Birlesik Mantık Tasarımı

Suhap SAHIN

Birlesik Mantık Tasarımı (Combinational Logic Design)

ayrık degiskenler:

giris ve cıkıslar

fonksiyonel tanımlamalar:

giris çıkıs arasındaki iliski

zamansal tanımlamalar:

girislerdeki degisiklige cıkısların tepki süresi

Birlesimsel Mantık Tasarımı (Combinational Logic Design)

Element:

Giris, çıkıs ve belirli tanımlamalara sahip devre

Node:

Ayrık degiskenleri ileten bir tel

Birlesimsel Mantik Devre (Combinational Logic Circuit)

$$Y = F(A, B) = A + B$$

Birlesimsel Mantik Devre (Combinational Logic Circuit)

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Birlesimsel Mantık Devre (Combinational Logic Circuit) Özellikleri

- Devrenin herbir elemanı bir birlesimsel mantık devresidir.
- Bir giris, çıkıs ve iç baglantı dügümlerinden olusmustur.
- Devredeki herbir yol, devreki her dügümü bir kez ziyaret eder ve döngüsel yol içermez.

Birlesimsel Mantik Devre (Combinational Logic Circuit) Özellikleri

- Devrenin herbir elemanı bir bilesimsel mantık devresidir.
- Bir giris, çıkıs ve iç baglantı dügümlerinden olusmustur.
- Devredeki herbir yol, devreki her dügümü bir kez ziyaret eder ve döngüsel yol içermez.

- 11 ve 12 tersleyiciler: Devrenin herbir elemanı bilesimsel mantık devresidir.
- Devre n1,n2 ve n3 dügümlerine sahiptir.
- Devre döngüsel yol içermiyor
- Devre bilesimsel bir mantık devresidir.

Birlesimsel Mantik Devre (Combinational Logic Circuit) Özellikleri

- Devrenin herbir elemanı bir bilesimsel mantık devresidir.
- Bir giris, çıkıs ve iç baglantı dügümlerinden olusmustur.
- Devredeki herbir yol, devreki her dügümü bir kez ziyaret eder ve döngüsel yol içermez.

- Devre döngüsel yol içeriyor
- Devre bilesimsel bir mantık devresi DEGiLDiR.

Birlesimsel Mantık Devre (Combinational Logic Circuit) Özellikleri

- Devrenin herbir elemanı bir bilesimsel mantık devresidir.
- Bir giris, çıkıs ve iç baglantı dügümlerinden olusmustur.
- Devredeki herbir yol, devreki her dügümü bir kez ziyaret eder ve döngüsel yol içermez.

Boolean Denklemleri

A: true form

A': complementary form

AND Lojik Fonksiyon

Degiskenler: A, B ve C

Minterm: ABC

AND: product, implicant

OR: sum

OR Lojik Fonksiyon

Degiskenler: A, B ve C

Maxterm: A+B+C

islem Önceligi

NOT

AND

OR

Y = A + BC

Y = A OR (B AND C)

Sum of Product Form & Sigma Notation

Α	В	Y	minterm	minterm name
0	0	0	ĀB	m_0
0	1	1	ĀB	m_1
1	0	0	ΑB	m_2
1	1	0	AB	m_3

Α	В	Y	minterm	minterm name
0	0	0	A B	m_0
0	1	1	ĀB	m_1
1	0	0	AB	m_2
1	1	1	AB	m_3

$$F(A,B) = \Sigma(m_1,m_3)$$

$$Y = \overline{\mathbb{A}}\mathbb{B} + \mathbb{A}\mathbb{B}$$

$$F(A, B) = \Sigma(1, 3)$$

Picnic

- Karınca çok olması
- Yagmurun yagmasi

PICNIC yapmak TRUE

$$E = \overline{A} \, \overline{R}$$

$$E = \Sigma(0)$$

PicNic

A	R	E	r 7 F
0	0	1	$E = \overline{A} \ \overline{R}$
0	1	0	
1	0	0	$E = \Sigma(0)$
1	1	0	L = L(0)

Sum of Product Form

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	1 0	0	1
1	0 1	1	1
1		0	0
1	1	1	0

$$Y = \overline{A} \, \overline{B} \, \overline{C} + A \overline{B} \, \overline{C} + A \overline{B} C$$

$$Y = \Sigma(0, 4, 5)$$

Product of Sum Form & Pi Notation

Α	В	Y	maxterm	maxterm name
0	0	0	A + B	M_0
0	1	1	$A + \overline{B}$	M_1
(1	0	0	A + B	M_2
1	1	1	A + B	M_3

$$Y = (A + B)(\overline{A} + B)$$

$$Y = \Pi(M_0, M_2)$$

$$Y = \Pi(0, 2)$$

PiCNIC

Α	R	Ε
0	0	1
0	1	0
1	0	0
1	1	0

$$E = (A + \overline{R})(\overline{A} + R)(\overline{A} + \overline{R})$$
$$E = \Pi(1, 2, 3)$$

