Formulaire de mécanique des fluides

Table des matières

A	Propriétés physiques des fluides les plus courants A.1 Valeurs de référence pour l'eau et l'air	2 2 2 2 2
В	Tableau des principaux nombres sans dimensions	3
C	Equations-bilan sous forme locale et intégrale C.1 Bilan de masse C.2 Bilan de quantité de mouvement C.3 Bilan d'énergie cinétique C.4 Bilan d'énergie (1er principe) C.5 Bilan d'énergie interne C.6 Bilan d'entropie	4 4 4 5 5 5
D	Opérateurs différentiels et équations de Navier-Stokes incompressibles dans les principaux systèmes de coordonnées $\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 6 6 7 8
E	Quelques formules d'analyse vectorielle et tensorielle E.1 Formules de dérivation d'un produit (généralisations de $(fg)' = f'g + fg')$: E.2 Formules de dérivée seconde (généralisations de $(f')' = f'')$:	9 9 9
F	Quelques solutions exactes	10
\mathbf{G}	Pertes de charges et Diagramme de Moody	11
Н.	. Ecoulement compressible isentropique de gaz parfait	11
I.	Relations de saut a travers un choc droit	14

A Propriétés physiques des fluides les plus courants

A.1 Valeurs de référence pour l'eau et l'air

(pour $T = 20^{\circ}C$; $P = 10^{5}Pa = 1atm$)

	Air	Eau pure	Eau de mer
Masse volumique	$\rho = 1.205 kg/m^3$	$997,05kg/m^3$	$1027kg/m^3$
Viscosité cin.	$\nu = 1.5e - 6m^2/s$	$\nu = 1.002 \cdot 10^{-6} m/s^2$	$\nu = 1.13910^{-6} m/s^2$
Viscosité dyn.	$\mu = 1.81 \cdot 10^{-5} Pa \cdot s$	$\mu = 0.999 \cdot 10^{-3} Pa \cdot s$	
compressibilité	$\chi_s = 1.4atm^{-1}$	$\chi_s = 4.9 \cdot 10^{-5} Atm^{-1}$	
dilatabilité	$\alpha = 3.4 \cdot 10 - 3K^{-1}$	$\alpha = 1.5 \cdot 10 - 4K^{-1}$	
vitesse du son	c = 334m/s	c = 1500m/s	

A.2 Equation d'état et loi d'état énergétique de l'air

$$P = \rho r T; \qquad c = \sqrt{\gamma r T}.$$

$$e = c_v T; \qquad h = c_p T; \qquad c_v = \frac{r}{\gamma - 1}; \qquad c_p = \frac{\gamma r}{\gamma - 1}$$

$$r = 287 J / K / kg; \qquad \gamma = 1.405.$$

A.3 Equation d'état de l'eau de mer (IES80)

La relation d'état IES80 permet de calculer ρ (kg/m^3) en fonction de T (température en en oC), S (salinité en g/kg), et P (pression en Bars).

Elle est précise (en toute rigueur) pour $-2^{\circ}C < T < 40^{\circ}C$, 0 < S < 40g/kg, 0 < P < 1500Bars.

$$\rho(T,S,P) = \rho_0(T,S) \left/ \left(1 - \frac{P}{K(T,S,P)}\right) \right.,$$
 avec :
$$\rho_0(T,S) = 999.842594 + 6.793952 \cdot 10^{-2} \times T - 9.09529 \cdot 10^{-3} \times T^2 + 1.001685 \cdot 10^{-4} \times T^3 - 1.120083 \cdot 10^{-6} \times T^4 + 6.536332 \cdot 10^{-9} \times T^5 + 8.24493 \cdot 10^{-1} \times S - 4.0899 \cdot 10^{-3} \times TS + 7.6438 \cdot 10^{-5} \times T^2 S - 8.2467 \cdot 10^{-7} \times T^3 S + 5.3875 \cdot 10^{-9} \times T^4 S - 5.72466 \cdot 10^{-3} \times S^{1.5} + 1.0227 \cdot 10^{-4} \times TS^{1.5} - 1.6546 \cdot 10^{-6} \times T^2 S^{1.5} + 4.8314 \cdot 10^{-4} \times S^2,$$
 et
$$K(T,S,P) = 19652.21 + 148.4206 \times T - 2.327105 \times T^2 + 1.360447 \cdot 10^{-2} \times T^3 - 5.155288 \cdot 10^{-5} \times T^4 + 3.239908 \times P + 1.43713 \cdot 10^{-3} \times TP + 1.16092 \cdot 10^{-4} \times T^2 P - 5.77905 \cdot 10^{-7} \times T^3 P + 8.50935 \cdot 10^{-5} \times P^2 - 6.12293 \cdot 10^{-6} \times TP^2 + 5.2787 \cdot 10^{-8} \times T^2 P^2 + 54.6746 \times S - 0.603459 \times TS + 1.09987 \cdot 10^{-2} \times T^2 S - 6.1670 \cdot 10^{-5} \times T^3 S + 7.944 \cdot 10^{-2} \times S^{1.5} + 1.6483 \cdot 10^{-2} \times TS^{1.5} - 5.3009 \cdot 10^{-4} \times T^2 S^{1.5} + 2.2838 \cdot 10^{-3} \times PS - 1.0981 \cdot 10^{-5} \times TPS - 1.6078 \cdot 10^{-6} \times T^2 PS + 1.91075 \cdot 10^{-4} \times PS^{1.5} - 9.9348 \cdot 10^{-7} \times P^2 S + 2.0816 \cdot 10^{-8} \times TP^2 S + 9.1697 \cdot 10^{-10} \times T^2 P^2 S.$$

A.4 Viscosité de l'eau pure en fonction de la température

Cas de l'air

Loi (expérimentale) de Sutherland :

$$\mu = \mu_0 \left(\frac{T}{T_0}\right)^{3/2} \frac{T_0 + S}{T + S}$$

avec les paramètres :

$$\mu_0 = 1.716 \times 10^{-5} P.s$$
, $T_0 = 273.15 K$, $S = 110.4 K$

Cas de l'eau pure :

Loi (expérimentale) de Vogel :

$$\mu(T) = \mu_0 e^{\frac{B}{T-C}}$$

avec les paramètres :

$$\mu_0 = 0.0243 Pa \cdot s$$
, $B = 578.919 K$, $C = 137.54 K$

B Tableau des principaux nombres sans dimensions

On note ici U, L les échelles de vitesse et de longueur du problème, et (pour les problèmes instationnaires) T l'échelle de temps imposée par les conditions limites.

)re				
Utilité	Validité de la MMC	Général	Aérodynamique	Hydrodynamique, écoulements à surface libre	Phénomènes capillaires	Ecoulements visqueux instationnaires	Ecoulements inertiels instationnaires	Acoustique
Signification	échelle microscopique échelle macroscopique	effets d'inertie effets visqueux	Vitesse de l'écoulement vitesse du son	accélération dans l'écoulement accélération de pesanteur	Effets de pesanteur Effets capillaires	Effets instationnaires Effets visqueux	Effets instationnaires Effets inertiels	Longueur caractéristique longueur d'onde acoustique
Définition	$Kn = rac{\ell}{L}$	$Re = \frac{UL}{\nu}$	$Ma = \frac{U}{c}$	$Re = \frac{U}{\sqrt{gL}}$	$Bo = \frac{L}{\sqrt{\gamma/\rho g}}$	$St = \frac{L^2}{\nu T}$	$Sr = rac{L}{UT}$	$H = \frac{L}{cT}$
Nom	Knudsen	Reynolds	Mach	Froude	Bond (ou Eötvös)	Stokes (ou Womerseley)	Strouhal	Helmholtz

C Equations-bilan sous forme locale et intégrale

Dans cette annexe on résume les équations-bilan de la mécanique des fluides sous forme locale (equations différentielles gouvernant l'évolution temporelle des quantités locales) puis sous forme intégrale en considérant un volume de contrôle Fixe noté Ω de frontière $\partial\Omega$.

