Matematická analyza II Domácí úkol 1

K odevzdání do čtvrtka, 16.10.25, 23:59 hod přes OWL

Úkol 1 (Metriky). (3+1=4)

a) Nechť $X = [1, \infty)$. Dokažte, že funkce definovaná přes

$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right|$$

je metrika.

b) Nechť $X = \mathbb{R}$. Je funkce definovaná přes

$$d(x,y) = |x|^{|y|}$$

metrika? Zdůvodněte!

Řešení. a) Symetrie a $d(x,y) \ge 0$ jsou zřejmé, protože to platí pro absolutní hodnotu $|\cdot|$. Když d(x,y) = 0, pak

$$\left|\frac{1}{x} - \frac{1}{y}\right| = 0 \Leftrightarrow \frac{1}{x} - \frac{1}{y} = 0 \Leftrightarrow \frac{1}{x} = \frac{1}{y} \Leftrightarrow x = y,$$

kde první ekvivalence platí kvůli tomu, že |a|=0 jen a pouze když a=0. Trojúhelníková nerovnost platí, jelikož

$$d(x,y) = \left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{1}{x} - \frac{1}{z} + \frac{1}{z} - \frac{1}{y} \right| \le \left| \frac{1}{x} - \frac{1}{z} \right| + \left| \frac{1}{z} - \frac{1}{y} \right| = d(x,z) + d(z,y),$$

kde nerovnost nahoře je důsledek nerovnosti pro $|\cdot|$. (Všimněte si, že vložení $\pm 1/z$ odpovídá přidání nuly, což by měl být schopen každý matematik.) Všimněte si také, že i když X pro nás je nekonečná osa, při metrice d tzv. diameter tohoto prostoru X je

$$diam(X) := sup\{d(x, y) : x, y \in X\} = 1$$

a tím pádem X je omenezé a rovná se B_1^d , jeho kouli s poloměrem 1.

Poznámka: Hodně lidí to udělalo špatně, tak mám zdůraznit, že být definitní znamená $d(x,y)=0 \Rightarrow x=y$. Že d(x,x)=0 obvykle je triviální.

b) Není metrika, protože neplatí (skoro) nic: zaprvé, není symetrická, vezměme např. x=1 a y=2. Zadruhé, pro každé $y\neq 0$ máme $d(0,y)=|0|^{|y|}=0$, tak není definitní. Zatřetí, trojúhelníková nerovnost neplatí, např. $x=3,\ y=2,\ z=1$.

Úkol 2 (Otevřené a uzavřené množiny).

(3+3=6)

V tomto úkolu předpokládáme $X = \mathbb{R}$.

a) Nechť $d: X \times X \to [0, \infty)$ být metrika, a definujeme

$$\delta(x,y) = \min\{d(x,y), 1\}.$$

Dokažte, že δ opravdu metrika je, a že d a δ definují stejné otevřené a zavřené množiny.

b) Necht být

$$d(x,y) = \begin{cases} 1 & \text{pro } x \neq y, \\ 0 & \text{pro } x = y. \end{cases}$$

Dokažte, že každá množina s touto metrikou je oboje otevřená i zavřená.

Řešení. a) Očividně $\delta \geq 0$ protože $d(x,y) \geq 0$ i $1 \geq 0$. Navíc

$$\delta(x,y) = 0 \Leftrightarrow \min\{d(x,y),1\} = 0 \Leftrightarrow d(x,y) = 0 \Leftrightarrow x = y$$

protože d je metrika. Symetrie je triviální, poněvadž d(x,y) je jako metrika symetrická. Trojúhelníková nerovnost je důsledek z

$$\delta(x,y) = \min\{d(x,y),1\} \le \min\{d(x,z) + d(z,y),1\} \le \min\{d(x,z),1\} + \min\{d(z,y),1\},$$

kde první nerovnost platí kvůli tomu, že d je metrika a že $\min\{a,c\} \leq \min\{b,c\}$ pro každé $a \leq b$ i každé c, a poslední rovnost je prostě vlastnost, že min je subaditivní při kladných prvcích (pro porozumění: najděte příklad, kde $\min\{a+b,1\} > \min\{a,1\} + \min\{b,1\}$).

