Universidade do Minho Mestrado Integrado em Engenharia Informática Ano Letivo 2019/20

Caderno de Apontamentos das Aulas Teóricas

Modelos Estocásticos de Investigação Operacional

- 1. <u>Processos Estocásticos e Programação Dinâmica Estocástica</u>
- 2. <u>Teoria de Filas de Espera</u>
- 3. Gestão de Stocks ou Inventários

1.1 Introdução aos Processos Estocásticos

Sistemas, Estados e Transições

<u>Sistema</u> representa a situação em estudo.

ex., clientes numa fila de espera do banco

ex., equipamento num processo produtivo

Estado representa a descrição do sistema.

ex., número de clientes na fila de espera

ex., equipamento a funcionar vs. avariado

O sistema e os estados possíveis são determinados de acordo com:

- a) aquilo que se pretende saber;
- b) o método de análise que se supõe o mais apropriado.

A mudança de um estado para outro estado, num determinado passo do processo, designa-se por *transição*.

Matriz transição é a matriz de probabilidades de mudança a partir de um estado para qq outro estado, num determinado passo do processo. É necessariamente uma <u>matriz quadrada!</u>

Sistemas estocásticos ou probabilísticos

Em virtude das influências aleatórias, não se pode prever, com uma certeza absoluta, o comportamento futuro do sistema.

Em vez disso, apenas podemos esperar encontrar respostas para questões do seguinte tipo (*ex.*):

- a) Com que frequência a fila de espera do banco excederá 10 clientes?
- b) Qual a probabilidade de o equipamento estar a funcionar após um ano desde a última reparação?

Na generalidade, as teorias que estão na base da modelação estocástica são complexas, e ainda não foram desenvolvidas extensivamente.

Uma das exceções, é a teoria das <u>Cadeias de</u> <u>Markov</u> (processos Markovianos). Esta é uma teoria relativamente fácil e já estudada extensivamente.

Estados nas Cadeias de Markov

Os <u>estados</u> do sistema devem ser especificados para instantes de tempo particulares, e, além disso, devem ser:

- a) <u>exaustivos</u>, i.e. o sistema deverá ser sempre descrito por algum deles;
- b) <u>mutuamente exclusivos</u>, i.e. o sistema só poderá ser descrito por um único estado, num determinado instante ou estágio.

Exemplo 1: Semáforo (continental)

Estados possíveis: Verde, Amarelo, Vermelho

Transição válida: ex. Verde → Amarelo

Transição não válida: ex. Verde \rightarrow Vermelho

Matriz de transição:

(matriz "estocástica" ou de probabilidades)

De: \ Para:	Verde	Amarelo	Vermelho			
Verde	0	1	0			
Amarelo	0	0	1			
Vermelho	1	0	0			

Exemplo 2: Semáforo (britânico)

Neste caso:

- Não será aceitável a definição de estados G, A, R porque, embora exaustivos, não são mutuamente exclusivos!
- O conjunto completo de estados deverá ser então: G,
 A, R, RA

Matriz de transição:

De: \ Para:	Green	Amber	Red	Red-Amber			
Green	0	1	0	0			
Amber	0	0	1	0			
Red	0	0	0	1			
Red-Amber 1		0	0	0			

Exemplo 3: Produção

Cada semana uma empresa recebe 0, 1, ou 2 encomendas de um seu produto com probabilidades respetivas de 0.5, 0.3 e 0.2.

A empresa, no entanto, só pode produzir uma encomenda por semana.

Os clientes interessados podem juntar-se à fila de espera para atendimento, a qual é revista no final de cada semana.

Sistema: lista de esperas.

Estados: número de clientes na lista no final da semana (N.B. responde a: o quê? e quando?)

Exemplo 3: Produção (cont.)

A matriz de probabilidades ou de transição será:

	0	1	2	3	
0	0.5	0.3	0.2	0	
1	0.5	0.3	0.2	0	
2	0	0.5	0.3	0.2	
3	0	0	0.5	0.3	
•••					

N.B. Os estados devem ser listados, na linha e na coluna, em igual sequência!

Exemplo 3: Produção (2º caso)

Se a lista de espera (o sistema) não devesse exceder 2 clientes:

A nova matriz de transição seria:

	0	1	2
0	0.5	0.3	0.2
1	0.5	0.3	0.2
2	0	0.5	0.5

Na prática, o limite superior da fila é maior do que 2, por exemplo 20,... tudo depende da razoabilidade de se ignorar valores superiores a um determinado limite crítico.

O que é um processo estocástico?

Seja X uma variável em análise, característica do sistema de interesse, e designe-se por X_t o valor dessa variável no instante t.

Ex.: a procura em diferentes períodos de tempo.

Numa situação de incerteza, X_t não pode ser conhecida antecipadamente, mas antes estimada como uma variável aleatória.

Um <u>processo estocástico</u> é simplesmente uma descrição da relação entre os valores aleatórios sequenciais:

$$X_0, X_1, X_2, \dots$$

Um processo estocástico pode ser <u>discreto</u> ou <u>contínuo</u>, de acordo com a medida de tempo em consideração.

Exemplos de processos estocásticos:

- (1) <u>discreto</u> (X_n) : procura semanal.
- (2) <u>contínuo</u> (X_t) : número de clientes na fila do hipermercado, t minutos depois da abertura.

O que é uma cadeia de Markov?

(ou processo Markoviano discreto)?

