## Banco de Dados

Prof. Anthony Ferreira La Marca anthony@computacao.cua.ufmt.br

# Abstração de Dados

### √ Níveis de abstração: grande vantagem dos SGBD

- Nível físico: mais baixo descreve como os dados são armazenados
- Nível conceitual ou lógico: quais dados são armazenados e quais relacionamentos entre eles.
- Nível visão: se expõe apenas parte do banco de dados.



## Modelos de Dados

✓ Coleção de ferramentas conceituais para descrição dos dados, relacionamento entre os dados, semântica e restrições dos dados.

### √ Três grupos:

- Modelos lógicos baseados em objetos
- Modelos lógicos baseados em registros
- Modelos de dados físicos

### Modelo de Dados Físico

- Voltados a especialistas
- Detalhes de como os dados são armazenados fisicamente no computador
- Informações como
  - Formatos dos registros
  - Ordenações de registros
  - Caminhos de acesso

# Modelos Lógicos Baseados em Registros

- ✓ Também usados na descrição dos dados nos níveis conceitual e visão.
- √ Usados para especificar a estrutura lógica do BD.
- ✓ BD estruturado através de registros de formato fixo de todos os tipos
- ✓ Cada registro define número fixo de campos (atributos), e cada campo possui tamanho fixo (simplifica a implementação do BD no nível físico)
  - >modelo relacional
  - modelo de rede
  - modelo hierárquico

# Modelos Lógicos Baseados em Registros

- Dificuldade na abstração dos dados
- Dificuldade na independência dos dados
- Ofereciam interface apenas na linguagem de programação (Exceção o modelo Relacional)
- Novas consultas e transações se tornavam demoradas e caras
- Dificuldade em separar o armazenamento físico de sua representação conceitual
- Implementados em computadores caros e grandes
- Década 60 até 80

## Modelo Hierárquico



## Modelo de Redes



### Modelo de Redes

## Exemplo



### **Problemas**

- Separar a parte conceitual do Físico
- Abstração de dados
- Independência entre dados e programas
- Flexibilidade para novas consultas e transações
- Reorganizar o BD devido a mudanças nos requisitos da aplicação
- Interface apenas com a Linguagem de Programação

### Modelo Relacional

- Separar o armazenamento físico de sua representação conceitual
- Fornecer uma base matemática para representação e consultas
- Inserção de linguagens de consulta de alto nível, alternativa às LP
- Separa a Linguagem de definição da de manipulação

## Problemas Resolvidos

- Flexibilidade
- Abstração de Dados
- Independência dos Dados

# Exemplo Modelo Relacional

#### **ALUNO**

| Nome  | Numero_aluno | Tipo_aluno | Curso |
|-------|--------------|------------|-------|
| Silva | 17           | 1          | cc    |
| Braga | 8            | 2          | CC    |

#### DISCIPLINA

| Nome_<br>disciplina                | Numero_<br>disciplina | Creditos | Departamento |
|------------------------------------|-----------------------|----------|--------------|
| Introd. à ciência<br>da computação | CC1310                | 4        | cc           |
| Estruturas de dados                | CC3320                | 4        | cc           |
| Matemática<br>discreta             | MAT2410               | 3        | MAT          |
| Banco de dados                     | CC3380                | 3        | CC           |

### PRE\_REQUISITO

| Numero_disciplina | Numero_pre_requisito |
|-------------------|----------------------|
| CC3380            | CC3320               |
| CC3380            | MAT2410              |
| CC3320            | CC1310               |

#### TURMA

| ldentificacao_<br>turma | Numero_<br>disciplina | Semestre | Ano | Professor |
|-------------------------|-----------------------|----------|-----|-----------|
| 85                      | MAT2410               | Segundo  | 07  | Kleber    |
| 92                      | CC1310                | Segundo  | 07  | Anderson  |
| 102                     | CC3320                | Primeiro | 08  | Carlos    |
| 112                     | MAT2410               | Segundo  | 08  | Chang     |
| 119                     | CC1310                | Segundo  | 08  | Anderson  |
| 135                     | CC3380                | Segundo  | 08  | Santos    |

#### HISTORICO\_ESCOLAR

| Numero_aluno | Identificacao_turma | Nota |
|--------------|---------------------|------|
| 17           | 112                 | В    |
| 17           | 119                 | С    |
| 8            | 85                  | Α    |
| 8            | 92                  | A    |
| 8            | 102                 | В    |
| 8            | 135                 | Α    |

### **BDOOs**

- Surgimentos das LPs O.O
- Necessidade de armazenamento e compartilhamento de objetos complexos e estruturados
- Inicialmento considerado concorrente do relacional
- No entanto, devido a sua complexidade e falta de padrão
- Agora, usados principalmente em aplicações especializadas

### Banco de Dados XML

- Devido a popularidade da Web e ao surgimento do e-commerce em 1990
- Aumento drastico do intercâmbio de dados
- Necessidade do XML
- Pensando em agilizar esse intercâmbio
  - SGBDXML

## Banco de Dados NoSQL

- São BD não relacionais
- Úteis para receberem grande volume de dados de fontes diferentes
  - Todos esses dados díspares não se encaixam perfeitamente no modelo relacional
- Armazenam os dados em esquemas flexíveis que escalam facilmente
- Vantagens
  - Flexibilidade
  - Escalabilidade
  - Alto desempenho
  - Altamente funcional
- Usam uma variedade de modelos de dados para gerenciar os dados
  - O modelo mais popular é o JSON

## Banco de Dados NoSQL - Tipos

### BD de chave-valor

- Armazena os dados como um conjunto de pares de chavevalor
- A chave funciona como um identificador exclusivo
- Chaves e valores podem ser qualquer coisa, desde objetos simples até compostos complexos
- Usado em jogos, tecnologia de publicidade, IoT

### BD de Documentos

- O mesmo formato do modelo de documento que os desenvolvedores utilizam no código da aplicação
- Armazenam como objetos JSON
- Funciona bem com catálogos, perfis de usuário e sistemas de gerenciamento de conteúdo, onde cada documento evolui com o tempo

## Banco de Dados NoSQL - Tipos

### BD de Grafos

- Usam nós para armazenar entidade de dados
- Bordas para armazenar relacionamento entre as entidades
- Borda: sempre tem um nó inicial, um final, um tipo e uma direção
- Usados para redes sociais, mecanismos de recomendação, detectação de fraudes e gráficos de conhecimento

## Quando não usar SGBD

- Evitar custos adicionais
  - Alto investimento em hardware, software e mão de obra
  - Esforço adicional para garantir segurança, controle de concorrência, recuperação, backups e integridade
- Desejável usar arquivos comuns
  - BD simples e bem definidos, com poucas mudanças
  - Levantamento de requisitos rigorosos
  - Nenhum acesso de múltiplos usuários aos dados
  - Sistemas embarcados

## Quando não usar SGBD

- Aplicações específicas
- SGBD de uso geral não é conveniente
- Exemplos
  - CAD
  - Sistema SIG
- SGBD de uso geral são inadequados a estes fins