第一节 多元函数的基本概念

- 一、平面点集
- 二、多元函数的概念
- 三、多元函数的极限
- 四、多元函数的连续性

一、平面点集

1. 平面点集

坐标平面上具有某种性质P的点的集合, 称为平面 点集, 记作

 $E=\{(x,y)|(x,y)$ 具有性质 $P\}$.

例如,平面上以原点为中心、2为半径的圆内所有点的集合是

 $E=\{(x,y)|x^2+y^2<4\}, \quad \vec{x}E=\{P||OP|<2\}.$

(球邻域)

2. 邻域

点集 $U(P_0,\delta) = \{P \mid |PP_0| < \delta\}$, 称为点 P_0 的 δ 邻域.

例如,在平面上,

$$U(P_0, \delta) = \{(x, y) | \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta \}$$
 (圆邻域)

在空间中,

$$U(P_0,\delta) = \{(x,y,z) | \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2} < \delta \}$$

点 P_0 的去心邻域,记为 $U(P_0,\delta)$,

$$U(P_0,\delta) = \{ P | 0 < |P_0P| < \delta \}.$$

说明: 1. 若不需要强调邻域半径 δ ,也可写成 $U(P_0)$.

点 P_0 的去心邻域可以记为 $U(P_0)$.

2. 方邻域

平面上的方邻域为

$$\mathbf{U}(P_0, \delta) = \left\{ (x, y) \middle| |x - x_0| < \delta, |y - y_0| < \delta \right\}$$

3. 内点、外点、边界点

E为平面点集,P为平面上的一点。

- (1) 内点 如果存在点 P 的某一邻域U(P), 使得 $U(P)\subset E$,
- 则称 P为 E的内点.
- (2)外点 如果存在点 P的某一邻域U(P),
- 使得 $U(P) \cap E = \emptyset$,则称 $P \rightarrow E$ 的外点.
- (3) 边界点 如果点 P的任一邻域内 既有属于 E的点, 也有不属于 E的点, 则称 P点为 E的边界点.

(4) 聚点 $\forall \delta > 0$,点 P的去心邻域 $U(P,\delta)$ 内总有E中的点,则称P为E的聚点. $U(P,\delta) \cap E \neq \emptyset$

注意:

- 1. 聚点可以属于E, 也可以不属于E;
- 2. 所有聚点所成的点集称为 E 的导集.

4. 开区域及闭区域

开集: 若点集E的点都是内点,则称E为开集.

边界: E的边界点的全体称为 E 的边界, 记作 ∂E .

闭集: 若点集 $\partial E \subset E$, 则称 E 为闭集.

连通集: 若E中任意两点都可用一完全属于E的

折线相连,则称E 是连通集.

开区域:连通的开集称为开区域,简称区域.

闭区域: 开区域连同它的边界一起称为闭区域.

例如, 在平面上

- $\{(x,y) \mid x+y>0 \}$
- $\{(x,y) | 1 < x^2 + y^2 < 4\}_{-}$
- $\{(x,y) \mid x+y \ge 0 \}$
- $\{(x,y) | 1 \le x^2 + y^2 \le 4 \}$

闭区域

- 点集 $\{(x,y)||x|>1\}$ 是开集,但非区域。
- 点集 $\{(x,y)||x| \ge 1\}$ 是闭集,但非闭区域。
- 整个平面是最大的开域,也是最大的闭域。

有界集:平面点集E,若存在某一正数r,使得 $E \subset U(O,r)$,

则称E为有界集,否则称E为无界集.

例如, $\{(x,y)|1\leq x^2+y^2\leq 4\}$ 有界闭区域;

 $\{(x,y) \mid x+y>0\}$

无界开区域.

二、多元函数的概念

1. 二元函数

定义. 设非空点集 $D \subset \mathbb{R}^2$,对每个 $P(x,y) \in D$,变量z按一定

的法则总有唯一确定的值与之对应,称z是x,y的二元函数

记作 z = f(x, y) 或 $z = f(P), P \in D$

定义域: D; ——集合形式

值域: $\{z \mid z = f(P), P \in D\}$ —数集

类似地,三元函数

 $z = f(x, y, z), \quad (x, y, z) \in D \subset \mathbb{R}^3$

要求: 会求函数定义域.

