УДК 622.24.084.3

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОСТРАНСТВЕННОЙ ТРАЕКТОРИИ ДВИЖЕНИЯ ДОЛОТА С УЧЕТОМ АНИЗОТРОПИИ ПОРОДЫ

MATHEMATICAL MODEL OF THE SPATIAL TRAJECTORY OF THE BIT MOVEMENT TAKING INTO ACCOUNT THE ANISOTROPY OF THE ROCK

Кузнецов Вячеслав Алексеевич

кандидат технических наук, доцент, Азербайджанский государственный университет нефти и промышленности viateslav@mail.ru

Джаббарова Гюллю Валех кызы

доктор философии по технике, доцент, Азербайджанский государственный университет нефти и промышленности

Исмайлов Фуад Назим оглы

докторант.

НИИ «Геотехнологические проблемы нефти, газа и химия»

Аннотация. При бурении скважины под воздействием различных факторов долото и забойный двигатель движутся по определенной траектории.

Завися от геологических условий бурения, траектория оси скважины имеет плоскостную и пространственную формы. Для того, чтобы произвести расчет траектории движения долота с забойным двигателем проведены многочисленные исследования. Однако есть необходимость в аналитических исследованиях расчета траектории движения долота в пространстве с учетом анизотропных свойств.

Ключевые слова: долото, анизотропия, механические свойства пород, траектория движения долота, угол наклона долота, скорость перемещения долота.

Kuznetsov Vyacheslav Alekseevich

Candidate of Technical Sciences, Associate Professor, Azerbaijan State Oil and Industry University viateslav@mail.ru

Jabbarova Gullu Valeh

Doctor of Philosophy in Engineering, Associate Professor. Azerbaijan State Oil and Industry University

Ismayilov Fuad Nazim

Doctoral Candidate, Research Institute of «Geotechnological problems of oil, gas and chemistry»

Annotation. When drilling a well under the influence of various factors, the bit and the downhole motor move along a certain trajectory. Depending on the geological conditions of drilling, the trajectory of the borehole axis has planar and spatial shapes. In order to calculate the trajectory of the bit with a downhole motor, numerous studies have been carried out. However, there is a need for analytical studies of calculating the bit trajectory in space, taking into account anisotropic properties.

Keywords: bit, anisotropy, mechanical properties of rocks, bit trajectory, bit angle, bit speed.

зучим общий случай изгиба скважины в анизотропных породах [1-3]. Для получения математического уравнения пространственной траектории движения долота выберем пространственную координатную систему ОХҮZ так, чтобы с расположением осей ОХ и ОҮ в горизонтальной плоскости, ось ОХ была направлена перпендикулярно. Положение долота в пространстве определяет точка О. Равнодействующую силу на долоте, образовавшуюся в результате воздействия различных факторов, обозначим F; угол, образующийся с координатной осью $-\theta_a$, а её направление – ϕ_q . Проекции силы F – F_x , F_y , F_z – находим следующим образом (рис. 1, a):

$$F_{x} = F \sin \theta_{q} \sin \phi_{a}; \tag{1.1}$$

$$F_{y} = F \sin \theta_{q} \cos \varphi_{a}; \tag{1.2}$$

$$F_{z} = F\cos\theta_{q}. \tag{1.3}$$

Примем такую координатную систему OX_1 , Y_1 , Z_1 (рис. 1, б), чтобы ось OZ_1 совпала с направлением оси долота, оси OY_1 и OX_1 располагались на плоскости, перпендикулярной к оси OZ_1 , а ось OY_1 – в направлении оси долота. Примем угол наклона оси долота как $\theta_{\rm q}$, направление (азимут) – ϕ_0 и, спроектировав на оси OX_1, OY_1, OZ_1 , найдем их проекции F_x, F_y, F_z .

$$F_{x1} = F_x \cos \phi_0 \cos \theta_0 - F_y \sin \phi_0 \cos \theta_0 + F_z \sin \theta_0; \tag{1.4}$$

$$F_{v1} = F_x \cos\theta_0 \cos\phi_0 - F_v \cos\theta_0 \cos\phi_0 - F_z \sin\theta_0; \tag{1.5}$$

$$F_{z1} = F_x \sin\theta_0 \sin\phi_0 + F_y \sin\theta_0 \cos\phi_0 + F_z \cos\theta_0. \tag{1.6}$$

Рисунок 1 – Схема нахождения проекций на координатной оси компонентов мгновенного перемещения по траектории пространственного движения долота

Поскольку ось долота и перпендикулярная ей мгновенная скорость (мгновенное перемещение долота) пропорциональны компонентам забойной реакции, мгновенные компоненты OX_1 , OY_1 и OZ_1 определяются следующим образом:

$$V_{x1} = fk F_{x1};$$
 (1.7)

$$V_{v1} = fk F_{v1};$$
 (1.8)

$$V_{z1} = k F_{z1},$$
 (1.9)

где k - коэффициент пропорциональности,

f – коэффициент бокового фрезирования долота.

