The Perceptron

LING 282/482: Deep Learning for Computational Linguistics
C.M. Downey
Fall 2025

ullet Overall idea: learn a **mapping** between **inputs** X and **outputs** Y

- ullet Overall idea: learn a **mapping** between **inputs** X and **outputs** Y
 - In math terms, learning a function f(x) = y

- ullet Overall idea: learn a **mapping** between **inputs** X and **outputs** Y
 - In math terms, learning a function f(x) = y
- The function is learned from a dataset of examples

- ullet Overall idea: learn a **mapping** between **inputs** X and **outputs** Y
 - In math terms, learning a function f(x) = y
- The function is learned from a dataset of examples

•
$$D = \{(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)\}$$

- ullet Overall idea: learn a **mapping** between **inputs** X and **outputs** Y
 - In math terms, learning a function f(x) = y
- The function is learned from a dataset of examples

•
$$D = \{(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)\}$$

The dataset contains pairs of inputs and outputs

- ullet Overall idea: learn a **mapping** between **inputs** X and **outputs** Y
 - In math terms, learning a function f(x) = y
- The function is learned from a dataset of examples

•
$$D = \{(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)\}$$

- The dataset contains pairs of inputs and outputs
- Ex: speed → whether you get a speeding ticket

- ullet Overall idea: learn a **mapping** between **inputs** X and **outputs** Y
 - In math terms, learning a function f(x) = y
- The function is learned from a dataset of examples
 - $D = \{(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)\}$
 - The dataset contains pairs of inputs and outputs
 - Ex: speed → whether you get a speeding ticket
 - {(30, False), (33, False), (35, False), (37, True), (39, True)}

- ullet Overall idea: learn a **mapping** between **inputs** X and **outputs** Y
 - In math terms, learning a function f(x) = y
- The function is learned from a dataset of examples
 - $D = \{(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)\}$
 - The dataset contains pairs of inputs and outputs
 - Ex: speed → whether you get a speeding ticket
 - {(30, False), (33, False), (35, False), (37, True), (39, True)}
- Goal: learn the function that best matches the dataset

Perceptron

- Last lecture: vectors, matrices, and linear transformations
 - How do these relate to Neural Networks?
- We'll demonstrate using the simplest Neural Network: the Perceptron

inputs *x* (numbers)

Where are the vectors?

Where are the vectors? weights woutput/ prediction W_2 \mathcal{X}_2 "activation weighted (yes/no prediction W_3 function" sum of as a probability (don't worry inputs between 0 and 1) about this yet) inputs x (numbers)

Where are the vectors? weights woutput/ prediction W_2 "activation weighted (yes/no prediction function" sum of as a probability (don't worry inputs between 0 and 1) about this yet) inputs x (numbers)

• The weighted sum of the perceptron...

- The weighted sum of the perceptron...
 - takes each element of the **input vector** x...

- The weighted sum of the perceptron...
 - takes each element of the **input vector** x...
 - times the element of the weight vector w:

- The weighted sum of the perceptron...
 - takes each element of the **input vector** x...
 - times the element of the weight vector w:
 - $w_1x_1 + w_2x_2 + \dots w_nx_n$

- The weighted sum of the perceptron...
 - takes each element of the **input vector** x...
 - times the element of the weight vector w:
 - $w_1x_1 + w_2x_2 + \dots w_nx_n$
 - Where have we seen this formula before?

- The weighted sum of the perceptron...
 - takes each element of the **input vector** x...
 - times the element of the weight vector w:
 - $w_1x_1 + w_2x_2 + \dots w_nx_n$
 - Where have we seen this formula before?
- This is the formula for the dot product of the two vectors!

