Лабораторная работа № 1

ИЗУЧЕНИЕ ЭЛЕКТРОННОГО ОСЦИЛЛОГРАФА

Цель работы: ознакомление с устройством электронного осциллографа; изучение с помощью этого прибора процессов в простых электрических цепях.

Приборы и оборудование:

- 1. Электронный осциллограф С1—83 или С1-93.
- 2. Звуковой генератор ГЗ—112 или ГЗ-113.
- 3. Модуль «ФПЭ-09/ПИ».
- 4. Источник питания «ИП»,
- 5. Комплект соединительных кабелей.

СОДЕРЖАНИЕ РАБОТЫ

Устройство электронного осциллографа

Электронный осциллограф — прибор, предназначенный для исследования быстропротекающих процессов в электрических цепях.

Рис.1.1 Схема получения изображения временной зависимости y = f(t).

экране электроннолучевой трубки осциллографа можно изображение зависимостей получить графическое видов: временных y = f(t) и функциональных y = f(x). В первом случае функциональное отклонение луча осуществляется с постоянной скоростью, для чего на пластины X от внутреннего генератора развертки напряжение, увеличивающееся подается пропорционально времени t (пилообразное напряжение) (рис.1.1). Во втором случае развертка по горизонтали осуществляется напряжением сигнала, пропорционального какой-либо величине х. Основные узлы осциллографа приведены на рис.1.2.

Рис.1.2. Блок-схема осциллографа.

Электронно-лучевая трубка (ЭЛТ)

По принципу отклонения и фокусировки электронного луча различают два вида ЭЛТ: электростатические и магнитные.

На рис.1.3 показано устройство электростатической трубки. Внутри стеклянного баллона, откачанного до давления 10^{-4} Па, помещается ряд электродов. Источником электронов служит оксидный подогревный катод K, окруженный цилиндром M с маленьким отверстием в центре. Этот электрод называется управляющим, или модулятором. Регулируя отрицательный потенциал этого электрода, можно менять ток пучка и, соответственно, яркость изображения.

Рис.1.3. Устройство электростатической трубки.

Электроны, прошедшие отверстие в управляющем электроде, ускоряются электрическим полем фокусирующего электрода Ф (первого анода), так как он имеет положительный потенциал относительно катода. Пройдя ограничивающие диафрагмы фокусирующего электрода, пучок ускоряется вторым анодом A, на который подается положительное напряжение порядка 1000 В.

Проходя в зазорах между электродами, где сосредоточено электростатическое поле, электроны пучка помимо ускорения испытывают радиальное смещение и отклоняются к оси. Действие таких электрических полей похоже на действие оптических линз. Это помогает понять рис.1.4.

Влетая слева в зазор между электродами Φ и A, электрон отклоняется полем сначала вниз, а затем вверх от горизонтальной оси, те. слева поле действует как собирающая поверхность линзы, а справа как рассеивающая. Одновременно электрон ускоряется электрическим полем и его осевая скорость справа υ_2 становится больше скорости

слева υ_1 . Поле сильнее искривляет траекторию медленного электрона, чем более быстрого. Поэтому собирающее действие электронной линзы преобладает над ее рассеивающим действием, в результате чего линза отклоняет электроны пучка к оси, т.е. всегда является собирающей. Меняя потенциал одного из электродов, например потенциал электрода Φ (ручка (« Φ OKYC»), можно легко регулировать преломляющую силу электронной линзы и фокусировать пучок на экране трубки.

Рис.1.4. Принцип фокусировки электронного пучка.

Выйдя из второго анода, электронный луч проходит между двумя парами пластин, которые отклоняют его двух взаимно перпендикулярных направлениях Х и У. Величина смещения пятна на флуоресцирующем экране пропорциональна приложенному пластинам напряжению. Убедиться в том, что это именно так, можно, решив задачу отклонения пучка полем в плоском конденсаторе (см.раздел «Чувствительность прибора»).

Усилители сигналов

Напряжение, требуемое для полного вертикального отклонения электронного пучка вдоль экрана (без усиления) составило бы 200...300 В. Чтобы получить заметное отклонение луча для очень малых сигналов: ~ 0,01 В, необходимо иметь дополнительное усиление в десятки тысяч раз. Усилитель канала «Х» имеет обычно меньший коэффициент усиления — 100...1000.

Усилители каналов «У» имеют калиброванные ступенчатые и плавные регуляторы коэффициентов усиления.

