Announcements

Project 2, Phase 2 due tonight (with 24 hour grace period).

Project 2 demos this are this week:

- See <u>demo link in project 2 spec</u> for the exact script we'll use for demos.
- You will let us know which commit to use from github.
 - Submissions from March 7th or later will incur a penalty on your 80 demo points. Will be done on a per day basis, e.g. submissions from March 7th will be 10% off, from March 8th will be 20% off, etc.
- Gold points are not part of the lab demo.

Gold points:

No late penalty for submitting by March 9th.

CS61B

Lecture 20: Disjoint Sets

- Dynamic Connectivity and the Disjoint Sets Problem
- Quick Find
- Quick Union
- Weighted Quick Union
- Path Compression (CS170 Preview)

Meta-goals of the Coming Lectures: Data Structure Refinement

Project 2: A chance to see how a design evolves.

Next couple of weeks: Deriving classic solutions to interesting problems, with an emphasis on how set, map, and priority queue ADTs are implemented.

 Today: A chance to see how an implementation of an ADT can evolve and how different underlying data structures affect asymptotic runtime (using our formal notation).

Today's Goal: Dynamic Connectivity

Today: A case study in ADT implementation.

Goal: Given a series of pairwise connectedness declarations, determine if two items are connected transitively. Only care about yes vs. no.

- Example: We have Mexico, USA, Canada, Ukraine, and Estonia.
 - USA is connected to Mexico.
 - USA is connected to Canada.
 - Is Mexico connected to Canada? **Yes**.
 - Ukraine is connected to Estonia.
 - Is Ukraine connected to USA? No.

Solvable using a simple ADT with cool implementation details.

- connect(p, q): Connect items p and q.
- isConnected(p, q): Are p and q connected?

```
connect(0, 1)
connect(1, 2)
connect(0, 4)
connect(3, 5)
isConnected(2, 4): true
isConnected(3, 0): false
```


- connect(p, q): Connect items p and q.
- isConnected(p, q): Are p and q connected?

```
connect(0, 1)
connect(1, 2)
connect(0, 4)
connect(3, 5)
isConnected(2, 4): true
isConnected(3, 0): false
connect(4, 2)
```


- connect(p, q): Connect items p and q.
- isConnected(p, q): Are p and q connected?

```
connect(0, 1)
connect(1, 2)
connect(0, 4)
connect(3, 5)
isConnected(2, 4): true
isConnected(3, 0): false
connect(4, 2)
connect(4, 6)
```


- connect(p, q): Connect items p and q.
- isConnected(p, q): Are p and q connected?

```
connect(0, 1)
connect(1, 2)
connect(0, 4)
connect(3, 5)
isConnected(2, 4): true
isConnected(3, 0): false
connect(4, 2)
connect(4, 6)
connect(3, 6)
```


- connect(p, q): Connect items p and q.
- isConnected(p, q): Are p and q connected?

```
connect(0, 1)
connect(1, 2)
connect(0, 4)
connect(3, 5)
isConnected(2, 4): true
isConnected(3, 0): false
connect(4, 2)
connect(4, 6)
connect(3, 6)
isConnected(3, 0): true
```


The Disjoint Sets ADT

```
public interface DisjointSets {
   /** Connects two items P and Q. */
   void connect(int p, int q);
   /** Checks to see if two items are connected. */
   boolean isConnected(int p, int q);
                                             connect(int p, int q)
                                             isConnected(int p, int q)
```

Goal: Design an efficient DisjointSets implementation.

- Number of elements N can be huge.
- Number of method calls M can be huge.
- Calls to methods may be interspersed (e.g. can't assume that we stop getting connect calls after some point).

The Naive Approach

Naive approach:

- Connecting two things: Record every single connecting line in some data structure.
- Checking connectedness: Do some sort of (??) iteration over the lines to see if one thing can be reached from the other.

