Etude du téléphérique Vanoise Express

Cahier réponses

Toutes les réponses seront portées sur ce cahier à l'exclusion de toute autre copie. Les résultats sont à reporter dans les cadres prévus en bas à droite.

Sauf indication particulière, toutes les valeurs numériques sont à donner avec 3 chiffres significatifs et leurs unités. Si un résultat numérique est demandé, une expression littérale ne sera pas acceptée, et réciproquement.

3- Vérification du critère « Durée d'un trajet » de la fonction FP1 Respect du critère « Distance » de la fonction FT21

Question 1.: Pour cette question, on demande des résultats numériques avec 4 chiffres significatifs à exprimer en secondes ou mètres (unités SI).

1- Le cahier des charges précise que la distance à parcourir en petite vitesse est d_p =40 mètres.

$$(t_4-t_3)=V_p/d_p$$

 $(t_4-t_3)=d_p/V_p=40m/0.8m/s=50$ secondes

 t_4 - t_3 =50 secondes

2- $v(t)=a.t \Rightarrow v(t_1)=V_0=a\times t_1 \Rightarrow$

$t_1=V_0/a$

 $t_1=12 / 0,4=30$ secondes

 $t_1 = 30$ secondes

d_a=aire sous courbe=V₀×t₁/2

 $d_a = 12 \times 30/2 = 180 \text{ mètres}$

 d_a =180 mètres

3- $a=(V_p-V_0)/(t_3-t_2)$

$$(t_3-t_2)=(V_p-V_0)/a$$

 $(t_3-t_2)=(0.8-12)/(-0.4)=28$ secondes

 t_3 - t_2 =28 secondes

aire sous courbe= $V_0 \times (t_3 - t_2) - (V_0 - V_p) \times (t_3 - t_2)/2$

 $d_d=12\times28-(12-0.8)\times28/2=179.2$ mètres

 d_d =179,2 mètres

4- La distance à parcourir entre les instants t_1 et t_2 est d_{12} = d_t - d_a - d_d - d_p et

 $V_0 = d_{12}/(t_2-t_1)$

$(t_2-t_1) = (d_t-d_a-d_d-d_p)/V_0$

 $(t_2-t_1)=(1830-180-179,2-40)/12=119,2$ secondes

 t_2 - t_1 =119,2 secondes

5-

$t_t=6+t_1+(t_2-t_1)+(t_3-t_2)+(t_4-t_3)+2$

 t_t =6 + 30 + 119,2 + 28 + 50 + 2=235,2 secondes

 t_t =235,2 secondes

Vérifiez le critère: « **Durée d'un trajet** (de <u>l'ordre de départ</u> jusqu'à <u>l'ouverture des portes)</u> » de la fonction FP1

t_t= 235.2 secondes < 240 secondes = 4 minutes

Le cahier des charges est donc respecté

4- Vérification des critères de la fonction FT132

Question 2.:

1. Montrez que $T_1 = T'_1$. Précisez le solide isolé, et le principe ou théorème utilisé.

On isole la poulie de déviation et le bout de câble

Bilan des actions mécaniques extérieures

- Actions du câble T₁ et T'₁.
- Action de la liaison pivot d'axe B, \vec{z}

Théorème du moment statique, au point B en projection sur \vec{z}

 $(T'_1-T_1)\times (d/2)=0 \Rightarrow T'_1=T_1$

2. Montrez que $T_I = \frac{Mc.g}{2}$. Précisez le solide isolé, et le principe ou théorème utilisé.

On isole la poulie de déviation, le contrepoids et le bout de câble

Bilan des actions mécaniques extérieures

- Actions du câble T₁ et T'₁.
- Poids du contrepoids de masse M_c

Théorème de la résultante statique en proj/ \vec{y} : $2 \times T_1 = M_c \times g \Rightarrow T_1 = \frac{Mc.g}{2}$

Question 3.:

Calculez $\underline{\text{numériquement}}$ la tension T_2 du câble tracteur côté Les Arcs. Précisez le ou les solides isolés, et le principe ou théorème utilisé.

On isole le chariot et la cabine.

Théorème de la résultantes statique en projection sur le câble.

 T_2 - T_1 - $Mg \times \sin \alpha = 0$

$$T_2=T_1+Mg\times\sin\alpha=\frac{Mc.g}{2}+Mg\times\sin\alpha$$

 $T_2 = 35000 \times 9,81/2 + 29000 \times 9,81 \times \sin(15^\circ) = 245306 N$

$$T_2 = 245 \ 306 \ N$$

Question 4.:

1. Isolez la poulie motrice. En explicitant le principe ou théorème utilisé, donnez l'expression de la tension $T_{ress\ mini}$ de chaque ressort en fonction de T_1 , T_2 , r, D et $\tan \varphi$.