É um processo estocástico discreto, em que:

$$P(X_n = i_n \mid X_{n-1} = i_{n-1}, X_{n-2} = i_{n-2}, ..., X_1 = i_1, X_0 = i_0)$$

$$= P(X_n = i_n \mid X_{n-1} = i_{n-1})$$

<u>i.e.</u>, em que a distribuição de probabilidades de ocorrência de um particular valor da varável aleatória X (estado), no instante ou *estágio* n, depende apenas da anterior ocorrência (no instante n-1).

<u>Exemplo</u>: o jogo do monopólio, e a probabilidade de, numa jogada, parar em determinada casa.

<u>Matriz de transição</u>: É a matriz cujo termo genérico representa a probabilidade de transição do estado i para o estado j, quando se passa do estágio n para o estágio seguinte n+1 (i.e. passo n): $P(X_{n+1}=j \mid X_n=i)=p_{ij}$.

$$P_{n} = [p_{ij}] = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1s} \\ p_{21} & p_{22} & \cdots & p_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ p_{s1} & p_{s2} & \cdots & p_{ss} \end{bmatrix}$$

Característica 1: $0 \le p_{ij} \le 1 \ \forall i, j \in S$

Característica 2: $\sum_{j=1}^{j=s} p_{ij} = 1 \quad \forall i \in S$

 $(S = \{1, 2, ..., s\}, \text{ conjunto finito de estados})$

Probabilidade de transição após n passos

Se a cadeia de Markov está no estado i no estágio m, qual é a probabilidade de, após n transições posteriores e consecutivas, ficar no estado j?

Esta probabilidade, independente de m, é escrita como:

$$P(X_{m+n} = j \mid X_m = i) = P(X_n = j \mid X_0 = i) = S_n(i, j)$$

É óbvio que, se
$$n=1$$
, $S_1(i,j)=p_{ij}$. $S_1=P$

No caso de
$$n=2$$
, virá $S_2(i,j) = \sum_{r=1}^{s} p_{ir} \cdot p_{rj}$ $S_2 = P^2$

No caso geral, será $S_n(i,j) = \sum_{r=1}^s S_{n-1}(i,r) \cdot p_{rj}$, ou:

$$S_n = S_{n-1} \cdot P = P^n$$

Inicialização: $S_0(i, j) = P(X_0 = j | X_0 = i)$

$$S_0(i,j) = \begin{cases} 1 & \text{se } j = i \\ 0 & \text{se } j \neq i \end{cases}$$
, ou seja, $S_0 = I$.

Exemplo 4: "Stands" de automóveis

Considere:

- Dois stands de vendas de automóveis (1º e 2º);
- Se um cliente possui um automóvel comprado no 1º
 (2º) stand, há uma possibilidade de 90% (80%) de comprar novamente no 1º stand na próxima aquisição.

A matriz de transição será:

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$$

Supondo que um dos clientes possui um automóvel comprado no 1º stand, qual é a probabilidade desse cliente vir a adquirir um automóvel ao 2º stand, nas suas futuras segunda e terceira aquisições?

Respostas: 17% e 22%.

Classificação dos estados

(de uma cadeia de Markov)

<u>Caminho</u> entre dois estados i e j: É uma sequência de transições (com probabilidade > 0) que permitem chegar a j partindo de i.

O estado j é <u>acessível</u> a partir do estado i, se existe um caminho que permita chegar ao estado j, a partir do estado i.

Ex.: 5 acessível a partir de 3 e vice-versa.

Os estados i e j <u>comunicam</u> entre si, se j é acessível a partir de i, e i é acessível a partir de j.

Ex.: Estados 1 e 2 comunicam.

O estado i é um estado <u>absorvente</u> (ou <u>armadilha</u>), se $p_{ii} = 1$.

Classificação dos estados (cont.)

(de uma cadeia de Markov)

O estado i é <u>transiente</u> se existe um estado j, acessível a partir de i, tal que o estado i não seja, no entanto, acessível a partir do estado j.

Um estado não transiente é chamado de recorrente.

<u>Ex.:</u> todos os estados são recorrentes, no exemplo anterior.

Uma <u>cadeia recorrente</u> é um conjunto de estados tais que o sistema executa transições no interior do conjunto, mas nunca o abandona, uma vez que nele tenha entrado. Se tiver mais que uma cadeia recorrente, o processo diz-se de *cadeia múltipla* ou de *multi-cadeia*, *ex.* dupla: {1,2}, {3,4,5}.

O estado *i* é *periódico*, de periodicidade *k*>1, se todos os caminhos que partem de *i* e chegam a *i* são de duração múltipla de *k*. Um estado não periódico é dito de *aperiódico*.

Um processo é periódico se possui algum estado periódico. Para que um processo seja periódico, é necessário que tenha uma matriz de transição cujos elementos da diagonal principal sejam todos nulos!

Cadeias ergódicas

Uma cadeia de Markov é <u>ergódica</u> se todos os estados dessa cadeia são recorrentes, aperiódicos e comunicam com cada um dos restantes.

⇒ N.B. Necessariamente, terá de ser uma cadeia única!

