Universidad de la República - Facultad de Ingeniería - IMERL. Matemática Discreta 2, semipresencial

Solución de la segunda prueba práctica- 30 de octubre de 2017.

Ejercicio 1.

- **a**. i) Por ser F homomorfismo tenemos que $F(e_G) = e_K$ y entonces $e_K \in \text{Im}(F)$ (pues $e_G \in G$).
 - ii) Si $k \in \text{Im}(F)$, existe $g \in G$ tal que F(g) = k. Por ser F homomorfismo tenemos que $F(g^{-1}) = F(g)^{-1} = k^{-1}$ y entonces $k^{-1} \in \text{Im}(F)$ (pues $g^{-1} \in G$).
 - iii) Si $k, \ell \in \text{Im}(F)$, existen $g, h \in G$ tales que F(g) = k y $F(h) = \ell$. Por ser F homomorfismo tenemos que $F(gh) = F(g)F(h) = k\ell$ y entonces $k\ell \in \text{Im}(F)$ (pues $gh \in G$).

Entonces Im(F) es un subgrupo de K.

- b. i) Al ser F no trivial tenemos que $|\operatorname{Im}(F)| \neq 1$ y por el Teorema de órdenes tenemos que $6 = |S_3| = |\operatorname{Ker}(F)||\operatorname{Im}(F)|$ por lo que $|\operatorname{Im}(F)| = 2$, 3, o 6. . Por otro lado como $\operatorname{Im}(F) < K$, por el Teorema de Lagrange tenemos que $|\operatorname{Im}(F)| = |K|$ y como $3 \not |K|$ entonces $|\operatorname{Im}(F)| \neq 3$, 6. Por lo tanto $|\operatorname{Im}(F)| = 2$ y luego $|\operatorname{Ker}(F)| = 3$. Como $\operatorname{Ker}(F) < S_3$ y el único subgrupo de S_3 con 3 elementos es $\langle \sigma_1 \rangle = \{Id, \sigma_1, \sigma_2\} = \langle \sigma_2 \rangle$, tenemos que $\operatorname{Ker}(F) = \{Id, \sigma_1, \sigma_2\}$.
 - ii) Como $\operatorname{Im}(F)$ es un subgrupo de K con 2 elementos, entonces $\operatorname{Im}(F) = \{e_K, k\}$ para algún $k \in K$, $k \neq e_K$; es decir que $F(x) = e_k$ o k para todo $x \in S_3$. Como $\tau_i \notin \operatorname{Ker}(F)$, $F(\tau_i) \neq e_K$ y entonces $F(\tau_i) = k$ para todo i = 1, 2, 3.
 - iii) Como en $K = \mathbb{Z}_4$ (con la suma), $o(\overline{1}) = o(\overline{3}) = 4$ y $o(\overline{2}) = 2$, el único subgrupo de \mathbb{Z}_4 con dos elementos es $\{\overline{0},\overline{2}\}$. Entonces $\operatorname{Im}(F) = \{\overline{0},\overline{2}\}$ y por las antes anteriores (tomando $k = \overline{2}$) tenemos que $F(Id) = F(\sigma_1) = F(\sigma_2) = e_K = \overline{0}$ y $F(\tau_i) = k = \overline{2}$ para i = 1, 2, 3.

Ejercicio 2. Utilizaremos la siguiente propiedad: $g^n = e \Leftrightarrow o(g) \mid n$.

