Homework #5

A. Shawn Bandy

March 14th, 2013

1 Lab Problems

L1 STATA log:

Source	SS	df 	MS		Number of obs F(6, 346)	
Model Residual	3.8936e+14 3.0782e+14	6 6.48 346 8.89	94e+13 66e+11		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.5585
salary	Coef.	Std. Err.		P> t	[95% Conf.	Interval]
teamsal pcinc yrsallst years	.0143053 -3.081507 196930.8 53884.84	.006004 17.9635 40981.67 33490.08	2.38 -0.17 4.81 1.61	0.018 0.864 0.000 0.109	.0024964 -38.41291 116326.2 -11984.91	.0261142 32.24989 277535.3 119754.6

```
hits | -365.6974 335.6952 -1.09 0.277 -1025.957 294.5627

runsyr | 32917.18 3553.05 9.26 0.000 25928.88 39905.47

_cons | -609625.3 374222.5 -1.63 0.104 -1345662 126411.9
```

. /*b. Look at the simple correlation between the variables in your model, using cor > relate.*/

>

> correlate salary teamsal pcinc yrsallst years hits runsyr;
(obs=353)

	salary	teamsal	pcinc yrsallst		years	hits	runsyr
salary	1.0000						
teamsal	0.2247	1.0000					
pcinc	0.0874	0.1891	1.0000				
yrsallst	0.5856	0.1082	0.0877	1.0000			
years	0.4782	0.1774	0.0843	0.5751	1.0000		
hits	0.6271	0.1721	0.1044	0.7678	0.8824	1.0000	
runsyr	0.7033	0.1887	0.0979	0.5677	0.5018	0.7328	1.0000

. /*c. Test for multicollinearity by using the vif command.*/
> vif;

Variable	I VI	F 1/VIF
	+	
hits	14.7	6 0.067746
years	6.6	8 0.149676
runsyr	1 2.8	4 0.351592
yrsallst	1 2.8	4 0.352695
teamsal	1.0	9 0.921569
pcinc	1.0	4 0.958082
Mean VIF	+ 4.8	8

near vii | 1.00

- . /*d. Look at your regression results, the test for multicollinearity, and the test > for correlation.
- > Is there a problem with multicollinearity in the model? Look at the variables in > the model. If you believe
- > there is a problem with multicollinearity, explain why you might have that proble > m.

> INTERPRETATION

> */ >

(

```
> /*e. Now, use the regression command to estimate a linear regression model where t
> he dependent variable is salary
> and the explanatory variables are teamsal poinc allstar slugavg fldperc frstbase
> scndbase shrtstop thrdbase
> outfield. In this new model, the explanatory variables are team salary, per capit
> a income of the city where
> the team is located, percentage of years as an All-Star, career slugging average,
> career fielding percentage,
> and dummy variables for the various positions on the team, with catcher excluded.
> */
> regress salary teamsal pcinc allstar slugavg fldperc frstbase scndbase shrtstop t
> hrdbase
> outfield;
                 SS
                        df
                                 MS
                                                Number of obs =
     Source |
                                                                  353
-----
                                                F(10, 342) = 32.41
     Model | 3.3921e+14 10 3.3921e+13
                                                Prob > F = 0.0000
                                               R-squared = 0.4865
   Residual | 3.5797e+14 342 1.0467e+12
                                                Adj R-squared = 0.4715
     Total | 6.9718e+14 352 1.9806e+12
                                                Root MSE
                                                           = 1.0e+06
     salary | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    teamsal | .0247805 .0064344 3.85 0.000 .0121244
                                                            .0374365
```

38.7266 allstar | 47920.33 3013.114 15.90 0.000 41993.77 53846.9 slugavg | 2060.333 2853.358 0.72 0.471 -3552.007 7672.673 fldperc | 5877.833 1.89 0.060 3111.61 -242.4695 11998.13 1.52 0.129 320346.8 frstbase | 210323.1 -93342.88 734036.5 134556.9 scndbase | 224728.1 0.60 0.550 -307466.3 576580.1 shrtstop | 87293.44 213623.5 0.41 0.683 -332887.8 507474.7 thrdbase | 382886.7 244737.8 1.56 0.119 -98494.21 864267.6 outfield | 485142.8 170914.1 2.84 0.005 148967.7 821317.9 _cons | -5977180 3125933 -1.91 0.057 -1.21e+07 171294.5

