

Principio di induzione

Quinto assioma di Peano

Sia $S \subseteq \mathbb{N}$ un insieme che verifica le seguenti proprietà:

- 1. $0 \in S$ (base dell'induzione)
- 2. $\forall n, n \in S \Rightarrow n+1 \in S$ (passo induttivo)

Allora $S = \mathbb{N}$.

Principio di induzione (seconda forma)

Sia P(n) una proprietà vera per n=0. Supponiamo che se P(n) è vera, allora anche P(n+1) è vera. Allora P(n) è vera per ogni $n \in \mathbb{N}$.

Equivalenza tra il quinto assioma di Peano e il principio di induzione (seconda forma)

Proposizione 1.1.1 Il quinto assioma di Peano e il principio di induzione (seconda forma) sono equivalenti.

\triangleright

Dimostrazione

Parte 1: quinto assioma di Peano ⇒ principio di induzione (seconda forma)

Si definisce un insieme S che contiene tutti gli n per cui è valida la proprietà P(n):

$$S = \{n \in \mathbb{N} : P(n) \text{ è vera}\}\$$

Per ipotesi $S = \mathbb{N}$ (dal quinto assioma di Peano), quindi P(n) è vera per ogni n numero naturale.

Parte 2: principio di induzione (seconda forma) ⇒ quinto assioma di Peano

Per ipotesi si ha che P(n) è vera per ogni numero naturale. Quindi se si considera un insieme S che contiene O e il successivo di ogni suo elemento, dove ogni elemento di S soddisfa la proprietà P(n), si ha che S coincide con l'insieme dei numeri naturali, dunque la tesi è dimostrata.

Osservazione 1.1.2 Se non si riesce a far partire l'induzione da n=0, se l'insieme è comunque induttivo almeno da un certo elemento in poi si può comunque utilizzare il principio di induzione "da un certo punto in poi".

Campi ordinati

 \triangleright

Proposizione 2.2.1 Non esiste alcun numero razionale il cui quadrato è uguale a 2.

Dimostrazione

Supponiamo per assurdo che esista un numero $r \in \mathbb{Q}$ tale che $r^2 = 2$. Un numero razionale può essere espresso come **frazione**, quindi si può scrivere $r = \frac{n}{m}$ e di conseguenza $\frac{n^2}{m^2} = 2$, con $m, n \in \mathbb{Z}$ e $m \neq 0$. Supponiamo che tale frazione sia **ridotta ai minimi termini**, quindi m ed n non possono essere entrambi pari.

Si ha quindi:

$$\frac{n^2}{m^2} = 2 \implies n^2 = 2m^2$$

Quindi n^2 è pari. Ma se il quadrato di un numero è pari, significa che il numero stesso è pari. Supponiamo infatti che n=2k+1 con $k\in\mathbb{Z}$. Vale la seguente catena di uguaglianze:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2\underbrace{(2k^2 + 2k)}_h + 1 = 2h + 1$$

Quindi se n fosse dispari, anche il suo quadrato lo dovrebbe essere. Invece dall'uguaglianza precedente abbiamo che n^2 è pari, dunque n è pari.

Ma allora se n è pari lo si può riscrivere come n=2k con $k\in\mathbb{Z}$, quindi si ha che

$$(2k)^2 = 2m^2 \implies 4k^2 = 2m^2 \implies m^2 = 2k^2$$

Quindi anche m^2 è pari, dunque anche m è pari, mentre all'inizio avevamo supposto che m ed n fossero primi tra loro. Questo è assurdo, quindi la tesi è dimostrata.

Unicità del massimo di un insieme

Proposizione 2.2.13 Il massimo di un insieme, se esiste, è unico.

Dimostrazione

Supponiamo per assurdo che esistano due valori $\max A = a$ e $\max A = a'$. Allora, per definizione di massimo di un insieme, si ha che $a \le a'$ e $a' \le a$, per cui dalla proprietà antisimmetrica della relazione d'ordine \le si ha che a = a'.

Corrispondenza tra minimo ed estremo inferiore e tra massimo ed estremo superiore

Proposizione 2.3.14 Se *A* ha massimo, allora questo è anche l'estremo superiore. Se *A* ha minimo, allora questo è anche l'estremo inferiore.

Dimostrazione

Per definizione, il massimo di un insieme è un maggiorante che appartiene all'insieme stesso. Quindi se $\max A = m$ si ha che $m \in A$ e $m \in M_A$. Quindi tutti i numeri minori di m non sono dei maggioranti, quindi m è il minimo dei maggioranti e dunque è l'**estremo superiore**.

Corrispondenza tra estremo superiore e massimo e tra estremo inferiore e minimo

Proposizione 2.3.15 Se $\xi = \sup A$ e $\xi \in A$ allora A ha massimo e $\xi = \max A$. Se $\eta = \inf A$ e $\eta \in A$ allora A ha minimo e $\eta = \min A$.

\triangleright

Dimostrazione

Per definizione di estremo superiore, ξ è un maggiorante di A e per ipotesi $\xi \in A$. Allora è anche il minimo dei maggioranti di A e dunque è il suo massimo.

Assioma di Dedekind

Siano A, B due sottoinsiemi non vuoti di \mathbb{R} tali che:

$$\forall a \in A, \ \forall b \in B, \ a \leq b$$

Allora esiste un valore $c \in \mathbb{R}$, detto **elemento separatore** di A e B, tale che

$$\forall a \in A, \ \forall b \in B, \ a \leq c \leq b$$

Teorema 2.4.1 Ogni insieme $A \subseteq \mathbb{R}$ non vuoto e limitato superiormente ha estremo superiore in \mathbb{R} .

Ø

Dimostrazione

Consideriamo il sottoinsieme $A \subseteq \mathbb{R}$ che per ipotesi non è vuoto e l'insieme dei suoi maggioranti M_A , anch'esso non vuoto perché per ipotesi A è limitato superiormente.

Per definizione si ha che:

$$\forall a \in A, \forall M \in M_A, a \leq M$$

Quindi sono verificate le ipotesi dell'assioma di Dedekind, dunque si può dire che:

$$\exists c \in \mathbb{R} : \forall a \in A, \forall M \in M_A, \ a \leq c \leq M$$

Quindi c è un maggiorante per A ma è anche il minimo dei maggioranti di A, dunque c è l'estremo superiore di A.

Proposizione 2.4.9 Se A è un sottoinsieme non vuoto di \mathbb{R} , allora $\inf A \leq \sup A$. L'uguaglianza tra i due estremi vale se e soltanto se A è costituito da un solo punto.

\nearrow

Dimostrazione

Per ogni $a \in A$ si ha che $\inf A \le a \le \sup A$, per definizione di estremo superiore e inferiore. Allora se $\inf A = \sup A = \xi$ significa che ξ è contemporaneamente un minorante e un maggiorante di A. Allora per la proprietà antisimmetrica della relazione d'ordine \le , tutti gli elementi di A coincidono con ξ stesso.

Proprietà di Archimede

Proposizione 2.5.1 Siano $a, b \in \mathbb{R}$ con a, b > 0. Allora esiste un numero naturale n tale che na > b.

Dimostrazione

Sia A l'insieme dei multipli di a:

$$A = \{na : n \in \mathbb{N}\}$$

A non è vuoto e contiene più di un elemento, perché a>0 (quindi a ha dei multipli) e l'insieme dei numeri naturali non è vuoto.

Supponiamo che A sia limitato superiormente da $\xi = \sup A$. Dalla caratterizzazione dell'estremo superiore si ha che se $\xi = \sup A$, allora ξ – α non è un maggiorante di A. Siccome gli elementi di A sono nella forma na, il fatto che ξ – α non sia un maggiorante di A equivale a dire che:

$$\exists \bar{n} \in \mathbb{N} : \xi - a < \bar{n}a \le \xi$$

La disuguaglianza $\xi - a < \bar{n}a$ si può riscrivere come:

$$\xi < (\bar{n} + 1)a$$

Ma siccome $(\bar{n}+1)a$ è un multiplo di a, $(\bar{n}+1)a \in A$ e quindi se $(\bar{n}+1)a > \xi$ è falso dire che ξ è l'estremo superiore di A, perciò A non è limitato superiormente.

Allora, se si pone $b = \xi$ si ha che b non è un maggiorante di A, pertanto deve esistere un elemento di A (cioè un multiplo di a) maggiore di b, da cui la tesi.

Corollario 2.5.2 Gli insiemi \mathbb{N} , \mathbb{Z} , \mathbb{R} non sono limitati superiormente.

A

Dimostrazione

Supponiamo per assurdo che $\mathbb N$ sia limitato superiormente da un certo valore $M=\sup \mathbb N \neq +\infty$. Allora dalla proprietà di Archimede applicata con a=1 e b=M si ha che esiste un numero naturale maggiore dell'estremo superiore, che è assurdo. Quindi $\mathbb N$ non è limitato superiormente e non lo sono nemmeno $\mathbb Z$ e $\mathbb R$, visto che contengono $\mathbb N$.

Funzioni reali di una variabile reale

Correlazione tra stretta monotonia e invertibilità

Teorema 3.7.1 Una funzione $f:D\subseteq\mathbb{R}\to\mathbb{R}$ strettamente monotona in D è invertibile in D e la sua inversa è strettamente monotona dello stesso tipo.

Dime

Dimostrazione

Per dimostrare che una funzione è invertibile occorre dimostrare che è **biunivoca**, cioè è contemporaneamente **iniettiva** e **suriettiva**.

Per ipotesi f è strettamente monotona, quindi è certamente una funzione iniettiva perché

$$\forall x_1, x_2 \in D, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

e se $x_1 \neq x_2$ significa che $x_1 > x_2$ o che $x_1 < x_2$ (con la disuguaglianza stretta in entrambi i casi).

Il fatto che f sia **suriettiva** invece lo si ha immediatamente dall'ipotesi: se f è strettamente monotona in D è sufficiente considerare l'**insieme delle immagini** (cioè l'insieme dei valori che assume la f) della funzione in D per avere la suriettività.

Quindi f è contemporaneamente iniettiva e suriettiva in D, allora è anche invertibile in D.

Ora dimostriamo che f^{-1} è strettamente monotona dello stesso tipo. Supponiamo che f sia strettamente crescente.

