Test of: VuBIQ Inc, VuLInk VL300

To: FCC CFR 47 Part 15.255 & IC RSS-210

Test Report Serial No.: DVWC02-U1 Rev A

TEST REPORT

FROM

Test of: VuBIQ Inc VuLInk VL300

To: FCC CFR 47 Part 15.255 & RSS-210

Test Report Serial No.: DVWC02-U1 Rev A

This report supersedes: NONE

Applicant: VuBIQ Inc

65 Enterprise

Aliso Viejo, CA 92656

USA

Product Function: Wireless HD Video link

Copy No: pdf **Issue Date:** 6th April 2010

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306

www.micomlabs.com

CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC CFR 47 Part 15.255 & RSS-210

Serial #: DVWC02-U1 Rev A **Issue Date:** 6th April, 2010

Page: Page 3 of 59

TABLE OF CONTENTS

1.	ACCREDITA	ATION, LISTINGS & RECOGNITION	5
		REDITATION	5
		NGS	
	1.3. RECC	OGNITION	6
2.	DOCUMENT	Г HISTORY	7
3.	TEST RESU	ILT CERTIFICATE	8
4.	REFERENC	ES AND MEASUREMENT UNCERTAINTY	9
	4.1. Norma	ative References	9
	4.2. Test a	and Uncertainty Procedures	10
5.	TEST SUMM	MARY	11
6.	PRODUCT D	DETAILS AND TEST CONFIGURATIONS	12
	6.1. Test F	Program Scope	12
		Details	
		nal A.C/D.C Power Adaptor	
		ational Power Range	
	<i>,</i> ,	s of Modulation Supported	
		na Details	
		ng and I/O Ports	
		Configurations	
		ment Details	
		ment Modifications	
		tions from the Test Standard	
7.		ILTS	
٠.		e Characteristics	
	7.1. Device 7.1.1.	Bandwidth Measurement(s)	
	7.1.2.	Power Density	
	7.1.3.	Peak Output Power	
	7.1.4.	Maximum Permissible Exposure	
	7.1.5.	Spurious Emissions (> 1 GHz)	
	7.1.6.	Radiated Emissions (< 1GHz)	
	7.1.7.	Frequency Stability	
	7.1.8.	AC Mains Line Conducted	
	7.1.9.	Group Installation	
	7.1.10.	Transmitter Self-Identification Transmission	44

Title: VuBIQ Inc VuLInk V	LOUU
----------------------------------	------

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A **Issue Date:** 6th April 2010

Page: Page 4 of 59

8.	PHOTOGR	RAPHS	46
-		rious Emissions < 1GHz	
		rious Emissions < 1GHz	
	8.3. AC \	Wireline Emissions	48
	8.4. Spu	rious Emissions above 1 GHz	49
		ducted Test Set-up	
		rnal Photographs	
	8.6.1.	• .	51
	8.6.2.		
	8.6.3.	RF PCB	53
	8.6. <i>4</i> .	RF PCB Rear	54
	8.6.5.	VuLink VL300 Body Shell	55
	8.6.6.	RF PCB	
	8.6.7.	Baseband PCB	57
9.	TEST EQU	JIPMENT DETAILS	58

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 5 of 59

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. ACCREDITATION

MiCOM Labs, Inc. an accredited laboratory complies with the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-01.pdf schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 26th day of February 2008.

President & CEO For the Accreditation Council Certificate Number 2381.01 Valid to April 30, 2010 Revised March 22, 2010

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 6 of 59

1.2. LISTINGS

MiCOM Labs test facilities are listed by the following organizations;

North America

United States of America

Federal Communications Commission (FCC) Listing #: 102167

Canada

Industry Canada (IC) Listing #: 4143A

Japan Registration

VCCI Membership Number: 2959

- Radiated 3 meter site; Registration No. R-2881
- Line Conducted, Registration Nos. C-3181 & T-1470
- Emissions; Registration Nos. C-3180 & T-1469

1.3. RECOGNITION

APEC MRA (Asia-Pacific Economic Community Mutual Recognition Agreement)

Conformity Assessment Body (CAB) – MiCOM Labs

Test data generated by MiCOM Labs is accepted in the following countries under the APEC MRA.

