The collected data are categorized on the basis of parameters set to identify. To train the model, CNN is used to test repeatedly by storing the datasets in server.	1	High	Nakul Anand C Vasanth K Deepak K Santhosh S
Sprint-3	Model Building, Reviewing the model	USN-3	The main task is to check that the model is efficient to work in real time. Therefore, smallest of error decoded needed to be corrected to avoid future lags	1	Medium	Nakul Anand C Vasanth K Deepak K Santhosh S
Sprint-4	Implementing the model	USN-4	The model after testing all it's functionalities is been implemented at forest management offices to get quick responses from the model.	2	High	Nakul Anand C Vasanth K Deepak K Santhosh S
Sprint-4	Connecting it with API	USN-5	The model should connect with API named Twilio, which receives & sends the management with messages.	2	High	Nakul Anand C Vasanth K Deepak K Santhosh S

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	15	06 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	10	14 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	5	\ 20 Nov 2022

CODING & SOLUTIONING

```
import cv2
import numpy as np
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load model
from twilio.rest import Client
from playsound import playsound
from decouple import config
message sent = False
model = load model("./model.h5")
video = cv2.VideoCapture("fire.mp4")
name = ["No fire", "Fire Detected"]
def send message():
    account sid = config("ACCOUNT SID")
    auth token = config("AUTH TOKEN")
    client = Client(account sid, auth token)
    message = client.messages.create(
        body="Forest Fire detected , Stay safe!!!",
       from =config("FROM"),
        to=config("TO")
    print(message.sid)
    print("Fire Detected")
    print("SMS Sent!")
playsound("./beep.mp3")
```

```
success, frame = video.read()
   cv2.imwrite("image.jpg", frame)
   img = image.load_img("image.jpg", target_size=(128, 128))
   x = image.img_to_array(img)
   x = np.expand_dims(x, axis=0)
   pred = model.predict(x)
   p = int(pred[0][0])
   cv2.putText(frame, str(name[p]), (100, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 1)
   if p == 1:
       if not message_sent:
           send_message()
           message_sent = True
       print("Fire Detected , stay safe!!!")
       print("No Fire Detected")
   cv2.imshow("Image", frame)
    if cv2.waitKey(1) & 0xFF == ord('x'):
       break
video.release()
cv2.destroyAllWindows()
```

CHAPTER 8 TESTING

8.1 TEST CASES

Test case ID	Feature Type	Component	Test Scenario	Steps To Execute	Test Data	Expected Result	Actual Result	Status	BUG ID	Executed By
OP_RT_001	Functional	Page	Check if user can upload their file	The sensor senses the fire	Sample 1.png	The input image should be uploaded to the application successfully	Working as expected	PASS		NAKUL ANAND C SANTHOSH S
OP_RT_002	Functional	Page	Check if user cannot upload unsupported files	1) The sensor senses the fire 2)checks with the pre-uploads images	installer.exe	The application should not allow user to select a non image file	User is able to upload any file	FAIL	BUG_HP_002	VASANTH K DEEPAK K
OP_RT_003	Functional		Checks whether the page redirects to the result page to the given output	The sensor senses the fire 2)checks with the pre- uploaded images Schecks if there is fire detection	Sample 1.png	The page should redirect to the results page	Working as expected	PASS		
MB_RT_001	Functional	Backend	Checks if all the routes are working properly	The sensor senses the fire 2)checks with the pre- uploaded images 3)checks if there is fire detection	Sample 1.png	All the routes should properly work	Working as expected	PASS		DEEPAK K SANTHOSH S DEEPAK K VASANTH K
N_DC_001	Functional	Model	Checks whether the model can handle various image sizes	1) Open the page in a specific device 2) Upload the input image 3) Repeat the above steps with different input	Sample 1.png Sample 1 XS.png Sample 1 XL.png	The model should rescale the image and predict the results	Working as expected	PASS		NAKULANAND C VASANTH K
N_DC_002	Functional	Model	Check if the model predicts the digit	Open the page Select the input images	Sample 1.png	The model should predict the number	Working as expected	PASS		NAKULANAND C VASANTH K
N_DC_003	Functional	Model	Check if the model can handle complex input image	1) Open the page 2) Select the input images 3) Check the results	Complex Sample.png	The model should predict the number in the compex image	The model fails to identify the digit since the model is not built to handle such data	FAIL	BUG_M_001	SANTHOSH S DEEPAK K
RL_DC_001	Functional	Result Page	Verify the elements	Open the page Select the input image Check if all the UI elements are displayed properly	Sample 1.png	The Result page must be displayed properly	Working as expected	PASS		NAKUL ANAND C SANTHOSH S
RL_DC_002	Functional	Result Page	Check if that image is displayed properly	Open the page Select the input image Check if the input image are displayed	Sample 1.png	The input image should be displayed properly	The size of the input image exceeds the display container	FAIL	BUG_RP_001	VASANTH K DEEPAK K
RL_DC_003	Functional	Result Page	Checks whether the displayed prediction is accurate	1) Open the page 2) Select the input image 3) Check if all the other predictions are displayed	Sample 1.png	The other predictions should be displayed properly	Working as expected	PASS		NAKUL ANAND C DEEPAK K

