ESD ACCESSION LIST (

XRRI Call No. 8/832

Copy No. / of 2 cys.

ESD-TR-74-312

MTR-2859

EXPERIMENTS WITH THE BURROUGHS B 3500 COMPUTER SYSTEM USING A SYNTHETIC WORKLOAD

K. Sreenivasan

J. E. Esposito

JANUARY 1975

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Approved for public release; distribution unlimited.

Project No. 572S
Prepared by
THE MITRE CORPORATION
Bedford, Massachusetts
Contract No. F19628-73-C-0001

BEST AVAILABLE COPY

A 24004804

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

THOMAS V. REILLY, TSgt, USAF

Thomas A Recely

Field Support Division

WILLIAM J. LETENDRE

Field Support Division

FOR THE COMMANDER

ROBERT W. O'KEEFE, Colonel, USAF

Director, Information Systems Technology Applications Office

Deputy for Command and Management Systems

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
ESD-TR-74-312	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
EXPERIMENTS WITH THE BURROUG COMPUTER SYSTEM USING A SYNTI		5. TYPE OF REPORT & PERIOD COVERED 6. PERFORMING ORG. REPORT NUMBER MTR-2859
I ANTHORY		
K. Sreenivasan		8. CONTRACT OR GRANT NUMBER(5)
J.E. Esposito		F19628-73-C-0001
PERFORMING ORGANIZATION NAME AND ADDRESS The MITRE Corporation Box 208		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Project No. 572S
Bedford, Mass. 01730		
Deputy for Command and Management	Systems	JANUARY 1975
Electronic Systems Division, A. F.S.		13. NUMBER OF PAGES
L. G. Hanscom Field, Bedford, Mass	3. 01730	48
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	UNCLASSIFIED
		15a DECLASSIFICATION DOWNGRADING SCHEDULE
16 DISTRIBUTION STATEMENT (of this Report)		
17. DISTRIBUTION STATEMENT (of the abstract entered	ín Block 20, il dill e rent fro	m Raport)
8 SUPPLEMENTARY NOTES		
9. KEY WORDS (Continue on reverse side if necessery an	d identify by block number)	
ACCOUNTING DATA		
COMPUTER PERFORMANCE		
HARDWARE MONITOR		
SYNTHETIC WORK LOAD		
An application of synthetic workloads cessing, multiprogrammed, real-mer controlled experiments with a Burroug ment using a testworkload are present the joint probability distribution of the	in the evaluation on mory computer sysghs B 3500 comput	stems is described. Results of ter system in a dedicated environ

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
20. (Cont.)
accounting data, collected by LOGGER during the controlled experiments with the synthetic workload, are used to determine the utilization of the processor and the I/O channel. These utilization values compare favorably with those measured by a DYNAPROBE 7900 hardware monitor.
•

TABLE OF CONTENTS

				Page
LIST	OF	ILLUSTRATIONS		2
LIST	OF	TABLES		2
SECTI	ON	I	INTRODUCTION	4
SECT	ON	II	CONSTRUCTION OF TEST WORKLOAD GENERAL DESCRIPTION PREPROCESSING OF SYSTEM LOG FILE DATA LOGGER Data Data Structure ACCESSABILITY COLLECTION OF JOB-ORIENTED DATA Detailed Format Method WORKLOAD CHARACTERISTICS TEST WORKLOAD CHARACTERISTICS SYNTHETIC WORKLOAD CALIBRATION AND INVERSION CLOSURE	6 8 8 8 9 12 12 12 12 12 12 12 21 21 21 25
SECTI	ON	III	EXPERIMENTS WITH THE TEST WORKLOAD PURPOSE EXPERIMENTAL RESULTS HARDWARE MONITORING	29 29 29 34
SECTI	ON	IV	SUMMARY	38
APPEN	MDIX	K I	CALCULATION OF THE RESOURCE UTILIZATION	40
REFE	RENC	CES		46

LIST OF ILLUSTRATIONS

Figure Number		Page
1	File Close and Open Records	10
2	End of Job and Beginning of Job Records	11
3	Job Summary Record Used in Workload Characterization	13
4	B 3500 Hardware Configuration	31
5	Variation of the Degree of Multiprogramming During Experiment 4	33

LIST OF TABLES

Table Number		Page
I	Typical B 3500 Job Summary Records (Fixed portion only)	14
II	Histogram of Processor Time	16
III	Characteristics of the Test Workload	20
IV	Joint Probability Distribution of the Real Workload	22
V	Experimental Results Used in Calculating the Synthetic Program	26
VI	Overall Summary of the Experimental Results	35
VII	DYNAPROBE Hardware Monitor Reduction Output	37

LIST OF TABLES (Continued)

Table Number		Page
VIII	Comparison of the Processor Utilization Values	41
IX	Comparison of the Channel Utilization	45

SECTION I

INTRODUCTION

The performance of computer systems is usually evaluated for the purposes of determining its present value, methods of improving it and predicting the effects of changes in either the workload or the system. One method of studying these factors is to conduct experiments with an existing system using a test workload. This report describes the results of and experiences from an experimental investigation with a Burroughs B 3500 computer system at ESD, Hanscom Air Force Base.

In order to conduct these experiments there is a need for a stable, reproducible and flexible test workload that imitates the real workload with reasonable fidelity but in an abbreviated form. It is necessary that the test workload be stable and reproducible so that the experimental results are interpreted correctly; the test workload be flexible so that the characteristics of the test workload may be varied; and the test workload be a representative model of the real workload so that valid conclusions may be drawn from its use. All these requirements can be fulfilled by using synthetic programs in the test workload.

The test workload used in the experiments is constructed by matching the joint probability density for the selected workload characteristics of the real workload with those of the test workload. The selected characteristics are the processor time, the I/O activities to disk, the number of files and the amount of core used by each job. These characteristics are determined from the LOGGER accounting data maintained by the Master Control Program (MCP-V) of the Burroughs B 3500 system. The details of the various types of records collected by LOGGER are studied and special conversion

packages are implemented to create a job summary record for every job processed. These summary records are used to determine the test workload characteristics.

In these experiments the utilization of the processor and the channel is measured using a DYNAPROBE 7900* hardware monitor. These utilization values are also calculated using the LOGGER data. The two sets of values compare favorably. This is a significant finding of this investigation. The utilization values of the system resources are essential in the evaluation of the computer performance. This study indicates that the accounting data (LOGGER) provides a ready and economical source for determining the resource utilization. A system manager can conveniently assess the system performance by periodic processing of the accounting data to determine the resource utilization.

The test workload is only a model of the real workload and is constructed by striking a compromise between the needs of representativeness and physical constraints such as the processor time used. Such a compromise necessarily renders the synthetic workload not completely representative of all the features of the real workload. This is indeed the case in our study where the test workload is constructed using only four of the many characteristics recorded by the accounting data. The tape I/O activities are not represented because it was decided not to consider the human factors involved in the tape handling. Special measurements have to be made to include the tape I/O activities in the test workload. These measurements relate to the method of handling tapes.

The construction of the test workload is outlined in Section II. Section III describes the experiments. The report is summarized in Section IV and the method of calculating the resource utilization is described in the Appendix.

^{*}Comress, Incorporated.

SECTION II

CONSTRUCTION OF TEST WORKLOAD

GENERAL DESCRIPTION

A workload is defined as the collection of all the individual jobs that are processed by a computer system during a specified period of time. The computer system can be considered as a collection of resources upon which the workload places certain demands. The magnitude of these demands can be viewed as the characteristic variables of the real workload. A job, such as a compilation, matrix inversion, or sort-merge can be described by a set of these variables whose magnitudes will vary from one type of job to another, and from one computer system to another.

