

Markscheme

May 2023

Chemistry

Standard level

Paper 2

© International Baccalaureate Organization 2023

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2023

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2023

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Subject Details: Chemistry standard level Paper 2 Markscheme

Candidates are required to answer **ALL** questions. Maximum total = **[50 marks]**.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- **4.** A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative word is indicated in the "Answers" column by a slash (/). Either word can be accepted.
- **6.** An alternative answer is indicated in the "Answers" column by "**OR**". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** *etc*. Either alternative can be accepted.
- **8.** Words inside chevrons **« »** in the "Answers" column are not necessary to gain the mark.
- **9.** Words that are <u>underlined</u> are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by **OWTTE** (or words to that effect) in the "Notes" column.
- 12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.
- **14.** Do **not** penalize candidates for errors in units or significant figures, **unless** it is specifically referred to in the "Notes" column.
- 15. If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- **16.** If a question asks for an equation for a reaction, a balanced symbol equation is usually expected, do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- 17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

С	uestion	Answers	Notes	Total
1.	(a)	(n(C) = 0.05 (mol)) $(n(O) = 0.05 (mol))$ $(n(O) = 0.05$	Award [2] for the simplest ratio "1.5 C: 3 H: 1 O".	3
1.	(b)	m/z 74: molecular ion / M ⁺ / C ₃ H ₆ O ₂ ⁺ \checkmark m/z 45: COOH ⁺ / C ₂ H ₅ O ⁺ \checkmark	Accept loss of CH ₃ CH ₂ / C ₂ H ₅ / CHO for m/z 45.	2
1.	(c)	C ₃ H ₆ O ₂ ✓	Accept C ₂ H ₅ COOH / CH ₃ CH ₂ COOH.	1
1.	(d)	A: O-H «in carboxylic acids» ✓ B: C=O ✓		2

Q	uestic	on	Answers	Notes	Total
2.	(a)	(i)	reaction hardly proceeds OR reverse reaction/formation of NO₂ is favoured OR «concentration of» reactants greater than «concentration of» products «at equilibrium» ✓	Accept equilibrium lies to the left.	1
2.	(a)	(ii)	$\ll K_c = \frac{1}{0.0665} = $ 15.0 \checkmark		1
2.	(a)	(iii)	$\ll \Delta H^{\oplus} = 2(33.18) - 9.16 = \% \text{ **+} \$ 57.20 \text{ **kJ mol}^{-1} \% \checkmark$		1
2.	(b)		;Ö N — N Ö:	Accept any combination of dots, crosses or lines to represent electron pairs.	1
2.	(c)	(i)	it has resonance structures ✓	Accept bond order = 1.5. Accept delocalized electrons «in NO bonds».	1
2.	(c)	(ii)	110-120° ✓	Accept any value in the range given. (Bond angle is actually 112.3°.)	1
2.	(d)		$2NO_2(g) + H_2O(l) \rightarrow HNO_2(aq) + HNO_3(aq) \checkmark$	Accept $N_2O_4(g) + H_2O(l) \rightarrow HNO_2(aq) + HNO_3(aq)$.	1

Q	uesti	on	Answers	Notes	Total
3.	(a)	(i)	magnesium/Mg «metal» ✓	Do not accept magnesium ions/Mg ²⁺ .	1
3.	(a)	(ii)	electron flow from anode to battery <i>OR</i> from battery to cathode ✓	Do not award mark if electrons are shown in electrolyte.	1
3.	(a)	(iii)	layers «of carbon atoms in a giant structure» ✓ delocalized electrons «flow along layers» ✓	Accept suitable diagram for M1. Accept two-dimensional network for M1. Accept electrons are mobile/flow for M2.	2
3.	(b)	(i)		Award [3] for correct final answer.	3

