因果推断文献综述

罗姗姗

北京工商大学 数学与统计学院

January, 2025

目录

- ① 随机化试验 (Randomized Controlled Trial)
- ② 观察性研究 (Observational Studies)
- 3 工具变量 (Instrumental Variable)
- 4 阴性对照变量 (Proximal Casual Inference)
- 5 主分层分析 (Principal Stratification Analysis)
- 6 中介分析 (Mediation Analysis)
- 非随机缺失 (Nonignorable Missing Data)

随机化试验

Randomized Controlled Trial

随机化试验下相关问题 |

- ▶ Interference, SUTVA 假设不成立时
 - Hudgens, M. G., Halloran, M. E. (2008). Toward causal inference with interference. *Journal of the American Statistical Association*, **103**(482), 832–842.
 - Tchetgen, E. J. T., Van der Weele, T. J. (2012). On causal inference in the presence of interference. *Statistical Methods in Medical Research*, **21**, 55–75.
 - Liu, L., Hudgens, M. G. (2014). Large sample randomization inference of causal effects in the presence of interference. *Journal of the American Statistical Association*, **109**(505), 288–301.
 - Liu, L., Hudgens, M. G., Becker-Dreps, S. (2016). On inverse probability-weighted estimators in the presence of interference. *Biometrika*, **103**(4), 829–842.

随机化试验下相关问题 ||

Park, C., Kang, H. (2021). Assumption-Lean Analysis of Cluster Randomized Trials in Infectious Diseases for Intent-to-Treat Effects and Network Effects. *Journal of the American Statistical Association*, **118**, 1195–1206.

▶ Noncompliance, 非依从

- Imbens, G. W., Angrist, J. D. (1994). Identification and estimation of local average treatment effects. *Econometrica*, **62**, 467–475.
- Angrist, J. D., Imbens, G. W., Rubin, D. B. (1996). Identification of causal effects using instrumental variables. *Journal of the American Statistical Association*, **91**, 444–455.

随机化试验下相关问题 |||

Imai, K., Jiang, Z., Malani, A. (2020). Causal inference with interference and noncompliance in two-stage randomized experiments. *Journal of the American Statistical Association*, **116**(534), 632–644.

► Covariate adjustment in RCT

- Zhao, A., Ding, P. (2022). To Adjust or not to Adjust? Estimating the Average Treatment Effect in Randomized Experiments with Missing Covariates. *Journal of the American Statistical Association*, **119**(545), 450–460.
- Ding, P. (2024). A first course in causal inference. CRC Press. (Chapters 3-9)

Rerandomization

Ding, P. (2024). A first course in causal inference. CRC Press. (Chapters 3-9)

观察性研究

Observational Studies

观察性研究中的相关问题 |

▶ 基础知识

Ding, P. (2024). A first course in causal inference. CRC Press. (Chapters 10-15)

▶ 稳健估计

- Robins, J. M., Rotnitzky, A., Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. *Journal of the American Statistical Association*, **89**, 846–866.
- Lunceford, J. K., Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. *Statistics in Medicine*, **23**, 2937–2960.
- Bang, H., Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. *Biometrics*, **61**, 962–973

观察性研究中的相关问题 ||

- Kang, J. D. Y., Schafer, J. L. (2007). Comment: Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. *Statistical Science*, **22**, 523–539.
- Cao, W., Tsiatis, A. A., Davidian, M. (2009). Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. *Biometrika*, **96**(3), 723–734.
- Tan, Z. (2010). Bounded, efficient and doubly robust estimation with inverse weighting. *Biometrika*, **97**, 661–682.
- Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters. *The Econometrics Journal*, **21**(1), C1–C68.

观察性研究中的相关问题 !!!

Pan, Y., Zhao, Y. Q. (2020). Improved doubly robust estimation in learning optimal individualized treatment rules. *Journal of the American Statistical Association*, **116**(533), 283–294.

▶ 迁移学习,数据融合

- Yang, S., Kim, J. K., Song, R. (2020). Doubly robust inference when combining probability and non-probability samples with high dimensional data. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, **82**(2), 445–465.
- Yang, S., Ding, P. (2020). Combining multiple observational data sources to estimate causal effects. *Journal of the American Statistical Association*, **115**(531), 1540–1554.
- Li, X., Miao, W., Lu, F., Zhou, X.-H. (2023). Improving efficiency of inference in clinical trials with external control data. *Biometrics*, **79**(1), 394–403.

4 D > 4 P > 4 P > 4 P >

10/55

观察性研究中的相关问题 IV

- Wu, L., Yang, S. (2023). Transfer learning of individualized treatment rules from experimental to real-world data. *Journal of Computational and Graphical Statistics*, **32**(3), 1036–1045.
- Chu, J., Lu, W., Yang, S. (2023). Targeted optimal treatment regime learning using summary statistics. *Biometrika*, **110**(4), 913–931.
- Kallus, N., Mao, X. (2024). On the role of surrogates in the efficient estimation of treatment effects with limited outcome data. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, to appear.
- Wu, P., Luo, S., Geng, Z. (2024). On the comparative analysis of average treatment effects estimation via data combination. *Journal of the American Statistical Association*, to appear.
- Optimal treatment regime (OTR); Policy learning

观察性研究中的相关问题V

- Murphy, S. A. (2003). Optimal dynamic treatment regimes. *Journal of the Royal Statistical Society, Series B*, **65**, 331–355. (A-learning)
- Qian, M., Murphy, S. A. (2011). Performance guarantees for individualized treatment rules. *The Annals of Statistics*, **39**, 1180. (Q-learning)
- Zhang, Y., Laber, E. B., Tsiatis, A., Davidian, M. (2015). Using decision lists to construct interpretable and parsimonious treatment regimes. *Biometrics*, **71**, 895–904
- Zhao, Y.-Q., Zeng, D., Rush, A. J., Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. *Journal of the American Statistical Association*, **107**, 1106–1118.
- Zhao, Y.-Q., Zeng, D., Laber, E. B., Kosorok, M. R. (2015). New statistical learning methods for estimating optimal dynamic treatment regimes. *Journal of the American Statistical Association*, **110**, 583–598.

观察性研究中的相关问题 VI

- Chu, J., Lu, W., Yang, S. (2023). Targeted optimal treatment regime learning using summary statistics. *Biometrika*, **110**(4), 913–931.
- Li, C., Zeng, D., Zhu, W. (2024). A robust covariate-balancing method for learning optimal individualized treatment regimes. *Biometrika*, to appear.
- Pan, Y., Zhao, Y. Q. (2020). Improved doubly robust estimation in learning optimal individualized treatment rules. *Journal of the American Statistical Association*, **116**(533), 283–294.
- Guo, W., Zhou, X. H., Ma, S. (2021). Estimation of optimal individualized treatment rules using a covariate-specific treatment effect curve with high-dimensional covariates. *Journal of the American Statistical Association*, **116**(533), 309–321.

▶ 混杂调整

观察性研究中的相关问题 VII

Luo, S., Min, J., Li, W., Wang, X., Geng, Z. (2025). A comparative analysis of different adjustment sets using propensity score based estimators.

Computational Statistics & Data Analysis, 203, 108079.

工具变量

Instrumental Variable

工具变量的相关问题 |

▶ 基础知识

▶ 非参平均因果作用识别

Cui, Y., Tchetgen Tchetgen, E. (2020). A semiparametric instrumental variable approach to optimal treatment regimes under endogeneity. *Journal of the American Statistical Association*, **116**(533), 162–173.

工具变量的相关问题 ||

- Sun, B., Cui, Y., Tchetgen Tchetgen, E. (2022). Selective machine learning of the average treatment effect with an invalid instrumental variable. *Journal of Machine Learning Research*, **23**(204), 1–40.
- ▶ Optimal treatment regime (OTR); Policy learning
 - Cui, Y., Tchetgen Tchetgen, E. (2020). A semiparametric instrumental variable approach to optimal treatment regimes under endogeneity. *Journal of the American Statistical Association*, **116**(533), 162–173.
 - Qiu, H., Carone, M., Sadikova, E., Petukhova, M., Kessler, R. C., Luedtke, A. (2021). Optimal individualized decision rules using instrumental variable methods. *Journal of the American Statistical Association*, **116**(533), 174–191.
- ▶ 高维 (无效) 工具变量

工具变量的相关问题 |||

Kang, H., Zhang, A., Cai, T. T., Small, D. S. (2016). Instrumental variables estimation with some invalid instruments and its application to Mendelian randomization. *Journal of the American Statistical Association*, **111**(513), 132–144.

