Data Mining

Lecture 8

Ananya Jana CS360

Fall 2024

A classification technique (or classifier) is a systematic approach to building classification models from an input data set.

Examples include decision tree classifiers, rule-based classifiers, neural networks, support vector machines, and naïve Bayes classifiers.

Each technique employs a learning algorithm to identify a model that best fits the relationship between the attribute set and class label of the input data. The model generated by a learning algorithm should both fit the input data well and correctly predict the class labels of records it has never seen before. Therefore, a key objective of the learning algorithm is to build models with good generalization capability; i.e., models that accurately predict the class labels of previously unknown records.

A general approach for solving classification problems: first, a training set consisting of records whose class labels are known must be provided. The training set is used to build a classification model, which is subsequently applied to the test set, which consists of records with unknown class labels.

Evaluation of the performance of a classification model is based on the counts of test records correctly and incorrectly predicted by the model.

Confusion matrix for a 2-class problem.

		Predicted Class	
		Class = 1	Class = 0
Actual	Class = 1	f_{11}	f_{10}
Class	Class = 0	f_{01}	f_{00}

These counts are tabulated in a table known as a **confusion matrix**. The table depicts the confusion matrix for a binary classification problem. Each entry f_{ij} in this table denotes the number of records from class i predicted to be of class j. For instance, f_{01} is the number of records from class 0 incorrectly predicted as class 1. Based on the entries in the confusion matrix, the total number of correct predictions made by the model is $(f_{11} + f_{00})$ and the total number of incorrect predictions is $(f_{10} + f_{01})$.

Although a confusion matrix provides the information needed to determine how well a classification model performs, summarizing this information with a single number would make it more convenient to compare the performance of different models. This can be done using a performance metric such as accuracy, which is defined as follows:

Accuracy =
$$\frac{\text{Number of correct predictions}}{\text{Total number of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Equivalently, the performance of a model can be expressed in terms of its **error rate**, which is given by the following equation:

Error rate =
$$\frac{\text{Number of wrong predictions}}{\text{Total number of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}}$$

Decision Trees

We can solve a classification problem by asking a series of carefully crafted questions about the attributes of the test record. Each time we receive an answer, a follow-up question is asked until we reach a conclusion about the class label of the record. The series of questions and their possible answers can be organized in the form of a decision tree, which is a hierarchical structure consisting of nodes and directed edges.

The decision tree has three types of nodes:

- A **root node** that has no incoming edges and zero or more outgoing edges.
- Internal nodes, each of which has exactly one incoming edge and two or more outgoing edges.
- Leaf or terminal nodes, each of which has exactly one incoming edge and no outgoing edges.

In a decision tree, each leaf node is assigned a class label. The non-terminal nodes, which include the root and other internal nodes, contain attribute test conditions to separate records that have different characteristics.

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Defaulted = No

(7,3)

(a)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No
(7,3)
(a)

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for specifying test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition

- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

Methods for specifying test conditions

- Depends on attribute types
 - Binary
 - Nominal
 - Ordinal
 - Continuous

- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Test condition for Nominal Attribute

- Multi-way split:
 - Use as many partitions as distinct values.

- Binary split:
 - Divides values into two subsets

Test condition for Ordinal Attribute

- Multi-way split:
 - Use as many partitions as distinct values

- Binary split:
 - Divides values into two subsets
 - Preserve order property among attribute values

Test condition for Continuous Attribute

(i) Binary split

(ii) Multi-way split

Test condition for Continuous Attribute

- Different ways of handling
 - Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

- Static discretize once at the beginning
- Dynamic repeat at each node
- Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

How to determine the best split

Before Splitting: 10 records of class 0, 10 records of class 1

Customer Id	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	CO
9	F	Sports	Medium	C0
10	F	Luxury	Large	CO
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Customer

C0: 0

C1: 1

C0: 1

C1: 0

C0: 0

C1: 1

Which test condition is the best?

How to determine the best split

- Greedy approach:
 - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

High degree of impurity

Low degree of impurity

Measures of Node Impurity

Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

Entropy

Entropy(t) =
$$-\sum_{j} p(j|t) \log p(j|t)$$

Misclassification error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Finding the best split

splitting (M)

- Compute impurity measure (P) before splitting

 Generate impurity measure (M) often enlitting
- Compute impurity measure (M) after splitting
 Compute impurity measure of each child node
- M is the weighted impurity of children
- Choose the attribute test condition that produces the highest gain

Gain = P - M

or equivalently, lowest impurity measure after

Finding the best split

Measure of impurity: Entropy

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum (log n_c) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information

Computing Entropy of a single node

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

C1	1	P(C1) = 1/6	P(C2) = 5/6
C2	5	Entropy = - (1/	(6) $\log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

C1	2	P(C1) = 2/6	P(C2) = 4/6
C2	4	Entropy = $-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$	

Computing Information Gain after Splitting

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms

Measure of Impurity: Gini

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes
- Minimum (0.0) when all records belong to one class,

Measure of Impurity: Gini

• Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

For 2-class problem (p, 1 – p):

• GINI =
$$1 - p^2 - (1 - p)^2 = 2p (1-p)$$

Gini=0.000	Gini=0.278	
C2 6	C2	5
C1 0	C1	1

78	Gini=0.444		G
5	C2	4	(
L	C1	2	(

Gini=	0.500
C2	3
C1	3

Computing Gini Index of a single node

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

C1	1	P(C1) = 1/6	P(C2) = 5/6	

Gini = $1 - (2/6)^2 - (4/6)^2 = 0.444$

C2	5	Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$		
C1	2	P(C1) = 2/6	P(C2) = 4/6	

C1	1	P(C1) = 1/6	P(C2) = 5
C2	5	Gini = 1 – (1/6	$(5/6)^2 = (5/6)^2 = (5/6)^2$

C2

Computing Gini Index for a collection of nodes

When a node p is split into k partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at parent node p.

- Choose the attribute that minimizes weighted average
 Gini index of the children
 - Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

Binary Attributes: Computing Gini Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	7
C2	5
Gini	= 0.486

Gin	ıi(I	N 1)
= 1	1000		735

$= 1 - (5/6)^2 - (1/6)^2$		N1	N2
= 0.278	C1	5	2
Gini(N2)	C2	1	4

	C-1		
ini(N2)	C2	1	4
$1 - (2/6)^2 - (4/6)^2$	Gini=0.361		
0.444		- V=11-1-	

Weighted Gini of N1	N2
= 6/12 * 0.278 +	
6/12 * 0.444	
= 0.361	

Gain = 0.486 - 0.361 = 0.125

Task

Compute the initial Gini index.
 Next, compute GINI index after you split based on the attribute
 i) Gender,

- ii) Car Type,
- iii) Shirt Size
- 2. Do the same exercise as 1 with entropy as the measure of impurity.

Customer Id	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1