Team Name	Team-K8S
Team Contributors (People that contributed during group discussion(s) or whatsapp meetings	 Gideon, Ayandele Omeh, Chukwuemeka Victor Adewoye Kenechukwu Nzute Luke Ihuoma Daniel Taiwo Jemimah Sanu David Emmanuel
Team Rep (Name) Team Assignment	Jemimah Sanu Networking Fundamentals Assignment

SOLUTION TO NETWORKING FUNDAMENTALS ASSIGNMENT

Question One

1.0 Address Class Identification

Address	Class
10.250.1.1	A
150.10.15.0	В
192.14.2.0	C
148.17.9.1	В
193.42.1.1	C
126.8.156.0	A
220.200.23.1	C
230.230.45.58	С
177.100.18.4	В
119.18.45.0 _	В
249.240.80.78	E
199.155.77.56	В
117.89.56.45	A
215.45.45.0	С
199.200.15.0	С
95.0.21.90	A
33.0.0.0	A
158.98.80.0	В
219.21.56.0	С

Question Two

2.0 Using the IP address and subnet mask shown write out the network address:

188.10.18.2	188.10.0.0
255.255.0.0	
10.10.48.80	10.10.48.0
255.255.255.0	
100 140 04 101	100 140 04 0
192.149.24.191	192.149.24.0
255.255.255.0	
150.203.23.19	150.203.0.0
255.255.0.0	
10.10.10.10	10.0.0.0
255.0.0.0	
186.13.23.110	186.13.23.0
255.255.255.0	
223.69.230.250	223.69.0.0
255.255.0.0	
200.120.135.15	200 120 125 0
255.255.255.0	200.120.135.0
255.255.255.0	
27.125.200.151	27.0.0.0
255.0.0.0	
199.20.150.35	199.20.150.0
255.255.255.0	
191.55.165.135	191.55.165.0
255.255.255.0	
28.212.250.254	28.212.0.0
255.255.0.0	

Question Three

3.0 Subnetting

i) Number of needed usable hosts 14 === Network Address 192.168.50.0

Solution:

Comment: Since the question is in regards to usable host, we use the principle of power of two minus two.

- $2^n 2$, here n = number of zeros since we are interested in usable host
- IP Class = C
- Default Subnet Mask = 255.255.255.0
- n = 4 which will be 16 2 which will accommodate 14 usable hosts.
- Incremental Value = 16 which lowest bit after 4bit given to host on octet 4(32 bit block).
- Legend: Green color of usable host represents the answer.

Subnets	Network Address	Subnet Mask	Usable host (14)	Broadcast Address
1	192.168.50.0	255.255.255.240	192.168.50.1 - 192.168.50.14	192.168.50.15
2	192.168.50.16	255.255.255.240	192.168.50.17 - 192.168.50.30	192.168.50.31
3	192.168.50.32	255.255.255.240	192.168.50.33 - 192.168.50.46	192.168.50.47
4	192.168.50.48	255.255.255.240	192.168.50.49 - 192.168.50.62	192.168.50.63
5	192.168.50.64	255.255.255.240.	192.168.50.65 - 192.168.50.78	192.168.50.79

ii) Number of needed usable hosts 60 Network Address 165.100.0.0

- $2^n 2$, here n = number of zeros since we are interested in usable host
- IP Class = B
- Default Subnet Mask = 255.255.0.0
- n = 6 which will be 64 2 which will accommodate 60 usable hosts.
- Incremental Value = 64 which lowest bit after 6bit given to host on octet 3(24 bit block).
- Legend: Green color of usable host represents the answer.

