Register file structure : regfile_xgs_athena.pdf Created by imaval on 2020/05/01 09:52:52

Register file CRC32: 0x99823D16

1. Main Parameters

Register file endianness: little endian

Address bus width: 11 bits Data bus width: 32 bits

2. Memory Map

Section name	Address(es) / Address Ranges	Register name	Access Type
SYSTEM	0x000	TAG	R
	0x004	VERSION	R
	0x008	CAPABILITY	R
	0x00C	SCRATCHPAD	RW
DMA	0x070	CTRL	RW
	0x078	FSTART	RW
	0x07C	FSTART_HIGH	RW
	0x080	FSTART_G	RW
	0x084	FSTART_G_HIGH	RW
	0x088	FSTART_R	RW
	0x08C	FSTART_R_HIGH	RW
	0x090	LINE_PITCH	RW
	0x094	LINE_SIZE	RW
	0x098	CSC	RW
ACQ	0x100	GRAB_CTRL	RW
	0x108	GRAB_STAT	R
	0x110	READOUT_CFG1	RW
	0x114	READOUT_CFG_FRA ME_LINE	RW
	0x118	READOUT_CFG2	R
	0x120	READOUT_CFG3	RW
	0x124	READOUT_CFG4	RW
	0x128	EXP_CTRL1	RW
	0x130	EXP_CTRL2	RW
	0x138	EXP_CTRL3	RW
	0x140	TRIGGER_DELAY	RW
	0x148	STROBE_CTRL1	RW
	0x150	STROBE_CTRL2	RW
	0x158	ACQ_SER_CTRL	RW
	0x160	ACQ_SER_ADDATA	RW
	0x168	ACQ_SER_STAT	R
	0x190	SENSOR_CTRL	RW

Section name	Address(es) / Address Ranges	Register name	Access Type
Section name	0x198	SENSOR STAT	R R
	0x19C	SENSOR_SUBSAMPLI	KW
	0x1A4	SENSOR_GAIN_ANA	RW
	0x1A8	SENSOR_ROI_Y_STA RT	RW
	0x1AC	SENSOR_ROI_Y_SIZE	RW
	0x1B0	SENSOR_ROI2_Y_ST ART	RW
	0x1B4	SENSOR_ROI2_Y_SIZ E	RW
	0x1B8	SENSOR_M_LINES	RW
	0x1BC	SENSOR_DP_GR	RW
	0x1C0	SENSOR_DP_GB	RW
	0x1C4	SENSOR_DP_R	RW
	0x1C8	SENSOR_DP_B	RW
	0x1E0	DEBUG_PINS	RW
	0x1E8	TRIGGER_MISSED	RW
	0x1F0	SENSOR_FPS	R
	0x2A0	DEBUG	RW
	0x2A8	DEBUG_CNTR1	R
	0x2B8	EXP_FOT	RW
	0x2C0	ACQ_SFNC	RW
DATA	0x300	LUT_CTRL	RW
	0x308	LUT_RB	R
	0x310	WB_MULT1	RW
	0x318	WB_MULT2	RW
	0x320	WB_B_ACC	R
	0x328	WB_G_ACC	R
	0x330	WB_R_ACC	R
	0x338	FPN_ADD	RW
	0x33C	FPN_READ_REG	RW
	0x340, 0x344, ,0x35C	FPN_DATA (7:0)	RW
	0x360	FPN_CONTRAST	RW
	0x368	FPN_ACC_ADD	RW
	0x370	FPN_ACC_DATA	R
	0x380	DPC_LIST_CTRL	RW
	0x384	DPC_LIST_DATA	RW
	0x388	DPC_LIST_DATA_RD	R
HISPI	0x400	CTRL	RW
	0x404	IDELAYCTRL_STATU S	R
	0x408, 0x40C, ,0x41C	LANE_DECODER_ST ATUS (5:0)	RW
	0x420, 0x424, 0x428	LANE_PACKER_STA TUS (2:0)	RW

3. Registers definition

Section: SYSTEM

Address Range: [0x000 - 0x00C]

TAG

Address: section "SYSTEM" base address + 0x000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			VALUE	E(23:16)			
15	14	13	12	11	10	9	8
			VALU	E(15:8)			
7	6	5	4	3	2	1	0
	VALUE(7:0)						

VALUE (23:0)	Tag identifier		
STATIC			
Value at Reset:	0x58544d		
Possible Values:	0x58544D	MTX ASCII string	

Description:

Revisions

1.3.x : First functionnal revision with a single list of multiple Ethernet frames

1.4.x : Second revision. Implements multiple list of frames

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			MAJO	R(7:0)			
15	14	13	12	11	10	9	8
			MINO	R(7:0)			
7	6	5	4	3	2	1	0
			HW	(7:0)			

MAJOR (7:0)	
STATIC	
Value at Reset:	0x0

MINOR (7:0)	
STATIC	
Value at Reset:	0x0

HW (7:0)	
RO	

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
			VALU	JE(7:0)			

VALUE (7:0)	
STATIC	
Value at Reset:	0x0

Address: section "SYSTEM" base address + 0x00C

31	30	29	28	27	26	25	24
			VALUE	E(31:24)			
23	22	21	20	19	18	17	16
			VALUE	E(23:16)			
15	14	13	12	11	10	9	8
			VALU	E(15:8)			
7	6	5	4	3	2	1	0
			VALU	JE(7:0)			

VALUE (31:0)	
RW	
Value at Reset:	0x0

Address Range: [0x070 - 0x0A4]

CTRL

Initial Grab Address Register

Address: section "DMA" base address + 0x000

Description:

Initial Grab Address LOW 32 bits

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved							GRAB_QUEU E_EN

GRAB_QUEUE_EN		
RW		
Value at Reset:	0x0	
Possible Values:	0x0	
	0x1	

Description:

Initial Grab Address LOW 32 bits

31	30	29	28	27	26	25	24
	VALUE(31:24)						
23	22	21	20	19	18	17	16
	VALUE(23:16)						
15	14	13	12	11	10	9	8
	VALUE(15:8)						
7	6	5	4	3	2	1	0
	VALUE(7:0)						

VALUE (31:0)	INitial GRAb ADDRess Register
RW	This is the address in the host ram where the grab engine will start writing pixel data.
Value at Reset:	0x0
Possible Values:	Any Value

Description:

Initial Grab Address HI 32 bits

31	30	29	28	27	26	25	24
	VALUE(31:24)						
23	22	21	20	19	18	17	16
	VALUE(23:16)						
15	14	13	12	11	10	9	8
	VALUE(15:8)						
7	6	5	4	3	2	1	0
	VALUE(7:0)						

VALUE (31:0)	INitial GRAb ADDRess Register High			
RW	This is the high 32 bits of the 64-bit addresses in the host ram where the grab engine will start writing pixel data.			
Value at Reset:	0x0			
Possible Values:	Any Value			

Description:

Grab Address LOW 32 bits for the Green plane. Only used when grabbing in Planar mode.

31	30	29	28	27	26	25	24
	VALUE(31:24)						
23	22	21	20	19	18	17	16
	VALUE(23:16)						
15	14	13	12	11	10	9	8
	VALUE(15:8)						
7	6	5	4	3	2	1	0
	VALUE(7:0)						

VALUE (31:0)	GRAb ADDRess Register			
RW	This is the address in the host ram where the grab engine will start writing pixel data.			
Value at Reset:	0x0			
Possible Values:	Any Value			

Description:

Green Grab Address HIGH 32 bits

31	30	29	28	27	26	25	24	
	VALUE(31:24)							
23	22	21	20	19	18	17	16	
	VALUE(23:16)							
15	14	13	12	11	10	9	8	
	VALUE(15:8)							
7	6	5	4	3	2	1	0	
	VALUE(7:0)							

VALUE (31:0) <i>RW</i>	This is the high pa	GRAb ADDRess Register High This is the high part of the 64-bit addresess in the host ram where the grab engine will start writing pixel data.			
Value at Reset:	0x0	0x0			
Possible Values:	Any Value	Any value			

Description:

Grab Address LOW 32 bits for the Red plane. Only used when grabbing in Planar mode.

31	30	29	28	27	26	25	24	
	VALUE(31:24)							
23	22	21	20	19	18	17	16	
	VALUE(23:16)							
15	14	13	12	11	10	9	8	
	VALUE(15:8)							
7	6	5	4	3	2	1	0	
	VALUE(7:0)							

VALUE (31:0)	GRAb ADDRess Regis	GRAb ADDRess Register			
RW	This is the address in th	This is the address in the host ram where the grab engine will start writing pixel data.			
Value at Reset:	0x0				
Possible Values:	Any Value	Any value			

Description:

Red Grab Address HIGH 32 bits

31	30	29	28	27	26	25	24		
	VALUE(31:24)								
23	22	21	20	19	18	17	16		
	VALUE(23:16)								
15	14	13	12	11	10	9	8		
	VALUE(15:8)								
7	6	5	4	3	2	1	0		
	VALUE(7:0)								

VALUE (31:0) RW	GRAb ADDRess Register High This is the high part of the 64-bit addresses in the host ram where the grab engine will start writing pixel data.				
Value at Reset:	0x0				
Possible Values:	Any Value	Any value			

Description:

Grab Line Pitch Register

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	VALUE(15:8)									
7	6	5	4	3	2	1	0			
	VALUE(7:0)									

VALUE (15:0)	Grab LinePitch
RW	This is the line pitch when writing in ram. It is measured in bytes, not pixels.
Value at Reset:	0x0

Description:

Host Line Size Register.

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Reser	Reserved VALUE(13:8)								
7	6	5	4	3	2	1	0		
	VALUE(7:0)								

VALUE (13:0)	Host Line size	Host Line size				
RW	register is higher th host memory. If th cropped at the end	when writing in host ram. It is measured in bytes, not pixels. If this an the actual data provided by the sensor, stray data will be written into is register is lower than the data provided by the sensor, image data will be of the line. patibility, the value of 0 indicates that the FPGA should auto-compute the data provided by the sensor interface.				
Value at Reset:	0x0	0x0				
Possible Values:	0x1 - 0x3FFF	0x1 - 0x3FFF Written line size in host frame.				
	0x0	0x0 Auto-compute line size from sensor data.				

