ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

10. Rozwiń w szereg sinusów funkcję $f(x) = \frac{\pi}{4}$ w $(0,\pi)$, narysuj wykres sumy otrzymanego szeregu dla wszystkich $x \in \mathbb{R}$ oraz korzystając z otrzymanego rozwinięcia oblicz sumę szeregu liczbowego $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

I'm unable to create a graph, but I can solve the series expansion part of your problem. Here's how to find the sine series expansion and sum the numerical series.

Dane wejściowe:

Funkcja: $f(x) = \frac{\pi}{4} \le (0, \pi)$

Ogólny wzór dla rozwiniecia funkcji w szereg sinusów (szereg Fouriera):

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right)$$

gdzie:

$$b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

Dla naszej funkcji:

 $L = \pi$

$$b_n = \frac{2}{\pi} \int_0^{\pi} \frac{\pi}{4} \sin\left(\frac{n\pi x}{\pi}\right) dx$$

Przekształcenie wzoru:

$$b_n = \frac{2}{\pi} \cdot \frac{\pi}{4} \int_0^{\pi} \sin(nx) \, dx$$

$$b_n = \frac{1}{2} \int_0^{\pi} \sin(nx) \, dx$$

Obliczenie całki krok po kroku:

$$\int \sin(nx) dx = -\frac{1}{n} \cos(nx)$$

$$\int_0^{\pi} \sin(nx) dx = \left[-\frac{1}{n} \cos(nx) \right]_0^{\pi}$$

$$= -\frac{1}{n} [\cos(n\pi) - \cos(0)]$$

$$= -\frac{1}{n} [(-1)^n - 1]$$

Podstawienie do wzoru na b_n :

$$b_n = \frac{1}{2} \left(\frac{2}{n} \right) (-1)^{n+1}$$

$$b_n = \frac{(-1)^{n+1}}{n}$$

^{**}Rozwiniecie funkcji w szereg Fouriera w przedziale $(0,\pi)$:**

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$$

Zastosowanie rozwiniecia do obliczenia sumy szeregu liczbowego:

Pierścień liczbowy 1 – $\frac{1}{3}$ + $\frac{1}{5}$ – $\frac{1}{7}$ + . . . to suma szeregu Fouriera dla $x=\frac{\pi}{2}$.

Podstawmy $x = \frac{\pi}{2}$:

$$f\left(\frac{\pi}{2}\right) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin\left(n \cdot \frac{\pi}{2}\right)$$

Tylko nieparzyste ndaja $\sin\left(n\cdot\frac{\pi}{2}\right)\neq 0$

Suma szeregu wynosi:

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \boxed{\frac{\pi}{4}}$$

$$**\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4} **$$