

Review: Area of plane figures:

13.1 Relation between the area of triangles and quadrilaterals:

Theorem 1:

Parallelograms standing on the same base and lying between the same parallels are equal in area.

Experimental verification:

Step 1: Draw three different figures of different sizes with parallelograms ABCD and ABEF on the same base AB and between the same parallels AB and DE.

Step 2: Draw $CN \perp AB$ in each figure, where CN is the height (altitude) of the parallelograms.

Step 3: Measure the base AB and height CN. Then calculate the areas of $\square ABCD$ and $\square ABEF$.

F.N.	Base	Height	Area of	Area of	Result
	(AB)	(CN)	$\triangle ABCD = AB \times CN$	$\triangle ABEF = AB \times CN$	
<i>(i)</i>					<i>□</i> ABCD= <i>□</i> ABEF
(ii)					<i>□</i> ABCD= <i>□</i> ABEF
(iii)					∠ZABCD=∠ZABEF

Conclusion: Parallelograms standing on the same base and lying between the same parallels are equal in area.

Theoretical proof:

Given: Parallelograms ABCD and ABEF are on the same base

AB and between the same parallels AB and DE.

To prove: Area of $\square ABCD = Area of \square ABEF$

Proof:

S.N.	Statements	S.N.	Reasons
1.	In Δ^s ADF and BCE	1.	
	$\angle ADF = \angle BCE$ (A)		Being AB // DE and corresponding angles
<i>(i)</i>		<i>(i)</i>	
	$\angle AFD = \angle BEC$ (A)		Being AF // BE and corresponding angles
(ii)		(ii)	
	AF = BE (S)		Being opposite sides of
(iii)		(iii)	
	$\Delta ADF \cong \Delta BCE$		By A.A.S. axiom
(iv)		(iv)	
2.	$\Delta ADF = \Delta BCE$	2.	Being area of congruent triangles
3.	$\Delta ADF + quadrilateral ABCF =$	3.	By adding the same trapezium ABCF to both sides of
	Δ BCE + quadrilateral ABCF		statement (2)
4.	$\square ABCD = \square ABEF$	4.	By whole part axiom

Alternatively,

Given: Parallelograms ABCD and ABEF are on the same base

AB and between the same parallels AB and DE.

To prove: Area of $\square ABCD = Area of \square ABEF$

Construction: Draw, $CN \perp AB$ where CN is the height of the parallelograms.

Proof:

S.N.	Statements	S.N.	Reasons
1.	$Area\ of\ \square\ ABCD\ =\ AB imes CN$	1.	Area of parallelogram = $base \times$
			height
2.	$Area\ of\ \Box ABEF = AB \times CN$	2.	Reason same as statement (1).
3.	$Area \ of \square ABCD = Area \ of \square$	3.	From statements (1) and (2)
	ABEF		

Proved.

Corollary:

Parallelograms on the equal bases and between the same parallels are equal in area.

Here, in the figure: $AH /\!\!/ DG$ and AB = EF. So that area of $\square ABCD = Area$ of $\square EFGH$.

The area of a triangle is equal to half of the area of a parallelogram standing on the same base and between the same parallels.

OR

The area of a parallelogram is equal to double of the area of a triangle standing on the same base and between the same parallels.

Experimental verification:

Step 1: Draw three different figures with a parallelogram ABCD and a triangle ABE on the same base AB and between the same parallels AB and DC.

Step 2: Draw $CN \perp AB$ in each figure. CN is the height of the $\square ABCD$ and $\triangle ABE$.

Step 3: Measure the base AB and the height CN in each figure. Then calculate the areas of \square ABCD and \triangle ABE.

F.N.	Base	Height	Area of □	Area of Δ	Result
	(AB)	(CN)	$ABCD=AB\times CN$	$ABE = \frac{1}{2}AB \times CN$	
<i>(i)</i>					$\Delta ABE = \frac{1}{2} \square ABCD$
(ii)					$\Delta ABE = \frac{1}{2} \square ABCD$
(iii)					$\Delta ABE = \frac{1}{2} \square ABCD$

Conclusion: The area of a triangle is equal to half of the area of a parallelogram standing on the same base and between the same parallels.

