

铁的计算

日期:	时间:	姓名:	
Date:	Time:	Name:	

1		ø
	Y	
,		

初露锋芒

完

1		
記月	战下?	列默写:
-,	完成	文下列反应方程式
	1.	氧化铁与稀盐酸反应:
	2.	氧化亚铁与稀硝酸反应:
	3.	写出 2 反应的离子方程式:
	4.	氢氧化亚铁在空气中被氧化的反应:
	5.	制备氢氧化亚铁的化学方程式:
	6.	氢氧化铁受热分解:
	7.	氯化铁与氨水反应的离子方程式:
	8.	三价铁离子与碘离子的反应:
	9.	亚铁离子与高锰酸根的反应:
	10.	铜与氯化铁的反应:
Ξ,	完成	花下列填空
	11.	氢氧化亚铁在空气中被氧化时发生的颜色变化:。
	12.	氯化亚铁溶液的颜色; 氯化铁溶液的颜色:。
	13.	写出 2 种检验 Fe ³⁺ 的方法?
	14.	如何检验氯化亚铁和氯化铁混合溶液中的 Fe ²⁺ ?
	15.	不能与 Fe ²⁺ 共存的物质有哪些?

学习目标

- 1、掌握铁的氧化物的性质。
- &

重难点

2、掌握铁的氢氧化物的性质。

3、掌握铁、Fe²⁺、Fe³⁺之间的转化,并学会运用铁三角。

根深蒂固

解题虽然没有一成不变的方法模式,但应建立解题的基本思维模式:题示信息+基础知识+逻辑思维。掌握正确的解题方法能简化解题过程,提高解题能力。

1. 极值法

(1) 极值法的含义

极值法是采用极限思维方式解决一些模糊问题的解题技巧。它是将题设构造为问题的两个极端,然后依据 有关化学知识确定所需反应物或生成物的量值,进行判断分析,求得结果。也称为极端假设法。

- (2) 极值法解题的基本思路
 - ①把可逆反应假设成向左或向右进行的完全反应。
 - ②把混合物假设成纯净物。
 - ③把平行反应分别假设成单一反应。
- (3) 极值法解题的关键

紧扣题设的可能趋势, 选好极端假设的落点。

(4) 极值法解题的优点

极值法解题的优点是将某些复杂的、难以分析清楚的化学问题假设为极值问题,使解题过程简化,解题思 路清晰,把问题化繁为简,由难变易,从而提高了解题速度。

2. 平均值法

(1) 依据:

若 $X_A > X_B$,则 $X_A > X_B$, X 代表平均相对原子(分子)质量、平均浓度、平均含量、平均生成量、平均消耗量等。

(2) 应用:

已知 X 可以确定 X_A 、 X_B 的范围;或已知 X_A 、 X_B 可以确定 X 的范围。

解题的关键是要通过平均值确定范围,很多考题的平均值需要根据条件先确定下来再作出判断。实际上,它是极值法的延伸。

(3)混合物的许多化学特征具有加合性,均可求出平均值。属于这类"特性数量"的有:相对分子质量、密度、同条件下的体积分数、物质的量浓度、反应热、平均组成等。平均值法解题范围广泛,特别适用于缺少数据而不能直接求解的混合物判断问题。

3. 差量法

(1) 差量法的应用原理

差量法是指根据化学反应前后物质的量发生的变化,找出"理论差量"。这种差量可以是质量、物质的量、 气态物质的体积和压强等。用差量法解题是先把化学方程式中的对应差量(理论差量)跟差量(实际差量)列成比例,然后求解。

如:

$$2C(s)$$
 + $O_2(g)$ \rightarrow $2CO(g)$ $\Delta m(閩)$, $\Delta n()$, $\Delta V()$
2mol 1mol 2mol

- (2) 使用差量法的注意事项
 - ①所选用差值要与有关物质的数值成正比例或反比例关系。
 - ②有关物质的物理量及其单位都要正确地使用。
- (3) 差量法的类型及应用
 - ①质量差法
 - ②体积差法

4. 关系式法

物质间的一种简化的式子,解决多步反应,计算最简捷。多步反应中建立关系式的方法

(1) 叠加法(如利用木炭、水蒸气制取氨气)

