Влияние температуры внешней среды на процессы биологической очистки в модели ASM1

O. И. Брикова¹, Е. К. Грудяева², С. Е. Душин³ СПбГЭТУ «ЛЭТИ»

¹ kapulinaolga@gmail.com, ² lizayo@yandex.ru,

³ dushins@yandex.ru И.В.Жуков ООО «Кинеф» zhukov_i_v@mail.ru

Аннотация. Предложена модификация нелинейной математической модели биологической очистки сточных вод активным илом, построенная на основе модели ASM1, для которой в качестве влияющего внешнего рассматривается температура окружающей Выполнен анализ поведения модели ASM1 в условиях действия внешней среды, получены семейства графиков переходных процессов концентраций загрязнителей и ила при различных температурных режимах. Определены режимы. наилучшие температурные Результаты моделирования подтверждают чувствительность поведения системы к изменению температуры окружающей среды.

Ключевые слова: биологическая очистка; сточные воды; активный ил; модель ASM1; температура

I. Введение

Метод биологической очистки активным илом (АИ) к числу наиболее перспективных эффективных. В основе данного метода лежит способность микроорганизмов АИ использовать субстрат в качестве источника питания. Одной из самых известных и распространенных моделей биологической является модель, предложенная Могенсом Хенце в 1987 г., названная ASM1 (activated sludge model) [1, 2]. Модель описывает процессы нитрификации денитрификации и их взаимное влияние на процесс очистки в однозонном биореакторе [3]. Данная модель не учитывает влияния температуры внешней среды на биологической очистки. Температура окружающей среды, в свою очередь, является важным технологическим фактором, который может использован в качестве управляющего воздействия [4].

II. МОДЕЛЬ ASM1 С УЧЕТОМ ВЛИЯНИЯ ТЕМПЕРАТУРЫ СРЕДЫ

Математическая модель (ММ) ASM1 описывается следующей системой нелинейных дифференциальных уравнений (ДУ):

$$\frac{dX_{ba}}{dt} = \frac{X_{ba}^{ex} - X_{ba}}{T} + r_{ba}; \frac{dX_{bh}}{dt} = \frac{X_{bh}^{ex} - X_{bh}}{T} + r_{bh}; \frac{dS_{nh}}{dt} = \frac{S_{nh}^{ex} - S_{nh}}{T} + r_{no}; \frac{dS_{no}}{dt} = \frac{S_{no}^{ex} - S_{no}}{T} + r_{no};$$

$$\begin{split} \frac{dS_{s}}{dt} &= \frac{S_{s}^{ex} - S_{s}}{T} + r_{ss}; \frac{dX_{p}}{dt} = \frac{X_{p}^{ex} - X_{p}}{T} + r_{p}; \\ \frac{dX_{s}}{dt} &= \frac{X_{s}^{ex} - X_{s}}{T} + r_{xs}; \frac{dS_{o}}{dt} = \frac{S_{o}^{ex} - S_{o}}{T} + r_{o}; \\ \frac{dS_{nd}}{dt} &= \frac{S_{nd}^{ex} - S_{nd}}{T} + r_{snd}; \frac{dX_{nd}}{dt} = \frac{X_{nd}^{ex} - X_{nd}}{T} + r_{xnd}; \\ \frac{dS_{alk}}{dt} &= \frac{S_{alk}^{ex} - S_{alk}}{T} + r_{alk}. \end{split}$$

где скорости изменения принятых концентраций записываются следующим образом:

$$\begin{split} r_{snd} &= (k_h \frac{X_s / X_{bh}}{K_x + X_s / X_{bh}} (\frac{S_o}{S_o + K_{oa}} + \eta_g \frac{K_{oh}}{S_o + K_{oh}} \frac{S_{no}}{S_{no} + K_{no}}) - \\ -k_a S_{nd}) X_{bh}; \\ r_{nh} &= -i_{xb} ((\mu_{bh} (20^{\circ}C) exp^{\gamma(Temp-20)}) \frac{S_s}{S_s + K_s}) (\frac{S_o}{S_o + K_{oh}} + \\ +\eta_g \frac{K_{oh}}{S_o + K_{oh}} \frac{S_{no}}{S_{no} + K_{no}}) X_{bh} - (\frac{1}{Y_a} + i_{xb}) ((\mu_{ma} (20^{\circ}C) \times \\ \times exp^{\gamma(Temp-20)}) \frac{S_{nh}}{S_{nh} + K_{nh}} \frac{S_o}{S_o + K_{oa}} X_{ba}) + k_a S_{nd} X_{bh}; \\ r_{xnd} &= (i_{xb} - f_p i_{xb}) (b_h X_{bh} + b_a X_{ba}) - k_h \frac{X_s / X_{bh}}{K_x + X_s / X_{bh}} \times \\ \times (\frac{S_o}{S_o + K_{oa}} + \eta_h \frac{K_{oh}}{S_o + K_{oh}} \frac{S_{no}}{S_{no} + K_{no}}) X_{bh}; \\ r_{bh} &= (((\mu_{bh} (20^{\circ}C) exp^{\gamma(Temp-20)}) \frac{S_s}{S_s + K_s}) (\frac{S_o}{S_o + K_{oh}} + \\ +\eta_g \frac{K_{oh}}{S_o + K_{oh}} \frac{S_{no}}{S_{no} + K_{no}}) - b_a) X_{bh}; \\ r_{ba} &= ((\mu_{ma} (20^{\circ}C) exp^{\gamma(Temp-20)}) \frac{S_{nh}}{S_{nh} + K_{nh}} \frac{S_o}{S_o + K_{oa}} - \\ -b_a) X_{ba}; r_p &= f_p (b_h X_{bh} - b_a X_{ba}); \end{split}$$

