Name:		
Roll Number:	_	

Final Exam Solutions

$\operatorname{MTH302A}$ - Set Theory and Mathematical Logic

(Odd Semester 2021/22, IIT Kanpur)

INSTRUCTIONS

- 1. Write your **Name** and **Roll number** above.
- 2. This exam contains $\mathbf{6} \, + \, \mathbf{1}$ questions and is worth $\mathbf{60\%}$ of your grade.
- 3. Answer \mathbf{ALL} questions.

Page 2 MTH302A

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is **true or false**. No justification required.

- (i) There exists a countable $X \subseteq \omega_1$ such that $\sup(X) = \omega_1$.
- (ii) There exists a bijection $f: \mathbb{R}^7 \to \mathbb{R}^9$ satisfying: For every x, y in \mathbb{R}^7 , f(x-y) = f(x) f(y).
- (iii) If $f: \omega \to \omega$ is a strictly increasing computable function, then range(f) is computable.
- (iv) The set of all subsets of ω that are definable in $\mathcal{N} = (\omega, 0, S, +, \cdot)$ is countable.
- (v) TA is ω -categorical.

Solution

- (i) False. Since the union of a countable family of countable ordinals is countable.
- (ii) True.
- (iii) True. To check if $m \in \text{range}(f)$, we just need to check if $m \in \{f(0), f(1), \dots, f(m)\}$.
- (iv) True. Since each definable set is uniquely determined by an \mathcal{L}_{PA} -formula and there are only countably many \mathcal{L}_{PA} -formulas.
- (v) False. TA has countable non-standard models.

Page 3 MTH302A

Question 2. [10 Points]

- (a) [5 Points] Let \mathcal{F} be the set of all continuous functions $f: \mathbb{R} \to \mathbb{R}$. Show that $|\mathcal{F}| = \mathfrak{c}$.
- (b) [5 Points] Let \mathcal{E} be the set of all functions $f: \mathbb{R} \to \mathbb{R}$. Show that $|\mathcal{E}| > \mathfrak{c}$.

Solution

- (a) See Homework 19(b).
- (b) First observe that $|\mathcal{P}(\mathbb{R})| > |\mathbb{R}| = \mathfrak{c}$. Next note that the function $H : \mathcal{P}(\mathbb{R}) \to \mathcal{E}$ defined by $H(X) = 1_X$ (where $1_X : \mathbb{R} \to \{0,1\}$ is the characteristic function of X) is an injection. So by Cantor's theorem, $|\mathcal{E}| \geq |\mathcal{P}(\mathbb{R})| > |\mathbb{R}| = \mathfrak{c}$.

Page 4 MTH302A

Question 3. [10 Points]

Using transfinite recursion, construct a function $f: \mathbb{R} \to \mathbb{R}$ such that for every interval $(a, b) \subseteq \mathbb{R}$ and $y \in \mathbb{R}$, there exists an **irrational** $x \in (a, b)$ such that f(x) = y.

Solution. Let \mathcal{F} be the set of all pairs (J, y) where J is an open interval in \mathbb{R} and $y \in \mathbb{R}$. It is easy to see that $|\mathcal{F}| = \mathfrak{c}$. Let $\langle (J_{\alpha}, y_{\alpha}) : \alpha < \mathfrak{c} \rangle$ be an injective sequence with range \mathcal{F} . Using transfinite recursion define $\langle f_{\alpha} : \alpha < \mathfrak{c} \rangle$ such that the following hold.

- (a) Each f_{α} is a function and $dom(f_{\alpha}) \cup range(f_{\alpha}) \subseteq \mathbb{R}$.
- (b) For every $\alpha < \mathfrak{c}$, $|f_{\alpha}| \leq |\alpha + \omega| < \mathfrak{c}$.
- (c) $f_0 = \emptyset$ and if $\alpha < \mathfrak{c}$ is a limit ordinal, then $f_\alpha = \bigcup_{\beta < \alpha} f_\beta$.
- (d) If $\alpha < \beta < \mathfrak{c}$, then $f_{\alpha} \subseteq f_{\beta}$.
- (e) For every $\alpha < \mathfrak{c}$, there exists an irrational $x \in J_{\alpha} \cap \text{dom}(f_{\alpha+1})$ such that $f_{\alpha+1}(x) = y_{\alpha}$.

