

Machine Learning in Materials Physics Education

Trevor David Rhone

¹Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute;

Materials research using ML

More Is Different

Broken symmetry and the nature of the hierarchical structure of science.

P. W. Anderson

More Is Different

Broken symmetry and the nature of the hierarchical structure of science.

P. W. Anderson

More Is Different

Broken symmetry and the nature of the hierarchical structure of science.

P. W. Anderson

Magnetic two-dimensional materials

Key Advances in Spin-Transfer-Torque MRAM

Device Write Read Scaling 1996 1974 1995 2004 2010 Slonczewski (IBM) Moodera (MIT) and Slonczewski (IBM) Parkin (IBM) and Yuasa (AIST) Worledge (IBM) and Ohno (Tohoku U.) invents magnetic Miyazaki (Tohoku U.) invents spin-transferpublish discovery of high magnetodemonstrate first perpendicular demonstrate first room resistance in MgO tunnel junctions. CoFeB tunnel junctions. tunnel junction. torque switching. temperature magnetic tunnel junctions. 131

All early junctions had the north- south poles of the magnets lying in the plane of the wafer, even though Slonczewski had predicted having them aligned perpendicular to the plane of the wafer would require much lower write currents. New perpendicular magnetic materials had to be discovered to make this possible.

LOW RESISTANCE HIGH RESISTANCE

A magnetic tunnel junction is a sandwich of two magnetic layers separated by a thin insulating layer. When the two magnets both point in the same direction ('0' state), the resistance is low. When they point in opposite directions ('1' state), the resistance is high.

Spin torque switching is used to write the tunnel junction. As current is driven through the junction, the spins of the electrons are transferred from one magnet to the other magnet, thus switching it from pointing north to pointing south, or vice versa.

The first junctions used amorphous AlOx tunnel barriers, but the change in resistance between '0' and '1' states was fairly small. Crystalline MgO tunnel barriers give much larger changes in resistance, typically about 2-3x, enabling faster read.

ML in materials physics education

Overview

- 1. Physics research: Beginners guide to ML
- 2. Coursework: ML in physics
- 3. Workshops: Data science for physicists

- Machine learning for materials discovery
 - Two-dimensional (2D) magnetic materials

ML in materials physics education

Overview

- 1. Physics research: Beginners guide to ML
- 2. Coursework: ML in physics
- 3. Workshops: Data science for physicists

Magnetic two-dimensional materials

How do we find new 2D materials?

How to find new 2D magnetic materials?

Data-driven study of 2D magnetic materials

Materials science + Artificial intelligence

- Materials databases 100010
- Chemical space descriptors exist
- Datascience tools
 - Scikit learn, TensorFlow, Pytorch

scientific reports

Data-driven studies of magnetic two-dimensional materials

Trevor David Rhone □, Wei Chen, Shaan Desai, Steven B. Torrisi, Daniel T. Larson, Amir Yacoby & Efthimios Kaxiras

Descriptors

- Mathematical representation of a material
 - Atomic properties
 - Pymatgen, Matminer
 - Encodes the crystal structure
 - SOAP kernal, Coulomb kernel (Dscribe python package)

Machine Learning for Materials studies Magnetic 2D crystals

Machine Learning for Materials studies Magnetic 2D crystals

Transition metal chalcogenides are magnetic 2D crystals

A₂B₂X₆ crystal structure

- CrGeTe₃ is a ferromagnet (FM)^{1,2}
- CrSiTe₃ is an antiferromagnet
 (AFM)¹

Machine Learning for Materials studies Magnetic 2D crystals

Transition metal chalcogenides are magnetic 2D crystals

- CrGeTe₃ is a ferromagnet (FM)^{1,2}
- CrSiTe₃ is an antiferromagnet
 (AFM)¹

Magnetic configurations

Magnetic van der Waals materials $A_2B_2X_6$ structures

- 198 A₂B₂X₆ structures using first-principles quantum calculations (DFT)
 - Total # of structures $\sim 10^4$
 - NM, FM and AFM spin configurations
- O Extract data:
 - Formation energy
 - Magnetic order
 - Magnetic moment

Magnetic van der Waals materials $A_2B_2X_6$ structures

Substitutions:

- O A site:
 - Cr_{0.5}A_{0.5}
 - A: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, Ru
- o B site:
 - Si, Ge, P combinations
 - B: Si, Ge, P, Si_{0.5}Ge_{0.5}, Si_{0.5}P_{0.5}, Ge_{0.5}P_{0.5}
- O X site:
 - S, Se, Te

Magnetic van der Waals materials $A_2B_2X_6$ structures

Magnetic moment of A₂B₂X₆

Magnetic moment of A₂B₂X₆

Rhone, et al., Sci Rep **10**, 15795 (2020).

