Język SQL – podstawy zapytań

Plan prezentacji

- Krótka historia języka SQL
- 2. Cechy języka SQL
- 3. Przykładowa baza danych
- 4. Podstawy zapytań operacje na modelu relacyjnym
- 5. Polecenie SELECT zapytania proste
- 6. Polecenie SELECT łączenie tabel
- 7. Polecenie SELECT wykorzystanie funkcji agregujących
- 8. Polecenie SELECT zapytania złożone
- 9. Polecenie SELECT co jeszcze potrafię?

Krótka historia języka SQL – kroki milowe

1970 - publikacją E.F.Codda pt. A Relational Model of Data for Large Shared Data Banks. (pol. Relacyjny model danych dla dużych współdzielonych banków danych).

1974- w IBM powstał język SEQUEL (ang. *Structured English Query Language* – Stukturalny Angielski Język Zapytań)

1979 - firma ORACLE wypuściła na rynek pierwszy komercyjny system zarządzania bazami danych oparty o SQL.

... do dnia dzisiejszego trwa burzliwy rozwój tego języka

KAPITAŁ LUDZKI
MARGDOWA STRATECIA SPÓJNOŚCI

WYESZA SZKOLA
ERROFEJSKA
ERROFEJSKA
ERROFEJSKA
ERROFEJSKA
ERROFEJSKA
ERROFEJSKA
ERROFEJSK
ERROFEJSKA
ERROFETSKA
ERROFETSKA
ERROFETSKA
ERRO

Standardy języka SQL

Krótka historia standardów języka SQL:

- •1986: pierwszy standard SQL (SQL-86),
- •1989: następny standard SQL (SQL-89),
- •1992: wzbogacona wersja standardu (SQL-92 lub SQL 2),
- •1999: standardu rozszerzonego o pewne cechy obiektowości (SQL 3)
- 2003: Kolejne rozszerzenie standardu (m.in. włączenie do standardu języka XML) - SQL 4
- •2006: Niewielkie rozszerzenie standardu
- •2008 : Kolejne niewielkie rozszerzenie standardu

Standardy języka SQL

Opracowywaniem i publikowanie standardów SQL zajmują się organizacje :

ISO (ang. International Organization for Standarization)

ANSI (ang. American National Standards Institute).

Standard języka to wytyczne dla producentów Systemów Zarządzania Bazami Danych

<u>Pomimo istnienia standardów jezyka SQL – rózne implementacje różnia się od siebie (nieznacznie)</u>

Plan prezentacji

- 1. Krótka historia języka SQL
- 2. Cechy języka SQL
- 3. Przykładowa baza danych
- 4. Podstawy zapytań operacje na modelu relacyjnym
- 5. Polecenie SELECT zapytania proste
- 6. Polecenie SELECT łączenie tabel
- 7. Polecenie SELECT wykorzystanie funkcji agregujących
- 8. Polecenie SELECT zapytania złożone
- 9. Polecenie SELECT co jeszcze potrafię?

SQL jest językiem IV generacji

...i co z tego że IV generacji

SQL jest językiem deklaratywnym

... ?????????

W języku SQL deklarujemy co chcemy osiągnąć – bez określania jak to należy wykonać

Język SQL dzielimy na trzy podstawowe części:

Język Definiowania Danych – **DDL** (ang. *Data Definition Language*

Język Manipulacji Danymi – **DML** (ang. *Data Manipulation Language*

Język Kontroli Danych – DCL (ang. Data Control Language)

Język Definiowania Danych – **DDL** (ang. *Data Definition Language*

Polecenia:

- •CREATE definiowanie obiektów w bazie danych
- •ALTER modyfikowanie obiektów w bazie danych
- DROP usuwanie obiektów z bazy danych

Przykład polecenia DDL:

```
CREATE TABLE Uczniowie

(
IdUcznia int IDENTITY(1,1) NOT NULL,
Nazwisko varchar(50) NOT NULL,
Imie varchar(50) NOT NULL,
DataUrodzenia date NOT NULL,
CzyChlopak bit NOT NULL,
Pesel varchar(11) NULL,
CONSTRAINT PK_uczniowie PRIMARY KEY CLUSTERED (IdUcznia ASC)
)
```


