Classifier automatiquement des biens de consommation

Étude de faisabilité d'un moteur de classification

Besoins

- Étudier la faisabilité d'un classificateur
- Avec photo et description
- Analyser, Pré-traiter les données
- Réduire le nombre de dimensions
- Représenter les données en 2D

Problématiques

- Quelles catégories prédire ?
- Quels algorithmes de classification ?
- Comment transformer les données ?
- Quelles techniques de réduction dimensionnelle ?

Réponses

- Les catégories avec assez d'effectifs
- Les classificateurs les plus performants
 - Classicateurs **supervisés**
- Utiliser des Bags-of-words, etc
- Utiliser ACP, SVD, T-SNE, Isomap

Introduction

- 1050 produits
- 7 VS 642 catégories

Exploration

Nettoyage

- Descriptions d'au moins 100 mots
- Correction sur les images
 - Niveau de contraste
 - Niveau d'exposition
 - Suppression du bruit

Transformation des données

- Tailles des données variables
- Image = Taille conséquente

Transformation des descriptions

- TF-IDF
 - Représenter les **fréquences** des mots
- Doc2Vec
 - **Prédire** le contenu du document

TF-IDF

- Vecteurs de taille 4378 → 600 avec SVD
- Précision de la prédiction : 0.88

TF-IDF - Réduction dimensionnelle

Doc2Vec

- Vecteurs de taille 100
- Précision de la prédiction : 0.68

Doc2Vec - Optimisation

Transformation des images

SIFT

Bag-of-words visuels

CNN

Transfer-learning avec ImageNet

SIFT

- 356,441 descripteurs de taille 128
- 10,000 mots visuels

SIFT

Courbe de Lorenz des effectifs par mot visuel

SIFT

- Vecteurs de taille 10,000 → 700 (SVD)
- Précision de la prédiction : 0.33

T-SNE des vecteurs de fréquence des mots visuels

VGG-16

- Transfer-learning avec ImageNet
 - 1000 catégories → 7 catégories
- Précision de la prédiction : 0.97

Combinaison Image-Description

Les méthodes les plus performantes :

- VGG-16 : Taille 7

- TF-IDF : Taille 600

Classification des produits

Classificateurs:

Régression logistique : 0.99

- SVM: 0.99

- KNN : 1.0 (n=7)

Forêt aléatoire : 1.0 (n=1)

- GradBoost: 1.0 (n=1)

Visualisations

Analyse des erreurs

flipkart.com: buy go bonjour stainless steel 9 pc manicure kit for rs. 580 from flipkart.com. - lowest prices, only genuine products, 30 day replacement guarantee, free shipping. cash on delivery!

Go Bonjour Stainless Steel 9 pc Manicure Kit

Home Decor & Festive Needs VS Beauty and Personal Care

- bonjour
- stainless
- replacement

Analyse des erreurs

Importance dans TF-IDF

```
Home: [0. , 0.001, 0.034]
```

Beauty: [0.002, 0.003, 0.067]

Analyse des erreurs

Prédiction du CNN

- Assurance de la prédiction : 1.0
- · Probabilité de la vraie prédiction : 0.

Conclusion

- Le moteur de classification est faisable
- On peut atteindre une précision de 1.0 avec :
 - VGG-16
 - TF-IDF
- Améliorations possibles :
 - Tester d'autres architectures de CNN
 - Filtrer davantage les entrées de Doc2Vec