Задачи о рюкзаке

Модель размещения капитала

```
Дано P_1, P_2, ..., P_N — проекты;
      T — горизонт планирования (длина наиболее продолжительного проекта);
      s_{tk} — доход от проекта P_k к концу года t;
      y_{tk} — инвестиции в проект P_k в начале года t; s_{0k} = y_{T+1,k} = 0;
      r — коэффициент дисконтирования затрат;
      b_k = \sum_{t=0}^{T} (s_{tk} - y_{t+1,k})/(1+r)^t — суммарная прибыль от проекта P_k;
     C = (c_1, ..., c_T) — доступный капитал для развития проектов
     A_k = (a_{1k}, ..., a_{Tk}) — вектор затрат на реализацию проекта P_k (целые);
Если доход нельзя реинвестировать, то a_{tk} = y_{tk}, иначе a_{tk} = y_{kt} - s_{t-1k}.
```

Найти подмножество проектов, которые можно реализовать на капитал ${\cal C}$ и которые в сумме дают максимальную прибыль, то есть

$$\max \sum_{k=1}^{N} b_k x_k$$

при ограничениях:

$$\sum_{k=1}^{N} a_{tk} x_k \le c_t, \quad t = 1, ..., T;$$
$$x_k \in \{0, 1\}, \quad k = 1, ..., N.$$

Замечание 1. При T=1 получаем линейную распределительную задачу с 0-1 переменными — задачу о рюкзаке.

Замечание 2. Без ограничения общности можно считать, что $\sum_{k=1}^{N} a_{tk} x_k \ge c_t$, $t=1,\ldots,T$; (можно получить задачу о рюкзаке даже при T>1).

Алгоритм динамического программирования

Обозначим через $f_k(Y)$ максимальную прибыль от первых k проектов при доступном капитале $Y=(y_1,...,y_T)$.

Тогда

$$f_0(Y) = 0$$

$$f_{k+1}(Y) = \max[f_k(Y), b_{k+1} + f_k(Y - A_{k+1})], \quad k = 0, \dots, N-1, \quad 0 \le Y \le C,$$

где $f_k(Y-A_{k+1})=-\infty$, если вектор $Y-A_{k+1}$ имеет хотя бы одну отрицательную компоненту.

$$\mathsf{T}\mathsf{\Pi} = O(N \cdot c_1 \cdot \ldots \cdot c_T);$$

$$\Pi \Pi = O(N \cdot c_1 \cdot ... \cdot c_T).$$

Полный перебор — 2^N вариантов.

Верхняя оценка

Релаксация линейного программирования

$$\max \sum_{k=1}^{N} b_k x_k \tag{1}$$

при ограничениях

$$\sum_{k=1}^{N} a_{tk} x_k \le c_t, \quad t = 1, \dots, T;$$
 (2)

$$0 \le x_k \le 1, \quad k = 1, \dots, N.$$
 (3)

Теорема 2.1. Существует оптимальное решение x^{LP} с не более чем $\min(T,N)$ дробными компонентами

Доказательство. Пусть T < N (иначе утверждение очевидно). Приведем задачу к канонической форме. Получим 2N+T переменных и N+T ограничений:

$$\min \sum_{k=1}^{N} -b_k x_k \tag{4}$$

$$\sum_{k=1}^{N} a_{tk} x_k + \lambda_t = c_t, \quad t = 1, \dots T;$$

$$x_j + \mu_j = 1, \quad j = 1, \dots, N,$$
(5)

$$x_j + \mu_j = 1, \ j = 1, ..., N,$$
 (6)

$$x_j \ge 0, \quad \mu_j \ge 0, \quad \lambda_t \ge 0.$$
 (7)

Любое базисное допустимое решение имеет не менее N нулей. Предположим, что T из них соответствуют переменным λ_t . Тогда N-T нулей останется для x_j и μ_i . Если для некоторого j имеем $\mu_i=0$, то $x_j=1$ — целое. Если $x_i=0$ — тоже целое. Таким образом, получаем N–T целых компонент для x_i , то есть T дробных.

