Problema 1. Determinar los siguientes órdenes:

(a)
$$ord_{13}2$$
. (b) $odr_{7}2$, (c) $ord_{241}2$, (d) $ord_{17}2$, (e) $ord_{21}10$, (f) $odr_{25}9$

Problema 2. Sea b el inverso de a módulo n, demostrar que el $ord_n(b) = ord_n(a)$.

Problema 3. Demostrar que no existe ningún entero r tal que $ord_n r = \varphi(n)$ para los siguientes valores de *n*:

(a)
$$n = 12$$
, (b) $n = 20$, (c) $n = 16$, (d) $n = 28$.

Problema 4. Hallar el cociente y el resto de dividir en $\mathbb{Z}_{13}[x]$ los siguientes pares de polinomios:

(a)
$$x^6 + 3x^5 + 6x^4 + 4x^3 + 6x^2 + 8x + 10$$
 y $x^3 + 3x^2 + 5x + 1$

(b)
$$x^4 + 3x^3 + x + 3$$
 v $x^2 + 2x + 1$

(b)
$$x^4 + 3x^3 + x + 3$$
 y $x^2 + 2x + 1$
(c) $2x^5 + 6x^4 + 3x^3 + 3x^2 + 4x + 5$ y $x^4 + 3x^2 + 3x + 6$

(d)
$$x^5 + 6x^4 + 3x^3 + 3x^2 + 4x + 5y 3x^4 + 3x^2 + 3x + 6$$

Problema 5. Encontrar el máximo común divisor de los siguientes pares de polinomios Q[x]

(a)
$$x^4 + 3x^3 + x + 3$$
 y $x^2 + 2x + 1$

(b)
$$x^6 + 3x^5 + 6x^4 + 4x^3 + 6x^2 + 8x + 10$$
 y $x^3 + 3x^2 + 5x + 1$
(c) $x^4 + 3x^2 + 3x + 6$ y $x^5 + 6x^4 + 3x^3 + 3x^2 + 4x + 5$

(c)
$$x^4 + 3x^2 + 3x + 6$$
 v $x^5 + 6x^4 + 3x^3 + 3x^2 + 4x + 5$

Problema 6. Encontrar el máximo común divisor de los siguientes pares de polinomios $\mathbb{Z}_7[x]$

(a)
$$x^4 + 3x^3 + x + 3$$
 y $x^2 + 2x + 1$

(b)
$$x^6 + 3x^5 + 6x^4 + 4x^3 + 6x^2 + 8x + 10$$
 y $x^3 + 3x^2 + 5x + 1$

(c)
$$x^4 + 3x^2 + 3x + 6$$
 y $x^5 + 6x^4 + 3x^3 + 3x^2 + 4x + 5$

Resolver en cada caso las correspondientes identidades de Bézout.

Problema 7. Encontrar el máximo común divisor de los siguientes pares de polinomios $\mathbf{Z}_{11}[x]$

(a)
$$x^5 + 6x^4 + 8x^3 + 6x^2 + x + 10$$
 y $x^4 + x^3 + 8x^2 + 7x + 7$

(b)
$$x^5 + 6x^4 + 8x^3 + 6x^2 + x + 10$$
 y $x^4 + x^3 + 6x^2 + 2x + 8$

(b)
$$x^5 + 6x^4 + 8x^3 + 6x^2 + x + 10$$
 y $x^4 + x^3 + 6x^2 + 2x + 8$
(c) $x^8 + 6x^7 + 7x^6 + 6x^5 + 4x^4 + 3x^3 + 7x + 10$ y $2x^2 + 4x + 2$

(d)
$$3x^8 + 7x^7 + 10x^6 + 4x^5 + 5x^4 + 9x^3 + 10x + 4$$
 y $x^2 + 2x + 1$

Resolver en cada caso las correspondientes identidades de Bézout.

Problema 8. Resolver las congruencias:

(a)
$$x^2 \equiv 31 \pmod{75}$$
, (b) $x^2 \equiv 46 \pmod{231}$, (c) $x^2 \equiv 46 \pmod{21}$, (d) $x^2 \equiv 1156 \pmod{3^25^37^511^6}$

Problema 9. (Residuos cuadráticos) Un entero a se dice residuo cuadrático módulo n si mcd(a, n) = 1 y la ecuación

$$x^2 \equiv a \pmod{n}$$

posee solución. Por ejemplo, en \mathbb{Z}_{11} , los residuos cuadráticos son 1, 3, 4, 5 y 9.

