MAT3007 - Assignment 5

Yohandi [SID: 120040025]

Problem 1.

(a) The dual problem of the linear program is obtained as follows:

$$\begin{array}{ll} \min & 12y_1+8y_2+10y_3\\ \text{s.t.} & 2y_1+y_2\geq 3\\ & y_1+y_2-y_3\geq 4\\ & -y_1+y_2+2y_3\geq 3\\ & y_1+y_2+y_3\geq 6\\ & y_1\leq 0, y_3\geq 0 \end{array}$$

From the tableau, we notice that the optimal solution for x is [4, 0, 0, 4]. Along with the complementary conditions, we obtain that:

- \bullet $2y_1 + y_2 3 = 0$,
- $y_1 + y_2 + y_3 6 = 0$, and
- $y_3 = 0$ (since $-x_2 + 2x_3 + x_4 \neq 0$).

This implies that y = [-3, 9, 0]. As x is unique and y is derived accordingly from x, we conclude that the dual solution is unique.

(b) Since x_3 is not in B, we check $r_N^T + \lambda e_2 = [2 \ 9 \ 3]^T + \lambda [0 \ -1 \ 0]^T \ge 0$, which implies $\lambda \le 9$. This means, as long as we change the c_3 to be somewhere around $(-\infty, 12]$, the basis that construct the optimal solution will not change.

- The above implies that the optimal solution for setting c_3 to 0 will not change. Moreover the objective value also stays the same as $y^{*T}\Delta b = 0$.
- Again, by the computed λ above, setting c_3 to 9 will not change the optimal solution and optimal value.

This time x_4 is in B, we check $r_N^T - \lambda e_2 A_B^{-1} A_N = \begin{bmatrix} 2 & 9 & 3 \end{bmatrix}^T - \lambda (\begin{bmatrix} 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \end{bmatrix} \begin{bmatrix} -2 & -1 & -1 \end{bmatrix})^T = \begin{bmatrix} 2 & 9 & 3 \end{bmatrix}^T + \lambda \begin{bmatrix} 1 & 3 & 1 \end{bmatrix}^T \ge 0$, which implies $\lambda \geq -2$. As long as c_4 is changed to be somewhere around $[4, \infty)$, the basis that construct the optimal solution will not change.

• The above implies that changing the c_4 to 5 result in the same optimal solution. However, the optimal value indeed changes accordingly. As $y^{*T}\Delta b = 4$, the objective value becomes 36 - 4 = 32.

As x_1 is in B, we check $r_N^T - \lambda e_1 A_B^{-1} A_N = [2 \ 9 \ 3]^T - \lambda([-1 \ 0 \ 0][[0 \ -2 \ -1] \ [1 \ 3 \ 1] \ [-2 \ -1 \ -1]])^T = [2 \ 9 \ 3]^T + \lambda[0 \ -2 \ -1]^T \ge 0$, which implies $\lambda \leq 3$. As long as c_1 is changed to be somewhere around $(-\infty, 6]$, the basis that construct the optimal solution will not change.

- The above implies that changing the c_1 to 7 result in different optimal solution, so does the optimal value.
- (c) We need to check the range for λ that satisfies $x_B + \lambda A_B^{-1} e_2$. $x_B + \lambda A_B^{-1} e_2 = [4 \ 4 \ 6] + \lambda [[1 \ -1 \ 0] \ [-1 \ 2 \ 0] \ [1 \ -2 \ 1]][0 \ 1 \ 0] =$ $[4\ 4\ 6] + \lambda[-1\ 2\ -2] \ge 0$, which implies $-2 \le \lambda \le 3$. Then, the possible range is [6, 11].

Problem 2.

(a) $y^* = A_B^{-T} c_B = [[1 \ 0 \ 0] \ [0 \ 0 \ \frac{1}{4}] \ [0 \ 1 \ \frac{1}{4}]]^T [1 \ 8 \ 0] = [1 \ 0 \ 2].$ Since c_2 is not in B, we check $r_N^T + \lambda e_1 = [1 \ 4 \ 1 \ 2]^T + \lambda [-1 \ 0 \ 0 \ 0]^T \ge 0$, which implies that $\lambda \leq 1$. As long as c_2 is changed to be somewhere around $(\infty, 3]$, the basis that construct the optimal solution won't change.

- (b) The above derivation directly answers the question, i.e., no basis construction change occurs. Moreover, as $x_2 = 0$, the change will not affect the optimal solution for which $x = [2\ 0\ 0\ 2]$ with optimal value 18.
 - (c) We need to ensure that:

- $x_B + \lambda A_B^{-1} e_3 = [2 \ 2 \ 3]^T + \lambda [[1 \ 0 \ 0] \ [0 \ 0 \ \frac{1}{4}] \ [0 \ 1 \ \frac{1}{4}]][0 \ 0 \ 1]^T = [2 \ 2 \ 3]^T + \lambda [0 \ \frac{1}{4} \ \frac{1}{4}]^T \ge 0$, which implies $\lambda \ge -8$. As long as b is changed to be somewhere around $[0, \infty)$, the basis that construct the optimal solution will not change.
- (d) As 4 lies in the local sensitivity area, the basis that construct the optimal solution will not change. We notice that only x_4 is affected by the change; hence, x_4 becomes 1. The new optimal solution is $x = [2\ 0\ 0\ 1]$ that leads 10 objective value.