

Microarray Data Analysis using R and Bioconductor 28-30th, August 2013 University of Cambridge, Cambridge, UK

Analysis of DNA copy number alterations

Oscar M. Rueda

Oscar.Rueda@cruk.cam.ac.uk

Overview

- Introduction.
- Copy number segmentation.
- Copy number calling.
- Common regions of alteration.

Introduction

Copy number alterations

- We have 23 pairs of chromosomes: two copies in each loci.
- Failures in the replication machinery* can produce mutations. One type of mutation is copy number alterations (gains or losses in DNA).
- Gains in copy number of oncogenes can lead to tumorigenesis.
- Losses in copy number can lead to the inactivation of a tumor suppressor gene.

^{*} Other external agents can also produce mutations, like exposure to radiation, certain chemical or viruses...

CNVs and CNAs

- Copy Number Alterations is a generic name for Copy Number Variations and Copy Number Aberrations.
- Copy Number Variations (CNVs): Germline alterations, individual and not disease related.
- Copy Number Aberrations (CNAs): Somatic alterations, disease related.

Copy number alterations

Array-based Comparative Genomic Hybridization (aCGH)

Data obtained from aCGH

Features of the data

- Underlying discrete number (0, 1, 2,...) but the measure is continuous.
- **Spatial correlation**: neighbors share the same copy number. This correlation is stronger the closer two probes are.
- Length and position of the probes can be very variable, depending on the platform.

Normalization

Specific methods for each platform (probe-level summarisation, allelic-crosstalk calibration, etc.)

Common practices:

- Median centering around zero.
- Wave-correction.
- The assumption in some normalization methods that the proportion of altered probes is the same for each sample is NOT true.

Copy Number Segmentation

Segmentation methods

Split each chromosome in regions that share the same copy number.

From log_2 ratios to segmented means: $y_t \Rightarrow m_t$

Smoothing methods:

 Use different techniques to identify breakpoints in the data (usually testing their significance).

Hidden Markov Model-based methods:

 Estimate the (unknown) copy number of contiguous segments under a probabilistic model (HMM)

Smoothing methods (I)

CBS

- Olshen et al., 2004.
- Finds change points using a t-test under a permutation model.
- Bioconductor package DNAcopy.

HaarSeg

- Ben-Yaacov and Eldar, 2008.
- Piecewise constant segmentation based on wavelet decomposition and thresholding.
- R code.

Smoothing methods (II)

GLAD

- Hupé et al., 2004.
- Adaptive Weights Smoothing and cluster for classification.
- Bioconductor package GLAD.

GADA

- Pique-Regi et al., 2008.
- Piecewise constant method with bayesian learning.
- Matlab code, R package R-Gada.

Smoothing methods (Summary)

Advantages

- Valid under different distributional assumptions.
- Computationally fast and reliable.

Disadvantages

 Multiple parameters to tune, sometimes difficult to interpret.

Hidden Markov Models (HMMs)

HMMs-based methods (I)

aCGH

- Fridlyand et al., 2004.
- First HMM applied to copy number data.
- Bioconductor package aCGH.

BioHMM

- Marioni et al., 2006.
- Non homogeneous HMM.
- Bioconductor package BioHMM.

HMMs-based methods (II)

HMMer

- Shah et al., 2007.
- Robust HMM.
- Matlab code.

RJaCGH

- Rueda and Diaz-Uriarte, 2007.
- Non homogeneous HMM with unknown number of states.
- R package RJaCGH.

HMMs-based methods (Summary)

Advantages

- Natural model for copy number data.
- Probabilities of alteration and distribution of segments.

Disadvantages

- Computationally demanding.
- Choose number of states.

Copy Number Calling

Calling of gains and losses (I)

05296

Assign a copy number state to each segmented mean.

Calling of gains and losses (II)

For HMMs, each hidden state must also be assigned to a copy number state

Threshold-based methods

- First method applied in aCGH analysis.
- Individual thresholds based on the variability of each sample:

$$t/m_t \ge \overline{y} + k_G \sigma_Y \longrightarrow GAIN$$

 $t/m_t \le \overline{y} - k_I \sigma_Y \longrightarrow LOSS$

• Several alternatives on k, mean, sd. . .

MergeLevels algorithm

Willenbrock and Fridlyand, 2005 (aCGH, snapCGH, ADaCGH R/Bioconductor packages).

- I. Order distances between y_t and m_t .
- 2. Test whether two levels should be merged according to Wilcoxon test or a given distance threshold.
- 3. After a successful merge, steps I and 2 are repeated until no two adjacent levels can be merged.
- 4. Repeat for increasing thresholds:
 - For each threshold, use Ansari-Bradley test to determine whether the distribution of the current residuals is significantly different from the distribution of the original residuals.
 - Optimal threshold is chosen as the largest threshold where the Ansari-Bradley p-value >0.05.

Plateau plots

Olshen and Venkatraman, 2005 (DNAcopy R package).

