	MODELOS Y SIMULACION En la clase de hoy aplicaremos las técnicas de selección discutidas la última clase: Forward Stepwise Selection, Backward Stepwise Selection y Backward Stepwise Selection with p-values. Para esta semana, siguen abiertas las Office Hours con el mismo link de siempre. Ya se encuentra disponible la solucion a la practica 1 en Google Drive. Inteligencia Artificial y espionaje
In [104	El tema para discutir esta semana es cómo esta cambiando el espinoaje a nivel mundial y como el aprovechamiento de la Inteligencia Artificial es una oportunidad y un desafio para las distintos paises u organizaciones. Esta conversacion surge a partir de un entrevista publicada por el HAI (Human-centered Artificial Intelligence) de la Universidad de Stanford. El articulo se encuentra siguiendo el siguiente link: https://hai.stanford.edu/news/re-imagining-espionage-era-artificial-intelligence Discutimos en clase sobre el mismo. #Importamos las librerias que vamos a usar hoy import pandas as pd
In [105	<pre>import numpy as np from sklearn import linear_model from sklearn.metrics import r2_score import statsmodels.api as sm import operator import matplotlib.pyplot as plt #Traemos el dataset de Boston y armaremos nuestro modelo con todas las variables boston = pd.read_csv('boston.csv') var_explicativas = boston.drop('MEDV', 1)</pre>
In [106 Out[106 In [107	<pre>var_objetivo = boston[['MEDV']] #Cargamos el modelo y lo entrenamos regr = linear_model.LinearRegression() regr.fit(var_explicativas, var_objetivo) LinearRegression()</pre>
Out[107 In [108 Out[108	2.68673382e+00, -1.77666112e+01, 3.80986521e+00, 6.92224640e-04, -1.47556685e+00, 3.06049479e-01, -1.23345939e-02, -9.52747232e-01, 9.31168327e-03, -5.24758378e-01]])
In [109	<pre>#Corremos el modelo para obtener las predicciones prediccion_precios = regr.predict(var_explicativas) #Obtenemos el R2 r2 = r2_score(var_objetivo, prediccion_precios) print('R2: ', round(r2, 3))</pre> R2: 0.741
	Calculemos R^2 Ajustado Segun lo visto en clase, definimos a R^2 como: $R^2=1-\frac{RSS}{TSS}$ donde RSS es Residual Sum of Squares y se calcula como: $RSS=\Sigma(y_i-Y_i)^2$ y TSS:
In [111	$TSS=\Sigma(y_i-y_{med-i})^2$ Para R_{ajus}^2 queremos penalizar la incorporacion de nuevas variables: $R_{ajus}^2=1-rac{RSS/(n-d-1)}{TSS/(n-1)}$ remplazando terminos: $R_{ajus}^2=1-(1-R^2)(rac{n-1}{n-d-1})$
In [112	#N es el numero de ocurrencias n = var_objetivo.size #d es el numero de variables explicativas d = var_explicativas.columns.size print('n: ', n, 'd: ', d) n: 506 d: 13
	print('R2 Ajustado:', round(r2_ajust, 3)) print('R2: ', round(r2, 3)) 82 Ajustado: 0.734 22: 0.741 Una nueva libreria: StatsModels Esta libreria permite hacer estimaciones para diferentes modelos estadísticos, además de permitir hacer pruebas estadísticas y exploración de data https://www.statsmodels.org/stable/index.html. Respecto a SKLearn, para Regresión Lineal las diferencias no son significativas. Podemos leer este artículo donde se comparan
In [113 Out[113	<pre>var_explicativas = sm.add_constant(var_explicativas) var_explicativas.head()</pre>
In [114	1 1.0 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 2 1.0 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 3 1.0 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 4 1.0 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 #Definimos nuestro modelo, OLS significa Ordinary Least Squares. Esto indica la forma en la que #se calcularan los parametros model = sm.OLS (var_objetivo, var_explicativas)
