Prog. inf. I. (BSc.)

2. vizsgadolgozat

2016. január 7.

Első rész (70 perc)

Minden feladatban írjuk be a megfelelő választ a sor végén levő keretbe. Csak az eredmény lesz pontozva. Α. Minden helyes válasz 1 pontot ér. Az elégségeshez az A kérdéscsoportból legalább 6 pontot kell szerezni. 5 pont esetén a dolgozat további részeiben kell legalább 10 pontot szerezni.

1. Legyen $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ bázis a $V \leq \mathbb{R}^n$ altérben, s legyen a $\mathbf{v} \in V$ vektor koordinátavektora a $2\mathbf{b}_1, 2\mathbf{b}_2, 2\mathbf{b}_3$ bázisban $\begin{bmatrix} 1 & -2 & -3 \end{bmatrix}^T$. Adjuk meg a \mathbf{v} vektor koordinátavektorát a $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ bázisban.

$$[\mathbf{v}]_{\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3} = \begin{bmatrix} 2\\ -4\\ -6 \end{bmatrix}$$

2. Az alábbiakban egy-egy feltételt adunk az $\mathbf{x}=[x_1\ x_2\ x_3\ x_4]^T\in\mathbb{R}^4$ vektorokra. Döntsük el, hogy az adott feltételnek eleget tevő összes vektor mely esetben alkot alteret \mathbb{R}^4 -ben.

Altér: (A), (B)

- (A) $x_1 + x_4 = 0;$ (C) $x_1x_4 = 0;$ (B) $x_1^2 + x_4^2 = 0;$ (D) $x_1 + x_4 = 2.$

- 3. Legyen U altér \mathbb{R}^5 -ben, melyben van két lineárisan független vektor, továbbá van benne egy ötelemű, lineárisan összefüggő generátorrendszer. Mi lehet $\dim U$ értéke?

 $\dim U$ lehet: 2, 3 vagy 4

4. Adjuk meg azon \mathbb{R}^3 -beli $[x_1 \ x_2 \ x_3]^T$ vektorok által alkotott altér egy bázisát, melyekre teljesül, hogy $x_1=2x_2$, és $x_2=-x_3$.

Pl. bázis: $\{[2 \ 1 \ -1]^T\}$

5. Az x + y + z = 0 lineáris egyenlethez vegyünk hozzá további lineáris egyenleteket, hogy az így kapott egyenletrendszernek már pontosan egy megoldása legyen.

x = 0y = 0

6. Legyen $A=\begin{bmatrix}1&c&c\\2&3&3\end{bmatrix}$. Mely $c\in\mathbb{R}$ számok esetén lesz az Amátrixnak jobb oldali inverze?

 $c \neq 3/2$

7. Az 1, 2, 3, 4, 5 számoknak adjuk meg egy olyan permutációját, melyben az inverziók száma 1.

Pl. ilyen: 21345

8. Hogyan változik egy 3×3-as mátrix determinánsa, ha a második oszlopát kicseréljük az első és a harmadik oszlop összegére, a másik két oszlopot pedig változatlanul hagyjuk?

Az új determináns 0 lesz.

9. Legyen $A=\begin{bmatrix}1&1\\0&2\end{bmatrix}$ és $\mathbf{x}=\begin{bmatrix}c\\1\end{bmatrix}$. Milyen $c\in\mathbb{R}$ számra lesz az \mathbf{x} jobb oldali sajátvektora az A-nak $\hat{\mathbf{x}}$

c = 1

10. Mely $c \in \mathbb{R}$ értékekre lesz diagonalizálható \mathbb{R} felett az A = $\begin{bmatrix} c & 1 \\ 1 & c \end{bmatrix}$ mátrix?

Minden $c \in \mathbb{R}$ számra.

11. Hány dimenziós lesz a képtere annak a $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ lineáris transzformációnak, mely minden $[x_1 \ x_2 \ x_3]^T$ vektorhoz hozzárendeli az $[(x_1+x_2+x_3) \ x_2 \ x_3]^T$ vektort?

 $\dim \mathcal{I}m\,\varphi = 3$

12. Adjuk meg az $[1 \ 1 \ 0]^T \in \mathbb{R}^3$ vektorra merőleges összes vektor által alkotott $U \leq \mathbb{R}^3$ altér egy bázisát (a merőlegességet a szokásos $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^T \mathbf{b}$ skaláris szorzatra nézzük).

1 Bázis pl.: 0 13. Legyen $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ az a lineáris transzformáció, mely az $\mathbf{i}, \mathbf{j}, \mathbf{k}$ bázisvektorokat ciklikusan megcseréli, vagyis $\varphi(\mathbf{i}) = \mathbf{j}, \varphi(\mathbf{j}) = \mathbf{k}$ és $\varphi(\mathbf{k}) = \mathbf{i}$. Írjuk föl φ mátrixát a $B = \{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ bázisban.

$$[\varphi]^B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

14. Legyenek **a** és **b** egymásra merőleges geometriai vektorok, melyeknek a hossza $|\mathbf{a}| = 1$ és $|\mathbf{b}| = 2$. Adjuk meg az **a**, **b** és $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ vektorok vegyesszorzatát.

$$\mathbf{abc} = 4$$

15. Határozzuk meg az $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ mátrix által meghatározott kvadratikus alak jellegét (definitségét).

