Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα

Παπαπαύλου Χρήστος ΑΜ: 6609

Αναπαράσταση μοντέλου

- Το 3D μοντέλο το αποθηκεύουμε στην μνήμη με τις εξής δομές δεδομένων:
 - Λίστα κορυφών
 - Λίστα τριγώνων
- Ωστόσο υπολογίζουμε και αποθηκεύουμε:
 - Κάθετα διανύσματα κορυφών.
 - Λίστα τριγώνων κορυφών.
 - Λίστα τριγώνων περιβαλλόντων όγκων.

- Η μέθοδος που ακολουθείται είναι η κατάρρευση ακμής.
- Η κατάρρευση συμβαίνει σε δύο γειτονικά τρίγωνα και η ακμή που καταρρέει, είναι η κοινή τους ακμή.
- Το αποτέλεσμα τελικά είναι να διαγραφούν:
 - Τα δύο γειτονικά τρίγωνα.
 - Η κοινή ακμή τους.
 - Οι 2 κορυφές της ακμής.
- Και να αντικατασταθούν από:
 - Νέα κορυφή

- Σε κάθε κατάρρευση συνεπώς μειώνεται:
 - Ο αριθμός των τριγώνων κατά 2.
 - Ο αριθμός των κορυφών κατά 1.
- Για το επιθυμητό ποσοστό απλοποίησης
 πρέπει να συμβούν πολλές καταρρεύσεις.
- Η επιλογή των ακμών προς κατάρρευση έχει άμεσο αντίκτυπο στην ποιότητα του απλοποιημένου μοντέλου.

- Πληροφορία για τις ακμές δεν έχουμε άμεσα στην διάθεσή μας.
- Έτσι πρέπει να την εξάγουμε από ό,τι έχουμε στην διάθεσή μας.

- Κατασκευάζουμε:
 - Για κάθε κορυφή → Λίστα με τα τρίγωνα στα οποία περιέχεται.

- Επιλέγουμε ένα ζεύγος κορυφών (ακμή)
- □ Το γειτονικό <u>τρίγωνο</u> ανήκει στις λίστες ΚΑΙ ΤΩΝ ΔΥΟ ΚΟΡΥΦΩΝ

Επιλογή ακμών

- Για κάθε τρίγωνο → 3 πιθανές ακμές προς κατάρρευση.
- Ταξινομούμε τις ακμές με κάποιο κριτήριο ώστε πρώτες να βρίσκονται οι ακμές που θα έχουν λιγότερο αντίκτυπο στην αλλοίωση του μοντέλου εάν αφαιρεθούν.
- Το κριτήριο που χρησιμοποιούμε είναι:
 - μέση τιμή των εσωτερικών γινομένων των κάθετων διανυσμάτων
 - των γειτονικών τριγώνων της ακμής

- Σε αυτό το σημείο εφαρμόζουμε διαδοχικές καταρρεύσεις στις κορυφές που έχουμε εντοπίσει ξεκινώντας από την πρώτη κορυφή της ταξινομημένης λίστας και προχωρώντας προς τις υπόλοιπες.
- Στην εικόνα φαίνεται το αποτέλεσμα μιας κατάρρευσης. Η προκύπτουσα κορυφή τοποθετείται στην θέση μίας από τις δύο διαγραμμένες.

Παρατηρούμε είναι ότι τα τρίγωνα που επηρεάστηκαν από την κατάρρευση εκτάθηκαν προς την πράσινη κορυφή.

- Άρα η θέση της νέας κορυφής που αντικαθιστά τις διαγραμμένες είναι το δεύτερο στοιχεία που παίζει ρόλο στην ποιότητα της απλοποίησης.
- Μια εύκολη λύση είναι να τοποθετηθεί η νέα κορυφή στην μέση της διαγραμμένης ακμής.
- Βέβαια, η βέλτιστη επιλογή είναι να υπολογιστεί η νέα θέση ελαχιστοποιώντας κάποιο κριτήριο.

 Βλέπουμε το αποτέλεσμα μιας κατάρρευσης με την προκύπτουσα κορυφή να τοποθετείται στην μέση της ακμής που κατέρρευσε.

- □ Η τομή δύο τριγώνων ανάγεται σε
 - τομή των <u>τριών πλευρών</u> του *πρώτου* τριγώνου με το δεύτερο
 - των <u>τριών πλευρών</u> του δεύτερου τριγώνου με το *πρώτο*.

- Ο αλγόριθμος ανίχνευσης συγκρούσεων εργάζεται ως εξής:
 - ΓΙΑ ΚΑΘΕ AABB του MONTEΛΟΥ_1
 - ΓΙΑ ΚΑΘΕ **ΑΑΒΒ** του MONTEΛΟΥ_2
 - AN TA AABB TEMNONTAI
 - ΓΙΑ ΚΑΘΕ ΤΡΙΓΩΝΟ ΤΟΥ ΑΑΒΒ 1
 - AN TO ΤΡΙΓ Ω NO TEMNETAI ME TO AABB $_2$
 - ΓΙΑ ΚΑΘΕ ΤΡΙΓΩΝΟ ΤΟΥ ΑΑΒΒ_2
 - AN TA TPIΓΩNA TEMNONTAI
 - ΠΡΟΣΘΕΣΕ ΤΑ ΣΤΙΣ ΣΥΓΚΡΟΥΣΕΙΣ
- Όπου AABB είναι τα περιβάλλοντα κιβώτια του τελευταίου επιπέδου, τα φύλλα δηλαδή του δέντρου ιεραρχίας περιβαλλόντων όγκων.