Country	Recognition Body	Phase	CAB Identification No.
Australia	Australian Communications and Media Authority (ACMA)	I	
Hong Kong	Office of the Telecommunication Authority (OFTA)	I	
Korea	Korea Ministry of Information and Communication Radio Research Laboratory (RRL)		US0159
Singapore	Infocomm Development Authority (IDA)		
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	I	
Vietnam	Ministry of Information and Communication	I	

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 7 of 59

2. **DOCUMENT HISTORY**

	Document History				
Revision Date		Comments			
Draft					
Rev A	6 th April 2010	Initial Release			

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 8 of 59

3. TEST RESULT CERTIFICATE

Applicant:	VuBIQ Inc	Tested By:	MiCOM Labs, Inc.
	65 Enterprise		440 Boulder Court
	Aliso Viejo		Suite 200
	CA, 92656, USA		Pleasanton
			California, 94566, USA
Product:	VuLlnk	Telephone:	+1 925 462 0304
Model No.:	VL300	Fax:	+1 925 462 0306
S/No's:	1436		
Date(s) Tested:	9-15 th March 2010	Website:	www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC CFR 47 Part 15,255 & IC RSS-210

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

CERTIFICATE #2381.01

Graeme Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 9 of 59

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

Ref.	Publication	Year	Title		
i.	FCC CFR 47 Part 15 SubPart 15.255	June 2007	Radio Frequency Devices - Intentional Radiators		
ii.	Industry Canada RSS-210	Issue 7 June 2007	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)		
iii.	Industry Canada RSS-Gen	Issue 2 June 2007	General Requirements and Information for the Certification of Radiocommunication Equipment.		
iv.	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz		
v.	CISPR 22/ EN 55022	2005	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment		
vi.	M 3003	Edition 1 Dec. 1997			
vii.	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing		
viii.	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics		
ix.	A2LA	7 th August 2009	Reference to A2LA Accreditation Status – A2LA Advertising Policy		

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 10 of 59

4.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Page: 6th April 2010 Page: Page 11 of 59

5. TEST SUMMARY

The following table represents the list of measurements required under the FCC CFR47 Part 15.255 and Industry Canada RSS-210, Annex 13.2, Industry Canada RSS-Gen

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.255 (e)(1) §4.4.1	Bandwidth(s)	26 dB & 99% Bandwidth	Conducted	Complies	7.1.1
15.255 (b)	Power Density	Emission power density	Conducted	Complies	7.1.2
15.255 (e) 13.2.3	Peak Output Power	EUT output power	Conducted	Complies	7.1.3
1.1310 §5.5	Maximum Permissible Exposure	MPE	Calculation	Complies	7.1.4
15.255 (c),(d)	Spurious Emissions	Emissions above 1 GHz	Radiated	Complies	7.1.5
15.205, 15.209 2.2	Radiated Emissions	Emissions below 1 GHz	Radiated	Complies Class A Limits	7.1.6
15.255 (f) 2.1 §4.5	Frequency Stability	In-band emission stability	Component Review		7.1.7
15.207 §7.2.2	AC Mains Line Conducted	0.15 – 30 MHz emissions	Conducted	Complies	7.1.8
15.255 (h) 13.2.6	Group Installations	Operation within group installations	Client Declaration		7.1.9
15.255 (i) 13.2.7	Transmitter Self- Identification Transmission	Transmission within buildings	Client Declaration		7.1.10

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 12 of 59

6. PRODUCT DETAILS AND TEST CONFIGURATIONS

6.1. Test Program Scope

The scope of the test program was to test the VuBIQ Inc VuLInk VL300 Wireless HD Video link for compliance against FCC CFR 47 Part 15 and Industry Canada RSS 210, Annex 13.2.

Testing performed on the VuLink VL300 Video Link was performed per the FCC's KDB Publication 200443.

