Chapitre 11: Information chiffrée

I. Proportion et pourcentage

1) Proportion d'une sous-population

Définition:

Soit A une partie d'un ensemble E.

Soit $n_{\!E}$ le nombre d'éléments de E et $n_{\!A}$ le nombre d'éléments de A.

La **proportion** p des éléments de A par rapport à E s'écrit : $p = \frac{\mathbf{n_A}}{\mathbf{n_E}}$

Exemple:

Cette année, au Lycée Ferney-Voltaire, environ 800 élèves sont inscrits en classe de Seconde. 35 d'entre eux sont en Seconde 12.

On peut représenter cette situation par un **diagramme de Venn** (ou diagramme en patates!) :

La population totale n_E est égale à 800.

La sous-population A des élèves de Seconde 12 $n_{\!A}$ est égale à 35.

Donc, la <u>proportion</u> d'élèves de 212 parmi tous les élèves de Seconde, notée p, est : $p=\frac{n_A}{n_E}=\frac{35}{800}=0.04375\approx 4.4\,\%$.

2) Pourcentage d'une quantité

Définition:

Pour prendre le pourcentage **de** quelque chose (= quantité), on **multiplie** cette quantité par le pourcentage souhaité.

Exemple:

10% des 50000 girafes restantes disparaissent chaque année. On fait le calcule

suivante :
$$10\% \times 50000 = \frac{10}{100} \times 50000 = 5000$$
 girafes

disparaissent.

3) Proportions échelonnées

Soit $A \subset B \subset E$.

La proportion p de **A** dans l'ensemble **E** est : $p = p_1 \times p_2$

Exemple:

40% des employés d'une entreprise sont des femmes. 25% d'entre elles gagnent moins de 2200€ par mois.

Quelle est la proportion de femmes gagnant moins de 2200€ par mois ?

On fait :
$$p = p_1 \times p_2 = \frac{40}{100} \times \frac{25}{100} = 10 \%$$

II. Évolution exprimée en pourcentages

1) Évolution d'une quantité

<u> taux d'évolution</u>

Propriétés:

- Augmenter une valeur de p% revient à la multiplier par $1 + \frac{p}{100}$.
- Diminuer une valeur de p% revient à la multiplier par $1 \frac{p}{100}$.
- ❖ $1 + \frac{p}{100}$ et $1 \frac{p}{100}$ sont appelés des <u>coefficients multiplicateurs</u>.

Méthode : Calculer une évolution

A. L'effectif d'un lycée de 1500 élèves va augmenter l'année prochaine de 4 %. Calculer le nouvel effectif.

On part de 1500 élèves et on ajoute
$$4\%$$
 de 1500: $1500 + 1500 \times 4\% = 1500 \times (1 + 4\%) = 1500 \times 1,04 = 1560$ élèves.

B. Un ordinateur valant 800€ en 2010 voit son prix baisser de 10% par an. Quel est son prix en 2011 ?

On part de 800€ et on enlève 10 % de 800 :
$$800 \times (1 - 10\%) = 800 \times 0, 9 = 720$$
 étèves

Ancien

C. Un vêtement en soldes à - 70% est vendu 15€. Quel était son prix avant réduction ?

On cherche le prix de départ. Appelons-le P. La formule que l'on a vue précédemment nous indique que : $P \times (1-70\%) = 15$.

On doit donc résoudre cette équation : $P \times (1 - 70\%) = P \times 0, 3 = 15$.

Donc,
$$P = \frac{15}{0,3} = 50 \in$$
.

2) Taux d'évolution

On définit le <u>taux d'évolution</u> comme la division: $t = \frac{X_{fin} - X_{ini}}{X_{ini}}$

Remarque 1:

Lorsque t est exprimé en %, on parle de pourcentage d'évolution de.

Remarque 2:

Si t > 0, l'évolution est une augmentation.

Si t < 0, l'évolution est une diminution.

Méthode: Calculer un taux d'évolution

Entre deux années successives, le montant des importations d'un pays est passé de 33 millions à 29 millions.

Calculer le taux d'évolution en % du montant des importations.

taux négatif -> diminution des quantités

$$t = \frac{29-33}{33} = \frac{-4}{33} \approx -0, 12 = 12\%$$

On conclut que les importations ont diminué de 12 % entre les deux années.

