Uncertainty

Chapter 13

1

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1. Partial observability (road state, other drivers' plans, etc.)
- 2. Noisy sensors (traffic reports)
- 3. Uncertainty in action outcomes (flat tire, etc.)
- 4. Immense complexity of modeling and predicting traffic

Hence a purely logical approach either

- 1. Risks falsehood: " A_{25} will get me there on time", or
- 2. Leads to conclusions that are too weak for decision making:

"A₂₅ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 $(A_{1440}$ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

2

Methods for handling uncertainty

- Default or nonmonotonic logic:
 - Assume my car does not have a flat tire
 - Assume A₂₅ works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- · Rules with fudge factors:
 - $-A_{25} \mid \rightarrow_{0.3}$ get there on time
 - Sprinkler |→ _{0.99} WetGrass
 - WetGrass |→ 0.7 Rain
- Issues: Problems with combination, e.g., Sprinkler causes Rain??
- Probability
 - Model agent's degree of belief
 - Given the available evidence,
 - $-A_{25}$ will get me there on time with probability 0.04

Probability

Probabilistic assertions summarize effects of

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

Probabilities relate propositions to agent's own state of knowledge

```
e.g., P(A_{25} | \text{no reported accidents}) = 0.06
```

These are not assertions about the world

Probabilities of propositions change with new evidence: e.g., $P(A_{25} | \text{no reported accidents}, 5 \text{ a.m.}) = 0.15$

5

Making decisions under uncertainty

Suppose I believe the following:

```
P(A_{25} \text{ gets me there on time } | \dots) = 0.04

P(A_{90} \text{ gets me there on time } | \dots) = 0.70

P(A_{120} \text{ gets me there on time } | \dots) = 0.95

P(A_{1440} \text{ gets me there on time } | \dots) = 0.9999
```

Which action to choose?

Depends on my preferences for missing flight vs. time spent waiting, etc.

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Syntax

- · Basic element: Random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables

 e.g., Cavity (do I have a cavity?)
- Discrete random variables e.g., Weather is one of <sunny,rainy,cloudy,snow>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable: e.g.,
 Weather = sunny, Cavity = false (abbreviated as ¬cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g.,
 Weather = sunny \(\times \) Cavity = false

7

Syntax

- Atomic event: A complete specification of the state of the world about which the agent is uncertain
 - E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events:

```
Cavity = false ∧Toothache = false
Cavity = false ∧ Toothache = true
Cavity = true ∧ Toothache = false
Cavity = true ∧ Toothache = true
```

Atomic events are mutually exclusive and exhaustive

Axioms of probability

- For any propositions A, B
 - $-0 \le P(A) \le 1$
 - -P(true) = 1 and P(false) = 0
 - $-P(A \vee B) = P(A) + P(B) P(A \wedge B)$

_

9

Prior probability

- Prior or unconditional probabilities of propositions
 e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72
 correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments:
 P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)
- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables

 $P(Weather, Cavity) = a 4 \times 2 \text{ matrix of values:}$

Weather =	sunny	rainy	cloudy	snow
Cavity = true	0.144	0.02	0.016	0.02
Cavity = false	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the joint distribution

Conditional probability

- Conditional or posterior probabilities
 e.g., P(cavity | toothache) = 0.8
 i.e., given that toothache is all I know
- (Notation for conditional distributions:
 P(Cavity | Toothache) = 2-element vector of 2-element vectors)
- If we know more, e.g., cavity is also given, then we have P(cavity | toothache,cavity) = 1
- New evidence may be irrelevant, allowing simplification, e.g.,
 P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8
- This kind of inference, sanctioned by domain knowledge, is crucial

11

Conditional probability

- Definition of conditional probability:
 P(a | b) = P(a ∧ b) / P(b) if P(b) > 0
- Product rule gives an alternative formulation:
 P(a ∧ b) = P(a | b) P(b) = P(b | a) P(a)
- A general version holds for whole distributions, e.g.,
 P(Weather, Cavity) = P(Weather | Cavity) P(Cavity)
- (View as a set of 4 × 2 equations, not matrix mult.)
- Chain rule is derived by successive application of product rule:

$$\begin{split} \mathbf{P}(X_1, \, ..., & X_n) &= \mathbf{P}(X_1, ..., X_{n-1}) \; \mathbf{P}(X_n \mid X_1, ..., X_{n-1}) \\ &= \mathbf{P}(X_1, ..., X_{n-2}) \; \mathbf{P}(X_{n-1} \mid X_1, ..., X_{n-2}) \; \mathbf{P}(X_n \mid X_1, ..., X_{n-1}) \\ &= \, ... \\ &= \, \pi_{i=1} ^n \mathbf{P}(X_i \mid X_1, \, ..., X_{i-1}) \end{split}$$

