

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

Rev	Stat.	Date	Revision memo	Issued by	Checked by	Approved by
Α	IDC	24-jul-2013	Issue for Interdisciplinary Check	M.Nwadiwe	A.Olayioye	A. Cerri
00	IFR	24-jan-2014	Issue for Review	M.Nwadiwe	A.Olayioye	A. Cerri
01	AFC	23-may-2014	Approved for Construction	M.Nwadiwe	A.Olayioye	A. Cerri

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date: 23-May-2014

Discipline : STR | Document Type : REP

Discipline

Phase:DE

System/ Subsystem: 10

Equipment NA

Type: Status: AFC

Class: 2

Page 2 of 86

TABLE OF CONTENTS

1	Genera	l	5
	1.1	Purpose	5
	1.2	Field of application	6
2	Introdu	iction	9
3	Summa	ary and Conclusion	10
	3.1	Summary	10
	3.2	Conclusion	
	3.2.1 3.2.2	In Place Analysis	
	3.2.2	Lifting and Lowering Analysis Retrieval Analysis	
	3.2.4	Transportation Analysis	
	3.2.5	Instigation Device Design Check	
	3.2.6	Local Checks	
4		ions and Abbreviations	
	4.1	Definitions	
	4.2	Abbreviations	
	4.3	S.I Units	
5	Refere	nces	17
	5.1	Addendum	17
	5.2	Project Particular Specifications	17
	5.3	COMPANY General Specifications	17
	5.4	CONTRACTOR Reference Documents	18
	5.5	Codes and Standard Documentation	18
	5.6	Software	19
6	Design	Data	20
	6.1	Main dimensions	20
	6.2	Materials	20
	6.3	Design life	21
	6.4	Environmental data	21
	6.5	Soil data	22
	6.6	Flowline Loading	22
7	Design	Methodology and Criteria	23
	7.1	Design Analyses Software	23

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date: 23-May-2014

Discipline : STR | Document Type : REP

Phase:DE System/Subsystem : 10 Equipment Type: Status: AFC Class: 2 Page 3 of 86

7.2		Design Codes and Standards	23
7.3		Allowable Stress Modification	24
8 N	/lodel [Description	25
8.1		Structure Model	25
8.2		LBMS Global Coordinate System	26
8.3		COG and weight Estimates	
8.4		Sling Modeling Properties	26
8.5		Buckling Length	26
9 T	ransp	ortation Analysis	27
9.1		LBMS – Cargo Barge Calculation	
9.2		Calculations	29
9	.2.1	X _{COG} Calculation	. 29
_	.2.2	Z _{COG} Calculation	
_	.2.3	Y _{COG} Calculation	
9.3		Boundary Conditions	
9.4		Load Combinations	
_	.4.1 .4.2	Load Factors Barge Motion	
_	.4.3	Wind Load	
9	.4.4	Load Combination	
9.5		Transportation Analysis Results	34
9	.5.1	Basic Load case	. 34
9	.5.2	Acceleration Loads	-
9	.5.3	Combined Load Case	
_	.5.4	Reactions	
_	.5.5	Member Unity Check Ratio (UCR)	
10 li	n-Place	e Analysis	
10.	1	Boundary Conditions	42
10.2	2	Load Combinations	43
	0.2.1	Basic Load Case	
1	0.2.2	Combined Load Case	. 44
10.3	3	Results	46
	0.3.1	Reactions on springs	
	0.3.2	Member Unity Check Ratio (UCR)	
11 L	ifting:	and Lowering Analysis	49
11.	1	Boundary Conditions	49
11.2	2	Load Condition	51
11.3	3	Lifting in Air Results	51

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date : 23-May-2014

Discipline : STR | Document Type : REP

Phase:DE System/ Subsystem : 10 Equipment Type: NA Status: AFC Class: 2 Page 4 of 86

1 1 11. 1 1 1	11.3.1 11.3.2 11.3.3 11.3.4 4 11.4.1 11.4.2 11.4.3	Summary of Load Combinations Reactions Sling Members Forces Member Unity Check Ratio (UCR) Lowering in Water Results Summary Load Combinations Reactions Sling Members Forces Member Unity Check Ratio (UCR)	52 53 53 54 54 55 55		
		al Analysis			
	1 2.1.1 2.1.2	Boundary Conditions Stage 1 Stage 2	58		
	2 2.2.1 2.2.2	Load Condition	59		
1	3 2.3.1 2.3.2 2.3.3	Detailed Results (Stage 1) Reactions Sling Members Forces Member Unity Check (UC)	64		
1	4 2.4.1 2.4.2 2.4.3	Detailed Results (Stage 2) Reactions Sling Members Forces Member Unity Check (UC)	66 67		
ANNE	EXES		68		
ANNE	EX1: LB	MS FRAMING	69		
ANNE	EX2: SC	DIL SPRINGS STIFFNESS EVALUATION	71		
ANNE	EX3: CL	AMP DESIGN	73		
		TING PADEYE DESIGN			
	_	ALLAST DESIGN			
		DPE GUIDE DESIGN			
		JDMAT ANALYSIS			
		OWLINE IMPACT			
	_	SARGE MOTION ACCELERATION CALCULATION	_		
ANNE	ANNEATU: DARGE MUTION ACCELERATION CALCULATION80				

1 General

1.1 Purpose

The purpose of this document is to present the results of the structural analyses of the Flowlines Lateral Buckling Mitigation System (LBMS).

Structural verifications are performed for the following conditions:

- Transportation on cargo barge
- Lifting in air / lowering in water
- Splash zone slamming impact
- Immediate retrieval
- In-place
- Flowline impact
- Ballast impact and ROV Snagging
- Details verifications
- Instigation system verification

The structural analyses have been performed using SACS [™] Ref [32].

All analysis are performed according to the design data and methodologies presented in the Lateral Buckling Mitigation Device Structural Design Premises Ref [15].

1.2 Field of application

The EGINA field, discovered in 2003, is situated offshore Nigeria within the Oil Mining Lease OML-130, some 200km from Port Harcourt in a water depth ranging from 1150m to 1750m (see Figure 1-1).

Figure 1-1: Location of EGINA Field (OML-130)

As part of what is known as the greater EGINA area, two other fields EGINA South and PREOWEI which are situated 20 km and 25 km respectively from the EGINA MAIN field are planned for future developments. The current development will cover the EGINA MAIN field. The two other fields, EGINA South and PREOWEI will be developed as satellites of EGINA MAIN and will be tied back at the end of its plateau. The surface facilities are designed to take into account these future fields (see Figure 1-2).

Figure 1-2: PREOWEI and EGINA South Locations

The development of the EGINA field is based on subsea wells connected to a Floating Production, Storage & Offloading (FPSO) facility and stabilized crude oil export via oil tanker using an offloading buoy.

There is also a gas export pipeline from FPSO to the AKPO gas export pipeline tie-in point. The subsea layout of the EGINA MAIN field is shown below in Figure 1-3:

Figure 1-3: Base Case Layout for EGINA MAIN

The Scope of Work for the Flowlines, Risers, Offloading Systems and Offshore Works (UFR) for the EGINA MAIN Field is as listed below:

- 2off production loops (of about 29 km) thermally wet insulated with flowlines, spools, FLETs. (Note: production manifolds and CRA production well jumpers are COMPANY provided items to be installed);
- 3off water injection lines (of about 23 km) with flowlines, spools, well jumpers, FLETs and ITAs;
- 1off gas export line (of about 20 km) with flowline, spools, FLETs, SIV and PLEM, and tied-in to AKPO export pipeline;
- 4off concentric offset risers for production and gas lift and relevant flexible jumpers;
- 3off water injection risers and relevant flexible jumpers;
- 1off gas export riser and relevant flexible jumpers;

saipem contracting nigeria limited				Doc. Ref.: NG-E	EGN-21-SAEC-100291
eve	SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT			CTR Reference: F10268-SAEC-10-STR- REP-100291	
1				Revision: 01	Rev Date : 23-May-2014
				Discipline : ST	R Document Type : REP
Phase:DE	Phase:DE System/ Subsystem : 10 Equipment Type: NA		Status: AFC	Class: 2	Page 8 of 86

- Installation of 4 main umbilicals and ancillaries for production and water injection wells and telecom link to pre-existing subsea optic fibre network;
- 1 secondary umbilical for GE SIV control and risers monitoring;
- LBL array;
- Oil Offloading Terminal, using an offloading buoy (COMPANY furnished with hoses and hawser) approximately 2 km NNE of FPSO and connected to FPSO via two 20.5-inch ID Oil Offloading lines.

FPSO mooring anchors and the installation of the COMPANY furnished FPSO mooring lines and its hook-up are also involved in the scope of work.

saipem contracting nigeria limited				Doc. Ref.: NG-E	GN-21-SAEC-100291
eve	SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT			CTR Reference: F10268-SAEC-10-STR- REP-100291	
				Revision: 01	Rev Date : 23-May-2014
			Discipline : STR	Document Type : REP	
Phase:DE	System/ Subsystem : 10	Equipment Type: NA	Status: AFC	Class: 2	Page 9 of 86

2 Introduction

The primary objectives of the LBMS are as follows:

- Control the pipe by managing the lateral friction factor so that it is as low as possible, thus reducing the level of curvature at the crown of the lateral buckle.
- Maximize the release in axial compression load at the lateral buckle site.
- Provide an out of straightness feature which causes lateral buckling of the flowline at a relative low axial compressive load.

The LBMS structure is composed of:

- A support coated beam (in contact with the flowline)
- A foundation (mudmat)
- A series of stiffeners that transfers the loads from the coated component to the foundation
- A buckling instigation device (clamp, buoy, etc.)

The lateral Buckling Mitigation System consists of a sleeper on which the flowline will be laid.

After the installation of the flowline on the sleeper and before operation, the flowline will be connected to an instigation system made of a clamp, a sling and a buoy, that will laterally pull the pipe along the sleeper to create the lateral imperfection necessary to induce lateral buckling of the flowline at this location.

Figure 2-1: LBMS Typical Design.

LBMS are needed for production flowlines and water injection flowlines. Quantity of LBMS for each flowline will be indicated in the Lateral Buckling Report Ref [22]. Same design of the LBMS will be considered for the production and water injection flowline.

saipem contracting nigeria limited				Doc. Ref.: NG-E	GN-21-SAEC-100291
eve	SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT			CTR Reference: F10268-SAEC-10-STR- REP-100291	
				Revision: 01	Rev Date : 23-May-2014
				Discipline : STF	Document Type : REP
Phase:DE System/ Subsystem : 10 Equipment Type: NA		Status: AFC	Class: 2	Page 10 of 86	

3 Summary and Conclusion

3.1 Summary

This report presents the analyses results for the LBMS performed to determine the adequacy of the engineered structure to sustain the different imposed loads through the phases of transportation, lifting in air, lowering in water, retrieval and the operational in place condition analyses.

The structural framing of the LBMS are verified for the conformation with the design requirements of the applicable clauses of API RP 2A Ref. [28] and/or AISC Ref. [26] as relevant.

The member strengths are verified from the standpoints of both buckling and yield.

3.2 Conclusion

Given the assumptions listed in this report and in LBMS Structural Design Premises Ref [15], the LBMS structure is designed to withstand lifting, transportation, installation and operating load conditions.

All unity check values are below unity, the design of the LBMS is therefore acceptable.

3.2.1 In Place Analysis

The results of the in place analysis show that all the member unity check are less than unity with a maximum UC of 0.39 on the UPE section under the ballast weight. Refer to section 10.3.2 for detailed results.

3.2.2 Lifting and Lowering Analysis

The results for the Lift and Lowering Analyses show that all the member unity check are below 1.0 with a maximum UC of 0.97 on the UPE framing members, during lowering analysis. Refer to section 11.3.4 and section 11.4.4 for more details.

3.2.3 Retrieval Analysis

The results of the retrieval show that all the member unity check are below 1 with a maximum UC of 0.77 on the UPE framing Member, during retrieval stage 1.Refer to section12.3.3 and section 12.4.3 for more details.

3.2.4 Transportation Analysis

The results of the transportation analyses show that all the member unity check are below 1 with a maximum UC of 0.43 on the UPE transverse Member. Refer to section 9.5.5 for more details.

3.2.5 Instigation Device Design Check

3.2.5.1 Clamp Design

Two clamps have been designed, one to fit the production flowline external OD (including coating) and another one to fit the water injection flowline.

The clamps are conservatively designed for the maximum buoy pull force while assuming that the flowline is rigid. The result summary is presented in Table 3-1 and Table 3-2.

Clamp UCR - Check	Water Injection	Production Clamp				
Max Membrane Stress	0.47	0.57				
Max Membrane + bending Stress	0.73	0.83				
Fillet Weld Check	0.38					
Lifting/Lowering	Lifting/Lowering Analysis					
Max Membrane Stress	0.03	0.05				
Max Membrane + bending Stress	0.08	0.08				

Table 3-1: Clamp Check Summary.

Clamp Round Bar – UCR Check	Shear Stress	Bending Stress
Buoyancy Round Bar Check	0.46	0.66
Bottom Round Bar Check	0.12	0.47
Installation Round bar Check	0.26	0.55

Table 3-2: Clamp Round Bar Check Summary.

The Max unity check ratio for the Clamp check is less than unity; hence the clamp is fit for purpose. Refer to ANNEX3: CLAMP DESIGN for detailed results.

3.2.5.2 Ballast Design

The ballast was designed to withstand its own weight and the ballast plate's weight. The guide tube is designed to withstand an impact of the ballast plates during their installation on the ballast structure.

Ballast Structure						
IPE 220	0.76					
Ø273.05x19.05mm	0.09					
Joint Check	0.18					
Pin Guide Check -	Pin Guide Check -					
Ø88.9x5.49mm	0.59					
Connection to support	0.64					
Padeye check						
Eye Check	0.65					
Main Plate	0.23					
Connection to support pipe	0.21					

Table 3-3: Ballast Check Summary.

Refer to ANNEX5: BALLAST DESIGN for detailed results.

3.2.6 Local Checks

3.2.6.1 Lifting Padeye Design

The maximum loading of the padeyes is during retrieval phase. The padeyes are shown to be able to withstand these loads. The result summary is presented in Table 3-4.

Lifting Padeye check	UCR	
	Shear hole check	0.11
Padeye Check	Diametral bearing check	0.15
	Hertz pressure check	0.47
	Shear Stress	0.37
Main Plate Check	Axial Stress	0.03
Main Plate Check	Bending Stress Check Out of plane	0.21
	Bending Stress Check in- plane	0.14

	Combined Bending Stress Check	0.38
Cheek Plate weld check	Shear Stress	0.11
Main Plate and Bracket Fillet Weld Check	Shear Stress	0.39

Table 3-4: Padeye Check Summary.

Refer to the ANNEX4: LIFTING PADEYE DESIGN for detailed results.

3.2.6.2 Rope Guide Check

The rope guide is conservatively designed for the maximum buoy pull force neglecting frictional dissipations. The summary of the results for the various checks performed are presented in Table 3-5.

Stress		
	Membrane	0.22
20 mm thk support plate	Membrane + bending	0.22
	Membrane	0.10
Ø168.3 mm× 12.7 mm thk rope guide tube	Membrane + bending	0.41
Double fillet weld stress		

Table 3-5: Rope Guide Verification Results Summary

Refer to ANNEX6: ROPE GUIDE DESIGN for detailed results.

3.2.6.3 Mudmat Analysis

The mudmat plates have been designed to withstand slamming and bearing forces. The table below details the UCR for all plates checked using Roark's Formulas for Stresses and Strains.

Plate Dimension		Slamming	Bearing		
Plate Diffierision	UCR	Type of calculation	UCR	Type of calculation	
900×1400	0.80	Large displacement	0.47	Large displacement	
3000×750	0.59	Large displacement	0.36	Small displacement	
2850×750	0.59	Large displacement	0.36	Small displacement	
1150×850	0.65	Large displacement	0.39	Small displacement	

Table 3-6: Mudmat Plates Analysis Summary

Plate Dimension	Lw/L UCR
900×1400	0.10
3000×750	0.09
2850×750	0.09
1150×850	0.09

Table 3-7: Fillet weld Check Summary

Analysis	UCR
Bending	0.83
Shear	0.14
Fillet Weld	0.02

Table 3-8: Stiffener Check Summary

Refer to ANNEX7: MUDMAT ANALYSIS for detailed results.

3.2.6.4 Flowline Impact Analysis

The member UCR for the LBMS HEB400 beam and Coating is presented in the table below:

Design case	UCR
Bending	0.82
Shear	0.97
UHMW	0.21

Table 3-9: Results summary

Refer to ANNEX8: FLOWLINE IMPACT for detailed results.

3.2.6.5 Snagging Analysis

The table below summarises the results obtained for the impact on the ROV docking beam:

Impact	UCR
Middle (UPN 300)	0.88
Side (UPN 300 and docking beam connection)	0.29

Table 3-10: Snagging Impact analyses Summary.

Refer to ANNEX9: BALLAST IMPACT AND ROV SNAGGING for detailed results.

