Energy Application for Time-Based Electricity Pricing

Özge İşlegen

May 22, 2019

Richer Data in the Energy Industry

Analog Meters

1 meter reading per month

Smart Meters (AMI)

Electricity consumption data in at least hourly intervals

Before smart meters: Flat Rate!

Hours of the day

Before smart meters: Flat Rate!

Hours of the day

How widespread are smart meters...

- …in the United States?
- 2015: 64.7M smart meter installations. 57.1M were residential customers (EIA).

Flat Rate or Time-of-Use Rate? Electricity Bills, Environmental Impact?

Energy App

Consumer:

Appliances, demographics

Location, Pricing

Energy App

Results:

Future Electricity Bills

Environmental Impact

Flat Rate or Time-of-Use Rate?

How does time-based pricing affect the environment?

PEAK LOAD

INTERMEDIATE LOAD

BASE LOAD

PEAK LOAD

BASE LOAD

PEAKER NG

COAL

OIL

NUCLEAR

Where is the data to train the model?

- ...in the United States?
- 2015: 64.7M smart meter installations. 57.1M were residential customers (EIA).
 - Smart Meter Deployments by State by 2015

 Deployment to less than 15% of end-users
 Deployment to more than 50% of end-users

 Deployment to more than 50% of end-users

- ...in the European Union?
 - Replace >80% of meters with smart meters by 2020 (EC).

Consumption and Survey Data: Time-based Pricing Field Experiment

Residential time-of-use pricing field experiment

- Irish Commission for Energy Regulation (CER)
- 4225 households
- 30-min. consumption, demographics, appliances (~5 GB)
- July 2009 December 2009 : Benchmark Period
- January 2010 December 2010 : Experiment Period

			Weekday Prices (¢/kWh)		
	Group	Group Size (household)	Day	Peak	Night
TREATMENT GROUPS CONTROL GROUP	Α	938	14	20	12
	В	364	13.5	26	11
	С	962	13	32	10
	D	364	12.5	38	9
	E	762	14.1	14.1	14.1

Temperature and average consumption have an inverse relationship.

Electric heating >>> A/C use.

Consumer demand has seasonal variation.

Environmental Impact: The U.S. Case

Preliminary Findings and Plans

- Multi-step multivariate time series forecasting to predict next month's hourly consumption
- Model selection:
- I. Univariate per-customer ARIMA model
- 2. Multivariate per-customer linear versus non-linear ML models (RandomForestRegressor>LinearRegression in terms of MSE)
- 3. Multivariate per-customer-group and across all customers ML models
- 4. Recursive versus direct forecasting methods
- Predict the price elasticity of demand for different customer segments to predict the price response even without green button data.

Time-based pricing flattens the demand curve: Capacity Utilization Reliability Cycling

