

MISCELLANEOUS PAPER C-70-7

TESTS OF ROCK CORES PLATTSBURGH STUDY AREA, NEW YORK

Sponsored by Space and Missile Systems Organization, U. S. Air Force Systems Command

Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

ASSOCIATED REPORTS

Report No.	Title	Date
MP C-69-3	Tests of Rock Cores, Warren Area, Wyoming	March 1969
MP C-69-12	Tests of Rock Cores, Mountain Home, Idaho, and Fairchild, Washington, Areas	September 1969
MP C-69-16	Tests of Rock Cores, Castle Study Area, California	October 1969
MP C-70-4	Tests of Rock Cores, Bergstrom Study Area, Texas	February 1970
MP C-70-6	Tests of Rock Cores, Scott Study Area, Missouri	May 1970

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

MISCELLANEOUS PAPER C-70-7

TESTS OF ROCK CORES PLATTSBURGH STUDY AREA, NEW YORK

by

R. W. Crisp

June 1970

Sponsored by Space and Missile Systems Organization, U. S. Air Force Systems Command

Conducted by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS

Approved for Public Release; Distribution Unlimited

ABSTRACT

Laboratory tests were conducted on representative rock core specimens received from six core holes located in Clinton, Essex, Franklin, and Warren Counties near Plattsburgh Air Force Base, New York. The results of these tests were used to gage the quality and uniformity of the rock to depths of 200 feet below ground surface.

The core was petrographically identified as predominately quartz sandstone and granite gneiss with relatively small amounts of amphibolite and mica schist. Schmidt hardness, specific gravities, compressional wave velocities, and ultimate uniaxial compressive strengths varied considerably throughout the area, depending primarily on rock type, bedding, and nature and degree of fracturing and/or banding present, if any.

A hole-to-hole evaluation of the area, based on physical properties exhibited, indicates that the sandstone yielded by Holes P-CR-64 and P-CR-72 was generally competent rock, provided anisotropy is not a disqualifying quality. The granite gneisses tested from Holes P-CR-22 and P-CR-81 would also, in spite of the presence of some material of marginal quality, appear to be relatively competent rock. The gneiss received from Holes P-CR-8 and P-CR-46 contained significant amounts of incompetent material.

More extensive investigations will be required in order to accurately assess the areas under consideration.

PREFACE

This study was conducted in the Concrete Division of the U. S.

Army Engineer Waterways Experiment Station (WES) under the sponsorship of the U. S. Air Force Space and Missile Systems Organization (SAMSO) of the Air Force Systems Command. The study was coordinated with CPT Rupert G. Tart, Jr., SAMSO Project Officer, Norton Air Force Base, San Bernardino, California. The work was accomplished during October and November of 1969 under the general supervision of Mr. Bryant Mather, Chief, Concrete Division, and under the direct supervision of Messrs. J. M. Polatty, Chief, Engineering Mechanics Branch, W. O.

Tynes, Chief, Concrete and Rock Properties Section, and K. L. Saucier, Project Officer. Mr. C. R. Hallford was responsible for the petrography work. Mr. R. W. Crisp performed the majority of the program analysis and prepared this report.

Director of the WES during the investigation and the preparation and publication of this report was COL Levi A. Brown, CE. Technical Director was Mr. F. R. Brown.

CONTENTS

ABSTRACT	3
PREFACE	5
CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT	8
CHAPTER 1 INTRODUCTION	9
1.1 Background	9 9 9 10 11
CHAPTER 2 TEST METHODS	13
2.1 Schmidt Number	13 13 14 14 15 15
CHAPTER 3 QUALITY AND UNIFORMITY TEST RESULTS	18
3.1 Tests Utilized	18 19 24 28 30
CHAPTER 4 SPECIAL TEST RESULTS	31
4.1 Anistropy Tests	31 33 34 35 35 39
4.4.4 Summary	45

CHAPTER 5 DISCUSSION AND CONCLUSIONS	62
5.1 Discussion 5.2 Conclusions	62 62
APPENDIX A DATA REFORT - HOLE P-CR-8, 31 OCTOBER 1969	67
APPENDIX B DATA REPORT - HOLE P-CR-22, 6 NOVEMBER 1969	75
APPENDIX C DATA REPORT - HOLE P-CR-46, 7 NOVEMBER 1969	83
APPENDIX D DATA REPORT - HOLE P-CR-64, 28 OCTOBER 1969	91
APPENDIX E DATA REPORT - HOLE P-CR-72, 29 OCTOBER 1969	97
APPENDIX F DATA REPORT - HOLE P-CR-81, 28 OCTOBER 1969 1	105
REFERENCES	112

CONVERSION FACTORS, BRITISH TO METRIC UNITS OF MEASUREMENT

British units of measurement used in this report can be converted to metric units as follows.

Multiply	Ву	To Obtain		
inches	2.54	centimeters		
feet	0.3048	meters		
feet per second	0.3048	meters per second		
pounds	0.45359237	kilograms		
pounds per square inch	0.070307	kilograms (force) per square centimeter		
	6.894757	kilonewtons per square meter		

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The purpose of this study was to supplement the information being obtained for the area evaluation study by the U. S. Air Force Space and Missile Systems Organization (SAMSO). It was necessary to determine the properties of the specific materials for (1) evaluation of the area as a hard rock medium, (2) utilization in the various computer codes for ground-motion predictions, and (3) as necessary, for design of structures in the medium. Results of tests on cores from Clinton, Essex, Franklin, and Warren Counties near Plattsburgh Air Force Base, New York, are reported herein.

1.2 OBJECTIVE

The objective of this investigation was to conduct laboratory tests on samples from study areas to determine the integrity and the mechanical behavior of the materials as completely as possible, analyze the data thus obtained, and report the results to appropriate users.

1.3 SCOPE

Laboratory tests were conducted on samples received from the field. Table 1.1 gives pertinent information on the various tests.

Tests conducted to determine the general quality, uniformity, and integrity of the rock in the area sampled included: (1) relative hardness (Schmidt number), (2) specific gravity, (3) perosity, (4) unconfined compression (conventional and cyclic compression), (5) elastic moduli, and (6) sonic velocity.

Special tests conducted respectively (1) to determine the degree of anisotropy of the sampled rock and (2) to facilitate comparison of results of direct and indirect tensile tests were: (1) dynamic elastic properties along three mutually perpendicular axes and (2) tensile strength. A limited petrographic examination was also made.

1.4 SPECIMENS

Specimens were received from six holes in the Plattsburgh area. These holes were designated P-CR-8, P-CR-22, P-CR-46, P-CR-64, P-CR-72, and P-CR-81. All specimens were NX size cores (nominal 2-1/8-inch diameter). Test specimens of the required dimensions as presented in Table 1.1 were prepared for the individual tests. Quality and uniformity tests were conducted on selected specimens from all holes. Special tests were conducted on specimens selected from the various holes to represent differences in rock type.

A table of factors for converting British units of measurement to metric units is presented on page 8.

1.5 REPORT REQUIREMENTS

The immediate need for the test results required that data reports be compiled and forwarded to the users as work was completed on each hole. The data reports of the individual test results are included herein as Appendixes A through F.

TABLE 1.1 SUMMARY OF TESTS

Test	Specimen Size	Test Equipment	Recording Equipment	Measured Properties	Computed Properties
Relative hardness	1 diam by 2 diam	Schmidt hammer	1	Relative hardness	1
Specific gravity		Scales	1	Specific gravity	Density
Porosity		Pressure pycnometer	Scales	Porosity, percent	:
Indirect tension		440,000-pound test machine	:	Tensile strength	;
Direct tension		30,000-pound test machine	:	Tensile strength	;
Unconfined compression		440,000-pound test machine		X-Y recorder Compressive strength	;
Cyclic compression		440,000-pound test machine X-Y recorder Compressive strength	X-Y recorder	Compressive strength	Young's, shear, and bulk moduli and Poisson's ratio
Dynamic elastic moduli		Pulse generator, amplifiers	Oscilloscope	Compressional and shear velocities	Young's, shear, and bulk modulf and Poisson's ratio
Sonic velocity		Pulse generator, ampliflers	Oscilloscope	Compressional and shear velocities	
Petrographic examination Variable	Variable	Microscopes, X-ray diffraction	1	Appearance, texture, and mineralogy	
Three-directional dy- namic elastic properties	1 diam by 1 diam	Pulse generator, amplifiers	Oscilloscope	Compressional and shear velocities	Young's, shear, and bulk moduli and Poisson's ratio

CHAPTER 2

TEST METHODS

2.1 SCHMIDT NUMBER

The Schmidt number is a measure of the relative degree of hardness as determined by the degree of rebound of a small mass propelled against a test surface. The test was conducted as suggested in Reference 1 (a Swiss-made hammer was used) except that 12 readings per specimen were made. The average of these readings is the Schmidt number or relative hardness. The hardness is often taken as an approximation of rock quality, and may be correlated with other physical tests such as strength, density, and modulus.

2.2 SPECIFIC GRAVITY

The specific gravity of the "as-received" samples was determined by the loss of weight method conducted according to Method CRD-C 107 of Reference 2. A pycnometer is utilized to determine the loss of weight of the sample upon submergence. The specific gravity is equal to the weight in air divided by the loss of weight in water.

2.3 POROSITY

Porosity, herein defined as the volume of voids expressed as a percentage of total volume, was determined after the samples utilized for the specific gravity test had been dried to constant weight. The amount of water forced into the test sample under 1,200-psi fluid

pressure in a pressure pycnometer was carefully measured. Utilizing the known density of the water, the void space in the test specimen was calculated.

2.4 INDIRECT TENSION

Tensile strength was determined by the indirect method, commonly referred to as the tensile splitting or Brazilian method, in which a tensile failure stress is induced in a cylindrical test specimen by a compressive force applied on two diametrically opposite line elements of the cylindrical surface. The test was conducted according to Method CRD-C 77 of Reference 2.

2.5 DIRECT TENSION

For purposes of comparison, specimens were prepared and tested for tensile strength according to the American Society for Testing and Materials (ASTM) proposed "Standard Method of Test for Direct Tensile Strength of Rock Core Specimens." Tensile splitting tests were conducted on specimens cut adjacent to the direct tensile test specimens.

For the direct tension tests, the specimens were right circular cylinders, the sides of which were straight to within 0.01 inch over the full length of the specimen and the ends of which were parallel and not departing from perpendicularity to the axis of the specimen by more than 0.25 degree. Cylindrical metal caps were cemented to the ends of the specimen and provided the means for applying the direct

tensile load. The load was applied continuously by a 30,000-pound-capacity universal testing machine and at a constant rate such that failure occurred within 5 to 15 minutes.

2.6 COMPRESSIVE STRENGTH TESTS

The unconfined and cyclic compression test specimens were prepared according to ASTM and Corps of Engineers standard method of test
for triaxial strength of undrained rock core specimens (CRD-C 147,
Reference 2). Essentially, the specimens were cut with a diamond
blade saw, and the cut surfaces were ground to a tolerance of 0.001
inch across any diameter with a surface grinder prior to testing.

Electrical resistance strain gages were utilized for strain measurements, two each in the axial (vertical) and horizontal (diametral)
directions. Static Young's, bulk, shear, and constrained moduli were
computed from strain measurements and were based on tangent moduli
computed at 50 percent of the ultimate strength. Stress was applied
with a 440,000-pound-capacity universal testing machine.

2.7 DYNAMIC ELASTIC PROPERTIES

Bulk, shear, and Young's moduli, Poisson's ratio, compressive velocity, and shear velocity were determined on selected rock specimens by use of the proposed ASTM "Standard Method of Test for Laboratory Determination of Ultrasonic Pulse Velocities and Elastic Constants of Rock."

Specimens were prepared by cutting the ends of the NX core with a diamond blade saw, and grinding these surfaces, with a surface grinder, to a tolerance of 0.001 inch across any diameter.

The test method essentially consisted of generating a wave in the specimen with a pulse generator unit and measuring, with an oscilloscope, the time required for the compression and shear waves to travel the specimen, the resulting wave velocity being the distance traveled divided by the travel time. These compressive and shear velocities, along with the bulk density of the specimen, were used to compute the elastic properties.

