Lifelong Learning

CS 330

Logistics

Project milestone due Wednesday.

Two guest lectures next week!

Jeff Clune Sergey Levine

Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from the meta-learning perspective

A brief review of problem statements.

Multi-Task Learning

Learn to solve a set of tasks.

Meta-Learning

Given i.i.d. task distribution, learn a new task efficiently

learn to learn tasks

Multi-Task Learning

Meta-Learning

learn to learn tasks

In contrast, many real world settings look like:

time

Our agents may not be given a large batch of data/tasks right off the bat!

Some examples:

- a student learning concepts in school
- a deployed image classification system learning from a stream of images from users
- a **robot** acquiring an increasingly large set of skills in different environments
- a virtual assistant learning to help different users with different tasks at different points in time
- a doctor's assistant aiding in medical decision-making

Some Terminology

Sequential learning settings

online learning, lifelong learning, continual learning, incremental learning, streaming data

distinct from sequence data and sequential decision-making

What is the lifelong learning problem statement?

Exercise:

- 1. Pick an example setting.
- 2. Discuss problem statement with your neighbor:
 - (a) how would you set-up an experiment to develop & test your algorithm?
 - (b) what are desirable/required properties of the algorithm?
 - (c) how do you evaluate such a system?
 - A. a student learning concepts in school
 - B. a deployed image classification system learning from a stream of images from users

Example settings:

- C. a **robot** acquiring an increasingly large set of skills in different environments
- D. a virtual assistant learning to help different users with different tasks at different points in time
- E. a doctor's assistant aiding in medical decision-making

What is the lifelong learning problem statement?

Problem variations:

- task/data order: i.i.d. vs. predictable vs. curriculum vs. adversarial
- discrete task boundaries vs. continuous shifts (vs. both)
- known task boundaries/shifts vs. unknown

Some considerations:

- model performance
- data efficiency
- computational resources
- memory
- others: privacy, interpretability, fairness, test time compute & memory

Substantial variety in problem statement!

What is the lifelong learning problem statement?

General [supervised] online learning problem:

i.i.d. setting: $x_t \sim p(x)$, $y_t \sim p(y|x)$ p not a function of t

otherwise: $x_t \sim p_t(x)$, $y_t \sim p_t(y \mid x)$

streaming setting: cannot store (x_t, y_t)

- lack of memory
- lack of computational resources
- privacy considerations
- want to study neural memory mechanisms true in some cases, but not in many cases!
- 9- recall: replay buffers

What do you want from your lifelong learning algorithm?

minimal regret (that grows slowly with t)

regret: cumulative loss of learner — cumulative loss of best learner in hindsight

$$\operatorname{Regret}_{T} := \sum_{1}^{T} \mathcal{L}_{t}(\theta_{t}) - \min_{\theta} \sum_{1}^{T} \mathcal{L}_{t}(\theta)$$

(cannot be evaluated in practice, useful for analysis)

Regret that grows linearly in t is trivial. Why?

What do you want from your lifelong learning algorithm?

positive & negative transfer

positive forward transfer: previous tasks cause you to do better on future tasks compared to learning future tasks from scratch

positive backward transfer: current tasks cause you to do better on previous tasks compared to learning past tasks from scratch

positive -> negative : better -> worse

Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do better than the basics?

Revisiting the problem statement from the meta-learning perspective

Approaches

Store all the data you've seen so far, and train on it. -> follow the leader algorithm

- + will achieve very strong performance
- computation intensive —> Continuous fine-tuning can help.
- can be memory intensive [depends on the application]

Take a gradient step on the datapoint you observe. -> stochastic gradient descent

- + computationally cheap
- + requires 0 memory
- subject to negative backward transfer "forgetting"

- slow learning

sometimes referred to as catastrophic forgetting

Can we do better?

Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from the meta-learning perspective

Recall: model-based meta-RL

online adaptation = few-shot learning tasks are temporal slices of experience

k time steps not sufficient to learn entirely new terrain

Continue to run SGD?

+ will be fast with MAML initialization

- what if ice goes away? (subject to forgetting)

time

$$\mathbf{s}_{t-k:t}, \mathbf{a}_{t-k:t}$$

Online inference problem: infer latent "task" variable at each time step

Mixture of neural networks over task variable T, adapted continually: $heta_t(\mathcal{T}_i)$

Alternate between:

E-step: Estimate latent "task" variable at each time step $P(\mathcal{T}_t)$ given data $\mathbf{x}_t, \mathbf{y}_t$

$$P(\mathcal{T}_t = \mathcal{T}_i | \mathbf{x}_t, \mathbf{y}_t) \propto p_{\theta(\mathcal{T}_i)}(\mathbf{y}_t | \mathbf{x}_t, \mathcal{T}_t = \mathcal{T}_i) P(\mathcal{T}_t = \mathcal{T}_i)$$
likelihood of the data prior under task \mathcal{T}_i .

