Глава 4

Мерки. Теореми на Жордан—Хан, Лебег и Радон—Никодим

С понятието "вероятностна мярка" читателят е запознат от изложението в глава 1. Отличителни черти на вероятностните мерки са: а) те са нормирани ($\mathbf{P}(\Omega)=1$) и б) те са неотрицателни ($\mathbf{P}(A)\geq 0$). Ще напомним, че за вероятностните мерки свойствата адитивност и непрекъснатост в нулата са еквивалентни на изброима адитивност. Именно последното свойство лежи в основата на общото понятие "мярка".

Определение 4.1. Мярка μ в измеримото пространство (Ω, \mathfrak{F}) се нарича всяка функция $\mu = \mu(A)$, дефинирана в σ -алгебрата \mathfrak{F} и приемаща стойности в $(-\infty, +\infty]$, която удовлетворява условията:

$$\mu(\emptyset) = 0,$$

(4.2)
$$\mu\left(\sum_{j\in J} A_j\right) = \sum_{j\in J} \mu(A_j)$$

за всяко изброимо семейство $\{A_j, j \in J\} \subseteq \mathfrak{F}$ от непресичащи се $(A_i \cap A_j = \emptyset, i \neq j)$ подмножества на Ω .

Мярката μ се нарича положителна ($\mu \geq 0$), ако $\mu(A) \geq 0$, $A \in \mathfrak{F}$, и ограничена, ако $\sup_{A \in \mathfrak{F}} |\mu(A)| < \infty$. Всяка положителна и нормирана ($\mu(\Omega) = 1$), а следователно и ограничена, мярка μ е вероятностна мярка в (Ω , \mathfrak{F}).

В тази глава ще изложим три класически теореми, разкриващи структурата на всяка мярка и съотношенията (абсолютна непрекъснатост, сингулярност) между мерките, представляващи най-голям интерес за теорията на вероятностите.

Теорема 4.1 (Жордан—Хан). *Нека* μ *е мярка в* (Ω, \mathfrak{F}) . *Тогава*

1) Равенствата

$$\mu^{+}(A) = \sup\{\mu(B), B \subseteq A\},$$

$$\mu^{-}(A) = \sup\{-\mu(B), B \subseteq A\}$$

дефинират две положителни мерки μ^+ и μ^- в (Ω, \mathfrak{F}) .

- 2) Мярката μ^{-} е ограничена и $\mu = \mu^{+} \mu^{-}$.
- 3) Съществува множество $D \in \mathfrak{F}$ такова, че
 - а) $\mu(A) \geq 0$ за всяко $A \subseteq D$,
 - б) $\mu(A) \leq 0$ за всяко $A \subseteq \overline{D}$,

и следователно
$$\mu^+(A)=\mu(A\cap D),\ \mu^-(A)=-\mu\left(A\cap\overline{D}\right),\ A\in\mathfrak{F}.$$

Доказателството ще разделим на няколко етапа с цел отделните моменти да бъдат подробно изяснени. Ключов момент в него е твърдението 3), свързано със съществуването на подходящо множество $D \in \mathfrak{F}$.

А. Дефинираме класа $\mathfrak{B} = \{B \in \mathfrak{F}, \mu^+(B) = 0\}$. Този клас \mathfrak{B} е затворен относно изброими обединения. Наистина, ако $A \subseteq \bigcup_{n \ge 0} B_n$, $B_n \in \mathfrak{B}$, $n \ge 0$, то

$$\mu(A) = \sum_{n>0} \mu \left(A \cap \left(B_n \setminus \bigcup_{m < n} B_m \right) \right) \le \sum_{n>0} \mu^+(B_n) = 0.$$

Следователно, $\bigcup_{n} B_n \in \mathfrak{B}$.

