

计算机组成原理

第7讲

左德承

哈尔滨工业大学计算学部 容错与移动计算研究中心

第2章 计算机的运算方法

- 2.1 无符号数和有符号数
- 2.2 数的定点表示和浮点表示
- 2.3 定点运算
- 2.4 浮点四则运算
- 2.5 算术逻辑单元

2.5 算术逻辑单元

一、ALU 电路

组合逻辑电路

 K_i 不同取值

 F_i 不同

四位 ALU 74181

M=0 算术运算

M=1 逻辑运算

 $S_3 \sim S_0$ 不同取值,可做不同运算

二、快速进位链

2.5

1. 并行加法器

则
$$C_i = d_i + t_i C_{i-1}$$

2. 串行进位链

2.5

进位链

传送进位的电路

串行进位链

进位串行传送

以 4 位全加器为例,每一位的进位表达式为

$$C_0 = d_0 + t_0 C_{-1} = \overline{d_0 \cdot t_0 C_{-1}}$$

$$C_1 = d_1 + t_1 C_0$$

$$C_2 = d_2 + t_2 C_1$$

设与非门的级延迟时间为t,

$$C_3 = d_3 + t_3 C_2$$

4位 全加器产生进位的全部时间为 8t,

n 位全加器产生进位的全部时间为 $2nt_v$

3. 并行进位链(先行进位,跳跃进位)

2.5

n 位加法器的进位同时产生 以 4 位加法器为例

$$C_0 = d_0 + t_0 C_{-1}$$
 当 $d_i t_i$ 形成后,只需 2.5 t_y $C_1 = d_1 + t_1 C_0 = d_1 + t_1 d_0 + t_1 t_0 C_{-1}$ 产生全部进位 $C_2 = d_2 + t_2 C_1 = d_2 + t_2 d_1 + t_2 t_1 d_0 + t_2 t_1 t_0 C_{-1}$ $C_3 = d_3 + t_3 C_2 = d_3 + t_3 d_2 + t_3 t_2 d_1 + t_3 t_2 t_1 d_0 + t_3 t_2 t_1 t_0 C_{-1}$

(1) 单重分组跳跃进位链

n 位全加器分若干小组,小组中的进位同时产生, 小组与小组之间采用串行进位 以n=16为例

(2) 双重分组跳跃进位链

2.5

n 位全加器分若干大组,大组中又包含若干小组。每个大组中小组的最高位进位同时产生。 大组与大组之间采用串行进位。

以 n=32 为例

8

(3) 双重分组跳跃进位链 大组进位分析

2.5

以第8小组为例

$$C_{3} = d_{3} + t_{3}C_{2} = \underbrace{d_{3} + t_{3}d_{2} + t_{3}t_{2}d_{1} + t_{3}t_{2}t_{1}d_{0}}_{D_{8}} + \underbrace{t_{3}t_{2}t_{1}t_{0}C_{-1}}_{+T_{8}C_{-1}}$$

D₈ 小组的本地进位 与外来进位无关

T₈ 小组的传送条件 与外来进位无关 传递外来进位

同理 第 7 小组
$$C_7 = D_7 + T_7 C_3$$

第 6 小组 $C_{11} = D_6 + T_6 C_7$
第 5 小组 $C_{15} = D_5 + T_5 C_{11}$

进一步展开得

(4) 双重分组跳跃进位链的 大组 进位线路 2.5 以第 2 大组为例

(5) 双重分组跳跃进位链的 小组 进位线路 2.5

以第 8 小组为例 只产生低 3 位 的进位和 本小组的 D_8 T_8

(6) n = 16 双重分组跳跃进位链

2.5

当 d_i 、 t_i 和 C_{-1} 形成后 经 $2.5 t_y$ 产生 C_2 、 C_1 、 C_0 、 $D_5 \sim D_8$ 、 $T_5 \sim T_8$ 经 $5 t_y$ 产生 C_{15} 、 C_{11} 、 C_7 、 C_3 经 $7.5 t_y$ 产生 $C_{14} \sim C_{12}$ 、 $C_{10} \sim C_8$ 、 $C_6 \sim C_4$

串行进位链 经32ty 产生 全部进位

单重分组跳跃进位链 经10 tv 产生 全部进位

(7) n=32 双重分组跳跃进位链

2.5

当
$$d_i$$
、 t_i 形成后

经 2.5 t_y 产生 C_2 、 C_1 、 C_0 、 $D_1 \sim D_8$ 、 $T_1 \sim T_8$ 5 t_y 产生 C_{15} 、 C_{11} 、 C_7 、 C_3

7.5 t_y 产生 $C_{18} \sim C_{16}$ 、 $C_{14} \sim C_{12}$ 、 $C_{10} \sim C_8$ 、 $C_6 \sim C_4$ C_{31} 、 C_{27} 、 C_{23} 、 C_{19}

10 t_y 产生 $C_{30} \sim C_{28}$ 、 $C_{26} \sim C_{24}$ 、 $C_{22} \sim C_{20}$

第4章存储器

4.1 概述

4.2 主存储器

4.3 高速缓冲存储器

4.4 辅助存储器

存储墙

- 从1980-2010, 处理器性能增长速率远超主存储器
- 主存储器的性能已经成为计算机系统的性能瓶颈了

※存储墙(Memory Wall): 意指处理器与主存储墙之间的巨大性能差距

图片资料来源: https://www.rankred.com/worlds-fastest-optical-ram/

高小鹏等 计算机组成与实现

4.1 概 述

花样繁多的存储器

4.1 概 述

4.1

- 一、存储器分类
 - 1. 按存储介质分类
 - (1) 半导体存储器
 - •双极型存储器、MOS存储器、FLASH闪存
 - •速度快、功耗低

(2) 磁存储器

- 磁芯、磁带、磁盘
- 容量大,速度慢、体积大

(3) 激光存储器

- CD-ROM CD-RW CD-R
- DVD-ROM DVD-RW DVD-R
- 便于携带,廉价,易于保存

4.1

2. 按存取方式分类

(1) 随机存储器

- 存取时间与物理位置无关
- •磁芯、半导体存储器

(2) 顺序存储器

- 存取时间与物理位置有关
- •磁带

(3) 直接存储器

•磁盘、激光存储器

4.1

3. 按读/写功能分类

(1) 只读存储器 (ROM)

