Assignment 1 Assignment 1

Controllo robusto e adattativo

Modello Simulink

Modelli Teorici

Istruzioni per l'esecuzione

Definizione dei parametri di simulazione tramite script Matlab.

Si possono selezionare: il valore di am per la stima serie-parallelo e se considerare o meno la variazione temporale di a tramite sinAmp. Modificare i collegamenti su Simulink per cambiare ingressi e rumori.

```
Assignment1.m
        % Assignment 1 Parametri
        % Coccia Gianluca 0300085, Lomazzo Alessandro 0294640
        % 10/11/2020
        clearvars
        close all
12 -
        sinAmp = 0; %caso a costante
13
        %sinAmp = 0.1; %caso a variabile lentamente nel tempo
14 -
       sinFreq = (2*pi)/(24*3600); %variazione da testare con stop time alt
15
        % Parametri stimatore
        am = 1:
```

Simulazioni

- Ingresso sinusoidale
- Ingresso gradino
- Ingresso impulso
- Ingresso esponenziale
- Variazioni di am
- Presenza di rumore in ingresso
- Presenza di rumore nello stato
- Variazione temporale del parametro a

Ingresso sinusoidale

Scope del modello SP

Scope del modello P

Le simulazioni seguenti sono state effettuate con tempi di esecuzione indicati nel grafico, come si può osservare in genere la stima desiderata è calcolata con meno tempo.

Seguono le risposte a diversi tipi di segnale in ingresso.

Ingresso gradino

Scope del modello SP

Scope del modello P

Ingresso impulso

Scope del modello SP

Scope del modello P

Ingresso esponenziale

Scope del modello SP

Scope del modello P

Variazioni di am

Come si vede dai grafici il parametro am ha un impatto decisivo sull'algoritmo di stima Serie Parallelo.

Presenza di rumore in ingresso

Scope del modello SP

Scope del modello P

La presenza di rumore nell'ingresso rallenta la stima adattativa, senza effetti di grande impatto.

Presenza di rumore nello stato

Scope del modello SP

Scope del modello P

La presenza di rumore nella misurazione di stato invece risulta molto più disastrosa, rendendo l'errore a regime diverso da 0.

Variazione temporale di a

Scope del modello SP

Scope del modello P

La variazione del parametro a, se molto lenta, non causa problemi agli algoritmi di stima. In questo caso la simulazione è stata effettuata su un tempo di 86400 secondi.

Conclusioni

Entrambi i modelli riescono a stimare correttamente lo stato, rispetto a vari ingressi, portando l'errore a 0. In generale il modello SP sembra avere prestazioni migliori, anche se le sue prestazioni sono abbastanza dipendenti dalla scelta del parametro am e dalla presenza di rumore in ingresso. Il rumore di misura nello stato invece risulta più dannoso. La variazione temporale del parametro a incide poco sul sistema, che riesce a inseguirlo correttamente.