5 関数の極限・連続関数の定義

演習 5.1 a を実数とする. 関数 $f(x)=x^2$ について, 任意に $\varepsilon>0$ が与えられたとき, $\lceil |x-a|<\delta$ ならば $|f(x)-f(a)|<\varepsilon$ 」となる $\delta>0$ を一つ求めよ.

演習 5.2 a を正の数とする. 関数 $f(x)=\frac{1}{x}$ について、任意に $\varepsilon>0$ が与えられたとき、 $\lceil |x-a|<\delta$ ならば $|f(x)-f(a)|<\varepsilon$ 」となる $\delta>0$ を一つ求めよ.

演習 5.3 a を実数とする. 関数 $f(x)=2^x$ について, 任意に $\varepsilon>0$ が与えられたとき, $\lceil |x-a|<\delta$ ならば $|f(x)-f(a)|<\varepsilon$ 」となる $\delta>0$ を一つ求めよ.

演習 5.4 実数全体 $\mathbb R$ 上で定義された関数 f(x) が, ある点 $a \in \mathbb R$ において連続であるための必要十分条件は, a に収束する任意の実数列 $\{a_n\}$ について $\lim_{n\to\infty} f(a_n) = f(a)$ となることであることを示せ.

演習 5.5 f(x) を \mathbb{R} において連続な関数とする. もし, f(1) = 1 で, 任意の $x, y \in \mathbb{R}$ に対し f(x+y) = f(x) + f(y) が成り立つならば, f(x) = x であることを証明せよ.