TASK 2: PREDICTION USING UNSUPERVISED ML

AUTHOR: Abarna

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
```

Out[4]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1

```
In [7]: x=iris_df.iloc[:,[0,1,2,3]].values
    from sklearn.cluster import KMeans
    wcss=[]
    for i in range(1,11):
        kmeans=KMeans(n_clusters=i,init='k-means++',max_iter=300,n_init=10,r
        andom_state=0)
        kmeans.fit(x)
        wcss.append(kmeans.inertia_)

plt.plot(range(1,11),wcss)
    plt.title('The elbow method')
    plt.xlabel('no. of clusters')
    plt.ylabel('WCSS')
    plt.show()
```


In [11]: plt.scatter(x[y_kmeans==0,0],x[y_kmeans==0,1],s=100,c='red',label='Iris-setosa')
 plt.scatter(x[y_kmeans==1,0],x[y_kmeans==1,1],s=100,c='blue',label='Iris-versicolor')
 plt.scatter(x[y_kmeans==2,0],x[y_kmeans==2,1],s=100,c='green',label='Iris-virginica')

 plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s=100,c='yellow',label='Centroids')
 plt.legend()

Out[11]: <matplotlib.legend.Legend at 0x17a4b415948>

In []: