Module 02: Numerical Methods

Unit 03: Ordinary Differential Equation: IVP

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Dr. Anirban Dhar NPTEL Computational Hydraulics 1 /

Learning Objective

 To discretize first-order ordinary differential equation (ODE) along with Initial Condition (IC).

Dr. Anirban Dhar

Introduction

 Ordinary Differential Equation with initial condition can be solved as Initial Value Problem with time/ time-like discretization.

Introduction

- Ordinary Differential Equation with initial condition can be solved as Initial Value Problem with time/ time-like discretization.
- ODE can be solved by using Finite Difference approach.

Introduction

- Ordinary Differential Equation with initial condition can be solved as Initial Value Problem with time/ time-like discretization.
- ODE can be solved by using Finite Difference approach.
- Accuracy of the solution depends only on discretization of ODE.

General Structure of IVP

In general, first order ODE with dependent variable ϕ can be written as

$$\frac{d\phi}{dt} = \Psi(t,\phi)$$

General Structure of IVP

In general, first order ODE with dependent variable ϕ can be written as

$$\frac{d\phi}{dt} = \Psi(t,\phi)$$

subject to the initial condition

$$\phi(t_0) = \phi_0$$

where

$$\Psi()=$$
 a general function

Numerical Discretization (Sengupta, 2013)

Integrating both sides of ODE from t_n to t_{n+1}

$$\int_{t_n}^{t_{n+1}} \frac{d\phi}{dt} \ dt = \int_{t_n}^{t_{n+1}} \Psi(t,\phi) \ dt$$

Numerical Discretization (Sengupta, 2013)

Integrating both sides of ODE from t_n to t_{n+1}

$$\int_{t_n}^{t_{n+1}} \frac{d\phi}{dt} dt = \int_{t_n}^{t_{n+1}} \Psi(t, \phi) dt$$

Using Mean Value Theorem to evaluate the RHS of the above equation,

$$\phi^{n+1} = \phi^n + \Delta t \Psi(t_n + \theta \Delta t, \phi(t_n + \theta \Delta t))$$

Numerical Discretization (Sengupta, 2013)

Integrating both sides of ODE from t_n to t_{n+1}

$$\int_{t_n}^{t_{n+1}} \frac{d\phi}{dt} dt = \int_{t_n}^{t_{n+1}} \Psi(t, \phi) dt$$

Using Mean Value Theorem to evaluate the RHS of the above equation,

$$\phi^{n+1} = \phi^n + \Delta t \Psi(t_n + \theta \Delta t, \phi(t_n + \theta \Delta t))$$

where $0 < \theta < 1$.

Different values of θ and evaluation of $\Psi(t_n + \theta \Delta t, \phi(t_n + \theta \Delta t))$ yields different numerical methods.

Dr. Anirban Dhar

NPTEL

Computational Hydraulics

Truncation Error Analysis

The function ϕ at t_{n+1} can be expanded as

$$\phi(t_{n+1}) = \phi(t_n) + \underbrace{\Delta t \phi'(t_n) + \dots + \frac{\Delta t^p}{p!} \phi^{(p)}(t_n)}_{\Delta t \Psi(t_n, \phi(t_n), \Delta t)} + \underbrace{\frac{\Delta t^{(p+1)}}{(p+1)!} \phi^{(p+1)}(t_n + \theta \Delta t)}_{}$$

where $0 < \theta < 1$.

Truncation Error Analysis

The function ϕ at t_{n+1} can be expanded as

$$\phi(t_{n+1}) = \phi(t_n) + \underbrace{\Delta t \phi'(t_n) + \dots + \frac{\Delta t^p}{p!} \phi^{(p)}(t_n)}_{\Delta t \Psi(t_n, \phi(t_n), \Delta t)} + \underbrace{\frac{\Delta t^{(p+1)}}{(p+1)!} \phi^{(p+1)}(t_n + \theta \Delta t)}_{}$$

where $0 < \theta < 1$.