On considère ici le cas général d'un fluide Newtonien soumis à une force $massique \vec{f}$ (en général la pesanteur). On ne fait pas d'hypothèse sur le caractère compressible ou incompressible. En revanche on suppose la viscosité μ constante (ainsi que la conductivité thermique k), et on néglige la viscosité en volume μ'' .

Il existe de nombreuses variantes de ces équations-bilan, on liste ici les plus utiles. Un grand nombre d'autres formes sont données dans le livre *Mécanique des Fluides, Candel (Dunod)*.

C.1 Bilan de masse

Forme locale 1 (non conservative) :
$$\frac{d\rho}{dt} + \rho \operatorname{div} \vec{u} = 0$$
 (1)

Forme locale 2 (conservative) :
$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{u}) = 0$$
 (2)

Forme intégrale :
$$\frac{d}{dt} \int_{\Omega} \rho dV = -\oint_{\partial \Omega} \rho \vec{u} \cdot \vec{n} dS$$
 (3)

C.2 Bilan de quantité de mouvement

Forme locale 1 (non conservative):
$$\rho \frac{d\vec{u}}{dt} = \rho \vec{g} - \operatorname{grad} p + \mu \Delta \vec{u} + \frac{\mu}{3} \operatorname{grad} \operatorname{div} \vec{u}$$
 (4)

Forme locale 2 (conservative):
$$\frac{\partial(\rho\vec{u})}{\partial t} + \operatorname{div}(\rho\vec{u}\otimes\vec{u}) = \rho\vec{g} - \operatorname{grad} p + \operatorname{div}\vec{\tau}$$
 (5)

Forme intégrale

$$\frac{d}{dt} \int_{\Omega} \rho \, \vec{u} \, dV = -\oint_{\partial \Omega} \rho \, \vec{u} \, (\vec{u} \cdot \vec{n}) \, dS + \oint_{\partial \Omega} \left(-p\vec{n} + \vec{\tau} \cdot \vec{n} \right) \, dS + \int_{\Omega} \rho \vec{g} \, dV \quad \left[+\oint_{\mathcal{L}} \gamma \vec{n}_{\mathcal{L}} \, d\ell \right] \tag{6}$$

(Le dernier terme entre crochets est à prendre en compte si le volume de contrôle Ω est traversé par une surface libre \mathcal{S} ; dans ce cas $\mathcal{L} = \partial \Omega \cap \mathcal{S}$ et $\vec{n}_{\mathcal{L}}$ est le vecteur unitaire contenu dans le plan \mathcal{S} et perpendiculaire à \mathcal{L})

C.3 Bilan d'énergie cinétique

Forme locale 1

$$\rho \frac{d}{dt} \frac{|\vec{u}|^2}{2} = -\rho \vec{g} \cdot \vec{u} - \mathbf{grad} \, p \cdot \vec{u} + \vec{u} \cdot \operatorname{div}(\vec{\tau}) \tag{7}$$

Forme locale 2 Sous les hypothèses suivantes :

- Le champ de force massique \vec{g} est conservatif, c.a.d. $\vec{g} = -\mathbf{grad}\,\mathcal{U}$ (en général $\mathcal{U} = gz$),
- Le fluide est barotrope (c.a.d. $p = p(\rho)$) ¹;

Dans ce cas on peut définir la fonction $\mathcal{P} = \int \frac{dp}{a}$, ce qui conduit à la formule suivante :

$$\rho \frac{\partial}{\partial t} \frac{|\vec{u}|^2}{2} + \rho \vec{u} \cdot \mathbf{grad} \left(\frac{|\vec{u}|^2}{2} + \mathcal{U} + \mathcal{P} \right) = \vec{u} \cdot \operatorname{div}(\vec{\tau}) = \underline{\operatorname{div}}(\vec{u} \cdot \vec{\tau}) - \vec{\underline{D}} : \vec{\tau}$$
(8)

(on reconnait comme cas particulier le premier théorème de Bernoulli).

Forme intégrale

$$\frac{d}{dt} \int_{\Omega} \frac{\rho |\vec{u}|^2}{2} dV = -\oint_{\partial \Omega} \left(\frac{\rho |\vec{u}|^2}{2} + p + \rho \mathcal{U} \right) \cdot \vec{u} dS + \int_{\Omega} p \operatorname{div}(\vec{u}) dV + \oint_{\partial \Omega} \vec{u} \cdot \vec{\tau} \cdot \vec{n} dS - \int_{\Omega} \bar{\vec{D}} : \vec{\tau} dV \quad (9)$$

^{1.} Cette notion englobe fluide incompressible pour lequel $\mathcal{P}=p/\rho$ ainsi que le gaz parfait en évolution isotherme ou isentropique

Bilan d'énergie (1er principe)

Dans ce paragraphe e est l'énergie interne $massique^2$, $h = e + p/\rho$ est l'enthalpie massique 3 , H est l'enthalpie totale, et \vec{q} est le flux de chaleur conductif⁴

Forme intégrale 1

$$\underbrace{\frac{d}{dt} \int_{\Omega} \rho \left(e + \frac{|\vec{u}|^2}{2} \right) dV}_{\underline{\dot{E}}(ech)} = \underbrace{-\oint_{\partial\Omega} \rho \left(e + \frac{|\vec{u}|^2}{2} \right) \vec{u} \cdot \vec{n} dS}_{\underline{\dot{E}}(ech)} + \underbrace{\oint_{\Omega} \rho \vec{g} \cdot \vec{u} dV}_{\underline{\dot{W}}(g)} + \underbrace{\oint_{\partial\Omega} -p \vec{u} \cdot \vec{n} dS}_{\underline{\dot{W}}(p)} + \underbrace{\oint_{\partial\Omega} \vec{u} \cdot \vec{\tau} \cdot \vec{n} dS}_{\underline{\dot{W}}(p)} - \underbrace{\oint_{\partial\Omega} \vec{u} \cdot \vec{\tau} \cdot \vec{n} dS}_{\underline{\dot{W}}(v)} - \underbrace{\oint_{\partial\Omega} \vec{u} \cdot \vec{u} \cdot \vec{u} \cdot \vec{u}}_{\underline{\dot{W}}(v)} - \underbrace{\oint_{\partial\Omega} \vec{u} \cdot \vec{u} \cdot \vec{u} \cdot \vec{u}}_{\underline{\dot{W}}(v)} - \underbrace{\oint_{\partial\Omega} \vec{u} \cdot \vec{u} \cdot \vec{u} \cdot \vec{u}}_{\underline{\dot{W}}(v)} - \underbrace{\oint_{\partial\Omega} \vec{u} \cdot \vec{u} \cdot \vec{u} \cdot \vec{u}}_{\underline{\dot{W}}(v)} - \underbrace{\oint_{\partial\Omega} \vec{u}$$

Forme intégrale 2 (1er principe en système ouvert)

$$\underbrace{\frac{d}{dt} \int_{\Omega} \rho \left(h + \frac{|\vec{u}|^2}{2} + \mathcal{U} \right) dV}_{\dot{H}^{(ech)}} = \underbrace{-\oint_{\partial\Omega} \rho \left(h + \frac{|\vec{u}|^2}{2} + \mathcal{U} \right) \vec{u} \cdot \vec{n} dS}_{\dot{H}^{(ech)}} + \underbrace{\oint_{\Omega} \frac{\partial p}{\partial t} dS}_{V \frac{\partial p}{\partial t}} + \underbrace{\oint_{\partial\Omega} \vec{u} \cdot \vec{\tau} \cdot \vec{n} dS}_{\dot{W}^{(v)}} - \underbrace{\oint_{\partial\Omega} \vec{q} \cdot \vec{n} dS}_{\dot{Q}} \tag{11}$$