C+H₂O(g)
$$\xrightarrow{\text{高温}}$$
 CO+H₂

由木炭、水蒸气制取 NH3 的关系为: C~ NH3

(2) 元素守恒法

工业制备硝酸的过程如下:

 $2NO+O_2\rightarrow 2NO_2$

 $3NO_2+H_2O\rightarrow 2HNO_3+NO$

经过多次氧化和吸收,由 N 元素守恒知:

(3) 电子转移守恒法

$$NH_3 \xrightarrow{\text{$\not =$}} HNO_3$$
, $O_2 \xrightarrow{\text{$\not =$}} 2O^{2-}$

由得失电子总数相等知,NH3经氧化等一系列过程生成HNO3,NH3和O2的关系为

5. 整体思维法(终态法)

整体思维抛开事物之间复杂的变化关系,从整体认识把握事物之间联系规律,具有化繁为简,快速解题的功效,能较好的煅烧学生思维的全面性、灵活性,因此高考无论在选择还是综合性题目中经常有意设置。

方法 1: 极值法 (平均值法)

【例1	】将 5.6g 铁粉与另一	种金属的混合物跟足	量的盐酸反应,标准状况下	生成氢气 2.2L,则另一种金	注 属可能
是 ()				
A	. Al	B. Mg	C. Ca	D. Zn	
变式 1	: 某两种金属粉末的?	昆合物 25g, 投入足量	的稀硫酸中,在标准状况了	下产生氢气 11.2L,则该混合	的可能
是 ()				

A. 铝和镁

- B. 镁和铁
- C. 铁和铜
- D. 铁和锌

变式 2: 将 5g Mg、Al、Fe 三种金属的混合物与足量稀硫酸反应,反应完全时共放出 H₂2.8L (标况),则三种 金属物质的量之和为()

- A. =0.125mol B. >0.125mol
- C. < 0.125 mol
- D. 无法确定

【方法提炼】

- ①确定两个极端分别是什么情况;
- ②考虑极端值能够取到。

知识点 2: 差量法

【例1】把一定质量的铁块放入一定质量的硫酸铜溶液中,过一会儿取出,发现溶液质量比原来减少了2g,求 参加反应的铁的质量及生成的铜的质量。

变式 1: 将 3.0g 铁粉加入 100mL 硫酸铜溶液中,充分反应后,过滤,将滤渣洗涤、干燥、称量的固体物质 3.4g。 求:

- (1)参加反应的铁的质量。
- (2) 硫酸铜溶液中溶质的物质的量浓度。

		的铁粉,若充分反应后	溶液的质量没有变化,则原混合溶液
中 Fe ³⁺ 和 Cu ²⁺ 的物质的量			
A. 2:7	B. 1:7	C. 7:1	D. 5:14
【方法提炼】	(レコレジョルはロー	, + y × y + y y + g × y,	, L = + L J, M V Z = D J, W J = 1, Z
			答量存在比例关系,且化学计量的差
值必须是同一物理量时, 2	「能用"左重法" 解拠。		
方法 3: 守恒法			
题型一:元素守恒法			
【例1】 将 14.4gFeC ₂ O ₄ 隔	绝空气加热分解, 最终	可以得到 7.2g 铁的氢化	二物,此氧化物是 ()
A. FeO	B. Fe ₂ O ₃		D. FeO Fe ₃ O ₄
71. TCO	B. 10203	C. 10304	D. 100\ 10304
变式 1: 向铁和氧化铁的混	是合物中加入足量的稀 F	I ₂ SO ₄ ,充分反应后生成	FeSO ₄ 溶液,当生成的 Fe ²⁺ 和 H ₂ 的物
质的量之比为 4:1 时,被军			
A. 1:1	B. 2:1	C. 1:2	D. 1:3
变式 2: 用足量的 CO 还原	〔32.0 克某种氧化物,料	寄生成的气体通入足量 溶	登清石灰水中,得 60 克沉淀,则该氧
化物是 ()			
A. MgO	B. Fe ₂ O ₃	C. CaO	D. Cu ₂ O
【方法提炼】			
用关系式法解题的关键	建是建立关系式,而建立	立关系式的一般途径有:	
①利用粒子守恒建立方	关系式;		
②利用化学方程式中化	化学计量数间的关系建立	立关系式;	
③利用化学方程式的加	凹和建立关系式等。		
题型二: 得失电子守恒法			
【例2】用盐酸酸化的 KN	O ₃ 溶液表现出氧化性,	向该溶液中加入 5mL 1	.5mol/L 的 FeCl ₂ 溶液,完全反应后被
还原的 KNO ₃ 为 2.5×10 ⁻³ mo	ol,则 KNO3 的还原产物	勿为 ()	
A. NO ₂	B. NO	C. N ₂	D. N_2O
变式 1: 将 20g 铁粉放入一	一定量的稀硝酸中,充分	反应后,放出气体 2.24	IL (标准状况下),则剩余铁粉的质量
是 ()			
A. 14.4g	B. 11.6g	C. 8.8g	D. 3.2g

