Основы компьютерных сетей. 3. Сетевой уровень. Часть 1.

Протокол ARP: связь IP- адреса и MAC-адреса.

Формат IPv4-пакета.

Статическая маршрутизация.

Диагностика сетевого уровня.

План занятия:

IPv4-адреса и классовая адресация.

Связь сетевого и канального уровня.

Статическая маршрутизация.

Проблемы не решаемые на 2 уровне:

- 1. Broadcast flood
- 2. Нет контроля адресации

Канальный уровень - физическая адресация, обеспечивает доставку пакетов внутри локальной сети.

Задача адресации на сетевом - глобальная адресация.

Задачи решаемые на сетевом уровне:

- 1. Создать глобальную адресацию, позволяющую связать разные сети в единое адресное пространство.
- 2. 2. Обеспечить доставку (маршрутизацию) через разнородное оборудование

Таким образом, протоколы сетевого уровня выполняют следующее:

- 1. Инкапсулируют протоколы транспортного уровня и некоторые протоколы сетевого уровня.
- 2. Осуществляют адресацию отправителя и получателя, позволяющую доставить пакеты между разными сетями (логическая адресация).
- 3. Преобразуют логические (сетевые) адреса в физические для доставки через локальную сеть.
- 4. Осуществляют маршрутизацию и пересылку пакетов.
- 5. Передают данные на канальный уровень.
- 6. Сообщают об ошибках в случае невозможности доставки.

Таким образом, протоколы сетевого уровня выполняют следующее:

- 1. Инкапсулируют протоколы транспортного уровня и некоторые протоколы сетевого уровня.
- 2. Осуществляют адресацию отправителя и получателя, позволяющую доставить пакеты между разными сетями (логическая адресация).
- 3. Преобразуют логические (сетевые) адреса в физические для доставки через локальную сеть.
- 4. Осуществляют маршрутизацию и пересылку пакетов.
- 5. Передают данные на канальный уровень.
- 6. Сообщают об ошибках в случае невозможности доставки.

На этом уровне не гарантируется доставка- это задача транспортного уровня.

IP-адрес (v4) - четыре октета (каждое число — байт, оно может находиться в диапазоне от 0 до 255), записываемые в десятичном виде и разделенные точками:

192.168.0.1

8.8.8.8

IP-адрес может быть назначен статически, либо получен по протоколу DHCP (Dynamic Host Configuration Protocol)

специальные адреса:

0.0.0.0 используется в качестве адреса отправителя, пока IP-адрес не присвоен.

255.255.255 — широковещательная рассылка, ограничена текущим широковещательным доменом (broadcast). Используется при поиске сервера, когда IP-адрес сервера неизвестен.

127.0.0.1 — текущий адрес машины.

При создании IPv4-адресов было решено использовать часть адреса для идентификации сети и часть — для хоста.

При этом части оказались разной длины. Так была разработана классовая адресация.

От 1 до 4 первых бит служили для обозначения типа сети, далее в зависимости от них следовал адрес сети нужной длины

Класс А	0 адрес о	сети (7 бит)	адрес хоста (24 бита)							
Класс В	10	адрес сети	(14 бит)	адрес хоста (16 бит)						
Класс С	110		адрес сети (21 бит	т) адрес хоста (8 бит)						
Класс D	1110		Адрес мно	Адрес многоадресной рассылки						
Класс Е	1111		Зарезервировано							

Класс	Число возможных адресов сетей	Число возможных адресов хостов	Маска подсети	Начальный адрес	Конечный адрес				
Α	128	16 777 214	255.0.0.0	0.0.0.0	127.255.255.255				
В	16 384	65 534	255.255.0.0	128.0.0.0	191.255.255.255				
С	2 097 152	254	255.255.255.0	192.0.0.0 223.255.25					
D	Групп	224.0.0.0	239.255.255.255						
Е	Зарез	ервировано	240.0.0.0	255.255.255.255					

В классовой адресации традиционно в качестве адреса сети использовался такой, в котором адрес хоста состоял из двоичных 0.

Для широковещательного адреса — адрес хоста, состоящий из двоичных единиц (т.е., в октетах было 255).

Например, для сети 10.0.0.0 класса А:

10.0.0.0 — адрес сети.

10.255.255.255 — широковещательный адрес (Broadcast).

Некоторые из этих адресов были зарезервированы для специальных целей и не маршрутизируются в интернете.

127.0.0.0 - локальный адрес. Пакеты, направляемые на этот адрес, не уйдут за пределы локальной машины.

Локальные сети:

Сеть класса A **10.0.0.0**

16 сетей класса В — от **172.16.0.0** до **172.31.0.0**

сети класса С, от 192.168.0.0 до 192.168.255.0

Эти адреса не маршрутизируются в интернете!

Серые или частные адреса

Диапазон	Маска	Кол-во узлов					
10.0.0.010.255.255.255.	255.0.0.0	≈16,5 млн					
172.16.0.0172.31.255.255	255.240.0.0	≈ 65,5 тыс					
192.168.0.0192.168.255.255.	255.255.0.0	254					

IP адрес включает 2 части - адрес сети и адрес узла в сети.

Чтобы выделить адрес сети из хоста, используется маска сети.

Маска сети как и IP-адрес состоит из 4-х октетов, но имеет особенность, сначала идет последовательность «1», затем «0».

Произведя двоичное умножение побитово маски сети на IP-адрес, мы получим адрес сети.

На пример:

192.168.0.0 – адрес сети

11 – адрес хоста

IP 11000000 10101000 00000000 00001011

Mask 11111111 1111111 1111111 00000000

| номер локальной сети | номера ПК |

Маска подсети часто записывается как количество единичных битов:

192.168.1.1 255.255.255.0 = 192.168.1.1 / 24

Дополняя сетевой адрес устройства маской, можно отказаться от классовой адресации, что позволит более гибко пользоваться существующей адресной системой.