Округление дробного решения

Пусть x^{LP} — оптимальное решение задачи (4)–(7). Для $\gamma \in [0,1)$ положим

$$x_{j} = egin{cases} 1, ext{ если } x_{j}^{LP} = 1, \ 0, ext{ если } x_{j}^{LP} < \gamma. \end{cases}$$

Для оставшихся дробных значений переменных сформируем подзадачу вида (4)–(7), пересчитав правые части ограничений. Найдем оптимальное решение x^{LP} для этой подзадачи и положим

$$x_j = egin{cases} 1, & \text{если } x_j^{LP} = 1, \ 0, & \text{если } x_j^{LP} = 0, \ 0 & \text{для } j = rg \min\{x_j^{LP} ig| 0 < x_j^{LP} < 1\}. \end{cases}$$

На этом шаге значение как минимум одной переменной будет зафиксировано. Повторяя процедуру, найдем допустимое решение исходной задачи.

Вопросы

- ullet Пусть T- трудоемкость решения задачи линейного программирования. Оцените трудоемкость алгоритма округления дробного решения.
- Пусть П объем памяти для решения задачи линейного программирования. Оцените объем памяти алгоритма округления дробного решения.
- ullet Пусть x^{LP} оптимальное решение задачи линейного программирования. Если все компоненты вектора x^{LP} целые, то x^{LP} — оптимальное решение исходной целочисленной задачи (Да или Нет?)
- ullet Если некоторые компоненты вектора x^{LP} целые, то эти целые значения сохранятся и в оптимальном решении исходной целочисленной задачи (Да или Нет?)

Задача об отправке грузов

```
I = \{1, ..., n\} — авиалайнеры, J = \{1, ..., m\} — контейнеры, p_{ij} — доход от доставки авиалайнером i контейнера j, w_j — вес контейнера j, c_i — вместимость авиалайнера i, x_{ij} = \{ 1, \text{если отправить контейнер } j \text{ авиалайнером } i \}
```

Модель

при ограничениях:

$$\max \sum_{i \in I} \sum_{j \in J} p_{ij} x_{ij}$$

$$\sum_{i \in I} x_{ij} \leq 1, \quad j \in J;$$

$$\sum_{j \in J} w_j x_{ij} \leq c_i, \quad i \in I;$$

$$x_{ij} \in \{0,1\}, i \in I, j \in J.$$

Дальняя экспедиция

Морское судно грузоподъемностью C отправляется в экспедицию.

$$J=\{1,\dots,m\}$$
 — типы грузов (трактора, электрогенераторы, радиостанции,...) N_j — варианты грузов для $j\in J,\ w_{ij}$ — вес груза j по варианту $i\in N_j$ p_{ij} — полезность груза

$$x_{ij} = egin{cases} 1 , & ext{если берем i-й вариант груза j} \\ 0 & ext{иначе} \end{cases}$$

Модель

$$\max \sum_{j \in J} \sum_{i \in I} p_{ij} x_{ij}$$

при ограничениях:

$$\sum_{i \in N_j} x_{ij} = 1, \dots j \in J;$$
$$\sum_{j \in J} \sum_{i \in N_j} w_{ij} x_{ij} \le C;$$
$$x_{ij} \in \{0,1\}, \ i \in N_j, \ j \in J.$$

Гильотинный раскрой материала

Дан лист размера $L \times W$ и n типов прямоугольников $l_j \times w_j$, $j=1,\dots,n$ $p_j>0$ — доход от прямоугольника j, повороты запрещены, разрезы параллельно осям координат от кромки до кромки. Двухстадийная обработка: сначала режем лист параллельно оси y, затем параллельно оси x.

Найти раскрой листа с максимальным доходом.

Пусть

k — число параллельных полос $k = \lfloor L/I_{\min} \rfloor$

 y_i — ширина полосы i, $1 \le i \le k$,

 x_{ij} — число j-х прямоугольников в полосе i,

$$x'_{ij} = \begin{cases} 1, & \text{если } x_{ij} > 0 \\ 0 & \text{иначе} \end{cases}$$

 $m_{j} = [W/w_{j}]$ — максимально возможное число j-х прямоугольников в полосе.

Модель:

$$\max \sum_{i=1}^k \sum_{j=1}^n p_j x_{ij}$$

при ограничениях

$$\sum_{j=1}^{n} w_{j} x_{ij} \leq W, \quad i = 1, ..., k;$$

$$\sum_{i=1}^{k} y_{i} \leq L;$$

$$l_{j} x'_{ij} \leq y_{i}, \quad i = 1, ..., k, \quad j = 1, ..., n;$$

$$m_{j} x'_{ij} \geq x_{ij}, \quad i = 1, ..., k, \quad j = 1, ..., n;$$

$$x'_{ij} \in \{0,1\}, \quad x_{ij} \in \{0, ..., m_{i}\}, \quad y_{i} \geq 0.$$

Классическая задача о рюкзаке

Найти:

$$\max \sum_{j \in I} p_j x_j$$

при ограничениях

$$\sum_{j\in J} w_j x_j \le C;$$

Все коэффициенты p_j, w_j, C — целые числа. $x_j \in \{0,1\}, \ j \in J$.

