On a neighborhood of an elliptic curve and a gluing construction of K3 surfaces

Takayuki Koike (joint w/Takato Uehara)

Department of Mathematics, Graduate School of Science, Osaka City University

July 18, 2019

- 1 Main results
- 2 Motivation from neighborhoods theories
- 3 Construction of the K3 surface X
- 4 22 generators of $H_2(X,\mathbb{Z})$ and the period
- 5 Towards the "moduli space" of K3 surfaces constructed by our method

- 1 Main results
- 2 Motivation from neighborhoods theories
- 3 Construction of the K3 surface X
- 4 22 generators of $H_2(X,\mathbb{Z})$ and the period
- 5 Towards the "moduli space" of K3 surfaces constructed by our method

Goal of this talk:

To construct a (non-projective, non-Kummer) K3 surface X containing a real 1-parameter family of Levi-flat hypersurfaces by holomorphically patching two open complex surfaces, say M and M'. Also, to investigate how large is the set of all K3 surfaces constructed by this "gluing" method.

- M (M') is the complement of a (appropriate) tubular neighborhood of an elliptic curve in the blow-up S (S') of the projective plane \mathbb{P}^2 at (appropriate) nine points.
- lacktriangle Neither S nor S' admit elliptic fibration structure (nine points are "general")
- lacktriangle In order to patch M and M' holomorphically, we need to take "nice neighborhood". For this purpose, we need to choose nine points carefully.
- Use a technique from Complex Dynamics for taking "nice neighborhood" (Arnol'd's theorem).

Remarks on our construction of K3 surfaces

- In our construction, "the tab for gluing" $W^* := M \cap M'$ is an open submanifold of X which admits an annulus bundle structure over an elliptic curve.
- $\blacksquare \exists \Phi \colon W^* \to I \ (I \subset \mathbb{R}: \text{ an interval}): \text{ pluriharmonic }.$
- $H_t := \Phi^{-1}(t)$ is a compact Levi-flat hypersurface of $W^*(\subset X)$ which is diffeomorphic to $S^1 \times S^1 \times S^1$ for each $t \in I$.
- For each $t \in I$, any leaf of H_t is biholomorphic to \mathbb{C} or $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$, and is dense in H_t .

Main results

We constructed K3 surfaces in such a manner with independent (at least) 19 parameters. As a result, we showed for example:

Theorem (K-, T. Uehara)

There exists a deformation $\pi\colon\mathcal{X}\to B$ of K3 surfaces over a 19 dimensional complex manifold B with injective Kodaira-Spencer map such that each fiber $X_b:=\pi^{-1}(b)$ admits a holomorphic map $F_b\colon\mathbb{C}\to X_b$ with the following property: The Euclidean closure of $F_b(\mathbb{C})$ is a real analytic compact hypersurface of X_b . Especially, $F_b(\mathbb{C})$ is Zariski dense whereas it is not Euclidean dense. X_b is non-Kummer and non-projective for general $b\in B$.

" F_b " can be constructed by considering the immersion of a leaf of H_t into $W^* \subset X$ for each $X = X_b$.

- 1 Main results
- 2 Motivation from neighborhoods theories
- 3 Construction of the K3 surface X
- 4 22 generators of $H_2(X,\mathbb{Z})$ and the period
- 5 Towards the "moduli space" of K3 surfaces constructed by our method

Let

- $lue{S}$ be a non-singular complex surface, and
- C be a compact complex curve embedded in S with $(C^2) := \deg N_{C/S} = c_1(N_{C/S}) = 0.$

There exists a (small) neighborhood W of C in S which is <u>diffeomorphic</u> to a neighborhood of the zero section in $N_{C/S}$ (tubular neighborhood theorem).

Our original interest:

What kind of complex analytic structure does W have?

Remark

In general, $ot \exists W$ which is $ot \underline{biholomorphic}$ to a neighborhood of the zero section in $N_{C/S}$.