Remarque : si le volume de contrôle Ω contient une surface intérieure $\partial \Omega_i$ mobile, il convient d'ajouter

$$\dot{W}^{(utile)} = \int_{\partial\Omega_i} \vec{u} \cdot (-p\vec{n} \cdot \vec{\tau} \cdot \vec{n}) \ dS$$

Forme locale 1:
$$\rho \frac{d}{dt} \left(e + \frac{|\vec{u}|^2}{2} \right) = -\rho \vec{f} \cdot \vec{u} - \mathbf{grad} (p) \cdot \vec{u} + \operatorname{div} (\vec{\tau}) \cdot \vec{u} - \operatorname{div} (\vec{q})$$
 (12)

Forme locale 2:
$$\rho \frac{d}{dt} \left(h + \frac{|\vec{u}|^2}{2} + \mathcal{U} \right) = \frac{\partial p}{\partial t} + \operatorname{div}(\vec{\tau}) \cdot \vec{u} - \operatorname{div}(\vec{q})$$
 (13)

C.5Bilan d'énergie interne

Celui-ci s'obtient en combinant les deux précédents, et en écrivant la puissance des forces visqueuses comme la somme d'une puissance externe et d'une puissance interne : $\vec{u} \cdot \text{div}(\vec{\tau}) = \text{div}(\vec{\tau} \cdot \vec{u}) - \vec{\tau} : grad(\vec{u})$.

Forme locale

$$\rho \frac{de}{dt} = \vec{\tau} : g \vec{r} \vec{a} d(\vec{u}) + p \operatorname{div}(\vec{u}) - \operatorname{div}(\vec{q})$$
(14)

Forme intégrale

$$\frac{d}{dt} \int_{\Omega} \rho e \ dV = -\int_{\Omega} p \operatorname{div}(\vec{u}) \ dV + \int_{\Omega} \vec{\tau} : g r \vec{a} d(\vec{u}) \ dV - \oint_{\partial \Omega} \vec{q} \cdot \vec{n} \ dS$$
 (15)

C.6Bilan d'entropie

S'obtient a partir du bilan d'energie interne en posant $de = Tds - pd(1/\rho)$:

Forme locale:
$$\rho \frac{ds}{dt} = \frac{\vec{\tau} : grad(\vec{u})}{T} - \frac{\operatorname{div}(\vec{q})}{T}$$
 (16)

Forme intégrale (second principe en système ouvert)

$$\underbrace{\frac{d}{dt} \int_{\Omega} \rho s \, dV}_{\underline{\dot{S}}} = \underbrace{-\oint_{\partial \Omega} \rho s \vec{u} \cdot \vec{n} \, dS}_{\dot{\dot{S}}^{(ech)}} + \underbrace{\int_{\Omega} \left(\overrightarrow{\bar{\tau}} : \underbrace{grad(\vec{u})}_{T} + \vec{q} \cdot \underbrace{\mathbf{grad}(T)}_{T^{2}} \right) \, dS}_{\dot{\dot{S}}^{(cree)}} - \underbrace{\oint_{\partial \Omega} \frac{\vec{q}}{T} \cdot \vec{n} \, dS}_{\dot{\dot{S}}^{(recu)}} \tag{17}$$

^{2.} $e=c_vT$ pour un gaz parfait 3. $h=c_pT$ pour un gaz parfait

^{4.} Donné en général par la loi de Fourier $\vec{q} = -k \mathbf{grad} T$

D Opérateurs différentiels et équations de Navier-Stokes incompressibles dans les principaux systèmes de coordonnées

D.1 Coordonnées cartésiennes (x, y, z)

Divergence

$$\operatorname{div}(\vec{u}) = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}$$

Vorticité

$$\mathbf{rot}\,\vec{u} = \begin{cases} \omega_x = \frac{\partial u_z}{\partial y} - \frac{\partial u_y}{\partial z} \\ \omega_y = \frac{\partial u_x}{\partial z} - \frac{\partial u_z}{\partial x} \\ \omega_z = \frac{\partial u_y}{\partial z} - \frac{\partial u_z}{\partial y} \end{cases}$$

Tenseur des contraintes

$$\sigma_{xx} = -p + 2\mu \frac{\partial u_x}{\partial x} \qquad \sigma_{xy} = \mu \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right)$$

$$\sigma_{yy} = -p + 2\mu \frac{\partial u_y}{\partial y} \qquad \sigma_{yz} = \mu \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right)$$

$$\sigma_{zz} = -p + 2\mu \frac{\partial u_z}{\partial z} \qquad \sigma_{xz} = \mu \left(\frac{\partial u_z}{\partial x} + \frac{\partial u_x}{\partial z} \right)$$

Equations de Navier-Stokes (écoulement incompressible)

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = \frac{1}{\rho} g_x - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)
\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = \frac{1}{\rho} g_y - \frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right)
\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = \frac{1}{\rho} g_z - \frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right)$$

Fonction de courant ψ pour un écoulement incompressible plan $(\vec{u} = u_x(x,y)\vec{e_x} + u_y(x,y)\vec{e_y})$

$$\vec{u} = \mathbf{rot} (\psi(x, y)\vec{e_z}), \quad \text{c.a.d} : \begin{cases} u_x = \frac{\partial \psi}{\partial y}, \\ u_y = -\frac{\partial \psi}{\partial x}. \end{cases}$$
 (18)

D.2 Coordonnées cylindriques (r, θ, z)

Opérateurs différentiels

$$\operatorname{div}(\vec{u}) = \frac{1}{r} \frac{\partial (ru_r)}{\partial r} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial u_z}{\partial z} \qquad \mathbf{rot} \, \vec{u} = \begin{cases} \omega_r = \left(\frac{1}{r} \frac{\partial \mathbf{u}_z}{\partial \theta} - \frac{\partial \mathbf{u}_\theta}{\partial z}\right) \\ \omega_{\theta} = \left(\frac{\partial \mathbf{u}_r}{\partial z} - \frac{\partial \mathbf{u}_z}{\partial r}\right) \\ \omega_z = \frac{1}{r} \left(\frac{\partial}{\partial r} (r\mathbf{u}_{\theta}) - \frac{\partial \mathbf{u}_r}{\partial \theta}\right) \end{cases}$$

$$g\vec{rad}f = \begin{cases} \frac{\partial f}{\partial r} \\ \frac{1}{r}\frac{\partial f}{\partial \theta} \end{cases} \qquad \Delta f = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial f}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} \\ \frac{\partial f}{\partial z} \end{cases}$$

$$\overrightarrow{grad}(\vec{u}) = \vec{\nabla} \otimes \vec{u} = \overline{\overline{\nabla u}} = \begin{bmatrix} \frac{\partial u_r}{\partial r} & \frac{1}{r} \left(\frac{\partial u_r}{\partial \theta} - u_\theta \right) & \frac{\partial u_r}{\partial z} \\ \frac{\partial u_\theta}{\partial r} & \frac{1}{r} \left(\frac{\partial u_\theta}{\partial \theta} + u_r \right) & \frac{\partial u_\theta}{\partial z} \\ \frac{\partial u_z}{\partial r} & \frac{1}{r} \frac{\partial u_z}{\partial \theta} & \frac{\partial u_z}{\partial z} \end{bmatrix}$$

