Notes on Linear Algebra Done Right¹

Hao Su

July 17, 2025

 $^{^{1}4^{\}mathrm{th}}$ ed. Some exercises are omitted as trivial.

Contents

1	Vector Spaces			
	1A \mathbb{R}^n and \mathbb{C}^n			
	1B	Definition of Vector Space		
	1C	Subspaces		
2		ite-Dimensional Vector Spaces		
	2A	Span and Linear Independence		

Chapter 1

Vector Spaces

1A \mathbb{R}^n and \mathbb{C}^n

Defn 1.1 Addition and multiplication on \mathbb{C} are defined by

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

 $(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$

 \Diamond

 \triangleleft

 \triangleleft

where $a, b, c, d \in \mathbb{R}$.

By properties of \mathbb{R} and 1.1 we obtain properties of \mathbb{C} . By the existence of inverses we define $-\alpha$ and $\frac{1}{\alpha}$, and subtraction and division accordingly.

Note 1.2 Use \mathbb{F} (i.e., fields) to denote either \mathbb{R} or \mathbb{C} . Elements of \mathbb{F} are *scalars*. Say that x_k is the k^{th} coordinate of the list (x_1, \ldots, x_n) (n, the length of the list, has to be finite). Lists, when thought of as arrows, are *vectors*. Addition and scalar multiplication on lists are defined componentwise in the standard way.

Exercises

5 Additive inverse of complex arithmetic.

This is due to the additive inverse of real arithmetic.

6 Multiplicative inverse of complex arithmetic.

For $\alpha = a + bi$, where $a \neq 0$, we have $\frac{a - bi}{a^2 + b^2}$ as the multiplicative inverse of α . Thus one exists. Also all the multiplicative inverses of α equals it by real arithmetic.

 \triangleleft

 \Diamond

8 Find two distinct square roots of i.

We solve the equation $(a+bi)^2 = i$ to obtain $\pm \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)$.

1B Definition of Vector Space

We need a space where things act like vectors, which is defined as follows.

Defn 1.3 A vector space over a field \mathbb{F} is a set V equipped with two operations: vector addition $+: V \times V \to V$, and scalar multiplication $\cdot: \mathbb{F} \times V \to V$, satisfying the following axioms:

- 1. (V, +) is an abelian group, i.e.:
 - (a) (Associativity) u + (v + w) = (u + v) + w for all $u, v, w \in V$,
 - (b) (Commutativity) u + v = v + u for all $u, v \in V$,
 - (c) (Identity) There exists an element $0 \in V$ such that v + 0 = v for all $v \in V$,
 - (d) (Inverses) For each $v \in V$, there exists an element $-v \in V$ such that v + (-v) = 0.
- 2. Scalar multiplication satisfies:
 - (a) (Multiplicative identity) $1 \cdot v = v$ for all $v \in V$,
 - (b) (Associativity) $a \cdot (b \cdot v) = (ab) \cdot v$ for all $a, b \in \mathbb{F}, v \in V$,
 - (c) (Distributivity over vector addition) $a \cdot (u+v) = a \cdot u + a \cdot v$ for all $a \in \mathbb{F}$, $u, v \in V$,
 - (d) (Distributivity over field addition) $(a+b) \cdot v = a \cdot v + b \cdot v$ for all $a, b \in \mathbb{F}$, $v \in V$.

The simplest vector space is $\{0\}$.

Defn 1.4 Elements of a vector space are called *vectors* or *points*.

Eg 1.5 For $f, g \in \mathbb{F}^S$ and $\lambda \in \mathbb{F}$, $f + g \in \mathbb{F}^S$ is defined by $\forall x \in S, (f + g)(x) = f(x) + g(x)$ and $\lambda f \in \mathbb{F}^S$ by $\forall x (\lambda f)(x) = \lambda f(x)$. If $S \neq \emptyset$, then \mathbb{F}^S is a vector space over \mathbb{F} . The vector space \mathbb{F}^n is a special case of \mathbb{F}^S , where $S = \{1, 2, \ldots, n\}$.

3

 \Diamond

 \Diamond

 \Diamond

 \Diamond

Thm 1.6 A vector space has a unique additive identity.

Proof. Suppose 0 and 0' are both additive identities for some vector space V. Then

$$0' = 0' + 0 = 0 + 0' = 0.$$

Thm 1.7 Every element in a vector space has a unique additive inverse.

Proof. Suppose $a \in V$ has two additive inverses b and c. Then

$$b = b + (a + c) = (b + a) + c = c.$$

Notations like -v and w-v make sense due to the uniqueness of additive inverses. From now on, V denotes a vector space over \mathbb{F} .

Thm 1.8
$$\forall v \in V, 0v = 0.$$

Proof. We have for any $v \in V$

$$0v = (0+0)v = 0v + 0v.$$

Adding the additive inverse of 0v to both sides of the equation above gives 0 = 0v.

Comment. We have to use distributivity for that's where vector addition and scalar multiplication are connected in 1.3. The first equation holds because $0 \in \mathbb{F}$.

Thm 1.9
$$\forall a \in \mathbb{F}, a0 = 0.$$

Proof. We have for any $a \in \mathbb{F}$

$$a0 = a(0+0) = a0 + a0.$$

Adding the additive inverse of a0 to both sides of the equation above gives 0 = a0.

Similarly, 0 = (1 + (-1))v gives us

Thm 1.10
$$\forall v \in V, (-1)v = -v.$$

◁

◁

◁

Exercises

1 Prove that $\forall v \in V, -(-v) = v$.

$$0 = (-v) + (-(-v)) = v + (-v).$$

2 Suppose $a \in \mathbb{F}$, $v \in V$, and av = 0. Prove that a = 0 or v = 0.

If $a \neq 0$ we have that $v = (a \cdot \frac{1}{a})v = \frac{1}{a} \cdot (av) = 0$, which is equivalent to what we are asked to prove.

5 Show that (d) of item 1 in 1.3 can be replaced with 1.8.

We are to show the existence of additive inverse from 1.8 and the rest of 1.3.

$$0 = 0v = (1 - 1)v = v + (-1)v.$$

Thus the additive inverse of v exists, namely (-1)v.

6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in \mathbb{R} . Define an addition and scalar multiplication on $\mathbb{R} \cup \{\infty, -\infty\}$: the sum and product of two real numbers is as usual, and for $t \in \mathbb{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \quad t(-\infty) = \begin{cases} \infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ -\infty & \text{if } t > 0, \end{cases}$$

and

$$t + \infty = \infty + t = \infty + \infty = \infty,$$

$$t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty,$$

$$\infty + (-\infty) = (-\infty) + \infty = 0.$$

With these operations of addition and scalar multiplication, is $\mathbb{R} \cup \{\infty, -\infty\}$ a vector space over \mathbb{R} ? Explain.

Consider $(\mathbb{R} \cup \{\infty, -\infty\}, +)$. Commutativity and existence of identity and inverses holds by definition. However $(u, v, w) = (3, \infty, -\infty)$ violates commutativity, hence $(\mathbb{R} \cup \{\infty, -\infty\}, +)$ is not an abelian group, thus $\mathbb{R} \cup \{\infty, -\infty\}$ not a vector space.

- 8 Suppose V is a real vector space.
 - The complexification of V, denoted by $V_{\mathbb{C}}$, equals $V \times V$. An element of $V_{\mathbb{C}}$ is an ordered pair (u, v), where $u, v \in V$, but we write this as u + iv.

1C. SUBSPACES 5

• Addition on $V_{\mathbb{C}}$ is defined by

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$

for all $u_1, v_1, u_2, v_2 \in V$.

• Complex scalar multiplication on $V_{\mathbb{C}}$ is defined by

$$(a+bi)(u+iv) = (au - bv) + i(av + bu)$$

for all $a, b \in \mathbb{R}$ and all $u, v \in V$.

Prove that with the definitions of addition and scalar multiplication as above, $V_{\mathbb{C}}$ is a complex vector space.

We verify each of the requirements specified by 1.3 by properties of V as an vector space, very much like verifying the properties of \mathbb{C} by those of \mathbb{R} .

