Two-Way ANOVA Part 3: ANOVA Table and F-Tests

STAT 705: Regression and Analysis of Variance

Introduction

- We continue to work with two-way data,
 concentrating on main effects and interaction effects
- So far, we have used population means to define main effects and interactions effects
- Now we move to sample data
 - Develop formal hypothesis tests to determine if effects are statistically significant
 - Define the test statistics
 - Display the test results

Hypotheses We Want to Test

These are based on the interaction model

$$Y_{ijk} = \mu_{ij} + \epsilon_{ijk}$$
, i.e. $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$

- A main effects hypothesis: H_0 : $\alpha_i = 0$ for all levels of A vs. H_a : not all α_i 's are 0
- B main effects hypothesis: H_0 : $\beta_j = 0$ for all levels of B vs. H_a : not all β_j 's are 0
- Interaction hypothesis: H_0 : $(\alpha\beta)_{ij} = 0$ for all treatments vs. H_a : not all $(\alpha\beta)_{ij}$ are 0

Test Statistics for the Hypotheses

- The test statistics depend on
 - point estimates for the parameters, and
 - separating the total variability in the response into components attributed to
 - » A main effects
 - » B main effects
 - » interaction effects

Least Squares Estimates for Means

Grand mean

```
\hat{\mu} = average of all observations
```

Treatment (i.e. cell) means

```
\hat{\mu}_{ii} = average of all observations in treatment (Ai, Bj)
```

Marginal mean for ith level of factor A

```
\hat{\mu}_{Ai} = average of all the cell means involving factor Ai
```

Marginal mean for jth level of factor B

```
\hat{\mu}_{Bj} = average of all the cell means involving factor Bj
```

Technical note: These definitions are based on Type 3 sums of squares, which lead to Type 3 estimates and hypothesis tests. There are also Type 1, Type 2 and Type 4 definitions, but we will not consider those in this course. Differences between the four types arise only when the data are not balanced.

Least Squares Estimates for Effects

- To estimate the main effects and interaction effects, use
 - a) the definitions for these effects, and
 - b) the least squares estimates for the means (on the previous slide)
- The least squares estimates are
 - Effect of the ith level of Factor A: $\hat{\alpha}_i = \hat{\mu}_{Ai} \hat{\mu}$
 - Effect of the jth level of Factor B: $\hat{\beta}_j = \hat{\mu}_{Bj} \hat{\mu}$
 - Interaction effect: $\hat{\mu}_{ij} \hat{\mu} \hat{\alpha}_i \hat{\beta}_j$
- Note that if we substitute the estimates for α_i and β_j , the interaction effect can be written $\hat{\mu}_{ij} \hat{\mu}_{Ai} \hat{\mu}_{Bj} + \hat{\mu}$

Partitioning the Total Variation

- Test statistics for the hypotheses are based on the previous estimates and separating (partitioning) the total variation in the response
- This is the same approach that we used in regression
- The total variation in the response (SSTot) is split into
 - 1) the variation that is explained by the model (SSModel), and
 - 2) the variation that is not explained (SSE)

$$\begin{aligned} \text{SSTot} &= \sum \left(Y_{ijk} - \overline{Y} \right)^2 = \sum \left(Y_{ijk} - \hat{\mu} \right)^2 \\ &= \sum \left(Y_{ijk} - \hat{Y}_{ijk} + \hat{Y}_{ijk} - \hat{\mu} \right)^2 \\ &= \sum \left(Y_{ijk} - \hat{Y}_{ijk} \right)^2 + \sum \left(\hat{Y}_{ijk} - \hat{\mu} \right)^2 \end{aligned}$$

SSModel

SSE

Partitioning the Model SS

We continue partitioning by splitting the model sum of squares into components for the effects

$$\begin{split} \hat{Y}_{ijk} &= \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + (\alpha \hat{\beta})_{ij} \\ \hat{Y}_{ijk} &- \hat{\mu} = \hat{\alpha}_i + \hat{\beta}_j + (\alpha \hat{\beta})_{ij} \\ \hat{Y}_{ijk} &- \hat{\mu} = (\hat{\mu}_{Ai} - \hat{\mu}) + (\hat{\mu}_{Bj} - \hat{\mu}) + (\hat{\mu}_{ij} - \hat{\mu}_{Ai} - \hat{\mu}_{Bj} + \hat{\mu}) \end{split}$$

Square each term and sum over all observations

$$\sum \left(\hat{Y}_{ijk} - \hat{\mu}\right)^2 = \sum \left(\hat{\mu}_{Ai} - \hat{\mu}\right)^2 + \sum \left(\hat{\mu}_{Bj} - \hat{\mu}\right)^2 + \sum \left(\hat{\mu}_{ij} - \hat{\mu}_{Ai} - \hat{\mu}_{Bj} + \hat{\mu}\right)^2$$

