

FIG. 1

SP22	MASKRALVILAKGAEEMETVI <u>PVDIMRRAGIKVTVAGLAG</u>	
1	: : : : : : :	40
DJ-1	MASKRALVILAKGAEEMETVI <u>PVDVMRRAGIKVTVAGLAG</u>	
	Peptide 1	
SP22	<u>KDPVQCSR</u> <u>DVVICPDTSLEEAKTQGPYDVVVLPGGNLGAQ</u>	
41	: : : : : : :	80
DJ-1	<u>KDPVQCSR</u> <u>DVVICPDASLEAKKEGPYDVVVLPGGNLGAQ</u>	
SP22	NLSESAV <u>KEILKEQENRKGLIAAI</u> CAGPTALLAHEVGFG	
81	: : : : : : :	120
DJ-1	NLSESAV <u>KEILKEQENRKGLIAAI</u> CAGPTALLAHEIGCG	
	Peptide 2	
SP22	CKVT <u>SHPLAKDKMMNGSHYSYS</u> ESRVE <u>KDGLILTSRGPGT</u>	
121	: : : : : : : :	160
DJ-1	SKVT <u>THPLAKDKMMNGGHYTYS</u> ENRVE <u>KDGLILTSRGPGT</u>	
	Peptide 3 Peptide 4	
SP22	SFEFALAI <u>IVEALSGKDMANQVKAPLVLD</u>	
161	: : : : : :	189
DJ-1	SFEFALAI <u>IVEALNGKEVAAQVKAPLVLD</u>	

FIG. 2

1 A gctgtgcagagccgtctggcagggttacccatctttattaatcattag 65
 66 A tagtgtggtcagagacttagcaccattgtctccccaacctggccagacattcagcagtta 130
 131 A tcggaacagcaacaacagcaacaaaacccaaaattacaatctttaagaaatagaaATGgca 195
 B tggcttcgcgtgggtggaggaggcgcggctcaggtctttaagaaatagaaATGgca
 C ttgaaacctATGttqcactqtqqaqtctccacttacacacqccctattatggca
 1 M L H C G V L H L H S L F M A 15
 196 tccaaaagagctctggtcacccatccaaaggagcagaggagatggagacagtgattcctgtgga 260
 16 S K R A L V I L A K G A E E M E T V I P V D 37
 261 catcatgcggcgagctgggattaaagtccacgttcaggcttgctggagaccggccgtgcagt 325
 38 I M R R A G I K V T V A G L A G K D P V O 58
 Peptide 1
 326 ttagccgtatgtatgtatccggataccagtctggagaaggcaaaaacacagggaccatac 390
 59 C S R D V V I C P D T S L E E A K T Q G P Y 80
 391 gatgtgggtgttccaggagggaaatctgggtgcacagaacttatctgagtcggcttggtgaa 455
 81 D V V V L P G G N L G A Q N L S E S A L V K 102
 456 ggagatcccaaggagcaggagaacaggaaggccatagctgcacatctgtgcgggtcctacgg 520
 103 E I L K E Q E N R K G L I A A I C A G P T 123
 Peptide 2
 *
 521 ccctgtggctacagaagttaggcttggatgcaaggatcacatcgccaccattggctaaggacaaa 585
 124 A L L A H E V G F G C K V T S H P L A K D K 145
 Peptide 3
 586 atgatgaacggcagtcactacagctactcagagagccgtgtggagaaggacggccatcctcac 650
 146 M M N G S H Y S Y S E S R V E K D G L I L T 167
 Peptide 4
 651 cagccgtggccctggaccagcttcgagttgcgcgtggccattgtggaggcactcagtggcaagg 715
 168 S R G P G T S F E F A L A I V E A L S G K 188
 716 acatggctaaccaagtgaaggccccgttctcaaagactAGagagcccaagccctggaccct 780
 189 D M A N Q V K A P L V L K D * 202
 781 ggaccccccaggctgagcaggcatttggaaagcccactagagagaccacagccaggtaacctggcat 845
 846 tggaagcccacttagtgttccacagccaggtaacctcaggaactaacgtgtgaagttagccgct 910
 911 gctcaggaatctcgccctggctctgtactattctgagccttgcttagaataaacagttccca 975
 976 agctc*c*tgacggct* 989

