Review 1st midterm exam

Introduction to Computational Intelligence

History

- Read from any books
 - History of NN
 - History of Fuzzy
 - History of Evolutionary Computation
 - History of Swarm Intelligence

Connection in CI

Neural Network (NN)

Biological Neural

Artificial neuron

p-m-2:p input nodes, m hidden nodes, 2 output nodes

Number of hidden nodes or hidden layers will be shown here → p-m1-m2-2 means that there are 2 hidden layers: one with m1 nodes and the second one is with m2 nodes

Number of output nodes normally corresponds to the number of classes

Fuzzy System

- Not only 0 or 1, there is a gray area
- Unsharp boundary
- Cope with uncertainty
- Approximate reasoning

Evolutionary Computation

- Individual > chromosome > inherit characteristic
- Population of chromosome
- Each characteristic --<gene– allel(gene value)
- Each generation→individual compete to reproduce offspring
- Best survival capability have the best chance to reproduce
- Crossover→combine part of parents to generate offspring
- Mutation \rightarrow alter some of allele of the chromosome
- Survival strength → measured using fitness function → objective function
- Each generation individual → culling or survive
- Behavior→phenotype →influence evolutionary process in genetic change and evolve separately

Evolutionary Computation

• EC algo

- Genrtic algorithm→model genetic evolutiona
- Genetic programming→similar to GA but individual are program
- Evolutionary programming→derived from the simulation of adaptive behavior in evolution (phenotype evolution)
- Evolution strategies→model strategic parameters that control variation in evolution
- Differential evolution→similar to GA except reproduction mechanism used
- Cultural evolution → model the evolution of culture of a population and how the culture influences the genetic and phenotypic evolution of individual
- Coevolution → "dump" individual evolve through cooperation or in competition with one another, acquiring the necessary characteristics to survive

Swarm Intelligence

- Study of colonies or swarm of social organisma
- Study of social behavior of organisms (individuals) in swarm prompted the design f very efficient optimization and clustering algorithm
- Particle swarm optimization (PSO) → global optimization approach modeled on social behavior of bird flocks
 - A population based search procedure where the individuals (particles) are grouped into a swarm
 - Particle→individual→candidate solution to the optimization problem
 - Flown through the multidimensional search space \rightarrow adjusting its position in search space according to its own experience and that of neighboring particles
 - Best position encounter by itself and that of its neighbor→position itself to the global minimum
 - Performance > measured according to a predefined fitness function which related to the problem being solved
- Study of ant colonies → modeling of pheromone depositing by ants in their search for the shortest paths to food sources resulted in the development of shortest path optimization algorithm

Neural Networks (NN)

• Mapping function form *I* input space to *K* output space

• Activation function $\rightarrow f(-\infty) = 0$ or $f(-\infty) = -1$ and

$$f(\infty) = 1$$

linear function

 $f(v) = \beta v$ where β is a constant

• Step function or unit step function

$$f(v) = \begin{cases} \gamma_1 & \text{if } v \ge \beta \\ \gamma_2 & \text{if } v < \beta \end{cases} \quad \text{normally } \gamma_1 = 1 \text{ and } \gamma_2 = 0 \text{ or } -1$$

• Ramp function

$$f(v) = \begin{cases} \gamma & \text{if } v \ge \beta \\ v & \text{if } -\beta < v < \beta \\ -\gamma & \text{if } v \le -\beta \end{cases}$$

- Sigmoid function
 - Logistic function

$$f(v) = \frac{1}{1 + \exp(-av)}$$

Hyperbolic tangent function

$$f(v) = \tanh\left(\frac{v}{2}\right) = \frac{1 - \exp(-v)}{1 + \exp(-v)} = \frac{2}{1 + \exp(-v)} - 1^{\frac{2}{2}}$$

• Gaussian function

$$f(v) = \exp\left(-\frac{(v-\mu)^2}{\sigma^2}\right) \text{ where } \mu \to \text{ mean and } \sigma \to \text{ standard deviation}$$

• Example: AND Logic \rightarrow input vector $[x_1,x_2]^t$ with output y=0 are in the same class (1st class), one with output 1 are in another class (2nd class) \rightarrow use unit step function with $\gamma_1=1$, $\gamma_2=0$ and $\beta=0$ as activation function

x_1	x_2	Y
		(desired
		output)
0	0	0
0	1	0
1	0	0
1	1	1

$$v = x_1 + x_2 - 1.5$$

x_1	x_2	v	o (program
			o (program output)
0	0	-1.5	0
0	1	-0.5	0
1	0	-0.5	0
1	1	0.5	1