变式 2: 稀硫酸与适量铁反应完全后释放出 112mL 氢气(S.T.P.),所得 $FeSO_4$ 溶液与稀的高锰酸钾溶液反应,消耗高锰酸钾溶液 50mL。已知 MnO_4 被还原为 Mn^{2+} ,求所加入高锰酸钾溶液的物质的量浓度。

【方法提炼】

此类题目中题干中一定会存在一个氧化还原反应,解题时一定更不要去书写化学方程式,只要将对应的氧化剂、还原剂、氧化产物、还原产物确定下列,结合反应中给定的量,利用得失电子守恒。

方法 4: 整体思维法 (终态法)

【例 1】在铁和氧化铁混合物 15 g 中,加入稀硫酸 150 mL,能放出 H_2 1.68 L(标准状况)。同时铁和氧化铁均 无剩余,向反应后的溶液中滴入 KSCN 溶液,未见颜色变化。为了中和过量的 H_2 SO₄,且使 Fe^{2^+} 完全转化成 $Fe(OH)_2$,共消耗 3 $mol\cdot L^{-1}$ 的 NaOH 溶液 200 mL,则原硫酸的物质的量浓度是(

A. $1.5 \text{ mol} \cdot \text{L}^{-1}$

B. $2 \text{ mol} \cdot L^{-1}$

C. $2.5 \text{ mol} \cdot \text{L}^{-1}$

D. $3 \text{ mol} \cdot L^{-1}$

变式 1: 向一定量的 Fe、Fe₂O₃ 的混合物中加入 2mol/L 的 HNO₃ 溶液 250mL,反应完成后生成 NO1.12L (标准 状况下),再向反应后溶液中加入 1mol/LNaOH 溶液,要使铁元素完全沉淀下来,所加入 NaOH 溶液的体积最少是 (

A. 450mL

B. 500mL

C. 400mL

D. 不能确定

变式 2: 将铁和氧化铁的混合物 5.44g 加入到 50mL3.2mol/L 的盐酸中,恰好完全反应,经检验溶液中只有 Fe^{2+} ,并无 Fe^{3+} 存在,求原混合物中氧化铁的质量。

【方法提炼】

此种方法对应的题干中,一般会涉及到多步反应,如果从正面去解题会涉及繁琐的化学反应过程,过程会很复杂。用终态法去解题,直接考虑多步反应后的最终状态,考虑溶液中的溶质是什么,一个物质内部的阴阳离子之间存在什么关系,再结合题干已知的量进行解题。

