

Slides by Luis Barba

M. Wettstein, M. Reddy Algolab, Nov. 24, 2021

Slides by Luis Barba

M. Wettstein, M. Reddy Algolab, Nov. 24, 2021

Which bikers get to ride forever?

Slides by Luis Barba

Two bikers do not interfere with each other if and only if the one with higher starting point has higher (or equal) slope.

- Classic Dynamic programming leads to $O(n^2)$ time.
- Possible in $O(n \log n)$ time, however.

M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)

L1

L2

L3

L4

L5

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

L1 0

← increasing subsequence of length 1

L2

L3

L4

L5

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

L1 0

 $L2 \ 0.8$

L3

L4

L5

L6

← increasing subsequence of length 2

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0,4$

L3

L4

L5

L6

increasing subsequence of length 2 (with smallest possible last entry)

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

L1 0

 $L2 \ 0,4$

L3 0, 4, 12

L4

L5

L6

← increasing subsequence of length 3

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

L1 0

L2 0, 4

L3 0, 4, 12

L4

L5

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 \leftarrow cannot improve since L1 ends in 0 (< 2)

 $L2 \ 0,4$

L3 0, 4, 12

L4

L5

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 \leftarrow cannot improve since L1 ends in 0 (< 2)

 $L2 \ 0,4$

L3 0, 4, 12

 \leftarrow cannot improve since L2 ends in 4 (> 2)

L4

L5

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0,4$

L3 0, 4, 12

L4

L5

L6

 \leftarrow cannot improve since L1 ends in 0 (< 2)

 \leftarrow improves by adding 2 at the end of L1

 \leftarrow cannot improve since L2 ends in 4 (> 2)

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 2$

L3 0, 4, 12

L4

L5

L6

 \leftarrow cannot improve since L1 ends in 0 (< 2)

 \leftarrow improves by adding 2 at the end of L1

 \leftarrow cannot improve since L2 ends in 4 (> 2)

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 2$

L3 0, 4, 12

L4

L5

L6

 \leftarrow improves by adding 10 at the end of L2

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 2$

L3 0, 2, 10

L4

L5

L6

 \leftarrow improves by adding 10 at the end of L2

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 2$

L3 0, 2, 10

L4

L5

L6

 \leftarrow improves by adding 6 at the end of L2

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 2$

L3 0, 2, 6

L4

L5

L6

 \leftarrow improves by adding 6 at the end of L2

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 2$

L3 0, 2, 6

L4

L5

L6

 \leftarrow "improves" by adding 14 at the end of L3

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 2$

L3 0, 2, 6

L4 0, 2, 6, 14

 \leftarrow "improves" by adding 14 at the end of L3

L5

L6

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 19, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 2$

