CMPSC 465: LECTURE XVIII

All Pairs Shortest Paths
Maximum Flow

Ke Chen

October 10, 2025

Recall that:

We want to fill the $dist[\cdot, \cdot]$ matrix with correct pairwise shortest distances.

Recall that:

- We want to fill the $dist[\cdot,\cdot]$ matrix with correct pairwise shortest distances.
- lacktriangle For simplicity, assume vertices are labeled by $\{1,2,\ldots,n\}$.

Recall that:

- We want to fill the $dist[\cdot, \cdot]$ matrix with correct pairwise shortest distances.
- ▶ For simplicity, assume vertices are labeled by $\{1, 2, ..., n\}$.
- ▶ Repeating Bellman-Ford fills dist row by row. $O(|V|^2 \cdot |E|)$.

Recall that:

- We want to fill the $dist[\cdot, \cdot]$ matrix with correct pairwise shortest distances.
- ightharpoonup For simplicity, assume vertices are labeled by $\{1,2,\ldots,n\}$.
- ▶ Repeating Bellman-Ford fills dist row by row. $O(|V|^2 \cdot |E|)$.
- Can we use information from other rows to speed things up?

This is the adjacency matrix of the weighted graph G.

$$\begin{array}{ll} \text{Initially:} \ dist_0[i,j] = \begin{cases} 0 & \text{if } i=j \\ \ell(i,j) & \text{if } (i,j) \in E \text{ is an edge} \\ \infty & \text{otherwise} \end{cases}$$

This is the adjacency matrix of the weighted graph G.

Consider a simpler question:

Fill $dist_1[\cdot,\cdot]$ with pairwise shortest distances using only node 1 as an intermediate node.

- Fill $dist_1[\cdot, \cdot]$ with pairwise shortest distances using only node 1 as an intermediate node.
- $dist_1[i,j] = \min \Big\{ dist_0[i,j], \ dist_0[i,1] + dist_0[1,j] \Big\}.$

- Fill $dist_1[\cdot,\cdot]$ with pairwise shortest distances using only node 1 as an intermediate node.
- $dist_1[i,j] = \min \Big\{ dist_0[i,j], \ dist_0[i,1] + dist_0[1,j] \Big\}.$

- Fill $dist_1[\cdot,\cdot]$ with pairwise shortest distances using only node 1 as an intermediate node.

- Fill $dist_1[\cdot,\cdot]$ with pairwise shortest distances using only node 1 as an intermediate node.
- $dist_1[i,j] = \min \Big\{ dist_0[i,j], \ dist_0[i,1] + dist_0[1,j] \Big\}.$

- Fill $dist_1[\cdot,\cdot]$ with pairwise shortest distances using only node 1 as an intermediate node.
- $dist_1[i,j] = \min \Big\{ dist_0[i,j], \ dist_0[i,1] + dist_0[1,j] \Big\}.$

- Fill $dist_1[\cdot,\cdot]$ with pairwise shortest distances using only node 1 as an intermediate node.

How about also including node 2 as an intermediate node?

Fill $dist_2[\cdot, \cdot]$ with pairwise shortest distances using only nodes in $\{1, 2\}$ as intermediate nodes.

- Fill $dist_2[\cdot, \cdot]$ with pairwise shortest distances using only nodes in $\{1, 2\}$ as intermediate nodes.
- $ightharpoonup dist_2[i,j] = \min \Big\{ dist_1[i,j], \ \ dist_1[i,2] + dist_1[2,j] \Big\}.$

- Fill $dist_2[\cdot, \cdot]$ with pairwise shortest distances using only nodes in $\{1, 2\}$ as intermediate nodes.
- $ightharpoonup dist_2[i,j] = \min \Big\{ dist_1[i,j], \ \ dist_1[i,2] + dist_1[2,j] \Big\}.$

- Fill $dist_2[\cdot,\cdot]$ with pairwise shortest distances using only nodes in $\{1,2\}$ as intermediate nodes.
- $ightharpoonup dist_2[i,j] = \min \Big\{ dist_1[i,j], \ \ dist_1[i,2] + dist_1[2,j] \Big\}.$

- Fill $dist_2[\cdot, \cdot]$ with pairwise shortest distances using only nodes in $\{1, 2\}$ as intermediate nodes.
- $ightharpoonup dist_2[i,j] = \min \Big\{ dist_1[i,j], \ \ \frac{dist_1[i,2] + dist_1[2,j]}{2} \Big\}.$

In general:

Start with the weighted adjacency matrix $dist_0$ (shortest distances without any intermediate nodes).

In general:

- Start with the weighted adjacency matrix $dist_0$ (shortest distances without any intermediate nodes).
- Suppose shortest distances only using intermediate nodes in $\{1,\ldots,k-1\}$ have been correctly computed in $dist_{k-1}$.

In general:

- Start with the weighted adjacency matrix $dist_0$ (shortest distances without any intermediate nodes).
- Suppose shortest distances only using intermediate nodes in $\{1,\ldots,k-1\}$ have been correctly computed in $dist_{k-1}$.
- Can compute shortest distances only using intermediate nodes in $\{1, \ldots, k-1, k\}$ by

$$dist_k[i,j] = \min \left\{ \begin{aligned} dist_{k-1}[i,j], \\ dist_{k-1}[i,k] + dist_{k-1}[k,j] \end{aligned} \right\}.$$

In general:

- Start with the weighted adjacency matrix $dist_0$ (shortest distances without any intermediate nodes).
- Suppose shortest distances only using intermediate nodes in $\{1,\ldots,k-1\}$ have been correctly computed in $dist_{k-1}$.
- Can compute shortest distances only using intermediate nodes in $\{1,\ldots,k-1,k\}$ by

$$dist_k[i,j] = \min \left\{ \frac{dist_{k-1}[i,j],}{dist_{k-1}[i,k] + dist_{k-1}[k,j]} \right\}.$$

$$\frac{\operatorname{dist}_k[i,j]}{\operatorname{dist}_{k-1}[i,k] + \operatorname{dist}_{k-1}[k,j]} \right\}.$$

$dist_k$:

$$\frac{\operatorname{dist}_{k}[i,j]}{\operatorname{dist}_{k-1}[i,k] + \operatorname{dist}_{k-1}[k,j]} \right\}.$$

The values we need from $dist_{k-1}$ will not change when computing $dist_k$, so we can simply do updates in place.

$$\frac{\operatorname{dist}_{k}[i,j]}{\operatorname{dist}_{k-1}[i,k] + \operatorname{dist}_{k-1}[k,j]} \right\}.$$

$\mathsf{Floyd\text{-}Warshall}\big(G = (V, E, \ell)\big)$

```
\begin{array}{l} n = |V| \\ \text{foreach } (i,j) \in \{1,\dots,n\}^2 \text{ do} \\ & \text{if } i == j \text{ then } dist[i,j] = 0 \\ & \text{else if } (i,j) \in E \text{ then } dist[i,j] = \ell(i,j) \\ & \text{else } dist[i,j] = \infty \end{array}
```

$$\frac{\operatorname{dist}_k[i,j]}{\operatorname{dist}_{k-1}[i,k] + \operatorname{dist}_{k-1}[k,j]} \right\}.$$

```
\mathsf{Floyd\text{-}Warshall}\big(G=(V,E,\ell)\big)
```

Time complexity?

```
n = |V|
foreach (i, j) \in \{1, ..., n\}^2 do
  if i == j then dist[i, j] = 0
  else if (i, j) \in E then dist[i, j] = \ell(i, j)
  else dist[i, j] = \infty
for k=1 to n do
   for i = 1 to n do
```

4 / 8

$$\frac{\operatorname{dist}_{k}[i,j]}{\operatorname{dist}_{k-1}[i,k] + \operatorname{dist}_{k-1}[k,j]} \right\}.$$

```
Time complexity? O(|V|^3)
Floyd-Warshall(G = (V, E, \ell))
  n = |V|
  foreach (i, j) \in \{1, ..., n\}^2 do
    if i == j then dist[i, j] = 0
    else if (i, j) \in E then dist[i, j] = \ell(i, j)
     else dist[i, j] = \infty
  for k=1 to n do
     for i = 1 to n do
```

What does it mean if during Floyd-Warshall, some diagonal entry dist[i,i] becomes negative?

What does it mean if during Floyd-Warshall, some diagonal entry dist[i, i] becomes negative? Negative cycle detected!

