

0: 引言-一拳超人&深度学习

深度学习: 我"深"了,也变强了

0: 引言

虽然被证明了有 Universality性质 浅层神经网络 仍不敌传统机 器视觉算法

忽然他变"深"了

真的假的?

横扫天下, 一招搞定

1.1: 广泛涉猎-CV

深度处理数据并形成决策

CV领域

传统"模式识别"算法,目前仅在结构化场景中还保有一些为数不多的阵地,并且这些阵地也在逐步被深度学习蚕食。

对于其他所有通用场景,深度学习已经一统天下了。

智能产生的过程

1.2: NLP

NPL的 派别之争

想通过语法规则 来进行分词的"<mark>规则派</mark>"

国本分数报兴力

想通过对大量真实数据学习 来进行分词的"<mark>经验派</mark>"

因为别人根本听不懂 你们在说什么

产生了两个派别

你说的

hi,小姐姐,最近hinton在一篇关于 CapsuleNet的论文中提出了一种 "动态路由算法"来替代反向传播 更新参数,我觉得很受启发, 你读了么,觉得怎么样呀?

她听的

相同专业背景的人容易自来熟

例如你想跟一个不懂 深度学习的小姐姐搭讪 Hi, 小姐姐, 最近%Y#**&%Y# 我觉得很受启发, 你读了么, 觉得怎么样呀?

1.2: NLP

最终的结果

依靠"语法规则"的分词 准确率在达到某一个<mark>瓶颈</mark> 后就再难提升

原本应该亲近的人竟然如此水火不容

依靠对大量数据学习来分词的,随着累计数据的不断增加, 准确率在缓慢的提升 最终具备"大数据"思维的 "经验派"取得了胜利 NLP的主流转向ML

SQuAD1.1 Leaderboard EM Rank Model Human Performance 82.304 Stanford University (Rajpurkar et al. '16) 87,433 1 BERT (ensemble) Google Al Language Oct 05, 2018 https://arxiv.org/abs/1810.04805 ninet (ensemble) 91.202 2 Microsoft Research Asia Sep 09, 2018 3 QANet (ensemble) 90.490 Google Brain & CMI Jul 11, 2018

不久前谷歌发布了BERT网络,在著名的NLP数据集上横扫了整个 榜单。号称已经在准确率上全面超越了人类。

当然,BERT模型也属于深度学习算法的范畴内,真相如大家所见, 深度学习也已经有在NLP领域"一统江湖"的趋势了。

1.3: GAN

非结构化数据感知 已是DNN天下

输出与反馈呢 /

输出图像和语言来改变其他人思想的 如电影、文字出版物等等

计算机如何输出

图像和语言

输出策略来改变世界 如口渴了会驱动肢体寻取水源 GAN 生成对抗网络

GAN由这个慈眉善目 又有点害羞的好小伙发明

名字很直接

Goodfellow

好 小伙

听说喝酒也能助力AI创新?

一个直观的视频,认识GAN

GAN原理

警察和 嫌犯的故事 G代表生成网络 就是由他来负责生成伪造的视频

不断迭代

人类都无法判 断真伪的视频

A代表对抗网络 由他来负责判断生成视频的真假

1.3: GAN

Tsinghua University

Institute for Data Science

又是DNN?

How are you

怎么

是

你

GAN被誉为 "20年来最酷的深度学习思想"

This small blue bird has a short pointy beak and

This bird is

and pointy beak

that has a cream belly and a short pointed bill

1.4:reinforcement learning-强化学习

老狗三宝: CNN, MCTS, RL

RL 黑盒解释

输入规则 (什么情况下会受到奖励)

RL的早已产生,知道遇见DNN才发生质变

新狗两宝: MCTS, RL

输出策略 (最短时间内获取最大奖励)

