SIMULATION RESULTS OF DIFFERENTIAL AMPLIFIER WITH ACTIVE LOAD

NAME: Midatana Jeevan Kumar

ROLL NUMBER: 22EC10097

PROJECT TITLE: Design and Simulation of differential

Amplifier with active load using cmos

180nm technology in LTSpice

DESIGN SPECIFICATIONS:

Vd = 1.8v

Gain > = 40db

CI = 10pf

ICMR(max) = 1.6v

ICMR(min) = 0.8v

Slew-Rate = 5V/us

Gain Band Width Product= 5Mhz

CALCULATIONS:

With the above specifications I have calculated all the design parameters. I later simulated the circuit in LTSpice And calculated all the parameters like gain-band-product, Differential AC gain, Slewrate, Common mode gain.

CIRCUIT DIAGRAM:

M, , M2 - Matched

My, My > Matched

DIFFERENTIAL AMPLIFIER WITH ACTIVE LOAD (180 mm TECHNOLOGY)

DESIGN SPECIFICATIONS:

VDD = 1.8V

Av = 40dB

CL = 10 PF

TOMR (MAX) = 1.6V

ICMR (MIN) = 0.8V

SLEW-RATE = 5V/usec

GAIN-BAND WIDTH PRODUCT = 5 Meg Hz

slew rate =
$$\frac{dV_0}{dt} = \frac{I_0}{c_L}$$

(a) Calculation of
$$\left(\frac{w}{L}\right)_3$$
 and $\left(\frac{w}{L}\right)_4$

ICMR (max) = 1,6V

From Calculations of IVIPI, IVIII, uncox, upcox

FOR M3,

$$\frac{\Gamma_0}{2} = \frac{1}{2} \times \mu_p (ox \times (\frac{W}{L})_3 \times (v_{DD} - v_{x} - V_{TP})^2$$

By Calculation
$$\left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4 = 28$$

(3) Calculation of M, M, from Grain-Bandwidth product;

Vout = -9m1,2 (802/1804)

Vin

1+ SCL (802/1804)

oc gain = gm1, 2 (80211804)

3-dB cutoff Frequency = 1 RTX (x0/1004)XCL

MI JEEVAN KUMAR

GBP = 9m1,2 (802/1804) 1 211x (802/1804) x CL

 $GBP = \frac{9m_{1,2}}{2\pi \times G}$

Cruien GBP = 5MHz

 $5 \times 10^6 = \frac{g_{m1,2}}{2 \times 311416 \times 10^{12}}$

2m1,2 = 314,64

$$ID = \frac{1}{2} L_{n} \left(ox \left(\frac{L}{L} \right)_{1,2} \left(Vac - V_{T} \right)^{L}$$

$$g_{m} = \sqrt{2 L_{n} Cox} \left(\frac{L}{L} \right)_{1,2} \times Id.$$

$$\left(\frac{L}{L} \right)_{1,2} = \frac{8 L_{1,2}}{2 IO L_{n} Cox}$$

$$\left(\frac{L}{L} \right)_{1,2} \approx 9.2952$$

$$Taking \left(\frac{L}{L} \right)_{1,2} \approx 10$$

$$(alculating the Value of \left(\frac{L}{L} \right)_{5} 86 Ms' - Ican (min) = 0.8V$$

$$V_{g_{51}} < V_{min}(Icm) - Vacy$$

$$V_{g_{51}} < V_{min}(Icm) - Vacy$$

$$V_{g_{51}} < V_{min}(Icm) - Vacy$$

$$V_{g_{51}} = 0.15135V$$

$$V_{g_{51}} = 0.15135V$$

$$ID_{5} = \frac{1}{2} L_{n} cox \left(\frac{L}{L} \right)_{5} (V_{g_{51}} - V_{51})$$

$$V_{g_{51}} = 0.15135V$$

$$ID_{5} = 50.000$$

$$ID_{5} = \frac{1}{2} L_{n} cox \left(\frac{L}{L} \right)_{5} (V_{g_{51}} - V_{51})$$

$$ID_{5} = \frac{1}{2} L_{n} cox \left(\frac{L}{L} \right)_{5} (V_{g_{51}} - V_{51})$$

$$ID_{5} = \frac{1}{2} L_{n} cox \left(\frac{L}{L} \right)_{5} (V_{g_{51}} - V_{51})$$

