

4 ROBOTS MÓVILES

- 4.1 Introducción: Preliminares y Conceptos.
- 4.2 Características de los Robots Móviles.
- 4.3 Estrategias de Control.
- 4.4 Seguimiento de Trayectorias.
- 4.5 Algoritmoms de Planificación.
- 4.6 Introducción a la Localización.
- 4.7 Control reactivo
- 4.8 Slam
- 4.9 Navegación Topológica

Esquema Tradicional de Control de Procesos

Esquema de Control Reactivo

VARIABLES DE CONTROL

CONTROL BORROSO

Si ERROR es Grande Positivo entonces ACTUACIÓN es Negativa

Si ERROR es Pequeño Positivo Entonces ACTUACIÓN es Pequeña negativa

Si ERROR es Grande Negativo ACTUACIÓN es Positiva

Si ERROR es Pequeño Negativo ACTUACIÓN es Pequeña Positiva

Controlador

- Objetivo de control:
 Seguimiento pared sin oscilaciones
- Perturbaciones:Columnas, Huecos
- Velocidad constante

1ª Aproximación

Seguimiento Pared Derecha

1ª Aproximación

1ª Aproximación

⇒Si inclinacion es derecha y frontal lejos entonces volante izquierda-media

⇒Si inclinacion es izquierda y frontal lejos entonces volante derecha

Ejemplo de Control Borroso de un Robot Móvil: 1ª Aproximación

Si inclinacion es derecha y frontal lejos entonces volante izquierda-media

Si inclinacion es izquierda y frontal lejos entonces volante derecha

Si inclinacion es horizontal y frontal lejos entonces volante centro

Si inclinacion es derecha y frontal cerca entonces volante muy-izquierda

Situaciones más Complejas

Nuevo Enfoque: El vector de percepción

$$d_i \rightarrow p_i$$

$$\dot{\bar{p}}_i = \frac{d_{max} - d_i}{d_{max} - d_{min}}$$

$$\vec{p} = |p_i|_{max} \cdot \frac{\sum_{i}^{p_i}}{\left|\sum_{i}^{p_i}\right|}$$

Nuevo Enfoque: El vector de percepción

- Objetivo de control:
 Seguimiento pared sin oscilaciones
- Perturbaciones:

 Columnas, Huecos
- Velocidad constante

Si φ es Frontal Izqda y p es Muy Baja entonces DIRECCION es Centro
Si φ es Frontal Izqda y p es Baja entonces DIRECCION es Centro
Si φ es Frontal Izqda y p es Media entonces DIRECCION es Centro Derecha
Si φ es Frontal Izqda y p es Alta entonces DIRECCION es Derecha

etc..

El vector de percepción: Sensores lidar

Señalando el obstáculo

$$|d_{i}| = \frac{\rho_{max} - \rho_{i}}{\rho_{max} - \rho_{min}}$$

$$D = |d_{i}|_{max} \cdot \frac{\sum_{i} \overrightarrow{d_{i}}}{|\sum_{i} \overrightarrow{d_{i}}|}$$

Nuevo Enfoque: El vector de percepción: Sensores lidar

Señalando el espacio libre