Guo, Z., Kang, H., Cai, T. T., Small, D. S. (2018). Confidence intervals for causal effects with invalid instruments by using two-stage hard thresholding with voting. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, **80**(4), 793–815.

工具变量的相关问题 IV

Windmeijer, F., Farbmacher, H., Davies, N., Davey Smith, G. (2019). On the use of the lasso for instrumental variables estimation with some invalid instruments. *Journal of the American Statistical Association*, **114**(527), 1339–1350.

Windmeijer, F., Liang, X., Hartwig, F. P., Bowden, J. (2021). The confidence interval method for selecting valid instrumental variables. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, **83**(4), 752–776.

▶ 无效工具变量

Sun, B., Cui, Y., Tchetgen Tchetgen, E. (2022). Selective machine learning of the average treatment effect with an invalid instrumental variable. *Journal of Machine Learning Research*, **23**(204), 1–40.

工具变量的相关问题 V

Liu, Z., Ye, T., Sun, B., Schooling, M., Tchetgen, E. T. (2023). Mendelian randomization mixed-scale treatment effect robust identification and estimation for causal inference. *Biometrics*, **79**, 2208–2219.

Dukes, O., Richardson, D. B., Shahn, Z., Robins, J. M., Tchetgen Tchetgen, E. J. (2024). Using negative controls to identify causal effects with invalid instrumental variables. *Biometrika*, to appear.

▶ 个体因果作用

Vuong, Q., Xu, H. (2017). Counterfactual mapping and individual treatment effects in nonseparable models with binary endogeneity. *Quantitative Economics*, **8**(2), 589–610.

工具变量的相关问题 VI

Feng, Q., Vuong, Q., Xu, H. (2020). Estimation of heterogeneous individual treatment effects with endogenous treatments. *Journal of the American Statistical Association*, **115**(529), 231–240.

▶ 迁移学习;两样本孟德尔随机化

- Sun, B., Miao, W. (2022). On semiparametric instrumental variable estimation of average treatment effects through data fusion. *Statistica Sinica*, **32**, 569–590.
- Zhao, Q., Wang, J., Spiller, W., Bowden, J., Small, D. S. (2019). Two-sample instrumental variable analyses using heterogeneous samples. *Statistical Science*, **34**(2), 317–333.
- Zhao, Q., Wang, J., Hemani, G., Bowden, J., Small, D. S. (2020). Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. *Annals of Statistics*, **48**, 1742–1769.

工具变量的相关问题 VII

Shuai, K., Luo, S., Li, W., He, Y. (2024). Identifying causal effects using instrumental variables from the auxiliary population. *Statistica Sinica*, To appear.

▶ 缺失数据

Chen, H., Geng, Z., Zhou, X. H. (2009). Identifiability and estimation of causal effects in randomized trials with noncompliance and completely nonignorable missing data. *Biometrics*, **65**, 675–682.

▶ 孟德尔随机化

- VanderWeele, T. J., Tchetgen Tchetgen, E. J., Cornelis, M., Kraft, P. (2014).

 Methodological challenges in Mendelian randomization. *Epidemiology*, **25**, 427.
- Bowden, J., Davey Smith, G., Burgess, S. (2015). Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. *International Journal of Epidemiology*, **44**(2), 512.

工具变量的相关问题 VIII

Bowden, J., Spiller, W., Del Greco M, F., Sheehan, N., Thompson, J., Minelli, C., Davey Smith, G. (2018). Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the radial plot and radial regression. *International Journal of Epidemiology*, **47**, 1264–1278.

▶ 双向因果作用

Li, S., Ye, T. (2024). A focusing framework for testing bi-directional causal effects with GWAS summary data. *Journal of the Royal Statistical Society: Series B*.

Xie, F., Yao, Z., Xie, L., Zeng, Y., Geng, Z. (2024). Identification and estimation of the bi-directional MR with some invalid instruments. In *Proceedings of the 38th International Conference on Neural Information Processing Systems (NeurIPS)*, Vancouver, Canada.

阴性对照变量

Negative Controls, Proximal Casual Inference

阴性对照下相关问题 |

阴性对照识别

- Kuroki, M., Pearl, J. (2014). Measurement bias and effect restoration in causal inference. *Biometrika*, **101**(2), 423–437.
 - Miao, W., Geng, Z., Tchetgen Tchetgen, E. (2018). Identifying causal effects with proxy variables of an unmeasured confounder. Biometrika, 105, 987–993.
- Shi, X., Miao, W., Nelson, J. C., Tchetgen Tchetgen, E. (2020). Multiply robust causal inference with double negative control adjustment for categorical unmeasured confounding. Journal of the Royal Statistical Society: Series B, 82, 521-540
- Miao, W., Shi, X., Li, Y., Tchetgen Tchetgen, E. J. (2024). A confounding bridge approach for double negative control inference on causal effects. Statistical Theory and Related Fields, 8(4), 262–273.

