Exemple de vecteur aléatoire

- Deux notes: math (1, 2 ou 3) et français (1, 2, 3 ou 4)
- Chaque réalisation d'une exp. aléatoire (un élève) : couple de nombres
- Modélisation par $\mathbf{X} = (X_1, X_2)$: vecteur aléatoire de dimension 2
- Loi de probabilité (ou loi jointe) : $\mathbb{P}(\mathbf{X} \in B)$ où $B \subseteq \{1, 2, 3, 4\} \times \{1, 2, 3\}$
- Probabilité élémentaire

$$p(x_1, x_2) = \mathbb{P}(X_1 = x_1, X_2 = x_2) \implies \mathbb{P}(\mathbf{X} \in B) = \sum_{(x_1, x_2) \in B} p(x_1, x_2)$$

UTC-SY19 Rappels 1 / 12

Lois marginales

				4	
1	0.08	0.16	0.08	0.48	0.80
2	0.08	0.01	0.01	0.00	0.10
3	0.01	0.02	0.01	0.48 0.00 0.06	0.10
X_2	0.17	0.19	0.10	0.54	

Lois conditionnelles

		2			
1	0.08	0.16	0.08	0.48	0.80
2	0.08	0.01	0.01	0.00	0.10
3	0.01	0.16 0.01 0.02	0.01	0.06	0.10
X_2	0.17	0.19	0.10	0.54	

	1				
1	0.47 0.47 0.06	0.85	0.80	0.89	
2	0.47	0.05	0.10	0.00	
3	0.06	0.10	0.10	0.11	
$P(X_1/X_2=x_2)$					

	1	2	3	4	
			0.10		
2	0.80	0.10	0.10	0.00	
3	0.10	0.20	0.10	0.60	
$P(X_2/X_1=x_1)$					

UTC-SY19 Rappels 3 / 12

Echantillon d'un vecteur aléatoire

- Tableau de données individus-variables $X=(x_{ij})$
- Réalisation d'un échantillon de taille n du vecteur aléatoire $\mathbf{X} = (X_1, \dots, X_p)'$
- Exemple

	math	scie	fran	lati	d-m
jean	6.0	6.0	5	5.5	8
alin	8.0	8.0	8	8.0	9
anni	6.0	7.0	11	9.5	11
moni	14.5	14.5	16	15.0	8
didi	14.0	14.0	12	12.5	10
andr	11.0	10.0	6	7.0	13
pier	5.5	7.0	14	11.5	10
brig	13.0	12.5	8	9.5	12
evel	9.0	9.5	12	12.0	18

- Vecteur aléatoire de dimension p = 4: (math, scie, fran, lati, d-m)
- Echantillon de taille n = 9

UTC-SY19 Rappels 4 / 12

Loi normale monodimensionnelle

Loi normale univariée : simulation d'un échantillon

Caractéristiques de la loi

- $X \sim \mathcal{N}(\mu, \sigma^2)$
- Espérance $\mu=5$
- Variance $\sigma^2 = 100$
- Écart-type $\sigma=10$

Données simulées

- Taille de l'échan. n = 1000
- Moyenne emp. $\overline{x} = 5.32$
- Variance emp. s*2 = 97.04
- Écart-type emp. $s^{*2} = 9.85$

Loi normale bidimensionnelle

Vecteur aléatoire $\mathbf{X} = (X_1, X_2)$ de densité

$$f_{\mathbf{X}}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}} \cdot \exp\left[-\frac{1}{2(1 - \rho^2)} \left(\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right) \right]$$

où $\sigma_1,\sigma_2>0$ et $ho\in[-1,1]$

UTC-SY19 Rappels 7 / 12

Loi normale bivariée : exemples

•
$$\mu_1 = \mu_2 = 0$$
, $\sigma_1 = \sigma_2 = 1$, $\rho = 0$

• $\mu_1 = 10$, $\mu_2 = 5$, $\sigma_1 = \sigma_2 = 1$, $\rho = 0.7$

Simulation d'un échantillon gaussien bivarié : exemple 1

•
$$\mu_1 = \mu_1 = 0$$
,
 $\sigma_1 = \sigma_2 = 1$, $\rho = 0$,
 $n = 1000$

$$\bullet \ \Sigma = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

•
$$(\overline{x^1}, \overline{x^2}) = (-0.0048, -0.0304)$$

UTC-SY19 Rappels 9 / 12

Simulation d'un échantillon gaussien bivarié : exemple 2

•
$$\mu_1 = 10$$
, $\mu_2 = 5$, $\sigma_1 = \sigma_2 = 1$, $\rho = 0.7$, $n = 1000$

$$\bullet \ \Sigma = \left(\begin{array}{cc} 1.0 & 0.7 \\ 0.7 & 1.0 \end{array}\right)$$

•
$$(\overline{x^1}, \overline{x^2}) = (10.01, 5.01)$$

UTC-SY19 Rappels 10 / 12

$$A = \begin{bmatrix} a & 0 \\ 0 & 1/a \end{bmatrix}$$

$$D = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

- ◀ □ ▶ ◀ 🗗 ▶ ◀ Ē Þ - Ē - ♡ Q @

Simulation d'un échantillon gaussien en R

- Plusieurs fonctions : rbinom, rnorm, rt, rpois, et runif par exemple
- Simulation d'un échantillon de taille n, de moyenne μ et de variance σ^2 :

```
x<-rnorm(n,mu,sigma2)
```

- Simulation d'un échantillon de taille 100 de $\mathcal{N}(0, I)$ de \mathbb{R}^2 matrix(rnorm(2*n,0,1),n,2)
- Simulation d'un échantillon de taille n de $\mathcal{N}(\mu, \Sigma)$ de \mathbb{R}^2 où $\Sigma = \lambda DAD'$:

```
mu<-matrix(c(mu1,mu2),2,1)
D<-matrix(c(cos(theta),sin(theta),-sin(theta),cos(theta)),2,2)
T<-sqrt(lambda)*D%*%diag(c(sqrt(a),1/sqrt(a)))%*%t(D)
X<-matrix(rnorm(2*n,0,1),n,2)%*%t(T) + matrix(1,n,1)%*% t(mu)</pre>
```