Tercera sesión

Análisis Convexos - CM3E2

Jonathan Munguia¹

^{1,2}Facultad de Ciencias Universidad Nacional de Ingeniería

20 de abril de 2021

- Conos
 - Definición

- Hiperplanos
 - Hiperplanos

- Conos
 - Definición

- 2 Hiperplanos
 - Hiperplanos

Definición 1 (Cono)

 $K \subset \mathbb{R}^n$ es un cono, si

$$\forall x \in K, \ \forall \lambda > 0 : \ \lambda x \in K$$
.

Proposición 1

- i) Si K es un cono, entonces este es convexo si y solo si $K + K \subset K$.
- ii) La intersección de conos es un cono.

Demostración

i) Sea $z \in K + K$, entonces $\exists x, y \in K$ t.q. z = x + y. Como K es un cono dado $t \in (0,1)$, se tiene que $\frac{x}{t}$, $\frac{y}{1-t} \in K$. Por lo tanto, por la convexidad de K:

$$z = t\left(\frac{x}{t}\right) + (1-t)\left(\frac{y}{1-t}\right) \in K$$
.

4□▶ 4□▶ 4□▶ 4□▶ 4□▶ 9○○

Definición 2 (Cápsula cónica)

Sea $S \subset \mathbb{R}^n$. La cápsula cónica de S se define como

$$cono(S) := \bigcap \{ C : C \text{ es cono y } S \subset C \}$$

Proposición 2

Sea $S \subset \mathbb{R}^n$. Se cumple

- i) $cono(S) = {\lambda x : x \in S, \lambda > 0}.$
- ii Si S es convexo, entonces cono(S) es convexo.

Demostración

i) Sea D el conjunto del lado derecho, luego este conjunto contiene a S y es un cono. Por tanto el cono $(S) \subset D$.

Demostración (cont...)

- i) $\operatorname{cono}(S)$ es un cono, debido a la intersección de conos, por tanto contiene a λy para todo $y \in \operatorname{cono}(S)$ y para todo $\lambda > 0$, en particular contiene a D.
- ii) Sea $K = \operatorname{cono}(S)$, es suficiente ver que $K + K \subset K$. Dado $z \in K + K$, existen $x, y \in K$ y luego $\exists \lambda_1, \lambda_2 > 0$ y $s_1, s_2 \in S$ t.q. $x = \lambda_1 s_1 \ \land \ y = \lambda_2 s_2$. Por tanto, de la convexidad de S y que K es cono:

$$z = \lambda_1 s_1 + \lambda_2 s_2$$

$$= (\lambda_1 + \lambda_2) \underbrace{\left[\frac{\lambda_1}{\lambda_1 + \lambda_2} s_1 + \frac{\lambda_2}{\lambda_1 + \lambda_2} s_2\right]}_{\in S} \in K.$$

4 D > 4 A > 4 B > 4 B > B 9 Q C

Figura: Cápsula cónica de una circunferencia

Definición 3 (Cono convexo)

 $K \subset \mathbb{R}^n$ es un cono convexo, si es un cono y es convexo, i.e.

$$\forall x_1, x_2 \in K, \ \forall \lambda_1, \lambda_2 > 0 : \lambda_1 x_1 + \lambda_2 x_2 \in K.$$

Ejemplo 1

- Los subespacios de \mathbb{R}^n son conos convexos.
- Los semiespacios (cerrado y abiertos) correspondientes a un hiperplano que pasa por el origen son conos convexos.
- Son conos convexos: El octante nonegativo de \mathbb{R}^n :

$$\{x = (\xi_1, \dots, \xi_n) : \xi_i \ge 0, i = 1, \dots, n\}.$$

Definición 4 (combinación lineal positiva)

Dado $S \subset \mathbb{R}^n$. Se define una combinación lineal positiva de $x_1, x_2, \dots, x_p \in S$ como:

$$\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_p x_p$$
 t.q. $\lambda_i > 0$ $i = 1, \dots, p$.

A menudo se le llama combinación cónica de S.

Proposición 3

 $S \subset \mathbb{R}^n$ es un cono convexo si y solo si contiene a todas sus combinaciones lineales positivas.

