```
In [99]: # Problem 1A:
In [100]: import numpy as np
import pandas as pd
import seaborn as sns
import scipy.stats as stats
from statsmodels.formula.api import ols

from statsmodels.stats.anova import _get_covariance,anova_lm # For n-way ANOVA
from statsmodels.stats.multicomp import (pairwise_tukeyhsd,MultiComparison) # Tuk
import matplotlib.pyplot as plt
%matplotlib inline
```

Loading the dataset CSV file

```
In [101]: df_salary = pd.read_csv('SalaryData.csv')
```

Checking the top 5 records

```
In [102]: df_salary.head()

Out[102]: Education Occupation Salary

O Doctorate Adm-clerical 153197

1 Doctorate Adm-clerical 115945

2 Doctorate Adm-clerical 175935

3 Doctorate Adm-clerical 220754

4 Doctorate Sales 170769
```

Checking the shape and information of the dataframe

```
In [103]: df_salary.shape
Out[103]: (40, 3)
```

```
In [104]: df_salary.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 40 entries, 0 to 39
          Data columns (total 3 columns):
               Column
                           Non-Null Count Dtype
           0
               Education
                           40 non-null
                                           object
           1
               Occupation 40 non-null
                                           object
           2
               Salary
                           40 non-null
                                            int64
          dtypes: int64(1), object(2)
          memory usage: 1.1+ KB
```

Checking the summary of the dataframe

```
In [105]: df_salary.describe(include='all')
```

Out[105]:

	Education	Occupation	Salary
count	40	40	40.000000
unique	3	4	NaN
top	Doctorate	Prof-specialty	NaN
freq	16	13	NaN
mean	NaN	NaN	162186.875000
std	NaN	NaN	64860.407506
min	NaN	NaN	50103.000000
25%	NaN	NaN	99897.500000
50%	NaN	NaN	169100.000000
75%	NaN	NaN	214440.750000
max	NaN	NaN	260151.000000

```
In [106]: df_salary.Occupation = pd.Categorical(df_salary.Occupation)
```

```
In [107]: df_salary.Education = pd.Categorical(df_salary.Education)
```

```
In [108]: fig = plt.figure(figsize=(16,6))
    fig.suptitle('Salary w.r.t Education & Occupation', fontsize=20, ha='center')
    sns.boxplot(x = 'Salary' , y= 'Occupation' , data = df_salary ,hue = 'Education')
    plt.xlabel('Salary of individuals',fontsize=20)
    plt.show();
```

