Proof. That $b: E \to E^*$ is a linear map follows immediately from the fact that the inner product is bilinear. If $\varphi_u = \varphi_v$, then $\varphi_u(w) = \varphi_v(w)$ for all $w \in E$, which by definition of φ_u means that $u \cdot w = v \cdot w$ for all $w \in E$, which by bilinearity is equivalent to

$$(v - u) \cdot w = 0$$

for all $w \in E$, which implies that u = v, since the inner product is positive definite. Thus, $b: E \to E^*$ is injective. Finally, when E is of finite dimension n, we know that E^* is also of dimension n, and then $b: E \to E^*$ is bijective.

The inverse of the isomorphism $b: E \to E^*$ is denoted by $\sharp: E^* \to E$.

As a consequence of Theorem 12.6 we have the following corollary.

Corollary 12.7. If E is a Euclidean space of finite dimension, every linear form $f \in E^*$ corresponds to a unique $u \in E$ such that

$$f(v) = u \cdot v$$
, for every $v \in E$.

In particular, if f is not the zero form, the kernel of f, which is a hyperplane H, is precisely the set of vectors that are orthogonal to u.

Remarks:

- (1) The "musical map" $\flat \colon E \to E^*$ is not surjective when E has infinite dimension. The result can be salvaged by restricting our attention to continuous linear maps, and by assuming that the vector space E is a *Hilbert space* (i.e., E is a complete normed vector space w.r.t. the Euclidean norm). This is the famous "little" Riesz theorem (or Riesz representation theorem).
- (2) Theorem 12.6 still holds if the inner product on E is replaced by a nondegenerate symmetric bilinear form φ . We say that a symmetric bilinear form $\varphi \colon E \times E \to \mathbb{R}$ is nondegenerate if for every $u \in E$,

if
$$\varphi(u, v) = 0$$
 for all $v \in E$, then $u = 0$.

For example, the symmetric bilinear form on \mathbb{R}^4 (the Lorentz form) defined such that

$$\varphi((x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4)) = x_1y_1 + x_2y_2 + x_3y_3 - x_4y_4$$

is nondegenerate. However, there are nonnull vectors $u \in \mathbb{R}^4$ such that $\varphi(u, u) = 0$, which is impossible in a Euclidean space. Such vectors are called *isotropic*.