

# User Manual Cyclic Plasticity Model of Structural Steels

Fangxin Hu
Dept. of Civil Engineering
Tsinghua University
May 30, 2016

### **Outline**



- 1. Install ABAQUS, VS & IVF
- 2. Configure ABAQUS to run user subroutines

- 3. Model calibration
- 4. Step-by-step procedure to use UMAT

5. Application

### 1. Install ABAQUS, VS & IVF



### Available choices for compatibility

- Abaqus 6.10/6.11/6.12
   Visual Studio 2008/2010
   Intel Visual Fortran Composer XE 2011
- Abaqus 6.13
   Visual Studio 2012
   Intel Visual Fortran Composer XE 2013
- Abaqus 6.14 (Recommended on Windows 10)
   Visual Studio 2013
   Intel Visual Fortran Composer XE 2013
- Abaqus 2016? VS should be installed before IVF

### 2. Configure ABAQUS



### Edit with Notepad

### C:\SIMULIA\Abaqus\Commands\abq6145.bat

@echo off

"C:\SIMULIA\Abaqus\6.14-5\code\bin\abq6145.exe" %\*



@call "C:\Program Files (x86)\Microsoft Visual Studio

12.0\VC\vcvarsall.bat" x64

@call "C:\Program Files (x86)\Intel\Composer XE 2013

SP1\bin\ipsxe-comp-vars.bat" intel64 vs2013

@echo off

"C:\SIMULIA\Abaqus\6.14-5\code\bin\abq6145.exe" %\*

### Run Abaqus Verification

Abaqus ..... with user subroutines |



Write your subroutines

now!



### Structural steels with yield plateau

 First, obtain the monotonic true stress – true strain curve using tension coupon test.

s, e nominal stress and strain

 $\varepsilon$ ,  $\sigma$  true stress and strain

w calibrated by numerical simulation of coupons





### Structural steels with yield plateau

An example to calibrate w





Q345 steel

Approximate best-fitting value

$$w = 0.6$$



### Structural steels with yield plateau

 Second, evaluate all those parameters by using only the monotonic true stress – true strain curve.

| v Possion's ratio                                     |                                                                                  | monotonic       |
|-------------------------------------------------------|----------------------------------------------------------------------------------|-----------------|
| Elastic modulus                                       | $\sigma_{y}$ yield stress                                                        |                 |
| $arepsilon_{	ext{st}}^{	ext{p}}$ plastic strain at th | e end of yield plateau                                                           |                 |
| $ar{ar{arepsilon}_{ m st}^{ m p}}$ Threshold          |                                                                                  | cyclic          |
| c <sup>s</sup> Memory scalar                          | $Q_1^s b_1^s$ Isotropic so                                                       | oftening        |
| plateau region                                        | $C_1^s \gamma_1^s C_2^s \gamma_2^s$ Kiner                                        | natic hardening |
| c <sup>l</sup> Memory scalar                          | $oxed{Q_{\!\scriptscriptstyle 1}^l \ b_{\!\scriptscriptstyle 1}^l}$ Isotropic ha | ardening        |
| hardening region                                      | $C_1^l \gamma_1^l C_2^l \gamma_2^l$ Kinen                                        | natic hardening |



### Structural steels with yield plateau

 Saturation of softening for the yield surface should be completed within the yield plateau in the case of monotonic loading.

$$Q_1^s = -(0.3 \sim 0.5)\sigma_y$$
 and  $b_1^s = 300 \sim 400$ 





### Structural steels with yield plateau

The lower bound of elastic range remains unchanged after strain hardening initiates until the ultimate stress, and the expansion of the yield surface should be completed at the ultimate stress in the case of monotonic loading.

$$Q_1^l = \frac{\sigma_u - \sigma_y}{2}$$

The saturation rate  $b_1^l$  is obtained by a best fitting of the monotonic loading curve.





