Upload the answers. OBSERVATION AND CALCULATIONS

Potentiometric Titration-I:

Burette: KMnO₄ solution (0.05 N)

Beaker: 20 mL of steel solution containing Fe(II) + 20 mL (one test tube) of dil. H₂SO₄

Electrodes: Indicator electrode (Pt) to red terminal and SCE to black terminal

S. No.	Volume of KMnO ₄ (mL)	EMF (volts)	
1	0	0.05	
2	1	0.06	
3	2	0.07	
4	3	0.08	
5	4	0.16	
6	5	0.16	
7	6	0.17	
8	7	0.18	
9	8	0.19	
10	9	0.19	

Iron in carbon steel by potentiometry

Fig. 3: Plot of EMF vs Volume of KMnO₄ added (mL)

Potentiometric Titration-II:

Burette: KMnO₄ solution (0.05 N)

Beaker: 20 mL of steel solution containing Fe(II) + 20 mL (one test tube) of dil. H₂SO₄

Electrodes: Indicator electrode (Pt) to red terminal and SCE to black terminal

Sl. No.	Vol. of KMnO ₄ (mL)	EMF (Volt)	ΔE (Volt)	ΔV (mL)	ΔΕ/ΔV (Volt/mL)	Average Volume (mL)
1	3.0	0.08				
2	3.2	0.09	0.01	0.2 ml	0.05	3.1 ml
3	3.4	0.095	0.005	0.2 ml	0.025	3.3 ml
4	3.6	0.15	0.055	0.2	0.275	3.5
5	3.8	0.16	0.01	0.2	0.05	3.7
6	4.0	0.161	0.001	0.2	0.005	3.9
7	4.2	0.163	0.002	0.2	0.01	4.1
8	4.4	0.165	0.002	0.2	0.01	4.3
9						
10		~				

Fig. 4: Plot of $\Delta E/\Delta V$ vs Average volume of KMnO₄ added.

Calculation:

Iron in carbon steel by potentiometry

 $(N \times V)$ of steel sample solution = $(N \times V)$ of $KMnO_4$

N of steel sample solution = $0.05 \text{ N x Volume of KMnO}_4$ from Plot-2

20 mL of steel sample

= $0.05 \text{ N x Volume of KMnO}_4$ from Plot-2

N

Amount of Fe present in 1 L of sample solution = Normality of steel sample x At. wt. of Fe (55.85) Amount of Fe present in given (100 ml) sample solution = $\underline{\text{Normality of steel sample x 55.85 x 100}}$ 1000

= **0.049** grams in 100 mL

Result: The amount of Iron present in given steel sample is found to be $= \underline{\circ \cdot \circ \circ 98}$ grams.

