

一、ATMEGA8 熔丝位编程状态:

1: 未编程(检查框不打钩)

0: 编程 (检查框打钩)

注意: 1、LT-48/48XP中,也有检查框打钩表示1的,但在熔丝名称后有"=1"的说明。

2、AVR 系列 MCU 的熔丝,全部是可多次编程的,不是 OPT 熔丝。

二、熔丝位的作用:

1、功能熔丝

熔丝	说明		
	1	0	设置
RSTDISBL	PIN1 用作复位引脚	PIN1 用作 IO 口,复位为内部复位	1
WDTON	看门狗完全由软件控制	看门狗始终工作,软件只可以调节溢出时间	1
SPIEN	禁止串行编程	允许串行编程	0
EESAVE	擦除时不保留 EEPROM 数据	擦除时保留 EEPROM 数据	1
BODEN	BOD 功能禁止	BOD 功能允许	1
BODLEVEL	BOD 门槛电平 2.7V	BOD 门槛电平 4.0V	1
BOOTRST	复位后从 0 地址执行	复位后从 BOOT 区执行(参考 BOOTSZ0/1)	1

2、BOOT 区配置熔丝

BOOTSZ1	BOOTSZ0	BOOT 区大小	BOOT 区地址	默认
0	0	1024WORD	0x0C00	默认
0	1	512WORD	0x0E00	
1	0	256WORD	0x0F00	
1	1	128WORD	0x0F80	

3、时钟源选择

系统时钟源	CKSEL30
外部石英/陶瓷振荡器	1111-1010
外部低频晶振(32.768KHZ)	1001
外部 RC 振荡	1000-0101
可校准的内部 RC 振荡	0100-0001
外部时钟	0000

4、外部振荡器(见图一)

外部振荡器的不同工作模式

熔丝位		工作频率范围	C1、C2 容量(pF)
CKOPT ²	CKSEL31	(MHz)	(仅适用石英晶振)
1	101	0.4-0.9	仅适合陶瓷振荡器 ¹
1	110	0.9-3.0	12-22
1	111	3.0-8.0	12-22
0	101,110,111	≥1.0	12-22

注:1、对陶瓷振荡器所配的电容,按陶振厂家说明。

2、当 CKOPT=0 (编程)时,振荡器的输出振幅较大,适用于干扰大的场合;反之,振荡器的输出振幅较小,可以减少功耗,对外电磁幅射也较小。

使用外部振荡器时的启动时间选择

熔丝位		从掉电模式	从复位开始的附加	推荐使用场合
CKSEL0	SUT 10	开始的启动时间	延时(Vcc=5.0V)	1年4次73%日
0	00	258 CK	4.1ms	陶瓷振荡器、快速上升电源
0	01	258 CK	65ms	陶瓷振荡器、慢速上升电源
0	10	1K CK	-	陶瓷振荡器 BOD 方式
0	11	1K CK	4.1ms	陶瓷振荡器、快速上升电源
1	00	1K CK	65ms	陶瓷振荡器、慢速上升电源
1	01	16K CK	-	石英振荡器 BOD 方式
1	10	16K CK	4.1ms	石英振荡器、快速上升电源
1	11	16K CK	65ms	石英振荡器、慢速上升电源

5、使用外部低频晶振时的启动时间选择

可以使用 32.768KHZ 的手表晶振作为 MCU 的时钟源(同图一),此时 CKSEL 应当编程为 1001; CKOPT=0 (编程) 时,选择使用内部和 XTAL1/XTAL2 相连的电容,没有必要再外接电容; 内部电容是 36pF,应用时可以参考 32.768KHZ 晶振的使用手册来选择 C1、C2 电容。

熔丝	丝位	从掉电模式	从复位开始的附加延时	推荐使用场合
CKSEL 10	SUT 10	开始的启动时间	(Vcc=5. 0V)	3E17 C/13-WII
1001	00	1K CK	4.1ms	快速上升电源或 BOD 方式 1
1001	01	1K CK	65ms	慢速上升电源
1001	10	32K CK	65ms	要求振荡频率稳定的场合
1001	11	保留		