Język Manipulacji Danymi – **DML** (ang. *Data Manipulation Language*

Polecenia:

- •INSERT— wstawianie do tabeli nowych wierszy
- **UPDATE** modyfikowanie wierszy w tabeli
- **DELETE** usuwanie wierszy z tabeli
- •MERGE zbiorcze modyfikowanie tabeli
- •SELECT pobieranie danych z tabel (zapytania)

Przykład polecenia DML:

INSERT INTO Uczniowie (Nazwisko, Imie, DataUrodzenia, CzyChlopak, Pesel)
VALUES('Kot', 'Jan', '1991-07-12','true', '91071276538')

SELECT Nazwisko, Imie, Pesel FROM Uczniowie WHERE CzyChlopak=true ORDER BY nazwisko

Język Kontroli Danych – DCL (ang. Data Control Language)

Polecenia:

- •GRANT- przydzielenie prawa do danych
- •REVOKE pozbawienie prawa do danych
- **DENY** bezwarunkowe pozbawienie prawa do danych

Praca z wykorzystaniem SQL może być realizowana na kilka sposobów :

- poprzez interaktywne zadawanie pytań do bazy (monitor),
- budowanie skryptów (zbioru wsadowo wykonywanych zapytań w SQL),
- •osadzanie kodu (pojedynczych zapytań i całych procedur) SQL w innych językach programowania (na poziomie aplikacji),
- procedur składowanych (na poziome bazy danych).

Plan prezentacji

- 1. Krótka historia języka SQL
- 2. Cechy języka SQL
- 3. Przykładowa baza danych
- 4. Podstawy zapytań operacje na modelu relacyjnym
- 5. Polecenie SELECT zapytania proste
- 6. Polecenie SELECT łączenie tabel
- 7. Polecenie SELECT wykorzystanie funkcji agregujących
- 8. Polecenie SELECT zapytania złożone
- 9. Polecenie SELECT co jeszcze potrafię?

Przykładowa baza danych

Przykładowa baza danych

Pisanie zapytań w języku SQL wymaga dobrej znajomości bazy danych do której te zapytania się odnoszą

Plan prezentacji

- 1. Krótka historia języka SQL
- 2. Cechy języka SQL
- 3. Przykładowa baza danych
- 4. Podstawy zapytań operacje na modelu relacyjnym
- 5. Polecenie SELECT zapytania proste
- 6. Polecenie SELECT łączenie tabel
- 7. Polecenie SELECT wykorzystanie funkcji agregujących
- 8. Polecenie SELECT zapytania złożone
- 9. Polecenie SELECT co jeszcze potrafię?

Realizacja zapytań opiera się na trzech podstawowych operacjach wykonywanych na modelu relacyjnym:

Operacja projekcji (zwana także rzutowaniem)

Operacja selekcji

Operacja łączenia

Operacja projekcji

iducznia	Nazwisko	lmie	Data Urodzenia	CzyChlopak	Pesel	idklasy
1	Kotek	Katarzyna	1992-03-12	0	92031275446	2
2	Piesek	Jan	1992-05-15	1	92051587746	1
3	Lisek	Kasia	1992-02-22	0	92022277654	2
4	Kurka	Jola	1992-06-02	0	92060288788	2
5	Gąska	Wacek	1991-03-11	1	91031199123	1
6	Krówka	Rysio	1992-05-15	1	92051577646	1

Nazwisko	lmie	Pesel
Kotek	Katarzyna	92031275446
Piesek	Jan	92051587746
Lisek	Kasia	92022277654
Kurka	Jola	92060288788
Gąska	Wacek	91031199123
Krówka	Rysio	92051577646

Tabela wynikowa po operacji projekcji

Tabela wyjściowa

Wykonanie operacji projekcji

Wykonanie operacji selekcji

Operacja łączenia

Przedstawione operacje wykonywane na modelu relacyjnym są podstawa realizacji zapytań

Plan prezentacji

- 1. Krótka historia języka SQL
- 2. Cechy języka SQL
- 3. Przykładowa baza danych
- 4. Podstawy zapytań operacje na modelu relacyjnym
- 5. Polecenie SELECT zapytania proste
- 6. Polecenie SELECT łączenie tabel
- 7. Polecenie SELECT wykorzystanie funkcji agregujących
- 8. Polecenie SELECT zapytania złożone
- 9. Polecenie SELECT co jeszcze potrafię?