Theoretical proof:

Given:

 $\square ABCD$ and $\triangle ABE$ are on the same base and between

the same parallels AB // DE.

To prove:

Area of \triangle ABE = Area of $\frac{1}{2}\square$ ABCD.

Construction: AF // BE is drawn where BF meets DE at F.

Proof:

S.N.	Statements	S.N.	Reasons
1.	ABEF is a parallelogram	1.	Since AB // FE and AF // BE
2.	$\Delta ABE = \frac{1}{2} \square ABEF$	2.	Diagonal of a parallelogram bisect the parallelogram.
3.	∠ZABEF= ∠ZABCD	3.	They are standing on the same base AB and between the same parallels AB and DE.
4.	$\triangle ABE = \frac{1}{2} \angle ABCD$	4.	From statements (2) and (3)

proved.

Alternatively:

Given:

 $\square ABCD$ and $\triangle ABE$ are on the same base AB and between

the same parallels AB // DE.

To prove:

Area of \triangle ABE = Area of $\frac{1}{2}\Box$ ABCD.

Construction: $CN \perp AB$ is draw. CN is the height of the $\square ABCD$ and $\triangle ABE$.

Proof:

S.N	Statements	S.N.	Reasons
1.	$\Box ABCD = AB \times CN$	1.	Area of parallelogram is base \times height.
2.	$\Delta ABE = \frac{1}{2} AB \times CN$	2.	Area of triangle is $\frac{1}{2}$ base \times height.
3.	$\Delta ABE = \frac{1}{2} \square ABCD$	3.	From statements (1) and (2).

Hence, proved.

Corollary:

The area of the triangle is half of the area of the parallelogram standing on the equal base and between the same parallels. In the figure alongside, $AF /\!\!/ DE$ and AB=GF.

So, area of \triangle EFG = Area of $\frac{1}{2}\square$ ABCD.

Theorem 3:

Triangles standing on the same base and between the same parallels are equal in area.

Experimental verification:

Step 1: Draw three pairs of triangles ABC and ABD with different sizes are drawn on the same base AB and between the same parallels AB and AD.

Step 2:Draw DE \perp AB and CF \perp AB.

Step 3: Measure the base AB and heights DE and DF of each figure. Then calculate the areas of Δ ABC and Δ ABD.

F.N.	Base	Height	Area of	Base	Height	Area of	Result
	AB	CF	ΔABC	AB	DE	ΔABD	
<i>(i)</i>							$\Delta ABC = \Delta ABD$
(ii)							$\Delta ABC = \Delta ABD$
(iii)							$\Delta ABC = \Delta ABD$

Conclusion: Triangles standing on the same base and between the same parallels are equal in area.

Theoretical proof:

Given: \triangle ABC and \triangle BCD are on the same base AB

and between the same parallels AB and DC.

To prove: Area of \triangle ABC = Area of \triangle ABD.

Construction: AE // BC is drawn. AE meets DC at E.

Proof:

S.N.	Statements	S.N.	Reasons
1.	ABCE is a parallelogram.	1.	Being AB // EC and AE // BC.
2.	$\Delta ABC = \frac{1}{2} \square ABCE$	2.	Diagonal of a parallelogram bisect the parallelogram.
3.	$\Delta ABD = \frac{1}{2} \square ABCE$	3.	Being triangle and parallelogram on the same base and between the same parallels.
4.	$\Delta ABC = \Delta ABD$	4.	From statements (2) and (3).

Alternatively:

Given: \triangle ABC and \triangle ABD are on the same base AB and

between the same parallels AB and DC.

To prove: Area of \triangle ABC = Area of \triangle ABD.

Construction: DE \perp AB is drawn. DE is the height of both Δ^s

ABC and ABD.

Proof:

S.N.	Statements	S.N.	Reasons
1.	Area of $\triangle ABC = \frac{1}{2} AB \times DE$	1.	Area of Δ is $\frac{1}{2}$ (base \times height)
2.	Area of $\triangle ABD = \frac{1}{2} AB \times DE$	2.	Area of Δ is $\frac{1}{2}$ (base \times height)
3.	Area of \triangle ABC = Area of \triangle ABD	3.	From statements(1)and (2)

Hence, proved.

