组合数学 09.06 思考题

提交者: 游昆霖 学号: 2020K8009926006

1. 一个定义在 \mathbb{R}^n 上的多项式 $P(x_1, x_2, \dots, x_n)$, 若当 x_1, x_2, \dots, x_n 均为整数时, $P(x_1, x_2, \dots, x_n)$ 的值总是整数,则称这样的多项式为整值多项式。课上给出了n=1时整值多项式的刻画:

定理 1. d 次多项式 P(x) 是整值多项式的充要条件是存在 $b_0, b_1, \dots, b_d \in \mathbb{Z}$, 使得

$$P(x) = b_d {x \choose d} + \dots + b_1 {x \choose 1} + b_0 {x \choose 0}$$

对 n=2 的整值多项式是否也有类似的刻画? 一般的 n 呢?

解 先证引理: $\{\binom{x}{i}\binom{y}{j}\}_{\substack{i\geq 0, j\geq 0,\\i+j\leq d}}$ 为向量空间 $< x^i y^j >_{\substack{i\geq 0, j\geq 0,\\i+j\leq d}}$ 的一组基。 一方面: 由课上引理可得 x^i 可表示为 $\binom{x}{0},\binom{x}{1},\cdots,\binom{x}{i}$ 的线性组合,对 y^j 同理有相似表示; 故有 $x^i y^j = (\sum_{0}^i a_{i,k} {x \choose k}) (\sum_{0}^j b_{j,t} {y \choose j}) = \sum_{0 \le k \le i, 0 \le t \le j} a_{i,k} b_{j,t} {x \choose k} {y \choose t};$

另一方面:由于两向量组元素个数相等,只需证 $\{\binom{x}{i}\binom{y}{j}\}_{\substack{i\geq 0, j\geq 0,\\i\neq i}}$ 线性无关;

对其中元素 x^iy^j ,将其表示为其余向量的线性组合,注意到变量次数大于该式的项系数必为 0, 则有 $\binom{x}{i}\binom{y}{j} = \sum_{\substack{0 \le k \le i, \\ 0 < t \le j}} f_{i,k}g_{j,t}\binom{x}{k}\binom{y}{t}$

分别取 $(x,y) = (0,0), (1,0), \cdots, (i,0), \cdots, (0,j), \cdots, (i,j)$ 代入得到 i*j 个式子,

联立即可得到上式各项系数均为 0:

注意到 i,j 任意性, 即可得 $\{\binom{x}{i}\binom{y}{j}\}_{\substack{i\geq 0,j\geq 0,\\i+j\leq d}}$ 线性无关;

引理证毕。

由引理,可得 n=2 的 d 次整值多项式 P(x,y) 在 $\{\binom{x}{i}\binom{y}{j}\}_{\substack{i\geq 0,j\geq 0,\\j\neq i}}$ 上有唯一表示:

$$P(x,y) = \sum_{\substack{i \ge 0, j \ge 0, \\ i+j \le d}} c_{i,j} \binom{x}{i} \binom{y}{j}$$

一方面: 当 $c_{i,j}$ ($i \ge 0, j \ge 0, i + j \le d$) 均为整数时,显然有 P(x,y) 为整值多项式;

另一方面: 若 P(x,y) 为整值多项式,应用拉格朗日插值思路求其系数,对 m=i+j 进行归纳:

当 m=0 时,取 (x,y)=(0,0),有 $c_{0,0}\in\mathbb{Z}$;

当 m=1 时,取 (x,y)=(0,1),有 $c_{0,1}\binom{1}{1}+c_{0,0}\in\mathbb{Z}$ ∴ $c_{0,1}\in\mathbb{Z}$ 同理有 $c_{1,0}\in\mathbb{Z}$

假设当 $m \le r$ 时,均有 $c_{i,j} (i \ge 0, j \ge 0, i + j = m)$ 为整数;

则当 m = r + 1 时, $\forall c_{k,t}(k + t = r + 1)$, 不妨设 $t \neq 0$, 取 (x, y) = (k, t), 则有

$$c_{k,t} \binom{k}{k} \binom{t}{t} + \sum_{\substack{i \ge 0, j \ge 0 \\ i+j \le r}} c_{i,j} \binom{k}{i} \binom{t}{j} \in \mathbb{Z}$$

由归纳假设 $c_{i,j} \in \mathbb{Z} (i \geq 0, j \geq 0, i + j \leq r)$ 故有 $c_{k,t} \in \mathbb{Z}$

结合 k,t 的任意性,有 $c_{i,j} (i \ge 0, j \ge 0, i + j = r + 1)$ 为整数

归纳则有 $c_{i,j} \in \mathbb{Z}(i \ge 0, j \ge 0, i + j \le d)$;

故 n=2 时整值多项式有刻画: d 次多项式 P(x,y) 为整值多项式充要条件是

$$\exists c_{i,j} \in \mathbb{Z} (i \ge 0, j \ge 0, i + j \le d) \quad s.t. P(x,y) = \sum_{\substack{i \ge 0, j \ge 0, \\ i+j \le d}} c_{i,j} \binom{x}{i} \binom{y}{j}$$

推论:对一般的 n,证明方法与 n=2 情况类似,同样有以下刻画:d 次多项式 $P(x_1,x_2,\cdots,x_n)$ 为整值多项式的充要条件是:

$$\exists a_{i_1,\dots,i_n} \in \mathbb{Z}(i_1 \ge 0,\dots,i_n \ge 0, i_1 + \dots + i_n \le d)$$

$$s.t.P(x_1, x_2,\dots,x_n) = \sum_{\substack{i_1 \ge 0,\dots,i_n \ge 0\\i_1 + \dots + i_n \le d}} a_{i_1,\dots,i_n} \binom{x_1}{i_1} \cdots \binom{x_n}{i_n}$$