P - 47 - 2021

자동차용 수소연료전지 시스템의 안전에 관한 기술지침

2021. 12.

한국산업안전보건공단

안전보건기술지침의 개요

O 작성자: 연세대학교 화공생명공학과 문 일

개정자 : 한 우 섭

개정자 : 전남대학교 장 희

- O 제 · 개정 경과
 - 2010년 10월 화학안전분야 제정위원회 심의(제정)
 - 2012년 7월 총괄 제정위원회 심의(개정, 법규개정조항 반영)
 - 2021년 11월 총괄 제정위원회 심의
- O 관련 규격 및 자료
 - SAE J 2578-2009, Recommended Practice for General Fuel Cell Vehicle Safety, 2009
 - KS R ISO23273, 연료 전지 차량 안전 제원 압축 수소 연료 차량의 수소 위해에 대한 보호. 2019.
- O 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고하시 기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자: 2021년 12월

제 정 자: 한국산업안전보건공단 이사장

P - 47 - 2021

자동차용 수소연료전지 시스템의 안전에 관한 기술지침 제안개요

I. 개정 이유

자동차용 수소연료전지 시스템의 관련 규격이 새로이 제정됨에 따라 기존의 기술지침을 개정하여 사업장에서 이를 활용토록 하여 근로자의 안전을 도모하기 위함.

Ⅱ. 제정(안)의 주요내용

- 1. 용어의 정의 추가
- 2. 제4장 연료 시스템의 설계 및 성능 요구사항
- 3. 제6장 연료주입 요구사항

Ⅲ. 관련 법규 및 규격

- KS R ISO23273, 연료 전지 차량 - 안전 제원 - 압축 수소 연료 차량의 수소 위해에 대한 보호, 2019.

Ⅳ. 제정위원회 심의개요

- 제 안 자 : 전남대학교 장 희

- 심 의 일 : 2020년 11월

- 주요 수정내용 : 압력단위 및 기타 자구 수정 등

KOSHA GUIDE P - 47 - 2021

자동차용 수소연료전지 시스템의 안전에 관한 기술지침

1. 목적

이 지침은 친환경 에너지인 수소에너지를 이용하는 자동차용 수소연료전지 시스템을 안전하게 사용하기 위하여 필요한 사항을 제시하는데 그 목적이 있다.

2. 적용범위

이 지침은 자동차용 수소연료전지 시스템 및 관련 시설에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
 - (가) "장벽 (Barrier)"이라 함은 한 쪽에서 다른 쪽으로 물질의 흐름을 방지하는 장치 또는 판을 말한다.
 - (나) "유해위험 유체 (Hazardous fluid)"라 함은 잠재적인 위험의 가능성이 있는 액체 또는 기체를 말한다.
 - (다) "연료 전지 (Fuel cell)"라 함은 전극 또는 전해액의 물리적 또는 화학적 소모 없이 연료와 산소의 변환을 통해 전기 에너지를 생성하는 전기 화학적 장치를 말한다.
 - (라) "연료 전지 시스템 (Fuel cell system)"이라 함은 일반적으로 연료 전지 스택, 공기 처리 시스템, 내장형 연료 저장 장치에 저장되어 있는 연료를 연료 전지 스택에서 필요 시 작동하기에 적합한 연료로 변환 및/또는 상태를 조절하는 연료 처리시스템, 열 관리 시스템, 물 관리 시스템 및 이들의 제어 시스템 등의 하위 시스템을 포함하는 시스템을 말한다.
 - (마) "수소차단 주밸브 (Main hydrogen shut-off valve)"라 함은 고압 수소 공급원을 자동적으로 차단하도록 설계된 밸브를 말한다.
 - (바) "공칭 작동 압력 (Nominal working pressure)"이라 함은 구성 부품이 일반적으로 작동하는 압력을 말하며, 연료 컨테이너의 경우, 15 ℃(288 K)의 일정한 온도에서

P - 47 - 2021

가득 채워질 때의 안정된 압력으로 한다.

- (사) "온도 트리거 방식의 압력방출장치 (PRD, Temperature-triggered pressure relief device)"라 함은 표준 화재 시험 시 파열로부터 연료 컨테이너를 보호하기 위하여 가스를 방출하는 장치로서, 과도한 온도에 의해 작동되고 다시 닫히지 않도록 되어 있는 것을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고 는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기준에 관한 규칙」에서 정하는 바에 의한다.

