

Assignment 2-LA Chapter 2

Mathematics Engineering (Trường Đại học FPT)

Scan to open on Studocu

ASSIGNMENT 02 Chapter 2 Linear Algebra

Subject: MAE101

Name of student:

- 1. Solve the exercises yourself and submit your solutions in LMS before deadlines (do not send via email).
- 2. Each student is required to represent solutions of at least 2 of the exercises in lecture classes.

Chapter 2:

	Content	Score
19	1.What is a linear transformation from R^n to R^m	
	2. Give an example of linear transformation from R^n to	
	R^m.	
20	3. Let $A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 1 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix}$,	
	$D = \begin{bmatrix} 1 & 3 \\ -1 & 0 \\ 1 & 4 \end{bmatrix}, \text{ and } E = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$	
	Compute the following (where possible).	
	(a) $3A - 2B$ •(b) $5C$	
	(c) $3E^T$ •(d) $B+D$	
	(e) $4A^T - 3C$ \bullet (f) $(A + C)^T$	
	(g) $2B - 3E$ •(h) $A - D$	
	(i) $(B - 2E)^T$	
	values of the second se	

21	14. In each case determine all s and t such that the given matrix is symmetric: (a) $\begin{bmatrix} 1 & s \\ -2 & t \end{bmatrix}$ •(b) $\begin{bmatrix} s & t \\ st & 1 \end{bmatrix}$ (c) $\begin{bmatrix} s & 2s & st \\ t & -1 & s \\ t & s^2 & s \end{bmatrix}$ •(d) $\begin{bmatrix} 2 & s & t \\ 2s & 0 & s+t \\ 3 & 3 & t \end{bmatrix}$
22	1. Solve for the matrix X if: (a) $PXQ = R$; (b) $XP = S$; where $P = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 3 \end{bmatrix}, Q = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 3 \end{bmatrix}, R = \begin{bmatrix} -1 & 1 & -4 \\ -4 & 0 & -6 \\ 6 & 6 & -6 \end{bmatrix},$ $S = \begin{bmatrix} 1 & 6 \\ 3 & 1 \end{bmatrix}$
23	2. Consider $p(X) = X^3 - 5X^2 + 11X - 4I$. (a) If $p(U) = \begin{bmatrix} 1 & 3 \\ -1 & 0 \end{bmatrix}$, compute $p(U^T)$. •(b) If $p(U) = 0$ where U is $n \times n$, find U^{-1} in terms of U .

24	 4. Assume that a system Ax = b of linear equations has at least two distinct solutions y and z. (a) Show that x_k = y + k(y - z) is a solution for every k. 	
	•(b) Show that $\mathbf{x}_k = \mathbf{x}_m$ implies $k = m$. [<i>Hint</i> : See Example 7 Section 2.1.]	
	(c) Deduce that $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.	
25	5. (a) Let A be a 3 \times 3 matrix with all entries on and below the main diagonal zero. Show that $A^3 = 0$.	
	(b) Generalize to the $n \times n$ case and prove your answer.	
26	9. If A is 2 × 2, show that $A^{-1} = A^{T}$ if and only if	
	$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} $ for some θ or	
	$A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} $ for some θ .	
	[<i>Hint</i> : If $a^2 + b^2 = 1$, then $a = \cos \theta$, $b = \sin \theta$ for some θ . Use	
	$\cos(\theta - \varphi) = \cos\theta \cos\varphi + \sin\theta \sin\varphi.$	
27	10. (a) If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, show that $A^2 = I$. (b) What is wrong with the following argument? If $A^2 = I$, then $A^2 - I = 0$, so $(A - I)(A + I) = 0$, whence $A = I$ or $A = -I$.	
	(I-I)(I+I)=0, where $I=I$ of $I=-I$.	

28	1. In each case, show that the matrices are inverses of each other. (a) $\begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 0 \\ 1 & -4 \end{bmatrix}$, $\frac{1}{2} \begin{bmatrix} 4 & 0 \\ 1 & -3 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 3 \\ 1 & 3 & 1 \end{bmatrix}$, $\begin{bmatrix} 7 & 2 & -6 \\ -3 & -1 & 3 \\ 2 & 1 & -2 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$, $\begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{5} \end{bmatrix}$	
29	2. Find the inverse of each of the following matrices. (a) $\begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$	
30	 3. In each case, solve the systems of equations by finding the inverse of the coefficient matrix. (a) 3x - y = 5 (b) 2x - 3y = 0 x - 4y = 1 	
31	In each case, solve the systems of equations by finding the inverse of the coefficient matrix. (c) $x + y + 2z = 5$ •(d) $x + 4y + 2z = 1$ $x + y + z = 0$ $2x + 3y + 3z = -1$ $x + 2y + 4z = -2$ $4x + y + 4z = 0$	

32	4. Given $A^{-1} = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 0 & 5 \\ -1 & 1 & 0 \end{bmatrix}$: (a) Solve the system of equations $A\mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$. •(b) Find a matrix B such that $AB = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. (c) Find a matrix C such that $CA = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 1 \end{bmatrix}$.	
33	9. In each case either prove the assertion or give an example showing that it is false.	
	(a) If $A \neq 0$ is a square matrix, then A is invertible.	
	•(b) If A and B are both invertible, then A + B is invertible.	
	(c) If A and B are both invertible, then (A ⁻¹ B) ^T is invertible.	
	•(d) If $A^4 = 3I$, then A is invertible.	
	(e) If $A^2 = A$ and $A \neq 0$, then A is invertible.	
	•(f) If $AB = B$ for some $B \neq 0$, then A is invertible.	
	(g) If A is invertible and skew symmetric $(A^T = -A)$, the same is true of A^{-1} .	
	•(h) If A^2 is invertible, then A is invertible.	
	(i) If $AB = I$, then A and B commute.	

2.4		
34	15. Consider $A = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 0 & 0 \end{bmatrix}$. Find the inverses by computing (a) A^6 ; •(b) B^4 ; and (c) C^3 .	
35	1. Let $T_{\theta}: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation.	
	(a) Find $T \begin{bmatrix} 8 \\ 3 \\ 7 \end{bmatrix}$ if $T \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $T \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$. •(b) Find $T \begin{bmatrix} 5 \\ 6 \\ -13 \end{bmatrix}$ if $T \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ and $T \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.	
36	3. In each case assume that the transformation T is	
	linear, and use Theorem 2 to obtain the matrix A of T .	
	(a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is reflection in the line $y = -x$.	
	•(b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is given by $T(\mathbf{x}) = -\mathbf{x}$ for each \mathbf{x} in \mathbb{R}^2 .	
	(c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is clockwise rotation through $\frac{\pi}{4}$.	
	•(d) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is counterclockwise rotation through $\frac{\pi}{4}$.	
37	4. In each case use Theorem 2 to obtain the matrix	
	A of the transformation T. You may assume that T is linear in each case.	
	(a) $T: \mathbb{R}^3 \to \mathbb{R}^3$ is reflection in the <i>x-z</i> plane.	
	•(b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ is reflection in the <i>y-z</i> plane.	

38	6. Use Theorem 2 to find the matrix of the identity transformation 1 _{ℝⁿ} : ℝ ⁿ → ℝ ⁿ defined by 1 _{ℝⁿ} : (x) = x for each x in ℝ ⁿ .	
39	7. In each case show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is not a linear transformation. (a) $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} xy \\ 0 \end{bmatrix}$. •(b) $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ y^2 \end{bmatrix}$	