MTH101: Lecture 6

Dr. Tai-Jun Chen, Dr. Xinyao Yang

Xi'an Jiaotong-Liverpool University, Suzhou

September 21, 2017

Parametrization of a Curve

Consider a Curve γ in the Complex Plane. It can be represented by a Parametrization in the following way:

$$\gamma$$
: $z(t) = x(t) + iy(t), \quad t \in [a, b]$

Example

Consider the following path:

$$\gamma: \qquad z(t) = \cos t + i \sin t, \quad t \in [0, 2\pi].$$

It is the circle with radius 1 and center $z_0=0$. We observe that when t increases the point z(t) moves counterclockwise through the circle. We say that the path γ is **Counterclockwise Oriented**.

Remark

In general the equation

$$\gamma$$
: $z(t) = x(t) + iy(t), \quad t \in [a, b]$

defines the Orientation of the path.

For instance, z(t) = t + 3ti $(0 \le t \le 2)$ describes a line segments on y = 3x from (0,0) to (2,6), not the other way around.

Definition

We say a curve γ is **smooth** if it has continuous derivatives.

Complex line integral

Definition

Given a partition $\{z_1, z_2, ..., z_n\}$ of the curve γ , the complex line integral is defined as

$$\int_{\gamma} f(z) \ dz = \lim_{n \to \infty} \sum_{m=1}^{n} f(\zeta_m) \Delta z_m$$

If the curve γ is closed, the integral is denoted by $\oint_{\gamma} f(z) dz$.

Fig. 340. Complex line integral

ML-Inequality - Darboux Inequality

Theorem

Suppose that the function f is bounded in the domain D, that is, there exists M>0 such that

$$|f(z)| \leq M, \quad \forall z \in D.$$

Then

$$\left| \int_{\gamma} f(z) \ dz \right| \leq ML$$

where L is the length of γ .

Example

Find an upper bound for $\int_{\gamma} z^2 dz$, γ is the line segment from 0 to 1+i.

Method 1: Integration by Parametrization

Theorem

Let γ be piecewise smooth path represented by z(t), $t \in [a, b]$. Let f(z) a continuous function on γ . Then

$$\int_{\gamma} f(z) \ dz = \int_{a}^{b} f(z(t)) \dot{z}(t) \ dt,$$

where $\dot{z}(t) = \dot{x}(t) + i\dot{y}(t)$.

Basic Properties of Line Integrals

① Linearity. If f_1 and f_2 are two continuous function on the path γ and K_1 and K_2 are two complex constants then

$$\int_{\gamma} [K_1 f_1(z) + K_2 f_2(z)] dz = K_1 \int_{\gamma} f_1(z) dz + K_2 \int_{\gamma} f_2(z) dz.$$

2 Sense Reversal. Let $-\gamma$ be the path γ with opposite orientation

$$\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz.$$

3 Additivity. Let $\gamma = \gamma_1 \cup \gamma_2$ be the union of two paths:

$$\int_{\gamma} f(z) \ dz = \int_{\gamma_1 \cup \gamma_2} f(z) \ dz = \int_{\gamma_1} f(z) \ dz + \int_{\gamma_2} f(z) \ dz.$$

Example

Consider the Counterclockwise oriented path $\gamma=\gamma_1\cup\gamma_2\cup\gamma_3$ where

 γ_1 is the segment joining z_1 to z_2 , γ_2 is the segment joining z_2 to z_3 , γ_3 is the segment joining z_3 to z_1 ,

and

$$z_1 = 0,$$
 $z_2 = 1 + i,$ $z_3 = 2i.$

Compute the integral

$$I = \oint_{\gamma} \bar{z} dz.$$

Figure: The path $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3$

Solution

We use the additivity so that

$$I=\oint_{\gamma}\bar{z}\ dz=\oint_{\gamma_1\cup\gamma_2\cup\gamma_3}\bar{z}\ dz=\oint_{\gamma_1}\bar{z}\ dz+\oint_{\gamma_2}\bar{z}\ dz+\oint_{\gamma_3}\bar{z}\ dz.$$

Then start by writing a Parametrization z(t) = x(t) + iy(t) of the 3 paths:

$$\gamma_1: \quad egin{cases} x(t)=t, \ y(t)=t, \end{cases} \quad t\in [0,1], \quad ext{ or } \quad z(t)=t+it, \quad t\in [0,1]. \end{cases}$$

Along γ_1 we have that $\dot{z}(t) = 1 + i, t \in [0, 1]$.

