РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>2</u>

дисциплина: Сетевые технологии

Студент: Саинт-Амур Измаэль

Группа: НПИбд-02-20

МОСКВА

2022 г.

Цель:

Изучение принципов технологий Ethernet и Fast Ethernet и практическое освоение методик оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

Ход работы:

Первая модель представляет собой, набор правил построения сети

- **у** длина каждого сегмента витой пары должна быть меньше 100 м;
- **у** длина каждого оптоволоконного сегмента должна быть меньше 412 м;
- ▶ если используются кабели MII (Media Independent Interface), то каждый из них должен быть меньше 0,5 м;
- эзадержки, вносимые кабелем МІІ, не учитываются при оценке временных параметров сети, так как они являются составной частью задержек, вносимых оконечными устройствами (терминалами) и повторителями. Стандартом определены два класса повторителей:
- ▶ повторители класса II немедленно передают полученные сигналы без всякого преобразования, поэтому к ним можно подключать только сегменты, использующие одинаковые способы кодирования данных; можно использовать не более двух повторителей класса II в одном домене коллизий.

Тип повторителя	Все сегменты ТХ или Т4	Все сегменты FX	Сочетание сегментов (Т4 и ТХ/FX)	Сочетание сегментов (ТХ и FX)
Сегмент, соеди- няющий два узла без повторителей	100	412,0	-	-
Один повтори- тель класса I	200	272,0	231,0	260,8
Один повтори- тель класса II	200	320,0	-	308,8
Два повторителя класса II	205	228,0	-	216,2

Табл. 1 Предельно допустимый диаметр домена коллизий в Fast Ethernet

Предельно допустимый диаметр домена коллизий в Fast Ethernet равен 205. Следовательно диаметр домена коллизий не должен быть больше 205.

Также для всех расчётов мы будем использовать Удельное время двойного оборота (би/м) для витой пары категории 5 (1.112)

время двойного оборота для наихудшего пути в нашей системе не должно превышать 512.

Рис. 2.4. Топология сети

Конфигурация №1

No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 96 м	ТХ, 92 м	ТХ, 80 м	ТХ, 5 м	ТХ, 97 м	ТХ, 97 м

Первая модель:

Оценка в соответствии с первой моделью Диаметр домена коллизий:

96 + 97 + 5 = 198, это меньше чем 205, следовательно, конфигурация удовлетворяет первой модели

Вторая модель:

Α	В	С	D
Сегмента	Длина сегмента	Время двойного оборота, би	
сегмент 1	96	106.752	
сегмент 2	92	100	
сегмент 3	80	92	
сегмент 4	5	5.56	
сегмент 5	97	92	
сегмент 6	97	107.864	
Итого	198	504.176	

Рассчитанное значение времени двойного оборота превышает максимальное допустимое значение 512 би, то 504,176 меньше чем 512 следовательно сеть считается работоспособной.

Конфигурация №2

2.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 95 м	ТХ, 85 м	ТХ, 85 м	ТХ, 90 м	ТХ, 90 м	ТХ, 98 м

Первая модель:

Оценка в соответствии с первой моделью Диаметр домена коллизий:

95 + 90 + 98 = 283, это больше чем 205, следовательно, конфигурация не удовлетворяет первой модели

Вторая модель:

Сегмента	Длина сегмента	Время двойного оборота, би
сегмент 1	95	105.64
сегмент 2	85	92
сегмент 3	85	92
сегмент 4	90	100.08
сегмент 5	90	100
сегмент 6	98	108.976
Итого	283	598.696

Рассчитанное значение времени двойного оборота превышает максимальное допустимое значение 512 би, то 598,696 больше чем 512 следовательно сеть считается не работоспособной.

Конфигурация №3

3.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 5 м	ТХ, 90 м	ТХ, 100 м	

Первая модель:

Длина последнего сегмента 100м. Следовательно конфигурация не удовлетворяет первой модели

Вторая модель:

2	5	
Сегмента	Длина сегмента	Время двойного оборота, би
сегмент 1	60	66.72
сегмент 2	95	92
сегмент 3	10	92
сегмент 4	5	5.56
сегмент 5	90	100
сегмент 6	100	111.2
Итого		467.48

Рассчитанное значение времени двойного оборота превышает максимальное допустимое значение 512 би, то 467,48 меньше чем 512 следовательно сеть считается работоспособной.

Конфигурация №4

4.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 65 м	ТХ, 10 м	ТХ, 4 м	ТХ, 90 м	ТХ, 80 м

Первая модель:

Оценка в соответствии с первой моделью Диаметр домена коллизий:

70 + 4 + 80 = 154, это меньше чем 205, следовательно, конфигурация удовлетворяет первой модели

Вторая модель:

	Длина сегмента	Время двойного оборота, би
сегмент 1	70	77.84
сегмент 2	65	92
сегмент 3	10	92
сегмент 4	4	4.448
сегмент 5	90	100
сегмент 6	80	88.96
Итого	154	455.248

Рассчитанное значение времени двойного оборота превышает максимальное допустимое значение 512 би, то 455,248 меньше чем 512 следовательно сеть считается работоспособной.

5.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 15 м	ТХ, 90 м	ТХ, 100 м

Первая модель:

Длина последнего сегмента 100м. Следовательно конфигурация не удовлетворяет первой модели

Вторая модель:

Сегмента	Длина сегмента	Время двойного оборота, би
сегмент 1	60	66.72
сегмент 2	95	92
сегмент 3	10	92
сегмент 4	15	16.68
сегмент 5	90	100
сегмент б	100	111.2
Итого		478.6

Рассчитанное значение времени двойного оборота превышает максимальное допустимое значение 512 би, то 478,6 меньше чем 512 следовательно сеть считается работоспособной.

Конфигурация №6

6.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 98 м	ТХ, 10 м	ТХ, 9 м	ТХ, 70 м	ТХ, 100 м

Первая модель:

Длина последнего сегмента 100м. Следовательно конфигурация не удовлетворяет первой модели

Вторая модель:

Δ	А	В	C	D
1	Сегмента	Длина сегмента	Время двойного оборота, би	
2	сегмент 1	70	77.84	
3	сегмент 2	98	92	
4	сегмент 3	10	92	
5	сегмент 4	9	10.008	
5	сегмент 5	70	100	
7	сегмент 6	100	111.2	
3				
9	Итого		483.048	
0				
1				
2				
2				

Рассчитанное значение времени двойного оборота превышает максимальное допустимое значение 512 би, то 483,048 меньше чем 512 следовательно сеть считается работоспособной.

вывод:

Я изучил принципы технологий Ethernet и Fast Ethernet и практически освоил методы оценки работоспособности сети, построенной на базе технологии Fast Ethernet.