Федеральное государственное автономное образовательное учреждение высшего образования «Волгоградский государственный университет» институт Математики и информационных технологий кафедра Компьютерных наук и экспериментальной математики

До	пустить	работу к защите
3aı	в. каф. К	MEH
		Клячин В.А.
~		2020 г.

Курбанов Эльдар Ровшанович

Система управления и формирования поведенческой стратегии автономного мобильного робота на основе визуального анализа окружающего пространства

Выпускная квалификационная работа бакалавра по направлению 02.03.03 «Математическое обеспечение и администрирование информационных систем»

Студент	Курбанов Э. Р.			
	_	(дата, подпись)		
Научный	д.ф м.н., проф. каф.			
руководитель	КНЭМ Клячин В. А.			
	_	(дата, подпись)		
	к. фм. н., доц. каф.			
Нормоконтролер	КНЭМ Полубоярова			
	H.M. —	(zero zerzyer)		
	к.т.н., ст. преп. каф.	(дата, подпись)		
Рецензент	Радиофизики Глухов			
	А.Ю. —	(дата, подпись)		

Оглавление

		Стр.
Введени	ие	5
Глава 1	. Теория	7
1.1	Поведение робота	7
1.2	Анализ окружающего пространства	8
1.3	Об управлении	9
1.4	Форматирование текста	10
1.5	Ссылки	10
1.6	Формулы	11
	1.6.1 Ненумерованные одиночные формулы	11
	1.6.2 Ненумерованные многострочные формулы	12
	1.6.3 Нумерованные формулы	13
	1.6.4 Форматирование чисел и размерностей величин	14
	1.6.5 Заголовки с формулами: $a^2 + b^2 = c^2$,	
	$ \mathrm{Im}\Sigma\left(\varepsilon\right) \approx const, \sigma_{xx}^{(1)} \ldots \ldots \ldots \ldots$	15
1.7	Рецензирование текста	16
Глава 2	. Анализ	19
2.1	Анализ окружающего пространства	19
2.2	Шасси и система управления	19
2.3	Поведенческая стратегия робота	20
2.4	Вычислительная составляющая	21
2.5	Известные аналоги	21
	2.5.1 Nvidia Kaya	22
	2.5.2 Nvidia JetBot	22
	2.5.3 Сравнение с аналогами	23
2.6	Одиночное изображение	23
2.7	Длинное название параграфа, в котором мы узнаём как	
	сделать две картинки с общим номером и названием	24
2.8	Пример вёрстки списков	25
2.9	Традиции русского набора	27

		Cip
	2.9.1	Пробелы
	2.9.2	Математические знаки и символы
	2.9.3	Кавычки
	2.9.4	Тире
	2.9.5	Дефисы и переносы слов
2.10	Текст	из панграмм и формул
Глава 3	. Праг	ктика
3.1	_	іьный автономный робот
	3.1.1	Подбор шасси
	3.1.2	Движение шасси
3.2	Визуал	тьный анализ пространства
3.3	Форми	прование поведенческой стратегии робота
	3.3.1	Езда
	3.3.2	Поиск целевого объекта
3.4	Подро	бнее о программной части робота 41
	3.4.1	ROS
	3.4.2	Концепции ROS
	3.4.3	Узлы, используемые на роботе
3.5	Табли	ца обыкновенная 50
3.6	Табли	ца с многострочными ячейками и примечанием 51
3.7	Табли	цы с форматированными числами
3.8	Парагј	раф — два
3.9	Парагј	раф с подпараграфами
	3.9.1	Подпараграф — один
	3.9.2	Подпараграф — два
Заключ	ение .	
Список	сокра	щений и условных обозначений
Словар	ь терм	инов
Список	литер	атуры

	C	тр.
Список	г рисунков	65
Список	стаблиц	66
Прилох	кение А. Примеры вставки листингов программного кода .	67
Прилох	кение Б. Очень длинное название второго приложения,	
	в котором продемонстрирована работа	
	с длинными таблицами	73
Б.1	Подраздел приложения	73
Б.2	Ещё один подраздел приложения	75
Б.3	Использование длинных таблиц с окружением longtabu	79
Б.4	Форматирование внутри таблиц	82
Б.5	Стандартные префиксы ссылок	84
Б.6	Очередной подраздел приложения	85
Б.7	И ещё один подраздел приложения	85
Прилох	кение В. Чертёж детали	86

Ввеление

Актуальность данной работы обусловлена общей автоматизацией и «роботизацией» деятельности человека в условиях современной реальности. Решение поставленной задачи позволит в дальнейшем создать робота, умеющего не только объезжать разного вида помещения, но и ещё выполняющего какую-либо полезную функцию. Например, распознавание опасных объектов окружающего пространства или исследование состава атмосферы в каком-либо замкнутом пространстве.

В настоящий момент поставленная данной работой задача выполнена полностью. Однако, она требует значительных улучшений для каких-либо конкретных условий дальнейшего пребывания робота. Например, если испытуемый робот окажется на улице, то может случиться так, что целевой объект может быть так и не найден, в связи с тем, что окружающее пространство окажется слишком широким для угла обзора камеры, установленной на робота. Соответственно, данный конкретный случай должен быть учтён в алгоритме движения робота, но это не является задачей данной работы.

Целью данной работы является создание системы автоматического управления робота с учётом данных, получаемых от окружающего пространства, а также создание самого тестируемого образца робота и его аппаратной системы управления.

Для достижения поставленной цели необходимо было решить следующие **задачи**:

- 1. Исследовать предметную область робототехники¹ (аппаратную и программную часть);
- 2. Изучить существующие известные аналоги (в т.ч. зарубежные) и продумать как сделать робота ещё лучше;
- 3. Закупить необходимое оборудование, уложившись при этом в маленький бюджет;
- 4. Разработать схему управления роботом и соответствующее ПО;
- 5. Протестировать созданное изделие.

Научная новизна:

¹Робототехника не изучалась на протяжении всего курса обучения в университете.

- 1. Впервые в России был сделан робот с одновременным использованием технологии YDLIDAR, движением и распознаванием объектов окружающего пространства на базе платформы NVIDIA Jetson NANO²;
- 2. Создана программно-аппаратная база, на основе которой можно сделать робота, выполняющего иной функционал.

Практическая значимость данной работы заключается в том, что была решена задача создания своего собственного робота на базе относительно новой и ещё мало изученной платформы Jetson NANO со своим алгоритмом езды и следованием за целевыми объектами.

Методология и методы исследования. При разработке данной системы управления и формирования поведенческой стратегии автономного мобильного робота использовались такие методы эмпирического исследования, как наблюдение и эксперимент, а к методам теоретического исследования - анализ и синтез и восхождение от абстрактного к конкретному.

Объем и структура работы. Выпускная квалификационная работа состоит из введения, трёх глав, заключения и двух приложений. Полный объём ВКР составляет 86 страниц, включая 4 рисунка и 18 таблиц. Список литературы содержит 48 наименований.

²Возможно, это происходит не впервые, но других таких известных случаев не нашлось

Глава 1. Теория

Теоретическая часть данной работы будет описывать ту предметную область с которой пришлось столкнуться в ходе выполнения практической части.

1.1 Поведение робота

Прежде чем перейти к определению поведения будущего робота мы должны определить его главную задачу. А именно - поиск целевых объектов в замкнутом пространстве.

Для того чтобы выполнить данную задачу робот должен уметь объезжать то замкнутое пространство в котором он находится, распознавать объекты и уметь подъезжать к найденному целевому объекту. Здесь можно выделить две возможные стратегии, которые можно применять к данной задаче:

- 1. Сначала выполняется объезд всего доступного пространства, во время которого строится карта местности, а затем происходит выполнение на ней поиска целевых объектов;
- 2. Целевой объект ищется непосредственно во время объезда пространства. При этом объезд пространства происходит без составления карты.

К преимуществам первого подхода можно записать:

- Помимо поиска целевых объектов выполняется полное сканирование местности, что может пригодится для других задач;
- Возможно более «умное» построение маршрута при помощи, например, таких алгоритмов как А*;
- Можно найти все целевые объекты в данном замкнутом пространстве и примерно оценить их местоположение на отсканированной карте местности.

К недостаткам первого подхода относятся:

- Долгое время работы алгоритма: сначала нужно все объездить, оценить обстановку, а затем искать объекты;
- Требуется более сложная алгоритмическая составляющая: как минимум роботу нужно научиться прокладывать маршруты на динамически строящейся карте и уметь определять себя и целевые объекты на ней¹;

У второго подхода есть хоть и одно, но очень большое преимущество и это относительно «лёгкая» реализация: как в алгоритмическом, так и в плане производительности. Не требуется составлять карт, а значит и решать задачу SLAM, в связи с этим уменьшается вычислительная нагрузка на робота.

Недостатки второго подхода:

- Время поиска целевого объекта будет зависеть от удачи, так как карты местности не строится и угадать когда робот поедет к целевому объекту не просто;
- Полное сканирование местности не выполняется, а значит не все целевые объекты могут быть найдены в пространстве;

1.2 Анализ окружающего пространства

Основным сенсором при решении задачи визуального анализа окружающего пространства является видеокамера. Для того чтобы анализировать сигнал с видеокамеры требуется решить задачу машинного зрения. А именно требуется каким-то образом обрабатывать полученное изображение и исходя из этого строить стратегию движения.

Например, можно обучить нейронную сеть, которая распознаёт различные объекты и классифицирует их как опасные или целевые. Если робот видит опасный объект, он немедленно должен перестроить свой маршрут так, чтобы не столкнуться с ним. И если робот видит целевой объект, то он наооборот должен подъехать к нему, удостовериться в том, что это именно нужный целевой объект и сохранить его местоположение в энергонезависимой памяти.

¹По сути требуется решить задачу SLAM

В качестве дополнительного сенсора для визуального анализа пространства можно использовать также технологию Лидар, которая позволяет также получить некоторое изображение, представляющее собой облако точек, поддающееся анализу. По сути прибор, реализующий технологию Лидар представляет собой дальномер оптического диапазона, который замеряет угол и расстояние до точки (получаются полярные координаты) при помощи лазерного сканирования. Существует два основных типа сканирующих лидаров:

- 1. 3D лидар;
- 2. 2D лидар.

Первый позволяет получить 3D картинку. Обычно такой лидар оснащён подвижным лазером, который довольно долго сканирует перед собой окружающую местность. Примером результата такой работы может стать картинка, изображённая на Рисунке .

Второй соответственно уже создаёт двухмерное облако точек, которое также можно визуализировать в виде картинки, пример которой изображён на Рисунке. Такой лидар обычно сканирует область вокруг себя и имеет угол обзора 360 градусов. Лазер также является подвижным, но только в этот раз он просто движется вокруг своей оси.

1.3 Об управлении

Одна из задач, которую должен уметь решать мобильный автономный робот это задача передвижения. Потому как без него робот уже не будет полностью соответствовать своему критерию «мобильности». Движение для робота, применительно к конкретной задаче данной ВКР просто необходимо.

Для того чтобы робот двигался ему необходимо шасси. Шасси в основной своей массе по своей подвижной части подразделяются на те, что едят при помощи гусеничной ленты и те, что ездят на колёсах. Шасси на гусеницах обладают большей проходимостью и мобильностью в следствии того, что гусеницы позволяют, например, разворачивать робота на месте.

Для того чтобы управлять шасси роботу необходимы электродвигатели и контроллер движения для них, но подробнее речь об этом зайдёт в главе 3.

1.4 Форматирование текста

Мы можем сделать жирный текст и курсив.

1.5 Ссылки

Сошлёмся на библиографию. Одна ссылка: [1, с. 54][2, с. 36]. Две ссылки: [1; 2]. Ссылка на собственные работы: [3; 4]. Много ссылок: [5—18][19—21]. И ещё немного ссылок: [22—34] [35—44] [45—47].

Несколько источников (мультицитата): [1, c. vii—x, 5, 7; 2, v—x, 25, 526; 33, c. vii—x, 5, 7], работает только в biblatex реализации библиографии.

Ссылки на собственные работы: [3; 48]

Сошлёмся на приложения: Приложение А, Приложение Б.2.

Сошлёмся на формулу: формула (1.2).

Сошлёмся на изображение: рисунок 2.2.

Стандартной практикой является добавление к ссылкам префикса, характеризующего тип элемента. Это не является строгим требованием, но позволяет лучше ориентироваться в документах большого размера. Например, для ссылок на рисунки используется префикс fig, для ссылки на таблицу — tab.

В таблице 18 приложения Б.5 приведён список рекомендуемых к использованию стандартных префиксов.

1.6 Формулы

Благодаря пакету *icomma*, LATEX одинаково хорошо воспринимает в качестве десятичного разделителя и запятую (3,1415), и точку (3.1415).

1.6.1 Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованная отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

Формула с неопределенным интегралом:

$$\int f(\alpha + x) = \sum \beta$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

αβγδ ϵ εζηθθικμλμνξπωρ ϱ σςτυ ϕ φχψωΓ Δ ΘΛΞΠΣΥΦΨ Ω

αβγδ ϵ εζηθθικ \varkappa λμνξ π ωρ ϱ σςτυ ϕ φχψω Γ ΔΘΛΞΠΣΥ Φ Ψ Ω

Для добавления формул можно использовать пары \dots и \$ \dots и и они считаются устаревшими. Лучше использовать их функциональные аналоги \dots и \dots .

1.6.2 Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки «равно» были строго друг под другом:

$$f_W = \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right),$$

$$f_T = \min\left(1, \max\left(0, \frac{T_s/T_{melt}}{T_{crit}}\right)\right),$$

Выровнять систему ещё и по переменной x можно, используя окружение alignedat из пакета amsmath. Вот так:

$$|x| = \begin{cases} x, & \text{если } x \geqslant 0 \\ -x, & \text{если } x < 0 \end{cases}$$

Здесь первый амперсанд (в исходном \LaTeX описании формулы) означает выравнивание по левому краю, второй — по x, а третий — по слову «если». Команда \u делает большой горизонтальный пробел.

