Osmá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Osmá přednáška

Program

- tablo metoda v predikátové logice
- jazyky s rovností
- korektnost a úplnost, kanonický model

Materiály

Zápisky z přednášky, Sekce 7.1-7.4 z Kapitoly 7

Kapitola 7: Tablo metoda v predikátové logice

7.1 Neformální úvod

Úvodní příklady: dva tablo důkazy

Tablo metoda v predikátové logice

- opět vždy předpokládáme, že jazyk L je spočetný (nejprve bez rovnosti, později metodu rozšíříme pro rovnost)
- v položkách musí být sentence: pravdivostní hodnota nesmí záviset na ohodnocení (ale můžeme vzít generální uzávěry)
- redukce položek: stejná atomická tabla pro logické spojky (kde φ, ψ jsou sentence), ale čtyři nové případy pro kvantifikátory:
 - typ "svědek": položky tvaru $T(\exists x)\varphi(x)$ a $F(\forall x)\varphi(x)$
 - typ "všichni": položky tvaru $\mathrm{T}(\forall x)\varphi(x)$ a $\mathrm{F}(\exists x)\varphi(x)$
- kvantifikátor nelze odstranit, $\varphi(x)$ by typicky nebyla sentence
- místo toho za x substituujeme konstantní term t: $\varphi(x/t)$
- jaký? podle typu položky ("svědek" vs. "všichni")

Redukce položek s kvantifikátorem

- jazyk L rozšíříme o spočetně mnoho nových (pomocných) konstantních symbolů $C = \{c_0, c_1, c_2, \dots\}$, označíme L_C
- vždy máme k dispozici nový, dosud nepoužitý symbol $c \in C$
- **typ** "svědek": dosadíme nový $c \in C$ (dosud na větvi není)
 - pro $T(\exists x)\varphi(x)$ tedy máme $T\varphi(x/c)$
 - c hraje roli prvku, který položku 'splňuje'
- **typ** "všichni": substituujeme libovolný konstantní *L_C*-term
 - pro $T(\forall x)\varphi(x)$ tedy máme $T\varphi(x/t)$
 - bezesporná větev je dokončená jen pokud dosadíme všechny t
 ('použijeme vše, co víme')
- konvence: kořeny atomických tabel nekreslíme kromě položek typu "všichni" (po jednom dosazení ještě nejsme hotovi!)
- typický postup: nejprve zredukujeme položky typu "svědek", poté zjistíme, co 'o svědcích říkají' položky typu "všichni"

7.2 Formální definice

Jazyk, položky, atomická tabla

- buď *L* spočetný jazyk bez rovnosti.
- označme L_C rozšíření L o spočetně mnoho nových pomocných konstantních symbolů $C=\{c_i\mid i\in\mathbb{N}\}$
- zvolme očíslování konstantních L_C -termů: $\{t_i \mid i \in \mathbb{N}\}$
- ullet mějme nějakou L-teorii T a L-sentenci arphi
- položka je nápis $T\varphi$ nebo $F\varphi$, kde φ je L_C -sentence
- položky tvaru $\mathrm{T}(\exists x)\varphi(x)$ a $\mathrm{F}(\forall x)\varphi(x)$ jsou typu "svědek"
- položky tvaru $\mathrm{T}(\forall x)\varphi(x)$ a $\mathrm{F}(\exists x)\varphi(x)$ jsou typu "všichni"
- atomická tabla jsou násl. položkami označkované stromy:

Atomická tabla pro kvantifikátory

 φ je libovolná L_C -sentence, x proměnná, t_i konstantní L_C -term, $c_i \in C$ je nový pomocný konstantní symbol (při konstrukci tabla nesměl dosud být na dané větvi)

