Routage

UE LU3IN033 Réseaux 2023-2024

Bruno Baynat
Bruno.Baynat@sorbonne-universite.fr

Programme de l'UE LU3IN033

11 Web & DNS

8 Routage

- 7 DHCP & NAT
- 6 Paquet IP & ICMP
- 5 Adressage IP & ARP

Application

Transport

Réseau

Liaison

Physique

10 TCP (suite)

9 UDP & TCP

- 4 Réseaux locaux
- 3 Méthodes d'accès
- 2 Couche physique

1 Introduction

Plan du cours

- Routage vs Acheminement
- Algorithme de routage vs Protocole de routage
- Routage Distribué vs Centralisé
- Protocoles à état de liens
 - Basé sur l'algorithme de Dijkstra
 - Ex: OSPF Open Shortest Path First
- Protocoles à vecteur de distance
 - Basé sur l'algorithme de Bellman-Ford
 - Ex: RIP Routing Information Protocol
- Protocoles à état de liens vs Protocoles à vecteur de distance
- Routage hiérarchique à deux niveaux
 - Routage intra-domaine : RIP, OSPF
 - Routage inter-domaine : BGP

Couche réseau

Acheminement des données

Les paquets de données sont acheminés (« forwardés ») de proche en proche vers leur destination finale en suivant le meilleur chemin

Acheminement des données

- Chaque routeur maintient une table de routage
 - une entrée par destination
 - chaque entrée indique l'interface de sortie et le saut suivant pour atteindre la destination correspondante

, tha reception a an pagaet	• /	à اذ	a réce	ption	d'un	paquet
-----------------------------	-----	------	--------	-------	------	--------

- un routeur inspecte l'adresse de destination du paquet
- inspecte sa table de routage pour déterminer la « meilleure » entrée correspondant à cette adresse
- achemine le paquet sur l'interface indiquée par cette entrée
- Les routeurs suivant sur le chemin du paquet répètent le même processus
 - le paquet se rapproche saut par saut de sa destination finale

D'où	provienr	nent les	tables	de	routage	?

Destination	Masque	Suivant	Interface

Routage vs Acheminement

Routage

- Création et maintien des tables de routage
- Algorithmes de routage
 - Dijkstra, Bellman-Ford, ...
- Protocoles de routage
 - OSPF, IS-IS, RIP, BGP, ...

Protocole de routage Table de routage Adresse Interface 0100 0101 0111 1001

Acheminement

- Commutation des paquets de proche en proche
 - choix de l'interface de sortie sur laquelle aiguiller les paquets
 - par inspection des tables de routage

Impact du choix des routes

- Performance de bout-en-bout
 - Le choix du chemin affecte les performances de la communication
 - Métriques de performance : délai de propagation, débit, pertes, ...

- Utilisation des ressources réseau
 - Répartir le trafic sur tous les routeurs et les liens du réseau
 - Eviter la congestion en re-dirigeant le trafic sur des liens moins chargés

- Perturbations suite à des changements de topologie
 - Pannes, maintenances, équilibrage de charge
 - Limiter les conséquences sur l'acheminement des paquets pendant la convergence des protocoles de routage

Calcul des routes

Statique

L'administrateur configure manuellement les entrées des tables de routage

- Autorise plus de contrôle
- Permet de choisir des routes basés des critères plus subjectifs
- Ne passe pas à l'échelle
- Adaptation lente aux perturbations du réseau

Dynamique

Les routeurs s'échangent des informations permettant de configurer automatiquement les entrées des tables de routage

- Permet une adaptation rapide aux changements de topologie
- Passe à l'échelle
- Algorithmes distribués complexes à mettre en œuvre
- Consomme CPU, RAM et BP
- Choix des routes basés sur des critères formels

En pratique : un mix des deux Routage statique aux extrémités, dynamique dans le cœur de réseau