Ещё вариант:

$$|x| = \left\{ egin{array}{l} x, \ {
m ec}$$
ли $x \geqslant 0 \ -x, \ {
m ec}$ ли $x < 0 \end{array}
ight.$

Кроме того, для нумерованных формул alignedat делает вертикальное выравнивание номера формулы по центру формулы. Например, выравнивание компонент вектора:

$$\mathbf{N}_{o1n}^{(j)} = \sin\varphi \, n(n+1) \sin\theta \, \pi_n(\cos\theta) \, \frac{z_n^{(j)}(\rho)}{\rho} \, \hat{\mathbf{e}}_r + \\ + \sin\varphi \, \tau_n(\cos\theta) \, \frac{\left[\rho z_n^{(j)}(\rho)\right]'}{\rho} \, \hat{\mathbf{e}}_\theta + \\ + \cos\varphi \, \pi_n(\cos\theta) \, \frac{\left[\rho z_n^{(j)}(\rho)\right]'}{\rho} \, \hat{\mathbf{e}}_\varphi \,.$$

$$(1.1)$$

Ещё об отступах. Иногда для лучшей «читаемости» формул полезно немного исправить стандартные интервалы IATEX с учётом логической структуры самой формулы. Например в формуле 1.1 добавлен небольшой

отступ \, между основными сомножителями, ниже результат применения всех вариантов отступа:

\!
$$f(x) = x^2 + 3x + 2$$
по-умолчанию $f(x) = x^2 + 3x + 2$
\\ $f(x) = x^2 + 3x + 2$
\\ quad $f(x) = x^2 + 3x + 2$
\\ quad $f(x) = x^2 + 3x + 2$
\\ quad $f(x) = x^2 + 3x + 2$

Можно использовать разные математические алфавиты:

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\begin{pmatrix}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\end{pmatrix}$$

1.6.3 Нумерованные формулы

А вот так пишется нумерованная формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.2}$$

Нумерованных формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{1.3}$$

Впоследствии на формулы (1.2) и (1.3) можно ссылаться.

Сделать так, чтобы номер формулы стоял напротив средней строки, можно, используя окружение multlined (пакет mathtools) вместо multline внутри окружения equation. Вот так:

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + \dots + + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + \dots + + 96 + 97 + 98 + 99 + 100 = 5050$$
(1.4)

Используя команду \eqrefs, можно красиво ссылаться сразу на несколько формул (1.2—1.4), даже перепутав порядок ссылок \eqrefs{eq1, eq3, eq2}. Аналогично, для ссылок на несколько рисунков, таблиц и т. д. 1.4—1.6 можно использовать команду \refs. Обе эти команды определены в файле common/packages.tex.

Уравнения (1.5 и 1.6) демонстрируют возможности окружения \subequations.

$$y = x^2 + 1 (1.5a)$$

$$y = 2x^2 - x + 1 ag{1.56}$$

Ссылки на отдельные уравнения (1.5а, 1.5б и 1.6а).

$$y = x^3 + x^2 + x + 1 ag{1.6a}$$

$$y = x^2 \tag{1.66}$$

1.6.4 Форматирование чисел и размерностей величин

Числа форматируются при помощи команды \num: 5.3; $2.3 \cdot 10^8$; $12\,345,678\,90$; $2.6 \cdot 10^4$; $1\pm 2\mathrm{i}$; $0.3 \cdot 10^{45}$; $5 \cdot 2^{64}$; $5 \cdot 2^{64}$; $1.654 \times 2.34 \times 3.430$ $12 \times 3/4$. Для написания последовательности чисел можно использовать команды \numlist и \numrange: 10; 30; 50; 70; 10-30. Значения углов

Таблица 1 — Основные величины СИ

Название	Команда	Символ	
Ампер	\ampere	A	
Кандела	\candela	кд	
Кельвин	\kelvin	К	
Килограмм	\kilogram	КГ	
Метр	\metre	M	
Моль	\mole	МОЛЬ	
Секунда	\second	c	

можно форматировать при помощи команды \ang: $2,67^\circ$; $30,3^\circ$; -1° ; -2'; -3''; $300^\circ10'1''$.

Обратите внимание, что ГОСТ запрещает использование знака «-» для обозначения отрицательных чисел за исключением формул, таблиц и рисунков. Вместо него следует использовать слово «минус».

Размерности можно записывать при помощи команд \si и \SI: $\Phi^2 \cdot \text{лм} \cdot \text{кд}$; Дж·моль $^{-1} \cdot \text{K}^{-1}$; Дж/(моль · K); м · c $^{-2}$; (0.10 ± 0.05) Нп; $(1.2 - 3i) \cdot 10^5$ Дж·моль $^{-1} \cdot \text{K}^{-1}$; 1; 2; 3; 4 Тл; 50-100 В. Список единиц измерений приведён в таблицах 1–5. Приставки единиц приведены в таблице 6.

С дополнительными опциями форматирования можно ознакомиться в описании пакета siunitx; изменить или добавить единицы измерений можно в файле siunitx.cfg.

1.6.5 Заголовки с формулами:
$$a^2+b^2=c^2$$
, $| extbf{Im}\Sigma\left(arepsilon
ight)|pprox const$, $\sigma_{xx}^{(1)}$

Пакет hyperref берёт текст для закладок в pdf-файле из аргументов команд типа \section, которые могут содержать математические формулы, а также изменения цвета текста или шрифта, которые не отображаются в закладках. Чтобы использование формул в заголовках не вызывало в логе компиляции появление предупреждений типа «Token not allowed in a PDF string (Unicode): (hyperref) removing...», следу-

Таблица 2 — Производные единицы СИ

Название Команда		Символ	Название	Команда	Символ
Беккерель	\becquerel	Бк	Ньютон	\newton	Н
Градус Цельсия	\degreeCelsius	$^{\circ}\mathrm{C}$	Ом	\ohm	Ом
Кулон	\coulomb	Кл	Паскаль	\pascal	Па
Фарад	\farad	Φ	Радиан	\radian	рад
Грей	\gray	Гр	Сименс	\siemens	См
Герц	\hertz	Гц	Зиверт	\sievert	3в
Генри	\henry	Гн	Стерадиан	\steradian	ср
Джоуль	\joule	Дж	Тесла	\tesla	Тл
Катал	\katal	кат	Вольт	\volt	В
Люмен	\lumen	ЛМ	Ватт	\watt	Вт
Люкс	\lux	лк	Вебер	\weber	Вб

Таблица 3 — Внесистемные единицы

Название	Команда	Символ	
День	\day	сут	
Градус	\degree	0	
Гектар	\hectare	га	
Час	\hour	Ч	
Литр	\litre	Л	
Угловая минута	\arcminute	/	
Угловая секунда	\arcsecond	"	
Минута	\minute	МИН	
Тонна	\tonne	Т	

ет использовать конструкцию $\text{texorpdfstring}\{\}\{\}$, где в первых фигурных скобках указывается формула, а во вторых — запись формулы для закладок.

1.7 Рецензирование текста

В шаблоне для диссертации и автореферата заданы команды рецензирования. Они видны при компиляции шаблона в режиме черновика

Таблица 4 — Внесистемные единицы, получаемые из эксперимента

Название	Команда	Символ
Астрономическая единица	\astronomicalunit	a.e.
Атомная единица массы	\atomicmassunit	а.е.м.
Боровский радиус	\bohr	a_0
Скорость света	\clight	c
Дальтон	\dalton	а.е.м.
Масса электрона	\electronmass	$m_{ m e}$
Электрон Вольт	\electronvolt	\mathbf{a}
Элементарный заряд	\elementarycharge	e
Энергия Хартри	\hartree	E_{h}
Постоянная Планка	\planckbar	\hbar

Таблица 5 — Другие внесистемные единицы

Название	Команда	Символ
Ангстрем	\angstrom	Å
Бар	\bar	бар
Барн	\barn	б
Бел	\bel	Б
Децибел	\decibel	дБ
Узел	\knot	у3
Миллиметр ртутного столба	\mmHg	мм рт.ст.
Морская миля	\nauticalmile	миля
Непер	\neper	Нп

Таблица 6 — Приставки СИ

Приставка	Команда	Символ	Степень	Приставка	Команда	Символ	Степень
Иокто	\yocto	И	-24	Дека	\deca	да	1
Зепто	\zepto	3	-21	Гекто	\hecto	Γ	2
Атто	\atto	a	-18	Кило	\kilo	К	3
Фемто	\femto	ф	-15	Мега	\mega	M	6
Пико	\pico	П	-12	Гига	\giga	Γ	9
Нано	\nano	Н	-9	Терра	\tera	T	12
Микро	\micro	МК	-6	Пета	\peta	Π	15
Милли	\milli	M	-3	Екса	\exa	Э	18
Санти	\centi	c	-2	Зетта	\zetta	3	21
Деци	\deci	Д	-1	Иотта	\yotta	И	24

или при установке соответствующей настройки (showmarkup) в файле common/setup.tex.

Команда \todo отмечает текст красным цветом.

Команда \note позволяет выбрать цвет текста.

Окружение commentbox также позволяет выбрать цвет.

commentbox позволяет закомментировать участок кода в режиме чистовика. Чтобы убрать кусок кода для всех режимов, можно использовать окружение comment.

Глава 2. Анализ

Данная глава описывает решения, которые были приняты для выполнения основной задачи данной ВКР.

2.1 Анализ окружающего пространства

По ходу анализа задачи данной ВКР было принято решение установить на будущего робота два основных сенсора, речь о которых шла в Главе 1: это видеокамера и лазерный сканер, реализующий технологию Лидар.

Целью установки Лидара стала необходимость в сборе данных обо всём окружающем пространстве без необходимости совершать полный разворот. Такие данные можно было бы собирать и при помощи такого сенсора, как Xbox Kinect, однако сбор информации об обстановке вокруг требовало бы полного оборота робота вокруг своей оси или установки сенсора на сервопривод. Однако Лидар позволяет получать эти данные без этих ухищрений с гораздо большей скоростью (на поворот сенсора и считывание данных уходило бы несоизмеримо больше времени, чем на поворот лазерного сканера).

Целью установки видеокамеры является необходимость в выполнении роботом какой-то дополнительной полезной функции. В случае данной ВКР, в робот был встроен механизм поиска целевых объектов на окружающей местности.

2.2 Шасси и система управления

В качестве шасси для робота был выбран вариант с гусеницами на ходу, так как это несло большую пользу в практическом плане: это не дорого и обладает преимуществами, которые были описаны Главе 1. Система управления шасси робота должна характеризоваться следующим:

- 1. Каждая гусеница управляется отдельно;
- 2. Возможность двигаться вперёд и назад;
- 3. Управляется простым логическим сигналом (1 выполнять движение, 0 не выполнять движение);
- 4. Программный интерфейс системы управления должен полностью раскрывать возможности аппаратной части.

2.3 Поведенческая стратегия робота

В Главе 1 были описаны две возможные стратегии, которые можно применить к данной задаче. Для облегчения задачи на данном этапе разработки было принято решение реализовать стратегию №2, но с некоторой поправкой: карта местности всё же строится и она служит для распознавания застревания робота, что очень важно при езде на неровных поверхностях.

Таким образом, поведенческая стратегия робота в данной ВКР сводится к тому, что робот в общем случае будет ехать вперёд и искать две вещи:

- 1. Преграду перед собой (распознаётся Лидаром);
- 2. Целевой объект (распознаётся видеокамерой);

В случае, если впереди была обнаружена преграда, то роботу уже не стоит ехать вперёд (так как он просто ударится), а найти какой-то другой путь. Самым логичным решением в данной ситуации станет поворот налево или направо. О том в какую сторону поворачивать робот принимает решение на основе облака точек, которое предоставляет Лидар. В итоге поворот выполняется в ту сторону, где было найдено больше свободного пространства и меньше преград. Подробнее о том, как выполняется поиск преград и свободного пространства будет описано в Главе 3.

2.4 Вычислительная составляющая

К вычислительной составляющей мобильного робота предъявляются довольно сильные и строгие требования:

- Компактность (для размещения на корпусе);
- Мощность (требуется в реальном времени обрабатывать показания со всех сенсоров и выполнять движение);
- Энергоэффективность (для большего времени автономной работы);
- Бюджетность (в рамках данного проекта больших финансовых затрат не планировалось).

Было принято решение о том, что вычислительной составляющей будет одноплатный компьютер Nvidia Jetson NANO, так как он соответствует всем изложенным выше требованиям.

К основным характеристикам данного компьютера можно отнести следующие:

- Создан специально для встраиваемых систем;
- Архитектура NVIDIA Maxwell™ с 128 ядрами NVIDIA CUDA(R);
- Четырехъядерный процессор ARM® Cortex®-A57 MPCore;
- Размер 69,6 мм х 45 мм;
- Имеет разъём GPIO и Ethernet.

2.5 Известные аналоги

К известным аналогам разрабатываемого робота, созданных на базе такого же одноплатного компьютера Nvidia Jetson NANO можно причислить роботов от самой компании Nvidia: Jetbot и Kaya. Оба эти робота были созданы для демонстрации возможностей данного одноплатного компьютера.

2.5.1 Nvidia Kaya

Данная модель компактного мобильного автономного робота была представлена на технологической конференции GTC 2019 и в первую очередь предназначается для работы с программным обеспечением Isaac SDK.

Аппаратно данный робот помимо самого Jetson NANO включает в себя пластиковый корпус на трёх колёсах (печатаемый на 3D принтере), 3D камеру LiDAR Intel Real Sense и систему управления. Общая стоимость аппаратной части составляет \$812.87.

На компьютер Jetson NANO помимо ОС Ubuntu 18.04 LTS устанавливается ПО Isaac SDK и Isaac SIM. Isaac SDK - это открытая платформа NVIDIA для интеллектуальных роботов. Она предоставляет большой набор мощных алгоритмов, базирующихся на GPU вычислениях ¹ для навигации и управления.

На данном роботе можно запускать различные готовые примеры такие как ручное управление с геймпада Playstation 4, автономное следование за AprilTag, распознавание объектов на нейронной сети DetectNetv2 и алгоритм SLAM (основан на GMapping).

2.5.2 Nvidia JetBot

ЈетВот был представлен на той же конференции, что Nvidia Kaya и является гораздо более доступным вариантом (цена \$226.15) для создания DIY робота (также он в отличии от Кaya имеется в розничной продаже одним комплектом и его не нужно собирать по частям из разных магазинов).

Аппаратно он состоит из всё той же Nvidia Jetson Nano, двух электромоторов с драйвером в комплекте и CSI видеокамеры Sony IMX219.

Программная часть поставляется готовым образом на базе Ubuntu 18.04 в формате ISO для прошивки MicroSD карты.