### Structural steels with yield plateau

#### Consistency condition

$$\sum_{j=1}^{2} \frac{C_j^s}{\gamma_j^s} = -Q_1^s \qquad \min_{j} \left(\gamma_j^s\right) \ge b_1^s$$

#### Empirical assumption

$$\gamma_1^s = 10\gamma_2^s$$
 and  $\gamma_2^s = b_1^s$ 

$$\frac{C_1^s}{\gamma_1^s} = -\frac{1}{3}Q_1^s$$

$$\frac{C_2^s}{\gamma_2^s} = -\frac{2}{3}Q_1^s$$





### Structural steels with yield plateau

• It is natural to set one long-range backstress component as nonlinear and the other as linear.

$$C_2^l = H \quad \text{and} \quad \gamma_2^l = 0$$

$$\frac{C_1^l}{\gamma_1^l} = \frac{\sigma_u - \sigma_y}{2} - H\left(\varepsilon_u^p - \varepsilon_{st}^p\right)$$

The saturation rate  $\gamma_1^l$  is obtained by a best fitting of the monotonic loading curve.





### Structural steels with yield plateau

 Additional requirement to correctly capture the transition from the yield plateau to the hardening region for monotonic loading.

$$\bar{\varepsilon}_{\mathrm{st}}^{\mathrm{p}} \leq c^{s} \varepsilon_{\mathrm{st}}^{\mathrm{p}}$$

#### **Empirical values:**

$$\overline{\varepsilon}_{\rm st}^{\rm p} = 0.4\% \sim 0.6\%$$

$$c^s = 0.5$$
 and  $c^l = 0.2 \sim 0.4$ 



W



### Structural steels without yield plateau

 First, obtain the monotonic true stress – true strain curve using tension coupon test.

 $\sigma_{0.01}$  approximate yield stress in plasticity model

calibrated by numerical simulation of





### Structural steels without yield plateau

 Second, evaluate all those parameters by using only the monotonic true stress – true strain curve.





### Structural steels without yield plateau

 The lower bound of elastic range is assumed to experience a three-stage evolution under monotonic loading, and its stable value at moderate strain levels is empirically determined as follows:

$$-\sigma_0 = -0.2\sigma_{0.01}$$





### Structural steels without yield plateau

 Assume that there exist two short-range isotropic softening components and their saturation satisfies:

$$\sum_{j=1}^{2} Q_{j}^{s} = -\frac{\sigma_{0.01} - \sigma_{0}}{2}$$

• For convenience, their saturation are assumed to be equal:

$$Q_1^s = Q_2^s$$

The saturation rates  $b_1^s$   $b_2^s$  are Elastic empirically determined to fit range cyclic test results.





### Structural steels without yield plateau

• To ensure the consistency of positive hardening modulus after initial yielding, a solution is that there should exist two short-range kinematic hardening components and their saturation and evolution rates are exactly the same in absolute value with those of isotropic softening components:

$$\frac{C_j^s}{\gamma_j^s} = -Q_j^s$$

$$\gamma_j^s = b_j^s$$
  $j = 1, 2$ 





### Structural steels without yield plateau

 Assume there are two long-range isotropic hardening components, and their saturation should satisfy at ultimate plastic strain:

$$\sum_{j=1}^{2} Q_{j}^{l} = \frac{\sigma_{u} + \sigma_{0}}{2} - \sigma_{0.01} - \sum_{j=1}^{2} Q_{j}^{s} = \frac{\sigma_{u} - \sigma_{0.01}}{2}$$

Empirical assumption

$$Q_1^l: Q_2^l = 2:1$$

The saturation rates  $b_1^l$   $b_2^l$  are Elastic obtained by a best fitting of the monotonic loading curve.





### Structural steels without yield plateau

 It is natural to set one long-range backstress component as linear and the other two as nonlinear that should saturate at ultimate

**plastic strain.**  $C_3^l = H$  and  $\gamma_3^l = 0$ 

$$\sum_{j=1}^{2} \frac{C_{j}^{l}}{\gamma_{j}^{l}} = \frac{\sigma_{u} - \sigma_{0}}{2} - \sum_{j=1}^{2} \frac{C_{j}^{s}}{\gamma_{j}^{s}} - H\varepsilon_{u}^{p} = \frac{\sigma_{u} - \sigma_{0.01}}{2} - H\varepsilon_{u}^{p}$$

• Empirical assumption

$$\frac{C_1^l}{\gamma_1^l} : \frac{C_2^l}{\gamma_2^l} = 2 : 1$$

The saturation rates  $\begin{bmatrix} \gamma_1^l & \gamma_2^l \\ \gamma_2^l & \gamma_2^l \end{bmatrix}$  are obtained by a best fitting of the monotonic loading curve.





