计算方法实验报告

姓名: 宗晴

学号: 200110513

院系: 计算机科学与技术学院

专业: 计算机类

班级:5班

实验报告一 ——拉格朗日(Lagrange)插值

第一部分:问题分析

该实验要求利用拉格朗日(Lagrange)插值多项式 $P_n(x)$ 求f(x)的近似值。要求输入为: n+1个不同的数据点, $(x_k,f(x_k))$, $k=0,1,\ldots,n$,待求点x。输出为: f(x)在待求点x的近似值 $P_n(x)$ 。计算时,首先求出拉格朗日插值基函数

$$l_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

然后用它们的线性组合来拟合f(x),从而求出f(x)在待求点x的近似值。

题目给出了不同待拟合函数、插值区间、拉格朗日插值多项式的次数 n 以及内插与外推两种情况,旨在考察它们对于解得的近似值精度的影响。在此次实验中,同学们熟悉了 matlab(或其他语言)的使用,学会了利用这些工具求解数学问题,同时也对拉格朗日插值多项式有了更加深刻的理解与认识。

第二部分: 数学原理

给定平面上n+1个不同的数据点, $(x_k,f(x_k))$, $k=0,1,\ldots,n$,且当 $i\neq j$ 时, $x_i\neq x_j$ 。则满足条件

$$P_n(x_k) \neq f(x_k), \quad k = 0,1,\ldots,n$$

的n次拉格朗日插值多项式

$$P_n(x) = \sum_{k=0}^n f(x_k) l_k(x)$$

是存在唯一的。其中

$$l_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

称为拉格朗日差值基函数。若 $x_k \in [a,b]$,k = 0,1,...,n,且函数f(x) 充分光滑,则当 $x \in [a,b]$ 时,有误差估计式

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \dots (x - x_n), \ \xi \in [a, b]$$

第三部分:程序设计流程

1、实验流程

2、实验代码

拉格朗日插值函数文件如下:

```
function y = Lagrange(X, Y, n, x)
1
    白% 拉格朗日插值函数
2
     % [X, Y]为插值节点坐标,共n+1个插值点,x为待求点数组
3
     -% 返回值v为待求点的近似值数组
     y = 0.0:
    for k = 0:n
6 -
7 -
         1 = 1.0;
    \triangle for j = 0:n
8 -
9 -
            if j==k
10 -
                continue;
11 -
            end
          1 = 1*(x-X(j+1))/(X(k+1)-X(j+1));
12 -
13 -
    - end
         y = y + 1*Y(k+1);
14 -
15 - end
两种不同格式的,产生所有数据点横纵坐标的函数文件如下:
    In function [X, Y] = ProducePoints1(f, a, b, n)
```

```
白% 此函数通过给定的函数f,最小数据点横坐标a,最大数据点横坐标b
2
     -% 将区间n等分,得到所有数据点的坐标[X,Y]
     X = a: (b-a)/n:b:
     Y = 1:n+1;
6 - \boxed{\text{for i}} = 1:n+1
         Y(i) = f(X(i));
    - end
8 -
    function Y = ProducePoints2(f, X, n)
    白% 此函数诵过给定的函数f, n+1个数据点横坐标数组X
2
     -% 得到所有数据点的纵坐标数组Y
     Y = 1:n+1;
4 -
5 - \Box for i = 1:n+1
         Y(i) = f(X(i)):
6 -
7 -
    - end
脚本文件见程序代码压缩包。
```

实验结果截图如下:

命令行窗口

>> lab1 问题1(1):

11月7221(1)

n=5时:

f(x)在点0.750000的近似值为0.528974

f(x)在点1.750000的近似值为0.373325

f(x)在点2.750000的近似值为0.153733

f(x) 在点3. 750000的近似值为-0.025954

f(x)在点4.750000的近似值为-0.015738 n=10时:

f(x)在点0.750000的近似值为0.678990

f(x)在点1.750000的近似值为0.190580

f(x)在点2.750000的近似值为0.215592

f(x)在点3.750000的近似值为-0.231462

f(x)在点4.750000的近似值为1.923631 n=20时:

f(x)在点0.750000的近似值为0.636755

f(x)在点1.750000的近似值为0.238446

f(x)在点2.750000的近似值为0.080660

f(x)在点3.750000的近似值为-0.447052

f(x)在点4.750000的近似值为-39.952449问题1(2):

n=5时:

f(x)在点-0.950000的近似值为0.386798

f(x)在点-0.050000的近似值为0.951248

f(x)在点0.050000的近似值为1.051290

f(x) 在点0. 950000的近似值为2. 585785 n=10时:

fx f(x)在点-0.950000的近似值为0.386741

问题2(2):

n=5时:

f(x)在点-4.750000的近似值为1.147035

f(x)在点-0.250000的近似值为1.302152

f(x)在点0.250000的近似值为1.841210

f(x)在点4.750000的近似值为119.621007 n=10时:

f(x)在点-4.750000的近似值为-0.001957

f(x)在点-0.250000的近似值为0.778686

f(x)在点0.250000的近似值为1.284144

f(x)在点4.750000的近似值为115.607360 n=20时:

f(x)在点-4.750000的近似值为0.008652

f(x)在点-0.250000的近似值为0.778801

f(x)在点0.250000的近似值为1.284025

f(x)在点4.750000的近似值为115.584285 问题4(1):

f(x)在点5.000000的近似值为2.266667

f(x)在点50.000000的近似值为-20.233333

f(x)在点115.000000的近似值为-171.900000

f(x) 在点185.000000的近似值为-492.733333 问题4(2):

f(x)在点5.000000的近似值为3.115751

f(x)在点50,000000的近似值为7,071795

f(x)在点115.000000的近似值为10.167033

f(x)在点185.000000的近似值为10.038828问题4(3):

n=10时:

f(x)在点-0.950000的近似值为0.386741

f(x)在点-0.050000的近似值为0.951229

f(x)在点0.050000的近似值为1.051271

f(x)在点0.950000的近似值为2.585710 n=20时:

f(x)在点-0.950000的近似值为0.386741

f(x)在点-0.050000的近似值为0.951229

f(x)在点0.050000的近似值为1.051271

f(x)在点0.950000的近似值为2.585710问题2(1):

n=5时:

f(x)在点-0.950000的近似值为0.517147

f(x)在点-0.050000的近似值为0.992791

f(x)在点0.050000的近似值为0.992791

f(x)在点0.950000的近似值为0.517147 n=10时:

f(x)在点-0.950000的近似值为0.526408

f(x)在点-0.050000的近似值为0.997507

f(x)在点0.050000的近似值为0.997507

f(x)在点0.950000的近似值为0.526408

f(x)在点-0.950000的近似值为0.525620

f(x)在点-0.050000的近似值为0.997506

f(x)在点0.050000的近似值为0.997506

🗜 f(x)在点0.950000的近似值为0.525620

问题4(3):

f(x)在点5.000000的近似值为4.439112

f(x)在点50.000000的近似值为7.284961

f(x)在点115.000000的近似值为10.722756

f(x)在点185.000000的近似值为13.535667 问题4(4):

f(x)在点5.000000的近似值为5.497172

f(x)在点50.000000的近似值为7.800128

f(x)在点115.000000的近似值为10.800493

f(x)在点185.000000的近似值为13.600620

第四部分:实验结果、结论与讨论

1、实验结果:

第(2)小

n

问题 1:

	n	待求点	近似值	真实值
		0.75	0. 528974	0. 640000
		1.75	0. 373325	0. 246154
	5	2. 75	0. 153733	0. 116788
		3. 75	-0. 025954	0. 066390
		4. 75	-0. 015738	0. 042440
		0.75	0. 678990	0. 640000
第(1)小		1.75	0. 190580	0. 246154
问	10	2. 75	0. 215592	0. 116788
		3. 75	-0. 231462	0. 066390
		4. 75	1. 923631	0. 042440
		0.75	0. 636755	0. 640000
		1.75	0. 238446	0. 246154
	20	2. 75	0.080660	0. 116788
		3. 75	-0. 447052	0. 066390
		4. 75	-39. 952449	0. 042440

近似值

真实值

待求点

问		-0.95	0. 386798	0. 386741
	E	-0.05	0. 951248	0. 951229
	υ	0.05	1.051290	1. 051271
		0.95	2. 585785	2. 585710
		-0.95	0. 386741	0. 386741
	10	-0.05	0. 951229	0. 951229
		0.05	1.051271	1. 051271
		0.95	2. 585710	2. 585710
		-0.95	0. 386741	0. 386741
	20	-0.05	0. 951229	0. 951229
		0.05	1.051271	1. 051271
		0.95	2. 585710	2. 585710
	问	10	$ \begin{array}{c} -0.05 \\ 0.05 \\ 0.95 \\ -0.95 \\ -0.05 \\ \hline 0.05 \\ 0.05 \\ \hline 0.95 \\ -0.95 \\ -0.95 \\ \hline -0.05 \\ 0.05 \\ \hline 0.05 \\ 0.05 \\ \hline 0.05 \\ 0.05 \\ \hline 0.05 \\ 0.0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

拉格朗日插值多项式的次数 n 并不一定是越大越好,当选取的函数不同时,其影响效果也不同。在第(1)小问中,当次数 n 过高时,会出现 Runge 现象,即在端点附近,插值函数会出现剧烈的抖动,使得边缘的插值点所求出的近似值与真实值相差巨大。而在第(2)小问中,次数 n 越高,求得的近似值却越精确。所以,对于不同函数来说,最合适的 n 的大小是不同的。

问题 2:

第 (1) 小 r	n 待求点	近似值	真实值
-----------	-------	-----	-----

问		-0.95	0. 517147	0. 525624
	_	-0.05	0. 992791	0. 997506
	5	0.05	0. 992791	0. 997506
		0.95	0. 517147	0. 525624
		-0.95	0. 526408	0. 525624
	10	-0.05	0. 997507	0. 997506
	10	0.05	0.997507	0. 997506
		0.95	0. 526408	0. 525624
		-0.95	0. 525620	0. 525624
	20	-0.05	0.997506	0. 997506
		0.05	0.997506	0. 997506
		0.95	0. 525620	0. 525624
	n	待求点	近似值	真实值
		-4.75	1. 147035	0. 008652
	F	-0.25	1.302152	0. 778801
第(2)小	5	0.25	1.841210	1. 284025
问		4. 75	119. 621007	115. 584285
		-4.75	-0.001957	0. 008652
	10	-0.25	0. 778686	0. 778801
		0.25	1. 284144	1. 284025

		4. 75	115. 607360	115. 584285
	20	-4. 75	0.008652	0.008652
		-0. 25	0. 778801	0. 778801
		0. 25	1. 284025	1. 284025
		4. 75	115. 584285	115. 584285

对比问题 1 第(1)小问和问题 2 第(1)小问,以及问题 1 第(2)小问和问题 2 第(2)小问,可以看出,若待求点在插值区间内,则插值区间越小,求得的近似值越精确。但是,若待求点在插值区间外,则插值区间就并不一定越小越好。

问题 4:

竺 (1) 小	待求点	近似值	真实值
第(1)小	5	2. 266667	2. 236068
问:插值 节点为	50	-20. 233333	7. 071068
1, 4, 9	115	-171. 900000	10. 723805
1, 4, 9	185	-492. 733333	13. 601471
竺(9)小	待求点	近似值	真实值
第(2)小	5	3. 115751	2. 236068
问:插值 节点为	50	7. 071795	7. 071068
36, 49, 64	115	10. 167033	10. 723805
50, 43, 04	185	10. 038828	13. 601471

第(3)小	待求点	近似值	真实值
问:插值	5	4. 439112	2. 236068
节点为	50	7. 284961	7. 071068
100, 121,	115	10. 722756	10. 723805
144	185	13. 535667	13. 601471
第(1)小	待求点	近似值	真实值
问:插值	5	5. 497172	2. 236068
节点为	50	7. 800128	7. 071068
169, 196,	115	10. 800493	10. 723805
225	185	13. 600620	13. 601471

对比问题 4 中近似值在内插与外推这两种情况下的相对误差,我们可以发现对于拉格朗日插值问题,内插比外推更可靠。

2、思考题:

- (1)对于 Runge 现象,我们可以采取分段插值来解决的。由于线性插值的数值计算均是稳定的,因此可以选择使用分段线性插值来求解。尽管失去了原函数的光滑性,但求得的近似值较为可靠。
- (2)对于实验2中存在的问题,即若待求点在插值区间内,则插值区间越小越好;若待求点在插值区间外,则插值区间并不一定越小越好。这是由于插值区间越小,插值函数在一个局部的小区间内可以获得越好的拟合效果,但相应地对于插值区间以外的拟合效果就越差,因此出现了实验2中的问题。

(4) 内插是指待求点在插值区间内,外推是指待求点在插值区间外, 一般而言,内插比外推更为精确。

3、结论与讨论:

不同待拟合函数、插值区间、拉格朗日插值多项式的次数 n 以及内插与外推,对于解得的近似值精度均有影响。通过实验,我们得知拉格朗日插值多项式的次数 n 并不一定是越大越好,当选取的函数不同时,其影响效果也不同。当次数 n 过高时,会出现 Runge 现象。同时,若待求点在插值区间内,则插值区间越小越好;而若待求点在插值区间外,则并不一定。此外,从整体上来说,内插比外推更可靠。在利用拉格朗日插值多项式拟合函数时我们应该考虑到上述趋势。

实验报告二——龙贝格(Romberg)积分法

第一部分:问题分析

该实验要求利用龙贝格 (Romberg) 积分法计算积分 $\int_a^b f(x) dx$ 的近似值。要求输入为:积分下限a,积分上限b,精度 ε ,被积函数 f(x)。输出为:积分 $\int_a^b f(x) dx$ 的近似值,以及龙贝格 T-数表。利用递推公式我们可以不断求解出更高阶的龙贝格 T-数表,直到近似解符合精度要求,从而求解出满足条件的积分近似值。

在求解过程中,题目考察了二分次数对于解得的积分近似值精度的影响。在此次实验中,同学们熟悉了 matlab(或其他语言)的使用,学会了利用这些工具求解数学问题,同时也对龙贝格积分法有了更加深刻的理解与认识。

第二部分: 数学原理

对于给定的积分下限a,积分上限b,记b = b - a,则

$$T_{0,0} = \frac{1}{2}h(f(a) + f(b))$$

当 i = 0,1,... 时,龙贝格积分递推公式如下:

$$T_{0,i} = \frac{1}{2}T_{0,i-1} + \frac{1}{2}\frac{h}{2^i}\sum_{k=1}^{2^{i-1}} f(a + (k - \frac{1}{2})\frac{h}{2^i})$$

$$T_{m,k} = \frac{4^m T_{m-1,k+1} - T_{m-1,k}}{4^m - 1}$$
, $m = 1,2,...,i$, $k = i - m$

