

10. Lösung von nichtlinearen Gleichungssystemen

A Practical Course in Numerical Methods for Engineers

Barbara Wirthl, M.Sc.
Technische Universität München
Lehrstuhl für Numerische Mechanik

9. Aufgabenblatt: Vergleich der Methoden

- Was haben Sie beobachtet?
- Welche Vor- bzw. Nachteile der Methoden ergeben sich daraus?

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ -2 & \phi & -2 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & -2 & \phi & -2 & \dots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -2 & \phi & -2 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & -2 & \phi & -2 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & -2 & \phi \end{pmatrix}$$

$$\phi = [10.0, 6.0, 5.1, 5.01, 5.001, 5.00001, 5.0000001, ...]$$

Pingo

Gauß'sches Eliminationsverfahren

Wie hoch ist der Rechenaufwand für die Durchführung des Gauß'schen Eliminationsverfahren für eine große Matrix $(n \times n)$?

- \triangleright $\mathcal{O}(n)$
- $\triangleright \mathcal{O}(n^2)$ $\triangleright \mathcal{O}(n^3)$

Reminder:

1. Berechne Multiplikatoren $m_{ji} = \frac{a_{ji}}{a_{ii}}$ für j = i + 1, i + 2, ..., n

$$O(n^2)$$

2. Eliminiere die Matrixzeilen A_i mit

$$(A_i - m_{ii}A_i) \rightarrow (A_i)$$

Genauigkeit des Gauß-Algorithmus

Konditionszahl: $\kappa(\mathbf{A}) = ||\mathbf{A}|| ||\mathbf{A}^{-1}||$

$$(A_j - m_{ji}A_i) \rightarrow (A_j)$$
 mit $m_{ij} = a_{ji}$

Pivotelement: Eintrag auf der Diagonalen aii

- muss ungleich Null sein
- sehr kleine Pivotelemente führen zu Rundungsfehlern

Lösung: Pivotisierung

9. Aufgabenblatt

ററററ്

Zeilen tauschen, betragsmäßig größtes Pivotelement wählen

Vergleich Gauß, Gradienten & CG

Welche der folgenden Aussagen sind korrekt? Mehrere Antworten sind möglich.

- Das Gradientenverfahren benötigt mehr Iterationen als das CG-Verfahren.
- Die Lösungszeit des Gauß'schen Eliminationsverfahren ist abhängig von der Kondition der Matrix.
- ► Für kleine Systeme kann das Gauß'sche Eliminationsverfahren schneller sein als das CG-Verfahren.

Iterationszahl - Gradienten vs. CG

Das Gradientenverfahren benötigt mehr Iterationen als das CG-Verfahren.

Newton-Verfahren

Lösungszeit für n = 30

Für kleine Systeme kann das Gauß'sche Eliminationsverfahren schneller sein als das CG-Verfahren.

Lösungszeit für n = 50

Für kleine Systeme kann das Gauß'sche Eliminationsverfahren schneller sein als das CG-Verfahren.

Lösungszeit für n = 300

Die Lösungszeit des Gauß'schen Eliminationsverfahren ist abhängig von der Kondition der Matrix.

Newton-Verfahren

Lösungszeit für verschiedene Matrixgrößen

9. Aufgabenblatt

Aufgabenblatt 10

Aufgabe 1: Lösung von Gleichungen mit einer Variablen

Bestimmen Sie die Nullstelle der Funktion f(x) mit Hilfe des Newton-Verfahrens mit Startwert x_0 . Die Konvergenz des Verfahrens soll mit Hilfe des absoluten Fehlers des Funktionswertes mit der Toleranz 10^{-12} überprüft werden.

Newton-Verfahren

- 1. Gegeben ist die Funktion $f(x) = x^3 + 3^x$ mit $x_0 = 0.0$.
- 2. Gegeben ist die Funktion $f(x) = \arctan(x)$ mit $x_0 = 2.0$ sowie $x_0 = 1.0$.

9. Aufgabenblatt

Problem:
$$f(x) = 0$$
 \rightarrow $x^{(k+1)} = x^{(k)} + \Delta x = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$

Newton-Verfahren

00000

00000

1D:
$$x^{(k+1)} = x^{(k)} + \Delta x \text{ mit } \Delta x = -\frac{f(x^{(k)})}{f'(x^{(k)})}$$

Mehrdimensional:

Nichtlineares Gleichungssystem der Form F(x) = 0

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}$$

$$\text{mit } \Delta \mathbf{x}^{(k)} = -\mathbf{J} \left(\mathbf{x}^{(k)} \right)^{-1} \mathbf{F} \left(\mathbf{x}^{(k)} \right)$$