Ueda's example

Fix $\tau \in \mathbb{C}$ with $\operatorname{Im} \tau > 0$ and $f(w) = a_1 w + a_2 w^2 + \cdots \in \mathcal{O}_{\mathbb{C},0}$ ($|a_1| = 1$). Take a neighborhood \widetilde{W} of $\mathbb{C} \times \{0\}$ in $\mathbb{C} \times \mathbb{C}$.

$$W := \widetilde{W} / \sim$$
, $(z, w) \sim (z + 1, f(w)) \sim (z + \tau, w)$

 $C \subset W$: the image of $\mathbb{C} \times \{0\}$ (smooth elliptic curve)

Fact [K-, N. Ogawa, arXiv:1808.10219]

C admits a holomorphic tubular neighborhood (i.e. $\exists W$ which is biholomorphic to a neighborhood of the zero section) iff f is linearizable around the origin.

Our main interest is in the following example:

Take a smooth elliptic curve $C_0 \subset \mathbb{P}^2$ and nine points $Z := \{p_1, p_2, \dots, p_9\} \subset C_0$.

- lacksquare $S:=\mathrm{Bl}_Z\mathbb{P}^2\xrightarrow{\pi}\mathbb{P}^2$: blow-up at Z
- $C := \pi_*^{-1} C_0$: the strict transform of C_0

Note that $N_{C/S} \cong \mathcal{O}_{\mathbb{P}^2}(3)|_{C_0} \otimes \mathcal{O}_{C_0}(-p_1-p_2-\cdots-p_9)$. When Z is special, S is an elliptic surface $(N_{C/S} \in \operatorname{Pic}^0(C)$ is torsion in this case). We are interested in the case where Z is general.

Theorem (Arnol'd (1976))

Assume C is a smooth elliptic curve and $N_{C/S} \in \operatorname{Pic}^0(C)$ is Diophantine (i.e.

 $\exists A, \alpha > 0$ such that $\operatorname{dist}(\mathbb{I}_C, N_{C/S}^{\otimes n}) \geq A \cdot n^{-\alpha}$ for $\forall n > 0$, where dist is the Euclidean distance of $\operatorname{Pic}^0(C)$).

Then C admits a holomorphic tubular neighborhood.

For the previous Ueda's example, this theorem can be directly deduced from Siegel's linearization theorem.

Question

For the previous example $(C_0, Z = \{p_1, p_2, \dots, p_9\}, C, S)$, does C admit a holomorphic tubular neighborhood when $N_{C/S} \in \text{Pic}^0(C)$ is <u>not</u> Diophantine?

- 1 Main results
- 2 Motivation from neighborhoods theories
- 3 Construction of the K3 surface X
- 4 22 generators of $H_2(X,\mathbb{Z})$ and the period
- 5 Towards the "moduli space" of K3 surfaces constructed by our method

Let $(C_0, Z = \{p_1, p_2, \dots, p_9\}, C, S)$ and $(C'_0, Z' = \{p'_1, p'_2, \dots, p'_9\}, C', S')$ be as in the previous section.

Assumption

- $\exists g \colon C \cong C'$
- $N_{C/S} = g^* N_{C'/S'}^{-1}$
- $lacksquare N_{C/S} \in \operatorname{Pic}^0(C)$ is Diophantine

Then, it follows from Arnol'd's theorem that there exist holomorphic tubular neighborhoods $W \subset S$ of C and $W' \subset S'$ of C'.

Take a local charts systems $\{(W_j,(z_j,w_j))\}$ of W and $\{(W'_j,(z'_j,w'_j))\}$ of W' such that

$$\begin{cases} z_j = z_k + A_{jk} \\ w_j = t_{jk} \cdot w_k \end{cases}, \begin{cases} z'_j = z'_k + A_{jk} \\ w'_j = t_{jk}^{-1} \cdot w'_k \end{cases}$$

for some constants $A_{jk} \in \mathbb{C}$ and $t_{jk} \in U(1) := \{t \in \mathbb{C} \mid |t| = 1\}$ on $W_{jk} := W_j \cap W_k$ and $W'_{jk} := W'_j \cap W'_k$ as follows:

- $\Phi: W \to \mathbb{R}: (z_i, w_i) \mapsto |w_i|:$ globally defined on W.
- $lack \Phi' \colon W' o \mathbb{R} \colon (z'_i, w'_i) \mapsto |w'_i| \colon \text{globally defined on } W'.$
- By scaling, we may assume that $\Phi^{-1}([0,R]) \subseteq W, (\Phi')^{-1}([0,R']) \subseteq W'$ (R,R'>1).
- Replace W with $\Phi^{-1}([0,R))$ and W' with $(\Phi')^{-1}([0,R'))$.