当 $|T_{i,0}-T_{i-1,0}|<\varepsilon$,满足精度要求时,就将 $T_{i,0}$ 作为该定积分的近似值。

第三部分:程序设计流程

1、实验流程

2、实验代码

龙贝格积分函数文件如下:

```
function Romberg(a, b, e, f)
1
     白% 龙贝格积分函数
2
       -% a为积分下限,b为积分上限,e为精度,f为被积函数
3
       format long;
 4 -
5 -
       syms h;
       h = b-a;
 6 -
       T = zeros(10000, 10000);
       syms k;
8 -
       T(1, 1) = h*(f(a)+f(b))/2:
9 -
       % disp(['T1=', num2str(T(1, 1))]);
10
     for i = 1:10000
11 -
           ii = 2^{(i-1)}:
12 -
13 -
           F = @(k) f(a+(k-1/2)*h);
14 -
           T(1, i+1) = double(T(1, i)/2+(h*symsum(F, k, 1, ii))/2);
15 —
           for m = 1:i
16 -
               j = i-m;
               T(m+1, j+1) = double(((4^m)*T(m, j+2)-T(m, j+1))/(4^m-1));
17 -
18 -
           end
           if abs(T(i+1, 1)-T(i, 1)) < e
19 -
               disp('积分值为:');
20 -
               disp(T(i+1, 1));
21 -
               disp('龙贝格T-数表为:');
22 -
23 -
               disp(T(1:(i+1), 1:(i+1)));
24 -
               break;
25 -
           end
           h = h/2;
26 -
27 -
       - end
28 -
       end
```

脚本文件如下:

```
1 -
                         syms x;
    2
                       % format long;
                        %问题1(1)
    3
                        fprintf('问题1(1):\n');
                    f1(x) = @(x)x*x*exp(x);
    5 —
                    Romberg(0, 1, 10. (-6), f1);
    6 -
    7
                      %问题1(2)
                    fprintf('问题1(2):\n');
                    fl(x) = @(x) exp(x) * sin(x);
                   Romberg(1, 3, 10. (-6), f1);
 10 -
                      %问题1(3)
  11
 12 -
                       fprintf('问题1(3):\n');
                      f1(x) = @(x)4/(1+x*x);
 13 -
                  Romberg(0, 1, 10. (-6), f1);
 14 -
                     %问题1(4)
 15
 16 -
                   fprintf('问题1(4):\n');
                     f1(x) = @(x)1/(x+1);
 17 -
 18 - Romberg (0, 1, 10. (-6), f1);
实验结果截图如下:
 >> 1ab2
 问题1(1):
 积分值为:
     0.718281828462374
 龙贝格T-数表为:
     1.\,359140914229523 \qquad 0.\,885660615952277 \qquad 0.\,760596332448042 \qquad 0.\,728890177014693 \qquad 0.\,720935778937658
      0.727833849859862 0.718908237946630 0.718321458536910 0.718284312911980
                                                                                                                                                                   0
      0
     0. 718281850112090 0. 718281828546943 0
0. 718281828462374 0 0
                                                                                                                                                     0
                                                                                                                                                                                             0
      0.718281828462374
  问题1(2):
  积分值为:
    10. 950170314683838
 龙贝格T-数表为:
     5.\ 121826419665847 \qquad 9.\ 279762907261173 \quad 10.\ 520554283818644 \quad 10.\ 842043467557430 \quad 10.\ 923093889613778 \quad 10.\ 943398421186796 \quad 10.\ 94398421186796 \quad 10.\ 943398421186796 \quad 10.\ 94398421186796 
    10. 952045387529681 10. 950210203434750 10. 950170974843372 10. 950170325138595 0
                                                                                                                                                                                                                                      0
                                                                                                                                                   0
                                                                                                                                                                                            0

    10. 950181073528482
    10. 950170314679385
    10. 950170310122767

                                                                                                                                                    0
                                                                                                                                                                                         0
                                                                                                                                                                                                                                       0
    10. 950170314683838
                                                                          0
                                                                                                                 0
                                                                                                                                                                                                                                       0
```

问题1(3):					
积分值为:					
3. 141592653638244					
龙贝格T-数表为:					
3. 000000000000000	3. 1000000000000000	3. 131176470588235	3. 138988494491089	3. 140941612041389	3. 14142989317497
3. 133333333333333	3. 141568627450981	3. 141592502458707	3. 141592651224822	3. 141592653552836	
3. 142117647058824	3. 141594094125888	3. 141592661142563	3. 141592653708038	0	
3. 141585783761874	3. 141592638396796	3. 141592653590029	0	0	
3. 141592665277717	3. 141592653649611	0	0	0	
3. 141592653638244	0	0	0	0	
可题1(4):					
积分值为:					
0.693147181916745					
龙贝格T-数表为:					
0.7500000000000000	0.708333333333333	0.697023809523809	0.694121850371850	0.693391202207527	
0. 6944444444445	0. 693253968253968	0. 693154530654531	0.693147652819419	0	
0. 693174603174603	0. 693147901481235	0.693147194297078	0	0	
0.693147477644832	0.693147183071933	0	0	0	
0.693147181916745	0	0	0	0	

第四部分:实验结果、结论与讨论

1、实验结果:

问题 1/(1)	0.718281828462374
问题 1/(2)	10. 950170314683838
问题 1/ (3)	3. 141592653638244
问题 1/(4)	0.693147181916745

2、思考题:

在实验1中二分次数越大,求得的积分的精度越高。这是因为,随着二分次数的增加,我们会使用到越来越多的精确值,即获取到更多被积函数的信息,所以求得的积分也会更加精确。

3、结论与讨论:

在这次实验中,我们可以看出,对于龙贝格积分来说,二分次数 越多, 求得的积分近似值也就更加精确。但是随着二分次数的增加, 实验所需的时间和空间成本也就越高。所以我们在实际运用龙贝格积 分法求解问题时,应该依据我们所能承受的时间和空间成本以及所需 要的积分近似值精度来决定二分次数。

实验报告三——四阶龙格-库塔(Runge-Kutta)方法

第一部分:问题分析

该实验要求利用四阶龙格-库塔(Runge-Kutta)方法求解微分方程初值问题。要求输入为:区间左端点 a,区间右端点 b,初值 α ,划分的等距小区间个数 N。输出为:初值问题的数值解 x_n, y_n ,n=1,2,...,N。计算时,首先求出步长

$$h = \frac{b - a}{N}$$

然后,对n = 1,2,...,N,利用四阶龙格-库塔的迭代公式分别求出各点的数值解。

题目给出了不同的微分方程,旨在考察四阶龙格-库塔在求解什么样的方程时,数值解是精确的。同时,也对于不同 N 的大小进行了比较,旨在考察 N 对于数值解精度的影响,同时探究了 N 较小时会出现的现象。在此次实验中,同学们熟悉了 matlab(或其他语言)的使用,学会了利用这些工具求解数学问题,同时也对四阶龙格-库塔方法有了更加深刻的理解与认识。

第二部分: 数学原理

对于给定的常微分方程初值问题

$$\begin{cases} \frac{dy}{dx} = f(x, y), & a \le x \le b \\ y(a) = \alpha & h = \frac{b - a}{N} \end{cases}$$

