

- 1 Hàm băm
 2 Tấn công từ điển
 Một số thuật toán mật mã khóa công khai điển hình
- Hàm băm
 Tấn công từ điển
 Một số thuật toán mật mã khóa công khai điển hình

Tính chất của hàm băm

- ☞ Có độ dài cố định
- F Kháng tiền ảnh:
- F Kháng tiền ảnh thứ hai:
- F Kháng va chạm:

Password	Salt	Hash
mimoza	0x7381a0f10c3	0x938ff3a2c906
violet210	0xa0c110f139d	0xf23e7adef39c
luckyday	0x30ea0fd1d2f	0x03aa8c01f391
p@\$\$w0rd	0x31ffac10ca0	0xff0cea3d0de9
p@\$\$w0rd	0xffa0cc103e1	0x930e00b8ca8
p@\$\$w0rd	0x00a10fc13d	0xe3bc098abcd
khongbiet	0xd103c3f13f1	0xac0bb80ca83

Tấn công từ điển

- Sử dụng salt ngăn chặn được việc dùng
 Precomputed Hash Table nhưng không ngăn chặn được việc sử dụng từ điển
- Để chống lại tấn công từ điển cần sử dụng mật khẩu không có trong từ điển!

- 1 Hàm băm
- Zán công từ điển
- Một số thuật toán mật mã khóa công khai điển hình

Hàm băm và ứng dụng

Cơ sở toán học

Thuật toán Diffie-Hellman

Thuật toán El-Gamal

Thuật toán RSA

Hàm băm và ứng dụng

Cơ sở toán học

Thuật toán Diffie-Hellman

Thuật toán El-Gamal

Thuật toán RSA

1

Nhóm

Nhóm (G, *) là một tập hợp G, cùng với phép toán hai ngôi * thỏa mãn:

- 1. Tính đóng
 - $a,b \in G \implies a*b \in G$

Ví dụ: (Z, +) là một nhóm

2. Tính kết hợp

 $(a*b)*c = a*(b*c) \quad \forall a,b,c \in G$

3. Tồn tại phần tử trung hòa

 $\exists e \in G: a * e = e * a = a \forall a \in G$

4. Tồn tại phần tử nghịch đảo

 $\forall a \in G \quad \exists b \in G: \quad a*b=b*a=e$

Nhóm hữu hạn

□ Nhóm hữu hạn là nhóm có số phần tử hữu han

$$|G| = q$$

■ Nhóm cộng Z_n

$$G = \{0, 1, 2, ..., n-1\}$$

□ Nhóm nhân Z*,

Phần tử sinh của nhóm cyclic

Nhóm cyclic là nhóm mà trong đó tồn tại phần tử g, sao cho khi áp dụng liên tiếp phép toán * lên phần tử g thì thu được tất cả các phần tử khác của nhóm.

```
Ví dụ 1: Z_5 = \{\{0, 1, 2, 3, 4\}, +\}
2+2 = 4 (mod 5)
```

 $2+2+2 = 4 \pmod{5}$ $2+2+2 = 1 \pmod{5}$

 $2+2+2+2 = 3 \pmod{5}$

 $2+2+2+2+2 = 0 \pmod{5}$

2+2+2+2+2 = 2 (mod 5)

Phần tử sinh của nhóm cyclic

□ Ví dụ 2: Z*₅ = {{1, 2, 3, 4}, ×}

 $3 \times 3 = 4 \pmod{5}$

 $3 \times 3 \times 3 = 2 \pmod{5}$

 $3 \times 3 \times 3 \times 3$ = 1 (mod 5) 3 ^1 = 3 (mod 5)

☐ Nếu n = 2, 4, p^k , $2p^k$ (p là số nguyên tố lẻ) thì Z_n^* là nhóm cyclic.

Phần tử g được gọi là phần tử sinh hay căn nguyên thủy.

Hàm băm và ứng dụng Cơ sở toán học Thuật toán Diffie-Hellman Thuật toán El-Gamal Thuật toán RSA

Thuật toán mã hóa ElGamal

Thuật toán mã hóa ElGamal

Là thuật toán mật mã khóa công khai

25

Thuật toán mã hóa ElGamal

□Sinh cặp khóa cho Alice:

- Chọn số nguyên tố p, phần tử sinh g của Z*n
- Chọn ngẫu nhiên $x \in [1, p-1]$
- Tính $h = g^x$
- Khóa bí mật là $KS_A = (p, g, x)$
- Khóa công khai là $KP_A = (p, g, h)$

□Ví du:

$$G = Z_{20}^*$$
; $q = 28$; $g = 8$

$$x = 15$$
; $h = g^x = 8^{15} = 21 \pmod{29}$

$$KS_A = (29,8,15); KP_A = (29,8,21)$$

Thuật toán mã hóa ElGamal

□Mã hóa (thông điệp m gửi cho Alice)

- Biết khóa công khai là KP_A = (p, g, h)
- Chọn ngẫu nhiên $y \in [1, p-1]$
- Tính khóa chung s = h^y
- Bản mã: $c = (c_1, c_2) = (g^y, m \cdot s)$

□Ví dụ:

$$KP_A = (29, 8, 21); m = 10;$$

$$y = 7$$
; $s = h^y = 21^7 = 12$

$$c_1 = g^y = 8^7 = 17;$$
 $c_2 = ms = 10.12 = 4$

$$c = (c_1, c_2) = (17, 4)$$

Thuật toán mã hóa ElGamal

□Giải mã (bởi Alice)

- Bản mã $c = (c_1, c_2)$
- Dùng khóa bí mật là KS_A = (p, g, x)
- Tính khóa chung s = c₁x
- Bản rõ: **m = c₂·s**-1

□Ví du:

$$KS_A = (29,8,15); c = (17,4);$$

$$s = c_1^x = 17^{15} = 12;$$
 $s^{-1} = 17;$

$$m = c_2 s^{-1} = 4 \cdot 17 = 10 \pmod{29}$$

25

Lược đồ kí số ElGamal

Lược đô kí số ElGamal

Tuy cùng tên với thuật toán mã hóa ElGamal nhưng bản chất thuật toán rất khác biệt.

