

BASIC STATISTIC

Hoang-Nguyen Vu

Objectives

Introduction

- * Random Variables
- Probability Distribution
- Mathematical Expectations (Mean, Median, Variance)

Application

Covariance & Correlation

Outline

SECTION 1

Discrete Random Variables

SECTION 2

Mathematical Expectations

SECTION 3

Covariance & Correlation

A Random Variable

A random variable X is a function X: $\Omega \to \mathbb{R}$, maps an outcome $s \in \Omega$ to a number on the real line $X(s) \in \mathbb{R}$

A continuous random variable X is a function $X(s): \Omega \to \mathbb{R}$, maps an outcome s from an uncountably infinite to a number on the real line $X(s) \in \mathbb{R}$ A discrete random variable X is a function X(s): $\Omega \to \mathbb{R}$, maps an outcome from a finite or countably infinite sample space to a number on the real line $X(s) \in \mathbb{R}$

A Continuous Random Variable

A continuous random variable X is a function X(s): $\Omega \to \mathbb{R}$, maps an outcome s from **an uncountably infinite** to a number on the real line $X(s) \in \mathbb{R}$

Rotate a pointer about a pivot in a plane (a clock)

Outcome: the angle where stops: $2\pi\theta$, $\theta \in (0,1]$

$$\Omega = (0, 1]$$

A continuos random variable: $X(\theta) = \theta$

A Discrete Random Variable

A discrete random variable X is a function X(s): $\Omega \to \mathbb{R}$, maps an outcome from a finite or countably infinite sample space to a number on the real line $X(s) \in \mathbb{R}$

Toss a coin 3 times in sequence

 $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

> X(s) = the number of Heads in the sequence X(HTH) = 2 X(THT) = 1 ...

A Discrete Random Variable

A discrete random variable X is a function X(s): $\Omega \to \mathbb{R}$, maps an outcome from a finite or countably infinite sample space to a number on the real line $X(s) \in \mathbb{R}$

Toss a coin 3 times in sequence

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

- > X(s) = the number of Heads in the sequence X(HTH) = 2 X(THT) = 1 ...
- > X(s) { The index of the first H 0 if the sequence has no H X(TTH) = 3 X(TTT) = 0 ...

A Discrete Random Variable

A discrete random variable X is a function X(s): $\Omega \to \mathbb{R}$, maps an outcome from a finite or countably infinite sample space to a number on the real line $X(s) \in \mathbb{R}$

Toss a coin 3 times in sequence

```
\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}
```

> X(s) = the number of Heads in the sequence X(s) = 2=> corresponds to the event $s = \{HHT, HTH, THH\}$ $1 < X(s) \le 3$ => $s = \{HHH, HHT, HTH, THH\}$

A Discrete Random Variable

Probability measure on random variables

Toss a coin 3 times in sequence

```
\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}
```

```
> X(s) = the number of Heads in the sequence

X(s) = 2 => corresponds to the event s = \{HHT, HTH, THH\}

=> P(X=2) = P(\{HHT, HTH, THH\}) = 3/8

1 < X(s) \le 3 => s = \{HHH, HHT, HTH, THH\}

=> P(1 < X \le 3) = P(\{HHH, HHT, HTH, THH\}) = 4/8
```

Question

- \triangleright P(X=1)
- \triangleright P(X=2)
- \triangleright P(X<3)
- $ightharpoonup P(X \le -1)$
- $ightharpoonup P(X \le 3)$
- $ightharpoonup P(1 < X \le 3)$

