### MS-C1620 Statistical inference

## 7 Linear regression I

#### Jukka Kohonen

Department of Mathematics and Systems Analysis School of Science Aalto University

> Academic year 2020–2021 Period III–IV

### Contents

- 1 Linear regression model
- 2 Parameter estimation
- Assessing model fit
- 4 Inference for model parameters

### Regression analysis

The aim in regression analysis is to study how the value of a response ("dependent variable") changes when the values of one or more explanatory variables ("independent variables", covariates) are varied.

The name regression comes from the concept of *regression toward the mean* stating that, given independent replications, extremal values tend to be followed by average sized ones.

### Regression analysis, examples

- Does the number of violent crimes depend on alcohol consumption and if it does, how strong is this dependence?
- Does statistics exam score depend on hours slept on the night prior to the exam and if it does, how strong is this dependence?
- Does salary depend on education level and if it does, how strong is this dependence?
- Does a parent's smoking have an effect on the height of a child and if it does, how strong is this dependence?
- Do crime rates depend on income inequality level and if yes, how strong is this dependence?

### Regression analysis, objectives

Possible aims in regression analysis are for example:

- Description of the dependence between the explanatory and dependent variables. What is the type of the relationship? How strong is the dependence?
- Predicting the values of the dependent variable.
- Controlling the values of the dependent variable.

## Simple linear regression

We begin by discussing the simplest (but still extremely useful!) form of regression, linear regression, starting with the case of single explanatory variable.

### Simple linear regression, assumptions

- Consider n observations (pairs)  $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$  of (x, y). Assume, for simplicity, that the values  $x_i$  are non-random (otherwise we need an assumption of *exogeneity*).
- Assume that the values  $y_i$  depend linearly on the value  $x_i$ :

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \dots, n,$$

where the regression coefficients  $\beta_0$  and  $\beta_1$  are unknown constants.

### Simple linear model



Figure: When the values of the variable x increase, the values of the variable y decrease linearly.

## Simple linear regression

The simple linear regression model is usually coupled with the following additional assumptions.

### Simple linear regression, assumptions, continued

- The expected value of the errors is  $E[\varepsilon_i] = 0$  for all i = 1, ..., n.
- The errors have the same variance  $Var[\varepsilon_i] = \sigma^2$ .
- The errors are uncorrelated i.e.  $\rho(\varepsilon_i, \varepsilon_j) = 0, i \neq j$ .
- The errors are i.i.d. (a stronger version of the previous two assumptions).

### Simple linear regression

Under the previous assumptions, the random variables  $y_i$  have the following properties:

- Expected value:  $E[y_i] = \beta_0 + \beta_1 x_i$ , i = 1, ..., n,
- Variance:  $Var(y_i) = Var(\varepsilon_i) = \sigma^2$ .
- Correlation:  $\rho(y_i, y_j) = 0, i \neq j.$
- If we chose to assume that the errors are i.i.d., then  $y_i$  are independent of each other.

## Simple linear regression, parameters

The linear model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \ldots, n,$$

has three unknown parameters: regression coefficients  $\beta_0$ ,  $\beta_1$  and the error variance  $Var(\varepsilon_i) = \sigma^2$ .

These parameters are usually unknown and have to be *estimated* from the observations.

Under the assumption that  $\mathrm{E}[\varepsilon_i]=0$ , for all  $i=1,\ldots,n$ , the simple linear model can be given as

$$y_i = \mathrm{E}[y_i] + \varepsilon_i, \quad i = 1, \ldots, n,$$

where  $\mathrm{E}[y_i] = \beta_0 + \beta_1 x_i$  is the systematic part and  $\varepsilon_i$  is the random part of the model.

# Simple linear regression, parameter interpretation

The systematic part

$$E[y_i] = \beta_0 + \beta_1 x_i$$

of the linear model defines the regression line

"
$$y = \beta_0 + \beta_1 x$$
,"

where  $\beta_0$  (intercept) is the intersection of the regression line and the y-axis and  $\beta_1$  is the slope of the regression line.

