Approximating covering points by lines

Raymond Chen

May 28, 2020

1 Introduction

The **covering points by lines problem** seeks to minimize the number of lines needed such that every point is contained in at least one line. Formally, the problem can be written as follows:

Problem Statement: Given a set $A = \{a_1, a_2, ..., a_n\}$ of points in the two-dimensional plane, and a set $B = \{b_1, b_2, ..., b_m\}$ of lines, we want to minimize the number of lines needed to cover A.

Note that this problem is a specific instance of the set-coverage problem. It's a known fact that the set cover Linear Programming formulation has an integrality gap of O(logn). Armed with this fact, I wanted to see if applying the set cover LP to the problem of covering a set of points by a set of lines could achieve a constant integrality gap. If so, it means that I might be able to use this LP to find a constant-factor approximation of the problem by rounding.

LP Formulation: Let y_j be a decision variable for picking line b_j . Then our goal is to minimize $\sum_{j=1}^m y_j$ subject to the constraint that for all a_i , $\sum_{j \in B_i} y_j \leq 1$, where B_i contains the indices of lines that contain point a_i .

Here's an **example** to show that the integrality gap is greater than 1:

In OPT, we need to pick two lines to cover all points. However, in the LP, we can let every decision variable be $\frac{1}{2}$, for a total of $\frac{3}{2}$. Thus, we can see from this simple example that the integrality gap is at least $\frac{4}{3}$. Extending this example to the k-clique, I saw that the integrality gap was $\frac{2(k-1)}{k}$ which approaches two as k increases.

I saw from Alon's [1] paper a construction that showed that a greedy algorithm for **covering lines by points** was $\Omega(logn)$ approximate. So I checked to see if this same construction could be used for the integrality gap. In fact, it did apply!

2 Alon's Paper

Covering lines by points is the dual of the covering points by lines, given a set $B = \{b_1, b_2, ..., b_m\}$ of lines, we want to minimize the number of points in $A = \{a_1, a_2, ..., a_n\}$ such that every line is covered by a point.

The LP is constructed by decision variables x_i for picking point a_i . We want to minimize $\sum_{j=1}^m y_j$ given that for any line b_j , $\sum_{i \in A_j} x_i \leq 1$ where A_j is the set of indices of points that touch line b_j . Consider the same figure as before. Then we can see that assigning $\frac{1}{2}$ to every point covers every line for our LP. But OPT requires at least two points so our integrality gap is at least $\frac{4}{3}$.

In order to understand Alon's construction, I first need to introduce some notation. $[k]^d$ is the set of all d-dimensional coordinates with integer values between 1 and k.

A **combinatorial line** is a set of k points from $[k]^d$. Given a set $I \subset \{1, ..., d\} = \{c_1, c_2, ..., c_n\}$, Pick integers $x_{c_1}, ..., x_{c_n}$ from the set $\{1, ..., d\}$. Then the combinatorial line corresponds to the k points formed by fixing coordinate c_i to be x_{c_i} . For any other points set them all to the same value j between 1 and k. Thus, there are exactly k points in this combinatorial line.

As an example, consider in $[4]^4$, $I = \{1,3\}$ with corresponding 2, 3. Then our combinatorial line is the points:

$$(2,1,3,1)$$

 $(2,2,3,2)$
 $(2,3,3,2)$
 $(2,4,3,4)$

Density Hales-Jewitt Theorem (Theorem 2.1 in Alon's Paper) says that given k, δ , there exists $d_0 =$ $d_0(k,\delta)$ such that $\forall d \geq d_0$, any set of at least $\delta * k^d$ points in $[k]^d$ contains a combinatorial line.

Alon's construction We know that for any combinatorial line, there exists a unique line passing through all k points.

For any positive integer $k \ge 2$, let d be corresponding $d(k, \frac{1}{2})$ by Hales-Jewitt. Let $A = [k]^d$, and B be the set of all lines passing through combinatorial lines of A.

By Hales-Jewitt, we know that we know that any set of $\frac{k^d}{2}$ points contains a combinatorial line. And the

Thus, OPT must be at least $\frac{k^d}{2}$, since no set with less than $\frac{k^d}{2}$ points can contain all combinatorial lines. However, we can assign $\frac{1}{k}$ to every point in the LP, since every combinatorial line contains exactly k points. So our LP is at most k^{d-1}

Thus, our integrality gap is at least $\frac{k}{2}$. Lemma 2.2 in [1] shows how to project this example onto the 2-D plane.

Since this holds true for all k, the integrality gap cannot be upper bounded by a constant.

Relating it back 3

So Alon's paper shows that the LP for covering lines by points can't be upper bounded by a constant. However, it didn't answer my original question about whether the LP for covering points by lines could be. That's when I came across this transformation that convert covering lines by points to covering points by lines[2].

For any line y = mx + c, transform it to the point (m, -c). For any point (a, b) transform it to the line y = ax + b. Note that we can apply this transformation as long as there are no vertical lines. If there are, then we can simply rotate our plane.

Example transformation of the 4-clique

This transformation has the property that n lines intersecting in Hitting Set are transformed to n colinear points in covering points by lines [2].

Moreover, if a line contains k points in the original image, k lines pass through its corresponding point in the transformation [k].

So the integrality gap from Hitting Set is preserved in this transformation.

So, I ended up proving my original question, but I still wanted to construct a concrete example with an integral gap greater than 2. That is, a worse gap than the cliques. However, Alon's example is very abstract and difficult to concretize. The following example corresponds to an integral gap of $\frac{3}{2}$.

To begin with, there was no deterministic method to get the Hales-Jewitt number. Moreover, to show an integral gap of say 2.5, we would need to project the hyper lattice $[5]^d$ for some number d, which would require thousands of points.

References

- [1] N. Alon, A non-linear lower bound for planar epsilon-nets; https://www.tau.ac.il/ no-gaa/PDFS/epsnet1.pdf
- [2] D. Mount, Computational Geometry, http://graphics.stanford.edu/courses/cs268-16-fall/Notes/cmsc754-lects.pdf, 43-44.