Suppose $\alpha < \mathfrak{c}$ and $\langle f_{\beta} : \beta < \alpha \rangle$ has been defined. We would like to define f_{α} such that Clauses (a)-(e) are preserved. If $\alpha = 0$ or a limit ordinal, we define f_{α} using Clause (c). It is easy to check that Clauses (a)-(e) are preserved.

So it suffices to define $f_{\alpha+1}$ assuming $\langle f_{\beta} : \beta \leq \alpha \rangle$ has already been defined. But this is easy: Since $|\operatorname{dom}(f_{\alpha})| = |f_{\alpha}| < \mathfrak{c}$, $|\mathbb{Q}| = \omega < \mathfrak{c}$ and $|J_{\alpha}| = \mathfrak{c}$, we can choose an $x \in (J_{\alpha} \setminus (\operatorname{dom}(f_{\alpha}) \cup \mathbb{Q}))$ and define

$$f_{\alpha+1} = f_{\alpha} \cup \{(x, y_{\alpha})\}\$$

Having constructed $\langle f_{\alpha} : \alpha < \mathfrak{c} \rangle$, define $g = \bigcup_{\alpha < \mathfrak{c}} f_{\alpha}$. Note that $dom(g) \subseteq \mathbb{R}$ and for every open interval J and $g \in \mathbb{R}$, there exists an irrational $x \in J \cap dom(g)$ such that g(x) = g. Extend g to a function $f : \mathbb{R} \to \mathbb{R}$ by defining f to be identically zero outside dom(g). It is clear that f is as required.

Page 5 MTH302A

Question 4. [10 Points]

Recall that DLO is the theory of dense linear orderings without end-points.

- (a) [2 Points] Show that $(\mathbb{Z}, <)$ is not an elementary submodel of $(\mathbb{Q}, <)$. Here \mathbb{Z} is the set of all integers and \mathbb{Q} is the set of all rationals.
- (b) [8 Points] Let $M \subseteq \mathbb{R}$ be countable. Assume that $(M, <) \models DLO$. Show that (M, <) is an elementary submodel of $(\mathbb{R}, <)$.

Solution

- (a) The sentence $(\forall x)(\forall y)(\exists z)(x < y \implies ((x < z) \land (z < y)))$ is true in $(\mathbb{Q}, <)$ but false in $(\mathbb{Z}, <)$. So $Th(\mathbb{Q}, <) \neq Th(\mathbb{Z}, <)$ which implies the claim.
- (b) Let $\mathcal{L} = \{ \prec \}$ where \prec is a binary relation symbol. Suppose $\psi(x, y_1, \ldots, y_n)$ is an \mathcal{L} -formula whose free variables are among x, y_1, \ldots, y_n and a_1, \ldots, a_n are in M. Assume that there exists $a \in \mathbb{R}$ such that $(\mathbb{R}, <) \models \psi(a, a_1, \ldots, a_n)$. We will show that there exists $b \in M$ such that $(\mathbb{R}, <) \models \psi(b, a_1, \ldots, a_n)$. By the Tarski-Vaught criterion, it will follow that (M, <) is an elementary submodel of $(\mathbb{R}, <)$.

Using the Lemma on Slide 157, choose a countable $N \subseteq \mathbb{R}$ such that $M \subseteq N$ and (N, <) is an elementary submodel of $(\mathbb{R}, <)$. Since (N, <) is elementary submodel of $(\mathbb{R}, <)$ and $(\mathbb{R}, <) \models (\exists x)(\psi(x, a_1, \ldots, a_n))$ we can find $c \in N$ such that $(N, <) \models \psi(c, a_1, \ldots, a_n)$.

By an argument similar to Practice Final problem 4(a), we can find an isomorphism $f:(N,<)\to (N,<)$ such that $f(a_k)=a_k$ for every $1\leq k\leq n$ and $f(c)\in M$. Put f(c)=b.

We claim that $(\mathbb{R}, <) \models \psi(b, a_1, \dots, a_n)$ and therefore $b \in M$ is as required. Since f is an isomorphism, by the Lemma on Slide 148, we get $(N, <) \models \psi(c, a_1, \dots, a_n)$ iff $(N, <) \models \psi(f(c), f(a_1), \dots, f(a_n))$ iff $(N, <) \models \psi(b, a_1, \dots, a_n)$. So $(N, <) \models \psi(b, a_1, \dots, a_n)$. As (N, <) is an elementary submodel of $(\mathbb{R}, <)$, it follows that $(\mathbb{R}, <) \models \psi(b, a_1, \dots, a_n)$ as claimed.