31	30	29	28	27	26	25	24
		Reserved			COLOR_SPACE(2:0)		
23	22	21	20	19	18	17	16
DUP_LAST_ LINE				Reserved			
15	14	13	12	11	10	9	8
		Rese	rved			REVERSE_Y	REVERSE_X
7	6	5	4	3	2	1	0
			Res	erved			

COLOR_SPACE (2:0)		
RW	Output color s	pace used to transfer data to the DMA engine.
Value at Reset:	0x0	
Possible Values:	0x0	Reserved for Mono sensor operation
	0x1	BGR32
	0x2	YUV 4:2:2 in full range
	0x3	Planar 8-bits
	0x4	Reserved for Y only with color sensor
	0x5	RAW color pixels (8bpp or 10bpp selected with MONO10 regsiter)

DUP_LAST_LINE				
RW	This field is used to enable the duplicate last line feature. When turned on, the datapath will regenerate the last line when it receives the end of frame marker from the acquisition section. The goal of this feature is to compensate for the lost line during the Bayer demosaic processing.			
Value at Reset:	0x0			
Possible Values:	0x0	normal processing		
	0x1	last line is duplicated		

REVERSE_Y	REVERSE Y				
RW	Reverse readout				
Value at Reset:	0x0				
Possible Values:	0x0	Bottom to top readout			
	0x1	Top to bottom readout			

REVERSE_X	
RW	
Value at Reset:	0x0

Address Range: [0x100 - 0x2CC]

GRAB_CTRL

GRAB ConTRoL Register

Address: section "ACQ" base address + 0x000

0x0

0x1

Description:

Possible Values:

Grag Control Register

31	30	29	28	27	26	25	24
RESET_GRA B	Reserved	GRAB_ROI2_ EN	ABORT_GRA B		Rese	erved	
23	22	21	20	19	18	17	16
			Reserved				TRIGGER_O VERLAP_BU FFn
15	14	13	12	11	10	9	8
TRIGGER_O VERLAP	TRIGGER_ACT(2:0)			Reserved	TRIGGER_SRC(2:0)		
7	6	5	4	3	2	1	0
	Reserved		GRAB_SS	Reserved BUFFER_ID GRAB_C			GRAB_CMD
RESET_GRAB							
RW		This register re	esets the entire py	ython_ctrl.			
Value at Reset:		0x0					

GRAB_ROI2_EN				
RW	1) No Y overl 2) Xsize must 3) EOF and So	Enable the second ROI on the frame (KNS). This register is not DB. 1) No Y overlap is allowed 2) Xsize must be the same for the two ROI for the moment(DMA constraint). 3) EOF and SOF in between the two in-frame ROIs will be masked to the DMA. The DMA will see one frame, with the two ROI inside.		
Value at Reset:	0x0			
Possible Values:	0x0	Dual ROI disable		
	0x1	Dual ROI enable		

Reset active

Reset not active

ABORT_GRAB	ABORT GRAB		
WO/AutoClr	This is the grab Abort signal, it will reset all the grab queued.		
Possible Values:	Ox0 Normal operation		
	0x1	Reset Grab	

TRIGGER_OVERLAP_BUF Fn			
RW	NOT FULLY VALIDATED. DON'T USE. SET IT TO '0'.		
Value at Reset:	0x0		
Possible Values:	0x0	Buffer the trigger received during the dead window in PET mode and execute	
	0x1	The trigger will be ignored during dead window in PET mode.	

TRIGGER_OVERLAP				
RW		This field enables the trigger overlap. In this mode the exposure and the readout of the sensor can be done in parallel for higher framerates.		
Value at Reset:	0x1			
Possible Values:	0x0	Trigger Overlap disable		
	0x1	Trigger Overlap enable (default)		

TRIGGER_ACT (2:0)	TRIGGER AC	Tivation		
RW	This is the trigger activation. This register selects the activation of the trigger when the trigger source is set to Hardware Snapshop mode. This register is Double Buffered, so the trigger activation may change from one grab commar to another.			
	In activation Level HI/LO with EXPOSURE_MODE register set to Timed, the camera will be triggered in continuous way if the level of the external trigger remains at the LEVEL programmed in this register.			
	evel HI/LO with EXPOSURE_MODE register set to Trigger Width, the will be set by the level of the trigger input. The FPGA exposure regsiters will e Dual and Triple slope are not supported in the mode.			
Value at Reset:	0x0			
Possible Values:	0x0	Rising edge		
	0x1 Falling edge			
	0x2	Rising or Falling edge		
	0x3	Level HI		
	0x4	Level LO		
	0x5	RESERVED		
	0x6	RESERVED		
	0x7	RESERVED		

TRIGGER_SRC (2:0)	TRIGGER Sou	TRIGGER SouRCe		
RW	Double Buffer	This is the trigger source. This register selects the source of the grab trigger. This register is Double Buffered, so the trigger source may change from one grab command to another. TRIGGER_SRC(1) may be seen as a TRIGGER_STATE by the software driver.		
Value at Reset:	0x0	0x0		
Possible Values: 0x0 RESERVED		RESERVED		
	0x1 Immediate mode (Continuous)			
	0x2	0x2 Hardware Snapshop mode		
	0x3	0x3 Software Snapshot mode		
	0x4	SFNC mode (auto trig)		

GRAB_SS	GRAB Softwar	GRAB Software Snapshot		
WO/AutoClr	This is the soft mode.	This is the software snapshot register when the trigger source selected is Software Snapshot mode.		
Possible Values:	0x0	0x0 Idle		
	0x1	0x1 Start a grab		

BUFFER_ID	
RW	This is the ID of the DMA parameters to associate with this grab command.
Value at Reset:	0x0

GRAB_CMD	GRAB CoMmanD	GRAB CoMmanD		
WO/AutoClr	This is MIL GRAB	command.		
	automatically execu Hardware Snapshop The GRAB_CMD v	When the trigger source is set to Immediate mode(Continuous), an exposure sequence will be automatically executed. When the trigger source is set to Software Snapshop mode or Hardware Snapshop mode, GRAB_CMD will act as an ARM. The GRAB_CMD will take around 13 clks to reccord the grab parameters to the SPI fifo. The GRAB_CMD_DONE register may be readed to avoid fifo corruption before sending another		
Possible Values:	0x0	Idle		
	0x1	Start grab command		

31	30	29	28	27	26	25	24
GRAB_CMD_ DONE	ABORT_PET	ABORT_DEL AI	ABORT_DON E		Reserved		TRIGGER_R DY
23	22	21	20	19	18	17	16
Reserved	ABORT_MNGR_STAT(2:0)				TRIG_MNGI	R_STAT(3:0)	
15	14	13	12	11	10	9	8
Reserved	TIMER_MNGR_STAT(2:0)				GRAB_MNG	R_STAT(3:0)	
7	6	5	4	3	2	1	0
Reserved	GRAB_FOT	GRAB_READ OUT	GRAB_EXPO SURE	Reserved	GRAB_PEND ING	GRAB_ACTI VE	GRAB_IDLE

GRAB_CMD_DONE	GRAB CoMmanD DONE		
	The GRAB_CMD will take around 13 clks to reccord the grab parameters to the SPI fifo. This register may be readed to avoid fifo corruption before sending another Grab command instruction.		
Possible Values:	0x0 Grab Command in process		
	Ox1 Grab command idle		

ABORT_PET	ABORT during PET		
	This is the ABORT PET flag. It is set to '1' when an abort is detected in the PETengin phase of the trigger. It is set back to '0' when ABORT_DONE is set to '1'.		
Possible Values:	0x0 Abort in PET Phase idle		
	Ox1 Abort in PET Phase active		

ABORT_DELAI			
	This is the ABORT DELAI flag. It is set to '1' when an abort is detected in the delai phase of the trigger. It is set back to '0' when ABORT_DONE is set to '1'.		
Possible Values:	0x0	Abort in Delai Phase idle	
	0x1	Abort in Delai Phase active	

ABORT_DONE	ABORT is DONE			
RO	This read-only field indic executing.	This read-only field indicates the RESET_GRAB command status. If 0, an abort sequence is executing.		
Possible Values:	0x0	Abort sequence not finished yet		
	0x1	Abort DONE, or not started (reset value)		

TRIGGER_RDY	
RO	

ABORT_MNGR_STAT (2:0)	
RO	DEBUG ABORT MANAGER STATE MACHINE

TRIG_MNGR_STAT (3:0)				
RO	DEBUG TRIGGER MANAGER STATE MACHINE			
no .	DEBCG TRIC	OEK MALVIOLK STATE MATERIAL		
TIMER_MNGR_STAT (2:0)				
RO	DEBUG TIME	ER MANAGER STATE MACHINE		
GRAB_MNGR_STAT (3:0)				
RO	DEBUG GRAI	B MANAGER STATE MACHINE		
GRAB_FOT	GRAB Field O	verhead Time		
RO		sor FOT (Field Overhead Time).		
Possible Values:	0x0	Not in FOT		
	0x1	In FOT		
		·		
GRAB_READOUT				
	This is the sensor readout status. It goes to '1' on the SO_FOT and goes to '0' when the datapath decoder decodes the end of frame.			
RO				
	datapath decod	er decodes the end of frame.		
GRAB_EXPOSURE RO	datapath decod	sor integration status		
GRAB_EXPOSURE RO	This is the sens	sor integration status Idle		
GRAB_EXPOSURE RO	datapath decod	sor integration status		
GRAB_EXPOSURE RO	This is the sens	sor integration status Idle		
GRAB_EXPOSURE RO Possible Values:	This is the sens	sor integration status Idle		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING	This is the sens 0x0 0x1 Grab pending s	sor integration status Idle		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO	This is the sens 0x0 0x1 Grab pending s fpga.	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO	This is the sense 0x0 0x1 Grab pending s fpga. 0x0	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO	This is the sens 0x0 0x1 Grab pending s fpga.	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO Possible Values:	This is the sense 0x0 0x1 Grab pending s fpga. 0x0	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO	This is the sens 0x0 0x1 Grab pending s fpga. 0x0 0x1	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO Possible Values: GRAB_ACTIVE	This is the sens 0x0 0x1 Grab pending s fpga. 0x0 0x1	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending Grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO Possible Values:	This is the sens 0x0 0x1 Grab pending s fpga. 0x0 0x1	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending Grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO Possible Values: GRAB_ACTIVE RO	This is the sens 0x0 0x1 Grab pending s fpga. 0x0 0x1 Grab active starreceived.	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending Grab pending		
GRAB_EXPOSURE RO Possible Values: GRAB_PENDING RO Possible Values: GRAB_ACTIVE RO GRAB_IDLE	This is the sens 0x0 0x1 Grab pending s fpga. 0x0 0x1 Grab active starreceived.	sor integration status Idle Integrating status. When this register is set to one, a second grab command is queued in the No grab pending Grab pending tus. When this register is set to one, at least one grab command has been		