Atomická tabla pro logické spojky

 φ a ψ jsou libovolné L_C -sentence

	_ ¬	_ ^	\ \ \	\rightarrow	\leftrightarrow
True	$\begin{array}{ c c c c }\hline & T \neg \varphi & & & \\ & \downarrow & & & \\ & F \varphi & & & \end{array}$	$ \begin{array}{c c} & T\varphi \wedge \psi \\ & T\varphi \\ & \downarrow \\ & T\psi \end{array} $	$ \begin{array}{c c} T\varphi \lor \psi \\ / & \\ T\varphi & T\psi \end{array} $	$ \begin{array}{ccc} T\varphi \to \psi \\ $	$ \begin{array}{c cc} & T\varphi \leftrightarrow \psi \\ & / & \\ & T\varphi & F\varphi \\ & & \\ & T\psi & F\psi \end{array} $
False		$\begin{array}{c c} F\varphi \wedge \psi \\ / & \\ F\varphi & F\psi \end{array}$	$\begin{array}{c c} F\varphi \lor \psi \\ & \\ F\varphi \\ & \\ F\psi \end{array}$	$F\varphi \to \psi$ $ $ $T\varphi$ $ $ $F\psi$	$ \begin{array}{c cc} F\varphi \leftrightarrow \psi \\ / & \\ T\varphi & F\varphi \\ & \\ F\psi & T\psi \end{array} $

Formální definice tabla

- konečné tablo z teorie T je uspoř., položkami označ. strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme na konec větve V připojit atomické tablo pro položku P je-li P typu "svědek", můžeme použít jen c_i ∈ C, který dosud na V není (pro typ "všichni" lze použít lib. konst. L_C-term t_i)
 - na konec libovolné větve můžeme připojit položku ${\rm T}\alpha$ pro libovolný axiom $\alpha\in {\cal T}$
- tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě je spočetné a definujeme ho jako $\tau = \bigcup_{i \geq 0} \tau_i$, kde:
 - τ_i jsou konečná tabla z T
 - au_0 je jednoprvkové tablo
 - τ_{i+1} vzniklo z τ_i v jednom kroku
- tablo pro položku P je tablo, které má položku P v kořeni

konvence: kořen atom. tabla nezapisujeme není-li P typu "všichni"

Dokončené a sporné tablo

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějakou sentenci ψ , jinak je bezesporná.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud je sporná, nebo
 - každá její položka je na této větvi redukovaná,
 - a zároveň obsahuje položku $T\alpha$ pro každý axiom $\alpha \in \mathcal{T}.$
- Položka P je redukovaná na větvi V procházející P, pokud
 - je tvaru $\mathrm{T}\psi$ resp. $\mathrm{F}\psi$ pro atomickou sentenci, nebo
 - není typu "všichni" a vyskytuje se na V jako kořen atomického tabla (tj., typicky, již došlo k jejímu rozvoji na V), nebo
 - je typu "všichni" a všechny její výskyty na větvi V jsou na V redukované.

Kdy je výskyt položky typu "všichni" redukovaný?

Výskyt položky P typu "všichni" na V je i-tý, má-li právě i-1 předků označených P, a i-tý výskyt je redukovaný na V, pokud

- P má (i+1)-ní výskyt na V, a zároveň
- na V je položka $\mathbf{T}\varphi(x/t_i)$ (je-li $P=\mathbf{T}(\forall x)\varphi(x)$) resp. $\mathbf{F}\varphi(x/t_i)$ (je-li $P=\mathbf{F}(\exists x)\varphi(x)$), kde t_i je i-tý konstantní L_C -term (tj., typicky, už jsme za x substituovali t_i)

 ${f NB:}$ je-li položka typu "všichni" na V redukovaná, má na V nekonečně výskytů, a dosadili jsme všechny konstantní L_C -termy

Tablo důkaz a tablo zamítnutí

- tablo důkaz sentence φ z teorie T je sporné tablo z teorie T s položkou $F\varphi$ v kořeni
- pokud existuje, je φ (tablo) dokazatelný z T, píšeme $T \vdash \varphi$
- ullet podobně, tablo zamítnutí je sporné tablo s $\mathrm{T} arphi$ v kořeni
- existuje-li, je φ (tablo) zamítnutelný z T, tj. platí $T \models \neg \varphi$

Příklad: tablo důkaz (v logice)

Ještě příklad $(\varphi, \psi$ jsou formule s jedinou volnou proměnnou x)

