

periodicity of a Markov chain

Canonical name PeriodicityOfAMarkovChain

Date of creation 2013-03-22 16:24:28 Last modified on 2013-03-22 16:24:28

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771) Entry type Definition Classification msc 60J10

Defines period of a state
Defines aperiodic state

Defines aperiodic Markov chain

Let $\{X_n\}$ be a http://planetmath.org/StationaryProcessstationary Markov chain with state space I. Let P_{ij}^n be the n-step transition probability that the process goes from state i at time 0 to state j at time n:

$$P_{ij}^n = P(X_n = j \mid X_0 = i).$$

Given any state $i \in I$, define the set

$$N(i) := \{ n \ge 1 \mid P_{ii}^n > 0 \}.$$

It is not hard to see that if $n, m \in N(i)$, then $n + m \in N(i)$. The period of i, denoted by d(i), is defined as

$$d(i) := \begin{cases} 0 & \text{if } N(i) = \emptyset, \\ \gcd(N(i)) & \text{otherwise,} \end{cases}$$

where gcd(N(i)) is the greatest common divisor of all positive integers in N(i).

A state $i \in I$ is said to be aperiodic if d(i) = 1. A Markov chain is called aperiodic if every state is aperiodic.

then d(i) = d(j).

Proof. We will employ a common inequality involving the n-step transition

Property. If states $i, j \in I$ http://planetmath.org/MarkovChainsClassStructurecommuni

Proof. We will employ a common inequality involving the n-step transition probabilities:

$$P_{ij}^{m+n} \ge P_{ik}^m P_{kj}^n$$

for any $i, j, k \in I$ and non-negative integers m, n.

Suppose first that d(i)=0. Since $i\leftrightarrow j,\ P_{ij}^n>0$ and $P_{ji}^m>0$ for some $n,m\geq 0$. This implies that $P_{ii}^{m+n}>0$, which forces m+n=0 or m=n=0, and hence j=i.

Next, assume d(i) > 0, this means that $N(i) \neq \emptyset$. Since $i \leftrightarrow j$, there are $r, s \geq 0$ such that $P_{ji}^r > 0$ and $P_{ij}^s > 0$, and so $P_{jj}^{r+s} > 0$, showing $r+s \in N(j)$. If we pick any $n \in N$, we also have $P_{jj}^{r+n+s} \geq P_{ji}^r P_{ii}^n P_{ij}^s > 0$, or $r+s+n \in N(j)$. But this means d(j) divides both r+s and r+s+n, and so d(j) divides their difference, which is n. Since n is arbitrarily picked, $d(j) \mid d(i)$. Similarly, $d(i) \mid d(j)$. Hence d(i) = d(j).