EECS 498-008 / 598-008 Deep Learning for Computer Vision

Lecture 1: Introduction

Logistics:

• Remote for first two weeks (Lectures 1-3)

• After that, in-person lecture in Chrysler 220

Deep Learning for Computer Vision

Deep Learning for Computer Vision

Building artificial systems that process, perceive, and reason about visual data

Computer Vision is everywhere!

Image by Roger H Goun is license

Image is CC0 1.0 public domain Image is CC0 1.0 public domain

Left to rig

Image is CC0 1.0 public domainage by NASA is licensed

<u>Image</u> is <u>CC0 1.0</u> public doma

Bottom row, left to right Image is CCO 1.0 public domain Image by Derek Keats is licensed under CC BY 2.0; changes made Image is licensed under CC-BY 2.0; changes made Image is licensed under CC-BY 2.0; changes made

Deep Learning for Computer Vision

Building artificial systems that learn from data and experience

Deep Learning for Computer Vision

Hierarchical learning algorithms with many "layers", (very) loosely inspired by the brain

Today's Agenda

A brief history of computer vision and deep learning

Course overview and logistics

Larry Roberts, 1963

(a) Original picture

(b) Differentiated picture

(c) Feature points selected

Lawrence Gilman Roberts, "Machine Perception of Three-Dimensional Solids", 1963

MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

https://dspace.mit.edu/handle/1721.1/6125

1959 1963 Hubel & Wiesel Roberts

Stages of Visual Representation, David Marr, 1970s

Justin Johnson Lecture 1 - 20 January 5, 2022

Recognition via Parts (1970s)

Justin Johnson Lecture 1 - 21 January 5, 2022

Recognition via Edge Detection (1980s)

John Canny, 1986 David Lowe, 1987

<u>mage</u>is <u>CC0 1.0 p</u>ublic domair

Recognition via Grouping (1990s)

Normalized Cuts, Shi and Malik, 1997

eft Image is CC BY 3.0 Middl Image is public domain Right Image is CC-BY 2.0; changes made

Recognition via Matching (2000s)

Image is public domain

Image is public domain

SIFT, David Lowe, 1999

Face Detection

Viola and Jones, 2001

One of the first successful applications of machine learning to vision

Justin Johnson Lecture 1 - 25 January 5, 2022

PASCAL Visual Object Challenge

1959

Justin Johnson January 5, 2022 Lecture 1 - 26

Justin Johnson Lecture 1 - 27 January 5, 2022

Justin Johnson Lecture 1 - 28 January 5, 2022

AlexNet: Deep Learning Goes Mainstream

Justin Johnson Lecture 1 - 29 January 5, 2022

Perceptron

One of the earliest algorithms that could learn from data

Implemented in hardware! Weights stored in potentiometers, updated with electric motors during learning

Connected to a camera that used 20x20 cadmium sulfide photocells to make a 400-pixel image

Could learn to recognize letters of the alphabet

Today we would recognize it as a linear classifier

Justin Johnson Lecture 1 - 30 January 5, 2022

Minsky and Papert, 1969

X	Y	F(x,y)	У
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Showed that Perceptrons could not learn the XOR function Caused a lot of disillusionment in the field

Justin Johnson Lecture 1 - 31 January 5, 2022

Neocognitron: Fukushima, 1980

Computational model the visual system, directly inspired by Hubel and Wiesel's hierarchy of complex and simple cells

Interleaved simple cells (convolution) and complex cells (pooling)

No practical training algorithm

Neocognitron: Fukushima, 1980

more than 32 years later!

Justin Johnson Lecture 1 - 33 January 5, 2022

Backprop: Rumelhart, Hinton, and Williams, 1986

Introduced backpropagation for computing gradients in neural networks

Successfully trained perceptrons with multiple layers

Justin Johnson Lecture 1 - 34 January 5, 2022

Convolutional Networks: LeCun et al, 1998

Applied backprop algorithm to a Neocognitron-like architecture Learned to recognize handwritten digits Was deployed in a commercial system by NEC, processed handwritten checks Very similar to our modern convolutional networks!