How old are you 怎么 是 你

1.4: RL

广义的"策略"- 棍找孔

Institute for Data Science

对于计算机

这么容易 不算策略? 尝试用数学语言建模 并用编程思想描述

十分复杂

什么是棍子, 什么是孔 相对位置,每次移动的最小单位 每次移动的方向等等等等

自动驾驶/机器人属综合问题 但也多多少少用到了DNN知识

1.5: 小结

Institute for Data Science

本次课程的结构

GAN CV **RL** 先看热闹 VG 0F 再看门道

2: 深度学习与大数据

本次作业数据集介绍

	MNIST	ImageNet
样本数量	7万	1420万
类别	10	预期10万,目前2.2万
图像尺寸	28*28	至少为227*227
格式	灰度	灰度(不敢用RGB)

2.1: ImageNet

这种数量级的数据集是如何标注的?

来自167个国家的5万人花了3年的时间,只为了大家能顺利完成这次作业是不是想想还有点小激动呢?

2.1: ImageNet

如此巨制的影响力自然巨大

ImageNet: A Large-Scale Hierarchical Image Database. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, IEEE Computer Vision and Pattern Recognition (CVPR), 2009

安Xが古作子がアンドルInstitute for Data Science

相关比赛

IM ♣GENET Large Scale Visual Recognition Challenge 2010 (ILSVRC2010)

Held as a "taster competition" in conjunction with PASCAL Visual Object Classes Challenge 2010 (VOC2010)

2012年的AlexNet开始,进入深度学习时代

数据科学研究院 Institute for Data Science

比赛停办

ImageNet Object Localization Challenge

ImageNet Object Detection Challenge

ImageNet Object Detection from Video Challenge

2017年最后一届ImageNet挑战赛上,算法在分类任务上全面超过人类随后ImageNet由Kaggle托管,我们在转化任务中也会与Kaggle亲密接触

2.2: 本次作业简化后的数据

本次作业数据集-可视化

二分类: 狗或其他 共有近5万张图片, 狗狗2万多张 每张图片分辨率为227*227 随机挑出5000张作为测试集, 剩余训练集

$$X = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_{51,529}^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_{51,529}^{(2)} \\ \dots & \dots & \dots & \dots \\ x_1^{(43,555)} & x_2^{(43,555)} & \dots & x_{51,529}^{(43,555)} \end{bmatrix}$$

本次训练集样本-已有质变

3: 上一讲知识回顾

一个恰当的错误示范:浅层BP网络拟合本次数据集

3: 上一讲知识回顾

一个恰当的错误示范:浅层BP网络拟合本次数据集

反向传播

$$\delta^{(4)} = a^{(4)} - y_{+}$$

$$\delta^{(3)} = (w^{(3)})^{T} \delta^{(4)} \cdot * g'(z^{(3)})_{+}$$

$$\not \sharp \, \not = g'(z^{(3)}) = a^{(3)} \cdot * (1 - a^{(3)})_{+}$$

$$\delta^{(2)} = (w^{(2)})^{T} \delta^{(3)} \cdot * g'(z^{(2)})_{+}$$

$$\delta^{(l)} = (w^{(l)})^T \delta^{(l+1)} \cdot * g'(z^{(l)}) \cdot$$
$$g'(z^{(l)}) = a^{(l)} \cdot * (1 - a^{(l)}) \cdot$$

3: 上一讲知识回顾

一个恰当的错误示范:浅层BP网络拟合本次数据集

梯度递减-更新参数

求每个样本 (共 m 个) 上的导数并求和

1、第1个样本上计算:
$$\Delta_{ij}^{(l)} = a_j^{(l)} \delta_i^{(l+1)}$$
 2、计算剩余m-1个样本,并累加 $\Delta_{ij}^{(l)} \coloneqq \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$ 3、累加和过除以m $D_{ij}^{(l)} = \frac{1}{m} \Delta_{ij}^{(l)}$ $w_{ij}^{(l)} = w_{ij}^{(l)} - \alpha D_{ij}^{(l)}$

