Twomes: Digital Twins for the Home Heating Transition

Henri ter Hofte¹, Marco Winkelman¹, Hossein Rahmani¹ , Jeike Wallinga¹ ¹Research Group Energy Transition, Windesheim University of Applied Sciences, Zwolle, the Netherlands

Which home heating model parameters of specific homes can we learn automatically from energy monitoring data in order to provide better advice to specific households about their home heating transition?

WHY?

Paris agreement: limit temperature < 1.5 °C above pre-industrial levels.

\leftarrow 8 years \rightarrow \leftarrow 8 years \rightarrow

Implies CO₂-emission budget; start reducing soon helps avoid cliff.

In NL, most homes in 2030 & 2050 were built before 2015.

DATA COLLECTION

Device	Module	Cost	QR	Set A	Set B	Set C	Set I
OpenTherm monitor	OpenTherm monitor	€ 25	✓	✓		✓	✓
smart meter module	smart meter module	€ 15	✓	✓			
	smart meter module	€15	✓		✓	✓	✓
smart meter module	boiler module	€ 25			✓	✓	✓
+ boiler module + room monitor	room monitor	€ 20			✓		✓
	room monitor incl. CO ₂ -sensor	€ 50				✓	
Total per home				€ 40	€ 60	€ 115	€ 8

	Data collected						
t D	Category	Measured data	Symbol	Unit	API	Sensor	
	comfort	setpoint	T _{set}	°C		✓	
		outdoor temperature	T _{out}	°C			
	weather	wind	U	m/s	KNMI		
		global horizontal irradiation	1	W/m ²			
	indoor	indoor temperature	T _{in}	°C		✓	
	installation	supply temperature	T _s	°C		✓	
	IIIStaliation	return temperature	T_r	°C		✓	
	heating	electricity	Е	kWh	Enelogic	✓	
	energy	gas	G	m³	Lifelogic	·	
	occupancy/	CO ₂ concentration	CO ₂	ppm		✓	
85	ventilation	Bluetooth presence	BT _{pres}	#pp		✓	

SUBJECTS & DATA

DATA ANALYSIS

- # Model parameter: H [W/K]: specific heat loss H_W_p_K = m.FV(value=300.0, lb=0, ub=1000) $H_W_p_K.STATUS = 1; H_W_p_K.FSTATUS = 0$ # Model parameter: tau [s]: effective thermal inertia tau_s = m.FV(value=(100 * s_p_h), lb=(10 * s_p_h), ub=(1000 * s_p_h)
- np.isnan(iterator_A_m2): A_m2 = m.FV(value=5, lb=1, ub=100); A_m2.STATUS = 1; A_m2.FSTATUS = 0 A_m2 = m.Param(value=iterator_A_m2) irradiation_hor_avg_W_p_m2 = m.MV(value=irradiation_hor_avg_W_p_m2_array) irradiation_hor_avg_W_p_m2.STATUS = 0; irradiation_hor_avg_W_p_m2.FSTATUS = 1 Q_gain_sol_avg_W = m.Intermediate(irradiation_hor_avg_W_p_m2 * A_m2)

#1	######################################
ı	<pre>Q_gain_W = m.Intermediate(Q_gain_gas_CH_avg_W + Q_gain_sol_avg_W + Q_gain_int_avg_W) Q_loss_W = m.Intermediate(H_W_p_K * (T_in_avg_C - T_out_e_avg_C)) C_J_p_K = m.Intermediate(H_W_p_K * tau_s) m.Equation(T_in_avg_C.dt() == ((Q_gain_W - Q_loss_W) / C_J_p_K))</pre>
ı	<pre>m.options.IMODE = 5 m.options.EV_TYPE = ev_type # specific objective function (L1-norm vs L2-norm) m.solve(False)</pre>

RESULTS & CONCLUSIONS

Scan for

more results

1	Model parameters to learn					
S	symbol	scope	parameter	unit		
ŀ	1	building	specific heat loss	W/K		
τ	τ	building	thermal inertia	s (h)		
C	0	building	thermal mass (C = $H \times \tau$)	J/K (Wh/K)		
A	4	building	apparent horizontal window area	m^2		
F)	installation	maximum heating system power	W		
r] s	installation	superior heating system efficiency	J ⁰		
C	CD	behaviour	comfort desire (thermostat setpoints)	K·s		

Initial results

- Building parameters can be learned:
- specific heat loss: **H** [W/K],
- thermal mass: **C** [W/K] (or [Wh/K]) thermal inertia: **τ** [s] (or [h])

- What was challenging - outlier removal (in particular for smart meter data)
- interpolation (in particular for smart meter timestamps) GEKKO Python model (validated with virtual home data)
- 10 to 50-fold increased analysis speed after switch to RMSE (i.e., using EV_TYPE=2, instead of EV_TYPE=1)

What's next

- assess increased precision over calculating parameters based on public building data - learn installation parameters
- learn infiltration and ventilation parameters assess utility for occupant and advisor
- use to assess real effect of interventions