On isole la poulie motrice

Bilan des actions mécaniques extérieures:

- Action des deux freins à patin, de composante normale T_{ress mini} et de composante tangentielle T_{ress mini}.tanφ (car on est à la limite du glissement)
- Actions du câble T₁ et T₂.
- Action de la liaison pivot d'axe A, \vec{z}

Théorème du moment statique au point A en projection sur z

$$(T_2-T_1)\times(D/2)-2.T_{ress\ mini}\times tan\varphi\times r=0$$

$$T_{ress mini} = (T_2 - T_1) \times (D/2) / (2 \times r \times tan\varphi)$$

$$T_{ress\ mini} = \frac{D.(T_2 - T_1)}{4.r.\tan\varphi}$$

2. Calculez numériquement $T_{ress\ mini}$.

 $T_{ress mini} = (245 \ 306 - 35000 \times 9,81/2) \times 4/(4 \times 1,9 \times 0.3)$

T_{ress mini}=129 200 N

$$T_{ress \ mini} = 129200 \text{ N}$$

Vérifiez si le niveau du critère « **Tension du ressort** des freins à patin pour immobiliser le téléphérique en gare, sans énergie extérieure » est suffisant.

$2 \times T_{ress \ mini} = 2 \times 129 \ 200 = 258 \ 400 \ N < 280 \ 000 \ N$ Donc le niveau $T_{ress} > 280 \ 000 \ N$ est suffisant

Question 5. :

1. Calculez <u>numériquement</u> la pression minimum P_{min} que doit exercer l'huile sur le piston mobile pour comprimer le ressort.

$$P_{min}=T_{ress}/S=4\times T_{ress}/(\pi(D_{Ext}^2-D_{lnt}^2))$$

$$P_{min} = 4 \times T_{ress} / (\pi(D^2_{Ext} - D^2_{Int}))$$

 P_{min} =4×280 000/(π (200²-140²)=17,5 MPa

$$P_{min}$$
=17,5 MPa=175 Bars

2. Vérifiez si le niveau du critère « Pression de desserrage des freins à patin » est suffisant.

17.5 MPa < 21 MPa donc le niveau "P>210 MPa" est suffisant.

Question 6.:

1. Ecrire l'équation du théorème de la résultante statique linéarisée à l'ordre 1 appliquée au bout de câble isolé, en projection sur \vec{n} .

dN-F× $sin(d\theta/2)$ -(F+dF)× $sin(d\theta/2)$ =0

dN-(2F-dF)× $d\theta$ /2)=0

On néglige les termes infiniment petits d'ordre 2

 $dN=F\times d\theta$

 $dN=F\times d\theta$

2. Ecrire l'équation du théorème de la résultante statique linéarisée à l'ordre 1 appliquée au bout de câble isolé, en projection sur \vec{t} .

$$(F+dF)\times\cos(d\theta/2)$$
 -F×cos(d θ /2) -dT=0

Au premier ordre, $\cos(d\theta/2)=1$

dT=dF

dT=dF

3. En déduire une équation différentielle liant F, dF, $d\theta$ et v_{mini} .

$$dT=dN. \ v_{mini} \implies dF = F \times d\theta \times v_{mini}$$

$$dF/F = v_{mini} \times d\theta$$

$$dF/F = v_{mini} \times d\theta \text{ ou } \frac{dF(\theta)}{d\theta} = F(\theta).v_{mini}$$

Question 7.: Après avoir intégré cette équation différentielle, en déduire l'expression littérale de v_{mini} en fonction du rapport $\frac{T_2}{T_1}$ et de β .

$$\int_{T_1}^{T_2} \frac{dF}{F} = \int_0^\beta V_{\min i} \times d\theta \implies \left[\ln(F) \right]_{T_1}^{T_2} = V_{\min i} \times \beta \Rightarrow$$

$$\ln(T_2) - \ln(T_1) = \ln(\frac{T_2}{T_1}) = V_{\min i} \times \beta$$

$$v_{\min i} = \frac{1}{\beta} \times \ln(\frac{T_2}{T_1})$$

$$v_{\min i} = \frac{1}{\beta} \times \ln(\frac{T_2}{T_1})$$

Question 8. : Indépendamment de ce qui a été fait

précédemment, on donne $\frac{T_2}{T_1}$ =1.5

1. Calculez **numériquement** V_{mini} .

$$v_{mini} = 360/(2 \times \pi \times 200) \times ln(1,5)$$

 $v_{mini} = 0.116$

$$V_{mini} = 0.116$$

2. Vérifiez si le niveau du critère « **Coefficient d'adhérence** entre la poulie motrice et le câble tracteur pour immobiliser le téléphérique en gare » est suffisant.