Salary w.r.t Education & Occupation

Checking distinct values of Education

Checking distinct values of Occupation

```
In [122]: Doctorate = df_salary[df_salary['Education'] == ' Doctorate']['Salary']
Bachelors = df_salary[df_salary['Education'] == ' Bachelors']['Salary']
HSgrad = df_salary[df_salary['Education'] == ' HS-grad']['Salary']

ProfSpecialty = df_salary[df_salary['Occupation'] == ' Prof-specialty']['Salary']
Sales = df_salary[df_salary['Occupation'] == ' Sales']['Salary']
AdmClerical = df_salary[df_salary['Occupation'] == ' Adm-clerical']['Salary']
ExecManagerial = df_salary[df_salary['Occupation'] == ' Exec-managerial']['Salary
```

```
In [125]: from scipy import stats
    #The Shapiro-Wilk test tests the null hypothesis that the data was drawn from a r
    #alpha = 0.05
    print(stats.shapiro([Doctorate]))
    print(stats.shapiro([Bachelors]))
    print(stats.shapiro([HSgrad]))

    print(stats.shapiro([ProfSpecialty]))
    print(stats.shapiro([Sales]))
    print(stats.shapiro([AdmClerical]))
    print(stats.shapiro([ExecManagerial]))
```

```
ShapiroResult(statistic=0.8952829837799072, pvalue=0.0675690770149231) ShapiroResult(statistic=0.9607304334640503, pvalue=0.7050924301147461) ShapiroResult(statistic=0.885286271572113, pvalue=0.1783432960510254) ShapiroResult(statistic=0.736305832862854, pvalue=0.0013131146552041173) ShapiroResult(statistic=0.8897126913070679, pvalue=0.11683900654315948) ShapiroResult(statistic=0.9189430475234985, pvalue=0.34822404384613037) ShapiroResult(statistic=0.6901877522468567, pvalue=0.007539781276136637)
```

```
In [126]: |#Anderson Darling Test if Shapiro fails
          print(stats.anderson(Doctorate, dist='norm'))
          print(stats.anderson(Bachelors, dist='norm'))
          print(stats.anderson(HSgrad,dist='norm'))
          print(stats.anderson(ProfSpecialty, dist='norm'))
          print(stats.anderson(Sales,dist='norm'))
          print(stats.anderson(AdmClerical, dist='norm'))
          print(stats.anderson(ExecManagerial,dist='norm'))
          # if statistic < critical values then data looks normal (fail to reject H0)
          AndersonResult(statistic=0.6725735337482739, critical_values=array([0.5 , 0.56
          9, 0.683, 0.797, 0.948]), significance_level=array([15. , 10. , 5. , 2.5,
          1))
          AndersonResult(statistic=0.2793685121409055, critical values=array([0.498, 0.56
          8, 0.681, 0.794, 0.945]), significance_level=array([15. , 10. , 5. , 2.5, 1.
          1))
          AndersonResult(statistic=0.4369535315712767, critical values=array([0.507, 0.57
          8, 0.693, 0.808, 0.961]), significance_level=array([15. , 10. , 5. , 2.5, 1.
          ]))
          AndersonResult(statistic=1.5424424719265737, critical values=array([0.497, 0.56
          6, 0.679, 0.792, 0.942]), significance_level=array([15. , 10. , 5. , 2.5,
          AndersonResult(statistic=0.5755046432785171, critical values=array([0.497, 0.56
          6, 0.679, 0.792, 0.942]), significance_level=array([15. , 10. , 5. , 2.5,
          AndersonResult(statistic=0.3783000997297936, critical values=array([0.501, 0.57
          , 0.684, 0.798, 0.95 ]), significance_level=array([15. , 10. , 5. , 2.5,
          1))
          AndersonResult(statistic=0.7842030726712084, critical values=array([0.72, 0.82
          , 0.984, 1.148, 1.365]), significance_level=array([15. , 10. , 5. , 2.5, 1.
          1))
In [127]:
          #Homogeniety
          #The Levene test tests the null hypothesis that all input samples are from populd
          \#alpha = 0.05
          print(stats.levene(Doctorate, Bachelors, HSgrad))
          print(stats.levene(ProfSpecialty, Sales, AdmClerical, ExecManagerial))
```

Formulate the Null and Alternate Hypothesis

LeveneResult(statistic=1.8800921605836554, pvalue=0.16686425699301183) LeveneResult(statistic=2.4378177404396832, pvalue=0.0803790714975064)

Null Hypothesis H_0 : The mean salary earned by an individual is same with different categories of Education qualification

Alternate Hypothesis ${\cal H}_{\cal A}$: The mean salary earned by an individual is different in at-least one category of Education qualification

One Way Anova: Education

```
In [128]: formula = 'Salary ~ C(Education)'
          model = ols(formula, df salary).fit()
          aov table = anova lm(model)
          print(aov_table)
                          df
                                                                           PR(>F)
                                    sum sq
                                                 mean sq
          C(Education)
                         2.0 1.026955e+11
                                            5.134773e+10
                                                           30.95628 1.257709e-08
          Residual
                        37.0 6.137256e+10 1.658718e+09
                                                                NaN
                                                                              NaN
In [129]: |f,p = stats.f_oneway(df_salary[df_salary['Education'] == ' Doctorate'].Salary ,
In [130]: print(p)
          1.2577090926629002e-08
In [131]: print(f)
          30.95628008792558
```

Now, we see that the corresponding p-value is less than alpha (0.05). Thus, we reject the Null Hypothesis (H_0).

