Algebra

Munir Uz Zaman

Date: November 26, 2021

Contents

1 Polynomials				
	1.1	Division Algorithm	5	
	1.2	The Fundamental Theorem of Algebra	7	
	1.3	Quadratic Polynomials	10	
	1.4	Roots of Cubic Polynomials	12	
	1.5	Lagrange Interpolation	14	

Polynomials

Definition 1.0.1. A Polynomial P(x) is an one variable expression or function of the form

$$P(x) = \sum_{i=0}^{n} a_i x^i = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where a_0, a_1, \dots, a_n are constants and $n \in \mathbb{N}$. The constants a_i are called the *coefficients* of the polynomial. We will denote A[x] as the set of all polynomials with $a_i \in A$. If $n \neq 0$ then n is called the *degree* of the polynomial P(x) and write $\deg P(x) = n$. If $a_n = 1$ then we say that the polynomial is *monic*. r is called a *root* of the polynomial P(x) if and only if P(r) = 0.

§1.1 Division Algorithm

Theorem 1.1.1 (The Division Algorithm)

Given two polynomial A(x) and B(x) there exists unique polynomials Q(x) and R(x) with deg $R(x) < \deg B(x)$ such that,

$$A(x) = Q(x)B(x) + R(x)$$

The polynomials Q(x) and R(x) are known as the *quotient* and the *remainder*, respectively. If the remainder R(x) = 0 then we say that B(x) divides A(x) and write $B(x) \mid A(x)$.

Proof: We will first prove the uniqueness of the polynomials Q(x) and R(x). Assume,

$$A(x) = Q_1(x)B(x) + R_1(x), \quad \deg R_1(x) < \deg B(x)$$

 $A(x) = Q_2(x)B(x) + R_2(x), \quad \deg R_2(x) < \deg B(x)$

Now,

$$(Q_1(x) - Q_2(x)) B(x) + (R_1(x) - R_2(x)) = 0$$

Let $q(x) = Q_1(x) - Q_2(x)$ and $r(x) = R_1(x) - R_2(x)$. Now,

$$q(x)B(x) + r(x) = 0$$

$$\implies q(x)B(x) = -r(x)$$

If $q(x) \neq 0$ then $\deg r(x) = \deg q(x) + \deg B(x) \geq \deg B(x)$. But that is impossible since $\deg R_2(x) < \deg B(x) \implies \deg (R_2(x) - R_1(x)) < \deg B(x)$. Thus q(x) must be zero. Consequently r(x) will also be zero. Therefore $R_1(x) = R_2(x)$ and $Q_1(x) = Q_2(x)$.

Now we will prove the existence of the polynomials Q(x) and R(x). Notice the following algorithm,

- 1: $A(x) \leftarrow a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$
- 2: $B(x) \leftarrow b_n x^n + b_{n-1} b^{n-1} + \dots + b_0$
- 3: $R(x) \leftarrow A(x)$
- 4: while $\deg R(x) \ge \deg B(x)$ do
- 5: $a \leftarrow \text{leading coefficient of } R(x)$
- 6: $b \leftarrow \text{leading coefficient of } B(x)$

- 7: $d \leftarrow \deg R(x) \deg B(x)$
- 8: $Q(x) = Q(x) + \left(\frac{a}{b}\right) x^d$
- 9: $R(x) \leftarrow R(x) \left(\frac{a}{b}\right) x^d B(x)$ **output** Q(x) and R(x)

In each iteration of the while loop, $\deg R(x)$ is decreasing (mono-variant) and the polynomial Q(x)B(x) + R(x) always stays equal to A(x) (invariant). At some point we will eventually get $\deg R(x) \leq \deg B(x)$ which proves the existence of Q(x) and R(x).

Remark. Notice that, if $A(x), B(x) \in \mathbb{R}[x]$ then $Q(x), R(x) \in \mathbb{R}[x]$. This implies that, if $A(x), B(x) \in \mathbb{R}[x]$ and $B(x) \mid A(x)$ then $\frac{A(x)}{B(x)} \in \mathbb{R}[x]$

For example, if $B(x) = x^2 - x + 1$ and $A(x) = x^5 + x^3 + 2x$ then,

$$x^5 + x^3 + 2x = (x^3 + x^2 + x)(x^2 - x + 1) + x$$

In this example, the remainder R(x) = x and the quotient $Q(x) = x^3 + x^2 + x$.

