

Equivariant Graph Mechanics Networks with Constraints

Wenbing Huang*1, Jiaqi Han*2, Yu Rong3, Tingyang Xu3, Fuchun Sun2, Junzhou Huang4

AIR, Tsinghua University¹, Tsinghua University², Tencent AI Lab³, University of Texas at Arlington⁴, Equal Contributions^{*}

Introduction

- > TL; DR: We design a graph neural network that permits both geometrical constraints and Euclidean equivariance.
- ➤ Reasoning about the relations and dynamics of interacting objects is a core aspect of human intelligence.
- ➤ We consider the constrained N-body system by involving two crucial inductive biases:
- Constraint satisfaction
- Equivariance

Graph Mechanics Networks

> 1. Constraint Satisfaction

Cartesian coordinate system

$\lambda_{01}, \lambda_{02}$	2 variables
$s. t. \ \boldsymbol{x}_{01} - \boldsymbol{x}_{01}\ = L$	1 constraint
x_{00}, x_{01}, x_{02} $s.t. x_{00} - x_{01} = L$ $ x_{00} - x_{02} = L$	3 variables 2 constraints

Generalized coordinate system

$oldsymbol{q}_0$, $oldsymbol{ heta}_0$	2 variables
	No constraint
$\boldsymbol{q}_0, \boldsymbol{\theta}_{01}, \boldsymbol{\theta}_{02}$	3 variables
40, 501, 502	No constraint

➤ We propose to map the input Cartesian space into the generalized coordinate system for sticks and hinges.

> The flowchart of GMN:

Generalized coordinates q_k^{l-1} , \dot{q}_k^{l-1}

Forward Kinematics: $x'_i, v'_i = FK(q_k, \dot{q_k})$

Cartesian coordinates $x_i^{l-1}, v_i^{l-1}(\dot{x}_i^{l-1})$

Interaction Force: f_i , $h_i = \sum_{j \in N_i} \varphi_f(x_i, x_j, h_i, h_j)$

Interaction force f_i^l

Inverse Dynamics: $\ddot{q}_k = \varphi_q(f_i, x_{ki}, v_{ki})$

Generalized acceleration \ddot{q}_k^l

Coordinate Update: $q_k = q_k + \dot{q}_k$, $\dot{q}_k = \psi \dot{q}_k + \ddot{q}_k$

Generalized coordinates q_k^l , \dot{q}_k^l

- > FK (Forward Kinematics):
- Hand-crafted FK: Physically design the exact FK.
- Learnable FK: Learn the FK with GMN layers.

▶ 2. Equivariant Message Passing

We derive a universal form of orthogonality-equivariant functions on matrix inputs. For a stack of dim-d vectors $\mathbf{Z} \in \mathbb{R}^{d \times m}$,

$$\varphi(\mathbf{Z}) = \mathbf{Z}\sigma(\mathbf{Z}^{\mathsf{T}}\mathbf{Z})$$

We present the following theorem, implying the universality.

If $m \ge d$ and $\operatorname{rank}(Z) = d$, then for any continuous orthogonality-equivariant function $\hat{\varphi}(Z)$, there must exist an MLP σ_w satisfying $\|\varphi(Z) - \hat{\varphi}(Z)\|$ for arbitrarily small error ϵ .

We apply this formulation to ϕ and ρ , ensuring equivariance.

$$\ddot{q}_k = \sum_{i \in O_k} \varphi_q(f_i, x_{ki}, v_{ki})$$
 (Generalized acceleration)

 $\ddot{x}_k = \rho(\ddot{q}_k, x_{ki}, f_i)$ (Learnable FK)

Experiments

We evaluate the efficacy of GMN in three scenarios.

> 1. Simulation dataset: Constrained N-body

Table 1: Prediction error ($\times 10^{-2}$) on various types of systems. The header of each column "p, s, h" denotes the scenario with p isolated particles, s sticks and h hinges. Results averaged across 3 runs.