Calculating (W) 6

MI JEEVAN KUMAR

By Current Missoring

$$\frac{\mathbb{I}_{1}}{\mathbb{I}_{0}} = \frac{\left(\frac{\omega}{L}\right)_{5}}{\left(\frac{\omega}{L}\right)_{6}} = 1$$

DESTAN PARAMATERS:

$$\left(\frac{L}{M}\right)_{1} = \left(\frac{M}{M}\right)_{2} = 10$$

 $W_1 = W_2 = 10 \mu$

$$\left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4 = 28$$

W1 = W2 = 28 um

$$\left(\frac{W}{L}\right)_5 = \left(\frac{W}{L}\right)_6 = 6$$

W5 = W6 = 61L

RESULT OBTAINED :

DC operating point - given in fig for (Vin) cm = 0.8V

= ILMRmin

2) DC operating point - guin in fig for (Vin) on = 1.60

= ICMR max

SIMULATION RESULTS:

The following figures shows the results of the simulations obtained in LTSpice.

1) <u>DC Operating Point</u>: following image shows the dc operating point when Vin(cm)=0.8v (DC)

Memiconductor Device Operating Points:									
BSIM3 MOSFETS									
lame:	ml	m2	m5	m8	m3				
<pre>fodel:</pre>	rmos	rmos	rmos	rmos	pmos				
ld:	2.27e-05	2.27e-05	4.53e-05	5.00e-05	-2.27e-05				
Mgs:	6.06e-01	6.06e-01	6.84e-01	6.84e-01	-5.81e-01				
Ms:	1.03e+00	1.03e+00	1.94e-01	6.84e-01	-5.81e-01				
Mos:	-1.94e-01	-1.94e-01	0.00e+00	0.00e+00	0.00e+00				
Ath:	4.66e-01	4.66e-01	4.07e-01	4.04e-01	-4.20e-01				
Msat:	1.21e-01	1.21e-01	2.10e-01	2.12e-01	-1.42e-01				
im:	3.08e-04	3.08e-04	2.95e-04	3.58e-04	2.54e-04				
ids:	5.59e-07	5.59e-07	6.37e-05	2.93e-06	3.05e-06				
imb	8.03e-05	8.03e-05	1.73e-04	4.89e-04	8.03e-05				
lbd:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00				
lbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00				
gsov:	7.02e-15	7.02e-15	4.21e-15	4.21e-15	1.92e-14				
lgdov:	6.97e-15	6.97e-15	4.18e-15	4.18e-15	1.93e-14				
lgbov:	9.78e-19	9.78e-19	9.78e-19	9.78e-19	9.60e-19				
iQgdVgb∶	8.07e-14	8.07e-14	5.09e-14	4.93e-14	2.23e-13				
iQgdVdlb∶	-6.97e-15	-6.97e-15	-6.40e-15	-4.05e-15	-1.89e-14				
iQgdVsb∶	-6.94e-14	-6.94e-14	-5.22e-14	-7.5le-14	-1.96e-13				
iQddVgb∶	-3.39e-14	-3.39e-14	-2.21e-14	-2.06e-14	-9.38e-14				
iQddVdb:	6.97e-15	6.97e-15	6.35e-15	4.11e-15	1.91e-14				
iQddVsb∶	3.47e-14	3.47e-14	2.70e-14	4.00e-14	9.89e-14				
iQbdVgb:	-1.29e-14	-1.29e-14	-6.62e-15	-8.03e-15	-3.53e-14				
iQbdVdb:	-2.51e-18	-2.51e-18	-2.12e-15	2.04e-18	-5.4le-18				
iQbdVsb∶	-6.89e-15	-6.89e-15	-6.12e-15	-9.17e-15	-2.14e-14				

iame: fodel: pmos d: -2.27e-05 -5.81e-01 Mgs: -5.81e-01 Ms: lbs: 0.00e+00 -4.20e-01 Msat: -1.42e-01 km: 2.54e-04 kds: 3.05e-06 8.03e-05 dmib lbd: 0.00e+00 0.00e+00 lgsov: 1.92e-14 'gdov: 1.93e-14 9.60e-19 gbov: iOgdVgb: 2.23e-13 iOgdVdb: -1.89e-14 iQqdVsb: -1.96e-13 iQddVqb: -9.38e-14 iQddVdb: 1.91e-14 iQddVsb: 9.89e-14 iObdVgb: -3.53e-14 iQbdVdb: -5.41e-18 iObdVsb: -2.14e-14

