307CR Aspects of Pervasive Computing

Dan Goldsmith

Pervasive Computing

Summary

- What is required for a system to be "Pervasive"
- Key Areas
- Aspects of pervasive technology

Pervasive Systems

- Almost all pervasive systems monitor some phenomena
 - Require some way of detecting this phenomena
 - Need a way to process and communicate data
 - Many pervasive systems allow user interaction.

Characteristics of Pervasive system

- Many are Battery Powered
 - Need to consider network lifetime
 - Sensing
 - Processing
 - Communications

Monitoring a Phenomena

- By this we mean something, often physical in nature that can be monitored.
- We also need to know WHY we are monitoring this
- The physical characteristics are also important
 - Is it physical, can it be seen / heard.

Example: Building Monitoring System

- What are we wanting to measure?
- Why do we measure it?
- What are its characteristics?

Example: Building Monitoring System

- What are we wanting to measure?
 - Temperature (Room / External), Heating System Status
- Why do we measure it?
 - To help make decisions on heating / cooling
- What are its characteristics?
 - Physical (Temperature), Gas Use (Heating)

Example:

Method of Detecting / Sensing

- There are a wide range of sensors that can be incorporated into a pervasive system
 - (To be covered in another lecture)
- Think about the data you are collecting and select the most appropriate device
- Where in the system does this go? How does it work?

Example Building Monitoring System

- In our above example we can use a temperature sensor
 - Thermistor (changes resistance based on temp)
 - MEMS based sensor

Example:

Processing Data

- We shouldn't be collecting data for the hell of it.
- Pervasive systems help us to make decisions based on the data.
 - Transform from Data to User Relevant Information

Processing Data

- Can be Done In-Network
 - On the sensing devices themselves
- At the Sink
 - Data collected from all devices in a central place

Processing Data

- In network processing tends to make use of Microprocessors
 - Low energy consumption
 - Becoming increasingly powerful whilst shrinking in size
 - Similar to a desktop style processor, only smaller
 - Many types of microprocessor available.

Question

- What are the advantages and disadvantages of in-network processing?
- What limitations may you experience when using a microprocessor, rather than a desktop processor.

Example:

Communication

- Often the purpose of the pervasive system will be to monitor and send details back to a user
- There are numerous methods of communication available:
 - Bluetooth
 - WiFi
 - Sneakernet
- The microprocessor will interact with the comms hardware and send relevant data to the user

Communications Trade offs

- Sending data is usually the most expensive part of sensor network operation
- Trade off between Range, Bandwidth and Network Lifetime

Example

Storage and Display

- Finally Data is usually sent to a sink
 - Central Repository for the data
 - More processing can take place
 - User interface to display data

Example

Key Areas of Pervasive Computing

Key Areas

The majority of pervasive systems fall into one of the following categories.

- Wearable Computing
- Wireless Sensor Networks
- Context Aware Systems
- Augmented Reality.

Wearable Computing

- A computer powered device that can be worn by the user
- Includes Clothes, accessories, bags etc.
- Wearable systems are often referred to as "smart" (IE Smart Watch, Smart Shoes)
- A Popular theme at the moment

Question / Discussion

• What are the potential limitations of wearable systems?

Wireless Sensor Networks

- Based on distributed sensors feeding information back to a user
- Refers to the topology of a system, and can be used in conjunction with other systems (for example context aware, wearable)
- May include thousands of individual sensors
- Effective for collecting large amounts of data.

Question / Discussion

We want to create a WSN based system to map the current strength and temperature data of water on the great barrier reef. How is this possible?

Context Aware Systems

- Refers to a system that is monitoring pre-defined parameters for change
- Can be create to alert a user of change, of activate pre selected systems to adjust to the phenomena
- Can be used in conjunction with wearable systems or WSN
- Effective for monitoring and maintaining certain environmental parameters.

Question / Discussion

How can a context aware system be applied to the growth of strawberries in order to ensure a higher quality product can be produced for more months of the year?

Augmented Reality

- Personally I always get iffy over this being a pervasive system, or a use of a pervasive system
- Focus on blending the real world with the digital world
- Require some way of displaying information in the real world (projector, glasses)
- Pretty awesome way of showing the data from a sensor network.

Questions / Discussion

How do augmented reality systems differ from Virtual Reality systems (such as the Rift)