Генератор развертки

Как уже упоминалось выше, для того, чтобы на экране осциллографа можно было увидеть как в каком-либо физическом процессе некоторая величина у изменяется в зависимости от поведения (y = f(x)), необходимо на горизонтально другой величины \boldsymbol{x} отклоняющие пластины подать напряжение U_{x} , пропорциональное величине x, а на вертикально отклоняющие пластины одновременно напряжение пропорциональное величине U_{v} , электронный луч на экране начертит кривую, соответствующую зависимости y = f(x). Если заставить луч многократно повторять свой путь по экрану, то вследствие инерционности глаза наблюдатель увидит неподвижный график зависимости y = f(x).

На практике часто приходится наблюдать изменение различных физических величин от времени, т.е. функции вида y = f(t). При этом на вертикально отклоняющие пластины необходимо подать напряжение, пропорциональное исследуемой величине y, а на горизонтально отклоняющие пластины — напряжение, изменяющееся линейно со временем t.

Напряжение, величина которого меняется пропорционально времени, называется «пилообразным» напряжением и вырабатывается в осциллографе специальным «генератором развертки» (рис.1.2, 1.5).

Частоту развертки можно регулировать, что позволяет менять скорость горизонтального перемещения луча и исследовать сигналы разной длительности.

Генератор одновременно вырабатывает импульс подсветки луча во время прямого хода. Действие этого модулирующего импульса прекращается в конце периода развертки, поэтому обратный ход луча на экране не Генератор может работать виден. непрерывном автоколебателъном режиме исследовании при непрерывных периодических процессов и в ждущем режиме при исследовании прерывистых процессов. В последнем случае напряжение развертки вырабатывается только с приходом на вход осциллографа исследуемого импульсного сигнала. Следующий цикл развертки может начаться лишь с поступлением следующего запускающего импульса.

Синхронизатор

Для получения на экране трубки четкой картины необходимо, чтобы все периодически возникающие изображения накладывались

одно на другое. Это условие обеспечивается блоком синхронизации (Рис.1.2).

В режиме внутренней синхронизации запуск развертки принудительно начинается с приходом сигнала в момент времени, когда напряжение сигнала некоторого Блок достигает порога. синхронизации вырабатывает короткий заставляющий сработать импульс, генератор выработать пилообразное напряжение. Это позволяет каждый раз с приходом сигнала как бы совмещать нуль оси времени, что и требуется (Рис.1.5).

При необходимости сравнения длитель- Рис.1.5. Синхронизациягенератора ности различных процессов, измерении- развертки исследуемым сигналом ях фазы и т.п. за нуль оси времени можно выбрать момент появления другого сигнала, который и будет запускать генератор в режиме внешней синхронизации.

Регулировка порога срабатывания синхронизатора обеспечивается ручкой «*Уровенъ запуска*».

Калибраторы

Для градуировки вертикальной оси «У» в единицах напряжения осциллограф снабжен специальным встроенным генератором, вырабатывающим напряжение известной амплитуды. Для градуировки горизонтальной оси времени используется эталонный синусоидальный генератор известной частоты, т.е. с известным периодом.

Канал «Z»

В современных осциллографах имеется еще один канал, используемый для модуляции внешним сигналом интенсивности пучка и, соответственно, яркости. Усиленное напряжение сигнала прикладывается между катодом и управляющим электродом трубки. Вход этого канала обозначается на панели «Z- ось».

Блок питания вырабатывает необходимые напряжения для питания трубки, ламп и транзисторов.

Чувствительность прибора

Как уже сказано выше, на пути к экрану электронный пучок проходит между двумя парами отклоняющих пластин. Разность потенциалов U, приложенная к пластинам, создает между ними электрическое поле напряженностью Eкоторое отклоняет пятно по электронный луч и перемещает светящееся экрану. Горизонтально расположенные пластины отклоняют луч по вертикали (вдоль оси у), а вертикально расположенные — по горизонтали (вдоль х). Установим связь между напряжением на вертикально отклоняющих пластинах U и величиной смещения y_{I} на экране (см.рис.1.6).

Электрон с массой m влетает в однородное электрическое поле со скоростью $\upsilon_0 = \upsilon_z$. Вдоль оси z на электрон не действуют никакие силы (движение по инерции), поэтому в направлении z он движется равномерно:

$$z = v_0 \cdot t \tag{1.1}$$

Рис.1.6. Два участка траектории электрона на пути к экрану.

