Ответы к коллоквиуму по курсу

"Математический анализ"

(1-ый семестр 2015/2016 учебного года, специальность "Информатика")

Определение предельной функции $f(x)\stackrel{X}{=}\lim_{n\to\infty}f_n(x)$ на $(\varepsilon-\delta)$ -языке:

для
$$\forall \ fix \ x \in X$$
 и для $\forall \ \varepsilon > 0 \Rightarrow \exists \ \nu = \nu(x, \varepsilon) \in \mathbb{R} \ | \ для \ \forall \ n \geqslant \nu(\varepsilon) \Rightarrow |f_n(x) - f(x)| \leqslant \varepsilon.$ (1)

Для обозначения равномерной сходимости $f_n(x)$ на X будем использовать запись:

$$f_n(x) \stackrel{X}{\rightrightarrows} f(x).$$
 (2)

1 Супремальный критерий равномерной сходимости функциональных последовательностей ($\Phi\Pi$) и замечания к нему

Теорема (Супремальный критерий равномерной сходимости $\Phi\Pi$).

$$f_n(x) \stackrel{X}{\Rightarrow} f(x) \Leftrightarrow r_n = \sup_{x \in X} |f_n(x) - f(x)| \xrightarrow[n \to \infty]{} 0.$$
 (3)

$$r_n = \sup_{x \in X} |f_n(x) - f(x)| \leqslant \varepsilon$$
, т.е. для $\forall \ \varepsilon > 0 \ \exists \ \nu(\varepsilon) \in \mathbb{R} \ |$ для $\forall \ n \geqslant \nu(\varepsilon) \Rightarrow 0 \leqslant r_n \leqslant \varepsilon$, т.е. $r_n \xrightarrow[n \to \infty]{} 0$.

Пусть выполнена (3), тогда

для
$$\forall \varepsilon > 0 \; \exists \; \nu(\varepsilon) \in \mathbb{R} \; | \; для \; \forall \; n \geqslant \nu(\varepsilon) \; и \; для \; \forall \; x \in X \Rightarrow$$

$$\Rightarrow |f_n(x) - f(x)| \leqslant \sup_{x \in X} |f_n(x) - f(x)| = r_n \leqslant \varepsilon.$$

Таким образом, имеем (1), где ν зависит от $\forall \varepsilon > 0$ и не зависит от конкретного элемента множества X.

Замечания:

- 1. Если известно, что для $\forall n \in \mathbb{N}$ и для $\forall x \in X \Rightarrow |f_n(x) f(x)| \leqslant a_n$, где (a_n) б.м.п, то тогда имеем (2). Сформулированное утверждение даёт мажоритарный признак (достаточное условие) равномерной сходимости $\Phi\Pi$.
- 2. Если

$$\exists x_n \in X \mid g_n(x) = |f_n(x) - f(x)| \Rightarrow g_n(x) \xrightarrow[n \to \infty]{} 0,$$

то тогда равномерной сходимости нет, т.е. $f_n(x) \not\stackrel{X}{\Rightarrow} f(x)$. Это даёт достаточное условие (признак) неравномерной сходимости $\Phi\Pi$.

Для обозначения равномерной сходимости $\Phi P \sum u_n(x)$ на X будем использовать запись:

$$\sum u_n(x) \stackrel{X}{\rightrightarrows} . \tag{4}$$

Критерий Коши сходимости Φ Р: $(4) \Leftrightarrow \forall \varepsilon > 0 \; \exists \; \nu(\varepsilon) \in \mathbb{R} \; | \;$ для $\forall \; n \geqslant \nu \; \;$ и для $\forall \; m \in \mathbb{N} \;$ и для $\forall \; x \in X \Rightarrow$

$$|S_{n+m}(x) - S_n(x)| = \left| \sum_{k=n+1}^{k=n+m} u_k(x) \right| \leqslant \varepsilon.$$
 (5)

Критерий Коши сходимости числовых последовательностей:

(6)

2 Мажорантный признак Вейерштрасса равномерной сходимости функционального ряда (ФР) и замечания к нему

Теорема (мажорантный признак Вейерштрасса равномерной сходимости ΦP).

