Aquisição e Filtragem Digital de Sinais Analógicos

Guia de Prática Laboratorial

PAULO GARRIDO, PAULO CARVALHAL, LUÍS GONÇALVES, PEDRO VIEIRA, LUÍS LOURO

Mestrado Integrado em

Engenharia Electrónica Industrial e Computadores

Escola de Engenharia da Universidade do Minho

1. Introdução

Um conversor analógico-digital (ADC) permite tirar amostras de tensões elétricas presentes na sua entrada $v_i(t)$ e atribuir-lhes valores digitais. Como exemplo, considere-se um ADC com *resolução* de 3 bits, e uma tensão de entrada $0 \le v_i < 1$. Os valores digitais, escritos em binário, atribuídos pelo ADC seriam nominalmente:

v_i pertence ao intervalo	ponto médio do intervalo	valores digitais em binário	
[0.00000, 0.06125[000	
[0.06125, 0.18625[0.125	001	
[0.18625, 0.31125[0.250	010	
[0.31125, 0.43625[0.375	011	
[0.43625, 0.56125[0.500	100	
[0.56125, 0.68625[0.625	101	
[0.68625, 0.81125[0.750	110	
[0.81125, 1.00000[111	

Utilizando em conjunto um ADC e um computador (microprocessador, microcontrolador) é possível retirar repetidamente amostras da tensão presente na entrada do ADC e atribuir-lhes valores digitais. Este processo cria uma imagem *discreta no tempo* (porque só os valores nos instantes das amostras estão definidos) e *digitalizada em valor* da evolução da tensão elétrica ou sinal¹ analógico na entrada do ADC.

Este é o processo fundamental de *aquisição digital de um sinal analógico*. Este processo tem uma utilidade imensa, porque é possível a partir dele:

- Registar em memória digital do computador o sinal na entrada do ADC, ou seja, a evolução da tensão elétrica ou da grandeza física que ela representa. A partir do registo, é possível comunicar, visualizar e processar o sinal das mais variadas formas.
- Processar digitalmente os valores amostrados de forma a realizar diferentes funções como monitorização, filtragem, cálculo de valores de comando, etc. O processamento digital apresenta diversas vantagens em relação ao equivalente analógico: flexibilidade, programabilidade, fácil realização de quaisquer valores de parâmetros, estabilidade dos parâmetros, realização do sistema eletrónico com um número imensamente reduzido de componentes em relação ao equivalente analógico e um número imensamente aumentado de funcionalidades possível.

1

¹ Entende-se por *sinal*, uma grandeza elétrica (tensão ou corrente) que interpretamos como contendo *in-formação*.

Uma vez realizado o processamento digital, converter os valores digitais calculados em valores analógicos atuantes por meio de conversão digital-analógica, de uma forma eficaz e eficiente.

A viabilidade do registo ou processamento digital de sinais analógicos depende da capacidade de os amostrar a uma frequência suficientemente elevada para não perder informação significativa e de converter os valores amostrados para formato digital com uma resolução suficiente para não introduzir ruído com valor significativo. Estas condições podem ser satisfeitas virtualmente para todas as aplicações de eletrónica, o que faz dos sistemas digitais uma ferramenta universal de implementação.

No processo de aquisição de um sinal analógico por um dispositivo digital, como um microcontrolador, encontraremos sempre *amostragem* e *conversão*, e, se necessário, *filtragem analógica ou digital, linearização* e *registo em memória*. O processo de amostragem define os intervalos de tempo entre as amostras da tensão elétrica, a conversão transforma o valor da grandeza num valor digital, a filtragem elimina componentes indesejáveis, a linearização permite obter uma correspondência linear entre os valores digitais obtidos e os valores da grandeza física, o registo guarda em memória os valores adquiridos. São estes aspetos da aquisição digital de sinais analógicos que trataremos nesta prática laboratorial e cujos fundamentos revemos a seguir.

Amostragem

A amostragem define a sequência de instantes de tempo em que o sinal proveniente da medida da grandeza física dada pelo sensor analógico é convertido para valores digitais através do ADC. Habitualmente, a amostragem é periódica pelo que o intervalo de tempo entre duas leituras consecutivas do ADC é constante e chamado de *período de amostragem*. O inverso do período de amostragem é a *frequência de amostragem*. Nas condições ideais do teorema de Nyquist, se a frequência de amostragem for pelo menos *duas vezes* superior à frequência máxima presente no sinal a adquirir, então é possível reconstruir o sinal analógico a partir das amostras digitais – não existe perda de informação. Tomando em conta que na realidade só é possível aproximar as condições do teorema de Nyquist, segue-se a "regra do polegar" de utilizar uma frequência de amostragem pelo menos *quatro* a *dez* vezes superior à frequência máxima presente no sinal a adquirir (ou que se pretende recuperar do sinal a adquirir).

