Contribution of Alaskan, Canadian, and Transboundary Sockeye Salmon Stocks to Catches in Southeast Alaska Purse Seine and Gillnet Fisheries, Districts 101–108, Based on Analysis of Scale Patterns, 2002

by
Richard Bloomquist,
Anne Reynolds,
and
Iris S. Frank

April 2010

Alaska Department of Fish and Game

Divisions of Sport Fish and Commercial Fisheries

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

centimeter cm Alaska Administrative fork length FL deciliter dl. Code all commonly accepted mideye to tail fork MEF klorare ha abbreviations e.g., Mr., Ms., standard length SL klorare km all commonly accepted line mideye to tail fork MEF kloreder km all commonly accepted line load length TL liter L professional titles e.g., Dr., Ph.D., Mathematics, statistics all standard length TL meter m. at @ all standard length adbreviations L millimeter m. cas E all standard mathematical abbreviations L wishingther m. compass directions: cas exity method dbbreviations HA cubic feet per second ft? south S cath per unit effort CPU gallon gallo min copyrigh @ cath per unit effort CPU	Weights and measures (metric)		General		Measures (fisheries)	
gram g all commonly accepted becture mide of the profession of the profession at times e.g., Mr, Mrs., etc. standard length SL kilometer L professional times e.g., Dr., Ph.D., RN, etc. Mathematics, statistics all commonly accepted of the professional times all commonly accepted of the profession of the professi	. ,	cm	Alaska Administrative		fork length	FL
gram g all commonly accepted becture mide of the profession of the profession at times e.g., Mr, Mrs., etc. standard length SL kilometer L professional times e.g., Dr., Ph.D., RN, etc. Mathematics, statistics all commonly accepted of the professional times all commonly accepted of the profession of the professi	deciliter	dL	Code	AAC		MEF
Rectarc	gram	g	all commonly accepted			METF
Religionary		-	- 1	e.g., Mr., Mrs.,	•	SL
kilometer Km	kilogram	kg		0 / /	· ·	TL
Inter meter millitier milli	2	-	all commonly accepted		8	
meter millimeter mill at a compass directions:	liter	L	professional titles	e.g., Dr., Ph.D.,	Mathematics, statistics	
millimer mL at compass directions: cast E cast alternate hypothesis and babreviations alternate hypothesis. PLA alternate hypothesis and measures (English) HA above can alternate hypothesis. PLA alternate hypothesis. PLA alternate hypothesis. PLA alternate hypothesis and the pass of natural logarithm as a laternate hypothesis. PLA alternate hypothesis and the pass of natural logarithm as a laternate hypothesis. PLA alternate hypothesis and alternate hypothesis and alternate hypothesis. PLA alternate hypothesis alternate hypothesis. PLA alternate hypothesis alternate hypothesis and alternative house of caternate hypothesis. PLA alternate hypothesis and alternative house of caternate hypothesis and alternative hypothesis. PLA alternation of components at laternation of components and incomporate with the high plant hypothesis. PLA alternation of components alternation of components and incomporate hypothesis. PLA alternation of correlation coefficient. PLA alternation of correlation coefficient. PLA alternation of correlation coefficient. PLA alternation of coveration o	meter	m		R.N., etc.	all standard mathematical	
Weights and measures (English) ceast E alternate hypothesis H_A cubic feet per second (obtic feet per second (obtic feet per second) ft²/s south S catch per unit effort CPUE foot ft²/s south S catch per unit effort CPUE gallon gal copyright © comfidence interval CV gallon min copyrates uffixes: comfidence interval CI mile min Copporation Cop. correlation coefficient Correlation coefficient mulce min Copporation Cop. correlation coefficient Correlation coefficient ounce oz Incorporated Ltd. (simple) R quart qt District of Columbia D.C. covariance cov quart qt difor example ctc. degree (angular) ctc. dayrd d (for example) ctc. degree of freedom df degrees Cledius °F Cod	milliliter	mL	at	(a)	signs, symbols and	
Weights and measures (English) north N base of natural logarithm ε cubic feet per second ft²/s south S catch per unite ffort CPUE foot ft west W coefficient of variation CV gallon gal coppright © common test statistics (F, t, χ^2 , etc.) nich in copporate suffixes: confidence interval CI mile min Company Co. correlation coefficient Correlation coefficient nautical mile mmi Comporate Inc. correlation coefficient Inc. ounce oz Inc. correlation coefficient Inc. correlation coefficient pound lb Limited Ltd. (simple) r quart qt District of Columbia D.C. covariance cov quart qt District of Columbia D.C. covariance cov degrees Celsius d (for example) e.g. <	millimeter	mm	compass directions:		abbreviations	
cubic feet per second ft 12 /s south foot ft west 12 west 12 W coefficient of variation 12 CPUE foot ft west 12 W coefficient of variation 12 CV coefficient 12 CV confidence interval 12 CI mile 12 mile 12 confidence interval 12 CI mile 12 mile 12 confidence interval 12 CI mile 12 corporation 12 Corp. 12 (multiple) 12 R 12 Pultiple			east	E	alternate hypothesis	H_A
foot ft west W coefficient of variation CV gallon gal copyright © common test statistics (F, t^2 , etc.) inch in copyrate suffixes: confidence interval CI mile mi Company Co. correlation coefficient matical mile mmi Corporation Cop. (multiple) R ounce oz Inc. correlation coefficient Inc. correlation coefficient pound lb Limited Ltd. (simple) r quart qt District of Columbia D.C. covariance cov yard qt District of Columbia Ltd. (simple) r yard qt Usitic (and others) et al. degrees of freedom df Time and temperature q ceg. greater than expected value E degrees Celsius $^{\circ}$ C Federal Information e.g. greater than expected value	Weights and measures (English)		north	N	base of natural logarithm	e
gallon gal copyright © common test statistics (F, t, χ^2 , etc.) inch in corporate suffixes: onfide in corporate suffixes: onfidence interval confidence interval co	()	ft ³ /s	south	S	e e	CPUE
inch in corporate suffixes: confidence interval CI mile mi Company Co. correlation coefficient Corporation Corp. (multiple) R ounce oz Incorporated Inc. correlation coefficient r ounce oz Incorporated Inc. correlation coefficient r ounce oz Incorporated Inc. covariance cov quart qt District of Columbia D.C. covariance cov yard yd et alli (and others) et al. degrees offreedom df Time and temperature et cetera (and so forth) et. degrees of freedom df day d (for example) e.g. greater than > degrees Celsius d Code FIC harvest per unit effort HPUE degrees Relvin K id est (that is) i.e. less than hour h latitude or longitude	foot	ft	west	W	coefficient of variation	CV
inch in corporate suffixes: confidence interval CI mile mi Company Co. correlation coefficient Corporation Corp. (multiple) R ounce oz Incorporated Inc. correlation coefficient r ounce oz Incorporated Inc. correlation coefficient r ounce oz Incorporated Inc. covariance cov quart qt District of Columbia D.C. covariance cov yard yd et alli (and others) et al. degrees offreedom df Time and temperature et cetera (and so forth) et. degrees of freedom df day d (for example) e.g. greater than > degrees Celsius d Code FIC harvest per unit effort HPUE degrees Relvin K id est (that is) i.e. less than hour h latitude or longitude	gallon	gal	copyright	©	common test statistics	$(F, t, \chi^2, etc.)$
natical mile nmi Corporation ounce Corp. (multiple) R ounce oz Incorporated line. correlation coefficient (simple) r pound lb Limited Ltd. (simple) r quart qt District of Columbia D.C. covariance cov yard yd et alli (and others) et al. degree (angular) ° degree formand d (for example) e.g. greater than > degrees Celsius °C FC FCC preater than or equal to ≥ degrees Alevin K id est (that is) i.e. less than hour h latitude or longitude lat. or long. less than minute min months (tables and logarithm (natural) ln second g (U.S.) \$, \$ logarithm (specify base) logz, etc. Physics and chemistry all atomics symbols letters Jan,, Dec not significant	=		corporate suffixes:		confidence interval	
ounce oz Incorporated Limited Ltd. Inc. (simple) r pound lb Limited Ltd. (simple) r quart qt District of Columbia D.C. covariance cov yard yd et alii (and others) et al. degree (angular) ° Time and temperature exempli gratia ec. degrees of freedom df day d (for example) e.g. greater than > degrees Celsius °C Federal Information e.g. greater than > degrees Rehrenheit °F Code FIC harvest per unit effort HPUE degrees Rehrenheit °F Code FIC harvest per unit effort HPUE degrees Rehrenheit °F Code FIC harvest per unit effort HPUE degrees Rehrenheit °F Code FIC harvest per unit effort HPUE degrees Rehrenheit °G (U.S.) \$ © logarithm (hatural) ln </td <td>mile</td> <td>mi</td> <td>Company</td> <td>Co.</td> <td>correlation coefficient</td> <td></td>	mile	mi	Company	Co.	correlation coefficient	
ounce oz Incorporated Inc. correlation coefficient pound lb Limited Ltd. (simple) r quart qt District of Columbia D.C. covariance cov yard yd et alii (and others) et al. degree (angular) ° Time and temperature e cetera (and so forth) ecc. degrees of freedom df day d (for example) e.g. greater than > degrees Celsius °C Federal Information greater than or equal to ≥ degrees Fahrenheit °F Code FIC harvest per unit effort HPUE degrees Relvin K id est (that is) i.e. less than degrees Relvin K id est (that is) i.e. less than hour h latitude or longitude lat. or long. less than or equal to ≤ execond K (U.S.) \$.¢ logarithm (natural) ln	nautical mile	nmi	Corporation	Corp.	(multiple)	R
pound quart pound qt Limited push (author) Ltd. (simple) r quart qt District of Columbia et al. D.C. covariance cov yard yd et ali (and others) et al. degree (angular) cov yard et cetera (and so forth) et cetera (and et cetera (and so forth) et cetera (and et cetera (and so forth) et cetera (and et ce			Incorporated	Inc.	. 1	
quart qt District of Columbia et alii (and others) et cetra (and so forth) et cetra (and so forth) D.C. covariance cov Time and temperature day d (for example) exempli gratia e.g. greater than expected value > degrees Celsius °C Federal Information e.g. greater than or equal to less than > degrees Rahrenheit °F Code FIC harvest per unit effort HPUE degrees Relvin K id est (that is) i.e. less than <				Ltd.		r
yard yd et alii (and others) et al. degree (angular) ° Time and temperature day d (for example) et c. expected value E day d (for example) e.g. greater than > > degrees Celsius °C Federal Information degrees Fahrenheit °F Code FIC harvest per unit effort HPUE degrees kelvin K idest (that is) i.e. less than or equal to ≤ degrees kelvin hour h latitude or longitude lat. or long. less than or equal to ≤ minute min monetary symbols second Symbols second (U.S.) S, ¢ logarithm (natural) logarithm (natural) logarithm (natural) logarithm (base 10) log logarithm (symbols alternating current A C registered trademark more percent gircent current bC (adjective) LS. Interest current lors and percent lors (adjective) LS. U.S. U.S. U.S. U.S. U.S. U.S. U.S.	•		District of Columbia	D.C.	(I /	
et cetera (and so forth) etc. degrees of freedom df Time and temperature exempli gratia expected value E day d (for example) e.g. greater than > degrees Celsius °C Federal Information parearet rhan or equal to ≥ degrees Fahrenheit °F Code FIC harvest per unit effort HPUE degrees kelvin K id est (that is) i.e. less than hour h latitude or longitude lat. or long. less than or equal to ≤ minute min monotaty symbols logarithm (base 10) log second s (U.S.) \$, ¢ logarithm (base 10) log Physics and chemistry figures): first three logarithm (base 10) log log all atomic symbols letters Jan,,Dec not significant NS all ternating current AC registered trademark ® nutll hypothesis Ho dieret cur	•	•	et alii (and others)	et al.		
Time and temperature exempli gratia expected value E day d (for example) e.g. greater than > degrees Celsius °C Federal Information greater than or equal to ≥ degrees Fahrenheit °F Code FIC harvest per unit effort HPUE degrees kelvin K id est (that is) i.e. less than <	<i>y</i>	<i>J</i> 	The state of the s	etc.		df
dayd degrees Celsius(for example) °Ce.g.greater than or equal to greater than or equal to greater than or equal to expense Fahrenheit degrees Fahrenheit degrees kelvin°FCode FC CodeFIC harvest per unit effort havest per unit effort less thanHPUEdegrees kelvinK id est (that is) in hourIditude or longitude havest per unit effort idegrees kelvinlat. or long. less than or equal to logarithm (natural)≤minutemin seconds (U.S.)\$, \$ \$logarithm (base 10) logarithm (specify base)log logarithm (specify base)Physics and chemistry all atomic symbols alternating current ampereAC clettersJan,,Dec lettersnot significant minute (angular)NSalternating current ampereAC cal trademark calorie direct currentAC cal (adjective)y.s. (adjective)null hypothesis probability (rejection of the null hypothesis when true) (rejection of the null hypothesis when true) (regettion of the null hypothesis when true) (acceptance of the null hypothesis when false) second (angular)hydrogen ion activity (negative log of) (negative log of) 	Time and temperature		exempli gratia		•	E
degrees Celsius °C Federal Information greater than or equal to ≥ degrees Fahrenheit °F Code FIC harvest per unit effort HPUE degrees Kelvin K id est (that is) i.e. less than hour h latitude or longitude lat. or long. less than or equal to ≤ minute min monetary symbols logarithm (natural) ln second s (U.S.) \$, ¢ logarithm (base 10) log Physics and chemistry figures): first three logarithm (specify base) log2, etc. all atomic symbols letters Jan,,Dec not significant NS allernating current AC registered trademark minut (angular) NS allernating current A trademark percent percent % calorie cal United States probability of a type I error (rejection of the null horsepower hp America (noun) USA hypothesis when true) A	•	d	(for example)	e.g.	1	>
degrees Fahrenheit °F Code FIC harvest per unit effort HPUE degrees kelvin K id est (that is) i.e. less than hour h latitude or longitude lat. or long. less than or equal to ≤ minute min monetary symbols logarithm (haural) ln second s (U.S.) \$, \$ logarithm (base 10) log second s (U.S.) \$, \$ logarithm (specify base) log2, etc. Physics and chemistry figures): first three logarithm (specify base) log2, etc. all atomic symbols letters Jan,,Dec not significant NS all etomic symbols AC registered trademark ® null hypothesis Ho ampere A trademark minute (angular) "Y direct current DC (adjective) U.S. probability of a type I error (rejection of the null horsepower hp America (noun) USA hypothesis when false)	3		Federal Information	•	2	≥
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e	°F	Code	FIC	e i	HPUE
minute min monetary symbols logarithm (natural) ln second s (U.S.) \$, ¢ logarithm (base 10) log Physics and chemistry figures): first three logarithm (specify base) log2, etc. all atomic symbols letters Jan,,Dec not significant NS alternating current AC registered trademark ® null hypothesis Ho ampere A trademark TM percent % calorie cal United States probability P direct current DC (adjective) U.S. probability of a type I error (rejection of the null A horsepower hp America (noun) USA hypothesis when true) α hydrogen ion activity pH U.S.C. United States probability of a type II error (acceptance of the null β parts per million ppm U.S. state use two-letter abbreviations (e.g., AK, WA) hypothesis when false) β volts V V (e.g., AK, WA) standard deviation SD standard er	e	K	id est (that is)	i.e.	•	<
second s (U.S.) \$, \$ logarithm (base 10) log months (tables and months (tables and logarithm (specify base) log2, etc. Physics and chemistry all atomic symbols letters Jan,,Dec not significant NS alternating current AC registered trademark ® null hypothesis Ho ampere A trademark ™ percent % calorie cal United States probability P direct current DC (adjective) U.S. probability of a type I error hertz Hz United States of (rejection of the null horsepower hp America (noun) USA probability of a type II error (negative log of) P U.S. parts per million ppm U.S. state use two-letter abbreviations (e.g., AK, WA) standard deviation SD volts V variance watts W Variance population Variance population Variance population Variance population Variance prospect Variance population Parts population Variance po	hour	h	latitude or longitude	lat. or long.	less than or equal to	≤
months (tables and logarithm (specify base) all trademark TM TM percent posability of a type I error posability of a type I error crejection of the null logarithm (specify base) posability of a type I error <td>minute</td> <td>min</td> <td>monetary symbols</td> <td></td> <td>logarithm (natural)</td> <td>ln</td>	minute	min	monetary symbols		logarithm (natural)	ln
months (tables and Physics and chemistryInomath of tables and figures): first three all atomic symbols alternating currentIndicate the probability of a type I error abbreviations (e.g., AK, WA)Indicate the populationInogarithm (specify base) minute (angular) log_2 etc.All atomic symbols alternating currentACregistered trademark registered trademark $\$$ null hypothesis H_0 ampere calorieAtrademark T^{M} percent probability of a type I error (rejection of the null P direct currentDC(adjective)U.S.probability of a type I error (rejection of the null A horsepowerhpAmerica (noun)USAhypothesis when true) α hydrogen ion activity (negative log of)pHU.S. C.United States Codeprobability of a type II error (acceptance of the null α parts per millionppmU.S. stateuse two-letter abbreviations (e.g., AK, WA)hypothesis when false) second (angular) β voltsVVE.G., AK, WA)standard deviationSDwattsWVVV	second	S	(U.S.)	\$, ¢	. ,	log
all atomic symbols alternating current AC registered trademark ampere A trademark \mathbb{B} null hypothesis when true \mathbb{B} null hypothesis \mathbb{B} null hypoth			months (tables and		logarithm (specify base)	C
all atomic symbols alternating current AC registered trademark ampere A trademark $@$ null hypothesis H_O ampere A trademark $@$ null hypothesis H_O ampere Calorie Cal United States $\\ Calorie Calorie Cal United States \\ Calorie Cal$	Physics and chemistry		figures): first three		minute (angular)	, 0=,
ampere A trademark \uparrow^{TM} percent $\uparrow^{\text{Calorie}}$ calorie calorie (adjective) U.S. probability $\uparrow^{\text{Calorie}}$ United States $\uparrow^{\text{Calorie}}$ U.S. probability of a type I error (rejection of the null horsepower hp America (noun) USA hypothesis when true) $\uparrow^{\text{Calorie}}$ (negative log of) $\uparrow^{\text{Calorie}}$ U.S. state Use two-letter abbreviations (e.g., AK, WA) $\uparrow^{\text{Calorie}}$ second (angular) $\uparrow^{\text{Calorie}}$ variance $\uparrow^{\text{Calorie}}$ Wuts $\uparrow^{\text{Calorie}}$ W			letters	Jan,,Dec		NS
ampere A trademark \uparrow^{M} percent $\%$ calorie calorie cal United States \uparrow^{DC} (adjective) U.S. probability of a type I error (rejection of the null horsepower hpydrogen ion activity (negative log of) \uparrow^{DC} \downarrow^{DC}	alternating current	AC	registered trademark	R	null hypothesis	H_{O}
direct current DC (adjective) U.S. probability of a type I error (rejection of the null horsepower hp America (noun) USA hypothesis when true) α hydrogen ion activity pH U.S.C. United States (negative log of) ppm U.S. state use two-letter abbreviations (e.g., AK, WA) standard deviation SD volts V W ST STATE	ampere	A	trademark	TM		%
hertz Hz United States of hp America (noun) USA hypothesis when true) α hydrogen ion activity hydrogen ion activity (negative log of) parts per million parts per thousand ppt, ∞ Volts V ∞ Hz United States (e.g., AK, WA) ∞ standard deviation Standard error wariance population ∞ V ∞ State ∞ SE ∞ watts	calorie	cal	United States		probability	P
horsepower hp America (noun) USA hypothesis when true) α hydrogen ion activity pH U.S.C. United States (negative log of) parts per million parts per thousand ppt, $\%$ Volts V V Less than α bypothesis when true) α hypothesis when true) α hypothesis when true) α (acceptance of the null hypothesis when false) β second (angular) "standard deviation standard deviation SD standard error SE watts W V SE population Var	direct current	DC	(adjective)	U.S.	probability of a type I error	
hydrogen ion activity (negative log of) parts per million parts per thousand ppt, wolts V V V V V V S.C. United States Code (acceptance of the null hypothesis when false) second (angular) standard deviation standard deviation standard error SE variance population Var	hertz	Hz	United States of		(rejection of the null	
regative log of) parts per million parts per thousand ppt wolts V volts W Code (acceptance of the null use two-letter abbreviations (e.g., AK, WA) second (angular) standard deviation SD standard error SE variance population Var	horsepower	hp	America (noun)	USA	hypothesis when true)	α
parts per million ppm U.S. state use two-letter abbreviations (e.g., AK, WA) standard deviation SD volts V standard error SE watts W variance population Var	hydrogen ion activity	рH	U.S.C.	United States	probability of a type II error	
parts per thousand ppt, abbreviations (e.g., AK, WA) second (angular) " volts V standard deviation SE watts W variance population Var	(negative log of)	•		Code	(acceptance of the null	
volts V standard deviation SE watts W seed to the seed of the seed	parts per million	ppm	U.S. state		hypothesis when false)	β
volts V standard deviation SD standard error SE watts W variance population Var	parts per thousand				second (angular)	
watts W variance population Var		‰		(e.g., AK, WA)	standard deviation	SD
population Var	volts	V			standard error	SE
	watts	W			variance	
					population	Var
Sample var					sample	var

