

FCC TEST REPORT

For

Viaan Electronics

VELORA101

Model No.: VELORA101

Prepared For : Viaan Electronics

Address : 125 N Market St. Suite 1725, Wichita, Kansas 67202, United States

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan

District, Shenzhen, Guangdong, China

Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number : R0117020639W

Date of Test : Feb. 23~ Mar. 30, 2017

Date of Report : Mar. 30, 2017

Contents

1. General Information	5
1.1. Client Information	5
1.2. Description of Device (EUT)	5
1.3. Auxiliary Equipment Used During Test	5
1.4. Description of Test Modes	6
1.5. List of channels	
1.6. Description Of Test Setup	7
1.7. Test Equipment List	8
1.8. Measurement Uncertainty	8
1.9. Description of Test Facility	
2. Summary of Test Results	10
3. Conducted Emission Test	11
3.1. Test Standard and Limit	
3.2. Test Setup	11
3.3. Test Procedure	11
3.4. Test Data	
4. Radiation Spurious Emission and Band Edge	12
4.1. Test Standard and Limit	12
4.2. Test Setup	12
4.3. Test Procedure	
4.4. Test Data	
5. Maximum Peak Output Power Test	20
5.1. Test Standard and Limit	20
5.2. Test Setup	20
5.3. Test Procedure	20
5.4. Test Data	21
6. 6DB Occupy Bandwidth Test	22
6.1. Test Standard and Limit	
6.2. Test Setup	22
6.3. Test Procedure	22
6.4. Test Data	22
7. Power Spectral Density Test	24
7.1. Test Standard and Limit	24
7.2. Test Setup	24
7.3. Test Procedure	24
7.4. Test Data	24
8. 100kHz Bandwidth of Frequency Band Edge Requirement	26
8.1. Test Standard and Limit	26
8.2. Test Setup.	26
8.3. Test Procedure	26

8.4. Test Data	26
9. Antenna Requirement	28
9.1. Test Standard and Requirement	
9.2. Antenna Connected Construction	28
APPENDIX I TEST SETUP PHOTOGRAPH	
APPENDIX II EXTERNAL PHOTOGRAPH	30
APPENDIX III INTERNAI PHOTOGRAPH	21

TEST REPORT

Applicant : Viaan Electronics

Manufacturer : Viaan Electronics

Product Name : VELORA101

Model No. : VELORA101

Trade Mark : Wireless
Rating(s) : DC 3V

Test Standard(s) : FCC Part15 Subpart C 2016, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v03r05

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test:	Feb. 23~ Mar. 30, 2017
Prepared by :	Winkey Wang
C MINOSON S	(Tested Engineer / Winkey Wang)
Reviewer:	Frown Lu
	(Project Manager / Brown Lu)
: Approved & Authorized Signer:	Ton Chen
	(Manager / Tom Chen)

1. General Information

1.1. Client Information

Applicant	:	Viaan Electronics
Address	:	125 N Market St. Suite 1725, Wichita, Kansas 67202, United States
Manufacturer	:	Viaan Electronics
Address	:	125 N Market St. Suite 1725, Wichita, Kansas 67202, United States

1.2. Description of Device (EUT)

Product Name	:	VELORA101				
Model No.	:	VELORA101	/ELORA101			
Trade Mark	:	Wireless				
Test Power Supply	:	DC 3V by Battery				
		Operation Frequency:	915MHz			
		Transfer Rate:	1 Mbits/s			
Product		Number of Channel:	1 Channels			
Description		Modulation Type:	FSK			
		Antenna Type:	Ceramic Antenna			
		Antenna Gain(Peak):	2 dBi			
D 1 1)E		1 . 11 1 6				

