Statistical Analysis with Missing Data

Module 6
Bayes Inference

Objectives

- Gibbs' sampler to simulate posterior distribution of parameters
- Bayesian theory of Multiple Imputation under explicit models
- Bayes generates proper multiple imputations propagates error in estimating parameters

Gibbs sampling for missing-data problems

 $y = (y_{(0)}, y_{(1)}), y_{(0)} =$ observed data, $y_{(1)} =$ missing data; assume MAR

Model for full data: $f_{y}(y | \theta)$; prior: $\pi(\theta)$

Objective: draws $\theta^{(d)}$ from posterior distribution of θ , that is:

$$p(\theta \mid y_{(0)}) \propto \pi(\theta) f(y_{(0)} \mid \theta)$$

Often easier to draw $\theta \sim p(\theta \mid y_{(0)}, y_{(1)})$, the complete-data posterior distribution, rather than $\theta \sim p(\theta \mid y_{(0)})$

Often easier to draw $y_{(1)} \sim p(y_{(1)} \mid y_{(0)}, \theta)$ rather than $y_{(1)} \sim p(y_{(1)} \mid y_{(0)})$ So, we apply the Gibbs' sampler to $(y_{(1)}, \theta)$:

Gibbs sampler for missing-data

Initial draw of $\theta = \theta^{(0)}$; then draw $y_{(1)}^{(0)} \sim f_Y(y_{(1)} | y_{(0)}, \theta^{(0)})$

Let $(\theta^{(t)}, y_{(1)}^{(t)})$ be draws at iteration t. Then for iteration t+1 draw:

P step: $\theta^{(t+1)} \sim p(\theta | y_{(0)}, y_{(1)}^{(t)})$, posterior for θ with $y_{(1)}^{(t)}$ imputed for $y_{(1)}$

I step: $y_{(1)}^{(t+1)} \sim f_Y(y_{(1)} | y_{(0)}, \theta^{(t+1)})$, predictive dn of $y_{(1)}$ given $\theta = \theta^{(t+1)}$

(P for "posterior," I for "imputation."

the order of the P and I steps is not important).

As $t \to \infty$, $(\theta^{(t)}, y_{(1)}^{(t)})$ converges to a draw from $p(\theta, y_{(1)} | y_{(0)})$

After burn-in a, draws $\{\theta^{(a+t)}, t = 1, 2, ...\}$ simulate posterior dn of θ (Recommended: run 2 or more chains to ensure mixing)

Example: bivariate normal MAR data

- Bivariate normal data with missing data on both variables
- MAR mechanism
- Gibbs' for iteration t consists of an I step and a P step.
- I-Step is like an E step, except that conditional mean is replaced by a draw:

missing
$$y_{i2}$$
: $(y_{i2}^{(t+1)} | y_{i1}, \theta^{(t)}) \sim_{ind} N(\beta_{20:1}^{(t)} + \beta_{21:1}^{(t)} y_{i1}, \sigma_{22:1}^{(t)})$
missing y_{i1} : $(y_{i1}^{(t+1)} | y_{i2}, \theta^{(t)}) \sim_{ind} N(\beta_{10:2}^{(t)} + \beta_{12:2}^{(t)} y_{i2}, \sigma_{11:2}^{(t)})$

P-Step is like M-Step of EM, with maximization

replaced by draw from complete-data posterior distribution:

$$\Sigma^{(t+1)} \sim \text{Inv} - \text{Wishart}(S^{(t+1)}, n-1)$$

 $\mu^{(t+1)} \mid \Sigma^{(t+1)} \sim N(\overline{x}^{(t+1)}, \Sigma^{(t+1)})$

Bayes and multiple imputation

Draws $y_{(1)}^{(t)}$ from $p(y_{(1)} | y_{(0)})$ can also used to create multiply-imputed data sets $((y_{(0)}, y_{(1)}^{(d)}), d = 1, ...D)$ E.g. impute missing values $(y_{(1)}^{(a+db)})$ for dth MI dataset, b chosen so that imputations are roughly uncorrelated Or run a separate chain for each MI data set.

• The reason is that the MI combining rules are Bayesian: specifically, as I now discuss, they are simulation approximations of the posterior mean and variance under a Bayesian model

MI Inference for a Scalar Estimand

 θ = estimand of interest

$$\hat{\theta}_d$$
 = estimate from *d*th dataset (*d* = 1,...,*D*)

The MI estimate of
$$\theta$$
 is $\overline{\theta}_D = \frac{1}{D} \sum_{d=1}^D \hat{\theta}_d$

 W_d = estimate of variance of $\hat{\theta}_d$ from dth dataset

The MI estimate of variance is $T_D = \overline{W}_D + (1+1/D)B_D$

$$\overline{W}_D = \frac{1}{D} \sum_{d=1}^{D} W_d = \text{Within-Imputation Variance}$$

$$\overline{W}_{D} = \frac{1}{D} \sum_{d=1}^{D} W_{d} = \text{Within-Imputation Variance}$$

$$B_{D} = \frac{1}{D-1} \sum_{d=1}^{D} (\hat{\theta}_{d} - \overline{\theta}_{D})^{2} = \text{Between-Imputation Variance}$$

Bayesian Theory of MI

Model: $f_{y}(y | \theta) \Rightarrow \text{Likelihood } L(\theta | y) \propto f_{y}(y | \theta)$

Prior distribution: $\pi(\theta)$; md mechanism: MAR

$$y = (y_{(0)}, y_{(1)}), y_{(0)} = \text{observed data}, y_{(1)} = \text{missing data}$$

Complete-data posterior distribution,

if there were no missing values:

$$p(\theta | y_{(0)}, y_{(1)}) \propto \pi(\theta) f_Y(y_{(0)}, y_{(1)} | \theta)$$

Posterior distribution given observed data:

$$p(\theta \mid y_{(0)}) \propto \pi(\theta) f(y_{(0)} \mid \theta)$$

Theory relates these two distributions ...