. /*f. Test for multicollinearity again for the model in part e.*/ > vif;

Variable	!	VIF	1/VIF
outfield	-+ 	2.33	0.428590
shrtstop	Ì	1.84	0.543536
thrdbase	1	1.76	0.568754
frstbase	1	1.66	0.602641

. corr salary teamsal pcinc allstar slugavg fldperc frstbase scndbase shrtstop thrdb
> ase outfield;
(obs=353)

```
| salary teamsal pcinc allstar slugavg fldperc frstbase
______
   salary | 1.0000
   teamsal | 0.2247 1.0000
    pcinc | 0.0874 0.1891 1.0000
   fldperc | 0.0714 -0.0414 -0.0183 0.0112 -0.0311 1.0000
  frstbase | 0.0656 0.0499 0.0678 0.0469 0.0768 0.2177 1.0000
  thrdbase | 0.0086 0.0117 -0.0252 0.0178 0.0029 -0.3144 -0.1248
  outfield | 0.1091 -0.0492 -0.0401 0.0092 0.0115 0.0126 -0.3026
       | scndbase shrtstop thrdbase outfield
______
  scndbase | 1.0000
  shrtstop | -0.1374 1.0000
  thrdbase | -0.1117 -0.1311 1.0000
  outfield | -0.2709 -0.3178 -0.2585
                             1.0000
. /*g. Is multicollinearity a problem for the model in part e. Why do you think this
> result is different from before?
> INTERPRETATION
> */
> /*h. Now, predict the residuals for each observation in the model from part e.*/
> predict res, r;
. /*i. Create a new variable resid_2 using the generate command.*/
```

```
> gen res2 = res^2;
```

- . /*j. Regress resid_2 on the explanatory variables (not salary) from part f.*/
- > regres res2 teamsal pcinc allstar slugavg fldperc frstbase scndbase shrtstop thrdb
 > ase outfield;

Source		df	MS		Number of obs = F(10, 342) =	
Model	8.0464e+25	10	8.0464e+24		Prob > F =	0.0004
Residual	8.3174e+26	342	2.4320e+24		R-squared =	0.0882
+-					Adj R-squared =	0.0615
Total	9.1221e+26	352	2.5915e+24		Root MSE =	1.6e+12
res2	Coef.	Std.	Err. t	P> t	[95% Conf. I	nterval]

res2		Std. Err.	t	P> t	[95% Conf.	Interval]
teamsal pcinc	24251.53	9808.036 2.98e+07	2.47 -0.17	0.014 0.863	4959.863 -6.38e+07	43543.2 5.35e+07
allstar		4.59e+09	3.10	0.002	5.18e+09	2.33e+10
slugavg		4.35e+09	1.59	0.113	-1.65e+09	1.55e+10
fldperc frstbase		4.74e+09 3.21e+11	1.20	0.232	-3.65e+09 -3.02e+11	1.50e+10 9.59e+11
scndbase	-1.27e+09	3.43e+11	-0.00	0.306	-3.02e+11 -6.75e+11	9.59e+11 6.73e+11
shrtstop		3.26e+11	0.00	0.799	-5.58e+11	7.23e+11
thrdbase	3.41e+11	3.73e+11	0.91	0.362	-3.93e+11	1.07e+12
outfield	5.57e+11	2.61e+11	2.14	0.033	4.47e+10	1.07e+12
_cons	-5.89e+12	4.76e+12	-1.24	0.217	-1.53e+13	3.48e+12

- . /*k. Run the regression from part e again.*/
- > regress salary teamsal poinc allstar slugavg fldperc frstbase scndbase shrtstop th
- > rdbase
- > outfield;

