

UNIUBE - CAMPUS VIA CENTRO - Uberlândia/MG

Cursos de Engenharia Elétrica Disciplina: Materiais Elétricos

Aula 2 Materiais Elétricos e Aplicações

Revisão 1, de 11/03/2024

Prof. João Paulo Seno joao.seno@uniube.br

1

Referência para esta aula

 Capítulo 2, "Materiais Elétricos e Aplicações", páginas 33 a 49, do livro ROCHA, M.F. et al. Materiais Elétricos. Porto Alegre: SAGAH, 2018.
 Disponível na Biblioteca A, acessível via AVA.

Introdução

- Os materiais elétricos podem ser classificados em três grandes grupos:
- 1. Materiais condutores;
- 2. Materiais semicondutores e
- 3. Materiais isolantes.
- O critério de classificação nos grupos acima está relacionado à <u>intensidade da</u> corrente elétrica que os percorre quando certa quantidade (volume) do material <u>é submetido a uma diferença de potencial elétrico</u> entre dois pontos de sua estrutura física.
- A intensidade da corrente é medida pela taxa de variação da carga em relação ao tempo, que atravessa determinada seção transversal do material.

I = dQ/dT

3

Materiais condutores

- São aqueles nos quais a corrente elétrica tem baixa resistência em sua passagem;
- Podem ser classificados em dois grupos:
 - <u>Materiais de grande condutividade</u>: a corrente flui com maior facilidade, gerando as menores perdas (R.I²) possível. Estes materiais são utilizados na conexão entre aparelhos ou na construção das máquinas elétricas;
 - <u>Materiais de elevada resistividade</u>: Estes materiais são utilizados em equipamentos cujo objetivo principal é transformar a energia elétrica em energia térmica, como chuveiros e fornos elétricos.
- De forma geral, os materiais condutores são **METAIS**;
- Ligas metálicas também podem ser boas condutoras;
- Metais mais nobres geralmente são melhores condutores.

A escolha do material condutor em projetos

- Nem sempre a melhor condutividade é vantajosa;
- Levam-se em consideração outros aspectos ou propriedades, como:
 - Custo:
 - Densidade (peso);
 - Resistência mecânica;
 - ...
- Os metais de maior condutividade, mais utilizados, são (ordem decrescente):
 - Cobre, alumínio, prata, chumbo, platina, mercúrio e ouro.
- Obs.: O alumínio é bastante utilizado em relação ao cobre, por conta do custo. Já a prata e o ouro, apesar de mais caros, são utilizados por conta de sua grande resistência à oxidação, sendo utilizados em peças de contato elétrico crítico.

Uniube

Materiais semicondutores

- Nestes materiais, a condutividade é influenciada pela presença de impurezas;
- Sua condutividade é intermediária, quando há presença de impurezas, pois quando estão em seu estado puro, são considerados materiais isolantes;
- Os mais utilizados atualmente são o Silício e o Germânio;
- Os semicondutores se caracterizam por possuírem 4 elétrons livres na camada de valência (camada mais externa do átomo).

Dopagem de semicondutores

- Com a dopagem, a estabilidade do cristal é desfeita;
- Há duas maneiras de se proceder com a dopagem:
 - <u>Com átomos trivalentes</u> (três elétrons na camada de valência), como o Boro, por exemplo. Neste caso, o cristal fica com uma característica positiva, pois ainda fica faltando um elétron, e é chamado tipo P;
 - Com átomos pentavalentes (cinco elétrons na camada de valência), como o Fósforo, por exemplo. Neste caso, o cristal fica com uma característica negativa, pois fica sobrando um elétron livre, e é chamado tipo N.

7

WUniube

Materiais isolantes ou dielétricos

- São considerados isolantes aqueles materiais que oferecem resistência à passagem da corrente elétrica;
- São exemplos: borracha, silicone, vidro, cerâmica, papel,...
- Nestes materiais não há elétrons livres, mas quando submetidos a uma diferença de potencial (tensão), ocorre a orientação dos dipolos internos, fenômeno chamado de polarização do dielétrico.
- **IMPORTANTE**: A propriedade isolante do material é mantida até determinada diferença de potencial, chamada de <u>rigidez dielétrica</u>, valor a partir do qual o material passa a se comportar como condutor.

