Algorithmics Correction Final Exam #2 (P2)

Undergraduate
$$1^{st}$$
 year (S2) — Epita
$$6 \ \textit{June 2016 - 10:00}$$

Solution 1 (Leonardo trees – 5 points)

1. The Fibonacci tree A_5 is the one in figure 1 with each node containing its balance factor value.

Figure 1: The Fibonacci tree A_5

2. Table of H_n , T_n , F_n and Fib_n :

n	H_n	T_n	F_n	Fib_n
0	_	0	0	0
1	0	1	1	1
2	1	2	1	1
3	2	4	2	2
4	3	7	3	3
5	4	12	5	5
6	5	20	8	8

3. $n \ge 2$:

- $H_n = n 1$
- $T_n = Fib_{n+2} 1$ as $T_n = T_{n-1} + T_{n-2} + 1$
- $\bullet \ F_n = Fib_n = Fib_{n-1} + Fib_{n-2}$
- 4. A_0 is a leaf, A_1 has a single node at its left, nothing at its right: these trees are height-balanced. With $n \geq 2$, A_n height is n-1. Its subtrees are A_{n-1} of height n-2 and A_{n-2} of height n-3. Thus, the balance factor of the root of A_n is 1 (n-2-(n-3)).

All internal nodes of a Fibonacci tree have a balance factor of 1: it is an height-balanced tree.

Solution 2 (BST and mystery -5 points)

1. Returned results?

```
(a) call(25, B): None
(b) call(21, B): 26
(c) call(20, B): 21
(d) call(9, B): 15
(e) call(53, B): None
```

2. bst_mystery(x, B) (B any BST, with distinct elements).

At the end of part 1:

- (a) B is the tree that contains x in its root, None if x is not in the tree.
- (b) On the search path, P is the tree which root is the last encounter node before descending on the left (it stays None if we never go to the left).
- 3. call(x, B): if x is found in B and is not the greatest value, the function returns the value just after x in B. Otherwise it returns None.

Solution 3 (Add the size – 4 points)

```
def addSize(B):
               if B == None:
                   return(None, 0)
               else:
                   C = BinTreeSize()
                   C.key = B.key
6
                   (C.left, size1) = addSize(B.left)
                   (C.right, size2) = addSize(B.right)
                   C.size = 1 + size1 + size2
                   return (C, C.size)
  # another version
12
13
           def addSize2(B):
14
               if B == None:
15
                   return(None, 0)
               else:
17
                   (left, size1) = addSize2(B.left)
18
                   (right, size2) = addSize2(B.right)
19
                   size = 1 + size1 + size2
20
                   return (newBinTreeSize(B.key, left, right, size), size)
```

```
def copyWithSize(B):
    (C, size) = addSize(B)
    return C
```

Solution 4 (Median - 7 points)

- 1. B BST with n elements such that the k^{th} element $(1 \le k \le n)$ is in the root:
 - $\operatorname{size}(\operatorname{l}(B)) = k 1$
 - $\operatorname{size}(\mathbf{r}(\mathbf{B})) = n k$
- 2. Abstract definition of the operation nth (median was given):

AXIOMS

```
\begin{array}{l} k = size(G) + 1 \Rightarrow nth \; (< r, \, G, \, D>, \, k) = r \\ k \leq size \; (G) \Rightarrow nth \; (< r, \, G, \, D>, \, k) = nth \; (G, \, k) \\ k > size \; (G) + 1 \Rightarrow nth \; (< r, \, G, \, D>, \, k) = nth \; (D, \, k - size \; (G)-1) \end{array}
```

3. Specifications:

The function nthBST(B, k) with B a nonempty BST and $1 \le k \le size(B)$ returns the tree with the k^{th} element of B as root.

```
def nthBST(B, k):
2
                if B.left == None:
                    leftSize = 0
                else:
                    leftSize = B.left.size
               if leftSize == k - 1:
                    return B
                elif k <= leftSize:</pre>
10
                    return nthBST(B.left, k)
                    return nthBST(B.right, k - leftSize - 1)
13
15
           def nthBST2(B, k):
17
                if B.left == None:
18
                    if k == 1:
19
                        return B
20
21
                        return nthBST2(B.right, k - 1)
23
                else:
                    if k == B.left.size + 1:
25
26
                        return B
                    elif k <= B.left.size:</pre>
27
                        return nthBST2(B.left, k)
28
                    else:
29
                        return nthBST2(B.right, k - B.left.size - 1)
```

Specifications:

The function median(B) returns the median value of the binary search tree B if it is non empty. Otherwise, it returns None.

```
def median(B):
    if B != None:
        return nthBST(B, (B.size+1) // 2).key
    else:
        return None
```