Análisis del rendimiento del código de la práctica 1.

1. Tabla de resultados:

Id	Dimensión A	Dimensión B	T. E. StrategyRow	T. E. StrategyCol
ld1	1000x1000	1000x1000	7108,16ms	6844,88ms
ld2	1000x500	500x2000	18402,1ms	16875,6ms
ld3	20000x50	50x10000	66246.8ms	68026.7ms
ld4	15000x25	25x20000	51053ms	86156,5ms
ld5	8000x14	14x9500	8080,12	8861,51
ld6	50000x50	50x20000	103578	119943
ld7	20000x50	50x35000	320968	368697
ld8	50000x50	50x20000	366323	426154

2. Gráfica:

Rendimiento

3. Conclusión:

Dependiendo de las dimensiones de ambas matrices, la comparación del tiempo de ambas estrategias se acercará más o menos. Cuanto más pequeñas sean las columnas de la primera matriz y las filas de la segunda, el tiempo de ejecución de la estrategia de filas será menor que el de columnas, ya que a la hora de recorrer la matriz dinámicamente, accedes a los datos de forma lineal, ahorrando tiempo. En cambio, las matrices al ser cuadradas o tener las dimensiones casi del mismo tamaño, este acceso a memoria se iguala.