Define $M \subset S$ and $M' \subset S'$ by

$$M:=S\setminus\Phi^{-1}\left(\left[0,\frac{1}{R'}\right]\right),\ M':=S'\setminus(\Phi')^{-1}\left(\left[0,\frac{1}{R}\right]\right).$$

Identify $W\cap M=\Phi^{-1}((1/R',R))$ and $W'\cap M'=(\Phi')^{-1}((1/R,R'))$ by the isomorphism $f\colon \Phi^{-1}((1/R',R))\to (\Phi')^{-1}((1/R,R')):(z_j,w_j)\mapsto \left(g(z_j),\frac{1}{w_j}\right)$ and denote it by W^* .

 $X := M \cup_{W^*} M'$: a compact complex manifold obtained by patching M and M' via f.

Observation

 W^* admits a natural foliation $\mathcal F$ whose leaves are locally defined by " $\{w_j=\text{constant}\}$ ". As each leaf is biholomorphic to $\mathbb C$ or $\mathbb C^*$, we have a holomorphic map $F\colon\mathbb C\to W^*\subset X$ as in Main Theorem.

It is easily observed that $\pi_1(X) = 0$. Therefore, for proving that X is a K3 surface, it is sufficient to show the following:

Proposition

There exists a nowhere vanishing holomorphic 2-form σ on X such that

$$\sigma|_{W^* \cap W_j} = \frac{dz_j \wedge dw_j}{w_j}$$

holds on each $W^* \cap W_j \subset W^* \subset X$.

Key Lemma

$$H^0(W^*, \mathcal{O}_{W^*}) = \mathbb{C}.$$

Key Lemma is shown by pulling back a holomorphic function on W^* by $F: \mathbb{C} \to W^*$ and considering the Maximum principle.

Proof of Proposition: As $K_S = -C$, there exists a meromorphic 2-form η on S with $\operatorname{div}(\eta) = -C$. It follows from Key Lemma that the function

$$\frac{\eta|_{W^*}}{\left(\frac{dz_j \wedge dw_j}{w_j}\right)}$$

is a constant map. Thus we may assume that $\eta|_{W^*}=\frac{dz_j\wedge dw_j}{w_j}$. Similarly, one can show the existence of a meromorphic 2-form η' on S' with $\operatorname{div}(\eta')=-C'$ such that $\eta'|_{W^*}=\frac{dz_j'\wedge dw_j'}{w'}$.

 σ is obtained by patching $\eta|_M$ and $-\eta'|_{M'}$.

"Degrees of freedom" in our construction

- Choice of C_0, C'_0 , and a Diophantine line bundle L on C_0 (dimension=1 because of $C_0 \cong C'_0$ and Dioph. condition).
- Choice of points $p_1, p_2, \ldots, p_8 \in C_0$ (dimension=8).
- Choice of points $p'_1, p'_2, \ldots, p_8' \in C'_0$ (dimension=8).
- Points $p_9 \in C_0$ and $p_9' \in C_0'$ are automatically decided by the condition $N_{C/S} = g^*N_{C'/S'}^{-1} = L$ (dimension=0).
- Choice of an isomorphism $g: C \cong C'$ (dimension=1).
- Choice of (the "scaling" of) the coordinates w_j 's and w_j 's (R, R', ..., dimension=1)

Remark

Independence of these 19 parameters (in the sense of Kodaira–Spencer's local deformation theory) is non-trivial.

- 1 Main results
- 2 Motivation from neighborhoods theories
- 3 Construction of the K3 surface X
- 4 22 generators of $H_2(X,\mathbb{Z})$ and the period
- 5 Towards the "moduli space" of K3 surfaces constructed by our method

$$A_{lpha,eta}, A_{eta,\gamma}, A_{\gamma,lpha}, \ B_{lpha}, B_{eta}, B_{\gamma}, \ C_{1,2}, C_{2,3}, \dots, C_{7,8} \ ext{and} \ C_{6,7,8}, \ C_{1,2}', C_{2,3}', \dots, C_{7,8}' \ ext{and} \ C_{6,7,8}'$$

which generates $H_2(X,\mathbb{Z})$, and compute the integration of the nowhere vanishing 2-form σ along these.