31	30	29	28	27	26	25	24
	Reserved			FOT_	LENGTH_LINI	E(4:0)	
23	22	21	20	19	18	17	16
			Reserved				EO_FOT_SEL
15	14	13	12	11	10	9	8
			FOT_LEN	GTH(15:8)			
7	6	5	4	3	2	1	0
			FOT_LEN	VGTH(7:0)			

FOT_LENGTH_LINE (4:0) RW		Frame Overhead Time LENGTH LINE This is the length of the Frame Overhead Time in line_time unit.		
Value at Reset:	0x0			
Possible Values:	Any Value Any 16 bit value			

EO_FOT_SEL	
RW	This selector selects who will generate the EO_FOT in the controller. When select 0, the EO_FOT is the falling edge detection of the monitor FOT. When select 1, the EO_FOT will be generated inside the controller with programmed FOT_LENGTH.
Value at Reset:	0x0

FOT_LENGTH (15:0)	Frame Overhead Time LENGTH		
RW	This is the length of the Frame Overhead Time. This register is defined as number of lines. It is used when EO_FOT_SEL is set to 1.		
Value at Reset:	0x0		
Possible Values:	Any Value	Any 16 bit value	

READOUT_CFG_FRAME_LIN E

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
			DUMMY_I	LINES(7:0)			
15	14	13	12	11	10	9	8
	Reserved			CURR_	FRAME_LINE	S(12:8)	
7	6	5	4	3	2	1	0
			CURR_FRAM	E_LINES(7:0)			

DUMMY_LINES (7:0)	
RW	Number of lines to add in the readout (to debug XGS)
Value at Reset:	0x0

CURR_FRAME_LINES (12:0)	
RO	Current number of lines in the readout calculated by the XGS controller (without FOT).

31	30	29	28	27	26	25	24	
Reserved				READ	OUT_LENGTH	(28:24)		
23	22	21	20	19	18	17	16	
	READOUT_LENGTH(23:16)							
15	14	13	12	11	10	9	8	
	READOUT_LENGTH(15:8)							
7	6	5	4	3	2	1	0	
	READOUT LENGTH(7:0)							

READOUT_LENGTH (28:0)					
	projectand gives the read	register. This register is calculated by the FPGA in the IRIS4 out length without the FOT. This register will depend on the ROI, and			
	Subsampling mode. It is used in the PET engin calculations. In Sys_Clock domain.				
Possible Values:	Any Value	Any 24 bits value			

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	LINE_TIME(15:8)									
7	6	5	4	3	2	1	0			
	LINE_TIME(7:0)									

KEEP_OUT_TRIG_ENA	
	KEEPOUT zone TRIGger ENAble. When this register is enabled, then the trigger output will be synchronized with the line_int(monitor2) signal from the XGS sensor. To configure this keep out zone, use register READOUT_CFG4.
Value at Reset:	0x0

LINE_TIME (15:0)	LINE TIME				
RW	This register definel the length of one line of the sensor. It includes blanking and valid time . Line Time Unit is SENSOR Clock Cycles				
Value at Reset:	0x16e				
Possible Values:	Any Value between 1 and 255				

31	30	29	28	27	26	25	24							
KEEP_OUT_TRIG_END(15:8)														
23	22	21	20	19	18	17	16							
	KEEP_OUT_TRIG_END(7:0)													
15	14	13	12	11	10	9	8							
	KEEP_OUT_TRIG_START(15:8)													
7	6	5	4	3	2	1	0							
			KEEP_OUT_TR	IG_START(7:0)			KEEP_OUT_TRIG_START(7:0)							

KEEP_OUT_TRIG_END (15:0)	
RW	During the line time, this register indicates the end of the trigger keep-out zone.
Value at Reset:	0x16d

KEEP_OUT_TRIG_START (15:0)	
RW	During the line time, this register indicates the start of the trigger keep-out zone.
Value at Reset:	0x16e

EXP_CTRL1

31	30	29	28	27	26	25	24	
	Reserved		EXPOSURE_ LEV_MODE	SURE_ EXPOSURE_SS(27:24) MODE				
23	22	21	20	19	18	17	16	
	EXPOSURE_SS(23:16)							
15	14	13	12	11	10	9	8	
	EXPOSURE_SS(15:8)							
7	6	5	4	3	2	1	0	
	EXPOSURE_SS(7:0)							

EXPOSURE_LEV_MODE	EXPOSURE LEVel MODE					
RW	This is the exposure level mode selector. When selecting the TRIGGER ACTIVATION = Level Mode, this register selects the exposure method used. When this register is set to '0' the timed mode is selected; Register EXPOSURE_SS is used for the exposure time. When this register is set to '1' the external trigger width is used for the exposure time.					
Value at Reset:	0x0	0x0				
Possible Values:	0x0 Timed Mode					
	0x1 Trigger Width					

EXPOSURE_SS (27:0)	EXPOSURE Single Slope				
RW	This is the total exposure time in single/dual/triple slope mode.				
	This register is double buffered.				
Value at Reset:	0x0				
Possible Values:	Any Value	Any 28 bits value			

EXP_CTRL2

31	30	29	28	27	26	25	24	
	Reserved				EXPOSURE	_DS(27:24)		
23	22	21	20	19	18	17	16	
	EXPOSURE_DS(23:16)							
15	14	13	12	11	10	9	8	
	EXPOSURE_DS(15:8)							
7	6	5	4	3	2	1	0	
	EXPOSURE_DS(7:0)							

EXPOSURE_DS (27:0)	EXPOSURE Dual	EXPOSURE Dual			
RW	This is a new 3d profiler feature We will be able to program upto 3 different exposure times (using unused multiSlope registers) Then we will be able to sequence those exposure times. Selection is made with input exposure select.				
Value at Reset:	0x0				
Possible Values:	Any Value	Any 28 bits value			

EXP_CTRL3

31	30	29	28	27	26	25	24	
	Reserved			EXPOSURE_TS(27:24)				
23	22	21	20	19	18	17	16	
	EXPOSURE_TS(23:16)							
15	14	13	12	11	10	9	8	
	EXPOSURE_TS(15:8)							
7	6	5	4	3	2	1	0	
	EXPOSURE_TS(7:0)							

EXPOSURE_TS (27:0)	EXPOSURE Tripple			
RW	This is a new 3d profiler feature We will be able to program upto 3 diferent exposure times (using unused multiSlope registers) Then we will be able to sequence those exposure times. Selection is made with input exposure select.			
Value at Reset:	0x0			
Possible Values:	Any Value	Any 28 bits value		

TRIGGER_DELAY

31	30	29	28	27	26	25	24
	Rese	erved			TRIGGER_D	ELAY(27:24)	
23	22	21	20	19	18	17	16
			TRIGGER_DI	ELAY(23:16)			
15	14	13	12	11	10	9	8
	TRIGGER_DELAY(15:8)						
7	6	5	4	3	2	1	0
	TRIGGER_DELAY(7:0)						

TRIGGER_DELAY (27:0)	TRIGGER DELAY			
RW	This is the trigger delay. This trigger delay can be applied to HW(Only edge mode), SW and Continuous mode.			
	In HW level mode, the trigger cannot be delayed, since the level time represents the exposure time.			
	This register is double buffered			
Value at Reset:	0x0			
Possible Values:	Any Value	Any 28 bits value		

STROBE_CTRL1

31	30	29	28	27	26	25	24
STROBE_E	Rese	erved	STROBE_PO L		STROBE_ST	'ART(27:24)	
23	22	21	20	19	18	17	16
	STROBE_START(23:16)						
15	14	13	12	11	10	9	8
			STROBE_ST	CART(15:8)			
7	6	5	4	3	2	1	0
			STROBE_S7	ΓART(7:0)			

STROBE_E	STROBE Enable
RW	This register enables the strobe logic.
	For Nexis 3 systems, to enable STROBE_A signal, STROBE_E and STROBE_A_EN must be enabled. For Nexis 3 systems, to enable STROBE_B signal, STROBE_E and STROBE_B_EN must be enabled. For Nexis 3 systems, STROBE_A and STROBE B can be activated at the same time, in this case the two strobes will be the same as they share the same programmation. This register is double buffered
Value at Reset:	0x0
Possible Values:	0x0 Strobe disabled
	0x1 Strobe enabled

STROBE_POL	STROBE POLarity	STROBE POLarity		
RW	This is the strobe polarity	This is the strobe polarity at the pin of the FPGA only for GTR systems.		
	For NEXIS3 systems use register ANPUT\IO\IO_OUT_POL\OUTx_POL This register is not double buffered.			
Value at Reset:	0x0	0x0		
Possible Values:	0x0 Active high strobe			
	0x1	0x1 Active low strobe		

STROBE_START (27:0)	STROBE START					
RW	This is the strobe start location. This location depends on the Strobe Mode used.					
	In Strobe Mode='0', the start of the strobe is situated during the exposure time. In Strobe Mode='1', the start of the strobe is situated during the trigger delay. This register is double buffered					
Value at Reset:	0x0					
Possible Values:	Any Value	Any 28 bits value				

STROBE_CTRL2

31	30	29	28	27	26	25	24
STROBE_MO DE	Reserved	STROBE_B_ EN	STROBE_A_ EN		STROBE_E	ND(27:24)	
23	22	21	20	19	18	17	16
	STROBE_END(23:16)						
15	14	13	12	11	10	9	8
	STROBE_END(15:8)						
7	6	5	4	3	2	1	0
			STROBE_	END(7:0)			