For γ_2 it is easier to consider the opposite orientation $-\gamma_2$:

$$-\gamma_2: \begin{cases} x(t)=t, & t\in[0,1], \ y(t)=2-t, \end{cases}$$
 or $z(t)=t+i(2-t), \ t\in[0,1]$

Along $-\gamma_2$ we have that $\dot{z}(t) = 1 - i$.

Also for γ_3 we consider the opposite orientation $-\gamma_3$:

$$-\gamma_3: \begin{cases} x(t) = 0, \\ y(t) = t, \end{cases}$$
 $t \in [0, 2],$ or $z(t) = it, t \in [0, 2]$

Along $-\gamma_3$ we have $\dot{z}(t) = i$.

Then we compute the 3 integrals separately using the formula

$$\oint_{\gamma} f(z) dz = \int_{a}^{b} f(z(t)) \dot{z}(t) dt$$

where z(t) is a parametrization of γ . In this case we have that $f(z(t)) = \bar{z}(t)$. Then:

$$\oint_{\gamma_1} f(z)dz = \int_0^1 (t - it)(1 + i)dt = (1 + i)(1 - i) \int_0^1 tdt$$

$$= 2 \int_0^1 tdt = [t^2]_0^1 = 1,$$

$$\oint_{\gamma_2} f(z)dz = -\oint_{-\gamma_2} f(z)dz = -\int_0^1 (t - i(2 - t))(1 - i)dt$$

$$= -(1 - i) \int_0^1 [t(1 + i) - 2i]dt$$

$$= -(1-i) \left[\frac{t^2}{2} (1+i) - 2it \right]_0^1$$

$$= -(1-i) \left[\frac{(1+i)}{2} - 2i \right] = 1 + 2i.$$

$$\oint_{\gamma_3} f(z) dz = -\oint_{-\gamma_3} f(z) dz = -\int_0^2 (-it)i \ dt$$

$$= -\int_0^2 t dt = -[t^2/2]_0^2 = -2$$

We conclude:

$$\oint_{\gamma} f(z)dz = 1 + 1 + 2i - 2 = 2i$$

Guideline of integrating by parametrization:

- 1 Represent the curve γ in the form $z = x(t) + iy(t), t \in [a, b]$;
- 2 Compute the derivative (with respect to t)

$$\dot{z}(t) = dz/dt = \dot{x}(t) + i\dot{y}(t);$$

- 3 Substitute z(t) for every z in the integral;
- 4 Integrate $f(z(t))\dot{z}(t)$ from a to b.

Method 2: Indefinite integral and substitute the limits

A **simple closed path** is a closed path that does not intersect or touch it self as shown in figure below.

Fig. 345. Closed paths

Definition

A domain D is called **Simply Connected** if any simple closed curve in D encloses only points belonging to D.

Figure: The Domain D is an **Open Disk**: $|z - z_0| < R$, it is **Simply Connected**:

Figure: The Domain D is an **Open Anulus**: $R_1 < |z - z_0| < R_2$, it is **NOT Simply Connected**: the closed path γ encloses points that do not belong to D.

$\mathsf{Theorem}$

Let f(z) be an Analytic function on a Simply Connected Domain D. Then there exists an Analytic function F(z) such that

- **②** For any path γ on D with initial point z_1 and final point z_2 we have:

$$\int_{\gamma} f(z) dz = F(z_2) - F(z_1).$$

Remark

If f(z) is Analytic on a Simply Connected Domain, then the line integral depends only on the initial point z_1 and on the final point z_2 .

Example

Let A be the simply connect domain

$$A = \mathbb{C} \setminus \{z \in \mathbb{C} : \text{Im } z = 0, \text{Re } z \leq 0\}.$$

Integrate $\int_{\gamma} \frac{1}{z} dz$ where γ is a path in A joining $z_1 = -i$ and $z_2 = i$.

Solution: The function

$$f(z)=\frac{1}{z}$$

is Analytic in A. Moreover we have that

$$F(z) = \operatorname{Ln} z, \qquad F'(z) = f(z),$$

and F(z) is Analytic in A.

We can use the previous theorem in the set A then, if γ is any path joining $z_1 = -i$ to $z_2 = i$ we have

$$\int_{\gamma} \frac{1}{z} dz = \operatorname{Ln}(i) - \operatorname{Ln}(-i) = i \operatorname{Arg}(i) - i \operatorname{Arg}(-i) = \pi i.$$

Guideline of method 2:

- 1 Check simple connectedness of domain *D*;
- 2 Check analyticity of f(z) in D;
- 3 Find anti-derivative F(z) and check its analyticity in D;
- 4 Substitute the limits.

Bibliography

1 Kreyszig, E. Advanced Engineering Mathematics. Wiley, 10th Edition.