Rudiments de Logique

September 2025

Contents

1	Not	ations:
	1.1	Ensembles:
	1.2	Quantificateurs
		1.2.1 Proposition
		1.2.2 Symboles
		1.2.3 Réciproque
		1.2.4 Contraposée
		1.2.5 Negations
2	Dér	nonstrations Mathématiques
	2.1	Démontrer une implication
	2.2	Démontrer une équivalence
	2.3	Démontrer par contraposition
	2.4	Démontrer par disjonction de cas
	2.5	Démontrer par l'absurde
	2.6	Démontrer par récurrence
		2.6.1 Récurrence simple
		2.6.2 Récurrence double
	2.7	Démontrer par analyse-synthèse
		2.7.1 Cas n°1
		2.7.2 Cas n°2

1 Notations:

1.1 Ensembles:

- N: L'ensemble des entiers naturels (0,1,2,3...)
- \mathbb{Z} : L'ensemble de tous les entiers (... -2,-1,0,15 ...)
- \mathbb{Q} : L'ensemble des quotients de la forme: $\frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{Z}^*$
- R: L'ensemble des réels, par exemple: $e, \pi, \sqrt{2}$
- C: L'ensemble des nombres complexes: $i^2 = -1$

1.2 Quantificateurs

1.2.1 Proposition

Definition: On appelle proposition tout énoncé pouvant prendre pour valeur "vrai" ou "faux".

1.2.2 Symboles

- \forall : "Pour tout"
- ∃ : "Il existe"
- ∃! : "Il existe un unique"
- $\bullet \implies$: "Implique"
- \Leftrightarrow : "Equivaux à"

1.2.3 Réciproque

Definition: La réciproque de la proposition: " $\mathbf{A} \implies \mathbf{B}$ " est " $\mathbf{B} \implies \mathbf{A}$ "

1.2.4 Contraposée

Definition: La Contraposée de la proposition: " $\mathbf{A} \implies \mathbf{B}$ " est " $\mathbf{non}(\mathbf{B}) \implies \mathbf{non}(\mathbf{A})$ " $\mathbf{Pt\acute{e}}$: $(A \Rightarrow B) \Leftrightarrow (non(B) \Rightarrow non(A))$

1.2.5 Negations

- $non(\forall) \Leftrightarrow \exists$
- $non(\exists) \Leftrightarrow \forall$
- $non(A \text{ et } B) \Leftrightarrow A \text{ ou } B$
- $non(A ou B) \Leftrightarrow A et B$
- $non(A \Rightarrow B) \Leftrightarrow A \text{ et } non(B)$

2 Démonstrations Mathématiques

2.1 Démontrer une implication

Pour démontrer une proposition du type: $A \Rightarrow B$, un model est: "Supposons que A... alors B"

2.2 Démontrer une équivalence

Pour montrer que " $A \Leftrightarrow B$ " on montre dans un premier temps: $A \Rightarrow B$ puis $B \Rightarrow A$

2.3 Démontrer par contraposition

Pour montrer: $P \Rightarrow Q$ on peut montrer: $non(Q) \Rightarrow non(P)$

2.4 Démontrer par disjonction de cas

Pour montrer un proposition du type: $(A \ ou \ B) \Rightarrow C$: On montre d'abord: $A \Rightarrow C$ puis $B \Rightarrow C$

2.5 Démontrer par l'absurde

- 1. On suppose au début de la preuve que A est fausse, on commence donc par ecrire "Supposons par l'absurde que A est fausse" (c.à.d: non(A) est vraie)
- 2. On fait une série dedéduction pour aboutir à une proposition fausse B

2.6 Démontrer par récurrence

2.6.1 Récurrence simple

- 1. **Initialisation**: On montre que H_0 est vraie.
- 2. **Hérédité**: On montre que $\forall n \in \mathbb{N}, H_n \Rightarrow H_{n+1}$
- 3. Conclusion: La propriété H_n est initialisée et héréditaire alors pour tout $n \in \mathbb{N}$, H_n est vraie

2.6.2 Récurrence double

:

- 1. **Initialisation**: On montre que H_0 et H_1 sont vrais.
- 2. **Hérédité**: On montre que $\forall n \in \mathbb{N}, (H_n \ et \ H_{n+1}) \Rightarrow H_{n+2}$
- 3. Conclusion: La propriété H_n est initialisée et héréditaire alors pour tout $n \in \mathbb{N}$, H_n est vraie

2.7 Démontrer par analyse-synthèse

2.7.1 Cas n°1

"Montrer qu'il existe un **unique** élément $x \in A$ qui vérifie une condition C(x)"

- 1. **Analyse**: On prend un élément $x \in A$ qui vérifie C(x), on trouve que x est forcement égal à un éléments de A.
- 2. Synthèse: On verifie l'élément trouvé.
- 3. Conclusion: On en déduit que x_0 est l'unique solution vérifiant C(x)

2.7.2 Cas n°2

"Déterminer l'ensemble des éléments $x \in A$ qui vérifie une condition C(x)"

- 1. **Analyse**: On prend un élément $x \in A$ qui vérifie C(x), on trouve que $x \in B$, $B \subset A$.
- 2. Synthèse: On vérifie que chacun des éléments de B satisfont la condition C(x).
- 3. Conclusion: On en déduit quue B est l'ensemble des éléments $x \in A$ qui vérifient C(x)