• Example : XOR Logic \rightarrow input vector $[x_1, x_2]^t$ with output y = 0 are in the same class (1st class), one with output 1 are in another class (2nd class) \rightarrow use unit step function with $\gamma_1 = 1$, $\gamma_2 = 0$ and $\beta = 0$ as activation function

x_1	x_2	Y
		(desired
		output)
0	0	0
0	1	1
1	0	1
1	1	0

x_1	x_2	v_1	01	v_2	02	o (program
						output)
0	0	-1.5	0	-0.5	0	-0.5
0	1	-0.5	0	0.5	1	0.5
1	0	-0.5	0	0.5	1	0.5
1	1	0.5	1	1.5	1	-1.5

One hidden node create one decision boundary → 4 hidden nodes creates 4 decision boundary → these boundary is combined at the output node to create decision for the decision making

Gradient descent learning rule

Direction of gradient vector $((\nabla \mathcal{E}(\mathbf{w})))$ is in the increasing direction \rightarrow if we invert the direction we will have

$$w(t+1) = w(t) - \eta \nabla \mathscr{E}(w)$$

New weight that is in the decreasing direction of the error space

- if η is small, the transient response of the algorithm will be overdamped
- If η is large, the transient response of the algorithm will be underdamped
- If η is larger than the critical value, the algorithm will be unstable and may be diverged

Backpropagation

- Forward pass
- Backward pass

$$\mathcal{E}_{av} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}(n)$$

Multilayer Perceptron

- Initialization
- Forward Computation
 - Output from neuron j in layer l

$$y_j^{(l)}(n) = \varphi_j(v_j(n))$$
 where $v_j^{(l)}(n) = \sum_{i=0}^{m_{l-1}} w_{ji}^{(l)}(n) y_i^{(l-1)}(n)$

where $y_i^{(l-1)}(n)$ is the output signal of neuron i in the previous layer l-1

and $w_{ji}^{(l)}(n)$ is the synaptic weight of neuron j in layer l that is fed from neuron i in layer l-1

if
$$l = 1$$
, $y_j^{(0)}(n) = x_j(n)$ and if $l = L$, $y_j^{(0)}(n) = o_j(n)$

compute the error: $e_j(n) = d_j(n) - o_j(n)$

- Backward computation
 - Local gradients

$$\delta_{j}^{(l)}(n) = \begin{cases} e_{j}^{(L)}(n)\varphi_{j}'(v_{j}^{(L)}(n)) & \text{for neuron } j \text{ in output layer } L \\ \varphi_{j}'(v_{j}^{(l)}(n))\sum_{k}\delta_{k}^{(l+1)}(n)w_{kj}^{(l+1)}(n) & \text{for neuron } j \text{ in output layer } l \end{cases}$$

where $\varphi_j'(\cdot)$ denotes differentiation with respect to the argument

- Update weights

$$w_{ji}^{(l)}(n+1) = w_{ji}^{(l)}(n) + \alpha \left[\Delta w_{ji}^{(l)}(n-1) \right] + \eta \delta_{j}^{(l)}(n) y_{j}^{(l-1)}(n)$$

$$w_{ji}^{(l)}(n+1) = w_{ji}^{(l)}(n) + \alpha \left[w_{ji}^{(l)}(n) - w_{ji}^{(l)}(n-1) \right] + \eta \delta_{j}^{(l)}(n) y_{j}^{(l-1)}(n)$$

• Iteration: until the stopping criterion is met

$$y_j^{(I)}(t) = \varphi_j^{(I)}(v_j^{(I)}(t)) = \frac{1}{1 + \exp(-v_j^{(I)}(t))}$$

$$\frac{\partial v_j^{(l)}(t)}{\partial v_j^{(l)}(t)} = \varphi_j^{(l)'}\left(v_j^{(l)}(t)\right) = \frac{\exp\left(-v_j^{(l)}(t)\right)}{\left[1 + \exp\left(-v_j^{(l)}(t)\right)\right]^2}$$

$$\varphi_{j}^{(l)'}\left(v_{j}^{(l)}(t)\right) = \frac{1}{1 + \exp\left(-v_{j}^{(l)}(t)\right)} \left[1 - \frac{1}{1 + \exp\left(-v_{j}^{(l)}(t)\right)}\right]$$

$$\varphi_{j}^{(\prime)\prime}\left(v_{j}^{(\prime)}\left(t\right)\right) = y_{j}^{(\prime)}\left(t\right)\left[1 - y_{j}^{(\prime)}\left(t\right)\right]$$

output layer hidden layer

$$\delta_{j}^{(L)}(t) = e_{j}^{(L)}(t) \left[o_{j}(t) \left[1 - o_{j}(t) \right] \right]$$

$$\delta_{j}^{(I)}(t) = y_{j}^{(I)}(t) \left[1 - y_{j}^{(I)}(t) \right] \sum_{t} \delta_{k}^{(I+1)}(t) w_{kj}^{(I+1)}(t)$$

