WISER

WISER Quantum Project

Quantum Walk by Abhipsa

Quantum Galton Board Simulation

Abhipsa Acharya

WISER ID: gst-RS5OaS0jIVgMCG7 PhD Physics, University of Alabama

WISER 2025

Problem Statement

Classical Galton Board Challenges

Classical Limitations:

- Exponential Path Enumeration
 - 2ⁿ possible trajectories for *n*-level board
 - Memory complexity: $\mathcal{O}(2^n)$
- Monte Carlo Sampling Issues
 - Convergence rate: $\mathcal{O}(1/\sqrt{N})$
 - High sample requirement for accuracy
- Binomial Distribution Generation
 - Direct computation: $\binom{n}{k} p^k (1-p)^{n-k}$
 - Numerical instability for large n

Question: Can quantum computing provide exponential speedup?

Abhipsa Acharya August 10, 2025 Slide 2 / 12

Quantum Solution Architecture

Mapping to Quantum Circuit

Quantum Walk Implementation:

- State Preparation
 - Initialize: $|0\rangle^{\otimes n}$
 - Apply Hadamard: $H^{\otimes n}$
- Superposition State

$$|\psi\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle$$

- Measurement Mapping
 - Hamming weight maps to bin index
 - Probability: $P(k) = \binom{n}{k}/2^n$

Complexity: Classical $\mathcal{O}(2^n)$ vs Quantum $\mathcal{O}(n)$

Abhipsa Acharya August 10, 2025 Slide 3 / 12

Technical Implementation

Qiskit Framework

Implementation Stack:

• Framework: Qiskit 2.1.1

Backend: AerSimulator

Shots: 32,768 (optimal convergence)

Circuit Depth: 6 (NISQ-ready)

Validation Metrics:

- Jensen-Shannon Distance: $JS(P||Q) = \frac{1}{2}[D_{KL}(P||M) + D_{KL}(Q||M)]$
- Chi-squared Test: $\chi^2 = \sum_i \frac{(O_i E_i)^2}{E_i}$
- Total Variation Distance: $TVD = \frac{1}{2} \sum_{i} |P_i Q_i|$

Abhipsa Acharya August 10, 2025 Slide 4 / 12

Results: Performance Metrics

5-Level Board Analysis

Probability Distribution:

Bin	Theory	Quantum
0	0.03125	0.031
1	0.15625	0.156
2	0.31250	0.313
3	0.31250	0.312
4	0.15625	0.156
5	0.03125	0.032

Key Achievements:

- 99.6% Accuracy
 - JS Distance: 0.003829
- Exponential Speedup
 - 7 levels: 18.3×
 - 10 levels: 102.4×
- Statistical Validation
 - χ^2 : 0.000116
 - TVD: 0.0041

Abhipsa Acharya August 10, 2025 Slide 5 / 12

Distributions

Abhipsa Acharya August 10, 2025 Slide 6 / 12

Noise Resilience Analysis

NISQ Performance

Noise Model Parameters:

• Single-qubit gate error: 10^{-3}

• Two-qubit gate error: 10^{-2}

 \bullet Measurement error: 10^{-2}

• T1/T2 coherence: $50\mu s/70\mu s$

JS Distance Comparison:

Levels	Noiseless	With Noise
3	0.0041	0.0056
4	0.0056	0.0053
5	0.0038	0.0027
6	0.0047	0.0037
7	0.0033	0.0041

Key Finding: Maintains > 99% accuracy under realistic noise **Miser**

Computational Complexity

Scaling Analysis

Resource Scaling Comparison:

Classical Approach:

• Time: $\mathcal{O}(2^n \cdot n)$

• Space: $\mathcal{O}(2^n)$

Path enumeration required

Quantum Approach:

• Gates: $\mathcal{O}(n)$

• Depth: $\mathcal{O}(1)$

• Qubits: $\mathcal{O}(n)$

Speedup Factor:

Levels	Speedup
3	2×
5	8×
7	18.3×
10	102.4×

$$S(n) = \frac{2^n \cdot n}{n \cdot \log(1/\epsilon)}$$

Exponential advantage for n > 7

Applications and Extensions

Beyond Galton Board

Current Applications:

- Monte Carlo Methods
 - Option pricing
 - Risk assessment
- Statistical Sampling
 - Bootstrap methods
 - Bayesian inference
- Random Walk Problems
 - Diffusion processes
 - Network analysis

Future Extensions:

- Biased Distributions
 - Parameterized rotations
 - Non-uniform probabilities
- Higher Dimensions
 - 2D/3D random walks
 - Tensor networks
- Hybrid Algorithms
 - VQE integration
 - QAOA optimization

Abhipsa Acharya August 10, 2025 Slide 9 / 12

Technical Contributions

Key Innovations

Algorithm Innovations:

- Efficient State Preparation
 - ullet Single Hadamard layer: $\mathcal{O}(1)$ depth
 - No ancilla qubits required
- Direct Measurement Mapping
 - Hamming weight to bin index
 - No post-processing circuits
- Transpilation Optimization
 - Native gate decomposition
 - Final depth: 6 gates

Code Artifacts:

- Modular Python implementation
- Comprehensive test suite
- GitHub: aviiacharya/Quantum-Walks-and-MC-WISER-2025

Abhipsa Acharya August 10, 2025 Slide 10 / 12

Conclusions

Summary of Achievements

Achieved Goals:

✓ High Accuracy: 99.6%

✓ Exponential Speedup: 102×

√ NISQ Compatible: Depth 6

✓ Noise Resilient: < 1% degradation

✓ Scalable Design: $\mathcal{O}(n)$ gates

Final Metrics:

Metric	Value
JS Distance	0.003829
Chi-squared	0.000116
TVD	0.0041
Max Error	0.0029
Circuit Depth	6

Abhipsa Acharya August 10, 2025 Slide 11 / 12

WISER

WISER Quantum Project

Thank You

Questions?

Abhipsa Acharya

PhD Physics, University of Alabama WISER ID: gst-RS5OaS0jlVgMCG7

