EE 2000 Logic Circuit Design

Year 2023/24, Semester B

Course Instructor: Dr. Lip Ket CHIN

Office: G6362

Email: lkchin@cityu.edu.hk

Acknowledgement: Prof Basu Arindam & Steve Wong

freepik.com

EE2000 Logic Circuit Design

Boolean Algebra

```
A(B+C) = AB + AC
 1 + A = 1
  A + A' = 1
```

entity mux4 is port(**VHDL** in0, in1, in2, in3: in bit; S0, S1: in bit; Z: out bit vector(7 downto 0); end mux4;

architecture behavioral of mux4 is

begin

 $Z \le \text{in}0$ after 5 ns when S0 = '0' and S1 = '0' else in1 after 5 ns when S0 = '0' and S1 = '1' else in 2 after 5 ns when S0 = '1' and S1 = '0' else in 3 after 5 ns when S0 = '1' and S1 = '1' else "000000000" after 5 ns:

end behavioral;

end behavioral; "000000000" after 5 as;

Text book

- "Introduction to Logic Design", Alan B. Marcovitz, *Mc Graw Hill*, 3rd (or 2nd) Edition.
- "Digital Systems Design Using VHDL" Charles H Roth, Lizy K. John: Fifth Edition, Cengage Learning, 2016.

CANVAS

- Lecture Notes
- Tutorial Questions
- Lab manual and assignments

https://canvas.cityu.edu.hk

Go to CANVAS to download class materials under the "Files" folder of EE2000.

Class Logistics

- Lecture: 13 weeks (39 hours)
 by Lip Ket CHIN
- Tutorial: 10 weeks (10 hours) by Ehsan Nekouei and Lip Ket CHIN
- Laboratory: 4 weeks (12 hours) by Ehsan Nekouei and Lip Ket CHIN

Ehsan Nekouei

Lip Ket CHIN

2023/24B Schedule for EE2000			
	Class	Tutorial	Lab
Week 1 (15 to 19 Jan)	Lecture 1		
Week 2 (22 to 26 Jan)	Lecture 2	Tutorials	
Week 3 (29 to 2 Feb)	Lecture 3 (Assignment 1)		
Week 4 (5 to 9 Feb)	Lecture 4		
Week 5 (19 to 23 Feb)	Lecture 5		Lab 1
Week 6 (26 to 1 Mar)	Test 1 (L1 to L4)		
Week 7 (4 to 8 Mar)	Lecture 6 (Assignment 2)	Tutorials	Lab 2
Week 8 (11 to 15 Mar)	Lecture 7		
Week 9 (18 to 22 Mar)	Lecture 8		Lab 3
Week 10 (25 to 29 Mar)	Lecture 9		
Week 11 (1 to 5 Apr)	Test 2 (L5 to L8) (Assignment 3)		
Week 12 (8 to 12 Apr)	Lecture 10	Tutorials	
Week 13 (15 to 19 Apr)	Revision and Discussion		Lab 4
Week 14 (Mon & Tue)			Make-Up

Assignments

- 15% of the final continuous assessment (CA)
- 1st assignment: Week 3 (Wed)
- Submission: CANVAS by Week 4 (Wed) @ 23:59
- 2nd assignment: Week 7 (Wed)
- Submission: CANVAS by Week 8 (Wed) @ 23:59
- 3rd assignment: Week 11 (Wed)
- Submission: CANVAS by Week 12 (Wed) @ 23:59
- Late submission: 20% deduction per day

Tests

- 20% of the final continuous assessment (CA)
- 1st Test: Week 6 (Wed)
- 2nd Test: Week 11 (Wed)
- No make-up test will be provided; if you missed it, you will score "0"

Lab Sessions

- 15% of the final continuous assessment (CA)
- In Weeks 5, 7, 9, 13
- Make-up: 22 Apr (Mon) & 23 Apr (Tue)
- Duration: 3 hrs for each session

Lab Sessions

- Grading: (a) Attendance [5% by *Technicians*]
 (b) Check Points [35% by *Lab helpers*]
 - (c) Lab Report [60% by *Lab Instructor*]
- Attendance: Attendance is ONLY taken in the first 30 mins of lab session; Late will have mark deduction in the lab exercise
- All students are required to submit the individual lab report before Friday of Week 14 to CANVAS

Course Assessment

Continuous Assessment: 50%

2 Tests (20%), 3 Assignments (15%) and 4 Lab sessions (15%)

Final Exam: 50% (Closed-book, 2 hours)

To pass the course, students are required to achieve at least 30/100 in continuous assessment and 30/100 in the final examination

Also, a 75% laboratory attendance rate must be obtained

Syllabus

Boolean Functions and Logic Gates

Boolean algebra and functions; logic operations; De Morgan's Laws; canonical forms; sum of products and products of sums; basic logic gates

Combinational Logic Design

Gate minimization by Boolean algebra, Karnaugh map and Quine-McCluskey method; timing hazards

Circuit Design with Functional Blocks

Carry Look Ahead adder; comparators; decoders and encoders; multiplexers and demultiplexers

Field-Programmable Gate Array

Programmable Logic Devices, Field Programmable Gate Array (FPGA)

Introduction to Hardware Description Language (HDL)

Very High Speed Integrated Circuit (VHDL)

Syllabus

FPGA Implementation

Combination and synchronous sequential circuit synthesis; data path component description, debugging and validation

Flip-flops

Latches, RS, JK, D-type, edge-triggered and master-slave flip-flops; triggering and setting

Synchronous Sequential Logic Circuit

Concept of states; Mealy and Moore Machines; redundant state elimination; sequential digital system analysis and design

Registers and Counter

Various types of registers and counters; ripple counters and synchronous counters, and their applications; construction of registers and counters