Supponiamo che $y_1 < y_2$. Se f^{-1} fosse strettamente crescente, allora si dovrebbe avere che $x_1 < x_2$. Supponiamo invece per assurdo che $x_1 \ge x_2$. Siccome f è strettamente crescente per ipotesi, si ha che $f(x_1) \ge f(x_2)$ e cioè che $y_1 \ge y_2$. Tuttavia all'inizio avevamo supposto che $y_1 < y_2$, il che è assurdo, quindi la tesi è dimostrata.

Osservazione 3.7.5 Dal teorema precedente si ha che la stretta monotonia è una condizione sufficiente per l'invertibilità. Non è vero però il viceversa: se una funzione è invertibile non è detto che sia strettamente monotona. Un esempio è dato dalla funzione:

$$f(x) = \begin{cases} x & x \le 1\\ \frac{x+1}{x} & x > 1 \end{cases}$$

Osservazione 3.7.6 Dal punto di vista geometrico, il grafico di una funzione e quello della sua inversa sono simmetrici rispetto alla retta y=x (retta bisettrice del primo e terzo quadrante).

Successioni

Successioni definitivamente limitate

Proposizione 4.3.3 Sia $\{a_n\}_n$ una successione. Se esiste $M \in \mathbb{R}$ tale che **definitivamente** $a_n \leq M$ allora $\{a_n\}_n$ è limitata superiormente. Analogamente, se esiste $m \in \mathbb{R}$ tale che **definitivamente** $a_n \geq m$, allora $\{a_n\}_n$ è limitata inferiormente.

Quindi, se $\{a_n\}_n$ è definitivamente limitata, allora è limitata.

Teorema di unicità del limite

Teorema 4.4.1 Il limite di una successione, se esiste, è unico.

Dimostrazione

Supponiamo che esistano due valori ℓ_1 ed ℓ_2 . Per definizione questo significa che:

$$\forall \epsilon > 0, \exists \overline{n}_1 \in \mathbb{N}: \forall n \geq \overline{n}_1 \quad |a_n - \ell_1| < \epsilon$$

$$\forall \epsilon > 0, \exists \overline{n}_2 \in \mathbb{N}: \forall n \geq \overline{n}_2 \quad |a_n - \ell_2| < \epsilon$$

dunque ponendo $\overline{n} = max\{\overline{n}_1, \overline{n}_2\}$ si ha che:

$$|a_n - \ell_1| + |a_n - \ell_2| < \epsilon + \epsilon \quad \forall n \ge \bar{n}, \forall \epsilon > 0$$

Grazie alle proprietà del valore assoluto, è possibile scrivere il termine $|a_n - \ell_2|$ come $|\ell_2 - a_n|$, perché |-x| = |x|. Quindi si ha:

$$|a_n - \ell_1| + |\ell_2 - a_n| < 2\epsilon \quad \forall n \ge \bar{n}, \epsilon > 0$$

Adesso ponendo $a=a_n-\ell_1$ e $b=\ell_2-a_n$ si può utilizzare la proprietà della **disuguaglianza triangolare del valore assoluto**, che dice che $|a+b| \leq |a| + |b|$. Quindi si può riscrivere l'espressione come:

$$|\ell_2 - \ell_1| \le |a_n - \ell_1| + |\ell_2 - a_n| < 2\epsilon \quad \forall n \ge \bar{n}, \forall \epsilon > 0$$

A questo punto si considera la seguente disuguaglianza:

$$|\ell_2 - \ell_1| < 2\epsilon \quad \forall n \ge \bar{n}, \forall \epsilon > 0$$

Ma se il termine $|\ell_2-\ell_1|$ dev'essere sempre minore di 2ϵ per un qualsiasi valore $\epsilon>0$, per forza si deve avere che $|\ell_2-\ell_1|=0$, ovvero che $\ell_2=\ell_1$, quindi la tesi è dimostrata e i due limiti in realtà coincidono.

 \triangleright

Teorema 4.4.1 Ogni successione convergente è limitata.

Dimostrazione

La dimostrazione segue dalla definizione di successione convergente:

$$\forall \epsilon > 0, \exists \bar{n} \in \mathbb{N} : \forall n \geq \bar{n} \quad \ell - \epsilon < a_n < \ell + \epsilon$$

Dalla caratterizzazione dell'estremo superiore si ha che $\ell=\sup a_n$, perché $\ell-\epsilon$ non è un maggiorante di a_n , mentre $\ell+\epsilon$ lo è. Quindi a_n è limitata superiormente. Inoltre, se si prende un valore $m=-\sup(-a_n)$ si ha che inf $a_n=m$, quindi a_n ha anche estremo

inferiore e dunque è limitata.

Teorema di monotonia per successioni

Teorema 4.7.1 Ogni successione monotona ha limite. In particolare, sia $\{a_n\}_n$ una successione monotona crescente. Allora esiste

$$\lim_{n\to\infty}a_n=\sup a_n$$

Analogamente sia $\{a_n\}_n$ una successione monotona decrescente. Allora esiste

$$\lim_{n\to\infty}a_n=\inf a_n$$

Dimostrazione

Sia $\{a_n\}_n$ una successione monotona crescente (il caso in cui $\{a_n\}_n$ è monotona decrescente si tratta considerando la successione degli opposti e ricordando che $\sup(-a_n) = -\inf(a_n)$) e sia $\ell = \sup a_n$.

Se $\ell = +\infty$, allora si deve dimostrare che

$$\forall M > 0, \exists \bar{n} \in \mathbb{N}: \forall n \geq \bar{n} \quad a_n \geq M$$

Siccome $\ell=+\infty$, la successione è divergente, quindi ogni valore M>0 non è un maggiorante, quindi

$$\forall M > 0, \exists \bar{n} : a_{\bar{n}} \geq M$$

Sfruttando il fatto che a_n è monotona crescente e che è una successione divergente, si può dire che

$$\forall n \geq \bar{n} \quad a_n \geq a_{\bar{n}} \geq M$$

che è esattamente quello che si voleva dimostrare.

Se invece $\ell \in \mathbb{R}$, allora si deve dimostrare che

$$\forall \epsilon > 0, \exists \bar{n} \in \mathbb{N}: \forall n \geq \bar{n} \quad \ell - \epsilon < a_n < \ell + \epsilon$$

Ma già da questa definizione, applicando la caratterizzazione dell'estremo superiore si ha che $\ell=\sup a_n$, quindi a_n è limitata e quindi ammette limite.

Osservazione 4.7.1 Da questo teorema si ha che una successione monotona o è convergente o è divergente, ma non può essere irregolare.
Osservazione 4.7.2 Questo teorema è una conseguenza dell'assioma di continuità dei numeri reali e quindi vale se $\ell \in \mathbb{R}$. Infatti non è vero che una successione monotona e limitata di numeri razionali ammette sempre limite razionale.
Osservazione 4.7.5 Il teorema non si può invertire: esistono successioni convergenti ma che non sono monotone. Un esempio di questo tipo è dato dalla successione che converge a 0 definita come

$$a_n = \begin{cases} \frac{1}{n} & n \text{ pari} \\ -\frac{1}{n} & n \text{ dispari} \end{cases}$$

Non si può invertire nemmeno se si impone che $a_n \geq 0$. Anche la successione definita come

$$a_n = \begin{cases} \frac{1}{n} & n \text{ pari} \\ 0 & n \text{ dispari} \end{cases}$$

continua a non essere monotona. E non si può invertire nemmeno se si impone che $a_n>0$:

$$a_n = \begin{cases} \frac{1}{n} & n \text{ pari} \\ \frac{1}{2n} & n \text{ dispari} \end{cases}$$

anche questa successione continua a non essere monotona.

Teorema di permanenza del segno

Teorema 4.9.1 Se $a_n \to \ell$ e $H < \ell < K$, allora definitivamente $H < a_n < K$.

Dimostrazione

Questo teorema si basa sulla definizione di successione convergente:

$$\forall \epsilon > 0$$
, $\exists \bar{n} \in \mathbb{N} : \forall n \geq \bar{n} \quad \ell - \epsilon < a_n < \ell + \epsilon$

Per dimostrare il teorema è sufficiente scegliere un valore di ϵ tale che $\ell-\epsilon=H$ e $\ell+\epsilon=K$.

Osservazione 4.9.2 Il teorema di permanenza del segno diventa falso se si indebolisce l'ipotesi, cioè se si usano disuguaglianze larghe $H \leq \ell \leq K$, e di conseguenza anche la tesi $H \le a_n \le K$. Un esempio è la successione definita come

$$a_n = -\frac{1}{n}$$

 $a_n o 0$, quindi si potrebbe scrivere $0 \le \ell \le K$, tuttavia è falso dire che $0 \le a_n \le K$, perché a_n non è mai positiva.

Teorema del confronto

Teorema 4.9.2 Siano $\{a_n\}_n$ e $\{b_n\}_n$ due successioni tali che definitivamente $a_n \leq b_n$. Allora se $a_n \to +\infty$ si ha che $b_n \to +\infty$, mentre se $b_n \to -\infty$ si ha che $a_n \to -\infty$.

Dimostrazione

Sia $a_n \to +\infty$. Allora per a_n vale la definizione di successione divergente:

$$\forall M > 0$$
, $\exists \overline{n}_1 \in \mathbb{N} : \forall n \geq \overline{n}_1 \quad a_n \geq M$

Per ipotesi si ha anche che $a_n \leq b_n$. Quindi anche per b_n vale la definizione di successione divergente:

$$\forall M > 0, \exists \overline{n}_2 \in \mathbb{N} : \forall n \geq \overline{n}_2 \quad b_n \geq M$$

Quindi scegliendo $n = \max\{\overline{n}_1, \overline{n}_2\}$ si ha che:

$$\forall M \geq 0$$
, $\exists \bar{n} \in \mathbb{N} : \forall n \geq \bar{n} \quad b_n \geq a_n \geq M$

che è quello che si voleva dimostrare.

Teorema dei due carabinieri

Teorema 4.9.3 Se $a_n \le b_n \le c_n$ definitivamente e $a_n \to \ell$ e $c_n \to \ell$, allora anche $b_n \to \ell$.

Dimostrazione

Il teorema dei due carabinieri ha senso soltanto se le 3 successioni sono convergenti, perché nei restanti casi si può utilizzare il teorema del confronto.

