Домашня робота 7

МП-31 Захаров Дмитро

Викладач: Півень О.Л.

§ Випадкові вектори §

Задача 1: Завдання з файлу

Умова. Дано таблицю розподілу двовимірного випадкового вектору $\boldsymbol{\zeta} = (\xi, \eta)$. Знайти невідоме значення параметру x. Чи будуть випадкові величини ξ, η незалежними?

ξ/η	-1	1	2
0	0.02	0.01	0.03
1	0.01	0.04	0.01
3	0.08	0.01	\overline{x}

Табл. 1: Таблиця розподілу (ξ, η) .

Розв'язання. Для знаходження x достатньо лише скористатись умовою (тут $\mathcal X$ позначає множину можливих значень ξ , а $\mathcal Y$ – значень η):

$$\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \Pr[\xi = x, \eta = y] = 1 \tag{1.1}$$

Звідси $0.21+x=1.0\implies \lfloor x=0.79\rfloor$. Для з'ясування залежності чи незалежності ξ,η скористуємось означенням. Має виконуватись:

$$\Pr[\xi = x, \eta = y] = \Pr[\xi = x] \Pr[\eta = y], \ \forall x \in \mathcal{X}, \ \forall y \in \mathcal{Y}$$
 (1.2)

Отже, потрібно знайти ймовірності $\Pr[\xi=x]$ та $\Pr[\eta=y]$ окремо. Для цього, скористаємось формулою:

$$\Pr[\xi = x] = \sum_{y \in \mathcal{Y}} \Pr[\xi = x, \eta = y], \ \forall x \in \mathcal{X}$$
 (1.3)

$$\Pr[\eta = y] = \sum_{x \in \mathcal{X}} \Pr[\xi = x, \eta = y], \ \forall y \in \mathcal{Y}$$
 (1.4)

Підставляємо значення:

$$\Pr[\xi = 0] = 0.06, \ \Pr[\eta = -1] = 0.11$$
 (1.5)

Бачимо, що $\Pr[\xi=0,\eta=-1]=0.02\neq\Pr[\xi=0]\Pr[\eta=-1]=0.06\cdot0.11.$ Отже, події не є незалежними.

Задача 2: Завдання з файлу

Умова. Неперервний двовимірний випадковий вектор (ξ, η) має щільність

$$f_{(\xi,\eta)}(x,y) = \gamma xy \cdot \mathbb{1}_{[0,1] \times [0,1]}(x,y), \tag{2.1}$$

де γ – стала. Знайти γ та щільності розподілу f_{ξ}, f_{η} . Чи будуть ці величини незалежними?

Розв'язання. Запишемо умову нормування випадкового вектору:

$$\int_{\mathbb{R}\times\mathbb{R}} f_{(\xi,\eta)}(x,y)dxdy = 1. \tag{2.2}$$

Отже, знайдемо значення інтегралу:

$$\int_{\mathbb{R}\times\mathbb{R}} f_{(\xi,\eta)}(x,y)dxdy = \int_{[0,1]\times[0,1]} \gamma xydxdy = \gamma \int_0^1 xdx \int_0^1 ydy$$
 (2.3)

$$= \gamma \int_0^1 x dx \cdot \frac{1}{2} = \frac{\gamma}{4} = 1 \implies \boxed{\gamma = 4}$$
 (2.4)

Тепер знайдемо щільності окремо. Маємо:

$$f_{\xi}(x) = \int_{\mathbb{R}} f_{(\xi,\eta)}(x,y)dy = \int_{0}^{1} 4xydy = 2x, \ x \in [0,1]$$
 (2.5)

$$f_{\eta}(y) = \int_{\mathbb{R}} f_{(\xi,\eta)}(x,y)dx = \int_{0}^{1} 4xydx = 2y, \ y \in [0,1]$$
 (2.6)

Отже, $f_{\xi}(x) = 2x \cdot \mathbb{1}_{[0,1]}(x), f_{\eta}(y) = 2y \cdot \mathbb{1}_{[0,1]}(y)$. Дійсно бачимо, що $f_{(\xi,\eta)}(x,y) = f_{\xi}(x)f_{\eta}(y)$, а тому випадкові величини ξ, η є незалежними.

Задача 3: Завдання з файлу

Умова. Неперервний двовимірний випадковий вектор (ξ, η) має щільність

$$f_{(\xi,\eta)}(x,y) = \gamma(x^2 + y^2) \cdot \mathbb{1}_{[0,1] \times [0,1]}(x,y)$$
(3.1)

де γ – стала. Знайти γ та щільності розподілу f_{ξ}, f_{η} . Чи будуть ці величини незалежними?

