Introduction au signal et bruit Exercices

Gabriel Dauphin

September 12, 2025

Contents

1	Relations entrées-sorties sans effet mémoire	2
2	Signaux temps continu, fonction affine par morceaux	3
3	Définition et utilisation de la transformée de Fourier	4
4	Propriété de la transformée de Fourier	5
5	Diracs	6
6	Transformées de Fourier et dérivation	7
7	Équations différentielles	8
8	Filtres et effet mémoire	10
9	Description fréquentielle des filtres	11
10	Signaux périodiques	13
11	Filtres agissant sur des signaux périodiques	14
12	Échantillonnage d'un signal non-périodique	15
13	Modélisation stochastique du bruit	16
14	Filtrage des processus aléatoires	17
15	Autocorrélation et densité spectrale	18
16	Densité de probabilité et filtrage 16.1 Exercices	19 19

Relations entrées-sorties sans effet mémoire

Figure 1.1: Relation entrée-sortie associée à un Relu (exercice 1)

Exercice 1 Le graphique représente la relation entrée-sortie d'un Relu pour Rectified Linear Unit.

- 1. En utilisant la figure 1.1, combien valent les signaux en sortie lorsque respectivement, les signaux en entrées valent -3 et 3 ?
- 2. Combien valent les puissances de ces signaux?
- 3. Proposez une formule utilisant la valeur absolue, l'addition et la multiplication pour modéliser cette relation?
- 4. On considère le filtre $\mathcal{H}_1(x) = 0.5x$ et $\mathcal{H}_2(x) = |x|$, montrez comment en les associant on peut fabriquer le filtre Relu.
- 5. Écrire le pseudo-code permettant de générer la figure 1.1.

Figure 1.2: Schéma décrivant \mathcal{H} à partir de $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$ pour l'exercice 2.

Exercice 2 Les filtres \mathcal{H}_1 , \mathcal{H}_2 et \mathcal{H}_3 sont définis par

$$\mathcal{H}_1(x) = |x| \quad \mathcal{H}_2(x) = \min(1, x) \quad \mathcal{H}_3(x) = \max(0, x)$$
 (1.1)

On appelle \mathcal{H} le filtre décrit par la figure 1.2 et défini par les filtres $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3$. et associé à la relation transformant x en y.

- 1. Calculez les sorties y associées aux valeurs -2, -1, 0, 1, 2 pour x.
- 2. Écrivez la formule modélisant \mathcal{H} ?
- 3. Dessinez la relation associée à \mathcal{H} transformant x en y sur un graphe.

Signaux temps continu, fonction affine par morceaux

Figure 2.1: Visualisation de x(t) qui a la forme d'une maison avec son lampadaire (exercice 3).

Exercice 3 On considère le signal x(t) décrit par la figure 2.1.

- 1. Calculez les valeurs de x(t) pour les valeurs de t-2.5, 0.5, 1, 2.5.
- 2. Écrivez une formule décrivant x(t) au moyen de différents intervalles de temps.
- 3. Utilisez quelques unes des fonctions de base présentées en cours pour définir x(t).
- 4. Utilisez le crochet d'Iverson pour décrire x(t).

Exercice 4 On considère le signal x(t) ainsi défini

$$x(t) = (at + b) [t_1 \le t \le t_2]$$
(2.1)

- 1. Représentez ce signal pour $a=1,\ b=0$ et $t_1=2,\ t_2=3.$
- 2. Représentez ce signal pour $a=-1,\;b=1$ et $t_1=0,\;t_2=1.$
- 3. Montrez que pour a = 0, x(t) peut se mettre sous la forme

$$x(t) = \alpha \Pi(\gamma t + \delta) \tag{2.2}$$

4. Montrez que pour a > 0, x(t) peut se mettre sous la forme

$$x(t) = \alpha \Pi(\gamma t + \delta) + \beta \mathbb{C}(\gamma t + \delta)$$
(2.3)

5. Donnez un pseudo-code permettant de visualiser de signal.

Définition et utilisation de la transformée de Fourier

Exercice 5 On cherche à déterminer la transformée de Fourier de $s(t) = e^{-|t|}$.

