

Universidade Federal de São Paulo

Testes de Hipóteses Paramétricos

Professor Julio Cezar

AULA DE HOJE ——

- Tipos de Testes de hipóteses (TH);
- Tipos de erros em TH;
- Estatística de teste;
- Passos para construção de um TH;
- TH para média;
- TH para a proporção;
- TH para a variância;
- Poder do teste;
- Nível descritivo (valor **P**).

Exemplo 1: Os pesquisadores da área da saúde têm o interesse em verificar se uma certa vacina utilizada no combate à determinada doença é ou não eficiente. Para isso, eles têm de formular as seguintes hipóteses:

Exemplo 1: Os pesquisadores da área da saúde têm o interesse em verificar se uma certa vacina utilizada no combate à determinada doença é ou não eficiente. Para isso, eles têm de formular as seguintes hipóteses:

 H_0 : a vacina não é eficiente H_1 : a vacina é eficiente

Exemplo 1: Os pesquisadores da área da saúde têm o interesse em verificar se uma certa vacina utilizada no combate à determinada doença é ou não eficiente. Para isso, eles têm de formular as seguintes hipóteses:

 H_0 : a vacina não é eficiente H_1 : a vacina é eficiente

O estatístico envolvido na pesquisa deve procurar utilizar técnicas que tornem mínima a probabilidade de se cometer erros na decisão de qual HIPÓTESE considerar como verdadeira.

Exemplo 2: Considere que uma indústria compra de um certo fabricante, um determinado produto alimentício cuja a quantidade média de carboidratos presente é especificada em 7,9g. Em um determinado dia, a indústria recebeu um grande lote deste produto e a equipe técnica da indústria deseja verificar se o lote atende as especificações.

Exemplo 2: Considere que uma indústria compra de um certo fabricante, um determinado produto alimentício cuja a quantidade média de carboidratos presente é especificada em 7,9g. Em um determinado dia, a indústria recebeu um grande lote deste produto e a equipe técnica da indústria deseja verificar se o lote atende as especificações.

 H_0 : o lote atende as especificações

 H_1 : o lote não atende as especificações

Exemplo 2: Considere que uma indústria compra de um certo fabricante, um determinado produto alimentício cuja a quantidade média de carboidratos presente é especificada em 7,9g. Em um determinado dia, a indústria recebeu um grande lote deste produto e a equipe técnica da indústria deseja verificar se o lote atende as especificações.

A quantidade média de carboidratos

 $\mu = 7.9g$

Valor energético	70 kcal = 298 kJ
Carboidratos	7,9 g
Proteínas	7,2 g
Gorduras totais	1,0 g
Gorduras saturadas	0,8 g
Gorduras trans	0g
Fibra alimentar	0g
Sódio	125 mg
Cálcio	221 mg

 H_0 : o lote atende as especificações

 H_1 : o lote não atende as especificações

Exemplo 3: Duas marcas de veículos pretendem comparar o desempenho de seus modelos populares. Para isso, a marca A e a marca B selecionaram, respectivamente, uma amostra cada de 12 veículos de suas produções e realizaram um teste de consumo. As empresas afirmam que ambas tem a mesma variabilidade. Os dados estão em Km/litro.

Exemplo 3: Duas marcas de veículos pretendem comparar o desempenho de seus modelos populares. Para isso, a marca A e a marca B selecionaram, respectivamente, uma amostra cada de 12 veículos de suas produções e realizaram um teste de consumo. As empresas afirmam que ambas tem a mesma variabilidade. Os dados estão em Km/litro.

 H_0 : o consumo médio da marca A é igual ao o consumo médio da marca B

 H_1 : o consumo médio da marca A é diferente ao o consumo médio da marca B

Exemplo 4: Pelo Anuário do IBGE de 2010, a proporção de analfabetos em uma cidade era de 15%. Em 2015, entre 200 entrevistados dessa cidade, 23 eram analfabetos.

Exemplo 4: Pelo Anuário do IBGE de 2010, a proporção de analfabetos em uma cidade era de 15%. Em 2015, entre 200 entrevistados dessa cidade, 23 eram analfabetos. Esses dados suportam a tese de diminuição do analfabetismo na cidade de 2010 para 2015?

p = 0.15

TESTE DE HIPÓTESE

Uma hipótese estatística é uma conjectura ou uma função sobre a distribuição de uma ou mais v.a., ou seja, sobre os parâmetros populacionais, θ .

$$H_0: \boldsymbol{\theta} \in \Theta_0 \text{ versus } H_1: \boldsymbol{\theta} \in \Theta_1$$

Sendo que $\Theta_0 \cup \Theta_1 = \Theta$ (espaço de parâmetros) e $\Theta_0 \cap \Theta_1 = \emptyset$, em que Θ_0 é algum subconjunto do Θ e Θ_1 é o complementar de Θ_0 (Θ_0^c).

- H_0 : é chamada hipótese nula (hipótese a ser testada).
- H_1 ou H_a : é chamada hipótese alternativa (hipótese contrária H_0).

TESTE DE HIPÓTESE

Hipótese nula: Afirmação sobre o parâmetro contra a qual estaremos buscando evidências nos dados amostrais.

Hipótese Alternativa: Afirmação sobre o parâmetro que esperamos ser verdade.

- Usualmente H_0 é escolhido de forma que Θ_0 seja o "menor" ou o "mais simples" que corresponde a uma conjectura de "não haver diferença".
- Se uma hipótese específica completamente a distribuição ela é chamada hipótese simples, caso contrário é chamada de hipótese composta.

TESTE DE HIPÓTESE

No caso mais geral, pretende-se testar

$$H_0$$
: $\theta = \theta_0$

Contra alternativas

$$H_1: \theta \neq \theta_0; \quad H_1: \theta < \theta_0 \text{ ou } H_1: \theta = \theta_1(\theta_1 < \theta_0)$$

ou

$$H_1: \theta > \theta_0$$
 ou $H_1: \theta = \theta_1(\theta_1 > \theta_0)$

Dependendo da informação que o problema traz.