Subnets	Network Address	Subnet Mask	Usable host	Broadcast Address
1	165.100.0.0	255.255.0.192	165.100.0.1 - 165.100.0.62	165.100.0.63
2	165.100.0.64	255.255.0.192	165.100.0.65 - 165.100.0.126	165.100.0.127
3	165.100.0.128	255.255.0.192	165.100.0.129 - 165.100.0.190	165.100.0.191

iii) Number of needed subnets 6 Network Address 210.100.56.0

Solution:

- 2^n , here n = number of ones since we are interested in subnets
- IP Class = C
- Default Subnet Mask = 255.255.255.0
- Subnet mask = 255.255.255.224
- n = 3 which will be 8 which will accommodate 6 subnets.
- Incremental Value = 32 which lowest bit after 3bit given to host on octet 4(32 bit block).
- Legend: Green color represents the subnets.

Subnets	Network Address	Subnet Mask	Usable host	Broadcast Address
1	210.100.56.0	255.255.255.224	210.100.56.1 - 210.100.56.30	210.100.56.31
2	210.100.56.32	255.255.255.224	210.100.56.33 - 210.100.56.62	210.100.56.63
3	210.100.56.64	255.255.255.224	210.100.56.65 - 210.100.56.94	210.100.56.95
4	210.100.56.96	255.255.255.224	210.100.56.97 - 210.100.56.126	210.100.56. 127
5	210.100.56.128	255.255.255.224	210.100.56.129 - 210.100.56.158	210.100.56. 157
6	210.100.56.160	255.255.255.224	210.100.56.161 - 210.100.56.190	210.100.56.191
7	210.100.56. 192			
8	210.100.56. 224			

iv) Number of needed usable hosts 30 Network Address 195.85.8.0

Solution:

- $2^n 2$, here n = number of zeros since we are interested in usable host
- IP Class = C
- Default Subnet Mask = 255.255.255.0
- Subnet mask = 255.255.255.224
- n = 5 which will be 32 2 = 30, which will accommodate 30 usable hosts.
- Incremental Value = 32 which lowest bit after 5bit given to host on octet 4(32 bit block).
- Legend: Green color of usable host represents the answer.

Subnets	Network	Subnet Mask	Usable host	Broadcast
	Address			Address
1	195.85.8.0	255.255.255.224	195.85.8.1 - 195.85.8.30	195.85.8.31
2	195.85.8.32	255.255.255.224	195.85.8.33 - 195.85.8.62	195.85.8.63
3	195.85.8.64	255.255.255.224	195.85.8.65 - 195.85.8.94	195.85.8.95
4	195.85.8.96	255.255.255.224	195.85.8.97 - 195.85.8.126	195.85.8.127

v) Number of needed usable hosts 15 Network Address 178.100.0.0

Solution:

- $2^n 2$, here n = number of zeros since we are interested in usable host
- IP Class = B
- Default Subnet Mask = 255.255.0.0
- Subnet mask = 255.255.255.224
- n = 5 which will be 32 2 = 30, which will accommodate 15 usable hosts.
- Incremental Value = 32 which lowest bit after 5bit given to host on octet 4(32 bit block).
- Legend: Green color of usable host represents the answer.

Subnets	Network Address	Subnet Mask	Usable host	Broadcast Address
1	178.100.0.0	255.255.255.224	178.100.0.1 - 178.100.0.30	178.100.0.31
2	178.100.0.32	255.255.255.224	178.100.0.33 - 178.100.0.62	178.100.0.63
3	178.100.0.64	255.255.255.224	178.100.0.65 - 178.100.0.94	178.100.0.95
4	178.100.0.96	255.255.255.224	178.100.0.97 - 178.100.0.126	178.100.0.127

vi) Number of needed usable hosts 45 Network Address 200.175.14.0

Solution:

- $2^n 2$, here n = number of zeros since we are interested in usable host
- IP Class = C
- Default Subnet Mask = 255.255.255.0
- Subnet mask = 255.255.255.192
- n = 6 which will be 64 2 = 62, which will accommodate 45 usable hosts.
- Incremental Value = 64 which lowest bit after 6bit given to host on octet 4(32 bit block).
- Legend: Green color of usable host represents the answer.