BOOLE CEBRI

1	Axiom		Dual	Name
A1	$B = 0$ if $B \neq 1$	A1′	$B=1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

Bir Degiskene ait Teoremler

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

$$\frac{B}{B}$$
 = 0 ----

$$\frac{B}{B}$$
 \rightarrow = 1 \rightarrow (b)

$$B - = B - = B$$

$$B \longrightarrow B \longrightarrow B \longrightarrow B$$

$$B \longrightarrow B \longrightarrow B$$

Birden çok Degiskene ait Teoremler

	Theorem		Dual	Name
Т6	$B \bullet C = C \bullet B$	T6′	B+C=C+B	Commutativity
Т7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
Т8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8′	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B+C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10′	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11′	$\begin{array}{l} (B+C) \bullet (\overline{B}+D) \bullet (C+D) \\ = (B+C) \bullet (\overline{B}+D) \end{array}$	Consensus
T12	$\overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0 + \overline{B}_1 + \overline{B}_2 \dots})$	T12′	$ \overline{B_0 + B_1 + B_2 \dots} = (\overline{B}_0 \bullet \overline{B}_1 \bullet \overline{B}_2 \dots) $	De Morgan's Theorem

De Morgan Kuralı

NAND

$$A \rightarrow B \rightarrow Y$$

$$Y = \overline{AB} = \overline{A} + \overline{B}$$

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

NOR

$$Y = \overline{A + B} = \overline{A} \overline{B}$$

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Örnek

Α	В	Y	\overline{Y}
0	0	0	1
0	1	0	1
1	0	1	0
1	1	1	0

Α	В	Y	\overline{Y}	minterm
0	0	0	1	Ā B
0	1	0	1	A B
1	0	1	0	ΑB
1	1	1	0	AB

Y ye ait sum of product formundan; De Morgan kullanılarak Y product of sum formunu çıkarınız

$$\overline{Y} = \overline{A} \overline{B} + \overline{A}B$$

$$\overline{\overline{Y}} = Y = \overline{\overline{A}}\,\overline{\overline{B}} + \overline{\overline{A}}\overline{B} = (\overline{\overline{A}}\,\overline{\overline{B}})(\overline{\overline{A}}\overline{B}) = (A+B)(A+\overline{B})$$

Denklem indirgeme

$$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$$
.

Denklemini indirgeyiniz

Step	Equation	Justification		
	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$			
1	$\overline{B} \ \overline{C}(\overline{A} + A) + A\overline{B}C$	T8: Distributivity		
2	$\overline{B} \ \overline{C}(1) + A\overline{B}C$	T5: Complements		
3	$\overline{B} \overline{C} + A \overline{B} C$	T1: Identity		

Denklem indirgeme

$$\overline{A} \ \overline{B} \ \overline{C} + A \ \overline{B} \ \overline{C} + A \overline{B} C$$
 Denklemini indirgeyiniz

Step	Equation	Justification
	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$	
1	$\overline{B} \overline{C} (\overline{A} + A) + A \overline{B} C$	T8: Distributivity
2	$\overline{B}C(1) + A\overline{B}C$	T5: Complements
3	$\overline{B} \overline{C} + A \overline{B} C$	T1: Identity

Denklem indirgeme

$$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$$

Denklemini indirgeyiniz

$$B = B + B + B + B \dots$$

Step	Equation	Justification	
	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$		
1	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$	T3: Idempotency	
2	$\overline{B}\;\overline{C}(\overline{A}+A)+A\overline{B}(\overline{C}+C)$	T8: Distributivity	
3	$\overline{B} \ \overline{C}(1) + A\overline{B}(1)$	T5: Complements	
4	$\overline{B} \ \overline{C} + A \overline{B}$	T1: Identity	

Lojik ifadelerden Lojik Kapılara (sematik)

Lojik ifadelerden Lojik Kapılara (sematik)

$$Y = \overline{B} \overline{C} + A\overline{B}$$

Konferans Salonu Kullanım Problemi

Konferans Salonunu Kullananlar:

O: Yurt Müdürü

1: Ögretim Üyesi

2: Bölüm Baskanı

3: Dekan

Çakısma meydana gelmemesi için gerekli islemleri gereçeklestiren lojik devreyi ciziniz. Cizilen devreye ait dogruluk tablosunu ve Boolean denklemlerini yazınız.