8.2 USER ACCEPTANCE TESTING

8.2.1 DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	1	1	0	3
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	3	1	0	1	5
Not Reproduced	0	0	0	1	1
Skipped	1	0	1	0	2
Won't Fix	1	0	0	0	1
Total	6	3	4	3	14

8.2.2 TEST CASE ANALYSIS

Section	Total Cases	Not Tested	Fail	Pass
Client Application	10	0	2	8
Security	3	0	2	2
Performance	2	0	1	1
Exception Reporting	3	0	0	3

RESULTS

9.1 PERFORMANCE METRICS

	t Test R								
		AM - 13/12/2022	, 7:14:47 AM						
rarget Host: Script: locust	http://127.0.0.1:	0000/							
Request	t Statistics								
Method	Name	# Requests	# Fails	Average (ms)	Min (ms)	Max (ms)	Average size (b	ytes) RPS	Failures/s
GET		1044	0	14	4	292	1080	2.2	0.0
GET	//predict	1007	0	39649	387	59814	2670	1.8	0.0
	Aggregated	2050	0	19464	4	59814	1859	4.0	0.0
Respon	se Time St	atistics							
Method	Name	50%ile (ms)	60%ile (ms)	70%ile (ms)	80%ile (ms)	90%ile (ms)	95%ile (ms)	99%ile (ms)	100%ile (ms)
GET		11	12	13	15	20	22	64	290
GET	//predict	44000	46000	47000	48000	50000	52000	55000	60000
	Aggregated	37	37000	43000	45000	49000	50000	56000	60000

ADVANTAGES & DISADVANTAGES

ADVANTAGES

The proposed system detects the forest fire at a faster rate compared to existing system. It has enhanced data collection feature. The major aspect is that it reduces false alarm and also has accuracy due to various sensors present. It minimizes the human effort as it works automatically. This is very affordable due to which can be easily accessed. The main objective of our project is to receive an alert message through an app to the respective user.

DISADVANTAGES

The electrical interference diminishes the effectiveness of radio receiver.

The main drawback is that it has less coverage range areas.

CONCLUSION

This type of system is the first of its kind to ensure no further damage is then to forests when there is fire breakout and immediately a message is sent to the user through the App. Immediate response or early warning to a fire breakout is mostly the only ways to avoid losses and environmental, cultural heritage damages to a great extent. Therefore the most important goals in fire surveillance are quick and reliable detection of fire. It is so much easier to suppress fire while it is in its early stages. Information about progress of fire is highly valuable for managing fire during all its stages. Based on this information the firefighting staff can be guided on target to block fire before it reaches cultural heritage sites and to suppress it quickly by utilizing required firefighting equipment and vehicles. With further research and innovation, this project can be implemented in various forest areas so that we can save our forests and maintaingreat environment.

FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement. Some of the improvements that can be made to this project are as follows:

Additional pump can be added so that it automatically sends water when there is a fire breakout. Also industrial sensors can be used for better ranging and accuracy.

→ This project has endless potential and can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