In this method of characterizing the workload it is assumed that since the system does not recognize the type of job, two jobs reflecting the same value for the characteristic variables are treated identically by the operating system. This assumption is reasonable since the operating system classifies jobs on the basis of the demands they place on the system resources.

Many computer installations maintain a system accounting package that, for charging purposes, gathers information about the use of various system resources. This information provides a ready source of data from which many of the workload characteristics can be derived. To determine the characteristics not available from the accounting data, hardware and software monitors must be used.

In many installations a significant part of the I/O activities may be directed to tape. This was the case in this study where the workload of the B 3500 (ESD, Hanscom Air Force Base) was studied. In such cases the accounting data seldom record the details of the I/O activities to tape. Examples of these details are: number of tape mounts

and dismounts, time per mount, number of jobs requesting the same tape drive, and forced idle time for a job because of conflicts in tape drive availability. These details are significant and contribute to the overall performance of the computer system. Although these details are system dependent they can best be described as human factors that influence the throughput of the workload. Mounting and dismounting of tapes are not only influenced by the number of tapes and the location of the tape library but also by the number of operators available.

The method of characterizing the workload described in this report does not consider the human factors. This study used the total number of I/O activities to tape or to disk as a measure of the I/O load. This quantity, admittedly, neglects the time for mount and dismount and this is a limitation in this method of characterization.

The tape I/O can be accounted for by creating tape files in the synthetic program. Initial calibration experiments must be conducted to relate the tape block counts (the number of blocks read or written to tape) with the corresponding synthetic program parameters. In the case of tape files, not all the block counts (recorded by the accounting package) lead to data transfer; some of them result in tape positioning, label checking and tape rewinding. The fraction of the total block count resulting in data transfer can be determined in the preliminary calibration experiments. The tape handling in the real workload should then be studied to estimate the time taken for responding to the mount request and the number of tape files processed by individual jobs. Based on these studies it is possible to execute the synthetic program creating tape files and introduce known amounts of delay to simulate tape handling.

PREPROCESSING OF SYSTEM LOG FILE DATA LOGGER Data

The LOGGER provided the source of performance data for this report. LOGGER is the accounting package provided as a part of the MCP operating system for the B 3500. LOGGER records the following event-oriented statistics. They are usually referred to as the Type X records where X is any one of the following.

Type 0	File Close Record
Type 1	File Open Record
Type 2	End of Job Record
Type 3	Long Schedule Record
Type 4	Short Schedule Record
Type 5	Comment Record
Type 6	Beginning of Job Record
Type 7	Idle Time Record
Type 8	Halt/load Record
Type 9	Filler Record

Data Structure

The accounting package collects and records data in the eventoriented format as and when the events take place. Typically they
are: job A begins; job A opens file x; job B begins; job A closes
file x; etc. They are also referred to as the raw data. These data
are uniquely identified by the job-log number (or the job ID) and
using this field as the key the raw data are summarized into joboriented format, also referred to as the summary data. The joboriented data, essentially, are the magnitudes of the demands placed
on the various system resources by the individual jobs. It should
be noted that one job-oriented record is obtained by summarizing
several event-oriented records.

The performance variables of interest for this workload characterization were taken from four of the LOGGER record types: Type 0, File Close Record; Type 1, File Open Record; Type 2, End of Job Record; and Type 6, Beginning of Job Record. The record layouts for each of these types are shown in Figures 1 and 2. [1]

The standard internal character set for the B 2500/B 3500 is the 8-bit Extended Binary Coded Decimal Interchange Code (EBCDIC). Internal storage for the accounting data is organized into 4-bit digits and is processed under two formats: unsigned 4-bit numeric and 8-bit alphanumeric. Most of the data uses the unsigned 4-bit numeric format which is the Burroughs structure for high density storage of data. [2] The voluminous quantity of event-oriented records on system activity must be summarized into usable job-oriented summary records.

An existing program written in PL/I for the IBM 370/155 (MITRE, Bedford) was modified and used to create job summary records.

It was necessary, therefore, to convert the Burrough's LOGGER data into IBM compatible data types. There is no conversion necessary for the 8-bit alphanumeric data but the unsigned 4-bit numeric must be changed by adding a sign and aligning digits on 8-bit (character) boundaries.

ACCESSIBILITY

The event-oriented data collected by the LOGGER is readily accessible. The data set receiving this raw data is normally a disk file. Log procedures of the B 3500 accounting system store information into one of three disk data sets called System Log Files. The raw data of interest in this analysis is in the system run (current) log file and is named RLOG. The disk files are periodically emptied onto tape volumes for storage. The RLOG data, consequently, is available from either the active disk file or the stored tape file.

CLOSE OPEN

Position	Contents	Position	Contents
0-	Type Code	0	Type Code
1-4	Reserved	1-4	Reserved
5-8	Log ID Number	5-8	Log ID Number
9-14	Date (MMDDYY)	9-14	Date (MMDDYY)
15-22	Time (msecs)	15-22	Time (msecs)
23	Subtype	23	Subtype
24-35	File ID	24-35	File ID
36-47	Multi-File ID	36-47	Multi-File ID
48-49	File Number	48-49	File Number
50-51	Primary I/O Channel	50-51	Primary I/O Channel
52	Unit Number	52	Unit Number
53-54	Hardware Type Used	53-54	Hardware Type Requested
55	Supplementary Hardware Code	55	Supplementary Hardware Code
56-58	Reel Number	56-58	Reel Number
59-63	Physical Tape Number	59-63	Creation Date
64-65	Close Type Code	64-65	Cycle Number
66-73	Logical Record Count	66-70	Maximum Record Length
74-81	Physical Record Count	71-73	Records per Block
82-84	Exception Count	74-79	Maximum Block Size
85-86	Number of Disk Areas Used	80	Buffer Access Technique
87-94	Disk End-of-File Pointer	81	File Label Convention
95	Memory for Disk File Headers	82	Number of Alternate Areas
96-99	Reserved	83	OPEN Type Code
		84	Recording Mode
		85	Blocking Technique
		86	Special Forms Indicator
		87-89	Save Factor
		90-96	Disk Segments per Area
		97	Disk Access Technique
		98	Disk File Header Block Count
		99	Reserved

Figure 1. File Close and Open Records

END BEGIN

Position	Contents	Position	Contents
0	Type Code	0	Type Code
1-4	Reserved	1-4	Reserved
5-8	Log ID Number	5-8	Log ID Number
9-14	Data (MMDDYY)	9-14	Date (MMDDYY)
15-22	Time (msecs)	15-22	Time (msecs)
23	Subtype	23	Subtype
24-35	Program ID	24-35	Program ID
36-47	Multi-program ID	36-47	Multi-program ID
48-49	Job Number	48-49	Job Number
50-51	Primary I/O Channel	50-55	Disk Segments in Program
52	Unit Number	56-61	User Charge Number
53-54	Hardware Type	62-64	Core Required
55	Supplementary Hardware Type	65-66	Number of Files
56-61	Overlay Count	67-68	Number of Disk Files
62-63	Finish Code	69	Execution Code
64-73	Reserved	70	Reserved
74-81	Direct Processor	71	Supplementary Execution Code
82-89	Prorated Processor Time	72	MCP Intrinsic Flag
90-97	Accumulated Program I/O Wait Time	73	Reserved
98-99	Reserved	74-79	Date Compiled
		80-99	Reserved

Figure 2. End of Job and Beginning of Job Records

COLLECTION OF JOB-ORIENTED DATA

Detailed Format

The job summary record in Figure 3 consists of performance variables of interest for a workload characterization. A job record to be used for another purpose, e.g., billing reports, would probably embody a significantly different set of information. The Log ID Number, Job Start Time, and Core Required fields are taken from BOJ record type 6, Figure 2. EOJ record type 2, Figure 2, yields Job End Time, Direct Processor Time, Prorated Processor Time, Hardware Type, and job Log ID. Elapsed Time is computed using EOJ and BOJ times taken from type 2 and type 6 records respectively. The remaining fields itemizing files, devices, channels, and block counts are taken from the file close records, type 0, Figure 1.

