Assignment 1

Simon Clarke David Ewing Xia Yu

2025-03-09

Braking Distance

In this question, do not use the 1m function or a module that provides an implementation of k-NN. You are allowed to use elementary statistical objects like mean, variance, etc.

We will be predicting the distance that a car takes to stop when driving at a certain speed. The dataset is from 1930, so it might be slightly outdated. Units are miles per hour (speed) and feet (distance).

Data Preparation

Load and preprocess dataset

Linear Regression (Without lm)

Compute slope and intercept for simple linear regression

Using the linear regression model, predict the braking distance for a car going at 30 km/h and include an 80% prediction interval.

Prediction for 30 km/h

k-NN Model

Fit and predict using k-NN model

Filipino Household Income

Data Preparation

Load and preprocess dataset

Linear Regression

```
# Fit linear model and summarise
```

Predicting Possum Age

Data Preparation

```
# Load and preprocess dataset
zip_path <- "../data/datasets.zip"</pre>
file.exists(zip_path)
## [1] TRUE
possums <- read.csv(unz(zip_path, "possums.csv"))</pre>
head(possums)
##
    case site Pop sex age hdlngth skullw totlngth taill footlgth earconch eye
## 1
       1
            1 Vic
                        8
                             94.1
                                    60.4
                                            89.0 36.0
                                                           74.5
                                                                    54.5 15.2
## 2
       2
            1 Vic f
                        6
                             92.5
                                    57.6
                                            91.5 36.5
                                                           72.5
                                                                    51.2 16.0
                                                           75.4
## 3
       3
            1 Vic f 6
                             94.0
                                    60.0
                                            95.5 39.0
                                                                    51.9 15.5
## 4
            1 Vic f 6
                             93.2
                                   57.1
                                            92.0 38.0
                                                           76.1
                                                                    52.2 15.2
## 5
            1 Vic f 2
                             91.5
                                            85.5 36.0
                                                           71.0
       5
                                   56.3
                                                                    53.2 15.1
## 6
       6
            1 Vic f 1
                             93.1
                                   54.8
                                            90.5 35.5
                                                           73.2
                                                                    53.6 14.2
##
    chest belly
## 1 28.0
## 2 28.5
             33
## 3 30.0
             34
## 4 28.0
             34
             33
## 5 28.5
## 6 30.0
             32
```

Data and Initial Analysis

```
# Load dataset and visualise
knitr::include_graphics("../images/possum_age_plot.png")
```


Data Preparation

Preprocess dataset

Feature Selection and Model Training

Forward feature selection and model training

Model Evaluation

Compute evaluation metrics

Further Exploration

Additional analysis or research questions