•存储器内容是预置的,固定的,无法改写

(2) 读/写存储器

- 既能读出也能写入的存储器
- 随机存储器RAM

4. 按信息的可保存性分类

- (1) 易失性存储器 Volatile Memories
 - 断电后信息消失
 - SRAM
 - DRAM
- (2) 非易失性存储器Non-Volatile

Memories

- 断电后仍能保存信息
- •磁存储器、激光存储器、FLASH闪存、NVRAM

5. 按在计算机中的作用分类

4.1

21

二、存储器的层次结构

目标:整体性能接近寄存器,成本接近硬盘

特点: 性能、容量、成本具有数量级差距

CPU			性能 (周期)	容量 (字节)	价格 (字节)
	CPU 寄存器		0.5	100	高
	L1 Cach	ne	1		1
	L2 Cach	ne	10	M	
	L3 Cache		20		
主存储器	DDR4 SDRAM		100	G	
二级存储设备	FLASH固态盘	硬盘	10 ⁶	Т	低

2. 缓存一主存层次和主存一辅存层次 4.

二、存储器的层次结构

Cache是解决CPU-主存性能匹配的关键 小容量、高性能 充分利用了局部性原理

高小鹏等 计算机组成与实现

(a) Memory hierarchy for server

Intel Itanium2(版图布局)

4.2 主存储器

一、概述

1. 主存的基本组成

4.2

2. 主存和 CPU 的联系

3. 主存中的数据组织

- 按边界对齐方式存储数据
- int i, short k, double x, char c, short j
 - int (4字节) short (2字节) double (8字节) char (1字节)
 - short按16位对齐, int按32位对齐, double按32位对齐, 64 位机按64位对齐

对齐:访问速度高

不对齐: 节约存储空间

未对齐存放

谭志虎等 计算机组成原理

4. 主存中存储单元地址的分配

设地址线 24 根 按 字节 寻址 2²⁴ = 16 MB

若字长为 16 位 按 字 寻址 8 MW

若字长为 32 位 按 字 寻址 4 MW

short/long/quad words 在内存中用连续的2/4/8 字节存储

哪个字节是最高/低位?

在不同机器之间交换顺序,会有问题。

大端序(Big Endian)

最高有效位在低地址,如Sun工作站所使用的SPARC小端序(Little Endian)

最低有效位在低地址,如PC机所使用的x86、amd64 双端序(Bi Endian)

可配置成大/小端序,如ARM、MTPS

4.2

例:假设从内存地址0x0000001处开始存储十六进制数0x12345678,那么

• 大端顺序 存放(按原顺序存储)

0x00000001 (低地址) -- 12(高位字节)

0x00000002 -- 34

0x00000003 — 56

 0×000000004 -- 78

• 小端顺序 存放(颠倒顺序储存)

0x00000001 (低地址) -- 78 (低位字节)

0x00000002 -- 56

0x00000003 -- 34

 0×000000004 -- 12

4.2

- 5. 主存的技术指标
 - (1) 存储容量 主存 存放二进制代码的总位数
 - (2) 存储速度
 - 存取时间 存储器的 访问时间 读出时间 写入时间
 - 存取周期 连续两次独立的存储器操作 (读或写)所需的最小间隔时间 读周期 写周期
 - (3) 存储器的带宽 单位时间内存储器存取的信息量位/秒

第4章存储器

4.1 概述

4.2 主存储器

4.3 高速缓冲存储器

4.4 辅助存储器

主板和总线

* USB应归为 通信总线

PCI

系统总线

PCI-Express (PCI-E)

总线组成 (示例)

- 数据总线
 - •传送数据信息,双向传输
- 地址总线
 - •传送地址,单向传输
- 控制总线
 - 传送控制信号和时序信号
- 电源、地线

主存和 CPU 的联系

二、半导体存储芯片简介

1. 半导体存储芯片的基本结构

地址线(单向)	数据线(双向)	芯片容量
10	4	1K×4位
14	1	16K×1位
13	8	8K×8位37

二、半导体存储芯片简介

1. 半导体存储芯片的基本结构

片选线 CS CE

读/写控制线 WE (低电平写 高电平读)

OE (允许读) WE (允许写)

存储芯片片选线的作用

用 16K×1位的存储芯片组成 64K×8位的存储器

8片 8片 8片 8片 32片 16K×1位 16K×1位 16K×1位 16K×1位

当地址为65535时,此8片的片选有效

2. 半导体存储芯片的译码驱动方式 4.2 (1) 线选法

半导体存储器如何存储数据?

SRAM (CPU 缓存)

DRAM 内存条

二者为什么存在性能、容量、价格差异?

1. 静态 RAM (SRAM)

(1) 静态 RAM 基本电路

① 静态 RAM 基本电路的 读 操作

② 静态 RAM 基本电路的 写 操作

4.2

(2) 静态 RAM 芯片举例

① Intel 2114 外特性

曾经讲到过的重合法,怎么实现选一次四列

(2) 静态 RAM 芯片举例

4.2

1 Intel 2114

