Question:

- 1. Plot the deformed gripper shape assuming values of F, N, EI, k_0, L
- 2. Find N, such that r3(L) = b/2 (b: length of the workpiece).
- 3. Calculate maximum frictional resistance \mu N.

Answer:

Note: .ipynb file containing the python code for the question is attached.

1)

Im B:
$$\rightarrow$$
 $0' + \hat{0} = 0$

Amb: \rightarrow $m' + \delta' \times n + \hat{m} = 0$

Governing Eqn. \rightarrow

EI(B' - \times_0)' + F cos 0 - N sin $0 = 0$

assume \times_0 = constant

EI $0''$ + F cos 0 - N sin $0 = 0$

ODE \leftarrow \rightarrow $0''$ + $\frac{F}{FI}$ cos 0 - $\frac{N}{FI}$ sin $0 = 0$

Required Normal Force (N) using Newton-Raphson: 36.7140 N

Deformed Shape of Soft Gripper (Cosserat Rod)

Maximum Frictional Resistance: 18.3570 N

The Cosserat rod equation for a soft robotic gripper

 $EI(\theta'-k0)' + F\cos\theta - N\sin\theta = 0$

Where:

- E is the Young's modulus,
- · I is the moment of area,
- θ is the bending angle,
- k is the initial curvature,
- F and N are force components along the rod.

Assuming the unknown values

2) Maximum Normal Force = 36.714 N.

To determine the internal normal force N that ensures the gripper's end position r3(L) aligns with half the workpiece length b/2, we follow these steps:

- 1. Define the Objective Function
 - o Solve the governing differential equation for a given N.
 - o Compute r3(L) using numerical integration.
 - Define an equation where the difference between r3(L)and b/2 is minimized.
- 2. Use the Newton-Raphson Method to Find N
 - o Iteratively adjust N using Newton-Raphson's formula.
 - o Converge to a solution where the objective function approaches zero.

This process ensures that the normal force N is accurately determined to match the specified boundary condition for the gripper's deformation.

3) Maximum Frictional Force = 18.35 N.

The maximum frictional resistance is given by:

Fmax= μ N.

Where:

- μ is the coefficient of friction.
- N is the normal force calculated in Part (b).

This frictional resistance determines the maximum force the gripper can apply without slipping.