DECISÃO

O objetivo do teste de hipótese é dizer, usando uma estatística $\widehat{\theta}$, se a hipótese H_0 é ou não aceitável. Esta decisão é tomada através de uma região crítica ou de rejeição, denotada por RC.

Seja $\hat{\theta}_{obs}$, o valor observado da estatística (Ex.: $\hat{\theta}_{obs} = \bar{x}$)

- Se $\hat{\theta}_{obs} \in RC \Rightarrow Rejeitamos H_0$
- Se $\hat{\theta}_{obs} \notin RC \Rightarrow N$ ão Rejeitamos H_0

Definição: RC é o conjunto de valores assumidos pela variável aleatória ou estatística de teste para os quais a hipótese nula é rejeitada.

DECISÃO

Considerando o exemplo 2:

Se o lote está fora de especificação, isto é , $H_1 \neq 7.9$ g, espera-se que a média amostral seja inferior ou superior a 7,9g.

Suponha que a equipe técnica tenha decidido adotar (por algum critério) a seguinte regra: rejeitar H_0 se \bar{x} for maior que 9g ou menor que 5,5g.

 $RC = {\bar{x} > 9 \ ou \ \bar{x} < 5,5} \Rightarrow Região de rejeição de <math>H_0$.

 $\overline{RC} = \{5,5 \le \overline{x} \le 9\} \Rightarrow \text{Região de Aceitação de } H_0.$

Ao decidir pela rejeição ou não da hipótese nula ${\cal H}_0$, podemos cometer

dois tipos de erro (erro tipo I e erro tipo II).

RELAÇÃO ENTRE HIPÓTESE E RC

Os tipos de teste de hipóteses são os seguintes:

- (1) Se H_1 : $\theta < \theta_0$ ou H_1 : $\theta = \theta_1(\theta_1 < \theta_0)$ teste unilateral à esquerda \Rightarrow RC na cauda esquerda;
- (2) Se H_1 : $\theta > \theta_0$ ou H_1 : $\theta = \theta_1(\theta_1 > \theta_0)$ teste unilateral à direita \Rightarrow RC na cauda direita;
- (3) Se H_1 : $\theta \neq \theta_0$ teste bilateral \Rightarrow RC nas caudas.

RELAÇÃO ENTRE HIPÓTESE E RC

Os tipos de teste de hipóteses são os seguintes:

- (1) Se H_1 : $\theta < \theta_0$ ou H_1 : $\theta = \theta_1(\theta_1 < \theta_0)$ teste unilateral à esquerda \Rightarrow RC na cauda esquerda;
- (2) Se H_1 : $\theta > \theta_0$ ou H_1 : $\theta = \theta_1(\theta_1 > \theta_0)$ teste unilateral à direita \Rightarrow RC na cauda direita;
- (3) Se H_1 : $\theta \neq \theta_0$ teste bilateral \Rightarrow RC nas caudas.

PRRH₀ = Região de Rejeição H₀

RELAÇÃO ENTRE HIPÓTESE E RC

Os tipos de teste de hipóteses são os seguintes:

- (1) Se H_1 : $\theta < \theta_0$ ou H_1 : $\theta = \theta_1(\theta_1 < \theta_0)$ teste unilateral à esquerda \Rightarrow RC na cauda esquerda;
- (2) Se H_1 : $\theta > \theta_0$ ou H_1 : $\theta = \theta_1(\theta_1 > \theta_0)$ teste unilateral à direita \Rightarrow RC na cauda direita;
- (3) Se H_1 : $\theta \neq \theta_0$ teste bilateral \Rightarrow RC nas caudas.

TIPOS DE ERROS EM TH _____

Cituação Bool	Conclusão do teste	
Situação Real	Rejeitar H ₀	Não rejeitar H ₀
H₀ verdadeira	\Rightarrow	decisão correta
H₀ falsa	decisão correta	\Rightarrow

TIPOS DE ERROS EM TH _____

Cituação Bool	Conclusão do teste	
Situação Real	Rejeitar H ₀	Não rejeitar H ₀
H ₀ verdadeira	Erro Tipo I	decisão correta
H ₀ falsa	decisão correta	Erro Tipo II

Cituação Bool	Conclusão do teste	
Situação Real	Rejeitar H₀	Não rejeitar H ₀
H ₀ verdadeira	Erro Tipo I	decisão correta
H ₀ falsa	decisão correta	Erro Tipo II

Assim, a probabilidade de se cometer cada um dos erros (α e β) pode ser escrita:

- $\alpha = P(erro tipo I) = P(rejeitar H_0 | H_0 verdadeira)$
- $\beta = P(erro tipo II) = P(não rejeitar <math>H_0 | H_0$ falsa)
- Nível de significância (α): probabilidade máxima de se cometer um erro tipo I.
- 1 β : poder do teste (é a capacidade de um teste identificar diferenças que realmente existem, ou seja, de rejeitar H_0 quando é realmente falsa, ou ainda dizer que, é a probabilidade de uma decisão correta).

Uma parte importante do teste de hipótese é controlar essas probabilidades de erro, α e β .

Voltando ao Exemplo 1, que envolve as hipóteses:

 H_0 : a vacina não é eficiente

 H_1 : a vacina é eficiente

Erro Tipo I: A vacina é considerada eficaz quando na verdade ela não é eficaz.

Erro Tipo II: A vacina não é considerada eficaz quando na verdade ela é eficaz.

Para entender a relação entre α e β , considere o TH unilateral dada pela seguinte hipótese unilateral a esquerda.

