WHAT IS CLAIMED IS:

1. A method of detecting and correcting defective pixels in raw data			
taken from an image sensor used to obtain a digitized image, wherein said raw data			
includes normal pixels and defective pixels, said method comprising the steps of:			
(a) receiving a raw data signal for each pixel in said image;			
(b) computing for each pixel received from said image sensor a brightness			
value;			
(c) computing for each pixel received from said image sensor a local			
brightness value;			
(d) computing for each pixel received from said image sensor a local			
brightness deviation of said brightness value from said local brightness value;			
(e) setting a deviation threshold;			
(f) comparing for each pixel received from said image sensor, its local			
brightness deviation to said deviation threshold and designating pixels having local			
brightness deviations greater than said deviation threshold as defective pixels;			
(g) recording the location of said defective pixels in a statistical database;			
(h) recording the frequency of occurrence of said defective pixels in said			
statistical database; and			
(i) correcting the brightness value of said defective pixels, provided said			
correcting is warranted by trends from said statistical database.			
2. The method of claim 1, wherein said local brightness value is the			
arithmetic average of the brightness values of all pixels immediately neighboring and			
surrounding said pixel.			
3. The method of claim 1, wherein said local brightness deviation is			
the absolute value of the difference between said pixel's brightness value and said pixel's			
local brightness value.			
4. The method of claim 1, wherein said correcting is achieved by			
replacing said defective pixel's brightness value by said defective pixel's local brightness			
value.			
5. The method of claim 1, performing said detecting and correcting of			
said defective pixels dynamically and without any operator intervention.			

1 2	6. Th digital video camera.	e method of claim 1, wherein said image sensor is a part of a		
1 2	7. Th	e method of claim 1, wherein said image sensor is a part of a		
1 2 3		e method of claim 1, wherein said image sensor is one of (a) a CCD) image sensor array and (b) a complimentary metal oxide mage sensor array.		
1 2 3		e method of claim 1, wherein said raw data is the unprocessed ich is output by said image sensor which has not gone through or color processing.		
1 2 3	10. The method of claim 1, performing said detecting and correcting on a portion of said raw data obtained from said image sensor array corresponding to a portion of a frame of a video image.			
1 2 3		e method of claim 1, performing said detecting and correcting lata obtained from said image sensor array corresponding to a mage.		
1 2 3 4 5	12. The method of claim 1, wherein said statistical database, by storing the location and frequency of defective pixels, develops over time trends which confirms which of said defective pixels are warranted for pixel correction, wherein said trends initially warrant pixel correction as a default and over time warrant pixel correction only if a particular defective pixel has an occurrence frequency of at least two out of four queries.			
1 2 3 4	subsampling, wherein us frames at a rate between	e method of claim 1, wherein said detecting includes video ing video subsampling said detecting is carried out on video data one of every 128 video frames and 1 of every 32 video frames, ng is continuous on every video data frame.		
1	14. Th	e method of claim 1, wherein said detecting includes video		

subsampling, wherein using video subsampling said detecting is carried out on video data

3	frames at a rate of one of every n times X frames, where n is an integer and where X is			
4	not equal to either 50 or 60.			
1	15. A dynamic method requiring no user intervention for detecting and			
2	correcting defective pixels in raw data taken from an image sensor which is part of one of			
3	(a) a digital video camera and (b) a digital still camera, used to obtain a digitized image			
4	which is sensed by a camera and transmitted over a bus to a PC, wherein said raw data			
5	includes normal pixels and defective pixels, said method comprising the steps of:			
6	(a) receiving raw data signals for each pixel from said image;			
7	(b) computing for each pixel received from said image sensor a brightnes			
8	value;			
9	(c) computing for each pixel received from said image sensor a local			
10	brightness value, wherein said local brightness value is the arithmetic average of the			
11	brightness values of all pixels immediately neighboring and surrounding said pixel;			
12	(d) computing for each pixel received from said image sensor a local			
13	brightness deviation of said brightness value from said local brightness value, wherein			
14	said local brightness deviation is the absolute value of the difference between said pixel'			
15	brightness value and said pixel's local brightness value;			
16	(e) setting a deviation threshold;			
17	(f) comparing for each pixel received from said image sensor, its local			
18	brightness deviation to said deviation threshold and designating pixels having local			
19	brightness deviations greater than said deviation threshold as defective pixels;			
20	(g) recording the location of said defective pixels in a statistical database;			
21	(h) recording the frequency of occurrence of said defective pixels in said			
22	statistical database; and			
23	(i) correcting the brightness value of said defective pixels, provided said			
24	correcting is warranted by trends from said statistical database, wherein said correcting			
25	achieved by replacing said defective pixel's brightness value by said defective pixel's			
26	local brightness value, wherein said statistical database warrants pixel correction if a			
27	particular defective pixel has an occurrence frequency of at least two out of four queries			
28	and			
29	wherein said detecting is carried out on video data at a rate of one of (a)			
30	hetween one of every 128 video frames and 1 of every 32 video frames, and (b) one of			

deviation threshold as defective pixels;