Probability Mass Function

Probability mass function $p_X(x) = P(X = x)$

Toss a coin 3 times in sequence

 $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$

- > p(0) = 1/8
- \rightarrow p(1) = 3/8
- > p(2) = 3/8
- > p(3) = 1/8

Probability Distribution Function

Probability mass function $p_X(x) = P(X = x)$

(Cumulative) Probability distribution function
$$F_X(x) = P(X \le x)$$

Toss a coin 3 times in sequence

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

$$> p(0) = 1/8$$

$$> p(1) = 3/8$$

$$> p(2) = 3/8$$

$$> p(3) = 1/8$$

$$F(-1) = P(X \le -1) = 0/8$$

$$F(0) = P(X \le 0) = 1/8$$

$$F(1) = P(X \le 1) = 4/8$$

$$F(2) = P(X \le 2) = 7/8$$

$$F(3) = P(X \le 3) = 1$$

$$F(4) = P(X \le 4) = 1$$

Probability Distribution Function

(Cumulative) probability distribution function
$$F_X(x) = P(X \le x)$$

Toss a coin 3 times in sequence

 $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$ X(s) = the number of Heads in the sequence

$$F(-1) = P(X \le -1) = 0/8 > F(2) = P(X \le 2) = 7/8$$

$$ightharpoonup F(0) = P(X \le 0) = 1/8 \qquad
ightharpoonup F(3) = P(X \le 3) = 1$$

$$ightharpoonup F(1) = P(X \le 1) = 4/8 \qquad
ightharpoonup F(4) = P(X \le 4) = 1$$

$$P(0 < X \le 2) = P(X = 1) + P(X = 2) = F(2) - F(0)$$

The graph of the probability distribution function

Throw a die twice. X is sum of two numbers. P[X=7]?

Throw a die twice in sequence

$$\Omega = \{(1,1), (1,2), ..., (2,1), (2,2), ..., (6,1), (6,2), ..., (6,6)\} \implies n(\Omega) = 6*6 = 36$$

$$X = \text{sum of two numbers}$$

$$P[X=7] = P[\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}]$$

$$P[X=7] = P[(1,6)] + P[(2,5)] + P[(3,4)] + P[(4,3)] + P[(5,2)] + P[(6,1)]$$

$$P[X=7] = \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} = \frac{1}{6}$$

Throw a die twice. X is sum of two numbers. F[3]?

Throw a die twice in sequence

$$\Omega = \{(1,1), (1,2), ..., (2,1), (2,2), ..., (6,1), (6,2), ..., (6,6)\} \implies n(\Omega) = 6*6 = 36$$

$$X = \text{sum of two numbers}$$

$$F(3) = P[X \le 3] = P[2] + P[3] = P[(1,1)] + P[\{(1,2), (2,1)\}]$$

$$F(3) = P[X \le 3] = P[(1,1)] + P[(1,2)] + P[(2,1)]$$

$$F(3) = P[X \le 3] = \frac{1}{36} + \frac{1}{36} + \frac{1}{36} = \frac{1}{12}$$

Practice

We extract 3 balls from a box containing an equal number of white and black balls, and we put the ball back into the box after each extraction. How many white balls can occur and what are the associated probabilities?

X = Number of white balls										
Sample space	X	Pro	Sample space	X	Pro	X	0	1	2	3
WWW	3	1/8	WBB	1	1/8	P(X)	1/8	3/8	3/8	1/8
WWB	2	1/8	BWB	1	1/8					
WBW	2	1/8	BBW	1	1/8					
BWW	2	1/8	BBB	0	1/8					

Outline

SECTION 1

Discrete Random Variables

SECTION 2

Mathematical Expectations

SECTION 3

Covariance & Correlation

Expectation

The expected value of a discrete random variable X is

$$E[X] = \sum_{k} x_k \cdot P(X = x_k) = \sum_{k} x_k \cdot p_X(x_k)$$

The E[X] represents the weighted average value of X E[X] is also called the mean of X

Expectation

The expected value of a discrete random variable X is

$$E[X] = \sum_{k} x_k \cdot P(X = x_k) = \sum_{k} x_k \cdot p_X(x_k)$$

Rolling a die

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

X	1	2	3	4	5	6
p(x)	1/6	1/6	1/6	1/6	1/6	1/6

$$E[X] = 1 * \frac{1}{6} + 2 * \frac{1}{6} + 3 * \frac{1}{6} + 4 * \frac{1}{6} + 5 * \frac{1}{6} + 6 * \frac{1}{6} = \frac{7}{2}$$

