

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники

Отчет по лабораторной работе №2

по дисциплине

«Архитектура процессоров и микропроцессоров»

Цель работы

Исследовать работу с массивом и арифметические операции процессора CPU580.

Индивидуальное задание. Вариант № 9

Задание 1. Составить программу вычисления выражения:

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n \tag{1}$$

где a_i — число натурального ряда, начиная с 1;

n – количество чисел, при n = 90

Решение. Описание используемых регистров (см. таблицу 1).

Таблица 1 – Назначения регистров

Регистр	Назначение	
A	Аккумулятор, где происходят все дей-	
	ствия и результат	
В	Число для сравнения	
С	Прибавляемое число, выполняющее	
	роль X_i в исходной формуле	

Описание алгоритма: Записываем в аккумулятор и в переменную, которую будем прибавлять, число 1 (1-2). В регистр для сравнения, по заданию, записываем число 90 (3) Увеличиваем X_i (4) и прибавляем к аккумулятору (5). Если Xi = 90, конец программы, иначе перейти на шаг 4. Подробное описание шагов приведено в таблице 2

Таблица 2 – Код программы

No	Команда	Описание
0	JMP 1	Прыжок по адресу 1
1	MVI A,01	Занесение значения 1 в регистр А (аккумуля-
		тор)
2	MVI C,01	Занесение значения 1 в регистр С
3	MVI B,5A	Занесение значения 90 в регистр В
4	INR C	Инкремент регистра С
5	ADD C	Сложение значения регистра С с аккумулято-
		ром(А)
6	CMP B	Сравнение аккумулятора с В (через вычитание
		А из В)
7	JNZ 4	Если флаг нуля после сравнения не обнулился
		- прыгаем по адресу 4 в начало цикла
8	HLT	Задержка

Задание 2. Составить программу деления однобайтных двоичных чисел.

Решение.

Описание используемых регистров приведены в таблице 3.

Таблица 3 – Назначение регистров

Регистр	Назначение
В	Делитель
С	Делимое
D	Остаток
Е	Счетчик цикла
Н	Результат

Описание алгоритма: В данном алгоритме деление происходит практически также как при делении в столбик. Мы берем число с разрядностью вдвое больше исходного делимого и начинаем вычитать делитель, начиная со старшего разряда и каждый раз сдвигаясь к младшим. При вычитании, если мы получаем отрицательный результат, значит частичный остаток все ещё больше делителя, поэтому необходимо восстановить его до прежнего значения и продолжить выполнение (шаг 8-9). Подробное описание шагов приведено в таблице 4.

Таблица 4 – Код программы

0	MVI E 07	Счетчик цикла
1	LXI B, N1, N2	Загружаем из памяти делимое - число
		N1, делитель - число N2
2	MOV A, C	
3	RAL	Сдвиг делимого
4	MOV C, A	
5	MOV A, D	Сдвигаем значение частичного остатка
6	RAL	
7	SUB B	Вычитаем делитель
8	JNC 10	Если происходит переполнение -
		восстанавливаем значение частичного
		остатка
9	ADD B	
10	MOV D, A	Возвращаем ЧО в регистр
11	CMC	Инвертируем перенос, так как если он
		произошел, то произошло переполне-
		ние, а значит вычитание делителя из
		ЧО нельзя производить
12	MOV A, H	
13	RAL	Запоминаем перенос
14	MOV H, A	
15	DCR E	Уменьшаем счетчик циклов
16	JNZ 2	Цикл - пока счетчик не равен 0
17	HLT	Иначе, конец программы

Вывод В ходе данной практической работы мы научились реализовывать простые алгоритмы при помощи языка ассемблера CPU580. Алгоритм деления не является оптимальным, но при этом является более наглядным и простым для понимания, что важно, учитывая ознакомительных характер работы.