	Train = 500				Train = 1500					
	1,2,0	2,0,1	3,2,1	0,10,0	5,3,3	1,2,0	2,0,1	3,2,1	0,10,0	5,3,3
Linear	8.23 ± 0.00	$7.55{\scriptstyle\pm0.00}$	$9.76{\scriptstyle\pm0.00}$	11.36±0.00	11.62±0.00	8.22±0.00	7.55 ± 0.00	9.76 ± 0.00	11.36±0.00	11.62 ± 0.00
GNN	5.33 ± 0.07	$5.01{\scriptstyle\pm0.08}$	7.58 ± 0.08	9.83 ± 0.04	9.77 ± 0.02	3.61±0.13	3.23 ± 0.07	4.73 ± 0.11	7.97 ± 0.44	7.91 ± 0.31
TFN	11.54 ± 0.38	$9.87{\scriptstyle\pm0.27}$	$11.66 \!\pm\! 0.08$	$13.43 \!\pm\! _{0.31}$	12.23 ± 0.12	5.86±0.35	4.97 ± 0.23	$8.51{\scriptstyle\pm0.14}$	$11.21 {\scriptstyle \pm 0.21}$	10.75 ± 0.08
SE(3)-Tr.	5.54 ± 0.06	$5.14{\scriptstyle\pm0.03}$	8.95 ± 0.04	$11.42{\scriptstyle\pm0.01}$	$11.59{\scriptstyle\pm0.01}$	5.02±0.03	4.68 ± 0.05	$8.39{\scriptstyle\pm0.02}$	$10.82{\scriptstyle\pm0.03}$	10.85 ± 0.02
RF	3.50 ± 0.17	3.07 ± 0.24	5.25 ± 0.44	7.59 ± 0.25	7.73 ± 0.39	2.97±0.15	2.19 ± 0.11	3.80 ± 0.25	5.71 ± 0.31	5.66 ± 0.27
EGNN	2.81 ± 0.12	$\underline{2.27}{\scriptstyle\pm0.04}$	4.67 ± 0.07	4.75 ± 0.05	4.59 ± 0.07	2.59 ± 0.10	1.86 ± 0.02	2.54 ± 0.01	2.79 ± 0.04	3.25 ± 0.07
EGNNReg	2.94 ± 0.01	$2.66{\scriptstyle\pm0.06}$	$\overline{7.01}{\scriptstyle\pm0.34}$	5.03 ± 0.08	6.31 ± 0.04	2.74 ± 0.08	1.58 ± 0.03	2.62 ± 0.05	$\overline{3.03}_{\pm 0.07}$	3.07 ± 0.04
GMN	1.84±0.02	2.02±0.02	2.48 ±0.04	2.92±0.04	4.08 ±0.03	1.68±0.04	1.47±0.03	2.10±0.04	2.32±0.02	2.86±0.01

GMN performs the best over multiple types of systems.

GMN is highly data-efficient. The prediction error remains very low even with only 500 training samples.

> 2. Molecular Dynamics: MD17

Table 4: Prediction error ($\times 10^{-2}$) on MD17 dataset. Results averaged across 3 runs.

	Aspirin	Benzene	Ethanol	Malonaldehyde	Naphthalene	Salicylic	Toluene	Uracil
RF	10.94 ± 0.01	103.72±1.29	4.64±0.01	13.93 ± 0.03	$0.50{\scriptstyle\pm0.01}$	1.23 ± 0.01	10.93 ± 0.04	0.64 ± 0.01
TFN	12.37 ± 0.18	58.48 ± 1.98	$4.81{\scriptstyle\pm0.04}$	13.62 ± 0.08	0.49 ± 0.01	$1.03{\scriptstyle\pm0.02}$	$10.89{\scriptstyle\pm0.01}$	$0.84{\scriptstyle\pm0.02}$
SE(3)-Tr.	11.12 ± 0.06	68.11 ± 0.67	$4.74{\scriptstyle\pm0.13}$	13.89 ± 0.02	0.52 ± 0.01	$1.13{\scriptstyle\pm0.02}$	$10.88{\scriptstyle\pm0.06}$	$0.79{\scriptstyle\pm0.02}$
EGNN	14.41 ± 0.15	62.40 ± 0.53	4.64 ± 0.01	13.64 ± 0.01	0.47 ± 0.02	$1.02{\scriptstyle\pm0.02}$	$11.78{\scriptstyle\pm0.07}$	0.64 ± 0.01
EGNNReg	$13.82{\scriptstyle\pm0.19}$	$61.68{\scriptstyle\pm0.37}$	$6.06{\scriptstyle\pm0.01}$	13.49 ± 0.06	$0.63 \pm \scriptstyle{0.01}$	$1.68{\scriptstyle\pm0.01}$	$11.05{\scriptstyle\pm0.01}$	$0.66{\scriptstyle\pm0.01}$
GMN GMN-L		$\begin{array}{c} \textbf{48.12} {\pm 0.40} \\ \underline{54.17} {\pm 0.69} \end{array}$		$\frac{13.11 \pm 0.03}{12.82 \pm 0.03}$			$10.22{\scriptstyle\pm0.08}\atop \underline{10.45}{\scriptstyle\pm0.04}$	

> 3. Human Motion: CMU Motion Capture

Table 5: Prediction error ($\times 10^{-2}$) on motion capture. Results averaged across 3 runs.

GNN	TFN	SE(3)-Tr.	RF	EGNN	EGNNReg	GMN	GMN-L
67.3+11	66.9+27	60.9+0.9	197.0+10	59.1+2.1	59.5+2.2	43.9+11	50.9+0.7

