### Министерство образования Республики Беларусь

### Учреждение образования

# БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет информационных технологий и управления

#### ОТЧЕТ

### по лабораторной работе « ИНТЕРПОЛИРОВАНИЕ АЛГЕБРАИЧЕСКИМИ МНОГОЧЛЕНАМИ»

Студенты гр. 121701 Проверил Липский Р.В. Самсонов П.А.

## Вариант 7

| № | f(x) | [ <i>a</i> , <i>b</i> ] |
|---|------|-------------------------|
| 7 | ln x | [1,3]                   |

### Ход работы

Для этого:

Out[41]//MatrixForm=

$$\begin{pmatrix}
1 & 0. \\
\frac{3}{2} & 0.405465 \\
2 & 0.693147 \\
\frac{5}{2} & 0.916291 \\
3 & 1.09861
\end{pmatrix}$$

Таблица значений х и у (таблица начальных точек) Таблица разностей по рекуррентной формуле с помощью циклов:

```
In[44]:= Array[difftab, {n+1, n+1}, {0, 0}];
        For [k = 1, k \le n, k++,
           For [i = n, i \ge n - k, i - -, difftab[i, k] = ""]];
        For [i = 0, i \le n, i++, difftab[i, 0] = ydata[i]];
        For k = 1, k \le n, k++
           For i = 0, i \le n - k, i++,
            difftab[i, k] = \frac{difftab[i+1, k-1] - difftab[i, k-1]}{xdata[i+k] - xdata[i]} \Big] \Big];
        tab12 = Array[difftab, {n+1, n-1}, {0, 0}];
        PaddedForm[TableForm[tabl2], {6, 5}]
Out[49]//PaddedForm=
         0.00000
                     0.81093 -0.23557
                     0.57536
         0.40547
                                  -0.12908
                     0.44629 -0.08164
         0.69315
         0.91629
                       0.36464
         1.09861
```

Найден интерполяционный многочлен  $N_n(x)$  для интерполирования вперед:

с помощью встроенной функции **InterpolatingPolinomial** получаем решение:

```
In[33]:= data = \left\{\{1,0\}, \left\{\frac{3}{2},0.405465\right\}, \left\{2,0.693147\right\}, \left\{\frac{5}{2},0.916291\right\}, \left\{3,1.09861\right\}\right\}

inpln := InterpolatingPolynomial[data, x];

Collect[inpln, x]

Out[33]= \left\{\{1,0\}, \left\{\frac{3}{2},0.405465\right\}, \left\{2,0.693147\right\}, \left\{\frac{5}{2},0.916291\right\}, \left\{3,1.09861\right\}\right\}

Out[34]= -1.52492 + 2.2403 x - 0.904498 x<sup>2</sup> + 0.208809 x<sup>3</sup> - 0.019688 x<sup>4</sup>
```

Выведены графики функции f(x), интерполяционного многочлена и абсолютной величины погрешности интерполирования на отрезках [a,b],

[a-h, b+h], [a-2h,b+2h], на которых подписи у графиков означают соответствующие функции  $(\log(x) - \ln(x), \operatorname{nwtn}(x_{-}) - \operatorname{интерполяционный})$  многочлен Ньютона):



Реализуем алгоритм вычисления интерполяционного многочлена N (x) n по схеме Горнера:

```
In[37]:= Pln = {}; P[n + 1] = 0; For [i = n, i \geq 0, i - -, P[i] = difftab [0, i] + (x - xdata[i]) * P[i + 1]; Pln = Append [Pln, P[i]];] Print [ColumnForm [Pln]]  -0.0196853 \\ 0.0709927 - 0.0196853 \left(-\frac{5}{2} + x\right) \\ -0.235566 + \left(0.0709927 - 0.0196853 \left(-\frac{5}{2} + x\right)\right) (-2 + x) \\ 0.81093 + \left(-0.235566 + \left(0.0709927 - 0.0196853 \left(-\frac{5}{2} + x\right)\right) (-2 + x)\right) \left(-\frac{3}{2} + x\right) \\ 0. + \left(0.81093 + \left(-0.235566 + \left(0.0709927 - 0.0196853 \left(-\frac{5}{2} + x\right)\right) (-2 + x)\right) \left(-\frac{3}{2} + x\right)\right) (-1 + x)
```

Вычислены по схеме Горнера значения интерполяционного многочлена  $N_n(x)$  в узлах и точках между узлами интерполирования