Если Φ Р имеет на X сходяющуюся числовую мажоранту, то он равномерно сходится на X.

Доказательство. Доказательство с использованием критерия Коши сходимости числовых последовательностей и критерия Коши сходимости ΦP (5):

Т.к. $\sum a_n$ сходится, то

для
$$\forall \varepsilon > 0 \; \exists \; \nu(\varepsilon) \in \mathbb{R} \; | \;$$
для $\forall \; n \geqslant \nu \;$ и для $\forall \; m \in \mathbb{N} \Rightarrow \left| \sum_{k=n+1}^{n+m} a_k \right| \leqslant \varepsilon.$ (7)

Если выполняется неравенство $|u_n(x)| \leqslant a_n$, для $\forall n \in \mathbb{N}$ и для $\forall x \in X$, то для частичных сумм $\Phi P \sum u_n(x)$ имеем: $|S_{m+n}(x) - S_n(x)| = \left|\sum_{k=n+1}^{n+m} u_k(x)\right| \leqslant \sum_{k=n+1}^{n+m} |u_k(x)| \leqslant \sum_{k=n+1}^{n+m} a_k = \left|\sum_{k=n+1}^{n+m} a_k\right| \leqslant \varepsilon$, это для $\forall n \geqslant \nu = \nu(\varepsilon)$ и для $\forall m \in \mathbb{N}$, что в силу (5) даёт (4).

Замечания:

- 1. Принцип Вейерштрасса является лишь достаточным условием равномерной сходимости Φ P. На практике сходимость числовой мажоранты (a_n) либо находится с помощью соответствующих оценок $|u_n(x)|$ сверху, либо берут $a_n = \sup_{x \in X} |u_n(x)|$. В последнем случае получаем наиболее точную мажоранту, но в случае расходимости $\sum a_n$ даже для этой самой точной мажоранты ничего о равномерной сходимости Φ P сказать нельзя, т.е. требуются дополнительные исследования.
- 2. Обобщая признак Вейерштрасса, где используется сходимость числовой мажоранты признак равомерной сходимости ФР, используют функцию мажоранты, а именно получаем:

если
$$\exists \ v_n(x) \geqslant 0 \ : \ |u_n(x)| \leqslant v_n(x)$$
 для $\forall \ n \in \mathbb{N}$ и для $\forall \ x \in X$ и $\sum v_n(x) \stackrel{X}{\Rightarrow}$,

то тогда для $\Phi P \sum u_n(x)$ имеем (4).

3 Признак Дирихле равномерной сходимости ФР и следствие из него (признак Лейбница равномерной сходимости ФР)

Теорема (Признак Дирихле равномерной сходимости ΦP).

Пусть для $\Phi\Pi$ $a_n(x)$ частичные суммы $\sum a_n(x)$ ограничены в совокупности (равномерно на X), т.е.

для
$$\forall x \in X$$
 и для $\forall n \in \mathbb{N} \Rightarrow |a_1(x) + a_2(x) + \ldots + a_n(x)| \leqslant c,$ (8)

где c = const > 0, не зависит ни от n, ни от x. Если $\forall fix \ x \in X \Rightarrow (b_n(x))$ - числовая последовательность является монотонной, то в случае

$$(b_n(x)) \stackrel{X}{\Rightarrow} 0, \tag{9}$$

имеем $\sum a_n(x)b_n(x) \stackrel{X}{\Rightarrow}$.

Доказательство. Монотонная последовательность $(b_n(x))$ для $\forall fix \ x \in X$ позволяет так же, как и в ЧР, использовать на основе (8) оценку Абеля:

$$\left| \sum_{k=n+1}^{n+m} a_k(x) b_k(x) \right| \le 2c \left(|b_{n+1}(x)| + 2 |b_{n+m}(x)| \right). \tag{10}$$

Если выполняется (9), то тогда имеем:

