Importing the required libraries

```
#Importing tensorflow libraries
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
from tensorflow.keras import optimizers

#Importing required libraries
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_import matplotlib.pyplot as plt
import seaborn as sns
```

→ 1. Read the dataset.

```
from google.colab import drive

drive.mount('/content/drive/')
    Drive already mounted at /content/drive/; to attempt to forcibly remount, call d:

dataset_file = '/content/drive/MyDrive/Colab Notebooks/PG AIML Deep Learning Project/k

df = pd.read_csv(dataset_file)

df.head()
```

Basic Profiling of dataset

```
print ("Shape of Data")
print (df.shape)
print ("")
print ("Columns")
print (df.columns)
print ("")
    Shape of Data
    (10000, 14)
    Columns
    'IsActiveMember', 'EstimatedSalary', 'Exited'],
          dtype='object')
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10000 entries, 0 to 9999
    Data columns (total 14 columns):
     # Column
                    Non-Null Count Dtype
    ---
                           _____
                       10000 non-null int64
10000 non-null int64
     0 RowNumber
     1 CustomerId
                          10000 non-null object
     2 Surname
     3 CreditScore 10000 non-null int64
4 Geography 10000 non-null object
5 Condor 10000 non null object
                         10000 non-null object
     5 Gender
                         10000 non-null int64
     6 Age
                         10000 non-null int64
     7 Tenure
     8 Balance 10000 non-null float64
9 NumOfProducts 10000 non-null int64
10 HasCrCard 10000 non-null int64
11 IsActiveMember 10000 non-null int64
     12 EstimatedSalary 10000 non-null float64
                           10000 non-null int64
     13 Exited
    dtypes: float64(2), int64(9), object(3)
    memory usage: 1.1+ MB
df.describe()
```

		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000
df.i	snull()	.sum()					
	RowNumber CustomerId Surname CreditScore Geography Gender		0				
			0				
			0				
			0				
			0				
			0				
	Age		0				
	Tenure		0				
	Balance		0				
	NumOfProducts 0		0				
			0				
	IsActiveMember 0 EstimatedSalary 0		0				
			0				
	Exited		0				
	dtype:	int64					

2. Drop the columns which are unique for all users like IDs

```
# to check if we have any duplicate records for the same customer
for i, j in enumerate (df.columns):
    print ( 'column Name : %s' %str(j)+ ' ----> Unique : %s' %str(df[j].is unique
    column Name : RowNumber ----> Unique : True
    column Name : CustomerId ----> Unique : True
    column Name : Surname ----> Unique : False
    column Name : CreditScore ----> Unique : False
    column Name : Geography ----> Unique : False
    column Name : Gender ----> Unique : False
    column Name : Age ----> Unique : False
    column Name : Tenure ----> Unique : False
    column Name : Balance ----> Unique : False
    column Name : NumOfProducts ----> Unique : False
    column Name : HasCrCard ----> Unique : False
    column Name : IsActiveMember ----> Unique : False
    column Name : EstimatedSalary ----> Unique : False
    column Name : Exited ----> Unique : False
```

```
# Preserving original dataset
df raw = df
# Dropping RowNumber and CustomerId
df=df.drop(['RowNumber','CustomerId'],axis=1)
df.shape
    (10000, 12)
# Surname may not add any value and so dropping that column as well
# Dropping Surname
df=df.drop(['Surname'],axis=1)
df.columns
    Index(['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance',
            'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary',
            'Exited'],
          dtype='object')
Object columns: [Geography, Gender]
df['Geography'].unique().shape
    (3,)
df['Gender'].unique().shape
    (2,)
df.columns
    Index(['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance',
            'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary',
            'Exited'],
          dtype='object')
```

3. Perform bivariate analysis and give your insights from the same (5 points)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3f920e3c50>


```
# We first review the 'Status' relation with categorical variables
fig, axarr = plt.subplots(2, 2, figsize=(20, 12))
sns.countplot(x='Geography', hue = 'Exited',data = df, ax=axarr[0][0])
sns.countplot(x='Gender', hue = 'Exited',data = df, ax=axarr[0][1])
sns.countplot(x='HasCrCard', hue = 'Exited',data = df, ax=axarr[1][0])
sns.countplot(x='IsActiveMember', hue = 'Exited',data = df, ax=axarr[1][1])
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f3f908ceb70>

Insights

- (2000 out of 10000) 20% of total customers have exited status
- France has more customers than other two countries (Spain & Germanny)
- Looking at the bar graph, % of exited status is more in Female than that of male
- It looks like, customers with credit card churning out more than that of customers with no credit card
- . As expected, Non-Active member churning out more than that of Active members

