Final

March 17, 2017

(804501476)

Problem 1.0:

Prove

$$L_1 \diamond L_2 = \{ xy \mid x \in L_1, y \in L_2, \text{ and } |x| = 2|y| \}$$
 (1.1)

is not context free.

Let $L_1 = \{0^{2n}1^{2n}\}$ and $L_2 = \{0^n1^n\}$. Then,

$$L_1 \diamond L_2 = \{0^{2n}1^{2n}0^n1^n \mid x \in L_1, y \in L_2, \text{ and } |x| = 2|y|\}$$
 (1.2)

Proof.

Towards contradiction assume $L_1 \diamond L_2$ is context-free.

- By the pumping lemma \exists pumping length p.
- Let $w = 0^{2p} 1^{2p} 0^p 1^p \in L_1 \diamond L_2$ and $|w| \ge p$.
- By pumping lemma $0^{2p}1^{2p}0^p1^p = abcde$ s.t:
 - 1. $|bd| \ge 1$
 - $2. |bcd| \le p$

Case 1: $bcd = 0^{\alpha}1^{\beta}$ (on the left side)

- We pump down then we have either:
 - 1. $ace = 0^{2p-\alpha}1^{2p}0^p1^p \notin L_1 \diamond L_2$, since $2p \alpha + 2p = 4p \implies \alpha = 0$ and $1 \le \alpha \le p$ $\implies \iff$
 - 2. $ace = 0^{2p}1^{2p-\beta}0^p1^p \notin L_1 \diamond L_2$, since $2p \beta + 2p = 4p \implies \beta = 0$ and $1 \le \beta \le p$ $\implies \iff$
 - 3. $ace = 0^{2p-\alpha}1^{2p-\beta}0^p1^p \notin L_1 \diamond L_2$, since $2p-\alpha+2p-\beta=4p \implies \alpha+\beta=0$ and $1 \leq \alpha+\beta \leq p \implies \longleftarrow$

Case 2: $bcd = 0^{\alpha}1^{\beta}$ (on the right side)

- We pump up then we have either:
 - 1. $ace = 0^{2p}1^{2p}0^{p+\alpha}1^p \notin L_1 \diamond L_2$, since $2(p+\alpha+p) = 4p \implies \alpha = 0$ and $1 \le \alpha \le p$ $\implies \iff$
 - 2. $ace = 0^{2p}1^{2p}0^{p}1^{p+\beta} \notin L_1 \diamond L_2$, since $2(p+\beta+p) = 4p \implies \beta = 0$ and $1 \le \beta \le p$ $\Longrightarrow \longleftarrow$

3. $ace = 0^{2p}1^{2p}0^{p+\alpha}1^{p+\beta} \notin L_1 \diamond L_2$, since $2(p+\alpha+p+\beta) = 4p \implies \alpha+\beta = 0$ and $1 \le \alpha+\beta \le p \implies \longleftarrow$

Case 3: $bcd = 1^{\alpha}0^{\beta}$ (middle)

- We pump down then we have either:
 - 1. $ace = 0^{2p}1^{2p-\alpha}0^p1^p \notin L_1 \diamond L_2$, since $2p \alpha + 2p = 4p \implies \alpha = 0$ and $1 \le \alpha \le p$ $\implies \longleftarrow$
 - 2. $ace = 0^{2p}1^{2p}0^{p-\beta}1^p \notin L_1 \diamond L_2$, since $2(p-\beta+p) = 4p \implies \beta = 0$ and $1 \le \beta \le p$ $\implies \iff$
 - 3. $ace = 0^{2p}1^{2p-\alpha}0^{p-\beta}1^p \notin L_1 \diamond L_2$, since $2p \alpha + 2p = 2(p \beta + p) \implies \beta = \alpha$. This is true if $\alpha = \beta = 0$ but $1 \leq \beta \leq p \implies$. We can also have that $\alpha = \beta$ is true if p is even and each is half of p. However this destroys symmetry in L_1 and L_2 , $0^{2p}1^{2p-\alpha} \notin L_1$ and $0^{p-\beta}1^p \notin L_2 \implies$.

Problem 2.0:

(a)

Show that

$$HALT = \{(\langle M \rangle, x) \mid M \text{ halts on input } x\}$$
 (2.3)

is oracle decidable.

Proof.

We construct OBTM $O(\langle M \rangle, x)$:

- O writes $\langle M \rangle$ to machine tape and w to input tape.
- O enters query state:
 - 1: $x \in L(M)$ then accept.
 - 2: $x \notin L(M)$ the reject.

The query is immediate therefore if $x \notin L(M)$, we can reject without looping. Therefore O always terminates thus it is a decider for HALT.

(b)

Show that

$$NEQ = \{ (\langle M_1 \rangle, \langle M_2 \rangle) \mid L(M_1) \neq L(M_2) \}$$
(2.4)

is oracle recognizable.

Proof.

We construct OBTM $O(\langle M_1 \rangle, \langle M_2 \rangle)$:

In class we showed that a multiple tapes can be simulated with a single tape so we split the regular tape into 4 tapes w_1 , w_2 , w_3 , and w_4 .

- 1 Write $\langle M_1 \rangle$ onto w_1
- 2 Write $\langle M_2 \rangle$ onto w_2
- 3 Will keep a binary count starting at 0 in w_3 .
 - We are assuming that all strings can be converted to binary.
- 4 Will maintain a tuple starting at (0,0) in w_4

We will have 4 states S_1 , S_{oracle} , S_3 , S_4

 S_1 : Write contents of tape w_1 onto the machine tape and contents of w_3 onto the input tape.

 S_{oracle} : Enter query state and write the contents of the first cell in the input tape onto w_4 and move head right.

 S_3 : Clear the machine tape and write the contents of w_2 onto machine tape. Clear input tape and write w_3 onto input tape.

 S_4 : Reset tape w_4 to (0,0) and increment tape w_3 by one.

We will begin in state S_1 and transition to S_{oracle} . Then we transition to S_3 and back to S_{oracle} . If the contents of tape $w_4 = (1,1)$ we transition onto S_4 .

(c)

Problem 3.0: