NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

(NASA-CR-152336-2) PRELI OF ADVANCED COMPOSITE BLA NONMECHANICAL CONTROL SYS TILT-ROTOR AIRCRAFT. VOI NASA CR-152336-2

PRELIMINARY DESIGN STUDY
OF
ADVANCED COMPOSITE BLADE AND HUB
AND
NONMECHANICAL CONTROL SYSTEM
FOR
THE TILT-ROTOR AIRCRAFT

VOLUME 2: PROJECT PLANNING DATA

FEBRUARY 1980

Prepared Under Contract No. NAS2-10160 for

National Aeronautics and Space Administration
Ames Research Center

by

BOEING VERTOL COMPANY

A DIVISION OF THE BOEING COMPANY

PHILADELPHIA, PENNSYLVANIA 19142

PRELIMINARY DESIGN STUDY

0F

ADVANCED COMPOSITE BLADE AND HUB

GNA

NONMECHANICAL CONTROL SYSTEM

FOR THE TILT-ROTOR AIRCRAFT

VOLUME 2 - PROJECT PLANNING DATA PROPRIETARY NOTICE

Information contained herein is the property of and is proprietary to the Boeing Vertol Company and shall be retained on a confidential basis. Disclosure of such information outside the Government would cause substantial harm to the competitive position of the Boeing Vertol Company and shall not be released outside the Government without written permission of the Boeing Vertol Company.

FEBRUARY 1980

PREPARED UNDER CONTRACT NO. NAS2-10160

FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AMES RESEARCH CENTER

BY

BOEING VERTOL COMPANY
P. O. BOX 16858
PHILADELPHIA, PENNSYLVANIA 19142

FOREWARD

The project planning data presented in the document are based on engineering design studies reported in Volume 1, and were performed by Boeing Vertol Company for the National Aeronautics and Space Administration, Ames Research Center, under NASA Contract NAS2-10160.

Mi. %. P. Chappell was the technical monitor, and Mr. H. R. Alexander was the Boeing Vertol program manager.

<u>ABSTRACT</u>

This document contains project planning data for a program to modify the XV-15 aircraft by designing, fabricating, and installing advanced composite blades (compatible with existing hub), an advanced composite hub, and a nonmechanical control system. The blades and hubs are such that no major modifications are required to the existing nacelle, power train, or airframe structure.

NASA CR-152336-2

TABLE OF CONTENTS

			PAGE
FORE			11 11
	OF FIGURES		V
LIST	OF TABLES		V
1.0	INTRODUCTION		1
2.0	PROGRAM DESC	RIPTION AND SCHEDULE	3
		Elements and Work FLow al Alternative Programs	3 4
	Z.Z Potenti	ar Asternative Programs	•
3.0	WORK STATEME	NT AND TASK DEFINITION FOR COST ESTIMATION	6
	3.1 Notes o	n Fly-by-Wire Installation	12
4.0	MANHOUR ESTI	MATES	14
		ring Manhours	15 27
	4.2 manulac	turing Manhours	21
5.0	SUMMARY OF M	MATERIAL	28
6.0	FINANCIAL AN	D PRICING PLANNING INFORMATION	32
		e Program Financial and Pricing Planning Data Il Program Financial and Pricing Planning Data	3 4 4 4
		of Material Planning Cost Estimates	54
7.0	REFERENCES		58

LIST OF FIGURES

		PAGE
Figure		
2.1	Schedule of Performance	2
	LIST OF TABLES	
<u>Table</u>	<u>Title</u>	
4.0	Engineering Manhour Estimate: Total Program Summary by Task	15
4.1	Engineering Manhour Estimate: Task 1 Rotor Blades	16
4.2	Engineering Manhour Estimate: Task 2 Rotor Hubs	17
4.3	Engineering Manhour Estimate: Task 3 Fly-by-Wire Control System	18
4.4	Engineering Manhour Estimate: Task 4.0 Operational/ Qualification Tests	19
4.4.1	Engineering Manhour Estimate: Task 4.1 NASA-Ames Wind Tunnel Test	20
4.5	Engineering Manhour Estimate: Task 5 XV15 Modification, Assembly and Tie-Down Test	21
4.6	Engineering Manhour Estimate: Task 6 Flight Test Program	22
4.7	Engineering Manhour Estimate: Task 7 Management	23
4.8	Engineering Manhour Estimate by Labor Grade Task and Calendar Year (3 Sheets)	24
4.9	Manufacturing Manhour Planning Estimates for XV15 Advanced Blades, Hubs, and Fly-by-Wire Controls	27
6.0	Summary of Planning Price Data	33
6.1	Baseline Program Financial and Pricing Planning Data (9 Sheets)	3 5
6.2	Optional Program Financial and Pricing Planning Data (9 Sheets)	4 5
6.3	Summary of Material Planning Cost Estimates	54
631	Breakdown of Fly-By-Wire Material Cost Estimates	5 5

1.0 INTRODUCTION

There is an increasing interest in V/STOL aircraft for military and special purpose civil applications. Advanced concepts, such as the tilt rotor provide improvements in speed, range, and payload, giving increased aircraft productivity, improved fuel economy, and improved mission effectiveness. The current XV-15 research aircraft project is aimed at verifying the feasibility of the tilt-rotor concept and the investigation of the basic stability, performance, and handling qualities of the vehicle. The XV-15 currently incorporates a rotor and control system based on 1968 technology. The use of advanced rotor systems with integrated rotor and airplane controls utilizing fly-by-wire concepts will further enhance tilt-rotor performance, maneuverability, gust sensitivity, ride comfort and rotor blade life.

The Boeing Vertol Company, both in-house and under contract, has been developing the technology of advanced composite rotor systems, as well as integrated rotor/airplane control systems utilizing fly-by-wire concepts. These efforts have included both analytical and experimental studies and have indicated improved capabilities that will broaden the potential application of the tilt-rotor concept in the 1980's.

The purpose of this study performed under NASA Contract NAS2-10160 is to have Boeing Vertol Company provide the necessary preliminary design and planning information for a program to build advanced composite biades and hubs, and a fly-by-wire system for the XV-15 tilt rotor research aircraft.

This study is viewed as the first step in a possible program. It is a study to determine the best design of blades and hubs for the tilt-rotor aircraft, and to select and specify a nonmechanical control system to replace existing linkages, subject to the ground rule that no changes are permitted in the nacelle, drive train, or airframe. Step one also includes planning and estimating the cost of detail design, fabrication, testing and installation in the XV-15. Further steps, not addressed as part of the present study contract, would be for detail design, fabrication, and testing of the full-scale system; and step three would be installation of subject systems in one XV-15 aircraft, functional checkout and tiedown testing. This would be followed by a flight test program which is not defined in detail here.

The objectives of this study are: (a) to provide preliminary design data on an advanced composite rotor system and advanced composite hub, and on a state of the art nonmechanical control system; the blades and hubs are to result in enhanced fatigue strength, improved performance in hover and cruise, and improved reliability, maintainability, and repairability; (b) to submit an overall project plan for design, fabrication, wind tunnel testing, and investigations necessary to support modification of the XV-15 aircraft.

These objectives are the subject of the two volumes of the final report. The technical data are reported in Volume 1, (Reference 1) and the project planning and planning estimates of costs and schedule are reported herein. This document is considered proprietary to the Boeing Vertol Company.

MSA CR-152336-2 FOR THE XV-15 TILT ROTOR AIRCRAFT. AND NONFECHANICAL FLIGHT CONTROLS WVANCED COMPOSITE BLAPES, HUBS, DESIGN, FABRICATION AND TEST OF A.A.-M.T MUB/BLADES ASSEMBLY/BALANCE ACCEPTANCE TESTS -- W/T ALADES CHECKED BLADE STRUCTURAL TESTS A SYSTEM INTEGRATION TESTS L'RIG PREPARATION MONTHS AFTER 60-AMEND L-FLIGHT CLEARANCE TESTS FAB. BLADES (BOTH HANDS) FAB. FATIGUE SPECIMENS P. FAB. TEST SPECIMENS -ELASTOMERIC BEARING VENDOR SELECTION SPINNER DESIGN & FABRICATION VENDOR DESIGN, FAB, TEST BEARINGS A FAB. TEST COMP. ELECTRONICS & ACTUATOR PLTCH MOUSING DESIGN F_T001.1MB DEVELOPMENT TASK 3 - FLY-BY-WIRE CONTROLS TOOL FABRICATION -UPDATE SYSTEM SPEC. -PESIGN CRITERIA TOOL DESIGN PLADE DESIGN SELECTION FASK 1 - BLADES VENDOR

2.0 PROGRAM DESCRIPTION AND SCHEDULE

The planning data presented in this section of the report is guided by the broad program outlines defined in the contractual statement of work and repeated in the introduction to this report. This study assumes the production program for the blades will proceed subject to the results of the initial structural tests and prior to completion of the fatigue test program. The full-scale tunnel test is also regarded as a data acquisition procedure, and the blade fabrication program is not paced by the tests. The program schedule is shown in Figure 2.1. Alternative programs are feasible, and sufficient detail is provided in the cost data presented to permit estimation of alternative program costs. It is noted that it is unlikely that there will be full development of both the advanced composite hub, and the modified XV-15 gimball hub, and the plans downstream of detail design assume testing and fabrication of one or the other but not both.

2.1 Program Elements and Work Flow

To accomplish the subject program, the task outlined in the schedule shown in Figure 2.1 will be performed. While there are several possible approaches, we have selected the one which minimizes overall program cost. This involves committing the total program dollars prior to experimental demonstration for those program elements which are retained in the final program definition. It is believed that this is the correct approach because the purpose of the wind tunnel program is less validation of flight worthiness than evaluation of rotor performance and other properties. An alternative approach, in which full commitment awaited the outcome of the wind tunnel program, would stretch the program and increase cost. A second alternative would be to proceed directly to aircraft modification without an intervening single rotor wind tunnel demonstration. The full aircraft would then be tested in the 40' x 80' wind tunnel. This approach has the advantage that a fully modified aircraft is attained up to six months earlier. However the rate of spending would be higher.

The blades are composite hingeless blades with a two-pin retention. The blade tooling must be sufficiently durable to fabricate the total required (6 to 9 per side, plus structural test specimens and proof of tooling blades).

Modified pitch housings must be fabricated to provide a clevis attachment for the blade twin-pin wraparound retention. Fatigue testing using the tool proving blades and the flight pitch shaft pins and retention hardware is assumed prior to the wind tunnel test. This test will provide data on the whole root end assembly including composite and metal component data. Fatigue tests of an outer section of the blade will also be performed.

Hub - In the event that the new hub design is procured, a test specimen of the new hub will replace the pitch housing in the fatigue test procedure. A minimum of four hubs will be fabricated in addition to fatigue test specimens.

<u>Fly-by-Wire Controls</u> - It has been assumed that the design of the fly-by-wire system will be complete and that sufficient hardware (i.e. actuators) will be in hand for use in the wind tunnel test.

The fly-by-wire system uses driver actuators in conjunction with the power actuators of the present XV-15 installation, and the present plans call for digital rather than analog processing of control inputs.

Whirl Testing - It has been assumed that the semi-span wing and base adapter using during NASA Contract NAS2-6505 is available and that the Government will furnish this hardware free of charge. It is also assumed that an XV-15 nacelle assembly and power plant will be made available.

This rig will be assembled initially at Boeing Vertol for system integration, calibration and whirl testing. A 50-hour whirl test is envisioned. In the event that the existing gimballed hub is retained, the whirl test will be eliminated or curtailed to the point of being a functional checkout of instrumentation and controls under rotating conditions.

<u>Tunnel Test</u> - At completion of the functional checkout and/or whirl test, the rig will be disassembled, refurbished, and shipped to Ames Research Center for final testing. A test period of approximately five weeks in the tunnel is envisioned.

Aircraft Modification - An XV-15 airframe will be shipped to Boeing Vertol for modification. This will include replacement of mechanical control linkages and mixing boxes with fly-by-wire equipment, and the installation of driver actuators in the left hand nacelle. The right hand nacelle will be remounted on the airframe, and the left hand nacelle will be fitted with composite hub and blades.

Tiedown Test - Functional checkout and qualification testing of the control system and left hand hub will be performed with the aircraft mounted on an elevated ground test rig which permits the full range of nacelle tilt with the rotors turning. In the event that the Bell hub is retained, this test may be curtailed to be essentially a functional checkout of the fly-by-wire installation, and need not continue for the full duration of a rotor hub qualification test.

Flight Test - Following the tiedown test, the aircraft will be shipped to Ames Research Center for flight test. A nine-month program is envisioned, and during this time the rotor performance characteristics would be verified and fly-by-wire control parameters optimized.

2.2 Potential Alternative Programs

Complete Aircraft Tunnel Test - It is noted that the program outlined above is not unique. An alternative program which has many attractions is to proceed as fast as possible with the aircraft modification (without an intervening semispar tunnel test), and conduct a tunnel test of the complete aircraft. This has the advantage of providing a fully modified aircraft in the minimum time span, and would also provide the occasion for evaluation and checkout of other changes to the airframe (such as, those anticipated for drag reduction).

<u>Dynamic Model Tests</u> - The advanced composite blade design envisioned matches the essential dynamic properties of the XV-15 current blades, so that rotor-airframe dynamics should not be any more of an issue than at present.

In the detail design phase, we may accept some deviation in blade stiffness and frequency properties in order to minimize the use of graphite and/or titanium. In this event, it would be desirable to conduct scaled dynamic model

tests early in the program. This should probably be performed using an existing scaled dynamic model of the XV-15 with blades and/or hub modified to represent the proposed new design.

