TECHNISC UNIVERSIT DRESOEN

Traffic Econometrics Master's Course

1a.1 Simple macroscopic models I: SI model

Compartemental models: consider different status such as susceptible, infected, or recovered and transitions between them

- As in any macroscopic model on infection dynamics, the basic dynamic quantities are *percentages of the population* (e.g., of a country) rather than individual persons
- Scale separation: The *infection dynamics* is much faster than the rest of the *population dynamics* (births, "normal" deaths, in- and outwards directed migration/moves) \Rightarrow population number N = const.
- Two compartiments: any person can be either susceptible to infection (S), or already infected (I) which includes actually ill, recovered, or dead. Particularly, there is no reverse transition I→S

SI model II

- ▶ All infected persons become *contagious instantaneously* and remain so all the time (notice the inconsistency to the point above)
- ▶ The rate of contagion β (# persons per time unit if everybody else is S) remains constant

$$\Rightarrow \quad \begin{array}{ll} \frac{\mathrm{d}S}{\mathrm{d}t} &= -\beta IS, \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= +\beta IS \end{array} \qquad \text{SI model}$$

- $ightharpoonup S = N_S/N$: fraction of susceptible
- ▶ $I = N_I/N$: fraction of infected
- $lackbox{d}{\mathrm{d}t}(S+I)=0\Leftrightarrow \mathrm{conservation}$ of population number $N=\mathrm{const.}$

Rewrite with S + I = 1:

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \beta I(1-I)$$

 \Rightarrow classical model for limited growth with saturation 1

SI model III: Simulation

SI model, β =0.1/day, I(0)=0.1%

SIR model

- Unlike the situation in the SI model, infected people recover/die after an average time $1/\gamma$ thereby becoming no longer contagious
- Chained models for the transitions susceptible-infected (SI) and infected-recovered persons(IR), R = fraction of recovered:

- ▶ Conservation of the population number: S + I + R = 1
- ? Show that the initial reproduction number is given by $R_0 = \beta/\gamma$
- ! Initially (S=1), any infected person infects β other persons per day but recovers after an exponentially distributed time $\tau_R \sim \text{Exp}(\gamma)$, so the average #infected people = $\beta E(\tau_R) = \beta/\gamma$

SI and SIR models: simulation

SIR model, $\beta=0.2/\text{day}$, $\gamma=0.1/\text{day} =>R_0=2$, I(0)=0.1%

TECHNISCH UNIVERSITA DRESSIEN

SEIR model

- Adds to the SIR model a finite incubation time $\tau_I \sim \text{Exp}(\alpha)$ where people are infected but not yet contagious ("exposed", E)
- ▶ Triple chain with S + E + I + R = 1:

- ? Show that $R_0 = \beta/\gamma$ and that the initial time for doubling of the infected is given by $\tau = (1/\gamma + 1/\alpha)/\log_2(R_0)$
- ! R_0 as in the SIR model. The average time for passing an infection is the sum $1/\gamma + 1/\alpha$ of the incubation and infection times. In this timescale, there are $\log_2(R_0)$ doublings.

UNIVERSITAT

SIR vs. SEIR model simulations

SEIR, β =0.4/day, γ = α =0.2/day =>R₀=2, E(0)=I(0)=0.1%

SEIR model with seasons (winter is "flu" time)

- \Rightarrow make the reproduction number $R_0(t)$ time dependent
- \Rightarrow infection rate β variable: $\beta = \gamma R_0(t)$

Iterated map models

- The SI, SIR, SEIR models were ordinary differential equations (ODEs)
- Another more direct approach are iterated maps: models for time evolution by classical model chaining
- can be interpreted as numerical solutions of ODEs but they are more flexible allowing "real" memory, e.g., truly nonzero incubation time instead of an exponential distributed one
- ▶ Of course, this also means we need initialize all past values within the memory time

Iterated SIR model with memory (SIRM)

