Les réseaux ad-hoc

Réseaux ad-hoc

- "Réseaux de mobiles"
 - GSM, UMTS, ...
 - GSM: seuls les terminaux sont mobiles, les stations de base, commutateurs, BD: fixes
- Réseaux ad-hoc = réseaux "mobiles"
 - Nœuds capables d'échanger de l'information, à peine initialisés
 - Pas besoin d'infrastructure
 - Avantages non négligeables (en coût par ex)

Réseaux ad-ho

3

Applications des réseaux ad-hoc

- · Applications des réseaux ad-hoc
 - Mise en place très rapide de réseaux de communication
 - Aéroports, hôtels : espaces peu équipés en infrastructures de communication lourdes
- GSM : dispersion de l'infrastructure pour une couverture globale
 - Non sans difficulté
 - Espaces contraignants pour les réseaux : restaurants, lignes de métro, etc.
- Ad-hoc adapté dans ce cas
 - besoin d'une bande de fréquences
 - de programmes logiciels
- Ad-hoc : solution de réseau cellulaire pour les zones très peu peuplées
 - Couverture partielle des opérateurs
 - Les terminaux peuvent servir de relais

Réseaux ad-hoc

4

Acheminement de l'information

- Système de communication : d'une source vers une destination
- Support de transmission : sans-fil
 - Hertzien :principal support des réseaux ad-hoc existants
 - Infra-rouge
- Transmission hertzienne: 2 types d'acheminement
 - Envoi direct
 - routage

Envoi direct / routage

- · Envoi direct
 - Mobiles suffisamment proches
 - Signal peu atténué
- Envoi par routage
 - Nœuds relativement éloignés
 - Affaiblissement des signaux émis
 - Les nœuds jouent à la fois le rôle de client et de serveur : relais

Réseaux ad-hoc

6

Handicaps des réseaux ad-hoc

- Liens asymétriques
 - Communications à sens unique entre un émetteur et un récepteur
- Interférences
 - Accroissement du nombre d'erreurs sur la transmission
 - Amoindrissement des performances du lien radio
- Mobilité des nœuds
 - Modification de la topologie du réseau
 - Transformation du tracé des routes lors des échanges de paquets

Réseaux ad-hoc

Liens asymétriques

- · En théorie, les liens sont symétriques
 - Affaiblissement inversement proportionnel à la distance entre l'émetteur et le récepteur
- · En pratique, liens asymétriques
 - Déphasage dû aux multiples réflexions du signal sur différents obstacles
 - Évanouissement (fading)
 - Bonne réception dans un sens, mauvaise dans l'autre
- Route inverse pas forcément la même que la route directe
 - Mise en place d'une signalisation beaucoup plus importante que celle des réseaux fixes

Réseaux ad-hoc

Interférences

- · Interface radio partagée
 - Chaque donnée est réceptionnée par tous les nœuds, à des puissances variables
 - Les interférences s'ajoutent au bruit et détériorent les communications
 - · Augmentation du taux d'erreur
 - La transmission des paquets non récupérables diminue le débit de la liaison
 - Redondance
 - · Diffusion à tous les voisins
 - Paramètre inséré volontairement dans les réseaux filaires
 - Contournement des nœuds en panne ou défaillants
 - Réseaux ad-hoc : facteur parasitaire

Réseaux ad-ho

Réseaux ad-hoc

9

11

Mobilité des nœuds

- Topologie du réseau : dynamique
 - Route modifiée assez fréquemment
- · Routage dynamique
 - Demande d'énormes ressources pour véhiculer la signalisation indispensable aux mouvements des nœuds
- Jusqu'à présent, la plupart des routages ad-hoc se sont montrés plutôt inaptes à faire face à une forte mobilité
 - Problématique au cœur des travaux de recherche

Réseaux ad-ho

10

Protocoles du groupe MANET

- · Protocoles ad-hoc
 - Niveau 2 : couche liaison
 - IEEE 802.11 : envoi direct
 - · HiperLAN: envoi par routage
 - Niveau 3 : couche réseau
 - Protocoles IP
- Groupe MANET : Mobile Ad-hoc NETwork
 - Groupe de travail issu de l'IETF
 - Normalisation des protocoles ad-hoc fonctionnant sous IP
 - Normes au stade de drafts (pas encore des RFCs)

Protocoles du groupe MANET

- Extension des protocoles de routage de l'IP fixe pour tenir compte de la mobilité des nœuds
 - Inondation
 - Vecteur de distance
 - Routage à la source
 - État du lien
- Parallèlement, 2 familles formées à partir de la normalisation MANET
 - Protocoles réactifs
 - Protocoles proactifs

