Age information is required for the detection of dementia and mild cognitive impairment in brain images

Fermín Travi¹, Eduardo Castro², Hongyang Li², Anushree Mehta², Jenna Reinen², Amit Dhurandhar², Pablo Meyer Rojas², Guillermo A. Cecchi², Pablo Polosecki²

- When looking at brains affected by dementia, age estimations evidence a discrepancy between predicted and chronological brain age. This mismatch fuels the premature aging hypothesis of neurodegeneration.
- In this work, we challenge a key assumption of this hypothesis: is age information needed for dementia detection?

General Population (GP) brain images

20000 split 17500 1000 15000 800 12500 10000 600 7500 400 5000 200 2500 70 Age

33,110 brain images from the general population were used for model **training** and **4,731** for model **evaluation**.

Diseased and healthy controls brain images

2,118 Healthy Controls (HC), **1,547** Mild Cognitive Impairment (MCI), **600** Alzheimer Disease (AD).

Brain representations (z) obtained from General Population (GP) brain images

- Age-invariant: these embeddings are invariant with respect to age.
- Age-agnostic: these embeddings are obtained without imposing any conditions on age.
- Age-aware: contrary to the age-invariant, these predict age during the reconstruction.

Disease prediction from brain representations (ROC-AUCs)

Performance on GP

Age information: synthetically aged brains

Mean aging difference CA components (1st, 2nd, 3rd)

Conclusions

Removing aging information specifically impairs neurodegeneration detection.

We found multiple independent dimensions of variation, supporting a multidimensional view of brain aging.

Going forward, we are aiming at mapping brain images to a high dimensional space that predicts their aging trajectory.

