

Núcleo de Capacitação em Inteligência Artificial

Main Challenges of Machine Learning

Insufficient Quantity of Training Data, Nonrepresentative Training Data, Poor-Quality Data, Irrelevant Features, Overfitting the Training Data, Underfitting the Training Data

Insufficient Quantity of Training Data

Nonrepresentative Training Data

Generalização em aprendizado de máquina é a capacidade essencial de um modelo de performar bem em dados novos e nunca vistos, após ter sido treinado em um conjunto de dados limitado.

Um modelo que generaliza bem não apenas "decorou" os exemplos de treinamento, mas aprendeu os padrões verdadeiros e subjacentes, permitindo-lhe fazer previsões precisas e úteis em situações do mundo real.

Para que um modelo de Machine Learning generalize bem para novos dados, é crucial que seu conjunto de treinamento seja representativo para aquele universo de dados.

Um modelo que previa a satisfação com a vida a partir do PIB: ao omitir países muito ricos e muito pobres, apresentou uma forma linear aparentemente satisfatória mas quando submetido às novas amostras mostrou-se

A falta de representatividade pode ocorrer por ruído de amostragem (amostras pequenas) ou por viés de amostragem (método de coleta falho), que é um problema sério mesmo em amostras grandes.

Poor-Quality Data

Problema: Dados com erros, outliers, ruído, ausentes...

Solução: Pré-processamento de dados

Irrelevant Features

Um modelo só consegue aprender se os dados de treino contiverem atributos relevantes.

Engenharia de Atributos: É o processo de selecionar e criar o melhor conjunto de atributos (features) para o modelo, sendo uma parte crítica para o sucesso de um projeto de Machine Learning.

Etapas Principais:

Seleção de Atributos: Escolher os atributos mais úteis entre os que já existem.

Extração de Atributos: Combinar atributos existentes para criar um novo mais informativo.

Criação de Atributos: Coletar novos dados para gerar atributos que ainda não existem.

Overfitting the Training Data

Overfitting (Sobreajuste): O Risco de Aprender Demais

Ocorre quando o modelo se ajusta perfeitamente aos dados de treino, mas falha ao fazer previsões com novos dados. Ele **memoriza o ruído** em vez de aprender o padrão real.

Exemplo Prático: O modelo "aprende" que todos os países com a letra "W" no nome têm alta satisfação com a vida (ex: New Zealand, Sweden). Obviamente, essa é uma regra falsa que não se aplicará a outros casos.

Underfitting - Subajuste dos dados de treinamento

Underfitting (Subajuste): Quando o Modelo é Simples Demais

É o oposto de overfitting. Ocorre quando o seu modelo é muito simples para aprender a estrutura e os padrões reais presentes nos dados.

Exemplo Prático: Usar um modelo de linha reta (linear) para descrever algo complexo como a satisfação com a vida. A realidade não é uma linha reta.

Regressão Linear não seria uma abordagem suficiente para esse universo de dados

Regressão Linear não seria uma abordagem suficiente para esse universo de dados

Testing and Validating

Hyperparameter Tuning and Model Selection, Data Mismatch

Testando e validando

Para saber se um modelo é bom sem arriscar em produção, divida seus dados em conjunto de treino e conjunto de teste.

Treine o modelo com o conjunto de treino; avalie o desempenho com o conjunto de teste.

O erro no teste (erro de generalização) mostra como o modelo se sairá com dados que nunca viu.

Se o modelo vai bem no treino, mas mal no teste, ele está com overfitting.

Data Base

class_index x_center y_center width height