Ilustração do erro tipo I e erro tipo II

$$\begin{cases} H_0: \mu = \mu_B \\ H_1: \mu < \mu_B \end{cases}$$

Outro exemplo: COVID - 19

Erro tipo I (alfa): Assumir que o paciente tem covid-19 sendo que ele é saudável (falso positivo)

Erro tipo II (beta): Assumir que o paciente não tem covid-19 sendo que ele tem (falso negativo)

Decisão	H ₀ verdadeira	H ₀ falsa
Rejeitar Ho	Erro do tipo I (a)	Decisão correta (1 - β)
Não rejeitar H₀	Decisão correta (1 - α)	Erro do tipo II (β)

H0: Paciente é saudável.

@estatistica_oficial

Outro exemplo: COVID - 19

Erro tipo I (alfa): Assumir que o paciente não tem covid-19 sendo que na verdade ele tem.

Erro tipo II (beta): Assumir que o paciente tem covid-19 sendo que na verdade ele não tem.

Decisão	H ₀ verdadeira	H ₀ falsa
Rejeitar Ho	Erro do tipo I (a)	Decisão correta (1 - β)
Não rejeitar H _o	Decisão correta (1 - α)	Erro do tipo II (β)

H0: Paciente tem COVID-19

@estatistica_oficial

A estatística de teste é uma estatística que pode ser calculada a partir dos dados da amostra. Como regra, existem muitos valores possíveis que pode ter a estatística de teste, dependendo o valor particular observado em uma amostra particular extraída. Como se verá, a estatística de teste serve como um produtor de decisões, já que a decisão de rejeitar ou não a hipótese nula depende da magnitude da estatística de teste. Assim, a estatística de teste é uma variável aleatória, que é calculada a partir de dados da amostra e usada em um teste de hipótese. Pode-se usar estatísticas de teste para determinar se deve rejeitar a hipótese nula. Ela compara seus dados com o que se espera sob a hipótese nula. A estatística de teste é utilizada para calcular o valor-p.

A estatística de teste mede o grau de concordância entre uma amostra de dados e da hipótese nula. Seu valor observado muda aleatoriamente de uma amostra aleatória para uma amostra diferente. A estatística de teste contém informações sobre os dados que são relevantes para decidir se deve rejeitar a hipótese nula. A distribuição amostral da estatística de teste sob a hipótese nula é chamada de distribuição nula. Quando os dados mostram uma forte evidência contra os pressupostos na hipótese nula, a magnitude da estatística de teste torna-se muito grande ou muito pequena, dependendo da hipótese alternativa. Isso faz com que o valor-p do teste se torne pequeno o suficiente para rejeitar a hipótese nula.

Se $X_1, ..., X_n$ é uma amostra aleatória de $X \sim N(\mu, \sigma^2)$, então sabemos

• Se σ^2 é **conhecida** então, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$

$$Z_{calc} = \sqrt{n} \frac{\bar{X} - \mu}{\sigma} \sim N(0,1)$$

• Se σ^2 é **desconhecida** então,

$$t_{calc} = \sqrt{n} \frac{\overline{X} - \mu}{S} \sim t_{n-1}$$

em que
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
.

Obs: Os testes de hipóteses com relação à proporções populacionais se realizam quase da mesma maneira que os testes para média populacional, quando se satisfazem as condições necessárias para usar a curva normal. Podem ser realizados testes unilaterais ou bilaterais, dependendo da questão que se faça.

Sabendo que a proporção amostral, de uma amostra aleatória simples de n elementos de uma população, quando o tamanho da amostra é suficientemente grande, tem distribuição normal com média π e variância $\frac{\pi(1-\pi)}{n}$ então a **estatística de teste**, supondo H_0 verdadeira, dada por:

$$Z_{calc} = \frac{\bar{X} - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}} \sim N(0, 1).$$

Considere uma população descrita por uma variável aleatória normal com média μ e variância σ^2 : X ~ $N(\mu; \sigma^2)$. Nosso interesse é testar hipóteses sobre a variância σ^2 a partir de uma amostra aleatória simples $X_1, X_2, ..., X_n$, a **estatística de teste** é:

$$\chi^2_{calc} = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

tem distribuição qui-quadrado com n-1 graus de liberdade. O nível de significância e o tipo de hipótese alternativa permitem a identificação precisa do que são "valores pouco prováveis": são valores na(s) cauda(s) da distribuição de χ^2 quando a hipótese nula é verdadeira.

PASSOS PARA CONSTRUÇÃO DE UM TH

Procedimento geral:

Passo 1: Definir as hipóteses H_0 e H_1 a serem testadas;

Passo 2: Escolher a estatística de teste (Z_{calc} , t_{calc} , χ^2_{calc} ou F_{calc}) que será utilizada para testar H_0 ;

Passo 3: Fixe a probabilidade de α de erro tipo I e construa a RC;

Passo 4: Use as observações da amostra para calcular o valor observado da estatística de teste;

Passo 5: Tome uma decisão: se o valor observado da estatística de teste não pertencer à região crítica, não rejeite H_0 ; caso contrário rejeite H_0 .

TESTE DE HIPÓTESE PARA A MÉDIA

Seja X a variável aleatória de interesse com média populacional igual μ .

- Em algumas situações estamos interessados em testar se μ é igual, menor, maior ou diferente de uma constante fixada μ_0 .
- Neste caso podemos fazer testes para μ considerando
 - Variância conhecida.
 - Variância desconhecida.
- Para algum valor de μ_0 as hipóteses de interesse são:

$$\begin{cases} H_0: \mu = \mu_0 \\ H_A: \mu < \mu_0 \end{cases} \begin{cases} H_0: \mu = \mu_0 \\ H_A: \mu > \mu_0 \end{cases} \begin{cases} H_0: \mu = \mu_0 \\ H_A: \mu \neq \mu_0 \end{cases}$$

 $H_1: \mu < \mu_0$

Como \bar{X} é um estimador para μ , desta forma a RC é definida da seguinte forma $RC = \{\bar{X}|\bar{X}>k\}$, em que k é um número real não aleatório e denominado de ponto crítico.

