Service Fabric Microservices

- A microservice is whatever you want it to be:
 - ASP.NET, node.js, Java VMs, an arbitrary .exe
- Stateless microservices
 - A microservice that has state where the state is persisted to external storage, such as Azure databases or Azure storage
- Stateful microservices
 - Reliability of state through replication and local persistence
 - Reduces the complexity and number of components in traditional three-tier architecture

Azure Service Fabric

Hyperscale Microservices platform

Highly scalable

24 X 7 availability

Windows and Linux Container Orchestration

DevOps and Lifecycle management

Managed platform

Built-in auto scale and load balancing

High availability with auto-patching

Health & Monitoring

Available on Private cloud, Public Cloud & Hosted Cloud

High productivity development

Simple Programming models for .NET, Java

Stateful microservices

Learn easily using Party clusters

Simple tooling with Visual Studio, Eclipse & Yeoman

Design web applications

Azure: The Power Of Choice

Compute

Virtual Machines

Container Service

Service Fabric

App Service

More Control

Focus on the App

Customer-managed (laaS)

Platform-managed (PaaS)

Azure App Service

Enterprise-grade apps

Global data center footprint

Hybrid support

AAD integrated

Secure + compliant

Fully managed platform

Built-in auto scale and load balancing

High availability with auto-patching

Reduced operations costs

Backup and recovery

High productivity development

.NET, Java, PHP, Node, and Python

Staging and deployment

integration

App gallery marketplace

Basic

Improved Scalability

Multi-region

Azure API Management

Azure: The Power Of Choice

Compute

Virtual Machines

Container Service

Service Fabric

App Service

Functions

More Control

Focus on the App

Customer-managed (laaS)

Platform-managed (PaaS)

Code-only (serverless)

What is "serverless" and proposed Benefits

Abstraction of servers

Event-driven scale

Sub-second billing

Example: Timer based processing

Example: Azure service event processing

Example: SaaS event processing

Example: Serverless Web Applications architectures

Async background processing

Example: Serverless Mobile back ends

Example: Real-time stream processing

Example: Real-time bot messaging

Azure Functions

Serverless

AVAILABILIT

Event-driven scale

Reduced Dev Ops Accelerate development

nodeJS

Develop your way

Local development

Bind into services

Azure **Event Hub**

Azure Storage

Dropbox

Sendgrid

AzureDocDb

OneDrive

Box

Twilio

Azure: The Power Of Choice

Compute

Virtual Machines

Container Service

Service Fabric

App Service

Functions

More Control

Focus on the App

Customer-managed (laaS)

Platform-managed (PaaS)

Code-only (serverless)

Summarizing the options

Service	Best used for
VMs	Lift-and-shift for a set of "pets"
VM Scale Sets	Scaling and managing a set of identical VMs
Batch	Highly parallelized computation
Container Service	Deploying and managing a set of arbitrary Linux containers
Container Instances	Running individual containers with low overhead and no VM management
Service Fabric	Building microservice-based applications on Windows using .NET
App Service	Building standard web and mobile apps with limited management responsibilities
Functions	Building small, event-driven software with granular auto-scale

Create compute-intensive application

WHAT IS HIGH PERFORMANCE COMPUTING?

Cloud value for big compute

Elasticity

Pay for use

Reach & locality

No infrastructure

Known costs

Azure Batch Concepts

HPC cluster deployed in the cloud

Solution architecture

High performance computing (HPC) applications can scale to thousands of compute cores, extend on-premises big compute, or run as a 100% cloud native solution. This HPC solution including the head node, compute nodes, and storage nodes, runs in Azure with no hardware infrastructure to maintain.

This solution is built on the Azure managed services: <u>Virtual Machine Scale Sets</u>, <u>Virtual Network</u> and <u>Storage</u>. These services run in a high-availability environment, patched and supported, allowing you to focus on your solution instead of the environment they run in.

