Essay 2

Physical Background of Heat Conduction

2.1 Physical Nature

The first topic in our course is heat conduction. An illustration of heat conduction is displayed in Fig. 2.1. It can easily be understood that the copper rod is an effective pathway for heat flow from the flame of the candle to the hand of the person who is holding the rod. However, by observation of the heat-conducting rod, nothing can be seen of the heat that is flowing. Conduction is the mode of heat flow that cannot be directly observed. Its occurrence can only be inferred from the effects that heat flow has on the objects that are involved in the conduction process.

The conduction process occurs at the molecular or submolecular scale. In metallic objects, where there are free electrons, the unrestricted movement of the free electrons causes them to be effective heat carriers. On the other hand, dielectric materials only contain bound electrons, but not free electrons. For such materials, heat conduction occurs by means of molecules and atoms.

Fig. 2. 1 Illustration of heat conduction.
The person who is holding the copper rod is experiencing the heat that is conducted from the flame to his/her hand.

To best explain the heat conduction process, it is useful to recall some facts from basic physics. First, the motion of molecules and sub-molecular particles ceases at absolute zero. At temperatures above absolute zero, the mean kinetic energy of a cloud of small particles increases with increasing temperature. As a consequence, the higher the temperature, the greater is the kinetic energy. Another fact from basic physics teaches the outcome of collisions between particles which possess different magnitudes of kinetic energy. That outcome is that the collision increases the kinetic energy of the particle which initially possesses the lower kinetic energy, and decreases the kinetic energy of the particle whose kinetic energy is initially higher. Since kinetic energy can be regarded as equivalent to temperature, the collision process increases the temperature of one of the colliding particles and decreases the temperature of the other.

This phenomenon is illustrated in Fig. 2.2. That figure consists of three parts, (a), (b), and (c). Each of the parts shows a cluster of particles. In part (a), one of the particles is shown by color to

possess a higher temperature and a higher kinetic energy than the others. The higher temperature particle is receiving heat continuously from an external source. Part (b), which corresponds to a time that is slightly later than that of part (a), shows the effect of collisions between the higher temperature particle and its immediate neighbors. Those collisions raise the temperatures of the immediate neighbors. With the further passage of time, the immediate neighbors collide with their immediate neighbors, thereby increasing the temperatures of the latter.

Fig. 2. 2 Schematic illustration of the process of heat conduction. Collisions cause a transfer of kinetic energy which, in effect, is equivalent to the transfer of heat.

2.2 Thermal Conductivity vs. Electrical Conductivity

The effectiveness by which heat is transferred between hotter and cooler zones depends on a material property called the *thermal conductivity*. Materials which contain free electrons are the best conductors of heat and possess a high value of the thermal conductivity. In fact, aside from one exception, the very best heat-conducting materials are also the very best conductors of electricity. In the absence of free electrons, the magnitude of the thermal conductivity is much lower than that of free-electron-possessing materials. However, the thermal conductivity is never zero for any material. This non-zero thermal conductivity law does not hold for electric conductivity.

To illustrate this fact, suppose that a person is doing some handyman electrical wiring at home and does not have the proper tape or wire nuts to cover the joining of two wires. The person twists the two wires together and throws a switch to initiate current flow. If the person is a risk taker, he/she might grasp the joint and feel a shock, the magnitude of which depends on the surface on which the person is standing. If, on the other hand, the person grasps the joint with a piece of paper, it is unlikely that any shock would be felt. Next, suppose an experiment is to be performed to determine the thermal insulating properties of paper. For this purpose, a penpoint-type soldering iron will be used. Before the soldering iron is plugged into a wall outlet, a piece of paper is stretched over the pointed end. When the current flow is initiated, an unpleasant burn will result if the person would grasp the paper cover. This example indicates that electric insulators and thermal insulators are not correlated.

The process of heat conduction in thermal insulators has no counterpart for electric insulators. That heat conduction process for thermal insulators can be illustrated by making reference to Fig. 2.2. In this regard, now envision that the dashed lines which interconnect the individual spheres (atoms) are elastic springs which permit the atoms to vibrate but which limit the extent of their motion. As the atoms vibrate, they collide and exchange kinetic energy. This is the process of heat conduction in the absence of free electrons.

2.3 Tables of Thermal Conductivity Values

Values of the thermal conductivity of metals and dielectric materials are conveyed in Tables 2.1 and 2.2, respectively. It is interesting to point out that the values of the thermal conductivities for diamond and pyrolitic graphite, both excellent electric insulators, far exceed those for the best thermal conducting metals.