Sia allora $a_n \to \ell$ e $b_n \to \ell$. Allora vale la definizione di successione convergente per a_n e c_n :

$$\forall \epsilon > 0$$
, $\exists \overline{n}_1 \in \mathbb{N} : \forall n \geq \overline{n}_1 \quad \ell - \epsilon < a_n < \ell + \epsilon$

$$\forall \epsilon > 0$$
, $\exists \overline{n}_2 \in \mathbb{N} : \forall n \geq \overline{n}_2 \quad \ell - \epsilon < c_n < \ell + \epsilon$

Ma dall'ipotesi si ha che anche b_n è convergente, perchè altrimenti non potrebbe essere definitivamente più piccola di c_n (che è convergente a sua volta):

$$\forall \epsilon > 0, \ \exists \overline{n}_3 \in \mathbb{N} : \forall n \geq \overline{n}_3 \quad \ell - \epsilon < b_n < \ell + \epsilon$$

Quindi è sufficiente scegliere un valore $\overline{n} \coloneqq \max\{\overline{n}_1, \overline{n}_2, \overline{n}_3\}$ per avere un'espressione che verifica tutte e 3 le condizioni precedenti:

$$\forall \epsilon > 0$$
, $\exists \bar{n} \in \mathbb{N} : \forall n \geq \bar{n} \quad \ell - \epsilon < a_n \leq b_n \leq c_n < \ell + \epsilon$

Le disuguaglianze larghe tra a_n , b_n e c_n sono necessarie perché i valori \overline{n}_1 , \overline{n}_2 e \overline{n}_3 potrebbero coincidere tra di loro.

Proposizione 4.9.5 Il prodotto di una successione infinitesima per una successione limitata è una successione infinitesima.

Dimostrazione

Sia $a_n \to 0$ e sia b_n una successione limitata, cioè una successione per cui vale che:

$$\exists K > 0 : |b_n| \le K \quad \forall n \in \mathbb{N}$$

Si tenta quindi di applicare il teorema dei carabinieri. Se la tesi è vera si deve avere che:

$$0 \le |a_n b_n| \le |a_n| K$$

Per ipotesi si ha che $a_n \to 0$, quindi anche $|a_n| \to 0$ e quindi $|a_n| K \to 0$. Allora per il teorema dei carabinieri si ha necessariamente che anche $|a_n b_n| \to 0$ e quindi anche $a_n b_n \to 0$.

Teorema 4.12.1 Ogni successione limitata di numeri reali ha almeno una sottosuccessione convergente.

Dimostrazione

Sia $\{a_n\}_n$ una successione limitata. Essendo limitata, significa che esistono due numeri reali α_0 e β_0 tali che $\forall m,\ a_m \in [\alpha_0,\beta_0]$. Posto $I_0=[\alpha_0,\beta_0]$ si può definire l'insieme

$$A_0 = \{m : a_m \in I_0\}$$

Le successioni, per definizione, sono infinite, quindi A_0 è un insieme infinito perché a_m cade infinite volte nell'intervallo I_0 .

Si procede quindi con il **metodo di bisezione**. L'obiettivo è quello di dividere a metà l'intervallo I_0 per un numero infinito di volte fino ad arrivare ad un intervallo I_n collassato ad un solo punto.

Indichiamo quindi con $\mu_0=rac{lpha_0+eta_0}{2}$ il **punto medio** dell'intervallo I_0 e osserviamo che:

$$A_0 = \{m : a_m \in [\alpha_0, \mu_0]\} \cup \{m : a_m \in [\mu_0, \beta_0]\}$$

Poiché A_0 è un insieme infinito, anche uno dei due insiemi al secondo membro dev'essere infinito (dividere a metà un insieme infinito dà comunque luogo ad un altro insieme infinito). Si possono verificare due casi:

- se il secondo insieme è infinito, allora poniamo $\alpha_1 = \mu_0$ e $\beta_1 = \beta_0$;
- se il primo insieme è infinito, allora poniamo $\alpha_1=\alpha_0$ e $\beta_1=\mu_0$

In entrambi i casi siamo arrivati a definire un nuovo intervallo $I_1 = [\alpha_1, \beta_1]$ e un nuovo insieme $A_1 = \{m: a_m \in I_1\}$ che è di nuovo un insieme infinito.

Si ha inoltre che $\alpha_0 \leq \alpha_1$ e che $\beta_1 \leq \beta_0$ e che la lunghezza dell'intervallo $[\alpha_1,\beta_1]$ è data da

$$\beta_1 - \alpha_1 = \frac{\beta_0 - \alpha_0}{2}$$

il che è ovvio perché $[\alpha_1, \beta_1]$ è stato ottenuto dividendo a metà l'intervallo $[\alpha_0, \beta_0]$.

Immaginiamo quindi di iterare questo metodo di bisezione n volte. Si riescono allora a costruire due successioni $\{\alpha_n\}_n$ e $\{\beta_n\}_n$ tali che, posto $I_n=[\alpha_n,\beta_n]$ e $A_n=\{m:a_m\in I_n\}$ il predicato

$$P(n) = \begin{cases} \alpha_0 \le \dots \le \alpha_n, & \beta_n \le \dots \le \beta_0 \\ \beta_n - \alpha_n = \frac{\beta_0 - \alpha_0}{2^n} \\ A_n \text{ è infinito} \end{cases}$$

è vero per ogni n, quindi in particolare a_n cade infinite volte in $[\alpha_n, \beta_n]$.

Osservando la prima riga del predicato P(n) si nota che la successione $\{\alpha_n\}_n$ è debolmente crescente, quindi ammette limite ℓ , mentre la successione $\{\beta_n\}_n$ è debolmente decrescente, quindi ammette limite m. Inoltre essendo $\alpha_0 \leq \alpha_n \leq \beta_n \leq \beta_0$ si ha che $\{a_n\}_n$ è limitata inferiormente da

 α_0 e superiormente da β_0 , pertanto dal teorema del confronto si ha che anche $\ell \in [\alpha_0, \beta_0]$. Anche $\{\beta_n\}_n$ è limitata inferiormente da α_0 e superiormente da β_0 , quindi anche $m \in [\alpha_0, \beta_0]$ dal teorema del confronto.

Inoltre essendo che $\beta_n-\alpha_n=rac{\beta_0-\alpha_0}{2^n}$, per $n\to+\infty$ si ha che $m-\ell=0$, quindi $m=\ell$.

A questo punto allora visto che A_n è un insieme infinito per ogni n, si può costruire una sottosuccessione $\{a_{k_n}\}_n$ prendendo qualche $a_{k_n}\in A_n$ per ogni n; in questo modo si ha che

$$\alpha_n \le a_{k_n} \le \beta_n \quad \forall n$$

e dal teorema dei carabinieri si ha che anche $a_{k_n} \to \ell$. Dunque la tesi è dimostrata.

Osservazione 4.12.4 Il teorema di Bolzano-Weierstrass afferma che se una successione è limitata allora ha almeno un punto limite $\ell \in \mathbb{R}$. Non vale invece il viceversa, cioè esistono successioni che hanno punti limite in \mathbb{R} (cioè hanno sottosuccessioni convergenti) ma che non sono limitate. Un esempio è la successione definita come:

$$a_n = \begin{cases} n & n \text{ pari} \\ \frac{1}{n} & n \text{ dispari} \end{cases}$$

da cui si può estrarre la sottosuccessione

$$\{a_{2n+1}\}_n = \frac{1}{2n+1}$$

che converge a 0, ma la successione di partenza a_n non è limitata.

Calcolo differenziale per funzioni reali di variabile reale

Continuità e derivabilità

A

Teorema 6.3.1 Se f è derivabile in x_0 allora è continua in x_0 .

Lezione del 28/10/2020, 4° parte

Dimostrazione

Se f è continua in x_0 significa che

$$\lim_{x \to x_0} f(x) = f(x_0) \implies \lim_{x \to x_0} [f(x) - f(x_0)] = 0$$

Si cerca quindi di manipolare l'espressione $f(x) - f(x_0)$ per farla assomigliare al limite del rapporto incrementale, andando a moltiplicare e dividere per $x - x_0$:

$$\lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0)$$

Dato che f è derivabile, il limite del rapporto incrementale **esiste ed** è **finito**. Quindi non ci sono forme di indecisione e il limite del prodotto lo si può spezzare nel prodotto dei limiti:

$$\lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} [x - x_0] =$$

$$= \lim_{x \to x_0} [f(x) - f(x_0)] = f'(x_0) \cdot \lim_{x \to x_0} [x - x_0]$$

ma $x - x_0 \rightarrow 0$ per $x \rightarrow x_0$. Allora si ha che

$$\lim_{x \to x_0} [f(x) - f(x_0)] = 0$$

che è esattamente la definizione di continuità.

Questo teorema ha 2 importanti conseguenze:

- 1. la continuità è una **condizione necessaria** per la derivabilità: se f non è continua in x_0 , allora non è nemmeno derivabile in x_0 ;
- 2. il viceversa non vale, cioè esistono funzioni continue in x_0 ma che non sono derivabili in x_0 (esempio: funzione valore assoluto).

Osservazione 6.3.1 Se si elimina l'ipotesi di derivabilità in x_0 il teorema non è più valido, nel senso che f potrebbe non essere continua in x_0 . Un esempio di questo tipo è dato dalla funzione

$$g(x) = \begin{cases} 0 & x \le 0 \\ 1 & x > 0 \end{cases}$$

In questo caso g non è derivabile perché $g'_{-}(0)=0$ mentre $g'_{+}(0)=+\infty$. Inoltre g non è continua in x=0.

La funzione definita come

$$h(x) = \begin{cases} 0 & x < 0 \\ 1 & x = 0 \\ 2 & x > 0 \end{cases}$$

è tale che $h'(0) = +\infty$, ma h non è continua in x = 0.

Infine il fatto che la derivata prima sia infinita non implica che la funzione non sia continua. Un esempio è dato dalla funzione $f(x) = \sqrt[3]{x}$, per cui $f'(0) = +\infty$ ma f è continua in tutto il suo dominio.

Quindi se la funzione non è derivabile in un punto, essa può essere:

- continua e con derivata che non esiste
- continua e con derivata infinita
- discontinua e con derivata che non esiste
- discontinua e con derivata infinita

Osservazione 6.3.2 Una funzione può essere derivabile una volta. La sua derivata può a sua
volta essere continua e quindi derivabile una seconda volta, e così via.

