Introduction to Computational Fluid Dynamics using OpenFOAM and Octave

Lakshman Anumolu Kumaresh Selvakumar (Session-4)

Instructions: Wed, Fri (4:30-5:30PM IST), Sat (4PM-5PM IST)

Query sessions: Sundays 9:00AM-9:30AM IST

Quick Recap

What Did We Discuss?

Fluid Behavior

Gradient

• Numerical Approximation

Mathematical Operations

• Divergence

$$\nabla \cdot \boldsymbol{u} = \left(\frac{\partial}{\partial x}\boldsymbol{e}_x + \frac{\partial}{\partial y}\boldsymbol{e}_y + \frac{\partial}{\partial z}\boldsymbol{e}_z\right) \left(u\boldsymbol{e}_x + v\boldsymbol{e}_y + w\boldsymbol{e}_z\right) = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right) \quad \boldsymbol{e}_y$$

- Numerical approximation
 - Same as earlier
- Physical significance
 - Positive value : Source or expansion of fluid volume
 - Negative value: Sink
 - Zero signifies incompressible nature or no change in volume

What Did We Discuss?

Finite Difference – Finite Volume

Differential form

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

Integral form

$$\frac{\partial}{\partial t} \int_{V}^{\square} \rho dV + \oint_{S}^{\square} \rho \mathbf{u} \cdot d\mathbf{S} = 0$$

Gauss Divergence Theorem

• For a vector: **F**

$$\int (\nabla \cdot F) dV \approx \sum F_f \cdot S$$

 Rate of change of a quantity over a control volume = Rate of flow through control surface.

Reynolds Transport Theorem

$$\frac{d}{dt} \int_{V_S} \rho \phi dV = \frac{d}{dt} \int_{V_{CV}} \rho \phi dV + \int_{S} \rho \phi \mathbf{u} \cdot \mathbf{n} dS$$

Current Session

Overview

- Taylor series analysis
- Numerical discretization

Taylor Series

$$\rho(x^*) = \rho(x_i) + (x^* - x_i) \left(\frac{d\rho}{dx}\right)_i + (x^* - x_i)^2 \left(\frac{d^2\rho}{dx^2}\right)_i + (x^* - x_i)^3 \left(\frac{d^3\rho}{dx^3}\right)_i + \cdots$$

Taylor Series: Discrete Operations

$$\rho(x^*) = \rho(x_i) + (x^* - x_i) \left(\frac{d\rho}{dx}\right)_i + (x^* - x_i)^2 \left(\frac{d^2\rho}{dx^2}\right)_i + (x^* - x_i)^3 \left(\frac{d^3\rho}{dx^3}\right)_i + \cdots$$

Taylor Series: Discrete Operations

$$x_{i-1}$$
 x_i x_{i+1} x_{i+2}

$$\rho(x_{i+1}) = \rho(x_i) + (x_{i+1} - x_i) \left(\frac{d\rho}{dx}\right)_i + (x_{i+1} - x_i)^2 \left(\frac{d^2\rho}{dx^2}\right)_i + (x_{i+1} - x_i)^3 \left(\frac{d^3\rho}{dx^3}\right)_i + \cdots$$

$$\rho(x_{i+1}) = \rho(x_i) + (x_{i+1} - x_i) \left(\frac{d\rho}{dx}\right)_i + O(\Delta x_i^2); \qquad \Delta x_i = (x_{i+1} - x_i)$$

$$\rho(x_{i+1}) = \rho(x_i) + \Delta x_i \left(\frac{d\rho}{dx}\right)_i + O(\Delta x_i^2)$$

Taylor Series: Discrete Operations (1st order)

$$\rho(x_{i+1}) = \rho(x_i) + \Delta x_i \left(\frac{d\rho}{dx}\right)_i + O(\Delta x_i^2)$$

$$\left(\frac{d\rho}{dx}\right)_{i} = \frac{\rho(x_{i+1}) - \rho(x_{i})}{\Delta x_{i}} + \frac{1}{\Delta x_{i}} O(\Delta x_{i}^{2})$$

$$\left(\frac{d\rho}{dx}\right)_{i} = \frac{\rho(x_{i+1}) - \rho(x_{i})}{\Delta x_{i}} + O(\Delta x_{i})$$

$$\left(\frac{d\rho}{dx}\right)_{\cdot} \approx \frac{\rho(x_{i+1}) - \rho(x_i)}{\Delta x_i}$$
 First order upwind scheme

