(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-201295 (P2003-201295A)

(43)公開日 平成15年7月18日(2003.7.18)

(51) Int.Cl. ⁷	識別記号	F I	ァーマコート*(参考)
C07F 7/18		C 0 7 F 7/18	Q 4H049
B 6 0 C 1/00		B 6 0 C 1/00	A 4 J 0 0 2
C 0 8 K 5/372		C 0 8 K 5/372	
C 0 8 L 21/00		C 0 8 L 21/00	
		審査請求 未請求 請求項の数 6	OL (全 11 頁)
(21)出願番号	特願2002-279869(P2002-279869)	(71)出願人 501073862	
		デグサ アクチエンゲ	ゼルシャフト
(22)出顧日	平成14年9月25日(2002.9.%)	ドイツ連邦共和国デ	ュッセルドルフ ベ
		ニクゼンプラッツ 1	
(31)優先権主張番号	10147520. 9	(72)発明者 ハンスーデトレフ ル	ーギ ンスラント
(32)優先日	平成13年9月26日(2001.9.%)	ドイツ連邦共和国 ケ	ルン ラーダーベル
(33)優先権主張国	ドイツ (DE)	ガー シュトラーセ	147
(31)優先権主張番号	10163945.7	(72)発明者 ローラント クラフツ	イク
(32)優先日	平成13年12月22日(2001, 12, 22)	ドイツ連邦共和国 ラ	インフェルデン バ
(33)優先権主張国	ドイツ (DE)	リーシュトラーセ 6	
		(74)代理人 100061815	
		弁理士 矢野 敏雄	(外4名)
			最終頁に続く

(54) 【発明の名称】 プロック化されたメルカプトシラン、その製造方法、該化合物を含有するゴム混合物、ゴム混合物の製造方法およびプロック化されたメルカプトシランの使用

(57)【要約】

【課題】 廉価で製造可能であり、高い弾性率および高い強化係数および優れた加工性および優れた動的特性を有するブロック化されたメルカプトシランを開発する。

【解決手段】 補助塩基の存在で、適当な有機溶剤中で、式(R^1 O) $_3$ Si $-R^2$ -SHに相応するメルカプトシランをステアリン酸塩化物と反応させ、反応を完了させるために混合物を沸点まで加熱し、生成した固体残渣から沪別し、溶剤を留去する。

【特許請求の範囲】

【請求項1】 ブロック化されたメルカプトシランにお

$$(R_1 O)_3 S i - R_2 - S - C (= O) - C_{17} H_{35}$$
 (

I

[式中、 R^1 は互いに独立してHまたは($C_1 \sim C_8$) アルキルを意味し、 R^2 は直鎖($C_1 \sim C_8$) 二重結合 炭化水素または分枝鎖($C_1 \sim C_8$) 二重結合炭化水素、飽和($C_1 \sim C_8$) 二重結合炭化水素または不飽和($C_1 \sim C_8$) 二重結合炭化水素を意味し、アルキル基 $C_1 \sim C_8$) 二重結合炭化水素を意味し、アルキル基 $C_1 \sim C_8$) に相応することを特徴とする、ブロック化されたメルカプトシラン。

【請求項2】 R^1 がエチルであり、 R^2 が CH_2 CH_2 CH_2 であり、かつアルキル基 C_{17} H_{35} が直鎖である、請求項1記載のブロック化されたメルカプトシラン。

【請求項3】 請求項1の一般式 I のブロック化されたメルカプトシランの製造方法において、補助塩基の存在で、適当な有機溶剤中で、式(R1 O)3 S i - R2 - S H に相応するメルカプトシランをステアリン酸塩化物と反応させ、反応を完了させるために混合物を沸点まで加熱し、生成した固体残渣から沪別し、溶剤を留去することを特徴とする、請求項1の一般式 I のブロック化されたメルカプトシランの製造方法。

【請求項4】 ゴム混合物において、ゴム、充填剤および場合によっては他のゴム助剤、ならびに使用された酸化物充填剤の量に対して0.1~15質量%の量の請求項1記載の少なくとも1つのブロック化されたメルカプトシラン、および場合によっては脱ブロック化試薬を含有することを特徴とする、ゴム混合物。

【請求項5】 請求項4記載のゴム混合物の製造方法において、ゴムまたはゴムの混合物、充填剤、式 I 記載のブロック化されたメルカプトシランおよび場合によっては脱ブロック化試薬を混合ユニット中で混合することを特徴とする、請求項4記載のゴム混合物の製造方法。