FISHERY DATA SERIES NO. 10-27

CONTRIBUTION OF ALASKAN, CANADIAN, AND TRANSBOUNDARY SOCKEYE SALMON STOCKS TO CATCHES IN SOUTHEAST ALASKA PURSE SEINE AND GILLNET FISHERIES, DISTRICTS 101–108, BASED ON ANALYSIS OF SCALE PATTERNS, 2002

By Richard Bloomquist, Anne Reynolds, and Iris S. Frank Alaska Department of Fish and Game, Division of Commercial Fisheries, Douglas

> Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1565 April 2010

ADF&G Fishery Data Series was established in 1987 for the publication of Division of Sport Fish technically oriented results for a single project or group of closely related projects, and in 2004 became a joint divisional series with the Division of Commercial Fisheries. Fishery Data Series reports are intended for fishery and other technical professionals and are available through the Alaska State Library and on the Internet: http://www.sf.adfg.state.ak.us/statewide/divreports/html/intersearch.cfm This publication has undergone editorial and peer review.

Richard Bloomquist, Anne Reynolds, and Iris S. Frank Alaska Department of Fish and Game, Division of Commercial Fisheries, 802 Third Street, Douglas, Alaska 99824, USA

This document should be cited as:

Bloomquist, R., A. Reynolds, and I. S. Frank. 2010. Contribution of Alaskan, Canadian, and transboundary sockeye salmon stocks to catches in Southeast Alaska purse seine and gillnet fisheries, Districts 101–108, based on analysis of scale patterns, 2002. Alaska Department of Fish and Game, Fishery Data Series No. 10–27, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Road, Anchorage AK 99518 (907)267-2375.

TABLE OF CONTENTS

	Page
LIST OF TABLES.	ii
LIST OF FIGURES	ii
LIST OF APPENDICES	ii
ABSTRACT	1
INTRODUCTION	1
METHODS	5
Commercial Harvest Information	5
Biological Data Collection and Processing	6
Digitizing of Scales	6
Discriminant Analysis	7
Classification of Catches	10
RESULTS	10
National Origin of Southern Southeast Sockeye Salmon Catches	10
Stock Composition of Southern Southeast Sockeye Salmon Catches	11
District 101 Gillnet Stock Composition	11
District 101 Purse Seine Stock Composition	
District 102 Purse Seine Stock Composition	
District 103 Purse Seine Stock Composition	
District 104 Purse Seine Stock Composition	
District 106 and 108 Gillnet Stock Composition	12
DISCUSSION	12
REFERENCES CITED	12

