Mean & SD Conversions

This Includes:

1) Standard Error between two groups to SD (σ):

If you want to estimate standard deviation (σ) from Standard Error (SE) between two groups, define the following values:

- a) Standard Error between two groups
- b) Sample size of Experimental group (Ne)
- c) Sample size of Control group (Nc)

Put each of which into the corresponding cell of the Inputs >> click calculate >> you'll get the standard deviation for both groups in the Outputs squares

Inputs	
SE to find the SD	
SE	
Ne	
Nc	

Output	
σ	

The output was calculated upon the following equation:

$$SD = \frac{SE}{\sqrt{\frac{1}{N_E} + \frac{1}{N_C}}}$$

Example:

$$SD = \frac{1.37}{\sqrt{\frac{1}{25} + \frac{1}{22}}} = 4.69$$

2) P- value between two groups to $SD(\sigma)$:

If you want to estimate standard deviation (σ) from P-value between two groups, define the following values:

- a) P-value (between two groups)
- b) Sample size of Experimental group (Ne)
- c) Sample size of Control group (Nc)
- d) Difference in means (two groups)

Inputs 1	
P-value between groups	
p-value	
Ne	
Nc	
Output 1	
t-value	

Inputs 2	
t-value to find the SE	
Output 2	

Inputs 3	
SE to find the SD	
Output 3	

- 1) Put P- value, (Ne) and (Nc) into the corresponding cell of Input 1 >> Output 1 (t-value)
- 2) Put difference in means into the corresponding cell in the Input 2 >> Standard Error(SE)

Note:

*Once you add Ne,Nc, t-value and SE, they'll directly transported into their other similar cells

The final output will be Standard deviation (σ) for both groups

The output was calculated upon the following equations:

$$SE = \frac{MD}{t} \text{ then } SD = \frac{SE}{\sqrt{\frac{1}{N_E} + \frac{1}{N_C}}}$$

3) Confidence Intervals between two groups to $SD(Cls)(\sigma)$:

If you want to estimate standard deviation (σ) from Confidence Intervals between two groups, define the following values:

- a) Upper limit
- b) Lower limit
- c) Sample size of Experimental group (Ne)
- d) Sample size of Control group (Nc)
- e) % CIs used(Usually 95% CI)

Input 1	
Confidence Intervals to find the SD	
Upper limit	
Lower limit	
% CI used	
Ne	
Nc	
divisor	

Inputs 2	
SE to find the SD	
SE	
Ne	
Nc	

Output 2	
σ	

Output 1	
SE	

- 1) Put Upper limit, Ne and Nc into the corresponding cell of Input 1 >> Output 1 (SE)
- * Note:

Once you add Ne, Nc and Calculate SE in output 1 >> these data will be transported into the corresponding cells of the output 2

Finally, you'll get the standard deviation(σ) for both groups in the Outputs squares

The Output was calculated upon the following equations:

SE = (upper limit - lower limit)/3.92

$$SD = \frac{SE}{\sqrt{\frac{1}{N_E} + \frac{1}{N_C}}}$$

(1) 1. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. 2008.