- The intercept  $\beta_0$  tells the expected value of the response when the explanatory variable x has the value zero.
- The slope  $\beta_1$  tells how much the expected value of the response variable y changes when the explanatory variable x grows by one unit.
- The error variance  $Var(\varepsilon_i) = \sigma^2$  describes the magnitude of the random deviations of the observed values from the regression line.

### Contents

- Linear regression model
- Parameter estimation
- Assessing model fit
- 4 Inference for model parameters

## Simple linear regression, objective

The aim in (simple) linear regression analysis is to find estimates for the regression coefficients  $\beta_0$  and  $\beta_1$ .

The estimates  $\hat{\beta}_0$ ,  $\hat{\beta}_1$  should be chosen such that the fitted values/predictions,

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i,$$

best match the observations in some suitable sense.

Numerous ways of choosing the "best" estimates exist and the most popular of these is the method of least squares.

### The method of least squares

• In the method of least squares we choose the estimates by minimizing the sum of squared differences between the observations  $y_i$  and the fitted values  $\hat{y}_i$ ,

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2.$$

The solutions are

$$\hat{\beta}_1 = \frac{s_{xy}}{s_x^2} = \hat{\rho}(x, y) \frac{s_y}{s_x}$$
 and  $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$ ,

where  $s_x, s_y, s_{xy}, \hat{\rho}(x, y)$  are the sample standard deviations, the sample covariance and the sample correlation of x and y.

## The estimated regression line

The least squares estimates give an estimated regression line

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

$$= \bar{y} - \hat{\beta}_1 \bar{x} + \hat{\rho}(x, y) \frac{s_y}{s_x} x_i$$

$$= \bar{y} + \hat{\rho}(x, y) \frac{s_y}{s_x} (x_i - \bar{x})$$

- The slope (up or down) of the line is determined by the correlation between the two variables:
  - If  $\hat{\rho}(x,y) > 0$ , the line is increasing.
  - ▶ If  $\hat{\rho}(x,y) < 0$ , the line is decreasing.
  - If  $\hat{\rho}(x,y) = 0$ , the line is horizontal.

### Contents

- Linear regression model
- 2 Parameter estimation
- Assessing model fit
- 4 Inference for model parameters

#### Fitted values and residuals

• Recall that the fitted value of the variable  $y_i$ , i.e. the value given to the variable y by the regression line at points  $x_i$ , is

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i, \quad i = 1, \dots, n.$$

• The residual  $\hat{\varepsilon}_i$  of the estimated model is the difference

$$\hat{\varepsilon}_i = y_i - \hat{y}_i, \quad i = 1, \dots, n$$

between the observed value  $y_i$  (of the variable y) and fitted value  $\hat{y}_i$ .

 The smaller the residuals of the estimated model are, the better the regression model explains the observed values of the response variable.

## Example



Figure: Estimated regression line minimizes the squared sum of the residuals.

### Residual mean square estimation

Under the regression assumptions, an unbiased estimate for the error variance  $Var(\varepsilon_i) = \sigma^2$  is given by

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (\hat{\varepsilon}_i - \bar{\hat{\varepsilon}})^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{\varepsilon}_i^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

### Coefficient of determination

- Coefficient of determination (also known as "R-squared") gives a single number with which to assess the accuracy of the model fit.
- Coefficient of determination is defined as

$$R^2 = 1 - \frac{SSE}{SST} = (\hat{\rho}(y, \hat{y}))^2,$$

where

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
 and  $SSE = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$ 

measure the variation of the data "before" and "after" fitting the model.

- If SSE is small compared to SST, the model has managed to *explain* a large proportion of the variance in the data.
- We always have  $0 \le R^2 \le 1$ .

### Properties of the coefficient of determination

The following conditions are equivalent:

- The coefficient of determination  $R^2 = 1$ .
- All the residuals vanish,  $\hat{\varepsilon}_i = 0$ , i = 1, ..., n.
- All the observations  $(x_i, y_i)$  lie on the same line.
- The sample correlation coefficient  $\hat{\rho}(x,y)=\pm 1$ .
- The regression model explains the variation of the observed values of the response y completely.

The following conditions are equivalent:

- The coefficient of determination  $R^2 = 0$ .
- The regression coefficient  $\hat{\beta}_1 = 0$ .
- The sample correlation coefficient  $\hat{\rho}(x,y) = 0$ .
- The regression model completely fails in explaining the variation of the observed values of the dependent variable *y*.

