Alternating Permutations

Richard P. Stanley

M.I.T.

Basic definitions

A sequence a_1, a_2, \ldots, a_k of distinct integers is alternating if

$$a_1 > a_2 < a_3 > a_4 < \cdots,$$

and reverse alternating if

$$a_1 < a_2 > a_3 < a_4 > \cdots$$
.

Euler numbers

 \mathfrak{S}_n : symmetric group of all permutations of $1, 2, \ldots, n$

Euler numbers

 \mathfrak{S}_n : symmetric group of all permutations of $1, 2, \ldots, n$

Euler number:

$$E_n = \#\{w \in \mathfrak{S}_n : w \text{ is alternating}\}\$$

= $\#\{w \in \mathfrak{S}_n : w \text{ is reverse alternating}\}\$

(via
$$a_1 \cdots a_n \mapsto n + 1 - a_1, \dots, n + 1 - a_n$$
)

Euler numbers

 \mathfrak{S}_n : symmetric group of all permutations of $1, 2, \ldots, n$

Euler number:

$$E_n = \#\{w \in \mathfrak{S}_n : w \text{ is alternating}\}\$$

= $\#\{w \in \mathfrak{S}_n : w \text{ is reverse alternating}\}\$

(via
$$a_1 \cdots a_n \mapsto n + 1 - a_1, \dots, n + 1 - a_n$$
)

E.g.,
$$E_4 = 5$$
: 2143, 3142, 3241, 4132, 4231

André's theorem

Theorem (Désiré André, 1879)

$$\mathbf{y} := \sum_{n \ge 0} E_n \frac{x^n}{n!} = \sec x + \tan x$$

$$= 1 + 1x + 1\frac{x^2}{2!} + 2\frac{x^3}{3!} + 5\frac{x^4}{4!} + 16\frac{x^5}{5!} + 61\frac{x^6}{6!} + 272\frac{x^7}{7!} + \cdots$$

André's theorem

Theorem (Désiré André, 1879)

$$\mathbf{y} := \sum_{n \ge 0} E_n \frac{x^n}{n!} = \sec x + \tan x$$

$$= 1 + 1x + 1\frac{x^2}{2!} + 2\frac{x^3}{3!} + 5\frac{x^4}{4!} + 16\frac{x^5}{5!} + 61\frac{x^6}{6!} + 272\frac{x^7}{7!} + \cdots$$

 E_{2n} is a secant number.

 E_{2n+1} is a tangent number.

$$y := \sum_{n \ge 0} E_n \frac{x^n}{n!} = \sec x + \tan x$$

$$y := \sum_{n \ge 0} E_n \frac{x^n}{n!} = \sec x + \tan x$$

Choose $S \subseteq \{1, 2, \dots, n\}$, say #S = k.

$$y := \sum_{n \ge 0} E_n \frac{x^n}{n!} = \sec x + \tan x$$

Choose $S \subseteq \{1, 2, \dots, n\}$, say #S = k.

Choose a reverse alternating permutation $\mathbf{u} = a_1 a_2 \cdots a_k$ of S.

$$y := \sum_{n \ge 0} E_n \frac{x^n}{n!} = \sec x + \tan x$$

Choose $S \subseteq \{1, 2, \dots, n\}$, say #S = k.

Choose a reverse alternating permutation $\mathbf{u} = a_1 a_2 \cdots a_k$ of S.

Choose a reverse alternating permutation $\mathbf{v} = b_1 b_2 \cdots b_{n-k}$ of [n] - S.

$$y := \sum_{n>0} E_n \frac{x^n}{n!} = \sec x + \tan x$$

Choose $S \subseteq \{1, 2, \dots, n\}$, say #S = k.

Choose a reverse alternating permutation $\mathbf{u} = a_1 a_2 \cdots a_k$ of S.

Choose a reverse alternating permutation $\mathbf{v} = b_1 b_2 \cdots b_{n-k}$ of [n] - S.

Let
$$\mathbf{w} = a_k \cdots a_2 a_1, \mathbf{n} + 1, b_1 b_2 \cdots b_{n-k}$$
.

