Hamming code

Determine which bit ,if any is an error in the even parity. Hamming coded character 1100111.

Decode the message

	a ^p	Han ZM-	nming +P+0	Code	z hen 7	ngtt. P=	= /. 3, m	= 4
Bit Designation	D-7	D6	D ₅	P ₄	D ₃	P2	D=-11	222
Bit location	7	6	5	4	3	2	1	poily
Bit location number	01 <u>1</u> 1	0110	010/	0100	0011	0010	o@il	
Received code	1	1	0	0	1	1		<u> </u>
Correct hamming code	1	1	O	ð	1		0	

Parity	P_1	=1,3,5,7=1101=1(LSB)
Parity	P2	=2,3,6,7=1111=0
Parity	P4	= 1,3,5,7 = 1101 = 1 (LSB) = 2,3,6,7 = 1111 = 0 = 415,6,7 = 0011 = 0 (MSB)

$$(001)_2 = (1)_{10} =$$
Hamming length = no stration + no strate

bits

 $4+3=7$ bits

Determine which bit ,if any is an error in the even parity. Hamming coded character 1001001. Decode the message

7 bits = 4+3 parity bits

(001) =(1)

Bit Designation	D	D _L	D ₅	P4	D ₃	P ₂	PI	•
Bit location	7	6	5) 4	3	2_	1	
Bit location number	111	110	10 <u>I</u>	100	01[010	<u>001</u>	
Received code	t	0	0	1	0	O	1	
Correct hamming code	1	٥	1	t	0	0	J	

Parity
$$P_1 = 1, 3, 5, 7 \Rightarrow 1, 0, 0, 1 = 1 \text{ (LSB)}$$

Parity $P_2 = 2, 3, 6, 7 = 0, 0, 0, 1 = 0$
Parity $P_3 = 4, 15, 6, 7 = 1, 0, 0, 1 = 1 \text{ (MSB)}$
 $(101) = (5)_{10}$

(3) Encode the information character

O11 0111 010) according to 15 bit even

Hamming Code.

n = 11

$$p=?$$

 $2^{p} \ge n + p + 1$ $2^{q} > 11 + p + 1$ 16 > 16 > 4

Hamming Code length = n+p = 11+4=15

Bit dug	DIS	Diq	D15	DIL	. DII	Dip	\mathcal{D}_{q}	Pg	D_7	D6	D ₅	P4	\mathcal{D}_{3}	/. P2	Pi
Bithat	15	14	13	12	_ 1 l	10	9	8.	7	6	5	4	3	2_	l
Location	Inc	וווס	101	1100	1017	1010	1001	1000	oll	ollo	oloL	0100	poll	0060	1000
Harmoning	O	1	l	Ð	l	1	1	1	0.	1	D	1	1	1/	0
0			excl	ded										Ĺ	

Pailer P. ⇒13,5,7,9,11,13,15 ⇒ 100/110 = 0

Party $P_1 \Rightarrow P_1 = P_2 = P_3 = P_4 = P_4 = P_5 = P_6 = P_6$