drjatorres@gmail.com | Search History | My Account | Sign out

Google

Web Images Groups News Froogle Local New! more »

fine coarse "phase detector" pll filter vco coars Search Preferences

Web Results 1 - 10 of about 407 for fine coarse "phase detector" pll filter vco coarse divider serial. (0.42 seconds)

[PDF] A Low Jitter, Low Power, CMOS 1.25-3.125Gbps Transceiver

File Format: PDF/Adobe Acrobat - View as HTML

... two loops in the receiver; the coarse loop, and the fine loop. The coarse loop

PLL locks to ... Filter (LF), a 10-stage VCO and a divider as shown in ...

www.imec.be/esscirc/esscirc2001/Proceedings/data/79.pdf - Similar pages - Remove result

[PDF] University of Toronto

File Format: PDF/Adobe Acrobat

Filter. Freq. Detector. VCO. fine. freq. tune. Ref. D. Data. Output. Output.

Clock. Freq. Input. coarse. freq. tune. Divider. Divider ...

www.ewh.ieee.org/r7/toronto/events/devito_slides.pdf - Similar pages - Remove result

Method and apparatus for adjusting the phase of an output of a ...

A loop filter 108, and voltage controlled oscillator (VCO) 110 provide the ...

Coarse phase adjustments may be implemented using the variable divider block ...

www.freepatentsonline.com/6920622.html - 97k - Cached - Similar pages - Remove result

[PDF] <u>User Programmable</u>

File Format: PDF/Adobe Acrobat - View as HTML

... feedback • Small footprint 24-pin SOIC • Coarse and fine ... Oscillator Output 8 FINE

IN Fine Phase Adjust ... Volt Supply 21 PDEN IN Phase Detector Enable (Active ...

icst.com/datasheets/ics1522.pdf - Supplemental Result - Similar pages - Remove result

[PDF] ispClock5500 Family Data Sheet

File Format: PDF/Adobe Acrobat - View as HTML

... 2.5V, 3.3V = Fully Integrated High-Performance PLL • Programmable lock ... VCO frequency •

Up to +/- 12ns skew range • Coarse and fine adjustment modes ...

www.vantis.com/account/ _download.cfm?CFID=5188056&CFTOKEN=64608068&AMID=8434 - Supplemental Result -

Similar pages - Remove result

[PDF] Triple 8/10-Bit 150/110 MSPS Video & Graphics Digitizer w/Analog PLL

File Format: PDF/Adobe Acrobat - View as HTML

The coarse offset registers apply before the ADC. A 10-bit fine ... The analog

PLL consisted of phase detector, loop filter, voltage controlled oscillator ...

focus.ti.com/lit/ds/symlink/tvp7000.pdf - Similar pages - Remove result

EDN Access--03.14.97 PLL SYNTHESIZERS make channel-hopping swift ...

The phase detector compares an input signal to the output of a VCO or voltage-controlled

... one for coarse (offset) setting and one for fine tuning. ...

www.edn.com/archives/1997/031497/06DF 01.htm - 45k - Cached - Similar pages - Remove result

[PDF] ispClock5500 Family Data Sheet

File Format: PDF/Adobe Acrobat

Locked to VCO frequency. • Up to +/- 12ns Skew range. • Coarse and fine Adjustment

... PLL are an Edge-sensitive Phase DETECTOR, A Programmable Loop Filter, ...

www.latticesemi.com/lit/docs/datasheets/ pac/ispclock5500.pdf?CFID=729242&CFTOKEN=67141363 - Supplemental

Result - Similar pages - Remove result

[РОБ] A Quad-Band GSM-GPRS Transmitter With Digital Auto-Calibration

File Format: PDF/Adobe Acrobat

the PLL transfer function, with a digital transmit filter. Thus, ... The architecture

http://www.google.com/search?sourceid=navclient&ie=UTF-8&rls=GGLD,GGLD:2004-30,GGLD:... 1/12/06

employs a single VCO with a digital coarse- ... dx.doi.org/10.1109/JSSC.2004.836342 - Similar pages - Remove result

[PDF] Using the PE3291/92 in CDMA Applications File Format: PDF/Adobe Acrobat - View as HTML step 10.08 kHz and loop filter bandwidth 1 kHz, in a. coarse and fine frequency

... prescaler, Internal phase detector. • Product brief. 2 GHz Integer-N PLL ... rfwireless.rell.com/pdfs/AN4_peregrine.pdf - Similar pages - Remove result

Try your search again on Google Book Search

Gooooooogle >

Result Page: 1 2 3 4 5 6 7 8 9 10 **Next**

Google Desktop Search 🗳 🔻 🙋 💇 9:30 AM

Free! Instantly find your email, files, media and web history. Download now.

fine coarse "phase detector" pll filter Search

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve

Google Home - Advertising Programs - Business Solutions - About Google ©2006 Google

SCIFUS for scientific information only

About Us

Newsroom

Advisory Board

Submit Web Site

Search Tips

Contact Us

Basic Search

Advanced Search Search Preferences

		fin	ne AND coarse	AND "phase detector	or" AND pll AND "fi	Search	
		V.	Journal sources	Preferred Web sour	ces Other Web so	urces Exact phrase	
	Sear	ched for:: :Al	ll of the words: fi i	ne AND coarse AND "r	ohase detector" AND	pil AND "filter" AND vco AND	coarse .
				nai results <u>14 prefe</u> i		•	
			elevance date	-			
		3010 57	sicvanice (<u>auto</u>	-			
(Save checked	i results	Email checked results	Export checked	results —•	Did you "fine co
	1.		ARCHITECTUR				detecto
				ATY APPLICATIONAL		INES CORPORATION,	coarse
		buffer circu frequency div formfine' a contains a rei details of the digitalfrequency	it. The PLL co vider, phase-fi inalog and a 'c ferencecoar fine control lo iency of the 35 allable at pate	ntains a four-stage. re uency detector coarse' digital contro se control loop. The pop are wellpreser o VCO. A phase det	controlled ring os charge pump and k ol voltageloop ele e fine control loop i nt invention. The co t ector and charge	cillator (VCo), a 4X coop filter. These elements ements, the PLL 110 s a conventionalThe carse control loop is a pump that hing go to LexisNexis	Refine using i found analog chromin clock gu
,	· •)			control
*****	, 2.	SCHMATZ, M PATENT COO. Figure 4 sh (VCO), a 4X i These elemen 'coarse' digit capable of	PERATION TRE ows a full data frequency divi nts form the!'fi al control volta ailable at pate	INTERNATIONAL I EATY APPLICATION, a rate PLL 110. This ider, phase-frequen- ine" control loop. Thage inminimize the	Jul 2002 PLL is the clock cy detector, charge ne VCO has both a e required gain of t	controlled ring oscillator pump and loop filter. 'fine' analog and a the fine loop. The VCO is	data rai frequer luminar output output phase r ring osc
_	3.		_	Fiming - Jitter Desig	n Techniques for re	DF-396K1	semico: subadd
	,	Jan 1998 increasing of basedpract showdevice controlled-ose	demand for ful ical considerat is which make cillator (VCO). i.eecs.berkeley	lly-monolithic, on-ch	nip VCO and synthetor VCO design are of the PLL system latic variations in	esizer designs. Delay cell described. The results , particularly the voltage-	transmi Or refi All of
	4.	Dec 2002 digital synt synthesizer e include8-1	valutaion boar to 8-43 Hybrid eecs.wsu.edu/), phase-locked loop	OS, PLL and hybrid by Synthesizers - A		

