

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА: КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ

ОТЧЕТ

по лабораторной работе № 1

Тема: _Диоды	ь в источниках питани	я (Вариант 13)	
Дисциплина:	Электроника		
		450	
Студент	<u>ИУ6-42Б</u>		А. П. Плютто
	(Группа)	(Подпись, дата)	(И. О. Фамилия)
Преподавател	Ь	13.05.24	Н. В. Аксенов
_		(Подпись, дата)	(И. О. Фамилия)

Содержание

1. Задание	3
1.1. Цель работы	3
1.2. Задание	3
1.3. Параметры схемы	3
2. Однополупериодный выпрямитель без фильтра	4
3. Однополупериодный выпрямитель с фильтром	7
4. Мостовая схема выпрямителя без фильтра	10
5. Мостовая схема выпрямителя с конденсатором	13
6. Исследование сглаживающего действия фильтра LC для	
однополупериодной схемы	16
7. Исследование сглаживающего действия фильтра для мостовой схемы	19
8. Нагрузочная характеристика однополупериодного выпрямителя с П-	
образным фильтром	22
9. Нагрузочная характеристика мостового выпрямителя с П-образным	
фильтром	23
10. Мостовая схема с фильтром и стабилизатором напряжения	
11. Снятие нагрузочной характеристики стабилизатора и определение	
коэффициента стабилизации	25
12. Вывод	26

1. Задание

1.1. Цель работы

Исследование характеристик и параметров выпрямительных схем и стабилизаторов напряжения.

1.2. Задание

- 1. Исследовать работу однополупериодной и двухполупериодной схем выпрямителя для случаев:
 - активной нагрузки;
 - емкостной нагрузки;

зарисовать форму выходного напряжения, а также форму тока, протекающего через диод.

- 2. Определить с помощью осциллографа угол отсечки q и коэффициент пульсаций кп для одно- и двухполупериодной схем.
- 3. Исследовать сглаживающее действие фильтра LC при одно- и двухполупериодном выпрямлении. Определить коэффициенты сглаживания.
- 4. Отснять нагрузочные характеристики выпрямителя и определить его выходное сопротивление.
- 5. Подключить к выпрямителю параметрический стабилизатор, снять нагрузочную характеристику стабилизатора и определить по ней его выходное сопротивление, определить коэффициент стабилизации (схема выпрямителя мостовая, фильтр LC отключен).

1.3. Параметры схемы

$U_{\scriptscriptstyle m BX}$	$f_{\scriptscriptstyle m BX}$	Выпрям	Выпрям. диод		литрон	C_1	L_1	C_2	R_2	$R_{\scriptscriptstyle m H}$
В	Гц	Мате- риал	$r_{\rm 6}$, Ом	$U_{ m cr},$ B	$r_{ m 6}$, Ом	мкФ	Гн	мкФ	Ом	Ом
10	50	Ge	1,2	6	1,5	80	0,5	80	400	1000

2. Однополупериодный выпрямитель без фильтра

Рисунок 1 — Схема однополупериодного выпрямителя без фильтра

Рисунок 2 — Форма напряжений однополупериодной схемы без фильтра

Рисунок 3 — Анализ Фурье однополупериодной схемы без фильтра

Рисунок 4 — Анализ Фурье однополупериодной схемы без фильтра

Рисунок 5 — Форма тока однополупериодной схемы без фильтра

Амплитуда входного напряжения	$U_{\scriptscriptstyle \mathrm{BX\ max}} = 14.14\mathrm{B}$
Среднее значение выходного напряжения	$U_0 = \frac{U_{\text{bx max}}}{\pi} = 4.5 \text{B}$
Среднее значение выходного напряжения по анализу Фурье	$U_0=4.3\mathrm{B}$
Амплитуда первой гармоники переменной составляющей на выходе	$U_{ m m1}=6.81{ m B}$
Коэффициент пульсаций	${ m K_n} = rac{U_{ m m1}}{U_0} = 1.51$
Коэффициент пульсаций по анализу Фурье	$K_{\pi}=1.58$
Среднее значение выпрямленного тока	$J_{\rm cp} = \frac{U_0}{R_{_{\rm H}}} = 0.00225 {\rm A}$
Амплитудное значение тока через диод	$J_{\rm max} = \frac{U_{\scriptscriptstyle \rm BX~max}}{R_{\scriptscriptstyle \rm H}} = 0.01414 {\rm A}$