Algorithme de routage vs Protocole de routage

- Algorithme de routage
 - Méthode de calcul permettant de déterminer le « meilleur » chemin entre un expéditeur et un destinataire
 - le plus court (en distance, en nombre de sauts)
 - le plus rapide (en temps)
 - le moins cher
 - ▶ le plus sûr
 - **...**
 - Pour s'exécuter, les algorithmes ont besoin de connaître la topologie du réseau
 - Dijkstra : topologie complète
 - Bellman-Ford : topologie partielle (locale)
- Protocole de routage
 - Définit les règles d'échange de messages entre les routeurs
 - Dans le but de maintenir des tables de routages offrant les meilleures routes
 - Mise en oeuvre d'un (ou de plusieurs) algorithme(s) de routage
 - centralisée
 - distribuée

Protocoles distribués

Les routeurs exécutent un algorithme distribué et calculent euxmême les routes incluses dans leur table de routage

Protocoles centralisés

Un contrôleur calcule les routes pour le compte des routeurs qu'il installe dans les tables des routeurs

Protocoles de routage distribués

Protocoles à état de liens

- Les routeurs envoient périodiquement
 - des paquets « état de liens »
 - à tous les routeurs du réseau (inondation)
- Construction d'une base de données d'états de liens
 - qui contient la topologie complète du réseau
 - de manière distribuée
- Algorithme de Dijkstra
 - exécuté localement
 - calcul des plus courts chemins vers toutes les destinations du réseau
 - mise à jour des tables de routage
- Protocoles à état de lien
 - OSPF, IS-IS

Protocoles à vecteur de distance

- Les routeurs envoient périodiquement
 - des messages « vecteur de distance »
 - contenant leur table de routage (condensée)
 - à leurs voisins directs
- Algorithme de Bellman-Ford
 - algorithme distribué
 - calcul du prochain saut sur le plus court chemin vers toutes les destination du réseau
 - sans avoir la connaissance complète du réseau
 - mise à jour des tables de routage
- Protocoles à vecteur de distance
 - RIP

Routage à état de liens

Routage à état de lien

- Un routeur qui s'allume doit
 - découvrir ses voisins

- estimer le coût des liens
- Chaque routeur inonde le réseau de paquets « état de liens » (LSP)
 - périodiquement ou suite à un changement de topologie
 - pour donner à tous les routeurs une vue complète du réseau
- Parallèlement chaque routeur exécute localement l'algorithme de Dijkstra
 - calcul du chemin complet du routeur considéré vers toutes les destinations (connues) du réseau
 - calcul de sa propre table de routage

Paquet LSP

- Un paquet LSP (Link-State Packet) contient
 - l'identificateur du nœud qui a créé le LSP
 - une liste de voisins directement connectés avec le coût vers chacun
 - un numéro de séquence
 - un TTL
- Chaque routeur envoie ses paquets LSP
 - périodiquement
 - suite à un changement de topologie
 - rupture ou réparation d'un lien
 - panne ou rétablissement d'un routeur
 - changement de coût d'un lien
- Un routeur qui reçoit un paquet LSP
 - le compare à ceux de sa base de données de LSPs
 - si le numéro de séquence du LSP reçu est plus récent que celui contenu dans sa base
 - · il met à jour sa base de donnée
 - il le retransmet sur chacune de ses voies de sortie (sauf celle sur laquelle le LSP lui est parvenu)

Inondation des LSPs

Inondation fiable

L'inondation doit être fiable

- Garantir que tous les routeurs ont reçu les mêmes informations de routage
- ... et que celles-ci soient à jour

Problèmes

- Pertes de paquets LSP
- Réception dans le désordre
- Boucles

Solutions

- Contrôle d'erreur : acquittements et retransmissions
- Numérotation en séquence des paquets LSP
- Réduction de la durée de vie des paquets LSP (TTL)

Quand inonder?

- Immédiatement
 - sur changement de topologie
 - panne de lien ou de routeur
 - recouvrement de lien ou de routeur
 - sur changement de configuration
 - changement de coût d'un lien
- Périodiquement
 - pour rafraîchir les informations d'état de lien
 - TTL (MaxAge d'1 heure dans OSPF)
 - pour corriger les corruptions éventuelles d'information

Initialisation

```
Pour tous les sommets v \in S
d(v) = \infty
pred(v) = nil
d(s) = 0
E = \emptyset
R = S
```

