

Volume: 04 Issue: 10 | Oct 2023 ISSN: 2660-5317 https://cajotas.centralasianstudies.org

Роль Факторов В Формирование Динамики Численности И Структуры Популяции *Microtus Ilaeus*

Ешчанова Сайёра Шукурулла кизи

PhD доктор философии по биологическим наукам, и.о доцент кафедры Каракалпакский институт сельского хозяйства и агротехнологий

Абдинасырова Наргиза Абдрасулиевна

Стажор, Каракалпакский научно-исследовательский институт естественных наук Каракалпакского отделения Академии наук Республики Узбекистан

Дилманова Айсулу Иля кизи

Ассистент кафедры, Каракалпакский институт сельского хозяйства и агротехнологий

Received 4th Aug 2023, Accepted 6th Sep 2023, Online 6th Oct 2023

Аннотация: Динамика численности отражает историю и весь ход противоречивых взаимоотношений популяции с окружающей средой. И в этих взаимоотношениях в равной мере участвуют как внешняя среда, так и приспособительные компенсаторные механизмы исследуемой популяции. На основании проведенных исследований мы не стали противопоставлять их друг другу или, тем более, игнорировать одну из сторон динамического взаимодействия среды и популяции, а провели комплексный количественный анализ всех экологических факторов, объясняющих изменения численности одного из представителей малочисленного вида фауны млекопитающих Приаралья — илийской полевки. Работы подобного рода для популяции полевки ранее не проводились.

Илийская полевка (*Microtus ilaeus*) является одним из малочисленных видов в фауне млекопитающих Южного Приаралья. В низовьях Амударьи полевка заселяет преимущественно купаки, сырые участки с густой растительностью из тростника, рогоза, тамариска, осоки, периодически заливаемых водой. Встречается также на увлажненных участках тугаев, по берегам протоков рек, коллекторов, а также на орошаемых полях. Ранее, полевку низовьев Амударьи относили к закаспийской полевке *Micritus transcaspicus* Satunin, 1905 [1,2], либо к киргизской полевке *Microtus kirgisorum* Ognev, 1950 [2,3]. Однако по современным представлениям в низовьях Амударьи обитает именно илийская полевка [4]. Согласно данным Р. Реймова (1972; 1987) в 1968-1969 гг. численность полевки в дельте Амударьи была очень низкой, несмотря на то, что увлажненные условия дельты оптимальны для ее обитания. Попадаемость на 200-300 ловушек не превышала 1-2 зверьков или 4-6 экз. на 1 га [6]. В 1970-1975 гг. численность этого вида резко возросла, местами на 100 лов/сут., попадаемость была 10-15% или 15-20 экз. на 1 га [5]. В связи с

изменением гидрорежима дельты Амударьи и аридизацией условий местообитания этого вида значительно сократились площади заселения, снизилась численность популяции.

В последние годы в связи с зарегулированием стока Амударьи и возрастанием процессов опустынивания дельты и аридизации, условия обитания полевки ухудшились и численность ее резко снизилась. По оценкам специалистов этот вид становится малочисленным. В настоящее время принято считать, что в оптимальных условиях обитания внутрипопуляционные факторы играют одну из главных ролей в регулировании численности, а в пессимальных условиях возрастает роль внешних факторов. Количественную оценку основных параметров динамики численности популяции полевки мы провели также для двух периодов: весны (начало сезона размножения) и осени (конец репродуктивного цикла).

При анализе использовали: численность и структуру популяции в настоящий и предыдущий моменты времени, метеорологические условия (температура воздуха, скорость ветра, количество осадков, толщина снежного покрова и т.д.), кормовую емкость угодий, гидрорежим Амударьи и увлажненность территории местообитания. Под увлажненностью подразумевается совокупность абиотических факторов, взятая по состоянию на 1970 год за 100%. Из параметров размножения были проанализированы следующие: доля размножающихся самок; общая весенняя и осенняя численности (процент попадания зверьков); число перезимовавших особей; количество беременных самок (считая всех самок независимо от возраста); плодовитость (среднее количество эмбрионов на 1 самку). Также использовали коэффициент выживаемости особей за зиму.

