Notes for High-Dimensional Probability Second Edition by Roman Vershynin

Gallant Tsao

July 22, 2025

Contents

0		,	4
	0.1	Covering Geometric Sets	5
1	A (Quick Refresher on Analysis and Probability	7
	1.1	Convex Sets and Functions	7
	1.2	Norms and Inner Products	7
	1.3	Random Variables and Random Vectors	7
	1.4	Union Bound	8
	1.5	Conditioning	9
	1.6	Probabilistic Inequalities	9
	1.7	Limit Theorems	11
2	Cox	ncentration of Sums of Independent Random Variables	.3
4	2.1	*	13
	$\frac{2.1}{2.2}$		L 4
	$\frac{2.2}{2.3}$		16
	$\frac{2.5}{2.4}$	1 0	18
	2.5		20
	$\frac{2.6}{2.6}$		21
	2.0		23
	2.7		23
			24
			24
			25
			26
	2.8	9	26
		1	26
			28
	2.9	Bernstein Inequality	29
3	Dor	ndom Vectors in High Dimensions 3	32
3	3.1		32
	$3.1 \\ 3.2$		33
	3.2		33
		· ·	34
			35
	3.3		35
	0.0	-	35
			36
			37
		-	38
			38
	3.4		10
	0.1		10
			10
			11
	3.5	•	12
	0.0	- •	 14
	3.6		16
			16
			17
	3.7		18
	J.,	- ,	19
			51
			51

4	Ran	ndom Matrices 52
	4.1	A Quick Refresher on Linear Algebra
		4.1.1 Singular value Decomposition
		4.1.4 The Matrix Norms and the Spectrum
		4.1.5 Low-rank Approximation
		4.1.6 Perturbation Theory
	4.0	4.1.7 Isometries
	4.2	Nets, Covering, and Packing
		4.2.1 Covering Numbers and Volume
	4.3	Application: Error Correcting Codes
	4.4	Upper Bounds on Subgaussian Random Matrices
		4.4.1 Computing the Norm on an ε net 61
		4.4.2 The Norms of Subgaussian Random Matrices 61
		4.4.3 Symmetric Matrices
	4.5	Application: Community Detection in Networks
	4.6	Two-sided Bounds on Subgaussian Matrices
	4.7	Application: Covariance Estimation and Clustering
5	Con	ncentration Without Independence 66
	5.1	Cencentration of Lipschitz Functions on the Sphere
		5.1.1 Lipschitz Functions
		5.1.2 Concentration via Isoperimetric Inequalities
		5.1.3 Blow-up of Sets on the Sphere
		5.1.4 Proof of Theorem 5.1.3
	5.2	Concentration on Other Metric Measure Spaces
		5.2.1 Gaussian Concentration
		5.2.2 Hamming Cube
		5.2.3 Symmetric Group
		5.2.4 Riemannian Manifolds with Strictly Positive Curvature
		5.2.5 Special Orthogonal Group
		5.2.6 Grassmannian
		5.2.7 Continuous Cube and Euclidean Ball
		5.2.8 Densities of the Form $e^{-U(x)}$
		5.2.9 Random Vectors with Independent Bounded Coordinates
	5.3	Application: Johnson-Lindenstrauss Lemma
	5.4	Matrix Bernstein Inequality
		5.4.1 Matrix Calculus
		5.4.2 Trace Inequalities
		5.4.3 Proof of Matrix Bernstein Inequality
		5.4.4 Matrix Hoeffding and Khintchine Inequalities
	5.5	Application: Community Detection in Sparse Networks
	5.6	Application: Covariance Estimation for General Distributions
	5.7	Extra notes
6	0112	adratic Forms, Symmetrization, and Contraction 78
J	6.1	Decoupling
	6.2	Hanson-Wright Inequality
	6.2	Symmetrization
	6.4	Random Matrices with non-i.i.d. Entries
	6.5	Application: Matrix Completion
	6.6	Contraction Principle
	0.0	

