

SIGNS WITH SMART CONNECTIVITY FOR BETTER ROAD SAFETY

IBM PROJECT REPORT Team ID - PNT2022TMID18146

SUBMITTED BY

- B. SONIYA (201903156)
- M. KIRTHIKA (201903076)
- S. KARUNYA VARDANA (201903073)
- T. SINDHUJA (201903146)

Final Deliverables Report

Date	19.11.2022	
Team ID	PNT2022TMID18146	
Project Name	Signs with Smart Connectivity for Better Road Safety	

Team members and their Contributions:

Name	Roll no	Contribution
SONIYA B	201903156	CREATED SOURCE CODE FOR THE WOKWI SIMULATOR AND MIT APP CODE.
KIRTHIKA M	201903076	CREATED NODE RED AND IOT WATSON PLATFORM.
KARUNYA VARDANA S	201903073	PROJECT REPORT MAKING PROCESS AND GATHERING IDEAS FOR CREATING PROJECT.
SINDHUJA T	201903146	WORKINGS IN NODE RED FLOW AND IBM CLOUD DEPLOYMENT.

Introduction:

- 1. Sprint 1- Create and initialize accounts in various public APIs like OpenWeatherMap API, and write a Python program that outputs results given the inputs like weather and location.
- 2. Sprint 2 Push data from local code to cloud
- 3. Sprint 3 Hardware & Cloud integration
- 4. Sprint 4 UI/UX Optimization & Debugging

CONTENTS

1.	INTRODUCTION	
	1.1 Project Overview	5
	1.2 Purpose	5
2.	LITERATURE SURVEY	
	2.1 Literature survey	6
	2.2 Existing problem	8
	2.3 Problem Statement Definition	9
3.	IDEATION & PROPOSED SOLUTION	
	3.1 Empathy Map Canvas	10
	3.2 Ideation & Brainstorming	11
	3.3 Proposed Solution	12
	3.4 Problem Solution fit	13
4.	REQUIREMENT ANALYSIS	
	4.1 Functional requirement	14
	4.2 Non-Functional requirements	14
5.	PROJECT DESIGN	
	5.1 Data Flow Diagrams	15
	5.2 Solution & Technical Architecture	16
	5.3 User Stories	19
6.	PROJECT PLANNING & SCHEDULING	
	6.1 Sprint Planning & Estimation	20
	6.2 Sprint Delivery Schedule	21

7. (CODING & SOLUTIONING	
7	.1 Feature 1	22
7	.2 Feature 2	23
8. T	TESTING	
8	.1 Test Cases	24
8	.2 User Acceptance Testing	24
9. F	RESULTS	
9	.1 Performance Metrics	25
10.	ADVANTAGES & DISADVANTAGES	25
11.	CONCLUSION	26
12.	FUTURE SCOPE	26
13.	APPENDIX	27
	GitHub & Project Demo Link	27
	Source Code	27

1. INTRODUCTION

1.1 Project Overview

- To replace the static signboards, smart connected signboards are used.
- These smart connected sign boards get the speed limitations from a web app using weather API and update automatically.
- Based on the weather changes the speed may increase or decrease.
- Based on the traffic and fatal situations the diversion signs are displayed.
- Guide (Schools), Warning and Service (Hospitals, Restaurants) signs are also displayed accordingly.
- Different modes of operations can be selected with the help of buttons.

1.2 Purpose

- Smart Traffic Management is a system to monitor and control traffic signals using sensors to regulate the flow of traffic and to avoid congestion for a smooth flow of traffic.
- Prioritizing traffic like ambulances, police etc. is also one application comes under smart traffic management.

