МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра защиты информации

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине: «Безопасность систем баз данных»

Выполнил:	Проверил:
Студент гр. «АБ-320», «АВТФ»	Ассистент кафедры ЗИ
Сычук Алексей Александрович	Питько Яна Андреевна
«30» сентября 2025г	«» 2025г
(подпись)	(подпись)

Цель работы: спроектировать доменную схему, классифицировать данные и настроить доступ с разделением обязанностей.

Тема: «Защита БД образовательных учреждений — хранение оценок, личных дел студентов и преподавателей».

Задание 1. ER-модель и классификация.

Задание 2. DDL и схемы.

Задание 3. Роли и привилегии.

Задание 4. Логирование подключений пользователей.

В первую очередь были определены сущности, необходимые для реализации базы данных по выбранной теме:

- educational_institutions хранит данные учебных заведений, содержит ссылку на ректора;
- faculties содержит информацию о факультетах с привязкой к заведению и декану;
- departments хранит данные кафедр с заведующими, организует преподавателей по подразделениям;
- study_groups определяет учебные группы с годом поступления, служит основой для организации учебного процесса;
- students центральная таблица личных данных студентов (ФИО, контакты, статус);
- teachers хранит личные данные преподавателей с учеными степенями и званиями, обеспечивает управление преподавательским составом;
- teacher_departments связывает преподавателей с кафедрами, разрешает множественную принадлежность с указанием основной должности;
 - subjects справочник учебных дисциплин;
- academic_plans определяет учебные планы, связывая группы с дисциплинами по семестрам с указанием часов и формы контроля;
- final_grade_types справочник систем итогового оценивания (5-балльная, зачет/незачет), обеспечивает гибкость в оценках;
- final_grades хранит итоговые оценки студентов с привязкой к преподавателям, семестрам и типам оценок ядро системы учета успеваемости;
- interim_grades фиксирует промежуточные оценки, позволяет отслеживать текущую успеваемость;

- student_documents хранит данные документов студентов (паспорта, аттестаты) с сериями, номерами и датами выдачи;
- class_schedule управляет расписанием занятий по неделям и дням с указанием аудиторий и корпусов;
 - login_log хранит данные о входе пользователей в систему.

На основе определенных выше сущностей была составлена ERдиаграмма домена, где были уточнены атрибуты каждой отдельной сущности (Рисунок 1).

Рисунок 1 – ER-диаграмма домена

Далее будет произведена классификация данных на следующих уровнях:

- 1. Public публичные данные;
- 2. Internal внутренняя информация учреждения, которая не подлежит свободному распространению;
 - 3. Confidential данные доступные только ограниченному кругу лиц;
 - 4. Restricted конфиденциальные данные (в условиях темы PII).

Классифицированные данные представлены в таблицах 1-15 в формате матриц вида «колонка \rightarrow класс».

Таблица 1 – Классификация данных таблицы educational_institutions

Колонка	Класс
institution_id	Internal
institution_name	Public
short_name	Public
legal_address	Public
rector_id	Internal

Таблица 2 – Классификация данных таблицы faculties

Колонка	Класс
faculty_id	Internal
faculty_name	Public
dean_id	Internal
institution_id	Internal

Таблица 3 – Классификация данных таблицы departments

Колонка	Класс
department_id	Internal
department_name	Public
head_of_department_id	Internal
faculty_id	Internal

Таблица 4 – Классификация данных таблицы study_groups

Колонка	Класс
group_id	Internal
group_name	Public
admission_year	Internal
faculty_id	Internal

Таблица 5 – Классификация данных таблицы students

Колонка	Класс
student_id	Internal
last_name	Restricted
first_name	Restricted
patronymic	Restricted
student_card_number	Confidential
email	Restricted
phone_number	Restricted
group_id	Internal
status	Internal

Таблица 6 – Классификация данных таблицы teachers

Колонка	Класс
teacher_id	Internal
last_name	Public
first_name	Public
patronymic	Public
academic_degree	Public
academic_title	Public
email	Restricted
phone_number	Restricted

