Lecture: Advanced Bioinformatics

SoSe 2022

Exercise Sheet 06 - Single-cell transcriptomics

Total: 15.0 points 21.06		21.06.22 - 28.06.22
1.	Single-cell technology (1.5 points)	
The ce	ell capture rate is the probability that a droplet has at least one bead a droplet has at least one cell	
The ce	ell duplication rate is the rate of cells per droplet of barcodes per droplet at which captured single cells are associated wit	
UMIs	 are used to identify individual cells are used to identify individual molecules	
2.	Barcodes (1.0 + 2.0 bonus points)	
a)	What is the minimum barcode length for a synthetic dou million cells. (1.0 points)	blet rate of 5% when we assay 1
b)	Derive the formula for barcode collisions $1 - \left(1 - \frac{1}{M}\right)$ principles. (2.0 bonus points)	$\int_{-\infty}^{N-1}$ shown in the lecture from first
	Hint: you need the probability for picking a barcode p = 1 solve this.	L/M and the binomial coefficient to

3.	Dimensionality reduction (2.5 points, 0.5 each)	
The Ku	ıllback-Leibler divergence is	
	 used to measure the difference between two probability distributions used to measure the difference between data points in low-dimensional space	
The fir	st step of t-SNE is to select neighbours w.r.t. t-distribution over points in high-dimensional space select neighbours w.r.t. Gaussian distribution over points in high-dimensional space	
The fir	st step of UMAP is to approximate a manifold in high-dimensional data using principal components	
	approximate a manifold in high-dimensional data using simplicial complexes	
t-SNE	and UMAP are used	
	for visualization	
	as pre-processing	
	 for clustering for cell type annotation	
Which	of the following are non-linear method(s)	
	t-SNE	
	PCA	
	SVD UMAP	

4. Seurat (10.0 points)

Seurat is a user-friendly R package for analyzing single-cell data. It's documentation comes with easy-to-follow tutorials: https://satijalab.org/seurat/index.html

See this baseline tutorial for more insights, that you will need in this task:

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html

Install the package and answer the following questions (R markdown files usually work best for workflows like this):

Note: Use the default parameters for all functions, if not stated otherwise.

a)	Follow the Cell-Cycle scoring and regression vignette to load and pre-process the data.
	(https://satijalab.org/seurat/articles/cell_cycle_vignette.html). One of the pre-processing
	steps contains the detection of variable features; explain what this step is doing and name
	the top 3 variable features. Also add a VariableFeaturesPlot where the three features are
	labeled. (2.0 points)
	Note: do not perform the regression yet, you will need the intermediate results of this
	section later on.
	Variable Features Plot:

b)	Perform the out-regression of cell cycle scores as done in the vignette. Why do we want to regress out cell cycle effects? Do you think this is necessarily a good idea? (2.5 points)

c) Extend your script to generate a UMAP plot based on the dataset that resulted **in section a**). Submit the plot with your solution (1.0 points).

a)	FindClusters) and color the UMAP from section c) according to the new clusters. Submit the plot with your solution. The second function has a parameter called 'resolution'; explain what it does. Use a resolution of 1 for the final UMAP. (2.0 points)
e)	Find the differentially expressed markers between all clusters (<i>FindAllClusters</i>). Can you find any of the cell-cycle marker genes in the results? Find a cluster, in which marker genes for the G2M cycle are differentially expressed, name the cluster, the genes (2 are enough) and the corresponding log2 Fold-change. (2.5 points)
	Hint: You find the maker genes in the lists that are created in the first code-block of the cell-cycle scoring vignette (g2m.genes)