2. LITERATURE SURVEY

1711					
TITLE	AUTHOR	METHODOLOGY	MERITS	DEMERITS	YEAR
Digitalization of highways for vulnerable road safety development with intelligent IoT sensors and machine learning (IEEE)	Akram	❖ IOT ❖ AI	Embedding the deep learning techniques in the vision node at the traffic junction and the highway lighting controller is able to deliver an intelligent system that provides sustained experience and management of the highways.	Smart reflectors, adoption of renewable energy, developing vehicle-to-vehicle communication in vehicles, and smart lamp posts are a few recommendations for the implementation of digitalizing highways	2021

TITLE	LITERATURE SURVEY				
IOT BA	RT TRAFFIC Aravind R, AGEMENT Ranjitha M M Spoorthi Jwanita ,	Digital Image	 MERITS IOT based traffic management easily penalize traffic violators and help officials to identify unauthorized drivers. Reroute the ambulance to low congestion roads to get help medical care at the 	 ❖ Additional security measures are required ❖ Require High Tech network infrastruct ure 	2021

TITLE	AUTHOR	METHODOLOGY	MERITS	DEMERITS	YEAR
RELIABLE SMART ROAD SIGNS (IEEE)	Muhammed O. Saying, Chung-Wei Lin, Eunsuk Kang, Shinichi Shiraishi, and Tamer Basar	 Machine Learning to recognize the surroundings and can use its strategic decisions on the information learnt Dedicated short range communication (DSRC) radios. Game theoretical Approaches 	 Road – sign classification in adversarial environments The detection mechanism involves multiple performance metrics 	 Need state of the art vision based road sign recognition algorithms for better reliability Relaxation to attacker's algorithm under Stackelberg Equilibrium leads to trigger of false alarm 	2019

TITLE	AUTHOR	METHODOLOGY	MERITS	DEMERITS	YEA R
Incomplete Road Information Imputation Using Parallel Interpolation to Enhance the Safety of Autonomous Driving.	KAIFENG GAO BOWEN WANG LEI XIAO GANG MEI	❖ IOT ❖ AI	The proposed method is capable of efficiently and effectively imputating the incomplete road point cloud data that are induced by obstacle vehicles, and outperforms other interpolation algorithms and machine learning algorithms.	By scanning road information, LiDAR sensors can obtain high-precision road point cloud information map. However, LiDAR scanning is sensitive to weather conditions. In rainy, foggy, or snowy weather, the performance of LiDAR is not ideal. In addition, LiDAR cannot detect small obstacles, such as traffic signs that are 60 meters away. Because they occupy a lower scanning angle than the resolution of the LiDAR, the LiDAR cannot detect such obstacles.	2021

2.1 Existing problem

- Analysis of crash data has suggested a link between roadside advertising signs and safety.
- Research suggests that crash risk increases by approximately 25–29% in the presence of digital roadside advertising signs compared to control areas.
- On the other hand, static roadside advertising signs have not been linked with differences in the crash count.
- However, this finding is contrary to previous research that suggests differences in crash counts exist in the presence of static roadside advertising.
- The quantity and quality of available evidence limit our conclusion.
- Fixed object, side swipe and rear end crashes are themost common types of crashes in the presence of roadside advertising signs.
- In addition, drivers showed increased eye fixations and increased drifting between lanes on the road. PNT2022TMID18146

2.2 Problem Statement Definition

This project will replace the static boards to smart signed boards that will change the speed limits according to the weather climate and show diversion messages if there are accidents in the road and alert messages if there is hospital, schools, or any roadworks.

3. IDEATION AND PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming Map

Soniya

Avoid drunk and driving

Smart LED lights are visible from far distances

instant information on LED

denotes the

can provide realtime information about the status of the traffic light

condition of the vehicle in regularly through

automatic message and warning sent to emergency services through connected cars by iot devices.

Kirthika

It alerts about the upcoming accident prone zones

vehicle speed exceeds more than road speed it generate buzzer and alert them

stable technology for monitoring ,maintanence roads

It works perfectly in climatic conditions

ADAS is considrable to drive about 36 billion euros.

Electronic are always the no traffic path and secure

Karunya

Cost efficient

Vehicle system the details of the vitals by inbuilt make access of it

It makes the user

accidents around the taffic light and their violation through real-time monitoring

to nearest emergency sevice can reach there All this basically helps to avoid breakdowns accidents.

