R =
$$\frac{53}{10} * 10^{3}$$
;

R1 = R;

R2 := α * R1;

R3 = R1;

R4 = R1; C1 = 10^{-5} ; C2 = C1;

RC1 := $\frac{1}{I ω C1}$; RC2 := $\frac{1}{I ω C2}$;

R3RC1 := $\frac{RC1 * R3}{RC1 + R3}$;

kk = $\frac{R3RC1}{R3RC1 + R4 + RC2}$;

KK = $\frac{1}{R1 * (\frac{kk}{R1} + \frac{kk-1}{R2})}$ // Simplify | упростить

$$\frac{α(-1000000 i + 53000(-2 + α)ω - 2809 i ω^{2})}{10000000 i + 53000(-2 + α)ω - 2809 i ω^{2}}$$

$$\begin{split} & \text{K}\left[\omega_{-}, \ \alpha_{-}\right] := \frac{\alpha \left(-1000\,000\,\text{I} + 159\,000\,\omega + 2809\,\text{I}\,\omega^{2}\right)}{1\,000\,000\,\text{I} + 53\,000\,\left(-2 + \alpha\right)\,\omega - 2809\,\text{I}\,\omega^{2}}; \\ & \alpha = \frac{18}{10}; \end{split}$$

Kmax = Abs[K[
$$\omega$$
0, α]]; абсолютное значение

NSolve
$$\left[\left\{\mathrm{Kmax}\left/\sqrt{2}\right.\right.\right]$$
 == Evaluate [Abs [K [ω , α]]] && ω \in Reals && ω > 0 $\left.\right]$, ω $\left[$ численное решение урав \cdots $\left[$ вычислить $\left[$ абсолютное значение $\left.\right.\right]$ множество действительное распользования (верхительное).

$$\{\,\{\omega\rightarrow\textbf{17.0676}\,\}\,\text{, }\{\omega\rightarrow\textbf{20.8581}\,\}\,\}$$

LogPlot[{Abs[K[
$$\omega$$
, α]], $\frac{\text{Kmax}}{2}$ }, { ω , 0, 100}] рафик ϕ ... раболютное значени $\sqrt{2}$

Kmax

27.

$$\operatorname{Kmax}/\sqrt{2}$$

19.0919

$$Log[10, Kmax - Kmax/\sqrt{2}]$$
 натуральный логарифм

0.898073

$$\alpha = \frac{15}{10};$$

 $\omega 0 = \underset{\sim}{\mathsf{NArgMax}}[\{\mathsf{Abs}[\mathsf{K}[\omega, \alpha]], \omega > 0\}, \omega];$

Kmax = Abs[K[ω 0, α]]; _aбсолютное значение

NSolve [
$$\{\text{Kmax} / \sqrt{2} = \text{Evaluate}[\text{Abs}[\text{K}[\omega, \alpha]]] \& \omega \in \text{Reals} \& \omega > \emptyset \}$$
, ω]
 _численное решение урав··· _вычислить _абсолютное значение _множество действительн

NSolve: NSolve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

$$\{\,\{\,\omega\rightarrow\textbf{14.6285}\,\}\,\text{, }\{\,\omega\rightarrow\textbf{24.336}\,\}\,\}$$

LogPlot[{Abs[K[
$$\omega$$
, α]], $\frac{\text{Kmax}}{2}$ }, { ω , 0, 100}] рафик ϕ ... раболютное значени $\sqrt{2}$

$$\alpha = \frac{12}{10};$$

$$ω0$$
 = NArgMax[{Abs[K[$ω$, $α$]], $ω > 0$ }, $ω$];
 приближ··· абсолютное значение

Kmax = Abs[K[ω 0, α]]; _aбсолютное значение

NSolve
$$\left[\left\{ \operatorname{Kmax} \middle/ \sqrt{2} = \operatorname{Evaluate} \left[\operatorname{Abs} \left[\operatorname{K} \left[\omega, \alpha\right]\right] \right] \& \omega \in \operatorname{Reals} \& \omega > 0 \right\}, \omega \right]$$
 численное решение урав··· $\left[\operatorname{вычислить} \right]$ абсолютное значение $\left[\operatorname{множество} \right]$ множество действительного.

NSolve: NSolve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

$$\{\,\{\omega\rightarrow \textbf{12.4036}\,\}$$
 , $\,\{\omega\rightarrow \textbf{28.7013}\,\}\,\}$

-3.0103