Report: Advection-Diffusion

Sean Prasertsit

2014 December 19

1 Discretization of the $\underline{\mathbf{u}} \cdot \nabla c$ term.

Discretization allows for incremental iteration through c. The upwind portion of the advection-diffusion equation results in the $\underline{\mathbf{u}}$ element becoming (u_x, u_y) and ∇c becoming $(\frac{dc}{dx}, \frac{dc}{dy})$. Result is of the form:

$$u_x \frac{dc}{dx} + u_y \frac{dc}{dy}$$

Depending on the value of $\underline{\mathbf{u}}$, the terms will be:

for
$$\underline{\mathbf{u}} > 0$$
, $\frac{dc}{dx} = \frac{c_{i,j}^{n+1} - c_{i-1,j}^{n+1}}{\Delta x}$, $\frac{dc}{dy} = \frac{c_{i,j}^{n+1} - c_{i,j-1}^{n+1}}{\Delta y}$

for
$$\underline{\mathbf{u}} \le 0$$
, $\frac{dc}{dx} = \frac{c_{i+1,j}^{n+1} - c_{i,j}^{n+1}}{\Delta x}$, $\frac{dc}{dy} = \frac{c_{i,j+1}^{n+1} - c_{i,j}^{n+1}}{\Delta y}$

2 Linear system satisfied by $\underline{\mathbf{c}}^{n+1}$

The linear system is of the form $A\underline{\mathbf{c}}^{n+1} = RHS$ where A is a matrix consisting of the bottom, left, centre, right, and top elements, $\underline{\mathbf{c}}_{i,j}^{n+1}$ is the advection vector and the right-hand side consists of the diffusion equation $\underline{\mathbf{c}}_{i,j}^n - \nabla c + S$

3 Scheme

The linear system can be described as: Pseudo-code:

Declare variables;

$$A = sparse(m,m);$$

while
$$t < t_final$$
, for boundary pixels, set to exact solution end;

```
for interior nodes,  \begin{array}{c} calculate \ C; \\ calculate \ L; \\ calculate \ R; \\ calculate \ T; \\ calculate \ B; \\ \\ calculate \ RHS; \\ \\ cplus1 = A \backslash backslash \ RHS; \\ c = ctp1 \end{array}
```

4 Source/sink

$$\begin{aligned} \mathbf{S}_{exact} &= \frac{dc}{dt} + \underline{\mathbf{u}} \nabla c - D \nabla^2 c \text{ where} \\ c &= (e^{-t} - 1)(sin(\pi x) + sin(\pi y)) \\ \nabla c &= (e^{-t} - 1)(-\pi cos(\pi x) - \pi cos(\pi y)), \text{ and} \\ \nabla^2 c &= (e^{-t} - 1)(-\pi^2 sin(\pi x) - \pi^2 sin(\pi y)) \end{aligned}$$

5 Plot

6 Error

$$error = max|c - c_{exact}|$$

