Ejercicio de errores experimentales

Ejercicio:

Dos resistencias de 68 KΩ y 12 KΩ son conectadas en paralelo. Cada resistencia tiene una tolerancia de ±1%. Determine la resistencia nominal de la combinación y el error total.

Variable	Error sistemático	Desviación estándar.
68 ΚΩ	±1%.	0.254%
12 ΚΩ	±1%.	1.44%

Para determinar el error total, tomamos en cuenta los errores sistemáticos y los errores aleatorios de acuerdo a la siguiente relación:

$$ET_x = \sqrt{\left(S_x^2 + A_x^2\right)}$$

Los errores sistemáticos (S_x):

$$S_{x} = \sqrt{\left(u_{1} \frac{\delta f}{\delta x_{1}}\right)^{2} + \left(u_{2} \frac{\delta f}{\delta x_{2}}\right)^{2} + \dots \left(u_{n} \frac{\delta f}{\delta x_{n}}\right)^{2}}$$

Resistencias en paralelo:

$$R = \frac{r_1 r_2}{r_1 + r_2}$$

Derivando tenemos:

$$\frac{\delta R}{\delta r_1} = \frac{r_2(r_1 + r_2) - r_1 r_2}{(r_1 + r_2)^2} \qquad \frac{r_1 r_2}{r_1 + r_2} * \frac{r_1}{r_1 + r_2}$$

Dejando en función de R:

$$\frac{\delta R}{\delta r_1} = \frac{r_2}{r_1(r_1 + r_2)} * R$$

La derivada parcial de R en r_2 : $1 + \frac{r_1}{r_2} - 1$ $\frac{\delta R}{\delta r_2} = \frac{r_1(r_1 + r_2) - r_1 r_2}{(r_1 + r_2)^2} \qquad \frac{r_1 r_2}{r_1 + r_2} * \frac{r_2}{r_1 + r_2}$

Dejando en función de R:

$$\frac{\delta R}{\delta r_1} = \frac{r_1}{r_2(r_1 + r_2)} * R$$

Reemplazando en la ecuación para determinación de errores sistemáticos:

$$S_R = \sqrt{\left(u_1 \frac{r_2}{r_1(r_1 + r_2)} * R\right)^2 + \left(u_2 \frac{r_1}{r_2(r_1 + r_2)} * R\right)^2}$$

Por lo tanto la relación en % sería:

$$\frac{S_R}{R} = \sqrt{\left(\frac{u_1}{r_1} * \frac{r_2}{(r_1 + r_2)}\right)^2 + \left(\frac{u_2}{r_2} * \frac{r_1}{(r_1 + r_2)}\right)^2}$$

Reemplazando los valores tenemos:

$$\frac{S_R}{R} = \sqrt{\left(1\% * \frac{12}{(68+12)}\right)^2 + \left(1\% * \frac{68}{(68+12)}\right)^2}$$

Los errores sistemáticos expresados en porcentaje serían:

$$\frac{S_R}{R} = 0.863\%$$

En cuanto a los errores aleatorios, tenemos los datos de la desviación estándar, los cuales los podemos expresar en función de la medición para determinar en %:

$$\frac{\sigma_{r_1}}{r_1} * 100 = \frac{0.1732}{68} * 100 = 0.254\%$$

$$\frac{\sigma_{r_2}}{r_2} * 100 = \frac{0.1732}{12} * 100 = 1.443\%$$

n	r1	r2
1	68.1	12
2	68,2	11,7
3	67,8	11,9
4	68,3	12
5	68,1	12
6	67,9	11,9
7	68	12,1
8	68	12,3
9	67,9	11,8
10	67,7	12,2
11	68	12,1
Desviac. Est.	0,1732	0,1732
promedio	68	12

Como tenemos 2 variables de distinta magnitud, debemos utilizar la siguiente relación para determinar el error aleatorio total:

$$\frac{\sigma_R}{R} = \sqrt{\left(\frac{\sigma_1}{r_1} * \frac{r_2}{(r_1 + r_2)}\right)^2 + \left(\frac{\sigma_2}{r_2} * \frac{r_1}{(r_1 + r_2)}\right)^2}$$

Reemplazando tenemos:

$$\frac{\sigma_R}{R} = \sqrt{\left(0.254\% * \frac{12}{(68+12)}\right)^2 + \left(1.443\% * \frac{68}{(68+12)}\right)^2}$$

$$\frac{\sigma_R}{R} = 1.227\%$$

Como se realizaron 11 mediciones en cada resistencia, para estimar al 95% de confianza, aplicamos la distribución "t"

$$\frac{A_R}{R} = \pm t_{\alpha/2,\nu} \frac{\sigma_R}{\sqrt{n}} * \frac{1}{R}$$

□ Para v=10 y t = 0.025 tenemos:

$$\frac{A_R}{R} = \pm 2.228 \frac{1.227}{\sqrt{11}}\%$$
 $\frac{A_R}{R} = \pm 0.824\%$

Por lo tanto, los errores totales están en función de la siguiente relación:

$$ET_R(\%) = \sqrt{\left(\frac{S_R^2}{R} + \frac{A_R^2}{R}\right)} \quad ET_R(\%) = \sqrt{\left(0.863^2 + 0.824^2\right)} = 1.193\%$$