Lembrete:

Linguagem \rightarrow conjunto palavras \rightarrow símbolos \rightarrow Alfabeto

Um autômato finito determinístico (**AFD**) A pode ser definido como uma quíntupla (5-upla):

$$A = (Q, \Sigma, \delta, q0, F)$$

Q: conjunto finito de estados

Σ: Alfabeto (finito e não-vazio)

δ: função de transição δ: $(Q \times \Sigma)$ → Q

q0: estado inicial, onde q0€ Q

F: conjunto não vazio de estados de aceitação (finais), onde F⊆Q

Antes de começar...o que significa 2^A seja o conjunto A = { a, b, c } então

$$2^{A} = \{\{\}, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$$

O que é um autômato finito não determinístico ou AFN?

É definido por uma 5-upla, conforme abaixo

(Q,
$$\Sigma$$
, σ , s, F)

Q: conjunto de estados

Σ: Alfabeto

σ: função de transição, σ : (Qx Σ) \rightarrow 2^Q

s: estado que chamaremos de inicial, s \in Q

F: conjunto não vazio de estados finais (**aceitação**), $F \subseteq Q$

Exemplo de AFN

```
A1 = (Q, \Sigma, \sigma, s, F)
Q = \{ q0, q1, q2, q3, q4 \}, \Sigma = \{ a, b, c \}
s = q0, F = \{q3, q4\}
podemos descrever a função de transição \sigma assim:
\sigma = \{
           \sigma(q0,a) \rightarrow \{q1\}, \ \sigma(q0,b) \rightarrow \{q2\}, \ \sigma(q0,c) \rightarrow \{\},
           \sigma(q1,a) \to \{\}, \ \sigma(q1,b) \to \{q2\}, \ \sigma(q1,c) \to \{q3,q4\},
           \sigma(q2,a) \rightarrow \{q4\}, \sigma(q2,b) \rightarrow \{\}, \sigma(q2,c) \rightarrow \{\},
           \sigma(q3,a) \rightarrow \{\}, \sigma(q3,b) \rightarrow \{q1,q4\}, \sigma(q3,c) \rightarrow \{\},
           \sigma(q4,a) \rightarrow \{\}, \sigma(q4,b) \rightarrow \{\}, \sigma(q4,c) \rightarrow \{q2\},
}
ou
                         b
                                        C
             a
  σ
          {q1}
                       {q2}
                                       {}
 q0
                                   \{q3,q4\}
                       {q2}
 q1
           {}
 q2
          {q4}
                         {}
                                       {}
           {}
                     \{q1,q4\}
                                       {}
```

Notícia boa: Todo Autômato AFN pode ser convertido em AFD!

Isso quer dizer que um Autômato AFN não acrescenta poder de representação ao AFD.

Momento cultural!

q3

q4

{}

{}

 $\{q2\}$

* A operação de multiplicação não acrescenta poder de representação na matemática:

```
5*3 \rightarrow 5+5+5 \quad 5*5 \rightarrow 5+5+5+5+5
5 - 3 \rightarrow 5 + (-3)
25/5 \rightarrow 5+5+5+5+5 (contar até chegar no 25)
```

* Na programação o **else** não acrescenta poder de representação ao **if**.

```
if(x > 5) {
                                      if(x > 5) {
} else {
                                      if(x \leq 5) {
}
                                      }
```

Exercício: Converter o Autômato A1 em AFD.

Passo1:

σ	a	b	C
$\mathbf{q0}$	{q1}	{q2}	{}
q1	{}	{q2}	{q3,q4}
q2	{q4}	{}	{}
q3	{}	{q1,q4}	{}
q4	{}	{}	{q2}

Passo 2, 3, 4:

σ	a	b	C
$\mathbf{q}0$	q1	q2	/
q1	/	q2	q3q4
q 2	q4	/	/
q3	/	q1q4	/
q4	/	/	q2
q3q4	/	q1q4	q2
q1q4	/	q2	q2q3q4
q2q3q4	q4	q1q4	q2

Passo 6

Passo 1

σ	a	b	C
q0	{ q1, q2 }	{ q4 }	{}
q1	{}	{ q2, q5 }	{ q4 }
q2	{ q5 }	{}	{}
q3	{ q1 }	{}	{}
q4	{}	{}	{ q3, q5 }
q5	{}	{ q5 }	{}

Passo 2, 3 e 5

a	b	c
q1q2	q4	/
/	q2q5	q4
q5	/	/
q1	/	/
/	/	q3q5
/	q5	/
q5	q2q5	q4
q5	q5	/
q1	q5	/
	q1q2 / q5 q1 / / q5 q5	q1q2 q4 / q2q5 q5 / q1 / / q5 q5 q2q5

Passo 6

σ	a	b	C
$\mathbf{q}0$	q1q2	q4	/
q1	/	q2q5	q4
q2	q5	/	/
q3	q1	/	/
q4	/	/	q3q5
q 5	/	q5	/
q1q2	q5	q2q5 q5	q4
q2q 5	q5	q5	/
q3q5	q1	q5	/

AFN

AFD