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

EGINA

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date: 23-May-2014

Discipline: STR Document Type: REP

Phase:DE

System/Subsystem: 10

Equipment NA

Type:

Status: AFC

Class: 2 Page 15 of 86

Definitions and Abbreviations 4

4.1 **Definitions**

COMPANY TOTAL Upstream Nigeria Limited.(TUPNL)

CONTRACTOR Consortium comprising Saipem Contracting Nigeria Limited (SCNL) as Consortium

leader, Saipem sa (SAIPEM), Saipem (Portugal) Comércio Marítimo, Sociedade Unipessoal, Lda. (SPCM) and Allied Dominion Oilfield Shipping Services Limited

(ADOSS)

4.2 **Abbreviations**

AISC American Institute of Steel Construction

API American Petroleum Institute **ASD** Allowable Stress Design BC **Boundary Conditions**

CoG Centre of Gravity

DAF Dynamic Amplification Factor

Finite element Analysis **FEA FLET** Flowline End Termination

Floating Production Storage and Offloading **FPSO**

GS **General Specifications**

LBMS Lateral Buckling Mitigation System

ROV Remotely Operated Vehicle

SMTS Specified Minimum Tensile Stress **SMYS** Specified Minimum Yield Stress **SZDC** Splash Zone Down Crossing

TBC To Be Confirmed

THK **Thickness** UC **Unity Check**

UCR Unity Check Ratio

UHMW Ultra High Molecular Weight (Polyethylene)

WSD Working Stress design

WT Wall Thickness

eni saipem contracting nigeria limited				Doc. Ref.: NG-E	GN-21-SAEC-100291	
eve	E G I N A				CTR Reference: F10268-SAEC-10-STR REP-100291	
	SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT			711	Revision: 01	Rev Date : 23-May-2014
					Discipline : STI	R Document Type : REP
Phase:DE	System/ Subsystem: 10	Equipment NA	Туре:	Status: AFC	Class: 2	Page 16 of 86

4.3 S.I Units

SI units has been used for the design of the LBMS.

CTR Reference: F10268-SAEC-10-STR-

REP-100291 Revision: 01

Rev Date: 23-May-2014

Discipline: STR

Document Type: REP

Class: 2 Page 17 of 86

MITIGATION SYSTEM DESIGN REPORT

Phase:DE

System/Subsystem: 10

Equipment NA

Type:

Status: AFC

5 References

In all reference documentation in the sections that follow, unless specifically noted otherwise, the latest revision status of the document shall be the applicable version.

In the event of conflicts between various documents, the following order of precedence shall apply:

Addendum 5.1

Ref	Document No	Document Title	Rev
1.	NG-EGN-20-AEEC-000001	EGINA UFR PACKAGE EGI/133 ADDENDUM TO DESIGN DOSSIER	01

Project Particular Specifications

No.	Document Number	Designation	Rev
2.	NG-EGN-OF-PENG-000007	Meteocean design data specification	01
3.	NG-EGN-UA-VENG-371046	Flowlines functional specification	09
4.	NG-EGN-SO-VENG-377138	ROV Tooling Design Specification	05
5.	NG-EGN-VA-VENG-371047	FLET and ITAs Functional Specification	05

5.3 COMPANY General Specifications

No.	Document Number	Designation	Rev
6.	GS-EP-STR-001	Weight monitoring and weighing offshore units	07
7.	GS-EP-STR-103	Design and fabrication of Skids and equipment supporting structure	06
8.	GS-EP-STR 100	Offshore Steel Structures (General)	07
9.	GS-EP-STR 401	Loadout, sea fastening, transportation and installation of offshore structures	06
10.	GS-EP-STR 404	Marine aspects for load-out, transportation and installation of offshore structures	03
11.	GS-EP-STR-101	Design of offshore jacket and subsea structures	07
12.	GS-EP-STR 201	Materials for offshore steel structures	06
13.	GS-EP-STR-301	Fabrication of steel structures	04

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

System/Subsystem: 10

EGINA

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date : 23-May-2014

Page 18 of 86

Discipline : STR Document Type : REP

Discipline : STR

Class: 2

'

Phase:DE

Equipment Type: NA

Status: AFC

5.4 CONTRACTOR Reference Documents

No.	Document Number	Designation
14.	NG-EGN-21-SAEC-160010	Systems F & G - Design Basis
15.	NG-EGN-21-SAEC-160080	System F - LBMS structural design premises
16.	NG-EGN-21-SAEC-140090	Systems F & G - Flowline Geotechnical Design Basis
17.	NG-EGN-21-SAEC-602700	Systems F & G - LBMS Installation Procedure
18.	NG-EGN-21-SAEC-602710	System F & G - LBMS Instigation device installation - Procedure
19.	NG-EGN-20-SAEC-620030	All Systems - Transportation analysis Design Premises
20.	NG-EGN-20-SAEC-130040	All Systems – Cathodic Protection Philosophy
21.	NG-EGN-20-SAEC-210111	All Systems - Project Painting Specification
22.	NG-EGN-21-SAEC-101270	System F & G Flowlines Lateral Buckling Report
23.	NG-EGN-21-SAEC-140750	System F & G LBMS Geotechnical design report
24.	NG-EGN-21-SAEC-193560	System F – LBMS – Drawing List

5.5 Codes and Standard Documentation

No.	Designation	Description	Edition
25.	DNV-OS-C201	Structural Design of Offshore Units (WSD METHOD)	2007
26.	AISC Allowable stress Design (ASD)	American Institute of Steel Construction Manual 13 th Edition	2005
27.	AISC Allowable stress Design (ASD)	American Institute of Steel Construction Manual 9 th Edition	1989
28.	API RP 2A WSD	Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design completed with Errata, supplement 1, 2 and 3	2007
29.	DNV RP H103	Modeling and analysis of marine operations	2011
30.	DNV - 158	DNV Rules for planning and execution of marine operations. Part 2 Chapter 5 - Lifting	1996
31.	DNV RP C204	Design against Accidental loads	2010

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

EGINA

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date: 23-May-2014

Discipline : STR | Document Type : REP

Phase:DE System/ Subsystem : 10 Equipment Type: NA Status: AFC Class: 2 Page 19 of 86

5.6 Software

No.	Designation	Description
32.	SACS 5.3 V 8i	Structural Analysis Computer System, Bentley Systems Inc.,USA
33.	ABAQUS V 6.12	Proprietary Finite Element Analysis Software marketed by SIMULIA, Dassault Systems, S.A

	saipem nigeria	Doc. Ref.: NG-E	GN-21-SAEC-100291		
eve	TEM F & G - LATERAL	BUCKLING	EGINA	CTR Reference: F10268-SAEC-10-STR- REP-100291	
	GATION SYSTEM DESI			Revision: 01	Rev Date : 23-May-2014
				Discipline : STR	Document Type : REP
Phase:DE	System/ Subsystem : 10	Equipment Type: NA	Status: AFC	Class: 2	Page 20 of 86

Design Data 6

The salient design data as noted in the LBMS - Design Premises document, Ref [15], are included in this section, for reference.

Main dimensions 6.1

The minimal length needed is based on a pipeline corridor of 6m (+/- 3m) and a maximum lateral buckling deflection of 9m.In addition to this there are two clearance areas of 3m on both sides reaching 21 m as shown in the Figure 6-1 below.

The total height of the LBMS structure is 450 mm as shown in Figure 6-2 below:

Figure 6-2: LBMS Side View showing height.

6.2 **Materials**

All structural steel components are made of S355 steel with design properties stated below, as per Ref [15].

Young's modulus 207000 N/mm² Ε 78000 N/mm² G = $\frac{E}{2(1+v)}$ Shear modulus G

7850 kg/m³ Density d

Poisson ratio v = 0.3

Seawater density $\rho = 1025 \text{ kg/m}^3$

Mechanical properties are in accordance with the values specified in the Table 6-1 below.

Steel	I	Minimum	Yield Stre	ngth , YS	(N/mm²)		Minimum Streng (N/m	th, TS
Grade	Nominal thickness (mm)							
	≤16	>16	>40	>63	>80	>100	≤100	>100
	≥10	≤40	≤63	≤80	≤100	≤150	≥100	≤150
S 355	355	345	335	325	315	295	470-630	460-620

Table 6-1: Steel grade and its variation with thickness.

UHMW mechanical properties are the following:

Young Modulus: 700 MPa

Density: 950 kg/m3

Poisson's ratio: v = 0.46

xLPP/ UHMW friction coefficient: 0.2 to 0.4

Sling Material Properties:

Phase:DE

Young's Modulus = 35000 N/mm^2 Density = 0.001 Ton/m^3 Shear Modulus = 13650 N/mm^2

6.3 Design life

The design life of the LBMS system is 25 years operating life + 1 year Standby in line with the life of the flowline as reported in the Design Basis Ref [14].

6.4 Environmental data

The main data are reported in the Table 6-2 below as per Ref [2]:

Data	Design Value
Minimum Seawater Temperature	4 degrees (°C)
Water Depth	1480 m to1610 m
Seawater Density	1025Kg/m ³

Table 6-2: Environmental Data.

6.5 Soil data

The soil data to be used for the design of the LBMS foundation is presented in the LBMS Geotechnical Design Report Ref [23].

The soil behavior is modeled as a series of linear springs attached to the foundations. The global stiffness values considered are listed in the Table 6-3 below:

Stiffness	Lower Bound (kN/m)
Lateral global stiffness (X-Axis)	865
Transversal global stiffness (Y-Axis)	865
Vertical global stiffness (Z-Axis)	5990

Table 6-3: Soil Global Stiffness.

During the retrieval case, the retrieval force considered is 145KN as reported in the Geotechnical Design Report Ref [23].

6.6 Flowline Loading

The flowline loads and instigation device loads to be used for the design of the LBMS are presented in the Lateral Buckling Report Ref [22].

For this analysis the In-Place loading has been considered as:

• Flowline Vertical Load on the Sleeper = 12.7 T

Considering conservatively a friction factor of 0.4

• Flowline Horizontal load (due to friction on the frame) = 12.7 x 0.4 = 5.09T

As shown in Table 6-4 below:

Force (F ₁ ,F ₂ ,F ₆)	Value (KN)
Fx (axial load)	50
Fz (vertical load)	125

Table 6-4: Loads acting on LBMS- In-Place Condition.

Buoy Pulling Force = 5 T Ballast weight in water = 6.7 T

Ballast is used to avoid uplift of the LBMS framing Structure during In-Place condition.

Refer to Figure 10-2 for position of load application.

saipem contracting nigeria limited				Doc. Ref.: NG-E	GN-21-SAEC-100291
eve	SYSTEM F & G - LATERAL BUCKLING			CTR Reference: F10268-SAEC-10-STR- REP-100291	
	GATION SYSTEM DESI		711	Revision: 01	Rev Date : 23-May-2014
				Discipline : STF	R Document Type : REP
Phase:DE	Phase:DE System/ Subsystem : 10 Equipment Type: NA		Status: AFC	Class: 2	Page 23 of 86

7 Design Methodology and Criteria

The engineering design verifications of the LBMS structure have been performed to the design data and methodologies presented within the lateral buckling mitigation devices structural design premises Ref [15].

7.1 Design Analyses Software

The design analysis software for the global analysis of the LBMS shall be SACS TM. The proprietary software developed by EDI Inc. Ref [32] and ABAQUS Ref [33] for local checks.

7.2 Design Codes and Standards

The structural strength and stability assessment of the LBMS shall conform to the requirements of AISC-ASD Ref [26] and API RP 2A-WSD Ref [28] as applicable.

Section Type	Loading	Allowable Stress	
	Axial Tension	0.60 σ _{vs}	
0	Axial Compression	Slenderness dependent	
Cylindrical / Tubular	Shear	0.40 σ _{vs}	
	Bending (D/t dependent)	$0.75\sigma_{ys}$	
	Axial Tension	0.60 σ _{ys}	
	Axial Compression	Slenderness dependent	
Non-Tubular and Rolled	Shear	0.40 σ _{ys}	
	Bending in Plane	0.66 σ _{ys}	
	Bending Out of Plane	0.75 σ _{vs}	

Table 7-1: API/AISC Design Allowable Stresses

All Finite Element based analysis shall conform to requirements of AISC-ASD Ref [26] and API RP 2A-WSD Ref [28].

The equivalent stresses shall not exceed the maximum allowable stresses as given below:

Membrane stress $\sigma_m = 0.67 \times F_Y$ Membrane +Bending $\sigma_{m+b} = 0.67 \times F_Y$

 $F_v = Material Yield Strength.$

The unity check ratios are computed by dividing the stress obtained by the associated allowable stress and should always be less than one: $Stress\ Ratio = \frac{\sigma_{obtained}}{\sigma_{allowable}} < 1$

saipem contracting nigeria limited				Doc. Ref.: NG-E	GN-21-SAEC-100291
eve	TEM F & G - LATERAL	BIICKLING	EGINA	CTR Reference: F10268-SAEC-10-STR- REP-100291	
	GATION SYSTEM DESI			Revision: 01	Rev Date : 23-May-2014
				Discipline : STF	Document Type : REP
Phase:DE	Phase:DE System/ Subsystem : 10 Equipment Type: NA		Status: AFC	Class: 2	Page 24 of 86

7.3 Allowable Stress Modification

No increase in basic allowable stresses has been applied in the structural verification of the LBMS structure.

8 Model Description

8.1 Structure Model

The LBMS structure has been analyzed for the sustained preliminary loading during the lifting, lowering, retrieval and in- service operating conditions.

The framing members of the LBMS are configured using HEB 400, HEB 300, and UPE 300 open sections.

Plate stiffness is conservatively not accounted for in SACS model, only its density is considered to account for its weight in the global model.

Figure 8-1 below details the LBMS as modelled using SACS [™] software. The framing member descriptions are presented in ANNEX1: LBMS FRAMING.

Figure 8-1: LBMS Model Beam Section Detail.

Colour	Group Label	Designation
	BM1	HEB 400
	BM3	LIBEOO
	BM4	UPE300
	BM5	HEB 300
	T01	Ø101.6mm × 8.08mm
	T02	Ø 141.3mm × 12.7mm
	T03	Ø 168.3mm × 12.7mm
	U01	UPN 300
	P01	Plate 6 mm thk

Table 8-1: Member group labelling and dimensions.

saipem contracting nigeria limited				Doc. Ref.: NG-E	GN-21-SAEC-100291
eve				CTR Reference: F10268-SAEC-10-STR- REP-100291	
	TEM F & G - LATERAL GATION SYSTEM DESI		711	Revision: 01	Rev Date : 23-May-2014
				Discipline : STR	Document Type : REP
Phase:DE	System/ Subsystem : 10	Equipment Type: NA	Status: AFC	Class: 2	Page 26 of 86

It will be shown in this report that the framing members selected for the LBMS structure are capable of sustaining the most probable and onerous load combinations of the imposed loads and satisfying fully the requirements of API RP-2A Ref [28] and or AISC Ref [26] as relevant.

8.2 LBMS Global Coordinate System

The global coordinate system for the LBMS is defined as follows:

- X is along the LBMS axis
- Y is along the flowline axis
- Z is vertical

Figure 8-2: LBMS Structure Global Coordinate System

8.3 COG and weight Estimates

Table 8-2 below summarizes the weight, CoG and COB of the LBMS as modelled.

LBMS	COGX	COGY	COGZ	Weight (GRVZ)
LBMS in air	13.897	0.014	0.014	12.79T
LBMS in water	13.923	0.014	0.014	11.12T

Table 8-2: CoG, COB and weight Estimates of Modelled Structure Using SACS[™].

8.4 Sling Modeling Properties

The slings are modelled as Prismatic members with relevant cross-sectional area but with notional magnitudes to represent the second moment of area about X, Y, Z axes, typically lxx=lyy=lzz=10 cm⁴.

8.5 Buckling Length

The buckling length assigned to the members is as defined in section 4.5 of the LBMS Design premise Ref [15].

9 Transportation Analysis

This section presents the detailed results of the global analysis performed on the LBMS during sea transportation. The frame members were checked in accordance with applicable clauses of API RP 2A WSD Ref. [28], AISC Ref. [26], COMPANY requirements GS EP STR 401 Ref. [9], and the methodologies described in the design premise Ref. [15].

Transportation is carried out from the fabrication yard to the installation site. Large cargo barge is considered with the LBMS conservatively positioned at the extreme of the barge deck as shown in Figure 9-1.

Figure 9-1: LBMS Position on Cargo Barge

9.1 LBMS - Cargo Barge Calculation

Figure 9-2: LBMS COG Position

Figure 9-3: Barge Dimensions

9.2 Calculations

9.2.1 X_{COG} Calculation

Figure 9-4: Case 1

Figure 9-5: Case 2

 $X_{COG1} = 91.4-27.5+13.897=77.797 \text{ m}$

 $X_{COG2} = 91.4 - 13.897 = 77.503 \text{ m}$

9.2.2 Z_{COG} Calculation

Figure 9-6: Z_{COG} Location

 Z_{COG} =0.014+0.5=0.514 m

9.2.3 Y_{COG} Calculation

Figure 9-7: Case 1

Figure 9-8: Case 2

 $Y_{COG1} = 27.4/2 - 5.0/2 - 0.014 = 11.186 \text{ m}$ $Y_{COG2} = 27.4/2 - 5.0/2 + 0.014 = 11.214 \text{ m}$

9.3 Boundary Conditions

The stability of the structure on the cargo barge is achieved by the restraining the structure vertically, longitudinally and laterally.

Figure 9-9: Transportation Analysis Boundary Condition.

9.4 Load Combinations

9.4.1 Load Factors

The load factors applicable to transportation analysis are given in Table 9-1

Analysis Type	Typical Members	Weight Contingency Factor				
Sea Transport	All structural members	1.10×GRV				
GRV is the self-weight of the structure						

Table 9-1: Transportation Analysis Load Factors

9.4.2 Barge Motion

Barge motion criteria presented in Table 9-2 and the acceleration combinations, Table 9-4 are based on the Noble Denton accelerations as mentioned in the design premise Ref [15].

Vessel Type	Single Amplitude		Heave	
	Roll	Pitch	Period	
Large Cargo barges or vessels	20°	12.5°	10 sec	0.2g

Table 9-2: Barge Motion Criteria

Motion							
Roll	Period						
+/- 100%	0	+/- 100%	10 s				
0	+/- 100%	+/- 100%	10 s				
+/-80%	+/- 60%	+/- 100%	10 s				
+/-60%	+/- 80%	+/- 100%	10 s				

Table 9-3: Barge Accelerations Combinations

20% increase is conservatively added to the loads resulting from pitch motion to account for the slamming effect in line with GS EP STR 401.