Proof (continued)

$$\mathbf{w} = a_k \cdots a_2 a_1, \mathbf{n} + \mathbf{1}, b_1 b_2 \cdots b_{n-k}$$

Given k, there are:

- $\binom{n}{k}$ choices for $\{a_1, a_2, \dots, a_k\}$
- E_k choices for $a_1a_2\cdots a_k$
- E_{n-k} choices for $b_1b_2\cdots b_{n-k}$.

Proof (continued)

$$\mathbf{w} = a_k \cdots a_2 a_1, \mathbf{n} + \mathbf{1}, b_1 b_2 \cdots b_{n-k}$$

Given k, there are:

- $\binom{n}{k}$ choices for $\{a_1, a_2, \dots, a_k\}$
- E_k choices for $a_1a_2\cdots a_k$
- E_{n-k} choices for $b_1b_2\cdots b_{n-k}$.

We obtain each alternating and reverse alternating $w \in \mathfrak{S}_{n+1}$ once each.

$$\Rightarrow 2E_{n+1} = \sum_{k=0}^{n} \binom{n}{k} E_k E_{n-k}, \ n \ge 1$$

$$\Rightarrow 2E_{n+1} = \sum_{k=0}^{n} \binom{n}{k} E_k E_{n-k}, \ n \ge 1$$

Multiply by $x^{n+1}/(n+1)!$ and sum on $n \ge 0$:

$$2y' = 1 + y^2$$
, $y(0) = 1$.

$$\Rightarrow 2E_{n+1} = \sum_{k=0}^{n} \binom{n}{k} E_k E_{n-k}, \ n \ge 1$$

Multiply by $x^{n+1}/(n+1)!$ and sum on $n \ge 0$:

$$2y' = 1 + y^2$$
, $y(0) = 1$.

$$\Rightarrow y = \sec x + \tan x.$$

A new subject?

$$\sum_{n\geq 0} E_n \frac{x^n}{n!} = \sec x + \tan x$$

A new subject?

$$\sum_{n\geq 0} E_n \frac{x^n}{n!} = \sec x + \tan x$$

Define

$$\tan x = \sum_{n\geq 0} E_{2n+1} \frac{x^{2n+1}}{(2n+1)!}$$

$$\sec x = \sum_{n\geq 0} E_{2n} \frac{x^{2n}}{(2n)!}.$$

A new subject?

$$\sum_{n>0} E_n \frac{x^n}{n!} = \sec x + \tan x$$

Define

$$\tan x = \sum_{n\geq 0} E_{2n+1} \frac{x^{2n+1}}{(2n+1)!}$$

$$\sec x = \sum_{n\geq 0} E_{2n} \frac{x^{2n}}{(2n)!}.$$

⇒ combinatorial trigonometry

Exercises on combinatorial trig.

$$\sec^2 x = 1 + \tan^2 x$$

Exercises on combinatorial trig.

$$\sec^2 x = 1 + \tan^2 x$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - (\tan x)(\tan y)}$$

Exercises on combinatorial trig.

$$\sec^2 x = 1 + \tan^2 x$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - (\tan x)(\tan y)}$$

EC2, Exercise 5.7

Boustrophedon

boustrophedon:

Boustrophedon

boustrophedon: an ancient method of writing in which the lines are inscribed alternately from right to left and from left to right.

Boustrophedon

boustrophedon: an ancient method of writing in which the lines are inscribed alternately from right to left and from left to right.

From Greek boustrophēdon ($\beta o v \sigma \tau \rho o \varphi \eta \delta \acute{o} v$), turning like an ox while plowing: bous, ox + strophē, a turning (from strephein, to turn)

The boustrophedon array

The boustrophedon array

Boustrophedon entries

- last term in row n: E_{n-1}
- sum of terms in row n: E_n
- kth term in row n: number of alternating permutations in \mathfrak{S}_n with first term k, the Entringer number $E_{n-1,k-1}$.