On-premises HPC implementation bursting to Azure

Solution architecture

High performance computing (HPC) applications can scale to thousands of compute cores, extend on-premises big compute, or run as a 100% cloud native solution. This HPC solution can extend its computational capacity by leveraging the compute-intensive instances of Virtual Machines running in Azure and accessed via Express Route or VPN.

This solution is built on the Azure managed services: <u>Virtual Machines</u>, <u>Virtual Network</u>, <u>VPN Gateway</u>, <u>ExpressRoute</u> and <u>Storage</u>. These services run in a high-availability environment, patched and supported, allowing you to focus on your solution instead of the environment they run in.

Appendix

VMs – Supported Operating Systems

• Linux

- CentOS
- CoreOS
- Debian
- Oracle
- Red Hat
- SUSE
- openSUSE
- Ubuntu
- Windows Server
 - Windows 2003*
 https://support.microsoft.com/en-us/help/3206074
 - Windows 2008R2+

Linux distributions and versions supported on Azure

Distribution	Version	Drivers	Agent
CentOS	CentOS 6.3+, 7.0+	CentOS 6.3: LIS download CentOS 6.4+: In kernel	Package: In <u>repo</u> under "WALinuxAgent" Source code: <u>GitHub</u>
<u>CoreOS</u>	494.4.0+	In kernel	Source code: <u>GitHub</u>
Debian	Debian 7.9+, 8.2+	In kernel	Package: In repo under "waagent" Source code: <u>GitHub</u>
Oracle Linux	6.4+, 7.0+	In kernel	Package: In repo under "WALinuxAgent" Source code: <u>GitHub</u>
Red Hat Enterprise Linux	RHEL 6.7+, 7.1+	In kernel	Package: In repo under "WALinuxAgent" Source code: <u>GitHub</u>
SUSE Linux Enterprise	SLES/SLES for SAP 11 SP4 12 SP1+	In kernel	Package: for 11 in <u>Cloud:Tools</u> repo for 12 included in "Public Cloud" Module under "python-azure-agent" Source code: <u>GitHub</u>
openSUSE	openSUSE Leap 42.1+	In kernel	Package: In <u>Cloud:Tools</u> repo under "python- azure-agent" Source code: <u>GitHub</u>
Ubuntu	Ubuntu 12.04, 14.04, 16.04, 16.10	In kernel	Package: In repo under "walinuxagent" Source code: <u>GitHub</u>

VM Scaling

- Resize VMs (Scale up or down)
 - Offline operation
 - Just a reboot if in a cluster that supports new size
 - Requires a deallocation if new size is not supported in the cluster (a little longer)
- Scale In or Out
 - You can create new instances of the VM based on platform images (max 1000) or your own custom images (max 100)
 - Using VM Scale Sets
 - Using Azure Automation
 - Scheduled
 - Azure Autoscale
 - System Metrics (CPU, RAM, etc)
 - Custom Metrics

Virtual Machine Scale Sets

- Deploy and manage VMs as a set
- An Azure Compute resource Microsoft.Compute/virtualMachineScaleSets
- Scale Deploy identical resources
 - Easily
 - Rapidly
 - At scale.. 10s 10,000s of cores
- Low cost Dynamically increase/decrease compute power to optimize costs
- Elasticity Automatically scale to changing demand

	UD 0	UD 1	UD 2	UD 3	UD 4
FD 0	0 231	210 236	215 242	220 247	225 254
FD 1	226 255	1 232	211237	216 243	221 248
FD 2	222 250	228 256	2 233	212 238	217244
FD 3	218 245	223 251	229 257	3 234	213 239
FD 4	214 241	219 246	224 252	230 258	4 235

NAME	STATUS	LATEST MODEL
bigcore_0	VM running	Yes
bigcore_1	VM running	Yes
bigcore_2	VM stopped	▲ No
bigcore_3	VM stopped	▲ No
bigcore_4	VM stopped	▲ No
bigcore_210	✓ VM running	Yes

VM Disks

- Disks can be resized up to 4TB
- Managed Vs Unmanaged.
- Encryption
- Disk Caching
 - None for Write only and Write heavy (SQL Logs)
 - ReadOnly for Read only or read-intensive disks (SQL Data files)
 - ReadWrite for Operating System disks

