Dualità di Stone-Gelfand per i gruppi

Marco Abbadini* ¹ Vincenzo Marra ¹ Luca Spada ²

*autore del poster

¹Dipartimento di Matematica, Università degli Studi di Milano

²Dipartimento di Matematica, Università degli Studi di Salerno

Background

Definizione

Un gruppo Abeliano reticolare unitale (o ℓ -gruppo unitale, in breve) $(G, +, \leq, 1)$ è un gruppo Abeliano G, dotato di un ordine parziale \leq reticolare (cioè ogni coppia di elementi ammette sup e inf), con ordine parziale invariante per traslazione, cioè

$$\forall x, y, t \in G \ x \leqslant y \Rightarrow x + t \leqslant y + t,$$

e dotato di un elemento 1 che sia un'unità d'ordine forte, cioè

$$\forall x \in G \ \exists n \in \mathbb{N} : -n1 \leqslant x \leqslant n1.$$

Esempi

- 1. Dato un insieme X, l'insieme delle funzioni $f: X \to \mathbb{R}$ limitate è un ℓ -gruppo unitale, dove la somma e l'ordine sono pointwise, e 1 è la funzione costante 1.
- 2. Dato uno spazio compatto di Hausdorff X, l'insieme

$$C(X) := \{f \colon X \to \mathbb{R} \mid f \text{ è continua}\}$$

è un ℓ -gruppo unitale, dove la somma e l'ordine sono pointwise, e 1 è la funzione costante 1.

Ogni ℓ -gruppo unitale G si immerge in $\mathrm{C}(X)$, per qualche X compatto di Hausdorff, a patto che G soddisfi una certa proprietà di 'radicale nullo', come segue.

Un ideale I di un ℓ -gruppo unitale è un sottogruppo convesso (cioè $a \leqslant x \leqslant b, a, b \in I \Rightarrow x \in I$), chiuso per sup e inf binari. Gli ideali sono quei sottoinsiemi su cui ha senso quozientare: G/I è definito come il quoziente rispetto alla relazione di equivalenza $x \sim y \Leftrightarrow x - y \in I$. G/I è un ℓ -gruppo unitale in modo canonico.

Definizione

Lo spettro massimale di un ℓ -gruppo unitale G, denotato con $\max G$, è l'insieme degli ideali massimali di G. $\max G$ può essere topologizzato alla Zariski: una base di chiusi è data da

$$V(I) := \{ \mathfrak{m} \in \operatorname{Max} G \mid \mathfrak{m} \supseteq I \}, I \text{ ideale.}$$

 $\operatorname{Max} G$ è un compatto di Hausdorff.

Se G ha radicale (=intersezione degli ideali massimali) banale, si ha un'inclusione canonica $G \hookrightarrow \mathrm{C}(\operatorname{Max} G).$

II problema

Si può aggiungere struttura a $\operatorname{Max} G$, che rende più esplicita l'inclusione $G \hookrightarrow \operatorname{C}(\operatorname{Max} G)$. Per ogni ℓ -gruppo unitale G, per ogni $\mathfrak{m} \in \operatorname{Max} G$, si hanno le seguenti alternative

$$G/\mathfrak{m}\cong \stackrel{1}{\searrow} \mathbb{Z}$$
, per qualche $n\in\mathbb{N}_{>0}$ (\mathfrak{m} si dice discreto), oppure $H\subseteq\mathbb{R}$ sottogruppo denso contenente 1 (\mathfrak{m} si dice indiscreto).

Ad ogni $\mathfrak{m} \in \operatorname{Max} G$ associamo un'etichetta $L_{\mathfrak{m}}$ che denota la chiusura topologica di G/\mathfrak{m} , visto come sottoinsieme di \mathbb{R} . Se G ha radicale nullo, l'inclusione $G \hookrightarrow \operatorname{C}(\operatorname{Max} G)$ restringe a

$$G \hookrightarrow \{ f \in C(\operatorname{Max} G) \mid \operatorname{per ogni} \mathfrak{m} \in \operatorname{Max} G \text{ si ha } f(\mathfrak{m}) \in L_{\mathfrak{m}} \}.$$

Il problema

Come possono distribuirsi le etichette sullo spazio topologico Max G?

In altre parole, quali sono gli 'spazi etichettati' $(X,(L_x)_{x\in X})$ (dove X è uno spazio topologico, e, per ogni $x\in X$, L_x è un sottogruppo chiuso di $\mathbb R$ contenente 1, cioè è $\frac{1}{n}\mathbb Z$ per qualche $n\in\mathbb N_{>0}$, oppure è $\mathbb R$) che sono il Max di un ℓ -gruppo unitale?

La soluzione

La soluzione

Uno spazio etichettato $(X,(L_x)_{x\in X})$ è $\operatorname{Max} G$ per qualche ℓ -gruppo unitale G se e solo se,

- 1. X è un compatto di Hausdorff;
- 2. per ogni $n \in \mathbb{N}_{>0}$, l'insieme

$$\left\{ x \in X \mid L_x \subseteq \frac{1}{n} \mathbb{Z} \right\}$$

è chiuso;

3. per ogni coppia A e B di sottoinsiemi chiusi disgiunti di X, esistono due aperti disgiunti U e V contenenti A e B, rispettivamente, tali che, per ogni $x \in X \setminus (U \cup V)$, si ha $L_x = \mathbb{R}$.

Esempi

Questo risultato si estende a una dualità per la categoria degli ℓ -gruppi unitali completi nella norma indotta dall'unità.

Domande aperte

Come vanno generalizzate le condizioni 1. 2. e 3. nella nostra soluzione se, per ogni punto indiscreto \mathfrak{m} , all'etichetta ' \mathbb{R} ' si sostituisce precisamente il sottogruppo G/\mathfrak{m} di \mathbb{R} ?