для
$$\forall \ \varepsilon > 0 \ \text{по} \ \tilde{\varepsilon} = \frac{\varepsilon}{6c} > 0 \ \exists \ \nu(\varepsilon) \in \mathbb{R} \ | \ \text{для} \ \forall \ n \geqslant \nu(\varepsilon) \ \text{и} \ \text{для} \ \forall \ m \in \mathbb{N} \ \text{и} \ \text{для} \ \forall \ x \in X \Rightarrow |b_{n+1}(x)| \leqslant \tilde{\varepsilon} \ \text{и} \ |b_{n+m}(x)| \leqslant \tilde{\varepsilon},$$

поэтому для частичных сумм $S_n(x) = \sum\limits_{k=1}^n a_k(x)b_k(x)$ в силу (10) для $\forall \ n\geqslant \nu(\varepsilon)$ и для $\forall \ m\in\mathbb{N}$ и для $\forall \ x\in X$ имеем:

$$|S_{n+m}(x) - S_m(x)| = \left|\sum_{k=n+1}^{n+m} a_k(m)b_k(x)\right| \leqslant 2 \cdot c \cdot (\tilde{\varepsilon} + 2\tilde{\varepsilon}) = 6 \cdot c \cdot \tilde{\varepsilon} = \varepsilon. \text{ Отсюда по критерию Коши равномерной сходимости}$$

$$\Phi$$
Р следует, что $\sum a_n(x)b_n(x) \stackrel{X}{\Longrightarrow}$.

Следствие (Признак Лейбница равномерной сходимости ΦP).

Если $\forall \ fix \ x \in X$ последовательность $(b_n(x))$ является монотонной, то в случае $b_n(x) \stackrel{X}{\rightrightarrows} 0 \Rightarrow \sum (-1)^n b_n(x) \stackrel{X}{\rightrightarrows}$.

 \mathcal{A} оказательство. Следует из того, что в условии теоремы $a_n=(-1)^n$ не зависит от x, причём

$$\left|\sum_{k=1}^n a_k\right| \leqslant 1 = const,$$
 для $\forall \ n \in \mathbb{N}.$

Для обозначения поточечной сходимости $\Phi P \sum u_n(x)$ на X будем использовать запись:

$$\sum u_n(x) \stackrel{X}{\rightrightarrows} . \tag{11}$$

4 Признак Дини равномерной сходимости ΦP и следствие из него (теорема Дини для $\Phi \Pi$)

Теорема (Признак Дини равномерно сходящихся ΦP). Пусть

- 1. Члены $\Phi P \sum u_n(x)$ непрерывны и сохраняют один и тот же знак на $X = [a, b], \ для \ \forall \ n \in \mathbb{N}.$
- 2. $\sum u_n(x) \stackrel{X}{\to} S(x)$.

Тогда, если $S(x)=\sum\limits_{n=1}^{\infty}u_n(x)$ - непрерывная функция на [a,b], т.е. $S(x)\in C([a,b])$, то $\sum u_n(x)\stackrel{X}{\Rightarrow}$.

Доказательство. Рассмотрим на X = [a, b] остатки ряда $R_n(x) = u_{n+1}(x) + \ldots + \ldots = S(x) - S_n(x)$. Нетрудно видеть, что выполняются следующие свойства:

- 1. для $\forall \ fix \ n \in \mathbb{N} \Rightarrow \mathbb{R}_n(x)$ непрерывная функция на [a,b] как разность двух непрерывных функций.
- 2. для $\forall \ fix \ x \in X \Rightarrow \Phi\Pi \ (R_n(x))$ убывает в случае, когда $\forall \ u_n(x) > 0$, т.к. $R_n(x) = u_n(x) + R_{n+1}(x) \geqslant R_{n+1}(x)$, для $\forall \ n \in \mathbb{N}$.
- 3. Т.к. имеет место (11), то для $\forall fix \ x \in X \Rightarrow R_n(x) \stackrel{X}{\to} 0.$

Предположим, что рассматриваемая положительная поточечная сходимость на X ΦP не является равномерной сходимостью на X.