The detailed manual calculations for the accelerations for each direction are provided in ANNEX10: BARGE MOTION ACCELERATION CALCULATION.

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

System/Subsystem: 10

Phase:DE

EGINA

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date: 23-May-2014

Discipline : STR Document Type : REP

Type: Status: AFC Class: 2 Page 32 of 86

The summary of the load combinations are presented in Table 9-4.

Equipment

NA

Load Combination			Load Combination ID	Load Factor on SELX	Load Factor on SELY	Load Factor on SELZ
+Roll	-	+Heave	TR01	0	0.344	-0.909
+Roll	-	-Heave	TR02	0	0.480	-1.285
-Roll	-	+Heave	TR03	0	-0.344	-0.594
-Roll	-	-Heave	TR04	0	-0.480	-0.970
-	+Pitch	+Heave	TR05	-0.226	0	-0.443
-	+Pitch	-Heave	TR06	-0.312	0	-0.833
-	-Pitch	+Heave	TR07	0.226	0	-1.119
-	-Pitch	-Heave	TR08	0.312	0	-1.51
+80% Roll	+60% Pitch	+Heave	TR09	-0.132	0.277	-0.686
+80% Roll	+60% Pitch	-Heave	TR10	-0.182	0.387	-1.067
-80% Roll	+60% Pitch	+Heave	TR11	-0.132	-0.277	-0.433
-80% Roll	+60% Pitch	-Heave	TR12	-0.182	-0.387	-0.815
+80% Roll	-60% Pitch	+Heave	TR13	0.132	0.277	-1.091
+80% Roll	-60% Pitch	-Heave	TR14	0.182	0.387	-1.473
-80% Roll	-60% Pitch	+Heave	TR15	0.132	-0.277	-0.839
-80% Roll	-60% Pitch	-Heave	TR16	0.182	-0.387	-1.221
+60% Roll	+80% Pitch	+Heave	TR17	-0.178	0.208	-0.595
+60% Roll	+80% Pitch	-Heave	TR18	-0.246	0.291	-0.980
-60% Roll	+80% Pitch	+Heave	TR19	-0.178	-0.208	-0.405
-60% Roll	+80% Pitch	-Heave	TR20	-0.246	-0.291	-0.791
+60% Roll	-80% Pitch	+Heave	TR21	0.178	0.208	-1.136
+60% Roll	-80% Pitch	-Heave	TR22	0.246	0.291	-1.521
-60% Roll	-80% Pitch	+Heave	TR23	0.178	-0.208	-0.947
-60% Roll	-80% Pitch	-Heave	TR24	0.246	-0.291	-1.332

Table 9-4: Transportation Analysis Load Combination

	eni saipem nigeria	Doc. Ref.: NG-E	EGN-21-SAEC-100291			
eve	TEM F & G - LATERAL	BIICKLING	EGINA	CTR Reference: F10268-SAEC-10-STR- REP-100291		
	GATION SYSTEM DESI		711	Revision: 01	Rev Date : 23-May-2014	
				Discipline : ST	R Document Type : REP	
Phase:DE	System/ Subsystem : 10	Equipment Type: NA	Status: AFC	Class: 2	Page 33 of 86	

9.4.3 Wind Load

Wind loads associated with the barge transportation are based on design premise Ref. [15]. The wind speed and directions are presented in Table 9-5.

Wind Speed	Prevailing Directions	Load ID	
	0°	W1	
05/.	90°	W2	
25m/s	180°	W3	
	270°	W4	

Table 9-5: Wind Speed and Directions

The actual wind load applied on the structure based on the specified wind speed and directions are generated automatically by SACS. They are presented in Section 9.5.3.

9.4.4 Load Combination

The final load combination used in the analysis is presented in Table 9-6, each combined load (WI1 to WI96) combines gravity, acceleration and wind load; a total of 96 load cases are generated.

Final Load Combination	Barge Acceleration Load ID	Wind Load ID
WI01 to WI24	TR01 to TR24	W1
WI25 to WI48	TR01 to TR24	W2
WI49 to WI72	TR01 to TR24	W3
WI73 to WI96	TR01 to TR24	W4

Table 9-6: Transportation Analysis - Load Combinations Including Wind

9.5 Transportation Analysis Results

9.5.1 Basic Load case

The basic load cases generated in SACS output file is extracted and presented in Figure 9-10

					LOAD CASE SUM JDLINE ELEVAT				
LOAD	LOAD	FX	FY	FZ FZ	MX	MY	MZ	DEAD LOAD	BUOYANCY
CASE		• • •							
		(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)	(KN)	(KN)
1	W1	6.72	0.00	-0.07	0.1	10153.9	-0.1	9.00	0.00
2	W2	0.00	17.27	0.02	-26075.0	-0.1	234.1	0.00	0.00
3	W3	-6.72	0.00	0.07	-0.1	-10153.9	0.1	0.00	0.00
4	W4	0.00	-17.27	-0.02	26075.0	0.1	-234.1	0.00	0.00
5	GRUX	-125.44	0.00	0.00	0.0	-189414.0	1.7	125.44	0.00
6	GRUY	0.00	-125.44	0.00	189414.0	0.0	-1743.8	125.44	0.00
7	GRUZ	0.00	0.00	-125.44	-1.7	1743.8	0.0	125.44	0.00

Figure 9-10: Transport Basic Load Case Summary

9.5.2 Acceleration Loads

The total generated acceleration loads on the structure as extracted from SACS is presented in Figure 9-11.

	***** SEASTATE COMBINED LOAD CASE SUMMARY ***** RELATIVE TO MUDLINE ELEVATION								
LOAD LOAD	FX	FY	FZ	MX	MY	MZ			
CASE LABEL									
	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M			
12 TR1	0.00	-50.31	132.95	75976.5	-1848.3	-699.			
13 TR2	0.00	-70.21	187.95	106013.8	-2612.8	-976.			
14 TR3	0.00	50.31	86.88	-75973.5	-1207.8	699.			
15 TR4	0.00	70.21	141.87	-106009.3	-1972.3	976.			
18 TR5	33.06	0.00	64.79	0.9	49012.9	-0.			
19 TR6	45.63	0.00	121.84	1.7	67213.6	-0.			
20 TR7	-33.06	0.00	163.67	2.3	-52188.9	0.			
21 TR8	-45.63	0.00	220.85	3.0	-71977.6	0.			
22 TR9	19.31	-40.51	100.34	61178.7	27758.2	-563.			
32 TR10	26.62	-56.60	156.06	85473.7	38026.4	-787.			
33 TR11	19.31	40.51	63.33	-61176.4	28272.7	563.			
34 TR12	26.62	56.60	119.20	-85469.9	38538.8	786.			
35 TR13	-19.31	-40.51	159.57	61179.5	-31371.4	-563.			
36 TR14	-26.62	-56.60	215.44	85474.5	-43191.0	-786.			
37 TR15	-19.31	40.51	122.71	-61175.6	-30859.0	563.			
38 TR16	-26.62	56.60	178.59	-85469.1	-42678.6	787.			
39 TR17	26.03	-30.42	87.03	45939.4	38102.7	-423.			
40 TR18	35.98	-42.56	143.34	64271.3	52338.1	-592.			
41 TR19	26.03	30.42	59.24	-45937.4	38489.0	422.			
42 TR20	35.98	42.56	115.69	-64267.7	52722.4	591.			
43 TR21	-26.03	-30.42	166.15	45940.5	-41622.3	-422.			
44 TR22	-35.98	-42.56	222.46	64272.4	-57423.4	-591.			
45 TR23	-26.03	30.42	138.51	-45936.3	-41238.0	423.			
46 TR24	-35.98	42.56	194.82	-64266.6	-57039.1	592.			

Figure 9-11: Generated Acceleration Loads

9.5.3 Combined Load Case

The combined load cases extracted from SACS is presented in Figure 9-12, Figure 9-13 and Figure 9-14

			**** SEASTA	ATE COMBINED	LOAD CASE SUI	MARY ****	
			REI	LATIVE TO MU	DLINE ELEVATION	DN	
LOAD	LOAD	FX	FY	FZ	MX	MY	MZ
CASE	LABEL						
		(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)
23	WI1	6.72	-50.31	132.89	75976.6	8305.6	-699.6
24	WI2	6.72	-70.21	187.88	106013.9	7541.1	-976.1
25	WI3	6.72	50.31	86.81	-75973.4	8946.1	699.3
26	WI4	6.72	70.21	141.81	-106009.2	8181.6	975.8
27	WI5	39.78	0.00	64.73	1.0	59166.8	-0.6
28	WI6	52.36	0.00	121.77	1.8	77367.4	-0.8
29	WI7	-26.33	0.00	163.60	2.3	-42035.0	0.3
30	WI8	-38.91	0.00	220.79	3.1	-61823.7	0.5
31	WI9	26.03	-40.51	100.27	61178.8	37912.1	-563.6
47	WI10	33.34	-56.60	155.99	85473.8	48180.3	-787.4
48	WI11	26.03	40.51	63.27	-61176.4	38426.6	562.8
49	WI 12	33.34	56.60	119.14	-85469.8	48692.7	786.4
50	WI 13	-12.58	-40.51	159.51	61179.6	-21217.5	-563.1
51	WI14	-19.90	-56.60	215.38	85474.6	-33037.1	-786.7
52	WI 15	-12.58	40.51	122.65	-61175.5	-20705.1	563.4

Figure 9-12: Transportation Combined Load Case Summary – WI1 to WI15

	***** SEASTATE COMBINED LOAD CASE SUMMARY ***** RELATIVE TO MUDLINE ELEVATION									
LOAD Case	LOAD Label	FX	FY	FZ FZ	MX DEINE EFEAHIII	MY	MZ			
UNSE	LHDLL	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)			
53	WI 16	-19.90	56.60	178.52	-85469.0	-32524.7	787.1			
54	WI 17	32.76	-30.42	86.96	45939.5	48256.6	-423.4			
55	WI 18	42.70	-42.56	143.27	64271.4	62492.0	-592.3			
56	WI 19	32.76	30.42	59.17	-45937.3	48642.9	422.4			
57	WI20	42.70	42.56	115.63	-64267.6	62876.3	591.1			
58	WI 21	-19.31	-30.42	166.09	45940.6	-31468.4	-422.7			
59	WI 22	-29.26	-42.56	222.40	64272.5	-47269.5	-591.3			
60	WI23	-19.31	30.42	138.44	-45936.2	-31084.1	423.1			
61	WI24	-29.26	42.56	194.75	-64266.5	-46885.2	592.0			
62	WI 25	0.00	-33.05	132.97	49901.6	-1848.4	-465.4			
63	WI 26	0.00	-52.94	187.97	79938.8	-2612.9	-741.9			
64	WI 27	0.00	67.58	86.90	-102048.5	-1207.9	933.5			
65	WI 28	0.00	87.47	141.89	-132084.2	-1972.4	1210.1			
66	WI 29	33.06	17.27	64.81	-26074.1	49012.7	233.6			
67	WI30	45.63	17.27	121.86	-26073.3	67213.4	233.4			
68	WI31	-33.06	17.27	163.69	-26072.7	-52189.0	234.5			
69	WI32	-45.63	17.27	220.87	-26071.9	-71977.7	234.7			
70	WI33	19.31	-23.25	100.36	35103.7	27758.1	-329.4			
71	WI34	26.62	-39.34	156.08	59398.7	38026.3	-553.2			
72	WI35	19.31	57.78	63.35	-87251.4	28272.5	797.0			
73	WI36	26.62	73.87	119.22	-111544.9	38538.6	1020.6			
74	WI37	-19.31	-23.25	159.59	35104.5	-31371.5	-328.9			
75	WI38	-26.62	-39.34	215.46	59399.5	-43191.1	-552.4			
76	WI39	-19.31	57.78	122.73	-87250.6	-30859.2	797.6			
77	WI40	-26.62	73.87	178.60	-111544.1	-42678.7	1021.3			
78	WI 41	26.03	-13.15	87.05	19864.4	38102.5	-189.2			
79	WI42	35.98	-25.29	143.36	38196.3	52338.0	-358.1			
80	WI43	26.03	47.69	59.26	-72012.4	38488.9	656.6			
81	WI44	35.98	59.83	115.71	-90342.7	52722.3	825.3			
82	WI 45	-26.03	-13.15	166.17	19865.5	-41622.5	-188.5			
83	WI46	-35.98	-25.29	222.48	38197.4	-57423.5	-357.1			
84	WI 47	-26.03	47.69	138.53	-72 011. 3	-41238.2	657.4			
85	W147 W148	-20.03 -35.98	59.83	194.84	-72011.3 -90341.6	-57039.2	826.3			
86	W148 W149	-35.96 -6.72	-5 0.31	133.02	75976.5	-12002.1	-699.3			
87	W149 W150	-6.72	-70.21	188.01	106013.7	-12766.7	-975.8			
88	WI50 WI51	-6.72	-70.21 50.31	86.95	-75973.6	-12700.7	699.6			
89	W151 W152	-6.72 -6.72	50.31 70.21	80.95 141.94	-75973.0 -106009.3	-11301.7 -12126.2	976.1			
99 90	W152 W153	-0.72 26.33	0.00	64.86	-100009.3 0.8	-12120.2 38859.0	970.1 -0.3			
90 91	W153 W154	26.33 38.91	0.00 0.00	04.80 121.90	ย.ช 1.6	38859.0 57059.7	-0.3 -0.5			
92	WI55	-39.78	0.00	163.73	2.2	-62342.8	0.6			

Figure 9-13: Transportation Combined Load Case Summary – WI16 to WI55

				LOAD CASE SUI DLINE ELEVATIO		
OAD LOAD	FX	FY	FZ FZ	MX	МА	MZ
ASE LABEL	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)
93 WI56	-52.36	9.99	220.92	3.0	-82131.4	9.8
94 WI57	12.58	-40.51	100.40	61178.6	17604.4	-563.4
95 WI58	19.90	-56.60	156.13	85473.6	27872.5	-787.1
96 WI59	12.58	40.51	63.40	-61176.5	18118.8	563.1
97 WI60	19.90	56.60	119.27	-85470.0	28384.9	786.7
98 WI61	-26.03	-40.51	159.64	61179.4	-41525.3	-562.8
99 WI62	-33.34	-56.60	215.51	85474.4	-53344.8	-786.4
00 WI63	-26.03	40.51	122.78	-61175.7	-41012.9	563.6
01 WI64	-33.34	56.60	178.65	-85469.2	-52832.5	787.4
02 WI65	19.31	-30.42	87.09	45939.3	27948.8	-423.1
03 WI66	29.26	-42.56	143.40	64271.2	42184.2	-592.0
04 WI67	19.31	30.42	59.30	-45937.5	28335.1	422.7
05 WI68	29.26	42.56	115.76	-64267.8	42568.5	591.3
06 WI69	-32.76	-30.42	166.22	45940.4	-51776.2	-422.4
07 WI70	-42.70	-42.56	222.53	64272.3	-67577.3	-591.1
08 WI71	-32.76	30.42	138.58	-45936.4	-51391.9	423.4
09 WI72	-42.70	42.56	194.89	-64266.7	-67193.0	592.3
10 WI73	0.00	-67.58	132.93	102051.5	-1848.1	-933.5
11 WI74	0.00	-87.47	187.93	132088.8	-2612.6	-1210.1
12 WI75	0.00	33.05	86.86	-49898.5	-1207.6	465.4
13 WI76	0.00	52.94	141.85	-79934.3	-1972.2	741.9
14 WI77	33.06	-17.27	64.77	26075.9	49013.0	-234.5
15 WI78	45.63	-17.27	121.82	26076.7	67213.7	-234.7
16 WI79	-33.06	-17.27	163.65	26077.2	-52188.7	-233.6
17 WI80	-45.63	-17.27	220.83	26078.0	-71977.4	-233.4
18 WI81	19.31	-57.78	100.32	87253.7	27758.4	-797.6
19 WI82	26.62	-73.87	156.04	111548.7	38026.5	-1021.3
20 WI83	19.31	23.25	63.31	-35101.5	28272.8	328.9
21 WI84	26.62	39.34	119.18	-59394.9	38538.9	552.4
22 WI85	-19.31	-57.78	159.55	87254.5	-31371.3	-797.0
23 WI86	-26.62	-73.87	215.42	111549.5	-43190.8	-1020.6
24 WI87	-19.31	23.25	122.69	-35100.6	-30858.9	329.4
25 WI88	-26.62	39.34	178.57	-59394.1	-42678.4	553.2
26 WI89	26.03	-47.69	87.01	72014.4	38102.8	-657.4
27 WI90	35.98	-59.83	143.32	90346.3	52338.3	-826.3
28 WI91	26.03	13.15	59.22	-19862.4	38489.2	188.5
29 WI92	35.98	25.29	115.67	-38192.7	52722.6	357.1
30 WI93	-26.03	-47.69	166.13	72015.5	-41622.2	-656.6
31 WI94	-35.98	-59.83	222.44	90347.4	-57423.2	-825.3
32 WI95	-26.03	13.15	138.49	-19861.3	-41237.9	189.2
33 WI96	-35.98	25.29	194.80	-38191.6	-57039.0	358.1

Figure 9-14: Transportation Combined Load Case Summary – WI56 to WI96

Phase:DE

9.5.4 Reactions

Phase:DE

In order to validate the model, the total reaction forces on the fixed joints shall be showed to be equal to the total load applied on the structure for every load combination. These forces are extracted and shown in Figure 9-15

