Матожидание. Дисперсия.

Классная работа

- 1. Случайная величина ξ имеет экспоненциальное распределение с параметром α : $\{\xi \leq x\} = 1 \exp(-\alpha x)$. Найти плотности распределения случайных величин:
 - (a) $\eta_1 = \sqrt{\xi}$;
 - (b) $\eta_2 = \xi^2;$
 - (c) $\eta_3 = \frac{1}{\alpha} \ln \xi$.
- 2. Найдите медиану, математическое ожидание и дисперсию случайной величины ξ , имеющей экспоненциальное распределение с показателем $a{>}0$.
- 3. На смежные стороны единичного квадрата равновероятно ставят по одной точке. Найти матожидание и дисперсию расстояния между ними.
- 4. Вероятность сервера выйти из строя за время Δt равна $\lambda \Delta t + o(\Delta t)$. Через N лет сервер заменяют независимо от того вышел он из строя или нет. Найти среднее время работы сервера.

Матожидание. Дисперсия.

Домашняя работа

- 1. Для случайной величины из классного задания 1 найти плотности распределения случайных величин:
 - (a) $(0.56)\eta_4 = \{\xi\}$, где $\{z\}$ дробная часть числа z;
 - (b) $(0.56)\eta_5 = 1 e^{\alpha \xi}$.
- 2. (16) Случайная величина ξ имеет распределение Парето с показателем a>0, если плотность ее распределения задается формулой

$$\rho_{\xi}(x) = \begin{cases} ax^{-a-1}, & x \ge 1\\ 0, & x < 1 \end{cases}$$

Пусть a>2. Найдите математическое ожидание и дисперсию ξ .

- 3. (16) Пусть ξ имеет нормальное распределение, найдите матожидание и дисперсию случайной величины $\eta = \xi^2 + \sqrt{\xi}$
- 4. (16)Диаметр круга измерен приближенно. Считая, что его величина равномерно распределена в отрезке [a,b], найти распределение площади круга, ее среднее значение и дисперсию.