O ponto crítico k será encontrado fixando a probabilidade de cometer o erro tipo I. Ou seja, para cada α fixado, teremos um ponto crítico diferente.

Encontrando o valor de k. Por definição

$$\alpha = P(Rejeitar \ H_0 | H_0 \ \'e \ verdadeiro) = P(\overline{X} < k | \mu \le \mu_0)$$

$$\alpha = P\left(\sqrt{n} \frac{(\bar{X} - \mu_0)}{\sigma} < \sqrt{n} \frac{(k - \mu_0)}{\sigma}\right) = P\left(Z < \sqrt{n} \frac{(k - \mu_0)}{\sigma}\right)$$

$$\frac{k-\mu_0}{\sigma/\sqrt{n}} = Z_{\alpha} \to k = \mu_0 + Z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

$$RC = \left\{ \bar{X} | \bar{X} > \mu_0 + Z_{\alpha} \frac{\sigma}{\sqrt{n}} \right\},$$

Assim,
$$\begin{cases} \bar{X} < k \to \text{Rejeita-se } H_0 \\ \\ \bar{X} \ge k \to \text{N\~ao} \text{ se Rejeita } H_0 \end{cases}$$

Assim,
$$\begin{cases} \bar{X} < k \to \text{Rejeita-se } H_0 \\ \\ \bar{X} \ge k \to \text{N\~ao} \text{ se Rejeita } H_0 \end{cases}$$

$$RC = \left\{ \overline{X} | \overline{X} > \mu_0 + Z_\alpha \frac{\sigma}{\sqrt{n}} \right\},$$

variável original

variável padronizada

Uma forma mais apropriada para o teste de hipótese para a média consiste em calcular o valor observado da estatística teste, denotado por Z_{calc} , e compará-lo com o respectivo valor na escala padronizada.

$$Z_{calc} = \frac{(\bar{\mathbf{x}} - \mu_0)}{\sigma / \sqrt{n}}$$

Desta forma, para o teste unilateral na cauda inferior, compara-se o valor observado da estatística teste com o percentil Z_{α} da distribuição normal padronizada.

Assim,
$$\begin{cases} Z_{calc} < Z_{\alpha} \to \text{Rejeita-se } H_0 \\ \\ Z_{calc} \ge Z_{\alpha} \to \text{N\~ao se Rejeita } H_0 \end{cases}$$

variável original

variável padronizada

Importante

Na conclusão do teste de hipótese deve-se escrever:

- Se $\bar{x} \in RC$, então dizemos que há evidências para rejeitar H_0 , ao nível α de significância.
- Se $\bar{x} \notin RC$, então dizemos que não há evidências para rejeitar H_0 , ao nível α de significância.

Adotando o nível de significância α é equivalente a dizer que estamos dispostos a cometer, em média, o erro tipo I α 100% dos experimentos.

Valor p do teste, ou probabilidade de significância, é definido por

$$p = P(Z > |Z_{calc}|)$$

Pode-se utilizar o valor p para se testar H_0 comparando-o com o nível de significância α :

- 1) Se p é menor do que o nível de significância α , então, o valor da estatística Z_{calc} pertence a região de rejeição.
- 2) Se p é maior do que o nível de significância lpha, então, o valor da estatística Z_{calc} pertence a região de não rejeição.

1)

2)

Neste sentido, o nível de significância serve somente como referência decisão de rejeitar ou não ${\cal H}_0$.

para a nossa

$$H_0: \mu = \mu_0$$
 $H_1: \mu > \mu_0$

$$\alpha = P(\bar{X} > k | \mu = \mu_0) \rightarrow k = \mu_0 + Z_{(1-\alpha)} \frac{\sigma}{\sqrt{n}}$$

$$\begin{cases} \bar{X} > k \to \text{Rejeita-se } H_0 \\ \\ \bar{X} \le k \to \text{N\~ao se Rejeita } H_0 \end{cases}$$

$$\begin{cases} Z_{calc} > Z_{(1-\alpha)} \to \text{Rejeita-se } H_0 \\ \\ Z_{calc} \le Z_{(1-\alpha)} \to \text{N\~ao se Rejeita } H_0 \end{cases}$$

$$Z_{calc} \leq Z_{(1-lpha)}
ightarrow N$$
ão se Rejeita H_0

variável original

$$p = P(Z > |Z_{calc}|)$$

variável padronizada

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

O teste bicaudal é definido pela região $(-\infty, k_1) \cup (k_2, \infty), k_1 < k_2$, ou seja, se o valor da média amostral \bar{X} , for inferior k_1 ou superior k_2 , então rejeita-se H_0 . Se $k_1 \leq \bar{X} \leq k_2$, então não rejeita-se H_0 .

$$\alpha = P(\overline{X} < k_1 \text{ ou } \overline{X} > k_2 | \mu = \mu_0)$$

$$\alpha = P\left(Z < \sqrt{n} \frac{(k_1 - \mu_0)}{\sigma}\right) + P\left(Z > \sqrt{n} \frac{(k_2 - \mu_0)}{\sigma}\right)$$

Para encontrar os valores k_1 e k_2 consideramos

$$P\left(Z < \sqrt{n} \frac{(k_1 - \mu_0)}{\sigma}\right) = P\left(Z > \sqrt{n} \frac{(k_2 - \mu_0)}{\sigma}\right)$$

Assim, a probabilidade de cometer o erro tipo I é dada por

$$\alpha = 2P\left(Z < \sqrt{n} \frac{(k_1 - \mu_0)}{\sigma}\right)$$

Desta forma, para um nível α fixado, podemos calcular os pontos críticos:

$$k_1 = \mu_0 - Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \text{ ou } k_2 = \mu_0 + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

Portanto, a região crítica é dada por

$$RC = \left\{ \bar{X} | \bar{X} < \mu_0 + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \text{ ou } \bar{X} > \mu_0 + Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right\},\,$$

$$Z_{calc} < Z_{\alpha/2} \text{ ou } Z_0 > Z_{1-\alpha/2} \rightarrow \text{Rejeita-se } H_0$$

$$Z_{\alpha/2} \leq Z_{calc} \leq Z_{1-\alpha/2} \rightarrow \text{N}$$
ão se Rejeita H_0

$$p = 2P(Z > |Z_{calc}|)$$

variável original

variável padronizada

Como realizar o teste através do valor p:

Os testes de hipóteses podem ser realizados através do valor p, que é o que observamos nos softwares estatísticos.