VM Disks

- Images are representations of your VM that you can use to create more instances of the VM
 - You can capture an Image of a VM and it will include all the disks
 - Snapshots only capture one disk at a time.
- Disk Snapshots let you capture current state copies of your disks.
 - Managed Disks: Take Snapshots of the disk
 - Unmanaged Disks: Take Snapshots of the underlying VHD blob

Exam Tip - Increase size of existing Disks

You can easily increase the size of existing disks. For example, you might want to increase the size of a 30-GB disk to 128 GB, or even to 4 TB. Or, you might want to convert your P20 disk to a P30 disk because you need more capacity or more IOPS and throughput.

ARM Templates

Azure Resource Manager (ARM)

- Enable application management within Azure
- Resource groups are containers that can contain multiple laaS + PaaS resources
- Support lifecycle management with integrated Role Based Access Control (RBAC)
- Templatize application deployment and configuration
- Supports DevOps

Azure Resource Manager

Describe

WHERE

Resource Inventory

WHAT

Component Relationships

HOW

Tags + links + groups

Provision

WHERE

Across Regions

WHAT

Across Resources

HOW

In service and in guest

Control

WHO

Access control

WHAT

Changes

HOW

RBAC

What is ARM?

- Resource
- Resource Group
- Resource Provider
- Resource Manager Template

ARM Templates - Structure

```
{
    "$schema": "http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
    "contentVersion": "",
    "parameters": { },
    "variables": { },
    "resources": [ ],
    "outputs": { }
}
```

Element name	Required	Description	
\$schema	Yes	Location of the JSON schema file that describes the version of the template language. Use the URL shown in the preceding example.	
contentVersion	Yes	Version of the template (such as 1.0.0.0). You can provide any value for this element. When deploying resources using the template, this value can be used to make sure that the right template is being used.	
parameters	No	Values that are provided when deployment is executed to customize resource deployment.	
variables	No	Values that are used as JSON fragments in the template to simplify template language expressions.	
resources	Yes	Resource types that are deployed or updated in a resource group.	
outputs	No	Values that are returned after deployment.	

Template Deployment Mode

• Complete: Resource Manager **deletes** resources that exist in the resource group but are not specified in the template.

• Incremental: Resource Manager leaves unchanged resources that exist in the resource group but are not specified in the template.

Existing Resource Group contains:

- Resource A
- Resource B
- Resource C

- Template defines:
- Resource A
- Resource B
- Resource D

When deployed in incremental mode, Resource C is deleted. The resource group contains:

Resource A

Resource B

Resource C

Resource D

When deployed in complete mode, Resource C is deleted.

The resource group contains:

Resource A

Resource B

Resource D

To use complete mode, use the Mode parameter

ARM Templates - Parameters

Element name	Required	Description	
parameterName	Yes	Name of the parameter. Must be a valid JavaScript identifier.	
type	Yes	Type of the parameter value. See the list of allowed types after this table.	
defaultValue	No	Default value for the parameter, if no value is provided for the parameter.	
allowedValues	No	Array of allowed values for the parameter to make sure that the right value is provided.	
minValue	No	The minimum value for int type parameters, this value is inclusive.	
maxValue	No	The maximum value for int type parameters, this value is inclusive.	
minLength	No	The minimum length for string, secureString, and array type parameters, this value is inclusive.	
maxLength	No	The maximum length for string, secureString, and array type parameters, this value is inclusive.	
description	No	Description of the parameter that is displayed to users through the portal.	

Allowed Types

- string
- secureString
- int
- bool
- object
- secureObject
- array

```
"parameters": {
    "<parameter-name>" : {
        "type" : "<type-of-parameter-value>",
        "defaultValue": "<default-value-of-parameter>",
        "allowedValues": [ "<array-of-allowed-values>" ],
        "minValue": <minimum-value-for-int>,
        "maxValue": <maximum-value-for-int>,
        "minLength": <minimum-length-for-string-or-array>,
        "maxLength": <maximum-length-for-string-or-array-parameters>,
        "metadata": {
            "description": "<description-of-the parameter>"
        }
    }
}
```

Re-use ARM Templates

By passing in parameters to your ARM Templates, you can re-use them in many different scenarios. You can deploy full solutions with t-shirt sizing (Small, Medium, Large) based on parameters you pass in: Size of VM, # of VMs, etc.

