שיעור 5 RE רכונות סגירות של

RE -ו R ו- 5.1

R 5.1 הגדרה

אוסף השפות הכריעות מסומן R ומוגדר

 $R = \{L \subseteq \Sigma^* : L$ את המכריעה המכריעה מ"ט קיימת מ"ט המכריעה את

RE 5.2 הגדרה

אוסף השפות הקבילות מסומן RE ומוגדר

 $RE = \{L \subseteq \Sigma^* \ : \ L$ את המקבלת מ"ט המקבלת $\}$.

למה 5.1

 $L \in R$ אזי $\bar{L} \in RE$ אם $L \in RE$

 $ar{L}$ את מ"ט המקבלת את מ"ט המקבלת את מ"ט המקבלת את הוכחה:

L את המכריעה את D נבנה מ"ט

:w על קלט =D

. מעתיקה את w לסרט נוסף D (1

w על העותק של M על את M על העותק של (2

- אם M מקבלת \to
 - . אם \bar{M} מקבלת $D \Leftarrow \bar{M}$ אם
 - . אם M דוחה $D \Leftarrow$
 - . אם \bar{M} דוחה $D \Leftarrow \bar{M}$ מקבלת.

L גוכיח כי D מכריעה את

 $w \in L$ אם

- $w \in L(M) \Leftarrow$
- (w את הוחה \bar{M}) או (w את מקבלת M) \Leftarrow
 - .w עוצרת ומקבלת את $D \Leftarrow$

 $w \notin L$ אם

- $w \in \bar{L} \Leftarrow$
- $w \in L(\bar{M}) \Leftarrow$
- (w את דוחה M) או (w מקבלת את $\bar{M}) \Leftarrow$
 - w עוצרת ודוחה את $D \Leftarrow$

משפט 5.1 סגירות של השפות הכריעות

:סגורה תחת R

- איחוד (1
- 2) חיתוך
- משלים (3
- שרשור (4
- סגור קלין (5

משפט 5.2 סגירות של השפות הקבילות

:סגורה תחת RE

- איחוד (1
- 2) חיתוך
- שרשור (3
- סגור קלין (4

הוכחה:

:חיתוך (1

איתוך תחת חיתוך R (א)

 $L_1 \cap L_2 \in R$ מתקיים ביי מתקיים לכל שתי שפות נוכיח כי לכל אתי

תאור הבנייה

:w על קלט =M

- . מעתיקה את w לסרט נוסף M (1
 - .w על M_1 מריצה את (2
- . אם M_1 דוחה M_2 דוחה.
- . ועונה של של אע העותק על את מריצה את מריצה את \bullet

<u>נכונות:</u>

 $L_1\cap L_2$ את מכריעה M נוכיח כי

 $w \in L_1 \cap L_2$ אם

 $w \in L_2$ וגם $w \in L_1 \Leftarrow$

w את מקבלת את מקבלת את מקבלת את מקבלת את $M_1 \Leftarrow$

w מקבלת את $M \Leftarrow$

 $w \notin L_1 \cap L_2$ אם

 $w \notin L_2$ או $w \notin L_1 \Leftarrow$

w דוחה את או M_2 או m דוחה את $M_1 \Leftarrow m$

.w דוחה את $M \Leftarrow$

סגורה תחת חיתוך RE (ב)

 $L_1 \cap L_2 \in RE$ מתקיים $L_1, L_2 \in RE$ נוכיח כי לכל שתי שפות

תהיינה L_1 ו- L_2 שתי מכונות טיורינג המקבלות את את ו- M_2 ו- M_1 ההיינה M_2 ו- M_1 באותו אופן כמו M המקבלת את M המקבלת את M המקבלת את בנה מ"ט

:איחוד:

סגורה תחת איחוד R (א)

 $L_1 \cup L_2 \in R$ מתקיים $L_1, L_2 \in R$ נוכיח כי לדל שתי שפות

 L_2 את מ"ט המכריעה את M_2 -ו ווא המכריעה את מ"ט המכריעה את המינה M_1 המכריעה את גבנה מ"ט M

