Table 5.1: Publication list of probably most helpful items from initial literature review.

Topic/Focus	Reference	Title
Strategies	s to Enhance Trans	slation Quality in Low-Resource Situations
Back- Translation	(Sennrich, Haddow, and Birch, 2016)	Improving Neural Machine Translation Models with Monolingual Data
	(Edunov et al., 2018)	Understanding Back-Translation at Scale
	(Dou, Anastasopoulos, and Neubig, 2020)	Iterative Back-Translation, using TF-IDF to select relevant sentences) Dynamic Data Selection and Weighting for Iterative Back-Translation
Joint Training	(Zhang et al., 2018)	Joint Training for Neural Machine Translation Models with Monolingual Data
Adapters	(Bapna and Firat, 2019)	Simple, Scalable Adaptation for Neural Machine Translation
	(Pfeiffer et al., 2020)	MAD-X: An Adapter-Based Framework for Multi- Task Cross-Lingual Transfer ⁴
Fine- Tuning Adapters	(Ansell et al., 2023a)	Composable Sparse Fine-Tuning for Cross-Lingual Transfer with a variant of the Lottery Ticket Hy- pothesis ⁵
	(Cooper Stickland, Li, and Ghazvininejad, 2021)	Recipes for Adapting Pre-trained Monolingual and Multilingual Models to Machine Translation
Denoising Adapters	(Üstün et al., 2021)	Multilingual Unsupervised Neural Machine Translation with Denoising Adapters
Cross- Lingual Transfer	(Ansell et al., 2023b)	Distilling Efficient Language-Specific Models for Cross-Lingual Transfer
Sim. to Üstün	(Garcia et al., 2021)	Harnessing Multilinuality in Unsupervised Machine Translation for Rare Languages
Zero- Shot	(Lauscher et al., 2020) (Parović et al., 2022)	From Zero to Hero: On the Limitations of Zero-Shot Language Transfer with Multilingual Transformers BAD-X: Bilingual Adapters Improve Zero-Shot Cross-Lingual Transfer ⁶
Compressed Models	(Ansell et al., 2023b)	Distilling Efficient Language-Specific Models for Cross-Lingual Transfer
Massively Multilingual	(Team et al., 2022)	No Language Left Behind: Scaling Human-Centered Machine Translation ⁷⁸
Linguistically- grounded	(Casas et al., 2021)	Linguistic knowledge-based vocabularies for Neural Machine Translation
Transformer	(Vaswani et al., 2017)	Attention Is All You Need
		Continued on next page

⁴https://adapterhub.ml/

⁵https://github.com/cambridgeltl/composable-sft
6https://github.com/parovicm/BADX
7https://github.com/facebookresearch/fairseq/tree/nllb