- 1. Calculer la somme et l'énergie de ce signal.
- 2. On note $s_1(t) = s(t)[[t \ge 0]](t)$. Calculez la transformée de Fourier de $s_1(t)$ notée $\widehat{S}_1(f)$.
- 3. On note $s_2(t) = s(t)[[t \le 0]](t)$. Calculez la transformée de Fourier de $s_2(t)$ notée $\widehat{S}_2(f)$.
- 4. On remarque $s(t) = s_1(t) + s_2(t)$ pour $t \neq 0$. Que peut-on en déduire sur la relation entre $\widehat{S}(f)$ et $\widehat{S}_1(f)$ et $\widehat{S}_2(f)$.
- 5. Déduisez $\hat{S}(f)$.
- 6. En établissant le lien avec la première question, déterminez $\int_{-\infty}^{+\infty} \frac{1}{1+4\pi^2t^2} dt$.

Figure 3.1: Visualisation du signal x(t) (exercice 6).

Exercice 6 On considère le signal noté x(t) et décrit par la figure 3.1. Donnez un pseudo-algorithme permettant de calculer sa transformée de Fourier.

Propriété de la transformée de Fourier

Exercice 7 Cet exercice cherche à illustrer la notion de parité.

- 1. On considère le signal $s(t) = e^{-|t|}$. Montrez que la transformée de Fourier de ce signal est à valeurs réelles.
- 2. En considérant différents fonctions de bases, proposez un algorithme montrant que la transformée de Fourier d'un signal pair est réel et que la transformée de Fourier d'un signal impair est imaginaire pur.

Exercice 8 On se donne des fonctions de bases et des tirages aléatoires. Montrez comment par simulation on peut confirmer que $TF\left[x\left(\frac{t}{a}\right)\right](f) = a\widehat{X}(af)$ pour a > 0.

Diracs

Exercice 9 On considère le signal $x(t) = \Pi(t) = [-0.5 \le t \le 0.5](t)$.

- 1. Calculez sa dérivée $y(t)\frac{d}{dt}x(t)$.
- 2. Calculez $z(t) = \int_{-\infty}^{t} x(\tau) d\tau$.
- 3. Calculez la transformée de Fourier de y(t) notée $\widehat{Y}(f)$ et en déduire celle de x(t) notée $\widehat{X}(f)$.
- 4. Représentez les signaux x(t), y(t), z(t).

Transformées de Fourier et dérivation

Équations différentielles

Figure 7.1: Visualisation de l'entrée x(t) et de la sortie y(t) illustrant l'exercice 10.

Exercice 10 On considère un filtre défini par l'équation différentielle

$$LC\frac{d^2}{dt^2}y(t) + RC\frac{d}{dt}y(t) + y(t) = RC\frac{d}{dt}x(t)$$
(7.1)

avec R = 3, C = 0.5, L = 1. On considère un signal en entrée défini par $x(t) = \mathbb{T}(t)$ et on cherche à simuler le signal de sortie y(t) associé à ce filtre décrit par l'équation (7.1).

1. Montrez que

$$\frac{d}{dt}\mathbb{T}(t) = \int_{-\infty}^{t} \left[\delta(\tau - 1) - 2\delta(\tau) + \delta(\tau + 1)\right] d\tau \tag{7.2}$$

2. On appelle $\tilde{y}(t)$ la solution de cette deuxième équation différentielle

$$LC\frac{d^2}{dt^2}\tilde{y}(t) + RC\frac{d}{dt}\tilde{y}(t) + \tilde{y}(t) = \delta(t)$$
(7.3)

Exprimez y(t) en fonction de $\tilde{y}(t)$.

3. En utilisant les fonctions sol_eq_diff, deriver, integrer et retarder de seb, donnez un pseudo-programme permettant de simuler y(t).