In the case of the special tests used to determine the degree of anisotropy of the samples, compression and shear velocities were measured along two mutually perpendicular, diametrical (lateral) axes and along the longitudinal axis. This was facilitated by grinding four 1/2-inch-wide strips down the sides of the cylindrical surface at 90-degree angles and generating the compressive and shear waves perpendicular to these ground surfaces.

2.8 PETROGRAPHIC EXAMINATION

A limited petrographic examination was conducted on samples selected to be representative of the material received from the several holes. The examination was limited to identifying the rock, determining general condition, identifying mineralogical constituents, and noting any unusual characteristics which may have influenced the test results.

CHAPTER 3

QUALITY AND UNIFORMITY TEST RESULTS

3.1 TESTS UTILIZED

Based on experience accumulated through testing and data analysis of core from study areas previously evaluated, the following tests were selected for use in determining the quality and uniformity of the Plattsburgh core: Schmidt number, specific gravity, uniaxial compressive strength, and compressional wave velocity.

The core received from the Plattsburgh study area generally consisted of three types of rock: (1) Fine- to coarse-grained quartz sandstone. (2) Poorly banded to well banded and poorly foliated to well foliated gneiss. (3) Dark-gray to dark-gray-and-red, medium-grained amphibolite.

Relatively insignificant quantities of other materials--two specimens of mica schist, one of black basalt, and one of disrupted quartz--were also received.

Physical test results were generally grouped and analyzed according to rock type. Frequently, however, the data also suggested and reflected subdivision according to grain size, nature and degree of

A list of associated reports is given on the inside front cover of this report.

fracturing, and nature and degree of foliation and/or banding.

3.2 GRANITE GNEISS

All of the core received from Hole F-CR-46, as well as most of that received from Holes P-CR-8, P-CR-22, and P-CR-81, was petrographically identified as granite gneiss. Physical test results showed good correlation with nature and degree of fracturing and/or banding present in the individual specimens tested. Detailed results are given in Appendixes A, B, C, and F. A summary of the results is presented below.

Hole No.	Speci- men No.	Schmidt No.	Specific Gravity	Ultimate Uniaxial Compressive Strength	Compressional Wave Velocity
				psi	fps
Intact or	with Well	Healed F	ractures, L	ittle or No Ban	ding:
P-CR-81	3 7 11 14 15 17 19	58.1 51.3 45.2 42.7 44.9	2.734 2.729 2.684 2.694 2.959 2.768 3.076 2.864	27,300 26,360 30,610 20,760 27,970 22,090 21,420 24,360	17,685 16,985 14,290 16,190 16,840 19,440 20,490 19,700
	Average	48.4	2.814	25,110	17,700

(Continued)

Hole No.	Speci- men No.	Schmidt No.	Specific Gravity	Ultimate Uniaxial Compressive Strength	Compressional Wave Velocity
				psi	fps
Intact, W	ell Banded	:			
P-CR-22	2 5 16 20 22	45.2 43.0 48.6 43.4 44.2	2.994 2.713 2.703 2.737 2.706	15,000 14,640 19,330 21,545 21,330	15,480 11,390 12,145 13,125 13,710
	Average	44.9	2.771	18,370	13,170
Containin	g Horizonta	al or Ver	tical Fractu	res:	
P-CR-8	8 11 12	42.6 40.1	2.741 3.051 2.776	14,790 14,330 13,580	14,770 16,610 15,095
P-CR-22	4	46.4	2.746	13,880	16,510
P-CR-46	8 15 19 21	45.8 49.8 	2.793 2.686 2.704 2.691	14,605 8,605 16,180 13,970	15,620 14,740 15,575 14,935
P-CR-81	10		2.634	20,760	13,900
					
	Average	44.9	2.758	14,520	15,310
	actured, Co y Oriented			ts or Containin	g
P-CR-8	17	39.5	3.018	3,450	16,075

(Continued)

Hole No.		Schmidt No.	Specific Gravity	Ultimate Uniaxial Compressive Strength	Compressional Wave Velocity
				psi	fps
			Sealed Joins (Continued	nts or Containin	g
P-CR-46	7 10 17 18	48.5 48.4 40.6	2.667 2.708 2.691 2.678	4,985 4,790 8,545 8,575	15,110 15,225 13,780 14,550
P-CR-81	18 20	44.9 42.8	2.746 2.919	9,520 8,760	16,150 20,300
	Average	44.1	2.775	6,950	15,880

The gneiss from the Plattsburgh study area exhibited somewhat variable physical test results which depended primarily upon banding and nature and degree of fracturing.

Uniaxial compressive strengths exhibited by this material ranged from 3,000 to 30,000 psi, with the intact (according to Reference 1, macroscopically homogeneous and free from fractures, joints, and seams) slightly banded core yielding the greatest ultimate strengths and the critically to highly fractured core (rock containing open or sealed fractures, well developed systems of fracture, critically oriented fractures, i.e., fractures inclined with respect to the horizontal at angles so as to develop failing shearing stresses when the specimen is

subjected to relatively low axial stresses) yielding the lowest ultimate strengths.

The incipient fractures present in some specimens were well healed and apparently had little effect on uniaxial compressive strength; these specimens exhibited some of the highest strengths observed in the core from the Plattsburgh area. Relatively well developed horizontal or vertical fractures, however, appeared to cause substantial strength reductions. The core containing fractures of this nature exhibited average ultimate strengths ranging from 50 to 75 percent as great as those exhibited by the intact material or that containing incipient fractures (both well banded and poorly banded). The presence of well developed systems of fracture, critically oriented fractures, and/or sealed joints resulted in greatly reduced ultimate compressive strengths. Material of this nature exhibited an average ultimate uniaxial compressive strength of approximately 7,000 psi, less than 30 percent of the average exhibited by poorly banded, intact material.

The degree of banding present in the gneiss also appeared to have a substantial effect on the ultimate strengths exhibited by the core. This banding was generally inclined at moderate angles with respect to the horizontal, frequently resulting in failure along the bands. Ultimate uniaxial compressive strengths exhibited by the intact, well banded gneiss were generally less than 75 percent of

those exhibited by the intact, poorly banded material.

Compressional wave velocities varied considerably throughout the group, showing only a slight trend toward higher values in specimens exhibiting higher ultimate strengths. One of the factors which seemed to contribute strongly to the large variation was banding. The intact, well banded material yielded the lowest average velocity in the granite gneiss group, while the intact, poorly banded core exhibited the highest average velocity. Another factor which apparently had some effect was the presence of garnet in some cores. These small, irregular masses could possibly have deflected the compressional wave resulting in a longer than normal path and travel time. Garnet concentrations also resulted in substantially higher densities of several specimens.

The gneisses exhibited noticeable hysteresis when subjected to static elastic tests. Upon cycling, however, several gneiss specimens exhibited substantial residual strain. This residual strain was generally detected in critically to highly fractured specimens, indicating possibly that the permanent deformation was due primarily to slippage along preexisting fracture surfaces. Static elastic constants exhibited by the gneiss were generally somewhat larger than those exhibited by the sandstone, but were rather variable. There also appeared to be a general trend toward higher moduli (both dynamic and static) with higher ultimate uniaxial compressive strength,

as is illustrated by the elastic constants in the following tabulation.

Hole No.	Speci-	Young's	Modulus	Bulk M	lodulus	Shear M	lodulus	Poisson	's Ratio
	men No.	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic
lace.		10 ⁶ psi							
Intact or	with Inc	ipient Fr	actures:						
P-CR-22	20	8.0	5.5	3.9	5.4	3.5	2.2	0.16	0.23
P-CR-81	3 15 21	8.5 12.2 9.1	8.8 9.6 10.2	5.7 8.4 5.7	6.9 6.1 9.8	3.4 4.8 3.7	3.4 3.9 3.8	0.25 0.26 0.24	0.29 0.24 0.33
	Average	9.4	8.5	5.9	7.0	3.8	3.3	0.23	0.27
Containin	g Horizon	tal or Ve	ertical Fr	ractures:					
P-CR-8	8 11	6.7 7.8	7.1 10.5	3.3 4.5	4.2 5.3	2.9 3.2	2.9	0.16	0.22
	Average	7.2	8.8	3.9	4.8	3.0	3.7	0.18	0.20
	actured, y Oriente			Joints,	or Contain	ning			
P-CR-46	7 17	3.3 6.2	6.8 6.5	1.9	4.6 3.1	1.6	2.7	0.03	0.25
	Average	4.8	6.6	2.5	3.8	2.2	2.8	0.10	0.20

3.3 QUARTZ SANDSTONE

The core received from Holes P-CR-64 and P-CR-72 was petrographically identified as quartz sandstone. Detailed results are given in Appendixes D and E. A summary of the results is presented on the following page.

Hole No.		Schmidt No.	Specific Gravity	Ultimate Uniaxial Compressive Strength	Compressional Wave Velocity
Fine Grai	ned:			psi	fps
P-CR-64	2 4 6 8 10	47.4 45.9 50.6	2.645 2.633 2.697 2.622 2.631	31,670 21,760 30,450 30,910 25,300	9,765 11,810 14,010 11,305 12,255
P-CR-72	1 2 4 6 18	45.7 49.9 54.0	2.631 2.596 2.550 2.510 2.545	24,700 30,000 34,700 22,050 15,210	8,010 9,190 9,190 12,060 8,620
	Average	48.9	2.606	26,680	10,620
Medium Gr	ained:				
P-CR-72	9 10 12 14 17 20	49.5 47.8 48.8 47.5	2.585 2.525 2.494 2.587 2.613 2.519	25,610 15,920 13,830 19,700 17,000 13,030	13,030 9,180 8,530 10,230 9,790 7,570
	Average	48.4	2.554	17,520	9,720
Coarse Gr	ained:				
P-CR-64	14 16 18 21 27	50.7	2.592 2.600 2.585 2.573 2.532	17,420 18,940 17,080 12,210 15,520	10,985 10,615 10,535 8,655 9,655
	Average	47.5	2.576	16,230	10,090

Uniaxial compressive strengths exhibited by the sandstones from this area appeared to be dependent upon grain size, particularly in the fine- to medium-grained range. The fine-grained material exhibited average uniaxial compressive strengths nearly twice as large as those exhibited by the medium- and coarse-grained material. The medium- and coarse-grained specimens exhibited very similar physical test results.

A search of available literature revealed little information concerning the dependence of uniaxial compressive strength for sandstones on grain size, but did indicate that such strengths were frequently dependent upon porosity, permeability, nature and degree of cementation, surface texture of the sand grains, and the nature of bedding present, if any. Thus, it is possible that the apparent dependence of strength on grain size might actually have been a dependence on variation in one or more of the above-mentioned factors.

Compressional wave velocities were generally low, somewhat higher for the fine-grained material. Rather large variations were observed within groups. These variations are probably due again to differences in matrix material, porosity, nature and orientation of bedding planes, and/or variation in grain size.

Like the gneiss discussed in Section 3.2, the sandstones exhibited considerable hysteresis when subjected to static tests. But, upon cycling, axial strain appeared to be almost completely

recoverable. Initial curvature of the stress-strain curves was possibly due to initial void closure in this moderately porous material. Static elastic constants based on a tangent modulus of elasticity computed at 50 percent of the ultimate uniaxial compressive strength were rather low, as indicated in the tabulation below, but were very uniform and well within the range noted in Reference 3.

Hole No.	Speci- men No.		Modulus				
	men No.	Young's	Bulk	Shear	Ratio		
		10 ⁶ psi	10 ⁶ psi	10 ⁶ psi			
P-CR-64	4 27	6.7 5.0	2.8	3.0 2.2	0.10 0.12		
P-CR-72	2 4 14	5.9 6.8 5.1	2.3 3.0 2.2	2.8 3.0 2.8	0.07 0.12 0.12		
		-	_	_			
	Averag	e 5.9	2.4	2.8	0.11		

Although dynamic tests were conducted, dynamic elastic constants could not be reliably computed from the unrealistically large shear velocity to compressional velocity ratios exhibited by this material. These unrealistic ratios were quite possibly a consequence of attempting to apply a test whose basic premise is that the material under observation is very nearly isotropic to a material that is highly anisotropic.