Justin Johnson Lecture 1 - 35 January 5, 2022

2000s: "Deep Learning"

People tried to train neural networks that were deeper and deeper

Not a mainstream research topic at this time

Hinton and Salakhutdinov, 2006 Bengio et al, 2007 Lee et al, 2009 Glorot and Bengio, 2010

2012 to Present: Deep Learning Explosion

Image Classification

Image Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Object Detection

Ren, He, Girshick, and Sun, 2015

Image Segmentation

Fabaret et al, 2012

Video Classification

Simonyan et al, 2014

Justin Johnson Lecture 1 - 40 January 5, 2022

Pose Recognition (Toshev and Szegedy, 2014)

Playing Atari games (Guo et al, 2014)

Medical Imaging

Levy et al, 2016 Figure reproduced with permission

Galaxy Classification

Dieleman et al, 2014

From left to right: <u>public domain by NASA</u>, usage <u>permitted</u> by ESA/Hubble, <u>public domain by NASA</u>, and <u>public domain</u>.

Whale recognition

Kaggle Challenge

This image by Christin Khan is in the public domain and originally came from the U.S. NOAA

A white teddy bear sitting in the grass

A man in a baseball uniform throwing a ball

A woman is holding a cat in her hand

A man riding a wave on top of a surfboard

A cat sitting on a suitcase on the floor

A woman standing on a beach holding a surfboard

Image Captioning
Vinyals et al, 2015
Karpathy and Fei-Fei, 2015

All images are CCO Public domain: https://pixabay.com/en/luggage-antique-cat-1643010/https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-162343 https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/https://pixabay.com/en/woman-female-model-portrait-adult-98396

Captions generated by Justin Johnson using Neuraltal

Figures copyright Justin Johnson, 2015. Reproduced with permission. Generated using the Inceptionism approach from a blog post by Google Research

Gatys et al, 2016

Stylized images copyright Justin Johnson, 2017;

Karras et al, "Progressive Growing of GANs for Improved Quality, Stability, and Variation", ICLR 2018

Ramesh et al, "DALL-E: Creating Images from Text", 2021. https://openai.com/blog/dall-e/

Justin Johnson Lecture 1 - 46 January 5, 2022

Ramesh et al, "DALL-E: Creating Images from Text", 2021. https://openai.com/blog/dall-e/

Justin Johnson Lecture 1 - 47 January 5, 2022

GFLOP per Dollar

• CPU • GPU (FP32)

Justin Johnson Lecture 1 - 49 January 5, 2022

GFLOP per Dollar

Justin Johnson Lecture 1 - 50 January 5, 2022

2018 Turing Award

Justin Johnson Lecture 1 - 51 January 5, 2022

Despite our success, computer vision still has a long way to go...

Computer Vision can cause harm

Harmful Stereotypes

Barocas et al, "The Problem With Bias: Allocative Versus Representational Harms in Machine Learning", SIGCIS 2017 Kate Crawford, "The Trouble with Bias", NeurIPS 2017 Keynote
Source: https://twitter.com/jackyalcine/status/615329515909156865 (2015)

Affect people's lives

Technology

A face-scanning algorithm increasingly decides whether you deserve the job

HireVue claims it uses artificial intelligence to decide who's best for a job. Outside experts call it

'profoundly disturbing.'

Source: <a href="https://www.washingtonpost.com/technology/2019/10/22/ai-hiring-face-scanning-algorithm-increasingly-decides-whether-you-deserve-job/https://www.hirevue.com/platform/online-video-interviewing-software
<a href="https://www.washingtonpost.com/technology/2019/10/22/ai-hiring-face-scanning-algorithm-increasingly-decides-whether-you-deserve-job/https://www.hirevue.com/platform/online-video-interviewing-software

Example Credit: Timnit Gebru

This image is copyrightfree United States government work

Example credit: Andrej Karpathy

Today's Agenda

A brief history of computer vision and deep learning

Course overview and logistics

Justin Johnson Lecture 1 - 56 January 5, 2022

Today's Agenda

A brief history of computer vision and deep learning

Course overview and logistics

Justin Johnson Lecture 1 - 57 January 5, 2022

Course Staff

GSIs / IAs

Instructor

Justin Johnson Assistant Professor, CSE

Karan Desai (KD)

Janpreet Singh (JS)

Jim Yang

Wallace Sui (WS)

Gaurav Kaul

How to contact us

- Course Website: https://web.eecs.umich.edu/~justincj/teaching/eecs498/
 - Syllabus, schedule, assignments, slides, lecture videos, etc
- Piazza: https://piazza.com/class/kxtai72amx34p0
 - (Almost) all questions about the course should go here!
 - We will also use Piazza to communicate with you
 - Use private questions if you want to post code
- EECS Autograder: https://autograder.io/web/course/151
 - For turning in homework assignments
- Google Calendar: For office hours (starting next week)
- Email: Only for sensitive, confidential issues

