

Deep Generative Models (https://deepgenerativemodels.github.io/) CS236 - Fall 2023

Detailed Syllabus

Current quarter's videos are available through Panopto (https://stanford-pilot.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx? folderID=e3a9ef4c-4783-498f-b0ec-b0750189ab83).

Course notes are published here (https://deepgenerativemodels.github.io/notes/index.html).

Week	Date	Lecture Topics	Coursework	Sections		
1	Sep 27	Introduction (Slides (assets/slides/cs236_lecture1_2023.pptx))		Probability (https://cs229.stanford.edu/section/cs229-prob.pdf) and Linear Algebra (https://cs229.stanford.edu/section/cs229-linalg.pdf)		
2	Oct 02 & Oct 04	Background (Slides (assets/slides/cs236_lecture2.pdf)) + Autoregressive Models (Slides (assets/slides/cs236_lecture3.pdf))	HW 1 Released (Oct 02)	PyTorch (https://docs.google.com/presentation/d/1fyPRytFxdvswz2p4HyH6TGkOQCVXAPS8gxzaTJH55s/edit#slide=id.p)		
3	Oct 09 & Oct 11	Maximum Likelihood Learning (Slides (assets/slides/cs236_lecture4.pdf)) + VAEs (Slides (assets/slides/cs236_lecture5.pdf))		CNNs, RNNs, Transformers (https://docs.google.com/presentation/d/1Z6jq9WNCBFy9cqhkWtNbQ-WhcYU_9g5s4-4qMKsoDNY/edit?usp=sharing)		
4	Oct 16 & Oct 18	VAEs (Slides (assets/slides/cs236_lecture6.pdf)) + Normalizing Flows (Slides (assets/slides/cs236_lecture7.pdf))	HW 1 due, HW 2 released (Oct 16)			
5	Oct 23 & Oct 25	Normalizing Flows (Slides (assets/slides/cs236_lecture8.pdf)) + GANs (Slides (assets/slides/cs236_lecture9.pdf))				
		Project Proposal: Due Wednesday, October 25, 2023				
6	Oct 30 & Nov 01	GANs (Slides (assets/slides/cs236_lecture10.pdf)) + Energy Based Models (Slides (assets/slides/cs236_lecture11.pdf))	HW 2 due (Oct 30)			
7	Nov 06 & Nov 08	Energy Based Models (Slides (assets/slides/cs236_lecture12.pdf)) + Score Based Models (Slides (assets/slides/lecture 13.pptx))	HW 3 released (Nov 06)			
		Midterm: Day: Nov 10 - Time: 6-9pm - Location: CEMEX (Last names A-L), HEWLETT200 (Last names M-Z)				
8	Nov 13 & Nov 15	Energy Based Models (Slides (assets/slides/lecture_14_comp.pptx)) + Evaluation of Generative Models (Slides (assets/slides/lecture15.pdf))				
		Project Progress Report: Due Wednesday, November 15, 2023				

Week	Date	Lecture Topics	Coursework	Sections		
9	Nov 20 & Nov 22	Thanksgiving Break				
10	Nov 27 & Nov 29	Score Based Diffusion Models (Slides (assets/slides/lecture16-2023- comp.pptx)) + Discrete Latent Variable Models (Slides (assets/slides/cs236_lecture17.pdf))	HW 3 due (Nov 27)			
11	Dec 04 & Dec 06	Diffusion Models for Discrete Data (Slides (assets/slides/cs236_lecture18.pdf))				
		Poster Presenta	Poster Presentation: Wednesday, December 6, 2023 from 3:00 pm - 6:00 pm			
12	Dec 11 & Dec 13	Finals Week				
	Final Project Report: Due Monday, December 11, 2023					

Additional Reading: Surveys and Tutorials

- 1. Generative Modeling by Estimating Gradients of the Data Distribution (http://yang-song.github.io/blog/2021/score/) Yang Song. Blog post on score-based generative models, May 2021.
- 2. How to Train Your Energy-Based Models. (https://arxiv.org/abs/2101.03288) Yang Song and Diederik P. Kingma. February 2021.
- 3. Tutorial on Deep Generative Models. (https://ermongroup.github.io/generative-models/) Aditya Grover and Stefano Ermon. International Joint Conference on Artificial Intelligence, July 2018.
- 4. Tutorial on Generative Adversarial Networks. (https://sites.google.com/view/cvpr2018tutorialongans/) Computer Vision and Pattern Recognition, June 2018.
- 5. Tutorial on Deep Generative Models. (https://www.youtube.com/watch?v=JrO5fSskISY) Shakir Mohamed and Danilo Rezende. Uncertainty in Artificial Intelligence, July 2017.
- 6. Tutorial on Generative Adversarial Networks. (https://www.youtube.com/watch?v=AJVyzd0rqdc) Ian Goodfellow. Neural Information Processing Systems, December 2016.
- 7. Learning deep generative models. (https://www.cs.cmu.edu/~rsalakhu/papers/annrev.pdf) Ruslan Salakhutdinov. Annual Review of Statistics and Its Application, April 2015.