MPhil Econometrics – Limited Dependent Variables and Selection

Francis J. DiTraglia

University of Oxford

Complied on 2020-04-24 at 12:55:17

Housekeeping

Lecturer: Francis J. DiTraglia

Email: francis.ditraglia@economics.ox.ac.uk

Course Materials: http://ditraglia.com/teaching

Office: 2132 Manor Road Building

Meetings: after lecture on Wednesdays & Fridays or by appointment

References

- ▶ Wooldridge (2010) Econometric Analysis of Cross Section & Panel Data
- ► Cameron & Trivedi (2005) Microeconometrics: Methods and Applications
- ► Train (2009) Discrete Choice Methods with Simulation

Lecture #1 – Maximum Likelihood Estimation Under Mis-specification

Review: the Poisson Distribution

The Kullback-Leibler Divergence

Example: Consistency of Poisson MLE

Asymptotic Theory for MLE Under Mis-specification

The Information Matrix Equality

Example: Asymptotic Variance Calculations for Poisson MLE

"All models are wrong; some are useful."

Question

What happens if we carry out maximum likelihood estimation, but our model is wrong?

This Lecture

Examine a simple example in excruciating detail; present the general theory.

Next Lecture

Apply what we've learned to study Poisson Regression, a model for count data.

Suppose that $y \sim \mathsf{Poisson}(\theta)$

Support Set: $\{0, 1, 2, ...\}$

A Poisson Random Variable is a count.

Probability Mass Function

$$f(y|\theta) = \frac{e^{-\theta}\theta^y}{y!}$$

Expected Value: $\mathbb{E}(y) = \theta$

Poisson parameter θ equals the mean of y.

Variance: $Var(y) = \theta$

You will show this on the problem set.

$$\sum_{y=0}^{\infty} \frac{e^{-\theta} \theta^y}{y!} = e^{-\theta} \sum_{y=0}^{\infty} \frac{\theta^y}{y!} = e^{-\theta} \left(e^{\theta} \right) = 1$$

$$\mathbb{E}(y) = \sum_{y=0}^{\infty} y \frac{e^{-\theta} \theta^y}{y!} = \sum_{y=1}^{\infty} y \frac{e^{-\theta} \theta^y}{y!}$$
$$= \theta \sum_{y=1}^{\infty} \frac{e^{-\theta} \theta^{y-1}}{(y-1)!} = \theta \sum_{y=0}^{\infty} \frac{e^{-\theta} \theta^y}{y!} = \theta$$

MLE for θ where $y_1, y_2, \dots, y_N \sim \text{ iid Poisson}(\theta)$.

The Likelihood (iid data)

$$L_N(\theta) \equiv \prod_{i=1}^N rac{e^{-\theta} \theta^{y_i}}{y_i!}$$

The Log-Likelihood

$$\ell_N(\theta) = \sum_{i=1}^N \left[y_i \log(\theta) - \theta - \log(y_i!) \right]$$

Maximum Likelihood Estimator

$$\widehat{ heta} \equiv rg \max_{ heta \in \Theta} \ell_{N}(heta) = ar{y}$$

$$rac{d}{d heta}\ell_N(heta) = \sum_{i=1}^N \left[rac{y_i}{ heta} - 1
ight]$$

$$\frac{d}{d\theta} \ell_N(\widehat{\theta}) = 0$$

$$\sum_{i=1}^N \left[y_i / \widehat{\theta} - 1 \right] = 0$$

$$\left(\sum_{i=1}^N y_i \right) / \widehat{\theta} = N$$

$$\frac{1}{N} \sum_{i=1}^N y_i = \overline{y} = \widehat{\theta}$$

The Kullback-Leibler (KL) Divergence

Motivation

How well does a parametric model $f(\mathbf{y}|\theta)$ approximate a *true* density/pmf $p_o(\mathbf{y})$?

Definition

$$\mathit{KL}(p_o; f_{m{ heta}}) \equiv \mathbb{E}\left[\log\left\{rac{p_o(\mathbf{y})}{f(\mathbf{y}|m{ heta})}
ight\}
ight]$$

KL Properties

- 1. Asymmetric: $KL(p_o; f_\theta) \neq KL(f_\theta; p_o)$
- 2. $KL(p_o; f_\theta) \ge 0$; zero iff $p_o = f_\theta$
- 3. Min KL iff max expected log-likelihood

Alternative Expression

$$\mathbb{E}\left[\log\left\{\frac{p_o(\mathbf{y})}{f(\mathbf{y}|\boldsymbol{\theta})}\right\}\right] = \underbrace{\mathbb{E}\left[\log p_o(\mathbf{y})\right]}_{\text{Constant wrt }\boldsymbol{\theta}} - \underbrace{\mathbb{E}\left[\log f(\mathbf{y}|\boldsymbol{\theta})\right]}_{\text{Expected Log-like.}}$$

All expectations are wrt p_o

 $p_o(\mathbf{y})$ and $f(\mathbf{y}|oldsymbol{ heta})$ are merely functions of the RV \mathbf{y}

$$\mathbb{E}[\log p_o(\mathbf{y})] = \int \log p_o(\mathbf{y}) p_o(\mathbf{y}) \ d\mathbf{y}$$

$$\mathbb{E}[\log f(\mathbf{y}|\boldsymbol{\theta})] = \int \log f(\mathbf{y}|\boldsymbol{\theta}) p_o(\mathbf{y}) \ d\mathbf{y}$$

Watch Out!

$$KL = \infty$$
 if $\exists y$ with $f(y|\theta) = 0$ & $p_o(y) \neq 0$

$$\mathsf{KL}(p_o; f) \geq 0$$
 with equality iff $p_o = f$

Jensen's Inequality

If φ is convex then $\varphi(\mathbb{E}[y]) \leq \mathbb{E}[\varphi(y)]$, with equality iff φ is linear or y is constant.

 \log is concave so $(-\log)$ is convex

$$\mathbb{E}\left[\log\left\{\frac{p_o(y)}{f(y)}\right\}\right] = \mathbb{E}\left[-\log\left\{\frac{f(y)}{p_o(y)}\right\}\right] \ge -\log\left\{\mathbb{E}\left[\frac{f(y)}{p_o(y)}\right]\right\}$$

$$= -\log\left\{\int_{-\infty}^{\infty} \frac{f(y)}{p_o(y)} \cdot p_o(y) \, dy\right\}$$

$$= -\log\left\{\int_{-\infty}^{\infty} f(y) \, dy\right\}$$

$$= -\log(1) = 0$$

A Simple Example: Calculating the KL Divergence

Remember: all expectations are calculated using p_o .

True Distribution p_o

 $y_1, \ldots, y_N \sim \text{iid } p_o \text{ where:}$

$$p_o(0) = \frac{2}{5}, p_o(1) = \frac{1}{5}, p_o(2) = \frac{2}{5}.$$

Mis-specified Model f_{θ}

 $y_1, \ldots, y_N \sim \mathsf{iid} \; \mathsf{Poisson}(\theta)$

KL Divergence

$$\mathit{KL}(p_o; f_{\theta}) = \theta - \log \theta + (\mathsf{Constant})$$

$$\mathit{KL}(p_o; f_{ heta}) = \mathbb{E}[\log p_o(y)] - \mathbb{E}[\log f(y| heta)]$$

$$\begin{split} \mathbb{E}[\log p_o(y)] &= \sum_{\text{all } y} \log \left[p_o(y) \right] p_o(y) \\ &= \log \left(\frac{2}{5} \right) \times \frac{2}{5} + \log \left(\frac{1}{5} \right) \times \frac{1}{5} + \log \left(\frac{2}{5} \right) \times \frac{2}{5} \end{split}$$

$$\mathbb{E}[\log f(y|\theta)] = \sum_{\text{all } y} \log \left[\frac{e^{-\theta} \theta^{y}}{y!} \right] p_{o}(y)$$

$$= \log \left(e^{-\theta} \right) \times \frac{2}{5} + \log \left(e^{-\theta} \theta \right) \times \frac{1}{5} + \log \left(\frac{e^{-\theta} \theta^{2}}{2} \right) \times \frac{2}{5}$$

$$= -\left[\theta - \log(\theta) + \log(2) \times \frac{2}{5} \right]$$

A Simple Example Continued: Minimizing the KL Divergence

Model = Poisson(
$$\theta$$
); True Dist. $p_o(0) = p_o(2) = \frac{2}{5}$ and $p_o(1) = \frac{1}{5}$

Best Approximation

What parameter value θ_o makes the Poisson(θ) model as close as possible to the true distribution p_o , where we measure "closeness" using the KL-divergence?

Using the previous slide

$$KL(p_0; f_\theta) = \theta - \log \theta + (Const.)$$

FOC:
$$0 = 1 - \frac{1}{\theta} \implies \boxed{\theta = 1}$$

A more direct approach

Min KL ←⇒ Max Expected Log-like.

$$\frac{d}{d\theta} \mathbb{E}[\log f(y|\theta)] = \mathbb{E}\left[\frac{d}{d\theta} \left\{-\theta + y \log(\theta) - \log(y!)\right\}\right]$$
$$= \mathbb{E}[-1 + y/\theta] = \mathbb{E}[y]/\theta - 1 = 0$$
$$\implies \theta = \mathbb{E}[y]$$

A Simple Example Continued: Minimizing the KL Divergence

Model = Poisson(
$$\theta$$
); True Dist. $p_o(0) = p_o(2) = \frac{2}{5}$ and $p_o(1) = \frac{1}{5}$

Best Approximation

What parameter value θ_o makes the Poisson(θ) model as close as possible to the true distribution p_o , where we measure "closeness" using the KL-divergence?

Using the previous slide: $\theta_o = 1$

A more direct approach: $\theta_o = \mathbb{E}[y]$

Both Methods Agree

- ▶ For the specified p_o we have: $\mathbb{E}[y] = 0 \times \frac{1}{5} + 1 \times \frac{2}{5} + 2 \times \frac{2}{5} = 1$.
- \triangleright The "Direct approach" is general: works for any p_o (under regularity conditions)

Is this just a coincidence?

We have shown that:

- 1. Under an iid Poisson(θ) model for y_1, \ldots, y_N , the MLE for θ is $\hat{\theta} = \bar{y}$
- 2. For any (reasonable) p_o , setting $\theta_o = \mathbb{E}[y_i]$ minimizes $KL(p_o; f_\theta)$.

By the (weak) law of large numbers:

If $y_1, \ldots, y_N \sim \text{iid}$, then \bar{y} is a consistent estimator of $\mathbb{E}[y_i]$ as N approaches infinity.

So at least in this example...

The maximum likelihood estimator $\widehat{\theta}$ is a consistent estimator of θ_o , the minimizer the KL divergence from the true distribution p_o to the Poisson(θ) model $f(y|\theta)$.

Maximum Likelihood Estimation Under Mis-specification

Note: expectations and variances are calculated using p_o

Theorem

Suppose that $\mathbf{y}_1, \dots, \mathbf{y}_N \sim \text{ iid } p_o \text{ and let } \widehat{\boldsymbol{\theta}} \text{ denote the MLE for } \boldsymbol{\theta} \text{ under the possibly mis-specified model } f(\mathbf{y}|\boldsymbol{\theta}). \text{ Then, under mild regularity conditions:}$

(i) $\widehat{\theta}$ is consistent for the pseudo-true parameter value θ_o , defined as the minimizer of $KL(p_o, f_{\theta})$ over the parameter space Θ .

(ii)
$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1}\mathbf{K}\mathbf{J}^{-1})$$

where we define
$$\mathbf{J} \equiv -\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right]$$
 and $\mathbf{K} \equiv \operatorname{Var}\left[\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right]$.

Why is this result such a big deal?

- 1. Provides an interpretation of MLE when we acknowledge that our models are only an approximation or reality: MLE recovers the pseudo-true parameter θ_o .
- Yields a formula for standard errors that is robust to mis-specification of our model: compare to Heteroskedasticity consistent SEs for regression.
- 3. If the model is correctly specified, we recover the "classical" MLE result.

A Consistent Asymptotic Variance Matrix Estimator: $\hat{\mathbf{J}}^{-1}\hat{\mathbf{K}}\hat{\mathbf{J}}^{-1}$

 $\widehat{\theta} \rightarrow_{p} \theta_{o}$ plus Uniform Weak Law of Large Numbers: Newey & McFadden (1994)

$$oldsymbol{ heta}_o \equiv rg\max_{oldsymbol{ heta} \in oldsymbol{\Theta}} \mathbb{E}\left[\log f(\mathbf{y}_i|oldsymbol{ heta})
ight]$$

$$\theta_o \equiv \underset{\theta \in \Theta}{\operatorname{arg max}} \mathbb{E} \left[\log f(\mathbf{y}_i | \theta) \right] \qquad \widehat{\theta} \equiv \underset{\theta \in \Theta}{\operatorname{arg max}} \frac{1}{N} \sum_{i=1}^{N} \log f(\mathbf{y} | \theta)$$

$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1} \mathbf{K} \mathbf{J}^{-1})$$

$$\widehat{oldsymbol{ heta}} pprox \mathcal{N}(oldsymbol{ heta}_o, \widehat{oldsymbol{\mathsf{J}}}^{-1} \widehat{oldsymbol{\mathsf{K}}} \widehat{oldsymbol{\mathsf{J}}}^{-1}/\mathcal{N})$$

$$\mathbf{J} \equiv -\mathbb{E}\left[rac{\partial^2 \log f(\mathbf{y}_i|oldsymbol{ heta}_o)}{\partial oldsymbol{ heta} \partial oldsymbol{ heta}'}
ight]$$

$$\mathbf{J} \equiv -\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}_i|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right] \qquad \widehat{\mathbf{J}} \equiv -\frac{1}{N} \sum_{i=1}^{N} \frac{\partial^2 \log f(\mathbf{y}_i|\widehat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}$$

$$\mathbf{K} \equiv \mathsf{Var} \left[rac{\partial \log f(\mathbf{y}_i | oldsymbol{ heta}_o)}{\partial oldsymbol{ heta}}
ight]$$

$$\mathbf{K} \equiv \mathsf{Var} \left[\frac{\partial \log f(\mathbf{y}_i | \boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}} \right] \qquad \quad \widehat{\mathbf{K}} \equiv \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\partial \log f(\mathbf{y}_i | \widehat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}} \right] \left[\frac{\partial \log f(\mathbf{y}_i | \widehat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}} \right]'$$

Some Notes on the Preceding Slide

What happened to the KL divergence?

