$See \ discussions, stats, and \ author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/44816288$

Fundamentals of Spatial Information Systems

Article · .	January 1998	
CITATIONS		READS
638		2,896
2 authors	s, including:	
6	Robert Laurini Institut National des Sciences Appliquées de Lyon 266 PUBLICATIONS 2,029 CITATIONS SEE PROFILE	
Some of	the authors of this publication are also working or	n these related projects:
Project	Semantic modeling and interpretation of remote	sensing image View project
Project	Geographic Knowledge Engineering View project	

The A.P.I.C. Series Number 37

Fundamentals of Spatial Information Systems

Robert Laurini
Université Claude Bernard Lyon 1, Lyon, France
and
Derek Thompson
University of Maryland at College Park, College Park, USA

ACADEMIC PRESS

Harcourt Brace & Company, Publishers London San Diego New York Boston Sydney Tokyo Toronto

Contents

	PREFA ACKN	ACE TOWLEDGEMENTS	xv xix
PART	ONE	INTRODUCTION TO THE SPATIAL CONTEXT	·
Chap	ter 1	Geomatics: Introduction to spatial information systems	. 3
	1.1	Spatial data organization	3
	1.2	Heterogeneity of uses of spatial information systems	10
		1.2.1 Uses of spatial information systems	10
		1.2.2 Examples of data requirements	12
	1.3	Some components of spatial information systems	16
		1.3.1 The toolbox view	16
		1.3.2 The physical components	19
	1.4	The role of automation: geomatics	19
	1.5	Bibliography	24
Chap	ter 2	Needs: Purposes and types of spatial problem	27
	2.1	Problems to be solved; tasks to be performed	27
	2.2	Location and character	33
	2.3	Measurements and spatial relationships	38
		2.3.1 Spatial properties	39
		2.3.2 Spatial relationships	41
. '	2.4	Categories of spatial problems	43
		2.4.1 Types of spatial problem	43
		2.4.2 Other aspects	47
	2.5	Some examples of multi-faceted needs	48
		2.5.1 Example of flows over landscapes	48
		2.5.2 Resources inventory	49
		2.5.3 Predicting the location of mineral ore deposits	49
		2.5.4 Engineering network simulation	53
	2.6	Main categories of tools in a spatial information system	54
	2.7	Some implications for the design of spatial information systems	58
	2.8	Bibliography	59

v	т

Cha	pter :	Semantics: Objects, surfaces, data	6
1	3.1	1	6
		3.1.1 Spatial entities	6
		3.1.2 Categories of information	6.
	2.2	3.1.3 Metainformation	6
		Non-spatial attributes	6
	3.3	Spatial characteristics of entities	7:
		3.3.1 Dimensionality of entities 3.3.2 Geometric elements	72 70
	3.4		8:
	5.7	3.4.1 Combinations of spatial units	8
		3.4.2 Substitutions of spatial units	8
		3.4.3 Mixed uses	85
	3.5		8
	0.0	3.5.1 A field view of spatial variations	87
		3.5.2 Isotropicity	90
		3.5.3 Discrete and continuous views	9
	3.6	Spatial and non-spatial properties together	92
	3.7		95
		3.7.1 Tables and matrices	95
		3.7.2 Maps	96
		3.7.3 Data models	98
	3.8	Personal spatial semantics	99
	3.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	102
		3.9.1 Data quality	103
		3.9.2 The time element	104
		3.9.3 Intensional and extensional data	106
		3.9.4 General discussion	106
	3.10	Bibliography	108
PAR	r TW	O GEOMETRIES FOR SPATIAL DATA	
Ch		Connection Position representation dimensions	113
ena	pter 4	Geometries: Position, representation, dimensions	
	4.1	0	114
	4.2	Positioning objects in spatial referencing systems	116
		4.2.1 Continuous space referencing	117
		4.2.2 Referencing for discrete entities	122
	4.3	Global reference systems	127
		4.3.1 Global referencing	127
		4.3.2 Map projections	128 131
	1 1	4.3.3 Some examples of global systems The fundamental element of distance	134
	4.4 4.5	Coordinates and splines: the representation of lines	14(
	4.3	4.5.1 Line simplification	141
		T.O.1 Dine amplification	_ T