Remark: 1)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

N/A					

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH01
Mode 2	Keeping TX mode

	For Conducted Emission
Final Test Mode	Description
Mode 2	Keeping TX mode

For Radiated Emission		
Final Test Mode	Description	
Mode 1	CH01	

1.5. List of channels

Channel	Freq.
	(MHz)
01	915

1.6. Description Of Test Setup

RE

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Two-Line V-network	Rohde & Schwarz	ENV216	100055	Jul. 19, 2016	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Jun. 17, 2016	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Jun. 17, 2016	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Jul. 12, 2016	1 Year
5	Preamplifier	Instruments corporation	EMC011830	980100	Jun. 17, 2016	1 Year
6.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Jun. 17, 2016	1 Year
7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	May 06, 2016	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	May 06, 2016	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB1519	012	May 11, 2016	1 Year
10.	Pre-amplifier	SONOMA	310N	186860	Jun. 17, 2016	1 Year
11	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
12.	Power Sensor	Agilent	KFSW150502	15I00041SN045	Jun. 17, 2016	1 Year
13.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun. 17, 2016	1 Year
14.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun. 17, 2016	1 Year
15	Signal Generator	Agilent	E4421B	MY41000743	Jun. 17, 2016	1 Year
16.	DC Power supply	IV	IV-8080	YQSB0096	Jun. 17, 2016	1 Year
17.	TEMP&HUMI PROGRAMMABLE CHAMBER	Bell Group	BE-THK-150 M8	SE-0137	Jun. 17, 2016	1 Year

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 4.1 dB (Horizontal)
		Ur = 4.3 dB (Vertical)
Conduction Uncertainty	:	Uc = 3.4dB

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 06, 2016.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, June 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

2. Summary of Test Results

Standard Section	Test Item	Result			
15.203/15.247(c)	Antenna Requirement	PASS			
15.207	Conducted Emission	N/A			
15.205/15.209	Spurious Emission	PASS			
15.247(b)(3)	Conducted Peak Output Power	PASS			
15.247(a)(2)	6dB Occupied Bandwidth	PASS			
15.247(e)	Power Spectral Density	PASS			
15.247(d)	Band Edge	PASS			
Remark: "N/A" is an abbreviation for Not Applicable.					

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.207					
	Eraguanav	Maximum RF Line Voltage (dBuV)				
	Frequency	Quasi-peak Level	Average Level			
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
	500kHz~5MHz	56	46			
	5MHz~30MHz	60	50			

Remark: (1) *Decreasing linearly with logarithm of the frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

N/A

The EUT was power supplied by a coin battery.

⁽²⁾ The lower limit shall apply at the transition frequency.

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.209 and 15.205							
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)			
	0.009MHz~0.490MHz	2400/F(kHz)	-	<u>-</u>	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	-	-	30			
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3			
	88MHz~216MHz	150	43.5	Quasi-peak	3			
	216MHz~960MHz	200	46.0	Quasi-peak	3			
	960MHz~1000MHz	500	54.0 Quasi-pea		3			
	Above 1000MHz	500	54.0	Average	3			
	ADOVE 1000IVIHZ	-	74.0	Peak	3			

Remark:

- (1)The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =10Hz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz and above 18000MHz are attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Test Results (30~1000MHz)

Job No.: 0117020639W Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: FCC PART 15C Power Source: DC 3V by Battery

Test Mode: TX Mode Polarization: Horizontal

Test Results (30~1000MHz)

Job No.: 0117020639W Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: FCC PART 15C Power Source: DC 3V by Battery

Test Mode: TX Mode Polarization: Vertical

Test Results (Above 1GHz-10GHz)

