Analiza Szeregów Czasowych Prognozowanie Szeregów Czasowych

Natalia Nehrebecka

1

Cel analizy szeregów czasowych

- Podstawowym celem analizy szeregów czasowych jest:
 - zbudowanie modelu, który będzie dobrze opisywał dynamikę czasowa obserwowanego zjawiska
 - i który może być następnie wykorzystany do prognozowania przyszłych (nieznanych) wartości

Zadania analizy szeregów czasowych

- Dwa główne zadania ASC:
 - identyfikacja regularnych tendencji (tzw. dekompozycja szeregu czasowego),
 - prognozowanie.

Agenda

- Zanim zaczniemy
 - Zasady zaliczenia
- Szeregi czasowe
 - Dane statystyczne
 - Podstawowe definicje
 - Praktyka

Agenda

- Zanim zaczniemy
 - Zasady zaliczenia
- Szeregi czasowe
 - Dane statystyczne
 - Podstawowe definicje
 - Praktyka

Sprawy organizacyjne

- adres mailowy: nnehrebecka@wne.uw.edu.pl

- strona internetowa: www.ekonometria.wne.uw.edu.pl

- dyżur: **po uzgodnieniu mailowym**

- 3 nieobecności

Zasady zaliczenia

- Zajęcia mają formę konwersatorium.
- Forma zaliczenia:
 - raport z badania 100 punktów,
- warunek dodatkowy: należy uzyskać co najmniej 50 punktów.

Obecność podczas zajęć jest obowiązkowa.

Projekt zaliczeniowy

- Praca zaliczeniowa jest pracą samodzielną.
- Polega na modelowaniu i prognozowaniu dwóch szeregów czasowych:
 - niesezonowego
 - sezonowego.
- Celem projektu jest dokonanie:
 - o dekompozycji szeregu czasowego,
 - zbadanie stacjonarności/sezonowości szeregu,
 - dopasowanie odpowiedniego modelu z klasy ARIMA/SARIMA,
 - dokonanie prognozy z modelu klasy ARIMA (<u>prognoza krótkookresowa: 2-3 okresy</u>),
 - od pewnego momentu prognozy w modelach ARIMA zaczynają zbiegać do średniej i najlepiej prognozować za pomocą tych modeli na tyle okresów do przodu ile wynosi rząd modelu
 - dokonanie prognozy z modelu klasy SARIMA (prognoza obejmująca minimum 1 pełen cykl: 4 obserwacje dla danych kwartalnych, oraz 12 obserwacji dla danych miesięcznych).
 - oraz prognozy za pomocą modeli ekstrapolacyjnych.

Projekt zaliczeniowy

- Publikacje online mogą stanowić wartość dodaną do profesjonalnego portfolio!
 - Rpubs
 - https://rmarkdown.rstudio.com/authoring_basics.html

Ramowy plan na semestr

- I. Definicja szeregu czasowego
- II. Dekompozycja szeregu czasowego
- III. Modele ekstrapolacyjne
- IV. Prognozy i miary precyzji prognoz
- V. Definicja stacjonarności, badanie stacjonarności, integracja
- VI. Modele ARMA, ARIMA, SARIMA

Literatura

- Enders W. (2014), Applied Econometric Time Series, Wiley.
- Ghysels E., Osborn D.R. (2001), The econometric analysis of seasonal time series, Cambridge University Press.
- Pawełek B., Wanat S., Zeliaś A. (2003/2013), Prognozowanie ekonomiczne Teoria, przykłady, zadania, PWN.

Literatura

- Zagdanski & Suchwałko (2016) Analiza i prognozowanie szeregów czasowych: praktyczne wprowadzenie na podstawie srodowiska R, Wydawnictwo Naukowe PWN
- Cowpertwait & Metcalfe (2009) Introductory Time Series With R, Springer
- Biecek (2016) Przewodnik po pakiecie R
- Gagolewski (2014) Programowanie w jezyku R
- Cryer & Chan (2008) Time Series Analysis: With Applications in R, Springer
- Kirchgassner & Wolters & Hassler (2007) Introduction to Modern Time Series Analysis, Springer
- Shumway & Stoffer (2011) Time Series Analysis and Its Applications: With R Examples, Springer

Agenda

- Zanim zaczniemy
 - Zasady zaliczenia
- Szeregi czasowe
 - Dane statystyczne
 - Podstawowe definicje
 - Praktyka

Formy danych statystycznych

- Dane przekrojowe (cross sectional data)
 - wiele obiektów obserwowanych w jednej jednostce czasu.
- Szeregi czasowe (time series data)
 - jeden obiektów obserwowany w wielu jednostkach czasu.
- Dane panelowe (panel data, time series cross sectional data)

Dane panelowe

 Przykładem może być PKB per capita w poszczególnych krajach UE, w kolejnych latach.