3.4 AMPHIBOLITE

Portions of the core received from Holes P-CR-8 and P-CR-22 were petrographically identified as amphibolite. Several of the amphibolite specimens were fractured; some were severely sheared.

Physical test results were indicative of two distinct groups of material: (1) intact core and core containing vertical fractures, and (2) highly fractured core. Detailed results are given in Appendixes A and B. A summary of the results is presented below.

Hole No.	Speci- men No.	Schmidt No.	Specific Gravity	Ultimate Uniaxial Compressive Strength	Compressional Wave Velocity
				psi	fps
Intact or	with Vertic	cal Fracti	ures:		
P-CR-8	19 24	44.8	3.108 3.206	10,010	18,690 17,935
P-CR-22	6 11 12 18	43.7 41.1	2.906 3.069 2.953 2.913	8,240 8,515 10,270 9,020	15,045 15,045 13,060 10,655
	Average	43.2	3.026	10,580	15,070
Highly Fra	actured:				
P-CR-8	4 6 23	39.4	2.893 2.787 3.081	4,030 4,545 1,360	15,060
	Average	39.4	2.920	3,310	15,060

The amphibolites were quite dense, exhibiting an average specific gravity of approximately 3.0. These high densities were probably due to large quantities of hornblende (specific gravity, 2.9 to 3.2) present in the specimens.

Uniaxial compressive strengths exhibited by this core were generally rather low, particularly those yielded by the highly fractured specimens. Both the intact and vertically fractured amphibolites exhibited ultimate strengths averaging approximately 10,000 psi, indicating that the presence of vertical fractures had little effect, if any, on ultimate uniaxial compressive strength. The presence of well developed systems of fracture, however, appeared to greatly reduce the ultimate strength; highly fractured specimens generally exhibited strengths approximately one-third as large as those yielded by the vertically fractured and intact core.

Compressional wave velocities showed considerable variation, ranging from 10,000 to 19,000 fps. This wide range of values was possibly due to the combined effects of the bands, fractures, and large biotite inclusions present in much of the amphibolite.

Both of the specimens for which static and dynamic moduli were determined exhibited some hysteresis and, upon cycling, residual strain. Although the quantity of data available is insufficient to make specific comparisons, the static and dynamic constants determined for the amphibolite (tabulated on the following page) appear to be in

Hole No.	Speci- men No.	Young's Modulus		Bulk Modulus		Shear Modulus		Poisson's Ratio	
		Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic
		10 ⁶ psi							
P-CR-8	24	8.2	10.5	3.7	8.5	3.6	4.1	0.13	0.29
P-CR-22	11	5.7	7.6	2.3	5.4	2.7	3.0	0.08	0.26

the same general range as the values for the gneiss.

3.5 MISCELLANEOUS CORES

Four specimens tested varied appreciably in composition and/or physical condition from the three principal rock types previously discussed. All of these specimens exhibited physical test results characteristic of rather marginal materials. A summary of the results is presented below.

Hole No.	Speci- men No.	Rock Type	Schmidt No.	Specific Gravity	Ultimate Uniaxial Compres- sive Strength	Compres- sional Wave Velocity
	5				psi	fps
P-CR-22	8	Mica schist Mica schist	42.3 52.7	2.983 2.901	15,840 9,030	18,895 14,150
P-CR-46	2	Moderately weathered gneiss	34.7	2.647	12,545	15,560
	11	Disrupted quartz vein	45.6	2.709	8,575	14,780

CHAPTER 4

SPECIAL TEST RESULTS

4.1 ANISOTROPY TESTS

Eleven rock specimens were selected and prepared for determination of compressional (dilatational) and shear velocities according to the ASTM proposed "Standard Method of Test for Laboratory Determination of Ultrasonic Pulse Velocities and Elastic Constants of Rock." The NX-diameter specimens were cut to lengths of 2 inches and ground on the ends to a tolerance of 0.001 inch. Four 1/2-inchwide strips were also ground down the sides of the cylindrical surface at 90-degree angles. The velocities, densities, and dimensions were measured as specified in the proposed test method.

Results of the velocity determinations are given in Table 4.1. Compressional and shear velocities were consistently higher for the gneiss and amphibolite, possibly due to the large porosities characteristic of many sandstones.

Deviations from the average compressional wave velocities were much lower for the gneiss and amphibolite, indicating considerably greater degrees of anisotropy in the sandstones. This anisotropy was probably due to a combination of factors, such as variation in nature and degree of cementing present, variation in grain size, and the presence of bedding.

The anisotropy is in the vertical direction (generally normal to the bedding). Wave velocities exhibited by the gneiss and amphibolite were quite uniform, apparently affected only slightly, if at all, by the varying degrees of foliation and banding present.

A compilation of the elastic properties computed from the compressive and shear velocities and the specific gravity is given in Table 4.2. However, discretion must be used in utilizing the moduli results as experimental errors are introduced when the differences in velocities are significant. The proposed ASTM test method states that the equations for computation of elastic moduli should not be used if "any of the three compressional wave velocities varies by more than 2 percent from their average value. The error in E and G due to both anisotropy and experimental error then does not exceed 6 percent." Naturally, the effect of the error is compounded by greater differences in the three-directional velocity measurements.

The 2 percent allowable deviation proposed by ASTM appears to be unrealistic since laboratory-determined values of compressional and shear wave velocities are reproducible within a deviation from the average of only 2 to 3 percent. Thus, it would appear that the point of division between isotropy and anisotropy would more realistically be in the range of 5 to 8 percent deviation from the average. It should be kept in mind, however, that this greater deviation

would also allow a larger error in the computed values of E and G.

To evaluate the effect of anisotropy on a rock mass, one should determine the state of stress expected or applied. The effect of elastic anisotropy on the stress distribution is greatest for a uniaxial state of stress, a state which exists in very little massive rock. Reference 4 indicates that if the stress field is hydrostatic and the ratio of moduli due to anisotropy is approximately 2, the maximum difference in stress for the isotropic and anisotropic cases would be only 10 to 15 percent. Reference 4 further states

It can be inferred that for most rock, the effects of elastic anisotropy are no larger than the normal variations in rock strength and, hence, they can be neglected. The most likely exceptions to this generalization would be strongly foliated metamorphic rocks, such as micaceous schists,...where the moduli of elasticity often differ by a factor greater than two.

4.2 COMPARATIVE TENSILE TESTS

Eleven NX-diameter rock specimens were selected to represent the variation of rock type present in the core. The specimens were prepared and tested for tensile strength according to the ASTM proposed "Standard Method of Test for Direct Tensile Strength of Rock Core Specimens." For comparative purposes, tensile splitting tests were conducted on specimens cut adjacent to the direct tensile test specimens. Test results are given in Table 4.3.

The banded and/or foliated nature of the gneiss could possibly

explain the large differences in strength obtained from the two test methods. This banding and foliation was frequently perpendicular to the direction of stressing in the direct test. Therefore, the direct tensile strengths should be the minimum strengths obtained. The splitting test, however, stresses the specimen in a manner such that the intrinsic strength of the bands is developed. Therefore, one would normally utilize the direct tensile strength as the more conservative value.

The fine- and coarse-grained sandstones exhibited relatively uniform direct and indirect test results, possibly indicative of relatively uniform, directionally independent tensile characteristics.

The medium-grained sandstone, however, yielded test results which were quite different for the two different methods, possibly due to effects produced by bedding and crossbedding or to variation in nature and degree of cementation as noted in the petrographic examination.

4.3 POROSITY TESTS

Porosity, herein defined as the volume of the voids expressed as a percentage of total volume, was determined for three sandstone specimens. These three specimens represented the variation in grain size found in the sandstone core, and exhibited porosities which were low to moderate by comparison with the range of values indicated in literature. Test results are given in Table 4.3.

4.4 PETROGRAPHIC EXAMINATION

4.4.1 Samples. Six boxes of NX core from holes in Clinton, Franklin, Essex, and Warren Counties, New York, were received for testing in October 1969. Each box contained about 15 feet of core which represented several depths to 200 feet.

The cores were inspected to select representative pieces from all significant rock types for petrographic examination. The cores are described below:

1. <u>Hole P-CR-8</u>. The core ranged from fine- to coarse-grained metamorphics. Gray-green, coarse-grained garnet gneiss; dark-gray-and-red, medium-grained amphibolite; and dark-gray, medium-grained amphibolite were present.

Sections 1, 2, 8, 10 through 15, 17, and 18 were gray-green, coarse-grained gneiss. Most of these sections contained several fractures. Sections 3 through 7, 9, and 16 were dark-gray amphibolite. Most of the sections contained sealed fractures. Sections 19 through 24 were iron-stained, severely sheared amphibolite.

Several sections of amphibolite contained large biotite inclusions. Most of the open fractures were slickensided.

2. <u>Hole P-CR-22</u>. The core ranged from poorly banded to well banded gneiss.

Sections 1 through 5, 7, 10, 13, and 15 through 22 were well banded, dark-gray to black and white, medium-grained.

hornblende-biotite gneiss. Sections 6, 11, 12, 14, and 18, containing more hornblende, were amphibolite. The bands ranged from medium-to coarse-grained. Sections 6 and 10 through 13 contained large lens-like masses of feldspar and quartz that disrupted the banding. Sections 8 and 9 were black, medium-grained mica schist. Section 9 appeared to be altered, and Section 8 appeared to be fresh.

Most of the sections were not fractured, and only Section 9 appeared to be altered.

3. Hole P-CR-46. The core ranged from intact, weakly banded to severely fractured gneiss in which banding could not be detected on the scale of an NX core. The gneiss ranged from dark gray to light gray, and there were several calcite and fluorite veins present.

Sections 1 through 5, 8, 11, 13 through 16, and 18 were severely sheared and showed considerable offsets along shear planes. Sections 1 through 4 were slightly weathered. Sections 6, 7, 20, and 21 had incipient fractures. Sections 9, 10, 12, 17, and 19 were poorly banded but were not severely sheared.

- 4. Hole P-CR-64. The core was red quartz sandstone that ranged from coarse- to fine-grained. The upper 90 feet of the hole was fine- to medium-grained, and the remainder of the hole was predominately medium- to coarse-grained. Six sections contained vertical fractures; the remaining sections were intact.
 - 5. Hole P-CR-72. The core was white, fine-grained quartz

sandstone and gray, medium-grained quartz sandstone. The entire core appeared unweathered and massive.

Sections 1 through 8 and 18 were white, fine-grained sandstone. This rock was not porous and was not fractured. Sections 7 and 8 were iron-stained. Sections 9 through 17, 19, and 20 were gray, medium-grained sandstone. Sections 10, 19, and 20 were iron-stained.

6. <u>Hole P-CR-81</u>. The core was pink, medium-grained gneiss; dark-gray, medium-grained gneiss; and black, fine-grained basalt.

The pink gneiss had well developed foliation and very few joints or fractures. Sections 1 through 12 were pink gneiss. Section 13 was black basalt. The section was intact. Sections 14 and 16 through 24 were dark-gray gneiss. This rock did not have well developed foliation. Sections 18 through 21 contained high-angle fractures, and the remaining sections were massive.