【請求項6】 空気タイヤ、タイヤトレッド、ケーブル外装、ホース、駆動ベルト、コンベヤーベルト、ローラー被覆、タイヤ、靴底、パッキングリングおよび制動部材への請求項1記載のブロック化されたメルカプトシラ

$$(R^1 O)_3 S i - R^2 - S - C (= O) - C_{17} H_{35}$$
 (

I)

[式中、R¹ は互いに独立して日または($C_1 \sim C_8$) アルキル、有利にメチルまたはエチルを意味し、R² は直鎖($C_1 \sim C_8$)二重結合炭化水素または分枝鎖($C_1 \sim C_8$)二重結合炭化水素、飽和($C_1 \sim C_8$)二重結合炭化水素または不飽和($C_1 \sim C_8$)二重結合炭化水素、有利に CH_2 、 CH_2 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8 CH

ンの使用。

【発明の詳細な説明】

いて、該化合物が一般式Ⅰ

[0001]

【発明の属する技術分野】本発明は、ブロック化された メルカプトシラン、その製造方法および該化合物の使用 に関する。

[0002]

【従来の技術】国際特許出願公表第99/09036号 明細書の記載から、式 $[[(ROC(=O))_p - (G)_j]_k - Y - S]_r - G - (SiX_3)_s および 式 <math>[(X_3Si)_q - G]_a - [Y - [S - G - SiX_3]_b]_c$ のブロック化されたメルカプトシランは公知 である。

【0003】さらに、米国特許第6127468号明細書の記載から、充填ゴムの製造方法は公知であり、その際ゴム、ブロック化されたメルカプトシランおよび無機充填剤は混合され、式 R_2 NC (=S) N R_2 の脱ブロック化試薬は混合物に添加され、かつ混合物は加硫される。

【 0 0 0 4 】公知のブロック化されたメルカプトシランの欠点は、補強作用の低さおよび加工性の悪さにある。

[0005]

【特許文献1】国際特許出願公表第99/09036号 明細書

【特許文献 2 】 米国特許第6127468号明細書 【0006】

【発明が解決しようとする課題】本発明の課題は、廉価で製造可能であり、高い弾性率および高い強化係数および優れた加工性および優れた動的特性を有するブロック化されたメルカプトシランを開発することである。

[0007]

【課題を解決するための手段】本発明の対象は、一般式

[0008]

【化1】

【0009】を意味し、アルキル基 C_{17} H_{35} は分枝鎖または直鎖である]に相応することにより特徴付けられるブロック化されたメルカプトシランである。

【0010】本発明の有利な実施態様においては、 R^1 がエチルであってよく、 R^2 が CH_2 CH_2 CH_2 であってよく、かつアルキル基 $C_{1,7}$ $H_{3,5}$ が直鎖((CH

2)16CH3)であってよい。

【0011】式(I)記載の本発明によるブロック化されたメルカプトシランのための例は、以下の物質であっ

てよい:

[0012]

【化2】

$$\begin{split} & \langle \text{CH}_3\text{O} \rangle_3 \text{Si-CH}_2 - \text{S-C} \langle = \text{O} \rangle - \text{C}_{17} \text{H}_{35}, & \langle \text{CH}_3\text{O} \rangle_3 \text{Si-CH}_2 \text{CH}_2 - \text{S-C} \langle = \text{O} \rangle - \text{C}_{17} \text{H}_{35}, \\ & \langle \text{CH}_3\text{O} \rangle_3 \text{Si-CH}_2 \text{CH}_2 \text{CH}_2 - \text{S-C} \langle = \text{O} \rangle - \text{C}_{17} \text{H}_{35}, & \langle \text{CH}_3\text{O} \rangle_3 \text{Si-CH}_2 \text{CH}_2 \text{CH}_2 \text{CH}_2 - \text{S-C} \langle = \text{O} \rangle - \text{C}_{17} \text{H}_{35}, \\ & \text{C}(=\text{O}) - \text{C}_{17} \text{H}_{35}, & \langle \text{CH}_3\text{O} \rangle_3 \text{Si-CH}_2 - \text{S-C} \langle = \text{O} \rangle - \text{C}_{17} \text{H}_{35}, \\ & \langle \text{C}_2 \text{H}_5\text{O} \rangle_3 \text{Si-CH}_2 - \text{S-C} \langle = \text{O} \rangle - \text{C}_{17} \text{H}_{35}, & \langle \text{C}_2 \text{H}_5\text{O} \rangle_3 \text{Si-CH}_2 \text{CH}_2 - \text{S-C} \langle = \text{O} \rangle - \text{C}_{17} \text{H}_{35}, \\ & \langle \text{C}_2 \text{H}_5\text{O} \rangle_3 \text{Si-CH}_2 \text{CH}_2 \text{CH}_2 - \text{S-C} \langle = \text{O} \rangle - \text{C}_{17} \text{H}_{35}, & \langle \text{C}_2 \text{H}_5\text{O} \rangle_3 \text{Si-CH}_2 \text{CH}_2 \text{CH}$$

