Introducción al Procesamiento de Señales Curso 2013

Clase 16

Javier G. García

3 de diciembre de 2013

Contenido

Transformada de Laplace

Definición y Propiedades Ecuaciones Diferenciales y en diferencias (SLIT)

Señales y Transformadas

- Señales de energía finita → Transformada de Fourier.
- Señales de potencia finita → TF + Deltas de Dirac Ejemplo:

Respuesta de sistemas inestables.

 \rightarrow Transformada de Laplace

Transformada de Laplace

Señales ⇔ Funciones de variable compleja

Utilidad:

- Análisis de señales y sistemas que no tienen TF.
- Determinación de estabilidad de sistemas.
- Descomposición de sistemas en bloques simples.
- Manipulación de diagramas en bloques.
- Diseño de sistemas lineales.

Filtrado!

Definición

Transformada de Laplace (señales continuas)

$$X^L(s) = \mathcal{L}\{x\}(s) \triangleq \int_{-\infty}^{\infty} x(t)e^{-st}dt, \quad s \in RDC \subset \mathbb{C}$$

- ► RDC es la región de convergencia de la transformada en el plano complejo.
- ➤ X^L(s) es una función de variable compleja analítica en su región de convergencia.

Relación con Transformadas de Fourier

Escribiendo $s = \alpha + j2\pi f$ vemos que

$$X^L(s) = \int_{-\infty}^{\infty} x(t)e^{-\alpha t}e^{-j2\pi t}dt = \mathcal{F}\{x(t)e^{-\alpha t}\}(t).$$

Si
$$\{\alpha = 0\} \in RDC$$
: $X^{L}(j2\pi f) = X^{F}(f)$ Coincide con la TF

Región de Convergencia (TL)

Según el valor de α la transformada converge o no La región de convergencia es siempre del tipo { $a < \mathcal{R}\{s\} < b$ }

Señales sin Transformada de Laplace

¡No todas las señales tienen Transformada de Laplace!

Señales Unilaterales

Las señales unilaterales "generalmente" tienen TL (busque algún ejemplo de señal unilateral que no tenga transformada)

Útil para analizar sistemas causales.

Algunos pares transformados

Transformada de Laplace:

x(t)	$X^{L}(s)$	RDC
$\delta(t)$	1	\mathbb{C}
u(t)	1 <i>ş</i>	$\mathcal{R}\{s\}>0$
e ^{at} u(t)	$\frac{1}{s-a}$	$\mathcal{R}\{s\} > a$
$-e^{at}u(-t)$	$\frac{1}{s-a}$	$\mathcal{R}\{s\} < a$
te ^{at} u(t)	$\frac{1}{(s-a)^2}$	$\mathcal{R}\{s\} > a$
$e^{at}\cos(\omega_0 t)u(t)$	$\frac{s-a}{(s-a)^2+\omega_0^2}$	$\mathcal{R}\{s\} > a$

Principales propiedades

Linealidad

$$w(t) = ax(t) + by(t) \Leftrightarrow W^{L}(s) = aX^{L}(s) + bY^{L}(s)$$

Diferenciación

$$y(t) = \frac{dx(t)}{dt} \Leftrightarrow Y^{L}(s) = sX^{L}(s)$$

Convolución

$$w(t) = \{x * y\}(t) \Leftrightarrow W^{L}(s) = X^{L}(s)Y^{L}(s)$$

Propiedades y región de convergencia

- ▶ x(t) es absolutamente integrable $\Leftrightarrow \{\mathcal{R}\{s\} = 0\} \subset RDC$ (Sistemas estables)
- ▶ x(t) es unilateral derecha $\Leftrightarrow \{\mathcal{R}\{s\} = \infty\} \subset RDC$ (Sistemas causales)
- ▶ x(t) es unilateral izquierda $\Leftrightarrow \{\mathcal{R}\{s\} = -\infty\} \subset RDC$ (Sistemas anticausales)

Transformadas Inversas

Pueden deducirse a partir de la antitransformada de Fourier Antitransformada de Laplace (señales continuas)

$$x(t) = \mathcal{L}^{-1}\{X^L\}(t) \triangleq \frac{1}{j2\pi} \int_{\alpha-i\infty}^{\alpha+j\infty} X^L(s)e^{st}ds, \quad \alpha \in \mathcal{R}\{RDC\}$$

Alternativas:

- ▶ Descomposición en fracciones parciales para transformadas racionales $(H(s) = \sum_k r_k/(s p_k))$.
- Comparación con pares transformados conocidos.
- Expansión en series.

Ecuaciones diferenciales

Ecuaciones diferenciales lineales

$$y(t) = -a_1\dot{y}(t) - a_2\ddot{y}(t) + b_0x(t) + b_1\dot{x}(t) + b_2\ddot{x}(t)$$

Pueden resolverse con la transformada de Laplace

$$Y^{L}(s) = -a_1 s Y^{L}(s) - a_2 s^2 Y^{L}(s) + b_0 X^{L}(s) + b_1 s X^{L}(s) + b_2 s^2 X^{L}(s)$$

$$Y^{L}(s) = \frac{b_0 + b_1 s + b_2 s^2}{1 + a_1 s + a_2 s^2} X^{L}(s) = \frac{b(s)}{a(s)} X^{L}(s)$$

► La transferencia del sistema $H^L(s) = \frac{Y^L(s)}{X^L(s)}$ es racional (cociente de polinomios)

Polos y Ceros

En una función de transferencia racional H:

- ▶ Raíces del numerador: Ceros $(H(c_k) = 0)$
- ▶ Raíces del denominador: Polos $(H(p_k) \to \infty)$
- ► Ejemplo:

$$H(s) = \frac{s(s+1,2)}{(s-0,4)(s-2)}$$

 Un sistema causal estable tiene sus polos en el semiplano izquierdo (Laplace)

Diagrama de polos y ceros

Transformadas unilaterales

Permiten coniderar condiciones iniciales

Transformada de Laplace unilateral

$$X_{+}^{L}(s) = \int_{0}^{\infty} x(t)e^{-st}dt, \quad \mathcal{R}\{s\} > a$$

Diferenciación

$$y(t) = \frac{dx(t)}{dt} \Leftrightarrow Y_+^L(s) = sX_+^L(s) - x(0)$$

Resumen

Transformada de Laplace

- ► Definición, propiedades y ejemplos
- Señales de potencia infinita y Sistemas
- Regiones de convergencia
- ► Transformadas inversas
- ► Ecs. Diferenciales
- ► Polos y Ceros
- ► Unilaterales (cond. inciales)