• For
$$y_{j}^{(l)}(t) = \varphi_{j}^{(l)}(v_{j}^{(l)}(t)) = \tanh\left(\frac{v_{j}^{(l)}(t)}{2}\right) = \frac{2}{1 + \exp(-v_{j}^{(l)}(t))} - 1$$

$$\frac{\partial y_{j}^{(l)}(t)}{\partial v_{j}^{(l)}(t)} = \varphi_{j}^{(l)'}(v_{j}^{(l)}(t)) = \frac{2 \exp(-v_{j}^{(l)}(t))}{\left[1 + \exp(-v_{j}^{(l)}(t))\right]^{2}}$$

$$\varphi_{j}^{(l)'}(v_{j}^{(l)}(t)) = \frac{2}{1 + \exp(-v_{j}^{(l)}(t))} \left[1 - \frac{1}{1 + \exp(-v_{j}^{(l)}(t))}\right]$$

$$\varphi_{j}^{(l)'}(v_{j}^{(l)}(t)) = 2y_{j}^{(l)}(t) \left[1 - y_{j}^{(l)}(t)\right]$$

output layer
$$\delta_j^{(L)}(t) = e_j^{(L)}(t) \left[2o_j(t) \left[1 - o_j(t) \right] \right]$$

hidden layer $\delta_j^{(I)}(t) = 2y_j^{(I)}(t) \left[1 - y_j^{(I)}(t) \right] \sum_k \delta_k^{(I+1)}(t) w_{kj}^{(I+1)}(t)$

• Example: suppose at iteration t $x(t) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $d(t) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\eta = 0.2$, $\alpha = 0.1$. Find $w_{32}^{(1)}(t+1)$

t-1

t

$$v_1^{(1)}(t) = \sum_{j=0}^{2} w_{1j}^{(1)} x_j = -1.2 + (0.3)(1) + (-0.6)(1) = -1.5$$

$$y_1^{(1)}(t) = \frac{1}{1 + \exp(-v_1^{(1)}(t))} = \frac{1}{1 + \exp(1.5)} = 0.1824$$

$$v_2^{(1)}(t) = \sum_{j=0}^{2} w_{2j}^{(1)} x_j = 0.9 + (-0.8)(1) + (0.5)(1) = 0.6$$

$$y_2^{(1)}(t) = \frac{1}{1 + \exp(-0.6)} = 0.6457$$

$$v_3^{(1)}(t) = \sum_{i=0}^{2} w_{3i}^{(1)} x_i = -0.6 + (0.5)(1) + (-1.6)(1) = -1.7$$

$$y_3^{(1)}(t) = \frac{1}{1 + \exp(1.7)} = 0.1545$$

$$v_1^{(2)}(t) = \sum_{j=0}^{3} w_{1j}^{(2)} y_j^{(1)} = -0.5 + (0.2)(0.1824) + (-0.2)(0.6457) + (-1.1)(0.1545) = -0.7626$$

$$y_1^{(2)}(t) = \frac{1}{1 + \exp(0.7626)} = 0.3181$$
 $e_1^{(2)}(t) = 0 - 0.3181 = -0.3181$

$$v_2^{(2)}(t) = \sum_{i=0}^{3} w_{1i}^{(2)} y_i^{(1)} = 0.8 + (-0.3)(0.1824) + (0.5)(0.6457) + (-0.7)(0.1545) = 0.96$$

$$y_2^{(2)}(t) = \frac{1}{1 + \exp(-0.96)} = 0.7231$$
 $e_2^{(2)}(t) = 1 - 0.7231 = 0.2769$

$$\delta_1^{(2)}(t) = e_1^{(2)}(t) \left[o_1(t) \left[1 - o_1(t) \right] \right] = (-0.3181) \left[0.3181 \left(1 - 0.3181 \right) \right] = -0.0690$$