Method

Each event-oriented record is read in the order it was created and checked for type 6, the BOJ record. A new BOJ record defines a unique job identifier by means of the Log ID Number. All subsequent records pertaining to a particular job are found by using this identifier. As each job starts it is added to the mix and with each EOJ the job is removed by updating the mix count. All file open and close records for a particular job are processed by counting the number of different files, devices, and channels that appear and by breaking down the block count into file, device, and channel subtotals. The EOJ record finishes the summary cycle for a job. The processor time is extracted from this final record and the completed job summary record of Figure 3 is recorded. Table I shows a partial list of summary records created by processing one month of raw accounting data.

WORKLOAD CHARACTERISTICS

The system dependent characteristics of a month's workload processed by B 3500 were analyzed in order to determine the test workload

Position	Length (Bytes)	Data Type	Contents
0-2	3	PD	Log ID Number
3-7	5	PD	Job Start (msecs)
8-12	5	PD	Job End Time (msecs)
13-17	5	PD	Elapsed Time (msecs)
18-22	5	PD	Direct Processor Time (msec)
23-27	5	PD	Prorated Processor Time (msec)
28-32	5	PD	Total Processor Time (msec)
33-34	2	PD	Core Required (kilo-bytes)
35-39	5	PD	Total Block Count
40-41	2	В	Number of Files (L)
42-43	2	В	Number of Devices (M)
44-45	2	В	Number of Channels (N)
46-V	L x 6	СН	File Names
V	M x 2	PD	Device Types
V	N x 2	PD	Channels
V	M x 2	В	Files per Device
V	N x 2	В	Files per Channel
V	N x 2	В	Devices per Channel
V	L x 5	PD	Blocks per File
V	M x 5	PD	Blocks per Device
V	N x 5	PD	Blocks per Channel

Key: PD - Packed Decimal

B - Binary

CH - CHaracter

L - Number of Files

M - Number of Devices

N - Number of Channels

V - <u>V</u>ariable

Figure 3. Job Summary Record Used in Workload Characterization

CHANNELS	-	-	• ~	7	2	2	7	2	7	2	V	40	4 ^	1 ~	7	~=	-	⊸ (4 ~	1 ~) 4	i (1)	7	7	2 (7	9 0	10	7	2	2 0	7	4	~~	2	-	7		7	7 7	2	2	3	~=	17	V :	7 6	9 0	2	1.7	ľ
DEVICES	→ c	7 ^	10	1 74	.7	4	٧	V	٧.	۷.	70	9 ~	,	1.	. m	7	7	-	.1 ~	1 4		1 17	7	ea ea	7	1 4	1	٧. ١	1	J	N /	7 ~	1	1	7	1	7	417	,	1 4	2	7)	2	1	7	ካ 4	1 0	7 *) eu	ı
FILES	10	7 ~	1 2	10	10	9	71	1	٦,	7	0	1.	^ 1	1 11	~ (7	-	1	\$,	4)	, 1	1	7	•	٧.	1.3	† -	2	•	4	.71	1 4	1 -1	1	17	n	4	n r	4 1	1 2	2	1	ر	2	7	1 1 /	0 1	1	7		6
(K BYIcs)	2 0	67	4	23	4	4	23	1	23	3 5	2 3	4.7	* *	1 4	1.7	11	4	4	* _	2 -	1	15	4	15	٠,	5	3 .	1 4	.17	19	٠ ٦	10	1 1	*	7	7+	7.	0	7	1 1	. 1	15	5	15	1	٠,	4 0	6.7	2 "	1	
	74	200	2 7 7	6235	6197	4961	6973	171	9769	2	27.62	1351	777	1 10	401	755	7	3.	7167	1 1 1	1361	220	1,5	151	43	40040	84471	7	1	61	-	700	100	1	61	42	7 4	7 7	1.2	374		~	٢	21	11	J. 30	3 A D	1467	31.7	1000	1
TIME	0.275	201.10	74.77	30.175	35.741	14.5	33.617	5.69	43.563	10.279	31.521	40.00	000.01	1,100	3.470	3000	かかつ・コ	1.675	2,000	17.50	4 1 1 1	10467	622.0	16500	0.27.4	141.27	1.32.3	19.01	1.120	1 17.5	40000	V.0.V	10000		1.66	1.045	74707	1.103	101.0	30.00	11.431	11.30	. 1	1.034	1: - 507	5000	+0.	404.07	3 0 0	35.410	
ITWE	367-0	0 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	114.0	144.085	20.049	42.017	111.355	7	204.571	1.50	44.00	556.5%	10.01	3.16.	12.002	10.4.0	1010	347.0	42.17	3 (سا (10.054	1	2.514	1.00	1047.057		}	1.000	3.430	1.5.1	-:	413	0.160	350.0	1.73%	10.101		0000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 9	1000	0.123	1.10E	1 5	3.560	11.014	13.50	1000	11.007	9
E H	2.959	344.500	270.5	504-150	474.367	241.107	512.541	137.644	516.712	207.410	555-345	144.804	70.133	76.53	67.015	27.305	3.647	33.125	138.573	36 3 114	158-100	57.569	7.3.5	15.744	26.001	2301.525	552.151	117.063	10.504	11.505	214.0	122.721	345.433	0.1.0	10.795	10.764	7.925	20.001	11.000	0.5.6.0	146.3	156.900	156.621	17.910	165.043	25.043	102.100	335.566	2000	431-705	2
	33567.482	. 444	3355	1 17	34243.6116	34705.427	34623.367	34962.730	1	5	3000000000	56310.510	50453 174	34.7.5.637	37313.372	37349.361	37065.775	3	37816-245	37.75.05.05.	3 6	36551 - 257	338 Lu. 123		35946.045	4 1	19650. 139	- 1	39965.013	4	47050-971	1	40274-240	40327-186	40430.172	45417.215	46425.664	705-1160+	3 0	40003.544		40701.218	40701.412	3	40076.504	40931.501		0	+1200-333	41570-141	******
	33664-523	33345-133	334740374	35704-6086	33319.293	34364.520	34310.840	34425.080	34588.310	35,000,039	3555.600	32641.325	30324-401	35615.003	374. Pt. 357	37312.490	31562.728	37704.265	27671.607	27016 555	24146.764	30475-740	38675-49:	33394.515	33713.044	30854.098	30144.536	300.000	34954.164	39976-233	46.4.24004	40115.601	100 - C 1 1 6 C C C C C C C C C C C C C C C C	40 57 6 3 74	43391.277	43406.513	40417.737	40244.301	400/2-467	40097.801	100.1000	43550-252	40551.591	40749.234	4075-321	4776.2.653	-	0	P-	41.94.973	-
	3.	3 -	40	2.5	0 0	49		900	20	64	79	2 .	1/	7 2	25	70	70	2	500	7 -	o a	מ מ	0	0 0	12	74	70 0	0 0	1 7	42	25	* 6	2 3		100	101	102	103	101	70	101	105	100	11(113	114	115		0 :	110	3

characteristics. Single variable histograms were constructed to isolate the major variables. The following histograms were studied:

- (1) Direct Time
- (2) I/O activities to disk
- (3) I/O activities to tape
- (4) Core used
- (5) Number of files
- (6) Number of channels

As an example, the histogram of the direct time is tabulated in Table II. Based on these histograms it was decided to characterize a job by the following four variables.

