EXPERIMENT 7	
Title	IMPLEMENTATION OF SCAN LINE FILL ALGORITHM
Objective	To implement the Scan line polygon fill algorithm for coloring a given
	object.
Theory	Description:
	The basic scan-line algorithm is as follows:
	 Find the intersections of the scan line with all edges of the polygon
	Sort the intersections by increasing x coordinate
	• Fill in all pixels between pairs of intersections that lie interior to
	the polygon
	Process involved:
	The scan-line polygon-filling algorithm involves
	the horizontal scanning of the polygon from its lowermost to its
	topmost vertex,
	 identifying which edges intersect the scan-line,
	and finally drawing the interior horizontal lines with the
	specified fill color process.
	Scan Line 8 6 4 2 2 4 6 8 10 12 14 16
Algorithm	1. the horizontal scanning of the polygon from its lowermost to its topmost
	vertex
	2. identify the edge intersections of scan line with polygon
	3. Build the edge table
	a. Each entry in the table for a particular scan line contains the

maximum y value for that edge, the x-intercept value (at the lower vertex) for the edge, and the inverse slope of the edge.

- 4. Determine whether any edges need to be splitted or not. If there is need to split, split the edges.
- 5. Add new edges and build modified edge table.
- 6. Build Active edge table for each scan line and fill the polygon based on intersection of scanline with polygon edges.

Program

```
#include <stdio.h>
#include <conio.h>
#include <graphics.h>
void main()
int n,i,j,k,gd,gm,dy,dx;
int x,y,temp;
int a[20][2],xi[20];
float slope[20];
clrscr();
printf("\n\n\tEnter the no. of edges of polygon : ");
scanf("%d",&n);
printf("\n\itEnter the cordinates of polygon :\n\i");
for(i=0;i< n;i++)
printf("\tX%d Y%d: ",i,i);
scanf("%d %d",&a[i][0],&a[i][1]);
a[n][0]=a[0][0];
a[n][1]=a[0][1];
detectgraph(&gd,&gm);
initgraph(\&gd,\&gm,"C:\TurboC3\BGI");
/*- draw polygon -*/
for(i=0;i< n;i++)
line(a[i][0],a[i][1],a[i+1][0],a[i+1][1]);
getch();
for(i=0;i< n;i++)
dy=a[i+1][1]-a[i][1];
dx=a[i+1][0]-a[i][0];
if(dy==0) slope[i]=1.0;
if(dx==0) slope[i]=0.0;
if((dy!=0)\&\&(dx!=0)) /*- calculate inverse slope -*/
slope[i]=(float) dx/dy;
```

```
for(y=0;y<480;y++)
k=0;
for(i=0;i<n;i++)
\inf(((a[i][1] \le y) \& \& (a[i+1][1] > y))||
((a[i][1]>y)&&(a[i+1][1]<=y)))
xi[k]=(int)(a[i][0]+slope[i]*(y-a[i][1]));
k++;
for(j=0;j<k-1;j++) /*- Arrange x-intersections in order -*/
for(i=0;i<k-1;i++)
if(xi[i]>xi[i+1])
temp=xi[i];
xi[i]=xi[i+1];
xi[i+1]=temp;
setcolor(3);
for(i=0;i< k;i+=2)
line(xi[i],y,xi[i+1]+1,y);
getch();
```