Из доступных примеров имеется простое ручное управление через кнопки на экране с возможностью прямой трансляции изображения ви-

¹вычисления на видеокарте

деокамеры на экран в браузере и нейросеть, автономное движение по поверхности с распознанием препятствий и пропастей в окружающем пространстве при помощи нейросети на основе получаемого видеосигнала, также имеется функция следования робота за определённым целевым объектом.

2.5.3 Сравнение с аналогами

Робот, разрабатываемый в рамках данной ВКР по большей части сходится с Nvidia JetBot, однако подход к решению задач в корне изменён. Стратегия движения робота в данной ВКР полностью определяется показаниями Лидара, что даёт большую гибкость за счёт того, что Лидар сканирует всю поверхность вокруг себя тогда как видеокамера позволяет видеть только то, что находится непосредственно перед роботом. Таким образом робот, создаваемый в рамках данной ВКР решает уже решённую задачу другим более гибким способом.

Что касается Nvidia Kaya, то данная модель хоть и оснащена Лидаром, но обладает довольно большим минусом в виде цены за данный продукт. Также установленный там Лидар не может просматривать пространство вокруг себя в силу того что Лидаром является видеокамера, которая не может всегда вертеться вокруг своей оси.

2.6 Одиночное изображение

Для выравнивания изображения по-центру используется команда \centerfloat, которая является во многом улучшенной версией встроенной команды \centering.

2.7 Длинное название параграфа, в котором мы узнаём как сделать две картинки с общим номером и названием

А это две картинки под общим номером и названием:

б)

Рисунок 2.2 — Очень длинная подпись к изображению, на котором представлены две фотографии Дональда Кнута

Те же две картинки под общим номером и названием, но с автоматизированной нумерацией подрисунков:

На рисунке 2.3а показан Дональд Кнут без головного убора. На рисунке 2.36 показан Дональд Кнут в головном уборе.

Возможно вставлять векторные картинки, рассчитываемые ЕТЕХ «на лету» с их предварительной компиляцией. Надписи в таких рисунках будут выполнены тем же шрифтом, который указан для документа в целом. На рисунке 2.4 на странице 26 представлен пример схемы, рассчитываемой пакетом tikz «на лету». Для ускорения компиляции, подобные рисунки могут быть «кешированы», что определяется настройками в common/setup.tex. Причём имя предкомпилированного файла и папка расположения таких файлов могут быть отдельно заданы, что удобно, если не для подготовки диссертации, то для подготовки научных публикаций.

а) Первый подрисунок

б)

в) Третий подрисунок, подпись к которому не помещается на одной строке

Подрисуночный текст, описывающий обозначения, например. Согласно ГОСТ 2.105, пункт 4.3.1, располагается перед наименованием рисунка.

Рисунок 2.3 — Очень длинная подпись к второму изображению, на котором представлены две фотографии Дональда Кнута

Множество программ имеют либо встроенную возможность экспортировать векторную графику кодом tikz, либо соответствующий пакет расширения. Например, в GeoGebra есть встроенный экспорт, для Inkscape есть пакет svg2tikz, для Python есть пакет matplotlib2tikz, для R есть пакет tikzdevice.

2.8 Пример вёрстки списков

Нумерованный список:

- 1. Первый пункт.
- 2. Второй пункт.
- 3. Третий пункт.

Маркированный список:

- Первый пункт.
- Второй пункт.
- Третий пункт.

Вложенные списки:

- Имеется маркированный список.

Рисунок 2.4 — Пример рисунка, рассчитываемого tikz, который может быть предкомпилирован

- 1. В нём лежит нумерованный список,
- 2. в котором
 - лежит ещё один маркированный список.

Нумерованные вложенные списки:

- 1. Первый пункт.
- 2. Второй пункт.

- 3. Вообще, по ГОСТ 2.105 первый уровень нумерации (при необходимости ссылки в тексте документа на одно из перечислений) идёт буквами русского или латинского алфавитов, а второй цифрами со скобками. Здесь отходим от ГОСТ.
 - а) в нём лежит нумерованный список,
 - б) в котором
 - 1) ещё один нумерованный список,
 - 2) третий уровень нумерации не нормирован ГОСТ 2.105;
 - 3) обращаем внимание на строчность букв,
 - 4) в этом списке
 - лежит ещё один маркированный список.
- 4. Четвёртый пункт.

2.9 Традиции русского набора

Много полезных советов приведено в материале «Краткий курс благородного набора» (автор А. В. Костырка). Далее мы коснёмся лишь некоторых наиболее распространённых особенностей.

2.9.1 Пробелы

В русском наборе принято:

- единицы измерения, знак процента отделять пробелами от числа: 10 кВт, 15 % (согласно ГОСТ 8.417, раздел 8);
- tg 20°, но: 20 °C (согласно ГОСТ 8.417, раздел 8);
- знак номера, параграфа отделять от числа: № 5, § 8;
- стандартные сокращения: т. е., и т. д., и т. п.;
- неразрывные пробелы в предложениях.

2.9.2 Математические знаки и символы

Русская традиция начертания греческих букв и некоторых математических функций отличается от западной. Это исправляется серией \renewcommand.

До: $\epsilon \geq \phi$, $\phi \leq \epsilon$, $\kappa \in \emptyset$, tan, cot, csc.

После: $\varepsilon \geqslant \varphi$, $\varphi \leqslant \varepsilon$, $\kappa \in \emptyset$, tg , ctg , cosec .

Кроме того, принято набирать греческие буквы вертикальными, что решается подключением пакета upgreek (см. закомментированный блок в userpackages.tex) и аналогичным переопределением в преамбуле (см. закомментированный блок в userstyles.tex). В этом шаблоне такие переопределения уже включены.

Знаки математических операций принято переносить. Пример переноса в формуле (1.4).

2.9.3 Кавычки

В английском языке приняты одинарные и двойные кавычки в виде "..." и "...". В России приняты французские («...») и немецкие ("...") кавычки (они называются «ёлочки» и «лапки», соответственно). "Лапки" обычно используются внутри «ёлочек», например, «... наш гордый "Варяг"...».

Французкие левые и правые кавычки набираются как лигатуры << и >>, а немецкие левые и правые кавычки набираются как лигатуры , , и " ('').

Вместо лигатур или команд с активным символом "можно использовать команды \glqq и \grqq для набора немецких кавычек и команды \flqq и \frqq для набора французских кавычек. Они определены в пакете babel.

2.9.4 Тире

Команда "--- используется для печати тире в тексте. Оно несколько короче английского длинного тире. Кроме того, команда задаёт небольшую жёсткую отбивку от слова, стоящего перед тире. При этом, само тире не отрывается от слова. После тире следует такая же отбивка от текста, как и перед тире. При наборе текста между словом и командой, за которым она следует, должен стоять пробел.

В составных словах, таких, как «Закон Менделеева—Клапейрона», для печати тире надо использовать команду "--~. Она ставит более короткое, по сравнению с английским, тире и позволяет делать переносы во втором слове. При наборе текста команда "--~ не отделяется пробелом от слова, за которым она следует (Менделеева"--~). Следующее за командой слово может быть отделено от неё пробелом или перенесено на другую строку.

Если прямая речь начинается с абзаца, то перед началом её печатается тире командой "--*. Она печатает русское тире и жёсткую отбивку нужной величины перед текстом.

2.9.5 Дефисы и переносы слов

Для печати дефиса в составных словах введены две команды. Команда " \sim печатает дефис и запрещает делать переносы в самих словах, а команда "= печатает дефис, оставляя $T_E X$ " право делать переносы в самих словах.

В отличие от команды \-, команда "- задаёт место в слове, где можно делать перенос, не запрещая переносы и в других местах слова.

Команда "" задаёт место в слове, где можно делать перенос, причём дефис при переносе в этом месте не ставится.

Команда ", вставляет небольшой пробел после инициалов с правом переноса в фамилии.

2.10 Текст из панграмм и формул

Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) – вдрызг! Любя, съешь щипцы, – вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Эксграф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) – вдрызг! Любя, съешь щипцы, – вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб!

Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг! Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен шляп (юфть) — вдрызг!Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч. Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф? Плюш изъят. Бьём чуждый цен хвощ! Эх, чужак! Общий съём цен

Ку кхоро адолэжкэнс волуптариа хаж, вим граэко ыкчпэтында ты. Граэкы жэмпэр льюкяльиюч квуй ку, аэквюы продыжщэт хаж нэ. Вим ку магна пырикульа, но квюандо пожйдонёюм про. Квуй ат рыквюы ёнэрмйщ. Выро аккузата вим нэ.

$$\Pr(F(\tau)) \propto \sum_{i=4}^{12} \left(\prod_{j=1}^{i} \left(\int_{0}^{5} F(\tau) e^{-F(\tau)t_{j}} dt_{j} \right) \prod_{k=i+1}^{12} \left(\int_{5}^{\infty} F(\tau) e^{-F(\tau)t_{k}} dt_{k} \right) C_{12}^{i} \right) \propto \\ \propto \sum_{i=4}^{12} \left(-e^{-1/2} + 1 \right)^{i} \left(e^{-1/2} \right)^{12-i} C_{12}^{i} \approx 0.7605, \quad \forall \tau \neq \overline{\tau}$$

Квуй ыёюз омниюм йн. Экз алёквюам кончюлату квуй, ты альяквюам ёнвидюнт пэр. Зыд нэ коммодо пробатуж. Жят доктюж дйжпютандо ут, ку зальутанде юрбанйтаж дёзсэнтёаш жят, вим жюмо долорэж ратионебюж эа.

Ад ентэгры корпора жплэндидэ хаж. Эжт ат факэтэ дычэрунт пэржыкюти. Нэ нам доминг пэрчёус. Ку квюо ёужто эррэм зючкёпит. Про хабэо альбюкиюс нэ.

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}$$

$$\begin{vmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{vmatrix}$$

$$\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{vmatrix}$$

Про эа граэки квюаыквуэ дйжпютандо. Ыт вэл тебиквюэ дэфянятйоныс, нам жолюм квюандо мандамюч эа. Эож пауло лаудым инкедыринт нэ, пэрпэтюа форынчйбюж пэр эю. Модыратиюз дытыррюизщэт дуо ад, вирйз фэугяат

дытракжйт нык ед, дуо алиё каючаэ лыгэндоч но. Эа мольлиз юрбанйтаж зигнёфэрумквюы эжт.

Про мандамюч кончэтытюр ед. Трётанё прёнкипыз зигнёфэрумквюы вяш ан. Ат хёз эквюедым щуавятатэ. Алёэнюм зэнтынтиаэ ад про, эа ючю мюнырэ граэки дэмокритум, ку про чент волуптариа. Ыльит дыкоры аляквюид еюж ыт. Ку рыбюм мюндй ютенам дуо.

$$2 \times 2 = 4$$
 $6 \times 8 = 48$ $3 \times 3 = 9$ $a + b = c$ $10 \times 65464 = 654640$ $3/2 = 1.5$

$$2 \times 2 = 4$$
 $6 \times 8 = 48$ $3 \times 3 = 9$ $a + b = c$ (2.1) $10 \times 65464 = 654640$ $3/2 = 1,5$

Пэр йн тальэ пожтэа, мыа ед попюльо дэбетиз жкрибэнтур. Йн квуй аппэтырэ мэнандря, зыд аляквюид хабымуч корпора йн. Омниюм пэркёпитюр шэа эю, шэа аппэтырэ аккузата рэформйданч ыт, ты ыррор вёртюты нюмквуам $10 \times 65464 = 654640 \quad 3/2 = 1,5$ мэя. Ипзум эуежмод a+b=c мальюизчыт ад дуо. Ад фэюгаят пытынтёюм адвыржаряюм вяш. Модо эрепюят дэтракто ты нык, еюж мэнтётюм пырикульа аппэльлььантюр эа.

Мэль ты дэлььынётё такематыш. Зэнтынтиаэ конклььюжионэмквуэ ан мэя. Вёжи лебыр квюаыквуэ квуй нэ, дуо зймюл дэлььиката ку. Ыам ку алиё путынт.

$$2 \times x = 4$$
$$3 \times y = 9$$
$$10 \times 65464 = z$$

Конвынёры витюпырата но нам, тебиквюэ мэнтётюм позтюлант ед про. Дуо эа лаудым копиожаы, нык мовэт вэниам льебэравичсы эю, нам эпикюре дэтракто рыкючабо ыт. Вэрйтюж аккюжамюз ты шэа, дэбетиз форынчйбюж жкряпшэрит ыт прё. Ан еюж тымпор рыфэррэнтур, ючю дольор котёдиэквюэ йн. Зыд ипзум дытракжйт ныглэгэнтур нэ, партым ыкжпльыкари дёжжэнтиюнт ад пэр. Мэль ты кытэрож молыжтйаы, нам но ыррор жкрипта аппарэат.

$$\frac{m_t^2}{L_t^2} = \frac{m_x^2}{L_x^2} + \frac{m_y^2}{L_y^2} + \frac{m_z^2}{L_z^2}$$

Вэре льаборэж тебиквюэ хаж ут. Ан пауло торквюатоз хаж, нэ пробо фэугяат такематыш шэа. Мэльёуз пэртинакёа юлламкорпэр прё ад, но мыа рыквюы конкыптам. Хёз квюот пэртинакёа эи, ельлюд трактатоз пэр ад. Зыд ед анёмал льаборэж номинави, жят ад конгуы льабятюр. Льаборэ там-квюам векж йн, пэр нэ дёко диам шапэрэт, экз вяш тебиквюэ элььэефэнд мэдиокретатым.

Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ, доминг лаборамюз эи ыам. Чэнзэрет мныжаркхюм экз эож, ыльит тамквюам факильизиж нык эи. Квуй ан элыктрам тинкидюнт ентырпрытаряш. Йн янвыняры трактатоз зэнтынтиаэ зыд. Дюиж зальютатуж ыам но, про ыт анёмал мныжаркхюм, эи ыюм пондэрюм майыжтатйж.

Глава 3. Практика

3.1 Мобильный автономный робот

Для решения задачи данной работы необходимо было проводить «живые» тестирования работы алгоритмов. Такая необходимость обусловлена прежде всего тем, что помимо существующей задачи данной ВКР стояла задача в создании робота для распознавания объектов. По этой причине было принято решение делать алгоритмы на реальном роботе¹ с пребыванием данного робота во вполне реальных условиях.

3.1.1 Подбор шасси

Как было сказано в первой главе данной работы, существует большое количество различных шасси, на которых можно располагать различное оборудование. Наш выбор остановился на гусеничном шасси, которое изображено на Рисунке.