Applicant: VuBIQ Inc. VuLInk VL300 Wireless HD Video Link

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 13 of 59

Applicant: VuBIQ Inc. VuLInk VL300 Wireless HD Video Link

Rear

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 14 of 59

Applicant: VuBIQ Inc. VuLInk VL300 Wireless HD Video Link

Connectors

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 15 of 59

6.2. EUT Details

Detail	Description		
Purpose:	Test of the VuBIQ Inc VuLInk VL300 Wireless HD		
	Video link for compliance against FCC CFR 47 Part		
	15.255 and Industry Canada RSS 210, Annex 13.2.		
Applicant:	VuBIQ Inc		
	65 Enterprise		
	Aliso Viejo		
	California 92656 USA		
Manufacturer:	VuBIQ Inc		
	65 Enterprise		
	Aliso Viejo		
Took Laboratow :	California 92656 USA		
Test Laboratory:	MiCOM Labs, Inc.		
	440 Boulder Court, Suite 200		
Toot report reference number:	Pleasanton, California 94566 USA DVWC02-U1		
Test report reference number:	9 th March 2010		
Date EUT received:	9 th – 15 th March		
Dates of test (from - to):			
No of Units Tested:	1		
Product Name:	VuLink		
Manufacturers Trade Name:	VuLink		
Model No.:			
Equipment Primary Function:	Wireless HD Video link		
Equipment Secondary Function(s):	WAS / RLAN system		
Type of Technology:			
Installation type:	Fixed Link		
Operating Frequency:	60.48 GHz		
Construction/Location for Use:	Indoor only		
Software/Firmware Release:	1.1.107		
Hardware Release:	V1.2		
Test Software Release:	N/A		
Transmit/Receive Operation:	Transceiver		
Output Power Type (Client Declaration)::	Variable, minimum transmit level -20 dBm		
Automatic Transmit Power Control Available:	Not Available		
Remote Frequency Control Available:	Not Available		
Rated Input Voltage and Current (AC):	Voltage: 120 Vac,		
	Current: 100mA		
Rated Input Voltage and Current (DC):	Nominal: 12 Vdc Max: 16 Vdc Min: 11 Vdc Current: 1 (A)		
Operating Temperature Range °C:	Min: 50 Max: -20		
ITU Emission Designator(s):	1G25J1FNN		
Long Term Frequency Stability:	25 ppm		
Equipment Dimensions:	14.7 x 4.5 x 5.5		
Weight:	4.4 Lbs		

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A **Issue Date:** 6th April 2010

Page: Page 16 of 59

6.3. External A.C/D.C Power Adaptor

Detail	Description
Ac Adapter	Phihong PSAA20R-120-R, 120Vac 60Hz / 12Vdc

6.4. Operational Power Range

Declared O/P Power Range	Mode 1		Mode 2	
	Max	Min	Max	Min
EUT	2.059 mW	0.01 mW	N/A	N/A

6.5. Types of Modulation Supported

Modulation / Mode	BW 1	BW 2	BW 3	BW 4	BW 5
OOK	1.253 GHz				
			· ·		

6.6. Antenna Details

The following is a description of the EUT antennas.

ı	Antenna Type:	Manufacturer	Model	Gain (dBi)	Frequency	
ı					Range (GHz)	
	Horn	Flann Microwave	25810-TA	34.5	51.500-75.00	

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 17 of 59

6.7. Cabling and I/O Ports

The following is a description of the cable and input, output ports available on the EUT.

Type of I/O Ports	Description	Screened (y/n)	Description	Qty	Tested
DC	4 Pin XLR connector	Υ	12 Vdc	1	N
Video In	BNC 75 Ohm	Υ	Video Input	1	N

6.8. EUT Configurations

Band (GHz)	Mode	Freq Band (MHz)	Freq Range (MHz)	Low ch	Mid ch	High ch	No. of Channels	Channel Spacing (MHz)	Channel BW (MHz)
57 - 64	Тх	57,000 - 64,000	57,000 - 64,000		60,480.00		1	N/A	1,253.00

The VuLink VL300 was tested for single channel operation

6.9. Equipment Details

The following is a description of EUT and supporting equipment used during the test program.

Type (EUT/Support)	Equipment Description	Manufacturer	Model No.	Serial No(s).
EUT	VuLink HD Video transmitter	VuBiQ	VL300	1436
EUT	ac Adapter 115 Vac, 60 Hz to 12 Vdc	Phihong	PSA15R-120P	N/A
Support	Data generator	Compuvideo	CV-9160SDI	N/A

6.10. Test Configurations

Operational Mode(s)	Data Rate Tested	Duty Cycle
HD-SDI Video Transmission	1485 MBit/s	100%

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 18 of 59

6.11. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

No.	Test	Problem	Modification Required
#1	Radiated Emissions		Ferrite placed on dc power supply line(s)

#1 Ferrite place on dc power supply

6.12. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A **Issue Date:** 6th April 2010

Page: Page 19 of 59

7. TEST RESULTS

7.1. Device Characteristics

7.1.1. Bandwidth Measurement(s)

FCC, Part 15 Subpart C §15.255 Industry Canada RSS-210

Test Procedure

The bandwidth at 26 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. Testing performed on the VuLink VL300 Video Link was performed per the FCC's KDB Publication 200443.

Test Measurement Set up

Measurement set up for 26 dB and 99 % bandwidth

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 20 of 59

Measurement Results for 26 dB & 99% Bandwidth

Ambient conditions.

