Tarea Método de la Secante

Angel Caceres Licona

May 28, 2020

1 Termine las iteraciones y verifique sus resultados con la tabla 2

Yo lo que hice fue programar el método y correrlo con los mismos datos. Obtuve resultados idénticos:

```
a
0.000000000000
                            1.000000000000
                                                                      0.120395183590
                                                 0.678614100575
                                                                                               1.000000000000
1.000000000000
0.678614100575
                                                0.569062251401
0.589259613598
                                                                      -0.027213687998
                                                                                                0.321385899425
                                                                                               0.109551849174
                           0.569062251401
                                                                     0.001007800210
0.569062251401
                           0.589259613598
                                                0.588538358018
                                                                     0.000007786074
                                                                                               0.020197362197
0.589259613598
                            0.588538358018
                                                 0.588532742348
                                                                      -0.000000002266
0.588538358018
                            0.588532742348
                                                 0.588532743982
                                                                     0.000000000000
                                                                                               0.000005615670
```

2 Código del programa

```
from math import *
     def fx(x):
         respuesta = -8*exp(1-x) + 7/x
         return respuesta
     def secante(a,b,tol):
         fa = fx(a)
         fb = fx(b)
         c = b - fb*((b-a)/(fb-fa))
11
12
         i = 1
         error = abs(b-a)
13
         fc = fx(c)
14
         15
             for i in range (1000):
16
             c = b - (fb*(b-a)/(fb-fa))
17
             fc = fx(c)
18
             print "%.0f" %i, "טטטטטטטט"%.12f" %a,"טטטטטטטט"%.12f" %b,"טטטט"%.12f" %c, "טטטט"%.12f" %fc, "טטטטט"%.12f
19
                " %error
             i = i+1
             if (fc==0.0 \text{ or } abs(b-a) < tol):
```

- 3 Considerar la función $f(x) = x^2 4\cos(x), x \in \mathbb{R}...$
- **3.1** Graficar f(x) en el intervalo 1, 2).

3.2 Usar el método de la secante para localizar una aproximacion...

Usando mi programa obtuve los siguientes resultados:

n	p_{n-1}	p_n	p_{n+1}	$ p_n - p_{n-1} $	$f(x_n)$
0	1	2	1.170120690182	1	-0.190979794047
1	2	1.170120690182	1.170120690182	1.197187270733	0.829879309818
2	1.170120690182	1.197187270733	1.201577567782	-0.190979794047	0.027066580551
3	1.197187270733	1.201577567782	1.201538251243	-0.026654203791	0.004390297049
4	1.201577567782	1.201538251243	1.201538299340	0.000240853997	0.000039316539

3.3 Aplicar el método de bisección con la misma tolerancia...

Se requirieron 29 iteraciones para obtener un resultado similar, por lo que vemos que el método de bisección es mucho mas lento.

```
Iteracion
('1.0000000', '1.0000000',
                                    2.0000000',
                                                       1.5000000',
                                                                           4.7795512')
('2.0000000', '1.0000000',
                                    1.5000000',
                                                                           1.1801168')
                                                       1.2500000',
('3.0000000', '1.0000000'
                                   1.2500000',
                                                       1.1250000',
                                                                           -0.1228994')
('4.0000000', '1.1250000'
                                    1.2500000',
                                                       1.1875000',
                                                                           0.4926221')
                                                       1.1562500',
.
('5.0000000', '1.1250000',
                                    1.1875000',
                                                                           0.1762403')
('6.0000000', '1.1250000'
                                    1.1562500',
                                                       1.1406250',
                                                                           0.0245610')
('7.0000000', '1.1250000'
                                   1.1406250',
                                                       1.1328125',
                                                                           -0.0496910')
.
('8.0000000', '1.1328125',
                                    1.1406250',
                                                       1.1367188',
                                                                           -0.0126961')
('9.0000000', '1.1367188',
                                    1.1406250',
                                                       1.1386719',
                                                                           0.0058995')
('10.00000000', '1.1367188'
('11.00000000', '1.1376953'
                                    1.1386719',
                                                        1.1376953',
                                                                            -0.0034065
                                     1.1386719',
                                                        1.1381836'
                                                                            0.0012445')
('12.0000000', '1.1376953',
                                     1.1381836',
                                                        1.1379395',
                                                                            -0.0010815'
'13.0000000', '1.1379395'
                                     1.1381836',
                                                        1.1380615'
                                                                            0.0000813')
'14.0000000', '1.1379395'
                                     1.1380615',
                                                        1.1380005'
                                                                            -0.0005001
('15.0000000', '1.1380005',
                                     1.1380615',
                                                        1.1380310'
                                                                            -0.0002094
('16.0000000', '1.1380310',
                                     1.1380615',
                                                        1.1380463'
                                                                            -0.0000640'
'17.0000000', '1.1380463',
                                     1.1380615',
                                                        1.1380539'
                                                                            0.00000871
'18.0000000', '1.1380463',
                                     1.1380539'
                                                        1.1380501'
                                                                            -0.0000277
('19.0000000', '1.1380501',
                                     1.1380539',
                                                        1.1380520',
                                                                            -0.0000095'
'20.0000000', '1.1380520',
                                                        1.1380529'
                                     1.1380539',
                                                                            -0.0000004
'21.0000000', '1.1380529'
                                     1.1380539'
                                                        1.1380534'
                                                                            0.0000041')
('22.0000000', '1.1380529',
                                     1.1380534',
                                                                            0.00000181
                                                        1.1380532'
('23.0000000', '1.1380529',
                                     1.1380532',
                                                        1.1380531'
                                                                            0.0000007')
('24.0000000', '1.1380529',
('25.0000000', '1.1380529',
                                     1.1380531',
                                                        1.1380530',
                                                                            0.0000001')
                                     1.1380530',
                                                        1.1380530',
                                                                            -0.0000001
('26.0000000', '1.1380530',
('27.0000000', '1.1380530',
('27.00000000', '1.1380530',
('28.00000000', '1.1380530',
('29.00000000', '1.1380530',
                                     1.1380530',
                                                        1.1380530',
                                                                            -0.0000000'
                                     1.1380530',
                                                        1.1380530',
                                                                            0.0000001')
                                     1.1380530',
                                                        1.1380530'
                                                                            0.0000000')
                                     1.1380530',
                                                        1.1380530',
                                                                            0.0000000'
'La raiz buscada es: 1.1380530', 'con 29 iteraciones.')
```