Sea n = 4, p^k , $2p^k$ (p primo impar). Demostrar que a es residuo cuadrático si, y sólo si, $a^{\frac{\varphi(n)}{2}} \equiv 1 \pmod{n}$

Problema 10. Demuestra que si a es resto cuadrático módulo un primo p, entonces las soluciones de $x^2 \equiv a \pmod{p}$ son:

(a)
$$x \equiv \pm a^{n+1} \pmod{p}$$
, si $p = 4n + 3$

Problema 11. Demostrar que si p es primo y k es entero positivo, entonces las únicas soluciones de $x^2 = x \pmod{p^k}$ son todos los enteros tales que $x \equiv 0$ ó 1 (mod p^k)

Problema 12. Resolver cada una de las ecuaciones de congruencias:

$$(a)x^2 + 4x + 2 \equiv 0 \pmod{7}$$
, $(b)x^2 + 4x + 2 \equiv 0 \pmod{49}$, $(c)x^2 + 4x + 2 \equiv 0 \pmod{343}$,

Problema 13. Resolver cada una de las ecuaciones de congruencias:

(a)
$$x^2 + 102x + 2 \equiv 0 \pmod{7}$$
, (b) $x^2 + 102x + 2 \equiv 0 \pmod{49}$, (c) $x^2 + 102x + 2 \equiv 0 \pmod{343}$,

Problema 14. Resolver cada una de las ecuaciones de congruencias:

(a)
$$x^4+2x^2+3x+2\equiv 0 \pmod{7}$$
, (b) $x^4+2x^2+3x+2\equiv 0 \pmod{49}$, (c) $x^4+2x^2+3x+2\equiv \pmod{343}$,

Problema 15. Resolver la ecuación polinómica de congruencias:

(a)
$$x^2 + 6x - 31 \equiv 0 \pmod{72}$$
, (b) $x^2 + 18x - 823 \equiv 0 \pmod{1800}$,

(c)
$$3x^2 + 6x - 31 \equiv 0 \pmod{72}$$
, (d) $3x^2 + 18x - 823 \equiv 0 \pmod{1800}$,

Problema 16. Resolver la ecuación polinómica de congruencias:

$$13x^7 - 42x - 649 \equiv 0 \pmod{1800}$$
,

Problema 17. Resolver la ecuación polinómica de congruencias:

(a)
$$x^8 - x^4 + 1001 \equiv 0 \pmod{539}$$
, (b) $x^8 - x^4 + 462 \equiv 0 \pmod{539}$,

Problema 18. Encontrar todas las raíces de $x^4 + x^3 + 3x^2 + 2x + 2 \equiv 0 \pmod{7}$,

Problema 19. En el cuerpo \mathbb{Z}_{11} todas las raíces de los polinomios que se indican:

(a)
$$x^2 + 2$$
, (b) $x^2 + 10$, (c) $x^3 + x^2 + 2x + 2$

En todos los casos factorizar los polinomios como producto de polinomios irreducibles.

Problema 20. Demostrar que si p es un número primo verificando $p \equiv 1 \pmod{4}$, entonces existe un entero x tal que $x^2 \equiv -1 \pmod{p}$

Problema 21. Sea p un número primo. Demostrar que cada coeficiente del polinomio $f(x) = (x-1)(x-2)...(x-p+1) - x^{p-1} + 1$ es divisible por p.

Problema 22. Considerar la congruencia caudrática $ax^2 + bx + c \equiv 0 \pmod{p}$, donde p es primo y a, b, y c son enteros con p no divisor de a.

- (a) Sea p = 2. Determinar que congruencias cuadráticas tienen solución.
- (b) Sea p primo impar y sea $d = b^2 4ac$. Demostrar que la congruencia $ax^2+bx+c\equiv 0 \pmod{p}$, es equivalente a la congruencia $y^2=d \pmod{p}$, donde y=2ax+b. Concluir que si $d\equiv 0 \pmod{p}$, entonces existe exactamente una solución x módulo p; si d es residuo cuadrático de p, entonces existen dos soluciones incongruentes módulo p; y si d no es resto cuadrático de p, entonces no hay soluciones.

Problema 23. Resolver las siguientes ecuaciones:

(a)
$$x^2 + 13x + 17 \equiv 0 \pmod{23}$$
, (b) $x^2 + 5x + 1 \equiv 0 \pmod{23}$, (c) $x^2 + 13x + 2 \equiv 0 \pmod{23}$,

Problema 24. Resolver las siguientes ecuaciones:

(a)
$$x^2 + 13x + 17 \equiv 0 \pmod{529}$$
, (b) $x^2 + 5x + 1 \equiv 0 \pmod{529}$, (c) $x^2 + 13x + 2 \equiv 0 \pmod{529}$,