- (1) Direct Time, seconds
- (2) Number of block counts to disk
- (3) Core used
- (4) Number of files

The direct time is the demand placed on the CPU and is the processor time in the user state or the normal state (or the problem program state). The number of block counts is the number of blocks of data exchanged between main storage and the disk. The other two variables are self-explanatory. These four job-oriented characteristics were determined from the derived LOGGER summary data. The general method of the statistical analyses to determine the workload characteristics appears in Reference 3.

TEST WORKLOAD CHARACTERISTICS

The test workload characteristics were determined by matching the four-dimensional probability density of the test workload with that of the real workload. The details of this method appear in Reference 4 and will be briefly presented here.

SUMMARY OF CPUIUINECT) TIME IN SECS.

200.5000	4305.7050			sear 1127	
L. GGOC XMAX=	C.UGEL AMAXE	56.6317	152.0041	c.cocc with	
= ? I £X	11 Z 4	MSAN VALUE=	STO DEVIATION=	MAXIMUM FREQUENCY AT X=	

MISTOGRAM OF CHOIDINEST) TIME IN SECS.

PENSIFY

2000			
	070067.0	L. 50000	计传播符号操作法保持程序经理设计设计 化甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
	L. (71293	C1/44/0-1	《非常主体的中华人的特殊中华的中华的中华的中华的特殊的 计中枢电路 经存货的 经营销的证据 计中枢设计 化环己基苯甲酚 计记录器 医克勒特氏试验检检验检验检验检验检验检验检验
	U. LSF 542	C.4. 14.0	计二元元子 医二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二
	5.02.40.5	C-4504.3	传播性传统特殊性传统性 医耳中性牙骨性 计可以 计记录器 计可以记录器 计算机 计可以记录器 计算证据 计可以记录器 计可以记录器 计可以记录器 计可以记录器 计可以记录器 计可以记录器 计记录器 计记录器 计记录器 计记录器 计记录器 计记录器 计记录器 计
	1,653091	1.4-4-177	中国专家的 计分别 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
641	605676.)	(.) (\$) 45	中衛衛衛等中衛衛不衛衛衛衛衛等
176	じっしんこしょう	4.00000	传传传传传传传传传传传传传传传传传传传传传传传传传传传传传传传传传传传传
Ing	C. C. 1591	C.554103	赞音传播传播 计设计设计 化二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲
	1.620691	1.574767	营养者养养养养养养养养养养养养养养养养养养养养养养养养养养养养养养养养养养养
143	1.(10507	C.593094	李務 佛教者 特殊 情報 经存货 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
C.I	1.(150%	GACUFTYS.	供给 特殊特殊的 计多数 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
3.5	v. olizit 7	U.541002	经保存的法律保存的债券 一
6	(. L11444	L. 632445	全体的专办会会会会 一
84	C. (107e8	L.c43.5i	特异节特别特别特别
6	C. C11444	46046000	· · · · · · · · · · · · · · · · · · ·
4	U. 1.10733	0.005477	传传作才传传传传传传
7	L.(1111.5	1.070697	传送才传送诗书中中传传 —
6.0	(.010284	1.625.581	根外的特殊·特殊·特殊·
7	0-667324	6.694365	沙特特特特特 —
~	0.00010.0	1.94050	作物的黄色传染等的 一
7	1.619060	713553	
103	U. (13245	1.126.37	传传声语诗中传传传传传传传
2	C. CUOPUS	L. 73365F	· · · · · · · · · · · · · · · · · · ·
64	C. C. 0237	C.7389CJ	华中的特殊者 —
3.5	0.004450	C.lunnol	经费务费 —
3	L. LU3524	U.151000	· · · · · · · · · · · · · · · · · · ·
37	C. CK4745	0.734745	***
44	C. UU5640	C. 726450	***
9	L. LL402.3	6-7021-65	***
00	C. 660484	4.773524	经转换非常的转换的 —
77	C. Cup646	0-119190	· · · · · · · · · · · · · · · · · · ·
45	0.005783	C-764573	经保险债务 一
36	(• 0C4523	6.769597	***
4	C . UC 43c 4	19397€	· · · · · · · · · · · · · · · · · · ·
2	U. CO53F5	5.759377	· · · · · · · · · · · · · · · · · · ·
21	C. 4020do	C L. 678	**
27	L. CL3404	L.0(5542	特特會
-1	C.CU5254	L.olCb2z	· · · · · · · · · · · · · · · · · · ·
	C.004364	0.115115	****
30	0.003845	6.019645	***
	1 - 004 404	5425	****

Table II -- Histogram of Processor Time

				医脊髓性神经 医肠肠炎 医皮肤
8 3 9 8 6 6 6 9 8 8 6 6 3	# # # # # # # # # # # # # # # # # # #) 3 0 3 6 0 6 3 3 3 3 3 4 6 6 6 6 6	9 3 8 3 8 4 8 8 8 8 8 8 8	* * * * * * * * * * * * * * * * * * *
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	24 th Color of the	0	20012000000000000000000000000000000000	
C. CC4023 0. C03935 c. UC4745 c. UC5404 L. CC205C	2.000000000000000000000000000000000000	2 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	0.111100000000000000000000000000000000	1000011144 1000011144 1000011144 1000011144 100001114 100001114 100001114 100000114 100000114 1000000114 10000000000
36 27 21 31	244522444 24454444 24454444		4 415 0 6 4 7 5 5 5 6 0 6 0 1	200000000000000000000000000000000000000
#2.0000 84.0000 86.0000 86.0000 90.0000	94,0000 98,0000 102,0000 104,0000 106,0000 110,0000 1112,0000 1116,0000	118.0000 120.0000 127.0000 124.0000 128.0000 138.0000 134.0000 140.0000 140.0000	144.0000 148.0000 148.0000 150.0000 154.0000 154.0000 160.0000 162.0000 164.0000 165.0000 165.0000 174.0000 174.0000	178.0000 180.0000 182.0000 185.0000 186.0000 190.0000 194.0000 194.0000 198.0000 200.0000

The B 3500 workload is characterized by the following four variables.

X₁ - Number of files

 X_2 - Core used

X₃ - Direct time

 ${\bf X}_{\bf 4}$ - Number of block counts to disk

A job, therefore, may be regarded as a point in the multi-dimensional space, with the co-ordinates representing each of the four demands. The workload then becomes an ensemble of points in this co-ordinate system.

In general, if X_1 , X_2 , X_3 , and X_4 are the four variables used to describe the workload and N_{ijkl} is the number of jobs in the cell* with co-ordinates $X_1 = x_1^{(i)}$, $X_2 = x_2^{(j)}$, $X_3 = x_3^{(k)}$, $X_4 = x_4^{(1)}$ then the workload can be described as a multi-variate probability density function and its value is given by:

$$p_{ijkl} = \frac{N_{ijkl}}{N_{tot}}$$
 i, j, k, 1 = 1, 2, 3...L (2.1)

where p_{ijkl} is the probability of finding a job in the (i-j-k-l)-th cell and N_{tot} is the total number of jobs in the workload. L is the number of cells along each co-ordinate axis.

