Google Cloud

Operationalizing the Model

Advanced ML with TensorFlow on GCP

End-to-End Lab on Structured Data ML

Production ML Systems

Image Classification Models

Sequence Models

Recommendation Systems

Steps involved in doing ML on GCP

- Explore the dataset
- Create the dataset
- 3 Build the model
- 4 Operationalize the model

Building an ML model involves:

Creating the dataset

Building the model

Operationalizing the model

Beam is a way to write elastic data processing pipelines

```
GetJava
                                                                                                                    3 min 35 sec
                                                                                      ToLines
                                                                                                                     52 sec
def packageHelp(record, keyword):
   count=0
                                                                                 BigQuery
                                                                                                           NeedsHelp
                                                                                                                              IsPopular
   package_name=''
                                                                                                            22 sec
                                                                                                                               34 sec
   if record is not None:
      lines=record.split('\n')
                                                                                                           Sum.PerKey
                                                                                                                             Sum.PerKey2
      for line in lines:
                                                                                                            11 sec
                                                                                                                             2 min 31 sec
        if line.startswith(keyword):
           package_name=line
        if 'FIXME' in line or 'TODO' in l
                                                                                                                     12 sec
           count+=1
                                                                    Cloud
      packages = (getPackages(package_nam
                                                                                                                   CompositeScore
      for p in packages:
                                                                  Dataflow
                                                                                                                     21 sec
           yield (p,count)
                                                                                                                     Top_1000
                                                                                                                     3 sec
                                                                                      •
                                                                                                                     ToString
                                                                                                                     D sec
                                                                              Cloud Storage
                                                                                                                    TextIO.Write
                                                                                                                     1 sec
```


Open-source API, Google infrastructure

```
beam.Pipeline()
                                                           Open-source API (Apache
  Input
            (p
                                                           Beam) can be executed on
                                                           Flink, Spark, etc. also
  Read
                  beam.io.ReadFromText('gs://..')
                                                           Parallel tasks
Transform
                  beam.Map(Transform)
                                                            (autoscaled by execution
                                                           framework)
  Group
                  beam.GroupByKey()
  Filter
                  beam.FlatMap(Filter)
                  beam.io.WriteToText('gs://...')
  Write
                                                   def Transform(line):
                                                         return (parse_custid(line), 1)
 Output
                                                   def Filter(key, values):
            p.run();
                                                         return sum(values) > 10
```


The code is the same between real-time and batch


```
p = beam.Pipeline()
(p
    | beam.io.ReadStringsFromPubSub('project/topic')
    | beam.WindowInto(SlidingWindows(60))
    | beam.Map(Transform)
    | beam.GroupByKey()
    | beam.FlatMap(Filter)
    | beam.io.WriteToBigQuery(table)
)
p.run()
```


An example Beam pipeline for BigQuery->CSV on cloud

```
import apache beam as beam
def transform(rowdict):
   import copy
  result = copy.deepcopy(rowdict)
  if rowdict['a'] > 0:
     result['c'] = result['a'] * result['b']
     yield ','.join([ str(result[k]) if k in result else 'None' for k in ['a','b','c'] ])
if name == ' main ':
  p = beam.Pipeline(argv=sys.argv)
  selguery = 'SELECT a,b FROM someds.sometable'
   (p
      | beam.io.Read(beam.io.BigQuerySource(query = selquery,
                                  use standard sql = True)) # read input
       beam.Map(transform data) # do some processing
       beam.io.WriteToText('gs://...') # write output
  p.run() # run the pipeline
```


Executing pipeline (Python)

Simply running main() runs pipeline locally.

```
python ./etl.py
```

To run on cloud, specify cloud parameters.

```
python ./etl.py \
     --project=$PROJECT \
     --job_name=myjob \
     --staging_location=gs://$BUCKET/staging/ \
     --temp_location=gs://$BUCKET/staging/ \
     --runner=DataflowRunner # DirectRunner would be local
```


Split the full dataset into train/eval and do preprocessing

Lab

Preprocessing using Cloud Dataflow

In this lab, you use Cloud Dataflow to create datasets for Machine Learning.