 $\mathbb{E}[\log p_o(\mathbf{y})]$ does not involve $\boldsymbol{\theta}$. Hence, $\underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\arg \max} \mathbb{E}[\log f(\mathbf{y}_i|\boldsymbol{\theta})] = \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\arg \min} \ KL(p_o, f_{\boldsymbol{\theta}}).$

Isn't $\widehat{\mathbf{K}}$ missing a term?

The sample variance of \mathbf{x} is given by $\left(\frac{1}{N}\sum_{i=1}^{N}\mathbf{x}_{i}\mathbf{x}_{i}'\right)-\left(\bar{\mathbf{x}}\bar{\mathbf{x}}'\right)$ where $\bar{\mathbf{x}}=\frac{1}{N}\sum_{i=1}^{N}\mathbf{x}_{i}$. In our formula for $\hat{\mathbf{K}}$, the " $\bar{\mathbf{x}}\bar{\mathbf{x}}'$ " term appears to be missing, but it is in fact equal to zero, since $\hat{\boldsymbol{\theta}}$ is the solution to the MLE first-order condition.

Some Terminology

I will call $\hat{\mathbf{J}}^{-1}\hat{\mathbf{K}}\hat{\mathbf{J}}^{-1}$ the robust asymptotic variance matrix estimator, since it is correct regardless of whether the model is correctly specified.

Maximum Likelihood Estimation Under Correct Specification

"Classical" large-sample theory for MLE

Theorem

Suppose that $\mathbf{y}_1, \dots, \mathbf{y}_N \sim \text{ iid } f(\mathbf{y}|\boldsymbol{\theta}_o)$. Then, under mild regularity conditions:

(i) $\widehat{\theta}$ is consistent for θ_o .

(ii)
$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1})$$
 where $\mathbf{J} \equiv -\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right]$.

Why? If
$$p_o(\mathbf{y}) = f(\mathbf{y}|\boldsymbol{\theta}_o)$$
, then:

- 1. $KL(p_o; f_{\theta})$ equals zero at $\theta = \theta_o$.
- 2. The information matrix equality gives K = J which implies $J^{-1}KJ^{-1} = J^{-1}$.

$$\boxed{ \mathbf{J} \equiv -\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right], \quad \mathbf{K} \equiv \mathsf{Var}\left[\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right] }$$

Step 1: Alternative Expression for K

$$\operatorname{Var}\left[\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right] = \mathbb{E}\left[\left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\} \left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\}'\right] - \mathbb{E}\left[\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right] \mathbb{E}\left[\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right]'$$

but since θ_o minimizes $\mathbb{E}[\log f(\mathbf{y}|\theta)]$,

$$\mathbb{E}\left[\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right] = \frac{\partial}{\partial \boldsymbol{\theta}} \mathbb{E}\left[\log f(\mathbf{y}|\boldsymbol{\theta}_o)\right] = \mathbf{0}$$

so it suffices to show that

$$-\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right] = \mathbb{E}\left[\left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\} \left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\}'\right]$$

$$\text{suffices to show } - \mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right] = \mathbb{E}\left[\left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\} \left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\}'\right]$$

Step 2: Chain Rule & Product Rule

$$\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f(\mathbf{y}|\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_{i}} \left[\frac{\partial}{\partial \theta_{j}} \log f(\mathbf{y}|\boldsymbol{\theta}) \right] = \frac{\partial}{\partial \theta_{i}} \left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial}{\partial \theta_{j}} f(\mathbf{y}|\boldsymbol{\theta}) \right] \\
= \left[-\frac{1}{f^{2}(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial}{\partial \theta_{i}} f(\mathbf{y}|\boldsymbol{\theta}) \right] \left[\frac{\partial}{\partial \theta_{j}} f(\mathbf{y}|\boldsymbol{\theta}) \right] + \frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} f(\mathbf{y}|\boldsymbol{\theta}) \\
= -\left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial}{\partial \theta_{i}} f(\mathbf{y}|\boldsymbol{\theta}) \right] \left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial}{\partial \theta_{j}} f(\mathbf{y}|\boldsymbol{\theta}) \right] + \frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} f(\mathbf{y}|\boldsymbol{\theta}) \\
= -\frac{\partial}{\partial \theta_{i}} \log f(\mathbf{y}|\boldsymbol{\theta}) \frac{\partial}{\partial \theta_{i}} \log f(\mathbf{y}|\boldsymbol{\theta}) + \frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{i}} f(\mathbf{y}|\boldsymbol{\theta})$$

MPhil 'Metrics, HT 2020

suffices to show
$$-\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right] = \mathbb{E}\left[\left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\} \left\{\frac{\partial \log f(\mathbf{y}|\boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right\}'\right]$$

Step 3: Multiply by -1, Evaluate at θ_o , and Take Expectations

$$\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(\mathbf{y}|\boldsymbol{\theta}) = -\frac{\partial}{\partial \theta_i} \log f(\mathbf{y}|\boldsymbol{\theta}) \frac{\partial}{\partial \theta_j} \log f(\mathbf{y}|\boldsymbol{\theta}) + \frac{1}{f(\mathbf{y}|\boldsymbol{\theta})} \cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta})$$

$$-\mathbb{E}\left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(\mathbf{y}|\boldsymbol{\theta}_o)\right] = \mathbb{E}\left[\frac{\partial}{\partial \theta_i} \log f(\mathbf{y}|\boldsymbol{\theta}_o) \frac{\partial}{\partial \theta_j} \log f(\mathbf{y}|\boldsymbol{\theta}_o)\right] - \underbrace{\mathbb{E}\left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta}_o)} \cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta}_o)\right]}_{\text{suffices to show this is zero!}}$$

suffices to show
$$\mathbb{E}\left[\frac{1}{f(\mathbf{y}|\boldsymbol{ heta}_o)}\cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{ heta}_o)\right] = 0$$

Step 4: Use
$$p_o(\mathbf{y}) = f(\mathbf{y}|\boldsymbol{\theta}_o)$$

$$\mathbb{E}\left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta}_o)} \cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta}_o)\right] \equiv \int \left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta}_o)} \cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta}_o)\right] \rho_o(\mathbf{y}) \, d\mathbf{y}$$

$$= \int \left[\frac{1}{f(\mathbf{y}|\boldsymbol{\theta}_o)} \cdot \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta}_o)\right] f(\mathbf{y}|\boldsymbol{\theta}_o) \, d\mathbf{y} = \int \frac{\partial^2}{\partial \theta_i \partial \theta_j} f(\mathbf{y}|\boldsymbol{\theta}_o) \, d\mathbf{y}$$

$$= \frac{\partial^2}{\partial \theta_i \partial \theta_i} \int f(\mathbf{y}|\boldsymbol{\theta}_o) \, d\mathbf{y} = \frac{\partial^2}{\partial \theta_i \partial \theta_i} (1) = 0$$

A Simple Example Continued Again: Asymptotic Variance Calculations

Poisson(θ) model, possibly mis-specified.

Ingredients

$$egin{aligned} \log f(y| heta) &= - heta + y \log(heta) - \log(y!) \ &rac{d}{d heta} \log f(y| heta) &= -1 + y/ heta \ &rac{d^2}{d heta^2} \log f(y| heta) &= -y/ heta^2 \ &rac{d}{ heta^2} \log f(y| heta) &= ar{y} \end{aligned}$$

$$J = -\mathbb{E}\left[\frac{d^2}{d\theta^2}\log f(y|\theta_o)\right] = 1/\mathbb{E}[y]$$

$$\widehat{J} = -\frac{1}{N}\sum_{i=1}^N \frac{d^2}{d\theta^2}\log f(y_i|\widehat{\theta}) = 1/\bar{y}$$

$$K = \text{Var}\left[\frac{d}{d\theta}\log f(y|\theta_o)\right] = \text{Var}(y)/\mathbb{E}[y]^2$$

$$\widehat{K} = \frac{1}{N}\sum_{i=1}^N \left[\frac{d}{d\theta}\log f(y_i|\widehat{\theta})\right]^2 = s_y^2/(\bar{y})^2$$

where
$$s_y^2 \equiv \frac{1}{N} \sum_{i=1}^N (y_i - \bar{y})^2$$
 and $\bar{y} \equiv \frac{1}{N} \sum_{i=1}^n y_i$

A Simple Example Continued Again: Asymptotic Variance Calculations

From Previous Slide

$$heta_0 = \mathbb{E}[y], \quad J = 1/\mathbb{E}[y], \quad \widehat{J} = 1/\overline{y}, \quad K = \mathsf{Var}(y)/\mathbb{E}[y]^2, \quad \widehat{K} = s_y^2/(\overline{y})^2$$

Correct Specification

Potential Mis-specification

$$oxed{y_1,\ldots,y_N\sim \ \ \mathsf{iid}} \implies oxed{J=1/\mathbb{E}[y], \quad \mathcal{K}=\mathsf{Var}(y)/\mathbb{E}[y]^2} \implies oxed{J^{-1}\mathcal{K}J^{-1}=\mathsf{Var}(y)}$$

A Simple Example Continued Again: Asymptotic Variance Calculations

Comparison of Asymptotic Distributions

$$\begin{bmatrix}
y_1, \dots, y_N \sim & \text{iid Poisson}(\theta_o)
\end{bmatrix} \implies \sqrt{N}(\widehat{\theta} - \theta_o) = \sqrt{N}(\overline{y} - \mathbb{E}[y]) \to_d \mathcal{N}(0, \mathbb{E}[y]) \\
y_1, \dots, y_N \sim & \text{iid}
\end{bmatrix} \implies \sqrt{N}(\widehat{\theta} - \theta_o) = \sqrt{N}(\overline{y} - \mathbb{E}[y]) \to_d \mathcal{N}(0, \text{Var}[y])$$

Comparison of Asymptotic 95% Cls

$$\boxed{ \begin{array}{c} y_1, \dots, y_N \sim \text{ iid Poisson}(\theta_o) \\ \hline \\ y_1, \dots, y_N \sim \text{ iid} \end{array} } \implies \bar{y} \pm 1.96 \times \sqrt{\bar{y}/N}$$

Punch Line

Unless $Var(y) = \mathbb{E}[y]$, CIs/tests that assume the Poisson model is true are wrong!

Lecture #2 – Poisson Regression

Review: Minimum MSE Predictor / Minimum MSE Linear Predictor

Why not just use OLS?

Conditional Maximum Likelihood Estimation

Poisson Regression: A Robust Model for Count Data

Asymptotic Variance Calculations for Poisson Regression

How to predict a count variable?

Example

Suppose we want to predict y using x, where:

- ▶ $y \equiv \#$ of children a woman has: a count variable, i.e. $y \in \{0, 1, 2, ...\}$
- $\mathbf{x} \equiv \{\text{years of schooling, age, married, etc.}\}$

Minimum MSE Predictor

$$\mu(\mathbf{x}) \equiv \mathbb{E}(y|\mathbf{x})$$
 minimizes $\mathbb{E}\left[\left\{y - \varphi(\mathbf{x})\right\}^2\right]$ over all possible predictors $\varphi(\cdot)$.

Minimum MSE Linear Predictor

$$\beta \equiv \mathbb{E}\left[\mathbf{x}\mathbf{x}'\right]^{-1}\mathbb{E}[\mathbf{x}y]$$
 minimizes $\mathbb{E}\left[\left(y-\mathbf{x}'\boldsymbol{\theta}\right)^2\right]$ over all linear predictors $\mathbf{x}'\boldsymbol{\theta}$.