In [115 In [116	regr = model.fit()
	Date: Tue, 31 Aug 2021 Prob (F-statistic): 6.72e-135 Time: 16:16:37 Log-Likelihood: -1498.8 No. Observations: 506 AIC: 3026. Df Residuals: 492 BIC: 3085. Df Model: 13 Covariance Type: nonrobust
	NOX -17.7666 3.820 -4.651 0.000 -25.272 -10.262 RM 3.8099 0.418 9.116 0.000 2.989 4.631 AGE 0.0007 0.013 0.052 0.958 -0.025 0.027 DIS -1.4756 0.199 -7.398 0.000 -1.867 -1.084 RAD 0.3060 0.066 4.613 0.000 0.176 0.436 TAX -0.0123 0.004 -3.280 0.001 -0.020 -0.005 PTRATIO -0.9527 0.131 -7.283 0.000 -1.210 -0.696 B 0.0093 0.003 3.467 0.001 0.004 0.015 LSTAT -0.5248 0.051 -10.347 0.000 -0.624 -0.425
In [117	Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems. #Para acceder al R2 y R2 Ajustado r2 = regr.rsquared r2_adj = regr.rsquared_adj print('R2: ', round(r2, 3)) print('R2 Ajustado:', round(r2_adj, 3))
In [118	R2: 0.741 R2 Ajustado: 0.734 #Y lo mas interesante: Los p-values p_values = regr.pvalues print(regr.pvalues) const
In [119	In 1.979441e-18 AGE 9.582293e-01 DIS 6.013491e-13 RAD 5.070529e-06 TAX 1.11637e-03 PTRATIO 1.308835e-12 B 5.728592e-04 LSTAT 7.776912e-23 dtype: float64 #Cuales son mayores a 0.05 print("Variables which p value is > 0.05:") for index, value in p_values.items():
In [120 Out[120	regr.pvalues.sort_values(ascending=False)
	CHAS
In [121	Partimos de un modelo sin variables predictoras. Luego comenzamos a agregar de a 1 variable, eligiendo en cada ronda aquel que tenga mayor R2 A medida que vamos conformando nuestros modelos, almacenamos el R2 ajustado Terminando la iteracion, graficamos los R2 ajustados y seleccionamos el mejor modelo. #Traemos el dataset de Boston y armaremos nuestro modelo con todas las variables boston = pd.read_csv('boston.csv') var_explicativas = boston.drop('MEDV', 1) var_explicativas = sm.add_constant(var_explicativas) var_objetivo = boston[['MEDV']]
In [122	<pre># Seteamos las condiciones iniciales necesarias variables = ['const'] iterate_columns = var_explicativas.columns.drop('const',1) r2_adj = [] vars_size = iterate_columns.size var_model = {} # Iteramos k veces, siendo k la cantidad de variables for k in range(0, vars_size):</pre>
	<pre># Actimizations for various de N2 para cada variable chi for modelos que armatemos # Iteramos sobre todas las variables disponibles para la ronda for var in iterate_columns: # Fijamos que variables seran las que definiran nuestro modelo var_explicativa = var_explicativas[variables + [var]] model = sm.OLS(var_objetivo, var_explicativa) regr = model.fit() # Almacenamos el R2 para cada set de variables que se prueba r2[var] = regr.rsquared adj</pre>
	<pre># Seleccionamos aquella con mayor R2 var_max_r2 = max(r2.items(), key=operator.itemgetter(1))[0] # Almacenamos las variables que describen a ese modelo var_model[k] = var_max_r2 # Almacenamos el valor de R2 r2_adj.append(r2[var_max_r2]) # Eliminamos la variable para que deje de estar en consideracion en el ciclo siguiente iterate_columns = iterate_columns.drop(var_max_r2,1) # Agregamos la variable seleccionada en esta vuelta para que la cuente en el modelo</pre>