The sections selected for petrographic examination were:

Serial No.	Section No.	Approximate Depth	Rock Description
		feet	
SAMSO-11, DC-4	7	77	Gray-green, coarse- grained garnet gneiss
	10	93	Dark-gray, medium- grained amphibolite
		SAMSO-11, DC-4 7	feet SAMSO-11, DC-4 7 77

Hole No.	Concrete Division Serial No.	Section No.	Approximate Depth	Rock Description
			feet	
		20	165	Dark-gray and red, medium-grained amphibolite
P-CR-22	SAMSO-11, DC-5	13	116	Black and white gneiss with large masses of feld- spar and quartz
		14	127	Well banded, dark- gray, medium- grained amphibolite
P-CR-46	SAMSO-11, DC-6	12	124	Gray, poorly banded gneiss
		13	131	Faulted, light- gray gneiss
P-CR-64	SAMSO-11, DC-2	11	71	Red, fine-grained sandstone
		24	167	Red, coarse-grained sandstone
P-CR-72	SAMSO-11, DC-1	2	42	White, fine-grained sandstone
		11	133	Gray, medium- grained sandstone
P-CR-81	SAMSO-11, DC-3	12	103	Pink, medium- grained gneiss
		22	177	Dark-gray, medium- grained gneiss

4.4.2 Test Procedure. Each piece of core was sawed axially. One sawed surface of each piece was polished and photographed. Composite samples were obtained from the whole length or from selected portions from the remaining half of each piece. The composite samples were ground to pass a No. 325 sieve (44 μm). X-ray diffraction (XRD) patterns were made of each sample as a tightly packed powder. All XRD patterns were made using an XRD-5 diffractometer with nickel-filtered copper radiation. The samples X-rayed are listed below:

Hole No.	Section No.	Description of X-Ray Sample
P-CR-8	7 10 20	Entire length of core Entire length of core Entire length of core
P-CR-22	13 14	Entire length of core Entire length of core
P-CR-46	12 13	Entire length of core Entire length of core except calcite-fluorite vein was sampled
P-CR-64	11 24	Entire length of core Entire length of core
P-CR-72	2 11	Entire length of core Entire length of core
P-CR-81	12 22	Entire length of core Entire length of core

Small portions of the powdered samples were tested with dilute hydrochloric acid and with a magnet to determine whether carbonate minerals or magnetite were present.

The polished surface of each section was examined with a stereomicroscope. Thin sections were prepared from each section of core and examined with a polarizing microscope. A point-count modal analysis was made on each thin section in which 500 points were counted.

4.4.3 Results. The cores can be divided into three groups: sandstones, granitic gneisses, and amplibolites. The sandstones were taken from the Upper Cambrian Potsdam formation in extreme northern New York. The remainder of the rocks were taken from the metamorphic sequence that makes up the bulk of the Precambrian Adirondack Mountains of upstate New York (Reference 5). The rocks in the cores are discussed below. The modal composition of each type is shown in Tables 4.4, 4.5, and 4.6 and the bulk composition by XRD in Tables 4.7, 4.8, and 4.9.

Sandstones. Cores P-CR-64 and P-CR-72 (Figures 4.1 and 4.2) consisted of sandstone which ranged from a white, fine-grained subarkose to a gray, medium-grained quartzarenite (classification according to Reference 6). The major constituents were quartz and microcline, and the cements were silica, chlorite, and hematite. The bedding planes were approximately horizontal. Graded bedding was common in some sections.

Half of Section 11 of Core P-CR-64 (Section 11a, Figure 4.1) was cross-bedded sandstone with hematite cement. Microcline formed 11

percent of the detrital grains causing the rock to be classified as a subarkose. There was considerable variation in grain size, though most of the grains were within the limits of medium grain size.

Most of the grains were subangular.

The remaining half of the section (11b) was also a subarkose containing 11 percent microcline. This half had normal bedding; the grains were equidimensional, and the cement was chamosite. The chamosite gave this half of the section a green color while the hematite gave the other half (11a) a red color.

Section 24 of Core P-CR-64 (Figure 4.1) was a red, conglomeratic subarkose containing quartz, microcline, and magnetite cemented by hematite. This section had the widest range in grain size from coarse to fine; the highest microcline content, 13 percent; and the greatest percentage of cement, which was 15 percent. Most of the coarse grains were fractured quartz pebbles. This rock was not tightly cemented and was more porous than the other sandstones. The section had graded bedding.

Section 2 of Core P-CR-72 (Figure 4.2) was white, fine-grained sandstone with microcline forming 8 percent of the detrital grains which caused it to be classified as subarkose. Bedding traces were slightly inclined and accented by minor amounts of heavy minerals. The detrital grains were equigranular, rounded, and tightly cemented.

Section 11 of Core P-CR-72 (Figure 4.2) was a light-gray,

medium-grained, silica-cemented quartz arenite. The section contained graded bedding with the coarsest fraction being medium-grained. Bedding was accented by thin clay layers that were partially disrupted during compaction.

Gneisses. Cores P-CR-46 and P-CR-81, and parts of Cores P-CR-8 and P-CR-22 were gneisses which had similar compositions but showed a wide range in metamorphic fabric, grain size, and color (Figures 4.3, 4.4, and 4.5). The diverse fabric and texture of these sections suggest that the uniform mineral composition may have resulted from homogenization during metamorphism rather than from originally similar composition. The uniform degree of metamorphism indicated by the mineralogy, the proximity of the samples, and the lack of similar relic structures or textures further supports this hypothesis.

Section 7 of Core P-CR-0 was gray-green and gray-red, coarse-grained, garnet gneiss (Figure 4.3). The section was severely fractured and pyrite had been introduced along fracture planes, sealing some of them; but some open fractures were present. Biotite was partly altered to chlorite; some of the mica was bent or bent and broken. This was the most altered rock and the most fractured rock found in the cores. It differed from the other gneisses in that it contained almost no microcline and garnet was a major constituent.

Section 13 of Core P-CR-22 had a matrix of black and white, medium-grained biotite gneiss with several large, spindlelike masses

or augen of quartz, microcline, and plagioclase, elongated parallel to the foliation of the matrix (Figure 4.3). The foliation bent around the augen. The augen and the matrix differed considerably in composition, but the composition of the whole section was similar to the compositions of the gneisses in Cores P-CR-46 and P-CR-81.

Section 12 of Core P-CR-46 was a black and white, coarse-grained biotite granite gneiss. This gneiss did not have an obvious planar structure (Figure 4.4), but there was a weak horizontal trend of the biotite flakes. Small crystals of garnet were scattered randomly throughout the section. The structure is not interpretable on the scale of this core.

Section 13 of Core P-CR-46 was a white and gray-green, medium-to coarse-grained gneiss. A poorly expressed foliation that dipped about 45 degrees from the vertical was detectable on the drilled surface of the core. This section contained a calcite-fluorite vein that had been folded and faulted. The vein cuts the foliation, which indicates the foliation was developed before the faulting occurred.

Section 12 of Core P-CR-81 was a gray-pink, medium-grained gneiss containing about 5 percent more plagioclase and 5 percent less microcline than Section 13 of Core P-CR-46 or Section 22 of Core P-CR-81. This section did not contain any biotite but did contain a small amount of hornblende. The foliation dipped at about 30 degrees; no shear planes or fractures were seen (Figure 4.5).

Section 22 of Core P-CR-81 was gray, medium-grained, perthitic gneiss with no apparent foliation (Figure 4.5). The major constituent of the section was perthitic feldspar containing about one quarter microcline and three quarters plagioclase. Grains containing only one feldspar were very rare. Anhedral grains of pyroxene and magnetite were common throughout the section.

Amphibolites. Parts of Cores P-CR-8 and P-CR-22 were classed as amphibolites. These rocks were dark, medium-grained amphibole, biotite, and plagioclase gneisses that ranged from severely sheared and fractured to intact. Sulfides had been introduced along gneissic banding and in fractures.

Section 10 of Core P-CR-8 was a dark-green and black, medium-grained hornblende gneiss. The foliation dipped at a low angle (Figure 4.6), and minor vertical fractures were present. The hornblende and plagioclase grains were intact and only slightly altered. Magnetite grains were scattered randomly throughout the section, and pyrite was found only in discrete layers in the section.

Section 20 of Core P-CR-8 was dark-green and red, medium-grained amphibolite with minor alteration to hematite along fractures. The section was similar to Section 10 of this core but lacked well developed foliation (Figure 4.6). This section contained more magnetite than Section 10 and also contained a small amount of chlorite that appeared to have formed by alteration of biotite.

Section 14 of Core P-CR-22 was black and white, medium-grained, biotite-rich amphibolite with a well developed foliation produced by parallel alinement of biotite and hornblende (Figure 4.7). This section contained more biotite than any of the other sections of amphibolite, and the plagioclase was severely altered to sericite. This section also contained a small amount of carbonate introduced along minor fractures.

4.4.4 Summary. Petrographic examination of 13 sections of core from six holes in the Adirondack Mountains area of northern New York State indicated that there were three rock types represented: sandstones, granite gneisses, and amphibolites. The sandstones and the granite gneisses were the most abundant rock types in the cores. Differences in the compressive strengths of the sandstones appear to have arisen from differences in grain size and porosity among the rocks tested. Differences in compressive strengths and elastic properties among the remaining rock types appear to have arisen from the number and inclination of fractures, whether the fractures were open or sealed, and the degree of alteration of the rocks. The mineral compositions are summarized in Tables 4.4 through 4.9, and the sections examined are illustrated in Figures 4.1 through 4.7.

TABLE 4.1 VELOCITY DETERMINATIONS

		Velocity				(electty	
	Com	Compressional	Shear			Compressional	Shee
		fps	fpe			ē	3
Hole P-CR-8, Specimen 5:				Hole P.CR-64, Specimen 20:			
Fractured amphibolite Depth: 66 feet Specific gravity: 2.885 Compressional deviation:b 4.	4.6 pct Average	18,470 19,330 20,230 19,340	9,520 11,740 11,420 10,890	Medium-grained sandstone Depih: 142 feet Specific gravity: 2.490 Compressional deviation:	11.7 pet Average	13,090	8,78 9,78 9,78 8,78
Hole P-CR-8, Specimen 15:				Hole P.CR-64, Specimen 22			
Fractured gneiss Depth: 131 feet Specific gravity: 3.004 Compressional deviation: 5.	5.4 pct Average	18,850 18,850 20,440 19,390	10,240 10,680 11,340 10,750	Coarse-grained sandstone Depth: 150 feet Specific gravity: 2.595 Compressional deviation:	14.7 pct Average	13,766 14,430 15,190 05,781	9.69 9.80 9.46 9.46
Hole P-CR-22, Specimen 1:				Hole 3-CH-72, Specimen 5:			
Well banded blotite gneiss Depth: lo feet Specific gravity: 2.693 Compressional deviation: 2.	2.3 pct Average	18,130 18,590 18,580 18,540	9,020 10,580 10,430 10,01	Fine-grained sanistone Depth: 74 feet Specific gravity: 2.584 Compressional deviation:	11.4 pct Average	13,300 13,300 13,300	9,86,9
Hole P-CR-22, Specimen 7:				Hole P-CR-81, Specimen 9:			
Well banded biotite gneiss Depth: 64 feet Specific gravity: 2.695 Compressional deviation: 4.	4.4 pct Average	19,400 18,300 16,080 18,590	10,870 10,060 9,940 10,890	Well-foliated gneiss Depth: 84 feet Specific gravity: 2.755 Compressional deviation:	2.2 pct Average	19,260	10,470 10,910 11,140 10,840
Hole P-CR-46, Specimen 3:				Hole P-CR-81, Specimen 16:			
	0.7 pct Average	19,010 18,740 18,850 18,870	10,150	Poorly foliated gneiss Depth: 129 feet Specific grawity: 2,734 Compressional deviation:	0.6 pct Average	20,420 20,500 20,900 20,400	n,650 n,650 n,690 n,70
Hole P-CR-46, Specimen 6:							
Fractured gneiss Lepth: 71 feet Specific gravity: 2.712 Compressional deviation: 0.	0.6 pct Average	19,350 19,180 19,380	9,850 10,520 10,430 10,270				

a First velocity listed is in axial (longitudinal) direction; other two are on matually perpendicular, diametral (lateral) axes. Maximum percent deviation from the average of the compressional wave velocity.

TABLE 4.2 DYMANIC ELASTIC PROPERTIES

Hole No.	Specimen		Modulus		Poleson's	Hole No.	Spec	Specimen		Modulus		Polsson's
		Young's	Shear	Bulk	Macto		.01		Young's	Shear	Bulk	
		10 ⁶ ps1	10 ⁶ ps1	10 ⁶ ps1					10 ⁶ ps1	10 ⁶ ps1	10 ⁶ ps1	
P-CR-8	5 Average	9.3 12.9 12.8 12.8	5.1	8.6 7.4 9.2 4.7 8.4	0.32 0.21 0.27 0.27	P-63-64	20	Average	5.0	23.1 23.1 25.3	2.6	0.22
P-CR-8	15 Average	11.11 11.8 13.1	4.7 7.1 1.7	8.9 8.3 10.3	0.29	₽-8-4	55	Average	6.2	2.5.5	r.3.9	0.28
P-CR-22	1 Average	7.9 10.3 10.0	3.7	7.5	0.34	P-CR-72	~	Average	44.4.	8.8.8.1 % 8.8.8.1 %	3.0.83	0.16
P-CR-22	7 Average	10.9 9.2 9.2 9.8	3.9	8.0 7.2 7.1	0.28	P-cn-81	9	Average	10.5 11.7 11.1	1 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8.6.93	0.29
P-CR-46	3 Average	9.6 10.0 10.1	3.9	7.3	0.30	P-cR-81	16	Average	12.8 12.6 12.6 12.6	5.0	8 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	0.25
P-CR-46	6 Average	9.4 10.3 10.3 6e 10.0	3.9	88.00	0.30							

* Due to the unrealistically high shear velocity to compressional velocity ratio obtained, the bulk modulus and Poisson's ratio could not be accurately determined.

TABLE 4.3 TENSILE STRENGTH AND POROSITY DETERMINATIONS

R-6 psi psi pct pct R-8 5 66 1,560 820 53 R-22 1 10 1,320 350 53 R-22 1 10 1,320 320 24 R-22 7 64 1,700 520 24 R-46 3 54 1,660 330 20 R-46 20 142 1,500 250 20 R-46 20 142 1,500 340 2.7 27 R-64 22 150 340 5.2 67 R-72 5 74 490 400 5.7 82 R-81 9 44 1,690 570 31 Average of geneiss 1,690 550 33 30 30 31	Hole	Specimen Depth	Depth	Tensile Strength	rength	Porosity	Porosity Direct/Splitting	Core Log Description
feet psi pct pct 15 131 970 350 53 15 131 970 350 36 1 10 1,320 320 24 2 7 64 1,700 520 24 5 3 54 1,660 330 20 6 71 1,500 250 17 1 20 142 1,260 340 2.7 27 2 74 490 400 5.2 67 1 9 84 1,690 570 33 Average of genets 1,790 550 33 4 16 1,790 550 33	NO.	NO.			Direct		orren g an	
5 66 1,560 820 53 15 131 970 350 36 1 10 1,320 320 24 2 7 64 1,700 520 30 3 54 1,660 330 30 4 20 142 1,500 250 17 5 6 71 1,500 250 17 6 71 1,500 250 17 7 74 1,90 400 5.2 67 8 5 74 1,90 400 5.7 82 1 9 84 1,690 570 33 Average of gnetss 1,690 570 33			feet	psi	psi	pct	pct	
15 131 970 350 36 1 10 1,320 320 24 7 64 1,700 520 30 3 54 1,660 330 30 20 71 1,500 250 17 20 142 1,260 340 2.7 27 22 150 510 340 5.2 67 5 74 490 400 5.7 82 5 74 490 400 5.7 82 16 129 1,790 570 33 16 129 1,790 570 33 Average of gradies 1,603 570 33	P-CR-8	5	99	1,560	820	1	53	Fractured gneiss
1 10 1,320 320 24 7 64 1,700 520 30 8 54 1,660 330 20 20 142 1,560 340 2.7 27 22 150 510 340 5.2 67 5 74 490 400 5.7 82 9 84 1,690 570 33 NVARAGE OF STREET ST	P-CR-8	15	131	970	350	1	36	Fractured amphibolite
7 64 1,700 520 30 3 54 1,660 330 20 20 142 1,560 340 2.7 27 22 150 510 340 5.2 67 5 74 490 400 5.7 82 9 84 1,690 570 33 16 129 1,790 550 33 Average of gate is 1,603 480	P-CR-22	7	01	1,320	320	1	ħZ	Well banded gneiss, nearly horizontal banding
3 54 1,660 330 20 6 71 1,500 250 17 20 142 1,260 340 2.7 27 22 150 510 340 5.2 67 5 74 490 400 5.7 82 9 84 1,690 570 33 Average of griess 1,693 480 30	P-CR-22	-	đ	1,700	520	1	30	Well banded gneiss, nearly horizontal banding
6 71 1,500 250 17 20 142 1,260 340 2.7 27 22 150 340 5.2 67 5 74 490 400 5.7 82 9 84 1,690 570 33 16 129 1,790 550 33 Average of griess 1,603 480 30	P-CR-46	m	九	1,660	330	1	50	Severely sheared gneiss
20 142 1,260 340 2.7 27 22 150 510 340 5.2 67 5 74 490 400 5.7 82 9 84 1,690 570 33 16 129 1,790 550 31 Average of grie iss 1,603 480 30	P-CR-46	9	r	1,500	250	1	17	Gneiss with incipient fractures
22 150 510 340 5.2 67 5 74 490 400 5.7 82 9 84 1,690 570 33 16 129 1,790 550 31 Average of griess 1,603 480 30	P-CR-64	50	142	1,260	340	2.7	27	Medium-grained sandstone
5 74 490 400 5.7 82 9 84 1,690 570 33 16 129 1,790 550 31 Average of greess 1,603 480 30	P-CR-64	22	150	510	340	5.2	19	Coarse-grained sandstone
9 84 1,690 570 33 16 129 1,790 550 31 Average of greess 1,603 480 30	P-CR-72	5	47	064	100	5.7	82	Fine-grained sandstone
16 129 1,790 550 31 Average of greiss 1,603 480 30	P-CR-81	6	₹	1,690	570	1	33	Pink, well foliated gneiss
	P-CR-81	16 Average o	129 f gneiss		550	1	30 31	Gray, poorly foliated gneiss

TABLE 4.4 MODAL COMPOSITION OF SANDSTONES BASED ON 500 POINT COUNTS PER THIN SECTION

Constituent	P-CR-64 Sec- tion lla	P-CR-64 Sec- tion 11b	P-CR-64 Sec- tion 24	P-CR-72 Sec- tion 2	P-CR-72 Sec- tion 11
Quartz	85	76	64	86	94
Microcline	11	11	13	8	
Chlorite		10 ^a	1		
Magnetite		3	7		
Hematite	4ª		15 ^a		
Silica cement				6	6

a As cement.

TABLE 4.5 MODAL COMPOSITION OF GNEISSES BASED ON 500 POINT COUNTS PER THIN SECTION

Constituent	P-CR-8 Sec- tion 7	P-CR-22 Sec- tion 13	P-CR-46 Sec- tion 12	P-CR-46 Sec- tion 13	P-CR-81 Sec- tion 12	P-CR-81 Sec- tion 22
Quartz	20	25	21	29	28	14
Microcline	1	23	27	29	23	}66ª
Plagioclase	25	25	28	29	33	}00
Hornblende		5			6	14
Pyroxene						7
Biotite	12	18	19	Trace		
Chlorite	12			12		
Magnetite	1	Trace	Trace	Trace	8	8
Pyrite	3					
Hematite					Trace	
Garnet	24		4	Trace	1	
Zircon		Trace	Trace	Trace		
Apatite		Trace	Trace	Trace		Trace
Carbonate	2		Trace	Trace	Trace	Trace
Fluorite				Trace		

 $^{^{\}rm a}$ Perthite, about 1/4 microcline and 3/4 plagioclase.

TABLE 4.6 MODAL COMPOSITION OF AMPHIBOLITES BASED ON 500 POINT COUNTS PER THIN SECTION

Constituent	P-CR-8 Sec- tion 10	P-CR-8 Sec- tion 20	P-CR-22 Sec- tion 14
Quartz	1		6
Plagioclase	49	35	22
Hornblende	36	48	30
Pyroxene	9		
Biotite			29
Chlorite		3	
Magnetite	2	6	5
Pyrite	3		1
Hematite		8	
Apatite			Trace
Zircon			Trace

TABLE 4.7 BULK COMPOSITIONS OF SANDSTONES BASED ON X-RAY DIFFRACTION RESULTS

Compared to P-CR-72, Section 2.

Constituent	P-CR-64 Sec- tion lla	P-CR-64 Sec- tion 11b	P-CR-64 Sec- tion 24	P-CR-72 Sec- tion 2	P-CR-72 Sec- tion 11
Quartz	Same	Slightly less	Much less	Abundant	Slightly more
Microcline	Same	Same	Same	Minor	
Chlorite		Minor	Trace		
Hematite	Trace		Minor		
Magnetite		Trace	Trace		
Biotite					Trace

TABLE 4.8 BULK COMPOSITIONS OF GNEISSES BASED ON X-RAY DIFFRACTION RESULTS

Compared to P-CR-46, Section 12.

Constituent	P-CR-8 Sec- tion 7	P-CR-22 Sec- tion 13	P-CR-46 Sec- tion 12	P-CR-46 Sec- tion 13	P-CR-81 Sec- tion 12	P-CR-81 Sec- tion 22
Quartz	Same	Same	Abundant	Same	Slightly more	Much less (minor)
Microcline	Much less (trace)	Same	Abundant	Same	Same	Much less
Plagioclase	Same	Same	Abundant	Same	Slightly more	Much more
Biotite	Slightly less (minor)	Same	Abundant	Very much less (trace)	1	!
Chlorite	Minor	1	1	Minor	:	1
Hormblende	1	Minor	;	1	Minor	Minor
Pyroxene	;	1	;	1	:	Minor
Magnetite	Trace	Trace	;	1	Minor	Minor
Garnet	Abundant, much more	•	Minor	Much less (trace)	1	Much less (trace)
Carbonate	!	1	Trace	Same	:	;
Fluorite	1	1	;	Trace		1
Chalcopyrite	Trace	:	:	:	:	:

TABLE 4.9 BULK COMPOSITION OF AMPHIBOLITES BASED ON X-RAY DIFFRACTION RESULTS

Compared to P-CR-8, Section 20.

Constituent	P-CR-8	P-CR-8	P-CR-22
	Sec- tion 10	Sec- tion 20	Sec- tion 14
Quartz	Trace		Minor
Plagioclase	Slightly more	Abundant	Slightly less
Biotite			Abundant
Chlorite			
Hornblende	Slightly less	Abundant	Slightly less
Pyroxene	Minor		
Magnetite	Slightly less (trace)	Minor	Same
Pyrite	Trace		
Hematite		Minor	

Figure 4.1 Sandstone sections, Core P-CR-64. Section 24 shows conglomeratic textures. Large gray pebbles are quartz. Section 11 shows medium-grained particles cemented by hematite (a) and chlorite (b).

Figure 4.2 Sandstone sections, Core P-CR-72. Section 2 shows fine-grained equigranular texture and slightly inclined bedding. Section 11 shows medium- to fine-grained texture and horizontal bedding. Narrow black lines are clayey layers.

Figure 4.3 Gneiss sections, Cores P-CR-8 and P-CR-22. Section 13 shows large white augen of quartz, plagioclase, and microcline elongated parallel to the foliation. The foliation bends around the augen. Section 7 shows several fractures (narrow white and black lines) and pyrite introduced along the fractures (white specks near top and bottom).

Figure 4.4 Gneiss sections, Core P-CR-46. Section 12 shows lack of planar structures. Black grains are biotite and large white masses are quartz. Section 13 shows folded and faulted calcite-fluorite vein (white area lower right) and reduced grain size around the vein due to shearing.

Figure 4.5 Gneiss sections, Core P-CR-81. Section 22 shows medium-grained texture and lack of foliation. Small white specks are magnetite. Section 12 shows grain size similar to 22 but has well developed foliation.

Figure 4.6 Amphibolite sections, Core P-CR-8. Section 20 shows medium-grained amphibolite with several fractures (narrow white lines). Small white specks are magnetite. Section 10 shows grain size similar to 20 but has a nearly horizontal foliation which is accented by pyrite grains (white specks).

Figure 4.7 Amphibolite section, Core P-CR-22. Section 14 shows well developed foliation due to parallel alinement of hornblende and biotite.