Conclusion: Since the p value is less than the significance level (0.05), we can reject the null hupothesis and conclude that the mean salary earned by an individual is different in atleast one category of Education qualifications

PointPlot of Education & Salary earned

Tukey HSD (Honestly Significant Difference) Test

single-step multiple comparison procedure and statistical test

```
In [133]: mc = MultiComparison( df_salary['Salary'], df_salary['Education'])
    result = mc.tukeyhsd()
    print(result)
```

Multiple Comparison of Means - Tukey HSD, FWER=0.05								
group1	group2	meandiff	p-adj	lower	upper	reject		
Bachelors Bachelors Doctorate	HS-grad	-90114.1556	0.001	7541.1439 -132035.1958 -174815.0876	-48193.1153	True True True		

Doctorate - Bachelors = 43274.0667

HS-grad - Bachelors = -90114.1556

HS-grad - Doctorate = -133388.2222

Hence, Doctorate > Bachelors > HS-grad

The above results reveal that the means of 3 categories of Education qualifications differ from each other

One Way Anova: Occupation

```
In [134]:
         formula = 'Salary ~ C(Occupation)'
          model = ols(formula, df salary).fit()
          aov table = anova lm(model)
          print(aov table)
                          df
                                     sum sq
                                                 mean sq
                                                                      PR(>F)
          C(Occupation)
                          3.0 1.125878e+10 3.752928e+09 0.884144 0.458508
          Residual
                         36.0 1.528092e+11 4.244701e+09
                                                                         NaN
                                                               NaN
In [135]: f,p = stats.f_oneway(df_salary[df_salary['Occupation'] == ' Prof-specialty'].Sala
In [136]: print(p)
```

0.4585078266495116

```
In [137]: print(f)
```

0.8841441289216039

155000

150000

145000

Adm-clerical

Conclusion: Since the p value is more than the significance level (0.05), we can accept the null hypothesis and conclude that the mean salary earned by an individual is same with different categories of Occupation

Prof-specialty Exec-managerial

Tukey HSD (Honestly Significant Difference) Test

Occupation

Sales

single-step multiple comparison procedure and statistical test

```
In [139]: mc = MultiComparison( df_salary['Salary'], df_salary['Occupation'])
    result = mc.tukeyhsd()
    print(result)
```

Multiple Comparison of Means - Tukey HSD, FWER=0.05						
=======================================	==========		======			==
group1	group2	meandiff	p-adj	lower	upper	r
	Exec-managerial	55693.3	0.4146	-40415.1459	151801.7459	
False	D C : 11	27522 2522	0 7050	46077 4044	101225 1000	
False	Prof-specialty	2/528.8538	0.7252	-462//.4011	101335.1088	
Adm-clerical	Sales	16180.1167	0.9	-58951.3115	91311.5449	
False						
Exec-managerial	Prof-specialty	-28164.4462	0.8263	-120502.4542	64173.5618	
False	6.1	20542 4022	0 6507	122012 0011	F2007 4274	
Exec-managerial False	Sales	-39513.1833	0.650/	-132913.8041	5388/.43/4	
Prof-specialty	Sales	-11348.7372	0.9	-81592.6398	58895.1655	
False						

Exec-managerial - Adm-clerical = 55693.3

Prof-specialty - Adm-clerical = 27528.8538

Sales - Adm-clerical = 16180.1167

Prof-specialty - Exec-managerial = -28164.4462

Sales - Exec-managerial = -39513.1833

Sales - Prof-specialty = -11348.7372

Hence, Exec-managerial > Prof-specialty > Sales > Adm-clerical

The above results reveal that the means of 3 categories of Occupations differ from each other

```
In [140]: # Problem 1B:
```

