Homework 6 Solution

 $Yikun\ Zhang^1$

Chapter 3. Ex.2 Prove that the vector space $\ell^2(\mathbb{Z})$ is complete.

Proof. Suppose that $A_k = \{a_{k,n}\}_{n \in \mathbb{Z}}$ with k = 1, 2, ... is a Cauchy sequence. Then for any $\epsilon > 0$, there exists an N > 0 such that

$$|a_{k,n} - a_{k',n}| \le ||A_k - A_{k'}|| < \epsilon/2$$
, whenever $k, k' > N$.

Thus, for each $n \in \mathbb{Z}$, $\{a_{k,n}\}_{k=1}^{\infty}$ is a Cauchy sequence of complex numbers, therefore it converges to a limit, say b_n . Let $B = (..., b_{-1}, b_0, b_1, ...)$ and $A_{k,N}, B_N$ denote the truncated element

$$A_{k,N} = (...,0,a_{k,-N},...,a_{k,-1},a_{k,0},a_{k,1},...,a_{k,N},0,...), B_N = (...,0,b_{-N},...,b_{-1},b_0,b_1,...,b_N,0,...),$$

respectively.

By taking partial sums of $||A_k - A_{k'}||$, we have

$$||A_{k,N} - A_{k',N}|| \le ||A_k - A_{k'}|| < \epsilon/2.$$

Letting $k' \to \infty$, $||A_{k,N} - B_N|| \le \epsilon/2$. Letting $N \to \infty$, we obtain that $||A_k - B|| \le \epsilon/2 < \epsilon$, yielding that $||A_k - B|| \to 0$ as $k \to \infty$.

Finally, we are left to prove that $B \in \ell^2(\mathbb{Z})$.

Since $||A_k - B|| \to 0$ as $k \to \infty$ and $A_k \in \ell^2(\mathbb{Z})$ for each $k, ||A_k|| < \infty$ and thus

$$||B|| \le ||B - A_k|| + ||A_k|| < \epsilon + ||A_k|| < \infty$$
, when k is large. \square

Chapter 3. Ex.5 Let

$$f(\theta) = \begin{cases} 0 & \text{for } \theta = 0\\ \log(1/\theta) & \text{for } 0 < \theta \le 2\pi, \end{cases}$$

and define a sequence of functions in \mathcal{R} by

$$f_n(\theta) = \begin{cases} 0 & \text{for } \theta = 0\\ f(\theta) & \text{for } 1/n < \theta \le 2\pi. \end{cases}$$

Prove that $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} . However, f does not belong to \mathbb{R} .

Proof. By L'Hospital's Rule, it is easy to prove that $\lim_{\theta \to 0} \theta(\log \theta)^2 = 0$ and $\lim_{\theta \to 0} \theta(\log \theta) = 0$.

Therefore, we have $\int_a^b (log\theta)^2 d\theta \to 0$ if 0 < a < b and $b \to 0$, where we use the fact that $\int (log\theta)^2 d\theta = \theta (log\theta)^2 - 2\theta (log\theta) + 2\theta + C$ and C is a constant.

¹School of Mathematics, Sun Yat-sen University

Thus, $\forall \epsilon > 0, \exists N > 0, \text{ for } n > m > N,$

$$||f_n(\theta) - f_m(\theta)|| = \left(\frac{1}{2\pi} \int_{\frac{1}{n}}^{\frac{1}{m}} [\log(1/\theta)]^2 d\theta\right)^{\frac{1}{2}} = \left(\frac{1}{2\pi} \int_{\frac{1}{n}}^{\frac{1}{m}} (\log\theta)^2 d\theta\right)^{\frac{1}{2}} < \epsilon,$$

showing that $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathcal{R} and $\lim_{n\to\infty} f_n = f$. However, $f \notin \mathbb{R}$, since it is not bounded. \square

Chapter 3. Ex.7 Show that the trigonometric series

$$\sum_{n>2} \frac{1}{\log n} \sin nx$$

converges for every x, yet it is not the Fourier series of a Riemann integrable function.

Proof. First we have $\left|\sum_{n=2}^{N} sin(nx)\right| \leq \frac{1}{sin(\delta/2)}$ when $|x| \geq \delta > 0$ and $\lim_{x \to 0} \sum_{n=2}^{N} sin(nx) = 0$.

Thus, $\sum_{n=2}^{N} sin(nx) = 0$ is bounded while $\frac{1}{\log n}$ is monotonic and tends to 0 as $n \to \infty$. By Dirichlet's test, $\sum_{n\geq 2} \frac{1}{\log n} sin(nx)$ converges for every x.

If $\frac{1}{\log n}$ is the Fourier coefficient of a Riemann integrable functions, by Parseval's identity, one must have $\sum_{n\geq 2}\frac{1}{2}|\frac{1}{\log n}|^2=||f||^2<\infty$. However, $\sum_{n\geq 2}\frac{1}{\log n}$ diverges, which leads to a contradiction.

Remark: Likewise, $\sum_{n=1}^{\infty} \frac{1}{n^{2\alpha}}$ is also a divergent series when $0 < \alpha \le \frac{1}{2}$. Hence the same is true for $\sum \frac{\sin nx}{n^{\alpha}}$ when $0 < \alpha \le \frac{1}{2}$.