STP140N6F7

N-channel 60 V, 0.0031 Ω typ., 80 A STripFET™ F7 Power MOSFET in a TO-220 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	Ртот
STP140N6F7	60 V	0.0035 Ω	80 A	158 W

- $\bullet \qquad \text{Among the lowest $R_{\text{DS(on)}}$ on the market} \\$
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STP140N6F7	140N6F7	TO-220	Tube

Contents STP140N6F7

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	5
3	Test cir	·cuits	7
4	Packag	e information	8
	4.1	TO-220 type A package information	9
5	Revisio	n history	11

STP140N6F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V_{DS}	Drain-source voltage	60	V	
V_{GS}	Gate-source voltage	±20	V	
I _D ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	80	А	
ID.	Drain current (continuous) at T _{case} = 100 °C	80	A	
I _{DM} ⁽²⁾	Drain current (pulsed)	320	Α	
Ртот	Total dissipation at T _{case} = 25 °C	158	W	
E _{AS} ⁽³⁾	Single pulse avalanche energy	160	mJ	
T _{stg}	Storage temperature	-55 to 175		
Tj	Maximum junction temperature	175	°C	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.95	9 0 AA7
R _{thj-amb}	R _{thj-amb} Thermal resistance junction-ambient		°C/W

⁽¹⁾ Current is limited by package.

 $^{^{\}left(2\right) }$ Pulse width is limited by safe operating area.

 $^{^{(3)}}$ Starting T_j = 25°C, I_D = 40 A, V_{DD} = 30 V.

Electrical characteristics STP140N6F7

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	60			>
	Zoro goto voltago drain	$V_{GS} = 0 \text{ V}, V_{DS} = 60 \text{ V}$			1	
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 60 \text{ V},$ $T_{case} = 125 \text{ °C}$			100	μΑ
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = +20 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 40 A		0.0031	0.0035	Ω

Table 5: Dynamic

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	3100	1	
Coss	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$	-	1520	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0 V	-	193	-	F -
Q_g	Total gate charge	$V_{DD} = 30 \text{ V}, I_{D} = 80 \text{ A},$	-	55	-	
Q _{gs}	Gate-source charge	V _{GS} = 10 V (see <i>Figure 14:</i>	-	19	-	nC
Q_{gd}	Gate-drain charge	"Gate charge test circuit")	-	18	-	

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, I_{D} = 40 \text{ A}$	-	24	-	
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Switching times	-	68	-	
t _{d(off)}	Turn-off delay time	test circuit for resistive load"	-	39	-	ns
t _f	Fall time	and Figure 18: "Switching time waveform")	-	20	-	

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 80 \text{ A}$	-		1.2	V
t _{rr}	Reverse recovery time	I _{SD} = 80 A, di/dt = 100 A/μs,	-	42.4		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 48 V (see Figure 15: "Test circuit for inductive	-	38.2		nC
I _{RRM}	Reverse recovery current	load switching and diode recovery times")	-	1.8		Α

Notes:

 $^{^{(1)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPG310320150943VGS $I_D = 250 \, \mu A$ 1.10 1.00 0.90 0.80 0.70 0.60 0.50 -75 25 75 125 T_{j} (°C)

Figure 10: Normalized on-resistance vs temperature R_{DS(on)} (norm.) GIPG310320151015RDS 1.80 $V_{GS} = 10 \text{ V}$ 1.60 1.40 1.20 1.00 0.80 0.60 25 75 T_j (°C) 125 -25

STP140N6F7 Test circuits

AM01468v1

3 Test circuits

Figure 14: Gate charge test circuit

Voc

Vi≤Vos

Vi≤Vos

Vi ≤Vos

Vi ≤Vos

100 Ω

Voc

Voc

AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times

Figure 16: Unclamped inductive load test circuit

Figure 17: Unclamped inductive waveform

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of $\mathsf{ECOPACK}^{\otimes}$ packages, depending on their level of environmental compliance. $\mathsf{ECOPACK}^{\otimes}$ specifications, grade definitions and product status are available at: www.st.com. $\mathsf{ECOPACK}^{\otimes}$ is an ST trademark.

STP140N6F7 Package information

4.1 TO-220 type A package information

Figure 19: TO-220 type A package outline

10/12

Table 8: TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10	10 10.40	
е	2.40	2.40 2.70	
e1	4.95	4.95 5.15	
F	1.23	1.32	
H1	6.20	6.60	
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

STP140N6F7 Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
07-Apr-2015	1	First release.
40 May 2045		In section 2.1 Electrical characteristics (curves):
19-May-2015	2	- updated Figure 8: Capacitance variations

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