Equations de Navier-Stokes (écoulement incompressible)

$$\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_r}{\partial \theta} + u_z \frac{\partial u_r}{\partial z} - \frac{u_\theta^2}{r} = \frac{1}{\rho} g_r - \frac{1}{\rho} \frac{\partial p}{\partial r} \\ + \nu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_r}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \theta^2} + \frac{\partial^2 u_r}{\partial z^2} - \frac{u_r}{r^2} - \frac{2}{r^2} \frac{\partial u_\theta}{\partial \theta} \right] \\ \frac{\partial u_\theta}{\partial t} + u_r \frac{\partial u_\theta}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_\theta}{\partial \theta} + u_z \frac{\partial u_\theta}{\partial z} + \frac{u_r u_\theta}{r} = \frac{1}{\rho} g_\theta - \frac{1}{\rho r} \frac{\partial p}{\partial \theta} \\ + \nu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_\theta}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_\theta}{\partial \theta^2} + \frac{\partial^2 u_\theta}{\partial z^2} - \frac{u_\theta}{r^2} + \frac{2}{r^2} \frac{\partial u_r}{\partial \theta} \right] \\ \frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_z}{\partial \theta} + u_z \frac{\partial u_z}{\partial z} = \frac{1}{\rho} g_z - \frac{1}{\rho} \frac{\partial p}{\partial z} \\ + \nu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} + \frac{\partial^2 u_z}{\partial z^2} \right]$$

Fonction de courant ψ pour un écoulement incompressible plan exprimé en coordonnées polaires : $(\vec{u} = u_r(r, \theta)\vec{e_r} + u_\theta(r, \theta)\vec{e_\theta})$

$$\vec{u} = \mathbf{rot} (\psi(r, \theta)\vec{e_z}), \quad \text{c.a.d} :$$

$$\begin{cases} u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}, \\ u_{\theta} = -\frac{\partial \psi}{\partial r}. \end{cases}$$
(19)

Fonction de Stokes Ψ pour un écoulement à symétrie de révolution $(\vec{u}=u_r(r,z)\vec{e_r}+u_z(r,z)\vec{e_z})$

$$\begin{cases} u_r = -\frac{1}{r} \frac{\partial \Psi}{\partial z}, \\ u_z = \frac{1}{r} \frac{\partial \Psi}{\partial r}. \end{cases}$$
 (20)

D.3 Coordonnées sphériques (R, Θ, ϕ) (ou (r, θ, φ) si pas d'ambigüité) Opérateurs différentiels

$$\operatorname{div}(\vec{u}) = \frac{\partial u_r}{\partial r} + 2\frac{u_r}{r} + \frac{1}{r}\frac{\partial u_\theta}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial u_\varphi}{\partial \varphi} + \frac{1}{\tan\theta}\frac{u_\theta}{r}$$

$$\Delta f = \operatorname{div}\left(\vec{\nabla}f\right) = \frac{\partial^2 f}{\partial r^2} + \frac{2}{r}\frac{\partial f}{\partial r} + \frac{1}{r^2}\frac{\partial^2 f}{\partial \theta^2} + \frac{1}{r^2\tan\theta}\frac{\partial f}{\partial \theta} + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial \varphi^2}$$

$$\operatorname{rot}\vec{u} = \begin{cases} \omega_r = \left(\frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}\left(\mathbf{u}_\varphi\sin\theta\right) - \frac{\partial\mathbf{u}_\theta}{\partial \varphi}\right) \\ \omega_\theta = \frac{1}{r\sin\theta}\frac{\partial\mathbf{u}_r}{\partial \varphi} - \frac{1}{r}\frac{\partial}{\partial r}\left(r\mathbf{u}_\varphi\right) \end{cases} \quad \operatorname{grad}f = \begin{cases} \frac{\partial f}{\partial r} \\ \frac{1}{r}\frac{\partial f}{\partial \theta} \\ \frac{1}{r\sin\theta}\frac{\partial f}{\partial \varphi} \end{cases}$$

Gradient des vitesses et tenseur des contraintes

$$g\vec{r}\vec{a}d(\vec{u}) = \vec{\nabla}(\vec{u}) = \vec{\nabla}\vec{u} = \begin{bmatrix} \frac{\partial u_r}{\partial r} & \frac{1}{r} \left(\frac{\partial u_r}{\partial \theta} - u_\theta \right) & \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial u_r}{\partial \varphi} - u_\varphi \right) \\ \frac{\partial u_\theta}{\partial r} & \frac{1}{r} \left(\frac{\partial u_\theta}{\partial \theta} + u_r \right) & \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial u_\theta}{\partial \varphi} - \frac{1}{\tan \theta} u_\varphi \right) \\ \frac{\partial u_\varphi}{\partial r} & \frac{1}{r} \frac{\partial u_\varphi}{\partial \theta} & \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial u_\varphi}{\partial \varphi} + \frac{1}{\tan \theta} u_\theta + u_r \right) \end{bmatrix}$$

d'où on peut tirer le tenseur des taux de déformation par symétrisation : $\vec{D} = \frac{1}{2} \left(\vec{\nabla u} + \vec{\nabla u}^T \right)$, ainsi que le tenseur des contraintes visqueuses : $\vec{\tau} = 2\mu \vec{D}$

Equation de Navier-Stokes (écoulement incompressible) :

$$\begin{split} \frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{1}{r} \left[\frac{u_\theta}{r} \frac{\partial u_r}{\partial \theta} + \frac{u_\varphi}{\sin \theta} \frac{\partial u_r}{\partial \varphi} - u_\theta^2 - u_\varphi^2 \right] &= \frac{1}{\rho} g_r - \frac{1}{\rho} \frac{\partial p}{\partial r} + \nu \Delta_r \vec{u}; \\ \frac{\partial u_\theta}{\partial t} + u_r \frac{\partial u_\theta}{\partial r} + \frac{1}{r} \left[\frac{u_\theta}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_\varphi}{\sin \theta} \frac{\partial u_r}{\partial \varphi} + u_\theta u_\varphi - \frac{u_\varphi^2}{\tan \theta} + u_\varphi \frac{\partial u_\theta}{\partial \varphi} + \frac{u_r u_\theta}{r} \right] &= \frac{1}{\rho} g_\theta - \frac{1}{\rho r} \frac{\partial p}{\partial \theta} + \nu \Delta_\theta \vec{u}; \\ \frac{\partial u_\varphi}{\partial t} + u_r \frac{\partial u_\varphi \varphi}{\partial r} + \frac{1}{r} \left[u_\theta \frac{\partial u_\varphi}{\partial \theta} + \frac{u_\varphi}{\sin \theta} \frac{\partial u_\varphi}{\partial \varphi} + u_\theta u_r - \frac{u_\theta u_\varphi}{\tan \theta} \right] &= \frac{1}{\rho} g_\varphi - \frac{1}{\rho r \sin \theta} \frac{\partial p}{\partial \varphi} + \nu \Delta_\varphi \vec{u} \\ \Delta_r \vec{u} &= \Delta u_r - \frac{2}{r^2} \left[u_r + \frac{\partial u_\theta}{\partial \theta} + \frac{u_\theta}{\tan \theta} + \frac{1}{\sin \theta} \frac{\partial u_\varphi}{\partial \varphi} \right] \\ \Delta_\theta \vec{u} &= \Delta u_\theta + \frac{1}{r^2} \left[2 \frac{\partial u_r}{\partial \theta} - \frac{1}{\sin^2 \theta} u_\theta - \frac{2\cos^2 \theta}{\tan \theta} \frac{\partial u_\varphi}{\partial \varphi} \right] \\ \Delta_\varphi \vec{u} &= \Delta u_\varphi + \frac{1}{r^2} \left[u_\theta \frac{\partial u_\varphi}{\partial \theta} + \frac{u_\varphi}{\sin \theta} \frac{\partial u_\theta}{\partial \varphi} + u_r u_\varphi + \frac{u_\theta u_\varphi}{\tan \theta} \right] \end{split}$$

