

Best Available Copy

BRUSH HEAD FOR TOOTHBRUSH

FIELD OF THE INVENTION

invention relates generally to the field of oral care,
5 and in particular to toothbrushes. More specifically, the invention relates to a brush head for a toothbrush.

BACKGROUND OF THE INVENTION

U.S. Patent 5,577,285 (the '285 patent) discloses an
10 electric toothbrush with a rotary bristle supporting structure. In one embodiment of the invention shown in Fig. 6, the brush head is driven such that an outer ring of bristles 45a and an inner ring of bristles 45b are moved in an alternating rotary motion in opposite directions. While such an arrangement is
15 beneficial for cleaning, for example, the bucal or lingual tooth surfaces, the lack of motion of any of the bristles in an up and down pattern results in a less than optimal cleaning of the inter-dental tooth surfaces.

Figure 9 of the '285 patent discloses an additional
20 embodiment of the invention in which all of the bristles 45 are rotated about an axis 54 while also being moved in an up and down motion parallel to this axis. This embodiment will provide enhanced cleaning of the inter-dental tooth surfaces. However, the fact that all of the bristles are moved up and down limits
25 the depth of penetration that the bristles can obtain between the teeth. This is because while some of the bristles are trying to penetrate between the teeth, others are pressing against, for example, the bucal tooth surface, thus limiting the motion of the brush head towards the teeth.

30

SUMMARY OF THE INVENTION

The present invention is directed to overcoming one or more of the problems set forth above. Briefly summarized, according to one aspect of the present invention, a head for a toothbrush
35 includes a neck and, first and second sets of one or more bristles each. The first and second sets are indirectly

supported by the neck and movable relative to each other such
that at least one component of this relative movement causes the
bristle(s) of the first set to be raised and/or lowered relative
to the bristle(s) in the second set. The first and second sets
5 of bristles both are movable relative to the neck.

By providing such raising and/or lowering relative movement
between two sets of bristles, one set of bristles can penetrate
between the teeth without hindrance from the other set of
bristles, thereby enhancing cleaning of the inter-dental tooth
10 surfaces.

These and other aspects, objects, features and advantages of
the present invention will be more clearly understood and
appreciated from a review of the following detailed description
of the preferred embodiments and appended claims, and by
15 reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a side view of an electric toothbrush head
20 attached to a brush handle/drive;

FIG. 2 is an exploded side view of the toothbrush head;

FIG. 3A is a side view of the head with a central bristle in
a retracted position;

FIG. 3B is a side view of the head with a central bristle in
25 an extended position;

FIG. 4 is a top plan view of a second embodiment of an
electric toothbrush head;

FIG. 5 is a sectional view of Fig. 4 taken along the lines
5-5;

30 FIG. 6 is a sectional view of Fig. 5 taken along the lines
6-6;

FIG. 7 is a sectional view of Fig. 5 taken along the lines
7-7;

35 FIG. 8 is a sectional view similar to Fig. 5 of a third
embodiment of the invention;

FIG. 9 is a sectional view of Fig. 8 taken along the lines 9-9;

FIG. 10 is a sectional view of Fig. 8 taken along the lines 10-10;

5 FIG. 11 is a sectional view of Fig. 8 taken along the lines 11-11;

FIG. 12 is a sectional view of Fig. 8 taken along the lines 12-12;

10 FIG. 13 is a perspective view of a fourth embodiment of a toothbrush head; and

FIG. 14 is a front view of the toothbrush head of Fig. 13.

DETAILED DESCRIPTION OF THE INVENTION

15 Beginning with FIG. 1, an electric toothbrush head 10 includes a neck 12 which is connected to a bristle support 14. Bristles 16 on support 14 are oscillated in a rotary movement through an arc of between about +- 15 to 90 degrees, more preferably +- 20 to 50 degrees as in a conventional electric 20 toothbrush.

Fig. 2 shows support 14 in an exploded side view. An interdental probe 18 is secured to a slider core 20 in the center of bristles 16. Probe 18 can be a single large bristle or a tuft of much smaller bristles. Alternatively, core 20 can be enlarged 25 to accommodate a plurality of probes (not shown), one of which may be positioned in the center of the core (as in Fig. 1), with the remainder of the probes being positioned on the core away from its center.

A pair of cam follower pins 22 are secured to opposite sides 30 of the lower portion of core 20. Core 20 is positioned inside of a brush base 24 such that pins 22 are forced to ride along respective cam tracks 26 as well as respective vertical slider tracks 28 (one slider track is hidden behind the other). A retaining pin 30 rides in a track 32 to retain base 24 within a 35 housing 34. A guide/rotation pin 36 passes through a hole in the bottom of housing 34 and is secured to base 24.