Planning and cost information on these alternatives or additional program elements can be provided if interest develops later. $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{$

3.0 WORK STATEMENT AND TASK DEFINITION FOR COST ESTIMATION

Ground Rules for Program Planning - There are three major components to the overall program. These relate to development and installation of composite blades, composite hubs, and a fly-by-wire control system for the XV-15.

Program plans and cost estimates are based on the execution of all three components concurrently. It should be noted that a program for fly-by-wire alone is feasible, and blade development can be undertaken with minor modifications to the existing hub. However, the composite hub design proposed depends on availability of compatible blades.

Basic Program and Options - Develop, manufacture, and test composite blades, composite hubs, fly-by-wire controls, and install in XV-15 aircraft.

Task 1 - Blades

- a) Design: Provide detail design of the blade with a twin-pin retention and provide stress and frequency analyses to support the design. Design loads spectra and life calculations are to be provided with a fabrication sequence and procedure defined.
- b) <u>Tool Design</u>: Tooling will be designed to fabricate and assemble the blade for both hands of rotation. The tool design shall be consistent with an expected production of ten blades of each hand.
- c) Tool Fabrication: Fabricate or procure the blade tools to design of Item b.
- d) Fabricate 1 R.H. and 1 L.H. tool proving blade.

Fabricate 2 R.H. and 1 L.H. fatigue test blade including cuffs, instrumentation and tip fittings.

Fabricate 6 R.H. and 6 L.H. flight worthy blades.

Total - 17 blades

Optionally fabricate additional 3 R.H. and 3 L.H. flight worthy blades.

Total - 23 blades

- e) <u>Structural Tests</u>: Using tool proving blades provide deflection, frequency, mass distribution and cg and shear center data for the design. Fatigue test the root end and a blade outer section to be selected.
- f) Acceptance Tests: For the three wind tunnel test blades check:
 - (1) blade frequencies,
 - (2) blade weight and cg location,
 - (3) stiffness data, and
 - (4) aerodynamic precision.
- g) Assemble three blades in each hub from Task 2, and balance the whole rotating assembly.

Task 2 - Hub

- Review and revise design criteria and document.
- b) Provide detail design of hub, pitch shaft, upper controls interface.
- c) Select a vendor and provide liaison through vendor design and test of elastomeric bearings.
- d) Fabricate 3 hub proof of tooling and fatigue test specimens and provide experimental verification of the design.
- e) Fabricate 5 flight worthy hubs and pitch shafts. Buy elastomeric bearings to support the program. Total basic program 8 hubs. Optionally fabricate an additional 2 flight worthy spare hubs. Option total 10.
- f) Inspect components assembly (see Item g of Task 1).
- g) Spinner: design and fabricate 4 spinners.

Task 3 - Fly-by-Wire Controls

- a) Review and update system specification.
- b) Define details of thrust management system.
- c) Define implementation details (actuator requirements, SCAS interface, gust alleviation interface capability, etc.).
- d) Define wind tunnel test configuration.
- e) System engineering (location of units/interconnect concept cockpit interface, etc.).
- f) Lifine SCAS system.
- g) Solicit vendor proposals/select vendors.
- h) Design liaison/vendor flight qualification tests.
- i) Procure aircraft equipment.
- j) Laboratory system integration tests.
- k) Prepare system schematics, assembly and installation drawings.
- Install equipment in XV-15 aircraft.
- m) Provide controls support for wind tunnel and ground testing.

Task 4 - Operational/Qualification Tests

Prior to wind tunnel testing operational and qualification whirl tests will be carried out at Boeing. This test will use the right hand nacelle package from the XV-15 aircraft scheduled for modification. This package will be installed

on a semi-span test wing structure. The new hub and right-hand blades will be mounted along with fly-by-wire controls for engine and blade pitch control. The test objective is to: a) to provide whirl endurance data, and b) to ensure tunnel safety and a level of confidence in completing wind tunnel data runs without mechanical, electrical, or hydraulic malfunction. (See Section 3.1 for discussion of actuator installation in nacelle.)

Specific objectives are as follows:

- o <u>Safety</u>. Demonstrate integrity of rotor load carry-through structure, rotor shaft/hub connection, elastomeric bearings and retention hardware. Demonstrate the operation of the rotor and engine control system and establish rotating system frequencies to verify aeroelastic predictions. Measure loads due to cyclic and collective excursions. Check control safety logic.
- o Reliability. Demonstrate the following controls:
 - operation under vibratory and loaded conditions
 - precision and repeatability

o Rotor System

- cuff and tip retention
- blade instrumentation

o Transmission

- lubrication scavenging
- lubrication feed pressures, cooling and filtration

The whirl-test programs defined below will be conducted entirely on the wind tunnel configuration; supported vertically and outside the tunnel. Facilities and services will be identical to those planned for tunnel use.

A. Blade-off Test

Without the rotor blade installed, rpm will be built up to hover maximum and held until lubrication oil temperatures and pressures stabilize. This is to check functioning and adequacy of lubrication system in the tunnel test orientation. Visual examination of boxes will determine oil tightness, and accelerometer on output shaft bosses will be monitored. No-load test run is estimated to require two hours. Rotor will be installed upon successful completion.

B. Blades-on Test

Load and rpm will be built up to hover maximum and sustained for five hours with the nacelle in both hover and cruise position. A rotor moment load spectrum will be imposed. Following this, the blades and hubs will be removed and the hub will be disassembled and inspected for wear and tear in the leaf spring assembly and for set or other deterioration in the elastomeric bearings. Retention pin locations will also be inspected. Following this initial inspection, the rotor will be reassembled and reinstalled. A further 25 hours of running under maximum torque conditions

anticipated in the wind tunnel will be performed. External inspections will be conducted at 5-hour intervals during this test. At the conclusion of this test, the rotor will be disassembled again and inspected. Following inspection, reassembly, and reinstallation, a further twenty-five hours of running under both cruise and hover loads and speeds will be performed. At the conclusion of this test, a complete disassembly and analytical inspection of components will be accomplished.

The spare hubs will be installed in the rig and run for five hours at hover maxima. A partial disassembly and inspection will be accomplished.

The fifty-five hour set of dynamic components will be refurbished with zero-time components as required, reassembled and run for two hours under load. This will complete the testing prior to tunnel usage.

Data to be taken during the fifty-five hours of load testing will include:

- Lubrication temperatures, pressures, oil flows
- Filter inspection results (five-hour intervals)
- Debris records
- Rotor torque
- Rotor hub moments and forces
- Blade bending loads
- RPM
- Nacelle position
- Gear case accelerometer readings
- Control system position data
- Fuel flows
- Engine temperatures
- Subsystem performance data
- Wing bending and accelerations
- Disassembly/inspection findings

After completion of these tests, the rig, blades, hub, nacelle, etc., are refurbished, reassembled, and functionally checked out, then disassembled and shipped to the 40° x 80° wind tunnel at NASA Ames.

Task 4.1 - NASA Ames Wind Tunnel Test

Task 4.1.1 - Pretest Preparation

- a) Liaison with $40' \times 80'$ wind tunnel staff to establish test ground rules and safety requirements.
- b) Test plan layout and technology predictions to satisfy test safety requirements and project objectives.
- c) System safety analysis.
- d) Assemble the test rig at Ames, install blades, connect controls and instrumentation, and perform:

(1) Functional Tests (nonrotating)

- control system static operation and position calibrations
- clearance and binding checks for full range of control travels and nacelle positions
- pressure hose leakage tests
- instrumentation calibrations
- alignment spinner

Task 4.1.1 also includes the effort necessary to provide test planning, liaison with the 40- by 80-foot tunnel staff, and pretest predictions and safety analysis.

Task 4.1.2 - Wind Tunnel Test

NOTE: Items a) through d) are performed offsite at NASA Ames.

- a) Assemble test rig at NASA Ames 40' x 80' wind tunnel and perform repeats of functional and calibration checks.
- b) Test planning and safety review.
- c) Wind Tunnel Test For the purpose of estimating costs, assume a tunnel occupancy of five weeks/two shifts per day. This is additional to a three-week period, two shifts a day, prior to life-in for reassembly, instrumentation checks, and static system checks.

Conduct a wind tunnel test to meet the following objectives:

- Demonstrate the aeroelastic compatibility of the rotor/nacelle/wing assembly
- Demonstrate the flight envelope boundaries within the tunnel capability
- Define infinite life fatigue loads flight limits
- Demonstrate reliable operation of flight hardware
- d) Disassemble and ship to Vertol.
- e) Analyze wind tunnel data and prepare Task 4 2 report.

Task 5 - XV-15 Modification, Assembly, and Tiedown Test

In this stage of the program, the XV-15 is modified to the new hub and blade configuration, the fly-by-wire system is installed and a tiedown test performed, after which the aircraft is considered ready for flight test.

Task 5.1 - Aircraft Modification and Assembly

a) Receive XV-15 aircraft at Boeing Vertol (assume that the Bell blades and hubs are removed).

- b) Remove mechanical control runs, actuators and mix boxes, and store.
- c) Install fly-by-wire actuators and route fly-by-wire cables.
- d) Modify cockpit display/install control transducers.
- e) Install DELS units.
- f) Refurbish right hand side nacelle.
- g) Install Boeing Vertol hub on aircraft.
- h) Static functional tests.
- i) Ship to tiedown area and install on aircraft.

Task 5.2 - Fly-by-Wire Controls

- a) Complete actuator procurement for aircraft program.
- b) Vendor design of mixing units and procure aircraft control units and transducers, connectors, wire, etc.
- c) Perform liaison for Item b).
- d) Perform system integration tests.

Task 5.3

The aircraft components (e.g., nacelle package, rotor, hubs and control actuators) used in the wind tunnel are disassembled, inspected and refurbished with new seals, rod ends, etc., as necessary. Blade instrumentation is repaired. Inspect and refit aircraft scavenge configuration. Inspect all lines, wires, connections, and plugs for looseness, chafing and wear, and replace as recessary. Reassemble and install on XV-15 airframe.

Remove left hand nacelle package of same aircraft and modify to install fly-by-wire actuators, control linkages, and wiring. Remove XV-15 hub and install new composite hub. Reconnect pitch controls. Reinstall on XV-15 airframe.

Task 5.4 - Test Preparation

- a) Test planning, pretest predictions and safety analysis.
- b) Prepare ground test pad; needs to be raised to allow operation in cruise mode. Requires fuel supply, hydraulic supply, safety precautions. (Assume available facilities.)
- c) Prepare a full force simulation of the aircraft and provide pilot training through test procedures and emergency procedures.
- d) Calibration of aircraft instrumentation.

Task 5.5 - Tiedown Tests

- a) Left hand side nacelle "no load" test Run left hand side transmission for two hours with no blades and the cross shaft disconnected.
- b) With blades on and the cross shaft connected, perform operational tests at low power settings to verify controls operating characteristics.
- c) Run tie-down test for five hours at maximum hover power, $i_N = 90^{\circ}$. Inspect blades and hub for wear, set or other damage.
- d) Refit left-hand side of blades and hubs, and run for twenty-five hours. External inspections every five hours $i_N = 90^{\circ}$.
- e) Inspect transmission, actuators, blades, and hubs. Set up at $i_N = 70^{\circ}$ and run at maximum anticipated torque for this nacelle angle for twenty-five hours.
- f) Repeat e) at $i_N = 50^{\circ}$, 30° and 0° .
- g) Inspect blades, hubs, controls, and refurbish as necessary. Remove blades and wing, and ship to NASA Ames.

Task 6 - Flight Test

It is assumed that flight testing will be performed at NASA Ames.

- a) Reassemble aircraft static checks and calibrations.
- b) Ground run-up checks.
- c) Taxi tests.
- d) Flight Testing for flight envelope expansion and demonstration. For the purpose of estimating costs, assume a nine-month program with a Boeing support team offsite.
- e) Report requirements.

Task 7 - Management

A management level of effort is assumed throughout the program.

3.1 Notes on Fly-by-Wire Actuator Installation

This section discusses engineering design and liaison to replace the existing input mechanical system to the flight controls power actuators.

The existing input systems would be replaced by Boeing Vertol Company designed electrically activated Dual-Driver actuators. These units would be mounted in close proximity to existing flight control power actuators.

Detail layouts, design, and installation drawings would be prepared and engineering liaison and support would be provided for the following items:

- (1) Engineering instructions to identify and remove existing hardware not required for the new input system.
- (2) Engineering layouts and drawings to modify the cockpit displays and controls to accommodate transducers, panels, etc. to reflect revised control systems.
- (3) Collective Actuator The existing power actuator is located in cavity at centerline of rotor transmission. Support brackets and bellcranks are required for the Dual Driver actuator mounted directly to adjacent nacelle structure and/or transmission.
- (4) Longitudinal Cyclic Actuator The existing power actuator is located in the nacelle adjacent of the cowling door panel. Support brackets are required for the Dual Driver actuator mounted directly to adjacent nacelle structure and/or transmission. A rework of the fiberglass cowling door panel is required to provide clearance for the Dual Driver actuator.
- (5) Flaperon Actuator The existing power actuator is located in the mid-span of wing. Support brackets are required for the Dual Driver actuator mounted directly to adjacent wing structure.
- (6) Rudder Actuator The existing power actuator is located in the aft section of the fuselage. Support brackets are required for the Dual Driver actuator mounted directly to adjacent fuselage structure.
- (7) Elevator Actuator The existing power actuator is located in the aft section of the fuselage. Support brackets are required for the Dual Driver actuator mounted directly to adjacent fuselage structure.
- (8) <u>Cockpit Flight Controls</u> Transducers required to replace the mechanical controls at the following locations:
 - (a) Yaw control pedals
 - (b) Power lever

- (c) Pitch control stick
- (d) Roll lever
- (9) Installation of electrical boxes required for the new input system.
 - (a) Approximately 8 boxes.
- (10) Engineering Liaison.