fine ANI	O coarse AND "phase detector" AND pll AND "filter" AND vco AND coarse AND divi Page 2 of 4
<u> </u>	STEVENS, Joseph, Marsh / INTERNATIONAL BUSINESS MACHINES CORPORATION, PATENT COOPERATION TREATY APPLICATION, Jul 2002brought out of the PLL, and is used to drivecontrolled ring oscillator (VCo), a 4X frequency divider, phase-frequency detectorcharge pump and loop filter. These elements formfine' analog and a 'coarse' digital control voltageloop elements, the PLL 110 contains a referencecoarse control loop. The fine control loop is a conventionalThe details of the fine control loop are wellpresent invention. The coarse control loop is a digitalfrequency of the 15 VCO. A phase detector and charge pump that Full text available at patent office. For more in-depth searching go to LexisNexis similar results
6.	Beginning Section [PDF-556K] Aug 1997
	digital synthesizers (DDS), phase-locked loop (PLL) frequency synthesizers and frequency synthesizer evalutaion boards implementing DDS, PLL and hybrid systems. FEC devices include8-1 to 8-43 Hybrid PLL /DDS Frequency Synthesizers - Application [http://sss-mag.com/pdf/synthbk.pdf] similar results
7.	D:\cobra\correlator\hardware\boards\digmodule\doc\spec\latex\digmodule spec rev c1.DVI [PDF-130K] Jun 2002
	generation and coarse clock delaylocked-loop (PLLdownconverted and filtered into eight4 or 8 by serial-to-parallelFine Delay PLL PLL Coarse Delay Coarsereference path, fine delay controlconjunction with the phase detector logic on thegeneration and coarse clock delaySynergy SY89421V PLL [23]. Thisdetermined by the VCO frequencyto provide coarse control ofto produce fine phase shifts [http://www.ovro.caltech.edu/~dwh/correlator/pdf/digmod] similar results
□ 8.	One Chip Front-end 1 (OCF1) [PDF-172K] Nov 2000 Cross-colour reduction by chrominance comb filtering for NTSC or special cross-colour cancellationControl Output. This pin is used to fit serially the increments of the HPLL and FSC-PLL and information of the PAL or SECAMoutput signals are converted to a serial UV data stream and applied to two low-pass filter stages, then to a gain controlledfrom SECAM is fed through a Cloche filter (0 Hz centre frequency), a phase demodulatorcross-over switch, to provide both the serial transmitted colour difference signals more hits from [http://mjpeg.sourceforge.net/driver-zoran/datasheets/s] similar results
9.	/home/kunyung/T/pfd/pfd.ps [PDF-212K] Oct 2001circuitry within these links. Conventional serial links have timing adjustment circuits containing a Phase-Locked Loop (PLL) at each receiver to recover the dataconjunction with a local clock generation PLL, which increases the tracking bandwidth of the serial link. In addition, the use of calibration12 Figure 2.8: Phase Detection of Serial LinksFigure 2.10: Block Diagram of a Dual-Loop PLL more hits from [http://mos.stanford.edu/papers/kkc_thesis.pdf] similar results
	/home/kunyung/T/pfd/pfd.ps [PDF-212K] Oct 2001circuitry within these links. Conventional serial links have timing adjustment circuits containing a Phase-Locked Loop (PLL) at each receiver to recover the dataconjunction with a local clock generation PLL, which increases the tracking bandwidth of the serial link. In addition, the use of calibration12 Figure 2.8: Phase Detection of Serial LinksFigure 2.10: Block Diagram of a Dual-Loop PLL more hits from [http://velox.stanford.edu/papers/kkc_thesis.pdf] similar results
11.	PLL AND GAIN CONTROL FOR CLOCK RECOVERY GRUNG, Bernard, L. / ROBINSON, Moises, E. / CHEN, Yiqin / ROCKETCHIPS, INC.,

fine AND coarse AND "phase detector" AND pll AND "filter" AND vco AND coarse AND divi... Page 3 of 4 PATENT COOPERATION TREATY APPLICATION, Jun 2000 ...schematic diagram of the coarse loop is shown in Figure...down output of the VCO circuit 212. The output...divided by four using divider circuit 222. An enable...circuit 212. Thus, the coarse loop is used to adjust...REF CLK) 224. The coarse PLL can be described by...associated with the coarse PLL. The variables...those defined for the fine PLL. I is the maximum...at the input of the phase detector 204. Thus, the following... Full text available at patent office. For more in-depth searching go to LexisNexis similar results 12. Philips Semiconductors Product specification [PDF-140K] Sep 2000 ...amplitude (PAL/NTSC standards only) · Loop filter chrominance gain control (PAL/NTSC standards only) · Loop filter chrominance PLL (only active for PAL/NTSC standards.... Increment generation for DTO1 with divider to generate stable subcarrier for non-standard signals. The chrominance comb filter block eliminates crosstalk between the... [http://www.eecg.toronto.edu/~tm3/SAA7111A_4.pdf] similar results ☐ 13. thesis.dvi [PDF-398K] Nov 2002 ...bandwidth. A digital compensation filter is then used to undo the attenuation of the PLL transfer function seen by the data. This filter adds little complexity to...Included on the IC are an on-chip filter that requires no tuning or...an asynchronous, 64 modulus divider (prescaler) that supports...voltage controlled oscillator (VCO), and changes the range of...of modeling the modulated PLL. Charlie Sodini introduced... [http://www-mtl.mit.edu/~perrott/pages/thesis.pdf] similar results 14. Mixed signal design flow, a mixed signal PLL case study Shariat Yazdi, Ramin, Jan 2001 ...A mixed signal PLL case study by Ramin...capacitor loop filter, and a feed forward...Behavioral Modeling 4.1 Phase Detector...controlled oscillator (VCO...70 5.5 Frequency Divider...39 FIGURE 4.1 Phase detector simulation...a Schematic of phase detector... Full text thesis available via NDLTD similar results 15. Mixed signal design flow, a mixed signal PLL case study Shariat Yazdi, Ramin, Jan 2001 ... A mixed signal PLL case study by Ramin... capacitor loop filter, and a feed forward...Behavioral Modeling 4.1 Phase Detector...controlled oscillator (VCO...70 5.5 Frequency Divider...39 FIGURE 4.1 Phase detector simulation...a Schematic of phase detector... Full text thesis available via NDLTD similar results **16.** 9-bit video input processor [PDF-183K] Oct 2002 ...video input processor SAF7113H · Loop filter chrominance gain control (PAL/NTSC standards only) · Loop filter chrominance PLL (only active for PAL/NTSC standards.... Increment generation for DTO1 with divider to generate stable subcarrier for non-standard signals. The chrominance comb filter block eliminates crosstalk between the... [http://galaxy.uci.agh.edu.pl/~jamro/xsv/org/ADC_Video....] similar results 17. Microsoft Word - Titlepq.doc [PDF-268K] May 1999 ...70 6.3 VCO...71 6.4 Loop Filter...Modifying the RF2905 PLL for Fractional-N Frequency...FIGURE 4.3 Open loop VCO frequency versus LVL...FIGURE 4.5 Time domain phase detector output with frequency...70 FIGURE 6.3 VCO phase noise effect...sources within the loop filter...FIGURE 6.6 Prescaler and phase detector noise sources...

18. PRECISION TIMING GENERATOR SYSTEM AND METHOD

similar results

[http://scholar.lib.vt.edu/theses/available/etd-052599-...]

ne ANI	O coarse AND "phase detector" AND pll AND "filter" AND vco AND coarse AND	divi	Page 4 of 4
	RICHARDS, James, L. / JETT, Preston / FULLERTON, Larry, W. / LARSON, E. / ROWE, David, A. / TIME DOMAIN CORPORATION, PATENT COOPERATION APPLICATION, Mar 2000embodiment, a phase locked loop (PLL) is used to accomplish thisThe inventia a coarse timing generator and a fineparameters can be loaded using a serially command registerimplements the coarse and fine delay sections in a SiGemidiagram if the fine delay block of FIG. 4 FIGinvention FIG. 9 illustrates a coarse generator in accordancepresent invention FIG. 13 is a fine timing generator in accordanceillustrates an exemplary ploy-phase filter that can be used for the Full text available at patent office. For more in-depth searching go to similar results	on utiliz y loadal ore deta e timing	zes ole ailed
19.	Untitled Document [PDF-2MB] Aug 2001QUADRATURE DECODER PULSE WIDTH MODULATOR (PWM) SERIAL COMMUNI INTERFACE MODULE (SCI) SERIAL PERIPHERAL INTERFACE (SPI) QUAD TIMER 1.6.11 PLL1-31 1.12.3 Serial Peripheral Interface (SPI [http://www.gmc.ulaval.ca/cours/22068/DSP56F801_7UM.pdf] similar results		IS
20.	O Cover [PDF-687K] Jun 2002 EM 1110-2-1009 1 June 2002 US Army Corps of Engineers ENGINEERING AND DE Structural Deformation Surveying ENGINEER MANUAL i DEPARTMENT OF THE ARM 1110-2-1009 US Army Corps of Engineers CECW-EE Washington, DC 20314-1000 No. more hits from [http://www.usace.army.mil/usace-docs/eng-manuals/em111] similar results	1Y EM Manual	
		iasi	} :: :
Re	sults Pages: [<< Prev] 1 2 [Next >>]	back to	o top

<u>Downloads</u> | <u>Subscribe to News Updates</u> | <u>User Feedback</u> | <u>Advertising Test Zone</u> | <u>Tell A Friend</u> | <u>Terms Of Service</u> | <u>Privacy Policy</u> | <u>Legal</u>