STROBE_MODE	STROBE MODE	STROBE MODE					
RW	This register sele	This register selects the location of the Strobe Start.					
	When this registe timer.	When this register is set to 0, the STROBE_START register is located during the exposure timer.					
	When this registed delay timer.	When this register is set to 1, the STROBE_START register is located during the trigger delay timer.					
	In HW level mode be delayed.	le the strobe mode must be set to STROBE MODE=0 since the trigger cannot					
	This register is de	This register is double buffered					
Value at Reset:	0x0	~					
Possible Values:	0x0	Strobe start during exposure					
	0x1						

STROBE_B_EN	STROBE phase B ENable			
RW	This field enables the generation of STROBE_B signal, for a NEXIS 3 system.			
	This register is double buffered to support back2back mode in nexts systems.			
Value at Reset:	0x0			
Possible Values:	0x0 Enable Strobe B			
	0x1 Disable Strobe B			

STROBE_A_EN	STROBE phase A ENable			
RW	This field enables the generation of STROBE_A signal(Default strobe), for a NEXIS 3 system.			
	This register is double buffered to support back2back mode in nexts systems.			
Value at Reset:	0x1			
Possible Values:	0x0 Enable Strobe A (default strobe)			
	0x1	Disable Strobe A		

STROBE_END (27:0)	STROBE END	STROBE END				
RW	This is the strobe end lo	This is the strobe end location. This location does not depend on the Strobe Mode used.				
	This register is double l	This register is double buffered				
Value at Reset:	0xfffffff	0xfffffff				
Possible Values:	Any Value	Any Value Any 28 bits value				

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						SER_RWn
15	14	13	12	11	10	9	8
	Reserved				SER_C	MD(1:0)	
7	6	5	4	3	2	1	0
	Reserved		SER_RF_SS		Reserved		SER_WF_SS

SER_RWn	SERial Read/W	SERial Read/Writen				
RW	This register co	This register configures the type of the serial access to the CMOS sensor				
Value at Reset:	0x1	0x1				
Possible Values:	0x0	0x0 Write access				
	0x1	Read access				

SER_CMD (1:0)	SERial CoMm	and				
RW	This is the type	e of command sent to the serial fifo.				
		Sensor, write SER_WF_SS=1 with SER_CMD=0x0, with the parameters: ER_ADD(8:0) and SER_DAT(15:0).				
	the parametter following form 1/62.5mhz. Th	To insert a timer between fifo commands, write SER_WF_SS=1 with SER_CMD=0x1, with the parametter: SER_DAT(15:0). The value of the timer inserted is calculated with the following formula: Timer= SER_DAT(15:0)*1024*SYS_PERIOD, SYS_PERIOD is 1/62.5mhz. The granularity of the timer is 16.384us To insert a Stop separator command, write SER_WF_SS=1 with SER_CMD=0x3. When the read logic encounter this command, it will stop read from the fifo until a new SER_RF_SS is				
Value at Reset:	0x0					
Possible Values:	0x0	0x0 CMOS sensor access COMMAND				
	0x1	0x1 Insert timer COMMAND				
	0x2	STOP separator COMMAND				
	0x3	RESERVED				

SER_RF_SS	SERial Read Fifo SnapSh	SERial Read Fifo SnapShot			
	This is the read fifo snapshot. When the read fifo logic receives this snapshot, it will read all the fifo comands until a STOP separator command is read or Empty fifo is detected.				
Possible Values:	0x0 Idle				
	0x1	Start Read FIFO			

SER_WF_SS	SERial Write F	SERial Write Fifo SnapShot				
WO/AutoClr	fifo. This fifo ca is a auto reset b	When the system toggle this bit, the address, data and command are wrote to the command fifo. This fifo can contain the entire dcf, so the driver will not need to pool the status bit. This is a auto reset bit register, so after the driver write one, the bit will be auto reset to 0. To start the FIFO read logic write '1' to regsiter SER_RF_SS.				
Possible Values:	0x0	0x0 Idle				
	0x1	0x1 Write a command to the FIFO				

31	30	29	28	27	26	25	24
	SER_DAT(15:8)						
23	22	21	20	19	18	17	16
SER_DAT(7:0)							
15	14	13	12	11	10	9	8
Reserved	SER_ADD(14:8)						
7	6	5	4	3	2	1	0
	SER_ADD(7:0)						

SER_DAT (15:0)	SERial interface D	SERial interface DATa				
RW		This is the write data to be send to the CMOS sensor by the serial interface, or the config data to a TIMER command or to a POWER sequence command. See register SER CMD.				
Value at Reset:	0x0	0x0				
Possible Values:	Any Value	Any 16 bits value				

SER_ADD (14:0) RW	SERial interface ADDress This is the read/write address of the register in the CMOS sensor.			
Value at Reset:	0x0			
Possible Values:	Any Value	Any 9 bits value		

31	30	29	28	27	26	25	24
			Reserved				SER_FIFO_E MPTY
23	22	21	20	19	18	17	16
			Reserved				SER_BUSY
15	14	13	12	11	10	9	8
			SER_DA	Γ_R(15:8)			
7	6	5	4	3	2	1	0
	SER_DAT_R(7:0)						

SER_FIFO_EMPTY	SERial FIFO EMPTY
RO	This is the EMPTY flag of the xilinx fifo, when '1' there are no pending operations in the fifo.

SER_BUSY	SERial BUSY	SERial BUSY	
RO	SER_RF_SS	This is the BUSY status of the FIFO read logic. The flag will be set to '1' when the SER_RF_SS is set to '1'. It will be reseted to '0' when the read logic will decode a STOP separator command or when the FIFO will be empty.	
Possible Values:	0x0	FIFO read logic is idle	
	0x1	FIFO read logic is runnning	

SER_DAT_R (15:0)	SERial interface DATa Read		
RO	This is the data read from CMOS sensor.		
Possible Values:	Any Value	Any 16 bits value	

31	30	29	28	27	26	25	24
			Reserved				SENSOR_RE FRESH_TEM P
23	22	21	20	19	18	17	16
			Reserved				SENSOR_PO WERDOWN
15	14	13	12	11	10	9	8
			Reserved				SENSOR_CO LOR
7	6	5	4	3	2	1	0
	Reserved		SENSOR_RE G_UPTATE	Res	erved	SENSOR_RE SETN	SENSOR_PO WERUP

SENSOR_REFRESH_TEMP	SENSOR REFRESH TE	MPerature	
WO/AutoClr			
Possible Values:	0x0	Idle	
	0x1	Starts a Temperature read on Python SPI interface	

SENSOR_POWERDOWN	
	After a PowerUp sequence(SESOR_POWERUP_DONE=1), successfull or not, this register can reset the clock oscillator and enable the reset to the sensor.
	This power down don't do power sequencing.

SENSOR_COLOR	SENSOR COL	LOR		
RW		This register informs the datapath logic that a color sensor is used. This information is needed for the remapper logic.		
Value at Reset:	0x0			
Possible Values:	0x0	Monochrone sensor		
	0x1	Color sensor		

SENSOR_REG_UPTATE SENSOR RE		UPDATE	
RW	By setting this bit to 1, the SENSOR CONTROLLER WILL UPDATE the programed CMOS sensor registers at the beginning of each grab.		
Value at Reset:	0x1		
Possible Values:	0x0	Do not update registers	
	0x1	Update registers	

SENSOR_RESETN SENSOR RESET Not		
RW After a successfull Power		erUP sequence, writing this field to '0' reset the Python CMOS sensor.
Value at Reset:	0x1	
Possible Values:	0x0	Reset the sensor after a successfull powerUP
	0x1	Nothing

SENSOR_POWERUP		
WO/AutoClr	This register Enables the	clk oscillator and removes the reset from the sensor.
Possible Values:	0x0	idle
	0x1	Start the power sequence

31	30	29	28	27	26	25	24
			SENSOR_	ΓΕΜΡ(7:0)			
23	22	21	20	19	18	17	16
SENSOR_TE MP_VALID			Rese	rved			SENSOR_PO WERDOWN
15	14	13	12	11	10	9	8
Reser	Reserved SENSOR_RE SENSOR_OS Reserved SETN C_EN					SENSOR_VC C_PG	
7	6	5	4	3	2	1	0
	WERUP_STA WERU					SENSOR_PO WERUP_DO NE	

SENSOR_TEMP (7:0)	
RO	This register gives the Temperature of the Python sensor after a SENSOR_REFRESH_TEMP snapshot. The field SENSOR_TEMP_VALID indicates when the SENSOR_TEMP value is valid.
	[Pas utilise pour le moment dans IRIS4]
Possible Values:	Any Value

SENSOR_TEMP_VALID	SENSOR TEMPerature VALID		
RO	This field indicates that the field SENSOR_TEMP have valid temperature after a SENSOR_REFRESH_TEMP snapshot.		
	[Pas utilise pour le moment dans IRIS4]		
Possible Values:	0x0	SENSOR_TEMPERATURE register is not valid	
	0x1	SENSOR_TEMPERATURE register is valid	

SENSOR_POWERDOWN		
RO	This field indicates that the	he sensor is in powerdown state.
Possible Values:	0x0	Not in powerdown state
	0x1	Powerdown

SENSOR_RESETN	SENSOR RESET N		
RO	This is the sensor RESETN status.		
Possible Values:	0x0	In reset state	
	0x1	Not in reset	

SENSOR_OSC_EN	SENSOR OSCILLATOR ENable			
RO	This is the sensor oscillator enable status.			
Possible Values:	0x0 Disable			
	Enable			

SENSOR_VCC_PG	SENSOR sup	SENSOR supply VCC Power Good		
RO	This is the Vo	This is the VCC Power Good status (generated by external HW).		
	[TO BE DEL	[TO BE DELETED, waiting for ON SEMI INFORMATION]		
Possible Values:	0x0	0x0 Disable		
	0x1	Enable		

SENSOR_POWERUP_STAT					
RO	When a powerup sequen	Then a powerup sequence is finish, this register indicates the result of the POWERUP			
	sequence.				
Possible Values:	0x0	PowerUp sequence fail			
	0x1	PowerUp sequence success			

SENSOR_POWERUP_DONE				
RO		This register indicates that the POWERUP sequence is finish. Read register SENSOR POWERUP STAT to see the result.		
Possible Values:	0x0	PowerUp sequence not started		
	0x1	PowerUp sequence finish		

SENSOR_SUBSAMPLING

Address: section "ACQ" base address + 0x09C

Description:

31	30	29	28	27	26	25	24
			Res	erved			
23	22	21	20	19	18	17	16
			Res	erved			
15	14	13	12	11	10	9	8
			reserve	ed1(11:4)			
7	6	5	4	3	2	1	0
	reserve	ed1(3:0)		ACTIVE_SU BSAMPLING _Y	reserved0	M_SUBSAMP LING_Y	SUBSAMPLI NG_X
reserved1 (11:0)							
STATIC							
Value at Reset:		0x0					

ACTIVE_SUBSAMPLING_Y				
RW	Subsampling (Row) for ROI Configurations			
Value at Reset:	0x0			
Possible Values:	0x0			
	0x1			

reserved0		
STATIC		
Value at Reset:	0x0	
Possible Values:	0x0	Idle
	0x1	Enable

M_SUBSAMPLING_Y		
RW	Subsampling (Row) for M Region	
Value at Reset:	0x0	
Possible Values:	0x0	
	0x1	

SUBSAMPLING_X					
RW	Readout in Column Subsa	Readout in Column Subsampling Mode			
Value at Reset:	0x0				
Possible Values:	0x0				
	0x1				

SENSOR_GAIN_ANA

Address: section "ACQ" base address + 0x0A4

Description:

SENSOR ADDRESS 204 DEC

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	reserved1(4:0)			AN	ALOG_GAIN(2	2:0)	
7	6	5	4	3	2	1	0
			reserve	d0(7:0)			

reserved1 (4:0)	
STATIC	
Value at Reset:	0x0

ANALOG_GAIN (2:0)		
RW		
Value at Reset:	0x1	
Possible Values:	0x1	1x
	0x3	2x
	0x7	4x

reserved0 (7:0)	
STATIC	
Value at Reset:	0x0

SENSOR_ROI_Y_START

Address: section "ACQ" base address + 0x0A8

Description:

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
		reserve	ed(5:0)			Y_STA	RT(9:8)	
7	6	5	4	3	2	1	0	
			Y_STA	RT(7:0)				

reserved (5:0)	
STATIC	
Value at Reset:	0x0

Y_START (9:0)	Y START		
RW	Y Start in Kernel size (Kernel is 4 lines)		
Value at Reset:	0x0		

SENSOR_ROI_Y_SIZE

Address: section "ACQ" base address + 0x0AC

Description:

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	rved				
15	14	13	12	11	10	9	8	
		reserve	ed(5:0)			Y_SIZ	Œ(9:8)	
							_	
7	6	5	4	3	2	1	0	
7	6	5	4 Y_SIZ	3 E(7:0)	2	1	0	
7	6	5	4 Y_SIZ	3 EE(7:0)	2	1	0	

reserved (5:0)	
STATIC	
Value at Reset:	0x0

Y_SIZE (9:0)	Y SIZE
RW	Y SIZE in Kernel size (Kernel is 4 lines)
Value at Reset:	0x302

SENSOR_ROI2_Y_START

Address: section "ACQ" base address + 0x0B0

Description:

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
	reserved(5:0) Y_START(9:8)					RT(9:8)		
7	6	5	4	3	2	1	0	
	Y_START(7:0)							

reserved (5:0)	
STATIC	
Value at Reset:	0x0

Y_START (9:0)	Y START		
RW	Y Start in Kernel size (Kernel is 4 lines)		
Value at Reset:	0x0		

SENSOR_ROI2_Y_SIZE

Address: section "ACQ" base address + 0x0B4

Description:

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
reserved(5:0) Y_SIZE(9:					Œ(9:8)		
7	6	5	4	3	2	1	0
			Y_SIZ	ZE(7:0)			
reserved (5:0)							

reserved (5:0)	
STATIC	
Value at Reset:	0x0

Y_SIZE (9:0)	Y SIZE
RW	Y SIZE in Kernel size (Kernel is 4 lines)
Value at Reset:	0x302

SENSOR_M_LINES

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Reserved	M_SUPPRESSED(4:0)						
7	6	5	4	3	2	1	0
M_LINES_SENSOR(7:0)							

M_SUPPRESSED (4:0)	
RW	Suppress the Readout of Initial Lines in the M Region
Value at Reset:	0x0

M_LINES_SENSOR (9:0)	
RW	Number of Lines to Readout from M Region in Context 0 Unit is #lines
	Total number of Black lines = M_LINES Total number of Black lines transferred as valid Black lines = M_LINES-M_SUPRESSED
Value at Reset:	0x8

SENSOR_DP_GR

Address: section "ACQ" base address + 0x0BC

Description:

Sensor Analog data pedestal for Gr pixels (Black offset)

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	reserved(3:0)				DP_OFFSE	Γ_GR(11:8)		
7	6	5	4	3	2	1	0	
DP_OFFSET_GR(7:0)								

reserved (3:0)	
STATIC	
Value at Reset:	0x0

DP_OFFSET_GR (11:0)	
RW	Sensor Analog data pedestal for Gr pixels (Black offset)
Value at Reset:	0x100

SENSOR_DP_GB

Address: section "ACQ" base address + 0x0C0

Description:

Sensor Analog data pedestal for Gb pixels (Black offset)

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	reserved(3:0)				DP_OFFSE	Γ_GB(11:8)		
7	6	5	4	3	2	1	0	
DP_OFFSET_GB(7:0)								

reserved (3:0)	
STATIC	
Value at Reset:	0x0

DP_OFFSET_GB (11:0)	
RW	Sensor Analog data pedestal for Gb pixels (Black offset)
Value at Reset:	0x100

SENSOR_DP_R

Address: section "ACQ" base address + 0x0C4

Description:

Sensor Analog data pedestal for R pixels (Black offset)

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	reserved(3:0)				DP_OFFSE	ET_R(11:8)		
7	6	5	4	3	2	1	0	
	DP_OFFSET_R(7:0)							

reserved (3:0)	
STATIC	
Value at Reset:	0x0

DP_OFFSET_R (11:0)	
RW	Sensor Analog data pedestal for R pixels (Black offset)
Value at Reset:	0x100

SENSOR_DP_B

Address: section "ACQ" base address + 0x0C8

Description:

Sensor Analog data pedestal for B pixels (Black offset)

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
reserved(3:0)				DP_OFFSE	ET_B(11:8)		
7	6	5	4	3	2	1	0
			DP_OFFS	SET_B(7:0)			

reserved (3:0)	
STATIC	
Value at Reset:	0x0

DP_OFFSET_B (11:0)	
RW	Sensor Analog data pedestal for B pixels (Black offset)
Value at Reset:	0x100

31	30	29	28	27	26	25	24
	Reserved				Debug3_sel(4:0)		
23	22	21	20	19	18	17	16
	Reserved				Debug2_sel(4:0)		
15	14	13	12	11	10	9	8
Reserved					Debug1_sel(4:0)		
7	6	5	4	3	2	1	0
Reserved					Debug0_sel(4:0)		

