Agrupamento espectral e um experimento educacional

Nicolau L. Werneck

LTI—PCS—USP

Geekie, São Paulo 20 de Novembro de 2012

Resumo e Sumário

O agrupamento espectral, ou *spectral clustering* é uma técnica que permite a classificação não-supervisionada.

Discutiremos a técnica, e um experimento com dados de uma simulação de testes respondidos por alunos.

Referência: von Luxburg [2007].

Sumário:

- Teoria
- Experimentos
- Conclusão

Algumas definições

Cada amostra $d_i \in \mathbf{R}^c$ possui um conjunto de características, e existe uma função de *similaridade*

$$s_{ij}=f(d_i,d_j), \qquad s_{ij}\in \mathbf{R}.$$

O resultado do método é um mapeamento

$$d_i \rightarrow b_i, \qquad b_i \in \mathbf{R}^n.$$

A partir de s_{ij} são produzidos os b_i , permitindo aplicar técnicas de agrupamento por densidade, como k-médias.

Exemplo

Algoritmos como k-médias não suportam regiões côncavas. A clusterização espectral lida com isto, simplificando a análise.

(Figura de Ng et al. [2002].)

Interpretações

- Corte de grafo MinCut, RatioCut, etc.
- Cadeia de Markov. (PageRank)
- Teoria de perturbação.

Algoritmo

- Determinar vértices vizinhos.
- Montar matriz com valores de similaridade.
- Calcular matriz Laplaciana.
- Encontrar menores autovalores e autovetores.
- Utilizar linhas dos autovetores como coordenadas de um espaço transformado.
- **I** Limiarizar, ou aplicar k-médias ou outros algoritmos de agrupamento mais simples.

Experimento

Foi simulada uma classificação de alunos a partir de suas respostas em um teste.

A classificação indicaria grupos de alunos com dificuldades nas mesmas disciplinas ou tópicos.

Modelo probabilístico

O teste possui questões de múltipla escolha com 4 opções. Há diferentes tipos de PDF para cada questão:

Item	Α	В	С	D
Questão fácil	90%	3,3%	3,3%	3,3%
Questão difícil	70%	10%	10%	10%
Erro sistemático	10%	70%	10%	10%
Chute	25%	25%	25%	25%

A resposta de um teste é uma amostra da PDF conjunta. Simulamos 30 questões respondidas por 100 alunos.

Definição das classes

Há quatro grupos de 25 alunos. Cada classe possui PDFs diferentes para cada questão.

A primeira classe é o caso base.

- 10 questões fáceis, 10 médias e 10 difíceis.
- Erros sistemáticos em 9 questões.
- 6 erros sistemáticos, 5 chutes puros.
- Chute puro em 11 questões.

Dados produzidos

Função de Similaridade

A similaridade entre as respostas de dois alunos é uma soma das similaridades de cada questão, pela tabela:

	Α	В	С	D
Α	1.0	0.0	0.0	0.0
В	0.0	1.0	0.5	0.5
C	0.0	0.5	1.0	0.5
D	0.0	0.5	0.5	1.0

- $lue{}$ Certas ou erradas idênticas ightarrow 1.0,
- \blacksquare Resposta certa + errada \rightarrow 0.0,
- Erradas diferentes \rightarrow 0.5.

Matrizes do problema

Edgels e retas

Edgels são pontos amostrados sobre curvas ou retas.

Classificação no espaço transformado

As amostras no espaço dos autovetores podem agora ser classificadas utilizando métodos convencionais.

SVM, k-médias, ANN...

Fizemos uma simples classificação de acordo com o quadrante de cada amostra.

Classificação no espaço transformado

Resultado da classificação

Matriz de confusão

	<i>C</i> ₁	C_2	<i>C</i> ₃	C ₄
$\overline{C_1}$	21	4	0	0
C_2	3	20	2	0
C_3	0	1	23	1
C ₄	1	0	1	23

Desempenho do classificador

	C_1	C_2	<i>C</i> ₃	C ₄	
Precisão					•
Revocação	84%	80%	92%	92%	μ : 87%
F-score	84%	80%	90%	94%	μ: 87%

Conclusão

Apresentamos a técnica da clusterização espectral, e demonstramos como ela poderia ser útil para ensino.

Nosso experimento ilustra bem a técnica, mas:

- O modelo probabilístico é bastante rudimentar.
- É preciso analisar dados reais.
- Uma aplicação com muitos dados precisa utilizar técnicas numericas sofisticadas.

Fim

Nicolau Werneck <nwerneck@gmail.com>

Referências Bibliográficas

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In *Neural Information Processing Systems*, 2002. URL

 $\label{lem:http://books.google.com/books?hl=en&lr=&id=GbC8cqxGR7YC&oi=fnd&pg=PA849&dq=On+Spectral+CLustering:+Analysis+and+an+algorithm&ots=ZvN1HO1DB5&sig=NsxAYwu8QzKmCeEo-FUfwMwkI4k.$

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, August 2007. ISSN 0960-3174. doi: 10.1007/s11222-007-9033-z. URL

http://www.springerlink.com/index/10.1007/s11222-007-9033-z.