关于实验箱使用的一些说明

1. 子箱的取电问题

子箱单独使用时,需通过 USB 供电,取出子箱的蓝色电源线,一头接插子箱电路板上 J23 方形插座,另一头接在电脑的 USB 接口或移动电源,也可以通过电源适配器直接从插座取电。

若子箱放在母箱中使用,可通过连接线,从母箱电源区引出的 5VDC 电源正极和接地 GND 端取电,黑色为 GND 端,红色为正 5 伏,请一定要一一对应。

蓝色插孔为 3. 3V 电源输出孔,可作为高电平信号提供给 FPGA 芯片的输入引脚。特别提醒:绝对不能将母箱的 5VDC 引过来的线接到该孔,会引起板底 3. 3V 稳压管烧坏,使核心板无法工作,无法烧录。

2. 关于实验箱的引脚分配

图中 26 位的 LED 灯用于显示输出信号, 灯亮表示高电平, 灯灭表示低电平。 图中蓝色座子的 26 位开关是拨码开关, 只有"通"和"断"两种状态, 当开关 拨向"ON"一侧时, 代表高电平, 拨向相反一侧时, 代表低电平。

图中红色座子的 1 位拨码开关用于控制那 26 位开关及 LED 灯的工作状态,拨向"断开"一侧,则 26 位开关及 LED 灯均不工作,拨向"接通"一侧,则为正常工作状态。

特别提醒: 若子箱放在母箱中使用,可以利用母箱的输入输出信号区来输入及显示状态,但此时,应将红色座子的1位拨码开关拨向"断开"一侧。

若利用子箱自带的 26 位拨码开关及 26 位 LED 灯来输入及显示状态,则在 EDA 设计的布局布线环节中,必须按下表进行相应的引脚分配约束。引脚分配表如下:

有既定功能的引脚,请不要使用为设计的输入输出引脚。

以下为 A3P060 芯片各引脚的占用情况:

引脚占用情况										
物理引脚	占用情况		物理引脚	占用情况		物理引脚	占用情况		物理引脚	占用情况
1	GND		26	LED21		51	GND		76	U6-KEY6
2	LED1		27	LED20		52	VPUMP		77	U6-KEY7
3	LED2		28	LED19		53	GND		78	U6-KEY8
4	LED3		29	LED18		54	TDO		79	U7-KEY1
5	U2-KEY7		30	LED17		55	VGTAG		80	U7-KEY2
6	U2-KEY6		31	LED16		56	RST		81	
7	U2-KEY5		32	LED15		57	U2-KEY8		82	
8	U2-KEY4		33	LED14		58	U3-KEY1		83	
9	GND		34	LED13		59	U3-KEY2		84	
10	U2-KEY3		35	LED12		60	U3-KEY3		85	
11	U2-KEY2		36	LED11		61	U3-KEY4		86	
12	VCOMPLA	4	37	VCC1.5		62	U3-KEY5		87	VCC3.3
13	RST		38	GND		63	U3-KEY6		88	GND
14	VCCPLA		39	VCC3.3		64	U3-KEY7		89	VCC1.5
15	U2-KEY1		40	LED10		65	U3-KEY8		90	
16	CLK		41	LED9		66	VCC3.3		91	
17	VCC1.5		42	LED8		67	GND		92	
18	VCC3.3		43	LED7		68	VCC1.5		93	
19	LED26		44	LED6		69	U6-KEY1		94	
20	LED25		45	LED5		70	U6-KEY2		95	
21	LED24		46	LED4		71	U6-KEY3		96	
22	LED23		47	TCK		72	U6-KEY4		97	
23	LED22		48	TDI		73	U6-KEY5		98	
24	VCC3.3		49	TMS		74	GND		99	
25	GND		50	VCC3.3		75	VCC3.3		100	

3. 4X4 矩阵键盘区

4x4 开放式矩阵键盘,可自由组合使用,也可以按照丝印的标注来编制程序。 从原理图可知,按下这 16 个键的任意一个,都会使得 KEY_Y1~Y4,KEY_X1~X4 中的某对同时为有效信号,因此只要读出这 8 个输出信号,就可以判断出按下的是哪个键,再相应对按键的含义进行定义,就可以做成一个键盘了。

