

Полупроводников диод Работа по променлив ток

Въведение

Поради едностранната си проводимост диодите са основни градивни елементи в **изправителите**, които преобразуват стандартното променливо напрежение от мрежата (220V, 50 Hz) в постоянно.

Работа на диода по променлив ток

Най-често диодите се използват за изправяне, детектиране и модулация на променлив сигнал.

Когато освен постоянното напрежение към диода се приложи и променлив синусоиден сигнал $u(t) = U_m \sin(\omega t)$ с амплитуда U_m , за положителния полупериод максималната резултантна стойност на захранващото напрежение ще бъде $E + U_m$, а за отрицателния – съответно $E - U_m$.

Диференциално съпротивление

Около работната точка се образува област, определена от синусоидния сигнал, в която се дефинира променливотоковото (диференциално) съпротивление на диода.

$$r = \frac{dU}{dI} = \frac{\varphi_T}{I + I_s}$$

Аналитичният израз за диференциалното съпротивление се определя чрез диференциране на уравнението на волтамперната характеристка на диода.

Честотни свойства

Под действие на синусоидни сигнали с различна честота $u(t) = U_m \sin(\omega t)$ където $\omega = 2\pi f$, а периодът T = 1/f, преходните процеси в диода протичат в течение на времето на живот на токоносителите τ .

Ограничението в честотния обхват на работа е свързано с наличието на капацитети на диода.

Капацитети на диода

Полупроводниковият диод притежава капацитивни свойства, защото има способност да натрупва и отдава заряд при промяна на приложеното върху него напрежение – съответно в PN прехода и в неутралните области.

Бариерен капацитет $C = C_T + C_D$ Дифузен капацитет

Бариерен капацитет

Бариерният капацитет характеризира съсредоточения в *PN* прехода заряд, създаден от йоните на примесите.

$$C_T = \frac{dQ}{dU}$$

$$C_T = \frac{dQ}{dU}$$
 $C = \frac{\varepsilon_0 \varepsilon_r S}{d}$ $C_T \sim \frac{SN_D}{\sqrt{U}}$

 U_R , V

$$C_T \sim \frac{SN_D}{\sqrt{U}}$$

Волт-фарадна характеристика

право включване и намалява с нарастване на обратното напрежение върху диода.

Бариерният капацитет е по-голям при

Варикап (варактор)

Варикапът е диод, който се използва като нелинеен, управляван от напрежението кондензатор. Действието му е основано на зависимостта на бариерния капацитет на прехода от обратното напрежение.

Волт-фарадна характеристика

Варикапите се използват като умножители на честота и в схеми за електронна настройка в телевизионните, радио и други приемници.

Дифузен капацитет

Дифузният капацитет C_D отразява преразпределението на зарядите в неутралните области на диода извън обемния заряд при промяна на напрежението.

Тъй като тези заряди се образуват при инжекция на токоносители през прехода, C_D се отчита само при право включване на диода.

Еквивалентна схема по променлив ток

Еквивалентната схема на диода за малък променлив сигнал позволява да се анализира работата на диода при промяна на честотата.

 r_{B} - обемно съпротивление на базата на диода

 L_k – индуктивност на изводите

 C_k – капацитет на корпуса

При работа при ниски честоти реактивните компоненти не оказват влияние и диодът се заменя с диференциалното си съпротивление r (за нормалния случай, когато $r < r_B$). С повишаване на честотата при право включване оказват влияние малкото r и C_D , а при обратно – голямото и C_T . L_k и C_k влияят при свръх високи честоти.

Високочестотни диоди

За работа при високи честоти се използват диоди с малки площи на преходите, за да се намалят техните капацитети. Високочестотните диоди са предназначени за изправяне на токове и напрежения с честота до 150 MHz.

За увеличаване на граничната работна честота на диодите капацитетите и времето на живот на неосновните токоносители трябва да са малки.

Работа в импулсен режим

При работа на диода като ключ бързодействието при превключване се определя от продължителността на преходните процеси. Инертността на диода се дължи на необходимостта от:

- 💠 време за натрупване и разнасяне на неосновните токоносители;
- 💠 време за презареждане на бариерния капацитет.

Процеси при включване

Отпушващ токов импулс

Напрежение върху базата на диода

Напрежение върху *PN* прехода

Напрежение върху диода

 $U_{FD}\,$ - Установена стойност на напрежението

Импулсни параметри

 U_{FM} - Импулсно напрежение в права посока t_{fr} – време за установяване на напрежението

Процеси при изключване

Импулсни параметри

- *I_{RM}* импулсна стойност на тока при обратно включване
- t_{rr} време за възстанояване на обратното съпротивление на диода
- $t_{\rm S}$ време на разнасяне на неосновните токоносители
- t_r време за нарастване на обратното съпротивление

$$t_{rr} >> t_{fr}$$

Импулсни диоди

Импулсните диоди работят в режим на бързи изменения на сигналите и се характеризират с малка продължителност на преходните процеси – t_{rr} помалко от 1 µs. Различават се:

- 🐤 свръхбързи диоди с t_{rr} = 0,1 1 ns.
- импулсни диоди с голямо бързодействие t_{rr} < 10 ns,
 </p>
- средно бързодействие 10 ns < t_{rr} < 100 ns,
 </p>
- ◆ ниско бързодействие t_{rr} > 100 ns.

Имулсните диоди трябва да имат малки капацитети и малки стойности на времето на живот. За намаляване площта на *PN* прехода се използват меза структури със специфично скосяване, получено чрез ецване.