【0013】本発明の他の対象は、補助塩基の存在で、適当な有機溶剤中で、式 $(R^1O)_3Si-R^2-SH$ に相応するメルカプトシランをステアリン酸塩化物と反応させ、反応を完了させるために混合物を沸点まで加熱し、生成した固体残渣から沪別し、溶剤を留去することにより特徴付けられる、一般式 Iのブロック化されたメ

ルカプトシランの製造方法である。

【OO14】式 (R^1O) $_3Si-R^2-SH$ のメルカプトシランのための例は、以下の物質であってよい:

[0015]

【化3】

$$\begin{split} & (\text{CH}_3\text{O})_3\text{Si-CH}_2\text{-SH}, & (\text{CH}_3\text{O})_3\text{Si-CH}_2\text{CH}_2\text{-SH}, & (\text{CH}_3\text{O})_3\text{Si-CH}_2\text{CH}_2\text{-CH}_2\text{-SH}, \\ & (\text{CH}_3\text{O})_3\text{Si-CH}_2\text{CH}_2\text{CH}_2\text{-CH}_2, & (\text{CH}_3\text{O})_3\text{Si-CH}_2\text{CH}_2\text{-CH}_2, & \text{SH}, \\ & (\text{C}_2\text{H}_3\text{O})_3\text{Si-CH}_2\text{-SH}, & (\text{C}_2\text{H}_3\text{O})_3\text{Si-CH}_2\text{-CH}_2, & (\text{C}_2\text{H}_3\text{O})_3\text{Si-CH}_2\text{-CH}_2, & \text{CH}_2\text{-CH}_2, & \text{CH}_2\text{-CH}_2, & \text{CH}_2, & \text{C$$

【0016】補助塩基としてトリエチルアミンまたは別のアミンを使用してもよい。

【 O O 1 7 】有機溶剤としてアルカンを使用してもよい。

【0018】本発明によるブロック化されたメルカプトシランは、殊にゴム混合物への使用に好適である。

【0019】本発明のもう1つの対象は、ゴム、充填剤、有利に沈降ケイ酸、および場合によっては他のゴム助剤、ならびに使用された酸化物充填剤の量に対して0.1~15質量%、有利に5~10質量%の量の式Iの本発明による少なくとも1つのブロック化されたメルカプトシラン、および場合によっては脱ブロック化試薬を含有するゴム混合物である。

【0020】本発明によるブロック化されたメルカプトシランの添加および充填剤の添加は、有利に $100\sim200$ の質量温度で行うことができるが、しかし、後で例えば他のゴム助剤と一緒に、より低温($40\sim100$ \odot)で行ってもよい。

【0021】本発明によるブロック化されたメルカプトシランは、純粋な形で混合工程に添加されてもよいし、不活性有機キャリヤーまたは不活性無機キャリヤー上に塗布して混合工程に添加されてもよい。有利なキャリヤー材料はケイ酸、天然シリケートまたは合成シリケート、ワックス、熱プラスチック、酸化アルミニウムまたはカーボンブラックであってよい。

【0022】充填剤として、以下の物質を本発明による ゴム混合物に使用してよい:

ーカーボンブラック:本明細書中で使用すべきカーボンブラックは、フレームブラック法、ファーネス法またはガスブラック法により製造され、20~200m²/g

のBET表面積を有する。カーボンブラックは場合によりヘテロ原子、例えばSiを含有してもよい。

【0023】 -例えばケイ酸塩溶液の沈殿またはハロゲン化ケイ素の炎色熱分解により製造され、 $5\sim100$ 0、有利に $20\sim400$ m² / gの比表面積(BET表面積)を有し、かつ $10\sim400$ n mの一次粒径を示す高分散ケイ酸。ケイ酸は場合により、別の金属酸化物、例えばA1、Mg、Ca、Ba、Znおよびチタンの酸化物との混合酸化物として存在してもよい。

