Learning to Translate with Multiple Objectives

Kevin Duh (NAIST)

Katsuhito Sudoh (NTT)

Xianchao Wu (Baidu)

Hajime Tsukada (NTT)

Masaaki Nagata (NTT)

How many metrics have been proposed for MT evaluation?

RIBES

DepOverlap IMPACT

TER

BLEU

RED

RTE **NIST**

WER

ParaEval

PER

GTM

METEOR

SEPIA

SemPos

NCT

How many metrics are used for MT optimization?

BLEU

Metrics for Evaluation

for Optimization

RIBES DepOverlap
IMPACT WER **TER BLEU NIST** RED **GTM** RTE **TESLA ParaEval** PER **METEOR** SEPIANCT SemPos

BLEU

5

Each metric has its strengths.

→ Optimize with multiple metrics

Outline

- 1. Motivation
- 2. Basic Concepts: Pareto optimality
- 3. Multiobjective optimization in MT
- 4. Experiments

Outline

- 1. Motivation
- 2. Basic Concepts: Pareto optimality
- 3. Multiobjective optimization in MT
- 4. Experiments

Multiobjective optimization

$$\max_{w}[F_1(w), F_2(w), ..., F_K(w)]$$

Find one w that simultaneously optimizes K objectives

But what does it mean to be "optimum"?

Multiobjective optimization of your ACL Hotel

Vilfredo Pareto, Economist (1848-1923)

How to define optimality

A point p is weakly pareto-optimal iff there does not exist another point q such that $F_k(q) > F_k(p)$ for all k

A point p is pareto-optimal iff there does not exist a q such that $F_k(q) >= F_k(p)$ for all k and $F_k(q) > F_k(p)$ for at least one k

Given a set of points, the subset of paretooptimal points form the **Pareto Frontier**

Outline

- 1. Motivation
- 2. Basic Concepts: Pareto optimality
- 3. Multiobjective optimization in MT
- 4. Experiments

Optimization in Machine Translation

Baseline: Linear Combination

$$\max_{w} \sum_{k=1}^{K} \alpha_{k} F_{k}(w)$$

$$\text{Importance of each objective}$$

$$\alpha_{k} \geq 0, \sum_{k=1}^{K} \alpha_{k} = 1$$

Advantages:

- 1. Single-objective tools can be used
- 2. Sufficiency: If w* is a solution, then it's Weakly Pareto

Disadvantages:

- 1. How to set α ?
- 2. No Necessary Conditions: Some Pareto points can never been obtained, whatever setting of α .

Pareto points not on Convex Hull are missed

New method: Directly optimize Pareto Front

New method: Directly optimize Pareto Front

Multi-objective Pairwise Ranking Optimization

$$\min_{w} \| w \|^{2} + c \sum_{ij}^{\text{Slack}} \xi_{ij}$$
Feature vector
$$S.t. \ w^{T} \Phi(x, y_{i}) - w^{T} \Phi(x, y_{j}) \geq 1 - \xi_{ij}$$
Input sentence
Good hypothesis
Poor hypothesis

$$\forall y_i \in ParetoFront, y_j \notin ParetoFront$$

i.e. score of pareto hypothesis should be higher than non-pareto hypotheses

Outline

- 1. Motivation
- 2. Basic Concepts: Pareto optimality
- 3. Multiobjective optimization in MT
- 4. Experiments

Experiment Setup

Task 1: NIST Zh-En

Optimize BLEU & NTER
NTER = max(1-TER,0)

Moses decoder, 7M train sentences, 1.6k dev, 8 features

Task 2: PubMed En-Ja

Optimize BLEU & RIBES

RIBES = permutation metric [Isozaki, EMNLP10]

Moses decoder, 0.2M train sentences, 2k dev, 14 features

- Compare Linear Combination vs. Pareto
 - Both use pairwise rank optimization, but different objective.
 - For Linear Combination, multiple α settings ($\alpha_1 = \{1,0.7,0.5,0.3,0\}$)
 - 5 runs, 20 iterations each. Collect/visualize set of solutions.

Result Visualization

OBSERVARTIONS:

1. Pareto > Linear Combination for any α

OBSERVARTIONS:

- 1. Pareto > Linear Combination for any α
- 2. Metric tunability: Pareto outperform single-objective optimization of RIBES

Analysis: Number of Pareto Points

Analysis: Metric Tunability

Sampling of 10k random w's

Summary & Final Thoughts

Metrics for Evaluation

for Optimization

RIBES DepOverlap
IMPACT WER **TER BLEU NIST** RED **GTM** RTE **TESLA ParaEval** PER **METEOR** SEPIANCT SemPos

BLEU

Metrics for Evaluation and Optimization

```
RIBES
DepOverlap
IMPACT WER
  TER
       BLEU NIST
 RED
         GTM
     RTE
           TESLA
ParaEval
            PER
  METEOR
  SEPIANCT SemPos
```


Vilfredo Pareto (1848-1923)

Multi-objective problems are everywhere if we look

- Speed & Accuracy
 - Parsing [Eisner2011]
- Intrinsic & Extrinsic Metrics
 - Parser & downstream Machine Translation [Hall2011]
- Multiple datasets
 - Recommendation system [Agarawl2011]
- Escape local optima
 - Hard & Soft EM in grammar induction [Spitkovsky2011]

Thanks for your attention!

Do you have a multi-objective problem?

NIST Result

PubMed Result