- An infected person contacts R_0 persons and infects R_0S persons exactly τ_I days after his/her own infection
- \Rightarrow need history of all fractions $I_{t'}$ of persons infected exactly at day $t' \le t$
- lacktriangle The person recovers exactly au_R days after infection
- \Rightarrow The total fraction of ill persons (active cases) at day t is given by

$$I(t) = \sum_{j=i-\tau_I+1}^{i} I_j$$

$$\begin{split} I_t &= R_0 S(t-\tau_I) I_{t-\tau_I}, \\ S(t) &= S(t-1) - I_t, \\ R(t) &= R(t-1) + I_{t-\tau_R}, \\ I(t) &= 1 - S(t) - R(t) \end{split} \qquad \text{SIR model with memory}$$

Notice that the recovery does not influence the infection process since only infection day au_I is contagious

Simulation of the SIR model with memory

SIR iterated, $\tau_{l}{=}7$ days, $\tau_{R}{=}18$ days, $I_{t}{=}0.001$ for $t{<}\tau_{l}$

1a.2 Microscopic Models

The principle is straightforward: Just break down the compartemental models to single persons (remember the definition of a microscopic model!)

▶ The health status of each person i is exactly one out of a set, e.g.

- status \in { S, E, I, R }

 Transition $S_i \to E_i$ if an S person i is sufficiently close to an I person j
- Fransition $S_i \to E_i$ if an S person i is sufficiently close to an I person j sufficiently long, e.g.

$$S_i(t) \to E_i(t)$$
 if $d_{ij}(t') \le 1.5 \,\mathrm{m} \,\forall \, t' : t - \tau_E \le t' \le t$

- lacktriangle Transition to an I person after an incubation time au_I
- ▶ Transition to an R person after a time period $\tau_R > \tau_I$

So the pandemic micromodel is easy: It gets interesting when adding a **particle dynamics model** for the motion of the people to model, e.g., *superspreading events*

Microscopic example

- ► Time *t*: superspreading event
- ▶ Time $t + \tau$: three people infected in the middle group
- ▶ Time $t + 2\tau$: one of the newly infected moves to the other group
- ▶ Time $t + 3\tau$: incubation time over (also at the left group)
- ▶ Time $t + 4\tau$: two infections in two groups

1a.3 Down to reality/econometrics: what can be observed?

We want to know: **#Infections** $N_I(t) = N I(t)$, ideally its "age structure" $I_0, I_1, ..., I_t$

We do know: **#positive tests** $N_T(t)$ ("cases") and **#Covid-19 deaths** $N_D(t)$ including the history $t' \leq t$

Many uncertainties:

- ▶ The tests have an imperfect sensitivity $P(\text{positive}|\text{infected}) \approx 99\,\%$
- ... and an imperfect specifity $P(\text{negative}|\text{not infected}) \approx 99\%$
- ▶ Different/inconsistent definitions of a "Covid-19 death" event
- ▶ There is a high number of untested and potentially ill people \Rightarrow high number of unreported cases, probably $\gg N_T$
- ► The fraction of reported cases depends on the number of tests via a monotonously increasing but otherwise unknown function

Econometrics Master's Course: Methods

Corona-simulation.de (as of Oct 30, 2020)

Interactive data-driven simulator based on an extended SIRM model

Features I: different countries

Features II: different windows

Features III: scenario-based projections

Features III: "lockdown" shifts "wave"

UNIVERSITA

Features IV: sensitivity tests, e.g., ramping up #tests

Summary/take-home messages

- Only data brings us "down to Earth" allowing for
 - tests of the model quality
 - doing useful things such as projection scenarios (do not forget Mark Twains quote about predictions!)
- Always check definitions of events, e.g., "Covid-19 infection" (including all symptom free people?) or "Covid-19 death" (including fatal traffic accidents of a test-positive persons?)
- ▶ Do not confuse/mix proxies with the real quantities, e.g., positive tests vs. infection events. Also check how well the proxy represents the interesting quantities (#positive tests is a poor proxy for the #infections, #recorded Covid-19 death is a much better proxy for all the Covid-19 deaths)
- ► Check your sample. Is it essentially the population or only a small and unknown fraction thereof?
- ▶ Be careful with exponentially growing things since small changes in the scenario setting can greatly influence the result