Machine Vision

HW#5

Deadline: 2023/05/25 23:59

RVL Room 1421

TAs: 林鈺琴 yuchin@alum.ccu.edu.tw

陳泳慈 yongci@alum.ccu.edu.tw

- 1. Implement Sobel Edge Detection.
 - Output Vertical edge \ Horizon edge and Both edge.

2.	[Imp]	lement	Prewitt	Edge	Detection.
— •					

• Output Vertical edge \ Horizon edge and Both.

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

Laplacian kernels

3. Implement Laplacian Edge Detection using two kernels.

- Discuss horizontal edge \ vertical edge and both edge differences.
- Discuss Laplacian kernels differences.

• Download images

- Use OpenCV-2.x version
- Allow use OpenCV for C/C++
 - Read, load, save, show: cvLoadImage, cvShowImage ...
 - Define size of image: cvSize, cvGetSize
 - Define image: IplImage or Mat
- Not Allow use
 - Cannot use the function of OpenCV Lib to do the main part of homework.
 - Example:
 - cvtColor(image, gray, CV_RGB2GRAY); // convert RGB to Gray

- Require for program
 - GUI to read, display input and result images is encouraged (but not required).
 - Use C/C++
 - Write homework on the one program (using class or subprogram).

- Grade
 - Program (80%)
 - 1. 25%
 - 2. 25%
 - 3. 30%
 - Report (20%)

- Report needs:
 - 1. Student ID \ Name
 - 2. Describe the main part of your method
 - 3. Result images (24 pics)
 - 1.9 images
 - 2. 9 images
 - 3. 6 images

- Submit studentID hw5.zip include:
 - The program source code and result images
 - The report (.pdf)
 - Mail to TAs
- Deadline: 2023/05/25 23:59
 - For each hour late, 10% of the total possible points will be deducted.
 - Don't share your code with other students.