LIST OF TABLES

1. Estimated sockeye salmon contributions and percentages by nation of origin to southern Southeast Alaska Districts 101 to 108 net fisheries, 1982–2002	Table		Page
2. Estimated contribution by stock group of origin of sockeye salmon harvested in the net fisheries in Alaska's Districts 101 to 108, in 2002	1.		O
Alaska's Districts 101 to 108, in 2002			16
3. Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 101 (Tree Point) drift gillnet fishery, in 2002. 20 4. Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 101 purse seine fishery, in 2002. 21 5. Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 102 purse seine fishery, in 2002. 22 6. Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 103 purse seine fishery, in 2002. 23 7. Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 104 purse seine fishery, in 2002. 23 8. Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 104 purse seine fishery, in 2002. 24 **Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 104 purse seine fishery, in 2002. 24 **Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 104 purse seine fishery, in 2002. 24 **Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 104 purse seine fishery, in 2002. 24 **Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 104 purse seine fishery, in 2002. 23 **Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 104 purse seine fishery. 24 **Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 104 purse seine fishery. 34 **Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 104 purse seine fishery. 34 **Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 104 purse seine fishery. 34 **Estimated contribution of sockeye salmon stocks originating in Alaska and Ca	2.		
101 (Tree Point) drift gillnet fishery, in 2002		Alaska's Districts 101 to 108, in 2002.	19
4. Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 101 purse seine fishery, in 2002	3.	Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District	t
101 purse seine fishery, in 2002			
5. Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 102 purse seine fishery, in 2002	4.		
102 purse seine fishery, in 2002		101 purse seine fishery, in 2002.	21
6. Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 103 purse seine fishery, in 2002	5.		
Tigure LIST OF FIGURES Figure Page 1. Fishery management districts in southern Southeast Alaska and northern British Columbia waters	_		
Tigure LIST OF FIGURES Figure Page 1. Fishery management districts in southern Southeast Alaska and northern British Columbia waters	6.		
LIST OF FIGURES Figure Page 1. Fishery management districts in southern Southeast Alaska and northern British Columbia waters	-		
Figure Page 1. Fishery management districts in southern Southeast Alaska and northern British Columbia waters	7.		
Figure 1. Fishery management districts in southern Southeast Alaska and northern British Columbia waters		104 purse seine fishery, in 2002.	24
 The Canadian Nass and Skeena Rivers and the transboundary Stikine River		LIST OF FIGURES	
3. Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination method comparison studies, 2002	_	•	
method comparison studies, 2002	1.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters	1
analysis	1. 2.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters The Canadian Nass and Skeena Rivers and the transboundary Stikine River	1
LIST OF APPENDICES Appendix A. Digitized scale variables for use in SAS linear discriminant function analysis	1. 2.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters The Canadian Nass and Skeena Rivers and the transboundary Stikine River Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination	2
LIST OF APPENDICES Appendix A. Digitized scale variables for use in SAS linear discriminant function analysis	1. 2. 3.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters The Canadian Nass and Skeena Rivers and the transboundary Stikine River Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination method comparison studies, 2002.	2
Appendix A. Digitized scale variables for use in SAS linear discriminant function analysis	1. 2. 3.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters The Canadian Nass and Skeena Rivers and the transboundary Stikine River Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination method comparison studies, 2002. Typical scales with one and 2 freshwater growth zones showing the zones used for scale pattern analysis.	4
 A. Digitized scale variables for use in SAS linear discriminant function analysis	1. 2. 3.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters The Canadian Nass and Skeena Rivers and the transboundary Stikine River Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination method comparison studies, 2002. Typical scales with one and 2 freshwater growth zones showing the zones used for scale pattern analysis.	4
 A. Digitized scale variables for use in SAS linear discriminant function analysis	1. 2. 3.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters The Canadian Nass and Skeena Rivers and the transboundary Stikine River Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination method comparison studies, 2002 Typical scales with one and 2 freshwater growth zones showing the zones used for scale pattern analysis Schematic of the classification process utilizing SAS linear discriminant function procedures	4
 B. Scale variables with associated entry F-statistics and classification matrices for the linear discriminant function (LDF) models used to classify sockeye catch in the District 101 gillnet fishery. C. Scale variables with associated entry F-statistics and classification matrices for the linear discriminant 	1. 2. 3. 4. 5.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters The Canadian Nass and Skeena Rivers and the transboundary Stikine River Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination method comparison studies, 2002 Typical scales with one and 2 freshwater growth zones showing the zones used for scale pattern analysis Schematic of the classification process utilizing SAS linear discriminant function procedures LIST OF APPENDICES	4
function (LDF) models used to classify sockeye catch in the District 101 gillnet fishery	1. 2. 3. 4. 5.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters The Canadian Nass and Skeena Rivers and the transboundary Stikine River Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination method comparison studies, 2002 Typical scales with one and 2 freshwater growth zones showing the zones used for scale pattern analysis Schematic of the classification process utilizing SAS linear discriminant function procedures LIST OF APPENDICES	1458
C. Scale variables with associated entry F-statistics and classification matrices for the linear discriminant	1. 2. 3. 4. 5.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters The Canadian Nass and Skeena Rivers and the transboundary Stikine River Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination method comparison studies, 2002 Typical scales with one and 2 freshwater growth zones showing the zones used for scale pattern analysis Schematic of the classification process utilizing SAS linear discriminant function procedures LIST OF APPENDICES adix Digitized scale variables for use in SAS linear discriminant function analysis	1458
	1. 2. 3. 4. 5.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters The Canadian Nass and Skeena Rivers and the transboundary Stikine River Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination method comparison studies, 2002. Typical scales with one and 2 freshwater growth zones showing the zones used for scale pattern analysis Schematic of the classification process utilizing SAS linear discriminant function procedures LIST OF APPENDICES Idix Digitized scale variables for use in SAS linear discriminant function analysis Scale variables with associated entry F-statistics and classification matrices for the linear discriminant	1458
	1. 2. 3. 4. 5. Appen A. B.	Fishery management districts in southern Southeast Alaska and northern British Columbia waters The Canadian Nass and Skeena Rivers and the transboundary Stikine River Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination method comparison studies, 2002 Typical scales with one and 2 freshwater growth zones showing the zones used for scale pattern analysis Schematic of the classification process utilizing SAS linear discriminant function procedures LIST OF APPENDICES Idix Digitized scale variables for use in SAS linear discriminant function analysis Scale variables with associated entry F-statistics and classification matrices for the linear discriminant function (LDF) models used to classify sockeye catch in the District 101 gillnet fishery	1458 Page2629

ABSTRACT

Sockeye salmon (Oncorhynchus nerka) harvested in 2002 in southern Southeast Alaska's gillnet and purse seine fisheries were classified to nation or stock group of origin by using linear discriminant function analysis of scale patterns, coupled with age composition data. The general groups were Alaskan, Canadian, and transboundary river stocks. Separate Canadian stock contribution estimates (Nass River, Skeena River, and other south-migrating stocks) are presented for some districts. Stock contribution estimates are presented by age class and week for all major fisheries. A total of 275,636 sockeye salmon were harvested in purse seine and gillnet fisheries in 2002, the smallest harvest since scale pattern analyses began in 1982. A total of 271,964 fish from the total harvest was classified to stock group of origin. An estimated 112,382 fish (41%) were of Alaska origin, 151,506 fish (56%) were of Canadian origin, and 8,076 fish (3%) were of Stikine River origin.

Key words: sockeye salmon, *Oncorhynchus nerka*, stock composition, linear discriminant function, scale pattern analysis, Southeast Alaska, Canada, U.S./Canada Boundary Area

INTRODUCTION

Commercial net fisheries conducted in southern Southeast Alaska harvest mixed stocks of sockeye salmon (*Oncorhynchus nerka*) that originate from numerous waterways in Southeast Alaska and northern British Columbia (Figure 1). These fisheries include drift gillnet fisheries that target primarily sockeye salmon in Alaska Statistical Area 101, and Districts 106 and 108, as well as purse seine fisheries in Alaska Districts 101 through 104, that primarily target other species and harvest sockeye salmon incidentally.

Figure 1.–Fishery management districts in southern Southeast Alaska and northern British Columbia waters.

The purpose of this study is to determine the national origin of major sockeye salmon stocks contributing to commercial gillnet and purse seine fishery catches in southern Southeast Alaska (Figure 1). Under the Pacific Salmon Treaty of 1985 and its later annexes, catches by fishermen of either country of their neighboring country's stocks are restricted in selected fisheries. In particular, the catches of Nass River and Skeena River (Figure 2) sockeye salmon occurring in Alaska District 101 gillnet and District 104 purse seine fisheries have been limited to a percentage of total return of these stocks over a 10-year period.

Figure 2.—The Canadian Nass and Skeena Rivers and the transboundary Stikine River.

Annual stock-specific run reconstructions (catch plus escapement) are required to accurately estimate relative contribution of each stock caught in these restricted fisheries. Estimates of national origin of contributing stocks from this study provide the most reliable information currently available to complete these run reconstructions, and are used to evaluate stock-specific productivity and to revise pre-season forecasts. This report is written annually to document estimated contribution of several general stock groups, to the harvest of sockeye salmon in Southeast Alaska.

Most sockeye salmon harvested in southern Southeast Alaskan commercial fisheries are bound for a variety of rivers that either lie entirely within Alaska, entirely within Canada, or that span both Alaska and Canada (Rich and Morton 1930; Verhoeven 1952; Norenberg 1959; Logan 1967; Simpson 1968; Hoffman et al. 1983). River systems that span both Alaska and Canada are commonly referred to as transboundary rivers. Sockeye-producing river systems located entirely within Alaska tend to be low- to moderately-productive systems in the immediate vicinity of the harvest. Of the (entirely) Canadian drainages that produce sockeye salmon harvested in Southeast Alaska, the Nass River (which flows into Portland Canal) and the Skeena River (which flows into Chatham Sound) are the major contributors. Several transboundary river systems contribute to sockeye salmon catches in Southeast Alaska, including the Taku, Stikine, and Alsek Rivers. In southern Southeast Alaska, the District 108 and 106 gillnet fisheries are the only ones that regularly harvest transboundary river sockeye stocks in quantifiable numbers, primarily stocks from the Stikine River drainage.

Sockeye harvests in southern Southeast Alaska may also include a few sockeye salmon bound for northern Southeast Alaska, Prince William Sound, and Washington State. However, their low numbers in the harvest preclude determining stock of origin. In some years, migration patterns change for sockeye salmon from southern British Columbia, and increased numbers are caught in the Alaska District 104 purse seine fishery, located along the outer coast of Alaska and just north of the Alaska-Canada border. These fish are thought to originate primarily from the Fraser River.

In 1982, the Alaska Department of Fish and Game began using scale pattern analysis to estimate the number of salmon bound for specific Canadian river systems caught in Southeast Alaska (Marshall et al. 1984; Figure 3). Scale pattern analysis is based on differences in patterns of arrangement of circuli on scales, which reflect average differences in fish growth history over broad geographic areas. Because most fish do not generate their own body heat, metabolism and growth is dependant upon ambient water temperature. Salmon rearing in river systems with radically different temperature regimes will exhibit different growth patterns in their scales during their freshwater phase. In addition, river systems with radically different temperature regimes often have different intrinsic productivities. For example, in coastal Alaska, summers tend to be cool, and scales from sockeye salmon rearing in coastal Alaskan systems generally form few circuli with relatively narrow spacing between each during freshwater residence. In contrast, most available salmon rearing habitat of large Canadian river systems occurs on the eastern side of the coastal range, where summers tend to be warmer than along the coast. According to Marshall et al. (1984), sockeye salmon rearing in drainages on the eastern side of the coastal range tend to form more scale circuli with wider spacing during freshwater residence than sockeye salmon rearing in coastal systems. Persistent differences in the number and spacing of circuli formed during out migration, as well as the first year of marine residence, also exist between Alaskan and Canadian stock groups.

Figure 3.–Major sockeye salmon systems of Southeast Alaska sampled for scales used in stock discrimination method comparison studies, 2002.

Accuracy of distinguishing the separate circuli patterns is dependent on the degree of inherent differences among pattern groups. Scale samples collected from groups of fish whose stock of origin is known are used to characterize these inherent differences. Typically, scale samples are collected from escapements, or fish that have traveled upstream of a location such that they can be reasonably assumed to belong to a specific stock or group of stocks. These escapement scale samples must include fish from all stocks included in the analysis. Patterns of circuli are measured in several ways on each escapement scale examined, thereby building data sets of variables that describe the typical pattern for each group of stocks. Figure 4 presents examples of 2 typical scales of differing origin, and the zones on the scales used to differentiate between them. Next, the data sets from each group of stocks are compared against each other with statistical techniques to build a decision rule (discriminant function). The discriminant function is tested with scales from fish of known origin that were not used in building the decision rule. Correction factors are calculated from the errors made with the discriminant function. Finally, the discriminant function and its correction factors are used to classify fish of unknown origin from the catch to one of the stock groups for which the decision rule was developed. The incidence of fish classified to a specific group of stocks is the interception rate for that group.

Figure 4.–Typical scales with one and 2 freshwater growth zones showing the zones used for scale pattern analysis.

Significant and persistent differences between sockeye salmon stock groups originating in Alaska and Canada have been documented in the patterns of scale growth during freshwater and early marine life history (Oliver et al. 1984; Oliver and Walls 1985; Oliver and Jensen 1986; Oliver et al. 1987; Oliver and Farrington 1989 and 1990; Farrington and Oliver 1994; Farrington et al. 1996a, 1996b, and 1996c; Farrington et al. 1998a and 1998b; Farrington et al. 1999a and 1999b). Although differences in scale patterns between Alaskan and Canadian stock groups are much greater than the differences within the groups, the differences between the Nass and Skeena stock groups are large enough to allow us to estimate contributions from these 2 river systems.

METHODS

COMMERCIAL HARVEST INFORMATION

The number of fish harvested by gear type, district, and week were obtained from an ADF&G statewide database, which contains information from commercial salmon sales receipts dating back to 1960. A database program, called *Alexander*, connects to a comprehensive regional database (Integrated Fishery Database or IFDB) that obtains the harvest information from the statewide database. Catches were summarized by statistical weeks, hereafter referred to as "weeks," which began on Sunday at 12:01 a.m. and ended the following Saturday at midnight. These weeks were numbered sequentially starting from the beginning of the calendar year.

BIOLOGICAL DATA COLLECTION AND PROCESSING

The ADFG Region I biometricians, in consultation with project biologists and port sampling supervisors, determined fish sample size objectives required to achieve acceptable precision in the stock identification analyses. Temporal sampling strata were determined, based on magnitude of catch, and the rapidity of change in the historical stock composition as the fishing season progresses. In general, a sample of 520 fish per stratum was sufficient to describe the estimated sockeye age composition with a precision of \pm 5% and a probability of 0.10 (Thompson 1987).