CHAPTER 5

DISCUSSION AND CONCLUSIONS

5.1 DISCUSSION

Due to the rather wide range of physical properties exhibited by the various materials received from the Plattsburgh study area, it was felt that a hole-to-hole evaluation of the area would be appropriate. The rock quality chart (Figure 5.1) illustrates the relative qualities (based on ultimate uniaxial compressive strengths) of the individual test specimens as well as the entire holes.

The sandstone received from Holes P-CR-64 and P-CR-72 was consistently competent over the entire range of depths. Holes P-CR-22 and P-CR-81 yielded rock of marginal to good quality, with the majority of marginal quality material being petrographically identified as amphibolite. Holes P-CR-8 and P-CR-46 contained reasonably large segments of poor and marginal material at various depths.

The locations of drill holes are shown in Figure 5.2.

5.2 CONCLUSIONS

Based on physical properties exhibited by the rock core specimens tested from the Plattsburgh study area, the following conclusions appear justified:

1. The core received from the Plattsburgh area was predominately

quartz sandstone and granite gneiss with small amounts of amphibolite and mica schist.

- 2. Based on physical properties exhibited, several distinct groups of material were represented: (1) fine-, medium-, and coarse-grained quartz sandstones, (2) poorly banded intact or incipiently fractured gneiss, (3) well banded intact or incipiently fractured gneiss, (4) gneiss containing prominent horizontal and/or vertical fractures, (5) gneiss containing well developed systems of fracture, critically oriented fractures, or sealed joints, (6) amphibolite either intact or with vertical fractures, (7) highly fractured amphibolite, and (8) miscellaneous cores, i.e., two specimens of mica schist, one of black basalt, and one representing a disrupted quartz vein.
- 3. The sandstone from this area is a moderately porous, competent material, with the fine-grained rock being somewhat stronger than the medium- and coarse-grained rock.
- 4. The intact gneiss, and that containing incipient fractures, is competent rock. Banding apparently weakens the rock, but not drastically. The gneiss containing horizontal and/or vertical fractures is relatively competent, with an average ultimate compressive strength of approximately 14,000 psi. The gneiss containing well developed systems of fracture (highly fractured), sealed joints, or critically oriented fractures is generally incompetent.

- 5. The amphibolite is, at best, of marginal quality, and is frequently incompetent.
- 6. Three-directional compressional wave velocity tests conducted on representative specimens indicate that the gneiss is slightly anisotropic, while the sandstone is quite anisotropic (11.4 to 14.7 percent deviation from the average). The anisotropy is in the vertical direction (normal to bedding).
- 7. Elastic constants exhibited by the sandstones were rather low (common for sandstones) but were very uniform. Elastic constants yielded by the gneiss were generally higher than those exhibited by the sandstones, but were somewhat less consistent.
- 8. Evaluation of the Plattsburgh area on a hole-to-hole basis indicates that the sandstone received from Holes P-CR-64 and P-CR-72 was generally competent rock and appears to offer possibilities as a competent hard rock medium, if anisotropy is not a disqualifying quality. The granite gneiss received from Holes P-CR-22 and P-CR-81 would also, in spite of the presence of some material of marginal quality, appear to be relatively competent. The core received from Holes P-CR-8 and P-CR-46 contained significant amounts of incompetent material. More extensive investigations will be required in order to accurately assess the areas under consideration.

Figure 5.1 Depth versus quality for individual holes.

Figure 5.2 Field investigation sites.

AFPERDIX A

DATA REPORT

Hole P-CR-8

31 October 1969

Nole Location: Essex County, New York

Core

1. The following core was received on 14 October 1969 for testing:

Core Piece No.	Approximate Depth, ft		
1	27		
2	38		
3	47		
4	53		
5	66		
6	73		
7.	77		
8	79		
9	86		
10	93		
11	104		
12	110		
13	119		
14	124		
15	131		
16	135		
17	142		
18	149		
19	157		
20	165		
21	175		
22	182		
23	194		
24	198		

Description

2. The samples received were quite variable in appearance. According to the field log received with the core, the rock was identified as amphibolite, greenish-black garnetiferous hornblende gneiss, white and red garnetiferous quartz gneiss, and amphibolite migmatite. All specimens contained fractures, some of which were inclined at critical angles.

Quality and uniformity tests

3. To determine variations within the hole, specific gravity,
Schmidt number, compressive strength, and compressional wave velocity
were determined on specimens prepared from representative samples as
given below:

Sample No.	Description	Core Depth	Sp Gr	Schmidt No.*	Comp Strg, pei	Comp Wave Vel, fps**	
4	Highly Practured	53	2.893		4,030	15,060	
6	Highly Fractured, Contained Large Biotite Inclusion	73	2.787		4,545		
8	Vertical Fractures	79	2.741	42.6	14,790	14,770	
11	Contained Vertical Practures and Large Biotite Inclusion	104	3.051	-	14,330	16,610	
12	Tightly Closed Vertical Fractures	110	2.776	40.1	13,580	15,095	
17	Critical Angle Fractures	142	3.018	39.5	3,450	16,075	
19	Tightly Closed Vertical Fractures	157	3.108		10,010	18,690	
23	Highly Fractured	194	3.081	39.4	1,360		
24	Tightly Closed Vertical Fractures	198	3.206	44.8	17,420	17,935	
Average of Highly and Critically Fractured Specimens (4)			2.945	39.4	3,345	15,570	
Average of Specimens Containing 2.976 42.5 14,025 16,620 Vertical Fractures (5)							

^{*} Schmidt hammer test not conducted on several specimens due to possibility of breakage.

^{**} Compressive wave velocities could not be determined for two specimens due to possibility of breakage.

Moduli of deformation

4. Representative specimens were selected for dynamic and static moduli of deformation tests. The dynamic moduli were determined by the proposed ASTM method for determination of ultrasonic pulse velocities and elactic constants of rock. The static moduli were computed from theory of elasticity by use of strain measurements taken from electrical resistance strain gages affixed to the specimens, Nos. 8, 11, and 24. Stress-strain curves are given in plates 1, 2, and 3. All specimens were cycled at 2500 psi. Results are given below.

Specimen	Modulus, psi x 10 ⁶			Shear	Poisson's
No.	Young's	Bulk	Shear	Velocity, fps	Ratio
		Dynas	nic Tests		
8	7.1	4.2	2.9	8,880	0.22
11	10.5	5.3	4.5	10,490	0.17
24	10.5	8.5	4.1	9,700	0.29
		Stat	ic Tests		
8	6.7	3.3	2.9		0.16
11	7.8	4.5	3.2		0.21
24	8.2	3.7	3.6		0.13

All of the rock tested herein is apparently rather rigid material. The initial erratic behavior of the vertical strain gages on specimen No. 11 was possibly due to the location of the strain gages over high-angle fractures, along which slippage occurred during the initial stages of loading. Specimen No. 24 exhibited slight residual strain upon cycling.

Conclusions

described by the field log received with the core as amphibolite, greenish-black garnetiferous hornblende gneiss, white and red garnetiferous quartz gneiss, and amphibolite migmatite. All specimens contained fractures, some of which were inclined at critical angles and apparently caused substantial reductions in strength. The highly fractured specimens and those containing critical-angle fractures were highly incompetent, exhibiting an average compressive strength of 3345 psi. That rock containing high-angle or vertical fractures, however, was somewhat stronger, ranging in compressive strength from 10,000 to 17,000 psi. Compressive wave velocities were generally rather low, reflecting the many discontinuities present in this material.

	Highly and Critically Fractured	Material Containing Vertical
Property	Material	Fractures
Specific Gravity	2.945	2.976
Schmidt Number	39.4	42.5
Compressive Strength, psi	3,345	14,025
Compressional Wave Velocity, fps	15,570	16,620
Static Young's Modulus, psi x 106		7.6

PLATE A1

FLATE A2

PLATE A3

AFFENDIX B

DATA REPORT

Hole P-CR-22

6 November 1969

Hole Location: Warren County, New York

Core

1. The following core was received on 14 October 1969 for testing:

Core Piece No.	Approximate Depth, f
1	10
2	20
3	33
4	39
5	50
6	55
7	64
8	70
9	81
10	90
11	101
12	109
13	116
14	127
15	131
16	136
17	147
18	156
19	168
20	177
21	186
22	197

Description

2. The samples received were somewhat variable in appearance.

According to the field log received with the core, the rock was identified as light-gray to black gneiss. Specimen Nos. 9, 13, 15, and 19 contained fractures. Specimen No. 15 was highly fractured and, as a result, could not be prepared for testing.

Quality and uniformity tests

3. To determine variations within the hole, specific gravity,
Schmidt number, compressive strength, and compressional wave velocity
were determined on specimens prepared from representative samples as given below:

Sample No.	Description	Core Depth	Sp Gr	Schmidt No.*	Comp Strg, psi	Comp Wave Vel, fps
2	Dark, Well-Banded Gneiss	20	2.994	45.2	15,000	15,480
4	Light Gray; Contained High- Angle Fracture	39	2.746	46.4	13,880	16,510
5	Light, Finely Banded Gneiss	50	2.713	43.0	14,640	11,390
6	Dark, Poorly Banded Gneiss	55	2.906		8,240	15,045
8	Inclusive Material	70	2.983	42.3	15,840	18,895
9	Mottled Inclusive Material	81	2.901	52.7	9,030	14,150
11	Black, Poorly Banded Gneiss	101	3.069		8,515	15,045
12	Dark, Poorly Banded Gneiss	109	2.953	43.7	10,270	13,060
16	Light, Well-Banded Gneiss	136	2.703	48.6	19,330	12,145
18	Dark; Contained Coarse Biotite Bands	156	2.913	41.1	9,020	10,655
20	Gray, Well-Banded Gneiss	177	2.737	43.4	21,545	13,125
22	Light, Coarsely Banded Oneiss	197	2.706	44.2	21,330	13,710
	e of Dark Gneiss (High Biotite	•	2.967	43.3	10,210	13,860
Average	of Inclusive Materials (2)		2.942	47.5	12,435	16,520
Average	e of Light-Colored Gneiss (5)		2.721	45.1	18,145	13,375

^{*} Schmidt hammer test not conducted on several specimens due to possibility of breakage.

- 4. The relatively low compressive velocities observed in this material generally fell well within the range noted by Professor 3. P. Clark, Jr.,* i.e., 11,000 to 17,000 fps. The velocities tabulated by Clark were determined at low pressures (145 psi) with wave propagation normal to foliation. Velocities in this material were determined at zero pressure with wave propagation normal or nearly normal to foliation. Moduli of deformation
- 5. Representative specimens were selected for dynamic and static moduli of deformation tests. The dynamic moduli were determined by the proposed ASTM method for determination of ultrasonic pulse velocities and elastic constants of rock. The static moduli were computed from theory of elasticity by use of strain measurements taken from electrical resistance strain gages affixed to the specimens, Nos. 9, 11, and 20. Stress-strain curves are given in plates 1, 2, and 3. Specimen 11 was cycled at 5000 psi and specimen 20 at 10,000 psi. Results are given below.

Specimen	Modul	us, psi x	106	Shear	Poisson's
No.	Young's	Bulk	Shear	Velocity, fps	Ratio
		Dyna	mic Tests		
9	6.1	4.0	2.4	8205	0.25
11	7.6	5.4	3.0	8515	0.26
20	5.5	3.4	2.2	7795	0.23
		(Co	ntinued)		

^{*} Professor S. P. Clark, Jr., Handbook of Physical Constants, The Geological Society of America, Inc., New York, N. Y., 1965.

(Continued)

Specimen Mo		us, psi x	106	Shear	Poisson's
No.	Young's	Bulk	Shear	Velocity, fps	Ratio
		Stat	ic Tests		
9	5.0	2.1	2.2		0.14
11	5.7	2.3	2.7		0.08
20	8.0	3.9	3.5		0.16

All of the rock tested herein is apparently rather rigid material, exhibiting some hysteresis. Upon cycling, slight residual strain was detected in specimen No. 11.

