APPENDIX E

TABLE OF RANDOM-INPUT DESCRIBING FUNCTIONS (RIDFs)

In this table we employ the probability function (cf. Sec. 7.2) denoted by

$$PF(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

and its integral, the probability integral, denoted by

$$PI(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{v^2}{2}\right) dv$$

These functions are plotted in Fig. E.2-1.

This table is given in three sections:

- E.1 Gaussian-input RIDFs
- E.2 Gaussian-plus-bias-input RIDFs
- E.3 Gaussian-plus-bias-plus-sinusoid-input RIDFs

E.I GAUSSIAN-INPUT RIDFs

$$x(t) = r(t)$$
 an unbiased Gaussian process

$$N_{R}(\sigma) = \frac{1}{\sqrt{2\pi}\sigma^{3}} \int_{-\infty}^{\infty} y(r)r \exp\left(-\frac{r^{2}}{2\sigma^{2}}\right) dr$$

TABLE OF RANDOM-INPUT DESCRIBING FUNCTIONS (RIDFs) (Continued)

See Fig. E.1-1

3. Relay with dead zone

					ļ	
BING FUNCTIONS (RIDFs) (Continued)	$N_R(\sigma)$	$m \Big[2PI \Big(rac{\delta}{\sigma} \Big) - 1 \Big]$		$2migg[1-PIigg(rac{\delta}{\sigma}igg)igg]$		$m_1 + 2(m_2 - m_1) \left[1 - PI \left(rac{\delta}{\sigma} ight) \right]$
IT DESCRIBING FUNCTION	Comments		See Fig. E.1-2		See Fig. E.1-2	
TABLE OF RANDOM-INPUT DESCRI	Nonlinearity	x 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7. Sharp saturation or limiter	E	8. Dead zone or threshold	$m_1 \delta - \sum_{i=1}^{y} m_i$ $\delta = x$ 9. Gain-changing nonlinearity

 $\begin{tabular}{lll} \textbf{TABLE OF RANDOM-INPUT DESCRIBING FUNCTIONS (RIDFs)} & (Continued) \\ \end{tabular}$

Nonlinearity	Comments	$N_R(\sigma)$
$D+m_1\delta = \frac{1}{\delta}$ $13.$		$m_1 + 2(m_2 - m_1) \left[1 - PI\left(\frac{\delta}{\sigma}\right)\right] + 2\frac{D}{\sigma}PF\left(\frac{\delta}{\sigma}\right)$
14.		$\sqrt{\frac{2}{\pi}} \frac{D}{\sigma} \left[1 - \sqrt{2\pi} PF \left(\frac{\delta}{\sigma} \right) \right]$
y = c		0
15.		
y = x		1
16. Linear gain		

$\sqrt{\frac{2}{\pi}} 2\sigma$		302		$\sqrt{\frac{2}{\pi}} 8\sigma^3$		1504		$\sqrt{\frac{2}{\pi}} 48\sigma^5$		105مهٔ	
	See Fig. E.1-3		See Fig. E.1-3		See Fig. E.1-3						
y = x x	17. Odd square law	$y = x^3$	18. Cubic characteristic	$y = x^3 x $	19. Odd quartic characteristic	$y=x^6$	20. Quintic characteristic	$y = x^5 x $	21.	$y = x^{7}$	

TARLE OF RANDOM-INPUT DESCRIBING FUNCTIONS (RIDEs) (Continued)

Nonlinearity	Comments	$N_R(\sigma)$
$y=x^{7} x $		$\sqrt{\frac{2}{\pi}} 384\sigma^7$
23.		
$y = x^n$	$n=3,5,7,\ldots$	$n(n-2)(n-4)\cdots(1)\sigma^{n-1}$
24.	See Sec. 7.2	
$y=x^{n-1} x $	$n=2,4,6,\ldots$	$\sqrt{\frac{2}{\pi}} n(n-2)(n-4)\cdots(2)\sigma^{n-1}$
25.	See Sec. 7.2	
$y = \sqrt{x} \qquad (x \ge 0)$ $= -\sqrt{-x} \qquad (x < 0)$		$0.860\sigma^{-1/2}$
26. Odd square root	See Fig. E.1-3	
$y=x^{1/3}$		$0.830\sigma^{-2/3}$
27. Cube root characteristic		
$y = x^b$ $(x \ge 0)$ = $-(-x)^b$ $(x < 0)$	$\Gamma(x)$ is gamma function	$\sqrt{\frac{2}{\pi}} 2^{b/2} \Gamma\left(1 + \frac{b}{2}\right) \sigma^{b-1}$
28.		