- □ Τομή τριγώνου − ευθύγραμμου τμήματος
 - Έλεγχος τομής του ευθύγραμμου τμήματος με το τρίγωνο.
 εξίσωση επιπέδου των δύο ακρών του ευθύγραμμου τμήματος -> ετερόσημες
 - Βρίσκουμε την τομή, αν υπάρχει:

$$i = p2+t (p2-p1), t = -\frac{Ax_1+By_1+Cz_1+D}{Ax_2+By_2+Cz2}$$

Ελέγχουμε αν η τομή βρίσκεται μέσα στο αρχικό τρίγωνο.

AABB

- Για να βρούμε το AABB του μοντέλου:
 - Σαρώνουμε όλες τις κορυφές και για τις 3 διαστάσεις **χ, y, z** αναζητούμε τις **μέγιστες** και **ελάχιστες** τιμές.
 - To AABB έχει γωνίες $\{x_{min}, y_{min}, z_{min}\}$, $\{x_{max}, y_{max}, z_{max}\}$.
- Στην συνέχεια για να βρούμε την ιεραρχία των ΑΑΒΒ κάνουμε τα εξης:
 - Όλα τα AABB κάθε επιπέδου τα κόβουμε στην μέση της μεγαλύτερης τους διάστασης, έτσι ώστε από κάθε κιβώτιο του ενός επιπέδου να προκύψουν δύο κιβώτια στο αμέσως επόμενο επίπεδο.
 - Σε κάθε διχοτόμηση ενός κιβωτίου φροντίζουμε τα δύο προκύπτοντα κιβώτια να μην τέμνονται μεταξύ τους.

AABB

Bounding Spheres

- Η εύρεση της βέλτιστης σφαίρας που περικλείει ένα σύνολο σημείων είναι πιο δύσκολο πρόβλημα σε σχέση με το AABB. Ο αλγόριθμος που χρησιμοποιήθηκε είναι ο αλγόριθμος του ritter και λειτουργείως εξής:
 - 1. Επιλέγει ένα σημείο x και βρίσκει το σημείο y που έχει την μεγαλύτερη απόσταση από το x.
 - 2. Βρίσκει το σημείο z που έχει την μέγιστη απόσταση από το y. Σχηματίζεται αρχική σφαίρα με κέντρο το μέσο των y,z και ακτίνα την μισή απόσταση yz.
 - 3. Ελέγχει αν όλα τα σημεία είναι μέσα σε αυτή την σφαίρα. Εάν κάποιο δεν είναι τροποποιεί την σφαίρα ώστε να το χωρέσει και αυτό.

Bounding Spheres

- □ Για την δημιουργία ιεραρχίας περιβαλλόντων σφαιρών και συγκεκριμένα για την διχοτόμηση κάθε σφαίρας χρησιμοποιείται το ακόλουθο κριτήριο:
 - Όσα τρίγωνα βρίσκονται αριστερά* από το κέντρο κάθε σφαίρας-πατέρα ανήκουν στην μία υποδιαίρεση, ενώ όσα βρίσκονται δεξιά ανήκουν στη άλλη.

*Σε κάθε επίπεδο επιλέγεται άλλη διάσταση (xyz) ώστε να προκύψει πιο ομοιόμορφο αποτέλεσμα.

Bounding Spheres

- □ Για να υπολογιστεί το ποσοστό κάλυψης ενός επιπέδου περιβαλλόντων όγκων, πρέπει να υπολογιστεί ο όγκος της ένωσης των επιμέρους όγκων (κιβώτια /σφαίρες κλπ) και να διαιρεθεί με τον όγκο του μοντέλου.
- Στην περίπτωση που οι επιμέρους όγκοι επικαλύπτονται, πρέπει να βρεθεί ο όγκος της ένωσής τους, και όχι απλά το άθροισμά τους.
 - Με τα ΑΑΒΒ εφόσον έχουμε φροντίσει να μην επικαλύπτονται τα πράγματα είναι εύκολα.
 - Με τις σφαίρες από την άλλη πρέπει να χρησιμοποιήσουμε προσεγγιστική μέθοδο, όπως και για το ίδιο το μοντέλο.

- □ Όγκος μοντέλου
 - Για να βρεθεί ο όγκος του μοντέλου πρέπει να ολοκληρώσουμε τον χώρο του μοντέλου
 - Δηλαδή να σαρώσουμε την περιοχή του μοντέλου και για κάθε σημείο να ελέγξουμε αν είναι εσωτερικό του μοντέλου.
 - Ο έλεγχος αυτός γίνεται ως εξής:
 - Εκπομπή ακτίνας προς το άπειρο. Υπολογισμός τομών ακτίνας με το μοντέλο.
 - Αρτιος αριθμός τομών → εξωτερικό σημείο
 - Περιττός αριθμός τομών → εσωτερικό σημείο

 Παραστατικά προκύπτει κάτι τέτοιο μετά την ολοκήρωση της διαδικασίας.

Παρόμοια, με σάρωση του χώρου που καταλαμβάνει η ένωση των περιβάλλουσων σφαιρών υπολογίζεται το ποσοστό κάλυψης των σφαιρών.

