IN2120 Information Security Autumn 2019

Lecture 9: User Authentication

Nils Gruschka
University of Oslo

Taxonomy of Authentication

Outline

- Context of user authentication
 - Component of IAM (Identity and Access Management)
- User Authentication
 - Knowledge-based authentication
 - Ownership-based authentication
 - Inherence-based authentication
 - Authentication based on secondary channel
- Authentication frameworks for e-Government

L09 - User Auth.

IN2120 - UiO 2019

2

Identity and Access Management (IAM) Phases

L09 - User Auth. IN2120 - UiO 2019

User authentication credentials

- A credential is the 'thing' used for authentication.
- Credential categories ("factors") and typical examples:
 - 1. Knowledge-based ("something you know"): Passwords
 - 2. Ownership-based ("something you have"): Tokens
 - 3. Inherence-based ("something you are/do"): Biometrics
 - · physiological biometric characteristics
 - · behavioural biometric characteristics

4. Secondary channel (a channel you control): SMS, email, etc.

Combinations, called multi-factor authentication

L09 - User Auth. IN2120 - UiO 2019 5

Authentication: Static passwords

123456

- Passwords are a simple and the most common authentication credential.
 - Something the user knows
- Problems:
 - Easy to share (intentionally or not)
 - Easy to forget
 - Often easy to guess (weak passwords)
 - Can be written down (both good and bad)
 - If written down, then "what you know" is "where to find it"
 - Often remains in computer memory and cache

Knowledge-Based Authentication "Something you know"

Example: Passwords

L09 - User Auth. IN2120 - UiO 2019 6

https://haveibeenpwned.com/Passwords 500,000,000 passwords (2018)

L09 - User Auth. IN2120 - UiO 2019

Secure password strategies

- Passwords length ≥ 13 characters
- Use ≥ 3 categories of characters
 - L-case, U-case, numbers, special characters
- Do not use ordinary words (names, dictionary wds.)
- Change typically once per year
- OK to reuse between low-sensitivity accounts
- Do not reuse between high-sensitivity accounts
- Store passwords securely
 - In brain memory
 - On paper, adequately protected
 - In cleartext on offline digital device, adequately protected
 - Encrypted on online digital device

L09 - User Auth. IN2120 - UiO 2019

Password storage in OS

- /etc/shadow is the file where modern Linux/Unix stores it passwords
 - Earlier version stored it in /etc/passwd
 - Need root access to modify it
- \windows\system32\config\sam is the file Windows system normally stores its passwords
 - Undocumented binary format
 - Need to be Administrator to access it
- Network environments store passwords centrally
 - AD (Active Directory) on Windows servers
 - LDAP (Lightweight Directory Access Protocol) on Linux

Strategies for strong passwords

- User education and policies
 - Not necessarily with strict enforcement
- Proactive password checking
 - User selects a potential password which is tested
 - Weak passwords are not accepted
- Reactive password checking
 - SysAdmin periodically runs password cracking tool (also used by attackers) to detect weak passwords that must be replaced.
- Computer-generated passwords
 - Random passwords are strong but difficult to remember
 - FIPS PUB 181 http://www.itl.nist.gov/fipspubs/fip181.htm specifies automated pronounceable password generator

L09 - User Auth. IN2120 - UiO 2019

Protection of password file

- Systems need to verify user passwords against stored values in the password file
 - Hence, the password file must be available to the OS
 - But this file needs protection from users and applications
- Protection measures for password file
 - Access control (only accessible by Root/Admin)
 - Hashing or encryption (passwords not stored in cleartext)
- In case a password file gets stolen, then hashing/encryption provides a level of protection
 - It happens quite frequently that password files get stolen and also leaked to the Internet

12

L09 - User Auth. IN2120 - UiO 2019 11 L09 - User Auth. IN2120 - UiO 2019

Hash functions

One-way function

Collision free

- A hash function is easy to compute but hard to invert.
- Passwords are typically stored as hash values.
- Authentication function first computes hash of received password, then compares against the stored hash value

L09 - User Auth. IN2120 - UiO 2019

Cracking hashed passwords

- The attacker hashes a possible password and checks if the hash value is found in the password file.
 - The password has been cracked if the hash value is found
- Brute-force search
 - Hash and check all possible passwords (a powerful GPU computer can test passwords up to 8 characters in 1 day)
- Intelligent search
 - User names
 - Names of friends/relatives
 - Phone numbers
 - Birth dates
 - Dictionary attack
 - Try all words from a dictionary

L09 - User Auth. IN2120 - UiO 2019

Cracking with hash and rainbow tables

- Attackers can compute and store hash values for all possible passwords up to a certain length
- · A list of password hashes is a hash table
- · A compressed hash table is a rainbow table
- Comparing and finding matches between hashed passwords and hash/rainbow table is the method to determine cleartext passwords.

