Lecture 03: Random Variables

Presented By: **Dr. Vinay Kulkarni**

Before we start ...

Review of last week's exercise

RANDOM VARIABLES & PROBABILITY DISTRIBUTIONS

Exercise

- For the 10000 numbers generated:
 - Truncate the numbers to 1 decimal place
 - Find out the frequency of each number
 - Calculate the probability of occurrence of each number in the set
 - Plot probability v/s number
 - Find out the cumulative sum of the probabilities
 - Plot the cumulative probability v/s number

Probability Model

- A Probability Model outlines:
 - The possible outcomes of an experiment
 - Associated probability of each outcome

- Types of Probability
 - Empirical Probability: Experimental
 - Classical Probability: Theoretical
 - Subjective Probability: Judgmental

C

Random Variables

Random experiment

 Process of measurement or observation in which the outcome cannot be completely determined in advance

Sample space

All possible outcomes of a random experiment

Random Variable

- A real-valued quantity, or numerical measure, whose value depends on the outcomes of a random experiment
- Can be Discrete or Continuous

Random Variable

- The probability that a Random Variable may assume a particular value is governed by a Probability Function:
 - For Discrete variables
 - Probability Mass Function (PMF)
 - For Continuous variables
 - Probability Density Function (PDF)

- For Discrete / Continuous variables
 - Cumulative Distribution Function

Random Variable and Probabilities

- Let X be the Random Variable
- Let x be one of its possible values
- Let P(x) be the probability that X=x
- Then

$$0 \le P(x) \le 1$$

$$\sum_{\text{all values of } x} P(x) = 1$$

Ö

Random Variable: Expected Value

- Expected value : E(X)
 - Weighted average, of all possible values, considering their probabilities

For Discrete random variable

$$E(X) = \mu_X = \sum_{\text{all values of } x} [x.p(x)]$$

For Continuous random variable

$$E(X) = \mu_X = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

Random Variable: Variance and Standard Dev

Variance of a Random Variable

$$\sigma_X^2 = E[(X - \mu_X)^2] = E(X^2) - \mu_X^2$$

Standard Deviation of a Random Variable

$$\sigma_{x} = +\sqrt{\sigma_{X}^{2}}$$

Where

$$E(X^2) = \sum_{\text{all values of } x} [x^2 . p(x)]$$
, in the discrete case, and

$$E(X^2) = \int_{-\infty}^{\infty} x^2 \cdot f(x) dx$$
, in the continuous case

 Variance and Standard Deviation reflects the extent to which the Random variable is close to its mean

Exercise

 Which of the following tables represent valid discrete probability distributions?

(a)	X	p(x)	(b)	X	p(x)	(c)	X	p(x)
	1	0.2		1	0.2		1	0.2
	2	0.35		2	0.25		2	0.25
	3	0.12		3	0.10		3	0.10
	4	0.40		4	0.14		4	0.15
	5	-0.07		5	0.49		5	0.30

- For valid distributions, calculate:
 - The expected value , variance and standard deviation

Exercise - Answers

- E(X) = 3.10
- Variance = 2.39
- Standard Deviation = 1.54596

Sample – to – Population

- Goal of all these definitions:
 - Given the nature of the phenomena
 - Probability distributions
 - And a sample with certain deductions
 - Measured observations
 - Predict additional properties and confidence levels
- We therefore need to
 - Understand generic phenomena
 - And the probabilistic nature of their events

Probability Distributions

- Binomial Distribution
- Poisson Distribution
- Students T-Distribution
- Chi-Square Distribution
- F-Distribution
- Normal Distribution
- Log normal Distribution
- Other Distributions
 - Bernoulli
 - Geometric
 - Hypergeometric
 - Multinomial
 - Exponential
 - Beta
 - Gamma

