AKADEMIA GÓRNICZO-HUTNICZA

Wydział Informatyki Kierunek Informatyka

Teoria Współbieżności

Laboratorium 8

Petri Nets

Kyrylo Iakymenko

1 Zadanie 1

Rysunek 1: Maszyna stanów

Rysunek 2: Graf osiągalności maszyny stanów

1.1 Analiza grafu osiągalności

- Jak widać na grafie osiągalności wszystkie stany są osiągalne.
- Sieć jest zachowawcza i 2 ograniczona, ale nie jest bezpieczna.

- Każde przejście jest krawędzią w grafie.
- Sieć jest żywa.

1.2 Analiza niezmienników

Wiemy, że wszystkie możliwe rozkłady dwóch zasobów sieci są osiągalne. Więc jedynym niezmiennikiem miejsc jest $P_0+P_1+P_2+P_3=2$, mówiący nam o tym, że sieć jest zachowawcza.

Podobna sytuacja z niezmiennikami przejść. Możemy wrócić do stanu początkowego przez dowolną krawędź w dwóch krokach.

2 Zadanie 2

Rysunek 3: Sieć z podanego przykładu

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-invariants, therefore we do not know if it is bounded and live.

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

M(P0) + M(P1) + M(P2) = 1

Analysis time: 0.001s

Rysunek 4: Niezmienniki sieci z podanego przykładu

Rysunek 5: Graf osiągalności

2.1 Graf osiągalności

W miejscu P_3 może wystąpić dowolnie duża liczba, więc graf osiągalności jest nieskończony.

2.2 Analiza niezminników przejść

Sieć nie jest odwracalna, ponieważ tranzycja T_2 będzie za każdym razem na- mnażać znaczników w miejscu P_1 . Z tego powodu po jej wywołaniu nie da się już powrócić do znakowania początkowego.

3 Zadanie 3

q

Rysunek 6: Sieć reprezentująca wzajemne używanie zasobów

3.1 Analiza niezminników sieci

Równanie pierwsze chroni nam sekcję krytyczną.

Petri net invariant analysis results

T-Invariants

T2	тз	Т4	Т5	Т6	T7
0	1	1	1	0	1
1	0	0	0	1	0

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

P0	P2	ΡЗ	Р4	Р5	Р6
1	1	1	1	1	0
0	1	0	0	0	1

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

 $\begin{array}{c} M(P0) + M(P2) + M(P3) + M(P4) + M(P5) = 1 \\ M(P2) + M(P6) = 1 \end{array}$

Rysunek 7: Niezmienniki sieci

Równanie drugie wskazuje na to, że w każdym momencie dokładnie jeden z procesów po prawej stronie sieci jest uruchomiony.

4 Zadanie 4

Rysunek 8: Sieć reprezentująca bufor ograniczony

Petri net invariant analysis results

T-Invariants

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

 $\begin{aligned} & M(P0) + M(P1) + M(P2) = 1 \\ & M(P3) + M(P4) + M(P5) = 1 \\ & M(P6) + M(P7) = 3 \end{aligned}$

Rysunek 9: Niezminniki sieci

4.1 Analiza niezmienników

Tak, sieć jest zachowawcza. Za pojemność bufora odpowiada ostatnie równanie.

5 Zadanie 5

Rysunek 10: Sieć reprezentująca bufor nieograniczony

Reachability/Coverability Graph Results

There are 8334 states with 10002 arcs. The graph is too big to be displayed properly.

Rysunek 11: Niezminniki sieci

5.1 Analiza niezmienników

Można łatwo zaobserwować, że ze względu na bufor (P_2) sieć nie będzie ograniczona ani tym bardziej bezpieczna. Nie będzie także zachowawcza.

5.2 Graf osiągalności

Jak widzimy graf osiągalności jest za duży, żeby program go narysował. Czego warto było się spodziewać, gdyż sieć nie jest ograniczona.

Rysunek 12: Sieć z deadlockiem

Rysunek 13: Graf osiągalności

Petri net state space analysis results

Bounded true
Safe true
Deadlock true
Shortest path to deadlock: T0 T2 T4 T0

Rysunek 14: Niezminniki sieci

6 Zadanie 6

6.1 Graf osiągalności

Jak widzimy graf osiągalności posiada sekcje z których nie da się wyjść (zaznaczone na czerowno). Gdy sieć wchodzi do tego stanu następuje zakleszczenie.

6.2 Analiza przestrzeni stanów

Obecność zakleszczenia możemy także zaobserwować w tabeli analizującej przestrzeń stanów naszej sieci.