В зазоре вертикально отклоняющих пластин на электрон действует кулоновская сила

$$\vec{F} = e \cdot \vec{E} \tag{1.2}$$

Так как $\vec{F} = const$, движение электрона вдоль оси y на участке длиной l будет равноускоренным (рис.1.6):

$$v_{y} = a \cdot t \quad , \quad y = a \cdot \frac{t^{2}}{2} \tag{1.3}$$

Величину ускорения а найдем из второго закона Ньютона:

$$a = \frac{F}{m} = \frac{e \cdot E}{m}, \quad a = \frac{e \cdot U}{m \cdot d}$$
 (1.4)

где d — расстояние между пластинами.

Так как E=U/d , то смещение электрона вдоль оси у равно

$$y = \frac{e \cdot U \cdot t^2}{2 \cdot m \cdot d} \tag{1.5}$$

Учитывая, что время пролета электроном участка длиной l равно $t=l/\upsilon_0$, для смещения $\ y_l$ в конце пластин получаем

$$y_l = \frac{e \cdot U \cdot l^2}{2 \cdot m \cdot d \cdot v_0^2} \tag{1.6}$$

Из этой формулы видно, что траектория электрона на участке 1 между пластинами представляет собой параболу. Сразу же при выходе из пространства между отклоняющими пластинами электрон сместится относительно первоначального направления движения на некоторый угол α (см.рис.1.6), который определяется по формуле:

$$tg\alpha = \frac{v_y}{v_0} = \frac{a \cdot t}{v_0} = \frac{e \cdot U \cdot l}{m \cdot d \cdot v_0^2}$$
 (1.7)

Зная $tg\alpha$, найдем смещение светящегося пятна на экране:

$$y_{L} = y_{l} + (L - l) \cdot tg\alpha = \frac{e \cdot U \cdot l \cdot (2 \cdot L - l)}{2 \cdot m \cdot d \cdot v_{0}^{2}}$$

$$(1.8)$$

или, поскольку расстояние l много меньше L

$$y_L = \frac{e \cdot l \cdot L}{m \cdot d \cdot v_0^2} \tag{1.9}$$

Итак, смещение луча на экране *пропорционально* напряжению на отклоняющих пластинах.

Отклонение пятна на экране (в миллиметрах) δ_y , вызванное напряжением в один вольт на отклоняющих пластинах, называется чувствительностью трубки:

$$\delta_{y} = \frac{y_{L}}{U} = \frac{e \cdot l \cdot L}{m \cdot d \cdot v_{0}^{2}}$$
 (1.10)

Если U_0 — потенциал второго анода A относительно катода К (рис.1.3), то кинетическая энергия электрона определяется из уравнения

$$\frac{m \cdot \mathbf{v}_0^2}{2} = e \cdot U_0 \tag{1.11}$$

откуда имеем

$$v_0^2 = \frac{2 \cdot e \cdot U_0}{m} \tag{1.12}$$

Тогда чувствительность электронной трубки равна

$$\delta_{y} = \frac{l \cdot L}{2 \cdot d \cdot U_{0}} \tag{1.13}$$

и зависит от расстояния между пластинами d, от расстояния до экрана L, а также от ускоряющего напряжения U_0 между вторым анодом A и катодом К.

Лицевая панель осциллографов С1-93 и С1-83

Рабочая часть экрана ЭЛТ осциллографа разбита координатной сеткой на десять делений по горизонтали и восемь делений по вертикали.

Кнопкой «ПИТАНИЕ» осциллограф включается в сеть, при этом загорается сигнальная лампочка;

- «Фокус» ручка для регулировки размеров луча.

«↔» «↓» — ручки для сдвига луча по осям X и У;

« \rightarrow » - гнезда для подачи исследуемых напряжений в каналы «I-У», «II—У» и канал «Х»; — переключатели входов каналов «У» на «открытый» (=) и «закрытый» (\sim). При закрытом входе сигнал на усилитель подается через конденсатор и не пропускается постоянная составляющая сигнала.