Notazioni asintotiche

Relazione tra "o piccolo" e "asintotico"

 \triangleright

Teorema 7.2.1 Per $x \to x_0$ vale la seguente equivalenza:

$$f(x) \sim g(x) \Leftrightarrow f(x) = g(x) + o(g(x))$$

\triangleright

Dimostrazione

L'equivalenza discende immediatamente dalle definizioni di asintotico e di o piccolo:

$$f(x) \sim g(x) \text{ per } x \to x_0 \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

Tale uguaglianza si può riscrivere come:

$$\lim_{x \to x_0} \frac{f(x) - g(x)}{g(x)} = 0$$

che è esattamente la definizione di o piccolo. Quindi

$$f(x) - g(x) = o(g(x)) \Leftrightarrow f(x) = g(x) + o(g(x))$$

Serie

Condizione necessaria

Teorema 8.1.1 Se $\sum_n a_n$ è una serie convergente, allora il termine generale a_n risulta infinitesimo.

Dimostrazione

Indichiamo con $s_n=\sum_{k=0}^n a_k$ la successione delle somme parziali e con $s=\sum_{k=0}^\infty a_k$ la somma della serie. Essendo

$$s_{n+1} = s_n + a_{n+1}$$

passando al limite si ha che

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} s_{n+1} - \lim_{n \to \infty} s_n = s - s = 0$$

Criteri di convergenza per serie a termini non negativi

Teorema 8.2.1 Una serie a termini non negativi converge oppure diverge a $+\infty$ (la serie converge se e solo se la successione delle somme parziali n-esime è limitata).

Il valore della serie coincide con l'estremo superiore della successione delle somme parziali.

Criterio del confronto

Proposizione 8.2.3 Siano $\{a_n\}_n$ e $\{b_n\}_n$ due successioni di numeri reali non negativi tali che definitivamente $a_n \leq b_n$.

Allora se $\sum_n b_n$ è convergente, si ha che $\sum_n a_n$ è convergente, mentre se $\sum_n a_n$ è divergente allora anche $\sum_n b_n$ è divergente.

Dimostrazione

Siano s_n ed s_n^* le successioni delle somme parziali definite come:

$$s_n = \sum_{k=1}^n a_k \qquad s_n^* = \sum_{k=1}^n b_n$$

Se $a_n \le b_n$ definitivamente, allora definitivamente $s_n \le s_n^*$. Poiché si tratta di due successioni si può applicare il <u>teorema del confronto per successioni</u>, quindi si ha che se s_n diverge allora diverge anche s_n^* , mentre se s_n^* converge anche s_n converge.

Quindi se $\sum_n a_n \to +\infty$ anche $s_n \to +\infty$ e quindi, dal criterio del confronto per successioni applicato ad s_n , anche s_n^* diverge e quindi anche $\sum_n b_n$ diverge.

Analogamente se $\sum_n b_n \to \ell$ allora anche $s_n^* \to \ell$ e quindi dal criterio del confronto per successioni anche s_n converge e quindi anche $\sum_n a_n$ converge.

Criterio del confronto asintotico

Proposizione 8.2.4 Siano $\{a_n\}_n$ e $\{b_n\}_n$ due successioni di numeri reali **positivi** tali che

$$a_n \sim b_n \quad \text{per } n \to +\infty$$

Allora le due serie $\sum_n a_n$ e $\sum_n b_n$ hanno lo stesso carattere (cioè sono entrambe convergenti oppure entrambe divergenti).

Lezione del 04/11/2020, parte 3

Dimostrazione

Se $a_n \sim b_n$, allora $\frac{a_n}{b_n} \to 1$ per $n \to +\infty$. Quindi dalla definizione di successione convergente:

$$\forall \epsilon > 0, \ \exists \bar{n} : \forall n \geq \bar{n} \quad 1 - \epsilon < \frac{a_n}{b_n} < 1 + \epsilon$$

Scegliendo per esempio $\epsilon = \frac{1}{2}$ si ha che:

$$\frac{1}{2}b_n < a_n < \frac{3}{2}b_n$$

a questo punto il risultato del teorema segue dal teorema del confronto:

- se a_n converge allora converge anche b_n , perché a_n è maggiore di b_n (a meno del fattore $\frac{1}{2}$, ma che non è rilevante per il carattere della serie);
- se a_n diverge allora diverge anche b_n , perché a_n è minore di b_n (a meno del fattore $\frac{3}{2}$, ma che non è rilevante per il carattere della serie)

Þ

Proposizione 8.2.9 Sia $\{a_n\}_n$ una successione di numeri reali non negativi per cui vale che:

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = L \quad 0 \le L \le +\infty$$

Allora si ha:

$$(1) \quad L < 1 \Rightarrow \sum a_n < +\infty$$

$$(2) \quad L > 1 \Rightarrow \sum_{n=1}^{n} a_n = +\infty$$

Lezione del 04/11/2020, parte 4

Dimostrazione

Supponiamo che $\sqrt[n]{a_n} \to L$ con L < 1. Questo significa che:

$$\forall \epsilon > 0, \exists \bar{n} : \forall n \geq \bar{n} \quad \sqrt[n]{a_n} < L + \frac{\epsilon}{2}$$

Dato che L < 1, per le proprietà dei numeri reali esiste un qualche valore $\epsilon > 0$ tale che $L < 1 - \epsilon$. Allora mettendo insieme le due cose si ha che definitivamente:

$$\sqrt[n]{a_n} \le L + \frac{\epsilon}{2} < 1 - \epsilon + \frac{\epsilon}{2}$$

ovvero che

$$\sqrt[n]{a_n} < 1 - \frac{\epsilon}{2}$$

a questo punto elevando entrambi i membri alla *n* si ha che:

$$a_n < \left(1 - \frac{\epsilon}{2}\right)^n$$

che è una **serie geometrica** di ragione < 1, quindi converge, e quindi converge anche la serie di partenza per il criterio del confronto.

La dimostrazione sarebbe stata analoga nel caso in cui L>1, in cui si sarebbe arrivati a

$$a_n > \left(1 + \frac{\epsilon}{2}\right)^n$$

che è una serie geometrica con ragione > 1, quindi diverge, e quindi diverge anche la serie di partenza per il criterio del confronto.

 \triangleright

Proposizione 8.2.11 Sia $\{a_n\}_n$ una successione di numeri reali positivi. Supponiamo che

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L$$

Allora si ha:

$$(1) L < 1 \Rightarrow \sum a_n < +\infty$$

$$(2) L > 1 \Rightarrow \sum_{n=1}^{n} a_n = +\infty$$

Lezione del 04/11/2020, parte 4

\triangleright

Dimostrazione

La dimostrazione è molto simile a quella del criterio della radice. Se $\frac{a_{n+1}}{a_n} \to L < 1$, allora esiste un qualche $\epsilon > 0$ tale che

$$\frac{a_{n+1}}{a_n} < 1 - \frac{\epsilon}{2} \quad \forall n \ge \bar{n}$$

quindi, moltiplicando per a_n entrambi i membri:

$$a_{n+1} < a_n \left(1 - \frac{\epsilon}{2} \right)$$

Quindi si può ragionare iterativamente dicendo che il termine a_n è più piccolo del precedente moltiplicato per $1-\frac{\epsilon}{2}$, ovvero:

$$a_{n+1} < a_n \left(1 - \frac{\epsilon}{2}\right) < a_{n-1} \left(1 - \frac{\epsilon}{2}\right)^2 < \dots < a_1 \left(1 - \frac{\epsilon}{2}\right)^n$$

Quindi, come nel caso del criterio della radice, ci si riconduce ad una **serie geometrica** di ragione $1-\frac{\epsilon}{2}<1$, che converge. Allora anche la serie di partenza converge per il criterio del confronto.

Analogamente, se L > 1 si arriva a:

$$a_{n+1} > a_1 \left(1 + \frac{\epsilon}{2} \right)^n$$

quindi si arriva ad una serie geometrica di ragione $1 + \frac{\epsilon}{2} > 1$, che diverge e quindi diverge anche la serie di partenza per il criterio del confronto.

Criteri di convergenza per serie a termini di segno variabile

Criterio della convergenza assoluta

Teorema 8.3.1 Sia $\sum_n a_n$ una serie assolutamente convergente. Allora anche la serie $\sum_n a_n$ risulta convergente e si ha che:

$$\left| \sum_{n=0}^{\infty} a_n \right| \le \sum_{n=0}^{\infty} |a_n|$$

Lezione del 05/11/2020, parte 3

Dimostrazione

Si parte dalla serie definita come

$$\sum_{n=1}^{\infty} (a_n + |a_n|)$$

Questa serie è a termini non negativi, perché $0 \le a_n + |a_n| \le 2|a_n|$. Dall'ipotesi inoltre si ha che $\sum_n |a_n| < +\infty$, quindi si può passare alla successione delle somme parziali e scrivere che:

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} (a_k + |a_k|) - \sum_{k=1}^{n} |a_k|$$

Per ipotesi, $\sum_n |a_n|$ è convergente ed anche $\sum_n (a_n + |a_n|)$ è convergente (per il criterio del confronto). Quindi anche la serie $\sum_n a_n$ è convergente, perché è la differenza di due serie convergenti.

Criterio di Leibniz

Teorema 8.3.1 Sia $\{a_n\}_n$ una successione di numeri reali non negativi, debolmente decrescente e infinitesima. Allora la serie

$$\sum_{n=0}^{\infty} (-1)^n a_n$$

risulta convergente. Inoltre, detta s la somma della serie e s_n la successione delle somme parziali, si ha che

$$|s_n - s| \le a_{n+1}$$

cioè l'errore che si commette sostituendo alla somma della serie la somma dei primi n termini è più piccolo, in valore assoluto, del primo termine trascurato.