Proof: $\mathbb{E}(y|\mathbf{x})$ is the minimum MSE predictor

Step 1: add and subtract $\mu(\mathbf{x}) \equiv \mathbb{E}(y|\mathbf{x})$

$$\mathbb{E}\left[\left\{y - \varphi(\mathbf{x})\right\}^{2}\right] = \mathbb{E}\left[\left\{\left(y - \mu(\mathbf{x})\right) - \left(\varphi(\mathbf{x}) - \mu(\mathbf{x})\right)\right\}^{2}\right]$$
$$= \mathbb{E}\left[\left\{y - \mu(\mathbf{x})\right\}^{2}\right] - 2\mathbb{E}\left[\left\{y - \mu(\mathbf{x})\right\}\left\{\varphi(\mathbf{x}) - \mu(\mathbf{x})\right\}\right] + \mathbb{E}\left[\left\{\varphi(\mathbf{x}) - \mu(\mathbf{x})\right\}^{2}\right]$$

Step 2: iterated expectations

$$\mathbb{E}\left[\left\{y - \mu(\mathbf{x})\right\} \left\{\varphi(\mathbf{x}) - \mu(\mathbf{x})\right\}\right] = \mathbb{E}\left(\mathbb{E}\left[\left\{y - \mu(\mathbf{x})\right\} \left\{\varphi(\mathbf{x}) - \mu(\mathbf{x})\right\} | \mathbf{x}\right]\right)$$
$$= \mathbb{E}\left(\left[\varphi(\mathbf{x}) - \mu(\mathbf{x})\right] \left[\mathbb{E}(y|\mathbf{x}) - \mu(\mathbf{x})\right]\right) = 0$$

Step 3: combine steps 1 & 2

$$\mathbb{E}\left[\left\{y - \varphi(\mathbf{x})\right\}^{2}\right] = \mathbb{E}\left[\left\{y - \mu(\mathbf{x})\right\}^{2}\right] + \mathbb{E}\left[\left\{\varphi(\mathbf{x}) - \mu(\mathbf{x})\right\}^{2}\right]$$
constant wrt φ
cannot be negative; zero if $\varphi = \mu$

Proof: OLS is the Minimum MSE Linear Predictor

Objective Function

$$\mathbb{E}\left[\left(y - \mathbf{x}'\boldsymbol{\theta}\right)^{2}\right] = \mathbb{E}[y^{2}] - 2\mathbb{E}[y\mathbf{x}']\boldsymbol{\theta} + \boldsymbol{\theta}'\mathbb{E}\left[\mathbf{x}\mathbf{x}'\right]\boldsymbol{\theta}$$

Recall: Matrix Differentiation

$$\frac{\partial (\mathbf{a}'\mathbf{z})}{\partial \mathbf{z}} = \mathbf{a}, \quad \frac{\partial (\mathbf{z}'\mathbf{A}\mathbf{z})}{\partial \mathbf{z}} = (\mathbf{A} + \mathbf{A}')\mathbf{z}$$

First-Order Condition

$$-2\mathbb{E}\left[\mathbf{x}y\right] + 2\mathbb{E}\left[\mathbf{x}\mathbf{x}'\right]\boldsymbol{\beta} = 0 \implies \boldsymbol{\beta} = \mathbb{E}\left[\mathbf{x}\mathbf{x}'\right]^{-1}\mathbb{E}\left[\mathbf{x}y\right]$$

MPhil 'Metrics, HT 2020

Problems with linear-in-parameters models for count data

Best predictor is $\mathbb{E}(y|\mathbf{x})$ but how can we estimate this?

Plain-vanilla OLS?

- ▶ If $\mathbb{E}(y|\mathbf{x}) \approx \mathbf{x}'\boldsymbol{\beta}$, OLS is a reasonable approach.
- **Problem:** y is a count so it can't be negative, but OLS prediction $x'\beta$ could be.

OLS for log(y)?

- ▶ Log-linear model $\log(y) = \mathbf{x}'\beta + \varepsilon$
- ▶ Solves the problem of negative predictions: log(y) can be negative.
- ▶ Problem: if y is a count it could equal zero but $log(0) = -\infty!$

A realistic model for count data *must* be nonlinear in parameters.

General Approach

- Assume that $\mathbb{E}(y|\mathbf{x}) = m(\mathbf{x}; \boldsymbol{\beta})$ where m is a known parametric function.
- ▶ Choose m so that it is always positive, regardless of \mathbf{x} and β .
- This means *m cannot* be linear.

This Lecture: $m(\mathbf{x}; \boldsymbol{\beta}) = \exp(\mathbf{x}'\boldsymbol{\beta})$

- Always strictly positive
- Common choice in practice
- Everything I'll discuss works with other choices of m, making appropriate changes.

How to estimate β_o ?

Assumption: $\mathbb{E}(y|\mathbf{x}) = \exp(\mathbf{x}'\boldsymbol{\beta}_o)$

Using our argument from above, β_o minimizes $\mathbb{E}\left[\left\{y_i - \exp(\mathbf{x}_i'\boldsymbol{\beta})\right\}^2\right]$ over all $\boldsymbol{\beta}$.

Nonlinear Least Squares (NLLS)

 \widehat{eta}_{NLLS} is the minimizer of $\sum_{i=1}^{N}\left\{y_{i}-\exp\left(\mathbf{x}_{i}^{\prime}oldsymbol{eta}
ight)
ight\}^{2}$

Poisson Regression (MLE)

 \widehat{eta}_{MLE} is the MLE for eta_o under the model $y_i|\mathbf{x}_i\sim \ \ ext{indep.}$ Poisson $\left(\exp(\mathbf{x}_i'oldsymbol{eta}_o)
ight)$

Conditional versus Unconditional MLE

Last Lecture: Unconditional MLE

Model *unconditional* dist. of a random vector \mathbf{y} : $f(\mathbf{y}|\boldsymbol{\theta})$.

This Lecture: Conditional MLE

Model *conditional* dist. of a random variable y given a random vector \mathbf{x} : $f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta})$.

Why Conditional MLE?

- ▶ Unconditional MLE requires joint distribution: $f(y, \mathbf{x}|\theta) = f(y|\mathbf{x}, \theta)f(\mathbf{x}|\theta)$
- $ightharpoonup \mathbb{E}(y|\mathbf{x})$ only depends on $f(y|\mathbf{x}, \theta)$ not $f(\mathbf{x}|\theta)$.
- Not interested in $f(\mathbf{x}|\theta)$; coming up with a good model for it is challenging.
- Caveat: unconditional MLE is more efficient provided the model for x is correct.

The Conditional Maximum Likelihood Estimator

Assuming iid data.

Sample

Population

$$\widehat{\boldsymbol{\theta}} \equiv \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{arg max}} \frac{1}{N} \sum_{i=1}^{N} \log f(y_i | \mathbf{x}_i, \boldsymbol{\theta})$$

$$m{ heta}_o \equiv rg\max_{m{ heta} \in m{\Theta}} \mathbb{E}\left[\log f(y_i|\mathbf{x}_i,m{ heta})
ight]$$

Important

- ▶ We only model the conditional distribution $y|\mathbf{x}$, but...
- ▶ ...the expectation $\mathbb{E}[\log f(y_i|\mathbf{x}_i,\theta)]$ is taken over the *joint distribution* of (y,\mathbf{x}) .
- $ightharpoonup f(y_i|\mathbf{x}_i,\theta)$ is merely a function of the RVs (y_i,\mathbf{x}_i) .

Poisson Regression as a Conditional MLE

Model: $y_i | \mathbf{x}_i \sim \text{Poisson}(\exp{\{\mathbf{x}_i'\boldsymbol{\beta}\}})$

$$\ell_i(\boldsymbol{\beta}) \equiv \log f(y_i|\mathbf{x}_i,\boldsymbol{\beta}) = y_i\mathbf{x}_i'\boldsymbol{\beta} - \exp(\mathbf{x}_i'\boldsymbol{\beta}) - \log(y_i!)$$

$$\underbrace{\mathbf{s}_{i}(\boldsymbol{\beta})}_{\text{score vector}} \equiv \frac{\partial \ell_{i}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \mathbf{x}_{i} \left[y_{i} - \exp \left(\mathbf{x}_{i}' \boldsymbol{\beta} \right) \right]$$

$$\widehat{\boldsymbol{\beta}}$$
 solves $\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \underbrace{\left[y_{i} - \exp\left(\mathbf{x}_{i}'\boldsymbol{\beta}\right) \right]}_{\text{residual: } u_{i}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} u_{i}(\boldsymbol{\beta}) = \mathbf{0}$

Average Partial Effects

Partial Effects

For continuous x_j , we call $\frac{\partial}{\partial x_j}\mathbb{E}(y|\mathbf{x})$ the partial effect of x_j . For discrete x_j the partial effect is the difference of $\mathbb{E}(y|\mathbf{x})$ at two different values of x_j

Average Partial Effects (APE)

In nonlinear models, partial effects typically vary with \mathbf{x} . The average partial effect is the expectation of the partial effect over the distribution of \mathbf{x} .

Average Partial Effects for Poisson Regression

Partial Effect

$$\frac{\partial}{\partial x_j} \mathbb{E}(y|\mathbf{x}) = \frac{\partial}{\partial x_j} \exp(\mathbf{x}_j'\boldsymbol{\beta}) = \exp(\mathbf{x}_j'\boldsymbol{\beta}) \beta_j$$

Estimated Partial Effect

$$\exp\left(\mathbf{x}_{i}^{\prime}\widehat{\boldsymbol{\beta}}\right)\widehat{\beta}_{j}$$

Average Partial Effect

$$\mathbb{E}\left[\frac{\partial}{\partial \mathsf{x}_{j}}\exp\left(\mathbf{x}_{i}^{\prime}\boldsymbol{\beta}\right)\right]=\mathbb{E}\left[\exp\left(\mathbf{x}_{i}^{\prime}\boldsymbol{\beta}\right)\right]\beta_{j}$$

Estimated Average Partial Effect

$$\left[\frac{1}{N}\sum_{i=1}^{N}\exp\left(\mathbf{x}_{i}^{\prime}\widehat{\boldsymbol{\beta}}\right)\right]\widehat{\beta}_{j}$$

Relative Effects

The ratio of partial effects does not depend on x: relative effects are constant.

Problem Set

Poisson regression: APE= $\bar{y}\hat{\beta}_{j}$. Multiply by \bar{y} to put coefficients on the scale of OLS.

Conditional MLE Under Mis-specification

Basically identical to the unconditional version.

Theorem

Suppose that $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N \sim \text{ iid } p_o \text{ and let } \widehat{\boldsymbol{\theta}} \text{ denote the Conditional MLE for } \boldsymbol{\theta} \text{ under the possibly mis-specified model } f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}). \text{ Then, under mild regularity conditions:}$

(i) $\widehat{\theta}$ is consistent for the pseudo-true parameter value θ_o , defined as the maximizer of the expected log likelihood $\mathbb{E}\left[\log f(y|\mathbf{x},\theta)\right]$ over the parameter space Θ .

(ii)
$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1}\mathbf{K}\mathbf{J}^{-1})$$

where we define
$$\mathbf{J} \equiv -\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right]$$
 and $\mathbf{K} \equiv \mathrm{Var}\left[\frac{\partial \log f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta}}\right]$.

Conditional MLE Under Correct Specification

Basically identical to the unconditional version.

Theorem

Suppose that $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N \sim \text{ iid } \text{ where the conditional distribution of } y_i | \mathbf{x}_i \text{ is given by } f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_o)$. Then, under mild regularity conditions,

(i) $\widehat{\theta}$ is consistent for θ_o

(ii)
$$\sqrt{N}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1})$$
 where $\mathbf{J} \equiv -\mathbb{E}\left[\frac{\partial^2 \log f(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_o)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right]$

What value of β maximizes $\mathbb{E}\left[\ell_i(\beta)\right]$?

Iterated Expectations

$$\mathbb{E}[\ell_i(\boldsymbol{\beta})] = \mathbb{E}\left\{\mathbb{E}\left[\ell_i(\boldsymbol{\beta})|\mathbf{x}_i\right]\right\} = \mathbb{E}\left\{\mathbb{E}\left[y_i\mathbf{x}_i'\boldsymbol{\beta} - \exp(\mathbf{x}_i'\boldsymbol{\beta}) - \log\left(y_i!\right)|\mathbf{x}_i\right]\right\}$$

Simplify Inner Expectation

$$\mathbb{E}\left[\ell_i(\boldsymbol{\beta})|\mathbf{x}_i\right] = \mathbf{x}_i'\boldsymbol{\beta}\mathbb{E}\left[y_i|\mathbf{x}_i\right] - \exp\left(\mathbf{x}_i'\boldsymbol{\beta}\right) - \underbrace{\mathbb{E}\left[\log\left(y_i!\right)|\mathbf{x}_i\right]}_{\text{constant wrt }\mathbf{x}_i}$$

FOC for Inner Expectation

$$\frac{\partial}{\partial \boldsymbol{\beta}} \mathbb{E}\left[\ell_i(\boldsymbol{\beta})|\mathbf{x}_i\right] = \left\{ \mathbb{E}\left[y_i|\mathbf{x}_i\right] - \exp\left(\mathbf{x}_i'\boldsymbol{\beta}\right) \right\} \mathbf{x}_i = \mathbf{0}$$

What value of β maximizes $\mathbb{E}\left[\ell_i(\beta)\right]$?

$$egin{aligned} rac{\partial}{\partialoldsymbol{eta}}\mathbb{E}\left[\ell_i(oldsymbol{eta})|\mathbf{x}_i
ight] = \left\{\mathbb{E}\left[y_i|\mathbf{x}_i
ight] - \exp\left(\mathbf{x}_i'oldsymbol{eta}
ight)
ight\}\mathbf{x}_i = \mathbf{0} \end{aligned}$$

What does this mean?

Since $\mathbb{E}\left[y_i|\mathbf{x}_i\right] = \exp\left(\mathbf{x}_i'\boldsymbol{\beta}_o\right)$, setting $\boldsymbol{\beta} = \boldsymbol{\beta}_o$ solves the FOC for the inner expectation!

In other words:

For any realization of \mathbf{x}_i and any $\boldsymbol{\beta}$,

$$\mathbb{E}[\ell_i(\boldsymbol{\beta})|\mathbf{x}_i] \leq \mathbb{E}[\ell_i(\boldsymbol{\beta}_o)|\mathbf{x}_i]$$

so taking expectations of both sides:

$$\mathbb{E}\left[\ell_i(\boldsymbol{\beta})\right] = \mathbb{E}\left\{\mathbb{E}\left[\ell_i(\boldsymbol{\beta})|\mathbf{x}_i\right]\right\} \leq \mathbb{E}\left\{\mathbb{E}\left[\ell_i(\boldsymbol{\beta}_o)|\mathbf{x}_i\right]\right\} = \mathbb{E}\left[\ell_i(\boldsymbol{\beta}_o)\right]$$

Poisson Regression is consistent if $\mathbb{E}(y|\mathbf{x})$ is correctly specified.