Ступенчатый переключатель «V/дел» вместе с ручкой плавной регулировки, расположенной на одной с ним оси, позволяют изменять размер изображения по вертикали При откалиброванном усилителе «У» (см.ниже) и зафиксированном положении ручки плавной регулировки в крайнем правом положении (ручка повернута по часовой стрелке до

щелчка), переключатель показывает *цену деления* вертикальной шкалы в вольтах. Переключатель «V/ДЕЛ» при калибровке усилителей каналов «У» ставится в положение « ∇ 6 ДЕЛ».

Ступенчатый переключатель «ВРЕМЯ/ДЕЛ» вместе с ручкой плавной регулировки позволяет изменять частоту генератора развертки, «СИНХРОНИЗАЦИЯ который включается кнопкой ВНУТР», расположенной в правой части панели осциллографа. В крайнем правом положении ручки «ПЛАВНО» (ручка повернута по часовой стрелке до откалиброванном усилителе канала горизонтального щелчка) отклонения, цена деления шкалы времени определяется по указателю «ВРЕМЯ/ДЕЛ» (в секундах, переключателя миллисекундах микросекундах).

Синхронизация генератора развертки может осуществляться как исследуемым напряжением, так и внешним сигналом, поданным на гнездо «Х» (справа внизу).

Нужный режим синхронизации устанавливается кнопками и тумблерами. Ручка «УРОВЕНЬ» позволяет добиться устойчивого изображения на экране при любом режиме синхронизации (внутренней или внешней).

Тумблер с обозначениями «Д» и «У» устанавливает блок синхронизации соответственно в режимы автоматического и ручного регулирования.

Кнопки с обозначениями «I», «...», «I+II», « \longrightarrow » и «II» служат для выбора режима работы поканально:

- «I» включен только первый канал;
- «II» включается только второй канал;
- ${
 m «I+II}{
 m »}$ на экране наблюдается алгебраическая сумма сигналов с каналов «I» и «II».
- «...» на экране наблюдается изображение сигналов обоих каналов одновременно; их переключение осуществляется с частотой 100 кГц внутренним коммутатором; режим используется при высоких частотах сигналов;
- $\ll \to \to \gg$ на экране также наблюдается изображение сигналов обоих каналов, но их переключение осуществляется поочередно при каждом ходе развертки. Этот режим предпочтителен при низких частотах сигналов.

В осциллографе C1-83 имеются еще переключатели усиления каналов в 10 раз (совмещены с ручкой « \updownarrow »).

Для получения векторного сложения двух сигналов второй сигнал подается на вход «Х» (в C1-83 на вход канала «І») и включается канал «Х» кнопкой « \longrightarrow Х» в C1-93 или кнопками «Х-У» в C1-83. Внутренний генератор развертки при этом отключается.

Проведение измерений на осциллографе

Исходная установка

Установить ручки органов управления на лицевой панели в следующие положения

- О («яркость») крайнее левое;
- («фокус») среднее;
- «V/ДЕЛ» «0,02» («5mV» для С1-83), ручку плавной регулировки защелкнуть в правом положении;

«= ⊥~» - \bot (вход «У» замкнут на корпус);

переключатель каналов установить в положение « $\rightarrow \rightarrow$ »; СИНХРОНИЗАЦИЯ - «ВНУТР.», канал «I», «ABT»;

«УРОВЕНЬ» — среднее;

кнопка масштаба развертки — в положение «x1»;

«ВРЕМЯ/ДЕЛ» - «1mS», ручка «ПЛАВНО» - защелкнута.

Включение прибора

Включите кнопку «Питание». Дайте прибору прогреться 2-3 минуты и установите подходящую яркость изображения. Включите канал «I».

Ручкой ↔ канала «I» совместите линию развертки с центром экрана.

Ручкой «ФОКУС» установите одинаковую четкость изображения по всей линии луча.

Калибровка усилителей осциллографа

Установите переключатель «V/ДЕЛ» канала «I» в положение « ∇ 6 ДЕЛ», а ручку меньшего диаметра защелкните в крайнем правом положении. Если величина появившегося изображения калибровочных импульсов не равна 6 делениям, то необходима калибровка. Для этого потенциометром « ∇ », выведенным под шлиц на переднюю лицевую панель слева, установите величину изображения по вертикали, равную 6 делениям. После этого цифры на шкале ступенчатого регулятора адекватны «ЦЕНЕ» БОЛЬШОГО ДЕЛЕНИЯ оси У на экране в ВОЛЬТАХ.

Калибровка коэффициента усиления канала «II» проводится аналогично.

После калибровки осциллограф готов к измерениям.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Задание 1. Исследование синусоидального сигнала.

