Relatório Massa-Mola

FISA75 - 2023.1

Kaio Carvalho; Vinícius Pinto; Matheus Rheinschmitt; Elias Neto
Entregue a Eliel Gomes da Silva Neto, professor da disciplina Elementos de
Eletromagnetismo e Circuitos Elétricos

I.	Introdução
II.	Experimentos
Exp	perimento 1:
Exp	perimento 2:

Experimento 3:

Para ambos experimentos 1 e 2, que são dependentes da massa, foram medidas as massas do suporte e de cada cilindro rotulado (1), de acordo com a tabela:

Objeto	Massa (kg)	Objeto	Massa (kg)
Suporte	0,0127	Cilindro 1	0,0101
Cilindro I	0,0501	Cilindro 2	0,0102
Cilindro II	0,0502	Cilindro 3	0,0102
Cilindro III	0,0498	Cilindro 4	0,0100

Todas as massas foram medidas numa balança digital com precisão de 0,0001 kg.

III. RESULTADOS

III.A. EXPERIMENTO 1

Foi medida posição da extremidade livre da mola apenas com o suporte pendurado (2) e para cada combinação de cilindros pendurados na mola, foi medida a nova posição da extremidade livre da mola (3).

[DIAGRAMA DO EXPERIMENTO]

Posição da extremidade livre da mola apenas com o suporte pendurado (2) = **0,210** m. A posição foi medida utilizando uma régua milimetrada. Pela dificuldade de medição, consideramos precisão de **0,002** m.

O objetivo do experimento é obter a constante elástica K da mola. Uma abordagem é obter um K_i para cada medida i feita no experimento e calcular a média dos seus valores. Isso é possível já que $F_{el} = -Kx$ e portanto precisamos apenas da força exercida na mola (força peso) e do seu deslocamento com relação a posição de relaxamento, ambas grandezas calculáveis a partir de uma única medida.

Considere uma única medida, com m sendo a massa total anexada à mola, p a posição da extremidade livre da mola carregando a massa m e p_0 a posição de relaxamento da mola. O deslocamento x é dado por $x = p - p_0$ e a força peso

 $F_{v}=mg$, onde g é a aceleração da gravidade. E portanto:

$$F_{el}^{p} = -Kx \implies -F_{p} = -Kx \implies mg = K(p - p_{0}) \implies K = \frac{mg}{p - p_{0}}$$

Propagando os desvios, temos:

$$\Delta K = \left| \frac{\partial K}{\partial m} \right| \Delta m \ + \ \left| \frac{\partial K}{\partial g} \right| \Delta g \ + \ \left| \frac{\partial K}{\partial p} \right| \Delta p \ + \ \left| \frac{\partial K}{\partial p_0} \right| \Delta p_0 = \frac{g}{p-p_0} \Delta m \ + \ \frac{m}{p-p_0} \Delta g \ + \frac{mg}{(p-p_0)^2} \Delta p \ + \ \frac{mg}{(p-p_0)^2} \Delta p_0$$

Observe que m e x são proporcionais, já que $m = \frac{K}{g}x$. Desta forma, podemos considerar a posição de relaxamento da mola como sendo a própria medida (2), desconsiderando a massa do suporte já anexada. Entretanto, perceba que como cada medida de massa foi feita utilizando uma combinação de cilindros, m é a soma das massas dos cilindros envolvidos, e portanto $\Delta m = n \times 0,0001$ kg, onde n é a quantidade de cilindros utilizados na combinação.

Utilizamos $g = 9,7836 \text{ m/s}^2$ para os cálculos, de acordo com a referência [1], com altitude 50m e latitude 15°, valores aproximados para o local do experimento com base na ferramenta Google Earth (disponível em https://www.google.com.br/intl/pt-BR/earth/). Devido às aproximações feitas, consideramos $\Delta g = 0,003 \text{ m/s}^2$.

A tabela seguinte mostra os valores de F_p , x e K obtidos. São constantes $p_0 = 0$, 210 m; $\Delta p_0 = \Delta p = 0$, 002 m e $\Delta x = 0$, 004 m.

