Income Classification Report

John Enright

Outline

- Introduction
- Approach
- Exploratory data analysis
- Data cleaning & preprocessing
- Data modeling
- Model assessment and selection
- Conclusions & final thoughts

Introduction

- How can we identify an individual's income level based on a set of characteristics?
 - More or less than \$50,000
- US Census Bureau Data
 - Collected every 10 years
 - Impacts the allocation of government funding
 - Examines demographic characteristics of subpopulations
 - Survey of ~ 300,000 individuals

Approach

Exploratory Data Analysis

- Imbalanced data
 - 93% individuals make over \$50,000
 - Can introduce classification problems
- Duplicate or conflicting instances
 - \circ Training \rightarrow 46716
 - \circ Test \rightarrow 99762
- 40 characteristics (features) for an individual
 - 33 are continuous values
 - 7 are categorical
- Example features
 - Age
 - Sex
 - Race
 - Education level
 - Class of work

Correlation between features

Relationship

Exploratory Data Analysis

Exploratory Data Analysis - Marital Status

Exploratory Data Analysis - Education

Exploratory Data Analysis - Education

Exploratory Data Analysis - Race & Sex

Data cleaning & preprocessing

Data

- Labeled
- Duplicates dropped
- Categorical features are split into appropriate categories
- Highly variant data is normalized
 - Age
 - Wages
- Features dropped & transformed
 - Instance weight
 - Capital losses → 'Has losses'
 - Capital gains → 'Has gains'
 - Dividends → 'Has stock'

Data modeling

- Classification methods
 - Logistic regression classifier
 - Random forests classifier
- Goal
 - Predict income level with individual characteristics as inputs
- Evaluate predictability on the test set
 - F1 score
 - ROC Area under curve
- Metrics represent predictability of each respective class

Model results - first pass

	F1 Score
Under \$ 50,000	0.97
Over \$ 50,000	0.41

	F1 Score
Under \$ 50,000	0.97
Over \$ 50,000	0.44

Model results - important features

Feature engineering

- Take the top "important" features
 - Transform the data set
 - Number of features 41 → 12
- Retrain models
 - Compare to non-engineered models

Model results - reduced features

Modeling takeaways

- The logistic classifier is slightly stronger at predicting the minority class.
- Random forests model performs stronger in other metrics
- Random forests model gives key insights into feature importance
- Feature engineering did not improve model performance
 - Lose key information
- Average accuracy of predicting income level ~ 86 %
 - o 95 % predicting under \$50k
 - o 76% predicting over \$50k
- Average f1 score ~ 70%

Other key takeaways

- Highest probability to make over \$50k
 - Middle aged individuals
 - Asian & pacific islanders
 - Males
 - Married individuals
 - Higher levels of education (doctorate, professional)
- Occupation and where they work are related to income
- Higher e
- An individual having stock dividends is related to income
 - o Disposal income?

Further considerations

- Improving model performance
 - Hyperparameter tuning
 - Ensemble methods
- Experimenting with other classifiers
 - Support vector machines
 - K nearest neighbors
 - Neural Networks
- Investigating occupation code's relationship to income
 - Deriving occupation titles to the codes
- Getting new data
 - 0 1994 & 1995
 - Balancing the classes

Thanks!

John Enright