

02456 – Week 2 Learning

Jes Frellsen
Technical University of Denmark

08 September 2025

Menu of the day

- Week 1: Neural nets
- Week 2: Learning
- Week 3: Tricks of The Trade
- Week 4: CNNs
- Week 5: RNNs
- Week 6: Transformers
- Week 7: Unsupervised
- Week 8: Mini-project

Lecture

- Loss functions (ch 5)
- Fitting models (ch 6)
- Gradients and initial. (c 7)

Exercises

- Notebook:
 - 2.1 FNN AutoDif Nanograd.ipynb
 - Try to code autodiff yourself
- **Problems:** 5.9, 6.5, 7.10

Recap: Neural networks

We can write the **output of layer** ℓ as

$$f^{(\ell)}(\mathbf{h}) = \sigma(W^{(\ell)}\mathbf{h} + \mathbf{b}^{(\ell)}).$$

The **joint function** is then

$$f_{\phi}(\mathbf{x}) = \mathbf{y} = f^{(4)} \left(f^{(3)} \left(f^{(2)} \left(f^{(1)}(\mathbf{x}) \right) \right) \right)$$

Artificial neuron

Node

Terminology:

- Fully connected neural network
- Feed forward neural network (FFN)
- Multilayer perceptron (MLP)

Training criterion

• For training data $\{(\mathbf{x}_i, \mathbf{y}_i)\}_i$, we want to find neural net parameters

$$\phi = \left\{ W^{(\ell)}, \mathbf{b}^{(\ell)} \right\}_{\ell}$$

s.t. we minimize the mismatch between $f_{\phi}(\mathbf{x}_i)$ and y_i

• We defined a loss function $L(\phi)$ capturing this mismatch

$$\hat{\phi} = \underset{\phi}{\operatorname{argmin}} L(\phi)$$

- How do we define such a loss function?
 - Last week we saw mean squared error $L(\phi) = \frac{1}{n} \sum_{i=1}^{n} \left(f_{\phi}(\mathbf{x}_i) y_i \right)^2$
 - Is there some principled framework we can use?

Maximum likelihood estimation (MLE)

Find parameters that maximises the probability of the data $\{(\mathbf{x}_i, \mathbf{y}_i)\}_i$

$$\widehat{\phi} = \arg\max_{\phi} \prod_{i} p(y_{i}|\mathbf{x}_{i},\phi)$$
 We parametrize the probability with a neural net $p(y_{i}|f_{\phi}(\mathbf{x}_{i}))$

Normally we do this in log-space

$$\hat{\phi} = \arg\max_{\phi} \sum_{i} \log p(y_i | f_{\phi}(\mathbf{x}_i))$$

We can use the **negative log-likelihood** as a loss

$$\frac{L(\phi)}{\hat{\phi}} = -\sum_{i} \log p(y_i|f_{\phi}(\mathbf{x}_i))$$

$$\hat{\phi} = \underset{\phi}{\operatorname{arg \, min}} L(\phi)$$

Why is MLE a good framework?

- Strong theoretical foundation, e.g.,
- Consistency: converges to the true parameter value as $n \to \infty$
- **Efficient**: Achieving the lowest possible variance as $n \to \infty$

Probabilistic inference (predictions)

- For learned $\hat{\phi}$, how can I make predictions using $p(y|f_{\hat{\phi}}(\mathbf{x}))$?
- For a given **x**, I my predictions can be:

Mostly used

- The most probable value: $\hat{y} = \arg \max_{y} p(y|f_{\hat{\phi}}(\mathbf{x}))$
- The expected value: $\hat{y} = \mathbb{E}_{y \sim p(y|f_{\hat{\phi}}(\mathbf{X}))}[y]$
- A sample: $y \sim p(y|f_{\vec{o}}(x))$

For a Gaussian $\mathcal{N}(y|\mu,\sigma)$ these are both μ

So, if $\mu = f_{\overline{\phi}}(\mathbf{x})$, what would the prediction be?

 h_5

 h_4

Gaussian distribution (regressions)

