FreeRTOS for STM32 Step 1

회사소개

CodeZoo

PC 하드웨어

PC(Personal Computer)

임배디드 시스템 하드웨어

Embedded System

ARM

ARM Holdings

영국의 반도체 회사

- 프로세서를 설계하고 라이센싱
- 소프트웨어 개발 도구 설계 및 판매(케일 등)

ARM Architecture

RISC 프로세서

Cortex-R

Fast response

Optimized for high performance, hard real-time applications

Cortex-M

Smallest/lowest power

Optimized for discrete processing and microcontrollers

	Cortex-A	Cortex-R	Cortex-M
설계	고주파 클럭, 긴 파이프 라인, 고성능, 멀티 미디어 지원 (NEON 명령어 세트 확장)	고주파 클럭, 중간에서 긴 길이의 파이프 라 인, 확정적 (저지연 인터럽트)	보통 더 짧은 파이프라인, 초저전력, 확정적 (저지연 인터럽트)
시스템 기능	메모리 관리 장치(MMU), 캐시 메모리, ARM TrustZone 보안 확장	메모리 보호 장치(MPU), 캐시 메모리, 밀착 결합 메모리(Tightly Coupled Memory)	메모리 보호 장치(MPU), 중첩 벡터형 인터 럽트 컨트롤러(NVIC), 웨이크업 인터럽트 컨 트롤러(WIC), 최신 ARM TrustZone 보안 기 능 확장
용도	모바일 컴퓨팅, 스마트폰, 에너지 효율 서버, 하이엔드 마이크로프로세서	산업용 마이크로컨트롤러, 자동차, 하드디스 크 컨트롤러, 베이스밴드 모뎀	마이크로컨트롤러, 심층 임베디드(Deeply embedded) 시스템 (예: 센서, MEMS, 혼합 신호 IC), 사물인터넷 (IoT)

프로세스	설 명
Cortex-M0	저비용, 초저전력 마이크로컨트롤러 및 고도의 임베디드 애플리케이션용 초소형 프로세서(12K 게이트에서 시작)
Cortex-M0+	소형 임베디드 시스템을 위한 최고 수준의 에너지 효율 프로세서. Cortex-M0 프로세서와 비슷한 크기와 프로그래머 모델이지만 단일 사이클 I/O 인터페 이스와 벡터 테이블 재배치등 추가 기능이 포함되어 있다.
Cortex-M1	FPGA 설계에 최적화된 소형 프로세서 설계이며 FPGA의 메모리 블록을 통해 밀착 결합 메모리(Tightly Coupled Memory)를 구현한다. Cortex-M0과 동일 한 명령어 세트
Cortex-M3	복잡한 작업을 보다 신속하게 처리할 수 있도록 많은 명령어가 설정된 저전력 마이크로 컨트롤러를 위한 작지만 강력한 임베디드 프로세서. 하드웨어 디 바이더(Hardware Divider)와 Multiply-Accumulate(MAC) 명령어를 탑재하고 있다. 이와 함께 소프트웨어 개발자가 애플리케이션을 더 빠르게 개발할 수 있도록 포괄적인 디버그 및 추적 기능을 지원한다.
Cortex-M4	이 프로세서는 Cortex-M3의 모든 기능을 제공하며, Single Instruction Multiple Data(SIMD)와 보다 빠른 단일 사이클 MAC 연산과 같은 디지털 신호 처 리(Digital Signal Processing) 작업에서 추가 명령어 대상을 제공한다. 또한 IEEE 754 부동 소수점 표준을 지원하는 단정도(Single Precision) 부동 소수점 유닛 (옵션)도 제공한다.
Cortex-M7	하이엔드 마이크로컨트롤러 및 프로세싱 집약적인 애플리케이션용 고성능 프로세서. Cortex-M4에서 사용할 수 있는 모든 ISA 기능과 캐시 및 밀착 결합 메모리(Tightly Coupled Memory)와 같은 추가 메모리 기능뿐만 아니라 배정도(double precision) 부동 소수점을 위한 추가 지원을 제공한다.
Cortex-M23	초저전력과 저비용 설계용으로 설계된 소형 프로세서로 Cortex-M0+ 프로세서와 비슷하지만 명령어 세트 및 시스템 수준의 기능이 다양하게 향상됐다. 이와 함께 TrustZone 보안 기능 확장을 지원한다.
Cortex-M33	기존 Cortex-M3및 Cortex-M4 프로세서와 비슷하지만 더욱 향상된 유연성을 갖춘 시스템 설계와 보다 나은 에너지 효율성과 성능을 제공하는 주류 프로 세서 설계. 또한 이 프로세서는 TrustZone 보안 확장을 지원한다.