S: ensemble des sommets du Graphe d(v): distance estimée pour joindre v pred(v): prédécesseur de v

s : sommet source de tous les chemins

E : ensemble des sommets estimés *R* : ensemble des sommets restants

Tant que $R \neq \emptyset$

```
u = \text{sommet avec l'estimation de pondération minimum de R}
E = E \cup \{u\}

Pour tous les sommets v \in \text{voisin}(u)
|si d(v) > d(u) + c(u,v) \text{ alors}
|d(v) = d(u) + c(u,v)
|pred(v) = u
|R = R - \{u\}
```

c(u,v): coût du lien reliant u à v

Arbre des plus courts chemins

Arbre des plus courts chemins

Extraction des sauts suivants

Table de routage de A				
Destination	Suivant			
В	В			
С	С			
D	С			
E	С			
F	В			
G	С			
Н	С			

Changements de topologie

- Changements de topologie
 - pannes, maintenances, changements de configuration
- Les changements de topologie doivent être détectés et annoncés le plus rapidement possible
 - détection du changement
 - propagation de ce changement à tous les routeurs
 - recalcul des routes
 - mise à jour des tables de routage

Convergence du protocole

- Source du délai de convergence du protocole
 - latence de détection de la panne
 - inondation de l'information d'état de lien
 - recalcul du plus court chemin
 - création de la table d'acheminement
- Conséquence sur l'acheminement des paquets de données
 - pertes de paquets
 - « trous noirs »
 - expiration de TTL
 - déséquencements de paquets
 - boucles de routage
 - délai de réception excessifs non compatible avec les applications temps réel (VoIP, vidéo, jeux en ligne, ...)

Réduire le délai de convergence

- Réagir plus vite à des pannes
 - temporisateurs de messages « hello » plus petits
 - détection de la panne au niveau liaison
 - inondation plus rapide
 - priorisation des paquets LSP
- Recalculer plus rapidement les routes
 - augmentation de la puissance CPU des routeurs
 - algorithme de Dijkstra incrémental
- Mettre à jour les tables d'acheminement plus efficacement
 - structures de données acceptant les mises-à-jour incrémentales

Open Shortest Path First (OSPF)

Protocole à état de liens

- Les routeurs envoient un message « hello » sur chaque lien
 - toutes les 10 secondes
- L'absence de réponse à un « hello » pendant 40 secondes indique une rupture de lien ou la panne du voisin
- Les routeurs inondent leurs LSPs
 - périodiquement : toutes les 30 minutes
 - immédiatement : suite à un changement de topologie

OSPF est adapté

- aux réseaux complexes (comportant plusieurs sous-réseaux)
- aux réseaux de grande taille

Routage à vecteur de distance

Routage à vecteur de distance

- Un routeur doit uniquement connaître ses voisins et le coût pour les atteindre
- Chaque routeur envoie des messages « vecteur de distance »
 - contenant des informations issues de sa propre table de routage
 - la liste des destinations connues du routeur
 - la distance du chemin connu du routeur pour chacune de ces destinations
 - les vecteurs de distance sont envoyés uniquement aux voisins directs
 - périodiquement ou suite au changement des tables de routage
- Chaque routeur exécute l'algorithme distribué de Bellman-Ford
 - sur réception du vecteur de distance d'un de ses voisins
 - pour mettre à jour sa table de routage
 - chaque destination du vecteur reçu est comparée à celle de sa table de routage afin
 - d'ajouter des destinations inconnues
 - de mettre à jour l'entrée correspondante de sa table si meilleures routes apprises

Equation de Bellman-Ford

- Coût du plus court chemin de x vers y: $d_x(y)$
- Equation de Bellman-Ford

Exemple

$$d_{u}(z) = \min\{c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z)\}$$

$$= \min\{2 + 5, 1 + 3, 5 + 3\}$$

$$= 4$$

Algorithme de Bellman-Ford

- Algorithme distribué asynchrone
- Les routeurs maintiennent un vecteur de distance : $D_x = [d_x(y) : y \in N]$
- Initialement
 - les routeurs connaissent leurs voisins direct et le coût pour les atteindre
 - un routeur x remplit son vecteur D_x des routes directes vers ses voisins
- Périodiquement
 - les routeurs envoient spontanément leur vecteur de distance à leurs voisins directs
- Sur réception d'un vecteur de distance
 - un routeur compare chaque destination du vecteur reçu à celle de son propre vecteur en utilisant l'équation de Bellman-Ford
 - si la route annoncée correspond à une destination inconnue
 - il ajoute une entrée à son vecteur
 - si la route annoncée correspond à une destination connue mais avec un meilleur coût
 - · il met à jour l'entrée correspondante de son vecteur