		SACS-IU SYSTEM		REACTION FORCES HTS SUMMED ABOUT		ARY
	******	***** KN *****	*****	******	**** KN-M ****	******
LOAD	FORCE(X)	FORCE(Y)	FORCE(Z)	MOMENT(X)	MOMENT(Y)	MOMENT(Z)
CASE						
WI1	-6.723	50.315	-132.887	-2.510	1846.483	699.595
WI2	-6.723	70.206	-187.882	-3.544	2611.008	976.125
WI3	-6.723	-50.315	-86.814	-0.479	1205.991	-699.323
WI4	-6.723	-70.206	-141.809	-0.960	1970.515	-975.853
WI5	-39.779	0.000	-64.728	-0.873	898.502	0.591
WI6	-52.357	0.000	-121.771	-1.658	1691.318	0.765
WI7	26.332	0.000	-163.602	-2.235	2273.937	-0.319
WI8	38.911	0.000	-220.791	-3.022	3069.136	-0.493
WI9	-26.030	40.515	-100.270	-1.925	1392.787	563.629
WI10	-33.343	56.604	-155.997	-2.916	2167.377	787.394
WI 11	-26.030	-40.515	-63.266	-0.290	878.360	-562.825
WI 12	-33.343	-56.604	-119.138	-0.836	1654.983	-786.388
WI 13	12.584	40.515	-159.507	-2.741	2216.814	563.097
WI 14	19.897	56.604	-215.380	-3.734	2993.640	786.660
WI 15	12.584	-40.515	-122.649	-1.108	1704.420	-563.357
WI 16	19.897	-56.604	-178.521	-1.655	2481.246	-787.122
WI 17	-32.758	30.423	-86.960	-1.601	1207.663	423.423
WI 18	-42.704	42.563	-143.272	-2.545	1990.349	592.325
WI 19	-32.758	-30.423	-59.170	-0.374	821.334	-422.434
WI20	-42.704	-42.563	-115.628	-0.983	1606.053	-591.062
WI21	19.312	30.423	-166.089	-2.691	2308.406	422.706
WI22	29.258	42.563	-222.400	-3.635	3091.368	591.333
WI23	19.312	-30.423	-138.445	-1.466	1924.110	-423.151
WI24	29.258	-42.563	-194.756	-2.073	2707.073	-592.053
WI25	0.000	33.047	-132.973	-1.988	1848.316	465.386
WI26	0.000	52.939	-187.968	-3.022	2612.840	741.917
WI27	0.000	-67.582	-86.900	0.044	1207.823	-933.531
W127 W128	0.000	-87.474	-141.895	-0.438	1972.348	-1210.061
W128 W129	-33.056	-17.268	-64.814	-0.351	900.334	-233.617
MI30	-33.630 -45.634	-17.208	-121.857	-1.136	1693.151	-233.444
WI30 WI31	33.056	-17.268	-163.688	-1.713	2275.770	-234.528
W131 W132	45.634	-17.268	-220.877	-1.713 -2.500	3070.969	-234.526 -234.701
W132 W133	-19.307	-17.208 23.247	-220.877 -100.356	-2.500 -1.403	3070.909 1394.620	-234.761 329.421
W133 W134	-19.307 -26.620	39.336	-100.350 -156.083	-1.403 -2.394	2169.209	329.421 553.185
WI35	-19.307	-57 . 783	-63.352	0.232	880.192	-797.033
WI36	-26.620	-73.872	-119.224	-0.314	1656.815	-1020.596
WI37	19.307	23.247	-159.593	-2.219	2218.646	328.889
WI38	26.620	39.336	-215.465	-3.212	2995.472	552.452
WI39	19.307	-57.783	-122.735	-0.586	1706.252	-797.565
WI 40	26.620	-73.872	-178.607	-1.132	2483.078	-1021.330
/I 41	-26.035	13.155	-87.046	-1.079	1209.495	189.215

Figure 9-15: Transportation Analysis - Total Reaction Summary.WI1 to WI41

		SACS-IU SYSTEM		REACTION FORCES NTS SUMMED ABOUT		IARY
	*******	***** KN *****	*****	******	**** KN-M ****	******
CASE	FORCE(X)	FORCE(Y)	FORCE(Z)	MOMENT(X)	MOMENT(Y)	MOMENT(Z)
VI 42	-35.981	25.295	-143.358	-2.023	1992.181	358.117
/I 43	-26.035	-47.691	-59.256	0.148	823.166	-656.642
/I 44	-35.981	-59.830	-115.714	-0.461	1607.886	-825.270
/I 45	26.035	13.155	-166.175	-2.169	2310.239	188.498
/I 46	35.981	25.295	-222.486	-3.113	3093.201	357.125
/I 47	26.035	-47.691	-138.531	-0.944	1925.943	-657.359
/I 48	35.981	-59.830	-194.842	-1.551	2708.905	-826.261
/I 49	6.723	50.315	-133.020	-2.550	1850.074	699.323
VI50	6.723	70.206	-188.014	-3.583	2614.598	975.853
/I51	6.723	-50.315	-86.947	-0.518	1209.581	-699.595
VI 52	6.723	-70.206	-141.942	-1.000	1974.106	-976.125
VI 53	-26.332	0.000	-64.861	-0.912	902.092	0.319
/I54	-38.911	0.000	-121.903	-1.698	1694.909	0.493
VI 55	39.779	0.000	-163.735	-2.274	2277.528	-0.591
/I56	52.357	0.000	-220.924	-3.062	3072.726	-0.765
1157	-12.584	40.515	-100.403	-1.964	1396.377	563.357
/I58	-19.897	56.604	-156.129	-2.955	2170.967	787.122
1159	-12.584	-40.515	-63.398	-0.330	881.950	-563.097
/I60	-19.897	-56.604	-119.271	-0.876	1658.573	-786.660
/I 61	26.030	40.515	-159.639	-2.780	2220.404	562.825
/I 62	33.343	56.604	-215.512	-3.773	2997.230	786.388
/I 63	26.030	-40.515	-122.781	-1.148	1708.010	-563.629
/I 64	33.343	-56.604	-178.654	-1.694	2484.836	-787.394
/I 65	-19.312	30.423	-87.093	-1.641	1211.253	423.151
1166	-29.258	42.563	-143.404	-2.585	1993.939	592.053
1167	-19.312	-30.423	-59.303	-0.414	824.924	-422.706
1168	-29.258	-42.563	-115.760	-1.023	1609.644	-591.333
1169	32.758	30.423	-166.221	-2.731	2311.996	422.434
/I70	42.704	42.563	-222.533	-3.675	3094.959	591.062
/I71	32.758	-30.423	-138.578	-1.506	1927.701	-423.423
1172	42.704	-42.563	-194.889	-2.113	2710.663	-592.325
/173	0.000	67.583	-132.934	-3.072	1848.242	933.533
1174	0.000	87.474	-187.929	-4.105	2612.766	1210.063
1175	0.000	-33.047	-86.861	-1.040	1207.749	-465.384
1176	0.000	-52.938	-141.856	-1.522	1972.274	-741.915
1177	-33.056	17.268	-64.775	-1.435	900.260	234.529
/I78	-45.634	17.268	-121.818	-2.220	1693.077	234.703
1179	33.056	17.268	-163.649	-2.797	2275.695	233.619
1180	45.634	17.268	-220.838	-3.584	3070.894	233.446
WI81	-19.307	57.783	-100.317	-2.486	1394.546	797.567

Figure 9-16: Transportation Analysis - Total Reaction Summary.WI42 to WI81

Phase:DE

		SACS-IU SYSTEM		REACTION FORCES INTS SUMMED ABOUT		IARY
	********	***** KN *****	*****	******	**** KN-M ****	*********
LOAD	FORCE(X)	FORCE(Y)	FORCE(Z)	MOMENT(X)	MOMENT(Y)	MOMENT(Z)
CASE						
WI82	-26.620	73.872	-156.043	-3.477	2169.135	1021.332
WI83	-19.307	-23.247	-63.312	-0.852	880.118	-328.887
WI84	-26.620	-39.336	-119.185	-1.398	1656.741	-552.450
WI85	19.307	57.783	-159.554	-3.302	2218.572	797.035
WI86	26.620	73.872	-215.426	-4.295	2995.398	1020.598
WI87	19.307	-23.247	-122.695	-1.670	1706.178	-329.419
WI88	26.620	-39.336	-178.568	-2.216	2483.004	-553.183
WI89	-26.035	47.691	-87.007	-2.163	1209.421	657.361
WI 9 0	-35.981	59.831	-143.318	-3.107	1992.107	826.263
WI91	-26.035	-13.155	-59.217	-0.936	823.092	-188.496
WI 92	-35.981	-25.295	-115.675	-1.545	1607.812	-357.123
WI 93	26.035	47.691	-166.135	-3.253	2310.164	656.644
WI 94	35.981	59.831	-222.447	-4.197	3093.127	825.272
WI 95	26.035	-13.155	-138.492	-2.028	1925.869	-189.213
WI 96	35.981	-25.295	-194.803	-2.635	2708.831	-358.115

Figure 9-17: Transportation Analysis- Total Reaction Summary.WI82 to WI96

9.5.5 Member Unity Check Ratio (UCR)

The member unity check for all the member groups are extracted and shown in Figure 9-18.

The maximum UCR for these load cases is 0.43 and it occurs at the UPE 300 transverse member.

Figure 9-18: Transportation Analysis UCR.

The UCR summary for the member groups are presented in Figure 9-19. Only the load case causing the maximum stresses on each member group are detailed.

					SACS IU - * * *	MEMBER GROUP SUP	IMARY	* * *			
GRUP	CRITICAL	LOAD	MAX. UNITY	DIST FROM	* APPLIED STRESSES *	*** ALLOWABLE STRESSES ***	CRIT		CTIVE GTHS	CM * VAL	
ID	MEMBER	COND	CHECK	END m	AXIAL BEND-Y BEND-Z N/mm2 N/mm2 N/mm2	AXIAL EULER BEND-Y BEND-Z N/mm2 N/mm2 N/mm2 N/mm2	COND	KLY M	KLZ M	Y	Z
ВМ1	0002-0003	WI74	0.27	3.0	-0.03 14.90 -60.57	177.26 589.37 231.13 314.27	CM+BN	7.9	3.0	1.00	1.00
вмз	0020-0022	WI 28	0.31	3.0	-6.47 20.12 -52.63	105.75 134.78 192.05 330.54	CM+BN	7.9	3.0	1.00	1.00
ВМ4	0020-0002	WI74	0.43	0.9	-0.34 -2.24 138.48	191.571344.09 237.92 330.54	CM+BN	0.9	0.9	1.00	1.00
ВМ5	0030-0007	WI 86	0.13	0.9	-0.30 -16.84 -16.23	204.148472.86 229.39 312.65	CM+BN	0.9	0.9	1.00	1.00
T 01	0080-0082	WI 86	0.09	0.0	0.21 -0.08 23.25	207.00 218.12 258.75 258.75	TN+BN	2.3	2.3	0.85	0.85
T 02	0059-0057	WI 86	0.00	0.2	0.02 -0.02 0.01	207.00****** 258.75 258.75	TN+BN	0.2	0.2	0.85	0.85
U 01	0050-0051	WI74	0.06	1.9	0.05 1.31 16.29	206.59 297.76 226.00 330.54	TN+BN	1.9	1.9	1.00	1.00

Figure 9-19: Transportation Analysis Member Group UCR Summary.

Refer to ANNEX1: LBMS FRAMING for member group properties

NA

Phase:DE

	en saipem nigeria	contracting limited		Doc. Ref.: NG-E	GN-21-SAEC-100291
eve	TEM F & G - LATERAL	DUCKLING	EGINA	CTR Reference: REP-100291	F10268-SAEC-10-STR-
	GATION SYSTEM DESI		711	Revision: 01	Rev Date : 23-May-2014
				Discipline : STF	R Document Type : REP
Phase:DE	System/ Subsystem : 10	Equipment Type: NA	Status: AFC	Class: 2	Page 42 of 86

10 In-Place Analysis

This section presents details of the global analysis performed on the LBMS for in-service load conditions. The flowline was not modelled, rather, the flowline load were applied as concentrated loads on the beam.

The Model coordinate system is as shown on section 8.2, irrespective of actual orientation of the LBMS in any specific condition.

The members having plate characteristics will be checked separately in ANNEX7: .

Two cases have been considered for the in place analysis as listed below:

Analysis 1: Only flowline weight considered.

Analysis 2: Flowline weight +instigation loads.

10.1 Boundary Conditions

The fixity in SACS has six degrees of freedom. The first three represent the translation degrees of freedom while the other three represent the rotational degree of freedom (DOF). The symbol 1 represents a restrained DOF while 0 represents a free/released DOF.

The soil vertical and horizontal stiffness are modeled as a series of elastic springs supports at the corners of the plated elements. The elastic springs in the global X, Y, Z directions are modeled at each of the plated Mudmat corner nodes as a proportion of the overall mudmat area of the LBMS with each node simulating the tributary contribution from all the plated areas concurrent at a common node. Soil stiffness values are as per section 6.5.

Figure 10-1: In Place Analysis Boundary Condition.

10.2 Load Combinations

10.2.1 Basic Load Case

The loads induced by the flowline on the LBMS are extracted from Ref [22]. Instigation device loads which form the uplift of the buoy and the ballast weight will also be considered with the in-place loads. The following basic load cases were considered in the analysis:

GRVZ: Gravity Load
 BAL: Ballast Weight
 BUOY: Buoy Horizontal and vertical pull force
 F1: Flowline Force at Position A
 F2: Flowline Force at Position B

F2: Flowline Force at Position B
F3: Flowline Force at Position C
F4: Flowline Force at Position D
F5: Flowline Force at Position E
F6: Flowline Force at Position F

Position A to F represents the different positions of the flowlines on the LBMS as shown in Figure 10-2 below

Figure 10-2: In Place Analysis Loading Points

The values for the basic load cases applied to the model are extracted from SACS and shown in Figure 10-3 and Figure 10-4:

					.OAD CASE SUM JDLINE ELEVATI				
LOAD Case	LOAD Label	FX	FY	FZ	MX	MY	MZ	DEAD LOAD	BUOYANCY
0.102	211022	(KN)	(KH)	(KN)	(KN-M)	(KN-M)	(KN-M)	(KN)	(KH)
1	F1	0.00	0.00	-125.00	0.0	618.1	0.0	0.00	0.00
2	F2	0.00	0.00	-125.00	0.0	993.1	0.0	0.00	0.00
3	F3	0.00	0.00	-125.00	0.0	1368.1	0.0	0.00	0.00
4	F4	0.00	0.00	-125.00	0.0	1743.1	0.0	0.00	0.00
5	F5	0.00	0.00	-125.00	0.0	2118.1	0.0	0.00	0.00
6	F6	0.00	0.00	-125.00	0.0	2493.1	0.0	0.00	0.00
7	BAL	0.00	0.00	-65.28	0.0	1706.6	0.0	0.00	0.00
8	BOUY	-49.03	0.00	49.03	0.0	-6162.5	0.0	0.00	0.00
9	GRUZ	0.00	0.00	-109.03	-1.5	1514.7	0.0	125.44	16.41

Figure 10-3: In Place Analysis Loads – Basic Load Case without ballast and buoy.

					OAD CASE SUMI				
LOAD	LOAD	FX	FY	FZ	MX	MY	MZ	DEAD LOAD	BUOYANCY
CASE	LABEL	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)	(KN)	(KN)
1	F1	50.00	0.00	-125.00	0.0	5618.1	0.0	0.00	0.00
2	F2	50.00	0.00	-125.00	0.0	5993.1	0.0	0.00	0.00
3	F3	50.00	0.00	-125.00	0.0	6368.1	0.0	0.00	0.00
4	F4	50.00	0.00	-125.00	0.0	6743.1	0.0	0.00	0.00
5	F5	50.00	0.00	-125.00	0.0	7118.1	0.0	0.00	0.00
6	Fó	50.00	0.00	-125.00	0.0	7493.1	0.0	0.00	0.00
7	BAL	0.00	0.00	-65.20	0.0	1704.4	0.0	0.00	0.00
8	BOUY	-49.63	0.00	49.03	0.0	-6162.5	0.0	0.00	0.00
9	GRVZ	0.00	0.00	-109.03	-1.5	1514.7	0.0	125.44	16.41

Figure 10-4: In Place Analysis Loads – Basic Load Case with ballast and buoy.

Buoy Pull Force is included in the combined force acting at the Flowline positions (from A to F as shown in Figure 10-2).

10.2.2 Combined Load Case

The combined load case is the association of the vertical and horizontal loads applied by the flowline on the LBMS structure.

The design load combinations associated with each analysis represents the appropriate load conditions that produce the most severe effects on the LBMS structure consistent with the probability of their simultaneous occurrence.

The following are the combined load cases used for the in-place analysis excluding Ballast weight and buoy pull force.

- $LF01 = (GRVZ \times WCF) + F1$
- $LF02 = (GRVZ \times WCF) + F2$
- $LF03 = (GRVZ \times WCF) + F3$
- $LF04 = (GRVZ \times WCF) + F4$
- $LF05 = (GRVZ \times WCF) + F5$
- $LF06 = (GRVZ \times WCF) + F6$

WCF = Weight correction factor, which is 1.10.

The following are the combined load cases used for the in-place analysis including Ballast weight and buoy pull force.