Architecture	설 명
ARMv6-M	Cortex-M0, Cortex-M0+ 및 Cortex-M1 프로세서용.
ARMv7-M	Cortex-M3, Cortex-M4 및 Cortex-M7 프로세서용. DSP 유형의 명령어 (예: SIMD)를 지원하기 위한 ARMv7-M의 확장은 ARMv7E-M으로 명 명된다.
ARMv8-M	이 아키텍처 릴리스는 다음과 같이 나뉘어진다. Cortex-M23 프로세서용 Baseline 서브 프로파일 Cortex-M33 프로세서용 Mainline 서브 프로파일

Command Set

Command Set

Exception Type	ARMv6-M (Cortex-M0/M0+/M1)	ARMv7-M (Cortex-M3/M4/M7)	ARMv8-M Baseline (Cortex-M23)	ARMv8-M Mainline (Cortex-M33)	Vector Table	Vector address offset (initial)
495 256		Not supported in Cortex-M3/M4/M7	Not supported in Cortex-M23		Interrupt#479 vector 1	0x000007BC
255				Device Specific	Interrupt#239 vector 1	0x000003FC
31	Device Specific	Device Specific Interrupts	Device Specific Interrupts		Interrupt#31 vector 1	0x000000BC
17	Interrupts				Interrupt#1 vector 1	0x00000044
16					Interrupt#0 vector 1	0x00000040
15	SysTick	SysTick	SysTick	SysTick	SysTick vector	0x0000003C
14	PendSV	PendSV	PendSV	PendSV	PendSV vector	0x00000038
13	Not used	Not used	Not used	Not used	Not used	0x00000034
12	Not used	Debug Monitor	Not used	Debug Monitor	Debug Monitor vector 1	0x00000030
11	SVC	SVC	SVC	SVC	SVC vector 1	0x0000002C
10					Not used	0x00000028
9		Not used		Not used	Not used	0x00000024
8		Not used			Not used	0x00000020
7	Not used		Not used	SecureFault	SecureFault (ARMv8-M Mainline) 1	0x0000001C
6		Usage Fault		Usage Fault	Usage Fault vector 1	0x00000018
5		Bus Fault		Bus Fault	Bus Fault vector 1	0x00000014
4		MemManage (fault)		MemManage (fault)	MemManage vector 1	0x00000010
3	HardFault	HardFault	HardFault	HardFault	HardFault vector 1	0x0000000C
2	NMI	NMI	NMI	NMI	NMI vector 1	80000000x0
1				in de	Reset vector	0x00000004
0					MSP initial value	0x00000000

Protected environment (Secure world)

Secure software (examples)

- Secure boot
- Cryptography libraries
- Authentication
- RTOS support APIs / RTOS

Secure resources

- Secure storages
- · Crypto accelerators, TRNG

ARM'TRUSTZONE' System Security

Secure

Handler mode

Thread mode

Non-Secure

Handler mode

Thread mode

Normal environment (Non-secure world)

Applications (examples)

- User applications
- RTOS
- Device drivers
- Protocol stacks

Normal resources

General peripherals

STM32

STMicroelectronics

스위스 제네바에 본사를 둔 전자제품과 반도체를 생산하는 기업

STM32

32-bit ARM Cortex-m processor core를 사용하는 STMicroelectronics에서 생산하는 Microcontroller 재품군

STM32

High-performance

STM32H7 se	ries – High _I	performan	e with D	SP, Double-	precision	FPU, JPEG C	odec and	Chrom-ART	Accelerate	or™
400 MHz Cortex-M7 L1-Cache	Up to 2-Mbyte dual-bank Flash	Up to 1-Mbyte SRAM	2x USB 2.0 OTG FS/HS	2x 16-bit advanced MC timer HR timer	HDMI-CEC Ethernet	Quad-SPI FMC MDIO Camera IF SDIO	Crypto- hash TRNG		3x 16-bit ADC 0p-amps comp.	STM32 H7
STM32F7 series – High performance with DSP, FPU, ART Accelerator™ and Chrom-ART Accelerator™										
216 MHz Cortex-M7 L1-Cache	Up to 2-Mbyte dual-bank Flash	Up to 512-Kbyte SRAM		2x 16-bit advanced MC timer	DFSDM HDMI-CEC Ethernet S/PDIF	Quad-SPI FMC MDIO Camera IF SDIO	Crypto- hash TRNG	2x SAI 2x I ² S LCD-TFT Up to 3x CA	MIPI- DSI	STM32 F7
STM32F4 se	ries – High p	erformand	e with DS	SP, FPU, AR	T Accelera	tor™ and Ch	rom-ART	Accelerator"	1	
Up to 180 MHz Cortex-M4	Up to 2-Mbyte dual-bank Flash	Up to 384-Kbyte SRAM		2x 16-bit advanced MC timer	DFSDM HDMI-CEC Ethernet S/PDIF	Quad-SPI FMC MDIO Camera IF SDIO	Crypto- hash TRNG	2x SAI 5x I ² S LCD-TFT Up to 2x CA	MIPI- DSI	STM32 F4
STM32F2 se	ries – High p	erformano	e with AF	RT Accelera	tor™					
120 MHz Cortex-M3 CPU	Up to 1-Mbyte Flash	Up to 128-Kbyte SRAM		2x 16-bit advanced MC timer	Ethernet	FSMC Camera IF SDIO	Crypto- hash TRNG	2x I ² S Up to 2x CAN		STM32 F2

