

IN THE CLAIMS

Kindly amend the claims to read as follows.

1. (previously presented) Compound of formula

R₁ and R₂ independently from each other are; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n₁ is a number from 1 to 4;

when n₁ = 1,

R₃ is a saturated or unsaturated heterocyclic radical;

when n₁ is 2,

R₃ is an alkylen-, cycloalkylene, alkenylene or phenylene radical which is optionally substituted by a carbonyl- or carboxy group; or a radical of formula ·—CH₂—C≡C—CH₂—·; or R₃ together with A forms

n₂ is a number from 1 to 3;

when n₁ is 3,

R₃ is an alkantriyl radical;

when n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or -N(R₅)-; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

2. (currently amended) Compound according to claim 1, wherein

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n₁ is a number from 1 to 4;

when n₁ is 1,

R₃ is a saturated or unsaturated heterocyclic radical; hydroxy-C₁-C₆alkyl; or cyclohexyl substituted with one or more C₁-C₆alkyl;

when n₁ is 2,

R₃ is an alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by a carbonyl- or carboxy group;

when n₁ is 3,

R₃ is an alkantriyl radical;

when n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or -N(R₅)-; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

3. (previously presented) Compound according to claim 1, wherein

R₁ and R₂ are C₁-C₂₀alkyl.

4. (previously presented) Compound according to claim 1, wherein

R₁ and R₂ independently from each other are C₁-C₅alkyl.

5. (previously presented) Compound according to claim 1, wherein

R₁ and R₂ in formula (1) have the same definition.

6. (cancelled)

7. (previously presented) Compound according to claim 1, wherein

if n_1 is 1,

R_3 is a saturated heterocyclic radical.

8. (original) Compound according to claim 7, wherein

R_3 is a monocyclic radical of 5, 6 or 7 ring members with one or more hetero atoms.

9. (previously presented) Compound according to claim 8, wherein

R_3 is morpholinyl; piperazinyl; piperidyl; pyrazolidinyl; imadazolidinyl; or pyrrolidinyl.

10. (previously presented) Compound according to claim 1, wherein

R_3 is an unsaturated heterocyclic radical.

11. (original) Compound according to claim 10, wherein

R_3 a polycyclic radical.

12. (previously presented) Compound according to claim 1 , wherein

R_3 is a radical of formula (1a) , and

R_5 is polycyclic heteroaromatic radical with one or 2 heteroatoms.

13. (original) Compound according to claim 12, wherein

R_3 is a radical of formula (1b) , wherein

R_6 is hydrogen; or C₁-C₅alkyl.

14. (previously presented) Compound according to claim 1, wherein,
if n_1 is 2,
 R_3 is a $C_1\text{-}C_{12}$ alkylene radical.

15. (original) Compound according to claim 14, wherein

R_3 is a radical of formula $*-\text{CH}_2-(\text{CH}_2)_m-\text{CH}_2-*$; $*-\text{CH}_2-$ - CH_2-* ;

r is 0 or 1; and

q = is a number from 0 to 5.

16. (previously presented) Compound according to claim 1, wherein,
when n_1 is 3;

R_3 is a radical of formula (1a) $*-\text{CH}_2-\overset{*}{\text{CH}}-(\text{CH}_2)_p-\text{CH}_2-*$ or (1b) $*-\text{CH}_2-\overset{*}{\text{CH}}-\overset{*}{\text{CH}}$ and

p is a number from 0 to 3; and

R_1 , R_2 and A are defined as in formula (1).

17. (previously presented) Compound according to claim 1, wherein, when
 n_1 is 4,

R_3 is a radical of formula $*-\overset{*}{\text{C}}-\overset{*}{\text{C}}-*$; or $*-\text{CH}_2-\overset{*}{\text{C}}-\text{CH}_2-*$; and

R_1 , R_2 and A are defined as in formula (1).

18. (currently amended) Compound according to claim 1, which corresponds to formula

A is -NH; or -O-; and

R_3 is a saturated or unsaturated heterocyclic radical.

19. (currently amended) Compound according to claim 1, which corresponds to formula

A is -NH; or -O-; and

R_3 is a $\text{C}_1\text{-}\text{C}_{12}$ alkylene radical.