Dest.	Sulv.	Dist.	
В	В	1	
С	С	2	//

VA=(B1,C2)

-	1	VA	VB	В	
		1		>	
VA	2			1	VB
2		5		>	

Dest.	Suiv.	Dist.
В	В	1

C C 2

D B 2

VB=(A1,D1,C3)

Routeur B

Dest.	Suiv.	Dist.	/ /
Α	А	1	
D	D	1	

Dest.	Suiv.	Dist.

D D

C A 3

VA=(B1,C2	2,D2)		
\ \		l <u>.</u>	
\ *	Dest.	Suiv.	Dist.
\		Λ	

Routeur C

Dest.	Suiv.	Dist.
A	А	2
D	D	5

Dest.	Suiv.	Dist.

A	А	2

D D 5

B A 3

Dest.	Suiv.	Dist.
Α	Α	2
D	Α	4

В

Routeur D

Dest.	Suiv.	Dist.
В	В	1
С	С	5

Dest.	Suiv.	Dist.	
В	В	1	
С	С	5	
A	В	2	

→ temps

Routing Information Protocol (RIP)

- Protocole à vecteur de distance
 - Les routeurs envoient leur vecteur de distance
 - périodiquement : toutes les 30 secondes
 - · immédiatement : suite à une mise à jour provoquant un changement de routage
 - L'absence de vecteurs de distance pendant 180 secondes indique une rupture de lien ou la panne du voisin
- Coût des liens
 - Tous les liens ont un coût de 1
 - Les distances valides varient de 1 à 15
 - 16 représente l'infini
 - permet de réduire le problème du comptage à l'infini
- RIP est limité aux réseaux de taille restreinte

Comparaison des protocoles de routage

Etat de liens

- Plus complexes à mettre en œuvre et à configurer (base de données d'état de lien)
- Moins bonne utilisation de la bande passante (diffusion des informations d'état de lien à tous les routeurs)
- Gourmand en CPU et en RAM
- Convergence rapide (mises à jour d'état de lien entrainant immédiatement une mise à jour des tables)
- Résistance au facteur d'échelle (adaptés aux réseaux de grande taille)
- Vision globale du réseau

Vecteur de distance

- Plus simples à mettre en œuvre et à configurer
- Meilleure utilisation de la bande passante (informations de routage envoyées uniquement aux voisins)
- Moins consommateur de CPU et de RAM
- Convergence lente et problèmes d'instabilité dans certains cas (comptage à l'infini)
- Manque de scalabilité (pas adaptés aux réseaux de grande taille)
- Vision locale du réseau

Internet: un réseau de réseaux

Routage à deux niveaux

Protocole de routage inter-AS

Conclusion

- Le routage est l'opération qui consiste à trouver dans un réseau le « meilleur » chemin entre une source et une destination
- Les protocoles de routage permettent aux routeurs de créer et de mettre à jour leur table de routage
- Pour cela les routeurs s'échangent des informations selon des algorithmes distribués
 - Etats de lien (OSPF, IS-IS)
 - permettant à chaque routeur d'avoir une vue complète du réseau
 - d'exécuter localement un algorithme de plus court chemin : Dijkstra
 - et d'en déduire sa table de routage
 - Vecteurs de distance (RIP)
 - permettant à chaque routeur de construire et de mettre à jour sa table de routage
 - à l'aide d'un algorithme distribué : Ford-Bellman
- Le délai de convergence de ces protocoles est très important
 - Tant que les tables ne sont pas à jour, l'acheminement des paquets peut être incorrect
 - pertes de paquets, déséquencements, trous noirs, boucles d'acheminement, etc.
 - Ils doivent donc réagir rapidement à des changements de topologie

A faire

- Cours 8
 - à relire attentivement
- Devoir 8 sur Moodle
 - date de rendu : dimanche 29 octobre