Clase 20 - Procesos Gaussianos I Aprendizaje de Máquinas - MA5204

Felipe Tobar

Department of Mathematical Engineering & Center for Mathematical Modelling Universidad de Chile

18 de marzo de 2021

▶ Modelos paramétricos: Son los modelos que hemos considerado hasta ahora y que se caracterizan por su cantidad fija de parámetros al momento de entrenar.

Ejemplo: Regresión lineal/no lineal

▶ Modelos no paramétricos: Son los modelos que no tienen un número fijo de parámetros, pudiendo llegar incluso a ser infinitos.

Ejemplo: Máquinas de soporte vectorial

Observación

Es importante hacer la distinción entre parámetros que se aprenden y los parámetros del modelo (hiperparámetros), donde estos últimos pueden ser fijos independiente de si el método es paramétrico o no paramétrico.

▶ Modelos paramétricos: Son los modelos que hemos considerado hasta ahora y que se caracterizan por su cantidad fija de parámetros al momento de entrenar.

Ejemplo: Regresión lineal/no lineal

Modelos no paramétricos: Son los modelos que no tienen un número fijo de parámetros, pudiendo llegar incluso a ser infinitos.

Observación

Es importante hacer la distinción entre parámetros que se aprenden y los parámetros del modelo (hiperparámetros), donde estos últimos pueden ser fijos independiente de si el método es paramétrico o no paramétrico.

▶ Modelos paramétricos: Son los modelos que hemos considerado hasta ahora y que se caracterizan por su cantidad fija de parámetros al momento de entrenar.

Ejemplo: Regresión lineal/no lineal

▶ Modelos no paramétricos: Son los modelos que no tienen un número fijo de parámetros, pudiendo llegar incluso a ser infinitos.

Ejemplo: Máquinas de soporte vectorial

Observación

Es importante hacer la distinción entre parámetros que se aprenden y los parámetros del modelo (hiperparámetros), donde estos últimos pueden ser fijos independiente de si el método es paramétrico o no paramétrico.

▶ Modelos paramétricos: Son los modelos que hemos considerado hasta ahora y que se caracterizan por su cantidad fija de parámetros al momento de entrenar.

Ejemplo: Regresión lineal/no lineal

Modelos no paramétricos: Son los modelos que no tienen un número fijo de parámetros, pudiendo llegar incluso a ser infinitos.

Ejemplo: Máquinas de soporte vectorial.

Observación

Es importante hacer la distinción entre parámetros que se aprenden y los parámetros del modelo (hiperparámetros), donde estos últimos pueden ser fijos independiente de si el método es paramétrico o no paramétrico.

▶ Modelos paramétricos: Son los modelos que hemos considerado hasta ahora y que se caracterizan por su cantidad fija de parámetros al momento de entrenar.

Ejemplo: Regresión lineal/no lineal

▶ Modelos no paramétricos: Son los modelos que no tienen un número fijo de parámetros, pudiendo llegar incluso a ser infinitos.

Ejemplo: Máquinas de soporte vectorial.

Observación

Es importante hacer la distinción entre parámetros que se aprenden y los parámetros del modelo (hiperparámetros), donde estos últimos pueden ser fijos independiente de si el método es paramétrico o no paramétrico.

▶ Modelos paramétricos: Son los modelos que hemos considerado hasta ahora y que se caracterizan por su cantidad fija de parámetros al momento de entrenar.

Ejemplo: Regresión lineal/no lineal

▶ Modelos no paramétricos: Son los modelos que no tienen un número fijo de parámetros, pudiendo llegar incluso a ser infinitos.

Ejemplo: Máquinas de soporte vectorial.

Observación

Es importante hacer la distinción entre parámetros que se aprenden y los parámetros del modelo (hiperparámetros), donde estos últimos pueden ser fijos independiente de si el método es paramétrico o no paramétrico.

Definition (proceso gaussiano)

Un proceso gaussiano (\mathcal{GP}) es una colección de variables aleatorias, tal que para cualquier subconjunto finito de puntos, estos tienen una distribución conjuntamente gaussiana.

