Chapter-2

- Chapter-2
 - 1 Descriptions: Positions, Orientations, and Frames
 - Position
 - Orientations
 - Frames
 - 2 Mappings
 - Translation
 - Rotation
 - Axis
 - General Frames
 - Algorithm

1 - Descriptions: Positions, Orientations, and Frames

Position

Any point could be located in the universe with a 3×1 **position vector** once a coordinate system is established. And the notation for the position of A is AP , which is defined by

$${}^AP = egin{bmatrix} p_x \ p_y \ p_z \end{bmatrix}$$

Orientations

In order to describe the orientation of body, we will *attach a coordinate system to the body* and then give a description of this coordinate system **relative to** the reference system.

One way to describe the body-attached coordinate system $\{B\}$, is to write the unit vectors of its three principal axes in terms of the coordinate system $\{A\}$

The principal directions of $\{B\}$ is defined as \hat{X}_B , \hat{Y}_B and \hat{Z}_B . If the terms of coordinate system $\{A\}$, they are called ${}^A\hat{X}_B$, ${}^A\hat{Y}_B$ and ${}^A\hat{Z}_B$, whose combination will be called as a **rotation matrix**, where $\{B\}$ is relative to $\{A\}$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} ar{A} & A & A & \hat{X}_B \cdot \hat{X}_A & \hat{Z}_B \cdot \hat{X}_A \ ar{A} & \hat{X}_B \cdot \hat{X}_A & \hat{X}_B \cdot \hat{X}_A \ ar{X}_B \cdot \hat{Y}_A & \hat{Y}_B \cdot \hat{Y}_A & \hat{Z}_B \cdot \hat{Y}_A \ ar{X}_B \cdot \hat{Z}_A & \hat{Y}_B \cdot \hat{X}_A & \hat{Z}_B \cdot \hat{Z}_A \ \end{pmatrix} \end{aligned}$$

since ${}^A_BR={}^B_AR^T$ and ${}^A_BR\cdot {}^B_AR^T=I$, we can know that the rotation matrix is **a orthogonal matrix**

Frames

A frame is defined as the set of four vectors giving position position and orientation information

2 - Mappings

Translation

according to the spacial relationship, translation could be simply calculated by addition

$$^{A}P = ^{B}P + ^{A}P_{BORG}$$

Rotation

according to the definition of the rotation matrix, rotation could be simply calculated by multiply

$$^{A}P = {}^{A}_{B}R {}^{B}P$$

Axis

X axis

$$R_x(heta) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{bmatrix}$$

Y axis

$$R_y(heta) = egin{bmatrix} \cos heta & 0 & \sin heta \ 0 & 1 & 0 \ -\sin heta & 0 & \cos heta \end{bmatrix}$$

Z axis

$$R_z(heta) = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

General Frames

according to the translation and rotation, the general transform could be written into

$$\begin{bmatrix} ^AP \\ 1 \end{bmatrix} = \begin{bmatrix} & ^ABR & | ^AP_{BORG} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} ^BP \\ 1 \end{bmatrix}$$

Algorithm

- if the tool frame is to be rotated or translated about the k_{th} unit vector of the **reference frame**, then **pre-multiply** it by the general frames
- if the tool frame is to be rotated or translated about its own k_{th} unit vector, then post-multiply it by the general frame