Géométrie affine

Notes extraites du cours de Mr Georges Tomanov Contributeur(s) Mr Payet Thibault Benjamin

Sommaire

Sommaire	
1 Espace affine	1
Table des matières	3

1.1 Définitions et propriétés

Problème: Deux droites D et D' sécantes en un point M, et un point C. On demande de construire la droite passant par M et C sans utiliser M.

Ok il y a un petit problème (j'avais pas eu le temps de copier)

Définition Soient X un ensemble et V un espace vectoriel sur un corp \mathbb{K} (abélien). On dit que X est un espace affine de direction V s'il existe une application de $X \times V \to X$, $(x, \vec{v}) \mapsto x + \vec{v}$ telle que :

- (i) $x + \vec{0} = x, \forall x \in X$
- (ii) $(x + \vec{u}) + \vec{v} = x + (\vec{u} + \vec{v}), \forall x \in X, \forall \vec{u}, \vec{v} \in V$
- (iii) $\forall x \in X, \forall y \in X, \exists ! \vec{v} \in V, y = x + \vec{v}$

 $\dim_{\mathbb{K}} X := \dim_{\mathbb{K}} V$. En plus \emptyset est un espace affine pour lequel dim n'est pas défini.

Remarque (i) et (ii) nous montre que V agit sur X, (iii) nous montre que l'action est simplement transitive

Définition (Alternative)

X est un espace affine dirigé par V s'il existe une action simplement transitive de V sur X

Notation : Si $\vec{v} \in V$, on définit $\tau_{\vec{v}}: X \to X, x \mapsto x + \vec{v}$

Table des matières

$\mathbf{S}_{\mathbf{G}}$	Sommaire	
	Espace affine 1.1 Définitions et propriétés	1 1
Т:	able des matières	3