

Exame de Época Normal – 2019-01-15 15h00 | Guia de correção.

Teste A1

I este					-
	Α	В	С	D	E
1	-0,16	-0,16	-0,16	-0,16	0,652
2	-0,16	-0,16	-0,16	-0,16	0,652
3	-0,16	-0,16	-0,16	-0,16	0,652
4	-0,16	-0,16	0,652	-0,16	-0,16
5	-0,16	0,652	-0,16	-0,16	-0,16
6	-0,16	-0,16	-0,16	0,652	-0,16
7	0,652	-0,16	-0,16	-0,16	-0,16
8	-0,16	0,652	-0,16	-0,16	-0,16
9	0,652	-0,16	-0,16	-0,16	-0,16
10	-0,16	-0,16	-0,16	-0,16	0,652
11	0,652	-0,16	-0,16	-0,16	-0,16
12	-0,16	0	-0,16	0,652	-0,16
13	-0,16	-0,16	0,652	-0,16	-0,16
14	-0,16	-0,16	0,652	-0,16	-0,16
15	0,652	-0,16	-0,16	-0,16	-0,16
16	-0,16	-0,16	-0,16	-0,16	0,652
17	-0,16	-0,16	0,652	-0,16	-0,16
18	-0,16	-0,16	-0,16	-0,16	0,652
19	0	-0,16	0,652	-0,16	-0,16
20	-0,16	-0,16	-0,16	0,652	-0,16
21	0,652	-0,16	-0,16	-0,16	-0,16
22	-0,16	0,652	-0,16	-0,16	-0,16
23	0,652	-0,16	-0,16	-0,16	-0,16

P24

- a/ As especificações baseadas em cenários valorizam o <u>levantamento objetivos dos atores</u> (o que querem alcançar ao usar o sistema), em vez do foco no produto.
- a/ Enumerar uma destas vantagens: os cenários apresentam os <u>requisitos funcionais em contexto</u>; OU: evitam a especificação de <u>funcionalidades órfãs</u>; OU: a técnicas de "story telling" dos cenários <u>facilita a participação dos stakeholders</u> na especificação e validação.
- a/ As técnicas baseadas em cenários de utilização são <u>adequadas a sistemas com interação com utilizadores finais</u>; são menos adequadas (e insuficientes) para sistemas com componentes não-interativos relevantes, como sistemas embebidos, computação intensiva, etc...
- b/ Os UC são uma técnica adequada à descrição de alto nível, para <u>construir a big-picture na Análise</u>; incorporam a <u>documentação dos cenários de forma estruturada</u>, para caraterizar a interação esperada.
- b/ as <u>US são mais granulares</u>, focadas em pequenos incrementos com valor para o negócio, <u>adequadas à gestão diária</u> <u>do backlog</u>; a adição de detalhe não é feita de início, mas perto de quando for preciso, com a participação regular de "domain experts"
- b/ UC e US usam diferentes níveis de abstração, mas não se contradizem; podem ser usadas em <u>complementaridade</u>; <u>US podem ser deduzidas dos cenários</u> dos CU.

P25

25	a/ Classes representadas: WeatherRepository, WeatherForecast, MyDatabse, RemoteWeatherAPI e IpmaApiClient; com os métodos certos e os campos static assinalados e herança.				
25	a/ Associações entre classes: WeatherRepository → MyDB; WeatherRepository → RemoteWeatherAPI. Definição correta da multiplicidade e direção. WeatherForecast não tem associações (pode mostrar com dependências).				
25	b/ Diagrama de sequência correto com, pelo menos: WR#refreshForecast → localDb#hasUpdate → apiService#getForecast → localDb #save				
25	b/ Mostra os blocos alternativos (if) e o try/catch com alt ou opt.				

WeatherForecast

