ECSE-2210 Microelectronics Technology Homework 7

1. An abrupt, one-sided p⁺-n junction has the following characteristics on the n-side. N-side:

$$N_{\rm D} = 4 \times 10^{16} \, {\rm cm}^{-3}$$

 $D_{\rm n} = 25 {\rm cm}^2/{\rm s}; \, D_{\rm p} = 10 \, {\rm cm}^2/{\rm s}$
 $\tau_{\rm p} = \tau_{\rm n} = 10^{-7} {\rm s}$
Area $A = 1 \, {\rm cm}^2$

Answer the following:

- a. The diode is biased in the forward direction such that the forward voltage $V_A = 0.6$ V. Calculate the low-frequency diffusion capacitance, and the low frequency conductance of the diode. Draw the equivalent circuit of the diode at low frequency.
- b. The diode is biased in reverse such that the applied voltage $|V_A| = 20$ V. Calculate the reverse bias capacitance (Hint: you can neglect $V_{\rm bi}$). Draw the equivalent circuit, assuming an ideal diode. Explain briefly how the circuit will change if we start considering the non-ideal behavior of the diode.
- 2. Problem 7.4 in text. The IN4002 is one of the popular 4000-series general-purpose diodes. C-V data from an IN4002 p⁺-n junction diode is listed in Table below. Before analyzing the data, subtract 3 pF from each capacitance value to account for the stray capacitance shunting the encapsulated diode. Assume area of the diode is 6×10^{-3} cm². Make a $1/C^2$ -versus-V plot (as described in text) to determine the doping concentration in the lightly doped side. Also, determine the built-in voltage, $V_{\rm bi}$ from the graph.

$\underline{V_{A}}(V)$	<u><i>C</i>(pF)</u>	$\underline{V_{A}(V)}$	<u>C(pF)</u>	$\underline{V_{A}}(V)$	<u>C(pF)</u>
0.0	38.709	-2.2	20.254	-9.0	12.639
-0.2	33.717	-2.6	19.248	-10.0	12.163
-0.4	30.567	-3.0	18.405	-11.0	11.746
-0.6	28.319	-4.0	16.762	-12.0	11.373
-0.8	26.598	-5.0	15.548	-13.0	11.037
-1.0	25.170	-6.0	14.599	-14.0	10.734
-1.4	23.060	-7.0	13.834	-15.0	10.458
-1.8	21.490	-8.0	13.189		