Algoritmos para la resolución de problemas de elasticidad

Matías Novoa Javier Ocampo

Departamento de Informática - Facultad de Ciencias Exactas Universidad Nacional de Salta

Jornadas "Los jóvenes y la investigación" 2011

Índice

- Ejemplos de problemas de elasticidad
 - Vigas Timoshenko
 - Otros elementos estructurales
- 2 Procedimiento general
 - Tratamiento físico
 - Tratamiento Numérico
- Implementación

Índice

- 1 Ejemplos de problemas de elasticidad
 - Vigas Timoshenko
 - Otros elementos estructurales
- Procedimiento general
 - Tratamiento físico
 - Tratamiento Numérico
- 3 Implementación

Descripción de una viga Timoshenko

Figura: Viga Timoshenko

Actualmente

estamos tratando con vigas estudiadas a partir de la teoría de elasticidad de Timoshenko.

Nuestro problema

es encontrar los modos normales de vibración de una viga timoshenko con restricciones elásticas rotacionales y traslacionales, en los extremos y en un punto intermedio como se vio en la figura anterior.

Actualmente

estamos tratando con vigas estudiadas a partir de la teoría de elasticidad de Timoshenko.

Nuestro problema

es encontrar los modos normales de vibración de una viga timoshenko con restricciones elásticas rotacionales y traslacionales, en los extremos y en un punto intermedio como se vio en la figura anterior.

Índice

- 1 Ejemplos de problemas de elasticidad
 - Vigas Timoshenko
 - Otros elementos estructurales
- 2 Procedimiento general
 - Tratamiento físico
 - Tratamiento Numérico
- 3 Implementación

Otros Problemas a tratar

En un futuro

es nuestro propósito, tratar con elementos estructurales de distinta complejidad. Por ejemplo futuros estudios comprenderán el análisis tanto estático como dinámico de pórticos y placas con efectos complicantes que conducen a problemas de contorno de cuarto orden de gran complejidad. O incluso vigas con rótulas intermedias, o conectadas con restricciones elásticas de distintos tipos

Índice

- Ejemplos de problemas de elasticidad
 - Vigas Timoshenko
 - Otros elementos estructurales
- 2 Procedimiento general
 - Tratamiento físico
 - Tratamiento Numérico
- Implementación

Cada problema

- Encontrar la energía cinética y potencial el elemento bajo estudio. Formar el Lagrangiano del sistema y determinar el funcional de energía.
- ② Determinar el espacio de las funciones admisibles y del espacio de las direcciones admisibles.
- Minimizar el funcional de energía, de acuerdo al principio de Hamilton.
- Aplicación del principio de Hamilton para encontrar la ecuación diferencial con las correspondientes condiciones de contorno.
- Obtención del de la Forma lineal B correspondiente.

Cada problema

- Encontrar la energía cinética y potencial el elemento bajo estudio. Formar el Lagrangiano del sistema y determinar el funcional de energía.
- ② Determinar el espacio de las funciones admisibles y del espacio de las direcciones admisibles.
- Minimizar el funcional de energía, de acuerdo al principio de Hamilton.
- Aplicación del principio de Hamilton para encontrar la ecuación diferencial con las correspondientes condiciones de contorno.
- Obtención del de la Forma lineal B correspondiente.

Cada problema

- Encontrar la energía cinética y potencial el elemento bajo estudio. Formar el Lagrangiano del sistema y determinar el funcional de energía.
- Oeterminar el espacio de las funciones admisibles y del espacio de las direcciones admisibles.
- Minimizar el funcional de energía, de acuerdo al principio de Hamilton.
- Aplicación del principio de Hamilton para encontrar la ecuación diferencial con las correspondientes condiciones de contorno.
- Obtención del de la Forma lineal B correspondiente.

Cada problema

- Encontrar la energía cinética y potencial el elemento bajo estudio. Formar el Lagrangiano del sistema y determinar el funcional de energía.
- Oeterminar el espacio de las funciones admisibles y del espacio de las direcciones admisibles.
- Minimizar el funcional de energía, de acuerdo al principio de Hamilton.
- Aplicación del principio de Hamilton para encontrar la ecuación diferencial con las correspondientes condiciones de contorno.
- Obtención del de la Forma lineal B correspondiente.

Cada problema

- Encontrar la energía cinética y potencial el elemento bajo estudio. Formar el Lagrangiano del sistema y determinar el funcional de energía.
- ② Determinar el espacio de las funciones admisibles y del espacio de las direcciones admisibles.
- Minimizar el funcional de energía, de acuerdo al principio de Hamilton.
- Aplicación del principio de Hamilton para encontrar la ecuación diferencial con las correspondientes condiciones de contorno.
- Obtención del de la Forma lineal B correspondiente.

Índice

- Ejemplos de problemas de elasticidad
 - Vigas Timoshenko
 - Otros elementos estructurales
- 2 Procedimiento general
 - Tratamiento físico
 - Tratamiento Numérico
- 3 Implementación

Tratamiento Numérico

Si se cuenta

con la seguridad que la forma lineal cumple con ciertas características analíticas puede encararse el problema numérico.

