安徽大学 20_23_一20_24 学年第__1_学期

《 大学物理 A (下) 》期末试卷 (A 卷)

(闭卷 时间 120 分钟)

老	考场登记表序号					
	1					

题 号	ut <u>u</u> z e	=	三(15)	三(16)	三(17)	三(18)	四(19)	四(20)	总分
得 分	9 723 BASTER	23 5 11 =	mis E. 74	(= 0 His ±)		7 101 35 34			
阅卷人									

一、单选题(每小题2分,共20分)

得 分

- 1. 关于电磁感应定律的判断:
 - (1) 动生电动势的驱动力是洛伦兹力,
 - (2) 动生电动势的驱动力是电场力.
 - (3) 若空间磁场分布不随时间变化,无论导体闭合回路如何变化,
 - (4) 只要穿过闭合导体回路的磁通量发生改变,该回路中一定产生电流

以上四种判断, 其中正确的是

7

- (A) (1), (2), (3). (B) (1), (3).

(C) (1), (4).

装

2

쉬 400

车级

完/系

- (D) (2), (4).
- 2. 如图,在平面内有一个长度为 R 的导体棒 OA 绕 O 点以角速度为 ω 顺时针匀速率转动, 度为 B 的均匀磁场垂直于纸面向外。则
 - (A) A 端电势高于 O 端, 且电动势大小为 $BR^2\omega/2$.
 - (B) A 端电势低于 O 端,且电动势大小为 $BR^2\omega/2$.
 - (C) A 端电势高于 O 端,且电动势大小为 $BR\omega^2/2$.
 - (D) A 端电势低于 O 端, 且电动势大小为 $BR\omega^2/2$.

- 3. 如图,无限长直导线与矩形线圈 ABCD 共面,矩形线圈的长边为 a,短边为 b,矩形线圈离长直导线 的距离为 l,则可求出二者的互感系数为 (真空磁导率为μο):]
 - (A) $\frac{\mu_0 a}{2\pi} \ln \frac{l+b}{l}.$
 - (B) $\frac{\mu_0 a}{2\pi} \ln \frac{l+a}{l}$.
 - (C) $\frac{\mu_0 b}{2\pi} \ln \frac{l+b}{l}$.
 - (D) 无法计算.

4.麦克斯韦电磁波理论有	两个重要假说, 在这	个基础上才能得到形式比	较对称的关于电磁	波理论的	り方程
组. 这两个重要假说分别	是			[]
(A) 光速不变原理和	涡旋电场				
(B) 电磁波光速传播	和位移电流。				
(C) 光速不变原理和	电磁波光速传播.				
(D) 涡旋电场和位移	电流.				
5.在傍轴条件下,单个折射	寸球面的物像公式为一	$\frac{n'}{s'} + \frac{n}{s} = \frac{n'-n}{r}$. 据此,可	得反射球面成像公	式为[]
(A) $\frac{1}{s'} + \frac{1}{s} = -\frac{1}{r}$.	(B) $\frac{1}{s'} - \frac{1}{s} = -\frac{1}{r}$	(C) $\frac{1}{s'} + \frac{1}{s} = -\frac{2}{r}$.	(D) $\frac{1}{s'} - \frac{1}{s} =$	$=-\frac{2}{r}$.	
6. 在处理球面镜成像时,	分析成像次数是非常	常关键的步骤. 如图,玻璃	球右侧半个球面镀	{上银反射	村层,
若平行光从左侧透明表面	入射,该系统总共经	历几次成像?		[]
(A) 4. ·					
(B) 3.			C		
(C) 2.		——————————————————————————————————————			
(D) 1.			1		
7. 某原子特征光谱中含有	两种波长的光,已知	口 $\lambda_{\rm l}=450~{ m nm}$,且在光栅分	光谱中,这两种波针	长的光谱	线有
重叠现象, 重叠处的谱线	λ₂ 主极大的级数是	3, 6, 9, 12,则	$\lambda_2 =$]
(A) 750 nm.		(C) 480 nm.			
8. 一束波长为 λ 的单色:		折射率为n的透明薄膜上	,透明薄膜置于空气	气中.已	知反
射光得到干涉加强,则薄]
(A) $\lambda/4$.	(B) $\lambda/2$.	(C) $\lambda/(2n)$.	(D) $\lambda/(4n)$	•	
9. 自然光以布儒斯特角由		逐面上,反射光是		[]
(A) 在入射面内振动 (B) 平行于入射面的		⇒ Ε 1/Γ			
(C) 垂直于入射面振		用1/100 70 .			
(D) 垂直于入射面的		扁振光			
10. 微观粒子都具有波粒二		实验现象证明光具有粒子性	上一面?]
(1) 光的杨氏双缝干液 (2) 光照射金属表面的					
(3) 康普顿散射。	374 479/21				
(4) 夫琅禾费的单缝符	行射效应.				
以上四种判断,其中正确!					
(A) (1), (2).	(B) (2), (3).	(C) (2), (4).	(D) (1),	(3).	