4 Considere la función $f(x) = -8e^{1-x} + \frac{7}{x}$

4.1 Grafique en (0,2) y verifique que tiene dos raíces.

4.2 Poner los resultados de cada raíz en una tabla

Para la primer raíz tenemos:

n	p_{n-1}	p_n	p_{n+1}	$ p_n - p_{n-1} $	$f(x_n)$
0	0.5	0.6	0.575149260929	-0.064143321099	1
1	0.6	0.575149260929	0.567327347390	0.007582973043	-0.064143321099
2	0.575149260929	0.567327347390	0.568154287638	-0.000182851406	0.007821913540
3	0.567327347390	0.568154287638	0.568134816790	-0.000000504095	0.000826940249
4	0.568154287638	0.568134816790	0.568134762964	0.000000000034	0.000019470848
5	0.568134816790	0.568134762964	0.568134762967	0.000000000000	0.000000053827

Para la segunda raíz tenemos:

$\mid n \mid$	p_{n-1}	p_n	p_{n+1}	$ p_n - p_{n-1} $	$f(x_n)$
0	1.55	1.62	1.609561727949	0.000297514517	0.07
1	1.620000000000	1.609561727949	1.609380484711	-0.000000960168	0.010438272051
2	1.609561727949	1.609380484711	1.609381067755	0.000000000052	0.000181243238
3	1.609380484711	1.609381067755	1.609381067723	0.000000000000	0.000000583044

4.3 Aplicar el método de bisección con la misma tolerancia...

Se requirieron 26 iteraciones para obtener un resultado similar, para la 1er raiz:

```
Ingrese el valor a:0.5
Ingrese el valor b:0.6
Ingrese la tolerancia:0.0000000005
Iteracion
               a b
('1.0000000', '0.5000000', '('2.0000000', '0.5500000', '('3.0000000', '0.5500000', '
                                      0.6000000', '
                                                           0.5500000', '
                                                                                0.1807752')
                                      0.6000000', '
                                                           0.5750000', '
                                                                                -0.0628103')
                                      0.5750000', '
                                                           0.5625000', '
                                                                                0.0538021')
('4.0000000', '0.5625000', '
                                      0.5750000', '
                                                           0.5687500', '
                                                                                -0.0057501')
                                      0.5687500', '
('5.0000000', '0.5625000', '
                                                           0.5656250',
                                                                                0.0237085')
('6.0000000', '0.5656250', '('7.00000000', '0.5671875', '
                                      0.5687500', '
                                                           0.5671875', '
                                                                                0.0089006')
                                      0.5687500', '
                                                           0.5679687', '
                                                                                0.0015557')
('8.0000000', '0.5679687', '
('9.0000000', '0.5679687', '
('10.0000000', '0.5679687', '
                                      0.5687500', '
                                                           0.5683594', '
                                                                                -0.0021021')
                                      0.5683594', '
0.5681641', '
                                                           0.5681641', '
0.5680664', '
                                                                                -0.0002744')
                                                                                 0.0006404')
('11.0000000', '0.5680664', '
                                       0.5681641', '
                                                            0.5681152', '
                                                                                 0.0001829')
                                       0.5681641',
('12.0000000', '0.5681152', '
                                                            0.5681396', '
                                                                                 -0.0000458')
('13.0000000', '0.5681152', '('14.0000000', '0.5681274', '
                                       0.5681396',
                                                            0.5681274', '
                                                                                 0.0000686')
                                       0.5681396', '
                                                            0.5681335', '
                                                                                 0.0000114')
('15.0000000', '0.5681335', '('16.0000000', '0.5681335', '('17.0000000', '0.5681335', '
                                       0.5681396', '
                                                            0.5681366', '
                                                                                 -0.0000172')
                                       0.5681366', '
                                                            0.5681351', '
                                                                                 -0.0000029')
                                       0.5681351', '
                                                            0.5681343', '
                                                                                 0.0000043')
('18.0000000', '0.5681343', '
                                       0.5681351', '
                                                            0.5681347', '
                                                                                 0.0000007')
('19.0000000', '0.5681347', '
('20.0000000', '0.5681347', '
                                       0.5681351', '
                                                            0.5681349', '
                                                                                 -0.0000011')
                                       0.5681349', '
                                                            0.5681348', '
                                                                                 -0.0000002')
('21.0000000', '0.5681347', '
                                       0.5681348', '
                                                            0.5681347', '
                                                                                 0.0000002')
('22.0000000', '0.5681347', '
('23.0000000', '0.5681348', '
('24.0000000', '0.5681348', '
                                       0.5681348', '
                                                            0.5681348', '
                                                                                 0.0000000')
                                       0.5681348', '
                                                            0.5681348',
                                                                                 -0.0000001')
                                       0.5681348', '
                                                            0.5681348', '
                                                                                 -0.0000000')
('25.00000000', '0.5681348', '
                                       0.5681348',
                                                            0.5681348', '
                                                                                 -0.0000000')
                                       0.5681348', '
                                                            0.5681348',
                                                                                 0.0000000')
('La raiz buscada es: 0.5681348', 'con 26 iteraciones.')
```

