ISTAT201B Lecture 7 Parametric Inference

|1 Location and Scale Family

关于 location scale family 的更多描述, 见 STA3020 Lecture 3

1.1 Definition: Location scale family

令:

- Y 为服从分布 F 的随机变量
- F_{μ} 为 $Y + \mu$ 的 distribution function
- F_{σ} 为 σY 的 distribution function
- $F_{\mu,\sigma}$ 为 $\sigma Y + \mu$ 的 distribution function

则

- Family $\{F_{\mu}: -\infty < \mu < \infty\}$ 被称为 location family (e.g. $\mathcal{N}(\mu,1)$)
- Family $\{F_{\sigma}: \sigma>0\}$ 被称为 scale family (e.g. $\mathcal{N}(0,\sigma^2)$)
- Family $\{F_{\mu,\sigma}: -\infty < \mu < \infty, \sigma > 0\}$ 被称为 location scale family (e.g. $\mathcal{N}(\mu,\sigma^2)$)

∧ Remark ∨

WOLG, 我们通常假设 $\mathbb{E}[Y]=0$, Var[Y]=1

12 Parametric Inference

2.1 Parametric model

一个 parametric model 通常有以下形式:

$$\mathcal{F} = \{F(x, \theta) : \theta \in \Theta\}$$

其中 $\Theta \subset \mathbb{R}^k$ 为 parametric space

Class $\mathcal F$ 的选取通常基于我们对于特定问题的 knowledge (如 data generating mechanism), 需要特别注意是否存在 违背这些 assumptions 的情形

接下来我们将介绍两种 parametric estimation methods: Method of Moment 和 Maximum Likelihood Estimation

2.2 Method of Moments

& Logic ~

关于 method of moments 更详细的描述, 见 STA2004 Lecture 4

- parameter of interest 为 $heta = (heta_1, \dots, heta_k)$
- jth (population) moment 为

$$lpha_j := lpha_j(heta) = \mathbb{E}_ heta[X^j] = \int x^j dF_ heta(x), \quad ext{for } j = 1, \dots, k$$

jth sample moment 为

$$\hat{lpha}_j = rac{1}{n} \sum_{i=1}^n X_i^j$$

则 method of moments (MOM) estimator $\hat{\theta}_n$ 满足:

$$lpha_1(\hat{ heta}_n) = \hat{lpha}_1 \ lpha_2(\hat{ heta}_n) = \hat{lpha}_2 \ \ldots \ lpha_k(\hat{ heta}_n) = \hat{lpha}_k$$

除了考虑 $\alpha_j(\theta)=\mathbb{E}_{\theta}[X^j]$,我们还可以转而去考虑 $\alpha_j(\theta)=\mathbb{E}_{\theta}[g(X)^j]$,并且令 $\hat{\theta}_n$ 满足:

$$lpha_j(\hat{ heta_n}) = rac{1}{n} \sum_{i=1}^n g(X_i)^j, \quad ext{for } j=1,\dots,n$$

2.3 Maximum likelihood estimator

关于 maximum likelihood estimator 的更多描述, 见 STA2004 Lecture 4 和 STA3020 Lecture 7

关于 likelihood function 的变种 (Composite likelihood, Quasi likelihood, Profile likelihood, Generalized profile likelihood), 见 <u>STA3020 Lecture 8</u>, <u>STA3020 Lecture 9</u>, <u>STA3020 Lecture 10</u>, <u>STA3020 Lecture 11</u>