Данное шасси за счёт своих размеров является очень мобильным средством передвижения робота и может проникнуть в относительно узкие для роботов пространства и без проблем оттуда выбраться, не повредившись. Для оборудования на данном шасси место тоже нашлось: для этого было принято решение заказать металлическую пластину, которая играла роль второго этажа. поставить рисунок?

¹Задание данной ВКР можно было бы сделать и в любом симуляторе или игровом движке. Однако решение делать всё в реальной жизни сильно усложнило данную задачу.

3.1.2 Движение шасси

К сожалению, по неизвестной причине к данному шасси не пришёл комплектный контроллер движения, который бы принимал команды от компьютера и заставлял двигаться установленные гусеницы. По этой причине пришлось немного изучить ещё одну предметную область, которая не изучалась в течении университетского курса - электротехнику.

Требования к контроллеру движений

Компьютер, который будет в последствии установлен на робота будет управлять роботом посредством бинарных сигналов с напряжением 3.3В через порт GPIO, где 0 (или по-другому нет напряжения) - это движение не требуется и 1 (когда есть напряжение +3.3В), когда движение требуется.

Контроллер должен, также, уметь по отдельности управлять двумя гусеницами, заставлять их ездить вперёд и назад. Это основные требования. Из дополнительных требований можно выделить умение каким-то образом регулировать скорость движения. Общая структура желаемой модели контроллера изображена на Рисунке.

Схема будущего контроллера

Здесь теоретическое объяснение как работает контроллер

Производство контроллера

В качестве основы для контроллера было принято решение взять текстолитовую пластину с медным покрытием, изображённую на рисунке.

Далее на нём при помощи перманентного маркера были нанесены дорожки, а места вставки деталей были просверлены советской стоматологической бур-машинкой. Далее всё это прошло ванну хлорида железа. Процесс и результаты работы изображены на Рисунке.

Результаты работы

Таким образом был получен полноценный контроллер, который умеет управлять роботом медленной и быстрой скоростями. Однако, не обошлось без недостатков и трудностей. Главной трудностью стал неудачный способ стравливания дорожек на плате, поэтому пришлось дополнительно при помощи олова проводить дорожки и искать потенциально уязвивмые места.

После большой ручной работы плату удалось запустить, но появилась другая проблема. И эта проблема заключалась в том, что сопротивление двигателей робота немного отличалось друг от друга, также как и сопротивление резисторов, установленных на плату. Данное отличие было ничтожным, но этого вполне хватало, чтобы робот начинал ездить не очень ровно и его всё время приходилось дополнительно корректировать.

Вторая версия контроллера

Необходимость во второй версии контроллера возникла в первую очередь из-за того, что медленная скорость на роботе работала слишком медленно, а быстрая слишком быстро. Ездить в магазин и вручную подбирать резисторы, каждый раз перепаивая плату совсем не хотелось, а каждый резистор в местных магазинах обходится в неприятную для таких расходных деталей сумму.

Переделка первой версии платы обошлась бы слишком дорого в плане времени, да и к тому же не хотелось портить, то, что и так уже работает. Поэтому вторая версия платы была собрана по той же схеме, что и первая, но с несколькими важными отличиями. Из стабилизаторов остался только ста-

билизатор на 9В, а обычные резисторы были заменены на соответствующие подстроечные резисторы. Таким образом должна была появилась возможность регулировать движение в зависимости от того, в каком положении будет установлен сам резистор. Получившаяся плата изображена на Рисунке .

3.2 Визуальный анализ пространства

Для анализа окружающего пространства существует довольно большое количество различных датчиков и прочего оборудования. Но закупать сразу всё не выгодно экономически, затратно в плане места размещения на роботе и расточительно в плане потребления электроэнергии этими самыми датчиками. Также для обработки всех этих сигналов нужны соответствующие вычислительные мощности.

Таким образом робот должен иметь совсем небольшое количество сенсоров и при этом не быть «слепым». Исходя из этих соображений, было решено установить на робота два основных сенсора: лазерный сканер YDLIDAR X4 и CSI камеру Sony IMX217. Первый поможет видеть препятствия вокруг робота, второй поможет видеть объекты, размещённые перед роботом.

Схема размещения сенсоров размещена на Рисунке.

3.3 Формирование поведенческой стратегии робота

Основная задача робота - ездить и искать целевые объекты делится на две подзадачи.

3.3.1 Езда

Этот режим поездки можно также назвать режимом исследователя. В идеальном случае, робот в начале работы алгоритма движения должен объездить всё доступное ему пространство, составить карту окружающей местности, параллельно при этом запоминая увиденные им объекты и их примерное местоположение², а затем после полного сканирования объехать всю территорию и убедиться в том, что целевые объекты действительно были найдены на этих местах. И это должно стать конечной целью робота. Однако, для упрощения данной задачи будет использоваться другой куда более простой алгоритм.

Режим исследователя будет подразумевать под собой то, что робот будет просто ехать вперёд, параллельно разыскивая целевые объекты и объезжая препятствия.

Объезд препятствий

Робот должен уметь объезжать хотя-бы самые простейшие препятствия, по типу стен, диванов или прочих перегородок. В идеале, он должен уметь справляться и с тонкими препятствиями по типу ножек стула и мягкие поверхности.

Алгоритм объезда препятствий, представленный на данном роботе сводится к схеме, изображённой на Рисунке.

Подсчёт того, где свободнее: слева или справа идёт из соображений того, где находится больше препятствий. Как это считается? Условно робот поделён на несколько направлений. В данном случае он подразделён на «перед», «лево», «право» и «зад». Обозначим значения, которые высчитываются на этих направлениях, как f, l, r и b соответственно.

Лидар выдаёт данные в формате массива значений float: обозначим его как числовой ряд a. В этом числовом ряду находятся числа, обознача-

²его нужно вычислять из расчётов того, куда смотрит в данный момент робот, угла прямоугольника на изображении, на котором объект был обнаружен

ющие расстояние до точки об которое отразился лазер. Чем больше число, тем дальше находится объект об который отразился лазер. Если лазерный сканер не нашёл в этом месте отражения, то он возвращает значение -1. Фактически, данный массив является аналогом полярных координат, где позиция значения в массиве - это угол, а само значение является расстоянием. Всего этих чисел 720, из чего можно сделать вывод, что цена деления лидара это полградуса.

Таким образом каждый поворот лидара вычисляются 4 переменные³:

$$\sum_{l=\frac{i=90}{180}}^{270} a_i \qquad \sum_{i=270}^{450} a_i \qquad \sum_{i=\frac{i=450}{180}}^{630} a_i \qquad \sum_{i=630}^{720} a_i + \sum_{i=0}^{90} a_i$$

$$l = \frac{i=90}{180} \qquad b = \frac{i=270}{180} \qquad r = \frac{i=450}{180} \qquad f = \frac{i=630}{180} \frac{a_i}{180}$$

После вычисления этих средних арифметических значений по каждой из сторон проверяются значения массива a_i , где 630 < i < 720 и 0 < i < 90 (передняя сторона робота) и если среди этих чисел находится хоть одно удовлетворяющее условию $0 < a_i < 0.3$, то считается в данный момент перед роботом находится какое-то препятствие.

Если это так, то далее сравниваются значения ранее высчитанных переменных l и r. Если значение l>r, то робот поедет налево, так как слева нашлось меньше препятствий, чем справа. Иначе, роботу следует ехать направо. Однако представленного выше алгоритма ещё недостаточно чтобы объезжать часто встречаемые препятствия.

Обнаружение застревания

Робот может попасть в ситуацию, когда впереди внезапно образовалась преграда, невидимая для лазерного сканера (например, очень низкая преграда). Для обнаружения застревания при столкновении с такими преградами необходимо как-то понять, что робот перестал двигаться.

³Важное замечание: значения -1, когда лазерный сканер не нашёл отражения заменяются на значение 1 для того чтобы значения переменных прибавлялись, а не уменьшались.

Одним из способов понять и распознать застревание может стать анализ облака точек, которые выдаёт LIDAR. Если вектор движения большинства точек на плоскости облака стал достаточно мал, то можно сделать вывод о том, что робот либо плохо двигается, либо вообще застрял.

В данный проект была встроена система Google Cartographer, которая по облаку точек может строить окружающую карту местности, а также определять местоположение робота на ней. Информацию о местоположении можно использовать как раз в целях определения застревания. Если в течении секунды координаты робота менялись недостаточно сильно, то значит робот застрял.

Для выезда из застревания используется простой алгоритм, который состоит из 3 шагов:

- 1. Ехать назад 2 секунды;
- 2. Выбрать сторону, в которую будет совершён поворот по значениям выше упомянутых переменных l и r;
- 3. Ехать дальше.

Как показала практика, этот алгоритм работает достаточно эффективно для того чтобы не застревать в большинстве ситуаций.

3.3.2 Поиск целевого объекта

Данный режим предполагается включать только в случае, если на видеосигнале, получаемом от СSI камеры был распознан целевой объект. В этом случае робот останавливается и поворачивается в ту сторону, где расположен центр предполагаемого целевого объекта. Далее робот начинает ехать вперёд и по мере необходимости продолжает центрировать шасси до тех пор пока не подъедет к объекту. Далее робот останавливается, конечная цель робота выполнена: целевой объект найден.

Определение того, что робот подъехал к объекту происходит по размеру прямоугольника, на котором обозначен целевой объект. Если прямоугольник уже достиг краёв кадра видеосигнала, значит робот приблизился к объекту максимально близко. Подъезд вплотную к объекту является

не самой лучшей идеей, так как целевым объектом может быть стеклянная бутылка, которую можно просто сбить и разбить.

3.4 Подробнее о программной части робота

На одноплатный компьютер Nvidia Jetson Nano была установлена операционная система Ubuntu LTS 18.04 со специальным от Nvidia программным обеспечением JetPack 4.3, которое предоставляет удобные инструменты для вычислений в области искусственного интеллекта при помощи встроенного в Jetson NANO видеочипа и ядер CUDA. Также на компьютер была установлен фреймворк для программирования роботов ROS, аббревиатура которого расшифровывается как «Операционная система для роботов».

3.4.1 **ROS**

ROS предоставляет удобные и мощные функции, помогающие разработчикам в таких задачах, как передача сообщений различного типа, распределение вычислений между компьютерами, повторное использование кода и реализация современных алгоритмов для роботизированных приложений. В общем случае, ROS представляет собой инструмент, позволяющий связывать несколько независимых программных модулей при помощи сервисов и узлов, которые могут передавать друг другу сообщения в различном формате.

Большими преимуществами использования данного фреймворка является возможность передачи сообщений по локальной сети и обширная библиотека уже реализованного ПО, которое можно без относительно больших затрат по времени интегрировать в свой собственный проект. На момент написания данной ВКР глобальный репозиторий ROS Index насчитывает 2120 подключенных к нему сторонних репозиторием и 5827 пакетов.

3.4.2 Концепции ROS

Ниже приведён список концепций рассматриваемого фреймворка:

- Узел это процесс, выполняющий вычисления. Каждый узел написание с использованием клиентских библиотек ROS. Используя методы связи, узлы могут общаться друг с другом заранее определённым форматом сообщений и обмениваться данными. Для этого создаются узлы-подписчики, и узлы-публикаторы.
- **Мастер** обеспечивает регистрацию и работоспособность запущенных узлов.
- Сообщение простая структура данных, содержащая типизированное поле, которое может содержать целый набор данных, отправляемых на другой узел. Помимо стандартных типов сообщений⁴ возможна отправка заранее обозначенных собственных типов сообщений.
- Тема именованная шина данных, используемая узлами для отправки сообщений. Публикующий и подписанный узел не знают о существовании друга друга. Благодаря тому что каждая тема имеет уникальное имя, любой узел может получить доступ к данной теме и отправляет через неё данные, при условии соблюдении заранее оговорённых передаваемых типов, данной темой.
- **Сервисы** реализация удалённого вызова процедур⁵ в ROS. В некоторых случаях модель связи публикации и подписки может не подходить. В этих случаях и применяют взаимодействия в виде сервисов (схема запрос/ответ), при котором один узел может запросить выполнение процедуры для другого узла, ожидая какого-то обязательного ответа⁶.

⁴Такие как целые, с плавающей точкой, логические, строковые...

⁵RPC

 $^{^6{}m B}$ случае использования схемы с подписчиками и публикаторами доставка сообщений и ответ не гарантируются

3.4.3 Узлы, используемые на роботе

В рамках работы над данной ВКР были реализованы следующие узлы и сервисы:

- Сервис, управляющий сигналами на разъёме GPIO;
- Узел записи видео с видеокамеры;
- Узел распознавания объектов;
- Узел, управляющий движением робота и формирующий поведенческую стратегию робота.

Также в роботе используются следующие сторонние узлы:

- Узел передачи изображения с CSI видеокамеры;
- Google Cartographer;
- Узел YDLIDAR.

Общую схему взаимодействия всех узлов можно увидеть на Рисунке.

Узел видеокамеры

Данный узел был заимствован из репозитория робота JetBot и он публикует изображения в формате сообщения, описанного стандартом ROS sensor_msgs/Image (содержание сообщения можно увидеть в Приложении), получаемые из CSI камеры IMX217, подключенной к Nvidia Jetson NANO. Для получения такого видеосигнала используется библиотека GStreamer и встроенные в образ Linux драйвера на данный сенсор. Пример получаемого изображения показан на Рисунке . Таким образом на выходе данного узла получается топик по имени raw, содержащий изображения.

Узел YDLIDAR

Данный узел представляет собой драйвер для YDLIDAR X4 и занимается его непосредственным запуском, остановкой, а также публика-

цией облака точек, формируемых лазерным сканером. Формат сообщения определён стандартом ROS sensor_msgs/LaserScan. Содержимое данного сообщения можно посмотреть в приложении. Пример получаемого изображения, создающегося из облака точек можно увидеть на Рисунке. Таким образом на выходе данного узла получается топик с именем scan содержащий sensor msgs/LaserScan.

