Computational Linear Algebra, Assignment 2, Part I

Maya Shende

Due: March 7th, 2018

1.

- 2. We can conclude that the $\operatorname{nullspace}(A) = \operatorname{nullspace}(A^T A)$ by proposition 8.5. We can further conclude that the $\dim(\operatorname{nullspace}(A)) = \dim(\operatorname{nullspace}(A^T A))$ by Theorem 8.3.
- 3. Suppose A is an $m \times n$ matrix with rank r. By Theorem 8.3, we know $\dim(\text{nullspace}(A)) = \text{n-r}$. We also know that A^TA is an $n \times n$ matrix. By proposition 8.5, $\operatorname{nullspace}(A) = \operatorname{nullspace}(A^TA)$, and by Theorem 8.3, $\dim(\text{nullspace}(A)) = \dim(\text{nullspace}(A^TA)) = \text{n-r}$. Now, since both A and A^TA have n columns, we can conclude that A^TA also has rank r. Thus, $\operatorname{rank}(A) = \operatorname{rank}(A^TA)$.