Theorem 1.1.2 (Remainder Theorem)

If P(x) is a polynomial and a is a constant then the remainder upon dividing P(x) by the linear polynomial x - a is equal to P(a).

Proof: From the Division Algorithm we know that there exists polynomials Q(x) and R(x) such that,

$$P(x) = Q(x)(x - a) + R(x)$$

Since $\deg R(x) < \deg(x-a) = 1$, R(x) must be a constant polynomial. Let us assume, R(x) = r. Now letting x = a we get,

$$P(a) = Q(a) \times (a - a) + r \implies P(a) = r$$

Therefore P(a) is the remainder upon dividing P(x) by x - a. QED

Theorem 1.1.3 (Factor Theorem)

The number z will be a root of the polynomial P(x) if and only if P(x) is divisible by x-z.

Proof: We will first prove that, $P(z) = 0 \implies (x - z) \mid P(x)$. Let us assume that r is the remainder upon dividing P(x) by x - z. Now we know from the Remainder Theorem that, P(z) = r. But since z is a root of P(x), P(z) = r = 0. Therefore since r = 0, we must have $(x - z) \mid P(x)$. Using similar arguments one can also prove the converse.

Corollary 1.1.3.1

The number $-\frac{b}{a}$ where $a, b \in \mathbb{R}$ will be a root of the polynomial P(x) if and only if the polynomial P(x) is divisible by ax + b.

If P(x) has the root z then the Factor Theorem guarantees that there exists a polynomial Q(x) such that,

$$P(x) = (x - z) Q(x)$$

Now if,

$$P(x) = (x - z)^m Q'(x), \quad Q'(z) \neq 0$$

then we say that z is root of P(x) of multiplicity m.

For example, in the polynomial $P(x) = (x-2)^2 (x-3)$ the root 2 has multiplicity 2 and the root 3 has multiplicity 1.

§1.2 The Fundamental Theorem of Algebra

Theorem 1.2.1 (The Fundamental Theorem of Algebra)

The Fundamental Theorem of Algebra states that, every polynomial P(x) in $\mathbb{C}[x]$ has at least one root in \mathbb{C}

Corollary 1.2.1.1

If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a polynomial of degree n then,

$$P(x) = k(x - z_1)(x - z_2) \cdots (x - z_n)$$

where, $k = a_n$ and $z_i \in \mathbb{C}$. The numbers $z_1, z_2 \cdots z_n$ are not necessarily distinct.

Proof: This is an immediate consequence of The Fundamental Theorem of Algebra and Factor Theorem.

Figure 1.1: The 4 complex roots of the polynomial $x^4 - 2x^3 + 2x^2 + 8x + 16$

Theorem 1.2.2 (Complex Conjugate Root Theorem)

If $P(x) \in \mathbb{R}[x]$ and z = a + bi where $a, b \in \mathbb{R}$ is a complex root of the polynomial P(x) then $\overline{z} = a - bi$ is also a root of the polynomial P(x).

Proof 1: We have to show that, $P(z) = 0 \implies P(\overline{z}) = 0$. Let $\mathbb{C}' = \{ki : k \in \mathbb{R}\}$ and let \mathbb{R} be the set of real numbers. Now,

$$z^{k} + \overline{z}^{k} = (a+bi)^{k} + (a-bi)^{k}$$

$$= \sum_{j=0}^{k} {k \choose j} b^{j} a^{k-j} i^{j} + \sum_{j=0}^{k} {k \choose j} b^{j} a^{k-j} (-i)^{j}$$

$$= \sum_{j=0}^{k} {k \choose j} b^{j} a^{k-j} \left\{ i^{j} + (-i)^{j} \right\}$$

Notice, $i^j + (-i)^j$ will be zero if j is odd. If j is even then $i^j + (-i)^j = 2i^j = 2(-1)^{\frac{j}{2}}$. Therefore,

$$z^{k} + \overline{z}^{k} = \sum_{j=0}^{k} {k \choose j} b^{j} a^{k-j} \left\{ i^{j} + (-i)^{j} \right\}$$
$$= \sum_{l=0}^{\left\lfloor \frac{k}{2} \right\rfloor} {k \choose 2l} b^{2l} a^{k-2l} \left\{ 2(-1)^{l} \right\}$$
$$= \sum_{l=0}^{\left\lfloor \frac{k}{2} \right\rfloor} {k \choose 2l} 2(-1)^{l} b^{2l} a^{k-2l}$$

Remark. The set, $\{2l: 0 \le l \le \lfloor \frac{k}{2} \rfloor\}$, contains all even integers (including zero) less than or equal to k.