Al aplicar esta definición a nuestro caso anterior, $\mathbb{P}(f)$ será un \mathcal{GP} y para cualquier conjunto finito $\{x_i\}_{i=1}^n \subset \mathcal{X}$, la distribución de $\mathbb{P}(f(\mathbf{x}))$ es Gaussiana multivariada $f(\mathbf{x}) = (f(x_1), \dots, f(x_n))^{\top}$). En este caso las variables aleatorias representan el valor de la función $f(x_i)$ en la posición x_i .

Un \mathcal{GP} que da completamente caracterizado por su función de media $m(\cdot)$ y función de covarianza $K(\cdot, \cdot)$, de esta forma para cual quier conjunto finito podemos encontrar la distribución. Definimos estas funciones como

$$m(x) = \mathbb{E}\left\{f(x)\right\}$$
$$K(x, x') = \mathbb{E}\left\{\left(f(x) - m(x)\right)\left(f(x') - m(x')\right)\right\}$$

Definition (proceso gaussiano)

Un proceso gaussiano (\mathcal{GP}) es una colección de variables aleatorias, tal que para cualquier subconjunto finito de puntos, estos tienen una distribución conjuntamente gaussiana.

Al aplicar esta definición a nuestro caso anterior, $\mathbb{P}(f)$ será un \mathcal{GP} y para cualquier conjunto finito $\{x_i\}_{i=1}^n \subset \mathcal{X}$, la distribución de $\mathbb{P}(f(\mathbf{x}))$ es Gaussiana multivariada $f(\mathbf{x}) = (f(x_1), \dots, f(x_n))^{\top}$). En este caso las variables aleatorias representan el valor de la función $f(x_i)$ en la posición x_i .

Un \mathcal{GP} queda completamente caracterizado por su función de media $m(\cdot)$ y función de covarianza $K(\cdot, \cdot)$, de esta forma para cualquier conjunto finito podemos encontrar la distribución. Definimos estas funciones como

$$m(x) = \mathbb{E} \left\{ f(x) \right\}$$

$$K(x, x') = \mathbb{E} \left\{ \left(f(x) - m(x) \right) \left(f(x') - m(x') \right) \right\}$$

Definition (proceso gaussiano)

Un proceso gaussiano (\mathcal{GP}) es una colección de variables aleatorias, tal que para cualquier subconjunto finito de puntos, estos tienen una distribución conjuntamente gaussiana.

Al aplicar esta definición a nuestro caso anterior, $\mathbb{P}(f)$ será un \mathcal{GP} y para cualquier conjunto finito $\{x_i\}_{i=1}^n \subset \mathcal{X}$, la distribución de $\mathbb{P}(f(\mathbf{x}))$ es Gaussiana multivariada $f(\mathbf{x}) = (f(x_1), \dots, f(x_n))^{\top}$). En este caso las variables aleatorias representan el valor de la función $f(x_i)$ en la posición x_i .

Un \mathcal{GP} que da completamente caracterizado por su función de media $m(\cdot)$ y función de covarianza $K(\cdot, \cdot)$, de esta forma para cual quier conjunto finito podemos encontrar la distribución. Definimos estas funciones como

$$m(x) = \mathbb{E}\left\{f(x)\right\}$$

$$K(x, x') = \mathbb{E}\left\{\left(f(x) - m(x)\right)\left(f(x') - m(x')\right)\right\}$$

Y de esta forma podemos escribir el proceso como:

$$f \sim \mathcal{GP}(m(\cdot), K(\cdot, \cdot))$$

Donde para un conjunto finito tenemos que la marginal resulta de la forma:

$$f(\mathbf{x}) \sim \mathcal{N}(m(\mathbf{x}), K(\mathbf{x}, \mathbf{x}))$$

Hasta el momento hemos hablado del espacio de entrada \mathcal{X} como genérico, un caso común es definir los \mathcal{GP} sobre el tiempo (\mathbb{R}^+), es decir que los x_i son instantes de tiempo. Es de notar que este no es el único caso, y se podría definir sobre un espacio más general, por ejemplo \mathbb{R}^d .