- The weighted sum of the perceptron...
 - takes each element of the **input vector** x...
 - times the element of the weight vector w:
 - $w_1x_1 + w_2x_2 + \dots w_nx_n$
 - Where have we seen this formula before?
- This is the formula for the dot product of the two vectors!
 - $w \cdot x$ or $w^T x$

- The weighted sum of the perceptron...
 - takes each element of the **input vector** x...
 - times the element of the weight vector w:
 - $w_1x_1 + w_2x_2 + \dots w_nx_n$
 - Where have we seen this formula before?
- This is the formula for the dot product of the two vectors!
 - $w \cdot x$ or $w^T x$
 - The perceptron formula becomes $\sigma(w \cdot x)$

- The weighted sum of the perceptron...
 - takes each element of the **input vector** x...
 - times the element of the weight vector w:
 - $w_1x_1 + w_2x_2 + \dots w_nx_n$
 - Where have we seen this formula before?
- This is the formula for the dot product of the two vectors!
 - $w \cdot x$ or $w^T x$
 - The perceptron formula becomes $\sigma(w \cdot x)$
 - (where σ is the activation function)

The input vector x is usually defined
 by the data that we want to model

- The input vector x is usually defined
 by the data that we want to model
- Where do the weights w come from?

- The input vector x is usually defined
 by the data that we want to model
- Where do the weights w come from?
 - These are usually learned by the model (i.e. "machine learning")

- The input vector x is usually defined
 by the data that we want to model
- Where do the weights w come from?
 - These are usually **learned** by the model (i.e. "machine learning")
 - We'll introduce this learning next time

 The perceptron has one more learned value called a bias

- The perceptron has one more learned value called a bias
- The bias is added to the summation, and does not correspond to an input value

- The perceptron has one more learned value called a bias
- The bias is added to the summation, and does not correspond to an input value
- Our updated formula is $\sigma(w \cdot x + b)$

Introducing the Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

- Called the "Sigmoid" due to its S-like shape
 - (Sigma σ is the Greek letter S)
 - A.K.A. the Logistic Function

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

- Called the "Sigmoid" due to its S-like shape
 - (Sigma σ is the Greek letter S)
 - A.K.A. the Logistic Function
- In Neural Networks, it fills the role of an "activation function" or "non-linearity" (more in a later lecture)

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

- Called the "Sigmoid" due to its S-like shape
 - (Sigma σ is the Greek letter S)
 - A.K.A. the Logistic Function
- In Neural Networks, it fills the role of an "activation function" or "non-linearity" (more in a later lecture)
- Works as a soft threshold
 - $\sigma(x)$ is close to 1 when x > 0,
 - close to 0 when x < 0
 - Output range: (0, 1)

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

Sigmoid vs. Hard Threshold

- Key difference: Sigmoid is smooth, i.e. has a well-defined derivative
- (This will be important when we get to learning algorithms)

- ullet The sigmoid makes the Perceptron output \hat{y} a number between 0 and 1
 - Usually viewed as a probability (i.e. 1.0 = 100%, 0.5 = 50%, etc.)

- ullet The sigmoid makes the Perceptron output \hat{y} a number between 0 and 1
 - Usually viewed as a probability (i.e. 1.0 = 100%, 0.5 = 50%, etc.)
- Perceptron is used for Binary Classification
 - i.e. Positive vs. Negative, True vs. False, On vs. Off, 1 vs. 0
 - \bullet \hat{y} is the probability of positive classification (according to the Perceptron)
 - ullet $1-\hat{y}$ is the probability of negative classification

- ullet The sigmoid makes the Perceptron output \hat{y} a number between 0 and 1
 - Usually viewed as a **probability** (i.e. 1.0 = 100%, 0.5 = 50%, etc.)
- Perceptron is used for Binary Classification
 - i.e. Positive vs. Negative, True vs. False, On vs. Off, 1 vs. 0
 - \bullet \hat{y} is the probability of positive classification (according to the Perceptron)
 - ullet $1-\hat{y}$ is the probability of negative classification
- Speeding ticket example: suppose $Perceptron(38) = \hat{y} = 0.92$
 - This means the Perceptron gives a 92% chance of getting a ticket

