IN THE CLAIMS:

1.-37. (Cancelled).

38. (Currently amended) A compound having a formula

$$0 \xrightarrow{(R^4)_n R^3} R^2$$

or a pharmaceutically acceptable salt thereof, wherein:

n is an integer 0 through 2;

 R^1 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, heterocycloalkyl, $N(R^h)_2$, OR^h , carboxy, nitro, cyano, CHO, carboxamide, thiocarboxamide, $\frac{R^aC(=0)}{R^aC(=0)}$, trifluoromethyl, heteroaryl, and substituted heteroaryl;

 $$\rm R^2$$ is selected from the group consisting of alkyl, substituted alkyl, carbamoyl, carboxamide, $\rm N\left(R^h\right)_2$, carboxy, $\rm OR^h$, sulfamyl, nitro, $\rm OP\left(=O\right)\left(OR^h\right)_2$, and sulfonamide; or

 R^1 and R^2 are taken together with the carbon atoms to which each is attached to form a <u>monocyclic</u> 5-or 6-membered unsaturated or partially saturated ring, wherein 1, 2, or 3 carbon atoms of R^1 and R^2 optionally are a heteroatom selected from the group consisting of O, N, S, and P, said ring optionally substituted with one or more =O, =S, =NH, OR^h , $N(R^h)_2$, aryl, substituted aryl, heteroaryl, or substituted heteroaryl, said <u>nitrogen or phosphorus</u> heteroatom optionally substituted with a group consisting of aryl, substituted

aryl, alkyl, alkyl substituted with $\frac{R^aC(=0)}{R^aC(=0)}$, and $\frac{R^aC(=0)}{R^aC(=0)}$;

 ${\ensuremath{\mathsf{R}}}^3$, independently, is selected from the group consisting of hydrogen, sulfonamido, sulfamyl, sulfonyl chloride, and sulfo;

wherein R^a is selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocycloalkyl, and substituted heterocycloalkyl;

wherein R^h, independently, is selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, aryl, substituted aryl, heteroaryl, and substituted heteroaryl; and

 R^4 , independently, is selected from the group consisting of OR^h , alkyl, substituted alkyl, aryl, and substituted aryl;

and wherein cycloalkyl is a nonaromatic cyclic hydrocarbon group having three to six carbon atoms;

heterocycloalkyl is a monocyclic, bicyclic, or tricyclic nonaromatic partially unsaturated or saturated ring system having 3 to 10 members and having one to four heteroatoms independently selected from the group consisting of oxygen, nitrogen, and sulfur;

having five- to ten-ring atoms, wherein one- to fourring atoms independently are selected from the group consisting of oxygen, nitrogen, and sulfur, and the remaining ring atoms are carbon;

substituted alkyl is an alkyl group having a substituent selected from the group consisting of cycloalkyl, aryl, heteroaryl, heterocycloalkyl, substi-

tuted aryl, substituted heteroaryl, substituted heterocycloalkyl, $N(R^h)_2$, OR^h , SR^h , sulfoxide, sulfonyl, halo, $R^aC(=0)$, carboxy, hydrazino, hydrazono, and hydroxyamino;

substituted aryl is an aryl group having one to three substituents selected from the group consisting of halo, OR^h , $N(R^h)_2$, CN, alkyl, substituted alkyl, mercapto, nitro, CHO, carboxy, carboxamide, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, $O(CH_2)_{1-3}N(R^h)_2$, $O(CH_2)_{1-3}CO_2H$, and trifluoromethyl;

substituted heteroaryl is a heteroaryl group having one to three substituents selected from the group consisting of halo, OR^h , $N(R^h)_2$, CN, alkyl, substituted alkyl, mercapto, nitro, CHO, carboxy, carboxamide, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, $O(CH_2)_{1-3}N(R^h)_2$, $O(CH_2)_{1-3}CO_2H$, and trifluoromethyl; and

substituted heterocycloalkyl is a heterocycloalkyl group having one to three substituents selected from the group consisting of halo, OR^h , $N(R^h)_2$, CN, alkyl, substituted alkyl, mercapto, nitro, CHO, carboxy, carboxamide, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, $O(CH_2)_{1-3}N(R^h)_2$, $O(CH_2)_{1-3}CO_2H$, and trifluoromethyl;

with the proviso that when R^2 and R^4 are hydrogen, and R^3 is H, then R^1 is different from -(CO)-CH₃, and nitro.

39. (Previously presented) The compound of claim 38 wherein R^1 is selected from the group consisting of -H, -OH, -NH₂, -CH₂OH, -C \equiv N, -(CO)-N(R^h)₂, -(CO)-OH, -(CO)-O-CH₃, -(CO)-CF₃, -(CO)H, -NO₂, -(CO)-alkyl, -(CO)-substituted alkyl, -(CO)-aryl, -(CO)-substituted aryl, -(CO)-heteroaryl, and -(CO)-CH₂-N(R^h)₂.

40. (Previously presented) The compound of claim 38 wherein R^2 is -OH, -CH₂-OH, -NH₂, -NH-(CO)-CF₃, -NH-(CO)-CH₃, -NH-(SO₂)-CH₃, -NH-CH₃, and -N(CH₃)-(CO)-CF₃.

41. (Currently amended) The \underline{A} compound of elaim 38 having a formula

$$O \longrightarrow V \longrightarrow C \longrightarrow CH^3$$