Appendix G: XpertAl citation evaluations

Reference	Citation	Is citation correct?	Supporting evidence
	Case study 1	I: OMS	0
Kökçam-Demir, U., Goldman, A., Esrafili, L., Gharib, M., Morsali, A., Weingart, O., & Janiak, C. (2020). Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chemical Society Reviews.	The documents discuss the importance of maintaining the structural integrity of MOFs while modifying metal ions to create OMS (Kökçam-Demir et al., 2020).	Yes	In MOF structures any change to the metal ions in the metal SBU must ensure the integrity of the network. Importantly, the MOF structure must not collapse, and their crystallinity and porosity should be preserved, that is, a labile terminal ligands should be removed without damage to the framework. The obtained not fully coordinated metal ions are termed open metal sites (OMS) or coordinatively unsaturated sites (CUS) or occasionally also open coordination sites (OCS).
Chung, Y. G., Haldoupis, E., Bucior, B. J., Haranczyk, M., Lee, S., Zhang, H., Vogiatzis, K. D., Milisavljevic, M., Ling, S., Camp, J. S., Slater, B., Siepmann, J. I., Sholl, D. S., & Snurr, R. Q. (2019). Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019. Journal of Chemical & Engineering Data. Zhou, W., Wu, H., &	The documents highlight the role of density in differentiating MOF structures and its impact on adsorption properties The documents discuss	Yes	Our results suggest that the
Yildirim, T. (2008). Enhanced H2 Adsorption in Isostructural Metal-Organic Frameworks with Open	the influence of ionic radius on the binding strength of gases in MOFs, suggesting that		relative strength of interaction of M2+-H2 may be empirically predicted by the ionic radius of the

Metal Sites: Strong Dependence of the Binding Strength on Metal Ions. Journal of the American Chemical Society.	cation size affects the coordination environment		cations in same coordination environment. This may provide a convenient guideline for the future development of MOFs with unsaturated metal sites.
	Case study	2: PLD	
Chung, Y. G., Haldoupis, E., Bucior, B. J., Haranczyk, M., Lee, S., Zhang, H., Vogiatzis, K. D., Milisavljevic, M., Ling, S., Camp, J. S., Slater, B., Siepmann, J. I., Sholl, D. S., & Snurr, R. Q. (2019). Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019. *Journal of Chemical & Engineering Data*.	The documents discuss the importance of crystal density as a descriptor for MOF structures, which is related to the volume per atom. Variations in atomic packing, which are influenced by the volume per atom, can lead to different structures and pore sizes	No	In addition, important geometric properties such asthe pore limiting diameter (PLD), largest cavity diameter(LCD), gravimetric and volumetric surface areas (GSA andVSA, respectively) 32 will change upon removal of bound solventmolecules. Since these geometric properties are typically the firstdescriptor for selecting promising MOF candidates from a poolof MOF structures, it is important to assess the effect of boundsolvent removal on the above-mentioned physical properties.
Haldoupis, E., Nair, S., &	Haldoupis, E., Nair, S., &	Yes	In this section, we pursue
Sholl, D. S. (2010). Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials: A Tool for Identifying Materials for Kinetic Separations. *Journal of Physical Chemistry C*.	Sholl, D. S. (2010). Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials: A Tool for Identifying Materials for Kinetic Separations. *Journal of Physical Chemistry C*.		this concept by determining theHenry's constant for adsorption of spherical adsorbates andestimating the activation energy associated with net diffusion of the same adsorbates in a large number of MOFs.
Case study 3: TOX			
Alabugin, I. V., Kuhn, L., Medvedev, M. G., Krivoshchapov, N. V., Vil', V. A., Yaremenko, I. A.,	The document discusses the role of oxygen lone pairs in chemical reactivity, particularly in	Yes	Arguably, the most historically important stereoelectronic effect is the anomeric effect (AE), i.e.,

		1	
Mehaffy, P., Yarie, M., Terent'ev, A. O., & Zolfigol, M. A. (2021). Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone.	anomeric systems where oxygen atoms interact with strong sigma-acceptors		the axial preference of acceptor groups at the anomeric position of sugars. Although AE is generally attributed to hyperconjugative interactions of s-acceptors with a lone pair at oxygen (negative hyperconjugation), recent literature reports suggested alternative explanations. In this context, it is timely to evaluate the fundamental connections between the AE and a broad variety of O-functional groups. Such connections illustrate the general role of hyperconjugation with oxygen lone pairs in reactivity.
	Case study	4· SOI	
Ishikawa, M., & Hashimoto, Y. (2011). Improvement in Aqueous Solubility in Small Molecule Drug Discovery Programs by Disruption of Molecular Planarity and Symmetry.	Additionally, disrupting molecular planarity and symmetry by eliminating aromaticity can enhance solubility	Yes	Improvement in Aqueous Solubility in Small Molecule Drug Discovery Programs by Disruption of Molecular Planarity and Symmetry
Walker, M. A. (2017). Improvement in aqueous solubility achieved via small molecular changes.	The presence of polar atoms like nitrogen or oxygen can alter solubility by affecting hydrogen bonding.	Yes	The General Solubility Equation (GSE, Eq. (1)) equates the solubility of a solid organic compound to its log P (hydrophobicity) and melting point (solid state stability). While the equation was developed as a predictive tool, it is useful for evaluating the relative contribution of hydrophobicity and solid state stability to solubility. Poorly soluble compounds, where the log P is larger than

			the melting point term, are
			said to display solvation
			limited solubility.
			-
			Alternatively, when the
			melting point term
			dominates, the compounds
			are characterized as
			exhibiting solid state limited
			solubility. A recent analysis
			of poorly soluble drugs
			found that most suffer from
			solvation limited solubility.
			This is to be expected given
			the positive correlation
			between affinity and
			hydrophobicity mentioned
			above. Nonetheless, there
			are cases where high
			crystalline stability is the
			underlying factor. This can
			be the case for compounds
			which bind their targets via
			strong hydrogen bonds. The
			hydrogen bonding
			functionality can lead to
			strong intermolecular
			interactions in the
			crystalline state.
	Case study	5: UFL	
Gharagheizi, F. (2009).	The document by	Yes	"SIC0" is of information
Prediction of upper	Gharagheizi (2009)		indices. These molecular
flammability limit percent	discusses the use of		descriptors are calculated
of pure compounds from	information index		as information content of
their molecular structures.	descriptors like SIC0,		molecules, based on the
*Journal of Hazardous	which account for		calculation of equivalence
Materials*.	neighborhood symmetry,		classes from the molecular
	in predicting the upper		graph. Among them, the
	flammability limit (UFL) of		indices of neighborhood
	organic compounds. An		symmetry take into account
	increase in SIC0		also neighbor degree and
	correlates with an		edge multiplicity. Increase in
	increase in UFL		this descriptor increases the
			UFLP.
	l .	1	· · -· ·

Yuan, S., Jiao, Z., Quddus,	While the provided	Yes	Table 1: Molecular
N., Kwon, J. S., & Mashuga,	documents do not		Descriptors Used To Predict
C. V. (2019). Developing	explicitly discuss the		the UFL : structural
Quantitative	dipole moment's impact		information content index
Structure-Property	on UFL, it is well-known in		(neighborhood symmetry of
Relationship Models To	the literature that dipole		0-order), dipole moment
Predict the Upper	moments can influence		
Flammability Limit Using	molecular interactions		
Machine Learning.	and stability, which are		
	critical for flammability		