IIIT Delhi CSE-546 Applied Cryptography Monsoon 2013 HW-4 and 5

HW-4 Due date: 7-October-2013

- 1. DES has become insecure due to its short key length (56 bits). An improvement, proposed by Rivest, is DESX. DESX has key length 120 bits, seen as a pair $(k_1; k_2)$, where k_1 is 56 bits and k_2 64 bits. Let the enryption of a message m using DES with key k be denoted by $DES_k(m)$. The encryption of a one-block message m using DESX is $DESX_{(k_1;k_2)}(m) = (DES_{k_1}(m \oplus k_2)) \oplus k_2$:
 - (a) Explain how decryption is done.
 - (b) Explain why the inner xor is necessary, i.e. explain an attack against $DESX'_{(k1;k2)}(m) = DES_{k_1}(m) \oplus k_2$ that is much better than brute force.¹
- 2. Give an example of a hash function which satisfies the following properties. If no such hash function can exist then explain why.
 - (a) Preimage resistant but not second preimage resistant
 - (b) Second preimage resistant but not preimage resistant
 - (c) Preimage resistant but not collision resistant
 - (d) Collision resistant but not preimage resistant

HW-5 Due date: 14-Oct-2013.

1. Implement AES-256 in Java/C++. Details are here http://www.cs.utexas.edu/~byoung/cs361/assignment-aes.html

¹A good thing about the DESX design is that it improves the security of DES while not paying the penalty of triple encryptions as in 3-DES. We can't use 2-DES, of course.