Lecture 35 Sequences, Series and Convergence Tests

Dr. Mahesha Narayana

©Ramaiah University of Applied Sciences

Intended Learning Outcomes

At the end of this lecture, student will be able to:

- Differentiate between sequence and series of complex numbers
- Explain the tests to verify convergence of a sequence/series
- Apply the standard tests to test and verify the convergence of complex sequence/series

Topics

- Sequence
- Convergence
- Series
- necessary and sufficient conditions for convergence
- Absolute and conditional convergence
- Cauchy's criterion applied to geometric series

Sequence

A sequence of complex numbers is a mapping from the set of natural numbers to the set of complex numbers,

i.e.,
$$f: \square \to \square$$

such that $f(n) = z_n$

We write $\left\{ z_n \right\}_{n=1}^{\infty}$ or simply $\left\{ z_n \right\}$ to denote the sequence

Convergence

Complex infinite sequence

Real infinite sequence

A sequence $\{z_n\}$ is said to converge to a limit L if for every $\varepsilon > 0$ there exit N such that $|z_n - L| < \varepsilon$ for all n > N

A sequence that does not converge is said to be Divergent

Series

Consider an infinite series of complex numbers given by

$$\sum_{k=1}^{\infty} Z_k = Z_1 + Z_2 + Z_3 + \dots$$

Define $\{S_n\}$ to be the sequence of partial sums, where

$$S_n = \sum_{k=1}^n Z_k = Z_1 + Z_2 + \ldots + Z_n$$

The infinite series is said to be convergent if there is a number L such that, for every arbitrarily small $\varepsilon > 0$, we can find an integer N such that

$$|S_n - L| < \varepsilon$$
 for all $n \ge N$

The number *L* is called the limit of the infinite series.

If no such *L* exists, the infinite series is said to be DIVERGENT.

A necessary condition for convergence

If a series $\sum Z_n$ converges, then $|Z_n|$ converges to zero.

This means that for any arbitrarily small ϵ >0, we can find a sufficiently large integer N such that $|a_i| < \epsilon$

for all $n \ge N$.

This condition is not sufficient because we have the divergent series $\Sigma 1/n$.

The converse is false

Conversely if $|z_n|$ approaches 0 as n approaches infinity, the series $z_1 + z_2 + z_3 + ...$ may or may not converges.

- The harmonic series
 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ...
 is divergent.
- However, 1 1/2 + 1/3 1/4 + 1/5 1/6 + ... is convergent.

Augustin – Louis Cauchy (1789-1857)

- > French mathematician
- Introduced the epsilon-delta argument in calculus.
- ➤ The Cauchy-Riemann condition in complex analysis.

Cauchy Criterion for Convergence of a Series

- This is a necessary and sufficient condition for convergence of series.
- Given any arbitrarily small $\varepsilon > 0$, we can find a sufficiently large integer N such that with m < n $|z_m + z_{m+1} + z_{m+2} + ... + z_n| < \varepsilon$ for all $m, n \ge N$.

Absolute and Conditional Convergence

- An infinite series $z_1 + z_2 + z_3 + ...$ is called absolutely convergent if $|z_1| + |z_2| + |z_3| + ...$ is convergent.
- An infinite series $z_1 + z_2 + z_3 + ...$ is called conditionally convergent if $z_1 + z_2 + z_3 + ...$ is convergent, but $|z_1| + |z_2| + |z_3| + ...$ is divergent.

Examples

$$\sum_{i=1}^{\infty} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$$

divergent

$$\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$$

conditionally convergent

$$\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{2^i} = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \dots$$

absolutely convergent

Geometric Series

A geometric series of complex numbers of the form

$$S_n = \sum_{k=1}^{\infty} a^k = 1 + a^1 + a^2 + \dots$$

Converges to the sum $\frac{1}{1-a}$ if |a| < 1 and

Diverges if $|a| \ge 1$

Cauchy's criterion applied to geometric series

- It is known that the series $1 + \frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + \dots$ is convergent, but we can still apply Cauchy's convergence criterion as an illustration.
- \triangleright Let ε be an arbitrarily small and positive real number.
- \triangleright Let N be the smallest integer such that $(\frac{1}{2})^{N} < \varepsilon$.
- \triangleright Then for any integer m and n > N, with m < n, we have