- $LC1 = (GRVZ \times WCF) + (BAL \times WCF)$ No Flowline
- $LC2 = (GRVZ \times WCF) + (BAL \times WCF) + Buoy Pull Force + F1$
- $LC3 = (GRVZ \times WCF) + (BAL \times WCF) + Buoy Pull Force + F2$
- $LC4 = (GRVZ \times WCF) + (BAL \times WCF) + Buoy Pull Force + F3$
- $LC5 = (GRVZ \times WCF) + (BAL \times WCF) + Buoy Pull Force + F4$
- $LC6 = (GRVZ \times WCF) + (BAL \times WCF) + Buoy Pull Force + F5$
- $LC7 = (GRVZ \times WCF) + (BAL \times WCF) + Buoy Pull Force + F6$

The values for the combined load cases applied to the model are extracted from SACS and shown in Figure 10-5 and Figure 10-6: and the loads are applied as shown in Figure 10-2:

	***** SEASTATE COMBINED LOAD CASE SUMMARY ***** RELATIVE TO MUDLINE ELEVATION									
LOAD Case	LOAD Label	FX	FY	FZ	MX	MY	MZ			
OHSE	CHOCK	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)			
17	LF 01	0.00	0.00	-244.93	-1.7	2284.3	9.0			
18	LF 02	0.00	0.00	-244.93	-1.7	2659.3	0.0			
19	LF 03	0.00	0.00	-244.93	-1.7	3034.3	0.0			
20	LF 04	0.00	0.00	-244.93	-1.7	3409.3	0.0			
21	LF 05	0.00	0.00	-244.93	-1.7	3784.3	9.9			
22	LF06	0.00	0.00	-244.93	-1.7	4159.3	0.0			

Figure 10-5: In Place Analysis Loads – Combined Load Case without Ballast and Buoy.

					LOAD CASE SUP DLINE ELEVATION		
LOAD	LOAD	FX	FY	FZ	MX	MY	MZ
CASE	LABEL						
		(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)
10	LC1	0.00	0.00	-191.65	-1.7	3541.0	0.0
11	LC2	0.97	0.00	-267.61	-1.7	2996.7	0.0
12	LC3	0.97	0.00	-267.61	-1.7	3371.7	0.0
13	LC4	0.97	0.00	-267.61	-1.7	3746.7	0.0
14	LC5	0.97	0.00	-267.61	-1.7	4121.7	0.0
15	LC6	0.97	0.00	-267.61	-1.7	4496.7	0.0
16	LC7	0.97	0.00	-267.61	-1.7	4871.7	0.0

Figure 10-6: In Place Analysis Loads – Combined Load Case with Ballast and Buoy.

10.3 Results

This section presents the detailed results of the analysis performed on the LBMS to sustain loads imposed during in-service condition.

The structural strength and stability assessment of the LBMS shall conform to the requirements of AISC-ASD Ref [26] and API RP 2A-WSD Ref [28] as applicable.

10.3.1 Reactions on springs

In order to validate the model, the total reaction forces on the springs shall be showed to be equal to the total load applied on the structure for every load case. These forces are extracted and shown in Figure 10-7 and Figure 10-8.

		SACS-IU S	YSTEM SPR	ING FORCES AND	MOMENTS SUMMA	RY	
LOAD	COORD.	******	* FORCES ***	*****	*******	MOMENTS	******
CASE	SYS.	X	Y	Z	X	Y	Z
		(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)
LF 01	GLOB	0.000	0.000	-244.916			
LF 02	GLOB	0.000	0.000	-244.916			
LF 03	GLOB	0.000	0.000	-244.916			
LF 04	GLOB	0.000	0.000	-244.916			
LF 05	GLOB	0.000	0.000	-244.916			
LF 06	GLOB	0.000	0.000	-244.916			

Figure 10-7: In Place Analysis without ballast and buoy – Total Spring Reaction Summary.

		SACS-IU SY	STEM SPR	ING FORCES AND	MOMENTS SUMMAI	RY	
LOAD	COORD.	*******	FORCES ***	*****	*****	MOMENTS	*****
CASE	. 2Y2	X	Y	Z	X	Y	Z
		(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)
LC1	GLOB	0.000	0.000	-191.638			
LC2	GLOB	0.967	0.000	-267.599			
LC3	GLOB	0.967	0.000	-267.603			
LC4	GLOB	0.967	0.000	-267.603			
LC5	GLOB	0.967	0.000	-267.603			
LC6	GLOB	0.967	0.000	-267.603			
LC7	GLOB	0.967	0.000	-267.599			
ı							

Figure 10-8: In Place Analysis with ballast and buoy – Total Spring Reaction Summary.

10.3.2 Member Unity Check Ratio (UCR)

The member unity check for all the member groups are extracted and shown in Figure 10-10 and Figure 10-12.

Member group UCRs for the load cases considering flow line and gravity loads only are shown in Figure 10-9. The maximum UCR for these load cases is 0.28 and it occurs at the HEB 400 longitudinal member under the flowlines weight.

Figure 10-9: In Place Analysis UCR - without ballast and buoy.

The UCR summary for the member groups are presented in Figure 10-10. Only the load case causing the maximum stresses on each member group are detailed.

					SACS IU -	* * *	MEMBER (GROUP SUM	IMARY	* * *			
GRIIP	CRITICAL	LOAD	MAX. UNITY	DIST FROM	* APPLIED STRES	* 232	*** ALLOWARIE	E STRESSES ***	CRIT	EFFEC		CM * IIAI	I .UES *
ID	MEMBER	COND	CHECK	END m	AXIAL BEND-Y E N/mm2 N/mm2	BEND-Z	AXIAL EULER	BEND-Y BEND-Z 2 N/mm2 N/mm2	COND	KLY M	KLZ M	Y	Z
ВМ1	0003-0004	LF 03	0.28	3.0	-1.09 64.28	0.00	184.56 800.59	231.13 314.27	CM+BN	3.0	3.0	1.00	1.00
вмз	0025-0027	LF 04	0.25	3.0	2.06 -46.68	0.98	206.59 134.78	192.05 330.54	TN+BN	3.0	3.0	1.00	1.00
ВМ4	0021-0002	LF 01	0.14	0.9	-0.02 33.30	0.83	191.571344.09	237.92 330.54	CM+BN	0.9	0.9	1.00	1.00
ВМ5	0023-0003	LF 02	0.05	0.9	-0.01 10.68	-1.08	204.148472.86	229.39 312.65	CM+BN	0.9	0.9	1.00	1.00
T 01	0017-0090	LF 01	0.03	0.0	-0.26 -1.54	6.34	77.19 77.19	258.75 258.75	C<.15	3.9	1.4	0.85	0.85
T 02	0059-0057	LF 01	0.00	0.2	-0.01 0.00	0.00	205.19*****	258.75 258.75	C<.15	0.2	0.2	0.85	0.85
U 01	0050-0051	LF 05	0.00	1.9	-0.02 -0.08	-0.19	152.57 297.76	226.00 330.54	SHEAR	1.9	1.9	1.00	1.00

Figure 10-10: In Place Analysis Member Group UCR Summary – without Ballast and Buoy.

Refer to ANNEX1: LBMS FRAMING for member group properties.

Member group UCRs for all the combined load case (including buoy pull force and ballast weight) are shown in Figure 10-11. The maximum UCR for these combined load cases is 0.39 and it occurs on the UPE sections under the ballast weight.

Figure 10-11: In Place Analysis UCR – with ballast and buoy.

The UCR summary for the member groups are presented in Figure 10-12. Only the load case causing the maximum stresses on each member group are detailed.

					SACS IV - * * *	MEMBER GROUP SUM	MARY	* * *			
GRUP I D		LOAD COND	MAX. UNITY CHECK	DIST FROM END m	* APPLIED STRESSES * AXIAL BEND-Y BEND-Z N/mm2 N/mm2 N/mm2	*** ALLOWABLE STRESSES *** AXIAL EULER BEND-Y BEND-Z N/nm2 N/nm2 N/nm2 N/nm2	CRIT COND			CM * Valu Y	
ВМ1	0004-0005	LC4	0.27	0.0	-2.98 60.42 0.00	184.56 800.59 231.13 314.27	CM+BN	3.0	3.0	1.00	1.00
вмз	0010-0009	rc3	0.39	1.2	0.89 -91.84 -0.04	206.59 776.35 237.92 330.54	TN+BN	1.2	1.2	1.00	1.00
BM4	0021-0002	LC2	0.16	0.9	-0.03 -33.09 6.40	191.571344.09 237.92 330.54	CM+BN	0.9	0.9	1.00	1.00
BM5	0022-0003	LC3	0.07	0.9	-0.01 10.59 -6.81	204.148472.86 229.39 312.65	CM+BN	0.9	0.9	1.00	1.00
T 01	0046-0048	LC4	0.06	0.0	-0.51 -15.04 -0.05	73.74 73.74 258.75 258.75	C<.15	0.6	4.0	0.85	0.85
T 02	0059-0057	LC1	0.00	0.2	-0.01 0.00 0.00	205.19****** 258.75 258.75	C<.15	0.2	0.2	0.85	0.85
U 0 1	0050-0051	LC6	0.00	1.9	-0.02 -0.06 -0.26	152.57 297.76 226.00 330.54	SHEAR	1.9	1.9	1.00	1.00

Figure 10-12: In Place Analysis Member Group UCR Summary – with Ballast and Buoy.

Refer to ANNEX1: LBMS FRAMING for member group description.

11 Lifting and Lowering Analysis

This section presents details for all offshore lifting in air and lowering in water operations for the LBMS based on the methodology described in the design premises document, Ref [15]. The ballast and the instigation system are not connected at this stage.

Model coordinate system is as shown in section 8.2 irrespective of actual orientation/rotation of the LBMS in any specific condition.

Lifting in air is considered with a tilt angle of 15 degrees as described in the design premises Ref [15].

The members having plate characteristics are not code checked with API RP 2A WSD and/or AISC-ASD.

The slings are modelled as Prismatic members with relevant cross-sectional area but with notional magnitudes to represent the second moment of area about X, Y, Z axes, typically lxx=lyy=lzz=10 cm⁴. The sling material properties are applied as presented in section 6.2.

The lengths of the slings are shown in Table 11-1.

S/N	LBMS/Sling Configuration	Max. sling length (m)	Min sling length (m)
1	LBMS tilt angle = 15°, sling angle = 55°	16.74	13.91

Table 11-1: Length of Sling.

11.1 Boundary Conditions

The hook node will be fixed in the XYZ direction while fixities will be added in the lateral (X) and transversal (Y) directions for numerical stability.

In order to validate the model, the reactions at the boundary conditions shall be shown to equate the loads applied. Since no lateral or transverse load has been applied, it will be checked that reactions at these fixities will be close to zero for the model to be valid. Also the reaction at the hook point in the vertical direction shall be equal to the total applied weight of the LBMS.

NG-EGN-21-SAEC-100291 rev01.docx

	eni saipem nigeria	contracting imited		Doc. Ref.: NG-E	EGN-21-SAEC-100291		
eve	TEM F & G - LATERAL	BUCKLING	EGINA	CTR Reference: F10268-SAEC-10-STR- REP-100291			
	GATION SYSTEM DESI		711	Revision: 01	Rev Date : 23-May-2014		
				Discipline : ST	R Document Type : REP		
Phase:DE	System/ Subsystem: 10	Equipment Type: NA	Status: AFC	Class: 2	Page 50 of 86		

The sling configuration and the applied boundary condition are shown in Figure 11-1.

Figure 11-1: Lifting/Lowering Analysis Boundary Conditions.

The slings are defined as tension members only and member releases are applied to release all rotation to prevent transfer of unrealistic moment.

11.2 Load Condition

The design load combinations associated with each analysis represents the appropriate load conditions that produce the most severe effects on the LBMS structure consistent with the probability of their simultaneous occurrence.

Two scenarios were considered in the combined load case; lifting in air and lowering in water. The load combinations factors are as per the design premise document Ref [15].

Load factor	Air	Water
DAF Dynamic Amplification Factor	1.30	2.00
CF Consequence Factor	1.35	1.35
SKL Skew Load Factor	1.33	1.33
WCF Weight Contingency Factor	1.10	1.10
CoG	1.05	1.05
Total	2.70	4.15

Table 11-2: Design Load Factors.

The loads applied on the model are shown in Table 11-3 for both cases:

Load case	Load Combination	Description
GRVZ		Structure self-weight
SELZ	1.1× GRVZ	Structure self-weight including 10% contingency
LF20	α×SELZ	Where α =2.45 for Lifting in air
LF21	α×SELZ	Where α = 3.77 for lowering in water

Table 11-3: Basic load cases.

11.3 Lifting in Air Results

This section presents the detailed results of the analysis performed on the LBMS to sustain loads imposed during lifting in air.

The structural strength and stability assessment of the LBMS shall conform to the requirements of AISC-ASD Ref [26] and API RP 2A-WSD Ref [28] as applicable.

The LBMS is analysed for the configuration as specified in Ref [15]. The results for the lifting configuration are detailed in the subsequent sections.

11.3.1 Summary of Load Combinations

The figures here below summarizes the basic load cases as detailed in section 4.2

	****** SEASTATE BASIC LOAD CASE SUMMARY ****** RELATIVE TO MUDLINE ELEVATION											
LOAD LOAD CASE LABEL	FX	FY	FZ	MX	MY	MZ	DEAD LOAD	BUOYANCY				
CHSC CHBCC	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)	(KN)	(KN)				
1 GRUZ	0.00	0.00	-125.43	-1.7	1683.8	0.0	125.43	0.00				

Figure 11-2: Lift in Air Analysis – Basic Load Summary.

				LOAD CASE SUN		
LOAD LOAD CASE LABEL	FX	FY	FZ	MX	MY	MZ
	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)
2 SELZ 3 LF20	0.00 0.00	0.00 0.00	-137.98 -338.73	-1.9 -4.7	1852.2 4547.1	0.0 0.0

Figure 11-3: Lift in Air Analysis - Combined Load Summary.

11.3.2 Reactions

The reaction forces & moments at the restrained nodes of the LBMS structure are extracted in Figure 11-4 for the combined load case. Results are extracted based on combined load case LF20 since this is the most critical combined load case for this operation.

- All reaction forces and moments at the hook point are negligible apart from the vertical reaction force which is equal to the vertical load applied on the structure.
- All reaction forces and moments at the lateral and transverse boundary conditions of the LBMS structure are less than 1% of the overall load applied.
- The reaction forces on the model is equal to the applied load, hence the model is validated.

			FIXE	D JOINTS REA	ACTION FORCES AN	ND MOMENT	
JOINT	LOAD COND	**************************************	kN ***** FORCE(Y)	FORCE(Z)	**************************************	KN-m *** MOMENT(Y)	**************************************
0012	LF20	-2.375	0.000	0.000	0.000	0.000	0.000
0014	LF20	2.452	0.000	0.000	0.000	0.000	0.000
0032	LF20	0.000	-1.134	0.000	0.000	0.000	0.000
0077	LF20	0.000	0.905	0.000	0.000	0.000	0.000
0093	LF20	-0.077	0.230	338.733	0.000	0.000	0.000

Figure 11-4: Lift in Air Analysis – Reaction Forces & Moments.

11.3.3 Sling Members Forces

The sling forces for LBMS are shown in Figure 11-5. They represent the forces acting on the lifting points including all lifting factors and shall be used for the design of the padeyes.

	MEMBER FORCES AND MOMENTS												
				******	*** kN *****	*****	*********	*** KN-m *****	******				
MEMBER Number	MEMBER END	GROUP ID	LOAD COND	FORCE(X)	FORCE(Y)	FORCE(Z)	MOMENT(X)	MOMENT(Y)	MOMENT(Z)				
3093-003 <u>2</u>	0093	SLI	LF20	82.4589	0.0000	0.0001	0.0000	-0.0007	0.000				
	0032		LF20	82.4589	0.0000	0.0001	0.0000	0.0000	0.000				
3093-003 <u>3</u>	0093	SLI	LF20	82.8021	0.0000	0.0001	0.0000	-0.0007	0.000				
	0033		LF20	82.8021	0.0000	0.0001	0.0000	0.0000	0.000				
1093-007 <i>6</i>	0093	SLI	LF20	101.6274	0.0000	0.0000	0.0000	-0.0007	0.000				
	0076		LF20	101.6274	0.0000	0.0000	0.0000	0.0000	0.000				
3093-0077	0093	SLI	LF20	100.4340	0.0000	0.0000	0.0000	-0.0007	0.000				
	0077		LF20	100.4340	0.0000	0.0000	0.0000	0.0000	0.000				

Figure 11-5: Lift in Air Analysis – Sling Forces.

11.3.4 Member Unity Check Ratio (UCR)

The member unity check pertaining to load case LF20 for all the member groups are extracted and shown in Figure 11-6 and Figure 11-7.

The maximum UCR for this load case is 0.69 and it occurs on the UPE longitudinal framing member

Figure 11-6: Lift in Air Analysis – UCR Summary.

					Si	ACS IV	- * * *	МЕМВ	ER G	ROU	PSUM	IMARY	* * *			
GRUP ID		OAD OND	MAX. UNITY CHECK	DIST FROM END m	* APPLII AXIAL I N/mm2	BEND-Y		*** ALI AXIAL N/mm2	EULER	STRESS BEND-Y N/mm2		CRIT COND	EFFEC LENG KLY M		CM * Val Y	I UES * Z
BM1	0003-0004 L	.F20	0.55	0.0	3.09-	122.15	-2.97	206.59	258.68	231.13	314.27	TN+BN	12.0	3.0	1.00	1.00
виз	0023-0025 L	.F20	0.69	0.0	-13.78	102.21	-4.58	89.14	122.56	192.05	330.54	CM+BN	12.0	3.0	1.00	1.00
BM4	0036-0009 L	.F20	0.24	0.9	0.22	29.55	-37.62	206.591	344.09	237.92	330.54	TN+BN	0.9	0.9	1.00	1.00
BM5	0031-0007 L	.F20	0.27	0.9	-0.38	39.07	-30.48	204.148	472.86	229.39	312.65	CM+BN	0.9	0.9	1.00	1.00
T 01	0046-0048 L	.F20	0.05	0.0	-1.06	-8.65	-0.77	74.12	74.12	258.75	258.75	C<.15	0.6	4.0	0.85	0.85
T 02	0059-0057 L	.F20	0.00	0.2	-0.04	-0.03	0.00	205.19*	*****	258.75	258.75	C<.15	0.2	0.2	0.85	0.85
T 03	0062-0065 L	.F20	0.01	0.0	-0.06	-1.62	0.00	184.15	909.11	258.75	258.75	C<.15	1.9	1.9	0.85	0.85
U 0 1	0050-0051 L	.F20	0.01	1.9	-0.03	-0.17	-2.75	152.57	297.76	226.00	330.54	CM+BN	1.9	1.9	1.00	1.00

Figure 11-7: Lift in Air Analysis – Member Group UCR Summary.

11.4 Lowering in Water Results

This section presents the detailed results of the analysis performed on the LBMS to sustain loads imposed during all the phases considered for the lowering in water operation.

The structural strength and stability assessment of the LBMS shall conform to the requirements of AISC-ASD Ref [26] and API RP 2A-WSD Ref [28] as applicable.

The tilt angle for lowering in water is necessary in order to minimize the slamming loads on the LBMS mudmat due to waves while crossing the splash zone is 15 degrees. The ballast and the instigation system are lowered separately.

11.4.1 Summary Load Combinations

The load input for the lowering in water is shown in Figure 11-8 and Figure 11-9. This load input is in line with the load conditions of section 11.2 for lowering in water.

					OAD CASE SUM IDLINE ELEVAT				
LOAD		FX	FY	FZ FZ	MX	MY	MZ	DEAD LOAD	BUOYANCY
CASE	LABEL	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)	(KN)	(KN)
1	GRUZ	0.00	0.00	-108.31	-1.5	1454.1	0.0	125.44	17.13

Figure 11-8: Lowering in Water Analysis – Basic Load Summary.

		**** SEASTATE COMBINED LOAD CASE SUMMARY **** RELATIVE TO MUDLINE ELEVATION						
LOAD LOAD Case Label	FX	FY	FZ	MX	MY	MZ		
	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)		
2 SELZ 3 LF21	0.00 0.00	0.00 0.00	-119.14 -449.16	-1.6 -6.2	1599.6 6030.3	0		

Figure 11-9: Lowering in Water Analysis – Combined Load Summary.

11.4.2 Reactions

The reaction forces & moments at the restrained nodes of the LBMS structure are extracted in Figure 11-10 for the combined load case. Results are extracted based on combined load case LF21 since this is the most critical combined load case for this operation.

- All reaction forces and moments at the hook point are negligible apart from the vertical reaction force which is equal to the vertical load applied on the structure.
- All reaction forces and moments at the lateral and transverse boundary conditions of the LBMS structure are less than 1% of the overall load applied.
- The reaction forces on the model is equal to the applied loads, hence the model is validated.

			FIX	ED JOINTS RE	ACTION FORCES AI	ND MOMENT	
JOINT	LOAD COND	**************************************	kN ***** Force(Y)	********** FORCE(Z)	**************************************	kN-m = MOMENT(Y)	**************************************
0012	LF21	-3.151	0.000	0.000	0.000	0.00	9 9.999
0014	LF21	3.294	0.000	0.000	0.000	0.00	0.000
0032	LF21	0.000	-1.514	0.000	0.000	0.00	0.000
0077	LF21	0.000	1.208	0.000	0.000	0.00	0.000
0093	LF21	-0.143	0.305	449.165	0.000	0.00	9 9.999

Figure 11-10: Lowering in Water Analysis – Reaction Forces & Moments.

11.4.3 Sling Members Forces

The sling forces for LBMS are shown in Figure 11-11. They represent the forces acting on the lifting points including all factors and shall be used for the design of the padeyes.

MEMBER FORCES AND MOMENTS									
				******	kN ******	******	*******	kN-m *****	******
MEMBER Number	MEMBER END	GROUF ID	COND	FORCE(X)	FORCE(Y)	FORCE(Z)	MOMENT(X)	MOMENT(Y)	MOMENT(Z)
0093-0032	0093	SLI	LF21	109.4332	-0.0007	-0.1893	0.0000	0.5658	0.0097
	0032		LF21	110.0616	-0.0007	0.1079	0.0000	0.0000	0.000
0093-0033	0093	SLI	LF21	109.8929	0.0005	-0.1892	0.0000	0.5659	-0.007
	0033		LF21	110.5214	0.0005	0.1078	0.0000	0.0000	0.000
0093-0076	0093	SLI	LF21	134.8251	0.0005	-0.1800	0.0000	0.5689	-0.0090
	0076		LF21	135.6087	0.0005	0.1120	0.0000	0.0000	0.000
0093-0077	0093	SLI	LF21	133.2374	-0.0003	-0.1802	0.0000	0.5689	0.0058
	0077		LF21	134.0211	-0.0003	0.1122	0.0000	0.0000	0.000

Figure 11-11: Lowering in Water Analysis – Sling Forces.

11.4.4 Member Unity Check Ratio (UCR)

The member unity check pertaining to load case LF21 for all the member groups are extracted and shown in Figure 11-12 and Figure 11-13.

The maximum UCR for this load case is 0.97 and occurs on the UPE longitudinal framing Member.

Figure 11-12: Lowering in Water Analysis – UCR Summary.

				SACS IV - * * *	MEMBER GROUP SUM	MARY	* * *	
GRUP ID	CRITICAL LOAD MEMBER COND	MAX. UNITY CHECK	DIST FROM END m	* APPLIED STRESSES * AXIAL BEND-Y BEND-Z N/mm2 N/mm2 N/mm2	*** ALLOWABLE STRESSES *** AXIAL EULER BEND-Y BEND-Z N/mm2 N/mm2 N/mm2 N/mm2	CRIT COND	EFFECTIVE LENGTHS KLY KLZ m m	CM * VALUES * Y Z
вм1	0003-0004 LF21	0.73	0.0	4.13-163.13 -3.97	206.59 258.68 231.13 314.27	TN+BN	12.0 3.0	1.00 1.00
вмз	0023-0025 LF21	0.97	0.0	-18.39 136.50 -6.10	89.14 122.56 192.05 330.54	CM+BN	12.0 3.0	1.00 1.00
ВМ4	0036-0009 LF21	0.32	0.9	0.29 39.45 -50.34	206.591344.09 237.92 330.54	TN+BN	0.9 0.9	1.00 1.00
вм5	0031-0007 LF21	0.36	0.9	-0.50 52.16 -40.70	204.148472.86 229.39 312.65	CM+BN	0.9 0.9	1.00 1.00
T 01	0046-0048 LF21	9.06	0.0	-1.42 -11.43 -0.97	74.12 74.12 258.75 258.75	C<.15	0.6 4.0	0.85 0.85
T 02	0059-0057 LF21	0.00	0.2	-0.05 -0.04 0.00	205.19****** 258.75 258.75	C<.15	0.2 0.2	0.85 0.85
T 03	0062-0065 LF21	0.01	0.0	-0.09 -2.17 0.00	184.15 989.11 258.75 258.75	C<.15	1.9 1.9	0.85 0.85
U 0 1	0050-0051 LF21	0.01	1.9	-0.04 -0.24 -3.67	152.57 297.76 226.00 330.54	CM+BN	1.9 1.9	1.00 1.00

Figure 11-13: Lowering in Water Analysis – Member Group UCR Summary.

12 Retrieval Analysis

If the LBMS is not installed into the LBMS target position on the first attempt, retrieval becomes necessary. It consists of raising the LBMS and then moving it into the good position.

This section details the results for the LBMS retrieval. The structural strength and stability assessment of the LBMS shall conform to the requirements of AISC-ASD Ref [26] and API RP 2A-WSD Ref [28] as applicable.

The sling material properties applied are presented in section 6.2. The lengths of the slings are the same as those shown in Section 11, the length of the shorter and tensioned slings are shown in Table 12-1. The slings are defined as tension only members and member releases are applied to release all rotation to prevent transfer of unrealistic moments.

S/N	LBMS/Sling Configuration	sling length (m)
1	Two tensioned slings lift point	13.91

Table 12-1: Length of Sling.

Two retrieval configuration/stages (Ref [15]) were analysed and reported.

Stage 1 Description

The LBMS is bond to seabed. A retrieval is made with 4 slings connected to the hook, but only two slings are considered tensioned (slings are at 90° with the LBMS X-axis) and the other two are considered slack and are not modelled. The LBMS is not moving.

Figure 12-1: LBMS Retrieval Stage 1 – General Overview.

Stage 2 Description

The suction pressure between the mudmat surface and the soil breaks when the hook load exceeds the suction load and lifting is initiated. The LBMS is not bond to the seabed since the suction pressure is broken but soil still supports the LBMS. The sling configuration is still two slings tensioned and two slings slack.

12.1 Boundary Conditions

12.1.1 Stage 1

The hook node has two degrees of freedom fixed: translation in X and Y direction. LBMS extremity is completely fixed to the ground.

Figure 12-2: Retrieval Analysis (Stage 1) Boundary Conditions

12.1.2 Stage 2

The hook point has three degrees of freedom fixed: translation in X, Y and Z directions. The LBMS extremity previously fixed to ground is now a pivot around Y-axis.

Figure 12-3: Retrieval Analysis (Stage 2) Boundary Conditions.

12.2 Load Condition

12.2.1 Stage 1 - Load condition

During the retrieval of the LBMS, a suction pressure is developed under the mudmat due to vacuum pressure between the mudmat and the seabed. This suction pressure together with the gravity load tend to resist the hook load and hence the retrieval operation. Sufficient force should therefore be applied to the retrieval cable in order to break this suction pressure and hence allow for lifting of the LBMS out of the water.

Doc. Ref.: NG-EGN-21-SAEC-100291

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date: 23-May-2014

Discipline: STR Document Type: REP

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

Phase:DE System/Subsystem: 10 Equipment Type: NA

Status: AFC

Class: 2 Page 60 of 86

Load factor	Water
DAF Dynamic Amplification Factor	2.00
CF Consequence Factor	1.35
SKL Skew Load Factor	1.33
WCF Weight Contingency Factor	1.10
CoG	1.05
Total	4.15

Table 12-2: Design Load Factors.

A suction load $F_{suction} = 145kN$ is considered as reported in the LBMS geotechnical report Ref [23]. The weight of the structure in water is considered without the effects of DAF and Skew load factor as the structure is already on the seabed and Is being lifted with two strings during stage 1 of the Immediate retrieval analysis. The retrieval hook load is thus calculated as shown below:

$$F_{hook} = W_s \times \frac{LF_{water}}{DAF_{water} \times SKL} + F_{suction} = 108.9 \times \frac{4.15}{2 \times 1.33} + 145 = 315kN$$

Where:

 W_s = weight of Structure in water

 $LF_{water} = total \ design \ load \ factors \ in \ water$

DAF = Dynamic Amplification Factor

SKL = Skew load factor

 $F_{suction} = Suction load considered$

A gravity load multiplied by the factor g_s is applied to the structure in order to ensure zero moments about the y axis (My) of the structure.

g_s is calculated as follows:

Figure 12-4: Retrieval Analysis Stage 1-LBMS Moment Diagram.

Where:

 X_{COG} = Center of Gravity distance from fixed end

W = Structure's weight in air

Wb = Structure's Bouyancy

 X_{COB} = Center of Bouyancy distance from fixed end

 $F_{RET} = Retrieval \ hook \ Load$

 X_{HOOK} = Hook distance from fixed end = 19.945m

 g_s = Calculated factor to acheive zero moments about Y axis

```
****** SUMMARY OF SEASTATE GENERATED DEAD AND BUOYANCY LOADS *****

WATER DEPTH = 1500.000 M.

TOTAL DEAD WEIGHT = 125.436 KN
CENTER OF GRAVITY -X- = 13.900 M.
-Y- = 0.014 M.
-Z- = 0.013 M.

TOTAL BUOYANCY LOAD (DISPLACEMENT) = 16.439 KN
CENTER OF BUOYANCY -X- = 13.919 M.
-Y- = 0.014 M.
-Z- = 0.016 M.
```

Figure 12-5: Structure Dead/Buoyancy loads and COG/COB distance from fixed end

Taking moments about the Fixed End

$$\sum M_Y = 0 \quad \rightarrow \quad g_s W \times X_{COG} - g_s W_b \times X_{COB} - F_{RET} \times X_{HOOK} = 0$$

$$g_s = \frac{F_{RET} \times X_{HOOK}}{(W \times X_{COG} - W_b \times X_{COB})} = \frac{315 \times 19.945}{(125.436 \times 13.900 - 16.439 \times 13.919)} \quad \rightarrow \quad g_s = 4.148$$

The design load combinations associated with each analysis represents the appropriate load conditions that produce the most severe effects on the LBMS structure consistent with the probability of their simultaneous occurrence.

Applied Load case is detailed below:

Load case	Description
GRVZ	Structure Self weight
RETR	Retrieval hook Load

Table 12-3: Load case.

Load Combination is detailed below:

Load Combination	Description
SELZ	Structure Self weight multiplied by factor g _s
LF30	Retrieval Hook load + SELZ

Table 12-4: Load Combinations.

The applied load summary extracted from the SACS model is presented in Figure 12-6 and Figure 12-7

	***** SEASTATE BASIC LOAD CASE SUMMARY ***** RELATIVE TO MUDLINE ELEVATION								
LOAD CASE		FX	FY	FZ	MX	MY	MZ	DEAD LOAD	BUOYANCY
002		(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)	(KN)	(KN)
1 2	GRUZ Retr	0.00 0.00	0.00 0.00	-109.00 315.05	-1.5 0.0	1514.8 -6283.7	0.0 0.0	125.44 0.00	16.44 0.00

Figure 12-6: Retrieval Analysis – Basic Load Summary – Stage 1.

				LOAD CASE SUI DLINE ELEVATIO		
LOAD LOAD CASE LABEL	FX	FY	FZ	MX	MY	MZ
	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)
3 SELZ	0.00	0.00	-452.12	-6.2	6283.2	0.0
4 LF30	0.00	0.00	-137.07	-6.2	-0.4	0.0

Figure 12-7: Retrieval Analysis – Combined Load Summary – Stage 1.

	saipem nigeria	Doc. Ref.: NG-E	GN-21-SAEC-100291			
eve	TEM F & G - LATERAL	BIICKLING	EGINA	CTR Reference: F10268-SAEC-10-STR- REP-100291		
	GATION SYSTEM DESI		711	Revision: 01	Rev Date : 23-May-2014	
				Discipline : STF	R Document Type : REP	
Phase:DE	System/ Subsystem : 10	Equipment Type: NA	Status: AFC	Class: 2	Page 63 of 86	

12.2.2 Stage 2 - Load condition

A gravity load is applied on the whole structure; the Skew load factor is neglected in calculating the Global design factor because during Stage 2 of the retrieval analysis, only two slings are bearing the submerged weight of the structure at the initiation of lift in line with GS-EP-STR-401 Ref.[9].

$$gravity = \frac{LF\ water}{SKL} \times g = \frac{4.15}{1.33} \times g = 3.12g$$

Applied load case is detailed below:

Load case	Description				
GRVZ	Structure Self weight				
LF31	α×GRVZ				
where α= 3.12 for Retrieval (Stage 2)					

Table 12-5: Load case Retrieval stage 2.

The applied load summary extracted from the SACS model is presented in Figure 12-8 and Figure 12-9:

				LOAD CASE SUM UDLINE ELEVAT				
LOAD LOAD	FX	FY	FZ	MX	MY	MZ	DEAD LOAD	BUOYANCY
CASE LABEL	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)	(KN)	(KN)
1 GRUZ	0.00	0.00	-109.01	-1.5	1514.5	0.0	125.44	16.44

Figure 12-8: Retrieval Analysis – Basic Load Summary – Stage 2.

				LOAD CASE SU DLINE ELEVATI		
LOAD LOAD CASE LABEL	FX	FΥ	FZ	MX	MY	MZ
	(KN)	(KN)	(KN)	(KN-M)	(KN-M)	(KN-M)
2 LF31	0.00	0.00	-340.10	-4.8	4725.2	0.0

Figure 12-9: Retrieval Analysis - Combined Load Summary - Stage 2.

12.3 Detailed Results (Stage 1)

This section presents the detailed results of the analysis performed on the LBMS to sustain loads imposed during all the phases considered.

The structural strength and stability assessment of the LBMS shall conform to the requirements of AISC-ASD Ref [26] and API RP 2A-WSD Ref [28] as applicable.

12.3.1 Reactions

The reaction forces & moments at the fixed nodes of the LBMS structure are extracted in Figure 12-11 for the combined load case. Results are extracted based on combined load case LF30.

- All reaction forces and moments at the hook point are negligible. This is valid since the hook node was not fixed in the vertical and only vertical loading has been applied to the structure.
- All reaction forces and moments about the Y axis at the lateral and transverse boundary conditions of the LBMS structure are negligible.
- The sum of the vertical reactions at the fixed nodes is equal to the applied load on the model.
- The reaction forces on the model is equal to the applied load hence the model is validated.

Figure 12-10: Joint Numbering.

FIXED JOINTS REACTION FORCES AND MOMENT									
JOINT	LOAD COND	**************************************	kN ***** Force(Y)	********** FORCE(2)	**************************************	kN-m ** MOMENT(Y)	**************************************		
9999	LF30	8.625	-0.067	111.324	0.429	9.149	2.497		
9012	LF30	-5.277	0.527	13.981	-4.216	-6.368	-1.428		
9014	LF30	-3.348	-0.110	11.765	3.936	-3.080	1.187		
1093	LF30	0.000	-0.350	0.000	0.000	0.000	0.000		

Figure 12-11: Retrieval Analysis – Reaction Forces & Moments – Stage 1.