Conclusions

6. The core received from hole F-CR-22 was somewhat variable in appearance, identified by the field log received with the core as light-gray to black gneiss. Specimen Nos. 9, 13, 15, and 19 contained fractures. The darker material was found to be considerably more dense and somewhat weaker than the remainder of the core from this hole, probably due to the abundance of biotite. The inclusive material was slightly stronger and less dense. The light-colored gneiss contained less biotite and was generally found to be considerably stronger, averaging approximately 18,000 psi in unconfined compressive strength. The weakest material tested was a dark, poorly banded gneiss which failed at 8240 psi. Compressive wave velocities ranged from 10,000 to 19,000 fps, agreeing rather well with data published on gneisses from this same general area.

Property	Inclusive Material	Dark Gneiss	Light Gneiss
Specific Gravity	2.942	2.967	2.721
Scanidt Number	47.5	43.3	45.1
Compressive Strength, psi	12,435	10,210	18,145
Compressional Wave Velocity, fps,	16,520	13,860	13,375
Static Young's Modulus, psi x 100	5.0	5.7	8.0

PLATE B1

PLATE B2

AFFEIDIX C

DATA REPORT

Hole P-CR-46

7 November 1969

Hole Location: Warren County, New York

Core

1. The following core was received on 21 October 1969 for testing:

Core Piece No.	Approximate Depth, for
1	41
2	49
3	54
4	60
5	66
6	71
7	81
8	88
9	96
10	105
11	114
12	124
13	131
14	137
15	143
16	153
17	162
18	171
19	190
20	187
21	195

Description

2. The samples received were rather uniform in appearance. According to the field log received with the core, the rock was identified as white to gray charnockitic gneiss generally with low-angle to horizontal lineation. Specimen Nos. 1, 2, 3, and 4 were somewhat weathered. Specimen Nos. 5, 7, 8, 10, 15, 18, 19, and 21 contained fractures, some of which were oriented at critical angles.

Quality and uniformity tests

3. To determine variations within the hole, specific gravity,
Schmidt number, compressive strength, and compressional wave velocity
were determined on specimens prepared from representative samples as
given below:

Sample No.	Description	Core Depth	Sp Gr	Schmidt No.*	Comp Strg, psi	Comp Wave Vel, fps
2	Moderately Weathered	49	2.647	34.7	12,545	15,560
7	Healed, Critical-Angle Fractures	81	2.667	48.5	4,985	15,110
8	Vertical Fractures	88	2.793	45.8	14,605	15,620
10	Healed, Critical-Angle Fractures	105	2.708	48.4	4,790	15,225
11	Disrupted Quartz Vein	114	2.709	45.6	8,575	14,780
15	Healed, Vertical Fractures	143	2,686	49.8	8,605	14,740
17	Healed, Critical-Angle Fractures	162	2.691		8,545	13,780
18	Healed, Critical-Angle Fractures	171	2.678	40.6	8,575	14,550
19	Healed, Vertical Fractures	180	2.704		16,180	15,575
21	Healed, Horizontal Fracture	195	2.691		13,970	14,935
-	e of Specimens Containing F cal-Angle Fractures (4)	lealed,	2.686	45.8	6,725	14,665
Average	e of All Other Specimens (6	5)	2.705	43.8	12,415	15,200

^{*} Schmidt hammer test not conducted on several specimens due to possibility of breakage.

4. Specimen Nos. 7, 10, 17, and 18 contained critically oriented fractures, all of which were healed to various extents. Failure occurred along these fractures at relatively low stresses.

Moduli of deformation

5. Representative specimens were selected for dynamic and static moduli of deformation tests. The dynamic moduli were determined by the proposed ASTM method for determination of ultrasonic pulse velocities and elastic constants of rock. The static moduli were computed from theory of elasticity by use of strain measurements taken from electrical resistance strain gages affixed to the specimens, Nos. 7, 11, and 17. Stress-strain curves are given in plates 1, 2, and 3. Specimens 11 and 17 were cycled to 7500 psi. Results are given below.

Specimen	Modu I	us, psí x	106	Shear	Poisson's
No.	Young's	Bulk	Shear	Velocity, fps	Ratio
		Dyna	nic Tests		
7	6.8	4.6	2.7	8690	0.25
11	6.9	4.3	2.8	8740	0.23
17	6.5	3.1	2.8	8835	0.15
		Stat	ic Tests		
7	3.3	1.9	1.6		0.03
11	8.0	3.3	3.6		0.10
17	6.2	3.1	2.7		0.16

The specimens which were cycled, Nos. 11 and 17, exhibited substantial hysteresis and, upon unloading, considerable residual strain. The very low static moduli computed for specimen No. 7 were apparently the result of failure at low stress occurring along a poorly healed, critically inclined fracture.

Conclusions

6. The core received from hole P-CR-46 was generally uniform, identified by the field log received with the core as white to gray charnockitic gneiss. Lineation was primarily horizontal. Specimens 1, 2, 3, and 4 were somewhat weathered; specimens 5, 7, 8, 10, 15, 18, 19, and 21 contained fractures, most of which were healed, some critically oriented. The material containing critically oriented fractures was generally weaker than the remainder of the core, with failure occurring along the fractures at very low compressive stresses. The remainder of the core from this hole exhibited rather marginal strength values ranging from 8000 to 16,000 psi.

Property	Material Containing Critical-Angle Fractures	All Other Material
Specific Gravity	2.686	2.705
Schmidt Number	45.8	43.8
Compressive, Strength, psi	6,725	12,415
Compressional Wave Velocity, fps	14,665	15,220
Static Young's Modulus, psi x 106	4.8	8.0

PLATE C1

PLATE C2

APPENDIX D

DATA REPORT

Hole P-CR-64

28 October 1969

Hole Location: Clinton County, New York

Core

1. The following core was received on 6 October 1969 for testing:

Core Piece No.	Approximate Depth, ft
1	5
2	16
3	24
4	31
5	35
6	44
7	55
8	64
9*	62
10*	69
11*	71
12*	77
13*	86
14*	94
15*	104
16*	116
17*	125
18*	126
19*	137
20*	142
21*	145
22*	150
23*	157
24*	167
25*	175
26*	177
27*	187
28*	190
29*	200

^{*} Specimens taken from side-tracked hole.

Description

2. The samples received were somewhat variable in appearance. According to the field log received with the core, the rock was identified as

medium- to coarse-grained, gray to yellow-brown quartzite. Zones of limonite staining were present throughout the core. Specimen Mos. 4, 8, 10, 11, and 18 contained incipient fractures. Specimens from the lower reaches of the hole were increasingly conglomeritic.

Quality and uniformity tests

3. To determine variations within the hole, specific gravity, Schmidt number, compressive strength, and compressional wave velocity were determined on specimens prepared from representative samples as given below:

Sample No.	Core Log Description	Core Depth	Sp Gr	Schmidt No.*	Comp Strg, psi	Comp Wave Vel, fps
2	Intact Quartaite	16	2.645	47.4	31,670	9,765
4	Contained Incipient Fracture	31	2.633		21,760	11,810
6	Intact Quartsite	44	2.697		30,450	14,010
8	Contained Incipient Practure	64	2.622	45.9	30,910	11,305
10	Contained Incipient Fracture	69	2.631	50.6	25,300	12,255
14	Transitional Material	94	2.592	50.7	17,420	10,985
16	Conglomeritic Quartzite	116	2.600		18,940	10,615
18	Conglomeritic Quartzite	126	2.585	••	17,080	10,535
21	Conglomeritic Quartzite	145	2.573		12,210	8,655
27	Conglomeritic Quartzite	187	2.532	44.3	15,520	9,655
Average Materia	e of Monconglomeritic		2.645	48.0	28,020	11,830
	e of Conglomeritic and tional Material (5)		2.576	47.5	16,230	10,090

^{*} Schmidt hammer test not conducted on several specimens due to possibility of breakage.

- 4. Compressive wave velocities exhibited by the material from hole P-CR-64 were comparatively low, particularly for the quartzite.

 Preliminary examination by stereomicroscope (to be followed at a later date by thorough petrographic analysis) indicated that the material was sandstone rather than quartzite as reported in the core log. Compressive velocities of 7000 to 14,000 fps* are not uncommon for sandstone.

 Moduli of deformation
- 5. Representative specimens were selected for dynamic and static moduli of deformation tests. The dynamic moduli were determined by the proposed ASTM method for determination of ultrasonic pulse velocities and elastic constants of rock. Dynamic properties of specimen No. 27 could not be reliably determined due to the unusually large shear velocity to compressive velocity ratio exhibited by the specimen. The static moduli were computed from theory of elasticity by use of strain measurements taken from electrical resistance strain gages affixed to the specimens, Nos 4

and 27. Stress-strain curves are given in plates 1 and 2. Both specimens

were cycled at 10,000 psi. Results are given below.

Specimen	Modulus, psi x 10 ⁶			Shear	Poisson's
No.	Young's	Bulk	Shear	Velocity, fps	Ratio
		Dynas	nic Tests		
4	4.9	1.9	2.3	8005	0.07
27					-
		(Co	ntinued)		

^{*} Professor S. P. Clark, Jr., <u>Handbook of Physical Constants</u>, The Geological Society of America, Inc., New York, N. Y., 1965.

(Continued)

Specimen	Modulus, psi x 106			Shear	Poisson's	
No.	Young's	Bulk	Sheer	Velocity, fps	Ratio	
		Stati	ic Tests			
4	6.7	2.8	3.0		0.10	
27	5.0	1.9	2.2		0.12	

All of the rock tested herein is apparently rather rigid material, exhibiting substantial hysteresis. However, little residual strain was detected.

Conclusions

6. The core received from hole P-CR-64 was somewhat variable, being described by the field log received with the core as medium- to coarse-grained, gray to yellow-brown quartitie. Several specimens contained incipient fractures which appeared to have little effect on compressive strength. Specimens from the lower reaches of the hole were increasingly conglomeritic and predictably weaker, exhibiting an average compressive strength of slightly more than 50 percent of that yielded by the nonconglomeritic rock. In spite of the greater weakness observed in the conglomeritic material, the minimum compressive strength observed was 12,000 psi.

Property	Conglomeritic Material	Nonconglomeritic Material
Specific Gravity	2.576	2.646
Schwidt Number	47.5	48.0
Compressive Strength, psi	16,230	28,020
Compressional Wave Velocity, fps	10,090	11,830
Static Young's Modulus, psi x 106	0.12	0.10

FLATE D1

PLATE D2

APPENDIX E

DATA REPORT

Hole P-CR-72

29 October 1969

Hole Location: Clinton County, New York

Core

1. The following core was received on 1 October 1969 for testing:

Core Piece No.	Approximate Depth, ft
1	34
2	42
3	53
4	63
5	74
6	82
7	93
8	103
9	113
10	123
11 -	133
12	141
13	150
14	159
15	166
16	169
17	174
18	184
19	195
20	200

Description

2. The samples received were somewhat variable in appearance.
According to the field log received with the core, the rock was identified as light- to dark-gray, fine- to medium-grained sandstone.
Specimen Nos. 4, 6, and 20 contained tightly closed fractures.

Quality and uniformity tests

3. To determine variations within the hole, specific gravity,
Schmidt number, compressive strength, and compressional wave velocity
were determined on specimens prepared from representative samples as
given below:

Sample No.	Description	Core Depth	Sp Gr	Schmidt No.*	Comp Strg, psi	Comp Wave Vel, fps
1	Fine Grained	34	2.631		24,700	8,010
2	Fine Grained	42	2.596	45.7	30,000	9,190
4	Fine Grained	63	2.550	49.9	34,700	9,190
6	Fine Grained	82	2.510	54.0	22,050	12,060
9	Medium Grained	113	2.585	49.5	25,610	13,030
10	Medium Grained	123	2.525	47.8	15,920	9,180
12	Medium Grained	141	2.494	48.8	13,830	8,530
14	Medium Grained	159	2.587	47.5	19,700	10,230
17	Medium Grained	174	2.613		17,000	9,790
18	Fine Grained	184	2.545		15,210	8,620
20	Medium Grained	200	2.519		13,030	7,570
Average Specime	of Fine-Grained		2.566	49.9	25,330	9,410
Average Specime	of Medium-Grain	ed	2.554	48.4	17,520	9,720

^{*} Schmidt hammer test not conducted on several specimens due to possibility of breakage.