Course Website: Check the Schedule!

https://web.eecs.umich.edu/~justincj/teaching/eecs498/WI2022/schedule.html

Justin Johnson Lecture 1 - 60 January 5, 2022

Piazza Etiquette

- Post only short snippets of code (< 20-30 lines)
- Ask a specific, concrete question
- Explain what you have tried so far, and what happened
- See StackOverflow guide on asking good questions: https://stackoverflow.com/help/how-to-ask

Piazza Etiquette

- Post only short snippets of code (< 20-30 lines)
- Ask a specific, concrete question
- Explain what you have tried so far, and what happened
- See StackOverflow guide on asking good questions: https://stackoverflow.com/help/how-to-ask

- Don't expect and answer within 30 minutes of posting
- Monday Friday, 10am 6pm EST we'll try to answer within 2 hours
- Other times, we'll try to answer within 12 hours

Optional Textbook

- <u>Deep Learning</u> by Goodfellow, Bengio, and Courville
- Free online

Course Content and Grading

- 6 programming assignments (10% each)
- Midterm Exam (20%)
- Mini-Project (20%)
- Late policy
 - 3 free late days to use on assignments
 - Once free late days are exhausted, 25% penalty per day

Programming Assignments

- Python, PyTorch, will use Google Colab
- "Earn your wings" implement things "from scratch" in early assignments, then use PyTorch in later assignments
- "Challenge Questions"
 - Go above and beyond the basic expectations of each assignment
 - Much higher time/points ratio than other parts of the assignment
 - Not necessary to get an A: will be 5% or less of each assignment

Midterm Exam

- Written exam testing basic concepts from first half of course
- True / False, Multiple choice, short answer
- We will provide a practice exam to get a sense of the format of the questions (but not necessarily the length or difficulty)

Mini-Project

- New this year!
- Work in teams of 1 to 3
- Homework assignments: We provide starter code, you "fill in the blank"
- Mini-Project: We provide high-level written description of an algorithm to implement, you do the whole thing "from scratch"
- We will give ~3 project descriptions, you pick one of those
- Deliverable: zip of code, and Colab notebook that walks through your implementation and main results (should be like notebooks from homework!)

Collaboration Policy

- Rule 1: Don't look at solutions or code that are not your own;
 everything you submit should be your own work
- Rule 2: Don't share your solution code with others; however discussing ideas or general strategies is fine and encouraged
- Rule 3: Indicate in your submissions anyone you worked with
- Turning in something late / incomplete is better than violating the honor code

Course Philosophy

- Thorough and Detailed.
 - This not "Learn PyTorch in 90 days", nor "Deep Learning in 10 lines of code"
 - Understand how to write from scratch, debug, and train convolutional and other types of deep neural networks
 - We prefer to write from scratch, rather than rely on existing implementations
- Practical
 - Focus on practical techniques for training and debugging neural networks
 - Will use state-of-the-art software tools like PyTorch and TensorFlow
- State of the art
 - Most material we cover is research published in the last 5 years

Course Philosophy

- Will also cover some fun topics:
 - Image captioning
 - DeepDream, Artistic Style Transfer

Course Structure

- First half: Fundamentals
 - Details of how to implement and train different types of networks
 - Fully-connected networks, convolutional networks, recurrent networks
 - How to train and debug, very detailed
- Second half: Applications and "Researchy" topics
 - Object detection, image segmentation, 3D vision, videos
 - Attention, Transformers
 - Vision and Language
 - Generative models: GANs, VAEs, etc
 - Less detailed: provide overview and references, but skip some details

New Topics since FA2020

- Modern CNN architectures
 - SENets, MobileNets, NAS
 - EfficientNets, RegNets, NFNets
- Vision Transformers
 - Architectures: ViT, DeiT, Swin, MViT
 - Applications: DETR
 - MLP-like architectures
- Vision + Language
 - Language-based pretraining: CLIP, ALIGN
- Self-Supervised Learning
 - Contrastive learning
 - Masked autoencoding

First homework assignment

- Will be released by today or tomorrow
- Due Friday 1/14/2022
- Next lecture will be enough to complete it

Next time: Image Classification