El problema

de encontrar la solución débil del sistema bajo estudio es equivalente a minimizar cierto funcional de energía relacionado con la forma lineal ${\cal B}$

Tratamiento Numérico

Si se cuenta

con la seguridad que la forma lineal cumple con ciertas características analíticas puede encararse el problema numérico.

El problema

de encontrar la solución débil del sistema bajo estudio es equivalente a minimizar cierto funcional de energía relacionado con la forma lineal ${\cal B}$

El método de Ritz

en combinación con el método de los Multiplicadores de Lagrange puede aplicarse adoptando la función aproximante

$$\mathbf{u}_{\mathbf{N}} = \sum_{i=1}^{N} c_{N_i} \zeta_i$$

donde los ζ_i son los elementos de la base de V. Los coeficientes c_{N_i} se determinan por la condición $I(\mathbf{u_N}) = \mathsf{m} \epsilon \mathsf{n}$.

Los elementos de la base

con la cual vamos a trabajar, son ciertos polinomios que cumplen con las condiciones naturales del problema. Este procedimiento lleva al siguiente sistema de ecuaciones lineales:

$$([K] - \Omega^2[M])\{\overline{c}\} = \{0\}$$

donde [K] es la matriz de rigidez, [M] es la matriz de masa y Ω es el parámetro de frecuencia natural adimensional.

Implementación

Para poder aplicar los métodos numéricos para resolver estos problemas utilizamos el lenguaje de programación Python. Este lenguaje ofrece varias ventajas a la hora de desarrollar ya que es muy dinámico y sencillo. Entre ellas encontramos :

- Tipado dinámico.
- Interpretado.
- Libre y gratuito.
- Muchas librerías que facilitan el desarrollo.

- El formado de la matriz a partir de las funciones(Polinomios).
 - Para ello, realizamos una clase Polinomio que tiene como métodos las funciones que requeríamos como Integrar, Derivar, Multiplicar, entre otras.
 - Tanto la matriz K(rigidez) como la M(masa) tienen procedimientos particulares para su formación, los cuales realizamos para luego armar la matriz.
- Resolver el sistema de ecuaciones(Autovalores).
 - Método de Lanczos.
 - Otras maneras.

- El formado de la matriz a partir de las funciones(Polinomios).
 - Para ello, realizamos una clase Polinomio que tiene como métodos las funciones que requeríamos como Integrar, Derivar, Multiplicar, entre otras.
 - Tanto la matriz K(rigidez) como la M(masa) tienen procedimientos particulares para su formación, los cuales realizamos para luego armar la matriz.
- Resolver el sistema de ecuaciones(Autovalores).
 - Método de Lanczos.
 - Otras maneras.

- El formado de la matriz a partir de las funciones(Polinomios).
 - Para ello, realizamos una clase Polinomio que tiene como métodos las funciones que requeríamos como Integrar, Derivar, Multiplicar, entre otras.
 - Tanto la matriz K(rigidez) como la M(masa) tienen procedimientos particulares para su formación, los cuales realizamos para luego armar la matriz.
- Resolver el sistema de ecuaciones(Autovalores).
 - Método de Lanczos
 - Otras maneras.

- El formado de la matriz a partir de las funciones(Polinomios).
 - Para ello, realizamos una clase Polinomio que tiene como métodos las funciones que requeríamos como Integrar, Derivar, Multiplicar, entre otras.
 - Tanto la matriz K(rigidez) como la M(masa) tienen procedimientos particulares para su formación, los cuales realizamos para luego armar la matriz.
- Resolver el sistema de ecuaciones(Autovalores).
 - Método de Lanczos.
 - Otras maneras.

- El formado de la matriz a partir de las funciones(Polinomios).
 - Para ello, realizamos una clase Polinomio que tiene como métodos las funciones que requeríamos como Integrar, Derivar, Multiplicar, entre otras.
 - Tanto la matriz K(rigidez) como la M(masa) tienen procedimientos particulares para su formación, los cuales realizamos para luego armar la matriz.
- Resolver el sistema de ecuaciones(Autovalores).
 - Método de Lanczos.
 - Otras maneras.

- El formado de la matriz a partir de las funciones(Polinomios).
 - Para ello, realizamos una clase Polinomio que tiene como métodos las funciones que requeríamos como Integrar, Derivar, Multiplicar, entre otras.
 - Tanto la matriz K(rigidez) como la M(masa) tienen procedimientos particulares para su formación, los cuales realizamos para luego armar la matriz.
- Resolver el sistema de ecuaciones(Autovalores).
 - Método de Lanczos.
 - Otras maneras.

Sumario

 Con esta presentación esperamos integrar a personas interesadas en temas de resolución de problemas de elasticidad o de análisis de los procedimientos numéricos.

Perspectiva

- Como indicamos anteriormente, hay muchos temas interesantes que todavía no hemos atacado.
- Esperamos contar con algo funcional en poco tiempo.
- Cualquier sugerencia será bienvenida.

Lecturas complementarias l

🍆 V Quintana and R Grossi

Eigenfrequencies of generally restrained Timoshenko beams Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 224(1):117–125, Marzo 2010.