	Experimento 1 (constante elástica)						
m (kg)	Δm (kg)	p (m)	<i>x</i> (m)	$F_p(N)$	$\Delta F_p(N)$	K (N/m)	Δ <i>K</i> (N/m)
0,0101	0,0001	0,221	0,011	0,099	0,002	9	4
0,0203	0,0002	0,229	0,019	0,199	0,003	10	3
0,0305	0,0003	0,239	0,029	0,298	0,004	10	2
0,0405	0,0004	0,250	0,040	0,396	0,005	10	2
0,0501	0,0001	0,260	0,050	0,490	0,002	9,8	0,9
0,0602	0,0002	0,270	0,060	0,589	0,003	9,8	0,7
0,0704	0,0003	0,279	0,069	0,689	0,004	10,0	0,7
0,0806	0,0004	0,291	0,081	0,789	0,005	9,7	0,6
0,0906	0,0005	0,299	0,089	0,886	0,006	10,0	0,6
0,1003	0,0002	0,309	0,099	0,981	0,003	9,9	0,5
0,1104	0,0003	0,318	0,108	1,080	0,004	10,0	0,5
0,1206	0,0004	0,329	0,119	1,180	0,005	9,9	0,4
0,1308	0,0005	0,339	0,129	1,280	0,006	9,9	0,4
0,1408	0,0006	0,348	0,138	1,378	0,007	10,0	0,4
0,1501	0,0003	0,356	0,146	1,469	0,004	10,1	0,3

Obtemos a média das constantes elásticas $K_m = 10 \pm 1$.

Outra abordagem para se encontrar K é obter a curva de ajuste *linear* do gráfico **Força** × **Deslocamento** dos pontos medidos e obter K como o coeficiente angular desta reta.

Perceba que o coeficiente angular é dado por 9, 99; valor dentro da margem de erro do K_m encontrado.

[ANALISAR ACURÁCIAS]

III.B. EXPERIMENTO 2

Para cada valor de massa (combinação de cilindros), foi gravado um vídeo da oscilação efetuada pela mola. Posteriormente, cada vídeo foi analisado, medindo-se o frame inicial (1) e o frame final (2) referente ao tempo de 10 oscilações.

[DIAGRAMA DO EXPERIMENTO]

Os vídeos estavam em formato mp4 e foram analisados utilizando o programa X.

A identificação de cada frame tem um erro associado, devido à compressão associada ao formato, além da precisão do programa. Observando e manipulando o programa, concluímos que há uma variação de até 3 frames.

A frequência de frames do vídeo foi identificada pelo programa como **30,029** fps (frames por segundo). Como se trata de uma medida digital, consideramos o desvio como **0,001** fps.

O objetivo do experimento é observar a relação da massa total m com período de oscilação T, além de calcular a constante elástica da mola K utilizando estes dados. Considere uma única medida, sendo f_0 o frame inicial, f o frame final e fq a frequência de frames (fps). Para se obter o tempo t de um grupo de oscilações em segundos, realizamos a conversão $t=\frac{f-f_0}{fq}$. E então obtemos $T=\frac{t}{n}$, onde n é a quantidade de oscilações observadas. Propagando os desvios, temos:

$$\Delta t = \left| \frac{\partial t}{\partial f} \right| \Delta f + \left| \frac{\partial t}{\partial f_0} \right| \Delta f_0 + \left| \frac{\partial t}{\partial f q} \right| \Delta f q = \frac{1}{fq} \Delta f + \frac{1}{fq} \Delta f_0 + \frac{f - f_0}{fq^2} \Delta f q$$

$$\Delta T = \frac{1}{n} \Delta t$$

De acordo com a teoria, podemos utilizar a relação $T=2\pi\sqrt{\frac{m}{K}}$ para obter a constante elástica, fazendo $K=4\pi^2\frac{m}{T^2}$. Portanto, é possível obter um K_i para cada medida feita e calcular a média dos valores, como no experimento anterior. Propagando os desvios, temos:

$$\Delta K = \left| \frac{\partial K}{\partial m} \right| \Delta m + \left| \frac{\partial K}{\partial T} \right| \Delta T = 4\pi^2 \frac{1}{T^2} + 8\pi^2 \frac{m}{T^3} = 12\pi^2 \left(\frac{m}{T^3} + \frac{1}{T^2} \right)$$

