Giảng viên ra đề:	(Ngày ra đề)		Người phê duyệt:		(Ngày duyệt đề)	
	Ph	nạm Việt Cường	Ng	uyễn Vĩnh H	Hảo, Trưởng BM ĐKTĐ	

(phần phía trên cần che đi khi in sao đề thi)

RK	THI CU	ÓI KŸ	Học kỳ/năr Ngày thi	m học 1 2020-2021 20/01/2021			
TPHCM	Môn học	Trí tuệ nhân tạo trong điều khiển					
TRƯỜNG ĐH BÁCH KHOA – ĐỊNGG-HCM	Mã môn học	Mã môn học EE3063					
KHOA ĐIỆN - ĐIỆN TỬ	Thời lượng	90 phút	Mã đề	0102			
Ghi - Được sử dụng tài liệu viết tay	_						

- Làm trắc nghiệm vào Phần trả lời trắc nghiệm trên đề thi, nộp lại đề thi cùng với bài làm

Phần 1: Trắc nghiệm (4 điểm, các câu có số điểm bằng nhau) (L.O.4, L.O.5)

Không công bố đề thi.

Phần 2: Tự luận

<u>Câu hỏi 1 (0.75 Điểm) (L.O.4, L.O.5)</u>: Trình bày các ứng dụng AI/machine learning/deep laerning phòng chống dịch Covid-19.

<u>Câu hỏi 2 (0.75 Điểm) (L.O.4.5)</u>: Không công bố để thi.

<u>Câu hỏi 3 (0.75 Điểm) (L.O.4)</u>: Không công bố đề thi.

Câu hỏi 4 (0.50 Điểm) (L.O.4.3): Xác định lớp (tròn, vuông hay tam giác) cho dữ liệu hình sao (\star) ở hình dưới theo phương pháp K-nearest neighbors cho các trường hợp K = 1, K = 3 và K = Kết luận về ảnh hưởng của nhiễu đối với phương pháp này.

Câu hỏi 5 (0.75 điểm) (L.O.4.4):

Thực hiện giải thuật K-means clustering với K = 2 cho 5 điểm dữ liệu (1,2), (2,1), (2,2), (3,3), (4,3) biết các tâm ban đầu là (2,2) và (5,4).

Câu hỏi 6 (1.00 điểm) (L.O.3.3): Một robot có process model như sau:

$$\begin{bmatrix} x_t \\ y_t \\ \varphi_t \end{bmatrix} = \begin{bmatrix} x_{t-1} + V_t \Delta t \cos(\theta_t + \varphi_{t-1}) \\ y_{t-1} + V_t \Delta t \sin(\theta_t + \varphi_{t-1}) \\ \varphi_{t-1} + \frac{V_t \Delta t \sin(\theta_t)}{WB} \end{bmatrix} \text{v\'oi } \Delta t = 0.025 \text{ (s)}, WB = 4 \text{ (m)}.$$

Biết
$$\begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \varphi_{t-1} \end{bmatrix} = \begin{bmatrix} 0.5 \ m \\ 0.5 \ m \\ 0.1 \ rad \end{bmatrix}$$
 và lệnh điều khiển $\begin{bmatrix} V_t \\ \theta_t \end{bmatrix} = \begin{bmatrix} 5.547 \ m \\ 0.119 \ rad \end{bmatrix}$.

Nhiễu điều khiển có dạng cộng (giá trị điều khiển thực = lệnh điều khiển + nhiễu) và có phân bố chuẩn với độ lệch chuẩn σ_V và σ_{θ} . Xác định robot pose của 3 particle ở thời điểm t, sử dụng các số ngẫu nhiên -0.385, 0.186, -0.113 (lấy mẫu từ phân bố chuẩn với độ lệch chuẩn σ_V) và 0.039, 0.046, -0.032 (lấy mẫu từ phân bố chuẩn với độ lệch chuẩn σ_{θ}). Vẽ hình.

Câu hỏi 7 (0.75 điểm) (L.O.3.3):

Một tập particle gồm 6 particle x₁, x₂, x₃, x₄, x₅, x₆ có trọng số lần lượt là 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. Sau khi resampling tập particle mới sẽ gồm những particle nào? Sử dụng phương pháp roulette wheel với 6 số ngẫu nhiên 0.70, 0.32, 0.95, 0.03, 0.44, 0.48 lấy mẫu từ phân bố đều trong khoảng (0, 1).

<u>Câu hỏi 8 (0.75 điểm) (L.O.5.1):</u> Cho mạng CNN có lớp đầu tiên là lớp tích chập với stride S = 1, số zero padding P = 0 và 2 kernel K_1 , K_2 như sau:

$K_{1,r}$	Cột 1	Cột 2	$K_{1,g}$	Cột 1	Cột 2	$K_{1,b}$	Cột 1	Cột 2
Hàng 1	1	0	Hàng 1	0	1	Hàng 1	1	0
Hàng 2	0	1	Hàng 2	1	0	Hàng 2	1	1

$K_{2,r}$	Cột 1	Cột 2	$K_{2,g}$	Cột 1	Cột 2	K _{2,b}	Cột 1	Cột 2
Hàng 1	1	1	Hàng 1	1	0	Hàng 1	1	0
Hàng 2	1	0	Hàng 2	1	1	Hàng 2	0	1

Ngõ vào I của mạng CNN là một ảnh màu gồm 3 kênh màu I_r, I_g, I_b, mỗi kênh có kích thước 3 pixel x 3 pixel.

I_r	Cột 1	Cột 2	Cột 3		Ig	Cột 1	Cột 2	Cột 3		I _b	Cột 1	Cột 2	Cột 3
Hàng 1	1	0	4		Hàng 1	$O^{1}A$	$C_1 \wedge I$	0]	Hàng 1	0	1	2
Hàng 2	0	2	3		Hàng 2	2	2	Cio]	Hàng 2	2	3	0
Hàng 3	1	0	1	_1	Hàng 3	0	_ 1	2 .		Hàng 3	1	0	1

Xác định các activation map, biết bias₁ = -6, bias₂ = -9 và mạng sử dụng hàm kích hoạt leaky ReLU với phần bên dưới trục hoành có hệ số gốc là 0.01.

Lưu ý: SV tự nêu thêm các giả thiết và dữ liệu nếu cần.

TÀI LIỆUHẾU TẬP