Każda obserwacja w zbiorze panelowym jest indeksowana

podwójnie:

Po jednostkach

Po czasie

kraj	rok	У	X
Austria	2000	У	X
Austria	2001	У	X
Austria			
Austria	2005	У	X
Belgia	2000	У	X
Belgia	2001	У	X
•••			
 Belgia	2005		
 Belgia 	2005	 у	 X
 Belgia W. Brytania	2005 2000	 у 	 X
		 у у	
 W. Brytania	 2000	 у у у	 X
 W. Brytania	 2000	 у у у	 X

Proces stochastyczny

- Przez proces stochastyczny rozumiemy rodzinę zmiennych losowych o wartościach rzeczywistych, indeksowaną przez t, gdzie t oznacza czas.
- Proces stochastyczny oznaczamy jako zbiór $\{X_t\}$.
- Nażdy element $X_1, X_2, ... X_t$ procesu stochastycznego $\{X_t\}$ jest zmienną losową.

Proces stochastyczny

Proces stochastyczny z rosnącą średnią:

Proces stochastyczny

Proces stochastyczny ze stałą średnią:

Realizacja procesu stochastycznego

 Szereg czasowy – pojedyncza realizacja procesu stochastycznego

 Dla uproszczenia często utożsamia się szereg czasowy z procesem stochastycznym.

Szereg czasowy

PKB w Polsce w mln PLN (dane kwartalne)

Szereg czasowy

WIG20 – cena zamknięcia (dane dzienne)

Szereg czasowy

Liczba pasażerów linii lotniczych w USA (dane miesięczne)

RStudio

Po uruchomieniu systemu R kolejne pakiety można zainstalować funkcja install.packages().

- Poniższe polecenie instaluje pakiet Rcmdr wraz z pakietami zależnymi, wymaganymi do jego działania:
 - install.packages("Rcmdr", dependencies = TRUE)

RStudio

- Wszystkie pakiety są wgrywane jako podkatalogi do katalogu library na dysku twardym komputera.
 - Po uruchomieniu platformy R ładowane są pakiety podstawowe takie jak: base, graphics, stats, itp.
- Aby skorzystać z dodatkowych funkcji, należy załadować (włączyć) pakiet, w którym się one znajdują (po jego zainstalowaniu).
 - Pakiety włącza się poleceniem library(). Poniższa instrukcja włącza pakiet Rcmdr:
 - library(Rcmdr)
 - Gdyby ten pakiet nie był zainstalowany, to pojawiłby się poniżej przedstawiony komentarz:
 - Error in library(Rcmdr): there is no package called 'Rcmdr'

RStudio

- Wyświetlamy pomoc dotycząca funkcji plot():
 - ?plot
- Wyświetlamy przykłady użycia funkcji plot():
 - example(plot)
- Wyświetlamy funkcje ze słowem "test" w nazwie:
 - apropos("test")
- Wyświetlamy nazwy funkcji ze zwrotem "normality test" w opisie:
 - help.search("normality test")

Rstudio – ts objects

- Dane o regularnych odstępach czasu, które są oddzielone stałym przedziałem czasu
 - Takie dane są zwykle obserwowane miesięcznie, kwartalnie lub corocznie,

ważne ograniczenie obiektów ts

- Klasa ts jest raczej ograniczona, szczególnie w przypadku reprezentacji danych finansowych, które nie są regularnie rozmieszczone
- Na przykład klasa ts nie może być używana do reprezentowania dziennych danych finansowych, ponieważ takie dane są obserwowane tylko w dni robocze
 - działa od poniedziałku do piątku, z pominięciem weekendów
- Zatem dane są równomiernie rozłożone w czasie w ciągu tygodnia, ale odstęp między piątkiem a poniedziałkiem jest inny
- Tego typu nieregularnych odstępów nie można przedstawić za pomocą klasy ts

Rstudio – xts objects

- Bardzo elastyczna klasa dla szeregów czasowy
- Klasa została zaprojektowana do obsługi danych szeregów czasowych z dowolnie uporządkowanym indeksem czasowym
- Indeks ten może być regularnie rozmieszczoną sekwencją dat,
 nieregularnie rozmieszczoną sekwencją dat lub indeksem liczbowym

Dziękuję za uwagę