indicadium

Geometrie 39 Geometrie 38 6. Additionstheoreme B. Formeln $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ 1. Zurückführung auf spitze Winkel $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ $\begin{array}{ll} \sin \, \varphi = & \sin \, (180^\circ - \varphi) & \cos \varphi = -\cos (180^\circ - \varphi) \\ 90^\circ < \varphi < 180^\circ \colon \tan \varphi = -\tan \, (180^\circ - \varphi) & \cot \varphi = -\cot \, (180^\circ - \varphi) \end{array}$ $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $\begin{array}{lll} & \sin \varphi = -\sin \left(\varphi - 180^{\circ} \right) & \cos \varphi = -\cos (\varphi - 180^{\circ}) \\ & \tan \varphi = & \tan (\varphi - 180^{\circ}) & \cot \varphi = & \cot (\varphi - 180^{\circ}) \end{array}$ $\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ $\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ $\sin \varphi = -\sin (360^{\circ} - \varphi)$ $\cos \varphi = \cos (360^{\circ} - \varphi)$ $270^{\circ} < \varphi < 360^{\circ} \colon \tan \varphi = -\tan \left(360^{\circ} - \varphi\right) \quad \cot \varphi = -\cot \left(360^{\circ} - \varphi\right)$ $\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$ 2. Funktionswerte negativer Winkel 7. Funktionen des doppelten und halben Winkels $\sin\left(-\varphi\right) = -\sin\varphi$ $\cos(-\varphi) = \cos\varphi$ $\cot\left(-\varphi\right) = -\cot\varphi$ $\tan\left(-\varphi\right) = -\tan\varphi$ $\sin 2\alpha = 2\sin \alpha\cos \alpha$ 3. Zusammenhang zwischen Funktion und Kofunktion $\cos 2 \alpha = \cos^2 \alpha - \sin^2 \alpha = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha$ $\sin (90^{\circ} - \varphi) = \cos \varphi$ $\cos\left(90^\circ - \varphi\right) = \sin\ \varphi$ $\tan 2 \alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$ $\tan (90^{\circ} - \varphi) = \cot \varphi$ $\cot (90^{\circ} - \varphi) = \tan \varphi$ $\sin^2 \frac{\alpha}{2} = \frac{1}{2} (1 - \cos \alpha)$ $1 - \cos 2 \alpha = 2 \sin^2 \alpha$ 4. Beziehungen zwischen den Funktionswerten des gleichen Winkels $\sin^2\varphi + \cos^2\varphi = 1;*$ $\cos^2\frac{\alpha}{2} = \frac{1}{2}(1 + \cos\alpha)$ $1 + \cos 2 \alpha = 2 \cos^2 \alpha$ $\tan \varphi \cot \varphi = 1$ (ohne Einschränkung) $(\varphi + k \cdot 90^\circ)$ $1 + \tan^2 \varphi = \frac{1}{\cos^2 \varphi}$ $1 + \cot^2 \varphi = \frac{1}{\sin^2 \varphi}$ 8. Verwandlung einer Summe oder Differenz in ein Produkt $(\varphi \neq k \cdot 180^{\circ})$ 5. Umrechnungsformeln für $0^{\circ} < \varphi < 90^{\circ}$ $\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$ $\sin \varphi = \sqrt{1 - \cos^2 \varphi} = \frac{1}{\sqrt{1 + \tan^2 \varphi}}$ $\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$ $\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$ $\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$ 9. Verwandlung eines Produkts in eine Summe oder eine Differenz $2 \sin \alpha \sin \beta = \cos (\alpha - \beta) - \cos (\alpha + \beta)$ * $\sin^2\varphi$ ist eine Abkürzung für $(\sin\varphi)^2$. Besteht beim Hintereinanderschalten von Abbildungen Verwechslungsgefahr mit $\sin{(\sin\varphi)},$ so empfiehlt es sich, von der abgekürzten Schreibweise keinen Gebrauch zu machen. $2\cos\alpha\cos\beta = \cos(\alpha - \beta) + \cos(\alpha + \beta)$ $2 \sin \alpha \cos \beta = \sin (\alpha - \beta) + \sin (\alpha + \beta)$

Aus "Mathematische Formeln und Definitioner" Bayerischer Schulbuch Verlag J. Lindauer Verlag (Schaefer), 7. Auflage Borth et al.