阴性对照下相关问题 ||

- Cui, Y., Pu, H., Shi, X., Miao, W., Tchetgen Tchetgen, E. (2023).

 Semiparametric proximal causal inference. *Journal of the American Statistical Association*, **119**(546), 1348–1359.
- Tchetgen Tchetgen, E. J., Ying, A., Cui, Y., Shi, X., Miao, W. (2024). An introduction to proximal causal inference. *Statistical Science*, **39**(3), 375–390.

▶ 阴性对照稳健估计

- Shi, X., Miao, W., Nelson, J. C., Tchetgen Tchetgen, E. (2020). Multiply robust causal inference with double negative control adjustment for categorical unmeasured confounding. *Journal of the Royal Statistical Society: Series B*, **82**, 521–540.
- Cui, Y., Pu, H., Shi, X., Miao, W., Tchetgen Tchetgen, E. (2023).

 Semiparametric proximal causal inference. *Journal of the American Statistical Association*, **119**(546), 1348–1359.

阴性对照下相关问题 |||

- ▶ 中介分析存在未知混杂的识别性
 - Dukes, O., Shpitser, I., Tchetgen Tchetgen, E. J. (2023). Proximal mediation analysis. *Biometrika*, **110**(4), 973–987.
- ▶ 溢出效应存在未知混杂的识别性
 - Egami, N., Tchetgen Tchetgen, E. J. (2024). Identification and estimation of causal peer effects using double negative controls for unmeasured network confounding. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, **86**(2), 487–511.
- ▶ 死亡删失存在未知混杂的识别性

阴性对照下相关问题 IV

- Luo, S., Li, W., Miao, W., He, Y. (2024). Identification and estimation of causal effects in the presence of confounded principal strata. *Statistics in Medicine*, 2024; 43(22): 4372-4387.
- ▶ 数据融合/无效工具变量 (NCE)
 - Dukes, O., Richardson, D. B., Shahn, Z., Robins, J. M., Tchetgen Tchetgen, E. J. (2024). Using negative controls to identify causal effects with invalid instrumental variables. *Biometrika*, to appear.
- binary outcome (regression view) Proximal Causal Inference
 - Liu, J., Park, C., Li, K., Tchetgen Tchetgen, E. J. (2024). Regression-based proximal causal inference. *American Journal of Epidemiology*, to appear.

Shanshan Luo (BTBU) Causal Inference January, 2025 28/55

阴性对照下相关问题 V

▶ 混杂桥函数的非参估计

Zhang, J., Li, W., Miao, W., Tchetgen Tchetgen, E. (2023). Proximal causal inference without uniqueness assumptions. *Statistics & Probability Letters*, **198**, 109836.

Kallus, N., Mao, X., Uehara, M. (2021). Causal inference under unmeasured confounding with negative controls: A minimax learning approach. *arXiv* preprint *arXiv*:2103.14029.

阴性对照下相关问题 VI

Ghassami, A., Ying, A., Shpitser, I., Tchetgen Tchetgen, E. (2022). Minimax kernel machine learning for a class of doubly robust functionals with application to proximal causal inference. In *International Conference on Artificial Intelligence and Statistics* (pp. 7210–7239). PMLR.

▶ 阴性对照 OTR

Qi, Z., Miao, R., Zhang, X. (2023). Proximal learning for individualized treatment regimes under unmeasured confounding. *Journal of the American Statistical Association*, **119**(546), 915–928.

▶ 找阴性对照变量,因果发现

Shi, X., Miao, W., Tchetgen, E. T. (2020b). A selective review of negative control methods in epidemiology. *Current Epidemiology Reports*, **7**, 190–202.

4 D > 4 A > 4 B > 4 B >

30 / 55

阴性对照下相关问题 VII

Kummerfeld, E., Lim, J., Shi, X. (2024). Data-driven Automated Negative Control Estimation (DANCE): search for, validation of, and causal inference with negative controls. *Journal of Machine Learning Research*, **25**(229), 1–35.

