华初华山 Prove Carathédory's Theorem (extension theorem) Assume that & is a semiring on sz: 21.): &> [0,00) is an additive function, in other words: (1) 2(6)=0; (2) YAne & , & Ane &, 2(2)An)= & u(An) Then: U) u hous an extension measure \$\bar{u}\$ on (\$\bar{u}\$, 6(\$\bar{u}\$)) s.t. \$\bar{u}\$ | \varepsilon = \mathreal{u}\$ (2) If u is a 6-finite function · Ω = \(\frac{\infty}{2}\)An, Aree, u(An) < του Unal. Then it is an unique extension Proof: Lemma 1: If u* (A) = inf 1 = ulan): AnEE, A⊆VAn3 VAED Then (i) 21 (4)=0 (ii) A, ⊆ A, => U*(A,) < U*(A2) (iii) u*(VAn) < = u*(An), HAnCO liv) u* (5= 2 (i) (ii) trival, omitted (iii) Let 500, for each, there exists a covering (Bjkg of Aj

	The double sequence (Bjr3 is a covering of VA;
	st. \(\sigma \sigma \nu(B_1 \kappa) \leq \sigma \nu(A_1) + \(\sigma \)
	Hence for any 5>0
	2* (UAj) ≤ \(\Sigma\) (Aj)+ \(\Sigma\)
	that establishes (iii) for u*, since & is arbitary small
(iv)	By (iii) we know u* is an order measure, so a class of sets F*
	is associated an follows:
	A set ACS belongs to F* iff for every 2CS We have
	$u^{*}(z) = u^{*}(A \cap Z) + u^{*}(A^{c} \cap Z)$
	If in (iii) we change "=" into "=" the resulting inequality holds
	by Lermon 1 Hence (iii) is equivalent to the reverse inequality
	When "=" is changed to ">"
Lemr	na 2: Define F= LACD: u*(B)=u*(ANB)+u*(A°NB) +BCΩ}
	Then: (i) F* isa 6-algebra on a
	Lii) & C F* 1 => 6(8) = F*)
	(iii) u* is a measure on F*
	(III) W 15 W HEWATE OT V J
Le	t A E F. For any ZCD and any EDO. there exists a covering

1B3 of 2 such that ∑ u(Bj) < u*(2)+E Since ANB; E.Fo. LANB; 3 is a covering of AZ. (ACB; 3 is a covering of ACZ Hence u*(A2) ≤ \(\times u(ABj) \(\times \)*(A'Z) \(\times \) \(\times u \)*(A'Bj) Since u 15 a measure on Fo, we have for each j: 2 (ABj)+21(ACBj)=21(Bj) It follows from u*(AZ)+u*(ACZ) ≤ u*(Z)+& Letting ENO establishes the criterion (iii) in it's ">" form Thus AEF* and we have proved that FoeF* To prove that F* is a Borel Field, it is trival that it is closed under complementation because the criterion is unaffered when A is changed into Ac. Next, to show that F* is closed under union. Let AEF* and BEF*. Then for any ZCD, we have by (iii) with A replaced by B and replaced by ZA or ZAC:

Because Bn & F*. It follows by induction on n that

$$u^*(z \cup B_j) = \sum_{j=1}^{N} u^*(zB_j) \qquad (a)$$

That establishes
$$\overset{\infty}{V}$$
 Bj \in \mathbb{F}^* . Thus \mathbb{F}^* is a Boyel Field.

Finally, let 2Bj3 be a sequence of disjoint sets in F* By the property (ii)

additivity of
$$u^*$$
 on f^* , namely the property (d) for a measure $u^* (UB_j) = \sum_{i=1}^{\infty} u^* (B_j)$

The proof of theorem
$$\geq$$
 13 complete.

Lem	ma3:	If u, ar	iduz c	re two) finite	. mea	ruye	20	6(6	, (ۓ				
		Eisa												
Us	ing lemm	VQ 2 Lii)	6(2)	⊊ F *										
De	fine ū	= N* 66	() Ther	bwed	on ler	nma.	2. (iii)	, ū	isc	ı M	20J	we		
	on (Ω, 6	(E)), V	using ler	nm Ce l	Liv), ī	i ¿= 1	ı							
TI	ms ūis	, an ext	ervion n	newy	e on 1	ίΩ, 6	(E))	of 1	۱.					
1),	iguenes	L /\<	me tha	2016	= 111	. = 11								
	V													
De	ofine G	= { AE	5(E): 1	4 lAnf	1)= U2 ((AnA	3 n	اج						
_B	ased on l	emma3.	21/A.	(16E)	= 12/	In 116 (2	į) <u> </u>							
	× ×	2												
	13 D= 2	An, W	ie have	U1= U2										
_														
_														
_														_