Seat No.	
----------	--

Infair Departmental Chair

King Mongkut' University of Technology Thonburi Final Examination—1/2009 ChE 103 Material and Energy Balances (Bilingual program)

Date: Tuesday 6, October 2009, 13:00-16:00	
Notes:	
 This exam paper includes 6 problems (100 points) in a total of 8 pages. It is an open-book/notes examination. A calculator and a ditionary/talking dictionary are allowed. Students are not allowed to take any exam materials/papers out of the exam room. 	
Student Name	Student ID
Written by	
A. Connachar	Ami Muh
(Dr. Ampai Chanachai)	(Dr. Asawin Meechai)
This exam paper has been evaluated and Committee.	l approved by the Department of Chemical Engineering's
	Sunjet Sunjet
	(Assoc. Prof. Dr. Anawat Sungpet)

Student Name		

Student ID	Student ID	
------------	------------	--

- 1. (10 points) Given liquid HF at 20°C and 1 atm as a reference state, the enthalpy of a vapor hydrogen fluoride (HF) is 2,500 J/mol at 20°C and 1 atm, and 6,000 J/mol at 80°C and 1 atm.
 - a. Determine the approximate value of \hat{H} for the vapor HF at 20°C and 4 atm
 - **b.** Determine the $\Delta \hat{H}$ for the process indicated below:

HF (v, 80° C, 1 atm) \rightarrow HF (v, 20° C, 1 atm)

Student Name	Student ID
7,2401,7,741,770	

2. (15 points) In an adiabatic heat exchanger, saturated steam at 170°C is used to heat a counter-currently flowing stream of acetone vapor from 60°C to 160°C. The flow rate of the acetone is 1,000 standard liters (STP) per minute, and the steam condenses and leaves the heat exchanger as liquid water at 80°C. Calculate the rate of heat transfer from the water to the acetone in kilo-watts.

Student Name	Student ID

3. (15 points) 100 mol/h of methanol vapor at 250°C is condensed to a liquid methanol at 25°C in a condenser. Calculate the rate of heat (kW) that must be transferred from the methanol in the condenser.

tudent Name		

Student ID_____

4. (10 points) Calculate the standard heat of formation of liquid nitrobenzene, C₆H₅O₂N.

- 5. Determine the standard heat of reaction of the following reaction by
 - a. Heats of formation (4 points)
 - b. Heats of combustion (6 points)

$$CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$$

6. (40 points) The production of isopropyl alcohol from acetone is shown below.

$$(CH_3)_2CHOH(g) \rightarrow CH_3COCH_3(g) + H_2(g)$$

100 mol/s of isopropyl alcohol vapor is fed to a reactor at 500°C with 90% conversion of isopropyl alcohol. The gas products exit the reactor at 500°C. Determine the heat that must be transferred to or from the reactor. (Assuming a constant pressure at 1 atm; given $\Delta \hat{H}_f^o$ (isopropyl alcohol (g)) = -272.8 kJ/mol)

Table 1 Specific heat capacities of isopropyl alcohol vapor

Temperature (K)	C _p , gas (J/mol·K)
273.15	83.72
298.15	89.32
300.	89.74
400.	112.15
500.	131.96
600.	148.30
700.	161.75
800.	173.04
900.	182.67
1000.	190.97