Тогда по правилу де Моргана имеем: $\exists \ \varepsilon_0 > 0 \ | \ \text{для} \ \forall \ \nu \in \mathbb{R} \ \exists \ n(\nu) \geqslant 0 \ \text{и} \ \exists \ x(\nu) \in X \ | \ R_{n\nu}(x_\nu) > \varepsilon_0$. Для простоты будем считать, что $\exists \ x_n \in X \ | \ R_n(x_n) > \varepsilon_0$. По принципу выбора из ограниченной последовательности x_n можно выбрать сходящуюся подпоследовательность, т.е. $x_{nk} \xrightarrow[n_k \to \infty]{} x_0$, при этом в силу использования X = [a,b] - компакт, получаем, что $x_0 \in X$. Если зафиксируем $m \in \mathbb{N}$, то для $\forall \ n_k \geqslant m \Rightarrow R_{nk}(x_{nk}) > \varepsilon_0$, по свойствам остаткам будем иметь, что $R_m(x_{nk}) \geqslant R_{nk}(x_{nk}) > \varepsilon_0$. В неравенстве $R_m(x_{nk}) > \varepsilon_0$, переходя к пределу при $n_k \to \infty$ для $\forall \ m \in \mathbb{N}$, получаем в силу непрерывности $R_n(x) : R_m(x_0) = \lim_{n_k \to \infty} R_m(x_{nk}) \geqslant x_0$, что противоречит последнему из свойств

остатка, а именно $R_m(x_0) \xrightarrow{X}$ при $m \to \infty$, поэтому из нашего предположения следует, что выполняется $R_m(x_0) \to 0$, противоречие, т.е. выполняется $\sum u_n(x) \stackrel{X}{\Rightarrow}$.

Следствие ($Teopema\ \mathcal{A}uhu\ \partial na\ \Phi\Pi$).

Если для $\Phi\Pi$ $f_n(x), n \in \mathbb{N}$ на X = [a, b] выполняются свойства:

- 1. для $\forall f_n(x) \in C([a,b])$ и для $\forall fix \ x \in X \Rightarrow f_n(x)$ монотонна.
- 2. $f_n(x) \xrightarrow{X} f(x)$. Тогда, если $f(n) \in C([a,b])$, то $f_n(x) \stackrel{X}{\rightrightarrows}$.

Доказательство. следует из того, что члены рассматриваемой $\Phi\Pi$ $f_n(x)$ можно рассматривать как частичные суммы соответствующего ΦP с общим членом

$$\begin{cases} u_n(x) = f_n(x) - f_{n-1}(x), \\ f_0(x) = 0. \end{cases}$$
 (12)

Действительно, $S_n(x) = f_n(x) - f_0(x) = f_n(x)$, для $\forall n \in \mathbb{N}$.

А далее к соответствующему ФР применима теорема Дини равномерной сходимости ФР.

Пусть x_0 - предельная точка множества сходимости $X\subset\mathbb{R}$ для $\Phi P\sum u_n(x)$. Будем говорить, что в $\sum u_n(x)$ возможен почленный предельный переход $x \to x_0$, если

$$\exists \lim_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{n=1}^{\infty} u_n(x), \tag{13}$$

причём получившийся в левой части (13) ЧР является сходящимся.

В частности, если $x_0 \in X$ и $\forall u_n(x)$ непрерывен в некоторой окрестности точки x_0 , и значит, для $\forall n \in \mathbb{N} \exists \lim_{x \to \infty} u_n(x) = 0$ $u_n(x_0)$, то в случае выполнения (13) для суммы S(x) ФР $\sum u_n(x)$ при $x \to x_0$ имеем:

$$\exists \lim_{x \to x_0} S(x) = \lim_{x \to x_0} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} u_n(x) = \sum_{n=1}^{\infty} u_n(x_0) = S(x), \tag{14}$$

что соответствует непрерывности S(x) в точке $x_0 \in X$.

Теорема о непрерывности суммы равномерно сходящегося ФР и заме-5 чания к ней

Теорема (о непрерывности суммы равномерно сходящегося ΦP).

Если все члены $u_n(x), n \in \mathbb{N}, \Phi P \sum u_n(x)$ непрерывны на X = [a, b], то в случае равномерной сходимости этого ряда на [a,b] его сумма S(x) будет непрерывной функцией на [a,b].