记 $x_n = a + n * h$, n = 0,1,...,N, 利用四阶龙格-库塔方法

$$K_{1} = hf(x_{n}, y_{n})$$

$$K_{2} = hf(x_{n} + \frac{h}{2}, y_{n} + \frac{K_{1}}{2})$$

$$K_{3} = hf(x_{n} + \frac{h}{2}, y_{n} + \frac{K_{2}}{2})$$

$$K_{4} = hf(x_{n} + h, y_{n} + K_{3})$$

$$y_{n+1} = y_{n} + \frac{1}{6}(K_{1} + 2K_{2} + 2K_{3} + K_{4})$$

$$n = 0, 1, \dots, N - 1$$

可逐次求出微分方程初值问题的数值解 y_n , $n=0,1,\ldots,N$ 。

第三部分:程序设计流程

1、实验流程

2、实验代码

四阶龙格-库塔函数文件如下:

```
In function RungeKutta (a, b, ya, N, f)
      白% 四阶龙格库塔函数
2
        % a为区间左端点,b为区间右端点,ya为常微分方程初值,
3
       -% (b-a)/N为步长, f为y对x的微分
       x0 = a;
 5 -
 6 -
       y0 = ya;
       h = (b-a)/N;
       fprintf('N=%d时:\n', N);
8 -
9 - \Box for n = 1:N
           k1 = double(h*f(x0, y0));
10 -
            k2 = double(h*f(x0+h/2, y0+k1/2));
11 -
12 -
            k3 = double(h*f(x0+h/2, y0+k2/2));
           k4 = double(h*f(x0+h, y0+k3));
13 -
           x1 = x0+h:
14 -
15 -
           y1 = y0 + (k1 + 2 * k2 + 2 * k3 + k4)/6;
            fprintf('(%.8f, %.8f)\n', xl, yl);
16 -
17 -
            x0 = x1;
18 -
            y0 = y1;
19 -
       - end
       fprintf('\n');
20 -
21 -
       - end
```

输出解析解的函数文件如下:

```
☐ function GoldAnswer(a, b, N, f)
     白%输出解析解,即真实值
      -% a为区间左端点,b为区间右端点,(b-a)/N为步长,f为解析解
       x = a:
4 -
       h = (b-a)/N;
5 -
       fprintf('N=%d时:\n', N);
7 - \triangle \text{ for } n = 1:N
           x = x+h;
8 -
           fprintf('(%.8f, %.8f)\n', x, f(x));
9 -
10 -
      - end
11 —
       fprintf('\n');
      - end
12 -
```

脚本文件如下:

```
1 -
       syms x;
2 -
       syms y;
3
 4
       %问题1(1)
       fprintf('问题1(1):\n');
5 -
       %微分
6
7 -
       f11 = @(x, y)x+y;
8
       %解析解
       F11 = @(x) - x - 1;
9 —
       %输出数值解
10
       fprintf('数值解为\n');
11 -
       RungeKutta (0, 1, -1, 5, f11);
12 -
       RungeKutta(0, 1, -1, 10, f11);
13 -
       RungeKutta(0, 1, -1, 20, f11);
14 -
       %输出解析解
15
       fprintf('解析解为\n');
16 -
17 -
       GoldAnswer (0, 1, 5, F11);
       GoldAnswer(0, 1, 10, F11);
18 -
19 -
       GoldAnswer(0, 1, 20, F11);
20
21
       %问题1(2)
       fprintf('问题1(2):\n');
22 -
       f12 = @(x, y) - y*y;
23 -
24 -
       F12 = @(x)1/(x+1);
       fprintf('数值解为\n');
25 -
       RungeKutta(0, 1, 1, 5, f12);
26 -
       RungeKutta(0, 1, 1, 10, f12);
27 —
```

```
25 -
        fprintf('数值解为\n');
        RungeKutta (0, 1, 1, 5, f12);
26 -
        RungeKutta(0, 1, 1, 10, f12);
27 -
        RungeKutta (0, 1, 1, 20, f12);
28 -
        fprintf('解析解为\n');
29 -
        GoldAnswer(0, 1, 5, F12);
30 -
        GoldAnswer(0, 1, 10, F12);
31 -
        GoldAnswer (0, 1, 20, F12);
32 -
33
        %问题2(1)
34
        fprintf('问题2(1):\n');
35 -
        f21 = @(x, y) 2*y/x+x*x*exp(x);
36 -
37 -
        F21 = @(x) x*x*(exp(x)-exp(1));
        fprintf('数值解为\n');
38 -
39 -
        RungeKutta(1, 3, 0, 5, f21);
        RungeKutta(1, 3, 0, 10, f21);
40 -
        RungeKutta(1, 3, 0, 20, f21);
41 -
        fprintf('解析解为\n');
42 -
        GoldAnswer(1, 3, 5, F21);
43 -
        GoldAnswer(1, 3, 10, F21);
44 -
        GoldAnswer(1, 3, 20, F21);
45 -
46
        %问题2(2)
47
        fprintf('问题2(2):\n');
48 -
49 -
       f22 = @(x, y) (y*y+y)/x;
        F22 = @(x) 2*x/(1-2*x);
50 -
        fprintf('数值解为\n');
51 —
```

```
fprintf('数值解为\n');
51 -
52 -
        RungeKutta (1, 3, -2, 5, f22);
        RungeKutta(1, 3, -2, 10, f22);
53 -
        RungeKutta(1, 3, -2, 20, f22);
54 -
       fprintf('解析解为\n');
55 -
        GoldAnswer(1, 3, 5, F22);
56 -
        GoldAnswer (1, 3, 10, F22);
57 -
        GoldAnswer(1, 3, 20, F22);
58 -
59
        %问题3(1)
60
        fprintf('问题3(1):\n');
61 -
        f31 = @(x, y) - 20*(y-x*x) + 2*x;
62 -
63 -
       F31 = @(x)x*x+exp(-20*x)/3;
        fprintf('数值解为\n');
64 -
       RungeKutta(0, 1, 1/3, 5, f31);
65 -
        RungeKutta(0, 1, 1/3, 10, f31);
66 -
        RungeKutta(0, 1, 1/3, 20, f31);
67 -
68 -
       fprintf('解析解为\n');
        GoldAnswer (0, 1, 5, F31);
69 -
        GoldAnswer(0, 1, 10, F31);
70 -
        GoldAnswer (0, 1, 20, F31);
71 -
72
       %问题3(2)
73
74 -
       fprintf('问题3(2):\n');
75 -
       f32 = @(x, y) - 20*y + 20*sin(x) + cos(x);
       F32 = @(x) exp(-20*x) + sin(x);
76 -
77 —
       fprintf('数值解为\n');
```

```
77 -
        fprintf('数值解为\n');
        RungeKutta (0, 1, 1, 5, f32);
78 -
        RungeKutta (0, 1, 1, 10, f32);
79 -
        RungeKutta(0, 1, 1, 20, f32);
80 -
        fprintf('解析解为\n');
81 -
        GoldAnswer(0, 1, 5, F32);
82 -
        GoldAnswer(0, 1, 10, F32);
83 -
84 -
        GoldAnswer (0, 1, 20, F32);
85
        %问题3(3)
86
        fprintf('问题3(3):\n');
87 -
        f33 = @(x, y) - 20*(y - exp(x) * sin(x)) + exp(x) * (sin(x) + cos(x));
88 -
        F33 = @(x) \exp(x) * \sin(x);
89 -
        fprintf('数值解为\n');
90 -
        RungeKutta (0, 1, 0, 5, f33);
91 -
      RungeKutta(0, 1, 0, 10, f33);
92 -
      RungeKutta(0, 1, 0, 20, f33);
93 -
      fprintf('解析解为\n');
94 -
      GoldAnswer(0, 1, 5, F33);
95 -
      GoldAnswer(0, 1, 10, F33);
96 -
        GoldAnswer(0, 1, 20, F33);
97 —
```