Fonction de Stokes Ψ pour un écoulement à symétrie de révolution décrit en coordonnées sphériques $(\vec{u} = u_R(R, \Theta) \vec{e_R} + u_{\Theta}(R, \Theta) \vec{e_\Theta})$

$$\begin{cases} u_R = -\frac{1}{R^2 \sin \Theta} \frac{\partial \Psi}{\partial \Theta}, \\ u_{\Theta} = \frac{1}{R \sin \Theta} \frac{\partial \Psi}{\partial R}. \end{cases}$$
 (21)

E Quelques formules d'analyse vectorielle et tensorielle

E.1 Formules de dérivation d'un produit (généralisations de (fg)' = f'g + fg') :

$$\begin{aligned} \mathbf{grad}\,(fg) &= f\mathbf{grad}\,g + g\mathbf{grad}\,f \\ \mathbf{grad}\,(\vec{A} \cdot \vec{B}) &= g\vec{rad}(\vec{A}) \cdot \vec{B} + g\vec{rad}(\vec{B}) \cdot \vec{A} + \vec{A} \wedge \mathbf{rot}\,\vec{B} + \vec{B} \wedge \mathbf{rot}\,\vec{A} \\ \mathrm{div}\,(f\vec{A}) &= f\mathrm{div}\,\vec{A} + \mathbf{grad}\,(f) \cdot \vec{A} \\ \mathrm{div}\,(\vec{A} \wedge \vec{B}) &= \vec{B}\,\mathbf{rot}\,\vec{A} - \vec{A}\,\mathbf{rot}\,\vec{B} \\ \mathbf{rot}\,(f\vec{A}) &= f\,\mathbf{rot}\,\vec{A} + \vec{A} \wedge \mathbf{rot}\,(f) \\ \end{aligned}$$

$$\mathbf{rot}\,(\vec{A} \wedge \vec{B}) &= g\vec{rad}(\vec{A}) \cdot \vec{B} - g\vec{rad}(\vec{B}) \cdot \vec{A} + \vec{A}\,\mathrm{div}\,(\vec{B}) - \vec{B}\,\mathrm{div}\,(\vec{A}) \\ \mathrm{div}\,(\vec{A} \otimes \vec{B}) &= \mathrm{div}\,(\vec{A})\,\vec{B} + g\vec{rad}(\vec{B}) \cdot \vec{A} \\ (\vec{u} \cdot \mathbf{grad})\,\vec{u} &= \left(g\vec{rad}\,\vec{u}\,\right) \cdot \vec{u} = \mathbf{grad}\,(||\vec{u}||^2/2) + \mathbf{rot}\,\vec{u} \wedge \vec{u} \end{aligned}$$

E.2 Formules de dérivée seconde (généralisations de (f')' = f'') :

$$\begin{aligned} \operatorname{div}\left(\mathbf{grad}\,f\right) &= \Delta f \\ \mathbf{rot}\left(\mathbf{grad}\,f\right) &= \vec{0} \\ \\ \operatorname{div}\left(\mathbf{rot}\,\vec{A}\right) &= 0 \\ \\ \mathbf{rot}\left(\mathbf{rot}\,\vec{A}\right) &= \mathbf{grad}\left(\operatorname{div}\vec{A}\right) - \Delta\vec{A} \\ \\ \operatorname{div}\left(g\overset{\Rightarrow}{rad}\vec{A}\right) &= \Delta\vec{A} \\ \\ \operatorname{div}\left(g\overset{\Rightarrow}{rad}\vec{A}\right) &= \Delta\vec{A} + \mathbf{grad}\left(\operatorname{div}\vec{A}\right) \end{aligned}$$

E.3 Formules d'intégration (généralisations de $\int_a^b f'(x)dx = f(b) - f(a)$):

Pour un volume Ω de frontière Σ , en utilisant la convention de la normale sortante

$$\int_{\Omega} \operatorname{div}(\vec{A}) dV = \oint_{\Sigma} \vec{A} \cdot \vec{n} dS$$

$$\int_{\Omega} \operatorname{div}(\vec{A}) dV = \oint_{\Sigma} \vec{A} \cdot \vec{n} dS$$

$$\int_{\Omega} \operatorname{\mathbf{grad}}(f) dV = \oint_{\Sigma} f \vec{n} dS$$

$$\int_{\Omega} \operatorname{\mathbf{rot}}(\vec{A}) dV = \oint_{\Sigma} \vec{A} \wedge \vec{n} dS$$

Pour une surface ouverte Σ (associée à un vecteur normal \vec{n}) bordée par un contour Γ (associé à un vecteur tangent \vec{t}) orienté positivement :

$$\int_{\Sigma}\mathbf{rot}\left(\vec{A}\right)\cdot\vec{n}dS=\oint_{\Gamma}\vec{A}\cdot\vec{t}d\ell$$

${f F}$								
_	(Quelques)	solutions	exactes	des é	quations	de l	Navier-	Stokes

Schéma	Hypothèses	Solution	Nom de l'écoulement
$\begin{array}{c c} & & & & \\ & & & & \\ h & & & & \\ & & & &$	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	$\vec{u} = u(y) \vec{e}_x$ avec $u(y) = \frac{Uy}{h}$ $p = C^{te}$	Couette plan sans gradient de pression $(\partial p/\partial x=0)$
$\begin{array}{c c} u(y) \\ h \\ \hline \\ 0 \\ \hline \end{array}$	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	ax	Poiseuille plan
$ \begin{array}{c cccc} h & U & K \neq -2 \\ K \neq 2 & K \neq -1 & A \stackrel{\overrightarrow{e}y}{\stackrel{\overrightarrow{e}x}{\stackrel{\overrightarrow{e}x}}} \\ 0 & u(y) & \stackrel{\overrightarrow{e}x}{\stackrel{\overrightarrow{e}x}} \end{array} $	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	$\frac{dp}{dx} = C^{te} \text{et} \vec{u} = u(y) \vec{e}_x$ $\text{avec} u(y) = U \left[\frac{y}{h} - K \frac{y}{h} \left(1 - \frac{y}{h} \right) \right]$ $\text{où} K = \frac{h^2}{2\mu U} \frac{dp}{dx}$	Couette plan avec gradient de pression $(\partial p/\partial x \neq 0)$ = "Couette-Poiseuille"
$\begin{array}{c c} & & & u(r) \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial \theta} = \vec{0}$	$\frac{dp}{dx} = C^{te} \text{et} \vec{u} = u(r) \vec{e}_x$ $\text{avec} u(r) = -\frac{1}{4\mu} \frac{dp}{dx} \left(R^2 - r^2 \right)$	Poiseuille cylindrique
Ω_2 \vec{e}_{θ} \vec{e}_r r R_1 R_2	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial \theta} = \vec{0}$ $\frac{\partial p}{\partial x} = 0$	$\vec{u} = v(r)\vec{e}_{\theta} \text{avec} v(r) = Ar + \frac{B}{r}$ $\text{où} A = \frac{\Omega_2 R_2^2 - \Omega_1 R_1^2}{R_2^2 - R_1^2}$ $\text{et} B = \frac{(\Omega_1 - \Omega_2) R_1^2 R_2^2}{R_2^2 - R_1^2}$	Couette cylindrique = "Couette-Taylor"
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\partial \vec{u}}{\partial t} = \vec{0}$ $\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$	$\vec{u} = u(y)\vec{e}_x$ $avec u(y) = \frac{g\sin\alpha}{2\nu}y(2h - y)$ $p(y) = \rho g(h - y)\cos\alpha + P_a$	Film tombant
y t $d\vec{e}_y$ $d\vec{e}_x$	$\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$ $\frac{\partial p}{\partial x} = 0$	$\vec{u} = u(y,t)\vec{e}_x$ avec $u(y,t) = U\left[1 - \operatorname{erf}\left(\frac{y}{2\sqrt{\nu t}}\right)\right]$ $\tau_p = \mu \left.\frac{\partial u}{\partial x}\right _{x=0} = -\rho U\sqrt{\frac{\nu}{\pi t}}$	Premier problème de Stokes
\vec{e}_x	$\frac{\partial \vec{u}}{\partial x} = \frac{\partial \vec{u}}{\partial z} = \vec{0}$ $\frac{\partial p}{\partial x} = 0$	$\vec{u} = u(y, t)\vec{e}_x$ $u(y, t) = Ue^{-y/\delta}\cos(\omega t - \frac{y}{\delta}); \ \delta = \sqrt{\frac{2\nu}{\omega}}$ $\tau_p = \mu \left. \frac{\partial u}{\partial x} \right _{x=0} = -\frac{\mu U\sqrt{2}}{\delta}\cos(\omega t - \pi/4)$	Second problème de Stokes