Доказательство. Требуется обосновать (14) для $\forall \; x_0 \in [a,b]$, причём в случае концевых значений $x_0=a, \; x_0=b$ будем использовать соответствующие односторонние пределы, т.е. рассматривать одностороннюю непрерывность.

Для $fix\ x_0 \in [a,b]$ придадим произвольные приращения $\Delta x \in \mathbb{R} \mid (x_0 + \Delta x) \in [a,b]$ и рассмотрим соответствующие приращения суммы $\Phi P \sum u_n(x)$:

$$\Delta S(x_0) = S(x_0 + \Delta x) - S(x_0).$$

Из равномерной сходимости Φ Р $\sum u_n(x)$ на $X=[a,b]\Rightarrow$ для $\forall\ \varepsilon>0\ \exists\ \nu=\nu(\varepsilon)\in\mathbb{R}\ |$ для $\forall\ n\geqslant \nu,\$ и для $\forall\ x\in[a,b]$ для частичных сумм $S_n(x)=u_1(x)+u_2(x)+\ldots+u_n(x)$ ряда $\sum u_n(x)$ имеем: $|S_n(x)-S(x)|\leqslant \varepsilon$.

Отсюда, в частности, для $x=x_0\in X$ и $x=x_0+\Delta x\in X\Rightarrow$

$$\begin{cases} |S_n(x_0) - S(x_0)| \leq \varepsilon, \\ |S_n(x_0 + \Delta x) - S(x_0 + \Delta x)| \leq \varepsilon. \end{cases}$$
(15)

Далее из непрерывности $\forall u_n(x)$ в $x_0 \in [a,b]$ следует непрерывность частичных сумм в x_0 (как конечных сумм непрерывных функций).

В силу этого, для $\forall \varepsilon \exists \delta > 0 : для \forall |\Delta x| \leqslant \delta \Rightarrow$

$$\Rightarrow |S_n(x_0 + \Delta x) - S_n(x_0)| \leqslant \varepsilon. \tag{16}$$

Таким образом, в силу (15), (16) имеем: для $\forall \varepsilon > 0$, выбирая $n \geqslant \nu$ и рассматривая $\forall |\Delta x| \leqslant \delta$, имеем:

 $|\Delta S(x_0)| = |S_n(x_0) - S(x_0) + S_n(x_0 + \Delta x) - S_n(x_0) + S(x_0 + \Delta x) - S_n(x_0 + \Delta x)| \le$

$$\leqslant |S_n(x_0) - S(x_0)| + |S_n(x_0 + \Delta x) - S_n(x_0)| + |S(x_0 + \Delta x) - S_n(x_0 + \Delta x)| \leqslant \varepsilon + \varepsilon + \varepsilon = 3 \cdot \varepsilon.$$

Поэтому получаем: для $\forall \ \varepsilon \ \exists \ \delta > 0$: для $\forall \ |\Delta x| \leqslant \delta \Rightarrow |\Delta S(x_0)| \leqslant M \cdot \varepsilon, M = const = 3 > 0$. Отсюда по М-лемме для Φ 1 Π следует, что $\Delta S(x_0) \underset{\Delta x \to 0}{\to} 0$, что на языке приращений равносильно (14). При этом, т.к. из равномерной сходимости следует поточечная сходимость ЧР в правой части (14) будет сходящимся.

Замечания:

- 1. Доказанную теорему часто называют теоремой Стокса-Зейделя или теоремой Стокса-Зайделя.
- 2. В условии доказанной теоремы равномерную сходимость можно заменить для произвольного множества $X\subset\mathbb{R}$ на локальную равномерную сходимость. Будем говорить, что $\Phi P \sum u_n(x)$ сходится локально равномерно на $X\subset\mathbb{R},$ если для $orall~[a,b]\subset X\Rightarrow\sum u_n(x)(x)\stackrel{[a,b]}{
 ightharpoonup}$. У $\sum u_n(x)$ может быть локальная равномерная сходимость на X, но может не быть полной (????) равномерной сходимости на X. В случае локальной равномерной сходимости $\sum u_n(x)$ на X берём $\forall x_0 \in X$ и заключаём её в некоторый отрезок $x_0 \in [a,b] \subset X$. Т.к. есть равномерная сходимость для $\sum u_n(x)$ на этом отрезке, то по доказанной теореме сумма S(x) в случае непрерывности $\forall u_n(x)$ на X будет непрерывна на $[a,b]\subset X$ и, в частности, непрерывна в $x_0\in X$, а т.к. это можно сделать для $\forall \ x_0\in X$, то тем самым получаем непрерывность S(x) на $X\subset\mathbb{R}$ даже в случае, когда нет равномерной сходимости ΦP на X.