Az alak: pozitív definit.

- **B.** Válaszoljuk meg az alábbi kérdéseket. A kimondandó állításokat nem kell bizonyítani. Ügyeljünk a pontos fogalmazásra. Minden teljes válasz 2 pontot ér. Az elégségeshez a B kérdéscsoportból legalább 4 pontot kell szerezni. (10 pont)
- 16. Mit jelent az, hogy egy v vektor lineárisan függ az $\mathbf{a}_1, \dots, \mathbf{a}_k \in \mathbb{R}^n$ vektoroktól?

Azt jelenti, hogy **v** felírható $\mathbf{a}_1, \dots, \mathbf{a}_k$ lineáris kombinációjaként, azaz léteznek olyan $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$ skalárok, melyekre $\mathbf{v} = \lambda_1 \mathbf{a}_1 + \lambda_2 \mathbf{a}_2 + \dots + \lambda_k \mathbf{a}_k$.

17. Adjuk meg képlettel két mátrix, $A \in \mathbb{R}^{k \times \ell}$ és $B \in \mathbb{R}^{\ell \times n}$ szorzatában, AB-ben az i-edik sor j-edik elemét, ${}_{i}[AB]_{i}$ -t. Azt is mondjuk meg, i és j milyen értékére létezik ez az elem.

Ha
$$1 \leq i \leq k$$
 és $1 \leq j \leq n$, akkor $_i[AB]_j = \sum_{t=1}^\ell {_i[A]_t \cdot _t[B]_j}.$

18. Mondjuk ki a determinánsokra vonatkozó szorzástételt.

Ha $A,B \in \mathbb{R}^{n \times n}$ tetszőleges mátrixok, akkor $\det(AB) = \det A \cdot \det B.$

19. Definiáljuk egy mátrix jobb oldali sajátvektorának a fogalmát.

Legyen $A \in \mathbb{R}^{n \times n}$ tetszőleges négyzetes mátrix. Egy $\mathbf{x} \in \mathbb{R}^n$ vektort az A mátrix jobb oldali sajátvektorának nevezünk, ha: 1) $\mathbf{x} \neq \mathbf{0}$; 2) létezik $\lambda_0 \in \mathbb{R}$ szám, melyre $A\mathbf{x} = \lambda_0 \mathbf{x}$.

20. Mondjuk ki az euklideszi terek vektoraira vonatkozó háromszög-egyenlőtlenséget.

HaVvalós vagy komplex euklideszi tér, akkor tetszőleges $\mathbf{x},\mathbf{y}\in V$ vektorokra: $\|\mathbf{x}+\mathbf{y}\|\leq \|\mathbf{x}\|+\|\mathbf{y}\|\,.$

Az elégségeshez a dolgozat második részével együtt legalább 14 pontot kell szerezni.

NEV:	NEPTUN-KOD:	
Prog. inf. I. (BSc.)	$ \begin{array}{c} \textbf{2. vizsgadolgozat/3} \\ \textbf{Második rész (40 perc)} \end{array} $	2016. január 7.
Bizonyítsuk az alábbi állításokat. követelmény az elégségeshez.	Ügyeljünk a pontos fogalmazásra. Ebb	en a részben nincs minimum
Mondjuk ki és bizonyítsuk be a m	nátrixok szorzatának transzponáltjára l	kimondott összefüggést. (4 pont
	A hátlapon folytatható!	
		és bizonyítsuk be a hasonl (6 pont
	A hátlapon folytatható!	
	Prog. inf. I. (BSc.) Bizonyítsuk az alábbi állításokat. követelmény az elégségeshez. Mondjuk ki és bizonyítsuk be a n	Prog. inf. I. (BSc.) 2. vizsgadolgozat/3 Második rész (40 perc) Bizonyítsuk az alábbi állításokat. Ügyeljünk a pontos fogalmazásra. Ebb követelmény az elégségeshez. Mondjuk ki és bizonyítsuk be a mátrixok szorzatának transzponáltjára i A hátlapon folytatható! Definiáljuk az R felett hasonló mátrixok fogalmát, majd mondjuk ki mátrixok karakterisztikus polinomjára vonatkozó összefüggést.

Ha az I. rész két kérdéscsoportjából a megszerzett pontszám eléri a 6-ot, illetve a 4-et, akkor a dolgozat érdemjegye az összpontszám alapján:

EREDMÉNYHIRDETÉS: 2015. január 7-én, csütörtökön 16 és 17 óra között a Déli tömb 3-709-es szobájában. Ezt követően a vizsgadolgozatok Szalay tanár úrtól vehetők át a szóbeli vizsgák napjain a délelőtti órákban.