Mainstream

72 MHz Cortex-M4	Up to 512-Kbyte Flash	Up to 80-Kbyte SRAM CCM-RAM	USB 2.0 FS	3x 16-bit advanced MC timer	7x comp.	FSMC CAN	HR-Timer	ADC 3x 16-bit ΣΔ 4x 12-bit (5 MSPS)	STM
STM32F1 se	ries – Mains	stream							
Up to 72 MHz Cortex-M3 CPU	Up to 1-Mbyte Flash	Up to 96-Kbyte SRAM	USB 2.0 OTG FS	2x 16-bit advanced MC timer	HDMI-CEC Fthernet	FSMC SDIO	2x I ² S 2x CAN		STM
STM32F0 se	ries – Entry				a alla				
48 MHz Cortex-MO CPU	Up to 256-Kbyte Flash	Up to 32-k SRAM 20-byt backup c	e 2.0	USB FS device ystal less	Comp. HDMI-CEC	CAN DAC			STM

Ultra-Low-Power

OTHIOZETT O		LOW TOWN		r crioinia				a tala omoniy	ART Accelerator™
120 MHz Cortex-M4 CPU	Up to 2-Mbyte dual-bank Flash	Up to 640-Kbyte SRAM		2x 16-bit advanced MC timer	DFSDM Op-amps	2x Octo-SPI FSMC SDIO 2x SAI	AES-256 TRNG CAN	MIPI-DSI LCD-TFT Chrom-GRC™	STM32 L4+
STM32L4 se	TM32L4 series – Ultra-Low-Power and Performance with DSP, FPU, ART Accelerator™ and Chrom-ART Accelerator™								
80 MHz Cortex-M4 CPU	Up to 1-Mbyte dual-bank Flash	Up to 320-Kbyte SRAM	2.0 OTG	2x 16-bit advanced MC timer	Op-amps	ESMC	SHA-256 AES-256 TRNG 2x CAN	Up to LCD 8x40	STM32 L4
STM32L1 se	STM32L1 series – Ultra-Low-Power								
32 MHz Cortex-M3 CPU	Up to 512-Kbyte Flash	Up to 80-Kbyte SRAM	Up to 16-Kbyte EEPROM		Op-amps comp.	FSMC SDIO	AES-128	Up to LCD 8x40	STM32 L1
STM32L0 se	ries – Ultra-	Low-Powe	r		1000			8	
32 MHz Cortex-M0+ CPU	Up to 192-Kbyte SRAM	Up to 20-Kbyte SRAM	Up to 6-Kbyte EEPROM		S DAC e comp.	LP ADC 12-/16-bit	TRNG AES-128	LCD 8x48 / 4x52	STM32 LO

Wireless

64 MHz	Un to	Un to	HSR 2 0 FS	1v 16-bit	Cortex-MO+	LP ADC	Ouad-SPI	PKA	LCD	~
Cortex-M4	1-Mhyte	256-Khyte	Crystal less	advanced	Cortex-M0+ BLE 5.0	12x-16bit	1x SAI	AES-256	8x40	
CPU	Flash		BCD / LPM			2v comp		TRNG	4x44	STM32 R

^{*} Customer Key Storage

실습보드

B-L475E-IOT01A

실습보드

B-L475E-IOT01A

실습보드

STM32L475

개발환경 구축

STM32CubeMX 설치

다운로드 https://www.st.com/en/development-tools/stm32cubemx.html

License Agreement

ACCEPT

Please indicate your acceptance or NON-acceptance by selecting "I ACCEPT" or "I DO NOT ACCEPT" as indicated below in the media.