4.0 MANHOUR ESTIMATES

4.1 Engineering Manhours

This section presents engineering manhour estimates by Task for the program defined in Section 3.0.

These are broken down by labor grade and skill and travel requirements are also identified. An Engineering effort of 152,360 manhours is envisioned for the total program as indicated in Table 4.0. Engineering manhour estimates for individual tasks and by labor grade and calendar year are presented in Tables 4.1 through 4.8.

4.2 Manufacturing Manhours

Estimates for manufacturing manhours by Task and department are given in Table 4.9. A total of 340,262 manufacturing manhours is estimated for the extended program option of 23 blades and 10 hubs (includes proof of tooling and structural test specimens). The basic program of 17 blades and 8 hubs would require 311,242 manufacturing manhours.

TABLE 4.0

ENGINEERING MANHOUR ESTIMATE TOTAL PROGRAM SUMMARY BY TASK

TASK 1 ROTOR BLADES	19,900 M/K
TASK 2 ROTOR HUBS	21,700
TASK 3 FLY-BY-WIRE CONTROL SYSTEM	30,280
TASK 4.0 - OPERATIONAL/QUAL. TESTING	8,680
TASK 4.1 - NASA AMES WIND TUNNEL TEST	11,600
TASK 5 XV-15 MOD., ASSY, AND TIEDOWN TEST	17,400
TASK 6 FLIGHT TEST PROGRAM	16,400
TASK 7 MANAGEMENT	26,400

TOTAL PROGRAM ENGINEERING (PLANNING)

152,360 M/H

REQUIREMENTS

LABOR GRADE B	REAKOUT	COMPUTER	PROGRAMMING
L/G 72	9,070 M/H		NONE
L/G 74	47,360		
L/G 76	41,520		
L/G 78	32,580		
L/G 10	12,760		
L/G 06	9,070		
TOTAL ENGR'G	152,360 M/H		

TRAVEL REQUIREMENTS

SEE ATTACHED SHEETS

TABLE 4.1

ENGINEERING MANHOUR ESTIMATE TASK 1. ROTOR BLADES

WORK ITEMS	BLADE DESIGN	ENGR'G LABS	ROTOR STRESS	WEIGHTS	M&P	DYNAMICS	<u>AERO</u>	TOTAL
BLADE DESIGN	4,840	-	2,900	400	1,460	280	280	10,160
TOOL DESIGN SUPPORT	360	-	_	-	-	•	-	360
BLADE MFG. LIAISON	1,760	-	•	-	-	-	-	1,760
DOCUMENTATION	160	-	-	-	-	-	-	160
SUPV. SECR., ADMIN.	360	-	-	-	-	-	-	360
TOOL PROVING BLADE	•	80	-	-	-	-	_	80
STATIC LOAD TEST	40	440	40	-	30	•	•	550
ROOT END FATIGUE	160	1,660	160	•••	100	•	_	2,089
INTERMEDIATE FATIGUE	160	1,660	160	-	100	-	-	2,080
TIP END FATIGUE	160	1,660	160	-	100	-	-	2,080
BLADE ACCEPTANCE TESTS	10	210	10	-	-	-	-	230
TOTAL TASK 1.	8,010	5,710	3,430	400	1,790	280	280	19,900

LABOR GRADE	BREAKOUT	COMPUTER PROGRAMMING REQUIREMENTS
L/G 72	930 M/H	NONE
L/G 74	4,940	
L/G 76	5,980	
L/G 78	5,060	
L/G 10	2,060	
L/G 6	930	
TOTAL ENGR'G	19,900 M/H	=

TRAVEL REQUIREMENTS

1. TWO (2) ONE-MAN/ONE WEEK TRIPS TO NASA AMES, SAN FRANCISCO, CALIF.

TABLE 4.2

ENGINEERING MANHOUR ESTIMATE TASK 2. ROTOR HUBS

WORK ITEMS	ROTOR HUB DESIGN	ENGR'G LABS	ROTOR STRESS	WEIGHTS	мар	TOTAL
HUB DESIGN	8,940	-	3,970	640	79 0	14,340
SPINNER DESIGN	1,000	-	500	80	100	1,680
ELAST. BRG. VENDOR LIAISON	640	•	-	-	•	640
MFG. LIAISON	2,040	-	-	-	-	2,040
HUB/SHAFT JOINT FATIGUE	100	1,100	100	-	80	1,380
HUB FATIGUE TESTING	60	720	60	-	60	900
BLADE/HUB BALANCING	10	80	10	-	-	100
SUPV., SECR., ADMIN.	620	•	-	-	•	620
TOTAL TASK 2.	13,410	1,900	7,640	720	1,030	21,700

LABOR GRADE BREA	KOUT	COMPUTER PROGRAMMING REQUIREMENTS
L/G 72	1,040 M/H	NONE
L/G 74	5,800	
L/G 76	6,520	
L/G 78	5,140	
L/G 10	2,160	
L/G 06	1,040	
TOTAL ENGR'G	21,700 M/H	

- THREE (3) TWO MAN/ONE WEEK TRIPS TO BARRY, BOSTON, MASS.
- THREE (3) ONE MAN/ONE WEEK TRIPS TO BARRY, BOSTON, MASS.
 TWO (2) ONE MAN/ONE WEEK TRIPS TO NASA AMES, SAN FRANCISCO, CALIF.
 TWO (2) ONE MAN/ONE WEEK TRIPS TO LOS ANGELES, CALIF. TWO
- TWO
- (2) ONE MAN/THREE DAY TRIPS TO CHICAGO, ILLINOIS

TABLE 4.3

ENGINEERING MANHOUR ESTIMATE TASK 3. FLY-BY-WIRE CONTROL SYSTEM

WORK ITEMS	EFCS DESIGN	OTHER DESIGN	SEPVO LABS	AERO FLY QUAL	A/F STRESS	WEIGHTS	M&P	TOTAL
SYSTEM SPECS., VENDOR PROPOSALS, HOWRE LIAISON,	11,360	4,400	-	880	2,240	1,260	640	20,780
SYSTEM CONFIG. DEV. BELL XV-15 MOD. DESIGN SUPV., SECR., ADMIN. LAB. INTEGRATION TESTING	1,200 640 200	3,640 400	- 1,200	400 - 200	1,040 - -	380 - -	200	6,860 1,040 1,600
TOTAL TASK 3.	13,400	8,440*	1,200	1,480	3,280	1,640	840	30,280

*MECH. FLT. CONTROLS DESIGN HYDRAULICS DESIGN AIRFRAME DESIGN ELECT. & WIRING DESIGN	1,200 M/H 3,640 720 2,880	COMPUTER REQUIREMENTS NONE
	8,440 H/H	

LABOR GRADE BREAKOUT

L/G 72	1,500 M/H
L/G 74	8,220
L/G 76	9,060
L/G 78	6,900
L/G 10	3,100
L/G 06	1,500

TOTAL ENGR'G 30,230 M/H

TRAVEL REQUIREMENTS

ELECT. FLIGHT CONTROLS

- a. TWELVE (12) TWO-MAN/ONE WEEK TRIPS TO BERTEA, LOS ANGELES, CALIF.
- b. TWELVE (12) ONE-MAN/ONE WEEK TRIPS TO BERTEA, LOS ANGELES, CALIF.
- c. ONE (1) TWO-MAN/ONE WEEK TRIP TO NASA AMES; SAN FRANCISCO, CALIF.

MECH. FLIGHT CONTROLS

- FOUR (4) TWO-MAN/ONE WEEK TRIPS TO BERTEA, LOS ANGELES, CALIF.
- FOUR (4) ONE-MAN/ONE WEEK TRIPS TO BERTEA, LOS ANGELES, CALIF.
- ONE (1) ONE-MAN/ONE WEEK TRIP TO NASA AMES: SAN FRANCISCO, CALIF.

HYDRAULICS & AIRFRAMES

- a. TWO (2) TWO-MAN/ONE WEEK TRIPS TO BERTEA, LOS ANGELES, CALIF.
 b. TWO (2) TWO-MAN/ONE WEEK TRIPS TO BERTEA, LOS ANGELES, CALIF.
- ONE (1) TWO-MAN/ONE WEEK TRIP TO NASA AMES; SAN FRANCISCO, CALIF.

ELECTRICAL

- a. TWO (2) TWO-MAN/ONE WEEK TRIPS TO BERTEA, LOS ANGELES, CALIF.
- b. TWO (2) ONE-MAN/ONE WEEK TRIPS TO BERTEA, LOS ANGELES, CALIF.
- ONE (1) ONE-MAN/ONE WEEK TRIP TO NASA AMES; SAN FRANCISCO, CALIF.
- THREE (3) ONE-MAN/THREE DAY TRIPS TO CHICAGO, ILL.

TABLE 4.4

ENGINEERING MANHOUR ESTIMATE TASK 4.0 OPERATIONAL/QUALIFICATION TESTS

WORK ITEMS	DESIGN GROUPS	STRUCT TECHN.	OTHER TECHN.	ENGR'G LABS	PROJECTS	TOTALS
PRE-TEST PREDICTIONS AND DATA PREPARATION	-	400	1,040	320	-	1,760
TEST RIG SYST. SAFETY ANAL.	-	-	-	-	240	240
TEST RIG PREPARATION, INSTR. ASSEMBLY AND CHECKOUT	160	160	200	2,080	-	2,600
TESTING	320	320	400	2,080	-	3,120
ANAL AND REPORTS	80	80	80	240	•	480
RIG DISASSEMBLY, REFURBISH AND SHIP TO AMES	80	40	•	360	-	480
TOTAL TASK 4.	640	1,000	1,720	5,080	240	8,680

LABOR	GRADE	BREAKCUT	•
L/G	72	440	M/H
L/G	74	1,900	
L/G	76	2,500	
L/G	78	2,500	
L/G	10	900	
L/G	06	440	
TOTAL	ENGR'	8,680	M/H

-COMPUTER PROGRAMMING REQUIREMENTS

NONE

TRAVEL REQUIREMENTS

NONE

TABLE 4.4.1

ENGINEERING MANHOUR ESTIMATE TASK 4.1 NASA AMES WIND TUNNEL TEST

WORK ITEMS	DESIGN GROUPS	STRUCT TECHN	OTHER TECHN	ENGR'G LABS	WIND TUNNEL	PROJECTS	TOTAL
NASA AMES LIAISON	-	-	-	80	-	80	160
PRE-TEST PREDICT/DATA PREP	-	400	1,040	-	320	-	1,760
TEST RIG SAFETY ANALYSIS	-	-	•	-	-	240	240
RIG TEST PREPARATION	80	320	-	1,600	-	-	2,000
RIG ASSY, CHECKOUT, TEST	320	320	320	1,920	-	-	2,880
RIG DISASSEMBLY/SHIP	80	80	-	320	-	-	480
ASSY, FUNCT. CHECKS @ AMES	80	-	40	240	-	•	360
WIND TUNNEL TEST @ AMES	160	40	120	960	•	•	1,280
LIFT OUT, DISASSEMBLY/SHIP TEST SUPPORT, DATA REDUCTION,	-	-	•	80	•	-	80
ANAL. & REPORT @ B/V	720	120	160	•	800	560	2,360
TOTAL TASK 4. 1	1,440	1,280	1,680	5,200	1,120	880	11,600

LABOR	GRADE	BREAKOUT	
L/G			M/H
L/G		2,560	
L/G		3,320	
L/G		3,240	
L/G		1,200	
L/G	06	640	
TOTAL	ENGR'	3 11,600	M/H

COMPUTER PROGRAMMING REQUIREMENTS

NONE

- 1. ENGR'G LABS
 - a. ONE (1) TWC-MAN/EIGHT WEEKS TRIP TO NASA AMES; SAN FRANCISCO, CALIF. b. ONE (1) FOUR-MAN/FOUR WEEK TRIP TO NASA AMES; SAN FRANCISCO, CALIF.
- 2. DESIGN GROUPS
 - a. FIFTEEN (15) ONE-MAN/THREE DAY TRIPS TO NASA AMES
- 3. TECHNOLOGY GROUPS
 - a. FOUR (4) ONE-MAN/THREE DAY TRIPS TO NASA AMES; SAN FRANCISCO, CALIF.

TABLE 4.5

ENGINEERING MANHOUR ESTIMATE TASK 5. XV-15 MOD. , ASSY, & TIE-DOWN TEST

WORK ITEMS	DESIGN GROUPS	STRUCT TECHN	OTHER TECHN	FLIGHT TEST	ENGR'G LABS	PROJECT	TOTAL
AIRCRAFT PREPARATION AT B/V TEST RIG & "STUFFING" DESIGN RIG FAB LIAISON TEST PLAN/CALIBRATE INSTR TIEDOWN TESTING AT AMES	680 1,600 100 - 960	340 800 - - 480	340 320 - - 480	3,040 - - 960 3,840	2,400 700 360	- - -	4,400 5,120 800 1,320 5,760
TOTAL TASK 5.	3,340	1,620	1,140	7,840	3,460		17,400

LABOR	GRADE	BREAKOUT
L/G	72	920 M/H
L/G	74	3,740
L/G	76	5,140
L/G	78	4,940
L/G	10	1,740
L/G	06	920

NONE

COMPUTER PROGRAMMING REQUIREMENTS

TOTAL ENGR'G 17,400 M/H

- 1. FIVE (5) TWO-MAN/THREE DAY TRIPS TO NASA AMES, SAN FRANCISCO, CALIF.
 2. ONE (1) SIX-MAN /TEN WEEK TRIP TO NASA AMES, SAN FRANCISCO, CALIF.
 3. ONE (1) SIX-MAN/FOURTEEN WEEK TRIP TO NASA AMES, SAN FRANCISCO, CALIF.

