Bipolar Junction Transistor (BJT)

DR. MITHUN KR. BHOWAL

UNIVERSITY OF CALCUTTA

INTRODUCTION:

- BJT is a three layer, two junction semiconductor device.
- Two types of formation: p-n-p and n-p-n.
- Emitter, base and collector
- Each type of transistor has two junctions: emitter junction (J_E) and collector junction (J_C) .

CS Scanned with CamScanner

☐ The doping of the emitter of a transistor is greater than of the collector. The base region is oppositely doped at a level intermediate between the emitter and the collector.

Circuit symbol

Doping profile of p-n-p transistor

Energy band diagram of a symmetric transistor:

(b)

Biased

Energy band diagram with E-B junction forward bias and C-B junction reverse bias.

- lacktriangle The forward biasing of E-B junction reduce the intrinsic energy barrier eV_b to eV_b-eV_{EB}
- \Box The reverse biasing of C-B junction reduce the intrinsic energy barrier eV_b to $eV_b + eV_{EB}$

Scanned with Camp canner Unbiased

Current component:

Biased

Potential variation through a symmetrical p-n-p transistor

Unbiased

 I_{pE} = emitter current due to hole

 I_{nE} = emitter current due to electron

Emitter current, $I_E = I_{pE} + I_{nE}$

Base current, $I_B = I_{pE} - I_{pC}$

I_{pC} = collector current due to hole

 I_{nCO} =current due minority carrier flowing from p-side to n-side

 I_{pCO} = current due minority carrier flowing from n-side to p-side

Reverse collector saturation current, $I_{CO} = I_{nCO} + I_{pCO}$

Collector current,
$$I_{\it C} = I_{\it pC} + I_{\it CO}$$
 $I_{\it F} = I_{\it R} + I_{\it C}$

Potential variation through a symmetrical n-p-n transistor

 I_{nE} = emitter current due to electron I_{pE} = emitter current due to hole Emitter current, $I_E = I_{nE} + I_{pE}$ Base current, $I_B = I_{nE} - I_{nC}$ I_{nC} = collector current due to hole

 I_{nCO} = current due minority carrier flowing from p-side to n-side I_{pCO} = current due minority carrier flowing from n-side to p-side

Reverse collector saturation current, $I_{CO} = I_{nCO} + I_{pCO}$

Collector current,
$$I_C = I_{pC} + I_{CO}$$

 $I_E = I_B + I_C$

Modes of connection of a transistor:

- ☐ Common emitter (CE) mode
- ☐ Common base (CB) mode
- ☐ Common collector (CC) mode

n-p-n transistor connected in (a) CB (b) CE (c) CC mode

p-n-p transistor connected in (a) CB (b) CE (c) CC mode

Transistor α and β :

 α represent the fraction of emitter current that can injected into the base and reach the collector. α is called dc current gain of the common base transistor. α lies between 0.95 to 0.995

$$\alpha = \frac{I_C}{I_E}$$

The maximum current gain of a transistor operated in the common-emitter mode is denoted by the parameter β . It is also denoted by h_{FE} . Commercial transistor have values of h_{FE} in the range from 20 to 200

$$\beta = \frac{I_C}{I_B}$$

Relation between α and β :

We know,
$$I_E = I_B + I_C$$

$$=> \frac{I_E}{I_C} = \frac{I_B}{I_C} + 1$$

$$=> \frac{1}{\alpha} = \frac{1}{\beta} + 1$$

$$=> \alpha = \frac{\beta}{1+\beta}$$

$$=> \beta = \frac{\alpha}{1-\alpha}$$

Common base characteristics:

When V_{CB} increases, the width of the depletion region at the collector-Base junction increases, thereby reducing the effective base width. The change of the effective base width by the collector voltage is termed the **Early effect or base width modulation.

** punch through: at a certain reverse voltage of the Jc, reducing the effective base width to zero.

Common emitter characteristics:

CS Scanned with CamScanner

CS Scanned with CamScanner

Thank you