Corollary:

Triangles on the equal base and between the same parallels equal in area. In the figure alongside, FE = AB and FB // DC.

So, area of Δ FED = area of Δ ABC.

Examples with solution:

Example 1: If PQ = 5 cm and BQ = 8 cm, then find the area of $_{T}$ \triangle *PQT* and \square *PQRS*.

Solution:

Here, base(b) = PQ = 5 cm

Height(h) = BQ = 8 cm

Area of \square PQRS = base \times height

$$= 5 cm \times 8 cm$$

$$= 40 cm^2$$

 \therefore The area of \square PQRS is 40 cm².

 \therefore The area of \triangle PQT is 20 cm^2 .

Alternatively,

And area of $\triangle PQT = \frac{1}{2}$ area of $\square PQRS...$

44 cm². Find the area of
$$\triangle$$
 ABN.

Solution:

Here, area of \square LMNO = 44 cm².

$$= 44 cm^2$$

Now, area of \square ABNM = area of \square LMNO. [Since, \square LMNO and \square ABNM are on the same base MN and between the same parallels MN // AO.]

So, area of
$$\triangle$$
 ABN = $\frac{1}{2}$ \square ABNM [Since, diagonal AN bisects the \square ABNM.]
$$= \frac{1}{2} \times 44 \text{ cm}^2$$

$$= 22 \text{ cm}^2$$

 \therefore Area of \triangle ABN is 22 cm².

Example 3: If PQ = 8 cm and AS = 5 cm, then find the area of shaded region.

Solution:

Here, in \square PQRS:

Base(b) = 8 cm

Height(h) = 5 cm

Area of $\square PQRS = base \times height$

 $= 8 cm \times 5 cm$

 $= 40 cm^{2}$

Area of $\triangle PQT = \frac{1}{2}base \times height$

$$=\frac{1}{2}(8\ cm\times 5\ cm)$$

 $= 20 cm^2$

We know that,

Area of shaded region = Area of \square PQRS - Area of \triangle PQT

$$=40 cm^2 - 20 cm^2$$

 $= 20 cm^2$

 \therefore The area of shaded region is 20 cm².

Example 4: In the figure alongside, XYVU is a square with it's diagonals $UY = 8\sqrt{2}$ cm where UV is produced to Z and Z is joined with Y. Find the areas of the square XYVU and Δ XYZ.

Solution:

Here, diagonal of a given square(d) = $UY = 8\sqrt{2}$ cm

i) Area of a square XYVU =
$$\frac{1}{2} d^2$$

$$=\frac{1}{2}\left(8\sqrt{2}\ cm\right)^2$$

$$= 64 cm^2$$

ii) Area of
$$\Delta$$
 XYZ = $\frac{1}{2}$ Area of the square XYVU [Since, triangle and square
 = $\frac{1}{2}$ (64 cm²) [Since, triangle and square
 (Parallelogram) on the same
 base and between the same
 parallels]

∴ The area of the \triangle XYZ is 32 cm².

Example 5: In the figure ABCD is a rhombus where diagonals AC=22 cm and BD=18 cm. Find the area of Δ ABE.

Solution:

Here, In a rhombus ABCD:

One $diagonal(d_1) = 22 cm$

 $Another\ diagonal(d_2)=18\ cm$

Area of the rhombus =
$$\frac{1}{2}$$
 ($d_1 \times d_2$)
= $\frac{1}{2}$ (22 cm × 18 cm)
= 198 cm²

Area of \triangle ABE = $\frac{1}{2}$ area of the rhombus ABCD. [Since, triangle and rhombus (parallelogram) are on the same base and between the same parallel lines]

$$= \frac{1}{2} (198 cm^2)$$
$$= 99 cm^2$$

∴ The area of \triangle ABE = 99 cm².

Example 6: If AB // DE, then prove that \triangle ACE = \triangle BDC.

Solution:

Given: AB // DE

To prove: $\Delta ACE = \Delta BDC$

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta ADE = \Delta BDE$	1.	Triangles on the same base DE and
			between the same parallels DE // AB.
2.	$\Delta ADE + \Delta DCE = \Delta BDE + \Delta$	2.	Adding same Δ DCE on the both
	DCE		sides of statement (1)
3.	$\Delta ACE = \Delta BDC$	3.	By whole part axiom

Example 7: In the given figure, ABCD and AQRS are two parallelograms. Prove that \square ABCD = \square AQRS.