- a. Como $g^{110} = e$ tenemos que $o(g) \mid 110$ y por lo tanto $o(g) \in \{1, 2, 5, 10, 11, 22, 55, 110\}$. Como $g^{55} \neq e$ sabemos que $o(g) \not\mid 55$; es decir $o(g) \notin \{1, 5, 11, 55\}$. De forma análoga obtenemos que o(g) no divide ni a 10 ni a 22 por lo que la única posibilidad restante es que o(g) = 110.
- **b.** Tenemos que $h^n = e \Leftrightarrow 5 \mid n$ y que $k^n = e \Leftrightarrow 22 \mid n$. Al ser G abeliano tenemos que $(hk)^n = h^nk^n$ para todo $n \in \mathbb{Z}$. Y entonces si $5 = \mid n$, $(hk)^n = h^nk^n = e \cdot k^n = k^n$ por lo que $(hk)^{110} = k^{110} = e$ (pues 22 divide a 110), $(hk)^{10} = k^{10} \neq e$ pues 22 // 10 y $(hk)^{55} = k^{55} \neq e$ pues 22 // 55. Por último $(hk)^{22} = h^{22}k^{22} = h^{22} \neq e$ (pues $5 \not\mid 22$). Utilizando la parte anterior concluimos que o(hk) = 110.
- c. Sea G = U(121); tenemos que $|G| = \varphi(121) = 11(10) = 110$ y como para todo $g \in G$, $o(g) \mid |G|$ tenemos que $o(g) \mid 110$.
 - i) Cuando escribo $a \equiv b$ me refiero a $a \equiv b$ (mód 121). Como $2^7 = 128 \equiv 7$, $2^{10} = 2^72^3 \equiv 7(8) \equiv 56 \not\equiv 1$, $2^{11} \equiv (56)2 = 112 \equiv (-9)$ y $2^{22} \equiv (-9)^2 = 81 \equiv -40 \not\equiv 11$, tenemos que $o(\overline{2}) = 55$ o 110. Como que $2^{55} = (2^{22})^22^{11} \equiv (-40)^2(-9) \equiv (360)(-40) \equiv (-3)(-40) = 120 \equiv -1 \not\equiv 1$ concluímos (usando la parte a)) que $o(\overline{2}) = 110$.

Ahora como $\overline{119} = \overline{-2}$ y $(-2)^{55} = -(2^{55}) \equiv -(-1) = 1$ tenemos que $o(\overline{-2}) \mid 55$. De forma similar tememos que $(-2)^{11} \equiv -112 \equiv 9 \not\equiv 1$ y $(-2)^5 = -32 \not\equiv 1$, por lo que $o(\overline{-2}) = 55$. Otro argumento es: $-2 = (-1)(2) \equiv 2^{55}2 = 2^{56}$ y por la propiedad del orden de una potencia tenemos que $o(2^{56}) = \frac{o(2)}{\text{mcd}(56, o(2))} = \frac{110}{2} = 55$.

Como $3^4=9^2=81\equiv -40,\ 3^5\equiv -120\equiv 1$ por lo que $o(\overline{3})\mid 5$ y como $o(\overline{3})\neq 1$ obtenemos que $o(\overline{3})=5$.

- ii) Como $o(\overline{2}) = 110$, el subgrupo $\langle \overline{2} \rangle$ tiene cardinal 110 (= |G|), por lo que $\langle \overline{2} \rangle = G$.
- iii) Al ser $G = \langle \overline{2} \rangle = \{\overline{2}^m : m \in \mathbb{Z}\}$ cada homomorfismo $F : G \to \mathbb{Z}_{20}$ queda determinado por $F(\overline{2}) = \overline{k} \in \mathbb{Z}_{20}$ tal que $o(\overline{k}) \mid o(\overline{2})$ (pues luego F en los elementos de G es $F(\overline{2}^m) = F(\overline{2}) + \cdots + F(\overline{2}) =$

 $\underline{\overline{k} + \cdots + \overline{k}}_{m \text{ veces}} = \overline{mk}$. Resta entonces hallar todos los $\overline{k} \in \mathbb{Z}_{20}$ tales que 10 | $o(\overline{k})$. Como en \mathbb{Z}_{20}

la operación es la suma, tenemos $10 \mid o(\overline{k}) \Leftrightarrow 10k \equiv 0 \pmod{20}$, y por la cancelativa, esto es equivalente a que $k \equiv 0 \pmod{2}$ (es decir a que k sea par). Por lo tanto hay 10 posibles \overline{k} que son $\overline{k} = \overline{2i}$ para $i \in \{0, 1, \dots, 9\}$.