Se requirieron 25 iteraciones para obtener un resultado similar, para la 2a raiz:

```
Ingrese el valor a:1.55
Ingrese el valor b:1.62
Ingrese la tolerancia:0.0000000005
Iteracion a b c
('1.0000000', '1.5500000', '
('2.0000000', '1.5850000', '
('3.0000000', '1.6025000', '
                                               1.6200000', '
                                                                        1.5850000', '
                                                                                                 -0.0404431')
                                               1.6200000', '
                                                                       1.6025000', '
                                                                                                 -0.0113558')
                                               1.6200000', '
                                                                        1.6112500', '
                                                                                                 0.0030762')
('3.0000000', '1.6025000', '
('4.0000000', '1.6025000', '
('5.0000000', '1.6068750', '
('6.0000000', '1.6090625', '
('7.00000000', '1.6090625', '
('8.00000000', '1.6090625', '
('9.0000000', '1.6093359', '
('10.00000000', '1.6093359', '
                                               1.6112500', '
                                                                        1.6068750', '
                                                                                                 -0.0041304')
                                               1.6112500', '
                                                                       1.6090625', '
                                                                                                 -0.0005247')
                                               1.6112500', '
                                                                        1.6101563', '
                                                                                                 0.0012764')
                                               1.6101563', '
                                                                       1.6096094', '
                                                                                                 0.0003760')
                                               1.6096094', '
                                                                       1.6093359', '
                                                                                                 -0.0000743')
                                                                       1.6094727', '
1.6094043', '
                                               1.6096094', '
                                                                                                 0.0001508')
                                                1.6094727', '
                                                                                                  0.0000383')
('11.0000000', '1.6093359',
('12.0000000', '1.6093701',
('13.0000000', '1.6093701',
                                                1.6094043', '
                                                                         1.6093701', '
                                                                                                  -0.0000180')
                                                1.6094043', '
                                                                         1.6093872', '
                                                                                                  0.0000101')
                                                1.6093872', '
                                                                         1.6093787', '
                                                                                                  -0.0000040')
('14.0000000', '1.6093787',
('15.0000000', '1.6093787',
('15.0000000', '1.6093787',
('16.0000000', '1.6093808',
('17.0000000', '1.6093808',
                                                1.6093872', '
                                                                         1.6093829', '
                                                                                                  0.0000031')
                                                1.6093829', '
                                                                         1.6093808', '
                                                                                                  -0.0000004')
                                                1.6093829', '
                                                                         1.6093819', '
                                                                                                  0.0000013')
                                                1.6093819', '
                                                                         1.6093813', '
                                                                                                  0.0000004')
('18.0000000', '1.6093808', '
('19.0000000', '1.6093811', '
('20.0000000', '1.6093811', '
                                                1.6093813', '
                                                                         1.6093811', '
                                                                                                  -0.0000000')
                                                1.6093813', '
                                                                         1.6093812', '
                                                                                                  0.0000002')
                                                1.6093812', '
                                                                         1.6093811', '
                                                                                                  0.0000001')
('21.0000000', '1.6093811', '
('21.0000000', '1.6093811', '
('22.0000000', '1.6093811', '
('23.0000000', '1.6093811', '
('24.0000000', '1.6093811', '
                                                1.6093811', '
                                                                         1.6093811', '
                                                                                                  0.0000001')
                                                1.6093811', '
                                                                         1.6093811',
                                                                                                  0.0000000')
                                                1.6093811', '
                                                                         1.6093811',
                                                                                                  0.0000000')
                                                1.6093811', '
                                                                         1.6093811', '
                                                                                                  0.00000001)
                                                1.6093811', '
                                                                         1.6093811', '
                                                                                                   -0.0000000')
('La raiz buscada es: 1.6093811', 'con 25 iteraciones.')
```