• If we assume *y* is Gaussian distributed

$$p(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

• The loss (negative log-likelihood) becomes

$$L(\phi) = -\sum_{i} \log p(y_{i}|f_{\phi}(\mathbf{x}), \sigma)$$
$$= -\sum_{i} \left(-\frac{(y_{i} - \mu)^{2}}{2\sigma^{2}} - \frac{1}{2}\log 2\pi\sigma^{2}\right)$$

• Assuming, $\mu = f_{\phi}(\mathbf{x})$ we have

$$\hat{\phi} = \arg\min_{\phi} L(\phi) = \sum_{i} (y_{i} - f_{\phi}(\mathbf{x}))^{2}$$

 h_2

 h_3

 $\sigma^2 = \text{softplus}(z)$

 $= \log(1 + \exp(z))$

 $(\mu, \sigma^2) = f_{\phi}(\mathbf{x})$

Mean squared error!

Categorial distribution (multiclass classification)

If y categorial and is one-hot encoded then

$$p(\mathbf{y}|\pi) = \prod_{d} \pi_d^{y_d}$$

where $\pi = f_{\phi}(\mathbf{x})$

• The loss (negative log-likelihood) becomes

$$L(\phi) = -\sum_{i} y_{id} \log \pi_{d}$$
 Sum over data points Sum over dimensions

 Softmax activation function converts neural network outputs into probabilities

$$\pi = \frac{\exp(z_d)}{\sum_d \exp(z_d)}$$

For four classes this is

 $0 \to (1,0,0,0)^T$

 $1 \to (0,1,0,0)^T$

 $2 \rightarrow (0,0,1,0)^T$

 $3 \rightarrow (0,0,0,1)^T$

Also know as **cross-entropy**, which is between p and q

$$H(p,q) = \sum_{x} p(x) \log q(x)$$

Combinations: Multiple outputs

• If y is multiple dimensional and dimensions are independent given x,

$$p(\mathbf{y}|f_{\phi}(\mathbf{x})) = \prod_{d} p(y_{d}|f_{\phi}(\mathbf{x})_{d})$$

and the loss becomes

$$L(\phi) = -\sum_{i} \sum_{d} p(y_{id} | f_{\phi}(\mathbf{x}_{i})_{d})$$

$$p(\mathbf{y}|f_{\phi}(\mathbf{x})) = \mathcal{N}(\mathbf{y}_{1:2}|f_{\phi}(\mathbf{x})_{1:2}, \operatorname{diag}(\sigma_{1}, \sigma_{2})^{T}) \cdot \operatorname{Cat}(\mathbf{y}_{3:4}|f_{\phi}(\mathbf{x})_{3:4})$$

Learning: gradient decent

We want to find $\hat{\phi} = \arg\min L(\phi)$

- Initialise $\phi^{(0)}$ randomly (more about this later)
- Iterate (for $t \in 1, ..., k$)
 - Step 1 (gradient): Iterate $\nabla_{\phi} L(\phi^{(t)}) = \begin{pmatrix} \frac{\partial L}{\partial \phi_1} \\ \vdots \\ \frac{\partial L}{\partial \phi_D} \end{pmatrix}$ Step 2 (update parameters): $\phi^{(t+1)} = \phi^{(t)} \eta \nabla_{\phi} L(\phi^{(t)})$

Where

- *k* is the number of iterations (steps)
- η is the step-size or learning rate

Local minima and saddle points

- Learning staps a critical points ϕ , for which $\nabla_{\phi} L(\phi) = 0$
 - Local minimal
 - All eigenvalues of Hessian H_L are positive
 - Saddle point
 - Hessian H_L has both positive and negative eigenvalues
- Gradient decent can get stuck in local minima
- Can escape saddle points
 - Local minima dominate in low-dimensional
 - Saddle points dominate in high dimensions (Dauphin et al., 2014, Choromanska et al., 2015)

Stochastic gradient descent (minibatch)

• At each step, the gradient is calculated on a minibatch

$$\phi^{(t+1)} = \phi^{(t)} - \sum_{i \in \mathcal{B}_t} \frac{\partial l_i(\phi^{(t)})}{\partial \phi}$$