 ${\tt MatrixForm[N[XDAT]] \times MatrixForm[YDAT] \times MatrixForm[nwtnDAT] \times MatrixForm[MR]}$ 

|          | / 0. \       | ( 0. )    | / O. )    | ( 1. \ |
|----------|--------------|-----------|-----------|--------|
|          | 0.000815826  | 0.0479743 | 0.0487902 | 1.05   |
|          | 0.00124664   | 0.0940635 | 0.0953102 | 1.1    |
|          | 0.00140122   | 0.138361  | 0.139762  | 1.15   |
|          | 0.00136554   | 0.180956  | 0.182322  | 1.2    |
|          | 0.0012069    | 0.221937  | 0.223144  | 1.25   |
|          | 0.000977402  | 0.261387  | 0.262364  | 1.3    |
|          | 0.000716647  | 0.299388  | 0.300105  | 1.35   |
|          | 0.00045399   | 0.336018  | 0.336472  | 1.4    |
|          | 0.000210402  | 0.371353  | 0.371564  | 1.45   |
|          | 0.           | 0.405465  | 0.405465  | 1.5    |
|          | 0.000168661  | 0.438424  | 0.438255  | 1.55   |
|          | 0.000291509  | 0.470295  | 0.470004  | 1.6    |
|          | 0.000368038  | 0.501143  | 0.500775  | 1.65   |
|          | 0.000400531  | 0.531029  | 0.530628  | 1.7    |
|          | 0.000393391  | 0.560009  | 0.559616  | 1.75   |
|          | 0.000352575  | 0.588139  | 0.587787  | 1.8    |
|          | 0.000285092  | 0.615471  | 0.615186  | 1.85   |
|          | 0.000198583  | 0.642052  | 0.641854  | 1.9    |
|          | 0.000100943  | 0.66793   | 0.667829  | 1.95   |
| Out[76]= | 0.           | 0.693147  | 0.693147  | 2.     |
| ()       | 0.0000967723 | 0.717743  | 0.71784   | 2.05   |
|          | 0.000182504  | 0.741755  | 0.741937  | 2.1    |
|          | 0.000251151  | 0.765217  | 0.765468  | 2.15   |
|          | 0.000297689  | 0.78816   | 0.788457  | 2.2    |
|          | 0.00031829   | 0.810612  | 0.81093   | 2.25   |
|          | 0.000310474  | 0.832599  | 0.832909  | 2.3    |
|          | 0.000273248  | 0.854142  | 0.854415  | 2.35   |
|          | 0.00020723   | 0.875262  | 0.875469  | 2.4    |
|          | 0.000114761  | 0.895973  | 0.896088  | 2.45   |
|          | 0.           | 0.916291  | 0.916291  | 2.5    |
|          | 0.000130982  | 0.936224  | 0.936093  | 2.55   |
|          | 0.000270122  | 0.955782  | 0.955511  | 2.6    |
|          | 0.000407292  | 0.974967  | 0.97456   | 2.65   |
|          | 0.000530236  | 0.993782  | 0.993252  | 2.7    |
|          | 0.000624502  | 1.01223   | 1.0116    | 2.75   |
|          | 0.000673395  | 1.03029   | 1.02962   | 2.8    |
|          | 0.000657921  | 1.04798   | 1.04732   | 2.85   |
|          | 0.000556747  | 1.06527   | 1.06471   | 2.9    |
|          | 0.000346153  | 1.08215   | 1.08181   | 2.95   |
|          | ( 0. )       | 1.09861   | 1.09861   | 3.     |

#### Результаты

1 колонка – погрешность, 2 – интерполяционный многочлен, 3 – у, 4 – х. Максимальной погрешностью будет являться значение 0.00140122.

Построен график абсолютной разности между значениями функции ln(x) и интерполяционного многочлена  $N_{n}(x)$  на заданном отрезке и вычислена величина погрешности интерполирования на данном отрезке:



Максимальная величина погрешности на отрезке достигается для x=1.66308 и равна 0.00140723.

Найдена оценка погрешности интерполирования на отрезке [1, 2] с помощью априорной формулы оценки погрешности.

Априорная оценка формулой оценки погрешности интерполирования на отрезке [1, 3]:

Найдено максимальное значение произведения  $\prod_{i=0}^{4} (x-x_i)$ , а также построен график этой функции:

In[54]:= 
$$f[x_{-}] := \prod_{i=0}^{n} (x - xdata[i])$$
  
Collect[f[x], x]  
Plot[f[x], {x, 1, 3}, PlotLabels  $\rightarrow$  "Expressions"]



Тогда 
$$|f(x)-P_4(x)| \leq \frac{3}{5!}*\prod_{i=0}^4 \left(x-x_i\right) \leq 0.477121*0.113482=0.541446453$$

Максимальные величины погрешностей для n = 6, 8, 10 равны:

6: 0.000113586, x -> 1.10096

8: 0.0000107706, x -> 1.07215

10: 1.10248\*10^-6, x -> 1.06452

Изучив полученные данные, можно сделать вывод, что при увеличении точек уменьшается погрешность интерполирования.

Это можно заметить и на графиках абсолютной разности между значениями функции ln(x) и интерполяционного многочлена  $N_n(x)$  на заданном отрезке:



График абсолютной разности между значениями функции ln(x) и интерполяционного многочлена  $N_n(x)$  при n=6



График абсолютной разности между значениями функции ln(x) и интерполяционного многочлена  $N_n(x)$  при n=8



График абсолютной разности между значениями функции ln(x) и интерполяционного многочлена  $N_n(x)$  при n=10

Исследована зависимость погрешности интерполирования от числа и взаимного расположения узлов и от гладкости функци: при увеличении точек уменьшается погрешность интерполирования.