Arquitetura de Computadores

PROF. ISAAC

Mecanismos de Interrupção e Exceção

Interrupções externa

Interrupções

- Acontecem quando o controlador recebe um sinal requisitando a execução de uma sub-rotina específica;
- > O controlador troca a execução do código principal pelo da interrupção e depois retorna ao código principal

Interrupções

> Temos 4 tipos de interrupções:

- o Interrupção externa;
- Temporizador (timer);

Contador;

Serial.

Interrupções do 8051

2 temporizadores/contadores: TF0 e TF1;

- > 2 interrupções externas: INT0 e INT1;
- > 1 comunicação serial: SI

Configuração das interrupções

É necessário usar registradores especiais:

- > IE: Interrupt Enable Register;
- > IP: Interrupt Priority Register;
- > TCON: Timer/Counter Control Registrer;
- > TMOD: Timer/Counter Modes Register;
- > TLx e THx: registradores de timers;

Registrador: IE (Interrupt Enable)

O registrador IE (Interrupt Enable) permite um controle completo e individual sobre a habilitação e a desabilitação das interrupções.

Existe um bit de habilitação geral, denominado **EA**, sendo que as interrupções só podem acontecer se esse bit estiver em 1.

bit	7	6	5	4	3	2	1	0
	IE.7	IE.6	IE.5	IE.4	IE.3	IE.2	IE.1	IE.0
(IE) =	EA		ET2	ES	ET1	EX1	ET0	EX0

Registrador: IE (Interrupt Enable)

Descrição dos bits do registrador IE, responsável pela habilitação e desabilitação das interrupções.

Registrador: IE (Interrupt Enable)

bit	7	6	5	4	3	2	1	0
					IE.3			
(IE) =	EA		ET2	ES	ET1	EX1	ET0	EX0

Símbolo	Posição	Função
EA	IE.7	Desabilitador geral de todas as interrupções
		0: nenhuma interrupção é vetorizada
		1: cada fonte de interrupção é individualmente habilitada ou desabilitada por setar ou limpar seu correspondente <i>bit</i> habilitador
-	IE.6	Reservada
ET2	IE.5	Habilita/desabilita a fonte de interrupção de overflow ou captura do timer/contador 2
ES	IE.4	Habilita/desabilita a fonte de interrupção da interface do canal de comunicação serial
ET1	IE.3	Habilita/desabilita a fonte de interrupção de overflow do timer/contador 1
EX1	IE.2	Habilita/desabilita a fonte de interrupção externa 1
ET0	IE.1	Habilita/desabilita a fonte de interrupção de overflow do timer/contador 0
EX0	IE.0	Habilita/desabilita a fonte de interrupção externa 0

Registrador: IP (Interrupt Priority)

A prioridade das interrupções é definida pelo registrador IP (Interrupt Priority). Estão disponíveis dois níveis de prioridade: o alto e o baixo.

Descrição dos bits do registrador IP, responsável por especificar a prioridade de cada interrupção.

Registrador: IP (Interrupt Priority)

bit	7	6	5	4	3	2	1	0
	IP.7	IP.6	IP.5	IP.4	IP.3	IP.2	IP.1	IP.0
IP=	-	-	PT2	PS	PT1	PX1	PT0	PX0

Bit de prioridade = 1 ⇒ atribui alta prioridade;

Bit de prioridade = 0 ⇒ atribui baixa prioridade;

Símbolo	Posição	Função
-	IP.7	Reservada
-	IP.6	Reservada
PT2	IP.5	Bit de prioridade da fonte de interrupção do timer/contador 2
PS	IP.4	Bit de prioridade da fonte de interrupção do canal de comunicação serial
PT1	IP.3	Bit de prioridade da fonte de interrupção do timer/contador 1
PX1	IP.2	Bit de prioridade da fonte de interrupção externa 1
PT0	IP.1	Bit de prioridade da fonte de interrupção do timer/contador 0
PX0	IP.0	Bit de prioridade da fonte de interrupção externa 0

Registrador: TCON (Timer Controller)

Registrador TCON, onde se especifica se as interrupções externas trabalharão por nível ou por flanco.

Registrador: TCON (Timer Controller)

Os quatro *bits* menos significativos do registrador de controle dos *timers*/contadores chamado de TCON gerenciam o funcionamento das interrupções externas.

bits	7	6	5	4	3	2	1	0
	TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

São 2 entradas de interrupção externas:

- ➤ interrupção 0 (P3.2/ INT0)
- ➤ interrupção 1 (P3.3/ INT1)

Flag ITO do TCON

bits	7	6	5	4	3	2	1	0
	TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

ITO (**TCON.0**): especifica se o sinal elétrico vindo da interface externa ativa a interrupção por nível lógico zero ou por borda de descida, respectivamente.

Flag IE0 do TCON

bits	7	6	5	4	3	2	1	0
	TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

Caso a interrupção externa 0 for programada para gerar interrupções quando o seu nível lógico for igual a zero, esse *bit* não é resetado quando a sub-rotina de atendimento a essa fonte de interrupção é atendida e deve ser resetado na rotina de atendimento a essa fonte de interrupção.

Diagrama das interrupções

Endereço de desvio das interrupções

Fonte de interrupção	Nome da fonte de interrupção	Endereço vetor
RESET	Reset	0000h
IE0	Fonte de interrupção externa 0	0003h
TF0	Fonte de interrupção do timer/contador 0	000Bh
IE1	Fonte de interrupção externa 1	0013h
TF1	Fonte de interrupção do timer/contador 1	001Bh
RI + TI	Fonte de interrupção do canal de comunicação serial	0023h
TF2 + EXF2	Fonte de interrupção do timer/contador 2 + externa 2	002Bh

Passos para configurar e escrever rotina de interrupções

Em adicional, para as interrupções externas, os pinos INT0 e INT1 (P3.2 e P3.3) devem ficar inicialmente em 1 lógico (as interfaces devem ser projetadas para inicialmente operarem em 1 lógico e quando tiver alguma ocorrência, ela deve ir para 0 lógico), e dependendo se a fonte de interrupção é ativada por nível ou borda de descida, os *bits* IT0 e IT1 no registrador TCON podem precisar ser setados para 1 lógico (IT0 e IT1=0 \Rightarrow ativado por nível e IT0 e IT1=1 \Rightarrow ativado por transição).

Exemplo de Interrupção Externa

Registrador: TCON (Timer Controller)

Os quatro *bits* menos significativos do registrador de controle dos *timers*/contadores chamado de TCON gerenciam o funcionamento das interrupções externas.

bits	7	6	5	4	3	2	1	0
	TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

São 2 entradas de interrupção externas:

- ➤ interrupção 0 (P3.2/ INT0)
- ➤ interrupção 1 (P3.3/ INT1)

Pinagem do 8051

Pino	Descrição
P3.2 (#INTO)	Usado como entrada para o pedido de interrupção 0.
P3.3 (#INT1)	Usado como entrada para o pedido de interrupção 1.
P3.4 (T0)	Entrada de contagem para CTO, quando operando no modo contador.
P3.5 (T1)	Entrada de contagem para CT1, quando operando no modo contador.

Crie um programa com interrupção externa INTO (pino P3.2) que realize o complemento do pino P1.0 cada vez que a interrupção for acionada.

SETB ITO

SJMP\$

Solução:

org 0000h **LJMP START** ;Pula incondicionalmente para START org 0003h INT_TEMP0: **CPL P1.0** ;complementa P1.0 RETI ;Retorna da interrupção org 0080h **START:** SETB EA ;Habilita as interrupções SETB EXO ;Habilita a interrupção 0

;Trabalhando com borda de descida

;Laço de repetição

Solução:

```
org 0000h
                             ;Pula incondicionalmente para START
     LJMP START
org 0003h
INT_0:
     CPL P1.0
                             ;complementa P1.0
                             ;Retorna da interrupção
     RETI
org 0080h
START:
                             ;Habilita as interrupções
     SETB EA
     SETB EXO
                             ;Habilita a interrupção 0
     SETB ITO
                             ;Trabalhando com borda de descida
     SJMP$
                             ;Laço de repetição
```