TABLE 4.6

ENGINEERING MANHOUR ESTIMATE TASK 6. FLIGHT TEST PROGRAM

WORK ITEMS	DESIGN GROUPS	STRUCT TECHN.	OTHER TECHN.	FLIGHT TEST	PROJECT	TOTALS
DISASSEMBLY, REFURBISHMENT SHIPMENT TO AMES (FROM TIEDOWN AREA) AIRCRAFT ASSEMBLY, STATIC TESTS,	720	180	180	1,080	•	2,160
CALIB., TAXI TESTS, GROUND TESTS AND FLIGHT TESTING @ AMES SUPPORT OF FLIGHT TEST @ B/V FINAL REPORTS	720 3,600 320	360 360 160	360 360 160	5,040 2,160 320	- 320	6,480 6,480 1,280
TOTAL TASK 6.	5,360	1,060	1,060	8,600	320	16,400

LABOR	GIVADE	BILLAROUT		
L/G	72	800	M/H	
L/G	74	5,800		
L/G	76	5,800		
L/G	78	1,600		
L/G	10	1,600		
L/G	06	800		

COMPUTER PROGRAMMER REQUIREMENTS

NONE

TOTAL ENGR'G 16,400 M/H

LABOR GRADE BREAKOUT

- 1. FLIGHT TEST GROUP
 - a. SIX (6) TWO MAN/TWO WEEK TRIPS TO NASA AMES, SAN FRANCISCO, CALIF.
 - b. NINE (9) THREE MAN/THIRTEEN WEEK TRIPS TO NASA AMES, SAN FRANCISCO, CALIF.
 - c. SIX (6) ONE MAN/SIX WEEK TRIPS TO NASA AMES, SAN FRANCISCO, CALIF.
- 2. DESIGN GROUPS
 - a. NINE (9) ONE MAN/TWO WEEK TRIPS TO NASA AMES, SAN FRANCISCO, CALIF.
 - b. SIX (6) ONE MAN TWO WEEK TRIPS TO NASA AMES, SAN FRANCISCO, CALIF.
- TECHNOLOGY GROUPS
 - a. SIX (6) ONE MAN/TWO WEEK TRIPS TO NASA AMES, SAN FRANCISCO, CALIF.
 - b. SIX (6) ONE MAN/TWO WEEK TRIPS TO NASA AMES, SAN FRANCISCO, CALIF.

TABLE 4.7

ENGINEERING MANHOUR ESTIMATE TASK 7. MANAGEMENT

WORK ITEMS	PROJECT	SECRETARY	TECHN MGR	TEST MGR	DATA MGMT	ENGR'G OPS	TOTAL
PROVIDE PROGRAM DIRECTION RELEASE, CONTROL, TRACK, ETC.	8,000 -	4,000 -	4,000	4,000	1,720	4,680	20,000 6,400
TOTAL TASK 6.	8,000	4,000	4,000	4,000	1,720	4,680	26,400

LABOR GRADE BREAKOUT

COMPUTER PROGRAMMING REQUIREMENTS

NONE

L/G	72	2,800 M/H
L/G	74	14,400
L/G	76	3,200
L/G	78	3,200
L/G	10	-
L/G	06	2,800

TOTAL ENGR'G 26,400 M/H

- 1. TEN (10) TWO-MAN/THREE DAY TRIPS TO NASA AMES; SAN FRANCISCO, CALIF.
- 2. NINE (9) TWO-MAN/ONE WEEK TRIPS TO FORT DIX, N. J.
- 3. NINE (9) ONE-MAN/ONE WEEK TRIPS TO FORT DIX, N. J.
- 4. ONE (1) ONE-MAN/EIGHT WEEK TRIP TO NASA AMES; SAN FRANCISCO, CALIF.
- 5. ONE (1) ONE-MAN/FOUR WEEK TRIP TO NASA AMES; SAN FRANCISCO, CALIF.

MANHOUR LUTIMATE

BY LABOR GRADE, BY TASK, BY CALENDAR YEAR

ENGINEERING

DEPARTMENT

PROPOSAL ACTION RESPONSE

DIRECT COST INPUT

4.8

TABLE

1-10-80

Page i of

NASA CR-152336-2

R. Alexander

APPROVED BY: H.

Miller

≈:

ی

PREP. BY:

930 9 900 M/H 1 500: 30 280 **M**/H 040jM/II 930M/II 211 700M/L 1 500 M/H 1/14/044 ENGINEERING B 680 H/ MANHOURS 2,500. 2 160 2:5001 2 080 5 800 6 520 5 140 8 220 9 060 990 900 940 6 900 3 100 CALENDAR 1985 CALENDAR 1984 340 M/H 20 M/H 20 M/II 140 100 60 40 20 380 M/H H/M: 09/:9 480 M/H 130 M/II 000 3, 900 M/H CALENDAR 130 8688 500 940 940 700 340 983 4 000 4 400 3 360 1270 M/II 1620 1800 520 540 270 4 800 M/H H/W H/M DOI 920 JM/H 6 020 M/II 2404/11 180 CALENDAR 720 V 200 200 200 200 500 240 200 240 240 982 260 M/H 200M/II 760 M/H 560|M/H 760| 750IM/H CALENDAR 1981 100 580 750 750 560 080 560 480 160 360 800 560 5 44 2 2007 44 1776RI - ADVANCED COMPOSITE BLADES. HUBS AND NON-MECHANICAL CONTROLS FOR TESTS OPERATIONAL/OUALIFICATION SYSTEM SUB- FOTAL TASK 4.0 HUY-BY-WIRE CONTROL TASK SUB-TOTAL TASK SUB-TOTAL TASK LABOR GRADE 74
LABOR GRADE 76
LABOR GRADE 78
LABOR GRADE 78 HABOR GRADE 78 HABOR GRADE 10 HABOR GRADE 06 LABOR GRADE 74 LAUOR GRADE 78 ABOR GRADE 74 INSOR GRADE 76 T ROTOR AIRCRAF ABOR GRADE 74 LABOR GRADE 06 MYOR GRADE 78 MISOR GRADE 10 YOR GRADE DG AUDIT GRADE 72 ABOR GRADE 06 LABOR GRADE 7 ABOR GRADE SUB-TOTAL 7776RI 75. IASKI No. CAP: 24

FORM 49102 (8/67)

MANHOUR TIMATE

NASA CR-152336-2

Page - of 3

APPROVED BY: H. R. Alexander 1-10-80 DATE BY LABOR GRADE, BY TASK, BY CALENDAR YEAR . DEPARTMENT ENGINEERING TABLE 4.8 PROPOSAL ACTION RESPONSE DIRECT COST INPUT

ENG INEERING	MANIOURS		H/H 049	2 560		. ,		17071	:040	17W 009 11			920 iM/II	+	5 1140	4 940	1,740	920	17 1400 M/H		-		H/₩ 008	5 300	5 800	1 1600	1,600		16 'A00 M/II	-	2 AOO M/II	8		3 200	-o-	2 800	26 400 M/II
2					-		- -				 							-	1	-			₩/H						H/H		11/1						HVA
CAI FNDAR	1985				-	-	-				 	-							-			1		780	780	200	200		2,160 M	+	120 X		120	120	-1	140	
CAI FNDAR	1984		30 M/I		140	120	1051	00	30 !	480 M/H			320 M/H	1 260	1 680	1 600	280	320	H/W 094 S					5 020	5 020 1	1 400	1 700 1	- 1	14 240 M/H		K20 M/H	Т-	1	740	-L	620	11/H 000 9
CALENDAR	1983		610 M/H		_	130	-	1 140 i	1610	1 120 M/III			11/W 009	_		3 340	1 1160 !	009	11,640 M/H												SAN M/H	1	l .	09%		940	6 200 M/H
CALENDAR	1982															_								1					_		SRCM/III	31 560		780	-	680	6, 480M/H
CAL ENDAR	╁										 																				TIVE UPC		1	300			6 720 M/H
		-						_												_												-					
7776RI - ADVANCED COMPOSITE BLADES,	TOP A LOCA A LOCA A LA	NASA AMES WIND TUNNEL TEST	GUADE 72	1	CPANE	CDANE	SHADE		0	SUB-TOTAL TASK 4.1		XV-15 MOD. ASSY AND TIEDOWN TEST	BOR GRADE 72	1	ABOR GRADE 76	GRADE	GRADE	GRADE	3-T0TAL				ISOR GRADE 72	NUK CRADE 74	BOR GRADE 76	ABOR GRADE 78	1	0	SUB-TOTAL TASK 6.	N LA COMPANIENCE NO C	MANUELIENT MAD COANE 79		1	1	1	į .	SUB-TOTAL TASK 7,
CAP, 7776R1	OU THI	N THE PROPERTY OF THE PROPERTY	• !		- S			<u>S</u>			_	LASK 5. X			_		25					TASK 61 FL	V1			<u> </u>		<u> </u>									

MANITOUR ETTIMATE

TABLE 4.8

BY LABOR GRADE, BY TASK, BY CALENDAR YEAR

NASA CR-152336-2

APPROVED BY: 11. R. Alexander 1-10-80 PREP. BY: G. R. Miller

N N	S		¥ H		١				H7M									Ì									-						
TOTAL	MANITOURS			360	520	280		777	360			-	_															-			-	T	
TOTAL	AN.	╌┝╌┝	9.0	-	41.5	35.5	•) - 			-	-						-	- -	-	-		-			}	}		-+	- †		+-	+-
		11		-	4	1	1		152	\perp	1	_	_			_	4	_	1	1	_		-				_	-	1	_	\perp	\downarrow	1
		44						_			-		_			_	_			_		-	_				_			-4		_	
											1									Ţ	I									1	1	I	
AR.			1/H					4-	160M/H													_											
FND	985		220M/H	280	606	320	200	7	160										Ì														
3	1985	-	+	-	+	-	•		೯					_			_				1										1	1	
	T		TH/						¥.																								
CAI FINDAR	984		670M/H	9	580	200	040	3	480 2 4/H			T				_			T	-	-]				-				T	
S		++	+=	-9				- -	5 6	+	-	+-	+-	-		-+	-+		+	+	 	-	+-						-+			-	
2		\sqcap	Ę				1		Ţ		T									T	T												
CAI ENDAR	1983	+	3604	990	760	3	540	2	480¦M/11	7	7-	-	-					_	7	+	†			_						-	T	1	1
S	-	┾┿	23			2	ار در ارد	17	40,4	-+	-	+-	-							+		+-	+-						-			+	+-
L_1_	11	++	¥.			1	+		_	İ	T	+	+-						\dagger	+	+	T					7			1	1	1	T
END	1982	╅	010M	760	e	5	740	\$ -	9204/11		+	1	-	-					+	十	-	†-	╬			Н			-+		+	+	†-
25	-	++	20	7	8	7	2/2	겎-	3319	- -	+	+	-				\dashv	-+		+		+-	+	-					-	-		+	+
-	! - 	++	+		+	+	+			+	\dagger	\dagger	\vdash				-		\dagger	+	+	\dagger					-		i		\dagger	Ť	\dagger
CALENDAR	186		810M/H	00		3 K	700	+	320 M/II	-	4-	-	+-	L-				-+	-	-	- -	+-	\vdash						-	-+	+	+	+-
CAL	-	.4-4	2 8	14 60	13, 30	οk Ok	4 6		48 3,	_ -	+	+	-					-+	\dashv	+	-	+-	 -			\vdash					+	+	+
-	+	++	+-			-	+	-	4	+	+	+	$\frac{1}{1}$	-				+	+	+	\dagger	+	-	-				_	 	\dashv	\dashv	\dagger	+
						+	-	- -		-+		+	+-	L -			-	-+	•-	+	+-	+-	-								+	+	-
	-	++		 	-		-		<u> </u>	-	+-		-	-		-				_ -	+	-		-							-	+	+
-	+	++	+			-	+	1	H	_	+	+	<u> </u>		_			\dashv	-	+	-	+	-	 							+	+	+
- e									2																								
VOES S F									ERI																								
AND NON-MECHANICAL CONTROLS FOR									TOTAL PROGRAMMING ENGINEERING		j																						
TE									E																							!	
POS						-			ING			1																					
						 دام			M										İ														
CED	CRA	AR.	E 72	E 74	7	₩		<u> </u>	406	-																							
Z Z	AIR	¥ S	RAD	RAD	Z Z	2	RAD	2	<u>a</u>							!									1								
28	ĕ	S	R G	2	2	ن انج	عاد چاچ	5 5	OTA	! :			İ																				
	S-	PROGRAM SUMMARY	<u>A</u>	1. AB C	780	786. 7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	LABOR GRADE 10	<u>=</u>			_	1	<u>_</u>	_	<u>_</u>						<u></u>		<u>!</u>	<u>_</u>		<u> </u>	<u>_</u>	_	-		_	<u> </u>	<u>+</u>
7776R1		<u>₹</u>													_			_	=			=				=		_		=			
1 1	1	=							Ξ		_	_	=				_	_	_		=	=	_	=	=	=	_			_	_		
CAP		-2							_						_							_					_	_					