Google Cartographer

Данный узел занимается обработкой узла scan, публикуемого узлом YDLIDAR. Основной задачей Google Cartographer является SLAM - то есть одновременная локализация и построение карты окружающей местности, для этого данной системе нужно выполнять очень много задач, а потому на выходе мы имеем сразу несколько топиков:

- 1. scan_matched_points: данный топик определяется стандартом sensor_msgs/PointCloud2 (описание смотрите в Приложении) и представляет собой облако точек в том виде, в котором оно использовалось для сопоставления сканирования с подкартами, создающимися Google Cartographer. Это облако отфильтровано и спроецировано так как это описывает конфигурационный файл Lua. Изображение, получаемое из данного облака точек можно увидеть на Рисунке;
- 2. submap_list: этот топик является список всех вложенных карт, включая позу и номер последней версии каждой вложенной карты, по всем пройденным траекториям робота. Формат сообщений описан собственным стандартом cartographer_ros_msgs/SubmapList, его содержимое увидеть в Приложении. Пример изображения, генерируемого при помощи submap_list можно увидеть на Рисунке;
- 3. map: этот топик появляется только если указать это в конфигурационном файле и представляет собой цельную карту, которую сгенерировал Google Cartographer в виде двумерной матрицы.

Формат этого топика определён сообщением стандарта ROS nav msgs/ОссирапсуGrid, его содержимое увидеть в Приложении.

Сервис GPIO

Данный сервис был создан с нуля на языке C++ в целях управления контроллером электродвигателей робота при помощи установленного на Nvidia Jetson NANO разъёма стандарта GPIO, схему которого можно увидеть на Рисунке .

На вход сервиса приходит команда в виде числа в формате uint8. Действие каждой команды закреплено в заголовочном файле commands.hpp в пространстве имён MoveCommands. Всего доступно 20 различных команд, которые являются комбинацией двух характеристик: гусеница и скорость. Дополнительно имеются команды на движение вперёд и назад⁷ с возможностью выбора скорости. Всего гусениц на роботе установлено две: левая и правая. А скоростей доступно 4 штуки:

- 1. Остановка (нет скорости);
- 2. Медленная;
- 3. Средняя;
- 4. Быстрая.

На выходе сервис возвращает своим клиента переменную в формате boolean, значение true которой говорит об успешности подачи или снятия напряжения 3.3В на ножки разъёма GPIO или false при возникновении какой-либо ошибки. Используемые ножки для контроля двигателями ножки можно увидеть на схеме, изображённой на Рисунке.

Управление пинами GPIO происходит при помощи выполнения следующих команд в оболочке bash, вызываемых при помощи стандартной функции system("команда"):

- 1. echo «номер пина» > /sys/class/gpio/export;
- 2. echo «номер пина» > /sys/class/gpio/unexport;
- 3. echo «in или out» > /sys/class/gpio/gpio«номер пина»/direction;
- 4. echo «значение 1 или 0» > /sys/class/gpio/gpio«номер пина»/value.

⁷Данные команды для движения задействуют одновременно все гусеницы робота.

Первая команда служит для того активировать данную ножку на разъёме и разрешить управление над ней. Вторая команда, соответственно, выключает данную ножку. Третья команда выполняется для назначения «направления» данной ножки. Она может быть как входной, то есть ждать какого-то управляющего сигнала, так и выходной, то есть сама подавать напряжение +3.3В. Последняя команда управляет тем значением, которое будет на ножке.

Также, дополнительно были сделаны тестовые клиенты к данному сервису. Первый позволяет при помощи нажатий клавиш WASD управлять направлением движения робота в ручном режиме. Второй тестовый клиент также представляет интерфейс для ручного управления роботом, но уже в полном функционале, то есть нажатие определённой клавиши на клавиатуре вызывает определённую команду GPIO сервиса.

Узел записи видео

Данный узел был создан в целях сборки данных для обучения нейронной сети, которая отвечает за распознавание объектов и во время работы
робота никак не используется. Узел записи видео подписывается на топик
гаw, в который узел камеры публикует кадры, получаемые из подключенной СSI видеокамеры. Полученные кадры подгоняются под размер 640х480,
преобразуются в формат bgr8, а затем передаются открытой библиотеке
компьютерного зрения OpenCV8, которая настроена так чтобы записывать
видеофайлы с частотой кадров 20 кадров в секунду каждые 1000 полученных кадров на подключенный к Jetson NANO по интерфейсу USB 3.0
внешний жёсткий диск в кодировке DIVX и формате avi. Имя каждого файла уникально и состоит из базового имени (в данном случае mike-video-) и
текущей даты с временем в формате «день-месяц-год-час-минута-секунда».
Это позволяет не перезаписывать каждый раз одно и то же видео, а иметь
сразу много кусков и не переживать за конфликт имён.

⁸Конкретно, в данном случае используется С++ класс сv::VideoWriter

Узел распознавания объектов

Узел распознавания объектов написан на языке Python версии 3. На входе он подписывается на топик видеокамеры raw, а на выходе предоставляет сообщения собственного стандарта inference/Bboxes. Bboxes состоит из одного элемента - массива сообщений Bbox, который представляет собой массив так называемых bounding box. Bounding box - это по сути прямоугольник, генерируемый нейронной сетью, который указывает на распознанные объекты на входном видеоизображении. Распознанных объектов в кадре может быть несколько, а значит и этих прямоугольников за один кадр может сгенерироваться несколько, поэтому важно передавать именно массив bounding box. В определённом в данном узле собственном стандарте сообщения inference/Bbox у каждого bounding box'а имеются следующие значения:

- 1. x_min первая координата прямоугольника по оси x в формате float32;
- 2. у_min первая координата прямоугольника по оси y в формате float32;
- 3. x_max вторая координата прямоугольника по оси x в формате float32;
- 4. у_max вторая координата прямоугольника по оси y в формате float32;
- 5. score вероятность в формате float32 того, что распознанный объект распознан верно;
- 6. label в строковом формате string название распознанного объекта

Для распознавания объектов используется нейронная сеть, запускаемая на видеоядре компьютера Nvidia Jetson NANO, основанная на MobileNetSSDv2, обученная на собранном с видеокамеры робота датасете, а также прошедшая оптимизация при помощи ПО от компании Nvidia - TensorRT. Данная нейронная сеть создавалась не в рамках работы над данной ВКР, поэтому подробности её создания не будут освещены в тек-

⁹по нему можно понять какого вида объект был обнаружен и понять является ли он целевым

сте данной работы. Из распознаваемых данной нейронной сетью объектов можно выделить:

- Прозрачная бутылка;
- Кухонный нож с белой ручкой;
- Пластиковый контейнер лапши быстрого приготовления;
- Глубокая фарфоровая тарелка;
- Фонарик с металлическим корпусом;
- Синяя шариковая авторучка.

Узел движения

Данный узел является самым главным узлом в данной работе. Его задача принимать решения о том, куда поедет робот на основании тех данных, которые приходят из нейронной сети, лазерного сканера YDLIDAR, и Google Cartographer.

Узел движения подписывается на 2 топика: /scan - который содержит облако точек, выдаваемых лидаром, и /bboxes - топик, в который попадают bounding box из нейросети. Также, узел включает в себя слушателя изменений местоположения робота по имени «base_link». Именно по этому имени можно получить текущее местоположение робота на карте, создающейся Google Cartographer. Помимо этого узел является клиентом сервиса управления двигателями для того чтобы иметь возможность непосредственно отдавать команды для различных манёвров робота.

Обработка облака точек. Приходящее в узел облако точек из 720 элементов, как и было описано в Главе 2 делится на 4 части, по каждой из которой считается среднее арифметическое число: перед f, зад b, лево l и право r. В первую очередь анализируется передняя часть. Если на ней было обнаружено хоть одно число больше 0 и менее 0,3, то считается, что перед роботом есть препятствие и нужно поворачивать. Поворот в нужную сторону длится 1 секунду, затем алгоритм повторяется.

Обработка застреваний Для обработки застреваний устанавливается слушатель так называемого transform. Узел слушает два transform'a: «base link» и «map», которые генерируются Google Cartographer. В первом содержится информация об отклонении местоположения и вектора поворота от второго transform. Без второго transform нельзя было бы понять местоположение робота, так как не было бы «базового» местоположения (объекта transform) с которым и происходит сравнение. Каждый раз программа запоминает последнее местоположение робота и момент времени в котором данное местоположение было запомнено. Как только проходит одна секунда, проверяется насколько сильно робот изменил местоположение. Если робот не «застрял», то запоминается новое время и местоположение робота. Если местоположение изменилось недостаточно сильно (dx < 0.3, dy < 0.3 и отклонение вектора поворота dr < 3 градуса), то происходит перехват управления: робот останавливается, движется назад в течении секунды, затем ищется в какую сторону повернуть по высчитанным ранее средним арифметическим числам. Робот поворачивает в течении секунды, затем движение продолжается как обычно.

Следование за целевым объектом. При появлении какого-либо распознанного объекта в кадре, нейронная сеть посылает в топик /bboxes сообщение с координатами прямоугольника, в рамках которого и находится распознанный объект. Если распознанных объектов больше чем 1, то для дальнейшего анализа выбирается тот, у кого более высокая вероятность правильного совпадения имени распознанного объекта с действительностью. Это делается для того чтобы отфильтровать те различные мелкие фрагменты объекта, которые в виду неточности работы нейронной сети появляются на распознанном объекте.

Следующим шагом проверяется название объекта и если оно есть в списке целевых объектов, то фактически происходит перехват управления. Робот останавливается и центр прямоугольника распознанного объекта выравнивается в кадре и становится стабильнее. После этого шасси робота доворачивается таким образом, чтобы центр прямоугольника, в котором находится целевой объект оказался в середине (с небольшой допустимой

погрешностью) кадра видеокамеры¹⁰. После этого робот начинает движение вперёд ровно до тех пор, пока какой-либо из краёв прямоугольника не достигнет края кадра. Если роботу удалось достигнуть данной точки, то движение останавливается, так как считается, что робот выполнил свою задачу, найдя целевой объект на местности. Схема данного алгоритма представлена на Рисунке .

3.5 Таблица обыкновенная

Так размещается таблица:

Таблица 7 — Название таблицы

Месяц	T_{min} , K	T_{max} , K	$(T_{max}-T_{min})$, K
Декабрь	253.575	257.778	4.203
Январь	262.431	263.214	0.783
Февраль	261.184	260.381	-0.803

Таблица 8

Оконная функция	2N	4N	8N
Прямоугольное	8.72	8.77	8.77
Ханна	7.96	7.93	7.93
Хэмминга	8.72	8.77	8.77
Блэкмана	8.72	8.77	8.77

Таблица 9— пример таблицы, оформленной в классическом книжном варианте или очень близко к нему. ГОСТу по сути не противоречит. Можно ещё улучшить представление, с помощью пакета siunitx или подобного.

 $^{^{10}}$ Для этих целей в исходном коде программы заранее записано разрешение видеокадра, с которым оперирует нейронная сеть.

Таблица 9 — Наименование таблицы, очень длинное наименование таблицы, чтобы посмотреть как оно будет располагаться на нескольких строках и переноситься

Оконная функция	2N	4N	8N
Прямоугольное	8.72	8.77	8.77
Ханна	7.96	7.93	7.93
Хэмминга	8.72	8.77	8.77
Блэкмана	8.72	8.77	8.77

3.6 Таблица с многострочными ячейками и примечанием

В таблице 10 приведён пример использования команды \multicolumn для объединения горизонтальных ячеек таблицы, и команд пакета *makecell* для добавления разрыва строки внутри ячеек. При форматировании таблицы 10 использован стиль подписей split. Глобально этот стиль может быть включён в файле Dissertation/setup.tex для диссертации и в файле Synopsis/setup.tex для автореферата. Однако такое оформление не соответствует ГОСТ.

Таблица 10 Пример использования функций пакета *makecell*

Колонка 1	Колонка 2	Название колонки 3, не помещающееся в одну строку			
Выравнивание по центру					
Выравни	вание	Выравнивание к левому краю			
к правому	краю				
В этой ячейке	8.72	8.55	8.44		
много информации	0.72	0.33	0.44		
А в этой мало	8.22	5			

Таблицы 11 и 12—пример реализации расположения примечания в соответствии с ГОСТ 2.105. Каждый вариант со своими достоинствами и недостатками. Вариант через tabulary хорошо подбирает

ширину столбцов, но сложно управлять вертикальным выравниванием, tabularx—наоборот.

Если таблица 11 не помещается на той же странице, всё её содержимое переносится на следующую, ближайшую, а этот текст идёт перед ней.

3.7 Таблицы с форматированными числами

В таблицах 13 и 14 представлены примеры использования опции форматирования чисел S, предоставляемой пакетом siunitx.

3.8 Параграф — два

Некоторый текст.

3.9 Параграф с подпараграфами

3.9.1 Подпараграф — один

Некоторый текст.

3.9.2 Подпараграф — два

Некоторый текст.

Таблица $11 - \text{H}_{\mbox{\scriptsize 9}}$ про натюм фюйзчыт квюальизквю

доминг лаборамюз эи ыам (Общий съём цен шляп (юфть))	Шеф взъярён	адвыр- жаряюм	тебик- вюэ элььэеф- энд мэдио- крета- тым	Чэнзэ- рет мны- жарк- хюм
Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф Плюш изъят. Бьём чуждый цен хвощ!	≈	\approx	≈	+
Эх, чужак! Общий съём цен	+	+	+	_
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео	\approx	_	_	_
Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч.	_	+	+	\approx
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ.	+	_	\approx	_

Примечание — Плюш изъят: «+» — адвыржаряюм квуй, вим емпыдит; «-» — емпыдит коммюны ат; « \approx » — Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф?

Таблица 12 — Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч

доминг лаборамюз эи ыам (Общий съём цен шляп (юфть))	Шеф взъярён	адвыр- жаряюм	тебиквюэ элььэеф- энд мэдио- крета- тым	Чэнзэрет мны- жарк- хюм
Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф Плюш изъят. Бьём чуждый цен хвощ!	pprox	\approx	\approx	+
Эх, чужак! Общий съём цен	+	+	+	_
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео	\approx	_	_	_
Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч.	_	+	+	\approx
Нэ про натюм фюйзчыт квюальизквюэ, аэквюы жкаывола мэль ку. Ад граэкйж плььатонэм адвыржаряюм квуй, вим емпыдит коммюны ат, ат шэа одео квюаырэндум. Вёртюты ажжынтиор эффикеэнди эож нэ.	+	_	\approx	_

Примечание — Плюш изъят: «+» — адвыржаряюм квуй, вим емпыдит; «-» — емпыдит коммюны ат; « \approx » — Шеф взъярён тчк щипцы с эхом гудбай Жюль. Эй, жлоб! Где туз? Прячь юных съёмщиц в шкаф. Экс-граф?