Debug3_sel (4:0)	
RW	debug_vector(0x0) <= python_monitor0;
	$debug_vector(0x1) \le python_monitor1;$
	debug_vector(0x2) <= grab_mngr_trig_rdy;
	$debug_vector(0x3) \le curr_trig0;$
	$debug_vector(0x4) \le strobe;$
	debug_vector(0x5) <= python_exposure;
	$ \text{debug_vector}(0x6) <= \text{FOT};$
	$debug_vector(0x7) \le readout;$
	debug vector($0x8$) <= readout stateD;
	debug_vector(0x9) <= ext_trig;
	debug_vector(0xa) <= REGFILE.ACQ.GRAB_CTRL.GRAB_CMD;
	debug vector(0xb) <= REGFILE.ACQ.GRAB CTRL.GRAB SS;
	debug_vector(0xc)<= grab_mngr_trig;
	debug_vector(0xd) <= grab_mngr_trig_rdy;
	debug_vector(0xe) <= grab_pending;
	debug_vector(0xf) <= grab_active;
	debug_vector(0x10) <= DEC_DATA_EN;
	debug_vector(0x11) <= DEC_SOL;
	debug_vector(0x12) <= DEC_SOF;
	debug_vector(0x13) <= DEC_EOL;
	debug vector(0x14) <= DEC EOF;
	debug_vector(0x15) <= DEC_CRC;
	debug_vector(0x16) <= DEC_TRAIN;
	debug_vector(0x17) <= fpnprnu_corr_sof;
	debug_vector(0x18) <= fpnprnu_corr_sol;
	debug_vector(0x19) <= fpnprnu_corr_data_val;
	debug_vector(0x1a) <= fpnprnu_corr_eol;
	debug_vector(0x1b) <= fpnprnu_corr_eof;
	debug_vector(0x1c) <= python_ssn_int;
	$debug_vector(0x1d) \le debug_vds(0);$
	debug_vector(0x1e) <= debug_lvds(1);
	$debug_vector(0x1f) \le 'Z';$
Value at Reset:	0x1f

```
Debug2 sel (4:0)
RW
                                    debug\_vector(0x0) \le python\_monitor0;
                                     debug_vector(0x1) <= python_monitor1;
                                    debug_vector(0x2) <= grab_mngr_trig_rdy;
debug_vector(0x3) <= curr_trig0;</pre>
                                     debug vector(0x4) \le strobe;
                                     debug_vector(0x5) <= python_exposure;
debug_vector(0x6) <= FOT;</pre>
                                     debug vector(0x7) \le readout;
                                     debug_vector(0x8) <= readout_stateD;</pre>
                                     debug_vector(0x9) <= ext_trig;
                                     debug_vector(0xa) <= REGFILE.ACQ.GRAB_CTRL.GRAB_CMD;</pre>
                                     debug_vector(0xb) <= REGFILE.ACQ.GRAB_CTRL.GRAB_SS;</pre>
                                     debug_vector(0xc)<= grab_mngr_trig;</pre>
                                     debug_vector(0xd) <= grab_mngr_trig_rdy;</pre>
                                     debug_vector(0xe) <= grab_pending;</pre>
                                     debug_vector(0xf) <= grab_active;</pre>
                                     debug_vector(0x10) <= DEC_DATA_EN;
debug_vector(0x11) <= DEC_SOL;
                                     debug vector(0x12) <= DEC SOF:
                                     debug_vector(0x13) <= DEC_EOL;
                                    debug_vector(0x14) <= DEC_EOF;
debug_vector(0x15) <= DEC_CRC;
debug_vector(0x16) <= DEC_TRAIN;
                                     debug_vector(0x17) <= fpnprnu_corr_sof;
                                     debug_vector(0x18) <= fpnprnu_corr_sol;
                                     debug_vector(0x19) <= fpnprnu_corr_data_val;
                                     debug_vector(0x1a) <= fpnprnu_corr_eol;
                                     debug vector(0x1b) \le fpnprnu corr eof;
                                     debug_vector(0x1c) <= python_ssn_int;
                                     debug_vector(0x1d) <= debug_lvds(0);</pre>
                                     debug_vector(0x1e) <= debug_lvds(1);
                                     debug\_vector(0x1f) \le 'Z';
Value at Reset:
                                    0x1f
```

```
Debug1_sel (4:0)
RW
                                   debug_vector(0x0) <= python_monitor0;
                                  debug_vector(0x1) <= python_monitor1;
                                   debug_vector(0x2) <= grab_mngr_trig_rdy;
                                   debug_vector(0x3) <= curr_trig0;
                                   debug\_vector(0x4) \le strobe;
                                   debug_vector(0x5) <= python_exposure;
                                  debug vector(0x6) <= FOT;
                                   debug\_vector(0x7) \le readout;
                                   debug_vector(0x8) <= readout_stateD;</pre>
                                   debug vector(0x9) \le ext trigg
                                  debug_vector(0xa) <= REGFILE.ACQ.GRAB_CTRL.GRAB_CMD;
                                  debug_vector(0xb) <= REGFILE.ACQ.GRAB_CTRL.GRAB_SS;</pre>
                                   debug_vector(0xc)<= grab_mngr_trig;</pre>
                                   debug_vector(0xd) <= grab_mngr_trig_rdy;</pre>
                                   debug_vector(0xe) <= grab_pending;</pre>
                                  debug_vector(0xf) <= grab_active;
                                   debug_vector(0x10) <= DEC_DATA_EN;
                                  debug_vector(0x11) <= DEC_SOL;
debug_vector(0x12) <= DEC_SOF;
debug_vector(0x13) <= DEC_EOL;
                                   debug vector(0x14) <= DEC EOF;
                                   debug_vector(0x15) <= DEC_CRC;
                                   debug_vector(0x16) <= DEC_TRAIN;</pre>
                                   debug_vector(0x17) <= fpnprnu_corr_sof;
                                  debug_vector(0x18) <= fpnprnu_corr_sol;
                                   debug_vector(0x19) <= fpnprnu_corr_data_val;
                                   debug_vector(0x1a) <= fpnprnu_corr_eol;</pre>
                                   debug_vector(0x1b) <= fpnprnu_corr_eof;
                                   debug_vector(0x1c) <= python_ssn_int;</pre>
                                   debug_vector(0x1d) <= debug_lvds(0);
                                   debug_vector(0x1e) <= debug_lvds(1);
                                   \underline{\text{debug\_vector}(0x1f)} \le \underline{\text{'Z'}};
Value at Reset:
                                 0x1f
```

Debug0_sel (4:0)	
RW	debug_vector(0x0) <= python_monitor0;
	debug_vector(0x1) <= python_monitor1;
	debug_vector(0x2) <= grab_mngr_trig_rdy;
	debug_vector(0x3) <= curr_trig0;
	debug_vector(0x4) <= strobe;
	debug_vector(0x5) <= python_exposure;
	$debug_vector(0x6) \le FOT;$
	$debug_vector(0x7) \le readout;$
	debug_vector(0x8) <= readout_stateD;
	debug_vector(0x9) <= ext_trig;
	debug_vector(0xa) <= REGFILE.ACQ.GRAB_CTRL.GRAB_CMD;
	debug_vector(0xb) <= REGFILE.ACQ.GRAB_CTRL.GRAB_SS;
	debug_vector(0xc)<= grab_mngr_trig;
	debug_vector(0xd) <= grab_mngr_trig_rdy;
	debug_vector(0xe) <= grab_pending;
	debug_vector(0xf) <= grab_active;
	debug_vector(0x10) <= DEC_DATA_EN;
	debug_vector(0x11) <= DEC_SOL;
	$debug_vector(0x12) \le DEC_SOF;$
	$debug_vector(0x13) \le DEC_EOL;$
	$debug_vector(0x14) \le DEC_EOF;$
	debug_vector(0x15) <= DEC_CRC;
	$debug_vector(0x16) \le DEC_TRAIN;$
	debug_vector(0x17) <= fpnprnu_corr_sof;
	debug_vector(0x18) <= fpnprnu_corr_sol;
	debug_vector(0x19) <= fpnprnu_corr_data_val;
	debug_vector(0x1a) <= fpnprnu_corr_eol;
	debug_vector(0x1b) <= fpnprnu_corr_eof;
	debug_vector(0x1c) <= python_ssn_int;
	$debug_vector(0x1d) <= debug_lvds(0);$
	$debug_vector(0x1e) <= debug_lvds(1);$
	$debug_vector(0x1f) <= 'Z';$
Value at Reset:	0x1f

TRIGGER_MISSED

31	30	29	28	27	26	25	24
	Reserved		TRIGGER_MI SSED_RST		Rese	rved	
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	TRIGGER_MISSED_CNTR(15:8)						
7	6	5	4	3	2	1	0
	TRIGGER_MISSED_CNTR(7:0)						

TRIGGER_MISSED_RST	TRIGGER MISSED ReSeT				
WO/AutoClr	This is the trigger missed reset.				
Possible Values:	0x1 Reset the Trigger counter reset				

TRIGGER_MISSED_CNTR (15:0)	TRIGGER MISSED Coul	NTeR
RO	This is the number of trigg	ger missed detected.
Possible Values:	Any Value	

SENSOR_FPS

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
SENSOR_FPS(15:8)								
7	6	5	4	3	2	1	0	
	SENSOR_FPS(7:0)							

SENSOR_FPS (15:0)	SENSOR Frame Per Second
	This is the number of frames received in 1 second interval. This register can count up to 64k frame/s. This counter counts on SO_FOT event.

DEBUG

31	30	29	28	27	26	25	24	
	Reserved		DEBUG_RST _CNTR	Reserved				
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
		Reserved			LED_TEST_0	COLOR(1:0)	LED_TEST	

DEBUG_RST_CNTR						
RW	This register clears the	This register clears the debug cntrs				
Value at Reset:	0x1					
Possible Values:	0x0					
	0x1	Reset counters				

LED_TEST_COLOR (1:0) RW		
Value at Reset:	0x0	
Possible Values:	0x0	The LED is OFF
	0x1	The LED is GREEN
	0x2	The LED is RED
	0x3	The LED is ORANGE

LED_TEST						
RW		This register will put the LED status in test mode. The test mode is controlled by LED_TEST_COLOR				
Value at Reset:	0x0					
Possible Values:	0x0	The LED is in user mode.				
	0x1	The LED is in test mode.				

DEBUG_CNTR1

31	30	29	28	27	26	25	24
	Reserved			SENSOR_FRAME_DURATION(27:24)			
23	22	21	20	19	18	17	16
	SENSOR_FRAME_DURATION(23:16)						
15	14	13	12	11	10	9	8
	SENSOR_FRAME_DURATION(15:8)						
7	6	5	4	3	2	1	0
	SENSOR FRAME DURATION(7:0)						

SENSOR_FRAME_DURATI ON (27:0)		
	up to 4.29 seconds. It can profiler heads.	the last 2 EOF received(in sys clock domain). This register can count be used to predict sensor framerate or to verify sync between 3D setting register regfile.ACQ.DEBUG.DEBUG_RST_CNTR to 0.
Possible Values:	Any Value	Any 28 bits value

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Reserved				EXP_FOT	
15	14	13	12	11	10	9	8	
	Rese	rved			EXP_FOT_	TIME(11:8)		
7	6	5	4	3	2	1	0	
	EXP_FOT_TIME(7:0)							

EXP_FOT	EXPosure durin	EXPosure during FOT				
RW	exposure in the EXP_FOT_TIME	this register, the output exposure and strobe signals will take into account the FOT of the frame. This timing must be programmed in register ME. st be calculated from the OnSemi setting files.				
Value at Reset:	0x1					
Possible Values:	0x0	Disable exposure during FOT in output exposure signal and Strobe				
	0x1 Enable exposure during FOT in output exposure signal and					

EXP_FOT_TIME (11:0)	EXPosure during FOT TIME
RW	This is the time of the exposure during the FOT. This timing must be calculated from the OnSemi setting files.
	From DCF v1.2, for all LVDS modes :
	P5000 & P2000 EXP_FOT=40.666us, program value 0x9ee
	P1300 & P500 & P300 EXP_FOT=27.333us, program value 0x6ac
Value at Reset:	0x9ee

ACQ_SFNC

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved					RELOAD_GR AB_PARAMS			

RELOAD_GRAB_PARAMS RW	This register is not used for the moment. It may be used in the future to reload the exposure time			
Value at Reset:	Dx1			
Possible Values:	0x0			
	0x1			

Section: DATA

Address Range: [0x300 - 0x388]

LUT_CTRL

31	30	29	28	27	26	25	24
LUT_BYPAS S	Reserved	LUT_PALET TE_USE	LUT_PALET TE_W	Reserved		LUT_DAT	CA_W(9:8)
23	22	21	20	19	18	17	16
	LUT_DATA_W(7:0)						
15	14	13	12	11	10	9	8
Reserved		LUT_SEL(2:0)		LUT_WRN	LUT_SS	LUT_A	DD(9:8)
7	6	5	4	3	2	1	0
LUT_ADD(7:0)							

LUT_BYPASS	LUT BYPASS	LUT BYPASS			
RW	When set this register to '1', the LUT logic will not be used, and the 10 bits data will en send to the DMA. This register is used for optical test usage since the Perceptron/N3 have only 10 to 8 bits LUT only. The DMA must be configured in synthesys to be able to transfert 10bpp images.				
Value at Reset:	0x0	0x0			
Possible Values:	0x0 Use LUT logic.				
	0x1 LUT logic bypass.				