▶ 选择偏差,Test-Negative Design

Schnitzer, M. E. (2022). Estimands and estimation of COVID-19 vaccine effectiveness under the test-negative design: Connections to causal inference. *Epidemiology (Cambridge, Mass.)*, **33**(3), 325–333.

Li, K. Q., Shi, X., Miao, W., Tchetgen Tchetgen, E. (2024). Double negative control inference in test-negative design studies of vaccine effectiveness. *Journal of the American Statistical Association*, **119**(547), 1859–1870.

4 D > 4 A > 4 B > 4 B >

31 / 55

主分层分析

Principal Stratification Analysis

主分层分析下相关问题 |

▶ 基础知识

- Ding, P. (2024). A first course in causal inference. CRC Press. (Chapter 26)
- ▶ 主分层因果作用的界
 - Zhang, J. L., Rubin, D. B. (2003). Estimation of causal effects via principle stratification when some outcomes are truncated by 'death'. *Journal of Educational and Behavioral Statistics*, **28**, 353–368.
 - Imai, K. (2008). Sharp bounds on the causal effects in randomized experiments with "truncation-by-death". *Statistics & Probability Letters*, **78**, 144–149.
 - Lee, D. S. (2009). Training, wages, and sample selection: Estimating sharp bounds on treatment effects. *The Review of Economic Studies*, **76**, 1071–1102.
 - Long, D. M., Hudgens, M. G. (2013). Sharpening bounds on principal effects with covariates. *Biometrics*, **69**, 812–819.

主分层分析下相关问题 ||

▶ 主分层因果作用的识别性

- Ding, P., Geng, Z., Yan, W., Zhou, X.-H. (2011). Identifiability and estimation of causal effects by principal stratification with outcomes truncated by death. *Journal of the American Statistical Association*, **106**, 1578–1591.
- Zhang, J. L., Rubin, D. B., Mealli, F. (2009). Likelihood-based analysis of causal effects of job-training programs using principal stratification. *Journal of the American Statistical Association*, **104**, 166–176.
- Jiang, Z., Ding, P., Geng, Z. (2016). Principal causal effect identification and surrogate end point evaluation by multiple trials. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **78**, 829–848.
- Ding, P., Lu, J. (2017). Principal stratification analysis using principal scores. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **79**, 757–777.

4 D > 4 A > 4 B > 4 B >

34 / 55

主分层分析下相关问题 |||

- Wang, L., Richardson, T. S., Zhou, X.-H. (2017). Causal analysis of ordinal treatments and binary outcomes under truncation by death. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **79**, 719–735.
- Wang, L., Zhou, X.-H., Richardson, T. S. (2017). Identification and estimation of causal effects with outcomes truncated by death. *Biometrika*, **104**, 597–612.
- Jiang, Z., Ding, P. (2021). Identification of causal effects within principal strata using auxiliary variables. *Statistical Science*, **36**, 493–508.
- Jiang, Z., Yang, S., Ding, P. (2022). Multiply robust estimation of causal effects under principal ignorability. *Journal of the Royal Statistical Society: Series B* (Statistical Methodology), **84**(4), 1423–1445.
- Luo, S., Li, W., He, Y. (2023). Causal inference with outcomes truncated by death in multiarm studies. *Biometrics*, **79**(1), 502–513.

主分层分析下相关问题 IV

Luo, S., Li, W., Miao, W., He, Y. (2024). Identification and estimation of causal effects in the presence of confounded principal strata. *Statistics in Medicine*, 2024; 43(22): 4372-4387.

▶ 归因分析

- Pearl, J. (1999). Probabilities of causation: Three counterfactual interpretations and their identification. *Synthese*, **121**(1), 93–149.
- Shingaki, R., Kuroki, M. (2021). Identification and estimation of joint probabilities of potential outcomes in observational studies with covariate information. In *Proceedings of the 35th International Conference on Neural Information Processing Systems*, 26475–26486.
- Lu, Z., Geng, Z., Li, W., Zhu, S., Jia, J. (2023). Evaluating causes of effects by posterior effects of causes. *Biometrika*, **110**(2), 449–465.

主分层分析下相关问题 V

Kawakami, Y., Shingaki, R., Kuroki, M. (2023). Identification and estimation of the probabilities of potential outcome types using covariate information in studies with non-compliance. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(10), 12234–12242.

