| Statistic Tests on mobile                                                                                        |
|------------------------------------------------------------------------------------------------------------------|
| -> Based on mean                                                                                                 |
| -> t-test -> normal distribution, two model has the                                                              |
| Same Verience                                                                                                    |
| - Welch's t-test - Lik t-test but the vonionce                                                                   |
| most, be difference                                                                                              |
| > Rank Sum > general                                                                                             |
|                                                                                                                  |
| t-tests is better for normal distribution                                                                        |
| -> Basal on Varionce                                                                                             |
| -> A NOVA (Analysis of Vorionea)                                                                                 |
| one-way ( Colculate mean of each population                                                                      |
| $m_1 - 2.67$                                                                                                     |
| 0 2 3 $m 2 67$                                                                                                   |
| $\frac{1}{2} \frac{2}{2} \frac{m_3}{3} = \frac{3}{3}$                                                            |
| 2 4 3                                                                                                            |
| $\frac{5}{2}$ $\frac{2}{N}$ $\frac{2}{N}$ $\frac{2}{N}$ $\frac{m_1 + m_2 + m_3}{3}$ $\frac{2}{N}$ $\frac{78}{N}$ |
| 2) Sum of Squares (55)                                                                                           |
| $SS_{with In} = \frac{1}{2} (X_1 - m_1)^2 + \frac{1}{2} (X_2 - m_2)^2 + \frac{1}{2} (X_3 - m_1)^2$ $= 13.34$     |
| $SS Total = 2 (X-M_0)^2 = 13.6$                                                                                  |
| SS Between = SSTAN - SSVILLIN = 0.23                                                                             |
| $S_W^2 = V_W^2 = \frac{S_{SW}}{N_{-K}} = 2.22$                                                                   |
| K-3 hunder of offers                                                                                             |
| $\frac{S_R^2 = S_S B}{\sqrt{2}} = 0.12 \qquad N = 9  \text{number of}$                                           |
| K-1 M Sampler                                                                                                    |
|                                                                                                                  |