### Structural steels without yield plateau

 Memory scalar generally ranges from 0 to 0.5 and is assumed to take the following empirical

value:

$$c^{l} = 0.2$$



# 4. Step-by-step proc. using UMAT\*\*\* 4. Step-by-step proc. using UMAT\*\* 4. Step-by-step proc. using UMAT\*\* 1. Step proc. using UMAT\*\*

### Step 1: Property module, Edit Material

- Select <u>General->Depvar</u>: Define the Number of solution-dependent variables to be 55
- Select <u>General->User Material</u>: Define 25 Mechanical Constants





# 4. Step-by-step proc. using UWAT

### Step 1: Property module, Edit Material

#### The order of 25 Mechanical Constants

| 1  | E                                                                 | 14 | $C_1^s$                                     |
|----|-------------------------------------------------------------------|----|---------------------------------------------|
| 2  | v , 0.3 for steel                                                 | 15 | $\gamma_1^s$                                |
| 3  | $\sigma_{y}$                                                      | 16 | $C_2^s$                                     |
| 4  | $\mathcal{E}_{\mathrm{st}}^{\mathrm{p}}$ , 0 if w/o yield plateau | 17 | $\gamma_2^s$                                |
| 5  | $\overline{\mathcal{E}}_{st}^{p}$ , 0 if w/o yield plateau        | 18 | $C_1^l$                                     |
| 6  | $Q_1^s$                                                           | 19 | $\gamma_1^l$                                |
| 7  | $b_1^s$                                                           | 20 | $C_2^l$                                     |
| 8  | $Q_2^s$ , $0$ if with yield plateau                               | 21 | $\gamma_2^l$                                |
| 9  | $oldsymbol{b_2^s}$ , 0 if with yield plateau                      | 22 | $oxed{C_3^l}$ , 0 if with yield plateau     |
| 10 | $oxed{Q_1^l}$                                                     | 23 | $\gamma_3^l$ , 0 if with yield plateau      |
| 11 | $ b_1^l $                                                         | 24 | $c^s$ , $0.5$ if with yield plateau; $0$ if |
| 12 | $oldsymbol{Q}_2^l$ , $0$ if with yield plateau                    |    | without yield plateau                       |
| 13 | $oldsymbol{b_2^l}$ , 0 if with yield plateau                      | 25 | $c^l$ 22                                    |

# 4. Step-by-step proc. using U如為了學大學

### Step 2: Mesh module, when using C3D8R

Define hourglass stiffness in Element Type



# Calculate hourglass stiffness

$$0.005 \cdot \frac{E}{2(1+v)}$$

# 

### Step 2: Property module, when using S4R

Define transverse shear stiffness in Edit Section
 ->Advanced



# Calculate transverse shear stiffness

$$K_{11} = K_{22} = \frac{5}{6} \cdot \frac{E}{2(1+v)} t$$
$$K_{12} = 0$$

t is the shell thickness

# 4. Step-by-step proc. using

### Step 3: Step module, Field Output (Optional)

 Select solution-dependent state variables (SDV) You still use S if you want to output: strone output stress! elastic strain Domain: : Set-Shell plastic strain Frequency: Every n increments Timing: Output at exact times backstress Output Variables ■ Select from list below ○ Preselected defaults ○ All ○ Edit variables NFORC, SDV. equivalent plastic strain Porous media/Fluids Volume/Thickness/Coordinates (The default PEEQ is useless in this case) Error indicators ▼ ■ State/Field/User/Time SDV, Solution dependent state variables yield index MFR, Predefined mass flow rates (0 indicates initial elastic response) UVARM, User-defined output variables STATUS, Status (some failure and plasticity models; VUMAT) (1 indicates yield in plateau region if with yield plateau, or yield if without yield plateau) Output for rebar Output at shell, beam, and layered section points: (2 indicates yield in hardening region only if with yield p Include local coordinate directions when available and other memory variables. 25

