Taylor Remainder Theorem

Daniel Rostovtsev Date: May 29, 2017

Lemma: Rolle's Theorem

Let f be a continuous, differentiable function on the interval [a, b]. If f(a) = f(b) and $a \neq b$, then there exists some c between a and b such that f'(c) = 0.

Proof. Since f is defined on [a, b], f has at least one local maximum and or one local minimum on the interval [a, b].

Say f has a local maximum, $f(x_m)$, on [a, b]. Then $f'(x) \ge 0$ if x both near x_m and less than x_m . Additionally, $f'(x) \le if x$ is both near x_m and more than x_m . Therefore, by Bolzano's theorem, f'(x) must equal zero for some c on [a, b].

Say f has a local minimum, $f(x_m)$, on [a, b]. Then $f'(x) \leq 0$ if x both near x_m and less than x_m . Additionally, $f'(x) \geq 0$ if x is both near x_m and more than x_m . Therefore, by Bolzano's theorem, f'(x) must equal zero for some c on [a, b].

Bolzano's Theorem is necessary in this proof because it guarantees that a function passes through zero if it flips sign and is continuous. Otherwise, it could just skip from say $-\epsilon$ to δ where ϵ and δ are unimaginably small numbers.

Lemma: Extended Rolle's Theorem

Let f be a continuous, n+1 differentiable function on the interval [a,b]. If $f(a)=f'(a)=f''(a)=f^{n+1}(a)=f(b)=0$, then $f^{n+1}(c)=0$ for some $c\in [a,b]$.

Proof. This is proved simply by applying Rolle's Theorem over and over again.

$$f(a) = f(b) = 0 \rightarrow f'(c_1) = 0$$
 by Rolle's Theorem $f'(a) = f'(c_1) = 0 \rightarrow f''(c_2) = 0$ by Rolle's Theorem ... $f^n(a) = f^n(c_{n-1}) = 0 \rightarrow f^{n+1}(c) = 0$ by Rolle's Theorem

Note that by applying Rolle's Theorem again and again, all c_i are related by the following inequality:

$$a \le c \le c_n \le c_{n-1} \le \dots \le c_2 \le c_1 \le b$$

Taylor's Remainder Theorem

Let $P_n(x)$ be the *n*th order Taylor polynomial for f at a. Then for some c on the interval between a and x:

$$f(x) = P_n(x) + \frac{f^{n+1}(c)}{n!}(x-a)^{n+1} = \sum_{i=0}^n \frac{f(a)}{i!}(x-a)^i + \frac{f^{n+1}(c)}{n!}(x-a)^{n+1}$$

Proof. Define a function $P_{n,b}$ with the following properties:

$$P_{n,b}(x) = P_n(x) + C(x-a)^{n+1}$$

 $P_{n,b}(b) = f(b)$ (this can be guaranteed by choosing an appropriate value of C (i.e. $C = \frac{f(b) - P_n(b)}{(b-a)^{n+1}}$))

Now consider the difference function $\Delta(x) = f(x) - P_{n,b}(x)$. The following must be true:

$$\Delta(a) = f(a) - P_{n,b}(a) = f(a) - f(a) = 0$$

$$\Delta'(a) = f'(a) - P'_{n,b}(a) = f'(a) - f'(a) = 0$$
...
$$\Delta^{n-1}(a) = f^{n-1}(a) - P^{n-1}_{n,b}(a) = f^{n-1}(a) - f^{n-1}(a) = 0$$

$$\Delta^{n}(a) = f^{n}(a) - P^{n}_{n,b}(a) = f^{n}(a) - f^{n}(a) = 0$$
and
$$\Delta(b) = 0 \text{ (because } P_{n,b}(b) = f(b)$$

Since the *n*th derivative of any Taylor polynomial at *a* is the same as the *n*th derivative of *f* at *a* by design. So, by the Extended Rolle's Theorem, there is some *c* between *a* and *b* such that $\Delta^{n+1}(c) = 0$. Therefore:

$$\begin{split} 0 &= \Delta^{n+1}(c) = f^{n+1}(c) - P_{n,b}^{n+1}(c) = f^{n+1}(c) - (P_n^{n+1}(c) + [\frac{d^{n+1}}{dx^{n+1}}C(x-a)^{n+1}](c)) \\ &= f^{n+1}(c) - (0 + (n+1)!C) = f^{n+1}(c) - (n+1)!C \end{split}$$

Therefore
$$C = \frac{f^{n+1}(c)}{(n+1)!}$$
 for some $c \in [a,b]$, thus proving Taylor's Theorem.