Exemplos

- Porque é que a cadeia anterior não é ergódica?
- Quais das seguintes cadeias são ergódicas?

$$P = \begin{bmatrix} 0 & 0.8 & 0.2 \\ 0.3 & 0.7 & 0 \\ 0.4 & 0.5 & 0.1 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 & 0 \\ 0.5 & 0.4 & 0.1 & 0 \\ 0 & 0 & 0.4 & 0.6 \\ 0 & 0 & 0.1 & 0.9 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 0.9 & 0.1 \\ 0.4 & 0.5 & 0.1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Estado estacionário de uma cadeia ergódica

Teorema

Seja P a matriz de transição de uma cadeia de Markov <u>ergódica</u>. Então existe um vetor $\pi = [\pi_1 \ \pi_2 \dots \pi_s]$, tal que:

$$\lim_{n \to \infty} P^n = \begin{bmatrix} \pi_1 & \pi_2 & \dots & \pi_s \\ \pi_1 & \pi_2 & \dots & \pi_s \\ \vdots & \vdots & \ddots & \vdots \\ \pi_1 & \pi_2 & \dots & \pi_s \end{bmatrix}$$

O vetor $\pi = [\pi_1 \ \pi_2 \dots \pi_s]$ representa a *distribuição* estacionária (ou de *equilíbrio*) da cadeia de Markov.

(N.B.
$$\sum_{j=1}^{j=s} \pi_j = 1$$
)

 $\underline{N.B.}$ Relacionando com a notação anterior, podemos dizer então que: $\lim_{n\to\infty} S_n(i,j) = \lim_{n\to\infty} \left(P^n\right)_{ij} = \pi_j$.

Para
$$n$$
 grande: $S_{n+1}(i,j) \cong S_n(i,j) \cong \pi_j$

Em termos matriciais, facilmente se chega à conclusão de que:

$$\pi = \pi \cdot P$$

Determinação do estado estacionário

(Através de um sistema de equações)

Seja, por exemplo,
$$P = \begin{bmatrix} .90 & .10 \\ .20 & .80 \end{bmatrix}$$

Ficará:
$$[\pi_1 \ \pi_2] = [\pi_1 \ \pi_2] \begin{bmatrix} .90 \ .10 \\ .20 \ .80 \end{bmatrix}$$

$$\begin{cases} \pi_1 = .90\pi_1 + .20\pi_2 \\ \pi_2 = .10\pi_1 + .80\pi_2 \end{cases}$$

Tem uma infinidade de soluções, porque *rank*=1<2. Mas, substituindo uma das equações pela equação de probabilidade total, fica:

$$\begin{cases} \pi_1 = .90\pi_1 + .20\pi_2 \\ \pi_1 + \pi_2 = 1 \end{cases}$$

$$\begin{cases} \pi_1 = \frac{2}{3} \\ \pi_2 = \frac{1}{3} \end{cases}$$

Como interpretar estes resultados, no caso do exemplo dos stands de automóveis?

Estado estacionário (aplicação)

- Margem de lucro *L*;
- Possibilidade de fazer publicidade (stand 1) aumentando para 95% as hipóteses de fidelidade na escolha do stand por parte dos clientes:
- *i.e.*, nova $P = \begin{bmatrix} .95 & .05 \\ .20 & .80 \end{bmatrix}$;
- no entanto, a publicidade custará aproximadamente 200L, para o período médio de troca de automóvel;
- Será que vale a pena o investimento?

Método da "Transformada Z"

Considere-se a função ϕ_n que toma valores no conjunto de índices $n=0,1,2,\ldots$, tal que:

$$\phi_n \ge 0 \ n \ge 0$$

$$\phi_n = 0 \quad n < 0$$

A $\underline{transformada\ Z}$ de ϕ_n é definida como:

$$\widetilde{\phi}(Z) = \sum_{n=0}^{\infty} \phi_n \cdot Z^n$$

para valores de Z tal que a soma converge, *i.e.* tal que |Z| < 1.

<u>Função</u> (ex.)		<u>Transformada Z</u>
(1) $\phi_n = 1; n \ge 0$	$\widetilde{\phi}(Z)$	$=\sum_{n=0}^{\infty}\phi_n\cdot Z^n$
=0; n<0		$=1+Z+Z^2+\ldots+Z^n+\ldots$
		$=\frac{1}{1-Z}$
$c\phi_n$	$\widetilde{\phi}(Z)$	$=\sum_{n=0}^{\infty} (c\phi_n) \cdot Z^n = c\sum_{n=0}^{\infty} \phi_n \cdot Z^n$
		$=c\widetilde{\phi}(Z)$
$F_T = \theta_n + \phi_n$	$\widetilde{\phi}(Z)$	$=\sum_{n=0}^{\infty}(\theta_n+\phi_n)\cdot Z^n$
		$=\sum_{n=0}^{\infty}\theta_n\cdot Z^n+\sum_{n=0}^{\infty}\phi_n\cdot Z^n$
		$=\widetilde{ heta}(Z)+\widetilde{\phi}(Z)$
$\alpha^n \phi_n$	$\widetilde{\phi}(Z)$	$=\sum_{n=0}^{\infty} (\alpha^n \phi_n) \cdot Z^n = \sum_{n=0}^{\infty} \phi_n (\alpha \cdot Z)^n$
		$=\widetilde{\phi}(\alpha\cdot Z)$
ϕ_{n+1}	$\widetilde{\phi}(Z)$	$=\sum_{n=0}^{\infty}\phi_{n+1}\cdot Z^n$
		$=\phi_1+\phi_2Z+\phi_3Z^2+\dots$
		$= \frac{1}{Z} \left(-\phi_0 + \phi_0 + \phi_1 Z + \phi_2 Z^2 + \ldots \right)$
		$=\frac{1}{Z}\left(\widetilde{\phi}(Z)-\phi_0\right)$

Cálculo de S_n pelo método da transformada Z

Seja $\widetilde{S}(Z)$ a transformada Z de S_n .