The test workload is constructed by matching the joint probability density of the four variables for the test workload with that of the

^{*} The magnitude of the variable corresponding to each cell is taken to be its value at the mid-point of the interval.

real workload. Denoting the test workload characteristics by primed quantities, we have

$$N'_{ijkl} = p_{ijkl} N'_{tot}$$
 (2.2)

This equation can be physically interpreted as matching the joint probability density of the test workload with that of the real workload. Constraints on the total number of jobs in the test workload or on the total CPU time for processing it, can be imposed in the determination of N'_{ijkl} . In this study the constraint was placed on the total CPU time, namely, 2000 seconds. The characteristics of the test workload are derived using equation (2.2) and they are tabulated in Table III. The test workload consists of 87 jobs.

The total number of cells used in the determination of p_{ijkl} and N'_{ijkl} is governed by the value of L, or the number of cells along each co-ordinate axis. In our study the value of $N_{tot} = 7776$. A very large value of L will result in a large value of the total number of cells (L4). As seen from equation (2.1) there are L4 values of p_{ijkl} (for example, p₁₁₁₁, p₁₁₁₂,..., p₂₂₂₂,..., p_{LLLL}). Since the total number of jobs (N_{tot}) in the ensemble is fixed, large values of L result in small values of pijkl. It should be pointed out that there is a rounding-off performed in determining the N_{iikl} from equation (2.2). If the value of N_{ijkl}^{\dagger} is less than 0.5 it will be roundedoff to 0. A large value of L will tend to diffuse the distribution and will result in a multi-dimensional picture that is not useful in describing the workload. Before selecting L the single variable histograms should be studied to determine the values of the variables that correspond to the most frequently occurring jobs. It is also not necessary to choose the same value of L along all the co-ordinate axes. The number and location of the cells is influenced by the single variable histograms. Based on these considerations the ensemble in

Table III
Characteristics of the Test Workload

Group	Number of Jobs (N ijkl)	Core (K-bytes)	Number of Files	CPU (sec.)	Block Count
1	14	4.5	3	2	25
2	4	4.5	3	4	200
3	5	4.5	3	5	200
4	2	4.5	3	9	1000
5	2	4.5	3	29	1000
6	1	4.5	3	73	5000
7	1	4.5	6	6	200
8	1	4.5	6	9	1000
9	1	4.5	6	31	1000
10	1	4.5	6	43	5000
11	1	6.5	11	33	1000
12	1	6.5	11	81	5000
13	5	17.5	3	3	25
14	3	17.5	3	6	200
15	1	17.5	3	9	1000
16	3	17.5	3	34	1000
17	1	17.5	3	78	5000
18	1	17.5	6	1	25
19	2	17.5	6	6	25
20	4	17.5	6	7	200
21	1	17.5	6	11	1000
22	5	17.5	6	31	1000
23	2	17.5	6	77	5000
24	2	18.0	11	7	200
25	6	18.0	11	34	1000
26	1	18.0	11	41	5000
27	1	18.0	11	75	1000
28	6	18.0	11	74	5000
29	1	29.5	3	4	25
30	2	29.5	3	30	200
31	1	29.5	6	8	200
32	1	29.5	6	30	1000
33	1	29.5	6	81	5000
34	1	30.0	.11	29	1000
35	2	30.0	11	72	5000

this study was divided into 144 cells by choosing 3 values of the number of files, 3 values for the core size, 4 values for the direct time, and 4 values for the block count to disk. Table IV tabulates the 144 values for $p_{\mbox{iikl}}$.

S'YNTHETIC WORKLOAD

The eighty-seven jobs in the test workload are realized by using a synthetic program. A COBOL program was designed and implemented for this purpose. It is not practical to use one synthetic program that covers a large range of variation in core size and number of files; further such a synthetic program will not be flexible. It is simple and easy to implement several synthetic programs to represent the core size and the number of files which are specified as compile time parameters. The four variables to be represented are divided into two groups. They are:

Run time variables - Direct time and number of block counts to disk. Compile time variables - Core size and number of files.

Two parameters were built into the synthetic program for varying the direct time and the number of block counts to disk. There are nine combinations of core size and the number of files and nine separate COBOL programs were compiled to reflect these nine combinations. The nine programs were stored in auxiliary storage, retrieved at run time and executed using the run time parameters.

CALIBRATION AND INVERSION

The nine values of the core size and number of files combinations were made equal to the corresponding values of the test work-load. This eliminated the need for calibrating the synthetic program for these two parameters. Each one of the nine programs has two parameters for varying the direct time and the number of block counts

0 56 102 0 0 0 9 5 9 5 9 9 024 021 100C 164 30 - CORE - FILES - CPU 372 10 .001 29 4 -000 1000 * 6000 * 30000 * 72000 * 1000 * 6000 * 30000 * 72000 * 1000 * 6000 * 72000 *

===

Table IV -- Joint Probability Distribution of the Real Workload, For example, the pair of numbers (1056, 0.136) for I=4, J=3, K=1000, L=25 represent N_{ijkl} and p_{ijkl} respectively.

===

Table IV -- Joint Probability Distribution of the Real Workload (Continued)

0 0 2 1 2 5 1 2 5 000. 56 47 CORE FILES CPU .000 28 161 3 .001 11 38 12 1000 * 6000 * 30000 * 72000 * 1000 * 6000 * 3000C * 72000 * 1000 * 6000 * 30000 * 72000 * == # **|**

Table IV -- Joint Probability Distribution of the Real Workload (Continued)

to disk. Seventy-five calibration runs were conducted to relate these two parameters to the direct time and the block count. In all these calibration runs the LOGGER summary data was used to determine the block count and the direct time. Various combinations of the four parameters, viz., core size, number of files, and the parameters for direct time and the block count were used in these calibration experiments. Table V presents these experimental results.

These experimental results are used in the inversion of the test workload characteristics into synthetic program parameters. During the calibration experiments, the synthetic program parameters are varied over the required range and the resulting values of the direct time and the number of block counts are obtained from the LOGGER summary data. Inversion consists of reversing the above procedure. In other words, given a set of workload characteristics, (direct time and the number of block counts) the required values of the synthetic program parameters are determined from the calibration results. In this study because of the number of variables involved, no attempt was made to derive general expressions relating the synthetic program parameters with the workload characteristics. Instead the calibration runs were conducted with the values of the parameters in the immediate neighborhood of the desired workload characteristics. The experimental results were used to determine the parameter settings for the 87 jobs in the test workload. The synthetic workload is the collection of these 87 jobs.

