Вариант #1

1

Часть 1

Ответами к заданиям 1-23 являются число или последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

Координата тела мендется по закону $x(t) = 4 - 2t + 3t^2 + 4t^3$ с течением времени. гле все

•	1. Определите проекцию начальной скорости v_{0x} з	•
Ответ:	M/C	
2		
. ,	пы (в заданном масштабе), действующие на май 200 г. Определите модуль равнодействующей	\overline{F}_{2}
Ответ:	Н	$ar{F}_1$
3		5
	ет с высоты 20 м с начальной скоростью, равной н перед ударом о землю равна 35 Дж. Какова поте опротивления воздуха?	•
Ответ:	Дж	

На графике показаны зависимости координаты от времени x(t) для четырех тел, двигавшихся прямолинейно вдоль оси Ox. На основании приведенного графика выберите все верные утверждения из списка.

- 1. Тело 1 в течение 30 секунд двигалось равноускоренно, а затем двигалось равномерно.
- 2. Скорость тела 2 на 10 м/с больше, чем у тела 3.
- 3. У четвертого тела самое маленькое ускорение.

- 4. Максимальная за все время скорость движения была достигнута первым телом.
- 5. Расстояние между телами 2 и 3 не менялось в течение всего времени движения.

Ответ:	

5

На наклонной плоскости стоит однородный цилиндр, удерживаемый силами трения. Угол наклона плоскости к горизонту увеличивают, причем цилиндр по-прежнему не скользит по плоскости. Как в результате изменяются момент силы тяжести относительно нижней точки цилиндра и равнодействующая сил, действующих на цилиндр со стороны плоскости?

Для каждой величины определите соответствующий характер изменения:

- 1. увеличивается
- 2. уменьшается
- 3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Момент силы тяжести	Равнодействующая сила со стороны плоскости

6

Тело, брошенное с горизонтальной поверхности Земли со скоростью υ под углом α к горизонту, поднимается на максимальную высоту h над земной поверхностью и затем падает на землю на расстоянии S от места броска. Сопротивлением воздуха пренебречь.

Установите соответствие между физическими величинами и формулами, по которым их можно определить.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ

- A) максимальная высота h над земной поверхностью
- $1) \frac{v^2 \sin^2 \alpha}{2g}$
- Б) модуль горизонтальной проекции скорости тела непосредственно перед падением на землю
- 2) $v \sin \alpha$
- $3) \frac{v^2 \sin 2\alpha}{2g}$
- 4) $v\cos\alpha$

Ответ:

АБ

7

При изобарном процессе концентрация идеального газа увеличилась в 5 раз. Чему равно отношение конечной кинетической энергии молекул газа к начальной кинетической энергии?

Ответ: _____

8

3 моль водорода находятся в сосуде при комнатной температуре и давлении 1600 Па. Каким будет давление 3 моль кислорода в том же сосуде и при той же температуре? Газы считать идеальными.

Ответ: _____ Па

9

На рисунке приведены графики зависимости давления газа от температуры. Какой из графиков соответствует зависимости давления насыщенного пара от температуры, а какой — изохорному процессу для идеального газа? В ответ запишите две цифры, соответствующие номерам выбранных графиков, не разделяя их знаками препинания.

Ответ:

10

Один моль идеального одноатомного газа переходит из состояния 1 в состояние 2 (см. диаграмму). U — внутренняя энергия газа, V — объем газа.

Выберите все утверждения из приведенного списка, верно характеризующие процесс 1-2.

- 1. Температура газа увеличивается.
- 2. Давление газа выросло в 4 раза.
- 3. Газ получил положительное количество теплоты в процессе 1-2.
- 4. Среднеквадратичная скорость движения молекул газа уменьшилась в 4 раза.
- 5. Концентрация частиц не изменилась.

Ответ:

Один моль идеального газа участвует в процессе 1-2-3, график которого изображён на рисунке в координатах p-T, где p — давление газа, T — абсолютная температура газа.

Как изменяются объём газа в ходе процесса 1-2 и концентрация молекул газа в ходе процесса 2-3? Масса газа остаётся постоянной.

Для каждой величины определите соответствующий характер изменения:

0

- 1. увеличивается
- 2. уменьшается
- 3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Объем газа в ходе процесса 1-2	Концентрация молекул газа в ходе процесса 2-3

12

Идеальный амперметр на представленной схеме показывает силу тока 5 А. Чему равно напряжение на выводах схемы? Сопротивление r каждого резистора равно 2 Ом.