OK

Cancel

# 4. Step-by-step proc. using UMAT

### Step 3: <u>Step module</u>, Field Output (Optional)

#### List of SDVs

| elastic strain                               | SDV1~SDV6   |
|----------------------------------------------|-------------|
| plastic strain                               | SDV7~SDV12  |
| center of memory surface                     | SDV13~SDV18 |
| 1st short-range backstress                   | SDV19~SDV24 |
| 2 <sup>nd</sup> short-range backstress       | SDV25~SDV30 |
| 1st long-range backstress                    | SDV31~SDV36 |
| 2 <sup>nd</sup> long-range backstress        | SDV37~SDV42 |
| 3 <sup>rd</sup> long-range backstress        | SDV43~SDV48 |
| 1st short-range softening stress             | SDV49       |
| 2 <sup>nd</sup> short-range softening stress | SDV50       |
| 1st long-range hardening stress              | SDV51       |
| 2 <sup>nd</sup> long-range hardening stress  | SDV52       |
| radius of memory surface                     | SDV53       |
| equivalent plastic strain                    | SDV54       |
| yield index                                  | SDV55       |
|                                              |             |

26

# 4. Step-by-step proc. using U

### Step 3: Step module, Field Output (Optional)

 Since output of all SDVs will be very expensive for storage when your are analyzing a large model, and if you want to output only variables you are interested, edit the Keywords (\*.inp file).

E.g. you want to output only equivalent plastic strain and yield index, as I usually do, just replace SDV with SDV54, SDV55 in \*.inp file. \*\* FIELD OUTPUT: F-Output-1

\*Output, field, time interval=0.02 \*Node Output \*Element Output, directions=YES

Note that instead of 6 components (11, 22, 33, 12, 13, 23) for stress and strain tensors in a solid element, there are only 3 valid components (11, 22, 12) for stress and strain tensors in a shell element. Therefore, the last 3 components for tensor SDVs will be always 0 in a shell element!

**27** 

# 4. Step-by-step proc. using UVAT\*\*\*

### Step 4: <u>Job</u> module, Edit Job

Use subroutine file under the General tab



Subroutine file for structural steels with yield plateau

aba\_param.inc
UMAT\_STEEL01.obj or
UMAT\_STEEL02.obj

Subroutine file for structural steels without yield plateau (high strength steels)

both files should be placed in the same directory



### Coupon test of Q235 steel

• Shi YJ, Wang M, Wang YQ. Experimental and constitutive model study of structural steel under cyclic loading. Journal of Constructional Steel Research, 2011, 67: 1185–97.

| $egin{array}{c} E \ oldsymbol{\sigma}_{ m y} \end{array}$ | $rac{oldsymbol{arepsilon}^{	ext{p}}_{	ext{st}}}{ar{arepsilon}^{	ext{p}}_{	ext{st}}}$ | $egin{pmatrix} oldsymbol{Q_1^s} \ oldsymbol{b_1^s} \end{pmatrix}$ | $egin{array}{c} Q_1^l \ b_1^l \end{array}$ | $egin{pmatrix} C_1^s \ \gamma_1^s \end{bmatrix}$ | $oldsymbol{C_2^s}{oldsymbol{\gamma_2^s}}$ | $egin{pmatrix} oldsymbol{C_1^l} \ oldsymbol{\gamma_1^l} \end{array}$ | $egin{pmatrix} C_2^l \ \gamma_2^l \end{bmatrix}$ | $egin{array}{c} c^s \ c^l \end{array}$ |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|----------------------------------------|
| 200000                                                    | 0.0072                                                                                | -203.5                                                            | 125.2                                      | 203500.0                                         | 40700.0                                   | 2657.3                                                               | 362.2                                            | 0.5                                    |
| 407.0                                                     | 0.0036                                                                                | 300                                                               | 25                                         | 3000                                             | 300                                       | 30                                                                   | 0                                                | 0.3                                    |









#### Coupon test of Q235 steel















### Coupon test of Q355 steel

• Shi YJ, Wang M, Wang YQ. Experimental and constitutive model study of structural steel under cyclic loading. Journal of Constructional Steel Research, 2011, 67: 1185–97.