【0024】 -合成シリケート、例えばアルミニウムシリケート、アルカリ土類シリケート、例えばマグネシウムシリケートまたはカルシウムシリケートで、これは $20\sim400\,\mathrm{m}^2/\mathrm{g}$ のBET表面積および $10\sim400\,\mathrm{n}$ mの一次粒径を有する。

【0025】 - 合成酸化アルミニウムまたは天然酸化アルミニウムおよび合成水酸化アルミニウムまたは天然水酸化アルミニウム。

【0026】-天然シリケート、例えばカオリンおよび 別の天然に由来するケイ酸。

【0027】 - ガラス繊維およびガラス繊維製品(マット、ストランド)または巨大ガラス玉。

【0028】有利に、 $20\sim400\,\mathrm{m}^2/\mathrm{g}$ のBET表面積を有するカーボンブラック、またはケイ酸塩溶液の沈殿により製造された $20\sim400\,\mathrm{m}^2/\mathrm{g}$ のBET表面積を有する高分散ケイ酸を、ゴム100質量部に対してそれぞれ5 ~150 質量部の量で使用することができる。

【0029】前記充填剤は、単独でも混合物中でも使用することができる。この方法の殊に有利な形態において、混合物を製造するために、明色の充填剤10~15

0質量部を、場合により、使用された充填剤100質量 部に対してそれぞれカーボンブラック $0\sim100$ 質量 部、および式(I)の化合物 $0.1\sim15$ 質量部、有利 に $5\sim10$ 質量部と一緒に使用することができる。

【0030】天然ゴムに加えて、合成ゴムも本発明によるゴム混合物を製造するのに好適である。有利な合成ゴムは、例えばW. Hofmann, Kautschuktechnologie, Genter Verlag, Stuttgart 1980に記載されている。このゴムは、特に

- ーポリブタジエン(BR)、
- ーポリイソプレン(IR)、
- -スチレン含量が $1\sim60$ 質量%、有利に $2\sim50$ 質量%であるスチレン/ブタジエンコポリマー(SBR)、
- -イソブチレン/イソプレンコポリマ**-**(IIR)、
- ーアクリルニトリル含量が5~60質量%、有利に10~50質量%であるブタジエン/アクリルニトリルコポリマー(NBR)、
- ー部分的に水素化されたまたは完全に水素化されたNB Rゴム(HNBR)、
- -エチレン/プロピレン/ジェンコポリマー (EPD M)、

ならびにこれらのゴムの混合物を含有している。自動車タイヤの製造には、殊にアニオン性重合された、-50 ℃を上回るガラス転移温度を有するL-SBRゴム(溶液SBR)およびジエンゴムとの前記ゴムの混合物が重要である。

【0031】脱ブロック化試薬としては、第三アミン、ルイス酸、チオールまたは求核性試薬、例えば第一アミン、第二アミンまたはC=Nを有するアミンを使用することができる。脱ブロック化試薬のための例は、 R_2N $C(=S)-Sn-C(=S)NR_2[式中、n=1~4であり、かつRは<math>C_1\sim C_4$ アルキル基である]、N,N'-ジフェニルグアニジン、N,N',N',-トリフェニルグアニジン、N,N'-ジーオルトートリルグアニジン、オルトービグアニジン、ヘキサメチレンテトラミン、シクロヘキシルエチルアミン、ジブチルアミン、チウラムおよび4,4'-ジアミノジフェニルメタンであってよい。

【0032】本発明によるゴム混合物は、ゴム工業で公知である他のゴム補助製品、例えば反応促進剤、老化防止剤、熱安定剤、光保護剤、オゾン保護剤、加工助剤、可塑剤、増粘剤、発泡剤、着色剤、ワックス、増量剤、有機酸、遅延剤、金属酸化物、ならびに活性化剤、例えばトリエタノールアミン、ポリエチレングリコール、ヘキサントリオールを含有していてもよい。

【0033】ゴム助剤は、特に使用目的にあわせて通常の量で使用されることができる。通常の量とは、例えばゴムに対して0.1~50質量%の量である。ブロック化されたメルカプトシランは単独で架橋剤として使用す

ることができる。通常、他の架橋剤の添加が推奨される。他の公知の架橋剤として硫黄または過酸化物を使用することができる。さらに本発明によるゴム混合物は、加硫促進剤を含有していてもよい。適当な加硫促進剤のための例は、メルカプトベンゾチアゾール、スルフェンアミド、グアニジン、チウラム、ジチオカルバメート、チオ尿素およびチオカーボネートである。加硫促進剤および硫黄または過酸化物は、ゴムに対して0.1~10質量%、有利には0.1~5質量%の量で使用される。【0034】本発明によるゴム混合物の加硫は、温度100~200℃で、有利には130~180℃で、場合により圧力10~200barで行うことができる。

【0035】ゴムまたはゴムと充填剤、場合によりゴム助剤、本発明によるブロック化されたメルカプトシランおよび場合により脱ブロック化試薬との混合物は、混合ユニット、例えばローラー、密閉式ミキサーおよび混合押出機中で混合することができる。本発明による加硫ゴムは、成形体の製造、例えば空気タイヤ、タイヤトレッド、ケーブル外装、ホース、駆動ベルト、コンベヤーベルト、ローラー被覆、タイヤ、靴底、パッキングリングおよび制動部材の製造に好適である。

【0036】ゴム混合物中で本発明によるブロック化されたメルカプトシランを使用した場合、公知技術水準による混合物と比較して、高められた補強作用、低い混合粘性およびより優れた加工性という利点が明らかになる。

[0037]

【実施例】例1~4 ブロック化されたメルカプトシランの製造

例1(比較例)

(EtO)₃ Si-(CH₂)₃-S-C(=O)-C 8 H_{1.7}の製造

石油エーテル(沸点範囲50~70℃)820m1中の3-メルカプトプロピルトリエトキシシラン118.39gの溶液に、5℃でトリエチルアミン57.78gを添加した後、ペラルゴン酸塩化物87.73gを滴加する。90分還流で加熱した後、冷却した懸濁液を沪過し、フィルターケーキを石油エーテルで二回再洗浄し、得られた沪液をまとめ、溶剤を除去する。1H-NMR分析により同定される液体生成物187.74gを得る。

【0038】例2(比較例)

(EtO)₃ Si-(CH₂)₃-S-C(=O)-C 15 H₃₁の製造

石油エーテル(沸点範囲50~70℃)1300m1中の3-メルカプトプロピルトリエトキシシラン98.66gの溶液に、8℃でトリエチルアミン48.15gを添加した後、パルミチン酸塩化物113.75gを滴加する。60分還流で加熱した後、冷却した懸濁液を沪過し、フィルターケーキを石油エーテルで二回再洗浄し、

得られた沪液をまとめ、溶剤を除去する。¹ H-NMR 分析により同定される液体生成物183.30gを得 る。

【0039】例3

(EtO)₃ Si-(CH₂)₃-S-C(=O)-C 17 H₃₅の製造

石油エーテル(沸点範囲50~70℃)1300m1中の3-メルカプトプロピルトリエトキシシラン98.66gの溶液に、5℃でトリエチルアミン48.15gを添加した後、加熱可能な滴下漏斗を用いてステアリン酸塩化物125.35gを滴加する。90分還流で加熱した後、冷却した懸濁液を沪過し、フィルターケーキを石油エーテルで二回再洗浄し、得られた沪液をまとめ、溶剤を除去する。1H-NMR分析により同定される液体生成物186.71gを得る。

【0040】例4(比較例)

(EtO)₃ Si-(CH₂)₃-S-C(=O)-C 21 H₄₃の製造 石油エーテル(沸点範囲50~70℃)1300m1中の3-メルカプトプロピルトリエトキシシラン98.66gの溶液に、5℃でトリエチルアミン48.15gを添加した後、固体計量装置を用いてベヘン酸塩化物148.57gを添加する。90分還流で加熱した後、冷却した懸濁液を沪過し、フィルターケーキを石油エーテルで二回再洗浄し、得られた沪液をまとめ、溶剤を除去する。1H-NMR分析により同定される低融点生成物213.55gを得る。