Ответ: ______ Е

13

Во сколько раз изменится индуктивность катушки при увеличении энергии магнитного поля катушки в 4 раза?

Ответ: раз(а)

14

На шахматной доске на расстоянии пяти клеток от вертикального плоского зеркала стоит ладья. На сколько увеличится расстояние между ладьей и ее изображением, если ее на три клетки отодвинуть от зеркала?

Ответ: _____ клетка (клетки, клеток)

Нихромовый проводник АБ подвешен на тонких медных проволочках к деревянной балке и подключён к источнику постоянного напряжения так, как показано на рисунке. Вблизи проводника находится южный полюс постоянного магнита (см. рисунок). Ползунок реостата плавно перемещают влево.

A S N

Из приведённого ниже списка выберите все верные утверждения.

- 1. Линии индукции магнитного поля, созданного магнитом вблизи проводника АБ, направлены влево.
- 2. Сила натяжения проволочек, на которых подвешен проводник АБ, увеличивается.
- 3. Сила Ампера, действующая на проводник АБ, увеличивается.
- 4. Сопротивление внешней цепи увеличивается.
- 5. Сила тока, протекающего через проводник АБ, уменьшается.

16

На рисунке представлена схема цепи для исследования различных проводников. Внутренним сопротивлением источника можно пренебречь.

 $\begin{array}{c|cccc}
R & + & - & A \\
\hline
 & \varnothing & \varnothing
\end{array}$

Сначала между клеммами A и B включили отрезок медного провода. Затем его заменили медным проводом такой же длины, но с большей площадью поперечного сечения. Как изменяются в результате замены сопротивление цепи с проводником и сила тока в ней?

Для каждой величины определите соответствующий характер изменения:

- 1. увеличивается
- 2. уменьшается
- 3. не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Сопротивление цепи	Сила тока в цепи	

Конденсатор идеального колебательного контура длительное время подключён к источнику постоянного напряжения (см. рисунок). В момент t=0 переключатель К переводят из положения 1 в положение 2. Графики A и δ отображают изменения с течением времени t физических величин, характеризующих возникшие после этого свободные электромагнитные колебания в контуре (T — период колебаний).

Установите соответствие между графиками и физическими величинами, зависимость которых от времени эти графики могут отображать.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ГРАФИКИ A) Б)

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) сила тока в катушке
- 2) заряд левой обкладки конденсатора
- 3) энергия магнитного поля катушки
- 4) энергия электрического поля конденсатора

Ответ:

Ядро урана захватывает нейтрон, в результате чего происходит ядерная реакция $^{235}_{92}$ U $+^{1}_{0}$ n $\rightarrow ^{139}_{56}$ Ba $+^{A}_{7}$ X + 2 $^{1}_{0}$ n с образованием ядра химического элемента $^{A}_{7}$ X. Каков заряд образовавшегося ядра Z (в единицах элементарного заряда)?

Ответ:

19

На рисунке изображена упрошённая диаграмма нижних энергетических уровней атома. Нумерованными стрелками отмечены некоторые возможные переходы атома между уровнями. Какие из этих четырёх переходов связаны с поглошением света с наименьшей частотой и излучением света с наименьшей энергией фотонов?

Установите соответствие между процессами поглощения и излучения света и энергетическими переходами атома, указанными стрелками.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

$egin{array}{c} E_3 \ E_2 \end{array}$		
E_2	A	
E_1		\bot
-1	↑	
.		, ♦
E_0	1 2 3	3 4

ПРОЦЕССЫ

фотонов

ЭНЕРГЕТИЧЕСКИЕ ПЕРЕХОДЫ

- А) поглощение света с наименьшей частотой
- 2) 2 Б) излучение света с наименьшей энергией
 - 3)3

1) 1

4) 4

Ответ:

20

Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите цифры, под которыми они указаны.

- 1. При движении с постоянной по модулю скоростью тело всегда имеет нулевое ускорение.
- 2. Модель идеального газа учитывает взаимодействие молекул друг с другом.
- 3. Медь отталкивается от постоянного магнита, так как является диамагнетиком.
- 4. Индукционная плита работает на принципе электростатической индукции.
- 5. Давление света на белую поверхность больше, чем давление света той же интенсивности на поверхность черного цвета той же площади при том же угле падения.