Temperature: 17 - 20 °C Relative humidity: 38 - 42 % Pressure: 998 - 2004 mbar

Radio Parameters

Duty Cycle: 100%

Output: Modulated Carrier

Data Input: HD Power: Maximum Test Type: Conducted

TABLE OF RESULTS

Center Frequency	26 dB Bandwidth	99% Bandwidth
(GHz)	(GHz)	(GHz)
60.48	1,253.0	3,092.0

26 dB Bandwidth

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 21 of 59

99 % Bandwidth

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 22 of 59

Specification

Limits

§15.255 (e)(1)

The 26 dB bandwidth shall be at least 100 MHz.

§ IC RSS-Gen 4.4.1 Occupied Bandwidth When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	+2.81 dB
measurement arrestrainty	

Traceability

Method	Test Equipment Used
Measurements were made per work	0088, 0146, 0158, 0227, 0252, 0310, 0312, 0307
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 23 of 59

7.1.2. Power Density

FCC, Part 15 Subpart C §15.255 Industry Canada RSS-210

Test Procedure

The Power Density was measured conductively with a spectrum analyzer connected to the antenna terminal. The EUT transmitter was modulated operating at the appropriate center frequency. Testing performed on the VuLink VL300 Video Link was performed per the FCC's KDB Publication 200443

Test Measurement Set up

Measurement set up for Power Density

Limit: 18 uW/cm² @3m distance Area = 4π r² where r = 300 cm

18 μ W/cm² = +43.1 dBm Antenna Gain = 34.5 dBi

∴ conducted limit = EIRP limit – antenna gain = 43.1 – 34.5 = +8.6 dBm

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 24 of 59

Ambient conditions.

Temperature: 17 - 20 °C Relative humidity: 38 - 42 % Pressure: 998 - 2004 mbar

Radio Parameters

Duty Cycle: 100%

Output: Modulated Carrier

Data Input: HD Power: Maximum Test Type: Conducted

TABLE OF RESULTS

Center Frequency	Peak Frequency	PPSD
(GHz)	(MHz)	(dBm)
60.48	60.482419	-7.58

Power Density

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 25 of 59

Specification

FCC, Part 15

§15.255 (b)(1) The peak power density of any emission shall not exceed 18 uW/cm², as measured 3m from the radiating structure.

Industry Canada RSS-210

§ A13.2.2 (i) the peak power density of any emission shall not exceed 18 uW/cm²

Laboratory Measurement Uncertainty for Spectral Density

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0088, 0146, 0158, 0227, 0252, 0310, 0312, 0307

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 26 of 59

7.1.3. Peak Output Power

FCC, Part 15 Subpart C §15.255 Industry Canada RSS-210

Test Procedure

The Peak Output Power was measured conductively with a spectrum analyzer connected to the antenna terminal. The EUT transmitter was modulated operating at the appropriate center frequency. Testing performed on the VuLink VL300 Video Link was performed per the FCC's KDB Publication 200443.

Equivalent Measurement Method

Per the FCC's Publication 200443 an equivalent method was used to find the Peak Output Power. To find the actual Peak Power of the device the RF spectrum was downloaded to a computer and the spectrum integrated over the 26 dB emission bandwidth to provide the actual peak power.

Test Measurement Set up

Measurement set up for Peak Output Power

Peak Power Limit: 18 uW/cm² @3m distance

Area = $4\pi r^2$ where r = 300 cm

18 μ W/cm² = +43.1 dBm Antenna Gain = 34.5 dBi

: conducted limit = EIRP limit – antenna gain = 43.1 – 34.5 = +8.6 dBm

To: FCC CFR 47 Part 15,255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 27 of 59

Ambient conditions.

Temperature: 17 - 20 °C Relative humidity: 38 - 42 % Pressure: 998 - 2004 mbar

Radio Parameters

Duty Cycle: 100%

Output: Modulated Carrier

Data Input: HD Power: Maximum Test Type: Conducted

TABLE OF RESULTS

Center Frequency	Calculated Integrated Power over 26 dB Bandwidth	
GHz	mW	dBm
60.48	2.059	+3.1

Peak Power

To find the Peak Output Power of the device the RF spectrum was downloaded to a computer and the spectrum integrated over the 26 dB emission bandwidth to provide the actual power.

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 28 of 59

Specification

Limits

FCC, Part 15

§15.255 (e) Except as specified elsewhere in this paragraph (e), the total peak transmitter output power shall not exceed 500 mW.