And a second

TABLE 4.9 MANUFACTURING MANHOUR PLANNING ESTINATES FOR XVIS ADVANCED BLADES-HUBS-FLY-BY-WIRE CONTROLS PROGRAM

		DEV M/HRS ON OF	HRS OFF		INSTR	ВЕИСИ	1001	1001	9	PLMG.	•	e	
IASK	ACTIVITY	SITE	SITE	BLADES	CAL 18.	1651	DESIGN	7. 8	TECH	LIAISON	ن ض	₹ .	IOI VI
***	FAB (17) ROTOR BLADES	•	•	38,202	2,030	7,654	9,838	49,188	3,450	9,417	10,866	6,310	136,965
-	FAB (6) ROTOR BLADES (OPTION)	•	٠	8,916			•	ı	1,150	865	1,382	\$80	12,893
~	FAB (8) ROTOR HUB ASS'Y	52,497	ŧ	•	,	6,604	1,053	4,211	2,000	6,141	9,135	4,115	85,757
~	FAB (2) ROIDR NUB ASS'Y (OPTION)	12,242		1	•	•	1	1	1	1,187	1,898	796	16,123
2	FAB (4) SPINNER ASS'Y	3,476	•	t	1	•	250	1,000	•	337	358	291	5,117
~	fly by WIRE (DEFINITION)	•	•	ſ		1	1	•		•	•		•
~	OPERATIONS/QUALIFICATION TESTS	14,954	,	1	,	ŀ	1	1	•	1,450	1,495	972	18,871
4.1	NASA AMES WIND TUNNEL TEST	629	4,525	ı		•	1	t	•	80	1,043	29	905'9
5.1	A/C FAMILIARIZATION COURSE	•	889	•	1	•	•	,	1	0	508	•	968
5 1	AIRCRAFT FAB/MOD/ASS'Y	12,131		•	•	•	1	1		1,177	1,213	789	15,310
5.2	FLY BY WIRE CONTROLS (DEFINITION)	ı	ı	ı	•	1	t	ŧ	•	•	•	1	•
5.3	REFURBISH R/H NACTELE PACKAGE	1,192	ı	•	1	1	•	•	•	116	143	11	1,528
5.3	MODIS 178 MAELLE PACKAGE	7,154	•	4	t	•	1	ı	•	694	828	465	9,171
5.4/5.5	A/C 111 DOWN TEST (BOEING)	6,952	•	•	ı	1	ı	•	•	674	1,390	452	9,468
9	FLIGHT TEST (AMES)	•	10,392	•	•	•	•	1	•	0	1,888	•	12,280
9	A/C INSTRUMENTATION PACKAGE	•	1	1	4,000	•	•	1	•	388	480	260	5,128
5.2	SYSTEMS INTEGRATION TEST BENCH	2,700	•	1	•	•	•	ı	•	292	216	176	3,354
1 & 2	Q.A 880	ť	•	•	•	•	•	ı	•	•	•	300	300
:	•												

22,788 32,573 15,612 340,262

114,127 15,605 47,118 6,030 14,269 11,141 54,399 6,600

TOTAL

5.0 SUMMARY OF MATERIAL

TASK 1 - BLADES	QTY REQUIRED
Raw Material Blades	12 or 19
Raw Material Tool Proving Slades and Fatigue Speciments Specimens	5
Miscellaneous Material for Testing (Fixtures)	
Pins - Raw Materisì	24 or 36
Raw Material Pitch Shafts	12
Vendor Tooling: Design and Procurement - Instrumentation Strain Gages	81
TASK 2. HUBS	8 or 10
	QTY REQUIRED PER HUB
Hub - 7075 Aluminum Forged Billet (3.25 thk. x 28.0 Dia.)	1
Rotor Shaft Adapter - 4340 Steel Forged Billet (9.50 x 8.0 L)	1
Hub Mount Plate - 4340 Steel Plate (.625 thk. x 9.00 Dia.)	1
flexure Leaves - SP250-SF1 Fiberglass/Epoxy	(13.5 lbs)
Wear Sheets & Pads - Teflon Impregnated Dacron Cloth	$(.02 \text{ thk x } 2100 \text{ in}^2)$
Spherical Elastomeric Bearing - Parametrically Similar to Mod 222 Cylindrical Elastomeric Bearing	del 3
Hub Reinforcement Shoe - 4340 Steel Plate (1.5 thk. x 4.5 x 10.0)	6
Yoke Fitting = 7075 Aluminum Plate (3.25 thk. x 7.0 x 10.0)	3
Leaf Clamp Pad - Silicone Rubber (.25 thk. x 1.75 x 3.0)	6

SUMMARY OF MATERIAL

TASK 2. HUB (CONTINUED)	PER HUB
Leaf Clamp Plate - 7075 Aluminum Plate (.20 thk. x 2.0 x 5.0)	6
Leaf Fitting - 17 - 4 Ph Stainless Steel Plate (1.50 thk. x 3.50 x 5.0)	3
Monoball Bearing - 1"	3
Monoball Bearing Mount Block - 7075 Aluminum Plate (2.0 thk. x 3.25 x 7.0)	3
Elastomeric Damper - Rubber (.60 thk. x 2.25 x 7.0)	6
Damper Fitting - 4340 Steel Plate (1.50 thk. x 5.75 x 7.50)	6
Yoke Clamp Plate - 4340 Steel Plate (.625 thk. x 3.0 x 7.0)	12
Yoke Beam - SP250-SFI Fiberglass/Epoxy (65 lb. total)	
Hub Mounting Hardware -	
50-20 UNJF x 3.75 Hex Head Bolt, High Strength Stnls. Stee	1 9
625 - 18 UNJF x 3.75 Hex Head Bolt, High Str. Stnls. Steel	3
50 Stnls. Stl. Fl. Washer	18
625 Stmls. Stl. Fl. Washer	6
50 Self Locking High Str. Stnls. Steel Nut	9
625 Stmls. St. Shigh Str. Self-Locking Nut	3
Spherical Elast. Brg. Mtg. Hardware	
50-20 UNJF x 3.75 Hx. Hd. Bolt, High Str. Stnls. Stl.	12
50 Stmls. Stl. Fl. Washer	24
50 Stnls. St. Self-Lkg. Nut High Str.	12
- 1.00 Stmls. Stl. Self-Locking Nut	3

SUMMARY OF MATERIAL

TASK 2. HUB (CONTINUED)	QTY. RFOUIRED PER HUB
Leaf Clamp Hardware	
50 - 20 UNJF x 2.25 Hx. Hd. Bolt High Str. Stnls. Stl.	6
50 Stnls. Stl. Fl. Washer	12
50 Stnls. Stl. Self-Locking Nut	6
Inboard Beam Attachment Hardware	
- Pin - 4340 Steel Bar (2.00 Dia. x 14.0)	6
- Washer - 1.00 Dia. Stnls. Stl.	6
- Nut - Self-Locking - High Str. Stnls. Stl. 1.00 - 12 UNJF	6
Blade Attachment Hardware	
- Pin - 4340 Steel Bar (2.00 Dia. x 8.25)	6
- Washer - 1.00 Stnls. Steel	12
- Nut - Self-Locking High Str. Stnls. Stl. (1.00 - 12 UNJF)	6
Pitch Arm - 7075 Aluminum Forged Billet (4.50 x 6.00 x 14.00)	3
Bushing - 15-5 PH Stnls. Stl. Bar (.75 Dia. x 2.00)	21
Bushing - 15-5 PH Stnls. Stl. Bar (1.00 Dia. x 2.00)	3
Bushing - 15-5 PH Stnls. Stl. Bar (1.50 Dia. x 1.50)	24
TASK 3. FLY-BY-WIRE CONTROLS	
Vendor Design & Engineering DELS Unit	
Vendor Flight-Worthiness Tests	
Vendor Field Support	
Computer Control Unit	1
1 Set Spares	
Test Unit	1

SUMMARY OF MATERIAL

TASK 3. FLY-BY-WIRE CONTROLS (CONTINUED)	QTY. REQUIRED
Wind Tunnel Controller	1
Design/Engine Actuators	
Flight Qualification	
Field Support	
Actuators	17
TASK 4. OPERATIONAL/QUALIFICATION TESTS	
Miscellaneous Rigs/Instruments, etc.	
Telemetry Equipment	
Torquemeter System	
Accelerometers: 2262-25 2271/29941 Q Flex	5 10 4
Slip Rings	6
Fuel Estimated 30,000 gal.	
Miscellaneous Oil - Hydraulic Fluid	
TASK 5. XV-15 MODIFICATION	
Mounting for Actuators (Materials Estimate)	
Cockpit Modifications for Fly-by-Wire (Materials Estimate)	
Installation of Flight Control Runs (Materials Estimate)	
Aircraft Rigging/Static/Functional Tests	
TASK 6. FLIGHT TEST	

No material. Aircraft Spares in addition to those procured herein are assumed GFL

6.0 FINANCIAL AND PRICING INFORMATION

Planning price data is summarized in Table 6.0 for the baseline program and option considered (i.e. 17 blades, 8 hubs and 23 blades, 10 hubs).

Prices are given in constant calendar year 1980 dollars. The baseline price is \$31,779,000 and the option price is \$33,312,000.

Table 6.1 Sheet 1 gives breakdown of total program price in terms of Direct Costs, Overhead Costs and Profit. A 10% fee is assumed. Subcontract costs include costs of fly-by-wire computers, actuators and vendor support.

Table 6.1 Sheets 2 through 9 give similar breakdown by individual task.

Table 6.2 Sheets 1 through 9 give the corresponding pricing information for the program option for 23 blades and 10 hubs.

Table 6.3 gives summary of Material Planning Cost Estimates which are based on prior CH46, CH47 experience where appropriate. A detailed breakdown is presented in the case of Task 3 because this includes major cost elements associated with Subcontract vendor engineering and design support and procurement of the flight control processor and actuator units: These details are given in Table 6.3.1.

TABLE 6.0 SUMMARY OF PLANNING PRICE DATA

Preliminary Design Studes of Advance Composite Blades, Hubs, and Nonmechanical Controls for the Tilt Rotor Aircraft

Task	Baseline (17 Blades 8 Hubs)	Option (23 Blades 10 Hubs)
1	\$ 7,536,000	\$ 8,225,000
2	5,711,000	6,555,000
3	10,216,000	10,216,000
4	1,506,000	1,506,000
4.1	832,000	832,000
5	2,787,000	2,787,000
6	1,784,000	1,784,000
7	\$ 1,407,000	\$ 1,407,000
TOTAL	\$31,779,000	\$33,312,000

6.1 Baseline Program Financial and Pricing Planning Data

Table 6.1 Sheets 1 through 9 gives financial and pricing data for the baseline program which envisions fabrication of 17 blades and 8 hubs (including structural test and proof of tooling specimens).

NASA	CD .	15222	6 2
MCMI	CK-	12233	0-2

	RFE7776 NASA2 10160 F	LANNING PRI	CE TOTAL	PRUSHAM (CY	6.3)
	LABOR HOUFS	CN-SITE	OFF-SITE	TOTAL	TABLE 6.1 Sheet 1 of 9
_	ENGINEERING	1274:6	14560	152360	
	PRODUCT SUPPORT				
	DEVELOPMENTAL MFG TECH	169386	15605	175991	
	TOOL DESIGN	11141		11141	
	TOOL FAE	54399		54399	
	PLAN & LIAISON	2 0736		20736	
	PROD SERVICES	38493		38493	
_	TOOL SEP TEES	9666		7666	
	GUALITY 45 SURANCE	14236		14236	
	GUALITY JUNTROL -DIRECT LAFOR VOLLARS	26246	3947	29293	
	ENGINEERING	212 3227	253246	2376475	
	PROC SUPPORT				
_		2123227	- 253248 -	2376475	
	DEVELOPMENTAL MFG TECH	1688864 95376	164321	1853185 95370	
	TOOL DESIGN	121325		121326	
	TOGL FAB	555957		555957	
	PRODUCTION				
	PROD SERVICES	359910		359910	
	TOOL SERVICES	9 4436		94436	
	CUALITY ASSUR	154633		154:33	
	GUALITY CONTROL	276895	32145	3 29 04 0	
	+ SUE-TOT-MEG +	3552493	196466	3748959	
	DEVEL MATL	933304.		923304	
	TOOL MATL	en Parados Francis de Profesio III. de			
_	SUE-TOCLING				
	PROD MATL OUTSIDE PROD				
	SUS-TOT-WITE	933304		633364	
	OTHER DIRECT COST				
	SUECCRT	6687134		5687114	
	FRINGE BENEFITS	2724346	215863	2946239	
	OVERHEAD COLLARS	272.00			
_	ENGRG SHO	186844	7.7986	18-6456	
	MFG CHD	4973489	29475	5112959	
	MATL OHD	22678:73	713-35	23 4 1 1 1 2 5	
	ADM EXPENSE	2358520	76235	2434755	
	G AND A SASE	25036593	809270	25845863	
_	GEA EYPENSE	1477452	54221	1731473	
	OTHER COSTS				
	GEAR TYRE MATE				
	PACKAGING				
	P.L.I.		243454	005100:0	
	PROFIT	27647349 2764734	86349	255108AC 2551183	
	PROFIT FCCM INPLANT	391434	25955	417389	
	FCCM OUTFLINT				

142165

7536274

FCCM OUTPLANT

142165

7536274

		E :0/:5/++ @ASSLINE	
RFE 7776 MASA2-19160	PLANNING PR	ICE T45K 2(CY 875)	
	ON-SITE	OFF-SITE TOTAL	Table 6.1
LABOR HOURS	21767	21700	Sheet 3 of 9
PRODUCT SUPPORT			
DEVELOPMENTAL	62578	62578	
MFG TECH	2255	2000	
TGOL DESIGN	13 °3 52 11	1303 5211	
PRODUCTION			
PLAN & LIAISON	6478	6478	
PROD SERVICES	15019	15019	
QUALITY ASSURANCE	3051 4506	4506	
QUALITY CONTROL	9493	9493	
ENGINEER ING	332941	332941	
PROD SUPPORT	232941	732941	
DEVELOPMENTAL	658946	658946	
MFG TECH	28901	28907	
TOOL 356161	14195	1415>	
TOOL FAE	53256	53256	
PRODUCTION PLAN 5 LIMISCH	64262	. 64362	
PROD SERVICES	149428	140429	
TOGL SERVICES	29808	29808	
CUALITY ASSUR	46755	48755	
QUALITY CONTROL SUB-TOT-MFG *	100151 1138696	100151 1138696	
MATERIAL COLLARS	1136676	1136039	
DEVEL MATE	295310	295300	
SUS-TOCLING			
PROD MATL			
OUTSIDE PRCC		*****	
OTHER DIRECT COST	2953 **	295305	
TRAVEL	10235	19235	
FRINCE SENERITS	7:6386	7:6386	
OVERHEAD DOLLARS			
ENGRG OHD	292988	292988	
MATE CHO	13771		
ADM BASE	4075420	4.75420	
ASK EXPENSE	423644	423244	
G AND A BASE G&A EXPENSE	4499264 301451	4499264 3:1451	
OTHER COSTS	001-01		
1 DWA			
GFAE TYPE MATL			
P.L.I.			
TOTAL COST	5096015	5095315	
BROE IT	505672	579610	
FCCM INPLANT	105677	1-5677	
FCC= 001PCA-1	57::284	5711254	
	-		