In [123	<pre>siguiente variables.append(var_max_r2) #Seteamos el valor de la ronda k donde R2 es maximo r2_max_index = r2_adj.index(max(r2_adj)) def r2_variation(vars_size, r2_adj, title, x_label, y_label):</pre>
	Also, highlight the point where there is a maximum R2 value. Add information about that point. The amount of independent variables is given. """ # Grafiquemos la solucion # Los valores para señalar cada iteracion x = np.arange(vars_size) # El punto donde R2 es maximo r2_max_x = r2_adj.index(max(r2_adj)) r2_max_y = max(r2_adj) # Titulo de nuestro grafico y nombre de los ejes
	plt.title(title, loc = 'left') plt.xlabel(x_label) plt.ylabel(y_label) # Grafiquemos la recta con la variacion del R2 en cada vuelta plt.plot(x, r2_adj) # Grafiquemos dispersion de puntos de X vs R2 ajustado plt.scatter(x, r2_adj) # Grafiquemos el punto donde R2 es maximo y añadamos su valor en el grafico plt.scatter(r2_max_x, r2_max_y, marker='*', s=100, color='red')
In [124	<pre>plt.text(r2_max_x * (1 + 0.01), r2_max_y * (0.97) , round(r2_max_y, 3), fontsize=12) plt.text(r2_max_x * (1 + 0.01), r2_max_y * (0.95) , 'k = ' + str(r2_max_x), fontsize=12) plt.show() r2_variation(vars_size, r2_adj, 'Forward Stepwise Selection', 'k', 'R2') Forward Stepwise Selection 0.725 0.700</pre>
In [125	0.675 0.650 0.600 0.575 0.550 0 2 4 6 8 10 12
Out[125	<pre>{0: 'LSTAT', 1: 'RM', 2: 'PTRATIO', 3: 'DIS', 4: 'NOX', 5: 'CHAS', 6: 'B', 7: 'ZN', 8: 'CRIM', 9: 'RAD', 10: 'TAX', 11: 'INDUS', 12: 'AGE'}</pre>
In [126	<pre>variables = [] i = 0 while i <= r2_max_index: variables.append(var_model[i]) i += 1 var_explicativa = var_explicativas[variables] var_explicativa = sm.add_constant(var_explicativa) model = sm.OLS(var_objetivo, var_explicativa)</pre>
	regr = model.fit() print(regr.summary()) OLS Regression Results Dep. Variable: MEDV R-squared: 0.741 Model: OLS Adj. R-squared: 0.735 Method: Least Squares F-statistic: 128.2 Date: Tue, 31 Aug 2021 Prob (F-statistic): 5.54e-137 Time: 16:16:37 Log-Likelihood: -1498.9 No. Observations: 506 AIC: 3022. Df Residuals: 494 BIC: 3072. Df Model: 11 Covariance Type: nonrobust
	coef std err t P> t [0.025 0.975] const 36.3411 5.067 7.171 0.000 26.385 46.298 LSTAT -0.5226 0.047 -11.019 0.000 -0.616 -0.429 RM 3.8016 0.406 9.356 0.000 3.003 4.600 PTRATIO -0.9465 0.129 -7.334 0.000 -1.200 -0.693 DIS -1.4927 0.186 -8.037 0.000 -1.858 -1.128 NOX -17.3760 3.535 -4.915 0.000 -24.322 -10.430 CHAS 2.7187 0.854 3.183 0.002 1.040 4.397 B 0.0093 0.003 3.475 0.001 0.004 0.015 ZN 0.0458 0.014 3.390 0.001 0.0173 -0.044 RAD 0.2996 0.063 4.726 0.000 0.175 0.424 TAX -0.0118 0
	Omnibus: 178.430 Durbin-Watson: 1.078 Prob (Omnibus): 0.000 Jarque-Bera (JB): 787.785 Skew: 1.523 Prob (JB): 8.60e-172 Kurtosis: 8.300 Cond. No. 1.47e+04
In [127 In [128	<pre>var_explicativas = boston.drop('MEDV', 1) var_explicativas = sm.add_constant(var_explicativas) var_objetivo = boston[['MEDV']]</pre>
	<pre>iterate_columns = variables.drop('const', 1) vars_size = iterate_columns.size r2_adj = [] var_model = {} # Iteramos k veces, siendo k la cantidad de variables for k in range(0, vars_size):</pre>
	<pre>i = 1 # Iteramos sobre todas las variables disponibles para la ronda for var in iterate_columns: #Eliminamos la variable para probar variables = variables.drop(var, 1) # Fijamos que variables seran las que definiran nuestro modelo var_explicativa = var_explicativas[variables] # Insertamos nuevamente la variable que sacamos en el lugar que estaba para la prox ronda variables = variables.insert(i, var)</pre>