$$\delta_2^{(2)}(t) = e_2^{(2)}(t) \left[o_2(t) \left[1 - o_2(t) \right] \right] = (0.2769) \left[0.7231(1 - 0.7231) \right] = 0.0554$$

$$\delta_3^{(1)}(t) = y_3^{(1)}(t) \left[1 - y_3^{(1)}(t) \right] \sum_{k=1}^{2} \delta_k^{(2)}(t) w_{kj}^{(2)}(t)$$

$$\delta_3^{(1)}(t) = 0.1545 [1 - 0.1545] [(-0.0690)(-1.1) + (0.0554)(-0.7)] = 0.0048$$

$$\Delta w_{12}^{(2)}(t) = \alpha \Delta w_{12}^{(2)}(t-1) + \eta \delta_1^{(2)}(t) y_2^{(1)}(t)$$

$$\Delta w_{12}^{(2)}(t) = 0.1(-0.2 - (-0.1)) + 0.2(-0.0690)(0.6457) = -0.0189$$

$$w_{12}^{(2)}(t+1) = w_{12}^{(2)}(t) + \Delta w_{12}^{(2)}(t) = -0.2 - 0.0189 = -0.2189$$

$$\Delta w_{32}^{(1)}(t) = \alpha \Delta w_{32}^{(1)}(t-1) + \eta \delta_3^{(1)}(t) x_2(t)$$

$$\Delta w_{32}^{(1)}(t) = 0.1(-1.6 - 0.01) + 0.2(0.0048)(1) = -0.16$$

$$w_{32}^{(1)}(t+1) = w_{32}^{(1)}(t) + \Delta w_{32}^{(1)}(t) = -1.6 - 0.16 = -1.76$$

- Generalization
 - Overtrain→look up table→do not want
 - Properly fit→want
 - Factor
 - Size of training data set
 - Architecture of NN
 - Physical complexity of the problem at hand
- Performance factor
 - Data preparation
 - Missing value \rightarrow discard if have a lot of train data or replace the missing value with the average of that feature or with the most frequent
 - Coding input value
 - Outlier → discard that outlier if known and have a lot of train data if not, adjust the objective function so that it can cope with the outlier→robustness

• Scaling and normalization → if some features dominate other features → normalize each feature with its own mean and standard deviation so that every features are in the same range

k feature of sample
$$i \rightarrow \hat{x}_{ik} = \frac{x_{ik} - \overline{x}_k}{\sigma_k}$$
 where $\overline{x}_k = \frac{1}{N} \sum_{i=1}^{N} x_{ik}$ for $k = 1, 2, ..., p$

and
$$\sigma_k^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_{ik} - \overline{x}_k)^2$$

output value should be (0.1 or 0.9) or (-0.9 or 0.9) because if we use logistic function or hyperbolic tangent the computed valued will never goes to 0 or 1 (or -1 or 1) → suppose there are 3 class: sample in class 1 will have the desire output be 0.9 0.1 0.1, that in class 2 will be 0.1 0.9 0.1 and that in class 3 will be 0.1 0.1 0.9 → if use tanh, it should be 0.9 -0.9 0.9 (class 1), -0.9 0.9 -0.9 (class 2) and -0.9 -0.9 0.9 (class 3)

• Or

- Noise injection → around decision boundary
- Training set manipulation → selective presentation → typical pattern and confusing pattern → need priori information

Initialize weight with

$$\left[\frac{-1}{\sqrt{fanin}}, \frac{1}{\sqrt{fanin}}\right]$$

Learning rate and momentum rate

Self organizing feature map self organizing map

• Competitive

Input $\mathbf{x} = \begin{bmatrix} x_1, x_2, ..., x_m \end{bmatrix}^t$ neuron j with $\mathbf{w}_j = \begin{bmatrix} w_{j1}, w_{j2}, ..., w_{jm} \end{bmatrix}^t$ There are l neurons

Winning neuron
$$i(x) = \underset{j}{\operatorname{arg min}} ||x - w_j|| \text{ for } j \in \mathcal{A}$$

• Cooperation

- $h_{j,i(\mathbf{x})}$: symmetric about the maximum point defined by $d_{ji}=0$ (at winning neuron)
- Amplitude of $h_{j,i(\mathbf{x})}$ decrease monotonically with increasing lateral distance d_{ji} , decaying to 0 for $d_{ji} = \infty$ necessary condition for convergence

$$h_{j,i(\mathbf{x})} = \exp\left(-\frac{d_{j,i}^2}{2\sigma^2}\right) \text{ for } j \in \mathcal{A}$$

$$\sigma(n) = \sigma_0 \exp\left(-\frac{n}{\tau_1}\right)$$
 for $n = 0,1,2,...$

$$h_{j,i(\mathbf{x})}(n) = \exp\left(-\frac{d_{j,i}^2}{2\sigma^2(n)}\right) \text{ for } n = 0,1,2,...,$$

