

位置平均数

授课教师: 洪兴建

浙江财经大学数据科学学院

位置平均数

引例

定义

- 口特殊位置上的数据作为代表值。
- 口常用的位置平均数有中位数、众数。

中位数 (Median) 的含义

• 将数据按大小顺序排列,居于中间位置的数据。

中位数的计算: 原始数据

• 对于未分组的原始资料:

$$x_1 \leq x_2 \leq x_3 \leq \cdots \leq x_n$$

$$M_{e} = \begin{cases} x_{\frac{n+1}{2}} & (n \text{为奇数}) \\ x_{\frac{n}{2}} + x_{\frac{n}{2}+1} \\ \frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2} & (n \text{为偶数}) \end{cases}$$

中位数的计算: 单项数列

例1:某车间50名工人日加工零件数分组表					
零件数	频数	零件数	频数	零件数	频数
(个)	(人)	(个)	(人)	(个)	(人)
107	1	119	1	128	2
108	2	120	2	129	1
110	1	121	1	130	1
112	2	122	4	131	1
113	1	123	4	133	2
114	1	124	3	134	2
115	1	125	2	135	1
117	3	126	2	137	1
118	3	127	3	139	2

位置平均数

中位数的计算:单项数列

零件数	频数	向上累计数	零件数	频数	向上累计数	零件数	频数	向上累计数
107	1	1	119	1	16	128	2	39
108	2	3	120	2	18	129	1	40
110	1	4	121	1	19	130	1	41
112	2	6	122	4	23	131	1	42
113	1	7	123	4	27	133	2	44
114	1	8	124	3	30	134	2	46
115	1	9	125	2	32	135	1	47
117	3	12	126	2	34	137	1	48
118	3	15	127	3	37	139	2	50

中位数的计算

・单项数列,直接按 $\frac{\sum f}{2}$ 求出中位数所在组的位置,组值即是中位数。

中位数的计算: 组距数列

例2:某企业50名工人加工零件如下表,计算50名工人日加工零件数的中位

数

按零件数分组(个)	频数(人)	向上累计(人)	向下累计(人)
105~110	3	3	50
110~115	5	8	47
115~120	8	16	42
120~125	14	30	34
125~130	10	40	20 🏠
130~135	6	46	10
135~140	4	50	4

中位数

中位数的计算: 组距数列

• 由组距数列确定中位数,先按 $\frac{\sum f}{2}$ 求出中位数所在组的位置然后再按下限公式或上限公式确定中位数。

$$M_e = L + \frac{\frac{\sum f}{2} - S_{m-1}}{f_m} \times i$$

$$M_e = U - \frac{\frac{\sum f}{2} - S_{m+1}}{f_m} \times i$$

L、U分别为中位数所在组的下限和上限 Sm-1为中位数所在组以下的累计次数。 Sm+1为中位数所在组以上的累计次数。 fm为中位数所在组的次数

中位数

中位数特点

- □ 不受极值影响
- □ 缺乏敏感性

分位数

- 处于等分点位置的数值
- · 常用的有四分位数(Quartile)、十分位数和百分位数
 - ▶ 四分位数有几个?
 - ▶ 四分位数的公式:

序号
$$Q_L = \frac{n+1}{4}$$

$$Q_m = M_e = \frac{2(n+1)}{4}$$

$$Q_U = \frac{3(n+1)}{4}$$

定义

问题: 鞋店老板进货时, 35-45码的进货数量相

等吗?

□Mode: 总体中出现次数最多的标志值

离散型数据的众数

无众数: 10 5 9 12 6 8

一个众数: 6 5 9 8 5 5

多个众数: 25 28 28 36 42 42

数值型分组数据的众数

- >相邻两组的频数相等时,组中值
- ▶相邻两组的频数不等时,近似有:

$$M_{o} = L + \frac{\Delta_{1}}{\Delta_{1} + \Delta_{2}} \times i = U - \frac{\Delta_{2}}{\Delta_{1} + \Delta_{2}} \times i$$

Δ1为众数组次数减去前一组次数, Δ2位众数 组次数减去后一组次数, i为众数组次数

例3:

某车间50名工人日加工零件数分组表				
按零件数分组	频数 (人)	累积频数		
105~110	3	3		
110~115	5	8		
115~120	8	16		
120~125	14	30		
125~130	10	40		
130~135	6	46		
135~140	4	50		
合计	50	_		

$$M_0 \doteq 120 + \frac{14 - 8}{(14 - 8) + (14 - 10)} \times 5 = 123(\uparrow)$$

众数的特点

- ➤不受极值影响
- ▶均匀分布无众数
- ▶ 众数偏向次数较多的组
- ➤缺乏敏感性

中位数、众数和算术平均数的关系

1.对称分布(正态分布)时

对称分布

$$\overline{x} = M_e = M_o$$

2.左偏分布时

左偏分布

$$\overline{x} < M_e < M_o$$

中位数、众数和算术平均数的关系

3.右偏分布时

右偏分布

$$M_o > M_e > \overline{x}$$

4.适度偏态时

$$M_o - \overline{x} = 3(M_e - \overline{x})$$

皮尔逊<mark>经验</mark>: 众数与算术平均数的距离约为中位数与算术平均数距离的3倍

中位数、众数和算术平均数的关系

例4:一组技术人员月薪的众数为7000元,算术平均数为10000元,适度偏斜时中位数近似值是多少?

$$M_o - \overline{x} = 3(M_e - \overline{x})$$

$$M_e = \frac{1}{3}(M_0 + 2X) = \frac{1}{3}(7000 + 2 \times 10000) = 9000(元)$$

 $X = \frac{1}{3}(M_0 + 2X) = \frac{1}{3}(7000 + 2 \times 10000) = 9000(元)$