Этвет:	

21

Даны следующие зависимости величин:

- А) зависимость проекции v_x скорости тела, движущегося равноускоренно вдоль оси Ox, от времени движения при начальной скорости тела, не равной нулю;
- Б) зависимость энергии электрического поля конденсатора с постоянной электроёмкостью C от заряда конденсатора;
- В) зависимость максимальной кинетической энергии фотоэлектронов, вылетающих с поверхности катода, от частоты падающего электромагнитного излучения.

Установите соответствие между этими зависимостями и видами графиков, обозначенных цифрами 1–5. Для каждой зависимости А–В подберите соответствующий вид графика и запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

Ответ:

Α	Б	В

22

Ученик пытается измерить силу, которую нужно приложить, чтобы оторвать кнопку от магнита. Показания динамометра приведены на рисунке. Погрешность измерения равна цене деления динамометра. Запишите в ответ показания динамометра с учётом погрешности измерений.

Ответ: (______ ± _____) Н

В бланк ответов № 1 перенесите только числа, не разделяя их пробелом или другим знаком.

23

Необходимо экспериментально выяснить, зависит ли ускорение тела, скользящего по шероховатой наклонной плоскости, от массы тела (на всех представленных ниже рисунках m — масса тела, α — угол наклона плоскости к горизонту, μ — коэффициент трения между бруском и плоскостью). Какие две установки следует использовать для проведения такого исследования?

Ответ:

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2

Для записи ответов на задания 24-30 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (24, 25 и т.д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

24

Виталик к верхнему концу вертикальной медной трубки прикрепил динамометр, а затем бросил в трубку постоянный магнит, удерживая при этом динамометр и не касаясь трубки. Оказалось, что в течение почти всего времени падения магнита в трубке показания динамометра оказываются больше на величину, равную силе тяжести, действующей на магнит.

- 1. Объясните, почему меняются показания динамометра, основываясь на известных Вам физических законах.
- 2. Докажите, что магнит большую часть времени движется с постоянной скоростью.

Полное правильное решение каждой из задач 25-30 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

25

В цилиндре под поршнем находится некоторое количество газа, занимающего при температуре $t_1=77~^{\circ}\mathrm{C}$ и давлении $p=2\cdot 10^5~\mathrm{H}\,/\,\mathrm{M}^2$ объем $V=9\cdot 10^{-3}~\mathrm{M}^3$. Какую работу A пришлось совершить, сжимая газ при постоянном давлении, если его температура при этом понизилась до $t_2=27~^{\circ}\mathrm{C}$? Трение между стенками цилиндра и поршнем отсутствует.

26

Найти фокусное расстояние рассеивающей линзы, если изображение предмета, помещенного перед ней на расстоянии 50 см, получилось уменьшенным в 5 раз.

27

В вертикально расположенном цилиндре находится кислород массой $m=64~\rm r$, отделенный от атмосферы поршнем, который соединен с дном цилиндра пружиной жесткостью $k=831~\rm H/m$. При температуре $T_1=300~\rm K$ поршень располагается на расстоянии $h=1~\rm m$ от дна цилиндра. До какой температуры T_2 надо нагреть кислород, чтобы поршень расположился на высоте $H=1,5~\rm m$ от дна цилиндра?

28

Тонкий цилиндрический проводник длиной ℓ движется с постоянным ускорением a, направленным вдоль его оси. Определите напряжение, возникающее между концами проводника.

29

Излучением лазера с длиной волны $3.3\cdot 10^{-7}\,\mathrm{M}$ за время $1.25\cdot 10^4\,\mathrm{c}$ был расплавлен лед массой $1\,\mathrm{KT}$, взятый при температуре $0\,^\circ\mathrm{C}$, и полученная вода была нагрета на $100\,^\circ\mathrm{C}$. Сколько фотонов излучает лазер за $1\,\mathrm{c}$? Считать, что 50% излучения поглощается веществом.

30

По горизонтальному столу катится без трения тележка массой M со скоростью υ_0 . На горизонтальную поверхность тележки положили кирпич массой m, начальная скорость которого относительно стола была равна нулю. Кирпич прошел по тележке путь ℓ и остановился относительно нее. Найдите коэффициент трения μ между кирпичом и тележкой.

Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.