Таблица 13 — Выравнивание столбцов

Выравнивание по разделителю	Обычное выравнивание
12,345	12,345
6,78	6,78
-88.8 ± 0.9	$-88,8 \pm 0,9$
$4.5 \cdot 10^3$	$4.5\cdot 10^3$

Таблица 14 — Выравнивание с использованием опции S

Колонка 1	Колонка 2	Колонка 3	Колонка 4
2,3456	2,3456	2,3456	2,3456
34,2345	$34,\!2345$	34,2345	34,2345
56,7835	56,7835	56,7835	56,7835
90,473	90,473	90,473	$90,\!473$

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа предметной области был построен целый программно-аппаратный комплекс, выполняющий свою задачу;
- 2. Тестирования показали, что робот, в большинстве случаев справляется со своей задачей нахождения целевых объектов;
- 3. Моделирование различных ситуаций показало, что робот справится далеко не с каждым случаем, в котором он может оказаться (например, на широкой улице). Поэтому для конкретных случаев требуется дополнительное совершенствование и корректировка текущей реализации.

Таким образом была разработана система управления и формирования поведенческой стратегии автономного мобильного робота на основе визуального анализа окружающего пространства.

В заключение автор выражает благодарность и большую признательность своему научному консультанту преподавателю кафедры КНЭМ Гордееву А. Ю. за поддержку, помощь, обсуждение результатов и научное руководство. Также автор благодарит своего научного руководителя и заведующего кафедры КНЭМ доктора физико-математических наук Клячина В. А. за помощь при составлении данной ВКР.

Список сокращений и условных обозначений

 a_n коэффициенты разложения Ми в дальнем поле соответ- b_n ствующие электрическим и магнитным мультиполям

ê единичный вектор

 E_0 амплитуда падающего поля

 коэффициенты разложения Ми в дальнем поле соответствующие электрическим и магнитным мультиполям ещё раз, но без окружения minipage нет вертикального выравнивания по центру.

j тип функции Бесселя

k волновой вектор падающей волны

и снова коэффициенты разложения Ми в дальнем поле соответствующие электрическим и магнитным мультиполям, теперь окружение minipage есть и добавлено много текста, так что описание группы условных обозначений значительно превысило высоту этой группы... Для отбивки пришлось добавить дополнительные отступы.

L общее число слоёв

l номер слоя внутри стратифицированной сферы

λ длина волны электромагнитного излучения в вакууме

n порядок мультиполя

 $egin{array}{ccc} \mathbf{N}_{e1n}^{(j)} & \mathbf{N}_{o1n}^{(j)} \\ \mathbf{M}_{o1n}^{(j)} & \mathbf{M}_{e1n}^{(j)} \end{array}
ight\}$ сферичес

сферические векторные гармоники

μ магнитная проницаемость в вакууме

 r, θ, ϕ полярные координаты

ω частота падающей волны

BEM boundary element method, метод граничных элементов

CST MWS Computer Simulation Technology Microwave Studio программа для компьютерного моделирования уравнений Максвелла

DDA discrete dipole approximation, приближение дискретиных диполей

FDFD finite difference frequency domain, метод конечных разностей в частотной области

FDTD finite difference time domain, метод конечных разностей во временной области

FEM finite element method, метод конечных элементов

FIT finite integration technique, метод конечных интегралов

FMM fast multipole method, быстрый метод многополюсника

FVTD finite volume time-domain, метод конечных объёмов во временной области

MLFMA multilevel fast multipole algorithm, многоуровневый быстрый алгоритм многополюсника

MoM method of moments, метод моментов

MSTM multiple sphere T-Matrix, метод Т-матриц для множества сфер

PSTD pseudospectral time domain method, псевдоспектральный метод во временной области

TLM transmission line matrix method, метод матриц линий передач

Словарь терминов

ТеХ : Система компьютерной вёрстки, разработанная американским профессором информатики Дональдом Кнутом

панграмма: Короткий текст, использующий все или почти все буквы алфавита

Список литературы

- 1. *Соколов*, *А. Н.* Гражданское общество: проблемы формирования и развития (философский и юридический аспекты): монография [Текст] / А. Н. Соколов, К. С. Сердобинцев; под ред. В. М. Бочарова. Астрахань: Калиниградский ЮИ МВД России, 2009. 218 с.
- 2. *Гайдаенко*, *Т. А.* Маркетинговое управление: принципы управленческих решений и российская практика [Текст] / Т. А. Гайдаенко. 3-е изд, перераб. и доп. М. : Эксмо: МИРБИС, 2008. 508 с.
- 3. *Фамилия*, *И. О.* Название статьи [Текст] / И. О. Фамилия, И. О. Фамилия2, И. О. Фамилия3 // Журнал. 2013. Т. 1, № 5. С. 100—120.
- 4. Φ амилия, U. O. название тезисов конференции [Текст] / U. O. Φ амилия // Название сборника. 2015.
- 5. *Лермонтов*, *М. Ю*. Собрание сочинений: в 4 т. [Текст] / М. Ю. Лермонтов. М.: Терра-Кн. клуб, 2009. 4 т.
- 6. Управление бизнесом : сборник статей [Текст]. Нижний новгород : Изд-во Нижегородского университета, 2009. 243 с.
- 7. *Борозда*, *И. В.* Лечение сочетанных повреждений таза [Текст] / И. В. Борозда, Н. И. Воронин, А. В. Бушманов. Владивосток : Дальнаука, 2009. 195 с.
- 8. Маркетинговые исследования в строительстве : учебное пособие для студентов специальности «Менеджмент организаций» [Текст] / О. В. Михненков [и др.]. М. : Государственный университет управления, 2005. 59 с.
- 9. Конституция Российской Федерации : офиц. текст. [Текст]. М. : Маркетинг, 2001. 39 с.
- Семейный кодекс Российской Федерации : [федер. закон: принят Гос. Думой 8 дек. 1995 г. : по состоянию на 3 янв. 2001 г.] [Текст]. СПб. : Стаун-кантри, 2001. 94 с.

- 11. ГОСТ Р 7.0.53-2007 Система стандартов по информации, библиотечному и издательскому делу. Издания. Международный стандартный книжный номер. Использование и издательское оформление. [Текст]. М.: Стандартинформ, 2007. 5 с.
- 12. *Разумовский*, *В. А.* Управление маркетинговыми исследованиями в регионе [Текст] / В. А. Разумовский, Д. А. Андреев. М., 2002. 210 с. Деп. в ИНИОН Рос. акад. наук 15.02.02, № 139876.
- 13. *Лагкуева*, *И. В.* Особенности регулирования труда творческих работников театров : дис. ... канд. юрид. наук : 12.00.05 [Текст] / И. В. Лагкуева. М., 2009. 168 с.
- 14. Покровский, А. В. Устранимые особенности решений эллиптических уравнений : дис. ... д-ра физ.-мат. наук : 01.01.01 [Текст] / А. В. Покровский. М., 2008. 178 с.
- 15. *Загорюев*, *А. Л.* Методология и методы изучения военно-профессиональной направленности подростков : отчёт о НИР [Текст] / А. Л. Загорюев. Екатеринбург, 2008. 102 с.
- 16. *Насырова*, Г. А. Модели государственного регулирования страховой деятельности [Электронный ресурс] [Электронный ресурс] / Г. А. Насырова // Вестник Финансовой академии. 2003. № 4. Режим доступа: http://vestnik.fa.ru/4(28)2003/4.html.
- 17. *Берестова*, *Т.* Φ . Поисковые инструменты библиотеки [Текст] / Т. Φ . Берестова // Библиография. 2006. № 4. С. 19.
- 18. *Кригер, И.* Бумага терпит [Текст] / И. Кригер // Новая газета. 2009. 1 июля.
- 19. *Сиротко*, *В. В.* Медико-социальные аспекты городского травматизма в современных условиях [Текст] : автореф. дис. . . . канд. мед. наук : 14.00.33 / Сиротко Владимир Викторович. М., 2006. 26 с.
- 20. *Лукина*, *В. А.* Творческая история «Записок охотника» И. С. Тургенева [Текст] : автореф. дис. . . . канд. филол. наук : 10.01.01 / Лукина Валентина Александровна. СПб., 2006. 26 с.
- 21. Художественная энциклопедия зарубежного классического искусства [Электронный ресурс]. М.: Большая Рос. энкцикл., 1996. 1 электрон. опт. диск (CD-ROM).

- 22. Adams, P. The title of the work [Текст] / P. Adams // The name of the journal. 1993. July. Vol. 4, no. 2. P. 201—213. An optional note.
- 23. *Babington*, *P.* The title of the work [Текст]. Vol. 4 / P. Babington. 3rd ed. The address: The name of the publisher, 07/1993. (10). An optional note.
- 24. *Caxton*, *P*. The title of the work [Teκcτ] / P. Caxton. The address of the publisher, 07/1993. An optional note. How it was published.
- 25. *Draper*, *P.* The title of the work [Teκcτ] / P. Draper // The title of the book. Vol. 4 / ed. by T. editor. The organization. The address of the publisher: The publisher, 07/1993. P. 213. (5). An optional note.
- 26. Eston, P. The title of the work [Teκct] / P. Eston // Book title. Vol. 4. 3rd ed. The address of the publisher: The name of the publisher, 07/1993. Chap. 8. P. 201—213. (5). An optional note.
- 27. Farindon, P. The title of the work [Teκcτ] / P. Farindon // The title of the book. Vol. 4 / ed. by T. editor. 3rd ed. The address of the publisher: The name of the publisher, 07/1993. Chap. 8. P. 201—213. (5). An optional note.
- 28. *Gainsford*, *P*. The title of the work [Текст] / P. Gainsford; The organization. 3rd ed. The address of the publisher, 07/1993. An optional note.
- 29. *Harwood*, *P*. The title of the work [Текст]: Master's thesis / Harwood Peter. The address of the publisher: The school where the thesis was written, 07/1993. An optional note.
- 30. *Isley*, *P*. The title of the work [Текст] / P. Isley. 07/1993. An optional note. How it was published.
- 31. *Joslin*, *P*. The title of the work [Текст]: PhD thesis / Joslin Peter. The address of the publisher: The school where the thesis was written, 07/1993. An optional note.
- 32. The title of the work [Текст]. Vol. 4 / ed. by P. Kidwelly. The organization. The address of the publisher: The name of the publisher, 07/1993. (5). An optional note.

- 33. *Lambert*, *P.* The title of the work [Текст]: tech. rep. / P. Lambert; The institution that published. The address of the publisher, 07/1993. No. 2. An optional note.
- 34. *Marcheford*, *P.* The title of the work [Текст] / P. Marcheford. 07/1993. An optional note.
- 35. *Медведев*, *А. М.* Электронные компоненты и монтажные подложки [Электронный ресурс] / А. М. Медведев. 2006. URL: http://www.kit-e.ru/articles/elcomp/2006%5C_12%5C_124.php (дата обр. 19.01.2015).
- 36. *Deiters*, *U. K.* A Modular Program System for the Calculation of Thermodynamic Properties of Fluids [Teκcτ] / U. K. Deiters // Chemical Engineering & Technology. 2000. Vol. 23, no. 7. P. 581—584.
- 37. Deformation of Colloidal Crystals for Photonic Band Gap Tuning [Текст] / Y.-S. Cho [et al.] // Journal of Dispersion Science and Technology. 2011. Vol. 32, no. 10. P. 1408—1415.
- 38. Wafer bonding for microsystems technologies [Текст] / U. Gösele [и др.] // Sensors and Actuators A: Physical. 1999. Т. 74, № 1—3. С. 161—168.
- 39. *Li*, *L*. Stress Analysis for Processed Silicon Wafers and Packaged Micro-devices [Текст] / L. Li, Y. Guo, D. Zheng // Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging / ed. by E. Suhir, Y. C. Lee, C. P. Wong. Springer US, 2007. B677—B709.
- 40. *Shoji*, *S.* Low-temperature anodic bonding using lithium aluminosilicate-β-quartz glass ceramic [Teκcτ] / S. Shoji, H. Kikuchi, H. Torigoe // Sensors and Actuators A: Physical. 1998. T. 64, № 1. C. 95—100. Tenth IEEE International Workshop on Micro Electro Mechanical Systems.
- 41. Iterative denoising using Jensen-Renyi divergences with an application to unsupervised document categorization [Текст] / D. Karakos [и др.] // Proceedings of ICASSP. 2007. URL: http://cs.jhu.edu/~jason/papers/%5C#icassp07.

- 42. Iterative denoising using Jensen-Renyi divergences with an application to unsupervised document categorization [Текст] / D. Karakos [и др.] // Proc. of ICASSP. 2007. URL: http://cs.jhu.edu/~jason/papers/%5C# icassp07.
- 43. *Pomerantz*, *D. I.* Anodic bonding: patent no. 3397278 US [Текст] / D. I. Pomerantz. 1968.
- 44. *Иофис*, *Н. А.* Способ пайки керамики с керамикой и стекла с металлом
 : а. с. 126728 СССР [Текст] / Н. А. Иофис. 1960. Бюл. № 5. 1.
- 45. Заявка 1095735 Рос. федерация, МПК⁷ В 64 G 1/00. Одноразовая ракета-носитель [Текст] / Э. В. Тернер (США) ; заявитель Спейс Системз/Лорал, инк. ; патент. поверенный Егорова Г. Б. № 2000108705/28 ; заявл. 07.04.2000 ; опубл. 10.03.2001, Бюл. № 7 (I ч.) ; приоритет 09.04.1999, 09/289, 037 (США). 5 с. : ил.
- 46. *А. с. 1007970 СССР, МКИ*³ *В 25.1 15/00*. Устройство для захвата неориентированных деталей типа валов [Текст] / В. С. Ваулин, В. Г. Кемайкин (СССР). № 3360585/25-08 ; заявл. 23.11.1981 ; опубл. 30.03.1983, Бюл. № 12. 2 с. : ил.
- 47. Одноразовая ракета-носитель [Текст] : заявка 1095735 Рос. Федерация : МПК⁷ В 64 G 1/00 / Э. В. Тернер (США) ; заявитель Спейс Системз/Лорал, инк. ; патент. поверенный Егорова Г. Б. № 2000108705/28 ; заявл. 07.04.2000 ; опубл. 10.03.2001, Бюл. № 7 (I ч.) ; приоритет 09.04.1999, 09/289, 037 (США). 5 с. : ил.
- 48. Φ амилия, U. O. название тезисов конференции [Текст] / U. O. Φ амилия // Название сборника. 2015.