Where $d_{j,i} = |j-i|$ between neuron j and winning neuron i in case of 1-d lattice and $d_{j,i}^2 = ||\mathbf{r}_j - \mathbf{r}_i||^2$ for 2-d lattice between \mathbf{r}_i and \mathbf{r}_j are vector of neuron i and j

• Synaptic adaptation \rightarrow since update in 1 direction \rightarrow might saturate, hence, include forgetting term $(g(y_i))$

$$\Delta w_{j} = \eta y_{j} x - g(y_{j}) w_{j} \text{ for } j \in \mathcal{A}$$

$$g(y_{j}) = \eta y_{j} \text{ and } y_{j} = h_{j,i}(x)$$

$$\Delta w_{j} = \eta h_{j,i}(x) (x - w_{j}) \text{ for } j \in \mathcal{A}$$

If neighborhood function is rectangle function

$$\Delta \mathbf{w}_j = \begin{cases} \boldsymbol{\eta} \Big(\mathbf{x} - \mathbf{w}_j \Big) & \text{if } j \text{ is inside neighborhood function} \\ \mathbf{0} & \text{if } j \text{ is outside neighborhood function} \end{cases} \text{ for } j \in \mathscr{A}$$

$$\mathbf{w}_j (t+1) = \begin{cases} \mathbf{w}_j (t) + \boldsymbol{\eta} (t) \Big(\mathbf{x} (t) - \mathbf{w}_j (t) \Big) & \text{if } j \text{ is inside the neighborhood function} \\ \mathbf{w}_j (t) & \text{if } j \text{ is not inside the neighborhood function} \end{cases}$$

If neighborhood function is guassian

$$\mathbf{w}_{j}(t+1) = \mathbf{w}_{j}(t) + \eta(t)h_{j,i(\mathbf{x})}(t)(\mathbf{x}(t) - \mathbf{w}_{j}(t)) \quad \text{for } j \in \mathcal{A}$$

$$\eta(n) = \eta_0 \exp\left(-\frac{n}{\tau_2}\right)$$
 for $n = 0,1,2,...$

• 2 phase

- Self-organizing or ordering phase
 - η might start from 0.1 and decrease till the value is around 0.01 never goes to 0
 - Neighborhood function start from all neuron centered on the winning neuron and shrink slowly with time
- Convergence phase
 - η maintained at a small value on the order of 0.01 do not decrease to 0
 - Neighborhood function contain only the nearest neighbor of a winning neuron eventually reduce to 1 or 0 neighbor

Example

$$\mathbf{w}_1 = \begin{bmatrix} 0.5 \\ 0.9 \end{bmatrix} \qquad \mathbf{w}_2 = \begin{bmatrix} -0.3 \\ -0.1 \end{bmatrix} \qquad \mathbf{w}_3 = \begin{bmatrix} -0.9 \\ 0.9 \end{bmatrix} \qquad \mathbf{w}_4 = \begin{bmatrix} 0.3 \\ -0.6 \end{bmatrix} \qquad \mathbf{w}_5 = \begin{bmatrix} 1.3 \\ -1.6 \end{bmatrix}$$

Input $x = \begin{vmatrix} -1 \\ 1 \end{vmatrix}$ learning rate $0.1 \rightarrow$ use $d = \sqrt{(x_1 - w_1)^2 + (x_2 - w_2)^2}$ and $h_{ji(\mathbf{x})}$ has the radius of 1

d(1) = 1.5033, d(2) = 1.3038, d(3) = 0.1414, d(4) = 2.0616, d(5) = 3.4713

Winning neuron is neuron $3(i(\mathbf{x}) = 3)$, neighbor with radius of 1 will be node 2 and 4 only, hence, update weight at nodes 2, 3, and 4