First order upwind scheme

Numerical Approximation

$$\left(\frac{d\rho}{dx}\right)_{i} = \frac{\rho(x_{i+1}) - \rho(x_{i})}{\Delta x_{i}} + O(\Delta x_{i})$$

Central Difference Scheme (2nd order)

$$x_{i-1}$$
 x_i x_{i+1} x_{i+2}

$$\rho(x_{i+1}) = \rho(x_i) + (x_{i+1} - x_i) \left(\frac{d\rho}{dx}\right)_i + (x_{i+1} - x_i)^2 \left(\frac{d^2\rho}{dx^2}\right)_i + (x_{i+1} - x_i)^3 \left(\frac{d^3\rho}{dx^3}\right)_i + \cdots$$

$$(1) \quad \rho(x_{i+1}) = \rho(x_i) + \Delta x_i \left(\frac{d\rho}{dx}\right)_i + \Delta x_i^2 \left(\frac{d^2\rho}{dx^2}\right)_i + O(\Delta x_i^3)$$

(2)
$$\rho(x_{i-1}) = \rho(x_i) - \Delta x_i \left(\frac{d\rho}{dx}\right)_i + \Delta x_i^2 \left(\frac{d^2\rho}{dx^2}\right)_i + O(\Delta x_i^3)$$

Central Difference Scheme (2nd order)

(1)
$$\rho(x_{i+1}) = \rho(x_i) + \Delta x_i \left(\frac{d\rho}{dx}\right)_i + \Delta x_i^2 \left(\frac{d^2\rho}{dx^2}\right)_i + O(\Delta x_i^3)$$

(2)
$$\rho(x_{i-1}) = \rho(x_i) - \Delta x_i \left(\frac{d\rho}{dx}\right)_i + \Delta x_i^2 \left(\frac{d^2\rho}{dx^2}\right)_i + O(\Delta x_i^3)$$

Subtract (2) from (1)

$$\rho(x_{i+1}) - \rho(x_{i-1}) = 2\Delta x_i \left(\frac{d\rho}{dx}\right)_i + O(\Delta x_i^3)$$

$$\left(\frac{d\rho}{dx}\right)_{i} = \frac{\rho(x_{i+1}) - \rho(x_{i-1})}{2\Delta x_{i}} + O(\Delta x_{i}^{2})$$

Summary

$$\rho(x^*) = \rho(x_i) + (x^* - x_i) \left(\frac{d\rho}{dx}\right)_i + (x^* - x_i)^2 \left(\frac{d^2\rho}{dx^2}\right)_i + (x^* - x_i)^3 \left(\frac{d^3\rho}{dx^3}\right)_i + \cdots$$

$$x_{i-1}$$
 x_i x_{i+1} x_{i+2}

$$\left(\frac{d\rho}{dx}\right)_{i} \approx \frac{\rho(x_{i+1}) - \rho(x_{i})}{\Delta x_{i}} \qquad \left(\frac{d\rho}{dx}\right)_{i} \approx \frac{\rho(x_{i+1}) - \rho(x_{i-1})}{2\Delta x_{i}}$$

First order upwind

Second order central difference

Exercise

- Derive expression for $\left(\frac{d^2\rho}{dx^2}\right)_i$
- What is the accuracy of the resultant expression?

Numerical Discretization (Grid layout)

Numerical Discretization (Grid layout)

Flow properties are assigned at each grid locations.

Numerical Discretization

Numerical Discretization

Cell centered representation

Collocated grid

Exercise

- Derive expression for $\left(\frac{d^2\rho}{dx^2}\right)_i$
- What is the accuracy of the resultant expression?