§1 Monotone Sequences

Recall 1.1. Monotone means increasing or decreasing in the non strict sense.

Theorem 1.2

Let (x_n) be a monotone sequence. Then (x_n) is convergent if and only if it is bounded. This is useful because it is easier to check whether or not a sequence is bounded than to check whether or not it is convergent.

Proof. Assume that (x_n) is increasing. We will show that (x_n) converges of the supremum.

What is the supremeum of a sequence. We take all the numbers and consider it a set in \mathbb{R} and then find the supremeum. $x := \sup_{i=S} \underbrace{\{x_1, x_2, x_3, \dots\}}_{i=S}$.

Let $\epsilon > 0$, then $x - \epsilon$ is not an upper bound of S. Thus $\exists N \in \mathbb{N}$ such that $x - \epsilon < x_N \le X$ but (x_n) is increasing. We also have $x - \epsilon < x_N \le x_{N+1} \le x_{N+2} \le \cdots \le x$. i.e. $\forall n \ge N : x - \epsilon < x_n \le x$

 $\Rightarrow x_n \in]x - \epsilon, x]$ for all $n \ge N$ $\subseteq]x - \epsilon, x + \epsilon [= V_{\epsilon}(x)]$. i.e. $\forall n \ge N : x_n \in V_{\epsilon}(x)$. Thus (x_n) converges to $x \coloneqq \sup\{x_1, x_2, \dots\}$. The case that (x_n) is decreasing is left as an exercise.

Example 1.3

$$x_1 = 1, x_{n+1} = \frac{1}{2}x_n + 2$$

Show that x_n converges and determine its limit. We will show that (x_n) is increasing and bounded; by monotone convergence theorem, (x_n) converges. Lastly, we will show that $\lim(x_n) = 4$.

Proof. (x_n) is bounded from above by 4. We'll show this using induction.

 $\underline{n=1}$: $1 \le 4 \checkmark$

 $\underline{n \to n+1}$: Assume that $x_n \leq 4$. Then $x_{n+1} = \frac{1}{2}x_n + 2 \leq \frac{1}{2} \cdot 4 + 2 = 4$

Therefore (x_n) is bounded from above by 4.

Proof. Proving that (x_n) is increasing. Consider $x_{n+1} - x_n = \frac{1}{2}x_n + 2 - x_n = 2 - \frac{1}{2}x_n \ge 0$.

$$\Rightarrow \forall n \in \mathbb{N} \quad x_{n+1} - x_n \ge 0$$
$$\Rightarrow \forall n \in \mathbb{N} \quad x_{n+1} \ge x_n$$

i.e. (x_n) is increasing.

By showing that (x_n) is bounded from above and increasing, we know that (x_n) is convergent by the monotone convergence theorem. Now to find where it converges.

Let $x := \lim(x_n)$.

$$\forall n \in \mathbb{N} \quad x_{n+1} = \frac{1}{2}x_n + 2$$

$$\Rightarrow \lim(x_{n+1}) = \lim(\frac{1}{2}x_n + 2) = \frac{1}{2}\lim(x_n) + 2 = \frac{1}{2}x + 2$$

$$\Rightarrow x = \frac{1}{2}x + 2$$

$$\Rightarrow \frac{1}{2}x = 2 \Rightarrow x = 4$$

Note 1.4. It is essential for this argument that we knew in advance that (x_n) is convergent.

We've now shown that $\lim(x_n) = 4$.

Example 1.5

Exercise for the reader: $x_1 = 1$. $x_{n+1} = \sqrt{2 + x_n}$.

Prove that (x_n) converges to 2.

§1.1 Euler's constant

Consider the squence $x_n = (1 + \frac{1}{n})^n$ and $y_n = (1 + \frac{1}{n})^{n+1}$.

We will show that (x_n) increases and that (y_n) decreases.

Proof. (x_n) is increasing. We have to show that $\forall n \in \mathbb{N} : x_n \leq x_{n+1}$. i.e. that

$$(1 + \frac{1}{n})^n \le (1 + \frac{1}{n+1})^n + 1$$

$$\Leftrightarrow (1 + \frac{1}{n+1})^{n+1} \ge (1 + \frac{1}{n})^n$$

$$\Leftrightarrow 1 + \frac{1}{n+1} \ge {n+1 \choose 1} (1 + \frac{1}{n})^n$$

Recall the inequality of the algebraic and geometric mean. If $a_1, a_2, \ldots, a_n \geq 0$, then

$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \times \dots \times a_n}$$

Let $a_1 = \dots = a_n = 1 + \frac{1}{n}$ and $a_{n+1} = 1$. Then

$$\frac{n+\sqrt[4]{a_1 \times \dots \times a_n \times a_{n+1}}}{n+1} = \sqrt[n+1]{(1+\frac{1}{n})^n}$$
and
$$\frac{a_1 + \dots + a_n + a_{n+1}}{n+1} = \frac{n(1+\frac{1}{n})+1}{n+1} = \frac{n+1+1}{n+1} = \frac{n+2}{n+1} = 1 + \frac{1}{n+1}$$

Thus, by AGM-inequality, $1 + \frac{1}{n+1} \ge {n+1 \choose 1} \sqrt{(1+\frac{1}{n})^n}$.

Proof. Now to show that y_n is decreasing. Similar strategy, but take inverse to reverse inequality.

It follows from the above proofs that, Claim:

$$\forall n, k \in \mathbb{N} : x_n < y_n$$

Definition 1.6.

$$e \coloneqq \lim \left((1 + \frac{1}{n})^n \right) = \lim \left((1 + \frac{1}{n})^{n+1} \right)$$

In analysis 2, you'll see that

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

From which it can be shown that e is irrational.

Estimates for e. Since (x_n) is increasing and (y_n) is decreasing, we have that $\forall n \in \mathbb{N} : x_n \leq e \leq y_n$.

$$\frac{5}{2} < e < 3 \Leftarrow \begin{cases} x_6 \ge \frac{5}{2} = 2.5\\ y_5 < 3 \end{cases}$$

§1.2 Subsequences

Definition 1.7. Let $n_1 < n_2 < n_3 < \dots$ be natural numbers and let $(x_n) = (x_1, x_2, x_3, \dots)$ be a sequence. Then $(x_{n_k}) = (x_{n_1}, x_{n_2}, x_{n_3}, \dots)$ is called a subsequence of (x_n) .

Example 1.8

Let (x_1, x_2, x_3, \dots) be a sequence. Then $(x_1, x_3, x_5, x_7, \dots)$ is called the subsequence of odd indices; here $n_k = 2k - 1$.

Likewise, $(x_2, x_4, x_6, x_8, \dots)$ is called the subsequence of even indices; here $n_k = 2k$.

Theorem 1.9

Let (x_n) be convergent. Then every subsequence (x_{n_k}) of (x_n) also converges to the same limit.

Proof. Next class.

Example 1.10

Let 0 < a < 1; consider (a^n) . We will show that $\lim(a^n) = 0$. Note that (a^n) is decreasing and is bounded from below. By monotone convergence theorem, (a^n) converges.

Let $x := \lim(a^n)$. Now consider the subsequence of even terms (a^{2n}) . By the theorem above, this subsequence converges and has the same limit. i.e. $\lim(a^{2n}) = x$.

On the other hand, we can rewrite this as

$$\lim((a^n)^2) = [\lim(a^n)]^2 = x^2 = x$$

$$\Rightarrow x^2 - x = 0$$

$$\Rightarrow x(x - 1) = 0$$

This means that either x=0 or x=1. But $a^3 < a^2 < a^1 = a < 1 \Rightarrow x < 1 \Rightarrow x=0$.