Polecenie SELECT

SELECT [TOP n] lista_kolumn
FROM lista_tabel
WHERE warunki_selekcji
GROUP BY lista_kolumn_grupowania
HAVING warunek_selekcji
ORDER BY lista_kolumn_porzadkowania

Polecenie SELECT- zapytania

proste

SELECT * FROM Uczniowie

Przykładowy wynik zapytania

Określona została, w opcji FROM, tab której pobieramy dane a znaczek * pow duje dostarczenie do wyniku zapytania wszystkich dostępnych w tabeli kolumn

iducznia	Nazwisko	lmie	DataUrodzenia	CzyChlopak	Pesel	idklasy
1	Kotek	Katarzyna	1992-03-12	0	92031275446	2
2	Piesek	Jan	1992-05-15	1	92051587746	1
3	Lisek	Kasia	1992-02-22	0	92022277654	2
4	Kurka	Jola	1992-06-02	0	92060288788	2
5	Gąska	Wacek	1991-03-11	1	91031199123	1
6	Krówka	Rysio	1992-05-15	1	92051577646	1
7	Zebra	Wojtek	1993-03-13	1	93030399846	1
8	Gazela	Basia	1992-11-11	O KAPITAŁ LUDZKI	92111177446 WYŹSZA SZKOŁA	2

ARGROWA STRATECIA SPÓINGSCI

Realizacja operacji projekcji

SELECT Nazwisko, Imie, Pesel, CzyChlopak **FROM** Uczniowie

Określona została , w opcji FROM, take pobieramy dane i wymieniono liste ko pojawić w wyniku

Przykładowy wynik zapytania

✓, które maja się

Nazwisko	lmie	Pesel	CzyChlopak
Kotek	Katarzyna	92031275446	0
Piesek	Jan	92051587746	1
Lisek	Kasia	92022277654	0
Kurka	Jola	92060288788	0
Gąska	Wacek	91031199123	1
Krówka	Rysio	92051577646	1

Realizacja operacji projekcji i

selekcji

SELECT Nazwisko, Imie, Pesel, CzyChlopak

FROM Uczniowie

WHERE CzyChlopak=1

Przykładowy wynik zapytania

W klauzuli WHERE dodano warunek 9

KCji

Nazwisko	lmie	Pesel	CzyChlopak
Piesek	Jan	92051587746	1
Gąska	Wacek	91031199123	1
Krówka	Rysio	92051577646	1

Porządkowanie wyniku zapytania

SELECT Nazwisko, Imie, Pesel, Idklasy

FROM Uczniowie

WHERE Idklasy=1 OR Idklasy=2

ORDER BY Idklasy ASC, Nazwisko DESC

Przykładowy wynik zapytania

Doda	-
wynil	1

Nazwisko	lmie	Pesel	Idklasy
- Zebra		- 93030399846	1
Sarenka	Rysio	92121278766	1
Piesek	Jan	92051587746	1
Krówka	Rysio	92051577646	1
Gąska	Wacek	91031199123	1
Stokrotka	a Rysio	93121278766	2
Ryba	Jan	93051587746	2
Różyczka	a Basia	93111177446	2
Płotka	Wojtek	93030399846	2
Okoń	Rysio	93051577646	2

izuir ą porządkowanie srąco, DESC – malejąco)

Przekształcanie danych

SELECT Nazwisko, Imie, Pesel,

CASE CzyChlopak

WHEN 1 THEN 'Mężczyzna'

ELSE 'Kobieta'