Internet Protocol (IPv4)

Internet Protocol (IP, Интернет-протокол или межсетевой протокол) является маршрутизируемым протоколом сетевого уровня. На основе протокола IP работает большинство современных сетей. Основная задача протокола — передача данных из одной сети в другую, поэтому одна из ключевых особенностей — адресация.

Internet Protocol (IP, Интернет протокол или межсетевой протокол) — является маршрутизируемым протоколом сетевого уровня. На основе протокола IP работает большинство современных сетей.

Октет	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	0 Версия IHL Тип обслуживания								Длина пакета																							
4	Идентификатор									Флаги Смещение фрагмента																						
8	Время жизни (TTL) Протокол									Контрольная сумма заголовка																						
12	ІР-адрес отправител									я	1																					
16		IP-адрес получателя																														
20		Параметры (от 0 до 10-и 32-х битных слов)																														
																Дан	ны	е														

Internet Protocol (IPv4)

L2 (mac) vs L3(IPv4)

	Switch	Router
	L2 mac	L3 IP
Unknown Dst	Flood	Drop
	изучает mac-адреса	Нужно заполнить таблицу маршрутизации
Broadcast	Flood	Drop
адрес интерфейса	нет	да

- ARP (Address Resolution Protocol протокол определения адреса) для определения МАС-адреса другого компьютера по известному IP-адресу.
- Спроектирован для передачи IP-пакетов через пакеты (кадры) Ethernet.
- Принцип выяснения аппаратного адреса целевого хоста, использован в сетях других типов (канальный уровень).
- □ Варианты протокола ARP: InARP и ATM ARP.

Запрос ARP рассылается бродкастно на MAC-адрес FF:FF:FF:FF:FF

Как понять, какой МАС-адрес у ІР-адреса 192.168.0.30?

Если в сети присутствует такая машина, она отвечает,

МАС-адрес записывается в таблицу МАС-адресов, и сообщение вкладывается в кадр, где указываются МАС-адреса получателя и отправителя.

Если нужно отправить пакет за пределы локальной сети, ARPзапрос будет выяснять MAC-адрес шлюза по умолчанию. Поэтому в IP-заголовках будет IP-адрес получателя, а в заголовках кадра — MAC-адрес шлюза.

Если нужно отправить пакет за пределы локальной сети, ARPзапрос будет выяснять MAC-адрес шлюза по умолчанию. Поэтому в IP-заголовках будет IP-адрес получателя, а в заголовках кадра — MAC-адрес шлюза.

```
C:\WINNT\system32\cmd.exe
D:\\arp -a
Interface: 192.168.1.101 on Interface 0x1000003
  Internet Address
                         Physical Address
                                                Type
  192.168.1.1
                         00-04-5a-22-ec-c7
                                                dynamic
                         00-02-4b-cc-d6-d9
  192.168.1.40
                                                dynamic
                         00-02-fd-65-9f-82
                                                dynamic
                         00-03-6b-09-59-29
                                                dynamic
  192.168.1.100
                         00-02-4b-cc-d6-d0
                                                dynamic
  192.168.1.135
                         00-03-6d-1e-6a-a5
                                                dynamic
  192.168.1.149
                         00-50-8b-f7-cf-59
                                                dynamic
D:\>_
```

ICMP

ICMP (Internet Control Message Protocol) - это протокол, который используется для передачи управляющих сообщений между компьютерами в сети Интернет. Он позволяет компьютерам информировать друг друга о различных событиях, таких как недоставка пакетов или изменение маршрута.

ICMP

Одно из самых популярных применений ICMP это утилиты ping и traceroute.

Термин "пинговать" как - раз связан с протоколом ICMP и "пинговать" хост - означает отправлять ICMP пакеты с целью понять, отвечает ли на них целевое устройство.

Трассировка покажет каждый из маршрутизаторов на пути до цели и время обработки и прохождения каждого из участков маршрута.

Утилита tracert

Маршрутизация (routing) — поиск маршрута передачи пакетов из одной сети в другую с целью их доставки к адресу назначения. При маршрутизации необходимо учитывать изменения в топологии сети и загрузку каналов связи и маршрутизаторов.

Продвижение (forwarding) — передача пакета внутри маршрутизатора в соответствии с правилами маршрутизации.

Маршрутизатор может использовать следующую информацию.

- ІР-адрес узла назначения.
- IP-адрес соседнего маршрутизатора, который он может использовать как путь по умолчанию.
- Маршруты к удаленным сетям (через доступные интерфейсы).
- Метрики маршрутов (определяющие, какой путь лучше использовать для передачи).
- Способы обслуживания и обновления таблицы маршрутизации.

Статическая маршрутизация используется в небольших сетях, где топология простая и фиксированная. Маршрутную информацию в таблицу маршрутизатора вносит сетевой администратор.

- Преимущества: снижена нагрузка на процессор и сеть в связи с отсутствием передачи служебной информации. Защищено от некорректного обновления таблицы извне.
- Недостатки: администратор должен хорошо знать структуру сети. Необходимо обновление настроек всех маршрутизаторов при изменение топологии или добавление новой сети. Не используется в крупных сетях.

Динамическая маршрутизация используется в средних и крупных сетях. Маршрутная информация вычисляется на основе данных, поступавших от соседних маршрутизаторов. Для обмена данными используется протокол динамической маршрутизации.

- Преимущества: быстрее настройка и проще в администрировании.
- Недостатки: использование процессора и передача служебной информации между маршрутизаторами для вычисления оптимальных маршрутов, что также нагружает сеть

Routing

Домашнее задание

Объедините предложенные в файле сети с помощью статической маршрутизации