例如:

$$z = \sqrt{xy} \qquad D = \{(x, y) | xy \ge 0\}$$

$$z = \frac{1}{\sqrt{1 - |\mathbf{x}| - |\mathbf{y}|}}$$

$$D = \{(x, y) ||x| + |y| < 1\}$$

2. 【二元函数 z = f(x,y) 的图形】

设函数z = f(x,y)的定义域为D,对于任意取定的 $P(x,y) \in D$,对应的函数值为z = f(x,y),这样,以x为横坐标、y为纵坐标、z为竖坐标在空间就确定一点M(x,y,z),当(x,y)取遍D上一切点时,得一个空间点集 $\{(x,y,z)|z=f(x,y),(x,y)\in D\}$,这个

点集称为二元函数的图形.

二元函数的图形通常是一张曲面.

【例如】 $z = \sin xy$

图形如右图.

【例如】
$$x^2 + y^2 + z^2 = a^2$$

右图球面.

$$D = \{(x,y) | x^2 + y^2 \le a^2 \}.$$

单值分支: $z = \sqrt{a^2 - x^2 - y^2}$

$$z = -\sqrt{a^2 - x^2 - y^2}.$$

三、多元函数的极限

1. 【定义】设z = f(x,y) 的定义域为D, $P_0(x_0,y_0)$ 是其聚点. 如果存在常数 A, 对于 $\forall \varepsilon > 0$, $\exists \delta > 0$,使得当 $P(x,y) \in D \cap U(P_0,\delta)$ 时,都有 $|f(x,y) - A| < \varepsilon$ 成立,称 A 为函数 f(x,y) 当 $(x,y) \to (x_0,y_0)$ 时的极限,记为 $\lim_{(x,y) \to (x_0,y_0)} f(x,y) = A$

或 $f(x,y) \rightarrow A((x,y) \rightarrow (x_0,y_0))$. (1) 点 P_0 必须是聚点,才能研究其极限存在性.

否则不能无限接近点 P_0 ;

- (2)定义中 $P \rightarrow P_0$ 的方式是任意的;
- (3) 二元函数的极限运算法则与一元函数类似.

说明:

(1) 多元函数的极限是自变量各自独立地同时在变,称为二重极限. 还有一种自变量分先后次序变,称累次极限. 如 $\lim_{x\to a} \lim_{y\to b} f(x,y)$ 即先 x 固定,变量 y 趋于 b,然后再令变量 x 趋于 a. 这种极限是两个极限过程. 而二重极限是一个极限过程. 两者是不同的.

(2) $\lim_{P \to P_0} f(P) = A$ $\Leftrightarrow P$ 以任意方式趋于 P_0 时, $f(P) \to A$.

例如两个累次极限
$$\lim_{x\to 0} \lim_{y\to 0} \frac{xy}{x^2+y^2} = \lim_{y\to 0} \lim_{x\to 0} \frac{xy}{x^2+y^2} = 0$$

存在,而二重极限 $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}$ 不存在.

又如
$$f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$$

则二重极限 $\lim_{(x,y)\to(0,0)} f(x,y)=0$ 而两个累次极限均不存在.

【强调】本课程讨论的极限均为重极限.

2. 确定极限不存在的方法

(1)如果当 P 以两种不同方式趋于 P_0 时,极限值不同,则函数的极限不存在.

(2)如果当 P 以某种方式趋于 P_0 时,极限不存在,则函数的极限不存在。

例2 讨论函数 $f(x,y) = \frac{xy}{x^2 + y^2}$ 在点(0,0)的极限.

解设P(x,y)沿直线y=kx趋于点(0,0),则有

$$\lim_{\substack{(x,y)\to(0,0)\\y=kx}} f(x,y) = \lim_{x\to 0} \frac{kx^2}{x^2 + k^2x^2} = \frac{k}{1+k^2}$$

k 值不同极限不同!

故f(x,y)在(0,0)点极限不存在.

例3 证明: $\lim_{(x,y)\to(0,0)}\cos\frac{y}{x^2}$ 不存在.

证: 当(x,y)沿直线y=x趋于点(0,0)时,有

$$\lim_{\substack{(x,y)\to(0,0)\\y=x}}\cos\frac{y}{x^2} = \lim_{x\to 0}\cos\frac{1}{x} \quad \text{π $\bar{\tau}$.}$$

因此,原极限不存在.

练习 证明 $\lim_{\substack{x\to 0\\y\to 0}} \frac{x^3y}{x^6+y^2}$ 不存在.

【思考题】若点(x,y)沿着无数多条平面曲线趋向于 21/30

点 (x_0, y_0) 时,函数f(x, y)都趋向于A,能否断

【解答】不能.