END as Płeć

FROM Uczniowie

WHERE Idklasy=2

Kolumna o nazw wartości zapisan

Nazwisko	lmie	Pesel	Płeć
Kotek	Katarzyna	92031275446	Kobieta
Lisek	Kasia	92022277654	Kobieta
Kurka	Jola	92060288788	Kobieta
Gazela	Basia	92111177446	Kobieta
Konik	Kasia	93031275446	Kobieta
Ryba	Jan	93051587746	Mężczyzna
Kura	Kasia	93022277654	Kobieta
Łoś	Jola	93060288788	Kobieta
Miś	Wacek	93031199123	Mężczyzna
			KAPITAŁ LUDZKI

Przykładowy wynik zapytania

przekształcenia

Plan prezentacji

- 1. Krótka historia języka SQL
- 2. Cechy języka SQL
- 3. Przykładowa baza danych
- 4. Podstawy zapytań operacje na modelu relacyjnym
- 5. Polecenie SELECT zapytania proste
- 6. Polecenie SELECT łączenie tabel
- 7. Polecenie SELECT wykorzystanie funkcji agregujących
- 8. Polecenie SELECT zapytania złożone
- 9. Polecenie SELECT co jeszcze potrafię?

Normalizacja – podstawa projektowania

Faktury

Idfaktury	Numer	Data_w	Netto	Vat	Firma	Nip	Ulica	Miasto
1	234/08	11.08.08	345.67	71.22	Wedel	1234652789	Nowa 3	Warszawa
2	43/08	12.08.08	763.00	167.00	Wedel	1234652789	Nowa 3	Warszawa
3	01/2008	15.08.08	322.00	68.65	Złotex	6573298722	Miła 7	Sopot
4	11.08/1	22.09.08	100.00	22.00	Koral	5582998721	Dobra 1	Opole
5	34w/08	28.09.08	882.00	187.00	Wedel	1234652789	Nowa 3	Warszawa
6	987/08	02.10.08	250.55	58.12	Złotex	6573298722	Miła 7	Sopot
7	002.08	11.10.08	891.00	201.15	Złotex	6573298722	Miła 7	Sopot

Recountainoje! by Hal! 19!!!!

Normalizacja – podstawa projektowania

Faktury

K	lucz	obcy	/
---	------	------	---

Idfaktury	Numer	Data_w	Netto	Vat	Idfirmy -					
1	234/08	11.08.08	345.67	71.22	1	1	Wedel	1234652789	Nowa 3	Warszawa
2	43/08	12.08.08	763.00	167.00	1	1	Wedel	1234652789	Nowa 3	Warszawa
3	01/2008	15.08.08	322.00	68.65	2	2	Złotex	6573298722	Miła 7	Sopot
4	11.08/1	22.09.08	100.00	22.00	3	3	Koral	5582998721	Dobra	Warszawa
5	34w/08	28.09.08	882.00	187.00	1	1	Wedel	1234652789	Nowa 3	Warszawa
6	987/08	02.10.08	250.55	58.12	2	2	Złotex	6573298722	Miła 7	Sopot
7	002.08	11.10.08	891.00	201.15	2	2	Złotex	6573298722	Miła 7	Sopot

Firmy

IdFirmy	Firma	Nip	Ulica	Miasto
1	Wedel	1234652789	Nowa 3	Warszawa
2	Złotex	6573298722	Miła 7	Sopot
3	Koral	5582998721	Dobra 1	Opole

Operacja łączenia

SELECT Uczniowie.*, Klasy.*
FROM Uczniowie JOIN Klasy
ON Uczniowie.ldklasy=Klasy.ldklasy

Przykładowy wynik zapytania

Do wiersza opisującego ucznia został d aczony odpowiedni wiersz z tabeli klasy

iducznia	Nazwisko	lmie	Data Urodzenia	CzyChlopak	Pesel	idklasy	idklasy	Nazwa	RokSzkolny
2	Piesek	Jan	1992-05-15	1	92051587746	1	1	la	2008/2009
5	Gąska	Wacek	1991-03-11	1	91031199123	1	1	la	2008/2009
6	Krówka	Rysio	1992-05-15	1	92051577646	1	1	la	2008/2009
7	Zebra	Wojtek	1993-03-13	1	93030399846	1	1	la	2008/2009
9	Sarenka	Rysio	1992-12-12	0	92121278766	1	1	la	2008/2009
1	Kotek	Katarzyna	1992-03-12	0	92031275446	2	2	lla	2008/2009
3	Lisek	Kasia	1992-02-22	0	92022277654	2	2	lla	2008/2009
4	Kurka	Jola	1992-06-02	0	92060288788	2	2	lla	2008/2009