A partir de:
$$S_{n+1} = S_n \cdot P$$

e aplicando as transformadas fundamentais (5) e (2), respetivamente aos lados esquerdo e direito da equação, obtém-se:

$$\frac{1}{Z} \left[\widetilde{S}(Z) - S_0 \right] = \widetilde{S}(Z) \cdot P$$

$$\widetilde{S}(Z) \cdot (I - ZP) = S_0 = I$$

A transformada Z de S_n pode pois calcular-se, fazendo:

$$\widetilde{S}(Z) = (I - ZP)^{-1}$$

Exemplo de aplicação

Transformada Z

Cálculo das matrizes transiente e limite (cadeia ergódica):

$$P = \begin{bmatrix} 3/4 & 1/4 \\ 1/3 & 2/3 \end{bmatrix}$$

$$(I - ZP) = \begin{bmatrix} 1 - (3/4)Z & -(1/4)Z \\ -(1/3)Z & 1 - (2/3)Z \end{bmatrix}$$

$$(I-ZP)^{-1} = \frac{1}{(1-Z)\cdot(1-(5/12)Z)} \begin{bmatrix} 1-(2/3)Z & (1/4)Z \\ (1/3)Z & 1-(3/4)Z \end{bmatrix}$$

Pondo esta expressão na forma: $\frac{X}{1-Z} + \frac{Y}{1-(5/12)Z}$ resulta que, por exemplo:

$$\frac{1 - (2/3)Z}{(1 - Z) \cdot (1 - (5/12)Z)} = \frac{X}{1 - Z} + \frac{Y}{1 - (5/12)Z} \iff \begin{cases} X = 4/7 \\ Y = 3/7 \end{cases}$$

Resolvendo de forma semelhante para todos os outros elementos da matriz, obtém-se:

$$\widetilde{S}(Z) = \frac{1}{1-Z} \begin{bmatrix} 4/7 & 3/7 \\ 4/7 & 3/7 \end{bmatrix} + \frac{1}{1-(5/12)Z} \begin{bmatrix} 3/7 & -3/7 \\ -4/7 & 4/7 \end{bmatrix}$$

Exemplo de aplicação

Transformada Z

Exemplo do cálculo da matriz transiente e limite (cont.)

Tomando as transformadas inversas, de:

$$\widetilde{S}(Z) = \frac{1}{1-Z} \begin{bmatrix} 4/7 & 3/7 \\ 4/7 & 3/7 \end{bmatrix} + \frac{1}{1-(5/12)Z} \begin{bmatrix} 3/7 & -3/7 \\ -4/7 & 4/7 \end{bmatrix}$$

Pode obter-se, a partir das relações fundamentais (1)+(2), e (4)+(2), respetivamente para o 1° e 2° termos:

$$S_{n} = \begin{bmatrix} 4/7 & 3/7 \\ 4/7 & 3/7 \end{bmatrix} + \underbrace{(5/12)^{n}}_{\alpha} \begin{bmatrix} 3/7 & -3/7 \\ -4/7 & 4/7 \end{bmatrix}$$

$$T_{n}$$

Genericamente, obtém-se então: $S_n = S + T_n$.

Neste caso particular, pode observar-se que $T_n \to 0$, à medida que $n \to \infty$, o que impele $S_n \to S$! Contudo, este comportamento pode ser generalizado para qq outra cadeia de Markov *ergódica*, pois nestas é certo que $|\alpha| < 1$.

Cadeias de Markov periódicas

Exemplo

São processos em que o conjunto de estados I pode ser dividido em subconjuntos disjuntos $I_0, I_1, I_2, ..., I_{k-1}$, tais que, se o sistema estiver no estado I_0 após n transições, estará no estado I_t após n+t transições (t=1,2,...,n-1), e de novo, em I_0 após n+k transições.

Ex.: a cadeia de Markov representada pela matriz:

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

terá periodicidade k=2:

Os conjuntos disjuntos são: $I_0 = \{1\}$ e $I_1 = \{2,3\}$.

Cadeias de Markov periódicas

Exemplo (cont.)

Da aplicação do método da transformada *Z*, ao exemplo da cadeia periódica anterior, resulta:

$$S_n = \begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 1/2 & 1/4 & 1/4 \\ 1/2 & 1/4 & 1/4 \end{bmatrix} + (-1)^n \begin{bmatrix} 1/2 & -1/4 & -1/4 \\ -1/2 & 1/4 & 1/4 \\ -1/2 & 1/4 & 1/4 \end{bmatrix}$$

Neste caso, é notório que o sistema oscilará contínua e indefinidamente, não existindo um valor de n para o qual as linhas da matriz limite sejam idênticas.