<u>source</u>

 The Perceptron is (loosely) inspired by a human neuron (brain cell)

source

- The Perceptron is (loosely) inspired by a human neuron (brain cell)
- A neuron...
 - Takes in input signals from other neurons
 - "Fires" an output signal if the inputs exceed some threshold

source

- The Perceptron is (loosely) inspired by a human neuron (brain cell)
- A neuron...
 - Takes in input signals from other neurons
 - "Fires" an output signal if the inputs exceed some threshold
- Networks of neurons can model sophisticated functions

Perceptron and Linear Separation

- Example: classifying a vowel by its formant frequencies
- Vowels can be characterized by two component frequencies called formants (F1, F2)
 - These (very roughly) correspond to notions of "height" and "backness"
- Can we identify the vowel [i] with binary classification?

- Challenge: draw a straight line that separates the vowel [i] from all other vowels
 - Can a perfect boundary be drawn?
 - Draw an imperfect one if not
- Can we get a formula for this line?

 We'd probably end up with something like this drawn line

- We'd probably end up with something like this drawn line
- Line formula: y = mx + b

- We'd probably end up with something like this drawn line
- Line formula: y = mx + b
 - $F2 = m \cdot F1 + b$

- We'd probably end up with something like this drawn line
- Line formula: y = mx + b
 - $F2 = m \cdot F1 + b$
 - $b \approx 2265$ (y-intercept)

- We'd probably end up with something like this drawn line
- Line formula: y = mx + b
 - $F2 = m \cdot F1 + b$
 - $b \approx 2265$ (y-intercept)
 - $m \approx 294/1125$ (slope, "rise over run")

- We'd probably end up with something like this drawn line
- Line formula: y = mx + b
 - $F2 = m \cdot F1 + b$
 - $b \approx 2265$ (y-intercept)
 - $m \approx 294/1125$ (slope, "rise over run")

$$F2 = \frac{294}{1125}F1 + 2265$$

- We'd probably end up with something like this drawn line
- Line formula: y = mx + b
 - $F2 = m \cdot F1 + b$
 - $b \approx 2265$ (y-intercept)
 - $m \approx 294/1125$ (slope, "rise over run")

$$F2 = \frac{294}{1125}F1 + 2265$$

• Let's rearrange this:

- We'd probably end up with something like this drawn line
- Line formula: y = mx + b

•
$$F2 = m \cdot F1 + b$$

- $b \approx 2265$ (y-intercept)
- $m \approx 294/1125$ (slope, "rise over run")

$$F2 = \frac{294}{1125} F1 + 2265$$

• Let's rearrange this:

$$F2 - \frac{294}{1125}F1 - 2265 = 0$$

$$1.0 \cdot F2 + (-0.26) \cdot F1 - 2265 = 0$$

$$-0.26 \cdot F1 + 1.0 \cdot F2 - 2265 = 0$$

15

- We'd probably end up with something like this drawn line
- Line formula: y = mx + b

•
$$F2 = m \cdot F1 + b$$

- $b \approx 2265$ (y-intercept)
- $m \approx 294/1125$ (slope, "rise over run")

$$F2 = \frac{294}{1125}F1 + 2265$$

• Let's rearrange this:

$$F2 - \frac{294}{1125}F1 - 2265 = 0$$

$$1.0 \cdot F2 + (-0.26) \cdot F1 - 2265 = 0$$

$$-0.26 \cdot F1 + 1.0 \cdot F2 - 2265 = 0$$

What does this remind us of?

•
$$-0.26 \cdot \text{F1} + 1.0 \cdot \text{F2} - 2265$$

•
$$-0.26 \cdot \text{F1} + 1.0 \cdot \text{F2} - 2265$$

• fits the form $w_1x_1 + w_2x_2 + b$

•
$$-0.26 \cdot \text{F1} + 1.0 \cdot \text{F2} - 2265$$

- fits the form $w_1x_1 + w_2x_2 + b$
- $\bullet (w \cdot x + b)!$

$$\bullet$$
 -0.26 · F1 + 1.0 · F2 - 2265

- fits the form $w_1x_1 + w_2x_2 + b$
- $(w \cdot x + b)!$
- What does the **Perceptron** $\sigma(w \cdot x + b)$ do?

