## Homología de un complejo disconexo

Rafael Villarroel

2021-03-23 15:00 -0500

Consideremos el complejo simplicial  $\Delta$  cuyo conjunto de caras maximales es  $\mathcal{F}(\Delta) = \{ab, cd, ef\}$ .



 $Z_0(\Delta, R) = \ker \partial_0$ , donde  $\partial_0: C_0(\Delta, R) \to C_{-1}(\Delta, R) = R$ . La matriz (respecto a las bases usuales) de  $\partial_0$  es (111111). Unos conjunto de generadores del espacio nulo de esta

Calculemos  $H_0(\Delta, R) = Z_0(\Delta, R)/B_0(\Delta, R)$ . En este caso

matriz es (1,-1,0,0,0,0), (1,0,-1,0,0,0), (1,0,0,-1,0,0), (1,0,0,0,-1,0), (1,0,0,0,0,-1), y esos vectores se corresponden con a-b, a-c, a-d, a-e, a-f. Consideremos  $B_0(\Delta,R)$ , es decir, la imagen de

$$\partial_1: C_1(\Delta, R) \to C_0(\Delta, R)$$
. Tenemos que  $H_0(\Delta, R)$  está generado por  $\overline{a-b}$ ,  $\overline{a-c}$ ,  $\overline{a-d}$ ,  $\overline{a-e}$ ,  $\overline{a-f}$ . Como  $\partial_1(b \wedge a) = a-b$ , tenemos que  $\overline{a-b} = 0$ . Observemos que  $a-c=a-d+(d-c)=a-d+\partial_1(c \wedge d)$ 

Observemos que  $a-c=a-d+(d-c)=a-d+\partial_1(c\wedge d)$ . Esto implica que a-c=a-d. Análogamente  $\overline{a-e}=\overline{a-f}$ , pues  $a-e=a-f+(f-e)=a-f+\partial_1(e\wedge f)$ .

Por Lo tanto,  $H_0(\Delta, R) = \langle \overline{a-c}, \overline{a-e} \rangle$ . Definiciones

• Si  $z_1, z_2 \in Z_n(\Delta, R)$  son tales que  $z_1 - z_2 \in B_n(\Delta, R)$ , decimos que  $z_1, z_2$  son homólogos.