L3 0, 2, 6

L4 0, 2, 6, 14

L5

L6

 \leftarrow improves by adding 1 at the end of L1

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 1$

L3 0, 2, 6

L4 0, 2, 6, 14

L5

L6

 \leftarrow improves by adding 1 at the end of L1

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 1$

L3 0, 2, 6

L4 0, 2, 6, 14

 \leftarrow improves by adding 9 at the end of L3

L5

L6

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 1$

L3 0, 2, 6

L4 0, 2, 6, 9

 $J4 \quad 0, 2, 0, \delta$

L5

L6

 \leftarrow improves by adding 9 at the end of L3

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 1$

L3 0, 2, 6

L4 0, 2, 6, 9

L5

L6

 \leftarrow improves by adding 5 at the end of L2

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

 $L2 \ 0, 1$

L3 0, 1, 5

L4 0, 2, 6, 9

L5

L6

 \leftarrow improves by adding 5 at the end of L2

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

```
L1 \quad 0
```

L6

 \leftarrow "improves" by adding 13 at the end of L4

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

```
L1 0
```

$$L5 \quad 0, 2, 6, 9, 13$$

L6

 \leftarrow "improves" by adding 13 at the end of L4

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

L2 0, 1

L3 0, 1, 5

L4 0, 2, 6, 9

 $L5 \quad 0, 2, 6, 9, 13$

L6

 \leftarrow improves by adding 3 at the end of L2

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

L2 0, 1

L3 0, 1, 3

L4 0, 2, 6, 9

 $L5 \quad 0, 2, 6, 9, 13$

L6

 \leftarrow improves by adding 3 at the end of L2

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

```
L1 \quad 0
```

$$L5 \quad 0, 2, 6, 9, 13$$

L6

 \leftarrow improves by adding 11 at the end of L4

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

```
L1 \quad 0
```

$$L5 \quad 0, 2, 6, 9, 11$$

L6

 \leftarrow improves by adding 11 at the end of L4

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

L2 0, 1

L3 0, 1, 3

L4 0, 2, 6, 9

L5 0, 2, 6, 9, 11

L6

 \leftarrow improves by adding 7 at the end of L3

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

 $L1 \quad 0$

L2 0, 1

L3 0, 1, 3

L4 0, 1, 3, 7

L5 0, 2, 6, 9, 11

L6

 \leftarrow improves by adding 7 at the end of L3

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

```
L1 \quad 0
```

L6

 \leftarrow "improves" by adding 15 at the end of L5

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

- L1 0
- L2 0, 1
- L3 0, 1, 3
- L4 0, 1, 3, 7
- L5 0, 2, 6, 9, 11

 $L6 \quad 0, 2, 6, 9, 11, 15 \qquad \leftarrow$ "improves" by adding 15 at the end of L5

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

```
egin{array}{cccc} L1 & 0 & & & & & \\ L2 & 0, 1 & & & & \\ L3 & 0, 1, 3 & & & \\ L4 & 0, 1, 3, 7 & & & \\ L5 & 0, 2, 6, 9, 11 & & \\ L6 & 0, 2, 6, 9, 11, 15 & & \\ \end{array}
```

In every iteration, exactly one row changes \Rightarrow time $O(n^2)$

$$M = (0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)$$

```
L1 \quad 0
```

$$L5 \quad 0, 2, 6, 9, 11$$

$$L6 \quad 0, 2, 6, 9, 11, 15$$

In every iteration, exactly one row changes \Rightarrow time $O(n^2)$

We can also compute only the main diagonal \Rightarrow time $O(n \log n)$

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

First biker passed more than f time units ago, so the second must stop.

We are allowed to modify the starting time s_i of each bike b_i .

We are allowed to modify the starting time s_i of each bike b_i .

First biker passed no more than f time units ago, so the second keeps riding.

We are allowed to modify the starting time s_i of each bike b_i .

First biker passed no more than f time units ago, so the second keeps riding.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f=0.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

There is no dependency between these two.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

Starting Schedules

We are allowed to modify the starting time s_i of each bike b_i .

Claim: We can solve this instance with f = 0.

Frustration tolerance f: Whenever b_i meets the tracks of b_j , it stops unless b_j was there no more than f time units ago.

What are the variables?

What are the variables?

- Starting time s_i of each biker
- Frustration tolerance *f*

What are the variables?

- Starting time s_i of each biker
- Frustration tolerance f

From the specification, we know there are at most 101 variables, which is still OK for linear programming.

• It starts with a line that contains a single integer n so that $1 < n < 10^2$. Here n denotes the number of bikers.

What are the variables?

- Starting time s_i of each biker
- Frustration tolerance *f*

What are the constraints?

What are the variables?

- Starting time s_i of each biker
- Frustration tolerance f

What are the constraints?

One constraint for each pair b_i, b_j with crossing paths.

What are the variables?

- Starting time s_i of each biker
- Frustration tolerance f

What are the constraints?

One constraint for each pair b_i, b_j with crossing paths.

What are the variables?

- Starting time s_i of each biker
- Frustration tolerance f

What are the constraints?

One constraint for each pair b_i, b_j with crossing paths.

- b_i needs $||b_i q||$ time to reach q.
- b_i is at position q at time $s_i + ||b_i q||$.

What are the variables?

- Starting time s_i of each biker
- Frustration tolerance f

What are the constraints?

One constraint for each pair b_i , b_j with crossing paths.

- b_i needs $||b_i q||$ time to reach q.
- b_i is at position q at time $s_i + ||b_i q||$.