Cadeias de Markov com estados absorventes Exemplos

<u>1º Exemplo</u>, no qual o estado 2 é absorvente ($p_{22} = 1$):

A cadeia não é ergódica. Porquê? A decomposição da matriz S_n conduz a:

$$S_n = \begin{bmatrix} & 0 & & 1 & \\ & 0 & & 1 & \\ & 0 & & 1 & \end{bmatrix} + (-1/2)^n \begin{bmatrix} & 1 & & -1 & \\ & 0 & & 0 & \end{bmatrix}$$

<u>2º Exemplo</u>: a que matriz limite conduzirá a seguinte cadeia, com dois estados absorventes (considere que $p_{22} < 1$)?

$$P = \begin{bmatrix} 1 & 0 & 0 \\ p_{21} & p_{22} & p_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

Ex.: se $p_{21} = p_{22} = p_{23} = 1/3$:

$$S_n = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 1 \end{bmatrix} + (-1/3)^n \begin{bmatrix} 0 & 0 & 0 \\ -1/2 & 0 & -1/2 \\ 0 & 0 & 0 \end{bmatrix}$$

Tempos médios da primeira passagem

Seja:

 m_{ij} = número esperado de transições para atingir o estado i, supondo que o estado atual é o estado i.

$$m_{ij} = p_{ij}(1) + \sum_{r \neq j} p_{ir}(1 + m_{rj})$$

$$OU m_{ij} = p_{ij} + \sum_{r \neq j} p_{ir} + \sum_{r \neq j} p_{ir} \cdot m_{rj}$$

$$m_{ij} = 1 + \sum_{r \neq j} p_{ir} \cdot m_{rj}$$

Pode mostrar-se ainda que: $m_{ii} = \frac{1}{\pi_i}$

No nosso exemplo (stands):

$$m_{11} = \frac{1}{\frac{2}{3}} = 1.5$$

$$m_{22} = \frac{1}{\frac{1}{3}} = 3$$

$$m_{12} = 10$$

$$m_{21} = 5$$

Como interpretar?

Exemplo: Doença com 2 tratamentos alternativos

- Duas formas de tratamento (T1, T2=cirúrgico);
- Quando um paciente é detetado com a doença, é medicado imediatamente com T1;

Após vários anos de colheita de dados, chegou-se à conclusão de que:

- 1. Se um paciente está sob medicação T1, num ano, é 33% provável que venha a ser sujeito a tratamento T2 no ano seguinte, e 10% provável que venha a falecer. Caso contrário, continuará sob medicação T1.
- Se está sob tratamento T2, num dado ano, tem 15% probabilidade de voltar ao tratamento T1, e 5% de falecer, durante o ano seguinte. Caso contrário, continuará sob tratamento T2.

Exemplo: Doença com 2 tratamentos alternativos (cont.)

- a) Definir o sistema, os estados, e a matriz de transição.
- b) Para um determinado paciente, qual a probabilidade de continuar sob tratamento T1, mudar para T2, ou falecer após 1, 2, 5, 10, e 20 anos?
- c) Supondo o aparecimento de um conjunto de 30 novos pacientes, quantos destes estarão previsivelmente em cada um dos estados, ao fim de 1, 2, 5, 10, e 20 anos?
- d) Supondo que todos os anos são detetados cada vez mais doentes (mais 5 em relação ao ano anterior), qual o número de doentes que previsivelmente estarão sob os tratamentos T1 e T2 após 10 anos?
- e) Sugira um modelo mais realista, tendo em conta fatores como idade do doente, estado geral de saúde, e o facto de ter já havido lugar ou não a um tratamento cirúrgico T2.

Exemplo: Doença com 2 tratamentos alternativos

(Cálculos)

	0.570	0.330	0.100			0.186	0.437	0.377		0.130	0.316	0.554		0.093	0.227	0.681
P =	0.150	0.800	0.050	Н	P6 =	0.199	0.491	0.311	P11 =		0.350	0.506	P16 =	0.103	0.251	0.646
	0.000	0.000	1.000	Н		0.000	0.000	1.000		0.000	0.000	1.000		0.000	0.000	1.000
	0.000	0.000	1.000			0.000	0.000	1.000		0.000	0.000	1.000		0.000	0.000	1.000
	0.374	0.452	0.174			0.172	0.411	0.417		0.121	0.296	0.583		0.087	0.212	0.701
P2 =	0.206	0.690	0.105		P7 =	0.187	0.458	0.355	P12 =	0.134	0.328	0.538	P17 =	0.096	0.235	0.669
	0.000	0.000	1.000			0.000	0.000	1.000		0.000	0.000	1.000		0.000	0.000	1.000
	0.281	0.485	0.234			0.159	0.385	0.455		0.114	0.277	0.610		0.081	0.198	0.720
P3 =	0.221	0.619	0.160	П	P8 =	0.175	0.428	0.397	P13 =	0.126	0.306	0.568	P18 =	0.090	0.220	0.690
	0.000	0.000	1.000	П		0.000	0.000	1.000		0.000	0.000	1.000		0.000	0.000	1.000
	0.233	0.481	0.286			0.149	0.361	0.490		0.106	0.259	0.635		0.076	0.185	0.738
P4 =	0.219	0.568	0.213		P9 =	0.164	0.400	0.436	P14 =	0.118	0.287	0.596	P19 =	0.084	0.205	0.710
	0.000	0.000	1.000	П		0.000	0.000	1.000		0.000	0.000	1.000		0.000	0.000	1.000
	0.205	0.462	0.333	П		0.139	0.338	0.523		0.099	0.242	0.658		0.071	0.173	0.755
P5 =	0.210	0.527	0.263		P10 =	0.154	0.374	0.472	P15 =	0.110	0.268	0.622	P20 =	0.079	0.192	0.729
	0.000	0.000	1.000			0.000	0.000	1.000		0.000	0.000	1.000		0.000	0.000	1.000

Cadeias com estados absorventes

Sejam s-m estados transientes $(t_1, t_2, ..., t_{s-m})$ e m estados absorventes $(a_1, a_2, ..., a_m)$. Podemos escrever:

Questões:

1. Se o processo começa num dado estado transiente t_i, e antes que caia num dos estados absorventes, qual é o número esperado de vezes com que o estado transiente t_j será visitado? (ou, qual é o nº esperado de estágios em que o sistema será descrito pelo estado transiente t_j?)