In the following sense, these 22 cycles can be regarded as a "marking" of X:

$$H_2(X,\mathbb{Z}) = \langle A_{\alpha,\beta}, B_{\gamma} \rangle \oplus \langle A_{\beta,\gamma}, B_{\alpha} \rangle \oplus \langle A_{\gamma,\alpha}, B_{\beta} \rangle \oplus \langle C_{\bullet} \rangle \oplus \langle C_{\bullet}' \rangle.$$

Let α, β and γ be loops in W^* defined as follows:

- $A_{\alpha,\beta} := \alpha \times \beta \subset W^* \subset X$
- $A_{\beta,\gamma} := \beta \times \gamma \subset W^* \subset X$
- $A_{\gamma,\alpha} := \gamma \times \alpha \subset W^* \subset X$

As $A_{\alpha,\beta},A_{\beta,\gamma}$ and $A_{\gamma,\alpha}$ are included in W^* and $\sigma|_{W^*}=\frac{dz_j\wedge dw_j}{w_j}$, one can explicitly compute the integrals.

where

- ullet au is a complex number with $\mathrm{Im} au > 0$ such that $C \cong \mathbb{C}/\langle 1, au \rangle$,
- a_{α} (resp. a_{β}) is a real number such that the monodromy of the flat line bundle $N_{C/S}$ along the loop α (resp. β) is $\exp(2\pi\sqrt{-1}\cdot a_{\alpha})$ (resp. $\exp(2\pi\sqrt{-1}\cdot a_{\beta})$).

Let e_{ν} (resp. e'_{ν}) be the exceptional divisor corresponding to the point p_{ν} (p'_{ν}) in S (resp. S'). Denote by h (resp. h') the preimage of a hyperplane in S (resp. S').

$$C_{1,2}\subset M\subset X$$
 is defined by $C_{1,2}:=(e_1\setminus \Delta_1^{(\varepsilon)})\cup T_{1,2}^{(\varepsilon)}\cup (e_2\setminus \Delta_2^{(\varepsilon)}).$

Note that $C_{1,2} \sim e_1 - e_2$ holds when we regard $C_{1,2} \subset M$ as a cycle of S.

Similarly, we define

- lacksquare $C_{2,3}, C_{3,4}, \cdots, C_{7,8}$, and $C_{6,7,8} \subset M$ ($C_{6,7,8} \sim -h + e_6 + e_7 + e_8$ as a cycle of S),
- $C'_{1,2}, C'_{2,3}, \cdots, C'_{7,8}$, and $C'_{6,7,8} \subset M'$.

As $C_{\bullet} \setminus W^*$ (resp. $C'_{\bullet} \setminus W^*$) is an analytic subset of $M \setminus W^*$ (resp. $M' \setminus W^*$), we have that

$$\int_{C_{\bullet}} \sigma = \int_{C_{\bullet} \cap W^*} \frac{dz_j \wedge dw_j}{w_j}, \quad \int_{C'_{\bullet}} \sigma = \int_{C'_{\bullet} \cap W^*} \frac{dz'_j \wedge dw'_j}{w'_j}.$$

By using this description, we can calculate the integrals.

Denote by q_0 a inflection point of C, q'_0 a inflection point of C', q_{ν} the intersection point $C \cap e_{\nu}$, and by q'_{ν} the intersection point $C' \cap e'_{\nu}$. Then we have

$$\bullet$$
 $\frac{1}{2\pi\sqrt{-1}}\int_{C_{\nu,\nu+1}}\sigma=\int_{q_{\nu}}^{q_{\nu+1}}dz_j\ (1\leq\nu\leq7),$

$$lacksquare rac{1}{2\pi\sqrt{-1}} \int_{C'_{
u,
u+1}} \sigma = \int_{q'_
u}^{q'_{
u+1}} dz'_j \ (1 \le
u \le 7),$$

In what follows, we simply denote $\int_{q_{
u}}^{q_{
u+1}} dz_j$ by " $q_{
u+1} - q_{
u}$ ", for example.

 B_{α} is defined as follows by using the fact that $\pi_1(M) = \pi_1(M') = 0$.

Similarly, we define B_{β} .

At this moment, we do not know how to calculate the integrals $\int_{B_{\alpha}} \sigma$ and $\int_{B_{\beta}} \sigma$.