Password salting: Prevents cracking with hash-tables

- Prepend or append random data (salt) to a user's password before hashing
 - In Unix: a randomly chosen integer from 0 to 4095.
 - Different salt for each user
 - Produces different hashes for equal passwords
 - Prevents that users with identical passwords get the same password hash-value
 - Increases the amount of work for hash precomputation
 - Makes it necessary to compute new table for each user
 - Makes hash tables and rainbow tables impractical for password cracking

L09 - User Auth. IN2120 - UiO 2019 15 L09 - User Auth. IN2120 - UiO 2019

Storing and checking passwords

Brute Force Attacks

- Effort of brute force attacks depends on:
 - length + complexity of passwords
 - Example: duration of brute force search for NTLM hashes

length	letters (52 keys)	letters + symbols (84 keys)
4	not measurable	0.3 ms
5	3.7 ms	47 ms
6	0.2 s	3.4 s
7	10 s	4.8 min
8	8.75 min	6.7 h
9	7.6 h	23.2 d
10	16.4 d	5.4 y
11	2.4 y	454 y
12	122 y	38,147y

L09 - User Auth. IN2120 - UiO 2019 18

Brute Force Attacks

- Effort of brute force attacks depends on:
 - length + complexity of passwords
 - complexity of hash algorithm
- Hash algorithms are optimized for runtime and memory consumption
- Simple key stretching schemes:

Brute Force Attacks

- Special hashing algorithms:
 - PBKDF2
 - large runtime
 - Applications (Examples): WPA, WPA2, TrueCrypt
 - Problem: can be "reversed" using special crypto hardware
 - bcrypt
 - additionally: high memory consumption
 - scrypt
 - additionally: very high memory consumption
 - Argon2
 - currently best password hashing function

massa-Source.https://www.lon/privacy/Counts/PESCP

Brute Force Attacks

Comparision of hashing/key derivation functions:

Table 1. Estimated cost of hardware to crack a password in 1 year.

KDF	6 letters	8 letters	8 chars	10 chars	40-char text	80-char text
DES CRYPT	< \$1	< \$1	< \$1	< \$1	< \$1	< \$1
MD5	< \$1	< \$1	< \$1	\$1.1k	\$1	\$1.5T
MD5 CRYPT	< \$1	< \$1	\$130	\$1.1M	\$1.4k	$$1.5 \times 10^{15}$
PBKDF2 (100 ms)	< \$1	< \$1	\$18k	\$160M	\$200k	$$2.2 \times 10^{17}$
bcrypt (95 ms)	< \$1	\$4	\$130k	\$1.2B	\$1.5M	\$48B
scrypt (64 ms)	< \$1	\$150	\$4.8M	\$43B	\$52M	$$6 \times 10^{19}$
PBKDF2 (5.0 s)	< \$1	\$29	\$920k	\$8.3B	\$10M	$$11 \times 10^{18}$
bcrypt (3.0 s)	< \$1	\$130	\$4.3M	\$39B	\$47M	\$1.5T
scrypt (3.8 s)	\$900	\$610k	\$19B	\$175T	\$210B	$$2.3 \times 10^{23}$

L09 - User Auth. IN2120 - UiO 2019 21

HTTP Digest Authentication

A simple challenge-response protocol (rarely used)

- A simple challenge response protocol specified in RFC 2069
- · Server sends:
 - WWW-Authenticate = Digest
 - realm="service domain"
 - nonce="some random number"
- User types Id and password in browser window
- Browser produces a password digest from nonce, Id and password using a 1-way hash function
- Browser sends Id and digest to server that validates digest

