BINARY CLASSIFICATION USING TAIWANESE BANKRUPTCY PREDICTION DATESET

PROJECT OBJECTIVE

Main Goals:

- Analyze Taiwanese Bankruptcy Prediction dataset,
- Build a set of classifiers and select the best one.

Scope of Work:

- Understand the dataset,
- Select appropriate classification models,
- Apply proper validation techniques and optimize metrics for evaluation,
- Find the best approach to solve the classification problem.

UNDERSTANDING THE DATASET

Dataset Overview

• The dataset contains 6819 records with 95 features related to financial metrics.

Key Observations

• The dataset is highly imbalanced, with significantly fewer bankrupt companies.

Preprocessing Steps

• Perform feature selection to remove irrelevant variables.

Did the company go bankrupt?

UNDERSTANDING THE NATURE OF THE DATA

Key observations:

• The original distribution, the training distribution and the test distribution show a strong class imbalance.

This imbalance must be addressed to ensure the model is evaluated fairly and does not favor the majority class. Training distribution: 0: 4619, 1: 154;

Test distribution: 0: 1980, 1: 66;

Original distribution: 0: 6599, 1: 220;

PRECISION AND ACCURACY IN IMBALANCED DATASETS

Model:

• *KNeighborsClassifier(n_neighbors=5)*

Traditional accuracy metrics fall short when dealing with imbalanced datasets. To address this, metrics like precision, recall and F1 score are used. They offer a deeper insight into how well a model performs on both classes.

Accuracy: 96.52981427174976

Precision: 27.27272727272727

F1-score: 7.792207792207792

DIFFERENT TECHNIQUES TO ADDRESS THE CLASS IMBALANCE ISSUE

TECHNIQUE	ACCURACY	PRECISION	RECALL	F1-SCORE
Normal	96.52981427174976	27.272727272727	4.5454545454545	7.792207792207792
Random Over- Sampling	93.10850439882698	19.51219512195122	36.36363636363636	25.39682539682539
SMOTE	89.05180840664711	15.94827586206896	56.06060606060606	24.83221476510066
K-Folds Cross- Validation (5 splits)	96.43206256109482	18.181818181818	3.030303030303030	5.194805194805195

Resampled dataset shape: 0: 4619, 1: 4619

THE FOLLOWING CLASSIFICATION MODELS THAT ARE USED:

LinearDiscriminantAnalysis	S	CatBoostClassifier	CatBoostClassifier		
Normal	0.33870967741935487	Normal	0.34782608695652173		
Random Over-Sampler	0.2874251497005988	Random Over-Sampler	0.43200000000000005		
SMOTE	0.29411764705882354	SMOTE	0.4507042253521127		
K-Folds cross validation	0.32786885245901637	K-Folds cross validation	0.3448275862068965		
KNeighborsClassifier		HistGradientBoostingClassifier			
Normal	0.07792207792207792	Normal	0.355555555555555		
Random Over-Sampler	0.25396825396825395	Random Over-Sampler	0.5087719298245614		
SMOTE	0.24832214765100669	SMOTE	0.4852941176470588		
K-Folds cross validation	0.05194805194805195	K-Folds cross validation	0.3516483516483516		

HYPERPARAMETER IMPORTANCES

PARALLER COORDINATE PLOT

OPTIMIZATION HISTORY PLOT

BEST OF THE BEST

model: HistGradientBoostingClassifier

method: Random Over-Sampler (RO)

Best hyperparameters:

- o learning_rate: 0.9084578238481625,
- o *max_iter: 254*,
- o max_leaf_nodes: 40,
- o min_samples_leaf: 49,
- o warm_start: True,
- o n_iter_no_change: 27

accuracy: 0.9760508308895406

precision: 0.7073170731707317

recall: 0.4393939393939394

f1_score: 0.5420560747663551

THANK YOU FOR YOUR ATTENTION