4. 연료 시스템의 설계 및 성능 요구사항

4.1 일반사항

- (1) 연료 시스템은 내부 압력이 연료 컨테이너와 동일한 고압 구역, 그리고 내부 압력이 고압 구역보다 낮은 중압 또는 저압 구역으로 구성된다.
- (2) 연료 시스템은 다음을 장착하고 있어야 한다.
 - (가) 1개 또는 그 이상의 온도 트리거 방식의 압력방출장치(PRD)를 포함하는 화재 보호 시스템
 - (나) 밸브를 작동시키는 기동력이 상실되거나, 차량의 연료 전지 시스템이 작동하지 않는 경우에 닫히게 되는 수소차단 주밸브
 - (다) 다음 4.2 (4)에 따르는 수소 차단 시스템
 - (라) 과류 방지 밸브 또는 이와 동일한 기능을 수행하는 시스템

4.2 구성부품

- (1) 일반사항
 - (가) 연료 시스템의 구성부품은 아래 요구사항을 만족하여야 한다.
 - (나) 제작자가 규정하는 화경 및 작동 조건에서 안전하게 작동할 수 있도록 구성부품

을 설계하고 설치하고 정비하여야 한다.

- (다) 고압 구역에 사용하는 모든 구성부품은 공칭 작동 압력을 바탕으로 하는 적절한 압력 등급을 가져야 한다.
- (라) 중압 및 저압 구역에 사용하는 모든 구성부품은 최대 허용 작동 압력을 바탕으로 하는 적절한 압력 등급을 가져야 한다.
- (마) 가연성 구역에 있는 구성부품의 전기 전도성 하우징은 방출되는 수소가 의도되지 않게 착화되는 것을 방지하기 위하여 전기 섀시에 접합시켜야 한다.

(2) 연료 컨테이너

- (가) 차량 연료 컨테이너가 적용되는 경우, 법적 요구사항에 따르는 것을 사용하여야 한다. 그렇지 않은 경우, 차량 제작자가 요구사항을 규정하여야 한다.
- (나) 연료 컨테이너 시스템은 적어도 1개 이상의 온도 트리거 방식의 PRD를 수소 연료 컨테이너 부근에 장착하여 파열이 발생하기 전에 연료 컨테이너의 수소를 방출할 수 있어야 한다(다음 (3) 과압 보호장치 참조).

(3) 과압 보호장치

(가) 중압 또는 저압 구역에 위치하고 있는 모든 부품은 첫 번째 압력 레귤레이터 상단 측에서 발생하는 단일 고장(Single failure)으로 인한 비정상적인 압력 상승을 견 더내고 보호되어야 한다.

(4) 수소 차단 시스템

(가) 연료 시스템과 그 제어 장치는 수소차단 주밸브를 닫을 수 있는 수단을 제공하여 자동차의 전기설비에 발생할 수 있는 스파크 등에 따르는 수소의 의도되지 않은 방출 또는 단일점 고장(Single-point failures)에 의해 발생하는 다른 위험을 방지할 수 있어야 한다.

4.3 구성부품의 위치 및 설치

(1) 모든 구성부품 및 이들을 상호 연결하는 배관과 배선을 차량에 견고하게 장착하고 지지하여 손상을 최소화하고 누설 및/또는 오작동을 방지하여야 한다.

P - 47 - 2021

- (2) 구성부품이 적절하게 보호되어 있지 않거나, 구성부품의 어떠한 부분이 보호 구조의 외부에 위치하고 있는 경우에 부주의로 인한 손상 가능성을 줄이기 위하여 구성부품 은 차량 내부에 장착하여야 한다.
- (3) 연료 배관은 차량 제작자가 규정하는 정상적 작동 조건에서 차량 진동으로 인하여 발생할 수 있는 손상을 방지할 수 있도록 위치를 정하고 보호하여야 한다.

4.4 방출

- (1) 차량의 정상적인 작동 과정에서 발생하는 모든 연료 시스템의 배기, 퍼지, 통기 및 그밖의 다른 방식의 방출은 수소에 관련된 위험한 조건을 방지할 수 있도록 설계하여야 한다.
- (2) 출발, 주행, 정지 및 OFF(주차)를 포함하는 모든 정상적인 작동 모드를 이 요구사항 에서 고려하여야 한다.
- (3) 정상적인 작동 조건 및 단일 고장 조건에서 모든 차량영역으로 방출되어도 어떠한 위험한 상태도 유발하지 않아야 한다.
- (4) 옥외, 기계적으로 통풍이 이루어지는 건물이나 구조물, 기계적인 통풍 시설이 없는 가정의 차고 등과 같은 사용이 예상되는 장소에서 법적 요구사항을 만족하여야 한다. 차량에서 외부로의 정상적인 방출 시 가연성이 없어야 한다.
- (5) 옥외에서 주행을 하거나, 상업용 건물에서 공회전 운전을 하거나 또는 가정의 차고에 주차하는 등과 같은 일반적으로 예상되는 상황에 대하여 차량을 평가하기 위한 지침은 다음 5. 시스템 안전을 따른다.
- (6) 온도 트리거 방식의 압력방출장치로부터의 방출은 차량의 외부로 배출되어야 하며 흐름의 제한으로 인해 기능이 침해되지 않도록 모든 관련 배관 및 출구가 보호되어 야 한다.
- (7) 트랙션 배터리에서 나오는 수소가 어떠한 위험한 상태를 유발해서는 안 된다.