 $V_{mini\ secu}$ =2×0.0116=0,232 < 0.3

Donc le niveau " $\tan \varphi \ge 0.3$ " est suffisant

5- Vérification du critère « Vitesse maximum de la cabine » de la fonction FT121

Vérification du critère « Durée d'arrêt par freinage mécanique de la cabine » de la fonction FT22

Question 9.:

1- Donnez l'expression de P_{Ext} , la somme des puissances extérieures au système matériel E dans son mouvement par rapport au référentiel R_0 .

$$P_{\text{vent-scabine/R0}} = \begin{cases} -F_{\text{vent}}.\vec{x} \\ \vec{0} \end{cases} \otimes \begin{cases} \vec{0} \\ V_0.\vec{x}_1 \end{cases} = -F_{\text{vent}} \times V_0 \times \cos \gamma$$

Avec M, Point d'application de l'action du vent et \vec{x}_1 direction du déplacement

$$P_{g\text{--scabine/R0}} = \begin{cases} -M.g.\vec{y} \\ \vec{0} \end{cases} \otimes \begin{cases} \vec{0} \\ V_0.\vec{x}_1 \end{cases} = -M \times g \times V_0 \times \sin \gamma$$

 $P_{mot}=2P_m$

$$P_{Ext} = 2P_{m} - Fvent \times V_0 \times cos \gamma - M \times g \times V_0 \times sin \gamma$$

2- Donnez l'expression de P_{Int} , la somme des puissances intérieures au système matériel E.

 $P_{int} = -f \times \omega^2_m(t)$

$$P_{Int} = -f \times \omega^2_m(t)$$

Question 10. Donnez l'expression de la vitesse de rotation $\omega_m(t)$ d'un moteur en fonction de la vitesse V(t) de la cabine, du rapport k et du diamètre D de la poulie motrice.

 $V(t)=(D/2)\times\omega(t)=(k.D/2)\omega_m(t)$

$$\omega_m(t) = (2/k \times D)V(t)$$

Question 11.:

1- Appliquez le théorème de l'energie cinétique. Donnez l'expression de la puissance P_m délivrée par chaque moteur en fonction de k, V_0 , D, M, g, f, γ et F_{Vent} .

A vitesse constante,
$$\frac{d}{dt}(T_{E/R_0}) = 0 = P_{ext} + P_{int} = 2P_m - F_{vent}V_0 \cdot \cos\gamma - Mg \cdot V_0 \cdot \sin\gamma - f \cdot \left(\frac{2}{k \cdot D}\right)^2 V_0^2$$

$$P_{m} = \frac{1}{2} \left(F_{vent} \times V_{0} \times \cos \gamma + M \times g \times V_{0} \times \sin \gamma + f \times \left(\frac{2}{k \times D} \right)^{2} \times V_{0}^{2} \right)$$

2- Faire l'application numérique de P_m

$$P_m = \frac{1}{2} \left(5000 \times 12 \times \cos 15 + 29000 \times 9.81 \times 12 \times \sin 15 + 6 \times \left(\frac{2 \times 20}{4} \right)^2 \times 12^2 \right)$$

$$P_{m} = 514 \text{ kW}$$

Les moteurs choisis ont une puissance maximum $P_{m,maxi}$ =530 kW. Permettent-ils de respecter le niveau du critère « **Vitesse maximum de la cabine** dans une pente à 15° avec un vent défavorable » de la fonction FT121 ?

530>514 kW

donc les moteurs choisis respectent le niveau V₀>12 m/s

Question 12.:

1- Calculez en fonction de $\omega_n(t)$ l'expression littérale de l'énergie cinétique de chaque élément du système matériel E dans son mouvement par rapport au référentiel R_0 .

Pour la poulie motrice de diamètre D et de moment d'inertie J_{pm} :

$$T(\text{Poulie motrice/R}_0) = \frac{1}{2} J_{pm}.\omega^2(t) = \frac{1}{2} J_{pm}.k^2.\omega_m^2(t)$$

$$T(\text{Poulie motrice/R}_0) = \frac{1}{2} J_{pm}.k^2.\omega_m^2(t)$$

Pour les 5 poulies de déviation de diamètre d et de moment d'inertie respectifs J_d :

$$T(5 \text{ poulies déviation/R}_0) = \frac{5}{2} J_d \cdot \left(\frac{D}{d} \cdot \omega(t)\right)^2 = \frac{5}{2} J_d \cdot \left(\frac{D}{d} \cdot k\right)^2 \cdot \omega_m^2(t)$$

$$T(5 \text{ poulies déviation/R}_0) = \frac{5}{2} J_d \left(\frac{D}{d}.k\right)^2.\omega_m^2(t)$$

Pour les 50 poulies de guidage de diamètre d_s et de moment d'inertie respectifs J_s :

$$T(50 \text{ poulies guidage/R}_0) = \frac{50}{2} J_g \cdot \left(\frac{D}{d_g} \cdot \omega(t) \right)^2 = \frac{50}{2} J_g \cdot \left(\frac{D}{d_g} \cdot k \right)^2 \cdot \omega_m^2(t)$$

$$T(50 \text{ poulies guidage/R}_0) = \frac{50}{2} J_g \cdot \left(\frac{D}{d_g} \cdot k\right)^2 \cdot \omega_m^2(t)$$

