Cours: Structures algèbriques

Table des matières

1	Groupe			
	1.1	Loi de composition interne	1	
	1.2	Groupe		
	1.3	Ordre d'un élément	4	
	1.4	Groupe $(\mathbb{Z}/n\mathbb{Z},+)$	4	
2	Anneau, corps			
	2.1	Anneau	Ę	
	2.2	Corps	6	
	2.3	Anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$	6	
3	Espace vectoriel, Algèbres			
	3.1	Espace vectoriel	6	
	3.2	Algèbre	7	

1 Groupe

1.1 Loi de composition interne

Définition 1. Soit E un ensemble. On appelle loi de composition interne toute application \star de $E \times E$ dans E:

$$\begin{array}{ccc} \star : E \times E & \longrightarrow & E \\ (x,y) & \longmapsto & x \star y \end{array}$$

Définition 2. La loi ★ est dite

— associative lorsque :

$$\forall x, y, z \in E \quad (x \star y) \star z = x \star (y \star z)$$

 $- \ \ commutative \ lorsque:$

$$\forall x, y \in E \quad x \star y = y \star x$$

Remarque:

 \Rightarrow L'addition et la multiplication sont des lois de composition interne associatives et commutatives sur \mathbb{C} . Le pgcd est une loi de composition interne associative et commutative sur \mathbb{Z} . La composition est une loi de composition interne sur $\mathcal{F}(\mathbb{R},\mathbb{R})$, associative mais pas commutative. Enfin, l'exponentiation est une loi de composition interne sur \mathbb{N} qui n'est ni associative, ni commutative.

Définition 3. Une partie A de E est dite stable par \star lorsque :

$$\forall x, y \in A \quad x \star y \in A$$

Remarque:

 \Rightarrow Si \star est une loi de composition interne sur E et $A \in \mathcal{P}(E)$ est stable par \star , alors la loi

$$\begin{array}{ccc} \star_A : A \times A & \longrightarrow & A \\ (x,y) & \longmapsto & x \star y \end{array}$$

est une loi de composition interne sur A que l'on continuera à noter \star .

Définition 4. On dit que \star admet un élément neutre $e \in E$ lorsque :

$$\forall x \in E \quad x \star e = e \star x = x$$

Si tel est la cas, il est unique et on l'appelle élément neutre de \star . Lorsque la loi est notée additivement, l'élément neutre est noté 0.

Exercice:

 \Rightarrow Parmi les lois de composition interne citées plus haut, les quelles admettent un élément neutre?

Remarque:

Dans toute la suite de ce cours, on supposera, sauf mention explicite du contraire, que les lois sont associatives et admettent un élément neutre.

Définition 5. Soit $x \in E$. On définit x^n pour tout $n \in \mathbb{N}$ par récurrence :

- $-x^{0}=e$
- $\ \forall n \in \mathbb{N} \quad x^{n+1} = x^n \star x$

Lorsque la loi est notée additivement, on le note $n \cdot x$. On a alors :

- $-0 \cdot x = 0$
- $\forall n \in \mathbb{N} \quad (n+1) \cdot x = n \cdot x + x$

Proposition 1. Soit $x \in E$. Alors:

$$\forall m, n \in \mathbb{N} \qquad x^{m+n} = x^m \star x^n$$
$$(x^m)^n = x^{mn}$$

Si $x, y \in E$ commutent, c'est-à-dire si $x \star y = y \star x$, on a :

$$\forall n \in \mathbb{N} \quad (x \star y)^n = x^n \star y^n$$

Remarque:

- \Rightarrow Pour calculer x^4 , on peut commencer par calculer $x \star x$, puis multiplier deux fois ce résultat par x. Cette méthode nécessite 3 multiplications. On peut cependant faire plus rapide et se limiter à 2 multiplications : il suffit de calculer $x \star x$ et de multiplier le résultat obtenu par lui-même. Plus généralement, pour calculer x^n pour $n \in \mathbb{N}$, on peut suivre l'algorithme récursif suivant :
 - —Si n=0, alors la réponse est e.
 - —Si n est pair, alors il existe $k \in \mathbb{N}$ tel que n = 2k. On calcule alors de manière récursive x^k , résultat qu'il suffit de multiplier par lui-même pour obtenir x^n .
 - —Si n est impair, alors il existe $k \in \mathbb{N}$ tel que n=2k+1. On calcule alors de manière récursive x^k , résultat qu'il suffit de multiplier par lui-même, puis par x pour obtenir x^n . On peut montrer que cet algorithme, appelé $m\acute{e}thode$ d'exponentiation rapide, nécessite asymptotiquement $\log_2 n$ multiplications, contrairement à l'algorithme naı̈f qui s'effectue asymptotiquement en n multiplications.

Définition 6. Soit $x \in E$. On dit que x est symétrisable pour la loi \star lorsqu'il existe $y \in E$ tel que :

$$x \star y = y \star x = e$$

Si tel est le cas, y est unique et est appelé symétrique de x. On l'appelle inverse de x et on le note x^{-1} lorsque la loi est notée multiplicativement et on l'appelle opposé de x et on le note -x lorsque la loi est notée additivement.

Proposition 2.

— Si x est symétrisable, x^{-1} l'est et :

$$\left(x^{-1}\right)^{-1} = x$$

— Si x et y sont symétrisables, $x \star y$ l'est et :

$$(x \star y)^{-1} = y^{-1} \star x^{-1}$$

Définition 7. Soit $x \in E$. Si x est symétrisable, on étend la définition de x^n en posant :

$$\forall n \in \mathbb{Z} \quad x^n = \begin{cases} x^n & \text{si } n \geqslant 0\\ (x^{-n})^{-1} & \text{si } n \leqslant 0 \end{cases}$$

Proposition 3. Soit $x \in E$. Si x est symétrisable :

$$\forall m, n \in \mathbb{Z}$$
 $x^{m+n} = x^m \star x^n$ $(x^m)^n = x^{mn}$

 $Si \ x, y \in E \ sont \ symétrisables \ et \ commutent, \ alors :$

$$\forall n \in \mathbb{Z} \quad (x \star y)^n = x^n \star y^n$$

Définition 8. On dit qu'un élément x de E est régulier lorsque :

$$\forall y, z \in E \quad x \star y = x \star z \implies y = z$$

$$y \star x = z \star x \implies y = z$$

Proposition 4. Les éléments inversibles sont réguliers.

1.2 Groupe

Définition 9. Soit G un ensemble muni d'une loi de composition interne \star . On dit que (G, \star) est un groupe lorsque :

- * est associative
- ★ admet un élément neutre
- tout élément de G est symétrisable.

Le groupe (G,\star) est dit commutatif (ou abélien) lorsque la loi \star est commutative.

Remarques:

- \Rightarrow (\mathbb{C} , +) et (\mathbb{C}^* , ·) sont des groupes commutatifs.
- \Rightarrow Si (G, \star) est un groupe et $x \in G$, les applications

$$\tau_g: G \longrightarrow G \quad \text{et} \quad \tau_d: G \longrightarrow G \\
g \longmapsto x \star g \quad g \longmapsto g \star x$$

sont des bijections de G appelées respectivement translation à gauche et à droite.

 \Rightarrow Si (G, \star) est un groupe fini, on appelle table de (G, \star) le tableau à deux entrées dont les lignes et les colonnes sont toutes deux indexées par les éléments de G et qui contient les produits $g_1 \star g_2$. Puisque (G, \star) est un groupe, un des ses éléments sera l'élément neutre, et puisque les translations à gauche et à droite sont des bijections, chaque ligne et chaque colonne contiendra une et une seule fois chaque élément de G.

Exercice:

 \Rightarrow Déterminer la table d'un groupe à 3 éléments.

Définition 10. Soit (G, \star) un groupe et H une partie de G. On dit que H est un sous-groupe de G lorsque :

- $-e \in H$
- $-\forall x, y \in H \quad x \star y \in H$
- $\ \forall x \in H \quad x^{-1} \in H$

Si tel est le cas (H, \star) est un groupe.

Remarques:

- \Rightarrow Si (G, \star) est un groupe, G et $\{e\}$ sont des sous-groupes de G.
- Arr (\mathbb{R} , +), (\mathbb{Q} , +), (\mathbb{Z} , +) sont des sous-groupes de (\mathbb{C} , +). De même (\mathbb{U} , ·), (\mathbb{R}^* , ·), (\mathbb{Q}^* , ·) sont des sous-groupes de (\mathbb{C}^* , ·).
- \Rightarrow En pratique, pour montrer que (G, \star) est un groupe, on le fera presque toujours apparaître comme sous-groupe d'un groupe connu.

- \Rightarrow Pour montrer que H est un sous-groupe de (G,\star) , il ne faut surtout pas oublier de vérifier que $H\subset G$. En pratique, on n'en parle pas lorsque c'est trivial, mais il ne faut surtout pas oublier de le vérifier lorsque l'inclusion est plus subtile.
- \Rightarrow On peut montrer qu'une partie H de G est un sous-groupe de (G,\star) si et seulement si $e \in H$ et $\forall x,y \in H$ $x \star y^{-1} \in H$. Bien que cette méthode fait économiser quelques lignes dans un devoir, elle a l'inconvénient de concentrer les difficultés. On évitera donc de l'utiliser lorsque la démonstration demandée n'est pas immédiate.

Proposition 5. Si $n \in \mathbb{N}^*$, (\mathbb{U}_n, \cdot) est un groupe dont l'élément neutre est 1.

Proposition 6. Soit E un ensemble. On note $\sigma(E)$ l'ensemble des bijections de E dans E. Alors $(\sigma(E), \circ)$ est un groupe, appelé groupe des permutations de E, dont l'élément neutre est Id_E .

Exercice:

 \Rightarrow Montrer que l'ensemble des bijections croissantes de \mathbb{R} dans \mathbb{R} est un sous-groupe de $(\sigma(\mathbb{R}), \circ)$.

Proposition 7. L'intersection d'une famille de sous-groupes est un sous-groupe.

Remarque:

⇒ Contrairement à l'intersection, l'union de deux sous-groupes n'est en général pas un sous-groupe.

Définition 11. Soit (G, \star) un groupe et A une partie de G. Alors, il existe un plus petit sous-groupe de G contenant A; on l'appelle groupe engendré par A et on le note Gr(A).

${\bf Remarque:}$

 \Rightarrow Si (G,\star) est un groupe et x est un élément de G, le groupe engendré par $\{x\}$, appelé abusivement groupe engendré par x, est $\{x^k:k\in\mathbb{Z}\}$.

Exercice:

Soit $n \in \mathbb{N}^*$ et $\omega = e^{i\frac{2\pi}{n}}$. On se place dans le groupe (\mathbb{U}_n, \cdot) . Montrer que si $k \in \mathbb{Z}$, le groupe engendré par ω^k est égal à \mathbb{U}_n si et seulement si k et n sont premiers entre eux.

Définition 12. Soit (G_1, \star_1) et (G_2, \star_2) deux groupes. On dit qu'une application φ de G_1 dans G_2 est un morphisme de groupe lorsque :

$$\forall x, y \in G_1 \quad \varphi(x \star_1 y) = \varphi(x) \star_2 \varphi(y)$$

Plus précisément, on dit que φ est un :

- endomorphisme lorsque $(G_1, \star_1) = (G_2, \star_2)$.
- isomorphisme lorsque φ est bijective
- automorphisme lorsque φ est un endomorphisme et un isomorphisme.

Remarque:

Arr L'application φ de \mathbb{R} dans \mathbb{U} qui à θ associe $e^{i\theta}$ est un morphisme du groupe $(\mathbb{R}, +)$ dans le groupe (\mathbb{U}, \cdot) . L'application exp de \mathbb{R} dans \mathbb{R}_+^* est un isomorphisme du groupe $(\mathbb{R}, +)$ dans le groupe (\mathbb{R}_+^*, \cdot) .

Exercices:

- \Rightarrow Déterminer les endomorphismes, puis les automorphismes de $(\mathbb{Z},+)$.
- \Rightarrow Quels sont les morphismes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$?

Proposition 8. Soit φ un morphisme de groupe de (G_1, \star_1) dans (G_2, \star_2) . Alors

$$\varphi(e_1) = e_2$$

$$\forall x \in G_1 \qquad \varphi(x^{-1}) = [\varphi(x)]^{-1}$$

$$\forall x \in G_1 \quad \forall n \in \mathbb{Z} \qquad \varphi(x^n) = [\varphi(x)]^n$$

Proposition 9. Soit φ un morphisme de (G_1, \star_1) dans (G_2, \star_2) . Alors:

- L'image réciproque d'un sous-groupe de G_2 est un sous-groupe de G_1 .
- L'image directe d'un sous-groupe de G_1 est un sous-groupe de G_2 .

Définition 13. Soit φ un morphisme de (G_1, \star_1) dans (G_2, \star_2) . On appelle noyau de φ et on note $\operatorname{Ker} \varphi$ l'ensemble :

$$\operatorname{Ker} \varphi = \{ x \in G_1 : \varphi(x) = e_2 \}$$

C'est un sous-groupe de G_1 .

Proposition 10. Un morphisme φ de (G_1, \star_1) dans (G_2, \star_2) est injectif si et seulement si :

$$\operatorname{Ker} \varphi = \{e_1\}$$

Exercice:

 \Rightarrow Soit (G,\star) un groupe et φ l'application de G dans $\sigma(G)$ définie par

$$\begin{array}{cccc} \varphi: G & \longrightarrow & \sigma(G) \\ x & \longmapsto & \varphi(x): G & \longrightarrow & G \\ g & \longmapsto & x \star g \end{array}$$

Montrer que φ est bien définie et que c'est un morphisme injectif de groupe. En déduire que (G, \star) est isomorphe à un sous-groupe du groupe de ses permutations.

Proposition 11.

- La composée de deux morphismes de groupes est un morphisme de groupe.
- La bijection réciproque d'un isomorphisme de groupe est un isomorphisme de groupe.

Proposition 12. Si (G, \star) est un groupe, on note $\operatorname{Aut}(G)$ l'ensemble des automorphismes de G. $(\operatorname{Aut}(G), \circ)$ est un groupe.

Définition 14. Soit (G_1, \star_1) et (G_2, \star_2) deux groupes. On définit la loi \star sur $G_1 \times G_2$ par :

$$\forall (x_1, x_2), (y_1, y_2) \in G_1 \times G_2 \quad (x_1, x_2) \star (y_1, y_2) = (x_1 \star_1 y_1, x_2 \star_2 y_2)$$

Alors $(G_1 \times G_2, \star)$ est un groupe d'élément neutre (e_1, e_2) et :

$$\forall (x_1, x_2) \in G_1 \times G_2 \quad (x_1, x_2)^{-1} = (x_1^{-1}, x_2^{-1})$$

Exercice:

 \Rightarrow Montrer que \mathbb{C}^* est isomorphe à $\mathbb{R}_+^* \times \mathbb{U}$.

1.3 Ordre d'un élément

Proposition 13. Une partie H de \mathbb{Z} est un sous-groupe de $(\mathbb{Z}, +)$ si et seulement si il existe $n \in \mathbb{N}$ tel que

$$H = \{kn : k \in \mathbb{Z}\}$$

De plus, si tel est le cas, l'entier n est unique.

Remarque:

 \Rightarrow Si $n \in \mathbb{N}$, l'ensemble $\{kn : k \in \mathbb{Z}\}$ est noté $n\mathbb{Z}$.

Définition 15. Soit (G, \star) un groupe et $x \in G$. Alors, l'application

$$\varphi: \mathbb{Z} \longrightarrow G$$

$$n \longmapsto x^n$$

est un morphisme du groupe $(\mathbb{Z}, +)$ dans (G, \star) .

— $Si \operatorname{Ker} \varphi = \{0\}$, on $dit \operatorname{que} x \operatorname{n'a} \operatorname{pas} \operatorname{d'ordre}$. Dans $\operatorname{ce} \operatorname{cas}$

$$\forall n \in \mathbb{Z} \quad x^n = e \quad \Longleftrightarrow \quad n = 0$$

— Sinon, il existe un unique $\omega \in \mathbb{N}^*$ tel que $\operatorname{Ker} \varphi = \omega \mathbb{Z}$. On dit que ω est l'ordre de x et on a

$$\forall n \in \mathbb{Z} \quad x^n = e \iff \omega \mid n$$

${\bf Remarques:}$

- \Rightarrow Dans un groupe, e est l'unique élément d'ordre 1. Dans (\mathbb{C}^*,\cdot) , si $n\in\mathbb{N}^*$, l'élément $\omega=e^{i\frac{2\pi}{n}}$ est d'ordre n.
- \Rightarrow Soit (G,\star) un groupe et x un élément de G d'ordre fini ω . Alors le groupe engendré par x est $\{e,x,x^2,\ldots,x^{\omega-1}\}$. En particulier, l'ordre de x est le cardinal du groupe qu'il engendre.

Exercice:

 \Rightarrow Soit (G, \star) un groupe et $x \in G$ un élément d'ordre fini n. Pour tout $k \in \mathbb{Z}$, calculer l'ordre de x^k .

Théorème 1. Soit (G, \star) un groupe fini et x un élément de G. Alors l'ordre de x divise le cardinal de G.

Remarques:

- \Rightarrow Si (G,\star) est un groupe fini, la cardinal de G est aussi appelé ordre de G. La version faible du théorème de Lagrange nous dit donc que dans un groupe fini, l'ordre d'un élément divise l'ordre du groupe.
- \Rightarrow La version forte du théorème de Lagrange dit que si (G,\star) est un groupe fini et H est un sous-groupe de (G,\star) , alors le cardinal de H divise le cardinal de G. De cette version forte découle la version faible : si $x \in G$, il suffit de remarquer que le cardinal du groupe H engendré par x est l'ordre de x.

Exercices:

 \Rightarrow Déterminer les sous-groupes finis de (\mathbb{U},\cdot) .

1.4 Groupe $(\mathbb{Z}/n\mathbb{Z}, +)$

Définition 16. Soit $n \in \mathbb{N}^*$ et \mathcal{R} la relation d'équivalence définie sur \mathbb{Z} par

$$\forall a, b \in \mathbb{Z} \quad a\mathcal{R}b \iff a \equiv b \ [n]$$

On appelle $\mathbb{Z}/n\mathbb{Z}$ l'ensemble des classes d'équivalence pour cette relation.

Proposition 14. Soit $n \in \mathbb{N}^*$. Pour tout $k \in \mathbb{Z}$, on note \overline{k} la classe d'équivalence de k. Alors, les éléments $\overline{0}, \overline{1}, \ldots, \overline{n-1}$ sont deux à deux distincts et :

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

Définition 17. Soit $n \in \mathbb{N}^*$. On définit la loi de composition interne $+ \sup \mathbb{Z}/n\mathbb{Z}$ par

$$\forall k_1, k_2 \in \mathbb{Z} \quad \overline{k_1} + \overline{k_2} = \overline{k_1 + k_2}$$

Alors $(\mathbb{Z}/n\mathbb{Z}, +)$ est un groupe commutatif de cardinal n et d'élément neutre $\overline{0}$.

Remarque:

 \Rightarrow Du groupe $(\mathbb{Z}/n\mathbb{Z},+),$ on retiendra essentiellement le fait que l'application

$$\begin{array}{ccc} \varphi: \mathbb{Z} & \longrightarrow & \mathbb{Z}/n\mathbb{Z} \\ k & \longmapsto & \overline{k} \end{array}$$

est un morphisme surjectif de groupe et que : $\forall k_1, k_2 \in \mathbb{Z} \quad \overline{k_1} = \overline{k_2} \iff k_1 \equiv k_2 \ [n].$

Exercice:

 \Rightarrow Soit (G,\star) un groupe et $x\in G$ un élément d'ordre $n\in\mathbb{N}^*.$ Montrer que l'application

$$\varphi: \mathbb{Z}/n\mathbb{Z} \longrightarrow G$$

$$\overline{k} \longmapsto x^k$$

est bien définie et qu'elle réalise un isomorphisme de $\mathbb{Z}/n\mathbb{Z}$ sur le groupe engendré par x.

2 Anneau, corps

2.1 Anneau

Définition 18. Soit (A, +) un groupe commutatif (d'élément neutre 0_A) et \times une loi de composition interne sur A. On dit que $(A, +, \times)$ est un anneau lorsque :

- × est associatif
- × admet un élément neutre 1_A
- × est distributive par rapport à + :

$$\forall a, b, c \in A$$
 $a \times (b+c) = a \times b + a \times c$
 $(a+b) \times c = a \times c + b \times c$

Un élément $a \in A$ est dit inversible lorsqu'il est inversible pour la loi \times . Un anneau $(A, +, \times)$ est dit commutatif lorsque \times est commutative.

Remarques:

- \Rightarrow ($\mathbb{C}, +, \cdot$) et ($\mathbb{R}, +, \cdot$) sont des anneaux.
- \Rightarrow Si $(A, +, \cdot)$ est un anneau et X est un ensemble non vide, l'ensemble $\mathcal{F}(X, A)$ muni des lois + et \cdot définies par

$$\forall f, g \in \mathcal{F}(X, A) \quad \forall x \in X \quad (f+g)(x) = f(x) + g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

est un anneau. En particulier $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\cdot)$ et $(\mathbb{R}^{\mathbb{N}},+,\cdot)$ sont des anneaux.

Proposition 15. Soit $(A, +, \times)$ un anneau. Alors :

$$\forall a \in A \qquad 0_A \times a = 0_A$$

$$\forall a, b \in A \qquad a \times (-b) = (-a) \times b = -(a \times b)$$

$$\forall a, b \in A \quad \forall n \in \mathbb{Z} \qquad (n \cdot a) \times b = a \times (n \cdot b) = n \cdot (a \times b)$$

Proposition 16. Soit $(A, +, \times)$ un anneau et $a, b \in A$ tels que $a \times b = b \times a$. Alors:

— $Si \ n \in \mathbb{N}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot \left(a^{n-k} \times b^k\right)$$

— $Si \ n \in \mathbb{N}^*$:

$$a^{n} - b^{n} = (a - b) \times \left[\sum_{k=0}^{n-1} a^{(n-1)-k} \times b^{k} \right]$$

${\bf Remarques:}$

 \leftrightarrows Ces relations peuvent être fausses lorsque a et b ne commutent pas. Par exemple, si a et b sont deux éléments d'un anneau, alors

$$(a+b)^2 = a^2 + 2 \cdot a \times b + b^2 \iff a \times b = b \times a$$

 \Rightarrow Remarquons que si a est un élément d'un anneau, alors a commute avec 1_A , donc ces formules sont valables pour développer $(1_A + a)^n$ et factoriser $a^n - 1_A$.

Exercice:

 \Rightarrow On dit qu'un élément x d'un anneau est nilpotent lorsqu'il existe $n \in \mathbb{N}^*$ tel que $x^n = 0_A$. Montrer que si x est nilpotent, alors $1_A - x$ est inversible.

Définition 19. Soit $(A, +, \times)$ un anneau. L'ensemble U_A des éléments inversibles de A est un groupe pour la multiplication.

Définition 20. On dit qu'un anneau $(A, +, \times)$ est intègre lorsque :

- $-- \times \ est \ commutative$
- $-\forall a, b \in A \quad a \times b = 0_A \Longrightarrow [a = 0_A \quad ou \quad b = 0_A]$

Exercice:

 \Rightarrow L'anneau $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\cdot)$ est-il intègre?

Définition 21. Soit $(A, +, \times)$ un anneau et B une partie de A. On dit que B est un sous-anneau de A lorsque :

- $-0_A \in B$ et $1_A \in B$
- $\forall b_1, b_2 \in B \quad b_1 + b_2 \in B, \quad -b_1 \in B \quad et \quad b_1 \times b_2 \in B$

Si tel est le cas $(B, +, \times)$ est un anneau.

Remarques:

- \Rightarrow Si B est un sous-anneau de $(A, +, \times)$, B est un sous-groupe de (A, +).
- \Rightarrow Si B est un sous-anneau de $(\mathbb{C}, +, \cdot)$, alors $\mathbb{Z} \subset B$.

Exercice:

 \Rightarrow Montrer que $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\}$ est un sous-anneau de \mathbb{C} .

Définition 22. Soit $(A, +, \times)$ et $(B, +, \times)$ deux anneaux. On dit qu'une application φ de A dans B est un morphisme d'anneau lorsque :

$$\varphi(1_A) = 1_B$$

$$\forall a_1, a_2 \in A \qquad \varphi(a_1 + a_2) = \varphi(a_1) + \varphi(a_2)$$

$$\forall a_1, a_2 \in A \qquad \varphi(a_1 \times a_2) = \varphi(a_1) \times \varphi(a_2)$$

Proposition 17. Soit φ un morphisme d'anneau de $(A, +, \times)$ dans $(B, +, \times)$. Alors:

$$\forall a \in A \quad \forall n \in \mathbb{Z} \qquad \varphi(n \cdot a) = n \cdot \varphi(a)$$

 $\forall a \in A \quad \forall n \in \mathbb{N} \qquad \varphi(a^n) = [\varphi(a)]^n$

De plus, si $a \in A$ est inversible, il en est de même pour $\varphi(a)$ et :

$$\forall n \in \mathbb{Z} \quad \varphi\left(a^n\right) = \left[\varphi\left(a\right)\right]^n$$

Proposition 18.

- La composée de deux morphismes d'anneaux est un morphisme d'anneau.
- La bijection réciproque d'un isomorphisme est un isomorphisme.