- Se o valor p for maior ou igual a um nível de significância fixado, ou seja, se $p \geq \alpha \Rightarrow$ não rejeita-se H_o .
- Se o valor p for menor do que o nível de significância fixado, ou seja, se $p < \alpha \Rightarrow$ rejeita-se H_o .

TH para médias, variância conhecida

Exemplo: Uma indústria elétrica fabrica lâmpadas e afirma que o tempo de vida médio das lâmpadas é de 800 horas. Tomaram-se o tempo de vida de 40 lâmpadas e obteve-se uma média \bar{x} = 750 horas e sabe-se que a variância populacional é σ^2 = 1600 horas. Utilize um teste unilateral ao nível de 5% de significância para verificar se a indústria estava correta.

TH para médias, variância conhecida

Solução:

1) Estabelecer o parâmetro e a hipótese.

$$\begin{cases} H_0: \mu = 800 \\ H_1: \mu < 800 \end{cases}$$

TH para médias, variância conhecida

Solução:

2) Escolher a estatística de teste que será utilizada para testar H_o .

$$Z_{calc} = \frac{\overline{\mathbf{x}} - \mu_0}{\sigma / \sqrt{n}}$$

TH para médias, variância conhecida

Solução:

3) Fixe a probabilidade de α de erro tipo I e construa a RC;

 α = 0,05 (enunciado)

TH para médias, variância conhecida

Solução:

4) Use as observações da amostra para calcular o valor observado da estatística de

teste;

$$Z_{calc} = \frac{\bar{\mathbf{x}} - \mu_0}{\sigma / \sqrt{n}}$$

$$= \frac{750 - 800}{\sqrt{1600}/\sqrt{40}}$$

$$=\frac{-50}{6,32}$$

$$= -7,91$$

TH para médias, variância conhecida

Solução:

5) Tome uma decisão: se o valor observado da estatística de teste não pertencer à região crítica, não rejeite H_0 ; caso contrário rejeite H_0 .

$$|Z_{calc}| \ge Z_{\alpha}$$
 (tabelado)

$$Z_{\alpha} = Z_{0,05} = -1,65$$

TH para médias, variância conhecida

P(Z < z)

Solução:

Z	0,0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
-0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
-0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
-0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
-0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
-0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
-1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
-1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0721	0,0708	0,0694	0,0681
-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
4 7	00444	0.0437	0.0407	0.0440	0.0400	0.0404	0.0000	0.0004	0.0075	0.00/7

TH para médias, variância conhecida

Solução:

5) Tome uma decisão: se o valor observado da estatística de teste não pertencer à região crítica, não rejeite H_0 ; caso contrário rejeite H_0 .

TH para médias, variância conhecida

Solução:

5) Tome uma decisão: se o valor observado da estatística de teste não pertencer à região crítica, não rejeite H_0 ; caso contrário rejeite H_0 .

Como -7,91 pertence a área de rejeição, rejeita-se H_0 .

TH para médias, variância conhecida

Solução:

5) Tome uma decisão: se o valor observado da estatística de teste não pertencer à região crítica, não rejeite H_0 ; caso contrário rejeite H_0 .

Observando Z_{calc} = -7, 91, tem-se que, como -7,91 < -1,65, rejeita-se H_0 , a um nível de significância de 5%, ou seja, com 95% de probabilidade a empresa estava errada ao afirmar que o tempo de vida médio das lâmpadas é 800 horas.

TH para médias, variância desconhecida

Exemplo: Uma amostra de 30 peixes pescados numa certa represa produziu um peso médio de 13,36g e desvio padrão 4,79g. Suspeita-se que a média de peso da população desses peixes nessa região seja 12g. Utilize um teste de hipótese unilateral com 5% de significância.

TH para médias, variância desconhecida

Solução:

1) Estabelecer o parâmetro e a hipótese.

$$\begin{cases} H_0: \mu = 12g \\ H_1: \mu > 12g \end{cases}$$

TH para médias, variância desconhecida

Solução:

2) Escolher a estatística de teste que será utilizada para testar H_o .

$$t_{calc} = \frac{\bar{\mathbf{x}} - \mu_0}{s / \sqrt{n}}$$

TH para médias, variância desconhecida

Solução:

3) Fixe a probabilidade de α de erro tipo I e construa a RC;

 α = 0,05 (enunciado)

TH para médias, variância desconhecida

Solução:

4) Use as observações da amostra para calcular o valor observado da estatística de

teste;

$$t_{calc} = \frac{\bar{\mathbf{x}} - \mu_0}{s / \sqrt{n}}$$

$$= \frac{13,36-12}{4,79/\sqrt{30}}$$

$$=\frac{1,36}{0,87}$$

$$= 1,56$$

TH para médias, variância desconhecida

Solução:

5) Tome uma decisão: se o valor observado da estatística de teste não pertencer à região crítica, não rejeite H_0 ; caso contrário rejeite H_0 .

$$|t_{calc}| > t_{\alpha}$$

$$t_{\alpha;n-1} = t_{0,05;30-1} = t_{0,05;29}$$

TH para médias, variância desconhecida

Solução:

Tabela : Distribuição t de student - valores para $P(t > t_c) = \alpha$, considerando $\alpha = 0,250; 0,200; 0,150; 0,100; 0,050; 0,010; 0,005; 0,001.$