The end-to-end process

Building an ML model involves:

Creating the dataset

Building the model

Operationalizing the model

Create task.py to parse command-line parameters and send to train and evaluate

```
task.py
                                                  parser.add argument(
model.py
                                                        '--train data paths', required=True)
                                                  parser.add argument(
                                                        '--train steps', ...
def train_and_evaluate(args):
    estimator = tf.estimator.DNNRegressor(
                         model_dir=args['output_dir'],
                         feature_columns=feature_cols,
                         hidden_units=args['hidden_units'])
    train_spec=tf.estimator.TrainSpec(
                         input_fn=read_dataset(args['train data paths'],
                                             batch size=args['train batch size'],
                                             mode=tf.contrib.learn.ModeKeys.TRAIN),
                         max_steps=args['train_steps'])
    exporter = tf.estimator.LatestExporter('exporter', serving input fn)
    eval_spec=tf.estimator.EvalSpec(...)
    tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
```


The model.py contains the ML model in TensorFlow (Estimator API)

```
Example of the code in model.py (see Lab #3)
Training and
                    CSV COLUMNS = ...
                    def read dataset(filename, mode, batch size=512):
evaluation input
functions
Feature columns
                    INPUT COLUMNS = [
                        tf.feature column.numeric column('gestation weeks'),
                    def add_more_features(feats):
Feature
                      # feature crosses etc.
engineering
                      return feats
Serving input
                    def serving input fn():
function
                        return tf.estimator.export.ServingInputReceiver(features, feature pholders)
Train and evaluate
                    def train and evaluate(args):
loop
                        tf.estimator.train and evaluate(estimator, train spec, eval spec)
```


Package TensorFlow model as a Python package

```
taxifare/
taxifare/PKG-INFO
taxifare/setup.cfg
taxifare/setup.py
taxifare/trainer/
taxifare/trainer/__init__.py
taxifare/trainer/task.py
taxifare/trainer/model.py
Python packages need to
contain an __init__.py in
every folder.
```


Verify that the model works as a Python package

```
export PYTHONPATH=${PYTHONPATH}:/somedir/babyweight
python -m trainer.task \
    --train_data_paths="/somedir/datasets/*train*" \
    --eval_data_paths=/somedir/datasets/*valid* \
    --output_dir=/somedir/output \
    --train_steps=100 --job-dir=/tmp
```


You use distributed TensorFlow on Cloud ML Engine

scale

Run TF at

Use the gcloud command to submit the training job either locally or to the cloud

```
gcloud ml-engine local train \
    --module-name=trainer.task \
    --package-path=/somedir/babyweight/trainer \
    -- \
    --train_data_paths etc.
    REST as before

gcloud ml-engine jobs submit training $JOBNAME \
    --region=$REGION \
    --module-name=trainer.task \
    --job-dir=$OUTDIR --staging-bucket=gs://$BUCKET \
    --scale-tier=BASIC \
    REST as before
```


Monitor training jobs with GCP Console

Monitor training jobs with TensorBoard

Pre-made estimators automatically populate summary data that you can examine and visualize using TensorBoard.

Lab

Training on Cloud ML Engine

In this lab, you will do distributed training using Cloud ML Engine, and improve model accuracy using hyperparameter tuning.

Lab Steps

- Change the batch size if necessary.
- Calculate the train steps based on the # examples.
- 3 Make hyperparameter command-line parameters.

Submit the training job on the full dataset and monitor using TensorBoard

dnn

dnn/hiddenlayer_1/fraction_of_zero_values

The end-to-end process

It can take days to months to create an ML model

Simplify model development with BigQuery ML

Simplify model development with BigQuery ML

Behind the scenes

With 2 lines of code:

- Leverages BigQuery's processing power to build a model.
- Auto-tunes learning rate.
- Auto-splits data into training and test.