Rigidez dielétrica dos materiais

Material	Rigidez Dielétrica (V/m)
Ar	3x10 ⁶
Neoprene	12x10°
Nylon	14x10 ⁶
Papel	16x10 ⁶
Vidro Pyrex	14x10 ⁶
Poliestireno	24x10°
Quartzo	8x10°
Óleo Silicone	15x10 ⁶
Teflon	60x10 ⁶

.

Exemplo: capacitor

- O capacitor é um componente eletrônico passivo, que armazena carga elétrica;
- É, basicamente, constituído de duas placas condutoras separadas por um material dielétrico (isolante), geralmente papel, óleo ou cerâmica, dentre outros, até mesmo o ar;
- Veja no desenho esquemático abaixo, o que acontece quando os terminais do capacitor são submetidos a uma diferença de potencial:

A carga no capacitor é: $Q = C \cdot U$ onde: C é a

Capacitância e U é a
tensão aplicada.

Uniube Permissividade relativa ou constante dielétrica (ε), do isolante ou dielétrico

- É uma propriedade do material isolante ou dielétrico;
- É a relação entre a carga adquirida por um capacitor quando submetido a uma tensão U e a carga adquirida pelo capacitor se existisse vácuo no lugar de seu dielétrico, sob a mesma tensão U.

$$\varepsilon = \frac{Q}{Q_0}$$

Efeito Corona

- É o fenômeno de ionização do ar ao redor de superfícies condutoras submetidas a altos valores de diferença de potencial elétrico;
- Esta diferença de potencial elétrico não é alta o suficiente para romper o dielétrico (fazendo-o se comportar como um condutor), mas é alta o suficiente para provocar esta ionização;
- Este efeito provoca a geração de luz azulada, ozônio (O₃) e seu cheiro característico, ruído e interferência eletromagnética. Gera também perda de energia.
- No entanto, se houver um rompimento do arco elétrico, haverá um arco elétrico;
- Este fenômeno é estudado na disciplina Transmissão e Distribuição de Energia Elétrica.

Efeito corona (imagens)

13

Uniube

Arco elétrico (rompimento da rigidez dielétrica do ar)

Cálculo da resistividade (e condutividade)

• A resistividade elétrica de um material pode ser determinada por:

$$\rho = \frac{R \times A}{l} \left[\frac{\Omega \ mm^2}{m} \right] \text{ ou } \left[\Omega \cdot \text{cm} \right]$$

Onde

- \blacksquare p é a resistividade elétrica do material (Ω .cm);
- R é resistência elétrica (Ω);
- A é a seção transversal (cm2);
- 1 é o comprimento do condutor (m).

15

Resistividade típica de alguns materiais

Material	Resistividade (Ω.m)
Prata	1,64 x 10-8
Cobre	1,72 x 10-8
Alumínio	2,80 x 10-8
Ouro	2,45 x 10-8
Carbono	4,00 x 10-5
Germânio	47 x 10-2
Silício	6,4 x 102
Papel	1010
Mica	5 x 1011
Vidro	1012
Teflon	3 x 1012

Resistência elétrica de um material

• É dada por:

$$R = \rho \, \frac{l}{A} \, [\Omega]$$

• E, deve valer a Lei de Ohm, que estabelece a relação entre a intensidade da corrente elétrica (I) e a diferença de potencial aplicada (V).

$$V = R . I$$

17

Materiais elétricos e suas aplicações

Condutores

19

Cobre (Cu)

- Tem destaque dentre os condutores elétricos;
- · Características:
 - boas características mecânicas;
 - oxida lentamente, mesmo em condições em que o ambiente é úmido;
 - fácil de ser moldado a quente.
- No estado duro (encruado), é utilizado onde se exige dureza, resistência à tração e ao desgaste mecânico, como em cabos de linhas aéreas, anéis coletores,...
- Se recozido (processo de tratamento térmico) se torna mais maleável, sendo utilizado em condutores elétricos encapados, bobinas, e também em barramentos;
- Pode ser utilizado em ligas, como o bronze (cobre, estanho,...) que tem maior resistência ao desgaste mecânico (uso em trilhos de contato,...).

