MA 503: Homework 17

Dane Johnson

November 23, 2020

Lemma Eggcorn If A and B are sets of real numbers bounded below, then $\inf(A + B) = \inf(A) + \inf(B)$.

Proof: Let $a+b \in A+B$ with $a \in A$ and $b \in B$. Since $\inf(A) \leq a$ and $\inf(B) \leq b$, $\inf(A) + \inf(B) \leq a+b$. So $\inf(A) + \inf(B)$ is a lower bound of A+B and $\inf(A) + \inf(B) \leq \inf(A+B)$. For each $\epsilon > 0$ there is exist $a \in A$ and $b \in B$ such that $a < \inf(A) + \epsilon/2$ and $b < \inf(B) + \epsilon/2$ so that $\inf(A+B) \leq a+b < \inf(A) + \inf(B) + \epsilon$. Then since $\inf(A+B) < \inf(A) + \inf(B) + \epsilon$ for every $\epsilon > 0$, $\inf(A+B) \leq \inf(A) + \inf(B)$.

Problem 1 Show that $||f+g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$.

$$A := \{P : m(\{t : |f(t) + g(t)| > P\}) = 0\} = \{P : |f + g| \le P \text{ a.e.}\}$$

$$B := \{M : m(\{t : |f(t)| > M\}) = 0\} = \{M : |f| \le M \text{ a.e.}\}$$

$$C := \{N : m(\{t : |g(t)| > N\}) = 0\} = \{N : |g| < N \text{ a.e.}\}$$

 $B+C:=\{M+N: m(\{t:|f(t)|>M\})=0, m(\{t:|g(t)|>N\})=0\}=\{M+N:|f|\leq M \text{ a.e.}, |g|\leq N \text{ a.e.}\}$.

Let $M+N\in B+C$ such that $M\in B$ and $N\in C$. Then $|f|\leq M$ a.e. and $|g|\leq N$ a.e. which means that $|f|+|g|\leq M+N$ a.e. But then $|f+g|\leq |f|+|g|\leq M+N$ a.e. so that $M+N\in A$. Therefore $B+C\subset A$ and $\inf A\leq \inf(B+C)$. Since B and C are sets of real numbers bounded each bounded below by 0 (because $|f|,|g|\geq 0$), $\inf(B+C)=\inf B+\inf C$ by Lemma Eggcorn. That is,

$$\begin{split} ||f+g||_{\infty} &= \inf\{P: m(\{t: |f(t)+g(t)| > P\}) = 0\} \\ &= \inf A \\ &\leq \inf B + \inf C \\ &= \inf\{M: m(\{t: |f(t)| > M\}) = 0\} + \inf\{N: m(\{t: |g(t)| > N\}) = 0\} \\ &= ||f||_{\infty} + ||g||_{\infty} \;. \end{split}$$

We can also stick with the provided definition of essential supremum and follow a similar but messier argument. If $M \in B$ and $N \in C$, then $m(\{t : |f(t)| > M\}) = 0$ and $m(\{t : |f(t)| > N\}) = 0$.

```
\begin{split} &m(\{t:|f(t)+g(t)|>M+N\})\\ &\leq m(\{t:|f(t)|+|g(t)|>M+N\}) \quad \text{(from the triangle inequality)}\\ &= m[(\{t:|f(t)|>M\}\cap\{t:|g(t)|>N\})\cup\\ &(\{t:|g(t)|\leq N\}\cap\{t:|f(t)|>M+N-|g(t)|\})\cup(\{t:|f(t)|\leq M\}\cap\{t:|g(t)|>M+N-|f(t)|\})]\\ &\leq m(\{t:|f(t)|>M\}\cap\{t:|g(t)|>N\})+m(\{t:|g(t)|\leq N\}\cap\{t:|f(t)|>M+N-|g(t)|\})\\ &+ m(\{t:|f(t)|\leq M\}\cap\{t:|g(t)|>M+N-|f(t)|\})\\ &\leq m(\{t:|f(t)|>M\})+m(\{t:|f(t)|>M\})+m(\{t:|g(t)|>N\})\\ &= 0\;. \end{split}
```

This shows that if $M+N\in B+C$ with $M\in B$ and $N\in C$, then $M+N\in A$. Therefore, $B+C\subset A$ and so $\inf(A)\leq \inf(B+C)=\inf(B)+\inf(C)$. That is, $||f+g||_{\infty}\leq ||f||_{\infty}+||g||_{\infty}$.

Problem 2 Let f be a bounded measurable function on [0,1]. Prove that $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.

We have $|f| \leq ||f||_{\infty}$ a.e. and so

$$||f||_p = \left(\int_0^1 |f|^p\right)^{1/p}$$

$$\leq \left(\int_0^1 ||f||_{\infty}^p\right)^{1/p}$$

$$= (||f||_{\infty}^p m([0,1]))^{1/p}$$

$$= ||f||_{\infty}$$

$$\implies \lim_{p \to \infty} ||f||_p \leq |||f||_{\infty}.$$

For each $p \in \mathbb{N}$, the set $B_p = \{x : |f(x)| > ||f||_{\infty} - 1/p\}$ has positive measure since if $m(B_p) = 0$, we have $||f||_{\infty} - 1/p \in \{M : m(\{x : |f(x)| > M\}) = 0\}$ and $||f||_{\infty} - 1/p < ||f||_{\infty} = \inf\{M : m(\{x : |f(x)| > M\}) = 0\}$, which is a contradiction.

$$\left(\int_{B_p} |f|^p\right)^{1/p} \ge \left(\int_{B_p} ||f||_{\infty} - 1/p||^p\right)^{1/p}$$
$$= ||f||_{\infty} - 1/p|(m(B_p))^{1/p}$$

As $p \to \infty$, $||f||_{\infty} - 1/p \to ||f||_{\infty}$, so $B_p \to [0, 1]$. Then,

$$\lim_{p \to \infty} ||f||_p \ge \lim_{p \to \infty} ||f||_{\infty} - 1/p |(m(B_p))^{1/p} = ||f||_{\infty} m([0,1]) = ||f||_{\infty}.$$

Problem 3 Prove that $||f + g||_1 \le ||f||_1 + ||g||_1$.

Suppose $f, g \in L^1([0,1])$. For each $x \in [0,1], |f+g| \le |f| + |g|$, so

$$||f+g||_1 = \int_0^1 |f+g| \le \int_0^1 (|f|+|g|) = \int_0^1 |f| + \int_0^1 |g| = ||f||_1 + ||g||_1.$$

Problem 4 Show that if $f \in L^1$ and $g \in L^{\infty}$,

$$\int |fg| \le ||f||_1 \cdot ||g||_{\infty} .$$

We have $|g| \leq ||g||_{\infty}$ almost everywhere so $|fg| = |f||g| \leq |f|||g||_{\infty}$ almost everywhere. We have defined L^p spaces in this section on the interval [0,1], so

$$\int |fg| = \int_0^1 |fg| = \int_0^1 |f||g| \le \int_0^1 |f|||g||_\infty = ||g||_\infty \int_0^1 |f| = ||g||_\infty \int |f| = ||g||_\infty ||f||_1.$$