Révisions DS4 – Correction

Exercice: Arithmétique

On a:

$$(x-y)\sum_{k=0}^{n-1} x^k y^{n-1-k} = \sum_{k=0}^{n-1} x^{k+1} y^{n-1-k} - \sum_{k=0}^{n-1} x^k y^{n-k}$$

Ainsi, en posant j = k + 1 dans la première somme :

$$\sum_{k=1}^{n} x^{j} y^{n-j} - \sum_{k=0}^{n-1} x^{k} y^{n-k} = x^{n} y^{0} - x^{0} y^{n} = x^{n} - y^{n}$$

Ainsi comme $2^{9n} = 8^{3n}$, on voit que $(8^3 - 2^3)$ divise $2^{9n} - 3^{3n}$, donc $485 \mid 2^{9n} - 3^{3n}$.

Exercice: Arithmétique

- 1) Soient $z_1 \in \mathbb{U}_a$ et $z_2 \in \mathbb{U}_b$. Alors $(z_1 z_2)^{ab} = (z_1^a)^b \times (z_2^b)^a = 1 \times 1 = 1$. Donc $z_1 z_2 \in \mathbb{U}_{ab}$, et ϕ est bien définie.
- 2) On écrit l'identité de Bézout entre a et b. Alors $\exists u, v \in \mathbb{Z}$, av + bu = 1. En divisant de chaque côté par ab, on obtient bien le résultat demandé.
- 3) Soit $z_1 = e^{\frac{2iu\pi}{a}}, z_2 = e^{\frac{2iv\pi}{b}}$, alors $\phi(z_1, z_2) = e^{2i\pi(\frac{u}{a} + \frac{v}{b})} = e^{\frac{2i\pi}{ab}}$.

Exercice: Complexes

1)
$$z = \frac{\omega - i}{\omega + i} = \frac{(\omega - i)(\overline{\omega} - i)}{|\omega|^2 + i(\overline{\omega} - \omega) + 1} = \frac{|\omega|^2 - i(\omega + \overline{\omega}) - 1}{|\omega|^2 + i(\overline{\omega} - \omega) + 1} = \frac{|\omega|^2 - i}{|\omega|^2 + 1 + 2b}$$
, d'où le résultat demandé.
2) On a $(|\omega|^2 + 1)^2 = |\omega|^4 + 2|\omega|^2 + 1 = (|\omega|^2 - 1)^2 + 4|\omega|^2$

2) On a
$$(|\omega|^2 + 1)^2 = |\omega|^4 + 2|\omega|^2 + 1 = (|\omega|^2 - 1)^2 + 4|\omega|^2$$

= $(|\omega|^2 - 1)^2 + 4a^2 + 4b^2$
> $(|\omega|^2 - 1)^2 + (2a)^2$

3)
$$|z|^2 = Re(z)^2 + Im(z)^2 = \frac{(|\omega|^2 - 1)^2 + 4a^2}{(|\omega|^2 + 1 + 2b)^2} < \frac{(|\omega|^2 - 1)^2 + 4a^2}{(|\omega|^2 + 1)^2} < 1$$

Exercice: Complexes

1) On a
$$\sum_{k=0}^{n} \sin(k) = Im\left(\sum_{k=0}^{n} e^{ik}\right) = Im\left(e^{\frac{in}{2}} \frac{\sin(\frac{n+1}{2})}{\sin(\frac{1}{2})}\right) = \sin\left(\frac{n}{2}\right) \frac{\sin(\frac{n+1}{2})}{\sin(\frac{1}{2})}$$

2) On a
$$\sum_{k=0}^{n} \sum_{j=0}^{n} \sin(k+j) = Im(\sum_{k=0}^{n} \sum_{j=0}^{n} e^{i(k+j)}) = Im(\sum_{k=0}^{n} e^{ik} \times \sum_{j=0}^{n} e^{ij}) = e^{\frac{in}{2}} \frac{\sin(\frac{n+1}{2})}{\sin(\frac{1}{2})}$$

Exercice: Suites

1) On a
$$x - 1 \le E(x) \le x$$

2)
$$\forall k \in \mathbb{Z}, kx-1 \leq E(kx) \leq kx \Rightarrow \frac{1}{n^2} \sum_{k=1}^n (kx-1) \leq u_n \leq \frac{1}{n^2} \sum_{k=1}^n (kx)$$
 Ainsi $\frac{x^{\frac{n(n+1)}{2}}}{n^2} \leq u_n \leq \frac{x^{\frac{n(n+1)}{2}}}{n^2}$, $\operatorname{donc} \frac{x}{2} + \frac{x}{2n} - \frac{1}{n} \leq u_n \leq \frac{x}{2} \left(1 + \frac{1}{n}\right)$ Enfin, on a $u_n \xrightarrow[n \to +\infty]{x} \frac{x}{2}$.

3) On réécrit la limite de la question 2 :

$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \left| u_n - \frac{x}{2} \right| < \varepsilon$$

Donc pour cet ε et ce x (qu'on supposera positif pour simplifier les calculs), on a donc :

$$u_n \in]\varepsilon - \frac{x}{2}; \varepsilon + \frac{x}{2}[$$

Or $u_n \in \mathbb{Q}$, on veut donc $u_n \in]a; b[$ pour tous $a, b \in \mathbb{R}$.

Fixons ce a < b dans \mathbb{R}_+ simplifier les calculs (la même chose peut être atteinte en posant dans \mathbb{R}_- , et dans les cas mixtes). On doit donc résoudre :

$$\begin{cases} a = \varepsilon - \frac{x}{2} \\ b = \varepsilon + \frac{x}{2} \end{cases} \Longleftrightarrow \begin{cases} \varepsilon = \frac{a+b}{2} \\ x = b-a \end{cases}$$

On vérifie que $\varepsilon > 0$ (car $a \neq b$) et que $x \in \mathbb{R}_+$ (car b > a), et on a bien $u_n \in]a; b[\cap \mathbb{Q}, donc \mathbb{Q}$ est bel et bien dense dans \mathbb{R} .