Table 2. 1 Thermal conductivity of common metals as a function of temperature. $[\frac{W}{m \cdot K}]$

Metal	Temperature, K									
	200	300	400	500	600	800	1000	1200	1500	
Aluminum										
Pure	237	237	240	236	231	218				
Duralumin	138	174	187	188						
Alloy 195, cast		168	174	180	185					
Copper										
Pure	413	401	393	386	379	366	352	339		
Commercial bronze	42	52	52	55						
Brass	74	111	134	143	146	150				
German silver		116	135	145	147					
Gold	323	317	311	304	298	284	270	255		
íron										
Armeo	81	73	66	59	53	42	32	29	31	
Cast		51	44	39	36	27	23			
Carbon steels										
AISI 1010		64	59	54	49	39	31			
AISI 1042		52	50	48	45	37	29	26	30	
AISI 4130		43	42	41	40	37	31	27	31	
Stainless steels										
AISI 302		15	17	19	20	23	25			
AISI 304	13	15	17	18	20	23	25			
AISI 316		13	15	17	18	21	24			
AISI 410	25	25	26	27	27	29				
Lead	37	35	34	33	31					
Magnesium										
Pure	199	156	153	151	149	146				
Alloy A8			84							
Nickel										
Pure	105	91	80	72	66	68	72	76	83	
Inconel-X-750	10.3	11.7	13.5	15.1	17.0	20.5	24.0	27.6	30.0	
Nichrome		13	14	16	17	21				
Platinum	73	72	72	72	73	76	79	83	90	
Silver	420	429	425	419	412	396	379	361		
Tantalum	58	58	58	59	59	59	60	61	62	
Tin	73	67	62	60						
Titanium										
Pure	25	22	20	20	19	19	21	22	25	
Ti-6Al-4V		5.8			•					
Tungsten	185	174	159	146	137	125	118	112	106	
Zirconium					,				.50	
Pure	25	23	22	21	21	21	23	26	29	
Zircaloy-4	13.3	14.2	15.2	16.2	17.2	19.2	21.2	23.2		

Table 2. 2 Thermal conductivity of dielectric materials as a function of temperature.

Dielectric	T K	k W/m K		T K	k W/m K		T K	k W/m K
Aluminum oxide, Al ₂ 0 ₃			Asbestos paper, laminated and corrugated	300	0.078	Loose fill		
Sapphire	300	46	4 ply	320	0.085	Cellulose, wood or paper pulp	290	0.038
Alumina	300	36		340	0.091	comment, more or fulfer ff	300	0.039
400 600 1000 1500	400	27		360	0.097		310	0.042
		16		380	0.101	Vermiculite, expanded	240	0.058
	7.6	8 ply	300	0.068	vermeante, expanded	260	0.061	
		5.4		320	0.073		280	0.064
Carbon	1500	5.4		340	0.077		300	0.069
Diamond (type IIb)	300	1300		360	0.080		320	0.074
ATJ-S graphite	300	98	n.:	380	0.083		320	0.074
A13-5 graphite	1000	55	Brick	600	0.03		240	0.053
		38	B&W K-28 insulating	600	0.03		240	0.052
	2000		Chrome	1300 400	0.04 2.3		260	0.056
	3000	33	Chrome	800	2.5		280	0.059
Pyrolytic graphite	300	1950		1200	2.0		300	0.063
k parallel to layers	600	892	Fireclay	400	0.9		320	0.068
	1000	534	rifectay	800	1.4	Magnesia	300	0.062
	2000	262		1200	1.7	(85 %)	350	0.068
k perpendicular to layers	300	5.7		1600	1.8		400	0.073
	600	2.68	Common	300	0.72		450	0.078
	1000	1.60	Face	300	1.3		500	0.082
	2000	0.81	Concrete		***	Paper	300	0.13
Graphite fiber epoxy	200	8.7	Stone 1-2-4 mix	300	1.4	Polystyrene, rigid	240	0.023
(25% volume) composite	300	11.1	Cork	300	0.043		260	0.024
k parallel to fibers	400	13.0	Cotton	300	0.06		280	0.026
k perpendicular to fibers	200	0.68	Glass				300	0.028
n perpendicular to mens	300	0.87	Fused silica	300	1.38		320	0.030
	400	1.1	Borosilicate (Pyrex)	300	1.09	Polyurethane, rigid foam	300	0.026
Carbon-carbon weave	300	110	Soda-lime (25 Na ₂ O, 10 CaO)	300	0.88	Rubber	500	0.020
Carbon-carbon weave	1000	56	Cellular glass	240	0.048	Hard	270	0.15
				260	0.051		300	0.13
	2000	36.5		280	0.054	Neoprene	260	0.19
	3000	34.5		300	0.058	Rigid foamed		0.000
	4000	34		320	0.063		280	0.030
	5000	34		340	0.067		300	0.032
Ice	273	2.22	Fiberglass, paper-faced batt	300	0.046	_	320	0.034
Plastics				200	0.025	Snow	273	0.049
Cellulose acetate	300	0.24		300	0.035			0.190
Neoprene rubber	300	0.19		260	0.020	Soil		
Phenolic, filled	300	0.50		260 280	0.029	Dry	300	1.0
Polyamide (nylon)	300	0.24		300	0.033	Wet	300	2.0
Polyethylene (high density)	300	0.33		320	0.038	Woods		
Polypropylene	300	0.17		340	0.043	Oak, parallel to grain	300	0.35
Polyvinylchloride	300	0.092		360	0.054	perpendicular to grain	300	0.21
Teflon	300	0.35		380	0.060	White Pine, parallel to grain	300	0.24
	400	0.45		400	0.066	perpendicular to grain	300	0.10