Therefore, $z^k + \overline{z}^k \in \mathbb{R}$ for all $0 \le k \in \mathbb{Z}$. This implies that,

$$P(z) + P(\overline{z}) = \sum_{i=0}^{n} a_i \left(z^i + \overline{z}^i \right) \in \mathbb{R}$$

But since P(z) = 0, $P(z) + P(\overline{z}) \in \mathbb{R}$ implies $P(\overline{z}) \in \mathbb{R}$. Now,

$$\begin{split} z^k - \overline{z}^k &= (a+bi)^k - (a-bi)^k \\ &= \sum_{j=0}^k \binom{k}{j} b^j a^{k-j} i^j - \sum_{j=0}^k \binom{k}{j} b^j a^{k-j} (-i)^j \\ &= \sum_{j=0}^k \binom{k}{j} b^j a^{k-j} \left\{ i^j - (-i)^j \right\} \end{split}$$

If j is even then $i^j - (-i)^j$ will be equal to zero. If j is odd that is j = 2l - 1 for some $l \in \mathbb{N}$ then $i^j - (-i)^j = i^{2l-1} \left(1 - (-1)^{2l-1}\right) = 2i^{2l-1} = 2(-1)^l i^{-1} = 2(-1)^l i^3 = 2(-1)^{l+1} i$. Therefore,

$$z^{k} - \overline{z}^{k} = \sum_{j=0}^{k} {k \choose j} b^{j} a^{k-j} \left\{ i^{j} - (-i)^{j} \right\}$$

$$= \sum_{l=1}^{\left \lfloor \frac{k+1}{2} \right \rfloor} {k \choose 2l-1} b^{2l-1} a^{k-2l+1} 2(-1)^{l+1} i$$

$$= \left(\sum_{l=1}^{\left \lfloor \frac{k+1}{2} \right \rfloor} {k \choose 2l-1} b^{2l-1} a^{k-2l+1} 2(-1)^{l+1} \right) i$$

Remark. The set $\left\{2l-1:1\leq l\leq \left\lfloor\frac{k+1}{2}\right\rfloor\right\}$ contains all odd positive integers less than or equal to k.

Thus, $z^k - \overline{z}^k \in \mathbb{C}'$ for all $k \in \mathbb{N}$. Now,

$$P(z) - P(\overline{z}) = \sum_{i=0}^{n} a_i \left(z^i - \overline{z}^i \right)$$

$$\implies P(z) - P(\overline{z}) = \sum_{i=1}^{n} a_i \left(z^i - \overline{z}^i \right) + a_0 \left(z^0 - \overline{z}^0 \right)$$

$$\implies P(z) - P(\overline{z}) = \sum_{i=1}^{n} a_i \left(z^i - \overline{z}^i \right) \in \mathbb{C}'$$

But since P(z) = 0, $P(z) - P(\overline{z}) \in \mathbb{C}'$ implies $P(\overline{z}) \in \mathbb{C}'$. And so, $P(\overline{z}) \in \mathbb{R} \cup \mathbb{C}' \implies P(\overline{z}) \in \{0\} \implies P(\overline{z}) = 0$. QED

Proof 2(wiki): Since P(z) = 0,

$$P(z) = \sum_{k=0}^{n} a_k z^k = 0$$

Now using the properties of complex conjugates,

$$P(\overline{z}) = \sum_{k=0}^{n} a_k \overline{z}^k = \sum_{k=0}^{n} a_k \overline{z^k} = \sum_{k=0}^{n} \overline{a_k z^k} = \overline{\sum_{k=0}^{n} a_k z^k} = \overline{P(z)} = \overline{0} = 0$$

Therefore, $P(\overline{z}) = 0$.

Corollary 1.2.2.1

If z is a complex root of the polynomial P(x) of multiplicity m then \bar{z} is also a complex root of the polynomial P(x) of multiplicity m. That is, complex conjugate roots have the same multiplicity.