第四部分:实验结果、结论与讨论

1、实验结果:

问题1(1)

N	X	数值解	解析解
	0. 20000000	-1.20000000	-1.20000000
	0. 40000000	-1.40000000	-1.40000000
5	0. 60000000	-1.60000000	-1.60000000
	0. 80000000	-1.80000000	-1.80000000
	1. 00000000	-2.00000000	-2.00000000
10	0. 10000000	-1.10000000	-1.10000000
10	0. 20000000	-1.20000000	-1.20000000

	0.30000000	-1.30000000	-1.30000000
	0.40000000	-1.40000000	-1.40000000
	0.50000000	-1.50000000	-1.50000000
	0. 60000000	-1.60000000	-1.60000000
	0. 70000000	-1.70000000	-1.70000000
	0.80000000	-1.80000000	-1.80000000
	0. 90000000	-1.90000000	-1.90000000
	1.00000000	-2. 00000000	-2.00000000
	0. 05000000	-1.05000000	-1.05000000
	0. 10000000	-1. 10000000	-1.10000000
	0. 15000000	-1. 15000000	-1.15000000
	0. 20000000	-1. 20000000	-1.20000000
	0. 25000000	-1. 25000000	-1.25000000
	0. 30000000	-1.30000000	-1.30000000
20	0. 35000000	-1.35000000	-1.35000000
	0. 40000000	-1.40000000	-1.40000000
	0. 45000000	-1.45000000	-1.45000000
	0. 50000000	-1.50000000	-1.50000000
	0. 55000000	-1.55000000	-1.55000000
	0. 60000000	-1.60000000	-1.60000000
	0. 65000000	-1.65000000	-1.65000000

0. 70000000	-1.70000000	-1.70000000
0.75000000	-1.75000000	-1.75000000
0.80000000	-1.80000000	-1.80000000
0.85000000	-1.85000000	-1.85000000
0. 90000000	-1.90000000	-1.90000000
0. 95000000	-1.95000000	-1.95000000
1.00000000	-2.00000000	-2.00000000

问题1(2)

N	X	数值解	解析解
	0. 20000000	0. 83333904	0. 83333333
	0. 40000000	0. 71429213	0. 71428571
5	0.60000000	0.62500589	0.62500000
	0.80000000	0. 55556069	0. 5555556
	1. 00000000	0. 50000441	0.50000000
	0. 10000000	0. 90909119	0.90909091
	0. 20000000	0. 83333373	0.83333333
10	0. 30000000	0. 76923121	0. 76923077
10	0. 40000000	0. 71428615	0.71428571
	0. 50000000	0.66666709	0. 66666667
	0. 60000000	0. 62500040	0. 62500000

	0. 70000000	0. 58823567	0. 58823529
	0.80000000	0. 55555590	0. 5555556
	0. 90000000	0. 52631611	0. 52631579
	1. 00000000	0. 50000030	0.50000000
	0. 05000000	0. 95238096	0. 95238095
	0. 10000000	0. 90909093	0. 90909091
	0. 15000000	0. 86956524	0.86956522
	0. 20000000	0. 83333336	0.83333333
	0. 25000000	0. 80000003	0.80000000
	0. 30000000	0. 76923080	0. 76923077
	0. 35000000	0. 74074077	0. 74074074
	0. 40000000	0. 71428574	0. 71428571
20	0. 45000000	0. 68965520	0. 68965517
	0. 50000000	0. 66666669	0. 66666667
	0. 55000000	0. 64516132	0. 64516129
	0. 60000000	0. 62500003	0. 62500000
	0. 65000000	0. 60606063	0. 60606061
	0. 70000000	0. 58823532	0. 58823529
	0. 75000000	0. 57142859	0. 57142857
	0. 80000000	0. 5555558	0. 5555556
	0.85000000	0. 54054056	0. 54054054

	0. 90000000	0. 52631581	0. 52631579
	0. 95000000	0. 51282053	0. 51282051
	1. 00000000	0. 50000002	0. 50000000
问题 2 (1)			
N	X	数值解	解析解
	1. 40000000	2. 61394279	2. 62035955
	1. 80000000	10. 77631317	10. 79362466
5	2. 20000000	30. 49165420	30. 52458129
	2. 60000000	72. 58559861	72. 63928396
	3. 00000000	156. 22519828	156. 30529585
	1. 20000000	0. 86637911	0. 86664254
	1. 40000000	2. 61974052	2. 62035955
	1. 60000000	5. 71989528	5. 72096153
	1.80000000	10. 79201760	10. 79362466
10	2. 00000000	18. 68085236	18. 68309708
10	2. 20000000	30. 52159814	30. 52458129
	2. 40000000	47. 83236583	47. 83619262
	2. 60000000	72. 63450354	72. 63928396
	2. 80000000	107.60885199	107. 61470115
	3. 00000000	156. 29825744	156. 30529585
20	1. 10000000	0. 34591029	0. 34591988

	1. 20000000	0. 86662169	0. 86664254
	1. 30000000	1. 60718135	1.60721508
	1. 40000000	2. 62031131	2. 62035955
	1. 50000000	3. 96760190	3. 96766629
	1.60000000	5. 72087932	5. 72096153
	1. 70000000	7. 96377179	7. 96387348
	1. 80000000	10. 79350178	10. 79362466
	1. 90000000	14. 32293573	14. 32308154
	2. 00000000	18. 68292657	18. 68309708
	2. 10000000	24. 02498942	24. 02518645
	2. 20000000	30. 52435589	30. 52458129
	2. 30000000	38. 38345866	38. 38371431
	2. 40000000	47. 83590478	47. 83619262
	2. 50000000	59. 15100383	59. 15132583
	2. 60000000	72. 63892578	72. 63928396
	2. 70000000	88. 65657333	88. 65696974
	2. 80000000	107. 61426439	107. 61470115
	2. 90000000	129. 98333312	129. 98381238
	3. 00000000	156. 30477188	156. 30529585
问题 2 (2)			
N	X	数值解	解析解
_			

	1.40000000	-1. 55398900	-1. 5555556
	1.80000000	-1. 38361729	-1.38461538
5	2. 20000000	-1. 29340153	-1. 29411765
	2. 60000000	-1. 23754016	-1.23809524
	3. 00000000	-1. 19954796	-1.20000000
	1. 20000000	-1.71424518	-1.71428571
	1.40000000	-1. 55552288	-1.5555556
	1.60000000	-1. 45451975	-1.45454545
	1.80000000	-1. 38459451	-1. 38461538
10	2. 00000000	-1. 33331586	-1. 33333333
10	2. 20000000	-1. 29410266	-1. 29411765
	2. 40000000	-1. 26314480	-1. 26315789
	2. 60000000	-1. 23808362	-1.23809524
	2. 80000000	-1. 21738087	-1.21739130
	3. 00000000	-1. 19999054	-1.20000000
	1. 10000000	-1. 83333283	-1.83333333
	1. 20000000	-1. 71428517	-1.71428571
20	1. 30000000	-1.62499950	-1.62500000
	1. 40000000	-1. 55555511	-1. 5555556
	1. 50000000	-1. 49999961	-1.50000000
	1.60000000	-1. 45454510	-1. 45454545