Thus the equation can be written as,

$$\phi(t_{n+1}) = \phi(t_n) + \Delta t \Psi(t_n, \phi(t_n), \Delta t) + \underbrace{\frac{\Delta t^{(p+1)}}{(p+1)!} \phi^{(p+1)}(t_n + \theta \Delta t)}_{\text{Truncation Error}}$$

For $\theta = 0$, we can write

$$\phi^{n+1} = \phi^n + \Delta t \Psi(t_n, \phi^n)$$

For $\theta = 0$, we can write

$$\phi^{n+1} = \phi^n + \Delta t \Psi(t_n, \phi^n)$$

For p=1 and $\theta=0$,

$$\phi(t_{n+1}) = \phi(t_n) + \Delta t \phi'(t_n) + \underbrace{\frac{\Delta t^2}{2!} \phi''(t_n)}_{\text{Leading Error}}$$

For $\theta = 0$, we can write

$$\phi^{n+1} = \phi^n + \Delta t \Psi(t_n, \phi^n)$$

For p=1 and $\theta=0$,

$$\phi(t_{n+1}) = \phi(t_n) + \Delta t \phi'(t_n) + \underbrace{\frac{\Delta t^2}{2!} \phi''(t_n)}_{\text{Leading Error}}$$

Or,

$$\phi(t_{n+1}) = \phi(t_n) + \Delta t \phi'(t_n) + \mathcal{O}(\Delta t^2)$$

For $\theta = 0$, we can write

$$\phi^{n+1} = \phi^n + \Delta t \Psi(t_n, \phi^n)$$

For p=1 and $\theta=0$,

$$\phi(t_{n+1}) = \phi(t_n) + \Delta t \phi'(t_n) + \underbrace{\frac{\Delta t^2}{2!} \phi''(t_n)}_{\text{Leading Error}}$$

Or,

$$\phi(t_{n+1}) = \phi(t_n) + \Delta t \phi'(t_n) + \mathcal{O}(\Delta t^2)$$

Order of Euler's method: $\mathcal{O}(\Delta t)$

For $\theta = 1$, we can write

$$\phi^{n+1} = \phi^n + \Delta t \Psi(t_{n+1}, \phi^{n+1})$$

For $\theta = 1$, we can write

$$\phi^{n+1} = \phi^n + \Delta t \Psi(t_{n+1}, \phi^{n+1})$$

The function ϕ at t_n can be expanded as

$$\phi(t_n) = \phi(t_{n+1}) - \Delta t \phi'(t_{n+1}) + \underbrace{\frac{\Delta t^2}{2!} \phi''(t_{n+1})}_{\text{Leading Error}}$$

For $\theta = 1$, we can write

$$\phi^{n+1} = \phi^n + \Delta t \Psi(t_{n+1}, \phi^{n+1})$$

The function ϕ at t_n can be expanded as

$$\phi(t_n) = \phi(t_{n+1}) - \Delta t \phi'(t_{n+1}) + \underbrace{\frac{\Delta t^2}{2!} \phi''(t_{n+1})}_{\text{Leading Error}}$$

Or,

$$\phi(t_{n+1}) = \phi(t_n) + \Delta t \phi'(t_{n+1}) + \mathcal{O}(\Delta t^2)$$

For $\theta = 1$, we can write

$$\phi^{n+1} = \phi^n + \Delta t \Psi(t_{n+1}, \phi^{n+1})$$

The function ϕ at t_n can be expanded as

$$\phi(t_n) = \phi(t_{n+1}) - \Delta t \phi'(t_{n+1}) + \underbrace{\frac{\Delta t^2}{2!} \phi''(t_{n+1})}_{\text{Leading Error}}$$

Or,

$$\phi(t_{n+1}) = \phi(t_n) + \Delta t \phi'(t_{n+1}) + \mathcal{O}(\Delta t^2)$$

Order of Backward Euler method: $\mathcal{O}(\Delta t)$

Modified Euler Method

For $\theta = \frac{1}{2}$, we can write

$$\phi^{n+1} = \phi^n + \Delta t \Psi \left[t_n + \frac{\Delta t}{2}, \phi \left(t_n + \frac{\Delta t}{2} \right) \right]$$

Modified Euler Method

For $\theta = \frac{1}{2}$, we can write

$$\phi^{n+1} = \phi^n + \Delta t \Psi \left[t_n + \frac{\Delta t}{2}, \phi \left(t_n + \frac{\Delta t}{2} \right) \right]$$

 $t_n + \frac{\Delta t}{2}$ is not a node and various approximations are possible.

