$9_{42} (K9n_4)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^4 + u^3 + u^2 + b + 1, \ u^4 + u^3 + u^2 + a - u + 1, \ u^5 + 2u^4 + 2u^3 + u + 1 \rangle$$

$$I_2^u = \langle b + 1, \ a - u + 1, \ u^2 - u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 7 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle u^4 + u^3 + u^2 + b + 1, \ u^4 + u^3 + u^2 + a - u + 1, \ u^5 + 2u^4 + 2u^3 + u + 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2u^{4} - u^{3} - 1 \\ -u^{4} - u^{3} - u^{2} + u - 1 \\ -u^{4} - u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{4} - u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} - 2u^{3} - u^{2} + u - 1 \\ -u^{3} - u^{2} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} - 2u^{3} - u^{2} + u - 1 \\ -u^{3} - u^{2} + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $u^4 + u^3 2u^2 5u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^5 + 6u^3 + u - 1$
c_2, c_5	$u^5 + 2u^4 + 2u^3 + u + 1$
c_3	$u^5 - 2u^4 + 14u^3 + 16u^2 + 9u + 9$
c_4, c_7	$u^5 - u^4 + 8u^3 - u^2 - 4u - 4$
c_6, c_8, c_9	$u^5 + 3u^4 - u^3 - 6u^2 - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^5 + 12y^4 + 38y^3 + 12y^2 + y - 1$
c_{2}, c_{5}	$y^5 + 6y^3 + y - 1$
c_3	$y^5 + 24y^4 + 278y^3 + 32y^2 - 207y - 81$
c_4, c_7	$y^5 + 15y^4 + 54y^3 - 73y^2 + 8y - 16$
c_6, c_8, c_9	$y^5 - 11y^4 + 37y^3 - 30y^2 - 12y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.436447 + 0.655029I		
a = 0.423679 + 0.262806I	-0.057511 + 1.373620I	-0.45374 - 4.59823I
b = -0.012768 - 0.392223I		
u = 0.436447 - 0.655029I		
a = 0.423679 - 0.262806I	-0.057511 - 1.373620I	-0.45374 + 4.59823I
b = -0.012768 + 0.392223I		
u = -0.668466		
a = -2.01628	2.55277	4.34960
b = -1.34782		
u = -1.10221 + 1.09532I		
a = 1.084460 + 0.905094I	17.6979 - 4.0569I	4.27894 + 1.95729I
b = 2.18668 - 0.19022I		
u = -1.10221 - 1.09532I		
a = 1.084460 - 0.905094I	17.6979 + 4.0569I	4.27894 - 1.95729I
b = 2.18668 + 0.19022I		

II.
$$I_2^u = \langle b+1, \ a-u+1, \ u^2-u+1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u - 1 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -1 \end{pmatrix}$$

- $a_4 = \begin{pmatrix} 1 \\ u 1 \end{pmatrix}$
- $a_7 = \begin{pmatrix} u \\ -1 \end{pmatrix}$
- $a_7 = \begin{pmatrix} u \\ -1 \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4u + 5

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$u^2 - u + 1$
c_2	$u^2 + u + 1$
c_4, c_7	u^2
c_6	$(u+1)^2$
c_8, c_9	$(u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_3 \\ c_5$	$y^2 + y + 1$
c_4, c_7	y^2
c_6, c_8, c_9	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = -0.500000 + 0.866025I	1.64493 + 2.02988I	3.00000 - 3.46410I
b = -1.00000		
u = 0.500000 - 0.866025I		
a = -0.500000 - 0.866025I	1.64493 - 2.02988I	3.00000 + 3.46410I
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^2 - u + 1)(u^5 + 6u^3 + u - 1)$
c_2	$(u^2 + u + 1)(u^5 + 2u^4 + 2u^3 + u + 1)$
c_3	$(u^2 - u + 1)(u^5 - 2u^4 + 14u^3 + 16u^2 + 9u + 9)$
c_4, c_7	$u^2(u^5 - u^4 + 8u^3 - u^2 - 4u - 4)$
c_5	$(u^2 - u + 1)(u^5 + 2u^4 + 2u^3 + u + 1)$
c_6	$(u+1)^2(u^5+3u^4-u^3-6u^2-1)$
c_8, c_9	$(u-1)^2(u^5+3u^4-u^3-6u^2-1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^2 + y + 1)(y^5 + 12y^4 + 38y^3 + 12y^2 + y - 1)$
c_2,c_5	$(y^2 + y + 1)(y^5 + 6y^3 + y - 1)$
c_3	$(y^2 + y + 1)(y^5 + 24y^4 + 278y^3 + 32y^2 - 207y - 81)$
c_4, c_7	$y^2(y^5 + 15y^4 + 54y^3 - 73y^2 + 8y - 16)$
c_6, c_8, c_9	$(y-1)^2(y^5 - 11y^4 + 37y^3 - 30y^2 - 12y - 1)$