1.70000000	-1. 41666635	-1.41666667
1.80000000	-1. 38461510	-1.38461538
1. 90000000	-1. 35714260	-1. 35714286
2. 00000000	-1. 33333309	-1.33333333
2. 10000000	-1. 31249978	-1.31250000
2. 20000000	-1. 29411744	-1.29411765
2. 30000000	-1. 27777759	-1. 27777778
2. 40000000	-1. 26315771	-1. 26315789
2. 50000000	-1. 24999983	-1.25000000
2. 60000000	-1. 23809508	-1.23809524
2. 70000000	-1. 22727258	-1.22727273
2. 80000000	-1. 21739116	-1.21739130
2. 90000000	-1. 20833320	-1.20833333
3. 00000000	-1. 19999987	-1.20000000

问题 3 (1)

N	X	数值解	解析解
5	0. 20000000	1.76000000	0.04610521
	0. 40000000	8. 81333333	0. 16011182
	0. 60000000	43. 68000000	0. 36000205
	0. 80000000	217. 29333333	0. 64000004
	1. 00000000	1084. 32000000	1.00000000

	0. 10000000	0. 12277778	0.05511176
	0. 20000000	0. 07925926	0. 04610521
	0. 30000000	0. 10475309	0. 09082625
	0. 40000000	0. 16658436	0. 16011182
10	0. 50000000	0. 25386145	0. 25001513
10	0. 60000000	0. 36295382	0. 36000205
	0. 70000000	0. 49265127	0. 49000028
	0.80000000	0. 64255042	0.64000004
	0.90000000	0. 81251681	0.81000001
	1. 00000000	1. 00250560	1. 00000000
	0. 05000000	0. 12755208	0. 12512648
	0. 10000000	0. 05694661	0. 05511176
	0. 15000000	0. 04015706	0. 03909569
	0. 20000000	0. 04667348	0. 04610521
	0. 25000000	0. 06505464	0. 06474598
20	0. 30000000	0. 09101007	0. 09082625
	0. 35000000	0. 12293086	0. 12280396
	0.40000000	0. 16021366	0. 16011182
	0. 45000000	0. 20263220	0. 20254114
	0. 50000000	0. 25010166	0. 25001513
	0. 55000000	0. 30259021	0. 30250557

0. 60000000	0. 36008591	0. 36000205
0.65000000	0. 42258430	0. 42250075
0. 70000000	0. 49008370	0. 49000028
0.75000000	0. 56258347	0. 56250010
0.80000000	0. 64008338	0.64000004
0.85000000	0. 72258335	0. 72250001
0. 90000000	0.81008334	0.81000001
0. 95000000	0. 90258334	0. 90250000
1.00000000	1.00008333	1.00000000

问题 3 (2)

N	X	数值解	解析解
	0. 20000000	5. 19733811	0. 21698497
	0. 40000000	25. 37617070	0. 38975380
5	0. 60000000	125. 48681526	0. 56464862
	0. 80000000	625. 31209552	0. 71735620
	1. 00000000	3123. 79515095	0.84147099
	0. 10000000	0. 43313900	0. 23516870
	0. 20000000	0. 30966047	0. 21698497
10	0. 30000000	0. 33232467	0. 29799896
	0. 40000000	0. 40141397	0. 38975380
	0. 50000000	0. 48307434	0.47947094

	0.0000000	0 50540500	0. 50404000
	0.60000000	0. 56543528	0.56464862
	0. 70000000	0.64398900	0. 64421852
	0.80000000	0. 71672235	0. 71735620
	0. 90000000	0. 78249915	0. 78332692
	1.00000000	0. 84052572	0.84147099
	0. 05000000	0. 42497852	0. 41785861
	0.10000000	0. 24045622	0. 23516870
	0. 15000000	0. 20216844	0. 19922520
	0. 20000000	0. 21843866	0. 21698497
	0. 25000000	0. 25481165	0. 25414191
	0. 30000000	0. 29829102	0. 29799896
	0. 35000000	0. 34392855	0. 34380969
00	0.40000000	0. 38979534	0. 38975380
20	0. 45000000	0. 43509617	0. 43508894
	0.50000000	0. 47946262	0. 47947094
	0. 55000000	0. 52268809	0. 52270393
	0.60000000	0. 56462864	0. 56464862
	0.65000000	0. 60516599	0. 60518867
	0.70000000	0. 64419376	0. 64421852
	0.75000000	0. 68161253	0. 68163907
	0.80000000	0. 71732804	0. 71735620

	0. 85000000	0. 75125076	0. 75128045
	0. 90000000	0. 78329581	0. 78332692
	0. 95000000	0. 81338305	0. 81341551
	1.00000000	0. 84143727	0.84147099
问题 3 (3)			
N	X	数值解	解析解
	0. 20000000	0. 29864621	0. 24265527
	0. 40000000	0. 92721987	0. 58094390
5	0. 60000000	2. 83547734	1. 02884567
	0.80000000	10. 71088533	1. 59650534
	1.00000000	47. 94144638	2. 28735529
	0. 10000000	0. 11205511	0. 11033299
	0. 20000000	0. 24511651	0. 24265527
	0. 30000000	0. 40177810	0. 39891055
	0. 40000000	0. 58409696	0. 58094390
10	0. 50000000	0. 79382205	0. 79043908
10	0. 60000000	1. 03241831	1. 02884567
	0. 70000000	1. 30101499	1. 29729511
	0.80000000	1.60032101	1. 59650534
	0. 90000000	1. 93052103	1. 92667330
	1. 00000000	2. 29115692	2. 28735529

20	0. 05000000	0.05259504	0.05254166
	0. 10000000	0. 11040899	0. 11033299
	0. 15000000	0. 17370939	0. 17362234
	0. 20000000	0. 24274900	0. 24265527
	0. 25000000	0. 31777169	0. 31767297
	0. 30000000	0. 39901355	0. 39891055
	0.35000000	0. 48670207	0. 48659515
	0. 40000000	0. 58105449	0. 58094390
	0. 45000000	0. 68227577	0. 68216175
	0. 50000000	0. 79055629	0. 79043908
	0. 55000000	0. 90606933	0. 90594922
	0. 60000000	1. 02896834	1. 02884567
	0.65000000	1. 15938414	1. 15925927
	0. 70000000	1. 29742175	1. 29729511
	0.75000000	1. 44315720	1. 44302927
	0.80000000	1. 59663402	1. 59650534
	0.85000000	1. 75785967	1.75773083
	0. 90000000	1. 92680163	1. 92667330
	0. 95000000	2. 10338342	2. 10325633
	1. 00000000	2. 28748035	2. 28735529

2、思考题:

- (1) 在实验一中,第一小问的数值解和解析解相同,而第二小问的数值解和解析解却不同。这是由于,龙格-库塔方法的本质是,通过f在不同点上的函数值的线性组合来代替 $y_{n+1}-y_n$,并且通过泰勒展开确定参数使得数值解达到一定精度。第一小问中,原函数为线性函数,高阶导数为 0,所以泰勒展开是精确的,因此对应的数值解和解析解相同。而第二小问中,原函数是曲线,所以泰勒展开会存在截断误差,数值解和解析解也就不同。
- (2) 对于实验二,N越大越精确。这是由于,当N越大时,各待求点间的距离就越小。一个局部小区间,泰勒展开更为精确,截断误差更小,所以拟合出的数值解和解析解也就越相近。而N较小时,各待求点间的距离就越大,在一个较大的区间内泰勒展开的截断误差也很大,不同点上的函数值的线性组合并不能很好地代替 $y_{n+1} y_n$,所以数值解和解析解的误差也就越大。
- (3)对于实验三,N较小时,离初值点较远的点的数值解与解析解相差非常大。这是由于,首先由上一小问知,N越小,误差越大;其次,龙格-库塔方法的误差会进行累积,导致离初值越远,误差越大,所以会出现最远点的数值解与解析解相差巨大的情况。