1.Соберите рабочую схему в соответствии с принципиальной, изображенной на рис.1.7. На модуле «ПИ/ФПЭ-09» нажмите кнопку «~». Включите приборы. После прогрева установите частоту генератора 100 Гц и выходное напряжение ~ 3 В (ступенчатый аттенюатор «⊲dВ» - в положении «10», а ручка плавной регулировки выходного напряжения «✓¬» повернута вправо до конца).

Рис.1.7. Схема для наблюдения периодических сигналов U(t).

- 2. Манипулируя переключателями усиления («V/ДЕЛ»), длительности развертки («ВРЕМЯ/ДЕЛ») и ручкой «УРОВЕНЬ», получите устойчивое изображение нескольких периодов синусоиды в пределах экрана.
- 3. Определите длительность периода T колебаний по шкале на экране, рассчитайте частоту по формуле f = 1/T и сравните ее с частотой сигнала генератора Γ 3—112.
- 4. Измерьте размах сигнала в делениях шкалы и подсчитайте амплитудное значение напряжения $U_{\scriptscriptstyle M}$ в вольтах.

5. Определите амплитудное значение напряжения, измерив эффективное значение последнего $U_{\it eff}$ цифровым вольтметром B7-40 (род работы установите - «U ~»):

$$U_{\scriptscriptstyle M} = \sqrt{2} \cdot U_{\scriptscriptstyle eff}$$

Сравните величины $U_{\scriptscriptstyle M}$, определенные указанными двумя способами. Вычислите относительное отклонение.

Проделайте такие же измерения и вычисления для сигналов генератора при других частотах, например, 500 Гц, 1 кГц, 10 кГц, 1 Мгц. Составление таблицы наблюдений не требуется.

Задание 2. Исследование импульсного сигнала.

- 1. Нажмите кнопку «Л» на модуле «ПИ/ФПЭ-09».
- 2. Установите частоту генератора Г3-112, равную 100 Гц. Подобрав нужные усиление и скорость развертки, получите устойчивую картину последовательности прямоугольных импульсов на экране осциллографа.
- 3. Измерьте период T и длительность прямоугольных импульсов c. Определите скважность по формуле T/τ .
- 4. Изменяя длительность импульсов с помощью потенциометра на модуле «ПИ/ФПЭ-09», повторите измерения величин Т и τ при различных частотах генератора.

Составление таблицы не требуется.

Задание 3. Сложение колебаний в двух взаимво перпендикулярных направлениях (векторное сложение).

- 1. При подаче двух гармонических электрических сигналов на горизонтально вертикально ЭЛТ И отклоняющие пластины осциллографа будет вычерчивать ЛУЧ некоторую траекторию результирующего сложного колебания. В зависимости от амплитуд, частот и фаз подаваемых напряжений, на экране будут появляться различные фигуры, называемые фигурами Лиссажу.
- 2. Соберите схему, изображенную на рис.1.8. Подайте синусоидальные сигналы от генератора (50 Γ ц) на канал «II» и от источника «ИП» (с гнезд ~6,3 B) на вход «Х» *. Отключите развертку, нажав кнопку «Х» на панели «СИНХРОНИЗАЦИЯ» *. Манипулируя

^{*) 1 -} в случае осциллографа C1-83 напряжение 6,3 В (50 Γ ц) подайте в канал «І» и нажмите кнопку «ІІ X—У».

^{2 -} На осциллографе С1-83 нажмите кнопку «X—У».

ручками регулировки усиления осциллографа и ручками регулировки напряжения генератора, добейтесь одинаковых отклонений луча по осям X и У. Наблюдайте сложение взаимно перпендикулярных колебаний близких частот с меняющимся сдвигом фаз.

Если этот сдвиг окажется кратным целому числу π , то результирующая траектория будет иметь вид прямой линии, наклоненной под углом $\pi/4$.

Если этот сдвиг фаз равен $(2n+1)\pi/2$,

n = 0,1,2..., то фигура Лиссажу будет иметь вид окружности. Промежуточные значения разности фаз дают семейство эллипсов.

Реально, в связи с нестабильностью частот и постоянным изменением разности фаз во времени, фигуры Лиссажу плавно превращаются одна в другую.

Рис.1.8. Схема для наблюдения векторного сложения колебаний.