SELECT Uczniowie.Nazwisko, Uczniowie.Imie,

CASE CzyChlopak

WHEN 1 THEN 'Mężczyzna'

ELSE 'Kobieta'

END as Płeć,

Klasy.Nazwa, Klasy.RokSzkolny

Przykładowy wynik zapytania

FROM Uczniowie JOIN Klasy ON Uczniowie.Idklasy=Klasy.Idklere YEAR(Uczniowie.DataUrodzenia)=1992

ORDER BY Płeć, Nazwisko DESC

Zapytan przeksz

NazwiskoImiePłećNazwaRokSzkiSarenkaRysioKobietaIa2008/20OrkaKasiaKobietaIIc2008/20	
	olmy
Orka Kasia Kobieta IIc 2008/2	oos enia
	₀₀₉ Jilia
Lisek Kasia Kobieta IIa 2008/2	009
Kurka Jola Kobieta Ila 2008/2	009
Kotek Katarzyna Kobieta IIa 2008/2	009
Gazela Basia Kobieta IIa 2008/2	009
Foka Jola Kobieta IIc 2008/2	009
Antylopa Kasia Kobieta IIc 2008/2	009
Rekin Jan Mężczyzna IIc 2008/2	009
Piesek Jan Mężczyzna la 2008/2	009
Krówka Rysio Mężczyzna la 2008/20	009

Rozwiązanie problemu

Chcemy napisać zapytanie, które przygotuje wykaz uczniów (nazwisko i imię) oraz dane nauczyciela (nazwisko i imię oraz stopień zawodowy), który wystawił ocenę i datę wystawienia oceny tym uczniom, którzy w roku 2009 otrzymali z fizyki ocenę 5, wynik uporządkować malejąco według daty wystawienia oceny.

Rozwiązanie problemu

SELECT Uczniowie.Nazwisko+' '+Uczniowie.Imie AS Uczen,
Nauczyciele.Nazwisko+' 'Nauczyciele.Imie AS Nauczyciel,
Oceny.DataWystawienia, Oceny.Ocena

FROM Uczniowie JOIN Oceny ON

Uczniowie.Iducznia=Oceny.IdUcznia

JOIN Nauczyciele ON

Nauczyciele.IdNauczyciela=Oceny.IdNauczyciela

JOIN Przedmioty ON

Oceny.Idprzedmiotu=Przedmioty.Idprzedmiotu

WHERE YEAR(DataWystawienia) =2009 **AND** Ocena=5 **AND** Przedmioty.Nazwa='Fizyka'

ORDER BY DataWystawienia **DESC**

Rozwiązanie problemu

Przykładowy wynik zapytania

Uczen	Nauczyciel	DataWystawienia	Ocena
Piesek Jan	Lew Wojciech	2009-01-05	5.00
Piesek Jan	Lew Wojciech	2009-02-09	5.00
Kotek Katarzyna	Lew Wojciech	2009-02-07	5.00
Konik Kasia	Pantera Saba	2009-01-27	5.00
Łoś Jola	Gepard Hala	2009-01-30	5.00
Konik Kasia	Gepard Hala	2009-01-27	5.00
Sarenka Rysio	Gepard Hala	2009-01-24	5.00
Okoń Rysio	Lew Wojciech	2009-01-08	5.00

Złączenie zewnętrzne

Do tej pory, domyślnie, realizowaliśmy tzw. złączenie wewnętrzne – czyli w wyniku zapytania pojawiały się tylko te wiersze dla których spełniony był warunek złączenia

SQL umożliwia wykonanie złączenia zewnętrznego – czyli umożliwia dołączenie do wyniku zapytania także te wiersze dla których warunek złączenia nie jest spełniony