Resposta: ij elemento da "matriz fundamental" $(I-Q)^{-1}$.

2. Se o processo começa num dos estados transientes t_i , com que probabilidade cairá no estado absorvente a_j ?

Resposta: ij elemento da matriz $(I-Q)^{-1} \cdot R$.

Cadeias com estados absorventes

Exemplo de aplicação

Uma empresa emprega três tipos de operários: estagiários, seniores e sócios. Durante um dado ano, há uma probabilidade de 0.15 de que um estagiário seja promovido a sénior, e uma probabilidade de 0.05 de deixar a empresa. Há uma probabilidade de 0.20 de um sénior passar a sócio, e uma probabilidade de 0.10 de deixar a empresa. Um sócio deixará a empresa com uma probabilidade de 0.05. Nesta empresa nunca há despromoções.

- 1. Em média, durante quanto tempo um estagiário permanece na empresa?
- 2. Qual a probabilidade de um estagiário conseguir chegar a sócio da empresa?
- 3. Em média, durante quanto tempo um sócio permanecerá na empresa (nessa condição)?

1.2 Programação Dinâmica Estocástica

Problemas determinísticos vs. estocásticos

Problemas determinísticos:

Para qualquer nodo (n,i), o nodo seguinte (n-1,j) fica completamente determinado pela ação selecionada.

Problemas estocásticos ou probabilísticos:

O nodo no estágio seguinte, não é completamente determinado pela ação selecionada; para cada ação, existem valores (positivos) de probabilidade de ocorrerem transições para determinados estados:

Considerações gerais

Vamos considerar:

 Processos Markovianos (ou cadeias de Markov), ou seja, processos estocásticos discretos, em que a probabilidade de ocorrência de um particular valor (ou estado) para a variável aleatória de interesse, depende apenas da anterior ocorrência (ou estado no estágio anterior):

$$P(X_n = i_n \mid X_{n-1} = i_{n-1}, X_{n-2} = i_{n-2}, ..., X_1 = i_1, X_0 = i_0)$$

$$= P(X_n = i_n \mid X_{n-1} = i_{n-1})$$

- Problemas com um número finito vs. infinito de estágios;
- Problemas sem vs. com alternativas;
- Problemas sem vs. com contribuições de estágio;
- Problemas descontados.

Número finito de estágios, sem alternativas

Definição da relação de recorrência

Matriz de transição:
$$P_{n(M^*N)}=\lfloor p_{ij,(n)}\rfloor$$
, tal que $p_{ij}\geq 0$
$$\mathrm{e}\ \sum_{j=1}^N p_{ij}=1 \quad (i=1,2,...,M\ ;\ j=1,2,...,N)$$

Esperança da contribuição de estágio:

$$q_{i,(n)}=\sum_{j=1}^N p_{ij,(n)}\cdot r_{ij,(n)}$$
, $r=$ contribuição de estágio; $Q_n=\left[q_{i,(n)}
ight]$

Esperança do total da contribuição, a partir de (n,i):

$$V_{i,(n)} = \sum_{j=1}^{N} p_{ij,(n)} \cdot \left[r_{ij,(n)} + V_{j,(n-1)} \right]$$
$$= q_{i,(n)} + \sum_{j=1}^{N} p_{ij,(n)} \cdot V_{j,(n-1)}$$

Em termos matriciais, podemos escrever a fórmula de recorrência como:

$$V_n = Q_n + P_n V_{n-1}$$

Número finito de estágios, sem alternativas Exemplo

Determinado detergente é considerado correntemente "um sucesso". As probabilidades de vir a ser "um sucesso" durante os próximos anos, e as respetivas contribuições são:

Determine a esperança do total da contribuição no fim do 2º ano.

n	P_n	R_n	Q_n	P_nV_{n-1}	V_n
0					1 [4] 2 [0]
1	$ \begin{array}{cccc} & 1 & 2 \\ 1 & 0.7 & 0.3 \\ 2 & 0.5 & 0.5 \end{array} $	1 2 1 2 -3 2 1 -4	1 0.5 2 -1.5	1 2.8 2 2.0	1 [3.3 2 [0.5]
2	1 2 1 [0.8 0.2]	1 2 1 -2]	1 [0.4]	1 [2.74]	1 3.14

Número finito de estágios, com alternativas

Definição da relação de recorrência (problema de decisão)

Objetivo: selecionar a política (sucessão de ações, k) que otimiza a esperança do total da contribuição.

