

Análise Discriminante Linear

João Pedro Fontoura da Silva Alícia Isaías Macedo

LAMFO/UnB

1. Introdução

- A Análise Discriminante Linear (LDA) foi introduzida em sua forma inicial por Robert Fisher em 1936
- É um método utilizado para classificação, redução de dimensão e visualização de dados
- Tem aplicações em diversos campos do conhecimento (finanças, biologia, tecnologia), sendo particularmente útil com amostras de dados multivariados

2. Classificação

Objetivo: alocar uma variável ${\bf X}$ a uma de ${\bf K}$ classes

- Regra de máxima verossimilhança vs. Regra de Bayes
 - ullet RMV: cada classe j pode ocorrer com a mesma probabilidade

$$j = arg \, max_i \, f_i(\mathbf{x})$$

• RB: já temos as probabilidades $\pi_1, ..., \pi_K$, logo alocamos para

$$j = arg \, max \, \pi_i f_i(\mathbf{x})$$

Análise discriminante linear vs. quadrática

Assumindo uma distribuição Gaussiana multivariada, $\mathbf{X} \sim N(\mu, \Sigma)$ e seguindo a regra Bayesiana, podemos classificar \mathbf{x} na classe j que maximiza a função discriminatória

$$\delta_i(\mathbf{x}) = \log f_i(\mathbf{x}) + \log \pi_i$$

• LDA: assumimos igual covariância entre as classes; a fronteira de decisão é linear:

$$\delta_k(\mathbf{x}) = \mathbf{x}^T \Sigma^{-1} \mu_k - (1/2) \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

• QDA: a função discriminante é uma função quadrática:

$$\delta_k(\mathbf{x}) = -(1/2) \log |\Sigma_k| - (1/2) (\mathbf{x} - \mu_k)^T \Sigma^{-1} (\mathbf{x} - \mu_k) + \log \pi_k$$

Simplificando o LDA

Diagonalizamos a matriz de covariância, transformando os dados de modo a obter uma matriz identidade de covariância. Em seguida, "esfericizamos" os dados (\mathbf{x}^*) e obtemos as médias das classes no novo espaço. Assim, classificamos \mathbf{x} por:

$$\delta_k(\mathbf{x}^*) = \mathbf{x}^{*T} \hat{\mu}_k - (1/2) \,\hat{\mu}_k^T \hat{\mu}_k + \log \hat{\pi}_k$$

Agora suponha que existam duas classes, $k\,$ e $l\,$. A regra de classificação é:

$$\delta_k(\mathbf{x}^*) - \delta_l(\mathbf{x}^*) > 0$$

Simplificando o LDA

Da regra anterior:

$$\delta_k(\mathbf{x}^*) - \delta_l(\mathbf{x}^*) > 0$$

Desenvolvendo:

$$\mathbf{x}^{*T} (\hat{\mu}_k - \hat{\mu}_l) > (1/2) (\hat{\mu}_k + \hat{\mu}_l)^T (\hat{\mu}_k - \hat{\mu}_l) - \log \hat{\pi}_k / \hat{\pi}_l$$

Na equação à esquerda, temos o comprimento da projeção ortogonal de X* na linha de segmento que une as médias das classes. No lado direito, temos a locação do centro do segmento corrigido pelas probabilidades das classes.

Essencialmente, o LDA compara distâncias entre as médias dos dados e as médias das classes, e os classifica junto àquela que apresenta a média mais próxima.

Fonte: scikit-learn.org

3. Redução de dimensão

Objetivo: facilitar a visualização e tratamento de dados com várias dimensões

- Reduzimos as dimensões do problema ao projetar os dados ortogonalmente no subespaço dado pelas médias das classes
- Encontramos um subespaço ótimo quando a média das classes dos dados esfericizados têm máxima separação, em termos de variância

O LDA cria um novo eixo e projeta os dados ortogonalmente de forma a minimizar a variância e maximizar a distância entre as médias das classes

Fonte: yangxiaozhou.github.io

O que se espera é que a variância entre classes seja maximizada relativamente à variância intra-classe.

4. Avaliação

- Vantagens: método simples de classificação, ferramenta robusta e de fácil interpretação, visualização e modelagem
- Desvantagem: linearidade pode não ser adequada para determinadas amostras de dados

Linear and Quadratic **Discriminant Analysis. Scikit Learn**. Disponível em: https://scikit-learn.org/stable/modules/lda_qda.html

Brownlee, Jason

Linear Discriminant Analysis for Machine Learning. **Machine Learning Mastery**, 2016. Disponível em: https://machinelearningmastery.com/linear-discriminant-analysis-for-machine-learning/

Sawla, Srishti

Linear Discriminant Analysis. Medium Data Sciene, 2018. Disponpivel em: https://medium.com/@srishtisawla/linear-discriminant-analysis-d38decf48105

Schlagenhauf, Tobias

Linear Discriminant Analysis (LDA). Python Machine Learning Tutorial. Disponível em: https://www.python-course.eu/linear_discriminant_analysis.php

Xiaozhou, Yang

Linear Discriminant Analysys, Explained. **Xiaozhou's Notes**, 2019. Disponível em: https://yangxiaozhou.github.io/data/2019/10/02/linear-discriminant-analysis.html

Obrigado!