A Better Approach: Connected Components

Rather than manually writing out every single connecting line, record the sets that something belongs to.

```
\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}
                             \{0, 1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}
connect(0, 1)
                             \{0, 1, 2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}
connect(1, 2)
                             \{0, 1, 2, 4\}, \{3\}, \{5\}, \{6\}, \{7\}
connect(0, 4)
                             \{0, 1, 2, 4\}, \{3, 5\}, \{6\}, \{7\}
connect(3, 5)
isConnected(2, 4): true
isConnected(3, 0): false
                             \{0, 1, 2, 4\}, \{3, 5\}, \{6\}, \{7\}
connect(4, 2)
                             \{0, 1, 2, 4, 6\}, \{3, 5\}, \{7\}
connect(4, 6)
                             \{0, 1, 2, 3, 4, 5, 6\}, \{7\}
connect(3, 6)
isConnected(3, 0): true
```

A Better Approach: Connected Components

A *connected component* is a maximal set of items that are mutually connected.

- Naive approach: Record every single connecting line somehow.
- Better approach: Model connectedness in terms of sets.
 - How things are connected isn't something we need to know.

Quick Find

Challenge: Pick Data Structures to Support Tracking of Sets

Before connect(2, 5) operation:

$$\{0, 1, 2, 4\}, \{3, 5\}, \{6\}$$

After connect(2, 5) operation:

$$\{0, 1, 2, 4, 3, 5\}, \{6\}$$

Assume elements are numbered from 0 to N-1.

Challenge: Pick Data Structures to Support Tracking of Sets

- Map<Integer, SetGuy>, where the Integer is the item in question.
 - map.get(1) \leftarrow return a reference to $\{0, 1, 2, 4\}$

Idea #1:

Idea #2: List<HashSet>, where we move things around between sets

Requires iterating through all the hashsets to find something.

Using an Array

One natural choice: int[] where ith entry gives set number of item i.

connect(p, q): Change entries that equal id[p] to id[q]

QuickFindDS

```
public class QuickFindDS implements DisjointSets {
    private int[] id;
                                                Very fast: Two array accesses.
    public boolean isConnected(int p, int q) {
        return id[p] == id[q];
                                           Relatively slow: N+2 to 2N+2 array accesses.
    public void connect(int p, int q) {
        int pid = id[p];
                                                  public QuickFindDS(int N) {
        int qid = id[q];
                                                      id = new int[N];
        for (int i = 0; i < id.length; i++) {</pre>
                                                      for (int i = 0; i < N; i++)
            if (id[i] == pid) {
                                                           id[i] = i;
                 id[i] = qid;
```

Performance Summary

Implementation	constructor	connect	isConnected
QuickFindDS	Θ(N)	Θ(N)	Θ(1)

QuickFindDS is too slow: Connecting two items takes N time.

Quick Union

Approach zero: Represent everything as boxes and lines. This was overkill.

Approach one: Represent everything as connected components. Represented connected components as an array.

Approach two: We're still going to stick with connected components, but will represent connected components differently.

$$\{0, 1, 2, 4\}, \{3, 5\}, \{6\}$$
 ??? in Java.

A hard question: How could we change our set representation so that combining two sets into their union requires changing **one** value?

A hard question: How could we change our set representation so that combining two sets into their union requires changing **one** value?

Possibly harder question:

- Knowing that we only need to support the union/belongs operations, how can we represent a set such that the set union operation is very fast?
- Idea: Assign each node a parent (instead of an id).
 - An innocuous sounding, seemingly arbitrary solution.
 - Unlocks a pretty amazing universe of math that we won't discuss.

connect(5, 2)

- How do we do this?
 - If you're not sure where to start, consider: why can't we just set id[5] to 2?

connect(5, 2)

- How do we do this?
 - \circ Find the boss of 5. \leftarrow this isn't free!
 - Find the boss of 2.
 - Change the value of the boss of 5 to boss of 2?

6

{6}

connect(5, 2)

- How do we do this?
 - If you're not sure where to start, consider: why can't we just set id[5] to 2?
 - make root(5) into a child of root(2).