We showed this for a particular choice of $m(x; \beta)$ but the result is general.

Result

Provided that we have correctly specified $\mathbb{E}(y_i|\mathbf{x}_i)$, it *doesn't matter* if $y_i|\mathbf{x}_i$ actually follows a Poisson distribution: Poisson regression is *still consistent* for $\boldsymbol{\beta}_o$.

Compare

This is very similar to our result for the $Poisson(\theta)$ model from last lecture.

Caveat

Strictly speaking we need to show that β_o is the *unique* maximizer of the expected log likelihood. *Multiple solutions* if \mathbf{x}_i perfectly co-linear (compare to OLS regression).

Asymptotic Variance Calculations for Poisson Regression

$$\underbrace{\mathbf{s}_{i}(\boldsymbol{\beta})}_{\text{score vector}} \equiv \frac{\partial \ell_{i}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \mathbf{x}_{i} \left[y_{i} - \exp\left(\mathbf{x}_{i}'\boldsymbol{\beta}\right) \right] = \mathbf{x}_{i} u_{i}(\boldsymbol{\beta})$$

$$\underbrace{\mathbf{H}_{i}(\boldsymbol{\beta})}_{\text{score negrois}} \equiv \frac{\partial \mathbf{s}_{i}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}'} = -\exp\left(\mathbf{x}_{i}'\boldsymbol{\beta}\right) \mathbf{x}_{i} \mathbf{x}_{i}'$$
Hessian matrix

$$\mathbf{J} \equiv -\mathbb{E}\left[\mathbf{H}_{i}(\boldsymbol{\beta}_{o})\right] = \mathbb{E}\left[\exp\left(\mathbf{x}_{i}'\boldsymbol{\beta}_{o}\right)\mathbf{x}_{i}\mathbf{x}_{i}'\right]$$

$$\mathbf{K} \equiv \mathsf{Var}\left[\mathbf{s}_{i}(\boldsymbol{\beta}_{o})\right] = \mathbb{E}\left[\mathbf{s}_{i}(\boldsymbol{\beta}_{o})\mathbf{s}_{i}(\boldsymbol{\beta}_{o})'\right] = \mathbb{E}\left[u_{i}^{2}(\boldsymbol{\beta}_{o})\mathbf{x}_{i}\mathbf{x}_{i}'\right]$$

Asymptotic Variance Calculations for Poisson Regression

$$\mathbf{J} = \mathbb{E}\left[\exp\left(\mathbf{x}_{i}^{\prime}\boldsymbol{\beta}_{o}\right)\mathbf{x}_{i}\mathbf{x}_{i}^{\prime}\right], \quad \mathbf{K} = \mathbb{E}\left[u_{i}^{2}(\boldsymbol{\beta}_{o})\mathbf{x}_{i}\mathbf{x}_{i}^{\prime}\right]$$

Notice

J does not depend on y but **K** does:

$$\mathbf{K} = \mathbb{E}\left[u_i^2(\boldsymbol{\beta}_o)\mathbf{x}_i\mathbf{x}_i'\right] = \mathbb{E}\left\{\mathbb{E}\left[u_i^2(\boldsymbol{\beta}_o)|\mathbf{x}_i\right]\mathbf{x}_i\mathbf{x}_i'\right\} = \mathbb{E}\left(\mathbb{E}\left[\left\{y_i - \mathbb{E}(y_i|\mathbf{x}_i)\right\}^2|\mathbf{x}_i\right]\mathbf{x}_i\mathbf{x}_i'\right)$$
$$= \mathbb{E}\left[\operatorname{Var}(y_i|\mathbf{x}_i)\mathbf{x}_i\mathbf{x}_i'\right]$$

Assumptions about $Var(y|\mathbf{x})$ affect the asymptotic variance through \mathbf{K} .

Possible Assumptions for $Var(y|\mathbf{x})$: Strongest to Weakest

- 1. Poisson Assumption: $Var(y|\mathbf{x}) = \mathbb{E}(y|\mathbf{x})$
 - holds if Poisson model is correct.
- 2. Quasi-Poisson Assumption: $Var(y|\mathbf{x}) = \sigma^2 \mathbb{E}(y|\mathbf{x})$
 - Allows for possibility that $y | \mathbf{x}$ is *not* Poisson
 - Overdispersion: $\sigma^2 > 1 \implies \mathsf{Var}(y|\mathbf{x}) > \mathbb{E}(y|\mathbf{x})$
 - Underdispersion $\sigma^2 < 1 \implies \text{Var}(y|\mathbf{x}) < \mathbb{E}(y|\mathbf{x})$
 - If $\sigma^2 = 1$ we're back to the Poisson Assumption.
- 3. No Assumption: $Var(y|\mathbf{x})$ unspecified

Asymptotic Variance Under Poisson Assumption

$$\mathbf{J} = \mathbb{E}\left[\exp\left(\mathbf{x}_i'oldsymbol{eta}_o
ight)\mathbf{x}_i\mathbf{x}_i'
ight], \quad \mathbf{K} = \mathbb{E}\left[\operatorname{Var}(y_i|\mathbf{x}_i)\mathbf{x}_i\mathbf{x}_i'
ight]$$

Assumption: $Var(y_i|\mathbf{x}_i) = \mathbb{E}(y_i|\mathbf{x}_i) = \exp(\mathbf{x}_i'\boldsymbol{\beta}_o)$

- ▶ Implies $\mathbf{K} = \mathbb{E}\left[\exp\left(\mathbf{x}_i'\boldsymbol{\beta}_o\right)\mathbf{x}_i\mathbf{x}_i'\right]$
- ightharpoonup Hence $\mathbf{K} = \mathbf{J}$ (Information Matrix Equality)
- ► Therefore: $\sqrt{N}(\widehat{\boldsymbol{\beta}} \boldsymbol{\beta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1})$
- ► Consistent Estimator: $\hat{\mathbf{J}}^{-1} = \left[\frac{1}{N} \sum_{i=1}^{N} \exp\left(\mathbf{x}_{i}' \widehat{\boldsymbol{\beta}}\right) \mathbf{x}_{i} \mathbf{x}_{i}'\right]^{-1}$

Asymptotic Variance Under Quasi-Poisson Assumption

$$\mathbf{J} = \mathbb{E}\left[\exp\left(\mathbf{x}_i'oldsymbol{eta}_o
ight)\mathbf{x}_i\mathbf{x}_i'
ight], \quad \mathbf{K} = \mathbb{E}\left[\operatorname{Var}(y_i|\mathbf{x}_i)\mathbf{x}_i\mathbf{x}_i'
ight]$$

Assumption: $Var(y_i|\mathbf{x}_i) = \sigma^2 \mathbb{E}(y_i|\mathbf{x}_i) = \sigma^2 \exp(\mathbf{x}_i'\boldsymbol{\beta}_o)$

- ► Implies $\mathbf{K} = \sigma^2 \mathbb{E} \left[\exp \left(\mathbf{x}_i' \boldsymbol{\beta}_o \right) \mathbf{x}_i \mathbf{x}_i' \right] = \sigma^2 \mathbf{J}$
- Hence $J^{-1}KJ^{-1} = \sigma^2J^{-1}$
- ► Therefore: $\sqrt{N}(\widehat{\boldsymbol{\beta}} \boldsymbol{\beta}_o) \rightarrow_d \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{J}^{-1})$
- ► Consistent estimator of J^{-1} on prev. slide but how can we estimate σ^2 ?

How to estimate σ^2 under the Quasi-Poisson Assumption?

$$\begin{aligned} \mathsf{Var}(y|\mathbf{x}) &= \sigma^2 \mathbb{E}(y|\mathbf{x}) \\ \sigma^2 &= \mathsf{Var}(y|\mathbf{x}) / \mathbb{E}(y|\mathbf{x}) \\ \sigma^2 &= \mathbb{E}\left[\left\{y - \mathbb{E}(y|\mathbf{x})\right\}^2 |\mathbf{x}\right] / \mathbb{E}(y|\mathbf{x}) \\ \sigma^2 &= \mathbb{E}\left[\left.\frac{\left\{y - \mathbb{E}(y|\mathbf{x})\right\}^2 |\mathbf{x}\right]}{\mathbb{E}(y|\mathbf{x})} |\mathbf{x}\right] \\ \sigma^2 &= \mathbb{E}\left[\left.\frac{\left\{y - \exp(\mathbf{x}'\boldsymbol{\beta}_o)\right\}^2 |\mathbf{x}\right]}{\exp(\mathbf{x}'\boldsymbol{\beta})} |\mathbf{x}\right] \\ \mathbb{E}[\sigma^2] &= \mathbb{E}\left(\mathbb{E}\left[\left.\frac{\left\{y - \exp(\mathbf{x}'\boldsymbol{\beta}_o)\right\}^2 |\mathbf{x}\right\}\right]}{\exp(\mathbf{x}'\boldsymbol{\beta})} |\mathbf{x}\right]\right) \\ \sigma^2 &= \mathbb{E}\left[\left.\frac{\left\{y - \exp(\mathbf{x}'\boldsymbol{\beta}_o)\right\}^2 |\mathbf{x}\right\}}{\exp(\mathbf{x}'\boldsymbol{\beta})}\right] \\ \sigma^2 &= \mathbb{E}\left[u^2(\boldsymbol{\beta}_o) / \exp(\mathbf{x}'\boldsymbol{\beta}_o)\right] \end{aligned}$$

Consistent Estimator of σ^2

$$\widehat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} \frac{[y_i - \exp(\mathbf{x}_i'\widehat{\boldsymbol{\beta}})]^2}{\exp(\mathbf{x}_i\widehat{\boldsymbol{\beta}})} = \frac{1}{N} \sum_{i=1}^{N} \frac{\widehat{u}_i^2}{\exp(\mathbf{x}_i\widehat{\boldsymbol{\beta}})}$$

Robust Asymptotic Variance Matrix

$$\mathbf{J} = \mathbb{E}\left[\exp\left(\mathbf{x}_i'\boldsymbol{eta}_o\right)\mathbf{x}_i\mathbf{x}_i'\right], \quad \mathbf{K} = \mathbb{E}\left[u_i^2(\boldsymbol{eta}_o)\mathbf{x}_i\mathbf{x}_i'\right]$$

No Assumption on $Var(y_i|\mathbf{x}_i)$

- $lacksquare \sqrt{N}(\widehat{eta}-eta_o)
 ightarrow_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1}\mathbf{K}\mathbf{J}^{-1})$
- $lackbox{Consistent Estimator: } \widehat{\mathbf{J}}^{-1} = \left[\frac{1}{N} \sum_{i=1}^N \exp\left(\mathbf{x}_i' \widehat{eta}\right) \mathbf{x}_i \mathbf{x}_i' \right]^{-1}$
- ► Consistent Estimator: $\widehat{\mathbf{K}} = \frac{1}{N} \sum_{i=1}^{N} \left[y_i \exp(\mathbf{x}_i \widehat{\boldsymbol{\beta}}) \right]^2 \mathbf{x}_i \mathbf{x}_i' = \frac{1}{N} \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{x}_i \mathbf{x}_i'$

Why Poisson Regression rather than NLLS?

Assume that $\mathbb{E}(y|\mathbf{x}) = \exp(\mathbf{x}'\beta_o)$

Both Poisson Reg. & NLLS are consistent if the conditional mean is correctly specified.

Count data are typically heteroskedastic.

If $Var(y|\mathbf{x})$ varies with \mathbf{x} , NLLS will be relatively inefficient.

Efficiency of Poisson Regression

- ► Correct model ⇒ lowest variance among all estimators that leave the distribution of x unspecified.
- ▶ $Var(y|\mathbf{x}) = \sigma^2 \mathbb{E}(y|\mathbf{x}) \implies$ Poisson regression is more efficient than NLLS and various other count data models.

Lecture #3 – Models for Binary Outcomes

Properties of Binary Outcome Models

Linear Probability Model

Index Models (e.g. Logit & Probit)

Partial Effects

Conditional MLE for Index Models

Pseudo R-squared

Models for Binary Outcomes

Example

- ightharpoonup Outcome: y = 1 if employed, 0 otherwise
- ▶ Predictors/Regressors: **x** = {age, sex, education, experience, ...}

Question

How does x_j affect our prediction of y holding the other regressors constant?

