Graph reduction using combinators

Pedro Vasconcelos

March 11, 2024

Bibliography

- Foundations for Functional Programming, Section 7, Lawrence C. Paulson.
- Implementation of Functional Languages, Chapters 10, 11, 12, 16
- Video presentation @ Strange Loop Conf: https://youtu.be/GawiQQCn3bk

Strict vs. non-strict semantics

How should we evaluate $((\lambda x. M) N)$?

Strict semantics

Call-by-value evaluate N once (even if not used)

Non-strict semantics

Call-by-name evaluate N zero or multiple times (every time it is used)

Call-by-need, lazy evaluation evaluate N zero ou once (only if it is used)

Strict vs. non-strict semantics (cont.)

Strict semantics

- Usual in all imperative languages
- Also Scheme, Standard ML, OCaml and F#
- But: non-strict semantics is used in particular cases
 - logic operations &&, | |
 - special parameters declared call-by-name
 - some data structures (e.g. streams)
 - macros

Non-strict semantics

- Call-by-name is too inefficent for general use
- Call-by-need/lazy evaluation some pure functional languages (Miranda, Clean, Haskell)

Dificulties in implementation

- Call-by-name is inefficient: duplicates computations
- Call-by-need/lazy evaluation:
 - we need to represent suspended computations (thunks)
 - after evaluation update the thunk with its result
 - share the result of the thunk for every use

Examples

$$sqr = \lambda x. mult x x$$

main = $sqr (sqr 5)$

Let us compute the expression "main".

Call-by-name reduction

$$\underbrace{\mathsf{sqr}} \, (\mathsf{sqr} \, 5) \to \underbrace{\mathsf{mult}} \, \underbrace{(\mathsf{sqr} \, 5) \, (\mathsf{sqr} \, 5)}_{\mathsf{duplication}}$$

$$\to \mathsf{mult} \, (\underbrace{\mathsf{sqr}} \, 5) \, (\mathsf{sqr} \, 5)$$

$$\to \mathsf{mult} \, (\underbrace{\mathsf{mult}} \, 5 \, 5) \, (\mathsf{sqr} \, 5)$$

$$\to \mathsf{mult} \, 25 \, (\underbrace{\mathsf{sqr}} \, 5)$$

$$\to \mathsf{mult} \, 25 \, (\underbrace{\mathsf{mult}} \, 5 \, 5)$$

$$\to \underbrace{\mathsf{mult}} \, 25 \, 25$$

$$\to 625$$

Graph reduction

 Represent the expression as a graph where applications are binary nodes:

- Look for the outermost and leftmost redex
- After reducing a sub-term: update the graph with the result

Example

Observations

- Sharing of sub-graphs avoid duplication of computations
- The graph can be implemented in memory as a linked data structure
- Each re-write step modifies pointers in this structure
- Problem: we need to copy the body of the function when we perform a β -reduction

Example

Avoiding copying

We can avoid the need for copying if we use combinators instead of λ -terms.

Combinators

The terms of combinatory logic are

- variables $x, y, z \dots$;
- onstants S, K, I;
- \odot applications (MN) where $M \in N$ are terms.

Examples:

$$((SX)I)$$
 $((SK)K)$ $((S(KS))K)$

As in the the λ -calculus, we omit parenthesis by following the convention that applications associate to the left, e.g.

$$\textbf{S}\,\textbf{K}\,\textbf{K} \equiv ((\textbf{S}\,\textbf{K})\,\textbf{K})$$

Combinators (cont.)

Reduction rules \rightarrow_w (*weak* reduction):

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Example:

$$SKKX \rightarrow_{W} KX(KX) \rightarrow_{W} X$$

Weak head normal form

A combinator term of the form

$$H E_1 E_2 \dots E_n$$

is in weak head normal form if

- H is a constant combinator or a variable; and
- ② $H E_1 E_2 ... E_k$ is not a *redex* for any $k \le n$

In WHNF: Not in WHNF:

Translation into combinators

We can translate any λ -term into combinators using two transformations:

 $(-)_{CL}$ converts a λ -term into a combinator term; $\lambda^* x$ auxiliary transformation to abstract a variable.

$$(x)_{CL} \equiv x$$
 $(MN)_{CL} \equiv (M)_{CL}(N)_{CL}$
 $(\lambda x. M)_{CL} \equiv \lambda^* x. (M)_{CL}$
 $\lambda^* x. x \equiv \mathbf{I}$
 $\lambda^* x. P \equiv \mathbf{K} P$
 $\lambda^* x. P Q \equiv \mathbf{S} (\lambda^* x. P) (\lambda^* x. Q)$
 $x \notin fv(P)$