GL	α									
y = n - 1	0,250	0,200	0,150	0,100	0,050	0,025	0,010	0,005	0,001	
1	1,000	1,376	1,963	3,078	6,314	12,706	31,821	63,656	318,289	
2	0,816	1,061	1,386	1,886	2,520	4,303	6,965	9,925	22,328	
3	0,765	0,978	1,250	1,638	2,353	3,182	4,541	5,841	10,214	
4	0,741	0,941	1,190	1,533	2,132	2,776	3,747	4,604	7,173	
5	0,727	0,920	1,156	1,476	2,015	2,571	3,365	4,032	5,894	
6	0,718	0,906	1,134	1,440	1,943	2,447	3,143	3,707	5,208	
7	0,711	0,896	1,119	1,415	1,895	2,365	2,998	3,499	4,785	
8	0,706	0,889	1,108	1,397	1,860	2,306	2,896	3,355	4,501	
9	0,703	0,883	1,100	1,383	1,833	2,262	2,821	3,250	4,297	
10	0,700	0,879	1,093	1,372	1,812	2,228	2,764	3,169	4,144	
11	0,697	0,876	1,088	1,363	1,796	2,201	2,718	3,106	4,025	
12	0,695	0,873	1,083	1,356	1,782	2,179	2,681	3,055	3,930	
13	0,694	0,870	1,079	1,350	1,771	2,160	2,650	3,012	3,852	
14	0,692	0,868	1,076	1,345	1,761	2,145	2,624	2,977	3,787	
15	0,691	0,866	1,074	1,341	1,753	2,131	2,602	2,947	3,733	
16	0,690	0,865	1,071	1,337	1,746	2,120	2,583	2,921	3,686	
17	0,689	0,863	1,069	1,333	1,740	2,110	2,567	2,898	3,646	
18	0,688	0,862	1,067	1,330	1,734	2,101	2,552	2,878	3,610	
19	0,688	0,861	1,066	1,328	1,729	2,093	2,539	2,861	3,579	
20	0,687	0,860	1,064	1,325	1,725	2,086	2,528	2,845	3,552	
21	0,686	0,859	1,063	1,323	1,721	2,080	2,518	2,831	3,527	
22	0,686	0,858	1,061	1,321	1,717	2,074	2,508	2,819	3,505	
23	0,685	0,858	1,060	1,319	1,714	2,069	2,500	2,807	3,485	
24	0,685	0,857	1,059	1,318	1,711	2,064	2,492	2,797	3,467	
25	0,684	0.856	1,058	1,316	1,708	2,060	2,485	2,787	3,450	
26	0,684	0,856	1,058	1,315	1,706	2,056	2,479	2,779	3,435	
27	0,684	0,855	1,057	1,314	1,703	2,052	2,473	2,771	3,421	
28	0,683	0,855	1,056	1,313	1,701	2,048	2,467	2,763	3,408	
29-	0,683	0,851	1,055	1,311	(1,699)	2,045	2,462	2,756	3,396	

TH para médias, variância desconhecida

Solução:

5) Tome uma decisão: se o valor observado da estatística de teste não pertencer à região crítica, não rejeite H_0 ; caso contrário rejeite H_0 .

$$t_{0.05;29} = 1,699$$

Observando $|t_{calc}|$ = 1,56, temos que como 1,56 < 1,699, não há evidências para rejeitar H_0 , a um nível de significância de 5%.

TH para proporção

Exemplo 4: Pelo Anuário do IBGE de 2010, a proporção de analfabetos em uma cidade era de 15%. Em 2015, entre 200 entrevistados dessa cidade, 23 eram analfabetos. Esses dados suportam a tese de diminuição do analfabetismo na cidade de 2010 para 2015?

p = 0.15

TH para proporção

Solução:

1) Estabelecer o parâmetro e a hipótese.

Sendo *p* a proporção populacional de analfabetos na cidade em 2015, as hipóteses de interesse são:

$$\begin{cases} H_0: p = 0.15 \\ H_1: p < 0.15 \end{cases}$$

Hipótese alternativa unilateral.

TH para proporção

Solução:

2) Escolher a estatística de teste que será utilizada para testar H_0 .

$$Z_{calc} = \frac{\bar{X} - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$$

3) Fixe a probabilidade de α de erro tipo I e construa a RC.

Vamos fixar:

$$\alpha$$
 = 0,10

TH para proporção

Solução:

4) Use as observações da amostra para calcular o valor observado da estatística de teste. $RC = \{\hat{p} \le a\}$

$$0,10 = P(\hat{p} \le a \mid p = 0,15) \cong P\left(Z \le \frac{a - 0,15}{\sqrt{(0,15)(0,85)/200}}\right)$$

Pela tabela da Normal, para $A(z) = 0.90 \rightarrow z = 1.28$, então

$$\frac{a - 0.15}{\sqrt{(0.15)(0.85)/200}} = -1.28 \Rightarrow a = 0.15 - 1.28 \sqrt{(0.15 \times 0.85)/200} \cong 0.118$$

Logo
$$a = 0.118 e RC = {\hat{p} \le 0.118}$$

TH para proporção

Solução:

4) Use as observações da amostra para calcular o valor observado da estatística de teste.

Observou-se
$$\hat{p}_{obs} = \frac{23}{200} = 0.115$$
.

DE VOLTA AO EXEMPLO 4

TH para proporção

Solução:

5) Tome uma decisão: se o valor observado da estatística de teste não pertencer à região crítica, não rejeite H_0 ; caso contrário rejeite H_0 .

$$\hat{p}_{obs} = \frac{23}{200} = 0.115 \in RC \rightarrow \text{rejeita-se } H_0 \text{ ao nível de significância de 10%}.$$

Conclui-se que a taxa de analfabetismo diminuiu.

TH para variância

Seja $X_1, X_2, ..., X_n$ uma amostra aleatória selecionada de uma distribuição $N(\mu, \sigma^2)$.

1) Consideremos as seguintes hipóteses:

$$\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 \neq \sigma_0^2 \end{cases}$$

em que σ^2 é um valor conhecido da variância populacional.