We'll consider three models:

- 1. Linear Probability Model (LPM)
- 2. Logistic Regression (Logit)
- 3. Probit Regression (Probit)

Properties of Binary Outcome Models: $y \in \{0,1\}$

Notation

$$p(\mathbf{x}) \equiv \mathbb{P}(y=1|\mathbf{x})$$

Conditional Mean

$$\mathbb{E}(y|\mathbf{x}) = p(\mathbf{x})$$

Conditional Variance

$$Var(y|\mathbf{x}) = p(\mathbf{x})[1 - p(\mathbf{x})]$$

$$\mathbb{E}(y|\mathbf{x}) = 0 \times \mathbb{P}(y = 0|\mathbf{x}) + 1 \times \mathbb{P}(y = 1|\mathbf{x})$$

= $\mathbb{P}(y = 1|\mathbf{x}) \equiv \rho(\mathbf{x})$

$$\mathbb{E}(y^2|\mathbf{x}) = \left\{0^2 \times [1 - p(\mathbf{x})] + 1^2 \times p(\mathbf{x})\right\}$$
$$= p(\mathbf{x})$$

$$Var(y|\mathbf{x}) = \mathbb{E}(y^2|\mathbf{x}) - \mathbb{E}(y|\mathbf{x})^2$$

$$= \{0^2 \times [1 - p(\mathbf{x})] + 1^2 \times p(\mathbf{x})\} - p(\mathbf{x})^2$$

$$= p(\mathbf{x})[1 - p(\mathbf{x})]$$

The Linear Probability Model: Assume $p(\mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}$

Conditional Mean & Variance

This is just Linear Regression!

$$y = \mathbf{x}'\boldsymbol{\beta} + u, \quad \mathbb{E}(u|\mathbf{x}) = 0$$

But *u* is Heteroskedastic

$$Var(u|\mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}(1 - \mathbf{x}'\boldsymbol{\beta})$$

$$\mathbb{E}(u|\mathbf{x}) = \mathbb{E}(y - \mathbf{x}'\boldsymbol{\beta}|\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) - \mathbf{x}'\boldsymbol{\beta}$$
$$= \mathbf{x}'\boldsymbol{\beta} - \mathbf{x}'\boldsymbol{\beta} = 0$$

$$Var(u|\mathbf{x}) = \mathbb{E}\left[\left\{u - \mathbb{E}(u|\mathbf{x})\right\}^{2}|\mathbf{x}\right] = \mathbb{E}\left[u^{2}|\mathbf{x}\right]$$

$$= \mathbb{E}\left[\left(y - \mathbf{x}'\boldsymbol{\beta}\right)^{2}|\mathbf{x}\right]$$

$$= \mathbb{E}\left(y^{2}|\mathbf{x}\right) - 2\mathbb{E}\left(y|\mathbf{x}\right)\mathbf{x}'\boldsymbol{\beta} + \left(\mathbf{x}'\boldsymbol{\beta}\right)^{2}$$

$$= p(\mathbf{x}) - 2p(\mathbf{x})p(\mathbf{x}) + p(\mathbf{x})^{2}$$

$$= p(\mathbf{x})\left[1 - p(\mathbf{x})\right]$$

The Linear Probability Model: Assume $p(\mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}$

Estimation

Since $\mathbb{E}(u|\mathbf{x}) = 0$ OLS estimation of $y = \mathbf{x}'\boldsymbol{\beta} + u$ is unbiased and consistent.

Inference

Since u is heteroskedastic, tests and CIs should use robust standard errors.

Is the LPM actually reasonable?

- Assumes $p(\mathbf{x}) = \mathbf{x}'\beta \implies$ changing x_j by Δ changes $p(\mathbf{x})$ by $\beta_j\Delta$
- ▶ If **x** contains regressors without upper/lower bounds, $p(\mathbf{x})$ could be > 1 or < 0!
- ▶ LPM could be a reasonable approximation but cannot be *literally* true.

Index Models: Constrain $p(\mathbf{x})$ to lie in [0,1]

Index Model: $p(\mathbf{x}) = G(\mathbf{x}'\beta)$

Assume \mathbf{x} includes a constant, $0 \leq G(\cdot) \leq 1$, G is differentiable and strictly increasing, $\lim_{z \to \infty} G(z) = 1$, and $\lim_{z \to -\infty} G(z) = 0$.

Terminology

We call $\mathbf{x}'\boldsymbol{\beta}$ the linear index and G the index function.

Partial Effects

Let $g(z) \equiv \frac{d}{dz}G(z)$. Then $\frac{\partial}{\partial x_j}p(\mathbf{x}) = g(\mathbf{x}'\boldsymbol{\beta})\beta_j$. Hence:

- \triangleright The partial effect of x_i depends on the value of \mathbf{x} at which we evaluate g.
- G strictly increasing $\implies g(\cdot) > 0 \implies$ sign of partial effect determined by β_j .

Possible Choices of Index Function

CDFs as Index Functions

G satisfies the index model assumptions (prev. slide) iff it is a continuous CDF.

We focus on two examples:

- 1. Logit: $G(z) = \Lambda(z) \equiv \exp(z)/[1 + \exp(z)]$
- 2. Probit: $G(z) = \Phi(z) \equiv \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp(-t^2/2) dt$

Notation:

- $ightharpoonup \Lambda$ is the CDF of a "standard logistic" RV and Φ of a standard normal RV.
- \blacktriangleright λ is the density of a "standard logistic" RV and φ of a standard normal
- ▶ To treat Logit and Probit simultaneously, we'll write G as a placeholder.

Standard Logistic and Normal Densities and CDFs

MPhil 'Metrics, HT 2020

Partial Effects: $\partial p(\mathbf{x})/\partial x_i$

$$\frac{\partial}{\partial x_i} \mathbf{x}' \boldsymbol{\beta} = \beta_j$$

$$\frac{\partial}{\partial x_j} \Lambda(\mathbf{x}'\boldsymbol{\beta}) = \frac{\beta_j \exp(\mathbf{x}'\boldsymbol{\beta})}{\left[1 + \exp(\mathbf{x}'\boldsymbol{\beta})\right]^2}$$

$$\frac{\text{Probit}}{\partial x_j} \Phi(\mathbf{x}'\beta) = \frac{\beta_j \exp\{-(\mathbf{x}'\beta)^2/2\}}{\sqrt{2\pi}}$$

$$\frac{\partial}{\partial x_i} G(\mathbf{x}'\boldsymbol{\beta}) = g(\mathbf{x}'\boldsymbol{\beta})\beta_j$$

$$\begin{split} \frac{d}{dz}\Lambda(z) &\equiv \lambda(z) = \frac{d}{dz}\left(\frac{e^z}{1+e^z}\right) = \frac{e^z(1+e^z) - e^z e^z}{(1+e^z)^2} \\ &= \frac{e^z}{(1+e^z)^2} \end{split}$$

$$\frac{d}{dz}\Phi(z) = \varphi(z) = \frac{\exp\left\{-z^2/2\right\}}{\sqrt{2\pi}}$$

Comparing Logit, Probit, and LPM Partial Effects

$$\frac{\partial}{\partial x_j}G(\mathbf{x}'\boldsymbol{\beta}) = g(\mathbf{x}'\boldsymbol{\beta})\beta_j, \quad \frac{d}{dz}\Lambda(z) \equiv \lambda(z) = \frac{e^z}{\left(1 + e^z\right)^2}, \quad \frac{d}{dz}\Phi(z) \equiv \varphi(z) = \frac{\exp\left\{-z^2/2\right\}}{\sqrt{2\pi}}$$

Maximum Partial Effects

 $ightharpoonup \lambda$ and φ are unimodal with mode at 0

Logit
$$\lambda(0) = 0.25$$

Probit $\varphi(0) = (2\pi)^{-1/2} \approx 0.4$

lacktriangle Maximum partial effect when ${f x}'m{eta}=0$

Logit
$$\beta_j \lambda(0) = 0.25 \beta_j$$

Probit $\beta_i \varphi(0) \approx 0.4 \beta_i$

▶ LPM has constant partial effects β_i

Relative Effects

$$\frac{\frac{\partial}{\partial x_j} p(\mathbf{x})}{\frac{\partial}{\partial x_h} p(\mathbf{x})} = \frac{\beta_j g(\mathbf{x}' \boldsymbol{\beta})}{\beta_h g(\mathbf{x}' \boldsymbol{\beta})} = \frac{\beta_j}{\beta_h}$$

Relative effects do not depend on x.

Average Partial Effects for Index Models

Partial Effect

$$\frac{\partial}{\partial x_j} G(\mathbf{x}_i'\boldsymbol{\beta}) = g(\mathbf{x}_i'\boldsymbol{\beta})\beta_j$$

Average Partial Effect

$$\mathbb{E}\left[\frac{\partial}{\partial x_j}G(\mathbf{x}_i'\boldsymbol{\beta})\right] = \mathbb{E}[g(\mathbf{x}_i'\boldsymbol{\beta})]\beta_j$$

Estimated Partial Effect

$$\frac{\partial}{\partial x_j} G(\mathbf{x}_i'\widehat{\boldsymbol{\beta}}) = g(\mathbf{x}_i'\widehat{\boldsymbol{\beta}})\widehat{\beta}_j$$

Estimated Average Partial Effect

$$\left[\frac{1}{N}\sum_{i=1}^{N}g(\mathbf{x}_{i}'\widehat{\boldsymbol{\beta}})\right]\widehat{\beta}_{j}$$

Warning:

APE \neq partial effect evaluated at the average value of **x** since $\mathbb{E}[f(Z)] \neq f(\mathbb{E}[Z])$.

Conditional MLE for Index Models: iid Observations

Conditional Likelihood

$$f(y_i|\mathbf{x}_i,oldsymbol{eta}) = \left\{egin{array}{ll} 1 - G(\mathbf{x}_i'oldsymbol{eta}) & ext{if } y_i = 0 \ G(\mathbf{x}_i'oldsymbol{eta}) & ext{if } y_i = 1 \end{array}
ight. \quad \Longleftrightarrow \quad f(y_i|\mathbf{x}_i,oldsymbol{eta}) = G(\mathbf{x}_i'oldsymbol{eta})^{y_i} \left[1 - G(\mathbf{x}_i'oldsymbol{eta})
ight]^{1-y_i}$$

Conditional Log-Likelihood

$$\ell_i(\boldsymbol{\beta}) \equiv \log f(y_i|\mathbf{x}_i,\boldsymbol{\beta}) = y_i \log \left[G(\mathbf{x}_i'\boldsymbol{\beta}) \right] + (1-y_i) \log \left[1 - G(\mathbf{x}_i'\boldsymbol{\beta}) \right]$$

Sample

Population

$$\widehat{eta} \equiv \underset{eta \in \Theta}{\operatorname{arg\,max}} \frac{1}{N} \sum_{i=1}^{N} \ell_i(eta)$$
 $eta_o \equiv \underset{eta \in \Theta}{\operatorname{arg\,max}} \mathbb{E}\left[\ell(eta)\right]$

Correct specification: $\mathbb{E}(y|\mathbf{x}) = p(\mathbf{x}) = G(\mathbf{x}'\boldsymbol{\beta}_o)$. Otherwise $\boldsymbol{\beta}_o = \mathsf{KL}$ -minimizer.

Asymptotic Variance Calculations for Index Models

Recall from last lecture.

Possibly Mis-specified Model

$$\sqrt{N}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_o) o_d \mathcal{N}(\mathbf{0}, \mathbf{J}^{-1}\mathbf{K}\mathbf{J}^{-1})$$
 where $\mathbf{J}=-\mathbb{E}\left[\mathbf{H}_i(\boldsymbol{\beta}_o)
ight]$ and $\mathbf{K}=\mathbb{E}\left[\mathbf{s}_i(\boldsymbol{\beta}_o)\mathbf{s}_i(\boldsymbol{\beta}_o)'
ight]$

Correct Specification

$$\sqrt{N}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_o) o_d \mathcal{N}(\mathbf{0},\mathbf{J}^{-1})$$
 where $\mathbf{J}=-\mathbb{E}\left[\mathbf{H}_i(\boldsymbol{\beta}_o)
ight]$

Asymptotic variance calculations for index models are complicated, but there's a clever trick for computing J under correct specification.

$$\ell_i(\boldsymbol{\beta}) = y_i \log \{G(\mathbf{x}_i'\boldsymbol{\beta})\} + (1 - y_i) \log \{1 - G(\mathbf{x}_i'\boldsymbol{\beta})\}$$

Step 1: Calculate The Score Vector

$$\begin{split} \mathbf{s}_i &\equiv \frac{\partial}{\partial \boldsymbol{\beta}} \ell_i(\boldsymbol{\beta}) = \frac{y_i g(\mathbf{x}_i' \boldsymbol{\beta}) \mathbf{x}_i}{G(\mathbf{x}_i' \boldsymbol{\beta})} - \frac{(1 - y_i) g(\mathbf{x}_i' \boldsymbol{\beta}) \mathbf{x}_i}{1 - G(\mathbf{x}_i' \boldsymbol{\beta})} \\ &= \frac{g(\mathbf{x}_i' \boldsymbol{\beta}) \mathbf{x}_i}{G(\mathbf{x}_i' \boldsymbol{\beta}) \left[1 - G(\mathbf{x}_i' \boldsymbol{\beta})\right]} \left\{ \left[1 - G(\mathbf{x}_i' \boldsymbol{\beta})\right] y_i - G(\mathbf{x}_i' \boldsymbol{\beta})(1 - y_i) \right\} \\ &= \frac{g(\mathbf{x}_i' \boldsymbol{\beta}) \mathbf{x}_i \left[y_i - G(\mathbf{x}_i' \boldsymbol{\beta})\right]}{G(\mathbf{x}_i' \boldsymbol{\beta}) \left[1 - G(\mathbf{x}_i' \boldsymbol{\beta})\right]} \end{split}$$

$$\mathbf{s}_{i} = \frac{g(\mathbf{x}_{i}'\beta)\mathbf{x}_{i} \{y_{i} - G(\mathbf{x}_{i}'\beta)\}}{G(\mathbf{x}_{i}'\beta) \{1 - G(\mathbf{x}_{i}'\beta)\}}$$

Step 2: Start Calculating the Hessian but give up because it's a nightmare.