	Test Mode: TX Mode								
Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Det.	Pol.
1830.00	45.48	33.98	2.72	26.32	55.86	74.00	-18.14	PK	Н
1830.00	31.16	33.98	2.72	26.32	41.54	54.00	-12.46	AV	Н
2745.00	42.98	34.06	3.81	26.75	54.10	74.00	-19.90	PK	Н
2745.00	29.94	34.06	3.81	26.75	41.06	54.00	-12.94	AV	Н
3660.00	42.98	34.13	4.20	27.01	54.30	74.00	-19.70	PK	Н
3660.00	30.87	34.13	4.20	27.01	42.19	54.00	-11.81	AV	Н
4575.00	*								Н
4575.00	*								Н
1830.00	46.32	33.98	2.72	26.32	56.70	74.00	-17.30	PK	V
1830.00	31.48	33.98	2.72	26.32	41.86	54.00	-12.14	AV	V
2745.00	43.88	34.06	3.81	26.75	55.00	74.00	-19.00	PK	V
2745.00	31.22	34.06	3.81	26.75	42.34	54.00	-11.66	AV	V
3660.00	44.01	34.13	4.20	27.01	55.33	74.00	-18.67	PK	V
3660.00	32.22	34.13	4.20	27.01	43.54	54.00	-10.46	AV	V
4575.00	*								V
4575.00	*								V

Remark:

- 1. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Radiated Band Edge:

Job No.: 0117020639W Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: FCC PART 15C Power Source: DC 3V by Battery

Test Mode: TX Mode Polarization: Vertical

Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)		Over Limit (dB)	Pol.	Det
902.00	41.11	22.59	4.54	31.35	36.89	46.00	-9.11	V	QP
928.00	39.74	22.45	4.48	31.33	35.34	46.00	-10.66	V	QP

Job No.: 0117020639W Temp.(℃)/Hum.(%RH): 24.3℃/55%RH

Standard: FCC PART 15C Power Source: DC 3V by Battery

Test Mode: TX Mode Polarization: Horizontal

Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)		Over Limit (dB)	Pol.	Det.
902.00	37.93	22.45	4.48	31.33	33.53	46.00	-12.47	Н	QP
928.00	38.25	22.59	4.54	31.35	34.03	46.00	-11.97	Н	QP

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (b)(3)
Test Limit	30dBm

5.2. Test Setup

5.3. Test Procedure

- 1. The Transmitter output (antenna port) was connected to the power meter.
- 2. Turn on the EUT and power meter and then record the power value.
- 3. Repeat above procedures on all channels needed to be tested.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

5.4. Test Data

Test Item : Max. peak output power Test Mode : CH 01 Test Voltage : DC 3V by Battery Temperature : 24° C Test Result : PASS Humidity : 55° RH

Channel Frequency (MHz)	Peak Power output (dBm)	Limit (dBm)	Results
915	12.82	30	PASS

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (a)(2)
Test Limit	>500kHz

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, $VBW \ge 3*RBW = 300kHz$,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item : 6dB Bandwidth Test Mode : CH 01 Test Voltage : DC 3V by Battery Temperature : 24° C Test Result : PASS Humidity : 55° RH

Channel	Frequency(MHz)	Bandwidth (kHz)	Limit (kHz)	Results	
CH 01	915	762.5	>500	PASS	

CH01

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (e)
Test Limit	8dBm

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item	:	Power Spectral Density	Test Mode	:	CH 01
Test Voltage	:	DC 3V by Battery	Temperature	:	24℃
Test Result	:	PASS	Humidity	:	55%RH

Channel	Frequency (MHz)	PPSD (dBm/3KHz)	Limit (dBm/3KHz)	Results
CH01	915	7.590	8.00	PASS

CH01

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)	
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).	

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item : Band edge : CH Low ~ CH High

Test Voltage : DC 3V by Battery Temperature : 24° C Test Result : PASS Humidity : 55%RH

Frequency Band (MHz)	Delta Peak toBand Emission (dBc)	Limit (dBc)	Results
902	76.620	>20	PASS
928	75.422	>20	PASS

CH01

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)	
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 2) 15.247(c) (1)(i) requirement: Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.	

9.2. Antenna Connected Construction

The antenna is a Ceramic antenna which permanently attached, and the best case gain of the antenna is 2dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

