## **B. SUBIECTUL III –**

## (15 puncte)

## Rezolvați următoarea problemă:

O cantitate  $v=4\,\mathrm{mol}$  de gaz ideal monoatomic  $\left(C_V=\frac{3}{2}R\right)$  evoluează între două stări de echilibru termodinamic 1 și 2 prin două procese distincte:  $1\to A\to 2$  și  $1\to B\to 2$ , reprezentate în coordonate p-T în figura alăturată. Se cunosc:  $p_1=2\,\mathrm{atm}$ ,  $T_1=600\,\mathrm{K}$  și  $p_2=1\,\mathrm{atm}$  (1 atm  $\cong 10^5\,\mathrm{Pa}$ ) și se consideră  $\ln 2\cong 0,693$ .



- **a.** Reprezentați grafic cele două procese în același sistem de coordonate p-V.
- **b.** Calculați lucrul mecanic schimbat de gaz cu mediul exterior în procesul  $1 \to A \to 2$ .
- c. Determinați variația energiei interne a gazului între cele două stări de echilibru termodinamic 1 și 2.
- **d.** Calculați căldura schimbată de gaz cu mediul exterior în procesul  $1 \rightarrow B \rightarrow 2$ , precizând dacă este primită sau cedată.