作业 4 参考答案及提示

- 1、单体 M_1 和单体 M_2 进行共聚,已知 $r_1=1$, $r_2=1$,试回答以下问题:
 - (1) 画出该共聚物组成曲线图;

答: $r_1=1$, $r_2=1$, 代入到共聚物的组成微分方程, 恒有 $F_1=f_1$, 其共聚组成曲线如下所示:

- (2) 若起始 $f_1^0=0.45$, 随着转化率的提高,该共聚物瞬时组成如何变化?
- 答:该共聚体系属于理想恒比共聚,即 $F_1=f_1$,

故随着转化率的提高, 共聚瞬时组成不变, 始终为 $F_1=f_1^0=0.45$ 。

- (3) 若起始 $f_1^0=0.57$, 随着转化率的提高,该共聚物瞬时组成又如何变化?
- 答:该共聚体系属于理想恒比共聚,即 $F_1=f_1$,

故随着转化率的提高, 共聚瞬时组成不变, 始终为 $F_1=f_1^{\ 0}=0.57$ 。

- 2、单体 M_1 和单体 M_2 进行共聚,已知 r_1 =0, r_2 =0,试回答以下问题:
 - (1) 画出该共聚物组成曲线图;

答: $r_1=0$, $r_2=0$,代入到共聚物的组成微分方程,恒有 $F_1=0.5$,其共聚组成曲线如下所示:

- (2) 若起始 $f_1^0=0.63$, 随着转化率的提高,该共聚物瞬时组成如何变化?
- 答:该共聚体系属于严格交替共聚,即 F₁=0.5,

故随着转化率的提高,共聚瞬时组成不变,始终为 $F_1=0.5$ 。

- (3) 若起始 $f_1^0=0.40$, 随着转化率的提高,该共聚物瞬时组成又如何变化?
- 答:该共聚体系属于严格交替共聚,即 F₁=0.5,

故随着转化率的提高,共聚瞬时组成不变,始终为 $F_1 = 0.5$ 。

3、苯乙烯、丙烯腈、丙烯酸甲酯和醋酸乙烯酯等单体与丁二烯进行共聚,相关的竞聚率数据如下表所示,试将它们交替共聚的倾向进行排序,并说明主要理由。

答:根据以上数据,计算出 r₁·r₂的数值,并做如下表格:

单体1	单体 2	r_1	r_2	$\mathbf{r}_1 \cdot \mathbf{r}_2$
苯乙烯	丁二烯	0.58	1.35	0.783
丙烯腈	丁二烯	0.02	0.3	0.006
丙烯酸甲酯	丁二烯	0.05	0.76	0.038
醋酸乙烯酯	丁二烯	0.013	38.45	0.49985

乘积 $r_1 \cdot r_2$ 越趋近于 0,则交替共聚的倾向越大,故交替共聚的倾向为:

丙烯腈>丙烯酸甲酯>醋酸乙烯酯>苯乙烯

- 4、单体 M_1 和单体 M_2 进行共聚,已知 r_1 =0.75, r_2 =0.25,且起始[M_1]₀=1.0 mol/L,起始[M_2]₀=1.0 mol/L。试回答以下问题:
 - (1) 该体系有无恒比共聚点? 若有, 计算其恒比点;
- 答:已知 \mathbf{r}_1 =0.75, \mathbf{r}_2 =0.25,均小于 1,故,该体系属于有恒比共聚点的非理想共聚体系, 其恒比点 \mathbf{F}_1 = \mathbf{f}_1 =(1- $\mathbf{r}_2)$ /(2- \mathbf{r}_1 - \mathbf{r}_2)=(1-0.25)/(2-0.75-0.25)=0.75
 - (2) 求起始共聚物的瞬时组成;
- 答:已知起始[M_1] $_0$ =1.0 mol/L,起始[M_2] $_0$ =1.0 mol/L,故起始 f_1 0 =1/(1+1)=0.5 , f_2 0 =0.5 代入到共聚物的组成微分方程,

则起始 $F_1^0 = (0.75 \times 0.5^2 + 0.5 \times 0.5) / (0.75 \times 0.5^2 + 2 \times 0.5 \times 0.5 + 0.25 \times 0.5^2) = 0.583$

(3) 求 M₁链段的平均链段长度;

答:
$$P_{11}=(r_1[M_1])/(r_1[M_1]+[M_2])=0.75\times1/(0.75\times1+1)=3/7$$

故,
$$\overline{N}_{M_{1=1/(1-P_{11})}=7/4=1.75}$$

(4) 求形成 3M₂序列的概率 (PM₂)₃;

答:
$$P_{22}$$
= $(r_2[M_2])$ / $(r_2[M_2]+[M_1])$ =0.25×1/ $(0.25\times1+1)$ =0.2 故, $(PM_2)^3$ = P_{22} $(3-1)$ (1- P_{22})= 0.2 $(1-0.2)$ =3.2 %

(5)随着转化率的提高,该共聚物瞬时组成将如何变化?若要获得组成比较均一的共聚物,应该采取什么措施?

答: 该体系属于有恒比共聚点的非理想共聚体系,

恒比点 $F_1=f_1=0.75$, 而起始 $f_1^0=0.5$, 小于恒比点,

故随着转化率的提高,该共聚物瞬时组成 F1 将降低。

若要获得组成比较均一的共聚物,则须补加活性单体。