Subnets	Network Address	Subnet Mask	Usable host	Broadcast Address
1	200.175.14.0	255.255.255.192	200.175.14.1 - 200.175.14.62	200.175.14.63
2	200.175.14.64	255.255.255.192	200.175.14.65 - 200.175.14.126	200.175.14.127
3	200.175.14.128	255.255.255.192	200.175.14.129 - 200.175.14.190	200.175.14.191

4.0 Practical Subnetting

i) Based on the information in the graphic shown, design a network addressing scheme that will supply the **minimum number of hosts per subnet**, and allow enough extra subnets and hosts for 30% growth in all areas. Circle each subnet on the graphic and answer the questions below.

Solution:

The IP address: 135.126.0.0

Class = B

Subnet Mask: 255.255.0.0, have $2^{16} = 655,536$ i.e. over 65,000 hosts.

To create extra subnet and that allow for at least 30% growth; this means that for any unit(lab or department) in the school, the subnet should be able to take minimum of 10 and 30% increase will be accommodated. This means:

- For Science Lab with 10 hosts, 1.3 * 10 = 13, 1.3*13 = 16.9 approx. 17
- For English Department with 15 hosts, 1.3 * 15 = 19.5, 1.3 * 19.5 = 25.35
- For Tech Ed Lab with 20 hosts, 1.3 * 20 = 26

From above, at 30% growth rate, the max host to achieve is 26. This implies $2^5 - 2 = 30$. So, n = 5 will give a host that will allow 30% which is octet 3 with 24 bits and above. 32 bit of whole octets -5 bit for 30% growth rate host = 27bits. Therefore, we would subnet the IP block to /27 which is a block size of 32 bits.

- $2^n 2$, here n = number of zeros since we are interested in usable host
- IP Class = B
- Default Subnet Mask = 255.255.0.0
- Subnet mask = 255.255.255.224
- n = 5 which will be 32 2 = 30, which will accommodate 45 max usable hosts.
- Incremental Value = 32 which lowest bit after 5bit given to host on octet 4(32 bit block).
- Legend: Green color of usable host represents the answer.

Subnets	Network Address	Subnet Mask	Usable host (32)	Broadcast Address
0	135.126.0.0	255.255.255.224	135.126.0.1 - 135.126.0.30	135.126.0.31
1	135.126.0.32	255.255.255.224	135.126.0.33 - 135.126.0.62	135.126.0.63
2	135.126.0.64	255.255.255.224	135.126.0.65 - 135.126.0.94	135.126.0.95
3	135.126.0.96	255.255.255.224	135.126.0.97 - 135.126.0.126	135.126.0.127

Based on the above table, we choose to do the following assignment,

❖ Tech Ed Lab = subnet 1 === 30 hosts. (Allows for about 30% growth from 20 hosts)

Subnets	Network Address	Subnet Mask	Usable host	Broadcast Address
1	135.126.0.32	255.255.255.224	135.126.0.1 - 135.126.0.30	135.126.0.63

❖ English Department: = subnet 2 == 30 hosts (which allows for 30% growth from 15 hosts)

Subnets	Network Address	Subnet Mask	Usable host (14)	Broadcast Address
2	135.126.0.64	255.255.255.224	135.126.0.65 - 135.126.0.94	135.126.0.95

If we take the subnet of $135.126.0.96\ 255.255.255.224$. and break it down further to get a block of 16 hosts for **science lab**. We use 16bit increment which is lowest bit after taking n = 4 to get 30% growth rate from 15 host.

Subnets	Network Address	Subnet Mask	Usable host	Broadcast Address
0	135.126.0.96	255.255.255.240	135.126.0.97 - 135.126.0.110	135.126.0.111
1	135.126.0.112	255.255.255.240	135.126.0.113 - 135.126.0.126	135.126.0.127

❖ Science Lab = 135.126.0.96 255.255.255.224 (/28) at 4bits increment since we gave 6 zeros to get 10 hosts with 30% growth rate.

Finally, subnet; 135.126.0.112 255.255.255.240 and break it down further to get a block size of 4bit (2 usable hosts).

255.255.252 which is **135.126.0.252** is the last subnet we can get from 135.126.0.0 that will give 30% growth across various school units.