Розв'язання. Знову скористаємося умовою нормування:

$$\int_{\mathbb{R}\times\mathbb{R}} f_{(\xi,\eta)}(x,y)dxdy = 1 \tag{3.2}$$

Отже, маємо:

$$\int_{\mathbb{R}\times\mathbb{R}} f_{(\xi,\eta)}(x,y) dx dy = \gamma \int_0^1 \int_0^1 (x^2 + y^2) dx dy$$
$$= \gamma \int_0^1 \left(\frac{1}{3} + y^2\right) dy = \frac{2\gamma}{3} = 1 \implies \left[\gamma = \frac{3}{2}\right]$$
(3.3)

Знайдемо маргінальні розподіли:

$$f_{\xi}(x) = \int_{\mathbb{R}} f_{(\xi,\eta)}(x,y)dy = \frac{3}{2} \int_{0}^{1} (x^{2} + y^{2})dy = \frac{1 + 3x^{2}}{2}$$
(3.4)

$$f_{\eta}(x) = \int_{\mathbb{R}} f_{(\xi,\eta)}(x,y) dx = \frac{3}{2} \int_{0}^{1} (x^{2} + y^{2}) dx = \frac{1 + 3y^{2}}{2}$$
 (3.5)

Видно, що $f_{(\xi,\eta)}(x,y) \neq f_{\xi}(x)f_{\eta}(y)$, тому ξ та η не ϵ незалежними.

Задача 4: Завдання з файлу

Умова. Випадкова величина ξ приймає значення 0,1,2 з ймовірностями 0.2,0.3,0.5, а випадкова величина η приймає значення 1,2,3 з ймовірностями 0.1,0.6,0.3 відповідно. Побудувати таблицю розподілу (ξ,η) , якщо випадкові величини ξ,η випадкові.

Розв'язання. В нашому випадку $\mathcal{X} = \{0,1,2\}$ – множина значень ξ , а $\mathcal{Y} = \{1,2,3\}$ – множина значень η . Тоді, таблиця має вигляд:

$$\Pr[\xi = x, \eta = y] = \Pr[\xi = x] \Pr[\eta = y], \ \forall x \in \mathcal{X}, \ \forall y \in \mathcal{Y}$$
 (4.1)

Отже, таблиця наведена нижче.

ξ/η	1	2	3
0	0.02	0.12	0.06
1	0.03	0.18	0.09
2	0.05	0.30	0.15

Табл. 2: Таблиця розподілу (ξ, η) .

Задача 5: Завдання з файлу

Умова. Випадкові величини ξ_1, \ldots, ξ_n незалежні і кожна з них має показниковий розподіл з одним і тим самим параметром $\lambda > 0$. Знайти закон розподілу випадкового вектору (ξ_1, \ldots, ξ_n) .

Розв'язання. Згідно означенню показникового розподілу, густина кожної з випадкових величин $f_{\xi_k}(x_k) = \lambda e^{-\lambda x} \cdot \mathbb{1}_{[0,+\infty)}(x)$. Таким чином, густина розподілу вектору:

$$f_{\xi}(x_1, \dots, x_n) = \prod_{k=1}^n f_{\xi_k}(x_k) = \prod_{k=1}^n \lambda e^{-\lambda x_k} \cdot \mathbb{1}_{[0, +\infty)}(x)$$
$$= \lambda^n \exp\left(-\lambda \sum_{k=1}^n x_k\right) \mathbb{1}_{[0, +\infty)^n}(x_1, \dots, x_n)$$
(5.1)

Якщо позначити $\mathbf{x} := (x_1, \dots, x_n)$, то остаточно маємо:

$$f_{\xi}(\mathbf{x}) = \lambda^n \exp\left(-\lambda \langle \mathbf{x}, \mathbf{1}_n \rangle\right) \mathbb{1}_{[0, +\infty)^n}(\mathbf{x})$$
 (5.2)

Задача 6: Завдання з файлу

Умова. Випадкова величина ξ має щільність розподілу $f_{\xi}(x) = 2x \cdot \mathbb{1}_{[0,1]}(x)$, а випадкова величина η щільність $f_{\eta}(x) = \frac{1}{2} \sin x \cdot \mathbb{1}_{[0,\pi]}(x)$, причому випадкові величини ξ та η незалежні. Знайти щільність розподілу $\zeta = (\xi, \eta)$.

Розв'язок. Якщо випадкові величини незалежні, то щільність вектору — це добуток окремих щільностей, тобто

$$f_{\zeta}(x,y) = f_{\xi}(x)f_{\eta}(y) = x\sin y \mathbb{1}_{[0,1]}(x)\mathbb{1}_{[0,\pi]}(y) = x\sin y \mathbb{1}_{[0,1]\times[0,\pi]}(x,y)$$
 (6.1)