

ЗАНЯТИЕ 4.2 ЛИНЕЙНЫЙ КЛАССИФИКАТОР И ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

КОНСТАНТИН БАШЕВОЙ

Старший аналитик

/konstantin.bashe voy

ЦЕЛИ ЗАНЯТИЯ

В КОНЦЕ ЗАНЯТИЯ ВЫ:

- будете знать преимущества и недостатки
 линейных моделей, а также требования к данным;
- научитесь реализовывать алгоритм градиентного спуска и логистическую регрессию;
- повторите понятие условной вероятности.

О ЧЁМ ПОГОВОРИМ И ЧТО СДЕЛАЕМ

- 1. Линейные модели: требования к данным и практика;
- 2. Логистическая регрессия: практическое задание;
- 3. Градиентный спуск: теория и практическое задание;
- 4. Немного про условную вероятность.

ПРИЧИНЫ ПОПУЛЯРНОСТИ

- Линейные модели подходят для описания многих процессов
- Относительная простота вычислений и интерпретации результатов
- Вклад нескольких факторов часто можно разбить на сумму влияния каждого фактора в отдельности

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ

- Прогноз продаж по объему инвентаря, загрузке, площади и другим «линейным» характеристикам
- Построение вероятностных моделей в страховании, кредитном скоринге, инвестиционных проектах
- Предсказание цены товара на основании его характеристик
- Построение трендов

ОПРЕДЕЛЕНИЕ И КОД

ОПРЕДЕЛЕНИЕ

$$y_i = \sum_{j=1}^m w_j X_{ij} + e_i$$

Ү – целевая переменная

W - вектор весов модели

Х – матрица наблюдений

е - ошибка модели

ПРИМЕР ИЗ КОДА LINEAR REGRESSION.IPYNB

ПОСТРОЕНИЕ ЛИНЕЙНОЙ МОДЕЛИ

КАК СТРОИМ ЛИНЕЙНУЮ МОДЕЛЬ

Как можно получить эту прямую?

р(у | х, α) – вероятность получить у при входных данных х. α – параметр модели

Как можно получить эту прямую?

р(у | х, α) – вероятность получить у при входных данных х. α – параметр модели

Введем функцию

$$W(\alpha) = \prod_{i} p(x_i, \alpha)$$

Функция максимального правдоподbбия $\Sigma_i \log p(x_i, \alpha)$

Функция максимального правдоподbбия $\Sigma_i \log p(x_i, \alpha)$

Как подобрать значение α , чтобы максимизировать $L(\alpha)$?

Необходимо минимизировать среднеквадратичную ошибку между прогнозными и фактическими значениями

ДОКАЗАТЕЛЬСТВО

https://habrahabr.ru/company/ods/blog/323 890/#metod-maksimalnogo-

pravdopodobiya

ВРЕМЯ КОДА

REGRESSION_CARS.IPYNB

ПРАКТИЧЕСКОЕ ЗАДАНИЕ 1

ВРЕМЯ ПРАКТИКИ

SAT_MODEL.IPYNB

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

ПРОГНОЗ ВЕРОЯТНОСТИ

Прогнозирует вероятность отнесения наблюдения к определенному классу

Модель: $L = a_0 + a_1 X_1 + a_2 X_2 + ... + a_n X_n$

ПРОГНОЗ ВЕРОЯТНОСТИ

Вероятность:

$$p = \frac{1}{1 + e^{-L}}$$

СНОВА ПРАКТИКА

LOGISTIC_REGRESSION_ATHLETES_CLASSIFIER.IPYNB

ПРАКТИЧЕСКОЕ ЗАДАНИЕ 2

УЛУЧШАЕМ ТОЧНОСТЬ МОДЕЛИ

С НОВЫМИ ПРИЗНАКАМИ

ГРАДИЕНТНЫЙ СПУСК

ПРОИЗВОДНАЯ И МИНИМУМ

Производная определяет скорость изменения функции в точке

ПРОИЗВОДНАЯ И МИНИМУМ

Производная определяет скорость изменения

функции в точке

$$\Delta Y$$
 ΔX

$$F'(X_0) = \lim_{\Delta X \to 0} \frac{\Delta Y}{\Delta X}$$

ищем минимум

Допустим, необходимо найти минимум суммы среднеквадратичной ошибки для параметров модели

ищем минимум

Допустим, необходимо найти минимум суммы среднеквадратичной ошибки для параметров модели

Возьмем произвольную точку на графике и будем пошагово «спускаться» к минимуму

$$x_{i+1} = x_i - \alpha \nabla F(x_i)$$

ВОЗМОЖНЫЕ ПРОБЛЕМЫ

Шаг слишком

ВОЗМОЖНЫЕ ПРОБЛЕМЫ

Шаг слишком

Остаемся в локальном

ВАРИАНТЫ ВЫБОРА х

- Постоянной метод может расходиться
- С дробным шагом делим на число каждый шаг
- С наискорейшим спуском α выбирается так, чтобы следующая итерация была точкой минимума

ПРИМЕР В 3D

РЕАЛИЗУЕМ

GRADIENT_DESCENT.IPYNB

ЕСЛИ КЛАССОВ БОЛЬШЕ ДВУХ

ПРИМЕР

IRIS_DATASET.IPYNB

ДЛЯ КАКИХ ДАННЫХ ЭТО РАБОТАЕТ?

ТРЕБОВАНИЯ К ДАННЫМ

- Линейная зависимость целевой переменной
- Нормальное распределение остатков
- Постоянная изменчивость остатков

ТРЕБОВАНИЯ К ДАННЫМ

ТРЕБОВАНИЯ К ДАННЫМ

Линейная взаимосвязь X и Y уол ромт say?

НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ ОСТАТКОВ

HTTPS://GALLERY.SHINYAPPS.IO/SLR_DIAG/

НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ ОСТАТКОВ

HTTPS://GALLERY.SHINYAPPS.IO/SLR_DIAG/

ГОМОСКЕДАСТИЧНОСТЬ

Постоянная изменчивость остатков

Пример гетероскедастичной последовательности

ГОМОСКЕДАСТИЧНОСТЬ

Постоянная изменчивость остатков

Пример гетероскедастичной последовательности

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- 1. Вспомнили основы теории вероятностей.
- 2. Изучили линейные модели и требования к ним на основе функции правдоподобия.
- 3. Реализовали логистическую регрессию.
- 4. Изучили алгоритм градиентного спуска и потренировались в его реализации.

ПОЛЕЗНЫЕ МАТЕРИАЛЫ

- 1. Статья о линейных моделях в ODS https://habrahabr.ru/company/ods/blog/323890/
- 2. Курс «Основы статистики» на Stepik.org https://stepik.org/course/Основы-статистики-76

Спасибо за внимание!

КОНСТАНТИН БАШЕВОЙ

/konstantin.bashevoy