import pandas as pd
import numpy as np

data= pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv", delimiter=";")
data.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulph
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	
4										•

print(data['quality'].unique())

```
[5 6 7 4 8 3]
```

X = data.drop('quality', axis=1)

y = data['quality']

| | |

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.2,random_state=42)

from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(max_iter=500, activation='relu')
mlp.fit(X_train,y_train)
pred = mlp.predict(X_test)

from sklearn.metrics import classification_report
print(classification_report(y_test,pred))

	precision	recall	f1-score	support
3	0.00	0.00	0.00	1
4	0.00	0.00	0.00	10
5	0.57	0.75	0.65	130
6	0.52	0.51	0.51	132
7	0.40	0.19	0.26	42
8	0.00	0.00	0.00	5
accuracy			0.54	320
macro avg	0.25	0.24	0.24	320
weighted avg	0.50	0.54	0.51	320

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c_warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-c_warn_prf(average, modifier, msg_start, len(result))

```
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import seaborn as sns
# Plot confusion matrix
cm = confusion_matrix(y_test, pred)
fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(cm, annot=True, fmt='d', cmap=plt.cm.Blues, cbar=False)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion matrix')
plt.show()
```


Plot histogram of predicted quality values for MLP classifier
pred = mlp.predict(X_test)
plt.hist(pred, bins=range(3, 9), align='left')
plt.xticks(range(3, 9))
plt.xlabel("Predicted Quality")
plt.ylabel("Frequency")
plt.show()

Colab paid products - Cancel contracts here