Hermitian inner products.

Suppose V is vector space over \mathbf{C} and

 (\cdot,\cdot)

is a **Hermitian inner product on** V. This means, by definition, that

$$(\cdot,\cdot):V\times V\to \mathbf{C}$$

and that the following four conditions hold:

- (i) $(v_1 + v_2, w) = (v_1, w) + (v_2, w)$ whenever $v_1, v_2, w \in V$;
- (ii) (cv, w) = c(v, w) whenever $c \in \mathbf{C}$ and $v, w \in V$;
- (iii) $(w, v) = \overline{(v, w)}$ whenever $v, w \in V$;
- (iv) (v, v) is a positive real number for any $v \in V \sim \{0\}$.

These conditions imply that

- (v) $(v, w_1 + w_2) = (v, w_1) + (v, w_2)$ whenever $v, w_1, w_2 \in V$;
- (vi) $(v, cw) = \overline{c}(v, w)$ whenever $c \in \mathbf{C}$ and $v, w \in V$;
- (vii) (0, v) = 0 = (v, 0) for any $v \in V$.

In view of (iv) and (vii) we may set

$$||v|| = \sqrt{(v,v)}$$
 for $v \in V$

and note that

(viii)
$$||v|| = 0 \Leftrightarrow v = 0.$$

We call ||v|| the **norm of** v. Note that

(ix)
$$||cv|| = |c|||v||$$
 whenever $c \in \mathbb{C}$ and $v \in V$.

Suppose

$$A: V \times V \to \mathbf{R}$$
 and $B: V \times V \to \mathbf{R}$

are such that

(1)
$$(v, w) = A(v, w) + iB(v, w) \text{ whenever } v, w \in V.$$

One easily verifies that

- (i) A and B are bilinear over \mathbf{R} ;
- (ii) A is symmetric and positive definite;
- (iii) B is antisymmetric;
- (iv) A(iv, iw) = A(v, w) whenever $v, w \in V$;
- (v) B(v, w) = -A(iv, w) whenever $v, w \in V$.

Conversely, given $A: V \times V \to \mathbf{R}$ which is bilinear over \mathbf{R} and which is positive definite symmetric, letting B be as in (v) and let (\cdot, \cdot) be as in (1) we find that (\cdot, \cdot) is a Hermitian inner product on V. The interested reader might write down conditions on B which allow one to construct A and (\cdot, \cdot) as well.

Example One. Let

$$(z, w) = \sum_{j=1}^{n} z_j \overline{w_j}$$
 for $z, w \in \mathbf{C}^n$.

The (\cdot, \cdot) is easily seen to be a Hermitian inner product, called the **standard (Hermitian) inner product**, on \mathbb{C}^n .

Example Two. Suppose $-\infty < a < b < \infty$ and \mathcal{H} is the vector space of complex valued square integrable functions on [a,b]. You may object that I haven't told you what "square integrable" means. Now I will. Sort of. To say $f:[a,b] \to \mathbf{R}$ is **square integrable** means that f is Lebesgue measurable and that

$$\int_{a}^{b} |f(x)|^{2} dx < \infty;$$

of course I haven't told you what "Lebesgue measurable" means and I haven't told you what \int_a^b means, but I will in the very near future. For the time being just think of whatever notion of integration you're familiar with.

Note that

$$\int_a^b f(x) dx = \int_a^b \Re f(x) dx + i \int_a^b \Im f(x) dx$$

whenever $f \in \mathcal{H}$.

Let

$$(f,g) = \int_a^b f(x)\overline{g(x)} dx$$
 whenever $f,g \in \mathcal{H}$.

You should object at this point that the integral may not exist. We will show shortly that it does. One easily verifies that (i)-(iii) of the properties of an inner product hold and that (iv) almost holds in the sense that for any $f \in \mathcal{F}$ we have

$$(f,f) = \int_a^b |f(x)|^2 dx \ge 0$$

with equality only if $\{x \in [a,b] : f(x) = 0\}$ has zero Lebesgue measure (whatever that means). In particular, if f is continuous and (f,f) = 0 then f(x) = 0 for all $x \in [a,b]$.

This Example is like Example One in that one can think of $f \in \mathcal{H}$ as a an infinite-tuple with the continuous index $x \in [a, b]$.

Henceforth V is a Hermitian inner product space.

