Scaling Distributed Machine Learning with the

Mu Li

muli@cs.cmu.edu

Machine learning is concerned with systems that can learn from data

Machine learning is concerned with systems that can learn from data

Industry size machine learning problems

Data and model partition

Data and model partition

Model

Data and model partition

Model

Workers **pull** the working set of model

Server machines

Workers **pull** the working set of model Iterate until stop

Server machines

workers compute gradients

Worker machines

Server machines

Workers **pull** the working set of model Iterate until stop

workers compute gradients

workers **push** gradients

Server machines

Iterate until stop workers compute gradients

workers **push** gradients

Workers **pull** the working set of **model**

update model

Server machines

Workers **pull** the working set of model Iterate until stop

workers compute gradients

workers **push** gradients

update model

workers **pull** updated model

Industry size machine learning problems

Efficient communication

Challenges for data synchronization

- Massive communication traffic
 - ★ frequent access to the shared model
- Expensive global barriers
 - **★** between iterations

Task

- a push / pull / user defined function (an iteration)
- "execute-after-finished" dependency

executed asynchronously

Flexible consistency

 Trade-off between algorithm efficiency and system performance

Results for bounded delay

User-defined filters

- Selectively communicate (key, value) pairs
- ◆ E.g., the KKT filter
 - * send pairs if they are likely to affect the model
 - ★>95% keys are filtered in the ad click prediction task

Industry size machine learning problems

Efficient communication

Fault tolerance

Machine learning job logs in a three-month period:

Fault tolerance

- Model is partitioned by consistent hashing
- Default replication: Chain replication (consistent, safe)

Option: Aggregation reduces backup traffic (algo specific)

Industry size machine learning problems

Efficient communication

Fault tolerance

Easy to use

(Key, value) vectors for the shared parameters

math sparse vector (key, value) store $(i_1,) (i_2,) (i_3,)$ $i_1 i_2 i_3$

- Good for programmers: Matches mental model
- Good for system: Expose optimizations based upon structure of data

Example: computing gradient gradient = $data^T \times (-label \times 1/(1 + exp (label \times data \times model))$

Industry size machine learning problems

Efficient communication

Fault tolerance

Easy to use

Evaluation

Sparse Logistic Regression

- Predict ads will be clicked or not
- Baseline: two systems in production

	Method	Consistency	LOC
System-A	L-BFGS	Sequential	10K
System-B	Block PG	Sequential	30K
Parameter Server	Block PG	Bounded Delay + KKT	300

- + 636T real ads data
 - ★ 170 billions of examples, 65 billions of features
- + 1,000 machines with 16,000 cores

Progress

Time decomposition

Topic Modeling ("LDA")

- Gradient descent with eventual consistency
- * 5B users' click logs, Group users into 1,000 groups based on URLs they clicked

Largest experiments of related systems

Data were collected on April'14

Industry size machine learning problems

Efficient communication

Fault tolerance

Easy to use

Evaluation

Insights

 The whole system is customized for machine learning, except the scheduler.

Fault tolerance: checkpoint

Spark, graph processing and parameter server

push

scheduler

worker nodes: