Team Brown Munde

Mentor: Meher Shashwat Nigam

Team Members:

Nonidh Singh (20171203)

Puru Gupta (20171187)

Aayush Goel (20171188)

Priyanshu Madan (2018101097)

Objective

- → As our project we are going to implement the following paper: <u>3D Reconstruction</u> from Accidental Motion
- → Our aim is: "To reconstruct a 3D scene from a set of initial frames of a video capture by exploiting accidental motion"
- Our implementation will take the following parameters:
 - Input: Sequence of frames of parts of video.
 - ♠ Result : A 3 Dimensional reconstruction
 depth map of a reference frame

Problem Brief

- → We have an image sequence of N_C images and N_P projections (2D points) of corresponding 3D points as seen from every camera, we try to estimate the world coordinates of the real world points using Bundle Adjustment.
 - Bundle Adjustment: It refers to solving the location of pixels for a given estimated initial pose and location of 3D points.
- → We take the first frame as reference frame and parametrize all the 3D points by inverse depth relative to reference frame.
- → We start with a random initialization and then solve for camera poses using Bundle Adjustment.

Problem Brief...

- → We then reconstruct the 3D scene from estimated camera poses. This results in a smooth depth map.
- → We regularize the depth estimation by minimising an energy function.

Method Overview

- → The paper describes the following pipeline for the 3D reconstruction
 - Extract good features using **Shi-Tomasi** method.
 - ◆ Track the detected features using
 Lucas-kanade method from reference
 image I_D.
 - Now use the tracked features to estimate the 3D structure of scene using bundle adjustment.
 - ◆ The final result is a dense map reconstructed from the sparse 3D structure using a CRF model. This incorporates a photo-consistency and smoothness loss.

Goals

- → We will follow the mentioned deadlines for our project deliverable :
 - Extraction of Feature (2 weeks)
 - ◆ Tracking of features (2 weeks)
 - ◆ Bundle Adjustment (2 weeks)
 - ◆ CRF energy minimization (1 week)
 - Integration and results (1 week)
- → We will aim to cover till Bundle adjustment for mid presentation but will surely cover all of the tracking part till then.

Thank You