瓜熟蒂落

1.	有两种金属粉末的混合 肯定不能构成上述混合	_	的稀硫酸中,在标准状)	说下产生氢气 11.2L,则	下列各组金属中
	A. 铁和铝	B. 铜和锌	C. 镁和银	D. 镁和铅	1
2.	某金属混合物 1.5g, 瓦A. 镁和铝		Z, 共产生 560ml 氢气 C. 铝和锌	(S.T.P), 此混合物的组成 D. 铝和铁	(可能是()
3.	将一定质量的 Mg、Zr 是()	n 混合物与足量的科	₩2SO4反应,生成H2	2.8L(标准状况下),原混	合物的质量可能
	A. 2g	B. 4g	C. 9g	D. 10g	
4.	两种金属粉末混合物	14克,投入足量的	稀硫酸中,产生1克氢	气,则金属的混合物不可	能是()
	①Fe ②Z	Zn	③Al	④Mg	
	A. ①②	В. 23	C. ①③ D.	14	
5.	将 8g 铁片放入 100mI 酸铜溶液的物质的量流		海溶液中的 Cu²+全部被运	还原时,"铁片"的质量变	为 8.2g,则原硫
	A. 0.5mol/L	B. 0.25mol/L	C. 0.025mol/L	D. 0.125mol/L	
6.	在 100mL 0.1mol/L 的	CuSO4溶液中,加	入薄的铁片,反应片刻	后,将铁片取出洗净,干	燥后称量,铁片
	增重 0.08g, 则此时 F	e ²⁺ 的物质的量浓度	为 (假定体积无变化)	()	
	A. $1 \times 10^{-4} \text{mol/L}$	В.	1×10^{-3} mol/L		
	C. 1×10 ⁻² mol/L	D.	$1 \times 10^{-1} \text{mol/L}$		
7.	1.4g 铁全部溶于盐酸中最后得到红色物质的原		I 溶液,得红棕色沉淀,	过滤后给红棕色沉淀加热	热(在空气中),
	A. lg	B. 1.6g	C. 2g	D. 1.8g	
8.	在 FeCl ₃ 和 CuCl ₂ 的混 混合液中 FeCl ₃ 和 CuC			二后,称得固体与加入的锐	卡屑质量相等。原
	A. 1:1	B. 3:4	C. 2:7	D. 7:2	

9.	某铁的"氧化物"样	品,用 5mol/L 盐酸	140mL,恰好完全溶解	军,所得溶液还能吸收标准状况 ⁷	下 0.56L 氯	
	气,使其中 Fe ²⁺ 全部	转化为 Fe ³⁺ ,该样品	可能的化学式是()		
	A. Fe ₂ O ₃	B. Fe ₃ O ₄	C. Fe ₄ O ₃	D. Fe ₅ O ₇		
10.	某稀硝酸溶液中,加	入 5.6g 铁粉充分后	,铁粉全部溶解,放出	l一氧化氮气体,溶液质量增加 3	3.2g,所得	
	溶液中 Fe ²⁺ 和 Fe ³⁺ 的	物质的量之比是()			
	A. 3: 2	B. 2:3	C. 1:1 D.	2:1		
11.	Fe ₃ O ₄ 与 HNO ₃ 反应结	E成 Fe(NO3)3、NO、	H ₂ O 若溶解 1mol Fe ₃ O	D ₄ ,则被还原的硝酸是()		
	A. 1/2mol	B. 1/3mol	C. 3mol	D. 9mol		
12.	将适量铁粉放入三氯 应的 Fe ³⁺ 的物质的量		应后,溶液中 Fe ²⁺ 和 I	Fe ³⁺ 浓度比为 3:2。则已反应的 I	Fe ³⁺ 和未反	
	A. 2:3	B. 3:2	C. 1:2	D. 1:1		
13.			入 100 mL 2 mol / L 的 + 离子。则下列判断正	盐酸,恰好使混合物完全溶解,到 确的是()	并放出 448	
	A. 混合物里三种物质	质反应时消耗盐酸的	物质的量之比为1:1	: 3		
	B. 反应后所得溶液。	中的 Fe ²⁺ 离子与 Cl ⁻	离子的物质的量之比。	为1:2		
	C. 混合物里, FeO f	的物质的量无法确定	,但 Fe 比 Fe ₂ O ₃ 的物质	质的量多		
	D. 混合物里, Fe ₂ O ₃	的物质的量无法确定	定,但 Fe 比 FeO 的物)	质的量多		
14.	向一定量的 Fe、FeO	和 Fe ₂ O ₃ 的混合物中	加入 120mL 4mol/L 的	稀硝酸,恰好使混合物完全溶解,	,放出 0.06	
	mol NO,往所得溶液中加入 KSCN 溶液,无血红色出现。若用足量的氢气在加热下还原相同质量的原流合物,能得到铁的物质的量为()					
		B. 0.21mol	C. 0.16mol	D. 0.14mol		
15.		〔体。向所得溶液中	加入 KSCN 溶液无血红	L 的盐酸;恰好使混合物完全溶 L色出现,若用足量的 CO 在高温		
	A. 11.2g	B. 2.8g	C. 5.6g	D. 无法计算		
16.	向一定量的 Cu、Fe ₂ d	O ₃ 的混合物中加入 3	300 mL 1 mol/L 的 HCl	溶液,恰好使混合物完全溶解,	所得溶液	
	中加入 KSCN 溶液后	无红色出现, 若用这	t量的 CO 在高温下还原	原相同质量的此混合物,固体的质	長量减少了	
	()					
	A. 6.4 g	B. 4.8 g	C. 2.4 g	D. 1.6 g		