 $^{^{8} \}verb|https://huggingface.co/docs/transformers/model_doc/nllb|$

Table 5.1 – continued from previous page

Topic/Focus	Reference	Title
Neural	(Bandyopadhyay,	Factored Neural Machine Translation on Low Re-
Machine		
	2023)	source Languages in the COVID-19 crisis
Translation	/I/ 1 + D	NT 1 1 1 C 1
Monolingual	(Karakanta, De-	Neural machine translation for low-resource lan-
Data	hdari, and Van	guages without parallel corpora
	Genabith, 2018)	
	(Reimers and	Making Monolingual Sentence Embeddings Multilin-
	Gurevych, 2020)	gual using Knowledge Distillation ⁹
	(de Vries et al.,	Adapting Monolingual Models: Data can be Scarce
	2021)	when Language Similarity is High
	Synthetic	c Text Data Generation
Script Nor-	(Ahmadi and	Script Normalization for Unconventional Writing of
malization	Anastasopoulos,	Under-Resourced Languages in Bilingual Communi-
	2023)	$ties^{10}$
Lexical Nor-	(Dekker and van	Synthetic Data for English Lexical Normalization:
malization	der Goot, 2020)	How close Can We Get to Manually Annotated Data?
Text Normal-	(Lusito, Ferrante,	Text normalization for endangered languages: the
ization	and Maillard,	case of Ligurian
	2022)	
Grammatical	(Foster and An-	GenERRate: Generating Errors for Use in Grammat-
Err. Det.	dersen, 2009)	ical Error Detection
Word	(Doval, Vilares,	Towards robust word embeddings for noisy texts
Embeddings	and Gómez-	
	Rodríguez, 2020)	
	(Malykh, Lo-	Robust Word Vectors: Context-Informed Embed-
	gacheva, and	dings for Noisy Texts
	Khakhulin, 2018)	
Neural	(Bogoychev and	Domain, Translationese and Noise in Synthetic Data
Machine	Sennrich, 2020)	for Neural Machine Translation
Translation	Semmon, 2020)	
Artificial	(Ngo et al., 2022)	An Efficient Method for Generating Synthetic Data
translation	(1180 00 al., 2022)	for Low-Resource Machine Translation
units		for how resource machine fransianon
Swapping	(Artetxe et al.,	Unsupervised Neural Machine Translation
Swapping	2018)	Chapervised reduct machine translation
Dropping	(Xia et al., 2019)	Generalized Data Augmentation for Low-Resource
Probbing	(Ala 50 al., 2019)	Translation Translation
Replacing	(Gao et al., 2019)	Soft Contextual Data Augmentation for Neural Ma-
replacing	(Gao et al., 2019)	chine Translation
Dononder	(Via at al 9017)	
Dependency	(Xie et al., 2017)	Data Noising as Smoothing in Neural Network Lan-
Parsing		guage Models
Reversing sentences	(Duan et al., 2020)	Syntax-aware Data Augmentation for Neural Ma-
SCHOOLICES	(12 (121)	chine Translation
		Continued on next page
<u> </u>		Continued on next page

 $^{^{9}} https://github.com/UKPLab/sentence-transformers \\ ^{10} https://github.com/sinaahmadi/ScriptNormalization$

Table 5.1 – continued from previous page

Table 5.1 – continued from previous page					
Topic/Focus	Reference	Title			
Mix-Source	(Sánchez-	Rethinking Data Augmentation for Low-Resource			
	Cartagena et	Neural Machine Translation: A Multi-Task Learn-			
	al., 2021)	ing Approach			
Copy source	(Ha, Niehues, and	Toward Multilingual Neural Machine Translation			
sentences	Waibel, 2016)	with Universal Encoder and Decoder			
Zero-Shot	(Ye et al., 2022)	ZEROGEN: Efficient Zero-shot Learning via Dataset			
		Generation			
	Bilingual Lexicon Induction				
BLI and	(Artemova and	Low-resource Bilingual Dialect Lexicon Induction			
Large	Plank, 2023)	with Large Language Models			
Language	(Li, Korhonen,	On Bilingual Lexicon Induction with Large Language			
Models	and Vulić, 2023)	Models			
Low-Resource	(Waldendorf et al.,	Improving Translation of Out Of Vocabulary Words			
Bilingual	2022)	using Bilingual Lexicon Induction in Low-Resource			
Lexicon Induction	,	Machine Translation			
mauction	(Bafna et al.,	A Simple Method for Unsupervised Bilingual Lexi-			
	2023)	con Induction for Data-Imbalanced, Closely Related			
	,	Language Pairs			
Morphological		0 0			
Generalization	(Czarnowska et	Don't Forget the Long Tail! A Comprehensive Anal-			
	al., 2019)	ysis of Morphological Generalization in Bilingual			
	,	Lexicon Induction			
Cross-Lingual	(Vulić and Moens,	Cross-Lingual Semantic Similarity of Words as the			
Word	2013)	Similarity of Their Semantic Word Responses			
Embeddings	(Vulić and Moens,	Bilingual Word Embeddings from Non-Parallel			
	2015)	Document-Aligned Data Applied to Bilingual Lexi-			
	,	con Induction			
	(Gouws, Bengio,	BilBOWA: Fast Bilingual Distributed Representa-			
	and Corrado,	tions without Word Alignments			
	2016)	G G			
Work o	n Linguistic Featu	res, Dialectal Variations and Translation			
Linguistic					
Features	(Baroni, 2019)	Linguistic generalization and compositionality in			
		modern artificial neural networks			
Dialect	(Demszky et al.,	Learning to Recognize Dialect Features			
Features	2021)				
	(Liu, Held, and	DADA: Dialect Adaptation via Dynamic Aggrega-			
	Yang, 2023)	tion of Linguistic Rules			
	(Ziems et al.,	VALUE: Understanding Dialect Disparity in NLU ¹¹			
Benchmark	2022)				
	(Ziems et al.,	Multi-VALUE: A Framework for Cross-Dialectal En-			
	2023)	glish NLP ¹²			
	(Riley et al., 2023)	FRMT: A Benchmark for Few-Shot Region-Aware			
	,	Machine Translation			
	ı	Continued on next page			
		Pwo			

