

Séance 6. Statistique bivariée

RELATION ENTRE DEUX VARIABLES QUALITATIVES

Tableau de contingence ou tri-croisé

- Tableau d'ordre 2 : croise 2 variables et permet d'étudier leur relation
- Chacune de ces 2 variables possède des modalités (catégories).
 - Les modalités de la première composent les lignes du tableau.
 - Les modalités de la seconde composent les colonnes du tableau
- Par convention : la variable **indépendante** (explicative) est présentée en **ligne** et la variable **dépendante** (à expliquer) en **colonne**

L'utilité des % (vs. effectifs)

- Les jeunes (18-24 ans) votent-ils :
 - plus ou moins que l'ensemble de l'électorat pour Nicolas Sarkozy ?
 - plus ou moins que les plus de 60 ans ?

•	L'électorat	de	Ségolène	Royal	est-il	•
---	-------------	----	----------	-------	--------	---

- plus jeune que l'électorat en général ?
- plus jeune que celui de Nicolas Sarkozy?
- -> Délicat à lire avec les seuls effectifs

age5	gauche	droite	Total
18-24 ans 25-34 ans 35-44 ans 45-59 ans 60 et+	245 326 326 410 366	140 301 300 406 613	385 627 626 816 979
Total	1,673	1,760	3,433

Va+n2 8807

Tableaux de pourcentages en ligne

	votp2_8	807		
age5	gauche	droite	Total	Formule ?
18-24 ans	245 63.64	140 36.36	385 100.00	(effectif case / effectif marginal ligne)*100 (245/385)*100 = 63,64%
25-34 ans	326 51.99	301 48.01	627 100.00	
35-44 ans	326 52.08	300 47.92	626 100.00	Intérêt ? On observe que le
45-59 ans	410 50.25	406 49.75	816 100.00	vote pour Nicolas Sarkozy augmente
60 et+	366 37.39	613 62.61	979 100.00	avec l'âge
Total	1,673 48.73	1,760 51.27	3,433 100.00	

Tableaux de pourcentages en colonne

Formule: (effectif case/effectif marginal colonne)*100 (366/1673)*100 = 21,88%

	votp2_	_8807	
age5 	gauche	droite	Total
18-24 ans	245	140	385
	14.64	7.95	11.21
25-34 ans	326	301	627
	19.49	17.10	18.26
35-44 ans	326	300	626
	19.49	17.05	18.23
45-59 ans	410	406	816
	24.51	23.07	23.77
60 et+	366 21.88	613 34.83	979 28.52
Total	1,673	1,760	3,433
	100.00	100.00	100.00

Clef de lecture : sur 100 votants pour Ségolène Royal, 21,88 sont sexagénaires et plus

Intérêt : l'électorat de Ségolène Royal se compose à plus de 53% de moins de 44 ans (42% pour Nicolas Sarkozy)

Tableaux de pourcentage total (= en ligne et en colonne)

	votp2	_8807	
age5	gauche	droite	Total
18-24 ans	245	140	385
	7.14	4.08	11.21
25-34 ans	326	301	627
	9.50	8.77	18.26
35-44 ans	326	300	626
	9.50	8.74	18.23
45-59 ans	410	406	816
	11.94	11.83	23.77
60 et+	366	613	979
	10.66	17.86	28.52
Total	1,673	1,760	3,433
	48.73	51.27	100.00

Formule? (effectif cas / effectif total)*100 (300/3433)*100 = 8,74%

Intérêt assez faible ...

Comparaison de pourcentages : les écarts à la moyenne

age5	Gauche	Droite	Total	age5	Gauche	Droite	age5	Gauche	Droite
18-24 ans	64	36	100%	18-24 ans	64-49	36-51	18-24 ans	15	-15
25-34 ans	52	48	100%	25-34 ans	52-49	48-51	25-34 ans	3	-3
35-44 ans	52	48	100%	35-44 ans	52-49	48-51	35-44 ans	3	-3
45-59 ans	50	50	100%	45-59 ans	50-49	50-51	45-59 ans	1	-1
60 et+	37	63	100%	60 et+	37-49	63-51	60 et+	-12	12
Total	49	51	100%	Total	49	51	Total	49	51

Interprétation:

Les moins de 25 ans ont voté davantage pour Ségolène Royal que la moyenne (+15 points) tandis que les personnes âgées de plus de 60 ans ont moins voté pour Ségolène Royal que la moyenne (-12 points).