Our equation for the boundary:

$$-0.26 \cdot F1 + 1.0 \cdot F2 - 2265$$

- fits the form $w_1x_1 + w_2x_2 + b$
- $\bullet (w \cdot x + b)!$
- What does the **Perceptron** $\sigma(w \cdot x + b)$ do?
 - Hint: what happens when you...

Our equation for the boundary:

$$-0.26 \cdot F1 + 1.0 \cdot F2 - 2265$$

- fits the form $w_1x_1 + w_2x_2 + b$
- $(w \cdot x + b)!$
- What does the **Perceptron** $\sigma(w \cdot x + b)$ do?
 - Hint: what happens when you...
 - ...start on the boundary...

• Our equation for the **boundary**:

$$-0.26 \cdot F1 + 1.0 \cdot F2 - 2265$$

- fits the form $w_1x_1 + w_2x_2 + b$
- $\bullet (w \cdot x + b)!$
- What does the **Perceptron** $\sigma(w \cdot x + b)$ do?
 - Hint: what happens when you...
 - ...start on the boundary...
 - ...and decrease F1 or increase F2?

Our equation for the boundary:

$$\bullet$$
 -0.26 · F1 + 1.0 · F2 - 2265

- fits the form $w_1x_1 + w_2x_2 + b$
- $\bullet (w \cdot x + b)!$
- What does the **Perceptron** $\sigma(w \cdot x + b)$ do?
 - Hint: what happens when you...
 - ...start on the boundary...
 - ...and decrease F1 or increase F2?
 - As wx + b becomes more positive, $\sigma(w \cdot x + b)$ approaches 1.0!

Our equation for the boundary:

$$-0.26 \cdot F1 + 1.0 \cdot F2 - 2265$$

- fits the form $w_1x_1 + w_2x_2 + b$
- $\bullet (w \cdot x + b)!$
- What does the **Perceptron** $\sigma(w \cdot x + b)$ do?
 - Hint: what happens when you...
 - ...start on the boundary...
 - ...and decrease F1 or increase F2?
 - As wx + b becomes more positive, $\sigma(w \cdot x + b)$ approaches 1.0!
 - I.e. the Perceptron becomes certain of a positive classification of [i]

• Our equation for the **boundary**:

$$\bullet$$
 -0.26 · F1 + 1.0 · F2 - 2265

- fits the form $w_1x_1 + w_2x_2 + b$
- $\bullet (w \cdot x + b)!$
- What does the **Perceptron** $\sigma(w \cdot x + b)$ do?
 - Hint: what happens when you...
 - ...start on the boundary...
 - ...and decrease F1 or increase F2?
 - As wx + b becomes more positive, $\sigma(w \cdot x + b)$ approaches 1.0!
 - I.e. the Perceptron becomes certain of a positive classification of [i]

• Our equation for the **boundary**:

•
$$-0.26 \cdot \text{F1} + 1.0 \cdot \text{F2} - 2265$$

- fits the form $w_1x_1 + w_2x_2 + b$
- $\bullet (w \cdot x + b)!$
- What does the **Perceptron** $\sigma(w \cdot x + b)$ do?
 - Hint: what happens when you...
 - ...start on the boundary...
 - ...and decrease F1 or increase F2?
 - As wx + b becomes more positive, $\sigma(w \cdot x + b)$ approaches 1.0!
 - I.e. the Perceptron becomes certain of a positive classification of [i]

þ	q	p\q	þvq
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	1

Logical (or "Boolean") functions give
 truth values based compositionally on
 the truth value of their inputs

p	q	p\q	pvq
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	1

- Logical (or "Boolean") functions give
 truth values based compositionally on
 the truth value of their inputs
- This truth table gives the values of logical AND (∧) and logical OR (∨)
 based on some input variables p and q

þ	q	p\q	pvq
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	1

- Logical (or "Boolean") functions give
 truth values based compositionally on
 the truth value of their inputs
- This truth table gives the values of logical AND (∧) and logical OR (∨)
 based on some input variables p and q
- "Boolean logic" is pervasive in many fields such as Semantics, Computer
 Science, and Electrical Engineering

þ	q	p\q	pvq
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	1

 Assume that p and q can ONLY take on the values {0,1}

- Assume that p and q can ONLY take on the values {0,1}
- When is Perceptron output **close to**1.0? What is wx + b?