$\sqrt{2\pi} \ MmPF(m\sigma) = Mme^{-m^2\sigma^2/2}$		$Mme^{m^2\sigma^2/2}$		$2ce^{c^2\sigma^2/2}[1-PI(c\sigma)]$	
>	See Fig. E.1-4	V		2	
$y = M \sin mx$	29. Harmonic Nonlinearity	$y = M \sinh mx$	30.	$y = 1 - e^{-cx}$ $(x \ge 0)$ = -(1 - e^{cx}) $(x < 0)$	31. Exponential saturation

Figure E.1-1 Quantizer RIDF.

574

Figure E.1-2 RIDFs for limiter and threshold characteristics.

Figure E.1-3 RIDF for the simple polynomial nonlinearity $y = c_n x^n$ (n odd) or $y = c_n x^{n-1} |x|$ (n even).

Figure E.1-4 Harmonic nonlinearity RIDF.

E.2 GAUSSIAN-PLUS-BIAS-INPUT RIDFs

$$x(t) = r(t) + B$$

The gain to the gaussian input component is given by:

$$N_R(\sigma,B) = \frac{1}{\sqrt{2\pi}\sigma^3} \int_{-\infty}^{\infty} y(r+B)r \exp\left(-\frac{r^2}{2\sigma^2}\right) dr$$

and the corresponding gain to the bias input component is:

$$N_B(\sigma,B) = \frac{1}{\sqrt{2\pi\sigma}B} \int_{-\infty}^{\infty} y(r+B) \exp\left(-\frac{r^2}{2\sigma^2}\right) dr$$

This section uses the additional function G(x) = xPI(x) + PF(x).

The functions PF(x), PI(x), and G(x) are plotted in Fig. E.2-1.

TABLE OF RANDOM-INPUT DESCRIBING FUNCTIONS (RIDFs) (Continued) Comments N is index of last $D_0=0$ Nonlinearity 20

 $N_R(\sigma,B)$ and $N_B(\sigma,B)$

quantizer level.

1. General odd quantizer

N is index of last

201

quantizer level.

2. Uniform quantizer

 $N_B = \frac{D}{B} \sum_{i=1}^{N} \left[$

 $N_B = \frac{D}{B}$

3. Relay with dead zone

 $N_B = \frac{D}{\sigma}$

TABLE OF RANDOM-INPUT DESCRIBING FUNCTIONS (RIDFs) (Continued)

Nonlinearity	Comments	$N_R(\sigma,B)$ and $N_B(\sigma,B)$
7. Sharp saturation or limiter		$N_{R} = m \left[PI \left(\frac{\delta + B}{\sigma} \right) + PI \left(\frac{\delta - B}{\sigma} \right) - 1 \right]$ $N_{B} = m \left\{ \frac{\sigma}{B} \left[G \left(\frac{\delta + B}{\sigma} \right) - G \left(\frac{\delta - B}{\sigma} \right) \right] - 1 \right\}$
7. Offair Saturation of Immor		
8. Dead zone or threshold		$N_{R} = m \left[2 - PI \left(\frac{\delta + B}{\sigma} \right) - PI \left(\frac{\delta - B}{\sigma} \right) \right]$ $N_{B} = m \left\{ 2 - \frac{\sigma}{B} \left[G \left(\frac{\delta + B}{\sigma} \right) - G \left(\frac{\delta - B}{\sigma} \right) \right] \right\}$
9. Gain-changing nonlinearity		$N_{R} = m_{1} + (m_{2} - m_{1}) \left[2 - PI\left(\frac{\delta + B}{\sigma}\right) - PI\left(\frac{\delta - B}{\sigma}\right) \right]$ $N_{B} = m_{1} + (m_{2} - m_{1}) \left\{ 2 - \frac{\sigma}{B} \left[G\left(\frac{\delta + B}{\sigma}\right) - G\left(\frac{\delta - B}{\sigma}\right) \right] \right\}$

TABLE OF RANDOM-INPUT DESCRIBING FUNCTIONS (RIDFs) (Continued)

