Лабораторная работа № 7

Раскраска графов

Цель работы: приобретение практических навыков определения хроматического числа и индекса для неорграфов, построении оптимальной и субоптимальной правильной вершинной и реберной раскраски графов.

Теоретическая справка

Вершинная раскраска графов

G = (V, E) – простой неориентированный граф, k – натуральное число.

Вершинной k-раскраской или просто k-раскраской графа G называется произвольная функция f, отображающая множество вершин графа G в некоторое k-элементное множество:

$$f: VG \to \{a_1, a_2, ..., a_k\} = A.$$

Если для некоторой вершины v графа G: f(v)=i, то говорят что вершина v раскрашена в i-тый цвет.

Раскраска называется правильной, если f(u) ≠ f(v) для любых смежных вершин u и v графа G (или концевые вершины любого ребра окрашены в разные цвета).

Граф, для которого существует правильная k-раскраска, называется kраскрашиваемым.

Хроматическое число графа G – это минимальное число красок, при котором граф имеет правильную раскраску.

Если хроматическое число равно \mathbf{k} , то граф называется \mathbf{k} -хроматическим (обозначают $\mathbf{\chi}(\mathbf{G}) = \mathbf{k}$).

Правильную **k**-раскраску графа **G** можно рассматривать как разбиение множества вершин графа **G** на не более чем **k** непустых множеств, которые называются **цветными классами**.

Графы с малым хроматическим числом

Лемма о 2-х раскрашиваемых графах

Пусть **G** – простой неориентированный граф:

- 1) $\chi(G) = 1$ тогда и только тогда, когда G пустой граф, $\chi(O_p) = 1$.
- 2) $\chi(G) = 2$ тогда и только тогда, когда G непустой двудольный граф. Если непустой граф является деревом, то $\chi(G) = 2$.

Лемма о раскраске циклов

Хроматическое число всякого цикла, содержащего **p** вершин, равно 2, если **p** – четно, и 3, если **p** – нечетно. Если граф **G** содержит цикл нечетной длины , то $\chi(G) > 2$.

Лемма о раскраске полного графа

Хроматическое число полного графа K_p равно p. Если граф G содержит подграф изоморфный графу K_p , то $\chi(G) \geq p$.

Граф, у которого $\chi = 2$, называются бихроматическим.

Теорема Кёнига

Непустой граф является **бихроматическим** тогда и только тогда, когда он не содержит циклов нечетной длины.

Следствие 1. Любое дерево бихроматично.

Следствие 2. Любой двудольный граф бихроматичен.

Оценки хроматического числа графа

Под нижними оценками хроматического числа понимают неравенства вида: $\chi(G) \ge c$, где c – некоторая константа, вычисляемая по графу G, а под верхними оценками – неравенства вида $\chi(G) \le c$, где c имеет тот же смысл.

Первая нижняя оценка

Для произвольного графа
$$G = (V, E), |V| = p, |E| = q$$
 справедливо неравенство $\chi(G) \ge \frac{p^2}{p^2 - 2q}$

Хроматическое число и плотность графа или вторая нижняя оценка

Для произвольного графа **G** справедливо неравенство $\chi(G) \ge \phi(G)$, где $\phi(G)$ – плотность графа или кликовое число

Теорема о графах без треугольников

Для произвольного $\mathbf{k} \geq \mathbf{2}$ существует простой связный граф $\mathbf{G}_{\mathbf{k}}$ такой, что справедливо $\boldsymbol{\phi}(\mathbf{G}_{\mathbf{k}}) = \mathbf{2}$ и $\boldsymbol{\chi}(\mathbf{G}) = \mathbf{k}$

Хроматическое число и число независимости графа или третья нижняя оценка

Для произвольного графа **G** справедливо неравенство: $\chi(G) \ge \frac{p}{\alpha(G)}$, где $\alpha(G)$ – число независимости графа

Верхние оценки хроматического числа

Для произвольного графа G справедливо неравенство: $\chi(G) \leq \Delta(G) + 1$, где $\Delta(G)$ – максимум из степеней вершин графа

Теорема Брукса

Для связного неполного графа **G** при условии, что $\Delta(G) \ge 3$, справедливо неравенство: $\chi(G) \le \Delta(G)$.

Замечание о компонентах связности

Хроматическое число графа равно максимуму из хроматических чисел его компонент связности

Алгоритм последовательной раскраски (субоптимальный)

- Произвольной вершине графа G приписываем цвет 1.
- Пусть раскрашены і вершин графа G в цвета от 1 до k, где k ≤ i. Произвольной неокрашенной вершине v_{i+1} приписываем минимальный цвет, неиспользованный при раскраске смежных с ней вершин. Алгоритм последовательной раскраски зависит от способа выбора вершин на обслуживание.

