

Numerical Solutions of Mixed Convection Hybrid Nanofluid Flow past an Inclined Stretching Sheet with Gravity Modulation EffectNoraihan Afiqah Rawi, Mohamad Hidayad Ahmad Kamal, Sharidan Shafie

Noraihan Afiqah Rawi

Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor

4 - 5 AUGUST 2021

Introduction

Nanofluid

Conventional heat transfer fluids have inherently poor thermal conductivity compared to solids

WHY nanoparticles?

- -stay suspended much longer -possess higher surface area
 - Extreme stability
- Ultrahigh thermal conductivity

Maxwell (1873) presented theoretical basic for predicting the effective conductivity of suspension

the idea of dispersing milimeter /micrometer sized particle to break fundamental limit (in order to improve the heat transfer characteristic)

Major problems:

Rapid settling of particles in fluid, sedimentation, erosion, high pressure drop, etc.

Choi (1995) proposed the novel concept of nanofluid by exploiting the unique properties of nanoparticles

Introduction

What is **hybrid nanofluid**?

The fluid contains a **mixed** or **composed** of **two different nanoparticles**, which **disperse** in the **base fluid**.

Why consider hybrid nanofluid?

Proper hybridization may make the hybrid nanofluids very promising for **heat transfer enhancement**

Introduction

Gravity modulation (g-JITTER)

Characterizes as a small fluctuating gravitational field in microgravity environment

Caused by oscillatory or transient accelerations arising from crew motions and machinery vibrations

Model considered:
$$g^*(t) = g_0 \left[1 + \varepsilon \cos(\pi \omega t) \right] \mathbf{k}$$

Literature Review

PROBLEM FORMULATION

continuity equation

momentum equation

energy equation

Initial & boundary conditions

Similarity transformation

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,$$

$$\rho_{_{hnf}}\left[\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right] = \mu_{_{hnf}}\frac{\partial^2 u}{\partial y^2} + g^*\left(t\right)\left(\rho\beta\right)_{_{hnf}}\left(T - T_{_{\infty}}\right)\cos\gamma$$

$$\left(\rho C_{p}\right)_{hnf} \left[\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y}\right] = k_{hnf} \frac{\partial^{2} T}{\partial y^{2}}$$

$$t = 0: u = v = 0, T = T_{\infty} \text{ for any } x, y,$$

$$t > 0: u_{w}(x) = cx, v = 0, T = T_{w} = T_{\infty} + ax \text{ at } y = 0,$$

$$u \to 0, T \to T_{\infty} \text{ as } y \to \infty,$$

$$\tau = \omega t, \ \eta = \left(\frac{c}{v_f}\right)^{\frac{1}{2}} y, \ \psi = \left(cv_f\right)^{\frac{1}{2}} xf\left(\tau,\eta\right), \ \theta\left(\tau,\eta\right) = \frac{\left(T - T_{\infty}\right)}{\left(T_w - T_{\infty}\right)}$$

PROBLEM FORMULATION

Transformed equations

$$\begin{split} \frac{1}{\left(1-\phi_{1}\right)^{2.5}\left(1-\phi_{2}\right)^{2.5}} \frac{\partial^{3}f}{\partial\eta^{3}} + \frac{\rho_{hnf}}{\rho_{f}} \left(f\frac{\partial^{2}f}{\partial\eta^{2}} - \left(\frac{\partial f}{\partial\eta}\right)^{2}\right) &= \frac{\rho_{hnf}}{\rho_{f}} \Omega \frac{\partial^{2}f}{\partial\tau\partial\eta} \\ + \frac{\left(\rho\beta\right)_{hnf}}{\left(\rho\beta\right)_{f}} \lambda [1+\varepsilon\cos(\pi\tau)]\theta\cos\gamma \\ \frac{k_{hnf}}{k_{f}} \frac{\partial^{2}\theta}{\partial\eta^{2}} + \frac{\left(\rho c_{p}\right)_{hnf}}{\left(\rho c_{p}\right)_{f}} \Pr\left(f\frac{\partial\theta}{\partial\eta} - \frac{\partial f}{\partial\eta}\theta\right) &= \frac{\left(\rho c_{p}\right)_{hnf}}{\left(\rho c_{p}\right)_{f}} \Pr\Omega \frac{\partial\theta}{\partial\tau}, \\ f &= 0, \ \frac{\partial f}{\partial\eta} = 1, \ \theta = 1 \ \text{at} \ \eta = 0, \\ \frac{\partial f}{\partial\eta} \to 0, \ \theta \to 0 \ \text{as} \ \eta \to \infty, \end{split}$$