G Pertes de charges et Diagramme de Moody

$$\Delta P = \frac{\rho U^2 L}{D} \lambda(Re, \epsilon)$$

$$Re = \frac{UD}{\nu}, \quad \epsilon = \frac{k}{D}$$

Régime laminaire ($Re \le 2000$) :

Pour Re < 2000 on peut utiliser la formule de Poiseuille :

$$\lambda = \frac{64}{Re}$$

Régime turbulent ($Re \ge 2000$) :

Pour $\varepsilon < 0.01\%$ et $Re < 10^5$ on peut utiliser la formule de Blasius :

$$\lambda = 0.316 \, Re^{-1/4} \tag{22}$$

Pour Re > 4000 et ϵ quelconque, on utilise généralement la formule de Colebrook (semi-explicite) :

$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{2.51}{Re\sqrt{\lambda}} + \frac{\varepsilon}{3.71}\right) \tag{23}$$

Ecoulement compressible isentropique de gaz parfait

Notations:

M: Nombre de Mach

U: Vitesse P: Pression

 $\begin{array}{lll} \rho & : & \text{Masse volumique} \\ T & : & \text{Temp\'erature absolue} \\ A & : & \text{Aire d'une section droite} \\ P_i & : & \text{Pression d'arr\^{e}t isentropique} \end{array}$

 ρ_i : Masse volumique d'arrêt isentropique T_i : Température d'arrêt isentropique

 A_c : Aire de la section droite au col de la tuyère

Relations de St-Venant:

$$\frac{T}{T_i} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-1} \tag{1}$$

$$\frac{P}{P_i} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{-\gamma}{\gamma - 1}} \tag{2}$$

$$\frac{\rho}{\rho_i} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{-1}{\gamma - 1}} \tag{3}$$

Si
$$M_c = 1$$
: $\frac{A}{A_c} = \frac{1}{M} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}} \left(1 + \frac{\gamma-1}{2}M^2\right)^{\frac{\gamma+1}{2(\gamma-1)}}$ (4)

$$U = \left\{ \frac{2\gamma r}{\gamma - 1} T_i \left[1 - \left(\frac{P}{P_i} \right)^{\frac{\gamma - 1}{\gamma}} \right] \right\}^{1/2}$$
 (5)

Données numériques:
$$\gamma = 1.405, T_i = 288K$$

M	P/P_i	$ ho/ ho_i$	T/T_i	A/A_c	U^{\star}
0.00	1.0000	1.0000	1.0000	inf	0.00
0.02	0.9997	0.9998	0.9999	28.9262	6.81
0.04	0.9989	0.9992	0.9997	14.4735	13.63
0.06	0.9975	0.9982	0.9993	9.6606	20.44
0.08	0.9955	0.9968	0.9987	7.2577	27.25
0.10	0.9930	0.9950	0.9980	5.8187	34.04
0.12	0.9899	0.9928	0.9971	4.8617	40.83
0.14	0.9864	0.9903	0.9960	4.1802	47.61
0.16	0.9822	0.9873	0.9948	3.6708	54.38
0.18	0.9776	0.9840	0.9935	3.2762	61.14
0.20	0.9724	0.9803	0.9920	2.9620	67.88
0.22	0.9667	0.9762	0.9903	2.7063	74.61
0.24	0.9606	0.9718	0.9885	2.4944	81.31
0.26	0.9539	0.9670	0.9865	2.3162	88.00
0.28	0.9468	0.9619	0.9844	2.1646	94.67
0.30	0.9393	0.9564	0.9821	2.0342	101.32
0.32	0.9313	0.9506	0.9797	1.9210	107.94
0.34	0.9229	0.9445	0.9771	1.8221	114.53
0.36	0.9141	0.9380	0.9744	1.7351	121.10
0.38	0.9049	0.9313	0.9716	1.6581	127.64
0.40	0.8953	0.9243	0.9686	1.5895	134.16
0.42	0.8854	0.9170	0.9655	1.5284	140.64
0.44	0.8751	0.9094	0.9623	1.4735	147.09
0.46	0.8645	0.9016	0.9589	1.4242	153.51
0.48	0.8537	0.8935	0.9554	1.3797	159.89
0.50	0.8425	0.8852	0.9518	1.3395	166.23
0.52	0.8312	0.8767	0.9481	1.3030	172.55
0.54	0.8195	0.8679	0.9442	1.2700	178.82
0.56	0.8077	0.8590	0.9403	1.2400	185.05
0.58	0.7956	0.8498	0.9362	1.2127	191.25
0.60	0.7834	0.8405	0.9321	1.1880	197.40
0.62	0.7710	0.8310	0.9278	1.1654	203.51
0.64	0.7585	0.8214	0.9234	1.1449	209.58
0.66	0.7458	0.8116	0.9189	1.1264	215.61
0.68	0.7331	0.8017	0.9144	1.1095	221.59
0.70	0.7202	0.7917	0.9097	1.0942	227.53
0.72	0.7073	0.7815	0.9050	1.0804	233.42
0.74	0.6943	0.7713	0.9002	1.0680	239.26
0.76	0.6813	0.7610	0.8953	1.0569	245.06
0.78	0.6683	0.7506	0.8903	1.0470	250.81
0.80	0.6552	0.7402	0.8853	1.0382	256.51
0.82	0.6422	0.7296	0.8802	1.0304	262.16
0.84	0.6292	0.7230	0.8750	1.0237	267.76
0.86	0.6162	0.7131	0.8697	1.0237	273.32
0.88	0.6033	0.6979	0.8644	1.0129	278.82
0.90	0.5904	0.6873	0.8591	1.0088	284.27
0.90	0.5304	0.6766	0.8537	1.0056	289.68
0.94	0.5649	0.6660	0.8337	1.0030	295.03
0.94	0.5523	0.6554	0.8427	1.0031	300.32
0.98	0.5323	0.6448	0.8372	1.0014	305.57
0.90	0.0098	0.0448	0.0512	1.0003	305.57