注: 1、这个选项只能用于启动时晶振频率稳定、不是很重要的应用场合。

6、外部 RC 振荡器(见图二)

	•
熔丝位	工作频率范围
(CKSEL31)	(MHz)
0101	≤0.9
0110	0.9-3.0
0111	3.0-8.0
1000	8.0-12.0

注意: 1、频率的估算公式是: f=1/(3RC)

2、电容 C 至少为 22pF。

3、当 CKOPT=0(编程)时,可以使用片内 XTAL1 和 GND 之间的 36pF 电容,此时不需要外接电容 C。

使用外部外部 RC 振荡器时的启动时间选择

熔丝位 SUT 10)	从掉电模式 开始的启动时间	从复位开始的附加延时 (Vcc=5.0V)	推荐使用场合
00	18 CK	-	BOD 方式
01	18 CK	4.1ms	快速上升电源
10	18 CK	65ms	慢速上升电源
11	6 CK	4.1ms	快速上升电源或 BOD 方式

7、可校准的内部 RC 振荡器

被校准的内部 RC 振荡器提供固定的 1/2/4/8MHZ 的时钟,这些工作频率是在 5V, 25℃下校准的。CKSEL 熔丝按下表编程可以选择内部 RC 时钟,此时将不需要外部元件,而使用这些时钟选项时,CKOPT 应当是未编程的,即 CKOPT=1。

当 MCU 完成复位后,硬件将自动地装载校准值到 OSCCAL 寄存器中,从而完成对内部 RC 振荡器的频率校准。

使用内部 RC 振荡器的不同工作模式

熔丝位 (CKSEL31)	工作频率范围 (MHz)
0001 ¹	1.0
0010	2.0
0011	4.0
0100	8.0

注: 1、芯片出厂设置

使用内部 RC 振荡器时的启动时间选择

熔丝位 (SUT 10)	从掉电模式 开始的启动时间	从复位开始的附加延时(Vcc=5.0V)	推荐使用场合
00	6 CK	-	BOD 方式
01	6 CK	4.1ms	快速上升电源
10 ¹	6 CK	65ms	慢速上升电源
11		保留	

注: 1、芯片出厂设置

8、外部时钟源(见图三)

当 CKSEL 编程为 0000 时,使用外部时钟源作为系统时钟,外部时钟信号从 XTAL1 输入。 如果 CKOPT=0 (编程),则 XTAL1 和 GND 之间的片内 36pF 电容被使用。

使用外部时钟源时的启动时间选择

熔丝位 (SUT 10)	从掉电模式 开始的启动时间	从复位开始的附加 延时(Vcc=5.0V)	推荐使用场合
00	6 CK	-	BOD 方式
01	6 CK	4.1ms	快速上升电源
10	6 CK	65ms	慢速上升电源
11		保留	

注意:为保证 MCU 稳定工作,不能突然改变外部时钟的频率,当频率突然变化超过 2%时,将导致 MCU 工作异常。建议在 MCU 处于复位状态时,改变外部时钟的频率。