2) DC Operating Point when Vin(cm)=1.6v (DC)

		BSIM3	MOSFETS	-	
Name:	m1	m2	m5	m8	m3
Model:	nmos	nmos	nmos	nmos	pmos
Id:	2.52e-05	2.52e-05	5.04e-05	5.00e-05	-2.52e-05
Vgs:	7.66e-01	7.66e-01	6.84e-01	6.84e-01	-5.90e-01
Vds:	3.76e-01	3.76e-01	8.34e-01	6.84e-01	-5.90e-01
Vbs:	-8.34e-01	-8.34e-01	0.00e+00	0.00e+00	0.00e+00
Vth:	6.29e-01	6.29e-01	4.03e-01	4.04e-01	-4.20e-01
Vdsat:	1.33e-01	1.33e-01	2.12e-01	2.12e-01	-1.49e-01
Gm:	3.34e-04	3.34e-04	3.60e-04	3.58e-04	2.70e-04
Gds:	1.33e-06	1.33e-06	2.74e-06	2.93e-06	3.31e-06
Gmlb	7.18e-05	7.18e-05	5.78e-04	4.89e-04	8.53e-05
Cbd:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cgsov:	7.02e-15	7.02e-15	4.21e-15	4.21e-15	1.92e-14
Cgdov:	6.97e-15	6.97e-15	4.18e-15	4.18e-15	1.93e-14
Cgbov:	9.78e-19	9.78e-19	9.78e-19	9.78e-19	9.60e-19
dQgdVgb:	7.94e-14	7.94e-14	4.93e-14	4.93e-14	2.23e-13
dQgdVdb:	-7.07e-15	-7.07e-15	-4.04e-15	-4.05e-15	-1.89e-14
dQgdVsb:	-6.87e-14	-6.87e-14	-8.21e-14	-7.51e-14	-1.96e-13
dQddVgb:	-3.41e-14	-3.41e-14	-2.06e-14	-2.06e-14	-9.40e-14
dQddVdb:	7.05e-15	7.05e-15	4.10e-15	4.11e-15	1.91e-14
dQddVsb:	3.32e-14	3.32e-14	4.40e-14	4.00e-14	9.92e-14
dQbdVgb:	-1.12e-14	-1.12e-14	-8.04e-15	-8.03e-15	-3.52e-14
dQbdVdb:	-6.74e-17	-6.74e-17	1.12e-17	2.04e-18	-7.15e-18
dQbdVsb:	-4.69e-15	-4.69e-15	-1.01e-14	-9.17e-15	-2.15e-14

Name: m4 Model: pmos Id: -2.52e-05 Vgs: -5.90e-01 Vgs: Vds: -5.90e-01 Vbs: 0.00e+00 -4.20e-01 Vdsat: -1.49e-01 Gds: 2.70e-04 Gds: 3.31e-06 Gmb 8.53e-05 0.00e+00 Cbs: 0.00e+00 Cgsov: 1.92e-14 Cgdov: 1.93e-14 Cgbov: 9.60e-19 dQgdVgb: 2.23e-13 dQgdVdb: -1.89e-14 dQgdVsb: -1.96e-13 dQddVgb: -9.40e-14 dQddVdb: 1.91e-14 dQddVsb: 9.92e-14

3)AC gain plot Gain Obtained=44.5 db

4) AC Gain Calculation:

5) Common Mode Gain Plot : Value obtained = 0.009

6) Slew Rate Obtained = 5.9 V/us

8) Unity Gain Bandwidth Frequency: 10.1Mhz

9) Transient Analysis Result : (with differential Voltage)

OBTAINED RESULT SPECIFICATIONS:

Differential - Ac gain = 44.5 dB

Vinj= IV(0C) + Ac (1) → ophone

Vinz = (V(0C) + Ac (1) → 180 phone

① Common Mode gain = 0.0096605

⑤ Unity - Gain Bandwidth product = 10.1 MHz

⑥ Slew - Rate obtained = 5.9 V/us