6 Теорема о почленном интегрировании равномерно сходящегося ФР

Теорема (о почленном интегрировании равномерно сходящихся ΦP).

Если $\forall u_n(x) \in C([a,b]),$

для $n \in \mathbb{N}$, то в случае, когда $\sum u_n(x) \stackrel{[a,b]}{\Rightarrow}$, возможно почленное интегрирование этого ряда на [a,b], т.е.

$$\exists \int_{a}^{b} S(x)dx = \int_{a}^{b} \left(\sum_{n=1}^{\infty} u_n(x)\right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_n(x)dx. \tag{17}$$

Доказательство. На основании теоремы о непрерывности суммы равномерно сходящихся ΦP получим, что сумма ряда $S(x) = \sum_{n=1}^{\infty} u_n(x)$ будет непрерывна на [a,b], а значит, интегрируема на [a,b].

Используя частичные суммы для $\sum u_n(x)$, рассмотрим частичные суммы $T_n = \int_0^b S_n(x) dx =$

$$=\int\limits_{a}^{b}\sum\limits_{k=1}^{n}u_{k}(x)dx=\sum\limits_{k=1}^{n}\int\limits_{a}^{b}u_{k}(x)dx$$
для ЧР правой части (17).

Требуется доказать, что $\lim_{n\to\infty}T_n=\int\limits_{-b}^bS(x)dx.$

Из равномерной сходимости $\sum u_n(\stackrel{a}{x})$ на [a,b] получим, что для $\forall \ \varepsilon>0 \ \exists \ \nu=\nu(\varepsilon) \ |$ для $\forall \ n\geqslant \nu$ и для $\forall \ x\in [a,b]\Rightarrow$

$$|S(x) - S_n(x)| = \left| \sum_{k=n+1}^{\infty} u_k(x) \right| \leqslant \varepsilon \tag{18}$$

Отсюда получаем, что $\left| \int\limits_a^b S(x) dx - I_n \right| = \left| \int\limits_a^b S(x) dx - \int\limits_a^b S_n(x) dx \right| = \left| \int\limits_a^b (S(x) - S_n(x)) dx \right| \leqslant$ $\leqslant \int \left| S(x) - S_n(x) \right| dx \leqslant \int\limits_a^b \varepsilon dx = M\varepsilon, \text{ где } M = b - a = const \geqslant 0.$

Таким образом, для $\forall \ \varepsilon > 0 \ \exists \ \nu = \nu(\varepsilon) \ | \$ для $\forall \ n \geqslant \nu \Rightarrow \left| \int\limits_a^b S(x) dx - I_n \right| \leqslant M \varepsilon,$ поэтому по М-лемме сходимости ЧП следует, что

$$\exists \lim_{n \to \infty} I_n = \int_a^b S(x) dx = \int_a^b \left(\sum_{k=1}^\infty u_k(x) \right) dx,$$

что равносильно (17).

7 Теорема о почленном дифференцировании ФР

Теорема (о почленном дифференцировании ΦP).

Пусть $\Phi P \sum u_n(x)$ на X = [a, b] удовлетворяет условиям:

- 1. $\sum u_n(x) \stackrel{X}{\to}$,
- 2. $\exists u_{n}^{'}(x)$, непрерывная для $\forall n \in \mathbb{N}, x \in X$.

