PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ Escuela de Posgrado

ANÁLISIS REAL 1

Hoja de ejercicios No $3\ 2020\mbox{-}2$

- 1. Sean $K, F \subset \mathbb{R}^n, F$ cerrado y K compacto. Demuestre que:
 - (a) Si $F \subset K$, entonces F es compacto
 - (b) $F \cap K$ es compacto.
- 2. Demuestre que la intersección arbitraria de subconj
ntos compactos de \mathbb{R}^n es compacto.
- 3. Sea $A\subset\mathbb{R}^n$ y $K\subset A$ un compacto. Demuestre que existe un conjunto compacto $L\subset\mathbb{R}^n$ tal que

$$K \subset int(L) \subset A$$

- 4. Sea $K\subset\mathbb{R}^n$ compacto. Si $f:K\to\mathbb{R}^n$ es continua e inyectiva, demuestre que f es un homeomorfismo.
- 5. Sea $\{x_n\} \subset \mathbb{R}^n$ una sucesión tal que $x_n \to a$. Demuestre que $\{x_n\} \cup \{a\}$ es compacto en \mathbb{R}^n .

San Miguel, 14 de setiembre del 2020