Проведенный анализ показал, что доля объясняемой дисперсии всех экологических факторов в динамике численности популяции полевки довольно высокая и составляет от 88% до 98%. (табл. 1).

Таблица1. Распределение эффектов, определяющих численность и структуру популяции илийской полевки весной (в %)

Популяционные характеристики	Эндогенные факторы		Экзогенные факторы			
характеристики	Пред-	Числен-	Клима-	Кормо-	Гидро-	Увлажненность
	шеству-	ность в	тичес-	вая	режим	территории
	ющая	настоя-	кие	обеспе-	Аму-	
	числен-	щий	условия	чен-	дарьи	
	ность	момент		ность		
		времени				
Численность	23,2	0	20,5	12,14	17,4	15,2
Доля беременных самок	54,8	0	10,4	8,53	9,7	6,3
Число перезимовавших	36,6	0	18,7	6,45	11,7	20,3
Зимняя выживаемость	25,8	0	28,3	17,5	7,16	13,3

Остальная доля дисперсии обусловлена, неучтенными факторами (болезнь, хищники, цикличность солнечной активности и т.д.). Основной вклад в общую изменчивость весенней численности вносят абиотические факторы – 65,24%. Вклад эндогенных факторов в объясняемую дисперсию несколько меньше – 23,2%. Наибольшее воздействие из экзогенных факторов вносят климатические условия. Так же установлено, что в начале сезона размножения численность перезимовавших особей определяют также абиотические факторы, их вклад в общую объясняемую дисперсию составляет 57,0%. Экзогенные факторы вносят эффект до 34%. Весной интенсивность размножения определяет в основном демография полевок осенью предыдущего

Volume: 04 Issue: 10 | Oct 2023, ISSN: 2660-5317

года — 54,8%, а также метеорологические условия (10,4%) в октябре-ноябре, т. е. в тот период, когда в популяции формируется группа животных, уходящих в зиму и служащих базой нового цикла размножения. Пока точно неясен механизм, который реализует эти взаимосвязи. Вероятно одно из допустимых объяснений — это перестройка половой, возрастной и генетической структуры популяции под действием высоких погодных условий, направленная на избирательный отбор зверьков (в течение зимнего периода), которые могут иметь какие-либо преимущества в размножении и выживании[5,7,11].

Эффект больших плотностей, с одной стороны, выражается в снижении репродуктивной активности и увеличении смертности взрослых животных, а с другой – в последующем снижении жизнеспособности и интенсивности размножения полевок, находившихся в период высокой численности на стадиях эмбрионального и ранних этапах постэмбрионального развития [8,9,10]. Вклад таких экзогенных факторов, как кормовая обеспеченность, гидрорежим Амударьи и увлажненность территории распределились почти в одинаковом отношении от 6,3% до 9,7%. Вклад плотности и структуры популяции полевки в настоящий момент времени ничтожно мал и на зимнюю выживаемость не обнаружено почти никакого эффекта. Предыстория популяции оказала более существенное влияние (до 25,8%). Общая доля экзогенных факторов очень высока и составила 66%. Из них: климатические факторы до 28%, кормовые условия до 17,5%, увлажненность территории также вносит достаточный вклад – до 13,3%.