Seja um processo de amostragem com período h ou frequência $f_s = 1/h$ aplicado a um sinal no tempo x(t). Do processo de amostragem resulta um sinal amostrado $x^*(t)$ em tempo contínuo, ver a Figura 1, que tem a seguinte expressão:

$$\begin{cases} t = nh \to x^*(t) = x(nh) \\ t \neq nh \to x^*(t) = 0 \end{cases}$$
 (1)

No domínio das frequências, o sinal $x^*(t)$ contém todas as frequências do sinal x(t) somadas de kf_s , k = ..., -2, -1, 0, 1, 2, ... A Figura 2 mostra um exemplo.

Figura 1 Sinal em tempo contínuo $x^*(t)$ resultante do processo de amostragem do sinal x(t).

Figura 2 Espectro de amplitude, $X^*(f)$ de um sinal $x^*(t)$. Assume-se que o espectro de x(t) está compreendido entre fmax e -fmax. Assume-se também que fmax < fs/2. O filtro passa-baixo ideal representado permite recuperar em teoria o espectro do sinal contínuo.

Retentor de ordem 0

Fisicamente não é o sinal amostrado $x^*(t)$ que é processado, mas sim o seu *holding* ou a sua retenção. Os valores x(nh) são guardados em memória resultando o sinal $x_h(t)$:

$$nh \le t < nh + h \to x_h(t) = x(nh) \tag{2}$$

A expressão (2) realiza o chamado retentor de ordem 0. Um exemplo de sinal $x_h(t)$ é mostrado na Figura 3.

Figura 3 Sinal após amostragem e retenção de ordem 0. No intervalo de tempo [nh, nh+h[o valor de $x_h(t)$ é igual x(nh).

Outros retentores são teoricamente possíveis, mas, na prática, são muito pouco utilizados.

Aliasing e filtragem analógica

Na Figura 4 ilustra-se o problema conhecido por *aliasing* na literatura inglesa com um sinal x(t) que contém uma só componente sinusoidal de frequência 100 Hz. As amostras deste sinal, obtidas com uma frequência de amostragem de 90 Hz, indicam a existência de uma sinusoide de 10 Hz – que na realidade não existe, mas que será a informação resultante de passar o sinal amostrado num retentor de ordem 0.

Figura 4 As amostras de uma sinusoide com 100 Hz de frequência, retiradas a uma frequência de 90 Hz coincidem com os valores que seriam retirados de uma sinusoide de 10 Hz. Note-se que o sinal x(t) a ser amostrado contém uma só componente sinusoidal com frequência f = 100. O sinal amostrado $x^*(t)$ corresponde a k = -1 na expressão kf_s dos *aliases*, visto que 10 = 100 - 90.

Em geral, num espectro contínuo, altas frequências do sinal x(t) aparecerão como baixas frequências no sinal $x^*(t)$, do que resulta distorção do sinal, mesmo utilizando um filtro passa-baixo ideal. Veja-se a Figura 5.

Figura 5 Fenómeno de *aliasing* mostrando o espectro de amplitude de um sinal $x^*(t)$ quando fmax > fs/2. Assume-se que o espectro de x(t) está compreendido entre fmax e -fmax, sendo nulo fora deste intervalo.

Para resolver este problema podem usar-se duas aproximações: aumentar a frequência de amostragem ou filtrar analogicamente o sinal x(t) de forma a que as frequências que produzem *aliasing* passem a ter um valor insignificante. Em relação à Figura 5, no primeiro caso resultaria o espectro para o sinal amostrado representado na Figura 2.