Pour le câble de masse m :

$$T(\hat{cable/R_0}) = \frac{1}{2} m.V^2(t) = \frac{1}{2} m.\left(\frac{D.\omega(t)}{2}\right)^2 = \frac{1}{2} m.\left(\frac{D.k}{2}\right)^2.\omega_m^2(t)$$

$$T(\text{câble/R}_0) = \frac{1}{2} m \left(\frac{D.k}{2}\right)^2 .\omega_m^2(t)$$

Pour la cabine de masse M :

$$T(\text{cabine/R}_0) = \frac{1}{2} M.V^2(t) = \frac{1}{2} M.\left(\frac{D.\omega(t)}{2}\right)^2 = \frac{1}{2} M.\left(\frac{D.k}{2}\right)^2.\omega_m^2(t)$$

$$T(\text{cabine/R}_0) = \frac{1}{2} M \cdot \left(\frac{D \cdot k}{2}\right)^2 \cdot \omega_m^2(t)$$

Pour les deux moteurs, de moment d'inertie respectifs J_m :

$$T(2 \text{ moteurs/R}_0) = \frac{2}{2} J_m.\omega_m^2(t)$$

$$T(2 \text{ moteurs/R}_0) = \frac{2}{2} J_m . \omega_m^2(t)$$

2- En déduire l'expression littérale du moment d'inertie équivalent J de tout le système matériel (E) ramené sur l'axe des moteurs.

$$T(E/R_0) = T(Poulie motrice/R_0) + T(5 poulies déviation/R_0) + T(50 poulies guidage/R_0) + T(cable/R_0) + T(cable/R_0) + T(2 moteurs/R_0)$$

$$T(E/R_0) = \frac{1}{2} J_{pm} k^2 . \omega_m^2(t) + \frac{5}{2} J_d \left(\frac{D}{d} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega_m^2(t) + \frac{50}{2} J_g . \left(\frac{D}{d_g} . k\right)^2 . \omega$$

$$\frac{1}{2}m\left(\frac{D.k}{2}\right)^{2}.\omega_{m}^{2}(t) + \frac{1}{2}M\left(\frac{D.k}{2}\right)^{2}.\omega_{m}^{2}(t) + \frac{2}{2}J_{m}.\omega_{m}^{2}(t)$$

$$J = J_{pm}.k^{2} + 5J_{d} \left(\frac{D}{d}.k\right)^{2} + 50J_{g}.\left(\frac{D}{d_{g}}.k\right)^{2} + (m+M).\left(\frac{D.k}{2}\right)^{2} + 2J_{m}$$

Question 13.:

1- Appliquez le théorème de l'énergie cinétique au système matériel (E) dans son mouvement par rapport au référentiel R_0 . Déterminez l'expression de $\dot{\omega}_m(t)$, la dérivée temporelle de $\omega_m(t)$.

D'après les hypothèses complémentaires, $P_{Int}=0$, $P_{m}=0$ et $P_{Vent}=0$

$$P_{f\text{--}poul/R0} = \begin{cases} \vec{R}_{f \to poul} \\ -Cf.\vec{z} \end{cases} \otimes {}_{P} \begin{cases} \omega(t).\vec{z} \\ \vec{0} \end{cases} = -Cf.\omega(t) = -Cf.k.\omega_m(t) \text{ avec P, un point de l'axe de la poulie}$$

$$P_{g\text{-scabine/R0}} = \begin{cases} -M.g.\vec{y} \\ \vec{0} \end{cases} \otimes \begin{cases} \vec{0} \\ V_0.\vec{x}_1 \end{cases} = -M \times g \times V_0 \times \sin \gamma = -M \times g \times k \times \frac{D}{2} \times \sin \gamma \times \omega_m(t)$$

$$\frac{d}{dt}T(E/R_0) = J \times \dot{\omega}_m(t) \times \omega_m(t) = \left(-Cf \times k - M \times g \times k \times \frac{D}{2} \times \sin \gamma\right) \cdot \omega_m(t)$$

$$\dot{\omega}_m(t) = \frac{1}{J} \left(-Cf \times k - M \times g \times k \times \frac{D}{2} \times \sin \gamma \right)$$

2- Donnez l'expression de la décélération notée a de la cabine en fonction de k,D et $\dot{\omega}_m(t)$.

$$a = \frac{d}{dt}V(t) = \frac{d}{dt}\left(\frac{D}{2} \times k \times \omega_m(t)\right) = \frac{D}{2} \times k \times \dot{\omega}_m(t)$$

$$a = \frac{D}{2} \times k \times \dot{\omega}_m(t)$$

3- Donnez en fonction de a et de V_0 l'expression de la durée τ du freinage.