最终结果 二分类50%准确率重现江湖

女	模型精度。	
条件设置。	训练集· /%。	测试集· /%。
输入图像:灰度图↓		
训练数据: 37214₽		
测试数据: 50004		
模型结构: 4层····↓		
227*227, 5, 3, 1.		
Loss function: 交叉// 交叉// // // // // // // // // // // // //		
优化方法: GradientDescentOptimizer。	48.58₽	50.00₽
Batch Size: 64		
Epoches: 10₽		
<u>Lr</u> :·0.001·&&·learning·rate·decay· · ₽		
初始化: xavier initializer↓		
激活函数: relu(隐层)-&&-sigmoid(输出)		
正则: L2-		

拟合能力不足需要继续加深,可以直接加深吗?

一个问题限制了神经网络20年无法变深

Mengbi Under the Wuke

Warning: 即将进入本次课程最重要环节

本次课程确实是"0门槛",但有一个隐藏条件:

从第一讲开始看

如果后续内容令你懵逼,不要害怕 请在学堂在线搜索"青年AI"快速回顾

Institute for Data Science

简化问题-网络结构简化

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

- •隐藏层多了1倍
- •不需要矩阵化表示
- •不需要**Δ**^(l)_{ii}

- •没有下标
- .*符号没有了
- •alpha=1

- •非关键项没画出
- •不用转置了

前馈传播

$$a^{(1)} = x$$

$$z^{(l)} = w^{(l-1)}a^{(l-1)}$$

$$a^{(l)} = g(z^{(l)}).$$

反向传播

$$\delta^{(6)} = a^{(6)} - y$$

$$\delta^{(l)} = w^{(l)} \delta^{(l+1)} g'(z^{(l)}) \,.$$

$$g'(z^{(l)}) = a^{(l)}(1 - a^{(l)})$$
.
梯度递减

$$D^{(l)} = a^{(l)} \delta^{(l+1)}$$
.

$$w^{(l)} = w^{(l)} - D^{(l)}.$$

输入数据简化 & 模拟规则

输入数据

	身高 (m) X1		月薪(元)X2		
	原始值	归一化后	原始值	归一化后	标注
1	1.95252	0.427262	8962.728	0.264914	1
2	1.753169	0.022738	6875.233	0.073273	1
3	1.86274	0.24508	11199.48	0.470257	1
4	1.752128	0.020626	9702.441	0.332822	1
5	1.712846	-0.05909	9525.321	0.316562	1

- •采用第二讲数据
- •每次迭代输入1个样本
- •一共只迭代5次

模拟过程

- 1、物始化权值;
- 2 输入样本并计算前馈传播;
- 3、 通过前馈传播计算所有误差;
- 4、 通过误差计算每一层权值的导数;
- 5、 模拟权值更新。

Institute for Data Science

开始模拟

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

1、权值初始化

- •邀请4位同学上台代表4个权值
- •明确初始点与终点
- •按照计算结果向终点更新

2、前馈传播;

$$a^{(1)} = x$$

$$z^{(l)} = w^{(l-1)}a^{(l-1)}$$

$$a^{(l)} = g(z^{(l)})$$

a1	0.42726183643262816
aı	0.26491365101710074
a2	0.844510043
-2	0.06240122
a3	0.86348123
a4	0.865702198
a5	0.865960202
a6	0.865990147

误差计算

$$\delta^{(6)} = a^{(6)} - y$$

$$\delta^{(l)} = w^{(l)} \delta^{(l+1)} g'(z^{(l)})$$

$$g'(z^{(l)}) = a^{(l)}(1 - a^{(l)})$$

delta6	-0.134009853
delta5	-0.015554943
delta4	-0.001808447
delta3	-2.13E-04
delta2	-2.80E-05