Boustrophedon entries

- last term in row n: E_{n-1}
- sum of terms in row n: E_n
- kth term in row n: number of alternating permutations in \mathfrak{S}_n with first term k, the Entringer number $E_{n-1,k-1}$.

$$\sum_{m>0} \sum_{n>0} E_{m+n,[m,n]} \frac{x^m y^n}{m! n!} = \frac{\cos x + \sin x}{\cos(x+y)},$$

$$[m, n] = \begin{cases} m, & m+n \text{ odd} \\ n, & m+n \text{ even.} \end{cases}$$

ome occurrences of Euler numbers

(1) E_{2n+1} is the number of complete increasing binary trees on the vertex set

$$[2n+1] = \{1, 2, \dots, 2n+1\}.$$

Five vertices

Five vertices

Slightly more complicated for E_{2n}

Proof for 2n+1

$$m{b_1b_2\cdots b_m}: ext{ sequence of distinct integers}$$
 $m{b_i} = \min\{b_1,\ldots,b_m\}$

Proof for 2n+1

 $b_1b_2\cdots b_m$: sequence of distinct integers

$$\boldsymbol{b_i} = \min\{b_1, \dots, b_m\}$$

Define recursively a binary tree $T(b_1,\ldots,b_m)$ by

Example. 439172856

Completion of proof

Example. 439172856

Let $\mathbf{w} \in \mathfrak{S}_{2n+1}$. Then T(w) is complete if and only if w is alternating, and the map $w \mapsto T(w)$ gives the desired bijection.

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$.

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$. Merge together two at a time until reaching $\{1, 2, \ldots, n\}$.

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$. Merge together two at a time until reaching $\{1, 2, \ldots, n\}$.

$$1-2-3-4-5-6$$
, $12-3-4-5-6$, $12-34-5-6$
 $125-34-6$, $125-346$, 123456

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$. Merge together two at a time until reaching $\{1, 2, \ldots, n\}$.

$$1-2-3-4-5-6$$
, $12-3-4-5-6$, $12-34-5-6$
 $125-34-6$, $125-346$, 123456

 \mathfrak{S}_n acts on these sequences.

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$.

Merge together two at a time until reaching $\{1, 2, \dots, n\}$.

$$1-2-3-4-5-6$$
, $12-3-4-5-6$, $12-34-5-6$
 $125-34-6$, $125-346$, 123456

 \mathfrak{S}_n acts on these sequences.

Theorem. The number of \mathfrak{S}_n -orbits is E_{n-1} .

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$.

Merge together two at a time until reaching $\{1, 2, \dots, n\}$.

$$1-2-3-4-5-6$$
, $12-3-4-5-6$, $12-34-5-6$
 $125-34-6$, $125-346$, 123456

 \mathfrak{S}_n acts on these sequences.

Theorem. The number of \mathfrak{S}_n -orbits is E_{n-1} .

Proof.

(2) Start with n one-element sets $\{1\}, \ldots, \{n\}$.

Merge together two at a time until reaching $\{1, 2, \dots, n\}$.

$$1-2-3-4-5-6$$
, $12-3-4-5-6$, $12-34-5-6$
 $125-34-6$, $125-346$, 123456

 \mathfrak{S}_n acts on these sequences.

Theorem. The number of \mathfrak{S}_n -orbits is E_{n-1} .

Proof. Exercise.

Orbit representatives for n=5

$$12-3-4-5$$
 $123-4-5$ $1234-5$ $12-3-4-5$ $123-4-5$ $123-45$ $12-3-4-5$ $12-34-5$ $12-34-5$ $12-34-5$ $12-34-5$ $12-34-5$ $12-34-5$ $12-34-5$ $12-34-5$

Volume of a polytope

(3) Let \mathcal{E}_n be the convex polytope in \mathbb{R}^n defined by

$$x_i \ge 0, 1 \le i \le n$$

 $x_i + x_{i+1} \le 1, 1 \le i \le n - 1.$

Volume of a polytope

(3) Let \mathcal{E}_n be the convex polytope in \mathbb{R}^n defined by

$$x_i \ge 0, 1 \le i \le n$$

 $x_i + x_{i+1} \le 1, 1 \le i \le n - 1.$

Theorem. The volume of \mathcal{E}_n is $E_n/n!$.

