Computing isomorphism classes of abelian varieties over finite fields.

Stefano Marseglia

Utrecht University

Curves over Finite Fields: Past, Present and Future

Stefano Marseglia 24/05/2021 1/23

Abelian varieties over \mathbb{C} vs \mathbb{F}_q

- Let A/\mathbb{C} be an abelian variety of dimension g.
- Then $A(\mathbb{C})$ is a **torus**: $T := \mathbb{C}^g / \Lambda$, where $\Lambda \simeq_{\mathbb{Z}} \mathbb{Z}^{2g}$.
- Moreover, T admits a non-degenerate Riemann form ←→
 polarization.
- Actually, $A \mapsto A(\mathbb{C})$ induces an equivalence of categories:

- In char. p>0 such an equivalence cannot exist: there are (supersingular) elliptic curves with quaternionic endomorphism algebras.
- Nevertheless, over finite fields, we obtain analogous results if we restrict ourselves to certain subcategories of AVs.

Stefano Marseglia 24/05/2021

Isogeny classification over \mathbb{F}_q

ullet A/\mathbb{F}_q comes with a **Frobenius** endomorphism, that induces an action

Frob_A:
$$T_{\ell}A \rightarrow T_{\ell}A$$
 for any $\ell \neq p$,

where $T_{\ell}(A) = \lim_{n \to \infty} A[\ell^n] \simeq \mathbb{Z}_{\ell}^{2g}$.

- $h_A(x) := \text{char}(\text{Frob}_A)$ is a q-Weil polynomial and isogeny invariant.
- By Honda-Tate theory, the association

isogeny class of
$$A \longmapsto h_A(x)$$

is injective and allows us to enumerate all AVs up to isogeny.

• Also, $h_A(x)$ is squarefree \iff End(A) is commutative.

Stefano Marseglia 24/05/2021 3 / 23

Deligne's equivalence

Recall: A/\mathbb{F}_q is **ordinary** if half of the *p*-adic roots of h_A are units.

Theorem (Deligne '69)

Let $q = p^r$, with p a prime. There is an equivalence of categories:

$$\left\{ \begin{array}{ll} \text{Ordinary abelian varieties over } \mathbb{F}_q \right\} & A \\ \downarrow & \downarrow \\ \\ \text{pairs } (T,F), \text{ where } T \simeq_{\mathbb{Z}} \mathbb{Z}^{2g} \text{ and } T \xrightarrow{F} T \text{ s.t.} \\ -F \otimes \mathbb{Q} \text{ is semisimple} \\ -\text{ the roots of } \mathrm{char}_{F \otimes \mathbb{Q}}(x) \text{ have abs. value } \sqrt{q} \\ -\text{ half of them are } p\text{-adic units} \\ -\exists V: T \to T \text{ such that } FV = VF = q \\ \end{array} \right\}$$

- Ordinary A/\mathbb{F}_q can be canonically lifted: $\rightsquigarrow \mathscr{A}_{\operatorname{can}}/\operatorname{Witt}(\mathbb{F}_q)...$
- ... characterized by: $\operatorname{End}_{\mathbb{F}_q}(A) = \operatorname{End}_W(\mathscr{A}_{\operatorname{can}})$.
- Put $T(A) := H_1(\mathscr{A}_{can} \otimes \mathbb{C}, \mathbb{Z})$ and F(A) := the induced Frobenius.

Stefano Marseglia 24/05/2021

Squarefree case

- Fix an **ordinary squarefree** q-Weil polynomial h:
- \rightsquigarrow an isogeny class $\mathscr{C}_h/\mathbb{F}_q$.
- Put $K := \mathbb{Q}[x]/(h) = \mathbb{Q}[F]$, an étale algebra = product of number fields.
- Put V = q/F. Deligne's equivalence induces:

Theorem

• Problem: $\mathbb{Z}[F, V]$ might not be maximal \rightsquigarrow non-invertible ideals.

