

SMOOTH SHADING

NORMALS

IMPORTING NORMALS

GOURAUD SHADING

Vertex color interpolation

$$v1v2 = lerp(v1, v2)$$

$$v1v3 = lerp(v1, v3)$$

$$x = lerp(v1v2, v1v3)$$

Normal interpolation

$$n = (n1+n2+n3+n4) / |n1+n2+n3+n4|$$

PHONG SHADING

Each vertex has a normal

PHONG SHADING

Get the point where to calculate the normal

Interpolate normals using barycentric coordinates

Use that normal to calculate the illumination

Christer Ericson - Real-Time Collision Detection

NORMALS IN OBJ

S is for smoothing group

o Box001

g Box001

s 2

f 1/1/1 2/2/1 3/3/1

f 3/3/1 4/4/1 1/1/1

s 4

f 5/4/2 6/1/2 7/2/2

f 7/2/2 8/3/2 5/4/2

s 8

f 1/4/3 4/1/3 6/2/3

f 6/2/3 5/3/3 1/4/3

PHONG SHADING

Only interpolate vertices in the same smoothing group

SMOOTH SHADING

Phong Interpolation