CONTENTS

Preface		xiii	
Notation			xvii
1	Imp	orting, Summarizing, and Visualizing Data	1
	1.1	Introduction	1
	1.2	Structuring Features According to Type	3
	1.3	Summary Tables	6
	1.4	Summary Statistics	7
	1.5	Visualizing Data	8
	1.5	1.5.1 Plotting Qualitative Variables	9
		1.5.2 Plotting Quantitative Variables	9
		1.5.3 Data Visualization in a Bivariate Setting	12
	Exer	cises	15
2	Stati	stical Learning	19
4	2.1	Introduction	19
	2.1	Supervised and Unsupervised Learning	20
	2.3	Training and Test Loss	23
	2.4	Tradeoffs in Statistical Learning	31
	2.4		35
	2.3	Estimating Risk	35
		2.5.1 In-Sample Risk2.5.2 Cross-Validation	37
	26		40
	2.6	Modeling Data	40
	2.7	Multivariate Normal Models	
	2.8	Normal Linear Models	46
	2.9	Bayesian Learning	47
	Exer	cises	58
3	Mon	te Carlo Methods	67
	3.1	Introduction	67
	3.2	Monte Carlo Sampling	68
		3.2.1 Generating Random Numbers	68
		3.2.2 Simulating Random Variables	69
		3.2.3 Simulating Random Vectors and Processes	74
		3.2.4 Resampling	76
		3.2.5 Markov Chain Monte Carlo	78
	3 3	Monte Carlo Estimation	85

viii Contents

		3.3.1	Crude Monte Carlo	85		
		3.3.2	Bootstrap Method	88		
		3.3.3	Variance Reduction			
	3.4	Monte	Carlo for Optimization	96		
		3.4.1	Simulated Annealing			
		3.4.2	Cross-Entropy Method			
		3.4.3	Splitting for Optimization			
		3.4.4	Noisy Optimization			
	Exe					
4		-	ed Learning	121		
	4.1		ction			
	4.2	Risk an	nd Loss in Unsupervised Learning			
	4.3		ation–Maximization (EM) Algorithm			
	4.4	-	cal Distribution and Density Estimation			
	4.5	Cluster	ring via Mixture Models	135		
		4.5.1	Mixture Models	135		
		4.5.2	EM Algorithm for Mixture Models	137		
	4.6	Cluster	ing via Vector Quantization			
		4.6.1	<i>K</i> -Means	144		
		4.6.2	Clustering via Continuous Multiextremal Optimization			
	4.7	Hierarchical Clustering				
	4.8	Princip	al Component Analysis (PCA)	153		
		4.8.1	Motivation: Principal Axes of an Ellipsoid	153		
		4.8.2	PCA and Singular Value Decomposition (SVD)	155		
	Exe	cises .		160		
5	_	Regression 10				
	5.1		ction			
	5.2		Regression			
	5.3	•	is via Linear Models			
		5.3.1	Parameter Estimation			
		5.3.2	Model Selection and Prediction	172		
		5.3.3	Cross-Validation and Predictive Residual Sum of Squares	173		
		5.3.4	In-Sample Risk and Akaike Information Criterion	175		
		5.3.5	Categorical Features	177		
		5.3.6	Nested Models	180		
		5.3.7	Coefficient of Determination	181		
	5.4	Inferen	ce for Normal Linear Models	182		
		5.4.1	Comparing Two Normal Linear Models	183		
		5.4.2	Confidence and Prediction Intervals	186		
	5.5	Nonline	ear Regression Models	188		
	5.6	Linear	Models in Python	191		
		5.6.1	Modeling	191		
		5.6.2	Analysis			
		5.6.3	Analysis of Variance (ANOVA)			

