МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЧЕРНІВЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ЮРІЯ ФЕДЬКОВИЧА

Інститут фізико-технічних та комп'ютерних наук Відділ комп'ютерних технологій Кафедра комп'ютерних систем та мереж

СИМУЛЯТОР ТРІЙКОВИХ КВАНТОВИХ МЕРЕЖ

482.362. 705010201-79 13 33-5 (Опис програми)

Сторінок 13

КІДІАТОНА

В даному документі описана програма, призначена для симуляції зворотніх трійкових мереж з можливістю переглядати результат складеної схеми. Розглянуто алгоритми роботи програми в цілому та представлено графічний вигляд екранних форм.

Опис програми містить: 7 розділів, 13 сторінок, 7 рисунків.

3MICT

1. ЗАГАЛЬНІВІДОМОСТІ	4
2. ФУНКЦІОНАЛЬНЕ ПРИЗНАЧЕННЯ	4
3. ОПИС ЛОГІЧНОЇ СТРУКТУРИ	5
3.1. Структура і функції програми	5
3.2. Алгоритм обчислювальної частини програми	6
3.3. Діаграма прецедентів	8
3.4. Алгоритм виконання обчислень контрольованих елементів	9
4. ВИКОРИСТОВУВАНІ ТЕХНІЧНІ ЗАСОБИ	13
5. ВИКЛИК І ЗАВАНТАЖЕННЯ	13
6. ВХІДНІ ДАНІ	13
7. ВИХІДНІ ДАНІ	13

1. ЗАГАЛЬНІ ВІДОМОСТІ

Метою розробленої програми є симуляція зворотних трійкових мереж із можливістю переглядати результат складеної схеми, створити бібліотеку примітивів, задавати вхідні сигнали в трійковій системі числення. Розробити зручний інтерфейс з візуалізацією вхідних та вихідних станів.

Дане програмне забезпечення розроблено на таких технологіях: HTML5, Css, Javascript з використанням бібліотеки JQuery.

2. ФУНКЦІОНАЛЬНЕ ПРИЗНАЧЕННЯ

Програма призначена для симуляції роботи зворотних трійкових мережіз можливістю переглядати результат складеної схеми.

Програма забезпечує введення користувачем певних вхідних трійкових сигналів, які в процесі проходження квантової мережі змінюють своє значення. Результати обчислень можна переглянути в покроковому режимі, як дані будуть мінятися відносно вхідних в процесі обчислень. На виході ми отримуємо деяке вихідне значення цих сигналів.

Результати роботи розробленої програми можуть застосовуватись при дослідженні й розробленні квантових мереж, та квантового комп'ютингу.

3. ОПИС ЛОГІЧНОЇ СТРУКТУРИ

3.1. Структура і функції програми

Для створення квантової мережі використовувався компонент div з класом box. Ці бокси – це лінії нашої мережі, які представляються у вигляді таблички розміром 8 на п, де п – це «довжина» квантової мережі, яку ми можемо програмно збільшувати чи зменшувати за допомогою кнопок «Додати» і «Видалити». Отже в нас будується таблиця розмірністю 8 на п.

При ініціалізації її комірки заповнюються лініями, які в сукупності утворюють одну суцільну лінію в кожному рядочку таблиці, таким чином у нас створюється «пуста» мережа. Далі одночасно зі ініціалізацією таблиці ініціалізується масив розмірністю 8 на п який одразу заповнюється нулями, таким чином що кожна комірка таблиці відповідає певному елементу в матриці.

Далі нам необхідно заповнити мережу примітивами. Для цього вибираємо потрібне місце на мережі і натискаємо лкм на цю комірку. Комірка, в свою чергу, підсвітиться.

Тільки після цього нам потрібно перетащити потрібний нам примітив на вибране місце. Одночасно з цим елемент в матриці, який відповідає за обрану комірку змінює своє значення на деяке інше ціле значення. В результаті створюється мережа.

Таким чином кожен елемент моє своє унікальне значення, або кілька унікальних значень. Алгоритм заповнення показаний на рис. 3.1.

Рис. 3.1. Алгоритм заповнення мережі примітивами

3.2. Алгоритм обчислювальної частини програми

Кожен симулятор і взагалі кожну логічну схему можна уявити в вигляді таблиці де рядочки це розрядність, а стовпчики це елементи розміщені в певному порядку.

Для розміщення елементів на мережі доцільно використовувати табличку в якій стовпчики відповідають тактам, а рядочки лініям. Тоді кожна комірка має свою адресу і позицію в яку можна занести певний однокубітовий вентиль. Тоді як двокубітові вентилі будуть займати 2 комірки і т д.

Вхідні дані представленні у вигляді вектора довжиною 8 значень (0 або 1 або 2).