Modified Euler Method First Approach

If we evaluate $\phi(t_n + \frac{\Delta t}{2})$ by the Euler method, i.e.,

$$\phi\left(t_n + \frac{\Delta t}{2}\right) = \phi\left(t_n\right) + \frac{\Delta t}{2}\Psi(t_n, \phi^n)$$

Modified Euler Method First Approach

If we evaluate $\phi(t_n+\frac{\Delta t}{2})$ by the Euler method, .i.e.,

$$\phi\left(t_n + \frac{\Delta t}{2}\right) = \phi\left(t_n\right) + \frac{\Delta t}{2}\Psi(t_n, \phi^n)$$

In the next step,

$$\phi^{n+1} = \phi^n + \Delta t \Psi \left[t_n + \frac{\Delta t}{2}, \phi(t_n) + \frac{\Delta t}{2} \Psi(t_n, \phi^n) \right]$$

Modified Euler Method First Approach

If we evaluate $\phi(t_n+\frac{\Delta t}{2})$ by the Euler method, .i.e.,

$$\phi\left(t_n + \frac{\Delta t}{2}\right) = \phi\left(t_n\right) + \frac{\Delta t}{2}\Psi(t_n, \phi^n)$$

In the next step,

$$\phi^{n+1} = \phi^n + \Delta t \Psi \left[t_n + \frac{\Delta t}{2}, \phi(t_n) + \frac{\Delta t}{2} \Psi(t_n, \phi^n) \right]$$

In simplified form

$$\phi^{n+1} = \phi^n + K_2 + \mathcal{O}(\Delta t^3)$$

with
$$K_2 = \Delta t \Psi(t_n + \frac{\Delta t}{2}, \phi^n + \frac{1}{2}K_1)$$
 and $K_1 = \Delta t \Psi^n$.

Euler-Cauchy method Second Approach

Using averaging approach,

$$\phi'\left(t_n + \frac{\Delta t}{2}\right) = \frac{1}{2}\left[\phi'(t_n) + \phi'(t_n + \Delta t)\right]$$

Euler-Cauchy method

Second Approach

Using averaging approach,

$$\phi'\left(t_n + \frac{\Delta t}{2}\right) = \frac{1}{2}\left[\phi'(t_n) + \phi'(t_n + \Delta t)\right]$$

With Euler approximation,

$$\phi'\left(t_n + \frac{\Delta t}{2}\right) = \frac{1}{2}\left[\Psi(t_n, \phi^n) + \Psi(t_{n+1}, \phi^n + \Delta t \Psi^n)\right]$$

Euler-Cauchy method

Second Approach

Using averaging approach,

$$\phi'\left(t_n + \frac{\Delta t}{2}\right) = \frac{1}{2}\left[\phi'(t_n) + \phi'(t_n + \Delta t)\right]$$

With Euler approximation,

$$\phi'\left(t_n + \frac{\Delta t}{2}\right) = \frac{1}{2}\left[\Psi(t_n, \phi^n) + \Psi(t_{n+1}, \phi^n + \Delta t \Psi^n)\right]$$

The equation can be written as,

$$\phi^{n+1} = \phi^n + \frac{\Delta t}{2} \left[\Psi(t_n, \phi^n) + \Psi(t_{n+1}, \phi^n + \Delta t \Psi^n) \right]$$

Euler-Cauchy method

Second Approach

Using averaging approach,

$$\phi'\left(t_n + \frac{\Delta t}{2}\right) = \frac{1}{2}\left[\phi'(t_n) + \phi'(t_n + \Delta t)\right]$$

With Euler approximation,

$$\phi'\left(t_n + \frac{\Delta t}{2}\right) = \frac{1}{2}\left[\Psi(t_n, \phi^n) + \Psi(t_{n+1}, \phi^n + \Delta t \Psi^n)\right]$$

The equation can be written as,

$$\phi^{n+1} = \phi^n + \frac{\Delta t}{2} \left[\Psi(t_n, \phi^n) + \Psi(t_{n+1}, \phi^n + \Delta t \Psi^n) \right]$$

In simplified form,

$$\phi^{n+1} = \phi^n + \frac{1}{2} [K_1 + K_2] + \mathcal{O}(\Delta t^3)$$

with $K_2 = \Delta t \Psi(t_{n+1}, \phi^n + K_1)$ and $K_1 = \Delta t \Psi^n$.