Sindhuja

Weather monitoring

It helps in reducing the riskks for accident help to detect temperature both internal as well as external

knowing the position of other vehicle ,iot can need for emergency braking

It can reduce more accidents and improve circulation

suggest speed limit while driving

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement	Replacing the static signs for roads by digital sign board for better navigation, avoid traffic and fatal situations like floods, natural calamities, etc.
2.	Idea description	By setting a digital sign with the help of IoT concepts and algorithms to improvise the system to digitalize the sign boards for reliable and effective for future.
3	Novelty / Uniqueness	 As it uses real time weather conditions the signs change according to current situations. Even in extreme weather conditions these sign boards are clearly visible and help the drivers to navigate to their respective destination. The speed limits are also got vary according to weather, or with respect to roads or any other locations like school zones, hospital areas, etc. Signs will be displayed according to the locations like schools, hospitals, etc.
4	Social Impact / Customer Satisfaction	 This will useful for the traffic officers to regulate the traffic easily. The customer satisfies by this as it shows the correct routes even though there is any problem in the way to their destination. This will be useful for the beginners to learn the traffic regulations while traveling to different places.
5	Business Model (Revenue Model)	 With this model all the people get aware of the traffic rules and can drive safely. It's a budget friendly and government support this creative ideation. Every people get beneficial and can improve their lifestyle.
6	Scalability of the Solution	This model will greatly helpful in both day and night and even in extreme weather situations and reduce accidents.

3.4 Problem Solution fit

4. 1. REQUIREMENT ANALYSIS

4.1 Functional Requirements

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)	
FR-1	User Requirements	Traditional signs are replaced with digitalized sign boards which meets all the criteria.	
FR-2	User Registration	The registration can be done via website or form or Gmail or LinkedIn	
FR-3	User Conformation	The conformation can be done by phone calls, OTPs and Gmail.	
FR-4	Payment Options	Payments can be done by bank transfers or net banking.	
FR-5	Product delivery and installation	The installation will be depend on the road length and the condition of the road.	
FR-6	Product feedback	Feedback can be given via forms, Gmail or websites.	

4.2 Functional Requirements

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description	
NFR-1	Usability	Should be convenient, easy and dynamically change according to the users.	
NFR-2	Security	The Safe System approach to road safety emphasizes safety-by-design through ensuring safe vehicles, road networks, and road users.	
NFR-3	Reliability	High reliable and should convey the traffic information correctly.	
NFR-4	Performance	 Should update dynamically whenever the weather or traffic values are updated. Cost efficient Better Traffic Management and Safety and prevent accidents. 	
NFR-5	Availability	This will be working 24/7 even in extreme weather conditions.	
NFR-6	Scalability	It can be moved from a smaller to a larger operating system and the larger number of users that could be handled.	

5. PROJECT DESIGN

5.1 Data Flow Diagram

5.2 Solution & Technical Architecture

Following is the Solution Built

Table-1: Components & Technologies:

S.N o	Component	Description	Technology
1	User Interface	User can interact with the app using MIT App	HTML, CSS, JavaScript / Angular Js /React Js
2	Application Logic-1	Logic for a process in the application	Java / Python
	Application Logic-2	Logic for a process in the application	IBM Watson STT service
	Application Logic-3	Logic for a process in the application	IBM Watson Assistant
5	Database	Data Type, Configurations etc.	IBM Cloud
6	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant etc.
7	File Storage	File storage requirements	IBM Block Storage or Other StorageService or Local Filesystem
8	External API-1	Purpose of External API used in the application	Open Weather Map API
9	External API-2	Purpose of External API used in the application	IBM Watson Platform, Node - Red
10.	Infrastructure (Server / Cloud)	Application Deployment on Local System / CloudLocal Server Configuration: Cloud Server Configuration:	Local, Cloud Foundry, Kubernetes

Table-2: Application Characteristics:

S. No	Characteristics	Description	Technology	
1.	Open-Source Frameworks	OpenWeatherMap, NODE- RED, IBM WATSON,MIT App Inventor	IoT, internet	
2.	Security Implementations	Powerful security system for everyone'speace of mind No access data Hackers cannot access network	Firewall, Firebase, cyber resiliency, strategy	
3.	Scalable Architecture	EASY TO EXTEND THE NETWORK WITH THEAID OF THE BANDWIDTH OF THE NETWORK	IBM Cloud	
4.	Availability	Available every time and everywhere 24/7so long as the consumer is signed into thenetwork.	IBM Cloud	
5.	Performance	AIDS MASSIVE RANGE OF USERS TO USE TECHNOLOGY	IBM Cloud	

