NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 1 EXAMINATION 2014-2015

MH1812 - Discrete Mathematics

N	ovember	20.	1 /
1 7 () veiiiiei	Z.U.	14

TIME ALLOWED: 2 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains FIVE (5) questions and comprises FOUR (4) printed pages.
- 2. Answer **ALL** questions. The marks for each question are indicated at the beginning of each question.
- 3. Answer each question beginning on a FRESH page of the answer book.
- 4. This IS NOT an OPEN BOOK exam.
- 5. Candidates may use calculators. However, they should write down systematically the steps in the workings.

MH1812

QUESTION 1. (20 marks)

(a) Let A and B be two sets. Write the definition of $A \neq B$ (in terms of predicate logic).

(b) Show that

$$(A \neq B) \rightarrow \neg ((A \cup B) \subseteq (A \cap B)).$$

(c) Deduce that

$$((A \cup B) \subseteq (A \cap B)) \to (A = B).$$

QUESTION 2. (25 marks)

- (a) Consider the set S of 3×3 matrices with binary coefficients, that is the coefficients are integers modulo 2.
 - (i) Compute |S|.
 - (ii) Consider the subset R of S formed by 3×3 matrices with binary coefficients such that they are equal to their transposes:

$$R = \left\{ M \in S, \ M = M^T \right\}.$$

Compute |R|.

(b) Consider the 3×3 real matrix

$$M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 5 & 0 \\ x & 0 & 2 \end{pmatrix}.$$

Compute the value(s) of x for which M is invertible, in which case(s), compute M^{-1} .

MH1812

QUESTION 3. (25 marks)

(a) Compute the real part and the imaginary part of the following complex number:

$$\frac{5-3i}{1+i}.$$

- (b) Let z be a complex number. Prove that the real part of z is given by $\frac{z+\bar{z}}{2}$. Give a formula to express the imaginary part of z in terms of z and \bar{z} .
- (c) Define a relation R on the set of complex numbers by

$$zRw \iff |z| \le |w|.$$

Is this relation R a partial order? Justify your answer.

QUESTION 4. (20 marks)

(a) Let A_5 denote the set of integers modulo 5, and A_8 denote the set of integers modulo 8. Consider the maps $f_1: A_8 \to A_8$, $f_2: A_5 \to A_5$ given by

$$f_1(x) = 2x \mod 8,$$

 $f_2(x) = 4x + 1 \mod 5.$

- (i) Is the map f_1 injective (one-to-one)? Justify your answer.
- (ii) Is the map f_2 invertible? If so, give its inverse. Justify your answer.
- (b) Let B be a finite set. Let $f:B\to B$ be an injective map. Show that f is surjective.

MH1812

QUESTION 5.

(10 marks)

Does the following graph contain an Euler circuit? Justify your answer.

END OF PAPER

MH1812 DISCRETE MATHEMATICS

Please read the following instructions carefully:

- 1. Please do not turn over the question paper until you are told to do so. Disciplinary action may be taken against you if you do so.
- 2. You are not allowed to leave the examination hall unless accompanied by an invigilator. You may raise your hand if you need to communicate with the invigilator.
- 3. Please write your Matriculation Number on the front of the answer book.
- 4. Please indicate clearly in the answer book (at the appropriate place) if you are continuing the answer to a question elsewhere in the book.