Solution:

Given: ABCD and AQRS are parallelograms.

To prove: \square *ABCD* = \square *AQRS*.

Construction: Join S and B.

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta ABS = \frac{1}{2} \square ABCD$	1.	Being Δ and \square on the same base AB and between the same parallels AB and DC.
2.	$\Delta ABS = \frac{1}{2} \square AQRS$	2.	Being Δ and \square on the same base AS and between the same parallels AS and QR .
3.	$\Box ABCD = \Box AQRS$	3.	From statements (1) and (2)

Hence, proved.

Example 8: In the figure alongside, ABCD is a parallelogram where G is a point on BG. If BG and AD are produced to meet at F, then prove that Δ AFG = Δ DFC.

Solution:

Given: ABCD is a parallelogram in which G is a point on BG.

BG and AD are produced to meet at F.

To prove: $\triangle AFG = \triangle DFC$

Proof:

Example 9: In the figure alongside, ABCD is a parallelogram and AF = FE.

Prove that area of \triangle EFG = $\frac{1}{4}$ area of \square ABCD.

Solution:

Given: ABCD is a parallelogram and AF = FE.

To prove: Area of \triangle EFG = $\frac{1}{4}$ area of \square ABCD.

Construction: Join B and F.

Proof:

Example 10: In the given figure, D is the mid-point of side BC of

 Δ ABC, E is the mid-point of AD, F is mid-point of AB

and G is any point of BD. Prove that: \triangle ABC=8 \triangle EFG.

Solution: D, E and F are the mid-points of BC, AD and AB respectively.

i.e. BD=DC, AE=ED and AF=FB. G is any point of BD.

To prove: \triangle *ABC*=8 \triangle *EFG.*

Construction: Join F and D.

Proof:

Hence,

proved.

*	Multiple Choice Questions:
1)	If the length of a side of a equilateral triangle is 3 cm then how much is the area of
	the triangle ?
	a) $3.8 cm^2$
	1) 20 2

- d) 3.98 cm^2
- 2) If the area of equilateral triangle ABC is $16\sqrt{3}$ cm² then how long is the side of the triangle ABC?
 - *a*) 8.01 *cm*
 - b) 8.001 cm
 - c) 8.1 cm
 - d) 8 cm
- 3) If the altitude of a triangle is 5 cm and base is $4\sqrt{2}$ cm then how much is the area of the triangle?
 - a) $20 \sqrt{2} cm^2$
 - b) $10\sqrt{2} \ cm^2$
 - c) $5\sqrt{2}$ cm²
 - d) $40\sqrt{2} \ cm^2$
- 4) Area of a parallelogram is 48 cm². If base of the parallelogram is 6 cm then how much is the height of the parallelogram?
 - a) 16 cm
 - b) 4 cm
 - c) 6 cm
 - d) 8 cm
- 5) If there are 3 cm and $4\sqrt{2}$ cm lengthy diagonals in a rhombus then how much is the area of the rhombus?
 - a) $12\sqrt{2}$ cm²
 - b) $6\sqrt{2} cm^2$
 - c) $24\sqrt{2} cm^2$
 - d) $3\sqrt{2} cm^2$
- 6) There are 3 m and 4 m lengthy parallel lines in a trapezium. If distance between the parallel lines is 2 m then how much is the area of the trapezium?
 - a) $8 m^2$
 - b) $6 m^2$
 - c) $14 m^2$
 - d) 7 m^2
- 7) Area of a trapezium is 18 cm^2 . If there are 3 cm and 6 cm lengthy parallel lines in the trapezium then how much is the distance between the parallel lines?
 - a) 3 cm
 - b) 6 cm
 - c) 4 cm
 - d) 2 cm