$$\mathbf{H}_{i}(\boldsymbol{\beta}) \equiv \frac{\partial \mathbf{s}_{i}}{\partial \boldsymbol{\beta}'} = \frac{\partial}{\partial \boldsymbol{\beta}'} \left([y_{i} - G(\mathbf{x}_{i}'\boldsymbol{\beta})] \left[\frac{g(\mathbf{x}_{i}'\boldsymbol{\beta})\mathbf{x}_{i}}{G(\mathbf{x}_{i}'\boldsymbol{\beta}) \left\{ 1 - G(\mathbf{x}_{i}'\boldsymbol{\beta}) \right\}} \right] \right)$$

$$=\frac{-g(\mathbf{x}_i'\boldsymbol{\beta})^2\mathbf{x}_i\mathbf{x}_i'}{G(\mathbf{x}_i'\boldsymbol{\beta})\left\{1-G(\mathbf{x}_i'\boldsymbol{\beta})\right\}}+\left[y_i-G(\mathbf{x}_i'\boldsymbol{\beta})\right]\underbrace{\frac{\partial}{\partial\boldsymbol{\beta}'}\left\{\frac{g(\mathbf{x}_i'\boldsymbol{\beta})\mathbf{x}_i}{G(\mathbf{x}_i'\boldsymbol{\beta})\left[1-G(\mathbf{x}_i'\boldsymbol{\beta})\right]}\right\}}_{\text{a nasty awful mess: call it }\mathbf{M}(\mathbf{x}_i,\boldsymbol{\beta})}$$

$$\mathbf{H}_{i}(\boldsymbol{\beta}) = \frac{-g(\mathbf{x}_{i}'\boldsymbol{\beta})^{2}\mathbf{x}_{i}\mathbf{x}_{i}'}{G(\mathbf{x}_{i}'\boldsymbol{\beta})\left\{1 - G(\mathbf{x}_{i}'\boldsymbol{\beta})\right\}} + \left[y_{i} - G(\mathbf{x}_{i}'\boldsymbol{\beta})\right]\mathbf{M}(\mathbf{x}_{i},\boldsymbol{\beta})$$

Step 3: Calculate the Conditional Expectation instead...

$$-\mathbb{E}\left[\mathsf{H}_{i}(\boldsymbol{\beta})|\mathsf{x}_{i}\right] = \frac{g(\mathsf{x}_{i}'\boldsymbol{\beta})^{2}\mathsf{x}_{i}\mathsf{x}_{i}'}{G(\mathsf{x}_{i}'\boldsymbol{\beta})\left\{1 - G(\mathsf{x}_{i}'\boldsymbol{\beta})\right\}} + \underbrace{\mathbb{E}\left[y_{i} - G(\mathsf{x}_{i}'\boldsymbol{\beta})|\mathsf{x}_{i}\right]}_{\text{equals zero under correct spec.}} \mathsf{M}(\mathsf{x}_{i},\boldsymbol{\beta})$$

$$= \frac{g(\mathsf{x}_{i}'\boldsymbol{\beta})^{2}\mathsf{x}_{i}\mathsf{x}_{i}'}{G(\mathsf{x}_{i}'\boldsymbol{\beta})\left\{1 - G(\mathsf{x}_{i}'\boldsymbol{\beta})\right\}}$$

Step 4: Iterated Expectations

$$\mathbf{J} = -\mathbb{E}\left[\mathbf{H}_i(\boldsymbol{\beta}_o)\right] = \mathbb{E}\left\{\mathbb{E}\left[\mathbf{H}_i(\boldsymbol{\beta}_o)|\mathbf{x}_i\right]\right\} = \mathbb{E}\left\{\frac{g(\mathbf{x}_i'\boldsymbol{\beta}_o)^2\mathbf{x}_i\mathbf{x}_i'}{G(\mathbf{x}_i'\boldsymbol{\beta}_o)\left\{1 - G(\mathbf{x}_i'\boldsymbol{\beta}_o)\right\}}\right\}$$

Asymptotic Distribution

$$\sqrt{N}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_o) \rightarrow_d \mathcal{N}\left(\mathbf{0}, \mathbf{J}^{-1}\right), \quad \mathbf{J}^{-1} = \mathbb{E}\left\{\frac{g(\mathbf{x}_i'\boldsymbol{\beta}_o)^2\mathbf{x}_i\mathbf{x}_i'}{G(\mathbf{x}_i'\boldsymbol{\beta}_o)\left\{1 - G(\mathbf{x}_i'\boldsymbol{\beta}_o)\right\}}\right\}^{-1}$$

Consistent Estimator

$$\widehat{\mathbf{J}}^{-1} \equiv \left\{ rac{1}{N} \sum_{i=1}^{N} rac{g(\mathbf{x}_i'\widehat{oldsymbol{eta}})^2 \mathbf{x}_i \mathbf{x}_i'}{G(\mathbf{x}_i'\widehat{oldsymbol{eta}}) \left[1 - G(\mathbf{x}_i'\widehat{oldsymbol{eta}})
ight]}
ight\}^{-1}$$

Notes

- Assumes correct specification, i.e. $p(\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = G(\mathbf{x}'\boldsymbol{\beta}_o)$
- ▶ In contrast, robust variance matrix $J^{-1}KJ^{-1}$ is complicated, but R can do it.

McFadden (1974) – "Pseudo R-squared"

Model with Intercept Only

 $L(\bar{y}) \equiv \text{maximized sample Likelihood}$

 $\ell(\bar{y}) \equiv \text{maximized sample log-likelihood}$

Full Model

 $L(\widehat{\beta}) \equiv \text{maximized sample Likelihood}$

 $\ell(\widehat{\beta}) \equiv \text{maximized sample log-likelihood}$

Pseudo R-squared

$$\widetilde{R}^2 \equiv 1 - \ell(\widehat{\beta})/\ell(\overline{y})$$

McFadden (1974) - "Pseudo R-squared"

Pseudo R-squared

$$\widetilde{R}^2 \equiv 1 - \ell(\widehat{eta})/\ell(\bar{y})$$

Always between 0 and 1

Show this on the problem set!

Health Warning

I don't recommend using pseudo- R^2 : it's arbitrary and can be misleading. Other people use it so I'm telling you what it is.

Lecture #4 – Random Utility Models

Overview of Random Utility Models

Identification of Choice Models

Index Models as Special Cases (e.g. Logit & Probit)

Multinomial and Conditional Logit

Discrete Choice - Basic Terminology

Decision-maker

Household, person, firm, etc.

Alternatives

Products, courses of action, etc.

Choice Set

The collection of all alternatives available to the decision-maker.

Restrictions on the Choice Set

We assume that:

- 1. Choices are mutually exclusive: choose only *one* alternative.
- 2. Choice set is exhaustive: contains every alternative (always choose something)
- 3. The number of alternatives is finite.

We can always redefine the choice set to satisfy 1 and 2

```
\underbrace{\{\text{Beer only, Pizza only, Beer and Pizza}\}}_{\text{not mutually exclusive}} \to \underbrace{\{\text{Beer only, Pizza only, Beer and Pizza}\}}_{\text{not exhaustive}} \to \underbrace{\{\text{Beer only, Pizza only, Beer and Pizza}\}}_{\text{not exhaustive}} \to \underbrace{\{\text{Beer only, Pizza only, Beer and Pizza, Something Else}\}}_{\text{exhaustive}}
```

Random Utility Models (RUMs)

Following Train (2009), use n to index individuals!

Notation

- \triangleright N decision-makers $n=1,\ldots,N$
- ightharpoonup J alternatives $j=1,\ldots,J$.

Utility and Decision Rule

- lacktriangle Decision-maker n obtains utility U_{nj} from choosing alternative j
- Maximize utility: decision-maker n chooses alternative i iff $U_{ni} > U_{nj}$ for any $j \neq i$

Random Utility Models

Researcher Observes

- ightharpoonup Attributes x_{nj} of each alternative (e.g. product characteristics)
- \triangleright Attributes s_n of the decision-maker (e.g. demographics)
- Choices but not utilities

Representative Utility V_{nj}

Assume researcher can specify a function $V_{nj}(x_{nj}, s_n)$ relating attributes x_{nj} of each alternative j and attributes s_n of each decision-maker n to her utilities U_{nj} .

Error Terms ε_{nj}

 $arepsilon_{nj} \equiv U_{nj} - V_{nj}$ is the difference between *true* utility U_{nj} and representative utility V_{nj}

Random Utility Models (RUMs)

What are the error terms?

 ε_{nj} for $j=1,\ldots,J$ represent unobserved factors that affect choices but are not captured by representative utilities (i.e. our model)

Treat Errors as Random

Let $\varepsilon' \equiv [\ \varepsilon_{n1} \ \dots \ \varepsilon_{nJ}\]$ have density function $f(\varepsilon_n)$. Characterizes unobserved heterogeneity across decision-makers.

Choice Probabilities

$$P_{ni} \equiv \mathbb{P}(U_{ni} > U_{nj} \quad \forall j \neq i) = \int_{\mathbb{R}^J} \mathbb{1}\left\{ \varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj} \quad \forall j \neq i \right\} f(\varepsilon_n) d\varepsilon_n$$

This all sounds a bit abstract...

Basic Idea

- 1. Write down a parametric model for $V_{ni}(x_{ni}, s_n)$ with unknown parameters θ .
- 2. Choose a distribution f for the errors (heterogeneity) ε_n .
- 3. Back out choice probabilities as a function of parameters θ .
- 4. Use observed choices and attributes to find the MLE $\widehat{\theta}$.

Looking Back; Looking Ahead

- Logit and Probit are special cases of RUMs: choice between two alternatives.
- ▶ RUMs provide a framework to estimate more complicated discrete choice models.

Some Complications

Computation

- Integral linking choice probabilities to parameters θ rarely has a closed form.
- Logit-type models are a well-known exception.
- ► More generally: use *Monte Carlo Simulation* to approximate the integral.

Identification

- ▶ Roughly speaking, we say that a parameter is identified if it could be uniquely determined by observing the whole population.
- What parameters of RUMs are identified from choices and attributes?

A Very Simple Example

Transport Decision

- Exactly two ways to get to work: by car or by bus.
- ightharpoonup Observe two attributes: cost in time T and money M of each mode of transport.

Econometrician's Model: (β, γ) unknown

$$egin{align} V_{\mathsf{car}} &= eta T_{\mathsf{car}} + \gamma M_{\mathsf{car}} & U_{\mathsf{car}} &= V_{\mathsf{car}} + arepsilon_{\mathsf{car}} \ V_{\mathsf{bus}} &= eta T_{\mathsf{bus}} + \gamma M_{\mathsf{bus}} & U_{\mathsf{bus}} &= V_{\mathsf{bus}} + arepsilon_{\mathsf{bus}} \ \end{array}$$

Choice Probabilities

$$egin{aligned} P_{\mathsf{car}} &= \mathbb{P}(arepsilon_{\mathsf{bus}} - arepsilon_{\mathsf{car}} < V_{\mathsf{car}} - V_{\mathsf{bus}}) \ \\ P_{\mathsf{bus}} &= \mathbb{P}(arepsilon_{\mathsf{car}} - arepsilon_{\mathsf{bus}} < V_{\mathsf{bus}} - V_{\mathsf{car}}) = 1 - P_{\mathsf{car}} \end{aligned}$$

MPhil 'Metrics, HT 2020

A Very Simple Example: Who drives to work?

What is common?

Parameters: (β, γ) . Our goal is to identify and estimate these.

Observed Heterogeneity

- ightharpoonup Alice lives next to the bus stop: her T_{bus} is low.
- ▶ Bob is 70 and gets a discount on public transport: his M_{bus} is low.
- \triangleright Clara and her roommates work at the same office and can carpool: her M_{car} is low.

Unobserved Heterogeneity

James hates to drive $(\varepsilon_{car} - \varepsilon_{bus} < 0)$ but Steve loves driving $(\varepsilon_{car} - \varepsilon_{bus} > 0)$.

Identification – What can we learn from data?

Only differences in utility matter

- $\qquad \mathbb{P}(U_{ni} > U_{nj} \quad \forall j \neq i) = \mathbb{P}(U_{ni} U_{nj} > 0 \quad \forall j \neq i)$
- ▶ All that matters is how much better or worse a given alternative is than the others.

Consequences

- 1. We cannot identify a different intercept for each alternative.
- 2. We can only identify differences of effects for decision-maker attributes.

If there are J alternatives, we can identify only (J-1) intercepts.

Equivalently: normalize one intercept to zero.

Intercept
$$\Rightarrow \mathbb{E}\left[\varepsilon_{nj}\right] = 0$$

- ▶ Suppose $U_{nj} = \mathbf{x}'_{nj}\boldsymbol{\beta} + \varepsilon^*_{nj}$ where \mathbf{x}_{nj} excludes a constant and $\mathbb{E}[\varepsilon^*_{nj}] \neq 0$.
- ▶ Equivalent model: $U_{nj} = \alpha + \mathbf{x}'_{nj}\boldsymbol{\beta} + \varepsilon_{nj}$ where $\mathbb{E}[\varepsilon_{nj}] = 0$ by construction.

Why not a different intercept for each alternative?

$$\begin{split} U_{\rm car} &= \alpha_{\rm car} + \beta \, T_{\rm car} + \gamma M_{\rm car} + \varepsilon_{\rm car} \\ U_{\rm bus} &= \alpha_{\rm bus} + \beta \, T_{\rm bus} + \gamma M_{\rm bus} + \varepsilon_{\rm bus} \end{split}$$

$$U_{\mathsf{bus}} - U_{\mathsf{car}} = (\alpha_{\mathsf{bus}} - \alpha_{\mathsf{car}}) + \beta (T_{\mathsf{bus}} - T_{\mathsf{car}}) + \gamma (M_{\mathsf{bus}} - M_{\mathsf{car}}) + (\varepsilon_{\mathsf{bus}} - \varepsilon_{\mathsf{car}})$$

Only differences of effects for decision-maker attributes are identified.

Can we identify the effects of income Y separately for Bus and Car?

$$\begin{split} U_{\mathsf{car}} &= \theta_{\mathsf{car}} Y + \beta \, T_{\mathsf{car}} + \gamma M_{\mathsf{car}} + \varepsilon_{\mathsf{car}} \\ U_{\mathsf{bus}} &= \theta_{\mathsf{bus}} Y + \beta \, T_{\mathsf{bus}} + \gamma M_{\mathsf{bus}} + \varepsilon_{\mathsf{bus}} \end{split}$$

$$U_{\mathsf{bus}} - U_{\mathsf{car}} = (\theta_{\mathsf{bus}} - \theta_{\mathsf{car}}) Y + \beta (T_{\mathsf{bus}} - T_{\mathsf{car}}) + \gamma (M_{\mathsf{bus}} - M_{\mathsf{car}}) + (\varepsilon_{\mathsf{bus}} - \varepsilon_{\mathsf{car}})$$

Equivalent to normalizing one of the θ s to zero.