Contents ix

		5.6.4	Confidence and Prediction Intervals	198			
		5.6.5	Model Validation	198			
		5.6.6	Variable Selection	199			
	5.7	Genera	alized Linear Models	204			
	Exer	cises .		207			
6	Reg	ularizat	ion and Kernel Methods	215			
	6.1	Introdu	action	215			
	6.2	Regula	rization	216			
	6.3	_	lucing Kernel Hilbert Spaces				
	6.4		uction of Reproducing Kernels				
		6.4.1	Reproducing Kernels via Feature Mapping				
		6.4.2	Kernels from Characteristic Functions	225			
		6.4.3	Reproducing Kernels Using Orthonormal Features				
		6.4.4	Kernels from Kernels				
	6.5		enter Theorem				
	6.6	-	hing Cubic Splines				
	6.7		an Process Regression				
	6.8		PCA				
7	Clas	sificatio	on	253			
	7.1		iction				
	7.2		ication Metrics				
	7.3		ication via Bayes' Rule				
	7.4	•					
	7.5		ic Regression and Softmax Classification				
	7.6	K-Nearest Neighbors Classification					
	7.7	Support Vector Machine					
	7.8	Classification with Scikit-Learn					
		ercises					
8	Deci	ision Tro	ees and Ensemble Methods	289			
	8.1		uction	289			
	8.2		own Construction of Decision Trees				
		8.2.1	Regional Prediction Functions				
		8.2.2	Splitting Rules				
		8.2.3	Termination Criterion				
		8.2.4	Basic Implementation				
	8.3		onal Considerations				
		8.3.1	Binary Versus Non-Binary Trees				
		8.3.2	Data Preprocessing				
		8.3.3	Alternative Splitting Rules				
		8.3.4	Categorical Variables				
		8.3.5	Missing Values				
	8.4		Illing the Tree Shape				
		8.4.1	Cost-Complexity Pruning				

x Contents

		8.4.2 Advantages and Limitations of Decision Trees	06
	8.5	Bootstrap Aggregation	07
	8.6	Random Forests	11
	8.7	Boosting	15
	Exer	cises	23
9	Deer	D Learning 3	25
	9.1		2 5
	9.2		23 28
	9.3		20 32
	9.4	1	36
	7.1	8	36
		1	30 37
			38
		•	40
	9.5	1	42
	7.5		42
			46
	Ever	_	50
	LACI		50
A			57
	A. 1	· · · · · · · · · · · · · · · · · · ·	57
	A.2		62
	A.3	1	63
	A.4	\mathcal{E}	64
	A.5		65
		\mathcal{E}	66
	A.6	1	70
		\ /	70
		j j	72
		→ 1	75
			77
		\mathcal{E}	78
		\mathcal{E}	81
	A.7	•	86
	A.8		92
			94
		A.8.2 Fast Fourier Transform	96
В	Mul	tivariate Differentiation and Optimization 3	99
	B.1		99
			02
		•	02
	B.2		04
	-	-	05
		J 1	08
			00

Contents xi

	B.3	Numerical Root-Finding and Minimization	410
		B.3.1 Newton-Like Methods	411
		B.3.2 Quasi-Newton Methods	413
		B.3.3 Normal Approximation Method	415
		B.3.4 Nonlinear Least Squares	416
	B.4	Constrained Minimization via Penalty Functions	417
~	ъ.		400
C		pability and Statistics	423
	C.1	Random Experiments and Probability Spaces	423
	C.2	Random Variables and Probability Distributions	424
	C.3	Expectation	428
	C.4	Joint Distributions	429
	C.5	8	430
		C.5.1 Conditional Probability	430
		C.5.2 Independence	430
		C.5.3 Expectation and Covariance	431
		C.5.4 Conditional Density and Conditional Expectation	433
	C.6	Functions of Random Variables	433
	C.7	Multivariate Normal Distribution	436
	C.8	Convergence of Random Variables	441
	C.9	Law of Large Numbers and Central Limit Theorem	447
	C.10	Markov Chains	453
		Statistics	455
	C.12	Estimation	456
		C.12.1 Method of Moments	457
		C.12.2 Maximum Likelihood Method	458
	C.13	Confidence Intervals	459
		Hypothesis Testing	460
_	D 41	D	4.5
D	•	on Primer	465
		Getting Started	465
	D.2	Python Objects	467
	D.3	Types and Operators	468
	D.4	Functions and Methods	470
	D.5	Modules	471
	D.6	Flow Control	473
	D.7	Iteration	474
	D.8	Classes	475
	D.9	Files	477
	D.10	NumPy	480
		D.10.1 Creating and Shaping Arrays	480
		D.10.2 Slicing	482
		D.10.3 Array Operations	482
		D.10.4 Random Numbers	484
	D.11	Matplotlib	485
		D.11.1 Creating a Basic Plot	485

xii Contents

D.12 Pandas	487
D.12.1 Series and DataFrame	487
D.12.2 Manipulating Data Frames	489
D.12.3 Extracting Information	490
D.12.4 Plotting	492
D.13 Scikit-learn	492
D.13.1 Partitioning the Data	493
D.13.2 Standardization	493
D.13.3 Fitting and Prediction	494
D.13.4 Testing the Model	494
D.14 System Calls, URL Access, and Speed-Up	495
Bibliography	497
Index	505