			NASA C	R-152336-2
	COST AND/OR FRICE SUM	TAC Y 34"	E 12/15/60 BASELINE	
	RFE 7776 NASA2 10160	FLANKING FR	ICE TASK 3 (CY 808)	•
	LAECE HOUFS	ON-SITE	OFF-SITE TOTAL	Table 6.1 Sheet 4 of 9
_	ENCINEERING	3.286		
	PRODUCT SUPPORT	_		
	DEVELOPMENTAL MEG TECH	<u> </u>	ţ.	
	TCOL DESIGN	ć	Ċ	
	TCCL FAB	C	o o	
	PLAN & LIAISON	C	0	
	PROD SERVICES	<u> </u>		
_	TOOL SERVICES			
	QUALITY ASSURANCE	0.5	2	
	QUALITY CONTROL DIRECT LAFOR GOLLARS		· ·	
	ENGINEERING	465097	465097	
	PROD SUPPORT	A (E (0 7	A C E 607	
	DEVELOPMENTAL	*****		
	MFG TECH			
	TCOL DESIGN			
	TCGL FAB PRODUCTION			
	PLAN & LIAISON			
	PROD SERVICES			
	TOOL SERVICES			
	QUALITY SCHTROL			
	+ SUB-TOT-MFG +			
_	DEVEL MATE			
	TOOL MATE			
	SUE-100L1N6			
	PROD MATL Outside Prod			
	- SUSTEE TOT-NUTL			·
	OTHER DIRECT COST		****	
	SUBCONT	6687104 7350E	6687124	
	FRINGE BENEFITS	223247	223247	
	OVERHEAD DOLLARS		4.50.765	
_	MFG DHD	4.255 2	4.72.85	
	MATL OHD			
	ADM BASE	7856238	7859238 617257	
	ADM EXPENSE G AND A FASE	817257 8675495	817257 8675495	
	GIA EXPENSE	591258	591259	
	OTHER COSTS			
	IDWA GEVE TYPE MATE			
	PACKAGING			
	P.L.I.			
_	TOTAL COST	925675	9256753 925675	
	PROFIT FCCM INPLANT	925675 33422	33422	
_	FOON OUTPLIAT			
	SALES PRICE	10215850	10215850	
				UNIGINAL PAGE IS

z.

RFE 7776 NASA2 1.16	O PLANNING PR	ICE TASK 4 (CY 81%)	
LABOR HOURS	GN-SITE	OFF-SITE TOTAL	Table 6.1 Sheet 5 of 9
ENGINEERING	668 %	963	Sheet 5 O.
PRODUCT SUPPORT			
DEVELOPMENTAL	1 4954	14954	
TOOL DESIGN	-	2	
TCOL FAE	ū	Ĺ	
PRODUCTION			
PLAN & LIAISON	1450	1450	
PROD SERVICES	3589 673	3589	
QUALITY ASSURANCE		972	
GUALITY CONTROL	1495	1495	
SIRECT LARGE BOLLAR	•		
ENGINEEPING	130665	130665	
PROD SUPPORT	110//5	130//5	
DEVELOPMENTAL	13 7665 157466	137665 157466	
DEVELOPMENTAL MFG TECH	15/466	15/466	
TOOL DESIGN			
TCOL FAR			
PRODUCTION			
PLIN S LIAISON	14394	14394	
PROC SERVICES TOOL SERVICES	33557 6575	33557 6575	
CUALITY ASSUR	1:517	17517	
QUALITY CONTROL	15772	15772	
. SUB-TOT-MFG .	238271	238271	
DEVEL MATE	174500	174800	
TCOL MATL	1,7531	1,4615	
SUS-TOCLING			
PROD MATL			
OUTSIDE PROD		. 7	
ATHER DIRECT COST	174830	174800	
OTHER DIRECT COST FRINGE BENEFITS	177089	177:89	
SALLOS CASHAS			
ENGRG OHD	114985	114985	
MFG OHD	333579	333579	
ACH DISE	594589	994589	
ADM BASE ADM EXFERSE	103437	1:3437	
G AND A EASE	1098:36	1398336	
GRA EXPENSE	73568	73568	
OTHER COSTS			
GEAF TYEE MATE			
GFAE TYPE MATL PACKAGING			
PALVIV			
TOTAL COST	1346394	1346394	
PROFIT	134639	134639	
FCCM INDIANT	34775	24.77E	
FCCM GUTPLANT	1505536	1595808	
SALES PRICE	1505808	15 356 18	

	0001 100//5 24105 0	UNMARY DAT	F//	NASA CR-1	
		V			
	RFE7776 NASA2 10160	PLANFING PRI	CE TASK 4.	1 (CY 8(1)	
		ON-SITE	OFF-SITE	TOTAL	Table 6.1
	LABOR HOUFS	1 27 2 2			Sheet 6 of 9
	PRODUCT SUFFORT	1,360	12((11660	
	DEVELOPMENTAL	829	4525	5354	
_	MFC TECH	:		:	
	TOOL DESIGN	د 0		č n	
_	FROSUCTION				
	PLAN & LIAISON	80		80	
	PROD SERVICES	199		199	
	QUALITY ASSURANCE			29	
	QUALITY CONTROL	92	951	1043	
	ENGINEER ING	153756	21125	174883	
	PROC SUPPORT				
-	CEVEL COMENTAL	153750	21125	174003	
	DEVELOPMENTAL MFG TECH	6729	47648	56377	
_	TOOL DESIGN				
	TOOL FAB				
	PRODUCTION	754		75.4	
	PROD SERVICES	1861		1861	
	TCOL SERVICES	361		361 314	
	QUALITY CONTROL	971	10033	11004	
	• SUS-TOT-MFG •	13030	57681	75711	
	DEVEL MATL				
	TOOL MATL				
_	SUE-TEGLING				
	PROD MATL OUTSIDE PROD				
_	- SUE-TOT-MITL -				
	OTHER DIRECT COST	107771		103331	
	TRAVEL FRINGE REWEFITS	103331	3.7627	103331	
	CVEPHEAD DOLLARS		•		
	ENGRG OHD	135307	3169	138476	
	MATL OHE		· · · · ·		
	ADM BASE	5:3726	128454	632180	
_	G AND A BASE	556114	141813	65747 697927	
	G&A EXPENSE	37268	9501	46761	
-	OTHER COSTS				
	IDWA GFAE TYPE MATL				
_	PACKAGING				
	P.L.I.				
	TOTAL COST	593374 56737	151314	744688	
	FOCK INFLANT	7564	£365	13333	
	FCCM OUTPLANT	445675	17.014		
			1 1 1 1 1 4	- COALD	

			NASA CR-	152336-2
COST : NO/OF PFICE SUM	N 7E A - D 7.1	E 12/15/6"	SASSETIVE	
RFE 7776 NASA2 19169	PLANNING PR	ICE TASK 5	(CY ecs)	
LABOR HOURS	ON-SITE	OFF-SITE	TOTAL	Table 6.1
ENGINEER INC	11649	576:	17430	Sheet 7 of
PRODUCT SUPPORT				
DEVELOPMENTAL	30129	688	32817	
TOOL DESIGN	ć			
TCOL FAB	č.		3	
PRODUCTION				
PLAN & LIAISON	2923		2923	
PROD SERVICES	7231		7231	
TOOL SERVICES	1386		1356	
GUALITY ASSURANCE GUALITY CONTROL	1959 3620	278	1959 4028	
CIRECT LAFOR COLLARS	3821	2 :: 0	4726	
ENGINEERING	166310	95888	262198	
PROD SUPPORT		-		
- SUE-TOT-ENGE	166310	550A6	262195	
DEVELOFMENTAL	317258	7245	324503	
MFG TECH				
TCOL FAE				
PROBUCTION		¥.		
PLAN & LIAISON	29556		2006	
PROD SERVICES	67610		67610	
TCCL SERVICES	1324€		13248	
CUALITY ASSUR	31196	21.21	21176	
• SUB-TOT-MFG +	488639	2194 9439	42495 - 498048	
MATERIAL DOLLARS	400007	7437	476.46	
DEVEL MATL	45820		45 82 5	
TOOL MATL				
SUP-TCOLING				
PROD MATL Outside Prod				
SUSTITUTE PROD	A5225		A5 42 *	
OTHER DIRECT COST				
TRAVEL	101000		1.1390	
FRINCE SENEFITS	3:436:	5:557	364516	
OVEPHEAD DOLLARS				
ENGRG CHO	146353	14383	163736	
MATL OHD	68A 753	1416		
ADM BASE	1917686	171683	2:72369	
ADM EXPENSE	197671	17855	215526	
S AND A PASE	2098357	189538	2287895	
GLA EXPENSE	14 0590	12699	153289	
OTHER COSTS				
IDWA				
GFAE TYPE MATL				
P.L.I.		70		
TOTAL COST	2284767	2:2237	2487764	
PEOFIT	226477	3-224	:407::	
FCCM INPLANT	46557	4748	51345	
FCCM OUTPLANT	2554861	25.72	279725:	
**************************************			C101-5	

COCT (ALC/18 E81CE 80	UNIEW	F 10/18/5	NASA CR-	152336-2
RFE7776 %4842 10160	FLANNING PRI	CE TASK É	(CX 831)	
LABOR HOUPS	ON-SITE	OFF-SITE	TOTAL	Table 6.1 Sheet 8 of 9
PRODUCT SUPPORT DEVELOPMENTAL	4000	19392	14392	
TOOL DESIGN TOOL FAR PRODUCTION	5		0	
PLAN & LIAISON PROC SERVICES	388 960		388 960	- ,
GUALITY ASSURANCE GUALITY CONTROL	260 461	1886	260 260 2358	
ENGINEERING PROD SUPPORT	149878	111510	261388	
DEVELOPMENTAL MEG TECH TOOL DESIGN	149678 42127	111516	151546	
TOCL FAB PRODUCTION PLAN - LINICA	2645		3640	
PROC SERVICES TOOL SERVICES CUALITY ASSUR	2976 1759 2013		8975 1759 2013	
QUALITY CONTROL SUE-TOT-MFG * MATERIAL EGLLAGE	5964 64581	19918 129346	24982 193927	
DEVEL MATE TOOL MATE SUBSTOCKING				•
PROD MATL OUTSIDE PROD SUB-TCT-NATL				
OTHER DIRECT COST TRAVEL FRINGE PEREFITS	423:56	115611	423756	
OVERHEAD DOLLARS ENGRG OHD MEG OHD	131893	16727	148620	
MATL OHD ADM BASE ADM EXPENSE	962761 130137	392596	1355357	
G AND A BASE G&A EXPENSE OTHER COSTS	1062888 71213	433426 29040	1496314	
IDWA GFAE TYPE MATL PACKAGING				
TOTAL COST	1134101	462466	1596567 159657	
FCCM INPLANT FCCM OUTPLANT SALES FRICE	12537	14752	27285	
3-	42		5 T T T	

-

	v			-152336-2
SSST AND/OR PRICE SUN	1 AMM 2 2 2 2 2		EASELINE .	
RFE7776 NASA2 10161 P				T.1.1. 6.1
LAECR HOURS	CN-SITE	OFF-SITE	TOTAL	Table 6.1 Sheet 9 of
PRODUCT SUPPORT	5 4 7 5 1		50.00	
DEVELOPMENTAL	Ç-		2	
TOOL CESIGN	3		:	,
TOOL FAB	5		3	
PLAN & LIAISON	8		٥	
PROD SERVICES				
QUALITY ASSURANCE	٥		. 0	
GUALITY CONTROL			c	
ENGINEERING	421591	24725	446316	
PROD SUPPORT	421581	CA705	446716	-
DEVELOPMENTAL				
MFG TECH				
TOCL FAB				
PRODUCTION PLAN & LIAISON				
PROD SERVICES				
TCOL SERVICES				
QUALITY CONTROL				
+ SUB-TOT-MFG +				
DEVEL MATL				
TOCK MATE				
PROD MATL				
OUTSIDE PROP				
OTHER CIRECT COST	35533		35533	
TRAVEL SELEFITS	202364	11068	2:4233	
OVERHEAD DOLLARS ENGRG CHD	371385	3709	374729	
MEC CHO	3713/15	2107	51-139	
MATL CHO ADM BASE	1030488	4.03.02	1070795	
ADM EXPENSE	1031429	4151	111765	
G AND A PASE	1137659	-4493	1182152 79204	
GRA EXPENSE	76223	2981	17234	
IDWA GFAE TYPE MATL				
FACKAGING				
P.L.I. TOTAL COST	1213882	47474	1261356	
Page II	121789	4747	126135	
FCCM INPLANT FCCM OUTPLANT	18497	1046	19543	
SALES PRICE	1353767	53267	14-7:34	
	43			