4、梯度计算

$$D^{(5)} = a^{(5)} \delta^{(6)}$$

 $D^{(5)} = a^{(5)} \quad (a^{(6)} - y)$

$$D^{(4)} = a^{(4)} \quad w^{(5)}g'(z^{(5)}) \quad \delta^{(6)}$$

$$D^{(l)} = a^{(l)} \delta^{(l+1)}$$

Layer 1

$$\delta^{(6)} = a^{(6)} - y$$

$$\delta^{(l)} = w^{(l)} \delta^{(l+1)} g'(z^{(l)})$$

$$g'(z^{(l)}) = a^{(l)}(1 - a^{(l)})$$

$$D^{(3)} = a^{(3)} w^{(4)} g'(z^{(4)}) \qquad w^{(5)} g'(z^{(5)}) \qquad \delta^{(6)}$$

 $D^{(3)} = a^{(3)} \ w^{(4)} w^{(5)} \ a^{(4)} (1 - a^{(4)}) \ a^{(5)} (1 - a^{(5)}) \ (a^{(6)} - y)$

$$D^{(2)} = a^{(2)} \ w^{(3)} g'(z^{(3)}) \ w^{(4)} g'(z^{(4)}) \ w^{(5)} g'(z^{(5)}) \ \delta^{(6)}$$

$$D^{(2)} = a^{(2)} w^{(3)} w^{(4)} w^{(5)} a^{(3)} (1 - a^{(3)}) a^{(4)} (1 - a^{(4)}) a^{(5)} (1 - a^{(5)}) (a^{(6)} - y)$$

数据科学研究院

Institute for Data Science

持续迭代模拟

、更新规则

 $w^{(l)} = w^{(l)} - D^{(l)}$

- •要直观的反映到现实世界
- •将计算值放大60倍为步数
- 每一步的大小为1块地砖
- •按照计算结果向终点更新

	1-计算值	1-实际步数
D5	-0.12	-7.2
D4	-0.013	-0.78
D3	-0.0016	-0.096
D2	-0.00018	-0.0108

2-计算值	2-实际步数	3-
-0.094	-5.64	-
-0.0119	-0.714	
-0.0014	-0.084	-(
-0.00016	-0.0096	-0

3-计算值	3-实际步数
-0.081	-4.86
-0.01	-0.6
-0.0013	-0.078
-0.00015	-0.009

4-计算值	4-实际步数
-0.067	-4.02
-0.0097	-0.582
-0.0011	-0.066
-0.00013	-0.0078

5-计算值	5-实际步数
-0.068	-4.08
-0.0088	-0.528
-0.001	-0.063
-0.00012	-0.0072

采访一下各位权值的感受

距离输出层越远,梯度越小,权值更新的越慢

Institute for Data Science

小结

	1-计算值	1-实际步数
D5	-0.12	-7.2
D4	-0.013	-0.78
D3	-0.0016	-0.096
D2	-0.00018	-0.0108

2-计算值	2-实际步数
-0.094	-5.64
-0.0119	-0.714
-0.0014	-0.084
-0.00016	-0.0096

3-计算值	3-实际步数
-0.081	-4.86
-0.01	-0.6
-0.0013	-0.078
-0.00015	-0.009

	4-计算值	4-实际步数
l	-0.067	-4.02
	-0.0097	-0.582
	-0.0011	-0.066
	-0.00013	-0.0078

5-计算值	5-实际步数
-0.068	-4.08
-0.0088	-0.528
-0.001	-0.063
-0.00012	-0.0072

- •横轴是迭代次数,越往右侧越大
- •纵轴是每一次迭代更新量D的取值大小,越往下越小,取值越小代 表更新越慢
- •4条不同颜色的曲线,代表了4个不同隐藏层
- 随着迭代次数的增加,每一层的更新速度都在减小
- •每层之间更新速度相差1个数量级,距离输出层越远更新越慢

如果隐藏层继续增加会怎样?