The following simple Proposition is indispensable.

Proposition. Suppose $v, w \in V$. Then

$$||v+w||^2 = ||v||^2 + 2\Re(v,w) + ||w||^2.$$

Proof. We have

$$\begin{split} ||v+w||^2 &= (v+w,v+w) \\ &= (v,v) + (v,w) + (w,v) + (w,w) \\ &= (v,v) + (v,w) + \overline{(v,w)} + (w,w) \\ &= ||v||^2 + 2\Re(v,w) + ||w||^2. \end{split}$$

Corollary. The Parallelogram Law. We have

$$||v + w||^2 + ||v - w||^2 = 2(||v||^2 + ||w||^2).$$

Proof. Look at it. \square

Here is an absolutely fundamental consequence of the Parallelogram Law.

Theorem. Suppose V is complete with respect to $||\cdot||$ and C is a nonempty closed convex subset of V. Then there is a unique point $c \in C$ such that

$$||c|| \le ||v||$$
 whenever $v \in C$.

Remark. Draw a picture.

Proof. Let

$$d = \inf\{||v|| : v \in C\}$$

and let

$$\mathcal{C} = \{ C \cap \mathbf{B}_0(r) : d < r < \infty \}.$$

Note that C is a nonempty nested family of nonempty closed subsets of V.

Suppose $C \in \mathcal{C}$, $d < r < \infty$ and $v, w \in C$. Because C is convex we have $\frac{1}{2}(v+w) \in C \cap \mathbf{B}_0(R)$ so

$$\frac{1}{4}||v+w||^2 = ||\frac{1}{2}(v+w)||^2 \ge d^2.$$

Thus, by the Parallelogram Law,

$$\frac{1}{4}||v-w||^2 = \frac{1}{2}\left(||v||^2 + ||w||^2\right) - \frac{1}{4}||v+w||^2 \le r^2 - d^2.$$

It follows that

$$\inf \{ \operatorname{\mathbf{diam}} C \cap \mathbf{B}_0(r) : d < r < \infty \} = 0.$$

By completeness there is a point $c \in V$ such that

$$\{c\} = \cap \mathcal{C}.$$

Corollary. Suppose U is a closed linear subspace of V and $v \in V$. Then there is a unique $u \in U$ such that

$$||v - u|| < ||v - u'||$$
 whenever $u' \in U$.

Remark. Draw a picture.

Remark. We will show very shortly that any finite dimensional subspace of V is closed.

Proof. Let C = v - U and note that C is a nonempty closed convex subset of V. (Of course -U = U since U is a linear subspace of U, but this representation of C is more convenient for our purposes.) By virtue of the preceding Theorem there is a unique $u \in U$ such that

$$||v - u|| \le ||v - u'||$$
 whenever $u' \in U$.

The Cauchy-Schwartz Inequality. Suppose $v, w \in V$. Then

with equality only if $\{v, w\}$ is dependent.

Proof. If w=0 the assertion holds trivially so let us suppose $w\neq 0$. For any $c\in \mathbb{C}$ we have

$$0 \le ||v + cw||^2 = ||v||^2 + 2\Re(v, cw) + ||cw||^2 = ||v||^2 + 2\Re(\overline{c}(v, w)) + |c|^2 ||w||^2.$$

Letting

$$c = -\frac{(v,w)}{||w||^2}$$

we find that

$$0 \le ||v||^2 - \frac{|(v,w)|^2}{||w||^2}$$

with equality only if ||v + cw|| = 0 in which case v + cw = 0 so v = -cw. \square

Corollary. Suppose a and b are sequences of complex numbers. Then

$$\sum_{n=0}^{\infty} |a_n b_n| \leq \left(\sum_{n=0}^{\infty} |a_n|^2\right)^{1/2} \left(\sum_{n=0}^{\infty} |b_n|^2\right)^{1/2}.$$

Proof. For any nonnegative integer N apply the Cauchy-Schwartz inequality with (\cdot, \cdot) equal the standard inner product on \mathbb{C}^N ,

$$v = (a_0, \dots, a_N)$$
 and $w = (b_0, \dots, b_N)$

and then let $N \to \infty$. \square

The Triangle Inequality. Suppose $v, w \in V$. Then

$$||v + w|| \le ||v|| + ||w||$$

with equality only if either v is a nonnegative multiple of w or w is a nonnegative multiple of v. **Proof.** Using the Cauchy-Schwartz Inequality we find that

$$||v + w||^2 = ||v||^2 + 2\Re(v, w) + ||w||^2 \le ||v||^2 + 2||v||||w|| + ||w||^2 = (||v|| + ||w||)^2.$$

