

우울증 종합 진단 플랫폼

딥러닝팀

김예찬

윤지영

채소연

한지원

홍지우

1. 주제 소개

딥러닝을 이용한 우울증 진단 모델

2-1. 한국어 데이터 EDA

♣ ② 2-1. 한국어 데이터 EDA

2-2. 영어 데이터 EDA

♣ ② 2-2. 영어 데이터 EDA

음성 데이터 길이

음성 데이터의 길이가 대체로 2초~3초 정도 사이인 것을 확인할 수 있음

♣ ② 2-2. 영어 데이터 EDA

텍스트 데이터 길이

텍스트의 길이를 전처리한 결과 대략 30개의 알파벳으로 구성되어 있는 것을 확인할 수 있음

4-1. 음성 감정 분류

Data input

```
print(f'Features extracted: {x_train.shape[1]}')
model=MLPClassifier(alpha=0.01, batch_size=256, epsilon=1e-08, hidden_layer_sizes=(300,), learning_rate='adaptive', max_iter=1500,early_stopping=False, warm_start=True)
model.fit(x_train,y_train)
 from sklearn.neural_network import MLPClassifier
from sklearn.exceptions import ConvergenceWarning
y_pred=model.predict(x_test)
print("Accuracy: {:.2f}%".format(accuracy*100))
```

MLP Classifier를 활용해서 모델 학습

▶ ② 4-1. 음성 감정 분류

Accuracy/Loss plot

최종적으로 수렴하는 것을 확인할 수 있음

4-2. 텍스트 감정분류

▶ ② 4-2. 텍스트 감정분류

모델링 진행

♠ 4-2. 텍스트 감정분류

Accuracy plot/Loss plot

train accuracy: 0.809, validation accuracy: 0.635

Loss는 최종적으로 수렴하나, 정확도는 epoch이 증가할 수록 과적합 현상을 보임

5. Multi-Modal 감정 분류 모델

∮ ② 5. Multi-Modal 감정 분류 모델

Multi-modal Transformer

속성	내용
파라미터 수	약 350만 개
감정분류 Cell	FC Layer 활용 예정
특이사항	 음성의 특성을 텍스트에 반영 최종 분류시 텍스트 Feature만 사용 텍스트 임베딩: 모델 내에서 진행

¶ ● 5. Multi-Modal 감정 분류 모델

Cross Attention Transformer

속성	내용
파라미터 수	약 400만 개
감정분류 Cell	Convolutional Layer 사용 예정
특이사항	 서로의 특성을 상호 반영 최종 분류시 양쪽 Feature Stack 텍스트 임베딩: Word2Vec

멀티모달 감정인식 모델

답러닝팀김예찬윤지영채소연한지원홍지우

1. 데이터 소개 및 EDA

♣ ① 1. 데이터 소개 및 EDA

감정분포

Neutral

Neutral(중립) 감정의 비율이

불균형적으로 큼

다수의 감정이 라벨링 된 데이터 존재

3. 음성 데이터 전처리

▶ ② 3. 음성 데이터 전처리

데이터 증강(augmentation) – Random Frequency Masking

4. 텍스트 데이터 전처리

▶ ② 4. 텍스트 데이터 전처리

텍스트 데이터 토큰화 (koBERT)

너는 대선 때 투표할 수 있어?

사전 훈련된 KoBERT 토크나이저

E _내년 _대선 할 _있어 _투표 _때

▶ ② 4. 텍스트 데이터 전처리

불균형한 텍스트 데이터

텍스트 데이터 증강방법

방법	문장
원래 문장	중심을 잃고 목소리도 잃고 비난받고 사람들과 멀어지는 착각 속에
SR (동의어 대체)	핵심을 잃고 목소리도 잃고 <mark>비판</mark> 받고 <mark>인간</mark> 들과 멀어지는 <mark>혼란</mark> 속에
RI (단어 임의 대체)	<mark>돈</mark> 을 잃고 목소리도 잃고 비난받고 사람들과 멀어지는 착각 속에
RS (단어 위치 변경)	중심을 잃고 <mark>사람들과</mark> 잃고 비난받고 <mark>목소리도</mark> 멀어지는 착각 속에
RD (단어 임의 삭제)	중심도 목소리도 사람들과 멀어지는 착각

의미 왜곡 위험이 적은 RS, RD 선택

5. 바이오 데이터 분석

▶ ② 5. 바이오 데이터 분석

6. 모델 설명

▶ ② 6. 모델 설명

Multimodal Emotion Classifier

7. 학습 결과

▶ ② 7. 학습 결과

음성 싱글 모달리티- Arousal 예측 결과

Multihead Attention Layer의 반복 횟수에 따른 RMSE변화 → 7회일 때 최저

▶ ② 7. 학습 결과

텍스트 싱글 모달리티- Valence 예측 결과

Multihead Attention Layer의 반복 횟수에 따른 RMSE변화 → 5회일 때 최저

8. 성과 & 한계

▶ ② 8. 성과 & 한계

성과

불균형한 데이터임에도 불구하고 데이터 수가 적은 라벨들도 예측 성공

 \square