Runge-Kutta Methods

Individual m increments are defined as,

$$K_{1} = \Delta t \Psi(t_{n}, \phi^{n})$$

$$K_{2} = \Delta t \Psi(t_{n} + c_{2} \Delta t, \phi^{n} + a_{21} K_{1})$$

$$K_{3} = \Delta t \Psi(t_{n} + c_{3} \Delta t, \phi^{n} + a_{31} K_{1} + a_{32} K_{2})$$

$$\vdots$$

$$K_{m} = \Delta t \Psi(t_{n} + c_{m} \Delta t, \phi^{n} + a_{m1} K_{1} + a_{m2} K_{2} + \dots + a_{m,m-1} K_{m-1})$$

Runge-Kutta Methods

Individual m increments are defined as,

$$K_{1} = \Delta t \Psi(t_{n}, \phi^{n})$$

$$K_{2} = \Delta t \Psi(t_{n} + c_{2} \Delta t, \phi^{n} + a_{21} K_{1})$$

$$K_{3} = \Delta t \Psi(t_{n} + c_{3} \Delta t, \phi^{n} + a_{31} K_{1} + a_{32} K_{2})$$

$$\vdots$$

$$K_{m} = \Delta t \Psi(t_{n} + c_{m} \Delta t, \phi^{n} + a_{m1} K_{1} + a_{m2} K_{2} + \dots + a_{m,m-1} K_{m-1})$$

The Runge-Kutta method is defined as weighted assembly of increments by,

$$\phi^{n+1} = \phi^n + W_1 K_1 + W_2 K_2 + \dots + W_m K_m$$

The parameters c_j , a_{ij} and W_j can be obtained by matching the corresponding expansions with Taylor Series.

Dr. Anirban Dhar

NPTEL

Second Order RK Method

In general terms, second order RK can be defined as,

$$K_{1} = \Delta t \Psi(t_{n}, \phi^{n})$$

$$K_{2} = \Delta t \Psi(t_{n} + c_{2} \Delta t, \phi^{n} + a_{21} K_{1})$$

$$\phi^{n+1} = \phi^{n} + W_{1} K_{1} + W_{2} K_{2}$$

Second Order RK Method

In general terms, second order RK can be defined as,

$$K_{1} = \Delta t \Psi(t_{n}, \phi^{n})$$

$$K_{2} = \Delta t \Psi(t_{n} + c_{2} \Delta t, \phi^{n} + a_{21} K_{1})$$

$$\phi^{n+1} = \phi^{n} + W_{1} K_{1} + W_{2} K_{2}$$

 RK_2 can be presented as,

$$K_{1} = \Delta t \Psi(t_{n}, \phi^{n})$$

$$K_{2} = \Delta t \Psi(t_{n} + \frac{2}{3} \Delta t, \phi^{n} + \frac{2}{3} K_{1})$$

$$\phi^{n+1} = \phi^{n} + \frac{1}{4} [K_{1} + 3K_{2}] + \mathcal{O}(\Delta t^{3})$$

Third Order RK Method

In general terms, third order RK can be defined as,

$$K_{1} = \Delta t \Psi(t_{n}, \phi^{n})$$

$$K_{2} = \Delta t \Psi(t_{n} + c_{2} \Delta t, \phi^{n} + a_{21} K_{1})$$

$$K_{3} = \Delta t \Psi(t_{n} + c_{3} \Delta t, \phi^{n} + a_{31} K_{1} + a_{32} K_{2})$$

$$\phi^{n+1} = \phi^{n} + W_{1} K_{1} + W_{2} K_{2} + W_{3} K_{3}$$

Third Order RK Method

In general terms, third order RK can be defined as,

$$K_{1} = \Delta t \Psi(t_{n}, \phi^{n})$$

$$K_{2} = \Delta t \Psi(t_{n} + c_{2} \Delta t, \phi^{n} + a_{21} K_{1})$$

$$K_{3} = \Delta t \Psi(t_{n} + c_{3} \Delta t, \phi^{n} + a_{31} K_{1} + a_{32} K_{2})$$