_				NA:	SA CR-152336-2
C	OST AND/OR PRICE	SUMMARY DATE	02/15/9	O OPTION	
۵	FE7776 '1542 1016	O PLATE ING PRIC	CE TOTAL	DEGGETA ICA	9057
_	TEUE HOlles	71 - 177	^FE-017F	זרדטן	
•	ENGINEERING	1374 00	14=60	15 23 4 0	
	PRODUCT SUPPORT				
	DEVELOPMENTAL	181544	156 05	197149	Table 6.2
	MEG TECH Tool design	66 00 111 41		6600 11141	Sheet 1 of 9
	TOCL FAR	54799		54399	
	PRODUCTION			*	
	PLAN & LIAISON	227 98		22788	
	PROC SERVICES	4 35 71		4 35 71	
	TOOL SERVICES OUTLITY ASSURANCE	10617 F 15612		10617 15612	
_	QUALITY CONTROL	295 26	3047	32573	
0	IPECT LAPOR DOLLA		50		
	ENGINEEPING	2123227	2532 48	2776475	
	PRCD SUPPORT				
	· SUP-TOT-ENGR ·	2123227	253749	2376475	
_	DEVELORMENTAL MEG TECH	95370	144321	95370	
	TOOL DESIGN	121726		121326	
	TOOL FIR	555=57		555957	,
	PROTUCTION				
	PLAM & LIAISON	226057		226057	
_	TOOL SERVICES	103728		103728	
	GUALITY ASSUR	168= 22		16 8922	
	BUALITY CONTROL	311499	321 45	343644	
	· SUR-TOT-MEG ·	1001006	196466	409R372	
-	ATERIAL COLLAPS				
_	TOOL MITE	1114944		1114946	
	SUF-TOOLING				
	PR OF WETL				
	OUTSIDE PPOD				
	. SUE-TOT-YATE .	1114946		1114946	
	THER DIRECT COST	66871 24		6697104	
	RAVEL	748= 74		746974	
	PINCE PENEETTS	28 920 64	215063	3107907	
	AEEHETD JUFFTE			12 2 2 2 2	
	ENGRG OME	1040040	37008	1 = 1 6 4 2 9	
	MATE OND	5467668	254 70	5457135	
	CH SASE	23684783	733035	24417415	
	ADM EXPENSE	2463176	76235	2579411	
G	INC A PACE	26147550	800270	2695682	
	RS 4 EXPENSE	1751==6	54721	1-06107	
7	THER COSTS				
	IDWA GF4E TYPE MATL				
	PACKAGING				
_	P.L.I.				
	OTAL COST	29014391	663491	29877882	
7		2901435	56340	2257757	
7	5500 115			4	
7	FCCY INPLANT	419789	386 86	445343	

		NASA	CR-152336-2
COST AND AUD TECO	CE SHANTEN CTL	E 02/15/PC OPTION	
255 2774 1/512	10160 21 40" 1" C PE	ICE TESM 1 (CY Ans)	
4-1 1/2 -41/2	10100 - 2 36 31 0	10.000	
	U+1-6 1+E	SEE-CITE TOTAL	
Freds monse			
ENUINE EDINU	19900	19900	
DE SUICE SUPPO			
LE A E TO DAE SILVE		56=12	Table 6.2
MEG TECH	45.00	4600	Sheet 2 of 9
TOOL DESTEY	97 00	45168	
TOOL FAP	49188	49168	
PRODUCTION PLAN & LIAISO	10282	10282	
PROC SERVICES		13635	
TOOL SERVICES		4770	
QUALITY ASSUR		7000	
CUALITY CONTR		12248	
DIRECT LAPOR NO	LL 4PS		
ENGINEEPING	3029R7	302987	
PRCD SUPPORT			
+ 5(IB-TOT-ENGR		702967	
DEVELCEMENTAL		598230	
MEG TECH	66470	66470	
LOCF DESIGN	107136	107136 502701	
TOOL FAP	502701	5027113	
PRODUCTION PLAN & LIAISO	101=97	101067	
PROD SERVICES		127487	
TOOL SERVICES		46603	
CUALITY ASSUR		76714	
RUALITY COMTE		129216	
· SUF-TOT-MEG		1756554	
MATERIAL POLLA	•		
DE NET ATT	E 7 20 24	577024	
TOOL MITL			
SUF-TOOLING			
ביים אנדן			
OUTSIDE PECA		E 7 20 24	
• \$UP-TOT-MATE		532824	
TEAVEL	2*14	2314	
EBINGE BENEELLS		5914	
OVERHEAD DOLLAR			
באפשה שהנ	5 + 4 c Se	~6662°	
MEG UML	24 5 01 76	2459176	
MATL CHE			
TUN FTZE	5776240	5776240	
IDM EXPENSE	6 0 0 7 2 9	600729	
G AND A PASE	4276060	6776960	
CRI EXELUCE	4 7 77 57	427257	
COSTS			
IDVA			
GEIS TYPE MAT	L		
PACKALING			
TOTAL COST	7327550	773 7050	
TOTAL COST	. 723705	73 77 95	
FCCW Juntana	163706	153705	

FULL DILLEDI VA			
SALES FRICE	E224-40	8224540	

COST AMO/OF PRICE SUM	MARY CAT	5 02/15/90 OPTION	
are 7776 "4542-19160	b Carrell G be	ILE ATON SICA SCEI	
•			
	6,-4115	SEE-CITE TOTAL	
LABCE HOUSE		*****	
ENGINEERING	21700	21700	
DOUCHCT SUBFORT			
DEVELOPMENTAL	74920	74820	Table 6.2
MEG TECH	21 CO	. 2000	
TOOL DESIGN	1707	13 ? *	Sheet 3 of 9
TOOL FAB	5?11	5211	
PRODUCTION			
PLAN & LIAISON	7565	7665	
PROD SERVICES	17257	17957	
TOOL SERVICES	35 01	36 01	
GULLITY ASSURANCE	57 02	<u>51/12</u>	
CUALITY CONTEDL	11391	11.31	
DIRECT LAPOR DOLLARS			
ENGINEERING	737541	732441	
PROC SUPPORT			
· SUP-TOT-FYSP ·	332=41	732941	
DENET DEALMATE	7879 45	7 = 7 = 5 =	
MEG TECH	26300	26930	
TOOL DESIGN	141 00	14190	
TOCL FIR	53756	53256	
PRODUCTIO*	. 5 5.	302.0	
PLAN & LISISCA	76137	76037	
בסנט פנבהונבה	167055	16795	
TOOL SERVICES	15182	35182	
	57768	57368	
GULLITY ASSUR		120175	
GUALITY CONTROL	120175		
SUP-TOT-MEG .	134 09 61	1340861	
MATERIAL POLLARS		7/1522	
CEVEL MATE	36 15 02	761505	
TOOL MATE			
SUP-TOOLING			
PROD MITL			
OUTSIDE PECO		*****	
. SIIG -T CT - MATL .	361502	361502	
STHER DIPECT COST			
TRAVEL	10735	10235	
FRINGE BENEFITS	603-55	F 0 3 4 2 5	
ONERHEAD DUFFEE			
ENGRG CHC	305000	25500	
MEG CHO	1677205	1 4 7 7 2 2 5	
MATE OHO			
ADM BASE	4657655	4657655	
ADM EXPENSE	464,06	424326	
G AND A PAST	5142051	5142051	
GE EXEFNEE	144517	34451	
STHER COSTS			
1012			
GFAE TYPE MATL			
PACKAGI"G			
P.L.I.			
TOTAL COST	F848070	5.04.0.70	
PROFIT	E 4 2 5 7	504507	
	121851	121251	
ECCH THOUANT	1/19-1		
FCCM OUTPLANT SALES PRICE	6554722	6554728	
	B 1 7 8 / 7 #	6534128	

	e oblice Shany		2/15/80 OPTION	
DEE 7776 .	1611 10140 80	ing the beite	-7 ch s (UA 3 L4)	
		CHARITE OF	F-0175 TOTAL	
FTBUE HOUSE				
ENGINEER		30280	30280	
PROPUCT				<u>·</u>
DEVELOR		C.	<u> </u>	Table 6.2
MEG TECH		0	Ţ	Sheet 4 of
TOOL PAR	The same of the sa	- 2		
PRODUCTI		ů.	U	,
PLAN & L		0		
BBCC SEE		· · · · · · · · · · · · · · · · · · ·	X	
TOOL SEE	VICES			
GULLITY	1 SSUR ANCE	ņ		
BUALTTY		t	5	
	OF DOLLERS			
ENGINEER		465007	465097	
בה נכ פנים				
• 5U=-TOT		465097	46 £ 0 € 2	
MEG TECH				
TOOL DES				
TOOL FAR				
PE COUCT!				
PLAN ! L				
פחן קרם				8.6-5-1
TOOL SER	VICES		,	
GUALITY				
QUEL ITY				
• SUE-TOT				
"ATEFIAL D				
TOOL MAT				
TOOL MAT				
509-101L				
OUTSIDE				
. SUF-TOT				
CTHER FIRE				
SUPCONT		66 871 04	6687104	
TRAVEL		73505	73505	
ESTVEE BE.		223247	223247	
JAEKHETD J				
ENGRG OH	5	4 505 62	400285	
MATE OHD				
ADP PASE		705 92 30	795.633.0	
TOP EXPE		7858138 17257	7858238 917257	
G ANT A F		-6754 05	A475405	
GAL EXPE		£ £ 12 € £	561256	
CTHER COST				
IDKS				
GF AE TYP	E MATL			
PACKTEIN	r.			
F.L.T.				
TOTAL COST		7256753	9256753	
PROFIT		925575	925675	
בנני זייר		334 22	13422	
SALES PE				
341.4	11:	0215850	10215650	

REF 7776 "AS: 2			
: ///B ASZ	10160 ELANNING EF	TOT TICK 4 (CY 505)	
LAFOR HOURS	0.4-5.175	DEE-SITE TOTAL	
-	96.00	96.00	
ENGINEERING	86.80	66 6 0	
PRODUCT SUPP		1,254	
DEVELOPMENTA		14954	Table 6.2
MEG TECH	0	ę .	Sheet 5 of 9
TOOL DESIGN	<u> </u>		
TOOL FAR	0	C	
PRODUCTION			
PLAN & LIAIS		1450	
DEUD SERVICE		3589	
TOOL SERVICE		6.73	
GUALITY ASSE		9 72	
GUALITY CONT		1495	
DIRECT LAPOR D	OLLAPS		
ENGINEERING	130665	130665	
ד מים בנוף ביחד			
. SUB-TOT-ENG		130665	
CEVELOPMENTA		157466	
MEG TECH			
TOOL DESIGN			
TOOL FAR			
PRODUCTION			
PLAN & LIAIS	14764	14384	
		73557	
POOD SERVICE			
TOOL SERVICE		6575	
GUALITY ASSU		10517	
QUALITY CONT		15772	
* SUP-TOT-MEG		238271	
MATERIAL COLLA			
DEVEL MATE	174=00	174500	
TOOL MITL			
SUF-TOOL ING			
PROD MITL		*	
OUTSIDE PROT			
. SUE -TCT-MST	L + 174900	174800	
STHER DIRECT C	057		
FRINGE BENEF !!	177089	177029	
GVERHEAD SOLLA			
ENGPG OHD	114995	114955	
MEG OHO	717:76	733576	
MATL CHO	• •		
ACM FASE	2045.00	C045 pc	
ADM EXPENSE	103437	103437	
G AND A PASE	1098026	1098025	
G&1 EXPENSE	73568	73569	
OTHER COSTS			
IDV 4			
GESE TYPE MA	T		
PACKAGING			
P.L.T.			
TOTAL COST	1346374	1346394	
PROFIT	134439	174679	
FORM IMPLANT		24775	
ECCA ULITALIN			
SILES DELCE	1505908	1505808	
SIFES BEICE	1505808	1505868	
	1505908	1505808	ORIGINAL PAGE
	1505808	1505868	ORIGINAL PAGE

CC	ST AMBIOR PRICE	CAMATEA	2143	02/15/90	מתודקה	NASA CR-152336-2
25	F7776 1212 101	60 EF 17.117		E TASK 4.	1 104 - 05	1
		n	בַּדְנַי	0FE-01TF	7.7.1	
LV	-0 € + 0 <i>0</i> € 5					
1	ENGINEERING	10	3 20	12 = 0	11600	
1	PRODUCT SUFFORT					
	DEVELOPMENTAL		: 5c	4525	5354	
	MEG TECH		Ü		0	Table 6.2
	TOOL PESTEN		11		•	Sheet 6 of 9
	TOCL FAE		0		· ·	
	PRODUCTION		•		•	
	PLAN & LIAISON		9.9		80	
	PROD SERVICES		100		100	
	TOOL SERVICES		37		37	
	MARILOS A YTI JAIJO	CF	20		20	
	GUALITY CONTROL		05	951	1043	
	RECT LAPER POLL		•		1040	
	ENGINEERING	153	758	21125	174883	
	PROD SHEFORT	1.0			1.4660	
	SUP-TOT-FIRE .	153	758	21125	174843	
	DEVELOPMENTAL		7 70	4764R	56377	
_	MEG TECH	2		41644		
	TOOL DESIGN					
	TOOL FAR					
	PPCTUCTIC*					
	PL 14 6 141574		794		7=4	
	ספטט פֿבפּעייניפֿ		-61		1961	
	TOOL SERVICES		761		361	
	GUALITY ASSUR		114		314	•
	DOTTOS YTLLAUG		71	10033	11004	
	SUS-TOT-MEG .		0.3.0	576 = 1	70711	
	TEPIAL COLLAPS			316-1	,0,11	
	DEVEL MATE					
	TOOL MITL					
	SUF-TOOLING					
	PROD MATE					
	OUTSIDE PROC					
	\$ JTAM-TOT-913					
	אבַם הותנרד נחפד					
	AVEL	103	171		103331	
	INGE PEMEFITS		FP	37827	117865	
	SEATTO COTTAGE	., .		5 1 5 E 1	12/10/0	
	ENGE OHE	135	2 0 7	3160	132476	
	MEE UHD		242	9652	26934	
	MATE OHE				६ प्राः ज च	
	PASE	503	726	129454	632190	
	TOM EXPENSE		128	17359	65747	*
	AND A BASE	556		141813	697927	
	CRE FXDELSE		-60	95 01	46761	
	97200 A3H			7.01	40761	
	inni					
	GEAT TYPE MATL					
	DACK VE IVE					
	P.L.I.					
	TAL COST	507	74	151314	7446 00	
	PROFIT		7.7	15131	74466	
	ECCA TARTAME	-	64	EREC	13333	
	FCC" OUTPLINT		F-		170.0	
	SALES PRICE		75	171514	0704/5	
		66 01	0 (0)	171514	832465	