SSModel = SSA + SSB + SSAB

These sums of squares will be used to construct test statistics

Mean Squares

- Degrees of freedom
 - For the A main effect, with 'a' levels, dfA = a 1
 - For the B main effect, with 'b' levels, dfB = b 1
 - For the interaction, df AB = (a 1)(b 1)
- Mean square is the sum of squares divided by the degrees of freedom
 - MSA = SSA / dfA
 - MSB = SSB / dfB
 - MSAB = SSAB / dfAB

The Test Statistics

- For the A main effect: H_0 is $\alpha_i = 0$ for all levels of A
 - Test statistic is F = MSA / MSE
 - Use F distribution with degrees of freedom dfA and dfE
- For the B main effect: H_0 is $\beta_i = 0$ for all levels of B
 - Test statistic is F = MSB / MSE
 - Use F distribution with degrees of freedom dfB and dfE
- For the A*B interaction: H_0 is $(\alpha\beta)_{ij} = 0$ for all treatments
 - Test statistic is F = MSAB / MSE
 - Use F distribution with degrees of freedom dfAB and dfE

ANOVA Table for Two-Way Data

- The ANOVA table provides a concise way of recording the information we have been calculating
- N is the total number of observations (in all groups)
- We will rely on software to perform most of these calculations (especially the p-values)

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
A main effect	a – 1	SSA	SSA/dfA	MSA / MSE	
B main effect	b – 1	SSB	SSB / dfB	MSB / MSE	
A*B interaction	(a − 1)*(b − 1)	SSAB	SSAB / dfAB	MSAB / MSE	
Error	N – ab	SSE	SSE / dfE		
Total	N – 1	SSTot			

Fabric Data Re-visited

Level	Salt	Temperature		
1	Untreated	812		
1	Untreated	827		
1	Untreated	876		
2	Untreated	945		
2	Untreated	881		
2	Untreated	919		
1	CaCO ₃	733		
1	CaCO ₃	728		
1	CaCO ₃	720		
2	CaCO ₃	786		
2	CaCO ₃	771		
2	CaCO ₃	779		
1	CaCl ₂	725		
1	CaCl ₂	727		
1	CaCl ₂	719		
2	CaCl ₂	756		
2	CaCl ₂	781		
2	CaCl ₂	814		

- Fabric was treated with one of three different inorganic salts, at one of two levels of concentration, for the purpose of measuring its effect on the flammability of the fabric
- Response variable is the temperature at which the fabric ignites

Fabric Data: ANOVA Table

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Level	1	17734.72	17734.72	34.11	<.0001
Salt	2	60928.78	30464.39	58.60	<.0001
Level*Salt	2	486.11	243.06	0.47	0.6375
Error	12	6238.67	519.89		
Corrected Total	17	85388.28			

Verify the degrees of freedom

- Factor A is 'Level'; number of levels is 2; dfA = 1
- Factor B is 'Salt'; number of levels is 3; dfB = 2
- Interaction: dfAB = 1*2 = 2
- Total number observations = N
 - = (number of A's)*(number of B's)*(number of replications)
 - $= 2*3*3 = 18 \Rightarrow dfTot = 17$

Interpret the ANOVA Table

- Examine the interaction first.
 - It is not significant (p = 0.6375). This implies
 - » If Salt impacts Temperature, the effect is the same for both Level 1 and Level 2, and
 - » If Level impacts Temperature, the effect is the same for all three Salts
- Since the interaction is not significant, we can interpret the main effects.
 - Salt does affect Temperature (F = 58.60, p < 0.0001)
 - Level does affect Temperature (F = 34.11, p < 0.0001)

Relation to Nested Model F Test

- Each of the hypothesis tests for main effects and interactions can be viewed as a comparison-of-models F test
 - This is also called a 'nested model' F test
 - We discussed this in Multiple Regression, Part 4
- Consider the test for interaction. H_0 : $(\alpha\beta)_{ij} = 0$ for all treatments
 - Full model is the interaction model: $Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}$
 - Reduced model is the additive model: $Y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$
- The test for interaction is comparing these two models.
 - If we reject H₀, then we need to keep the full (interaction) model.
 - If we do not reject H_0 , then we can use the reduced (additive) model.

What You Should Know

- The concept behind partitioning the sums of squares
- How to interpret the ANOVA table
 - Look first at the interaction hypothesis
 - If there is no interaction, then consider the tests of main effects
 - If there is interaction, subsequent analysis gets more complicated (more about this later)
 - Know the hypotheses for each F test
 - Be able to hand-calculate the degrees of freedom