- Plot segmented means m_t ordered.
- Find abrupt changes.

c05296

Classification of Hidden States

RJaCGH package (Rueda and Diaz-Uriarte, 2009)

- HMMs provide distribution (mean and variance) of states (segments).
- Each probe has a probability to belong to each state.
- We can compute for each state a probability of being as state of loss, neutral or gain copy number (or simply classify them).

We can compute for each probe the probability of gain and loss.

CGHCall

van de Wiel et al., 2007 (CGHCall Bioconductor package).

- The segmented means come from a mixture of six normal populations.
- Dependency of nearby clones comes from the segmentation method.
- The model is fitted by EM algorithm.
- Classification reduced to 3 or 4 states.

SNP arrays

- Millions of probes.
 - SNP probes (I_A, I_B)
 - Copy number probes (I_{A+B})
- One color technology.
- Measurements:

$$LRR = \frac{\log_2(I_A + I_B)}{\log_2 I_R}$$

$$BAF = \frac{2}{\pi} \arctan\left(\frac{I_B}{I_A}\right)$$

BAF patterns are related to copy number

I band:

Background noise (0 copies).

2 bands:

- {A,B}, {AA,BB}, or {AAA,BBB},... Copy numbers (0, i).

3 bands:

- {AA,AB,BB} or {AAAA,AABB,BBBB},... Copy numbers (i, i)

4 bands:

{AAA, ABB, AAB, BBB} or {AAAA, ABBB, AAAB, BBBB} or {AAAAA,
 ABBBB, AAAAB, BBBBB},... Copy numbers (i, j)/ i < j

BAF helps in copy number calling

Algorithms for SNP data (I)

PICNIC

- Greenman et al. 2009.
- Bivariate bayesian HMM.
- Estimates ploidy and normal contamination.
- Matlab code and standalone application.

OncoSNP

- Yau, 2010.
- Bivariate HMM.
- Incorporates normal contamination, some aneuploidy and intra tumoral heterogeneity.
- Matlab code and standalone application.

Algorithms for SNP data (II)

PennCNV

- Wang et al., 2007.
- Bivariate HMM model that includes distance between probes.
- Suited for CNVs.
- Standalone application.

ASCAT

- Van Loo et al, 2010.
- Models an euploidy and normal contamination.
- Segmentation step and find the absolute copy numbers closest to the set of estimated parameters.
- R script..

Common Regions of Alteration

Common regions of alteration (MCRs) [Gains/Losses

• Ambiguous definition.

- A set of contiguous probes that, as a group, shows evidence of being altered in at least some samples or arrays.
- Review: Rueda and Diaz-Uriarte, 2010.

Scenarios for MCRs (I)

- Scenario I: Common region for all samples.
- Scenario II: Common region for subsets of samples.
- Scenario III: Different regions for subsets of samples: heterogeneity.

Scenarios for MCRs (II)

- Scenario IV: Overlapping regions: driver/passenger genes.
- **Scenario V:** Same pattern of copy number within samples.
- Scenario VI: V with additional heterogeneity among samples.

Algorithms for MCRs (I)

Frequency of alteration

Not for common regions, but for common probes.

MAR/CMAR

- Rouveirol et al., 2006.
- Rigurous definition of MCR.
- Thresholds for length of regions and minimum frequency.
- Part of VAMP software.

STAC/MSA

- Diskin et al., 2006 and Guttman et al., 2007.
- Permutation-based methods.
- Standalone applications.

Algorithms for MCRs (II)

GISTIC

- Beroukhim et al. 2007
- Statistic based on the frequency and the "amplitude".
- Permutation-based method.
- Attempts to identify driver and passenger alterations.
- Standalone application.

CGHRegions

- van de Wiel, 2007.
- Dimension reduction approach.
- Captures regions with the same pattern within samples.
- Bioconductor package CGHregions.

Realistic scenarios

- Aneuploidy
 - The baseline of a sample is not 2 copies.
- Normal contamination
 - Only a given percentage of the cells in our sample are tumor cells:

$$CN = p CN_T + 2 (1-p)$$

- Intra-tumoral heterogeneity
 - Alterations are shared by different proportions of tumor cells.

$$CN_R = p_R CN_{T,R} + 2 (1-p_R)$$

Downstream analysis

- We can apply the techniques studied in the course to copy number data:
 - Cluster analysis .
 - Classification methods.
 - Survival analysis.
 - Principal component analysis.
 - Linear models to relate expression and copy number.
- But in this case we might have categorical data instead of continuous data.

Software

- aroma.affymetrix: normalization of Affy SNPs.
 - http://www.r-project.org.
- snapCGH: Bioconductor package.
 - http://www.bioconductor.org
- waviCGH: web application.
 - http://wavi.bioinfo.cnio.es/
- Additional R and Bioconductor packages and standalone applications.