3、结论与讨论:

在这次实验中,我们可以看出,对于四阶龙格-库塔方法来说,不同是函数会使得数值解精度不同。当原函数是线性的时,四阶龙格-库塔方法求得的数值解是精确的。并且,当 N 越大时,数值解就越精确。

此外,由于四阶龙格-库塔方法的误差会被累积,所以当 N 较小时,
离初值点较远的端点处的数值解会与解析解相差非常大。这要求我们
在运用四阶龙格-库塔方法时,对于不同的函数,应该选取相应满足
要求的较大的N值进行运算,方能得到较为精确的数值解。

实验报告四——牛顿(Newton) 迭代法

第一部分:问题分析

该实验要求利用牛顿 (Newton) 迭代法编写代码, 求解非线性方程 f(x) = 0 的根 x^* 。要求输入为: 初值 α ,精度 ε_1 , ε_2 ,最大迭代次数 N; 输出为: 方程f(x) = 0 的根 x^* 的近似值或计算失败标志。迭代时 利用牛顿迭代公式: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ 进行计算,直到满足精度要求 或者达到最大迭代次数。

题目给出了不同迭代格式、迭代初值、近似值精度等,旨在考察它们对于迭代过程、迭代结果、收敛速度的影响。在此次实验中,同学们熟悉了 matlab (或其他语言)的使用,学会了利用这些工具求解数学问题,同时也对牛顿迭代法有了更加深刻的理解与认识。

第二部分: 数学原理

牛顿(Newton) 迭代法可用来求解非线性方程f(x) = 0 的根 x^* 。牛顿迭代法的计算公式如下:

$$x_0 = \alpha$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad n = 0,1,\dots$$

一般情况下,牛顿迭代法具有局部收敛性。为了保证迭代是收敛的,要求对充分小的 $\delta>0$, $\alpha\in O(x^*,\delta)$ 。若 $f(x)\in C^2[a,b]$, $f(x^*)=0$, $f'(x^*)\neq 0$ (即 x^* 是该方程的单根),那么对充分小的 $\delta>0$,当 $\alpha\in O(x^*,\delta)$ 时,由牛顿迭代法计算出的 $\{x_n\}$ 收敛于 x^* ,并且收敛速度是 2

阶的; 若 $f(x) \in C^m[a,b]$, $f(x^*) = f'(x^*) = \dots = f^{(m-1)}(x^*) = 0$, $f^{(m)}(x^*) \neq 0 \ (m > 1)$, 那么对充分小的 $\delta > 0$, 当 $\alpha \in O(x^*,\delta)$ 时,由牛顿迭代法计算出的 $\{x_n\}$ 收敛于 x^* ,并且收敛速度是 1 阶的。

第三部分:程序设计流程

1、实验流程

2、实验代码

牛顿迭代函数文件如下:

```
1
    function [] = Newton(x0, e1, e2, N, f)
    □% 牛顿插值函数
2
     -% x0为初值, e1, e2为精度, N为最大迭代次数, f为待求解非线性方程
3
4 —
5 —
      df = diff(f);
6 - while n <= N
          F = double(f(x0));
         DF = double(df(x0));
8 -
9 —
         if abs(F) < el
              fprintf('方程f(x)=0根x*的近似值为:%.8f\n', x0);
10 -
11 -
             return;
12 -
          if abs(DF) < e2
13 -
             fprintf('计算失败\n');
14 -
15 -
             return:
16 -
         end
17 -
         x1 = double(x0-F/DF);
18 -
         To1 = abs(x1-x0);
19 -
          if Tol < el
             fprintf('方程f(x)=0根x*的近似值为:%.8f\n', x1);
20 -
21 -
             return;
22 -
         end
         n = n+1;
23 -
24 -
         x0 = x1;
25 —
      - end
      fprintf('计算失败\n');
26 -
27 —
     return;
```

脚本文件如下:

```
1 -
       syms x;
       g11(x) = cos(x)-x;
2 -
       g12(x) = exp(-x)-sin(x);
3 -
      g21(x) = x-exp(-x);
 4 -
     g22(x) = x*x-2*x*exp(-x)+exp(-2*x);
5 -
      disp('问题1(1)的结果为:'):
6 -
     Newton(pi/4, 10. (-6), 10. (-4), 10, g11);
7 —
      disp('问题1(2)的结果为:'):
8 -
     Newton(0.6, 10. (-6), 10. (-4), 10, g12);
9 -
      disp('问题2(1)的结果为:'):
10 -
      Newton(0.5, 10. (-6), 10. (-4), 10, g21);
11 -
      disp('问题2(2)的结果为:');
12 -
      Newton(0.5, 10. (-6), 10. (-4), 20, g22);
13 -
```

实验结果截图如下:

命令行窗口

>> 1ab4

问题1(1)的结果为:

方程f(x)=0根x*的近似值为:0.73908518

问题1(2)的结果为:

方程f(x)=0根x*的近似值为:0.58853274

问题2(1)的结果为:

方程f(x)=0根x*的近似值为:0.56714317

问题2(2)的结果为:

方程f(x)=0根x*的近似值为:0.56660570

fx >>

第四部分:实验结果、结论与讨论

1、实验结果:

问题 1/(1)	0. 73908518
问题 1/ (2)	0. 58853274

问题 2/ (1)	0. 56714317
问题 2/(2)	0. 56660570

2、思考题:

- (1)确定初值的原则是: 迭代函数具有局部收敛性,即迭代函数在初值的邻域内具有连续的一阶导数,且一阶导数的绝对值小于 1。在实际计算中,要求初值 α 满足 $\alpha \in [a,b]$,且使 $f''(\alpha)f(\alpha) > 0$,其中[a,b]为二阶导数存在的有根区间。
- (2) 在问题 2 中,两小问要求解的方程其实一致,只是第二小问进行了平方操作,使得迭代格式不同。初始时,使用 matlab 实现的代码进行实验,但第二问的计算速度非常缓慢,无法在短时间内得到结果。这是由于初始时的代码是利用符号变量进行计算的,第二问的迭代函数及求导后的函数均较为复杂,用符号变量进行计算会导致计算速度异常缓慢,此外该方程的解为重根,根附近的导数接近 0,迭代缓慢。而后我将符号变量转为数值变量,计算速度得到了大大提升,最终成果在短时间内得到了结果。

3、结论与讨论:

同一方程的不同迭代格式(如问题 2 的两个小问),对于牛顿迭代的过程以及收敛速度均影响较大,解得的近似值的精度也不同。当方程的解为重根时,根附近的导数接近 0,会使得迭代速度减慢,精度下降。因此,我们首先应该将原方程进行化简,并且选择合适的迭代格式。

实验报告五——高斯(Gauss)列主元消去法

第一部分:问题分析

该实验要求利用高斯(Gauss)列主元消去法编写代码,求解线性方程组 Ax = b。要求输入为:线性方程组个数 n,系数矩阵 A,右端项系数矩阵 b;输出为:线性方程组 Ax = b 的近似解 x_i ,i = 1,2,...,n,或线性方程组奇异的标志。计算时利用高斯列主元消去法:首先进行列主元消元过程,然后进行回代过程,最后得到解或确定该线性方程组是奇异的。

题目给出了不同的线性方程组,旨在考察利用高斯列主元消去法求解各类线性方程组时能否得到较为精确的数值解,以及不同的系数矩阵是否会给求解过程造成较大的误差。在此次实验中,同学们熟悉了matlab(或其他语言)的使用,学会了利用这些工具求解数学问题,同时也对高斯列主元消去法有了更加深刻的理解与认识。