Złączenie zewnętrzne omówimy na przykładzie

Złączenie zewnętrzne

Przygotujemy zapytanie w którym będą wszyscy uczniowie wraz z informacja kiedy otrzymali w lutym roku 2009 ocenę mierną

SELECT Uczniowie.Nazwisko, Uczniowie.Imie, Oceny.DataWystawienia, Ocena

FROM Uczniowie LEFT OUTER JOIN Oceny

ON Uczniowie.iducznia=Oceny.Iducznia

AND Oceny.Ocena=2

AND YEAR(DataWystawienia)=2009

AND MONTH(DataWystawienia)=2

Złączenie zewnętrzne

Przykładowy wynik zapytania

Nazwisko	Imie	DataWystawienia	Ocena
Kotek	Katarzyna	2009-02-05	2.00
Kotek	Katarzyna	2009-02-05	2.00
Kotek	Katarzyna	2009-02-12	2.00
Kotek	Katarzyna	2009-02-12	2.00
Piesek	Jan	NULL	NULL
Lisek	Kasia	NULL	NULL
Kurka	Jola	2009-02-07	2.00
Kurka	Jola	2009-02-07	2.00

Plan prezentacji

- 1. Krótka historia języka SQL
- 2. Cechy języka SQL
- 3. Przykładowa baza danych
- 4. Podstawy zapytań operacje na modelu relacyjnym
- 5. Polecenie SELECT zapytania proste
- 6. Polecenie SELECT łączenie tabel
- 7. Polecenie SELECT wykorzystanie funkcji agregujących
- 8. Polecenie SELECT zapytania złożone
- 9. Polecenie SELECT co jeszcze potrafię?

Funkcje agregujące

Zapytania SQL mogą być także wykorzystane do wykonywania obliczeń na podstawie danych zawartych w tabelach. Do tego celu służą **funkcje agregujące**.

Język SQL udostępnia pięć podstawowych funkcji agregujących; COUNT – oblicza ilość wierszy otrzymanych w wyniku zapytania, SUM – sumuje zawartość kolumny (lub wyrażenia obliczonego na podstawie danych) dla wszystkich wierszy w wyniku zapytania, AVG – oblicza średnią arytmetyczną zawartości kolumny (lub wyrażenia obliczonego na podstawie danych) dla wszystkich wierszy w wyniku zapytania,

MIN – określa wartość minimalną dla kolumny w wyniku zapytania,
 MAX – określa wartość maksymalną dla kolumny w wyniku zapytania.

Funkcje agregujące

SELECT COUNT(*) AS IluUczniow **FROM** Uczniowie

lluUczniow 24

SELECT COUNT(*) AS IluUczniow FROM Uczniowie JOIN Klasy ON Uczniowie.idklasy=Klasy.idklasy WHERE Klasy.Nazwa='Ila'

lluUczniow 13

Funkcja agregująca użyta w zapytaniu powoduje, ze w wyniku otrzymujemy jeden wiersz z wynikiem działania funkcji agregującej

Funkcje agregujące i grupowanie danych

- •SELECT Klasy.Nazwa,
- COUNT(*) AS IluUczniow
- •FROM Uczniowie JOIN Klasy ON Uczniowie.idklasy=Klasy.idklasy
- •GROUP BY Klasy.Nazwa

Nazwa	lluUczniow
la	5
lb	1
lla	13
llc	5

Wykorzystaliśmy klauzulę GROUP BY w celu "rozbicia" działania funkcji agregującej dla wierszy zawierających tę sama wartość dla kolumny Klasy.Nazwa

Funkcje agregujące i grupowanie danych

Lista uczniów z klasy Ila oraz ich średnią ocen otrzymanych w roku 2009

- •SELECT Uczniowie.Nazwisko, Uczniowie.Imie, AVG(Oceny.Ocen) as Średnia
- •FROM Uczniowie JOIN Oceny ON Uczniowie.Iducznia=Oceny.IdUcznia
- **JOIN** Klasy **ON** Uczniowie.ldklasy=Klasy.ldklasy
- •WHERE YEAR(Oceny.DataWystawienia)=2009 AND Klasy.Nazwa='lla'
- •GROUP BY Uczniowie.Nazwisko, Uczniowie.Imie
- ORDER BY Średnia DESC