Powered by FAST © Elsevier 2006

SCIFUS for scientific information only

scirus -	▼ (Search)	→ ☐Pop-up Blocker OFF	Highlight	

About Us Newsroom Advisory Board Submit Web Site Search Tips Contact Us

Basic Search

Advanced Search Search Preferences

			fine AND coarse A	ND "phase detector"	AND pll AND "fi	Search	
			✓ Journal sources	Preferred Web sources	Other Web sources	Exact phrase	
;	Sear	ched for:: Found::		e AND co arse AND "ph	•	AND "filter" AND vco AND ner web results	coarse :
		Sort by::	:relevance date				
ر _□		SERIAL LI SCHMAT: PATENT Cbuffer c frequency formfin contains a details of digitalfr Full text similar res	NK ARCHITECTURE Y, Martin, Leo / IN OOPERATION TREA ircuit. The PLL cont divider, phase-free' analog and a 'co referencecoarse the fine control loo equency of the 35 N available at pater sults	NTERNATIONAL BUTY APPLICATION, Jutains a four-stagece uency detectorche arse' digital control e control loop. The fip are wellpresent VCO. A phase detector more	l 2002 controlled ring oscilla arge pump and loop voltageloop elemeine control loop is a cinvention. The coarsector and charge pum	tor (VCo), a 4X filter. These elements nts, the PLL 110 conventionalThe se control loop is a up that	Did you "fine co detecto coarse parallel Refine using found analog chromin clock go
	2.	SCHMAT: PATENT C SERIAL L ISA, PCI signalcc coarse lo and a low 30 phase-	OOPERATION TREA INK ARCHITECTURI circuit having a dig varse loop to 10 an op and an analog fi pass filter b) a two frequency detector available at pater	NTERNATIONAL BU TY APPLICATION, Ju E FIELDbeen trans gital coarse loop for a analog fine loop pro ine loop, the coarse o-stage voltage regu	I 2002 mitted through a pa t providing a PLL freq oviding a receiverc loop including a refe latedformed by a	rallel data bus, such as uency control ircuit having a digital erenceanalog counter ax frequency divider, a	control data ra frequer luminar output phase r ring osc semicol subadd
	3.	Jan 1998 increasi basedpr showde controlled	ng demand for fully actical consideratio vices which make u -oscillator (VCO). In ochi.eecs.berkeley.e	ons for ring-oscillator	VCO and synthesize VCO design are design are pLL system, paic variations in	er designs. Delay cell	transmi Or refi All of Refir
	4.	Dec 2002 digital s synthesize	r evalutaion boards	phase-locked loop (s implementing DDS PLL/DDS Frequency	, PLL and hybrid sys		

[http://www.eecs.wsu.edu/~ee434/PROJECT/Papers%20on%20D...]

	similar results
<u> </u>	PLL WITH PHASE ROTATOR STEVENS, Joseph, Marsh / INTERNATIONAL BUSINESS MACHINES CORPORATION, PATENT COOPERATION TREATY APPLICATION, Jul 2002brought out of the PLL, and is used to drivecontrolled ring oscillator (VCo), a 4X frequency divider, phase-frequency detectorcharge pump and loop filter. These elements formfine' analog and a 'coarse' digital control voltageloop elements, the PLL 110 contains a referencecoarse control loop. The fine control loop is a conventionalThe details of the fine control loop are wellpresent invention. The coarse control loop is a digitalfrequency of the 15 VCO. A phase detector and charge pump that Full text available at patent office. For more in-depth searching go to LexisNexists similar results
	D:\cobra\correlator\hardware\boards\digmodule\doc\spec\latex\digmodule spec rev c1.DVI [PDF-130K] Jun 2002generation and coarse clock delaylocked-loop (PLLDigitizer clock fine delay controldownconverted and filtered into eight 500MHzby 4 or 8 by serial-to-parallel convertersalso routed to phase detector logic locatedADC Fine Delay Fine Delay PLL PLL Coarse Delay Coarseconjunction with the phase detector logic on thedetermined by the VCO frequency range [http://www.ovro.caltech.edu/~dwh/correlator/pdf/digmod] similar results
7.	Beginning Section [PDF-556K] Aug 1997digital synthesizers (DDS), phase-locked loop (PLL) frequency synthesizers and frequency synthesizer evalutaion boards implementing DDS, PLL and hybrid systems. FEC devices include8-1 to 8-43 Hybrid PLL/DDS Frequency Synthesizers - Application [http://sss-mag.com/pdf/synthbk.pdf] similar results
8.	One Chip Front-end 1 (OCF1) [PDF-172K] Nov 2000 Cross-colour reduction by chrominance comb filtering for NTSC or special cross-colour cancellationControl Output. This pin is used to fit serially the increments of the HPLL and FSC-PLL and information of the PAL or SECAMoutput signals are converted to a serial UV data stream and applied to two low-pass filter stages, then to a gain controlledfrom SECAM is fed through a Cloche filter (0 Hz centre frequency), a phase demodulatorcross-over switch, to provide both the serial transmitted colour difference signals more hits from [http://mjpeg.sourceforge.net/driver-zoran/datasheets/s] similar results
9.	/home/kunyung/T/pfd/pfd.ps [PDF-212K] Oct 2001circuitry within these links. Conventional serial links have timing adjustment circuits containing a Phase-Locked Loop (PLL) at each receiver to recover the dataconjunction with a local clock generation PLL, which increases the tracking bandwidth of the serial link. In addition, the use of calibration12 Figure 2.8: Phase Detection of Serial LinksFigure 2.10: Block Diagram of a Dual-Loop PLL more hits from [http://mos.stanford.edu/papers/kkc_thesis.pdf] similar results
□ 10	./home/kunyung/T/pfd/pfd.ps [PDF-212K] Oct 2001circuitry within these links. Conventional serial links have timing adjustment circuits containing a Phase-Locked Loop (PLL) at each receiver to recover the dataconjunction with a local clock generation PLL, which increases the tracking bandwidth of the serial link. In addition, the use of calibration12 Figure 2.8: Phase Detection of Serial LinksFigure 2.10: Block Diagram of a Dual-Loop PLL more hits from [http://velox.stanford.edu/papers/kkc_thesis.pdf] similar results

fine AND coarse AND "phase detector" AND pll AND "filter" AND vco AND coarse AND divi... Page 2 of 4

11. PLL AND GAIN CONTROL FOR CLOCK RECOVERY

fine ANI	ocarse AND "phase detector" AND pll AND "filter" AND vco AND coarse AND divi Page 3 of
	GRUNG, Bernard, L. / ROBINSON, Moises, E. / CHEN, Yiqin / ROCKETCHIPS, INC., PATENT COOPERATION TREATY APPLICATION, Jun 2000phases. The coarse I'LL usesillustrated, VCO 212 is shareddescription of the fine loop circuitryfollowed by the coarse loop. A schematicdiagram of the fine I'LL circuitryFigure 3. The phase detector (PD) 204 oversamplesand provides parallel data outputsconvert the serial input dataphase of the PLL circuit, anddiagram of the coarse loop is shownoutput of the VCO circuit 212four using divider circuit 222The coarse PLL can be describedassociated with the coarse PLL. The variablesdefined for the fine PLL. I isinput of the phase detector 204. Thus Full text available at patent office. For more in-depth searching go to LexisNexissimilar results
12.	Philips Semiconductors Product specification [PDF-140K] Sep 2000amplitude (PAL/NTSC standards only) · Loop filter chrominance gain control (PAL/NTSC standards only) · Loop filter chrominance PLL (only active for PAL/NTSC standards· Increment generation for DTO1 with divider to generate stable subcarrier for non-standard signals. The chrominance comb filter block eliminates crosstalk between the [http://www.eecg.toronto.edu/~tm3/SAA7111A_4.pdf] similar results
13.	thesis.dvi [PDF-398K] Nov 2002bandwidth. A digital compensation filter is then used to undo the attenuation of the PLL transfer function seen by the data. This filter adds little complexity toIncluded on the IC are an on-chip filter that requires no tuning oran asynchronous, 64 modulus divider (prescaler) that supportsvoltage controlled oscillator (VCO), and changes the range ofof modeling the modulated PLL. Charlie Sodini introduced [http://www-mtl.mit.edu/~perrott/pages/thesis.pdf] similar results
<u> </u>	Mixed signal design flow, a mixed signal PLL case study Shariat Yazdi, Ramin, Jan 2001A mixed signal PLL case study by Ramincapacitor loop filter, and a feed forwardBehavioral Modeling 4.1 Phase Detectorcontrolled oscillator (VCO70 5.5 Frequency Divider39 FIGURE 4.1 Phase detector simulationa Schematic of phase detector Full text thesis available via NDLTD similar results
15.	Mixed signal design flow, a mixed signal PLL case study Shariat Yazdi, Ramin, Jan 2001A mixed signal PLL case study by Ramincapacitor loop filter, and a feed forwardBehavioral Modeling 4.1 Phase Detectorcontrolled oscillator (VCO70 5.5 Frequency Divider39 FIGURE 4.1 Phase detector simulationa Schematic of phase detector Full text thesis available via NDLTD similar results
☐ 16.	9-bit video input processor [PDF-183K] Oct 2002video input processor SAF7113H · Loop filter chrominance gain control (PAL/NTSC standards only) · Loop filter chrominance PLL (only active for PAL/NTSC standards· Increment generation for DTO1 with divider to generate stable subcarrier for non-standard signals. The chrominance comb filter block eliminates crosstalk between the [http://galaxy.uci.agh.edu.pl/~jamro/xsv/org/ADC_Video] similar results
□ 17.	PRECISION TIMING GENERATOR SYSTEM AND METHOD RICHARDS, James, L. / JETT, Preston / FULLERTON, Larry, W. / LARSON, Lawrence, E. / ROWE, David, A. / TIME DOMAIN CORPORATION, PATENT COOPERATION TREATY APPLICATION, Mar 2000embodiment, a phase locked loop (PLL) is used to accomplish thisThe invention utilizes a coarse timing generator and a fineparameters can be loaded using a serially loadable