31	(7) computer readable program code devices configured to cause a			
32	computer to record the location of said defective pixels in a statistical database;			
33	(8) computer readable program code devices configured to cause a			
34	computer to record the frequency of occurrence of said defective pixels in said statistica			
35	database; and			
36	(9) 0	computer readable program code devices configured to cause a		
37	computer to correct the brightness value of said defective pixels, provided the correction			
38	is warranted by trends from said statistical database.			
1	17.	The system of claim 16, wherein said image sensor transmits said		
2	digital signals to said intelligent host via a bus, wherein said bus connects said image			
3	sensor to said intelligent host.			
1	18.	The system of claim 16, wherein said intelligent host is a server.		
1	19.	The system of claim 16, wherein said intelligent host is a personal		
2	computer.			
1	20.	The system of claim 16, wherein said local brightness value is the		
2	arithmetic average of the brightness values of all pixels immediately neighboring and			
3	surrounding said pixel.			
1	21.	The system of claim 16, wherein said local brightness deviation is		
2	the absolute value of the difference between said pixel's brightness value and said pixel			
3	local brightness val	lue.		
1	22.	The system of claim 16, wherein said correction is achieved by		
2	replacing said defective pixel's brightness value by said defective pixel's local brightness			
3	value.			
1	23.	The system of claim 16, wherein said image sensor array is one of		
2	(a) a charge-couple	ed device (CCD) image sensor array and (b) a complimentary metal		
3	oxide semiconductor (CMOS) image sensor array.			
1	24.	The system of claim 16, wherein said raw data is the unprocessed		
2	brightness value data which is output by said image sensor which has not gone through			
3	either lossy compression or color processing.			

2

3

1	25.	The system of claim 17, wherein said bus is one a (a) universal		
2	serial bus (USB) and (b) a parallel port.			
1	26.	The system of claim 16, performing said detecting and correcting		
2.	of said defective pixels dynamically and without any user intervention.			
1	27.	The system of claim 16, wherein said image sensor is a part of a		
2	digital video camera.			
1	28.	The system of claim 16, wherein said image sensor is a part of a		
2	digital still camera.			
1	29.	The system of claim 16, performing said detecting and correcting		
2	on a portion of said ra	w data obtained from said image sensor array corresponding to a		
3	portion of a frame of a video image.			
1	30.	The system of claim 16, performing said detecting and correcting		
2	on a portion said raw	data obtained from said image sensor array corresponding to a		
3	portion of a still digital image.			
1	31.	The system of claim 16, wherein said statistical database, by		
2	storing the location and frequency of defective pixels, develops over time trends which			
3	confirm which of said	defective pixels are warranted for pixel correction, wherein said		
4	trends initially warrant pixel correction as a default and over time warrant pixel correction			
5	only if a particular defective pixel has an occurrence frequency of at least two out of four			
6	queries.			
1	32.	The system of claim 16, wherein said computer program causes		
2	said detecting to be ca	arried out on video data frames at a rate between one of every 128		
3	video frames and 1 of every 32 video frames, and said computer program causes said			
4	correcting to be carrie	d out continuously on every video data frame.		

frames, where n is an integer, and where X is not equal to either 50 or 60, and said

said detecting to be carried out on video data frames at a rate of one of every n times X

33.

The system of claim 16, wherein said computer program causes

percent.

- computer program causes said correcting to be carried out continuously on every video 4 5 data frame. 34. The system of claim 16, wherein said computer program product 1 2 consists of an anomalous pixel detection portion, an anomalous pixel correction portion and a statistical analysis portion. 3 1 35. The system of claim 16, wherein execution of said computer 2 program product does not increase processor load by more than between 1 percent to 80
- 1 36. The system of claim 16, wherein execution of said computer 2 program product does not reduce video processing by more than 1 frame per second.