Tsinghua University

数据科字研究院 Institute for Data Science

详细过程数据

lr=1	参数	样本1	样本2	样本3	样本4	样本5
	a1	0.42726183643262816 0.26491365101710074	0.022738348122339595 0.07327263834999487	0.24508024911229243 0.47025690528852293	0.020625885863829768 0.3328224388374417	'-0.0590857100936783 0.3165621031353404
	a2	0.844510043	0.749517347	0.847536926	0.794708552	0.778612798
	a3	0.86348123	0.851935833	0.863920453	0.857622732	0.855677899
	a4	0.865702198	0.864721822	0.866449181	0.866012666	0.866055607
	a5	0.865960202	0.868974414	0.871897244	0.87424135	0.876374878
前向	a6	0.865990147	0.89127452	0.908727055	0.921425419	0.93108018
	w1	1 1	1.000011960584024 1.0000074158787702	1.00001284411393 1.0000102629882888	1.0000183137030152 1.0000207579671578	1.0000188668444303 1.0000296835413627
	w2	1	1.000180035	1.000335133	1.000481464	1.000612034
	w3	1	1.00156156	1.002956955	1.00422199	1.00537111
	w4	1	1.013465948	1.025412799	1.0361054	1.045757047
	w5	1	1.1160472	1.210526859	1.290107489	1.358800636
			-/			
	delta6	-0.134009853	-0.10872548	-0.091272945	-0.078574581	-0.06891982
	delta5	-0.015554943	-0.01381583	-0.012340714	-0.011144926	-0.010146039
	delta4	-0.001808447	-0.001637911	-0.001464295	-0.00133989	-0.001230829
	delta3	-2.13E-04	0.000206931	-0.000172654	-1.64E-04	-0.000152815
	delta2	-2.80E-05	-3.89E-05	-2.23E-05	-2.68E-05	-2.64E-05
后向	Δ5	-0.1160472	-0.09447966	-0.079580629	-0.068693148	-0.060399599
	∆4	-0.013465948	-0.01194685	-0.010692601	-0.009651647	-0.008787034
	Δ3	-0.00156156	-0.001395395	-0.001265035	-0.00114912	-0.001053193
	△2	-1.80E-04	-0.000155098	-0.000146331	-1.31E-04	-0.000118984
	Δ1	-1.1960584024080716e-05 -7.41587877019681e-06	-8.835299073628376e-07 -2.8471095184789783e-06	-5.469589083618191e-06 -1.0494978869079214e-05	-5.53141415172832e-07 -8.925574204919652e-06	1.5573614911281898e-06 -8.343838606524198e-06

4.2、梯度弥散/消失 - 揭示原因

回顾梯度计算过程

$$D^{(2)} = a^{(2)} \ w^{(3)} g'(z^{(3)}) \ w^{(4)} g'(z^{(4)}) \ w^{(5)} g'(z^{(5)}) \ \delta^{(6)}$$

$$D^{(2)} = a^{(2)} \ w^{(3)} w^{(4)} w^{(5)} \ a^{(3)} (1 - a^{(3)}) \ a^{(4)} (1 - a^{(4)}) \ a^{(5)} (1 - a^{(5)}) \ (a^{(6)} - y)$$

梯度消失的秘密

感觉有什么奇怪 的东西混进来了

由于激活函数sigmiod天然的缺陷

导致网络每加深一层,梯度会缩小至少4倍(一般为10倍)

5.1、梯度消失/爆炸解决方法

Institute for Data Science

激活函数有问题怎么破?

