UNIVERSIDAD DEL VALLE DE GUATEMALA

MM2034 - 1 SEMESTRE - 2021

LICENCIATURA EN MATEMÁTICA APLICADA

ANÁLISIS DE VARIABLE REAL 1

Catedrático: Dorval Carías

Estudiante: Rudik Roberto Rompich Cotzojay

Carné: 19857

Correo: rom19857@uvg.edu.gt

20 de junio de 2021

Índice

1 Topología básica en $\mathbb R$

1

1. Topología básica en \mathbb{R}

Definición 1. Sea X un conjunto no vacío. Una familia de subconjuntos τ de X es una topología sobre X si:

- 1. $\Phi, X, \in \tau$.
- 2. Cualquier familia $\{A_i\}$ de elementos de τ es tal que $\cup_i A_i \in \tau$.
- 3. Si $A_1, A_2 \in \tau \implies A_1 \cap A_2 \in \tau$.

NOTA. A los elementos de τ se les llama abiertos de X.

Definición 2. La familia θ de todos los subconjuntos abiertos de M es la topología de M y el par (M, θ) es el espacio topológico asociado al métrico M.

NOTA. En el caso de \mathbb{R}^n se dice que se tiene el espacio topológico Euclidiano \mathbb{R}^n .

Ejemplo 1. 1. \mathbb{R}^n es abierto. En efecto, $B_1(x) \subset \mathbb{R}^n, \forall x \in \mathbb{R}^n$.

2. $G = \{x \in \mathbb{R} : 0 < x < 1\}$ es abierto, pero $F = \{x \in \mathbb{R} : 0 \le x < 1\}$ no lo es.

Ejemplo 2. 1. $G = \{(x, y) \in \mathbb{R}^2 \ni x^2 + y^2 < 1\}$ es abierto.

2. $F = \{(x,y) \in \mathbb{R}^2 \ni x^2 + y^2 \le 1\}$ no es abierto.

Ejemplo 3. 1. $G = \{(x, y) \in \mathbb{R}^2 \ni 0 < x < 1, y = 0\}$ no es abierto de \mathbb{R}^2 .

2. $F = \{(x, y) \in \mathbb{R}^2 \ni 0 < x < 1\}$ es abierto de \mathbb{R}^2 .

Ejemplo 4. Φ es abierto.

Proposición 1. Una bola abierta es abierto.

Demostración. Sea $x \in B_r(a)$ y considere la bola centrada en x y de radio r - d(a, x). A probar: $B_{r-d(a,x)}(x) \subset B_r(a)$. Sea $y \in B_{r-d(a,x)}(x)$. Entonces,

$$d(a,y) \le d(a,x) + d(x,y)$$

$$< d(a,x) + [r - d(a,x)]$$

$$= r$$

 $\implies y \in B_r(a).$

Teorema 1. Considere (\mathbb{R}^n, d) :

1. Φ y \mathbb{R}^n son abiertos.

2

2. La intersección de dos abiertos de \mathbb{R}^n es abierto de \mathbb{R}^n .

Por inducción, se deduce que la intersección finita de abiertos es abierto.

3. La unión de cualquier colección de abiertos es un abierto de \mathbb{R}^n .

De mostraci'on.

OK.

Sea A y B abiertos de \mathbb{R}^n . A probar: $A \cap B$ es abierto. Sea $x \in A \cap B$, entonces:

- 1. $x \in A$, abierto, $\implies \exists r > 0 \ni d(x, z) < r$, para $z \in A$.
- 2. $x \in B$, abierto, $\Longrightarrow \exists r' > 0 \ni d(x, w) < r$, para $w \in B$.

 \implies Hagamos $r = \min\{r, r'\}$ \implies si $y \in \mathbb{R} \ni d(x, y) < r <math>\implies$ $y \in A$ y $y \in B \implies y \in A \cap B \implies A \cap B$ es abierto en \mathbb{R}^n .

Sea $\{G_{\alpha}\}$ una colección cualquiera de abierto de \mathbb{R}^n , y sea $G = \bigcup_{\alpha} G_{\alpha}$. Si $x \in G \implies x \in G_{\lambda}$, para algún λ . Como G_{λ} es abierto $\implies \exists r > 0 \ni B_r(x) \subset G_{\lambda} \subset \bigcup_{\alpha} G_{\alpha} = G$.