11. 电子具有波粒二象性:实验发现电子束穿过单晶后,也会产生衍射图案,它反映出电子具有 ______; 电子束轰击靶材镀膜,表明电子具有 _____.(从"波动性"和"粒子性"中选择填空)

14. 设自然光光强为 *I*₀,经过一对偏振化方向夹角为 45°线偏振片,经过第一个偏振片后的光强为_______ ;经过第二个偏振片后光强为

三、计算题(共52分)

15. (本题 14分)

如图,有半侧开放的矩形金属框置于垂直于纸面向里的 非均匀磁场 B 中,磁场 $B(x) = kx \cos \omega t$,其中 k 为比例常数,x 为空间坐标, ω 为角频率.设 t=0 时,其上长为 l 的导线 ab 在 x=0 处开始以恒定速度 v 垂直于 ab 沿 cb 方向滑动.求闭合框架内感应电动势.

为超装订线

礟

1560

有一单缝, 宽度为 0.1 mm, 在缝后放置一焦距为 100 cm 的凸透镜, 用波长为

500 nm 平行绿光垂直照射单缝. 求位于透镜焦平面处屏幕上中央明纹及第二级明纹的宽度.

17. (本题 15 分)

得 分

有一光栅常数 (a+b)=6 μ m 的光栅,现用波长为 λ 的单色光垂直入射到该光 栅上,实验发现相邻的两条明纹分别出现在 $\sin\theta=0.2$ 与 $\sin\theta=0.3$ 处,第四级缺级. 求

- (1) 该光栅狭缝的最小宽度;
- (2) 该单色光的波长。 2.

18. (本题 10 分)

一无限长圆柱形导体薄圆筒, 半径为 R, 表面均匀分布电荷, 电荷面密度为 σω, 如图. 现令其绕轴线作顺时针匀加速旋转(自 上而下看), 其角加速度为 β . 设 t=0 时, 角速度为 0, 求:

- (1) 面电流密度 i 与时间 t 的关系:
- (2) 圆筒内部任意一点的磁感应强度 B 的表达式;
- (3) 利用法拉第电磁感应定律求圆筒内部任意一点的涡旋 电场(即感生电场)E与该点到轴线距离r的关系,即 E(r) 的表达式.

四、简答题(共12分)

19. (本题 6 分)

人眼在正常照度下的瞳孔直径一般约毫米量级, 在明视距离(约为二十几厘米)观察两个物点, 实 验发现当两个物点距离逐渐靠近时,人眼越来越难以分辨是一个物点还是两个物点,为什么?

20. (本题 6分)

分 得

已知真空中存在电磁波,电场 $\vec{E}(\vec{r},t)=\vec{E}_0\cos(\omega t-\vec{k}\cdot\vec{r}+\varphi)$,磁场 $\vec{B} = \vec{B}_0 \cos(\omega t - \vec{k} \cdot \vec{r} + \varphi)$. 其中, \vec{E}_0 和 \vec{B}_0 分别代表电场和磁场的振幅, ω 为电磁波的角频率, \vec{k} 为 波矢, φ 为初相位。以下各式分别代表什么物理意义?

(1)
$$\frac{1}{2}\varepsilon_0 E^2$$
;

(2)
$$\frac{1}{2\mu_0}B^2$$

(2)
$$\frac{1}{2\mu_0}B^2$$
; (3) $\frac{1}{\mu_0}\vec{E} \times \vec{B}$.

江 型

如