Conversão

A conversão analógica-digital transforma um valor amostrado de tensão num valor digital. Os dois parâmetros mais relevantes na conversão são o *número de bits* de resolução

do ADC e o seu *tempo de conversão*. Quanto maior a resolução, menor é o *ruído de quantificação* introduzido pelo ADC. O ruído de quantificação resulta do sinal amostrado e a seguir "retido" pelo retentor de ordem 0 diferir do sinal analógico por uma quantidade que é no máximo igual a $v_{max}/2^n$, em que v_{max} é a tensão máxima que o ADC é capaz de converter e n é o seu número de bits – se a frequência de amostragem for suficientemente alta. Nesta condição, a relação sinal-ruído de quantificação, *SNR* de um ADC é, aproximadamente, dada pela expressão:

$$SNR = 6.02n \text{ dB} \tag{3}$$

Um conversor de 8 bits terá uma *SNR* de aproximadamente 48 dB, enquanto que um de 10 bits terá uma *SNR* de aproximadamente 60 dB. Note-se que estamos a falar de valores aproximados, apenas para o ruído de quantificação e na condição de durante o período de amostragem a variação do sinal não exceder o *quanto* $v_{max}/2^n$.

O tempo de conversão é definido como o tempo máximo que decorre entre o instante em que o ADC recebe o impulso de início de conversão e o instante em que sinaliza que a conversão está completa e o valor digital pode ser lido. Este tempo deve ser sempre (muito) inferior ao período de amostragem e como tal estabelece um valor máximo para a frequência de amostragem.

Filtragem digital

A filtragem digital implica o cálculo numérico do valor de tensão que deve ser a saída do filtro e o seu *output*. A filtragem digital tem muitas vantagens em relação à sua equivalente analógica, como explicado acima. Tal como a filtragem analógica, a filtragem digital pode ser usada para atenuar ruído de baixa frequência (em relação à frequência de amostragem) no sinal amostrado.

Nos filtros digitais, cada valor em tempo discreto y[n] de saída do filtro é calculado tendo em conta a leitura realizada no ADC, x[n], os valores de entrada passados, x[n-k] e os valores de saída do filtro y[n-k], calculados nas iterações anteriores. Na expressão (4) de um filtro digital linear, os valores de a_k são interpretados como os pesos a dar aos valores anteriores de saída do filtro e os valores de b_k como os pesos a dar aos valores anteriores de entrada do filtro, de acordo com a expressão:

$$y[n] = a_1 y[n-1] + \dots + a_N y[n-N] + b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$
(4)

Se todos os a_k forem 0, então a resposta do filtro a um impulso unitário torna-se 0 ao fim de M períodos e o filtro é conhecido por FIR (*Finite Impulse Response*). Caso contrário, o filtro é IIR (*Infinite Impulse Response*).

Implementação digital de um filtro RC passa-baixo

Considere-se um filtro IIR de primeira ordem com a seguinte expressão:

$$y[n] = ay[n-1] + (1-a)x[n-1]$$
(5)

O valor que pesa a leitura do ADC é feita igual a (1 - a) de forma a que o filtro tenha ganho em regime permanente igual a 1. Se a aquisição do sinal for efectuada a interva-

los de tempo constantes (amostragem periódica), o valor de a é constante.

O filtro em (5) realiza um filtro digital similar² a um filtro analógico RC. A resposta do filtro a um degrau de tensão corresponde à amostragem da resposta de um circuito RC, cuja constante de tempo T = RC satisfaz as expressões:

$$a = \exp(-h/T) \Leftrightarrow T = -h/\ln a \tag{6}$$

O valor de a varia no intervalo]0, 1[. Com valores de a perto de 0, o valor de y[n] acompanha facilmente o valor de x[n]. Com valores de a perto da unidade, as variações no valor de x[n] refletem-se lentamente no valor de y[n]. A Figura 6 mostra a resposta do filtro a um degrau de tensão na entrada do ADC, com valores de a de 0.1, 0.3 e 0.9.

Este filtro tem a característica de ser passa-baixo. Como tal permite reduzir o efeito de sinais aleatórios de frequência elevada (ruído). Na Figura 7 apresenta-se a resposta do filtro a um sinal sinusoidal, ao qual foi sobreposto um pico de ruído. O valor de *a* deve ser escolhido em função da frequência máxima prevista na variação da grandeza a medir, de forma a não interferir significativamente nas variações desta, e reduzir os efeitos de sinais de frequência mais elevada.

Figura 6 Resposta do filtro passabaixo a um degrau de tensão na entrada do ADC, com valores de *a* de 0.1, 0.3 e 0.9.

Figura 7 Resposta do filtro passabaixo a um impulso de ruído sobreposto a um sinal sinusoidal, na entrada do ADC, com valores de *a* de 0.1, 0.3 e 0.9.

² A resposta em frequência de um filtro digital difere da resposta do filtro analógico de que foi mapeado pelo warping.