Починається сканування мережі на наявність в ній контрольованих елементів. Цикл розміром п який представляє довжину мережі і вміщує в себе інший цикл, який в свою чергу представляє комірки в одному стовпчику. В результаті подвійний цикл який сканує мережу, спочатку по комірках стовпчика, - потім по рядках. Якщо в одному такті зустрічається елемент, або контрольований спін, викликається відповідна функція, яка відповідає примітиву. І ця функція записує в матрицю відповідне примітиву значення(0,1,2), після чого всі елементи матриці заносяться в функцію, яка додає всі елементи матриці по модулю три. Результат, який виходить після додавання елементів матриці, записується в відповідний рядку матриці span з классом "spans_for_result". Для кожного рядка матриці є свій span для результатів з відповідним класом. Наприклад, для першого рядка матриці, після обчислень результат буде записуватися в «

Алгоритм обчислювальної частини програми представлений на рис. 3.2.

Рис. 3.2. Алгоритм виконання обчислень програми

3.3. Діаграма прецедентів

Діаграма прецедентів є графом, що складається з множини акторів, прецедентів (варіантів використання) обмежених границею системи (прямокутник), асоціацій між акторами та прецедентами, відношень серед акторами. [1] Діаграми жім узагальнення прецедентів, та відношень прецедентів відображають елементи моделі варіантів використання. Суть даної діаграми полягає в наступному: проектована система представляється у вигляді безлічі сутностей чи акторів, що взаємодіють із системою за допомогою так званих варіантів використання.

3 точки зору моделі прецедентів структура програми виглядає наступним чином. Користувачеві надається можливість виконувати основні дії, передбачені в програмі, а саме:

- 1. Задавати вхідні кутріти.
- 2. Формувати мережу.
 - Вибирати позицію на лінії.
 - Вибирати необхідний примітив із переліку на формі.
 - +1.
 - +2.
 - 01.
 - 02.
 - 12.
 - Контрольовані елементи.
- 3. Переглядати загальні результати.
- 4. Змінювати розмір мережі.
- 5. Видаляти обраний елемент.
- 6. Очищувати мережу.

Діаграма прецедентів програми наступна (рис. 3.3).

Рис. 3.3. Діаграма прецедентів

3.4. Алгоритм виконання обчислень контрольованих елементів

Сканується мережа на наявність контрольованих елементів. Для цього ми виконуємо два цикли : один перевіряє рядки, інший — стовпці. Якщо на одному стовпці цикл знаходить примітив і на цьому ж стовпці знаходить вентель, то виконується відповідна функція, яка обчислює цей контрольований елемент і також будує його.

Алгоритм виконання обчислень контрольованих елементів показаний на рис. 3.3.

Рис 3.4. Алгоритм виконання обчислень контрольованих елементів

Початкова форма програми зображена на рис. 3.5.

Вхідними даними для програми ε значення 0,1 або 2. (Рис. 3.6.), які зада ε користувач.

Рис 3.5. Початкова форма програми

Рис 3.6. Задання початкових значень

В програмі передбачено дві мови: англійська та українська. Користувач може на власне бажання змінити мову в програмі (рис.3.7.)

Рис 3.7. Зміна мови програми

Також є таблиця істинності для кожного примітива(рис 3.8.)

Рис 3.8. Таблиця істинності для елементів

4. ВИКОРИСТОВУВАНІ ТЕХНІЧНІ ЗАСОБИ

Для розробки програмного продукту було використано комп'ютер наступної конфігурації:

- процесор AMD Athlon II X4 760K 3.8GHz;
- материнська плата: ASRock Fatal1ty FM2A88X;
- оперативна пам'ять: Kingston DDR3-1600 8192 MB;
- жорсткий диск: Toshiba 2TB 7200rpm 64MB 3.5 SATA III

- графічний адаптер: AMD Radeon HD 6850, 1 Гб;
- монітор: LG 22MP55 (1920x1080);
- блок живлення: CoolerMaster Silent Pro M2 520W;
- швидкість інтернет-з'єднання: 10 Мбіт/с.

5. ВИКЛИК І ЗАВАНТАЖЕННЯ

Програма може бути викликана стандартними методами, прийнятими в операційній системі Microsoft Windows, а саме: подвійним натисканням лівої кнопки маніпулятора «миша» в момент перебування його вказівника на значкові програми або ярлика до неї; натисканням на клавіатурі клавіші «Enter» або «Return» після активування значка або ярлика (підсвічування синім кольором). Для цієї мети доцільно використовувати можливості багаточисленних файлових менеджерів (напр., Far Manager або Total Commander).

6. ВХІДНІ ДАНІ

Вхідними (початковими) даними програми є трійкові вхідні сигнали. (рис. 3.6).

7. ВИХІДНІ ДАНІ

Вихідними даними програми ϵ сигнали, які змінювались при проходженні по лініям створеної мережі, у трійковій формі.