Never send unprotected passwords in clear

- A password sent "in clear" can be captured during transmission, so an attacker may reuse it.
- An attacker setting up a fake server can get the password from the user
 - E.g. phishing attack.
- Solutions to these problems include:
 - Encrypted communication channel
 - One-time passwords (token-based authentication)
 - Challenge-response protocols

L09 - User Auth. IN2120 - UiO 2019 22

Ownership-Based Authentication "Something you have"

Example: Authentication Tokens (OTP)

24

L09 - User Auth. IN2120 - UiO 2019 23 L09 - User Auth. IN2120 - UiO 2019

Taxonomy of Authentication Tokens

Clock-based OTP Tokens: Operation

- Token displays time-dependent code on display
 User copies code from token to terminal to log in
- Possession of the token is necessary to know the correct value for the current time
- Each code computed for specific time window
- · Codes from adjacent time windows are accepted
- · Clocks must be synchronised
- Example: BankID and SecurID

L09 - User Auth. IN2120 - UiO 2019 26

Clock-based OTP Token Operation with (optional) input PIN

Clock-based OTP Tokens:

SafeID OTP token with PIN

Feitan OTP token witout PIN

ActiveID OTP token with PIN

RSA SecurID without PIN

BankID OTP token with PIN

BankID OTP token without PIN

L09 - User Auth. IN2120 - UiO 2019 27 L09 - User Auth. IN2120 - UiO 2019 28

RSA Security States Sta

- RSA was hacked in 2007.
- Secret key for OTP tokens stolen
- Hackers could generate OTP and spoof users
- Companies using RSA SecureID were vulnerable
- Lockheed Martin used RSA SecureID
- Chinese attackers spoofed Lockheed Martin staff
 - Stole plans for F-35 fighter jet

Counter-based OTP Tokens: Overview

- HOTP is a HMAC-Based One-Time Password Algorithm described in RFC 4226 (Dec 2005) http://www.rfc-archive.org/getrfc.php?rfc=4226
 - Tokens that do not support any numeric input
 - The value displayed on the token is designed to be easily read and entered by the user.

L09 - User Auth. IN2120 - UiO 2019 29

L09 - User Auth.

IN2120 - UiO 2019

Diagram

Counter-based OTP Token Operation

Challenge Response Based Tokens for User Authentication:

- A challenge is sent in response to access request
 - A legitimate user can respond to the challenge by performing a task which requires use of information only available to the user (and possibly the host)
- · User sends the response to the host
 - Access is approved if response is as expected by host.
- Advantage: Since the challenge will be different each time, the response will be too – the dialogue can not be captured and used at a later time
- Could use symmetric or asymmetric crypto

L09 - User Auth. IN2120 - UiO 2019 31 L09 - User Auth. IN2120 - UiO 2019 32

Token-based User authentication Challenge Response Systems

HOST TOKEN Id / key Id / key Random challenge algorithm number algorithm generator Optional response display compare

33 L09 - User Auth. IN2120 - UiO 2019

Biometrics: Overview

- · What is it?
 - Automated methods of verifying or recognizing a person based upon a physiological characteristics.
- Biometric modalities, examples:
 - fingerprint
 - facial recognition
 - eye retina/iris scanning
 - hand geometry
 - written signature
 - voice print
 - keystroke dynamics

Inherence-Based Authentication

Biometrics

"Something you are"

"Something you do"

35

L09 - User Auth. IN2120 - UiO 2019

Biometrics: Requirements

Universality

Each person should have the characteristic;

Distinctiveness:

Any two persons should be sufficiently different in terms of the characteristic:

Permanence

The characteristic should be sufficiently invariant (with respect to the matching criterion) over a period of time:

Collectability:

The characteristic should be measurable quantitatively.

Example: Does "face recognition" fulfill these requirements?

37

L09 - User Auth. IN2120 - UiO 2019 36 L09 - User Auth. IN2120 - UiO 2019

Biometrics: Practical considerations

- Accuracy:
 - The correctness of a biometric system, expressed as ERR (Equal Error Rate), where a low ERR is desirable.
- Performance:
 - the achievable speed of analysis,
 - the resources required to achieve the desired speed,
- Acceptability:
 - the extent to which people are willing to accept the use of a biometric identifier (characteristic)
- Circumvention resistance:
 - The difficulty of fooling the biometric system
- Safety:
 - Whether the biometric system is safe to use

L09 - User Auth. IN2120 - UiO 2019 38

Biometrics: Modes of operation

- Enrolment:
 - analog capture of the user's biometric attribute.
 - processing of this captured data to develop a template of the user's attribute which is stored for later use.
- Verification of claimed identity (1:1, one-to-one):
 - capture of a new biometric sample.
 - comparison of the new sample with that of the user's stored template.
- Identification (1:N, one-to-many)
 - capture of a new biometric sample.
 - search the database of stored templates for a match based solely on the biometric.