$$\left(\frac{1}{2} \right)^{m} + \left(\frac{1}{2} \right)^{m+1} + \dots + \left(\frac{1}{2} \right)^{n} = \left(\frac{1}{2} \right)^{m} \left\{ \frac{1 - \left(\frac{1}{2} \right)^{n-m+1}}{1 - \frac{1}{2}} \right\}$$

$$= \left(\frac{1}{2} \right)^{m-1} < \left(\frac{1}{2} \right)^{N} < \varepsilon$$

Hence by Cauchy's convergence criterion the geometric series converges.

Comparison Test

Let $z_1 + z_2 + z_3 + z_4 + ...$ be a given infinite series.

If we can find non-negative real numbers b_1 , b_2 , b_3 , b_4 , ... such that

- 1. $|z_n| \le b_n$ for all n, and $(z_n \text{ is dominated by } b_n)$
- 2. $b_1 + b_2 + b_3 + b_4 + \dots$ converges,

then $z_1 + z_2 + z_3 + z_4 + \dots$ converges absolutely.

To check whether $z_1 + z_2 + z_3 + z_4 + ...$ converges?

Try to find a series $b_1 + b_2 + b_3 + b_4 + ...$ which is convergent and dominates $z_1 + z_2 + z_3 + z_4 + ...$

If $b_1 + b_2 + b_3 + b_4 + \dots$ converges then $|z_1| + |z_2| + |z_3| + |z_4| + \dots$ converges

n

Note: If we cannot find such a series $\sum b_n$, it does not mean that the series $\sum z_n$ is divergent.

Even if we can find such a series $\sum b_n$, the test does not tell to which limit it converges to.

Ratio test

If an infinite series $z_1 + z_2 + z_3 + ...$, with all terms nonzero, is such that

$$\lim_{n\to\infty}\left|\frac{Z_{n+1}}{Z_n}\right|=L$$

 $\lim_{n\to\infty}\left|\frac{Z_{n+1}}{Z_n}\right|=L \qquad \begin{array}{l} \text{For simplicity,}\\ \text{we assume that}\\ \text{the limit exists.} \end{array}$

Then

- The series converges if L < 1.
- The series diverges if L > 1.
- No conclusion if L = 1.

Root test

If an infinite series $z_1 + z_2 + z_3 + ...$, with all terms nonzero, is such that

$$\lim_{n\to\infty} \left| z_n \right|^{1/n} = L$$

For simplicity, we assume that the limit exists.

Then

- 1. The series converges absolutely if L < 1.
- 2. The series diverges if L > 1.
- 3. No conclusion if L = 1.

Example

The power series

$$1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \frac{z^4}{4!} + \dots$$

converges for all complex numbers z. The radius of convergence is infinity.

It is because for each z, the ratio of consecutive terms

$$\left|\frac{\frac{z^{n+1}}{(n+1)!}}{\frac{z^n}{n!}}\right| = \left|\frac{z}{n+1}\right| \to 0$$

as *n* approaches infinity. By the ratio test, this series converges for every complex number *z*.

19

Example

Test for the convergence

Session Summary

• Ratio Test: If an infinite series $z_1 + z_2 + z_3 + ...$, with all terms nonzero, is such that $L = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$

then the series (i) converges if L < 1, (ii) diverges if L > 1 and (iii) No conclusion if L = 1.

• Root Test: If an infinite series $z_1 + z_2 + z_3 + ...$, with all terms nonzero, is such that $L = \lim_{n \to \infty} |(z_{n+1})^{1/n}|$

then the series (i) converges absolutely if L < 1, (ii) diverges if L > 1 and (iii) No conclusion if L = 1.

• If there is a sequence b_1 , b_2 , b_3 , b_4 , ... such that $|z_n| \le b_n$ for all n, and $b_1 + b_2 + b_3 + b_4 + ...$ converges, then $z_1 + z_2 + z_3 + z_4 + ...$ converges absolutely.