1 Minimal Sufficiency

Definition 1.1. *T* is minimal sufficient if

- T is sufficient
- For any other sufficient statistic S, $\exists f$ such that T = f(S)a.e.

Minimal sufficiency expresses the notion of the "most compressed sufficient statistic."

Definition 1.2. $\mathbb{P}_{\theta}(x) \propto_{\theta} \mathbb{P}_{\theta}(y)$ means that \exists function c(x,y) *independent of* θ such that $c(x,y)\mathbb{P}_{\theta}(x) = \mathbb{P}_{\theta}(y)$.

Theorem 1.3 (3.11). Let
$$\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$$
, $\mathbb{P}_{\theta} << \mu$, T suff. If $\mathbb{P}_{\theta}(x) \propto_{\theta} \mathbb{P}_{\theta}(y) \implies T(x) = T(y)$, then T is minimal sufficient.

Proof. Consider another sufficient statistic \tilde{T} . We need to show $\exists f : f(\tilde{T}) = T$. Will proceed by contradiction i.e. assuming $\tilde{T}(x) = \tilde{T}(y)$ but $T(x) \neq T(y)$, (f cannot be well-defined).

By factorization theorem, $\mathbb{P}_{\theta}(x) = \tilde{g}_{\theta}(\tilde{T}(x))\tilde{h}(x)$. By (contradiction) assumption $\tilde{g}_{\theta}(\tilde{T}(x)) = \tilde{g}_{\theta}(\tilde{T}(y))$ hence $\mathbb{P}_{\theta}(y) = \tilde{g}_{\theta}(\tilde{T}(y))\tilde{h}(y)$.

 $\tilde{h}(y)/\tilde{h}(x)$ serves as the proportionality constant showing $\mathbb{P}_{\theta}(x) \propto_{\theta} \mathbb{P}_{\theta}(y)$, so by theorem premise $\implies T(x) = T(y)$, a contradiction!

Example 1.4 (Exponential family). $\mathbb{P}_{\theta}(x) = e^{\eta(\theta)^{\mathsf{T}}T(x) - B(\theta)}h(x)$. Under what circumstances will T(x) be minimal sufficient?

To apply theorem, need to check:

- Is T(x) sufficient? Yes (apply factorization theorem)
- $\mathbb{P}_{\theta}(x) \propto_{\theta} \mathbb{P}_{\theta}(y) \implies T(x) = T(y)$? Considering the ratio of $\mathbb{P}_{\theta}(x)$ and $\mathbb{P}_{\theta}(y)$, this is true iff $\forall \theta \in \Theta$

$$e^{\eta(\theta)^{\mathsf{T}}T(x)} \propto_{\theta} e^{\eta(\theta)^{\mathsf{T}}T(y)}$$
 (1.1)

$$\eta(\theta)^{\mathsf{T}} T(x) = \eta(\theta)^{\mathsf{T}} T(y) + c(x, y) \tag{1.2}$$

For a particular θ_1 :

$$\eta(\theta_1)^{\mathsf{T}} T(x) = \eta(\theta_1)^{\mathsf{T}} T(y) + c(x, y) \tag{1.3}$$

Subtracting:

$$[\eta(\theta) - \eta(\theta_1)]^{\mathsf{T}} T(x) = [\eta(\theta) - \eta(\theta_1)]^{\mathsf{T}} T(y) \tag{1.4}$$

$$[\eta(\theta) - \eta(\theta_1)]^{\mathsf{T}} [T(x) - T(y)] = 0 \quad \forall \theta, \theta_1 \in \Theta$$
 (1.5)

$$T(x) - T(y) \in \operatorname{span}\{\eta(\theta) - \eta(\theta_1) : \theta, \theta_1 \in \Theta\}^{\perp}$$
 (1.6)

• Since we need to show T(x) - T(y) = 0, we are done if span $\{\eta(\theta) - \eta(\theta_1) : \theta, \theta_1 \in \theta_1\}$ Θ } $^{\perp} = \{0\}$ i.e. span $\{\eta(\theta) - \eta(\theta_1) : \theta, \theta_1 \in \Theta\} = \mathbb{R}^s$

Definition 1.5. An exponential family is *full rank* if span $\{\eta(\theta) - \eta(\theta_1) : \theta, \theta_1 \in \Theta\} = \mathbb{R}^s$

Example 1.6 (Full rank). Normal(θ , 1), $\theta \in \mathbb{R}$, $\mathbb{P}_{\theta}(x) = e^{-\frac{(x-\theta)^2}{2}}$, $\eta(\theta) = \theta$. Then $\{\eta(\theta) - \theta\}$ $\eta(\theta_1)$ $\simeq \mathbb{R}$ so the exponential family is full rank.

Example 1.7. title $x_1, x_2, \cdots, x_n \stackrel{\text{iid}}{\sim} \mathbb{P}_{\theta}(x) = \frac{1}{2}e^{-|x-\theta|}$ The order statistics $X_{(1)} \leq \cdots \leq X_{(n)}$ are minimal sufficient.

Completeness 2

Definition 2.1. T(X) is *complete* if \forall functions f, \exists constant c s.t.

$$[\forall \theta : \mathbb{E}_{\theta} f(T) = c] \implies f(\cdot) = c \text{a.e.}$$
 (2.1)

Example 2.2. $X_i \stackrel{\text{iid}}{\sim} Unif(0,\theta), \theta \in (0,\infty)$

$$T(X) = \max_i X_i$$

$$\mathbb{P}_{\theta}(T \leq t) = \left(\frac{t}{\theta}\right)^n \implies \mathbb{P}_{\theta}(t) = \frac{nt^{n-1}}{\theta^n}$$

$$\mathbb{E}_{\theta}f(T) = 0 \iff \int_0^{\infty} f(t) \frac{nt^{n-1}}{\theta^n} dt = 0$$

"differentiate wrt θ " will show $f(\theta) \frac{n\theta^{n-1}}{\theta^n} = 0$, $\Longrightarrow f(\theta) = 0$ This means that if f has $\mathbb{E}_{\theta} f(T) = 0$, then f = 0, so f is complete.

Proposition 2.3. The sufficient statistic for a full rank exponential family is complete.

Theorem 2.4. *If T is sufficient and complete, then T is minimal.*

Proof. Consider a minimal sufficient statistic \tilde{T} . Since any sufficient statistic can be mapped to a minimal \tilde{T} , it suffices to show $\exists g : g(\tilde{T}) = T$.

Define $g(\tilde{T}) := \mathbb{E}_{\theta}[T|\tilde{T}]$. Note that g is independent of θ because \tilde{T} is sufficient. Applying the tower property for expectations

$$\mathbb{E}_{\theta}g(\tilde{T}) = \mathbb{E}_{\theta}T\tag{2.2}$$

Since \tilde{T} is minimal, $\exists f : \tilde{T} = f(T)$ so

$$\mathbb{E}_{\theta}g(f(T)) = \mathbb{E}_{\theta}T \quad \forall \theta \tag{2.3}$$

$$\mathbb{E}_{\theta}\left[g(f(T)) - T\right] = 0 \quad \forall \theta \tag{2.4}$$

By completeness of T, we have g(f(T)) = T.