5. 시스템 안전

5.1 일반사항

P - 47 - 2021

- (1) 위험한 상황에서 사람을 보호하는 것은 중요하므로, 다음 사항을 보호하기 위하여 차량 시스템을 안전 설계하여야 한다.
 - (가) 자동차 시스템 내의 구성 요소의 고장으로 인해 발생할 수 있는 피해
 - (나) 연료전지 자동차의 운전이나 서비스와 관련된 위험
 - (다) 하부조직 또는 부품의 고장으로 인해 발생할 수 있는 자동차 시스템의 피해

5.2 안전 설계

자동차 및 관련 하부조직은 하드웨어 또는 소프트웨어 고장으로 인해 위험이 발생하지 않도록 설계되어야 한다.

5.2.1 위험성 평가

잠재적인 결함과 적절한 대책을 확인하기 위하여 이상위험도분석(Failure modes and effects analysis, FMEA), HAZOP, LOPA 등의 기법을 이용하여 위험성 평가를 하여야 한다.

5.2.2 제어 기능

- (1) 하드웨어 또는 소프트웨어가 위험한 상황에 놓이지 않도록 안전제어 시스템을 설계하여야 한다.
- (2) 안전제어 시스템은 격리, 분류, 중복, 감독 등을 포함한다.

5.2.3 안전장치 설계

- (1) 자동차 설계는 전기 및 유해위험 유체 시스템 제어의 안전장치 설계를 고려하여야 한다.
- (2) 불활성화 시 자동 전기차단밸브는 열려 있어야 하며 연료차단밸브는 잠겨 있어야 한다.
- (3) 제어표시를 통해 전기 또는 연료 공급원을 차단할 수 있다.

P - 47 - 2021

- (4) 자동적인 운전 중지로 인해 발생가능한 자동차의 전력손실을 고려하여야 한다.
- (5) 자동차가 이동하는 경우, 위험요소를 완화하기 위하여 단계적인 경고, 운전 중지 등의 수단을 제공하여야 한다.
- (6) 잠재적인 위험요소를 감지한 경우, 안전장치 절차에 따라 조치를 하여야 한다.

5.2.4 전자기 적합성 및 과전류

- (1) 연료전지자동차의 안전한 운전에 영향을 미칠 수 있는 모든 전기 집합체는 자동차가 폭발할 수 있는 전기적인 환경에 내구성이 있어야 한다.
- (2) 자동차 운전 중이나 연료 주입 시 발생할 수 있는 전압의 변화와 도로의 환경을 고려하여야 한다.
- (3) 일반적인 운전 상태에서 발생하는 과전류로 인해 운전 중지가 발생하지 않는다.

5.2.5 연료전지자동차의 충격안전도

- (1) 연료전지자동차에 대한 충격안전도는 관련 법령의 요구사항을 충족하여야 한다.
- (2) 연료시스템과 전기 무결성은 동시에 또는 별도로 테스트할 수 있다.

5.3 연료시스템의 안전

5.3.1 설치

- (1) 연결 배관, 전선 등 모든 구성요소는 자동차의 오작동 및 수소의 누출로 인한 피해를 최소화할 수 있어야 한다.
- (2) 자갈, 도로 파편 등에 의한 피해를 고려하여야 한다.

5.3.2 자동차 내의 위험요인 관리

(1) 유해위험 유체를 포함하거나 생성시키는 모든 요소는 위험요인을 관리할 수 있는 자동차의 공간에 위치하여야 한다.