Example translation

$$(\lambda xy. yx)_{CL} \equiv \lambda^* x. \lambda^* y. (yx)_{CL}$$

$$\equiv \lambda^* x. \lambda^* y. (yx)$$

$$\equiv \lambda^* x. \mathbf{S} (\lambda^* y. y) (\lambda^* y. x)$$

$$\equiv \lambda^* x. (\mathbf{SI}) (\mathbf{K} x)$$

$$\equiv \mathbf{S} (\lambda^* x. \mathbf{SI}) (\lambda^* x. \mathbf{K} x)$$

$$\equiv \mathbf{S} (\mathbf{K} (\mathbf{SI})) (\mathbf{S} (\lambda^* x. \mathbf{K}) (\lambda^* x. x))$$

$$\equiv \mathbf{S} (\mathbf{K} (\mathbf{SI})) (\mathbf{S} (\mathbf{K} \mathbf{K}) \mathbf{I})$$

Properties of the translation

- (M)_{CL} is equivalent to M (see the bibliography Foundations of FP)
- The translation does not preserve normal forms (not important for an implementation)
- The translation λ* may duplicate the number of applications
- The combinator term can be exponentially larger than the original λ-term
- The translation can be improved to quadratic complexity using more combinators (Turner, 1979)
- We can also need to add combinators for integers, arithmetic operations and the fixed point combinator (for recursion)

Improved translation

Extra combinators (Turner):

$$\mathbf{B}\,P\,Q\,R\to_w P\,(Q\,R)$$

$$\boldsymbol{C}\,P\,Q\,R\to_w(P\,R)\,Q$$

Improved translation (cont.)

$$(x)_{CL} \equiv x$$

$$(MN)_{CL} \equiv (M)_{CL}(N)_{CL}$$

$$(\lambda x. M)_{CL} \equiv \lambda^T x. (M)_{CL}$$

$$\lambda^T x. x \equiv \mathbf{I}$$

$$\lambda^T x. P \equiv \mathbf{K} P \qquad x \notin fv(P)$$

$$\lambda^T x. P x \equiv P \qquad x \notin fv(P)$$

$$\lambda^T x. P Q \equiv \mathbf{B} P(\lambda^T x. Q) \qquad x \notin fv(P)$$

$$\lambda^T x. P Q \equiv \mathbf{C} (\lambda^T x. P) Q \qquad x \notin fv(Q)$$

$$\lambda^T x. P Q \equiv \mathbf{S} (\lambda^T x. P) (\lambda^T x. Q) \qquad x \in fv(P), x \in fv(Q)$$

Example revisited

$$(\lambda xy. y x)_{CL} \equiv \lambda^T x. \lambda^T y. (y x)_{CL}$$
$$\equiv \lambda^T x. \lambda^T y. (y x)$$
$$\equiv \lambda^T x. \mathbf{C} (\lambda^T y. y) x$$
$$\equiv \lambda^T x. \mathbf{C} \mathbf{I} x$$
$$\equiv \mathbf{C} \mathbf{I}$$

Exercise: Verify that ${\bf CI}$ behaves like the lambda term λxy . y x when applied to two arguments.

Graph reduction with combinators

Step 1 (Unwind): Find the leftmost, outermost *redex* by descending left on the spine of @-nodes:

such that M is not a @-node

Step 2 (Rewrite): If we find a *redex*, perform local re-writing.

Note the *sharing* of *R* in the reduction for **S**.

If there are not enough arguments for the redex in Step 2, then the graph is in *weak head normal form*.

Step 3: Repeat step 1 and continue until we reach WHNF.

Strict primitive operations (e.g. ifzero, +, *, etc.) must recursively evaluate their arguments before reducing.

Reduction example

Let us translate

let
$$sqr = \lambda x. x * x$$
in sqr 5

into combinators:

$$(\lambda^T f. f 5) (\lambda^T x. \mathbf{mul} \ x \ x)$$

$$\equiv \mathbf{C} \mathbf{15} (\mathbf{S} (\lambda^T x. \mathbf{mul} \ x) (\lambda^T x. x))$$

$$\equiv \mathbf{C} \mathbf{15} (\mathbf{S} \mathbf{mul} \mathbf{I})$$

Reduction example (cont.)

Historical context

- The translation into combinators was used in implementation of *Miranda* in the early 1980s
- Early implementations of Haskell in 1990s used translation into supercombinators (GHC, Gofer)
- Special graph reductions machines were also built between 1980-1990 (SKIM, NORMA, GRIP)
- No longer state-of-art:
 - special purpose hardware cannot compete with hardware advances in general-purpose CPUs
 - better compilation techniques employ program transformations of the functional program and run on off-the-shelf general purpose architectures
- But is still used e.g. in MicroHs: https://github.com/augustss/MicroHs