Exercises
Introduction to Machine Learning
SS 2019

Series 7, May 20th, 2019 (Mixture Models, EM Algorithm)

Institute for Machine Learning

Dept. of Computer Science, ETH Zürich

Prof. Dr. Andreas Krause

Web: https://las.inf.ethz.ch/teaching/introml-s19

Email questions to:

omineeva@student.ethz.ch, aytunc.sahin@inf.ethz.ch

Problem 1 (Mixture Models and Expectation-Maximization Algorithm):

Consider a one-dimensional Gaussian Mixture Model with 2 clusters and parameters $(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1, w_2)$. Here (w_1, w_2) are the mixing weights, and (μ_1, σ_1^2) , (μ_2, σ_2^2) , are the centers and variances of the clusters. We are given a dataset $\mathcal{D} = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} \subset \mathbb{R}$, and apply the EM-algorithm to find the parameters of the Gaussian mixture model.

1. Write down the complete log-likelihood that is being optimized, for this problem.

$$\ln f(\mathcal{D} \mid (\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, w_1, w_2)) = \ln \left\{ w_1 \mathcal{N}(\mathbf{x}_1; \mu_1, \sigma_1) + w_2 \mathcal{N}(\mathbf{x}_1; \mu_2, \sigma_2) \right\}$$
$$+ \ln \left\{ w_1 \mathcal{N}(\mathbf{x}_2; \mu_1, \sigma_1) + w_2 \mathcal{N}(\mathbf{x}_2; \mu_2, \sigma_2) \right\}$$
$$+ \ln \left\{ w_1 \mathcal{N}(\mathbf{x}_3; \mu_1, \sigma_1) + w_2 \mathcal{N}(\mathbf{x}_3; \mu_2, \sigma_2) \right\}$$

Assume that the dataset \mathcal{D} consists of the following three points, $\mathbf{x}_1 = 1, \mathbf{x}_2 = 10, \mathbf{x}_3 = 20$. At some step in the EM-algorithm, we compute the expectation step which results in the following matrix:

$$R = \begin{bmatrix} 1 & 0 \\ 0.4 & 0.6 \\ 0 & 1 \end{bmatrix}$$

where r_{ic} denotes the probability of \mathbf{x}_i belonging to cluster c. In the next questions, leave all results unsimplified, i.e. in fractional form.

2. Given the above R for the expectation step, write the result of the maximization step for the mixing weights w_1, w_2 . You can use the equations for maximum likelihood updates without proof.

$$w_1' = \frac{1}{3}(1 + 0.4 + 0) = \frac{1.4}{3}$$

$$w_2' = \frac{1}{3}(0 + 0.6 + 1) = \frac{1.6}{3}$$

3. Do the same for μ_1, μ_2 . Given the above R for the expectation step, write the result of the maximization step for the centers μ_1, μ_2 . You can use the equations for maximum likelihood updates without proof. In general,

$$\mu_k' = \frac{1}{N_k} \sum_{n=1}^N \gamma_k(x_n) x_n$$

where $N_k = \sum_{n=1}^N \gamma_k(x_n)$.

For this example,

$$\mu_1' = \frac{1}{1.4}(1 \cdot 1 + 0.4 \cdot 10 + 0 \cdot 20) = \frac{5}{1.4}$$

$$\mu_2' = \frac{1}{1.6}(0 \cdot 1 + 0.6 \cdot 10 + 1 \cdot 20) = \frac{26}{1.6}$$

4. Do the same for σ_1^2, σ_2^2 . Given the above R for the expectation step, write the result of the maximization step for the variance values σ_1^2, σ_2^2 . You can use the equations for maximum likelihood updates without proof.

In general,

$$(\sigma_k^2)' = \frac{1}{N_k} \sum_{n=1}^N \gamma_k(\mathbf{x}_n) (\mathbf{x}_n - \mu_k') (\mathbf{x}_n - \mu_k')^T$$

where $N_k = \sum_{n=1}^N \gamma_k(\mathbf{x}_n)$.

For this example,

$$(\sigma_1^2)' = \frac{1}{1.4} \left(1 \cdot \left(1 - \frac{5}{1.4} \right)^2 + 0.4 \cdot \left(10 - \frac{5}{1.4} \right)^2 + 0 \cdot \left(20 - \frac{5}{1.4} \right)^2 \right)$$

$$(\sigma_2^2)' = \frac{1}{1.6} \left(0 \cdot (10 - \frac{26}{1.6})^2 + 0.6 \cdot (10 - \frac{26}{1.6})^2 + 1 \cdot (20 - \frac{26}{1.6})^2 \right)$$

5. The previous two questions are doing soft-EM. Calculate the maximization step of μ_1, μ_2 for hard-EM.

$$\mu_1' = \frac{1}{1}(1) = 1$$

$$\mu_2' = \frac{1}{2}(10 + 20) = 15$$

Problem 2 (Mixture Models and Maximum a Posteriori estimation):

Consider a mixture of K multivariate Bernoulli distributions with parameters $\mu = \{\mu_1, ..., \mu_K\}$, where $\mu_k = \{\mu_{k1}, ..., \mu_{kd}\}$. You will use EM algorithm to compute MLE and MAP estimates.

- 1. What is the M step for μ_{ki} using MLE?
- 2. Now, suppose you want to do MAP estimation. What is the E step?
- 3. What is the M step for μ_{ki} using MAP? You can assume a Beta (α, β) prior.

Solution 2:

1.

We have K mixture components where each component is a vector of d independent Bernoullis. In other words,

$$p(x|\pi,\mu) = \sum_{k=1}^{K} \pi_k p(x|\mu) = \sum_{k=1}^{K} \pi_k \prod_{i=1}^{d} \mu_{ki}^{x_i} (1 - \mu_{ki})^{1 - x_i}$$

Expected value of the complete data log-likelihood can be written as:

$$\mathbb{E}[\log(p(x, z | \pi, \mu))] = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \left(\log \pi_k + \sum_{i=1}^{d} (x_{ni} \log \mu_{ki} + (1 - x_{ni}) \log(1 - \mu_{ki})) \right)$$

where r_{nk} denotes the posterior probability from the E step. Note that the derivative of Bernoulli distribution is $\frac{x_{ni}}{\mu_{ki}} - \frac{(1-x_{ni})}{(1-\mu_{ki})}$ Taking the derivative with respect to μ_{ki} and setting it to zero gives you

$$\mu_{ki} = \frac{\sum_{n=1}^{N} r_{nk} x_{ni}}{\sum_{n=1}^{N} r_{nk}}$$

2. The E Step is the same for the MLE case, namely

$$r_{nk} = \frac{\pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}{\sum_{k=1}^K \pi_k \prod_{i=1}^d \mu_{ki}^{x_{ni}} (1 - \mu_{ki})^{1 - x_{ni}}}$$

3.

According to Bayes' theorem:

$$p(\boldsymbol{\theta}|\boldsymbol{X}) \propto p(\boldsymbol{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

 $\log p(\boldsymbol{\theta}|\boldsymbol{X}) \propto \log p(\boldsymbol{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})$

Therefore, we need to add a log prior to the expected value of the complete data log-likelihood. The function we need to maximize is $\mathbb{E}[\log(p(x,z|\pi,\mu))] + \log p(\mu)$, where $p(\mu) = \prod_{k=1}^K \prod_{i=1}^d p(\mu_{ki})$ and

$$p(\mu_{ki}) = \frac{\mu_{ki}^{\alpha - 1} (1 - \mu_{ki})^{\beta - 1}}{\mathcal{B}(\alpha, \beta)}$$

We can write

$$\log p(\mu) = \sum_{k=1}^{K} \sum_{i=1}^{d} (\alpha - 1) \log \mu_{ki} + (\beta - 1) \log (1 - \mu_{ki}) - \log \mathcal{B}(\alpha, \beta)$$

We take derivative of the following expression with respect to μ_{ki} and set it to zero:

$$\sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \left(\log \pi_k + \sum_{i=1}^{d} \left(x_{ni} \log \mu_{ki} + (1 - x_{ni}) \log(1 - \mu_{ki}) \right) \right) + \sum_{k=1}^{K} \sum_{i=1}^{d} (\alpha - 1) \log \mu_{ki} + (\beta - 1) \log(1 - \mu_{ki})$$

which gives

$$\mu_{ki} = \frac{\sum_{n=1}^{N} (r_{nk} x_{ni}) + \alpha - 1}{\sum_{n=1}^{N} (r_{nk}) + \alpha + \beta - 2}$$

Problem 3 (A Different Perspective on EM):

In this question you will show that EM can be seen as an iterative algorithm which maximizes a lower bound on the log-likelihood. We will treat any general model P(X,Z) with observed variables X and latent variables Z.