3. Однополупериодный выпрямитель с фильтром

Рисунок 6 — Схема однополупериодного выпрямителя с фильтром

Рисунок 7 — Форма напряжений и угол отсечки однополупериодной схемы с фильтром

Рисунок 8 — Анализ Фурье однополупериодной схемы с фильтром

Рисунок 9 — Анализ Фурье однополупериодной схемы с фильтром

Рисунок 10 — Форма обратных напряжений однополупериодной схемы с фильтром

Угол отсечки	$ heta=rac{\omega(t_2-t_1)}{2}=0.3$ рад
Среднее значение выходного напряжения	$U_0 = U_{\rm bx \ max} \cos \theta = 13.5 \rm B$
Среднее значение выходного напряжения по анализу Фурье	$U_0=12.3\mathrm{B}$
Амплитуда первой гармоники переменной составляющей на выходе	$U_{ m m1}=0.96{ m B}$
Коэффициент пульсаций	${ m K_n} = rac{U_{ m m1}}{U_0} = 0.071$
Коэффициент пульсаций по анализу Фурье	$K_{\pi}=0.078$
Амплитудное значение тока через диод	J = 0.01414A
Обратное значение напряжения на диоде	$U_{ m o6p}=26.26{ m B}$

4. Мостовая схема выпрямителя без фильтра

Рисунок 11 — Схема мостового выпрямителя без фильтров

Рисунок 12 — Форма напряжений мостовой схемы без фильтра

Рисунок 13 — Анализ Фурье мостовой схемы без фильтра

Рисунок 14 — Анализ Фурье мостовой схемы без фильтра

Рисунок 15 — Форма обратных напряжений мостовой схемы без фильтра

Среднее значение выходного напряжения	$U_0 = \frac{2U_{\text{bx max}}}{\pi} = 9B$
Среднее значение выходного напряжения по анализу Фурье	$U_0=4.09\mathrm{B}$
Амплитуда первой гармоники переменной составляющей на выходе	$U_{ m m1}=7.07{ m B}$
Коэффициент пульсаций	${\rm K_{\pi}} = \frac{U_{\rm m1}}{U_0} = 0.78$
Коэффициент пульсаций по анализу Фурье	$K_{\pi}=1.7$
Амплитудное значение тока	J = 0.009A

5. Мостовая схема выпрямителя с конденсатором

Рисунок 16 — Схема мостового выпрямителя с фильтром

Рисунок 17 — Форма напряжений и угол отсечки мостовой схемы с фильтром

Рисунок 18 — Анализ Фурье мостовой схемы с фильтром

Рисунок 19 — Форма обратных напряжений мостовой схемы с фильтром

Угол отсечки	$ heta=rac{\omega(t_2-t_1)}{2}=0.3$ рад
Среднее значение выходного напряжения	$U_0 = U_{\text{bx max}} \cos \theta = 13.5 \text{B}$
Среднее значение выходного напряжения по анализу Фурье	$U_0=12.5\mathrm{B}$
Амплитуда первой гармоники переменной составляющей на выходе	$U_{ m m1}=12.5{ m B}$
Коэффициент пульсаций	$\mathrm{K}_{\mathrm{ff}} = \frac{U_{\mathrm{m1}}}{U_{\mathrm{0}}} = 0.92$
Коэффициент пульсаций по анализу Фурье	$K_{\pi}=1$
Амплитудное значение тока через диод	J = 0.0135A
Обратное значение напряжения на диоде	$U_{ m oбp}=13.65{ m B}$

6. Исследование сглаживающего действия фильтра LC для однополупериодной схемы

Рисунок 20 — Однополупериодная схема с П-образным фильтром

Рисунок 21 — Форма напряжений однополупериодной схемы с LC-фильтром

Рисунок 22 — Анализ Фурье для коэффициента пульсаций на входе LC-фильтра однополупериодной схемы

Рисунок 23 — Анализ Фурье для коэффициента пульсаций на выходе LC-фильтра однополупериодной схемы

