Sensitivity Analysis

To ensure the robustness of the main findings of the previous section I carry out a Sensitivity Analysis which investigates how the variation in the output of equation ?? can be attributed to variations of its input [@Pianosi2016].

Firstly, equation ?? had been re-estimated using a lagged variables of two years, such as:

$$Y_{it+2} = \alpha + \beta_1 SPL_{it} + \beta_2 STC_{it} + \beta_3 A_{it} + \beta_4 CaP_{it}$$

$$+\beta_5 WatP_{it} + \beta_6 WastP_{it} + Controls_{it} + d_t + u_{it}$$

$$(1)$$

where Y_{it+2} is a proxy of CFP measured as ROA or Tobin's Q, SPL_{it} is a proxy for a firm's sustainability pay link, STC_{it} is a proxy for a firm's sustainability themed commitment, A_{it} is a proxy for a firm's audit score, CP_{it} is a proxy for a firm's carbon productivity, $WatP_{it}$ is a proxy for a firm's waster productivity, $WatP_{it}$ is a vector of control variables that includes firm size, industry sector, financial leverage and growth, d_t represents the time effect and u_{it} is the error term.

Estimators of equation 1 are reported in table 1. Based on the results of both BPLM and F tests, estimators had been estimated with the *pooled OLS estimation*. Except for the estimator of WaP in Model (4) which loose its significativity, findings stay the same than in section: "[Results]".

Secondly, I use an alternative proxy for approaching CEP, namely GS assigned to each company of the NGR. GS is based on a weighted average of the KPI of the ranking. Concretely, it means that equation ?? becomes:

$$Y_{it+1} = \alpha + \beta_1 G S_{it} + ContrOL S_{it} + d_t + u_{it}$$
(2)

where Y_{it+1} is a proxy of CFP measured as ROA or Tobin's Q, GS_{it} is a proxy for a firm's green score, $ContrOLS_{it}$ is a vector of control variables that includes firm size, industry sector, financial leverage and growth, d_t represents time effect and u_{it} is the error term.

Given the pvalue of both BPLM and F tests, Model (4) had been estimated with the pooled OLS estimation while Model (5) had been estimated with the fixed effect estimation. Results are reported in table 2 and confirm findings of the previous section. More precisely, it shows that a 1% increase of GS increases the long-term CFP (+ 0.669) and the short-term CFP (+ 0.051) of companies.

Hence, the sensitivity analysis supports that CEP does have a significant and positive effect on CFP, no matter the time horizon (short-term and long-term), and is stronger with a long-term perspective than a short-term perspective. R script of this section is available in "[Appendix D: Sensitivity Analysis - R Script]".

Table 1: The Impact of Process and Outcome-Based CEP on CFP (Lag = 2)

	Dependent variable:	
	TobinsQ	Roa
	Model (4)	Model (5)
SPL	$0.102^{**} (0.044)$	0.008** (0.004)
STC	$0.062 \ (0.043)$	$0.011^{***}(0.004)$
A	$0.153^{***}(0.044)$	$-0.002 \ (0.004)$
CaP	0.112 (0.133)	$0.039^{***}(0.012)$
WaP	$0.194\ (0.155)$	$-0.001 \ (0.013)$
WastP	$0.032\ (0.153)$	0.011 (0.013)
FirmSize	-0.427***(0.015)	-0.019***(0.001)
Leverage	0.003 (0.003)	0.0001 (0.0002)
Growth	$0.420^{***} (0.152)$	$0.115^{***}(0.012)$
Industry	-0.022***(0.007)	-0.002***(0.001)
Constant	10.295*** (0.343)	0.503*** (0.028)
BPLM test (pvalue)	0.56	0.33
F test (pvalue)	0.363	0.598
Observations	946	1,078
\mathbb{R}^2	0.488	0.254
Adjusted R^2	0.483	0.247
F Štatistic	$89.135^{***} (df = 10; 935)$	$36.368^{***} (df = 10; 1067)$

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 2: Green Score - an Alternative Variable for CEP

	$Dependent\ variable:$	
	TobinsQ	Roa
	Model (4)	Model (5)
GreenScore	0.669*** (0.093)	0.051*** (0.008)
FirmSize	$-0.413^{***}(0.014)$	-0.018***(0.001)
Leverage	0.003 (0.004)	$-0.0003 \ (0.001)$
Growth	0.528***(0.162)	$0.134^{***} (0.013)$
Industry	-0.030***(0.007)	-0.002***(0.001)
Constant	9.916*** (0.336)	,
BPLM test (pvalue)	0.475	0***
F test (pvalue)	0.536	0.002***
Observations	956	1,094
\mathbb{R}^2	0.481	0.268
Adjusted R ²	0.479	0.263
F Statistic	$176.286^{***} (df = 5; 950)$	$79.571^{***} (df = 5; 1086)$

Note:

*p<0.1; **p<0.05; ***p<0.01