Filtros FIR

Os filtros FIR (*Finite Impulse Response*) são conhecidos por terem uma resposta impulsional de duração finita porque a saída de um filtro FIR iguala a soma ponderada de um número finito de valores passados e do valor presente de entrada do filtro. Uma vez que estes filtros apresentam resposta em frequência com fase linear, o seu projeto resume-se na aproximação da resposta em módulo que se deseja.

Um filtro passa-baixo tem como objetivo passar sinais com frequência abaixo da frequência de corte e atenuar sinais com frequência acima da frequência de corte. Na Figura 8 é possível ver a resposta habitual em frequência a um filtro deste tipo, sendo a banda passante o conjunto de frequências até a resposta começar a diminuir; a banda de transição o conjunto de frequências onde a resposta tem um decréscimo e a banda de rejeição o conjunto de frequências que serão rejeitadas pelo filtro. Além das três bandas de frequências existe também o *ripple*, que consiste na variação de amplitude que ocorre nas bandas. No caso de um filtro FIR, o valor máximo do *ripple* é o mesmo nas bandas passante e de rejeição. Um filtro é tanto melhor quanto menores o *ripple* e a largura da banda de transição.

Figura 8 Resposta padrão em frequência de um filtro passabaixo com a delimitação das três bandas e do ripple.

Uma das estratégias para determinar um filtro FIR é o método das janelas. A Janela de Kaiser é uma das janelas mais utilizadas, sendo descrita pela seguinte equação, onde $I_0(.)$ é uma função de Bessel modificada do 1º tipo e de ordem zero

$$b[k] = \begin{cases} I_0 \left[\beta \left(1 - \left[\frac{k - M/2}{M/2} \right]^2 \right)^{\frac{1}{2}} \right] \\ I_0(\beta) \\ 0; \quad outros \ casos \end{cases}; \quad 0 \le n \le M$$
 (7)

A expressão anterior fornece os coeficientes b_0 a b_M . Para se utilizar a janela de Kaiser é necessário estabelecer:

- 1. A frequência de corte (Ω_c) e a largura da banda de transição $(\Delta\Omega)$. Não esquecer que estes valores se referem às frequências normalizadas, ou seja $\Omega = \omega h$, onde ω representa a frequência angular (rad/s) e h o período de amostragem do sinal (s).
- 2. O inverso do *ripple* pretendido (*A*) em dB.

Os parâmetros desta janela são obtidos de forma empírica, tendo em conta as características pretendidas para o filtro:

$$A = -20\log\delta\tag{8}$$

$$\Delta\Omega = \Omega_s - \Omega_p \tag{9}$$

$$\Omega_c = \frac{\Omega_s + \Omega_p}{2} \tag{10}$$

$$M = \frac{A - 8}{2.285\Delta\Omega} \tag{11}$$

$$\beta = \begin{cases} 0.1102(A-8.7); & A > 50 \\ 0.5842(A-21)^{0.4} + 0.07886(A-21); & 21 \le A \le 50 \\ 0.0; & A < 21 \end{cases}$$
(12)

Como se pode ver na Equação (11), a ordem do filtro (M) é tanto maior, quanto menor o ripple (inverso de A) e quanto menor a largura da banda de transição. Por isso, logicamente, quanto maior a ordem do filtro, melhor a qualidade do mesmo.

Estes parâmetros podem ser calculados usando o Matlab, tal como é referido no Objetivo 2.

Computação em tempo real

Numa primeira aproximação, entende-se por computação em tempo real operações de processamento computacional submetidas a uma restrição de serem realizadas num intervalo de tempo máximo, de forma que a resposta a um certo evento seja garantidamente dada no intervalo de tempo.

Suponha-se que se pretende realizar um filtro digital com uma frequência de amostragem de 1 kHz. Isto significa que o sistema eletrónico deve amostrar o sinal analógico de entrada de 1 ms em 1 ms. Se além disso especificarmos que o atraso entre a recolha da amostra e a saída do filtro não deve ser superior a 1/10 do período de amostragem, isto significa que o intervalo de tempo máximo permissível para obter a amostra, converter para valor digital, calcular o valor de saída e fazer o seu *output*, é de 100 µs, submetido à restrição adicional de o processo iniciar à passagem de cada milissegundo.

2. Arquitetura de software a utilizar

O objetivo geral da PL é integrar na interface, desenvolvida na prática laboratorial anterior, a funcionalidade de aquisição de valores de sinais analógicos utilizando amostragem periódica com possibilidade de filtragem linear e envio dos valores adquiridos pela interface série.

