Теория автоматов и формальных языков

Данил Заблоцкий

12 февраля 2024 г.

Оглавление

1	Введение	2
	Список используемой литературы	4

Глава 1

Введение

Лекция 1: Регулярные языки и регулярные выражения

от 12 фев 8:45

Определение 1 (Алфавит, слово). $\Sigma - an extit{\it pasum}$ (как правило, конечный),

$$\Sigma = \{a_1, \dots, a_n\}.$$

 ${\it C. no Bo}$ над алфавитом Σ – конечный упорядоченный набор символов из $\Sigma.$

 Σ^* – все слова над Σ .

Пример. $\Sigma = \{a, 6, \dots, n\}$, слова: яблоко, абвежр. ε – пустое слово.

Определение 2 (Язык). *Язык* L – подмножество слов над Σ ,

$$L \subseteq \Sigma^*$$
.

Пример. Σ_2 = $\{0,1\}$, Σ_2^* = $\{\varnothing,1,\varnothing\varnothing,\varnothing 1,1\varnothing,\ldots\}$

Замечание (Как «конечно» описать бесконечный язык?).

- 1. Конечный набор правил построения языков.
- 2. Алгоритм-распознаватель:

Замечание (Конструкции).

1. L_1, L_2 – языки,

$$L_1 \cup L_2$$
 — объединение, $L_1 \cap L_2$ — пересечение, $\overline{L_1} = \Sigma^* \smallsetminus L_1$ — дополнение.

2. Конструкция: $w_1, w_2 \longrightarrow w_1 w_2$,

$$L_1, L_2 \longrightarrow L_1L_2 = \{w_1w_2, w_1 \in L_1, w_2 \in L_2\}.$$

Пример.

$$L_{1} = \{a\} \\ L_{2} = \{b\}$$

$$L_{1}L_{2} = \{ab\}, \ \varepsilon b = b.$$

$$L_{1}L_{2} = \ \{ab\} \\ L_{2}L_{1} = \ \{ba\}$$

Пример.

$$\begin{split} L_1 &= \{a,b\} \\ L_2 &= \{a,b\} \end{split}, \quad L_1 L_1 \\ _{\text{CTEHIGHB}} &= L_1 L_2 = L_1^2 = \{aa,ab,ba,bb\}, \\ L_1^2, L_1^3 &= L_1^2 L_1 = \left\{ \begin{array}{l} aaa,aba,baa,bba, \\ aab,abb,bab,bbb \end{array} \right\} \end{split}$$

3. Итерация (Ж. Клани)

$$L \longrightarrow L^* = \bigcup_{n=\emptyset}^{\infty} L^n, \quad \boxed{L^1 \subset L},$$

$$L^0 = \{\varepsilon\}.$$

Пример.
$$\Sigma$$
 = $\{a,b\}$,
$$L$$
 = $\left\{ \begin{array}{l} \varepsilon,a,b,aa,ab,ba,bb,\\ aaa,\ldots,bbb,\ldots \end{array} \right\}.$

Определение 3 (Регулярная языка, регулярные языки).

- 1. $\emptyset, \{\varepsilon\}, \{a_i\}, \ a_i \in \Sigma$ регулярная языка.
- 2. L_1, L_2 регулярные языки,

 $L_1 \cup L_2, \ L_1L_2, \ L_1^*$ – тоже регулярные языки.

Пример.
$$L = \left(\{a\} \left(\{a\} \cup \{b\}\right)^* \{b\}\right)^* -$$
 все слова, начинающиеся на a и все слова из a,b заканчивающиеся на b , например:

 $abbab\ ab\ aab$.

Определение 4 (Регулярное выражение).

- 1. \emptyset , $\{\varepsilon\}$, $\{a_i\}$, $a_i \in \Sigma$ регулярные выражения.
- 2. Если R_1, R_2 регулярные выражение, то

 $R_1 + R_2, R_1 R_2, (R_1)^*$ – тоже регулярные выражения.

Пример. Любой конечный язык – регулярный.

Пример. $\Sigma = \{a, b\}, \ L_1 = \{$ все слова из a, b четной длины (включая ε) $\}$:

$$\left\{\begin{array}{l} \varepsilon, aa, ab, ba, bb, \\ aaaa, \dots, bbb, \dots \end{array}\right\} = \left((a+b)(a+b)\right)^*.$$

 Σ = $\{a,b\},\ L_2$ = $\{w\colon$ в w четное число a и $b\}$

$$L_2 \subset L_1 \quad \left(\begin{array}{c} ab \in L_1 \\ ab \notin L_2 \end{array} \right)$$

$$((aa+bb)^*(ab+ba)(aa+bb)^*(ab+ba)(aa+bb)^*)^*$$

 $L_3 = \{w : в w число a четно\}$

$$b \dots bab \dots bab \dots b = \left(b^*ab^*ab^*\right)^*$$

Пример (Нерегулярный язык). L = {симметричные слова из a,b} $aba,\ aba,\ aa.$

Литература

- [1] Ахо, Ульман «Теория синтаксического анализа, перевода и компилянии»
- [2] Ахо, Сеги, Ульман «Компиляторы. Принципы, технологии, инструменты»
- [3] Серебряков, Галочкин, Гончар, Фуручян «Теория и реализация языков программирования»