Contents vii

	4.5.2 Smoothed lines	144
	4.5.3 Some realities of line and polygon representation	149
	14.5.4 Intensional and extensional representation of objects	151
4.6		152
	4.6.1 Creation of fractal objects	152
	4.6.2 Stochastic fractals	155
4.7	, ,	159
	4.7.1 Paths through space	159
	4.7.2 Space-filling curves	161
i.	4.7.3 Dimensionality	167
4.8	•	170
4.9	Bibliography	172
Chapter	5 Topology: Graphs, areas, ordering	175
5.1	Networks and graphs	175
	5.1.1 Graphs	176
	5.1.2 Properties of graphs	180
5.2		183
	5.2.1 Digital line graphs	183
	5.2.2 Topological consistency	186
5.3		190
	5.3.1 Possible conditions in digital maps	190
	5.3.2 Some procedures for checking for errors	192
5.4	Polygons and areas	197
	5.4.1 Types of areal spatial unit	198
	5.4.2 Containment and coincidence	200
5.5		206
5.6	Some other considerations and summary	211
5.7	Bibliography	214
Chapter	6 Tessellations: Regular and irregular cells, hierarchies	217
6.1	Mosaics, tessellations and lattices	217
	6.1.1 Tessellations	218
	6.1.2 Lattices	219
	6.1.3 Scale and resolution	221
6.2	The geometry of regular tessellations	222
6.3		226
	6.3.1 Data encoding	226
	6.3.2 Spatial properties	230
	6.3.3 Surface modelling from lattices	231
	6.3.4 Structures for grid-cell data	232
6.4		235
6.5	Hierarchical tessellations for a sphere	243

/iii	Contents
'III	Content

/iii			Contents
	6.6	Irregular tessellations based on triangles	246
		6.6.1 Proximal regions	246
. #		6.6.2 Triangulation	247
	6.7	1 × ×	252
	6.8	Bibliography	254
Cha	pter		
		transformations	257
	7.1	Interpolation and extrapolation	258
		7.1.1 The interpolation and extrapolation concept	258
		7.1.2 Some practicalities	261
	7.2	Basic operations on lines and points	264
		7.2.1 Line intersections	264
		7.2.2 Segment intersections	265
		7.2.3 Point-in-polygon procedure	267
		7.2.4 Centroid definition	269
		7.2.5 Some spatial statistics based on point data	270
	7.3		271
		7.3.1 Intersection of lines with polygons	272
		7.3.2 Union and intersection of polygons	272
		7.3.3 Area computation	273
		7.3.4 Areal interpolation	275
		7.3.5 Shape measures for polygons	276
		7.3.6 Polygon clipping	277
		7.3.7 Buffer zones	279
		7.3.8 Polygon overlay process	280
	7.4	1	284
		7.4.1 Changes in dimensionality	285
		7.4.2 Changes in position	286
		7.4.3 Conflation	290
		7.4.4 Changes in topology	291
	7.5	Transformations between regular cells and entities	291
		7.5.1 Change to regular cells	292
		7.5.2 Change from regular cells to vectors	293
	7.6		295
		7.6.1 Access by identifiers and by locators	295
		7.6.2 Rectangles and strip trees	296
		7.6.3 Sheets and tiles	299
	77	7.6.4 Different forms of spatial address	300 302
	7.7	Summary	
	7.8	Bibliography	303

Chap	ter 8	Spatial analysis: Attribute data, modelling, integration	306
	8.1	Integrating the attribute data	306
	8.2	Some operations for planar network entities	310
	8.3	Some operations for grid-cell based map overlay modelling	314
		8.3.1 Basic operations for grid-cell data	314
		8.3.2 Spatial modelling with grid-cell data	318
	8.4	Operations for quadtree tessellations	321
	8.5	Operations for irregular polygons and for graphs	324
		8.5.1 Creating regions	325
		8.5.2 Location problem solving	328
		8.5.3 Map overlay modelling and analysis	329
	8.6	Integration and multiple representation	333
		8.6.1 Multiple representation	334
		8.6.2 Integration	334
		8.6.3 Some examples of public and commercial spatial data	
		organization	336
	8.7	Summary and conclusions	343
	8.8	Bibliography	345
Chap	ter 9	Design for Information Systems: Methodologies, issues	351
•	9.1	Database management systems	352
	9.2	The ANSI-SPARC design methodology	358
	9.3	Conceptual modelling: the entity-relationship approach	362
	9.4	Logical modelling: relational databases	366
	9.5	Transforming entity-relationship models into relational models	369
	9.6	Logical modelling: CODASYL databases	374
		9.6.1 The modelling	374
		9.6.2 The data definition and manipulation languages	378
	9.7	Some issues in entity-relationship and logical modelling	383
		9.7.1 Implied relationships	384
		9.7.2 Person-made and natural rules	386
		9.7.3 Table organization	388
	9.8	The process for the design of spatial information systems	391
		9.8.1 The information discovery	391
		9.8.2 Information system design	393
	9.9	Summary	396
	0.10	Ribliography	204

Cha	pter 1	0 Spaghetti: Conceptual modelling of line-oriented	
,		objects	399
P	10.1	Representation of segments, polylines and mixtilines	399
		10.1.1 Segments	401
		10.1.2 Polylines	402
		10.1.3 Representation of a mixtiline	403
	10.2	One-dimensional representation of polygons and areas	403
•		10.2.1 Isolated polygons	405
		10.2.2 Sets of polygons	406
		Modelling for graphs	409
	10.4	Conceptual modelling of terrains	411
		10.4.1 Gradients, grids and contours	411
		10.4.2 Triangulated irregular networks	414
	10.5	Representation of polyhedra	416
		10.5.1 Simple polyhedra	416
		10.5.2 Complex polyhedra	417
		Some examples of vector oriented geomatic models	419
		Summary	424
	10.8	Bibliography	425
Cha	pter 1	1 Pizza: Conceptual modelling for areas and volumes	426
	11.1	Regular cell grid representation	427
		Quadtrees	428
		11.2.1 Review of the concept of quadtrees	428
		11.2.2 Modelling polygons and terrains by quadtrees	430
		11.2.3 Extended quadtrees	432
		Pyramid models	436
	11.4	Modelling via octtrees	436
		11.4.1 Hierarchical and linear octtrees	438
		11.4.2 Extended octtrees	438
	11.5	Example: modelling of geological objects	441
		Summary	442
	11.7	Bibliography	443
^h	oter 1	2 Spatial Object Modelling: Views, integration,	
JIIA	pter i	complexities	444
		Selection criteria for a good representation	444
		External models: synthesis with different representations	445
		12.2.1 Standardization of geometric representation	` 447
		12.2.2 Coexistence of several geometric representations	447
		12.2.3 An additional step in conceptual modelling	448
	12.3	Working with complex features	453

12.4 Semantic data models	456
12.5 Models used in some spatial information systems and databases	460
12.5.1 Commercial spatial information systems software examples	461
12.5.2 National cartographic databases	467
12.6 Issues in representations and conceptual modelling	468
12.6.1 Metadata	469
12.6.2 Database concepts and practical matters	472
12.7 Bibliography	475
PART FOUR SPATIAL DATA RETRIEVAL AND REASONING	
Charter 12 Alashusa Balatianal and Bassa Avala	479
	4/9
13.1 Features of relations	479
13.1.1 Some properties of tuples	480
13.1.2 The Cartesian product for relations	481
13.2 Relational operators and relational algebra	483
13.2.1 Intersection	483
13.2.2 Union	485
13.2.3 Difference	486
13.2.4 Join	486
13.2.5 Relational projection	487
13.2.6 Restriction	488
13.2.7 Division	488
13.3 Normalization	490
13.3.1 Necessity for normalization	490
13.3.2 Functional dependencies	492
13.3.3 First normal form	493
13.3.4 Second normal form	495
13.3.5 Third normal form	496
13.3.6 Other normal forms and implications for spatial data	496
13.4 Structured Query Language examples in geomatics	497
13.5 Peano relations	507
13.5.1 Peano relations concept	507
13.5.2 Definition of a Peano relation	509
13.6 Conformance levels and extensions	512
13.6.1 First conformance level: well-positioned object	512
13.6.2 Second conformance level: removal of overlaps	515
13.6.3 Third conformance level: compact objects	516
13.6.4 Extension beyond two dimensions	518
13.6.5 Hilbert keys	519
13.7 The Peano-tuple algebra	520
13.7.1 Boolean operators	520
13.7.2 Geometric operators	523

