Insult Detection in Social Commentary

Chirag Khurana MT17010 Pallavi S. rawat MT17034 Shubham Goyal MT17055

Introduction

- → The main area of focus in our project is to detect if a comment or a remark in a post or in a conversation is insulting or not.
- The goal is to **create a classifier** which could operate on a variable test set to do classification with good performance.

Application & future scope

- → It can be put to use in **blacklisting** abusive users, child-safe web crawling, filtering in websites or webpages.
- This application can further be projected in Detection of **graphic insults** (I.e. **meme insults**, or mentioning someone in comments of a meme)

_

DATASET:

- Twitter comments
- Diverse variety
- The dataset has 5000+ comments.

_

Resources added:

sortedBadWords _for_checking.txt

Sorted collection of bad words and phrases. (self-compiled)

Train_features.cs

It is a train.csv + features file that has the computed value of the features.

(code-computed)

ConvertedBad Words.txt

Word Collection to clean file of misspelling escapes.

Pre Processing

- removing extra spaces(\n,\s etc.),
- url removal,(Eg https://www.....)
- html tags removal (Eg.
 <H> etc)
- word correction-level 1(coool to cool),
- word Expansion, (Eg . u -> you)
- Special Character tagging (Eg. *\$@# -> TOKEN)
- bad Word Correction -level 2 (Gaarbagee -> garbage)

Result (without preprocessing):

Result (after preprocessing)-

Feature Extraction

- → Term Frequency- Inverse Document frequency
- → word-grams
- → Character n-grams
- → Capital Word ratio sentence length
- → Curse word ratio sentence length
- → Curse word ratio positive word
- → Short sentence ratio total sentences
- → Lexical score -Distance
- → Lexical Score -Dependency

Performance with addition of Features:

Classification

We had tried

various classifiers, simple neural Net, even Multilevel classification using neural Nets with single hidden layer for classification task.

Models Used:

- Multinomial Naive Bayes
- Stochastic Gradient Descent
- SVM Classifier
- Logistic Regression
- MLP classifier(Neural Network)

Finally used:

SVM Classifier Logistic Regression

Variations in results with different classifiers:

Evaluation

- Accuracy
- Confusion Matrix
- Area Under the curve

Confusion Matrix- LOGISTIC REGRESSION

Confusion Matrix- LOGISTIC REGRESSION 2

AUC - LOGISTIC REGRESSION

AUC - LOGISTIC REGRESSION -2

Confusion Matrix- Naive Baiyes

Confusion Matrix- Naive Baiyes 2

AUC - Naive Baiyes

AUC - Naive Baiyes -2

SVM- Confusion Matrix

SVM- Confusion Matrix-2

ENSEMBLING:

ENSEMBLING 2:

Takeaways & Learning Outcomes:

We have not used neural networks in our project, for two reasons, firstly, for 1000,400,700 neurons and 1-3 hidden layers the accuracy touched 79%. Secondly, memory contraints restricted us from exploring it further.

Finally,

A **working** Model

http://labs.chiragkhurana.com/iiitd/nlp/insult-detection

References:

Multi-level classifier for the detection of insults in social media

https://goo.gl/snmwMa

Detecting Offensive Language in Social Media to Protect Adolescent

Online Safety

https://goo.gl/CVT9Ci

THANK YOU!