TH para variância

Seja $X_1, X_2, ..., X_n$ uma amostra aleatória selecionada de uma distribuição $N(\mu, \sigma^2)$.

2) a estatística de teste que será utilizada para testar H_0 :

$$\chi^2_{calc} = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$$
.

TH para variância

Seja $X_1, X_2, ..., X_n$ uma amostra aleatória selecionada de uma distribuição $N(\mu, \sigma^2)$.

3) Fixar a probabilidade de α de erro tipo I e construir a RC.

4) Usar as observações da amostra para calcular o valor observado da estatística de teste.

TH para variância

Seja $X_1, X_2, ..., X_n$ uma amostra aleatória selecionada de uma distribuição $N(\mu, \sigma^2)$.

5) Regra decisão:

Onde A e B são tais que:

$$P(X < A) = \frac{\alpha}{2} \qquad P(X < B) = 1 - \frac{\alpha}{2}$$

$$X \sim X_{n-1}^2$$

TH para variância

Exemplo: Uma das maneiras de manter sob controle a qualidade de um produto é controlar sua variabilidade. Uma máquina de encher pacotes de café está regulada para enchê-los com média de 500g e desvio padrão de 10g. O peso de cada pacote \overline{X} segue uma distribuição $N(\mu, \sigma^2)$. Colheu-se uma amostra de 16 pacotes e observou-se uma variância de S^2 =169 g^2 . Com esse resultado, você diria que a máquina está desregulada com relação à variância?

TH para variância

Solução:

1) Consideremos as seguintes hipóteses:

$$\begin{cases} H_0: \sigma^2 = 100 \\ H_1: \sigma^2 \neq 100 \end{cases}$$

TH para variância

Solução:

2) a estatística de teste que será utilizada para testar H_0 :

$$\chi^2_{calc} = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$$
.

TH para variância

Solução:

3) Fixar a probabilidade de α de erro tipo I.

$$\alpha$$
 = 0.05 (enunciado)

TH para variância

27,488

TABELA IV

Solução:

6,262

Distribuição do Qui-Quadrado - χ^2_n

Os valores tabelados correspondem aos pontos x tais que: $P(\chi_n^2 \le x)$

TH para variância

Solução:

4) Usar as observações da amostra para calcular o valor observado da estatística de teste.

$$\chi^2_{calc} = \frac{(n-1)S_0^2}{\sigma_0^2} = \frac{(16-1)169}{100} = 25,35$$

TH para variância

Solução:

5) Regra decisão:

Como $\chi^2_{calc} \notin RC$, não rejeitamos H_0 , ou seja, a máquina esta sob controle quanto à variância.

PODER DO TESTE

Definimos **poder de um teste** estatístico como a probabilidade do teste rejeitar H_0 quando H_0 é realmente falsa, ou seja, o poder de um teste é igual a $1-\beta$.

O poder de um teste de hipóteses é afetado por três fatores:

• Tamanho da amostra: Quanto maior o tamanho da amostra, maior o poder do teste.

PODER DO TESTE

O poder de um teste de hipóteses é afetado por três fatores:

• **Nível de Significância:** Quanto maior o nível de significância, maior o poder do teste. Se você aumenta o nível de significância, você reduz a região de aceitação. Como resultado, você tem maior chance de rejeitar a hipótese nula. Isto significa que você tem menos chance de aceitar a hipótese nula quando ela é falsa, isto é, menor chance de cometer um **erro tipo II**. Então, o poder do teste aumenta.

PODER DO TESTE

O poder de um teste de hipóteses é afetado por três fatores:

• O verdadeiro valor do parâmetro a ser testado: Quanto maior a diferença entre o "verdadeiro" valor do parâmetro e o valor especificado pela hipótese nula, maior o poder do teste.

Função Poder

Em um teste de hipótese é desejável que α e β sejam os menores possíveis, uma vez que representam as probabilidades de tomar decisões incorretas.

No entanto, dada uma dimensão de amostra, n, não é possível minimizar simultaneamente α e β . Assim:

Se α diminui então β aumenta

Se β diminui então α aumenta

Na prática, costuma-se fixar a probabilidade do erro tipo I em um nível pré-fixado α e então tentar minimizar a probabilidade do erro tipo II.

FUNÇÃO PODER -

Uma função poder de um teste de hipótese é a função de θ definida por $\pi(\theta) = P_{\theta}(H_0 \text{ \'e } rejeitada)$. Ela é utilizada para verificar a adequação de um teste ou para comparar dois ou mais testes.

- Se $\theta \in \Theta_0$, $\pi(\theta) = \alpha$ é a probabilidade do erro tipo I.
- Se $\theta \in \Theta_1$, $\pi(\theta) = 1 \beta$, ou seja, $\pi(\theta) = 1 P(\text{erro tipo II})$.

O nível descritivo corresponde à probabilidade de se observar valores tão ou mais extremos (contra H_0) que o valor obtido na amostra, caso a **hipótese nula H_0** seja verdadeira, ou seja,

 $P = P(\text{valores mais extremos contra } H_0 | H_0 \text{ verdadeira})$

O nível descritivo corresponde à probabilidade de se observar valores tão ou mais extremos (contra H_0) que o valor obtido na amostra, caso a **hipótese nula H_0** seja verdadeira, ou seja,

 $P = P(\text{valores mais extremos contra } H_0 \mid H_0 \text{ verdadeira})$

Então, essa probabilidade P mede a força da evidência contida nos dados, contra a hipótese nula H_0 .

O nível descritivo corresponde à probabilidade de se observar valores tão ou mais extremos (contra H_0) que o valor obtido na amostra, caso a **hipótese nula H_0** seja verdadeira, ou seja,

 $P = P(\text{valores mais extremos contra } H_0 | H_0 \text{ verdadeira})$

Então, essa probabilidade P mede a força da evidência contida nos dados, contra a hipótese nula H_0 .

