Indian Institute of Technology Guwahati Probability Theory (MA590) Problem Set 06

1. Check weather the following functions are CDFs of 2-dim random vector or not.

(a)
$$F(x, y) = \begin{cases} 1 & \text{if } x + 2y \ge 1 \\ 0 & \text{if } x + 2y < 1. \end{cases}$$

(b) $F(x, y) = \begin{cases} 0 & \text{if } x < 0 \text{ or } x + y < 1 \text{ or } y < 0 \\ 1 & \text{otherwise.} \end{cases}$

- 2. Let $F(\cdot, \cdot)$ be the CDFs of a two-dimensional random vector (X, Y), and let $F_1(\cdot)$ and $F_2(\cdot)$, respectively, be the marginal CDFs of X and Y. Define $U(x, y) = \min\{F_1(x), F_2(y)\}$ and $L(x, y) = \max\{F_1(x) + F_2(y) 1, 0\}$. Prove the followings.
 - (a) $L(x, y) \le F(x, y) \le U(x, y)$.
 - (b) L(x, y) and U(x, y) are CDFs of 2-dimensional random vector.
 - (c) The marginal distributions of $L(\cdot,\cdot)$ and $U(\cdot,\cdot)$ are same as that of $F(\cdot,\cdot)$.
- 3. Let the random variable X have CDF $F_1(\cdot)$ and let Y = g(X) have distribution function $F_2(\cdot)$, where $g(\cdot)$ is some function. Prove that
 - (a) If $g(\cdot)$ is increasing, $F_{X,Y}(x, y) = \min\{F_1(x), F_2(y)\}.$
 - (b) If $g(\cdot)$ is decreasing, $F_{X,Y}(x, y) = \max\{F_1(x) + F_2(y) 1, 0\}$.
- 4. Consider the following joint PMF of the random vector (X, Y).

x y	1	2	3	4
4	0.08	0.11	0.09	0.03
5	0.04	0.11 0.12 0.06	0.21	0.05
6	0.09	0.06	0.08	0.04

- (a) Find P(X + Y < 8), P(X + Y > 7), $P(XY \le 14)$, P(X + Y < 8 | X = 4).
- (b) Find the Corr(X, Y)
- 5. Three balls are randomly placed in three empty boxes B_1 , B_2 , and B_3 . Let N denote the total number of boxes which are occupied and let X_i denote the number of balls in the box B_i , i = 1, 2, 3.
 - (a) Find the joint PMF of (N, X_1) .
 - (b) Find the joint PMF of (X_1, X_2) .
 - (c) Find the marginal distributions of N and X_2 .

- (d) Find the marginal PMF of X_1 from the joint PMF of (X_1, X_2) .
- 6. For the bivariate negative binomial distribution, the PMF is given by

$$f_{X,Y}(x, y) = \begin{cases} \frac{(x+y+k-1)!}{x!y!(k-1)!} \theta_1^x \theta_2^y (1-\theta_1-\theta_2)^k & \text{if } x \in \{0, 1, 2, \ldots\}, y \in \{0, 1, 2, \ldots\} \\ 0 & \text{otherwise,} \end{cases}$$

k is a positive integer, $0 < \theta_1 < 1$, $0 < \theta_2 < 1$, and $0 < \theta_1 + \theta_2 < 1$. Find both the marginal distributions.

7. For the bivariate beta random vector (X, Y) having PDF

$$f_{X,Y}(x, y) = \begin{cases} \frac{\Gamma(\theta_1 + \theta_2 + \theta_3)}{\Gamma(\theta_1)\Gamma(\theta_2)\Gamma(\theta_3)} x^{\theta_1 - 1} y^{\theta_2 - 1} (1 - x - y)^{\theta_3 - 1} & \text{if } x > 0, \ y > 0, \ x + y < 1 \\ 0 & \text{otherwise,} \end{cases}$$

where $\theta_i > 0$, i = 1, 2, 3. Find both the marginal PDFs.

8. Show that

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left\{ \left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right)\left(\frac{x_2-\mu_2}{\sigma_2}\right) + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2 \right\}} \text{if } (x_1, x_2) \in \mathbb{R}^2$$

is a PDF of a two-dimensional random vector for $\mu_i \in \mathbb{R}$, i = 1, 2; $\sigma_i > 0$, i = 1, 2; and $\rho \in (-1, 1)$. Assuming that the JPDF of (X_1, X_2) is $f(\cdot, \cdot)$, find the marginal PDFs of X_1 and X_2 .

9. Let X_1, X_2, X_3 have the JPDF

$$f(x_1, x_2, x_3) = \begin{cases} 48x_1x_2x_3 & \text{if } 0 < x_1 < x_2 < x_3 < 1\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the marginal PDFs of X_1 , X_2 and X_3 .
- (b) Find the JPDFs of (X_1, X_2) , (X_2, X_3) , and (X_1, X_3) .
- 10. Let X and Y be discrete random variables with JPMF f. Show that

$$E(\ln f_X(X)) \ge E(\ln f_Y(X)),$$

where f_X and f_Y denote marginal PMFs of X and Y, respectively. Hint: $\ln x \le x - 1$.