Манипулируя ручкой тонкой подстройки частоты генератора Г3-112, постарайтесь добиться наиболее медленной деформации указанных конфигураций фигур.

3. Изменяйте частоту генератора в целое число раз и наблюдайте перпендикулярное сложение колебаний с разными соотношениями частот: 1:2, 1:3, 1:4.

Составление таблицы наблюдений не требуется.

Прохождение синусоидальных сигналов через линейные электрические цепи

Цель заданий: изучение частотной зависимости коэффициента передачи и сдвига фаз в последовательных CR-цепи (задание 4) и LR-цепи (задание 5).

При воздействии напряжения, колеблющегося с некоторой частотой f, на всю цепочку, содержащую электрическую емкость C и сопротивление R (или индуктивность L и сопротивление R), оказывается, что амплитуды и фазы напряжений на отдельных элементах зависят от частоты воздействия. Напряжение воздействия назовем «входным» напряжением $U_{\rm ex}$, а напряжение на сопротивлении R - выходным напряжением $U_{\rm exx}$, или «откликом»

Рис.1.9.Последовательная СR-цепь

(см.рис.1.9.).Отношение $K(f) = U_{gyy}/U_{gy}$ называют коэффициентом передачи. на осциллографе одно-Предлагается временно пронаблюдать осциллограммы входного и выходного напряжений и коэффициента зависимость измерить передачи К и сдвига (разности фаз) между этими напряжениями от частоты. Используется модуль «ФПЭ-09/ПИ» («ПРОСТЫЕ ЛИНЕЙНЫЕ ЦЕПИ»), позволяющий исследовать RR-, CR- и LR-

CR-цепь. зволяющий исследовать RR-, CR- и LR цепи. Измерительная схема приведена на рис.1.10.

Рис.1.10. Схема для изучения CR- и LR-цепей.

Для измерения напряжений могут быть использованы осциллограф или цифровые вольтметры.

Для выполнения заданий 4 или 5 сделайте соединение по схеме на рис.110:

— входное напряжение с гнезд « $X-\bot$ » модуля «ФПЭ-09» подайте кабелем в канал «I», а выходное — с гнезд « $Y-\bot$ » (с резистора R2) в канал «II»;

- для *одновременного* наблюдения осциллограмм обоих напряжений нажмите кнопку « \longrightarrow »;
- для получения устойчивой осциллограммы используйте внешнюю синхронизацию. Внешний запуск совершенно необходим для наблюдения сдвига фаз. В качестве внешнего синхронизирующего сигнала используйте входное напряжение, подан его отдельным проводом на гнездо «Х» осциллографа, которое используется как «ВХОД» синхронизации. Нажмите кнопку «1:1 ВНЕШН»*.

Задание 4. Изучение электрических процессов в CR-цепи.

- 1. Соедините последовательную цепь из конденсатора С и резистора R, нажав соответствующую кнопку на панели модуля «ФПЭ-09» (обозначены как C1 и R2).
- 2. Установите частоту синусоидальных колебаний генератора ГЗ—112, равную 20 кГц.
- 3. По осциллограммам на экране измерьте амплитуды напряжений на входе и выходе цепи. Повторите эти измерения при различных значениях частоты, изменяя ее в диапазоне 20—100 кГц с интервалом примерно 10 кГц.
- 4. Рассчитайте значения коэффициентов передачи цепи K(f) по формуле

$$K(f) = \frac{U_{\text{\tiny gblX}}}{U_{\text{\tiny gx}}}$$

5. Постройте график зависимости коэффициента передачи цепи от частоты входного напряжения K(f).

Таблица 1.1

№ п/п	<i>f</i> кГц	<i>U_{«х}</i> дел	$U_{_{\it GolX}}$ дел	Цена деления В/дел	U _{ex} B	$U_{\scriptscriptstyle GbLX} \ { m B}$	K
1	2	3	4	5	6	7	8

6. Данные измерений и вычислений занесите в таблицу 1.1. При записи значений выполните округление результата.

^{*)}На осциллографе C1-83 нажмите кнопки «0,5-5 ВНЕШН. » и «~»

Задание 5. Изучение электрических процессов в LR -цепи.

Цель задания — та же, что и в задании 4, только используется цепь из индуктивности L и резистора **R**.

Электрическая схема приведена на рис.1.10.

Индуктивность включается последовательно с резистором нажатием соответствующей кнопки на модуле «ФПЭ-09».