תאור הבנייה

:w על קלט =M

- . מעתיקה את לסרט נוסף M (1
 - .w על M_1 מריצה את (2
- . אם $M \Leftarrow M$ מקבלת M_1 אם •
- . מריצה של של העותק על את מריצה את מריצה את M מריצה אחרת, \bullet

ב) איחוד RE (ב)

 $L_1 \cup L_2 \in RE$ מוכיח כי לכל שתי שפות $L_1, L_2 \in RE$ מתקיים לכל שתי שפות M_1 המקבלת את מ"ט המקבלת את M_1 המקבלת את $L_1 \cup L_2$ א"ד M המקבלת את המקבלת את מ"ט א"ד

תאור הבנייה

:w על קלט =M

- $.i \in \{1,2\}$ בוחרת באופן א"ד M (1
- . על w ועונה כמוה M (2

:שרשור (3

א) א סגורה תחת שרשורR (א)

נוכיח כי לכל שתי שפות $L_1, L_2 \in R$ מתקיים $L_1, L_2 \in R$ כאשר

$$L_1 \cdot L_2 = \{ w = w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$$
.

 L_2 את מ"ט המכריעה את המכריעה את מ"ט המכריעה את מ"ט א"ד $L_1 \cdot L_2$ את המכריעה את א"ד א"ד א המכריעה את גבנה מ"ט א"ד א

תאור הבנייה

:w על קלט =M

- $w=w_1w_2$ ל- w בוחרת באופן א"ד חלוקה של M (1
 - $.w_1$ על M_1 על מריצה את (2
 - אם $M \Leftarrow$ דוחה M_1 דוחה.
- . אחרת, M מריצה את M_2 על מריצה M מריצה M

סגורה תחת שרשור RE (ב)

(א) -סגורה תחת שרשור באותו אופן כמו בRE

4) * קליני

א) R סגורה תחת st קליני

 $:\!\!L$ נוכיח כי לכל שפה

$$L \in R \implies L^*R$$

כאשר

$$L^* = \{ w = w_1 w_2 \cdots w_k \mid \forall 1 \le i \le k , w_i \in L \}$$
.

 $.L^st$ א"ד המכריעה את מ"ט M^st נבנה מ"ט

תאור הבנייה

:w על קלט $=M^*$

- . אס w=arepsilon אז M^* מקבלת (1
- $w=w_1\cdots w_k$ בוחרת באופן א"ד חלוקה של ל- M^* בוחרת באופן א
 - $:1\leqslant i\leqslant k$ לכל (3

 $.w_i$ על M מריצה את M^*

- . דוחה $M^* \Leftarrow w_i$ דוחה M דוחה אם
 - אחרת חוזרים לשלב 3).
- . אוי M^* אזי M^* מקבלת $\{w_i\}$ אוי כל המחרוזות M

ב) אבורה תחת st קליני RE

5) משלים

א) $\,R\,$ סגורה תחת המשלים

נוכיח כי

$$L \in R \quad \Rightarrow \quad \bar{L} \in R \ ,$$

כאשר

$$\bar{L} = \left\{ w \in \Sigma^* \mid w \notin L \right\} .$$

 $ar{L}$ את המכריעה את המכריעה את

$$:w$$
 על קלט $=\bar{M}$

- .w על M על מריצה את $ar{M}$ (1)
- אם M מקבלת $\bar{M} \leftarrow M$ דוחה.
- . אם M דוחה $\bar{M} \Leftarrow \bar{M}$ מקבלת.

ב) אינה סגורה תחת המשלים RE

משפט 5.3 אינה סגורה תחת המשלים RE

 $L \in RE \backslash R \implies \bar{L} \notin RE$.

הוכחה:

 $ar{L} \in RE$ נניח כי ונניח בשלילה לונניח ונניח בר ונניח נ

. אזי לפי טענת עזר (למה 5.1), אזי לפי טענת אזר למה לפי אזי לפי

 $Co\,RE$ 5.3 הגדרה

 $CoRE = \{ L \subseteq \Sigma^* \mid \bar{L} \in RE \}$.

אבחנה

לפי למה 5.1:

 $RE \cap CoRE = R$.

