

# **Ahsanullah University of Science & Technology**

## **Department of Electrical and Electronic Engineering**

## **Software Project**

Course No : EEE-4154

**Course Name**: Power System-II Laboratory

**Project Name** : Load Flow Studies Using Power World Simulator

**Date of Submission**: 01.08.2023

## **Submitted by**

Name : Hashin Israq ID : 190205184

Year :  $4^{th}$ Semester :  $1^{st}$ Section : C2

### **Objective:**

This project aims to analyze the power flow in a given power system using the Power World Simulator and observe the load flow and fault info.

### **Calculation:**

### System Base Quantities:

 $S_{base} = 84 \text{ MVA} [Last two digit of Student Id}]$ 

$$V_{base} = \sqrt{84} = 9.16 \text{ kV}$$
 in the zone of G1

#### Generator Ratings:

G1: 100 MVA, 13.8 kV, x = 0.12 pu

$$X'_{G1} = 0.12 \times (\frac{13.8}{9.16})^2 \times \frac{84}{100} = 0.23 \ pu$$

G2: 200 MVA, 15 kV, x = 0.12 pu

$$X'_{G2} = 0.12 \times (\frac{15}{9.96})^2 \times \frac{84}{200} = 0.114 \ pu$$

## <u>Transformer Ratings:</u>

T1: 100 MVA, 13.8 kV  $\Delta$  / 230 kV Y, X = 0.1 pu

$$X'_{T1} = 0.1 \times (\frac{13.8}{9.16})^2 \times \frac{84}{100} = 0.1 \ pu$$

T2: 200 MVA, 15 kV  $\Delta$  / 230 kV Y, X = 0.1 pu

$$X'_{T2} = 0.1 \times (\frac{230}{152.6})^2 \times \frac{84}{200} = 0.095 \ pu = 0.1 \ pu$$

## Transmission Lines:

All lines 230 kV,  $z = 0.08 + j 0.5 \Omega/km$ ,  $y = j 3.4 \times 10^{-6} S/km$ 

Maximum MVA = 400

MVA Line lengths: L1 = 15 km, L2 = 25 km, L3 = 40 km, L4 = 15 km, L5 = 50 km

Base Impedance = 
$$\frac{(230 \times 10^3)^2}{84 \times 10^6}$$
 = 629.76  $\Omega$   
 $X'_{L1} = (0.08 + j0.5) \times \frac{15}{629.76}$  = 0.00190 + 0.0119j pu  
 $X'_{L2} = (0.08 + j0.5) \times \frac{25}{629.76}$  = 0.00317 + 0.0198j pu  
 $X'_{L3} = (0.08 + j0.5) \times \frac{40}{629.76}$  = 0.00508 + 0.0317j pu  
 $X'_{L4} = (0.08 + j0.5) \times \frac{15}{629.76}$  = 0.00190 + 0.0119j pu  
 $X'_{L5} = (0.08 + j0.5) \times \frac{50}{629.76}$  = 0.00635 + 0.0396j pu

Base Admittance = 
$$\frac{84 \times 10^6}{(230 \times 10^3)^2}$$
 = 1.58 ×10<sup>-3</sup> S

$$Y'_{L1} = j \ 3.4 \times 10^{-6} \times \frac{15}{1.58 \times 10^{-3}} = 0.0322j \text{ pu}$$

$$Y'_{L2} = j \ 3.4 \times 10^{-6} \times \frac{25}{1.58 \times 10^{-3}} = 0.0537 j \text{ pu}$$

$$Y'_{L3} = j \ 3.4 \times 10^{-6} \times \frac{40}{1.58 \times 10^{-3}} = 0.0860 j \text{ pu}$$

$$Y'_{L4} = j \ 3.4 \times 10^{-6} \times \frac{15}{1.58 \times 10^{-3}} = 0.0322j \text{ pu}$$

$$Y'_{L5} = j \ 3.4 \times 10^{-6} \times \frac{50}{1.58 \times 10^{-3}} = 0.1075 j \text{ pu}$$

### Power Flow Data:

Bus 1: Swing bus, V1 = 13.8 kV,  $\delta 1 = 0 \text{ deg}$ .

Bus 2, 3, 4, 5, 6: Load buses.

Bus 7: Generator bus, |V7| = 5 kV, PG7 = 180 MW, -87 Mvar < QG7 < +87 Mvar

## **System Design:**



### **Generator 1:**



#### **Generator 2:**



#### **Bus 1:**



#### **Bus 2:**



#### **Bus 3:**



#### **Bus 4:**



### **Bus 5:**



#### Bus 6:



#### **Bus 7:**



#### **Transformer 1:**



## **Transformer 2:**



### Simulation:



### **Bus Records Calculation:**



#### **Lines Calculation:**



#### **Generators Calculation:**



### **Loads Calculation:**



### Line to Line Fault Bus-2 to Bus-5 System:



## Line to Line Fault Bus-2 to Bus-5 System Line Values:



## Line to Line Fault Bus-2 to Bus-5 System Simulink:



### Line to Line Fault Bus-2 to Bus-5 System Calculation:





#### **Discussion**

In this project, I have implemented a power system having two generator, two transformer, seven buses and four loads. I have used bus 1 as swing bus and bus 2, 3, 4, 5, 6 as load bus and bus 7 as generator bus. First I have calculated all the values and entered the values in the power world software to design the required system. Completing the system, I have analyzed bus records, lines, loads, generator values from the calculator. After this, I made a line to line fault by connecting a transmission line from bus 2 to bus 5 and analyzed the values from the fault analysis calculator.