Corso di Programmazione

Esame del 14 Luglio 2015

cognome e nome

Risolvi i seguenti esercizi giustificando sinteticamente le risposte.

1. Ricorsione e argomenti procedurali

Dati due interi non negativi i, j, la procedura paths restituisce la lista di tutti i percorsi di Manhattan fra due incroci che nella mappa distano i isolati verso il basso e j isolati verso destra. I percorsi sono rappresentati da una stringa composta da cifre e dalle lettere d (down) e r (right), dove le cifre che precedono la lettera d (r) indicano il numero di spostamenti consecutivi verso il basso (rispettivamente a destra). Per esempio:

```
(paths 2 2) \rightarrow ("2d2r" "ldlrldlr" "ld2rld" "lr2dlr" "lrldlrld" "2r2d")
```

dove la terza stringa della lista codifica il percorso costituito da uno spostamento in basso, due a destra e un ultimo spostamento in basso. Completa il programma riportato nel riquadro per definire la procedura paths.

```
(define paths
                                                   i, j \geq 0
 (lambda (i j)
    (cond ((and (= i 0) (= j 0)) (list "0"))
          ((= i 0) (list (string-append (number->string j) "r")))
          ((= j 0) (list (string-append (number->string i) "d")))
          (else (append (d-paths 1 (- i 1) j) (r-paths 1 i (- j 1))))
          )))
(define d-paths
                                                   ; i, j \ge 0; s > 0
 (lambda (s i j)
    (cond ((= i 0)
           (list (string-append (number->string s) "d" (number->string j) "r")))
          (else
           (append
            (d-paths (+ s 1) (- i 1) j)
            (map
                 (r-paths 1 i (- j 1)))
            ))
          )))
(define r-paths
                                                   ; i, j \ge 0; s > 0
 (lambda (s i j)
    (cond ( ....
           (list (string-append (number->string s) "r" (number->string i) "d")))
          (else
           (append
            (map
            (r-paths
            ))
          ))))
```

2. Memoization

Si vuole applicare la tecnica top-down di memoization al programma dell'esercizio 1. Assumi di avere a disposizione la classe StringList, già utilizzata in laboratorio, che rende disponibili strumenti analoghi alle primitive Scheme per operare con liste di stringhe, specificamente una costante NULL per la lista vuota e i metodi statici listNull, listCar, listCdr e listCons, corrispondenti a null?, car, cdr e cons. Assumi inoltre che siano già state realizzate le procedure append e prefix: la prima restituisce l'append delle due liste passate come argomento; la seconda restituisce una lista in cui a tutte le stringhe della lista passata come secondo argomento viene premesso il prefisso passato come primo argomento. Nel riquadro è impostata la soluzione: completa il metodo statico paths e definisci il metodo dPaths che realizza la funzione di d-paths tramite memoization. (rPaths è analogo e non è richiesto.)

```
public static StringList paths( int i, int j ) { //i, j \ge 0
  if ((i == 0) \&\& (j == 0)) {
    return StringList.listCons( "0", StringList.NULL );
  } else if ( i == 0 ) {
    return StringList.listCons( j+"r", StringList.NULL );
  } else if ( j == 0 ) {
    return StringList.listCons( i+"d", StringList.NULL );
  } else {
    StringList[][][] dh = new StringList[ i+1 ][ i+1 ][ j+1 ];
    for ( int s=0; s<=i; s=s+1 ) {
      for ( int u=0; u<=i; u=u+1 ) {
  for ( int v=0; v<=j; v=v+1 ) {</pre>
          dh[s][u][v] = null;
    }}}
    StringList[][][] rh = new StringList[ j+1 ][ i+1 ][ j+1 ];
    for ( int s=0; s<=j; s=s+1 ) {
      for ( int u=0; u<=i; u=u+1 ) {
  for ( int v=0; v<=j; v=v+1 ) {
          rh[s][u][v] = null;
    }}}
    return append( dPaths( 1, i-1, j,
                    rPaths( 1, i, j-1, ____
private static StringList append( StringList sl1, StringList sl2 ) \{ \ldots \}
private static StringList prefix( String p, StringList sl ) { ... }
```

3. Ricorsione e iterazione

Definisci in Java un metodo statico boolean[] charSet (Node root) che data la radice root di un albero di *Huffman* restituisce un array di booleani per rappresentare l'insieme dei caratteri associati alle foglie dell'albero; specificamente, la componente di indice k dell'array deve riportare il valore true se e soltanto se il carattere di codice ASCII k è effettivamente presente nell'albero. Come ulteriore vincolo, il programma che definisce il metodo charSet non può far uso della ricorsione, ma deve basarsi su costrutti iterativi e su opportune strutture di supporto.

4. Verifica formale della correttezza

Dato un intero $n \ge 0$, il seguente metodo statico calcola la quarta potenza di n utilizzando solo somme e confronti. Nel programma sono riportate precondizione, postcondizione e invariante. Introduci opportune espressioni negli spazi a tratto punteggiato in modo tale che i valori assunti dalle variabili soddisfino le relazioni specificate dalle asserzioni.

5. Programmazione orientata agli oggeti in Java

Definisci in Java un metodo statico double averageCodeLength(Node root) che data la radice root di un albero di <i>Huffman</i> restituisce la lunghezza media (numero medio di bit) delle codifiche dei caratteri che compaiono nel documento a partire dal quale l'albero è stato costruito. Più precisamente, si tratta di moltiplicare la lunghezza del codice di ciascun carattere, corrispondente al livello a cui si trova la foglia rispetto alla radice dell'albero, per il peso di quel carattere, cioè il numero di occorrenze registrato in corrispondenza al nodo; quindi si sommano tutti i prodotti e si divide il risultato per il numero complessivo di caratteri del documento. Chiaramente si suppone di utilizzare l'albero di Huffman costruito in fase di compressione, albero in cui sono rappresentati anche i pesi dei nodi.