

FACULTY OF ENGINEERING

Column Generation Tutorial

Marc De Leenheer

Ghent University – IBBT, Belgium University of California, Davis, USA

Complexity of Linear Programming

Java Exception: java.lang.OutOfMemoryError: during call of com.peoplesoft.pt.xmlpublisher.PTRTFPocessor.generateXSL. (2,763) PSXP_ENGINE.RTFProcessor.OnExecute Name:generateXSL PCPC:515 Statement:12

Called from:PSXP_RPTDEFNMANAGER.ReportDefn.OnExecute
Name:ConvRtfTemplateToXsl Statement:1505
Called from:PSXP_RPTDEFNMANAGER.ReportDefn.OnExecute
Name:ProcessReport Statement:1006
Called from:CQ_YEAR_L0_VW.URL.FieldChange Statement:118

The noted Java error was thrown during a call of the given method.

- Generally applicable
 - Linear relaxation, e.g. $\{0, 1\} \rightarrow [0, 1]$
 - Lagrange relaxation
- Applicable for problems with large number of variables
 - Column generation

Linear Programming 101

- Standard form of LP model
 - Variables

$$\mathbf{x} = [x_1, x_2, \cdots, x_n]$$

Linear constraints

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}$$

Linear objective function

$$\min \mathbf{c}^T \mathbf{x}$$

- Transformation to standard form
- Additional constraints on variables
 - Integer Linear Programming or ILP
 - Mixed integer & realMIP
 - BinaryBIP

The Simplex Method

- Feasible region = convex polytope
- Minimum value of objective function can be found on an extreme point
- If an extreme point is not a minimum point of the objective function, then there is an edge containing the point so that the objective function is strictly decreasing
 - Edge is finite: arrive in new extreme point
 - Edge is unbounded: LP has no solution
- Simplex algorithm always terminates, since number of vertices in polytope is finite.

G

Figure from [1]

Simplex Method in Action

Figure from [1]

Duality

- Every LP problem has an associated dual LP problem
 - Constraint ↔ variable
 - Original is called the primal problem

$$egin{aligned} egin{aligned} \mathbf{min} \ \mathbf{c}^T \mathbf{x} \ \mathbf{A} \mathbf{x} \leq \mathbf{b} \quad \mathbf{x} \geq \mathbf{0} \end{aligned}$$

$$\mathbf{A}^T\mathbf{y} \geq \mathbf{c} \quad \mathbf{y} \geq \mathbf{0}$$

- Weak duality theorem
 - Objective value of dual at any feasible solution ≥ objective value of primal at any feasible solution
 optimum
 objective
- Strong duality theorem

If LP has an optimal solution, objective value of dual is the same as the primal

When using Simplex, we get the dual solution for free

Reduced Cost

- Amount by which the variable's objective function coefficient needs to improve before the variable could assume a positive value
- Estimates how much the objective function will change if you make a zero-valued variable positive

$$\mathbf{A}\mathbf{x} \leq \mathbf{b} \quad \mathbf{x} \geq \mathbf{0}$$

Reduced cost vector σ

$$\sigma = \mathbf{c} - \mathbf{A}^T \mathbf{y}$$

dual cost vector

Column Generation: Illustrative Example

- Paper mill produces rolls of fixed width
- Customers order different number of rolls of various widths

How to cut rolls and minimize waste?

22 rolls of width 1380 mm

waste 12x ▶ 7x ▶ 12x ▶ 16x ▶ 10x ▶ 2x ▶

18 rolls of width 1880 mm

Example: Cutting Stock

$$W_1 = 1820$$

 $b_1 = 18$

$$A_{11} = 3$$

 $A_{12} = 0$ $x_1 = 2$
 $etc.$

■ W_i width of order i

• b_i demand of order i (number of rolls)

Enumerate all possible cutting patterns

- A_{ij} number of times order i occurs in pattern j
- x_i number of times pattern j is used

s.t.
$$\sum_{j} A_{ij} x_{j}$$
$$x_{j} \text{ integer}$$

Discussion

Problem

- Number of patterns increases exponentially based on number of orders
- Leads to a large number of variables (too many, actually)

Observation

- Most variables in final solution equal 0, i.e. pattern is not used
- Symmetric patterns, but can be eliminated before solving

Solution

Do not generate patterns at the start, but produce them as needed

Column Generation Overview

- 1. Start with small set of patterns
- 2. Solve LP
- 3. Check if solution can be improved by adding a new pattern
 - 1. No \rightarrow Optimal solution found
 - 2. Yes \rightarrow Add pattern and go to step 2

Adding a new pattern = generating a column (hence the name Column Generation)

Generating Columns

Find new column with maximum reduced cost

If reduced cost is negative, solution can be improved

Pricing Problem

- ILP to find column with maximum reduced cost
 - Maximum = most negative

- Classical knapsack problem
 - NP-hard, in theory
 - Many instances can be solved efficiently, in practice
 - E.g. use dynamic programming

Solution Diagram

Repeat while reduced cost is negative

Some loose ends

- Starting set of patterns
 - E.g. all patterns that contain exactly 1 order width
 - See later for another example
- Integer solution
 - Recall, RMP is LP problem
 - Rounding
 - Re-solve final Master Problem as ILP, instead of LP
- What if integer infeasible, or rounding not close to optimal?
 - Combine Column Generation with Branch-and-Bound
 - Branch-and-Price
 - See references

Application of GC to Network Planning

Problem statement

Given

Topology (sources, grid sites, OXCs)

Demand (job arrivals at sources)

 Survivability requirements (e.g. link and/or node failures)

Find

Shared path protection

- Destinations sites and routes for each source
- Network and server capacity

Such that

 Network and server resources are minimized

Application of GC to Network Planning

- Column generation:
 - Assume: given "configurations" = combination of working and backup paths
 - Restricted Master Problem (RMP) finds best combination of configurations
 - Pricing Problem (PP) finds new configuration that can reduce cost

Finding initial configurations for RMP

- Configuration associated with a particular <u>source</u>
 - Working path to primary destination
 - Backup path to secondary destination

• Algorithm:

Suurballe's algorithm

- Find shortest 2 disjoint paths from s to candidate destination(s): configuration c
- Create new configurations that share backup links:

Sharing of backup wavelengths

- Remove working links of c
- For all configurations c' with primary disjoint from c:
 set backup link weights to 0
- Find backup path b" as shortest path to candidate destination in reduced graph
- Create c": primary of c, and b" as secondary

CPLEX Workflow

- "Your" way
 - Create LP model and write to .lp file in MATLAB or any other program that support it
 - Start session on CPLEX Interactive Optimizer
 - Import LP model
 - Set parameters
 - Solve
 - Retrieve variable values
- "My" way
 - CPLEX API supports: C, C++, Java, .NET and Python
 - Do everything in 1 programming language: pre-processing, create LP model, solver, post-processing
 - Unattended runs (e.g. parameter sweep)

Brief example (in Python)

```
# Make cplex package available
import cplex
# Create cplex object
cpx = cplex.Cplex()
# Parameter example - Limit tree size in memory to 8GB
# Rest of tree is saved on disk
cpx.parameters.mip.limits.treememory.set(8192)
cpx.parameters.mip.strategy.file.set(3)
# Objective function
cpx.objective.set_sense(self.cpx.objective.sense.minimize)
```

only specify direction, actual function is defined through declaring variables

Brief example (contd.)

lower and upper bounds (cplex.infinity is available)

- # Create constraints
- # row_coeff contains weight of all variables in this constraint
 cpx.linear_constraints.add(

lin_expr = [len(row_coef), row_coef]],

Brief example (contd.)

```
Run solver
cpx.solve()
# Obtain objective value
solution = cpx.solution.get_objective_value()
 Obtain values of variables
variables = cpx.solution.pool.get_values(0)
            array, i.e. access
             individual values
             through indexing
```


References

- [1] R. L. Rardin, "Optimization in Operations Research," Prentice Hall, 1997.
- [2] R. W. Haessler, "Selection and Design of Heuristic Procedures for Solving Roll Trim Problems," *Management Science*, vol. 34, no. 12, December 1988.
- [3] M. E. Lübbecke, J. Desrosiers, "Selected Topics in Column Generation," *Operations Research*, vol. 53, no. 6, pp. 1007-1023, December 2005.
- [4] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W.P. Savelsbergh, P. H. Vance, "Branch-and-Price: Column Generation for Solving Huge Integer Programs," *Operations Research*, vol. 46, no. 3, pp. 316-329, May-June 1998.
- [5] IBM ILOG CPLEX Optimization Studio V12.2