Список рисунков

2.1	TeX	23
2.2	Очень длинная подпись к изображению, на котором	
	представлены две фотографии Дональда Кнута	24
2.3	Этот текст попадает в названия рисунков в списке рисунков	25
2.4	Пример tikz схемы	26

Список таблиц

1	Основные величины СИ	15
2	Производные единицы СИ	16
3	Внесистемные единицы	16
4	Внесистемные единицы, получаемые из эксперимента	17
5	Другие внесистемные единицы	17
6	Приставки СИ	18
7	Название таблицы	50
8		50
9	Наименование таблицы, очень длинное наименование таблицы,	
	чтобы посмотреть как оно будет располагаться на нескольких	
	строках и переноситься	51
10	Пример использования функций пакета makecell	51
11	Нэ про натюм фюйзчыт квюальизквюэ	53
12	Любя, съешь щипцы, — вздохнёт мэр, — кайф жгуч	54
13	Выравнивание столбцов	55
14	Выравнивание с использованием опции S	55
15	Наименование таблицы средней длины	75
16	Тестовые функции для оптимизации, D — размерность. Для всех	
	функций значение в точке глобального минимума равно нулю	80
17	Длинная таблица с примером чересстрочного форматирования .	83
18	Стандартные префиксы ссылок	85

Приложение А

Примеры вставки листингов программного кода

Для крупных листингов есть два способа. Первый красивый, но в нём могут быть проблемы с поддержкой кириллицы (у вас может встречаться в комментариях и печатаемых сообщениях), он представлен на листинге A.1. Второй не такой красивый, но без ограничений (см. листинг A.2).

Листинг А.1: Программа "Hello, world" на С++

```
#include <iostream>
using namespace std;

int main() //кириллица в комментариях при xelatex u lualatex
имеет проблемы с пробелами

{
   cout << "Hello, world" << endl; //latin letters in
   commentaries
   system("pause");
   return 0;
}</pre>
```

Листинг А.2: Программа "Hello, world" без подсветки

```
#include <iostream>
using namespace std;

int main() //кириллица в комментариях
{
    cout << "Привет, мир" << endl;
}</pre>
```

Можно использовать первый для вставки небольших фрагментов внутри текста, а второй для вставки полного кода в приложении, если таковое имеется.

Если нужно вставить совсем короткий пример кода (одна или две строки), то выделение линейками и нумерация может смотреться чересчур громоздко. В таких случаях можно использовать окружения lstlisting или Verb без ListingEnv. Приведём такой пример с указанием языка программирования, отличного от заданного по умолчанию:

```
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
```

Такое решение — со вставкой нумерованных листингов покрупнее и вставок без выделения для маленьких фрагментов — выбрано, например, в книге Эндрю Таненбаума и Тодда Остина по архитектуре

Наконец, для оформления идентификаторов внутри строк (функция main и тому подобное) используется lstinline или, самое простое, моноширинный текст (\texttt).

Пример А.3, иллюстрирующий подключение переопределённого языка. Может быть полезным, если подсветка кода работает криво. Без дополнительного окружения, с подписью и ссылкой, реализованной встроенным средством.

Листинг А.3: Пример листинга с подписью собственными средствами

```
## Caching the Inverse of a Matrix
  ## Matrix inversion is usually a costly computation and there
     may be some
  ## benefit to caching the inverse of a matrix rather than
     compute it repeatedly
5 ## This is a pair of functions that cache the inverse of a
     matrix.
  ## makeCacheMatrix creates a special "matrix" object that can
     cache its inverse
  makeCacheMatrix <- function(x = matrix()) { #кириллица в коммен
     тариях при xelatex и lualatex имеет проблемы с пробелами
10
      i <- NULL
      set <- function(y) {</pre>
          x <<- y
           i <<- NULL
15
      get <- function() x</pre>
      setSolved <- function(solve) i <<- solve</pre>
      getSolved <- function() i</pre>
```

```
list(set = set, get = get,
      setSolved = setSolved,
      getSolved = getSolved)
20
25 ## cacheSolve computes the inverse of the special "matrix"
     returned by
  ## makeCacheMatrix above. If the inverse has already been
     calculated (and the
  ## matrix has not changed), then the cachesolve should
     retrieve the inverse from
  ## the cache.
30 cacheSolve <- function(x, ...) {
       ## Return a matrix that is the inverse of 'x'
      i <- x$qetSolved()</pre>
      if(!is.null(i)) {
           message("getting cached data")
35
           return(i)
      data <- x$get()</pre>
      i <- solve(data, ...)</pre>
      x$setSolved(i)
40
  }
```

Листинг A.4 подгружается из внешнего файла. Приходится загружать без окружения дополнительного. Иначе по страницам не переносится.

Листинг А.4: Листинг из внешнего файла

```
# Analysis of data on Course Project at Getting and Cleaning
    data course of Data Science track at Coursera.

# Part 1. Merges the training and the test sets to create one
    data set.

# 3. Uses descriptive activity names to name the activities in
    the data set

# 4. Appropriately labels the data set with descriptive
    variable names.

if (!file.exists("UCI HAR Dataset")) {
    stop("You need 'UCI HAR Dataset' folder full of data")
```

```
}
10
  library(plyr) # for mapvalues
15 #getting common data
  features <- read.csv("UCI HAR Dataset/features.txt", sep=" ",
     header = FALSE,
                         colClasses = c("numeric", "character"))
  activity_labels <- read.csv("UCI HAR Dataset/activity_labels.
     txt", sep="",
                                header = FALSE, colClasses = c("
     numeric", "character"))
20
  #getting train set data
  subject_train <- read.csv("UCI HAR Dataset/train/subject_train</pre>
     .txt",
                              header = FALSE, colClasses = "numeric
     ", col.names="Subject")
  y_train <- read.csv("UCI HAR Dataset/train/y_train.txt",</pre>
     header = FALSE,
25
                        colClasses = "numeric")
  x_train <- read.csv("UCI HAR Dataset/train/X_train.txt", sep=""</pre>
     , header = FALSE,
                        colClasses = "numeric", col.names=features$
     V2, check.names = FALSE)
  activity_train <- as.data.frame(mapvalues(y_train$V1, from =</pre>
     activity_labels$V1,
30
                                               to = activity_labels
     $V2))
  names(activity_train) <- "Activity"</pre>
35 #getting test set data
  subject_test <- read.csv("UCI HAR Dataset/test/subject_test.</pre>
     txt",
                             header = FALSE,colClasses = "numeric"
     , col.names="Subject")
  y_test <- read.csv("UCI HAR Dataset/test/y_test.txt", header =</pre>
      FALSE,
```

```
colClasses = "numeric")
40 x_test <- read.csv("UCI HAR Dataset/test/X_test.txt", sep="",
     header = FALSE,
                      colClasses = "numeric", col.names=features$
     V2, check.names = FALSE)
  activity_test <- as.data.frame(mapvalues(y_test$V1, from =</pre>
     activity_labels$V1,
                                             to = activity_labels$
     V2))
45 names (activity_test) <- "Activity"
  # Forming full dataframe
  data_train <- cbind(x_train, subject_train, activity_train)</pre>
50 data_test <- cbind(x_test, subject_test, activity_test)
  data <- rbind(data_train, data_test)</pre>
  # Cleaning memory
  rm(features, activity_labels, subject_train, y_train, x_train,
      activity train,
55
     subject_test, y_test, x_test, activity_test, data_train,
     data_test)
  # Part 2. Extracts only the measurements on the mean and
     standard deviation for each measurement.
60 cols2match <- grep("(mean|std)", names(data))
  # Excluded gravityMean, tBodyAccMean, tBodyAccJerkMean,
     tBodyGyroMean,
  # tBodyGyroJerkMean, as these represent derivations of angle
  # opposed to the original feature vector.
65
  # Subsetting data frame, also moving last columns to be first
  Subsetted_data_frame <- data[ ,c(562, 563, cols2match)]</pre>
  # Part 5. From the data set in step 4, creates a second,
     independent tidy data set
70 # with the average of each variable for each activity and each
      subject.
```

Приложение Б

Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами

Б.1 Подраздел приложения

Вот размещается длинная таблица:

Параметр	Умолч.	Тип	Описание
&INP			
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
	_		1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
		1	продолжение следует

Попоможе	VMOTTI	Т	(продолжение)			
Параметр	Умолч.	Тип	Описание			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0 : инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
		:4	экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$) 1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			1			
marc	0	int	экватора 1: инициализация модели для планеты Марс			
mars kick	1	int	0 : инициализация без шума $(p_s = const)$			
KICK	1	IIIt	0. инициализация оез шума ($p_s = const$) 1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
more	0	int	экватора 1: инициализация модели для планеты Марс			
mars kick	1	int	0: инициализация без шума $(p_s = const)$			
KICK	1	1111	1: генерация белого шума $(p_s - const)$			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
KICK	1	IIIt	1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	1: инициализация модели для планеты марс 0: инициализация без шума ($p_s = const$)			
	_	1110	0: инициализация оез шума ($p_s = const$) 1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
&SURFPAI	R		1			
kick	1	int	0 : инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0 : инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0 : инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
		1	1: генерация белого шума			
			2: генерация белого шума симметрично относительно			

(продолжение)						
Параметр	Умолч.	Тип	Описание			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0 : инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			

Б.2 Ещё один подраздел приложения

Нужно больше подразделов приложения! Конвынёры витюпырата но нам, тебиквюэ мэнтётюм позтюлант ед про. Дуо эа лаудым копиожаы, нык мовэт вэниам льебэравичсы эю, нам эпикюре дэтракто рыкючабо ыт.

Пример длинной таблицы с записью продолжения по ГОСТ 2.105:

Таблица 15 — Наименование таблицы средней длины

Параметр	Умолч.	Тип	Описание			
&INP						
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			

Продолжение таблицы 15

Параметр	Умолч.	Тип	Описание	
kick	1	int	0: инициализация без шума ($p_s = const$)	
			1: генерация белого шума	
			2: генерация белого шума симметрично относительно	
			экватора	
mars	0	int	1: инициализация модели для планеты Марс	
kick	1	int	0: инициализация без шума ($p_s = const$)	
			1: генерация белого шума	
			2: генерация белого шума симметрично относительно	
			экватора	
mars	0	int	1: инициализация модели для планеты Марс	
kick	1	int	0: инициализация без шума ($p_s = const$)	
			1: генерация белого шума	
			2: генерация белого шума симметрично относительно	
			экватора	
mars	0	int	1: инициализация модели для планеты Марс	
kick	1	int	0: инициализация без шума ($p_s = const$)	
			1: генерация белого шума	
			2: генерация белого шума симметрично относительно	
			экватора	
mars	0	int	1: инициализация модели для планеты Марс	
kick	1	int	0: инициализация без шума ($p_s = const$)	
			1: генерация белого шума	
			2: генерация белого шума симметрично относитель	
			экватора	
mars	0	int	1: инициализация модели для планеты Марс	
kick	1	int	0: инициализация без шума ($p_s = const$)	
			1: генерация белого шума	
			2: генерация белого шума симметрично относительно	
			экватора	
mars	0	int	1: инициализация модели для планеты Марс	
kick	1	int	0: инициализация без шума ($p_s = const$)	
			1: генерация белого шума	
			2: генерация белого шума симметрично относительно	
			экватора	
mars	0	int	1: инициализация модели для планеты Марс	
kick	1	int	0: инициализация без шума ($p_s = const$)	
			1: генерация белого шума	
			2: генерация белого шума симметрично относительно	
			экватора	

Продолжение таблицы 15

родолжени Параметр	Умолч.	Тип	Описание			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0 : инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0 : инициализация без шума ($p_s=const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0: инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
&SURFPA	1					
kick	1	int	0 : инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
			экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0 : инициализация без шума ($p_s = const$)			
			1: генерация белого шума			
			2: генерация белого шума симметрично относительно			
	_		экватора			
mars	0	int	1: инициализация модели для планеты Марс			
kick	1	int	0 : инициализация без шума ($p_s = const$)			
			1: генерация белого шума			

Продолжение таблицы 15

Параметр	Умолч.	Тип	Описание
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс

Б.3 Использование длинных таблиц с окружением longtabu

В таблице 16 более книжный вариант длинной таблицы, используя окружение longtabu и разнообразные toprule midrule bottomrule из пакета booktabs. Чтобы визуально таблица смотрелась лучше, можно использовать следующие параметры: в самом начале задаётся расстояние между строчками с помощью arraystretch. Таблица задаётся на всю ширину, longtabu позволяет делить ширину колонок пропорционально — тут три колонки в пропорции 1.1:1:4 — для каждой колонки первый параметр в описании X[]. Кроме того, в таблице убраны отступы слева и справа с помощью @{} в преамбуле таблицы. К первому и второму столбцу применяется модификатор

>{\setlength{\baselineskip}{0.7\baselineskip}}, который уменьшает межстрочный интервал в для текста таблиц (иначе заголовок второго столбца значительно шире, а двухстрочное имя сливается с окружающими). Для первой и второй колонки текст в ячейках выравниваются по центру как по вертикали, так и по горизонтали—задаётся буквами m и c в описании столбца X[].

Так как формулы большие—используется окружение alignedat, чтобы отступ был одинаковый у всех формул—он сделан для всех, хотя для большей части можно было и не использовать. Чтобы формулы занимали поменьше места в каждом столбце формулы (где надо) используется \textstyle—он делает дроби меньше, у знаков суммы и произведения—индексы сбоку. Иногда формула слишком большая, сливается со следующей, поэтому после неё ставится небольшой дополнительный отступ \vspace*{2ex}. Для штрафных функций—размер фигурных скобок задан вручную \Big\{, т. к. не умеет alignedat работать с \left и \right через несколько строк/колонок.

В примечании к таблице наоборот, окружение cases даёт слишком большие промежутки между вариантами, чтобы их уменьшить, в конце каждой строчки окружения использовался отрицательный дополнительный отступ \\[-0.5em].

Таблица 16 — Тестовые функции для оптимизации, D—размерность. Для всех функций значение в точке глобального минимума равно нулю.