LUT_PALETTE_USE	LUT PALETTE to USE			
RW	This register selects the LUT palette to be use in the grab path.			
Value at Reset:	0x0			
Possible Values:	0x0 Palette 0 is used			
	Palette 1 is used			

LUT_PALETTE_W	LUT PALETT	LUT PALETTE to Write		
RW		This register selects the palette to be write into the LUT. This register must be set to 0 when programming the Palette 0 and to 1 when programming the Palette 1.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	0x0 Write Palette 0		
	0x1	Write Palette 1		

LUT_DATA_W (9:0)	LUT DATA to Write		
RW	ata to write in the LUT		
Value at Reset:	0x0		

LUT_SEL (2:0)	LUT SELection	LUT SELection		
RW	LUT programm	nation selector.		
	The Color and	Mono shares the same 4 physical LUT.		
Value at Reset:	0x0			
Possible Values:	0x0	Read or Write to Gamma / Mono0 LUT		
	0x1	Read or write to Blue / Mono1 LUT		
	0x2	Read or write to Green / Mono2 LUT		
	0x3	Read or write to Red / Mono3 LUT		
	0x4	Write ALL LUT with same data.		
	0x5			
	0x6			
	0x7			

LUT_WRN	LUT Write ReadNot			
RW	LUT Write mode			
Value at Reset:	0x0			
Possible Values:	0x0 Read operation			
	0x1	Write operation		

LUT_SS	LUT SnapShot
WO/AutoClr	Start the LUT OPERATION (R/W)

LUT_ADD (9:0)	
RW	
Value at Reset:	0x0

LUT_RB

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved LUT_RB(9:8)				RB(9:8)		
7	6	5	4	3	2	1	0
	LUT_RB(7:0)						

LUT_RB (9:0)	
RO	LUT ReadBack

WB_MULT1

31	30	29	28	27	26	25	24
			WB_MUL	LT_G(15:8)			
23	22	21	20	19	18	17	16
			WB_MUI	LT_G(7:0)			
15	14	13	12	11	10	9	8
			WB_MUL	LT_B(15:8)			
7	6	5	4	3	2	1	0
	WB_MULT_B(7:0)						

WB_MULT_G (15:0)	
RW	
Value at Reset:	0x1000

WB_MULT_B (15:0)	
RW	
Value at Reset:	0x1000

WB_MULT2

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			WB_MUL	LT_R(15:8)			
7	6	5	4	3	2	1	0
			WB_MU	LT_R(7:0)			

WB_MULT_R (15:0)	
RW	
Value at Reset:	0x1000

WB_B_ACC

31	30	29	28	27	26	25	24
Reserved				B_ACC(30:24)			
23	22	21	20	19	18	17	16
			B_ACC	C(23:16)			
15	14	13	12	11	10	9	8
			B_AC	C(15:8)			
7	6	5	4	3	2	1	0
			B_AC	CC(7:0)			

B_ACC (30:0)	
RO	ACQuisition Blue ACCumulator

WB_G_ACC

31	30	29	28	27	26	25	24
			G_ACC	C(31:24)			
23	22	21	20	19	18	17	16
			G_ACC	C(23:16)			
15	14	13	12	11	10	9	8
			G_AC	C(15:8)			
7	6	5	4	3	2	1	0
			G_AC	CC(7:0)			

G_ACC (31:0)	
RO	ACQuisition Green ACCumulator

WB_R_ACC

31	30	29	28	27	26	25	24
Reserved				R_ACC(30:24)			
23	22	21	20	19	18	17	16
			R_ACC	C(23:16)			
15	14	13	12	11	10	9	8
			R_AC	C(15:8)			
7	6	5	4	3	2	1	0
			R_AC	CC(7:0)			

R_ACC (30:0)	
RO	ACQuisition Red ACCumulator

31	30	29	28	27	26	25	24
FPN_73	Rese	erved	FPN_WE		Reserved		FPN_EN
23	22	21	20	19	18	17	16
	Reserved FPN					FPN_SS	
15	14	14 13 12 11 10 9 8					8
	Reserved FPN_ADD(9:8)					DD(9:8)	
7	6 5 4 3 2 1 0						0
	FPN_ADD(7:0)						

FPN_73				
RW	Use [7].[3] fp	Use [7].[3] fpn correction instead old [5].[3].		
	This 7.3 mode	This 7.3 mode is not implemented in the released FPGA.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	Use normal fpn mode 5.3		
	0x1	Use advanced fpn mode 7.3		

FPN_WE	FPN Write Enable	FPN Write Enable			
RW	This register is the o	This register is the coefficient RAM WRITE ENABLE			
Value at Reset:	0x1	0x1			
Possible Values:	0x0	Read operation			
	0x1	Write operation			

FPN_EN	FPN ENable				
RW	This field enables the HW FPN and PRNU correction				
Value at Reset:	0x0				
Possible Values:	0x0 HW correction disable				
	0x1	HW correction enable			

FPN_SS	FPN SnapShot		
WO/AutoClr	This register is the snapshot for read/write to the coefficient RAM.		
Possible Values:	0x0 Nothing		
	0x1	Snapshot	

FPN_ADD (9:0)	FPN ADDress
RW	This register is the address to be write/read in the coefficient RAM. The first 512(144bits) locations are correction factors to not SUBsampled image(palette 0). The second 512 locations(144bits) are correction factors to SUBsampled image(palette 1).
Value at Reset:	0x0

FPN_READ_REG

31	30	29	28	27	26	25	24
Reserved	FPN_	READ_PIX_SE	EL(2:0)		Reserved		FPN_READ_ PRNU(8)
23	22	21	20	19	18	17	16
			FPN_READ	PRNU(7:0)			
15	14	13	12	11	10	9	8
		Reserved			FPN	_READ_FPN((10:8)
7	6	5	4	3	2	1	0
			FPN_REAI	D_FPN(7:0)			

FPN_READ_PIX_SEL (2:0)			
RW	This is the pixel number to be read (0 to 7) in the RAM. Each RAM location contains corrections for 8 pixels per address(FPN_ADD). This field selects the PIXel correction to be readed.		
Value at Reset:	0x0		
Possible Values:	0x0 - 0x7		

FPN_READ_PRNU (8:0)	
RO	This is the PRNU coefficient readed in RAM.

FPN_READ_FPN (10:0)	
RO	This is the FPN coefficient readed in RAM.

Address: section "DATA" base address + 0x040 + (index * 0x4)

31	30	29	28	27	26	25	24
			Reserved				FPN_DATA_ PRNU(8)
23	22	21	20	19	18	17	16
			FPN_DATA	_PRNU(7:0)			
15	14	13	12	11	10	9	8
		Reserved			FPN	_DATA_FPN(10:8)
7	6	5	4	3	2	1	0
			FPN_DATA	A_FPN(7:0)			

FPN_DATA_PRNU (8:0)	FPN DATA PRNU			
RW	This is the PRNU coefficient be written in RAM.			
	PRNU factor is signed 9 bits [0].[00][+/-][8]			
	From the DoubleValue calculated in SW, program this field as:			
	FPN_DATA_PRNU = int(DoubleVal*2048.0)			
	Clip correction to implement in the driver is:			
	if(DoubleVal > (255.0 / 2048.0)) DoubleVal = (255.0 / 2048.0) (0.124511718) if(DoubleVal < -(255.0 / 2048.0)) DoubleVal = -(255.0 / 2048.0) (0.124511718)			
Value at Reset:	0x0			

FPN_DATA_FPN (10:0)	FPN DATA FPN				
RW	This is the FPN coefficient be written in RAM.				
	If FPN 5.3 is implemented(default) factor is signed 9 bits [+/-][5].[3] If FPN 7.3 is implemented(default) factor is signed 11 bits [+/-][7].[3]				
	n 5.3 configuration, from the DoubleValue alculated in SW, program this field as:				
	FPN_DATA_FPN = int(DoubleVal*8.0)				
	Clip correction to implement in the driver is :				
	if(DoubleValue > 255.0/8.0) DoubleValue= 255.0/8.0 (31.875) if(DoubleValue < -255.0/8.0) DoubleValue= -255.0/8.0 (-31.875)				
Value at Reset:	0x0				

FPN_CONTRAST

31	30	29	28	27	26	25	24
	Reserved				CONTRAST	_GAIN(11:8)	
23	22	21	20	19	18	17	16
			CONTRAST	_GAIN(7:0)			
15	14	13	12	11	10	9	8
			Rese	rved			
7	6	5	4	3	2	1	0
			CONTRAST_	OFFSET(7:0)			

CONTRAST_GAIN (11:0)	
RW	This is a digital gain [4].[8] applied after the EXIT_CP3 substractor. This register MUST be set to 1 or greater.
Value at Reset:	0x100

CONTRAST_OFFSET (7:0)	CONTRAST OFFSET			
	This is the constant substracted to the 10 bit pixel FPN and PRNU corrected. The value is a 8 bits integer value [8].[0]. This register is aligned with the LSB of the 10 bit pixel value.			
Value at Reset:	0x0			

FPN_ACC_ADD

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
Rese	erved	FPN_ACC_M ODE_SEL	FPN_ACC_M ODE_EN		Reserved		FPN_ACC_R_ SS
15	14	13	12	11	10	9	8
	Reserved				FPN_ACC_A	ADD(11:8)	
7	6	5	4	3	2	1	0
	FPN_ACC_ADD(7:0)						

FPN_ACC_MODE_SEL					
RW	This register sele accumulators.	ects if the Contrast Gain and Offset is used for compute the pixel			
		If FPN_ACC_MODE_SEL =0 then the module will use CONTRAST_GAIN=1 and CONTRAST_OFFSET=0 for the accumulators.			
	If FPN_ACC_MODE_SEL =1 then the module will use Gain and Offset from registor CONTRAST GAIN and CONTRAST OFFSET.				
Value at Reset:	0x0	0x0			
Possible Values:	0x0	Don't use Contrast Gain and Offset			
	0x1	Use Contrast Gain and Offset			

FPN_ACC_MODE_EN	FPN ACCum	FPN ACCumulator MODE ENable		
RW		This field defines the accumulator mode. When this register is set to '1', the accumulators will start count and no frame will be sent to the host memory.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	0x0 Normal DMA transfert mode		
	0x1	Accumulator mode		

FPN_ACC_R_SS	FPN ACCumulator Read Snapshot
WO/AutoClr	This is the column read accumulator snapshot.