| $egin{array}{c} E \ \pmb{\sigma_{\!\scriptscriptstyle y}} \end{array}$ | $rac{\mathcal{E}_{	ext{st}}^{	ext{p}}}{ar{\mathcal{E}}_{	ext{st}}^{	ext{p}}}$ | $egin{pmatrix} oldsymbol{Q_1^s} \ oldsymbol{b_1^s} \end{pmatrix}$ | $egin{array}{c} oldsymbol{\mathcal{Q}}_1^l \ oldsymbol{b}_1^l \end{array}$ | $egin{pmatrix} C_1^s \ \gamma_1^s \end{bmatrix}$ | $oldsymbol{C_2^s}{oldsymbol{\mathcal{V}_2^s}}$ | $egin{pmatrix} C_1^l \ \gamma_1^l \end{bmatrix}$ | $egin{array}{c} C_2^l \ \gamma_2^l \end{array}$ | $egin{array}{c} c^s \ c^l \end{array}$ |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|-------------------------------------------------|----------------------------------------|
| 205000                                                                 | 0.0060                                                                         | -214.5                                                            | 125.1                                                                      | 214500.0                                         | 42900.0                                        | 2245.0                                           | 408.3                                           | 0.5                                    |
| 429.0                                                                  | 0.0030                                                                         | 300                                                               | 25                                                                         | 3000                                             | 300                                            | 30                                               | 0                                               | 0.3                                    |





### Coupon test of Q355 steel





### Coupon test of Q355 steel





### Coupon test of Q460 steel

• Shi G, Wang M, Wang YQ, Wang F. Cyclic behavior of 460 MPa high strength structural steel and welded connection under earthquake loading. Advances in Structural Engineering, 2013, 16(3): 451–66.

| $egin{array}{c} E \ oldsymbol{\sigma}_{ m y} \end{array}$ | $rac{oldsymbol{arepsilon}^{	ext{p}}_{	ext{st}}}{ar{oldsymbol{arepsilon}}^{	ext{p}}_{	ext{st}}}$ | $egin{pmatrix} oldsymbol{\mathcal{Q}}_1^s \ oldsymbol{b}_1^s \ \end{pmatrix}$ | $egin{pmatrix} oldsymbol{\mathcal{Q}}_1^l \ oldsymbol{b}_1^l \end{bmatrix}$ | $egin{array}{c} C_1^s \ \gamma_1^s \end{array}$ | $egin{array}{c} C_2^s \ \gamma_2^s \end{array}$ | $egin{pmatrix} oldsymbol{C_1^l} \ oldsymbol{\gamma_1^l} \end{array}$ | $egin{pmatrix} oldsymbol{C_2^l} \ oldsymbol{\gamma_2^l} \end{array}$ | $egin{array}{c} c^s \ c^l \end{array}$ |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|
| 208000                                                    | 0.0163                                                                                           | -235.0                                                                        | 114.3                                                                       | 235000.0                                        | 47000.0                                         | 3352.5                                                               | 279.8                                                                | 0.5                                    |
| 470.0                                                     | 0.0050                                                                                           | 300                                                                           | 30                                                                          | 3000                                            | 300                                             | 40                                                                   | 0                                                                    | 0.3                                    |





### Coupon test of Q460 steel















#### Coupon test of Q460 steel











#### Coupon test of Q550 steel

| $E \ \sigma_{0.01}$ | $egin{array}{c} oldsymbol{Q}^{s_1} \ oldsymbol{b}^{s_1} \end{array}$ | $egin{pmatrix} oldsymbol{Q}_2^s \ oldsymbol{b}_2^s \ \end{pmatrix}$ | $egin{pmatrix} oldsymbol{Q}_1^{l} \ oldsymbol{b}_1^{l} \end{pmatrix}$ | $egin{pmatrix} oldsymbol{Q}_2^{\ l} \ oldsymbol{b}_2^{\ l} \end{matrix}$ |
|---------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|
| 230330              | -93.6                                                                | -93.6                                                               | 84.8                                                                  | 42.4                                                                     |
| 468.0               | 3000                                                                 | 300                                                                 | 40                                                                    | 600                                                                      |

| $egin{array}{c} C_1^s \ \gamma_1^s \end{array}$ | $C_2^{\ s} \ \gamma_2^{\ s}$ | $egin{pmatrix} oldsymbol{C_1^l} \ oldsymbol{\gamma_1^l} \end{pmatrix}$ | $egin{pmatrix} oldsymbol{C_2^l} \ oldsymbol{\gamma_2^l} \end{array}$ | $egin{pmatrix} C_3^l \ \gamma_3^l \end{bmatrix}$ | $c^l$       |
|-------------------------------------------------|------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------|-------------|
| 280800                                          | 28080                        | 3708.2                                                                 | 25957.4                                                              | 217                                              | 0.2         |
| 3000                                            | 300                          | 50                                                                     | 700                                                                  | 0                                                | <b>U.</b> 2 |