$$a = \frac{0 - V_0}{\tau - 0} = -\frac{V_0}{\tau}$$

$$\tau = -\frac{V_0}{a}$$

4- Faire l'application numérique de τ si le téléphérique est lancé à la vitesse V_0 =12 m/s dans une descente de pente γ =-10°.

$$a = \frac{-1}{800 \times 20^2} \cdot \frac{4}{2} \left(300000 + 29000 \times 9.81 \times \frac{4}{2} \times \sin(-10) \right) = -1.257 m / s^2$$

$$\tau = -\frac{12}{-1.257} = 9.54 s$$

 τ =9.54 secondes

Vérifiez le critère « **Durée d'arrêt par freinage mécanique de la cabine** lancée à V_0 =12 m/s dans une descente à 10° sans vent. » de la fonction FT22.

9.54 s<10 s le critère est donc vérifié

6- Vérification des critères « Ecart statique », « Ecart de traînage », « Marge de phase » et « Pulsation de coupure en boucle ouverte » de la fonction FT121

Le schéma bloc de la double motorisation étant fourni, déterminez les fonctions de transfert $G_1(p)$, $G_2(p)$, $G_3(p)$ et $G_4(p)$ écrites dans le domaine de Laplace.

$$u(t) - e(t) = Ri(t) + L\frac{d}{dt}i(t) \xrightarrow{L} U(p) - E(p) = I(p)[R + Lp]$$
 (1)

$$2c_m(t) - c_r(t) = J\dot{\omega}_m(t) + f\omega_m(t) \xrightarrow{L} 2C_m(p) - C_r(p) = \Omega_m(p)[f + Jp]$$
 (2)

$$C_m(t) = k_T i(t) \xrightarrow{L} C_m(p) = k_T I(p)$$
 (3)

$$E(t) = k_E \omega_m(t) \xrightarrow{L} E(p) = k_T \Omega_m(p)$$
 (4)

(1)
$$\to G_1(p) = \frac{1}{R + Lp}$$
 (2) $\to G_3(p) = \frac{1}{f + Jp}$

$$(2) \to G_3(p) = \frac{1}{f + Jp}$$

$$(3) \to G_2(p) = k_T$$

$$(4) \to G_4(p) = k_E$$

$$G_1(p) = \frac{1}{R + Lp} \qquad G_2(p) = k_T \qquad G_3(p) = \frac{1}{f + Jp} \qquad G_4(p) = k_E$$
Question 15. :
$$\Omega_m(p) \text{ peut se mettre sous la forme } : \Omega_m(p) = F_1(p) \times U(p) - F_2(p) \times C_r(p)$$

Exprimez les fonctions $F_1(p)$ et $F_2(p)$ en fonction de $G_1(p)$, $G_2(p)$, $G_3(p)$ et $G_4(p)$.

$$C_r(p) = 0 \Rightarrow \left[\frac{\Omega_m(p)}{U(p)}\right]_{C_r(p)=0} = \frac{2G_1(p).G_2(p).G_3(p)}{1 + 2G_1(p).G_2(p).G_3(p).G_4(p)}$$

$$U(p) = 0 \Rightarrow \left[\frac{\Omega_m(p)}{-C_r(p)}\right]_{U(p)=0} = \frac{G_3(p)}{1 + 2G_1(p).G_2(p).G_3(p).G_4(p)}$$

$$F_1(p) = \frac{2G_1(p).G_2(p).G_3(p)}{1 + 2G_1(p).G_2(p).G_3(p).G_3(p).G_4(p)}$$

$$F_2(p) = \frac{G_3(p)}{1 + 2G_1(p).G_2(p).G_3(p).G_4(p)}$$

Choisissez et justifiez un modèle d'identification de ces fonctions (premier ordre, Question 16.: second ordre etc...).

Modèles d'identification : fonctions du 1er ordre

Justifications : tangente à l'origine non nulle + allure exponentielle décroissante

Déterminez <u>numériquement</u> $F_1(p)$

Déterminez <u>numériquement</u> $F_2(p)$

On pose :
$$F_1(p) = \frac{K_1}{1 + \tau_1 \cdot p}$$

On pose:
$$F_2(p) = \frac{K_2}{1 + \tau_2 \cdot p}$$

$$K_1 = \frac{\omega_m(\infty)}{100} = \frac{17.25}{100} = 0.1725 rad/(sV)$$

$$K_1 = \frac{\omega_m(\infty)}{100} = \frac{17.25}{100} = 0.1725 rad/(sV) \left| K_2 = \frac{-\omega_m(\infty)}{1000} = \frac{0.58}{1000} = 5.8 \cdot 10^{-4} rad/(s \cdot N \cdot m) \right|$$

$$Tr_{5\%} = 3 \cdot \tau_1 = 1.4s$$
 $\tau_1 = 0.47s$

$$\tau_1 = 0.47 s$$

$$Tr_{5\%} = 3 \cdot \tau_2 = 1.4s$$
 $\tau_2 = 0.47s$

$$\tau_2 = 0.47$$
 s

$$F_1(p) = \frac{0.1725}{1 + 0.47 \cdot p}$$

$$F_2(p) = \frac{5.8 \cdot 10^{-4}}{1 + 0.47 \cdot p}$$

Donnez la valeur $\underline{\text{numérique}}$ des trois constantes B, D et T. Question 17.:

D'après le schéma :
$$H(p) = F_2(p) = \frac{K_2}{1 + \tau_2 \cdot p} = \frac{5.8 \cdot 10^{-4}}{1 + 0.47 \cdot p}$$

Et par conséquent :
$$B = \frac{K_1}{K_2} = \frac{0.1725}{5.8 \cdot 10^{-4}} = 297.4 N \cdot m/V$$

$$B = 297.4N \cdot m/V$$

$$D = K_2 = 5.8 \cdot 10^{-4} \, rad \, / \, s \cdot N \cdot m$$
 $T = 0.47 \, s$

$$T = 0.47s$$

Question 18.:

1- Déterminez l'expression du gain « E ».

La transmission implique:

$$E = \frac{D}{2} \cdot k$$

$$v(t) = \frac{D}{2} \cdot \omega(t) = \frac{D}{2} \cdot k \cdot \omega_m(t)$$

Faire une application numérique

$$E = 0.1m$$

2- Déterminez l'expression du gain « F » pour que $\mathcal{E}(t)=0$ entraîne $v_c(t)=v(t)$.

$$\varepsilon(t) = F \cdot v_c(t) - \frac{\mu}{E} v(t) = 0 \text{ quand } v_c(t) = v(t) \text{ si } F = \frac{\mu}{E}$$

$$F = \frac{\mu}{E}$$

Faire une application numérique.

$$F = 7.16V \cdot s / m$$

Question 19. : Justifiez en quelques mots que le système est stable avec ce correcteur.

La fonction de transfert en boucle ouverte est du 1er ordre ⇒ système bouclé stable

Question 20.: On suppose $C_r(p)=0$. Calculez en fonction de C_0 , A', B, G, $et\ V_0$ l'expression de l'écart statique en suivi de consigne \mathcal{E}'_s engendré par une consigne en échelon d'amplitude $V_0=12$ m/s.

La FTBO est de classe nulle donc
$$\epsilon'_s = \frac{V_0}{1 + K_{FTBO}} = \frac{V_0}{1 + C_0 \cdot A' \cdot B \cdot G}$$

$$\varepsilon'_{s} = \frac{V_{0}}{1 + C_{0} \cdot A' \cdot B \cdot G}$$

Faire l'application numérique.

$$\varepsilon'_{s} = 4.286m/s$$

Question 21.: On suppose Vc(p)=0.

1- Calculez en fonction de C_0 , A', B, G, et C_{r0} l'expression de l'écart statique en régulation \mathcal{E} 's engendré par une perturbation échelon d'amplitude C_{r0} =-7270 N.m qui modéliserait la descente des « Arcs ».

$$\frac{V(p)}{Cr(p)} = \frac{-G}{1 + T \cdot p + C_0 \cdot A' \cdot B \cdot G} \qquad \qquad \varepsilon''(p) = -V(p) = \frac{G}{1 + T \cdot p + C_0 \cdot A' \cdot B \cdot G} \cdot Cr(p)$$

$$\varepsilon''_{s} = \lim_{p \to 0} p \cdot \varepsilon''(p) = \frac{Cr_{0} \cdot G}{1 + C_{0} \cdot A' \cdot B \cdot G}$$

$$\varepsilon''_{s} = \frac{Cr_{0} \cdot G}{1 + C_{0} \cdot A' \cdot B \cdot G}$$

Faire l'application numérique.

$$\varepsilon''_{s} = -0.156m/s$$

2- Faire également une application numérique si C_{r0} =+7460 N.m pour la modélisation de la montée vers « La Plagne ».

$$\varepsilon''_{s} = +0.160m/s$$

Question 22. : Donnez **numériquement** l'écart statique total ε_s dans les deux cas suivants :

1- Descente des « Arcs ».

$$\epsilon'_{s} = 4.286 - 0.156$$

$$\varepsilon'_{s} = 4.13 m/s$$

2- Montée vers « La Plagne ».

$$\varepsilon'_{s} = 4.46m/s$$

3- Existe-t-il une valeur de C₀ réaliste pour laquelle le critère « **Ecart statique** en vitesse en présence d'une perturbation échelon » serait vérifié ? Justifiez.

Non car pour annuler cette erreur statique il faudrait un gain Co infini

Question 23.: Donnez l'expression de la fonction de transfert en boucle ouverte du système, notée FTBO(p).