Commercial gillnet and purse seine landings of sockeye salmon in southern Southeast Alaska were sampled for scales by ADFG Commercial Fisheries Division employees at fish processing facilities in Petersburg, Ketchikan, Craig, and Wrangell. For each fish sampled, ADF&G technicians determined gender from external sex characteristics, and recorded the gender. Mideye to fork-of-tail length was recorded for 25% of the fish sampled. District 101 and District 104 were exceptions; 100% of the sampled fish had a recorded length. Detailed age, gender, and length data for southern Southeast Alaska catches and escapements are not fully presented in this report.

Technicians used sampling protocols to ensure that samples were as representative of specific district catches as possible. Only deliveries originating from a single fishing district and a single gear type were sampled. To avoid overreliance on a single delivery for data, technicians sampled multiple deliveries for each fishing district. No more than 40 scale samples were taken from a single delivery. Fish stowed in a hold tend to mix completely until the hold is about half-full; subsequent additions tend to deposit in layers (David Evans, ADF&G biometrician, Anchorage, personal communication). To ensure that scale samples taken from a delivery were representative of the entire delivery, technicians would systematically take scale samples from the entire hold as it was being offloaded.

ADFG Commercial Fisheries Division personnel also collected scale samples from a variety of major sockeye escapements to lake and stream systems in southern Southeast Alaska. In northern British Columbia, Canadian Department of Fisheries and Oceans (CDFO) personnel collected scales from daily gillnet catches in test fisheries operating near or in the lower reaches of the Skeena River. LGL Ltd. personnel under contract to the Nisga'a First Nation in British Columbia, Canada, collected scale samples from daily fish wheel catches in test fishery in the lower Nass River. The Pacific Salmon Commission (PSC) provided commercial scale samples judged to be representative of south migrating sockeye salmon stocks that were collected from net fishery catches in British Columbia and Washington State waters.

Scales were sampled from the preferred area above the lateral line on the left side of the fish on a diagonal downward from the posterior insertion of the dorsal fin to the anterior insertion of the anal fin (INPFC 1963). Scales were mounted on gum cards and impressions made in cellulose acetate (Clutter and Whitesel 1956). Age determinations were based on examinations of scales under moderate (70 power) magnification. Criteria used to assign ages were similar to those of Mosher (1968), and ages were reported in European notation (Koo 1962).

DIGITIZING OF SCALES

Scale impressions were projected onto a digitizing tablet at 100x magnification using equipment similar to that described by Ryan and Christie (1976). Scale circuli were counted and incremental distances between circuli measured according to zones that represent distinct salmon

life history stages (Figure 4). Counts and measurements were made on a selected radius along or near the longest axis of the scale (Anas and Murai 1969). Measurements of distances between circuli and growth zone information for each scale were transformed to a set of 33 standardized scale measurement and count characters (Appendix A).

DISCRIMINANT ANALYSIS

Linear discriminant function analysis (LDF; Fisher 1936) of scale patterns has been used to estimate stock contributions to southern Southeast Alaska mixed stock sockeye salmon fisheries, based on observed differences between stocks since 1982 (Marshall et al. 1984). The major assumptions underlying LDF analysis are: 1) the groupings investigated are discrete and identifiable; 2) the parent distributions of the measured variables are multivariate normal; and 3) the variance-covariance matrices for all groups are equal. Gilbert (1969) found LDF satisfactory if the variance-covariance matrices were similar. In addition, large sample sizes appear to make LDF robust concerning the assumption of a common variance-covariance matrix (Issacson 1954). The method also appears to be robust to violations of the assumption of normality for discrete distributions, although it is not robust for continuous non-Gaussian parent distributions (Lachenbruch et al. 1973; Krzanowski 1977).

Alaska Department of Fish and Game personnel used the statistical program SAS® to perform all LDF procedures (Figure 5). The programs written in SAS® for conducting LDF procedures have been in use since 1991. These consisted of 4 primary routines executed in sequence to perform the LDF analyses, and include the following steps: 1) calculate standardized scale measurement and count characters; 2) perform stepwise selection of useful variables; 3) compute linear or quadratic discriminant function rules; and, 4) apply discriminant function rules to classify unknown stock mixtures.

LDF statistical mixture models used to analyze measurements of scale patterns describe the probability of measurements from individuals in a mixture. If c baseline stock groups are considered possible in the mixture, the probability that the M individuals of the mixture have scale measurements, $\mathbf{X}_1, \dots, \mathbf{X}_M$ is,

$$p(\mathbf{X}_1, \dots, \mathbf{X}_M) \propto \prod_{i=1}^M \left(\sum_{i=1}^c p_i f(\mathbf{X}_j \mid i) \right). \tag{1}$$

The scale measurements of the j^{th} individual, \mathbf{X}_j , are used to estimate the relative frequencies of measurements in the source stock groups. The unknown stock group proportions composing the mixture are denoted by p_i , i=1,...,c, and the density or relative frequency of the j^{th} individual's measurements in the i^{th} stock group, or stock, is denoted by $f(\mathbf{X}|i, i=1,...,c)$. The so-called posterior source probabilities for the mixture individuals (Pella and Masuda 2004) are fundamental to classifying or assigning the individuals to their source stock groups. The posterior source probabilities for the j^{th} individual are calculated as follows:

$$p(i \mid \mathbf{X}_{j}) = \frac{p_{i} f(\mathbf{X}_{j} \mid i)}{\sum_{s=1}^{c} p_{s} f(\mathbf{X}_{j} \mid s)}, \quad i = 1, ..., c..$$
(2)

Figure 5.–Schematic of the classification process utilizing SAS linear discriminant function procedures.

The individuals are viewed as being drawn from a large underlying mixture. The posterior source probabilities are defined as the proportions of individuals in the underlying mixture with the same measurement as the j^{th} individual, X_j , that come from each of the c stock groups. Given the estimated posterior source probabilities, the maximum a posteriori rule is used to assign individuals to the source for which their posterior source probability is greatest.

We performed analyses using age-specific models for each of the 4 most commonly encountered sockeye salmon age classes (1.2, 1.3, 2.2, and 2.4). Building each LDF model began with an initial selection of the potential scale character variables using a stepwise discriminant analysis of pooled stock group-specific baseline samples. Pooled baseline samples were assembled from individual escapement locations for the Southeast Alaskan stock group, or from daily test fishing catches for Canadian and South-migrating stock groups. Fish length was included as a variable additional to digitized scale variables to classify in some models, as it provided further discriminating power in separating South-migrating as well as Nass River sockeye salmon stocks.

Discriminant analysis of the pooled baselines was performed iteratively by variable. Up to 14 of the initially selected variables were entered sequentially into the LDF model until the partial F statistic of a variable available for entry into the model was less than 4.0, or until all variables had been entered. Successive classification accuracies were plotted against the respective variables. Variables were included in the model until accuracy peaked or became asymptotic for a total of up to twelve variables.

Sockeye salmon in mixed stock fishery samples were classified to stock of origin by a discriminant rule generated from age-specific LDF models. An almost unbiased estimate of classification accuracy for each LDF model was determined with a cross validation procedure similar to a leaving one out procedure (Lachenbruch 1967). Estimates of proportions of each stock group in mixture samples were computed by classification-based conditional maximum likelihood estimation assuming multivariate normality (Pella and Masuda 2004). Age-specific sets of selected scale variables were submitted to LDF procedures of the statistical program SAS® to compute the posterior source probabilities for individuals in the age-specific mixtures. Estimates from the conditional maximum likelihood procedure were constrained such that estimated proportions for a stock group must be equal to or greater than zero and equal to or less than 1.

The variance and 90% confidence intervals of the adjusted estimates of stock proportions were computed according to Pella and Robertson (1979). The variance-covariance matrices for the misclassification matrix and for the mixed stock proportion vector were determined from the multinomial probability distribution. These 2 variance-covariance matrices were combined to give variances and covariances for the second order estimates of stock proportions. The variances for the proportions of each stock were the diagonal elements of this combined matrix, i.e., they were an additive combination of; 1) the sampling variation in estimation of the probability of assignment of the known stock group and 2) the sampling variation in estimation of the assignment composition of the mixed stock group.

Age-specific LDF models were assembled from 2002 escapement samples, with different stocks potentially contributing to the different fisheries. Separate age-specific models were constructed for; 1) gillnet and purse seine fisheries in Districts 101, 102, and 103, 2) District 104 purse seine fishery and 3) Districts 106 and 108 drift gillnet fisheries. Contributing stocks included in each

geographically separate model were selected from among available escapement samples based on stock-specific migration patterns observed in tagging studies from the early 1980s (Hoffman et al. 1983, English et al. 1984). Construction of separate age-specific models from potential contributing stock groups within the Districts 106 and 108 gillnet fisheries also considered observed run timing differences (K. A. Jensen, Commercial Fishery Research Biologist, ADFG, Douglas; *personal communication*).

CLASSIFICATION OF CATCHES

Weekly commercial catches in each district were classified to potential contributing stocks using age-specific linear discriminant models for the 4 major age groups (1.2, 1.3, 2.2 and 2.3) that generally comprise more than 98% of commercial catches. Up to 100 scales per temporal stratum for each major age class in a district and fishery were analyzed to provide estimates of stock proportions with a precision of \pm 10% with probability of 0.10. The stock apportionment of the other (minor) age classes not directly classified using LDF assumes that the proportion of the minor ages belonging to any given stock is equal to the combined proportion of all classified age classes. Age specific models were used in the analysis for the following reasons: 1) to account for differences in age composition between stocks; 2) to remove potential bias due to differences in migratory timing of different age fish; and, 3) to eliminate the effect of different environmental conditions on the scale patterns of different age fish. Stock contributions were estimated for each week to track temporal patterns. Stock contribution estimates for weekly district catches for which no scale samples were collected (primarily early and late in the season), were generally approximated using the age and stock composition results from the nearest temporal stratum for that district. Stock contribution estimates for catches from some districts for which few samples were available for relatively small catches over a period of weeks, were approximated using stock composition results from an adjacent temporal stratum to estimate catch contributions for the weekly catches pooled.

Variances of weekly and seasonal stock composition estimates were approximated with the delta method (Seber 1982). Variance estimates were functions of the variances associated with the following weekly variables: 1) estimated age composition of the catch; 2) age specific stock composition estimates; 3) sample size of the age composition; and, 4) catch size. Use of a maximum likelihood procedure to constrain the stock proportion estimates did provide a variance estimate for stock(s) contributing zero fish.

RESULTS

NATIONAL ORIGIN OF SOUTHERN SOUTHEAST SOCKEYE SALMON CATCHES

The total sockeye salmon harvest in the southern Southeast Alaska (Districts 101 to 108) seine and gillnet fisheries in 2002 was 275,636 fish. For many of the net fisheries of southern Southeast Alaska, the catch was identified by nation of origin (Table 1). Of 271,964 fish classified to nation of origin, the estimated U.S. contribution was 112,382 fish (41%), estimated Canadian contribution was 151,506 fish (56%), and estimated transboundary contribution was 8,076 fish (3%).

STOCK COMPOSITION OF SOUTHERN SOUTHEAST SOCKEYE SALMON CATCHES

The total number of sockeye salmon classified to stock group of origin was 271,693 fish (Table 2). These fish were assigned as follows: 112,111 fish (41%) were of Alaska origin; 111,778 fish (41%) were Nass River origin; 39,070 (14%) were Skeena River origin; 658 (0.24%) were south-migrating stock origin (primarily Fraser River); 2,055 (1%) were transboundary Tahltan Lake origin; 1,963 (1%) were transboundary Stikine River origin; and 4,058 (1%) were transboundary Tuya Lake origin.

District 101 Gillnet Stock Composition

Weekly stock composition estimates comprised Alaska, Nass, and Skeena stock groupings. The estimated Alaskan contribution to this fishery was the seventh lowest since analyses began in 1982.Of the season catch of 120,353 sockeye salmon, the estimated stock contributions were: 14,462 fish from the Alaska stock grouping for 12% of the total; 90,556 Nass River fish (75%); and 15,335 Skeena River fish (13%; Table 3). Nass was the largest stock component in all weekly strata except for week 31, where Alaska was the largest stock component. A summary of the scale variables used, as well as associated entry F statistics is listed in Appendix B.

District 101 Purse Seine Stock Composition

Weekly and stock composition estimates were comprised of Alaska, Nass, and Skeena stock groupings. Early and late weekly strata were combined due to low sample sizes. Exclusive of 271 McDonald Lake fish (Alaska stock grouping) caught in the Yes Bay terminal fisheries, the season catch total was 25,418 sockeye. The estimated stock contributions were 16,296 fish from the Alaska stocks (64%), 5,003 fish from Nass River (20%), and 4,119 fish from Skeena River (16%; Table 4). Alaska was the largest stock component in all weekly time strata except during weeks 32 and 33, when Skeena River was the largest contributor.