Operation of support 14 will be explained with reference to Figs. 2, 3A and 3B. Pin 36 is oscillated about its long axis by a drive mechanism (not shown) in neck 12. The drive mechanism can be of conventional design. Oscillation of pin 36 causes brush base 24 and bristles 16 to oscillate in a rotary pattern. Pin 30 retains base 24 within housing 34. Oscillation of base 24 causes core 24 and probe 18 to oscillate with the base because pins 22 ride in track 28 of the base. Pins 22 also ride in respective tracks 26 in the housing, thus causing core 20 and probe 18 to move up and down relative to bristles 16 during oscillation of brush base 24. Figs. 3A and 3B show that a preferred extension of probe 18 from its lowest to highest position is about 5mm.

In an alternative embodiment, all of bristles 16 are eliminated, leaving only probe 18 for cleaning teeth. This embodiment would be used primarily for cleaning interdental spaces, not for cleaning the other surfaces of teeth.

Turning to Figs. 4-7, a second embodiment of the invention will be described. A brushead 40 can be attached to a handpiece (not shown) of an electric toothbrush. A driveshaft (not shown) protrudes out of the handpiece and can effect an oscillating rotation. Brushhead 40 includes a tube 42 in which a shaft 44 is located. The rear end of tube 42 fits into the housing (not shown) of the handpiece. Shaft 44 engages the driveshaft of the handpiece. A pin 46 is press fitted into shaft 44. Pin 46 can rotate at its free end in a bearing hole 48 in a front part 50 of tube 42. Axis 52 of pin 46 coincides with the axis of the driveshaft of the handpiece.

A pivot 54 can rotate in a bearing hole 56 situated in front part 50 of tube 42. Pivot 54 is retained in hole 56 by a ring 58. A brush base 60 is press fitted onto pivot 54. Brush base 60 has holes 62 in which tufts of bristles 64 are secured. A cross pin 66 is welded onto the free end of pivot 54. Both ends of cross pin 66 retain brush base 60 on pivot 54 by interaction with a shoulder 68 of the brush base. The central part of cross pin 66 is placed in a bearing hole 70 of a rocker 72. Rocker 72

can swivel about cross pin 66 and contains holes 74 in which tufts of bristles 76 are secured.

Shaft 44 includes a bearing hole 78 in which a drive rod 80 can move. The distance between axis 52 of pin 46 and an axis 82 of drive rod 80 is a radius r_1 . A stud 84 is welded onto the free end of drive rod 80. The distance between an axis 86 of pivot 54 and an axis 88 of stud 84 is a radius r_2 . Stud 84 can move in a bearing seat 90 in brush base 60. At one end of stud 84 is carried a ball 92 which can move in a cylindrical slot 94 in rocker 72.

When shaft 44 is oscillated about axis 52 through an angle of $\pm \alpha_1$ about pin 46, two different motions are induced. First, brush base 60 and rocker 72 are oscillated in a rotating manner through an angle of $\pm \beta_1$ about pivot 54 in bearing hole 56. This oscillating rotation causes bristles 64 to wipe plaque off teeth like a broom. Second, rocker 72 is oscillated in a rotating manner through an angle of $\pm \gamma_1$ about cross pin 66 in bearing hole 70. Oscillation of rocker 72 about pin 66 causes bristle tufts 76 to loosen plaque like a chisel. Two cycles of oscillation of rocker 72 about pin 66 occur for every one cycle of oscillation of base 60 and rocker 72 about pivot 54. The relations between the oscillation angles α_1 to β_1 and α_1 to γ_1 depend only on radii r_1 and r_2 .

Referring to Figs. 8-12, a third embodiment of the invention will be described. The third embodiment modifies the relationship between the oscillation angles, primarily to increase the gamma angle of the oscillating rotation of rocker 72. The basic features of the third embodiment remain unchanged from the second embodiment. The main difference is in the location of the drive rod.

In the mid-position of the oscillating rotation of a shaft 100, a drive rod 102 is located at a distance e from a median plane 104 of a brushhead 106. A stud 108 is welded laterally on a free end of drive rod 102 with a distance e between the center-lines. Stud 108 is movable in a bearing seal 110 of a brush base 112. When a drive shaft 114 is in a mid-oscillation position,

stud 108 is in a median plane 116 of brush base 112. Drive rod 102 can move in a bearing hole 118 in shaft 114. Bearing hole 118 is situated in the distance e from median plane 104 of shaft 114 when the shaft is in its mid-oscillation position.