 B_{γ} is defined by $B_{\gamma} := (e_9 \setminus \Delta_9^{(\varepsilon)}) \cup T_9^{(\varepsilon)} \cup (e_9' \setminus \Delta_9^{(\varepsilon)}).$

By the same argument as in the C_{\bullet} case, we have that

$$\frac{1}{2\pi\sqrt{-1}}\int_{B_{\gamma}}\sigma = \int_{g(g_0)}^{q_9'}dz_j' \ (= "p_9' - g(p_9)").$$

lattice	cycle	$\frac{1}{2\pi\sqrt{-1}}\int \sigma$	corresponding parameter
U	$A_{eta,\gamma}$	au	choice of C_0 (and C_0^\prime)
	B_{α}	???	choice of w_j 's $(R, R',)$
U	$A_{\gamma,\alpha}$	1	_
	B_{β}	???	choice of w_j 's $(R, R',)$
	$C_{1,2}$	" p_2-p_1 " in C	choice of p_2-p_1
	$C_{2,3}$	" p_3-p_2 " in C	choice of p_3-p_2
$E_8(-1)$:	i i	:
	$C_{7,8}$	" p_8-p_7 " in C	choice of p_8-p_7
	$C_{6,7,8}$	" $p_6 + p_7 + p_8$ " in C	choice of $p_6 + p_7 + p_8$
	$C'_{1,2}$	" $p_2'-p_1'$ " in C'	choice of $p_2^\prime - p_1^\prime$
	$C'_{2,3}$	" $p_3' - p_2'$ " in C'	choice of $p_3^\prime - p_2^\prime$
$E_8(-1)$:	:	:
	$C'_{7,8}$	" $p_8' - p_7'$ " in C'	choice of $p_8^\prime - p_7^\prime$
	$C'_{6,7,8}$	" $p_6' + p_7' + p_8'$ " in C	choice of $p_6'+p_7'+p_8'$
U	$A_{\alpha,\beta}$	$a_{\beta} - \tau \cdot a_{\alpha}$	choice of p_9 and p_9^\prime (i.e. $N_{C/S}$ and N_{C^\prime/S^\prime})
	B_{γ}	" $p_9' - g(p_9)$ "	choice of $g \colon C \cong C'$

- 1 Main results
- 2 Motivation from neighborhoods theories
- 3 Construction of the K3 surface X
- 4 22 generators of $H_2(X,\mathbb{Z})$ and the period
- 5 Towards the "moduli space" of K3 surfaces constructed by our method

- Fix a Diophantine pair $(p,q) \in \mathbb{R}^2$. (i.e. $-\log \operatorname{dist}((np,nq),\mathbb{Z}^2) = O(\log n)$ as $n \to \infty$)
- We first consider the subspace $\Xi_{(p,q)}$ of the period domain $\mathcal{D}_{\mathrm{period}}$ which is defined by considering all the K3 surfaces constructed by our method with

$$N_{C/S} \mapsto [p + q\tau] \in \mathbb{C}/\langle 1, \tau \rangle$$

by the isomorphism $\operatorname{Pic}^0(C) \cong \mathbb{C}/\langle 1, \tau \rangle$ (τ moves).

• $\dim \Xi_{(p,q)} = 19$, with coordinates system

$$(\tau, p_1, p_2, \ldots, p_8, p'_1, p'_2, \ldots, p'_8, s, x),$$

where (s, x) are the parameter for the gluing.

■ s is defined by changing $g \colon C \to C'$ with the composition $g \circ P_s$, where P_s is the automorphism of C defined by " $z \mapsto z + s$ ".

Lemma

$$\Xi_{(p,q)}\subset v_{(p,q)}^{\perp}$$
 , where $v_{(p,q)}:=A_{lphaeta}+p\cdot A_{eta\gamma}-q\cdot A_{\gammalpha}$