Source	SS	df	N	IS		Number of obs =	353
+						F(10, 342) =	32.41
Model	3.3921e+14	10	3.3921	.e+13		Prob > F =	0.0000
Residual	3.5797e+14	342	1.0467	e+12		R-squared =	0.4865
+						Adj R-squared =	0.4715
Total	6.9718e+14	352	1.9806	Se+12		Root MSE =	
salarv	Coef.	Std.	Err.	t	P> t	[95% Conf. I	ntervall

salary	Coef.					Interval]
teamsal	.0247805	.0064344	3.85	0.000	.0121244 -38.22055	.0374365
	47920.33		15.90	0.000	41993.77	53846.9

```
2060.333 2853.358 0.72 0.471
slugavg |
                                             -3552.007
                                                        7672.673
fldperc | 5877.833 3111.61 1.89 0.060
                                            -242.4695
                                                        11998.13
                              1.52 0.129
frstbase | 320346.8
                    210323.1
                                             -93342.88
                                                        734036.5
                               0.60 0.550
          134556.9
scndbase |
                    224728.1
                                             -307466.3
                                                        576580.1
shrtstop | 87293.44
                               0.41 0.683
                    213623.5
                                             -332887.8
                                                        507474.7
thrdbase | 382886.7
                    244737.8
                             1.56 0.119
                                             -98494.21
                                                        864267.6
outfield | 485142.8
                    170914.1
                               2.84 0.005
                                             148967.7
                                                        821317.9
 _cons | -5977180 3125933 -1.91 0.057
                                             -1.21e+07
                                                        171294.5
```

. /*1. Use the standard STATA Breusch-Pagan test for heteroskedasticity (estat hett > est).*/ >

> estat hettest;

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of salary

chi2(1) = 28.48Prob > chi2 = 0.0000

. /*m. Run the standard STATA Whites test for heteroskedasticity (imtest, white).*/ \gt

> imtest, white;

White's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chi2(50) = 78.33Prob > chi2 = 0.0064

Cameron & Trivedi's decomposition of IM-test

Source		chi2	df	р
Heteroskedasticity Skewness Kurtosis	1	78.33 -328.67	50 10 1	0.0064 1.0000
Total	I		61	

```
. /*n. For now, assume there is a problem with heteroskedasticity in the model from
> part e,
> estimate the model again with robust standard errors.*/
```

- > regress salary teamsal poinc allstar slugavg fldperc frstbase scndbase shrtstop th
- > rdbase
- > outfield, r;

Linear regression

Number of obs = 353 F(10, 342) = 28.36 Prob > F = 0.0000 R-squared = 0.4865 Root MSE = 1.0e+06

salary		Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
teamsal pcinc	•	.0247805	.0062627 18.49531	3.96 0.01	0.000 0.989	.0124623 -36.12585	.0370987 36.6319
allstar	1	47920.33	3449.219	13.89	0.000	41135.98	54704.69
slugavg	1	2060.333	3705.825	0.56	0.579	-5228.745	9349.411
fldperc	1	5877.833	2054.141	2.86	0.004	1837.491	9918.174
frstbase	1	320346.8	205440.1	1.56	0.120	-83738.5	724432.1
scndbase	1	134556.9	189707.4	0.71	0.479	-238583.3	507697.2
shrtstop	1	87293.44	176727.7	0.49	0.622	-260316.6	434903.5
thrdbase	1	382886.7	220391.2	1.74	0.083	-50606.24	816379.6
outfield	1	485142.8	156000.3	3.11	0.002	178301.9	791983.7
_cons	I	-5977180	2107467	-2.84	0.005	-1.01e+07	-1831951

- . /*o. Pick a factor that you believe is missing from the regression equation in par $\,$
- > Add that variable to the regression equation for salary using STATA. Test for mult > icollinearity
- \gt and heteroskedasticity (using the standard STATA Breusch-Pagan test) in your model
- > . Rerun your model
- > to account for heteroskedasticity, if appropriate.*/

>

> regress salary teamsal pcinc allstar slugavg fldperc frstbase scndbase shrtstop th
> rdbase outfield hruns;

