Physical Design Report in PA1

M11007444 台科電機碩一 劉杰閎

m11007444@mail.ntust.edu.tw

collaborator:B10730012 張育瑋

● 設計演算法架構:

首先,我主要是利用 Fiduccia-Mattheyses algorithm 來解決這次 PA "2-Way Circuit Partitioning" 的問題

並將這個演算法由以下幾個函數來實現:

```
// preprocessing
void firstCut();
void initialPartitionParams();
// FM
void FM();
void initialCellGains();
void constructBucketList();
// balanced
bool balanced(Cell* candidate);
// Update Cell Gains.
void UpdateGain(Cell* baseCell);
void UpdateBucketList(Cell* baseCell,int newGain);
void UpdatePartitionParams(Cell* baseCell);
void backToBest();
Cell* selectCell();
void calcCutSize();
    You, 1 秒前 * Uncommitted changes
// report.
void reportBucketList();
void reportGainList();
void reportCellDistribution();
```

主要的程式流程圖大略如下:

● 各個函數的功能與介紹:

firstCut:

主要是將讀進來的 cell 分成 A 與 B 兩邊,並在讀取時計算每一條 net 的 partCount(未來在計算 F 跟 T 時會用到)

initialCellGains:

初始化每個 cell 的 Gain.

FM:

AKA Fiduccia-Mattheyses algorithm. 實驗 FM 演算法

ConstructBucketList:

將所有的 cell 的增益紀錄到兩個 bucket List(A、B 各一個)。

Balanced:

判斷移動這個 cell 後是否會影響兩邊的平衡。

selectCell:

從 A 與 B 的 bucket List 中各挑一個最大 gain 值的 cell, 並觀察

UpdateBucketList:

將每個更新 gain 值的 cell 也去更新他們的 bucket List

UpdatePartitionParams:

更新累積增益(_accGain)、最大累積增益(_maxAccGain)、moveStack 等等參數

backToBest:

將全部移完的 cell 藉由 moveStack 回復到最好(增益最大、cutSize 最小)的狀態

calcCutSize:

計算 cutSize

reportBucketList, reportGainList, reportCellDistribution: 印出當前的 bucket list, gain, cell distribution 資訊。

• Findings:

藉由這次的 PA,發現了若沒有良好的資料結構,如 cell、Node、Net 等等,我實現的演算法勢必會是現在的好幾倍,在做 project時,常常會在不經意發現,原來提供的資料結構都已經附上我所會用到的參數。例如我在一開始做 FM 時,會用到所謂的 From Side 跟To Side(一條線上 A、B 各有幾個 cell)。當時我傻傻的利用兩個Function 去進行計算,而在與同學討論後發現原來在 Net 提供的資料結構就有所謂的 partCount 可以來紀錄我們的 From Side, To Side 的 cell 數量。讓我的 initialCellGains,或者是後面的UpdateGain,都從 $0(n^2)$ 降成 0(P)。

● 程式執行結果:

	Cut Size	Cell Num	Net Num	Part A Num	Part B Num	Time(s)
Input0	20280	150750	166998	78250	72500	93.7035
Input1	1450	3000	5000	1487	1513	0.01794
Input2	2575	7000	10000	3430	3570	0.09464
Input3	31124	66666	88888	30000	36666	28.5728
Input4	53210	150750	166998	74622	76128	175.865
Input5	166081	382489	483599	189333	193156	1924.69