Li, W., Lu, Z., Jia, J., Xie, M., Geng, Z. (2024). Retrospective causal inference with multiple effect variables. *Biometrika*, **111**(2), 573–589.

▶ 公平性评价

Imai, K., Jiang, Z., Greiner, J., Halen, R., Shin, S. (2023). Experimental evaluation of algorithm-assisted human decision-making: Application to pretrial public safety assessment (with discussion). *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, **186**, 167–189.

主分层分析下相关问题 VI

Imai, K., Jiang, Z. (2023). Principal fairness for human and algorithmic decision-making. *Statistical Science*, **38**, 317–328.

Ben-Michael, E., Greiner, D. J., Huang, M., Imai, K., Jiang, Z., Shin, S. (2024). Does AI help humans make better decisions? A methodological framework for experimental evaluation. *arXiv preprint*, arXiv:2403.12108.

▶ 敏感性分析

Schwartz, S., Li, F., Reiter, J. P. (2012). Sensitivity analysis for unmeasured confounding in principal stratification settings with binary variables. *Statistics in Medicine*, **31**(10), 949–962.

Ding, P., Lu, J. (2017). Principal stratification analysis using principal scores. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **79**, 757–777.

主分层分析下相关问题 VII

Optimal treatment regime (OTR); Policy learning

Ben-Michael, E., Imai, K., Jiang, Z. (2024). Policy learning with asymmetric counterfactual utilities. *Journal of the American Statistical Association*, **2024**, 1–14.

▶ 与中介分析的联系

Forastiere, L., Mattei, A., Ding, P. (2018). Principal ignorability in mediation analysis: through and beyond sequential ignorability. *Biometrika*, **105**(4), 979–986.

中介分析

Mediation Analysis

中介分析下相关问题 |

▶ 基础知识

▶ 稳健估计

Tchetgen Tchetgen, E. J., Shpitser, I. (2012). Semiparametric theory for causal mediation analysis: efficiency bounds, multiple robustness, and sensitivity analysis. *Annals of Statistics*, **40**(3), 1816.

▶ 多 (高维) 中介变量

VanderWeele, T., Vansteelandt, S. (2014). Mediation analysis with multiple mediators. *Epidemiologic Methods*, **2**, 95–115.

Daniel, R. M., De Stavola, B. L., Cousens, S., Vansteelandt, S. (2015). Causal mediation analysis with multiple mediators. *Biometrics*, **71**, 1–14.

中介分析下相关问题 ||

Xia, F., Chan, K. C. G. (2022). Decomposition, identification and multiply robust estimation of natural mediation effects with multiple mediators. *Biometrika*, **109**(4), 1085–1100.

▶ 存在未知混杂的识别问题

Guo, Z., Small, D. S., Gansky, S. A., Cheng, J. (2018). Mediation analysis for count and zero-inflated count data without sequential ignorability and its application in dental studies. *Journal of the Royal Statistical Society Series C: Applied Statistics*, **67**, 371–394.

Yuan, Y., Qu, A. (2024). De-confounding causal inference using latent multiple-mediator pathways. *Journal of the American Statistical Association*, **119**(547), 2051–2065.

中介分析下相关问题 |||

- Shuai, K., Liu, L., He, Y., Li, W. (2023). Mediation pathway selection with unmeasured mediator-outcome confounding. *arXiv preprint*, arXiv:2311.16793.
- Dukes, O., Shpitser, I., Tchetgen Tchetgen, E. J. (2023). Proximal mediation analysis. *Biometrika*, **110**(4), 973–987.

▶ 缺失数据

- Li, W., Zhou, X.-H. (2017). Identifiability and estimation of causal mediation effects with missing data. *Statistics in Medicine*, **36**, 3948–3965.
- Zuo, S., Ghosh, D., Ding, P., Yang, F. (2024). Mediation analysis with the mediator and outcome missing not at random. *Journal of the American Statistical Association*, to appear.

非随机缺失

Nonignorable Missing Data

缺失数据下相关问题 |

▶ 非随机缺失的识别, shadow variable

 \boxtimes : (a) $Z \perp \!\!\! \perp R \mid (Y, X)$; (b) $Z \not\perp \!\!\! \perp Y \mid (R = 1, X)$

Ma, W. Q., Geng, Z., Hu, Y. H. (2003). Identification of graphical models for nonignorable nonresponse of binary outcomes in longitudinal studies. *Journal of Multivariate Analysis*, **87**(1), 24–45.