For the sake of simplicity, we will assume that Z is discrete and takes values in $\{1, 2, \dots, m\}$. If we observe X, the goal is to maximize the log-likelihood

$$\ell(\theta) = \log P(\mathbf{x}; \theta) = \log \sum_{z=1}^{m} P(\mathbf{x}, z; \theta)$$

with respect to the parameter vector θ . Q(Z) denotes any distribution over the latent variables.

• Show that if Q(z) > 0 when $P(\mathbf{x}, z) > 0$, then it holds that

$$\ell(\theta) \ge \mathbb{E}_Q[\log P(X, Z)] - \sum_{z=1}^m Q(z) \log Q(z).$$

Hence, we have a bound on the log-likelihood parametrized by a distribution Q(Z) over the latent variables. (Hint: Consider using Jensen's inequality)

• Show that for a fixed θ , the lower bound is maximized for $Q^*(Z) = P(Z \mid X; \theta)$. Moreover, show that the bound is exact (holds with equality) for this specific distribution $Q^*(Z)$.

(Hint: Do not forget to add Lagrange multipliers to make sure that Q^* is a valid distribution.)

• Show that if we optimize with respect to Q and θ in an alternating manner, this corresponds to the EM procedure. Discuss what this implies for the convergence properties of EM.

Solution 3:

For the first part, note that

$$\ell(\theta) = \log P(\mathbf{x}; \theta)$$

$$= \log \sum_{z=1}^{m} P(\mathbf{x}, z; \theta)$$

$$= \log \sum_{z=1}^{m} \frac{P(\mathbf{x}, z; \theta)}{Q(z)} Q(z)$$

$$= \log \mathbb{E}_{Z \sim Q} \left[\frac{P(\mathbf{x}, z; \theta)}{Q(z)} \right]$$

$$\geq \mathbb{E}_{Z \sim Q} \left[\log \frac{P(\mathbf{x}, z; \theta)}{Q(z)} \right]$$

$$= \mathbb{E}_{Z \sim Q} \left[\log P(\mathbf{x}, z; \theta) \right] - \sum_{z=1}^{m} Q(z) \log Q(z),$$

where for the inequality we have used Jensen's inequality. Now, assume that we want to maximize the above with respect to Q, and let us add a multiplier λ to make sure that Q sums up to 1. Then, we have the following Lagrangian

$$\mathcal{L}(Q,\lambda) = \sum_{z=1}^{m} Q(z) \log P(\mathbf{x}, z; \theta) - \sum_{z=1}^{m} Q(z) \log Q(z) + \lambda (\sum_{z=1}^{m} Q(z) - 1).$$

By setting the derivative of the Lagrangian with respect to Q(z) to zero, we have

$$\frac{\partial}{\partial_{Q(z)}} \mathcal{L}(Q, \lambda) = \log P(\mathbf{x}, z; \theta) - 1 - \log Q(z) + \lambda = 0 \implies Q(z) = e^{\lambda - 1} P(\mathbf{x}, z; \theta).$$

Hence, we have that $Q(z) \propto P(\mathbf{x}, z; \theta)$ and this is exactly the posterior $P(Z \mid \mathbf{x}; \theta)$, which we had to show. It is also easy to see that the bound is tight, as

$$\mathbb{E}_{Z \sim Q}[\log \frac{P(\mathbf{x}, z; \theta)}{Q(z)}] = \sum_{z=1}^{m} Q(z) \log \frac{P(\mathbf{x}, z; \theta)}{Q(z)} = \sum_{z=1}^{m} P(z \mid \mathbf{x}; \theta) \log \frac{P(z \mid \mathbf{x}; \theta) P(\mathbf{x}; \theta)}{P(z \mid \mathbf{x}; \theta)} = \log P(\mathbf{x}; \theta).$$

Then we can easily see the EM algorithm as optimizing the lower bound with respect to $Q(\cdot)$ and θ in an alternating manner. Specifically, if we optimize with respect to Q we have shown that the optimal Q is the posterior, and this is exactly the E-step. Optimizing with respect to θ for fixed Q is clearly equivalent to the M-step. As the lower bound is monotonically increased at every step the EM algorithm has to converge.