Imatge Sintètica Ray Tracing for Realistic Image Synthesis

Ricardo Marques (ricardo.marques@upf.edu)

Group de Tecnologies Interactives (GTI)
Departament de Tecnologies de la Informació i les Comunicacions (DTIC)
Universitat Pompeu Fabra (UPF)

Edifici Tanger - Office 55.106

Lecture 4 - Perfect Reflections, Refractions and Intersections 2017/2018

Class Outline

Lecture 4 - Perfect Reflections, Refractions and Intersections

Last Class Summary

Perfect Specular Reflections and Refractions

Perfect Specular Reflection Perfect Specular Refraction

Ray-Object Intersections

Ray-Plane Intersection Ray-Triangle Intersection

Next Classes

Last Class Summary

► Learned how to account for the contribution of point light sources to the illumination at a point

Learned different lighting effects (light material interaction)

 Used the Phong reflection model (empirical) to model reflections at the surface (diffuse and glossy)

Section 2

Perfect Specular Reflections and Refractions

Subsection 1

Perfect Specular Reflection

▶ A perfect specular reflection is a mirror-like reflection

► Light arriving at a surface from a given direction is reflected in a single reflection direction

$$\omega_o \cdot \mathbf{n} = \omega_r \cdot \mathbf{n}$$

and

$$\omega_r = 2 (\omega_o \cdot \mathbf{n}) \mathbf{n} - \omega_o$$

► The color reflected in the ω_o direction is given by the light arriving from direction $-\omega_r$

Pseudo Code

${\color{red}\textbf{Algorithm}} \ 1 \ {\color{gray}\textbf{Computing the perfect specular reflection}}$

```
function COMPUTECOLOR(ray, objList, LSList)
   color \leftarrow (0, 0, 0)
    (\dots)
   if (material().hasSpecular()) then
       \omega_r \leftarrow computeReflectionDirection(ray.d, its.normal)
       reflectionRay \leftarrow Ray(itsPoint, \omega_r, ray.depth+1)
       color ← COMPUTECOLOR(reflectionRay, objList, lsList)
    end if
     (...)
     return color
end function
```

Subsection 2

Perfect Specular Refraction

Refraction

 Refraction: change of direction of light propagation due to a change of medium

► The angle of refraction depends on the densities of both mediums

▶ When changing medium, light is refracted in a single direction

Snell's Law

The Snell's law relates the angle of incidence with the angle of refraction

$$\frac{\sin\alpha}{\sin\beta} = \frac{\eta_2}{\eta_1} = \eta_t$$

Using Snell's law, we can show that:

$$\boldsymbol{\omega}_{t} = -\boldsymbol{\omega}_{i} \, \eta_{t} + \mathbf{n} \left(\eta_{t} \cos \alpha - \cos \beta \right),$$

where

$$\cos\beta = \sqrt{1 + \eta_t^2 \left(\cos^2\alpha - 1\right)}$$

- ▶ **Attention:** if the radicand is negative, then the incident light from ω_i is reflected along ω_r !
 - ▶ We the say we are in total internal reflection conditions

Total Internal Reflection

end function

Pseudo Code

Algorithm 2 Computing the perfect specular refraction

```
function COMPUTECOLOR(ray, objList, LSList)
    color \leftarrow (0, 0, 0)
    (\dots)
    if (material().hasTransmission()) then
        (\dots)
        if !isTotalInternalReflection(...) then
            \omega_t \leftarrow \text{computeTransmissionDirection}(\ldots)
            refracRay \leftarrow Ray(itsPoint, \omega_t, ray.depth+1)
            color ← COMPUTECOLOR(refracRay, objList, IsList)
        else
            color ← Specular reflection
        end if
    end if
    (\dots)
    return color
```

Section 3

Ray-Object Intersections

Subsection 1

Ray-Plane Intersection

Infinite Plane Definition

- An infinite plane is defined by:
 - ► a normal **n** (perpendicular to the plane)
 - ightharpoonup a point ho_0