- a) $44 cm^2$
- b) $55 cm^2$
- c) $27.5 cm^2$
- d) $49.5 cm^2$

- a) 4 cm
- b) 8 cm
- c) 6 cm
- d) 9 cm

- b) $64 cm^2$
- c) $32 cm^2$
- d) $128 cm^2$

- a) $144 cm^2$
- b) $72 cm^2$
- c) $36 cm^2$
- d) $18 cm^2$

- a) $24 cm^2$
- b) $48 cm^2$
- c) $12 cm^2$
- d) $18 cm^2$

a) Area of
$$\triangle ABCD = \frac{1}{2}$$
 Area of $\triangle ABEF$

- b) Area of $\square ABCD = Area$ of $\square ABEF$
- c) Area of $\triangle ABEF = \frac{1}{2} Area \text{ of } \triangle ABCD$
- *d)* Area of $\square ABCD = 2$ times area of $\square ABEF$

14) What is the relation between $\square ABCD$ and $\triangle ABE$ if they are standing on the same base and between the same parallel lines?

a) Area of
$$\triangle ABCD = \frac{1}{2}$$
 Area of $\triangle ABE$

- *b)* Area of $\triangle ABCD = Area$ of $\triangle ABE$
- c) Two times area of $\triangle ABCD = Area \ of \triangle ABE$
- *d)* Area of $\triangle ABCD = 2$ times area of $\triangle ABE$

15) What is the relation between \triangle MNO and \triangle MNP if they are standing on the same base and between the same parallel lines?

- a) Area of \triangle MNO = $\frac{1}{2}$ Area of \triangle MNP
- b) Area of \triangle MNP = 2 times area of \triangle MNO
- c) Area of \triangle MNO = Area of \triangle MNP
- d) Area of \triangle MNO = 2 times area of \triangle MNP

	$f \square RSTU$ and $\triangle RSM$ are standing on the same base
and lying between the same partial a) 54 cm ²	rallel lines, how much is the area of Δ RSM? b) 108 cm^2
c) $27 cm^2$	d) $13.5 cm^2$
17) Area of □RSTU is 84 cm² an	and length of base is 7 cm. If \square RSTU and \triangle RSM are lying between the same parallel lines, how much is the
e) 6 cm	f) 24 cm
g) 7 cm	h) 12cm
	base of that Δ is 11 cm. If \square LMNT and Δ LMN and lying between the same parallel lines, how much is
i) 8 cm	j) 22 cm
k) 4 cm	l) 16 cm
	90 cm ² and 10 cm respectively. If \square PQCD and \square e base and lying between the same parallel lines, how 9?
a) 10 cm	
b) 4.5 cm	
c) 18 cm	
d) 9 cm	
	2 . If \square LMNO and Δ LMR are standing on the same ne parallel lines where base is 8 cm, how much is the
a) $8\sqrt{2}cm$	
b) $2\sqrt{2}$ cm	
c) $4\sqrt{2}$ cm	
$d) 16\sqrt{2} cm$	
	$f \Delta PQR$ and ΔPQS are standing on the same base and el lines, how much is the area of ΔPQS ?
a) $2\sqrt{7}$ cm ²	
b) $4\sqrt{7}$ cm ²	
$c)\sqrt{7} cm^2$	
$d) 8\sqrt{7} cm^2$	
	4 cm ² and 4 cm respectively. If Δ PQR and Δ PQS and lying between the same parallel lines, how much is
a) 4 cm	
b) 3 cm	
c) 6 cm	
d) 2 cm	

- 23) Area of a parallelogram is ABCD is 22 cm². If the parallelogram ABCD and a square CDMN are standing on the same base and between the same parallels, then how much is the area of the square CDMN?
 - a) $11 cm^2$
 - b) $44 cm^2$
 - c) $22 cm^2$
 - d) $5.5 cm^2$
- 24) Area of a rhombus is PQRS is 29 m^2 . If the rhombus PQRS and a a parallelogram RSCD are standing on the same base and between the same parallel lines, then how much is the area of the parallelogram?
 - a) $58 m^2$
 - b) $14.5 m^2$
 - c) $7.25 m^2$
 - d) $29 m^2$
- 25) Area of a parallelogram is LMNT is $32\sqrt{3}$ cm². If the parallelogram LMNT and a rectangle RSTN are standing on the same base and between the same parallel lines, then how much is the area of the rectangle?
 - a) $16\sqrt{3} \ cm^2$
 - b) $32\sqrt{3} \ cm^2$
 - c) $8\sqrt{3}$ cm²
 - d) $64\sqrt{3} \ cm^2$
- 26) Area of a rhombus ABCD is 70 cm². If the rhombus ABCD and a square ABMN are standing on the same base and between the same parallel lines, then how much is the area of the square ABMN?
 - a) $35 cm^2$
 - b) $140 cm^2$
 - c) $70 cm^2$
 - d) $17.5 cm^2$
- 27) Area of a rhombus ABCD is $35\sqrt{5}$ cm². If the rhombus ABCD and a triangle CDM are standing on the same base and between the same parallel lines, then how much is the area of the triangle?
 - a) $35\sqrt{5}$ cm²
 - b) $70\sqrt{5} \ cm^2$
 - $c)\frac{35\sqrt{5}}{4} cm^2$
 - $d)^{\frac{35\sqrt{5}}{2}} cm^2$