#### Coupon test of Q550 steel















#### Coupon test of Q550 steel















#### Coupon test of Q690 steel

| $E \ \sigma_{0.01}$ | $egin{array}{c} oldsymbol{Q}^{s_1} \ oldsymbol{b}^{s_1} \end{array}$ | $egin{pmatrix} oldsymbol{Q}_2^s \ oldsymbol{b}_2^s \ \end{pmatrix}$ | $egin{pmatrix} Q_1^{\ l} \ b_1^{\ l} \end{pmatrix}$ | $egin{pmatrix} oldsymbol{Q}_2^{\ l} \ oldsymbol{b}_2^{\ l} \ \end{pmatrix}$ |
|---------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|
| 242800              | -117                                                                 | -117                                                                | 73.4                                                | 36.7                                                                        |
| 584.8               | 3000                                                                 | 300                                                                 | 35                                                  | 650                                                                         |

| $egin{array}{c} C_1^s \ \gamma_1^s \end{array}$ | $egin{array}{c} C_2^{\ s} \ \gamma_2^{\ s} \end{array}$ | $egin{pmatrix} oldsymbol{C_1^l} \ oldsymbol{\gamma_1^l} \end{pmatrix}$ | $egin{pmatrix} oldsymbol{C_2^l} \ oldsymbol{\gamma_2^l} \end{array}$ | $C_3^l \ \gamma_3^l$ | $c^l$ |
|-------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|-------|
| 350905.7                                        | 35090.6                                                 | 2765.2                                                                 | 26115.3                                                              | 241.7                | 0.2   |
| 3000                                            | 300                                                     | 45                                                                     | 850                                                                  | 0                    | 0.2   |







#### Coupon test of Q690 steel















#### Coupon test of Q690 steel















### Default parameters for calibration by a new tension coupon test

| $egin{array}{c} E \ \pmb{\sigma_{ m y}} \end{array}$ | $rac{\mathcal{E}_{	ext{st}}^{	ext{p}}}{ar{\mathcal{E}}_{	ext{st}}^{	ext{p}}}$ | $egin{array}{c} Q_1^s \ oldsymbol{b}^{s_1} \end{array}$ | $egin{array}{c} Q_1^l \ ar{b}^{l_1} \end{array}$ | $egin{array}{c} C_1^s \ \gamma_1^s \end{array}$ | $oldsymbol{C_2^s}{oldsymbol{\gamma_2^s}}$ | $egin{pmatrix} C_1^l \ \gamma_1^l \end{bmatrix}$ | $egin{pmatrix} C_2^l \ \gamma_2^l \end{bmatrix}$ | $egin{array}{c} c^s \ c^l \end{array}$ |
|------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------|
| *                                                    | *                                                                              | $-0.5\sigma_{ m v}$                                     | $(\sigma_u - \sigma_v)/2$                        | $-Q_1^s \gamma_1^s/3$                           | $-2Q_1^s \gamma_2^s/3$                    | <b>Eq.</b> (1)                                   | <b>Eq.</b> (2)                                   | 0.5                                    |
| *                                                    | 0.005                                                                          | 300                                                     | *                                                | 3000                                            | 300                                       | *                                                | 0                                                | 0.3                                    |

Q235 
$$(b_1^l=25, \gamma_1^l=30)$$

Q355 (
$$b_1^1=25, \gamma_1^1=30$$
)

**Q460** (
$$b_1^i = 30, \gamma_1^i = 40$$
)

Eq. (1) 
$$C_1^l = [Q_1^l - C_2^l(\varepsilon_u - \sigma_u/E - \varepsilon_{st}^p)]\gamma_1^l$$

