Definition 1. Let $A = \{a_{ij}\}, B = \{b_{ij}\}$ and $C = \{c_{ij}\}$ be three matrices. Then

$$C = A + B$$

is called the addition of the matrices A and B if

$$c_{ij} = a_{ij} + b_{ij}$$

for all i and j.

Definition 2. Let $\mathbf{A} = (a_{ij})$ be an $m \times n$ matrix and $\mathbf{B} = (b_{kl})$ an $n \times p$ matrix. Then the product \mathbf{AB} is an $m \times p$ matrix $\mathbf{C} = (c_{il})$ where,

$$c_{il} = \sum_{k=1}^{n} a_{ik} b_{kl}$$

where $1 \leq i \leq m$ and $1 \leq l \leq p$.

Definition 3. The expression obtained by eliminating the n variables x_1, \ldots, x_n from n equations,

$$\left. \begin{array}{c}
 a_{11}x_1 + \ldots + a_{1n}x_n = 0 \\
 \vdots \\
 a_{n1}x_1 + \ldots + a_{nn}x_n = 0
\end{array} \right\}$$
(1)

is called the *determinant* of this system of equations, Equation 1. The determinant of matrix A denoted by various different notations, for example $\det(A)$, |A|, $\sum (\pm a_1b_2c_3\cdots)$, $D(a_1b_2c_3\cdots)$, or $|a_1b_2c_3\cdots|$.

Example 1. For a linear system of three variables, Equation 1 can be written as,

$$\begin{cases}
 a_1x + a_2y + a_3z = 0 \\
 b_1x + b_2y + b_3z = 0 \\
 c_1x + c_2y + c_3z = 0
 \end{cases}
 \tag{2}$$

Eliminating x, y and z from Equation 2 gives us,

$$a_1b_2c_3 - a_1b_3c_2 + a_3b_1c_2 - a_2b_1c_3 + a_2b_3c_1 - a_3b_2c_1 = 0$$

Definition 4. A minor M_{ij} of any matrix A is the determinant of a reduced matrix obtained by omitting the i^{th} row and the j^{th} column of A.

Theorem 1. Determinant can be determined by,

$$|A| = \sum_{i=1}^{k} a_{ij} C_{ij}$$

where C_{ij} is called the *cofactor* of a_{ij} . The cofactor C_{ij} can also be denoted as a^{ij} , and,

$$C_{ij} = (-1)^{i+j} M_{ij}$$

where M_{ij} is a minor of A.

Definition 5. Any pairwisely ordered pair in a permutation p is called a *permutation inversion* in p if i > j and $p_i < p_j$.

Theorem 2. Determination of the determinant can also be determined by,

$$|A| = \sum_{\pi} (-1)^{\mathrm{I}(\pi)} \prod_{i=1}^{n} a_{i,\pi(i)}$$

where π is a permutation which ranges over all permutations of $\{1,\ldots,n\}$, and $I(\pi)$ is called the *inversion number* of π .

Theorem 3. Let a be a constant and A an $n \times n$ matrix. Then,

$$|aA| = a^{n} |A|$$

$$|-A| = (-1)^{n} |A|$$

$$|AB| = |A| |B|$$

$$|I| = |AA^{-1}| = |A| |A^{-1}| = 1$$

$$|A| = \frac{1}{|A^{-1}|}$$

Kit Tyabandha, PhD

Department of Mathematics, Mahidol University

Definition 6. A function in two or more variables is said to be *multilinear* if it is linear in each variable separately.

Kit Tyabandha, PhD

Department of Mathematics, Mahidol University

Theorem 4. Determinants of matrix are multilinear in rows and columns.

Example 2. Consider an 3×3 matrix,

$$A = \begin{vmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$$

What Theorem 4 says about multilinearity of determinants is the same as saying that,

$$|A| = \begin{vmatrix} a_1 & 0 & 0 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix} + \begin{vmatrix} 0 & a_2 & 0 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix} + \begin{vmatrix} 0 & 0 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$$

and

$$|A| = \begin{vmatrix} a_1 & a_2 & a_3 \\ 0 & a_5 & a_6 \\ 0 & a_8 & a_9 \end{vmatrix} + \begin{vmatrix} 0 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & a_8 & a_9 \end{vmatrix} + \begin{vmatrix} 0 & a_2 & a_3 \\ 0 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$$

Definition 7. A conformal mapping is a transformation that preserves local angle. The terms function, map and transformation are synonyms.

Definition 8. A similarity transformation is a conformal mapping the transformation matrix of which is,

$$A' \equiv BAB^{-1}$$

Here A and A' are similar matrices.

Theorem 5. Similarity transformation does not change the determinant.