Как показали результаты исследования, в осенний период распределение эффектов, воздействующих на динамику численности, резко отличается от распределения их в весенний период. Из табл. 2 видно, что эффект вкладов внешних и внутрипопуляционных факторов в общую осеннюю численность распределились почти в равном отношении (47,7% и 49,27 % соответственно). Доля беременных и размножающихся самок тесно связана с плотностью популяции и интенсивностью размножения в предшествующий периоды, а также с уровнем численности в данный период. Вклад внутрипопуляционных факторов в долю беременных и размножающихся самок очень высок и составляет от 68% до 70% соответственно. Остальная доля общей дисперсии объясняется экзогенными факторами. Что касается плодовитости, то здесь основной вклад вносят также внутренние факторы — 53%. Из экзогенных факторов наибольший вклад вносит увлажненность территории местообитания — 12,5% и гидрорежим Амударьи — 11,73%.

Полученные материалы свидетельствуют о значительной изменчивости показателей размножения под влиянием условий существования и численности зверьков. Изучение возрастной структуры популяции полевки позволяет оценить биологическое своеобразие и специфическую роль отдельных генераций в воспроизводстве видов. Выявлена связь доли неполовозрелых самок, родившихся весной и в начале лета (3-6 мес.) с уровнем численности в апреле и репродуктивной активностью самок младшего возрастной группы (1-2 мес.).

Таблица.2. Ранжирование эффектов, воздействующих на структуру и численность илийской полевки осенью, в %

Популяционные	Эндогенные		Экзогенные факторы			
характеристики	факторы					
	Пред-	Числен-	Клима-	Кормо-	Гидро-	Увлажненность
	шеству-	ность в	тичес-	вая	режим	территории
	ющая	настоя-	кие	обеспе-	Аму-	
	числен-	щий	условия	чен-	дарьи	
	ность	момент		ность		

Volume: 04 Issue: 10 | Oct 2023, ISSN: 2660-5317

		времени				
Численность	17,3	30,4	7,54	8,63	12,3	20,8
Доля размножающихся самок	36,0	33,41	4,38	6,41	7,4	9,6
Доля беременных самок	32,3	35,5	6,06	3,17	4,26	4,7
Плодовитость	34,6	18,48	4,51	4,33	11,73	12,5
Доля самок возраста 1-2	51,42	9,74	4,35	2,62	5,65	8,31
месяца						
Доля самок возраста 3-6	47,36	3,46	2,61	7,08	10,3	15,4
месяцев						
Доля самок возраста 7-16	43,08	3,81	1,18	4,93	12,45	26,31
месяцев						

Внутрипопуляционные факторы также оказывают наибольшее воздействие на самых молодых зверьков (1-2 мес.) (61,16 %). Из экзогенных факторов существенный вклад вносит увлажненность территории – 8,3%, гидрорежим – Амударьи – 5,65%. На долю самок старшей возрастной группы (7-16 мес.) внутрипопуляционные факторы также вносят большой вклад. Хочется выделить, что из экзогенных факторов доля увлажненности территории местообитания составляет 26,3%. Это, вероятно, обусловлено тем, что с возрастанием аридизации и опустынивания дельты Амударьи увлажненность территории местообитания является, вероятно, лимитирующим фактором.

Таким образом, на основании проведенного анализа можно заключить, что на динамику численности популяции полевки существенное воздействие оказывает совокупность абиотических и биотических факторов. Установлено, что динамика численности полевки находится под контролем следующих параметров: а) структуры и численности населения в предыдущие моменты времени, б) ситуации в популяции в настоящий момент времени, в) погодных условий, г) кормовой обеспеченности, д) увлажненность територии и е) гидрорежимом Амударьи. Эффективность действия плотностных и погодных факторов на популяционную динамику обладает явно выраженной сезонной спецификой. Проведенные исследования подтверждают мнения ученых о том, что возрастная структура популяции полевки теснейшим образом связана с особенностями размножения — скоростью полового созревания, частотой рождения выводков и т.д. Установлена широкая вариабельность возрастной структуры и ее ориентированность на определенный уровень численности популяции. Процессы размножения, формирующие численность в начале лета, определяются как состоянием популяции и интенсивностью размножения, так и погодными условиями в предыдущем году.

