		_
	1. (Amended) A sensor device for measuring blood	
	oxygen saturation comprising light source means for emitting	
	a light beam, photodetector means for receiving the light	
	beam after passing through or being reflected within living	
	tissue and arranged for providing signals corresponding to	
	intensities of a respective wavelength of light received by	
D	the photodetector means.	
<i>1</i> 7		
in wif Nagi	2. (Amended) A sensor device according to Claim 1	
	characterised in that the sensor uses a plurality of	
	wavelengths.	_
. Ü		
e f	5. (Amended) A sensor device according to Claim 2	
# A5	characterised in that the different wavelengths bear a	
	predetermined relationship with each other.	L
į į	10. (Amended) A sensor device according to Claim 7	_
	characterised in that five wavelengths are isobestic and	
AY	one wavelength provides the maximum absorption difference	
	between oxygenated haemoglobin and deoxygenated haemoglobin.	_
		_
	19. (Amended) A method according to Claim 18	
	characterised in that the method comprises using a sensor	
	device having light source means for emitting a light beam,	
4 -	photodetector means for receiving the light beam after	
	passing through or being reflected within living tissue and	
AS	arranged for providing signals corresponding to intensities	
	of a respective wavelength of light received by the	
	photodetector means.	<u> </u>
		ŀ
		[

27. (Amended) A method of monitoring of SIDS in infants comprising the steps of attaching a calibrated sensor to the skin of a patient and emitting white light, and detecting and measuring the scattered light, said calibrated sensor comprising light source means for emitting a light beam, photodetector means for receiving the light beam after passing through or being reflected within living tissue and arranged for providing signals corresponding to intensities of a respective wavelength of light received by the photodetector means.

Please cancel Claims 29 and 30, and substitute the following claims therefor:

- --33. A computer program for carrying out a method comprising the steps of collecting data, processing said data collected and displaying SO₂ and SaO₂ levels based on the data collected.
- 34. A computer program according to Claim 33, wherein said processing said data collected includes use of the algorithm:

$$SO_2 = \underbrace{ [HbO_2] \times 100}_{[HbO_2] + [Hb]}$$

wherein,

reflected absorptions (A) at wavelengths of 500 nm, 528 nm, 550 nm, 560 nm, 572 nm and 586 nm are used for calcula-