Proof. The proof for this is simply,

$$|BAB^{-1}| = |B| |A| |B^{-1}| = |B| |A| \frac{1}{|B|} = |A|$$

Example 3.

$$|B^{-1}AB - \lambda I| = |B^{-1}AB - B^{-1}\lambda IB|$$

$$= |B^{-1}(A - \lambda I)B|$$

$$= |B^{-1}||A - \lambda I||B|$$

$$= |A - \lambda I|$$

Definition 9. Let A be a square, $n \times n$ matrix. Then the trace of A is,

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} a_{ii}$$

Definition 10. The *transpose* of a matrix

$$A = \{a_{ij}\}$$

is

$$A^T = \{a_{ji}\}$$

Definition 11. The complex conjugate of a matrix

$$A = \{a_{ij}\}$$

is

$$\bar{A} = \{\bar{a}_{ij}\}$$

where $\bar{a} = p - qi$ if a = p + qi.

Definition 12. Let $\phi(n)$ or $\phi(x)$ be a positive function, and let f(n) or f(x) be any function. Then $f = O(\phi)$ if $|f| < A\phi$ for some constant A and all values of n and x. Here O is called the big-O notation which denotes asymptoticity. The notation $f = O(\phi)$ is read, 'f is of order ϕ '.

Theorem 6. Some other properties of the determinant are,

$$|A| = |A^T|$$
 $|\bar{A}| = |\bar{A}|$
 $|\bar{A}| = |\bar{A}|$
 $|I + \epsilon A| = 1 + \text{Tr}(A) + O(\epsilon^2)$, for ϵ small

Example 4. For a square matrix A,

- a. switching rows changes the sign of the determinant
- b. factoring out scalars from rows and columns leaves the value of the determinant unchanged
- c. adding rows and columns together leaves the determinant's value unchanged
- d. multiplying a row by a constant c gives the same determinant multiplied by c
- e. if a row or a column is zero, then the determinant is zero
- f. if any two rows or columns are equal, then the determinant is zero

Theorem 7. Some properties of matrix trace are,

$$\operatorname{Tr}(A) = \operatorname{Tr}(A^T)$$

$$\operatorname{Tr}(A+B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$$

$$\operatorname{Tr}(\alpha A) = \alpha \operatorname{Tr}(A)$$

Kit Tyabandha, PhD

Department of Mathematics, Mahidol University

Problem 1. Prove that,

$$\left(A^T\right)^{-1} = \left(A^{-1}\right)^T$$

Kit Tyabandha, PhD

Department of Mathematics, Mahidol University

Theorem 8.

$$(AB)^T = B^T A^T$$

Proof.

$$(B^T A^T)_{ij} = (b^T)_{ik} (a^T)_{kj}$$

$$= b_{ki} a_{jk}$$

$$= a_{jk} b_{ki} = (AB)_{ji} = (AB)_{ij}^T$$

Definition 13. Let A be a square matrix. Then the *inverse* of A, if it exists, is A^{-1} such that,

$$AA^{-1} = I$$

Furthermore, A is said to be nonsingular or invertible if its inverse exists, otherwise it is said to be singular.

Example 5. For a 2×2 matrix,

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

the inverse of A is,

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If A is a 3×3 matrix, then the inverse of A is,

$$A^{-1} = \frac{1}{|A|} \left\{ \det \left(m_{ij} \right) \right\}$$

where m_{ij} is a minor of A.

If A is an $n \times n$ matrix, then A^{-1} can be found by numerical methods, for example Gauss-Jordan elimination, Gaussian elimination, and LU decomposition.

Example 6. The Gaussian elimination procedure solves the matrix equation $A\mathbf{x} = \mathbf{b}$ by first forming an augmented matrix equation $[A \mathbf{b}]$ and then transform this into an upper triangular matrix $\left[\left\{a'_{ij}\right\}\mathbf{b'}\right]$, where a'_{ij} are all zero except when $i \leq j$. Then,

$$x_i = \frac{1}{a'_{ii}} \left(b'_i - \sum_{j=i+1}^k a'_{ij} x_j \right)$$

The Gauss-Jordan elimination procedure finds matrix inverse by first forming a matrix $[A\ I]$, and then use the Gaussian elimination to transform this matrix into $[I\ B]$. The result matrix B is in fact A^{-1} .

The LU decomposition forms from the matrix A a product LU of two matrices, one lower- while the other upper triangular. This gives us three types of equation to solve, namely when i < j, i = j and i > j, where i and j are the indices of row and respectively column of the matrix product. Then,

$$A\mathbf{x} = (LU)\mathbf{x} = L(U\mathbf{x}) = \mathbf{b}$$

Letting $\mathbf{y} = U\mathbf{x}$ we have $L\mathbf{y} = \mathbf{b}$, and therefore,

$$y_{1} = \frac{b_{1}}{l_{11}}$$

$$y_{i} = \frac{y}{l_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} l_{ij} y_{j} \right)$$

where $i = 2, \ldots, n$.