v	Ė	
А		

Cor	

	13.7.3 Relational operators	526
	13.7.4 Examples of Peano-tuple algebra queries	530
. 1	13.8 Summary	531
	13.9 Bibliography	532
Cha	pter 14 Spatial Queries: Types, algorithms	534
	14.1 The process for spatial queries	534
	14.2 Point-in-polygon queries	537
	14.3 Region queries	538
	14.4 Vacant place queries	541
	14.5 Distance and buffer zone queries	543
	14.6 Path queries	546
	14.7 Examples of multimedia queries	548
	14.8 Implications for spatial information systems	553
	14.9 Bibliography	556
Cha	pter 15 Access and Quality: Spatial indices and integrity	
	constraints	557
	15.1 Indexing	558
	15.1.1 Indexing in file management systems	559
	15.1.2 Indexing in relational databases	562
	15.2 Spatial indexing	563
	15.2.1 Indexing by space-filling curves	567
	15.2.2 Indexing by quadtrees	569
	15.2.3 Indexing by R- and R ⁺ -trees	571
	15.2.4 Indexing by other kinds of trees	573
	15.2.5 Some practical aspects of spatial indexing	575
	15.3 Integrity constraints	576
	15.3.1 Basic integrity constraints	576
	15.3.2 Spatial data checking	577
	15.3.3 Example of a cadastre	578
	15.4 The use of topology in creating integrity checking mechanisms	581
	15.4.1 The topology of tessellations	582
	15.4.2 The topology of networks	583
	15.4.3 The topology of digital terrain models	584
	15.5 An example of consistency checking for a terrain model	586
	15.5.1 Triangulated irregular network representation	586
	15.5.2 Regular cell representation	589
	15.6 Conclusions about spatial indexing and integrity	590
	15.7 Bibliography	592

Contents xiii

Chapter 16 Hypermedia: Multimedia spatial information	
systems and hypermaps	594
16.1 Hyperdocuments	594
16.1.1 Multimedia spatial data	595
16.1.2 The hypermap concept	597
16.2 Multimedia image data	600
16.2.1 Image modelling	600
16.2.2 Physical encoding	601
16.2.3 Dynamic image models	604
16.2.4 Picture object modelling for retrieval	604
16.3 Organization of collections of maps and images	607
16.4 Hypermaps	612
16.4.1 Spatial referencing of hyperdocuments	612
16.4.2 Spatial queries for retrieving hypermap nodes	613
16.4.3 Encoding hypermap spatial references by Peano relations	614
16.4.4 R-trees and map pyramids	614
16.4.5 Navigation in hypermaps	616
16.5 Summary	617
16.6 Bibliography	618
Chapter 17 Spatial Knowledge: Intelligent spatial information systems	620
•	
17.1 Towards intelligent spatial information systems	621
17.2 From record-oriented to object-oriented databases	621
17.2.1 Rationale and objectives	622
17.2.2 Classes, subclasses and instances	624
17.2.3 Attributes and data types	626
17.2.4 Inheritance	628
17.2.5 Links between classes and instances 17.2.6 Methods	630 631
17.2.6 Methods 17.3 Utilization for geomatics	632
17.4 Object-oriented databases and spatial information systems	635
17.5 Artificial intelligence and expert systems	639
17.5.1 Facts and rules	639
17.5.2 General structure of an expert system	641
17.5.3 Inference engine	642
17.5.4 Metarules	644
17.6 Spatial knowledge representation	644
17.6.1 Spatial facts	645
17.6.2 Spatial relations	645
17.6.3 Spatial metarules	646
17.6.4 Fuzzy spatial knowledge	646
17.6.5 Spatial knowledge from logical deduction	646
17.6.6 Spatial knowledge derived from numerical formulae	648

(IV		Conten
	17.6.7 Examples of spatial process representation	64
	17.6.8 Visual knowledge encoding	65
#	17.6.9 Examples in spatial knowledge engineering	65
	17.7 Spatial reasoning in spatial information systems	65

17.6.7 Examples of spatial process representation	649
17.6.8 Visual knowledge encoding	651
17.6.9 Examples in spatial knowledge engineering	653
17.7 Spatial reasoning in spatial information systems	657
17.7.1 Learning possibilities	658
17.7.2 Logico-deductive and spatial reasoning	659
17.7.3 Example of districting	660
17.8 Summary	665
17.9 Bibliography	667

AFTERWORD INDEX	•	671 673