Y de esta forma podemos escribir el proceso como:

$$f \sim \mathcal{GP}(m(\cdot), K(\cdot, \cdot))$$

Donde para un conjunto finito tenemos que la marginal resulta de la forma:

$$f(\mathbf{x}) \sim \mathcal{N}(m(\mathbf{x}), K(\mathbf{x}, \mathbf{x}))$$

Hasta el momento hemos hablado del espacio de entrada \mathcal{X} como genérico, un caso común es definir los \mathcal{GP} sobre el tiempo (\mathbb{R}^+), es decir que los x_i son instantes de tiempo. Es de notar que este no es el único caso, y se podría definir sobre un espacio más general, por ejemplo \mathbb{R}^d .

Y de esta forma podemos escribir el proceso como:

$$f \sim \mathcal{GP}(m(\cdot), K(\cdot, \cdot))$$

Donde para un conjunto finito tenemos que la marginal resulta de la forma:

$$f(\mathbf{x}) \sim \mathcal{N}(m(\mathbf{x}), K(\mathbf{x}, \mathbf{x}))$$

Hasta el momento hemos hablado del espacio de entrada \mathcal{X} como genérico, un caso común es definir los \mathcal{GP} sobre el tiempo (\mathbb{R}^+), es decir que los x_i son instantes de tiempo. Es de notar que este no es el único caso, y se podría definir sobre un espacio más general, por ejemplo \mathbb{R}^d .

Y de esta forma podemos escribir el proceso como:

$$f \sim \mathcal{GP}(m(\cdot), K(\cdot, \cdot))$$

Donde para un conjunto finito tenemos que la marginal resulta de la forma:

$$f(\mathbf{x}) \sim \mathcal{N}(m(\mathbf{x}), K(\mathbf{x}, \mathbf{x}))$$

Hasta el momento hemos hablado del espacio de entrada \mathcal{X} como genérico, un caso común es definir los \mathcal{GP} sobre el tiempo (\mathbb{R}^+), es decir que los x_i son instantes de tiempo. Es de notar que este no es el único caso, y se podría definir sobre un espacio más general, por ejemplo \mathbb{R}^d .

Y de esta forma podemos escribir el proceso como:

$$f \sim \mathcal{GP}(m(\cdot), K(\cdot, \cdot))$$

Donde para un conjunto finito tenemos que la marginal resulta de la forma:

$$f(\mathbf{x}) \sim \mathcal{N}(m(\mathbf{x}), K(\mathbf{x}, \mathbf{x}))$$

Hasta el momento hemos hablado del espacio de entrada \mathcal{X} como genérico, un caso común es definir los \mathcal{GP} sobre el tiempo (\mathbb{R}^+), es decir que los x_i son instantes de tiempo. Es de notar que este no es el único caso, y se podría definir sobre un espacio más general, por ejemplo \mathbb{R}^d .

Y de esta forma podemos escribir el proceso como:

$$f \sim \mathcal{GP}(m(\cdot), K(\cdot, \cdot))$$

Donde para un conjunto finito tenemos que la marginal resulta de la forma:

$$f(\mathbf{x}) \sim \mathcal{N}(m(\mathbf{x}), K(\mathbf{x}, \mathbf{x}))$$

Hasta el momento hemos hablado del espacio de entrada \mathcal{X} como genérico, un caso común es definir los \mathcal{GP} sobre el tiempo (\mathbb{R}^+), es decir que los x_i son instantes de tiempo. Es de notar que este no es el único caso, y se podría definir sobre un espacio más general, por ejemplo \mathbb{R}^d .

Un \mathcal{GP} define un *prior* sobre funciones, por lo que, antes de ver ningún dato se podría obtener una muestra de este proceso dada una función de media y covarianza.

Consideremos $m(\cdot)=0$ y función de covarianza (kernel) exponencial cuadrática (o RBF) definida como

$$K_{SE}(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{2\ell^2}\right)$$

Donde en este caso los parámetros son interpretables (y como veremos más adelante pueden ser aprendidos a través de un conjunto de entrenamiento) donde σ^2 es la varianza de la función, notar que esta es la diagonal de la matriz covarianza. El parámetro ℓ es conocido como el lenghtscale que determina que tan lejos tiene influencia un punto sobre otro, donde en general un punto no tendrá influencia más allá de ℓ unidades alrededor.

Un \mathcal{GP} define un prior sobre funciones, por lo que, antes de ver ningún dato se podría obtener una muestra de este proceso dada una función de media y covarianza.