P - 47 - 2021

- (2) 자동차의 공간은 장벽을 이용하여 격리할 수 있다.
- (3) 자동차의 공간에 설치된 장비는 잠재적인 인화성 분위기의 관리와 점화원의 제거를 기반으로 환경에 적합하게 설치하여야 한다.
- (4) 자동차의 공간으로부터 유해위험 유체의 흐름은 다음 사항을 준수하여야 한다.
 - (가) 유해위험 유체의 외부 누출
 - (나) 자동차 내부로 유해위험 유체 유입 차단
 - (다) 위험지역에 적합하지 않은 장비가 있는 곳으로 인화성 유체의 유입

5.3.3 장벽

- (1) 장벽은 자동차 내·외부에 있는 유해물질과 비유해물질을 분리하거나 유해물질을 보 관하는데 사용한다.
- (2) 장벽은 유해위험 유체의 통로를 통제할 수 있어야 한다.
- (3) 배기관 및 연료 베어링 장비 등의 흐름을 통제하는 장벽에 불꽃이 전파되지 않는 금속 또는 물질로 설치하여야 한다.
- (4) 압력 상승 등과 같은 영향으로 인해 장벽 사이에 불꽃이 전달되지 않도록 하여야 한다.

5.3.4 잠재적 인화성 분위기

연료 베어링 장비에 있는 잠재적 인화성 분위기는 다음의 접근방법으로 관리할 수 있다.

- (1) 환기
- (2) 캡슐화
- (3) 고압 밀봉법
- (4) 인화성 가스 농도 감소
- (5) 억제제

P - 47 - 2021

5.3.5 잠재적 점화원

- (1) 비정상적인 상태에서만 가연성 물질이 방전될 경우, 정상적인 운전 동안 장비로 인한 점화원이 발생하지 않도록 하여야 한다.
- (2) 다음의 각 위치에 따라 점화원을 관리하여야 한다.
 - (가) 겉 표면
 - (나) 전기 장치
 - (다) 정전 방전
 - (라) 촉매물

5.4 연료전지의 안전

5.4.1 연료전지 스택 설계

- (1) 연료전지 스택은 누출, 화재, 폭발, 고압, 전기적인 충격 위험 등의 유해위험요인으로 인한 오류를 보호하도록 설계되어야 한다.
- (2) 유해위험 유체의 누출로 인해 스택 또는 다른 구성요소의 결함 및 마모가 발생하여 지연시간이 발생할 경우 외부 누출, 내부 전이의 잠재적인 영향을 평가하여야 한다.

5.4.2 고전압에 대한 견고성

- (1) 설계의 확인을 위하여 각 고전압 시스템은 적절한 전매질의 강도를 제시하여야 한다.
- (2) 강도 이상의 고전압이 발생할 경우 피해를 입을 수 있는 연료전지 스택, 장치, 회로 등은 차단되어야 한다.

5.4.3 연료전지 및 스택 감시

(1) 전지 스택 또는 공정 오류

전지 스택 또는 다른 반응기 내에서 한계 범위 이외의 온도, 압력, 유량, 구성조건은

P - 47 - 2021

내 · 외부 구성요소의 오류 및 인명에 피해를 줄 수 있다.

(2) 저압 오류

압력이 낮게 흐를 경우 내・외부 구성요소의 오류 및 인명에 피해를 줄 수 있다.

(3) 과전류 오류

전류는 높게 흐를 경우 내・외부 구성요소의 오류 및 인명에 피해를 줄 수 있다.

6. 연료주입 요구사항

6.1 일반사항

- (1) 연료를 주입하는 동안에는 자체적인 구동 시스템에 의해 차량이 움직이는 것을 방지하여야 한다.
- (2) 연료 시스템의 설계에 대한 지침은 제 5장을 참조한다.
- (3) 수소 충전소에서 연료를 주입하는 동안의 사람에 대한 안전은 펌프/노즐 및 차량/리 센터클(receptacle) 사이의 상호작용을 포함하는, 안전 관련 설계 및 충전소의 운영에 대한 적절한 조치에 의해 주로 제공되어 있다(6.2 참조).

6.2 연료 주입구

- (1) 국내에서 일반적으로 사용하는 노즐 및 리셉터클은 육상 자동차 압축 수소 충전 접속 기기(Compressed hydrogen surface vehicle refueling connection devices)의 설계, 안전과 작동에 적합하여야 한다.
- (2) 노즐과 리셉터클은 먼지, 액체, 오염 물질 등의 침투를 방지하기 위한 캡과 함께 제공되어야 한다.
- (3) 차량의 연료주입 위치는 가연성 가스가 축적되거나 이물질이 침투되는 것을 방지할 수 있도록 설계하여야 한다. 그리고 안전한 작업을 보장할 수 있는 적절한 위치에 있어야 한다. 차량의 측면을 사용하는 것이 바람직하다.
- (4) 차량이 리셉터클에서 발생한 정전기에 의해 영향을 받는 것을 방지하기 위한 조치도

P - 47 - 2021

제공되어야 한다.

