Phu T. Van, PhD

email pvan@alumni.cmu.edu

website ptvan.github.io

WORK EXPERIENCE

2015–Present Systems Analyst, Analyst Group Leader

Fred Hutchinson Cancer Research Center Coordinated projects among the lab's PhD-level analysts, led brainstorming sessions and journal clubs. Performed analyses on flow cytometry and transcriptomic datasets. Created data analysis pipelines & interactive data visualizations. Authored Statistical Analysis Plans & peer-reviewed manuscripts. Performed reviews of junior analysts' code, mentored PhD students and bench scientists on statistics.

Reference: Evan Henrich · ehenrich@fredhutch.org

2014–2015 Postdoctoral Research Fellow

Fred Hutchinson Cancer Research Center Developed R code to normalize mass cytometry data across experiments using multi-mixture models. Worked with engineers from FlowJo Inc. (Ashland, OR) to enable parsing of XML-encoded flow cytometry data in FlowJo v10. Performed dimension reduction on mass cytometry data and identified correlates of disease using regression.

Reference: Evan Greene, PhD · palmergreene@gmail.com

2009-2014 Doctoral Student

Carnegie Mellon University Designed and built a patented high-dynamic-range protein gel imager with robotic gel cutting arm for capturing rare proteins. Developed **SIGILab**, a C++ GUI application controlling gel imager's acquisition of high-dynamic-range images. Developed bash scripts to quantify protein abundances in 2DE gel images. Lectured in Modern Biology course and mentored junior students. Reference: Jonathan Minden, PhD · minden@cmu.edu

2006-2009 Research Associate

Institute for Systems Biology

Identified factors that affect peptide detectability in mass spectrometry experiments using R. Constructed a SQLServer database with web frontend for exploring mass spectrometry data and planning proteomic experiments. Developed a weighted regression algorithm in R to predict regulators of stress response in microarray data. Reference: Serdar Turkarslan, PhD · serdar.turkarslan@isbscience.org

TECHNICAL SKILLS

Programming R, Python, Matlab, C/C++, bash, JavaScript, Perl

Data Analysis / Statistics

dimension reduction, clustering, regression/classification, linear models, variable

selection, hypothesis testing

Databases MySQL/MariaDB, PostgreSQL, SQLServer

Workflows Nextflow, WDL, Slurm, Docker, GitHub

Bioinformatics STAR, RSEM, BLAST, SAMtools/BCFtools, DEG, GSEA, KEGG, STRING

EDUCATION

2009-2014 Carnegie Mellon University

PhD, Biological Sciences

2001-2007 University of Washington

BS, Biology (Physiology specialization); BS, Wildlife Sciences

SELECTED PUBLICATIONS & PATENTS

complete list: https://scholar.google.com/citations?user=IDadFEkAAAAJ

Jun. 2020 Monocyte metabolic programs are associated with resistance to TST/IGRA conversion

in revision at J. of Clin. Invest.

This manuscript reports a potential link between oleic metabolism and *Tuberculosis* resistance in humans. As the primary analyst on the project, I aligned the raw transcriptomic data to the genome, quantified gene expression, created data visualizations and made recommendations on statistical/machine learning methods. I also assisted in writing the manuscript.

Authors: Jason Simmons, Phu T. Van, et al.

Nov. 2018 ggCyto: next generation open-source visualization software for cytometry

Bioinformatics

This R package enables plotting of high-dimensional flow cytometry and mass cytometry data in the grammar-of-graphics style. I contributed to the R codebase, performed testing and co-wrote the manuscript.

Authors: Phu T. Van*, Wenxing Jiang*, Raphael Gottardo, Greg Finak (*co-first authors)

Sep. 2014 High dynamic range proteome imaging with the structured illumination gel imager

Electrophoresis

I built the Structured Illumination Gel Imager (SIGI), which enabled a 1000-fold increase in dynamic range over then-current methods while imaging 2D electrophoretic gels. I wrote the prototype imager software in Matlab, the production software in C/C++ and this manuscript, which informed the subsequent patent application for the imager.

Nov. 2010 Coordination of frontline defense mechanisms under

Authors: Phu T. Van, Victor Bass, Dan Shiwarski, Frederick Lanni, Jonathan Minden

severe oxidative stress

Molecular Systems Biology

This manuscript reports a previously-undiscovered gene network that regulates cellular response to oxidative stress in microbes. I analyzed microarray data, wrote the R code for predicting the gene network, and co-wrote the manuscript. Authors: Amardeep Kaur, Phu T. Van, *et al.*

Jul. 2019 US10362237: Structured illumination system for increased dynamic range in quantitative imaging

United States Patent

"The systems disclosed herein employ an iterative image collection strategy that utilizes structured illumination to achieve greater than 1,000,000-fold dynamic range measurements, representing a dramatic improvement over the prior art." Inventors: Jonathan Minden, Frederick Lanni, Phu T. Van