CLOSURE

The performance of a computer system can be described in terms of the interaction between the workload and the hardware-software configuration. A method of studying this interaction is to conduct experiments with the existing hardware-software configuration using a stabilized, reproducible workload that is representative of the

Table V Experimental Results Used in Calibrating the Synthetic Program

Synthetic Program Parameters			H					
Job	Compi	le Time	Run T	ime	Calibration Result			
No.	Core	Files	Times thru	Total Block	Core (K-bytes)	Files	CPU (sec)	Block Cou
	(i)	(j)	CPU loop (k)	Count (1)	(i)	(1)	(k)	(1)
1	4	3	100	25	4.5	3	1	25
2	4	3	100	200	4.5	3	3	200
3	4	3	300	1000	4.5	3	11	1000
4	4	6	1000	200	4.5	6	11	200
5	4	6	800	5000	4.5	6	49	5000
6	4	11	3000	1000	6.5	11	37	1000
7	17	3	100	25	17.5	3	2	25
8	17	3	300	1000	17.5	3	11	1000
9	17	3	10000	5000	17.5	3	139	5000
10	17	6	600	25	17.5	6	8	25
11	17	6	500	1000	17.5	6	13	1000
12	17	6	4000	5000	17.5	6	82	5000
13	17	11	800	200	18.0	11	13	200
14	17	11	1000	5000	18.0	11	41	5000
15	17	11	4000	5000	18.0	11	89	5000
16	29	3	100	25	29.5	3	6	25
17	29	3	2500	200	29.5	3	28	200
18	29	3	5000	25	29.5	3	46	25
19	29	6	10	200	29.5	6	2	200
20	29	6	800	200	29.5	6	12	200
21	29	6	4000	5000	29.5	6	86	5000
22	29	11	4000	5000	30.0	11	84	5000
23	29	11	15000	1000	30.0	11	146	1000
24	4	3	100	25	4.5	3	2	25
25	4	3	50	200	4.5	3	4	200
26	4	3	300	200	4.5	3	5	200
27	4	3	50	1000	4.5	3	9	1000
28	4	3	2500	1000	4.5	3	37	1000
29	4	3	3200	5000	4.5	3	77	5000
30	4	6	300	200	4.5	6	6	200
31	4	6	50	1000	4.5	6	10	1000
32	4	6	2500	1000	4.5	6	36	1000
33	4	6	100	5000	4.5	6	45	5000
34	4	11	2500	1000	6.5	11	38	1000
35	4	11	3000	5000	6.5	11	72	5000
36	17	3	70	25	17.5	3	1	25
37	17	3	100	200	17.5	3	3	200
- 1				1	II			

Table V

Experimental Resulta Used in Calibrating the Synthetic Program (Continued)

	Syn	nthetic Pr	rogram Paramete	rs				
Job Compile Time			Run Time		Calibration Reaults			
No.	Core	Filea	Times thru	Total Block	Core (K-bytes)	Files	CPU (aec)	Block Cour
	(i)	(1)	CPU loop (k)	Count (1)	(1)	(j)	(k)	(1)
38	17	3	10	1000	17.5	3	10	1000
39	17	3	2000	1000	17.5	3	32	1000
40	17	3	4000	5000	17.5	3	76	5000
41	17	6	10	25	17.5	6	2	25
42	17	6	400	25	17.5	6	6	25
43	17	6	100	200	17.5	6	4	200
44	17	6	10	1000	17.5	6	9	1000
45	17	6	2000	1000	17.5	6	30	1000
46	17	6	3000	5000	17.5	6	72	5000
47	17	11	100	200	18.0	11	5	200
48	17	11	2300	1000	18.0	11	33	1000
49	1.7	11	500	5000	18.0	11	47	5000
50	17	11	6500	1000	18.0	11	76	1000
51	17	11	3000	5000	18.0	11	75	5000
52	29	3	10	25	29.5	3	2	25
53	29	3	2600	200	29.5	3	28	200
54	29	6	400	200	29.5	6	7	200
55	29	6	3000	1000	29.5	6	48	1000
56	29	6	3000	5000	29.5	6	74	5000
57	29	11	3000	1000	30.0	11	38	1000
58	29	11	3000	5000	30.0	11	72	5000
59	4	3	0	200	4.5	3	4	200
60	4	3	0	1000	4.5	3	9	1000
61	4	3	2000	1000	4.5	3	29	1000
62	4	3	3000	5000	4.5	3	73	5000
63	4	6	0	1000	4.5	6	9	1000
64	4	6	2000	1000	4.5	6	31	1000
65	4	6	0	5000	4.5	6	43	5000
66	4	11	2000	1000	6.5	11	33	1000
67	17	3	400	200	17.5	3	6	200
68	17	3	0	1000	17.5	3	9	1000
69	17	6	350	200	17.5	6	7	200
70	17	6	0	1000	17.5	6	11	1000
71	17	11	300	200	18.0	11	7	200
72	17	11	2000	1000	18.0	11	34	1000
73	17	11	. 0	5000	18.0	11	41	5000
74	29	6	2000	1000	29.5	6	30	1000
75	29	11	2000	1000	30.0	11	29	1000
	-							

real workload. That there is a need for constructing a representative test workload need not be overemphasized. In this study the representative workload is constructed by first isolating the most frequently occurring jobs.

The accounting package seldom captures data about the human factors involved, e.g., time for mounting and dismounting tapes. Special measurements have to be made to determine the human factors. Typical measurements are the number of frequently used tapes, and the method of tape assignments.

The following procedure may be adopted for evaluating the performance of a computer system in which tape files dominate. The workload can be divided into two distinct classes — jobs with disk I/O only and jobs with tape and/or disk I/O. The former class can be represented using methods described in this section. The latter class can be represented with the use of synthetic programs that create tape files. The combined representative synthetic workload can then be used to study the effects of system parameters; for example, changes in the configuration, addition to the existing configuration, blocking factor etc. In these experiments care should be taken to insure that the human factors are adequately simulated by introducing known amounts of delay in mounting and dismounting tapes.

SECTION III

EXPERIMENTS WITH THE TEST WORKLOAD

PURPOSE

A computer system can be considered as a hardware-software-configuration (HSC) interacting with its workload. Evaluation of computer system performance requires an understanding of this interaction in order to assess and improve the performance and to predict the effects of changes in either the workload or the HSC.

In this study, experiments were conducted with the B 3500 using a representative model of the real workload. The controlled experiments were conducted in a dedicated environment. A hardware monitor (DYNAPROBE) was used to measure the utilization of the processor, the channel and the physical devices.

EXPERIMENTAL RESULTS

The test workload, representative of the batch jobs processed during a month on the B 3500 (ESD, Hanscom Air Force Base) consisted of 87 jobs. Their CPU time, core used, number of files and block count to disk are presented in Table III. LOGGER data was used to obtain the following characteristics for each job.

- a) Start Time
- b) Stop Time
- c) Direct time used
- d) Core requested
- e) Number of files
- f) Block count per file

A hardware monitor, DYNAPROBE 7900, was used to measure the following quantities.

- a) CPU busy in the normal state
- b) CPU idle
- c) Disk channel 2 busy (primary)
- d) Disk channel 10 busy (alternate)
- e) Disk channels 2 and 10 busy

Figure 4 is a schematic of the hardware configuration used in these experiments. The electrical signals corresponding to the above quantities were recorded on tape which was later analyzed to determine the utilization values.

The architecture of the B 3500 was initially studied to determine the nature of the experiments to be performed. In this system there are six disk units connected to the processor by a pair of channels (channel 2 and 10) to achieve simultaneity. The disk units are headper-track units. As there is only one primary channel (channel 2) for all the disk units, overlap between data transfers can be accomplished by forcing the transfer to take place through the secondary channel (channel 10). Because of this channel – disk unit relationship it is not possible to initiate many data transfers, analogous to parallel seeks characteristic of moving arm disk units.

The degree of multiprogramming, the number of jobs co-resident in main memory, is determined mainly by the core size of the available jobs in the mix. In the experiments reported here, all the jobs were initially spooled to the disk. The first set of jobs were initiated. The number of jobs in this set was determined by the individual core sizes. At the termination of a job, the operating system scans the list of available jobs and initiates a job which can fit into the vacant core space. If such a job cannot be found the operating system waits for a second job to terminate and the search for

Figure 4. B-3500 HARDWARE CONFIGURATION

the next job is repeated with the difference that the vacant space now available has increased. For this reason the degree of multi-programming varies during a session. The multiprogramming (number of jobs in the mix) resulting from one of the experimental sessions is shown in Figure 5.