Consideremos $m(\cdot)=0$ y función de covarianza (kernel) exponencial cuadrática (o RBF) definida como

$$K_{SE}(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{2\ell^2}\right)$$

Donde en este caso los parámetros son interpretables (y como veremos más adelante pueden ser aprendidos a través de un conjunto de entrenamiento) donde σ^2 es la varianza de la función, notar que esta es la diagonal de la matriz covarianza. El parámetro ℓ es conocido como el lenghtscale que determina que tan lejos tiene influencia un punto sobre otro, donde en general un punto no tendrá influencia más allá de ℓ unidades alrededor.

Un \mathcal{GP} define un *prior* sobre funciones, por lo que, antes de ver ningún dato se podría obtener una muestra de este proceso dada una función de media y covarianza.

Consideremos $m(\cdot)=0$ y función de covarianza (kernel) exponencial cuadrática (o RBF) definida como

$$K_{SE}(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{2\ell^2}\right)$$

Donde en este caso los parámetros son interpretables (y como veremos más adelante pueden ser aprendidos a través de un conjunto de entrenamiento) donde σ^2 es la varianza de la función, notar que esta es la diagonal de la matriz covarianza. El parámetro ℓ es conocido como el lenghtscale que determina que tan lejos tiene influencia un punto sobre otro, donde en general un punto no tendrá influencia más allá de ℓ unidades alrededor.

Un \mathcal{GP} define un *prior* sobre funciones, por lo que, antes de ver ningún dato se podría obtener una muestra de este proceso dada una función de media y covarianza.

Consideremos $m(\cdot)=0$ y función de covarianza (kernel) exponencial cuadrática (o RBF) definida como

$$K_{SE}(x, x') = \sigma^2 \exp\left(-\frac{(x - x')^2}{2\ell^2}\right)$$

Donde en este caso los parámetros son interpretables (y como veremos más adelante pueden ser aprendidos a través de un conjunto de entrenamiento) donde σ^2 es la varianza de la función, notar que esta es la diagonal de la matriz covarianza. El parámetro ℓ es conocido como el lenghtscale que determina que tan lejos tiene influencia un punto sobre otro, donde en general un punto no tendrá influencia más allá de ℓ unidades alrededor.

Fig.. Muestras de un prior \mathcal{GP} con kernel SE, para distintos *lenghtscales* (ℓ) y función media $m(\cdot)=0$, la parte sombreada corresponde al intervalo de confianza del 95 %. Se puede ver que a mayor ℓ las funciones se van volviendo más suaves.

Consideremos las observaciones sin ruido de la forma $\{(x_i, f(x_i))\}_{i=1}^n$ (conocemos el valor real en $X = [x_1, \dots, x_n]$). Digamos que queremos realizar una predicción en el conjunto X_* de n_* puntos, luego la distribución conjunta es de la forma:

$$\begin{bmatrix} f(X) \\ f(X_*) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(X) \\ m(X_*) \end{bmatrix}, \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

El punto clave para realizar predicciones, es el siguiente lema

Lemma

Dado un prior \mathcal{GP} sobre $f(\cdot)$ y una verosimilitud Gaussiana, la posterior sobre $f(\cdot)$ es también un \mathcal{GP} . Además, se puede condicionar sobre las observaciones (X, f(X)) para obtener

$$f(X_*)|f(X), X \sim \mathcal{N}(m_{X_*|X}, \Sigma_{X_*|X})$$

Donde la media y covarianza son.

$$m_{X_*|X} = m(X_*) + K(X_*, X)K^{-1}(X, X)(f(X) - m(X))$$

$$\Sigma_{X_*|X} = K(X_*, X_*) - K(X_*, X)K^{-1}(X, X)K(X, X_*)$$

Consideremos las observaciones sin ruido de la forma $\{(x_i, f(x_i))\}_{i=1}^n$ (conocemos el valor real en $X = [x_1, \dots, x_n]$). Digamos que queremos realizar una predicción en el conjunto X_* de n_* puntos, luego la distribución conjunta es de la forma:

$$\begin{bmatrix} f(X) \\ f(X_*) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(X) \\ m(X_*) \end{bmatrix}, \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