7	Random Processes 85				
	7.1	Basic Concepts and Examples	85		
		7.1.1 Covariance and Increments	86		
		7.1.2 Gaussian Processes	86		
	7.2	Slepian, Sudakov-Fernique, and Gordon Inequalities	87		
		7.2.1 Gaussian Interpolation	88		
		7.2.2 Proof of Slepian Inequality	90		
		7.2.3 Sudakov-Fernique and Gordon Inequalities	91		
	7.3	Application: Sharp Bounds for Gaussian Matrices	92		
	7.4	Sudakov Inequality	92		
		7.4.1 Application for covering numbers in \mathbb{R}^n	93		
	7.5	Gaussian Width	94		
	7.6	Application: Random Projection of Sets	94		
8	Cha	aining	87		
	8.1	Dudley Inequality	87		
	8.2	Application: Empirical Processes	87		
	8.3	VC Dimension	87		
	8.4	Application: Statistical Learning Theory	87		
	8.5	Generic Chaining	87		
	8.6	Chevet Inequality	87		
9	Dev	viations of Random Matrices on Sets	88		
	9.1	Matrix Deviation Inequality	88		
	9.2	Random Matrices, Covariance Estimation, and Johnson-Lindenstrauss			
	9.3	Random Sections: The M^* Bound and Escape Theorem	88		
	9.4	Application: High-dimensional Linear Models			
	9.5	Application: Exact Sparse Recovery			
	9.6	Deviations of Random Matrices for General Norms			
	9.7	Two-sided Chevet Inequality and Dvoretzky-Milman Theorem	88		

7 Random Processes

This chapter concerns mostly with random processes - collection random variables $(X_t)_{t\in T}$, which may be dependent. In calssical settings like Brownian motion, t represents time so $T \subset \mathbb{R}$. However, in high-dimensional probability T can be any set, and we'll deal with Gaussian processes a lot.

In this chapter, we'll explore powerful comparison inequalities for Gaussian processes - Slepian, Sudakov-Frenique, and Gordon - by using a new trick: Gaussian interpolation. Then we use these tools to prove a sharp bound on the operator norm of $m \times n$ Gaussian random matrices.

How does a Gaussian process $(X_t)_{t\in T}$ capture the geometry of T? We'll prove a lower bound on the Gaussian width using covering numbers, and link it to other ideas like effective dimension. Moreover, we'll also compute the size of a ranodm projection of any bounded set $T \subset \mathbb{R}^n$, which heavily depends on the Gaussian width.

7.1 Basic Concepts and Examples

Definition 7.1.1. A random process is a collection of random variables $(X_t)_{t \in T}$ on the same probability space, which are indexed by elements t of some index set T.

Example 7.1.2 (Discrete time). If $T = \{1, ..., n\}$ then the random process

$$(X_1,\ldots,X_n)$$

can be identifies as a random vector in \mathbb{R}^n .

Example 7.1.3 (Random walks). If $T = \mathbb{N}$, a discrete-time random process $(X_n)_{n \in \mathbb{N}}$ is simply a sequence of random variables. An important example is a random walk defined as

$$X_n := \sum_{i=1}^n Z_i,$$

where the increments Z_i are independent, mean zero random variables. See Figure 7.1 for an illustration:

Figure 7.1 A few trials of a random walk (left) and standard Brownian motion (right).

Example 7.1.4 (Brownian motion). The most classical continuous-time random process is the standard *Brownian motion* $(X_t)_{t>0}$, or the *Wiener process*. It can be characterized as follows:

- (i) The process has continuous sample paths, i.e. the random function $f(t) := X_t$ is continuous almost surely;
- (ii) The increments are independent and satisfy $X_t X_s \sim N(0, t s)$ for all $t \geq s$.

Figure 7.1 above also shows some sample paths of a standard Brownian motion.

Example 7.1.5 (Random fields). When the index set T is a subset of \mathbb{R}^n , a random process $(X_t)_{t\in T}$ is sometimes called a spatial random process, or *random field*. For example, the water temperature X_t are the location on Earth that is parameterized by t can be modeled as a spatial random process.

7.1.1 Covariance and Increments

In section 3.2, we introduced the covariance matrix of a random vector. Here we'll define the *covariance* function of a random process $(X_t)_{t\in T}$ in a similar manner. For simplicity, assume the random process has zero mean:

$$\mathbb{E}[X_t] = 0$$
 for all $t \in T$.

The <u>covariance</u> function of the process is defined as

$$\Sigma(t,s) := \operatorname{Cov}(X_t, X_s) = \mathbb{E}[X_t X_s], \ t, s \in T.$$

The <u>increments</u> of the random process are defined as

$$d(t,s) := \|X_t - X_s\|_{L^2} = (\mathbb{E}\left[(X_t - X_s)^2\right])^{1/2}, \ t, s \in T.$$

Example 7.1.6. The increments of the standard Brownian motion satisfy

$$d(t,s) = \sqrt{t-s}, \ t \ge s$$

by definition. The increments of a random walk of Example 7.1.3 with $\mathbb{E}\left[Z_i^2\right]=1$ behave similarly:

$$d(n,m) = \sqrt{n-m}, \ n \ge m.$$

Remark 7.1.7 (The canonical metric). Even if the index set T has no geometric structure, the increments d(t,s) always define a metric on T, thys automatically turning T into a metric space. However, as we see in Example 7.1.6, this metric may not match the Euclidean distance on \mathbb{R}^n .

