

IR6226 (NOTE: For new designs, we recommend IR's new products IPS521 and IPS521S)

### INTELLIGENT HIGH SIDE MOSFET POWER SWITCH

### **Features**

- Current limit for short circuit protection
- Over-temperature protection
- Active output negative clamp
- Reverse battery protection for logic circuit
- Broken ground protection
- Short to V<sub>CC</sub> protection
- Low noise charge pump
- Sleep mode supply current
- 4kV ESD protection on all leads
- · Logic ground isolated from power ground

### **General Description**

The IR6226 is a 5 terminal monolithic HIGH SIDE SWITCH with built in short circuit, over- temperature, ESD protections, inductive load turn off capability and diagnostic feedback.

The on-chip protection circuit limits the average current during short circuit if the drain current exceeds 20A. The protection circuit latches off the high side switch if the junction temperature exceeds 170°C and latches on after the junction temperature falls by 10°C. The Vcc (drain) to OUT (source) voltage is actively clamped at 55V, improving its performance during turn off with inductive loads.

The on-chip charge pump high side driver stage is floating and referenced to the source of the Power MOSFET. Thus the logic to power ground isolation can be as high as 50V. This allows operation with larger offset as well as controlling the switch during load energy recirculation or regeneration.

A diagnostic pin is provided for status feedback of short circuit, over temperature and open load detection.

### **Product summary**

| Todact Sammary      |          |  |  |  |  |  |
|---------------------|----------|--|--|--|--|--|
| V <sub>cc(op)</sub> | 5-50V    |  |  |  |  |  |
| R <sub>DS(on)</sub> | 100m $Ω$ |  |  |  |  |  |
| I <sub>lim</sub>    | 20A      |  |  |  |  |  |
| T <sub>j(sd)</sub>  | 170°C    |  |  |  |  |  |
| Eav                 | 200mJ    |  |  |  |  |  |

### **Applications**

- Lamp driver
- Programmable logic controller

### **Truth Table**

| In | Out              | Dg                                                   |
|----|------------------|------------------------------------------------------|
| Н  | Н                | Н                                                    |
| L  | L                | L                                                    |
| Н  | Н                | Н                                                    |
| L  | Н                | Н                                                    |
| Н  | Current-Limiting | L                                                    |
|    | Linear Mode      |                                                      |
| L  | L                | L                                                    |
| Н  | L                | L                                                    |
| L  | L                | L                                                    |
|    | HLHLH            | H H L L H H L H Current-Limiting Linear Mode L L H L |

### **Block Diagram**

# Bias Thermal Protect Input Level Charge Pump Limit GND Copenhabert Reme

### **Available Packages**



www.irf.com 1

Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. ( $T_C = 25^{\circ}C$  unless otherwise specified.)

| Symbol           | Parameter            |                        | Min.    | Max.         | Units | Test Conditions                     |
|------------------|----------------------|------------------------|---------|--------------|-------|-------------------------------------|
| Vcc              | Supply voltage       | permanent              | -0.3    | 50           |       |                                     |
|                  |                      | reverse                | -16     | _            | V     | For 10 seconds, (1)                 |
| Voffset          | Logic to power grou  | ınd offset             | Vcc -50 | Vcc +0.3     | ·     |                                     |
| Vin              | Input voltage        |                        | -0.3    | 30           |       |                                     |
| lin              | Input current        |                        | _       | 10           | mA    |                                     |
| Vout             | Output voltage       |                        | Vcc -50 | Vcc +0.3     | V     |                                     |
| lout             | Output current       |                        | _       | self-limited | Α     |                                     |
| Vdg              | Diagnostic output v  | oltage                 | -0.3    | 30           | V     |                                     |
| ldg              | Diagnostic output c  | urrent                 | _       | 10           | mA    |                                     |
| Eav              | Repetitive avalanch  | e energy               | _       | 200          | mJ    | I = 2A (2)                          |
| ESD1             | Electrostatic discha | rge (Human Body Model) | _       | 4000         | V     | $C = 100 \text{ pF,R} = 1500\Omega$ |
| ESD2             | Electrostatic discha | rge (Machine Model)    | _       | 1000         | V     | $C = 200 \text{ pF}, R = 0\Omega$   |
| PD               | Power dissipation    |                        | _       | 28           | W     | Tcase= 25°C                         |
| T <sub>Jop</sub> | Operating junction t | emperature range       | -40     | 150          |       |                                     |
| T <sub>Stg</sub> | Storage temperatur   | e range                | -40     | 150          | °C    |                                     |
| TL               | Lead temperature (   | soldering, 10 seconds) | _       | 300          |       |                                     |

NOTES: (1) with 15k $\Omega$  resistors in input and diagnostic

(2) maximum frequency depends on heatsink (rectangular waveform)