- 28) Area of a square ABCD is $43\sqrt{3}$ cm². If the square ABCD and a triangle ABE are standing on the same base and between the same parallel lines, then how much is the area of the triangle?
 - a) $43\sqrt{3} \ cm^2$
 - $b)\frac{43\sqrt{3}}{2} cm^2$
 - c) $86\sqrt{3} \ cm^2$
 - $d)\frac{43\sqrt{3}}{4} cm^2$
- 29) Area of a rectangle LMNO is $25\sqrt{2}$ cm². If the rectangle LMNO and a triangle NOG are standing on the same base and between the same parallel lines, then how much is the area of the triangle?
 - a) $25\sqrt{2}$ cm²
 - b) $50\sqrt{2} \ cm^2$
 - $c)\frac{25\sqrt{2}}{2} cm^2$
 - $d)^{\frac{25\sqrt{3}}{4}} cm^2$
- 30) Area of a Δ XYZ is 102 cm² and altitude of that is 12 cm. If the Δ XYZ and rectangle WXYZ are standing on the same base and between the same parallel lines, then how much is the length of the rectangle?
 - a) 12 cm
 - b) 17 cm
 - c) 6 cm
 - d) 8.5 cm
- 31) Area of a \triangle ABC is 84 cm² and height of that is 14 cm. If the \triangle ABC and rhombus MBCN are standing on the same base and between the same parallel lines, then how much is the base of the rhombus?
 - a) 6 cm
 - b) 14 cm
 - c) 7 cm
 - d) 12 cm
- 32) Area of a \triangle XYZ is 72 cm² and altitude of that is 12 cm. If the \triangle XYZ and square WXYZ are standing on the same base and between the same parallel lines, then how much is the length of the square?
 - a) 12 cm
 - b) 6 cm
 - c) 24 cm
 - d) 18 cm
- 33) What is the relation between □ABCD and □PQRS if they are standing on the equal base and between the same parallel lines?
 - a) Area of $\triangle ABCD = \frac{1}{2} Area \text{ of } \triangle PQRS$
 - b) Area of $\square ABCD = Area$ of $\square PQRS$
 - c) Area of $\square ABEF = \frac{1}{2} Area \text{ of } \square PQRS$
 - d) Area of $\triangle ABCD = 2$ times area of $\triangle PQRS$

- 34) What is the relation between \square MNOP and \triangle ABE if they are standing on the same base and between the same parallel lines?
 - a) Area of $\square MNOP = \frac{1}{2} Area \text{ of } \Delta ABE$
 - b) Area of \square MNOP = Area of \triangle ABE
 - c) Two times area of \square MNOP = Area of \triangle ABE
 - d) Area of $\square MNOP = 2$ times area of $\triangle ABE$
- 35) What is the relation between \triangle ABC and \triangle PQR if they are standing on the equal base and between the same parallel lines?
 - a) Area of \triangle ABC = $\frac{1}{2}$ Area of \triangle PQR
 - b) Area of \triangle ABC = 2 times area of \triangle PQR
 - c) Area of \triangle ABC = Area of \triangle PQR
 - d) Area of \triangle PQR = 2 times area of \triangle ABC
- 36) Area of \square LMNO is 64 cm². If \square LMNO and \triangle PQR are standing on the equal base and lying between the same parallel lines, how much is the area of \triangle PQR?
 - $m) 64 cm^2$
 - n) 128 cm^2
 - o) $32 cm^2$
 - p) $16 cm^2$
- 37) Area of $\square PQRS$ is 100 cm². If $\square ABCD$ and $\square PQRS$ are standing on the equal base and lying between the same parallel lines, how much is the area of $\square ABCD$?
 - a) $50 cm^2$
 - b) $200 cm^2$
 - c) $25 cm^2$
 - e) $100 cm^2$
- 38) Area of Δ PQR is $8\sqrt{11}$ cm² . If Δ PQR and Δ LMN are standing on the equal base and lying between the same parallel lines, how much is the area of Δ LMN?
 - a) $4\sqrt{11}$ cm²
 - *b*) $8\sqrt{11} \ cm^2$
 - c) $2\sqrt{11} \ cm^2$
 - *d*) $16\sqrt{11} \ cm^2$
- 39) If the area of a rhombus PQRS is 42 cm^2 and PR= 12 cm, then how Much is the length of SQ?