Remark 7.1.8 (Covariance v.s. increments). The covariance and the increments contain roughly the same information about the random process. Increments can be written using the covariance: Just expand the square to see that

$$d(t,s)^{2} = \Sigma(t,t) - 2\Sigma(t,s) + \Sigma(s,s).$$

Vise versa, if the zero random variable belongs to the process, we can also recover the covariance from the increments (Exercise 7.1).

7.1.2 Gaussian Processes

Definition 7.1.9. A random process $(X_t)_{t\in T}$ is called a Gaussian process if, for any finite subset $T_0 \subset T$, the random vector $(X_t)_{t\in T_0}$ has a normal distribution. Equivalently, $(X_t)_{t\in T}$ is Gaussian if every finite linear combination $\sum_{t\in T_0} a_t X_T$ is a normal random variable (Exercise 3.16).

The notion of Gaussian processes generalized that of Gaussian random vectors in \mathbb{R}^n . A classical example of a Gaussian process is the standard Brownian motion.

Remark 7.1.10 (Distribution is determined by covariance, increments). The distribution of a mean-zero Gaussian random vector in \mathbb{R}^n is completely determined by its covariance matrix (Proposition 3.3.5). The same goes for a mean-zero Gaussian process: its distribution is determined by the covariance function $\Sigma(t,s)$, or equivalently by the increments d(t,s), assuming the zero variable is part of the process.

Many tools we learned about random vectors can be applied to random processes. For example, Gaussian concentration (Theorem 5.2.3) applies:

Theorem 7.1.11 (Concentration of Gaussian processes). Let $(X_t)_{t\in T}$ be a Gaussian process with finite T. Then

$$\|\sup_{t\in T} X_t - \mathbb{E}\left[\sup_t X_t\right]\|_{\psi_2} \le C \sup_{t\in T} \sqrt{\operatorname{Var}(X_t)}.$$

Proof. Exercise 5.9(b).

Let's look at a broad class of Gaussian processes indexed by high-dimensional sets $T \subset \mathbb{R}^n$. Take a standard normal vector $g \sim N(0, I_n)$ and define

$$X_t := \langle g, t \rangle, \ t \in T.$$

This guves us a Gaussian process $(X_t)_{t\in T}$ called the *canonical Gaussian process*. The increments match the Euclidean distance:

$$||X_t - X_s||_{L^2} = ||t - s||_2, \ t, s \in T.$$

Actually, one can realize any Gaussian process as the canonical process above because of the lemma below:

Lemma 7.1.12 (Gaussian random vectors). Let X be a mean-zero Gaussian random vector in \mathbb{R}^n . Then there exist points t_1, \ldots, t_n such that

$$X \sim (\langle g, t_i \rangle)_{i=1}^n$$
, where $g \sim N(0, I_n)$.

Proof. IF Σ denotes the covariance matrix of X, then

$$X \equiv \Sigma^{1/2} g$$
 where $g \sim N(0, I_n)$.

The entries of $\Sigma^{1/2}g$ are $\langle t_i, g \rangle$ where the t_i are the rows of $\Sigma^{1/2}$. Done!

It follows that for any Gaussian process $(X_s)_{x \in S}$, all finite-dimensional marginas $(X_s)_{s \in S_0}$, $|S_0| = n$ can be represented as the canonical Gaussian process indexed in a certain subset $T_0 \subset \mathbb{R}^n$.

7.2 Slepian, Sudakov-Fernique, and Gordon Inequalities

In many applications, it helps to have a *uniform* bound on a random process:

$$\mathbb{E}\left[\sup_{t\in T}X_t\right]=?$$

Remark 7.2.1 (Making T finite). To avoid measurability issues, let's think of

$$\mathbb{E}\left[\sup_{t\in T}X_{t}\right] \text{ as shorthand for } \sup_{T_{0}\subset T}\mathbb{E}\left[\max_{t\in T_{0}}X_{t}\right]$$

where T_0 runs over all finite subsets. The general case usually follows by approximation.

For some processes, this quantity can be computed exactly. For example, if (X_t) is a standard Brownian motion, the so-called reflection principle gives

$$\mathbb{E}\left[\sup_{t < t_0} X_t\right] = \sqrt{\frac{2t_0}{\pi}} \text{ for every } t_0 \ge 0.$$

For general random processes - evern Gaussian - the problem is nontrivial.

The first general bound we prove is the Slepian comparison inequality for Gaussian processes. It basically says: the faster the process grows (in terms of the increments), the farther it gets.