Prove the following:

$$\triangleright$$
 E[α X] = α E[X]

$$\triangleright$$
 E[$\alpha X + b$] = α E[X] + b

Mathematical Expectations @aivietnam.edu.vn

Expectation

The expected value of a discrete random variable X is

$$E[X] = \sum_{k} x_k \cdot P(X = x_k) = \sum_{k} x_k \cdot p_X(x_k)$$

Toss a coin 3 times in sequence

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

$$> p(0) = 1/8$$

$$\rightarrow$$
 p(1) = 3/8

$$> p(2) = 3/8$$

$$> p(3) = 1/8$$

$$E[X] = 0 * \frac{1}{8} + 1 * \frac{3}{8} + 2 * \frac{3}{8} + 3 * \frac{1}{8} = \frac{3}{2}$$

Variance

Mean of X:

$$\mu = E[X]$$

Variance (The average weighted square distance from the mean) of X:

$$Var(X) = E[(X - \mu)^2] = \sum_k (x_k - \mu)^2 p(x_k)$$

Toss a coin 2 times in sequence

$$\Omega = \{HH, TH, HT, TT\}$$

p(0) =	1/4
p(1) =	2/4
p(2) =	1/4

$$E[X] = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 2 * \frac{1}{4} = 1$$

$$Var(X) = (0-1)^2 * \frac{1}{4} + (1-1)^2 * \frac{2}{4} + (2-1)^2 * \frac{1}{4} = 0.5$$

Variance

Mean of X:

$$\mu = E[X]$$

Variance (The average weighted square distance from the mean) of X:

$$Var(X) = E[(X - \mu)^2] = \sum_k (x_k - \mu)^2 p(x_k) = E[X^2] - \mu^2$$

Toss a coin 2 times in sequence

$$\Omega = \{HH, TH, HT, TT\}$$

p(0)	=	1/4
p(1)	=	2/4

$$> p(2) = 1/4$$

$$E[X] = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 2 * \frac{1}{4} = 1$$

$$E[X^2] = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 4 * \frac{1}{4} = 1.5$$
 $Var(X) = 1.5 - 1 = 0.5$

Standard Deviation

Standard Deviation (The average weighted **distance** from the mean) of X:

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{E[(X - \mu)^2]} = \sqrt{E[X^2] - \mu^2}$$

Toss a coin 2 times in sequence

$$\Omega = \{HH, TH, HT, TT\}$$

p(0)	=	1/4
アして		_, -

$$> p(1) = 2/4$$

$$> p(2) = 1/4$$

$$Var(X) = 1.5 - 1 = 0.5$$

$$E[X] = 0 * \frac{1}{4} + 1 * \frac{2}{4} + 2 * \frac{1}{4} = 1$$

$$Var(X) = 1.5 - 1 = 0.5$$
 $\sigma(X) = \sqrt{1.5 - 1} = \sqrt{0.5} = 0.707$

Mathematical Expectations @aivietnam.edu.vn

Standard Deviation

Standard Deviation (The average weighted **distance** from the mean) of X:

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{E[(X - \mu)^2]} = \sqrt{E[X^2] - \mu^2}$$

Rolling a die

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

X	1	2	3	4	5	6
p(x)	1/6	1/6	1/6	1/6	1/6	1/6

$$E[X] = \frac{7}{2} \qquad E[X^2] = \sum_{k=1}^{6} \left[k^2 * \frac{1}{6} \right] = \frac{(1+4+9+16+25+36)}{6} = \frac{91}{6}$$

Standard Deviation

Standard Deviation (The average weighted **distance** from the mean) of X:

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{E[(X - \mu)^2]} = \sqrt{E[X^2] - \mu^2}$$