编号。	激活函数名称。	函数公式	函数图形	函数求导公式。	备注
1.	Sigmoid -	公式: $\sigma(z) = \frac{1}{1 + e^{-z}}$ 值域: $(0, 1)$	$\sigma(z)$ 0.5 0.5 0.5	公式: $\sigma'(z) = \sigma(z) * (1 - \sigma(z))$ 值域: $(0, 0.25)$	优点:可以将函数值压缩到(0,1)之间,提高模型的稳定性不足:函数导数最大值为 0.25,使得反向传播时,梯度传播逐层递减,浅层参数几乎更新不到,即产生梯度消失现象;且它是非 0 均值分布。
2.	Tanh -	公式: tanh(x) = 2σ(2x) - 1 值域: (-1, 1)	10 -5 5 10	公式: $tan'(x) = 1 - tan^2(x)$ 值域: $(0, 1]$	优点:与 sigmoid 相比,是 tanh 是 0 均值分布,导数值域更大,缓解了反向传播时梯度消失的问题。 不足:由于反向传播时,梯度仍然是有损传播,因此,模型层数较多时,仍然存在梯度消失问题。
3.	Relu	公式: $relu(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$ 值域: $[0, +\infty)$	f(y) = y $f(y) = 0$	公式: $relu'(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$ 值域: 1	优点:与 sigmoid\tanh 相比, relu 作为激活函数的模型, 反向传播时梯度可以无损失传播, 解决了梯度消失问题 不足:由于 relu 值是非负的,当较大梯度流过神经元时, 会导致神经元"dead",即不会再被激活。

关注激活函数导数的值域

目前一般采用Relu作为激活函数

5.2、梯度爆炸

ReLU也有问题: 梯度爆炸

再次回顾梯度计算过程

$$D^{(2)} = a^{(2)} w^{(3)} w^{(4)} w^{(5)} a^{(3)} (1 - a^{(3)}) a^{(4)} (1 - a^{(4)}) a^{(5)} (1 - a^{(5)}) (a^{(6)} - y)$$

梯度爆炸的秘密

$$z^{(l+1)} = w^{(l)} a^{(l)}$$

导致 $z^{(l+1)}$ 极负

导致**w**^(l)极负

5.3、ReLU家族简介

编号。	独立之界自转	マ 料 ハ 中	函数图形	三米子 巴八子	W 33-
細写。	激活函数名称。	函数公式。	函数图形	函数求导公式。	备注。
1.	Relu	公式: $relu(x) = \begin{cases} x & x \ge 0 \\ 0 & x < 0 \end{cases}$ 值域: $[0, +\infty)$	f(y) = y $f(y) = 0$	公式: $relu'(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$ 值域: 1	优点:与sigmoid\tanh相比,relu作为激活函数的模型、反向传播时梯度可以无损失传播,解决了梯度消失问题。 不足:由于relu值是非负的,当较大梯度流过神经元时,会导致神经元"dead",即不会再被激活。
2 -	Leaky <u>ReLU</u> "L- <u>Relu</u> "	公式: $ L_{Relu}(x) = \begin{cases} x & x \ge 0 \\ \alpha x & x < 0 \end{cases} $ 值域: $[-\alpha, +\alpha)$	f(y) = y $f(y) = ay$	公式: $ L_{Relu}'(x) = \begin{cases} 1 & x \ge 0 \\ \alpha & x < 0 \end{cases} $ 值域: α or 1	优点:与 relu 相比,L-Relu 保留了负半轴的值,缓解了 relu 中神经元"dead"的问题。 不足: L-Relu 负半轴的保留参数α是经验值设定的;另外, α通常是一个很小的值,如 0.001,负半轴信息保留的不多。
3.	Parametric <u>ReLU</u> "P- <u>ReLU</u> "	公式: $P_{Relu}(x) = \begin{cases} x & x \ge 0 \\ \alpha x & x < 0 \end{cases}$ 值域: $[-\alpha, +\alpha)$	f(y) = y $f(y) = ay$	公式: $P_{Relu}'(x) = \begin{cases} 1 & x \ge 0 \\ \alpha & x < 0 \end{cases}$ 值域: α or 1	优点:与 L-Relu 相比, P-Relu 负半轴的保留参数α是 训练中不断更新的,而非经验值设定 不足:负半轴值域是[-α,0),不能保证是一个噪声 稳定的去激活状态