fine AND coarse AND "phase detector" AND pll AND "filter" AND vco AND coarse AND divi... Page 4 of 4 command register...implements the coarse and fine delay sections in a SiGe...more detailed diagram if the fine delay block of FIG. 4 FIG...invention FIG. 9 illustrates a coarse timing generator in accordance...present invention FIG. 13 is a fine timing generator in accordance...illustrates an exemplary ploy-phase filter that can be used for the... Full text available at patent office. For more in-depth searching go to LexisNexissimilar results ☐ 18. Microsoft Word - Titlepq.doc [PDF-268K] May 1999 ...phase noise of the VCO, and the implementation...phase-locked loop (PLL) components and...70 6.3 VCO...71 6.4 Loop Filter...Modifying the RF2905 PLL for Fractional...4.5 Time domain phase detector output with frequency...70 FIGURE 6.3 VCO phase noise effect...within the loop filter...6 Prescaler and phase detector noise sources... [http://scholar.lib.vt.edu/theses/available/etd-052599-...] similar results ☐ 19. Untitled Document [PDF-2MB] Aug 2001 ...QUADRATURE DECODER PULSE WIDTH MODULATOR (PWM) SERIAL COMMUNICATIONS INTERFACE MODULE (SCI) SERIAL PERIPHERAL INTERFACE (SPI) QUAD TIMER...1-24 1.6.11 PLL...1-31 1.12.3 Serial Peripheral Interface (SPI... [http://www.gmc.ulaval.ca/cours/22068/DSP56F801_7UM.pdf] similar results **20.** HIGH FREQUENCY NETWORK TRANSMITTER ENAM, Syed, Khursheed / CONNECTCOM MICROSYSTEMS, INC., PATENT COOPERATION TREATY APPLICATION, Dec 2001 ...alignment circuit in a serial transmitter (or serializer) aligns a parallel input data stream to...select circuit in the phase detector generates the sequence...voltage signals. The VCO generates a differential...improves noise immunity and fine tuning ranges of the...controlled oscillator. The VCO determines an operating...For example, a digital coarse tuning circuit

itarits...

Full text available at patent office. For more in-depth searching go to LexisNexissimilar results

fast ...

Results Pages: [<< Prev] 1 2 [Next >>]

back to top

<u>Downloads</u> | <u>Subscribe to News Updates</u> | <u>User Feedback</u> | <u>Advertising Test Zone</u> | <u>Tell A Friend</u> | <u>Terms Of Service</u> | <u>Privacy Policy</u> | <u>Legal</u>

Powered by FAST © Elsevier 2006

drjatorres@gmail.com | Search History | My Account | Sign out

 Web
 Images
 Groups
 News
 Froogle
 Local New!
 more »

 fine coarse "charge pump" "phase detector" pl
 Search
 Advanced Search Preferences

Web Results 1 - 10 of about 234 for fine coarse "charge pump" "phase detector" pll filter co coarse divider seria

Scholarly articles for fine coarse "charge pump" "phase detector" pll filter vco coarse divider serial

<u>A 10-Gb/s CMOS clock and data recovery circuit with a ...</u> - by Savoj - 49 citations <u>A fully integrated CMOS DCS-1800 frequency synthesizer</u> - by Craninckx - 86 citations <u>SiGe clock and data recovery IC with linear-type PLL for ...</u> - by Greshishchev - 28 citations

[PDF] A Low Jitter, Low Power, CMOS 1.25-3.125Gbps Transceiver

File Format: PDF/Adobe Acrobat - View as HTML

... two loops in the receiver; the coarse loop, and the fine loop. The coarse loop

PLL locks to ... Filter (LF), a 10-stage VCO and a divider as shown in ...

www.imec.be/esscirc/esscirc2001/Proceedings/data/79.pdf - Similar pages - Remove result

[PDF] Triple 8/10-Bit 150/110 MSPS Video & Graphics Digitizer w/Analog PLL

File Format: PDF/Adobe Acrobat - View as HTML

The coarse offset registers apply before the ADC. A 10-bit fine ... PLL Loop Filter.

Table 1. Recommended VCO Range and Charge Pump Current Settings for ...

focus.ti.com/lit/ds/symlink/tvp7000.pdf - Similar pages - Remove result

[PDF] Single-Chip 433 MHz RF Transmitter (Rev. D)

File Format: PDF/Adobe Acrobat - View as HTML

... charge pumps for locking to the desired frequency: one for coarse tuning of the

... Enable PLL (DDS system, VCO, RF divider, phase comparator and charge ...

focus.ti.com/general/docs/lit/ getliterature.tsp?genericPartNumber=trf4400 - Similar pages - Remove result

[More results from focus.ti.com]

EDN Access--03.14.97 PLL SYNTHESIZERS make channel-hopping swift ...

A PLL comprises a few functional blocks (Figure A). The **phase detector** compares an input signal ... one for **coarse** (offset) setting and one for **fine** tuning. ...

www.edn.com/archives/1997/031497/06DF_01.htm - 45k - Cached - Similar pages - Remove result

[PDF] User Programmable

File Format: PDF/Adobe Acrobat - View as HTML

... feedback • Small footprint 24-pin SOIC • Coarse and fine ... 1 IPUMP OUT Charge Pump

output (External loop filter ... Oscillator Output 8 FINE IN Fine Phase Adjust ...

icst.com/datasheets/ics1522.pdf - Supplemental Result - Similar pages - Remove result

[PDF] Using the PE3291/92 in CDMA Applications

File Format: PDF/Adobe Acrobat - View as HTML

step 10.08 kHz and loop filter bandwidth 1 kHz, in a. coarse and fine frequency

... prescaler, Internal phase detector. • Product brief. 2 GHz Integer-N PLL ...

rfwireless.rell.com/pdfs/AN4 peregrine.pdf - Similar pages - Remove result

[PDF] AN4: Application Note

File Format: PDF/Adobe Acrobat

step 10.08 kHz and loop filter bandwidth 1 kHz, in a. coarse and fine frequency

... of charge pump current to. spurious frequency output from the VCO. The ...

www.peregrine-semi.com/pdf/app_notes/an04.pdf - Similar pages - Remove result

[PDF] A Quad-Band GSM-GPRS Transmitter With Digital Auto-Calibration

File Format: PDF/Adobe Acrobat

the PLL transfer function, with a digital transmit filter. Thus, ... The architecture

employs a single ${\it VCO}$ with a digital ${\it coarse-...}$

dx.doi.org/10.1109/JSSC.2004.836342 - Similar pages - Remove result

[PDF] MC13760 Product Preview Data Sheet

File Format: PDF/Adobe Acrobat

... or as an Additional Low Frequency LO • Coarse Tuning of ... with a Buffered Output, Compensation/Fine Tuning via ... 1/ +2/ +3/ +4 Phase Detector/ Charge Pump +N 400 ... www.tetrascanner.com/MC13760PP.pdf - Supplemental Result - Similar pages - Remove result

[PDF] PROTOCOL TRANSPARENT 3.3V 10MHz to 729MHz FRACTIONAL-N SYNTHESIZER

File Format: PDF/Adobe Acrobat - View as HTML

... trimming, then it changes the current of this **charge pump** to 50 ... The **coarse** input trims the **VCO**, as described ... The **fine** adjustment forms part of the closed loop. ... micrel.com/_PDF/HBW/sy87739l.pdf - Supplemental Result - <u>Similar pages</u> - <u>Remove result</u>

Try your search again on Google Book Search

Goooooooogle >

Result Page: 1 2 3 4 5 6 7 8 9 10 Next

Google Desktop Search 🕢 🗸 🙋 🤣 9:30 AM

Free! Instantly find your email, files, media and web history. <u>Download now</u>.

fine coarse "charge pump" "phase de Search

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve

Google Home - Advertising Programs - Business Solutions - About Google

©2006 Google

fine AND coarse AND "charge pump" AND "phase detector" AND pll AND "filter" AND vco A... Page 1 of 4