3) Evolutions successives

Propriété:

Si une grandeur subit <u>plusieurs évolutions successives</u> alors le coefficient multiplicateur global est égal <u>aux produits des coefficients multiplicateurs de</u> chaque évolution.

Méthode: Comment calculer un taux d'évolution global

En 2013, une entreprise d'automobiles voit ses ventes augmenter de 15% par rapport à 2012.

En 2014, ses ventes diminuent de 10 % par rapport à 2013.

Calculer le taux d'évolution des ventes sur les deux années.

Le coefficient multiplicateur correspondant à l'augmentation en 2013 est égal à :

$$1 + \frac{15}{100} = 1{,}15.$$

Le coefficient multiplicateur correspondant à la diminution en 2014 est égal à :

$$1 - \frac{10}{100} = 0.9.$$

Graphiquement, on peut représenter la situation comme ci-dessous :

Le coefficient multiplicateur global (sur les deux années) est donc égal à :

$$1, 15 \times 0, 9 = 1, 035 = 1 + \frac{3, 5}{100}$$
 taux d'évolution

On conclut que le taux d'évolution des ventes sur les deux années vaut 3,5 %.

Remarque importante:

Lorsque que l'on augmente de t % puis que l'on baisse de t % , on ne revient pas à la quantité de départ!

<u>Démonstration (à laisser faire aux élèves)</u>:

Soit P_{ini} une quantité subissant une hausse de t~% puis une baisse de t~% . Selon la propriété précédente, la quantité finale s'écrit :

$$P_{fin} = P_{ini} \times \left(1 + \frac{t}{100}\right) \times \left(1 - \frac{t}{100}\right)$$

On reconnaît une identité remarquable :

$$P_{fin} = P_{ini} \times \left[1 - \left(\frac{t}{100} \right)^2 \right] = P_{ini} - P_{ini} \times \left(\frac{t}{100} \right)^2.$$

À part lorsque $t = 0, P_{fin} \neq P_{ini}$.

4) Évolution réciproque

Définition:

Soit t le taux d'évolution de la valeur X_{ini} à la valeur X_{fin} .

On appelle <u>évolution réciproque</u> le taux d'évolution t' permettant de passer de la valeur X_{fin} à la valeur X_{ini} .

Exemple:

Un boxeur veut changer de catégorie. Il part d'un poids initial de 80 kg et augmente son poids à 100 kg. Après quelques combats perdus, il décide de revenir à son poids initial.

Quelles sont les variations (en %) de son poids ?

On peut représenter la situation comme suit:

80 kg augmenté de
$$25\% \rightarrow 100$$
 kg diminué de $20\% \rightarrow 80$ kg $\times 1.25 \times 0.8$

En déduire l'évolution réciproque de 25% :

On dit que -20% est l'évolution réciproque de +25%.

Propriété:

On appelle t le taux d'évolution de la valeur X_{ini} à la valeur X_{fin} . L'évolution <u>réciproque</u> possède le coefficient multiplicateur <u>inverse</u> de l'évolution directe.

Méthode : Déterminer et utiliser un taux d'évolution réciproque

- a) La population de pingouins du Cap s'est effondrée de 12 % sur l'année 2014. Quel devrait être le pourcentage d'évolution sur l'année 2015 pour que la population revienne à son niveau initial ?
- b) Le nombre de visiteurs étrangers à Paris a augmenté de 16 % sur l'année 2018. On s'attend à qu'il redescende à sa valeur initiale en 2019. Quel est le pourcentage de baisse sur l'année 2019 ?
- a) On cherche tout d'abord le coefficient multiplicateur correspondant à la diminution de 12 %. Il est égal à : $1-\frac{12}{100}=0.88$.

On en déduit le coefficient multiplicateur de l'évolution réciproque.

II est égal à :
$$\frac{1}{0.88} \approx 1,136 = 1 + \frac{13,6}{100}$$

Pour que la population de pingouins retrouvent sa valeur initiale, il faudrait qu'elle augmente d'environ $13,6\,\%$ sur l'année 2015.

b) Le coefficient multiplicateur est dans ce cas égal à $1+\frac{16}{100}=1{,}16$. Le coefficient multiplicateur de l'évolution réciproque est égal à son inverse. Donc, on en déduit que $\frac{1}{1{,}16}\approx0{,}86=1-0{,}14=1-\frac{14}{100}$. Sur l'année 2019, la baisse a été de $14\,\%$.