$$\mathbf{w}_{2} = \begin{bmatrix} -0.3 \\ -0.1 \end{bmatrix} + 0.1 \left(\begin{bmatrix} -1 \\ 1 \end{bmatrix} - \begin{bmatrix} -0.3 \\ -0.1 \end{bmatrix} \right) = \begin{bmatrix} -0.37 \\ 0.01 \end{bmatrix} \quad \mathbf{w}_{3} = \begin{bmatrix} -0.9 \\ 0.9 \end{bmatrix} + 0.1 \left(\begin{bmatrix} -1 \\ 1 \end{bmatrix} - \begin{bmatrix} -0.9 \\ 0.9 \end{bmatrix} \right) = \begin{bmatrix} -0.91 \\ 0.91 \end{bmatrix} \quad \text{meuron}$$

$$\mathbf{w}_{4} = \begin{bmatrix} 0.3 \\ -0.6 \end{bmatrix} + 0.1 \begin{pmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0.3 \\ -0.6 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0.17 \\ -0.44 \end{bmatrix} \qquad \mathbf{w}_{1} = \begin{bmatrix} 0.5 \\ 0.9 \end{bmatrix} \qquad \mathbf{w}_{5} = \begin{bmatrix} 1.3 \\ -1.6 \end{bmatrix}$$

$$\mathbf{w}_1 = \begin{bmatrix} 0.5\\ 0.9 \end{bmatrix}$$

$$\mathbf{w}_5 = \begin{bmatrix} 1.3 \\ -1.6 \end{bmatrix}$$

SOFM properties

- Approximation of the input space
- Topological ordering
- Density matching
- Feature selection

x (input vector from linear predict code)

Fuzzy system

- Uncertainty and complexity
 - Driving in the unfamiliar condition
- Natural language
 - Cold: people in the north and in the south know what cold is but when it happens people in these two area will say differently → people in the north might say that 10 degree celsius is cold but people in the south might say that 20 degree celsius is cold
- Heap paradox

• Characteristic function > crisp set

• Membership function → fuzzy set

$$A: X \rightarrow [0,1]$$
 หรือ $\mu_{A}: X \rightarrow [0,1]$

Membership function of old

Membership function of big Countour diagram

No.	Education level	
0	No education	
1	Elementary school	
2	High school	
3	2-year college	
4	Bachelor's degree	
5	Master's degree	
6	Doctoral degree	

name (symbol)	Membership value in		
	fuzzy set A		
Carry (x ₁)	0.8		
Bill (x_2)	0.3		
$J-H(x_3)$	0.5		
Wabei (x ₄)	0.9		

$$A = \frac{0.8}{\text{Carry}} + \frac{0.3}{\text{Bill}} + \frac{0.5}{\text{J-H}} + \frac{0.9}{\text{Wabei}}$$

How to write membership function as an equation

$$A = \sum \frac{A(x)}{x}$$

$$A = \int_{x} \frac{A(x)}{x}$$
discrete continuous

Geometric representation

Analytic representation: function

example

$$\mathbf{A}(x) = \begin{cases} x - 5 & 5 \le x \le 6 \\ 7 - x & 6 \le x \le 7 \\ 0 & \text{else} \end{cases}$$

Analytic representation

Triangular shape

$$\mathbf{A}(x) = \begin{cases} b \left(1 - \frac{|x - a|}{s} \right) & a - s \le x \le a + s \\ 0 & \text{else} \end{cases}$$

$$\mathbf{A}(x) = \begin{cases} \frac{(a-x)e}{a-b} & a \le x \le b \\ e & b \le x \le c \\ \frac{(d-x)e}{d-c} & c \le x \le d \\ 0 & \text{else} \end{cases}$$
 Trapezoidal shape

$$\mathbf{A}(x) = ce^{\frac{-(x-a)^2}{b}}$$
Bell-shape

S-function

$$S(x) = \begin{cases} 0 & 0 \le x \le a \\ \frac{1}{2} \left(\frac{x - a}{b - a} \right)^2 & a \le x \le b \\ 1 - \frac{1}{2} \left(\frac{x - c}{c - b} \right)^2 & b \le x \le c \end{cases}$$

Interval-valued fuzzy set

$$\mathbf{A}: X \longrightarrow \mathcal{E}([0,1])$$

 $\mathcal{E}([0,1])$ denote the family of all closed interval of real number in [0,1] ($\mathcal{E}([0,1]) \subset P([0,1])$)