2.2 Corps

Définition 23. On dit qu'un anneau $(\mathbb{K}, +, \times)$ est un corps lorsque :

- \times est commutative
- Tout élément non nul de $\mathbb K$ admet un inverse pour la loi imes

Proposition 19. Un corps est intègre.

Définition 24. Soit $(\mathbb{L}, +, \times)$ un corps et \mathbb{K} une partie de \mathbb{L} . On dit que \mathbb{K} est un sous-corps de \mathbb{L} lorsque :

- \mathbb{K} est un sous-anneau de \mathbb{L}
- $\forall x \in \mathbb{K} \setminus \{0\} \quad x^{-1} \in \mathbb{K}$

Si tel est le cas, $(\mathbb{K}, +, \times)$ est un corps.

Remarque:

 \Rightarrow Si \mathbb{K} est un sous-corps de $(\mathbb{C}, +, \cdot)$, alors $\mathbb{Q} \subset \mathbb{K}$.

Définition 25. Si $(\mathbb{K}, +, \times)$ et $(\mathbb{L}, +, \times)$ sont deux corps, on appelle morphisme de corps de \mathbb{K} dans \mathbb{L} tout morphisme d'anneau pour les structures sous-jacentes.

Remarque:

⇒ Les morphismes de corps sont injectifs.

Exercice:

 $\Rightarrow \text{ Déterminer les morphismes de corps } \varphi \text{ de } \mathbb{C} \text{ dans } \mathbb{C} \text{ tels que} : \forall x \in \mathbb{R} \quad \varphi(x) = x.$

2.3 Anneau $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$

Définition 26. Soit $n \in \mathbb{N}^*$. On définit la loi de composition interne \cdot sur $\mathbb{Z}/n\mathbb{Z}$ par

$$\forall k_1, k_2 \in \mathbb{Z} \quad \overline{k_1} \cdot \overline{k_2} = \overline{k_1 \cdot k_2}$$

Alors $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ est un anneau commutatif dont l'élément neutre pour la multiplication est $\overline{1}$.

Proposition 20. Soit $n \in \mathbb{N}^*$ et $k \in \mathbb{Z}$. Alors \overline{k} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ si et seulement si k est premier avec n.

Remarque:

 \Rightarrow En pratique, si k est premier avec n et que l'on cherche un inverse de \overline{k} dans $\mathbb{Z}/n\mathbb{Z}$, il suffit de trouver une relation de Bézout entre k et n. En effet, si on a trouvé $a,b\in\mathbb{Z}$ tels que ak+bn=1, alors $\overline{a}\cdot\overline{k}=\overline{1}$ donc \overline{a} est l'inverse de \overline{k} dans $\mathbb{Z}/n\mathbb{Z}$.

Proposition 21. Soit $n \in \mathbb{N}^*$. Alors $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un corps si et seulement si n est premier.

Remarque:

 \Rightarrow Remarquons que si n n'est pas premier, alors $\mathbb{Z}/n\mathbb{Z}$ n'est pas intègre. En effet, si il existe $p,q\geqslant 2$ tels que $n=p\cdot q$, alors $\overline{p}\cdot \overline{q}=\overline{0}$ alors que \overline{p} et \overline{q} sont non nuls. L'anneau $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ est donc soit un corps, soit un anneau non intègre.

Exercice:

 \Rightarrow Soit p un nombre premier et $k \in \mathbb{Z}$ tel que $k \wedge p = 1$. Montrer que $k^{p-1} \equiv 1$ [p].

3 Espace vectoriel, Algèbres

3.1 Espace vectoriel

Définition 27. Soit \mathbb{K} un corps, (E, +) un groupe commutatif d'élément neutre 0_E et \cdot une loi de composition externe :

$$\begin{array}{ccc} \cdot : \mathbb{K} \times E & \longrightarrow & E \\ (\lambda, x) & \longmapsto & \lambda \cdot x \end{array}$$

On dit que $(E, +, \cdot)$ est un \mathbb{K} -espace vectoriel lorsque :

$$\begin{aligned} \forall x,y \in E \quad \forall \lambda \in \mathbb{K} & \lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y \\ \forall x \in E \quad \forall \lambda,\mu \in \mathbb{K} & (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x \\ \forall x \in E \quad \forall \lambda,\mu \in \mathbb{K} & \lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x \\ & \forall x \in E & 1_{\mathbb{K}} \cdot x = x \end{aligned}$$

Les éléments de K sont appelés scalaires, ceux de E, vecteurs.

Proposition 22. On a:

$$\begin{aligned} \forall x \in E & \quad & 0_{\mathbb{K}} \cdot x = 0_E \\ \forall \lambda \in \mathbb{K} & \quad & \lambda \cdot 0_E = 0_E \end{aligned}$$

$$\forall x \in E \quad \forall \lambda \in \mathbb{K} & \quad & (-\lambda) \cdot x = \lambda \cdot (-x) = -(\lambda \cdot x)$$

${\bf Remarque:}$

 \Rightarrow En particulier, si $x \in E$, $(-1) \cdot x = -x$.

Proposition 23. On a:

$$\forall x \in E \quad \forall \lambda \in \mathbb{K} \quad \lambda \cdot x = 0_E \quad \Longrightarrow \quad [\lambda = 0_{\mathbb{K}} \quad ou \quad x = 0_E]$$

Définition 28. Soit \mathbb{K} un corps et $n \in \mathbb{N}^*$. On définit sur $E = \mathbb{K}^n$:

— la loi de composition interne + par :

$$\forall (x_1,\ldots,x_n),(y_1,\ldots,y_n) \in \mathbb{K}^n$$

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

— la loi de composition externe \cdot par :

$$\forall (x_1, \dots, x_n) \in \mathbb{K}^n \quad \forall \lambda \in \mathbb{K} \quad \lambda \cdot (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$$

Alors $(\mathbb{K}^n, +, \cdot)$ est un \mathbb{K} -espace vectoriel d'élément neutre $(0, \ldots, 0)$.

Remarque:

 \Rightarrow En particulier, $\mathbb K$ est un $\mathbb K\text{-espace}$ vectoriel.

Définition 29. Soit E un \mathbb{K} -espace vectoriel et X un ensemble non vide. On définit sur $\mathcal{F}(X,E)$:

— la loi de composition interne + par :

$$\forall f, g \in \mathcal{F}(X, E) \quad \forall x \in X \quad (f+g)(x) = f(x) + g(x)$$

— la loi de composition externe \cdot par :

$$\forall f \in \mathcal{F}(X, E) \quad \forall \lambda \in \mathbb{K} \quad (\lambda \cdot f)(x) = \lambda f(x)$$

Alors $(\mathcal{F}(X,E),+,\cdot)$ est un \mathbb{K} -espace vectoriel dont l'élément neutre est l'application de X dans E qui à tout $x \in X$ associe 0_E . En particulier, $(\mathcal{F}(X,\mathbb{K}),+,\cdot)$ est un \mathbb{K} -espace vectoriel.

Remarque:

Arr Muni des lois usuelles, $\mathcal{F}(\mathbb{R},\mathbb{R})$ et $\mathbb{R}^{\mathbb{N}}$ (l'ensemble des suites réelles) sont des \mathbb{R} -espaces vectoriels dont les « zéros » sont respectivement la fonction nulle de \mathbb{R} dans \mathbb{R} et la suite nulle.

Proposition 24. Soit $(E, +, \cdot)$ un \mathbb{L} -espace vectoriel et \mathbb{K} un sous-corps de \mathbb{L} . Alors $(E, +, \cdot)$ est un \mathbb{K} -espace vectoriel. En particulier \mathbb{L} est un \mathbb{K} -espace vectoriel.

Remarques:

- \Rightarrow Muni des lois usuelles, $\mathcal{F}(\mathbb{R}, \mathbb{C})$ est un \mathbb{C} -espace vectoriel. Comme \mathbb{R} est un sous-corps de \mathbb{C} , $\mathcal{F}(\mathbb{R}, \mathbb{C})$ est aussi un \mathbb{R} -espace vectoriel.
- \Rightarrow \mathbb{C} est un \mathbb{R} -espace vectoriel.

3.2 Algèbre

Proposition 25. On dit qu'un anneau $(A, +, \times)$ muni d'une loi de composition externe \cdot sur un corps \mathbb{K} est une \mathbb{K} -algèbre lorsque :

- $-(A,+,\cdot)$ est un \mathbb{K} -espace vectoriel
- \times est compatible avec la loi de composition externe :

$$\forall x, y \in A \quad \forall \lambda \in \mathbb{K} \quad (\lambda \cdot x) \times y = x \times (\lambda \cdot y) = \lambda \cdot (x \times y)$$

On dit que l'algèbre $(A, +, \cdot, \times)$ est commutative lorsque \times est commutatif.