Week Six

Siva Sundar, EE23B151

August 2024

19th August

Section 19: Terminal Objects

- From any set (even for **null set**), there is **only one map** to a *singleton* set.
- T is an object in a category C, which is said to be **terminal** only if for any object X in C:
 - \star at least one map exists from X to T.
 - * that map should be the only map from X to T.

Using these two conditions we can say that: (See page.229)

"There exists multiple terminal objects which are isomorphic to each other."

• In the category of *endomaps*, we can say that the **singleton set** equipped with an endomap from the **point to itself**, is a terminal '*set-with-endomap*'.

The mapping from an endomap X to this terminal object also follows the 'structure preserving rule'.

Figure 1: Map from X to T

Section 20: Points

• In the start of this section, we see an example which shows how we can use a *terminal object* (defined in the category) to **select an item** from an object (of the same category). Hence, we can define:

"A point of an object X is the map $T \longrightarrow X$ "

where, T is the terminal object of the category.

• In different categories, the meaning of the word 'point' is different from what we think of. For example, in the category of endomaps, the term 'point' refers to **fixed point** (See page.232). So, if an endomap does **not** have a fixed point, we say it doesn't have 'points' (which doesn't mean it doesn't have elements!) (See page.233)

Category	Terminal object	'Points of X' means
e	T	$\operatorname{map}\ T \longrightarrow X$
s	•	element of X
S ○ endomaps of sets	•	fixed point or equilibrium state