- Assume that p and q can ONLY take on the values {0,1}
- When is Perceptron output **close to**1.0? What is wx + b?
 - When wx + b is **positive**, i.e. when **both** p and q are 1

- Assume that p and q can ONLY take on the values {0,1}
- When is Perceptron output **close to**1.0? What is wx + b?
 - When wx + b is **positive**, i.e. when **both** p and q are 1
- When is the output close to 0.0? What is wx + b?

- Assume that p and q can ONLY take on the values {0,1}
- When is Perceptron output **close to**1.0? What is wx + b?
 - When wx + b is **positive**, i.e. when **both** p and q are 1
- When is the output close to 0.0? What is wx + b?
 - When wx + b is negative, i.e. either p or q is 0

AND Linear Separation

The XOR function is True when
 either p or q are True but not both

p	q	p XOR q
0	0	0
1	0	1
0	1	1
1	1	0

- The XOR function is True when
 either p or q are True but not both
- How would a perceptron model these Truth conditions?

p	q	p XOR q
0	0	0
1	0	1
0	1	1
1	1	0

- The XOR function is True when
 either p or q are True but not both
- How would a perceptron model these Truth conditions?
 - It can't! The XOR truth conditions are NOT linearly separable

р	q	p XOR q
0	0	0
1	0	1
0	1	1
1	1	0

- The XOR function is True when
 either p or q are True but not both
- How would a perceptron model these Truth conditions?
 - It can't! The XOR truth conditions are NOT linearly separable
 - How do we model functions like this?
 More in a later lecture

p	q	p XOR q
0	0	0
1	0	1
0	1	1
1	1	0

Last thoughts on Perceptrons

Last thoughts on Perceptrons

- The Perceptron model goes by many different names
 - e.g. Artificial Neuron, Logistic Regression, Maximum Entropy (MaxEnt)
 - These boil down to the same model! (with some difference in training algorithm)

Last thoughts on Perceptrons

- The Perceptron model goes by many different names
 - e.g. Artificial Neuron, Logistic Regression, Maximum Entropy (MaxEnt)
 - These boil down to the same model! (with some difference in training algorithm)
- Important points:
 - A Perceptron encodes a linear separation in n-dimensional space
 - Like a human neuron, the Perceptron "fires" when the weighted inputs exceed some threshold
 - The weights need to be learned from some algorithm (more next time!)

Practice Example

How do we separate **both** the flowers and the maples from the ferns?

Quiz next time!

- Covering pre-requisites from first-semester Calculus
 - Applying rules to take the derivative of a function
 - I will give you a cheat-sheet with the rules
 - Extra focus on how to apply the Chain Rule
 - Understanding critical points of a function/derivative (f'(x) = 0)
 - Be able to sketch a tangent line at a point on a curve
 - Understanding of what a function derivative is
- No need for trigonometric functions (cos, sin, tan) or limits right now

Derivatives Cheat-sheet

$$\frac{d}{dx}x^n + c = nx^{n-1}$$

$$\frac{d}{dx}c \cdot f(x) = c \cdot f'(x)$$

$$\frac{d}{dx}e^{x}=e^{x}$$

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

$$\frac{d}{dx}f(x) \pm g(x) = f'(x) \pm g'(x)$$

$$\frac{d}{dx}f(x)g(x) = f'(x)g(x) + f(x)g'(x)$$

$$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

Chain Rule:
$$\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)$$