Definición 5 (Cápsula convexa cónica)

Sea $S \subset \mathbb{R}^n$. La cápsula convexa cónica de S se define como

$$cono-convexo(S) := \bigcap \{ C : C \text{ es cono convexo y } S \subset C \}$$

Proposición 4

Para todo $S \subset \mathbb{R}^n$, su cápsula convexa cónica admite la representación:

$$cono-convexo(S) = \left\{ \sum_{i=1}^{p} \lambda_i x_i \mid x_i \in S, \ \lambda_i > 0, \ p \in \mathbb{N} \right\}.$$

Observación 1

Si S es convexo, entonces su cásula cónica y cásula cónica covexa coinciden. S no convexo no implica que su cásula cónica sea no convexa.

- Conos
 - Definición

- 2 Hiperplanos
 - Hiperplanos

- Conos
 - Definición

- 2 Hiperplanos
 - Hiperplanos

Definición 6 (Hiperplano)

 $H \subset \mathbb{R}^n$ se dice hiperplano \mathbb{R}^n si es la traslación de un subespacio de dimensión n-1. Es decir, $\{x \in \mathbb{R}^n : x \perp a\}$ con $a \neq 0$.

Proposición 5

 $H \subset \mathbb{R}^n$ es un hiperplano si y solo si existen $a \in \mathbb{R}^n \setminus \{0\}$ y $b \in \mathbb{R}$ tal que $H := \{x \in \mathbb{R}^n : \langle x, a \rangle = b\}$. Al vector a llamaremos vector normal de H.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Observación 2

Analíticamente H es el conjunto solución de una ecuación lineal no trivial entre los componentes de x. Además H es un espacio afín.

Proposición 6

 $M\subset\mathbb{R}^n$ es un subespacio afín de \mathbb{R}^n si y solo si existen $b\in\mathbb{R}^n$ y $B\in\mathbb{R}^{m imes n}$ tal que

$$M = \{x \in \mathbb{R}^n : Bx = b\}.$$

Demostración

- ←) M es afín gracias a la linealidad de B.
- \Rightarrow) Si $B = 0 \in \mathbb{R}^{1 \times n}$ y $b \neq 0$ entonces $M = \emptyset$.

Si
$$B = 0 \in \mathbb{R}^{1 \times n}$$
 y $b = 0$ entonces $M = \mathbb{R}^n$.

Demostración (cont...)

 \Rightarrow) Si $M \neq \emptyset$ y \mathbb{R}^n , entonces existen $a \in \mathbb{R}^n$ y un subespacio L de \mathbb{R}^n tal que M = L + a. Supongamos que dim $L^{\perp} = m$. Sea $\{b_1, \dots, b_m\}$ una base de L^{\perp} . Entonces,

$$L = (L^{\perp})^{\perp} = \{x : \langle x, y \rangle = 0 \ \forall y \in L^{\perp}\}$$

= \{x : \langle x, b_i \rangle = 0, i = 1, \cdots, m\}
= \{x : Bx = 0\},

donde B es la matriz cuyas filas son los b_i . Así, se tiene

$$M = \{x + a : Bx = 0\}$$

= $\{y : B(y - a) = 0\}$
= $\{y : By = b\}$ con $b = Ba$.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Observación 3

- Si M es unitario entonces de la demostración anterior se toma m=n, obteniendo B una matriz cuadrada invertible. Además, L es el espacio vectorial de dimensión nula.
- Un subespacio afín se puede ver como el conjunto solución de un sistema lineal de ecuaciones.

Definición 7

Dos hiperplanos son paralelos si sus respectivos vectores normales son paralelos.

Corolario 1

Cada subespacio afín de \mathbb{R}^n es una intersección de una colección finita de hiperplanos.

Demostración

Sea $M=\{x\in\mathbb{R}^n:Bx=b\}$ un subespacio afín. Si $b=(\beta_1,\cdots,\beta_m)$ y b_i es la i-ésima fila de B, entonces

$$M = \bigcap_{i=1}^{m} H_i \quad \wedge \quad H_i = \{x : \langle x, b_i \rangle = \beta_i\}.$$

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Demostración (cont...)

Se tiene los sgtes casos:

- i) Si $b_i \neq 0$, entonces H_i es un hiperplano.
- ii) Si $b_i = 0$ y $\beta_i \neq 0$, entonces $H_i = \emptyset$.
- iii) Si $b_i = 0$ y $\beta_i = 0$, entonces $H_i = \mathbb{R}^n$.

El vacío se puede ver como la intersección de 2 hiperplanos paralelos diferentes. Y \mathbb{R}^n como la intersección de la colección vacía de hiperplanos de \mathbb{R}^n .

FIN

17 / 17