### **Static Electrical Characteristics**

(T<sub>C</sub>= 25°C unless otherwise specified.)

| Symbol               | Parameter                           | Min. | Тур. | Max. | Units | Test Conditions                            |
|----------------------|-------------------------------------|------|------|------|-------|--------------------------------------------|
| Vccop                | Operating voltage range             | 5    | _    | 35   | V     |                                            |
| Iccoff               | Sleep mode supply current           | _    | 40   | _    | μΑ    | V <sub>CC</sub> =24V, V <sub>in</sub> = 0V |
| Iccon                | Supply current (average)            | _    | 3    | _    | mA    | V <sub>in</sub> = 5V                       |
| Iccac                | Supply current (AC RMS)             |      | 20   | _    | μΑ    | Vin = 5V                                   |
| Vih                  | High level input threshold voltage  | _    | 2    | 2.5  | V     |                                            |
| Vil                  | Low level input threshold voltage   | 1    | 1.8  | _    |       |                                            |
| llon                 | On-state input current              | 10   | _    | 70   |       | $V_{in} = 3.5V$                            |
| l <sub>loff</sub>    | Off-state input current             | 1    | _    | 30   | μΑ    | V <sub>in</sub> = 0.4V                     |
| loh                  | Output leakage current              | _    | 20   | _    | '     | $V_{out} = 6V$                             |
| lol                  | Output leakage current              | 0    | _    | 10   |       | Vout = 0V                                  |
| V <sub>dgl</sub>     | Low level diagnostic output voltage | _    | 0.3  | _    | V     | $I_{dg} = 1.6 \text{mA}$                   |
| ldgh                 | Diagnostic output leakage current   | 0    | _    | 10   | μΑ    | V <sub>dg</sub> = 5V                       |
| R <sub>DS</sub> (on) | On-state resistance                 |      | 80   | 100  | mΩ    | I <sub>out</sub> = 1A                      |
|                      |                                     | _    | 120  | _    |       | $V_{CC} = 5V$ , $I_{out} = 1A$             |

2 ww.irf.com

# Switching Electrical Characteristics ( $V_{CC}$ = 14V, Resistive Load ( $R_L$ ) = 12 $\Omega$ , $T_C$ = 25°C.)

| Symbol               | Parameter                  | Min. | Тур. | Max. | Units | Test Conditions |
|----------------------|----------------------------|------|------|------|-------|-----------------|
| ton                  | Turn-on delay time to 90%  | _    | 50   | _    |       |                 |
| toff                 | Turn-off delay time to 10% | _    | 60   | _    | μς    |                 |
| dv/dton              | Slew rate on               | _    | 3    | _    |       |                 |
| dv/dt <sub>off</sub> | Slew rate off              | _    | 5    | _    | V/µs  |                 |

### **Protection Characteristics**

| Symbol            | Parameter                       | Min. | Тур. | Max. | Units | Test Conditions       |
|-------------------|---------------------------------|------|------|------|-------|-----------------------|
| llim              | Internal current limit          | _    | 20   | _    | Α     |                       |
| Vsc               | Short circuit detection voltage | _    | 3.5  | _    |       |                       |
| V <sub>sIh</sub>  | Open load detection voltage     | _    | 3.5  | _    | V     |                       |
| V <sub>c</sub> l1 | Output negative clamp           | 50   | 54   | _    |       | Iout = 10mA           |
| V <sub>cl2</sub>  | Output negative clamp           | _    | 56   | 62   |       | I <sub>out</sub> = 2A |

### **Thermal Characteristics**

| Symbol           | Parameter                               | Min. | Тур. | Max. | Units | Test Conditions |
|------------------|-----------------------------------------|------|------|------|-------|-----------------|
| T <sub>jsd</sub> | Thermal shutdown temperature            | _    | 170  |      | °C    |                 |
| T <sub>hys</sub> | Thermal hysteresis                      | _    | 10   |      |       |                 |
| Rthjc            | Thermal resistance, junction to case    | _    | 3.5  | _    | °C/W  |                 |
| Rthja            | Thermal resistance, junction to ambient | _    | 50   | _    | Ī i   |                 |

## **Lead Assignments**



3 www.irf.com

### Case Outline 5 Lead - TO-220



## Tape & Reel 5 Lead - D<sup>2</sup>PAK (SMD220)



4 ww.irf.com

### Case Outline 5 Lead - SMD220 (D2PAK)



# International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 0BL, United Kingdom Tel: ++44 (0) 20 8645 8000

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 81 (0) 33 983 0086 IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon, Hong Kong Tel: (852) 2803-7380

Data and specifications subject to change without notice. 2/26/2000

www.irf.com 5

Note: For the most current drawings please refer to the IR website at: <a href="http://www.irf.com/package/">http://www.irf.com/package/</a>