FPN_ACC_ADD (11:0)	FPN ACCumulator ADDress
RW	This is the column accumulator adress to read.
Value at Reset:	0x0

FPN_ACC_DATA

31	30	29	28	27	26	25	24
			Reserved				FPN_ACC_R_ WORKING
23	22	21	20	19	18	17	16
	FPN_ACC_DATA(23:16)						
15	14	13	12	11	10	9	8
	FPN_ACC_DATA(15:8)						
7	6	5	4	3	2	1	0
	FPN_ACC_DATA(7:0)						

FPN_ACC_R_WORKING	FPN ACCumulator Read WORKING			
RO	This field is the working status of the read-to-column accumulator. The data in the field FPN_ACC_DATA will be valid when FPN_ACC_R_WORKING is set to '0'			
Possible Values:	0x0 The data in the field FPN_ACC_DATA is valid			
	0x1	The data in the field FPN_ACC_DATA is invalid		

FPN_ACC_DATA (23:0)	FPN ACCumulator DATA			
RO	This is the column accumulator.			
Possible Values:	Any 24 bits value			

DPC_LIST_CTRL

31	30	29	28	27	26	25	24
dpc_fifo_unde rrun	dpc_fifo_overr un	Reserved	dpc_fifo_reset	Reserved	dpc_firstlast_li ne_rem	dpc_pattern0_ cfg	dpc_enable
23	22	21	20	19	18	17	16
Rese	erved	dpc_list_count(5:0)					
15	14	13	12	11	10	9	8
	Reserved		dpc_list_WRn		Reserved		dpc_list_ss
7	6	5	4	3	2	1	0
Rese	erved	dpc_list_add(5:0)					

dpc_fifo_underrun				
	This is the fifo underrun status of the 2 linebuffers in the dpc macro. Write '1' then '0' to field dpc_FIFO_RST to reset this flag and reset the Fifo logic.			
Possible Values:	0x0 Underrun not detected			
	0x1	Underrun detected		

dpc_fifo_overrun		
RO		verrun status of the 2 linebuffers in the dpc macro. to field dpc_FIFO_RST to reset this flag and reset the Fifo logic.
Possible Values:	0x0	Overrun not detected
	0x1	Overrun detected

dpc_fifo_reset			
RW	Write '1' then '0' to field dpcL_FIFO_RST to reset overrun/underrun flags of the line buffers and reset the Fifo logic.		
	The DPC dual port ram is not SW reset.		
	The fifo in each processing DPC unit is HW reset at each SOF.		
Value at Reset:	0x0		
Possible Values:	0x0 Fifo in normal operation		
	0x1	Fifo in reset State	

dpc_firstlast_line_rem			
RW	corrected. This can be us program two r	When this register is set to 1, the DPC macro will remove the first and last line of the image corrected. This can be usefull if we want to correct the 4 pixels in the corners of the image. The SW can program two more lines in the frame so the DPC macro can have enough pixels to correct the 4 pixel coners.	
Value at Reset:	0x1		
Possible Values:	0x0 Do not remove any lines of the image received		
	0x1	Remove first and last line of the image received	

dpc_pattern0_cfg				
RW	the current pix	This field configures the behabieur of the correction pattern 0x0. If this field is set to 0x0 then the current pixel will not be corrected. If this field is set to 0x1 then the current pixel will be replaced by the value 0x3ff (white pixel)		
Value at Reset:	0x1			
Possible Values:	0x0	0x0 Do not correct current pixel		
	0x1	Replace current pixel by a white pixel (0x3ff)		

dpc_enable				
RW	the dead pixel	Dead Pixel Correction core Enable, when this field is set to 1, the DPC logic will correct all the dead pixels that are listed in the DPC list. The grab must be idle when changing this register.		
Value at Reset:	0x0	0x0		
Possible Values:	0x0	0x0 DPC logic is bypassed		
	0x1	PDC logic is enable		

dpc_list_count (5:0) RW		r of entries in the DPC list. The driver need to set the dcp_list_count in order ge. Up to 63 pixels can be corrected. The value 0 is allowed and when set to corrected.
Value at Reset:	0x0	
Possible Values:	Any Value	Any value from 0 to 63

dpc_list_WRn				
RW	with the dpc_l	This is the Write/ReadN flag. To write to the DPC list set this bit to 1 and start the transaction with the dpc_list_ss field. To read from the DPC list set this bit to 0 and start the transaction with the dpc_list_ss field.		
Value at Reset:	0x0			
Possible Values:	0x0	0x0 Read list operation		
	0x1	Write list operation		

dpc_list_ss			
WO/AutoClr	This is the DPC snapshot. In order to start a write or read transaction the snapsot needs to be writen to '1'. This bit is a auto clear regsiter.		
Possible Values:	Ox0 Do nothing		
	0x1	Start the READ/WRITE transaction	

dpc_list_add (5:0)			
RW	located at address the list can be used	This is the address of the DPC list to be access by the read/write operation. Pixel 0 to correct is located at address b000000. Since the dpc_list_count field is also 6 bit wide, address 0 to 62 of the list can be used. Address 0x3f cannot be used. This DPC location will not be corrected.	
Value at Reset:	0x0	be used. This BT e feetition will not be corrected.	
Possible Values:	0x0 - 0x3E	Valid DPC adress	

DPC_LIST_DATA

31	30	29	28	27	26	25	24
			dpc_list_corr	_pattern(7:0)			
23	22	21	20	19	18	17	16
			dpc_list_co	orr_y(11:4)			
15	14	13	12	11	10	9	8
	dpc_list_corr_y(3:0) dpc_list_corr_x(11:8)						
7	6	5	4	3	2	1	0
			dpc_list_c	orr_x(7:0)			

dpc_list_corr_pattern (7:0)	
RW	This is pattern of the pixel to be corrected when executing a write to the DPC list.
	2 bit correction: 34, 17, 136, 68 4 bit correction: 170, 153, 51, 204, 85, 102 6 bit correction: 187,238 (mapped to 170), 119,221 (mapped to 85) 8 bit correction: 255 Set pixel to 255 (white), debug: 0
Value at Reset:	0x0

dpc_list_corr_y (11:0)	
RW	This is Y location of the pixel to be corrected when executing a write to the DPC list.
Value at Reset:	0x0

dpc_list_corr_x (11:0)	
RW	This is X location of the pixel to be corrected when executing a write to the DPC list.
Value at Reset:	0x0

DPC_LIST_DATA_RD

31	30	29	28	27	26	25	24		
dpc_list_corr_pattern(7:0)									
23	22	21	20	19	18	17	16		
			dpc_list_co	orr_y(11:4)					
15	14	13	12	11	10	9	8		
	dpc_list_corr_y(3:0) dpc_list_corr_x(11:8)								
7	6	5	4	3	2	1	0		
	dpc_list_corr_x(7:0)								

dpc_list_corr_pattern (7:0)	
RO	This is pattern of the pixel read from DPC list.
	2 Bit correction: 34, 17, 136, 68 4 Bit correction: 170, 153, 51, 204, 85, 102 6 bit correction: 187,238 (mapped to 170), 119,221 (mapped to 85) 8 bit correction: 255 Set pixel to 255 (white), debug: 0

dpc_list_corr_y (11:0)	
RO	This is Y location of the pixel read from the DPC list.

dpc_list_corr_x (11:0)	
RO	This is X location of the pixel read from the DPC list.

Address Range: [0x400 - 0x428]

CTRL

Address: section "HISPI" base address + 0x000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Res	erved					
7	6	5	4	3	2	1	0		
	Rese	rved		RESET_IDEL	CALIBRATE	CLR	ENABLE		
				AYCTRL	_SERDES				

RESET_IDELAYCTRL Reset the Xilinx macro IDELAYCTRL								
RW								
Value at Reset:	0x0	0x0						
Possible Values:	0x0 No effect							
	0x1	Reset IDELAYCTRL						

CALIBRATE_SERDES Initiate the SERDES TAP calibration						
WO/AutoClr						
Possible Values:	0x0	No effect				
	0x1	Initiate the calibration				

CLR	
RW	
Value at Reset:	0x0

ENABLE	
RW	
Value at Reset:	0x0

IDELAYCTRL_STATUS

Address: section "HISPI" base address + 0x004

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Reserved									

PLL_LOCKED	IDELAYCTR	IDELAYCTRL PLL locked						
RO								
Possible Values:	0x0	IDELAYCTRL PLL unlocked						
	0x1	IDELAYCTRL PLL locked						

LANE_DECODER_STATUS (5:0)

Address: section "HISPI" base address + 0x008 + (index * 0x4)

21	20	20	20	27	26	25	24
31	30	29	28	27 erved	26	25	24
23	22	21	20	19	18	17	16
23		21		erved	10	17	10
15	14	13	12	11	10	9	8
	••		Reserved		10		FIFO_UNDE RRUN
7	6	5	4	3	2	1	0
FIFO_OVERR UN	CALIBRARTI ON_ERROR	CALIBRATIO N_ACTIVE		CALIBRA	TION_TAP_VA	ALUE(4:0)	
FIFO_UNDERI	RUN						
Value at Reset:		0x0					
FIFO_OVERRIAN RW Value at Reset:							
CALIBRARTIO RW	ON_ERROR						
Value at Reset:		0x0					
CALIBRATION_ACTIVE RO							
CALIBRATION E (4:0)	N_TAP_VALU						
RO							

LANE_PACKER_STATUS (2:0)

Address: section "HISPI" base address + 0x020 + (index * 0x4)

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Reserved				FIFO_UNDE RRUN
7	6	5	4	3	2	1	0
FIFO_OVERR UN				Reserved			
FIFO_UNDERRUN							
$ _{RW}$							

FIFO_OVERRUN	
RW	
Value at Reset:	0x0

Value at Reset: 0x0