Lezione del 05/11/2020, parte 3

Approssimazione e formule di Taylor

Teorema 1.1.1 Sia $f:(a,b) \to \mathbb{R}$ e sia $x_0 \in (a,b)$. Supponiamo che f sia derivabile n volte nel punto x_0 ed n-1 volte nel resto dell'intervallo (a,b). Allora, posto

$$P_{n,x_0} = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

si ha per ogni $x_0 \in (a, b)$:

$$f(x) = P_{n,x_0}(x) + o((x - x_0)^n)$$

Numeri complessi

Radici n-esime di numeri complessi

Teorema 2.5.1 Sia $w \in \mathbb{C}$, $w \neq 0$ ed $n \geq 1$ un numero intero. Allora esistono esattamente nradici complesse z_0, z_1, \dots, z_{n-1} di w, cioè tali che

$$z_k^n = w$$
 per $k = 0, 1, ..., n - 1$

 $z_k^n=w\quad \text{per }k=0,1,\dots,n-1$ Inoltre, posto $w=r(\cos\varphi+i\sin\varphi)$ si ha che $z_k=\rho_k(\cos\theta_k+i\sin\theta_k)$, dove

$$\begin{cases} \rho_k = \sqrt[n]{r} \\ \theta_k = \frac{\phi + 2\pi k}{n}, \quad k = 0, 1, ..., n - 1 \end{cases}$$

Lezione del 13/11/2020, parte 4

Dimostrazione

Se z è una radice ennesima di w, allora per definizione $z^n = w$, pertanto anche $|z^n| = |w|$. Dalla formula delle potenze di numeri complessi si ha che $|z^n| = |z|^n$, pertanto $|z|^n = |w|$. Dato che quest'ultima è un'uguaglianza tra numeri reali si deduce che

$$|z| = \sqrt[n]{|w|}$$

In particolare, se w=0, l'unica radice n-esima di w è proprio z=0. Se invece $w\neq 0$, scriviamo z e w in forma trigonometrica:

$$z = \rho(\cos\theta + i\sin\theta)$$
 $w = r(\cos\phi + i\sin\phi)$

e dalla formula di De Moivre ricaviamo

$$\rho^{n}[\cos(n\theta) + i\sin(n\theta)] = r(\cos\phi + i\sin\phi)$$

che equivale alle due equazioni reali

$$\begin{cases} cos(n\theta) = cos(\phi) \\ sin(n\theta) = sin(\phi) \end{cases}$$

Quindi se gli angoli ϕ e $n\theta$ hanno lo stesso seno e lo stesso coseno, significa che differiscono per un multiplo intero di 2π , ovvero che:

$$n\theta = \phi + 2k\pi$$

e quindi

$$\theta = \frac{\Phi}{n} + \frac{2k\pi}{n}$$

Quindi possiamo porre:

$$\begin{cases} \theta_0 = \frac{\Phi}{n} \\ \theta_1 = \frac{\Phi}{n} + \frac{2\pi}{n} \\ \theta_2 = \frac{\Phi}{n} + \frac{4\pi}{n} \\ \vdots \\ \theta_{n-1} = \frac{\Phi}{n} + \frac{2(n-1)\pi}{n} \end{cases}$$

e per ogni k = 0, 1, ..., n - 1:

$$z_k = \sqrt[n]{r}[\cos(\theta_k) + i\sin(\theta_k)]$$

Questi n numeri hanno argomenti diversi e compresi tra 0 e 2π , quindi sono tutti numeri distinti e sono le uniche radici possibili di w. Poiché si verifica facilmente che la loro potenza n-esima è esattamente w, il teorema è dimostrato.

Osservazione 2.5.2 Dal punto di vista geometrico, le radici di un numero complesso formano i vertici di un **poligono regolare** di n lati inscritto in una circonferenza di raggio $\sqrt[n]{r}$ centrata nell'origine.

Teorema fondamentale dell'algebra

Teorema 2.6.1 Un'equazione polinomiale

$$a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n = 0$$

con coefficienti **complessi** ha esattamente n radici in \mathbb{C} , ognuna contata con la sua molteplicità.

Una **radice di un polinomio** P(x) è un valore α tale che $P(\alpha)=0$. Si dice che una certa radice α ha **molteplicità** n (con $n \geq 1$) se e solo se P(x) è divisibile per $(x-\alpha)^n$ ma non per $(x-\alpha)^{n+1}$. Ad esempio, il polinomio $P(x)=x^5-x^3$ ha radice $\alpha=0$. Questa radice ha molteplicità 3, raccogliendo infatti si può scrivere $P(x)=x^3(x^2+1)=x\cdot x\cdot x(x^2+1)$. In questo caso $\alpha=0$ quindi annulla P(x) per 3 volte.

Questo teorema quindi dice che la somma delle molteplicità delle radici di un polinomio complesso è pari al grado del polinomio. Questo non vale in \mathbb{R} , infatti $P(x) = x^2 + 1$ non ha radici reali.

Forma esponenziale dei numeri complessi

Per ogni $t \in \mathbb{R}$ poniamo

$$e^{it} = \cos t + i \sin t$$

Si tratta di una **funzione** da $\mathbb{R} \to \mathbb{C}$ che risulta **periodica** di periodo 2π . In particolare dal fatto che $e^{ir}=e^{is}$ non segue che r=s, ma piuttosto che $r=s+2k\pi$.

Con questa funzione il numero complesso z di modulo ρ e argomento θ può essere scritto come

$$z = \rho e^{i\theta}$$

e questa notazione prende il nome di **notazione esponenziale dei numeri complessi** (o **esponenziale complesso**). L'esponenziale complesso eredita due proprietà fondamentali dall'esponenziale reale:

$$\rho e^{i\theta} r e^{i\phi} = \rho r e^{i(\theta + \phi)} \qquad (\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

Con le radici invece si ha che:

$$\rho^n e^{in\theta} = r e^{i\phi} \Rightarrow \theta = \frac{\phi + 2k\pi}{n}$$

Tramite l'esponenziale complesso si ottiene l'identità di Eulero:

$$e^{i\pi} = \cos \pi + i \sin \pi = -1$$

Proprietà delle funzioni continue su un intervallo

Teorema di esistenza degli zeri

Teorema 3.1.1 Se f è una funzione continua nell'intervallo **chiuso e limitato** [a, b] e f(a) ha segno diverso da f(b), allora esiste un punto $\xi \in (a, b)$ tale che $f(\xi) = 0$.

Dimostrazione

Dall'ipotesi del teorema segue che

$$f(a)f(b) \le 0$$

Si procede quindi con il **metodo di bisezione** dell'intervallo [a, b]. Poniamo:

$$a_0 = a$$
, $b_0 = b$ $m_0 = \frac{a_0 + b_0}{2}$

Dato che $[f(m_0)]^2 \ge 0$, in quanto quadrato di un numero, si ha che anche $[f(a_0)f(m_0)][f(m_0)f(b_0)] \le 0$.

- se $f(a_0)f(m_0) \le 0$, allora poniamo $a_1 = a_0$ e $b_1 = m_0$
- se $f(m_0)f(b_0) \le 0$, poniamo $a_1 = m_0$ e $b_1 = b_0$.

In entrambi i casi ci siamo è ricondotti all'intervallo $[a_1, b_1]$ che è di nuovo un intervallo per cui vale che $f(a_1)f(b_1) \le 0$.

Applicando quindi il metodo di bisezione in maniera iterativa si arriva ad avere due successioni $\{a_n\}_n$ debolmente crescente e $\{b_n\}_n$ debolmente decrescente che tendono allo stesso limite ξ e tali che:

$$f(a_n)f(b_n) \le 0 \quad \forall n$$

Dato che $a \le a_n \le b$, passando al limite abbiamo anche che $\xi \in [a,b]$ e dunque f è continua nel punto ξ . Passando al limite si ha che

$$f(\xi)f(\xi) \le 0 \quad \forall n$$

ma dato che un quadrato non può mai essere negativo, si ha che necessariamente $f(\xi) = 0$. Dunque il teorema è dimostrato.

Osservazione 3.1.1 Le ipotesi del teorema sono tutte fondamentali.

Esempio 3.1.2 La funzione $f(x) = \frac{1}{x}$ è ben definita e continua nell'insieme $[-1,1] \setminus \{0\}$ ed f(-1) ha segno opposto rispetto a f(1). Tuttavia f non si annulla mai, perché l'insieme $[-1,1] \setminus \{0\}$ non è un intervallo, in quanto manca appunto lo 0 in cui f non è definita.

Esempio 3.1.1 Sull'intervallo [-1,1] la funzione

$$f(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

assume valori di segno opposto agli estremi, ma non si annulla mai perché manca l'ipotesi della continuità (f non è continua in x=0).

Esempio 3.1.4 Sull'intervallo di numeri razionali $\mathbb{Q} \cap [1,2]$ la funzione continua definita come $f(x) = x - \sqrt{2}$ assume valori di segno opposto agli estremi, ma non si annulla mai, perché il punto in cui f si annullerebbe (cioè $x = \sqrt{2}$) non è un numero razionale.

Osservazione 3.1.5 Il teorema precedente assicura l'esistenza di almeno un punto dove f si annulla, ma quel punto non è necessariamente unico. Un esempio è la funzione $f(x) = \cos x$ nell'intervallo $[0,3\pi]$ che si annulla 3 volte. Per avere l'unicità del punto è necessario aggiungere l'ipotesi che f sia strettamente monotona.

Conseguenze del teorema di esistenza degli zeri

Teorema dei valori intermedi

Teorema 3.2.1 Se f è continua in un intervallo I (aperto o chiuso), allora la sua immagine f(I) è un intervallo che ha per estremi inf f e sup f.

Invertibilità e continuità

Teorema 3.2.2 Sia $f: I \to \mathbb{R}$, con I intervallo, una funzione continua su I. Allora f è invertibile in I se e solo se è strettamente monotona.

Teorema 3.2.3 Una funzione continua e invertibile su un intervallo ha inversa continua.

Teorema di Weierstrass

Teorema 3.3.1 Sia $f:[a,b] \to \mathbb{R}$ una funzione continua. Allora f assume massimo e minimo in [a,b], cioè esistono punti $x_m, x_M \in [a,b]$ tali che

$$f(x_m) \le f(x) \le f(x_M) \quad \forall x \in [a, b]$$

Lezione del 19/11/2020, parte 3

Dimostrazione

Sia $M = \sup f \operatorname{ed} M > -\infty$.

Per dimostrare che M è il massimo di f occorre trovare un punto $x_0 \in [a, b]$ tale che $f(x_0) = M$.

Se $M \in \mathbb{R}$, allora poniamo $y_n = M - \frac{1}{n}$ per ogni $n \in \mathbb{N} \setminus \{0\}$. Se invece $M = +\infty$ poniamo $y_n = n$.

