Uncertainty

CS4881 Artificial Intelligence Jay Urbain, Ph.D.

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Uncertainty

Let action A_t = leave for airport t minutes before flight

Will A_t get me there on time?

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1. partial observability (road state, other drivers' plans, etc.)
- 2. noisy sensors (traffic reports), Google Maps traffic layer
- 3. uncertainty in action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either:

- 1. risks falsehood: " A_{25} will get me there on time", or
- 2. leads to conclusions that are too weak for decision making:

"A₂₅ will get me there on time if there's *no accident on the bridge* and it *doesn't rain* and *my tires remain intact*, etc., etc."

 $(A_{1440}$ might reasonably be said to get me there on time, but I'd have to stay overnight in the airport ...)

Methods for handling uncertainty

- Default or non-monotonic logic:
 - Assume my car does not have a flat tire
 - Assume A_{25} works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with fudge factors:
 - $-A_{25}/\rightarrow_{0.3}$ get there on time
 - Sprinkler |→ 0.99 WetGrass
 - WetGrass |→ _{0.7} Rain
- Issues: Problems with combination, e.g., *Sprinkler* causes *Rain*??
- Probability
 - Model agent's degree of belief
 - Given the available evidence, A_{25} will get me there on time with probability 0.04

Probability

Probabilistic assertions summarize effects of:

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

 Probabilities relate propositions to agent's own state of knowledge (belief)

e.g., $P(A_{25} | \text{no reported accidents}) = 0.06$

These are not assertions about the world

Probabilities of propositions change with new evidence: e.g., $P(A_{25} | \text{no reported accidents}, 5 \text{ a.m.}) = 0.15$

Making decisions under uncertainty

Suppose I believe the following:

```
P(A_{25} \text{ gets me there on time } | ...) = 0.04

P(A_{90} \text{ gets me there on time } | ...) = 0.70

P(A_{120} \text{ gets me there on time } | ...) = 0.95

P(A_{1440} \text{ gets me there on time } | ...) = 0.9999
```

- Which action to choose?
 - Depends on my *preferences* for missing flight vs. time spent waiting, etc.
 - Utility theory is used to represent and infer preferences
 - Decision theory = probability theory + utility theory

Syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
 e.g., Cavity (do I have a cavity?)
- Discrete random variables
 e.g., Weather is one of <sunny, rainy, cloudy, snow>
- Domain values must be exhaustive, mutually exclusive, and sum to 1.0
- Elementary proposition constructed by assignment of a value to a random variable: e.g., Weather = sunny, Cavity = false (abbreviated as ¬cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny ^ Cavity = false

Syntax

 Atomic event: A complete specification of the state of the world about which the agent is uncertain.

E.g., if the world consists of only two Boolean variables *Cavity* and *Toothache*, then there are 4 distinct atomic events:

```
( Cavity = false ) ∧ ( Toothache = false )
( Cavity = false ) ∧ ( Toothache = true )
( Cavity = true ) ∧ ( Toothache = false )
( Cavity = true ) ∧ ( Toothache = true )
```

Atomic events are mutually exclusive and exhaustive

Axioms of probability

- For any propositions A, B
 - $-0 \le P(A) \le 1$
 - -P(true) = 1 or P(false) = 0

True

 $- P(A \vee B) = P(A) + P(B) - P(A \wedge B)$

Prior probability

- Prior or unconditional probabilities of propositions
 e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to my belief prior to arrival of any (new) evidence.
- Probability distribution gives values for all possible assignments:
 P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)
- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables
 P(Weather, Cavity) = a 4 × 2 matrix of values:

Weather =	sunny	rainy	cloudy	snow	
Cavity = true	0.144	0.02	0.016	0.02	0.2
Cavity = false	0.576	0.08	0.064	0.08	0.8
	0.72	0.1	0.08	0.1	1

- Every question about a domain can be answered by the joint distribution
- uncertainty.xlsx

Conditional probability

Conditional or posterior probabilities
 e.g., P(cavity | toothache) = 0.8
 i.e., given that toothache is all I know

- Notation for conditional distributions:
 P(Cavity | Toothache) = 2-element vector of 2-element vectors)
- If we know more, e.g., cavity is also given, then we have
 P(cavity | toothache,cavity) = 1
- New evidence may be irrelevant, allowing simplification, e.g.,
 P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8
 In this case we say that cavity is independent of sunny given toothache.
- This kind of inference, sanctioned by domain knowledge, is crucial.