15.255 (e)(1) Transmitters with an emission bandwidth of less than 100 MHz must limit their peak transmitter output power to the product of 500 mW times their emission bandwidth divided by 100 MHz. For the purposes of this paragraph (e)(1), emission bandwidth is defined as the instantaneous frequency range occupied by a steady state radiated signal with modulation, outside which the radiated power spectral density never exceeds 6 dB below the maximum radiated power spectral density in the band, as measured with a 100 kHz resolution bandwidth spectrum analyzer. The center frequency must be stationary during the measurement interval, even if not stationary during normal operation (e.g. for frequency hopping devices).

15.255 (e)(2) Peak transmitter output power shall be measured with an RF detector that has a detection bandwidth that encompasses the 57–64 GHz band and that has a video bandwidth of at least 10 MHz, or using an equivalent measurement method.

15.255 (e)(2) For purposes of demonstrating compliance with this paragraph (e), corrections to the transmitter output power may be made due to the antenna and circuit loss.

Industry Canada RSS-210

A13.1.3 Peak Transmitter Output Power There is no limit on peak transmitter output power.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0088, 0146, 0158, 0227, 0252, 0310, 0312, 0307

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 29 of 59

7.1.4. Maximum Permissible Exposure

FCC, Part 1 Subpart C §1.1310 Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/ $(4\pi d^2)$

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = $10 ^ (G (dBi)/10)$

The peak power in the table below is calculated by assuming a worst case scenario where the transmitter is operating maximum power.

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

Freq. Band (GHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Minimum Separation Distance (cm)
60.48	34.5	2818.4	+3.10	2.059	21.5	21.5

^{*}Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the application requirements of RSS-102 shall be met.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 30 of 59

7.1.5. Spurious Emissions (> 1 GHz)

FCC, Part 15 Subpart C §15.255 (e)(2) Industry Canada RSS-210

Test Procedure

Spurious emissions were measured at a 1m measurement distance. A horn antenna was connected to the pre-selector mixer and the measurement results recorded on the spectrum analyzer. Testing performed on the VuLink VL300 Video Link was performed per the FCC's KDB Publication 200443.

The modulated transmitter was operating at the appropriate center frequency.

Test Measurement Set up

Measurement set up for Spurious Emissions

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 31 of 59

Spurious Emission Limit: 90 pW/cm² @ 3m distance

Area = $4\pi r^2$ where r = 300 cm

 $90 \text{ pW/cm}^2 = +101.7 \mu\text{W} \text{ EIRP} = -9.93 \text{ dBm} \text{ EIRP} = 85.37 \text{ dB} \mu\text{V/m}$

Radiated limit (3 m) = $85.37 \text{ dB}_{\mu}\text{V/m}$

Radiated Limit (1 m distance) = 3 m limit – conversion to 1 m (-9.54 dB) = 94.9 dB μ V/m

As a result of the EUT having a WR-15 waveguide connecting the transmitter to the antenna port spurious emissions 1 - 26 GHz would be below cut-off and therefore not measured.

Radio Parameters

Duty Cycle: 100%

Output: Modulated Carrier

Data Input: HD Power: Maximum

Centre Frequency: 60.48 GHz

Test Type: Radiated

Spurious Emissions Identified (PEAK)

Emission Frequency (GHz)	Measured Emission (dBμV)	Receive Antenna Gain (dBi)	Corrected Emission (dB _µ V)	EIRP Limit (1m Limit) (dBμV/m)
37.990	48.68	22.60	26.08	
41.220	48.80	28.33	22.30	
50.607	73.00	34.50	38.50	94.9
70.470	67.17	38.34	28.83	
94.020	55.00	41.65	13.35	

Note: the above peak levels are less than the average limit therefore the system satisfies peak and average limits.

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 32 of 59

Limits

\$15.255 (c)(1) The power of any emission outside of the 57 - 64 GHz band shall consist solely of spurious emissions.

§15.255 (c)(2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.

§15.255 (c)(3) Between 40 and 200 GHz the level of the emissions shall not exceed 90 pW/cm² at a distance of 3 meters.

§15.255 (c)(4) The level of the spurious emission shall not exceed the level of the fundamental emission

§15.255 (d) Only spurious emissions and transmissions related to a publicly accessible coordination channel, whose purpose is to coordinate operation between diverse transmitters with a view towards reducing the probability of interference throughout the 57 - 64 GHz band are permitted in the 57 - 57.05 GHz band.