Then since $U\mathbf{x} = \mathbf{y}$,

$$x_n = \frac{y_n}{u_{nn}}$$

$$x_i = \frac{1}{n_{ii}} \left(y_i - \sum_{j=i+1}^n u_{ij} x_j \right)$$

where i = n - 1, ..., 1.

Theorem 9. Let A and B be two square matrices of equal size. Then,

$$(AB)^{-1} = B^{-1}A^{-1}$$

Proof. Let C = AB. Then $B = A^{-1}C$ and $A = CB^{-1}$, therefore,

$$C = AB = (CB^{-1})(A^{-1}C) = CB^{-1}A^{-1}C$$

Hence $CB^{-1}A^{-1} = I$, and thus $B^{-1}A^{-1} = (AB)^{-1}$.

Definition 14. The *Einstein's summation* is the simplification of notation by omitting a summation sign, keeping in mind that repeated indices are implicitly summed over, for example $\sum_{i} a_{ik} a_{ij}$ becomes

 $a_{ik}a_{ij}$

and $\sum_i a_i a_i$ becomes

 $a_i a_i$

Definition 15. The multiplication of two matrices $A = \{a_{ij}\}$ and $B = \{b_{ij}\}$ is the matrix C = AB such that

$$c_{ik} = a_{ij}b_{jk}$$

Kit Tyabandha, PhD

Department of Mathematics, Mahidol University

Theorem 10. The matrix multiplication is associative. **Proof.**

$$[(ab)c]_{ij} = (ab)_{ik}c_{kj} = (a_{il}b_{lk}) c_{kj}$$
$$= a_{il} (b_{lk}c_{kj}) = a_{il}(bc)_{lj} = [a(bc)]_{ij}$$

Example 7. From Theorem 10, which shows us the associativity of matrix multiplication, we could write the multiplication of three matrices as $[abc]_{ij}$, which is the same as writing $a_{il}b_{lk}c_{kj}$. And this applies in a similar manner to the multiplication of four or more matrices.

Theorem 11. If A and B are two square and diagonal matrices, then

$$AB = BA$$

But in general matrix multiplication is not commutative.

Definition 16. A block matrix is a matrix which is is made up of small matrices put together, for example,

$$\left[egin{array}{ccc} A & B \ C & D \end{array}
ight]$$

where A, B, C and D are matrices.

Theorem 12. Block matrices may be multiplied together in the usual manner, for example,

$$\begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix} = \begin{bmatrix} A_1 A_2 + B_1 C_2 & A_1 B_2 + B_1 D_2 \\ C_1 A_2 + D_1 C_2 & C_1 B_2 + D_1 D_2 \end{bmatrix}$$

provided that all the products involved are possible.

Definition 17. Let $A = \{a_{ij}\}$ be an $n \times n$ matrix. Then A is called a diagonal matrix if $a_{ij} = 0$ when $i \neq j$. Here $1 \leq i, j \leq n$. In other words, a diagonal matrix has its components in the form $a_{ij} = c_i \delta_{ij}$, where c_i is a constant and δ_{ij} is the Kronecker delta,

$$\delta = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

Theorem 13. A square matrix A can be diagonalised by the transformation

$$A = PDP^{-1}$$

where P is made up of the eigenvectors of A and D is the diagonal matrix desired.

Example 8. Matrix diagonalisation can greatly help reducing the number of parameters in a system of equations. For instance, the systems $A\mathbf{x} = \mathbf{y}$ when diagonalised becomes

$$PDP^{-1}\mathbf{x} = \mathbf{y}$$

that is $D\mathbf{x}' = \mathbf{y}'$, where $\mathbf{x}' = P^{-1}\mathbf{x}$ and $\mathbf{y}' = P^{-1}\mathbf{y}$. In this case, if A is an $n \times n$ matrix, we say that our new system obtained through the process of diagonalisation has canonicalised from $n \times n$ to n parameters.

Definition 18. A symmetric matrix is a square matrix A which satisfies

$$A^T = A$$

Example 9. If A is a symmetric matrix, then

$$A^{-1}A^T = I$$

Definition 19. Let A be a square matrix. Then A is said to be orthogonal if

$$AA^T = I$$

Example 10. Definition 19 is the same as saying that

$$A^{-1} = A^T$$

Theorem 14. A matrix A is symmetric if it can be expressed as

$$A = QDQ^T$$

-47-

where Q is an orthogonal matrix and D is a diagonal matrix.

Example 11. Any square matrix A may be decomposed into two terms added together, that is $A_s + A_a$ where A_s is a symmetric matrix and A_a an antisymmetric matrix, called respectively a symmetric part and an antisymmetric part of A. Furthermore,

$$A_s = \frac{1}{2} \left(A + A^T \right)$$

and,

$$A_a = \frac{1}{2} \left(A - A^T \right)$$