Set Union Using Rooted-Tree Representation

connect(5, 2)

Make root(5) into a child of root(2).

What are the potential performance issues with this approach?

Set Union Using Rooted-Tree Representation

connect(5, 2)

Make root(5) into a child of root(2).

What are the potential performance issues with this approach?

Tree can get too tall!

The Worst Case

If we always connect the first items' tree below the second item's tree, we can end up with a tree of height M after M operations:

- connect(4, 3)
- connect(3, 2)
- connect(2, 1)
- connect(1, 0)

For N items, what's the worst case runtime...

- For connect(p, q)?
- For isConnected(p, q)?

QuickUnionDS

```
public class QuickUnionDS implements DisjointSets {
    private int[] parent;
    public QuickUnionDS(int N) {
        parent = new int[N];
        for (int i = 0; i < N; i++)
             parent[i] = i;
                                      For N items, this means a worst case runtime of \Theta(N).
    private int find(int p) {
                                    public boolean isConnected(int p, int q) {
        while (p != parent[p])
                                        return find(p) == find(q);
             p = parent[p];
        return p;
                                    public void connect(int p, int q) {
                                        int i = find(p);
                                        int j = find(q);
                                        parent[i] = i;
```

Performance Summary

Implementation	Constructor	connect	isConnected
QuickFindDS	Θ(N)	Θ(N)	Θ(1)
QuickUnionDS	Θ(N)	O(N)	O(N)

QuickFindDS defect: QuickFindDS is too slow: Connecting two items takes N time in the worst case.

QuickUnion defect: Trees can get tall. Results in potentially even worse performance than QuickFind if tree is imbalanced.

Weighted Quick Union

Weighted QuickUnion: http://yellkey.com/analysis

Modify quick-union to avoid tall trees.

- Track tree size (number of elements).
- New rule: Always link root of smaller tree to larger tree.

New rule: If we call connect(3, 8), which entry (or entries) of parent[] changes?

Improvement #1: Weighted QuickUnion

Modify quick-union to avoid tall trees.

- Track tree size (number of elements).
- New rule: Always link root of smaller tree to larger tree.

New rule: If we call connect(3, 8), which entry (or entries) of parent[] changes?

Implementing WeightedQuickUnion

Minimal changes needed:

- Use parent[] array as before, but also add size[] array.
- isConnected(int p, int q) requires no changes.
- connect(int p, int q) needs two changes:
 - Link root of smaller tree to larger tree.
 - Update size[] array.
- Now the connect method looks like:

 parent

 0 1 2 3 4 5 6 7 8 9

0

WeightedQuickUnion Performance

As before, connect and isConnected require time proportional to depth of the items involved.

Max depth of any item: log N

Very brief proof for the curious (not covered in lecture):

- Depth of an element x increases only when tree T1 that contains x is linked below some other tree T2.
 - The size of the tree at least doubles since weight(T2) ≥ weight(T1).
 - Tree containing x doubles at most log N times.

Performance Summary

Implementation	Constructor	connect	isConnected
QuickFindDS	Θ(N)	Θ(N)	Θ(1)
QuickUnionDS	Θ(N)	O(N)	O(N)
WeightedQuickUnionDS	Θ(N)	O(log N)	O(log N)

By tweaking QuickUnionDS we've achieved logarithmic time performance.

Fast enough for most (all?) practical problems.

Performance Summary

Implementation	Constructor	connect	isConnected
QuickFindDS	Θ(N)	Θ(N)	Θ(1)
QuickUnionDS	Θ(N)	O(N)	O(N)
WeightedQuickUnionDS	Θ(N)	O(log N)	O(log N)

Performing M operations on a DisjointSet object with N elements:

- Runtime goes from O(MN) to O(N + M log N)
- For $N = 10^9$ and $M = 10^9$, time to run goes from 30 years to 6 seconds.
 - Key point: Good data structure unlocks solutions to problems that could otherwise not be solved!
- ... pretty good for most problems, but could we do better?