(c_0 lze použít jako nový ve všech případech: na dané větvi se dosud nevyskytuje)

Systematické tablo

musí někdy zredukovat každou položku, použít každý axiom, a nově ve všech položkách typu "všichni" dosadit každý L_C term t_i Systematické tablo z $T=\{\alpha_0,\alpha_1,\alpha_2,\dots\}$ pro položku R je $\tau=\bigcup_{i\geq 0}\tau_i$, kde τ_0 je jednoprvkové s položkou R, a pro $i\geq 0$:

- buď P nejlevější položka v co nejmenší úrovni, která není redukovaná na nějaké bezesporné větvi procházející P (resp. je-li typu "všichni", její výskyt není redukovaný)
- nejprve definujeme τ_i' vzniklé z τ_i připojením atomického tabla pro P na každou bezespornou větev procházející P, kde je-li P typu "všichni" a má-li ve vrcholu k-tý výskyt, dosadíme k-tý L_C -term t_k , je-li typu "svědek", substituujeme $c_i \in C$ s nejmenším i, které na větvi zatím není
- pokud taková položka P neexistuje, potom $\tau_i' = \tau_i$
- τ_{i+1} vznikne z τ'_i připojením $T\alpha_{i+1}$ na vš. bezesporné větve (pokud už jsme použili všechny axiomy, definujeme $\tau_{i+1} = \tau'_i$)

Konečnost a systematičnost důkazů

Lemma: Systematické tablo je dokončené.

Důkaz: k-tý výskyt položky typu "všichni" redukujeme když na něj narazíme: připojíme (k+1)-ní výskyt a dosadíme k-tý L_C -term t_k . Zbytek důkazu jako ve výrokové logice.

Neprodlužujeme-li sporné větve (což nemusíme), je sporné tablo vždy konečné. Důkaz stejný jako ve výrokové logice:

Důsledek (Konečnost důkazů): Pokud $T \vdash \varphi$, potom existuje i konečný tablo důkaz φ z T.

Stejně jako ve výrokové logice z důkazu plyne:

Důsledek (Systematičnost důkazů): Pokud $T \models \varphi$, potom systematické tablo je (konečným) tablo důkazem φ z T.

7.3 Jazyky s rovností

Rovnost

1+0=0+1? identita celých čísel, výrazů, množin, unifikovatelnost termů (v Prologu), . . .

Tablo je čistě syntaktický objekt, ale $=^{\mathcal{A}}$ má být identita na A. Jak toho docílit?

Mějme dokončenou bezespornou větev tabla s položkou $Tc_1 = c_2$. V kanonickém modelu musí platit nejen $(c_1^A, c_2^A) \in =^A$, ale také:

- $c_2^{\mathcal{A}} = {}^{\mathcal{A}} c_1^{\mathcal{A}}$
- $f^{\mathcal{A}}(c_1^{\mathcal{A}}) =^{\mathcal{A}} f^{\mathcal{A}}(c_2^{\mathcal{A}})$
- $c_1^{\mathcal{A}} \in P^{\mathcal{A}}$ právě když $c_2^{\mathcal{A}} \in P^{\mathcal{A}}$

To vynutíme přidáním axiomů rovnosti, $=^{\mathcal{A}}$ bude kongruence \mathcal{A} (ekvivalence, která se chová dobře k funkcím a relacím).

Poté vezmeme faktorstrukturu $\mathcal{B} = \mathcal{A}/_{=\mathcal{A}}$, v ní už je $=^{\mathcal{B}}$ identita.

Kongruence a faktorstruktura

Buď \sim ekvivalence na A, $f:A^n\to A$, $R\subseteq A^n$. Říkáme, že \sim je:

- kongruence pro f, pokud pro všechna $x_i, y_i \in A$ taková, že $x_i \sim y_i \ (1 \le i \le n)$, platí $f(x_1, ..., x_n) \sim f(y_1, ..., y_n)$
- kongruence pro R, pokud pro všechna $x_i, y_i \in A$ taková, že $x_i \sim y_i \ (1 \le i \le n)$, platí $R(x_1, ..., x_n) \Leftrightarrow R(y_1, ..., y_n)$

Kongruence struktury \mathcal{A} je ekvivalence na A, která je kongruencí pro všechny funkce a relace \mathcal{A} .

