ENSA-ALHOCEIMA CP II.

ANALYSE 4 SEMESTRE 2

Exercice 1:

1- Calculer les intégrales suivantes :

$$I = \int_{-1}^{2} x |x| dx$$
, $J = \int_{-1}^{1} x |x| dx$, $K = \int_{0}^{2\pi} \sqrt{\frac{1 + \cos x}{2}} dx$

$$L = \int_0^{\pi} \sqrt{1 - (\cos x)^2} dx$$
, $M = \int_0^{2\pi} \sqrt{1 - (\cos x)^2} dx$. $N = \int_1^5 \left(x^2 + \frac{5}{x}\right) dx$

$$O = \int_{2}^{6} \frac{2x-1}{x^{2}-1} dx$$
, $P = \int_{0}^{1} x \sqrt{x^{2} + 4} dx$, $Q = \int_{0}^{\sqrt{3}} \frac{1}{x^{2}+1} dx$

2- Calculer $J_a = \int_0^1 (x^2 - ax)^2 dx$ pour $a \in \mathbb{R}$. Puis déterminer $inf_{a\in\mathbb{R}}(J_a)$.

Exercice 2:

Soient
$$I = \int_0^{\frac{\pi}{4}} \frac{\sin x}{\sin x + \cos x} dx$$
 et $J = \int_0^{\frac{\pi}{4}} \frac{\cos x}{\sin x + \cos x} dx$.

- 1- Calculer I + J et I J
- 2- En déduire les valeurs de I et J.

Exercice 3:

En utilisant un changement de variable, calculer les intégrales suivantes :

$$I = \int_{1}^{e} \frac{3 + lnx}{(4 + lnx)^{2}} dx$$
 , $J = \int_{0}^{2} \frac{e^{2x}}{\sqrt{e^{x} + 1}} dx$, $K = \int_{0}^{4} \sqrt{x^{2} \sqrt{x} + x} dx$

$$L = \int_{-\frac{\pi}{2}}^{0} \frac{(\cos x)^3}{(2+\sin x)^2} dx$$
 , $M = \int_{ln2}^{0} \left(\frac{e^x + 3e^{-x}}{e^x + e^{-x}}\right) dx$.

Pour M, on peut utiliser l'égalité : $\frac{t^2+3}{t(t^2+1)} = \frac{3}{t} - \frac{2t}{t^2+1}$

Exercice 4:

Calculer les intégrales suivantes en utilisant une intégration par parties :

$$I = \int_1^a x^2 \ln x \, dx$$
 pour $a \ge 1$, $J = \int_0^a x^2 \cos x \, dx$ pour $a \in \mathbb{R}$.

$$K = \int_0^1 x^2 e^{-x} dx$$
 , $L = \int_0^a e^{\alpha x} \cos(\beta x) dx$ et $M = \int_0^a e^{\alpha x} \sin(\beta x) dx$

Exercice 5:

Soit: $I_n = \int_0^1 x^n e^{-x^2} dx$, telle que $n \in \mathbb{N}^*$

1- Calculer I_1 .

2- Montrer que : $I_{n+2} = \frac{n+1}{2}I_n - \frac{1}{2e}$

Exercice 6:

Soient m et n deux entiers relatifs tels que : $m \ge n$.

Calculer $\int_{n}^{m} E(x) dx$ ou E(x) est la parie entière de x.

Exercice 7:

Soient f et q deux fonctions définies sur [a, b]. f étant continue et q continue par morceaux positive.

Montrer qu'il existe $c \in [a,b]$: $\int_a^b f(x)g(x)dx = f(c)\int_a^b g(x)dx$

Exercice 8:

Soit $f: [-1,1] \to \mathbb{R}$ une fonction continue et $M = \sup_{x \in [-1,1]} |f(x)|$. Montrer que:

$$\left| \int_{-1}^{1} (f(x) + x^2 f(-x)) dx \right| \le \frac{8}{3} M$$

Exercice 8:

1- Montrer que: $\lim_{u\to 0^+} \int_0^{\frac{\pi}{2}} e^{-u \sin x} dx = \frac{\pi}{2}$.

 $\forall t \in [0, +\infty[: 0 \le 1 - e^{-t} < t.$ Utiliser l'encadrement:

2- Montrer que: $\lim_{u\to 0^+} \int_u^{3u} \frac{\cos x}{x} dx = \ln 3$.

3- soit $C = \lim_{u \to +\infty} \int_0^{\pi} e^{-u \sin x} dx$

a- Montrer que : $\int_0^{\pi} e^{-u \sin x} dx = 2 \int_0^{\frac{\pi}{2}} e^{-u \sin x} dx$.

b- Montrer que : $\forall x \in \left[0, \frac{\pi}{2}\right]$: $\sin x \ge \frac{2x}{\pi}$.

c- En déduire que : C = 0.

4- Déterminer la limite : $D = \lim_{u \to +\infty} e^{-u^2} \int_0^u e^{x^2} dx$