NOTA. La intersección de una colección infinita de abierto no necesariamente es abierto. En efecto considere:

$$A_n = \{x \in \mathbb{R} \ni -\frac{1}{n} < x < 1 + \frac{1}{n}\}, \quad n \in \mathbb{Z}^+$$

$$A_1 = (-1, 2)$$

$$A_2 = \left(-\frac{1}{2}, \frac{3}{2}\right)$$

$$\vdots$$

$$\Rightarrow A = \bigcap_{n=1}^{\infty} A_n$$

$$= [0, 1] \quad \text{∂ Por qu\'e cerrado?}$$

Los A_n son abiertos (por se bolas abiertas de \mathbb{R})

Definición 3. Un subconjunto \mathbb{F} en el métrico (M,d) es cerrado si \mathbb{F}^c es abierto.

1. Abierto: bola abierta contenida en A es cada punto.

- 2. Topología (colección de todos los abiertos) en el métrico.
- 3. F es cerrado si F^c es abierto.
- 4. Abierto y cerrado no son negación uno del otro.
 - a) Φ , \mathbb{R}^n son abiertos y cerrados.
 - b) [0, 1) no es abierto ni cerrado.

Definición 4. Sea $x \in M$ (espacio métrico), entonces cualquier conjunto que contiene un abierto $A \ni x \in A$ es una vecindad de x.

Ejemplo 5. Sea

- 1. [0,4) es na vecindad de e.
- 2. (1,3) es vecindad abierta de e.
- 3. \mathbb{R} es vecindad de e.
- 4. $(e \varepsilon, e + \varepsilon)$ es vecindad de $e, \forall \varepsilon > 0$.

Definición 5. Un punto $x \in M$ es punto interior de un conjunto $A \subseteq M$, si A es una vecindad de M.

- 1. [0,1], x = 0 y x = 1; no son puntos interiores. El resto de punto (0,1) son puntos interiores de [0,1].
- 2. En I = (0,1), todos son puntos interiores.
- 3. $\mathbb{R} \cap \mathbb{Z} \subseteq \mathbb{R}$.

 $\implies \mathbb{R} \cap \mathbb{Z}$ no tiene puntos interiores.

Definición 6. Un punto x es un punto de acumulación (o punto límite) de un conjunto $A \subseteq M$, si cada vecindad de x contiene al menos un punto de A diferente de x. Es decir, si

$$(B_r(x) - \{x\}) \cap A \neq \emptyset, \quad \forall r > 0.$$

Ejemplo 6. $A=\{1,1/2,1/3,\cdots,1/n,\cdots\}\subseteq\mathbb{R}\implies x=0\ es\ un\ punto\ de\ acumulación\ de\ A.$

Definición 7. El conjunto de todos los puntos interiores de A se llama interior de A (Notación: A° o int(A)).

 $Es\ decir:$

$$int(A) = \bigcup_{U \subset A, \ U \ es \ abierto.} U$$

i.e int(A) en el abierto más grande contenido.

Ejemplo 7. 1. int[0,1] = (0,1).

- 2. $int\mathbb{R} \cap \mathbb{Z} = \emptyset$.
- 3. $int\mathbb{R}^n = \mathbb{R}^n$.
- 4. A es abierto \iff A = int(A).

Ejemplo 8. La cerradura de A es el conjunto:

$$\overline{A}:=\bigcap_{A\subset F,\ F\ cerrado}F$$

NOTA. 1. \overline{A} es cerrado.

- 2. \overline{A} es el cerrado más pequeño que contiene a A.
- 3. A es cerrado \iff $A = \overline{A}$.
- 4. Si F es un cerrado que contiene a $A \implies A \subset \overline{A} \subset F$.

Definición 8. La frontera de A (denotada bd(A) o ∂A), se define

$$\partial A := \overline{A} - int(A).$$

Ejemplo 9. Sea $I = [0,1] \implies \overline{I} = [0,1] \implies int(I) = (0,1) \implies \partial A = \overline{I} - int(A) = \{0,1\}.$

Definición 9. El conjunto de todos los puntos de acumulación de un conjunto A se llama conjunto derivada de A. Notación: A'.

Proposición 2. 1. Si $A \subset B \implies A' \subset B'$.

Demostración. Sea $x \in A'$ (i.e x es un punto de acumulación de A) $\implies \forall$ abierto $G \ni x \in G$, se tiene que

$$(G - \{x\}) \cap A \neq \emptyset.$$

Como
$$A \subset B \implies (G - \{x\}) \cap A \subset (G - \{x\}) \cap B \implies \emptyset \neq (G - \{x\}) \cap A \subset A \subset (G - \{x\}) \cap B \implies (G - \{x\}) \cap B \neq \emptyset, \forall G \ni x \in G \implies x \in B'.$$

$$2. \ (A \cup B)' = A' \cup B'$$