Nazwisko	lmie	Średnia
Łoś	Jola	4.714285
Konik	Kasia	4.000000
Kura	Kasia	3.111111
Różyczka	Basia	3.000000
Kurka	Jola	3.000000
Kotek	Katarzyna	2.958333
Lisek	Kasia	2.866666
Okoń	Rysio	2.857142
Gazela	Basia	2.800000
Miś	Wacek	2.777777
Płotka	Wojtek	2.777777
Ryba	Jan	2.500000

Funkcje agregujące i grupowanie danych

Lista uczniów z klasy Ila oraz ich średnią ocen otrzymanych w roku 2009

- tylko ci uczniowie których srednia przekracza 3.00
 - •SELECT Uczniowie.Nazwisko, Uczniowie.Imie, AVG(Oceny.Ocen) as Średnia
- •FROM Uczniowie JOIN Oceny ON Uczniowie.Iducznia=Oceny.IdUcznia
- JOIN Uczniowie.ldklasy=Klasy.ldklasy
- •WHERE YEAR(Oceny.DataWystawienia)=2009 AND Klasy.Nazwa='lla'
- •GROUP BY Uczniowie.Nazwisko, Uczniowie.Imie
- •HAVING AVG(Oceny.Ocena) > 3.00
- •ORDER BY Średnia

Nazwisko	lmie	Średnia
Łoś	Jola	4.714285
Konik	Kasia	4.000000
Kura	Kasia	3.111111

Klauzulę HAVING nazywamy opóźnionym warunkiem selekcji

Plan prezentacji

- 1. Krótka historia języka SQL
- 2. Cechy języka SQL
- 3. Przykładowa baza danych
- 4. Podstawy zapytań operacje na modelu relacyjnym
- 5. Polecenie SELECT zapytania proste
- 6. Polecenie SELECT łączenie tabel
- 7. Polecenie SELECT wykorzystanie funkcji agregujących
- 8. Polecenie SELECT zapytania złożone
- 9. Polecenie SELECT co jeszcze potrafię?

Polecenie **SELECT** języka SQL umożliwia **zagnieżdżanie zapytań**, czyli wykorzystanie zapytania w wewnątrz innego zapytania.

Dzięki tej właściwości można za pomocą jednego polecenia wykonywać bardzo złożone operacje na danych.

Omówimy to, chcąc przygotować listę uczniów (zawierającą nazwisko i imię ucznia oraz nazwę klasy), którzy w roku 2009 nie otrzymali oceny niedostatecznej z fizyki.

Należy zwrócić uwagę na fakt, że chcemy pobrać z bazy dane, które nie są bezpośrednio w niej zapisane, bo jeżeli uczeń nie otrzymał oceny to w bazie danych nie ma żadnego zapisu tego faktu.

Rozwiązując ten problem korzystamy z pewnych zależności logicznych.

Pomyślmy o tym problemie jako o działaniu na następujących zbiorach:

A – zbiór wszystkich uczniów,

B – zbiór uczniów, którzy otrzymali w roku 2009 ocenę niedostateczną z fizyki,

C – poszukiwany zbiór uczniów, którzy w roku 2009 nie otrzymali oceny niedostatecznej z fizyki.

Wyrażenie: **C** = **A** – **B** opisuje rozwiązanie naszego problemu, czyli poszukiwany zbiór możemy otrzymać jako różnicę dwóch innych zbiorów.

Zapytanie tworzące zbiór A

SELECT Uczniowie.Nazwisko, Uczniowie.Imie, Klasy.Nazwa, FROM Uczniowie JOIN Klasy
ON Uczniowie.idklasy=Klasy.idklasy

WHERE Iducznia NOT IN

Zapytanie tworzące zbiór B

(SELECT DISTINCT Iducznia FROM Oceny JOIN Przedmioty

ON Oceny.Idprzedmiotu=Przedmioty.Idprzedmiotu WHERE Przedmioty.Nazwa='Fizyka' AND YEAR(Oceny.DataWystawienia)=2009 AND Oceny.Ocena=2)

Warunek różnicy zbiorów

Pokazaliśmy jeden przykład zapytania złożonego, pokazujący dodatkowe możliwości, jakimi dysponujemy przy pisaniu zapytań do baz danych z wykorzystaniem języka SQL.