Alumínio (Al)

- Em eletricidade, é o segundo metal mais utilizado;
- Características:
 - apresenta preço mais atrativo, quando comparado ao cobre;
 - as peças de alumínio, para serem empregadas no lugar do cobre, precisar ser maiores; no entanto, o peso da peça pode chegar a ser 50% mais leve do que a original em cobre;
 - o Brasil possui várias jazidas de alumínio, já parte do cobre utilizado no país é importado;
 - o alumínio apresenta problemas de fragilidade mecânica, além de oxidar mais rápido.
- Sua fragilidade mecânica faz com que seja utilizado em aplicações onde os esforços são pequenos (ex.: barras condutoras dos rotores dos motores do tipo gaiola de esquilo). Pode ser utilizado em ligas para diversas aplicações.

21

Chumbo (Pb)

• É utilizado na liga das soldas para eletrônica (para agregar maleabilidade) e também é utilizado na blindagem de condutores elétricos.

Estanho (Sn)

- Utilizado como material de solda ou isolação;
- Possui alta resistividade e ponto de fusão baixo.

23

Uniube

Prata (Ag)

- Dos metais nobres, é o mais utilizado;
- Apresenta alta resistência à oxidação;
- Utilizado em eletrodos para eletroencefalografia, formando ligas metálicas com outros elementos.

Ouro (Au)

- Metal nobre, de altíssima condutividade elétrica e alta resistência à oxidação;
- Boas características mecânicas;
- Preço (muito) alto;
- Utilizados onde a perda de contato elétrico por oxidação é crítica, como por exemplo, nos pinos dos microprocessadores e equipamentos de telecomunicações (sinais muito fracos).

25

WUniube

Platina (Pt)

- Tem as mesmas características do ouro;
- Utilizada em termo resistências PT-100 (sensores de temperatura utilizados em automação industrial).

Mercúrio (Hg)

- Em temperatura ambiente, é um metal líquido;
- É utilizado em retificadores, relógios e, em lâmpadas halógenas (de vapor de mercúrio!).

27

Uniube

Semicondutores

Carbono (C)

- Utilizado em escovas de máquinas elétricas rotativas (ex.: motores de corrente contínua);
- Utilizado na fabricação de resistores.

29

Uniube

Silício (Si)

- É o elemento básico da indústria de semicondutores;
- Segundo elemento mais facilmente encontrado na natureza (atrás apenas no Hidrogênio).

Germânio (Ge)

- Também utilizado em semicondutores;
- Porém, para ser utilizado para este fim, precisa ter um alto grau de pureza;
- O alto grau de pureza é conseguido por processos em altas temperaturas. Isto o torna mais caro;
- Vale observar que os semicondutores de Germânio possuem tensão de barreira em torno de 0,3 V, enquanto os de Silício, em torno de 0,7 V.

24

Uniube

Isolantes

Isolantes gasosos

• Temos:

- Ar O ar é utilizado principalmente na isolação de condutores sem isolamento, como nas linhas de transmissão de alta tensão. O ar, quando seco, apresenta em temperatura ambiente uma rigidez dielétrica de 45kV/mm, que decai rapidamente com o aumento da umidade.
- Hexafluoreto de enxofre é um gás transparente, inodoro e não inflamável. Sua aplicação está em transformadores em subestações e como extintor de arcos elétricos.

33

Isolantes líquidos

Temos:

- Óleo mineral Composto por metana, nafta e pela combinação dos dois. Após um processo de purificação o uso dos óleos de minerais como isoladores se dá no interior de transformadores, capacitores e chaves a óleo.
- Askarel É um líquido quimicamente composto por pentaclorodifenil. Devido à presença do cloro em sua composição, o askarel é um elemento que precisa de certos cuidados. Em determinadas situações onde a temperatura pode ser muito alta, o askarel decomposto pode liberar cloro na forma de gás. O askarel vem sendo substituído pelo óleo de silicone.

