

Learning

BN Structure

General Graphs: Search

Optimization Problem

Input:

- Training data
- -Scoring function
- -Set of possible structures

Output: A network that maximizes the score

Beyond Trees

- Problem is not obvious for general networks
 - Example: Allowing two parents, greedy algorithm is no longer guaranteed to find the optimal network

· Theorem:

 Finding maximal scoring network structure with at most k parents for each variable is NP-hard for k>1

Heuristic Search

Heuristic Search

- Search operators:

 local steps: edge addition, deletion, reversal
 global steps
- Search techniques:

 Greedy hill-climbing
 Best first search
 Simulated Annealing

Search: Greedy Hill Climbing

- Start with a given network
 - -empty network
 - -best tree
 - -a random network
 - -prior knowledge
- At each iteration
 - -Consider score for all possible changes
 - -Apply change that most improves the score

• Stop when no modification improves score

Greedy Hill Climbing Pitfalls

Greedy hill-climbing can get stuck in:

Local maximaPlateaux

• Typically because equivalent networks are often neighbors in the search space

Why Edge Reversal

A Pretty Good, Simple Algorithm

- Greedy hill-climbing, augmented with:
- Random restarts:
 - When we get stuck, take some number of random steps and then start climbing again abu list:
- Tabu list:
 - Keep a list of K steps most recently taken
 - Search cannot reverse any of these steps

Daphne Koller

JamBayes

Predicting Surprises

Horvitz, Apacible, Sarin, & Liao, UAI 2005

Learned Model

Horvitz, Apacible, Sarin, & Liao, UAI 2005

Influences in Learned Model

This figure may be used for non-commercial and classroom purposes only. Any other uses require the prior written permission from AAAS

From "Causal protein-signaling networks derived from multiparameter single-cell data" Sachs et al., *Science* 308:523, 2005. Reprinted with permission from AAAS.

Summary

- Useful for building better predictive models:
 - when domain experts don't know the structure
 - for knowledge discovery
- Finding highest-scoring structure is NP-hard
- Typically solved using simple heuristic search
 - local steps: edge addition, deletion, reversal
 - hill-climbing with tabu lists and random restarts
- But there are better algorithms