5 [25 分] 管路中有一收缩段。收缩段本身重量为 25kg,其内部体积为 $0.2m^3$. 请计算两边管路加载在收缩段上的力的大小及方向. 管路内部流体为汽油, 密度 $\rho=0.73x10^3kg/m^3$. 大气压强为 $P_{atm}=101kPa$. 注意给定条件中 p_1 为表压, p_2 为绝对压强。

環由、
$$p_2$$
 为维对压强。
$$D=0.4 \text{ m}$$

$$V_1=3 \text{ m/s}$$

$$V_2=58.7 \text{ kPa (gage)}$$

$$V_2=12 \text{ m/s}$$

$$V_2=\frac{1}{2} \text{ m/s}$$

$$V_2=\frac{1}{2} \text{ m/s}$$

$$V_3=\frac{1}{2} \text{ m/s}$$

$$V_4=\frac{1}{2} \text{ m/s}$$

$$V_2=\frac{1}{4} \text{ m/s}$$

$$V_3=\frac{1}{4} \text{ m/s}$$

$$V_4=\frac{1}{4} \text{ m/s}$$

$$V_4=\frac{1}{4} \text{ m/s}$$

$$V_5=\frac{1}{4} \text{ m/s}$$

$$V_7=\frac{1}{4} \text{ m/s}$$

$$V_8=\frac{1}{4} \text{ m/$$

 $6[15\ 9]$ 一玻璃管插入水中, 接触角为 θ 且表面张力系数为 σ ,推导 Δh 和管径 D 之间的关系.

7 [10 分] 图中所示的储气罐的体积为 0.05m^3 ,内部绝对压强为 800KPa,温度为 15°C . 空气可以通过罐右侧阀门排出,阀门截面积为 65mm^2 。在 t=0 时刻,通过阀门的平均流速为 300m/s,空气密度为 6kg/m^3 ,求此刻储气罐内空气平均密度的变化率

此问题特马温克贝沙季问题