9、系统时钟选择一览表

时钟源	启动延时	熔丝
外部时钟	6 CK + 0 ms	CKSEL=0000 SUT=00
外部时钟	6 CK + 4.1 ms	CKSEL=0000 SUT=01
外部时钟	6 CK + 65 ms	CKSEL=0000 SUT=10
内部 RC 振荡 1MHZ	6 CK + 0 ms	CKSEL=0001 SUT=00
内部 RC 振荡 1MHZ	6 CK + 4.1 ms	CKSEL=0001 SUT=01
内部 RC 振荡 1MHZ ¹	6 CK + 65 ms	CKSEL=0001 SUT=10
内部 RC 振荡 2MHZ	6 CK + 0 ms	CKSEL=0010 SUT=00
内部 RC 振荡 2MHZ	6 CK + 4.1 ms	CKSEL=0010 SUT=01
内部 RC 振荡 2MHZ	6 CK + 65 ms	CKSEL=0010 SUT=10
内部 RC 振荡 4MHZ	6 CK + 0 ms	CKSEL=0011 SUT=00
内部 RC 振荡 4MHZ	6 CK + 4.1 ms	CKSEL=0011 SUT=01
内部 RC 振荡 4MHZ	6 CK + 65 ms	CKSEL=0011 SUT=10
内部 RC 振荡 8MHZ	6 CK + 0 ms	CKSEL=0100 SUT=00
内部 RC 振荡 8MHZ	6 CK + 4.1 ms	CKSEL=0100 SUT=01
内部 RC 振荡 8MHZ	6 CK + 65 ms	CKSEL=0100 SUT=10
外部 RC 振荡≤0.9MHZ	18 CK + 0 ms	CKSEL=0101 SUT=00
外部 RC 振荡≤0.9MHZ	18 CK + 4.1 ms	CKSEL=0101 SUT=01
外部 RC 振荡≤0.9MHZ	18 CK + 65 ms	CKSEL=0101 SUT=10
外部 RC 振荡≤0.9MHZ	6 CK + 4.1 ms	CKSEL=0101 SUT=11
外部 RC 振荡 0.9-3.0MHZ	18 CK + 0 ms	CKSEL=0110 SUT=00
外部 RC 振荡 0.9-3.0MHZ	18 CK + 4.1 ms	CKSEL=0110 SUT=01
外部 RC 振荡 0.9-3.0MHZ	18 CK + 65 ms	CKSEL=0110 SUT=10
外部 RC 振荡 0.9-3.0MHZ	6 CK + 4.1 ms	CKSEL=0110 SUT=11
外部 RC 振荡 3.0-8.0MHZ	18 CK + 0 ms	CKSEL=0111 SUT=00
外部 RC 振荡 3.0-8.0MHZ	18 CK + 4.1 ms	CKSEL=0111 SUT=01
外部 RC 振荡 3.0-8.0MHZ	18 CK + 65 ms	CKSEL=0111 SUT=10
外部 RC 振荡 3.0-8.0MHZ	6 CK + 4.1 ms	CKSEL=0111 SUT=11
外部 RC 振荡 8.0-12.0MHZ	18 CK + 0 ms	CKSEL=1000 SUT=00
外部 RC 振荡 8.0-12.0MHZ	18 CK + 4.1 ms	CKSEL=1000 SUT=01
外部 RC 振荡 8.0-12.0MHZ	18 CK + 65 ms	CKSEL=1000 SUT=10
外部 RC 振荡 8.0-12.0MHZ	6 CK + 4.1 ms	CKSEL=1000 SUT=11
低频晶振(32.768KHZ)	1K CK + 4.1 ms	CKSEL=1001 SUT=00
低频晶振(32.768KHZ)	1K CK + 65 ms	CKSEL=1001 SUT=01
低频晶振(32.768KHZ)	32K CK + 65 ms	CKSEL=1001 SUT=10
低频石英/陶瓷振荡器(0.4-0.9MHZ)	258 CK + 4.1 ms	CKSEL=1010 SUT=00
低频石英/陶瓷振荡器(0.4-0.9MHZ)	258 CK + 65 ms	CKSEL=1010 SUT=01
低频石英/陶瓷振荡器(0.4-0.9MHZ)	1K CK + 0 ms	CKSEL=1010 SUT=10