17.	将 $8gFe_2O_3$ 投入到 $150mL$ 某浓度的稀 H_2SO_4 中,再投入 $7g$ 铁粉收集到 $1.68LH_2$ (标准状况),	同时,	Fe
	与 Fe ₂ O ₃ 均无剩余,为了中和过量的硫酸,且使溶液中铁元素完全沉淀,共消耗 4mol/L 的 NaOH 溶	液 1501	mL :
	则原硫酸的物质的量浓度为 ()		

- A. 1.5 mol/L
- B. 0.5 mol/L
- C. 2 mol/L
- D. 1.2 mol/L
- 18. 现有一铁粉样品,其中可能混有碳粉或铝粉中的一种。取 28g 该样品,加入足量的稀硫酸,产生氢气 13.44L (已换算成标准状况下的体积)。试通过计算判断样品中混有的是碳粉还是铝粉并计算铁粉的纯度 (精确到 0.1%)。

- 19. 某硫酸铜溶液 100mL, 向溶液中浸入 50g 的铁片, 待充分反应后, 将铁片取出, 洗净并 低温下烘干 (假设析出的铜全部附在铁片上), 称得为 50.16g, 求:
 - (1) 原硫酸铜溶液的物质的量浓度为多少?
 - (2) 析出铜的质量为多少克?

- 20. 在 200mL FeCl₂溶液中通入一定量的 Cl₂后,把溶液分为两等份,一份加入足量的硝酸银溶液,反应得到 28.7g 沉淀;另一份放入铁片,直到溶液中不再使 KSCN 溶液变红色为止,铁片质量减轻了 0.56g,求:
 - (1) 通入 Cl₂ 反应后的溶液中 Cl-的物质的量;
 - (2) 通入 Cl₂ 在标准状况下的体积;
 - (3) 原 FeCl₂溶液的物质的量浓度。

- 21. 将 54.4 g 铁粉和氧化铁的混合物中加入 200 mL 的稀硫酸,恰好完全反应,放出氢气 4.48 L(标准状况).反应后的溶液中滴加 KSCN 不显红色,且无固体剩余物,求:
 - ①混合物铁和氧化铁各是多少克?
 - ②原稀硫酸物质的量浓度?
 - ③反应后得到 FeSO₄ 的物质的量是多少?

- 22. 向 15gFe 和 Fe₂O₃ 混合物中加入 150ml 稀 H₂SO₄,在标准状况下放出 1.68LH₂,这时 Fe 和 Fe₂O₃ 均无剩余,再向溶液中滴入硫氰化钾溶液未见颜色变化,为中和过量的 H₂SO₄,消耗了 3mol/L 的 NaOH 溶液 200mL 求:
 - (1) Fe 和 Fe₂O₃质量
 - (2) 原稀硫酸的物质的量浓度

- 23. 在铁和氧化铁的混合物 15g 中加入 150mL 稀 H_2SO_4 放出氢气 1.68L(标准状况)。当反应停止后,铁和氧化 铁均无剩余,且溶液中无 Fe^{3+} 存在。为了中和过量 H_2SO_4 ,并 使 Fe^{2+} 完全转化为 $Fe(OH)_2$ 沉淀,共耗用 3 mol/L NaOH,溶液 200mL。求:
 - ①混合物中铁和氧化铁各多少克?
 - ②稀 H₂SO₄ 的物质的量浓度为多少?