Source	SS			Number of obs = F(11, 341) =	
•	3.7811e+14			Prob > F =	
	3.1908e+14			R-squared =	
				Adj R-squared = Root MSE =	
lotal	6.9718e+14	352	1.9806e+12	ROOT MSE =	9.7e+05

salary	Std. Err.			
•			.0092173	

pcinc		.1465059	18.49417	0.01	0.994	-36.23052	36.52353
allstar	1	34989.41	3484.092	10.04	0.000	28136.4	41842.43
slugavg	1	735.0951	2705.659	0.27	0.786	-4586.788	6056.978
fldperc	1	5203.643	2943.874	1.77	0.078	-586.7948	10994.08
frstbase	1	76981.29	202410.7	0.38	0.704	-321149.4	475112
scndbase	1	184091.7	212618.5	0.87	0.387	-234117.2	602300.5
shrtstop	1	125129.3	202065.4	0.62	0.536	-272322.3	522580.9
thrdbase	1	235571.4	232524.2	1.01	0.312	-221790.9	692933.6
outfield	1	281214.6	164665.2	1.71	0.089	-42672.72	605101.9
hruns	1	5902.807	915.5657	6.45	0.000	4101.939	7703.674
_cons		-5247160	2957727	-1.77	0.077	-1.11e+07	570525.9

. vif;

Variable	I	VIF	1/VIF
	+		
outfield	1	2.42	0.412775
shrtstop	1	1.84	0.543078
thrdbase		1.78	0.563262
hruns		1.72	0.581221
frstbase	1	1.72	0.581682
scndbase	1	1.60	0.624921
allstar	1	1.58	0.634383
fldperc	1	1.27	0.787595
teamsal	1	1.07	0.936364
slugavg	1	1.06	0.939835
pcinc		1.05	0.950677
	+		
Mean VIF	1	1.56	

. estat hettest;

 ${\tt Breusch-Pagan / Cook-Weisberg \ test \ for \ heterosked asticity}$

Ho: Constant variance

Variables: fitted values of salary

chi2(1) = 83.88Prob > chi2 = 0.0000

```
. /*p. Why did you decide to include the variable you chose for your model in part o
> ?
>
INTERPRETATION
>
> */
>
  /*q. Did your estimate and statistical significance for allstar (percent of years
> as an All-Star) change from
```

```
> the model in part e to the final estimation model in part o (controlling for heter
> oskedasticity, if appropriate)?
> Explain why you might have a difference.*/
>
>
> log close;
   name: <unnamed>
        log: /Users/shawn/src/econ485/lab5/mlb1.log
   log type: text
closed on: 14 Mar 2013, 11:08:38
```

Answers:

- d. Look at your regression results, the test for multicollinearity, and the test for correlation. Is there a problem with multicollinearity in the model? Look at the variables in the model. If you believe there is a problem with multicollinearity, explain why you might have that problem.
- g. Is multicollinearity a problem for the model in part e. Why do you think this result is different from before?
- p. Why did you decide to include the variable you chose for your model in part o?

2 Questions

- Q1 Which of the following factors can cause OLS estimators to be biased? Explain.
 - a. Heteroskedasticity.
 - b. Omitting an important variable.
 - c. A sample correlation coefficient of 0.95 between two independent variables both included in the model.
- Q2 Which of the following factors will lower the variance of an OLS estimator. Explain.
 - a. Increasing the number of observations.
 - b. Increasing the number of explanatory variables that reduce the error variance in the model.
 - c. Minimizing the multicollinearity in the model.
- Q3 Use your results from L1 for this problem.
 - a. Use your results from part j of L1. Calculate the Chi-square statistic for the Breusch-Pagan test. Since this model has 10 explanatory variables, this statistic has 10 degrees of freedom and the critical Chi-Square value is 18.31. Write down the null and alternative hypothesis for the Breusch-Pagan test and whether or not you reject the null (or fail to reject the null) based on your results.
 - b. Is your conclusion about heteroscedasticity in part a of this problem the same as what you found using the standard STATA Breusch-Pagan test (L1, part 1)? I know the values will be different, but did you come to the same conclusion regarding the errors?

- c. Based on your answer to part a of this problem and the results of the STATA Breusch- Pagan and Whites test in L1 (parts l and m), which model (L1 part e or L1 part n) is consistent with your results?
- d. Using the best model (you identified in part c) interpret the coefficient on team salary (teamsal).
- e. Are there any variables missing from this model that might be biasing the results? Which ones? Explain.