Part 2. Roots of Equations Chapter 6. Open Methods Chapter 8. Case Studies

Lecture 7

The Secant Method & Numerical Root Finding: An Engineering Application

6.3, 8.4

Homeyra Pourmohammadali

The Secant Method

- A slight variation of Newton-Raphson's method for functions whose derivatives are difficult to evaluate.
- For these cases the derivative can be approximated by a backward finite divided difference.

$$f'(x_i) \cong \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} \qquad i = 1, 2, 3, \dots$$

The Secant Method

• Requires two initial estimates of x.

Because f(x) is not required to change signs between estimates, it is not classified as a "bracketing" method.

• The scant method has the same properties as Newton's method. Convergence is not guaranteed for all x_0 , f(x).

Find roots of $f(x) = e^{-x} - x$ using the secant method and calculate the approximate relative error in each iteration for 3 iterations

Secant Method Formula
$$\left[\begin{array}{c} x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} \end{array} \right]$$

Requires previous (x_{i-1}) & current (x_i) value to estimate the next value (x_{i+1}) ; for iteration 1, needs: x_0 (previous), x_1 (current)

Then, 2 initial guesses needed to start the computation

We choose:
$$x_0 = 0$$
 , $x_1 = 1$

Check: $f(x_0) \neq f(x_1)$

$$f(x) = e^{-x} - x$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

2 initial guesses: $x_0 = 0$, $x_1 = 1$

Iteration 1 \rightarrow i = 1

$$f(x_0) = f(0) = e^{-0} - 0 = 1$$

$$f(x_1) = f(1) = e^{-1} - 1 = 0.36788 - 1 = -0.63212$$

$$x_2 = x_1 - f(x_1) [(x_1 - x_0) / (f(x_1) - f(x_0))]$$

$$x_2 = 1 - f(1) [(1-0)/(f(1)-f(0)]$$

$$x_2 = 1 - (-0.63212) [1/(-0.63212 - 1)]$$

 $x_2 = 0.6127$

$$f(x) = e^{-x} - x$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

From previous step: $x_1 = 1$, $x_2 = 0.6127$

Iteration 2 \rightarrow i = 2

$$f(x_1) = f(1) = e^{-1} - 1 = -0.63212$$

$$f(x_2) = f(0.6127) = e^{-0.6127} - (0.6127) = -0.7081$$

$$x_3 = x_2 - f(x_2) [(x_2 - x_1) / (f(x_2) - f(x_1))]$$

$$x_3 = 0.6127 - f(0.6127) [(0.6127 - 1)/(f(0.6127) - f(1)]$$

$$x_3 = 0.6127 + (-0.63212) [1/(-0.63212 - 1)]$$

 $x_3 = 0.56382$

Relative Percent Approximate Error: $E_a^i = |(x_{i+1} - x_I)/x_{i+1}| \times 100$

$$E_a^{l} = |(x_2 - x_1)/x_2| \times 100 = |(0.6127 - 1)/0.6127| \times 100 = 8.0 \%$$

$$E_a^2 = |(x_3 - x_2)/x_3| \times 100 = |(0.56382 - 0.6127)/0.56382] \times 100 = 0.58\%$$

	Previous value	Current value			Next value	
i	x _{i-1}		$f(x_{i-1})$	$f(x_i)$	x_{i+1}	E_{a}^{i}
1	0	1	1.0	- 0.63212	0.6127	8.0%
2	1 (0.6127	0.63212	- 0.7081	0.56382	0.58 %

Pros and Cons of The Secant Method

Converges fast, if it converges

Requires 2 guesses that do not need to bracket the root

Division by zero

Root jumping

A Mech. Eng. Case Study Application: Fluid Flow In a Pipe

Comparing Different Numerical Methods

Application Example. Fluid Flow In a Pipe. Colebrook equation calculates the friction factor (f) for turbulent (high speed) flow:

$$g(f) = \frac{1}{\sqrt{f}} + 2.0 \log \left(\frac{\varepsilon}{3.7 D} + \frac{2.51}{Re \sqrt{f}} \right)$$

Reynolds number: $Re = \rho VD / \mu$

Fluid's density: $\rho = 1.23 \ kg/m^3$

Dynamic viscosity: $\mu = 1.79 \times 10^{-5} \, \text{N} \cdot \text{s/m}^2$

Diamater: D = 0.005 m

Velocity: V = 40 m/s

Roughness: $\varepsilon = 0.0015$ mm

Explore how different numerical methods are employed to determine f (friction factor) for air flow through a smooth, thin tube. (Note that friction is between 0.008 - 0.08)