Biometrics Safety

- Biometric authentication can be safety risk
 - Attackers might want to "steal" body parts
 - Subjects can be put under duress to produce biometric authenticator
- Necessary to consider the physical environment where biometric authentication takes place.

Car thieves chopped off part of the driver's left index finger to start S-Class Mercedes Benz equipped with fingerprint key. Malaysia, March 2005 (NST picture by Mohd Said Samad)

L09 - User Auth. IN2120 - UiO 2019 39

Extracting biometric features Example fingerprints: Extracting minutia

L09 - User Auth. IN2120 - UiO 2019 40 L09 - User Auth. IN2120 - UiO 2019 41

Biometrics: System components

Sensor Feature Extractor Comparator System Database System Components

Biometrics Enrolment Phase

Biometric Recognition: Security and Privacy Concerns

L09 - User Auth.

IN2120 - UiO 2019

43

L09 - User Auth. IN2120 - UiO 2019 42

Biometric Verification / Authentication

Biometric Identification

Biometric Recognition: Security and Privacy Concern

Biometric Recognition: Security and Privacy Concern

L09 - User Auth. IN2120 - UiO 2019 44 L09 - User Auth. IN2120 - UiO 2019 45

Evaluating Biometrics:

- Features from captured sample are compared against those of the stored template sample
- Score s is derived from the comparison.
 - Better match leads to higher score.
- The system decision is tuned by threshold T:
 - System gives a match (same person) when the sample comparison generates a score s where s ≥T
 - System gives non-match (different person) when the sample comparison generates a score s where s < T

L09 - User Auth. IN2120 - UiO 2019 46

Evaluating Biometrics: System Errors

- Comparing biometric samples produces score s
- Acceptance threshold T determines FMR and FNMR
 - If *T* is set low to make the system more tolerant to input variations and noise, then FMR increases.
 - On the other hand, if *T* is set high to make the system more secure, then FNMR increases accordingly.
- EER (Equal Error Rate) is the rate when FMR = FNMR.
- · Low EER is good, it means good separation of curves.

Comparison characteristics

- True positive
 - User's sample matches → User is accepted
- True negative
 - Stranger's sample does not match → Stranger is rejected
- False positives
 - Stranger's sample matches → Stranger is falsely accepted
- False negatives
 - User's sample does not match → User is falsely rejected
- False Match Rate vs. False Non-Match Rate
 FMR = (# matching strangers) / (# strangers in total)
 FNMR = (# non-matching users) / (# users in total)
- T determines tradeoff between FMR and FNMR

L09 - User Auth. IN2120 - UiO 2019 47

Spoofed Biometrics: Presentation Attacks

- It is relatively simple to trick a biometric system
 - Terminology: Presentation Attacks

False finger

False face

- · Biometric authentication on smartphones is insecure
- PAD (Presentation Attack Detection) is the subject of intensive research, to make biometrics more secure
- Alternative solution is to capture biometrics in controlled environments

L09 - User Auth. IN2120 - UiO 2019 49

Secondary Channel

- Independent from the primary channel!
- Controlled by user, not necessarily very secure
- Increased authentication assurance through Increased complexity for attackers
- Typically used as second authentication factor

Authentication Assurance

- Authentication assurance = robustness of authentication
- Resources have different sensitivity levels
 - High sensitivity gives high risk in case of authentication failure
- Authentication has a cost
 - Unnecessary authentication assurance is a waste of money
- Authentication assurance should balance authentication risk

Authentication: Multi-factor

53

- Multi-factor authentication aims to combine two or more authentication techniques in order to provide stronger authentication assurance.
- Two-factor authentication is typically based on something a user knows (factor one) plus something the user has (factor two).
 - Usually this involves combining the use of a password and a token
 - Example: BankID OTP token with PIN + static password

L09 - User Auth. IN2120 - UiO 2019 51

e-Authentication Frameworks for e-Gov.