Определение Алгоритм A называется *приближенным алгоритмом с* гарантированной абсолютной точностью K, если для любого примера I алгоритм находит значение $z^A(I)$ с отклонением от оптимума $z^*(I)$ не более K, то есть

$$z^*(I)$$
 – $z^A(I) \le K$, для всех I .

Обозначим через $T_A(n,C)$ трудоемкость алгоритма A для задачи с n предметами и вместимостью рюкзака C.

Теорема 2.2. Пусть A — приближенный алгоритм с гарантированной абсолютной точностью K и трудоемкостью $T_A(n,C)$. Тогда алгоритм A для любого примера позволяет найти точное решение задачи о рюкзаке с той же трудоемкостью.

Доказательство. Пример I задается числами $p_1, \dots, p_n, w_1, \dots, w_n$, C. Построим новый пример I' положив C' = C, $p'_j = (K+1)p_j$, $w'_j = w_j$, $j \in J$. Оба примера имею одно и то же множество допустимых решений. Так как целевая функция для I' в (K+1) раз больше, чем для I, то оптимальные наборы x^*_j совпадают.

Для примера I^\prime имеем

$$z^*(I')-z^A(I')\leq K$$
, но $z^A(I')=(K+1)z^A(I)$ и $z^*(I')=(K+1)z^*(I)$, то есть $z^*(I)-z^A(I)\leq rac{K}{K+1}$.

Так как p_j — целые, то $z^*(I) - z^A(I) \le 0$, то есть $z^*(I) = z^A(I)$, что и требовалось доказать.

Жадные алгоритмы

Упорядочим предметы по плотности $\frac{p_j}{w_j}$ и будем считать, что

$$\frac{p_1}{w_1} \ge \frac{p_2}{w_2} \ge \dots \ge \frac{p_n}{w_n}.$$

Жадный алгоритм

1.
$$\overline{w} \coloneqq 0$$
; $z^G \coloneqq 0$;

2. for
$$j := 1$$
 to n do
if $\overline{w} + w_j \le C$ then
$$x_j := 1; \ \overline{w} := \overline{w} + w_j; \ z^G := z^G + p_j;$$
else $x_j := 0;$

$$T_G = O(n \log n + n), \ \Pi_G = O(n)$$

Упражнение. Если последнюю строку заменить на

else { for
$$k := j$$
 to n do $x_k := 0$; $break$ },

то такое решение можно найти с T = O(n).

Релаксация линейного программирования

LP-релаксация

$$z^{LP} = \max \sum_{j \in J} p_j x_j$$
$$\sum_{j \in J} w_j x_j \le C;$$
$$0 \le x_i \le 1, \ j \in J.$$

Так как область допустимых решений увеличилась, то $z^{LP} \ge z^*$. Пусть предметы упорядочены по плотностям и для некоторого $s \in J$ верно:

$$\sum_{j=1}^{S-1} w_j \le C \quad \text{if} \quad \sum_{j=1}^S w_j > C.$$

Положим

$$x_j^{LP} = \begin{cases} 1, & j = 1, ..., s - 1, \\ \frac{1}{w_s} (C - \sum_{j=1}^{s-1} w_j) \\ 0, & j = s + 1, ..., |J|. \end{cases}$$

Теорема 2.3. Решение x^{LP} является оптимальным решением LP-релаксации и

$$z^{LP} = \sum_{j=1}^{s-1} p_j + \frac{p_s}{w_s} \left(C - \sum_{j=1}^{s-1} w_j \right).$$