Proof: If $z \in \mathbb{R}$ then obviously z and \bar{z} will have the same multiplicity as $z = \bar{z}$. Let us assume $z \notin \mathbb{R}$ and let m and n be the multiplicity of z and \bar{z} respectively. Without loss of generality, we can assume n < m. Now, let

$$P(x) = (x-z)^m (x-\bar{z})^n Q(x)$$

Now,

$$P(x) = (x-z)^n (x-\bar{z})^n (x-z)^{m-n} Q(x)$$

$$\Longrightarrow \frac{P(x)}{(x-z)^n (x-\bar{z})^n} = (x-z)^{m-n} Q(x)$$

Let, $R(x) = \frac{P(x)}{(x-z)^n(x-\bar{z})^n}$. Since $P(x) \in \mathbb{R}[x]$ and $(x-z)^n(x-\bar{z})^n \in \mathbb{R}[x]$, $R(x) \in \mathbb{R}[x]$. Therefore, $R(x) = (x-z)^{m-n}Q(x) \in \mathbb{R}[x]$. As z is a root of R(x) and $R(x) \in \mathbb{R}[x]$, \bar{z} must also be a root of R(x) which implies the multiplicity of $\bar{z} > n$. But that contradicts our assumption that \bar{z} has multiplicity n. Therefore, m and n must be equal.

Corollary 1.2.2.2

Every polynomial P(x) in $\mathbb{R}[x]$ can be expressed in the form,

$$P(x) = f_1^{e_1}(x) f_2^{e_2}(x) \cdots f_n^{e_n}(x)$$

where the polynomials $f_i(x)$ are either linear or quadratic polynomials in $\mathbb{R}[x]$ and $e_i \in \mathbb{N}$

Corollary 1.2.2.3

If $P(x) \in \mathbb{R}[x]$ and deg P(x) is odd then P(x) has at least on real root.

Figure 1.2: The real root of the cubic polynomial $f(x) = x^3 + 2x^2 + 0.5$

§1.3 Quadratic Polynomials

Definition 1.3.1. A quadratic polynomial is a polynomial of the form,

$$P(x) = ax^2 + bx + c$$

where a, b, c are constants and $a \neq 0$.

One can find the roots of a quadratic polynomial using the well known quadratic formula,

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The value $\Delta = b^2 - 4ac$ is called the *discriminant* of the quadratic polynomial. The discriminant gives us the following informations about the roots of the quadratic polynomial,

- $\Delta > 0 \iff x_1, x_2 \in \mathbb{R} \text{ and } x_1 \neq x_2$
- $\Delta = 0 \iff x_1, x_2 \in \mathbb{R} \text{ and } x_1 = x_2$
- $\Delta < 0 \iff x_1, x_2 \in \mathbb{C} \text{ and } x_1 \neq x_2$

Theorem 1.3.1

The value $P\left(-\frac{b}{2a}\right)$ is either the maximum (if a>0) or the minimum value (if a<0) of the quadratic polynomial, $P(x)=ax^2+bx+c$

Proof:

$$P(x) = ax^{2} + bx + c$$

$$\implies P(x) = a\left(x^{2} + 2\frac{b}{2a}x + \frac{b^{2}}{4a^{2}}\right) + c - \frac{b^{2}}{4a}$$

$$\implies P(x) = a\left(x + \frac{b}{2a}\right)^{2} + \left(c - \frac{b^{2}}{4a}\right)$$

If a < 0 then,

$$P(x) = \left(c - \frac{b^2}{4a}\right) - |a| \left(x + \frac{b}{2a}\right)^2$$

P(x) will reach its maximum when $x + \frac{b}{2a} = 0 \implies x = -\frac{b}{2a}$. If a > 0 then,

$$P(x) = \left(c - \frac{b^2}{4a}\right) + a\left(x + \frac{b}{2a}\right)^2$$

P(x) will reach its minimum when $x + \frac{b}{2a} = 0 \implies x = -\frac{b}{2a}$.

