1. Evaluate $\oint_C \vec{a} \cdot d\vec{r}$ where C is given by a single loop of the curve $(x-2)^2 + (y-3)^2 = R^2$, where $R \in \mathbb{R}$, and $\vec{a} = \hat{\mathbf{1}}(x^2 + yz^2) + \hat{\mathbf{j}}(2x - y^3)$.

We could parameterize the curve C by $\hat{\mathbf{i}}(2 + R\cos(t)) + \hat{\mathbf{j}}(3 + R\sin(t))$ for $t \in [0, 2\pi]$. This will make the integral annoying to compute so instead we will use Stokes' theorem. Let D be the closed disc which C is the boundary of. Then

$$\oint_{C} \vec{a} \cdot d\vec{r} = \int_{D} (\vec{\nabla} \times \vec{a}) \cdot \hat{n} \, dA$$

$$= \int_{D} \hat{\mathbf{k}} (2 - z^{2}) \cdot \hat{n} \, dA$$

$$= 2 \int_{D} 1 \, dA$$

$$= 2\pi R^{2}.$$

2. Prove that

$$\delta(ax) = \frac{1}{a}\delta(x)$$

$$\delta(g(x)) = \frac{\delta(x)}{|g'(0)|} \quad \text{if } g(0) = 0 \text{ and } g(x) \neq 0 \text{ otherwise}$$

$$\delta(g(x)) = \sum_{i} \frac{\delta(x - a_i)}{|g'(a_i)|} \quad \text{where } g(x) \text{ is a general function and } g(a_i) = 0$$

Proof. To see the first equality, we know that both integrals over \mathbb{R} must be 1. So

$$1 = \int_{-\infty}^{\infty} \delta(ax) \, \mathrm{d}x \stackrel{ax \to x}{=} \int_{-\infty}^{\infty} a^{-1} \delta(x) \, \mathrm{d}x = 1,$$

and because delta functions are everywhere 0 except for the origin, the integrands are identical. Hence $\delta(ax) = a^{-1}\delta(x)$.

Similarly, see that

$$1 = \int_{-\infty}^{\infty} \delta(g(x)) dx \stackrel{g(x) \to x}{=} \int_{g'(x)dx \to dx}^{g(\infty)} \frac{\delta(x)}{g'(g^{-1}(x))} dx$$
$$= \int_{\min\{g(\infty), g(-\infty)\}}^{\max\{g(\infty), g(-\infty)\}} \frac{\delta(x)}{|g'(g^{-1}(x))|} dx$$
$$= \frac{1}{|g'(g^{-1}(0))|} = \frac{1}{|g'(0)|},$$

because g(x) = 0 if and only if x = 0 implies that one of $g(\infty), g(-\infty)$ will be positive and the other will be negative. Therefore at x = 0 the sign of the derivative g'(0) is determined entirely by whether $g(\infty)$ was less than $g(-\infty)$ (or vice versa). That is to say, if g "increased" then the derivative g'(0) is positive, and otherwise, negative. Therefore the integral is simplified as above, into the convolution of the delta function with the reciprocal of |g'(0)|, and the result follows.

Then since $1 = \int_{-\infty}^{\infty} \delta(x) dx$, and delta functions agree everywhere except zero, we must have that

$$\delta(g(x)) = \frac{\delta(x)}{|g'(0)|},$$

which is the second equality.

The third equality follows as an extension of the second equality. Fix $n \in \mathbb{N}$, and let $\{a_1, a_2, \ldots, a_n\}$ be zeroes of g, with $a_1 < a_2 < \cdots < a_n$. Furthermore, let $a_0 < a_1$, and $a_{n+1} > a_n$ (they are not zeroes but we need them in the following formulation). Using the previous result, where instead of the zeroes occurring at x = 0, they occur on $x = a_i$, we have

$$n = \int_{-\infty}^{\infty} \delta(g(x)) dx = \sum_{i} \int_{\frac{1}{2}(a_{i-1} + a_{i})}^{\frac{1}{2}(a_{i+1} + a_{i+1})} \delta(g(x - a_{i})) dx$$
$$= \sum_{i} \frac{1}{|g'(a_{i})|}.$$

Similarly, we can attach on each numerator a delta function (each shifted by a_i so that each term is still equal to 1). Then we may equate the integrand $\delta(g(x))$ to this new summation. We find that

$$\delta(g(x)) = \sum_{i} \frac{\delta(x - a_i)}{|g'(a_i)|},$$

and so we have proven all three parts.