for scientific information only

About Us

Newsroom

Advisory Board

Submit Web Site

Search Tips

Contact Us

Basic Search

Advanced Search Search Preferences

		fine AND coarse	AND "charge pump" AND "phase dete Search	
		☑ Journal sources	Preferred Web sources Other Web sources Exact phrase	
Sear	ched for::	:All of the words: fi	ine AND coarse AND "charge pump" AND "phase detector" AND pll A	ND "filter"
	Found::	:21 total 0 jour	nal results 10 preferred web results 11 other web results	
	Sort by::	:relevance date	<u>.</u>	
•	SERIAL LI SCHMAT: PATENT Clocked I unified se transmitte frequency PLLosci and loop i Full text similar res	INK ARCHITECTURE Z, Martin, Leo / COOPERATION TRE Loop (PLL), a dibit erial link system erfrequency. The detector, a char illator (VCO), a 43 filter. These elem available at pat sults	INTERNATIONAL BUSINESS MACHINES CORPORATION, EATY APPLICATION, Jul 2002 to dataresponse (FIR) filter and a transmitcomprises ahaving a digital coarse loop and an analog fine loop. The see coarse loop includes4X-frequency divider, a phase-ge pump and a loopfull data rate PLL 110. This X frequency divider, phase-frequency detector, charge pump mentshas both a 'fine' analog and a 'coarse' digital control tent office. For more in-depth searching go to CexisNexis	Did you me "fine coals" "phase det filter" voo e serial Refine yo using the found in e clock gene clock phase control vol frequency
2.	PATENT Combuffer of divider, processed control local isthe 35	cooperation Tree circuit. The PLL cooperate unit. The PLL cooperate unitdefined in the cooperate of the c	INTERNATIONAL BUSINESS MACHINES CORPORATION, EATY APPLICATION, Jul 2002 ontains a four-stagering oscillator (VCo), a 4X frequency pump and loop filter. These elementsanalog and a ements, the PLL 110 contains acontrol loop. The fine the fine control loop areinvention. The coarse control loop detector and charge pump that only increases ent office. For more in-depth searching go to Caris Nexis and Caris Nexis and Caris Nexis are to office.	phase nois ring oscilla transmitted Or refine All of the
3.	PLL WITH STEVENS CORPORbrought phase-fre controle isdetails VCO. A p	PHASE ROTATOR Joseph, Marsh ATION, PATENT (out of the PLL, a quencypump a elements, the PLL of the fine contr hase detector ar available at pat	A / INTERNATIONAL BUSINESS MACHINES COOPERATION TREATY APPLICATION, Jul 2002 and is used toring oscillator (VCo), a 4X frequency divider, and loop filter. These elementsanalog and a 'coarse' digital and contains acontrol loop. The fine control loop are loop areinvention. The coarse control loop isthe 15 and charge pump that only increases ent office. For more in-depth searching go to texisNexis	
4.	Jan 1998 increasi cell based	ng demand for fu practical consid	Timing - Jitter Design Techniques for [PDF-396K] Ily-monolithic, on-chip VCO and synthesizer designs. Delay lerations for ring-oscillator VCO design are described. The ch make up the components of the PLL system, particularly the	

fine ANI	O coarse AND "charge pump" AND "phase detector" AND pll AND "filter" AND vco A Page 2 of 4
	voltage-controlled-oscillator (VCO). In addition, systematic variations in [http://mochi.eecs.berkeley.edu/~weigandt/phd.pdf] similar results
5.	Design of CMOS Adaptive-Supply Serial Links [PDF-271K] Dec 2002 ADAPTIVE-SUPPLY SERIAL LINKS A DISSERTATIONby either PLL or DLL circuitryglobal loop to coarse-tune theloops to fine-tune over72 4.2.2 Filtering Noise on the VCO Supply76 4.2.4 Phase Detector and Charge Pump118 B.2.1 Charge-Pump PLL/DLLgenerators: (a) PLL and (b) DLLcoupled VCOof an RC filter and a linear74 4.5 Fine frequency-tuningdetector and (b) charge pump for PLL and79 4.10 Phase detector for per-pin more hits from [http://mos.stanford.edu/papers/jk_thesis.pdf] similar results
6.	Design of CMOS Adaptive-Supply Serial Links [PDF-271K] Dec 2002 ADAPTIVE-SUPPLY SERIAL LINKS A DISSERTATIONby either PLL or DLL circuitryglobal loop to coarse-tune theloops to fine-tune over72 4.2.2 Filtering Noise on the VCO Supply76 4.2.4 Phase Detector and Charge Pump118 B.2.1 Charge-Pump PLL/DLLgenerators: (a) PLL and (b) DLLcoupled VCOof an RC filter and a linear74 4.5 Fine frequency-tuningdetector and (b) charge pump for PLL and79 4.10 Phase detector for per-pin more hits from [http://velox.stanford.edu/papers/jk_thesis.pdf] similar results
7.	PLL AND GAIN CONTROL FOR CLOCK RECOVERY GRUNG, Bernard, L. / ROBINSON, Moises, E. / CHEN, Yiqin / ROCKETCHIPS, INC., PATENT COOPERATION TREATY APPLICATION, Jun 2000diagram of the coarse loop is shown indown output of the VCO circuit 212. Thedivided by four using divider circuit 222. An212. Thus, the coarse loop is used toREF CLK) 224. The coarse PLL can be describedassociated with the coarse PLL. The variablesdefined for the fine PLL. I is the maximum current of the charge pump 220 and N is equalthe input of the phase detector 204. Thus, the Full text available at patent office. For more in-depth searching go to LexisNexissimilar results
8.	Mixed signal design flow, a mixed signal PLL case study Shariat Yazdi, Ramin, Jan 2001Resistorless Charge Pump PLL39 3.5 PLL Performance MeasureCharge Pump and low pass filtercontrolled oscillator (VCO70 5.5 Frequency DividerBehavioral Model of PLL39 FIGURE 4.1 Phase detector simulation44 FIGURE 4.2 Charge Pump Full text thesis available via NDLTD similar results
9.	Mixed signal design flow, a mixed signal PLL case study Shariat Yazdi, Ramin, Jan 2001Resistorless Charge Pump PLL39 3.5 PLL Performance MeasureCharge Pump and low pass filtercontrolled oscillator (VCO70 5.5 Frequency DividerBehavioral Model of PLL39 FIGURE 4.1 Phase detector simulation44 FIGURE 4.2 Charge Pump Full text thesis available via NDLTD similar results
 10.	thesis.dvi [PDF-398K] Nov 2002attenuation of the PLL transfer function seen by the data. This filter adds little complexitythe IC are an on-chip filter that requires no tuningasynchronous, 64 modulus divider (prescaler) that supportscontrolled oscillator (VCO), and changes the rangemodeling the modulated PLL. Charlie Sodini introducedAchievable data rates vs. PLL order and - sampleasynchronous, 8-modulus divider topology38 1.20 PFD, charge pump, and loop filter [http://www-mtl.mit.edu/~perrott/pages/thesis.pdf]

fine AND	coarse AND "charge pump" AND "phase detector" AND pll AND "filter" AND vco A Page 3 of 4
	<u>similar results</u>
	Microsoft Word - Titlepg.doc [PDF-268K] May 1999phase noise of the VCO, and the implementationphase-locked loop (PLL) components and70 6.3 VCO71 6.4 Loop FilterModifying the RF2905 PLL for Fractional4.5 Time domain phase detector output with frequency70 FIGURE 6.3 VCO phase noise effectwithin the loop filter6 Prescaler and phase detector noise sources [http://scholar.lib.vt.edu/theses/available/etd-052599] similar results
	Untitled Document [PDF-2MB] Aug 2001QUADRATURE DECODER PULSE WIDTH MODULATOR (PWM) SERIAL COMMUNICATIONS INTERFACE MODULE (SCI) SERIAL PERIPHERAL INTERFACE (SPI) QUAD TIMER1-24 1.6.11 PLL1-31 1.12.3 Serial Peripheral Interface (SPI [http://www.gmc.ulaval.ca/cours/22068/DSP56F801_7UM.pdf] similar results
	ENAM, Syed, Khursheed / CONNECTCOM MICROSYSTEMS, INC., PATENT COOPERATION TREATY APPLICATION, Dec 2001 voltage controlled oscillator (VCO) in a clock multiply unit includescontrol voltage signals. The VCO generates a differential outputimproves noise immunity and fine tuning ranges of the voltage controlled oscillator. The VCO determines an operating frequencyreset. For example, a digital coarse tuning circuit starts the voltage Full text available at patent office. For more in-depth searching go to LexisNexissimilar results
	MPhil thesis of Lo Chi Wa [PDF-190K] Apr 200045 Loop filter52 Charge pump53 Frequency-phase detectorHigh-speed multimodulus dividerLow-speed dual-modulus dividersspeed divide-by-2 dividerTable 2 Summary of filter parametersperformances of VCOfast-switching PLL frequency synthesizer [http://www.ee.ust.hk/~analog/thesis/900M_frequency_syn] similar results
	Portable and home hi - fi/radio [PDF-129K] Nov 2002 amplifier ICs 22 18. PLL frequency-synthesizermimics manual tuning (coarse tuning followed by fine tuning) and achievesobtained by active RC filters. Because of the low-passconjunction with the TDA7040T PLL stereo decoder and theearphone amplifier or MUX filter field-strength dependent [http://www.hint.no/utdanninger/iu/linker/datablad/PORT] similar results
	RICHARDS, James, L. / JETT, Preston / FULLERTON, Larry, W. / LARSON, Lawrence, E. / ROWE, David, A. / TIME DOMAIN CORPORATION, PATENT COOPERATION TREATY APPLICATION, Mar 2000embodiment, a phase locked loop (PLL) is used to accomplish thisThe invention utilizes a coarse timing generator and a fineparameters can be loaded using a serially loadable command registerimplements the coarse and fine delay sections in a SiGemore detailed diagram if the fine delay block of FIG. 4 FIGinvention FIG. 9 illustrates a coarse timing generator in accordancepresent invention FIG. 13 is a fine timing generator in accordanceillustrates an exemplary ploy-phase filter that can be used for the Full text available at patent office. For more in-depth searching go to LexisNexis similar results
	LOW ENERGY CONSUMPTION RF TELEMETRY CONTROL FOR AN IMPLANTABLE MEDICAL DEVICE DUDDING, Charles, H. / HAUBRICH, Gregory, J. / MEDTRONIC, INC., PATENT

