PARAMETRIC ESTIMATION

Parametric estimation

- \square Assuming data samples are from a probability model $p(x|\theta)$, want to estimate θ from samples
 - Example: Tossing a coin, $\theta = P(\{H\})$
 - lacktriangle Example: Male heights modeled in Gaussian, $eta=\{\mu,\sigma\}$
- Knowing parameters help to make predictions
 - \blacksquare Example: Predict which face shown on next coin-tossing with θ

Parametric estimating methods

- Maximum likelihood estimation (MLE)
- Maximum a posteriori (MAP) estimation
- Bayes estimator (not covered)

MLE concept

 \square Likelihood (function) of θ given a set of samples $\mathcal{X} = \{x_i\}$ (samples from iid RV)

$$l(\theta|X) = p(X|\theta) = \prod_{i} p(x_i|\theta)$$

- \square Want to find $\widehat{\theta}$ such that $l(\theta|x)$ is max, i.e., $\widehat{\theta} = \operatorname{argmax} l(\theta|X)$

$$\mathcal{L}(\theta|\mathcal{X}) = \log p(\mathcal{X}|\theta) = \sum_{i} \log p(x_i|\theta)$$

- □ Instead of finding closed form, we use examples
- Tossing a coin 5 times with results H, H, T, T, H
- □ What $\theta = P(\{H\})$ value can maximize the likelihood

https://gurmeet.net/lmages/puzzles/coin_toss_guess.png

- \square Use this equation: $\prod_i p(x_i|\theta)$
- □ If $P(\{H\}) = \theta = 0.1$, we have $P(\{H,H,T,T,H\}) = 0.1*0.1*0.9*0.9*0.1 = 8.1×10⁻⁴$
- □ If $P(\{H\}) = \theta = 0.2$, we have $P(\{H,H,T,T,H\}) = 0.2*0.2*0.8*0.8*0.2 = 5.1 x 10⁻³$
- Repeat many times with different values
- Easier with a program

- \blacksquare With a program for different θ , we have a plot
- $\ \ \square \ \theta =$ 0.6 yields highest probability, i.e., $\hat{\theta} =$ 0.6

- \square Theoretic answer: $\hat{\theta} = \frac{N_H}{N_T}$
 - $\square N_T$ is total tossing
 - \square N_H is tossing with head shown
- Derived by math (omitted)
- □ This result is widely used

Sample mean & sample variance

- \square Let x_i be samples from iid Gaussian
- Sample mean & sample variance are MLE of true mean and true variance

$$m = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$S^2 = \frac{\sum_{i=1}^{N} (x_i - m)^2}{N}$$

Classification with MLE

- Noisy BPSK signal (equal variance, why)
- \blacksquare Let estimated means for 0 and 1 be m_0 & m_1
- \square Unknown symbol x is 0 if $|m_0 x| < |m_1 x|$

https://www.gaussianwaves.com/gaussianwaves/wp-content/uploads/2012/07/Calculating-Error-Probability.png

Classification with MLE

- We can extend the situation to
 - Unequal variance
 - Unequal probability of symbols 0 and 1
- Exercise

Bias & variance of estimators

- \square Let $\mathcal{X} = \{x_i\}$ be a set of samples with unknown parameter θ
- \square To do analysis, treat x_i as iid RV
- \square Let d=d(X) be an estimator of θ
 - Example: equation to compute sample mean is an estimator
- □ Bias of estimator = $E[d(X)] \theta$, where $E[\cdot]$ denotes expectation
- □ Variance of estimator = $E[(d E[d])^2]$

Bias & variance of estimators

- □ Mean square error (MSE) = $E[(d \theta)^2] = E[(d E[d])^2] + (E[d] \theta)^2$
- □ 1st term is variance
- □ 2nd term is square of bias
- □ To reduce MSE, we need to reduce both

Bias & variance of classifiers

- We can similarly define bias & variance of a classifier
- Detailed math is omitted here
- A good ref is here: http://scott.fortmannroe.com/docs/BiasVariance.html

Bias & variance of classifiers

Conceptual results of increasing model complexity

(from http://scott.fortmann-roe.com/docs/BiasVariance.html)

What does model complexity mean

- In k-NN case, k controls complexity
- In neural networks, number of trainable (connection) weights
- In SVM, order of polynomial kernel
- □ In BPSK case
 - Estimate mean values
 - Estimate probability of symbol 0 and symbol 1

Rethinking ML estimation

□ This equation seems counter-intuitive...

□ Throwing divination blocks (擲筊杯) 15 times with 15 "agrees," what is probability of "agree" shown

on next throwing

MAP (Maximum a Posteriori)

- ML says 1.0, but we know it is likely 0.5 because tossing divination blocks is modeled as "repeated" independent trials
- That is the difference between ML and MAP
- ML is derived ONLY based on observation
- MAP incorporates prior knowledge into estimation
- Recall Bayes theorem

$$P(\theta|\chi) = \frac{P(\chi|\theta)P(\theta)}{P(\chi)}$$

MAP

MAP estimator wants to find

$$\theta_{MAP} = \arg \max_{\theta} P(\theta | \boldsymbol{\chi})$$

 \square As $P(\chi)$ does not affect the max operation, we need to consider only

$$P(\chi|\theta)P(\theta)$$

 The first term is equal to ML, the second term is the a priori probability

MAP

□ The probability $P({H}) = \theta$ is typically modeled as outcome from beta distribution, whose pdf is

$$f(x; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{(a-1)} (1-x)^{(b-1)}$$

Therefore, we need to determine values of a and b
 (a priori knowledge) in order to use MAP

Numerical solution to MAP

- \square Generate many uniformly spaced values for θ , say, 100 numbers between 0 and 1
- □ Compute likelihood for each θ , OK to use pdf in place of $P(\theta)$
- \Box Find θ_{\max}
- With lots of math, we have

$$\theta_{MAP} = \frac{N_H + a - 1}{N + a + b - 2}$$

Source: www.mi.fu-berlin.de/wiki/pub/ABI/Genomics12/MLvsMAP.pdf

MAP example

- \square To have a "mean" $\theta = 0.5$, we set a = b
- □ Use our coin-tossing example
- \square If a = b = 1, we have $\theta_{MAP}=0.6$ (same as ML)
- If we are more confident about the prior knowledge,
 we can set larger values of a and b, such as a = b
 10

MAP example

 \square If a = b = 10, we have $\theta_{MAP}=0.522$