Тогда, если

$$\sum u_{n}^{'}(x) \stackrel{X}{\rightrightarrows} \tag{19}$$

то рассматриваемый $\Phi P \sum u_n(x)$ можно почленно дифференцировать на [a,b], т.е.

$$\exists \left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{k=1}^{\infty} u_k'(x), \text{для } \forall x \in X.$$
 (20)

Доказательство. В силу (19), по условию 2 рассматриваемой теоремы получаем, что по теореме об интегрировании $\Phi P \sum u'_n(t)$ можно почленно интегрировать на $\forall [a,x] \subset [a,b]$, т.е.

$$\exists \int_{a}^{x} \left(\sum_{n=1}^{\infty} u'_{n}(t) \right) dt = \sum_{n=1}^{\infty} \int_{a}^{x} u'_{n}(t) dt = \sum_{n=1}^{\infty} [u_{n}]_{t=a}^{t=x} = \sum_{n=1}^{\infty} (u_{n}(x) - u_{n}(a)).$$

Отсюда в силу условия 1 (поточечная сходимость для $\sum u_n(x)$) получаем, что

$$\exists S(x) = \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} u_n(a) + \int_{a}^{x} \sum_{n=1}^{\infty} u'_n(t) dt.$$

Используя далее *теорему Барроу* о дифференцировании интеграла с переменным верхним пределом от непрерывной подынтегральной функции, получаем:

$$\exists \ S^{'}(x) = \left(const\right)^{'} + \left(\int\limits_{a}^{x} \left(\sum\limits_{n=1}^{\infty} u_{n}^{'}(t)\right) dt\right)_{x}^{'} = \sum\limits_{n=1}^{\infty} u_{n}^{'}(x),$$

что соответствует (20).

Под степенным рядом будем подразумевать ФР вида

$$a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots = \sum_{n=0}^{\infty} a_n(x - x_0)^n,$$
 (21)

где fix $x_0 \in \mathbb{R}$ - центр для CтP, а $\forall a_n \in \mathbb{R}$ - соответствующая числовая последовательность (коэффициенты CmP).

8 Теорема Абеля о сходимости степенного ряда (СтР) и замечание к ней.

Теорема Абеля (о сходимости степенных рядов).

Если СтР (21) сходится при $x=x_1\neq x_0$, то он будет сходится абсолютно для любого x, где

$$|x - x_0| < |x_1 - x_0|. (22)$$

Доказательство. Из сходимости ряда $\sum_{n=0}^{\infty} a_n (x_1 - x_0)^n$ следует в силу необходимого условия сходимости ЧР, что $a_n(x_1-x_0)^n \xrightarrow[n\to\infty]{} 0$, а т.к. \forall ЧП является ограниченной, то $\exists M=\mathrm{const}>0: |a_n(x_1-x_0)^n|\leqslant M$, для $\forall n\in\mathbb{N}$, т. е.

$$|a_n| \leqslant \frac{M}{|x_1 - x_0|^n}. (23)$$

Для $\forall x$, удовлетворяющего (22), в силу (23) получаем:

$$|a_n(x-x_0)^n| = |a_n| |x-x_0|^n \stackrel{(23)}{\leqslant} \frac{M |x-x_0|^n}{|x_1-x_0|^n} = Mq^n$$
, где $q = \frac{|x-x_0|}{|x_1-x_0|} \in [0;1[$.

Таким образом, мы получили сходящуюся мажоранту, ибо ряд $\sum_{n=0}^{\infty} Mq^n = M \sum_{n=0}^{\infty} q^n$ сходится при $q \in [0;1[$. По признаку сравнения сходимости ЧР имеем, что для $\forall \, x$, удовлетворяющего (22), ряд (21) будет сходиться.

Замечание.

Из полученных выше результатов следует, что если рассмотреть множество X_0 всех x, удовлетворяющих (22), то имеем, что $X_0 \subset X$, т.е. X_0 - некоторое подмножество множества X сходимости для (21).

9 Формула Даламбера для вычисления радиуса сходимости СтР.

Теорема (формула Даламбера для вычисления радиуса сходимости СтР).

Если существует конечный или бесконечный предел

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|,\tag{24}$$

то для радиуса сходимости ряда (21) имеем:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|. \tag{25}$$

Доказательство.