Sistem girisleri: AO, A Sistem çıkısları: YO, Y Kullanıcı önceligi:

AO, A1, A2, A3 YO, Y1, Y2, Y3

AO→ YO: Yurt Müdürü A1 → Y1: Ögretim Üyesi A2→ Y2: Bölüm Baskanı

A3-->Y3: Dekan

Dört Girisli Öncelik Devresi

AO→ YO: Yurt Müdürü A1 → Y1: Ögretim Üyesi A2→ Y2: Bölüm Baskanı

A3-->Y3: Dekan

A_3	A_2	A_1	A ₀	Y_3	Y_2	Y_1	Y_0
A ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1	0	0	0		0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0 0 0 0 0 0 1 1 1 1	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1		0	0	0
1	1	0	0	1	0	0	0
1	0 0 0 1 1 1 0 0 0 0	0 0 1 1 0 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1 0 1	1 1 1	0 0 0 1 1 1 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

Dört Girisli Öncelik Devresi

AO→ YO: Yurt Müdürü A1 → Y1: Ögretim Üyesi A2→ Y2: Bölüm Baskanı

A3-->Y3: Dekan

A ₃	A_2	A ₁	A ₀	<i>Y</i> ₃	Y_2	<i>Y</i> ₁	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Х	0	0	1	0
0	1	X	Х	0	1	0	0
1	X	X	Х	1	0	0	0

ÇOK SEVIYELI BIRLESIK MANTIK

Sum of products formunda girisler AND lojik sevyelerinden ve çıkıslar OR lojik sevyelerinden olustugu için iki sevyeli lojik seklinde adlandırılır.

$$Y = \overline{A} \, \overline{B}C + \overline{A}B\overline{C} + A\overline{B} \, \overline{C} + ABC$$

Α	В	C	Y
0	0	0	0
(0	0	1	1)
(0	1	0	1)
0	1	1	0
(1	0	0	1)
1	0	1	0
1	1	0	0
(1	1	1	1)

ÇOK SEVİYELİ BİRLESİK MANTIK

Tersleyiciitme

$$Y = \overline{ABC} + \overline{D}$$

Tersleyici itme

bubble on

input and output

Tersleyici itme CMOS Lojik

illegal X Degeri

X→ HIGH/LOW degeri (forbidden zone)

X degeri ile sürülen devreler, devre elemanlarının özelliklerine göre bazen LOW bazende HIGH degeri olarak islem yapabilirler.

X degeri, simülatorlerde baslangıç degeri ile sürülmemis devre elemanlarını sürmek için kullanılır.

X degeri dogruluk tablolarında "don't care" durumları için kullanılır

Kayan Z Degeri

Z → HIGH/LOW DEGIL degeri floating, high impedance, high Z

Z degeri ile sürülen devreler, devre elemanlarının özelliklerine göre bazen LOW bazende HIGH degeri olarak islem yapabilirler.

Lojik islemler sürerken görülen Z degeri hata anlamına gelmez.

Devre girisine voltaj baglamamak veya baglanmamıs bir girisin O degerine sahip oldugunu varsaymak Z degerine sebep olur.

Devreye dokunmak, statik elektrik sebebiyle devrenin Z ile sürülmesine yeterli olabilir.

Ortak Yol Kullanımı

Harita Yöntemi ile Sadelestirme(Karnaugh Map Minimization)

- Görsel bir sadelestirme yöntemidir.
 - Yakınlık özelligini kullanır.
 - o En küçük deyimi bulur.
 - Kullanımı kolay ve hızlıdır.

Problemler:

- o Belirli sayıda degiskene uygulanabilir. (4 ~ 8)
- O Dogruluk tablosundan haritaya geçirirken yanlıslar yapılabilir.
- o Haritadaki hücreler dogru bir sekilde gruplanmayabilir.
- Son deyim yanlıs okunabilir.