APPENDIX

SOURCE CODE

```
Import the neccessary libraries

import keras
port tensorflow

from tensorflow.keras.preprocessing.image import ImageDataGenerator

✓ 1m 18.2s

Python

import tensorflow
from tensorflow
Python

Python
```

```
train_datagen = ImageDataGenerator(rescale=1./255,
                                          shear_range=0.2,
                                          rotation_range=180,
                                          zoom_range=0.2,
horizontal_flip=True)
   test_datagen = ImageDataGenerator(rescale=1./255)
 ✓ 0.1s
                                                                                                                              Python
   x_train = train_datagen.flow_from_directory(r'./Dataset/train_set/',
                                                     target_size=(128, 128),
                                                    batch_size=32,
class_mode='binary')
                                                                                                                               Python
Found 436 images belonging to 2 classes.
   x_test = train_datagen.flow_from_directory(r'./Dataset/test_set/',
                                                    target_size=(128, 128),
batch_size=32,
class_mode='binary')
                                                                                                                               Python
Found 121 images belonging to 2 classes.
   from tensorflow.keras.models import Sequential
    ♥om tensorflow.keras.layers import Dense, Convolution2D, MaxPooling2D, Flatten
                                                                                                                               Python
```

```
model.fit(x_train, steps_per_epoch=14, epochs=10, validation_data=x_test, validation_steps=4) ♥
Epoch 1/10
                     14/14 [===
Epoch 2/10
14/14 [====
                     :=======] - 23s 2s/step - loss: 0.5222 - accuracy: 0.7431 - val_loss: 0.2283 - val_accuracy: 0.9669
Epoch 3/10
14/14 [===
                         Epoch 4/10
14/14 [===
                            ===] - 22s 2s/step - loss: 0.2392 - accuracy: 0.8945 - val_loss: 0.1137 - val_accuracy: 0.9669
Epoch 5/10
14/14 [===
                            ==] - 23s 2s/step - loss: 0.2125 - accuracy: 0.8968 - val_loss: 0.1337 - val_accuracy: 0.9504
Epoch 6/10
14/14 [===
                          =====] - 23s 2s/step - loss: 0.1922 - accuracy: 0.9243 - val_loss: 0.0887 - val_accuracy: 0.9669
Epoch 7/10
14/14 [==
                           ====] - 23s 2s/step - loss: 0.1773 - accuracy: 0.9266 - val_loss: 0.1454 - val_accuracy: 0.9339
Epoch 8/10
14/14 [===
                           ====] - 21s 2s/step - loss: 0.1678 - accuracy: 0.9427 - val_loss: 0.0835 - val_accuracy: 0.9752
Epoch 9/10
14/14 [===
                          =====] - 24s 2s/step - loss: 0.1733 - accuracy: 0.9243 - val_loss: 0.1079 - val_accuracy: 0.9669
Epoch 10/10
14/14 [===
                         <keras.callbacks.History at 0x1920c974be0>
Save the model
   model.save("model.h5")
```

```
Prediction

from tensorflow.keras.models import load_model

on tensorflow.keras.preprocessing import image
import numpy as np
import cv2

Python

model = load_model("model.h5") 
Python

Reviewing the model

img = image.load_img("forest-fire.jpg")

= image.load_img("forest-fire.jpg")

= image.img to array(img)

res = cv2.resize(x, dsize=(128, 128), interpolation=cv2.INTER_CUBIC)

x = np.expand_dims(res, axis=0)

Python
```

Fire.py (Main file)

```
import cv2
import numpy as np
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
from twilio.rest import Client
from playsound import playsound
from decouple import config
message_sent = False
model = load_model("./model.h5")
video = cv2.VideoCapture("fire.mp4")
name = ["No fire", "Fire Detected"]
def send_message():
    account_sid = config("ACCOUNT_SID")
    auth_token = config("AUTH_TOKEN")
    client = Client(account_sid, auth_token)
    message = client.messages.create(
       body="Forest Fire detected , Stay safe!!!",
       from =config("FROM"),
        to=config("TO")
   print(message.sid)
    print("Fire Detected")
    print("SMS Sent!")
playsound("./beep.mp3")
```

```
while True:
   success, frame = video.read()
   cv2.imwrite("image.jpg", frame)
   img = image.load_img("image.jpg", target_size=(128, 128))
   x = image.img_to_array(img)
   x = np.expand_dims(x, axis=0)
   pred = model.predict(x)
   p = int(pred[0][0])
   cv2.putText(frame, str(name[p]), (100, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 1)
   if p == 1:
       if not message_sent:
           send_message()
           message_sent = True
       print("Fire Detected , stay safe!!!")
       print("No Fire Detected")
   cv2.imshow("Image", frame)
   if cv2.waitKey(1) & 0xFF == ord('x'):
       break
video.release()
cv2.destroyAllWindows()
```

GITHUB

https://github.com/IBM-EPBL/IBM-Project-33781-1660226757

PROJECT DEMO

https://github.com/IBM-EPBL/IBM-Project-33781-1660226757/blob/main/Final%20Deliverables/Project%20Demonstration/fire%20detection%20-%20%20output%20demo%20video.mp4