Б. Точната долна граница $\beta = \inf\{\mu(B), B \in \mathfrak{B}\}$ се достига за някое множество от $\mathfrak{B} \subseteq \mathfrak{F}$ и следователно $-\infty < \beta \leq 0$. Наистина, ако $B_n \in \mathfrak{B}, n \geq 0$, имат свойството $\mu(B_n) \xrightarrow[n \to \infty]{} \beta$, то $\bigcup_{n \geq 0} B_n \in \mathfrak{B}$ и за всяко $m \geq 0$ имаме

$$\beta \leq \mu \left(\bigcup_{n \geq 0} B_n \right) = \mu(B_m) + \mu \left[\left(\bigcup_{n \geq 0} B_n \right) \setminus B_m \right] \leq \mu(B_m) \xrightarrow[m \to \infty]{} \beta.$$

Така,
$$-\infty < \mu \left(\bigcup_{n \ge 0} B_n \right) = \beta \le 0.$$

В. Полагаме $D = \left(\bigcup_{n \geq 0} B_n\right)$, при което $D \in \mathfrak{F}$, $\overline{D} \in \mathfrak{B}$, $\mu\left(\overline{D}\right) = \beta$. Този избор на D осигурява (за всяко $A \in \mathfrak{F}$) изпълнението на следните съотношения:

$$\mu(A) \le 0 \text{ за всяко } A \subseteq \overline{D},$$

(4.4)
$$\mu^+(A) > 0$$
 за всяко $A \subseteq D$, за което $\mu(A) < 0$.

Действително (4.3) е очевидно, а ако $A \subseteq D$, $\mu(A) < 0$ и $\mu^+(A) = 0$, то $A \in \mathfrak{B}$, $A + \overline{D} \in \mathfrak{B}$, при което

$$\mu(A + \overline{D}) = \mu(A) + \mu(\overline{D}) < \mu(\overline{D}) = \beta$$

и стигаме до противоречие с избора на β .

Г. Ще покажем, че от (4.4) следва свойството

$$\mu(A) \ge 0$$
 за всяко $A \subseteq D$.

(Очевидно (4.3) и (4.5) доказват съществуването на желаното множество D от \mathfrak{F}).

Да допуснем противното, т. е. че съществува $\widetilde{A} \subseteq D$, за което $\mu(\widetilde{A}) < 0$. **Г. а)** Без ограничение на общността може да считаме, че

(*)
$$\widetilde{A} \subseteq D, \quad \mu(\widetilde{A}) < 0, \quad 0 < \mu^{+}(\widetilde{A}) < \infty.$$

Наистина, ако за всяко $A'\subseteq\widetilde{A}$ с $\mu(A')<0$ имаме $\mu^+(A')=\infty$, то съществува $A^{(0)}\subseteq\widetilde{A}$ с $\mu\left(A^{(0)}\right)\geq 1$ (вземете например $A'=\widetilde{A}$ и вижте определението на $\mu^+\left(\widetilde{A}\right)$). Аналогично, съществува множество $A^{(1)}\subseteq\widetilde{A}\setminus A^{(0)}$, за което $\mu\left(A^{(1)}\right)\geq 1$ и т. н. Получаваме редица $A^{(0)},A^{(1)},A^{(2)},\ldots$ от непресичащи се $(A^{(j)}\subseteq\widetilde{A}\setminus\bigcup_{i< j}A^{(i)})$ подмножества на \widetilde{A} , за които $\mu\left(A^{(j)}\right)\geq 1,\ j\geq 0$, и значи

$$\mu\left(\sum_{j\geq 0}A^{(j)}\right) = +\infty, \quad \sum_{j\geq 0}A^{(j)}\subseteq \widetilde{A},$$

при което неравенството $\mu\left(\widetilde{A}\setminus\sum_{j\geq 0}A^{(j)}\right)+\mu\left(\sum_{j\geq 0}A^{(j)}\right)=\mu(\widetilde{A})<0$ е невъзможно. И така, допускането на противното означава съществуване на множество

 $\widetilde{A} \in \mathfrak{F}$ със свойствата (*).

Г. 6) Ще покажем, че съществуването на (поне едно) множество $\widetilde{A} \in \mathfrak{F}$ със свойствата (*) противоречи на свойството (4.4) на D (в което $A \in \mathfrak{F}$ е произволно!).