5 When shaft 114 is oscillated about median plane 104 through an angle of +- alpha 1, two different motions are induced. First, brush base 112 and rocker 72 are oscillated in a rotating manner through an angle of +- beta 2 which is smaller than +- beta 1 about axis 120. Second, rocker 72 is oscillated in a 10 rotating manner through an angle of +- gamma 2 which is bigger than +- gamma 1 about cross pin 66. The relations between the oscillation angles alpha 1 to beta 2 and alpha 1 to gamma 2 depend on radii r1 and r2 as well as on the distance e.

In embodiments 2 and 3 of the invention, one component of 15 the rocking motion of rocker 72 causes bristles 76 to move up and down (i.e. substantially parallel to pivot 54) relative to bristles 64.

Figs. 13 and 14 disclose a toothbrush head 130 which is similar in function to the head of Fig. 4. The major difference 20 is that tufts of bristles 132 are tilted away from the perpendicular (to the top surface of a pivot bar 138) at an angle 134 of between about 1-20 degrees. Preferably the bristles are tilted along the direction of oscillation of bristles 136. Such tilting of bristles 132 provides better interdental penetration 25 during the respective upstrokes of pivot bar 138, particularly for the tuft(s) on bar 138 which are being moved by head 138 in the tilt direction. It is preferable that tufts of bristles on both sides of bar 138 have the same tilt angle and are tilted in the same direction (i.e. in the same plane). Alternatively, 30 tufts of bristles on opposite sides of the bar can be tilted in opposite directions.

The invention has been described with reference to several 35 embodiments including a preferred embodiment. However, it will be appreciated that variations and modifications can be effected by a person of ordinary skill in the art without departing from the scope of the invention.

CLAIMS:

1. A head for a toothbrush, comprising:
a neck; and
first and second sets of one or more bristles each, the
first and second sets being indirectly supported by the neck and
movable relative to each other such that at least one component
of this relative movement causes the bristle(s) of the first set
to be raised and/or lowered relative to the bristle(s) in the
second set, the first and second sets of bristles both being
movable relative to the neck.

2. The head of claim 1, wherein the second set of bristles
is rotatable about a first axis. *Re A*

3. The head of claim 2, wherein the first set of one or
more bristles is movable along the axis. *Pine*

4. The head of claim 3, wherein the first set of one or
more bristles is rotatable about the axis.

5. The head of claim [4] wherein the first set of one or
more bristles is rotatable about the axis in unison with the
second set of bristles.

6. The head of claim 2, wherein the first set of bristles
is movable parallel to the axis.

7. The head of claim 6, wherein the first set of bristles
includes two subsets of bristles which each move substantially
parallel to and separate from the axis.

8. The head of claim 7, wherein the first set of bristles
is rotatable about the axis.

9. The head of claim 8, wherein the first set of bristles is rotateable about the axis in unison with the second set of bristles.

10. The head of claim 2, wherein the first set of bristles is rotatable about a second axis which is different from the first axis.

11. The head of claim 10, wherein the second axis is substantially perpendicular to the first axis.

12. The head of claim 10, wherein the first set of bristles is rotateable about the first axis.

13. The head of claim 12, wherein the first set of bristles is rotateable about the first axis in unison with the second group of bristles.

14. The head of claim 1, wherein the first set of bristles are tilted at an angle of between about 1-20 degrees from a vertical line extending from a surface of a support to which the first set of bristles are secured.

15. An interdental cleaning implement, comprising:
a solitary tuft of one or more bristles; and
means for rotating the tuft about its long axis while at the same time moving the tuft along the axis.

16. The head of claim 1, wherein the first set of bristles is set into periodic motion relative to the second set of bristles.

17. The head of claim 7, wherein one subset moves in the opposite direction relative to the other subset.

ABSTRACT OF THE DISCLSOURE

A head for a toothbrush including a neck and, first and second sets of one or more bristles each. The first and second sets are indirectly supported by the neck and movable relative to each other such that at least one component of this relative movement causes the bristle(s) of the first set to be raised and/or lowered relative to the bristle(s) in the second set. The first and second sets of bristles both are movable relative to
5 the neck.
10

FIG. 3A

FIG. 3B

FIG. 1

FIG. 2

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 12

FIG. 10

FIG. 11

FIG. 14

FIG. 13

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.