Infinite Plane Definition

► All points verifying the equation

$$(\mathbf{p} - \mathbf{p}_0) \cdot \mathbf{n} = 0$$

belong to the plane defined by \boldsymbol{n} and \boldsymbol{p}_0

Ray-Plane Intersection

Recall the expression of a ray

$$r = \mathbf{o} + t \, \mathbf{d}$$

► Intersecting a ray with a plane amounts to finding the points belonging to the plane which also belong to the ray

Ray-Plane Intersection

▶ Intersecting a ray with a plane amounts to finding the points belonging to the plane which also belong to the ray:

$$(r - \mathbf{p}_0) \cdot \mathbf{n} = 0$$

$$\Leftrightarrow (\mathbf{o} + t \, \mathbf{d} - \mathbf{p}_0) \cdot \mathbf{n} = 0$$

$$\Leftrightarrow t = \frac{(\mathbf{p}_0 - \mathbf{o}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$

- ▶ If $\mathbf{d} \cdot \mathbf{n} = 0$ then the ray is parallel to the plane
 - ▶ Either infinite of zero solutions
 - We'll assume there is no solution

Subsection 2

Triangle Definition

▶ A triangle is defined by three points $(\mathbf{p}_A, \mathbf{p}_B, \mathbf{p}_C)$

- ▶ Let $\mathbf{v}_{AB} = \mathbf{p}_B \mathbf{p}_A$ and $\mathbf{v}_{AC} = \mathbf{p}_C \mathbf{p}_A$
- ► Convention: the triangle normal **n** is given by

$$\mathbf{n} = \mathbf{v}_{AC} \times \mathbf{v}_{AB}$$

The triangle is facing the viewer if it reads in anti-clockwise vertexes order

- ▶ The triangle $(\mathbf{p}_A, \mathbf{p}_B, \mathbf{p}_C)$ is contained in a plane defined by:
 - A normal, given by $\mathbf{n} = \mathbf{v}_{AC} \times \mathbf{v}_{AB}$
 - ightharpoonup A point belonging to the triangle. By convention we'll use \mathbf{p}_A
- Computing the ray-triangle intersection (2-step solution):
 - Compute the intersection of the ray with the plane defined by the triangle
 - 2. Check if the intersection point belongs to the triangle

▶ Let $\mathbf{p}_{hit} = \mathbf{o} + t_{hit} \mathbf{d}$ be the intersection point of a ray with a plane defined by a triangle $(\mathbf{p}_A, \mathbf{p}_B, \mathbf{p}_C)$

$$\triangleright \mathbf{p}_{hit} \in (\mathbf{p}_A, \mathbf{p}_B, \mathbf{p}_C)? \qquad \mathbf{p}'_{hit} \in (\mathbf{p}_A, \mathbf{p}_B, \mathbf{p}_C)?$$

► Approach: use the cross product to determine if **p**_{hit} is at the left or at the right of the triangle edges

▶ If \mathbf{p}_{hit} is at the left of all edges, then $\mathbf{p}_{hit} \in (\mathbf{p}_A, \mathbf{p}_B, \mathbf{p}_C)$

- ► The cross product can be used to determine if p_{hit} is at the left or at the right of a given triangle edge
- $ightharpoonup
 vert
 vert_{Ap} imes
 vert_{AB}$ yields a vector perpendicular to the plane defined by $vert
 vert_{Ap}$ and $vert
 vert_{AB}$
- ▶ If $(\mathbf{v}_{AB} \times \mathbf{v}_{A\mathbf{p}_{hit}}) \cdot \mathbf{n} > 0$ then \mathbf{p}_{hit} is at the left of \mathbf{v}_{AB}

▶ If $(\mathbf{v}_{AB} \times \mathbf{v}_{A\mathbf{p}_{hit}}) \cdot \mathbf{n} < 0$ then \mathbf{p}_{hit} is at the right of \mathbf{v}_{AB}

Lecture Summary

- ▶ We have learned new light-matter interactions
 - Perfect specular reflections
 - Perfect specular refractions
- We have learned new types of ray-object intersections
 - Ray-plane intersection (infinite plane)
 - ▶ Ray-triangle intersection

A Glance on the Next Classes

► Global Illumination

Anti-aliasing