In entrambi i casi $\{y_n\}_n$ è una successione che cresce ad M. Dato che $y_n < M = \sup f$, dalla caratterizzazione dell'estremo superiore deve esistere qualche valore di f maggiore di y_n : indichiamo tale valore con $f(x_n)$:

$$y_n < f(x_n) \le M$$
 $a < x_n \le b$

Siccome y_n è una successione che cresce ad M, allora il suo limite per $n \to +\infty$ tende ad M. Quindi $f(x_n) \to M$ per $n \to +\infty$ dal teorema dei carabinieri.

Applicando alla successione $\{x_n\}_n$ il **teorema di Bolzano-Weierstrass** (che si può fare perché [a,b] è un intervallo **limitato**), è possibile estrarre da essa la sottosuccessione **convergente** x_{n_k} , che tende ad x_0 . Quindi si ha:

$$a \le x_{n_{\nu}} \le b \quad \forall n \in \mathbb{N}$$

Siccome [a, b] è un intervallo **chiuso**, allora $x_0 \in [a, b]$.

Dalla **continuità di f** si ha poi che:

$$f(x_{n_k}) = f(x_0)$$

Ma la successione $\{f(x_{n_k})\}_n$ è una sottosuccessione di $\{f(x_n)\}_n$, che tende ad M, allora per l'**unicità del limite** si ha che anche $f(x_{n_k}) \to M$ e quindi che $f(x_0) = M = \sup f$. Quindi M è il **massimo** di f e la tesi è dimostrata.

Per dimostrare che f ha minimo è sufficiente applicare il teorema a -f e ricordare che sup $A = -\inf(-A)$.

Teorema di limitatezza

Dal teorema di Weierstrass segue questo corollario:

Corollario 3.3.1 Se f è continua nell'intervallo [a, b], allora f è limitata.

Osservazione 3.3.2 Il viceversa non vale, per esempio la funzione definita come

$$f(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

è limitata ma non è continua.

Osservazione 3.3.2 Le ipotesi del teorema sono tutte necessarie.

La funzione f(x) = x definita sull'intervallo (0,1) è continua, ma non ha né massimo né minimo: sarebbero 0 e 1, ma la funzione non è definita in quei punti. Il motivo per cui il teorema fallisce in questo caso è che (0,1) è un intervallo aperto.

La funzione f(x) = x definita su tutto \mathbb{R} non ha né massimo né minimo. Il teorema non funziona perché l'insieme \mathbb{R} è illimitato.

Infine la funzione f(x) = x per $x \in (0,1)$ e $f(x) = \frac{1}{2}$ per x = 0 e x = 1 è definita sull'intervallo chiuso [0,1], ma non è continua e quindi il teorema non si può applicare (infatti f non ha né massimo né minimo).

Applicazioni del calcolo differenziale: problemi di ottimizzazione Teorema di Fermat

Teorema 4.1.1 Sia $f:[a,b] \to \mathbb{R}$ derivabile in $x_0 \in (a,b)$. Se x_0 è un punto di estremo locale, allora $f'(x_0) = 0$.

Lezione del 20/11/2020, parte 2

Dimostrazione

Supponiamo che x_0 sia un punto di minimo locale. Allora esiste un intorno U di x_0 tale che:

$$f(x_0) \le f(x) \quad \forall x \in U$$

Quindi:

$$x < x_0 \Rightarrow \frac{f(x) - f(x_0)}{x - x_0} \le 0 \Rightarrow f'_-(x_0) \le 0$$

$$x > x_0 \Rightarrow \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \Rightarrow f'_+(x_0) \ge 0$$

Per ipotesi f è derivabile in tutto l'intervallo (a,b), quindi è derivabile anche in $x_0 \in (a,b)$ e quindi si ha che $f'(x_0) = 0$.

Osservazione 4.1.10

Il teorema di Fermat non si può invertire, cioè se $f'(x_0)=0$ non è detto che x_0 sia un punto di estremo locale. Un esempio è dato da $f(x)=x^3$, la cui derivata si annulla in x=0 ma questo non è un punto di estremo locale.

Il teorema di Fermat dice che se f è derivabile in x_0 e x_0 è un punto di estremo locale appartenente all'intervallo (a,b), allora x_0 è un **punto stazionario** per f. Tuttavia può accadere anche che x_0 sia un punto di estremo locale per f senza che la funzione sia derivabile. Per esempio la funzione f(x) = |x| ha punto di minimo globale in x = 0, ma non è derivabile in quel punto.

Infine la tesi vale solo per i punti x_0 che stanno all'interno dell'intervallo **aperto**. Per esempio $f: [0,1] \to \mathbb{R}$ definita da f(x) = x ha punto di massimo globale in $x_0 = 1$, ma non è un punto stazionario in quanto $f'(x_0) = 1$.

Teorema di Rolle

Ø

Teorema 4.2.1 Sia $f:[a,b] \to \mathbb{R}$ tale che:

- 1. $f \in \mathbf{continua}$ in [a, b];
- 2. f è derivabile in (a, b)
- 3. f(a) = f(b)

Allora esiste $c \in (a, b)$ tale che f'(c) = 0.

Dimostrazione

Essendo [a,b] un intervallo chiuso e limitato, si può applicare il <u>teorema di Weierstrass</u>, per cui esistono x_m ed x_M rispettivamente punti di minimo e massimo per f, ovvero

$$m = f(x_m) \le f(x) \le f(x_M) = M \quad \forall x \in [a, b]$$

Se $x_m = a$ ed $x_M = b$ (o viceversa), allora dall'ipotesi 3 si ha che i valori di minimo e massimo coincidono, quindi f è una funzione costante e di conseguenza la sua derivata è sempre nulla.

Supponiamo invece che almeno uno fra x_m ed x_m sia interno all'intervallo (a,b), per esempio x_m . Esseno f derivabile in (a,b) (dall'ipotesi 2) e x_m un punto di estremo locale interno all'intervallo, allora per il teorema di Fermat si ha che $f'(x_m) = 0$ che è quello che volevamo dimostrare.

Ø.

Osservazione 4.2.1 Le ipotesi del teorema di Rolle sono tutte necessarie.

Ø

Esempio 4.2.2 Consideriamo la funzione

$$f(x) = \begin{cases} x & x \in [0,1) \\ 0 & x = 1 \end{cases}$$

f è derivabile in (0,1) ed f(0) = f(1) = 0, tuttavia il teorema di Rolle non si può applicare perché f non è continua (infatti non esistono punti stazionari per f).

Esempio 4.2.3 Consideriamo la funzione f(x) = x su [0,1]. f è continua in [0,1] e derivabile in (0,1), ma $f(0) \neq f(1)$ e pertanto il teorema di Rolle non si può applicare (infatti la funzione non ha punti stazionari).

Esempio 4.2.4 Consideriamo la funzione f(x) = |x| su [-1,1]. f è continua su [-1,1] ed f(-1) = f(1), tuttavia non è derivabile in (-1,1), quindi il teorema di Rolle non si può applicare (infatti non esistono punti stazionari per f).

Teorema di Cauchy

Teorema 4.2.2 Siano $f, g: [a, b] \to \mathbb{R}$ tali che:

- 1. $f \in g$ sono continue in [a, b]
- 2. $f \in g$ sono derivabili in (a, b)

Allora esiste $c \in (a, b)$ tale che

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c)$$

Quando $g(x) \neq 0$ per $x \in (a, b)$, la tesi del teorema si riscrive come

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Lezione del 20/11/2020, parte 4

Dimostrazione

Definiamo

$$w(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x)$$

Allora w è continua in [a, b] e derivabile in (a, b), dato che f e g per ipotesi sono continue in [a, b] e derivabili in (a, b).

Inoltre si ha che:

$$w(a) = [f(b) - f(a)]g(a) - [g(b) - g(a)]f(a) =$$

$$= f(b)g(a) - g(b)f(a)$$

$$w(b) = [f(b) - f(a)]g(b) - [g(b) - g(a)]f(b) =$$

$$= -f(a)g(b) + g(a)f(b)$$

quindi w(a) = w(b). Applicando quindi il <u>teorema di Rolle</u> alla funzione w si ottiene che esiste $c \in (a,b)$ tale che w'(c) = 0, che è esattamente quello che si voleva dimostrare. Infatti:

$$w'(c) = [f(b) - f(a)]g'(c) - [g(b) - g(a)]f'(c) = 0$$

quindi:

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c)$$

equivalentemente, se $g(b) - g(a) \neq 0$ e $g'(c) \neq 0$:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Teorema 4.2.3 Sia f continua in [a,b] e derivabile in (a,b). Allora esiste $c \in (a,b)$ tale che

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Lezione del 20/11/2020, parte 4 e 5

Dimostrazione

Un modo di dimostrare il teorema di Lagrange è quello di utilizzare il <u>teorema di Cauchy</u>, ponendo g(x) = x.

Un altro modo è quello di considerare una funzione r definita come:

$$r(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$$

Si tratta di una **retta** (quindi di una funzione continua e derivabile su tutto il suo dominio) che congiunge i due punti (a, f(a)) e (b, f(b)) appartenenti al grafico di f.

Ora si considera la funzione h(x) definita come h(x) = r(x) - f(x), quindi:

$$h(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a) - f(x)$$

Si ha che h(a) = h(b) = 0, infatti:

$$h(a) = \frac{f(b) - f(a)}{b - a}(a - a) + f(a) - f(a) = 0$$

$$h(b) = \frac{f(b) - f(a)}{b - a}(b - a) + f(a) - f(b) = 0$$

Inoltre si ha che h è continua su [a,b] ed è derivabile su (a,b), perché r ed f sono continue in [a,b] e derivabili in (a,b). Quindi si può applicare il teorema di Rolle sulla funzione h e quindi esiste un punto $c \in (a,b)$ tale che h'(c) = 0, quindi;

$$h'(c) = \frac{f(b) - f(a)}{b - a} - f'(c) = 0$$

quindi

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

che è esattamente ciò che si voleva dimostrare.

Osservazione 4.2.5 Il punto c della tesi del teorema di Lagrange non è necessariamente unico. Per esempio $f(x) = \sin x$ con $x \in [0,3\pi]$ ha 3 punti in cui $f'(z) = \frac{f(3\pi) - f(0)}{3\pi} = 0$, ovvero $c_1 = \frac{\pi}{2}$, $c_2 = \frac{3}{2}$ e $c_3 = \frac{5}{2}$.