¹¹https://github.com/salt-nlp/value 12http://value-nlp.org/

Table 5.1 – continued from previous page

Topic/Focus	Reference	Title
Dialect-	(Held, Ziems, and	TADA: Task-Agnostic Dialect Adapters for English ¹³
Adapters	Yang, 2023)	
_	A	bout Evaluation
Translationese	(Bizzoni et al.,	How Human is Machine Translationese? Comparing
	2020)	Human and Machine Translations of Text and Speech
Script		
Identification	(Ahmadi, Agar-	PALI: A Language Identification Benchmark for
	wal, and Anasta-	Perso-Arabic Scripts
The state of	sopoulos, 2023)	DDDDG D I I I I I I I I I I I I I I I I
Text Genera-	(Zhang* et al.,	BERTScore: Evaluating Text Generation with
tion Language	2019)	BERT ¹⁴
Understanding	(Wang et al.,	GLUE: A Multi-Task Benchmark and Analysis Plat-
Chacistananig	2018)	form for Natural Language Understanding 15
Transfer	(Bugliarello et al.,	IGLUE: A Benchmark for Transfer Learning across
Learning	2022b)	Modalities, Tasks, and Languages ¹⁶
Cross-lingual	(Hu et al., 2020)	XTREME: A Massively Multilingual Multi-task
Generaliza-	()	Benchmark for Evaluating Cross-lingual Generaliza-
tion		$tion^{1718}$
About	(77.1	D 1 1 D 11 1 D 1 1 1 1 1 1 1 1 1 1 1 1
Benchmarking	(Kiela et al., 2021)	Dynabench: Rethinking Benchmarking in NLP ¹⁹
	(Papineni et al.,	BLEU: a method for automatic evaluation of machine
	2002)	translation ²⁰
Machine	(Post, 2018) (Lavie and Agar-	A Call for Clarity in Reporting BLEU Scores METEOR: An Automatic Metric for MT Evaluation
Translation	(Lavie and Agar- wal, 2007)	
	wai, 2007)	with High Levels of Correlation with Human Judg- ments ²¹
	(Rei et al., 2020)	COMET: A Neural Framework for MT Evaluation ²²
	(Popović, 2015)	chrF: character n-gram F-score for automatic MT
	(1 opovie, 2010)	evaluation ²³
	(Snover et al.,	A Study of Translation Edit Rate with Targeted Hu-
	2006)	man Annotation ²⁴
	(Alam, Ahmadi,	CoDET: A Benchmark for Contrastive Dialectal
	and Anastasopou-	Evaluation of Machine Translation
	los, 2023)	
	(Ruder et al.,	XTREME-R: Towards More Chellenging and Nu-
	2021)	anced Multilingual Evaluation

¹³Soon: https://github.com/boschresearch/ACL23-TADA

¹⁴https://github.com/Tiiiger/bert_score

¹⁵https://gluebenchmark.com/

 $^{^{16} \}verb|https://github.com/e-bug/iglue|$

 $^{^{17} \}verb|https://sites.research.google/xtreme|$

 $^{^{18} \}mathtt{https://github.com/google-research/xtreme}$

¹⁹https://dynabench.org/

²⁰https://github.com/bangoc123/BLEU

²¹http://www.cs.cmu.edu/~alavie/METEOR/

²²https://github.com/Unbabel/COMET

²³https://github.com/m-popovic/chrF 24https://github.com/jhclark/tercom