Be aware of what values in the ARM template need to be unique when re-using templates: https://docs.microsoft.com/en-us/azure-resource-manager/resource-manager-template-best-practices#resource-names

https://docs.microsoft.com/en-us/azure/azure-resource-manager/best-practices-resource-manager-design-templates

ARM Templates –Variables

- Use Variables for
 - Use variables for values that you need to use more than once in a template.
 - Include variables for resource names that must be unique.
 - Use variables for extra manipulation of parameters
- You can group variables into complex objects. Use the variable.subentry format to reference a value from a complex object.

```
"variables": {
    "storage": {
        "name": "[concat(uniqueString(resourceGroup().id),'storage')]",
        "type": "Standard_LRS"
    }
},
```

ARM Templates – Functions and Expressions

- Templates are JSON
- Functions and Expressions extend the JSON capabilities
- They let you use some coding notions inside your templates to create or evaluate dynamic values
- Functions you see often:
 - concat concatenates multiple values
 - copyIndex returns the index of an iteration loop
 - resourceGroup access properties of this resource group, like the location.
 - resourceId get the unique identifier for a resource.
- All Functions: https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions

```
"variables": {
    "location": "[resourceGroup().location]",
    "usernameAndPassword": "[concat(parameters('username'), ':', parameters('password'))]",
    "authorizationHeader": "[concat('Basic ', base64(variables('usernameAndPassword')))]"
}
```

ARM Templates - Dependencies

- Resources may require a dependency chain; e.g. You need a VNET before you can deploy a VM.
- Use "dependsOn" property to explicitly build the dependencies between resources. Resources wont get created until their dependencies are created.
- Use Child resources. Only certain resources can have child resources.
- Use the "reference" function to create an implicit relationship. Resources that reference another resource are created after the referenced resource.

```
"type": "Microsoft.Compute/virtualMachineScaleSets",
   "name": "[variables('namingInfix')]",
   "location": "[variables('location')]",
   "apiVersion": "2016-03-30",
   "tags": {
      "displayName": "VMScaleSet"
   },
   "dependsOn": [
      "[variables('loadBalancerName')]",
      "[variables('virtualNetworkName')]",
      "storageLoop",
   ],
   ...
}
```

ARM Templates Advanced Topics

- Creating and Updating Resources in one ARM Template based deployment: https://docs.microsoft.com/en-us/azure/azure-resource-manager-update
- Share state between linked templates: https://docs.microsoft.com/en-us/azure/azure-resource-manager-state
- Patterns for deploying resources: https://docs.microsoft.com/en-us/azure/azure-resource-manager/best-practices-resource-manager-design-templates

Deploy Templates

Deploy Templates – Portal, Custom Template


```
Edit template
Edit vour Azure Resource Manager template
                                   1 {
   Parameters (0)
                                   2
                                          "$schema": "http://schema.management.azure.com/schemas/20
   Variables (0)
                                   3
                                          "contentVersion": "1.0.0.0",
 ▼ 😭 Resources (1)
                                          "parameters": {},
     storage (Microsoft.Storage/st...
                                          "resources": [
                                   6
                                   7
                                                   "apiVersion": "2015-06-15",
                                                   "type": "Microsoft.Storage/storageAccounts",
                                   8
                                                   "name": "storage",
                                   9
                                  10
                                                   "location": "[resourceGroup().location]",
                                                   "properties": {
                                  12
                                                       "accountType": "Standard_LRS"
                                  13
                                  14
                                  16 }
                Discard
```

