Design and Analysis of Algorithms 5.2 Greedy Algorithms

Daniel Shannon May 3rd, 2022

5.2.2

Suppose we find a minimum spanning tree T in a graph.

Suppose we then add 1 to the weight of every edge in the graph.

Is T still a minimum spanning tree? Why or why not?

Yes T is still a minimum spanning tree because adding 1 to the weight will not

- 1. create cycles
- 2. change the ordering of the edge weights

5.2.4

Assign the following strings:

- A: 0
- B: 00
- C: 01
- D: 1

Then AABDC = 0000101

What is the problem with this?

The problem is that C could be mistaken for AD, or B could be AA, or BC could be AAAD etc.

5.2.6

- You are given a collection of items
- Each item i has a weight w_i and value v_i
- \bullet You have a bag that can hold a total weight of W
- You want to maximize the value of the items in your bag
- Design an algorithm to decide which items to pick

My Solution

```
Procedure Knapsack(f)
Input: array f[1...n] of items (v_i,w_i)
Output: An encoding tree with n leaves

Let H be a priority queue of v_i:w_i ratios (r_i), ordered by r_i
for i = 1 to n: insert(H,i)
for k = k+1 to 2n-1:
i=deletemin(H) j=deletemin(H)
create a node numbered k with children i,j
f[k]=f[i]/f[j]
insert(H,k)
```

Solution

- 1. sort all items by r_i
- 2. add items in order until space is gone
- 3. at the end if can't add a full item add as much as you can

4.

5.2.8

Same as before, except you cannot take fractional items. Does your algorithm always find the optimal solution? Explain why, or give a counterexample.

No this does not find the optimal solution. Rather than taking a portion of the next smallest r_i , we can take several less valuable items with less weight. So we could skip items until we find ones that fit!