Formation energy of A₂B₂X₆

Formation energy of A₂B₂X₆

Rhone, et al., Sci Rep 10, 15795 (2020)

26

Machine learning in materials science Materials descriptors

- Describe system using easily attainable components
 - Atomic properties, p
- Compound Property, P
 - mean(p(A), p(B), p(X))
 - variance(p(A), p(B), p(X))
- Total # of descriptors:
 - 61

- Atomic property, p:
 - Number of spin up e's
 - atomic radius
 - etc.

Machine learning in materials science

Data visualization

- Atomic properties, p
 - Polarizability
 - Ionization energy
 - Covalent radius
 - electronegativity

Machine Learning models

- Random forest regression
- o Inputs: X
 - Number of spin up e's
- Output: Y
 - Magnetic moment
- Training data (70%)
- Test data (30%)

- Mean Absolute Error
 - minimize L1 error using median values at terminal nodes

$$L'(X_m) = \frac{1}{N_m} \sum_{i \in N_m} |y_i - \bar{y_m}|$$

$$\bar{y_m} = \frac{1}{N_m} \sum_{i \in N_m} y_i$$

Machine Learning models

Training data versus test data

Machine Learning models

Training data versus test data

Training dataTest data

Goal: Build predictive model

- Train model using training data
- Model predictions compared with test data

Machine learning predictions of DFT formation energy

Machine learning predictions of DFT formation energy

Machine learning predictions of DFT formation energy

Machine learning predictions Magnetic moment, X=Te

- \circ N = 262
- \circ Random forest R² = 0.98
- O Mean absolute error (MAE) = $0.30 \mu_{\text{p}}$

DFT: first-principles quantum calculations μ : magnetic moment \sim magnetization

Machine learning predictions Magnetic moment, X=Te

ML in materials physics education

Overview

- 1. Physics research: Beginners guide to ML
- 2. Coursework: ML in physics
- 3. Workshops: Data science for physicists

- o 5 lectures on data science:
 - Introduction to data science
 - Introduction to neural networks
 - Neural networks for image analysis

- Introduction to data science
 - Data mining
 - Data visualization
 - Machine learning models

Computational physics course

- Introduction to data science
 - In-class exercises

scientific reports

Data-driven studies of magnetic two-dimensional materials

<u>Trevor David Rhone</u> □, <u>Wei Chen, Shaan Desai</u>, <u>Steven B. Torrisi</u>, <u>Daniel T. Larson</u>, <u>Amir Yacoby</u> & Efthimios Kaxiras

- Introduction to neural networks
 - Feed forward neural networks
 - Convolutional neural networks

Neural Networks

Architectures

Neural Networks

Convolutional Neural Networks (CNN)

Computational physics course

Neural networks for image analysis

Neural networks for image analysis

You Only Look Once (YOLO) - 2016

Neural networks for image analysis

Mask-RCNN - 2017

Computational physics course

Neural networks for image analysis

- Neural networks for image analysis
 - MNIST digits data set
 - Xray images of covid patients

Google colaboratory excercise

COVID-19 RADIOGRAPHY DATABASE

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database

Database from Kaggle!

ML in materials physics education

Overview

- 1. Physics research: Beginners guide to ML
- 2. Coursework: ML in physics
- 3. Workshops: Data science for physicists

Workshops: Data science for physicists

- o APS Topical Group on Data Science workshop (2020), A beginner's guide to using data science for physicists
- o **TWIML AI Symposium** (2020), Webinar, Data science education for physicists
- o Magnetic properties from first-principles workshop, Bilkent University (2021),

Machine Learning Approaches for Magnetic Characterization

- YouTube tutorials
 - www.materials-intelligence.com

Acknowledgements

 This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

 This material is based upon work supported by the National Science Foundation CAREER award under Grant No 2044842