More on Identification – What can we learn from data?

The scale of utility is irrelevant

- \blacktriangleright Let λ be an arbitrary positive constant.
- ▶ Original Model: $U_{nj} = V_{nj} + \varepsilon_{nj}$, $Var(\varepsilon_{nj}) = \sigma^2$
- ► Re-scaled Model: $\lambda U_{nj} = \lambda V_{nj} + \lambda \varepsilon_{nj} \iff U_{nj}^* = V_{nj}^* + \varepsilon_{nj}^*, \, \mathsf{Var}(\varepsilon_{nj}^*) = \lambda^2 \sigma^2$

$Var(\varepsilon_{nj})$ determines the scale of β

- $\boxed{ U_{nj} = \mathsf{x}'_{nj}\beta + \varepsilon_{nj}, \, \mathsf{Var}(\varepsilon_{nj}) = \sigma^2 } \iff \boxed{ U_{nj}^* = \mathsf{x}'_{nj}(\beta/\sigma) + \varepsilon_{nj}^*, \, \mathsf{Var}(\varepsilon_{nj}^*) = 1 }$
- \triangleright Can't directly compare coefs. across models with different normalizations for ε_{nj} .
- ▶ Recall: we had to re-scale Logit and Probit coefs. to compare them.

Only differences in utility matter \implies only differences in errors matter.

Notation

- $ightharpoonup \widetilde{\varepsilon}_{njk} \equiv \varepsilon_{nj} \varepsilon_{nk}$ be the difference of errors ε_{nj} and ε_{nk} .
- $ightharpoonup \widetilde{\varepsilon}_{ni} \equiv$ vector of all unique differences, taking ε_{ni} as the "base case"
 - ▶ E.g. $\varepsilon'_n = (\varepsilon_{n1}, \varepsilon_{n2}, \varepsilon_{n3}) \implies \widetilde{\varepsilon}'_{n1} = (\varepsilon_{n2} \varepsilon_{n1}, \varepsilon_{n3} \varepsilon_{n1})$
 - ▶ Note: J errors \Rightarrow (J-1) unique *differences*
- ▶ Let g be the joint density of $\widetilde{\varepsilon}_{ni}$.

Choice Probabilities

$$\begin{split} P_{ni} &\equiv \mathbb{P}\left(U_{ni} > U_{nj} \quad \forall j \neq i\right) = \mathbb{P}(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj} \quad \forall j \neq i\right) \\ &= \mathbb{P}(\widetilde{\varepsilon}_{nji} < V_{ni} - V_{nj} \quad \forall j \neq i) = \int_{\mathbb{R}^{J-1}} \mathbb{1}\left\{\widetilde{\varepsilon}_{nji} < V_{ni} - V_{nj} \quad \forall j \neq i\right\} g(\widetilde{\varepsilon}_{ni}) \, d\widetilde{\varepsilon}_{ni} \end{split}$$

How to obtain the index models from last lecture? (E.g. Probit and Logit)

- 1. Two alternatives, e.g. Bus or Something Else
- 2. Let $y_n = 1$ if decision-maker n chooses alternative 1; zero otherwise.
- 3. $V_{nj} = \mathbf{s}_n' \gamma_j$ (representative utility depends only on attributes of decision-maker)
- 4. $(\varepsilon_{n2} \varepsilon_{n1}) \sim G$ independently of \mathbf{s}_n .

$$U_{n1} - U_{n2} = (\mathbf{s}'_{n}\gamma_{1} - \mathbf{s}'_{n}\gamma_{2}) + (\varepsilon_{n1} - \varepsilon_{n2}) = \mathbf{s}'_{n}(\gamma_{1} - \gamma_{2}) + (\varepsilon_{n1} - \varepsilon_{n2})$$
$$= \mathbf{s}'_{n}\gamma + (\varepsilon_{n1} - \varepsilon_{n2})$$

$$\mathbb{P}(y_n = 1 | \mathbf{s}_n) = \mathbb{P}(U_{n1} - U_{n2} > 0 | \mathbf{s}_n) = \mathbb{P}(\varepsilon_{n2} - \varepsilon_{n1} < \mathbf{s}_n' \gamma | \mathbf{s}_n) = G(\mathbf{s}_n' \gamma)$$

The Logit Family of Choice Models

Theorem

Suppose that $\varepsilon_{n1}, \dots \varepsilon_{nJ} \sim \text{iid } F$ where $F(z) = \exp\{-\exp(-z)\}$. Then,

$$P_{ni} = \mathbb{P}(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj} \quad \forall j \neq i) = \frac{\exp(V_{ni})}{\sum_{j=1}^{J} \exp(V_{nj})}$$

Notes

- ▶ This is a special case where the choice probabilities have a closed-form solution!
- $F(z) = \exp\{-\exp(-z)\}\$ is the Gumbel aka Type I Extreme Value CDF
- Corollary: the difference of independent Gumbel RVs is a standard Logistic RV

The Gumbel Distribution (aka Type I Extreme Value)

MPhil 'Metrics, HT 2020

Lecture 4 - Slide 18

Different specifications of V_{nj} yield different models.

Multinomial Logit

- $ightharpoonup V_{nj} = \mathbf{s}_n' \gamma_j \leftarrow$ only attributes that are fixed across alternatives (e.g. n's income)
- lacktriangle Can only identify differences $(\gamma_i \gamma_i)$. Typical to normalize $\gamma_1 = \mathbf{0}$.

Conditional Logit

- $lackbrack V_{nj} = \mathbf{x}'_{nj}oldsymbol{eta}$ \leftarrow only attributes that vary across alternatives (e.g. price)
- ▶ Note that β is fixed across alternatives.

Mixed Logit

 $lackbox{V}_{nj} = \mathbf{s}_n' \gamma_j + \mathbf{x}_{nj}' eta \qquad \leftarrow$ a combination of the two

The Likelihood for Random Utility Models

Notation

- $ightharpoonup y_n \in \{1, \ldots, J\} \equiv n$'s choice.
- ightharpoonup \mathbf{z}_n vector of all regressors for n
- ightharpoonup heta vector of all unknown parameters
- ▶ Choice Probs. $P_{ni} \equiv \mathbb{P}(y_n = i | \mathbf{z}_n, \boldsymbol{\theta})$

Note

Likelihood is easy, but choice probabilities are usually hard (logit is an exception).

Likelihood

$$f(y_n|\mathbf{z}_n,\boldsymbol{\theta}) = \prod_{j=1}^J P_{nj}^{\mathbb{1}\{y_n=j\}}$$

Log Likelihood

$$\ell_N(\boldsymbol{\theta}) = \sum_{n=1}^N \sum_{j=1}^J \mathbb{1} \{y_n = j\} \log P_{nj}$$

Logit Choice Probabilities

$$P_{ni} = \exp(V_{ni}) / \sum_{j=1}^{J} \exp(V_{nj})$$

Interpreting Multinomial Logit Coefficients

- Partial effects tricky to derive and interpret.
- ► Better approach: examine log-odds ratios
- Normalizing $\gamma_1 = \mathbf{0}$, we have $\exp(\mathbf{s}_n \gamma_1) = \exp(0) = 1$. Hence,

$$\frac{P_{ni}}{P_{n1}} = \frac{\exp(\mathbf{s}_n \gamma_i)}{\sum_{j=1}^{J} \exp(\mathbf{s}_n \gamma_j)} \times \frac{\sum_{j=1}^{J} \exp(\mathbf{s}_n \gamma_j)}{\exp(\mathbf{s}_n \gamma_1)} = \frac{\exp(\mathbf{s}_n \gamma_i)}{\exp(\mathbf{s}_n \gamma_1)} = \exp(\mathbf{s}_n \gamma_i)$$

► Taking logs: $\log (P_{ni}/P_{n1}) = \log [\exp(\mathbf{s}_n \gamma_i)] = \mathbf{s}'_n \gamma_i$.

Punchline

 $\gamma_i^{(k)}$ is the marginal effect of $s_n^{(k)}$ on the relative probability that y=i compared to y=1 measured on the log scale – e.g. taking the bus relative to driving.

Interpreting Conditional Logit Coefficients

You'll derive these on the problem set!

Partial Effects

- ▶ The attributes \mathbf{x}_{ni} are specific to a particular alternative j.
- ► Hence: partial effects are much simpler for conditional logit than multinomial.

Own Attribute

$$\frac{\partial P_{nj}}{\partial \mathbf{x}_{ni}} = P_{nj}(1 - P_{nj})\boldsymbol{\beta}$$

Cross-Attribute $(j \neq i)$

$$\frac{\partial P_{nj}}{\partial \mathbf{x}_{ni}} = -P_{nj}P_{ni}\boldsymbol{\beta}$$

If increasing $\mathbf{x}_{nj}^{(k)}$ makes y = j more likely, it must make y = i less likely

The Independence of Irrelevant Alternatives (IIA)

Or why people don't like logit models...

Logit Choice Probabilities

$$P_{ni} = \frac{\exp(V_{ni})}{\sum_{j=1}^{J} \exp(V_{nj})} \implies \frac{P_{ni}}{P_{nj}} = \exp(V_{ni} - V_{nj})$$

In Words

The relative probability of choosing i versus j only depends on the representative utilities for i and j. This is called the independence of irrelevant alternatives (IIA).

Why is this a problem

IIA arises in logit models because $\varepsilon_{n1},\ldots,\varepsilon_{nJ}$ are *independent*. In reality "some alternatives are more similar than others," i.e. errors may be correlated.

An Example where IIA is Unreasonable – Choosing Presidential Candidates

Model

- $ightharpoonup V_{nj} = (\mathsf{Demographics}_n)' \gamma_j + (\mathsf{Ideology}_{nj})' \beta$
- ▶ (Ideology_{ni}) = similarity between voter n's ideology and candidate j's.
- ► Candidates = {Trump, Sanders, Warren}

Consider a group of voters who all have the same demographics and ideology

E.g. white, centrist, female, mid-westerners between the age of 45 and 50 with an average household income between \$50 and \$55 thousand USD.

Same regressors \Rightarrow same V_{nj}

 V_{nj} doesn't vary over *n* within the group: $\{V_{\mathsf{Trump}}, V_{\mathsf{Sanders}}, V_{\mathsf{Warren}}\}$

An Example where IIA is Unreasonable – Choosing Presidential Candidates

Two-way Race

Suppose 2/3 of this group of voters chooses Sanders over Trump: $P_{Sanders}/P_{Trump} = 2$

Assumption

Sanders and Warren are ideologically similar $\implies V_{\text{Warren}} \approx V_{\text{Sanders}}$

Implications of Logit

- ▶ Relative choice probabilities are the *same* in a two-way race or a three-way race.
- $ightharpoonup P_{\text{Warren}}/P_{\text{Sanders}} = \exp(V_{\text{Warren}} V_{\text{Sanders}}) \approx 1$

An Example where IIA is Unreasonable – Choosing Presidential Candidates

Logit Implication for Three-way Race

$$P_{\mathsf{Sanders}} = 2P_{\mathsf{Trump}}, \quad P_{\mathsf{Sanders}} pprox P_{\mathsf{Warren}}, \quad P_{\mathsf{Trump}} + P_{\mathsf{Sanders}} + P_{\mathsf{Warren}} = 1$$

$$\implies P_{\mathsf{Trump}} + 2P_{\mathsf{Trump}} + 2P_{\mathsf{Trump}} = 1$$

$$P_{\mathsf{Trump}} = 1/5$$

$$P_{\mathsf{Warren}} = P_{\mathsf{Sanders}} = 2/5$$

What we'd actually expect in a Three-way Race

1/3 Trump, 1/3 Sanders and 1/3 Warren – i.e. Warren "splits" the Sanders vote.

What's going wrong?

Logit assumes $\varepsilon_{\text{Warren}}$ and $\varepsilon_{\text{Sanders}}$ are independent but in reality they're not.

Lecture #5 – Sample Selection

Examples of Sample Selection

The Heckman Selection Model

What is sample selection?

Question

Thus far we have always assumed that $(y_1, \mathbf{x}_1), \dots, (y_N, \mathbf{x}_N)$ are a random sample from the population of interest. What if they aren't?

Example 1: MPhil Admissions

- ► Suppose we want to improve admissions decisions at Oxford.
- $ightharpoonup y \equiv$ overall marks in 1st year of Oxford Economics MPhil
- $\mathbf{x} \equiv \{$ undergrad grades, letters of reference, . . . $\}$
- ▶ What we observe: **x** for all applicants; *y* for applicants who were admitted.
- ▶ What we want: $\mathbb{E}(y|\mathbf{x})$ for all applicants.

Example 2: A Model of Wage Offers

Gronau (1974; JPE)

Question

How do wage offers offers w_i^o vary with \mathbf{x}_i for all people in the population.

Problem

Only observe w_i^o for people who accept their offer, i.e. those who are employed.

Mathematically

$$\mathbb{E}(w_i^o|\mathbf{x}_i) \neq \mathbb{E}(w_i^o|\mathbf{x}_i, \mathsf{Employed})$$

The Heckman Selection Model (Heckit) — Is β_1 identified?