District 102 Purse Seine Stock Composition

Weekly stock composition estimates were made, where possible, for Alaska, Nass, and Skeena stock groupings. Of the catch of 29,667 sockeye salmon through week 39, the estimated stock contributions were as follows: 23,759 fish from the Alaska stock grouping (80% of the total); 3,247 Nass River fish (11%); and 2,661 Skeena River fish (9%; Table 5).

District 103 Purse Seine Stock Composition

A total of 5,725 sockeye salmon were harvested in the District 103 purse seine fishery. The estimates for contributions by stock group were as follows: 4,670 fish from Alaska (82%); 518 fish from Nass River (9%); and 537 fish from Skeena River (9%; Table 6).

District 104 Purse Seine Stock Composition

Weekly stock compositions were comprised of Alaska, Nass, Skeena, and other south-migrating (e.g., Fraser River) stock groupings. Alaska was the dominant component in the fishery for week 28 and Skeena was the largest contributing stock in all other weeks. Of the season total of 34,187 sockeye salmon caught, the estimated stock contributions were as follows: 10,169 fish from the Alaska stock grouping (30%); 8,803 fish from Nass River (26%); 14,557 fish from Skeena River (43%); and 658 fish from the south-migrating stock grouping (2%; Table 7). A summary of the scale variables used, as well as associated entry F statistics is listed in Appendix C.

District 106 and 108 Gillnet Stock Composition

A total of 56,135 sockeye salmon were caught in the District 106 gillnet fishery, and 208 sockeye salmon in the District 108 gillnet fishery. These harvests were the lowest since 1983 for District 106, and lowest since several years of non-harvests in mid-1980s for District 108 (Table 1). Alaska contributed 45,573 fish (76%) to the 106 gillnet fishery and 182 fish (88%) to the 108 gillnet fishery. Canadian stocks contributed 5,487 fish (10%) to the 106 gillnet fishery and 25 fish (12%) to 108 gillnet. Transboundary stocks contributed 8,075 fish (14%) to 106 gillnet and 1 fish (less than 1%) to 108 gillnet.

DISCUSSION

The sockeye salmon catch in the boundary area net fisheries in 2002 was lower than in all of the previous 20 years that scale pattern analyses has been conducted (Table 1). Catches were below average in the District 101 to 103 seine fisheries, and were near average in the District 101 gillnet fishery. Catches were far below average for the fisheries that focus on transboundary stocks (Districts 106 and 108). The catch in the District 104 seine fishery was also considerably below average, with a low contribution (2%) from south-migrating stocks (predominately Fraser River) However, the overall percent contribution of U.S.-origin sockeye salmon to the harvest (43%) was the sixth highest for all years of available scale pattern analysis data (Table 1).

REFERENCES CITED

- Anas, R. E., and S. Murai. 1969. Use of scale characters as a discriminant function for classifying sockeye salmon (Oncorhynchus nerka) by continent of origin. International North Pacific Fisheries Commission, Bulletin 26:157–192.
- Clutter R. and L. E. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. International Pacific Salmon Fisheries Commission Bulletin No. 9. New Westminster, B.C.
- English, K.K., W.J. Gazey, and J.A. Taylor. 1984. Part C. The 1983 North Coast tagging study. [*in*] Gazey, W.J., and D.A. Birdsall (editors), Design and execution of a stock interception study. Draft of Unpubl. Rep. by LGL Limited and ESSA Environmental Social Systems Analysts Ltd., for Fisheries and Oceans Canada, LGL Limited, Sidney, B.C., Canada.
- Farrington, C. W. and G. T. Oliver, 1994. Contribution of Alaskan, Canadian, and transboundary sockeye stocks to 1990 catches in Southeast Alaska purse seine and gillnet fisheries, Districts 101–108, based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J94-03, Juneau.
- Farrington, C. W., G. T. Oliver, and R. A. Bloomquist. 1996a. Contribution of Alaskan, Canadian, and transboundary sockeye stocks to catches in Southeast Alaska purse seine and gillnet fisheries, Districts 101–108, 1992, based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J96-10, Juneau.
- Farrington, C. W., G. T. Oliver, and R. A. Bloomquist. 1996b. Contribution of Alaskan, Canadian, and transboundary sockeye stocks to catches in Southeast Alaska purse seine and gillnet fisheries, Districts 101–108, 1993, based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J96-11, Juneau.
- Farrington, C. W., G. T. Oliver, and R. A. Bloomquist. 1996c. Contribution of Alaskan, Canadian, and transboundary sockeye stocks to 1993 catches in Southeast Alaska purse seine and gillnet fisheries, Districts 101–108, based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J96-12, Juneau.

REFERENCES CITED (Continued)

- Farrington, C. W., G. T. Oliver, and R. A. Bloomquist. 1998a. Contribution of Alaskan, Canadian, and transboundary sockeye stocks to catches in Southeast Alaska purse seine and gillnet fisheries, Districts 101–108, 1994, based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J98-15, Juneau.
- Farrington, C. W., G. T. Oliver, and R. A. Bloomquist. 1998b. Contribution of Alaskan, Canadian, and transboundary sockeye stocks to catches in Southeast Alaska purse seine and gillnet fisheries, Districts 101–108, 1995, based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J98-16, Juneau.
- Farrington, C. W., G. T. Oliver, and R. A. Bloomquist. 1999a. Contribution of Alaskan, Canadian, and transboundary sockeye stocks to catches in Southeast Alaska purse seine and gillnet fisheries, Districts 101–108, 1996, based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J99-43, Juneau.
- Farrington, C. W., G. T. Oliver, and R. A. Bloomquist. 1999b. Contribution of Alaskan, Canadian, and transboundary sockeye stocks to catches in Southeast Alaska purse seine and gillnet fisheries, Districts 101–108, 1997, based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J99-46, Juneau.
- Fisher, R. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenic 7:179–188.
- Gilbert, E. S. 1969. The effect of unequal variance covariance matrices on Fisher's linear discriminant function. Biometrics 25(3):505–515.
- Hoffman, S., L. Tallwy, and M. C. Seibel. 1983. 1983 chum and sockeye tagging, interception rates, migration patterns, run timing, and stock intermingling research in southern Southeast Alaska and northern British Columbia. Alaska Department of Fish and Game, Technical Data Report 110. Juneau.
- INPFC (International North Pacific Fisheries Commission). 1963. Annual report, 1961. International North Pacific Fisheries Commission, Vancouver, British Columbia.
- Issacson, S. L. 1954. Problems in classifying populations. Pages 107–117 [in] O. Kempthorne, T. A. Bancroft, J. W. Gowen, and J. L. Lush, editors. Statistics and mathematics in biology. Iowa State College Press, Ames.
- Koo, T. S. Y. 1962. Age designation in salmon. Pages 37–48 [in] T. S. Y. Koo, editor, Studies of Alaska red salmon. University of Washington Press, Seattle, Washington.
- Krzanowski, W. J. 1977. The performance of Fisher's linear discriminant function under non optimal conditions. Technometrics 19(2):191—200.
- Lachenbruch, P. A. 1967. An almost unbiased method of obtaining confidence intervals for the probability of misclassification in discriminant analysis. Biometrics 23(4):639–645.
- Lachenbruch, P. A., C. Sneeringer, and L. T. Revo. 1973. Robustness of the linear and quadratic discriminant function to certain types of non-normality. Communication in Statistics 1(1):39–56.
- Logan, R. 1967. The Noyes Island salmon fishing conflict. British Columbia Geographic Series, Occasional Paper 8:18—26.
- Marshall, S. L., G. T. Oliver, D. R. Bernard, and S. A. McPherson. 1984. Accuracy of scale pattern analysis in separating major stocks of sockeye salmon (Oncorhynchus nerka) from southern Southeastern Alaska and northern British Columbia. Alaska Department of Fish and Game, Informational Leaflet 230, Juneau.
- Mosher, K. H. 1968. Photographic atlas of sockeye salmon scales. U.S. Fish and Wildlife Service, Fishery Bulletin 67:243-280.
- Norenberg, W. 1959. Salmon migrations in Southeastern Alaska. U.S. Fish and Wildlife Service, Circular No. 59.

REFERENCES CITED (Continued)

- Oliver, G., S. Marshall, D. Bernard, S. McPherson, and S. Walls. 1984. Estimated contribution from Alaska and Canada stocks to the catches of sockeye salmon in southern Southeast Alaska, 1982 and 1983 based on scale pattern analysis. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 137, Juneau.
- Oliver, G. and S. Walls. 1985. Estimated contribution from Alaska and Canada stocks to the catches of sockeye salmon in southern Southeast Alaska, 1984, based on the analysis of scale patterns. Section report in 1985 salmon research conducted in southeast Alaska by the Alaska Department of Fish and Game in Conjunction with the National Marine Fisheries Service Auke Bay Laboratory for Joint U.S./Canada interception studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Contract Report WASC 84 00179.
- Oliver, G. T. and K. A. Jensen. 1986. Estimated contribution of Alaskan, Canadian, and Transboundary stocks to the catches of sockeye salmon in southern Southeast Alaska, 1985, based on analysis of scale patterns. Section report in 1985 salmon research conducted in southeast Alaska by the Alaska Department of Fish and Game in Conjunction with the National Marine Fisheries Service Auke Bay Laboratory for Joint U.S./Canada interception studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Contract Report 85 ABC 00142.
- Oliver, G. T., K. Jensen, I. Frank, and N. Sands. 1987. Contribution of Alaskan, Canadian, and transboundary sockeye stocks to catches from Southeast Alaska Districts 101–108, 1986, based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J87-07, Juneau.
- Oliver, G. T. and C. W. Farrington. 1989. Contribution of Alaskan, Canadian, and Transboundary sockeye stocks to catches in Southeast Alaska Purse Seine and gillnet fisheries, Districts 101–108, 1988, based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J89-45, Juneau.
- Oliver, G. T. and C. W. Farrington. 1990. Contribution of Alaskan, Canadian, and transboundary sockeye stocks to catches in Southeast Alaska Purse Seine and gillnet fisheries, Districts 101–108, 1989, based on analysis of scale patterns. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J90-29, Juneau.
- Pella, J. and T. Robertson. 1979. Assessment of composition of stock mixtures. Fishery Bulletin 77:387–389.
- Pella, J., and M. Masuda. 2004. Classical discriminant analysis, classification of individuals, and source population composition of mixtures, in S. Cadrin, K. Friedland, and J. Waldman (Eds.) Stock Identification Methods: applications in fishery science. Academic Press.
- Rich, W. and F. Morton. 1930. Salmon-tagging experiments in Alaska, 1927 and 1928. U. S. Bureau of Fisheries Bulletin 45:1–23.
- Ryan, P. and M. Christie. 1976. Scale reading equipment. Fisheries and Marine Service, Canada Technical Report no. PAC/T -758, Vancouver, B. C.
- Seber, G.A.F. 1982. The estimation of animal abundance and related parameters. Charles Griffin & Company Ltd. London.
- Simpson, L. 1968. Sockeye salmon migratory behavior and biological statistics collection, Southeastern Alaska. Annual Progress Report, 1 July, 1967 to 30 June, 1968. Anadromous Fish Act (P. L. 89-304), Project No. AFC-2–2.
- Thompson, S. K. 1987. Sample size for estimating multinomial proportions. The American Statistician 41(1):62–46.
- Verhoeven, L. 1952. A report to the salmon fishing industry of Alaska on the results of the 1947 tagging experiments. Unpublished manuscript. Fisheries Research Institute, University of Washington, Seattle.

TABLES

Table 1.—Estimated sockeye salmon contributions and percentages by nation of origin to southern Southeast Alaska Districts 101 to 108 net fisheries, 1982–2002.