Como saber se essa evidência é suficiente para rejeitar H_0 ?

Se o **valor** P é "pequeno", então é pouco provável observarmos valores iguais ou mais extremos que o da amostra, supondo a hipótese nula H_0 verdadeira. Logo, há indícios que a hipótese nula não seja verdadeira e, tendemos a rejeitá-la.

Para valores "não tão pequenos" de ${\bf P}$ não fica evidente que a hipótese nula H_0 seja falsa, portanto, tendemos a não rejeita-la.

Assim,

P "pequeno", então rejeitamos H_0

 $\it P$ "não pequeno", então não rejeitamos $\it H_0$

Se o **valor** P é "pequeno", então é pouco provável observarmos valores iguais ou mais extremos que o da amostra, supondo a hipótese nula H_0 verdadeira. Logo, há indícios que a hipótese nula não seja verdadeira e, tendemos a rejeitá-la.

Para valores "não tão pequenos" de ${\bf P}$ não fica evidente que a hipótese nula H_0 seja falsa, portanto, tendemos a não rejeita-la.

Assim,

P "pequeno", então rejeitamos H_0

P "não pequeno", então não rejeitamos H_0

Quão "pequeno" deve ser o valor de P para rejeitarmos H_0 ?

O limite de "quão pequeno" o valor de ${\it P}$ deve ser para rejeitar a hipótese nula é o nível de significância α de modo que:

 $P \leq \alpha$, então rejeita-se H_0

 $P > \alpha$, então não rejeita-se H_0

Se $P \le \alpha$, diz-se que a amostra forneceu evidência suficiente para rejeitar a hipótese nula H_0 .

Observações:

- Quanto menor o valor ${\it P}$, maior é a evidência contra a hipótese nula ${\it H}_0$ contida nos dados.
- Quanto menor o nível de significância α fixado, mais forte deve ser a evidência contra a hipótese nula H_0 , para que ela seja rejeitada.
- Quanto a hipótese nula H_0 é rejeitada para o nível de significância α fixado, diz-se também que a amostra é **significante** ao nível de significância α .
- O nível descrito por P (valor P) é o menor nível de significância para o qual a hipótese nula H_0 é rejeitada.

Exemplo: Uma empresa imobiliária fez um levantamento do valor de mercado de 16 residências do vilarejo Águas Claras com a intenção de estabelecer negócios na nova região. Na sua região de origem, os valores dos imóveis deste mesmo padrão têm preço médio de 284mil dólares e desvio padrão de 64mil dólares. Tendo como referência o valor de imóveis de sua região de origem, a firma quer verificar se pode manter o mesmo critério de avaliação para as residências de Águas Claras. Valores observados (mil dólares):

> 297 257 269 183 309 229 243 204 192 209 189 187 432 271 324 275

Dados $\sum_{i=1}^{16} x_i = 4070$.

- a) Com um nível de significância a de 5%, defina as hipóteses e faça o teste unilateral.
- b) Qual é a probabilidade de significância (ou valor p) do teste?

O valor *p* do teste, ou probabilidade de significância, é definido por:

$$p = P(Z > |Z_0|)$$

Pode-se utilizar o valor p para se testar H_0 comparando-o com o nível de significância α :

a) Se p é menor do que o nível de significância α , então, o valor da estatística teste Z_0 pertence à região de rejeição:

Valor p: região hachurada na Figura.

b) Se p é maior do que o nível de significância α , então, o valor da estatística teste H_0 pertence à região de não rejeição:

Valor p: região hachurada na Figura.

Neste sentido, o nível de significância α serve somente como referência para a nossa decisão de rejeitar (ou não) H_0 .

Testar a hipótese utilizando se do valor p (α = 0.05)

$$\bar{x} = 254.375 \implies Z_0 = \frac{254.375 - 284}{64/\sqrt{16}} = -1.85$$

Logo,
$$p = P(Z > |-1.85|) = 0.0322$$

Como 0.0322 < 0.05, então, rejeita-se H_0 .

Testar a hipótese utilizando se do valor p (α = 0.05)

$$\bar{x} = 254.375 \implies Z_0 = \frac{254.375 - 284}{64/\sqrt{16}} = -1.85$$

Logo,
$$p = P(Z > |-1.85|) = 0.0322$$

Como 0.0322 < 0.05, então, rejeita-se H_0 . (Lembrar que, P(Z > |-1.85|) = 1 - P(Z < |-1.85|) = 1 - A(1.85) = ?).

Tabela da Distribuição Normal Padrão P(Z<z)

z	0,0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1.0	0.0743	0.0740	0.0707	0.0700	0.0730	0.0744	0.0750	0.075/	0.07/4	0.07/7

Testar a hipótese utilizando se do valor p (α = 0.05)

$$\bar{x} = 254.375 \implies Z_0 = \frac{254.375 - 284}{64/\sqrt{16}} = -1.85$$

Logo,
$$p = P(Z > |-1.85|) = 0.0322$$

Como 0.0322 < 0.05, então, rejeita-se H_0 . (Lembrar que, P(Z > |-1.85|) = 1 - P(Z < |-1.85|) = 1-A(1.85) = 1 - 0.9678 = 0.0322).

REFERÊNCIAS

ANDRADE, D. F.; OGLIARI, P. J. Estatística para as ciências agrárias e biológicas com noções de experimentação. Editora da UFSC, Florianópolis, 2007.

MONTGOMERY, D. C.; RUNGER, G. C. Estatística aplicada e probabilidade para engenheiros. 6 ed. Rio de Janeiro: LTC, 2018. 628p.

MOORE, D. S. NOTZ, W. I.; FLIGNER, M. A. **A estatística básica e sua prática**. 7 ed. Rio de Janeiro: LTC, 2017. 628p.

MORETTIN, P. A.; BUSSAB, W. O. **Estatística básica**. 9 ed. São Paulo: Saraiva, 2017. 554p.

CLASS FINISHED