	<pre># Entrenamos el modelo model = sm.OLS(var_objetivo, var_explicativa) regr = model.fit() # Almacenamos el R2 para cada set de variables que se prueba r2[var] = regr.rsquared_adj # Actualizador de indice i += 1 # Seleccionamos aquella con mayor R2 var_max_r2 = max(r2.items(), key=operator.itemgetter(1))[0]</pre>
	<pre># Almacenamos el valor de R2 r2_adj.append(r2[var_max_r2]) # Almacenamos las variables que describen a ese modelo var_model[k] = var_max_r2 # No itera mas sobre esa variable tampoco iterate_columns = iterate_columns.drop(var_max_r2, 1) # Dejamos de considerar como una variable posible para definir al modelo variables = variables.drop(var_max_r2, 1) #Seteamos el valor de la ronda k donde R2 es maximo r2_max = r2_adj.index(max(r2_adj))</pre>
In [129	Backward Stepwise Selection 0.7 0.6 0.5 0.4 2.03
In [130	# El modelo definitivo variables = var_explicativas.columns i = 0 while i <= r2_max:
	<pre>variables = variables.drop(var_model[i], i) i += i var_explicativa = var_explicativas[variables] var_explicativa = sm.add_constant(var_explicativa) model = sm.OLS(var_objetivo, var_explicativa) regr = model.fit() print(regr.summary()) OLS Regression Results Dep. Variable: MEDV R-squared: 0.741</pre>
	Model: OLS Adj. R-squared: 0.735 Method: Least Squares F-statistic: 128.2 Date: Tue, 31 Aug 2021 Prob (F-statistic): 5.54e-137 Time: 16:16:38 Log-Likelihood: -1498.9 No. Observations: 506 AIC: 3022. Df Residuals: 494 BIC: 3072. Df Model: 11 Covariance Type: nonrobust
	NOX
In [131	[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.47e+04. This might indicate that there are strong multicollinearity or other numerical problems. Backward Stepwise Selection with P-Values Partimos de un modelo definido por todas variables predictoras. Luego eliminamos, en cada vuelta, a la variable con mayor P-Value A medida que vamos conformando nuestros modelos, almacenamos el R2 ajustado Terminando la iteracion, graficamos los R2 ajustados y seleccionamos el mejor modelo. boston = pd.read_csv('boston.csv') var_explicativas = boston.drop('MEDV', 1)
In [132	<pre>var_explicativas = sm.add_constant(var_explicativas) var_objetivo = boston[['MEDV']] variables = var_explicativas.columns r2_adj = [] vars_out = [] for k in range(0, vars_size): var_explicativa = var_explicativas[variables] # Entrenamos el modelo</pre>
	<pre>model = sm.OLS(var_objetivo, var_explicativa) regr = model.fit() # Almacenamos el valor de R2 r2_adj.append(regr.rsquared_adj) # Obtenemos los p-values sin considerar la constante p_values = regr.pvalues.drop('const') pvalue_index = p_values.argmax() pvalue_var = p_values.keys()[pvalue_index] # Eliminamos la variable cuyo p-value es el mas grande variables = variables.drop(pvalue_var)</pre>
In [133 Out[133	<pre># Almacenamos la variable que queda fuera en cada ronda vars_out.append(pvalue_var) vars_out ['AGE', 'INDUS', 'CHAS', 'ZN', 'TAX', 'CRIM', 'RAD',</pre>
In [134	'B', 'NOX', 'DIS', 'PTRATIO', 'RM', 'LSTAT'] Backward Stepwise Selection with p-values', 'k', 'R2') Backward Stepwise Selection with p-values 0.725 0.700 k = 2
	Esto es todo por hoy. La practica 2 sera lanzada al finalizar esta clase. Lo visto hoy quizas les presente dificultad. Es normal. Buena semana:)