Department of Mathematics School of Advanced Sciences IAT 1011 – Calculus for Engineers (MATLAB

MAT 1011 – Calculus for Engineers (MATLAB) Experiment 2–B

Laplace transforms, Inverse Laplace transforms

The Laplace Transform of a function f(t) is defined as

$$F(s) = L[f(t)] = \int_0^\infty e^{-st} f(t) dt ,$$

provided the integral exists.

Command	Purpose
laplace(f)	To find the Laplace transform of a scalar symbol f with default independent variable t. The default return is a function of s.
laplace(f,w)	Returns the Laplace transform of f in symbol w instead of the default s.
laplace(f,x,w)	Assumes f as a function of the symbolic variable x and returns the Laplace transform as a function of w.
ilaplace(F)	To find the inverse Laplace transform of the scalar symbolic object F with default independent variable s. The default return is a function of t.
ilaplace(F,x)	Returns the inverse Laplace transform of the function F as a function of x instead of the default t.
<pre>ilaplace(F,w,x)</pre>	Assumes F as a function of the symbolic variable w and returns the inverse Laplace transform of F as a function of x.
heaviside(t-a)	To input the heaviside's unit step function $H(t-a)$.
dirac(t-a)	To input the dirac delta function $\delta(t-a)$.

Example 1. The following MATLAB code finds the Laplace transform of a function f(t)

```
clear all
clc
syms t
f=input('Enter the function of t: ');
F=laplace(f);
disp(['L{',char(f),'}=',char(F)]);
```

Input:

Enter the function of $t: t^2$

Output:

 $L\{t^2\}=2/s^3$

Example 2. The following MATLAB code finds the Laplace transform of f(t) in terms of w.

```
clear all
clc
syms t w
f=input('Enter the function of t: ');
F=laplace(f,w);
```

```
disp(['L{',char(f),'}=',char(F)]);
```

Input:

Enter the function of t: sin(t)

Output:

 $L\{\sin(t)\}=1/(w^2 + 1)$

Example 3. The following MATLAB code finds the Laplace transform of x^3e^{-3x} in terms of w.

```
clear all
clc
syms x w
f=input('Enter the function of x: ');
F=laplace(f,x,w);
disp(['L{',char(f),'}=',char(F)]);
Input:
Enter the function of x: x^3*exp(-3*x)
Output:
L{x^3*exp(-3*x)}=6/(w + 3)^4
```

Example 4: The following MATLAB code computes the Laplace Transform of

$$f(t) = \begin{cases} t^2, & 0 < t < 2 \\ t - 1, & 2 < t < 3 \\ 7, & t > 3 \end{cases}$$

```
clear all
clc
syms t
f=input('Enter the function of t: ');
F=laplace(f);
F=simplify(F);
disp(['L{f(t)}=',char(F)]);
```

Input:

Enter the function of t: t^2 (heaviside(t)-heaviside(t-2))+ (t-1)* (heaviside(t-2)-heaviside(t-3))+7*heaviside(t-3)

Output:

 $L\{f(t)\}=-(\exp(-3*s)*(s-2*\exp(3*s)+2*\exp(s)+3*s^2*\exp(s)+3*s*\exp(s)-5*s^2))/s^3$

Example 5. The following MATLAB code computes the inverse Laplace transform of F(s).

```
clear all
clc
syms s
F=input('Enter the function of s: ');
f=ilaplace(F);
disp(['f(t)=',char(f)]);
```

Input:

Enter the function of s: $6/(s^3+2*s^2-s-2)$

Ouput:

 $f(t) = 2 \exp(-2 t) - 3 \exp(-t) + \exp(t)$

Example 6. Write MATLAB commands to find the following:

(i) $L[\delta(t)]$ (ii) $L[\delta(t-a)]$ (iii) $L[\delta(t-a)\sin(t)]$

Solution:

(i)

syms t F=laplace(dirac(t))

Output:

F =1

(ii)

syms t a F=laplace(dirac(t-a))

Output:

F =

piecewise(a < 0, 0, 0 <= a, exp(-a*s))

(iii)

syms t a F=laplace(dirac(t-a)*sin(t))

Output:

F =

piecewise (a<0,0,0<=a,exp(-a*s)*sin(a))

Example 7. Write MATLAB commands to find (i) $L^{-1} \left[\frac{s}{s-a} \right]$ (ii) $L^{-1} \left[\frac{se^{-s} + ae^{-2s}}{s^2 + a^2} \right]$

(i)

syms s a f=ilaplace(s/(s-a))

Output

dirac(t) + a*exp(a*t)

(ii) syms s a

 $f = ilaplace((s*exp(-s)+a*exp(-2*s))/(s^2+a^2))$

Output

f=

heaviside $(t-1) * cos((a^2) (1/2) * (t-1)) + (a*heaviside(t-2) * (t-2) * (t-1)) + (a*heaviside(t-2) * (t-2) * (t-1)) + (a*heaviside(t-2) * (t-2) * ($ $\sin((a^2)^(1/2) * (t-2)))/(a^2)^(1/2)$

Exercise.

- 1. Find the Laplace transforms of the following functions:
- (i) $f(t) = 1 + 2\sqrt{t} + \frac{3}{\sqrt{t}}$
- (ii) $f(t) = \begin{cases} \sin t & ; \quad 0 \le t \le \pi \\ 0 & ; \quad \pi \le t \le 2\pi \end{cases}$
- (iii) $f(t) = \sin^3 t$
- (iv) $f(t) = \sin 2t \sin 3t$

(v)
$$f(t) = e^{-t} \sin^2 t$$

(vi)
$$f(t) = \frac{\cos 2t - \cos 3t}{t}$$

2. Find the inverse Laplace transforms of the following functions:

(i)
$$F(s) = \frac{6}{s^2 + 2s - 8}$$

(ii)
$$F(s) = \frac{4s+5}{(s-1)^2(s+2)}$$

(iii)
$$F(s) = \frac{s^2 + 2s - 4}{(s^2 + 2s + 5)(s^2 + 2s + 2)}$$

*_*_*