Suppose equality holds. In case v=0 then v=0w so suppose $v\neq 0$. Since $|(v,w)|\geq \Re(v,w)=||v||||w||$ we infer from the Cauchy-Schwartz Inequality that w=cv for some $c\in \mathbb{C}$. Thus

$$|1 + c|||v|| = ||(1 + c)v|| = ||v + cw|| = ||v|| + ||cw|| = (1 + |c|)||v||$$

from which we infer that

$$1 + 2\Re c + |c|^2 = |1 + c|^2 = (1 + |c|)^2 = 1 + 2|c| + |c|^2$$

which implies that c is a nonnegative real number. \square

Definition. Suppose U is a linear subspace of V. We let

$$U^\perp = \{v \in V : (u,v) = 0 \text{ for all } u \in U\}$$

and note that U^{\perp} is a linear subspace of V. It follows directly from (iv) that

$$U \cap U^{\perp} = \{0\}.$$

Proposition. Suppose U is a linear subspace of V. Then

$$U \subset U^{\perp \perp}$$

and U^{\perp} is closed.

Proof. The first assertion is an immediate consequence of the definition of U^{\perp} . The second follows because U^{\perp} is the intersection of the closed sets

$$\{v \in V : (u, v) = 0\}$$

corresponding to $u \in U$; These sets are closed because $V \ni v \mapsto (u,v)$ is continuous by virtue of the Cauchy-Schwartz Inequality. \square

Orthogonal projections.

Henceforth U is closed linear subspace of V.

Definition. Keeping in mind the foregoing, we define

$$P: V \to U$$

by requiring that

$$||v - Pv|| \le ||v - u'||$$
 whenever $u' \in U$.

That is, Pv is the closest point in U to v. We call P orthogonal projection of V onto U. Note that Pu = u whenever $u \in U$. Thus

$$\operatorname{rng} P = U$$
 and $P \circ P = P$.

Keeping in mind that U^{\perp} is a closed linear subspace of V we let

$$P^{\perp}$$

be orthogonal projection of V onto U^{\perp} .

Theorem. Suppose W is a linear subspace of V and

$$Q:V\to W$$

is such that

$$||w - Qv|| \le ||v - w||$$
 whenever $v \in V$ and $w \in W$.

Then W is closed and Q is orthogonal projection of V onto W.

Proof. Suppose $\tilde{w} \in \operatorname{cl} W$ and $\epsilon > 0$. Choose $w \in W$ such that $||\tilde{w} - w|| \le \epsilon$. Then

$$||\tilde{w} - Q\tilde{w}|| < ||\tilde{w} - w|| < \epsilon.$$

Owing to the arbitrariness of ϵ we infer that $||Q\tilde{w}-w||=0$ so $w=Q\tilde{w}\in W$ and $\operatorname{cl} W\subset W$. \square

Theorem. We have

$$u = Pv \Leftrightarrow v - u \in U^{\perp}$$
 whenever $u \in U$ and $v \in V$.

Proof. Suppose $u \in U$ and $v \in V$. For each $(t, u') \in \mathbf{R} \times U$ let

$$f(t, u') = ||(v - u) + tu'||^2$$

and note that

$$f(t, u') = ||v - u||^2 + 2t\Re(v - u, u') + t^2||u'||^2.$$

Suppose u = Pv. Then $f(0, u') \le f(t, u')$ whenever $(t, u') \in \mathbf{R} \times U$. Thus $v - u \in U^{\perp}$.

Suppose $v - u \in U^{\perp}$. Then

$$||v - u||^2 = f(0, u' - u) \le f(1, u' - u) = ||v - u'||^2$$

so u = Pv. \square

Corollary. P is linear.