激活函数看两点: 原公式和求导公式

5.3、ReLU家族简介

实际情况是TF仍然默认采用原版ReLU

5.4、通用解决方法 - 初始化

我是来"自杀"凑数的 请忽略我

七分天注定 三分靠打拼

			1		
	编号	初始化方法	权重计算。	适用的激活函数	备注
	1.	Zero Initialization	$W_{i,j}=0$	Sigmoid	0 值初始化,在包含隐层的深度学习中会导致训练失败,不推荐
	2.	Random Initialization	$W_{i,j} = randn()$ 其中, $randn()$ 为随机函数。	任何激活函数	若选用的随机分布方法(正态分布、均匀分布等)不合适,会导致优化陷入困境。
TD 607			$W_{i,j} \sim N\left(0, \sqrt{\frac{2}{n_{in} + n_{out}}}\right)$	Y.	2010 年,Xavier Glorot, Yoshua Bengio 提出的。基于 tanh 有严格的理论推导。
我们 都是正规军 我的命运我	3 Xavier Initialization	Xavier Initialization	$W_{i,j} \sim U\left(-\sqrt{\frac{6}{n_{in}+n_{out}}}, \sqrt{\frac{6}{n_{in}+n_{out}}}\right)$	Tanh (强烈建议)	论文: Understanding the difficulty of training deep feedforward neural network
做主		其中, N 〇表示正态分布; U 〇表示均匀分布 n_{in} 表示前一层神经元的个数; n_{out} 表示当前层神经元个数		论文链接: http://proceedings.mlr.press/v9/glorot10a/glorot10a.pd	
			$W_{i,j} \sim N\left(0, \sqrt{\frac{2}{n_{in}}}\right)$		2015年,何凯明提出的。基于 relu 有严格的理论推导。
	4.	4 MSRA Initialization	$W_{i,j} \sim U\left(-\sqrt{\frac{6}{n_{in}}}, \sqrt{\frac{6}{n_{in}}}\right)$	Relu 家族 (强烈建议)	论文: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
			其中, N 〇表示正态分布; U 〇表示均匀分布; n_{in} 表示前一层神经元的个数; n_{out} 表示当前层神经元个数		论文链接: https://arxiv.org/pdf/1502.01852.pdf。
	5 -	Pre-train Initialization	$W_{i,j} = model_{other}(W_{i,j})$ 其中, $model_{other}(W_{i,j})$ 表示其他已有模型对应的 $W_{i,j}$	任何激活函数。	很好的训练策略,推荐。

我"开挂"会随便告诉别人吗?

6.1、过拟合问题 early-stopping

数据科学研究院 Institute for Data Science

啥是过拟合?

Error

Farly
Testing Error

Training Error

Training Steps

过拟合会引起的loss变化 &解决办法

Early-stopping ≈ 找准时机"踩刹车"

6.2, Ir-decay

车跑的太快了(α 太大了),怎么办?

公式: α 随着迭代次数增加而逐步降低

$$\alpha = \frac{1}{1 + \text{decay. rate} * \text{iteration}} \alpha^0$$

 $\alpha = {\rm decay.} rate^{iteration} \alpha^0$

TE自动实现

learning_rate = tf.train.exponential_decay(1r,global_step,decay_steps=sample_size/batch_size,decay_rate=0.98

直观认识

前期大步跑,后期小步走

6.3、数据增强

Institute for Data Science

为什么我们需要尽可能多的数据? --DNN+"全集"

Color Jittering 亮度、饱和度、对比度等

Random Scale

Random Crop

6.3、数据增强

Rotation/Reflection

Noise

其实最有效的还是多找"真实数据"

