Data Science Capstone - Final Presentation

Predicting Stock Market Movements through Social Media Sentiment Analysis

Authors: Aryan Bhardwaj, Tyler Gomez Riddick

August 13, 2024

TABLE OF CONTENTS

01 02

Introduction Background

03 04

Methods Data

05 06
Results Conclusion

Introduction

- The Dynamic Finance World:
 - Traditional stock analysis methods are now being supplemented by data-driven approaches.
- The Power of Social Media:
 - Social media platforms, especially X and Reddit, have emerged as significant sources of market sentiment, where opinions and reactions are expressed in real time.
- Significance of Sentiment Analysis:
 - By analyzing sentiment on platforms like X and Reddit, we can gain insights into trends, offering a potential predictive edge in stock movements.
- Project Goal:
 - Analyze social media posts and correlate them with financial data from Yahoo Finance to develop a predictive model for stock market movements.

Background

Rationale for Social Media Sentiment Analysis:

- Platforms influence public opinion and investor behavior.
- Traditional financial analysis often misses the immediate trends discussed on social media
 Why Focus on These Companies?
 - Nvidia & Wingstop: Nvidia's and Wingstop's growth have made both popular subjects on social media, ideal for sentiment analysis.
 - GameStop: The Reddit-driven short squeeze exemplifies social media's power in influencing stock prices.
 - Dogecoin: Propelled by social media and endorsements from figures like Elon Musk

Three Phases

Overview

Data Collection:

 Gather stock price data from Yahoo Finance and social media data from platforms like X and Reddit through web scraping.

Sentiment Analysis:

 Analyze social media posts to quantify sentiment and gauge public opinion on the selected companies.

Model Development:

 Build predictive models using the sentiment data combined with historical stock prices to forecast market movements.

Web Scraping

- Twitter
 - Goal: scrape top 250 posts for each day in date range
 - API expensive
 - Strict rate limits
 - twscrape
 - Custom Selenium-based web scraper
- Reddit
 - o Goal: scrape all submissions in date range
 - Python Reddit API Wrapper (PRAW)

Web Scraping

twscrape

- Python package
- Uses official Twitter API
- Easy to deploy
- Collects data very quickly
- Easy to hit rate limits
- Accounts banned quickly

Twitter/X

Selenium

- Custom built usingSelenium package
- Cycles through short list of accounts
- o Single-threaded
- Reliable, and can be trusted to run for hours without fail
- Significantly slower than twscrape

Web Scraping - PRAW

- Reddit API
 - Free to sign-up for and use
 - Access to vast amounts of data
 - High rate limits
 - Accessed via PRAW
- Six subreddits
 - o r/gamestop
 - o r/wingstop
 - o r/nvidia
 - o r/dogecoin
 - o r/GME
 - o r/NVDA_Stock

Web Scraping - Ethical Considerations

Rate Limits

- Developers impose rate limits to avoid undue burden
- Data is publicly accessible
- Never exceeded a rate limit using Selenium

• Data Anonymization

- Data and users linked
- No user data was collected at any point

Sentiment Analysis

Sentiment Scoring Process

- Calculated sentiment score for each post.
 - vaderSentiment Python package
 - Tuned to social media sentiments
- Aggregated sentiment scores daily via averaging to align with stock market data frequency.

Modeling

- Goal: to predict whether the closing price for a stock entity will move up or down during the following days depending on the social media sentiment about that entity
- (Primarily) a binary prediction: "up" if the closing price is higher the next day or "down" if it is lower
- Predicting next day change, as well as next four days after that
- Two models
 - Logistic regression
 - Decision trees
- Using scikit-learn package
- Measuring performance by model accuracy

Database

Social Media Data - Posts

- Relevant columns:
 - post the actual text content of each X post or submission
 - likes number of likes (X) or net score (Reddit)
 - date_posted the date the post was added to the site
 - Foreign key to the stock market table

Stock Market Data

- Most relevant columns
 - o date primary key
 - the market date
 - open the stock price at the start of the market day
 - close the stock price at the end of the market day
 - volume the number of stocks traded (bought or sold) during the market day
 - For wing, gme, and nvda:
 - adj_close closing price adjusted for actions taken by company that would affect price
 - o For dogecoin:
 - market_cap market capitalization, total value of all outstanding shares

Distribution of Post Sentiment Scores

Average Daily Sentiment Score vs Time

Correlation

Logistic Regression Model

- Wingstop and Nvidia models perform best
- Gamestop and Dogecoin display varying accuracies
- General model is consistently above 50%

Decision Tree Model

- Wingstop and Nvidia models perform best
- Dogecoin accuracy improves
- GameStop improves
 on days where
 logistic model
 predicted with < 50%
 accuracy
- General model is consistently above 50%

Comparison

- Decision tree performs better on first three days
- Logistic
 regression
 performs better
 on the 4th and 5th
 days
- These results are very close across the board though

Comparison - McNemar Test

- Results are statistically significant for all days except the second day
- Decision Tree model is the more accurate model on the 1st and 3rd days
- Logistic Regression model is more accurate on the 4th and 5th days

Day	P-Value
1st Day	9.54 × 10 ⁻⁷
2nd Day	1.0
3rd Day	4.34 × 10 ⁻¹⁹
4th Day	2.27 × 10 ⁻¹³
5th Day	1.22 × 10 ⁻³

Insights

- Average daily sentiment does appear to be moderately predictive of daily change for these four entities
- Entities with higher correlations (positive or negative) tended to have higher accuracies in both models
- Decision tree seems to be more predictive for immediate days
- Logistic regression is more predictive 4 to
 5 days out from date of interest
- Stock Analysis and Prediction App -

Stock Analysis and Prediction App (shinyapps.io)

Future Work

- Incorporating additional features
- Better time resolution (hourly vs daily)
- Wider dataset; incorporating more stock entities
- Incorporating broader market factors for a better understanding
- Enhancing dashboard with live, hourly data

Questions?