Nonlinearity	Comments	$N_R(\sigma,B)$ and $N_B(\sigma,B)$
$D + m_1 \delta \qquad \qquad x$ $13.$		$N_{R} = m_{1} + \frac{D}{\sigma} \left[PF \left(\frac{\delta + B}{\sigma} \right) + PF \left(\frac{\delta - B}{\sigma} \right) \right] +$ $(m_{2} - m_{1}) \left[2 - PI \left(\frac{\delta + B}{\sigma} \right) - PI \left(\frac{\delta - B}{\sigma} \right) \right]$ $N_{B} = m_{1} + \frac{D}{B} \left[PI \left(\frac{\delta + B}{\sigma} \right) - PI \left(\frac{\delta - B}{\sigma} \right) \right] +$ $(m_{2} - m_{1}) \left\{ 2 - \frac{\sigma}{B} \left[G \left(\frac{\delta + B}{\sigma} \right) - G \left(\frac{\delta - B}{\sigma} \right) \right] \right\}$
β x 14.		$N_{B} = \frac{D}{\sigma} \left[2PF \left(\frac{B}{\sigma} \right) - PF \left(\frac{\delta + B}{\sigma} \right) - PF \left(\frac{\delta - B}{\sigma} \right) \right]$ $N_{B} = \frac{D}{B} \left[2PI \left(\frac{B}{\sigma} \right) - PI \left(\frac{\delta + B}{\sigma} \right) + PI \left(\frac{\delta - B}{\sigma} \right) - 1 \right]$
y = c		$N_R = 0$
15.		$N_{B} = 0$ $N_{B} = \frac{c}{B}$
y = x		$N_R = 1$ $N_B = 1$
16. Linear gain		

17. Odd-square law
$$y = x |x|$$

$$y = x^{3}$$
18. Cubic characteristic
$$y = x^{3}$$

$$y = x^{4}$$
18. Cubic characteristic
$$y = x^{5}$$

$$y = x^{$$

22.

TABLE OF RANDOM-INPUT DESCRIBING FUNCTIONS (RIDFs) (Continued)

Nonlinearity	Comments	$N_R(\sigma,B)$ and $N_B(\sigma,B)$
$y = M \sin mx$		$N_R = Mm \cos mB e^{-m^2 \sigma^2/z}$ M
29. Harmonic nonlinearity		$N_B = \frac{1}{B} \sin mB e^{-m^2 \sigma^2/2}$
$y = M \sinh mx$		$N_B = Mm \cosh mB e^{m^2\sigma^2/2}$
30.		$N_B = \frac{M}{B} \sinh mB e^{m^2 \sigma^2/2}$
$y = 1 - e^{-cx}$ $(x \ge 0)$ = $-(1 - e^{cx})$ $(x < 0)$		$N_{B} = rac{2}{\sigma}PF\left(rac{B}{\sigma} ight) + rac{1}{\sigma}e^{e^{2}\sigma^{2}/2}\left\{e^{cB}\left[c\sigma - c\sigma PI\left(c\sigma + rac{B}{\sigma} ight) - PF\left(c\sigma + rac{B}{\sigma} ight) ight]$
		$+e^{-cb}\left[c\sigma-c\sigma PI\left(c\sigma-\frac{D}{\sigma}\right)-PF\left(c\sigma-\frac{D}{\sigma}\right) ight] brace$
		$N_B = rac{1}{B} \left[2PI \left(rac{B}{\sigma} ight) - 1 ight] + rac{1}{B} e^{o^2 \sigma^2/2} \left\{ e^{oB} \left[1 - PI \left(c\sigma + rac{B}{\sigma} ight) ight] - e^{-oB} \left[1 - PI \left(c\sigma - rac{B}{\sigma} ight) ight] ight\}$
31. Exponential saturation		
ι ω ι ω ι ω ι ω ι ω ι ω ι ω ι ω ι ω ι ω		$N_R=m_2+(m_1-m_2)PIinom{B}{\sigma}$
, π, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		$N_B=m_2+rac{\sigma}{B}\left(m_1-m_2 ight)G\left(rac{B}{\sigma} ight)$
51.		

TABLE OF RANDOM-INPUT DESCRIBING FUNCTIONS (RIDFs) (Continued)

Nonlinearity	Comments	$N_R(\sigma,B)$ and $N_B(\sigma,B)$
У		$N_R = \frac{D}{\delta} \left[2PI \left(\frac{B}{\sigma} \right) - 1 - PI \left(\frac{\delta + B}{\sigma} \right) + PI \left(\frac{\delta - B}{\sigma} \right) \right]$
Δ ×		$N_{B} = \frac{D}{B} \left\{ 2 - \frac{B}{\delta} + \frac{\sigma}{\delta} \left[2G \left(\frac{B}{\sigma} \right) - G \left(\frac{\delta + B}{\sigma} \right) - G \left(\frac{\delta - B}{\sigma} \right) \right] \right\}$
55.		
<i>D</i> , +		$N_R = \frac{D_1 + D_2}{\sigma} PF\left(\frac{\delta - B}{\sigma}\right)$
		$N_B = \frac{D_1}{B} - \frac{D_1 + D_2}{B} PI\left(\frac{\delta - B}{\sigma}\right)$
56. Biased ideal relay		

Figure E.2-1 Graphs of PF(x), PI(x), and G(x).

