Лабораторная работа 2.4.1 Измерение магнитного поля Земли Выполнил Жданов Елисей Б01-205

1 Цель работы:

Изучение вольт-амперной характеристики тлеющего разряда Изучение свойств плазмы методом зондовых характеристик

2 Оборудование:

Стеклянная газоразрядная трубка, наполненная неоном

Высоковольтный источник питания

Источник питания постоянного тока

Делитель напряжения

Резистор

Потенциометр

Амперметры

Вольтметры

Переключатели

3 Теоретическая справка

В данной работе рассматривается стационарные распределения Больцмана и остальных параметров.

Используя формулу потока частиц, можно получить полуэмпипическую формулу Бома

$$I_{\rm ih} = 0.4 n_e e S \sqrt{\frac{2kT_e}{m_i}}$$

Плазменная частота колебаний электронов выводится из уравнения колебаний среды

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}}$$

Через такую плазму проходят частоты $\omega > \omega_v$, иные просто от нее отражаются.

Записав отношение скорости электронов к частоте, можно получить характерный масштаб, в котором не выполняется квазинейтральность плазмы

Таким образом, записав его для электронов и ионов, можно получить электронную поляризационную длину

$$r_{De} = \sqrt{\frac{kT_e}{4\pi n_e e^2}}$$

и дебаевский радиус экранирования

$$r_D = \sqrt{\frac{kT_i}{4\pi n_e e^2}}$$

Среднее же число ионов в дебаевской сфере

$$N_D = \frac{4}{3}\pi r_D^3 n_i$$

Наконец, степень ионизации плазмы

$$\alpha = \frac{n_i}{n}$$

4 Экспериментальная установка

Схема установки для исследования плазмы газового разряда в неоне представлена на рисунке. Стеклянная газоразрядная трубка имеет холодный (ненагреваемый) полый катод, три анода и геттерный узел стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона ²²Ne при давлении 2 мм рт. ст.

Катод и один из анодов (I или II) с помощью переключателя Π_1 подключаются через балластный резистор R_6 (450 кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной

трубке цировым вольтметром V_1 (мультиметром GDM), подключённым к трубке через высокоомный (25 MOм) делитель напряжения с коэициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в про транстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба.

Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя V выходного напряжения источника питания и потенциометра R, а измеряется цировым вольтметром V_2 (GDM). Для измерения зондового тока используется мультиметр A_2 (GDM). Анод-III в нашей работе не используется.

5 Измерения, Обработка

При обработке считается, что доминирующий вклад в погрешность вносит случайный разброс величин, а погрешностью измерения приборов можно пренебречь (что в результате будет очевидно).

Вольт - амперная характеристика разряда и теоретический график ВАХ

Рис. 6. Вольт-амперная характеристика разряда в неоне при давлении 1 тор. Шкала по оси ординат — логарифмическая. Пунктиром изображён пример нагрузочной прямой, соответствующей режиму нормального тлеющего разряда $(R=10~{\rm кOm},~\mathcal{E}=1~{\rm kB})$

Найдем угловые коэффициент ВАХ по МНК.

$$y = (7.3 \pm 0.15) - (0.1902 \pm 0.0061) \cdot x$$

$$a = \frac{\langle x_i y_i \rangle - \langle x \rangle \langle y_i \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2}$$

$$b = \langle v_i \rangle - a \langle N_i \rangle$$

Также рассчитаем их погрешности

$$S_a^2 = \frac{\langle x_i^2 \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2} \cdot \frac{\langle b_i - b \rangle^2}{n - 2}$$

Итого $R_{\text{диф}} = \frac{dU}{dI} = \frac{1}{a} = -5.26 \pm 0.16$ Ом

Как видим, поскольку наклон ВАХ отрицательный, сопротивление того же знака.

Очевидно, что BAX соответствует теоретическому участку ГД, правда ток в рассматриваемой установке значительно выше.

Графики зондовых характеристик

При помощи МНК построим требуемые асимптоты и касательные, получив необходимые значение, которые сведены в таблицу. Добавим расчет ΔU

I_p , mA	I _{ін} , мкА	$\frac{dI}{dU}U=0$	ΔU , B
5	(93 ± 3)	(8.2 ± 0.4)	(11.3 ± 1.0)
3	(46.8 ± 0.6)	(4.95 ± 0.12)	(9.5 ± 0.4)
1.5	(20.23 ± 0.13)	(2.74 ± 0.11)	(7.4 ± 0.4)

Рассчитаем все требуемые величины в следующей таблице на основе ΔU .

I_p , MA	ΔU , B	kT_e , эВ	T_e , 10^3 K	n_e , 10^{16} m ⁻³	ω_p , $10^9 \frac{\text{рад}}{\text{сек}}$	r_{De} , MKM	r_D , MKM
5	11.3 ± 1.0	5.6 ± 0.5	67 ± 6	6.3 ± 0.5	14.2 ± 0.6	70 ± 6	4.8 ± 0.2
3	9.5 ± 0.4	4.8 ± 0.2	56 ± 2	3.45 ± 0.11	10.48 ± 0.17	88 ± 3	6.44 ± 0.11
1.5	7.4 ± 0.4	3.7 ± 0.2	44 ± 2	1.68 ± 0.05	7.31 ± 0.11	110 ± 5	9.22 ± 0.14

I_p , MA	N_D	α , 10^{-7}
5	29 ± 6	9.8 ± 0.8
3	39 ± 3	5.36 ± 0.17
1.5	55 ± 4	2.61 ± 0.08

Поскольку r_{De} много меньше миллиметра, что все еще много меньше её линейных размеров, плазму можно считать квазинейтральной.

Число Дебая также довольно большое по сравнению с единицей, поэтому плазму можно рассматривать как идеальный газ.

Следовательно, все теоретические выкладки оправданны, и эксперимент можно считать корректным.

Построим графики $T_{e}\left(I_{p}\right)$ и $n_{e}\left(I_{p}\right)$

Собственно говоря, на приведенных графиках ничего нового не наблюдается - температурная зависимость аппроксимируется коренной функцией \sqrt{x} , а зависимость концентрации прямо пропорциональна. Это замечательно согласуется с уже приведенными теоретическими выкладками

6 Вывод

В данной работе было исследовано множество характеристик тлеющего разряда в неоне при пониженном давлении. Фактически все полученные значения величин обладают небольшой погрешностью, лежат в рамках предположений и представляют собой хорошие характерные значения плазмы с точки зрения физики.

Отдельно хочется упомянуть графики I(U) зонда, на которых наблюдается разрыв в районе нуля. Это связано с некоторым холостым током в схеме, который по хорошему должнен быть исключен из графика. Тем не менее, на расчет коэффициентов и ΔU он повлиять не может.

7 Ресурсы

Расчет по МНК: метод-наименьших-квадратов.рф