Доказательство. Будем считать, что предметы с одинаковой плотностью слиты в один и

$$\frac{p_1}{w_1} > \frac{p_2}{w_2} > \dots > \frac{p_n}{w_n}.$$

Пусть $\bar{x}=(\bar{x}_1,\ldots,\bar{x}_n)$ — оптимальное решение, не равное x^{LP} . Так как $\sum_{j\in J}w_j\bar{x}_j=C$, то найдутся как минимум два номера k>s и $i\leq s$ такие, что $\bar{x}_k>0$ и $\bar{x}_i< x_i^{LP}$. Положим $d=\min\{w_k\bar{x}_k,\,w_i\big(x_i^{LP}-\bar{x}_i\big)\}>0$. Построим новое решение x', которое будет отличаться от \bar{x} только в координатах i,k:

$$x_i' = \bar{x}_i + \frac{d}{w_i}, \qquad x_k' = \bar{x}_k - \frac{d}{w_k}.$$

Решение x' является допустимым, так как $\,x_j' \geq 0\,$ по выбору d и

$$\sum_{j \in J} w_j x_j' = \sum_{j \in J} w_j \bar{x}_j + \frac{w_i d}{w_i} - \frac{w_k d}{w_k}$$

Кроме того,

$$\sum_{j \in J} p_j x_j' = \sum_{j \in J} p_j \bar{x}_j + d\left(\frac{p_i}{w_i} - \frac{p_k}{w_k}\right) > \sum_{j \in J} p_j \bar{x}_j$$

так как $\frac{p_i}{w_i} > \frac{p_k}{w_k}$, что противоречит оптимальности \bar{x} . \blacksquare

Свойства *LP*-релаксации

Верхняя оценка
$$U^{LP}=\lfloor z^{LP} \rfloor$$
, $\hat{p}=\sum_{j=1}^{s-1}p_j$

Свойство 1.
$$\hat{p} \leq z^* \leq U^{LP} \leq z^{LP} \leq \sum_{j=1}^s p_j \leq \hat{p} + p_s \leq z^G + p_s.$$

Свойство 2.
$$z^*-z^G \leq z^*-\hat{p} \leq p_{max}$$
, где $p_{max}=\max_{j\in J}p_j$.

Свойство 3. $z^{LP} \le 2z^*$ и для любого $\varepsilon > 0$ найдется пример задачи о рюкзаке такой, что $z^{LP} \ge 2z^* - \varepsilon$.

Доказательство. 1. Так как $z^* \geq \sum_{j=1}^{S-1} p_j$ и $z^* \geq p_S$ то $2z^* \geq z^{LP}$.

2. Рассмотрим пример n=2, C=2M и $w_{j}=M+1$, $p_{j}=1$, j=1,2.

Тогда $z^* = 1$, но $z^{LP} = \frac{2M}{M+1}$ и с ростом M получаем $z^{LP} / z^* \to 2$.

Определение. Алгоритм A называется приближенным алгоритмом c гарантированной относительной точностью K, если для любого примера I алгоритм находит значение $z^A(I)$ такое, что $\frac{z^A(I)}{z^*(I)} \geq K$ для всех I.

Если $\varepsilon=1-K$, то $\frac{z^*(I)-z^A(I)}{z^*(I)}\leq \varepsilon$ — относительная погрешность алгоритма.

Пример. Положим n=2, C=M и $p_1=2$, $w_1=1$, $p_2=M$, $w_2=M$. Тогда жадный алгоритм получит $x_1=1$, $x_2=0$, $z^A=2$,

но $x_1^* = 0$, $x_2^* = 1$, $z^* = M$, то есть для жадного алгоритма

$$\frac{z^A}{z^*} \to 0$$
 при $M \to \infty$.

Модифицированный жадный алгоритм

Используем предыдущий жадный алгоритм, получаем z^G .

Затем полагаем $z^{MG} = \max\{z^G, \max\{p_j \mid j \in J\}\}.$

Теорема 2.4. Модифицированный жадный алгоритм A^{MG} имеет гарантированную относительную точность $K=\frac{1}{2}$.

Доказательство. Из свойства 2 для LP-релаксации имеем

$$z^* \le z^G + p_{max} \le z^{MG} + z^{MG}$$
.

Пример. Положим

$$n = 3$$
, $C = 2M$, $p_1 = 2$, $p_2 = M$, $p_3 = M$, $w_1 = 1$, $w_2 = M$, $w_2 = M$.

Получаем $z^* = 2M$, $z^{MG} = 2 + M$, то есть оценку $K = \frac{1}{2}$ нельзя улучшить.