Faktorstruktura (podílová struktura) \mathcal{A} podle \sim je struktura $\mathcal{A}/_{\sim}$ v témž jazyce, doména $A/_{\sim}$ je množina všech rozkladových tříd A podle \sim , funkce a relace definujeme pomocí reprezentantů:

- $f^{\mathcal{A}/\sim}([x_1]_{\sim},\ldots,[x_n]_{\sim})=[f^{\mathcal{A}}(x_1,\ldots,x_n)]_{\sim}$
- $R^{\mathcal{A}/\sim}([x_1]_{\sim},\ldots,[x_n]_{\sim}) \Leftrightarrow R^{\mathcal{A}}(x_1,\ldots,x_n)$

Axiomy rovnosti

Axiomy rovnosti pro jazyk *L* s rovností:

- (i) x = x
- (ii) pro každý *n*-ární funkční symbol *f* jazyka *L*:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$$

(iii) pro každý n-ární relační symbol R jazyka L včetně rovnosti:

$$x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (R(x_1, \dots, x_n) \rightarrow R(y_1, \dots, y_n))$$

- symetrie a tranzitivita plynou z (iii) pro = (dokažte si)
- z axiomů (i) a (iii) tedy plyne, že relace $=^{A}$ je ekvivalence
- axiomy (ii) a (iii) vyjadřují, že $=^{\mathcal{A}}$ je kongruence

V tablo metodě pro jazyk s rovností implicitně přidáme axiomy rovnosti (přesněji jejich generální uzávěry, potřebujeme sentence).

Tablo důkaz s rovností

Je-li T teorie v jazyce L s rovností, označme jako T^* rozšíření T o generální uzávěry axiomů rovnosti pro L.

- tablo důkaz z teorie T je tablo důkaz z T*
- podobně pro tablo zamítnutí, a obecně jakékoliv tablo z T

Pozorování:

- Je-li $\mathcal{A} \models T^*$, potom i $\mathcal{A}/_{=\mathcal{A}} \models T^*$, a ve struktuře $\mathcal{A}/_{=\mathcal{A}}$ je symbol rovnosti interpretován jako identita.
- Na druhou stranu, v každém modelu, ve kterém je symbol rovnosti interpretován jako identita, platí axiomy rovnosti.

(Použijeme při konstrukci kanonického modelu v důkazu úplnosti.)

7.4 Korektnost a úplnost

Korektnost a úplnost

Stejně jako ve výrokové logice:

dokazatelnost je totéž, co platnost

- $T \vdash \varphi \Rightarrow T \models \varphi$ (korektnost) "co jsme dokázali, platí"
- $T \models \varphi \Rightarrow T \vdash \varphi$ (úplnost) "co platí, lze dokázat"

(Důkazy mají stejnou strukturu, liší se jen v implementačních detailech pomocných lemmat.)

Korektnost: pomocné lemma

Model \mathcal{A} se shoduje s položkou P, pokud $P=\mathrm{T}\varphi$ a $\mathcal{A}\models\varphi$, nebo $P=\mathrm{F}\varphi$ a $\mathcal{A}\not\models\varphi$, a s větví V, shoduje-li s každou položkou na V.

Lemma: Shoduje-li se model \mathcal{A} teorie T (v jazyce L) s položkou v kořeni tabla z T, potom lze \mathcal{A} expandovat do jazyka L_C (interpretovat symboly $c_i \in C$) tak, že se shoduje s některou větví v tablu. NB: Stačí interpret. symboly c_i vyskytující se na větvi, ostatní libovolně.

