

Algorithms to identify high-energy B hadrons via their hit multiplicity increase through pixel detection layers

Manuel Sommerhalder b tag meeting 19.11.18, CERN

Bachelor thesis supervised by Prof. Dr. Ben Kilminster Thea Arrestad

Dr. Yuta Takahashi

github.com/msommerh/bTag_HitCount

Motivation and method

Motivation

- ullet CSV(v2): track-based b tagging algorithm
- decay of highly boosted B hadrons between pixel detection layers causes a lack of hits in the earlier layer
- ullet efficiency loss in track reconstruction at extreme p_T due to missing hits

wrongly reconstructed tracks

Motivation

- CSV(v2): track-based b tagging algorithm
- ullet decay of highly boosted B hadrons between pixel detection layers causes a lack of hits in the earlier layer
- ullet efficiency loss in track reconstruction at extreme p_T due to missing hits

Motivation

- alternative approach by B. Todd Huffman et al. (arXiv:1604.05036 and arXiv:1701.06832)
- ullet tagging high- p_T B hadrons based on an increase in hit multiplicity
- yields promising tagging efficiency on a DELPHES simulation

arXiv:1604.05036

Aim of the study

- 1. check if a hit multiplicity increase is found for high $p_T\ B$ hadrons on a CMS detector simulation
- 2. develop a simple cut-based \boldsymbol{b} tagger from this
- 3. check if such a tagger in addition to CSV leads to a gain in tagging efficiency
- 4. implement an MVA-based \emph{b} tagger for a fair comparison to CSV

arXiv:1604.05036

Method

- 1. generate high- p_T b jets ($p_T > 500$ GeV)
- 2. match hits in each layer to the jets
- 3. construct hit-based variables (ratios and differences between the number of hits in different layers)
- 4. compare the variables of b jets to those of generic QCD jets
- 5. develop discriminants to distinguish signal from background

Mote Carlo samples

Monte Carlo samples

- \bullet signal: $Z' \to b\bar{b}$ with $M_{Z'}=$ 2 TeV and $M_{Z'}=$ 4 TeV, generated in PYTHIA 8
- background: QCD_Pt-15to7000_TuneCUETP8M1_Flat_13TeV_pythia8 (92X)
- momentum threshold of 350 GeV imposed on outgoing particles

Pixel cluster matching

- hits given by clusters: adjacent pixels in the silicon pixel detector whose charge exceeds a pre-defined readout threshold
- clusters are counted for each jet and layer if they lie insiside a cone of fixed $\Delta R \equiv \sqrt{\Delta \eta^2 + \Delta \phi^2}$ around the jet axis
- \bullet different values for ΔR were tested: 0.04, 0.06, 0.08, 0.10, 0.16 (see later)

Cut-based discrimination using

hit multiplicity variables

Discriminant and cone optimizations

- Li: number of hits in layer $i \in (1, 2, 3, 4)$
- histograms for every combination of Li/Lj and Li-Lj with i>j
- evaluated on every cone size $\Delta R = 0.04, 0.06, 0.08, 0.10, 0.16$

Discriminant and cone optimizations

- ullet compare performance of each discriminant at each ΔR
- ullet mistag rate: fraction of generic QCD jets misidentified as b jets
- highest performance for L4/L1 with $\Delta R < 0.1$ and L4-L1 with $\Delta R < 0.04$
- L4/L1 and L4-L1 comparable to CSV at a 10% mistag rate

Single cut discriminants

- cuts corresponding to a 10% mistag rate
- ullet efficiency and mistag rate yield a high dependence on p_T
- \bullet no direct comparison can be made for specific points on the p_T spectrum

pt dependent cuts

- ullet vary cuts with p_T to achieve a flat 10% mistag rate
- ullet comparable efficiency of CSV and L4/L1 at $p_T>1200~{\rm GeV}$

Comparison to CSV

- ullet LHS: tagged jets as a function of p_T at a flat 10% mistag rate
- RHS: relative gain when using each tagger in addition to CSV
- relative gain: $\frac{r}{g+b}$
- \bullet L4/L1 yields a 32% gain on the full spectrum, 63% above 1200 GeV

Stability with respect to pileup

- analogous analysis done on samples with pileup
- expected PU in 2017 (20-30 PV)
- absolute performance of both taggers stable and similar to CSV

MANtag

Multiplicity-based Artificial

Neural network tagger:

MANtag structure

input variables:

- ullet number of hits in each Layer Li matched at 5 different ΔR
- ratio of hits for consecutive layer: L2/L1, L3/L2, L4/L3
- variables from previous discussion: L4/L1, L4-L1
- ullet p_T as input variable o need to reweight p_T profiles

aim: construct an MVA-based discriminant for a fair comparison to CSV

Convolutional layer

- Li and cone size arranged in a 5x4 matrix
- convolutional 5x2 filter sliding over input matrix
- take advantage of spatial structure

MANtag performance

Efficiency and mistag rate

- ullet superior performance of both neural networks at $p_T>1200~{\rm GeV}$
- ullet higher efficiency of MANtag using p_T as input variable

Comparison to CSV

- relative gain to CSV at a 10% mistag rate
- \bullet MANtag with p_T variable yields a 60% gain on the full spectrum, 112% above 1200 GeV

Stability with respect to pileup

- efficiency and mistag rate increasing as a function of PV for all taggers
- absolute performance of all taggers stable and similar to CSV

Conclusion and outlook

Counting hits in a small angular region around the jet axis in each pixel detection layer...

- ...results in remarkably simple variables.
- ...yields a significant potential for improving b tagging at extreme p_T .
- ...has a stable absolute performance with respect to pileup.

Next steps:

- Implement a hit-based standalone tagger?
- Integrate hit-based variables into CSV?

read more at: github.com/msommerh/bTag_HitCount

Appendix

CSV

- Combined Secondary Vertex Tagger
- tracks reconstructed using an iterative procedure with a Kalman filter
- algorithms AVR and IVF reconstruct secondary vertices

Input variable	Run 1 CSV	CSVv2
SV 2D flight distance significance	x	х
Number of SV	_	X
Track $\eta_{\rm rel}$	X	X
Corrected SV mass	x	X
Number of tracks from SV	x	x
SV energy ratio	x	X
$\Delta R(SV, jet)$	_	X
3D IP significance of the first four tracks	x	X
Track $p_{T,rel}$	_	X
$\Delta R(\text{track, jet})$	_	X
Track $p_{T,rel}$ ratio	_	X
Track distance	_	x
Track decay length	_	X
Summed tracks $E_{\rm T}$ ratio	_	X
ΔR (summed tracks, jet)	_	X
First track 2D IP significance above c threshold	_	X
Number of selected tracks	_	X
Jet p_{T}	_	X
Jet η	_	X

Single cut discriminants

- number of jets correctly tagged by CSV and each tagger at a 10% mistag rate corresponding to a single cut
- red area corresponds to gain when using each tagger in addition to CSV

pT dependent cuts

- ullet number of jets correctly tagged by CSV and each tagger at a flat 10% mistag rate over the entire p_T spectrum
- red area corresponds to gain when using each tagger in addition to CSV

MANtag performance

- number of jets correctly tagged by CSV and MANtag without p_T (LHS) and with p_T (RHS) at a flat 10% mistag rate
- red area corresponds to gain when using each tagger in addition to CSV

Choice of artificial neural network model

- LHS: densely connected network with different cone size inputs
- RHS: 5 cone size inputs processed through ANNs of different complexity

Pileup profiles