Lược đồ kí số ElGamal

□Sinh cặp khóa cho Alice:

- Chọn số nguyên tố p, phần tử sinh g của Z*_p
- Chọn ngẫu nhiên $x \in [1, p-1]$
- Tính $h = g^x$
- Khóa bí mật là $KS_A = (p, g, x)$
- Khóa công khai là $KP_A = (p, g, h)$

□Ví dụ:

$$G = Z_{29}^*$$
; $q = 28$; $g = 8$

$$x = 15$$
; $h = g^x = 8^{15} = 21 \pmod{29}$

$$KS_A = (29,8,15); KP_A = (29,8,21)$$

Lược đồ kí số ElGamal

□Thực hiện kí số (bởi Alice)

Thông điệp \mathbf{m} , sử dụng $KS_A = (\mathbf{p}, \mathbf{g}, \mathbf{x})$

- 1. Sinh ngẫu nhiên: 1<k <p-1; gcd(k,p-1)=1
- 2. Tính r=gk (mod p)
- 3. Tính $s = (m-xr)k^{-1} \pmod{p-1}$
- 4. Nếu s=0 thì trở lại bước 1
- 5. Chữ kí số lên thông điệp m là (r,s)

□Ví du:

$$k=11$$
; $r=g^k=8^{11}=3 \pmod{p}$

$$k^{-1}=23$$
; s= (m-xr) $k^{-1} = (10 - 15*3)*23=7$

$$sign(10) = (3,7)$$

Lược đồ kí số ElGamal

□Kiểm tra chữ kí (bởi bất kì ai)

Thông điệp \mathbf{m} , sử dụng $\mathbf{KP}_{A} = (\mathbf{p}, \mathbf{g}, \mathbf{h})$

- 1. Kiểm tra: 0< r <p; 0< s <p-1
- 2. Kiểm tra: g^m == h^r·r^s (mod p)

$$\square$$
Cơ chế: $s = (m - xr)k^{-1} \pmod{p-1}$

$$\Rightarrow m = xr + sk \pmod{p-1}$$

$$\Rightarrow$$
 $g^m = g^{xr+sk} = g^{xr}g^{sk} = h^r r^s \pmod{p}$

$$m=10$$
; $sign(10)=(3,7)$; $KP_{A}=(29,8,21)$

$$g^m = 8^{10} = 4 \pmod{29}$$

$$h^r r^s = 21^3 \cdot 3^7 = 4 \pmod{29}$$

37

Hàm băm và ứng dụng

Cơ sở toán học

Thuật toán Diffie-Hellman

Thuật toán El-Gamal

Thuật toán RSA

Thuật toán mã hóa RSA

Thuật toán mã hóa RSA

Thuật toán mã hóa RSA

□Sinh cặp khóa cho Alice:

- Chọn 2 số nguyên tố p, q
- Tính n = pq, φ = (p-1)(q-1)
- Chọn số mũ công khai e: gcd(e, φ)=1
- Tính số mũ bí mật d: ed=1 (mod φ)

□Ví dụ:

$$p = 41$$
, $q = 43$, $n = 1763$, $\varphi = 40 \cdot 42 = 1680$

$$e = 11$$
, $d = 11^{-1} = 611 \pmod{1680}$

$$KS_A = (1763,611); KP_A = (1763,11)$$

Thuật toán mã hóa RSA

□Mã hóa và giải mã

- Mã hóa: c = me (mod n)
- Giải mã $m = c^d \pmod{n}$

□Cơ chế:

$$m = c^d = m^{ed} = m^{k\phi+1} = m \pmod{n}$$

□Ví du:

$$m = 100; KS_A = (1763, 611); KP_A = (1763, 11)$$

$$c = m^e = 100^{11} = 182 \pmod{1763}$$

$$m = c^d = 182^{611} = 100 \pmod{1763}$$

Thuật toán kí số RSA

Thuật toán kí số RSA

Thuật toán kí số hoàn toàn tương tự thuật toán mã hóa. Trong đó, khóa bí mật được dùng để kí, khóa công khai được dùng để kiểm tra chữ kí

Thuật toán kí số RSA

□Sinh cặp khóa cho Alice:

- Chọn 2 số nguyên tố **p**, **q**
- Tính n = pq, $\phi = (p-1)(q-1)$
- Chọn số mũ công khai e: (e, φ)=1
- Tính số mũ bí mật d: ed=1 (mod φ)

□Ví du:

$$p = 41$$
, $q = 43$, $n = 1763$, $\varphi = 30 \cdot 42 = 1680$
 $e = 11$, $d = 11^{-1} = 611 \pmod{1680}$

$$KS_A = (1763,611); KP_A = (1763,11)$$

38

Thuật toán kí số RSA

□Kí số và kiểm tra chữ kí

- Kí số: sign(m) = s = m^d (mod n)
- Kiểm tra: se == m (mod n)

□Ví dụ:

$$m = 100;$$
 $KS_A = (1763,611);$ $KP_A = (1763,11)$
 $sign(m) = s = m^d = 100^{611} = 1658 \pmod{1763}$
 $s^e = 1658^{11} = 100 = m \pmod{1763}$

- 1 Hàm băm
- Tấn công từ điển
- Một số thuật toán mật mã khóa công khai điển hình