

Elementy elektroniczne

dr inż. Piotr Ptak

Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Katedra Podstaw Elektroniki

A-303, pptak@prz.edu.pl, tel. 178651113 konsultacje: pn. – cz. 11-12

Plan wykładu

Fizyka półprzewodników, złącze P-N

- · Materiały półprzewodnikowe
- · Pasmowy model przewodnictwa
- Półprzewodnik samoistny
- · Półprzewodniki statystyka
- Półprzewodniki domieszkowane
- · Przewodnictwo elektryczne półprzewodników
- Złącze P-N

Materiały półprzewodnikowe

Podział materiałów ze względu na przewodnictwo elektryczne (rezystywność).

$$R = \rho \frac{l}{S} = \frac{1}{\sigma} \frac{l}{S}$$
 ρ - rezystywność [Ω ·m] σ - konduktywność [$1/(\Omega$ ·m)]

Elementy elektroniczne I – fizyka półprzewodników

3

Materiały półprzewodnikowe

Elementy elektroniczne I – fizyka półprzewodników

Materiały półprzewodnikowe

Półprzewodniki – substancje, najczęściej krystaliczne, których rezystywność zmienia się w szerokim zakresie poprzez domieszkowanie, zmianę temperatury, oświetlanie lub inne czynniki.

Półprzewodniki elementarne:

Si, Ge, C (diament), Sn

Związki półprzewodnikowe:

- grupa A^{III}B^V: GaAs, GaP, InAs, InSb, GaN, itp.
- grupa A^{II}B^{VI}: CdS, CdSe, CdTe, ZnTe, ZnO,
- kryształy mieszane: np. Ge_xSi_{1-x}, Hg_{1-x}Cd_xTe (x – skład molowy),
- · związki organiczne,
- materiały amorficzne...

Elementy elektroniczne I – fizyka półprzewodników

E

Atom krzemu

Model atomu Bohra – elektron w atomie może mieć tylko niektóre, skokowo zmieniające się wartości energii (dyskretne poziomy energetyczne).

$$E_n = -\frac{Ze^4 m_e}{8n^2 h^2 \varepsilon_0^2}$$

- Z liczba atomowa pierwiastka (Z_{Si}=14)
- e ładunek elementarny elektronu (1,602·10⁻¹⁹ C)
- $m_{\rm e}$ masa elektronu (9,109·10⁻³¹ kg)
- n numer powłoki elektronowej (n = 1, 2, 3, ...),
- h stała Plancka (6,626·10⁻³⁴ Js),
- ε_0 przenikalność elektryczna próżni (8,854·10⁻¹² F/m)

Elementy elektroniczne I – fizyka półprzewodników

Półprzewodnik

Dwuwymiarowy model półprzewodnika IV grupy, np. Si.

Półprzewodniki:

- · samoistne,
- · domieszkowane.

Elementy elektroniczne I – fizyka półprzewodników

7

Pasmowy model przewodnictwa

Energetyczny model pasmowy pojedynczego (izolowanego) atomu E_C Pasmo przewodnictwa Zakres energii jaką mają elektrony uwolnione z atomu – swobodne nośniki ładunku. E_V Pasmo zabronione (przerwa energetyczna) Zakres energii jaką mają elektrony walencyjne związane z jądrem atomu.

$$E_g = E_C - E_V \; \mathrm{[eV]} \qquad \qquad \mathrm{1\; eV} = \mathrm{1\; e\cdot 1\; V} = \mathrm{1,602\cdot 10^{-19}\; J}$$

1 eV – jednostka energii – energia jaką uzyskuje bądź traci elektron przemieszczający się w polu elektrycznym o różnicy potencjałów 1 V

Elementy elektroniczne I – fizyka półprzewodników

Pasmowy model przewodnictwa

Elementy elektroniczne I – fizyka półprzewodników

(

Materiały półprzewodnikowe

Szerokość przerwy energetycznej w półprzewodnikach

Rozwój materiałów półprzewodnikowych:

- Ge: 1947 1958Si: 1962 teraz
- GaAs: 1970 teraz
- Półprzewodniki z szeroką przerwą energetyczną: 1990 – teraz
- Polimery, materiały amorficzne, metale ziem rzadkich?