Theorem 7.2.2 (Slepian inequality). Let $(X_t)_{t\in T}$ and $(Y_t)_{t\in T}$ be two mean zero Gaussian processes. Assume that for all $t, s \in T$, we have

$$\mathbb{E}\left[X_t^2\right] = \mathbb{E}\left[Y_t^2\right] \text{ and } \mathbb{E}\left[(X_t - X_s)^2\right] \le \mathbb{E}\left[(Y_t - Y_s)^2\right].$$

Then $\sup_{t \in T} X_t$ is stochastically dominated by $\sup_{t \in T} Y_t$: For every $\tau \in \mathbb{R}$,

$$P\left(\sup_{t\in T} X_t \ge \tau\right) \le P\left(\sup_{t\in T} Y_t \ge \tau\right).$$

Consequently,

$$\mathbb{E}\left[\sup_{t\in T} X_t\right] \le \mathbb{E}\left[\sup_{t\in T} Y_t\right].$$

We'll provide a proof later in the chapter, as we need some preliminary knowledge on Gaussian interpolation.

7.2.1 Gaussian Interpolation

Assume that T is finite; then we can loot at $X = (X_t)_{t \in T}$ and $Y = (Y_t)_{t \in T}$ as Gaussian random vectors in \mathbb{R}^n with n = |T|. We may also assume that X and Y are independent.

Define the Gaussian random vector Z(u) in \mathbb{R}^n that continuously interpolates between Z(0) = Y and Z(1) = X:

$$Z(u) := \sqrt{u}X + \sqrt{1-u}Y, \ u \in [0,1].$$

Then the covariance matrix of Z(u) continuously interpolates linearly between the covariance matrices of Y and X:

$$\Sigma(Z(u)) = u\Sigma(X) + (1 - u)\Sigma(Y).$$

This is because

$$\begin{split} \Sigma(Z(u)) &= \mathbb{E}\left[Z(u)Z(u)^T\right] \\ &= \mathbb{E}\left[(\sqrt{u}X + \sqrt{1-u}Y)(\sqrt{u}X + \sqrt{1-u}Y)^T\right] \\ &= u\mathbb{E}\left[(X - \mu_X)(X - \mu_X)^T\right] + \sqrt{u(1-u)}\mathbb{E}\left[(X - \mu_X)(Y - \mu_Y)^T\right] \\ &+ \sqrt{u(1-u)}\mathbb{E}\left[(Y - \mu_Y)(X - \mu_X)^T\right] + (1-u)\mathbb{E}\left[(Y - \mu_Y)(Y - \mu_Y)^T\right] \\ &= u\Sigma(X) + 0 + 0 + (1-u)\Sigma(Y) \quad \text{(Independence)} \\ &= u\Sigma(X) + (1-u)\Sigma(Y). \end{split}$$

For a given function $f: \mathbb{R}^n \to \mathbb{R}$, let's study how $\mathbb{E}[f(Z(u))]$ changes as u increases from 0 to 1. Of special interest to us is the function

$$f(x) = \mathbf{1}_{\{\max_i x_i < \tau\}}.$$

We'll be able to show that in this case, $\mathbb{E}[f(Z(u))]$ increases in u. This would imply the conclusion of Slepian inequality, since then

$$\mathbb{E}\left[f(Z(1))\right] \geq \mathbb{E}\left[f(Z(0))\right] \implies P\left(\max_i X_i < \tau\right) \geq P\left(\max_i Y_i < \tau\right)$$

as claimed.

Let's start via the following useful identity:

Lemma 7.2.3 (Gaussian integration by parts). Let $X \sim N(0,1)$. Then for any differentiable function $f: \mathbb{R} \to \mathbb{R}$ we have

$$\mathbb{E}\left[Xf(X)\right] = \mathbb{E}\left[f'(X)\right].$$

Proof. Assume first that f has bounded support. Denoting the Gaussian density by

$$p(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2},$$

we can express the expectation as an integral, and integrate it by parts:

$$\mathbb{E}\left[f'(X)\right] = \int_{\mathbb{R}} f'(x)p(x) \ dx$$

$$= \left[f(x)p(x)\right]_{-\infty}^{\infty} - \int_{\mathbb{R}} f(x)p'(x) \ dx$$

$$= 0 - \int_{\mathbb{R}} f(x)p'(x) \ dx$$

$$= -\int_{\mathbb{R}} f(x)p'(x) \ dx.$$

We have already proved before (Exercise 2.3) that p'(x) = -xp(x), hence the integral above equals

$$\int_{\mathbb{R}} f(x)p(x)x \ dx = \mathbb{E}\left[Xf(X)\right],$$

as claimed. The result can be extended to general functions by an approximation argument. The lemma is proved. $\hfill\Box$

