1 Question de cours

Réflexion et transmission d'une onde EM entre deux milieux d'indice n_1 et n_2 sous incidence normale.

2 Modèle d'une tornade

L'écoulement de l'air pour une tornade est supposé incompressible à symétrie cylindrique autour d'un axe vertical noté Oz. On repère un point $M(r, \theta, z)$ de cet écoulement avec une vitesse $\vec{v}(M) = v(r) \cdot \vec{e_{\theta}}$.

Cet écoulement peut être caractérisé par un vecteur tourbillon $\vec{\Omega}$:

$$\vec{\Omega} = \begin{cases} \Omega_0 \cdot \vec{e_z}, & r \leq a \\ 0, & r > a \end{cases}$$

- 1. Par une étude analogue à celle d'une distribution de courant par le Théorème d'Ampère, déterminer l'expression v(r) en tout point M.
- 2. On appelle **Vortex** le cas limite pour lequel $a \to 0$ et $\Omega_0 \to \infty$ avec $\Omega_0 \cdot a^2 = \frac{\Gamma}{2\pi}$ où Γ est une constante finie. Montrer que la vitesse dérive alors d'un potentiel Φ tel que $\vec{v} = \nabla \Phi$ pour $r \neq 0$.

3 Expérience de Fizeau

Le dispositif ci-dessous est constitué d'une source ponctuelle (S) monochromatique de longueur d'onde λ placée au foyer objet d'une lentille L_1 , d'un tube coudé transparent de parois d'épaisseur e et d'indice optique n_e , contenant un liquide d'indice n initialement au repos, d'une plaque percée de deux trous distants de a, d'une lentille L_2 (de distance focale f_2) et d'un écran (E).

- 1. À quelle distance doit-on placer l'écran (E) de la lentille L_2 pour y faire interférer des rayons issus des deux trous et inclinés d'un même angle ?
- 2. Construire deux rayons issus de (S) interférant en un point M placé sur l'écran (avec $M \neq O$).
- 3. Établir la différence de chemin optique entre les deux rayons et calculer l'interfrange i de la figure d'interférence observée. Dans la suite, une pompe met en mouvement le liquide à la vitesse $u \ll v$ où v est la célérité de la lumière dans le liquide. On observe un déplacement du système de franges sur l'écran.
- 4. En adoptant la loi classique de composition des vitesses, exprimer les temps t_B et t_H mis par la lumière pour traverser les tubes bas et haut puis la différence Δt des temps de parcours entre les rayons interférant en O.
- 5. En déduire que la différence de chemin optique en ce point vaut $\delta_O = \frac{2n^2u\ell}{c}$.
- 6. Dans quel sens défilent les franges sur l'écran? Calculer le déplacement x_0 de la frange d'ordre 0.
- 7. Cette expérience, réalisée en 1851, a montré un déplacement inférieur à x_0 . Que peut-on en conclure ?

8. La véritable correction relativiste de la vitesse de la lumière dans un fluide en mouvement correspond à la loi d'entraînement de Fresnel (non relativiste à l'époque), donnée par la formule suivante :

$$c' = \frac{c}{n} + u\left(1 - \frac{1}{n^2}\right)$$

Quelle condition doit vérifier c^\prime ? Montrer que c'est bien le cas.