Półprzewodnik		E_g (eV) w 300 K
Pierwiastki	Si	1,12
	Ge	0,67
	C (diament)	5,30
	Sn	0,08
	amorficzny Si	1,71
Związki A [⊞] B ^v	GaAs	1,35
	GaP	2,24
	InAs	0,36
	InSb	0,18
	GaSb	0,66
	InP	1,34
	GaN	3,39
	InN	1,89
	AIN	6,20
Związki A [⊪] B [∨]	CdS	2,42
	CdSe	1,73
	CdTe	1,50
	ZnTe	2,25
	SiC	2,2 - 3,2

Elementy elektroniczne I – fizyka półprzewodników

Materiały półprzewodnikowe

Półprzewodniki:

- samoistne idealnie czysty materiał, bez domieszek i defektów sieci krystalicznej. Swobodne nośniki ładunku powstają wskutek generacji par elektron-dziura,
- niesamoistne:
 - struktura krystaliczna nie jest idealna posiada defekty (wakanse, dyslokacje, ...),
 - celowe domieszkowanie półprzewodników (donorowe, akceptorowe).

Domieszkowanie – wprowadzenie do półprzewodnika samoistnego atomu o innej wartościowości (powstaje nadmiar lub niedobór elektronów).

Elementy elektroniczne I – fizyka półprzewodników

11

Pasmowy model przewodnictwa

Półprzewodnik samoistny (ang. intrinsic) – mało nośników ładunku, mała przerwa energetyczna

temperatura $T=0~{
m K}$ (brak swobodnych nośników energii)

Dwuwymiarowy model półprzewodnika IV grupy

Energetyczny model pasmowy

dla Si: $E_g = 1,12 \text{ eV}$

Półprzewodnik samoistny

Generacja par elektron-dziura: pod wpływem ciepła, światła, promieniowania, jonizacji zderzeniowej.

temperatura T > 0 K

Elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego.

Elementy elektroniczne I – fizyka półprzewodników

13

Półprzewodniki – statystyka

Prawdopodobieństwo obsadzenia przez elektron dowolnego stanu energetycznego E w temperaturze $T-{\bf funkcja}$ rozkładu prawdopodobieństwa Fermiego-Diraca:

$$f(E) = \frac{1}{1 + e^{\frac{E - E_F}{kT}}}$$

k – stała Boltzmanna (1,38·10⁻²³ J/K)

 E_F – poziom Fermiego (energia Fermiego):

$$f(E_F) = \frac{1}{1 + e^{\frac{E_F - E_F}{kT}}} = \frac{1}{2}$$

- Dla T = 0 K wszystkie poziomy o energii E < E_F są na pewno obsadzone, a poziomy o energii E > E_F większej niż energia Fermiego są puste.
- Dla T > 0 K prawdopodobieństwo zapełnienia stanu o energii E_F wynosi 0,5.

Półprzewodniki – statystyka

elektrony (w paśmie przewodnictwa)

$$f_n(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

Dla |
$$E - E_F$$
 |> $3kT$: $f_n(E) = e^{-(E - E_F)/kT}$

dziury (w paśmie walencyjnym)

$$f_p(E) = \frac{1}{1 + e^{(E_F - E)/kT}}$$

Dla |
$$E_F - E$$
 |> $3kT$: $f_p(E) = e^{-(E_F - E)/kT}$

$$N_{C}(E) = \frac{1}{2\pi^{2}} \left(\frac{2m_{n}}{\hbar^{2}}\right)^{3/2} \sqrt{E - E_{C}} \qquad N_{V}(E) = \frac{1}{2\pi^{2}} \left(\frac{2m_{p}}{\hbar^{2}}\right)^{3/2} \sqrt{E_{V} - E}$$

$$N_{V}(E) = \frac{1}{2\pi^{2}} \left(\frac{2m_{p}}{\hbar^{2}}\right)^{3/2} \sqrt{E_{V} - E}$$

$$n = \int_{E_C}^{\infty} N_C(E) f_n(E) dE = N_C e^{\frac{-(E_C - E_F)}{kT}} \qquad p = \int_{-\infty}^{E_V} N_V(E) f_p(E) dE = N_V e^{\frac{-(E_F - E_V)}{kT}}$$

efektywna gęstość stanów energetycznych

$$N_C = 2 \left(\frac{m_C kT}{2\pi \hbar^2} \right)^{3/2}$$

$$N_V = 2 \left(\frac{m_V kT}{2\pi\hbar^2}\right)^{3/2}$$

Elementy elektroniczne I – fizyka półprzewodników

Półprzewodniki – statystyka

$$np = N_C N_V \cdot e^{\frac{-E_C - E_V}{kT}} = N_C N_V \cdot e^{\frac{-E_g}{kT}}$$