Rolling a die

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

X	1	2	3	4	5	6
p(x)	1/6	1/6	1/6	1/6	1/6	1/6

$$E[X] = \frac{7}{2}$$

$$E[X^2] = \frac{91}{6}$$

$$E[X] = \frac{7}{2}$$
 $E[X^2] = \frac{91}{6}$ $Var(X) = \frac{91}{6} - (\frac{7}{2})^2 = \frac{35}{12}$ $\sigma(X) = \sqrt{\frac{35}{12}} \approx 1.7$

$$\sigma(X) = \sqrt{\frac{35}{12}} \approx 1.7$$

Standard Deviation

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu = \sum_{k} x_k \cdot p_X(x_k) \qquad Var(X) = \sum_{k} (x_k - \mu)^2 p(x_k) \qquad \sigma(X) = \sqrt{Var(X)}$$

X	1	3	4
times	1	1	2
p(x)	1/4	1/4	1/2

$$E[X] = \mu = 1 * \frac{1}{4} + 3 * \frac{1}{4} + 4 * \frac{1}{2} = 3$$

$$Var(X) = \frac{1}{4} * (1 - 3)^{2} + \frac{1}{4} * (3 - 3)^{2} + \frac{1}{2} * (4 - 3)^{2} = 1.5$$

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{1.5} \approx 1.22$$

Standard Deviation

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu = \sum_{k} x_k \cdot p_X(x_k) \qquad Var(X) = \sum_{k} (x_k - \mu)^2 p(x_k) \qquad \sigma(X) = \sqrt{Var(X)}$$

Mean:
$$\mu = \frac{1}{n} \sum_{k} x_k$$

Variance:
$$Var(X) = \frac{1}{n} \sum_{k} (x_k - \mu)^2$$

Standard Deviation:
$$\sigma(X) = \sqrt{Var(X)}$$

$$\mu = \frac{1}{4}(1+3+4+4) = 3$$

$$Var(X) = \frac{1}{4}[(1-3)^2 + (3-3)^2 + (4-3)^2 + (4-3)^2] = 1.5$$

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{1.5} \approx 1.22$$

Standard Deviation

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu = \sum_{k} x_k \cdot p_X(x_k) \qquad Var(X) = \sum_{k} (x_k - \mu)^2 p(x_k) \qquad \sigma(X) = \sqrt{Var(X)}$$

Mean:
$$\mu = \frac{1}{n} \sum_{k} x_k$$

Variance:
$$Var(X) = \frac{1}{n} \sum_{k} (x_k - \mu)^2$$

```
Standard Deviation: \sigma(X) = \sqrt{Var(X)}
```

```
1 data = np.array([1, 3, 4, 4])
2 print(data)
3
4 print("Mean: ", np.mean(data))
5 print("Std: ", np.std(data))
6 print("Variance: ", np.var(data))
```

```
[1 3 4 4]
Mean: 3.0
Std: 1.224744871391589
Variance: 1.5
```


Practice

$$X = \{1, 2, 8, 5\}$$

$$E[X] = \mu = \sum_{k} x_k \cdot p_X(x_k) \qquad Var(X) = \sum_{k} (x_k - \mu)^2 p(x_k) \qquad \sigma(X) = \sqrt{Var(X)}$$

Mean:
$$\mu = \frac{1}{n} \sum_{k} x_k$$

Variance:
$$Var(X) = \frac{1}{n} \sum_{k} (x_k - \mu)^2$$

Standard Deviation:
$$\sigma(X) = \sqrt{Var(X)}$$

$$\mu = \frac{1}{4}(1+2+8+5) = 4$$

$$Var(X) = \frac{1}{4}[(1-4)^2 + (2-4)^2 + (8-4)^2 + (5-4)^2] = 7.5$$

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{7.5} \approx 2.74$$

Practice

Find the variance and standard deviation of the following probability distribution table?

