Chapter 40 Even Answers

2. (a)
$$\sim 10^{-7}$$
 m, ultraviolet (b) $\sim 10^{-10}$ m, γ - ray

(b)
$$\sim 10^{-10} \text{ m}, \ \gamma - \text{ray}$$

4.
$$1.30 \times 10^{15} \text{ s}^{-1}$$

6. (a)
$$5.75 \times 10^3$$
 K

8.
$$2.96 \times 10^{19} \text{ photons/s}$$

10.
$$5.71 \times 10^3$$
 photons

12.
$$7.73 \times 10^3 \text{ K}$$

(b)
$$3.34 \times 10^{14} \text{ Hz}$$

22.
$$8.41 \times 10^{-12} \text{ C}$$

24. 1.78 eV,
$$9.47 \times 10^{-28}$$
 kg·m/s

26.
$$22.1 \text{ keV}/c$$
, 478 eV

30. (a)
$$\cos^{-1}\left(\frac{m_e c^2 + E_0}{2m_e c^2 + E_0}\right)$$
 (b) $\frac{E_0}{2}\left(\frac{2m_e c^2 + E_0}{m_e c^2 + E_0}\right)$, $\frac{E_0}{2c}\left(\frac{2m_e c^2 + E_0}{m_e c^2 + E_0}\right)$

(c)
$$\frac{E_0^2}{2(m_e c^2 + E_0)}$$
, $\frac{E_0}{2c} \left(\frac{2m_e c^2 + E_0}{m_e c^2 + E_0} \right)$

0.00109

Infrared

40. (a)
$$2.19 \times 10^6$$
 m/s

(b) 13.6 eV

(c) -27.2 eV

2 Chapter 40 Even Answers

42. (a) B (b) A

(c) B and C

(a) 13.6 eV 44.

1.51 eV (b)

 $2.89 \times 10^{34} \text{ kg} \cdot \text{m}^2/\text{s}$ **46**.

(b) 2.74×10^{68} (c) 7.30×10^{-69}

 $4.42 \times 10^4 \text{ m/s}$ **48**.

0.0265 nm (a) **50**.

0.0177 nm

(c) 0.0132 nm

 $1.52 \times 10^{-16} \text{ s}$ **52**. (a)

 8.23×10^9 revolutions (b)

(c) Yes, 8.23×10^9 "electron years"

0.174 nm (a) **54**.

 $5.49 \times 10^{-12} \text{ m}$ (b)

56. 0.218 nm

 3.91×10^4 **58**. (a)

(b) $1.07 \times 10^{-17} \text{ kg} \cdot \text{m/s}$

 6.22×10^{-17} m, much smaller than 10^{-14} m

 $1.10 \times 10^{-34} \text{ m/s}$ **60**.

(b) 1.36×10^{33} s

No. The time is over 10^{15} times the age of the universe.

(a) 1.7 eV **62**.

(b) $4.2 \times 10^{-15} \text{ V} \cdot \text{s}$

(c) 730 nm

 $\frac{hc}{\lambda} - \frac{e^2 B^2 R^2}{2 m_e}$ **64**.

(a) 191 MeV 66.

(b) 9.20 MeV

 $E_1 = -8.16 \; \mathrm{eV} \,, \quad E_2 = -2.04 \; \mathrm{eV} \,, \quad E_3 = -0.902 \; \mathrm{eV} \,, \quad E_4 = -0.508 \; \mathrm{eV} \,, \quad E_5 = -0.325 \; \mathrm{eV} \,$ **72**.

 $\lambda_{\alpha} = 1090 \text{ nm}, \quad \lambda_{\beta} = 811 \text{ nm}, \quad \lambda_{\gamma} = 724 \text{ nm}, \quad \lambda_{\text{series limit}} = 609 \text{ nm}$

- 122 nm, 108 nm, 97.3 nm, 95.0 nm, 91.2 nm
- (d) The source could be moving away at 0.471c, producing large Doppler shifts.

 $\lambda_{\rm max}T = 2.897755 \times 10^{-3}~{\rm m\cdot K}$, very close to Wien's experimental value of $2.898 \times 10^{-3}~{\rm m\cdot K}$ **74**.

3.12 fm, -18.9 MeV **76**.

0.143 nm; Diffraction effects should appear. **80**.