RSS-210 §A13.2.2 In-band Emissions: Within the band 57-64 GHz, emission levels measured 3 meters from the radiating source shall not exceed the following:

- (i) For products other than fixed field disturbance sensors, the average power density of any emission, measured during the transmit interval, shall not exceed 9 μ W/cm2, and the peak power density of any emission shall not exceed 18 μ W/cm2.
- (ii) For fixed field disturbance sensors that occupy 500 MHz or less of bandwidth and that are contained wholly within the frequency band 61.0-61.5 GHz, the average power density of any emission, measured during the transmit interval, shall not exceed 9μ W/cm2, and the peak power density of any emission shall not exceed 18μ W/cm2.

In addition, the average power density of any emission outside of the band 61.0-61.5 GHz, measured during the transmit interval, but still within the band 57-64 GHz, shall not exceed 9 nW/cm2, and the peak power density of any emission shall not exceed 18 nW/cm2.

- (iii) For fixed field disturbance sensors other than those operating under the provisions of subsection A13.2.2(1)(ii) of this section, the peak transmitter output power shall not exceed 0.1 mW and the peak power density shall not exceed 9 nW/cm2.
- (2) **Spurious emissions**: Any emissions outside the band 57-64 GHz shall consist solely of spurious emissions and shall not exceed:
- (i) the limits shown in Tables 2 and 3 for emissions below 40 GHz;
- (ii) 90 pW/cm at a distance of 3 metres for emissions between 40 GHz and 200 GHz;

Within the band 57.0-57.05 GHz, only spurious emissions related to a publicly-accessible coordination channel are permitted. The band 57-57.05 GHz is reserved exclusively for a publicly-accessible coordination channel

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 33 of 59

Laboratory Measurement Uncertainty for Radiated Spurious Emissions

Measurement uncertainty	+5.6 / -4.5 dB
-------------------------	----------------

Traceability

Method	Test Equipment Used
Measurements were made per work	0088, 128, 0145, 0146, 0147, 0148, 0158, 227,
instruction WI-05 'Measurement of	229, 0252, 0310, 0312, 0307
Spurious Emissions'	

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 34 of 59

7.1.6. Radiated Emissions (< 1GHz)

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR Compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Test Measurement Set Up

Radiated Emission Measurement Setup – Below 1 GHz

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 35 of 59

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 36 of 59

Specification

Radiated Spurious Emissions

FCC §15.255(c) (1) The power density of any emissions outside the 57-64 GHz band shall consist solely of spurious emissions. (2) Radiated emissions below 40 GHz shall not exceed the general limits in Section 15.209 of this part.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Table 1: FCC 15.209 Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Spectrum Measurement

Traceability:

Method	Test Equipment Used
Work instruction WI-03	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

730.0 830.0 930.0 1000.0

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 37 of 59

Radiated Emissions Results < 1 GHz

Test Freq.	60 GHz	Engineer	GMH
Variant	Transmitter	Temp (°C)	20.5
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	38
Power Setting	Maximum, ac adapter 115Vac 60Hz	Press. (mBars)	1012
Antenna	Integral		
Test Notes 1	Type B2 Ferrite wrapped around power sup	pply cable near PCB	
Test Notes 2	Cables routed away from pcb		
MiceMLabs	### Vasona by E		09 Mar 10 17:04 [1] Horizont: [2] Vertical Ouasi Lt Op+ Debug Formal Meas Dist 3m Spec Dist 3m

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
38.761	57.7	3.6	-16.1	45.2	Quasi Max	V	102	0	49.5	-4.3	Pass	
716.948	44.2	6.7	-9.7	41.3	Quasi Max	Н	100	227	57	-15.7	Pass	
220.831	47.6	4.9	-19.6	32.9	Quasi Max	Н	124	79	57	-24.1	Pass	
725.666	41.9	6.8	-9.2	39.5	Quasi Max	V	100	136	57	-17.6	Pass	
39.057	55.0	3.6	-16.2	42.3	Quasi Max	V	141	8	49.5	-7.2	Pass	
220.782	47.8	4.9	-19.6	33.1	Quasi Max	V	102	3	57	-23.9	Pass	

630.0

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

CLASS A emissions

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 38 of 59

7.1.7. Frequency Stability

FCC, Part 15 Subpart C §15.255 Industry Canada RSS-210 A13.1.5

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver and will always remain within the band of interest as calculated through the component specifications over voltage and temperature.