By rescaling, we can extend Gaussian integration by parts for $X \sim N(0, \sigma^2)$:

$$\mathbb{E}\left[Xf(X)\right] = \sigma^2 \mathbb{E}\left[f'(X)\right].$$

(Just write $X = \sigma Z$ for $Z \sim N(0,1)$ and apply Lemma 7.2.3). We can also extend it to high dimensions:

Lemma 7.2.4 (Multivariate Gaussian integration by parts). Let $X \sim N(0, \Sigma)$. Then for any differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ we have

$$\mathbb{E}\left[Xf(X)\right] = \Sigma \cdot \mathbb{E}\left[\nabla f(X)\right]$$

assuming both expectations are finite. In other words,

$$\mathbb{E}\left[X_i f(X)\right] = \sum_{i=1}^n \Sigma_{ij} \mathbb{E}\left[\frac{\partial f}{\partial x_j}(X)\right], \ i = 1, \dots, n.$$

Proof. Exercise 7.6. \Box

Lemma 7.2.5 (Gaussian interpolation). Consider two independent Gaussian random vectors $X \sim N(0, \Sigma^X)$ and $Y \sim N(0, \Sigma^Y)$. Define the interpolation Gaussian vector

$$Z(u) := \sqrt{u}X + \sqrt{1-u}Y, \ u \in [0,1].$$

Then for any twice differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, we have

$$\frac{d}{du}\mathbb{E}\left[f(Z(u))\right] = \frac{1}{2}\sum_{i,j=1}^{n} (\Sigma_{ij}^{X} - \Sigma_{ij}^{Y})\mathbb{E}\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(Z(u))\right],$$

assuming all expectations exist and are finite.

Proof. Using the multivariate chain rule,

$$\begin{split} \frac{d}{du} \mathbb{E}\left[f(Z(u))\right] &= \sum_{i=1}^{n} \mathbb{E}\left[\frac{\partial f}{\partial x_{i}}(Z(u))\frac{dZ_{i}}{du}\right] \\ &= \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left[\frac{\partial f}{\partial x_{i}}(Z(u))\left(\frac{X_{i}}{\sqrt{u}} - \frac{Y_{i}}{\sqrt{1-u}}\right)\right]. \end{split}$$

Let's break the sum above into two, and first compute the contribution of the terms containing X_i . To this end, we condition on Y and express

$$\sum_{i=1}^{n} \frac{1}{\sqrt{u}} \mathbb{E}\left[X_i \frac{\partial f}{\partial x_i}(Z(u))\right] = \sum_{i=1}^{n} \frac{1}{\sqrt{u}} \mathbb{E}\left[X_i g_i(X)\right] \quad (*),$$

where

$$g_i(X) = \frac{\partial f}{\partial x_i} (\sqrt{u}X + \sqrt{1 - u}Y).$$

Apply the multivariate Gaussian integration by parts (Lemma 7.2.4), we get

$$\mathbb{E}\left[X_{i}g_{i}(X)\right] = \sum_{j=1}^{n} \Sigma_{ij}^{X} \mathbb{E}\left[\frac{\partial g_{i}}{\partial x_{j}}(X)\right]$$
$$= \sum_{j=1}^{n} \Sigma_{ij}^{X} \mathbb{E}\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\sqrt{u}X + \sqrt{1 - u}Y)\right] \cdot \sqrt{u}.$$

Substituting this into (*) to get

$$\sum_{i=1}^n \frac{1}{\sqrt{u}} \mathbb{E}\left[X_i \frac{\partial f}{\partial x_i}(Z(u))\right] = \sum_{i,j=1}^n \Sigma_{ij}^X \mathbb{E}\left[\frac{\partial^2 f}{\partial x_i \partial x_j}(Z(u))\right].$$

Taking expectations on both sides with respect to Y, we left the conditioning on Y.

We can similarly evaluate the other sum (terms containing Y_i) by conditioning on X. Combining the two sums we complete the proof.

7.2.2 Proof of Slepian Inequality

We'll establish a preliminary, functional form of Spelian's inequality first:

Lemma 7.2.6 (Slepian inequality, functional form). Consider two mean zero Gaussian random vectors X, Y in \mathbb{R}^n . Assume that for all $i, j = 1, \ldots, n$, we have

$$\mathbb{E}\left[X_i^2\right] = \mathbb{E}\left[Y_i^2\right] \text{ and } \mathbb{E}\left[(X_i - X_j)^2\right] \le \mathbb{E}\left[(Y_i - Y_j)^2\right].$$

Consider a twice-differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ such that

$$\frac{\partial^2 f}{\partial x_i \partial x_j} \ge 0 \text{ for all } i, j.$$

Then

$$\mathbb{E}\left[f(X)\right] \ge \mathbb{E}\left[f(Y)\right],$$

assuming both expectations exist and are finite.

