Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) - EXAMINATION - SUMMER 2016

Subject Code:2151603		ect Code:2151603 Date:09/05/2016	Date:09/05/2016	
	•	ect Name:Computer Graphics :02:30 PM to 05:00 PM ctions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.	0	
Q.1	(a) (b)	 What is aliasing? How to compensate the aliasing? Explain in detail. 1. Explain Beam penetration method. 2. How long it would take to load a 640 x 400 frame buffer with 24 bits per pixel, If 10⁶ bits can be transferred per second? 3. Define: 1. Aspect ratio 2. Persistence 	07 03 02 02	
Q.2	(a) (b)	Explain Scanline polygon fill algorithm in detail. Give advantages of Bresenham line drawing algorithm. Draw a line from (20,10) to (30,18) using it.	07 07	
	(b)	OR Discuss midpoint circle algorithm with example.	07	
Q.3	(a)	Derive 2 X 2 transformation matrix for each of the following.	07	
	(b)	(a) Rotation about origin (b) Fixed point scaling. Clip the line using Liang Barsky algorithm against window with (xw _{min} , yw _{min})= (0,0) and (xw _{max} , yw _{max})=(100,50). Line end points are A(10, 10) and B(110, 40).	07	
0.2	(a)	OR A triangle is defined by D(2, 2) O(4, 2) and D(5, 5). Find the transformed	07	
Q.3		A triangle is defined by P(2, 2), Q(4, 2) and R(5, 5). Find the transformed coordinates after 90 degree clockwise rotation followed by reflection about line $y = -x$.	07	
	(b)	Explain Cohen Sutherland line clipping algorithm with example.	07	
Q.4		Explain the Bazier curves and surfaces. 1. Explain parallel and perspective projections. 2. Explain non zero winding rule. OR	07 04 03	
Q.4	(a)	What is window and view-port? Retrieve equation for the scaling factor to map the window to view-port in 2D viewing system.	07	
	(b)	Derive 3D Rotation matrix.	07	
Q.5		 Define: Dominant frequency, Saturation, Luminance Explain various light sources. 	03 04	
	(b)	Explain CIE diagram with its usefulness. OR	07	
Q.5		Classify the visible surface detection algorithms. Explain Z buffer algorithm for hidden surface removal.	07	
	(b)	Explain RGB and XYZ color models.	07	
