Ricerca Operativa M

Simulazione d'esame

1. Esercizio 1

Diagramma degli inneschi

Nota: si distingue se l'ascensore sta salendo o scendendo in base all'evento innescato

STATOA	POSIZIONE ASCENSORE
0	ASCENSORE NELLA LOBBY
1	ASCENSORE NELLA TERRAZZA
2	ASCENSORE IN VIAGGIO

a) evento INIZIO:

b) evento **ARRIVO**:

• evento **FAB**:

• evento **FTRAS**:

• evento **FSAL**:

• evento **FVIS**:

• evento **FDISC**:

2. Esercizio 2

 $x_1 := numero di pokemon elettrici;$

 $x_2 := numero di pokemon d'acqua;$

a)
$$\max z = 3x_1 + 2x_2$$

$$x_1 - x_2 \le 3;$$

$$2x_1 + 3x_2 \le 24;$$

$$x_1, x_2 \ge 0; \text{ interi}$$

b) -min w =
$$-3x_1 + -2x_2$$

 $x_1 - x_2 + x_3 = 3$;
 $2x_1 + 3x_2 + x_4 = 24$;
 $x_1, x_2, x_3, x_4 \ge 0$; interi

Metodo delle due fasi (direttamente fase 2)

27 0 0 1 1
$$r_0 = r_0 + 5r_2$$

33/5 1 0 3/5 1/5 $r_1 = r_1 + r_2$
18/5 0 1 -2/5 1/5 $r_2 = r_2$ /5
 $\gamma = (33/5,18/5)$ $w = -27 \rightarrow z = 27$

Generiamo un taglio di Gomory dalla riga 1:

$$3/5x_3 + 1/5x_4 \ge 3/5 \rightarrow -3/5x_3 - 1/5x_4 + s = -3/5$$

Si inserisce il nuovo vincolo nel tableau e si applica l'algoritmo duale.

	27	0	0	1	1	0
•	33/5	1	0	3/5	1/5	0
	18/5	0	1	-2/5	1/5	0
\rightarrow	-3/5	0	0	-3/5	-1/5	1

26	0	0	0	2/3	5/3	$r_0 '= r_0 - r_3'$
6	1	0	0	0	1	r ₁ '= r ₁ - 3/5r ₃ '
4	0	1	0	1/3	-2/3	$r_2 '= r_2 + 2/5r_3'$
1	0	0	1	1/3	-5/3	$r_3 = r_3/(-3/5)$
	•		$\mathbf{w} = -26 \rightarrow \mathbf{z} = 26$			

Il tableau è ottimo perché è ammissibile per il primale e per il duale.

c) Taglio:
$$3/5(3 - x_1 + x_2) + 1/5(24 - 2x_1 - 3x_2) \ge 3/5 \rightarrow x_1 \le 6$$

Osservazione: con il **branch-and-bound**, partendo dalla soluzione $\gamma = (33/5, 18/5)$ si ottiene la stessa soluzione di Gomory, z=26 ma:

avendo UB=27, bisogna continuare a risolvere il sottoproblema 2, anche se il sottoproblema non è ammissibile: lo si vede subito per via grafica, ma è necessario risolverlo fino ad avere soluzione 0.

3. Esercizio 3

a) Dato il problema knapasack 0-1:

$$(p_j) = (19, 20, 8, 5, 2)$$

 $(w_j) = (30, 31, 15, 10, 5)$
 $c = 50$

ordinare gli oggetti per rapporto p/w decrescente:

$$(p_j) = (20, 19, 8, 5, 2)$$

 $(w_j) = (31, 30, 15, 10, 5)$
 $c = 50$

b) Calcolare lo upper-bound di Dantzig per il nodo 0 e quindi procedere con l'algoritmo:

Soluzione ottima: $x = (0,1,1,0,1) \rightarrow z = 29$

Per i nodi a cui si arriva ponendo una variabile ad 1, lo UB coincide con quello del nodo padre, mentre in caso contrario bisogna ricalcolare lo UB (bisogna indicarlo sottolineandolo - <u>UB</u>).

$$UB_0 = 20 + [19 * 19/30] = 32$$

$$UB_2 = 20 + 8 + [4 * 5/10] = 30$$

$$UB_4 = 20 + 8 + [4 * 2/5] = 29$$

$$UB_6 = 20 + 5 + 2 = 27$$

$$UB_7 = 19 + 8 + [5 * 5/10] = 29$$

$$UB_{10} = 19 + 8 + 2 = 29$$

Nota: con [] si indica l'intero inferiore.

4. Esercizio 4 (integrazione)

a) Matching iniziale

$$M = \{ [b,b'], [c,c'] \}$$

L = {a, d}, R = Ø

b) Step 1

c) Step 2

x = a'; Scan_rightvertex(a'): R = Ø;

Augmentation P = $\{a, a'\}$; M = $\{[b,b'], [c,c'], [a,a']\}$; L = $\{d\}$, R = \emptyset ;

d) Step 3

x = d; Scan_leftvertex(d): $L = \emptyset$, $R = \{a'\}$;

x = a'; Scan_rightvertex(a'): $R = \emptyset$, $L = \{a\}$;

x = a; Scan_leftvertex(a): $L = \emptyset$, $R = \{c'\}$;

x = c'; Scan_rightvertex(c'): $R = \emptyset$, $L = \{c\}$;

x = c; Scan_leftvertex(c): L = Ø, R = {b'};

x = b'; Scan_rightvertex(b'): $R = \emptyset$, $L = \{b\}$;

x = b; Scan_leftvertex(b): L = Ø, R = {d'};

e) Step 4

x = d'; Scan_rightvertex(d'): R = Ø;

Augmentation