(/30) networks

Subnets	Network Address	Subnet Mask	Usable host	Broadcast Address
0	135.126.0.112	255.255.255.252	135.126.0.113 - 135.126.0.114	135.126.0.115
1	135.126.0.116	255.255.255.252	135.126.0.113 - 135.126.0.114	135.126.0.119
2	135.126.0.120	255.255.255.252	135.126.0.113 - 135.126.0.114	135.126.0.123
3	135.126.0.124	255.255.255.252	135.126.0.113 - 135.126.0.114	135.126.0.127

ii) Based on the information in the graphic shown, design a classfull network addressing scheme that will supply the **minimum number of hosts per subnet**, and allow enough extra subnets and hosts for 25% growth in all areas. Circle each subnet on the graphic and answer the Questions below:

Solution:

The IP address: 172.16.0.0

Class = B

Subnet Mask: 255.255.0.0, have $2^{16} = 655,536$ i.e. over 65,000 hosts.

To create extra subnet and that allow for at least 30% growth; this means that for any unit (administrative, Sales or marketing), the subnet should be able to take minimum of 30 and 30% increase will be accommodated. This means:

- For Administrative with 30 hosts, 1.3 * 30 = 39, 1.3*39 = 50.7 approx. 51
- For Marketing with 50 hosts, 1.3 * 15 = 65, 1.3 * 65 = 84.5
- For Sales with 185 hosts, 1.3 * 185 = 240.5

From above, at 30% growth rate, the max host to achieve is 240. This implies $2^8 - 2 = 254$. So, n = 8 will give a host that will allow 30% which is octet 3 with 24 bits and above. 32 bit of whole octets - 8bit for 30% growth rate host = 24bits. Therefore, we would subnet the IP block to /24 which is a block size of 24bits.

- $2^n 2$, here n = number of zeros since we are interested in usable host
- IP Class = B

- Default Subnet Mask = 255.255.0.0
- Subnet mask = 255.255.255.0
- n = 8 which will be 256 2 = 254, which will accommodate 254 max usable hosts.
- Legend: Green color of usable host represents the answer.

Available IP Block = 172.16.0.0, with default subnet = 255.255.0.0

Sales department will require a minimum block size of 256(28)

New subnets → 255.255.254.0 (/23)

Subnets	Network Address	Subnet Mask	Usable host	Broadcast Address
1	172.16 .0.0	255.255.254.0	172.16 .0.1 - 172.16 .0.254	172.16 .1.255

***** For, Sales =172.16 .0.0 255.255.254.0 (/23)

Provides 254 usable host addresses. Gives room for about for over 30% growths.

❖ Subnet 1: 172.16 .0.0, 255.255.254.0 broken down further to smaller subnet to provide block size of 64 which serves for Administrative and Marketing department

New Subnets, 255.255.255.192 (/26) will serve **Administrative** of 30 hosts and allowing 30% growth rate.

Subnets	Network Address	Subnet Mask	Usable host	Broadcast Address
1	172.16 .255.0	255.255.255.192	172.16 .255.1 - 172.16 .255.62	172.16 .255.63
2	172.16 .255.64	255.255.255.192	172.16 .255.65 - 172.16 .255.126	172.16 .255.127
3	172.16 .255.128	255.255.255.192	172.16 .255.129 - 172.16 .255.190	172.16 .255.191

- ❖ For Administrative Dept. = 172.16 .255.0 255.255.255.192 (/26) = 62 usable host addresses which will allow 30% growth rate.
- ❖ For Marketing = 172.16 .255.0 255.255.192 (/25) = 128 usable host addresses which will accommodate 30% growth rate
- ❖ Finally, the subnet 172.16.255.128 255.255.128; will be given to Marketing department and it will allow 30% growth of usable host

Subnets	Network	Subnet Mask	Usable host (2)	Broadcast
	Address			Address
1	172.16 .255.128	255.255.255.128	172.16.255.129 - 172.16 .255.254	172.16 .2.131

The end Solution presented by Team-K8S.