- Trust in identity is a requirement for e-Government
- Authentication assurance produces identity trust.
- Authentication depends on technology, policy, standards, practice, awareness and regulation.
- Common e-authentication frameworks allow crossnational and cross-organisational solutions that give convenience, cost savings and security.

L09 - User Auth. IN2120 - UiO 2019 52 L09 - User Auth. IN2120 - UiO 2019

Alignment of e-Authentication Frameworks

Authentication Framework	User Authentication Assurance Levels				
NIST SP800-63-3			Some	High	Very High
USA 2017			(1)	(2)	(3)
eIDAS			Low	Substantial	High
EU 2014			(1)	(2)	(3)
ISO 29115	Low (Little or no)		Medium	High	Very High
ISO/IEC 2013	(1)		(2)	(3)	(4)
e-Pramaan	None	Minimal	Minor	Significant	Substantial
India 2012	(0)	(1)	(2)	(3)	(4)
NeAF	None	Minimal	Low	Moderate	High
Australia 2009	(0) (1)		(2)	(3)	(4)
RAU / FAD	Little or no assurance		Low	Moderate	High
Norway 2008	(1)		(2)	(3)	(4)

L09 - User Auth. IN2120 - UiO 2019 54

eIDAS electronic IDentification, Authentication and trust Services

- eIDAS is EU's regulation on e-Authentication and trust services for e-transactions.
- "Trust service" is EU jargon for PKI certification services.
- eIDAS specifies three authentication assurance levels (AALs).

The EU trust mark for qualified trust services

Low Assurance	Substantial Assurance	High Assurance	
eDAS AAL-1	eIDAS AAL-2	eIDAS AAL-3	
Limited degree of confidence in the claimed or asserted identity of a person	substantial degree of confidence in the claimed or asserted identity of a person	higher degree of confidence in the claimed or asserted identity of a person	

AAL: Authentication Assurance Level

AAL is determined by the weakest of three links:

User Identity Registration Assurance (UIRA) requirements

User Credential Management Assurance (UCMA) requirements

User Authentication Method Strength (UAMS) requirements Requirements for correct registration:

- Pre-authentication credentials, e.g.
- birth certificate
 - biometrics

Requirements for secure handling of credentials:

- Creation
- Distribution
- Storage

Requirements for mechanism strength:

- · Password length and quality
- Cryptographic algorithm strength
- · Tamper resistance of token
- Multiple-factor methods

L09 - User Auth. IN2120 - UiO 2019 55

eIDAS: Authentication

Assurance level	Elements needed		
Low	1. The electronic identification means utilises at least one authentication factor.		
	The electronic identification means is designed so that the issuer takes reasonable steps to check that it is used only under the control or possession of the person to whom it belongs.		
Substantial	The electronic identification means utilises at least two authentication factors from different categories.		
	2. The electronic identification means is designed so that it can be assumed to be used only if under the control or possession of the person to whom it belongs.		
High	Level substantial, plus:		
	The electronic identification means protects against duplication and tampering as well as against attackers with high attack potential		
	The electronic identification means is designed so that it can be reliably protected by the person to whom it belongs against use by others.		

Source: Commission implementing regulation (EU) 2015/15

L09 - User Auth. IN2120 - UiO 2019 56 L09 - User Auth. IN2120 - UiO 2019 57

RAU Norway 2008

Rammeverk for Autentisering og Uavviselighet (Framework for Authentication and Non-Repudiation)

RAU AAL-4: High authentication assurance

• E.g. two-factor, where at least one must be dynamic, and at least one is provisioned in person

RAU AAL-3: Moderate authentication assurance

· E.g. OTP calculator with PIN provisioned by mail to user's official address

RAU AAL-2: Low authentication assurance

· E.g. fixed password provisioned in person or by mail to user's official address

RAU AAL-1: Little or no authentication assurance:

· E.g. Online self-registration and self-chosen password

Norway has adopted eIDAS in 2018 (RAU will no longer be used)

End of lecture

L09 - User Auth. IN2120 - UiO 2019 59 L09 - User Auth. IN2120 - UiO 2019 61