For the advanced user:

- L1/L2 regularization.
- 3 strategies for training/test split: Random, Sequential, Custom.
- Set learning rate.

Supported features

- StandardSQL and UDFs within the ML queries.
- 2 Linear Regression (Forecasting).
- Binary Logistic Regression (Classification).
- 4 Model evaluation functions for standard metrics, including ROC and precision-recall curves.
- 5 Model weight inspection.
- 6 Feature distribution analysis through standard functions.

The end-to-end BQML process

ETL into BigQuery

- BQ Public Data Sources
- Google Marketing Platform
 - o Analytics
 - o Ads
- YouTube
- Your Datasets

Preprocess Features

- Explore
- Join
- Create Train / Test Tables

```
#standardSQL
CREATE MODEL
ecommerce.classification

OPTIONS
  (
model_type='logistic_reg',
input_label_cols =
['will_buy_later']
    ) AS

# SQL query with training data
```

```
#standardSQL
SELECT
roc_auc,
accuracy,
precision,
recall
FROM
ML.EVALUATE(MODEL
ecommerce.classification

# SQL query with eval data
```

```
#standardSQL
SELECT * FROM
ML.PREDICT
(MODEL ecommerce.classification,
(

# SQL query with test data
```


Lab

Predicting baby weight with BigQuery ML

In this lab, you will do the model training, evaluation, and prediction, all within BigQuery.

Cloud ML Engine makes deploying models and scaling the prediction infrastructure easy

You can't reuse the training input function for serving

1. The serving_input_fn specifies what the caller of the predict() method must provide

```
def serving input fn():
    feature placeholders = {
      'pickuplon' : tf.placeholder(tf.float32, [None]),
      'pickuplat' : tf.placeholder(tf.float32, [None]),
      'dropofflat' : tf.placeholder(tf.float32, [None]),
      'dropofflon' : tf.placeholder(tf.float32, [None]),
      'passengers' : tf.placeholder(tf.float32, [None]),
   features = {
        key: tf.expand dims(tensor, -1)
        for key, tensor in feature placeholders.items()
    return tf.estimator.export.ServingInputReceiver(features,
                                                    feature placeholders)
```


2. Deploy a trained model to GCP

```
MODEL_NAME="taxifare"

MODEL_VERSION="v1"

MODEL_LOCATION="gs://${BUCKET}/taxifare/smallinput/taxi_trained/export/exporter

/.../"

gcloud ml-engine models create ${MODEL_NAME} --regions $REGION

gcloud ml-engine versions create ${MODEL_VERSION} --model ${MODEL_NAME}

--origin ${MODEL_LOCATION}

Could also be a locally trained model.
```


3. Client code can make REST calls

```
credentials = GoogleCredentials.get application default()
api = discovery.build('ml', 'v1', credentials=credentials,
discoveryServiceUrl='https://storage.googleapis.com/cloud-ml/discovery/ml v1beta1
discovery.json')
request data = [
    {'pickup longitude': -73.885262,
     'pickup latitude': 40.773008,
     'dropoff longitude': -73.987232,
     'dropoff latitude': 40.732403,
     'passenger_count': 2}]
parent = 'projects/%s/models/%s/versions/%s' % ('cloud-training-demos',
'taxifare', 'v1')
response = api.projects().predict(body={'instances': request_data},
name=parent).execute()
```

Lab

Deploying and Predicting with Cloud ML Engine

In this lab, you will deploy the trained model to act as a REST web service, and send a JSON request to the endpoint of the service to make it predict a baby's weight.

Lab Steps

- Deploy a trained model to Cloud ML Engine.
- 2 Send a JSON request to model to get predictions.

The end-to-end process

Lab

Building an App Engine app to serve ML predictions

In this lab, you will deploy a python Flask app as a App Engine web application, and use the App Engine app to post JSON data, based on user interface input, to the deployed ML model and get predictions.

Use App Engine to invoke ML predictions

You can also invoke the ML service from Cloud Dataflow and save predictions to BigQuery

cloud.google.com