5.3 User Stories

6. PROJECT PLANNING AND SCHEDULING

6.1 Sprint Planning & Estimation

Product Backlog, Sprint Schedule and Estimation(4Marks)

Use the below template to create product backlog and sprint scheme Sprint	Functional Requirement (Epic)	User Story/Task	Story Points	Priority	Team Members
Sprint-1	Resources Initialization	Create and initialize accounts in various public APIs like OpenWeatherMap API.	1	LOW	Soniya B Karunya Vardana S Kirthika M Sindhuja T
Sprint-1	Local Server/Softwar e Run	Write a Python program that outputs results given the inputs like weather and location	1	MEDIUM	Soniya B Karunya Vardana S Kirthika M Sindhuja T
Sprint-2	Push the server/software to cloud	Push the code from Sprint1 to cloud so it can be accessed from anywhere	2	MEDIUM	Soniya B Karunya Vardana S Kirthika M Sindhuja T
Sprint-3	Hardware initialization	Integrate the hardware to be able to access the cloud functions and provide inputs to the same	2	HIGH	Soniya B Karunya Vardana S Kirthika M Sindhuja T

6.2 Sprint Delivery Schedule

Project Tracker, Velocity & Burndown Chart:

Project Tracker, Velocity & Burndown Chart:(4Ma rks) Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date(Planne d)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)
Sprint-1	20	6Days	24 Oct2022	29 Oct 2022	20	19 Nov 2022
Sprint-2	20	6Days	31 Oct 2022	05 Nov 2022	20	19 Nov 2022
Sprint-3	20	6Days	07 Nov 2022	12 Nov 2022	20	19 Nov 2022
Sprint-4	20	6Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Burndown Chart:

Balance Work

7. CODING AND SOLUTIONING

7.1 Feature 1 - GET SPEED FOR GIVEN LOCATION & CLIMATE

This part of Node RED flow accepts an http GET end point at "/getSpeed" from which the location, uid, hospital/school zone info are passed.

Message parser sets the required APIKEY for **OpenWeatherAPI** for the next block.

This data is then passed onto Decision Maker which makes all the decisions regarding the message to be output at the display and sends it as a http response.

This data is displayed at the microcontroller. Thus, a lot of battery is saved due to lesser processing time.

7.2 Feature 2 - SET DIRECTION REMOTELY FOR A GIVEN SIGN BOARD

This part of Node RED flow accepts an http GET end point at "/setDirection" from which the uid and direction information are passed by the respective authorities. Set Direction Function block adds the direction information to the database and returns the same as an http response. This data is sent to the microcontroller along with the "/getSpeed" path and the microcontroller displays it.

A detailed documentation of all the workflows is available at the **following link**:

8. TESTING

8.1 Test Cases

❖ TEST CASE 1

Clear weather - Usual Speed Limit.

❖ TEST CASE 2

Foggy Weather - Reduced Speed Limit.

❖ TEST CASE 3

Rainy Weather - Further Reduced Speed Limit.

❖ TEST CASE 4

School/Hospital Zone - Do not Honk sign is displayed.

8.2 User Acceptance Testing

Dynamic speed & diversion variations based on the weather and traffic helps user to avoid traffic and have a safe journey home. The users would welcome this idea to be implemented everywhere.

9.RESULTS

9.1 Performance Metrics

Based on the IBM pack we chose, the performance of the website varies. Built upon NodeJS, a light and high performance engine, Node RED is capable of handling up to 10,000 requests per second. Moreover, since the system is horizontally scalable, an even higher demand of customers can be served.

10 ADVANTAGES & DISADVANTAGES

ADVANTAGES

- Lower battery consumption since processing is done mostly by Node RED servers in the cloud.
- Cheaper and low requirement micro controllers can be used since processing requirements are reduced.
- Longer lasting systems.
- Dynamic Sign updating.
- School/Hospital Zone alerts

DISADAVNTAGES

- The size of the display determines the requirement of the micro controller
- Dependent on OpenWeatherMap API and hence the speed reduction is same for a large area in the scale of cities.