Mit der Jacobi-Matrix

$$\boldsymbol{J}(\boldsymbol{x}) = \begin{pmatrix} \frac{\partial f_1(\boldsymbol{x})}{\partial x_1} & \frac{\partial f_1(\boldsymbol{x})}{\partial x_2} & \dots & \frac{\partial f_1(\boldsymbol{x})}{\partial x_{(n-1)}} & \frac{\partial f_1(\boldsymbol{x})}{\partial x_n} \\ \frac{\partial f_2(\boldsymbol{x})}{\partial x_1} & \frac{\partial f_2(\boldsymbol{x})}{\partial x_2} & \dots & \frac{\partial f_2(\boldsymbol{x})}{\partial x_{(n-1)}} & \frac{\partial f_2(\boldsymbol{x})}{\partial x_n} \end{pmatrix}$$

$$\vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{\partial f_{(n-1)}(\boldsymbol{x})}{\partial x_1} & \frac{\partial f_{(n-1)}(\boldsymbol{x})}{\partial x_2} & \dots & \frac{\partial f_{(n-1)}(\boldsymbol{x})}{\partial x_{(n-1)}} & \frac{\partial f_{(n-1)}(\boldsymbol{x})}{\partial x_n} \\ \frac{\partial f_n(\boldsymbol{x})}{\partial x_1} & \frac{\partial f_n(\boldsymbol{x})}{\partial x_2} & \dots & \frac{\partial f_n(\boldsymbol{x})}{\partial x_{(n-1)}} & \frac{\partial f_n(\boldsymbol{x})}{\partial x_n} \end{pmatrix}$$

Konvergenzverhalten des Newton-Verfahrens

Beispiel Arkustangens:

$$f(x) = \arctan(x) \text{ mit } x_0 = 2.0$$

$$x_0 = 2.0$$

 $x_1 = -3.54$
 $x_2 = 13.95$
 $x_3 = -279.34$
 \vdots
 $x_{10} = Inf$
 $x_{11} = NaN$

Newton-Verfahren

00000

Konvergenzverhalten des Newton-Verfahrens

Beispiel Arkustangens:

$$f(x) = \arctan(x) \text{ mit } x_0 = 2.0$$
 13.

$$x_0 = 1.35$$

 $x_1 = -1.28$
 $x_2 = 1.12$
 $x_3 = -0.79$
 \vdots
 $x_6 = 2.86 \cdot 10^{-6}$
 $x_7 = 1.56 \cdot 10^{-17}$

Newton-Verfahren 0000

Lokale Konvergenz:

Startwert muss ausreichend nahe an der Lösung sein

Aufgabenblatt 10

Aufgabe 2: Newton-Verfahren für nichtlineare Gleichungssysteme

Gegeben ist die stationäre Wärmeleitungsgleichung in 2D:

$$-\nabla \cdot (\lambda \nabla T) = \dot{q}(T) \quad \text{in } \Omega$$

mit
$$T = T_D$$
 auf Γ_D , $\lambda \nabla T \cdot \boldsymbol{n} = 0$ auf Γ_N

Die Wärmeleitfähigkeit λ ist eine vom Material abhängige bekannte Größe. Es soll angenommen werden, dass an den Rändern (Γ_D -Dirichlet Rand) entweder die Temperatur T vorgegeben wird oder die Ränder (Γ_N -Neumann Rand) adiabat sind ($\lambda \nabla T \cdot \mathbf{n} = 0$).

Newton-Verfahren

Durch eine temperaturabhängige, exotherme, chemische Reaktion wird Wärme in das System eingebracht. Folgende Gleichung für $\dot{q}(T)$ soll diesen Effekt modellieren:

$$\dot{q}(T) = c_1 e^{-\frac{c_2}{T}}$$

Diskretisieren Sie die Gleichung mithilfe der Finiten-Elemente-Methode mit bilinearen Viereckselementen.

Starke Form der stationären Wärmeleitungsgleichung:

$$-\nabla \cdot (\lambda \nabla T) = c_1 e^{-\frac{c_2}{T}} \quad \text{in } \Omega$$

1. Schritt: Multiplikation mit der Testfunktion v und Integration über das Gebiet Ω

$$-\int_{\Omega} v \nabla \cdot (\lambda \nabla T) \, d\boldsymbol{x} = \int_{\Omega} v c_{1} e^{-\frac{c_{2}}{T}} \, d\boldsymbol{x}$$

2. Schritt: Partielle Integration des Terms auf der linken Seite

$$\int_{\Omega} \lambda \nabla v \cdot \nabla T \, d\mathbf{x} - \int_{\Gamma} \lambda v \nabla T \cdot \mathbf{n} \, d\gamma = \int_{\Omega} \frac{v c_1 e^{-\frac{c_2}{T}}}{dx} d\mathbf{x}$$

3. Schritt: Ausnutzung der Randbedingungen $\Gamma = \Gamma_N + \Gamma_D$

$$\int_{\Omega} \lambda \nabla \mathbf{v} \cdot \nabla T \, d\mathbf{x} = \int_{\Omega} \mathbf{v} c_1 e^{-\frac{c_2}{T}} \, d\mathbf{x}$$

