Giải bài toán PESP ứng dụng trong lập lịch tàu chạy bằng phương pháp SAT

Sinh viên Phạm Văn Phúc

Giảng viên hướng dẫn TS. Tô Văn Khánh

Lớp K66-CC

Ngành Công nghệ thông tin

Nội dung chính

- 1. Giới thiệu & Đặt vấn đề
- 2. Giải pháp cải tiến
- 3. Thực nghiệm & Đánh giá
- 4. Kết luận

1.1 Bài toán lập lịch tàu điện

1: Nhật

2: Đức

3: Việt Nam

1.1 Bài toán lập lịch tàu điện

- Thời gian hồi phục
- Tính kết nối
- Thời gian bảo dưỡng cuối trạm
- Thời gian giãn cách tối thiểu

1.1 Bài toán lập lịch tàu điện

- Thời gian hồi phục
- Tính kết nối
- Thời gian bảo dưỡng cuối trạm
- Thời gian giãn cách tối thiểu

2.1 Mô hình PESP

PESP¹ được giới thiệu bởi Serafini và Ukovich, nhằm giải quyết bài toán lập lịch tuần hoàn.

•
$$\pi_B - \pi_A \in [5, 15]_{60}$$

•
$$\pi_C - \pi_A \in [0, 10]_{60}$$

$$[5,15]_{60}=\ldots\cup[-55,-45]\cup[5,15]\cup[65,75]\cup\ldots$$

¹Periodic Event Scheduling Problem

2.1 Mô hình PESP

PESP thuộc lớp bài toán *thỏa mãn* ràng buộc².

Được chứng minh là bài toán NP-hard³

²Constraint satisfaction problem

³M. A. Odijk, Construction of Periodic Timetables. Pt. 1. A Cutting Plane Algorithm. TU Delft, 1994

2.2 Giải pháp hiện tại

Tất cả phương pháp giải *thỏa mãn ràng buộc* đều có thể giải bài toán PESP.

- Thuật toán quay lui
- Local Search
- Quy hoạch số nguyên (Mixed Integer Programming)

2.3 Hạn chế

Độ phức tạp thời gian cao, không thể giải những bài toán đủ khó đáp ứng nhu cầu thực tế.

2.1 Tiến bộ của SAT Solver

SAT Solver hiện tại đã giải được bài toán hàng triệu mệnh đề.

- Social Golfer Problem
- Nurse Scheduling Problem
- Course Scheduling Problem

2.2 Phương pháp giải bài toán PESP sử dụng SAT Solver

2.3 Giải bài toán PESP sử dụng SAT Solver

Mã hóa trực tiếp

Sinh ra mệnh đề loại tất cả điểm không thỏa mãn.

$$a = (A, B, [2, 4]_8)$$

→ Cần chiến lược tốt hơn để loại vùng không thỏa mãn

2.4 Giải bài toán PESP sử dụng SAT Solver

Mã hóa thứ tự

Sinh ra mệnh đề loại tất cả các hình chữ nhật.

$$a = (A, B, [2, 4]_8)$$

→ Hình chữ nhật dễ mô tả trong không gian logic

3.1 Dữ liệu thực nghiệm

PESPlib⁴:

- 22 file dữ liêu được chuẩn hóa
- Được sử dụng trong nhiều nghiên cứu⁵⁶

⁴https://timpasslib.aalto.fi/

⁵M. Goerigk and A. Schöbel, "An empirical analysis of robustness concepts for timetabling," Erlebach, vol. 14, pp. 100–113, 2010

⁶J.-W. Goossens, "Models and algorithms for railway line planning prob- lems," p. , 2004.

3.2 Kết quả thực nghiệm

Table 2: PESP instances and corresponding times to solve

instance	pespsolve /s	direct + riss / s	ordered + riss / s	speedup
swg_3	66	50	2	33
swg_2	512	37	2	256
swg_4	912	752	8	114
fernsym	2,035	294	7	290
swg_1	>86,400	18	7	>12,342
seg_1	>86,400	16	10	>8,640
seg_2	>86,400	>86,400	11	>7,854

3.3 Kết quả thực nghiệm

Table 2: PESP instances and corresponding times to solve

instance	pespsolve / s	direct + riss / s	ordered + riss / s	speedup
swg_3	66	50	2	33
swg_2	512	37	2	256
swg_4	912	752	8	114
fernsym	2,035	294	7	290
swg_1	>86,400	18	7	>12,342
seg_1	>86,400	16	10	>8,640
seg_2	>86,400	>86,400	11	>7,854

Kết luận

- Cùng với sự tiến bộ của SAT Solver, ta có thể giải các bài toán PESP phức tạp trong một khoảng thời gian hợp lý.
- Phương pháp vẫn tiếp được cải tiến bởi nhiều nghiên cứu.

Trân trọng cảm ơn thầy cô đã lắng nghe