TAYLOR SPECTRUM FOR MODULE OVER LIE ALGEBRA

BILICH BORIS

- 1. Introduction
- 2. Preliminaries

Let \mathfrak{g} be an arbitary finite dimensional Lie algebra. We will denote by $\mathfrak{g}\text{-mod}$ and $\mathbf{mod}\text{-}\mathfrak{g}$ the categories of left and right $\mathfrak{g}\text{-mod}$ -modules respectively. We define functors $\square^*\colon \mathfrak{g}\text{-mod}^{op}\to\mathbf{mod}\text{-}\mathfrak{g}$ and $\square^\circ\colon \mathfrak{g}\text{-mod}\to\mathbf{mod}\text{-}\mathfrak{g}$ as follows. The first \square^* , called duality functor, sends $\mathfrak{g}\text{-mod}$ -module V to it's dual vector space, on which the right action of \mathfrak{g} defined as

$$(f \cdot g)(v) = f(g \cdot v), \text{ for all } f \in V^*, v \in V, g \in \mathfrak{g}.$$

The second \square° , called antipode functor, sends V to itself as vector space with right action

$$v \cdot g = -g \cdot v$$
, for all $v \in V$, $g \in \mathfrak{g}$.

These two functors define equivallence of categories g-mod, mod-g, g-mod^{op} and mod-g^{op}.

3. Taylor spectrum of \mathfrak{g} -module

Let \mathfrak{g} be an arbitary Lie algebra and E be a left \mathfrak{g} -module. We will denote by $\hat{\mathfrak{g}}$ the set of isomorphism classes of simple finite dimensional \mathfrak{g} -modules.

Definition 1. The Taylor spectrum of E is the set, defined as

$$\sigma(E) = \{ V \in \hat{\mathfrak{g}} \mid \exists k \colon \operatorname{Tor}_{k}^{U\mathfrak{g}}(V^*, E) \neq 0 \}.$$

From it follows, that the definition above coincides with the original Taylor's definition in \neg Add ref case of abelian \mathfrak{g} .

- 4. Case of semisimple Lie algebra
- 5. Spectrum of one-dimensional extensions
 - 6. Case of solvable Lie algebra
 - 7. Case of Nilpotent Lie algebra
- 8. Case of Borel Subalgebra of Semisimple Lie algebra