Naive proof

$$\operatorname{vol}(\mathcal{E}_n) = \int_{x_1=0}^1 \int_{x_2=0}^{1-x_1} \int_{x_3=0}^{1-x_2} \cdots \int_{x_n=0}^{1-x_{n-1}} dx_1 \, dx_2 \cdots dx_n$$

Naive proof

$$\operatorname{vol}(\mathcal{E}_n) = \int_{x_1=0}^1 \int_{x_2=0}^{1-x_1} \int_{x_3=0}^{1-x_2} \cdots \int_{x_n=0}^{1-x_{n-1}} dx_1 \, dx_2 \cdots dx_n$$

$$f_n(t) := \int_{x_1=0}^{t} \int_{x_2=0}^{1-x_1} \int_{x_3=0}^{1-x_2} \cdots \int_{x_n=0}^{1-x_{n-1}} dx_1 dx_2 \cdots dx_n$$

Naive proof

$$\operatorname{vol}(\mathcal{E}_n) = \int_{x_1=0}^1 \int_{x_2=0}^{1-x_1} \int_{x_3=0}^{1-x_2} \cdots \int_{x_n=0}^{1-x_{n-1}} dx_1 \, dx_2 \cdots dx_n$$

$$\mathbf{f_n(t)} := \int_{x_1=0}^{\mathbf{t}} \int_{x_2=0}^{1-x_1} \int_{x_3=0}^{1-x_2} \cdots \int_{x_n=0}^{1-x_{n-1}} dx_1 dx_2 \cdots dx_n$$

$$f'_n(t) = \int_{x_2=0}^{1-t} \int_{x_3=0}^{1-x_2} \cdots \int_{x_n=0}^{1-x_{n-1}} dx_2 dx_3 \cdots dx_n$$
$$= f_{n-1}(1-t).$$

F(y)

$$f'_n(t) = f_{n-1}(1-t), \quad f_0(t) = 1, \quad f_n(0) = 0 \ (n > 0)$$

F(y)

$$f'_n(t) = f_{n-1}(1-t), \quad f_0(t) = 1, \quad f_n(0) = 0 \quad (n > 0)$$

$$\boldsymbol{F}(\boldsymbol{y}) = \sum_{n\geq 0} f_n(t) y^n$$

$$\Rightarrow \frac{\partial^2}{\partial t^2} F(y) = -y^2 F(y),$$

etc.

Conclusion of proof

$$F(y) = (\sec y)(\cos(t-1)y + \sin ty)$$

$$\Rightarrow F(y)|_{t=1} = \sec y + \tan y.$$

Tridiagonal matrices

An $n \times n$ matrix $M = (m_{ij})$ is tridiagonal if $m_{ij} = 0$ whenever $|i - j| \ge 2$.

doubly-stochastic: $m_{ij} \ge 0$, row and column sums equal 1

 \mathcal{T}_n : set of $n \times n$ tridiagonal doubly stochastic matrices

Polytope structure of \mathcal{T}_n

Easy fact: the map

$$\mathcal{T}_n \rightarrow \mathbb{R}^{n-1}$$

$$M \mapsto (m_{12}, m_{23}, \dots, m_{n-1,n})$$

is a (linear) bijection from \mathcal{T} to \mathcal{E}_{n-1} .

Polytope structure of \mathcal{T}_n

Easy fact: the map

$$\mathcal{T}_n \rightarrow \mathbb{R}^{n-1}$$

$$M \mapsto (m_{12}, m_{23}, \dots, m_{n-1,n})$$

is a (linear) bijection from \mathcal{T} to \mathcal{E}_{n-1} .

