

Departemen Teknik Informatika

its_campus

Principal Component Analysis (PCA

- Transformasi data ke representasi baru dengan cara x_2 menemukan proyeksi yang menangkap variasi data terbesar
- Data asli diproyeksikan ke dimensi yang lebih kecil sehingga mengurangi ukuran dimensi.
- Mendapatkan vektor eigen dari matriks kovarians, dan vektor eigen ini digunakan untuk memproyeksikan data asli ke dimensi baru

Principal components

- Principal component 1 (PC1)
 - The eigenvalue with the largest absolute value will indicate that the data have the largest variance along its eigenvector, the direction along which there is greatest variation
- Principal component 2 (PC2)
 - the direction with maximum variation left in data, orthogonal to the PC1
- In general, only few directions manage to capture most of the variability in the data.

Tahapan PCA

- Input: Vektor data X dengan n-dimensi
- Tujuan: Mencari p komponen utama ($p \le n$) yang paling baik untuk merepresentasikan data
- Tahapan:
 - Hitung \overline{X} sebagai nilai rata-rata setiap fitur
 - Hitung data orisinal X dikurangi nilai rata-rata \overline{X} $X' = X - \overline{X}$
 - Hitung Covariance matrix C dari X'
 - Hitung eigenvectors dan eigenvalues dari C
 - eigenvectors dari C adalah **e** sedemikian hingga $C\mathbf{e} = \lambda \mathbf{e}$,
 - λ adalah eigenvalue dari C
 - $Ce = \lambda e \Leftrightarrow (C-\lambda I)e = 0$
 - Memilih *p* eigenvectors dengan eigenvalues terbesar
 - Transformasi data asli dengan cara mengalikan matrik \mathbf{X}' dengan p eigenvectors

$$\begin{pmatrix} y_{i1} \\ y_{i2} \\ \dots \\ y_{ip} \end{pmatrix} = \begin{pmatrix} e_1 \\ e_2 \\ \dots \\ e_p \end{pmatrix} \begin{pmatrix} x_{i1} - \overline{x_1} \\ x_{i2} - \overline{x_2} \\ \dots \\ x_{in} - \overline{x_n} \end{pmatrix}$$

Contoh Penerapan PCA

X1	X2	X1'	X2'
19	63	-5.1	9.25
39	74	14.9	20.25
30	87	5.9	33.25
30	23	5.9	-30.75
15	35	-9.1	-18.75
15	43	-9.1	-10.75
15	32	-9.1	-21.75
30	73	5.9	19.25

Mean X1=24.1 Mean X2=53.8

Covariance Matrix dengan 3 fitur

$$C = \begin{pmatrix} \operatorname{cov}(x, x) & \operatorname{cov}(x, y) & \operatorname{cov}(x, z) \\ \operatorname{cov}(y, x) & \operatorname{cov}(y, y) & \operatorname{cov}(y, z) \\ \operatorname{cov}(z, x) & \operatorname{cov}(z, y) & \operatorname{cov}(z, z) \end{pmatrix}$$

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1)}$$

Covariance Matrix

Bagaimana menghitung **e** dan λ :

- Hitung $det(C-\lambda I)$
- Temukan akar det(C-λI)=0, nilai akar
 → eigenvalues λ
- Selesaikan (C- λI) **e** = 0 pada setiap λ utk memperoleh eigenvectors **e**

- Eigenvectors:
 - e1=(-0.98,-0.21), λ 1=51.8
 - $e2=(0.21,-0.98), \lambda 2=560.2$
- Eigenvector kedua e2 paling penting!

PCA dengan 1 PC (Principle Component)

www.its.ac.id

X1	X2	X1'	X2'
19	63	-5.1	9.25
39	74	14.9	20.25
30	87	5.9	33.25
30	23	5.9	-30.75
15	35	-9.1	-18.75
15	43	-9.1	-10.75
15	32	-9.1	-21.75
30	73	5.9	19.25

Transformasi data yang didapatkan sbb:

$$\begin{pmatrix} y_{i1} \\ y_{i2} \\ \dots \\ y_{ip} \end{pmatrix} = \begin{pmatrix} e_1 \\ e_2 \\ \dots \\ e_p \end{pmatrix} \begin{pmatrix} x_{i1} - \overline{x_1} \\ x_{i2} - \overline{x_2} \\ \dots \\ x_{in} - \overline{x_n} \end{pmatrix}$$

$$\begin{pmatrix} y_{i1} \\ y_{i2} \\ \dots \\ y_{ip} \end{pmatrix} = \begin{pmatrix} e_1 \\ e_2 \\ \dots \\ x_{i2} - \overline{x_2} \\ \dots \\ x_{in} - \overline{x_n} \end{pmatrix}$$

$$y_i = \begin{pmatrix} 0.21 & -0.98 \\ x_{i1} - \overline{x_1} \\ x_{i2} - \overline{x_2} \\ \dots \\ x_{in} - \overline{x_n} \end{pmatrix} = 0.21 * x_{i1} - 0.98 * x_{i2}$$

Data 34 pasien, dimensi dari 100 genes menjadi 2

PCA pada Leukemia data dengan 100 genes serta 2 precursor B dan T

PCA pada Citra Wajah

Singular Value Decomposition (SVD)

$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \Lambda_{[r \times r]} (\mathbf{V}_{[m \times r]})^{\top}$$

- **SVD**: metode dekomposisi sebuah matrik menjadi 3 matrik
- A: n x m matrik (contoh: n dokumen, m kata)
- **U**: n x r matrik orthogonal (contoh: n documen, r konsep)
- Λ : r x r matrik diagonal (r : rank dari matrik)
- V: m x r matrik orthogonal (contoh: m kata, r konsep)

SVD Properties

THEOREM [Press+92]: always possible to decompose matrix **A** into $\mathbf{A} = \mathbf{U} \Lambda \mathbf{V}^{\mathsf{T}}$, where:

- **U**, Λ, **V**: unique
- **U**, **V**: column orthonormal (orthogonal to each other)
 - $U^TU = I$; $V^TV = I$ (I: identity matrix)
- Λ : singular value are positive, and sorted in decreasing order

Contoh Penerapan SVD

\mathbf{term}	data	information	retrieval	brain	lung
$\operatorname{document}$					
CS-TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CS-TR3	1	1	1	0	0
CS-TR4	5	5	5	0	0
MED-TR1	0	0	0	2	2
MED-TR2	0	0	0	3	3
MED-TR3	0	0	0	1	1

#1: Menemukan konsep pada teks

#2: Mengurangi dimensi

$A = U \Lambda V^{T}$

doc-to-concept

Contoh Penerapan **SVD**

CS **MED**

CS-concept MED-concept (0.18)00.36 0 0.18 0 0.90 0 0.53 0 0 0.80 0.27_

'strength' of CS-concept

0.58 0.58 0.58 0

X

term-to-concept

#1:

Menemukan

konsep pada teks

9.64 0

Contoh Penerapan **SVD**

0.58	0.58	0.58	0	0	
0	0	Ô	0.7	107	1

X

$$\sim \begin{bmatrix}
0.18 \\
0.36 \\
0.18 \\
0.90 \\
0 \\
0$$

Contoh Penerapan SVD

#2: Mengurangi dimensi

SVD Step

https://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.
 htm

Referensi

- C. Faloutsos, "Powerful tools for Data Mining fractals, power laws, SVD", Carnegie Mellon University, 2004.
- Jure Leskovec, "Dimensionality reduction: PCA, SVD, MDS, ICA, and friends", Machine Learning recitation, 2006.