Proof. The assumptions imply that the entries of the covariance matrices Σ^X and Σ^Y satisfy

$$\Sigma_{ii}^X = \Sigma_{ii}^Y$$
 and $\Sigma_{ij}^X \ge \Sigma_{ij}^Y$

for all i, j = 1, ..., n. We can assume that X and Y are independent. Apply Lemma 7.2.5 and using our assumptions, we conclude that

$$\frac{d}{du}\mathbb{E}\left[f(Z(u))\right] \ge 0,$$

so $\mathbb{E}\left[f(Z(u))\right]$ increases in u. Then $\mathbb{E}\left[f(Z(1))\right] = \mathbb{E}\left[f(X)\right]$ is at least as large as $\mathbb{E}\left[f(Z(0))\right] = \mathbb{E}\left[f(Y)\right]$. This completes the proof.

Now we are ready to prove Slepian's inequality (Theorem 7.2.2). Let's state and prove it in the equivalent form for Gaussian random vectors.

Theorem 7.2.7 (Slepian inequality). Let X, Y be Gaussian random vectors as in Lemma 7.2.6. Then for every $\tau \geq 0$ we have

$$P\left(\max_{i\leq n}X_i\geq\tau\right)\leq P\left(\max_{i\leq n}Y_i\geq\tau\right).$$

Consequently,

$$\mathbb{E}\left[\max_{i\leq n}X_i\right]\leq \mathbb{E}\left[\max_{i\leq n}X_i\right].$$

Proof. Let $h : \mathbb{R} \to [0,1]$ be a twice-differentiable, non-increasing approximation to the indicator function on the interval $(-\infty, \tau)$:

$$h(x) \approx \mathbf{1}_{\{-\infty,\tau\}},$$

like in Figure 7.2 below.

Figure 7.2 The function h(x) is a smooth, non-increasing approximation to the indicator function $\mathbf{1}_{(-\infty,\tau)}$.

Define the function $f: \mathbb{R}^n \to \mathbb{R}$ by

$$f(x) = h(x_1) \cdots h(x_n) = \prod_{i=1}^n h(x_i).$$

Then f(x) is an approximation to the indicator function

$$f(x) \approx \mathbf{1}_{\{\max_i x_i < \tau\}}.$$

We are looking to apply the functional form of Slepian inequality (Lemma 7.2.6) for f(x). To check the assumptions of this result, note that for $i \neq j$ we have

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = h'(x_i)h'(x_j) \cdot \prod_{k \notin \{i,j\}} h(x_k).$$

The first two terms are non-positive and the others are nonnegative by assumption, hence the second derivative is nonnegative, as required. It follows that

$$\mathbb{E}\left[f(X)\right] > \mathbb{E}\left[f(Y)\right]$$
.

By approximation, it implies

$$P\left(\max_{i\leq n}X_i<\tau\right)\geq P\left(\max_{i\leq n}Y_i<\tau\right).$$

This proves the first part. The second part follows by using the integrated tail formula in Exercise 1.15 (b):

$$\mathbb{E}\left[f(X)\right] = \int_0^\infty P\left(\max_{i \leq n} X_i \geq \tau\right) \ d\tau \leq \int_0^\infty P\left(\max_{i \leq n} Y_i \geq \tau\right) \ d\tau = \mathbb{E}\left[f(Y)\right].$$

7.2.3 Sudakov-Fernique and Gordon Inequalities

Slepian inequality has two assumptions on the processes (X_t) and (Y_t) : the equality of variances and the dominance of increments. We now remove the assumption on the equality of variances:

Theorem 7.2.8 (Sudakov-Fernique inequality). Let $(X_t)_{t\in T}$ and $(Y_t)_{t\in T}$ be two mean zero Gaussian processes. Assume that for all $t, s \in T$, we have

$$\mathbb{E}\left[(X_t - X_s)^2\right] \le \mathbb{E}\left[(Y_t - Y_s)^2\right].$$

Then

$$\mathbb{E}\left[\sup_{t\in T} X_t\right] \leq \mathbb{E}\left[\sup_{t\in T} Y_t\right].$$

Proof. It is enough to prove this for Gaussian random vectors X and Y in \mathbb{R}^n , just like we did for Slepian's inequality in Theorem 7.2.7.