【0041】例5~例9:ゴム技術試験

ゴム混合物に使用した一般的な配合を以下の第1表に記載した。その際、単位phrは使用された粗ゴム100質量部に対する質量部を表す。

【0042】例5~例9においてシランを等モル量で計量供給する。

[0043]

【表1】

第1表

物質	例 5	例	例	例8	例 9
工程1	[phr]	[phr	[phr]	[phr]	[phr]
ブナ VSL 4515-0	75,0	75,0	75,0	75,0	75,0
プナ CB 24	25,0	25,0	25,0	25,0	25,0
ウルトラシル7000 GR	80,0	80,0	80,0	80,0	80,0
Si 69	7,0	_	-	_	- 1
シラン 例 1	_	9,95	-	_	-
シラン 例 2	_	_	12,53	-	-
シラン 例 3	-	-	_	13,26	_
シラン 例 4		_	-	-	14,74
ZnO	2,5	2,5	2,5	2,5	2,5
ステアリン酸	1,0	1,0	1,0	1,0	1,0
ナフトレン パロ	32,5	32,5	32,5	32,5	32,5
Vulkanox 4020	2,0	2,0	2,0	2,0	2,0
Protector G35P	1,5	1,5	1,5	1, 5	1,5
工程3					
バッチ工程 2					
DPG	2,0	2,0	2,0	2,0	2,0
CBS	1,7	1,7	1,7	1,7	1,7
硫黄	2,2	2,2	2,2	2,2	2,2

【0044】ポリマーVSL 4515-0は、スチレン含有率15質量%およびブタジエン含有率85質量%を有する、Bayer社の重合されたSBRコポリマーの溶液である。ブタジエンのうち、モノマー単位の45%が1,2結合している。

【0045】ポリマーブナ(Buna) CB 24 は、シス-1, 4 - 含有率を少なくとも 96% 有し、かつ $44\sim$ 50 のムーニー粘度を有する、 Bayer 社のシス-1, 4 - ポリブタジエンである。

【0046】ウルトラシル(Ultrasil) 70 00 GRは、BET表面積170m²/gを有する、 Degussa社のケイ酸である。

【0047】Si 69は、Degussa社のビス (3-トリエトキシシリルプロピル)テトラスルファン

である。

【0048】芳香族油として、Chemetall社のナフトレン(Naftolen)ZDを使用する。バルカノックス(Vulkanox) 4020はBayer社のPPDであり、プロテクター(Protektor) G35PはHB-Fuller社のオゾン保護ワックスである。バルカサイト(Vulkacit)D(DPG)及びバルカサイト(Vulkacit) CZ(CBS)はBayer社の商品名である。

【0049】第2表の記述に相応して密閉式ミキサー中で3工程でゴム混合物を製造する:

[0050]

【表2】

第2表

N1 4- 2-7	
	工程 1
設定	
混合ユニット 摩擦 速度 ラム圧 空容器 充填度 流動温度	Werner & Pfleiderer GK 1.5E 1:1 70 min ⁻¹ 5,5 bar 1,58 L 0,55 70 °C
混合工程	
0 ~ 1 分 1 ~ 3 分	ポリマー 1/2ケイ酸 ,カーボンブラック, 2nO,
3 ~ 4 分 4 分 4 分 4 ~ 5 分	1/29 4 版 , カーホンノフック, 200, ステアリン酸、シラン、油 1/2ケイ酸 、 老化防止 浄化 沸合
5 分 6 分	混合および排出
貯蔵	室温で24時間

	工程?
設定	
混合ユニット 速度 充填度 流動温度	工程1に記載したもの 可変 0,51 80 °C
混合工程	
0 ~ 2 分 2 ~ 5 分 5 分	バッチ工程 1 1 4 5 ℃から 1 5 5 ℃で混合 排出 および実験室練りロール装置におけるシート形成 (直径 2 0 0 mm, 長さ 4 5 0 mm, 流動温度 5 0 ℃)
バッチ温度	引き続きシートを引き抜く 100-110 °C

[0051]

【表3】

	工程 3
設定	
混合ユニット 速度 充填度 流動温度	工程 2 に記載したもの 40 min ⁻¹ 0,49 50 °C
混合工程	
0 ~ 2分 2分	バッチ工程 2 、硫黄、 促進剤 排出および実験室練りロール装置におけるミル (直径 200mm、長さ 450mm、 流動温度 50℃) 3*左へ、3 * 右へ切り込み 8*広く 3*狭く破砕する 引き続き、シートを引き抜く

【0052】試験体の加硫時間は165℃で20分であ

術試験を行う。

る。

[0054]

【0053】第3表中の所定の試験方法に従ってゴム技

【表4】

第3表

	from the of the best
物理試験	標準/条件
ML 1+4, 100 °C	DIN 53523/3, (SO 667
バルカ(Vulka)メーター試験 165 °C	DIN 53529/3, (SO 6502
環上での引張試験、23°C 引張強さ 弾性率 破断点伸び	DIN 53504, ISO 37
ショア A 硬度、 23 °C	DIN 53 505
反撥弾性、 0および 60 °C	ASTM D 5308
粘弾性、0および60℃,16Hz, 初期力 50Nおよび振幅力25N 複素弾性率 E*, 損失係数 tanδ	DIN 53 513, ISO 2856
グット リッチ(Goodrich)屈曲試験機 0.175インチストローク,25分,23℃	DIN 53 333, ASTM D 623 A
DIN-摩耗、力10N	DIN 53 516
圧縮永久ひずみ DVR, 22時間, 70℃	DIN 53 517, ISO 815
分散	ISO/DTS 11345

【0055】以下の粗混合物および加硫生成物のゴム技術データを得る(第4表):

【0056】

【表5】

新 4茲						
相混合物の結果				1		
指標:	単位	愈s	© ∪	を つ	® 8	€ o
Hitec 165°C		,	,	í	i	1
Daax-Dain	[qum]	9,9	ور م	5,2	9,0	5,5
+ 10%	[min]	5,5	5,3	5,4	5,2	5,4
t 90%	[min]	10,8	8,3	В, 3	6,8	10,0
MI 1+4 100°C工程3	[ME]	53	35	32	e E	32
加硫生成物の結果						
拉镰:	単位	壓ч	图9	阅	多	殿 の
環上での引張試験						
引張強さ	. ddw	14.7	8.60	13.6	13.9	13,7
	[MPa]	ر و ۲	1,9	1	1,7	1,5
彈性率 300%	[WPa]	10,1	9,5	7,7	8,1	6,6
一破断点伸び		380	390	440	430	500
弾性率 300%/100%	[-]	5,3	5,0	4,5	4,8	4,4
ショア A 硬度(23°C)	[SH]	64	09	28	58	57
Œ	[*]	60,1	58,9	61,1	60,3	60,4
	[mm3]	62	16	93	68	103
グットリッチ(Goodrich)屈曲試験機						
し、このインドンシンスの一番を通用		60	44	(F)	77	55
	<u>.</u>	ව ව	6 8	82	83	84
一支角首な一大人に止め	[#]	5 °C	2,0	1,4	1,5	1,4
MTS, 16Hz, 50N +/- 25N		,		(T	r c	
	[MPa}	15,1	12,4	12,6	יים היים דו	
E*, 60°C	[MPa]	2,6	- I	7,2	/ J 0	5 G
損失係数 tang, 0°C	Ξ	0,329	0,278	0,278	0,270	0,320
損失係数でang, 60°C	[-]	0,148	0, 123	0,127	0,129	#CT (0
フィリップス分散		8	8	ထ	<u>ა</u>	-

【0057】第4表が示す通り、等モル量で計量供給した場合、例8の本発明によるシランは $E*(0^{\circ})$ の最低値をもたらし、このことからタイヤトレッド中の改善された冬期特性を推測することができる。さらに、混合物8は最も優れた分散値を有し、かつ混合物7および混合物9に対して高い弾性率値が顕著である。

【0058】例10~例14:ゴム技術試験 ゴム混合物に使用した一般的な配合を以下の第5表に記載した。その際、単位phrは使用する粗ゴム100質量部に対する質量部を表す。