12.3.2 Sling Members Forces

The sling forces for LBMS retrieval stage 1 are shown in Figure 12-12. They represent the forces acting on the lifting points including all factors and shall be used for the design of the padeyes.

	MEMBER FORCES AND MOMENTS									
MEMBER Number	MEMBER End	GROUP ID	LOAD	**************************************	kn ****** Force(Y)	*********** FORCE(Z)	**************************************	kN-m ****** MOMENT(Y)	**************************************	
0093-0032	0093 0032		LF30 LF30	181.7632 181.8568	0.0000 0.0000	-0.0282 0.0260	0.0000 0.0000	0.0024 0.0000	0.0000 0.0000	
0093-0033	0093 0033		LF30 LF30	182.4608 182.5543	0.0000 0.0000	-0.0282 0.0260	0.0000 0.0000	0.0024 0.0000	0.0000 0.0000	

Figure 12-12: Retrieval Analysis - Sling Forces - Stage 1.

12.3.3 Member Unity Check (UC)

The member unity check for all the member groups are extracted and shown in Figure 12-13 and Figure 12-14.

 The maximum UCR for this load case is 0.77 and it occurs on the UPE longitudinal framing member attached to the lift point.

Figure 12-13: Retrieval Analysis – UCR Summary – Stage 1.

Figure 12-14: Retrieval Analysis – Member Group UCR Summary – Stage 1.

Refer ANNEX1: LBMS FRAMING for group member details.

	en saipem nigeria	Doc. Ref.: NG-EC	GN-21-SAEC-100291		
eve	TEM F & G - LATERAL	DIICKI INC	EGINA	CTR Reference: REP-100291	F10268-SAEC-10-STR-
	GATION SYSTEM DESI		7111	Revision: 01	Rev Date : 23-May-2014
				Discipline : STR	Document Type : REP
Phase:DE	System/ Subsystem : 10	Equipment Type: NA	Status: AFC	Class: 2	Page 66 of 86

12.4 Detailed Results (Stage 2)

This section presents the detailed results of the analysis performed on the LBMS to sustain loads imposed during retrieval stage 2.

The structural strength and stability assessment of the LBMS shall conform to the requirements of AISC-ASD Ref [26] and API RP 2A-WSD Ref [28] as applicable.

12.4.1 Reactions

The reaction forces & moments at the fixed nodes of the LBMS structure are extracted in Figure 12-16 for the combined load case. Results are extracted based on load case LF31.

- All reaction forces and moments at the hook point are negligible apart from the vertical reaction force.
- All reaction forces and moments at the lateral and transverse boundary conditions of the LBMS structure are negligible.
- The sum of the vertical reactions at the fixed nodes is equal to the applied load on the model.
- The reaction forces on the model is equal to the applied load hence the model is validated.

Figure 12-15: Joint Numbering.

	FIXED JOINTS REACTION FORCES AND MOMENT								
JOINT	LOAD COND	**************************************	kN ***** FORCE(Y)	********** FORCE(Z)	**************************************	kN-m * MOMENT(Y)	**************************************		
9999	LF31	11.692	-0.319	87.108	1.240	0.00	9 2.823		
9912	LF31	-7.174	0.792	8.717	-3.501	0.00	9 -1.897		
9914	LF31	-4.518	-0.009	7.333	2.792	0.00	0 1.745		
9976	LF31	0.000	-0.465	236.934	0.000	0.00	9 9.999		

Figure 12-16: Retrieval Analysis – Reaction Forces & Moments – Stage 2.

12.4.2 Sling Members Forces

The sling forces for LBMS retrieval Stage 2 are shown in Figure 12-17. They represent the forces acting on the lifting points including all factors and shall be used for the design of the padeyes.

MEMBER FORCES AND MOMENTS										
				******	kN ******	******	********	kN-m *****	*******	
MEMBER	MEMBER	GROUP	LOAD	FORCE(X)	FORCE(Y)	FORCE(Z)	MOMENT(X)	MOMENT(Y)	MOMENT(Z)	
NUMBER	END	ID	COND							
0076-0032	2 0076	SLI	LF31	136.4947	0.0000	-0.0212	0.0000	0.0018	0.0000	
	0032		LF31	136.5650	0.0000	0.0196	0.0000	0.0000	0.0000	
0076-0033	3 0076	SLI	LF31	137.4210	0.0000	-0.0212	0.0000	0.0018	0.0000	
	0033		LF31	137.4913	0.0000	0.0196	0.0000	0.0000	0.0000	

Figure 12-17: Retrieval Analysis – Sling Forces – Stage 2.

12.4.3 Member Unity Check (UC)

The member unity check for all the member groups are extracted and shown in Figure 12-18 and Figure 12-19.

The maximum UCR for this load case is 0.60 and it occurs on the UPE longitudinal framing member attached to the lift point.

Figure 12-18: Retrieval Analysis – UCR Summary – Stage 2.

					SACS IU - * * *	MEMBER GROUP SUP	IMARY	* * *			
GRUP ID	CRITICAL MEMBER	LOAD COND	MAX. UNITY CHECK	DIST FROM END M	* APPLIED STRESSES * AXIAL BEND-Y BEND-Z N/mm2 N/mm2 N/mm2	*** ALLOWABLE STRESSES *** AXIAL EULER BEND-Y BEND-Z N/mm2 N/mm2 N/mm2 N/mm2	CRIT COND	EFFEC LENC KLY M		CM * VAL Y	UES *
вм1	0006-0007	LF31	0.51	3.0	-0.88-115.21 1.29	145.74 258.68 231.13 314.27	CM+BN	12.0	3.0	1.00	1.00
вмз	0030-0035	LF31	0.60	0.0	-1.71-106.14 6.04	56.87 72.52 190.68 330.54	CM+BN	15.6	3.0	1.00	1.00
вм4	0017-0001	LF31	0.29	0.9	0.07 -20.82 -66.42	206.591344.09 237.92 330.54	TH+BH	0.9	0.9	1.00	1.00
вм5	0030-0007	LF31	0.36	0.9	-4.78 58.15 -28.47	204.148472.86 229.39 312.65	CM+BN	0.9	0.9	1.00	1.00
T 01	0017-0090	LF31	0.09	0.0	-1.14 16.79 12.18	77.19 77.19 258.75 258.75	C<.15	3.9	1.4	0.85	0.85
T 02	0059-0057	LF31	0.00	0.2	-0.04 0.00 0.00	205.19***** 258.75 258.75	C<.15	0.2	0.2	0.85	0.85
T 03	0062-0065	LF31	0.01	0.0	-0.02 -1.99 0.00	184.15 909.11 258.75 258.75	C<.15	1.9	1.9	0.85	0.85
U 01	0050-0051	LF31	0.01	1.9	-0.03 -0.14 -1.89	152.57 297.76 226.00 330.54	CM+BN	1.9	1.9	1.00	1.00

Figure 12-19: Retrieval Analysis – Member Group UCR Summary – Stage 2.

Refer to ANNEX1: LBMS FRAMING for member group details.

ANNEXES

ANNEX1: LBMS FRAMING

This appendix details the following at the LBMS Framing:

- Node numbering
- Member Grouping

Node Numbering

Figure A1- 1: Joint Numbering - Mudmat top view.

Figure A1- 2: Joint Numbering – ROV docking beam and Transponder frame (3D view).

Member Grouping

Figure A1- 3: Member Group Label

Colour	Group Label	Designation
	BM1	HEB 400
	ВМ3	UPE300
	BM4	UPE300
	BM5	HEB 300
	T01	Ø 101.6mm × 8.08mm
	T02	Ø 141.3mm × 12.7mm
	U01	UPN 300
	Т03	Ø 168.3mm × 12.7mm

Table A1-1: Member Group Labelling & Dimensions.

ANNEX2: SOIL SPRINGS STIFFNESS EVALUATION

Figure A2-1: Mudmat Supports Spring Stiffness Evaluation Sheet.

Figure A2- 2: LBMS Mudmat Plate Breakdown Description.

ANNEX3: CLAMP DESIGN

Clamp Design Technical Memo n°F10268-IM-STR#0019:

ANNEX4: LIFTING PADEYE DESIGN

Lifting Padeye Design Technical Memo no F10268-IM-STR#0058:

ANNEX5: BALLAST DESIGN

Ballast Design Technical Memo nº F10268-IM-STR#0022:

ANNEX6: ROPE GUIDE DESIGN

Rope guide Design Technical Memo nº F10268-IM-STR#0059.

ANNEX7: MUDMAT ANALYSIS

Mudmat Analysis Technical Memo nº F10268-IM-STR#0024:

ANNEX8: FLOWLINE IMPACT

Flowline impact Technical Memo nº F10268-IM-STR#0023:

ANNEX9: BALLAST IMPACT AND ROV SNAGGING

Ballast impact and ROV Snagging Technical Memo no F10268-IM-STR#0025:

ANNEX10: BARGE MOTION ACCELERATION CALCULATION

EGINA FIELD DEVELOPMENT - SEA TRANSPORTATION MOTION LOADING

For sea transportation analyses, it is necessary to find the loads transferred to the structure caused by the Vessel motion during the tow.

the principle of the motion criteria for a Large Cargo Barge as per GS-EP-STR-401.

The sign convention adopted is for X to be positive in a parallel line to longitudinal bulkheads running from stern to bow. Z is positive upwards and Y is positive to portside. Hence +Roll is to starboard, +Pitch is to bow and +Heave is upwards.

By Company requirement GS-EP-STR-401, Pitch acceleration (X-Direction) is increased by 20% to account for Slamming effects.

Position of the Pile on the vessel is considered at the most onerous location conservatively due the fact that the Vessel layout is yet to be decided.

■ Definitions & Diagrams

Motion Criteria:

Roll AMP. $R_{AMP} := 20 \deg = 0.349 \cdot rad$ Roll Period, $R_{Period} := 10 s$

Pitch AMP. $P_{AMP} := 12.5 \text{deg} = 0.218 \cdot \text{rad}$ Pitch Period. $P_{Period} := 10 \text{s}$

Heave Accel. $H_{ACC} := 0.20$ (Factor of g) $g = 9.807 \frac{m}{s^2}$

Principal Formulations:

Rotational Acceleration = Ω x AMP Where: $\Omega := \frac{4 \cdot \pi^2}{T^2}$ T = Period (s) & AMP in Rad.

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

CTR Reference: F10268-SAEC-10-STR-

REP-100291

Rev Date: 23-May-2014

Discipline: STR

Revision: 01

Document Type: REP

Phase:DE

System/Subsystem: 10

Equipment NA

Status: AFC

Class: 2

Page 81 of 86

Rotation Matrix and Load Combinations

Rotation matrix defined below is used to calculate Rotated Vectors for each case. When considering "Roll" op= Roll AMP and θ =0 similar, when considering "Pitch" θ =Pitch AMP and ϕ =0. for the combination of Roll and Pitch, φ & θ will be the appropriate factor of Roll AMP and Pitch AMP.

Type:

$$R = \begin{bmatrix} c_{\psi}c_{\theta} & (c_{\psi}s_{\theta}s_{\varphi} - s_{\psi}c_{\varphi}) & (c_{\psi}s_{\theta}c_{\varphi} + s_{\psi}s_{\varphi}) \\ s_{\psi}c_{\theta} & (s_{\psi}s_{\theta}s_{\varphi} + c_{\psi}c_{\varphi}) & (s_{\psi}s_{\theta}c_{\varphi} - c_{\psi}s_{\varphi}) \\ -s_{\theta} & c_{\theta}s_{\varphi} & c_{\theta}c_{\varphi} \end{bmatrix}.$$

Where:

C=COS

S=SIN φ=Roll AMP

ψ=Heave AMP (Usually 0)

$$\begin{aligned} \text{InitialVector} := \begin{pmatrix} 0 \\ 0 \\ n1 \cdot g \end{pmatrix} & \text{n1} := \left(-1 + H_{ACC}\right) = -0.8 & \text{For +HEAVE} \\ & \text{n2} := \left(-1 - H_{ACC}\right) = -1.2 & \text{For -HEAVE} \end{aligned}$$

$$n1 := (-1 + H_{ACC}) = -0.8$$
 For +HEAVE

24 number load combinations are considered and explained here.

TR01:	+ROLL		+HEAVE	TR13: +80%ROLL	-60%PITCH	+HEAVE
TR02:	+ROLL		-HEAVE	TR14: +80%ROLL	-60%PITCH	-HEAVE
TR03:	-ROLL		+HEAVE	TR15: -80%ROLL	-60%PITCH	+HEAVE
TR04:	-ROLL		-HEAVE	TR16: -80%ROLL	-60%PITCH	-HEAVE
TR05:		+PITCH	+HEAVE	TR17: +60%ROLL	+80%PITCH	+HEAVE
TR06:		+PITCH	-HEAVE	TR18: +60%ROLL	+80%PITCH	-HEAVE
TR07:		-PITCH	+HEAVE	TR19: -60%ROLL	+80%PITCH	+HEAVE
TR08:		-PITCH	-HEAVE	TR20: -60%ROLL	+80%PITCH	-HEAVE
TR09:	+80%ROLL	+60%PITCH	+HEAVE	TR21: +60%ROLL	-80%PITCH	+HEAVE
TR10:	+80%ROLL	+60%PITCH	-HEAVE	TR22: +60%ROLL	-80%PITCH	-HEAVE
TR11:	-80%ROLL	+60%PITCH	+HEAVE	TR23: -60%ROLL	-80%PITCH	+HEAVE
TR12	-80%ROLL	+60%PITCH	-HEAVE	TR24: -60%ROLL	-80%PITCH	-HEAVE

To calculate the acceleration factors, the Mass of Cargo and location on the Vessel as well as vessel O/A dimensions are required.

Cargo Mass: MASS := 12.79tonne

 $COG_X := 77.797m$ $COG_V := 11.214m$ $COG_Z := 0.514m$

Vessel Dimensions:

L := 91.4 m D := 6.7 m

Centre of Motion:

 $COM_x := \frac{L}{2} = 45.7 \,\text{m}$ $COM_y := 0$ $COM_z := \frac{-2}{3} \cdot D = -4.467 \,\text{m}$

Lever Arm Calculation: LA=COG - COM

 ${\rm LA_{_{X}}} := {\rm COG_{_{X}}} - {\rm COM_{_{X}}} = 32.097\,{\rm m} \\ \qquad \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{_{Z}}} - {\rm COM_{_{Z}}} = 4.981\,{\rm m} \\ \qquad {\rm LA_{_{Z}}} := {\rm COG_{$

Load Factors:

 $LF_{Dead} := 1.0$

 $LF_{Env} := 1.0$

NΔ

Doc. Ref.: NG-EGN-21-SAEC-100291

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

EGINA

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date: 23-May-2014

Discipline : STR Document Type: REP

Page 82 of 86

Class: 2

Phase:DE

System/Subsystem: 10

Equipment Type:

Status: AFC

▼ Calculations

Rotational Accelerations:

$$R_{RAcc} := \frac{4 \cdot \pi^2}{R_{Period}^2} \cdot R_{AMP} = 0.1378 \frac{1}{s^2} \cdot rad$$

$$P_{RAcc} := \frac{4 \cdot \pi^2}{P_{Period}} \cdot P_{AMP} = 0.0861 \cdot \frac{1}{s^2} \cdot rad$$

Acceleration on Global Axis (X, Y & Z)

$$R_{AccX} = 0$$

$$P_{AccX} := -P_{RAcc} \cdot LA_z \cdot 1.2 = -0.5148 \frac{m}{s^2}$$

ROLL:
$$R_{AccY} := R_{RAcc} \cdot LA_z = 0.6864 \frac{m}{s^2}$$

$$P_{AccY} := 0$$

$$R_{AccZ} := -R_{RAcc} \cdot LA_y = -1.5454 \frac{m}{s^2}$$

$$P_{AccZ} := P_{RAcc} \cdot LA_x \cdot 1.2 = 3.3174 \frac{m}{s^2}$$

Load Combination Acceleration Calculation:

Rotated Vector = Rotation Matrix * Initial Vector

For TR01 (+ROLL +HEAVE): the following shall be considered:

$$\varphi_1 := 20 \text{deg} = 0.349 \cdot \text{rad}$$

$$\theta_1 := 0 \text{deg} = 0 \cdot \text{rad}$$
 $\psi_1 := 0$

$$\psi_1 := 0$$

PITCH:

$$R1 := \begin{pmatrix} \cos(\psi_1) \cdot \cos(\theta_1) & \cos(\psi_1) \cdot \sin(\theta_1) \cdot \sin(\phi_1) - \sin(\psi_1) \cdot \cos(\phi_1) & \cos(\psi_1) \cdot \sin(\theta_1) \cdot \cos(\phi_1) + \sin(\psi_1) \cdot \sin(\phi_1) \\ \sin(\psi_1) \cdot \cos(\theta_1) & \sin(\psi_1) \cdot \sin(\theta_1) \cdot \sin(\phi_1) + \cos(\psi_1) \cdot \cos(\phi_1) & \sin(\psi_1) \cdot \sin(\theta_1) \cdot \cos(\phi_1) - \cos(\psi_1) \cdot \sin(\phi_1) \\ -\sin(\theta_1) & \cos(\theta_1) \cdot \sin(\phi_1) & \cos(\theta_1) \cdot \cos(\phi_1) \end{pmatrix}$$

$$R1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.94 & -0.342 \\ 0 & 0.342 & 0.94 \end{pmatrix}$$

$$R1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.94 & -0.342 \\ 0 & 0.342 & 0.94 \end{pmatrix} \qquad \qquad \text{InitialVector_1} := \begin{bmatrix} 0 \\ 0 \\ (-1 + H_{ACC}) \cdot g \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ -7.845 \end{pmatrix} \frac{m}{s^2}$$

$$RotVec_1 := R1 \cdot InitialVector_1 = \begin{pmatrix} 0 \\ 2.683 \\ -7.372 \end{pmatrix} \frac{m}{s}^{2}$$

$$ACC_{X1} := RotVec_1_{0,0} + R_{AccX} = 0 \frac{m}{s}$$

$$ACC_{X1_g} := \frac{ACC_{X1}}{g} = 0$$

$$FX_1 := MASS \cdot ACC_{X1} = 0 \cdot kN$$

$$ACC_{X1_g} := \frac{ACC_{X1}}{g} = 0$$

$$FX_1 := MASS \cdot ACC_{X_1} = 0 \cdot kN$$

$$ACC_{Y1} := RotVec_1_{1,0} + R_{AccY} = 3.37 \frac{m}{c^2} \qquad ACC_{Y1_g} := \frac{ACC_{Y1}}{g} = 0.344 \qquad FY_1 := MASS \cdot ACC_{Y1} = 43.1 \cdot kN \cdot A$$

$$ACC_{Y1_g} := \frac{ACC_{Y1}}{g} = 0.344$$

$$FY_1 := MASS \cdot ACC_{Y1} = 43.1 \cdot kN$$

$$ACC_{Z1} := RotVec_1_{2,0} + R_{AccZ} = -8.918 \frac{m}{s}^{2} \qquad ACC_{Z1_g} := \frac{ACC_{Z1}}{g} = -0.909 \qquad FZ_1 := MASS \cdot ACC_{Z1} = -114.1 \cdot kN_{Z1} = -114.1 \cdot kN_{Z1}$$

$$ACC_{Z1_g} := \frac{ACC_{Z1}}{g} = -0.90$$

$$FZ_1 := MASS \cdot ACC_{Z1} = -114.1 \cdot kN$$

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

EGINA

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date: 23-May-2014

Discipline : STR

Document Type: REP

Equipment Type: Phase:DE System/Subsystem: 10 NΑ

Status: AFC

Class: 2 Page 83 of 86

By similar above Calculation, Load Factors for TR2, TR3 and TR4 are summurised below:

TR02 (+ROLL -HEAVE)

TR03 (-ROLL +HEAVE)

TR04 (-ROLL -HEAVE)

 $ACC_{X2_g} = 0$

 $ACC_{X3_g} = 0$

 $ACC_{Y2g} = 0.48$

 $ACC_{Y3_g} = -0.344$

 $ACC_{Y4_g} = -0.48$

 $ACC_{Z2g} = -1.285$

 $ACC_{Z3g} = -0.594$

 $ACC_{Z4\ g} = -0.97$

For TR05 (+PITCH +HEAVE): the following shall be considered:

$$\varphi_5 := 0 \text{deg} = 0 \cdot \text{rad}$$

$$\theta_5 := 12.5 deg = 0.218 \cdot rad$$
 $\psi_5 := 0$

$$\psi_5 := 0$$

$$\text{R5} := \begin{pmatrix} \cos(\psi_5) \cdot \cos(\theta_5) & \cos(\psi_5) \cdot \sin(\theta_5) \cdot \sin(\phi_5) - \sin(\psi_5) \cdot \cos(\phi_5) & \cos(\psi_5) \cdot \sin(\theta_5) \cdot \cos(\phi_5) + \sin(\psi_5) \cdot \sin(\phi_5) \\ \sin(\psi_5) \cdot \cos(\theta_5) & \sin(\psi_5) \cdot \sin(\theta_5) \cdot \sin(\phi_5) + \cos(\psi_5) \cdot \cos(\phi_5) & \sin(\psi_5) \cdot \sin(\theta_5) \cdot \cos(\phi_5) - \cos(\psi_5) \cdot \sin(\phi_5) \\ -\sin(\theta_5) & \cos(\theta_5) \cdot \sin(\phi_5) & \cos(\theta_5) \cdot \cos(\phi_5) \end{pmatrix}$$

$$R5 = \begin{pmatrix} 0.976 & 0 & 0.216 \\ 0 & 1 & 0 \\ -0.216 & 0 & 0.976 \end{pmatrix}$$

$$R5 = \begin{pmatrix} 0.976 & 0 & 0.216 \\ 0 & 1 & 0 \\ -0.216 & 0 & 0.976 \end{pmatrix} \qquad \qquad \text{InitialVector_5} := \begin{bmatrix} 0 \\ 0 \\ (-1 + H_{ACC}) \cdot g \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ -7.845 \end{pmatrix} \frac{m}{s^2}$$

RotVec_5 := R5·InitialVector_5 =
$$\begin{pmatrix} -1.698 \\ 0 \\ -7.659 \end{pmatrix} \frac{m}{s}$$

$$\begin{aligned} & \text{ACC}_{X5} \coloneqq \text{RotVec}_5_{0,\,0} + \text{P}_{AccX} = -2.213 \, \frac{\text{m}}{\text{s}^2} & \text{ACC}_{X5}_g \coloneqq \frac{\text{ACC}_{X5}}{g} = -0.226 & \text{FX}_5 \coloneqq \text{MASS-ACC}_{X5} = -28.3 \text{-kN} \\ & \text{ACC}_{Y5} \coloneqq \text{RotVec}_5_{1,\,0} + \text{P}_{AccY} = 0 \, \frac{\text{m}}{\text{s}^2} & \text{ACC}_{Y5}_g \coloneqq \frac{\text{ACC}_{Y5}}{g} = 0 & \text{FY}_5 \coloneqq \text{MASS-ACC}_{Y5} = 0 \text{-kN} \end{aligned}$$

$$ACC_{X5_g} := \frac{ACC_{X5}}{g} = -0.226$$

$$FX_5 := MASS \cdot ACC_{X5} = -28.3 \cdot kN$$

$$ACC_{Y5} := RotVec_5_{1,0} + P_{AccY} = 0 \frac{m}{s^2}$$

$$ACC_{Y5_g} := \frac{ACC_{Y5}}{g} = 0$$

$$FY_5 := MASS \cdot ACC_{Y5} = 0 \cdot kN$$

$$ACC_{Z5} := RotVec_5_{2,0} + P_{AccZ} = -4.342 \frac{m}{s_2^2}$$
 $ACC_{Z5_g} := \frac{ACC_{Z5}}{g} = -0.443$ $FZ_5 := MASS \cdot ACC_{Z5} = -55.5 \cdot kN$

$$ACC_{Z5_g} := \frac{ACC_{Z5}}{g} = -0.44$$

$$FZ_5 := MASS \cdot ACC_{Z5} = -55.5 \cdot kN$$

By similar above Calculation, Load Factors for TR6, TR7 and TR8 are summurised below:

TR06 (+PITCH -HEAVE)	TR07 (-PITCH +HEAVE)	TR08 (-PITCH -HEAVE)
$ACC_{X6_g} = -0.312$	$ACC_{X7_g} = 0.226$	$ACC_{X8_g} = 0.312$
$ACC_{Y6_g} = 0$	$ACC_{Y7_g} = 0$	$ACC_{Y8_g} = 0$
$ACC_{Z6_g} = -0.833$	$ACC_{Z_{7}g} = -1.119$	$ACC_{Z8_g} = -1.51$

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

EGINA

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date: 23-May-2014

Discipline: STR Document Type: REP

Phase:DE

Equipment System/Subsystem: 10 NA

Type:

Status: AFC

Class: 2

Page 84 of 86

For TR09 (+80%ROLL+60%PITCH +HEAVE): the following shall be considered:

$$\varphi_9 := 80\% \cdot R_{\mbox{AMP}} = 0.279 \cdot \mbox{rad}$$

$$\theta_9 := 60\% \cdot P_{AMP} = 0.131 \cdot rad$$

$$\psi_0 := 0$$

$$R9 := \begin{pmatrix} \cos(\psi_9) \cdot \cos(\theta_9) & \cos(\psi_9) \cdot \sin(\theta_9) \cdot \sin(\psi_9) - \sin(\psi_9) \cdot \cos(\psi_9) & \cos(\psi_9) \cdot \sin(\theta_9) \cdot \cos(\psi_9) + \sin(\psi_9) \cdot \sin(\psi_9) \cdot \sin(\psi_9) \\ \sin(\psi_9) \cdot \cos(\theta_9) & \sin(\psi_9) \cdot \sin(\theta_9) \cdot \sin(\psi_9) + \cos(\psi_9) \cdot \cos(\psi_9) & \sin(\psi_9) \cdot \sin(\theta_9) \cdot \cos(\psi_9) - \cos(\psi_9) \cdot \sin(\psi_9) \\ -\sin(\theta_9) & \cos(\theta_9) \cdot \sin(\psi_9) & \cos(\theta_9) \cdot \cos(\psi_9) \end{pmatrix}$$

$$R9 = \begin{pmatrix} 0.991 & 0.036 & 0.125 \\ 0 & 0.961 & -0.276 \\ -0.131 & 0.273 & 0.953 \end{pmatrix}$$

$$R9 = \begin{pmatrix} 0.991 & 0.036 & 0.125 \\ 0 & 0.961 & -0.276 \\ -0.131 & 0.273 & 0.953 \end{pmatrix} \qquad \qquad \\ Initial Vector_9 := \begin{bmatrix} 0 \\ 0 \\ (-1 + H_{ACC}) \cdot g \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ -7.845 \end{pmatrix} \frac{m}{s^2}$$

$$RotVec_9 := R9 \cdot InitialVector_9 = \begin{pmatrix} -0.984 \\ 2.162 \\ -7.477 \end{pmatrix} \frac{m}{s}$$

$$ACC_{X9} := RotVec_{90,0} + 60\% P_{AccX} = -1.293 \frac{m}{s^2}$$

$$ACC_{Y9} := RotVec_{9_{1,0}} + 80\% R_{AccY} = 2.712 \frac{m}{c^2}$$

$$ACC_{Z9} := RotVec_9_{2,0} + 80\%R_{AccZ} + 60\%P_{AccZ} = -6.723 \frac{m}{\epsilon^2}$$

$$FX_9 := MASS \cdot ACC_{X9} = -16.5 \cdot kN$$

$$ACC_{Y9_g} := \frac{ACC_{Y9}}{g} = 0.277$$

$$FY_0 := MASS \cdot ACC_{V0} = 34.7 \cdot kN$$

$$\mathrm{ACC}_{Z9_g} := \frac{\mathrm{ACC}_{Z9}}{\mathrm{g}} = -0.686 \qquad \mathrm{FZ}_9 := \mathrm{MASS} \cdot \mathrm{ACC}_{Z9} = -86 \cdot \mathrm{kN}$$

$$FZ_9 := MASS \cdot ACC_{Z9} = -86 \cdot kN$$

By similar above Calculation, Load Factors for LC10 to LC16 are summurised below:

<u>TR10</u> (+80%ROLL+60%PITCH -HEAVE) TR12 (-80%ROLL+60%PITCH -HEAVE) <u>TR11</u> <u>(-80%ROLL+60%PITCH +HEAVE)</u>

$$ACC_{X10_g} = -0.182$$

$$ACC_{X11_g} = -0.132$$

$$ACC_{X12_g} = -0.182$$

$$ACC_{Y10_g} = 0.387$$

$$ACC_{Y11_g} = -0.277$$

$$ACC_{Y12_g} = -0.387$$

$$ACC_{Z10_g} = -1.067$$

$$ACC_{Z11_g} = -0.433$$

$$ACC_{Z12_g} = -0.815$$

TR13 (+80%ROLL-60%PITCH +HEAVE)

$$ACC_{X13_g} = 0.132$$

$$ACC_{X14_g} = 0.182$$

$$ACC_{X15_g} = 0.132$$

$$ACC_{Y13}_g = 0.277$$

$$ACC_{Y14} g = 0.387$$

$$ACC_{Y15\ g} = -0.277$$

$$ACC_{Z13\ g} = -1.091$$

$$ACC_{Z14\ g} = -1.473$$

$$ACC_{Z15\ g} = -0.839$$

SYSTEM F & G - LATERAL BUCKLING MITIGATION SYSTEM DESIGN REPORT

EGINA

CTR Reference: F10268-SAEC-10-STR-REP-100291

Revision: 01 Rev Date: 23-May-2014

Discipline : STR Document Type: REP

Phase:DE

System/Subsystem: 10

Equipment Type: NΑ

Status: AFC

Class: 2 Page 85 of 86

(-80%ROLL-60%PITCH -HEAVE)

$$ACC_{X16_g} = 0.182$$

$$ACC_{Y16}$$
 g = -0.387

$$ACC_{Z16\ g} = -1.221$$

For TR17 (+60%ROLL+80%PITCH +HEAVE): the following shall be considered:

$$\varphi_{17} := 60\% \cdot R_{AMP} = 0.209 \cdot rad$$

$$\theta_{17} := 80\% \cdot P_{AMP} = 0.175 \cdot rad$$
 $\psi_{17} := 0$

$$\psi_{17} := 0$$

$$\text{R17} := \begin{pmatrix} \cos(\psi_{17}) \cdot \cos(\theta_{17}) & \cos(\psi_{17}) \cdot \sin(\theta_{17}) \cdot \sin(\phi_{17}) - \sin(\psi_{17}) \cdot \cos(\phi_{17}) & \cos(\psi_{17}) \cdot \sin(\theta_{17}) \cdot \cos(\phi_{17}) + \sin(\psi_{17}) \cdot \sin(\phi_{17}) \\ \sin(\psi_{17}) \cdot \cos(\theta_{17}) & \sin(\psi_{17}) \cdot \sin(\theta_{17}) \cdot \sin(\phi_{17}) + \cos(\psi_{17}) + \cos(\psi_{17}) \cdot \sin(\psi_{17}) \cdot \sin(\theta_{17}) \cdot \cos(\phi_{17}) \\ -\sin(\theta_{17}) & \cos(\theta_{17}) \cdot \sin(\phi_{17}) \end{pmatrix}$$

$$R17 = \begin{pmatrix} 0.985 & 0.036 & 0.17 \\ 0 & 0.978 & -0.208 \\ -0.174 & 0.205 & 0.963 \end{pmatrix}$$

$$R17 = \begin{pmatrix} 0.985 & 0.036 & 0.17 \\ 0 & 0.978 & -0.208 \\ -0.174 & 0.205 & 0.963 \end{pmatrix} \qquad \qquad \text{InitialVector_17} := \begin{bmatrix} 0 \\ 0 \\ (-1 + \text{H}_{ACC}) \cdot \text{g} \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ -7.845 \end{pmatrix} \frac{\text{m}}{\text{s}^2}$$

$$RotVec_17 := R17 \cdot InitialVector_17 = \begin{pmatrix} -1.333 \\ 1.631 \\ -7.557 \end{pmatrix} \frac{m}{s}$$

$$ACC_{X17} := RotVec_{17_{0,0}} + 80\% P_{AccX} = -1.744 \frac{m}{c^2}$$

$$ACC_{Y17} := RotVec_{17_{1,0}} + 60\% R_{AccY} = 2.043 \frac{m}{s^2}$$

$$ACC_{Z17} := RotVec_{17_{2,0}} + 60\% R_{AccZ} + 80\% P_{AccZ} = -5.831 \frac{m}{s^2}$$

$$ACC_{X17_g} := \frac{ACC_{X17}}{g} = -0.178$$
 $FX_{17} := MASS \cdot ACC_{X17} = -22.3 \cdot kN$

$$FX_{17} := MASS \cdot ACC_{X17} = -22.3 \cdot kN$$

$$ACC_{Y17_g} := \frac{ACC_{Y17}}{g} = 0.208$$
 $FY_{17} := MASS \cdot ACC_{Y17} = 26.1 \cdot kN$

$$FY_{17} := MASS \cdot ACC_{Y17} = 26.1 \cdot kN$$

$$ACC_{Z17_g} := \frac{ACC_{Z17}}{g} = -0.595$$
 $FZ_{17} := MASS \cdot ACC_{Z17} = -74.6 \cdot kN$

$$FZ_{17} := MASS \cdot ACC_{Z17} = -74.6 \cdot kN$$

By similar above Calculation, Load Factors for CM18 to CM24 are summurised below:

<u>TR18</u> (+60%ROLL+80%PITCH -HEAVE)	<u>TR19</u> (-60%ROLL+80%PITCH +HEAVE)	<u>TR20</u> (-60%ROLL+80%PITCH -HEAVE)
$ACC_{X18_g} = -0.246$	$ACC_{X19_g} = -0.178$	$ACC_{X20_g} = -0.246$
$ACC_{Y18_g} = 0.291$	$ACC_{Y19_g} = -0.208$	$ACC_{Y20_g} = -0.291$
$ACC_{Z18_g} = -0.98$	$ACC_{Z19_g} = -0.405$	$ACC_{Z20_g} = -0.791$
<u>TR21</u> (+60%ROLL-80%PITCH +HEAVE)	TR22 (+60%ROLL-80%PITCH -HEAVE)	TR23 (-60%ROLL-80%PITCH +HEAVE)
$ACC_{X21_g} = 0.178$	$ACC_{X22_g} = 0.246$	$ACC_{X23_g} = 0.178$
$ACC_{Y21_g} = 0.208$	$ACC_{Y22}_g = 0.291$	$ACC_{Y23_g} = -0.208$
$ACC_{Z21_g} = -1.136$	$ACC_{Z22_g} = -1.521$	$ACC_{Z23_g} = -0.947$

TR24 (-60%ROLL-80%PITCH -HEAVE)

$$ACC_{X24_g} = 0.246$$

$$ACC_{Y24_g} = -0.291$$

$$ACC_{Z24_g} = -1.332$$