- b) 8 cm
- c) 6 cm
- d) 7 cm
- 40) What is the relation between \triangle *ADF* and \triangle *BEF* ?

a)
$$\triangle ADF = \frac{1}{2} \triangle BEF$$

- b) $\triangle BEF = \frac{1}{2} \triangle ADF$
- c) $\triangle ADF = \triangle BEF$
- d) $\triangle ADF = 2 \triangle BEF$

- 41) What is the relation between \triangle AFG and \triangle DFC?
 - a) $\Delta AFG = \frac{1}{2}\Delta BFC$
 - b) $2\Delta AFG = \Delta BFC$
 - c) $\triangle AFG = 2\triangle BFC$
 - d) $\triangle AFG = \triangle BFC$
- 42) In the given figure, ABCD is a rectangle. Find the area of \triangle *DCE*.
 - a) $12 cm^2$
 - b) $24 cm^2$
 - c) $48 cm^2$
 - d) $36 cm^2$
- 43) In the given figure, $DE \perp BC$ and D is mid point of AB. If BC = 18 cm and DE = 14 cm, find the area of \triangle ABC.
 - a) $126 cm^2$
 - b) $63 cm^2$
 - c) $252 cm^2$
 - d) $378 cm^2$
- 44) In the figure alongside, if $BE \parallel DC$, $DA \perp BE$, AD = 6 cm and DC = 8 cm, then find the area of \triangle DCE.

- b) $24 cm^2$
- c) $12 cm^2$
- d) $96 cm^2$
- 45) If area of \triangle *DCE* is 48 cm^2 and DC= 12 cm, how much is the length of the side AD?

- b) 6 cm
- c) 8 cm
- d) 12 cm
- 46) In the given figure, BD = BC, $BF \perp DC$, DB = 10 cm and AE = 16 cm find the area of parallelogram ADCE.

- b) $24 cm^2$
- c) $64 cm^2$
- d) $96 cm^2$
- 47) In the given figure, ABCD is a parallelogram. If the area of trapezium ABED= 75 cm^2 and the area of Δ BCE=10 cm^2 , find the area of Δ

 Δ ABE.

- a) $65 cm^2$
- b) $55 cm^2$
- c) $23.5 \, cm,^2$
- d) $32.5 cm^2$
- 48) In the given figure, ABCD is a rhombus. If the area of trapezium ABED= $65 \ cm^2$ and the area of $\Delta BCE = 8 \ cm^2$, find the area of ΔABE .

- b) $57 cm^2$
- c) $27.5 cm^2$
- d) $56.5 cm^2$

- 49) In the figure alongside, ABCD and ABEC are parallelograms. If area of \triangle *ACE* is 31 cm^2 , how much is the area of the \triangle *ADC*?
 - a) $15.5 cm^2$
 - b) $62 cm^2$
 - c) $31 cm^2$
 - d) $31.5 cm^2$
- 50) In the given figure, ABCD is a parallelogram and F is the mid-point of

the line segment DC. If the area of the parallelogram ABCD is 48 cm²,

find the area of quadrilateral ABCF.

- a) $24 cm^2$
- b) $12 cm^2$
- c) $48 cm^2$
- *d*) $36 cm^2$