Many things many linguists should know about the creation, evaluation, and use of corpora*

* But sometimes don't bother to ask

Felix Bildhauer and Roland Schäfer

Contents

Pro	eface	vii
Ac	knowledgments	ix
Ab	breviations and symbols	хi
1	Sampling and corpus composition	1
2	Linguistic annotation	3
3	Web as corpus	5
4	Classifying documents	7
5	Practical topic modeling	9
6	Corpus comparison	11
7	Designing corpus studies and making queries	13
8	Collo-phenomena	15
9	Corpora and statistcal inference	17
10	Advanced statistical modeling for corpus studies	19

Preface

Acknowledgments

Abbreviations and symbols

Abbreviations

ANOVA analysis of variance

CDF cumulative distribution function

CLT central limit theorem

cp. ceteris paribus (all other things being equal)iid. independent and identically distributed

LM linear model

LMM linear mixed model GLM linear mixed model

GLMM generalised linear mixed model PDF probability density function VCOV variance-covariance matrix

Symbols

Symbols are overloaded ad-hoc to denote either a (possibly indexed) value such as $s_x = 1$ (for "the population mean of variable x is 1") or a function such as s(x) = 1 where applicable.

Mathematical symbols

 $x \sim D$ x follows D (x a variable, D a distribution)

 \bar{x} sample arithmetic mean of x

 \tilde{x} sample median of x \hat{x} predicted value of x

Letter-like symbols

 $\begin{array}{ll} \alpha & & \text{alpha level} \\ \alpha_i & & \text{intercept } i \\ \beta & & \text{beta level} \end{array}$

 β_i first-level coefficient i

Abbreviations and symbols

df	degrees of freedom
e	Euler constant
ϵ	observation-level error
f	frequency
J F	F statistic (see ANOVA)
γ_i	second-level coefficient i
H	Kruskal-Wallis statistic
H_0	null hypothesis
H_A	alternative hypothesis
M_M	main hypothesis
IQR	inter-quartile range
\mathscr{L}	Likelihood
μ	population mean
μ_i	mean of modeled effect i
n	sample size
N	population size
O	Odds
p	proportion
P_i	the <i>i</i> -th percentile
Pr	probability
φ	dispersion parameter
Q_i	<i>i</i> -th quartile
r	sample covariance coefficient
r^2	coefficient of determination
R^2	multifactorial coefficient of determination
ρ	population covariance coefficient
S	sample standard deviation of x
s^2	sample variance of <i>x</i>
SE	standard error
SS	sum of squares
σ	population standard deviation
σ^2	population variance
U_{2}	Mann-Whitney statistic
χ^2	chi square statistic

Random distributions are denoted by bold-printed abbreviated names instead of the incoherent symbols sometimes used.

Bern Bernoulli distributionExp exponential distribution

 \mathbf{F} *F* distribution

Norm normal (Gaussian) distribution

t distribution

Unif uniform distribution

Chisq χ^2 distribution

1 Sampling and corpus composition

2 Linguistic annotation

3 Web as corpus

4 Classifying documents

5 Practical topic modeling

6 Corpus comparison

7 Designing corpus studies and making queries

8 Collo-phenomena

9 Corpora and statistcal inference

10 Advanced statistical modeling for corpus studies

Senn (2011)

References

Senn, Stepen J. 2011. You may believe you are a Bayesian but you are probably wrong. *Rationality, Markets, and Morals* 2. 48–66.