Application (Diaconis et al.): random doubly stochastic tridiagonal matrices and random walks on \mathcal{T}_n

A modification

Let \mathcal{F}_n be the convex polytope in \mathbb{R}^n defined by

$$x_i \geq 0, 1 \leq i \leq n$$

 $x_i + x_{i+1} + x_{i+2} \leq 1, 1 \leq i \leq n-2.$

$$V_n = \operatorname{vol}(\mathcal{F}_n)$$

A modification

Let \mathcal{F}_n be the convex polytope in \mathbb{R}^n defined by

$$x_i \ge 0, 1 \le i \le n$$

 $x_i + x_{i+1} + x_{i+2} \le 1, 1 \le i \le n - 2.$

$$V_n = \text{vol}(\mathcal{F}_n)$$

								10
$n!V_n$	1	2	5	14	47	182	786	3774

A "naive" recurrence

$$V_n = \mathbf{f_n}(1,1),$$

where

$$f_0(a,b) = 1$$
, $f_n(0,b) = 0$ for $n > 0$

$$\frac{\partial}{\partial a} f_n(a,b) = f_{n-1}(b-a,1-a).$$

$f_n(a,b)$ for $n \leq 3$

$$f_1(a,b) = a$$

 $f_2(a,b) = \frac{1}{2}(2ab - a^2)$
 $f_3(a,b) = \frac{1}{6}(a^3 - 3a^2 - 3ab^2 + 6ab)$

$f_n(a,b)$ for $n \leq 3$

$$f_1(a,b) = a$$

 $f_2(a,b) = \frac{1}{2}(2ab - a^2)$
 $f_3(a,b) = \frac{1}{6}(a^3 - 3a^2 - 3ab^2 + 6ab)$

Is there a "nice" generating function for $f_n(a,b)$ or $V_n = f_n(1,1)$?

 $\mathbf{is}(w) = \mathbf{length} \text{ of longest increasing}$ subsequence of $w \in \mathfrak{S}_n$

 $\mathbf{is}(w) = \mathbf{length} \text{ of longest increasing}$ subsequence of $w \in \mathfrak{S}_n$

$$is(48361572) = 3$$

 $\mathbf{is}(w) = \mathbf{length} \text{ of longest increasing}$ subsequence of $w \in \mathfrak{S}_n$

$$is(48361572) = 3$$

 $\mathbf{is}(w) = \mathbf{length} \text{ of longest increasing}$ subsequence of $w \in \mathfrak{S}_n$

$$is(48361572) = 3$$

Vershik-Kerov, Logan-Shepp:

$$E(n) := \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} is(w)$$

$$\sim 2\sqrt{n}$$

Limiting distribution of is(w)

Baik-Deift-Johansson:

For fixed $t \in \mathbb{R}$,

$$\lim_{n \to \infty} \operatorname{Prob}\left(\frac{\operatorname{is}_n(w) - 2\sqrt{n}}{n^{1/6}} \le t\right) = F(t),$$

the Tracy-Widom distribution.

Alternating analogues

• Length of longest alternating subsequence of $w \in \mathfrak{S}_n$

Alternating analogues

- Length of longest alternating subsequence of $w \in \mathfrak{S}_n$
- Length of longest increasing subsequence of an alternating permutation $w \in \mathfrak{S}_n$.

Alternating analogues

- Length of longest alternating subsequence of $w \in \mathfrak{S}_n$
- Length of longest increasing subsequence of an alternating permutation $w \in \mathfrak{S}_n$.

The first is much easier!

Longest alternating subsequences

as(w) = length of longest alt. subseq. of w

$$w = 56218347 \Rightarrow as(w) = 5$$

Longest alternating subsequences

as(w) = length of longest alt. subseq. of w

$$w = 56218347 \Rightarrow as(w) = 5$$

$$\mathbf{D(n)} = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \operatorname{as}(w) \sim ?$$

