DragDiffusion: Harnessing Diffusion Models for Interactive Point-based Image Editing

Yujun Shi¹ Chuhui Xue² Jun Hao Liew² Jiachun Pan¹ Hanshu Yan² Wenqing Zhang² Vincent Y. F. Tan¹ Song Bai²

¹National University of Singapore ² ByteDance Inc.

arXiv(CVPR), 2023(2024), 60 citation

Interactive point-based image editing

- Move several handle points to target points
- Requirements of task
 - Flexibility: adjust spatial attributes (e.g., pose, position, expression, shape, etc)
 - Precision: control spatial attributes with high precision
 - Generality: apply various categories

Handle point
Target point

Existing approach

- DragGAN (2023)
 - Due to capacity of GAN model, generality is not satisfied in DragGAN

Existing approach

- Large-scale text-to-image diffusion models
 - Have a strong capabilities
 - Most diffusion-based editing models use text embeddings
 - It cannot achieve precise spatial control

Prompt-to-Prompt

InstructPix2Pix

DragDiffusion

- Use diffusion models instead of GAN
- Additionally, introduce two techniques to preserve identity of original image
 - Identity-preserving fine-tuning
 - Reference-latent-control

- DragGAN: image manipulation via optimizing latent code
 - StyleGAN2, feature map of 6th block
 - Motion supervision loss: move handle point to target point
 - Point tracking loss: update previous handle point to current handle point

- DragGAN: image manipulation via optimizing latent code
 - Motion supervision loss: move handle point to target point
 - Point tracking loss: update previous handle point to current handle point

$$\mathcal{L} = \sum_{i=0}^{n} \sum_{q_i \in \Omega_1(p_i, r_1)} \|F(q_i) - F(q_i + d_i)\|_1 + \lambda \|(F - F_0) \cdot (1 - M)\|_1,$$

Motion supervision

$$\mathbf{p}_i \coloneqq \underset{\mathbf{q}_i \in \Omega_2(\mathbf{p}_i, r_2)}{\operatorname{arg \, min}} \|\mathbf{F}'(\mathbf{q}_i) - f_i\|_1.$$

Point tracking

F: *feature map*

 F_0 : initial feature map

i: number of points

 d_i : unit vector towards target points

 q_i : small patch around p_i

 f_i : feature of initial handle point

 $F'(q_i)$: updated feature map at q_i

- DragGAN: image manipulation via optimizing latent code
 - Motion supervision loss: move handle point to target point
 - Point tracking loss: update previous handle point to current handle point

- DragGAN: image manipulation via optimizing latent code
 - Motion supervision loss: move handle point to target point
 - Point tracking loss: update previous handle point to current handle point

- LoRA
 - Train the model with additional parameters

- Diffusion models
 - Forward process: add noise / Reverse process: remove noise
 - Given data X_0 , add noise $\epsilon \sim N(0, I)$ iteratively (forward process)
 - The model trained the forward process in reverse (reverse process)
 - Therefore, the model predicts the noise at a specific time step

$$x_t = \sqrt{\overline{\alpha_t}} x_0 + \sqrt{(1 - \overline{\alpha_t})} \epsilon$$

Forward process (add noise)

Reverse process (remove noise)

- Diffusion models
 - Forward process: add noise / Reverse process: remove noise
 - Given data X_0 , add noise $\epsilon \sim N(0, I)$ iteratively (forward process)
 - The model trained the forward process in reverse (reverse process)
 - Therefore, the model predicts the noise at a specific time step

- DragDiffusion
 - Use diffusion model
 - It consists of 3 step

- 1. Identity-preserving fine-tuning
 - To encode input's feature in diffusion model, train model using LoRA
 - Only 80 steps
 - Subject-driven image generation: require 1000 steps (DreamBooth, textual inversion)
 - Sampling time: GAN < Diffusion + fine-tuning
 - A100GPU: 25 seconds

- 2. Diffusion latent optimization (motion supervision + point tracking)
 - Move handle point to target point + update handle point
 - Same with DragGAN

2. Diffusion latent optimization (motion supervision + point tracking)

- GAN: generate an image at once
- Diffusion: generate an image with iterative denoising

All of time steps? Certain time step?

- 2. Diffusion latent optimization (motion supervision + point tracking)
 - Given two frames, visualize feature map over time using PCA
 - At t = 35, it has sufficient semantic and geometric information (shape, pose, etc)
 - Conduct optimization at certain time step (t = 35)

- 2. Diffusion latent optimization (motion supervision + point tracking)
 - Optimization step: 80

3. Reference-latent-control

- After optimization, denoise optimized latents to generate final editing results
- Occurs defects: shift, degrade quality
- Assume that this issue arises due to the absence of proper guidance from the original image during denoising process

3. Reference-latent-control

 In self-attention module, replace key and value of optimized latents with key and value of original latents

Improve consistency by referencing the correlated contents and texture of

original image

- Models: Stable Diffusion v1.5
- LoRA fine-tuning: 80 steps
- Evaluation
 - Image Fidelity ↑ (IF): quantifies the similarity between original and edited images
 - Mean Distance ↓ (MD): how well the approach moves the semantic contents to the target points

- All results are obtained under the same user edit
 - Measure the generality between GAN and Diffusion

- Comparison with DragGAN
 - Image Fidelity ↑ (IF): quantifies the similarity between original and edited images
 - Mean Distance ↓ (MD): how well the approach moves the semantic contents to the target points

Ablation study

• Image Fidelity ↑ (IF): quantifies the similarity between original and edited images

■ Mean Distance ↓ (MD): how well the approach moves the semantic contents

to the target points

Show the generality of DragDiffusion

- Ablation study
 - (a): t = 35
 - (b): LoRA 80 steps
 - (c): which is better results to apply optimization loss

- Ablation study
 - Better results in $t \in [30,40]$

- Ablation study
 - $n \ge 80$: produce reasonable results without artifacts

- Ablation study
 - Conduct 3rd decoder block in UNet
 - 1st, 2nd: precise spatial control x
 - 4th: insufficient semantic and geometric information