 \nearrow

Teorema 4.3.1 Sia $f:(a,b) \to \mathbb{R}$ derivabile. Allora $\forall x \in (a,b)$ si ha:

$$f$$
 crescente $\Leftrightarrow f'(x) \ge 0$
 f decrescente $\Leftrightarrow f'(x) \le 0$

Lezione del 25/11/2020, parte 1

Dimostrazione

Primo verso: f crescente $\Rightarrow f'(x) \ge 0$

Sia f una funzione debolmente crescente. Occorre dimostrare che $f'(x) \ge 0$. Per la monotonia di f si ha:

$$x > x_0 \Rightarrow f(x) \ge f(x_0) \Rightarrow \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

Passando al limite quindi si ha che $f'(x) \ge 0$.

Secondo verso: $f'(x) \ge 0 \Rightarrow f$ crescente

Sia ora $f'(x) \ge 0$ e $x_1, x_2 \in (a, b)$ con $x_1 < x_2$. L'idea è quella di costruire il **rapporto incrementale** partendo dalla differenza $f(x_2) - f(x_1)$:

$$f(x_2) - f(x_1) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x_2 - x_1)$$

A questo punto si può applicare il <u>teorema di Lagrange</u> sull'intervallo $[x_1, x_2] \subseteq (a, b)$, infatti f è derivabile su (a, b) e quindi è derivabile su (x_1, x_2) e se è derivabile allora è anche continua in $[x_1, x_2]$. Quindi esiste un punto $z \in (x_1, x_2)$ tale che

$$f'(z) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Quindi si può dire che

$$f(x_2) - f(x_1) = f'(z)(x_2 - x_1)$$

Per ipotesi si ha che $f'(z) \ge 0$ e che anche $x_2 - x_1 > 0$, perché $x_2 > x_1$, quindi:

$$f(x_2) - f(x_1) \ge 0 \Rightarrow f(x_2) \ge f(x_1)$$
 per $x_2 > x_1$

che è esattamente la definizione di funzione debolmente crescente, quindi la tesi è dimostrata.

Dal test di monotonia si hanno alcune importante conseguenze:

Caratterizzazione delle funzioni a derivata nulla

Teorema 4.3.2 Sia $f:(a,b) \to \mathbb{R}$. Allora:		
	f'(x)=0	$\forall x \in (a, b) \Leftrightarrow f \ \text{è costante in } (a, b)$

Proposizione 4.3.3 Sia f continua su (a,b) e tale che $f'(x)>0$ per ogni $x\in(a,b)$. Allora f risulta strettamente crescente su (a,b) . Analogamente, se f è continua su (a,b) e $f'(x)<0$ per ogni $x\in(a,b)$, allora f risulta strettamente decrescente su (a,b) .
Osservazione 4.3.4 Il viceversa non vale. Infatti la funzione $f(x) = x^3$ è strettamente crescent su tutto il suo dominio, ma la sua derivata non è strettamente positiva (si annulla in $x = 0$).
Osservazione 4.3.5 Il test di monotonia è falso se (a,b) non è un intervallo. Ad esempio $f(x)$ $\frac{1}{x}$ è definita su $\mathbb{R} \setminus \{0\}$ e la sua derivata è $-\frac{1}{x^2} < 0$. Tuttavia f non è strettamente decrescente: il teorema fallisce perché nell'intervallo considerato manca lo 0 .

 \nearrow

Teorema 4.5.1 Siano $f,g:(a,b)\to\mathbb{R}$ derivabili, $\operatorname{con} -\infty \le a \le b \le +\infty$, e sia $g'(x)\ne 0$ per ogni $x\in(a,b)$. Se:

(1)
$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{+}} g(x) = 0$$
 oppure $\pm \infty$
(2) $\lim_{x \to a^{+}} \frac{f'(x)}{g'(x)} = L \in \overline{\mathbb{R}}$

Allora

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$$

Lezione del 25/11/2020, parte 3 e 4

 \nearrow

Dimostrazione (valida per la forma di indecisione $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ e per L finito)

Dall'ipotesi 2 abbiamo che il rapporto delle derivate esiste ed è finito (perché consideriamo il caso in cui L è finito), per cui si applica la definizione di limite considerando un **intorno destro** di a, cioè l'intervallo (a, t_0) :

$$\forall \epsilon > 0, \exists t_0 : t \in (a, t_0) \Rightarrow L - \epsilon < \frac{f'(t)}{g'(t)} < L + \epsilon$$

Definiamo ora un sotto-intervallo [y,x], con $a < y < x < t_0$. In questo intervallo sono verificate le ipotesi del <u>teorema di Cauchy</u>, perché le funzioni sono derivabili (e quindi continue). su tutto l'intervallo (a,b) e quindi lo sono anche nel sotto-intervallo [y,x].

Quindi esiste $c \in (y, x)$ tale che

$$\frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f'(c)}{g'(c)}$$

Dato che c è nel sotto-intervallo (y,x), si può dire anche che $c \in (a,b)$ e quindi riscrivere la definizione di limite usata in precedenza come:

$$L - \epsilon < \frac{f(x) - f(y)}{g(x) - g(y)} < L + \epsilon$$

Passiamo ora al limite per $y \to a^+$. Dall'ipotesi 1 si ha che $f(y) \to 0$ e che $g(y) \to 0$ per $y \to a^+$ (perché stiamo considerando il caso della forma d'indecisione $\left[\frac{0}{0}\right]$). Quindi si ha che:

$$\forall \epsilon > 0, \ \exists t_0 : \forall x \in (a, t_0) \quad L - \epsilon < \frac{f(x)}{g(x)} < L + \epsilon$$

che è esattamente quello che si voleva dimostrare.

Osservazione 4.5.1 Il teorema resta valido anche se $a = -\infty$ oppure se $x \to b^-$ e $b \le +\infty$.

Conseguenza del teorema di de l'Hopital: limite destro/sinistro della derivata e derivata destra/sinistra

Þ

Proposizione 4.5.7 Sia f una funzione definita in un intorno di x_0 , continua in questo intorno e derivabile almeno per $x \neq x_0$. Supponiamo che esista (finito o infinito)

$$\lim_{x \to x_0^-} f'(x) = a_- \qquad \lim_{x \to x_0^+} f'(x) = a_+$$

Allora esistono

$$f'_{-}(x_0) = a_{-}$$
 $f'_{+}(x_0) = a_{+}$

In particulare f risulta derivabile in x_0 se e solo se $a_- = a_+$.

Lezione del 26/11/2020, parte 1

Dimostrazione

Applichiamo il teorema di de l'Hopital al limite del rapporto incrementale:

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

che si presenta nella forma d'indecisione $\left[\frac{0}{0}\right]$ (perché f è continua e quindi $f(x) \to f(x_0)$ per $x \to x_0$). Allora si ottiene:

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0} \stackrel{\text{(H)}}{=} \lim_{x \to x_0^{-}} f'(x) = a_{-}$$

$$f'_{+}(x_0) = \lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{x - x_0} \stackrel{\text{(H)}}{=} \lim_{x \to x_0^{+}} f'(x) = a_{+}$$

Dunque la tesi è dimostrata.

Osservazione 4.5.8 Una funzione può essere derivabile in un punto senza che esista il limite (destro o sinistro) della derivata. Per esempio la funzione definita come

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

è derivabile in x=0 (utilizzando la definizione di derivata), con f'(0)=0, ma $\lim_{x\to 0}f'(x)$ non esiste.

Calcolo integrale

Somme superiori e somme inferiori

Per ogni suddivisione A di [a, b], le quantità

$$s(f,A) = \sum_{i=1}^{n} (x_i - x_{i-1}) \inf_{[x_{i-1},x_i]} (f(x))$$

$$S(f,A) = \sum_{i=1}^{n} (x_i - x_{i-1}) \sup_{[x_{i-1},x_i]} (f(x))$$

vengono chiamate rispettivamente **somma inferiore** e **somma superiore** di f rispetto alla suddivisione A.

Infine, le quantità

$$s(f) = \sup\{s(f, A): A \text{ suddivisione di } [a, b]\}$$

$$S(f) = \inf \{ S(f, A) : A \text{ suddivisione di } [a, b] \}$$

verranno chiamate **integrale inferiore** e **integrale superiore** (secondo Riemann) di f su [a, b].

Dal punto di vista geometrico, se f è una funzione positiva integrabile su [a,b], allora s(f,A) rappresenta l'area del plurirettangolo **inscritto** nel sottografico di f:

mentre S(f,A) rappresenta l'area del plurirettangolo **circoscritto** al sottografico di f:

Teorema 6.2.1 Ogni funzione monotona $f:[a,b] \to \mathbb{R}$ limitata è integrabile.

Lezione del 02/12/2020, parte 4

Dimostrazione

Supponiamo che f sia debolmente crescente. Fissato $n \in \mathbb{N}$ sia A_n la suddivisione in n intervalli di uguale ampiezza:

$$x_i = a + i \frac{b - a}{n}$$

Per l'ipotesi di monotonia di f si ha:

$$\inf_{[x_{i-1},x_i]} f = f(x_{i-1}) \qquad \sup_{[x_{i-1},x_i]} f = f(x_i)$$

cioè l'estremo inferiore di f nell'intervallo $[x_{i-1},x_i]$ coincide con il valore di f nell'estremo sinistro dell'intervallo (cioè $f(x_{i-1})$). Analogamente l'estremo superiore di f nell'intervallo $[x_{i-1},x_i]$ coincide con il valore di f nell'estremo destro dell'intervallo (cioè $f(x_i)$).