Stefano Marseglia 24/05/2021

ICM: Ideal Class Monoid

Let R be an **order** in an étale \mathbb{Q} -algebra K.

• Recall: for fractional R-ideals I and J

$$I \simeq_R J \Longleftrightarrow \exists x \in K^\times \text{ s.t. } xI = J$$

We have

$$ICM(R) \supseteq Pic(R) = {invertible fractional R-ideals} /_{\simeq_R}$$
 with equality ${}^{\updownarrow}$ iff $R = \mathscr{O}_K$

...and actually

$$ICM(R) \supseteq \bigsqcup_{\substack{R \subseteq S \subseteq \mathcal{O}_K \\ \text{over-orders}}} Pic(S)$$
 with equality iff R is Bass

6 / 23

• Hofmann-Sircana '19: computation of over-orders.

Stefano Marseglia 24/05/2021

simplify the problem

Study the isomorphism problem locally: (Dade, Taussky, Zassenhaus '62)

• weak equivalence:

$$I_{\mathfrak{p}} \simeq_{R_{\mathfrak{p}}} J_{\mathfrak{p}}$$
 for every $\mathfrak{p} \in \mathsf{mSpec}(R)$
$$\updownarrow$$

$$1 \in (I:J)(J:I) \quad \mathsf{easy to check!}$$

• Let $\mathcal{W}(R)$ be the set of weak eq. classes... ...whose representatives can be found in

$$\left\{ \text{sub-}R\text{-modules of } \mathscr{O}_{K/\mathfrak{f}_{R}} \right\} \quad \begin{array}{l} \text{finite! and most of the} \\ \text{time not-too-big } \dots \end{array}$$

7 / 23

where $f_R = (R : \mathcal{O}_K)$ is the conductor of R.

Stefano Marseglia 24/05/2021

Compute ICM(R)

Partition w.r.t. the multiplicator ring:

$$W(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_K} W_S(R)$$
$$ICM(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_K} ICM_S(R)$$

the "pedix" -S means "only classes with multiplicator ring S"

8 / 23

Theorem (M.)

For every over-order S of R, Pic(S) acts freely on $ICM_S(R)$ and

$$W_S(R) = ICM_S(R)/Pic(S)$$

Repeat for every $R \subseteq S \subseteq \mathcal{O}_K$:

$$\rightsquigarrow ICM(R)$$
.

Stefano Marseglia 24/05/2021

To sum up:

- To sum up:
- Given a **ordinary squarefree** q-Weil polynomial h ...
- ullet ... \leadsto algorithm to compute the isomorphism classes of AVs in \mathscr{C}_h .

We can actually get a lot more!

Stefano Marseglia 24/05/2021 9 / 23

Dual varieties and Polarizations

Howe described dual varieties and polarizations on Deligne modules.

Theorem

Let $A \in \mathcal{C}_h$ with h ordinary and squarefree. If $A \leftrightarrow I$, then:

- $A^{\vee} \leftrightarrow \overline{I}^t := \{ \overline{x} \in K : \operatorname{Tr}(xI) \subseteq \mathbb{Z} \}.$
- a polarization μ of A corresponds to a $\lambda \in K^{\times}$ such that
 - $\lambda I \subseteq \overline{I}^t$ (isogeny);
 - λ is totally imaginary $(\overline{\lambda} = -\lambda)$;
 - λ is Φ -positive, where Φ is a CM-type of K satisf. the Shimura-Taniyama formula.

Also: $\deg \mu = [\overline{I}^t : \lambda I].$

- if $(A, \mu) \leftrightarrow (I, \lambda)$ is a princ. polarized ab. var. and S = (I:I) then $\begin{cases} \text{non-isomorphic princ.} \\ \text{polarizations of } A \end{cases} \longleftrightarrow \frac{\{\text{totally positive } u \in S^{\times}\}}{\{v\overline{v}: v \in S^{\times}\}},$
- and $Aut(A, \mu) = \{torsion \ units \ of \ S\}.$

Principal Polarizations

We have an **algorithm** to enumerate principal polarizations up to isomorphism:

- Compute i_0 such that $i_0I = \overline{I}^t$.
- $oldsymbol{2}$ Loop over the representatives u of the finite quotient

$$\frac{S^\times}{\left\{v\overline{v}:v\in S^\times\right\}}.$$

- **3** If $\lambda := i_0 u$ is totally imaginary and Φ -positive ...
- ... then we have one principal polarization.
- Sy the previous Theorem, we have all princ. polarizations up to isom.