(b) Minimum of $f(x) = 0.5x^2 - 2x - 1.5$

§1.4 Roots of Cubic Polynomials

Finding the roots of a cubic polynomial is quite hard. So, we are going to first try to solve the cubic polynomial,

$$f(x) = x^3 + px + q$$

where $p, q \in \mathbb{R}$. Setting p = -3ab and $q = a^3 + b^3$ we get,

$$f(x) = x^3 + a^3 + b^3 - 3abx$$

Now using the formula,

$$a^{3} + b^{3} + c^{3} - 3abc = (a+b+c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

we get,

$$f(x) = (x + a + b)(x^{2} - (a + b)x + a^{2} + b^{2} - ab)$$

Therefore the 3 roots of f are,

$$x_{1} = -a - b$$

$$x_{2}, x_{3} = \frac{a + b \pm \sqrt{a^{2} + b^{2} + 2ab - 4a^{2} - 4b^{2} + 4ab}}{2}$$

$$= \frac{a + b \pm \sqrt{-3a^{2} - 3b^{2} + 6ab}}{2}$$

$$= \frac{a + b \pm \sqrt{-3(a - b)^{2}}}{2}$$

$$= \frac{a + b \pm \sqrt{3}i(a - b)}{2}$$

$$= \frac{(1 + \sqrt{3}i)a \pm (1 - \sqrt{3}i)b}{2}$$

$$= \frac{1 + \sqrt{3}i}{2}a \pm \frac{1 - \sqrt{3}i}{2}b$$

Now we have express the root in terms of p, q that is, we have to express a, b in terms of p, q. Now,

$$q = a^{3} + b^{3}$$
$$p = -3ab$$
$$\implies a^{3}b^{3} = -\frac{p^{3}}{27}$$

Let $u = a^3$ and $v = b^3$. Notice that u and v are the roots of the quadratic polynomial,

$$P(x) = x^{2} - (u+v)x + uv = x^{2} - q^{3}x - \frac{p^{3}}{27}$$

Using the quadratic equation we get,

$$u, v = \frac{q^3 \pm \sqrt{q^6 + \frac{4}{27}p^3}}{2}$$
$$a, b = \sqrt[3]{\frac{q^3}{2} \pm \frac{\sqrt{q^6 + \frac{4}{27}p^3}}{2}}$$
$$= \sqrt[3]{\frac{q^3}{2} \pm \sqrt{\frac{q^6}{4} + \frac{p^3}{27}}}$$

So let's now try to solve the cubic equation using the results we've got so far,

$$f(x) = x^3 - x^2 - 2x + 1$$

First we have to use substitution to transform the polynomial into another polynomial of the form,

$$x^3 + px + q$$

Since every polynomial can be uniquely defined by its coefficients, we can associate or express a polynomial of degree n by a unique point in n+1 dimensional space. For example we can express the polynomial,

$$(1) \cdot x^3 + (-1) \cdot x^2 + (-2) \cdot x + (1)$$

as,

$$(1) \cdot x^3 + (-1) \cdot x^2 + (-2) \cdot x + (1) \to (1, -1, -2, 1)$$

Likewise, the point (5, -1, 0, 1) can be used to represent the polynomial,

$$(5,-1,0,1) \rightarrow 5x^3 - x^2 + 1$$

Notice that,

$$(x_3, x_2, \dots, x_0) + (y_3, y_2, \dots, y_0) = (x_3 + y_3, x_2 + y_2, \dots, x_0 + y_0)$$

Say that there exists a polynomial u(x) = (x+n) where $n \in \mathbb{C}$ such that,

$$x^{3} - x^{2} - 2x + 1 = u(x)^{3} + pu(x) + q$$

This equation can also be represented as,

$$(1,-1,-2,1) = (1,3n,3n^2,n^3) + (0,0,p,pn) + (0,0,0,q) \implies (1,-1,-2,1) = (1,3n,3n^2+p,n^3+pn+q)$$

This gives us the system of equation,

$$3n = -1$$
$$3n^2 + p = -2$$
$$n^3 + pn + q = 1$$

Therefore,

$$n = -\frac{1}{3}$$
$$p = -\frac{7}{3}$$
$$q = \frac{7}{27}$$

Thus,

$$x^{3} - x^{2} - 2x + 1 = \left(x - \frac{1}{3}\right)^{3} - \frac{7}{3}\left(x - \frac{1}{3}\right) + \frac{7}{27} \implies f(x) = g\left(x - \frac{1}{3}\right)$$

where

$$g(x) = x^3 - \frac{7}{3}x + \frac{7}{27}$$

Now we can use the results we've proved earlier to solve the polynomial g(x). After that we add $\frac{1}{3}$ to the 3 roots of g(x). The 3 numbers we will get by adding $\frac{1}{3}$ are the 3 roots of f(x).