Chacune des cases contient la différence, en points de pourcentage entre la fréquence conditionnelle pour la case considérée et la fréquence moyenne Écart = fréquence conditionnelle – fréquence moyenne

- Comment savoir si les différences observées dans notre tri-croisé sont significatives ?
- Sont-elles dues au hasard de l'échantillonnage ? ...
- ... ou peut-on **inférer** les écarts observés dans l'échantillon à la population d'intérêt ?
- Le test du χ^2 permet de trancher

Les tests statistiques

- Le principe général :
 - On formule une hypothèse « nulle » (H0) : il n'y a pas de lien entre les deux variables = les deux variables sont indépendantes
 - On cherche à rejeter cette hypothèse nulle (avec un risque d'erreur)
- Dans la pratique pour le χ^2 :
 - On calcule un score (un nombre)
 - o On compare ce nombre calculé à un nombre théorique
 - On conclue

Spoiler alert!

•
$$\chi^2 = \sum \frac{(effectif\ observ\'e - effectif\ th\'eorique)^2}{effectif\ th\'eorique}$$

- Dans la vraie vie vous n'aurez pas à le faire à la main
- Jamovi (ou autre) bossera pour vous pour la partie calcul
- Mais il est important de comprendre le principe général et la logique pour savoir comment interpréter les résultats et en conclure quelque chose de pertinent

Hypothèse nulle et test du χ²

- Hypothèse nulle (H0) : les deux variables X et Y sont indépendantes
 - o = « absence de lien entre les deux variables »
- Comparaison entre les effectifs observés et les effectifs théoriques
 - o = ce qu'on aurait observé dans le tri croisé si les variables étaient totalement indépendantes
 - o comment on fait?
- Petit point vocabulaire et synonymes
 - o Effectif observé, fréquence observée (effectifs observés dans Jamovi)
 - o Effectif théorique/attendu ; fréquence théorique/attendue (quantités attendues dans Jamovi)

Le test du χ^2

Effectifs observés:

	Réussite au bac	Echec au bac	Total
Parents diplômés du supérieur	160	40	200
Parents non diplômés du sup	100	100	200
Total	260	140	400

Mais quels sont les effectifs théoriques (cf. l'hypothèse nulle)?

Le test du χ^2 : effectifs théoriques

	Réussite au bac	Echec au bac	Total
Parents diplômés du			200
supérieur			200
Parents non diplômés			200
du sup			200
Total	260	140	400

Effectifs théoriques :

	Réussite au bac	Echec au bac	Total
Parents diplômés du supérieur	130	70	200
Parents non diplômés du sup	130	70	200
Total	260	140	400

hypothèse nulle: il devrait y avoir autant de bacheliers chez les enfants de parents diplômés du supérieur que chez les parents non diplômés du supérieur

Pour chaque case on multiplie les marges puis on les divise par l'effectif total

- = (marge colonne * marge ligne) / effectif total
- = (260 * 200) / 400 = 130

Le test du χ^2 : calcul

	Réussite au bac		Echec	au bac	Total
Parents diplômés du supérieur	160	130	40	70	200
Parents non diplômés du sup	100	130	100	70	200
Total	260		140		400

Effectifs observés et théoriques

Formule du
$$\chi^2$$
:
$$\chi^2 = \sum \frac{(effectif\ observ\acute{e}\ -\ effectif\ th\acute{e}orique)^2}{effectif\ th\acute{e}orique}$$

Dans notre cas:
$$\frac{\left(160-130\right)^2}{130} \oplus \frac{\left(40-70\right)^2}{70} \oplus \frac{\left(100-130\right)^2}{130} \oplus \frac{\left(100-70\right)^2}{70}$$
$$= 30^2/130 + (-30^2)/70 + (-30^2)/130 + 30^2/70$$
$$= 6.9 + 12.8 + 6.9 + 12.8 = 39.2$$