			1982		1983		1984		1985		1986		1987		1988		1989	
District	Type	Stock Group	Number	%	Number	%	Number	%	Number	+	Number	%	Number	%	Number	%	Number	%
101	Gillnet	US Canada Total	69,483 121,325 190,808	36 64	48,905 86,998 135,903	36 64	34,843 53,588 88,431	39 61	30,946 142,154 173,100	18 82	12,738 132,961 145,699	9 91	25,073 82,430 107,503	23 77	14,796 101,319 116,115	13 87	31,406 113,530 144,936	22 78
101 ^a	Purse Seine	US Canada Total	39,518 30,941 70,459	56 44	20,376 27,263 47,639	43 57	49,348 32,537 81,885	60 40	82,311 37,159 119,470	69 31	50,313 24,510 74,823	67 33	30,071 13,233 43,304	69 31	12,799 18,340 31,139	41 59	37,236 80,622 117,858	32 68
102	Purse Seine	US Canada Total	18,672 4,542 23,214	80 20	6,482 4,498 10,980	59 41	17,857 3,808 21,665	82 18	28,417 7,887 36,304	78 22	24,030 8,681 32,711	73 27	16,211 1,064 17,275	94 6	10,347 4,455 14,802	70 30	35,807 21,834 57,641	62 38
103	Purse Seine	US Canada Total			7,098 3,357 10,455	68 32			19,560 6,703 26,263	74 26	9,883 3,806 13,689	72 28	1,401 34 1,435	98 2	790 1,587 2,377	33 67	20,551 936 21,487	96 4
104	Purse Seine	US Canada Total	106,786 176,572 283,358	38 62	155,967 487,301 643,268	24 76	78,954 215,208 294,162	27 73	94,005 337,648 431,653	22 78	101,121 343,550 444,671	23 77	68,647 102,332 170,979	40 60	104,042 487,243 591,285	18 82	73,026 443,575 516,601	14 86
106	Gillnet	US Canada Transboundary Total	94,320 62,063 37,418 193,801	49 32 19	32,583 10,582 5,580 48,842	67 22 11	60,597 24,755 6,787 92,139	66 27 7	126,914 111,017 27,056 264,987	48 42 10	100,268 42,756 2,685 145,709	69 29 2	112,893 21,190 2,344 136,427	83 15 2	80,868 9,784 1,877 92,529	87 11 2	126,603 59,959 6,172 192,734	66 31 3
108	Gillnet	US Canada Transboundary Total	1,784 4,139 1,213 7,136	25 58 17							930 73 3,184 4,185	22 2 76			265 48 933 1,246	21 4 75	1,180 545 8,358 10,083	12 5 83
Total		US Canada Transboundary Total	330,562 399,583 38,631 768,776	43 52 5	271,411 619,998 5,580 896,989	30 69 1	241,599 329,896 6,787 578,282	42 57 1	382,152 642,569 27,056 1,051,777	36 61 3	299,284 556,336 5,869 861,489	35 64 1	254,296 220,283 2,344 476,923	53 46 1	223,907 622,776 2,810 849,493	27 73 0	325,809 721,001 14,530 1,061,340	31 68 1

-continued-

Table 1.–Page 2 of 3.

			1990		1991		1992		1993		1994		1995		1996		1997	
District	Туре	Stock Group	Number	%														
101	Gillnet	US	13,862	16	13,599	10	49,771	20	42,337	11	14,008	14	13,056	8	29,745	14	32,028	19
		Canada	71,829	84	117,893	90	194,878	80	351,761	89	86,369	86	151,238	92	182,658	86	137,446	81
		Total	85,691		131,492		244,649		394,098		100,377		164,294		212,403		169,474	
101 ^a	Purse Seine	US	29,498	51	34,193	57	83,065	74	246,662	75	18,991	33	63,279	29	396,178	89	84,519	80
		Canada	27,809	49	26,227	43	28,954	26	83,820	25	39,100	67	154,699	71	47,653	11	21,691	20
		Total	57,307		60,420		112,019		330,482		58,091		217,978		443,831		106,210	
102	Purse Seine	US	38,384	75	32,413	75	30,075	90	115,916	94	18,521	65	56,518	77	60,026	90	45,908	84
		Canada	12,838	25	10,841	25	3,377	10	7,991	6	10,158	35	16,907	23	6,767	10	8,503	16
		Total	51,222		43,254		33,452		123,907		28,679		73,425		66,793		54,411	
103	Purse Seine	US	14,226	74	13,867	74	3,277	74	37,251	74	11,242	74	7,532	74	24,009	99	24,666	82
		Canada	5,124	26	4,995	26	1,180	26	13,419	26	4,050	26	2,713	26	178	1	5,306	18
		Total	19,350		18,862		4,457		50,670		15,292		10,245		24,187		29,972	
104	Purse Seine	US	123,420	15	166,794	20	198,080	18	205,108	22	212,854	19	68,952	14	209,567	24	210,524	17
		Canada	673,378	85	683,037	80	873,959	82	740,177	78	923,284	81	428,193	86	650,872	76	1,034,156	83
		Total	796,798		849,831		1,072,039		945,285		1,136,138		497,145		860,439		1,244,680	
106	Gillnet	US	112,983	61	78,577	55	120,977	60	82,301	40	122,118	58	65,544	32	165,221	53	97,101	58
		Canada	68,921	37	47,695	33	47,207	23	69,616	34	53,683	25	116,075	56	83,271	27	45,665	27
		Transboundary	3,901	2	17,832	12	34,971	17	54,038	26	35,247	17	25,679	12	62,608	20	25,752	15
		Total	185,805		144,104		203,155		205,955		211,048		207,298		311,100		168,518	
108	Gillnet	US	4,576	40	3,116	17	8,604	16	17,758	23	31,715	33	10,374	14	15,755	10	5,381	6
		Canada	1,479	13	2,117	12	2,696	5	8,742	11	20,250	21	15,641	20	12,618	8	12,152	13
		Transboundary	5,519	48	12,754	71	41,417	79	50,374	66	45,259	47	50,741	66	- ,	82	75,506	81
		Total	11,574		17,987		52,717		76,874		97,224		76,756		154,150		93,039	
Total		US	336,949	28	342,560	27	493,849	29	747,333	35	429,450	26	285,255	23	900,501	43	500,127	27
		Canada	861,378	71	892,804	71	1,152,251	67	1,275,526	60	1,136,893	69	885,466	71	984,017	48	1,264,919	68
		Transboundary	9,420	1	30,585	2	76,388	4	104,412	5	80,506	5	76,420	6	188,385	9	101,258	5
		Total	1,207,747		1,265,950		1,722,488		2,127,271		1,646,849		1,247,141		2,072,903		1,866,304	

-continued-

Table 1.—Page 3 of 3.

			1998		1999		2000		2001		2002	
District	Type	Stock Group	Number	%	Number	%	Number	%	Number	%	Number	%
101	Gillnet	US	15,884	10	15,030	9	16,727	18	10,915	14	14,462	12
101	Giimet	Canada	144,622	90	144,998	91	77,924	82	69,126	86	105,891	88
		Total	160,506		160,028	, -	94,651	-	80,041		120,353	
101 ^a	Purse	US	4= 40=			0.0	-1 1 60		06.711		4 6 7 6 7	
	Seine		47,485	67	77,174		71,168	56	96,511	61	16,567	64
		Canada	22,916	33	10,420	12	55,942	44	61,172	39	9,122	36
		Total	70,401		87,594		127,110		157,683		25,689	
102	Purse Seine	US	23,111	79	35,518	91	26,265	78	36,987	68	23,759	80
	Seme	Canada	6,303	21	3,591	91	7,305	22	17,045	32	5,908	20
		Canada Total	29,414	41	39,109	,	33,570	22	54,032	32	29,667	20
		Total	29,414		39,109		33,370		34,032		29,007	
103	Purse	US	14 972	0.5	7.025	100	14 240	96	11 202	42	4.670	02
	Seine	Canada	14,873 2,582	85 15	7,925 31	0	14,240 2,384	86 14	11,393	42 58	4,670 1,055	82 18
		Canada Total	17,455	13	7,956	U	16,624	14	15,566 26,959	38	5,725	10
		1 Otai	17,433		7,930		10,024		20,939		3,723	
104	Purse	US	65.240	12	(2.012	20	70 727	25	02.250	1.5	10.160	20
	Seine	Camada	65,348 421,882	13 87	63,013 101,844	38 62	78,727 148,312	35 65	82,358 454,276	15 85	10,169 24,018	30 70
		Canada Total	487,230	0/	164,857	02	227,039	03	536,634	83	34,187	70
		Total	467,230		104,637		221,039		330,034		34,187	
106	Gillnet	US	67,890	60	70,334		57,923	64	86,078	52	42,573	76
		Canada	34,811	31	9,692	9	21,007	23	54,512	33	5,487	10
		Transboundary	10,734	9	24,809	24	11,146	12	23,423	14	8,075	14
		Total	113,435		104,835		90,076		164,013		56,135	
108	Gillnet	US	2,541	12	5,263	14	3,319	21	473	78	182	88
		Canada	2,376	11	1,314	4	2,025	13	60	10	25	12
		Transboundary	17,114	78	30,024	82	10,489	66	77	13	1	0
		Total	22,031		36,601		15,833		610		208	
Total		US	237,132	26	274,257	46	268,369	44	324,715	32	112,382	41
		Canada	635,492	71	271,890	45	314,899	52	671,757	66	151,506	56
		Transboundary	27,848	3	54,833	9	21,635	4	23,500	2	8,076	3
		Total	900,472		600,980		604,903		1,019,972		271,964	

a. Includes catches from Yes Bay (West Behm Canal) terminal area fisheries.

Table 2.–Estimated contribution by stock group of origin of sockeye salmon harvested in the net fisheries in Alaska's Districts 101 to 108, in 2002.

					Standard	90% confide	
istrict	Туре	Group	Number	Percent	Error	Lower	Upper
101	Gillnet	Alaska	14,462	12.0	1831.1	11,450	17,474
	J	Nass	90,556	75.2	2701.6	86,112	95,000
		Skeena	15,335	12.7	2253.0	11,629	19,041
		Total	120,353	100.0	2233.0	11,029	17,011
101	Purse seine	Alaska	16,296	64	831.0	14,929	17,663
		Nass	5,003	20	935.0	3,465	6,541
		Skeena	4,119	16	776.0	2,842	5,396
		Total	25,418				
102	Purse seine	Alaska	23,759	80	1,284.2	21,647	25,871
		Nass	3,247	11	1,330.0	1,059	5,435
		Skeena	2,661	9	1,675.0	0	5,416
		Total	29,667		-		
103	Purse Seine	Alaska	4,670	82	212.4	4,321	5,019
100	r urse seme	Nass	518	9	205.3	180	856
		Skeena	537	9	177.9	244	830
		Total	5,725		177.5	2	05.
104	ъ .	47.7	10.160	20	600.7	0.010	11 220
104	Purse seine	Alaska	10,169	30	699.7	9,018	11,320
		Nass	8,803	26	937.5	7,261	10,345
		Skeena	14,557	43	914.1	13,053	16,06
		S. migrating Total	658 34,187	2	501.8	0	1,483
106	Gillnet	Alaska I	39,629	71	NA	NA	NA
		Alaska II	2,944	5	NA	NA	NA
		Nass	3,639	6	NA	NA	NA
		Skeena	1,848	3	NA	NA	NA
		Tahltan	2,055	4	NA	NA	NA
		Stikine	1,962	3	NA	NA	NA
		Tuya	4,058	7	NA	NA	NA
		Total	56,135		NA	NA	NA
108	Gillnet	Alaska I	166	80	NA	NA	N/
		Alaska II	16	8	NA	NA	NA
		Nass	12	6	NA	NA	N.A
		Skeena	13	6	NA	NA	N.A
		Tahltan	0	0	NA	NA	N.A
		Stikine	1	1	NA	NA	NA
		Tuya	0	0	NA	NA	NA
		Total	208		NA	NA	NA
Total		Alaska	112,111	41	NA	NA	N.A
		Nass	111,778	41	NA	NA	NA
		Skeena	39,070	14	NA	NA	N/
		S. Migrating	658	0	NA	NA	NA
		Tahltan	2,055	1	NA	NA	NA
		Stikine	1,963	1	NA	NA	NA
		Tuya	4,058	1	NA	NA	N.A
		Total	271,693				

The total sockeye salmon catch for the District 101 purse seine fishery was 25,689 fish, of which 271 were taken in the terminal fisheries at Yes Bay; the remainder was 25,418 fish.

Table 3.–Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 101 (Tree Point) drift gillnet fishery, in 2002.