Inference by enumeration

Start with the joint probability distribution:

•

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \Sigma_{\omega:\omega} \not\models \phi P(\omega)$

13

Inference by enumeration

· Start with the joint probability distribution:

•

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

- For any proposition $\phi,$ sum the atomic events where it is true: $P(\phi)$ = $\Sigma_{\omega:\omega}{}_{\!\!\mid\!\!\!-\phi}\,P(\omega)$
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Inference by enumeration

Start with the joint probability distribution:

•

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \sum_{\omega:\omega} p P(\omega)$

•

• P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

•

15

Inference by enumeration

• Start with the joint probability distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

· Can also compute conditional probabilities:

```
P(\neg cavity \mid toothache) = \underbrace{P(\neg cavity \land toothache)}_{P(toothache)}= \underbrace{0.016+0.064}_{0.108 + 0.012 + 0.016 + 0.064}= 0.4
```

Normalization

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity			.072	.008
¬ cavity	.016	.064	.144	.576

Denominator can be viewed as a normalization constant α

 $P(Cavity \mid toothache) = \alpha, P(Cavity, toothache)$

- = α , [**P**(Cavity,toothache,catch) + **P**(Cavity,toothache, \neg catch)]
- $= \alpha$, [<0.108,0.016> + <0.012,0.064>]
- $= \alpha$, <0.12,0.08> = <0.6,0.4>

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

17

Inference by enumeration, contd. Typically, we are interested in

the posterior joint distribution of the guery variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y \mid E = e) = \alpha P(Y,E = e) = \alpha \Sigma_h P(Y,E = e, H = h)$$

- The terms in the summation are joint entries because Y, E and H together exhaust the set of random variables
- Obvious problems:
 - 1. Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries?

Independence

A and B are independent iff P(A|B) = P(A) or P(B|A) = P(B)or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity) P(Weather)

- 32 entries reduced to 12; for *n* independent biased coins, $O(2^n) \rightarrow O(n)$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

19

Conditional independence

- **P**(Toothache, Cavity, Catch) has $2^3 1 = 7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - (1) **P**(catch | toothache, cavity) = **P**(catch | cavity)
- The same independence holds if I haven't got a cavity:
 - (2) $P(catch \mid toothache, \neg cavity) = P(catch \mid \neg cavity)$
- Catch is conditionally independent of Toothache given Cavity: **P**(Catch | Toothache, Cavity) = **P**(Catch | Cavity)
- Equivalent statements: **P**(Toothache | Catch, Cavity) = **P**(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

Conditional independence contd.

- Write out full joint distribution using chain rule:
 P(Toothache, Catch, Cavity)
 - = **P**(Toothache | Catch, Cavity) **P**(Catch, Cavity)
 - = **P**(Toothache | Catch, Cavity) **P**(Catch | Cavity) **P**(Cavity)
 - = **P**(*Toothache* | *Cavity*) **P**(*Catch* | *Cavity*) **P**(Cavity)

I.e., 2 + 2 + 1 = 5 independent numbers

- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

21

Bayes' Rule

- Product rule P(a∧b) = P(a | b) P(b) = P(b | a) P(a)
 ⇒ Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)
- · or in distribution form

$$P(Y|X) = P(X|Y) P(Y) / P(X) = \alpha P(X|Y) P(Y)$$

- Useful for assessing diagnostic probability from causal probability:
 - P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)
 - E.g., let *M* be meningitis, *S* be stiff neck: $P(m|s) = P(s|m) P(m) / P(s) = 0.8 \times 0.0001 / 0.1 = 0.0008$
 - Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

P(Cavity | toothache ∧ catch)

- = αP(toothache ∧ catch | Cavity) P(Cavity)
- = α**P**(toothache | Cavity) **P**(catch | Cavity) **P**(Cavity)
- This is an example of a naïve Bayes model:
 P(Cause, Effect₁, ..., Effect_n) = P(Cause) π_iP(Effect_i|Cause)

• Total number of parameters is linear in *n*

23

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools