ADVANCED MATHEMATICS

Logs and Exponentials (Adv), E1 Logs and Exponentials (Adv) Log/Index Laws and Equations (Y11)

Teacher: Cathyanne Horvat

Exam Equivalent Time: 30 minutes (based on allocation of 1.5 minutes per mark)

HISTORICAL CONTRIBUTION

- E1 Logs and Exponentials is a Year 11 topic covering significant amounts of gateway content that is applicable to multiple other Year 12 topic areas.
- It's contribution to other sub-topics is highly significant, including *Tangents, Areas Under Curves, Probability Density Functions, Rates of Change and L&E Calculus* just to name a few. Importantly, these are not covered in this analysis as they are included in other topic areas.
- E1 Logs and Exponentials has been split into two sub-categories for the purposes of analysis which are: 1-Index Laws and Equations and 2-L&E Graphs and Applications.
- This analysis looks at Index Laws and Equations.

HSC ANALYSIS - What to expect and common pitfalls

- Index Laws and Other Equations has not been examined with a dedicated question in new syllabus exams to date, although they consistently appeared before 2020 within the Adv multiple choice section (including twice in 2019).
- The database, despite the absence of new syllabus HSC exam questions, provides important practice
 for algebraic manipulation of logs and exponential equations, which is a critical skill for later
 Calculus topics.
- Notwithstanding the above, the database does include many pre-2020 dedicated questions. While
 generally well answered, students had notable difficulties with 2019 Adv 15a, 2016 Adv 14e, and
 2008 Adv 7a, which deserve attention.

Questions

1. Functions, 2ADV F1 SM-Bank 53

i. If
$$\frac{1}{\sqrt[3]{7+\pi}} = (7+\pi)^x$$
, find x . (1 mark)

- ii. Calculate the value of $\frac{1}{\sqrt[3]{7+\pi}}$ to 3 significant figures. (1 mark)
- 2. L&E. 2ADV E1 SM-Bank 8

Solve the equation $3^{-4x} = 9^{6-x}$ for x. (2 marks)

3. L&E, 2ADV E1 SM-Bank 12

Solve the equation $\log_e(3x+5) + \log_e(2) = 2$, for x. (2 marks)

4. L&E, 2ADV E1 2011 HSC 1c

Solve $2^{2x+1} = 32$. (2 marks)

5. L&E, 2ADV E1 2005 HSC 5a

Use the change of base formula to evaluate log₃7, correct to two decimal places. (1 mark)

6. L&E. 2ADV E1 SM-Bank 7

Solve the equation $2\log_3(5) - \log_3(2) + \log_3(x) = 2$ for x. (2 marks)

7. L&E, 2ADV E1 SM-Bank 9

Solve $\log_2(6-x)-\log_2(4-x)=2$ for x, where x<4. (2 marks)

8. L&E, 2ADV E1 SM-Bank 10

Solve the equation $2^{3x-3} = 8^{2-x}$ for x. (2 marks)

9. L&E, 2ADV E1 SM-Bank 13

Find x given $100^{x-2} = 1000^x$. (2 marks)

10. L&E, 2ADV E1 2019 MET1-N 4

Solve $\log_3(t) - \log_3(t^2 - 4) = -1$ for t. (3 marks)

Copyright © 2004-22 The State of New South Wales (Board of Studies, Teaching and Educational Standards NSW)

Worked Solutions

1. Functions, 2ADV F1 SM-Bank 53

i.
$$\frac{1}{\sqrt[3]{7+\pi}} = (7+\pi)^{-\frac{1}{3}}$$

ii.
$$\frac{1}{\sqrt[3]{7+\pi}} = 0.4619...$$

= 0.462 (to 3 sig. fig.)

2. L&E, 2ADV E1 SM-Bank 8

$$3^{-4x} = \left(3^2\right)^{6-x}$$

$$3^{-4x} = 3^{12-2x}$$

$$-4x = 12-2x$$

$$2x = -12$$

$$\therefore x = -6$$

3. L&E, 2ADV E1 SM-Bank 12

Simplify using log laws:

$$\log_e(6x+10)=2$$

$$6x + 10 = e^2$$

$$\therefore x = \frac{e^2 - 10}{6}$$

4. L&E, 2ADV E1 2011 HSC 1c

$$2^{2x+1} = 32$$

$$2^{2x+1}=2^5$$

$$2x+1=5$$

$$\therefore x = 2$$

MARKER'S COMMENT: Many

students also correctly solved this by taking the logarithms of both

5. L&E, 2ADV E1 2005 HSC 5a

$$\log_3 7 = \frac{\log_e 7}{\log_e 3}$$

$$= 1.771...$$

$$= 1.77 \text{ (to 2 d.p.)}$$

6. L&E, 2ADV E1 SM-Bank 7

$$\log_3(5)^2 - \log_3(2) + \log_3(x) = 2$$
$$\log_3(25x) - \log_3(2) = 2$$

$$\log_3\left(\frac{25x}{2}\right) = 2$$

$$\frac{25x}{2}=3^2$$

$$\therefore x = \frac{18}{25}$$

7. L&E, 2ADV E1 SM-Bank 9

Simplify using log laws:

$$\log_2\!\left(\frac{6{-}x}{4{-}x}\right) = 2$$

$$2^2 = \frac{6-x}{4-x}$$

$$16-4x=6-x$$

$$3x = 10$$

$$\therefore x = \frac{10}{3}$$

8. L&E, 2ADV E1 SM-Bank 10

$$2^{3x-3} = 2^{3(2-x)}$$

$$3x-3=6-3x$$

$$6x = 9$$

$$\therefore x = \frac{3}{2}$$

9. L&E, 2ADV E1 SM-Bank 13

$$100^{x-2} = 1000^x$$

$$(10^2)^{x-2} = (10^3)^x$$

$$10^{2x-4} = (10)^{3x}$$

$$2x-4=3x$$

$$\therefore x = -4$$

10. L&E, 2ADV E1 2019 MET1-N 4

$$\log_3(t) - \log_3(t^2 - 4) = -1$$

$$\log_3\left(\frac{t}{t^2 - 4}\right) = -1$$

$$\frac{t}{t^2 - 4} = \frac{1}{3}$$

$$t^2 - 4 = 3t$$

$$t^2 - 3t - 4 = 0$$

$$(t - 4)(t + 1) = 0$$

$$\therefore t = 4 \quad (t > 0, \ t \neq -1)$$

Copyright © 2016-2023 M2 Mathematics Pty Ltd (SmarterMaths.com.au)