Midterm 1

INSTRUCTIONS:

- Please show ALL your work! Answers without supporting justification will not be given credit.
- Answer the questions in the green books provided.
- Write legibly and start each question on a new page. You can answer the problems out of order. In fact, I suggest working out the easier ones first.
- Please note that use of calculator, books, or notes is not allowed.
- If you write down the correct formula for an answer, you will get some partial credit regardless of whether you evaluated the exact values or not.
- Unless otherwise specified, you may use any valid method to solve a problem.

Question	Points	Score
1	5	
2	10	
3	5	
4	7	
5	5	
6	8	
7	10	
Total:	50	

This exam has 7 questions, for a total of 50 points.

The maximum possible point for each problem is given on the right side of the problem.

5

3

5

7

5

8

10

- 1. Suppose α and β are real numbers such that
 - the vector $\vec{u} = \hat{i} + \hat{j} + \hat{k}$, the vector $\vec{v} = 4\hat{i} + 3\hat{j} + 4\hat{k}$, and the vector $\vec{w} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are coplanar; and
 - the vector \vec{w} has magnitude $\sqrt{3}$.

Find all possible values of α and β .

[HINT: If three vectors are coplanar, then the volume of the parallelepiped determined by those three vectors is zero.]

2. Let

$$f(x,y) = \frac{x^2 + y^2}{2x}$$

- (a) Show that the level curves of f are circles passing through the origin.
- (b) Draw a sketch showing the two level curves that pass through the two points (2,0) and (-4,0) respectively.
- (c) Determine whether

$$\lim_{(x,y)\to(0,0)} f(x,y)$$

exists or not, and give a reason for your answer.

[HINT: Use the two level curves as directions of approach.]

- 3. Suppose for some differentiable function f(x, y, z), we know that the maximum value of the directional derivative $D_{\vec{u}}$ at the point (1, 1, 1) is 2, and this maximum occurs in the direction of the point (2, 3, 3). Find ∇f at (1, 1, 1).
- 4. Find the point(s) on the surface xy + yz + zx + 4 = 0 where the tangent plane is parallel to the XY-plane.
- 5. Find the angle of intersection between the curve given by its parametric equation $\vec{r}(t) = (t, 2t^2)$, and the parabola $y = x^2 + 4$. Do not simplify the $\arccos(\theta)$ part of the answer.
- 6. Let p = g(u, v) be a differentiable function of two variables. Let $u = \frac{x}{y}$ and $v = \frac{y}{z}$. Show that

$$x\frac{\partial p}{\partial x} + y\frac{\partial p}{\partial y} + z\frac{\partial p}{\partial z} = 0$$

7. Use Lagrange multipliers to find the global maximum and minimum values of

$$f(x,y) = x^2 + 2y^2 - 4y$$

subject to the constraint $x^2 + y^2 = 9$.