Deploy Templates – Portal, Quickstart

Deploy Templates – Portal, from Account

ARM Role Based Access Control

Deploy Templates – Portal

Create resource group

Deploy resources from Marketplace

Deploy resources from custom template

Deploy resources from a template saved to your account

Next Steps

Deploy Templates - Powershell

Deploy a Template from a local json file

```
New-AzureRmResourceGroup -Name ExampleResourceGroup -Location "South Central US"

New-AzureRmResourceGroupDeployment -Name ExampleDeployment -ResourceGroupName ExampleResourceGroup `

-TemplateFile c:\MyTemplates\storage.json -storageAccountType Standard_GRS
```

Deploy a Template from an external source:

```
New-AzureRmResourceGroupDeployment -Name ExampleDeployment -ResourceGroupName ExampleResourceGroup `
-TemplateUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-create/azuredeploy.json
-storageAccountType Standard_GRS
```

Pass in a local parameter file:

```
New-AzureRmResourceGroupDeployment -Name ExampleDeployment -ResourceGroupName ExampleResourceGroup
-TemplateFile c:\MyTemplates\storage.json `
-TemplateParameterFile c:\MyTemplates\storage.parameters.json
```

• Pass in an external parameter file

New-AzureRmResourceGroupDeployment -Name ExampleDeployment -ResourceGroupName ExampleResourceGroup

```
New-AzureRmResourceGroupDeployment -Name ExampleDeployment -ResourceGroupName ExampleResourceGroup

-TemplateUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-create/azuredeploy.json `

-TemplateParameterUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-create/azuredeploy
```

Deploy Templates - PowerShell

- You can pass in parameters inline and with a local parameter file.
- You CANNOT pass in parameters inline and with an external parameter file.
- You can TEST a deployment before running it.

- Template Deployments have 2 modes: INCREMENTAL or COMPLETE
 - Both modes deploy resources defined in Template.
 - Complete Deployment DELETES resources in group not defined in Template
 - Incremental does not DELETE resources not defined in Template
 - Use "-Mode" argument to set Mode.

Deploy resources with Resource Manager templates and Azure PowerShell

Deploy a template from your local machine

Deploy a template from an external source

Parameter files

Test a template deployment

Incremental and complete deployments

Sample template

Next steps

Regional Availability

Regions

- An Azure Region is a geographic region that contains a collection of data centers.
 - It's more than one building.
 - Over 40 Azure regions
 - Special / Sovereign Regions

Regional Availability - Regions

- Region Pairs
 - In same geography (such as US, Europe or Asia)
 - Replicated resources are replicated across pairs
 - In broad geographic outage, one region in the pair is prioritized
 - Data resides in the same geography as its pair (except Brazil South)
 - Azure Storage GRS and RA-GRS replicates data from one region to its pair.

Regional Availability - Design

 Primary/Secondary Region for Higher Availability

Traffic Manager routes requests

 Put Primary, Secondary and Traffic Manager is separate regions

Make sure each region's VNET IP range does not overlap

 The same ARM template can be deployed, with minor parameter changes for VNET IP address space, and Resource locations.

Traffic Manager

Regional Availability - Design

- Configurations
 - Active/passive with hot standby (rec)
 - Active/passive with cold standby
 - Active/active
- Use Regional Pairing
 - In broad outage, one region from pair is prioritized
 - Data residency issues mitigated
- Traffic Manager
 - routing = priority,
 - health probe = write a custom service that reports accurately
- Read Reference Architecture Here.

High Availability

- Availability within a region vs. Regional Availability
- Azure Storage makes 3 copies of data within a region (including VM disks)
- Use Availability Sets
- Design loosely coupled service with asynchronous communication. Use Azure Storage queues or Azure Sevice Bus for queue-centric workflow.
- Fault Detection and Retry Logic within your application
- Circuit Breaker Pattern
- Immutable Infrastructure, Infrastructure as Code
- https://docs.microsoft.com/en-us/azure/architecture/resiliency/high-availability-azure-applications
- https://docs.microsoft.com/en-us/azure/architecture/resiliency/index#designingfor-resiliency