lattice	cycle	$\frac{1}{2\pi\sqrt{-1}}\int \sigma$	corresponding parameter
U	$A_{eta,\gamma}$	au	choice of C_0 (and C_0^\prime)
	B_{α}	???=: $x - 2\tau$	choice of w_j 's $(R, R',)$
U	$A_{\gamma,\alpha}$	1	_
	B_{β}	???=: $y-2$	choice of w_j 's $(R, R',)$
	$C_{1,2}$	" $p_2 - p_1$ " in C	choice of p_2-p_1
	$C_{2,3}$	" $p_3 - p_2$ " in C	choice of $p_3 - p_2$
$E_8(-1)$:	:	:
	$C_{7,8}$	" $p_8 - p_7$ " in C	choice of p_8-p_7
	$C_{6,7,8}$	" $p_6 + p_7 + p_8$ " in C	choice of $p_6 + p_7 + p_8$
	$C'_{1,2}$	" $p_2' - p_1'$ " in C'	choice of $p_2^\prime - p_1^\prime$
	$C'_{2,3}$	" $p_3' - p_2'$ " in C'	choice of $p_3^\prime - p_2^\prime$
$E_8(-1)$:	:	:
	$C'_{7,8}$	" $p_8' - p_7'$ " in C'	choice of $p_8' - p_7'$
	$C'_{6,7,8}$	" $p_6' + p_7' + p_8'$ " in C	choice of $p_6' + p_7' + p_8'$
U	$A_{\alpha,\beta}$	$a_{eta} - au \cdot a_{lpha}$	choice of p_9 and p_9' (i.e. $N_{C/S}$ and $N_{C'/S'}$)
	B_{γ}	$p_0' - q(p_0)'' =: s$	choice of $g: C \cong C'$

Set

- $x := 2\tau + \frac{1}{2\pi\sqrt{-1}} \int_{B_{\alpha}} \sigma$ (a coordinate)
- $y := 2 + \frac{1}{2\pi\sqrt{-1}} \int_{B_{\beta}} \sigma \ (\text{"dummy"})$

The relation between x and y can be obtained by the relation

$$0 = (\sigma, \sigma) = 2\tau x + 2y + (\exists quadric function of \tau, q - p\tau, p_1 - p_2, ...)$$

The (normalized) volume is:

$$\operatorname{vol}(\sigma) := (\sigma, \overline{\sigma}) = 2\operatorname{Re}(\overline{\tau}x) + 2\operatorname{Re}(y) + (\exists \mathsf{quadric\ function\ of\ } \tau, q - p\tau, p_1 - p_2, \ldots)$$

 $\mathbf{vol}(\sigma)$ depends linearly on the coordinate x if one fix the other 18 coordinates.

Via the Poincare duality,

$$\frac{1}{2\pi\sqrt{-1}}\sigma = (2(q-p\tau)+s)A_{\alpha\beta} + xA_{\beta\gamma} + yA_{\gamma\alpha}
+ \tau B_{\alpha} + B_{\beta} + (q-p\tau)B_{\gamma}
+ \sum_{j=1}^{7} \exists c_{j,j+1}C_{j,j+1} + \exists c_{6,7,8}C_{6,7,8}
+ \sum_{j=1}^{7} \exists c'_{j,j+1}C'_{j,j+1} + \exists c'_{6,7,8}C'_{6,7,8}$$

 c_{\bullet} 's depends only on (p_1, p_2, \dots, p_8) , and c'_{\bullet} 's depends only on $(p'_1, p'_2, \dots, p'_8)$.

Theorem (K-, T. Uehara)

 $\exists \widehat{V}_{(p,q)} \colon \mathbb{H}_{ au} imes \mathbb{C}^8_c imes \mathbb{C}^8_c imes \mathbb{C}^8_c imes \mathbb{C}_s o \mathbb{R}_{\geq 0}$: conti. function depending only on (p,q) such that,

$$\forall \widehat{\sigma} = a_{\alpha\beta} A_{\alpha\beta} + a_{\beta\gamma} A_{\beta\gamma} + a_{\gamma\alpha} A_{\gamma\alpha} + b_{\alpha} B_{\alpha} + b_{\beta} B_{\beta} + b_{\gamma} B_{\gamma}$$

$$+ \sum_{j=1}^{7} c_{j,j+1} C_{j,j+1} + c_{6,7,8} C_{6,7,8} + \sum_{j=1}^{7} c'_{j,j+1} C'_{j,j+1} + c'_{6,7,8} C'_{6,7,8} \in \mathcal{D}_{Period},$$

it holds that $\widehat{\sigma} \in \Xi_{(p,q)}$ iff the following holds:

- $b_{\beta} \neq 0$ (set $b_{\beta} = 1$ by "normalizing"),
- $\blacksquare \operatorname{Im} b_{\alpha} > 0,$
- The normalized volume $\operatorname{vol}(\widehat{\sigma})$ is larger than $\widehat{V}_{(p,q)}(b_{\alpha}, c_{\bullet}, c'_{\bullet}, b_{\gamma})$.