El punto clave para realizar predicciones, es el siguiente lema

Lemma

Dado un prior \mathcal{GP} sobre $f(\cdot)$ y una verosimilitud Gaussiana, la posterior sobre $f(\cdot)$ es también un \mathcal{GP} . Además, se puede condicionar sobre las observaciones (X, f(X)) para obtener

$$f(X_*)|f(X), X \sim \mathcal{N}(m_{X_*|X}, \Sigma_{X_*|X})$$

Donde la media y covarianza son.

$$m_{X_*|X} = m(X_*) + K(X_*, X)K^{-1}(X, X)(f(X) - m(X))$$

$$\Sigma_{X_*|X} = K(X_*, X_*) - K(X_*, X)K^{-1}(X, X)K(X, X_*)$$

Consideremos las observaciones sin ruido de la forma $\{(x_i, f(x_i))\}_{i=1}^n$ (conocemos el valor real en $X = [x_1, \dots, x_n]$). Digamos que queremos realizar una predicción en el conjunto X_* de n_* puntos, luego la distribución conjunta es de la forma:

$$\begin{bmatrix} f(X) \\ f(X_*) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(X) \\ m(X_*) \end{bmatrix}, \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

El punto clave para realizar predicciones, es el siguiente lema

Lemma

Dado un prior \mathcal{GP} sobre $f(\cdot)$ y una verosimilitud Gaussiana, la posterior sobre $f(\cdot)$ es también un \mathcal{GP} . Además, se puede condicionar sobre las observaciones (X, f(X)) para obtener

$$f(X_*)|f(X), X \sim \mathcal{N}(m_{X_*|X}, \Sigma_{X_*|X})$$

Donde la media y covarianza son

$$m_{X_*|X} = m(X_*) + K(X_*, X)K^{-1}(X, X)(f(X) - m(X))$$

$$\Sigma_{X_*|X} = K(X_*, X_*) - K(X_*, X)K^{-1}(X, X)K(X, X_*)$$

Consideremos las observaciones sin ruido de la forma $\{(x_i, f(x_i))\}_{i=1}^n$ (conocemos el valor real en $X = [x_1, \dots, x_n]$). Digamos que queremos realizar una predicción en el conjunto X_* de n_* puntos, luego la distribución conjunta es de la forma:

$$\begin{bmatrix} f(X) \\ f(X_*) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(X) \\ m(X_*) \end{bmatrix}, \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

El punto clave para realizar predicciones, es el siguiente lema

Lemma

Dado un prior \mathcal{GP} sobre $f(\cdot)$ y una verosimilitud Gaussiana, la posterior sobre $f(\cdot)$ es también un \mathcal{GP} . Además, se puede condicionar sobre las observaciones (X, f(X)) para obtener

$$f(X_*)|f(X), X \sim \mathcal{N}(m_{X_*|X}, \Sigma_{X_*|X})$$

Donde la media y covarianza son:

$$m_{X_*|X} = m(X_*) + K(X_*, X)K^{-1}(X, X)(f(X) - m(X))$$

$$\Sigma_{X_*|X} = K(X_*, X_*) - K(X_*, X)K^{-1}(X, X)K(X, X_*)$$

Fig.. Regresión con \mathcal{GP} para señal sintetica usando el 15 % de los datos muestreados de forma no uniforme, utilizand un \mathcal{GP} de media nula y kernel SE.

En este caso las observaciones son de la forma $y_i = f(x_i) + \eta$ donde $\eta \sim \mathcal{N}(0, \sigma_n^2)$ por lo que ahora nuestro conjunto de observaciones es de la forma (X, Y) donde $Y = f(X) + \eta$.

Lo que en nuestro modelo equivale a agregar un término a la función de covarianza

$$cov(Y) = K(X, X) + \sigma_n^2 \mathbb{I}$$

Donde si tenemos el mismo caso anterior, observaciones (X,Y) y queremos evaluar en X_* , la conjunta queda

$$\begin{bmatrix} Y \\ f(X_*) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(X) \\ m(X_*) \end{bmatrix}, \begin{bmatrix} K(X,X) + \sigma_n^2 \mathbb{I} & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

Observación

En este caso las observaciones son de la forma $y_i = f(x_i) + \eta$ donde $\eta \sim \mathcal{N}(0, \sigma_n^2)$ por lo que ahora nuestro conjunto de observaciones es de la forma (X, Y) donde $Y = f(X) + \eta$.