Eq. (2) 
$$C_2^l = w\sigma_u/(1-w\sigma_u/E)$$

| $egin{bmatrix} E \ \sigma_{0.01} \end{bmatrix}$ | $egin{array}{c} oldsymbol{\mathcal{Q}}^{s}_{1} \ oldsymbol{b}^{s}_{1} \end{array}$ | $egin{array}{c} oldsymbol{\mathcal{Q}}_{2}^{s} \ oldsymbol{b}_{2}^{s} \end{array}$ | $egin{array}{c} Q_1^l \ ar{b}_1^l \end{array}$ | $egin{pmatrix} oldsymbol{Q}_2^l \ oldsymbol{b}_2^l \end{pmatrix}$ | $egin{array}{c} C_1^s \ \gamma_1^s \end{array}$ | $oldsymbol{C_2}^s \ {\gamma_2}^s$ | $egin{pmatrix} oldsymbol{C_1^l} \ oldsymbol{\gamma_1^l} \end{array}$ | $egin{pmatrix} oldsymbol{C_2^l} \ oldsymbol{\gamma_2^l} \end{array}$ | $C_3^l $ $\gamma_3^l$ | $c^l$       |
|-------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|-----------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|-------------|
| *                                               | $-0.2\sigma_{0.01}$                                                                | $-0.2\sigma_{0.01}$                                                                | $(\sigma_u$ - $\sigma_{0.01})/3$               | $(\sigma_u$ - $\sigma_{0.01})/6$                                  | $-Q_1^s \gamma_1^s$                             | $-Q_2^s \gamma_2^s$               | <b>Eq.</b> (3)                                                       | <b>Eq.</b> (4)                                                       | <b>Eq.</b> (5)        | 0.2         |
| *                                               | 3000                                                                               | 300                                                                                | *                                              | *                                                                 | 3000                                            | 300                               | *                                                                    | *                                                                    | 0                     | <b>U.</b> 2 |

Q550 
$$(b_1^1=40, b_2^1=600, \gamma_1^1=50, \gamma_2^1=700)$$

**Q690** (
$$b_1^i = 35, b_2^i = 650, \gamma_1^i = 45, \gamma_2^i = 850$$
)

**Q890** (
$$b_1^i = 35$$
,  $b_2^i = 650$ ,  $\gamma_1^i = 45$ ,  $\gamma_2^i = 850$ )

**Q960** (
$$b_1$$
=35,  $b_2$ =650,  $\gamma_1$ =45,  $\gamma_2$ =850)

Eq. (3) 
$$C_1^l = 2[(\sigma_u - \sigma_{0.01})/2 - C_3^l(\varepsilon_u - \sigma_u/E)]\gamma_1^l/3$$

Eq. (4) 
$$C_2^l = [(\sigma_u - \sigma_{0.01})/2 - C_3^l(\varepsilon_u - \sigma_u/E)]\gamma_2^l/3$$

Eq. (5) 
$$C_3^l = w\sigma_u/(1-w\sigma_u/E)$$



### o Default parameters for benchmark properties

- Ban HY, Shi G, Shi YJ, Wang YQ. Research progress on the mechanical property of high strength structural steels. Advanced Materials Research, 2011, 250-253: 640-648.
- Shi G, Zhu X, Ban HY. Material properties and partial factors for resistance of high-strength steels in China. Journal of Constructional Steel Research, 2016, 121: 65-79.

Elastic Nominal Nominal Nominal Nominal Nominal Weight modulus yield offset plateau ultimate ultimate factor strength strain

| Steel Gr. | $oldsymbol{E}$ | $s_y$ or $s_{0.01}$         | S <sub>0.2</sub> | $e_{ m st}$ | $s_{\mathbf{u}}$ | $oldsymbol{e}_{	ext{u}}$ | w   |
|-----------|----------------|-----------------------------|------------------|-------------|------------------|--------------------------|-----|
| Q235      | 206000         | 235                         |                  | 0.025       | 370              | 0.2                      | 0.6 |
| Q355      | 206000         | 355                         | -                | 0.02        | 470              | 0.18                     | 0.6 |
| Q460      | 206000         | 460                         |                  | 0.02        | 550              | 0.12                     | 0.4 |
| Q550      | 206000         | <b>0.9</b> s <sub>0.2</sub> | 550              |             | 670              | 0.085                    | 0.3 |
| Q690      | 206000         |                             | 690              |             | 770              | 0.065                    | 0.3 |
| Q890      | 206000         |                             | 890              | -           | 940              | 0.055                    | 0.3 |
| Q960      | 206000         |                             | 960              |             | 980              | 0.04                     | 0.3 |

