Common Taylor polynomials		
e^{4} $1+x+\frac{x^{2}}{1!}+\frac{x^{3}}{3!}+\cdots$		
1 2!		
Sinx x + 3 - 25		
$Sin \times $ $\times $		
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
$(0.5 \times 1) - \frac{x^2}{2} + \frac{x^4}{4} \cdot \frac{x_6}{6} + \cdots$		
1: [8x - 1) [10xx - 1/x3		
t_{x} . $t_{x>0} = \frac{(e^{x}-1)(\cos x-1)x^{2}}{(e^{x}-1)(\sin (x^{2}))(\sin^{2}x)}$		
TATI Says		
$e^{x} = +x+0(x^2)$ $e^{x^2} = +x^2+$	0 (x4)	
$\cos x = 1 - \frac{x^2}{2} + O(x^4) \qquad \sin(x^2) = x^2 +$	D(x6)	
$Sinx = x + O(x^3)$		
So the function becomes		
$ x+\sqrt{x^2} \overline{x}^2+\sqrt{x^4} x^3 $	-1	
$ \lim_{x\to 0} \frac{[x+0(x^2)][\frac{x^2}{2}+0(x^4)]x^3}{(x^2+0(x^6))(x+0(x^3))^2} \to \cdots $	- 1	