Frequency Stability

Oscillator characteristics

Reference Crystal Valpy Fisher VF266-A-1

A: stability 25 ppm

-1: temperature range -40 to +85C

Reference Frequency: 285.714 MHz

 ± 25 ppm at 60.48 GHz translates to a maximum frequency shift of ± 1.5145 MHz. As the edge of the channels is at least two MHz from either of the band edges, ± 1.5145 MHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Voltage Regulation

The TEN 8-121x series is a family of high performance 8 W DC/DC converter modules featuring wide 2:1 input voltage ranges in a DIL-24 package with industry standard footprint. A very high efficiency allows an operating temperature range of –40°C to +85°C.

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 39 of 59

Specification

Limits

§15.255 (f) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to + 50°C with an input voltage variation of 85% to 115% of the rated input voltage, unless justification is presented to demonstrate otherwise.

RSS-210 A13.1.5

Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation.

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 40 of 59

7.1.8. AC Mains Line Conducted

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Line Conducted Emissions Test

Measurement Results for AC Line Conducted Emissions (150 kHz – 30 MHz)

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 41 of 59

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBμV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	/	±2.64 dB

Traceability

Method	Test Equipment Used
WI-EMC-01 'Measurement of Conducted Emissions'	0088, 0158, 0184, 0287, 0190, 0293, 0307

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 42 of 59

AC Mains Line Conducted Results

Test Freq.	60 GHz		CSB			
Variant	Transmitter - AC Line Emissions		18.5			
Freq. Range	0.150 MHz - 30 MHz		38			
Power Setting	120V AC; 50 Hz		1012			
Antenna	ntegral					
Test Notes 1	080i Video presented to Video Input.					
Test Notes 2						

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
1.183	30.7	9.9	0.1	40.7	Average	Live	46.0	-5.3	Pass	
1.183	31.8	9.9	0.1	41.8	Quasi Peak	Live	56.0	-14.2	Pass	
1.775	34.6	10.0	0.1	44.8	Average	Live	46.0	-1.2	Pass	
1.775	34.2	10.0	0.1	44.3	Quasi Peak	Live	56.0	-11.7	Pass	
2.367	31.6	10.1	0.1	41.8	Quasi Peak	Live	56.0	-14.2	Pass	
2.367	31.6	10.1	0.1	41.8	Average	Live	46.0	-4.2	Pass	
2.662	35.0	10.1	0.1	45.2	Quasi Peak	Neutral	56.0	-10.8	Pass	
2.662	32.4	10.1	0.1	42.6	Average	Neutral	46.0	-3.4	Pass	
3.253	35.4	10.1	0.2	45.7	Quasi Peak	Neutral	56.0	-10.3	Pass	
3.253	32.7	10.1	0.2	43.0	Average	Neutral	46.0	-3.0	Pass	
3.844	35.2	10.1	0.2	45.5	Quasi Peak	Neutral	56.0	-10.5	Pass	
3.844	32.7	10.1	0.2	42.9	Average	Neutral	46.0	-3.1	Pass	
4.141	32.5	10.1	0.2	42.8	Average	Live	46.0	-3.3	Pass	
4.141	35.2	10.1	0.2	45.5	Quasi Peak	Live	56.0	-10.5	Pass	
4.732	35.2	10.1	0.2	45.6	Average	Live	46.0	-0.4	Pass	
4.732	37.5	10.1	0.2	47.8	Quasi Peak	Live	56.0	-8.2	Pass	
5.323	37.5	10.2	0.2	47.9	Average	Neutral	50.0	-2.1	Pass	
5.323	38.4	10.2	0.2	48.7	Quasi Peak	Neutral	60.0	-11.3	Pass	
Legend:	Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency									

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 43 of 59

7.1.9. Group Installation

FCC, Part 15 Subpart C §15.255 (h) Industry Canada RSS-210 A13.2.6

Client Declaration

The frequency, amplitude and phase of the transmitter are set within the EUT with no external phase-locking inputs or any other means in which to combine two or more units together and realize beam forming arrays.

Limits

§15.207 (h) Any transmitter that has received the necessary FCC equipment authorization under the rules of this chapter may be mounted in a group installation for simultaneous operation with one or more other transmitter(s) that have received the necessary FCC equipment authorization, without any additional equipment authorization. However, no transmitter operating under the provisions of this section may be equipped with external phase-locking inputs that permit beam-forming arrays to be realized.

RSS-210 A13.2.6

Any transmitter that has received the necessary IC certification under this RSS may be mounted in a group installation for simultaneous operation with one or more transmitter(s) that have received the necessary IC authorization, without any additional equipment authorization. However, no transmitter operating under the provisions of this section may be equipped with external phase-locking inputs that permit beam-forming arrays to be realized.