```
# We first review the 'Status' relation with categorical variables
fig, axarr = plt.subplots(2, 3, figsize=(20, 12))
sns.histplot(data=df, x="CreditScore", hue="Exited",ax=axarr[0][0])
sns.histplot(data=df, x="Age", hue="Exited",ax=axarr[0][1])
sns.histplot(data=df, x="Tenure", hue="Exited",ax=axarr[0][2])
sns.histplot(data=df, x="Balance", hue="Exited",ax=axarr[1][0])
sns.histplot(data=df, x="EstimatedSalary", hue="Exited",ax=axarr[1][1]])
```


Insights

- · Credit Score is uniformly distributed for both retained and churned customers
- Per Age distribution chart, younger customers looks to be more retained than that of old customers
- Balance also looks to be uniformly distributed for othe retained and churned customers

4. Distinguish the feature and target set and divide the data set into training and test sets (5 points)

df.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	619	France	Female	42	2	0.00	1	1
1	608	Spain	Female	41	1	83807.86	1	C
2	502	France	Female	42	8	159660.80	3	1
3	699	France	Female	39	1	0.00	2	C
4	850	Spain	Female	43	2	125510.82	1	1

```
are _counts()
    0
        7963
    1
        2037
    Name: Exited, dtype: int64
df.columns
    'Exited'],
         dtype='object')
df.shape
    (10000, 11)
#one hot encoding for categorical columns:
df = pd.get dummies(df, columns=['Geography', 'Gender'])
df.columns
    Index(['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
           'IsActiveMember', 'EstimatedSalary', 'Exited', 'Geography_France',
           'Geography_Germany', 'Geography_Spain', 'Gender_Female', 'Gender_Male'],
         dtype='object')
df.shape
    (10000, 14)
X data=df[['CreditScore', 'Geography France',
      'Geography_Germany', 'Geography_Spain', 'Gender_Female', 'Gender_Male', 'Age',
      'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary']]
y_data=df[['Exited']]
X train, X test, y train, y test = train test split(X data, y data, test size = 0.3, 1
print(X_train.shape)
print(X test.shape)
print(y_train.shape)
print(y_test.shape)
    (7000, 13)
    (3000, 13)
```

```
(7000, 1)
(3000, 1)
```

▼ 5. Normalize the train and test data (10points)

```
from sklearn.preprocessing import StandardScaler
# create scaler
scaler = StandardScaler()
# fit and transform in one step
X_train = scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)
# inverse transform
#inverse = scaler.inverse_transform(standardized)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
    (7000, 13)
    (3000, 13)
    (7000, 1)
    (3000, 1)
```

6. Initialize & build the model. Identify the points of improvement and implement the same. (20)

```
#creating an empty model
model = Sequential()

#Adding layers:
#Output layer with sigmoid for binary classification
model.add(Dense(64, input_shape = (13,), activation = 'relu'))
model.add(Dense(32, activation = 'relu'))
model.add(Dense(1, activation = 'sigmoid'))
model.summary()

Model: "sequential"
```

```
Output Shape
                                                            Param #
    Layer (type)
    dense (Dense)
                                  (None, 64)
                                                            896
    dense 1 (Dense)
                                  (None, 32)
                                                            2080
    dense 2 (Dense)
                                                            33
                                  (None, 1)
    _____
    Total params: 3,009
    Trainable params: 3,009
    Non-trainable params: 0
sgd = optimizers.Adam(lr = 0.01)
model.compile(optimizer = 'sgd', loss = 'binary_crossentropy', metrics = ['accuracy'])
# After many iterations on batch_size, epoch, settled on batch_size = 10 and epochs =
history = model.fit(X train, y train ,validation split=0.10, batch size = 10, epochs =
# plot loss during training
from matplotlib import pyplot
pyplot.subplot(211)
pyplot.title('Loss')
pyplot.plot(history.history['loss'], label='train')
pyplot.plot(history.history['val_loss'], label='test')
pyplot.legend()
# plot accuracy during training
pyplot.subplot(212)
pyplot.title('Accuracy')
pyplot.plot(history.history['accuracy'], label='train')
pyplot.plot(history.history['val_accuracy'], label='test')
pyplot.legend()
pyplot.show()
```

▼ 7. Predict the results using 0.5 as a threshold

```
#prediction variable
y_pred = model.predict(X_test)
y_pred = (y_pred > 0.5).astype(int)
```

→ 8. Print the Accuracy score and confusion matrix

```
#Model score calculation
from sklearn.metrics import accuracy_score
score=accuracy_score(y_pred,y_test)
print ("Accuracy :" +str(score))

Accuracy :0.854

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
```

```
precision
                            recall f1-score
                                                 support
                    0.89
                               0.94
                                         0.91
                                                    2395
                    0.68
                               0.52
                                          0.59
                                                     605
                                         0.85
                                                    3000
    accuracy
                               0.73
                                          0.75
                                                    3000
                    0.78
   macro avq
weighted avg
                    0.84
                               0.85
                                          0.85
                                                    3000
```

```
conf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_matrix,annot=True,fmt = "d",square = True,
    xticklabels=["not churn","churn"],
    yticklabels=["not churn","churn"],
    linewidths = 2,linecolor = "w",cmap = "Set1")
plt.subplots_adjust(wspace = .3,hspace = .3)
```