Pedido	Interrupção	Endereço	
IE0	Externa 0	0003H	
TF0	Temporizador 0	000BH	
IE1	Externa 1	0013H	
TF1	Temporizador 1	001BH	
TI ou RI	Serial	0023H	

Solução:

org 0000h

LJMP START ;Pula incondicionalmente para START

org 0003h

INT_0:

CPL P1.0 ;complementa P1.0

RETI ;Retorna da interrupção

org 0080h

START:

SETB EA ;Habilita as interrupções

SETB EX0 ;Habilita a interrupção 0

SETB ITO ;Trabalhando com borda de descida

SJMP\$;Laço de repetição

;Pula incondicionalmente para START

Solução:

org 0000h

LJMP START

org 0003h

INT 0:

CPL P1.0

RETI

org 0080h

START:

SETB EA

SETB EX0

;Habilita as interrupções

complementa P1.0

;Habilita a interrupção 0

;Trabalhando com borda de descida

;Retorna da interrupção

SETB IT0

SJMP \$;Laço de repetição

SETB ITO

SJMP\$

Solução:

org 0000h **LJMP START** ;Pula incondicionalmente para START org 0003h INT_TEMP0: **CPL P1.0** ;complementa P1.0 RETI ;Retorna da interrupção org 0080h **START:** SETB EA ;Habilita as interrupções SETB EXO ;Habilita a interrupção 0

;Trabalhando com borda de descida

;Laço de repetição

Exemplo de Interrupção Externa

Para o esquema apresentado na figura e considerando a chave SW0 e SW1, INT0 (pino P3.2) que realize o complemento do pino P1.0, INT1 (pino P3.3) que realize o complemento do pino P1.7.

Solução:

```
org 0000h
     L.IMP START
                                ;Pula incondicionalmente para START
org 0003h
INT TEMP0:
     CPL P1.0
                                ;complementa P1.0
     CLR IE0
     RETI
                                ;Retorna da interrupção
org 0013h
INT TEMP1:
     CPL P1.7
                                ;complementa P1.7
     CLR IE1
     RETI
                                ;Retorna da interrupção
org 0080h
START:
     SETB EA
                                ;Habilita as interrupções
     SETB EXO
                                ;Habilita a interrupção 0
                                ;Habilita a interrupção 1
     SETB EX1
     SJMP$
                                ;Laço de repetição
```

LJMP START

CPL P1.0

CLR IE0

CPL P1.7

CLR IE1

SETB EA

SETB EX0

SETB EX1

SJMP\$

RETI

RETI

Solução:

org 0000h

org 0003h

org 0013h

org 0080h START:

INT TEMP1:

INT TEMP0:

Pedido	Interrupção	Endereço	
IE0	Externa 0	0003H	
TF0	Temporizador 0	000BH	
IE1	Externa 1	0013H	
TF1	Temporizador 1	001BH	
TI ou RI	Serial	0023H	

Solução:

org 0000h

LJMP START ;Pula incondicionalmente para START

;complementa P1.0

;complementa P1.7

;Retorna da interrupção

;Retorna da interrupção

org 0003h

INT_TEMP0:

CPL P1.0

CLR IE0

RETI

org 0013h

INT_TEMP1:

CPL P1.7

CLR IE1

RETI

org 0080h

START:

SETB EA ;Habilita as interrupções

SETB EX0 ;Habilita a interrupção 0

SETB EX1 ;Habilita a interrupção 1

SJMP\$;Laço de repetição

Registrador: TCON Exemplo 1 TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 → 0 - Nível / 1 - Borda → Flag Externa 0 **▶** 0 - Nível / 1 - Borda → Flag Externa 1 → Pára/Corre Temporizador 0 Solução: **→** Overflow Temporizador 0 **→** Pára/Corre Temporizador 1 → Overflow Temporizador 1 org 0000h ;Pula incondicionalmente para START **LJMP START** org 0003h **INT_TEMP0: CPL P1.0** :complementa P1.0 **CLR IE0** ¿Zera a Flag da interrupção RETI ;Retorna da interrupção org 0013h **INT TEMP1: CPL P1.7** ;complementa P1.7 CLR IE1 ¿Zera a Flag da interrupção **RETI** ;Retorna da interrupção org 0080h **START: SETB EA** ;Habilita as interrupções