			Catch	By Age	Class				Standard	90% Confid	dence Interval
Date	Group	1.2	1.3	2.2	2.3	Other	Total	Percent	Error	Lower	Upper
Week 25 (6/16–6/22)	Alaska Nass Skeena Total	736 5,901 0 6,637	121 2,189 0 2,310	0 3,306 914 4,220	0 432 232 664	3 45 4 52	860 11,873 1,150 13,883	6.2 85.5 8.3	444.8 663.3 528.9	128 10,782 280	1,592 12,964 2,020
Week 26 (6/23–6/29)	Alaska Nass Skeena Total	371 5,492 0 5,863	0 727 46 773	0 2,997 151 3,148	83 40 9 132	2 35 1 38	456 9,291 207 9,954	5 93 2	357.2 479.0 340.1	8,503 0	1,044 10,079 766
Week 27 (6/30–7/6)	Alaska Nass Skeena Total	3,659 13,382 1,069 18,110	2,362	332 14,730 1,539 16,601	0 183 1,075 1,258	53 377 73 503	4,327 31,561 6,118 42,006	10 75 15	1297.2 2006.7 1705.1	2,193 28,260 3,313	6,461 34,862 8,923
Week 28 (7/7–7/13)	Alaska Nass Skeena Total	2,292 11,615 1,472 15,379	334 917 2,984 4,235	785 7,267 1,477 9,529	95 330 231 656	0 0 0 0	3,506 20,129 6,164 29,799	12 68 21	1071.9 1495.4 1241.1	1,743 17,669 4,122	5,269 22,589 8,206
Week 29 (7/14–7/20)	Alaska Nass Skeena Total	965 3,151 269 4,385	652 450 396 1,498	525 1,804 0 2,329	117 158 58 333	21 48 6 75	2,280 5,611 729 8,620	26 65 8	345.6 420.5 303.3	1,711 4,919 230	2,849 6,303 1,228
Week 30 (7/21–7/20)	Alaska Nass Skeena Total	121 2,958 0 3,079	263 216 18 497	149 3,554 0 3,703	37 77 0 114	0 0 0 0	570 6,805 18 7,393	8 92 0	212.9 354.3 305.4	220 6,222 0	920 7,388 520
Week 31 (7/28–8/3)	Alaska Nass Skeena Total	778 484 47 1,309	331 0 287 618	144 567 111 822	188 69 0 257	12 10 4 26	1,453 1,130 449 3,032	48 37 15	121.4 142.1 107.7	1,253 896 272	1,653 1,364 626
Week 32 (8/4–8/10)	Alaska Nass Skeena Total	105 807 64 976	50 50 98 198	200 1,874 68 2,142	89 87 0 176	2 12 1 15	446 2,830 231 3,507	13 81 7	110.4 190.1 173.5	264 2,517 0	628 3,143 516
Week 33 (8/11–8/17)	Alaska Nass Skeena Total	114 196 68 378	51 22 128 201	49 617 0 666	54 9 0 63	1 4 1 6	269 848 197 1,314	20 65 15	48.3 69.2 62.7	190 734 94	348 962 300
Week 34 (8/18–8/24)	Alaska Nass Skeena Total	91 64 16 171	45 10 32 87	40 248 0 288	16 15 0 31	0 0 0 0	192 337 48 577	33 58 8	32.7 38.0 34.3	138 274 0	246 400 104
Week 35 (8/25–8/31)	Alaska Nass Skeena Total	31 24 7 62	11 8 0 19	12 48 6 66	4 0 1 5	2 3 1 6	60 83 15 158	38 53 9	19.0 23.4 19.1	29 45 0	91 121 46
Week 36–38 ^a (9/1–9/21)	Alaska Nass Skeena Total	6 13 0 19	11 8 0 19	9 33 5 47	15 0 3 18	2 4 1 7	43 58 9 110	39 53 8	16.3 22.3 12.1	16 21 0	70 95 29
Fishery Total	Alaska Nass Skeena Total	9,269 44,087 3,012 56,368	2,152 7,486 6,351 15,989	2,245 37,045 4,271 43,561	698 1,400 1,609 3,707	98 538 92 728	14,462 90,556 15,335 120,353	12.0 75.2 12.7 100.0	1831.1 2701.6 2253.0	11,450 86,112 11,629	17,474 95,000 19,041

^{a.} There were only 6 samples taken in weeks 37 and 38. The 36 sockeye caught in these weeks were added to the week 36 catch.

Table 4.–Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 101 purse seine fishery, in 2002.

			Catch	By Age	Class			S	tandard	90% Confidence	Interval
Date	Group	1.2	1.3	2.2	2.3	Other	Total	Percent	Error	Lower	Upper
Week 27–29	Alaska	4025	1297	647	507	287	6,763	74	647.1	5,699	7,827
(6/30–7/20)	Nass	1213	84	209	112	72	1,690	19	669.0	589	2,791
(0.0020)	Skeena	176	398	73	0	29	676	7	486.9	0	1,477
	Total	5414	1779	929	619	388	9,129				,
Week 30	Alaska	1597	853	345	0	154	2,949	62	240.8	2,553	3,345
(7/21-7/27)	Nass	882	0	449	144	81	1,556	33	263.5	1,123	1,989
,	Skeena	62	12	142	15	13	244	5	181.3	0	542
	Total	2541	865	936	159	248	4,749				
Week 31	Alaska	2497	773	747	47	91	4,155	89	201.9	3,823	4,487
(7/28-8/3)	Nass	131	0	89	158	8	386	8	194.4	66	706
,	Skeena	134	0	5	0	3	142	3	139.1	0	371
	Total	2762	773	841	205	102	4,683				
Week 32	Alaska	205	344	362	38	41	990	26	398.7	334	1,646
(8/4-8/10)	Nass	513	0	162	67	32	774	20	550.5	0	1,680
·	Skeena	1703	191	0	63	84	2,041	54	547.5	1,140	2,942
	Total	2421	535	524	168	157	3,805				
Week 33	Alaska	243	63	55	35	14	410	29	53.3	322	498
(8/11-8/17)	Nass	110	22	100	25	9	266	19	71.9	148	384
	Skeena	235	494	0	0	26	755	53	70.9	638	872
	Total	588	579	155	60	49	1,431				
Week 34-36	Alaska	627	229	115	23	35	1,029	63	105.2	856	1,202
(8/18-9/7)	Nass	177	68	75	0	11	331	20	110.1	150	512
	Skeena	164	84	0	4	9	261	16	93.2	108	414
	Total	968	381	190	27	55	1,621				
Fishery	Alaska	9,194	3,559	2,271	650	622	16,296	64	831.0	14,929	17,663
Total a	Nass	3,026	174	1,084	506	213	5,003	20	935.0	3,465	6,541
	Skeena	2,474	1,179	220	82	164	4,119	16	776.0	2,842	5,396
	Total	14,694	4,912	3,575	1,238	999	25,418				

These district 101 seine catches do not include the 271 sockeye caught in West Behm Canal. Sub-districts 80, 85, 90, and 95 are considered part of a "terminal area" dominated by Alaskan fish

Table 5.—Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 102 purse seine fishery, in 2002.

			Catch	By Age (Class				Standard	90% Confiden	ce Interval
Date	Group	1.2	1.3	2.2	2.3	Other	Total	Percent		Lower	Upper
Week 26-27	Alaska	458	2,503	733	133	59	3,886	75	466.7	3,118	4,654
(6/23-7/6)	Nass	726	0	529	0	19	1,274	24	511.6	432	2,116
(6/20 //6)	Skeena	0	21	0	25	1	47	1	359.8	0	639
	Total	1,184	2,524	1,262	158	79	5,207	1	337.0	· ·	037
Week 28	Alaska	1,695	486	675	106	0	2962	72	556.6	2,046	3,878
(7/7–7/13)	Nass	215	0	0	0	0	215	5	565.8	0	1,146
(Skeena	93	767	77	20	0	957	23	573.1	14	1,900
	Total	2,003	1,253	752	126	0	4,134				-,
Week 29	Alaska	1,184	567	543	44	26	2,364	84	326.7	1,827	2,901
(7/14–7/20)	Nass	70	0	6	34	1	111	4	363.5	0	709
(Skeena	30	265	30	7	4	336	12	1040.1	0	2,047
	Total	1,284	832	579	85	31	2,811				
Week 30	Alaska	839	402	385	31	19	1,676	84	231.6	1,295	2,057
(7/21-7/27)	Nass	50	0	4	24	1	79	4	258.7	0	505
	Skeena	21	188	21	5	3	238	12	736.8	0	1,450
	Total	910	590	410	60	23	1,993				
Week 31	Alaska	1,902	1,249	997	26	95	269	96	249.2	3,859	4,679
(7/28-8/3)	Nass	4	0	21	105	3	133	3	246.3	0	538
	Skeena	0	32	0	0	1	33	1	189.4	0	345
	Total	1,906	1,281	1,018	131	99	4,435				
Week 32	Alaska	1,191	841	1,348	0	0	3,380	62	867.4	1,953	4,807
(8/4–8/10)	Nass	1,138	0	154	0	0	1,292	24	887.3	0	2,752
	Skeena	675	97	0	0	0	772	14	762.7	0	2,027
	Total	3,004	938	1,502	0	0	5,444				
Week 33	Alaska	1,556	1,100	141	66	75	2,938	96	323.1	2,407	3,469
(8/11–8/17)	Nass	8	0	16	0	1	25	1	318.4	0	549
	Skeena Total	13 1,577	82 1,182	0 157	12 78	3 79	110 3,073	4	254.6	0	529
			-					0.1	105.0	1.146	1.556
Week 34	Alaska	908	398	63	26	56	1,451	91	185.3	1,146	1,756
(8/18–8/24)	Nass	0	0	59	27	3	89	6	181.7	0	388
	Skeena	8	32	0	8	2	50	3	189.0	0	361
	Total	916	430	122	61	61	1,590				
Week 35–39	Alaska	545	158	130	0	0	833	85	88.8	687	979
(8/25–8/28)	Nass	0	0	15	14	0	29	3	74.7	0	152
	Skeena Total	114 659	2 160	0 145	2 16	$0 \\ 0$	118 980	12	70.0	3	233
Figh over						220		00	1,284.2	21 (47	25 971
Fishery Total	Alaska Noss	10,278	7,704 0	5,015 804	432 204	330 28	23,759	80	1,284.2	21,647 1,059	25,871 5,435
1 0131	Nass Skoona	2,211 954	1,486	128	204 79	28 14	3,247	11 9		1,039	5,435
	Skeena Total	13,443	9,190	5,947	715	372	2,661 29,667	9	1,675.0	U	3,410
	1 Otal	13,443	2,120	3,341	/13	312	49,007				

Table 6.–Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 103 purse seine fishery, in 2002.

			Catch	By Age (Class				Standard	90% Confiden	ce Interval
Date	Group	1.2	1.3	2.2	2.3	Other	Total	Percent	Error	Lower	Upper
Week 32	Alaska	582	287	152	0	12	1,033	71	115.2	843	1,223
(8/4–8/10)	Nass	1	0	97	0	1	99	7	91.5	0	250
(6/1 6/10)	Skeena	146	147	28	0	4	325	22	153.2	73	577
	Total	729	434	277	0	17	1,457		100.2	, 5	0,,
Week 33	Alaska	1,169	283	207	16	68	1,743	84	113.5	1,556	1,930
(8/11-8/17)	Nass	0	60	129	34	9	232	11	87.5	88	376
()	Skeena	90	0	0	0	4	94	5	147.1	0	336
	Total	1,259	343	336	50	81	2,069				
Week 34-36	Alaska	1,304	174	393	6	17	1,894	86	116.1	1,703	2,085
(8/18-9/7)	Nass	20	0	152	13	2	187	9	65.5	79	295
,	Skeena	77	40	0	0	1	118	5	117.9	0	312
	Total	1401	214	545	19	20	2,199				
	Alaska	3,055	744	752	22	97	4,670	82	212.4	4,321	5,019
Fisherv	Nass	21	60	378	47	12	518	9	205.3	180	856
Total	Skeena	313	187	28	0	9	537	9	177.9	244	830
	Total	3,389	991	1,158	69	118	5,725				

Table 7.—Estimated contribution of sockeye salmon stocks originating in Alaska and Canada to Alaska's District 104 purse seine fishery, in 2002.

			Catch	By Age (Class				Standard	90% Confider	ce Interval
Date	Group	1.2	1.3	2.2	2.3	Other	Total	Percent	Error	Lower	Upper
	Alaska	1,413	614	386	146	12	2,571	45	287	2,099	3,043
Week 28	Nass	839	183	334	3	6	1,365	24	338.6	808	1,922
(7/7-7/13)	Skeena	644	950	115	34	8	1,751	31	313.8	1,235	2,267
(1/1-1/13)	S. migrating	044	930	0	0	0	1,731	0	169.9	1,233	2,207
	Total	2,896	1,747	835	183	26	5,687	U	109.9	U	219
	10001	_,0>0	1,7.7	050	105		0,007				
	Alaska	1,497	1,206	272	67	54	3,096	30	441.6	2,370	3,822
Week 29	Nass	1,350	0	1,098	0	43	2,491	24	582.5	1,533	3,449
(7/14-7/20)	Skeena	1,767	2,236	242	153	78	4,476	43	575.7	3,529	5,423
,	S. migrating	300	44	1	0	8	353	3	322	0	883
	Total	4,914	3,486	1,613	220	183	10,416				
	Alaska	1,148	733	197	14	58	2,150	21	343.6	1,585	2,715
Week 30	Nass	1,482	31	1.282	39	78	2,912	28	517.4	2,061	3,763
(7/21–7/27)	Skeena	2,187	2,911	0	147	144	5,389	52	505.1	4,558	6,220
(1/21-1/21)	S. migrating	2,107	2,711	0	0	0	0,567	0	259.4	0	427
	Total	4,817	3,675	1,479	200	-	10,451	U	237.4	V	427
		1.006		255	1.40	22	2 2 5 2	2.1	2066	1.040	2.056
	Alaska	1,236	669	277	148		2,352	31	306.6	1,848	2,856
Week 31–35	Nass	993	35	958	30	19	2,035	27	396.5	1,383	2,687
(7/28–8/31)	Skeena	1,125	1,728	0	60	28	2,941	39	388.1	2,303	3,579
	S. migrating	284	18	1	0	2	305	4	228	0	680
	Total	3,638	2,450	1,236	238	71	7,633				
Fishery	Alaska	5,294	3,222	1,132	375	146	10,169	30	699.7	9,018	11,320
Total	Nass	4,664	249	3,672	72	146	8,803	26	937.5	7,261	10,345
	Skeena	5,723	7,825	357	394	258	14,557	43	914.1	13,053	16,061
	S. migrating	584	62	2	0	10	658	2	501.8	0	1,483
	Total	16,265	11,358	5,163	841	560	34,187				,

^a South-migrating, mostly Fraser River origin. Numbers of south-migrating fish of age classes other than 1.2 are estimated from age composition proportions provided by the Pacific Salmon Technical Committee. The standard errors are minimum estimates computed only for the 1.2 age class which was estimated directly through scale pattern analysis.