Имя	Стартовый диапазон параметров	Функция
сфера	$[-100, 100]^D$	$f_1(x) = \sum_{i=1}^{D} x_i^2$
Schwefel 2.22	$[-10,10]^D$	$f_2(x) = \sum_{i=1}^{D} x_i + \prod_{i=1}^{D} x_i $
Schwefel 1.2	$[-100, 100]^D$	$f_3(x) = \sum_{i=1}^{D} \left(\sum_{j=1}^{i} x_j \right)^2$
Schwefel 2.21	$[-100, 100]^D$	$f_4(x) = \max_i \{ x_i \}$
Rosenbrock	$[-30,30]^D$	$f_5(x) = \sum_{i=1}^{D-1} \left[100 \left(x_{i+1} - x_i^2 \right)^2 + (x_i - 1)^2 \right]$
ступенчатая	$[-100, 100]^D$	$f_6(x) = \sum_{i=1}^{D} [x_i + 0.5]^2$
зашумлённая квартиче- ская	. , ,	$f_7(x) = \sum_{i=1}^{D} ix_i^4 + rand[0,1)$
Schwefel 2.26	$[-500, 500]^D$	$f_8(x) = \sum_{i=1}^{D} -x_i \sin \sqrt{ x_i } + D \cdot 418.98288727243369$
Rastrigin	$[-5.12, 5.12]^D$	$f_9(x) = \sum_{i=1}^{D} [x_i^2 - 10 \cos(2\pi x_i) + 10]$
Ackley	$[-32, 32]^D$	$f_{10}(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{D}\sum_{i=1}^{D} x_i^2}\right) - \exp\left(\frac{1}{D}\sum_{i=1}^{D} \cos(2\pi x_i)\right) + 20 + e$
Griewank	$[-600, 600]^D$	$f_{11}(x) = \frac{1}{4000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos(x_i/\sqrt{i}) + 1$
штрафная 1	$[-50, 50]^D$	$f_{12}(x) = \frac{\pi}{D} \left\{ 10 \sin^2(\pi y_1) + \sum_{i=1}^{D-1} (y_i - 1)^2 \left[1 + 10 \sin^2(\pi y_{i+1}) \right] + (y_D - 1)^2 \right\} + \sum_{i=1}^{D} u(x_i, 10, 100, 4)$

(продолжение)

Имя	Стартовый диапазон параметров	Функция
штрафная 2	$[-50, 50]^D$	$f_{13}(x) = 0.1 \left\{ \sin^2(3\pi x_1) + \sum_{i=1}^{D-1} (x_i - 1)^2 \left[1 + \sin^2(3\pi x_{i+1}) \right] + (x_D - 1)^2 \left[1 + \sin^2(2\pi x_D) \right] \right\} + \sum_{i=1}^{D} u(x_i, 5, 100, 4)$
сфера	$[-100, 100]^D$	$f_1(x) = \sum_{i=1}^{D} x_i^2$
Schwefel 2.22	$[-10, 10]^D$	$f_2(x) = \sum_{i=1}^{D} x_i + \prod_{i=1}^{D} x_i $
Schwefel 1.2	$[-100, 100]^D$	$f_3(x) = \sum_{i=1}^{D} \left(\sum_{j=1}^{i} x_j \right)^2$
Schwefel 2.21	$[-100, 100]^D$	$f_4(x) = \max_i \{ x_i \}$
Rosenbrock	$\left[-30,30\right]^D$	$f_5(x) = \sum_{i=1}^{D-1} \left[100 \left(x_{i+1} - x_i^2 \right)^2 + (x_i - 1)^2 \right]$
ступенчатая	$[-100, 100]^D$	$f_6(x) = \sum_{i=1}^{D} [x_i + 0.5]^2$
зашумлённая квартиче- ская	$[-1.28, 1.28]^D$	$f_7(x) = \sum_{i=1}^{D} ix_i^4 + rand[0,1)$
Schwefel 2.26	$[-500, 500]^D$	$f_8(x) = \sum_{i=1}^{D} -x_i \sin \sqrt{ x_i } + D \cdot 418.98288727243369$
Rastrigin	$[-5.12, 5.12]^D$	$f_9(x) = \sum_{i=1}^{D} \left[x_i^2 - 10 \cos(2\pi x_i) + 10 \right]$
Ackley	$[-32, 32]^D$	$f_{10}(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{D}\sum_{i=1}^{D} x_i^2}\right) - \exp\left(\frac{1}{D}\sum_{i=1}^{D} \cos(2\pi x_i)\right) + 20 + e$
Griewank	$[-600, 600]^D$	$f_{11}(x) = \frac{1}{4000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos(x_i/\sqrt{i}) + 1$

(окончание)

Имя	Стартовый диапазон параметров	Функция
штрафная 1	$[-50, 50]^D$	$f_{12}(x) = \frac{\pi}{D} \left\{ 10 \sin^2(\pi y_1) + \sum_{i=1}^{D-1} (y_i - 1)^2 \left[1 + 10 \sin^2(\pi y_{i+1}) \right] + (y_D - 1)^2 \right\} + \sum_{i=1}^{D} u(x_i, 10, 100, 4)$
штрафная 2	$[-50, 50]^D$	$f_{13}(x) = 0.1 \left\{ \sin^2(3\pi x_1) + \sum_{i=1}^{D-1} (x_i - 1)^2 \left[1 + \sin^2(3\pi x_{i+1}) \right] + (x_D - 1)^2 \left[1 + \sin^2(2\pi x_D) \right] \right\} + \sum_{i=1}^{D} u(x_i, 5, 100, 4)$
Примеч	ание — Для фу	нкций f_{12} и f_{13} используется $y_i = 1 + \frac{1}{4}(x_i + 1)$
и $u(x_i, a, k, m)$	$ = \begin{cases} k(x_i - a) \\ 0, \\ k(-x_i - a) \end{cases} $	$ \begin{array}{ll})^m, & x_i > a \\ & -a \leqslant x_i \leqslant a \\ a)^m, & x_i < -a \end{array} $

Б.4 Форматирование внутри таблиц

В таблице 17 пример с чересстрочным форматированием. В файле userstyles.tex задаётся счётчик \newcounter{rowcnt} который увеличивается на 1 после каждой строчки (как указано в преамбуле таблицы). Кроме того, задаётся условный макрос \altshape который выдаёт одно из двух типов форматирования в зависимости от чётности счётчика.

В таблице 17 каждая чётная строчка—синяя, нечётная—с наклоном и слегка поднята вверх. Визуально это приводит к тому, что среднее значение и среднеквадратичное изменение группируются и хорошо выделяются взглядом в таблице. Сохраняется возможность отдельные значения в таблице выделить цветом или шрифтом. К первому и второму столбцу форматирование не применяется по сути таблицы, к шестому общее форматирование не применяется для наглядности.

Так как заголовок таблицы тоже считается за строчку, то перед ним (для первого, промежуточного и финального варианта) счётчик обнуляется, а в \altshape для нулевого значения счётчика форматирования не применяется.

Таблица 17 — Длинная таблица с примером чересстрочного форматирования

	Итера- ции	JADE++	JADE	jDE	SaDE	DE/rand /1/bin	PSO
f1	1500	1.8E-60 (8.4E-60)	1.3E-54 (9.2E-54)	2.5E-28 (3.5E-28)	4.5E-20 (6.9E-20)	9.8E-14 (8.4E-14)	9.6E-42 (2.7E-41)
f2	2000	1.8E-25 (8.8E-25)	3.9E-22 (2.7E-21)	1.5E-23 (1.0E-23)	1.9E-14 (1.1E-14)	1.6E-09 (1.1E-09)	9.3E-21 (6.3E-20)
f3	5000	5.7E-61 (2.7E-60)	6.0E-87 (1.9E-86)	5.2E-14 (1.1E-13)	9.0E-37 (5.4E-36)	6.6E-11 (8.8E-11)	2.5E-19 (3.9E-19)
f4	5000	8.2E-24 (4.0E-23)	4.3E-66 (1.2E-65)	1.4E-15 (1.0E-15)	7.4E-11 (1.8E-10)	4.2E-01 (1.1E+00)	4.4E-14 (9.3E-14)
f5	3000	8.0E-02 (5.6E-01)	3.2E-01 (1.1E+00)	1.3E+01 (1.4E+01)	2.1E+01 (7.8E+00)	2.1E+00 (1.5E+00)	2.5E+01 (3.2E+01)
f6	100	2.9E+00 (1.2E+00)	5.6E+00 (1.6E+00)	1.0E+03 (2.2E+02)	9.3E+02 (1.8E+02)	4.7E+03 (1.1E+03)	4.5E+01 (2.4E+01)
f7	3000	6.4E-04 (2.5E-04)	6.8E-04 (2.5E-04)	3.3E-03 (8.5E-04)	4.8E-03 (1.2E-03)	4.7E-03 (1.2E-03)	2.5E-03 (1.4E-03)
f8	1000	3.3E-05 (2.3E-05)	7.1E+00 (2.8E+01)	7.9E-11 (1.3E-10)	4.7E+00 (3.3E+01)	5.9E+03 (1.1E+03)	2.4E+03 (6.7E+02)
f9	1000	1.0E-04 (6.0E-05)	1.4E-04 (6.5E-05)	1.5E-04 (2.0E-04)	1.2E-03 (6.5E-04)	1.8E+02 (1.3E+01)	5.2E+01 (1.6E+01)
f10	500	8.2E-10 (6.9E-10)	3.0E-09 (2.2E-09)	3.5E-04 (1.0E-04)	2.7E-03 (5.1E-04)	1.1E-01 (3.9E-02)	4.6E-01 (6.6E-01)
f11	500	9.9E-08 (6.0E-07)	2.0E-04 (1.4E-03)	1.9E-05 (5.8E-05)	7.8E-04 (1.2E-03)	2.0E-01 (1.1E-01)	1.3E-02 (1.7E-02)
f12	2 500	4.6E-17 (1.9E-16)	3.8E-16 (8.3E-16)	1.6E-07 (1.5E-07)	1.9E-05 (9.2E-06)	1.2E-02 (1.0E-02)	1.9E-01 (3.9E-01)
f13	500	2.0E-16 (6.5E-16)	1.2E-15 (2.8E-15)	1.5E-06 (9.8E-07)	6.1E-05 (2.0E-05)	7.5E-02 (3.8E-02)	2.9E-03 (4.8E-03)
f1	1500	1.8E-60 (8.4E-60)	1.3E-54 (9.2E-54)	2.5E-28 (3.5E-28)	4.5E-20 (6.9E-20)	9.8E-14 (8.4E-14)	9.6E-42 (2.7E-41)

(окончание)

	Итера- ции	JADE++	JADE	jDE	SaDE	DE/rand /1/bin	PSO
f2	2000	1.8E-25 (8.8E-25)	3.9E-22 (2.7E-21)	1.5E-23 (1.0E-23)	1.9E-14 (1.1E-14)	1.6E-09 (1.1E-09)	9.3E-21 (6.3E-20)
f3	5000	5.7E-61 (2.7E-60)	6.0E-87 (1.9E-86)	5.2E-14 (1.1E-13)	9.0E-37 (5.4E-36)	6.6E-11 (8.8E-11)	2.5E-19 (3.9E-19)
f4	5000	8.2E-24 (4.0E-23)	4.3E-66 (1.2E-65)	1.4E-15 (1.0E-15)	7.4E-11 (1.8E-10)	4.2E-01 (1.1E+00)	4.4E-14 (9.3E-14)
f5	3000	8.0E-02 (5.6E-01)	3.2E-01 (1.1E+00)	1.3E+01 (1.4E+01)	2.1E+01 (7.8E+00)	2.1E+00 (1.5E+00)	2.5E+01 (3.2E+01)
f6	100	2.9E+00 (1.2E+00)	5.6E+00 (1.6E+00)	1.0E+03 (2.2E+02)	9.3E+02 (1.8E+02)	4.7E+03 (1.1E+03)	4.5E+01 (2.4E+01)
f7	3000	6.4E-04 (2.5E-04)	6.8E-04 (2.5E-04)	3.3E-03 (8.5E-04)	4.8E-03 (1.2E-03)	4.7E-03 (1.2E-03)	2.5E-03 (1.4E-03)
f8	1000	3.3E-05 (2.3E-05)	7.1E+00 (2.8E+01)	7.9E-11 (1.3E-10)	4.7E+00 (3.3E+01)	5.9E+03 (1.1E+03)	2.4E+03 (6.7E+02)
f9	1000	1.0E-04 (6.0E-05)	1.4E-04 (6.5E-05)	1.5E-04 (2.0E-04)	1.2E-03 (6.5E-04)	1.8E+02 (1.3E+01)	5.2E+01 (1.6E+01)
f10	500	8.2E-10 (6.9E-10)	3.0E-09 (2.2E-09)	3.5E-04 (1.0E-04)	2.7E-03 (5.1E-04)	1.1E-01 (3.9E-02)	4.6E-01 (6.6E-01)
f11	500	9.9E-08 (6.0E-07)	2.0E-04 (1.4E-03)	1.9E-05 (5.8E-05)	7.8E-04 (1.2E-03)	2.0E-01 (1.1E-01)	1.3E-02 (1.7E-02)
f12	2 500	4.6E-17 (1.9E-16)	3.8E-16 (8.3E-16)	1.6E-07 (1.5E-07)	1.9E-05 (9.2E-06)	1.2E-02 (1.0E-02)	1.9E-01 (3.9E-01)
f13	500	2.0E-16 (6.5E-16)	1.2E-15 (2.8E-15)	1.5E-06 (9.8E-07)	6.1E-05 (2.0E-05)	7.5E-02 (3.8E-02)	2.9E-03 (4.8E-03)

Б.5 Стандартные префиксы ссылок

Общепринятым является следующий формат ссылок: <prefix>:<label>. Например, \label{fig:knuth}; \ref{tab:test1}; label={lst:externation of the stab of

Таблица 18 — Стандартные префиксы ссылок

Префикс	Описание
ch:	Глава
sec:	Секция
subsec:	Подсекция
fig:	Рисунок
tab:	Таблица
eq:	Уравнение
lst:	Листинг программы
itm:	Элемент списка
alg:	Алгоритм
app:	Секция приложения

Для упорядочивания ссылок можно использовать разделительные символы. Haпример, \label{fig:scheemes/my_scheeme} или \label{lst:dts/linked_list}.

Б.6 Очередной подраздел приложения

Нужно больше подразделов приложения!

Б.7 И ещё один подраздел приложения

Нужно больше подразделов приложения!

Копировал

Формат А4