时钟源	启动延时	熔丝
低频石英/陶瓷振荡器(0.4-0.9MHZ)	1K CK + 4.1 ms	CKSEL=1010 SUT=11
低频石英/陶瓷振荡器(0.4-0.9MHZ)	1K CK + 65 ms	CKSEL=1011 SUT=00
低频石英/陶瓷振荡器(0.4-0.9MHZ)	16K CK + 0 ms	CKSEL=1011 SUT=01
低频石英/陶瓷振荡器(0.4-0.9MHZ)	16K CK + 4.1ms	CKSEL=1011 SUT=10
低频石英/陶瓷振荡器(0.4-0.9MHZ)	16K CK + 65ms	CKSEL=1011 SUT=11
中频石英/陶瓷振荡器(0.9-3.0MHZ)	258 CK + 4.1 ms	CKSEL=1100 SUT=00
中频石英/陶瓷振荡器(0.9-3.0MHZ)	258 CK + 65 ms	CKSEL=1100 SUT=01
中频石英/陶瓷振荡器(0.9-3.0MHZ)	1K CK + 0 ms	CKSEL=1100 SUT=10
中频石英/陶瓷振荡器(0.9-3.0MHZ)	1K CK + 4.1 ms	CKSEL=1100 SUT=11
中频石英/陶瓷振荡器(0.9-3.0MHZ)	1K CK + 65 ms	CKSEL=1101 SUT=00
中频石英/陶瓷振荡器(0.9-3.0MHZ)	16K CK + 0 ms	CKSEL=1101 SUT=01
中频石英/陶瓷振荡器(0.9-3.0MHZ)	16K CK + 4.1ms	CKSEL=1101 SUT=10
中频石英/陶瓷振荡器(0.9-3.0MHZ)	16K CK + 65ms	CKSEL=1101 SUT=11
高频石英/陶瓷振荡器(3.0-8.0MHZ)	258 CK + 4.1 ms	CKSEL=1110 SUT=00
高频石英/陶瓷振荡器(3.0-8.0MHZ)	258 CK + 65 ms	CKSEL=1110 SUT=01
高频石英/陶瓷振荡器(3.0-8.0MHZ)	1K CK + 0 ms	CKSEL=1110 SUT=10
高频石英/陶瓷振荡器(3.0-8.0MHZ)	1K CK + 4.1 ms	CKSEL=1110 SUT=11
高频石英/陶瓷振荡器(3.0-8.0MHZ)	1K CK + 65 ms	CKSEL=1111 SUT=00
高频石英/陶瓷振荡器(3.0-8.0MHZ)	16K CK + 0 ms	CKSEL=1111 SUT=01
高频石英/陶瓷振荡器(3.0-8.0MHZ)	16K CK + 4.1ms	CKSEL=1111 SUT=10
高频石英/陶瓷振荡器(3.0-8.0MHZ)	16K CK + 65ms	CKSEL=1111 SUT=11

注: 1、出厂默认设置

注意: CKOPT=1 (未编程)时,最大工作频率为8MHZ;而 CKOPT=0 (编程)时,对频率大于1MHZ的振荡器, CKSEL3..1可以编程为101/110/111中任意一个。

10、加密熔丝

ATMEGA8 的加密熔丝分两组: LB1/LB2 及 BLB01/BLB02/BLB11/BLB12。通过对 LB1/LB2 熔丝编程,可以禁止外部编程器对 MCU 进行编程和校验; 通过对 BLB01/02/11/12 熔丝编程,可以禁止 IAP 应用中片内存贮器的应用区和 B00T 区之间的编程和校验。

LB1/LB2 熔丝保护模式

7.1.— 1.1.1. 1.1.2.			
存贮器锁定位		Ì	保护类型
加密模式	LB2	LB1	体护炎空
1	1	1	没有存贮器保护(未加密)
2	1	0	禁止对 FLASH 和 EEPROM 存贮器的再编程; 禁止对熔丝位的编程。
3	0	0	禁止对 FLASH 和 EEPROM 存贮器的再编程和校验; 禁止对熔丝位的编程。

BLBO 熔丝保护模式

加密模式	BLB02	BLB01	保护类型
1	1	1	允许对应用区进行 LPM、SPM 操作
2	1	0	禁止对应用区进行 SPM 操作
3	0	0	禁止对应用区进行 LPM、SPM 操作
4	0	1	禁止对应用区进行 LPM 操作

BLB1 熔丝保护模式

加密模式	BLB12	BLB11	保护类型
1	1	1	允许对 BOOT 区进行 LPM、SPM 操作
2	1	0	禁止对 BOOT 区进行 SPM 操作
3	0	0	禁止对 BOOT 区进行 LPM、SPM 操作
4	0	1	禁止对 BOOT 区进行 LPM 操作

广州市天河双龙电子有限公司

http://www.sl.com.cn

广州双龙:广州天河路 561 号新赛格电子城 331 室(510630) 电话:020-87578852、87505012 传真:分机 620

北京双龙:北京海淀知春路 132 号中发大厦 616 室(100086)

电话:010-82623551、62653785 传真:010-82623550

上海双龙:上海北京东路 668 号科技京城东搂 12H2 室(200001)

电话:021-53081501、53081502 传真:分机 213