Fig. 3

Fig. 4

Fig. 5

FIG. 6

150

Predictability

N = 131
 $r^2 = 0.78$

Fertility %

100

50

0

False Negative = 17%

True Positive = 94%

True Negative = 76%

SP22 = 3594 - Critical

SP22IOD $\times 10^3$

FIG. 7

FIG. 8-1

FIG. 8-2

FIG. 8-3

FIG. 8

FIG. 8-1

FIG. 8-2

FIG. 8-3

Fig. 9

Fig. 10

FIG. 11

FIG. 12

FIG. 13-1

FIG. 13-2

FIG. 13-3

FIG. 14

FIG. 15

1 xxxatggcatccaaaagagctctggtcatc 66
1 X X X X X X X X X X X X M A S K R A L V I 22
67 ctagccaaaggagcagaggagatggagacagtgattcctgtggacatcatgcggcgagctgggatt 132
23 L A K G A E E M E T V I P V D I M R R A G I 44
133 aaagtccaccgttgcaggcttggctggaaaggaccccgtgcagtgtagccgtatgtatgtatgt 198
45 K V T V A G L A G K D P V Q C S R D V V I C 66
199 ccggataccagtctggaagaagcaaaaacacagggaccatacgtatgtggttttccaggagga 264
67 P D T S L E E A K T Q G P Y D V V V L P G G 88
265 aatctgggtgcacagaacttatctgagtcggcttggtgaaggagatcctaaggagcaggagaac 330
89 N L G A Q N L S E S A L V K E I L K E Q E N 110
331 aggaagggcctcatagctgccatctgtgcgggtcctacggccctgctggctcacgaagttaggctt 396
111 R K G L I A A I C A G P T A L L A H E V G F 132
397 ggatgcaagggttacatcgcacccattggctaaggacaaaatgatgaacggcagtcactacagctac 462
133 G C K V T S H P L A K D K M M N G S H Y S Y 154
463 tcagagagccgtgtggagaaggacggcctcatcctcaccagccgtggcctggaccagcttcgag 528
155 S E S R V E K D G L I L T S R G P G T S F E 176
528 ttgcgcgtggccattgtggaggcactcagtggcaaggacatggctaaccaaagtgaaggccccgctt 594
177 F A L A I V E A L S G K D M A N Q V K A P L 198
595 gttctcaaagactagagagcccaagccctggaccctggaccccccaggctgagcaggcatttggaaagc 660
199 V L K D * 202
661 ccactagagagaccacagccagtgaacctggcatttggaaaggccactagtggtccacagccagt 726
727 gaacctcaggaactaacgtgtgaagttagccgcgtcaggaatctcgccctggctctgtactatt 792
793 ctgagcccttgcgttagataataacagttccccaaqctc 830

FIG. 16

```

1      gctgtgcagagccgtctggcagggttacccctaaaggatattccatcttattaatcattag 65
66     tagtgtggtcagagacttagcaccattggtctcccccaacctggtccagacatccagcagttta 130
131    tcggaacagcaacaacagcaacaaaaccttcaaaattacaagtcttaagaaaatagaaATGgca 195
1                                M A 2
196    tccaaaagagctctggtcatcctagccaaaggagcagaggagatggagacagtgattcctgtgga 260
3          S K R A L V I L A K G A E E M E T V I P V D 24
261    caccatgcggcgagctgggattaaagtaccgttgcaggctggctggaaaggaccccgtgcagt 325
25          I M R R A G I K V T V A G L A G K D P V Q 45
326    gtagccgtgatgttagtgatttgcggataccagtctggaaagaagcaaaaacacagggaccatac 390
46          C S R D V V I C P D T S L E E A K T Q G P Y 67
391    gatgtggttgttcttccaggagggaaatctgggtgcacagaacttatctgagtcggcttggtaa 455
68          D V V V L P G G N L G A Q N L S E S A L V K 89
456    ggagatcctcaaggagcaggagaacaggaaggccctcatagctgccatctgtgcgggtccacgg 520
90          E I L K E Q E N R K G L I A A I C A G P T 110
521    ccctgctggctcacgaagttaggcttggatgcaaggttacatcgcacccattggctaaggacaaa 585
111    A L L A F E V G F G C K V T S H P L A K D K 132
586    atgatgaacggcagtcactacagctactcagagagccgtgtggagaaggacggccctcatcctcac 650
133    M M N G S H Y S Y S E S R V E K D G L I L T 154
651    cagccgtggccctgggaccagcttcgagttgcgtggccattgtggaggcactcagtgccaagg 715
155    S R G P G T S F E F A L A I V E A L S G K 175
716    acatggctaaccaaagtgaaggcccccttgcattcaaagacTAGagagcccaagccctggaccct 780
176    D M A N Q V K A P L V L K D 189
781    ggaccccccaggctgagcaggcattggaagcccactagtggtccacagcccaagtgaacccat 845
846    tggaagcccactagtgtgtccacagcccaagtgaacccatcaggaactaacgtgtgaagttagccgct 910
911    gctcaggaatctcgccctggctctgtactattctgagccctgcttagtagaataaacagttcccc 975

```