Dla dowolnego półprzewodnika iloczyn koncentracji elektronów i dziur w stanie równowagi termodynamicznej w określonej temperaturze jest stały; nie zależy od sposobu domieszkowania.

Półprzewodnik samoistny (ang. intrinsic):

Pasmo walencyjne

Wartość n, zależy tylko od rodzaju materiału i od temperatury!

Aby obliczyć n_i wystarczy znajomość E_a i T.

Elementy elektroniczne I – fizyka półprzewodników

Półprzewodniki – statystyka

Co to wszystko oznacza?

W 1 cm³ Si znajduje się 10²³ atomów.

Przerwa energetyczna w Si: E_a = 1,12 eV.

Średnia energia termiczna elektronu E_{τ} =kT w temp. pokojowej (T = 300K) wynosi E_{τ} = 0,025 eV.

Jak elektrony mogą pokonać przerwę energetyczną?

$$n_i(T) = AT^{3/2} \cdot e^{-\frac{E_g}{2kT}}$$

 $n_i(300 \text{ K}) \approx 1.5 \cdot 10^{10} \text{ cm}^{-3}$

W 1 mm³ Si jest 15 milionów swobodnych elektronów (i tyle samo dziur).

Energię wystarczającą do pokonania przerwy energetycznej w Si w temperaturze pokojowej ma 1 elektron na $1.5\cdot10^{13}$ atomów.

Elementy elektroniczne I – fizyka półprzewodników

17

Półprzewodniki domieszkowane

Domieszki donorowe – półprzewodnik typu N (negative)

Pierwiastki V grupy, np. P, As, Sb

W półprzewodniku typu n – elektrony są nośnikami większościowymi, a dziury mniejszościowymi.

W temperaturze pokojowej wszystkie elektrony z poziomu donorowego przejdą do pasma przewodnictwa. Atomy domieszki po utracie elektronu będą jonami dodatnimi.

Półprzewodniki domieszkowane

Domieszki akceptorowe – półprzewodnik typu P (positive)

Pierwiastki III grupy, np. B, Al, Ga, In

W półprzewodniku typu p – dziury są nośnikami większościowymi, a elektrony mniejszościowymi.

W temperaturze pokojowej elektrony z pasma walencyjnego przejdą na poziom akceptorowy. Atomy domieszki po otrzymaniu elektronu będą jonami ujemnymi.

Elementy elektroniczne I – fizyka półprzewodników

10

Półprzewodniki domieszkowane

Równanie neutralności elektrycznej – wprowadzenie domieszek do półprzewodnika nie może zmienić całkowitego ładunku, który w stanie równowagi musi być równy zero.

$$p + N_D^+ = n + N_A^-$$

Z prawa działania mas można wyznaczyć koncentracje nośników dla znanej koncentracji domieszek:

$$np \equiv n_i^2$$

Dla półprzewodników donorowych:

 $n_n \approx N_D$

 $p_n \approx \frac{n_i^2}{N_D}$

koncentracje mniejszościowych nośników ładunku

Dla półprzewodników akceptorowych:

 $p_p \approx N$

 $n_p \approx \frac{n_i^2}{N}$

typu P ($N_A >> N_D$)

typu N ($N_D >> N_A$)

Jeśli $N_A = N_D - \text{półprzewodnik skompensowany } (n = p = n_i)$

Półprzewodniki domieszkowane

Poziom Fermiego w półprzewodniku domieszkowanym

Domieszkowanie powoduje zmiany położenia poziomu Fermiego.

Położenie poziomu Fermiego zależy również od temperatury.

