Document 20: Orthogonality

Recall the following properties of orthogonality from the previous chapters. These will guide this section.

- 1. $\vec{v} \perp \vec{w} \Leftrightarrow \vec{v} \cdot \vec{w} = 0$
- 2. Length(\vec{v}) $\equiv \text{norm}(\vec{v})$. $||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}}$
- 3. \vec{u} is a unit vector if $||\vec{u}|| = 1$

Definition of Orthogonal: $\{\vec{u}_1, \cdots, \vec{u}_m\} \in \mathbb{R}^n$ are orthogonal if $||\vec{u}_i|| = 1$ and $\vec{u}_i \cdot \vec{u}_j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$

Let us now generalize the projection formula. Given $\vec{x}, \{\vec{u}_1, \dots, \vec{u}_m\}$, seeking $\vec{x}^{\parallel} = \operatorname{proj}_V(\vec{x})$, we get $\vec{x}^{\parallel} = (\vec{x} \cdot \vec{u}_1)\vec{u}_1 + (\vec{x} \cdot \vec{u}_2)\vec{u}_2 + \dots + (\vec{x} \cdot \vec{u}_m)\vec{u}_m$.

There also exists some general properties of orthogonality. Let us consider the orthogonal compliment.

Definition Orthogonal Compliment: Let V be a subspace of \mathbb{R}^n . Then, the orthogonal compliment of V is $V^{\perp} = \{\vec{x} \in \mathbb{R}^n : \exists \vec{v} \in V, \vec{v} \cdot \vec{x} = 0\}$. Interestingly:

- 1. V^{\perp} is also a subpsace of \mathbb{R}^n
- 2. $V^{\perp} = \ker(\operatorname{proj}_V(\vec{x}))$
- 3. $V \cap V^{\perp} = \{\vec{0}\}$
- $4. \dim(V) + \dim(V^{\perp}) = n$
- 5. $(V^{\perp})^{\perp} = V$

Finding the orthogonal basis of a subspace V can be done algorithmically through what is called the Gram-Schmidt Process.

Given a basis of $V = \{\vec{v}_1, \dots, \vec{v}_m\}$, we want the orthogonal basis $\{\vec{u}_1, \dots, \vec{u}_m\}$. Find the vectors in the basis using the following equations:

$$\begin{split} \vec{u}_1 &= \frac{\vec{v}_1}{||\vec{v}_1||} \\ \vec{u}_2 &= \frac{\vec{v}_2^{\perp}}{||\vec{v}_2^{\perp}||}, \vec{v}_2^{\perp} = \vec{v}_2 - (\vec{u}_1 \cdot \vec{v}_2) \vec{u}_1 \\ \vec{u}_3 &= \frac{\vec{v}_3^{\perp}}{||\vec{v}_3^{\perp}||}, \vec{v}_3^{\perp} = \vec{v}_3 - (\vec{u}_1 \cdot \vec{v}_3) \vec{u}_1 - (\vec{u}_2 \cdot \vec{v}_3) \vec{u}_2 \\ \vdots \\ \vec{u}_m &= \frac{\vec{v}_m^{\perp}}{||\vec{v}_m^{\perp}||}, \vec{v}_m^{\perp} = \vec{v}_m - (\vec{u}_1 \cdot \vec{v}_m) \vec{u}_1 - \dots - (\vec{u}_{m-1} \cdot \vec{v}_m) \vec{u}_{m-1} \end{split}$$

Definition Orthogonal Transformations: Let $T : \mathbb{R}^n \to \mathbb{R}^n$. T is orthogonal if it preserves the length of vectors. $||T(\vec{x})|| = ||\vec{x}||, \forall \vec{x} \in \mathbb{R}^n$.

Definition Orthogonal Matrix: If $T(\vec{x}) = A\vec{x}$ is orthogonal, then A is an orthogonal matrix and $||A\vec{x}|| = ||\vec{x}||$

Property: Orthonormal Vectors: These vectors make up a basis for a given space. Hence, they are linearly independent and span the space.

Properties of Orthogonality & Transposes:

- 1. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be orthogonal. Let $\vec{v} \perp \vec{w}$, then $T(\vec{v}) \perp T(\vec{w})$
- 2. T is orthogonal $\Leftrightarrow \{T(\vec{e}_1), \cdots, T(\vec{e}_n)\}$ forms an orthogonal basis of \mathbb{R}^n
- 3. $A_{n\times m}$ is orthogonal \Leftrightarrow its columns form an orthogonal basis of \mathbb{R}^n
- 4. A is orthogonal $\Leftrightarrow (A^T = A^{-1} \Rightarrow A^T A = I)$
- 5. A, and B are orthogonal $\Rightarrow AB$ is orthogonal
- 6. A^{-1} is orthogonal $\Leftrightarrow A$ is orthogonal
- 7. A is symmetric if $A^T = A$
- 8. A is skew symmetric if $A^T = -A$
- 9. $(AB)^T = B^T A^T$
- 10. A is invertable $\Rightarrow A^T, (A^T)^{-1}, (A^{-1})^T$ are invertable
- 11. $\operatorname{rank}(A) = \operatorname{rank}(A^T)$