Lo que en nuestro modelo equivale a agregar un término a la función de covarianza

$$cov(Y) = K(X, X) + \sigma_n^2 \mathbb{I}$$

Donde si tenemos el mismo caso anterior, observaciones (X,Y) y queremos evaluar en X_* , la conjunta queda

$$\begin{bmatrix} Y \\ f(X_*) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(X) \\ m(X_*) \end{bmatrix}, \begin{bmatrix} K(X,X) + \sigma_n^2 \mathbb{I} & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

Observación

En este caso las observaciones son de la forma $y_i = f(x_i) + \eta$ donde $\eta \sim \mathcal{N}(0, \sigma_n^2)$ por lo que ahora nuestro conjunto de observaciones es de la forma (X, Y) donde $Y = f(X) + \eta$.

Lo que en nuestro modelo equivale a agregar un término a la función de covarianza

$$cov(Y) = K(X, X) + \sigma_n^2 \mathbb{I}$$

Donde si tenemos el mismo caso anterior, observaciones (X,Y) y queremos evaluar en X_* , la conjunta queda

$$\begin{bmatrix} Y \\ f(X_*) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(X) \\ m(X_*) \end{bmatrix}, \begin{bmatrix} K(X,X) + \sigma_n^2 \mathbb{I} & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

Observación

En este caso las observaciones son de la forma $y_i = f(x_i) + \eta$ donde $\eta \sim \mathcal{N}(0, \sigma_n^2)$ por lo que ahora nuestro conjunto de observaciones es de la forma (X, Y) donde $Y = f(X) + \eta$.

Lo que en nuestro modelo equivale a agregar un término a la función de covarianza

$$cov(Y) = K(X, X) + \sigma_n^2 \mathbb{I}$$

Donde si tenemos el mismo caso anterior, observaciones (X,Y) y queremos evaluar en X_* , la conjunta queda

$$\begin{bmatrix} Y \\ f(X_*) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m(X) \\ m(X_*) \end{bmatrix}, \begin{bmatrix} K(X,X) + \sigma_n^2 \mathbb{I} & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right)$$

Observación

Igual que en el caso sin ruido, podemos condicionar esta conjunta a las observaciones y obtenemos el siguiente resultado:

Lemma

Para una evaluación con ruido se tiene que

$$f(X_*)|Y, X \sim \mathcal{N}(m_{X_*|X}, \Sigma_{X_*|X})$$
 (1.1)

Donde la media y covarianza son.

$$m_{X_*|X} = m(X_*) + K(X_*, X)[K(X, X) + \sigma_n^2 \mathbb{I}]^{-1}(Y - m(X))$$
 (1.2)

$$\Sigma_{X_*|X} = K(X_*, X_*) - K(X_*, X)[K(X, X) + \sigma_n^2 \mathbb{I}]^{-1} K(X, X_*)$$
 (1.3)

Igual que en el caso sin ruido, podemos condicionar esta conjunta a las observaciones y obtenemos el siguiente resultado:

Lemma

Para una evaluación con ruido se tiene que

$$f(X_*)|Y, X \sim \mathcal{N}(m_{X_*|X}, \Sigma_{X_*|X})$$
 (1.1)

Donde la media y covarianza son:

$$m_{X_*|X} = m(X_*) + K(X_*, X)[K(X, X) + \sigma_n^2 \mathbb{I}]^{-1}(Y - m(X))$$
 (1.2)

$$\Sigma_{X_*|X} = K(X_*, X_*) - K(X_*, X)[K(X, X) + \sigma_n^2 \mathbb{I}]^{-1} K(X, X_*)$$
(1.3)

Fig.. Regresión con \mathcal{GP} para señal sintetica usando el 15 % de los datos muestreados de forma no uniforme y contaminados con ruido Gaussiano, utilizando un \mathcal{GP} de media nula y kernel SE.

Clase 20 - Procesos Gaussianos I Aprendizaje de Máquinas - MA5204

Felipe Tobar

Department of Mathematical Engineering & Center for Mathematical Modelling Universidad de Chile

18 de marzo de 2021