Solving for f Using Bisection Method

$$g(f) = \frac{1}{\sqrt{f}} + 2.0 \log \left(\frac{0.0015 \times 10^{-3}}{3.7 (0.005)} + \frac{2.51}{13743 \sqrt{f}} \right)$$

$$\text{Check sign of } f(x_l). f(x_r) \longrightarrow \text{If } -: x_l = x_r$$

Iteration #	x _l Lower boundary	x _u Upper boundary	x _r Interval Midpoint	$f(x_l)$	$f(x_u)$	$f(x_r)$	$E_a{}^i$
0	0.008	0.08	0.044	5.834	- 2.741	- 1.275	
1	0.008	0.044	0.026	5.834	- 1.275	0.37	69.23
20	0.028968	0.028968	0.028968	7.86E - 06	- 5.8E - 08	3.9E-06	0.000119
21	0.028968	0.028968	0.028968	3.9E - 06	- 5.8E - 08	1.92E-06	5.93E - 05

Solving for f Using Newton-Raphson Method

$$g(f) = \frac{1}{\sqrt{f}} + 2.0 \log \left(\frac{0.0015 \times 10^{-3}}{3.7 (0.005)} + \frac{2.51}{13743 \sqrt{f}} \right)$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$g := \frac{1}{\operatorname{sqrt}(f)} + 2 \cdot \log 10 \left(\frac{0.0015e - 3}{(3.7 \cdot .005)} + \frac{2.51}{(13743 \cdot \operatorname{sqrt}(f))} \right);$$

$$g := \frac{1}{\sqrt{f}} + \frac{2 \ln \left(0.00008108108108 + \frac{0.0001826384341}{\sqrt{f}} \right)}{\ln(10)}$$

$$\frac{diff(g, f);}{-\frac{1}{2f^{3/2}} - \frac{0.0001826384341}{f^{3/2} \left(0.00008108108108 + \frac{0.0001826384341}{\sqrt{f}} \right) \ln(10)}{simplify \left(\frac{g}{diff(g, f)} \right);}$$

$$-\frac{0.00008108108108}{0.00008108108108} \left(2. \ln \left(\frac{0.00008108108108 \left(\sqrt{f} + 2.252540687 \right)}{\sqrt{f}} \right) \sqrt{f} + \ln(2) + \ln(5) \right) f(\sqrt{f} + 2.252540687)}{0.00002759864784 \sqrt{f} + 0.0002102702678}$$

Solving for f Using Newton-Raphson Method

iteration	f	g/g'	f_new	epsilon_a
1	0.008	-0.00777	0.015769	49.26693
2	0.015769	-0.00838	0.024154	34.71444
3	0.024154	-0.00422	0.02837	14.86287
4	0.02837	-0.00059	0.028959	2.032748
5	0.028959	-8.9E-06	0.028968	0.030841
6	0.028968	-2E-09	0.028968	6.87E-06

iteration	f	g/g'	f_new	epsilon_a
1	0.05	0.030812	0.019188	160.5862
2	0.019188	-0.00722	0.026403	27.32794
3	0.026403	-0.0024	0.028801	8.326348
4	0.028801	-0.00017	0.028967	0.573727
5	0.028967	-6.9E-07	0.028968	0.002399
6	0.028968	-1.2E-11	0.028968	4.15E-08

iteration	f	g/g'	f_new	epsilon_a
1	0.07	0.075141	-0.00514	1461.581
2	-5.14E-03	#NUM!	#NUM!	#NUM!
3	#NUM!	#NUM!	#NUM!	#NUM!
4	#NUM!	#NUM!	#NUM!	#NUM!
5	#NUM!	#NUM!	#NUM!	#NUM!
6	#NUM!	#NUM!	#NUM!	#NUM!

For $f_1 < 0.066$ solution doesn't work

Solving for f Using Simple Fixed Point Iteration Method

$$g(f) = \frac{1}{\sqrt{f}} + 2.0 \log \left(\frac{0.0015 \times 10^{-3}}{3.7 (0.005)} + \frac{2.51}{13743 \sqrt{f}} \right)$$

$$f(x) = 0 \implies g(x) = x$$

$$x_k = g(x_{k-1}) \qquad x_o \text{ given, } k = 1, 2, \dots$$

$$y_1 = x$$

$$y_2 = g(x)$$

Intersection of 2 graph:

$$y_1 = x$$

$$y_2 = g(x)$$

$$f_{i+1} = \frac{0.25}{\left[\log\left(\frac{0.0015 \times 10^{-3}}{3.7(0.005)} + \frac{2.51}{13743\sqrt{f_i}}\right)\right]^2}$$

Solving for f Using Simple Fixed Point Iteration Method