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A **Issue Date:** 6th April 2010

Page: Page 44 of 59

7.1.10. Transmitter Self-Identification Transmission

FCC §15.255 (i) RSS-210 A13.2.7

Results: Not Applicable

Transmitter Self-Identification Transmission is not applicable for this device as it is for outdoor use only. There will be no internal transmissions from a building.

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 45 of 59

Limits

§15.255 (i) For all transmissions that emanate from inside of a building, within any one second interval of signal transmission, each transmitter with a peak output power equal to or greater than 0.1 mW or a peak power density equal to or greater than 3 nW/cm², as measured 3 meters from the radiating structure, must transmit a transmitter identification at least once. Each application for equipment authorization for equipment that will be used inside of a building must declare that the equipment contains the required transmitter identification feature and must specify a method whereby interested parties can obtain sufficient information, at no cost, to enable them to fully detect and decode this transmitter identification information. Upon the completion of decoding, the transmitter identification data block must provide the following fields:

- 1).. FCC identifier, which shall be programmed at the factory
- 2).. Manufacturer's serial number, which shall be programmed at the factory
- 3).. Provision for at least 24 bytes of data relevant to the specific device, which shall be field programmable. The grantee must implement a method that makes it possible for users to specify and update this data. The recommended content of this field is information to assist in contacting the operator.

RSS-210

13.2.7 Transmitter Self-identification Transmission For all transmissions that emanate from inside a building, within any 1 second interval of signal transmission, each transmitter with a peak output power equal to or greater than 0.1 mW or a peak power density equal to or greater than 3 nW/cm2, as measured 3 meters from the radiating source, must transmit a transmitter identification at least once. Each application for equipment approval must declare that the equipment that will be used inside a building contains the required transmitter identification feature and must specify a method whereby interested parties can obtain sufficient information, at no cost, to enable them to fully detect and decode this transmitter identification information. Upon the completion of decoding, the transmitter identification data block must provide the following fields: (a) Industry Canada certification number, which shall be programmed at the factory; (b) Manufacturer's serial number, which shall be programmed at the factory; and (c) Provision for at least 24 bytes of data relevant to the specific device, which shall be field programmable. The applicant must implement a method that makes it possible for users to specify and update this data. The recommended content of this field is information to assist in contacting the operator.

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 46 of 59

8. PHOTOGRAPHS

8.1. Spurious Emissions < 1GHz

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 47 of 59

8.2. Spurious Emissions < 1GHz

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 48 of 59

8.3. AC Wireline Emissions

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A **Issue Date:** 6th April 2010

Page: Page 49 of 59

8.4. Spurious Emissions above 1 GHz

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A **Issue Date:** 6th April 2010

Page: Page 50 of 59

8.5. Conducted Test Set-up

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 51 of 59

8.6. <u>Internal Photographs</u>

8.6.1. Baseband PCB

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 52 of 59

8.6.2. Baseband PCB Rear

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 53 of 59

8.6.3. RF PCB

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 54 of 59

8.6.4. RF PCB Rear

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 55 of 59

8.6.5. VuLink VL300 Body Shell

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 56 of 59

8.6.6. RF PCB

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010 **Page:** Page 57 of 59

8.6.7. Baseband PCB

To: FCC CFR 47 Part 15.255 & IC RSS-210

Serial #: DVWC02-U1 Rev A

Issue Date: 6th April 2010

Page: Page 58 of 59

9. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Model #	Serial #
0088	Spectrum Analyzer	Hewlett Packard	8564E	3410A00141
0128	Pre-selector Mixer	Hewlett Packard	11974U	3001A00107
0134	Pre-Amplifier	COM Power	PA-122	181910
0145	Horn Antenna	Millimeter Products Inc	261K	595
0146	Horn Antenna	Maury Electronics	MPI261U	383
0147	Horn Antenna	Maury Electronics	MPI261E	387
0148	Horn Antenna	Millimeter Products Inc	MPI261A	59
0158	Barometer /Thermometer	Control Co.	4196	E2846
0227	Pre-selector Mixer	Hewlett Packard	11974V	3001A00134
0229	Pre-selector Mixer	Hewlett Packard	11970W	2521A01085
0252	SMA Cable	Megaphase	Sucoflex 104	None
0310	SMA Cable	Micro-Coax	104	77420
0312	SMA Cable	Huber & Suhner	104	77429
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304

Fax: 1.925.462.0306 www.micomlabs.com