Установлено, что в условиях Южного Приралья увлажненность территории для популяции полевки является лимитирующим фактором в осенний период. Это подтверждает то, что в условиях пессимума, популяция полевки сильно разрежена и численность ее лимитируется в основном внешними факторами. Действие всех анализируемых факторов на динамику численности полевки всегда комплексно, взаимообусловлено и изменчиво в зависимости от плотности популяции и всей совокупности условий ее существования.

ЛИТЕРАТРУА

1. Большаков В.Н., Балахонов В.С., Бененсон И.Е. и др. Мелкие млекопитающие Уральских гор: Экология млекопитающих Урала — Свердловск: Изд-во УНЦ АН СССР. 1986.-101 с.

Volume: 04 Issue: 10 | Oct 2023, ISSN: 2660-5317

- 2. Вольперт Я.Л., Шадрина Е.Г, Данилов В.А., Шадрин Д.Я., Величенко В.В. Сообщества мелких млекопитающих антропогенных ландшафтов Западной Якутии// Наука и образование. 2005. № 2 (вып. 38). С. 47-52.
- 3. Гашев С.Н., Быкова Е.А. Особенности сообществ мелких млекопитающих урбанизированных местообитаний на Ямало-Ташкентской трансекте / С.Н. Гашев, // Вестник ТюмГУ. 2007. № 6. С. 118-131.
- 4. Ешчанова С.Ш. Особенности экологии популяции *Microtus Ilaeus* в низовьях Амударьи // Евразийский Союз Ученых (ЕСУ).- 2019.- № 8 (65).- Ч.1.- С. 25-27
- 5. Ешчанова С.Ш. Экологические особенности популяций мелких млекопитающих тугайных экосистем Южного Приаралья// Universum: химия и биология. 2022.- Москва.- Выпуск: 2(93).- с.16-21. DOI 10.32743/UniChem.2022.93.3. 13205
- 6. Ешчанова С.Ш. Оценка влияния внешних и внутрипопуляционных факторов в формирование динамики численности и структуры популяции Microtus Ilaeus// Universum: химия и биология. 2022.- Москва.- Выпуск: 5(95).- с.37-42.DOI 10.32743/UniChem.2022.95.5. 13588
- 7. Малыгин В.М., Деулин В.Б., Некоторые особенности экологии и поведения видов полевок из группы Microtus arvalis // Зоол. журн.- Т. 53.- Вып. 5.- 1979.- с. 731-741.
- 8. Мейер М.Н. Закаспийская (*Microtus transcaspicus Satunin, 1905*) и киргизская (Microtus kirgisorum Ognev, 1950) полевки Средней Азии и Казахстана // Тр. ЗИН АН СССР.- Т. 99.- 1980.- с. 84-89.
- 9. Мейер М.Н., Голенищев Ф.Н., Раджабли С.И., Саблина О.В. Серые полевки (подрод Microtus) фауны России и сопредельных территорий. Труды Зоологического института РАН.- Т. 232.-1996.- с.1-320
- 10. Мэгарран Э. Экологическое разнообразие и его измерение. М.: Мир, 1992. 184 с.
- 11. Обидина В.А. К экологии илийской полевки Таласского Алатау // Информ. Матер. Ин-та экологии растений и животных УНЦ АН СССР.- 1980.- с. 73-74.
- 12. Реймов Р. Опыт экологического и морфологического анализа фауны млекопитающих южного Приаралья. Нукус. 1972.С. 1-295.
- 13. Реймов Р., Карабеков Н.. К вопросу о распространении и экологии закаспийской полевки Каракалпакии // Вестник Фил. АН Уз. ССР.- № 4 (38).- 1969.- с. 22-25.
- 14. Sharipova, N. (2020). THE PROCESS OF DIGITAL TRANSFORMATION IN THE ACTIVITIES OF COMMERCIAL BANKS AND PROSPECTS FOR ITS APPLICATION IN UZBEKISTAN. International Finance and Accounting, 2020(3), 10.