6.4、其他方法

$$J(w) = J_0(w) + \frac{1}{2m} \lambda \sum_{j=1}^{n} w_j^2$$

$$J(w) = J_0(w) + \frac{1}{2m} \lambda \sum_{j=1}^{n} |w_j|$$

另有随AlexNet一起提出的drop-out,将在下次课随AlexNet一起介绍

7.1、处理大数据的小技巧 mini-batch

Institute for Data Science

$$X = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & \dots & x_{51,529}^{(1)} \\ x_1^{(2)} & x_2^{(2)} & \dots & x_{51,529}^{(2)} \\ \dots & \dots & \dots & \dots \\ x_1^{(43,555)} & x_2^{(43,555)} & \dots & x_{51,529}^{(43,555)} \end{bmatrix} \xrightarrow{\not \text{$\not$$} \not \text{$\not$$} \not \text{$\not$$} \not \text{$\not$$}} X = \begin{bmatrix} x^{\{1\}} \\ x^{\{2\}} \\ x^{\{2\}} \\ \dots \\ x^{\{\frac{n}{m}\}} \end{bmatrix}$$

一次丢一个 mini-batch给模型迭代

假设有m个样本 (此处m=43,555)

切分成好多小包 每个小包n个样本 $\frac{n}{m}$ 个样本迭代完一轮 是一个epoch

Batch gradient descent

Mini-batch gradient descent

Mini-batch是否有效

7.1、处理大数据的小技巧 mini-batch

Mini-batch gradient descent

batch_size: 1

batch_size: mini_ba

batch_size: full_batch

BGD (Batch Gradient Descent)

7.2 batch-norm

Mini-batch导致训练震荡,是否有解决办法?

$$D^{(2)} = a^{(2)} w^{(3)} g'(z^{(3)})$$

$$w^{(4)}g'(z^{(4)})$$

$$w^{(5)}g'(z^{(5)}) \delta^{(6)}$$

Loss震荡意味着 权值更新较大

z^(l)代表了输入信号 对权值更新影响很大

每一次输入的 样本都不相同

 $z^{(l)}$

 $z^{(l)}$ 的取值变化很大

权值更新剧烈

解决

办法

对每一层的 $z^{(l)}$ 进行归一化

7.2 batch-norm

Batch-norm 说明

假设第l层共有m个神经元

每个神经元的 $z^{(i)}$ (i =1,2,...,m)经过batch-norm处理后的结果为 $\tilde{z}^{(i)}$,则:

$$\mu = \frac{1}{m} \sum_{i=1}^{m} z^{(i)}$$

$$\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (z^{(i)} - \mu)^2$$

$$z_{norm} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^2 + \varepsilon}}$$

$$\tilde{z}^{(i)} = \gamma z_{norm} + \beta$$

- γ 和 β 为新的超参,其本质是改变 $\tilde{z}^{(i)}$ 的分布
- $\bullet \gamma$ 和 β 也仿照权值,由梯度更新
- •引入batch-norm后, β 可以替代原有的偏置b
- •在进行测试时, μ 以及 σ 有评估方法,一般由TF自行评估(full-batch或者最近的若干个mini-batch)

注意采用mini-batch时最好配套batch-norm

8.1: 尾声-训练结果

条件设置。	模型精度。		
	训练集• /%。	测试集· /%。	
输入图像:灰度图↓			
训练数据: 37214。			
测试数据: 5000-	LX.	X	
模型层数: 4.			
Loss·function:交叉熵。	22/12/		
Batch Size: 128	92.43	93.94 ₽	
Epoches: 10			
Lr:-0.1-&&·learning·rate·decay· · -			
初始化: xavier initializer ₽	XT		
激活函数: relu(隐层)·&&·softmax(输出)·			

加深 模型层数

正确的 激活函数

良好的初始化

足够的 数据

Mini-batch &Batchnorm

避免 过拟合

8.2: 尾声-作业说明

作业1: 浅层神经网络拟合ImageNet;

知识回顾

作业2: "梯度消失"小实验

初步了解调参辅助工具

作业3: DNN拟合ImageNet

感受DNN的力量

Institute for Data Science

- 1、姚超被老板捉走开组会了
- 2、本次答疑时间为5min

扫码加好友进群

关注直播间公告