Problem 1

Show that $C_0(\mathbb{R})$ is a Banach space.

Proof: Let $(f_n)_n$ be a Cauchy sequence in $C_0(\mathbb{R})$. Since each $f_k \in C_0(\mathbb{R})$, it must be the case that each f_k is uniformly continuous. For each $x \in \mathbb{R}$, it is thus the case that $(f_n(x))_n$ is Cauchy in \mathbb{R} . Since \mathbb{R} is complete, $(f_n(x))_n \to f(x)$ for each $x \in \mathbb{R}$, and since each f_k is uniformly continuous, it must be the case that f(x) is continuous.

For $\varepsilon > 0$, there must be N large such that for $m, n \ge N$ and $m \ge n$, it must be the case that $|f_m(x) - f_n(x)| < \varepsilon$ for all $x \in \mathbb{R}$. Letting $m \to \infty$, we have $|f_n(x) - f(x)| < \varepsilon$, meaning $(f_n)_n \to f$. Thus, $f \in C_0(\mathbb{R})$.

Problem 2

Show that ℓ_2 is a Hilbert space.

Proof:

Problem 3

Suppose (X, d) is a complete metric space and $(x_n)_n$ is a sequence in X such that there is a $\theta \in (0, 1)$ with $d(x_{n+1}, x_n) \le \theta d(x_n, x_{n-1})$. Show that $(x_n)_n$ is convergent.

Proof: We will show that $(x_n)_n$ is convergent by showing that $(x_n)_n$ Cauchy. Let m, n be such that $m \ge n$. Notice that $d(x_n, x_{n-1}) \le \theta^{n-2} d(x_2, x_1)$. Thus,

$$d(x_{m}, x_{n}) \leq d(x_{m}, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{n+1}, x_{n})$$

$$\leq d(x_{2}, x_{1}) \left(\theta^{m-2} + \theta^{m-3} + \dots + \theta^{n-1} \right)$$

$$= d(x_{2}, x_{1}) \theta^{n-1} \left(1 + \theta + \theta^{2} + \dots + \theta^{p-q-1} \right)$$

$$= d(x_{2}, x_{1}) \frac{\theta^{n-1}}{1 - \theta}.$$

Notice that the sequence $\left(\frac{\theta^{n-1}}{1-\theta}\right)_n \to 0$ in \mathbb{R} , meaning $(x_n)_n$ is Cauchy. Since X is complete, $(x_n)_n$ is convergent.