Definitions of $a_k(n)$ and $b_k(n)$

$$a_{k}(n) = \#\{w \in \mathfrak{S}_{n} : as(w) = k\}$$

$$b_{k}(n) = a_{1}(n) + a_{2}(n) + \dots + a_{k}(n)$$

$$= \#\{w \in \mathfrak{S}_{n} : as(w) \leq k\}$$

The case n=3

w	as(w)
1 23	1
132	2
213	3
2 31	2
312	3
3 2 1	2

The case n=3

w	as(w)
1 23	1
132	2
213	3
2 3 1	2
312	3
3 2 1	2

$$a_1(3) = 1, \ a_2(3) = 3, \ a_3(3) = 2$$

$$b_1(3) = 1, b_2(3) = 4, b_3(3) = 6$$

The main lemma

Lemma. $\forall w \in \mathfrak{S}_n \exists$ alternating subsequence of maximal length that contains n.

The main lemma

Lemma. $\forall w \in \mathfrak{S}_n \exists$ alternating subsequence of maximal length that contains n.

Corollary.

$$\Rightarrow a_k(n) = \sum_{j=1}^n \binom{n-1}{j-1}$$

$$\sum_{2r+s=k-1} (a_{2r}(j-1) + a_{2r+1}(j-1)) a_s(n-j)$$

The main generating function

$$\boldsymbol{B(x,t)} = \sum_{k,n>0} b_k(n) t^k \frac{x^n}{n!}$$

Theorem.

$$B(x,t) = \frac{2/\rho}{1 - \frac{1-\rho}{t}e^{\rho x}} - \frac{1}{\rho},$$

where
$$\rho = \sqrt{1-t^2}$$
.

Formulas for $b_k(n)$

Corollary.

$$\Rightarrow b_1(n) = 1$$

$$b_2(n) = n$$

$$b_3(n) = \frac{1}{4}(3^n - 2n + 3)$$

$$b_4(n) = \frac{1}{8}(4^n - (2n - 4)2^n)$$

$$\vdots$$

Formulas for $b_k(n)$

Corollary.

$$\Rightarrow b_1(n) = 1$$

$$b_2(n) = n$$

$$b_3(n) = \frac{1}{4}(3^n - 2n + 3)$$

$$b_4(n) = \frac{1}{8}(4^n - (2n - 4)2^n)$$

$$\vdots$$

no such formulas for longest **increasing** subsequences

Mean (expectation) of as(w)

$$\mathbf{D(n)} = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \operatorname{as}(w) = \frac{1}{n!} \sum_{k=1}^n k \cdot a_k(n),$$

the expectation of as(w) for $w \in \mathfrak{S}_n$

Mean (expectation) of as(w)

$$\mathbf{D(n)} = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \operatorname{as}(w) = \frac{1}{n!} \sum_{k=1}^n k \cdot a_k(n),$$

the expectation of as(w) for $w \in \mathfrak{S}_n$

Let

$$\mathbf{A(x,t)} = \sum_{k,n\geq 0} a_k(n) t^k \frac{x^n}{n!} = (1-t)B(x,t)$$
$$= (1-t)\left(\frac{2/\rho}{1-\frac{1-\rho}{t}e^{\rho x}} - \frac{1}{\rho}\right).$$

Formula for D(n)

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$

$$= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$$

$$= x + \sum_{n\geq 2} \frac{4n+1}{6} x^n.$$

Formula for D(n)

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$

$$= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$$

$$= x + \sum_{n\geq 2} \frac{4n+1}{6} x^n.$$

 $\Rightarrow D(n) = \frac{4n+1}{6}, n \ge 2$

Formula for D(n)

$$\sum_{n\geq 0} D(n)x^n = \frac{\partial}{\partial t} A(x,1)$$

$$= \frac{6x - 3x^2 + x^3}{6(1-x)^2}$$

$$= x + \sum_{n\geq 2} \frac{4n+1}{6} x^n.$$

$$\Rightarrow D(n) = \frac{4n+1}{6}, n \ge 2$$

Compare $E(n) \sim 2\sqrt{n}$.