Алгоритм $G^{3/4}$

Сокращаем погрешность за счет трудоемкости

Алгоритм $G^{3/4}$

- 1. $z^A := \max \{ p_j | j \in J \} ;$
- 2. Для всех пар $(i,k) \in J \times J$ if $w_i + w_k \leq C$ then
 - применяем алгоритм A^{MG} к задаче с множеством $\{j \mid p_j \leq \min\{p_i, p_k\}\} \setminus \{i, k\}$ и вместимостью рюкзака $C w_i w_k$
 - if $p_i + p_k + z^{MG} > z^A$ then $z^A := p_i + p_k + z^{MG}$.

Теорема 2.5. Алгоритм $G^{3/4}$ имеет гарантированную относительную точность $K=\sqrt[3]{4}$.

Доказательство. Если оптимальное решение x_j^* содержит только один предмет, то $z^A = z^*$ и утверждение верно. Предположим, что в оптимальном решении не меньше двух предметов. Выберем среди них два (i_*,k_*) с наибольшими p_j . На некотором шаге алгоритм $G^{3/4}$ выберет эту пару (i_*,k_*) и применит алгоритм A^{MG} к задаче с множеством предметов $\{j \mid p_j \leq \min\{p_{i_*},p_{k_*}\}\} \setminus \{i_*,k_*\}$ и вместимостью рюкзака $C-w_{i_*}-w_{k_*}$.

Обозначим через z_s^* оптимальное решение этой подзадачи. Тогда $z^*=p_{i_*}+p_{k_*}+z_s^*$. Алгоритм A^{MG} для этой подзадачи найдет значение z_s^{MG} . Так как z^A- лучшее из решений, просмотренных алгоритмом $G^{3/\!\!4}$, то $z^A\geq p_{i_*}+p_{k_*}+z_s^{MG}$ По теореме 2.4 имеем $z_s^{MG}\geq \frac{1}{2}z_s^*$.

Рассмотрим два случая.

Случай 1.
$$p_{i_*}+p_{k_*}\geq \frac{1}{2}z^*$$
. Тогда $z^A\geq p_{i_*}+p_{k_*}+z_s^{MG}\geq p_{i_*}+p_{k_*}+\frac{1}{2}z_s^*=p_{i_*}+p_{k_*}+\frac{1}{2}\left(z^*-p_{i_*}-p_{k_*}\right)=\frac{1}{2}\left(z^*+p_{i_*}+p_{k_*}\right)\geq \frac{3}{4}z^*.$

Случай 2. $p_{i_*}+p_{k_*}<\frac{1}{2}z^*$. Тогда $\min(p_{i_*},p_{k_*})<\frac{1}{4}z^*$. По определению z_S^* содержит предметы с $p_j\leq\frac{1}{4}z^*$, значит $z_S^*\leq z_S^{LP}\leq z_S^{MG}+\frac{1}{4}z^*$.

Теперь
$$z^* = p_{i_*} + p_{k_*} + z_s^* \le p_{i_*} + p_{k_*} + z_s^{MG} + \frac{1}{4}z^* \le z^A + \frac{1}{4}z^*$$
.

Пример. Положим n=5, C=4M,

$$p_1 = 2$$
, $p_2 = p_3 = p_4 = p_5 = M$, $w_1 = 1$, $w_2 = w_3 = w_4 = w_5 = M$.

Очевидно, что $z^* = 4M$, $z^A = 3M + 2$, то есть оценку $K = \frac{3}{4}$ нельзя улучшить.

Silvano Martello, Paolo Toth

Knapsack Problem

Algorithms and Computer Implementations

University of Bologna

John Wiley & Sons. 1990. 296 p

http://www.math.nsc.ru/LBRT/k5/knapsack_problem.pdf

Вопросы

- Алгоритм $G^{3/4}$ для задачи о рюкзаке является полиномиальным (Да или Hem?)
- \bullet Алгоритм $G^{3/4}$ требует O(n) затрат памяти (Да или Hem?)
- Алгоритм $G^{3/4}$ становится точным, если вместо алгоритма A^{MG} использовать на шаге 2.1 точный алгоритм для оставшегося места в рюкзаке и подмножества предметов $\{j \mid p_j \leq \min\{p_i,p_k\}\} \setminus \{i,k\}$ (Да или Нет?)
- Алгоритм $G^{3/4}$ становится точным, если вместо алгоритма A^{MG} использовать на шаге 2.1 точный алгоритм для оставшегося места в рюкзаке и подмножества предметов без пары $\{i,k\}$ (Да или Нет?)
- Можно ли за полиномиальное время получить точность 0.9 (Да или Hem?)