V. Nemzetközi Magyar Matematika Verseny

Székelyudvarhely, 1996. márc. 29-ápr. 2.

11. osztály

1. feladat: Igazoljuk, hogy

$$(\sqrt{3} + \sqrt{2})^{1996} + (\sqrt{3} - \sqrt{2})^{1996}$$

pozitív egész szám, és adjuk meg a szám utolsó számjegyét.

Urbán János (Budapest)

- 2. feladat: Oldjuk meg a természetes számok halmazán az $x^y x = y^x y$ egyenletet.

 Bencze Mihály, Oláh György (Brassó, Révkomárom)
- 3. feladat: Legyen ABC háromszög AC oldalának A-hoz közelebbi harmadoló pontja D, BC oldalának felezési pontja E. Az ABED négyszögről tudjuk, hogy húrnégyszög és egyben érintőnégyszög is. Jelölje R az ABC háromszög körülírt körének sugarát és r az ABED négyszög beírt körének sugarát. Határozzuk meg az R/r hányados pontos értékét.

Bíró Bálint (Eger)

4. feladat: Igazoljuk, hogy ha az ABC hegyesszögű háromszögben $a=\beta$ és $b=\alpha$ akkor $c\leq \alpha\cdot \gamma$. (a,b,c a háromszög oldalainak hosszát α , β , γ a háromszög A, B illetve C csúcsához tartozó szögeinek mértéke radiánban.)

Bencze Mihály (Brassó)

- 5. feladat: Egy $6n \times 6n$ ($36n^2$ mezőt tartalmazó) négyzetes táblára két játékos felváltva, 2×2 -es négyzeteket rak, amelyek nem fedik egymást. Az veszít, aki már nem tud tenni.
- a) Legalább hány lépés után fejeződhet be a játék?
- b) Van-e valamelyik játékosnak nyerő stratégiája?

András Szilárd, Bege Antal (Csíkszereda, Kolozsvár)

6. feladat: Az $A_1A_2A_3A_4$ tetraéderben G_i -vel jelöljük az A_i -vel szemben fekvő lap súlypontját. Ha egy térbeli M pont esetén $3MG_i=MA_i$ bármely $i\in\{1,2,3,4\}$, igazoljuk, hogy M a tetraéder súlypontja.

András Szilárd, Tuzson Zoltán (Csíkszereda, Székelyudvarhely)