Can modify to compute polarizations of any degree.

Stefano Marseglia 24/05/2021

- Let $h(x) = x^8 5x^7 + 13x^6 25x^5 + 44x^4 75x^3 + 117x^2 135x + 81$.
- $\bullet \leadsto$ isogeny class of an simple ordinary abelian varieties over \mathbb{F}_3 of dimension 4.
- Let F be a root of h(x) and put $R := \mathbb{Z}[F, 3/F] \subset \mathbb{Q}(F)$.
- 8 over-orders of R: two of them are not Gorenstein.
- $\#ICM(R) = 18 \rightsquigarrow 18$ isom. classes of AV in the isogeny class.
- 5 are not invertible in their multiplicator ring.
- 8 classes admit principal polarizations.
- 10 isomorphism classes of princ. polarized AV.

24/05/2021 12 / 23

Concretely:

$$\begin{split} I_1 = & 2645633792595191\mathbb{Z} \oplus (F + 836920075614551)\mathbb{Z} \oplus (F^2 + 1474295643839839)\mathbb{Z} \oplus \\ & \oplus (F^3 + 1372829830503387)\mathbb{Z} \oplus (F^4 + 1072904687510)\mathbb{Z} \oplus \\ & \oplus \frac{1}{3}(F^5 + F^4 + F^3 + 2F^2 + 2F + 6704806986143610)\mathbb{Z} \oplus \\ & \oplus \frac{1}{9}(F^6 + F^5 + F^4 + 8F^3 + 2F^2 + 2991665243621169)\mathbb{Z} \oplus \\ & \oplus \frac{1}{27}(F^7 + F^6 + F^5 + 17F^4 + 20F^3 + 9F^2 + 68015312518722201)\mathbb{Z} \end{split}$$

principal polarizations:

$$\begin{aligned} x_{1,1} &= \frac{1}{27} \big(-121922F^7 + 588604F^6 - 1422437F^5 + \\ &\quad + 1464239F^4 + 1196576F^3 - 7570722F^2 + 15316479F - 12821193 \big) \\ x_{1,2} &= \frac{1}{27} \big(3015467F^7 - 17689816F^6 + 35965592F^5 - \\ &\quad - 64660346F^4 + 121230619F^3 - 191117052F^2 + 315021546F - 300025458 \big) \\ &\text{End}(I_1) &= R \\ \# \operatorname{Aut}(I_1, x_{1,1}) &= \# \operatorname{Aut}(I_1, x_{1,2}) = 2 \end{aligned}$$

Stefano Marseglia 24/05/2021

$$\begin{split} I_7 = & 2\mathbb{Z} \oplus (F+1)\mathbb{Z} \oplus (F^2+1)\mathbb{Z} \oplus (F^3+1)\mathbb{Z} \oplus (F^4+1)\mathbb{Z} \oplus \frac{1}{3}(F^5+F^4+F^3+2F^2+2F+3)\mathbb{Z} \oplus \\ & \oplus \frac{1}{36}(F^6+F^5+10F^4+26F^3+2F^2+27F+45)\mathbb{Z} \oplus \\ & \oplus \frac{1}{216}(F^7+4F^6+49F^5+200F^4+116F^3+105F^2+198F+351)\mathbb{Z} \end{split}$$

principal polarization:

$$\begin{aligned} x_{7,1} &= \frac{1}{54} (20F^7 - 43F^6 + 155F^5 - 308F^4 + 580F^3 - 1116F^2 + 2205F - 1809) \\ &\text{End}(I_7) = \mathbb{Z} \oplus F \mathbb{Z} \oplus F^2 \mathbb{Z} \oplus F^3 \mathbb{Z} \oplus F^4 \mathbb{Z} \oplus \frac{1}{3} (F^5 + F^4 + F^3 + 2F^2 + 2F) \mathbb{Z} \oplus \\ &\oplus \frac{1}{18} (F^6 + F^5 + 10F^4 + 8F^3 + 2F^2 + 9F + 9) \mathbb{Z} \oplus \\ &\oplus \frac{1}{108} (F^7 + 4F^6 + 13F^5 + 56F^4 + 80F^3 + 33F^2 + 18F + 27) \mathbb{Z} \end{aligned}$$

$$\# \operatorname{Aut}(I_7, x_{7,1}) = 2$$

 I_1 is invertible in R, but I_7 is not invertible in End (I_7) .

Stefano Marseglia 24/05/2021

The Power-of-a-Bass case

- Another case we understand well: $h = g^r$ for g square-free and ordinary.
- Every A in \mathscr{C}_{g^r} is $A \sim B^r$ for $B \in \mathscr{C}_g$.
- Put $R := \mathbb{Z}[F, V] \subset K_g := \mathbb{Q}[x]/(g) = \mathbb{Q}[F]$.
- Under these assumption, Deligne's theorem induces:

$$\left\{\text{abelian varieties in }\mathscr{C}_{g^r}\right\} \longleftrightarrow \left\{R\text{-modules }M\subseteq K_g^r\right\}.$$

- ullet Recall: an order R is **Bass** if all its over-orders S are **Gorenstein**, ...
- ... or equivalently $ICM(R) = \coprod_S Pic(S)$.
- Eg: quadratic orders are Bass \rightsquigarrow powers of ordinary elliptic curves E^r .

• If R is Bass, then M is isomorphic to a direct sum of frac.R-ideals.

Stefano Marseglia 24/05/2021 15 / 23

The Power-of-a-Bass case

Theorem

Corollary

If
$$A \in \mathcal{C}_{g^r}$$
 then $A \simeq C_1 \times ... \times C_r$, for $C_j \in \mathcal{C}_g$. everything is a product!

- Howe's results on polarizations carry over ...
- ... but computing them in general is harder!
- Solved for E^r by Kirschmer-Narbonne-Ritzenthaler-Robert '20. $\frac{\text{next}}{\text{talk!}}$

Stefano Marseglia 24/05/2021 16 / 23

Let $g=x^6-3x^5+6x^4-10x^3+18x^2-27x+27$. Note $\mathscr{C}(g)$ is an isogeny class of simple ordinary abelian varieties over \mathbb{F}_3 . Define $K=\mathbb{Q}[x]/(g)=\mathbb{Q}(F)$ and $R=\mathbb{Z}[F,V]$. The only over-order of R is the maximal order \mathscr{O}_K of K and, since R is Gorenstein R is Bass. Observe

$$\operatorname{Pic}(R) \simeq \mathbb{Z}/_{3\mathbb{Z}} \text{ and } \operatorname{Pic}(\mathscr{O}_K) = \{1\}.$$

Let I be a representatives of a generator of Pic(R). We now list the representatives of the isomorphism classes in $\mathcal{C}(g^3)$:

$$\begin{aligned} M_1 &= R \oplus R \oplus R & M_2 &= R \oplus R \oplus I & M_3 &= R \oplus R \oplus I^2 \\ M_4 &= R \oplus R \oplus \mathcal{O}_K & M_5 &= R \oplus \mathcal{O}_K \oplus \mathcal{O}_K & M_6 &= \mathcal{O}_K \oplus \mathcal{O}_K \oplus \mathcal{O}_K \end{aligned}$$

$$\operatorname{End}(M_1) = \operatorname{Mat}_3(R) \text{ and } \operatorname{End}(M_2) = \begin{pmatrix} R & R & I \\ R & R & I \\ (R:I) & (R:I) & R \end{pmatrix}$$

Stefano Marseglia 24/05/2021

Outside of the ordinary...