Variance of as(w)

$$V(n) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(\operatorname{as}(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the variance of as(w) for $w \in \mathfrak{S}_n$

Variance of as(w)

$$V(n) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(\operatorname{as}(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the variance of as(w) for $w \in \mathfrak{S}_n$

Corollary.

$$V(n) = \frac{8}{45}n - \frac{13}{180}, \ n \ge 4$$

Variance of as(w)

$$V(n) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \left(\operatorname{as}(w) - \frac{4n+1}{6} \right)^2, \ n \ge 2$$

the variance of as(w) for $w \in \mathfrak{S}_n$

Corollary.

$$V(n) = \frac{8}{45}n - \frac{13}{180}, \ n \ge 4$$

similar results for higher moments

A new distribution?

$$P(t) = \lim_{n \to \infty} \text{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\text{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$

A new distribution?

$$P(t) = \lim_{n \to \infty} \text{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\text{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$

Stanley distribution?

Theorem (Pemantle, Widom, (Wilf)).

$$\lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{t\sqrt{45/4}} e^{-s^2} \, ds$$

(Gaussian distribution)

Theorem (Pemantle, Widom, (Wilf)).

$$\lim_{n \to \infty} \operatorname{Prob}_{w \in \mathfrak{S}_n} \left(\frac{\operatorname{as}(w) - 2n/3}{\sqrt{n}} \le t \right)$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{t\sqrt{45/4}} e^{-s^2} \, ds$$

(Gaussian distribution)

Umbral enumeration

Umbral formula: involves E^k , where E is an indeterminate (the umbra). Replace E^k with the Euler number E_k . (Technique from 19th century, modernized by **Rota** et al.)

Umbral enumeration

Umbral formula: involves E^k , where E is an indeterminate (the **umbra**). Replace E^k with the Euler number E_k . (Technique from 19th century, modernized by **Rota** et al.)

Example.

$$(1+E^{2})^{3} = 1+3E^{2}+3E^{4}+E^{6}$$

$$= 1+3E_{2}+3E_{4}+E_{6}$$

$$= 1+3\cdot 1+3\cdot 5+61$$

$$= 80$$

Another example

$$(1+t)^{E} = 1 + Et + {E \choose 2}t^{2} + {E \choose 3}t^{3} + \cdots$$

$$= 1 + Et + \frac{1}{2}E(E-1)t^{2} + \cdots$$

$$= 1 + E_{1}t + \frac{1}{2}(E_{2} - E_{1})t^{2} + \cdots$$

$$= 1 + t + \frac{1}{2}(1-1)t^{2} + \cdots$$

$$= 1 + t + O(t^{3}).$$

An umbral quiz

Let B be the Bell number umbra. Then

An umbral quiz

Let B be the Bell number umbra. Then

$$(1+t)^B = ??$$

An umbral quiz

Let B be the Bell number umbra. Then

$$(1+t)^B = e^t$$

Alt. fixed-point free involutions

fixed point free involution $w \in \mathfrak{S}_{2n}$: all cycles of length two (number $= 1 \cdot 3 \cdot 5 \cdots (2n-1)$)

Alt. fixed-point free involutions

fixed point free involution $w \in \mathfrak{S}_{2n}$: all cycles of length two (number $= 1 \cdot 3 \cdot 5 \cdots (2n-1)$)

Let f(n) be the number of alternating fixed-point free involutions in \mathfrak{S}_{2n} .

Alt. fixed-point free involutions

fixed point free involution $w \in \mathfrak{S}_{2n}$: all cycles of length two (number $= 1 \cdot 3 \cdot 5 \cdots (2n-1)$)

Let f(n) be the number of alternating fixed-point free involutions in \mathfrak{S}_{2n} .

$$n = 3$$
: $214365 = (1, 2)(3, 4)(5, 6)$
 $645231 = (1, 6)(2, 4)(3, 5)$
 $f(3) = 2$

An umbral theorem

Theorem.

$$\mathbf{F}(\mathbf{x}) = \sum_{n \ge 0} f(n)x^n$$

An umbral theorem

Theorem.

$$F(x) = \sum_{n\geq 0} f(n)x^n$$

$$= \left(\frac{1+x}{1-x}\right)^{(E^2+1)/4}$$

Proof idea

Proof. Uses representation theory of the symmetric group \mathfrak{S}_n .