X	0	1	2	3
P(X)	0.1	0.2	0.4	0.3

$$E[X] = \mu = \sum_{k} x_k \cdot p_X(x_k)$$

$$Var(X) = \sum_{k} (x_k - \mu)^2 p(x_k)$$

$$\sigma(X) = \sqrt{Var(X)}$$

$$E[X]$$
= 0 * 0.1 + 1 * 0.2 + 2 * 0.4 + 3 * 0.3 = 1.9
$$Var(X)$$
= (0 - 1.9)² * 0.1 + (1 - 1.9)² * 0.2
+ (2 - 1.9)² * 0.4 + (3 - 1.9)² * 0.3 = 0.89
$$\sigma(X) = \sqrt{0.89} = 0.94$$

Practice

Flip a coin with probability p to get a head. Let X be a random variable denoting the outcome. Find E[X] and Var[X] based on the PMF of X is

$$p_X(0) = 1 - p,$$
 $p_X(1) = p$

$$p_X(1) = p$$

$$E[X] = \mu = \sum_{k} x_k \cdot p_X(x_k)$$

$$Var(X) = E[X^2] - \mu^2$$

$$\sigma(X) = \sqrt{Var(X)}$$

$$E[X]$$
= 0 * $p_X(0) + 1 * p_X(1)$
= 0 * $(1 - p) + 1 * p = p$

$$Var(X) = E[X^{2}] - E[X]^{2}$$

$$= 0^{2} * p_{X}(0) + 1^{2} * p_{X}(1) - E[X]^{2}$$

$$= 0 * (1 - p) + 1 * p - p^{2} = p(1 - p)$$

Outline

SECTION 1

Discrete Random Variables

SECTION 2

Mathematical Expectations

SECTION 3

Covariance & Correlation

Covariance

X, Y: random variables
$$E[X] = \mu_X$$
; $E[Y] = \mu_Y$

Covariance of X and Y:
$$\text{Cov}(X,Y) = \text{E}[(X - \mu_X)(Y - \mu_Y)] = \frac{\sum (x - \mu_X)(y - \mu_Y)}{n - 1}$$

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu = \frac{1}{4}(1 + 3 + 4 + 4) = 3$$

$$Var(X) = \frac{1}{4}[(1 - 3)^2 + (3 - 3)^2 + (4 - 3)^2 + (4 - 3)^2] = 1.5$$

$$\sigma(X) = \sqrt{Var(X)} = \sqrt{1.5} \approx 1.22$$

$$Y = \{1, 2, 3, 2\}$$

$$E[Y] = \mu = \frac{1}{4}(1 + 2 + 3 + 2) = 2$$

$$Var(Y) = \frac{1}{4}[(1 - 2)^2 + (2 - 2)^2 + (3 - 2)^2 + (2 - 2)^2] = 0.5$$

$$\sigma(Y) = \sqrt{Var(Y)} = \sqrt{0.5} \approx 0.707$$

Covariance

X, Y: random variables
$$E[X] = \mu_X$$
; $E[Y] = \mu_Y$

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu_X = 3$$

$$Y = \{1, 2, 3, 2\}$$

$$E[Y] = \mu_Y = 2$$

Covariance of X and Y:

Cov(X, Y) = E[(X -
$$\mu_X$$
)(Y - μ_Y)] = $\frac{\sum (x - \mu_X)(y - \mu_Y)}{n - 1}$

$$Cov(X,Y) = \frac{\sum (x - \mu_X)(y - \mu_Y)}{n - 1}$$

$$= \frac{(1-3)(1-2) + (3-3)(2-2)}{+(4-3)(3-2) + (4-3)(2-2)}$$
$$= \frac{4-1}{3} = 1$$

Covariance

Cov(X,Y)
measures "concordance" or
"coherence" of X and Y

Covariance of X and Y:

Cov(X, Y) = E[(X -
$$\mu_X$$
)(Y - μ_Y)] = $\frac{\sum (x - \mu_X)(y - \mu_Y)}{n - 1}$