We again deduce the result from Gaussian Interpolation (Lemma 7.2.5). But this time, we'll approximate $f(x) \approx \max_i x_i$. Let $\beta > 0$ be a parameter and define the function

$$f(x) := \frac{1}{\beta} \log \sum_{i=1}^{n} e^{\beta x_i}.$$

We can check that indeed

$$\lim_{\beta \to \infty} f(x) = \max_{i=1,\dots,n} x_i.$$

Substituting f(x) into the Gaussian interpolation formula and simplifying shows that (Exercise 7.7)

$$\frac{d}{du}\mathbb{E}\left[f(Z(u))\right] \le 0 \text{ for all } u \in [0,1].$$

Then we can finish the proof just like in Slepian's inequality.

Gordon's inequality extends the Slepian and Sudakov-Frenique inequalities to the min-max setting:

Theorem 7.2.9 (Gordon's inequality). Let $(X_{ut})_{u \in U, t \in T}$ and $(Y_{ut})_{u \in U, t \in T}$ be two mean-zero Gaussian processes indexed by pairs of points (u, t) in a product set $U \times T$. Assume that

$$\mathbb{E}\left[(X_{ut} - X_{us})^2\right] \leq \mathbb{E}\left[(Y_{ut} - Y_{us})^2\right] \text{ for all } u, t, s;$$

$$\mathbb{E}\left[(X_{ut} - X_{vs})^2\right] \geq \mathbb{E}\left[(Y_{ut} - Y_{vs})^2\right] \text{ for all } u \neq v \text{ and all } t, s.$$

Then for every $\tau \geq 0$,

$$P\left(\inf_{u\in U}\sup_{t\in T}X_{ut}\geq\tau\right)\leq P\left(\inf_{u\in U}\sup_{t\in T}Y_{ut}\geq\tau\right).$$

Moreover, by the integrated tail formula,

$$\mathbb{E}\left[\inf_{u\in U}\sup_{t\in T}X_{ut}\right] \leq \mathbb{E}\left[\inf_{u\in U}\sup_{t\in T}Y_{ut}\right].$$

Proof. The proof under the additional assumption of equal variances is in Exercise 7.9. The proof for this statement is much harder. \Box

7.3 Application: Sharp Bounds for Gaussian Matrices

7.4 Sudakov Inequality

Recall that for a general mean-zero Gaussian process $(X_t)_{t\in T}$ on some index set T, the increments

$$d(t,s) := ||X_t - X_s||_{L^2} = (\mathbb{E}\left[(X_t - X_s)^2\right])^{1/2}$$

define a metric on T, called the *canonical metric*. This metric determines the covariance function $\Sigma(t,s)$, which in turn determines the distribution of the proces $(X_t)_{t\in T}$ (Remark 7.1.10). So, in theory, we can ask any question about the distribution of the process by understanding the geometry of the metric space (T,d) - studying probability via geometry!

Now the question comes: How can we estimate

$$\mathbb{E}\left[\sup_{t\in T}X_t\right]$$

in terms of the geometry of (T, d)? This is a hard problem we will study from now well into Chapter 8. We'll start with a lower bound in terms of the *metric entropy*, which was introduced in Chapter 4. Recall that for any $\varepsilon > 0$, the *covering number*

$$\mathcal{N}(T,d,\varepsilon)$$

is the samllest cardinality of an ε -net of T in the metric d, or equivalently the smallest number of closed balls of radius ε whose union covers T. The logarithm of the of the covering number, $\log_2 \mathcal{N}(T, d, \varepsilon)$, is called the *metric entropy* of T.

Theorem 7.4.1 (Sudakov's inequality). Let $(X_t)_{t\in T}$ be a mean-zero Gaussian process. Then, for any $\varepsilon > 0$, we have

$$\mathbb{E}\left[\sup_{t\in T} X_t\right] \ge c\varepsilon \sqrt{\log \mathcal{N}(T, d, \varepsilon)}$$

where d is the canonical metric defined above.

Proof. We'll deduce the result from the Sudakov-Frenique comparison inequality (Theorem 7.2.8). Assume that

$$N := \mathcal{N}(T, d, \varepsilon)$$

is finite; the infinite case is in Exercise 7.14. Let \mathcal{N} be a maximal ε -seperated subset of T. Then \mathcal{N} is an ε -net of T (Lemma 4.2.6), and thus

$$|\mathcal{N}| \geq N$$
.

Restricting the process to \mathcal{N} , we see that it suffices to show that

$$\mathbb{E}\left[\sup_{t\in\mathcal{N}}X_t\right]\geq c\varepsilon\sqrt{\log N}.$$

Let's do it by comparing $(X_t)_{t\in\mathcal{N}}$ to a simpler Gaussian process $(Y_t)_{t\in\mathcal{N}}$, defined as follows:

$$Y_t := \frac{\varepsilon}{\sqrt{2}} g_t$$
 where $g_t \sim_{i.i.d.} N(0,1)$.