【0059】

【表6】

第5表

物質	例	例 11	例 12	例 13	例 14
工程 1	phr]	[phr]	[phr]	[phr]	[phr]
プナ VSL 4515-0	75,0	75,0	75,0	75,0	75,0
プナ CB 24	25,0	25,û	25,0	25,0	25,0
ウルトラシル 7000 GR	80,0	80,0	80,0	80,0	80,0
Si 69	7,0	-	-	_	-
シラン例 1	_	7,0	-	-	_
シラン例2	_	-	7,0	_	_
シラン例3	_	_	-	7,0	_
シラン例 4	-	-	-	_	7,0
ZnO	2,5	2,5	2,5	2,5	2,5
ステアリン酸	1., 0	1,0	1,0	1,0	1,0
ナフトレン ZD	32,5	32,5	32,5	32,5	32,5
Vulkanox 4020	2,0	2,0	2,0	2,0	2,0
Protector G35P	1,5	1,5	1,5	1,5	1,5
工程3		_			
バッチ工程 2					
DPG	2,0	2,0			2,0
CBS	1,7	1,7	1,7	1,7	1,7
硫黄	2,2	2,2	2,2	2,2	2,2

【0060】例10~例14においてシランを等質量で 計量供給する。

【0061】第2表の記述に相応して密閉式ミキサー中で3工程でゴム混合物を製造し、165℃で20分加硫する。

【0062】第3表中の所定の試験方法に従ってゴム技

術試験を行う。

【0063】以下の粗混合物および加硫生成物のゴム技術データを得る(第6表):

[0064]

【表7】

第6表						
料						
tanger 12 - march	脚位	例 10	(6) 11	例 1.2	(9) 1.3	1.4
Bite 165°C	 		,	,		r
Description of	[dNm]	9'9	e, n	ນ້ອ	7	7 .
	[min]	ς, ιν	5,7	5,6 6	5,2	5,5
# OT 7	[min]	10, 3	٥, ا	17,8	17,5	18,4
NI 1+4 100°C 工程3	ME	E G	36	en m	40	38
加硫生成物の結果						
指標:	単位	₹ 2	函1.	212	13	14
環上での引張試験						_
が影響して	MPal	14,7	13,4	14,4	14,2	13,8
海车塔 100%	MPa	1,9	1,9	2,2	2,1	2,1
1 1 1 1 1 1 1 1 1 1	MPa	10,1	9,6	11,1	11,2	70,2
一件は、一件は、一件をは、一件をは、一件をは、一件をは、一件をは、一件をは、一件	<u>S</u>	380	370	350	920	0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50
場下 100% 1		5/3	5,1	5,0	5,3	4,9
いっと 種種 マルバ	SH	64	09	61	61	62
2 L	5%	60,1	60,5	62,0	62,6	50,5
XXXX ELL COO	[mm ₃]	62	71	55	57	63
グットラッチ(Goodrich)屈曲試験機						
0.175インチ,25分,23℃	٢	Ċ	Ų	ţ	ž	97
接触温度] [4. Q	n ur	- O	, t-	58
破壊温度。	2 2	9,5	1,8	1,5	1,4	1,6
MTS,16Hz, 50N +/- 25N	1	, , , , , , , , , , , , , , , , , , ,		, r	- -	12.5
つ。p、**!!	[MPa]	1,01	12,4	ון ה קין	- 70 ax	9.4
に 100 100 100 100 100 100 100 10	MP S	מני מריי	250	, i	0,308	0,274
損矢体数tano,b,c B.H.M. M.	ΞΞ	0,148	0,123	0,119	0,124	0,119
大大数 call b , bu c		α	o:	600	80	7
ノイリッノ人が散		, 	, ,			

【0065】第6表に示す通り、等質量で計量供給した場合、例13の本発明によるシランは、t10%の最短時間、弾性率300%の最大値およびタイヤトレッド中の改善された転がり抵抗を推測することができる反挠弾性60℃の最高値をもたらす。さらに、本発明による例13の強化係数300%/100%は、より短いかまた

はより長いアルキル鎖を含有するシランよりも高く(例 11、12および14)、かつSi 69の参考と同じである。損失係数 t an δ 0 Cは、本発明による例 1 3のためのアルキル鎖長変動において最大値を示し、このことからタイヤの改良された湿り横滑りを推測することができる。

フロントページの続き

(72)発明者 フランク フォルスタードイツ連邦共和国 シェルクリッペン マイゼンヴェーク 24

Fターム(参考) 4H049 VN01 VP01 VQ24 VQ49 VR21 VR43 VU16

4J002 AC011 AC031 AC061 AC071

ACO81 BB151 BB181 BC051

BG101 DA037 DE147 DJ007

DJ037 DL007 EN028 EN078

EN088 EU188 EU189 EV109

EV129 EV149 EV168 EV169

EV279 EV329 EX086 FA047

FA087 FD017 FD159 FD208

GN01