Negative Covariance – $Cov(X, Y) \le 0$

Zero Covariance – Cov(X, Y) = 0

Correlation

A statistical measure the quantifies the strength and direction of a linear relationshop between two random variables

$$X = \{1, 3, 4, 4\}$$

$$E[X] = \mu_X = 3$$

$$Y = \{1, 2, 3, 2\}$$

$$E[Y] = \mu_Y = 2$$

$$\begin{aligned} & \text{Correlation of X and Y:} \\ & \text{Corr}(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{var}(X)} \sqrt{\text{var}(Y)}} \\ & = \frac{n(\sum_i x_i y_i) - (\sum_i x_i)(\sum_i y_i)}{\sqrt{n \sum_i x_i^2 - (\sum_i x_i)^2} \sqrt{n \sum_i y_i^2 - (\sum_i y_i)^2}} \end{aligned}$$

$$Corr(X,Y) = \frac{27n - 96}{\sqrt{42n - 144}\sqrt{18n - 64}} = \frac{12}{\sqrt{24}\sqrt{8}} \approx 0.866$$

Correlation

Correlation of X and Y:

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{var(X)}\sqrt{var(Y)}}$$

 $Corr(X, Y) \in [-1,1]$

Correlation

```
Correlation of X and Y:

Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{var(X)}\sqrt{var(Y)}}
```

```
Corr(X, Y) \in [-1,1]
```

```
1 # Sample data for two variables
 2 \text{ var1} = \text{np.array}([1, 3, 4, 4])
 3 \text{ var2} = \text{np.array}([1, 2, 3, 2])
 5 # Compute covariance
 6 print("Covariance: \n", np.cov(var1, var2))
 8 # Compute correlation coefficient
 9 print("Correlation: \n", np.corrcoef(var1, var2))
Covariance:
 [[2.
             0.66666667]]
Correlation:
 [[1. 0.8660254]
 [0.8660254 1.
```


Practice

$$X = \{1, 1, 2, 4\}$$

 $Y = \{2, 3, 4, 3\}$

$$Cov(X, Y) = \frac{\sum (x - \mu_X)(y - \mu_Y)}{n - 1}$$

$$= \frac{(1-2)(2-3) + (1-2)(3-3)}{+(2-2)(4-3) + (4-2)(3-3)}$$

$$= \frac{4-1}{3}$$

$$E[X] = \mu_X = 2$$

 $E[Y] = \mu_Y = 3$

$$\begin{aligned} & \text{Corr}(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} \\ &= \frac{n(\sum_i x_i y_i) - (\sum_i x_i)(\sum_i y_i)}{\sqrt{n \sum_i x_i^2 - (\sum_i x_i)^2} \sqrt{n \sum_i y_i^2 - (\sum_i y_i)^2}} \\ &= \frac{25n - 96}{\sqrt{22n - 64} \sqrt{38n - 144}} = \frac{4}{\sqrt{24} \sqrt{8}} \\ &\approx 0.288 \end{aligned}$$

Summary

Introduction

- * Random Variable
- ❖ Discrete Random Variable
- Continuous Random Variable
- Probability Mass Function
- Probability Distribution Function
- Mean

$$\mu = \frac{1}{n} \sum_{k} x_{k}$$

Variance

$$Var(X) = \frac{1}{n} \sum_{k} (x_k - \mu)^2$$

Standard Deviation

$$\sigma(X) = \sqrt{Var(X)}$$

Application

Covariance & Correlation

Cov(X, Y) = E[(X -
$$\mu_X$$
)(Y - μ_Y)]
= $\frac{\sum (x - \mu_X)(y - \mu_Y)}{n - 1}$

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{Cov(X,Y)}{\sqrt{var(X)} \sqrt{var(Y)}}$$
$$= \frac{n(\sum_i x_i y_i) - (\sum_i x_i)(\sum_i y_i)}{\sqrt{n \sum_i x_i^2 - (\sum_i x_i)^2} \sqrt{n \sum_i y_i^2 - (\sum_i y_i)^2}}$$

Thanks!

Any questions?