Óleos de silicone — são líquidos incolores e transparentes com uma grande gama de viscosidade e pontos de ebulição. O preço do óleo de silicone é maior do que o do óleo mineral.

Isolantes sólidos, pastosos e ceras

Temos:

- Parafina material pastoso de aparência branca. A sua constante dielétrica se reduz bastante com o aumento da temperatura. É indicado como elemento de recobrimento de outros isoladores.
- Pasta de silicone Semelhante à estrutura do óleo de silicone, a pasta de silicone é aplicada na proteção de partes de contatos e articulações condutoras e para o recobrimento de partes isolantes expostas.
- Verniz É um líquido que se solidifica depois de aplicado, passando para a fase sólida. Exemplo de aplicação de verniz ne eletricidade é a isolação de fios condutores em bobinas ou no recobrimento de trilhas condutoras em circuitos impressos.
- Papel matéria-prima da celulose, é empregado em capacitores junto do óleo mineral.

Uniube Isolantes sólidos, pastosos e ceras (continuação)

Temos:

- Cerâmica —a porcelana pode ser utilizada em isoladores, capacitores e porosos:
 - Porcelana de isoladores: destinada à fabricação de isoladores de linhas aéreas de baixa, média ou alta tensão, em transformadores ou em quadros de comando.
 - Porcelana em capacitores: devido ao alto valor de sua constante dielétrica, a porcelana pode ser utilizada em capacitores de baixa ou alta tensão.
 - Porcelana porosa: utilizada para receber os fios resistivos destinados a fornos elétricos, muflas e câmaras de extinção.
 - Vidro Com aplicações semelhantes às cerâmicas, o vidro ainda pode ser utilizado na forma de fibra de vidro, que apresenta baixa condutividade térmica.

Testes

37

Testes

- apresenta as seguintes dimensões: largura de 2mm, altura de 2mm e comprimento de 1,0m, e utilizando um ohmímetro, verificou-se que a resistência do material é de 0,1Ω. Determine a resistividade (ρ) do material em Ω.cm.
 - **a)** $5x10^2 \Omega.cm$.
 - **b)** $5x10^{-2}\Omega.cm$.
 - **c)** 40x10⁻⁶Ω.cm.
 - **d)** $40x10^{6}\Omega.cm$.
 - **e)** 50x10⁻⁸Ω.cm.

Testes

- 2. Um fio de seção circular feito de prata possui um raio de 0,1mm e tem 50cm de comprimento. Assumindo π = 3,14, determine a resistência desse pedaço de fio.
 - **a)** 0,26 Ω.
 - **b)** 0,30 Ω.
 - **c)** 0,16 Ω.
 - **d)** 10 Ω.
 - e) 1 Ω.

39

Testes

- 3. Supondo que um fio de ouro com raio de 0,15mm tenha 10cm de comprimento. A este fio é aplicada uma diferença de potencial (tensão) de 9 Volts. Determine qual a corrente que atravessa esse fio. Assuma π = 3,14 e que a relação entre a tensão, a corrente e a resistência do material é dada pela lei de Ohm: U = R.I.
- **a)** 1000A.
- **b)** 10,5A.
- c) 5239,3A.
- d) 259,59A.
- **e)** 3,6A.

Testes

- **4.** Supondo um cristal de silício intrínseco, esse cristal é considerado um material:
 - a) Condutor.
 - **b)** Semicondutor.
 - c) Isolante.
 - d) Todas as alternativas anteriores.
 - **e)** Nenhuma das alternativas anteriores.

41

Testes

- **5.** Das alternativas abaixo, determine aquela que apresente apenas elementos condutores.
 - a) Cristal de germânio, prata, ouro.
 - **b)** Prata, papel, vidro.
 - c) Vidro, papel, chumbo.
 - d) Alumínio, ouro, cobre.
 - e) Tipo-P, Tipo-N, cerâmica.

Para as próximas aulas!

Ler a Unidade 2 do nosso livro texto (ROCHA, M.F. et al. Materiais Elétricos. Porto Alegre: SAGAH, 2018. Disponível na Biblioteca A, acessível via AVA), que trata dos Materiais Magnéticos e Aplicações e dos Dielétricos, páginas 51 a 78.

43

Fim