范峻铭 22121286

全部代码同步在github: https://github.com/HatcherRobotics/intelligent-information
-processing

1.用SVM实现胎儿心功能图数据集三分类

SVM-输出训练集的	准确率为:	0.93882	35294117647	,
SVM-输出测试集的	准确率为:	0.88262	91079812206	
pr	recision	recall	f1-score	support
1	0.93	0.94	0.94	326
2	0.68	0.63	0.66	68
3	0.78	0.78	0.78	32
accuracy			0.88	426
macro avg	0.80	0.79	0.79	426
weighted avg	0.88	0.88	0.88	426

使用二次多项式进行拟合, gamma选择auto, 正则化系数设为1, 模型收敛, 没有过拟合现象, 在训练集和测试集上都达到了较高的精度。

2.用SVM实现胎儿心功能图数据集十分类

			47058823529 43661971831	
3/11-制山炒风场	SVM-输出测试集的准确率为: precision		f1-score	support
1	0.60	0.63	0.61	75
2	0.72	0.83	0.77	122
3	0.60	0.75	0.67	12
4	0.73	0.57	0.64	14
5	0.56	0.38	0.45	13
6	0.87	0.75	0.81	64
7	0.81	0.81	0.81	42
8	0.88	0.88	0.88	16
9	0.67	0.80	0.73	15
10	0.81	0.64	0.72	53
accuracy			0.73	426
macro avg weighted avg	0.72 0.74	0.70 0.73	0.71 0.73	426 426

使用二次多项式进行拟合,gamma选择auto,正则化系数设为1,结果出现一定程度过拟合,训练集上表现不错,测试集上表现一般。

3.超参数对算法性能的影响

全部对比实验放在文件夹内。

(1)核函数

			pory		IIIICai	101		signion	d.
训练	集准确率		0.950		0.895	0.78	32	0.782	
测试	集准确率		0.894		0.869	0.76	55	0.765	
(2)拟	合多项式的 1	的维度 2	3	4	5	6	7	10	15
			<u> </u>	4	<u> </u>				
训练集准确率	0.823	0.863	0.874	0.880	0.885	0.892	0.895	0.916	0.941
测	0.800	0.850	0.857	0.885	0.889	0.892	0.887	0.897	0.897

linear

sigmoid

nolv

从对比表格可以看出,在一定范围内增加多项式的维度,可以增强其拟合能力,当维度过高时会出现过拟合现象,训练集精度提升但测试集已无大的提升。

(3)gamma

试集准确率

	scale	auto	
训练集准确率	0.874	0.942	
测试集准确率	0.857	0.885	

gamma是poly等函数的核系数,如果选择scale那么其值为1 / (n_features * X.var()),如果选择auto则为1 / n_features,如果选择其他浮点数则必须大于等于0。明显能看出选择auto的效果更好。

(4)正则化系数C

	0.01	0.1	1	2	10
训练集准确率	0.892	0.895	0.893	0.895	0.894

	0.01	0.1	1	2	10	
测试集准确率	0.883	0.869	0.871	0.871	0.873	

施加合适的正则化系数有助于提升模型的准确率,但是惩罚过大也会影响其正常收敛。 (5)决策函数

	ovo	ovr	
训练集准确率	0.895	0.895	
测试集准确率	0.869	0.869	

"ovo"指"one-one"形式,"ovr"指"one-rest"形式,在本次实验中两者间的精度并没有明显差别。

(6)coefo

	0	1	2	3	
训练集准确率	0.874	0.886	0.892	0.891	
测试集准确率	0.857	0.873	0.894	0.890	

coefo是核函数的独立项,实验中取0到4,在取2时效果最好。