

FLIGHT SOFTWARE, NETWORK STACK & SIMULATOR FOR SWARMS OF SATELLITES

CÉCILE DECHOZ

BERNARD PONTET, FELIPE ALVES SUANA – CNES

FLORENCE ROUBERT, ALEXANDRE COUSSON, FABIEN LAFARGUE, THEO LATRILLE – CSGROUP

BASTIEN TAURAN, DAVID PRADAS – VIVERIS

ELODIE MICHEL - SPACEBEL

- OCTOBER 2025 -

Swarm missions

Networking concerns

022

Identify and increase TRL on major building blocks

05

Status and way forward

FSW architecture and test environment

SWARM MISSIONS

Increasing new missions concepts with multi-satellites collaborating (mothership centered up to completely fair)

From 3 to 50+ satellites

Either LEO, GEO, lunar, asteroids or interplanetary centered

Aim at constituting large scale distributed instruments (multipoint measurements such as interferometry, ...)

Acting following a collective scheme and managed as a single object

High level of autonomy, resilience, with auto-reconfiguration capabilities

IDENTIFY AND INCREASE TRL ON MAJOR BUILDING BLOCKS

SWARM MISSIONS - ARE WE READY?

New challenges at Software level on the following topics:

- Interconnecting ISL, TTC, intra-sat networks
- Swarm autonomy wrt Flight Dynamics functions
- System resilience
- Distribution:
 - Collaboration of functions across the swarm
 - How to design at SW level one distributed payload?
- How to manage such a system from the Ground?

AVIONICS / FLIGHT SOFTWARE ARCHITECTURE -SWARM MISSIONS

SWARM FLIGHT SOFTWARE ARCHITECTURE HWboard

ISL CONCERNS

The most dimensioning enabler for swarm missions

- Technology (omnidirectional antenna vs directive links, RF vs optical)
- Topology of the network: full duplex, FDMA/TDMA/CDMA, point to point, 1 to n, n to n, bandwidth?
- Usable for ranging and collective time when no GNSS is usable?

- Decouple this physical layer / datalink function as much as possible from the others (follow the OSI approach!)
- Adapt easily the ISL properties on the simulator
- Unicast, multicast, broadcast
- Proof of concepts for ranging, GNSS messages diffusion,
 TC relay across the swarm

SWARM NETWORK STACK

SWARM NETWORK STACK

SWARM TEST BENCH - 2 CONFIGURATIONS

SWARM TEST BENCH - OVERALL VIEW


```
Every 1.0s: ps -eo psr,pcpu,pmem,cmd --sort=-pcpu | grep ske tu-apis-p01.cst.cnes.fr: Mon Sep
 11 21.4 0.1 ske bsl standalone 90 91
 42 21.2 0.1 ske bsl standalone 109 110
 24 21.1 0.1 ske bsl standalone 71 72
 17 9.5 0.0 nav-xng ske-debug.elf
 32 9.5 0.0 nav-xng_ske-debug.elf
 28 9.5 0.0 nav-xng ske-debug.elf
 33 4.5 0.0 apppus-xng ske-debug.elf
 43 4.5 0.0 apppus-xng ske-debug.elf
 15 4.5 0.0 apppus-xng ske-debug.elf
 46 4.0 0.0 isl-xng ske-debug.elf
 27 4.0 0.0 isl-xng ske-debug.elf
 36 4.0 0.0 isl-xng ske-debug.elf
 26 3.9 0.0 rap-xng ske-debug.elf
  5 3.9 0.0 rap-xng_ske-debug.elf
 23 3.9 0.0 rap-xng_ske-debug.elf
 37 3.5 0.0 instrum-xng ske-debug.elf
  5 3.5 0.0 instrum-xng ske-debug.elf
 40 3.5 0.0 instrum-xng ske-debug.elf
 41 3.4 0.1 ske bsl standalone 74 75
  6 3.4 0.1 ske bsl standalone 93 94
 45 3.4 0.1 ske bsl standalone 112 113
 12 3.1 0.0 ccsw-xng_ske-debug.elf
  5 3.1 0.0 ccsw-xng ske-debug.elf
  7 3.1 0.0 ccsw-xng ske-debug.elf
 18 3.1 0.0 router-xng ske-debug.elf
 29 3.0 0.0 router-xng ske-debug.elf
 23 3.0 0.0 router-xng ske-debug.elf
 21 2.9 0.0 gnss-xng ske-debug.elf
 14 2.9 0.0 gnss-xng ske-debug.elf
 2 2.9 0.0 gnss-xng_ske-debug.elf
 26 2.6 0.0 ios-xng ske-debug.elf
 32 2.6 0.0 ios-xng ske-debug.elf
```


EQUIPEMENT FUNCTIONAL SIMULATIONS ENVIRONMENT

GNSS simulation

- Real GNSS constellation data (GPS, BEIDOU, GNSS) retreived on the net.
- GNSS receiver simulated for each satellite:
 - Based on Patrius (CNES generic Flight Dynamics Library)
 - Simulated CODE, PHASE measures for each emittor
 - Simulates a table of n tracked GNSS emittors

Functionnal Propulsion: DeltaV, direction, noise

Inter-Satellite Link

- Data rate = function of (SNR for each couple of satellites, distance, ...)
- Inter-satelllite messages emission commutation/decommutation capacities in the simulator
- Broadcast, Unicast messages, ...

Environment/Orbit simulation

- Precise
- Based on Patrius
- Environment: simulation of tidal forces/atmospheric density/earth gravity up to high orders/Sun and moon Gravity/Radiation pressures of solar irradiance + integrator

Theoretical Attittude simulation

Geocentric

Command/control Kit

- Using generic TC/TM kits
- 2 data bases for com/decom

SWARM SYSTEM TESTS

Use case 1: sat 1 relay between ground and 2 other satellites

SWARM SYSTEM TESTS

Use case 2: sat 1 relay between 2 other satellites and ground

If No visibility: data storage

SWARM SYSTEM TESTS

Use case 3 : navigation data exchange between satellites

Broadcast mode

STATUS AND WAY FORWARD

- First versions of the simulator and FSW with representative orbits and ISL models
- Firsts demonstrations including routing, ranging and flooding protocol successful with:
 - 3 satellites
 - 20 satellites
- Network stack implementation on going
- New Flight Dynamics functions on going
- ... then swarm distributed system functions
- Promising performances of the simulator to run the swarm with an appreciable functional representativity
- This simulator aims at being tuned according to new missions specificities