Harita Yöntemi ile Sadelestirme(Karnaugh Map Minimization)

- Harita belli sayıda hücreden olusan bir 2 boyutlu dizgedir.
 - Her kare dogruluk tablosundaki bir satıra karsılık gelir
 - ilgili satır için Y çıktısının degerini içerir.
- Hücrelerin yerlesimi
 - O Bitisik terimlerde sadece 1 degisken degeri farklıdır. örn. m6 (110) and m7 (111)

Gruplama - Bitisiklik ilkesinin uygulanması

- iki hücre aynı degere sahip (1) ve birbirlerine komsu ise, deyimler bitisiktir.
- Gruplar üst üste gelebilir
- Grup sayısı 2 nin kuvveti. (1, 2, 4, 8)
- 1 ler ve O lar gruplandırılabilir.

içerikler(Implicants) ve Asal içerikler (Prime Implicants)

- Daha büyük bir grubun parçası olan tek bir hücre ya da bir grup hücreye içerik denir.
- En büyük gruba asal içerik denir.
- Tek bir hücre de asal içerik olabilir.
- Tüm degerleri (1 leri) içeren içeriklerin herhangi istenilen islevi gösterir.
- Tüm degerleri (1 leri) içeren asal içeriklerin en küçük kümesi, islevin en küçük deyim ile gösterimini verir.
 - O Birden fazla en küçük küme olabilir.

K Haritaları Kuralları

Tüm 1 leri kapsayacak en az çemberi kullanılmalıdır.

Çemberin içindeki tüm kareler 1 içermelidir.

Gruplamalarda seçilen kutu sayısı 1,2,4,8,16,...olmalıdır.

Herbir çember olabildigince büyük olmalıdır.

Karsılıklı köse ve kenarlardaki kareler birbirlerine komsu kare sayılırlar.

Harita içindeki 1 degeri en az çemberi saglamak için birden fazla çember içinde olabilir.

Bitisik terimlerde sadece 1 degisken degeri farklıdır. örn. m6 (110) and m7 (111)

Gray Kod

GEMi kelimesinin iNEK kelimesine dönüsümü; Kural her bir adımda sadece bir harf degisebilir.

GEMI, IEMI,

iemk,

inmk, inek

Dogruluk Çizelgesi ve Bitisiklik (adjacency)

Standart dogruluk çizelgesi

A	В	C	D	minterm
0	0	0	0	m0
0	0	0	1	m1
0 0 0 0 0		1	0	m2
0	0	1	1	m3
0	1	0	0	m4
0	1	0	1	m5
0	1	1	0	m6
0	1	1	1	m7
1	0	0	0	m8
1	0	0	1	m9
1	0	1	0	m10
1	0	1	1	m11
1	1	0	0	m12
1	1	0	1	m13
1	1	1	0	m14
1	1	1	1	m15

Gray kodları

A	В	C	D	minterm
0	0	0	0	m0
0	0	0	1	m1
0 0 0 0 0 0 0 1	0	1	1	m3
0	0	1	0	m2
0	1	1	0	m6
0	1	1	1	m7
0	1	0	1	m5
0	1	0	0	m4
1	1	0	0	m12
1	1	0	1	m13
1	1	1	1	m15
1	1	1	0	m14
1	0	1	0	m10
1	0	1	1	m11
1	0	0	1	m9
1	0	0	0	m8

Gray Kodlarından Haritaya

Harita (K-Maps)

- 1 degiskenli harita 21 = 2
- 2 degiskenli harita 2² =4
- 3 degiskenli harita 2³ = 8
- 4 degiskenli harita 2⁴ = 16

hücreye sahiptir

1 değişken	2 değişken	3 değişken	4 de	eğişken	

Harita (K-Maps)

Dogruluk Tablosundan Haritaya

Dogruluk tablosundaki satırların sayısı ile haritanın hücrelerinin sayısı aynı olmalıdır.!

Harita ile Sadelestirme

Grupların okunması

1leri gruplama Oları gruplama

Değişken değişiyor	Dahil etme	Dahil etme
Değişken sabit 0	tümleri	kendisi
Değişken sabit 1	kendisi	tümleri

2-Degiskenli Harita

Satır	AB	F(A,B)
0	0 0	0
1	0 1	1
2	1 0	1
3	1 1	1

$$F(A,B) = A + B$$

2-Degiskenli Harita

Satır	AB	F1(A,B)	٨			
0	0 0	0	BA	0	1	
1	0 1	1	0	0	1	EI(AD) A'D AD'
2	1 0	1	1	1	0	F1(A,B) = A'B + AB'
3	1 1	0	1	1	U	

Satır	AB	F2(A,B)	٨			
0	0 0	0	DA	0	1	
1	0 1	0	0	0	0	
2	1 0	0	•	0	,	F2(A,B) = AB
1 2 3	1 1	1	1	0	1	

