Golden Gate Assembly

Pan M. Chu

July 23, 2019@ SIAT

Date Performed: July 19, 2019

1 Introduction

Pending...

2 Protocol

2.1 Reaction System

As an example, here, we use BsaI (type IIs restriction enzyme) in this reaction system. Below is an typical reaction system which is 20 μ L.

Components	Volume
Fragments	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
BsaI	10 U (2 μ L)
T4 ligase	$5~{\rm U}~(0.5~\mu L)^{~(2)}$
$10\times$ T4 Ligase Buffer	$2~\mu \mathrm{L}$
ddH_2O	Up to 20 μL

Table 1: Golden Gate reaction system

Note:

- (1) When do $1 \sim 2$ insertions reaction, it is convenient adding 100 ng of each fragment into reaction. If performing multiple (> 3 insertions) ligation, we recommend adding 40 fmol of each fragment.
- (2) If assembling more than 3 fragments, high concentration of T4 ligase is necessary. I recommend 20 U (for NEB CEU, 1 U = 200 CEU).
- (3) For convenience, we often prepare 10 μ L reactions and the volume of each enzyme is 1 μ L.

2.2 Ligation Procedure

If performing one fragment insertion ligation, incubating reaction system 30 min at 37 °C. When insertions are more than 2, we recommend using thermocycler: 37 °C for 2 min, the 16 °C for 3 min, repeat for 10 - 100 cycles, depending on the number of insertions (10 cycles per insertion). Following, the reaction is heated to 50 °C for 5 min, which is for digesting non-specific ligation events, completely. Last, the reaction is incubated 5 min at 80 °C for inactivating the reaction enzyme. The

10 μ L reaction is transformed to 50 μ L chemically competent cell. Then stalled cell in sawed ice for 30 min, and allowed to recover for an hour in SOC medium.

3 Design

3.1 Primer Design

The flank sequences of primer for introducing enzymatic cutting site into double sites of insertions are collected in Table 2.

Enzyme Name	Sequence
BsaI BbsI	GCATTA <u>GGTCTC</u> CNNNN AAGTGC <u>GAAGAC</u> CANNNN
BfuAI	GGCAAT <u>ACCTGC</u> GTGANN NN
BtgZI	CGAATG <u>GCGATG</u> TTG TACTGCCNNNN
SapI BsmBI	GGAATC <u>GCTCTTC</u> CNNN ATAGCG <u>CGTCTC</u> CNNNN

Table 2: Flank Sequence of Primer, the underlined nucleotides are denoted as the enzyme recognition sequence, and the sequence before recognition sequence is protection sequence, and the base N is denote as the sticky end.