Таблица 7 – Классификация данных таблицы teacher_departments

Колонка	Класс
teacher_id	Internal
department_id	Internal
is_main	Internal
position	Public

Таблица 8 – Классификация данных таблицы subjects

Колонка	Класс
subject_id	Internal
subject_name	Public
description	Public

Таблица 9 – Классификация данных таблицы academic_plans

Колонка	Класс
plan_id	Internal
group_id	Internal
subject_id	Internal
semester	Public
total_hours	Public
lecture_hours	Public
practice_hours	Public
control_type	Public

Таблица 10 – Классификация данных таблицы final_grade_types

Колонка	Класс
final_grade_type_id	Internal
grade_system_name	Internal
allowed_values	Internal

Таблица 11 – Классификация данных таблицы final_grades

Колонка	Класс
final_grade_id	Internal
student_id	Internal
subject_id	Internal
teacher_id	Internal
final_grade_type_id	Internal
final_grade_value	Confidential
grade_date	Confidential
semester	Confidential

Таблица 12 – Классификация данных таблицы interim_grades

Колонка	Класс	
interim_grade_id	Internal	
student_id	Internal	
subject_id	Internal	
teacher_id	Internal	
grade_value	Confidential	
grade_date	Confidential	
grade_description	Confidential	
semester	Confidential	

Таблица 13 – Классификация данных таблицы student_documents

Колонка	Класс	
document_id	Internal	
student_id	Internal	
document_type	Restricted	
document_series	Restricted	
document_number	Restricted	
issue_date	Restricted	
issuing_authority	Restricted	

Таблица 14 – Классификация данных таблицы class_schedule

Колонка	Класс	
schedule_id	Internal	
group_id	Internal	
subject_id	Internal	
teacher_id	Internal	
week_number	Public	
day_of_week	Public	
start_time	Public	
end_time	Public	
classroom	Public	
building_number	Public	
lesson_type	Public	

Таблица 15 – Классификация данных таблицы login_log

Колонка	Класс		
log_id	Internal		
login_time	Confidential		
username	Confidential		
client_ip	Restricted		

Все операции по созданию базы данных представлены по ссылке в Приложении A в файле «init.sql».

В базе данных «education_db» были созданы следующие схемы:

- 1. аpp основные бизнес-данные приложения, включает следующие таблицы:
 - students;
 - teachers;
 - final_grades;
 - interim_grades;
 - academic_plans;
 - class_schedule;
 - student_documents;
 - teacher_departments;
- 2. ref справочники и классификаторы, включает следующие таблицы:
 - educational_institutions;
 - faculties;
 - departments;
 - subjects;
 - final_grade_types;
 - study_groups;
 - 3. audit данные аудита, включает следующие таблицы:
 - login_log;
- 4. stg временное хранение данных, однако на данный момент не используется.

В организации первичных ключей используется стандартный подход с SERIAL, за исключением таблицы teacher_departments, где применен составной первичный ключ для связи многие-ко-многим.

Особое внимание уделено ограничениям целостности. UNIQUEограничения защищают критически важные данные: номера студенческих билетов, комбинации в учебных планах и уникальность групп с учетом года поступления. Check-ограничения обеспечивают валидацию семестров и учебных недель.

Набор индексов включает только необходимые: базовые для внешних ключей, а также составные индексы для рядовых ситуаций (построения расписания и академических отчетов по семестрам).

Поля осознанно сделаны nullable там, где это соответствует бизнеслогике — отчества для иностранных студентов, ученые звания и серии документов.

С операциями по созданию ролей и назначения им привилегий можно ознакомиться по ссылке, представленной в Приложении A в файле «init.sql».

Доступ схемы PUBLIC ко всем созданным объектам был запрещен, все привилегии назначались явно через механизм default privileges для обеспечения безопасности по умолчанию.

Созданы три основные бизнес-роли: app_reader с правами только на чтение данных в схемах приложения и справочников, app_writer с дополнительными правами на запись и использование последовательностей в бизнес-схемах, и app_owner с полным доступом к схемам приложения включая права на создание объектов и управление триггерами.