缺失数据下相关问题 ||

- D'Haultfœuille, X. (2010). A new instrumental method for dealing with endogenous selection. *Journal of Econometrics*, **154**, 1–15.
- Wang, S., Shao, J., Kim, J. K. (2014). An instrumental variable approach for identification and estimation with nonignorable nonresponse. *Statistica Sinica*, **24**. 1097–1116.
- Miao, W., Tchetgen Tchetgen, E. J. (2016). On varieties of doubly robust estimators under missingness not at random with a shadow variable. *Biometrika*, **103**, 475–482.
- Li, W., Zhou, X.-H. (2017). Identifiability and estimation of causal mediation effects with missing data. *Statistics in Medicine*, **36**, 3948–3965.
- Yang, S., Wang, L., Ding, P. (2019). Causal inference with confounders missing not at random. *Biometrika*, **106**(4), 875–888.

缺失数据下相关问题 |||

- Zhao, J., Ma, Y. (2022). A versatile estimation procedure without estimating the nonignorable missingness mechanism. *Journal of the American Statistical Association*, **117**(540), 1916–1930.
- Li, W., Miao, W., Tchetgen Tchetgen, E. (2023). Nonparametric inference about mean functionals of nonignorable nonresponse data without identifying the joint distribution. *Journal of the Royal Statistical Society: Series B*, **85**(3), 913–935.
- Zuo, S., Ghosh, D., Ding, P., Yang, F. (2024). Mediation analysis with the mediator and outcome missing not at random. *Journal of the American Statistical Association*, to appear.
- ▶ 非随机缺失的识别, instrumental variable

缺失数据下相关问题 IV

 \boxtimes : (a) $Z \perp \!\!\! \perp R \mid X$; (b) $Z \perp \!\!\! \perp Y \mid X$

Tchetgen Tchetgen, E. J., Wirth, K. E. (2017). A general instrumental variable framework for regression analysis with outcome missing not at random.

Biometrics. 73. 1123–1131.

Sun, B., Liu, L., Miao, W., et al. (2018). Semiparametric estimation with data missing not at random using an instrumental variable. *Statistica Sinica*, **28**, 1965–1983.

缺失数据下相关问题 V

Liu, L., Miao, W., Sun, B., Robins, J., Tchetgen Tchetgen, E. (2020).

Identification and inference for marginal average treatment effect on the treated with an instrumental variable. *Statistica Sinica*, **30**(3), 1517.

▶ 非随机缺失的识别,参数模型

Heckman, J. J. (1979). Sample selection bias as a specification error. *Econometrica*, **47**, 153–161.

Miao, W., Ding, P., Geng, Z. (2016). Identifiability of normal and normal mixture models with nonignorable missing data. *Journal of the American Statistical Association*, **111**, 1673–1683.

随机缺失相关知识

缺失机制

- 随机缺失 (Missing at random, MAR): R ⊥ Y | X;
 (缺失只依赖于完全观测到的协变量,不依赖于缺失值本身)
- 非随机缺失 (Missing not at random, MNAR): R Д Y | X;
 (缺失是依赖于缺失值的)

随机缺失 (MAR)

• 基于模型 $E(Y | X, R = 1) = m(X; \beta)$ 的回归估计 (REG)

$$\hat{\mu}_{\text{reg}} = \hat{E}\left\{m(X_i; \hat{\beta})\right\}$$

• 基于倾向评分模型 $pr(R=1 \mid X) = \pi(X; \alpha)$ 的逆概率加权估计 (IPW)

$$\hat{\mu}_{\mathrm{ipw}} = \hat{E} \left\{ \frac{R_i}{\pi \left(X_i; \hat{\alpha} \right)} Y_i \right\}$$

• 双稳健估计 (AIPW):

$$\begin{split} \hat{\mu}_{\text{aipw}} &= \hat{E} \left\{ \frac{R_i}{\pi(X;\hat{\alpha})} Y_i + \left\{ 1 - \frac{R}{\pi(X;\hat{\alpha})} \right\} m(X_i;\hat{\beta}) \right\} \\ &= \hat{E} \left\{ m(X_i;\hat{\beta}) + \frac{R_i}{\pi(X;\hat{\alpha})} \left\{ Y - m(X_i;\hat{\beta}) \right\} \right\} \end{split}$$

未完待续...