Relating the posteriors

The posterior is related to the complete-data posterior by:

$$p(\theta \mid y_{(0)}) = \int p(\theta \mid y_{(0)}, y_{(1)}) p(y_{(1)} \mid y_{(0)}) dy_{(1)}$$

$$\approx \frac{1}{D} \sum_{d=1}^{D} p(\theta \mid y_{(0)}, y_{(1)}^{(d)}), \text{ where } y_{(1)}^{(d)} \sim p(y_{(1)} \mid y_{(0)})$$

 $y_{(1)}^{(d)}$ is a draw from the predictive distribution of the missing values

The accuracy of the approximation increases with D and the fraction of observed data

MI approximation to posterior mean

• Similar approximations for posterior mean and variance yield the MI combining rules given earlier:

$$E(\theta \mid y_{(0)})$$

$$= \int E(\theta \mid y_{(0)}, y_{(1)}) p(y_{(1)} \mid y_{(0)}) dy_{(1)}$$

$$\approx \frac{1}{D} \sum_{d=1}^{D} E(\theta \mid y_{(0)}, y_{(1)}^{(d)}) = \frac{1}{D} \sum_{d=1}^{D} \hat{\theta}_{d},$$

where $\hat{\theta}_d$ = is posterior mean from dth imputed dataset

MI approximation to posterior variance

$$Var(\theta \mid y_{(0)}) = E(\theta^2 \mid y_{(0)}) - (E(\theta \mid y_{(0)}))^2$$

Apply above approx to $E(\theta | y_{(0)})$ and $E(\theta^2 | y_{(0)})$

Algebra then yields:

$$\operatorname{Var}(\theta \mid y_{(0)}) \approx \overline{V} + \underline{B}$$

$$\overline{V} = \frac{1}{D} \sum_{d=1}^{D} V_d = \text{ within-imputation variance,}$$

 $V_d = \text{Var}(\theta \mid y_{(0)}, y_{(1)}^{(d)})$ is posterior variance from dth dataset

$$B = \frac{1}{D-1} \sum_{d=1}^{D} (\hat{\theta}_d - \overline{\theta}_D)^2 = \text{between-imputation variance}$$

Refinements of MI combining rules for small D

(A):
$$Var(\theta | y_{(0)}) \approx \overline{V} + (1 + 1/D)B$$

(B) Replace normal reference distribution by t distribution with df

$$v = (D-1)\left(1 + \frac{D}{D+1}\frac{\overline{V}}{B}\right)^2$$

(C) For normal sample with variance based on v_{com} df, replace v by

$$v^* = (v^{-1} + \hat{v}_{obs}^{-1})^{-1}, \hat{v}_{obs} = (1 - \hat{\gamma}_D) \left(\frac{v_{com} + 1}{v_{com} + 3}\right) v_{com}$$

$$\hat{\gamma}_D = \frac{\left(1 + D^{-1}\right)B}{\overline{V} + \left(1 + D^{-1}\right)B} = \text{estimated fraction of missing information}$$

Logistic regression example revisited

• Imputation Model $X_{edi} \sim \text{iid } N(\mu_{ed}, \sigma^2);$ e=0,1, d=0,1, subject i

- Imputations are draws from the posterior predictive distribution
- Draw σ^2 , then μ_{ed} and then missing X_{edi}

Predictive Distributions

- Draw σ^2 $\sigma^2 \sim \frac{WSS}{\chi_{r-4}^2}$
- Draw μ_{ed}

- WSS=Residual sum of squares
- r_{ed} = Number of respondents in cell ed
- \overline{X}_{ed} = Mean for cell ed

$$\mu_{ed}|X_{obs},D,E,\sigma^2 \sim N(\bar{x}_{ed},\sigma^2/r_{ed})$$

• Draw $X_{edi} \sim N(\mu_{ed}, \sigma^2)$

Histogram of Multiple Imputation Estimates

- 5 Imputations per missing value
- 5 completed Datasets
- Analyze each separately
- Combine using the formulae given earlier

Coverage and MSE of Various Methods

METHOD	COVERAGE	MSE
	(95% Nominal)	
<i>Before</i>	94.68	0.0494
Deletion		
Complete-case	37.86	0.4456
Weighted	97.42	0.0538
Complete-case		
Hot-Deck	90.28	0.0566
Single		
Imputation		
Multiple	94.56	0.0547
Imputation		

Use of Auxiliary Information in Imputations

- Imputation may involve many more variables though a particular substantive analysis may only use a subset of variables
- Example: Public use data sets or a data set to be used by multiple researchers from different perspectives
- Improve efficiency, reduce bias

Expanded Simulation Study

• Add auxiliary variable: $Z \sim N(0,1)$, $Corr(Z, X) = \rho$

ρ	Efficiency of MI Using Z compared to Ignoring Z	
0.89	1.42	
0.71	1.31	
0.55	1.21	
0.35	1.12	
0	0.97	

Bayes or MI?

- Gibbs sampler can be used to simulate posterior distribution of parameters under a particular model no need for MI data sets and combining rules
- However, MI data sets are useful for non-Bayesian analyses, or situations where model from MI differs from analysis model, for example by including variables as predictors that are not in the final model.

Conclusions

- Gibbs sampler useful tool for drawing from the posterior distribution when data are incomplete
- Multiple imputations are a by-product of Gibbs, and can be useful for other analyses
- Other Bayesian simulation methods (SIR, Metropolis-Hastings) can also be useful for handling models where Gibbs is not straightforward