How real Transformers — like GPTs, BERTs — work internally:

Attention masks are essential for controlling what a token can "see" during training and inference.

6 What We'll Cover:

- Why Attention Masks are needed
- V How Attention Masks work
- Real code example to visualize masking
- What happens if you don't use them

Why Attention Masks?

In Transformers: - Each token "attends" to others — meaning, it can "look at" other tokens to understand context.

But:

Scenario	Masking Needed?	Why?	
Encoder (BERT, Translation Encoder)	X No	Each token can look at all others (bidirectional).	
Decoder (GPT, Translation Decoder)	✓ Yes	Auto-regressive: token can't look at future tokens. Only past and present tokens.	

✓ In GPTs, the model MUST NOT peek into the future when predicting the next token.

Thus, we need a causal mask or attention mask!

How Attention Mask Works Visually

Suppose you have this sequence:

A B C D E

You want token at position:

Token	Allowed to see		
Α	Α		
В	A, B		
С	A, B, C		
D	A, B, C, D		
Е	A, B, C, D, E		

So you block (mask) future tokens during attention calculations.

✓ Mask is a matrix where: - 0 means allowed - -inf (very negative number) means forbidden

Example: Mask Matrix for 5 tokens

	Α	В	С	D	E
Α	0	-inf	-inf	-inf	-inf
В	0	0	-inf	-inf	-inf
С	0	0	0	-inf	-inf
D	0	0	0	0	-inf
Е	0	0	0	0	0

🔽 This is called a causal mask.

Simple Real PyTorch Code to Create a Causal Mask

```
import torch

def create_causal_mask(seq_len):
    """
    Creates a causal mask (lower triangular matrix) for a sequence of length seq_len
    """
    mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1)
    mask = mask.masked_fill(mask == 1, float('-inf'))
    mask = mask.masked_fill(mask == 0, float(0.0))
    return mask

# Example usage
seq_len = 5
mask = create_causal_mask(seq_len)
print("\n \ Causal Mask Matrix (5 tokens):\n")
print(mask)
```

Output:

How This Mask is Used During Attention Calculation

When the model computes attention scores:

```
attention_scores = (Q @ K.T) / sqrt(dk)
attention_scores = attention_scores + mask
```

- Q = Query matrix
- **K** = Key matrix
- sqrt(dk) = scaling factor
- The mask ensures that future tokens get -inf added to their attention scores
- → Softmax makes their probability 0
- → Token can't attend to the future.

Mini Example With Random Attention Scores

```
# Dummy attention scores
attn_scores = torch.randn(5, 5)
# Apply mask
masked_scores = attn_scores + mask
print("\n ) Masked Attention Scores (future blocked):\n", masked_scores)
# Softmax
attn probs = torch.softmax(masked scores, dim=-1)
print("\no" Attention Probabilities (after masking):\n", attn probs)
```

✓ You will see that probabilities for future tokens become ~0.

Simple Diagram of Masking (Visualization)

Imagine attention scores without masking:

```
Token A: looks at [A, B, C, D, E]
Token B: looks at [A, B, C, D, E]
Token C: looks at [A, B, C, D, E]
```

With Causal Masking:

```
Token A: looks at [A]
Token B: looks at [A, B]
Token C: looks at [A, B, C]
Token D: looks at [A, B, C, D]
Token E: looks at [A, B, C, D, E]
```


Only past and present are visible!

嶐 Quick Recap Table

Concept	Description	
Attention Mask	Matrix controlling which tokens can attend to which others	
Causal Mask	Ensures that tokens can only see their past (not future)	
Effect on Softmax	Prevents leaking future info during training and generation	
Used in	GPT, GPT-2, GPT-3, ChatGPT, Codex, etc.	