E.3 GAUSSIAN-PLUS-BIAS-PLUS-SINUSOID-INPUT RIDFs

$$x(t) = r(t) + B + A \sin(\omega t + \theta)$$

The gain to the gaussian input component is given by

$$N_R(\sigma,B,A) = \frac{1}{(2\pi)^{\frac{3}{6}}\sigma^3} \int_0^{2\pi} d\theta \int_{-\infty}^{\infty} dr \, y(r+B+A\sin\theta) \, r \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

the gain to the bias input component is

$$N_B(\sigma, B, A) = \frac{1}{(2\pi)^{\frac{3}{2}}\sigma B} \int_0^{2\pi} d\theta \int_{-\infty}^{\infty} dr \, y(r+B+A\sin\theta) \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

and the corresponding gain to the sinusoid input component is

$$N_A(\sigma,B,A) = \frac{2}{(2\pi)^{\frac{3}{2}}\sigma A} \int_0^{2\pi} d\theta \int_{-\infty}^{\infty} dr \, y(r+B+A\sin\theta) \sin\theta \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

TABLE OF RANDOM-INPUT DESCRIBING FUNCTIONS (RIDFs) (Continued)

Nonlinearity	Comments	$N_R(\sigma,B,A), N_B(\sigma,B,A), \text{ and } N_A(\sigma,B,A)$
$y=x^3$		$N_R = 3\sigma^2 + 3B^2 + \frac{3}{8}A^2$
		$N_B = 3\sigma^2 + B^2 + \frac{3}{2}A^2$
		$N_A = 3\sigma^2 + 3B^2 + \frac{3}{4}A^2$
8. Cubic characteristic		
$y = M \sin mx$	J_0 and J_1 are the Bessel functions of orders 0 and	$N_R = Mm \cos mB \exp\left(-\frac{m^8 \sigma^2}{2}\right) J_0(mA)$
	1, respectively.	$N_B = \frac{M}{B} \sin mB \exp\left(-\frac{m^2 \sigma^2}{2}\right) J_0(mA)$
		$N_A = \frac{2M}{A} \cos mB \exp\left(-\frac{m^2\sigma^2}{2}\right) J_1(mA)$
9. Harmonic nonlinearity		

Figure E.3-1 Three-input RIDFs for the ideal-relay nonlinearity.

In 3 parts

Figure E.3-1a Gain to the gaussian input component. (ideal relay)

Figure E.3-1b Gain to the bias input component. (ideal relay)

Figure E.3-1c Gain to the sinusoid input component. (ideal relay)

592

Figure E.3-2 Three-input RIDFs for the limiter nonlinearity.

In 11 parts

Figure E.3-2a Gain to the gaussian and bias input components. (limiter, $|B|/\delta=0$)

Figure E.3-2b Gain to the sinusoid input component. (limiter, $|B|/\delta = 0$)

Figure E.3-2c Gain to the gaussian input component. (limiter, $|B|/\delta=0.5$)

Figure E.3-2d Gain to the bias input component. (limiter, $|B|/\delta=0.5$)

Figure E.3-2e Gain to the sinusoid input component. (limiter, $|B|/\delta = 0.5$)

Figure E.3-2h Gain to the sinusoid input component. (limiter, $|B|/\delta = I$)

Figure E.3-2i Gain to the gaussian input component. (limiter, $|B|/\delta=2$)

Figure E.3-2j Gain to the bias input component. (limiter, $|B|/\delta = 2$)

Figure E.3-2k Gain to the sinusoid input component. (limiter, $|B|/\delta = 2$)

Figure E.3-3 Three-input RIDFs for the relay with dead zone nonlinearity,

In 11 parts

Figure E.3-3a Gain to the gaussian and bias input components. (relay with dead zone, $|B|/\delta = 0$)

Figure E.3-3b Gain to the sinusoid input component. (relay with dead zone, $|B|/\delta=0$)

Figure E.3-3c Gain to the gaussian input component. (relay with dead zone, $|B|/\delta=0.5$)

Figure E.3-3d Gain to the bias input component. (relay with dead zone, $|B|/\delta = 0.5$)

Figure E.3-3e Gain to the sinusoid input component. (relay with dead zone, $|B|/\delta=0.5$)

Figure E.3-3f Gain to the gaussian input component. (relay with dead zone, $|B|/\delta=1$)

Figure E.3-3g Gain to the bias input component. (relay with dead zone, $|B|/\delta=1$)

Figure E.3-3h Gain to the sinusoid input component. (relay with dead zone, $|B|/\delta = I$)

Figure E.3-3i Gain to the gaussian input component. (relay with dead zone, $|B|/\delta=2$)

.

Figure E.3-3j Gain to the bias input component. (relay with dead zone, $|B|/\delta=2$)

Figure E.3-3k Gain to the sinusoid input component. (relay with dead zone, $|B|/\delta=2$)