fine AND coarse AND "charge pump" AND "phase detector" AND pll AND "filte	er" AND vco A Page 4 of 4
COOPERATION TREATY APPLICATION, Jun 2002inputs to generate the VCO carrier frequency so that the VCO general signalcurrent source to the loop filter capacitor to compensatedisclifiter capacitor over time isboth the relatively coarse recharge functions and the fine correction functions Full text available at patent office. For more in-depth searching similar results	harge of the loop ion ofcurrent
☐ 18. CLOCK DATA RECOVERY CIRCUITRY ASSOCIATED WITH PROGRAMMAB	LE LOGIC DEVICE
CIRCUITRY AUNG, Edward / LUI, Henry / BUTLER, Paul / TURNER, John / Paule / Control / Paule / Control / Co	TY APPLICATION,
is embedded in a serial data stream so thatconverts the applied se parallelphase locked loop (" PLL ") circuit and itthe REFCLK signal. C circuit 120 (which110 and produces a VCO current controlreferred adjustment of VCO control signal from charge pump 120 is responsil adjustment of the	Charge pump to as a " coarse "
Full text available at patent office. For more in-depth searching similar results	go to (C) LexisNexis
19. /home/kunyung/T/pfd/pfd.ps [PDF-212K] Oct 2001local clock generation PLL, which increases the tracking bandwidth of In addition, theFigure 3.10: The Dual-Loop PLL for the Delay-Replica VCO Layout and its DifferentialBalanced Self-Biased Charge Pump C Detector and the Charge Pump xiv Circuit	44 Figure 4.2:
[http://mos.stanford.edu/papers/kkc_thesis.pdf] similar results	
20. /home/kunyung/T/pfd/pfd.ps [PDF-212K] Oct 2001local clock generation PLL, which increases the tracking bandwidth of In addition, theFigure 3.10: The Dual-Loop PLL for the Delay-Replica VCO Layout and its DifferentialBalanced Self-Biased Charge Pump C Detector and the Charge Pump xiv Circuit [http://velox.stanford.edu/papers/kkc_thesis.pdf] similar results	44 Figure 4.2:
	fast 🔡
Results Pages: [<< Prev] 1 2 [Next >>]	back to top

<u>Downloads</u> | <u>Subscribe to News Updates</u> | <u>User Feedback</u> | <u>Advertising</u> <u>Test Zone</u> | <u>Tell A Friend</u> | <u>Terms Of Service</u> | <u>Privacy Policy</u> | <u>Legal</u>

Powered by FAST © Elsevier 2006

Welcome United States Patent and Trademark Office

☐ Search Results **BROWSE SEARCH IEEE XPLORE GUIDE**

Results for "((fine coarse 'charge pump' 'phase detector' pll filter vco coarse divider serial)<in>meta..." Your search matched 0 documents.

☑e-mail 📇 printer

SUPPOF

A maximum of 100 results are displayed, 25 to a page, sorted by Relevance in Descending order.

» Search Options

View Session History

Modify Search

New Search

((fine coarse 'charge pump' 'phase detector' pll filter vco coarse divider serial)<in>met

Check to search only within this results set

» Key

IEEE Journal or **IEEE JNL**

Magazine

IEE Journal or Magazine **IEE JNL**

IEEE CNF IEEE Conference

Proceeding

IEE Conference **IEE CNF**

Proceeding

IEEE STD IEEE Standard

No results were found.

Please edit your search criteria and try again. Refer to the Help pages if you need assistance revisin

search.

indexed by #Inspec Contact Us Privacy & Security © Copyright 2005 IEEE - All Rights

Welcome United States Patent and Trademark Office

☐ Search Results

BROWSE

SEARCH

IEEE XPLORE GUIDE

SUPPOF

Results for "((fine phase detector<in>metadata) <and> (fine charge pump<in>metadata))"
Your search matched 0 documents.

☑e-mail 🚐 printer

A maximum of 100 results are displayed, 25 to a page, sorted by Relevance in Descending order.

» Search Options

View Session History

New Search

Modify Search

((fine phase detector<in>metadata) <and> (fine charge pump<in>metadata))

>>

Check to search only within this results set

Display Format: © Citation C Citation & Abstract

» Key

IEEE JNL IEEE Journal or

Magazine

IEE JNL

IEE Journal or Magazine

IEEE CNF

IEEE Conference

Proceeding

IEE CNF

IEE Conference

Proceeding

IEEE STD IEEE Standard

No results were found.

Please edit your search criteria and try again. Refer to the Help pages if you need assistance revisin

search.

Indexed by

Help Contact Us Privacy & Security

© Copyright 2005 IEEE - All Rights

Welcome United States Patent and Trademark Office

□ Search Results BROWSE SEARCH IEEE XPLORE GUIDE SUPPOF

Results for "((phase detector<in>metadata) <and> (fine charge pump<in>metadata))"
Your search matched 0 documents.

A maximum of 100 results are displayed, 25 to a page, sorted by Relevance in Descending order.

e-mail 🚐 printer

» Search Options

 View Session History
 Modify Search

 New Search
 ((phase detector<in>metadata) <and> (fine charge pump<in>metadata))

 ✓ Check to search only within this results set

» Key

IEEE JNL IEEE Journal or Magazine

IEE JNL IEE Journal or Magazine

IEEE CNF IEEE Conference

Proceeding

IEE CNF IEE Conference

Proceeding

IEEE STD IEEE Standard

No results were found.

Please edit your search criteria and try again. Refer to the Help pages if you need assistance revisin

search.

Indexed by Inspec

Help Contact Us Privacy & Security

© Copyright 2005 IEEE - All Rights

Welcome United States Patent and Trademark Office

□ Search Results **BROWSE** SEARCH **IEEE XPLORE GUIDE** SUPPOF

Results for "((phase detector<in>metadata) <and> (charge pump<in>metadata))"

⊠e-mail 🚇 printer

View: 1-25 | 26-50

>>

Your search matched 71 of 1297674 documents. A maximum of 100 results are displayed, 25 to a page, sorted by Relevance in Descending order.

» Search Options

View Session History

New Search

» Other Resources

(Available For Purchase)

Top Book Results

Monolithic Phase-Locked Loops and Clock Recovery Circuits

by Razavi, B.;

Paperback, Edition: 1

View All 1 Result(s)

» Key

IEEE JNL IEEE Journal or

Magazine

IEE JNL IEE Journal or Magazine

IEEE Conference **IEEE CNF**

Proceeding

IEE CNF IEE Conference

Proceeding

IEEE STD IEEE Standard

Modify Search

((phase detector<in>metadata) <and> (charge pump<in>metadata))

Check to search only within this results set

Display Format: © Citation C Citation & Abstract

Select Article Information

1. Improved charge pump phase detector for digital phase-locked loop

Howard, P.A.; Jones, A.E.;

Analogue Signal Processing, IEE Colloquium on

13 Oct 1994 Page(s):2/1 - 2/8

AbstractPlus | Full Text: PDF(324 KB) IEE CNF

2. Designing on-chip clock generators

Chen, D.-L.;

Circuits and Devices Magazine, IEEE

Volume 8, Issue 4, July 1992 Page(s):32 - 36

Digital Object Identifier 10.1109/101.146301

AbstractPlus | Full Text: PDF(448 KB) | IEEE JNL

3. A CMOS delay locked loop and sub-nanosecond time-to-digital converter chip

Santos, D.M.; Dow, S.F.; Flasck, J.M.; Levi, M.E.;

Nuclear Science, IEEE Transactions on

Volume 43, Issue 3, Part 2, June 1996 Page(s):1717 - 1719

Digital Object Identifier 10.1109/23.507177

AbstractPlus | Full Text: PDF(264 KB) | IEEE JNL

4. A 1.6-GHz CMOS PLL with on-chip loop filter

Parker, J.F.; Ray, D.;

Solid-State Circuits, IEEE Journal of

Volume 33, Issue 3, March 1998 Page(s):337 - 343

Digital Object Identifier 10.1109/4.661199

AbstractPlus | References | Full Text: PDF(164 KB) | IEEE JNL

5. An integrated CDMA intermediate-frequency transceiver for wireless local loop

Jae-Heon Lee; Hye-Ju Seo; Ho-Jun Song;

Consumer Electronics, IEEE Transactions on

Volume 45, Issue 2, May 1999 Page(s):269 - 274

Digital Object Identifier 10.1109/30.793408

AbstractPlus | References | Full Text: PDF(428 KB) | IEEE JNL

6. A 2.5-10-Gb/s CMOS transceiver with alternating edge-sampling phase detection for

characteristic stabilization

Bong-Joon Lee; Moon-Sang Hwang; Sang-Hyun Lee; Deog-Kyoon Jeong;