M	P/P_i	$ ho/ ho_i$	T/T_i	A/A_c	U^{\star}
1.00	0.5274	0.6342	0.8316	1.0000	310.77
1.02	0.5152	0.6237	0.8260	1.0003	315.91
1.04	0.5031	0.6132	0.8203	1.0013	321.00
1.06	0.4911	0.6028	0.8146	1.0029	326.04
1.08	0.4792	0.5924	0.8089	1.0051	331.02
1.10	0.4675	0.5821	0.8032	1.0079	335.95
1.12	0.4560	0.5718	0.7974	1.0113	340.83
1.14	0.4446	0.5617	0.7917	1.0152	345.66
1.16	0.4335	0.5516	0.7859	1.0197	350.43
1.18	0.4224	0.5416	0.7801	1.0248	355.16
1.20	0.4116	0.5316	0.7742	1.0304	359.83
1.22	0.4010	0.5218	0.7684	1.0365	364.44
1.24	0.3905	0.5121	0.7626	1.0431	369.01
1.26	0.3802	0.5024	0.7567	1.0503	373.52
1.28	0.3701	0.4929	0.7509	1.0579	377.98
1.30	0.3602	0.4835	0.7450	1.0661	382.39
1.32	0.3505	0.4742	0.7392	1.0748	386.75
1.34	0.3410	0.4650	0.7333	1.0840	391.05
1.36	0.3317	0.4559	0.7275	1.0937	395.31
1.38	0.3225	0.4469	0.7217	1.1039	399.51
1.40	0.3136	0.4381	0.7159	1.1146	403.66
1.42	0.3049	0.4294	0.7101	1.1258	407.77
1.44	0.2963	0.4208	0.7043	1.1374	411.82
1.46	0.2880	0.4123	0.6985	1.1496	415.82
1.48	0.2798	0.4040	0.6927	1.1623	419.78
1.50	0.2719	0.3957	0.6870	1.1756	423.68
1.52	0.2641	0.3876	0.6813	1.1893	427.54
1.54	0.2565	0.3797	0.6756	1.2035	431.35
1.56	0.2491	0.3718	0.6699	1.2182	435.11
1.58	0.2419	0.3641	0.6642	1.2335	438.82
1.60	0.2348	0.3566	0.6586	1.2493	442.49
1.62	0.2280	0.3491	0.6530	1.2656	446.11
1.64	0.2213	0.3418	0.6474	1.2824	449.68
1.66	0.2148	0.3346	0.6418	1.2998	453.21
1.68	0.2084	0.3275	0.6363	1.3177	456.69
1.70	0.2022	0.3206	0.6308	1.3362	460.13
1.72	0.1962	0.3138	0.6254	1.3552	463.52
1.74	0.1904	0.3071	0.6199	1.3748	466.87
1.76	0.1847	0.3005	0.6145	1.3949	470.17
1.78	0.1791	0.2941	0.6092	1.4156	473.44
1.80	0.1738	0.2878	0.6038	1.4369	476.66
1.82	0.1685	0.2816	0.5985	1.4588	479.83
1.84	0.1634	0.2755	0.5933	1.4813	482.97
1.86	0.1585	0.2695	0.5880	1.5044	486.06
1.88	0.1537	0.2637	0.5828	1.5281	489.11
1.90	0.1490	0.2580	0.5777	1.5524	492.13
1.92	0.1445	0.2524	0.5726	1.5774	495.10
1.94	0.1401	0.2469	0.5675	1.6030	498.03
1.96	0.1358	0.2415	0.5625	1.6292	500.93
1.98	0.1317	0.2362	0.5575	1.6561	503.78
1.00	3.2321	3.2332	5.55.5	1.0001	3000

M	P/P_i	$ ho/ ho_i$	T/T_i	A/A_c	U^{\star}
2.00	0.1277	0.2311	0.5525	1.6837	506.60
2.02	0.1238	0.2260	0.5476	1.7120	509.38
2.04	0.1200	0.2211	0.5427	1.7409	512.12
2.06	0.1163	0.2162	0.5378	1.7705	514.83
2.08	0.1127	0.2115	0.5330	1.8009	517.50
2.10	0.1093	0.2069	0.5283	1.8319	520.14
2.12	0.1059	0.2023	0.5235	1.8637	522.73
2.14	0.1027	0.1979	0.5188	1.8963	525.30
2.16	0.0995	0.1935	0.5142	1.9296	527.83
2.18	0.0965	0.1893	0.5096	1.9636	530.33
2.20	0.0935	0.1851	0.5050	1.9985	532.79
2.22	0.0906	0.1810	0.5005	2.0341	535.22
2.24	0.0878	0.1771	0.4960	2.0705	537.61
2.26	0.0851	0.1732	0.4916	2.1078	539.98
2.28	0.0825	0.1694	0.4872	2.1459	542.31
2.30	0.0800	0.1657	0.4828	2.1848	544.61
2.32	0.0775	0.1620	0.4785	2.2246	546.89
2.34	0.0751	0.1585	0.4742	2.2652	549.13
2.36	0.0728	0.1550	0.4700	2.3068	551.34
2.38	0.0706	0.1516	0.4658	2.3492	553.52
2.40	0.0684	0.1483	0.4616	2.3925	555.67
2.42	0.0663	0.1450	0.4575	2.4368	557.79
2.44	0.0643	0.1418	0.4534	2.4820	559.89
2.46	0.0623	0.1387	0.4493	2.5282	561.95
2.48	0.0604	0.1357	0.4453	2.5753	563.99
2.50	0.0586	0.1327	0.4414	2.6235	566.01
2.52	0.0568	0.1298	0.4375	2.6726	567.99
2.54	0.0551	0.1270	0.4336	2.7228	569.95
2.56	0.0534	0.1242	0.4297	2.7740	571.88
2.58	0.0518	0.1215	0.4259	2.8262	573.79
2.60	0.0502	0.1189	0.4221	2.8795	575.67
2.62	0.0487	0.1163	0.4184	2.9339	577.53
2.64	0.0472	0.1138	0.4147	2.9894	579.36
2.66	0.0458	0.1113	0.4110	3.0461	581.17
2.68	0.0444	0.1089	0.4074	3.1038	582.95
2.70	0.0430	0.1066	0.4038	3.1628	584.71
2.72	0.0417	0.1043	0.4003	3.2229	586.45
2.74	0.0405	0.1020	0.3968	3.2842	588.17
2.76	0.0393	0.0998	0.3933	3.3467	589.86
2.78	0.0381	0.0977	0.3899	3.4104	591.53
2.80	0.0369	0.0956	0.3865	3.4754	593.18
2.82	0.0358	0.0936	0.3831	3.5417	594.80
2.84	0.0348	0.0916	0.3798	3.6092	596.41
2.86	0.0337	0.0896	0.3765	3.6781	597.99
2.88	0.0327	0.0877	0.3732	3.7483	599.56
2.90	0.0318	0.0858	0.3700	3.8198	601.10
2.92	0.0308	0.0840	0.3668	3.8927	602.63
2.94	0.0299	0.0822	0.3636	3.9670	604.13
2.96	0.0290	0.0805	0.3605	4.0427	605.61
2.98	0.0282	0.0788	0.3574	4.1198	607.08

Relations de saut à travers un choc droit

Indices:

1 : Quantités juste avant l'onde de choc (amont) 2 : Quantités juste après l'onde de choc (aval)

 $i,1 \quad : \quad \text{Quantités d'arrêt is$ $entropiques en amont de l'onde de choc}$

i,2 : Quantités d'arrêt isentropiques en aval de l'onde de choc

Relations de saut:

$$M_2^2 = \frac{2 + (\gamma - 1)M_1^2}{2\gamma M_1^2 + 1 - \gamma} \tag{1}$$

$$\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma + 1} \left(M_1^2 - 1 \right) \tag{2}$$

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma+1)M_1^2}{2+(\gamma-1)M_1^2} \tag{3}$$

$$\frac{T_2}{T_1} = \left(2\gamma M_1^2 + 1 - \gamma\right) \frac{2 + (\gamma - 1)M_1^2}{(\gamma + 1)^2 M_1^2} \tag{4}$$

$$T_{i,2} = T_{i,1} \tag{5}$$

$$\frac{P_{i,2}}{P_{i,1}} = \frac{\rho_{i,2}}{\rho_{i,1}} = \left\{ \frac{(\gamma+1)^{\gamma+1} M_1^{2\gamma}}{(2\gamma M_1^2 + 1 - \gamma) \left[2 + (\gamma - 1) M_1^2\right]^{\gamma}} \right\}^{\frac{1}{\gamma - 1}}$$
(6)