11 CONCLUSION

Our project is capable of serving as a replacement for static signs for a comparatively lower cost and can be implemented in the very near future. This will help reduce a lot of accidents and maintain a more peaceful traffic atmosphere in the country.

12 FUTURE SCOPE

Introduction of intelligent road sign groups in real life scenarios could have great impact on increasing the driving safety by providing the end-user (car driver) with the most accurate information regarding the current road and traffic conditions. Even displaying the information of a suggested driving speed and road surface condition (temperature, icy, wet or dry surface) could result in smoother traffic flows and, what is more important, in increasing a driver's awareness of the road situation.

13 APPENDIX

- GITHUB LINK
- https://github.com/IBM-EPBL/IBM-Project-1623-1658403326
- PROJECT DEVELOPMENT PHASE LINK
 https://github.com/IBM-EPBL/IBM-Project-1623 1658403326/tree/main/PROJECT_DEVELOPEMENT_PHASE
 - SOURCE CODE ESP 32

```
#include <TinyGPS++.h>
#include <SoftwareSerial.h>
TinyGPSPlus gps;
SoftwareSerial ss (3,4);
char n:
int a;
void setup() {
Serial.begin(9600);
ss.begin(9600);
pinMode (2,INPUT);
pinMode (6,OUTPUT);
pinMode(11,0UTPUT);
pinMode(10,OUTPUT);
pinMode (9,OUTPUT);
pinMode (12,0UTPUT); //apr
digitalWrite(11,HIGH);
digitalWrite(6,HIGH);
attachInterrupt (digitalPinToInterrupt (2), piezo,CHANGE);
void loop() {
n-Serial.read();
Serial.println(" ");
delay (200);
if (n=='3') {
digitalWrite(6,HIGH);
digitalWrite(11,HIGH);
digitalWrite(12,HIGH);
delay(200);
digitalWrite(12,LOW); }
else if (n=='2'){
digitalWrite(6,LOW);
digitalWrite(11,LOW);
digitalWrite(10,LOW);
digitalWrite(9,LOW);
digitalWrite(12,HIGH);
delay(200);
digitalWrite(12,LOW); }
else if (n=='1'){
analogWrite(11,100);
analogWrite(6,100);
```

```
digitalWrite(12,HIGH);
delay(200);
digitalWrite(12,LOW);
displayInfo()
if(gps.location.isValid()){
Serial.print(gps.location.lat(), 6);
Serial.print (F(","));
Serial.print(gps.location. Ing(), 6); }
Serial.print("10.305125");
Serial.print(',');
Serial.print("76.389582");
if (gps.date.isValid())
Serial.print(gps.date.month());
Serial.print (F("/"));
Serial.print(gps.date.day());
Serial.print (F("/"));
Serial.print(gps.date.year());
else
Serial.print(F("INVALID"));
Serial.print (F(" "));
if (gps.time.isValid())
if (gps.time.hour() < 10)</pre>
Serial.print (F("0"));
Serial.print(gps.time.hour());
Serial.print(F(":"));
if (gps.time.minute() < 10)</pre>
Serial.print(F("0"));
Serial.print (gps.time.minute());
```

```
Serial.print(F(":"));
}
if (gps.time.second() < 10)
{
Serial.print(F("0"));
Serial.print(gps.time.second());
Serial.print(F("."));</pre>
```

```
if (gps.time.centisecond() < 10)</pre>
Serial.print(F("0"));
Serial.print(gps.time.centisecond());
else
// Serial.print (F("INVALID"));
Serial.println();
void piezo()
while (ss.available() > 0)
    if(gps.encode(ss.read()))
        displayInfo();
int a=0,b=0,c=0,d=0;
void setup() {
pinMode(D1, INPUT);
pinMode(D2, INPUT);
pinMode(D3, INPUT);
pinMode(D4, INPUT);
digitalWrite(D1,LOW);
digitalWrite(D2, LOW);
digitalWrite(D3, LOW);
digitalWrite(D4, LOW);
Serial.begin(9600);
void loop()
a=digitalRead(D1);
if (a==1) {
Serial.print("1"); }
b=digitalRead (D2);
if (b==1) {
Serial.print("2"); }
d=digitalRead(D4);
if (d==1)
Serial.print("3");
```