Type-2 fuzzy set

$$\mathbf{A}:X \to \tilde{\mathcal{P}}([0,1])$$

 $\tilde{\mathcal{P}}([0,1])$ denote the set of all ordinary fuzzy sets that can be defined within the universal [0,1]

$$A(a) = \text{fuzzy set } (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$$

$$A(b) = \text{fuzzy set } (\beta_1, \beta_2, \beta_3, \beta_4)$$

Level 2 fuzzy set

$$\mathbf{A}: \tilde{\mathcal{P}}(X) \longrightarrow ([0,1])$$

 $\tilde{\mathcal{P}}(X)$ denote fuzzy power set of X

Standard fuzzy complement

- A(x) express degree to which x belong to fuzzy set A
- $\overline{A}(x)$ express degree to which x does not belong to fuzzy set A

$$\overline{A}(x) = 1 - A(x) \quad \forall x \in X$$

Standard fuzzy union

$$(A \cup B)(x) = \max[A(x), B(x)]$$

patient	high blood	High fever (B)	High blood
	pressure(A)		pressure or high
			fever $(A \cup B)$
1	1	1	1
2	0.5	0.6	0.6
3	1	0.1	1
n	0.1	0.7	0.7

Do not satisfy the law of excluded middle

 $(A \cup \overline{A})(x)$ will not equal to universal set

Standard fuzzy intersection

$$(A \cap B)(x) = \min[A(x), B(x)]$$

river	Long river (A)	Nevigable (B)	Long and
			nevigable $(A \cap B)$
Amazon	1	0.8	0.8
Nile	0.9	0.7	0.7
Yang-Tsi	0.8	0.8	0.8
Danube	0.5	0.6	0.5
Rhine	0.4	0.3	0.3

Do not satisfy the law of contradiction

 $(A \cap \overline{A})(x)$ will not equal to fuzzy empty set

Inclusion: $A \subseteq B$ if $A(x) \le B(x) \forall x \in X$

Equality: A=B if $A(x) = B(x) \forall x \in X$

Unary operation: $A^a(x) = (A(x))^a$

if $a>1 \rightarrow$ more specific, if $a<1 \rightarrow$ less specific

somewhat old are from old^{0.5}

Very old are from old²

Support of fuzzy set A (supp(A):

$$\operatorname{supp}(A) = \{x \in X \mid A(x) > 0 \}$$

Height of fuzzy set A(h(A)): $h(A) = \sup_{x} A(x)$

Largest value of membership value obtained by any element in that set that is >0

If $h(A)=1 \rightarrow$ normal fuzzy set

If $h(A) < 1 \rightarrow$ supnormal fuzzy set

If $h(A)>1 \rightarrow$ supernormal fuzzy set

Core of fuzzy set A (core(A)):

$$core(A) = \{x \in X \mid A(x) \ge h(A)\}\$$
 since height is $h(A)$ then we can have $core(A) = \{x \in X \mid A(x) = h(A)\}$

 α -cut of fuzzy set A (αA): $\alpha A = \{x \in X \mid A(x) \ge \alpha\}$

Strong α -cut of fuzzy set $A(\alpha^+A)$: $\alpha^+A = \{x \in X \mid A(x) > \alpha\}$

If
$$\alpha_1 < \alpha_2$$
 then $\alpha^1 A \supseteq \alpha^2 A$ and $\alpha^1 A \cap \alpha^2 A = \alpha^2 A$, $\alpha^1 A \cup \alpha^2 A = \alpha^1 A$

If
$$\alpha_1 < \alpha_2$$
 then $\alpha_1 + A \supseteq \alpha_2 + A$ and $\alpha_1 + A \cap \alpha_2 + A = \alpha_2 + A$, $\alpha_1 + A \cup \alpha_2 + A = \alpha_1 + A$

$${}^{0}\mathbf{E} = [0,100] \text{ or } {}^{0.2}\mathbf{E} = [30,100] \text{ or } {}^{1}\mathbf{E} = [70,100] \text{ (core}(\mathbf{E}))$$

$$^{0+}E = (20,100] \text{ (supp}(E)) \text{ or } ^{0.2+}E = (30,100] \text{ or } ^{1+}E = \emptyset$$

Level set of fuzzy set A (L_A or \wedge_A): $L_A = \wedge_A = \{\alpha \mid A(x) = \alpha; \exists x \in X\}$