Proof idea

Proof. Uses representation theory of the symmetric group \mathfrak{S}_n .

There is a character χ of \mathfrak{S}_n (due to **H. O.** Foulkes) such that for all $w \in \mathfrak{S}_n$,

$$\chi(w) = 0 \text{ or } \pm E_k.$$

Proof idea

Proof. Uses representation theory of the symmetric group \mathfrak{S}_n .

There is a character χ of \mathfrak{S}_n (due to **H. O.** Foulkes) such that for all $w \in \mathfrak{S}_n$,

$$\chi(w) = 0 \text{ or } \pm E_k.$$

Now use known results on combinatorial properties of characters of \mathfrak{S}_n .

Ramanujan's Second Notebook

Theorem (Ramanujan, Berndt, implicitly) As

$$x \rightarrow 0+$$

$$2\sum_{n\geq 0} (-1)^n \left(\frac{1-x}{1+x}\right)^{n(n+1)} \sim \sum_{k\geq 0} f(k)x^k = F(x),$$

an analytic (non-formal) identity.

A formal identity

Corollary (via Ramanujan, Andrews).

$$F(x) = 2\sum_{n\geq 0} q^n \frac{\prod_{j=1}^n (1 - q^{2j-1})}{\prod_{j=1}^{2n+1} (1 + q^j)},$$

where
$$\mathbf{q} = \left(\frac{1-x}{1+x}\right)^{2/3}$$
, a **formal** identity.

Simple result, hard proof

Recall: number of *n*-cycles in \mathfrak{S}_n is (n-1)!.

Simple result, hard proof

Recall: number of *n*-cycles in \mathfrak{S}_n is (n-1)!.

Theorem. Let b(n) be the number of alternating n-cycles in \mathfrak{S}_n . Then if n is odd,

$$b(n) = \frac{1}{n} \sum_{d|n} \mu(d) (-1)^{(d-1)/2} E_{n/d}.$$

Special case

Corollary. Let p be an odd prime. Then

$$b(p) = \frac{1}{p} \left(E_p - (-1)^{(p-1)/2} \right).$$

Special case

Corollary. Let p be an odd prime. Then

$$b(p) = \frac{1}{p} \left(E_p - (-1)^{(p-1)/2} \right).$$

Combinatorial proof?

Inc. subsequences of alt. perms.

Recall: is(w) = length of longest increasing subsequence of $w \in \mathfrak{S}_n$. Define

$$C(n) = \frac{1}{E_n} \sum_{w} is(w),$$

where w ranges over all E_n alternating permutations in \mathfrak{S}_n .

Crude estimate: what is

$$\beta = \lim_{n \to \infty} \frac{\log C(n)}{\log n}?$$

I.e.,
$$C(n) = n^{\beta + o(1)}$$
.

Crude estimate: what is

$$\beta = \lim_{n \to \infty} \frac{\log C(n)}{\log n}?$$

I.e.,
$$C(n) = n^{\beta + o(1)}$$
.

Easy:
$$\frac{1}{2} \le \beta \le 1$$

What is the (suitably scaled) limiting distribution of is(w), where w ranges over all alternating permutations in \mathfrak{S}_n ?

What is the (suitably scaled) limiting distribution of is(w), where w ranges over all alternating permutations in \mathfrak{S}_n ?

Is it the Tracy-Widom distribution?

What is the (suitably scaled) limiting distribution of is(w), where w ranges over all alternating permutations in \mathfrak{S}_n ?

Is it the Tracy-Widom distribution?

Possible tool: \(\exists \) "umbral analogue" of Gessel's determinantal formula.

What is the (suitably scaled) limiting distribution of is(w), where w ranges over all alternating permutations in \mathfrak{S}_n ?

Is it the Tracy-Widom distribution?

Possible tool: \(\exists \) "umbral analogue" of Gessel's determinantal formula.

• • • • • •