Thus, the difference between $s_1 + ||b_1 - q||$ and $s_2 + ||b_2 - q||$ can be at most f.

What are the variables?

- Starting time s_i of each biker
- Frustration tolerance f

What are the constraints?

One constraint for each pair b_i, b_j with crossing paths.

- b_i needs $||b_i q||$ time to reach q.
- b_i is at position q at time $s_i + ||b_i q||$.

Thus, the difference between $s_1 + ||b_1 - q||$ and $s_2 + ||b_2 - q||$ can be at most f.

$$|s_1 + ||b_1 - q|| \le |s_2 + ||b_2 - q|| + f,$$

$$|s_2 + ||b_2 - q|| \le |s_1 + ||b_1 - q|| + f$$

What are the variables?

- Starting time s_i of each biker
- Frustration tolerance f

What are the constraints?

One constraint for each pair b_i, b_j with crossing paths.

- b_i needs $||b_i q||$ time to reach q.
- b_i is at position q at time $s_i + ||b_i q||$.

Thus, the difference between $s_1 + ||b_1 - q||$ and $s_2 + ||b_2 - q||$ can be at most f.

$$|s_1 + ||b_1 - q|| \le |s_2 + ||b_2 - q|| + f,$$

$$|s_2 + ||b_2 - q|| \le |s_1 + ||b_1 - q|| + f$$

 $O(n^2)$ constraints, which is at most 10,000.

 b_2

One constraint for each pair b_i, b_j with crossing paths.

What are these terms?

$$|s_1 + ||b_1 - q|| \le |s_2 + ||b_2 - q|| + f,$$

 $|s_2 + ||b_2 - q|| \le |s_1 + ||b_1 - q|| + f.$

 b_2

One constraint for each pair b_i, b_j with crossing paths.

What are these terms?

$$|s_1 + ||b_1 - q|| \le |s_2 + ||b_2 - q|| + f$$

$$|s_2 + ||b_2 - q|| \le |s_1 + ||b_1 - q|| + f$$

One needs square roots to compute these constants.

In addition, all variables are nonnegative.

One constraint for each pair b_i, b_j with crossing paths.

What are these terms?

$$s_1 + ||b_1 - q|| \le s_2 + ||b_2 - q|| + f,$$

 $s_2 + ||b_2 - q|| \le s_1 + ||b_1 - q|| + f$

One needs square roots to compute these constants.

 b_2

o a_2

Working with a single segment

Working with a single segment

Slides by Luis Barba

Working with a single segment

Working with a single segment 0 0 Which Antenna will 0 cover x first? Slides by Luis Barba M. Wettstein, M. Reddy Algolab, Nov. 24, 2021

M. Wettstein, M. Reddy Algolab, Nov. 24, 2021

Slides by Luis Barba

M. Wettstein, M. Reddy Algolab, Nov. 24, 2021

Slides by Luis Barba

Working with a single segment

Algorithm:

- Find all intersections of $VD(\mathcal{A})$ with the segment.
- For each intersection, compute distance to a closest antenna.
- Maintain the maximum distance considered, and report it.
- Repeat for each segment.

0

0

Working with a single segment

- n, the number of bikers $(1 \le n \le 3 \cdot 10^3)$;
- m, the number of antennas $(1 \le m \le 3 \cdot 10^3)$;
- w, the width of the strip $(0 \le w \le 2^{51})$.

S

Algorithm:

- Find all intersections of $VD(\mathcal{A})$ with the segment.
- For each intersection, compute distance to a closest antenna.
- Maintain the maximum distance considered, and report it.
- Repeat for each segment.

Slides by Luis Barba

0

Working with a single segment

- n, the number of bikers $(1 \le n \le 3 \cdot 10^3)$;
- m, the number of antennas $(1 \le m \le 3 \cdot 10^3)$;
- w, the width of the strip $(0 \le w \le 2^{51})$.

- $O(m \log m)$ time to Compute VD(A).
- \bullet O(m) time per segment.
- O(nm) time in total.

0

Algorithm:

- Find all intersections of $VD(\mathcal{A})$ with the segment.
- For each intersection, compute distance to a closest antenna.
- Maintain the maximum distance considered, and report it.
- Repeat for each segment.