Проекции на оси ОХ, ОУ и ОZ определяются следующим образом (рис. 1, в):

$$\begin{split} V_{x}' &= V_{z1} \sin\theta_{0} \sin\phi_{0} + V_{y1} \cos\theta_{0} \sin\phi_{0} - V_{x1} \cos\theta_{0} \cos\phi_{0}; \\ V_{y}' &= V_{z1} \sin\theta_{0} \cos\phi_{0} + V_{y1} \cos\theta_{0} \cos\phi_{0} - V_{x1} \sin\phi_{0} \cos\theta_{0}; \\ (1.11) \\ V_{z}' &= V_{z1} \cos\theta_{0} \cos\phi_{0} + V_{y1} \sin\theta_{0} - V_{x1} \sin\theta_{0}. \\ (1.12) \end{split}$$

После совместного решения уравнений (1.1)-(1.12), найдем значения для случая бурения изотропных пород:

$$V_x^1 = kF[\sin\theta_0 \sin\phi_0 \cdot \cos\beta + f(\sin\phi_0 \sin\eta_1)\cos\theta_0]; \tag{1.13}$$

$$V_{v}^{1} = kF[\sin\theta_{0}\cos\phi_{0} \cdot \cos\beta + f\cos\theta_{0}(\cos\phi_{0}\sin\eta_{1} - \sin\phi_{0}\sin\eta_{1}); \qquad (1.14)$$

$$V_{z}^{1} = kF[\cos\theta_{0}\cos\beta + f\sin\theta_{0}(\sin\eta_{1} - \sin\eta)], \qquad (1.15)$$

где

$$\begin{split} \cos\beta &= \sin\theta_q \cdot \sin\theta_0 \cdot \cos(\phi_a - \phi_0) + \cos\theta_0 \cdot \sin\theta_q \\ \sin\eta &= \sin\theta_q \cdot \cos\theta_0 \cdot \cos(\phi_a - \phi_0) - \cos\theta_0 \cdot \sin\theta_q \\ \sin\eta_1 &= \sin\theta_q \cdot \cos\theta_0 \cdot \sin(\phi_a - \phi_0) - \cos\theta_0 \cdot \sin\theta_q \end{split}$$

Тогда направление перемещения оси долота и угол наклона θ_1^1 при бурении изотропных пород мы определяем по ниже следующим формулам:

$$tg\phi_i = \frac{V_x^i}{V_y^i};\tag{1.16}$$

$$tg\theta_{i} = \frac{\sqrt{(V_{x}^{1})^{2} + (V_{y}^{1})^{2}}}{(V_{z}^{1})^{2}} = \frac{1}{\cos\varphi_{i}} \cdot \frac{V_{y}^{1}}{V_{z}^{1}}.$$
(1.17)

Интенсивность изменения значений зенитного угла i_{α} и азимута i_{ϕ} в интервале ΔL находим следующим образом:

$$i_{\alpha} = \frac{\Delta \alpha}{\Delta L} = \frac{\theta_{i}^{1} - \theta_{i-1}^{1}}{\Delta L}; \tag{1.18}$$

$$i_{\varphi} = \frac{\Delta \varphi}{\Delta L} = \frac{\varphi_{i}^{1} - \varphi_{i-1}^{1}}{\Delta L},\tag{1.19}$$

$$i_{\phi} = \frac{\Delta \phi}{\Delta L} = \frac{\phi_i^1 - \phi_{i-1}^1}{\Delta L},$$
 где
$$\Delta L = \sqrt{(V_{xi}^1 - V_{xi-1}^1)^2 + (V_{yi}^1 - V_{yi-1}^1)^2 + (V_{zi}^1 - V_{zi-1}^1)^2}$$

Выводы

Была создана модель, определяющая направление перемещения оси долота и угол наклона θ_1^1 при бурении изотропных пород.

На основе этой модели были выведены формулы для расчета интенсивности изменения значений зенитного угла i_{α} и азимута i_{ω} .

Литература:

- 1. Нескоромных В.В. Анализ процесса разрушения анизотропной горной породы шарошечными долотами //
- Известия Томского политехнического университета. Инжиниринг георесурсов. 2015. Т. 326. № 2. С. 80–89. 2. Quyudibi mühərrikin əyrixətli lülədən qaldırılması üçün əlavə yükün təyini / İ.Z. Həsənov [et al.] // «Neftin, qazın geotexnoloji problemləri və kimya» ETİ, Elmi əsərlər XVIII cild. - Bakı, 2018. - P. 47-53.
- 3. Həsənov İ.Z., Vəliyev R.H., İsmayılov F.N. Süxurun anizotropluğu nəzərə alınmaqla qazma vaxtı balta və QKAY-nın hərəkət trayektoriyasının tədqiqi // «Neftin, qazın geotexnoloji problemləri və kimya» ETİ, Elmi əsərlər XVIII cild. - Bakı, 2018. - P. 53-63.

References:

- 1. Neskromnykh V.V. Analysis of the process of destruction of anisotropic rock by roller cone bits // Proceedings of the Tomsk Polytechnic University. Engineering of georesources. – 2015. – Vol. 326. – № 2. – P. 80–89.
- 2. Quyudibi mühərrikin əyrixətli lülədən qaldırılması üçün əlavə yükün təyini / İ.Z. Həsənov [et al.] // «Neftin, qazın geotexnoloji problemləri və kimya» ETİ, Elmi əsərlər XVIII cild. – Bakı, 2018. – P. 47–53.
- 3. Həsənov İ.Z., Vəliyev R.H., İsmayılov F.N. Süxurun anizotropluğu nəzərə alınmaqla qazma vaxtı balta və QKAY-nın hərəkət trayektoriyasının tədqiqi // «Neftin, qazın geotexnoloji problemləri və kimya» ETİ, Elmi əsərlər XVIII cild. - Bakı, 2018. - P. 53-63.