1 Pseudo-1D-neutronics

The geometries are 2D stripes. The BCs in the x-direction is homogeneous Neumann on both sides. Thus, it is like if we were solving for the 1D case.

1.1 2D-fuel-action

• Input file: 2D-fuel-action.i

• Mesh: 2D-fuel.msh

• Transient problem.

Figure 1 shows the results.

Figure 1: Group 1 and 2 fluxes at 10 msec.

1.2 2D-fuel-reflec-action

• Input file: 2D-fuel-reflec-action.i

 \bullet Mesh: 2D-fuel-reflec.msh

• Transient problem.

Figure 2 shows the results.

1.3 2D-fuel-reflec-action-delayed

 \bullet Mesh: 2D-fuel-reflec.msh

• Transient problem

• Solves for precursors

Figure 3 shows the results.

Figure 2: Transient problem fluxes.

Figure 3: Transient problem fluxes.

1.4 2D-fuel-reflec-action-eig

 \bullet Input file: 2D-fuel-reflec-action-eig.i

Mesh: 2D-fuel-reflec.msh

 $\bullet\,$ Eigenvalue problem: Inverse PowerMethod

Figure 4 shows the results.

Figure 4: Steady state Group 1 and 2 fluxes for 'InversePowerMethod'.