Изправителни диоди

Изправителните диоди са полупроводникови диоди, предназначени за преобразуване на променливи токове и напрежения с *ниска честотна* в постоянни. За осигуряване протичането на голям ток е необходима голяма площ, което ограничава честотния диапазон на работа.

При необходимост от изправяне на ток, надвишаващ номиналния среден изправен ток, се използва **паралелно свързване** на няколко диода. **Последователно свързване** на диодите се използва за увеличаване на сумарното обратно напрежение.

Приложения – изправител

През положителния полупериод диодът е отпушен. Протичащият през него ток създава пад върху товарното съпротивление R_L. Полученото в изхода напрежение повтаря формата на входния сигнал.

Принцип на работа – илюстрация

Входно напрежение

Изходно напрежение

Положителен полупериод на входното напрежение

Входно напрежение

Изходно напрежение

Отрицателен полупериод на входното напрежение

Средна стойност на U_{изх}

Диодът пропуска само положителната полувълна на променливото напрежение и в изхода се получава пулсиращо постоянно напрежение.

Средната стойност на напрежението на изходната полувълна U_{AVR} може да се измери с мултиметър.

Примери

Изправител – положителна полувълна

Изправител – отрицателна полувълна

Примери – мостов изправител

Четирите диода, D_1 - D_4 , са свързани последователно по двойки като само два диода провеждат ток за всеки полупериод.

По време на положителния полупериод на входното напрежение, D_1 и D_2 са в право включване и токът протича през товара, докато D_3 и D_4 са свързани обратно.

По време на отрицателния полупериод, диодите D_3 и D_4 са в право включване, а D_1 и D_2 – в обратно. Токът, протича през товара в същата посока.

Капацитивен филтър

За правилното функциониране на електронните схеми се изисква захранващ източник на постоянно напрежение и ток. За да се намалят пулсациите в изходното напрежение на изправителя се използва капацитивен филтър.

Принцип на филтриране

През положителният полупериод диодът се отпушва и протичащият през него ток зарежда кондензатора приблизително до върховата стойност на входното напрежение (ако се пренебрегне падът върху диода).

Принцип на филтриране

Когато входното напрежение започне да спада под върховата си стойност, кондензаторът запазва заряда си и диодът се включва в обратна посока като прекъсва веригата към входния източник.

През останалата част от цикъла кондензаторът може да се разрежда само през товарното съпротивление със скорост, определена от времеконстанта $R_L C$.

Колкото по-голяма е времеконстантата, толкова по-бавно ще се разреди кондензаторът. В резултат се осигурява относително постоянно напрежение със слаби флуктуации.

Амплитудни ограничители

Диодите често се използват да отрежат части от даден сигнал над или под определено ниво.

През положителния полупериод диодът е отпушен, напрежението върху него е 0,7 V. Тогава изходното напрежение се ограничава на ниво + 0,7 V за случаите, когато входното напрежение превиши тази стойност.

През отрицателния полупериод диодът е запушен – действа като отворен ключ и напрежението в изхода повтаря формата на входното напрежение.

Диодът в право включване през отрицателния полупериод и ограничава изходния сигнал на ниво -0.7 волта.

През положителния полупериод диодът е запушен – действа като отворен ключ и напрежението в изхода повтаря формата на входното.

Диодът ще се отпуши, когато напрежението върху анода му надвиши сумата от стойността на напрежението на батериата и пада 0,7 V върху диода. Тогава изходното напрежение се ограничава до тази стойност (3,7 V в случая) и всички по-високи входни напрежения се отрязват.

През отрицателния полупериод диодът е запушен – действа като отворен ключ и напрежението в изхода повтаря формата на входното.

Когато входното напрежение надвиши +4,7 V диодът D_1 се отпушва и ограничава входното напрежение до + 4,7 V.

Диодът D_2 се отпушва когато напрежението достигне — 4,7 V. Следователно положителни напрежения над 4,7 V и отрицателни под — 4,7 V се отрязват.

D1 има U0=0.6 V. V2 е батерия с напрежение 2.4 V. Входният сигнал V1 е синусоидален с амплитуда 6V.

През положителния полупериод D1 е в право свързване и изходният сигнал се ограничава на ниво 2.4+0.6 = 3V. През отрицателния полупериод D2 е в право включване и изходният сигнал се ограничава на ниво -0.6 V.

За напрежения, по-малки от 3V, *D*1 е обратно свързан, действа като отворен ключ и изходният сигнал следва входния.

Контакт метал — полупроводник

При преход **метал-полупроводник** в зависимост от типа на контакта са възможни **изправящи преходи на Шотки** и неизправящи (омични) преходи.

При изправящия преход метал - *N* полупроводник се създава **обеднен слой** в полупроводника с потенциална разлика, известна като **бариера на Шотки**.

Обедненият слой има високо специфично съпротивление и при прилагане на напрежение се изменят условията на контакта в зависимост от поляритета му.

Диод на Шотки

При **право свързване** (отрицателният полюс на токоизточника към n Si) се намалява височината на потенциалната бариера и токът нараства.

При обратно свързване (към n силиция се подаде положително напрежение спрямо метала) се повишава височината на потенциалната бариера и през прехода протича нищожен обратен ток (~ pA).

Шотки диоди — свойства

- При Шотки диодите липсват явленията инжекция, натрупване и разнасяне на неосновни токоносители имат голямо бързодействие.
- Те имат малък пад в права посока (0,1-0,3 V). Това позволява токове в права посока до няколкостотин ампера при честоти до 200 kHz (мощните диоди с PN преход могат да изправят до честота няколко kHz).
- Имат малко пробивно напрежение ($U_{BR} < 50 \text{V}$) спрямо това на Si изправителни диоди.