Diferente do experimento anterior, aqui a massa do suporte deve ser considerada. Temos que m é a soma das massas dos cilindros e do suporte. Portanto $\Delta m = (k+1) \times 0,0001$ kg, onde k é a quantidade de cilindros utilizados na combinação.

A tabela seguinte mostra os valores de T e K obtidos. São constantes n=10, $\Delta f_0=\Delta f=3$ frames, fq=30, 029 fps e $\Delta fq=0$, 001 fps.

Experimento 2 (período e constante elástica)						
$f - f_0$ (frames)	m (kg)	Δm (kg)	T (s)	ΔT (s)	<i>K</i> (N/m)	Δ <i>K</i> (N/m)
95	0,0228	0,0002	0,32	0,02	9	2
112	0,0330	0,0003	0,37	0,02	9	2
127	0,0432	0,0004	0,42	0,02	10	1
140	0,0532	0,0005	0,47	0,02	10	1
195	0,0933	0,0005	0,65	0,02	8,7	0,6
203	0,1130	0,0003	0,68	0,02	9,8	0,6
210	0,1231	0,0004	0,70	0,02	9,9	0,6
220	0,1333	0,0005	0,73	0,02	9,8	0,6
226	0,1435	0,0006	0,75	0,02	10,0	0,6
234	0,1535	0,0007	0,78	0,02	10,0	0,6
241	0,1628	0,0004	0,80	0,02	10,0	0,6

Obtemos a média das constantes elásticas $K_m = 9, 6 \pm 0, 8$.

Da relação $T=2\pi\sqrt{\frac{m}{K}}$, também derivamos $m=\frac{K}{4\pi^2}T^2$. Observe que m é proporcional a T^2 . Portanto há uma outra abordagem para se encontrar K, utilizando uma curva de ajuste $Y=aX^2$ no gráfico **Massa** \times **Período**. Desta forma, temos que $a=\frac{K}{4\pi^2}$ \Rightarrow $K=4\pi^2a$.

No seguinte gráfico, gerado utilizando a ferramenta MyCurveFit (disponível em https://mycurvefit.com/), foi calculado o parâmetro de ajuste $a=0,248359\pm0,00279$. Aplicando na equação e majorando o desvio propagado, temos $K=4\pi^2\times0,248359=9,8\pm0,2\,\mathrm{N/m}$.

[ANALISAR ACURÁCIAS]

III.c. Experimento 3

Utilizando uma combinação de cilindros fixa, foi gravado um vídeo da oscilação efetuada pela mola. O vídeo foi analisado, medindo-se para cada frame, a posição da extremidade livre da mola.

[DIAGRAMA DO EXPERIMENTO]

Houve dificuldade de medição da posição em um dado frame, causada por fatores como a qualidade do vídeo, borrão de movimento e o ângulo da câmera. Portanto, consideramos um desvio bem maior, de 0.02 m. E assim como no experimento anterior, a medida do frame pode variar em até 3 unidades e a frequência de frames é 30.029 ± 0.001 fps.

Vamos obter um gráfico **Deslocamento** × **Tempo**, para que se possa calcular a velocidade e aceleração em cada ponto, além de obter os parâmetros da oscilação **amplitude**, **velocidade angular** (ω) e a **fase** (ϕ).