M_1	M_2	P_2/P_1	ρ_2/ρ_1	T_2/T_1	$P_{i,2}/P_{i,1}$
1.00	1.000	1.0000	1.0000	1.0000	1.00000
1.02	0.981	1.0472	1.0334	1.0134	0.99999
1.04	0.962	1.0953	1.0669	1.0266	0.99992
1.06	0.944	1.1444	1.1007	1.0397	0.99975
1.08	0.928	1.1944	1.1346	1.0527	0.99943
1.10	0.912	1.2454	1.1687	1.0656	0.99893
1.12	0.897	1.2972	1.2029	1.0785	0.99822
1.14	0.882	1.3501	1.2372	1.0912	0.99726
1.16	0.868	1.4038	1.2716	1.1040	0.99606
1.18	0.855	1.4585	1.3061	1.1167	0.99458
1.20	0.842	1.5141	1.3407	1.1294	0.99281
1.22	0.830	1.5706	1.3753	1.1420	0.99075
1.24	0.818	1.6281	1.4100	1.1547	0.98838
1.26	0.807	1.6866	1.4446	1.1674	0.98570
1.28	0.796	1.7459	1.4794	1.1802	0.98271
1.30	0.786	1.8062	1.5141	1.1929	0.97941
1.32	0.776	1.8674	1.5488	1.2057	0.97580
1.34	0.767	1.9296	1.5835	1.2186	0.97188
1.36	0.757	1.9927	1.6181	1.2315	0.96765
1.38	0.749	2.0567	1.6527	1.2445	0.96311
1.40	0.740	2.1217	1.6872	1.2575	0.95829
1.42	0.732	2.1876	1.7217	1.2706	0.95317
1.44	0.724	2.2544	1.7561	1.2837	0.94777
1.46	0.716	2.3222	1.7904	1.2970	0.94210
1.48	0.709	2.3909	1.8246	1.3103	0.93616
1.50	0.701	2.4605	1.8587	1.3237	0.92996
1.52	0.694	2.5311	1.8927	1.3373	0.92352
1.54	0.688	2.6026	1.9266	1.3509	0.91684
1.56	0.681	2.6750	1.9603	1.3646	0.90993
1.58	0.675	2.7484	1.9939	1.3784	0.90281
1.60	0.669	2.8227	2.0274	1.3923	0.89549
1.62	0.663	2.8979	2.0607	1.4063	0.88797
1.64	0.657	2.9741	2.0938	1.4204	0.88026
1.66	0.652	3.0512	2.1268	1.4346	0.87238
1.68	0.646	3.1293	2.1596	1.4490	0.86434
1.70	0.641	3.2083	2.1923	1.4635	0.85615
1.72	0.636	3.2882	2.2247	1.4780	0.84781
1.74	0.631	3.3690	2.2570	1.4927	0.83935
1.74	0.626	3.4508	2.2890	1.5075	0.83076
1.78	0.622	3.5336	2.3209	1.5225	0.82206
1.80	0.617	3.6172	2.3526	1.5376	0.82200 0.81327
1.82	0.613	3.7018	2.3840	1.5570 1.5527	0.81327
1.84	0.608	3.7873	2.4153	1.5681	0.30438 0.79541
1.86	0.604	3.8738	2.4463	1.5835	0.78637
1.88	0.600	3.9612	2.4772	1.5991	0.77727
1.90	0.596	4.0495	2.5078	1.6148	0.76811
1.90	0.590 0.592	4.0493	2.5382	1.6306	0.75891
1.94	0.592 0.589	4.1366	2.5683	1.6466	0.73891
1.94	0.585	4.3201	2.5983	1.6400 1.6627	0.74040
1.98	0.585 0.581	4.3201 4.4122	2.6280	1.6789	0.74040
1.90	0.561	4.4144	2.0260	1.0103	0.10111

M_1	M_2	P_{2}/P_{1}	ρ_2/ρ_1	T_2/T_1	$P_{i,2}/P_{i,1}$
2.00	0.578	4.5052	2.6575	1.6953	0.72181
2.02	0.575	4.5991	2.6867	1.7118	0.71250
2.04	0.570 0.571	4.6940	2.7157	1.7285	0.71230
2.06	0.568	4.7898	2.7445	1.7452	0.69389
2.08	0.565	4.8866	2.7730	1.7622	0.68460
2.10	0.562	4.9842	2.8013	1.7792	0.67532
2.12	0.559	5.0829	2.8294	1.7964	0.66607
2.14	0.556	5.1824	2.8572	1.8138	0.65686
2.16	0.553	5.2829	2.8848	1.8313	0.64767
2.18	0.551	5.3843	2.9122	1.8489	0.63853
2.20	0.548	5.4867	2.9393	1.8667	0.62943
2.22	0.545	5.5899	2.9662	1.8846	0.62038
2.24	0.543	5.6942	2.9928	1.9026	0.61139
2.26	0.540	5.7993	3.0192	1.9208	0.60245
2.28	0.538	5.9054	3.0453	1.9392	0.59357
2.30	0.535	6.0124	3.0712	1.9577	0.58476
2.32	0.533	6.1204	3.0969	1.9763	0.57601
2.34	0.531	6.2293	3.1223	1.9951	0.56734
2.36	0.528	6.3391	3.1475	2.0140	0.55873
2.38	0.526	6.4499	3.1725	2.0331	0.55021
2.40	0.524	6.5616	3.1972	2.0523	0.54176
2.42	0.522	6.6742	3.2217	2.0717	0.53339
2.44	0.520	6.7878	3.2459	2.0912	0.52511
2.46	0.518	6.9023	3.2699	2.1108	0.51691
2.48	0.516	7.0177	3.2937	2.1307	0.50879
2.50	0.514	7.1341	3.3172	2.1506	0.50077
2.52	0.512	7.2514	3.3406	2.1707	0.49283
2.54	0.510	7.3696	3.3636	2.1910	0.48498
2.56	0.508	7.4888	3.3865	2.2114	0.47723
2.58	0.507	7.6089	3.4091	2.2319	0.46957
2.60	0.505	7.7300	3.4315	2.2526	0.46200
2.62	0.503	7.8520	3.4537	2.2735	0.45452
2.64	0.501	7.9749	3.4756	2.2945	0.44714
2.66	0.500	8.0987	3.4974	2.3157	0.43985
2.68	0.498	8.2235	3.5189	2.3370	0.43266
2.70	0.497	8.3492	3.5402	2.3584	0.42556
2.72	0.495	8.4759	3.5612	2.3800	0.41856
2.74	0.494	8.6035	3.5821	2.4018	0.41166
2.76	0.492	8.7320	3.6027	2.4237	0.40485
2.78	0.491	8.8615	3.6232	2.4458	0.39814
2.80	0.489	8.9918	3.6434	2.4680	0.39152
2.82	0.488	9.1232	3.6634	2.4904	0.38499
2.84	0.486	9.2554	3.6832	2.5129	0.37857
2.86	0.485	9.3886	3.7028	2.5356	0.37223
2.88	0.484	9.5228	3.7222	2.5584	0.36599
2.90	0.482	9.6578	3.7414	2.5814	0.35985
2.92	0.481	9.7938	3.7604	2.6045	0.35380
2.94	0.480	9.9308	3.7792	2.6278	0.34784
2.96	0.479	10.0686	3.7978	2.6512	0.34197
2.98	0.477	10.2075	3.8162	2.6748	0.33619