Conditional probability

Definition of conditional probability:

$$P(a | b) = P(a \land b) / P(b) \text{ if } P(b) > 0$$

Product rule gives an alternative formulation:

$$P(a \wedge b) = P(a \mid b) P(b) = P(b \mid a) P(a)$$

- A general version holds for whole distributions, e.g.,
 P(Weather, Cavity) = P(Weather | Cavity) P(Cavity)
- E.g., Toothache, Cavity, Catch can be viewed as a set of 4 × 2 equations, not matrix multiplication.
- Chain rule is derived by successive application of product rule:

$$\begin{split} \textbf{P}(X_1, \, \dots, & X_n) &= \textbf{P}(X_1, \dots, X_{n-1}) \, \, \textbf{P}(X_n \mid X_1, \dots, X_{n-1}) \\ &= \textbf{P}(X_1, \dots, X_{n-2}) \, \, \textbf{P}(X_{n-1} \mid X_1, \dots, X_{n-2}) \, \, \textbf{P}(X_n \mid X_1, \dots, X_{n-1}) \\ &= \dots \\ &= \boldsymbol{\Pi}_{i=1} \, \, \textbf{P}(X_i \mid X_1, \, \dots \, , X_{i-1}) \end{split}$$

Inference by enumeration

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \Sigma_{\omega:\omega}|_{\phi} P(\omega)$

Inference by enumeration

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \Sigma_{\omega:\omega} \not\models \phi P(\omega)$
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Inference by enumeration

Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity \mid toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$

$$= 0.016+0.064$$

$$0.108 + 0.012 + 0.016 + 0.064$$

$$= 0.4$$

Normalization

	toot	hache	¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- Denominator can be viewed as a normalization constant α
- $\alpha = 1/(0.108 + 0.012 + 0.016 + 0.064) = 5$

```
\begin{aligned} \textbf{P}(\textit{Cavity} \mid \textit{toothache}) &= \alpha, \ \textbf{P}(\textit{Cavity,toothache}) \\ &= \alpha, \ [\textbf{P}(\textit{Cavity,toothache,catch}) + \textbf{P}(\textit{Cavity,toothache}, \neg \textit{catch})] \\ &= \alpha, \ [<0.108, 0.016 > + <0.012, 0.064 >] \\ &= \alpha, \ <0.12, 0.08 > = <0.6, 0.4 > \end{aligned}
```

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables.

General Inference by enumeration

Typically, we are interested in:

- Query contains single variable X (e.g., cavity)
- List of evidence variables E (e.g., toothache)
- Let e be the list of observed values for the evidence variables

Let the hidden variables be **H** = (Set of all random variables) - **X** - **E**

Then the required summation of joint entries is done by summing out the hidden variables (*marginalization*):

$$P(X \mid E = e) = \alpha P(X,E = e) = \alpha \Sigma_h P(X,E = e, H = h)$$

- The terms in the summation are joint entries because X, E and H together exhaust the set of all random variables
- Obvious problems:
 - 1. Worst-case time complexity $O(d^n)$ where d is the largest arity domain variable
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries?

Independence

A and B are independent iff

$$P(A/B) = P(A)$$
 or $P(B/A) = P(B)$ or $P(A, B) = P(A) P(B)$

P(Toothache, Catch, Cavity, Weather)

- = **P**(*Toothache, Catch, Cavity*) **P**(*Weather*)
- 32 entries reduced to 12; for *n* independent biased coins, $O(2^n) \rightarrow O(n)$
 - $-2^3*4 = 32$, 32 element table (all possible combinations)
 - $-2^3 = 8 + one 4$ element table (sunny, cloudy, rain, snow) = 12
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

- P(Toothache, Cavity, Catch) has $2^3 1 = 7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - (1) P(catch | toothache, cavity) = P(catch | cavity)
- The same independence holds if I haven't got a cavity:
 - (2) $P(catch \mid toothache, \neg cavity) = P(catch \mid \neg cavity)$
- Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:

```
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
```

P(Toothache, Catch | Cavity) = **P**(Toothache | Cavity) **P**(Catch | Cavity)

Conditional independence contd.

- Write out full joint distribution using chain rule:
 - **P**(Toothache, Catch, Cavity)
 - = **P**(Toothache | Catch, Cavity) **P**(Catch | Cavity) **P**(Cavity) Using conditional independence:
 - = **P**(*Toothache | Cavity*) **P**(*Catch | Cavity*) **P**(Cavity)
 - I.e., 2 + 2 + 1 = 5 independent numbers
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in *n* to linear in *n*.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

- Product rule P(a∧b) = P(a | b) P(b) = P(b | a) P(a)
 ⇒ Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)
- or in distribution form $P(Y|X) = P(X|Y) P(Y) / P(X) = \alpha P(X|Y) P(Y)$
- Useful for assessing diagnostic probability from causal probability
 - P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)
 - E.g., let *M* be meningitis, *S* be stiff neck: $P(m|s) = P(s|m) P(m) / P(s) = 0.8 \times 0.0001 / 0.1 = 0.0008$
 - Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

P(Cavity | toothache ∧ catch)

- = $\alpha P(toothache \wedge catch \mid Cavity) P(Cavity)$
- = α**P**(toothache | Cavity) **P**(catch | Cavity) **P**(Cavity)
- This is an example of a naïve Bayes model:
 P(Cause, Effect₁, ..., Effect_n) = P(Cause) π_iP(Effect_i|Cause)

Total number of parameters is linear in n

Summary

- Probability is a rigorous formalism for uncertain knowledge.
- Joint probability distribution specifies probability of every atomic event.
- Queries can be answered by summing over atomic events.
- For nontrivial domains, we must find a way to reduce the joint size.
- Independence and conditional independence provide the tools.