# Advanced Methods in Biostatistics I Lecture 2

Martin Lindquist

August 31, 2017

# Single parameter regression

- In today's class we will consider two simple linear models consisting of a single variable: mean only regression and regression through the origin.
- In both cases we will seek the least squares estimate of the unknown model parameter.
- But we begin with some review of linear algebra.

#### Vector space

#### Definition

A (real) vector space consists of a non empty set **V** and two operations:

- (1) Addition is defined for pairs of elements  $\mathbf{x}$  and  $\mathbf{y} \in \mathbf{V}$ , and yields an element in  $\mathbf{V}$ , denoted  $\mathbf{x} + \mathbf{y}$ .
- (2) Scalar multiplication is defined for a real number  $\alpha$  and an element  $\mathbf{x} \in \mathbf{V}$ , and yields an element in  $\mathbf{V}$  denoted  $\alpha \mathbf{x}$ .

#### Vector space

#### **Properties**

The following properties must hold for  $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{V}, \alpha, \beta \in \mathbb{R}$ :

- (1) x + y = y + x
- (2) (x + y) + z = x + (y + z)
- (3) There is an element in V denoted 0 such that 0 + x = x + 0 = x
- (4) For each  $\mathbf{x} \in \mathbf{V}$  there is an element in  $\mathbf{V}$  denoted  $-\mathbf{x}$  such that  $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0}$
- (5)  $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$  for all  $\alpha$
- (6)  $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$  for all  $\alpha, \beta$
- (7) 1x = x
- (8)  $\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$  for all  $\alpha, \beta$

#### **Notation**

- The elements of V are called vectors.
- The elements in IR are called scalars.

#### Example

- Let V = R<sup>n</sup> be the set of all n-tuples (i.e., ordered set) of real numbers.
  - Let  $\mathbf{x} = (x_1, x_2, ..., x_n)$  and  $\mathbf{y} = (y_1, y_2, ..., y_n)$  belong to  $\mathbf{V}$ .
  - Addition defined as  $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$ .
  - Scalar multiplication defined by  $\alpha \mathbf{x} = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$ .
- V is a vector space.

### Subspace

#### Definition

A subset  ${\bf U}$  of a vector space  ${\bf V}$  is a subspace of  ${\bf V}$  if and only if the following properties hold:

- $\mathbf{0} \in \mathbf{U}$
- **U** is closed under vector addition, i.e., if  $\mathbf{u}_1$  and  $\mathbf{u}_2$  are in **U**, then  $\mathbf{u}_1 + \mathbf{u}_2 \in \mathbf{U}$ .
- **U** is closed under scalar products, i.e., if c is a scalar and  $u \in U$ , then  $cu \in U$ .

If these properties hold, **U** is also a vector space.

### Example

- Let **U** be the set of all elements  $(x_1, x_2, ..., x_n)$  in  $\mathbb{R}^n$  such that  $x_n = 0$ .
- **U** is a vector subspace of  $V = \mathbb{R}^n$ .

#### Span

#### Definition

If  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$  is any set of vectors in a vector space  $\mathbf{V}$ , the set of all linear combinations of these vectors is called their span.

# Linearly independent

#### **Definition**

A collection of vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$  are linearly independent if  $\sum_i c_i \mathbf{v}_i \neq 0$  unless  $c_i = 0$  for all i.

#### Linear basis

#### Definition

A linear basis for a vector space  $\mathbf{V}$  is a set of linearly independent vectors which span  $\mathbf{V}$ .

#### Dimension

#### Definition

The dimension of a vector space is the number of vectors in any basis of the vector space.

### Inner product

#### Definition

Inner product of two vectors:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}' \mathbf{y} = \sum_{i=1}^{n} x_i y_i$$

A vector space which has an inner product defined for every pair of vectors is called an inner product space.

#### Inner product

#### **Properties**

For points in **V**, the inner product satisfies:

$$< x, y > = < y, x >$$
  
 $< ax, y > = a < x, y >$   
 $< x_1 + x_2, y > = < x_1, y > + < x_2, y >$ 

### Inner product

#### **Definitions**

- The norm  $||\mathbf{x}|| = \sqrt{\mathbf{x}'\mathbf{x}}$  gives the length of a vector.
- The distance between **x** and **y** is given by  $||\mathbf{x} \mathbf{y}||$ .
- Two vectors  $\mathbf{x}$  and  $\mathbf{y}$  are orthogonal if  $\mathbf{x}'\mathbf{y} = 0$ .
- The angle between two vectors x and y is given by:

$$cos(\theta) = \frac{<\mathbf{x},\mathbf{y}>}{||\mathbf{x}||\cdot||\mathbf{y}||}$$

# Pythagorean theorem

#### **Theorem**

Let  $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$  be pairwise orthogonal vectors in a Euclidean vector space. Then,

$$||\boldsymbol{x}_1 + \boldsymbol{x}_2 + \ldots + \boldsymbol{x}_n||^2 = ||\boldsymbol{x}_1||^2 + ||\boldsymbol{x}_2||^2 + \ldots + ||\boldsymbol{x}_n||^2$$

# Projection

#### **Definition**

The projection of a vector  $\mathbf{y}$  on a vector  $\mathbf{x}$  is the vector  $\hat{\mathbf{y}}$  such that

- $\hat{\mathbf{y}} = b \mathbf{x}$  for some constant b.
- $(\mathbf{y} \hat{\mathbf{y}})$  is orthogonal to  $\mathbf{x}$  (or  $<\hat{\mathbf{y}}, \mathbf{x}> = <\mathbf{y}, \mathbf{x}>$ ).