Dessa forma, espera-se que sejam desenvolvidos módulos, à imagem do guia anterior, baseados no modelo produtor/consumidor e em programação concorrente. Neste caso, o processo produtor será baseado em interrupções invocadas por temporizador, que despoletará a aquisição de sinal por parte do ADC do microcontrolador. O valor adquirido será disponibilizado por partilha de memória com o módulo main. A este módulo será acrescentado o código funcional deste guia.

Descrição detalhada do software a desenvolver

A necessidade de amostrar periodicamente o sinal a uma frequência bem definida impõe que o processo de aquisição seja programado numa rotina de serviço de interrupção com prioridade máxima, invocada por um temporizador. A manipulação de parâmetros associados à rotina e às operações que a rotina executa é realizada no programa principal ou de interface com o utilizador.

Suponha-se que se pretende amostrar um sinal analógico com um período h de 10 ms, logo com frequência de amostragem de 100 Hz.

Na secção do programa principal que inicializa o sistema, programa-se um temporizador do microprocessador para provocar uma interrupção a cada 10 ms com prioridade máxima. Se não for possível o temporizador fazer *auto-reload* do valor do período, então a primeira operação da rotina será programar o temporizador para produzir uma nova interrupção ao fim de 10 ms.

Desta forma, de 10 em 10 ms, o código da rotina de serviço de interrupção é executado.

Descrito em alto nível, este código terá no mínimo a operação de leitura do ADC

```
x = read(ADC_channel)
```

sendo x uma variável para a qual se lê o resultado da operação de conversão de uma amostra do sinal analógico para um valor digital, realizada no canal ADC_channel. A expressão "canal de um ADC" advém de um conversor analógico-digital ter usualmente associado um multiplexador analógico que lhe permite converter tantas tensões diferentes quantas as que estão presentes nas entrada do multiplexador.

Realizada a operação de leitura do ADC, o valor de x pode ser processado. O processamento de x pode consistir apenas no seu valor ser enviado para um *buffer* de dados. Ou então, o valor a ser enviado é calculado a partir de x e de outros valores, como quando se usa filtragem ou linearização. No primeiro caso, a operação pode ser descrita como

output(x)

Em que output significa a operação de enviar x para o buffer.

No segundo caso, a operação pode ser descrita como

```
output (y)
```

Em que y é o valor a ser enviado após filtragem. Vejamos agora como calcular este valor.

Implementação de um filtro digital

O instante atual é considerado ser o instante n. Segue-se que o valor \times lido do ADC será representado como x[n] e o valor de saída do filtro y será representado como y[n]. Suponha-se que o filtro é linear. Como descrito anteriormente, teremos:

$$y[n] = a_1 y[n-1] + \dots + a_N y[n-N] + b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$
 (13)

O valor de *y* para o instante *n* (atual) é calculado como uma soma de:

- Uma média pesada dos N valores anteriores de y,
- Uma média pesada do valor atual de x (lido do ADC) e dos M valores anteriores de x.

Para calcular o valor de y será necessário ter em memória, devidamente definidas e com valores consistentes, as seguintes variáveis:

- Os valores de M e N: M, N
- Arrays em que são guardados os coeficientes a_1 a a_N e b_0 a b_M : a, b
- Arrays em que são guardados os valores anteriores de y e x: y ant, x ant.

O elemento $x_{ant}(0)$ terá o significado especial de ser o valor de x lido do ADC no instante n. O elemento $x_{ant}(1)$ terá o significado de ser o valor de x lido do ADC no instante n-1 e assim sucessivamente.

O elemento $y_{ant}(0)$ terá o significado especial de ser o valor de y calculado no instante n. O elemento $y_{ant}(1)$ terá o significado de ser o valor de y calculado no instante n-1 e assim sucessivamente.

Quando a rotina de interrupção começa a executar no instante n, os valores nos *arrays* referem-se ao instante n-1, logo a rotina deverá atualizá-los.

Assumindo que estas variáveis são globais na rotina de interrupção, a seguinte subrotina calculará o valor de y:

Para a descrição das operações da rotina de serviço da interrupção, convém assumir a existência de uma *flag* que indica se o filtro está ativo: filter_on. Ter-se-á:

```
begin
reload(timer) // Se necessário
x=read(ADC_channel)
if filter_on == 0 output(x) else calc_y()
output(y)
return
```

Saída (output) de um filtro digital

O valor y resultante da rotina de cálculo do valor y[n] pode ser enviado para dois tipos de destino diferentes:

- A) Para um porto ou dispositivo que o transforma num valor de analógico de tensão, por exemplo, um conversor digital-analógico (DAC).
- B) Para memória onde ficará registado para posterior transmissão e/ou armazenamento.