-124.2

-160.2

-172.8

-124.2

-160.2

-172.8

66.4

63.6

51.7

33.2

31.8

25.9

**Q690** 

**Q890** 



246.3

297.9

306.2

### o Default parameters for benchmark properties

| Gr.   | $\sigma_{y}$    | $egin{array}{ccc} oldsymbol{arepsilon_{	ext{st}}^{	ext{r}}} \ oldsymbol{ar{arepsilon}_{	ext{st}}^{	ext{p}}} \end{array}$ | $egin{array}{c} \mathcal{U}_1 \ \mathcal{b}_1^s \end{array}$ | $egin{array}{c} oldsymbol{\widetilde{b}}_1^l \end{array}$                             | $\gamma_1^s$   | $egin{pmatrix} \mathcal{C}_2 \ \gamma_2^s \ \end{matrix}$ | $\left[ \begin{array}{c} \mathcal{C}_1 \\ \gamma_1^l \end{array} \right]$ | $\gamma_2^l$ | $egin{array}{c} c \ c^l \end{array}$ |             |
|-------|-----------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------|---------------------------------------------------------------------------|--------------|--------------------------------------|-------------|
| Q235  | 206000<br>235   | 0.0235<br>0.005                                                                                                          | -117.5<br>300                                                | 104.5<br>25                                                                           | 117500         | 23500<br>300                                              | 1881.5                                                                    | 266.7        | 0.5<br>0.3                           |             |
| 0255  | 206000          | 0.005                                                                                                                    | -177.5                                                       | 99.8                                                                                  | 3000<br>177500 | 35500                                                     | 30<br>1546.4                                                              | 333.3        | 0.5                                  |             |
| Q355  | 355             | 0.0050                                                                                                                   | 300                                                          | 25                                                                                    | 3000           | 300                                                       | 30                                                                        | 0            | 0.3                                  |             |
| Q460  | 206000          | 0.0175                                                                                                                   | -230.0                                                       | 78.0                                                                                  | 230000         | 46000                                                     | 2204.1                                                                    | 246.7        | 0.5                                  |             |
| Q+00  | 460             | 0.0050                                                                                                                   | 300                                                          | 30                                                                                    | 3000           | 300                                                       | 40                                                                        | 0            | 0.3                                  |             |
| Steel | E               | $egin{array}{c} Q_1^s \ b_1^s \end{array}$                                                                               | $egin{array}{c} Q_2^s \ b_2^s \end{array}$                   | $egin{array}{ c c c} Q_1^l & Q_1 \ \widetilde{b}_1^l & \widetilde{b}_2^l \end{array}$ | $C_1^s$        | $C_2^s$                                                   | $C_1^l$                                                                   | $C_2^l$      | $C_3^l$                              | $oxed{c^l}$ |
| Gr.   | $\sigma_{0.01}$ | $b_1^s$                                                                                                                  | $b_2^{s}$                                                    | $b_1^{\iota}$ $b_2^{\iota}$                                                           | $\gamma_1^s$   | $\gamma_2^s$                                              | $\gamma_1^I$                                                              | $\gamma_2^I$ | $\gamma_3^l$                         |             |
| Q550  | 206000          | <b>-99</b>                                                                                                               | <b>-99</b>                                                   | 77.3 38.                                                                              |                | 14850                                                     | 3297.8                                                                    | 23084.9      | 218.3                                | 0.2         |

2549.8

2425.0

2013.2

24081.7

22902.5

19013.1

| 1 | 5 |  |
|---|---|--|
| T | J |  |

0.2

0.2

0.2

### Summary



- o User manual Cyclic plasticity model of structural steels.pptx
  - Instructions on how to use the UMAT model
- User manual Cyclic plasticity model of structural steels.xlsx
  - Instructions on how to quickly calibrate parameters
- o aba param.inc
- o UMAT STEEL01.obj, UMAT STEEL02.obj UMATs for steels with and without yield plateau
- Single element Shell.cae
- Single element Solid.cae

Simple examples using the UMAT

**ABAQUS 6.14 model files** 

### References



Hu F X, Shi G, Shi Y J. Constitutive model for full-range elasto-plastic behavior of structural steels with yield plateau: Formulation and implementation. Engineering Structures, 2018, 171: 1059-1070.

 Hu F X, Shi G, Shi Y J. Constitutive model for fullrange elasto-plastic behavior of structural steels with yield plateau: Calibration and validation. Engineering Structures, 2016, 118: 210-227.

#### References



 Hu F X, Shi G. Constitutive model for full-range cyclic behavior of high strength steels without yield plateau. Construction and Building Materials, 2018, 162: 596-607.





## THE END





?\$&#...

<u>49</u>