§1.5 Lagrange Interpolation

Theorem 1.5.1 (Lagrange Interpolation)

Let $\alpha_0, \alpha_1, \dots, \alpha_n$ be distinct real numbers and $\beta_0, \beta_1, \dots, \beta_n$ be another set of n+1 real numbers. Then there exists a unique polynomial,

$$P(x) = \sum_{i=0}^{n} \left(\prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - \alpha_j}{\alpha_i - \alpha_j} \right) \beta_i$$

with deg $P(x) \le n$ such that $P(\alpha_k) = \beta_k$ for all $0 \le k \le n$.

Proof: Let,

$$D_k(x) = \prod_{\substack{j=0\\j\neq k}}^n \frac{x - \alpha_j}{\alpha_k - \alpha_j} = \frac{(x - \alpha_0)(x - \alpha_1)\cdots(x - \alpha_{k-1})(x - \alpha_{k+1})\cdots(x - \alpha_n)}{(\alpha_k - \alpha_0)(\alpha_k - \alpha_1)\cdots(\alpha_k - \alpha_{k-1})(\alpha_k - \alpha_{k+1})\cdots(\alpha_k - \alpha_n)}$$

If $x = \alpha_k$ then $D_k(x) = 1$ else if $x = \alpha_i$ where $i \neq k$ then $D_k(x) = 0$. Thus the polynomial,

$$P(x) = \sum_{k=0}^{n} D_k(x)\beta_k$$

will be equal to β_k for all $x = \alpha_k$. It is also clear that the polynomial P(x) has degree at most n since deg $D_k(x) = n$ for all $0 \le k \le n$.

Now suppose that there exists two polynomials $P_1(x)$ and $P_2(x)$, with degree at most n, such that,

$$P_1(\alpha_k) = P_2(\alpha_k) = \beta_k, \ 0 \le k \le n$$

Therefore the polynomial $Q(x) = P_1(x) - P_2(x)$ has n+1 distinct roots. But that is impossible since we know that $\deg Q(x) \leq n$ and a polynomial of degree n has at most n distinct roots. This proves that the polynomial P(x) must be unique, that is, P(x) is the only polynomial, with degree at most n, such that, $P(\alpha_k) = \beta_k$ for all $0 \leq k \leq n$

Figure 1.4: Plot of a Lagrange Polynomial

Figure 1.4 shows the Lagrange polynomial going through the points,

$$\{(1,1),(2,3),(0,-1),(5,4),(-5,-3),(4,4.5)\}$$

We can easily compute Lagrange polynomials in python using sympy.

Problem 1.5.1

Let P(x) be a polynomial of degree n such that, $P(k) = 2^k$ for all $0 \le k \le n$. Find P(n+1).

Solution: From Theorem 1.5.1 we have,

$$P(x) = \sum_{k=0}^{n} 2^k D_k(x)$$

where,

$$D_k(x) = \frac{x(x-1)\cdots(x-k+1)(x-k-1)(x-k-2)\cdots(x-n+1)(x-n)}{(k)(k-1)\cdots(1)(-1)(-2)\cdots(k-n+1)(k-n)}$$
$$= (-1)^{n-k} \frac{x(x-1)\cdots(x-k+1)(x-k-1)(x-k-2)\cdots(x-n+1)(x-n)}{k!(n-k)!}$$

Therefore,

$$P(n+1) = \sum_{k=0}^{n} (-1)^{n-k} 2^k \frac{(n+1)n(n-1)\cdots(n-k+2)(n-k)(n-k-1)\cdots1}{k!(n-k)!}$$

$$= \sum_{k=0}^{n} (-1)^{n-k} 2^k \frac{(n+1)!}{k!(n-k)!(n-k+1)}$$

$$= \sum_{k=0}^{n} (-1)^{n-k} 2^k \binom{n+1}{k}$$

$$= (-1) \left(\sum_{k=0}^{n+1} \binom{n+1}{k} 2^k (-1)^{n-k+1}\right) + 2^{n+1}$$

$$= (-1) (2-1)^{n+1} + 2^{n+1}$$

$$= 2^{n+1} - 1$$