Elementy elektroniczne I – fizyka półprzewodników

2

Półprzewodniki domieszkowane

Zależność koncentracji elektronów w półprzewodniku typu N od temperatury (Si)

Domieszkowanie powoduje stabilizację liczby nośników ładunku w stosunkowo dużym zakresie temperatury.

Przewodnictwo elektryczne półprzewodników KPE

Ruch nośników ładunku w półprzewodniku odbywa się pod wpływem mechanizmów: unoszenia i dyfuzji.

Unoszenie nośników

$$\nu_n = \mu_n \cdot E$$

$${m v}_p = {m \mu}_p \cdot E$$

 ${m \mu}_p$ – ruchliwość

elektronów i dziur
$$\text{Dla Si: } \mu_n \approx 3 \mu_n$$

I gęsios

Ładunek, który przepływa przez powierzchnię ${\cal S}$ w czasie ${\it dt}$:

$$dQ = n \cdot e \cdot v_n \cdot dt \cdot S + p \cdot e \cdot v_p \cdot dt \cdot S$$

gęstość prądu:
$$J = \frac{1}{S} \frac{dQ}{dt}$$

$$J = n \cdot e \cdot v_n + p \cdot e \cdot v_p$$

prawo Ohma:
$$J = \sigma \cdot E$$

konduktywność:
$$\sigma = e \cdot (n \cdot \mu_n + p \cdot \mu_n)$$

Elementy elektroniczne I – fizyka półprzewodników

Przewodnictwo elektryczne półprzewodników KP

Dyfuzja nośników – zachodzi w przypadku nierównomiernej koncentracji nośników

n(x) $\frac{dn(x)}{dx} < 0$

Nośniki przemieszczają się z obszarów o większej do obszarów o mniejszej koncentracji – dyfuzja prowadzi do wyrównania koncentracji.

$$J = -e \cdot D \frac{dn(x)}{dx}$$

D – współczynnik dyfuzji

$$J_{n} = \frac{n \cdot e \cdot \mu_{n} \cdot E}{n \cdot e \cdot \mu_{p} \cdot E} + \frac{e \cdot D_{n} \frac{dn(x)}{dx}}{e \cdot D_{p} \frac{dp(x)}{dx}}$$

$$J_{c} = J_{n} + J_{p}$$
unoszenie
$$J_{c} = J_{n} + J_{p}$$

$$J_{c} = J_{n} + J_{p}$$

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{e} = U_T \approx 26 \text{ mV } (T = 300 \text{ K})$$

Elementy elektroniczne I – fizyka półprzewodników

Złącze P-N

Jak powstaje złącze p-n?

Złącze P-N – złącze dwóch półprzewodników niesamoistnych o różnych typach domieszkowania: P i N.

Elementy elektroniczne I – złącze P-N

25

Złącze P-N

Połączenie półprzewodników P i N

Złącze niespolaryzowane – w stanie równowagi termodynamicznej.

Elementy elektroniczne I – złącze P-N

Złącze P-N

Stan równowagi termodynamicznej

$$J_{pd} - J_{pu} = 0$$

$$J_{nd} - J_{nu} = 0$$

W stanie równowagi termodynamicznej sumaryczny prąd płynący przez złącze jest równy zero.

Elementy elektroniczne I – złącze P-N

27

Złącze P-N

Polaryzacja w kierunku zaporowym

Bariera potencjału zwiększa się ($U_D + U$) i powoduje całkowity zanik prądów dyfuzyjnych:

$$J_{\rm pd} \to 0 \qquad \quad J_{\rm nd} \to 0$$

Prądy unoszenia:

$$J_{pu} = const, \ J_{nu} = const$$
 - nie zależą od U

Elementy elektroniczne I – złącze P-N

Złącze P-N

Polaryzacja w kierunku przewodzenia

Bariera potencjału zmniejsza się ($U_D - U$) i powoduje przepływ dużych prądów dyfuzyjnych:

$$J_{pd} + J_{nd} = J_d = J_0 e^{U/U_T}$$

Prądy unoszenia: $\boldsymbol{J}_{pu} = const, \ \boldsymbol{J}_{nu} = const$

$$J_u = J_0 << J_d$$

Elementy elektroniczne I – złącze P-N