No caso A, estar-se-á a realizar um filtro digital no sentido mais comum do termo (*on-line*). Considere-se um filtro analógico: a sua tensão de entrada evolui como uma função x(t); a sua tensão de saída evolui como uma função y(t), a qual é a pretendida versão filtrada de x(t). A versão filtrada de x(t) é obtida com recurso a eletrónica analógica.

Se o filtro for digital, tudo se passa da mesma forma do ponto de vista do exterior. Muda é a forma de obter a tensão de saída: primeiro, a tensão de entrada é amostrada com período *h*. Segundo, em cada período *n*, o valor da tensão de saída para, nominalmente,

o instante *nh* é calculado numericamente. Este valor é enviado para um DAC que o converte numa tensão contínua.

No caso B, estar-se-á a adquirir dados numa forma já filtrada (antes de proceder ao seu armazenamento).

No seguimento, indica-se como programar o processo de aquisição. Mas sugere-se que os alunos que disponham de microcontroladores com canais de conversão DAC implementem também um filtro digital *on-line* (caso A) nos objetivos 1 e 2.

Buffers: estrutura e valores

Os valores adquiridos (valores de saída do filtro ou os diretamente lidos do ADC, se o filtro estiver inativo) deverão ser colocados num *buffer* de memória do microcontrolador, a que chamaremos o *buffer* de valores. Num segundo *buffer*, colocar-se-ão os números *n* de sequência dos valores, sendo contados a partir da recepção do comando de início de amostragem. Resulta uma estrutura que pode ser descrita como:

Buffer de valores adquiridos	Val1	Val2	Val3	
Buffer de valores de n	1	2	3	

O registo nos *buffers* acima dos valores adquiridos será realizado pela programação do módulo output (.), cujos detalhes não se mostram aqui.

Envio dos valores adquiridos pela interface série

Os valores adquiridos serão enviados do *buffer* para o PC através da interface série. Imediatamente antes de cada valor adquirido, deverá ser enviado o valor *n* associado. Os valores adquiridos e os valores de *n* deverão ser enviados como números em base 10 codificados em carateres ASCII. Os valores lidos diretamente do ADC, se este tiver 10 bits, estarão no intervalo [0, 1023].

Sugere-se o uso da seguinte "trama" para o envio de cada valor:

$$n < dig > ^+ \beta v < dig > ^+ < CR >$$

Como exemplo, o resultado da visualização de quatro tramas poderia aparecer no emulador de terminal correndo no PC como:

n20 v500

n21 v502

n22 v508

n23 v490

As tramas podem ser implementadas com comprimento fixo (os valores são sempre apresentados no terminal como uma coluna) ou variável (minimiza o tempo de transmissão). Pode ser necessário usar inteiros (ou fracionários) com sinal para os valores de saída do filtro.

O processo de envio pela interface série deve ser programado *fora* do módulo output(.) Esta restrição explica-se porque, pertencendo este módulo à rotina de inter-

rupção, o envio da informação pela porta série aumentaria o tempo de processamento da rotina e diminuiria o valor máximo possível da frequência de amostragem.

Indica-se um possível esquema para implementar o processo de envio. Criar no programa principal um teste de uma *flag* (colocada a 1 pela função output (.) em cada escrita no *buffer*) que indica existirem valores no *buffer* para enviar. Se o teste for positivo, o programa principal cria uma trama com o primeiro par de valores, n e de aquisição, que não foram enviados e passa a trama à rotina de interrupção de envio da USART.

Comandos a implementar

Os comandos a implementar deverão aumentar os comandos interpretados pelo *parser* e executor de comandos no programa principal. São os seguintes.

- a) Definir o período de amostragem:
 - (i) **Sampling Period:** <char $>^+$ ="SP β <timeunit> β <units>"
- b) Definir o canal a ser amostrado:
 - (ii) **Analog Channel:** <char>⁺="AC β <addr3>"
- c) Ativar ou desativar o filtro:
 - (iii) **Filter oN:** <char>⁺="FN" (iv) **Filter ofF:** <char>⁺="FF"

O comando FN deve colocar filter_on a 1 e deve colocar a 0 os conteúdos dos *ar-rays* x_ant e y_ant , de forma a que a filtragem comece sempre numa situação bem definida.