Zabývejme se s otevřenými množinami. Použivám notaci

$$B_{\varepsilon}^{d}(a) = \{x \in X : d(x, a) < \varepsilon\}, \qquad B_{\varepsilon}^{\delta}(a) = \{x \in X : \delta(x, a) < \varepsilon\}.$$

Máme dokázat 2 směry:

1) Nechť být $A \subset X$ otevřené při metrice δ , tj.

$$\forall a \in A \exists \varepsilon > 0 : B_{\varepsilon}^{\delta}(a) \subset A.$$

Teď potřebujeme najít pro každé $a \in A$ nějaké $\varepsilon_1 > 0$ tak, aby bylo $B^d_{\varepsilon_1}(a) \subset A$. Vezmeme za to $\varepsilon_1 = \varepsilon$, protože definice nám říká, že vždycky $\delta(x,y) \leq d(x,y)$ pro každé $x,y \in X$, tedy $B^d_{\varepsilon}(a) \subset B^{\delta}_{\varepsilon}(a)$ pro každé a (všimněte si obrácené pořadí relace podmnožin). V jiných slovech, když $B^{\delta}_{\varepsilon}(a) \subset A$, pak $B^{\delta}_{\varepsilon}(a) \subset B^{\delta}_{\varepsilon}(a) \subset A$, což znamená, že A je otevřené při d.

2) Nechť být $A \subset X$ otevřené při d, tj.

$$\forall a \in A \exists \varepsilon > 0 : B_{\varepsilon}^{d}(a) \subset A.$$

Potřebujeme zas pro každé $a \in A$ najít nějaké $\varepsilon_1 > 0$ tak, aby bylo $B_{\varepsilon_1}^{\delta}(a) \subset A$. Tenkrát vezmeme $\varepsilon_1 = \min\{\varepsilon, 1\}$. Vskutku to dělá vše, co chceme: když $x \in B_{\varepsilon_1}^{\delta}(a)$, tak $\delta(x, a) < \varepsilon_1 = \min\{\varepsilon, 1\} \le 1$, a proto máme pro toto x, že $d(x, a) = \delta(x, a)$ (jinak by bylo $\delta(x, a) = 1$, což neodpovídá $\delta(x, a) < 1$). Navíc platí

$$d(x,a) = \delta(x,a) < \min\{\varepsilon,1\} \le \varepsilon,$$

a proto $x\in A,$ protože $d(x,a)<\varepsilon$ a A je otevřené přid. To znamená, že A taky je otevřené při $\delta.$

Nakonec definují stejné uzavřené množiny: nechť být $A \subset X$ uzavřené při d, pak podle definice, $X \setminus A$ je otevřené při d. Teď ale jsme už dokázali, že to znamená, že $X \setminus A$ je také otevřené při δ , a zas podle definice, A je uzavřené při δ . Samozřejmě to platí obdobně, když vyměníme d a δ . Tím důkaz ukončíme.

b) Nechť $A \subset X$. Dokazujeme, že A je otevřené, tj. pro každé $a \in A$, máme najít $\varepsilon > 0$ tak, aby platilo $B_{\varepsilon}(a) \subset A$. Vezmeme (úžasně nezávisle na množinu A!) $\varepsilon = \frac{1}{2}$, tak podle definice metriky d máme $B_{\varepsilon}(a) = \{a\}$, jeden jediný bod. Kvůli tomu, že $a \in A$, to znamená $B_{\varepsilon}(a) = \{a\} \subset A$, což není nic jiného než říct, že A je otevřené. Konečně dokazujeme, že A je taky uzavřené: podle definice (anebo podle jedné z ekvivalentních definicí) je A uzavřené jen a pouze, když $X \setminus A$ je otevřené. Zřejmě $X \setminus A \subset X$ je podmnožina a pravě jsme dokázali, že každá podmnožina v X je otevřená, teda taky $X \setminus A$ je otevřená. Zas podle definice to znamená, že A je uzavřené. (Mohli bychom tady take argumentovat s posloupnostmi, protože při metrice d každá konvergující posloupnost je od nějakého místa konstantní. Zkuste to formulovat!)