Determination of Dynamic Tensile Strength of Concrete Brazil Disc Specimens Using a Split Hopkinson Pressure Bar ME EN 6960

Nik Benko, John Callaway, Nick Dorsett, Martin Raming

April 17, 2018

Abstract

1 Introduction

2 Methods

2.1 Experimental Techniques

- 2.1.1 Split Hopkinson Pressure Bar
- 2.1.2 High Strain Rate Data Acquisition

2.1.3 Statistical Analysis

Central tendency and dispersion are two common ways to quantify the distribution of a data set (ref). Central tendency is quantified using the measures of mean and median. The mean of a data set is given by

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n} \tag{1}$$

2.2 Procedure 2 METHODS

where \bar{x} is the mean, n is the number of data points and x_i is the ith data point. The median is the central value of an ordered set of the data. Dispersion represents the distribution of data around the central tendency, usually the mean. Dispersion is measured using standard deviation and variance, given by

$$S_x = \left[\sum_{i=1}^n \frac{(x_i - \bar{x})^2}{n-1} \right]^{\frac{1}{2}} \tag{2}$$

$$S_x^2 = \sum_{i=1}^n \frac{(x_i - \bar{x})^2}{n-1} \tag{3}$$

where S_x is the standard deviation and S_x^2 is the variance.

For experiments involving strength of materials due to brittle fracture, a Weibull distribution function can be applied to show the probability of failure at a given strength value (ref). The Weibull Distribution is given by

$$p(x) = 1 - e^{-\left[\frac{(x - x_o)}{b}\right]^m} \text{ for } x > x_o$$
 (4)

$$p(x) = 0 \text{ for } x < x_o \tag{5}$$

where p(x) is the probability of failure occurring at x, x_o is the zero strength value of the distribution, b is scale parameter and m is the Weibull slope parameter. The values of distribution parameters x_o , b and m can be determined iteratively or by use of a commercial software such as MATLAB. MATLAB has a built in function, wblfit. that generates the Weibull parameters and probability distribution function with a 95% confidence interval (ref).

2.2 Procedure

Concrete Brazil Disc specimens with a diameter of xx mm and thickness of xx mm were loaded in the SHPB test setup. The SHPB utilized 2.489 m long, 19.05 mm diameter aluminum 7075-T6 bars for the incident and transmitted bars. Aluminum platens with a matching acoustic impedance were attached to the loading end of the incident and transmitted bars to prevent damage to the SHPB apparatus. A 1.058 mm thick, 9.525 mm diameter lead pulse shaper was placed on the non-loading end of the incident bar for each test. The striker

2.2 Procedure 2 METHODS

bar was propelled using a (need the brand) pressure gas gun. (Add figures of test setup and specimen loading)

Initial calibration and bar wave speed were determined without specimens using a gas gun pressure of 10.2 psi. A total of ten specimens were tested at four separate gas gun pressures - 8, 9, 10.2 and 12.4 psi. Strain gauges attached 1.245 m from the loading point on both the incident and transmitted bars were used to detect the incident, reflected and transmitted waves in the bar. Voltage outputs from the strain gauges were collected using a (need the brand) oscilloscope.

2.3 Error and Uncertainties 6 FIGURES

2.3 Error and Uncertainties

- 3 Results
- 4 Discussion
- 5 Conclusion
- 6 Figures

Figure 1: Experimental setup of the split Hokinson pressure bar

7 Tables

References