Důkaz: Indukcí podle konstrukce $\tau = \bigcup_{i \geq 0} \tau_i$ najdeme posloupnost větví $V_0 \subseteq V_1 \subseteq \ldots$ a expanzí \mathcal{A}_i o konstanty na V_i tak, že:

- V_i je větev v tablu au_i shodující se s modelem \mathcal{A}_i
- V_{i+1} je prodloužením V_i a \mathcal{A}_{i+1} je expanzí \mathcal{A}_i

Hledaná větev v τ je $V=\bigcup_{i\geq 0}V_i,\ L_C$ -expanze $\mathcal A$ je 'limita' $\mathcal A_i$: vyskytuje-li se $c\in C$ na V_i , interpretuj jako v $\mathcal A_i$, jinak libovolně.

Báze: $A_0 = A$ se shoduje s kořenem, tj. s (jednoprvkovou) V_0 v τ_0 .

Pokračování důkazu pomocného lemmatu

Indukční krok: Pokud jsme neprodloužili V_i : $V_{i+1} = V_i$, $A_{i+1} = A_i$.

Pokud jsme připojili $T\alpha$ (pro $\alpha \in T$) na konec V_i , definujeme V_{i+1} jako tuto prodlouženou větev, $\mathcal{A}_{i+1} = \mathcal{A}_i$ (nepřidali jsme nový symbol). Protože $\mathcal{A} \models T$, máme i $\mathcal{A}_{i+1} \models \alpha$, tedy se shoduje.

Nechť au_{i+1} vzniklo připojením atomického tabla pro P na konec V_i .

- logická spojka: $A_{i+1} = A_i$ se shoduje s kořenem atomického tabla, tedy i s některou větví, o tu prodloužíme V_i na V_{i+1}
- **typ** "svědek": SÚNO $P = T(\exists x)\varphi(x)$: $\mathcal{A}_i \models (\exists x)\varphi(x)$, tedy existuje $a \in A$, že $\mathcal{A}_i \models \varphi(x)[e(x/a)]$. V_{i+1} je prodloužení V_i o nově přidanou $T\varphi(x/c)$, \mathcal{A}_{i+1} je expanze \mathcal{A}_i o $c^{\mathcal{A}_{i+1}} = a$.
- **typ** "všichni": V_{i+1} je prodloužení V_i o atomické tablo. SÚNO nová položka $T\varphi(x/t)$ pro nějaký L_C -term t. Model \mathcal{A}_{i+1} je libovolná expanze \mathcal{A}_i o nové symboly z t. $\mathcal{A}_i \models (\forall x)\varphi(x) \Rightarrow \mathcal{A}_{i+1} \models (\forall x)\varphi(x) \Rightarrow \mathcal{A}_{i+1} \models \varphi(x/t)$, tedy se shoduje. \square

Věta o korektnosti [tablo metody ve predikátové logice]

Věta (O korektnosti): Je-li sentence φ tablo dokazatelná z teorie T, potom je φ pravdivá v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

Myšlenka důkazu: Protipříklad by se [po vhodné interpretaci pomocných symbolů] shodoval s některou větví, ty jsou ale sporné.

Důkaz: Sporem, nechť $T \not\models \varphi$, tj. existuje $A \in M(T)$, že $A \not\models \varphi$.

Protože $T \models \varphi$, existuje tablo důkaz φ z T, což je sporné tablo z T s položkou $F\varphi$ v kořeni.

Model $\mathcal A$ se shoduje s kořenem $F\varphi$, tedy podle Lemmatu Ize interpretovat symboly $c\in \mathcal C$ tak, že se výsledná $L_{\mathcal C}$ -expanze $\mathcal A'$ shoduje s nějakou větví V. Všechny větve jsou ale sporné, musela by se shodovat s $T\psi$ a zároveň $F\psi$ pro nějakou $L_{\mathcal C}$ -sentenci ψ . \square

Kanonický model: jazyk bez rovnosti

opět z bezesporné dokončené větve V (tabla z T) vyrobíme model jeho doména? trik: ze syntaktických objektů uděláme sémantické

Je-li $L = \langle \mathcal{F}, \mathcal{R} \rangle$ bez rovnosti, kanonický model pro bezespornou dokončenou V je L_C -struktura $\mathcal{A} = \langle A, \mathcal{F}^{\mathcal{A}} \cup C^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}} \rangle$, kde:

- doména A je množina všech konstantních L_C-termů
- pro *n*-ární relační symbol $R \in \mathcal{R}$ a " s_1 ", . . . , " s_n " z A:

$$("s_1",\ldots,"s_n")\in R^{\mathcal{A}} \Leftrightarrow \mathsf{na}\ V$$
 je položka $\mathrm{T}R(s_1,\ldots,s_n)$

• pro n-ární funkční symbol $f \in \mathcal{F}$ a " s_1 ", . . . , " s_n " z A:

$$f^{\mathcal{A}}("s_1",\ldots,"s_n") = "f(s_1,\ldots,s_n)"$$

• speciálně, pro konstantní symbol c máme $c^{\mathcal{A}} = "c"$

(funkce f^{A} je "vytvoření" termu ze symbolu f a vstupních termů)

 $T = \{(\forall x)R(f(x))\}\$ v jazyce $L = \langle R, f, d \rangle$ bez rovnosti (R unární relační, f unární funkční, d konstantní). Protipříklad: $T \not\models \neg R(d)$

- dokončené tablo z T s položkou $\mathbf{F} \neg R(d)$ v koření má jedinou, bezespornou větev V
- kanon. model: L_C -struktura $\mathcal{A} = \langle A, R^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, \dots \rangle$
- doména je $A = \{ \text{"}d\text{"}, \text{"}f(d)\text{"}, \text{"}f(f(d))\text{"}, \dots, \text{"}c_0\text{"}, \text{"}f(c_0)\text{"}, \\ \text{"}f(f(c_0))\text{"}, \dots, \text{"}c_1\text{"}, \text{"}f(c_1)\text{"}, \text{"}f(f(c_1))\text{"}, \dots \}$
- interpretace symbolů jsou:
 - $d^{\mathcal{A}} = "d"$
 - $c_i^{\mathcal{A}} = "c_i"$ pro všechna $i \in \mathbb{N}$
 - $f^{\mathcal{A}}("d") = "f(d)", f^{\mathcal{A}}("f(d)") = "f(f(d))", \dots$
 - $R^A = A \setminus C = \{ (d^n, (f(d))^n, (f(f(d))^n, \dots, (f(c_0))^n, (f(f(c_0))^n, \dots, (f(c_1))^n, (f(f(c_1))^n, \dots) \}.$
- redukt na původní jazyk $L: A' = \langle A, R^A, f^A, d^A \rangle$

Kanonický model: jazyk s rovností

Je-li *L* s rovností:

- ullet vezmeme kanonický model ${\mathcal B}$ pro V jako by byl L bez rovnosti
- definujeme relaci $=^B$ stejně jako pro ostatní relační symboly:

$$"s_1" = ^B "s_2" \Leftrightarrow \mathsf{na} \ V \mathsf{je} \ \mathsf{položka} \ \mathrm{T} s_1 = s_2$$

- kanonický model pro V je faktorstruktura $\mathcal{A} = \mathcal{B}/_{=^B}$
- tablo je nyní z teorie *T** (rozšíření o axiomy rovnosti)
- $=^B$ je opravdu kongruence struktury \mathcal{B} a $=^{\mathcal{A}}$ je identita na A
- Pozorování: pro lib. formuli φ platí $\mathcal{B} \models \varphi$ právě když $\mathcal{A} \models \varphi$ (symbol = interpretujeme jako = B v \mathcal{B} a jako identitu v \mathcal{A})

Všimněte si:

- v jazyce bez rovnosti je kanonický model spočetně nekonečný
- v jazyce s rovností může být i konečný

Příklad

$$T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}\ L = \langle R, f, d \rangle$$
 s rovností opět chceme protipříklad ukazující, že $T \not\models \neg R(d)$

- dokončené tablo z T^* pro $F \neg R(d)$ má jedinou, bezespornou V
- sestrojíme kanonický model jako by byl jazyk bez rovnosti:

$$\mathcal{B} = \langle B, R^{\mathcal{B}}, f^{\mathcal{B}}, d^{\mathcal{B}}, c_0^{\mathcal{B}}, c_1^{\mathcal{B}}, c_2^{\mathcal{B}}, \dots \rangle$$