Special fuzzy set from α -cut (αA)

$$_{\alpha}A(x) = \alpha(^{\alpha}A(x)) \quad \forall x \in \mathbf{X}$$

Example

$$A = 0.2/x_1 + 0.4/x_2 + 0.6/x_3 + 0.8/x_4 + 1/x_5$$

We have $L_A = \{0.2, 0.4, 0.6, 0.8, 1\}$

 α -cut of A will be

$$^{0.2}\boldsymbol{A} = \{x_1, x_2, x_3, x_4, x_5\} = 1/\,x_1 + 1/\,x_2 + 1/\,x_3 + 1/\,x_4 + 1/\,x_5 \\ ^{0.4}\boldsymbol{A} = 0/\,x_1 + 1/\,x_2 + 1/\,x_3 + 1/\,x_4 + 1/\,x_5 \\ ^{0.6}\boldsymbol{A} = 0/\,x_1 + 0/\,x_2 + 1/\,x_3 + 1/\,x_4 + 1/\,x_5 \\ ^{0.8}\boldsymbol{A} = 0/\,x_1 + 0/\,x_2 + 0/\,x_3 + 1/\,x_4 + 1/\,x_5 \\ ^{1}\boldsymbol{A} = 0/\,x_1 + 0/\,x_2 + 0/\,x_3 + 0/\,x_4 + 1/\,x_5$$

Special fuzzy set will be

$${}_{0.2}\boldsymbol{A} = 0.2/\,x_1 + 0.2/\,x_2 + 0.2/\,x_3 + 0.2/\,x_4 + 0.2/\,x_5 \\ {}_{0.4}\boldsymbol{A} = 0/\,x_1 + 0.4/\,x_2 + 0.4/\,x_3 + 0.4/\,x_4 + 0.4/\,x_5 \\ {}_{0.6}\boldsymbol{A} = 0/\,x_1 + 0/\,x_2 + 0.6/\,x_3 + 0.6/\,x_4 + 0.6/\,x_5 \\ {}_{0.8}\boldsymbol{A} = 0/\,x_1 + 0/\,x_2 + 0/\,x_3 + 0.8/\,x_4 + 0.8/\,x_5 \\ {}_{1}\boldsymbol{A} = 0/\,x_1 + 0/\,x_2 + 0/\,x_3 + 0/\,x_4 + 1/\,x_5$$

Decomposition theorem

From special fuzzy set in the previous example $_{0.2}A = 0.2/x_1 + 0.2/x_2 + 0.2/x_3 + 0.2/x_4 + 0.2/x_5$ $_{0.4}A = 0/x_1 + 0.4/x_2 + 0.4/x_3 + 0.4/x_4 + 0.4/x_5$ $_{0.6}A = 0/x_1 + 0/x_2 + 0.6/x_3 + 0.6/x_4 + 0.6/x_5$ $_{0.8}A = 0/x_1 + 0/x_2 + 0/x_3 + 0.8/x_4 + 0.8/x_5$ $_{1}A = 0/x_1 + 0/x_2 + 0/x_3 + 0/x_4 + 1/x_5$

We can see that $(0.2A \cup_{0.6}A \cup_{0.6}A \cup_{0.8}A \cup_{1}A) \rightarrow A$

First theorem:

For and
$$A \in \tilde{\mathcal{P}}(x)$$
, $A = \bigcup_{\alpha \in [0,1]} \alpha^A$

where $_{\alpha}A(x) = \alpha(^{\alpha}A(x))$, $\forall x \in \mathbf{X}$ and \cup is a standard fuzzy union

Second theorem:

For and
$$A \in \tilde{\mathcal{P}}(x)$$
, $A = \bigcup_{\alpha \in [0,1]} \alpha + A$

where $_{\alpha+}A(x) = \alpha(^{\alpha+}A(x))$, $\forall x \in \mathbb{X}$ and \cup is a standard fuzzy union

Third theorem:

For and
$$A \in \tilde{\mathcal{P}}(x)$$
, $A = \bigcup_{\alpha \in \wedge_A} \alpha^A$

where $_{\alpha}A(x) = \alpha(^{\alpha}A(x))$, $\forall x \in \mathbf{X}$ and \cup is a standard fuzzy union

Convex fuzzy set

A is a convex fuzzy set if

$$A(\lambda \vec{r} + (1 - \lambda)\vec{s}) \ge \min(A(\vec{r}), A(\vec{s}))$$
 where $0 \le \lambda \le 1$

Meaning that membership values of all the points on the line connecting \vec{r} and \vec{S} is bigger than or equal to the minimum membership values of \vec{r} and \vec{S}

<u>Or</u>

If A is a convex fuzzy set then (1) α -cut for all α are not disconnected, and (2)each α -cut is convex in crisp sense

All the points of the dashed line have a membership values bigger than or equal to the minimum membership value of vector r and vector s

Not convex fuzzy set