Matrizes de transição, contribuições e esperanças:

$$P_n^K$$
, R_n^K e Q_n^K

Esperança do total da contribuição quando o sistema parte de (n,i) e segue uma política ótima:

$$f_{i,(n)}$$
 e $F_n = \lfloor f_{i,(n)} \rfloor$

Seguindo uma política ótima a partir do estágio seguinte (n-1), temos que para qualquer ação k no estágio n:

$$V_n^k = Q_n^k + P_n^k F_{n-1}$$

Se calcularmos V_n^k para todas as ações k, podemos obter o vetor F_n a partir da escolha do valor ótimo em cada linha (estado) de V_n^k :

$$F_n = opt \left| \left\langle Q_n^k + P_n^k F_{n-1} \right\rangle \right|$$

Número finito de estágios, com alternativas

Exemplo de problema de decisão

Vamos considerar o mesmo problema anterior (detergente), agora com a opção de aumentar as hipóteses de sucesso, fazendo determinado tipo de publicidade:

Temos assim as ações alternativas:

k = 1 Não fazer publicidade (rede anterior)

k = 2 Fazer publicidade (rede seguinte).

Qual será a melhor política, se o objetivo for a maximização da esperança do total da contribuição, ao fim do 2º ano?

Número finito de estágios, com alternativas

Exemplo de problema de decisão (resolução)

n	k	P_n^k	R_n^k	Q_n^k	$P_n^k F_{n-1}$	V_n^k	F_n
0						1 [4] 2 [7]	
1	1	$ \begin{bmatrix} 1 & 2 \\ 1 & 0.7 & 0.3 \\ 2 & 0.5 & 0.5 \end{bmatrix} $ $ \begin{bmatrix} 1 & 2 \\ 1 & 0.8 & 0.2 \\ 2 & 0.7 & 0.3 \end{bmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 [0.5 2 [-1.5]	1 [2.8] 2 [2.0]	1 [3.3] 2 [0.5]	1 3.3 2 1.3
	2	1 0.8 0.2 2 0.7 0.3	1 1 -4 2 0 -5	1 0 2 -1.5	1 3.2 2.8 3	1 3.2 2 1.3	
2	1	1 2 1 [0.8 0.2]	1 2 1 [1 -2]	1 [0.4]	1 [2.9]	1 [3.3]	1[3.7]
	2	1 [0.9 0.1]	1 2 1 -3]	1 [0.6]	1 [3.1]	1 [3.7]	

Conclusão:

Estágio	i	k	Interpretação	
2	1	2	1º Ano: fazer publicidade;	
1	1	1	2º Ano: não fazer publicidade, se tiver sido sucesso	
	2	2	ou fazer publicidade, se tiver sido insucesso	

Número infinito de estágios

Sem alternativas e sem contribuições

<u>Processos Markovianos, já estudados anteriormente</u> (Secção 1.1).

Número infinito de estágios, sem alternativas (mas com contribuições)

Exemplo

Clássico problema do vendedor de gelados:

O vetor esperança da contribuição de estágio é:

$$\mathbf{Q} = \begin{bmatrix} 7 \\ -3 \end{bmatrix}$$

Questões:

Qual o valor da esperança da contribuição total ao fim de *n* dias (estágios)?

Qual o valor esperado do ganho diário?

Número infinito de estágios, sem alternativas

Desenvolvimento da expressão do ganho

A esperança da contribuição total, para n estágios, é:

$$V_n = Q + PV_{n-1}$$

Supondo que $V_0 = [0]$, podemos desenvolver as seguintes expressões, para os sucessivos estágios:

Esperança da contribuição total

<u>Ganho</u>

$$V_{1} = Q$$

$$V_{2} = Q + PQ$$

$$V_{3} = Q + PQ + P^{2}Q$$

$$V_{3} = Q + PQ + P^{2}Q + \dots + P^{n-1}Q$$

$$V_{n} = Q + PQ + P^{2}Q + \dots + P^{n-1}Q$$

$$V_{n} = S_{0}Q + S_{1}Q + S_{2}Q + \dots + S_{n-1}Q$$

$$V_{n} = (S + T_{0})Q + (S + T_{1})Q + \dots + \dots + (S + T_{n-1})Q$$

Definindo o vetor ganho como $G_{n(N\times I)}=V_n-V_{n-I}$, temos que, para um processo ergódico: $S_{n-I}\to S$ quando $n\to\infty$ $G_n\to SQ=G \quad \text{quando } n\to\infty$

 $= nSQ + (T_0 + T_1 + T_2 + ... + T_{n-1})Q$

Número infinito de estágios, sem alternativas Continuação

Do que está atrás, podemos escrever que: $V_n=nG+W_n$, onde $W_n=\left(T_0+T_1+T_2+...+T_{n-1}\right)\cdot Q$

No nosso exemplo, tínhamos determinado que:

$$S_{n} = \begin{bmatrix} 4/7 & 3/7 \\ 4/7 & 3/7 \end{bmatrix} + (5/12)^{n} \begin{bmatrix} 3/7 & -3/7 \\ \alpha^{n} & 1/7 & 4/7 \end{bmatrix}$$

$$T_{n}$$

Isto confirma que, para um processo ergódico $T_n=\alpha^nT_0$, sendo $|\alpha|<1$. Então: $W_n=\left(T_0+\alpha T_0+\alpha^2T_0+...+\alpha^{n-l}T_0\right)\cdot Q$.