References (I)

- A. B. Olshen, E. S. Venkatraman, R. Lucito, and M. Wigler. Circular binary segmentation for the analysis of array-based dna copy number data. Biostatistics, 5:557-572, 2004
- Ben-Yaacov, E. and Eldar, YC. A fast and flexible method for the segmentation of aCGH data. Bioinformatics. 2008 Aug 15;24(16).
- P. Hupé. array cgh data: from signal ratio to gain and loss of dna regions. Bioinformatics, 20:3413-3422, 2004.
- R. Pique-Regi, J. Monso-Varona, A. Ortega, R. Seeger, T. Triche, and S. Asgharzadeh. **Sparse representation and bayesian detection of genome copy number alterations from microarray data.** Bionformatics, 24(3): 309-318, 2008.
- Jane Fridlyand, Antoine M. Snijders, Dan Pinkel, Donna G. Albertson, and Ajay N. Jain. **Hidden markov models approach to the analysis of array cgh data**. Journal of Multivariate Analysis, 90:132-153, 2004.
- J. C. Marioni, N. P. Thorne, and S. Tavaré. **Biohmm: a heterogeneous hidden markov model for segmenting array cgh data**. Bioinformatics, 22:1144-1146, 2006.
- S. P. Shah, X. Xuan, R. J. Deleeuw, M. Khojasteh, W. L. Lam, R. Ng, and K. P. Murphy. *Integrating copy number polymorphisms into array cgh analysis using a robust hmm*. Bioinformatics, 22:e431-e439, 2006.
- O. M. Rueda and R. Diaz-Uriarte. Flexible and accurate detection of genomic copy-number changes from acgh. PLoS Comput. Biol., 3(6):e122, 2007.
- Hanni Willenbrock and Jane Fridlyand. A comparison study: applying segmentation to array cgh data for downstream analyses. Bioinformatics, 21:4084-4091, 2005.
- Rueda OM, Diaz-Uriarte R. RJaCGH: **Bayesian analysis of aCGH arrays for detecting copy number changes and recurrent regions.** Bioinformatics, 25:1959-1960, 2009.
- MA. van de Wiel, Kl. Kim, SJ. Vosse, WN. van Wieringen, SM. Wilting, and B. Ylstra. **Cghcall: calling aberrations for array cgh tumor profiles**. Bioinformatics, 23(7):892-894, 2007.
- Greenman CD, Bignell G, Butler A, Edkins S, Hinton J, Beare D, Swamy S, Santarius T, Chen L, Widaa S, Futreal PA, Stratton MR. **PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data**. Biostatistics, 11(1):164-75, 2010.

References (II)

- Christopher Yau, Dmitri Mouradov, Robert N Jorissen, Stefano Colella, Ghazala Mirza, Graham Steers, Adrian Harris, Jiannis Ragoussis, Oliver Sieber and Christopher C Holmes. A statistical approach for detecting genomic aberrations in heterogeneous tumor samples from single nucleotide polymorphism genotyping data. Genome Biology, 11:R92, 2010.
- Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Research. 17(11):1665-74, 2007.
- Van Loo P, Nordgard SH, Lingjærde OC, Russnes HG, Rye IH, Sun W, Weigman VJ, Marynen P, Zetterberg A, Naume B, Perou CM, Børresen-Dale AL, Kristensen VN. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16910-5.
- Oscar M. Rueda and Ramon Diaz-Uriarte: **Finding Recurrent Copy Number Alteration Regions: A Review of Methods**. Current Bioinformatics, 5(1): 1-17, 2010.
- C Rouveirol, N Stransky, Ph Hupé, Ph La Rosa, E Viara, E Barillot, and F Radvanyi. **Computation of recurrent minimal genomic alterations from array-cgh data**. Bioinformatics, 22:2066-2073, 2006.
- SJ Diskin, T Eck, J Greshock, YP Mosse, T Naylor, CJ Jr Stoeckert, BL Weber, JM Maris, and GR Grant. **Stac: A method** for testing the significance of dna copy number aberrations across multiple array-cgh experiments. Genome Research, 16(9):1149-1158, 2006.
- Mitchell Guttman, Carolyn Mies, Katarzyna Dudycz-Sulicz, Sharon J. Diskin, Don A. Baldwin, Christian J. Stoeckert, and Gregory R. Grant. Assessing the signicance of conserved genomic aberrations using high resolution genomic microarrays. PLoS Genetics, 3(8):e143+, 2007.
- Beroukhim R, Getz G, Nghiemphu L, et al. Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma. Proc Natl Acad Sci USA, 104: 20007-20012, 2007.
- M. A. van de Wiel and W.N. van Wieringen. **Cghregions: Dimension reduction for array cgh data with minimal information loss**. Cancer Informatics, 2:55-63, 2007.
- Angel Carro, Daniel Rico, Oscar M. Rueda, Ramón Díaz-Uriarte and David G. Pisano: waviCGH: a web application for the analysis and visualization of genomic copy number alterations. Nucleic Acids Res., 2010, (Web Server Issue).