

Par Jaime Alba Pastor et Adrien Boichis

OBJECTIFS INITIAUX

- 1. Pouvoir dessiner tout type de forme. Ex: graphiques, signatures...
- 2. Pouvoir illustrer des documents non vides pour ajouter de la valeur ou de l'information.
- 3. Une option moins coûteuse qu'une imprimante classique.
- 4. Facilement transportable.

PRESENTATION DU PROJET

ENSEMBLE MECANIQUE

Modélisation, assemblage et améliorations

03

LE CODE

Idéation, méthodes principales...

05

CIRCUIT ELECTRONIQUE

Composants et problèmes rencontrés

04

CONCLUSION ET DEMO

Ce que le projet nous a apporté et continuation

t. Ensemble mecanique

Matériel utilisé:

- Arduino Uno
- 2 Moteurs NEMA-17
- 2 Drivers A4988
- Micro Servo Moteur
- Une courroie dentée
- 6 roulements dentés
- 6 roulements à mouvement linéaire
- Visses
- Planche de bois
- Blocs de bois

FONCTIONNEMENT

PROBLEMES RENCONTRES

CIRCUIT ELECTRONIQUE

LE CODE

Finateur
$$A = H_1 = \frac{1}{2} \left(H_1 \hat{e}_x + H_1 \hat{e}_y \right)$$

Finateur $a = H_2 = \frac{1}{2} \left(H_2 \hat{e}_x - H_2 \hat{e}_y \right)$

Forces excercées

Deuxième loi de Newton:

$$ZF = m \cdot \frac{dv}{dt}$$

$$\Rightarrow M_1 + \Pi_2 = 0$$

$$\Rightarrow \frac{1}{2} \left(\Pi_1 \hat{e}_x + \Pi_1 \hat{e}_y \right) + \frac{1}{2} \left(\Pi_2 \hat{e}_x - \Pi_2 \hat{e}_y \right) = 0$$

$$\Rightarrow \begin{cases} \frac{1}{2} \left(\Pi_1 + \Pi_2 \right) = V_x \\ \frac{1}{2} \left(\Pi_1 - H_2 \right) = V_y \end{cases}$$

$$\Rightarrow \begin{cases} \frac{1}{2} \left(\Pi_1 - H_2 \right) = V_y \\ \frac{1}{2} \left(\Pi_1 - \Pi_2 \right) = V_y \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \\ \Pi_1 - \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \\ \Pi_1 - \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \\ \Pi_1 - \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \\ \Pi_1 - \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \\ \Pi_1 - \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \\ \Pi_1 - \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \\ \Pi_1 - \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \\ \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \\ \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \\ \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \\ \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_1 + \Pi_2 = \frac{2x}{t} \end{cases}$$

$$\Rightarrow \begin{cases} \Pi_2 + \Pi_1 + \Pi_2 \end{cases}$$

APPLICATION JAVA

MERCI DE VOTRE ATTENTION

