Homework

Ding Yaoyao, 516030910572

2017-12-08

Exercise 3-3

9

$$I = \{(a-2b) + (b+2a)i \mid a, b \in \mathbb{Z}\}$$
$$\mathbb{Z}[i]/I = \{I, i+I, 2i+I, 3i+I, 4i+I\}$$

13

Let $z_1,z_2\in IJ$, it's obvious that $z_1-z_2\in IJ$, thus IJ is a subgroup of R on +. If $z=\sum x_iy_i\in IJ$ and $t\in R$, then

$$tz = \sum (tx_i)y_i \in IJ$$
 and $zt = \sum x_i(y_it) \in IJ$,

thus IJ is an ideal of R.

If $z = \sum x_i y_i \in IJ$, then $z = \sum x_i y_i = \sum (x_i)' \in I$ and $z = \sum x_i y_i = \sum (y_i)' \in J$, then $z \in I \cap J$, thus $IJ \subset I \cap J$.

17

- (1)
- $\langle 3 \rangle$.
- **(2)**
- $\langle 30 \rangle$.
- **(3)**
- $\langle 90 \rangle$.

Exercise 3-4

5

If f is the homomorphism from \mathbb{Z}_4 to \mathbb{Z}_{20} , then we have

$$f(0) = 0$$
 and $f(1) = 1$

Beacuse f(a+b)=f(a)+f(b), we have f(n)=n for n=0,1,2,3. But f(3+3)=f(3)+f(3)=6 and f(3+3)=f(2)=2, so f is not a homomorphism. Thus the homomorphism does not exist.

7

(2)

Similarly with above, there is only one homomorphism: $f(n) = n \quad (n = 0, 1, ..., 9).$

(3)

There is only one homomorphism: $f(n) = n \quad (n = 0, 1, ..., 11)$.