B. 3986.

Kriván Bálint Budapest, Berzsenyi D. Gimn., 10. o. t. redhat24@freemail.hu

Feladat:

Tetszőleges pozitív egész m-re jelölje s(m) az m számjegyeinek az összegét. Határozzuk meg az összes olyan n pozitív egészt, amelynek egyetlen számjegye sem nulla, és teljesíti az

$$s(n^2) = 2^{s(n)}$$

összefüggést.

Megoldás:

Mivel jegyek összegéről van szó, ezért nyugodtan vizsgálhatjuk oszthatóság szempontjából az egyenletet. Bal oldalon az $s(n^2)$ egy négyzetszámnak a számjegyeinek összege. Vizsgáljuk meg 9-el való oszthatóság szempontjából a négyzetszámokat:

n^2	$n^2 \bmod 9$
1	1
4	4
9	0
16	7
25	7
36	0
49	4
64	1
81	0

További négyzetszámoknál $(10^2, 11^2, \ldots)$, már ugyanezek a maradékok lesznek (azaz ez a sorozat ismétlődik), hiszen felírtuk az összes 9-el osztva más maradékot adó számok négyzetét. A 10^2 9-el osztva ugyanannyi maradékot ad, mint az 1^2 , hiszen 10 is és 1 is, 9-el osztva 1 maradékot ad. Így a maradékok: 0, 1, 4 vagy 7. Vizsgáljuk meg, hogy a 2 hatványok között, hogy alakul a 9-el való oszthatóság:

2 hatványok	2^{0}	2^1	2^2	2^3	2^4	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	2^{10}	
maradékok	1	2	4	8	7	5	1	2	4	8	7	

Itt is megjegyezzük, hogy azért ismétlődik az 1, 2, 4, 8, 7, 5 maradék, hiszen minden egyes szám a sorozatban az előző 2-szerese, hiszen kettőhatványokról van szó. Így a maradékok is egymásnak a kétszeresei (ha így a maradék nagyobb mint 9, akkor természetesen a "valódi" maradék ennek a 9-el vett osztási maradéka), tehát az 5-ös maradék után megint az 1 jön, hiszen $(5 \cdot 2) \mod 9 = 1$.

Összevetve a táblázat két sorát látható, hogy csak páros kitevőjű kettő hatvány felel meg a 9-el való oszthatóság miatt, azaz s(n) páros.

Már tudjuk, hogy az $2^{s(n)}$ számok maradékai 1, 4 vagy 7 (hiszen s(n) páros). Ugyanígy az $s(n^2)$ maradékairól is felállíthatunk egy sorozatot. Folyamatosan vesszük sorra az s(n) értékeit (2, 4, 6, 8, 10, ...). Ezek az n szám számjegyeinek összege, azaz innen meghatározhatjuk a 9-el való osztási maradékát. Tehát: 2, 4, 6, 8, 1, Innen könnyen meghatározhatjuk az $s(n^2)$ 9-el való osztási maradékát, hiszen ez $s(n^2)$ 9-el való osztási maradéka, amit pedig úgy kapunk, hogy az $s(n^2)$ osztási maradékait négyzetre emeljük, és vesszük annak a 9-el való osztási maradékát, hiszen:

$$(9k+l)^2 = \underbrace{81k^2}_{9l} + \underbrace{18kl}_{9l} + l^2 \qquad k, l \in \mathbb{Z}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$(9k+l)^2 \bmod 9 = l^2 \bmod 9$$

Így párban felállíthatjuk $s(n^2)$ és $2^{s(n)}$ osztási maradékait, és természetesen csak ott kaphatunk megoldást, ahol ez a kettő egyenlő:

s(n)	2	4	6	8	10	12	14	16	18	20	22	24	26	28	
$s(n^2) \bmod 9$	4	7	0	1	1	0	7	4	0	4	7	0	1	1	
$2^{s(n)} \bmod 9$	4	7	1	4	7	1	4	7	1	4	7	1	4	7	

Itt sem meglepő az $s(n^2)$ 9-el vett osztási maradékának 9 hosszú sorozatának ismétlődése, illetve az $2^{s(n)}$ 9-el vett osztási maradékának 3 hosszú sorozatának ismétlődése (a kettőhatványok 9-el vett osztási maradéka 6 féle lehet, de mivel s(n) páros, ezért csak minden második jön szóba).

Láthatjuk, hogy $s(n) = \{2, 4, 20, 22, 38, 40, \dots\}$ esetekben lehet megoldás.

Kezdjük el nézni a lehetséges eseteket.

(1.) Ha s(n) = 2.

Olyan számokat kell keresnünk, amikben a számjegyek összege 2, illetve nem tartalmaz 0-át:

$$n = \{ 2, 11 \}$$

Mindkettő teljesíti az egyenletet, így ezek megoldások.

(2.) Ha s(n) = 4.

Hasonlóan, megkeressük azokat a számokat, amikben a számjegyek összege 4, illetve nem tartalmaz 0-át:

$$n = \{4, 13, 31, 22, 112, 121, 211, 1111\}$$

Ezek közül csak az n=4 nem megoldás, hiszen $s(4^2) \neq 2^4$, az összes többi teljesíti az egyenletet.

(3.) Ha s(n)=20, akkor $2^{s(n)}=1048576$, így $s(n^2)=1048576$. Ebből az következik, hogy az n^2 legalább (1048579/9 \approx) 116509 jegyű, hiszen akkor max. a számjegyek összege és min. a számjegyek darabszáma, ha csupa 9-esből áll. Viszont ha s(n)=20, akkor n max. 20 számjegyből állhat, hiszen akkor kapjuk a lehető legtöbb számjegyből álló számot, ha mindegyik számjegye csupa 1-es (feladat miatt n-ben nincsen 0-ás számjegy). Az pedig nyílvánvaló, hogy egy 20 számjegyből álló szám négyzetének számjegyeinek száma meg se közelíti a 116509-et.

Ha s(n) további értékeit vesszük, akkor ez a távolság mégjobban nő. Tehát nem találunk további megoldásokat. Így n lehetséges értékei:

$$n = \{2, 11, 13, 31, 22, 112, 121, 211, 1111\}$$