- The batch $\mathcal{B}_t \subseteq \{1, ..., n\}$ index-set is drawn stochasticallys
 - Usually w/o replacement and a full pass of the data is called an epoch
- $l_i(\phi^{(t)})$ is the loss on (\mathbf{x}_i, y_i) assuming that $L(\phi) = \sum_{i=1}^n l_i(\phi)$
- Properties:
 - Uses an unbiased estimate of the gradient
 - The gradient is correct on average
 - Each training point contribute equally
 - Less computation expensive
 - Can escape local minima and saddle points
 - May help the network **generalise** better

Momentum

• We can use a weighted (decaying) average of previous gradients

•
$$m^{(t+1)} = \beta m^{(t)} + (1 - \beta) \sum_{i \in \mathcal{B}_t} \frac{\partial l_i(\phi^{(t)})}{\partial \phi}$$

• $\phi^{(t+1)} = \phi^{(t)} - \eta m^{(t+1)}$ where $\beta \in [0,1)$ controls the smoothing

- Smoother the trajectory
- Reduces oscillations

Adam (Adaptive moment estimation)

- In Adam, we normalise the gradients by their variance
- Estimate the first and second moments (weighted) of the gradients

•
$$m^{(t+1)} = \beta m^{(t)} + (1-\beta)\nabla_{\phi}L(\phi^{(t)})$$

• $v^{(t+1)} = \gamma v^{(t)} + (1-\gamma)\left(\nabla_{\phi}L(\phi^{(t)})\right)^2$ Mini-batched

Compensate for initial values close to zero

•
$$\widetilde{m}^{(t+1)} = \frac{m^{(t+1)}}{1-\beta^{t+1}}$$
 and $\widetilde{v}^{(t+1)} = \frac{v^{(t)}}{1-\gamma^{t+1}}$

Update the parameters

•
$$\phi^{(t+1)} = \phi^{(t)} - \eta \frac{\tilde{m}^{(t+1)}}{\sqrt{\tilde{v}^{(t+1)}} + \epsilon}$$
 Acts as signal-to-noise ratio

Hyperparameters

- Hyperparameters are distinct from the model parameters ϕ
- Architecture hyperparameters
 - Size of the hidden layers
 - Number of hidden layers
- Training algorithm hyperparameters
 - Choices of learning algorithm
 - Batch size
 - Learning rate (schedule)
- Next week will will talk about tuning them

Computing derivatives

- We use (stochastic) gradient decent to find arg min $L(\phi)$
 - Each step in the algorithm requires $\nabla_{\phi} L(\phi)$

• We use backpropagation to calculate gradients $\nabla_{\phi} L(\phi)$

Backpropagation: scalar architecture

Consider a scalar only architecture

$$h^{(1)} = \sigma_1(w_1 x)$$

$$h^{(2)} = \sigma_2(w_2 x)$$

$$y = w_3 h^{(2)}$$

and some loss function

- We can calculate these values in a **forward pass**
- Using the chain rule, calculate derivative in a backward pass

$$\frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial w_3} \qquad \frac{\partial L}{\partial h^{(2)}}$$

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial h^{(2)}} \frac{\partial h^{(2)}}{\partial w_2}$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial h^{(2)}} \frac{\partial h^{(2)}}{\partial h^{(1)}} \frac{\partial h^{(1)}}{\partial w_1}$$

Recall chain rule for

$$z = f(y)$$
and
$$y = f(x)$$
is
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x}$$

Parameter initialisation

- We random initialise the weights, e.g., $\phi_i \sim \mathcal{N}(0, \sigma^2)$
- How to choose σ^2 ?
 - If σ^2 is too small, the signal vanishes as it passes thought the network
 - If σ^2 is too big, the signal grows as it passes thought the network
- A reasonable criterion for keeping the information flow for all i, i'

$$\operatorname{Var}\left[h_{i}^{(\ell)}\right] = \operatorname{Var}\left[h_{i'}^{(\ell-1)}\right]$$

• Fr ReLU activation, this implies that

$$\sigma^2 = \frac{2}{D}$$

where *D* is the dimension of the layer

Today's exercises!

- A Python notbook (2.1 FNN AutoDif Nanograd.ipynb)
 - Implement AutoDiff yourself
- Three problems from to book on covered material

Thank you!