Theorem (Centeleghe-Stix '15)

There is an equivalence of categories:

{abelian varieties
$$A$$
 over \mathbb{F}_p with $h_A(\sqrt{p}) \neq 0$ } A

$$\downarrow$$

$$pairs (T,F) , where $T \simeq_{\mathbb{Z}} \mathbb{Z}^{2g}$ and $T \xrightarrow{F} T$ s.t.
$$-F \otimes \mathbb{Q} \text{ is semisimple}$$

$$- the roots of $\operatorname{char}_{F \otimes \mathbb{Q}}(x)$ have abs. value \sqrt{p}

$$- \operatorname{char}_{F}(\sqrt{p}) \neq 0$$

$$-\exists V: T \to T \text{ such that } FV = VF = p$$$$$$

- Now, $T(A) := \text{Hom}(A, A_w)$, where A_w has minimal End among the varieties with Weil support w = w(A).
- F(A) is the induced Frobenius.

Stefano Marseglia 24/05/2021

Outside of the ordinary...isomorphism classes

- Everything I told so far about isomorphism classes works in the same way using the Centeleghe-Stix functor:
- both in the squarefree and Power-of-Bass cases, over \mathbb{F}_p .
- (There are there are other functors:
 Oswal-Shankar for almost-ordinary abelian varieties, together with generalizations by Bergström-Karemaker-M.;
 Serre and the work of Kani, Jordan-Keeton-Poonen-Rains-Shepherd-Barron-Tate for E^r; Isabel Vogt's talk
 ... but we will not use them in this talk.)
- For polarizations, the results by Howe do not apply immediately to the Centeleghe-Strix case:
- in general we cannot lift canonically each abelian variety.

Stefano Marseglia 24/05/2021 19 / 23

Outside of the ordinary...polarizations

- New strategy: with Jonas Bergström and Valentijn Karemaker '21.
- Consider \mathscr{C}_h with h squarefree $/\mathbb{F}_q \rightsquigarrow K = \mathbb{Q}[F]$.
- Chai-Conrad-Oort: A (p-adic) CM-type (K,Φ) satisfies the **Residual** Reflex Condition if:
 - \bullet the Shimura-Taniyama formula holds for Φ .
 - **1** the residuel field k_E of the reflex field E of (K,Φ) satisfies: $k_E \subseteq \mathbb{F}_q$.

Theorem (Chai-Conrad-Oort)

If (K,Φ) satisfies the RRC then in \mathscr{C}_h there exists an abelian variety A admitting a canonical lifting \mathscr{A} .

• If we understand the polarizations of A we can 'spread' them to the whole isogeny class.

Stefano Marseglia 24/05/2021 20 / 23

Outside of the ordinary...polarizations

Now \mathscr{C}_h over \mathbb{F}_p : let \mathscr{G} be the Centeleghe-Stix functor. Assume that there exists A admitting a canonical lifting \mathscr{A} . Let $f:A\to B$ be an isogeny.

Note that $\mathscr{G}(f^*)$ is multiplication by the totally positive element $\overline{\mathscr{G}(f)}\mathscr{G}(f)$: it sends totally imaginary elements to totally imaginary elements and Φ -positive elements to Φ -positive elements. The only 'issue' is the α . We study when we can 'pretend' $\alpha=1$.

Stefano Marseglia 24/05/2021

Final remarks

- Base field extensions and twists (ordinary case).
- Period matrices of the canonical lift (ordinary case).
- with Caleb Springer '21, building on Howe-Kedlaya '21, we proved that every finite abelian group occur as the group of points of an ordinary AV over F₂. check Wanlin Li's talk!
- Magma implementations of the algorithms are on GitHub!
- Results of computations will appear on the LMFDB.

Stefano Marseglia 24/05/2021 22 / 23

Thank you!

 Stefano Marseglia
 24/05/2021
 23 / 23