Quiz 1 (3월 22일 금 7, 8 교시)

[2013년 1학기 수학 및 연습 1] (시간은 20분이고, 20점 만점입니다.)

- * 답안지에 학번과 이름을 쓰시오. 답안 작성시 풀이과정을 명시하시오.
- $1. \ (4점) \ 0 < s \le 1 \ 일 \ \text{때}, \ 급수 \sum_{n=1}^{\infty} \frac{1}{n^s} \ \textrm{이 발산함을 보이시오}.$
- 2. (7점) $a_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x} dx$ 에 대하여 급수 $\sum_{n=1}^{\infty} a_n$ 이 수렴함을 보이시 오.
- 3. (4점) 특이적분 $\int_{1}^{\infty} \frac{1}{x} \sin \frac{1}{x} dx$ 의 수렴, 발산을 판정하시오.
- $4.~(5점)~n^2$ 을 3으로 나눈 나머지를 a_n 라 할 때, 급수 $\sum_{n=1}^{\infty} (-1)^{a_n} \frac{2^n n!}{n^n}$ 의 수렴, 발산을 판정하시오.

Quiz 1 모범답안 및 채점기준 예시

 $1. \ 0 < s \le 1 \ 0 \ s$ 에 대하여 $n^s \le n$ 이고, $\frac{1}{n^s} \ge \frac{1}{n}$ 이다. $\sum_{n=1}^{\infty} \frac{1}{n} = \infty. \ [비교판정법] 에 의해 \sum_{n=1}^{\infty} \frac{1}{n^s} = \infty.$

따라서, $0 < s \le 1$ 인 s 에 대하여 주어진 급수는 발산한다. (4점)

- 2. $a_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x} dx = \int_0^{\pi} \frac{\sin (x + n\pi)}{x + n\pi} dx = \int_0^{\pi} (-1)^n \frac{\sin x}{x + n\pi} dx$ $b_n = \int_0^{\pi} \frac{\sin x}{x + n\pi} dx \text{ 이라 하면, } \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n b_n.$
 - (i) $0 < x < \pi$ 에 대해 $\sin x > 0$ 이므로 $b_n > 0$. (1점)
 - (ii) $b_n = \int_0^\pi \frac{\sin x}{x + n\pi} dx \le \int_0^\pi \frac{1}{n\pi} dx = \frac{1}{n} \implies \lim_{n \to \infty} b_n = 0.$ (2점)

(iii)
$$b_n = \int_0^\pi \frac{\sin x}{x + n\pi} dx \ge \int_0^\pi \frac{\sin x}{x + (n+1)\pi} dx = b_{n+1}.$$
 (3점)

* 세 조건을 증명없이 언급만 한 경우, 각각 1점

따라서, [교대급수 정리] 에 의해서 $\sum_{n=1}^{\infty} (-1)^n b_n = \sum_{n=1}^{\infty} a_n$ 은 수렴한다. (+1점)

3. $f(x) = \frac{1}{x} \sin \frac{1}{x}$ 이라고 하면 f(x) 는 $x \ge 1$ 에서 연속이고 감소함수이 며 f(x) > 0 이다. (+1점) [적분판정법] 에 의해서 $\int_{1}^{\infty} \frac{1}{x} \sin \frac{1}{x} dx$ 의 수렴 여부는 $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$ 의 수렴 여부와 같다.

또한, 자연수
$$n$$
 에 대해서 $\sin\frac{1}{n} \le \frac{1}{n}$ 이므로 $\sum_{n=1}^{\infty} \frac{1}{n} \sin\frac{1}{n} \le \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$ 따라서, $\int_{1}^{\infty} \frac{1}{x} \sin\frac{1}{x} dx$ 는 수렴한다. (3점)

$$4. \ b_n = (-1)^{a_n} \frac{2^n n!}{n^n} \text{ 이라 하자.}$$

$$\sum_{n=1}^{\infty} |b_n| = \sum_{n=1}^{\infty} \frac{2^n n!}{n^n} \text{ 이고 } \lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = \lim_{n \to \infty} \frac{2}{(1+\frac{1}{n})^n} = \frac{2}{e} \qquad (4점)$$
 [비율 판정법] 에 의해서 $\sum_{n=1}^{\infty} |b_n|$ 은 수렴한다.
$$\text{절대 수렴하는 수열은 수렴하므로 } \sum_{n=1}^{\infty} (-1)^{a_n} \frac{2^n n!}{n^n} \text{ 도 수렴한다.} \qquad (5A)$$