MP*: Calcul différentiel

Coralie RENAULT

1^{er} avril 2015

Exercice

Trouver les points sur le paraboloïde $z=4x^2+y^2$ où le plan tangent est parallèle au plan x + 2y + z = 6.

Exercice

Soit la fonction f définie sur \mathbb{R}^2 par $f(x,y) = x^2 - 2y^3$.

- Déterminer l'équation du plan tangent P_{M_0} au graphe G_f de f en un point quelconque
- M_0 de G_f .

 Pour le point M_0 de coordonnées (2,1,2), déterminer tous les points M tel que le plan tangent en M soit parallèle à P_{M_0} .

Exercice

Soit c > 0. En réalisant le changement de variables

$$\begin{cases} u = x + ct \\ v = x - ct \end{cases}$$

déterminer les fonctions $f:(x,t)\mapsto f(x,t)$ de classe \mathcal{C}^2 sur \mathbb{R}^2 solutions de l'équation aux dérivées partielles

$$\frac{\partial^2 f}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2}$$

Exercice

Donner l'équation du plan tangent à la surface d'équation $z = x^4 - y^2$ au point (2, 3, 7).

Exercice

Soit $f:\mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \frac{xy^3}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$

1

- a) Montrer que f est de classe C^1 sur \mathbb{R}^2 .
- b) Le théorème de Schwarz est-il vérifié?

Exercice (Fonctions harmoniques)

Une fonction de classe C^2 est dite harmonique si, et seulement si, son laplacien

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

est nul.

- a) Montrer que si f est harmonique et de classe \mathcal{C}^3 alors $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ et $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$ le sont aussi. On suppose que $f: \mathbb{R}^2 \setminus \{(0,0)\}$ est radiale i.e. qu'il existe une fonction $\varphi: \mathbb{R}^{+\star} \to \mathbb{R}$ de classe \mathcal{C}^2 telle que $f(x,y) = \varphi(x^2 + y^2)$.
- b) Montrer que f est harmonique si, et seulement si, φ' est solution d'une équation différentielle qu'on précisera.
- c) En résolvant cette équation, déterminer f.

Exercice

Trouver les extrema sur \mathbb{R}^2 de

$$f(x,y) = x^4 + y^4 - 2(x-y)^2$$

Exercice

Déterminer les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ $(x,y) \to f(x,y)$, de classe \mathcal{C} telles que

$$\frac{\partial^2 f}{\partial x^2} + 2\frac{\partial^2 f}{\partial x \partial y} - 3\frac{\partial^2 f}{\partial y^2} = 0$$

Exercice

Soit $f \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R}^n)$ dont la matrice jacobienne est, en tout point, antisymétrique. Montrer qu'il existe $b \in \mathbb{R}^n$ et $A \in \mathcal{M}_n(\mathbb{R})$ antisymétrique tels que :

$$\forall x \in \mathbb{R}^n, f(x) = Ax + b$$

Exercice

Trouver les extrema sur \mathbb{R}^2 de

$$f(x,y) = x^4 + y^4 - 4xy$$

Exercice

On définit une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ par

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- a) Montrer que f est de classe \mathcal{C}^1 .
- b) La fonction f est-elle de classe C^2 ?

Exercice

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On définit

$$F(x) = \int_{2x}^{x^3} f(x+1,t) \, dt$$

Démontrer que F est dérivable sur $\mathbb R$ et préciser sa dérivée.