Comment. Think of V as a subset of $V_{\mathbb{C}}$ by identifying $u \in V$ with u + i0. The construction of $V_{\mathbb{C}}$ can then be thought of as generalizing the construction of \mathbb{C}^n from \mathbb{R}^n (thought of as a subset of \mathbb{C}^n .)

1C Subspaces

Defn 1.11 A subset U of V is called a *subspace* of V if U is also a vector space with the same additive identity, addition, and scalar multiplication as on V.

Thm 1.12 $U \subseteq V$ is a subspace of V iff it (1) has the additive identity of V (or is nonempty, because we can take $u \in U$ then $0u \in U$.), (2) is closed under addition, and (3) is closed under scalar multiplication.

Proof. Both directions hold by definition. In paticular, closure ensures that addition and multiplication are reasonably defined $(U \times U \to U \text{ and } \mathbb{F} \times U \to U)$ and properties such as associativity hold because they hold on V and $U \subseteq V$.

Eg 1.13 The set of differentiable real-valued functions f on the interval (0,3) such that f'(2) = b is a subspace of $\mathbb{R}^{(0,3)}$ iff b = 0 for closure under scalar multiplication, which shows the linear structure underlying parts of calculus. The subspaces of \mathbb{R}^2 are precisely $\{0\}$ all lines in \mathbb{R}^2 containing the origin and \mathbb{R} , which intuitively justifies the word "linear".

Defn 1.14 Suppose V_1, \ldots, V_m are subspaces of V. The *sum* of them is

$$V_1 + \dots + V_m = \{v_1 + \dots + v_m \mid \bigwedge v_i \in V_i\}$$

Thm 1.15 Suppose V_1, \ldots, V_m are subspaces of V. Then $V_1 + \cdots + V_m$ is the smallest subspace of V containing V_1, \ldots, V_m .

Proof. That $V_1 + \cdots + V_m$ is a subspace and contains V_1, \ldots, V_m is trivial. Suppose that V' contains V_1, \ldots, V_m and is a subspace. By 1.14 and closure under addition we have that $V_1 + \cdots + V_m \subseteq V'$, thus the minimality.

Defn 1.16 Suppose V_1, \ldots, V_m are subspaces of V. The sum $V_1 + \cdots + V_m$ is called a *direct sum* if each element of $V_1 + \cdots + V_m$ can be written in only one way as a sum $v_1 + \cdots + v_m$ where each $v_k \in V_k$, denoted $V_1 \oplus \cdots \oplus V_m$.

The definition of direct sum requires every vector in the sum to have a unique representation as an appropriate sum.

Thm 1.17 Suppose V_1, \ldots, V_m are subspaces of V. Then $V_1 + \cdots + V_m$ is a direct sum iff the only way to write 0 as a sum $v_1 + \cdots + v_m$, where each $v_k \in V_k$, is by taking each v_k equal to 0.

Proof. (\Rightarrow is trivial. Consider \Leftarrow .) Suppose for sake of contradiction that $V_1 + \cdots + V_m$ is not a direct sum. Then there exists $v \in V_1 + \cdots + V_m$ such that $v = v'_1 + \cdots + v'_m = v''_1 + \cdots + v''_m$, where $v'_k \in V_k$ and $v''_k \in V_k$ for each k and $(v'_1, \ldots, v'_m) \neq (v''_1, \ldots, v''_m)$. Then we have $0 = (v'_1 - v''_1) + \cdots + (v'_m - v''_m)$ and at least a j such that $v'_j - v''_j \neq 0$. Hence contradiction.

Thm 1.18 Suppose U and W are subspaces of V. Then

$$U + W$$
 is a direct sum $\Leftrightarrow U \cap W = \{0\}.$

Proof. ⇒: Say that $v \in U \cap W$ and $v \neq 0$, then 0 = v + (-v), where $v \in U$ and $-v \in W$, hence U + W is not a direct sum, and contradiction. \Leftarrow : Say that 0 = a + b, where $a \in U$, $b \in W$, and $a \neq 0$. Then $b = -a \in U$. Hence $b \in U \cap W$ and $b \neq 0$, and contradiction.

Sums of subspaces are analogous to unions of subsets. Similarly, direct sums of subspaces are analogous to disjoint unions of subsets.