Exercice 11 On considère un filtre dont la réponse fréquentielle vérifie

$$\widehat{H}(f) = \frac{j2\pi fRC}{1 - 4\pi^2 f^2 + 4jRC\pi f}$$

$$(7.4)$$

- 1. Trouvez l'équation différentielle associée à la relation entrée-sortie ?
- 2. Trouvez l'équation différentielle associée à la réponse impulsionnelle ?
- 3. Proposez un algorithme permettant de caculer la réponse impulsionnelle.

 $\textbf{Exercice 12} \ \ \textit{On considère l'équation différentielle associée à une relation entrée-sortie} : \\$

$$\frac{d^2}{dt^2}y(t) + 3\frac{d}{dt}y(t) + y(t) = x(t)$$
(7.5)

- 1. Donnez la réponse fréquentielle.
- 2. Donnez un algorithme donnant la réponse impulsionnelle.
- 3. Écrivez le polynôme caractéristique.
- 4. Trouvez les solutions de ce polynôme.
- 5. En déduire la réponse impulsionnelle.

Filtres et effet mémoire

Exercice 13 Dans cet exercice, on cherche à montrer par simulation que

$$\Pi(t) * \Pi(t) = \mathbb{T}(t) \tag{8.1}$$

 $o\grave{u} \ \Pi(t) = [\![|t| \leq 0.5]\!](t) \ et \ \mathbb{T}(t) = (1-|t|)[\![|t| \leq 1]\!](t).$

- 1. Montrez que $\Pi(t) * \Pi(t) = \operatorname{sinc}^2(f)$ où $\operatorname{sinc}(f) = \frac{\sin(\pi t)}{\pi t}$.
- 2. Proposez un algorithme utilisant la transformée de Fourier pour montrer l'équation (8.1).
- 3. Donnez un autre algorithme utilisant le produit de convolution pour démontrer aussi l'équation (8.1).

Exercice 14 Dans cet exercice, on cherche à montrer par simulation que

$$\Pi(t) * \Pi(t) = \mathbb{T}(t) \tag{8.2}$$

 $o\grave{u} \ \Pi(t) = [\![|t| \leq 0.5]\!](t) \ et \ \mathbb{T}(t) = (1-|t|)[\![|t| \leq 1]\!](t).$

- 1. On note $s(t) = \Pi(t) * \Pi(t)$, donnez une expression intégrale à s(t).
- 2. Montrez que pour t < -1, s(t) = 0.
- 3. Montrez que s(-t) = s(t) et que donc s(t) est un signal pair.
- 4. En déduire que pour t > 1, s(t) = 0.
- 5. Montrez que s(0) = 1.
- 6. Montrez que $s(t) = 1 t \ pour \ t \in [0, 1]$.
- 7. Déduisez que $s(t) = \mathbb{T}(t)$.

Description fréquentielle des filtres

Exercice 15 On considère un filtre de réponse impulsionnelle

$$h(t) = \cos(2\pi t)e^{-t} [t \ge 0](t)$$
(9.1)

Ce filtre est un passe-haut. Donnez un algorithme permettant de trouver les deux fréquences de coupure et sa bande passante.

Exercice 16 On considère un filtre de réponse impulsionnelle

$$h(t) = \cos(2\pi t)e^{-|t|} \tag{9.2}$$

1. Montrer que la réponse fréquentielle de ce filtre est

$$\widehat{H}(f) = \frac{1}{1 + 4\pi^2 (f - 1)^2} + \frac{1}{1 + 4\pi^2 (f + 1)^2}$$
(9.3)

Pour cela vous pouvez utiliser le fait que $\cos(2\pi t) = \frac{1}{2}e^{-j2\pi t} + \frac{1}{2}e^{j2\pi t}$ et que quand z est un complexe, $\frac{1}{z} + \frac{1}{\overline{z}} = \frac{2\Re e(z)}{|z|^2}$.