20. (currently amended) Compound according to claim 1, which corresponds to formula

R₁ and R₂ independently from each other are hydrogen; or C₁-C₅alkyl;

A is -NH; or -O-; and

R₃ is $\text{*}-\text{CH}_2-\overset{*}{\text{CH}}-(\text{CH}_2)_p-\text{CH}_2-\text{*}$ or $\text{*}-\text{CH}_2-\overset{*}{\underset{*}{\text{CH}}}-\text{CH}-\text{*}$; and

p is a number from 0 to 3.

21. (original) Compound according to claim 1, which corresponds to formula

R_3 is a radical of formula $\begin{array}{c} * \\ | \\ *-\text{C}-* \\ | \\ * \end{array}$; or $\begin{array}{c} * \\ | \\ *-\text{CH}_2-\text{C}-\text{CH}_2-* \\ | \\ \text{CH}_2 \end{array}$; and

R_1 , R_2 and A are defined as in formula (1).

22. (previously presented) A process for the preparation of the compounds of formula (1), which comprises, dehydrating

(a) the compound formula (6a) to the compound of formula

(b) reacting the anhydride with the compound of formula (6c₁) H-N(R₅)-R₃ or (6c₂) H-O-R₃ to the compound of formula

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

n₁ is 1 to 4;

if n₁ is 1,

R₃ is hydrogen; C₁-C₂₀alkyl; hydroxy-C₁-C₅alkyl; C₂-C₂₀alkenyl; C₃-C₁₀-Cyclohexyl not substituted or substituted with one or more C₁-C₅alkyl; (Y-O)_pZ; C₆-C₁₀aryl; or a saturated or unsaturated heterocyclic radical;

Y is C₁-C₁₂alkylen;

Z is C₁-C₅alkyl;

p is a number from 1 to 20;

if n₁ is 2,

R₃ is a alkylen-, cycloalkylen- or alkenylene radical which is optionally interrupted by carbonyl- or carboxy group;

if n₁ is 3,

R₃ is an alkantriyl radical;

if n₁ is 4,

R₃ is a alkantetrayl radical;

A is -O-; or -N(R₅)-;

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl.

23. (previously presented) Process according to claim 22, wherein the process refers to compounds of formula

R₁ and R₂ independently from each other are C₁-C₁₂alkyl; and
R₅ is hydrogen; C₁-C₁₂alkyl; or C₃-C₆-cycloalkyl.

24. (canceled)

25. (canceled)

26. (original) A cosmetic preparation comprising at least one or more compounds of formula (1) according to claim 1 with cosmetically acceptable carriers or adjuvants.

27. (previously presented) Compounds of formula

R₁' and R₂'' independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀-cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring.

28. (canceled)

29. (currently amended) UV-Absorber-dispersion, comprising

(a) a micronised UV absorber of formula

R₁ and R₂ independently from each other are hydrogen; C₁-C₂₀alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cycloalkyl; or C₃-C₁₀cycloalkenyl; or R₁ and R₂ together with the linking nitrogen atom form a 5- or 6-membered heterocyclic ring;

when n₁ is 1,

R₃ is ~~hydrogen; C₄-C₂₀alkyl; hydroxy-C₁-C₅alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cyclohexyl not substituted or substituted with one or more C₄-C₆alkyl; (Y-O)_pZ; C₆-C₁₀aryl; or a saturated or unsaturated heterocyclic radical;~~ hydrogen; C₄-C₂₀alkyl; hydroxy-C₁-C₅alkyl; C₂-C₂₀alkenyl; C₃-C₁₀cyclohexyl not substituted or substituted with one or more C₄-C₆alkyl; (Y-O)_pZ; C₆-C₁₀aryl; or a saturated or unsaturated heterocyclic radical;

Y C₁-C₁₂alkylen;

Z C₁-C₅alkyl;

p is a number from 1 to 20;

when n₁ is 2,

R₃ is a alkylen-, cycloalkylen- or alkenylen- radical optionally interrupted by a carbonyl- or carboxy group;

if n₁ is 3,

R₃ is an alkantriyl radical;

if n₁ is 4,

R₃ is an alkantetrayl radical;

A is -O-; or -N(R₅)-; and

R₅ is hydrogen; C₁-C₅alkyl; or hydroxy-C₁-C₅alkyl;

having a particle size from 0.02 to 2 μm, and

(b) a suitable dispersing agent.

30. (previously presented) A cosmetic preparation according to claim 26, wherein the compounds of formula (1) are present in micronized form.