Например.

В первом случае последовательность выбора вершин графа для раскраски такова: (a, b, g, d, c, f). Число красок, использованных для правильной раскраски вершин графа, равно 4.

Во втором последовательность выбора вершин графа для раскраски: (a, b, d, c, f, g). Число красок, использованных для правильной раскраски вершин графа, равно 3.

Последовательная раскраска вершин графа G = (V, E), |V| = p, |E| = q, c матрицей смежности $A_G = \|a_{ij}\|, i, j = \overline{1,p},$ основанная на методах переупорядочения вершин.

1. «Наибольшие - первыми» или НП-упорядочение

Упорядочиваем вершины графа G в порядке невозрастания их степеней $deg(v_i)$. Раскрашиваем вершины графа G по методу последовательной раскраски, выбирая вершины из этого списка.

2. «Последними - наименьшие» или ПН-упорядочение

Выбираем в исходном графе вершину с наименьшей степенью и присваиваем ей номер ${\bf p}$. Удаляем эту вершину со всеми инцидентными ей ребрами. В полученном графе находим вершину с наименьшей степенью и присваиваем ей номер ${\bf p-1}$ и т. д.

Например:

 $H\Pi$ -упорядочение (d,a,b,c,f,g) Π H-упорядочение (d,c,f,b,a,g)

Раскраска ребер или реберная раскраска

Пусть есть G = (V, E), |V| = p, |E| = q.

Реберной к-раскраской графа **G** называется некоторая функция ϕ , задающая отображение множества ребер графа в некоторое **k**-элементное множество, т.е. $\phi: E \to A = \{a_1,...,a_k\}$

Если $\varphi(e) = c$, то говорят, что ребро е окрашено в цвет с.

Реберная раскраска называется правильной, если смежные ребра окрашены в разные цвета.

Граф G называется k-раскрашиваемым, если существует правильная kраскраска ребер.

Минимальное число k, при котором существует правильная реберная kраскраска называется реберным хроматическим числом или хроматическим индексом. Граф **G** называется **реберно k-хроматическим**, если хроматический индекс равен **k**: $\chi'(G) = k$.

Множество ребер, окрашенных в определенный цвет, называют **реберным цветным классом**.

Хроматический индекс для полного графа с четным числом вершин равен: $\chi'(K_{2n}) = 2n - 1$ и с нечетным числом вершин $\chi'(K_{2n+1}) = 2n + 1$.

Пример можно проиллюстрировать:

Задание к лабораторной работе

Исходные данные граф **G**: **G**(13, {5, 6}).

- Планарный граф из лабораторной работы №6 обозначить G1 (исходный или преобразованный), а непланарный G2.
- Вычислить и проанализировать для планарного и непланарного графов верхние и нижние оценки хроматического числа.
- Последовательно раскрасить графы G1 и G2, используя алгоритм последовательной раскраски, модификации алгоритма с НП- и ПН-упорядочением вершин.
- Найти хроматическое число и хроматический индекс графов G1 и G2. Ответ обосновать.
- Сравнить хроматическое число графов G1 и G2 с оценками, полученными аналитически в задании 2 и в результате применения трех алгоритмов, в задании 3. Проанализировать полученные результаты.
- Привести пример графа, у которого число красок будет зависеть от порядка обхода вершин.

Раскраска графа по степеням вершин

Алгоритм

- 1. Упорядочить вершины по степеням начиная с наибольшей степени вершины.
- 2. Задать начальное значение счетчика k=1.
- 3. Первую вершину окрашиваем в цвет λ_k и заносим в букет B(k).
- 4. Просматриваем следующую неокрашенную вершину, если она несмежная с вершинами букета B(k) то окрашиваем ее в цвет λ_k , иначе пропускаем.
- 5. Проверяем количество просмотренных вершин, если $\underline{i} \le n$ (\underline{i} номер текущей вершины), то возврат в п.4, иначе k=k+1 и
 просмотр списка начинается заново исключая окрашенные
 вершины.
- 6. Проверка на окончание поиска: если неокрашенных вершин не осталось, то конец поиска, иначе п.5.

Пример: задан граф

Раскрасить по степеням вершин

Составим таблицу:

Вершина	Степен	B(1)	B(2)	B(3)	B(4)
v_i	ь				
	Δ				
4	5	4			
6	5		6		
3	4			3	
2	4		2		
5	4			5	
7	4				7
8	3	8			
9	3			9	
1	2	1			
Цвет х		1	2	3	4