To use the Sudakov-Fernique comparison inequality (Theorem 7.2.8), we need to compare the increments of the two processes. Fix two different points $t, s \in \mathcal{N}$. By definition,

$$\mathbb{E}\left[(X_t - X_s)^2\right] = d(t, s)^2 \ge \varepsilon^2$$

while

$$\mathbb{E}\left[(Y_t - Y_s)^2\right] = \frac{\varepsilon^2}{2} \mathbb{E}\left[(g_t - g_s)^2\right] = \varepsilon^2 \quad (g_t - g_s \sim N(0, 2)).$$

This implies that

$$\mathbb{E}\left[(X_t - X_s)^2\right] \ge \mathbb{E}\left[(Y_t - Y_s)^2\right] \text{ for all } t, s \in \mathcal{N}.$$

By applying Theorem 7.2.8, we obtain

$$\mathbb{E}\left[\sup_{t\in\mathcal{N}}X_t\right]\geq \mathbb{E}\left[\sup_{t\in\mathcal{N}}X_t\right]=\frac{\varepsilon}{2}\mathbb{E}\left[\max_{t\in\mathcal{N}}g_t\right]\geq c\varepsilon\sqrt{\log N}.$$

In the last step, we used that the expected maximum of N i.i.d N(0,1) random variables is at least $c\sqrt{\log N}$ (Exercise 2.38 (b)). The proof is complete.

7.4.1 Application for covering numbers in \mathbb{R}^n

Sudakov's inequality can be used to bound the covering numbers of an arbitrary set $T \subset \mathbb{R}^n$:

Corollary 7.4.2 (Sudakov inequality in \mathbb{R}^n). Let $T \subset \mathbb{R}^n$. Then for any $\varepsilon > 0$,

$$\mathbb{E}\left[\sup_{t\in T} \langle g, t \rangle\right] \ge c\varepsilon \sqrt{\log \mathcal{N}(T, \varepsilon)},$$

where $\mathcal{N}(T,\varepsilon)$ just the covering number of T.

Proof. Consider the canonical Gaussian process $X_t := \langle g, t \rangle$ where $g \sim N(0, I_n)$. As we noted in Section 7.1.2, the canonical distance for this process is the Euclidean distance in \mathbb{R}^n , i.e.

$$d(t,s) = ||X_t - X_s||_{L^2} = ||t - s||_2$$
 for any $t, s \in T$.

Then the corollary directly follows from Sudakov's inequality (Theorem 7.4.1).

Aside from the bound above, Corollary 7.4.2 is also sharp up to a log factor (Exercise 8.5):

$$\mathbb{E}\left[\sup_{t\in T}\langle g, t\rangle\right] \le C\log\left(n\right) \cdot \varepsilon \sqrt{\log \mathcal{N}(T, \varepsilon)}.$$

For a quick application of Sudakov's inequality, let's (roughly) re-derive the boudne on covering numbers of polytopes in \mathbb{R}^n from Corollary 0.1.1:

Corollary 7.4.3 (Covering numbers of polytopes). Let P be a polytope in \mathbb{R}^n with N vertices, contained in the unit Euclidean ball. Then for every $\varepsilon > 0$, we have

$$\mathcal{N}(P,\varepsilon) < N^{C/\varepsilon^2}$$
.

Proof. If x_1, \ldots, X_N are the vertices of P, then

$$\mathbb{E}\left[\sup_{t\in P}\langle g,t\rangle\right] \leq \mathbb{E}\left[\sup_{i=1,\dots,N}\langle g,x_i\rangle\right] \leq C\sqrt{\log N}.$$

The first bound follows from the maximal principle (Exercise 1.4): Since P lies the convex hull of its vertices, for each fixed g, the linear (and thus convex) function $t \mapsto \langle g, t \rangle$ attains its maximum at a vertex. The second bound is due to the maximal inequality from Proposition 2.7.6, as $\langle g, x \rangle \sim N(0, ||x||_2^2)$ and $||x||_2 \le 1$. Substitute this into Corollary 7.4.2 and simplify completes the proof.

7.5 Gaussian Width

From the previous subsection, we saw an important quantity associated with any set $T \subset \mathbb{R}^n$: the size of the canonical Gaussian process on T. It shows up a lot in high-dimensional probability, so let's give it a name and look at its basic properties.

Definition 7.5.1. The Gaussian width of a subset $T \subset \mathbb{R}^n$ is defined as

$$w(T) := \mathbb{E}\left[\sup_{t \in T} \langle g, x \rangle\right] \text{ where } g \sim N(0, I_n).$$

Try to think of Gaussian width as a fundamental geometric measure of a set $T \subset \mathbb{R}^n$, like volume or surface area.

7.6 Application: Random Projection of Sets