Solid-State Circuits, IEEE Journal of

Volume 38, Issue 11, Nov. 2003 Page(s):1821 - 1829

Digital Object Identifier 10.1109/JSSC.2003.818290

AbstractPlus | References | Full Text: PDF(1892 KB) | IEEE JNL

7. General envelope-transient formulation of phase-locked loops using three time sci Sancho, S.; Suarez, A.; Chuan, J.; Microwave Theory and Techniques, IEEE Transactions on Volume 52, Issue 4, April 2004 Page(s):1310 - 1320 Digital Object Identifier 10.1109/TMTT.2004.825667 AbstractPlus | References | Full Text: PDF(528 KB) | IEEE JNL 8. A 10-Gb/s CMU/CDR chip-set in SiGe BiCMOS commercial technology with multist Г capability Centurelli, F.; Golfarelli, A.; Guinea, J.; Masini, L.; Morigi, D.; Pozzoni, M.; Scotti, G.; Trifi Very Large Scale Integration (VLSI) Systems, IEEE Transactions on Volume 13, Issue 2, Feb 2005 Page(s):191 - 200 Digital Object Identifier 10.1109/TVLSI.2004.840784 AbstractPlus | Full Text: PDF(1760 KB) IEEE JNL 9. Fast locking scheme for PLL frequency synthesiser Liu, L.C.; Li, B.H.; **Electronics Letters** Volume 40, Issue 15, 22 July 2004 Page(s):918 - 920 Digital Object Identifier 10.1049/el:20045367 AbstractPlus | Full Text: PDF(223 KB) | IEE JNL 10. Digital fast acquisition method for phase-lock loops Den Dulk, R.C.; **Electronics Letters** Volume 24, Issue 17, 18 Aug. 1988 Page(s):1079 - 1080 AbstractPlus | Full Text: PDF(176 KB) IEE JNL 11. A 360/spl deg/ extended range phase detector for type-I PLLs Charles, C.T.; Allstot, D.J.; Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26 May 2005 Page(s):5457 - 5460 Vol. 6 Digital Object Identifier 10.1109/ISCAS.2005.1465871 AbstractPlus | Full Text: PDF(448 KB) | IEEE CNF 12. A 12.5Gbps half-rate CMOS CDR circuit for 10Gbps network applications Г Takasoh, J.; Yoshimura, T.; Kondoh, H.; Higashisaka, N.; VLSI Circuits, 2004. Digest of Technical Papers. 2004 Symposium on 17-19 June 2004 Page(s):268 - 271 AbstractPlus | Full Text: PDF(365 KB) IEEE CNF 13. Analysis of phase noise due to bang-bang phase detector in PLL-based clock and recovery circuits Vichienchom, K.; Wentai Liu; Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposic Volume 1, 25-28 May 2003 Page(s):I-617 - I-620 vol.1 AbstractPlus | Full Text: PDF(369 KB) IEEE CNF 14. Loop filter design considerations for clock and data recovery circuits [PLL] Ou, J.; Caggiano, M.F.; Mixed-Signal Design, 2003. Southwest Symposium on 23-25 Feb. 2003 Page(s):81 - 86 Digital Object Identifier 10.1109/SSMSD.2003.1190401 AbstractPlus | Full Text: PDF(349 KB) IEEE CNF 15. An improved bang-bang phase detector for clock and data recovery applications Ramezani, M.; Salama, C.A.T.;

Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on

Volume 1, 6-9 May 2001 Page(s):715 - 718 vol. 1 Digital Object Identifier 10.1109/ISCAS.2001.921956 AbstractPlus | Full Text: PDF(440 KB) IEEE CNF

16. An integrated CDMA intermediate-frequency transceiver for 10-MHz wireless local

Jong-Moon Kim; Ho-Jun Song; Jae-Heon Lee; Sang-Woo Hwang;

VLSI and CAD, 1999. ICVC '99. 6th International Conference on

26-27 Oct. 1999 Page(s):368 - 371

Digital Object Identifier 10.1109/ICVC.1999.820932

AbstractPlus | Full Text: PDF(260 KB) | IEEE CNF

17. A radiation-hard 80 MHz phase locked loop for clock and data recovery

Toifl, T.; Moreira, P.;

Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International Syn

Volume 2, 30 May-2 June 1999 Page(s):524 - 527 vol.2 Digital Object Identifier 10.1109/ISCAS.1999.780797

AbstractPlus | Full Text: PDF(260 KB) IEEE CNF

18. A monolithic 1.25 Gbits/sec CMOS clock/data recovery circuit for fibre channel transceiver

Wu, L.; Chen, H.; Nagavarapu, S.; Geiger, R.; Lee, E.; Black, W.;

Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999 IEEE International Synon.

Volume 2, 30 May-2 June 1999 Page(s):565 - 568 vol.2 Digital Object Identifier 10.1109/ISCAS.1999.780816

AbstractPlus | Full Text: PDF(316 KB) | IEEE CNF

19. A 3.3 V 600 MHz-1.30 GHz CMOS phase-locked loop for clock synchronization of o chip-to-chip interconnects

Sheen, R.R.-B.; Chen, O.T.-C.;

Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Synon

Volume 4, 31 May-3 June 1998 Page(s):429 - 432 vol.4

Digital Object Identifier 10.1109/ISCAS.1998.698905

AbstractPlus | Full Text: PDF(336 KB) IEEE CNF

20. A CMOS delayed locked loop (DLL) for reducing clock skew to under 500 ps

Yong-Bin Kim; Chen, T.;

Design Automation Conference 1997. Proceedings of the ASP-DAC '97. Asia and South 28-31 Jan. 1997 Page(s):681 - 682

Digital Object Identifier 10.1109/ASPDAC.1997.600362

AbstractPlus | Full Text: PDF(292 KB) | IEEE CNF

21. A low-noise 1.6-GHz CMOS PLL with on-chip loop filter

Parker, J.; Ray, D.;

Custom Integrated Circuits Conference, 1997., Proceedings of the IEEE 1997

5-8 May 1997 Page(s):407 - 410

Digital Object Identifier 10.1109/CICC.1997.606655

AbstractPlus | Full Text: PDF(588 KB) IEEE CNF

22. A 1.3 V 1.04 GHz-1.30 GHz CMOS phase-locked loop

Sheen, R.R.-B.; Chen, O.T.-C.; Chang, R.C.-H.;

Circuits and Systems, 1997. Proceedings of the 40th Midwest Symposium on

Volume 1, 3-6 Aug. 1997 Page(s):569 - 572 vol.1

Digital Object Identifier 10.1109/MWSCAS.1997.666201

AbstractPlus | Full Text: PDF(320 KB) IEEE CNF

23. IEE Colloquium 'Analogue Signal Processing' (Digest No.1994/185)

Analogue Signal Processing, IEE Colloquium on

13 Oct 1994

AbstractPlus | Full Text: PDF(16 KB) IEE CNF

24. A 4-Gb/s CMOS clock and data recovery circuit using 1/8-rate clock technique

Γ Seong-Jun Song; Sung Min Park; Hoi-Jun Yoo; Solid-State Circuits, IEEE Journal of Volume 38, Issue 7, July 2003 Page(s):1213 - 1219 Digital Object Identifier 10.1109/JSSC.2003.813292 AbstractPlus | References | Full Text: PDF(573 KB) | IEEE JNL

25. A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-/spl mu/

van de Beek, R.C.H.; Vaucher, C.S.; Leenaerts, D.M.W.; Klumperink, E.A.M.; Nauta, B.; Solid-State Circuits, IEEE Journal of

Volume 39, Issue 11, Nov. 2004 Page(s):1862 - 1872 Digital Object Identifier 10.1109/JSSC.2004.835833

AbstractPlus | References | Full Text: PDF(1168 KB) | IEEE JNL

View: 1-25 | 26-50

Indexed by #Inspec Help Contact Us Privacy & Security © Copyright 2005 IEEE - All Rights

Welcome United States Patent and Trademark Office

☐ Search Results

BROWSE

SEARCH

IEEE XPLORE GUIDE

SUPPOF

Results for "((phase detector<in>metadata) <and> (charge pump<in>metadata)) <and> (..." Your search matched 0 documents.

e-mail 📇 printer

A maximum of 100 results are displayed, 25 to a page, sorted by Relevance in Descending order.

» Search Options

View Session History

Modify Search

New Search

((phase detector<in>metadata) <and> (charge pump<in>metadata))<and> (serial >>>

Check to search only within this results set

» Key

No results were found.