- What does it mean if during Floyd-Warshall, some diagonal entry dist[i, i] becomes negative? Negative cycle detected!
- ▶ We have covered four different algorithms for shortest paths:

Scenario	Algorithm	Time complexity
unweighted	BFS	O(V + E)
nonnegative weights	Dijkstra	$O((V + E)\log V)$
no negative cycles	Bellman-Ford	$O(V \cdot E)$
no negative cycles	Floyd-Warshall	$O(V ^3)$

- What does it mean if during Floyd-Warshall, some diagonal entry dist[i, i] becomes negative? Negative cycle detected!
- ▶ We have covered four different algorithms for shortest paths:

Scenario	Algorithm	Time complexity
unweighted	BFS	O(V + E)
nonnegative weights	Dijkstra	$O((V + E)\log V)$
no negative cycles	Bellman-Ford	$O(V \cdot E)$
no negative cycles	Floyd-Warshall	$O(V ^3)$

► There are many more:

- What does it mean if during Floyd-Warshall, some diagonal entry dist[i, i] becomes negative? Negative cycle detected!
- ▶ We have covered four different algorithms for shortest paths:

	Scenario	Algorithm	Time complexity	
(unweighted	BFS	O(V + E)	
ss{	nonnegative weights	Dijkstra	$O((V + E)\log V)$	
	no negative cycles	Bellman-Ford	$O(V \cdot E)$	
(no negative cycles	Floyd-Warshall	$O(V ^3)$	
AP < ► There are many more:				
i	no negative cycles no negative cycles	Johnson	$O(V ^2 \log V + V E)$	
Į	no negative cycles	Pettie (2004)	$O(V ^2 \log \log V + V E)$	
		:		

Flow network

One particularly useful application of graphs is to model transportation networks, where edges allow some sort of traffic and nodes act as switches or hubs.

Flow network

One particularly useful application of graphs is to model transportation networks, where edges allow some sort of traffic and nodes act as switches or hubs.

Examples

- Highways and interchanges
- Fluid networks (pipes and junctions)
- Links and routers

Flow network

One particularly useful application of graphs is to model transportation networks, where edges allow some sort of traffic and nodes act as switches or hubs.

Examples

- Highways and interchanges
- Fluid networks (pipes and junctions)
- Links and routers

Definition A Flow Network is a directed graph G = (V, E) s.t.:

- 1. Each edge $e \in E$ has a nonnegative capacity c(e).
- 2. There is a unique source node $s \in V$.
- 3. There is a unique sink node $t \in V$.

Example A flow network G:

Example A flow network G:

Definition An s-t flow in a flow network is a function f that maps each edge to a nonnegative real number $(f:E\to\mathbb{R}_{\geq 0})$ satisfying:

- 1. [Capacity Condition] $0 \le f(e) \le c(e) \quad \forall e \in E$
- 2. [Flow Conservation] For all $v \in V$, $v \notin \{s, t\}$:

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e).$$

Example A flow network G:

Definition An s-t flow in a flow network is a function f that maps each edge to a nonnegative real number $(f:E\to\mathbb{R}_{\geq 0})$ satisfying:

- 1. [Capacity Condition] $0 \le f(e) \le c(e) \quad \forall e \in E$
- 2. [Flow Conservation] For all $v \in V$, $v \notin \{s, t\}$:

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e).$$

Example A flow network G:

Definition An s-t flow in a flow network is a function f that maps each edge to a nonnegative real number $(f:E\to\mathbb{R}_{\geq 0})$ satisfying:

- 1. [Capacity Condition] $0 \le f(e) \le c(e) \quad \forall e \in E$
- 2. [Flow Conservation] For all $v \in V$, $v \notin \{s, t\}$:

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e).$$

The maximum flow problem

The value of a flow f is $v(f) = \sum_{e \text{ out of } s} f(e)$.

The maximum flow problem

The value of a flow f is $v(f) = \sum_{e \text{ out of } s} f(e)$.

Note that
$$v(f) = \sum\limits_{e \text{ into } t} f(e)$$
 (why?).

The maximum flow problem

The value of a flow f is $v(f) = \sum_{e \text{ out of } s} f(e)$.

Note that
$$v(f) = \sum_{e \text{ into } t} f(e)$$
 (why?).

Max Flow Problem Given a flow network, find the flow of maximum value.