055-042

PROBLEM FORMULATION

Table 1. Nanofluid and hybrid nanofluid thermophysical properties

Tuble 1. Italionala and hybrid hanonala thermophysical properties				
Properties	Nanofluid	Hybrid nanofluid		
Heat	$(\rho C_p)_{nf} = (1 - \varphi_1) (\rho C_p)_f + \varphi_1 (\rho C_p)_{n1}$	$(\rho C_p)_{hnf} = (1 - \varphi_2) \left[(1 - \varphi_1) (\rho C_p)_f \right]$		
capacity		$+ \varphi_1(\rho C_p)_{n1} \Big] + \varphi_2(\rho C_p)_{n2}$		
Density	$\rho_{nf} = (1-\varphi_1)\rho_f + \varphi_1\rho_{n1}$	$\rho_{hnf} = (1 - \varphi_2) \big[(1 - \varphi_1) \rho_f + \phi_1 \rho_{n1} \big] + \varphi_2 \rho_{n2}$		
Dynamic	$\mu_{nf} = \frac{\mu_f}{(1 - \varphi_1)^{2.5}}$	$\mu_{hnf} = \frac{\mu_f}{(1 - \varphi_1)^{2.5} (1 - \varphi_2)^{2.5}}$		
viscosity	$(1-\varphi_1)^{2.5}$	$(1-\varphi_1)^{2.5} (1-\varphi_2)^{2.5}$		
Thermal	$k_{n1} + 2k_f - 2\varphi_1(k_f - k_{n1})$	$k_{n2} + 2k_{nf} - 2\varphi_2(k_{nf} - k_{n2})$		
conductivity	$k_{nf} = \frac{k_{n1} + 2k_f - 2\varphi_1(k_f - k_{n1})}{k_{n1} + 2k_f + \varphi_1(k_f - k_{n1})} \times (k_f)$	$k_{hnf} = \frac{k_{n2} + 2k_{nf} - 2\varphi_2(k_{nf} - k_{n2})}{k_{n2} + 2k_{nf} + \varphi_2(k_{nf} - k_{n2})} \times (k_{nf})$		
		where		
		$k_{nf} = \frac{k_{n1} + 2k_f - 2\varphi_1(k_f - k_{n1})}{k_{n1} + 2k_f + \varphi_1(k_f - k_{n1})} \times (k_f)$		
		$\kappa_{n1} + 2\kappa_f + \psi_1(\kappa_f - \kappa_{n1})$		

Methodology

Keller-box method

Mathematical Modelling

Dimensional
 partial differential
 equations
 (Boundary layer and
 Boussinesq
 approximations)

Mathematical Analysis

Transformation of governing equation using similarity transformation

Numerical Computation

- Finite difference method,Newton's
- method,

 blocktriadiagonal
 elimination
 method
- compared
 with the
 related
 publication in
 order to show
 the accuracy
 of the applied
 method

Results

Verification

Comparison Table

Comparison values of $-\theta'(0)$ when $\Pr = 1$, $\varepsilon = \Omega = 0$ (no g-jitter effect), $\gamma = 0$ (vertical stretching sheet), $\phi_1 = \phi_2 = 0$

λ	Rosca and Pop (2003)	Anuar et al. (2021)	Present result
0	1.0000	1.000008	1.000483
1	1.0872	1.087275	1.087086
10	1.3715	1.371564	1.371581

References:

- 1. A.V. Ros,ca, I. Pop, Flow and heat transfer over a vertical permeable stretching/ shrinking sheet with a second order slip, Int. J. Heat Mass Transf. 60 (2013) 355-364.
- 2. Anuar, N. S., Bachok, N., & Pop, I. (2021). Influence of buoyancy force on Ag-MgO/water hybrid nanofluid flow in an inclined permeable stretching/shrinking sheet. International Communications in Heat and Mass Transfer, 123, 105236.

Effect of nanoparticle volume fraction (Copper)

Effect of inclination angle

Effect of amplitude of modulation & nanoparticle volume fraction

Single nanofluid

Effect of frequency of oscillation& nanoparticle volume fraction

Conclusions

- The effect of amplitude of modulation give an almost proportional increase and decrease in both skin friction and heat transfer rate
- Skin friction decrease significantly with the increase of frequency of oscillation and nanoparticles volume fraction
- ❖The presence of both nanoparticles give a significant enhancement on temperature profiles, however, contradict behaviour is observed for heat transfer coefficient

21 THANK YOU

INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND STATISTICS