

$$= \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$

$$\vec{u} = S_{\omega}^{-1} (\vec{m}_1 - \vec{m}_2) = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

3,
$$\overrightarrow{m}_1 = \text{Mean } (w_1) = (0, \frac{2}{5}, \frac{2}{5})^T$$

 $\overrightarrow{m}_2 = \text{Mean } (w_2) = (1, \frac{2}{5}, \frac{2}{5})^T$

$$m_2 = \text{Mean } (w_2) = (1, \frac{2}{3}, \frac{2}{3})^T$$

$$S_{WI} = \frac{1}{5} (\vec{X}_{j}^{i} - \vec{M}_{i}) (\vec{X}_{j}^{i}) - \vec{M}_{i} = \begin{bmatrix} 0 & \frac{1}{5} & -\frac{1}{5} \\ 0 & \frac{1}{5} & \frac{1}{5} \end{bmatrix}$$

$$S_W > S_{W_1} + S_{W_2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 4 & \frac{4}{3} \end{bmatrix}$$

	110 11 - 1 - W	laa?a . laa.c			1
5,	刊价函数	My Max	15WW + 2 XU	v.C.1-yn (w ^T xn + 5)] 中容易、低化以来 6 美 海次容易必針分	<u> </u>
	刻似化 WAG	为人类们	UX Wisasio St	P. 客易、假他以外 6 美	直过本一次
	与实现的,甚然	然地做化	X 居易, 引以 所 名盾	有浓缩的分	
b , \uparrow $\stackrel{\vee}{}_{2}$					
	-		$\longrightarrow_{\lambda_1}$		
		, ,	~1		
]			
	- 4 11/1 5				
	西娄榉本线性	イダカ			
	(1,1)7	100	(1,1,1,1)	daua	
	(1,1) ¹	$\frac{\varphi(x)}{}$	(1,-1,-1,1)	绿褐矿石	
	(0,-1)7	<u> </u>	(1,0,-1,0)		
	(4,0)7		(1,-1,0,0)		