Devoir à la maison n° 20

À rendre le 12 mai

I. Espace dual

Soit E un \mathbb{K} -ev de dimension finie n non nulle. L'ensemble $\mathscr{L}(E,\mathbb{K})$ des formes linéaires de E est un \mathbb{K} -ev appelé le dual de E et noté E^* . Le dual de E^* est appelé le bidual de E et noté E^{**} . On a ainsi $(E^*)^* = E^{**}$.

Soit $\mathscr{B} = (e_k)_{1 \leq k \leq n}$ une base de E. Pour tout $i \in [1, n]$, on note e_i^* l'unique forme linéaire de E définie par la relation :

$$\forall j \in [1, n], e_i^*(e_j) = \delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases},$$

où δ est appelé symbole de Kronecker. La famille $(e_k^*)_{1 \leq k \leq n}$ est alors notée \mathscr{B}^* .

1) Pour tout $k \in [1, n]$, e_k^* est appelée l'application coordonnée d'indice k de \mathscr{B} . Justifier cette appellation en montrant que pour tout $x \in E$ on a

$$x = \sum_{k=1}^{n} e_k^*(x)e_k.$$

- 2) a) Montrer que \mathscr{B}^* est une base de E^* , appelée la base duale de \mathscr{B} .
 - b) Soit $f \in E^*$, montrer que le *n*-uplet des coordonnées de f dans \mathscr{B}^* est $(f(e_1), \ldots, f(e_n))$.
- 3) Pour tout $x \in E$ on note ev_x l'application $E^* \to \mathbb{K}$, appelée évaluation $f \mapsto f(x)$ de f en x.
 - a) Soit $x \in E$. Montrer que ev_x appartient à E^{**} .
 - **b)** Montrer que l'application $ev: E \to E^{**}$ est un isomorphisme de E sur E^{**} .
 - c) Quelle est l'application e_i^{**} ?

II. Indice d'un endomorphisme nilpotent

Soit E un \mathbb{K} -espace vectoriel. Un endomorphisme f de E est dit nilpotent s'il existe un entier naturel p vérifiant $f^p = 0_{\mathscr{L}(E)}$. Dans ce cas, l'indice de f est le plus petit des entiers naturels p vérifiant $f^p = 0_{\mathscr{L}(E)}$. On considère $f \in \mathscr{L}(E)$ nilpotent, d'indice p.

- 1) Soit $u \in E \setminus \text{Ker}(f^{p-1})$, montrer que la famille $(u, f(u), \dots, f^{p-1}(u))$ est libre.
- 2) En déduire que, si E est de dimension finie égale à n, alors $f^n = 0_{\mathscr{L}(E)}$.
- 3) Soit $g \in \mathscr{GL}(E)$ vérifiant $f \circ g = g \circ f$ (g commute avec f). Montrer que $f + g \in \mathscr{GL}(E)$ lorsque :
 - a) E est de dimension finie;
 - **b)** E est quelconque.
- **4)** Donner des exemples d'endomorphismes f et g de $\mathscr{L}(\mathbb{K}^2)$, où f est nilpotent, $g \in \mathscr{GL}(\mathbb{K}^2)$ mais $f + g \notin \mathscr{GL}(\mathbb{K}^2)$.

