

Mechanical Design of a 4-Stage ADR for the PIPER mission July 13, 2017

Bryan L. James, Mark O. Kimball, Peter J. Shirron, Michael A. Sampson, Richard V. Letmate, Michael L. Jackson/NASA GSFC

XARM/RESOLVE

NASA Goddard Space Flight Cente

Agenda

- PIPER Mission Introduction
- Purpose of 4-Stage ADR
- Design Overview
 - Stage 4
 - Stage 3
 - Stage 2
 - Stage 1
 - Passive Gas Gap Heat Switches
 - Superconducting Heat Switch
- Mechanical Analysis Summary
 - Materials
 - Fundamental Frequency

PIPER Mission Introduction

The Primordial Inflation
 Polarization Explorer
 (PIPER) mission is a balloon borne mission that will fly 4 1280 bolometer detector arrays to measure the polarization of the cosmic microwave background.

Purpose of 4-Stage ADR

• The 4-stage adiabatic demagnetization refrigerator (ADR) is needed to cool the detector arrays to prevent instrument-generated heat from overwhelming the signal PIPER seeks during the mission.

Design Overview

Stage 4

Stage 4 cont.

XARM/RESOLVE

NASA Goddard Space Flight Center

Stage 4 cont.

Stage 2 and Stage 3

Stage 2 and Stage 3 cont.

Stage 2 and Stage 3 cont.

Stage 1

Stage 1 cont.

Passive Gas Gap Heat Switches

Superconducting Switch

Materials

Material (-/-)	Tensile Modulus (ksi)	Yield Strength (ksi)	Ultimate Tensile Strength (ksi)	Poisson's Ratio (-/-)	Density (lbm/in^3)	Notes: (-/-)
Copper 10100	17000	45.0	50.0	0.31	0.323	H04 Full Hard ASTM B187 Rockwell F65 99.99% pure
Aluminum 6061-T651	10000	40.0	45.0	0.33	0.098	Rockwell A 40
Vespel SP1	475	12.5	12.5	0.41	0.052	Unfilled Rockwell E45
GGG Salt	-	-	-	-	0.256	Gadolinium Gallium Garnet
304 Stainless Steel	29000	31.2	73.2	0.29	0.289	Rockwell B 70
70-30 Copper-Nickel	22000	18.0	45.0	0.34	0.323	
Niobium- Titanium Wire	13488	54.7	105.6	0.40	0.276	
Silicon Iron C Kevlar 49 195 Denier	28500 13900	75 348.4	95 348.4	0.26* .35	0.274 .052	Rockwell B 95

Results cont.

Mode Frequency (Hz)
 Convergence

1 9.123538e+01 4.5%

2 9.149595e+01 4.9%

3 1.644186e+02 3.6%

4 1.646613e+02 3.5%

Results cont.

- Mode Frequency (Hz) Convergence
- •

• 1 8.388150e+01	4.4%
------------------	------

- 2 8.407365e+01 4.8%
- 3 1.003635e+02 3.8%
- 4 1.005206e+02 3.9%

Results cont.

Mode Frequency (Hz)
 Convergence

•

• 1 7.887332e+01 4.4%

• 2 8.707665e+01 4.8%

• 3 1.103195e+02 3.8%

4 1.105206e+02 3.9%