FTBO(
$$p$$
) = $\frac{C_i \cdot A' \cdot B \cdot G}{p \cdot (1 + T \cdot p)}$

$$FTBO(p) = \frac{C_i \cdot A' \cdot B \cdot G}{p \cdot (1 + T \cdot p)}$$

Faire l'application numérique pour
$$C_i=1$$
.
$$FTBO(p) = \frac{1.8}{p \cdot (1+0.47 \cdot p)}$$

Tracez sur la feuille page suivante le diagramme asymptotique de Bode de Question 24.: FTBO(p). Tracez également l'allure des courbes.

La FTBO peut s'écrire :
$$FTBO(p) = \frac{1.8}{p} \times \frac{1}{(1+0.47 \cdot p)}$$

La FTBO est le produit :

- d'un intégrateur de gain 1.8
- d'un premier ordre de gain unitaire et de constante de temps 0.47s (pulsation de coupure 2.13rad/s)

Question 25. :

1. Quelles valeurs $\underline{\text{numériques}}$ de C_i permettent de respecter le critère de « $\underline{\text{Marge de phase}}$ » du cahier des charges ?

$$M\phi \ge 45^{\circ} \quad \Rightarrow \quad \omega_{0dB} \le 2.13 rad/s$$
 soit $\frac{C_i A' BG}{\sqrt{2}} \le 2.13 rad/s$

$$C_i \le \frac{\sqrt{2}}{A'RG} \cdot 2.13 \qquad C_i \le 1.67$$

 $C_i \le 1.67$

2. Ces valeurs de C_i permettent-elles de respecter le critère de « **Pulsation de coupure en boucle ouverte** » du cahier des charges ? Justifiez.

Oui, tant que Ci n'est pas trop petit, le critère de « Pulsation de coupure en boucle ouverte » sera respectée

(remarque : on peut montrer que $\omega_{0dB} \ge 1 rad / s \Rightarrow C_i \ge \frac{(1+T^2)^{1/2}}{A'BG} = 0.61$)

Question 26. :

1. On suppose $C_r(p)=0$. Calculez <u>numériquement</u> l'écart statique en suivi de consigne \mathcal{E}'_s engendré par une consigne en échelon d'amplitude V_0 =12 m/s.

La FTBO est de **classe 1** alors $\varepsilon'_{s} = 0$

$$\varepsilon'_{s} = 0$$

2. On suppose Vc(p)=0. Calculez <u>numériquement</u> l'écart statique en régulation \mathcal{E}''_s engendré par une perturbation échelon d'amplitude C_{r0} =-7270 N.m qui modéliserait la descente des « Arcs ».

Une intégration est placée en amont de la perturbation alors $\varepsilon''_{s} = 0$

$$\varepsilon''_{s} = 0$$

3. Donnez <u>numériquement</u> l'écart statique total $\varepsilon_s = \varepsilon'_s + \varepsilon''_s$.

$$\varepsilon_s = 0$$

Le critère « Ecart statique en vitesse en présence d'une perturbations échelon » est-il vérifié ? Justifiez.

L'écart statique est nul donc le critère est vérifié

Question 27.: On suppose $C_r(p)=0$.

Calculez l'expression de l'écart de traînage ε_{v} engendré par une consigne en rampe unitaire.

Pour une FTBO de **classe 1**, l'erreur de traı̂nage s'exprime : $\varepsilon_v = \frac{a}{K_{FTBO}} = \frac{1}{C_i \cdot A' \cdot B \cdot G}$

$$\varepsilon_{v} = \frac{1}{C_{i} \cdot A' \cdot B \cdot G}$$

Existe-t-il une valeur de C_i réaliste qui permette de vérifier le critère « **Ecart de traînage** (ou écart dynamique) en vitesse en l'absence de perturbations » ? Justifiez.

L'erreur de traînage devant être nulle, C_i doit tendre vers **l'infini**, ce qui est **irréaliste**.

Question 28.: Montrez que le système n'est pas stable sans la fonction $C_a(p)$?

Pour ω_{0dB} la phase vaut -205° donc la marge de phase est négative : le système n'est pas stable

Question 29.: Combien de degrés de phase faut-il ajouter à la pulsation 1 rd/s pour obtenir une phase de -135°?

Degrès de phase à ajouter : -205° + Deg ϕ = -135°

Degrés de phase : 70°

Question 30. : Tracez en fonction de a, τ et K les diagrammes asymptotiques de Bode (amplitude et phase) du correcteur $C_a(p) = K \frac{1 + a.\tau.p}{1 + \tau.p}$ avec a>1. Précisez clairement les amplitudes ou les phases de toutes les asymptotes horizontales en fonction des différents paramètres. Précisez de même les pulsations des points particuliers.