Path Compression (CS170 Spoiler)

Below is the topology of the worst case if we use WeightedQuickUnion.

- Clever idea: When we do isConnected(15, 10), tie all nodes seen to the root.
 - Additional cost is insignificant (same order of growth).

Below is the topology of the worst case if we use WeightedQuickUnion

- Clever idea: When we do isConnected(15, 10), tie all nodes seen to the root.
 - Additional cost is insignificant (same order of growth).

Path compression results in a union/connected operations that are very very close to amortized constant time.

M operations on N nodes is O(N + M lg* N) - you will see this in CS170.

In operations on whodes is O(W + Whg - W) you will see this in estro.
 Ig* is less than 5 for any realistic input.

Path compression results in a union/connected operations that are very very close to amortized constant time.

- M operations on N nodes is O(N + M lg* N) you will see this in CS170.
- A tighter bound: $O(N + M \alpha(N))$, where α is the inverse Ackermann function.
- The inverse ackermann function is less than 5 for all practical inputs!

- And we're done! The end result of our iterative design process is the standard way disjoint sets are implemented today - quick union and path compression.
- The resulting code for find() is simple:

```
private int find(int p) {
   if (p == parent[p]) {
       return p;
   } else {
       parent[p] = find(parent[p]);
       return parent[p];
```

Everything All Together...

```
public class WeightedQuickUnionDSWithPathCompression implements DisjointSets {
    private int[] parent; private int[] size;
    public WeightedQuickUnionDSWithPathCompression(int N) {
         parent = new int[N]; size = new int[N];
         for (int i = 0; i < N; i++) {
                                           public boolean isConnected(int p, int q) {
              parent[i] = i;
                                                return find(p) == find(q);
              size[i] = 1;
                                           public void connect(int p, int q) {
                                               int i = find(p);
    private int find(int p) {
                                               int j = find(q);
         if (p == parent[p]) {
                                               if (i == j) return;
            return p;
         } else {
                                               if (size[i] < size[j]) {
             parent[p] = find(parent[p]);
                                                   parent[i] = j; size[j] += size[i];
             return parent[p];
                                                } else {
                                                   parent[j] = i; size[i] += size[j];
```

Performance Summary

Implementation	Runtime
QuickFindDS	Θ(NM)
QuickUnionDS	O(NM)
WeightedQuickUnionDS	O(N + M log N)
WeightedQuickUnionDSWithPathCompression	O(N + M α(N))

Runtimes are given assuming:

- We have a DisjointSets object of size N.
- We perform M operations, where an operation is defined as either a call to connected or isConnected.

Citations

Nazca Lines:

http://redicecreations.com/ul_img/24592nazca_bird.jpg

Implementation code adapted from Algorithms, 4th edition and Professor Jonathan Shewchuk's lecture notes on disjoint sets, where he presents a faster one-array solution. I would recommend taking a look.

(http://www.cs.berkeley.edu/~jrs/61b/lec/33)

The proof of the inverse ackermann runtime for disjoint sets is given here: http://www.uni-trier.de/fileadmin/fb4/prof/INF/DEA/Uebungen_LVA-Ankuendigungen/ws07/KAuD/effi.pdf

as originally proved by Tarjan here at UC Berkeley in 1975.

extra

Set Union Using Parent Representation

connect(11, 3)

Any ideas how to do this quickly?

Improving the Connect Operation

Possibly harder question:

- Knowing that we only need to support the union/belongs operations, how can we represent a set such that the set union operation is very fast?
- Idea: Assign each node a parent (instead of an id).
 - An innocuous sounding, seemingly arbitrary solution.
 - Unlocks a pretty amazing universe of math that we won't discuss. D:

Set Union Using Rooted-Tree Representation

connect(11, 3)

Make root(11) into a child of root(3).

Anybody see any issues with this?

Set Union Using Rooted-Tree Representation

connect(11, 3)

Make root(11) into a child of root(3).

Anybody see any issues with this? Tree can get too tall!