La table du χ²

- On compare le χ^2 calculé à un χ^2 critique lu dans la table de distribution du Chi2
 - https://www.chisquaretable.net/
- Valeur critique dépend de la taille du tableau croisé
 - « degrés de libertés » : ddl = (nb lignes -1)*(nb colonnes -1)
 - dans notre exemple, ddl = (2-1)*(2-1) = 1
- La table nous donne le X² minimum pour que l'on puisse rejeter l'hypothèse nulle d'indépendance avec un seuil de risque défini (généralement ≤5% en shs)
- Si X² calculé > X² théorique = rejet de l'hypothèse nulle / existence d'un lien statistique

	P										
DF	0.995	0.975	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.002	0.001
1	0.0000393	0.000982	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.550	10.828
2	0.0100	0.0506	3.219	4.605	5.991	7.378	7.824	9.210	10.597	12.429	13.816
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.860	16.924	18.467
5	0.412	0.831	7.289	9.236	11.070	12.833	13.388	15.086	16.750	18.907	20.515
6	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458
7	0.989	1.690	9.803	12.017	14.067	16.013	16.622	18.475	20.278	22.601	24.322
8	1.344	2.180	11.030	13.362	15.507	17.535	18.168	20.090	21.955	24.352	26.124
9	1.735	2.700	12.242	14.684	16.919	19.023	19.679	21.666	23.589	26.056	27.877
10	2.156	3.247	13.442	15.987	18.307	20.483	21.161	23.209	25.188	27.722	29.588
11	2.603	3.816	14.631	17.275	19.675	21.920	22.618	24.725	26.757	29.354	31.264
12	3.074	4.404	15.812	18.549	21.026	23.337	24.054	26.217	28.300	30.957	32.909
13	3.565	5.009	16.985	19.812	22.362	24.736	25.472	27.688	29.819	32.535	34.528
14	4.075	5.629	18.151	21.064	23.685	26.119	26.873	29.141	31.319	34.091	36.123
15	4.601	6.262	19.311	22.307	24.996	27.488	28.259	30.578	32.801	35.628	37.697

Conclure

- Dans notre exemple : 39,2>3,841, on rejette donc l'hypothèse nulle au seuil de risque de 5%
- Il existe un lien statistiquement significatif entre nos variables
- = Il existe un lien entre le niveau de diplôme des parents et la réussite au baccalauréat

Les limites du χ²

- Plus l'échantillon est large, plus on a de chances d'avoir des relations significatives
- Significativité substantielle et la significativité statistique :
 - o Dépend de la taille d'échantillon et du nombre de cases du tableau
 - o Renvoie à la question de toute recherche sociologique : il faut une théorie derrière un tableau
 - Applicable à tous les travaux et toutes les méthodes statistiques
- Les variables « cachées » (aussi appelées spurious correlation)
- Le test du χ^2 ne permet pas de conclure sur **l'intensité** du lien entre les variables

Le V de Cramer

- Le V de Cramer permet de pallier ces limites :
 - Ne dépend pas des effectifs et du nombre de cases d'un tableau

$$\sqrt{\frac{\chi^2}{n \times [\min(l,c) - 1]}}$$

```
m = le m minimum (nombre de modalités var1 et var2) - 1
ou l, c - l
n = l'effectif total
```

- Varie de 0 à 1
 - 0= pas de lien
 - l= lien parfait
 - Devient intéressant vers 0,15
- Permet donc de hiérarchiser des liens statistiques

Le V de Cramer

Retour à l'exemple des résultats au bac :

$$V = \sqrt{X^2} / (m \text{ min - 1}) \text{ n total}$$

= $\sqrt{39,2} / (1 \text{ x } 400)$
= $\sqrt{39,2} / 400$
= $\sqrt{0,098}$
= 0,31

→ La relation entre le niveau de diplôme des parents et la réussite au bac est <u>significative</u>

Et dans Jamovi?

- Retrouver tout ça dans Jamovi
- L'appliquer à vos données

ΡI	Opserve	742	220	970
	Attendu	761	209	970
RS	Observé	1454	448	1902
	Attendu	1493	409	1902
SE	Observé	1398	73	1471
	Attendu	1155	316	1471
SI	Observé	830	417	1247
	Attendu	979	268	1247
SK	Observé	714	332	1046
	Attendu	821	225	1046
Total	Observé	35505	9728	45233
	Attendu	35505	9728	45233

16313 χ			
	Valeur	ddl	р
χ²	2016	28	<.001
N	45233		

Nominal				
	Valeur			
Coefficient Phi	NaN 0.211			
V de Cramer	0.211			

Tacte v2