Без ограничения общности будем считать, что в (21) $\forall a_n \neq 0$. Т.к. СтР (21) сходится при $x = x_0$, то рассмотрим случай $x \neq x_0$.

Если $x\in I=\ \]x_0-R\ ;\ x_0+R\ \ [$, где $R\geqslant 0$, то по признаку Даламбера сходимости ЧР для (21) имеем:

$$\exists d = \lim_{n \to \infty} \frac{\left| a_{n+1}(x - x_0)^{n+1} \right|}{\left| a_n(x - x_0)^n \right|} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x - x_0| \stackrel{(25)}{=} \frac{|x - x_0|}{R}.$$

В силу того, что $x \in I$ и, значит, $|x-x_0| < R$, получаем, что d < 1 и СтР (21) будет сходящимся. Если d > 1, т.е. $|x-x_0| > R$, то (21) расходится. Таким образом, (25) будет радиусом сходимости для (21).

Формула Коши для вычисления радиуса сходимости СтР и замечания 10 к ней.

Теорема (формула Коши для вычисления радиуса сходимости CmP).

Если существует конечный или бесконечный предел

$$\lim_{n \to \infty} \sqrt[n]{|a_n|},\tag{26}$$

то для радиуса сходимости ряда (21) имеем:

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}.$$
 (27)

 $extit{Доказательство}$ проведём по тойже схеме, что и в предыдущей теореме.

Т.к. случай $x=x_0$ тривиален (в данной точке ряд всегда сходится), то рассмотрим случай $x\neq x_0$. По признаку Коши сходимости ЧР для (21) получаем:

$$\exists \ k = \lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = |x - x_0| \lim_{n \to \infty} \sqrt[n]{|a_n|} \stackrel{(27)}{=} \frac{|x - x_0|}{R}.$$

Если k < 1, т. е. $|x - x_0| < R$, то СтР (21) сходится.

Если k > 1, т. е. $|x - x_0| > R$, то СтР (21) расходится.

Таким образом, в силу определения, величина (27) будет радиусом сходимости для (21).

Замечания:

- 1. В силу связи между признаками Даламбера и Коши сходимости ЧР, в случае, когда предел (25) не существует (ни конечный, ни бесконечный), предел (27) может существовать, и в этом смысле формула Коши (27) предпочтительнее, чем (25).
- 2. Можно показать, что в случае, когда в (27) нет ни конечного, ни бесконечного предела, радиус сходимости для (21) всегда можно вычислить по формуле Коши-Адамара, использующей понятие верхнего предела последовательности:

$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}.$$
 (28)

Под верхним пределом последовательности подразумевается верхняя грань (supremum) множества конечных пределов всех сходящихся подпоследовательностей рассматриваемой последовательности.

- 11 Теорема о локальной равномерной сходимости СтР, замечания к ней и следствие из неё (о равенстве степенных рядов).
- 12 Теорема о дифференцировании СтР, замечания и следствие из неё.
- 13 Теорема о замене переменной в несобственных интегралах (НИ) и замечание к ней.
- 14 Формула двойной подстановки для НИ и интегрирование по частям в НИ.
- 15 Признак существования равномерного частного предела для непрерывных $\Phi 2\Pi$.
- 16 Критерий Гейне равномерной сходимости $\Phi 2\Pi$ и замечания к нему.
- 17 Теорема о предельном переходе в собственных интегралах, зависящих от параметра (СИЗОП) и замечания к ней.
- 18 Теорема о почленном дифференцировании СИЗОП.
- 19 Теорема о предельном переходе в несобственных интегралах, зависящих от параметра (НИЗОП), следствие из неё и замечание к ней.
- 20 Теорема об интегрировании НИЗОП и замечания к ней.
- 21 Теорема о почленном дифференцировании НИЗОП и замечание к ней.
- 22 Вычисление интеграла Дирихле и его обобщения.
- 23 Лемма Фруллани.
- 24 Первая теорема Фруллани.
- 25 Вторая теорема Фруллани.
- 26 Третья теорема Фруллани.