O alfabeto do Cálculo Proposicional, que se denota por $\mathcal{A}^{CP},$ é o conjunto constituído por:

- $p_0, p_1, \ldots, p_n, \ldots$ (com $n \in \mathbb{N}_0$) símbolos designados variáveis proposicionais, que formam o conjunto numerável \mathcal{V}^{CP} ;
- os símbolos: \land , \lor , \rightarrow , \leftrightarrow , \neg e \bot , designados conetivos (proposicionais);
- dois símbolos auxiliares (e).

A linguagem do Cálculo Proposicional, que se denota por \mathcal{F}^{CP} , é o subconjunto de $(\mathcal{A}^{CP})^*$ definido indutivamente pelas seguintes regras:

- (i) $p_j \in \mathcal{F}^{CP}$ para qualquer $j \in \mathbb{N}_0$;
- (ii) $\bot \in \mathcal{F}^{CP}$;
- (iii) se φ , $\psi \in \mathcal{F}^{CP}$ então $(\varphi \lor \psi)$, $(\varphi \land \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi) \in \mathcal{F}^{CP}$;
- $\text{(iv)} \ \ \text{se} \ \varphi \in \mathfrak{F}^{CP} \ \text{então} \ (\neg \varphi) \in \mathfrak{F}^{CP}.$

Os elementos de \mathcal{F}^{CP} designam-se fórmulas proposicionais ou fórmulas do Cálculo Proposicional.

As regras que definem \mathcal{F}^{CP} podem ser representadas pelas seguintes árvores:

- (i) $p_j \in \mathcal{F}^{CP}^{p_j}$ para cada $p_j \in \mathcal{V}^{CP}$;
- (ii) $\bot \in \mathcal{F}^{CP}$;

(iii)
$$\frac{\varphi \in \mathfrak{F}^{CP} \quad \psi \in \mathfrak{F}^{CP}}{(\varphi \lor \psi) \in \mathfrak{F}^{CP}} f_{\lor} ; \qquad \frac{\varphi \in \mathfrak{F}^{CP} \quad \psi \in \mathfrak{F}^{CP}}{(\varphi \land \psi) \in \mathfrak{F}^{CP}} f_{\land} ;$$

$$\frac{\varphi \in \mathfrak{F}^{CP} \quad \psi \in \mathfrak{F}^{CP}}{(\varphi \to \psi) \in \mathfrak{F}^{CP}} f_{\to} ; \qquad \frac{\varphi \in \mathfrak{F}^{CP} \quad \psi \in \mathfrak{F}^{CP}}{(\varphi \leftrightarrow \psi) \in \mathfrak{F}^{CP}} f_{\leftrightarrow} ;$$

(iv)
$$\frac{\varphi \in \mathfrak{F}^{CP}}{(\neg \varphi) \in \mathfrak{F}^{CP}} f_{\neg} .$$

Sintaxe do Cálculo Proposicional 1.

- 1.1 De entre as seguintes palavras sobre o alfabeto do Cálculo Proposicional, indique, justificando, aquelas que pertencem ao conjunto \mathcal{F}^{CP} :
 - **b**) $((p_0 \wedge (\neg p_0)) \rightarrow \bot).$ **a**) $(\neg (p_1 \lor p_2)).$
 - \mathbf{c}) $((\neg p_5) \rightarrow (\neg p_6))$. \mathbf{d}) (\bot) .
 - **f**) $(((p_9 \to ((p_3 \lor (\neg p_8)) \land p_{12})) \leftrightarrow (\neg p_4)) \to (p_7 \lor \bot))).$ e) $p_1 \wedge p_2 \vee p_3$.
- **1.2** Defina por recursão estrutural as seguintes funções (na alínea c) $BIN = \{\land, \lor, \rightarrow, \leftrightarrow\}$):
 - a) $p: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $p(\varphi) =$ número de ocorrências de parêntesis em φ .
 - b) $v: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $v(\varphi) =$ número de ocorrências de vars. proposicionais em φ .
 - c) $b: \mathcal{F}^{CP} \to \mathcal{P}(BIN)$ tal que $b(\varphi) = \{ \Box \in BIN : \Box \text{ ocorre em } \varphi \}.$
 - d) $[\perp /p_7]: \mathcal{F}^{CP} \to \mathcal{F}^{CP}$, onde $\varphi[\perp /p_7]$ representa o resultado de substituir em φ todas as ocorrências de p_7 por \perp .
- 1.3 Considere de novo as funções definidas no exercício anterior. Prove, por indução estrutural, que, para todo $\varphi \in \mathcal{F}^{CP}$:
 - a) $p(\varphi) \ge \#b(\varphi)$. b) $v(\varphi) \ge v(\varphi[\perp /p_7])$.

 - c) $b(\varphi) = b(\varphi[\perp /p_7])$. d) se $b(\varphi) \neq \emptyset$ então $p(\varphi) > 0$.
- 1.4 Para cada uma das seguintes fórmulas φ do Cálculo Proposicional:
 - i) p_{2023} . ii) $\neg \bot \lor \bot$. iii) $p_0 \to (\neg p_0 \to \neg p_1)$:
 - a) Calcule $\varphi[p_2/p_0]$, $\varphi[p_0 \wedge p_1/p_1]$ e $\varphi[p_{2024}/p_{2023}]$.
 - b) Indique o conjunto das suas subfórmulas (sub-objetos).
- **1.5** Seja $\varphi \in \mathcal{F}^{CP}$. O tamanho de φ , denotado por $|\varphi|$, define-se por recursão do seguinte modo:
 - (i) |p| = 1, para cada variável proposicional p; (ii) $|\perp| = 1$; (iii) $|\neg \varphi| = 1 + |\varphi|$;
 - (iv) $|\varphi\Box\psi|=1+|\varphi|+|\psi|$, para cada conetivo binário \Box .
 - a) Qual das fórmulas $\neg \neg \neg p_0$ ou $(p_1 \land p_2) \lor (p_3 \land p_4)$ tem maior tamanho?
 - b) Dê exemplo de fórmulas φ e ψ , com 3 subfórmulas, tais que $|\varphi| = 3$ e $|\psi| > 3$.
 - c) Mostre que, para todo $\varphi \in \mathcal{F}^{CP}$, $|\varphi| \geq \#subf(\varphi)$.
- **1.6** Seja $\varphi \in \mathcal{F}^{CP}$. A complexidade lógica de φ , denotada por $cl(\varphi)$, define-se por recursão do seguinte modo:
 - (i) cl(p) = 0, para cada variável proposicional p; (ii) $cl(\bot) = 0$; (iii) $cl(\neg \varphi) = 1 + cl(\varphi)$; (iv) $cl(\varphi \Box \psi) = 1 + max(cl(\varphi), cl(\psi))$, para cada conetivo binário \Box .
 - a) Qual das fórmulas $\neg\neg\neg p_0$ ou $(p_1 \land p_2) \lor (p_3 \land p_4)$ tem maior complexidade lógica?
 - **b)** Mostre que, para todo $\varphi \in \mathcal{F}^{CP}$, $cl(\varphi) < |\varphi|$.