$$\begin{split} r_{ss} &= -\frac{1}{Y_a} ((\mu_{bh} (20^{\circ}\text{C}) \exp^{\gamma (\text{Temp-20})}) \frac{S_s}{S_s + K_s}) (\frac{S_o}{S_o + K_{oh}} + \\ &+ \eta_g \frac{K_{oh}}{S_o + K_{oh}} \frac{S_{no}}{S_{no} + K_{no}}) X_{bh} + k_h \frac{X_s / X_{bh}}{K_x + X_s / X_{bh}} (\frac{S_o}{S_o + K_{oa}} + \\ &+ \eta_g \frac{K_{oh}}{S_o + K_{oh}} \frac{S_{no}}{S_{no} + K_{no}}) X_{bh}; \\ r_{no} &= -\frac{1 - Y_h}{2,86Y_h} ((\mu_{bh} (20^{\circ}\text{C}) \exp^{\gamma (\text{Temp-20})}) \frac{S_s}{S_s + K_s} \eta_g \frac{K_{oh}}{S_o + K_{oh}} \times \\ &\times \frac{K_{oh}}{S_o + K_{oh}} \frac{S_{no}}{S_{no} + K_{no}}) X_{bh} + \frac{1}{Y_a} (\mu_{ma} (20^{\circ}\text{C}) \exp^{\gamma (\text{Temp-20})}) \times \\ &\times \frac{S_{nh}}{S_{nh} + K_{nh}} \frac{S_o}{S_o + K_{oa}} X_{ba}; \\ r_o &= \frac{1 - Y_h}{Y_h} (\mu_{bh} (20^{\circ}\text{C}) \exp^{\gamma (\text{Temp-20})}) \frac{S_s}{S_s + K_s} \frac{S_o}{S_o + K_{oh}} X_{bh} - \\ &- \frac{4,57 - Y_a}{Y_a} (\mu_{ma} (20^{\circ}\text{C}) \exp^{\gamma (\text{Temp-20})}) \frac{S_{nh}}{S_{nh} + K_{nh}} \frac{S_o}{S_o + K_{oa}} X_{ba}; \\ r_{alk} &= (\frac{1 - Y_h}{40,04Y_h} - \frac{i_{xb}}{14}) (\mu_{bh} (20^{\circ}\text{C}) \exp^{\gamma (\text{Temp-20})}) \eta_g \times \\ &\times \frac{K_{oh}}{S_o + K_{oh}} \frac{S_{no}}{S_{no} + K_{no}} X_{bh} - \frac{i_{xb}}{14} (\mu_{bh} (20^{\circ}\text{C}) \exp^{\gamma (\text{Temp-20})}) \times \\ &\times \frac{S_s}{S_s + K_s} \frac{S_o}{S_o + K_{oh}} X_{bh} + \frac{1}{14} k_a S_{nd} X_{bh} - -(\frac{i_{xb}}{14} + \frac{1}{1Y_a}) \times \\ &\times (\mu_{ma} (20^{\circ}\text{C}) \exp^{\gamma (\text{Temp-20})}) \frac{S_{nh}}{S_{nh} + K_{nh}} \frac{S_o}{S_o + K_{oa}} X_{ba}; \\ r_{xs} &= (1 - f_p) (b_h X_{bh} + b_a X_{ba}) - k_h \frac{X_s / X_{bh}}{K_x + X_s / X_{bh}} \times \\ &\times (\frac{S_o}{S_o + K_{oh}} + \eta_g \frac{K_{oh}}{S_o + K_{oh}} \frac{S_{no}}{S_{no} + K_{no}} S_{no} + K_{no}) X_{bh}. \end{aligned}$$

В табл. 1 указаны все основные наименования параметров, их обозначения и единицы измерения. Моделирование выполняется в среде MATLAB/Simulink при различных температурных режимах, указанных в табл. 2, и Q^{ex} , где Q^{ex} – исходный расход сточных вод, м 3 /сут.