Two Way Anova: Education & Occupation

```
In [141]: formula = 'Salary ~ C(Education) + C(Occupation)'
          model = ols(formula, df salary).fit()
          aov_table = anova_lm(model)
          print(aov_table)
                           df
                                                                             PR(>F)
                                                                    F
                                      sum sq
                                                   mean sq
          C(Education)
                          2.0 1.026955e+11
                                              5.134773e+10
                                                            31.257677
                                                                       1.981539e-08
          C(Occupation)
                          3.0
                               5.519946e+09
                                              1.839982e+09
                                                             1.120080
                                                                       3.545825e-01
          Residual
                         34.0 5.585261e+10
                                             1.642724e+09
                                                                  NaN
                                                                                NaN
```

```
In [144]: from statsmodels.graphics.factorplots import interaction_plot
    interaction_plot(x = np.array(df_salary['Education']),trace = np.array(df_salary[
    plt.show();
```


Still, we can see that there is some sort of interaction between the two treatments. So, we will introduce a new term while performing the Two Way ANOVA.

Two Way Anova : Education & Occupation with Interaction

```
In [43]: formula = 'Salary ~ C(Education) +C(Occupation)+ C(Education):C(Occupation)'
         model = ols(formula, df salary).fit()
         aov table = anova lm(model,type=1)
         print(aov table)
                                        df
                                                                                F
                                                  sum sq
                                                               mean sq
         C(Education)
                                       2.0
                                           1.026955e+11
                                                          5.134773e+10
                                                                        72.211958
         C(Occupation)
                                            5.519946e+09
                                                          1.839982e+09
                                       3.0
                                                                         2.587626
         C(Education):C(Occupation)
                                       6.0
                                           3.634909e+10
                                                          6.058182e+09
                                                                         8.519815
         Residual
                                      29.0
                                           2.062102e+10
                                                          7.110697e+08
                                                                              NaN
                                            PR(>F)
         C(Education)
                                      5.466264e-12
         C(Occupation)
                                      7.211580e-02
         C(Education):C(Occupation)
                                     2.232500e-05
         Residual
                                               NaN
```

Due to the inclusion of the interaction effect term, we can see a slight change in the p-value of the first two treatments as compared to the Two-Way ANOVA without the interaction effect terms. And we see that the p-value of the interaction effect term of 'Education' and 'Occupation' suggests that the Null Hypothesis is rejected in this case.

In [145]: model.summary()

Out[145]:

OLS Regression Results

Dep. Variable: Salary R-squared: 0.660 Model: OLS Adj. R-squared: 0.610 Least Squares F-statistic: Method: 13.18 Date: Fri, 14 May 2021 Prob (F-statistic): 3.63e-07 Time: 22:55:56 Log-Likelihood: -477.90 No. Observations: 40 AIC: 967.8 **Df Residuals:** BIC: 977.9 34 Df Model: 5 **Covariance Type:** nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.461e+05	1.62e+04	9.028	0.000	1.13e+05	1.79e+05
C(Education)[T. Doctorate]	4.912e+04	1.52e+04	3.238	0.003	1.83e+04	7.99e+04
C(Education)[T. HS-grad]	-8.115e+04	1.8e+04	-4.515	0.000	-1.18e+05	-4.46e+04
C(Occupation)[T. Exec-managerial]	4.117e+04	2.34e+04	1.760	0.087	-6358.221	8.87e+04
C(Occupation)[T. Prof-specialty]	1.889e+04	1.71e+04	1.106	0.277	-1.58e+04	5.36e+04
C(Occupation)[T. Sales]	1.13e+04	1.74e+04	0.651	0.520	-2.4e+04	4.66e+04

 Omnibus:
 0.637
 Durbin-Watson:
 1.353

 Prob(Omnibus):
 0.727
 Jarque-Bera (JB):
 0.153

 Skew:
 -0.123
 Prob(JB):
 0.926

 Kurtosis:
 3.177
 Cond. No.
 5.94

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.