Для аудита создана роль auditor с исключительным доступом на чтение к схеме audit. Реализовано требование о запрете записи напрямую в аудиторские таблицы – INSERT возможен только через триггеры.

Дополнительно созданы административные роли разделения обязанностей: ddl_admin для управления структурой базы данных с правами на создание объектов во всех схемах, dml_admin для операций с данными и security admin для управления безопасностью.

Роли security_admin предоставлены расширенные привилегии включая права аудитора, что позволяет осуществлять мониторинг безопасности и проводить расследования инцидентов с доступом к полной истории действий в системе. Также security_admin имеет права на управление ролями, просмотр системной информации и административные функции для обслуживания базы данных.

Исходный код сценариев проверки доступа представлен по ссылке в Приложении A в файле «test.sh».

Написанные тесты работают по принципу присваивания тестовому пользователю проверяемой роли и дальнейшая попытка выполнения различных команд.

Всего есть два возможных варианта выполнения теста: либо операция проходит успешно, либо пользователю отказывается в доступе. Если ожидаемый результат совпадает с действительным, то на экран выводится сообщение об успехе.

В конце тестирования происходит очистка тестовых данных для того, чтобы не оставлять в базе лишних записей.

Демонстрация работы сценариев проверки представлена на рисунке 2.

Рисунок 2 – Демонстрация сценариев проверки

Исходный код триггера представлен по ссылке в Приложении A в файле «init.sql».

В случае срабатывания триггера данные о подключившемся пользователе помещаются в таблицу audit.login_log. Тестирование работы триггера также производится с использованием файла «test.sh». Результат работы теста, а также записи в таблице представлены на рисунках 3 и 4.

Рисунок 3 — Тестирование триггера

	log_id [PK] integer	login_time timestamp without time zone	username character varying (100)	client_ip /
1	3	2025-09-29 19:01:19.598189	postgres	::1
2	4	2025-09-29 19:01:19.684112	test_connect	::1
3	5	2025-09-29 19:01:19.772822	test_connect	::1
4	6	2025-09-29 19:01:19.787683	postgres	172.20.0.1
5	7	2025-09-29 19:01:19.864645	test_connect	::1
6	8	2025-09-29 19:01:19.950366	test_connect	::1
7	9	2025-09-29 19:01:20.041003	test_connect	::1
8	11	2025-09-29 19:01:20.222646	postgres	::1
9	12	2025-09-29 19:01:20.318116	test_connect	::1
10	13	2025-09-29 19:01:20.412227	test_connect	::1
11	14	2025-09-29 19:01:20.520061	test_connect	::1
12	15	2025-09-29 19:01:20.623685	test_connect	::1
13	17	2025-09-29 19:01:20.818955	postgres	::1
14	18	2025-09-29 19:01:20.913591	test_connect	::1
15	19	2025-09-29 19:01:21.008908	test_connect	::1
16	20	2025-09-29 19:01:21.103973	test_connect	::1

Рисунок 4 — Результат записи подключений в таблицу

Вывод

В ходе выполнения лабораторной работы были закреплены навыки проектирования баз данных по теме «Защита БД образовательных учреждений – хранение оценок, личных дел студентов и преподавателей».

Разработанная многоуровневая архитектура базы данных, основанная на принципе разделения схем, позволяет изолировать бизнес-логику, справочные данные и аудиторский след, что создает фундамент для управления доступом.

Классификация данных по уровням конфиденциальности является критически важным этапом, позволяющим формализовать политики разграничения доступа.

Создание административных ролей позволяет реализовать модель разделения обязанностей, что является ключевым механизмом предотвращения злоупотреблений. Механизм принудительного аудита через триггеры подключения обеспечивает постоянность регистрации действий пользователей, создавая основу для последующего анализа инцидентов безопасности.

Таким образом, можно сделать вывод о том, что совмещение организационных мер с техническими средствами защиты позволяет создать сбалансированную систему защиты информации, которая обеспечивает как конфиденциальность персональных данных, так и функциональность базы данных.

Приложение А

Ссылка на GitHub-репозиторий:

https://github.com/golimghostpy/bsbd_education.