Display Format: © Citation C Citation & Abstract

IEEE JNL

IEEE Journal or

Magazine

IEE JNL

IEE Journal or Magazine

IEEE CNF

IEEE Conference

Proceeding

IEE CNF

Proceeding

IEE Conference

Please edit your search criteria and try again. Refer to the Help pages if you need assistance revisin

IEEE STD IEEE Standard

Contact Us Privacy & Security

© Copyright 2005 IEEE - All Rights

Indexed by #Inspec

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	2	"6611218".pn.	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:20
L2	0	"10/051222"	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L3	8	("20010033407" "5805089" "56148 55" "5721545").PN.	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L4	4	((high adj speed) or "high-speed") and ((serial adj to adj parallel) or "serial-to-parallel") and ((parallel adj to adj serial) or "parallel-to-serial") and tranceiver	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L5	3	"6147672".pn.	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L6	4	((high adj speed) or "high-speed") and ((serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") and ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial") and tranceiver	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L7	1871	((high adj speed) or "high-speed") and ((serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") and ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial")	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L8	71	((high adj speed) or "high-speed") with ((serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") with ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial")	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47

L9	12	(((high adj speed) or "high-speed") with ((serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") with receiver) and (((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial") with transmitter)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L10	6	((high adj speed) or "high-speed") with ((serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") with ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial") and odd and even	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L11	16	((high adj speed) or "high-speed") same ((serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") same ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial") and odd and even	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L12	412	((high adj speed) or "high-speed") and ((serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") and ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial") and odd and even	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L13	322	((high adj speed) or "high-speed") and ((serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") and ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial") and odd with even	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L14	322	((high adj speed) or "high-speed") and ((serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") and ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial") and (odd with even)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L15	322	((high adj speed) or "high-speed") and (even with (serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") and ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial") and (odd with even)	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47

L16	1871	((high adj speed) or "high-speed") and (even with odd with (serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") and ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial")	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L17	285	((high adj speed) or "high-speed") same (even with odd with (serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") and ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial")	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L18	898	((high adj speed) or "high-speed") and (even with odd with (serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") with ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial")	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L19	898	((high adj speed) or "high-speed") and ((even with odd with (serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") with ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial"))	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L20	898	((high adj speed) or "high-speed") and ((even with odd with (serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") with (even with odd with (parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial"))	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L21	320	((high adj speed) or "high-speed") and ((even with odd with (serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") with (even with odd with (parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial")) and amplifier	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L22	49	((high adj speed) or "high-speed") and ((even with odd with (serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") with (even with odd with (parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial")) with controll\$2	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47

L23	2	((high adj speed) or "high-speed") and ((even with odd with ((serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel")) with (even with odd with ((parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial"))) with controll\$2	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L24	40196	driver with amplif\$5	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L25	8860	driver near amplif\$5	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L26	7629	driver near amplifier	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L27	5555	driver adj amplifier	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L28	0	driver adj amplifier with fornt adj end	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L29	20	driver adj amplifier with front adj end	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L30	0	inductive adj amplifer	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47

L31	2	inductive adj amplifier with boost	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L32	31	inductive adj amplifier	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L33	2	"5525928".pn.	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L34	2	inductive adj amplifier with boost	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L35	12	("20010018334" "4287476" "4388540" "4695806" "5521545" "5914637" "6057714" "6201443" "6392486" "6404263" "6429721" "6446093").PN.	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L36	14	(feed adj forward) with amplifier with (inductance or inductive)	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L37	12	("20010018334" "4287476" "4388540" "4695806" "5521545" "5914637" "6057714" "6201443" "6392486" "6404263" "6429721" "6446093").PN.	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L38	53	feed adj forward with boost	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L39	10	feed adj forward with boost with amplifier	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L40	1	"6741846".pn.	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L41	1	fine with coarse with (phase adj detector) with pll with filter with (vco or (voltage adj controlled adj oscillator))	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47

	,					
L42	23	fine same coarse same (phase adj detector) same pll same filter same (vco or (voltage adj controlled adj oscillator))	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L43	8	fine same coarse same (phase adj detector) same pll same filter same (vco or (voltage adj controlled adj oscillator)) and (coarse with divider)	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:48
L44	2	post adj pll adj filter	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L45	810	pll with filtered	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L46	266	pll with filtered with output	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L47	137	pll adj output with filter	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L48	484	fine and coarse and (phase adj detector) and pll and filter and (vco or (voltage adj controlled adj oscillator))	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L49	283	fine and coarse and (phase adj detector) and pll and filter and (vco or (voltage adj controlled adj oscillator)) and (high adj frequency)	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L50	99	fine and coarse and (phase adj detector) and pll and filter and (vco or (voltage adj controlled adj oscillator)) and (high adj frequency with filter)	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L51	1	pll adj output adj filter	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L52	335	pll adj filter	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L53	117	pll adj filter with output	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L54	12	pll adj filter with output and coarse and fine	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L55	12	pll adj filter with (output or post) and coarse and fine	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47

1.50	T	6	116 205::2	05	01:	2006/04/42 27 47
L56	81	fine and coarse and (phase adj detector) and pll and filter and (vco or (voltage adj controlled adj oscillator)) and (high adj frequency) and analog with clock and digital with clock	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L57	3	feed adj forward adj boost	US-PGPUB; USPAT; USOCR	OR .	ON	2006/01/12 07:47
L58	12	("20010018334" "4287476" "4388540" "4695806" "5521545" "5914637" "6057714" "6201443" "6392486" "6404263" "6429721" "6446093").PN.	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L59	1	"00103444.6"	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L60	3	"00103444"	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L61	0	"ep00103444"	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L62	910	duty adj cycle with correction	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L63	48	duty adj cycle with distortion with correction	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L64	19	duty adj cycle with distortion with correction and (high with frequency)	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L65	0	duty adj cycle with distortion with correction same (high with frequency)	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:47
L66	0	dc adj offset adj compendsation	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L67	468	dc adj offset adj compensation	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47

L68	0	dc adj offset adj compensation with pll	US-PGPUB; USPAT; USOCR;	OR	ON	2006/01/12 07:47
			EPO; JPO; DERWENT; IBM_TDB			
L69	1	dc adj offset adj compensation same pll	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L70	26	dc adj offset adj compensation and pll	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L71	268	375/214	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L72	320	((high adj speed) or "high-speed") and ((even with odd with (serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") with (even with odd with (parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial")) and amplifier	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L73	0	L71 and L72	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L74	1477	375/377	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L75	7	L72 and L74	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47

L76	664	341/100	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L77	4	L72 and L76	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L78	427	341/101	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L79	4	L72 and L78	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L80	343	370/366	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L81	0	L72 and L80	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L82	256	710/71	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L83	0	L72 and L82	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47

L84	2	"6611219" pp	US-PGPUB;	OB	ON	2006/01/12 07:47
LOT	2	"6611218".pn.	USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L85	268	375/214	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L86 _.	320	((high adj speed) or "high-speed") and ((even with odd with (serial adj to adj parallel) or "serial-to-parallel" or "serial-parallel") with (even with odd with (parallel adj to adj serial) or "parallel-to-serial" or "parallel-serial")) and amplifier	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 07:47
L87	4	(fine and coarse and (phase adj detector) and pll and filter and (vco or (voltage adj controlled adj oscillator)) and (coarse with divider)).clm.	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:55
L88	0	(fine and coarse and (phase adj detector) and pll and filter and (vco or (voltage adj controlled adj oscillator)) and (coarse with divider) and serial).clm.	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 08:00
L89	0	"455.260"	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:55
L90	1772	455/260	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:55
L91	0	88 and 90	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:55
L92	3	87 and 90	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 07:56
L93	0	\2002095541.pn.	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 08:00
L94	0	"2002095541".pn.	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 08:01
L95	0	"2002095541".pn.	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 08:01

L96	0	"2002094055".pn.	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 08:08
L97	0	"high frequency network transmitter"	US-PGPUB; USPAT; USOCR	OR	ON	2006/01/12 08:09
L98	1	"HIGH FREQUENCY NETWORK TRANSMITTER"	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 08:12
L99	0	"CLOCK DATA RECOVERY CIRCUITRY ASSOCIATED WITH PROGRAMMABLE LOGIC DEVICE CIRCUITRY"	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2006/01/12 08:12

PALM INTRANET

Day: Thursday Date: 1/12/2006 Time: 07:19:06

Inventor Information for 10/051222

Inventor Name	City	State/Country
LU, JINGHUI	AUSTIN	TEXAS
ROKHSAZ, SHAHRIAR	AUSTIN	TEXAS
ANDERSON, STEPHEN D.	MINNETONKA	MINNESOTA
NIX, MICHAEL A.	BUDA	TEXAS
YOUNIS, AHMED	AUSTIN	TEXAS
KENT, MICHAEL REN	AUSTIN	TEXAS
LEE, YVETTE P.	AUSTIN	TEXAS
ABUGHAZALEH, FIRAS N.	AUSTIN	TEXAS
BRUNN, BRIAN T.	AUSTIN	TEXAS
ROBINSON, MOISES E.	AUSTIN	TEXAS
HOSSAIN, KAZI S.	AUSTIN	TEXAS
Appln Info Contents Petition Info	Atty/Agent Info Continuity	Data Foreign Data Inve
Search Another: Application#	Search or Patent#	Search
PCT /	or PG PUBS #	Search
Attorney Docket #	Search	

Search

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

Bar Code #

PALM Intranet	ì] [
Application Number		SEARCH			ar and the second of the second control of t	
IDS Flag Cle	arance for Ap	olication 1005122	2			
	Content	Mailroom Date	Entry Number	IDS Review	Reviewer	
	M844	11-15-2004	16	Y	04-04-2005 14:29:59 progers	1
		•	UPD	ATE		