UNIVERSIDADE FEDERAL DE VIÇOSA

Departamento de Matemática

Segunda Prova de MAT 131-Introdução à Álgebra 23-05-2019

GABARITO

Questão 1:) (24Pts) Considerando as proposições $p: x \notin A$ e $x \notin B$; $r: x \in B - A$ e $s: x \in A$ ou $x \notin B$. Determinar quais das proposições dadas acima são equivalentes à proposição $t: x \notin (A \cap B^c)$.

SOLUÇÃO: Considerando $p_1: x \in A$ e $q_1: x \in B$, podemos escrever as proposições dadas da seguinte forma:

 $p:\sim p_1\vee \sim q_1 \iff \sim (p_1\wedge q_1), \quad r:\sim p_1\wedge q_1, \quad s:p_1\vee \sim q_1 \quad \text{e} \quad t:\sim p_1\vee q_1.$ Vejamos a tabela-verdade abaixo.

p_1	q_1	р	r	s	t	$p \longleftrightarrow t$	$r \longleftrightarrow t$	$s \longleftrightarrow t$
V	V	F	F	V	V	F	F	V
V	F	V	F	V	F	F	V	F
F	V	V	V	F	V	V	V	F
F	F	V	F	V	V	V	F	V

Como a tabela-verdade fornece **contingência para** $p \longleftrightarrow t$, $r \longleftrightarrow t$ **e** $s \longleftrightarrow t$ e não tautologia, concluímos que a proposição t não é equivalente a nenhuma das proposições dadas.

Questão 2: Para $A, B \in C$ conjuntos quaisquer. Pede-se:

(6Pts) (a) Representar, usando diagrama de Venn-Euler, o conjunto $S = C - [(A - B) \cup (B - A)]$. SOLUÇÃO:

(15Pts) (b) Mostre que $A - B \subset (A - C) \cup (C - B)$.

SOLUÇÃO:

$$A - B = A \cap B^c = (A \cap B^c) \cap (C^c \cup C) = [(A \cap B^c) \cap C^c] \cup [(A \cap B^c) \cap C]$$

$$A - B = [(A \cap C^c) \cap B^c] \cup [(C \cap B^c) \cap A]$$

$$A - B \subset (A \cap C^c) \cup (C \cap B^c) = (A - C) \cup (C - B)$$

$$A - B \subset (A - C) \cup (C - B)$$

Questão 3: Dados $M = \{-3, -2/3, 0, 1/2, 2, \sqrt{2}, 3+\sqrt{2}, 2i\}, A = \{x \in M; x \notin M \longrightarrow x \notin \mathbb{Z}\}, B = \{x \in M; x \in \mathbb{R} \longleftrightarrow x \in \mathbb{I}\}, D = \{x \in M; x \in \mathbb{C} \land x \notin \mathbb{Q}\}.$ Pede-se:

(15Pts) (a) Determinar os elementos dos conjuntos A, B e D.

SOLUÇÃO: Para descobrir os elementos de cada conjunto faremos uso de tabela-verdade.

	A	В	D
	$x \notin M \longrightarrow x \notin \mathbb{Z}$	$x \in \mathbb{R} \longleftrightarrow x \in \mathbb{I}$	$x \in \mathbb{C} \land x \notin \mathbb{Q}$
-3	V	F	F
$\begin{bmatrix} -3 \\ -2/3 \\ 0 \end{bmatrix}$	V	F	F
0	V	F	F
1/2	V	F	F
$\begin{array}{c c} 1/2 \\ 2 \end{array}$	V	F	F
$\sqrt{2}$	V	V	V
$3 + \sqrt{2}$	V	V	V
2i	V	V	V

Desse modo A=Me $B=D=\{\sqrt{2},3+\sqrt{2},2i\}$

(10Pts) (b) Determinar $(A \cap D) \cup (B - A)$.

SOLUÇÃO: A partir do item (a) temos que $A \cap D = D$ e $B - A = \emptyset$. Portanto, $(A \cap D) \cup (B - A) = D \cup \emptyset = D = \{\sqrt{2}, 3 + \sqrt{2}, 2i\}$

Questão 4: (20Pts) Sejam $A, B \in D$ conjuntos quaisquer. Mostre que se $D \subset (A \triangle B)$, então $D = (A \cup B) - [(A - D) \cup (B - D) \cup (A \cap B)]$

SOLUÇÃO:

$$(A \cup B) - [(A - D) \cup (B - D) \cup (A \cap B)] = (A \cup B) \cap [(A \cap D^c) \cup (B \cap D^c) \cup (A \cap B)]^c \quad \text{(def. de diferença)}$$

$$(A \cup B) - [(A - D) \cup (B - D) \cup (A \cap B)] = (A \cup B) \cap [((A \cup B) \cap D^c) \cup (A \cap B)]^c \quad \text{(distributividade)}$$

$$(A \cup B) - [(A - D) \cup (B - D) \cup (A \cap B)] = (A \cup B) \cap [(A \cup B) \cap D^c]^c \cap (A \cap B)^c \quad \text{(Lei de Morgan)}$$

 $(A \cup B) - [(A - D) \cup (B - D) \cup (A \cap B)] = (A \cup B) \cap (A \cap B)^c \cap [(A \cup B)^c \cup D]$ (Comutatividade e Lei de Morgan)

$$(A \cup B) - [(A - D) \cup (B - D) \cup (A \cap B)] = (A \triangle B) \cap [(A \cup B)^c \cup D]$$
 (def. diferença simétrica)

$$(A \cup B) - [(A - D) \cup (B - D) \cup (A \cap B)] = [(A \triangle B) \cap (A \cup B)^c] \cup [(A \triangle B) \cap D] \quad \text{(Distributividade)}$$

$$(A \cup B) - [(A - D) \cup (B - D) \cup (A \cap B)] = [\emptyset] \cup [D]$$
 (hipóteses $D \subset (A \triangle B)$)

 $(A \cup B) - [(A - D) \cup (B - D) \cup (A \cap B)] = D$ (neutro da união) Como queríamos mostrar.

Questão 5: Sobre o número de pessoas que consomem os produtos $A, B \in C$, uma pesquisa de opinião revelou que este é igual a:

- 1/6 dos que consomem somente o produto A.
- 1/5 dos que consomem somente o produto B.
- 1/4 dos que consomem somente o produto C.
- 1/2 dos que consomem os produtos A e B.
- 1/3 dos que consomem os produtos $A \in C$.
- 1/4 dos que consomem os produtos $B \in C$.

Se o número de entrevistados foi de 4400 pessoas. Determinar.

(10Pts) (a) O número de pessoas que consomem somente dois produtos.

(10Pts) (b) O número de pessoas que consomem os três produtos.

SOLUÇÃO: Seja x o número de pessoas que consomem os três produtos. Assim, o diagrama de Venn fica preenchido conforme a figura abaixo.

Logo, 6x + 2x + x + x + 5x + 3x + 4x = 4400. De onde x = 200. Portanto,

- (a) O número de pessoas que consomem somente dois produtos é igual a 2x+x+3x=6x=1200.
- (b) O número de pessoas que consomem os três produtos é x=200.