CS4495/6495 Introduction to Computer Vision

2C-L2 Convolution in frequency domain

Let g = f * h

Then
$$G(u) = \int_{-\infty}^{\infty} g(x) e^{-i2\pi ux} dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau) h(x-\tau) e^{-i2\pi ux} d\tau dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[f(\tau) e^{-i2\pi u\tau} d\tau \right] \left[h(x-\tau) e^{-i2\pi u(x-\tau)} dx \right]$$

$$= \int_{-\infty}^{\infty} \left[f(\tau) e^{-i2\pi u\tau} d\tau \right] \int_{-\infty}^{\infty} \left[h(x') e^{-i2\pi ux'} dx' \right]$$

$$= F(u) H(u)$$

Convolution in spatial domain

Multiplication in frequency domain

Spatial Domain
$$(x)$$
 Frequency Domain (u)

$$g = f * h \qquad \longleftrightarrow \qquad G = F \cdot H$$

$$g = f \cdot h \qquad \longleftrightarrow \qquad G = F * H$$

So, we can find g(x) by Fourier transform

Example use: Smoothing/Blurring

• We want a smoothed function of f(x)

$$g(x) = f(x) * h(x)$$

Let us use a Gaussian kernel

$$h(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{1}{2} \frac{x^2}{\sigma^2} \right]$$

The Fourier transform of a Gaussian is a Gaussian

$$H(u) = \exp \left[-\frac{1}{2}(2\pi u)^2 \sigma^2\right]$$

Example use: Smoothing/Blurring

• We want a smoothed function of f(x)

$$g(x) = f(x) * h(x)$$

Let us use a Gaussian kernel

$$h(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{1}{2} \frac{x^2}{\sigma^2} \right]$$

Convolution in space is multiplication in freq: H (u)

$$G(u) = F(u)H(u)$$

Low and High Pass filtering

Properties of Fourier Transform

Spatial Domain (x) | Frequency Domain (u)Linearity $c_1 f(x) + c_2 g(x)$ | $c_1 F(u) + c_2 G(u)$ f(x) * g(x) F(u)G(u)Convolution Shrink $\frac{1}{|a|}F\left(\frac{u}{a}\right)$ Scaling $(i2\pi u)^n F(u)$ $d^n f(x)$ Differentiation dx^{n} Differentiate Multiply by u

Fourier Pairs (from Szeliski)

Name	Signal		Transform		m
impulse		$\delta(x)$	\Leftrightarrow	1	
shifted impulse		$\delta(x-u)$	⇔	$e^{-j\omega u}$	
box filter		box(x/a)	⇔	$a\mathrm{sinc}(a\omega)$	
tent		tent(x/a)	⇔	$a\mathrm{sinc}^2(a\omega)$	
Gaussian		$G(x;\sigma)$	\Leftrightarrow	$\frac{\sqrt{2\pi}}{\sigma}G(\omega;\sigma^{-1})$	
Laplacian of Gaussian		$(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})G(x;\sigma)$	\Leftrightarrow	$-\frac{\sqrt{2\pi}}{\sigma}\omega^2G(\omega;\sigma^{-1})$	
Gabor		$\cos(\omega_0 x)G(x;\sigma)$	\Leftrightarrow	$\frac{\sqrt{2\pi}}{\sigma}G(\omega \pm \omega_0; \sigma^{-1})$	
unsharp mask		$(1+\gamma)\delta(x) - \gamma G(x;\sigma)$	\Leftrightarrow	$\frac{(1+\gamma)-}{\frac{\sqrt{2\pi}\gamma}{\sigma}G(\omega;\sigma^{-1})}$	
windowed sinc		$\frac{\operatorname{rcos}(x/(aW))}{\operatorname{sinc}(x/a)}$	\Leftrightarrow	(see Figure 3.29)	

Fourier Transform smoothing pairs

Frequency domain

Fourier Transform smoothing pairs

Spatial domain f(x)

Frequency domain

$$F(s) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi sx} dx$$

$$sinc(s)$$