^{4.} Compressive wave velocities exhibited by the material from hole P-CR-72 were very low, averaging approximately 10,000 fps. These

ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS F/G 8/7 AD-A035 372 TESTS OF ROCK CORES, PLATTSBURGH STUDY AREA, NEW YORK.(U)
JUN 70 R W CRISP
WES-MP-C-70-7 UNCLASSIFIED NL 20F 2 ADA035372 END DATE FILMED 3 - 77

low velocities were, however, quite representative of this type of material, generally having been found to range from 7000 to 14,000 fps.*
Moduli of deformation

5. Representative specimens were selected for dynamic and static moduli of deformation tests. The dynamic moduli were determined by the proposed ASTM method for determination of ultrasonic pulse velocities and elastic constants of rock. Due to the unrealistically high shear velocity to compressive velocity ratios observed in this material, dynamic constants could not be accurately determined. The static moduli were computed from theory of elasticity by use of strain measurements taken from electrical resistance strain gages affixed to the specimens, Nos. 2, 4, and 14. Stress-strain curves are given in plates 1, 2, and 3. All specimens were cycled at 10,000 psi. Results are given below.

Specimen	Modul	us, pei x	106	Shear	Poisson's
No.	Young's	Bulk	Shear	Velocity, fps	Ratio
		Dyna	mic Tests		
2					
4					
14					
		Stat	ic Tests		
2	5.9	2.3	2.8		0.07
4	6.8	3.0	3.0		0.12
14	5.1	2.2	2.8		0.12

All of the rock tested herein is apparently rather rigid material, exhibiting slight hysteresis. The stress-strain curves exhibited some reverse curvature indicative of initial crack closure.

^{*} Professor S. P. Clark, Jr., Handbook of Physical Constants, The Geological Society of America, Inc., New York, New York, 1966.

Conclusions

6. The core received from hole P-CR-72 was somewhat variable in appearance, identified by the field log received with the core as light-to dark-gray, fine- to medium-grained sandstone. Physical properties of the material were noticeably dependent on grain size, the fine-grained rock being slightly more dense and decidedly stronger than the medium-grained material. The medium-grained material was still, however, relatively competent rock, the lowest uniaxial compressive strength observed being 13,000 psi. Compressive wave velocities were very low, a characteristic typical of sandstone in general.

Property	Fine-Grained Material	Medium-Grained Material
Specific Gravity	2.566	2,554
Schmidt Number	49.9	48.4
Compressive Strength, psi	25,330	17,520
Compressional Wave Velocity, fps	9,410	9,720
Static Young's Modulus, pei x 106	6.4	5.1

FLATE E1

PLATE E2

PLATE E3

APPENDIX F

DATA REPORT

Hole P-CR-81

28 October 1969

Hole Location: Pranklin County, New York

Core

1. The following core was received on 6 October 1969 for testing:

Core Piece No.	Approximate Depth, ft
1	8
2	16
2 3	27
4	38
5	46
6	56
7	66
8	74
9	84
10	93
11	94
12	103
13	114
14	123
15	124
16	129
17	140
18	150
19	158
20	167
21	175
22	177
23	187
24	199

Description

2. The samples received were somewhat variable in appearance. According to the field log received with the core, the rock was identified as reddish-gray to gray granitic gneiss and chloritic hornblende gneiss.
Specimen Nos. 4, 8, 10, 11, 15, 18, 20, and 21 contained incipient fractures, most of which were healed.

Quality and uniformity tests

3. To determine variations within the hole, specific gravity, Schmidt number, compressive strength, and compressional wave velocity were determined on specimens prepared from representative samples as given below:

Sample No.	Core Log Description	Core Depth	Sp Gr	Schmidt No.	Comp Strg, psi	Comp Wave Vel, fps
3	Intact Gneiss	27	2.734	58.1	27,300	17,685
7	Intact Gneiss	66	2.729	51.3	26,350	16,985
10	Vertical Healed Practure	93	2.634		20,750	13,900
11	Healed Incipient Practure	94	2.684		30,610	14,290
14	Intact Gneiss	123	2.694		20,760	16,190
15	Intrusive Material	124	2.959	45.2	27,970	16,840
17	Intact Gneiss	140	2.768	4-	22,090	19,440
18	High-Angle Healed Joint	150	2.746	44.9	9,520	16,150
19	Intact Gneiss	158	3.076	42.7	21,420	20,490
20	Vertical Healed Joint	167	2.919	42.8	8,760	20,300
21	Healed Incipient Fracture	175	2.864	44.9	24,360	19,700
Average	of Specimens with Healed	d	2.832	43.8	9,140	18,225
	e of Intact Specimens and ens with Healed Practures	(9)	2.794	48.4	24,630	17,280

4. The Schmidt hammer test was not conducted on several specimens due to possibility of breakage. Fractures are defined herein as irregular breaks and joints as relatively plane broken surfaces. Compressive wave velocities exhibited by the material from this hole were quite variable, possibly due to the presence of frequent garnet concentrations rather than general incompetence of the gneiss itself.

Moduli of deformation

5. Representative specimens were selected for dynamic and static moduli of deformation tests. The dynamic moduli were determined by the proposed ASTM method for determination of ultrasonic pulse velocities and elastic constants of rock. The static moduli were computed from theory of elasticity by use of strain measurements taken from electrical resistance strain gages affixed to the specimens, Nos. 3, 15, and 21. Stress-strain curves are given in plates 1, 2, and 3. All specimens were cycled at 10,000 psi. Static moduli for specimens 3 and 15 were computed at 50 percent of ultimate strength. Static moduli for specimen 21 were, due to erratic behavior of the horizontal strain gages, computed at 30 percent of ultimate strength. Results are given below.

Moduli	us, pei x	106	Shear	Poisson's
Young's	Bulk	Shear	Velocity, fps	Ratio
	Dyna	nic Tests		
8.8	6.9	3.4	9660	0.29
9.6	6.1	3.9	9860	0.24
10.2	9.8	3.8	9990	0.33
	Stat	ic Tests		
8.5	5.7	3.4		0,25
12.2	8.4	4.8		0.26
9.1	5.7	3.7		0.24
	8.8 9.6 10.2	Young's Bulk Dynam 8.8 6.9 9.6 6.1 10.2 9.8 Stat: 8.5 5.7 12.2 8.4	Dynamic Tests 8.8 6.9 3.4 9.6 6.1 3.9 10.2 9.8 3.8 Static Tests 8.5 5.7 3.4 12.2 8.4 4.8	Young's Bulk Shear Velocity, fps Dynamic Tests 8.8 6.9 3.4 9660 9.6 6.1 3.9 9860 10.2 9.8 3.8 9990 Static Tests 8.5 5.7 3.4 12.2 8.4 4.8

All of the rock tested herein is apparently rather rigid material, exhibiting little hysteresis.

Conclusions

6. The core received from hole P-CR-81 was somewhat variable, identified by the field log received with the core as reddish-gray to gray granitic gneiss and chloritic hornblende gneiss. Several specimens contained healed, incipient fractures; two contained healed joints. The presence of healed, incipient fractures appeared to have no effect on uniaxial compressive strength; the intact and fractured material exhibited an average compressive strength of 24,630 psi. The material containing healed joints was found to be considerably weaker than the remainder of the rock, possibly due to the angle of inclination and the planeness of the joints.

Property	Specimens Containing Joints	Intact Specimens and Specimens with Healed Practures
Specific Gravity	2.832	2.794
Schmidt Number	43.8	48.4
Compressive Strength, psi	9,140	24,630
Compressional Wave Velocity, fps	18,225	17,280
Static Young's Modulus, pai x 106	9.1	10.4

FLATE F1

PLATE F2

PLATE F3

REFERENCES

- 1. D. U. Deere and R. P. Miller; "Engineering Classification and Index Properties for Intact Rock"; Technical Report No. AFWL-TR-65-116, December 1966; Air Force Weapons Laboratory, Kirtland Air Force Base, N. Mex.; Unclassified.
- 2. U. S. Army Engineer Waterways Experiment Station, CE; "Hand-book for Concrete and Cement"; August 1949 (with quarterly supplements); Vicksburg, Miss.; Unclassified.
- 3. Sydney P. Clark, Jr., editor; "Handbook of Physical Constants"; 1966; The Geological Society of America, Inc., New York, N. Y.; Revised Edition; Unclassified.
- 4. Leonard Obert and W. I. Duvall; "Rock Mechanics and the Design of Structures in Rock"; 1967; John Wiley and Sons, Inc., New York, N. Y.; Unclassified.
- 5. Charles Schuchert; "Stratigraphy of the Eastern and Central United States"; 1943, Page 28; John Wiley and Sons, Inc., New York, N. Y.; Unclassified.
- 6. R. L. Folk; "Petrology of Sedimentary Rocks"; 1968, Page 124; Hemphill's Book Store, University Station, Tex.; Unclassified.

DISTRIBUTION LIST FOR MP C-70-7

Address	No. of Copies
Commander, Space and Missile Systems Organization	20
ATTN: CPT R. G. Tart, Jr. (SMQHF-2) Norton AFB, Calif. 92409	
Aerospace Corporation ATTN: N. P. Langley San Bernardino Operations, P. O. Box 7308 San Bernardino, Calif. 92402	1
Air Force Weapons Laboratory ATTN: Library (WLDC) CPT K. Spalvines Kirtland AFB, N. Mex. 87117	1
TRW, Inc. ATTN: Mr. F. Pieper Mr. J. Steltenpohl Norton AFB, Calif. 92409	2
Bechtel Corporation 2254 E. 49th Street ATTN: Mr. Robert Farwell Vernon, Calif. 90058	5
Physics International Company 2700 Merced Street ATTN: Dr. Fred Finlayson San Leandro, Calif. 94577	1

Unclassified DOCUMENT CONTROL DATA - R & D of abstract and indexing annelation must i U. S. Army Engineer Waterways Experiment Station Unclassified Vicksburg, Miss. TESTS OF ROCK CORES, PLATTSBURCH STUDY AREA, NEW YORK . Final repart, Robert W. Crisp b. NO. OF REFS June 1979 110 Miscellaneous Paper C-70-7 WES-MP-C-70-OTHER REPORT NOIS) (Any other numbers that may be assigned have prior Approved for Public Release; Distribution Unlimited Space and Missile Systems Organization U. S. Air Force Systems Command . ABSTRACT Laboratory tests were conducted on representative rock core specimens received from six core holes located in Clinton, Essex, Franklin, and Warren Counties near Plattsburgh Air Force Base, New York. The results of these tests were used to gage the quality and uniformity of the rock to depths of 200 feet below ground surface. The core was petrographically identified as predominately quartz sandstone and granite gneiss with relatively small amounts of amphibolite and mica schist. Schmidt hardness, specific gravities, compressional wave velocities, and ultimate uniaxial compressive strengths varied considerably throughout the area, depending primarily on rock type, bedding, and nature and degree of fracturing and/or banding present, if any. A hole-to-hole evaluation of the area, based on physical properties exhibited, indicates that the sandstone yielded by Holes P-CR-64 and P-CR-72 was generally competent rock, provided anisotropy is not a disqualifying quality. The granite gneisses tested from Holes P-CR-22 and P-CR-81 would also, in spite of the presence of some material of marginal quality, appear to be relatively competent rock. The gneiss received from Holes P-CR-8 and P-CR-46 contained significant amounts of incompetent material. More extensive investigations will be required in order to accurately assess the areas under consideration.

DD POR 1473 REPLACES DO PORM 1475, 1 JAN 64, W

038100 4B

Unclassified

Unclassified Security Classification								
•	KEY WORDS		LINK A		LINK 6		LINK C	
		ROL	E WT	ROLE	WT	ROLE	WT	
Plattsburgh ar	ea, N. Y.							
Rock cores								
Rock propertie	s							
Rock tests								
				1				
			1					
			1					
			1					

Unclassified
Security Classification