Exercises to Chapter 4

Exercise 4.1 (important fact about perfect linear codes — needed for exam). Let Cbe a linear $[n, k, d]_q$ -code. As usual, let $t = \left\lceil \frac{d-1}{2} \right\rceil$. Show:

(a) Every vector in \mathbb{F}_q^n of weight $\leq t$ is a **unique coset leader** of its coset (i.e., is a coset leader, and its coset has no other coset leaders).

(*Hint*: if $\underline{a}_1,\underline{a}_2$ are coset leaders of a coset, then $\underline{a}_1-\underline{a}_2$ is a codevector of weight $\leq w(\underline{a}_1) + w(\underline{a}_2) = 2w(\underline{a}_1).)$

w(a) < t other rectors in the uset a+(are a+c with c eC, c +0 (so: w(e) > d)

 $w(\underline{\alpha} + \underline{c}) = w(\underline{\alpha} - (-\underline{c})) = d(\underline{\alpha}, -\underline{c})$ $d(\underline{\alpha}, -\underline{c}) + d(\underline{\alpha}, \underline{0}) > d(-\underline{c}, \underline{0}) | w(\underline{\alpha} + \underline{c}) + t > d$ $\text{(b) If } C \text{ is perfect, the number of distinct cosets equals } \#S_t(\underline{0}).$

(*Hint*. By the Hamming bound, $M \times \#S_t(\underline{0}) \leq q^n$, or is it $= q^n$?)

(c) Deduce that if C is perfect, every coset has a unique coset leader, all coset leaders are of weight $\leq t$, and the set of all coset leaders is $S_t(\underline{0})$.

Standard