Definindo então:
$$W = \lim_{n \to \infty} W_n = \frac{1}{1 - \alpha} T_0 \cdot Q$$
,

Podemos escrever que, para n elevado, $V_n = nG + W$:

$$\begin{bmatrix} V_n(I) \\ V_n(2) \end{bmatrix} = n * \begin{bmatrix} 2.71 \\ 2.71 \end{bmatrix} + \begin{bmatrix} 7.35 \\ -9.79 \end{bmatrix}$$

Número infinito de estágios, sem alternativas Conclusão do exemplo

n	Vn(1)	Vn(1)-Vn-1(1)	Vn(2)	Vn(2)-Vn-1(2)
0	0.00		0.00	
1	7.00	7.00	-3.00	-3.00
2	11.50	4.50	-2.67	0.33
3	14.96	3.46	-0.94	1.73
4	17.98	3.02	1.36	2.30
5	20.82	2.84	3.89	2.53
6	23.59	2.77	6.50	2.61
7	26.32	2.73	9.18	2.68
8	29.03	2.71	11.89	2.71
9	31.74	2.71	14.60	2.71

Graficamente temos (obs., o processo é ergódico):

A diferença de 17.14 é praticamente constante a partir de certo ponto, mas pode considerar-se como uma quantidade desprezável para valores elevados de n.

Esta diferença representa a esperança do benefício que resulta de se ter partido do estado 1 (um "dia seco").

Número infinito de estágios, com alternativas Problemas de decisão Markovianos

Para cada horizonte, n, pode obter-se uma política ótima. Essa política irá eventualmente variar com n.

No entanto, quando $n \to \infty$, $g_n \to g^*$, *i.e.* a política ótima para n estágios tende a ser independente de n quando $n \to \infty$ (sendo g^* o ganho da *política ótima para um número infinito de estágios*).

Sendo U_n o maior valor do ganho e L_n o menor valor do ganho no estágio n, pode provar-se que:

$$L_n \leq g^* \leq U_n$$

Graficamente, veja-se uma evolução típica destes valores extremos:

Número infinito de estágios, com alternativas Problemas de decisão Markovianos

Metodologia

O método consiste em tomar, como aproximação para o valor do ganho g^* , o valor de g_n obtido para um valor de n (significativamente) elevado, e adotar para o horizonte ilimitado a política ótima correspondente ao número finito de estágios, n.

Como fórmula de recorrência, usa-se pois a relação atrás definida para o caso do número finito de estágios:

$$F_n = opt \left| \left\langle Q_n^k + P_n^k F_{n-1} \right\rangle \right|$$

Está provado que o processo assim realizado, é convergente!

Definindo:
$$D_{n\ (N \times I)} = F_n - F_{n-1}$$
 $\check{d}_n = \min_i \bigl[D_n(i) \bigr]$ (menor elemento de D_n) $\hat{d}_n = \max_i \bigl[D_n(i) \bigr]$ (maior elemento de D_n)

...pode mostrar-se que:

(1) Para
$$n = 1, 2, 3, \dots$$
; $\vec{d}_n \leq g_n, g^* \leq \hat{d}_n$

(2)
$$\vec{d}_1 \le \vec{d}_2 \le \vec{d}_3 \dots ; \vec{d}_n \to g^* \text{quando } n \to \infty$$

(3)
$$\hat{d}_1 \ge \hat{d}_2 \ge \hat{d}_3 \dots \hat{d}_n \to g^*$$
 quando $n \to \infty$

Número infinito de estágios, com alternativas Problemas de decisão Markovianos

Exemplo:

Retomando o caso do problema do *vendedor de gelados*, suponhamos agora as duas *ações alternativas*:

$$K = 1$$
 Vender gelados

$$K = 2$$
 Vender cachorros quentes

Temos que, em ambos os casos, a matriz de transição é:

$$P = \left[\begin{array}{cc} 3/4 & 1/4 \\ 1/3 & 2/3 \end{array} \right]$$

Como contribuições, considerem-se:

$$R^{(I)} = \begin{bmatrix} 8 & 4 \\ 6 & -7.5 \end{bmatrix} R^{(2)} = \begin{bmatrix} -10 & 6 \\ 3 & 12 \end{bmatrix}$$

Nestas condições, as esperanças das contribuições de estágio, são:

$$Q^{(1)} = \begin{bmatrix} 7 & \\ -3 & \end{bmatrix} \qquad Q^{(2)} = \begin{bmatrix} -6 & \\ 9 & \end{bmatrix}$$

Número infinito de estágios, com alternativas

Algoritmo de iteração de valor

n	К	QK + PKFn-1	Fa	$\mathbf{D}_{\mathbf{n}}^{T} = \mathbf{F}_{\mathbf{n}}^{T} - \mathbf{F}_{\mathbf{n}-1}^{T}$
0	-	<i>y</i>	0.00 0.00	
1	2	$ \begin{array}{ccc} 1 & 7 \\ 2 & -3 \end{array} $ $ \begin{array}{ccc} 1 & -6 \\ 2 & 9 \end{array} $	7.00 9.00	7.00 9.00
2	2	$ \begin{array}{c} 1 \\ 7+7.50 \\ 2 \\ -3+8.33 \end{array} = \begin{bmatrix} 14.50 \\ 5.33 \end{bmatrix} \\ 1 \\ -6+7.50 \\ 2 \\ 9+8.33 \end{bmatrix} = \begin{bmatrix} 1.50 \\ 17.33 \end{bmatrix} $	14.50 17.33	7.50 8.33
3			22.21 25.39	7.71 8.06
4			30.01 33.24	7.80 7.95
•				
8			61.41 64.85	7.86 7.86

A política ótima corresponde a:

i	k	Interpretação
1	1	Vender gelados em dias secos
2	2	Vender cachorros quentes em dias chuvosos

O ganho é assim limitado por $7.855 \le g_{n=8} \approx g^* \le 7.865$.