## Model diagnostics

We will discuss the checking of the model assumptions ("linear model diagnostics") next time, when we have first defined multiple linear regression.

### Contents

- Linear regression model
- 2 Parameter estimation
- Assessing model fit
- Inference for model parameters

### Inference for model parameters

We next go discuss *confidence intervals* and *hypothesis tests* for the intercept  $\beta_0$  and slope  $\beta_1$  of the simple linear regression model.

In addition to our earlier assumptions, the following results assume that

Simple linear regression, assumptions, continued

- The errors  $\varepsilon_i$  are i.i.d.
  - The errors  $\varepsilon_i$  are normally distributed.

The assumption of normality can be replaced by a *large enough* sample size.

### Slope, hypothesis test

The following test is used to test whether the slope parameter  $\beta_1$  of the simple linear model equals a given value (most often zero).

### Slope test, assumptions

(The assumptions of slides 8 and 23.)

### Slope test, hypotheses

$$H_0: \beta_1 = \beta_1^0 \quad H_1: \beta_1 \neq \beta_1^0.$$

## Slope, hypothesis test

### Slope test, test statistic

• The *t*-test statistic,

$$t = \frac{\hat{\beta}_1 - \beta_1^0}{\frac{\hat{\sigma}}{\sqrt{n-1}s_x}},$$

where  $\hat{\sigma} = \sqrt{\mathrm{Var}(\varepsilon_i)}$  (see slide 19) and  $s_x$  is the sample standard deviation of x, has under  $H_0$  Student's t-distribution with n-2 degrees of freedom.

• Under  $H_0$ , the expected value of t is 0 and large absolute values of the test statistic suggest that the null hypothesis  $H_0$  does not hold.

### Slope, confidence interval

A  $(1-\alpha)100\%$  confidence interval for the slope  $\beta_1$  of the regression line is given as

$$\left(\hat{\beta}_1 - t_{n-2,\alpha/2} \frac{\hat{\sigma}}{\sqrt{n-1}s_x}, \hat{\beta}_1 + t_{n-2,\alpha/2} \frac{\hat{\sigma}}{\sqrt{n-1}s_x}\right),$$

where  $t_{n-2,\alpha/2}$  is the  $(1-\alpha/2)$  -quantile of the  $t_{n-2}$ -distribution.

### Intercept, hypothesis test

Testing whether the intercept parameter  $\beta_0$  equals a given value is also sometimes of interest.

Intercept test, assumptions

(The assumptions of slides 8 and 23.)

Intercept test, hypotheses

$$H_0: \beta_0 = \beta_0^0 \quad H_1: \beta_0 \neq \beta_0^0.$$

### Intercept, hypothesis test

#### Intercept test, test statistic

• The *t*-test statistic

$$t = \frac{\hat{\beta}_0 - \beta_0^0}{\frac{\hat{\sigma}\sqrt{\sum_{i=1}^n x_i^2}}{\sqrt{n(n-1)}s_x}},$$

where  $\hat{\sigma} = \sqrt{\mathrm{Var}(\varepsilon_i)}$  (see slide 19) and  $s_x$  is the sample standard deviation of x, has under  $H_0$  Student's t-distribution with n-2 degrees of freedom.

• Under  $H_0$ , the expected value of t is 0 and large absolute values of the test statistic suggest, that the null hypothesis  $H_0$  does not hold.

### Intercept, confidence interval

A  $(1-\alpha)100\%$  confidence interval for the intercept  $\beta_0$  of the regression line is given as

$$\Big(\hat{\beta}_{0}-t_{n-2,\alpha/2}\frac{\hat{\sigma}\sqrt{\sum_{i=1}^{n}x_{i}^{2}}}{\sqrt{n(n-1)}s_{x}},\hat{\beta}_{0}+t_{n-2,\alpha/2}\frac{\hat{\sigma}\sqrt{\sum_{i=1}^{n}x_{i}^{2}}}{\sqrt{n(n-1)}s_{x}}\Big),$$

where  $t_{n-2,\alpha/2}$  is the  $(1-\alpha/2)$  -quantile of the  $t_{n-2}$ -distribution.