(5) 또한 리셉터클은 최소 670 N의 하중을 어떠한 방향으로 부과해도 가스 밀봉성에 영향을 주지 않고 견뎌낼 수 있어야 한다(예를 들면 연료 주입 호스가 이탈된 경우).

7. 자동차 운전

7.1 사용자 매뉴얼

연료전지 자동차에는 다양한 가능성이 있으므로 자동차 제조업체는 자동차의 운전, 연료, 안전 특성 등에 대해 다음과 같이 사용자 가이드를 제공하여야 한다.

- (1) 안전한 자동차 관리를 위한 절차
- (2) 자동차에 사용되는 유체 및 물질의 저장, 사용, 처리에 대한 예방 조치
- (3) 자동차 또는 시스템 오작동으로 인한 문제 해결 방안
- (4) 연료 주입 절차 및 안전 조치 사항
- (5) 부품에 대한 주의 사항
- (6) 길가에서의 비상상황에 대한 정보
- (7) 운전자 서비스, 점검, 유지 절차

7.2 비 기계식 통풍 구조 내에 주차된 자동차의 수소 방출

- (1) 자동차가 비 기계식 통풍 구조 내에 주차되어 있는 경우 시간당 0.03회 공기가 환기되어야 한다.
- (2) 자동차가 밀폐된 장소에 주차되어 있는 경우 자동차 주위의 공간은 수소의 농도가 고르게 분포할 수 있도록 장벽이 없어야 한다.
- (3) 자동차에 대한 테스트, 분석 등을 통해 이와 같은 요구사항이 충족하는지를 확인하여 야 한다.

7.3 부산물(By-products)

P - 47 - 2021

물 또는 기타 배출 부산물은 무독성이고 화재 등 위험한 상태에 놓여 있지 않아야 한다.

8. 비상 대응

연료전지 자동차의 제조업체는 안전 및 비상 요원에 대해 다음과 같은 정보를 제공 하여야 한다.

- (1) 연료전지 자동차와 관련된 위험 물질, 전압 시스템 등에 대한 설명
- (2) 자동차 식별을 위한 안전 라벨
- (3) 자동 차단밸브 및 전기 단절 기능을 확인하기 위한 절차
- (4) 탱크의 환기구 및 가압 여부에 대한 정보

9. 자동차 유지 보수

9.1 서비스 매뉴얼

자동차 제조업체는 자동차 서비스 및 유지 보수에 대해 다음과 같은 정보를 제공하여야 한다.

- (1) 자동차 내에 있는 유해위험물질의 화학적 물리적 특성
- (2) 자동차의 유지 보수 또는 적절한 조치를 취하는 중 발생 가능한 안전사고에 대한 정보
- (3) 자동차 내의 특정한 물질에 대한 응급 절차
- (4) 유지 보수 도구, 장비, 개인 보호 장비(보호구)
- (5) 연료 제거 등 특정 작업의 절차

9.2 연료제거 절차

(1) 자동차 제조업체 서비스 절차에는 연료 제거 절차에 대한 정보가 포함되어 있어야 한다.

KOSHA GUIDE P - 47 - 2021

- (2) 손상된 자동차의 오류 조건을 고려하여야 한다.
- (3) 불활성 가스 퍼지(purge)에 적합한 수준의 감압을 위하여 자동차 내에 연료 저장장 치 및 시스템이 있어야 한다.
- (4) 제거된 연료는 배기 시스템으로 전달되어야 한다.

9.3 설비 안전

적절한 안전 장비를 갖춘 자동차 정비소 시설에서 자동차 수리를 하여야 한다.

지침 개정 이력

- □ 개정일 : 2021.10.00.
 - 개정자 : 전남대학교 화학공학부 장 희
 - 개정사유: 자동차용 수소연료전지 시스템의 관련 규격 KS R ISO23273, 연료 전지 차량 안전 제원 압축 수소 연료 차량의 수소 위해에 대한 보호, 2019. 이 새로이 제정됨에 따라 기존의 기술지침을 개정하여 사업장에서 이를 활용토록 하여 근로자의 안전을 도모하기 위함.
 - 주요 개정내용
 - 용어의 정의 추가
 - 제4장 연료 시스템의 설계 및 성능 요구사항 추가
 - 제6장 연료주입 요구사항 추가
 - 관련 규격 및 자료
 - SAE J 2578–2009, Recommended Practice for General Fuel Cell Vehicle Safety, 2009
 - KS R ISO23273, 연료 전지 차량 안전 제원 압축 수소 연료 차량의 수소 위해에 대한 보호, 2019.