Protocoles réactifs / proactifs

- · Protocoles réactifs
 - Aucun échange de paquets de contrôle pour construire des tables de routage
 - Inondation
 - Consommation d'une grande quantité de ressources pour découvrir une simple route entre 2 points du réseau
- · Protocoles proactifs
 - Établissent des tables de routage par l'échange régulier de messages de contrôle
 - Des tables de routage dynamiques permettent de tracer la route optimale
- · Performances
 - Réseau dense : protocole réactif très coûteux
 - Réseau fluide : échange abusif d'informations pour le protocole proactif, pour des tables de routage de faible taille

Réseaux ad-hoc 13

Protocoles réactifs / proactifs

Technique de routage utilisée	Réactif	Proactif
Vecteur de distance	AODV	DSDV
Routage à la source	DSR	
État du lien		OLSR

Réseaux ad-hoc 14

DSDV : Destination Sequence Distance Vector

- · L'un des premiers protocoles mis au point par le groupe MANET
- · Protocole proactif
- Inspiré du protocole RIP (Routing Information Protocol) d'IP filaire
 - Appelé à disparaître au profit d'OSPF (Open Shortest Path First)
- · On y a aujourd'hui complètement renoncé
- Repose sur un vecteur de distance
 - Chaque nœud possède une table de routage où chacune des lignes doit identifier
 - L'une des destinations possibles
 - Le nombre de sauts pour y parvenir
 - Le nœud voisin à traverser

éseaux ad-hoc 15

Défauts de DSDV

- Principal défaut de DSDV : convergence des tables de routage
 - Hérité de RIP
 - · Envoi des tables aux voisins
 - · Comparaisons pour choisir la route la plus courte
 - La route ne converge pas toujours
 - Problème crucial dans les réseaux ad-hoc
 - Ralentissement de la convergence à cause de la mobilité des nœuds
 - Insertion de numéros de séquence dans DSDV pour rafraîchir les tables de routage
 - Interdit toute mise à jour antérieure
- · Surplus de signalisation : autre imperfection de DSDV
 - Messages de rafraîchissement moins nécessaires pour des nœuds peu mobiles
 - Création d'un nouveau protocole (par les mêmes auteurs)
 - AODV : Ad-hoc On Demand Vector
 - Suppression de tous les paquets de contrôle

éseaux ad-hoc 16

DSR: Dynamic Source Routing

Protocole réactif

Réseaux ad-hoc

- Fondé sur le principe du routage par la source
 - Les nœuds n'ont pas besoin de tables de routage
- Lorsqu'une source veut initier un flux vers une destination :
 - Inondation d'une requête spéciale : ROUTE REQUEST
 - ROUTE REQUEST parvient au destinataire en plusieurs exemplaires via différentes routes
 - Sélection de la route la plus appropriée
 - Envoi d'un ROUTE REPLY à la source
 - La source retranscrit cette information dans tous les paquets
- Faiblesse de ce protocole : liens asymétriques
 - ROUTE REPLY ne peut pas prendre en sens inverse le trajet suivi par ROUTE REOUEST
 - Pour revenir à la source, il lui faut aussi procéder par inondation

AODV : Ad-hoc On demand Distance Vector

- Créé par les concepteurs de DSDV
- Protocole réactif
- Pas besoin d'échanger de signalisation entre voisins pour mettre à jour les tables de routage
- À la demande d'un routage, une table est implantée dans chaque nœud
 - Pour cela, la source doit se livrer à l'inondation d'une requête (idem DSR)
 - RREQ : Route REQuest
 - Tous les nœuds ménagent une entrée dans leur table locale pour l'orientation du flux
 - La destination répond à la source avec RREP (Route REPly)
- La topologie du réseau peut se modifier
 - Coupure d'un lien radio

17

- Le nœud victime avertit la source par un message d'erreur
- La source effectue une reprise : découverte d'une nouvelle route

OLSR : Optimized Link State Routing Protocol

- · Protocole proactif
- Applique dans un contexte ad-hoc les règles de routage centrées sur l'état du lien
 - Ce type de routage devient une référence en matière de routage en IP filaire (avec OSPF)
 - Chaque nœud connaît parfaitement la position des autres dans le réseau
 - Choix du chemin le plus court ou le plus rapide = formalité
 Algorithme de Dijkstra
- Pas d'inondation car elle générerait de la redondance
 - Les paquets parviennent aux nœuds 1 seule fois
 - Les paquets parviernent aux nœuds i sedie lois
 Le nœud élit parmi ses proches un représentant
 - Rôle de relais multipoint : Multi-Protocol Router (MPR)
 - Condition pour devenir MPR: pouvoir atteindre tous les nœuds à une distance de 2 sauts, avec un lien symétrique
 - MPR communiqués à tout le réseau par des messages TC (Topology Control) périodiques
 - À la réception des TC, mise à jour des tables de routage

Réseaux ad-hoc 19

Conclusion

- Réseaux ad-hoc : sujet d'actualité
 - Dans le cadre des réseaux ambiants
- Problèmes
 - De routage
 - De découverte de services