

INT 1*. Пусть дан граф G без петель. Алиса и Боб получают две вершины данного графа x, y и хотят узнать существует ли ребро (x, y). Докажите, что детерминированная сложность данной задачи не менее $\log \chi(G)$, где $\chi(G)$ — хроматическое число графа G.

Подсказка: попробуйте предъявить хорошую раскраску, если есть короткий коммуникационный протокол.

INT 2. Покажите, что существует такая монотонная функция $f\colon\{0,1\}^n \to \{0,1\}$, что $\mathrm{D}(\mathsf{KW}_f) \geq n - o(n)$.

1: Подсказка: формульная сложность такой функции будет $2^{\Omega(n)}$. – Dmitry

Определение

 $He\phi opмaльно.$ Вероятностным коммуникационным протоколом будем называть протокол Π , в котором у Алисы и Боба есть доступ к общим (т.е. оба игрока видят случайные биты) случайным битам. Их цель найти значение функции f(x,y) при этом:

$$\forall x,y \ \Pr_r[\Pi(x,y) \neq f(x,y)] \leq \varepsilon,$$

для некоторого параметра ε .

Минимальное число бит, которым нужно обменяться Алисе и Бобу для того, чтобы посчитать значение функции с указанными ограничениями будем обозначать $R_{\varepsilon}^{\text{pub}}$.

 $\overline{ extbf{InT 3.}}$ Покажите, что $R_{rac{1}{10}}^{ ext{pub}}(ext{EQ}) = \mathcal{O}\left(1
ight).$

INT 4. Пусть для некоторой функции $f\colon X\times Y\to Z$ существует коммуникационный протокол с ℓ листьями. Докажите, что $\mathrm{D}(f)=\mathcal{O}(\log\ell)$.

INT 5. Докажите, что $\mathrm{D}(\mathsf{CIS}_G) = \mathcal{O}\left(\log^2 n\right)$. Где x интерпретируется как характеристическая функция некоторой клики в графе G, а y — как характеристическая функция некоторого независимого множества в графе G. $\mathsf{CIS}(x,y) = 1$, если клика и независимое множество имеют общую вершину, обе стороны знают граф G.

Определение

Пусть $f: X \times Y \to Z$ и μ — распределение на $X \times Y$. Заметим, что для любого коммуникационного протокола Π для функции f распределение μ индуцирует распределение на листьях данного протокола естественным образом. Внешней информационной стоимостью (или внешним информационным разглашением) протокола Π по распределению μ будем называть величину:

$$\mathrm{IC}^{\mathrm{ext}}_{\mu}(\Pi) \coloneqq I(\Pi(X,Y){:}\, X,Y).$$

Также определим внешнюю информационную сложность самой функции ${
m IC}^{
m ext}_{\mu}(f):=\min_{\Pi} {
m IC}^{
m ext}_{\mu}(\Pi).$

Внутренней информационной стоимостью протокола Π по распределению μ будем называть величину:

$$\operatorname{IC}^{\operatorname{ext}}_{\mu}(\Pi) \coloneqq I(\Pi(X,Y) \colon\! X \mid Y) + I(\Pi(X,Y) \colon\! Y \mid X).$$

INT 6. Докажите, что для любой булевой функции f и любого распределения μ существует такой протокол Π для KW_f , что $\mathsf{IC}^\mathsf{int}_\mu(\Pi) \leq 2\log n$.

Подсказка: попробуйте рассмотреть прокол, где Алиса пересылает Бобу биты входа до тех пор, пока они не найдут бит различия.

[INT 7.] Определим функцию GT: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ следующим образом: $\mathsf{GT}(x,y) =$ $\overline{1 \Leftrightarrow x \geq y}$, где x,y мы воспринимаем как числа в битовой записи. Докажите, что:

a)
$$R_{\frac{1}{10}}^{\text{pub}}(\mathsf{GT}) = \mathcal{O}(\log n \cdot \log \log n)$$
.

6)
$$R_{\frac{1}{10}}^{\text{pub}}(\mathsf{GT}) = \mathcal{O}(\log n).$$

2: Пункт б сложный, пункт а будет оцениваться отдельно. - Dmitry

Определение

Идеальная схема разделения секрета — это совершенная схема разделения секрета с дополнительным требованием «экономности».

$$\forall i \in \{1, 2, \dots, n\}, \ h(S_i) \le h(S_0).$$

| InT 8. | Рассмотрим задачу разделения секрета для следующей структуры доступа с 4 участниками: минимальными группами участников, знающих секрет, являются три пары

$$\{1,2\},\{2,3\},\{3,4\}.$$

Покажите, что:

- a) $H(S_2 \mid S_1, S_3) \ge H(S_0)$;
- б) $H(S_3 \mid S_1) \ge H(S_0);$
- B) $I(S_1:S_3\mid S_2)\geq \mathrm{H}(S_0);$ r) $\max_i\frac{\mathrm{H}(S_i)}{\mathrm{H}(S_0)}\geq \frac{3}{2}.$