# Piecewise Constant Curvature (PCC)

Dr. Alessandro Albini

alessandro@robots.ox.ac.uk

4<sup>th</sup> Nov 2024

# Soft Robot Configuration In Space





To model the configuration of a soft robot in space is **challenging**:

- Deformations
- Material Properties
- Physical Interactions with the enviornment

## Piecewise Constant Curvature (PCC)

- Kinematic model
- The robot is assumed to be composed of flexible segments exhibiting continuous bending
- Segments are approximated using a constant curvature assumption



### Forward Kinematics – Plane



$$p(r,\theta) = [r(1-\cos\theta), 0, r\sin\theta]^{T}$$
$$[n_x, n_y, n_z] = R_y(\theta)$$



$$T(r,\theta) = \begin{bmatrix} R_y(\theta) & p(r,\theta) \\ \mathbf{0} & 1 \end{bmatrix}$$

# Forward Kinematics – Out of plane rotation





The forward kinematics is usually defined in terms of *arc parameters*, thus:



### Exercise 1

Draw points of the arc defined by  $\theta=80^{\circ}$  and r=0.3~m

- Write the transformation matrix. Draw both the points and the orientation of the arc's tip
- Functions to draw points and frames are already provided
- Result should look like the one in the figure



### Exercise 2.a

Extend the previous exercise considering the out of plane rotation  $\Phi=20^\circ$ 

- Write the new transformation matrix. Draw both the points and the orientation of the arc's tip
- Result should look like the one in the figure



### Exercise 2.b

Rotating the z-axis by  $\Phi$ , cause also the rotation of the frame at the tip of the arc.

Can you align the frame with the axes of the base as if the frame *slides* along the arc?

Differences are highlighted in the figure

#### Exercise 2.a

#### Exercise 2.b

#### **Front View**





#### **Bottom View**





### Exercise 2.c

For the same  $\Phi$ ,  $\theta$  and r of the previous exercise, draw the arc using the arc parameters.

Rewrite the transformation matrix as

$$T(\kappa, s, \Phi) = \begin{bmatrix} \mathbf{R}_{\mathbf{z}}(\Phi) & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{\mathbf{y}}(k, s) & \mathbf{p}(k, s) \\ \mathbf{0} & 1 \end{bmatrix}$$

where

- $\kappa = 1/r$
- $\theta = \kappa s$ , with  $s \in [0, l]$

### Exercise 3

Extension to multi-segments.

- Draw the arc shown in the figure
- Draw the frames at the tip of each section
- The parameters of each segment are provided in the Matlab file



### Exercise 4

The position of markers on the robot can be retrieved with a motion capture system.

Given the position and orientation of each segment's tip, find the arc parameters  $\kappa$ , l,  $\Phi$ 

- Exercise 4.a Find  $\kappa$ , l given the position of the tip and the orientation obtained in Exercise 1 (2D case)
- Exercise 4.b Find  $\kappa$ , l and  $\Phi$  given the position of the tip and the orientation obtained in Exercise 2.c