Page 6 MTH302A

Question 5. [10 Points]

- (a) [5 Points] Let $W \subseteq \omega$ be an infinite c.e. set. Show that there is an infinite $X \subseteq W$ such that X is computable.
- (b) [5 Points] Show that $\omega \setminus True_{\mathcal{N}}$ (defined on Slide 199) is not c.e.

Solution

- (a) By Practice Final problem 5(a), we can fix an injective computable function $f: \omega \to \omega$ such that range(f) = W. Define $h: \omega \to \omega$ as follows. h(0) = f(0) and h(n+1) = f(m) where m is least such that f(m) > h(n). Note that h is computable and strictly increasing. Put range(h) = X. Then $X \subseteq W$ is infinite and computable (see Question 1(iii)).
- (b) Suppose not. Then $\omega \setminus True_{\mathcal{N}}$ is definable in \mathcal{N} (by Homework problem (35)). Let $\phi(x)$ be an \mathcal{L}_{PA} formula witnessing this. It follows that $True_{\mathcal{N}}$ is also definable in \mathcal{N} via the formula $\neg \phi(x)$ which is
 impossible by Tarski's theorem.

Page 7 MTH302A

Question 6. [10 Points]

Let T be a computable \mathcal{L}_{PA} -theory such that $PA \subseteq T \subseteq TA$. For $f : \omega \to \omega$, we say that f is **numeralwise** representable in T iff there is an \mathcal{L}_{PA} -formula $\psi(y,x)$ such that for every $(m,n) \in \omega^2$,

- (i) If f(m) = n, then $T \vdash \psi(\overline{n}, \overline{m})$.
- (ii) If $f(m) \neq n$, then $T \vdash \neg \psi(\overline{n}, \overline{m})$.
- (a) [4 Points] Let $f: \omega \to \omega$. Show that f is numeralwise representable in T iff f is computable.
- (b) [6 Points] Show that T is undecidable.

Solution

(a)	First assume that f is computable. Then f is numeralwise representable in PA (Slide 201). Since $PA \subseteq T$,
	f is also numeralwise representable in T via the same formula.

Next suppose f is numeralwise representable in T via $\psi(y,x)$. Since T is computable, the set of theorems of T is c.e. (by Theorem (2) on Slide 186). So we can fix a program P such that for any \mathcal{L}_{PA} -sentence ϕ , P halts on input ϕ iff $T \vdash \phi$. Consider the program Q which on input m, starts running P with inputs $\psi(0,\overline{m}), \psi(\overline{1},\overline{m}), \psi(\overline{2},\overline{m}), \ldots$ until it finds an n such that P halts on input $\psi(\overline{n},\overline{m})$ after which it outputs this n. It is clear that Q computes f.

Page 8 MTH302A

Bonus Question [5 Points]

Let $\langle X_n : n < \omega \rangle$ be a sequence of **uncountable** sets. Show that there exists $\langle Y_n : n < \omega \rangle$ such that

- (a) For every $n < \omega$, Y_n is uncountable and $Y_n \subseteq X_n$.
- (b) For every $m < n < \omega$, $Y_n \cap Y_m = \emptyset$.

Solution. Using transfinite recursion, construct $\langle x_{\alpha,n} : n < \omega \text{ and } \alpha < \omega_1 \rangle$ as follows.

- (a) Each $x_{0,n} \in X_n$ and $x_{0,n}$'s are pairwise distinct.
- (b) Suppose $\alpha < \omega_1$ and $x_{\beta,n}$ has been chosen for every $\beta < \alpha$ and $n < \omega$. Put $W = \{x_{\beta,n} : \beta < \alpha \text{ and } n < \omega\}$. Choose $x_{\alpha,n} \in X_n \setminus W$ such that whenever $m \neq n$, $x_{\alpha,n} \neq x_{\alpha,m}$. This can be done because W is countable while each X_n is uncountable.

Put $Y_n = \{x_{\alpha,n} : \alpha < \omega_1\}$. It is clear that Y_n 's are pairwise disjoint uncountable subsets of X_n 's.