5.2 קידוד של מ"ט דטרמיניסטית

הגדרה 5.4 קידוד של מ"ט

בהינתן קבוצה O של עצמים מופשטים (למשל מכונת טיורינג, תוכנית מחשב, גרף). הקידוד של O, מסומן $\langle O \rangle$, הוא מיפוי של O אל מחרוזת מעל אלפבית סופי שיש בו לפחות שני סימנים.

 $\langle O_1, O_2, \dots, O_k
angle$ במידה ויש רב עצמים O_1, \dots, O_k נסמן את הקידוד שלהם

U מ"ט אוניברסלית 5.3

מ"ט אוניברסלית $\langle w \rangle$ מקבלת מקלט זוג, קידוד של מ"ט מ"ט מ"ט אוניברסלית מקבלת מקבלת כקלט זוג, קידוד של מ"ט מ"ט אוניברסלית על מקבלת מקבלת מ"ט מ"ט אוניברסלית w ועונה בהתאם.

U תאור הפעולה של

:x על קלט =U

- $\langle w \rangle$ הוא מילה על וקידוד של מ"ט הוא קידוד של מילה (1) בודקת האם האם ג הוא קידוד של
 - אם לא ⇒ דוחה.
 - :w על M על מבצעת סימולציה של

- q_0w על סרט q_0w רושמת את הקונפיגורציה ההתחלתית
- מחשבת את הקונפיגורציה הבאה בעזרת טבלת המעברים.
- $q_{
 m acc}$ הוא המצב הנוכחי הוא בסוף כל מעבר בין שתי קונפיגורציות, U
 - . אם כן U עוצרת ומקבלת \ast

- $.q_{
 m rej}$ הוא המצב הוא בודקת U אחרת *
 - . אם כן U עוצרת ודוחה.
- . אחרת U ממשיכה לקונפיגורציה הבאה \star

U מהי השפה של

:x לכל

- $u \leftarrow x \neq \langle M, w \rangle$ דוחה את $U \leftarrow x \neq \langle M, w \rangle$ (1)
 - $x=\langle M,w
 angle$ אם (2)
- x אם M מקבלת את $U \leftarrow w$ מקבלת את •
- x אם M דוחה את $U \Leftarrow w$ דוחה את •
- x אם M לא עוצרת על $U \Leftarrow w$ לא עוצרת על •

$$L(U) = \{ \langle M, w \rangle \mid w \in L(M) \} .$$

$L_{ m acc}$ 5.5 הגדרה

$$L_{\text{acc}} = \{ \langle M, w \rangle \mid w \in L(M) \} \in RE \backslash R$$

L_{halt} 5.6 הגדרה

$$L_{ ext{halt}} = ig\{\langle M, w
angle \mid w$$
 עוצרת על א $Mig\} \in RE ackslash R$

$L_{ m d}$ 5.7 הגדרה

$$L_{d} = \{ \langle M \rangle \mid \langle M \rangle \notin L(M) \} \notin RE$$

<u>אבחנה:</u>

$$L_{\mathrm{acc}} \subseteq L_{\mathrm{halt}}$$
 .

5.4 משפט

 $L_{\rm acc} \in RE$.

 $L_{
m acc} \in RE$ ולכן $L_{
m acc}$ את מקבלת את ג $L(U) = L_{
m acc}$ ולכן

5.5 משפט

 $L_{\text{halt}} \in RE$.

. תעצור ותקבל U' שהיא למעשה U' פרט למקום שבו U עצרה ודחתה, U' תעצור ותקבל נבנה מ"ט

 $:\!L_{\mathrm{halt}}$ את מקבלת U' נוכיח כי

 $x \in L_{\mathrm{halt}}$ אם

w עוצרת על א ו- $x = \langle M, w \rangle \Leftarrow$

.x עוצרת ומקבלת את $U' \Leftarrow$

אם מקרים: $x \notin L_{\mathsf{halt}}$ אם

- .x את דוחה $U' \Leftarrow x \neq \langle M, w \rangle$ •
- x א עוצרת על $U' \Leftarrow w$ לא עוצרת על M -ו $x = \langle M, w \rangle$