APPENDICES

Appendix A.-Digitized scale variables for use in SAS linear discriminant function analysis.

Variable	1st Freshwater Annular Zone
Z1*	Number of circuli (NC1FW)
Z2*	Width of zone (S1FW)
Z3*	Distance from scale focus (C0) to circulus 2 (C2)
Z4*	Distance from scale focus to circulus 4 (C0–C4)
Z5*	Distance from scale focus to circulus 6 (C0–C6)
Z6*	Distance from scale focus to circulus 8 (C0–C8)
Z 7	Distance from circulus 2 to circulus 4 (C2–C4)
Z8	Distance from circulus 2 to circulus 6 (C2–C6)
Z 9	Distance from circulus 2 to circulus 8 (C2–C8)
Z10	Distance from circulus 4 to circulus 6 (C4–C6)
Z11	Distance from circulus 4 to circulus 8 (C4–C8)
Z12*	Distance from fourth-to-last circulus to end of zone, C(NC1FW-4)-EOZ
Z13*	Distance from second-to-last circulus to end of zone, C(NC1FW-2)-EOZ
Z14	Distance from circulus 2 to end of zone (C2–EOZ)
Z15	Distance from circulus 4 to end of zone (C2–EOZ)
Z16	Relative width, (variable 3)/S1FW
Z17	Relative width, (variable 4)/S1FW
Z18	Relative width, (variable 5)/S1FW
Z19	Relative width, (variable 6)/S1FW
Z20	Relative width, (variable 7)/S1FW
Z21	Relative width, (variable 8)/S1FW
Z22	Relative width, (variable 9)/S1FW
Z23	Relative width, (variable 10)/S1FW
Z24	Relative width, (variable 11)/S1FW
Z25	Relative width, (variable 12)/S1FW
Z26	Relative width, (variable 13)/S1FW
Z27	Average interval between circuli (S1FW/NC1FW)
Z28*	Number of circuli in first 3/4 of zone
Z29*	Maximum distance between 2 consecutive circuli
Z30	Relative width, (variable 29)/S1FW

-continued-

Appendix A.–Page 2 of 3.

Variable	2nd Freshwater Annular Zone
Z31*	Number of circuli (NC2FW)
Z32*	Width of zone (S2FW)
Z32*	Distance from end of first annular zone (E1FW) to circulus 2 (C2)
Z34*	Distance from end of first annular zone to circulus 4 (E1FW–C4)
Z35*	Distance from end of first annular zone to circulus 6 (E1FW–C6)
Z36*	Distance from end of first annular zone to circulus 8 (E1FW–C8)
Z30 Z37	Distance from circulus 2 to circulus 4 (C2–C4)
Z38	Distance from circulus 2 to circulus 4 (C2–C4) Distance from circulus 2 to circulus 6 (C2–C6)
Z39	Distance from circulus 2 to circulus 8 (C2–C8)
Z40	Distance from circulus 4 to circulus 6 (C4–C6)
Z41	Distance from circulus 4 to circulus 8 (C4–C8)
Z42*	Distance from fourth-to-last circulus to end of zone, C(NC2FW-4)-EOZ
Z43*	Distance from second-to-last circulus to end of zone, C(NC2FW-2)-EOZ
Z44	Distance from circulus 2 to end of zone (C2–EOZ)
Z45	Distance from circulus 4 to end of zone (C4–EOZ)
Z46	Relative width, (variable 33)/S2FW
Z47	Relative width, (variable 34)/S2FW
Z48	Relative width, (variable 35)/S2FW
Z49	Relative width, (variable 36)/S2FW
Z50	Relative width, (variable 37)/S2FW
Z51	Relative width, (variable 38)/S2FW
Z52	Relative width, (variable 39)/S2FW
Z53	Relative width, (variable 40)/S2FW
Z54	Relative width, (variable 41)/S2FW
Z55	Relative width, (variable 42)/S2FW
Z56	Relative width, (variable 43)/S2FW
Z57	Average interval between circuli (S2FW/NC2FW)
Z58*	Number of circuli in first 3/4 of zone
Z59*	Maximum distance between 2 consecutive circuli
Z60	Relative width, (variable 59)/S2FW
Variable	Freshwater Plus Growth Zone
Z61*	Number of circuli (NCPGZ)
Z62*	Width of zone (SPGZ)
Variable 7.62	All Freshwater Zones
Z63	Total number of annular circuli (NC1FW + NC2FW)
Z64	Total width of annular zones (S1FW + S2FW) Total number of freehyyater girayli (NC1FW + NC2FW + NCPGZ)
Z65 Z66	Total number of freshwater circuli (NC1FW + NC2FW + NCPGZ) Total width of freshwater zones (S1FW + S2FW + SPGZ)
Z67	Relative width, S1FW/(S1FW + S2FW + SPGZ)
Z68	Relative width, SPGZ/(S1FW + S2FW + SPGZ) Relative width, SPGZ/(S1FW + S2FW + SPGZ)
Z69	Relative width, S2FW/(S1FW + S2FW + SPGZ)
Z69	Relative width, $S2FW/(S1FW + S2FW + SPGZ)$

-continued-

Appendix A.–Page 3 of 3.

Variable	1st Marina Annulas Zona
Variable	1st Marine Annular Zone Number of circuli (NC1OZ)
Z70*	
Z71*	Width of zone (S1OZ)
Z72*	Distance from end of freshwater growth (EFW) to circulus 3 (C3)
Z73*	Distance from end of freshwater growth to circulus 6 (EFW–C6)
Z74*	Distance from end of freshwater growth to circulus 9 (EFW–C9)
Z75*	Distance from end of freshwater growth to circulus 12 (EFW-C12)
Z76*	Distance from end of freshwater growth to circulus 15 (EFW-C15)
Z 77	Distance from circulus 3 to circulus 6 (C3–C6)
Z78	Distance from circulus 3 to circulus 9 (C3–C9)
Z79	Distance from circulus 3 to circulus 12 (C3–C12)
Z80	Distance from circulus 3 to circulus 15 (C3–C15)
Z81	Distance from circulus 6 to circulus 9 (C6–C9)
Z82	Distance from circulus 6 to circulus 12 (C6–C12)
Z83	Distance from circulus 6 to circulus 15 (C6–C15)
Z84	Distance from circulus 9 to circulus 15 (C9–C15)
Z85*	Distance from sixth-to-last circulus to end of zone, C(NC1OZ-6)-EOZ
Z86*	Distance from third-to-last circulus to end of zone, C(NC1OZ-3)-EOZ
Z87	Distance from circulus 3 to end of zone (C3–EOZ)
Z88	Distance from circulus 9 to end of zone (C9–EOZ)
Z89	Distance from circulus 15 to end of zone (C15–EOZ)
Z90	Relative width, (variable 72)/S1OZ
Z 91	Relative width, (variable 73)/S1OZ
Z92	Relative width, (variable 74)/S1OZ
Z93	Relative width, (variable 75)/S1OZ
Z94	Relative width, (variable 76)/S1OZ
Z95	Relative width, (variable 77)/S1OZ
Z96	Relative width, (variable 78)/S1OZ
Z97	Relative width, (variable 79)/S1OZ
Z98	Relative width, (variable 80)/S1OZ
Z99	Relative width, (variable 81)/S1OZ
Z100	Relative width, (variable 82)/S1OZ
Z101	Relative width, (variable 83)/S1OZ
Z102	Relative width, (variable 84)/S1OZ
Z103	Relative width, (variable 85)/S1OZ
Z104	Relative width, (variable 86)/S1OZ
Z105	Average interval between circuli (S1OZ/NC1OZ)
Z106*	Number of circuli in first 1/2 of zone
Z107*	Maximum distance between 2 consecutive circuli
Z108	Relative width, (variable 107)/S1OZ

^{*} discrete variables

Appendix B.—Scale variables with associated entry F-statistics and classification matrices for the linear discriminant function (LDF) models used to classify sockeye catch in the District 101 gillnet fishery.

Age-Specific Model Constructed		Stepwise Variable Selection						
				True Stock	Classified As			
Age Class	Age Class Run		Variable F-Statistic		Alaska	Nass	Skeena	Total
1.2	Total	Z88	205.266	Alaska	162	26	12	_
	Season	Z 4	161.518	Alaska	81%	13%	6%	200
		Z89	44.602	Nass	20	161	18	
		Z28	35.196	INASS	10.05%	80.90%	9.05%	199
		Z104	11.046	Skeena	7	20	172	
		length	8.899	Skeena	3.52%	10.05%	86.43%	199
				Total	189	207	202	598
1.3	Total	Z5	267.211	Alaska	164	21	15	
	Season	Z7 1	46.641	Alaska	82%	10.50%	7.50%	200
		Z84	12.501	Nass	14	61	19	
		length	11.621	Nass	14.89%	64.89%	20.21%	94
		Z98	7.526	Classes	7	46	147	
				Skeena	3.50%	23%	73.50%	200
				Total	185	128	181	494
2.2	Total	Z5	261.823	Alaska	133	9	6	
	Season	Z69	57.955	Alaska	89.86%	6.08%	4.05%	148
		Z90	25.419	Naga	3	188	9	
		Z57	14.827	Nass	1.50%	94%	4.50%	200
		Z76	8.764	Classes	3	12	17	
		Z50	8.274	Skeena	9.38%	37.50%	53.13%	32
		length	6.431	Total	139	209	32	380
		Z80	5.707					
		Z101	10.412					
		Z77	6.236					
		Z95	6.82					
2.3	Total	Z91	23.003	Alaska	88	25	9	
	Season	length	16.142		72.13%	20.49%	7.38%	122
				Nass	2	9	3	
				Nass	14.29%	64.29%	21.43%	14
				CI.	1	2	12	
				Skeena	6.67%	13.33%	80%	15
				Total	91	36	24	151

Appendix C.—Scale variables with associated entry F-statistics and classification matrices for the linear discriminant function (LDF) models used to classify sockeye catch in the District 104 purse seine fishery.

Age-Specific Model Constructed		Stepwise Variable Selection			Misclassification Matrix Classified As (number and percent)				
Age Class	Run Timing	Variable	F-Statistic	True Stock	Fraser	Alaska	Nass	Skeena	Total
1.2	Total	Z87	141.013	Fraser	122	146	23	12	
	Season	Z 4	120.903	Alaska Nass	68.54%	73.74%	11.62%	6.06%	303
		Z85	57.097		17	146	23	12	
		Z28	25.852		8.59%	73.74%	11.62%	6.06%	198
		Z84	23.383		31	8	147	13	
		Z98	24.121		15.58%	4.02%	73.87%	6.53%	199
		Z79	Z 79	Skeena	16	3	24	157	
		Z102	Z102		8%	1.50%	12%	78.50%	200
		Z14	Z14	Total	186	303	217	194	900
		Z65	Z65						
		Z25	Z25						
1.3	Total	Z5	260.269	Alaska		164	27	19	
	Season	Z88	45.02	Nass		78.10%	12.86%	9.05%	210
		Z89	14.694			5	70	19	
		Z98	9.405			5.32%	74.47%	20.21%	94
				Skeena		6	50	144	
						3%	25%	72%	200
				Total		175	147	182	
						3%	25%	72%	504
2.2	Total	Z5	272.113	Alaska		141	5	11	
	Season	Z57	36.674			89.81%	3.18%	7.01%	157
		Z90	23.449	Nass		7	168	25	
		Z17	18.642			3.50%	84%	12.50%	200
		Z50	13.222	Skeena		3	9	20	
		Z72	9.054			9.38%	28.13%	62.50%	32
				Total		151	182	56	389
2.3	Total	Z91	22.844	Alaska		104	27	11	
-	Season	Z67	11.402			73.24%	19.01%	7.75%	142
		Z27	6.893	Nass		3	9	2	
						21.43%	64.29%	14.29%	14
				Skeena		1	3	11	
						6.67%	20%	73.33%	15
				Total		108	39	24	171