- 2. Pourquoi en observant h(t), on pouvait savoir que $\hat{H}(f) = |\hat{H}(f)|$
- 3. En observant l'équation (9.3), montrez trouvez la valeur de f > 0 qui maximise $|\hat{H}(f)|$.
- 4. On considère maintenant

$$|\widehat{H}(f)| = \frac{1}{1 + 16\pi^2} + \frac{1}{1 + 4\pi^2(f - 1)^2}$$
(9.4)

Montrez que ceci est une bonne approximation de $|\hat{H}(f)|$ autour de f=1.

5. En utilisant cette nouvelle approximation, calculez les deux fréquences de coupures et la bande passante.

Exercice 17 On considère un signal non-périodique défini par $x(t) = e^{-t} [0 \le t < 1](t)$ et un signal périodique obtenu en périodisant x(t).

$$y(t) = \sum_{k = -\infty} +\infty x(t - k) \tag{9.5}$$

- 1. Donnez l'algorithme permettant de tracer y(t) pour $t \in [-3,3]$.
- 2. Donnez l'algorithme permettant d'estimer M_y et P_y .
- 3. Donnez l'algorithme permettant de calculer la série de Fourier associée à y(t).
- 4. Donnez un algorithme permettant de vérifier expérimentalement que $P_y = \sum_{k=-\infty}^{+\infty} |\widehat{Y}_k|^2$ et que $M_y = \widehat{Y}_0$ non pas seulement pour ce signal spécifiquement mais pour des signaux construits à partir de x(t) et tirés aléatoirement.

Exercice 18 On considère un signal non-périodique défini par $x(t) = e^{-t} [0 \le t < 1](t)$ et un signal périodique obtenu en périodisant x(t).

$$y(t) = \sum_{k = -\infty} +\infty x(t - k) \tag{9.6}$$

- 1. Représentez graphiquement x(t) et y(t) pour $t \in [-3,3]$.
- 2. Calculez A_x et en déduire M_y .
- 3. Calculez E_x et en déduire P_y .
- 4. Montrez que les coefficients de la série de Fourier sont

$$\widehat{Y}_k = \frac{1 - e^{-1}}{1 + i2\pi k} \tag{9.7}$$

5. En utilisant le fait que

$$\sum_{k=-\infty}^{+\infty} \frac{1}{1+4\pi^2 k^2} = \frac{1}{2} \frac{e+1}{e-1} \tag{9.8}$$

montrez qu'on retrouve le résultat précédent $P_y = \frac{1}{2} \frac{e^2 - 1}{e^2}$.

Exercice 19 On considère un signal défini par

$$x(t) = \Pi(t) - \frac{1}{2}\Pi\left(\frac{t}{3}\right) \tag{9.9}$$

On note y(t) le signal périodisé en répétant l'intervalle $[-\frac{3}{2},\frac{3}{2}]$. On considère le filtre défini par l'équation différentielle

$$\frac{d^2}{dt^2}y(t) + \frac{d}{dt}y(t) + y(t) = x(t)$$
(9.10)

- 1. Représentez graphiquement y(t) pour $t \in [-3, 3]$.
- 2. Montrez que $\widehat{X}(f) = \operatorname{sinc}(f) \frac{3}{2}\operatorname{sinc}(f)$.
- 3. En déduire que $\widehat{Y}_k = \frac{1}{3}\operatorname{sinc}(\frac{k}{3}) \frac{1}{2}\delta_k$, δ_k étant la suite nulle sauf en k = 0 ou elle vaut 1.
- 4. Calculez la réponse fréquentielle du filtre
- 5. En déduire la \hat{Y}_k .
- 6. Proposez une approximation de y(t).

Signaux périodiques

Filtres agissant sur des signaux périodiques

Échantillonnage d'un signal non-périodique

Modélisation stochastique du bruit

Filtrage des processus aléatoires

Autocorrélation et densité spectrale

Densité de probabilité et filtrage

16.1 Exercices

Exercice 20 Le signal montré sur la figure 16.1 est noté x(t). Sa transformée de Fourier est notée \hat{X} .