SETB EX0 ;Habilita a interrupção 0
SETB EX1 ;Habilita a interrupção 1
SJMP\$;Laço de repetição

Pedido	Interrupção	Endereço	
IE0	Externa 0	0003H	
TF0	Temporizador 0	000BH	
IE1	Externa 1	0013H	
TF1	Temporizador 1	001BH	
TI ou RI	Serial	0023H	

Solução:

org 0000h

LJMP START

;Pula incondicionalmente para START

org 0003h

INT TEMP0:

CPL P1.0

;complementa P1.0

CLR IE0

RETI

:Retorna da interrupção

org 0013h

INT_TEMP1:

CPL P1.7

;complementa P1.7

CLR IE1

RETI

;Retorna da interrupção

org 0080h

START:

SETB EA ;Habilita as interrupções

SETB EX0 ;Habilita a interrupção 0

SETB EX1 ;Habilita a interrupção 1

SJMP\$;Laço de repetição

Registrador: TCON

;complementa P1.0

¿Zera a Flag da interrupção

;Retorna da interrupção

;Pula incondicionalmente para START

Solução:

org 0000h

LJMP START

org 0003h

INT_TEMP0:

CPL P1.0

CLR IE0

RETI

org 0013h

INT TEMP1:

CPL P1.7 ;complementa P1.7

CLR IE1 ;Zera a Flag da interrupção

RETI ;Retorna da interrupção

org 0080h

START:

SETB EA ;Habilita as interrupções

SETB EX0 ;Habilita a interrupção 0

SETB EX1 ;Habilita a interrupção 1

SJMP\$;Laço de repetição

Solução:

```
org 0000h
     LJMP START
                                ;Pula incondicionalmente para START
org 0003h
INT TEMP0:
     CPL P1.0
                                ;complementa P1.0
     CLR IE0
     RETI
                                ;Retorna da interrupção
org 0013h
INT TEMP1:
     CPL P1.7
                                ;complementa P1.7
     CLR IE1
     RETI
                                ;Retorna da interrupção
org 0080h
START:
     SETB EA
                                ;Habilita as interrupções
     SETB EX0
                                ;Habilita a interrupção 0
     SETB EX1
                                ;Habilita a interrupção 1
     SJMP$
                                ;Laço de repetição
```

Exemplo de Interrupção Externa

Para o esquema apresentado na figura e considerando a chave SW0 e SW1, INT0 (pino P3.2) que realize o complemento do pino P1.0, INT1 (pino P3.3) que realize o complemento do pino P1.7.

Faça com que os LEDs no P1.0 e P1.7 só sejam acionados quando o botão é pressionado e solto.

Para resolver esse problema, temos que utilizar por borda

Solução:

```
org 0000h
     L.IMP START
                                ;Pula incondicionalmente para START
org 0003h
INT TEMP0:
     CPL P1.0
                                complementa P1.0
     RETI
                                ;Retorna da interrupção
org 0013h
INT_TEMP1:
     CPL P1.7
                                ;complementa P1.7
                                ;Retorna da interrupção
     RETI
org 0080h
START:
     SETB EA
                                ;Habilita as interrupções
     SETB EX0
                                ;Habilita a interrupção 0
     SETB EX1
                                ;Habilita a interrupção 1
     SETB ITO
                                ;Trabalhando com borda de descida
     SETB IT1
                                ;Trabalhando com borda de descida
     SJMP$
                                ;Laço de repetição
```

Bibliografia

ZELENOVSKY, R.; MENDONÇA, A. Microcontroladores Programação e Projeto com a Família 8051. MZ Editora, RJ, 2005.

Gimenez, Salvador P. Microcontroladores 8051 - Teoria e Prática, Editora Érica, 2010.