• '=' jako obyčejný symbol: $s_1 = {}^B s_2 \Leftrightarrow s_1 = f(\cdots(f(s_2))\cdots)$ nebo $s_2 = f(\cdots(f(s_1))\cdots)$ pro sudý počet f

$$B/_{=B} = \{["d"]_{=B}, ["f(d)"]_{=B}, ["c_0"]_{=B}, ["f(c_0)"]_{=B}, ["c_1"]_{=B}, ["f(c_1)"]_{=B}, \dots\}$$

- $\bullet \quad \mathsf{kanonick\acute{y}} \; \mathsf{model} \colon \mathcal{A} = \mathcal{B}/_{=^{\mathcal{B}}} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, f^{\mathcal{A}}, d^{\mathcal{A}}, c_0^{\mathcal{A}}, c_1^{\mathcal{A}}, c_2^{\mathcal{A}}, \dots \rangle$
 - $A = B/_{=^B}$, $d^A = ["d"]_{=^B}$, $c_i^A = ["c_i"]_{=^B}$ pro všechna $i \in \mathbb{N}$,
 - $f^{A}(["d"]_{=^{B}}) = ["f(d)"]_{=^{B}},$ $f^{A}(["f(d)"]_{=^{B}}) = ["f(f(d))"]_{=^{B}} = ["d"]_{=^{B}}, \dots$
 - $R^{A} = A = B/_{=B}$.
- redukt na původní jazyk $L: A' = \langle A, R^A, f^A, d^A \rangle$

Úplnost: pomocné lemma

Lemma: Kanonický model pro (bezespornou, dokončenou) větev V se shoduje s V.

Důkaz: Jazyk bez rovnosti: indukcí podle struktury sentence v P

- atomická sentence: stejně jako ve VL (báze indukce)
- logická spojka: stejně jako ve VL
- **typ** "svědek": $P = \mathbf{T}(\exists x)\varphi(x)$, potom je na V i $T\varphi(x/c)$ pro nějaké "c" $\in A$; z indukčního předpokladu $A \models \varphi(x/c)$, tj. $A \models \varphi(x)[e(x/"c")]$ tedy i $A \models (\exists x)\varphi(x)$
- **typ** "všichni": $P = T(\forall x)\varphi(x)$, na V jsou i položky $T\varphi(x/t)$ pro každý konstantní L_C -term, tj. pro každý prvek "t" $\in A$; z ind. předpokladu je $\mathcal{A} \models \varphi(x/t)$, tj. $\mathcal{A} \models \varphi(x)[e(x/"t")]$ pro každé "t" $\in A$, tedy $\mathcal{A} \models (\forall x)\varphi(x)$

Jazyk s rovností: $A = B/_{=B}$, pro B máme, zbytek z Pozorování \Box

Věta o úplnosti

Věta (O úplnosti): Je-li sentence φ pravdivá v teorii T, potom je tablo dokazatelná z T, tj. $T \models \varphi \Rightarrow T \vdash \varphi$.

Důkaz: Ukážeme, že libovolné dokončené (např. systematické) tablo z T s $F\varphi$ v kořeni je nutně sporné, tedy je tablo důkazem.

Sporem: Není-li sporné, má bezespornou (dokončenou) větev V, a dle Lemmatu se kanonický model $\mathcal A$ s větví V shoduje.

Buď \mathcal{A}' redukt \mathcal{A} na jazyk teorie T (zapomeň pomocné symboly).

Protože je V dokončená, obsahuje $T\alpha$ pro všechny axiomy T. Model A, tedy i A', splňuje všechny axiomy a máme $A' \models T$.

Protože se ale \mathcal{A} , tedy i \mathcal{A}' , shoduje i s položkou $F\varphi$ v kořeni, máme $\mathcal{A}' \not\models \varphi$, což dává protipříklad, a máme $\mathcal{T} \not\models \varphi$, spor.