BY INSTALLING COPYING, DOWNLOADING, ACCESSING OR OTHERWISE USING THIS SOFTWARE PACKAGE OR ANY PART THEREOF (AND THE RELATED DOCUMENTATION) FROM STMICROELECTRONICS INTERNATIONAL N.V, SWISS BRANCH AND/OR ITS AFFILIATED COMPANIES (STMICROELECTRONICS), THE RECIPIENT, ON BEHALF OF HIMSELF OR HERSELF, OR ON BEHALF OF ANY ENTITY BY WHICH SUCH RECIPIENT IS EMPLOYED AND/OR ENGAGED AGREES TO BE BOUND BY THIS SOFTWARE PACKAGE LICENSE AGREEMENT.

Under STMicroelectronics' intellectual property rights and subject to applicable licensing terms for any third-party software incorporated in this software package and applicable Open Source Terms (as defined here below), the redistribution, reproduction and use in source and binary forms of the software package or any part thereof, with or without modification, are permitted provided that the following conditions are met:

www.**Code**Zoo.co.kr

개발환경 구축

TrueSTUDIO 설치

다운로드 https://atollic.com/resources/download/

Windows installers

Last Name*				
Country*				
- Please Select - *				
and Privacy Policy. Software License Agreement, Terms of Use and				
the Privacy Policy) will keep a record of my ormation as well as the personal data I have purposes relevant to my interests. My it affiliates and distributors of ST in countries distributors of the European Union for the same ere.				

개발환경 구축

STM32L4 Library 설치

LED Blinky

LED 회로

Reference	Color	Name	Comment
B1	black	Reset	-20
B2	blue	Wake-up	Alternate function Wake-up
LD1	areen	LED1	PA5 (alternate with ARD.D13)
LD2	green	LED2	PB14
LD3	yellow	LED3 (Wi-Fi)	PC9, Wi-Fi activity
LD4	blue	LED4 (BLE)	PC9, Bluetooth activity
LD5	green	5V Power	5 V available
LD6	Bicolor (red and green)	ST-LINK COM	green when communication
LD7	red	Fault Power	Current upper than 750 mA
LD8	red	V _{BUS} OCRCR	PE3
LD9	green	V _{BUS} OK	5 V USB available

LED Blinky

LED Blinky

LED Blinky

LED Blinky

LED Blinky

TrueSTUDIO code Import

LED Blinky

TrueSTUDIO code Import

LED Blinky - Example

UART (Universal Asynchronous serial Receiver and Transmitter)

1 대 1통신

비동기 통신 - 동기를 위한 클럭신호를 사용하진 않음

- Baud Rate
- 데이터 전송 속도로 Bit-per-Second(bps)단위로 표시

데이터 구조

- start bit: 통신의 시작을 의미하며 한 비트 시간 길이 만큼 유지한다. 지금 부터 정해진 약속에 따라 통신을 시작한다.
- data bit: 5~8비트의 데이터 전송을 한다. 몇 비트를 사용할 것인지는 해당 레지스터 설정에 따라 결정된다.
- Parity bit: 오류 검증을 하기 위한 패리티 값을 생성하여 송신하고 수신쪽에 오류 판단한다. 사용안함, 짝수, 홀수 패리티 등의 세가지 옵션 으로 해당 레지스터 설정에 따라 선택할 수 있다. '사용안함'을 선택하면 이 비트가 제거된다.
- Stop bit: 통신 종료를 알린다. 세가지의 정해진 비트 만큼 유지해야 한다. 1, 1.5, 2비트로 해당 레지스터 설정에 따라 결정된다.

비트 수	1	2	3	4	5	6	7	8	9	10	11
	시작 비트 (Start bit)		0		5–8	데이터 비트	17:	11/1		패리티 비트 (parity bit)	종료 비트 (Stop bit(s))
	Start	Data 0	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6	Data 7	Parity	Stop

UART (Universal Asynchronous serial Receiver and Transmitter)

통신 속도 예)

9600 8N1 : 9600 baud rates, 8 data bits, no parity, 1 stop bit 9600 bps 속도로 보내므로 각 비트는 1/(9600 pbs) = 104us이고 8bit 전송시 start bit, stop bit를 더해 10bit 패킷을 사용하므로 초당 960byte를 전송할 수 있다.

UART 회선 연결 방법

UART (Universal Asynchronous serial Receiver and Transmitter)

Debug Uart 회로

90	PB4	TIM3_CH1	ARD.D5-PWM
91	PB5	GPIO_Output	SPSGRF-915-SPI3_CSN
92	PB6	USART1_TX	ST-LINK-UART1_TX
93	PB7	USART1_RX	ST-LINK-UART1_RX
94	ВООТ0	Boot	ВООТ0
0.5	555	1004 001	ADD B45 1004 001

UART (Universal Asynchronous serial Receiver and Transmitter) CubeMX를 이용해서 Uart code 추가

UART - **Example**

printf()함수 출력

TrueSTUDIO

printf()에서 float 출력 설정

www.**Code**Zoo.co.kr

감사합니다.