Union-find applications

- Percolation.
- Games (Go, Hex).
- ✓ Dynamic connectivity.
 - Least common ancestor.
 - Equivalence of finite state automata.
 - Hoshen-Kopelman algorithm in physics.
 - Hinley-Milner polymorphic type inference.
 - Kruskal's minimum spanning tree algorithm.
 - Compiling equivalence statements in Fortran.
 - Morphological attribute openings and closings.
 - Matlab's bwlabel() function in image processing.

Percolation

A model for many physical systems:

- *N*-by-*N* grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates iff top and bottom are connected by open sites.

Percolation

A model for many physical systems:

- *N*-by-*N* grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates iff top and bottom are connected by open sites.

model	system	vacant site	occupied site	percolates
electricity	material	conductor	insulated	conducts
fluid flow	material	empty	blocked	porous
social interaction	population	person	empty	communicates

Likelihood of percolation

Depends on site vacancy probability p.

Percolation phase transition

When N is large, theory guarantees a sharp threshold p^* .

- $p > p^*$: almost certainly percolates.
- $p < p^*$: almost certainly does not percolate.
- Q. What is the value of p^* ?

Monte Carlo simulation

- Initialize *N*-by-*N* whole grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p^* .

full open site
(connected to top)

empty open site
(not connected to top)

blocked site

N = 20

Q. How to check whether an *N*-by-*N* system percolates?

blocked site

- Q. How to check whether an *N*-by-*N* system percolates?
 - Create an object for each site and name them 0 to N^2-1 .

- Q. How to check whether an *N*-by-*N* system percolates?
 - Create an object for each site and name them 0 to N^2-1 .
 - Sites are in same component if connected by open sites.

- Q. How to check whether an *N*-by-*N* system percolates?
 - Create an object for each site and name them 0 to N^2-1 .
 - Sites are in same component if connected by open sites.
 - Percolates iff any site on bottom row is connected to site on top row.

brute-force algorithm: N 2 calls to connected()

Clever trick. Introduce 2 virtual sites (and connections to top and bottom).

Percolates iff virtual top site is connected to virtual bottom site.

efficient algorithm: only 1 call to connected()

Q. How to model opening a new site?

- Q. How to model opening a new site?
- A. Mark new site as open; connect it to all of its adjacent open sites.

up to 4 calls to union()

Percolation threshold

- Q. What is percolation threshold p^* ?
- A. About 0.592746 for large square lattices.

constant known only via simulation

Fast algorithm enables accurate answer to scientific question.