Eight runs were conducted using the test workload. The effect of external sequencing (i.e., the order in which the jobs are processed by the system) on the overall performance of the computer system was studied. The first experiment was run single-thread to verify the characteristics of the test workload. The second experiment was run with multiprogramming in which the jobs were initiated from the operator's console after every job termination. found to be inefficient as the system was idling waiting for jobs to be initiated. In the third experiment the job initiating was accomplished automatically by the operating system with no operator intervention. It was found that changes in the external sequencing have no appreciable effect on the overall performance. This is not very suprising in view of the fact that the workload is CPU-bound. In single processor, multiprogrammed systems, CPU-bound workloads lead to a situation in which all the jobs have to wait to use the processor, since the overlap between the processor and I/O usage is very small.

The test workload used only disk files and the I/O activities were, therefore, much faster than the equivalent I/O activities to tape. In effect, the I/O load on the system was reduced and the test workload was made CPU-bound. This is confirmed by the fact that overall CPU utilization of the month's workload studied was approximately 25% and the CPU utilization of the test workload was approximately 65%. It was necessary to adjust the I/O load on the system so that the CPU utilization became reasonable.

IT 8 5. VARIATION OF THE DEGREE OF MULTIPROGRAMMING DURING EXPERIMENT 4

ELAPSED TIME IN MINUTES

The synthetic workload used allows for adjustment of the I/O load by means of the I/O run time program parameter. The assumption is made that increasing the I/O load will bring the CPU utilization down to a value approaching that observed for the real workload. This implies that the neglected tape I/O activities can be replaced by a suitable number of disk I/0 activities. The I/0 control parameter for all the jobs in the test workload was increased by a factor of 5. The result was that the elapsed time of the experiment became too large. Only 36 of the total of 87 jobs were completed in slightly more than 2 hours. The number of block counts was then increased by a factor of 2 and the resulting processor utilization was found to be 45.8%. In both these experiments it was found that replacing the tape I/O with disk I/O led to large values of channel utilization. In trying to decrease the CPU utilization to realistic values we were in effect increasing the channel utilization beyond the realistic values. In real life situations the tape drives and disk drives are connected through separate channels and it is not possible to study the behaviour of such a system by using a test workload that places the total I/O load on any one of the channels. The overall summary of experimental results is shown in Table VI.

HARDWARE MONITORING

A hardware monitor, DYNAPROBE 7900*, is used to measure the resource utilization of the major resources during the controlled experiments. The hardware monitor is a high impedance meter that measures the electrical signals that correspond to the busy or the idle state of a given resource. The hardware monitor, because of its high impedance, does not perturb the system being measured. This is a decided advantage over software monitors which influence the performance of the system being measured. The hardware monitor

^{*}Comress, Incorporated.

 $\label{eq:table_V1} \mbox{ Table V1}$ Overall Summary of the Experimental Results

Experiment Number	Elapsed Time (sec.)	Processor Time (sec.)	Total Block Count	CPU Utilization	Remarks
1	6896	1794	110,775	26.0%	87 jobs, single thread structured schedule.
2	3344	1994	110,750	59.6%	86 jobs, multi-programing by executing job from operator's conso structured schedule.
3	3025	2034	110,750	67.2%	86 jobs, multi-programing with MCP schedul and executing the job structured schedule.
4	3682	2071	110,775	56.2%	87 jobs, multi-programing (same as Exp. 3) unstructured schedule
5	7726	2669	216,733	34.5%	36 jobs, 8 partial jo multi-programming (sa as Exp. 3), unstructu schedule, increased I by factor of 5.
6	5825	2666	202,100	45.8%	74 jobs, incomplete multi-programming (sa as Exp. 3), unstructuschedule, doubled I/C activity.
7	6396	2937	221,550	45.9%	87 jobs, same as Exp.
8	5127	2936	221,550	57.3%	87 jobs, multi-programing (same as Exp. 3) structured schedule, doubled I/O activity.
				-	

captures the state of the various system resources continuously and its output is written out to tape. The hardware monitor is capable of measuring the state of a large number of system resources simultaneously, by means of hardware probes that are connected to the appropriate pins in the computer. These probe signals can be combined (logically) to determine the degree of overlap. The hardware monitor output is collected and later analyzed by means of special software routines to determine the utilization values.

The following were measured using the hardware monitor.

- 1) Processor busy in the normal state
- 2) Processor idle
- 3) Channel 2 busy
- 4) Channel 10 busy
- 5) Channel 2 and channel 10 busy

At the end of the experiment the output tape is analyzed by a special software package. The output of this program appears in Table VII. The program calculates two sets of utilization for the resources indicated in the table. The first value is the value for the interval. The second value is the cumulative value for the duration of the test period. The cumulative values of the utilization are used for the purpose of comparison with the corresponding values calculated from the accounting data.

COUNTER	OESCRIPTION	(BASE = TOL)	TOTALS	FOR LAST 5	J. J SECONUS	ACCU4		521	S. C SECONOS
C11	DEMAL STATE			3.3375434 SET	6.56 PCT		3194.1314958 5	SEC	3.
C22	ACP IOLE LOJP			46.2411553 SEL			1771.432995.	235 2	34 . 13 PCT
8 6 6	33	DELMA		.1.02583 550			4317 - 236585	0000	ed (
† (I	CHANNEL IS SUST	ALIENAMIE ADV		CON CONCESS			33/3 - 210345	3100	200
2 10	TOTAL SER AND	A 117 Y 21		1110 CACCO			222 3856036	300	100
037	EUG 200 50K AJU	JA55355 9USY					131.933.763	100	- W
0.3	EUE 3RD SUK AJL	KESSES BUSY		3-5			145.174498	SHO	9.6
6 2 3	EUJ 4TH 55K A70	RESSES AUSY		2000			2173,359625	SEC	.19
C1.	EUI MOO : ACTIV	/= TIME		1. 5595633 ST	-		147.117133.	10	
C11	EU1 MOO 2 ACTIV	/E TIME		210			273 - 277237	010	34
210	201 400 S ACTIV			THE PERSON AND THE			74.716965	0.0	
212	TUI MOLI ACTIV	ACTIVE TERM		111111111111111111111111111111111111111			2475 556 112	211	57.11 PCT
C15	EVANA HITH CUE	L 2 BUSY		TISSERS SEC			2545 3493245	100	
C15	ANI	2 7		1.2353033 537			1+53.306575	250	
TOT	TOTAL ELAPSEU T			5			5213.002200	D SEC	
717	DAUSE STATE			JES			F1 6		
2 0	SOUND STATES WHILE AN	ANI CTATE CAND			-10		400000000000000000000000000000000000000	- 1	
0.0	CONTROL STATE X	10		417 5200 1CT			2421427 4214142		
100	CHANNEL ? DVE &L	0		CHE LANGE CO.	0		2543.116.05		
350	CHANNEL 2 045 &	ō.		100000000000000000000000000000000000000	. 0		327,110.03		
620	CHANNEL 10 DVER	CPU AST		128 2776276	. , ,		2571.973829		
610	CHANNEL 13 OVER	O		5.323003 SFC	179		1145.236275		22.30 PCT
200	CHANNEL 2 OR 1			.1302583 SEC	T. 4 . 2.		49.1. 396493		94.59 PC1
0.0	HANNEL 2 OR	WITH COUA		75331 525			3271.727478		
0 0	HANNEL 2 OR 1	VERLAP WITH CPU IOLE		1920592 55			1532-171215		
	DALKOL STATE	CLAS WITH COL IS		10000000	200		00/181/00		12.1/ PC
110	ONE DATE	SYNTHA TOTAL		720 600 600			1 43 4 7 7 9 2 9 5		
1	III OVERIAR	1000		LIV			277 676		
110	UI OVERIAR	SYSTEM TOLE		CLU IN THE TOTAL			77.42.132		1. 35 PCT
013	YSTEM ACTIV	The Co		0010	7.70 001		5 151, 7355193		
015				. 2	92.1; bor		14.5.2519852	250	2.85
YSTEM (UTILIZATION ZGPJ	WITH CHANNEL 2 02 13 c		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	ROM 23.25.14.0	10 23.	.26.00.0
OESCRIPT	PTION / PERCENT OF	Till X	C()< 8 10 8 8 8 8	7 × 8 P 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0 0 0	2 × 4 m s s s s s s s s s s s s s s s s s s	**	TOCT X X
SYSTEM ACTIV	ij	* * * * * * * * * * * * * * * * * * * *	•						
A TOT E TONO	(7,73)		***		3	>		2)
NORMEL S	STATE USER PGAS CALT	**************************************		Y Y Y Y Y	***************************************	******			* * * *
CPU DVER	-	· · · ×	• •						
ONA . 17C									
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
2/13 AND	COL TOLF								
	,		•						