Si cerca quindi di utilizzare la definizione di integrale tramite somme superiori e somme inferiori:

$$S(f, A_n) - s(f, A_n) = \sum_{i=1}^{n} \left[(x_i - x_{i-1}) \left(\sup_{[x_{i-1}, x_i]} (f(x)) - \inf_{[x_{i-1}, x_i]} (f(x)) \right) \right] = 0$$

Se A_n è una suddivisione **equispaziata**, allora $x_i - x_{i-1} = \frac{b-a}{n}$, quindi:

$$S(f, A_n) - s(f, A_n) = \frac{b - a}{n} \sum_{i=1}^{n} \left(\sup_{[x_{i-1}, x_i]} (f(x)) - \inf_{[x_{i-1}, x_i]} (f(x)) \right) = 0$$

In base alle relazioni definite sopra, questa espressione si può scrivere come:

$$S(f, A_n) - s(f, A_n) = \frac{b - a}{n} \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = 0$$

Questa sommatoria si può ulteriormente semplificare, infatti:

$$i = 1 \Rightarrow f(x_1) - f(x_0)$$

$$i = 2 \Rightarrow f(x_2) - f(x_1)$$

$$\vdots$$

$$i = n \Rightarrow f(x_n) - f(x_{n-1})$$

Si tratta quindi di una sommatoria in cui sopravvivono soltanto il primo e l'ultimo termine, quindi:

$$S(f, A_n) - s(f, A_n) = \frac{b - a}{n} (f(x_n) - f(x_0)) = 0$$

Ma $f(x_n)$ coincide con l'**estremo superiore** di f all'interno dell'ultimo intervallo, cioè f(b). Viceversa, $f(x_0)$ coincide con l'**estremo inferiore** di f all'interno del primo intervallo, ovvero f(a), quindi:

$$S(f, A_n) - s(f, A_n) = \frac{b - a}{n} (f(b) - f(a)) = 0$$

A questo punto si passa al limite:

$$\lim_{n \to +\infty} \left[\frac{1}{n} \cdot (b-a) (f(b) - f(a)) \right]$$

che vale 0, dunque f è integrabile.

Teorema 6.2.2

Se $f: [a, b] \to \mathbb{R}$ è continua, allora è integrabile.

Se $f_1: [a, b] \to \mathbb{R}$ e $f_2: [b, c] \to \mathbb{R}$ sono integrabili, allora la funzione

$$f(x) = \begin{cases} f_1(x) & x \in [a, b) \\ f_2(x) & x \in (b, c] \\ k & x = b \end{cases}$$

(dove k è un qualunque numero reale) è integrabile in [a, c].

Lezione del 02/12/2020, parte 4

Proposizione 6.2.6 Se f è una funzione continua e non negativa su un intervallo [a,b] non ridotto a un punto, allora

$$\int_{a}^{b} f(x)dx = 0 \Rightarrow f(x) = 0 \quad \forall x \in [a, b]$$

Lezione del 03/12/2020, parte 1

Dimostrazione

Supponiamo per assurdo che esista un punto $x_0 \in [a,b]$ dove $f(x_0) = k > 0$. Dato che f è continua, significa che esiste un intervallo $[a',b'] \subseteq [a,b]$, anch'esso non ridotto a un punto, che contiene x_0 e tale che f(x) > 0. Inoltre siccome f è integrabile si ha che:

$$\int_{a}^{b} f(x)dx = s(f) = \sup\{s(f, A) : A \text{ suddivisione di } [a, b]\}$$

Consideriamo quindi una certa suddivisione $\tilde{A} = \{a, a', b', b\}$:

$$0 < k = f(x_0) + \frac{1}{2} = \{a_1 a_1, b_1, b\}$$

Si ha quindi

$$s(f, \tilde{A}) = (a' - a) \inf_{[a, a']} f + (b' - a') \inf_{[a', b']} f + (b - b') \inf_{[b', b]} f$$

che è certamente una quantità >0, perché nell'intervallo [a,a'] la funzione vale 0, nell'intervallo [a',b'] la funzione è >0 e infine nell'intervallo [b',b] f è di nuovo =0.

Dato che s(f) è l'estremo superiore, si ha che:

$$\int_{a}^{b} f(x)dx \ge (a'-a) \inf_{[a,a']} f + (b'-a') \inf_{[a',b']} f + (b-b') \inf_{[b',b]} f > 0$$

Quindi l'integrale dev'essere una quantità strettamente positiva, ma per ipotesi avevamo che l'integrale fosse = 0, il che è assurdo, quindi la tesi è dimostrata.

Teorema della media integrale

Teorema 6.3.1 Sia $f: [a, b] \to \mathbb{R}$ una funzione integrabile. Allora si ha:

$$\inf_{[a,b]} f \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \sup_{[a,b]} f$$

Se f è continua, esiste $z \in [a, b]$ tale che

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = f(z)$$

Lezione 03/12/2020, parte 3

Dimostrazione

Per ogni $x \in [a, b]$, dalla definizione di estremo superiore ed estremo inferiore si ha che:

$$\inf_{[a,b]} f \le f(x) \le \sup_{[a,b]} f$$

Per ipotesi f è integrabile, quindi per la **monotonia dell'integrale** vale che:

$$\int_{a}^{b} \inf_{[a,b]} f \, dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} \sup_{[a,b]} f \, dx$$

Siccome le quantità $\inf f$ e $\sup f$ sono delle costanti, per la **linearità dell'integrale** la relazione precedente si può riscrivere come:

$$\inf_{[a,b]} \int_a^b 1 dx \le \int_a^b f(x) dx \le \sup_{[a,b]} \int_a^b 1 dx$$

Dato che f(x) = 1 è una funzione costante, si ha che la sua area nell'intervallo [a, b] corrisponde all'area del rettangolino, cioè **base** ((b - a)) per **altezza** (1, perché f(x) = 1). Quindi:

$$\inf_{[a,b]} \cdot (b-a) \le \int_a^b f(x) dx \le \sup_{[a,b]} f \cdot (b-a)$$

A questo punto si dividono tutti i membri della disuguaglianza per (b-a) (che è una quantità maggiore di 0) e si ottiene la tesi:

$$\inf_{[a,b]} f \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \sup_{[a,b]} f$$

Se alle ipotesi si aggiunge che f è continua in [a,b], allora dal <u>teorema di Weierstrass</u> f ammette massimo e minimo in [a,b] che coincidono rispettivamente con l'estremo superiore e l'estremo inferiore. Quindi si ha immediatamente che:

$$\min_{[a,b]} f = \inf_{[a,b]} f \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \sup_{[a,b]} f = \max_{[a,b]} f$$

Dato che f è continua su [a,b], dal <u>teorema dei valori intermedi</u> si ha che la sua immagine è un intervallo. Siccome la quantità $\frac{1}{b-a} \int_a^b f(x) dx$ è compresa tra il minimo e il massimo di f, allora

$$\exists z \in [a, b] : f(z) = \frac{1}{b - a} \int_{a}^{b} f(x) dx$$

Osservazione 6.3.5 La formula del teorema della media integrale, quando f è continua, la si può riscrivere come:

$$\int_{a}^{b} f(x)dx = (b-a)f(z)$$

Dal punto di vista geometrico questo equivale a dire che l'area del sottografico di f nell'intervallo [a,b] coincide con l'area del rettangolo di base [a,b] ed altezza f(z).

Primitive

Proposizione 6.4.2 Due primitive di una stessa funzione sullo stesso intervallo differiscono per una costante.

Dimostrazione

Siano G_1 e G_2 due primitive di una funzione f in [a,b]. Allora si ha per definizione che $G_1'-G_2'=0$ in [a,b], cioè $(G_1-G_2)'=0$ e dunque $G_1-G_2=C$ con $C\in\mathbb{R}$.

Teorema fondamentale del calcolo integrale

Teorema 6.5.1 Sia f una funzione continua su [a, b] e sia G una sua primitiva. Allora

$$\int_{a}^{b} f(x)dx = G(b) - G(a)$$

Lezione del 03/12/2020, parte 4

Dimostrazione

Consideriamo l'intervallo [a,b] e una sua suddivisione $A=\{a,x_1,x_2,...,b\}$. L'obiettivo è quello di riscrivere il termine G(b)-G(a) come una **somma di Cauchy-Riemann**.

Si pone quindi:

$$G(b) - G(a) = G(x_n) - G(x_0) = \sum_{j=1}^{n} [G(x_j) - G(x_{j-1})]$$

In questa sommatoria i termini si elidono a vicenda e gli unici a sopravvivere sono $G(x_n)$ e $-G(x_0)$.

Si ha poi che G è derivabile su (a,b), allora è derivabile anche in ogni intervallo $[x_{j-1},x_j]\subseteq (a,b)$ e dunque è anche continua in ogni intervallo $[x_{j-1},x_j]$. Quindi si può applicare il <u>teorema di Lagrange</u>:

$$\forall [x_{j-1}, x_j], \exists z_i \in [x_{j-1}, x_j] : \frac{G(x_j) - G(x_{j-1})}{x_j - x_{j-1}} = G'(z_i)$$

Quindi si può scrivere:

$$G(b) - G(a) = \sum_{j=1}^{n} [G(x_j) - G(x_{j-1})] = \sum_{j=1}^{n} [(x_j - x_{j-1})G'(z_i)]$$

Ma $G'(z_i) = f(z_i)$, perché G è una primitiva di f per ipotesi. Allora:

$$G(b) - G(a) = \sum_{j=1}^{n} [(x_j - x_{j-1})f(z_i)] = S_n$$

Dove S_n è una somma n-esima di Cauchy-Riemann. Passando al limite quindi si ha che

$$G(b) - G(a) = \lim_{n \to \infty} S_n = \int_a^b f(x) dx$$

Dato che f è integrabile perché è continua, allora questo procedimento vale per ogni S_n . Quindi la tesi è dimostrata.

Integrali generalizzati

Criteri di integrabilità al finito

Criterio del confronto

 \triangleright

Teorema 7.2.1 Se $0 \le f(x) \le g(x)$ in [a, b), allora:

g integrabile $\Rightarrow f$ integrabile f non integrabile $\Rightarrow g$ non integrabile

Criterio del confronto asintotico

Teorema 7.2.2 Se f>0 e g>0 e $f\sim g$ per $x\to b^-$, allora

f integrabile $\Leftrightarrow g$ integrabile

Criterio della convergenza assoluta

Teorema 7.2.3

$$\int_{a}^{b} |f(x)| dx < +\infty \Rightarrow \int_{a}^{b} f(x) dx < +\infty$$

Criteri di integrabilità all'infinito

Criterio del confronto

 \nearrow

Teorema 7.4.1 Se $0 \le f(x) \le g(x)$ in $[a, +\infty)$ allora

g integrabile $\Rightarrow f$ integrabile f non integrabile $\Rightarrow g$ non integrabile

Criterio del confronto asintotico

A

Teorema 7.4.2 Se f > 0, g > 0 e $f \sim g$ per $x \to +\infty$, allora

f integrabile $\Leftrightarrow g$ integrabile

Criterio della convergenza assoluta

Teorema 7.4.3

$$\int_{a}^{+\infty} |f(x)| dx < +\infty \Rightarrow \int_{a}^{+\infty} f(x) dx < +\infty$$