На рис. 1 представлены результаты моделирования при воздействии краткосрочных режимов 1, 2, 3 и $Q^{\rm ex}=5$. Изменение температуры с низкого ($\theta_{\rm low}=5^{\circ}C$) и нормального ($\theta_{\rm norm}=20^{\circ}C$) значений до высокого ($\theta_{\rm high}=35^{\circ}C$), что соответствует режимам 2 и 3 позволяет концентрации бактерий нитри- и денитрификаторов вырасти и снизить концентрации аммония и нитратного азота в отличие от режима 1, в котором температура повышается от низкого ($\theta_{\rm low}=5^{\circ}C$) до нормального ($\theta_{\rm norm}=20^{\circ}C$). Также увеличение температуры позволяет снизить время установления для бактерий гетеротрофов и растворенного биологически разлагаемого органического вещества на 3 суток.

ТАБЛИЦА I ОСНОВНЫЕ ПАРАМЕТРЫ, ОБОЗНАЧЕНИЯ И ЕДИНИЦЫ измерения

Наимонование величии и переметест				
Наименование величин и параметров	Обоз.	Ед. изме-		
		рения		
продуктам	f_p	ı		
Корректирующий фактор для гидролиза при аноксидных условиях	η_h	-		
Y.C.	K_{x}	-		
	X_p			
Концентрация биомассы гетеротрофов	X_{bh}			
(автотрофов)	(X_{ba})			
Константа полунасыщения по органическому субстрату при денитрификации	K_s	гХПКм-3		
Концентрация взвешенного органического разлагаемого вещества	X_s			
Концентрация растворенного биологически разлагаемого органического вещества	S_s			
Y.C.	X_i			
xe.	K_{oh}	$\Gamma O_2 M^{-3}$		
	K_{no}	ΓΝΟ-3M-3		
TC.	S_{no}			
*	i_{xb}	гN _{обш/} /(гХПК)		
* "	i_{xb}			
Физичия аража в марка тистичнов порта та	i_{xi}			
Корректирующий фактор скорости роста гетеротрофов в аноксидных условиях	$\eta_{_g}$	-		
Максимальный коэффициент прироста биомассы для гетеротрофных бактерий	Y_h	гХПК/гN		
) () () () () () () () () () (Y_a			
	k_a	NH ₄ //Ncyr ⁻¹		
Тампаратури ий кооффициант	γ	-		
Температура среды	θ	°C		
	X_{nd}	гNм ⁻³		
Volumentaria postbonalinos encommisaros	S_{nd}			
	S_{nh}			
	K_{nh}	гNH ₄ +м- ³		
Концентрация растворенного кислорода	S_o	гNО ₂ м ⁻³		
	S_{alk}	эквм ⁻³		
автотрофов	K_{oa}	гО ₂ м ⁻³		
	μ _{bh} ^{20°C} (μ _{ma} ^{20°C})			
Y				
~	b_a			
Y.C.	k_h			

ТАБЛИЦА II ТЕМПЕРАТУРНЫЕ РЕЖИМЫ

Темпера- турный режим	Темпера- турный диапазон	Описание температурного режима
Режим 1	от 5°C до 20°C	Повышение температуры от низкого значения до нормального
Режим 2	от 5°C до 35°C	Повышение температуры от низкого значения до высокого
Режим 3	от 20°С до 35°С	Повышение температуры от нормального значения до высокого
Режим 4	от 20°C до 5°C	Снижение температуры с нормального значения до низкого
Режим 5	от 35°С до 5°С	Снижение температуры с высокого значения до низкого
Режим 6	от 35°C до 20°C	Снижение температуры с высокого значения до нормального
Примечание – изменение происходит в момент времени 10 сут.		

На рис. 2 приведены графики изменений концентраций при воздействии краткосрочных режимов 4, 5, 6 и $Q^{\rm ex}=5$.

Наилучший уровень очистки наблюдается при снижении температуры от высокого значения ($\theta_{high} = 35^{\circ}C$) до нормального ($\theta_{norm} = 20^{\circ}C$), что соответствует режиму 6. Важно отметить резкий температурный перепад при снижении температуры от высокого значения ($\theta_{high} = 35^{\circ}C$) до низкого значения ($\theta_{low} = 5^{\circ}C$) не приводит к полному вымыванию культур, но значительно ухудшает качество биопроцессов. Данный результат объясняется высокой первоначально температурой, которая обеспечивает быстрый рост микроорганизмов и их хорошую способность к адаптации в изменившихся условиях среды.

Результаты компьютерного моделирования при воздействии температурных режимов 1, 2, 3 и $Q^{\rm ex}=435$ представлены на рис. 3.

