Semantic NLP Clinical NLP Systems

BMI701 Introduction of Biomedical Informatics Lab Session 6

Wei-Hung Weng October 26, 2016

HMS DBMI — MGH LCS

		□	M	490	صام	44_	حوات
(knife)	PA	51	20	84	0	3	0
(cat)	D 40-0	52	58	4	4	6	26
???	≥ f\0	115	83	10	42	33	17
(boat)	مأها	59	39	23	4	0	0
(cup)		98	14	6	2	1	0
(pig)	·↓□↓□	12	17	3	2	9	27
(banana)	A	11	2	2	0	18	0

Evert 2010

		۵۵۰۵	μί	٩٩p	ص∮ت	44_	حواد
(knife)	PA	51	20	84	0	3	0
(cat)	D 40-0	52	58	4	4	6	26
???	~ fo	115	83	10	42	33	17
(boat)	ءأهاك	59	39	23	4	0	0
(cup)		98	14	6	2	1	0
(pig)	·↓□↓□	12	17	3	2	9	27
(banana)	A	11	2	2	0	18	0

		۵۵۵	M	490	n√o	44_	حداد
(knife)	PA	51	20	84	0	3	0
(cat)	D 40-0	52	58	4	4	6	26
???	~ fo	115	83	10	42	33	17
(boat)	مأها	59	39	23	4	0	0
(cup)		98	14	6	2	1	0
(pig)		12	17	3	2	9	27
(banana)	A	11	2	2	0	18	0

		۵۵۵	μ	qγp	n√o	11_	حواد
(knife)	PA	51	20	84	0	3	0
(cat)	D & a	52	58	4	4	6	26
???	~ fo	115	83	10	42	33	17
(boat)	مأها	59	39	23	4	0	0
(cup)		98	14	6	2	1	0
(pig)	·↓□↓□	12	17	3	2	9	27
(banana)	A	11	2	2	0	18	0

		get	see	use ≬î∏	hear □(eat N_	kill ⊸≬ <u>ഛ</u>
knife	\A	51	20	84	0	3	0
cat	D	52	58	4	4	6	26
dog	≥ A □	115	83	10	42	33	17
boat	مأهد	59	39	23	4	0	0
cup		98	14	6	2	1	0
pig		12	17	3	2	9	27
banana 🔊 🔊		11	2	2	0	18	0

 $verb\hbox{-}object\ counts\ from\ British\ National\ Corpus$

Tf-idf Weighting

- Importance of the term in the corpus
- For term *i* in document *j*

$$w_{i,j} = tf_{i,j} \times \log(\frac{N}{df_i})$$

- $tf_{i,j}$: frequency of i in j
- df_i: number of documents have i
- N: number of all documents

Tf-idf Weighting Example

- A: "Dog is so cute."
- B: "I like dog."
- $tfidf_{('dog',A)} = \frac{1}{4} \times \log(\frac{2}{2}) = 0$
- $tfidf_{('dog',B)} = \frac{1}{3} \times \log(\frac{2}{2}) = 0$
- $tfidf_{('cute',A)} = \frac{1}{4} \times \log(\frac{2}{1}) = \frac{\log 2}{4}$
- $tfidf_{('cute',B)} = \frac{0}{3} \times \log(\frac{2}{0}) = 0$

- Matrix decomposition
 - LSI (Deerwester 1990), NMF (Lee 1999), NTF (Cruys 2010)
 - Using SVD: UΣV
 - Fast, unless using NTF
- Language model
 - PLSI (Hofmann 1999), LDA (Blei 2003)
 - Topic modeling, using probability
 - Heavy computation

- Neural network model
 - NNLM (Bengio 2003), RNN (Mikolov 2010), skip-gram / CBOW (Mikolov 2013)
 - Heavy computation, hard to implementation
 - Interpretation...?

Bengio 2003

Chang 2015

Mikolov 2013

NLP Workflow

MetaMap / cTAKES workflow

MetaMap

- Developed by NLM (Aronson 1994)
- Web application of MetaMap
- Java API
- Locally execution
- Download

cTAKES

- Developed by Mayo NLP (Savova 2010)
- Modularized
- CLI
- Download

Demonstration

- Topic modeling (topicmodels)
- MetaMap / cTAKES
 - Need to download in advance
 - Use CLI or system() in R
 - Further processing

Some Advanced NLP Courses

- NLTK book (very useful!)
- Coursera NLP (Jurafusky)
- Coursera NLP (Radev)
- Coursera NLP provided by Michael Collins is also good, but it's gone now
- Coursera NLP (Collins)
- CS287: Natural Language Processing
- 6.864: Advanced Natural Language Processing

Take Home Message

- More text mining techniques
 - Topic modeling, vector space model
- MetaMap / cTAKES
- Contact
 - Github repository
 - ckbjimmy@gmail.com
 - Linkedin: Wei-Hung Weng