D'après ce qui précède :

$$a = \frac{1 + \sin \phi_{max}}{1 - \sin \phi_{max}} \qquad \text{avec } \phi_{\text{max}} = 70^{\circ}$$

$$a = 32.16$$

Question 32. :

1. Donnez l'expression en fonction de a et τ de la pulsation ω pour laquelle la courbe de phase atteint son maximum.

Etant donné les propriétés de symétrie de la courbe de phase : $\omega = \frac{1}{\sqrt{\tau \cdot a\tau}}$

$$\omega = \frac{1}{\tau \sqrt{a}}$$

2. En déduire la valeur numérique de au pour que $arphi_{
m max}$ soit ajoutée à la pulsation 1 rd/s.

II vient: $\tau = \frac{1}{\sqrt{\sigma}}$

$$\tau = 0.176s$$

<u>Question 33. :</u> Calculez <u>numériquement</u> la valeur à donner à K pour respecter les critères de « **Marge de phase** » et de « **Pulsation de coupure en boucle ouverte** » du cahier des charges ? Précisez la démarche utilisée.

Pour respecter ces 2 critères il faut que la pulsation $\, \omega_{0dB} \,$ soit égale à 1rad/s

Or pour ce correcteur le gain correspondant à son maximum de phase vaut : $20 \cdot log(K \cdot \sqrt{a})$

D'après le diagramme de Bode fourni en annexe 4 il vient :

$$20 \cdot log(K \cdot \sqrt{a}) = -4.2dB$$

$$K = 0.109$$

Question 34.

1. Les critères « Ecart statique en vitesse en présence d'une perturbation échelon » et « Ecart de traînage (ou écart dynamique) en vitesse en l'absence de perturbations » sont-ils vérifiés ? Justifiez.

La FTBO est de **classe 2** alors l'écart statique est nul même en présence d'une perturbation échelon (une intégration au moins placée en amont de la perturbation)

La FTBO est de classe 2 alors l'écart de traînage est nul

2. Ce correcteur permet-il de vérifier les critères du cahier des charges ? Justifiez.

D'après ce qui précède, ce correcteur permet bien de vérifier tous les critères du cahier des charges.

7- Vérification du critère « Energie consommée » de la fonction FP3

Question 35. :

1. Pour chacune des 6 phases, calculez numériquement en Joules l'énergie *Wi* (*i* variant de 1 à 6) produite ou consommée par le téléphérique, c'est-à-dire par l'ensemble des 2 moteurs.

o) produite od consommee par le telephenque, e est a dire par rensemble des 2 moteurs.		
0 <t<30 s<="" td=""><td>30<t<71 s<="" td=""><td>71<t<127 s<="" td=""></t<127></td></t<71></td></t<30>	30 <t<71 s<="" td=""><td>71<t<127 s<="" td=""></t<127></td></t<71>	71 <t<127 s<="" td=""></t<127>
$W_1 = 2 \times -110 \times 678 / 2 \times 30$	$W_2 = 2 \times -364 \times 678 \times 41$	$W_3 = 2 \times 72 \times 695 \times 56$
$W_{I} = -2.24 \ MJ$	$W_2 = -20.24 \ MJ$	$W_3 = 5.6 \ MJ$
127 <t<149 s<="" td=""><td>149<t<177 s<="" td=""><td>177<t<235 s<="" td=""></t<235></td></t<177></td></t<149>	149 <t<177 s<="" td=""><td>177<t<235 s<="" td=""></t<235></td></t<177>	177 <t<235 s<="" td=""></t<235>
$W_4 = 2 \times 508 \times 712 \times 22$	$W_5 = 2 \times 190 \times (712 + 63) / 2 \times 28$	$W_6 = 2 \times 448 \times 63 \times 58$
W. 45.04.44	W 440 444	W 0.07 M/
$W_4 = 15.91 \; MJ$	$W_5 = 4.12 \ MJ$	$W_6 = 3.27 \text{ MJ}$

2. En déduire numériquement l'énergie W consommée pour le trajet entre « Les Arcs » et « La Plagne ».

W=6.44~MJ

Calculez en euros le coût d'un trajet sur une base de 12 centimes le kilowattheure.

 $1 \, kWh = 3600 \, kWs = 3.6 \, MJ$

d(où une consommation de W = 6.44/3.6 = 1.79kWh

Coût = 1.79 x 12 centimes

Coût = 21.47 centimes

Le critère « Energie consommée pour un trajet sans vent contraire. » est-il vérifié ? Justifiez.

Le critère est bien vérifié 6.44 MJ < 10 MJ

3. Quelle énergie $W_{\it Max}$ aurait-on consommée sans le système de récupération ?

$$W_{Max} = W_3 + W_4 + W_5 + W_6$$

 $W_{Max} = 28.92 \ MJ$

Conclure sur l'intérêt de ce dispositif de récupération d'énergie.

Grâce à ce dispositif, la consommation a ainsi été réduite par 4.5 fois

Etude du téléphérique Vanoise Express E3A PSI 8- Conception partielle de la fonction FP2 : « Assurer la sécurité des passagers ». Questions 36. 1&2 : Pression Pression Frein à patin de service Moteur de Réducteur secours