Наилучший уровень очистки достигается при увеличении температуры от нормального ($\theta_{norm} = 20^{\circ}C$) до высокого ($\theta_{high} = 35^{\circ}C$) значения, что соответствует режиму 3. При данном воздействии наблюдается уменьшение времени установления переходных процессов на 5 суток, по сравнению с режимом 2, который характеризуется высоким температурным перепадом.

Результаты компьютерного моделирования при воздействии температурных режимов 4, 5, 6 и $Q^{ex} = 435$ представлены на рис. 4.

Снижение температуры до $\theta_{low} = 5^{\circ}C$ ухудшает качество очистки и уменьшает концентрацию микроорганизмов гетеротрофов. Наилучший уровень очистки наблюдается при снижении температуры с

высокого значения ($\theta_{high}=35^{\circ}C$) до низкого ($\theta_{low}=5^{\circ}C$). Данный результат связан с высоким первоначальным значение, которое позволяет микроорганизмам вырасти и обеспечить необходимый уровень очистки до момента снижения температуры.

На рис. 5 представлены графики изменения концентраций при воздействии краткосрочных режимов 1, 2, 3 и $O^{\text{ex}} = 20$.

Увеличение температурного режима до высокого ($\theta_{high} = 35^{\circ}C$) и нормального ($\theta_{norm} = 20^{\circ}C$) значений, несмотря на низкую начальную температуру ($\theta_{low} = 5^{\circ}C$), позволяет создать благоприятные условия для развития микроорганизмов и снизить концентрации аммонийного и нитратного азотов. Важно отметить, что применение режимов 2 и 3 приводят к схожим результатам. Наихудший уровень очистки наблюдается при увеличении температуры от низкого ($\theta_{low} = 5^{\circ}C$) до нормального ($\theta_{norm} = 20^{\circ}C$).

На рис. 6 представлены графики изменений концентраций при воздействии краткосрочных режимов 4, 5, 6 и $Q^{\rm ex}=20$.

При снижении температурного режимов наблюдается вымывание бактерий автотрофов. Снижение температуры от высокого ($\theta_{high} = 35^{\circ}C$) значение до низкого ($\theta_{low} = 5^{\circ}C$), что соответствует режиму 2, который характеризуется наибольшим температурным перепадом. Применение данного режима снижает максимальную концентрацию денитрификаторов, но обеспечивает лучше уровень очистки по сравнению с воздействием при котором температура снижается с нормального ($\theta_{norm} = 20^{\circ}C$) значения до низкого ($\theta_{low} = 5^{\circ}C$), что соответствует режиму 4. Данный результат объясняется высокой первоначальной температурой. уровень Наихудший очистки наблюдается при использовании режима 4, наилучший – режим 6.

ЗАКЛЮЧЕНИЕ

Изменение температуры оказывает значительное влияние не только на популяцию микроорганизмов, но и на реакции их взаимодействия. Также важно отметить, что изменением температуры можно добиться более высокого качества очистки. Полученные результаты стоит учитывать при разработке системы управления температурой в биореакторе.

Рис. 1. Графики изменений концентраций при $Q^{\rm ex}=5{\rm m}^3/{\rm cyr}$ и воздействии режимов 1, 2 и 3

Рис. 2. Графики изменений концентраций при $Q^{ex} = 5\text{m}^3/\text{сут}$ и воздействии режимов 4, 5 и 6

Рис. 3. Графики изменений концентраций при $Q^{\rm ex}=20{\rm m}^3/{\rm cyr}$ и воздействии режимов 1, 2 и 3

Рис. 4. Графики изменений концентраций при $Q^{\rm ex}=20{\rm m}^3/{\rm cyr}$ при воздействии режимов 4, 5 и 6

Рис. 5. Графики изменений концентраций при $Q^{\rm ex}=435{\rm m}^3/{\rm cyr}$ и воздействии режимов 1, 2 и 3

Рис. 6. Графики изменений концентраций при $Q^{ex} = 435 \text{m}^3/\text{сут}$ и воздействии режимов 4, 5 и 6

Список литературы

- [1] Хенце М., Армоэс П., Ля-Кур-Янсен Й., Арван Э. Очистка сточных вод. М.: Мир, 2009. 480 с.
- [2] Вавилин В.А., Васильев В.Б. Математическое моделирование процессов биологической очистки сточных вод активным илом. М.: Наука, 1979. 121 с.
- [3] Henze M. Activated Sludge Model No. 1 / M. Henze, C. P. L. Grady, W. Gujer, G. v. R. Marais, T. Matsuo. London: IAWPRC, 1987.
- [4] Грудяева Е.К. Моделирование управляемых процессов биологической очистки сточных вод / Е.К. Грудяева, С. Е. Душин, СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2017. 231 с.