第二部分: 数学原理

高斯(Gauss)列主元消去法,指对于给定的 n 阶线性方程组 Ax = b,首先进行列主元消元过程,然后进行回代过程,最后得到解或确定该线性方程组是奇异的。

列主元消元过程:在进行第k步消元时,从第k列的 a_{kk} 及其以下的各元素中选取绝对值最大的元素,然后通过行变换将它交换到主元素 a_{kk} 的位置上,再进行消元:

$$m_{ik} = a_{ik}^{(k)} / a_{kk}^{(k)}$$

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)}$$

$$b_i^{(k+1)} = b_i^{(k)} - m_{ik} b_k^{(k)}$$

$$i, j = k + 1, ..., n$$

回代过程:

$$x_n = b_n/a_{nn}$$

$$x_i = (b_i - \sum_{j=i+1}^n a_{ij}x_j)/a_{ii} \quad i = n-1,...,2,1$$

第三部分:程序设计流程

1、实验流程

2、实验代码

高斯列主元消去法函数文件如下:

```
☐ function Gauss(n, A, b)
1
     白% 高斯列主元消去法函数
       % n为线性方程组个数, A为系数矩阵, b为右端项系数矩阵
3
      -% 返回值X为解得的近似解矩阵
      x = zeros(1, n);
6 - \frac{1}{2} for k = 1:n-1
          temp0 = abs(A(k, k));
7 -
          p = k;
8 -
9 — 🚊
         for j = k:n
             if abs(A(j, k)) > temp0
10 -
11 -
                 temp0 = abs(A(j, k));
                 p = j;
12 -
13 -
              end
14 -
           end
          if temp0 == 0
15 -
16 -
              disp('系数矩阵奇异');
17 -
              return;
18 -
           end
          if p ~= k
19 -
              temp1 = A(p, 1:n);
20 -
              A(p, 1:n) = A(k, 1:n);
21 -
             A(k, 1:n) = temp1;
22 -
             temp2 = b(p);
23 -
             b(p) = b(k);
24 -
              b(k) = temp2;
25 -
26 -
           end
```

```
26 -
           end
27 - 🖹 for i = k+1:n
28 -
              m = A(i, k)/A(k, k);
              b(i) = b(i)-b(k)*m;
29 -
30 —
             for j = k+1:n
31 -
               A(i, j) = A(i, j)-A(k, j)*m;
32 -
             end
33 -
           end
           if A(n, n) == 0
34 -
             disp('系数矩阵奇异');
35 -
36 -
              return;
37 -
           end
     - end
38 -
      x(n) = b(n)/A(n, n);
39 -
      k = n-1;
40 -
41 -
      syms j;
43 -
          sum = 0;
44 - = for j = k+1:n
             sum = sum + A(k, j) *x(j);
45 -
46 -
         end
          x(k) = (b(k)-sum)/A(k, k);
47 -
48 -
          k = k-1;
49 -
      - end
      disp('该线性方程组的解为:');
50 -
51 -
     disp(x);
     - end
52 -
脚本文件如下:
```

```
%间颗1(1)
 2 -
        fprintf('问题1(1):\n');
 3 —
       A11 = [0.4096 0.1234 0.3678 0.2943; 0.2246 0.3872 0.4015 0.1129; 0.3645 0.1920 0.3781 0.0643; 0.1784 0.4002 0.2786 0.3927];
       ы11 = [1.1951 1.1262 0.9989 1.2499];
 4 —
 5 —
       Gauss(4, All, bll);
 6
        %问题1(2)
       fprintf('问题1(2):\n');
 7 -
 8 —
       A12 = [136.01 90.860 0 0; 90.860 98.810 -67.590 0; 0 -67.590 132.01 46.260; 0 0 46.260 177.17];
 9 —
       b12 = [226.87 122.08 110.68 223.43];
10 —
       Gauss (4, A12, b12);
       %问题1(3)
11
12 —
       fprintf('问题1(3):\n');
       A13 = [1 1/2 1/3 1/4; 1/2 1/3 1/4 1/5; 1/3 1/4 1/5 1/6; 1/4 1/5 1/6 1/7];
       b13 = [25/12 77/60 57/60 319/420];
14 -
15 -
       Gauss (4, A13, b13);
16
       %问题1(4)
17 —
       fprintf('问题1(4):\n');
       A14 = [10 7 8 7; 7 5 6 5; 8 6 10 9; 7 5 9 10];
18 -
19 -
       b14 = [32 23 33 31];
20 —
       Gauss (4, A14, b14);
       %问题2(1)
21
       fprintf('问题2(1):\n');
22 -
23 —
       A21 = [197 305 -206 -804; 46.8 71.3 -47.4 52.0; 88.6 76.4 -10.8 802; 1.45 5.90 6.13 36.5];
24 -
       b21 = [136 11.7 25.1 6.60];
       Gauss (4, A21, b21);
25 -
       %间颗2(2)
26
27 —
      fprintf('问题2(2):\n');
26
      %间颗2(2)
      fprintf('问题2(2):\n');
27 -
28 -
      A22 = [0.5398 0.7161 -0.5554 -0.2982; 0.5257 0.6924 0.3565 -0.6255; 0.6465 -0.8187 -0.1872 0.1291; 0.5814 0.9400 -0.7779 -0.4042];
29 —
      b22 = [0.2058 -0.0503 0.1070 0.1859];
30 —
      Gauss (4, A22, b22);
       %问题2(3)
31
32 -
      fprintf('问题2(3):\n');
      A23 = [10 1 2; 1 10 2; 1 1 5];
33 -
      b23 = [13 13 7]:
34 -
35 —
      Gauss (3, A23, b23);
36
       %问题2(4)
      fprintf('问题2(4):\n');
37 -
38 —
      A24 = [4 -2 -4; -2 17 10; -4 10 9];
39 —
      b24 = [-2 25 15];
40 —
      Gauss (3, A24, b24);
```

实验结果截图如下:

>> 1ab5 问题1(1): 该线性方程组的解为: 问题1(2): 该线性方程组的解为: 1.0000000000118 0.99999999999824 0.99999999999 1 1.000000000000026 问题1(3): 该线性方程组的解为: 问题1(4): 该线性方程组的解为: 1 1 1 1 问题2(1): 该线性方程组的解为: 问题2(2): 该线性方程组的解为: 问题2(3): 该线性方程组的解为: 问题2(4): 该线性方程组的解为: 1 1 1 第四部分:实验结果、结论与讨论

1、实验结果

问题 1

- (4) $x_1 = 1$, $x_2 = 1$, $x_3 = 1$, $x_4 = 1$ 问题 2
- (1) $x_1 = 0.953679106901772$, $x_2 = 0.320956845521104$, $x_3 = 1.078708075793238$, $x_4 = -0.090108509539579$
- (2) $x_1 = 0.516177297958542$, $x_2 = 0.415219472830135$, $x_3 = 0.109966102867889$, $x_4 = 1.036539223336201$
- (4) $x_1 = 1$, $x_2 = 1$, $x_3 = 1$
- 2、结论与讨论

在实验 1 与实验 2 中,我们发现,对于各种不同类型的线性方程组,高斯列主元消去法均能得到较为精确的数值解,误差得到了较好的控制,同时该方法也能够判断系数矩阵是否是奇异的并给出提示。对于普通的高斯消元法中出现的问题(即当主元素过小时,将其作为除数,会导致其他元素数量级的严重增加和舍入误差的扩散,最终解也不可靠),高斯列主元消去法较好地进行了解决。