Para uma dada medida, sejam f o frame, x a posição e fq a frequência de frames. Como o vídeo foi analisado frame a frame, os valores de f são sequenciais: $f_0 = 0$, ..., $f_n = n$, portanto omitiremos seus valores na tabela. O tempo é dado por $t = \frac{f}{fq}$, e portanto $\Delta t = \frac{1}{fq}\Delta f + \frac{f}{fq^2}\Delta fq$. São constantes $fq = 30,029 \pm 0,001$ fps, $\Delta f = 3$ frames e $\Delta x = 0,02$ m. Segue a tabela com os valores obtidos:

Experimento 3					
<i>x</i> (m)	<i>t</i> (s)	Δt (s)			
0,38	0,0	0,1			
0,37	0,0	0,1			
0,35	0,1	0,1			
0,33	0,1	0,1			
0,32	0,1	0,1			
0,29	0,2	0,1			
0,28	0,2	0,1			
0,26	0,2	0,1			
0,26	0,3	0,1			
0,25	0,3	0,1			
0,25	0,3	0,1			
0,26	0,4	0,1			
0,27	0,4	0,1			
0,29	0,4	0,1			
0,30	0,5	0,1			
0,33	0,5	0,1			
0,34	0,5	0,1			
0,36	0,6	0,1			
0,37	0,6	0,1			
0,37	0,6	0,1			
0,37	0,7	0,1			
0,36	0,7	0,1			
0,35	0,7	0,1			

0,33	0,8	0,1
0,32	0,8	0,1
0,30	0,8	0,1
0,28	0,9	0,1
0,26	0,9	0,1
0,25	0,9	0,1
0,25	1,0	0,1
0,25	1,0	0,1
0,25	1,0	0,1
0,27	1,1	0,1
0,28	1,1	0,1
0,30	1,1	0,1
0,31	1,2	0,1
0,34	1,2	0,1
0,35	1,2	0,1
0,37	1,3	0,1
0,37	1,3	0,1
0,38	1,3	0,1
0,37	1,4	0,1
0,36	1,4	0,1
0,34	1,4	0,1
0,32	1,5	0,1
0,30	1,5	0,1
0,28	1,5	0,1
0,27	1,6	0,1
0,26	1,6	0,1
0,25	1,6	0,1
0,25	1,7	0,1
0,26	1,7	0,1

Segue o gráfico **Deslocamento** × **Tempo**:

De acordo com a teoria, a função que descreve o movimento da oscilação da mola ao longo do tempo é dada por $x(t) = A\cos(\omega t + \varphi) + c$, A é a amplitude, ω é a velocidade angular e φ é a fase. Utilizando a ferramenta MyCurveFit, obtemos os seguintes parâmetros para uma curva de ajuste $Y = A\cos(\omega X + \varphi) + c$

- $A = -0,064 \pm 0,002$
- $-\omega = -9, 1 \pm 0, 4$
- $\varphi = 9,09 \pm 0,10$
- $-c = 0,314 \pm 0,003$

Com n a quantidade de pontos medidos e ε um parâmetro inteiro, utilizamos o seguinte método de derivação numérica para calcular a velocidade e aceleração: sejam x_i e t_i o deslocamento e o tempo no ponto i. Definimos:

$$v_i = \frac{x_{i+\varepsilon} - x_{i-\varepsilon}}{t_{i+\varepsilon} - t_{i-\varepsilon}} \quad e \quad a_i = \frac{v_{i+\varepsilon} - v_{i-\varepsilon}}{t_{i+\varepsilon} - t_{i-\varepsilon}}$$

Para $i < \varepsilon$, substitui-se $i - \varepsilon$ por i e para $i > n - \varepsilon$, substitui-se $i + \varepsilon$ por i. No relatório anterior (Queda Livre) discutimos em mais detalhes o papel do parâmetro ε , que está relacionado com a precisão e acurácia dos valores finais. Basicamente, quanto maior é o valor de ε , maior é a precisão, porém menor é a acurácia. Vamos calcular usando alguns valores de ε diferentes e comparar os resultados.

IV. Conclusão

V. Referências

[1] LOPES, Wilson. **Variação da aceleração da gravidade com a latitude e altitude.** Universidade de Guarulhos - SP. 2008. 8 páginas. Disponível em: https://physika.info/site/documents/9106-27243-1-PB.pdf