Automi e Linguaggi Formali

Sara Feltrin

26-02-18

Capitolo 1

Introduzione

Per iniziare, ci sono alcuni concetti di base da tenere a mente:

- Alfabeto: insieme finito e non vuoto di simboli, per esempio $\Sigma=0.1$ oppure $\Sigma=a,b,c,d,e,..,z;$
- Stringa: sequenza finita di simboli da un alfabeto Σ , per esempio: 011001 o abc;
- Stringa vuota: stringa con zero occorrenze di simboli dell'alfabeto Σ , denotata da ε ;
- Lunghezza di una stringa: numero di simboli nella stringa, per esempio $|\mathbf{w}|$ denota la lunghezza della stringa \mathbf{w} e |01001|=5;
- Potenze di un alfabeto: Σ^k insieme delle stringhe di lunghezza k con simboli da Σ , per esempio preso l'alfabeto $\Sigma=0,1$ $\Sigma^0=\varepsilon,$ $\Sigma^1=0,1,$ $\Sigma^2=00,01,10,11$. Viene chiamata potenza di un'alfabeto poichè può essere vista come una potenza dove la base è il numero di simboli dell'alfabeto e l'esponente il numero della potenza dell'alfabeto (quindi, nell'alfabeto dei numeri binari con Σ^3 , avremo $2^3=8$);
- Insieme di tutte le stringhe: per ottenere l'insieme di tutte le stringhe, usiamo il simbolo * e scriviamo $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ...$;
- Linguaggio: dato un alfabeto Σ , chiamiamo linguaggio ogni sottoinsieme $L \subseteq \Sigma^*$ (compreso anche il linguaggio vuoto che non contiene nessuna parola).

Capitolo 2

Automi a stati finiti deterministici