Remark

Fix C_0, C_0', Z, Z' , and g (Then S, S', τ , $\mu := a_\beta - \tau \cdot a_\alpha$, and $\int_{\Gamma_9} dz$ are fixed). Let us denote by (X_x, σ_x) the K3 surface corresponding to the class represented by

$$\left(2\mu + \int_{\Gamma_9} dz^+\right) \cdot A_{\alpha\beta} + \mu \cdot B_{\gamma} + x \cdot A_{\beta\gamma} + \tau \cdot B_{\alpha} + y \cdot A_{\gamma\alpha} + B_{\beta} + \sum_{\alpha} c_{\bullet} C_{\bullet} + \sum_{\alpha} c_{\bullet}' C_{\bullet}',$$

where y is the constant defined by the linear equation $y=-\tau\cdot x+N_1$ which comes from $(\sigma,\sigma)=0$ (N_1 : constant). Then

$$(\sigma_x, \overline{\sigma_x}) = 4 \operatorname{Im} \tau \cdot \operatorname{Im} x + N_2(N_2: \text{ real constant}).$$

As $\operatorname{Im} \tau > 0$, Theorem says that there exists a constant $N_3 = N_3(C_0, C_0', Z, Z', g)$ such that (X_x, σ_x) obtained by the gluing method for any $x \in \mathbb{C}$ with $\operatorname{Im} x > N_3$.

Remark (continued)

Take x such that $\operatorname{Im} x > N_3$. Let $M_x \subset S, M_x' \subset S'$, $W_x^* \subset M_x$, $(W_x^*)' \subset M_x'$, and

$$f_x \colon W_x^* \ni (z_j, w_j) \mapsto (g(z_j), 1/w_j) \in (W_x^*)'$$

be the data by which X_x is constructed as in $\S 3$.

Denote by $(X_x^{(a)}, \sigma_x^{(a)})$ the K3 surface constructed by patching the same M_x and M_x' by identifying W_x^* and $(W_x^*)'$ via the biholomorphism

$$f_x^{(a)} : W_x' \ni (z_j, w_j) \mapsto (g(z_j), e^{\sqrt{-1}a}/w_j) \in (W_x^*)'$$

for each $a \in \mathbb{R}$ (Note that $(X_x^{(0)}, \sigma_x^{(0)}) = (X_x, \sigma_x)$).

Proposition

It holds that $(X_x^{(a)}, \sigma_x^{(a)}) = (X_{x-a}, \sigma_{x-a})$ for each $a \in \mathbb{R}$.

By compactifying $\{x\in\mathbb{C}\mid \operatorname{Im} x>N_3\}/2\pi\mathbb{Z}$, one obtain a degeneration of K3 surfaces of type II.

Remark

$$\widehat{V}_{(p,q)}(b_{lpha},c_{ullet},c_{ullet}',b_{\gamma})=V_{(p,q)}+V_{(p,q)}'$$
 , where

- $V_{(p,q)} = \operatorname{vol}_{\eta}(S \setminus (\text{"the maximal hol. tub. n.b.h.d." of } C)),$
- $V'_{(p,q)} = \operatorname{vol}_{\eta'}(S' \setminus (\text{ "the maximal hol. tub. n.b.h.d." of } C'))$

Remark

It is observed by a standard argument that a general member of $\Xi_{(p,q)}$ corresponds to a K3 surface X with Picard number =0, which means that X is non-Kummer and non-projective.

Question

- How large can one take a hol. tub. n.b.h.d. of C in S?
- Is $V_{(p,q)}$ equal to zero? or > 0?
- How does $V_{(p,q)}$ depend on the Diophantine pair (p,q)?

To investigate a Kähler-geometric approach to this kinds of problems, now I'm also interested in the following:

Question

How is the relation between a Ricci-Flat Kähler metric on X and some "canonical metric" on S or $S \setminus C$ (complete Ricci-Flat Kähler?)?