

SYSTEM DESIGN INTERVIEW

일시 2023년 11월 06일 장소 디지털관 세미나실 박준수 (만 24세 / 취준생)

번역

CONTENIS -

사용자 수에 따른 확장성

03 TBC

()4 TBC

사용자 수에 따른 확장성

나 홀로 사용자부터 대규모까지

나 홀로 사용자

쪼금 늘어난 사용자

어떤 DB 줄까?

RDBMS

NoSQL

어떤 DB 줄까?

table, row, column으로 표현 조인 연산이 가능함

대부분의 개발자들은 관계형 데이터베이스가 최선... 시장에서 잘 살아남고 있는, 잘 사용되고 있는 시스템이기 때문

어떤 DB 줄까?

무조건 관계형 데이터베이스가 최선이라는 이야기는 아니다. 서비스에 따라 다른 것.

NoSQL 언제 사용해볼까?

직렬화, 역직렬화 할 수 있기만 하면 되는 데이터

다루는 데이터가 비정형

엄청나게 많은 양의 데이터를 저장할 경우

Scale up

Scale up

Scale up

Scale out

Scale up

유입되는 트래픽의 양이 상대적으로 적을 때는 Good

아무리 좋은 서버로 업그레이드해도? CPU, 메모리 무한 증설 불가!

서버에 장애가 발생해버리면? 대참사... 자동복구, 다중화 불가능

Scale out

여러 장비로 나누어 처리 가능

지속적 확장 또한 가능

사용자가 웹 서버에 바로 연결되는데 트래픽이 몰리면?

나누어진 각 서버에 걸리는 부하 처리는...?

Improve the Response time

캐시 서버를 붙이고

정적 컨텐츠(css, image, video, etc.) 를 CDN으로 옮기는 방식으로!

Cache tier 자주 참조되는 데이터의 값을 보관, 성능 개선 & DB 부하 감소

Cache tier 자주 참조되는 데이터의 값을 보관, 성능 개선 & DB 부하 감소

SPOF를 피하라!

Cache tier 캐싱을 사용할 때 고려사항은?

데이터 갱신이 자주 일어나지는 않지만 참조는 빈번하게 일어나는 상황에 사용, 영속적으로 보관하는 데이터는 X

일관성 유지 - 원본 데이터 갱신과 캐시 갱신이 단일 트랜잭션으로 이뤄지지 않을 경우 일관성이 깨짐

캐시 메모리의 크기는?

데이터 방출 정책은? LRU, LFU, FIFO, etc.

캐시 보관 만료에 대한 정책은?

CDN (Content delivery network)

가장 가까운 CDN서버가 정적 컨텐츠를 전달함

CDN (Content delivery network)

정적 컨텐츠를 웹 서버를 통해 서비스하지 않고 CDN으로 제공

CDN (Content delivery network) 사용할 때 고려사항은?

time-sensitive content의 만료 기간 설정

third-party providers의 운영에 따른 비용 문제

CDN 장애 문제

컨텐츠 무효화 방법

- 아직 만료되지 않은 컨텐츠이더라도 CDN에서 제거 (cdn에서 제공하는 api 혹은 object versioning(타 버전 서비스를 위한)) image01.png?ver=2

Scaling the web tier horizontally

상태를 유지하여 요청 사이 공유

A의 상태 정보들은 1번 서버에 존재; 다른 서버로 인증 실패

상태 정보 의존적 아키텍처

같은 클라이언트로부터의 요청은 항상 같은 서버로만 전송

상태 정보 의존적 아키텍처

Load Balancer의 Sticky Session이라는 기능을 사용할 수 있지만...

Load Balancer 뒷단에 서버 추가, 삭제가 복잡해짐

장애 처리가 용이 하지 않음

(Stateless Web tier가 될거야~~)

웹 계층 수평적 확장을 위한 상태 정보를 제거하기 위해서는?

Stateless Web Tier

Stateless Web Tier

서버에 상태 정보가 없으므로 트래픽 양에 따른 autoscaling 가능

Message Queue 메세지의 무손실을 보장하는 비동기 통신 컴포넌트

더 큰 규모의 확장을 위해서는 시스템의 컴포넌트를 분리해 각각 독립적으로 확장될 수 있어야함

Message: Etc..

서비스 간의 결합이 느슨해짐 -> 규모 확장성이 보장되어야 하는 안정적 어플리케이션 구성에 용이

Logging, Metrics, and Automation

Logging: 에러 로그 모니터링은 매우 중요함

Metrics: 어떤 시스템, 프로세스 또는 데이터에 대한 측정 항목 또는 측정 값.

성능, 상태, 품질 및 기타 중요한 측면에 대한 정보를 제공하여 결정을 지원하고 문제를 해결하는 데 도움

Automation: CI/CD (Continuous Integration/Continuous Delivery)를 도와주는 도구,

개발자의 코드를 자동으로 검증하여 문제가 있을 경우 쉽게 감지 가능함, 개발 생산성 또한 높아짐

Logging

Monitoring

shared storage

Metrics

Automation

CDN

User

What's NEXT?

데이터베이스 샤딩(Sharding) -> 데이터를 샤드라고 하는 더 작은 청크로 분할 후 여러 DB 서버에 저장함.

웹 계층은 Stateless!

가능한 많은 데이터를 캐싱!

여러 데이터 센터 지원

각 tier는 독립적으로 분할

시스템을 지속적으로 모니터링하고, 자동화 도구를 활용

모든 tier 다중화 도입

끊임없는 장애와의 싸움, 새롭게 등장하는 도전적 과제들..

System Design Interview

금오공과대학교 컴퓨터공학과 박준수