10. Exakte Differentialgleichungen

Vereinbarung: In diesem Paragraphen sei $D \subseteq \mathbb{R}^2$ stets ein Gebiet, $P,Q \in C(D,\mathbb{R})$ und $(x_0,y_0) \in D$

Wir betrachten die Gleichung P(x,y) + Q(x,y)y' = 0. Diese Gleichung schreibt man in der Form:

(i) P(x,y)dx + Q(x,y)dy = 0. Weiter betrachten wir das AWP:

(ii)
$$\begin{cases} P(x,y)dx + Q(x,y)dy = 0\\ y(x_0) = y_0 \end{cases}$$

Erinnerung: Analysis 2, Paragraph 14

- (1) Eine Funktion $F \in C^1(D, \mathbb{R})$ heißt eine Stammfunktion von $(P, Q) : \iff F_x = P, F_y = Q$.
- (2) Ist D sternförmig und sind $P, Q \in C^1(D, \mathbb{R})$, so gilt: (P, Q) hat auf D eine Stammfunktion $\iff P_y = Q_x$ auf D.

Definition

Die Gleichung (i) heißt auf D exakt : \iff (P,Q) besitzt auf D eine Stammfunktion.

Satz

Die Gleichung (i) sei auf D exakt und F sei eine Stammfunktion (P,Q) auf D.

- (1) Sei $I \subseteq \mathbb{R}$ ein Intervall, $y: I \to \mathbb{R}$ differenzierbar und $(x, y(x)) \in D \ \forall x \in I$. y ist eine Lösung von (i) auf $I \iff \exists c \in \mathbb{R}: F(x, y(x)) = c \ \forall x \in I$.
- (2) Ist $Q(x_0, y_0) \neq 0$, so existiert eine Umgebung U von x_0 : das AWP (ii) hat auf U genau eine Lösung.

Beweis

- (1) g(x) := F(x, y(x)) $(x \in I)$; g ist differenzierbar auf I und $g'(x) = F_x(x, y(x)) \cdot 1 + F_y(x, y(x))y'(x) = P(x, y(x)) + Q(x, y(x))y'(x)$. y ist eine Lösung von $(i) \iff g'(x) = 0 \ \forall x \in I \iff \exists c \in \mathbb{R} : g(x) = c \ \forall x \in I \iff \exists c \in \mathbb{R} : F(x, y(x)) = c \ \forall x \in I$.
- (2) $f(x,y) := F(x,y) F(x_0,y_0)$ $((x,y) \in D)$. $f(x_0,y_0) = 0$, $f_y(x_0,y_0) = F_y(x_0,y_0) = Q(x_0,y_0) \neq 0$. Analysis 2, Paragraph 10 $\Longrightarrow \exists$ Umgebung U von x_0 , V von y_0 und genau eine differenzierbare Funktion $y: U \to V$ mit: $U \times V \subseteq D$, $y(x_0) = y_0$ und $f(x,y(x)) = 0 \ \forall x \in U \Longrightarrow F(x,y(x)) = F(x_0,y_0) \ \forall x \in U \Longrightarrow Behauptung$.

Beispiele:

(1)

AWP:
$$\begin{cases} x dx + y dy = 0 \\ y(0) = 1, \ (D = \mathbb{R}^2, P = x, Q = y) \end{cases}$$

 $P_y=Q_x\Longrightarrow$ die Dgl. ist auf D exakt. $F(x,y)=\frac{1}{2}(x^2+y^2)$ ist eine Stammfunktion von (P,Q) auf D. $\frac{1}{2}(x^2+y^2)=c\iff y^2=2c-x^2\iff y(x)=\pm\sqrt{2c-x^2}\ (c\in\mathbb{R})$ allgemeine Lösung der Dgl. $1=y(0)^2-2c\implies c=\frac{1}{2}$. Lösung des AWPs: $y(x)=+\sqrt{1-x^2}$ auf (-1,1).

(2)

AWP:
$$\begin{cases} x dx + y dy = 0 \\ y(0) = 0 \end{cases}$$

 $0 = y(0)^2 = 2c \implies c = 0 \implies y^2 = -x^2$, Widerspruch! Das AWP ist nicht lösbar.

(3)

AWP:
$$\begin{cases} x dx - y dy = 0 \\ y(0) = 0 \end{cases}$$

 $F(x,y)=\frac{1}{2}(x^2-y^2)$ ist eine Stammfunktion von (P,Q) auf \mathbb{R}^2 . $\frac{1}{2}(x^2-y^2)=c\iff y^2=x^2-2c;$ also: $y(x)=\pm\sqrt{x^2-2c}.\ 0=y(0)^2=-2c\implies c=0.\ y(x)=x$ und y(x)=-x sind Lösungen des AWPs auf \mathbb{R} .

(4) $D = (0, \infty) \times (0, \infty)$; $(*) \underbrace{\frac{1}{y} dx}_{=P} + \underbrace{\frac{1}{x} dy}_{=Q} = 0$. $P_y = -\frac{1}{y^2}$, $Q_x = -\frac{1}{x^2} \implies (*)$ ist auf D nicht exakt. Multiplikation von (*) mit $\underbrace{xy}_{\neq 0} \implies (**) x dx + y dy = 0$.

Definition

Sei $\mu \in C(D, \mathbb{R})$ und $\mu(x, y) \neq 0 \ \forall (x, y) \in D$. μ heißt ein **Multiplikator** von (i) auf $D : \iff (iii) \ (\mu P) dx + (\mu Q) dy = 0$ ist auf D exakt.

Bemerkung: Es sei $\mu \in C(D, \mathbb{R})$ und $\mu(x, y) \neq 0 \ \forall (x, y) \in D$

- (1) Ist $I \subseteq \mathbb{R}$ ein Intervall, $y(I) \to \mathbb{R}$ eine Funktion und $(x, y(x)) \in D \ \forall x \in I$, so gilt: y ist Lösung von (i) auf $I \iff y$ ist Lösung von (iii) auf I.
- (2) Ist D sternförmig und sind $P, Q, \mu \in C^1(D, \mathbb{R})$, so gilt: μ ist Multiplikator von (i) auf $D \iff (\mu P)_y = (\mu Q)_x$ auf D.
- (3) Hängt $f := \frac{1}{Q}(P_y Q_x)$ nur von x ab, so ist $\mu(x) = e^{\int f(x)dx}$ ein Multiplikator. Hängt $f := \frac{1}{P}(P_y - Q_x)$ nur von y ab, so ist $\mu(x) = e^{-\int f(y)dy}$ ein Multiplikator.

Beispiel

(*)
$$\underbrace{(2x^2y + 2xy^3 + y)}_{=P} dx + \underbrace{(3y^2 + x)}_{=Q} dy = 0$$

 $P_y=2x^2+6xy^2+1;\ Q_x=1\implies (*)$ ist nicht exakt. $\frac{P_y-Q_x}{Q}=2x\implies \mu(x)=e^{x^2}$ ist ein Multiplikator. Lösung von (*) in impliziter Form: $(xy(x)+y(x)^3)e^{x^2}=c\ (c\in\mathbb{R}).$