1C. SUBSPACES 7

Exercises

6 Is $\{(a,b,c)\in\mathbb{R}^3\mid a^3=b^3\}$ a subspace of \mathbb{R}^3 ? How about \mathbb{C}^3 ?

By $a^3 = b^3$ we have that $(a - b)(a^2 + ab + b^2) = 0$. That is, if $b \neq 0$ then $\frac{a}{b} \in \left\{1, \frac{-1 \pm \sqrt{3}i}{2}\right\}$. We need a unique $\frac{a}{b}$ so that it is closed under addition, which holds in \mathbb{R} but not in \mathbb{C} .

 \triangleleft

7 Prove or give a counterexample: If U is a nonempty subset of \mathbb{R}^2 such that U is closed under addition and contains additive inverses, then U is a subspace of \mathbb{R}^2 .

A counterexample is \mathbb{Z}^2 .

- 8 Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R} .
- C.f. Ex.1C.6. Easily we have that $\{(a,b) \mid a=2b \lor a=b\}$ is not closed under addition. Note that $\{(a,b) \mid a=2b\} + \{(a,b) \mid a=b\}$ is a direct sum, yet their union is not a subspace.
- 12 Prove that the union of two subspaces of V is a subspace of V iff one of the subspaces is a subset of another.

Suppose otherwise that U and W are subspaces of V, $u \in U \setminus W$, and $w \in W \setminus U$. Then $u + w \notin U \cup W$, for that otherwise contradiction will arise. Hence $U \cup W$ is not a subspace of V.

13 Prove that the union of three subspaces of V is a subspace of V iff one of the subspaces contains the other two.

to do

- 18 Does the operation of addition on the subspaces of V have an additive identity? Which subspaces have additive inverses?
- $\{0\}$ is the additive identity of addition on subspaces of V. Also only $\{0\}$ has an additive inverse, namely itself. Suppose otherwise for sake of contradiction that $W \subseteq V$ has an additive inverse -W, $w \in W$, and $w \neq 0$. Then $w = w + 0 \in W + (-W) = \{0\}$, hence contradiction.
- 19 Prove or give a counterexample: If V_1, V_2, U are subspaces of V such that $V_1 + U = V_2 + U$ then $V_1 = V_2$.

◁

 $V_1 + U = V_2 + U$ should always hold, as long as $V_1 \subseteq U$ and $V_2 \subseteq U$, considering 1.15.

20 Suppose $U = \{(x, x, y, y) \in \mathbb{F}^4 \mid x, y \in \mathbb{F}\}$. Find a subspace W of \mathbb{F}^4 such that $\mathbb{F}^4 = U \oplus W$.

It is easy to verify that $\{(x, -x, y, -y) \in \mathbb{F}^4 \mid x, y \in \mathbb{F}\}$ suffices.

21 Suppose

$$U = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5 : x, y \in \mathbb{F}\}.$$

Find a subspace W of \mathbb{F}^5 such that $\mathbb{F}^5 = U \oplus W$.

to do

22 Suppose

$$U = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5 : x, y \in \mathbb{F}\}.$$

Find three subspaces W_1, W_2, W_3 of \mathbb{F}^5 , none of which equals $\{0\}$, such that

$$\mathbb{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3.$$

to do

23 Prove or give a counterexample: If V_1, V_2, U are subspaces of V such that $V = V_1 \oplus U = V_2 \oplus U$ then $V_1 = V_2$.

A counterexample is that $V_1 = \{(x,0) \mid x \in \mathbb{R}\}, V_2 = \{(x,x) \mid x \in \mathbb{R}\}, U = \{(0,y) \mid y \in \mathbb{R}\}, \text{ and } V = \mathbb{R}^2$. The intuition is well illustrated by the counterexample: there are different sets of vectors that span a plane, which may share same components.

24 Let V_e denote the set of real-valued even functions on \mathbb{R} and V_o the set of real-valued odd functions. Show that $\mathbb{R}^{\mathbb{R}} = V_e \oplus V_o$.

Trivial considering that $f(x) = \frac{1}{2}(f(x) + f(-x)) + \frac{1}{2}(f(x) - f(-x)).$

Chapter 2

Finite-Dimensional Vector Spaces

2A Span and Linear Independence

We will usually write lists of vectors without surrounding parentheses.