Os parâmetros e variáveis do filtro serão definidos na compilação do programa não sendo objeto de modificação através da interface.

- d) Iniciar ou parar a aquisição de dados:
 - (v) **Sample:** <char>⁺="S"
 - (vi) Sample only K values: <char>⁺="S β <dig>^{+"}
 - (vii) **Stop sampling:** <char>⁺="ST"

O comando ST parará qualquer processo de aquisição que esteja ativo. O comando S inicia uma sequência ilimitada de aquisição e envio. O comando S seguido de um valor K inicia uma sequência de aquisição e envio que terminará após ser adquirida e enviada a K-ésima amostra. Em qualquer caso, o valor de n, número de ordem das amostras, deve ser inicializado de forma a que cada sequência comece sempre em 1.

Para tomar em conta os casos em que o número de valores a adquirir será superior ao número de valores que o *buffer* pode conter, a escrita neste, feita pelo módulo output(.), deve ser feita de modo "circular". Quando output(.) escreve na última posição disponível do *buffer*, aponta a próxima escrita para o início. Isto implica destruir os valores registados nas posições em que se escreverá – estes deverão ter sido enviados pela interface série, entretanto.

A função do *buffer* é impedir que os valores adquiridos se percam no caso de o tempo de envio de uma trama pela interface série ser superior ao período de amostragem: a variável com o valor adquirido seria atualizada para o instante *n* antes que o valor do instante *n*–1 tivesse sido transmitido e este seria perdido. Com o *buffer*, não existirão perdas se o número de valores a enviar, *K*, for inferior ou igual à capacidade do mesmo. Se *K* for maior ou a sequência de aquisição for ilimitada, não existirão perdas se a frequência média de transmissão de valores no canal série for igual ou superior à frequência de amostragem.

Sugere-se que todos estes comandos funcionem utilizando um contexto comum. Isto quer dizer que se se executar a sequência de comandos a seguir indicada:

```
SP s 1
AC 1
FN
S 200
```

O microcontrolador vai adquirir e enviar pela interface série 200 amostras do canal número 1 do ADC com uma taxa de amostragem de 1 Hz, utilizando o filtro digital cujos coeficientes foram especificados na compilação do programa.

Relembra-se a gramática geral que regula a troca de dados ao nível da interface com utilizador, com os acrescentos relativos a esta PL.

3. Objectivos a avaliar

Objetivo 1

Compilar o programa para realizar um filtro como em (5) com a = 0.4, (1-a) = 0.6. Adquirir sinais analógicos produzidos por um gerador de sinal (ondas quadrada, triangular e sinusoidal). Atenção a não aplicar tensões negativas na entrada do ADC – usar a função de polarização positiva do gerador. A frequência de amostragem a usar deverá ser no mínimo 10 vezes superior à frequência do sinal a amostrar. Os valores recebidos no terminal poderão ser passados por *copy paste* para uma folha Excel, o que facilitará a sua visualização em gráfico.

Demonstrar o funcionamento dos comandos de aquisição (S, sem e com K, e ST), de mudança de parâmetros (SP e AC), de filtragem (FN e FF) e a realização da aquisição.

Dispondo de um microcontrolador com canal de conversão digital-analógica, é de todo o interesse formativo que, na rotina de interrupção, após o cálculo de y, os alunos incluam um comando de envio deste para o conversor DA. Desta forma, realizam um filtro digital *on-line* (sentido usual do termo) e podem observar em osciloscópio os sinais filtrados, evitando o processo de fazer a sua visualização através do Excel.

Objetivo 2

Pretende-se desenhar e implementar um filtro FIR, usando a janela de Kaiser, que tenha um A de pelo menos 30 dB e uma banda de transição ($\Delta\Omega$) que não ultrapasse os 0.3π rad. Deixa-se ao critério dos alunos a escolha da frequência máxima da banda passante em Hz.