Outcome Equation

Assumptions

$$y_1=\mathbf{x}_1'\boldsymbol{\beta}_1+u_1$$

(a) Observe
$$y_2, \mathbf{x}' = (\mathbf{x}'_1, \mathbf{x}'_2)$$
; only observe y_1 if $y_2 = 1$.

Participation Equation

(b)
$$(u_1, v_2)$$
 are mean zero and jointly independent of \mathbf{x} .

$$y_2 = 1 \{ \mathbf{x}' \boldsymbol{\delta}_2 + v_2 > 0 \}$$

(c)
$$v_2 \sim \text{Normal}(0,1)$$

(d) $\mathbb{E}(u_1|v_2) = \gamma_1 v_2$ where γ_1 is an unknown constant.

Notes

- $ightharpoonup \mathbb{E}(u_1) = \mathbb{E}(v_2) = 0$ is not restrictive: just include intercepts in both equations.
- Assumption (d) would be *implied* by assuming that (u_1, v_2) are jointly normal.
- ▶ These assumptions are strong. They can be weakened a bit, but not too much.

Step 1: Show that u_1 and \mathbf{x} are conditionally independent given v_2 .

Assumption (b)

 (u_1, v_2) are jointly independent of **x**.

Equivalently

$$f_{1,2|\mathbf{x}}(u_1,v_2|\mathbf{x}) = f_{1,2}(u_1,v_2), \quad \text{and} \quad f_{1|\mathbf{x}}(u_1|\mathbf{x}) = f_1(u_1), \quad \text{and} \quad f_{2|\mathbf{x}}(v_2|\mathbf{x}) = f_2(v_2)$$

Therefore

$$f_{1|2,\mathbf{x}}(u_1|v_2,\mathbf{x}) = \frac{f_{1,2|\mathbf{x}}(u_1,v_2|\mathbf{x})}{f_{2|\mathbf{x}}(v_2|\mathbf{x})} = \frac{f_{1,2}(u_1,v_2)}{f_2(v_2)} = f_{1|2}(u_1|v_2)$$

In Words

Conditioning on (v_2, \mathbf{x}) gives the same information about u_1 as conditioning on v_2 only.

Step 2: Calculate $\mathbb{E}(y_1|\mathbf{x}, v_2)$; show that if v_2 were observed we'd be done.

$$\begin{split} \mathbb{E}(y_1|\mathbf{x},v_2) &= \mathbb{E}(\mathbf{x}_1'\boldsymbol{\beta}_1 + u_1|\mathbf{x},v_2) & \text{(Substitute Outcome Eq.)} \\ &= \mathbf{x}_1'\boldsymbol{\beta}_1 + \mathbb{E}(u_1|\mathbf{x},v_2) & \text{(\mathbf{x}_1 is a subset of \mathbf{x})} \\ &= \mathbf{x}_1'\boldsymbol{\beta}_1 + \mathbb{E}(u_1|v_2) & \text{(apply result of Step 1)} \\ &= \mathbf{x}_1'\boldsymbol{\beta}_1 + \gamma_1v_2 & \text{(apply Assumption (d))} \end{split}$$

This slide has been cut, but I'm leaving a blank slide in its place so that the slide numbering remains unchanged from lecture.

Step 3: Relate v_2 (unobserved) to **x** and y_2 (both observed).

$$\mathbb{E}(y_1|\mathbf{x},y_2) = \mathbb{E}_{v_2|(\mathbf{x},y_2)} \left[\mathbb{E}\left(y_1|\mathbf{x},y_2,v_2\right) \right] \qquad \text{(Law of Iterated Expectations)}$$

$$= \mathbb{E}_{v_2|(\mathbf{x},y_2)} \left[\mathbb{E}\left(y_1|\mathbf{x},v_2\right) \right] \qquad \text{(Participation Eq: } y_2 = g(\mathbf{x},v_2) \text{)}$$

$$= \mathbb{E}\left[\mathbf{x}_1'\boldsymbol{\beta}_1 + \gamma_1v_2|\mathbf{x},y_2\right] \qquad \text{(apply result of Step 2)}$$

$$= \mathbf{x}_1'\boldsymbol{\beta}_1 + \gamma_1\mathbb{E}\left(v_2|\mathbf{x},y_2\right) \qquad \qquad \mathbf{x}_1 \text{ is a subset of } \mathbf{x} \text{)}$$

Therefore

$$\mathbb{E}\left(y_1|\mathbf{x},y_2=1\right)=\mathbf{x}_1'\boldsymbol{\beta}_1+\gamma_1\mathbb{E}(v_2|\mathbf{x},y_2=1).$$

What is the significance of Step 3?

- ▶ Define $h(\mathbf{x}) \equiv \mathbb{E}(v_2|\mathbf{x}, y_2 = 1)$. Then: $\mathbb{E}(y_1|\mathbf{x}, y_2 = 1) = \mathbf{x}_1'\boldsymbol{\beta}_1 + \gamma_1 h(\mathbf{x})$
- Note that h(x) is a random variable: a function of x.
- Step 3 shows that a linear regression of y_1 on \mathbf{x}_1 and $h(\mathbf{x})$ for the selected sample, those with $y_2 = 1$, identifies β_1 and γ_1 !
- ▶ All that remains is to figure out what function *h* is...

Note: Selection Bias Enters Through γ_1

Assumption (d)

 $\mathbb{E}(u_1|v_2) = \gamma_1 v_2$ allows dependence between errors in participation and outcome eqs.

Step 3

$$\mathbb{E}(y_1|\mathbf{x},y_2=1)=\mathbf{x}_1'\boldsymbol{\beta}_1+\gamma_1\mathbb{E}(v_2|\mathbf{x},y_2=1)$$

Therefore

If $\gamma_1=0$ there is no selection bias: in this case $\mathbb{E}(y_1|\mathbf{x},y_2=1)=\mathbf{x}_1'\boldsymbol{\beta}$ so regressing y_1 on \mathbf{x}_1 for the subset of individuals with $y_2=1$ identifies $\boldsymbol{\beta}_1$.

Step 4: Determine the distribution of v_2 given $(\mathbf{x}, y_2 = 1)$.

$$\mathbb{P}(v_2 \leq t | \mathbf{x}, y_2 = 1) = \mathbb{P}(v_2 \leq t | \mathbf{x}, v_2 > -\mathbf{x}' \delta_2)$$
 (participation eq.)
$$= \frac{\mathbb{P}\left(\{v_2 \leq t\} \cap \{v_2 > -\mathbf{x}' \delta_2\} | \mathbf{x}\right)}{\mathbb{P}(v_2 > -\mathbf{x}' \delta_2 | \mathbf{x})}$$
 (defn. of cond. prob.)

$$=\frac{\mathbb{P}\left\{v_2\in(-\mathbf{x}'\boldsymbol{\delta}_2,t]\right\}}{\mathbb{P}(v_2>-\mathbf{x}'\boldsymbol{\delta}_2)} \hspace{1cm} (\textit{v_2 and \mathbf{x} are indep.)}$$

$$= \frac{\mathbb{P}\left\{z \in (c,t]\right\}}{\mathbb{P}(z>c)}$$
 (v_2 is standard normal)

where $z \sim \text{Normal}(0,1)$ and we define the shorthand $c \equiv -\mathbf{x}'\delta_2$.

Step 5: Calculate the Expectation of a Truncated Normal

Recall: $z \sim \mathsf{Normal}(0,1)$ and $c \equiv -\mathsf{x}' \delta_2$

CDF

$$\mathbb{P}(z \leq t | z > c) = \frac{\mathbb{P}\left\{z \in (c, t]\right\}}{\mathbb{P}(z > c)} = \mathbb{1}\left\{c \leq t\right\} \left[\frac{\Phi(t) - \Phi(c)}{1 - \Phi(c)}\right]$$

Density

$$f(t|z>c)=rac{d}{dt}\mathbb{P}(z\leq t|z>c)=\left\{egin{array}{ll} 0, & t\leq c\ arphi(t)/\left[1-\Phi(c)
ight], & t>c \end{array}
ight.$$

Step 5: Calculate the Expectation of a Truncated Normal

Recall: $z \sim \mathsf{Normal}(0,1)$ and $c \equiv -\mathsf{x}' \delta_2$

$$\mathbb{E}(z|z>c) = \int_{-\infty}^{\infty} tf(t|z>c) dt = \frac{1}{1-\Phi(c)} \int_{c}^{\infty} t\varphi(t) dt$$

$$= \left[\frac{1}{1-\Phi(c)}\right] \left(\frac{1}{\sqrt{2\pi}}\right) \int_{c}^{\infty} t \exp\left\{-t^{2}/2\right\} dt$$

$$= \left[\frac{1}{1-\Phi(c)}\right] \left(\frac{1}{\sqrt{2\pi}}\right) \left[-\exp\left\{-t^{2}/2\right\}\right]_{c}^{\infty}$$

$$= \left[\frac{1}{1-\Phi(c)}\right] \left(\frac{\exp\left\{-c^{2}/2\right\}}{\sqrt{2\pi}}\right) = \frac{\varphi(c)}{1-\Phi(c)}$$

Step 6: Put everything together.

Recall: Step 3

$$\mathbf{y}_1 = \mathbf{x}_1' \boldsymbol{\beta}_1 + \gamma_1 h(\mathbf{x}) + \eta, \quad \mathbb{E}\left[\eta | \mathbf{x}_1, h(\mathbf{x}) \right] = 0, \quad h(\mathbf{x}) \equiv \mathbb{E}(v_2 | \mathbf{x}, y_2 = 1)$$

Using Steps 4-5

$$h(\mathbf{x}) = \frac{\varphi(-\mathbf{x}'\boldsymbol{\delta}_2)}{1 - \Phi(-\mathbf{x}'\boldsymbol{\delta}_2)} = \frac{\varphi(\mathbf{x}'\boldsymbol{\delta}_2)}{\Phi(\mathbf{x}'\boldsymbol{\delta}_2)} \quad \text{ since } \varphi(-c) = \varphi(c) \text{ and } 1 - \Phi(c) = \Phi(-c).$$

Inverse Mills Ratio

 $\varphi(c)/\Phi(c)$ is the inverse Mills Ratio, traditionally denoted by $\lambda \implies h(\mathbf{x}) = \lambda(\mathbf{x}'\boldsymbol{\delta}_2)$.

Careful!

In an earlier lecture λ denoted the standard logistic density. Here it's something else!

The Heckman Two-step Estimator aka "Heckit"

Observables

Observe (y_{2i}, \mathbf{x}_i) for a random sample of size N; only observe y_{1i} for those with $y_{2i} = 1$.

First Step – Estimate δ_2 from Full Sample

- ▶ Run Probit on the Participation Eq. $\mathbb{P}(y_{2i} = 1 | \mathbf{x}_i) = \Phi(\mathbf{x}_i' \delta_2)$ for the full sample.
- ▶ Define $\widehat{\lambda}_i \equiv \lambda(\mathbf{x}_i'\widehat{\boldsymbol{\delta}}_2)$ where $\widehat{\boldsymbol{\delta}}_2$ is the MLE for $\boldsymbol{\delta}_2$.

Second Step – Estimate (β_1, γ_1) from Selected Sample

Using the observations for which y_{i1} is observed, regress y_{i1} on $(\mathbf{x}_{1i}, \widehat{\lambda}_i)$ by OLS to obtain estimates $(\widehat{\boldsymbol{\beta}}_1, \widehat{\gamma}_1)$.

The Heckman Two-step Estimator aka "Heckit"

Theorem

Under the assumptions from above, the 2-step "Heckit" estimators satisfy

$$\begin{bmatrix} \widehat{\boldsymbol{\delta}}_2 \\ \widehat{\boldsymbol{\beta}}_1 \\ \widehat{\boldsymbol{\gamma}}_1 \end{bmatrix} \rightarrow_{\boldsymbol{\rho}} \begin{bmatrix} \boldsymbol{\delta}_2 \\ \boldsymbol{\beta}_1 \\ \boldsymbol{\gamma}_1 \end{bmatrix} \quad \text{and} \quad \sqrt{N} \begin{bmatrix} \widehat{\boldsymbol{\delta}}_2 - \boldsymbol{\delta}_2 \\ \widehat{\boldsymbol{\beta}}_1 - \boldsymbol{\beta}_1 \\ \widehat{\boldsymbol{\gamma}}_1 - \boldsymbol{\gamma}_1 \end{bmatrix} \rightarrow_{\boldsymbol{d}} \mathsf{Normal}(\boldsymbol{0}, \boldsymbol{\Omega}) \quad \text{as } N \rightarrow \infty.$$

Standard Errors

The asymptotic variance matrix Ω is complicated: the usual OLS standard errors from step two are incorrect as they do not account for the estimation of δ_2 in step one.

The Big Picture: How does Heckit solve the selection problem?

- ▶ If we regress y_{1i} on \mathbf{x}_{1i} for the selected sample, there is an omitted variable.
- Under the Heckit assumptions, the omitted variable is precisely $\lambda(\mathbf{x}_i'\delta_2)$.
- ▶ Hence: a regression of y_{1i} on \mathbf{x}_{1i} and $\lambda(\mathbf{x}_i'\delta_2)$ is correctly specified.

Why is the second step regression identified?

- If \mathbf{x}_i contains some variables that are *not* in \mathbf{x}_{1i} , we have an exclusion restriction: i.e. there are variables that affect participation but not outcomes.
- Even if there are no exclusion restrictions, λ is nonlinear so $\lambda(\mathbf{x}'_{1i}\boldsymbol{\delta}_2)$ will not be perfectly co-linear with \mathbf{x}_{1i} .
- \blacktriangleright Without exclusion restrictions identification comes *solely* from nonlinearity in λ .
- Depending on the values where it is evaluated, λ can be *close* to linear, leading to very imprecise estimates unless you have an exclusion restriction.