$$\phi^{n+1} = \phi^{n} + W_{1} K_{1} + W_{2} K_{2} + W_{3} K_{3}$$

 RK_3 can be presented as,

$$K_{1} = \Delta t \Psi(t_{n}, \phi^{n})$$

$$K_{2} = \Delta t \Psi(t_{n} + \frac{1}{2} \Delta t, \phi^{n} + \frac{1}{2} K_{1})$$

$$K_{3} = \Delta t \Psi(t_{n} + \Delta t, \phi^{n} - K_{1} + 2K_{2})$$

$$\phi^{n+1} = \phi^{n} + \frac{1}{6} K_{1} + \frac{4}{6} K_{2} + \frac{1}{6} K_{3} + \mathcal{O}(\Delta t^{4})$$

Fourth Order RK Method

In general terms, fourth order RK can be defined as,

$$K_1 = \Delta t \Psi(t_n, \phi^n)$$

$$K_2 = \Delta t \Psi(t_n + c_2 \Delta t, \phi^n + a_{21} K_1)$$

$$K_3 = \Delta t \Psi(t_n + c_3 \Delta t, \phi^n + a_{31} K_1 + a_{32} K_2)$$

$$K_4 = \Delta t \Psi(t_n + c_4 \Delta t, \phi^n + a_{41} K_1 + a_{42} K_2 + a_{43} K_3)$$

$$\phi^{n+1} = \phi^n + W_1 K_1 + W_2 K_2 + W_3 K_3 + W_4 K_4$$

Fourth Order RK Method

In general terms, fourth order RK can be defined as,

$$K_{1} = \Delta t \Psi(t_{n}, \phi^{n})$$

$$K_{2} = \Delta t \Psi(t_{n} + c_{2} \Delta t, \phi^{n} + a_{21} K_{1})$$

$$K_{3} = \Delta t \Psi(t_{n} + c_{3} \Delta t, \phi^{n} + a_{31} K_{1} + a_{32} K_{2})$$

$$K_{4} = \Delta t \Psi(t_{n} + c_{4} \Delta t, \phi^{n} + a_{41} K_{1} + a_{42} K_{2} + a_{43} K_{3})$$

$$\phi^{n+1} = \phi^{n} + W_{1} K_{1} + W_{2} K_{2} + W_{3} K_{3} + W_{4} K_{4}$$

 RK_4 can be presented as,

$$\begin{split} K_1 &= \Delta t \Psi(t_n, \phi^n) \\ K_2 &= \Delta t \Psi(t_n + \frac{1}{2} \Delta t, \phi^n + \frac{1}{2} K_1) \\ K_3 &= \Delta t \Psi(t_n + \frac{1}{2} \Delta t, \phi^n + \frac{1}{2} K_2) \\ K_4 &= \Delta t \Psi(t_n + \Delta t, \phi^n + K_3) \\ \phi^{n+1} &= \phi^n + \frac{1}{6} K_1 + \frac{1}{3} K_2 + \frac{1}{3} K_3 + \frac{1}{6} K_4 + \mathcal{O}(\Delta t^5) \end{split}$$

Gradually Varied Flow in Open Channel Ordinary Differential Equation

Initial Value Problem

Governing Equation:

$$\frac{dy}{dx} = \frac{S_0 - S_f}{1 - Fr^2} \tag{1}$$

Dr. Anirban Dhar

NPTEL

Computational Hydraulics

Gradually Varied Flow in Open Channel Ordinary Differential Equation

Initial Value Problem

Governing Equation:

$$\frac{dy}{dx} = \frac{S_0 - S_f}{1 - Fr^2} \tag{1}$$

Initial Condition:

$$y|_{x=0} = y_0 (2)$$

$$\Psi(x,y) = \frac{S_0 - S_f}{1 - Fr^2}$$

Thank You

References

Sengupta, T. (2013). High Accuracy Computing Methods Fluid Flows and Wave Phenomena.