COST AMD/OF PRICE SUMM	APY DAT	E 02/15/80	CELIUN	NASA CR-152336-
9FE 7776 1.1512 10160 F	F TWALL & DB	ICE TASK 5	ICA cúel	
			and the second of	Table 6.2
	CMTE	~FF-01TF	7771	Sheet 7 of 9
LAPOP HOUFS				
ENGINEERING	11= • 0	5760	17400	
PRODUCT SUPPORT	241 00	600	70017	
DEVELOPMENTAL	10120	Pan	30817	
WEG TECH	0		C	
TOOL DESIGN	<u>C</u>		0	
PRODUCTION	·		G	
PLAN & LIAISON	2923		2923	
PROD SERVICES	7031		7231	
TOOL SERVICES	1356		1356	
QUALITY ASSUPANCE	1959		1959	
QUALITY CONTROL	3620	208	4028	
DIRECT LAPOR DOLLARS	Q-2.V	2 0 8	7020	
ENGINEFPING	166710	958 88	262198	
PROC SUPPORT	170 10	7,70 70	.01174	
* SUE-TOT-ENGR .	166710	956.85	2621 28	
DEVELOFMENTAL	317258	7245	324503	
MEG TECH			01.000	
TOOL DESIGN				
TOOL FAR				
PRODUCTION				
PLAN & LIAISC"	56=96		5:666	
PRCC SERVICES	67610		67610	
TOOL SERVICES	1324F		13746	
QUELITY ASSUP	21196		21195	
QUALITY CONTECL	40301	21 94	42495	
* SUE-TOT-MEG +	90 64 06	24 3 0	499049	
MATERIAL COLLARS				
DEVEL MATE	45070		45820	
TOOL MATE				
SUP - TO OL I " S				
PROD MATE				
OUTSIDE PROS				
- SUB-TOT-MATE .	45-20		45820	
CTHER DIPECT COST				
TRAVEL	101000		101000	
FPINGE BENEFITS	314361	50557	364918	
OVERHEAD COLLARS				
ENGRG CHD	146753	14703	160736	
MEG OHO	684753	1416	695469	
MATL CHO				
ACH FASE	1000646	1716 03	207236=	
TOM EXELNEE	197671	17955	21552F	
G AND A PACE	2099757	1805.18	2297895	
G&4 EXFERSE	140==0	126 00	153920	
OTHER COSTS				
IDEC				
GFAE TYPE MATE				
PACKAGI"G				
P.I.T.				
TOTAL COST	2284767	202237	2487774	
DE OF! T	229477	20724	24 37 11	
FOCY DUTPLINT	46557	4700	51345	
ECCY OUTS UT				
SALES PRICE	2559801	227249	2787050	

COST AND/OR PEICE SUM		E 02/15/80		NASA CR-152336-
RFF7776 : 4512 10160 PI	-			Table 6.2 Sheet 8 of 9
1 / 505 1101156	CN -T ITE	ULE-CITE	TOTEL	
LAPOR HOURS	0-00		1 < 4 00	
ENGINEERING PRODUCT SUPPORT	6 ± 50	64 50	16400	
DE VELOPMENTAL	4100	10352	14750	
		10342	14352	
MEG TECH	C C		C C	
TOOL DESIGN				
TOOL FAR PRODUCTION	0		Ç	
•	3.88		7.00	
PROD SERVICES			388	
	= 60		960	
TOOL SERVICES	1 80		190	
QUALITY ASSURANCE	360		560	
QUALITY CONTROL	4 8 0	1988	2368	
DIRECT LAPOR DOLLAPS	4 4 5 6 7 6			
ENGINEFPING	149978	111510	2613.88	
PROD SUPPORT				
• SUP-TCT-FMGP •	145978	111510	761386	
DEVELOPMENTAL	421.70	100456	151546	
MFG TECH				
TOOL DESIGN				
TOCL FAR				
PP CC UC TIO	7		7116	
PLAN & LIAISON	3: 49		3949	
PROD SERVICES	76		8076	
TOOL SEPVICES	1759		1755	
GUALITY ACCUR	29 13		2612	
QUALITY CONTROL	50.64	10018	24982	
+ SUP-TOT-MFG +	645 91	129346	193927	
MATERIAL DOLLARS DEVEL MATE				*
TOOL MATE				
SUB-TOOLING				
PROD MATE				
* SUP-TOT-MATE *				
TRAVEL	423056		423056	
FRINGE REMEFITS	102940	115611	218551	
SVERHEAD DOLLARS	102-40	110011	514251	
EMBEG OND	171293	16727	148620	
MEG DHD	90013	19402	109815	
MATL CHO	21.5	102	11 7613	
ADM BASE	962761	3°2596	1355357	
ADM EXPENSE	100127	40830	140957	
G AND A FASE	10650 88	433426	1496314	
GF 2 EXPENSE	71213	29040	100257	
OTHER COSTS	11.10	, - 0	10023	
IDA:				
GFAE TYPE MATL				
PACKAGING				
P.L.I.				
TOTAL COST	1174101	462466	1506567	
PROFIT	1174101			
ECCA INDIAMA	113010	46247	150657	
FCCW CUTPL 19T	1 25 37	1475?	27226	
		523465	1783513	
SALES PRICE	1260048			

2FE7776 *4542 10160 PL	ALNITH DET	CE TICK 7	/CV =C*)	7:51: 6.2
4727776 CIAZ 11170 -1		CFF-CITE	TOTAL	Table 6.2 Sheet 9 of
LARGE HOURS	04-115	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.32	
ENGINEEPING	24760	1440	26400	
PRODUCT SUPPORT				
CENEFOLMENTAL	C		C	
MEG TECH	c		. 0	
TOUT DESIGN	0		2	
TOOL FAR	0		0	
PRODUCTION	•		c	
PLAN & LIAISON PROD SERVICES	0			
THOL SERVICES				
QUALITY ASSURANCE	n		c	
QUALITY CONTROL	0		0	
DIRECT LAPOR DOLLARS				
ENGINEERING	421501	24725	446316	
DRUG SUPPORT				
* SUR-TOT-ENGR *	4215 91	24725	446316	
DEAEFOREALT				
MEG TECH				
TOOL DESIGN				
· TOOL FAE				
DR COUCTION				
PLAM & LIAISON PROD SERVICES				
TOOL SERVICES				
GUALITY ASSUR				
GUALITY CONTROL			ORIGINA	L PAGE IS
. SUP-TOT-MEG .			OF POOR	QUALITY.
MATERIAL DOLLARS			· 1 001	QUALITY.
DEVEL MATE				
TOOL MATE				
SUP-TOOLING				
PROD MATE				
* SUF-TOT-MATE *				
OTHER DIRECT COST				
TRAVEL	35533		35533	
FPINGE BENEFITS	202764	11868	214232	
SVERHEAD DOLLARS				
ENGER OHD	371 00	3709	774709	
MEG OHS				
METE OHO				
70× 6452	103 00 06	4 03 02	1070730	
			111362	
ADM EXPENSE	107171	41 91		
G AND A PAST	1137559	444 93	1182152	
GAND A PAST GAL EXFENSE			1162152 76204	
G AND A PASS GAL EXFENSE CTHER COSTS	1137559	444 93		
GAND A PASS GRI EXFENSE CTHER COSTS IDW:	1137559	444 93		
GAND A PASS GRI EXFENSE CTHER COSTS IDV: GRAE TYPE MATL	1137559	444 93		
GAND A PASS GREENSTS THER COSTS TOW: GRAE TYPE MATE PACKAGING	1137559	444 93		
GANC A PASS GREENSE CTHER COSTS IDM: GRAE TYPE MATL	1137559	444 93		
GANC A PASE GREEXFENSE CTHER COSTS IDM: GRAE TYPE MATE PACKAGING P.L.T.	1137559 76323	2991	79204	
G ANC A PASE GREENSE CTHER COSTS IDM: GRAE TYPE MATE PACKAGING POLOTO TOTAL COST PROFIT FORM INPLACT	1137659	2991	79204 1261356	
GANC A PASE GRI EXFENSE CTHER COSTS IDW: GRAE TYPE YATL PACKAGING P.L.T. TOTAL COST PROFIT	1137659 76323 1213192 1213192	47474 47474	79204 1261356 126135	

\$7,566,502

6.3 Summary of Material Planning Cost Estimates

TOTAL MATERIAL COST

This section gives a summary 'n Table 6.3 of overall estimates of material required to accomplish subject program. Where appropriate these data are based on CH-46 and CH-47 experience. This is the case in Task I (Blades). A detailed breakdown for Task 3 is given in Table 6.3.1 because this includes major cost elements associated with subcontractor vendor engineering and design support for development of the flight control processor units. These are based or data from Minnesota Honeywell.

TABLE 6.3 SUMMARY MATERIAL PLANNING COST ESTIMATES

		Cost	Nonrecurring
Task 1	Blades (17)	\$186,400	\$ 78,000
Task 2	Hubs (81)	250,236	22,500
Task 3	Fly-By-Wire		
	o Aircraft	555,678	5,230,262
	o Spares	323,649	
	o Iron Bird	417,391	
	o Qualification	146,824	
	Wind Tunnel Controller	13,300	
Task 4	Operational/Qualification Testing	174,800	
Task 5	XV-15 Modifications	45,820	
Options	(Incremental 6 Blades, plus 2 Hubs)	121,642	

Sheet 1 of 3

TABLE 6.3.1 BREAKDOWN OF FLY-BY-WIRE CONTROL SYSTEM COSTS Based On Information From Engineering And Minnesota Honeywell

Task #3 Fly-By-Wire		Unit Cost	Total Cost	Nonrecurring
Flight Control Processor				
Engineering & Design	A/R	-	-	\$4,000,000
Vendor Flight Worthiness	A/R	-	-	250,000
Vendor Field Support	A/R	-	-	150,000
Test Equipment	A/R	-	-	400,000
Computer Control Unit For A	ircraft			
Flight Control Processor	3	\$85,560	\$256,680	
Rate Gyro Assy	3	5,556	16,668	
Normal Accelerometer Assy	1	4,000	4,000	
Position Transducer Assy	4	1,667	6,668	
Control Panel	1	9,334		
Maintenance Unit	1	40,000	40,000	
Computer Control Unit Spares	s For A	ircraft		
Flight Control Processor	2	85,560	171,120	
Rate Gyro Assy	2	5,556	11,112	
Normal Accelerometer Assy	1	4,000	4,000	
Position Transducer Assy	3	1,667	5,001	
Control Panel	1	9,334	9,334	
Maintenance Unit	1	40,000	40,000	

Sheet 2 of 3

TABLE 6.3.1 (CONTINUED)

		Unit Cost	Total Cost	Nonrecurring			
Computer Control Unit-Test-Iron Bird							
Flight Control Processor	3	\$85,560	\$256,680				
Rate Gyro Assy	3	5,556	16,668				
Normal Accelerometer Assy	1	4,000	4,000				
Position Transducer Assy	4	1,667	6,668				
Control Panel	1	9,334	9,334				
Maintenance Unit	1	40,000	40,000				
Computer Control Unit - Qual. Test							
Flight Control Processor	1	85,5	85,560				
Rate Gyro Assy	1	5,556	5,556				
Position Transducer Assy	1	1,667	1,667				
Wind Tunnel Controller	1	13,300	13,300				
Engine Control Actuators							
Engineering Testing & Flight	A/R	-	-	\$230,086			
Tooling & Planning	A/R	-	•	130,176			
Field Support	A/R	-	-	20,000			
N1 Actuators	A/R	-	-	50,000			
A/C Hardware							
Actuators (Flt Cntl)	8	14,041	112,328				
Actuators (N1)	2	40,000	80,000				
Quadrants	1	15,000	15,000				
Cable Assy	1	15,000	15,000				

Page 3 of 3

TABLE 6.3.1 (CONTINUED)

		Unit Cost	Total Cost	Nonrecurring
A/C Spares				
Actuators (Flt Cntl)	2	\$14,041	\$28,082	
Actuators (N1)	1	40,000	40,000	
Quadrants	1	15,000	15,000	
Iron-Bird-Test				
Actuators (Flt Cntl)	1	14,041	14,041	
Actuators (N1)	1	40,000	40,000	
Quadrant	1	15,000	15,000	
Cable Assy	1	15,000	15,000	
Qual. Test Units				
Actuators (Flt Cntl)	1	14,041	14,041	
Actuator (N1)	1	40,000	40,000	

7.0 REFERENCES

1. NASA CR 152336-1 "Preliminary Design Study of Advanced Composite Blade and Hub and Nonmechanical Control System for the Tilt-Rotor Aircraft". Volume 1 Engineering Studies. Alexander, et al, November 1979 (Boeing Document D210-11569-1)