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. Donnez une expression de x(t) sous la forme de sa description sur plusieurs intervalles.
- 3. Donnez une expression de x(t) en fonction de 1().
- 4. Calculez x(0), x(1), E_x .
- 5. Calculez $\widehat{X}(0)$ et $\widehat{X}(1)$.
- 6. Construire $y_1(t) = x\left(\frac{t}{2}\right)$
- 7. Construire $y_1(t) = x(t-1)$
- 8. Construire $y_1(t) = \frac{1}{2}x(t)$
- 9. Construire $y_1(t) = x(t) x(t-2)$

Exercice 21 Le signal montré sur la figure 16.2 est noté x(t). Sa transformée de Fourier est notée \hat{X} . Ce signal est de la forme $x(t) = ae^{-bt}\mathbf{1}(t \ge 0)$.

- $1. \ x(t) \ est-il \ un \ signal \ temps \ continu, \ temps \ discret, \ p\'eriodique, \ non-p\'eriodique, \ d\'eterministe \ ou \ al\'eatoire.$
- 2. Justifiez la valeur de a avec la courbe exponentielle sur la figure 16.2.
- 3. Justifiez la valeur de b avec la ligne tangente à la courbe exponentielle sur la figure 16.2.
- 4. Donnez une expression de x(t) en fonction de 1().
- 5. Calculez $x(0), x(1), E_x$.
- 6. Calculez $\widehat{X}(0)$ et $\widehat{X}(1)$.
- 7. Construire $y_1(t) = x\left(\frac{t}{2}\right)$
- 8. Construire $y_1(t) = x(t-1)$
- 9. Construire $y_1(t) = \frac{1}{2}x(t)$
- 10. Construire $y_1(t) = x(t) x(t-2)$

Exercice 22 Le signal étudié ici est $x(t) = t\mathbf{1}(t \in [0,1[) + (2-t)\mathbf{1}(t \in [1,2[) \ On \ considère \ y(t) \ obtenu \ en \ périodisant le signal <math>x(t)$ pour $t \in [0,3]$.

Figure 16.1: Graphe de x(t) relatif à l'exercice 20.

Figure 16.2: Graphe de x(t) et de sa tangente pour l'exercice 21.

Figure 16.3: Graphe de x(t) relatif à l'exercice 23.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. y(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 3. Dessiner x(t) pour $t \in [-1, 5]$ sur un graphe.
- 4. Dessiner y(t) pour $t \in [-1, 5]$ sur le même graphe.
- 5. Calculez x(0), x(-2), E_x et P_x .
- 6. Calculez y(0), y(-2), E_y et P_y .
- 7. Calculez \hat{X}_0 et \hat{Y}_0 .
- 8. Calculez \hat{X}_0 et \hat{Y}_0 .
- 9. Dessiner sur le graphe $y_1(t) = y(\frac{t}{2})$
- 10. Dessiner sur le graphe $y_2(t) = y(t-1)$
- 11. Dessiner sur le graphe $y_3(t) = \frac{1}{2}y(t)$
- 12. Dessiner sur le graphe $y_4(t) = y(t) y(t-2)$

Exercice 23 Le signal montré sur la figure 16.3 est noté x(t). Sa transformée de Fourier est notée \hat{X} . Ce signal est de la forme $x(t) = a\cos(bt + c)$.

- 1. x(t) est-il un signal temps continu, temps discret, périodique, non-périodique, déterministe ou aléatoire.
- 2. Justifiez la valeur de a en observant la valeur maximale et minimale sur la figure 16.3.
- 3. Justifiez la valeur de b en mesurant la période sur la figure 16.3.
- 4. Justifiez la valeur de c en interprétant cette courbe comme en retard (ou en avance) par rapport à a cos(bt) sur la figure 16.2.
- 5. Calculez x(0), x(1), P_x .
- 6. Calculez \hat{X}_0 et \hat{X}_1 .
- 7. Dessiner sur le graphe $y_1(t) = x\left(\frac{t}{2}\right)$

- 8. Dessiner sur le graphe $y_1(t) = x(t-1)$
- 9. Dessiner sur le graphe $y_1(t) = \frac{1}{2}x(t)$
- 10. Dessiner sur le graphe $y_1(t) = x(t) x(t-2)$