Proof. Suppose $v \in V$ and $c \in \mathbb{C}$. Then $cPv \in U$ and $cv - cPv = c(v - Pv) \in U^{\perp}$ so P(cv) = cPv. Suppose $v_1, v_2 \in V$. then $Pv_1 + Pv_2 \in U$ and $(v_1 + v_2) - (Pv_1 + Pv_2) = (v_1 - Pv_1) + (v_2 - Pv_2) \in U^{\perp}$ so $P(v_1 + v_2) = Pv_1 + Pv_2$. \square

Corollary. Suppose $v \in V$. Then

- (i) $v = Pv + P^{\perp}v$ and
- (ii) $||v||^2 = ||Pv||^2 + ||P^{\perp}v||^2$.

Proof. We have $v - Pv \in U^{\perp}$ by the preceding Theorem and

$$v - (v - Pv) = Pv \in U \subset U^{\perp \perp}$$

so, again by the preceding Theorem only with U replaced by U^{\perp} we find that $P^{\perp}v = v - Pv$. It follows that

$$||v||^2 = ||Pv + P^{\perp}v||^2 = ||Pv||^2 + 2\Re(Pv, P^{\perp}v) + ||P^{\perp}v||^2 = ||Pv||^2 + ||P^{\perp}v||^2.$$

Corollary. We have

$$U^{\perp \perp} = U$$

and

$$(Pv, w) = (v, Pw)$$
 whenever $v, w \in V$.

Proof. Let P and P^{\perp} be orthogonal projection of V onto U and U^{\perp} , respectively. By the preceding Theorem with U replaced by U^{\perp} we find that orthogonal projection of V onto $U^{\perp\perp}$ carries $v \in V$ to $v - P^{\perp}v = Pv$. Thus $U = U^{\perp\perp}$.

Suppose $v, w \in V$. Then

$$(Pv, w) = (Pv, Pw + P^{\perp}w) = (Pv, Pw) = (Pv + P^{\perp}v, Pw) = (v, Pw).$$

Definition. We say a subset A of V is **orthonormal** if whenever $v, w \in A$ we have

$$(v, w) = \begin{cases} 1 & \text{if } v = w; \\ 0 & \text{if } v \neq w. \end{cases}$$

Exercise. Show that any orthonormal set is independent.

The Gram-Schmidt Process. Suppose $\tilde{u} \in V \sim U$, $\tilde{U} = \{u + c\tilde{u} : c \in \mathbb{C}\}$ and

$$\tilde{P}v = Pv + \frac{(v, P^{\perp}\tilde{u})}{||P^{\perp}\tilde{u}||^2}P^{\perp}\tilde{u}$$
 whenever $v \in V$.

Then \tilde{U} is closed and \tilde{P} is orthogonal projection on \tilde{U} .

Proof. Easy exercise for the reader. \Box

Remark. If $U = \{0\}$ then P = 0 so

$$\tilde{P}(v) = \frac{(v, \tilde{u})}{||\tilde{u}||^2} \tilde{u}$$

and \tilde{P} is orthogonal projection on the line $\{c\tilde{u}: c \in \mathbf{C}\}.$

Corollary. Any finite dimensional subspace of V is closed and has an orthonormal basis.

Proof. Induct on the dimension of the subspace and use the Gram-Schmidt Process to carry out the inductive step. \Box

Proposition. Suppose U is finite dimensional and B is an orthnormal basis for U. Then

$$Pv = \sum_{u \in B} (v, u)u \quad \text{and} \quad ||Pv||^2 = \sum_{u \in B} |(v, u)|^2 \quad \text{ whenever } v \in V.$$

Proof. Let

$$Lv = \sum_{u \in B} (v, u)u$$
 for $v \in V$.

Suppose $v \in V$ and $\tilde{u} \in B$. The

$$\begin{split} (v-Lv,\tilde{u}) &= (v-\sum_{u\in B}(v,u)u,\tilde{u})\\ &= (v,\tilde{u}) - \sum_{u\in B}(v,u)(u,\tilde{u})\\ &= (v,\tilde{u}) - (v,\tilde{u})\\ &= 0 \end{split}$$

which, as B is a basis for U, implies that $v - Lv \in U^{\perp}$; thus P = L.

Finally, if $v \in V$ we have

$$\begin{split} ||Lv||^2 &= (\sum_{u \in B} (v,u)u, \sum_{\tilde{u} \in B} (v,\tilde{u})\tilde{u}) \\ &= \sum_{u \in B, \ \tilde{u} \in B} (v,u)\overline{(v,\tilde{u})}(u,\tilde{u}) \\ &= \sum_{u \in B} |(u,v)|^2. \end{split}$$