3 Degiskenli Harita

Satır	ABC	F(A,B,C)
0	0 0 0	1
1	0 0 1	0
2	0 1 0	1
2	0 1 1	0
4	1 0 0	0
4 5 6	1 0 1	0
6	1 1 0	1
7	1 1 1	0

$$F(A,B,C) = \Sigma m(0,2,6)$$

$$F'(A,B,C) = \Sigma m(1,3,4,5,7)$$

$$F(A,B,C) = \pi M(1,3,4,5,7)$$

K Haritaları

Sum of Product

$$Y = \overline{A} \; \overline{B} \; \overline{C} + \overline{A} \; \overline{B}C = \overline{A} \; \overline{B}(\overline{C} + C) = \overline{A} \; \overline{B}$$

CA	B 00	01	11	10
0	ABC	ĀBĒ	ABC	ABC
1	ĀĒC	ĀBC	ABC	ABC

YA	В			
c	00	01	11	10
0	1	0	0	0
1	1	0	0	0

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

 $\overline{A} \overline{B}$

YA	В			
C	00	01	11	10
0	1	0	0	0
1	1	0	0	0

Ornek: K Haritaları

$$Y = F(A, B, C)$$

Yedi Parçalı Display Decoder

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

Sa ve Sb için K Haritası

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

Sa ve Sb için K Haritası

$D_{3:0}$	S_a	S_b	S_c	S_d	S_e	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

Önemsenmeyen Durumlar

s	D_1	D_0	Y
0	0	0	0
0	0	1	1
0 0 0	1	0	0
0	1	1	1
1	0	0	0
1 1	0	1	0
1	1	0	1
1	1	1	1

$$Y = D_0 \overline{S} + D_1 S$$

$$Y = D_0 \overline{S} + D_1 S$$

Multiplexer Lojik (Çoklayıcılar)

Multiplexer Lojik (Çoklayıcılar)

Multiplexer Lojik Örnek-1

Ayse dönem ödevini bitirmek için asagıdaki fonksiyonu gerçeklestirmek istiyor. Ancak laboratuvarda sadece 8:1 multiplexer vardır.

$$Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$$

Α	В	С	Υ
0	0	0	1
0	0	1	0
	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Multiplexer Lojik Örnek -2

Ayse ödev sunumundan önce devresine yanlıslıkla 20V vererek yaktı. Panikle arkadasından 4:1 mux ve bir tersleyici aldı ve devreyi gerçekleme istiyor.

$$Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$$

Decoder lojik

A_1	A_0	Y ₃	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Zamanlama

Yayılma ve Kirlenme Gecikmesi

t_{pd}: Yayılma gecikmesi

t_{cd}: Kirlenme gecikmesi

Yayılma Gecikmesi

Yayılma Gecikmesi

$$t_{pd} = 2t_{pd_AND} + t_{pd_OR}$$

Kirlenme Gecikmesi

Short Path

$$t_{cd} = t_{cd_AND}$$

Gecikmelerin Tespiti Örnek

Gecikmelerin Tespiti Örnek

$$t_{pd}$$
: 3 x 100 ps = 300 ps

Çoklayıcı (Mux) Zamanlama

Asagıdaki Mux devrelerinin zamanlamalarını karsılastırın

Gate	t _{pd} (ps)
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

Çoklayıcı (Mux) Zamanlama

Gate	t _{pd} (ps)
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

t_{pd_sy}: S ile Y arasındaki yayılma gecikmesi

t_{pd_dy}: D ile Y arasındaki yayılma gecikmesi

 t_{pd} : max(t_{pd_sy} , t_{pd_dy})

Çoklayıcı (Mux) Zamanlama

$$t_{pd_sy} = t_{pd_INV} + t_{pd_AND3} + t_{pd_OR4}$$

= 30 ps + 80 ps + 90 ps
= **200 ps**
 $t_{pd_dy} = t_{pd_AND3} + t_{pd_OR4}$
= **170 ps**

t_{pd}	$sy = t_{pd_INV} + t_{pd_AND2} + t_{pd_TRI_sy}$
	=30 ps + 60 ps + 35 ps
	= 125 ps
t_{pd}	$dy = t_{pd_TRI_ay}$
	=50 ps

Gate	t_{pd} (ps)
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

$$t_{pd_s0y} = t_{pd_TRLSY} + t_{pd_TRI_AY} = 85 \text{ ns}$$

 $t_{pd_dy} = 2 t_{pd_TRI_AY} = 100 \text{ ns}$ 7

Tek girisin çoklu çıkısı tetiklemesi

Tek girisin çoklu çıkısı tetiklemesi

Tek girisin çoklu çıkısı tetiklemesi

SOFULAT

https://web.cs.hacettepe.edu.tr/~aykut/classes/fall2012/bbm231/sunumlar/lecture3 4.pdf