Fonctions vectorielles d'une variable réelle

Fiche récapitulative nº 7

Définitions

- Dérivabilité en un point : Définition par le taux d'accroissement
- Interprétation cinématique de la dérivation.
- Dérivabilité à droite et à gauche.
- Applications de classe \mathcal{C}^k .
- Intégrale d'une fonction vectorielle continue par morceaux sur un segment de R.
- Notations $\int_{[a,b]} f$, $\int_a^b f$, $\int_a^b f(t) dt$.
- Sommes de Riemann associées à une subdivision régulière.

Résultats et propriétés

- Caractérisation de la dérivabilité en un point par le développement limité à l'ordre 1.
- Traduction de la dérivation en termes de coordonnées dans une base.
- Combinaison linéaire de fonctions dérivables.
- Dérivabilité et dérivée de L(f), où L est linéaire.
- Dérivabilité et dérivée de B(f,g), où B est bilinéaire,
- Dérivabilité de $M(f_1, \ldots, f_p)$, où M est multilinéaire.
- Cas du produit scalaire, du déterminant.
- Dérivabilité et dérivée de $f \circ \varphi$ où φ est une fonction réelle de variable réelle et f une fonction vectorielle.
- Opérations sur les applications de classe \mathcal{C}^k .
- Linéarité de l'intégrale.
- Relation de Chasles.
- Pour L linéaire, intégrale de L(f).

- Inégalité des accroissements finis pour une fonction de classe \mathcal{C}^1 .
- Formule de Taylor avec reste intégral.
- Inégalité de Taylor-Lagrange à l'ordre n pour une fonction de classe \mathcal{C}^n .
- Formule de Taylor-Young à l'ordre n pour une fonction de classe \mathcal{C}^n .