Last time: Hymotopy invariance

Def: Two maps $\phi_0, \phi_1: M \to N$ are smoothly homotopic if there exists a smooth map $\Phi: M \times [0,1]_{t} \to N$ with $\Phi(-,0) = \beta(-)$, $\Phi(-,1) = \beta(-)$. Using the notation $\phi_t := \Phi(-,t)$,

"there exists a smoothly varying family () mtogolithy between to b &).

write \$ ~ \$, if they are honotype.

Eulech we haven't yet proven!

Prop: (Honotopy invurince): Say ϕ_t is a honotopy, $t \in [0,1]$. Then $\phi_t^*: H^{lc}(N) \to H^{lc}(M) \text{ is independent of } t.$

(i.e., ⇒ if \$, ~ \$, then \$, ± = \$, * : Hk(N) > Hk(M).

Def: A map $\phi: M \to N$ is a honotopy equivalence of f a transided inverse up to homotopy, i.e., a $\psi: N \to M$ (smooth) with call ψ "homotopy inverse" $\psi \circ \phi \simeq id_M$

Cor: If $\phi: M \to N$ is a homotopy equalex than $\phi^{*}:H^{k}(N) \longrightarrow H^{k}(M)$ is an isomorphism.

Proof: Let $\psi: N \to M$ be a honoty siver of ϕ . Then $\phi^* \circ \psi^* = (\psi \circ \phi)^* = (id_N)^* = id_{H^k(M)},$ $\psi^* \circ \phi^* = (\phi \circ \psi)^* = (id_N)^* = id_{H^k(M)},$ E

N.B. Diffeomorphisms are homotopy equicles, but not nec. vice vest. F.g., there can be honotopy equilless between manifolds of diffeont libraries, such as:

Cor: (Poincaré Lemma): $H_{dR}^{k}(\mathbb{R}^{n}) = 0$ if k > 0. (already know $H_{dR}^{o}(\mathbb{R}^{n}) = \mathbb{R}$).

Meaning: For k > 0, every closed k -form is also exact.

Proof: We'll show \mathbb{R}^n is homotopy equalent $+ \mathbb{R}^n = \{pt\} = \{0\}$.

By above this will imply $H_{JR}^k(\mathbb{R}^n) \cong H_{JR}^k(\{pt\}) = \{0\}$ when k = 0. \mathbb{R}^n when k = 0.

Let $\phi: \mathbb{R}^n \to \mathbb{R}^o$ $\psi: \mathbb{R}^o \to \mathbb{R}^n$. $(x_1, -, x_n) \mapsto 0$. $(x_1, -, x_n) \mapsto 0$.

Claim: \$, 4 are honotpy inverses.

• note $\phi \circ \psi : \mathbb{R}^{\circ} \longrightarrow \mathbb{R}^{\circ} = id_{\mathbb{R}^{\circ}}$.

• $\psi \circ \phi : \mathbb{R}^n \longrightarrow \mathbb{R}^n = f_0$ is homotopic to $f_1 \in id_{\mathbb{R}^n}$ $(x_{\nu_0} x_{\nu_1}) \mapsto 0 \mapsto 0$

via $f_{t}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ $(x_{i,j},x_{i}) \longmapsto (tx_{i,j},tx_{i}).$

(t = 0: get fo = 400) (t = 1: get ilpn

(note that the ang $\mathbb{R}^7 \times (0,1) \longrightarrow \mathbb{R}^7$ is small). $(\kappa_{\nu-1}\kappa_{n}), t \longmapsto (t\kappa_{\nu-1}t\kappa_{n})$ $f_{\nu}(\hat{x})$

图.

So assuming bonstpy invariance, we get Hote (IR)

& e.s., Hor (an open ball in IR") = Hk(IR") (b/c spen ball) = IR").

Want to Levelop more tools for computing Hik (M).

Ide: Lecopox M = UU; each U; open. (and en, U; sift open Sall in IR)

we callested H^k (presest); can we reconstact $H^k(M)$?

Mayer-Vietors Seguerce

Let M= UUV, U, V open sets. Then, we have natural melision maps

which we are alternatively think of as:

"M~V"

Thin (Mayer-Vieters sequence):

Given a decomposition of M=UVV as above in (*) we obtain the following long-exact-sequence (LES) of colomology graps:

$$0 \rightarrow H^{\circ}(H) \xrightarrow{i^{*}} H^{\circ}(U) \oplus H^{\circ}(V) \xrightarrow{i^{*}_{u}-i^{*}_{v}} H^{\circ}(U \cap V) \longrightarrow H^{\circ}(U \cap V)$$

Note: (a) 0 -> A => B exact means ker; = in(0) = 0. (=) i injectivity

(b) A => B -> U exact means; is surjective

(c) 0→A→O exact means A=O

(d) () -> A => B -> O exact means ; is an isomorphism ((a) + (b) apply)

(e) () -> A => B -> C -> O exact means

· i injective

of Jurjective.

(Short exact sequence, or SES)

· ker j = im i.

since B/kerj = imj=C Bi(A)

« a susspace isomphic to A.

M=S', with U, V as above Excupb: UFR UnV= R4R Compute H& (M=S=UUV) using 17-V. Sequero.) H'(s') -> H'(R) + H'(R) -> H'(R*R) -> H²(s') -> H²(R) white>-0-)A-0 is exact => A=O, · H2(S1) = 0 by above a similarly HK(S')=0 for K=2 by identical recogning (using H'(IR)=0 for i=0) Rewatng or LES, have: i* injecture by exactness at H°(S') So din in(i*) = 1. exactness at H°(1R) w H°(1R) =) din ker(in -in") = din (init) = 1 by above · ker (*) has dimension 1. therefore din in (+) = din (domain (+)) = 2-(=1.

· By exactress at H°(RHR), din ker S = din in (x) = 1.

• Rank nullity =) din lm s = din(dones + s) - din(lke s)= 2 - 1 = 1.

exactness \Rightarrow in $S \cong H'(S')$, so $J_{r_p}H'(S') = 1$. $\Rightarrow H'(S') \cong \mathbb{R}$.