Коэффициент пульсации на входе по анализу Фурье	$K_{\text{пульс вх}} = 0.119$
Коэффициент пульсации на выходе по анализу Фурье	$ m K_{пульс \ вых} = 0.039$
Коэффициент сглаживания	$K_{ m cfn} = rac{K_{ m пульс\ вх}}{K_{ m пульc\ вых}} = 3.05$

7. Исследование сглаживающего действия фильтра для мостовой схемы

Рисунок 24 — Мостовая схема с П-образным фильтром

Рисунок 25 — Форма напряжений мостовой схемы с LC-фильтром

Рисунок 26 — Анализ Фурье для коэффициента пульсаций на входе LC-фильтра мостовой схемы

Рисунок 27 — Анализ Фурье для коэффициента пульсаций на выходе LC-фильтра мостовой схемы

Коэффициент пульсации на входе по анализу Фурье	$K_{\text{пульс вх}} = 0.24$
Коэффициент пульсации на выходе по анализу Фурье	$ m K_{пульс~вых} = 0.25$
Коэффициент сглаживания	$K_{\text{сгл}} = \frac{K_{\text{пульс вх}}}{K_{\text{пульс вых}}} = 0.96$

8. Нагрузочная характеристика однополупериодного выпрямителя с П-образным фильтром

Рисунок 28 — Однополупериодная схема с П-образным фильтром для снятия нагрузочной характеристики

I, A											
U, B	12,4	10,5	8,9	6,9	5,5	4,2	3,1	1,8	0,98	0,3	0,01

Рисунок 29 — График зависимости нагрузочной характеристики от тока Выходное дифференциальное сопротивление выпрямителя

$$R_{ ext{\tiny BMX}} = rac{\Delta U}{\Delta J}$$

$$R_{\scriptscriptstyle
m BMX1} = 420$$
 Ом

$$R_{\scriptscriptstyle
m BMX2}=1.3$$
 Ом

9. Нагрузочная характеристика мостового выпрямителя с Побразным фильтром

Рисунок 30 — Мостовая схема с П-образным фильтром для снятия нагрузочной характеристики

I, A	0,01	0,050	0,100	0,150	0,200	0,250	0,300	0,350	0,400	0,450	0,500
U, B	13,96	11,03	9,61	8,66	8,00	7,58	7,33	7,13	7,02	6,89	6,74

I, A	0,550	0,600	0,650	0,700	0,750	0,800	0,850	0,900	0,950	1,000
U, B	6,61	6,56	6,37	6,24	6,18	6,07	5,87	5,76	5,63	5,51

Рисунок 31 — График зависимости нагрузочной характеристики от тока Выходное дифференциальное сопротивление выпрямителя

$$R_{\text{bix}} = \frac{\Delta U}{\Delta J}$$

$$R_{\scriptscriptstyle \mathrm{BMX}1}=1396$$
 Ом

$$R_{\scriptscriptstyle
m BMX2} = 5.51$$
 Ом

10. Мостовая схема с фильтром и стабилизатором напряжения

Рисунок 32 — Мостовая схема с фильтром и стабилизатором напряжения

Рисунок 33 — Форма напряжений мостовой схемы со стабилизатором

$$U_{\rm bmx\ hom}=11,6{\rm B}$$

$$U_{\rm bx\ hom}=13,03{\rm B}$$

11. Снятие нагрузочной характеристики стабилизатора и определение коэффициента стабилизации

Рисунок 34 — Мостовая схема со стабилизатором для снятия нагрузочной характеристики

І, мА	4	6	8	10	12	14	16	18	20	22	24
U, B	5,99	5,986	5,982	5,976	5,968	5,951	5,753	5,151	4,271	3,387	2,504

Рисунок 35 — График зависимости нагрузочной характеристики от тока

Выходное сопротивление стабилитрона	$R=rac{\Delta U}{\Delta J}=1,4~{ m Om}=r_{{ m дин}}$
Коэффициент стабилизации	$\boxed{ \mathbf{K}_{\text{ct}} = \left(\frac{R_{\text{бал}}}{r_{\text{дин}}} + 1 \right) \frac{U_{\text{вых ном}}}{U_{\text{вх ном}}} = 255}$

12. Вывод

В результате выполнения лабораторной работы были выявлены основные характеристики и параметры выпрямительных систем и стабилизаторов напряжения.