Defn 2.1 A linear combination of a list v_1, \ldots, v_m of vectors in V is a vector of the form

$$a_1v_1 + \cdots + a_mv_m$$

 \Diamond

where $a_1, \ldots, a_m \in \mathbb{F}$.

Defn 2.2 The set of all linear combinations of a list of vectors v_1, \ldots, v_m in V is called the span of v_1, \ldots, v_m , denoted $span(v_1, \ldots, v_m)$. The span of the empty list () is defined to be $\{0\}$.

Thm 2.3 The span of a list of vectors in V is the smallest subspace of V containing all vectors in the list. \diamond

The proof is omitted as trivial.

Defn 2.4 If span (v_1, \ldots, v_m) equals V, say that the list v_1, \ldots, v_m spans V. \diamond

Defn 2.5 A vector space is called *finite-dimensional* if some list of vectors in it spans the space. A vector space is called *infinite-dimensional* if it is not finite-dimensional.

Defn 2.6 A function $p: \mathbb{F} \to \mathbb{F}$ is called a *polynomial* with coefficients in \mathbb{F} if

 \Diamond

there exist $a_0, \ldots, a_m \in \mathbb{F}$ such that

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$

for all $z \in \mathbb{F}$. $\mathcal{P}(\mathbb{F})$ is the set of all polynomials with coefficients in \mathbb{F} .

If a polynomial is represented by two set of coefficients, then subtracting one representation of the polynomial from the other produces a polynomial that is identically zero as a function on \mathbb{F} and hence has all zero coefficients (which is obvious). Thus the coefficients of a polynomial are uniquely determined by the polynomial.

Defn 2.7 A polynomial $p \in \mathcal{P}(\mathbb{F})$ is said to have degree m if there exist scalars $a_0, a_1, \ldots, a_m \in \mathbb{F}$ with $a_m \neq 0$ such that for every $z \in \mathbb{F}$, we have

$$p(z) = a_0 + a_1 z + \dots + a_m z^m.$$

The polynomial that is identically 0 is said to have degree $-\infty$. The degree of a polynomial p is denoted by deg p. For m a nonnegative integer, $\mathcal{P}_m(\mathbb{F})$ denotes the set of all polynomials with coefficients in \mathbb{F} and degree at most m.

 $\mathcal{P}_m(\mathbb{F}) = \operatorname{span}(1, z, \dots, z^m)$ and thus a finite-dimensional vector space for each $m \in \mathbb{N}$. Consider any list of elements of $\mathcal{P}(\mathbb{F})$. Let m denote the highest degree of the polynomials in this list. Then every polynomial in the span of this list has degree at most m. Thus z^{m+1} is not in the span of our list. Hence no list spans $\mathcal{P}(\mathbb{F})$. Thus $\mathcal{P}(\mathbb{F})$ is infinite-dimensional.

Defn 2.8 A list v_1, \ldots, v_m of vectors in V is called *linearly independent* if the only choice of $a_1, \ldots, a_m \in \mathbb{F}$ that makes

$$a_1v_1 + \dots + a_mv_m = 0$$

is $a_1 = \cdots = a_m = 0$. The empty list () is declared to be linearly independent. \diamond span (v_1, \ldots, v_m) is by definition span $(v_1) + \cdots + \text{span}(v_m)$ and is a direct sum iff v_1, \ldots, v_m is linearly independent. C.f. 1.17.

If some vectors are removed from a linearly independent list, the remaining list is also linearly independent.

Defn 2.9 A list of vectors in V is called *linearly dependent* if it is not linearly independent. \diamond

If some vector in a list of vectors in V is a linear combination of the other vectors, then the list is linearly dependent.

Thm 2.10 Suppose v_1, \ldots, v_m is a linearly dependent list in V. Then there exists $k \in \{1, 2, \ldots, m\}$ such that

$$v_k \in \operatorname{span}(v_1, \dots, v_{k-1}).$$

Furthermore, if k satisfies the condition above and the k^{th} term is removed from v_1, \ldots, v_m , then the span of the remaining list equals $\text{span}(v_1, \ldots, v_m)$.

Proof.