Нека $A_0 \subseteq \widetilde{A}$ е такова, че $\mu(A_0) \ge \frac{1}{2}\mu^+(\widetilde{A}) > 0$. Тогава

$$\widetilde{A} \setminus A_0 \subseteq D$$
, $\mu(\widetilde{A} \setminus A_0) = \mu(\widetilde{A}) - \mu(A_0) < 0 - \mu(A_0) < 0$

и $0 < \mu^+\left(\widetilde{A} \setminus A_0\right) < \infty$. Виждаме, че $\widetilde{A} \setminus A_0$ има свойства, аналогични на (*). **По индукция** строим редица $A_n, n \ge 0$, от подмножества $A_n \subseteq \widetilde{A} \subseteq D$ такива, че

$$(4.6) A_{n+1} \subseteq \widetilde{A} \setminus \sum_{m \le n} A_m, \quad \mu(A_{n+1}) \ge \frac{1}{2} \mu^+ \left(\widetilde{A} \setminus \sum_{m \le n} A_m \right) > 0.$$

Съществуването на множеството A_{n+1} следва от неравенствата

(4.7)
$$\mu\left(\widetilde{A}\setminus\sum_{m\leq n}A_m\right)<0,\quad 0<\mu^+\left(\widetilde{A}\setminus\sum_{m\leq n}A_m\right)<\infty,$$

които се установяват за всяко $n \ge 0$, и дефиницията на μ^+ .

Така получаваме равенството

$$\mu(\widetilde{A}) = \mu\left(\widetilde{A} \setminus \sum_{n\geq 0} A_n\right) + \mu\left(\sum_{n\geq 0} A_n\right) = \mu\left(\widetilde{A} \setminus \sum_{n\geq 0} A_n\right) + \sum_{n\geq 0} \mu(A_n),$$

където, от една страна, $\mu(\widetilde{A}) < 0$, $\mu(A_n) > 0$, $n \ge 0$, и следователно

$$\mu\left(\widetilde{A}\setminus\sum_{n\geq 0}A_n\right)<0.$$

От друга страна, $\sum\limits_{n\geq 0}\mu(A_n)<\infty$ и затова $\lim\limits_{n\to\infty}\mu(A_n)=0,$ откъдето според (4.6) имаме

$$\mu^{+}\left(\widetilde{A}\setminus\sum_{n>0}A_{n}\right)\leq\mu^{+}\left(\widetilde{A}\setminus\sum_{m=0}^{n}A_{m}\right)\leq2\mu(A_{n+1})\xrightarrow[n\to\infty]{}0,$$

т. е.

(4.9)
$$\mu^{+}\left(\widetilde{A}\setminus\sum_{n>0}A_{n}\right)=0.$$

Свойствата (4.8) и (4.9) на множеството $A = \widetilde{A} \setminus \sum_{n \geq 0} A_n$ са несъвместими със свойството (4.4) на D. Следователно, допускането (на противното) в точка Γ . не е вярно, с което доказахме (4.5) и съществуването на подходящото множество $D \in \mathfrak{F}$ от твърдението 3) в теоремата.

Д. Нека $B \subseteq A$ са множества от \mathfrak{F} . Тогава (вж. (4.3) и (4.5))

$$\begin{split} \mu(B) &= \mu(B \cap D) + \mu\left(B \cap \overline{D}\right) \\ &= \mu(A \cap D) - \mu((A \setminus B) \cap D) + \mu\left(B \cap \overline{D}\right) \leq \mu(A \cap D). \end{split}$$

Следователно,

(4.10)
$$\mu^{+}(A) = \sup\{\mu(B), B \subseteq A\} = \mu(A \cap D) \ge 0,$$

което показва, че μ^+ е мярка, при това положителна мярка в измеримото пространство (Ω, \mathfrak{F}) .

Аналогично се показва, че

(4.11)
$$\mu^{-}(A) = \sup\{-\mu(B), B \subseteq A\} = -\mu\left(A \cap \overline{D}\right) \ge 0,$$

откъдето следва, че μ^- е положителна мярка в (Ω,\mathfrak{F}) и въобще твърдението 1).