【例】
$$f(x,y) = \frac{x^3y^2}{(x^2+y^4)^2}, (x,y) \to (0,0)$$

【例】
$$f(x,y) = \frac{x^3 y^2}{(x^2 + y^4)^2}, \quad (x,y) \to (0,0)$$

取 $y = kx, f(x,kx) = \frac{x^3 \cdot k^2 x^2}{(x^2 + k^4 x^4)^2} = \frac{k^2 x^5}{x^4 + 2k^4 x^6 + k^8 x^8}$

但是 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在.

原因为若取
$$x = y^2$$
, $f(y^2, y) = \frac{y^6 y^2}{(y^4 + y^4)^2} \to \frac{1}{4}$.

3. 二元函数的极限运算法则与一元函数类似

例4 求极限
$$\lim_{(x,y)\to(0,1)} \frac{1-xy}{x^2+y^2}$$
.

$$\lim_{(x,y)\to(0,1)}\frac{1-xy}{x^2+y^2}=\frac{1-0}{0+1}=1.$$

例5 求极限 $\lim_{(x,y)\to(0,2)}\frac{\sin(xy)}{x}$.

$$\lim_{(x,y)\to(0,2)}\frac{\sin(xy)}{x} = \lim_{(x,y)\to(0,2)}\frac{xy}{x} = \lim_{(x,y)\to(0,2)}y = 2.$$

例6 求极限
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{x^2y^2+1}-1}{x^2y^2}$$
.

$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{x^2y^2+1}-1}{x^2y^2}$$

$$= \lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2y^2(\sqrt{x^2y^2+1}+1)}$$

$$= \lim_{(x,y)\to(0,0)} \frac{1}{\sqrt{x^2y^2 + 1} + 1} = \frac{1}{2}.$$

四、多元函数的连续性

定义 设二元函数f(P)定义在D上,聚点 $P_0 \in D$,

如果存在 $\lim_{P\to P_0} f(P) = f(P_0)$ 则称 二元函数f(P)

在点 P_0 连续.

否则称为不连续,此时 P_0 称为间断点.

如果函数在 D 上各点处都连续,则称此函数在 D 上连续.

【例6】讨论函数
$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

在(0,0)处的连续性.

$$||x|| \le \frac{|x^3 + y^3|}{|x^2 + y^2|} \le \frac{|x^3| + |y^3|}{|x^2 + y^2|}$$

$$\leq \frac{|x^2 + y^2||x| + |x^2 + y^2||y|}{x^2 + y^2} = |x| + |y| \to 0$$

 $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$,故函数在(0,0)处连续.

【教材例8】讨论函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 在(0,0)的连续性.

【解】 取 y = kx

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} = \lim_{x\to 0} \frac{kx^2}{x^2 + k^2 x^2} = \frac{k}{1 + k^2}$$

其值随 k 的不同而变化, 极限不存在.

故函数在(0,0)处不连续.

2.【多元初等函数】由常数及具有不同自变量的一元 基本初等函数经过有限次的四则运算和复合运算所构成 的可用一个式子所表示的函数叫多元初等函数.

【结论】一切多元初等函数在其定义区域内是连续的.

由多元初等函数的连续性,如果要求 $\lim_{P \to P_0} f(P)$,而 P_0 (内点或者边界点)又在此函数的定义区域内,则 $\lim_{P \to P_0} f(P) = f(P_0)$.

【教材例9】求
$$\lim_{(x,y)\to(1,2)} \frac{x+y}{xy}$$

【解】 定义域
$$D = \{(x,y) | x \neq 0, y \neq 0\}$$

 $P_0(1,2)$ 为D的内点,故 $\exists U(P_0) \subset D$

而任何邻域都是区域,则

 $U(P_0)$ 是f(x,y)的一个定义区域,因此

$$\lim_{(x,y)\to(1,2)} \frac{x+y}{xy} = f(1,2) = \frac{3}{2}$$

3. 【有界闭区域上连续函数的性质】

(1) 有界性与最大值最小值定理

在有界闭区域 D 上的多元连续函数,必定在 D上有界,且能取得它的最大值和最小值.

(2) 介值定理

在有界闭区域 D 上的多元连续函数必取得 介于最大值和最小值之间的任何值.

【注】 (1) (2)定理中条件的充分性.

内容小结

- 1. 区域 邻域 : $U(P_0,\delta)$, $U(P_0,\delta)$ 区域---连通开集
- 2. 多元函数概念

- 3. 多元函数的极限 (注意趋近方式的任意性)
- 4. 多元函数的连续性
 - 1) 函数 f(P) 在 P_0 连续 \longrightarrow $\lim_{P \to P_0} f(P) = f(P_0)$
 - 2) 闭域上的多元连续函数的性质