# Projection

For two vectors  $\mathbf{x}$  and  $\mathbf{y}$ , the projection of  $\mathbf{y}$  onto  $\mathbf{x}$  is given by:

$$\hat{\mathbf{y}} = \frac{\mathbf{x}'\mathbf{y}}{\mathbf{x}'\mathbf{x}}\mathbf{x}.$$

# Example

- Let  $\mathbf{J}_n$  be a vector of ones and  $\mathbf{y} = (y_1, y_2, \dots y_n)'$
- Then,  $\hat{\mathbf{y}} = \bar{y} \mathbf{J}_n$ .

### Projection

#### **Theorem**

Among all multiples  $a\mathbf{x}$  of  $\mathbf{x}$ , the projection  $\hat{\mathbf{y}}$  of  $\mathbf{y}$  on  $\mathbf{x}$  is the closest vector to  $\mathbf{y}$ .

# Mean only regression

Consider the following model:

$$y_i = \mu + \epsilon_i$$
 for  $i = 1, \dots n$ .

• We seek to minimize the function  $f(\mu) = \sum_{i=1}^{n} (y_i - \mu)^2$  with respect to  $\mu$ .

# Mean only regression

- Alternatively we can write the model as  $\mathbf{y} = \mathbf{J}_n \mu + \epsilon$ .
- Under this formulation we seek to minimize  $f(\mu) = ||\mathbf{y} \mathbf{J}_n \mu||^2$  with respect to  $\mu$ .

To do so, we begin by rewriting f as follows:

$$f(\mu) = (\mathbf{y} - \mathbf{J}_n \mu)'(\mathbf{y} - \mathbf{J}_n \mu)$$

$$= \mathbf{y}' \mathbf{y} - 2 \mathbf{J}'_n \mathbf{y} \mu + \mathbf{J}'_n \mathbf{J}_n \mu^2$$

$$= \mathbf{y}' \mathbf{y} - 2 n \bar{\mathbf{y}} \mu + n \mu^2$$

# Mean only regression

• Taking derivatives of f with respect to  $\mu$  we obtain:

$$rac{ extit{d}f}{ extit{d}\mu} = -2nar{y} + 2n\mu.$$

- This has a root at  $\hat{\mu} = \bar{y}$ .
- Note that the second derivative is 2n > 0.
- The average is the least squares estimate in the sense of minimizing the Euclidean distance between the observed data and a constant vector.

# Mean only regression - Geometric interpretation

- Alternatively, we can think of this as projecting our n dimensional data onto the one dimensional subspace spanned by J<sub>n</sub>.
- Recall the projection is  $\hat{\mathbf{y}} = \bar{y} \mathbf{J}_n$

#### Diamond data

The diamond dataset consists of data on 48 diamond rings containing price in Singapore dollars and size of diamond in carats.



#### R code

```
> library(UsingR); data(diamond)
> y = diamond$price; x = diamond$carat
> mean(y)
[1] 500.0833
> #using least squares
> coef(lm(y ~ 1))
[1] 500.0833
```

As expected the mean only least squares estimate obtained via  $\mbox{lm}$  is the empirical mean.

- Now consider the regression through the origin problem.
- Consider the following model:

$$y_i = \beta x_i + \epsilon_i$$
 for  $i = 1, \dots n$ .

• We seek to minimize the function  $f(\mu) = \sum_{i=1}^{n} (y_i - \beta x_i)^2$  with respect to  $\beta$ .

- Note that the pairs  $(x_i, y_i)$  form a scatterplot.
- Least squares involves finding the best fitting line of the form  $y = \beta_1 x$  by minimizing the sum of the squared vertical distances between the points and the fitted line.
- Note we only consider lines going through the origin.

- Let  $\mathbf{x} = (x_1, \dots x_n)'$  be a vector.
- We can write the model:  $\mathbf{y} = \mathbf{x}\beta + \epsilon$ .
- We seek to minimize  $f(\beta) = ||\mathbf{y} \mathbf{x}\beta||^2$  with respect to  $\beta$ .
- We can re-write the least-squares criteria as follows:

$$f(\beta) = \mathbf{y}'\mathbf{y} - 2\mathbf{y}'\mathbf{x}\beta + \mathbf{x}'\mathbf{x}\beta^2.$$

• Taking derivatives with respect to  $\beta$  we obtain:

$$\frac{df}{d\beta} = -2\mathbf{y}'\mathbf{x} + 2\mathbf{x}'\mathbf{x}\beta.$$

Setting this equal to zero we obtain the solution:

$$\hat{\beta} = \frac{\mathbf{y}'\mathbf{x}}{\mathbf{x}'\mathbf{x}} = \frac{\langle \mathbf{y}, \mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

- Note that the second derivative is 2x'x > 0.
- Thus,  $\hat{\beta}$  minimizes the least-squares criteria.

# Geometric interpretation

- Alternatively, we can think of this as projecting our n dimensional data onto the one dimensional subspace spanned by the single vector  $\mathbf{x}$ , i.e.  $\{\beta \mathbf{x} | \beta \in \mathbb{R}\}$ .
- Here the projection given by

$$\hat{\mathbf{y}} = \frac{\mathbf{x}'\mathbf{y}}{\mathbf{x}'\mathbf{x}}\mathbf{x}.$$

#### R code

#### Continuing with the diamond example.