M-step: Update mixture of network parameters

$$\theta_{t+1}(\mathcal{T}_i) = \theta_t(\mathcal{T}_i) - \beta P(\mathcal{T}_t = \mathcal{T}_i | \mathbf{x}_t, \mathbf{y}_t) \nabla_{\theta_t(\mathcal{T}_i)} \log p_{\theta_t(\mathcal{T}_i)}(\mathbf{y}_t | \mathbf{x}_t) \quad \forall \mathcal{T}_i$$

gradient step on each mixture element, weighted by task probability

Note: If neural net is random initialized, this procedure would be too slow.

Nagabandi, Finn, Levine. Deep Online Learning via Meta-Learning. ICLR'19

Does it work?

Crawler with crippled legs

Constant crippled setting

Regions of normal/crippled leg

Does it work?

Crawler with crippled legs

Latent task distribution during online learning

Idea:

- (1) store small amount of data per task in memory
- (2) when making updates for new tasks, ensure that they don't unlearn previous tasks

How do we accomplish (2)?

learning predictor $y_t = f_{\theta}(x_t, z_t)$ memory: \mathcal{M}_k for task z_k

For
$$t = 0,...,T$$

minimize
$$\mathcal{L}(f_{\theta}(\,\cdot\,,z_t)\,\,,\,(x_t,y_t)\,)$$
 subject to $\mathcal{L}(f_{\theta}\,,\,\mathcal{M}_k\,) \leq \mathcal{L}(f_{\theta}^{t-1}\,\,,\,\mathcal{M}_k\,)$ for all $z_k < z_t$

(i.e. s.t. loss on previous tasks doesn't get worse)

$$\langle g_t, g_k \rangle := \left\langle \frac{\partial \mathcal{L}(f_\theta, (x_t, y_t))}{\partial \theta}, \frac{\mathcal{L}(f_\theta, \mathcal{M}_k)}{\partial \theta} \right\rangle \geq 0 \quad \text{for all } z_k < z_t$$

Can formulate & solve as a QP.

Experiments

Problems:

- MNIST permutations
- MNIST rotations
- CIFAR-100 (5 new classes/task)

BWT: backward transfer,

FWT: forward transfer

Total memory size: 5012 examples

If we take a step back... do these experimental domains make sense?

Lopez-Paz & Ranzato. Gradient Episodic Memory for Continual Learning. NeurIPS '17

Can we meta-learn how to avoid negative backward transfer?

Javed & White. Meta-Learning Representations for Continual Learning. NeurIPS '19

Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do better than the basics?

Revisiting the problem statement from the meta-learning perspective

What might be wrong with the online learning formulation?

Online Learning

(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.

More realistically:

What might be wrong with the online learning formulation?

Online Learning

(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.

Online Meta-Learning

Efficiently learn a sequence of tasks from a non-stationary distribution.

evaluate performance after seeing a small amount of data

Primarily a difference in evaluation, rather than the data stream.

The Online Meta-Learning Setting

for task
$$t=1,...,n$$
 observe \mathcal{D}_t^{tr} use update procedure $\Phi(\theta_t,\mathcal{D}_t^{tr})$ to produce parameters ϕ_t observe x_t predict $\hat{y}_t = f_{\phi_t}(x_t)$ Standard online learning setting observe label y_t

Loss of algorithm

Loss of best algorithm in hindsight

$$\text{Goal: Learning algorithm with sub-linear} \quad \operatorname{Regret}_T := \sum_{t=1}^T \ell_t(\Phi_t(\theta_t)) - \min_{\theta \in \Theta} \sum_{t=1}^T \ell_t(\Phi_t(\theta))$$

(Finn*, Rajeswaran*, Kakade, Levine ICML '18)

Can we apply meta-learning in lifelong learning settings?

Recall the follow the leader (FTL) algorithm:

Store all the data you've seen so far, and train on it.

Deploy model on current task.

Follow the meta-leader (FTML) algorithm:

Store all the data you've seen so far, and meta-train on it.

Run update procedure on the current task.

What meta-learning algorithms are well-suited for FTML?

What if $p_t(\mathcal{T})$ is non-stationary?

Experiments

Experiment with sequences of tasks:

- Colored, rotated, scaled MNIST
- 3D object pose prediction
- CIFAR-100 classification

Example pose prediction tasks

Experiments

- Comparisons: TOE (train on everything): train on all data so far
 - FTL (follow the leader): train on all data so far, fine-tune on current task
 - From Scratch: train from scratch on each task

Follow The Meta-Leader

learns each new task faster & with greater proficiency,

approaches few-shot learning regime

Takeaways

Many flavors of lifelong learning, all under the same name.

Defining the problem statement is often the hardest part

Meta-learning can be viewed as a slice of the lifelong learning problem.

A very open area of research.

Reminders

Project milestone due Wednesday.

Two guest lectures next week!

Jeff Clune Sergey Levine