Trudno wymienić wszystkie sytuacje, w których można wykorzystywać podzapytania ale jest jedna zasada ogólna:

Podzapytanie może być wykorzystane wszędzie tam, gdzie ma sens wynik tego podzapytania

Plan prezentacji

- 1. Krótka historia języka SQL
- 2. Cechy języka SQL
- 3. Przykładowa baza danych
- 4. Podstawy zapytań operacje na modelu relacyjnym
- 5. Polecenie SELECT zapytania proste
- 6. Polecenie SELECT łączenie tabel
- 7. Polecenie SELECT wykorzystanie funkcji agregujących
- 8. Polecenie SELECT zapytania złożone
- 9. Polecenie SELECT co jeszcze potrafię?

Tworzenie wyniku zapytania w języku XML

```
SELECT Klasy. Nazwa, Klasy. Rok Szkolny
<ListaKlas>
                                      FROM Klasy
 <Klasv>
                                      FOR XML AUTO, ROOT ('ListaKlas'), ELEMENTS
  <Nazwa>la</Nazwa>
  <RokSzkolny>2008/2009</RokSzkolny>
 </Klasy>
 <Klasv>
  <Nazwa>IIa</Nazwa>
  <RokSzkolny>2008/2009</RokSzkolny>
 </Klasy>
 <Klasy>
  <Nazwa>lb</Nazwa>
  <RokSzkolny>2008/2009</RokSzkolny>
 </Klasy>
 <Klasy>
  <Nazwa>IIb</Nazwa>
  <RokSzkolny>2008/2009</RokSzkolny>
 </Klasy>
</ListaKlas>
```


Operacje na zbiorach danych z wykorzystaniem operatorów UNION, EXCEPT i INTERSECT

SELECT Nazwisko, Imie, Pesel

FROM Uczniowie

WHERE idklasy=1

UNION

SELECT Nazwisko, Imie, Pesel

FROM Uczniowie

WHERE idklasy=2

Zapytanie, które przygotuje listę uczniów z klasy o id klasy=1 za wyjątkiem tych, którzy urodzili się w marcu

SELECT Nazwisko, Imie, Pesel FROM Uczniowie
WHERE idklasy=1

EXCEPT

SELECT Nazwisko, Imie, Pesel **FROM** Uczniowie **WHERE** MONTH(DataUrodzenia)=3

Zapytanie, które przygotuje listę uczniów urodzonych w marcu, których nazwisko zaczyna się na literę K

SELECT Nazwisko, Imie, Pesel FROM Uczniowie WHERE MONTH(DataUrodzenia)=3 INTERSECT

SELECT Nazwisko, Imie, Pesel FROM Uczniowie
WHERE nazwisko LIKE 'K%'

Tabele przestawne

```
SELECT *
FROM

(
SELECT Przedmioty.Nazwa as Przedmiot,
    Klasy.Nazwa as Klasa,
    Oceny.Ocena
FROM Klasy Join Uczniowie ON Klasy.idklasy=Uczniowie.idklasy
    Join Oceny ON Oceny.iducznia=Uczniowie.iducznia
    Join Przedmioty ON Przedmioty.idprzedmiotu=Oceny.idprzedmiotu
) as A

PIVOT
    (AVG(Ocena) FOR Klasa in ([la],[lla],[llc])) as B
```


Tabele przestawne

Przedmiot	la	lla	lle
Fizyka	2.746987	2.960227	NULL
Geografia	2.918032	3.021978	4.333333
Informatyka	2.881578	2.848314	NULL
Literatura	NULL	3.125000	NULL
Matematyka	2.919354	3.060439	NULL

Podsumowanie

 Przedstawiliśmy podstawowe możliwości języka SQL a w szczególności polecenia SELECT

 Standard języka SQL ciągle jest rozwijany i wzbogacany o nowe możliwości

Dziękuję za uwagę

... a może pytania ????

