Combining bottom up and top down approaches for Drug-Target-Interaction prediction

Tilman Hinnerichs

BORG - KAUST

December 09, 2019

Outline

1. Problem Description

Problem Description

Prediction over bipartite graph:

Classification of recent approaches¹²

	Drugs	Protein
bottom-up	GCN over moleculesdrug similarity	 secondary structure prediction contact prediction convolution over amino acid sequences
top-down	network approachesdrug similarity	▶ protein similarity

¹Chen Wang et al., Briefings in Bioinformatics, 2018

²Yu Ding et al., Briefings in Bioinformatics, 2019

Problems of recent approaches

Main issues:

- Lack ability to generalize or are unable to spot small differences
- Usually only top-down or bottom-up
- Not making use of interaction networks

Problems of recent approaches

Main issues:

- Lack ability to generalize or are unable to spot small differences
- Usually only top-down or bottom-up
- Not making use of interaction networks

Tilman Hinnerichs BORG - KAUST 5/10

Features in context

BORG - KAUST Tilman Hinnerichs Combining bottom up and top down approaches for Drug-Target-Interaction prediction 6/10

Available data structures

- ightarrow Combine Bottom up and top down features for drugs and features Data structures used:
 - PPIs, DTIs
 - ► Motifs along proteins
 - find motif along protein sequences with HMMs for each drug
 - DeepGO embeddings
 - ► DDIs, SIDER, MedDRA
 - DL2vec
 - Seq2seq for drugs

Drugs

- matrix[drug_index]
- semantic similarities over MedDRA
- ► Seq2seq from Smiles
- DL2vec over SIDER-MedDRA-HPO

Proteins

- DeepGO
- Motifs from HMM
- DL2vec Embeddings from Azza and Jun
- node degree percentile (Gray encoding)
- GNNs (node features):
 - Motifs from HMM
 - DDI induced targets
 - semantic similarity weighted targets
 - DL2vec embeddings from Azza and Jun
 - DL2vec over HPO/MP/MedDRA
 - DL2vec over PhenomeNET (GO,MP/HPO, SIDER)

9/10

Architectures

Problem Description

- every possible layer from PyG
- Node features with/without GNN
- cat([drug_feat, prot_feat]) as (node-) feature
- siamese over drugs and proteins/their (graph-)embeddings

Architectures

- every possible layer from PyG
- Node features with/without GNN
- cat([drug_feat, prot_feat]) as (node-) feature
- siamese over drugs and proteins/their (graph-)embeddings

Not included:

Variations of all datasets

10 / 10