SECTION IV

SUMMARY

Computer performance studies can be classified into two groups - assess and improve the performance; and predict the effects of changes in either the workload or the hardware-software configuration. Efforts in this area are greatly helped by a proper understanding of the interaction between the workload and the hardware-software-configuration. This report presents an approach that may be useful in understanding this interaction.

Experiments are performed with a Burroughs B 3500 computer system (ESD, Hanscom Air Force Base) using a synthetic test workload, in a dedicated environment. The method of constructing the test workload has been described. The method consists of matching the joint probability density of the real workload with that of the test workload. Direct time, I/O to disk, core size and the number of files are the four characteristics selected for representation. The magnitudes of these characteristics are derived from the LOGGER summary data.

In these controlled experiments the resource utilization is monitored using a hardware monitor. The values of the utilization calculated from the accounting data compare favorably with those measured by the monitor. This is a very significant finding of this study. This study has shown that the accounting data collected by the LOGGER is sufficient to calculate the processor and the channel utilization for the B 3500 computer system. LOGGER provides a ready and economical source of data for calculating the resource utilization that is very useful in analyzing the performance of the B 3500 system. A system manager can conveniently assess the system performance by periodic processing of the accounting data to determine the resource utilization.

The test workload used in these experiments does not include tape I/O activities. In installations where the tape I/O activities dominate, the synthetic workload experiments should be preceded by an analysis of the human factors involved. Some examples of these human factors are the layout of the tape library, the number of tapes in the library and the time taken for mounting and dismounting tapes. These human factors have a significant influence on the computer performance.

The tape I/O can be accounted for by creating tape files in the synthetic program. The workload can be divided into two distinct classes - jobs with disk I/O only and jobs with tape and/or disk I/O. The combined synthetic workload can then be used to study the effects of system parameters; for example, changes in the configuration, addition to the existing configuration, blocking factor etc.

Representative, synthetic workloads are not ends in themselves but just means to an end. They can be used as stabilized, reproducible workloads in conducting experiments with an existing hardware-software-configuration to evaluate the performance of the computer system. The synthetic workloads have the additional advantage that they are flexible. By varying the synthetic program parameters the characteristics of the test workload can be changed.

APPENDIX

CALCULATION OF THE RESOURCE UTILIZATION

The utilization of the processor and the I/O channels was monitored with a hardware monitor. The accounting package, LOGGER, collected the direct time for each job and the total number of block counts transferred by each job. In this section methods for calculating the resource utilization from the accounting data are described. The calculated values of the resource utilization are then compared with those measured by the hardware monitor.

PROCESSOR

The direct time (d_i) of every job in the synthetic workload is determined from the LOGGER data. Let the elapsed time for the synthetic workload be T and N be the total number of jobs in the workload. (N = 87 in our study.) The processor utilization \mathcal{O}_1 in the normal state is given

$$\mathcal{O}_{1} = \frac{1}{T} \sum_{i=1}^{N} d_{i} \tag{A1}$$

The processor utilizations for the seven runs were calculated using the equation (A1). Table VIII presents these values and the corresponding values measured by the hardware monitor are also presented in the table for the purposes of comparison. The two sets of values agree fairly well. The LOGGER itself consumes some CPU time but it does not measure itself. The hardware monitor on the other hand, measures the LOGGER activity. The time for interrupt processing is usually charged to the interrupted job if no job switching

Table VIII
Comparison of the Processor Utilization Values

	Processor Ut	Processor Utilization (%)
Experiment Number	Accounting Data	Hardware Monitor
1	26.0	
2	59.6	62.0
3	67.2	64.1
7	56.2	60.2
5	34.5	34.5
9	45.8	48.2
7	45.9	50.9
80	57.3	61.3

takes place. The LOGGER collects the data whenever the processor is in the normal state and does not collect the data when the system is in the master state (i.e., supervisory state). But the hardware monitor does collect the data for both the states. These considerations should be borne in mind when comparing the results in Table VIII.

I/O CHANNEL

The LOGGER records the total number of block counts to each channel. In the channel-device architecture, there is a primary channel (channel 2) and a secondary channel (channel 10) to achieve simultaneity. This results in the transfer of the block by channel 2. Whenever it is busy channel 10 takes over the transfer. The LOGGER does not distinguish between the number of block counts transferred to the primary and the secondary channel, but measures the total block count for the primary and the secondary combination. The hardware monitor, on the other hand, distinguishes between the primary and the secondary channel and measures the utilization of the two channels separately.

The devices used in the B3500 system are head-per-track disks and the data transfer takes place in three phases. During the first phase the track address is analyzed and the corresponding read/write head is connected to the channel. During the second phase the read/write head waits for the beginning of the track to rotate. The second phase is referred to as the latency. During the third phase the data transfer takes place. It should be pointed out that the channel and the device are busy during all the three phases. The seek is absent in the transfer process since no arm movement is involved.

The time per block count, t , can be expressed as

where the average latency is the time for half a revolution of the disk, the transfer time is a function of the block size and the rate of transfer and the overhead includes the time for switching from track to track. The hardware characteristics of the disk-channel unit are given below.

Type	B9372-9
Rotation Speed	1300 RPM
Max. Latency	46 milliseconds
Ave. Latency	23 milliseconds
Rate of Transfer	377 kilobytes/second
Overhead	1.8 milliseconds

The block size for all the files in the test workload was 50 bytes. Based on these values the average time per block count is given by

$$t = 23.0 + \frac{50}{377} + 1.8 \approx 23.0 + 0.13 + 1.8 \approx 25 \text{ milliseconds}$$
 (A3)

The channel utilization can be calculated from the following expression

$$\mathcal{O}_2 = \underbrace{\text{(t) (B)}}_{\text{T}} \tag{A4}$$

where

 \mathcal{O}_{2} - channel utilization

t - time per block count = 0.025 seconds

B - total block count

T - elapsed time for the test workload

REFERENCES

- 1. ADPE Performance Management System, AFM 171-400, Volume III, 1 December 1972.
- 2. Burroughs B 2500 and B 3500 Information Processing Systems Assembler Reference Manual, PCN 1034949, November 20, 1970.
- 3. J. Esposito, "Statistical Analysis to Determine Digital Computer Workload Characteristics," ESD-TR-74-175, June 1974.
- 4. K. Sreenivasan and A. J. Kleinman, "Construction and Applications of Representative Synthetic Workloads," ESD-TR-73-212, August 1973.