Determinar os coeficientes do filtro, usando o Matlab (ou alguma ferramenta similar) e as funções *fir1* e *kaiserord*. Estas têm por argumentos:

- i) F, um vetor com as frequências Ω_s e Ω_p ,
- ii) **amp**, um vetor com as amplitudes pretendidas para as bandas do filtro, como o filtro pretendido é um filtro passa-baixo, o vetor será [1 0],
- iii) A, o valor de desvio máximo dos ripples e
- iv) **h**, a frequência de amostragem do sinal.

```
[M, Wn, beta, FILTYPE] = kaiserord(F, amp, A, h)
b = fir1(M, Wn, ftype, kaiser(M+1, beta), 'noscale')
```

Com este filtro passa-baixo, quando a entrada apresenta sinais com frequência acima da frequência de corte especificada essas componentes são atenuadas, sendo um filtro muito útil para retirar ruído de um sinal.

Compilar o programa para realizar o filtro. Aplicar três sinais sinusoidais um em cada banda e adquirir as respostas do filtro. Uma vez adquirido o conjunto de leituras no computador portátil, analisar o seu traçado gráfico.

Dispondo de um microcontrolador com canal de conversão digital-analógica, será de todo o interesse visualizar a saída do filtro em osciloscópio. Desta forma será possível testar o filtro mudando manualmente a frequência de entrada no gerador de sinais.

Objetivo 3

O tempo de cálculo da saída y do filtro é um fator determinante do mínimo período de amostragem (ou máxima frequência de amostragem) que se pode obter com o microcontrolador e a programação realizada. Assim, é importante determinar experimentalmente o tempo de cálculo.

Para tal, compilar um programa com um filtro com, por exemplo, N = 10 e M = 10, os valores dos coeficientes a_k e b_k sendo quaisquer desde que não-nulos. Na entrada na rotina de interrupção, colocar um pino de I/O a 1. Na saída, pô-lo a 0. Aplicar um sinal sinusoidal e observar no osciloscópio a tensão no pino. Deverá observar-se uma tensão periódica em que os intervalos de tempo a 1 correspondem ao tempo de cálculo. Como é óbvio, o período de amostragem deverá ser superior ao tempo de cálculo.

A relação entre o intervalo de tempo de cálculo e a máxima frequência de amostragem depende de se utilizar o cálculo do filtro para os objetivos anteriormente indicados como A (filtro digital *on-line*) ou B (filtragem de valores adquiridos) e, no primeiro caso, de o coeficiente b_0 ser diferente de 0, ou não.

Na filtragem de valores adquiridos, o mínimo período de amostragem deverá ser superior ao tempo de cálculo na medida do necessário para permitir a realização de outras funções durante o período. Note-se que para minimizar este tempo, a transmissão de dados via porta série deve ser feita através de ISR.

Se o dispositivo for usado como filtro digital *on-line*, o mínimo período de amostragem depende de o coeficiente b_0 ser nulo ou não. Se o for, no instante n é possível calcular o valor de y[n+1] no instante n. Considere-se o exemplo do filtro IIR dado acima:

$$y[n] = ay[n-1] + (1-a)x[n-1]$$
(14)

Esta expressão calcula (no período n) o valor de y para o instante n indo buscar a memória os valores de y e x do instante n-1. Mas a expressão é equivalente a:

$$v[n+1] = av[n] + (1-a)x[n]$$
(15)

Com esta expressão, calcula-se (no período n) o valor de y para o instante n+1 indo buscar a memória o valor de y para o instante n (calculado no período n-1) e o valor de x acabado de ler do ADC. Notar que o uso de uma expressão deste tipo implica mudar os pseudo-códigos do cálculo do filtro e da ISR dados anteriormente.

Nesta situação, o mínimo período de amostragem vem como no caso B.

Se o coeficiente b_0 não for nulo então o valor de y[n] só pode ser calculado depois de o valor de x[n] ser lido do ADC para x. Devido ao tempo de cálculo, existirá sempre um atraso T_a entre o instante de tempo em que o valor calculado y deveria ser idealmente colocado no DAC e o instante em que ele é efetivamente colocado. Este atraso aumenta o desvio de fase do filtro em relação ao valor nominal. Se, por exemplo, se quiser limitar o atraso a 1/10 do período de amostragem, este não poderá ser inferior a 10 vezes o tempo de cálculo.

Objetivo 4

Verificar o fenómeno de *aliasing*, aparecimento de baixas frequências no sinal amostrado, quando a frequência de amostragem é inferior ao dobro da máxima frequência do sinal a amostrar. Para tal, aplicar uma onda sinusoidal com frequência de 100 Hz e recolher 100 amostras da mesma a uma frequência de 90 Hz. Verificar que se obtém a amostragem de uma onda sinusoidal de frequência igual a 10 Hz.