Question		on	Answers	Notes	Total
3.	(b)	(ii)	titrate/measure dissolved oxygen in «another» water sample «stored under controlled conditions five days» later ✓ difference between two values «is BOD»✓		2
3.	(b)	(iii)	low levels of «organic/oxygen consuming» water pollution ✓		1
4.	(a)		Any two of: «group 15 so Bi has» 5 valence electrons ✓ «period 6 so Bi has» 6 «occupied» electron shells/energy levels ✓ «in p-block so» p orbitals are highest occupied ✓ occupied d/f orbitals ✓ has unpaired electrons ✓	Award [1] for full or condensed electron configuration, [Xe] $4f^{14}$ $5d^{10}$ $6s^2$ $6p^3$. Accept other valid statements about the electron configuration.	2 max

has incomplete shell(s)/subshell(s) ✓

metallic bonds are non-directional

disrupted by changing position of metal ions

changing the shape does not disrupt the bonding ✓

«layers of» cations slide over each other without disrupting bonding

attraction between metal ions and delocalized electrons/metallic bonding is not

4.

(b)

OŔ

OR

OR

C	Question		Answers	Notes	Total
4.	(c)		«heat energy = 11.98 g x 0.902 J g ⁻¹ K ⁻¹ x 22.0 K =» 238 «J» ✓		1
4.	(d)	(i)	mass spectrometry OR mass spectroscopy OR mass spectrum OR MS ✓		1
4.	(d)	(ii)	(0.0034 x 36) + (0.0006 x 38) + (0.996 x 40) \(\sqrt{39.99}\)	Do not accept 39.96 which is the data booklet value. M2 can only be awarded for answer with 2 decimal places. Award [2] for correct final answer.	2
4.	(e)		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ ✓		1

5.	(a)	$\langle (OH^{-}) = 0.200 \text{ mol dm}^{-3} \rangle$	Award [2] for correct final answer.		
		ALTERNATIVE 1: «pOH = $-\log_{10}(0.200)$ =» 0.699 \checkmark «pH = $14.000 - 0.699$ =» 13.301 \checkmark ALTERNATIVE 2: «[H ⁺] = $\frac{1.00x10^{-14}}{0.200}$ = » 5.00×10^{-14} «mol dm ⁻³ » \checkmark «pH = $-\log_{10}(5.00 \times 10^{-14})$ » = 13.301 \checkmark		2	

Q	Question		Answers	Notes	Total
5.	(b)		HCOOH(aq) + NaOH(aq) → HCOONa(aq) + H ₂ O(l) ✓	Accept ionic equation or net ionic equation.	1
5.	(c)				1

6.	(a)	<pre>«measure change in» mass OR pressure OR volume of gas/CO₂ produced OR «intensity of» colour OR «electrical» conductivity OR pH ✓</pre> with time ✓	Accept any of the following for M1: perform experiment on balance OR use pressure probe OR collect gas/gas syringe OR use colorimeter OR use conductivity meter OR use pH meter Do not accept "measure rate of change" for M2.	2	
6.	(b)	provides an alternative reaction pathway AND lower activation energy/ $E_a \checkmark$ larger fraction/number of molecules with $E \ge E_a$ /enough energy «for a successful collision» \checkmark		2	

Q	uestic	on	Answers	Notes	Total
6.	(c)		Structural formula: H H H C O C C H H H Name: ethyl methanoate ✓		2
6.	(d)	(i)	$CH_3CH_2OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g) \checkmark$	Accept C₂H₀O for ethanol.	1
6.	(d)	(ii)	«bond breaking» 1 C-C + 5 C-H + 1 C-O + 1 O-H + 3 O=O / 346 + 5(414) + 358 + 463 +3(498) / 4731 «kJ» ✓ «bond forming» 4 C=O + 6 O-H / 4(804) + 6(463) / 5994 «kJ» ✓ ΔH «= 4731– 5994» = −1263 «kJ mol ⁻¹ » ✓	Award [3] for correct final answer.	3
6.	(e)	(i)	«electrophilic» addition/A _E ✓	Do not accept nucleophilic addition.	1
6.	(e)	(ii)	CH₃CHBrCHBrCH₃ ✓	Do not accept molecular formula C₄H ₈ Br ₂ .	1

C	Question		Answers	Notes	Total
6.	(e)	(iii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Accept methyl groups on either side. Ignore brackets and "n". Continuation bonds must be shown.	1