Endlich-dimensionaler Ansatzraum

Ansatzfunktionen für Testfunktion und Temperaturfeld:

$$v^h(\boldsymbol{x}) = \sum_i N^i(\boldsymbol{x}) \hat{v}_i \qquad T^h(\boldsymbol{x}) = \sum_i N^j(\boldsymbol{x}) \hat{T}_j$$

Einsetzen:

$$\int_{\Omega} \lambda \nabla v^h \cdot \nabla T^h \, \mathrm{d} \boldsymbol{x} = \int_{\Omega} v^h c_1 e^{-\frac{c_2}{T^h}} \, \mathrm{d} \boldsymbol{x}$$

$$\sum_{i} \hat{v}_{i} \left[\sum_{j} \int_{\Omega} \lambda \nabla N^{i}(\mathbf{x}) \cdot \nabla N^{j}(\mathbf{x}) \, d\mathbf{x} \, \hat{T}_{j} - \int_{\Omega} N^{i}(\mathbf{x}) c_{1} e^{-\sum_{j} N^{j}(\mathbf{x}) \hat{T}_{j}} \, d\mathbf{x} \right] = 0$$

Muss für beliebige Werte \hat{v}_i gelten:

$$\sum_{i} \int_{\Omega} \lambda \nabla N^{i}(\mathbf{x}) \cdot \nabla N^{j}(\mathbf{x}) \, d\mathbf{x} \, \hat{\mathbf{T}}_{j} - \int_{\Omega} N^{i}(\mathbf{x}) c_{1} e^{-\frac{c_{2}}{\sum_{j} N^{j}(\mathbf{x})} \hat{\mathbf{T}}_{j}} \, d\mathbf{x} = 0 \qquad \forall$$

Newton Verfahren für Gleichungssystem F(T) = 0:

$$\begin{split} \boldsymbol{J}\left(\boldsymbol{T}^{(k)}\right) \Delta \boldsymbol{T}^{(k)} &= -\boldsymbol{F}\left(\boldsymbol{T}^{(k)}\right) \\ \boldsymbol{T}^{(k+1)} &= \boldsymbol{T}^{(k)} + \Delta \boldsymbol{T}^{(k)} & k = 0, 1, 2, \dots \end{split}$$

In unserem Fall:

$$\boldsymbol{F}(\boldsymbol{T}) = \sum_{i} \int_{\Omega} \lambda \nabla N^{i}(\boldsymbol{x}) \cdot \nabla N^{j}(\boldsymbol{x}) \, d\boldsymbol{x} \, \hat{\boldsymbol{T}}_{j} - \int_{\Omega} N^{i}(\boldsymbol{x}) c_{1} e^{-\frac{c_{2}}{\sum_{j} N^{j}(\boldsymbol{x}) \, \hat{\boldsymbol{T}}_{j}}} \, d\boldsymbol{x} = 0 \qquad \forall i$$

Newton-Verfahren

Komponenten $F_i(\mathbf{T}^{(k)})$ von $\mathbf{F}(\mathbf{T}^{(k)})$:

$$F_{i}\left(\boldsymbol{T}^{(k)}\right) = \sum_{j} \int_{\Omega} \lambda \nabla N^{j}(\boldsymbol{x}) \cdot \nabla N^{j}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \, \hat{T}_{j}^{(k)} - \int_{\Omega} N^{i}(\boldsymbol{x}) c_{1} e^{-\frac{c_{2}}{\sum_{j} N^{j}(\boldsymbol{x})} \hat{T}_{j}^{(k)}} \, \mathrm{d}\boldsymbol{x}$$

Komponenten $J_{ij}\left(\boldsymbol{T}^{(k)}\right) = \frac{\partial F_i}{\partial \hat{\boldsymbol{\tau}}_i}$ der Jacobi-Matrix $\boldsymbol{J}\left(\boldsymbol{T}^{(k)}\right)$:

$$J_{ij}\left(\boldsymbol{T}^{(k)}\right) = \int_{\Omega} \lambda \nabla N^{i}(\boldsymbol{x}) \cdot \nabla N^{j}(\boldsymbol{x}) d\boldsymbol{x}$$
$$- \int_{\Omega} N^{i}(\boldsymbol{x}) N^{j}(\boldsymbol{x}) \frac{c_{1} c_{2}}{\left(\sum_{j} N^{j}(\boldsymbol{x}) \hat{T}_{j}^{(k)}\right)^{2}} e^{-\frac{c_{2}}{\sum_{j} N^{j}(\boldsymbol{x}) \hat{T}_{j}^{(k)}}} d\boldsymbol{x}$$

Umsetzung im Programm

Bestimmung von $J_{ij}\left(\mathbf{T}^{(k)}\right)$ und $-F_{i}\left(\mathbf{T}^{(k)}\right)$ analog zu den Arbeitsblättern 7 & 8:

Newton-Verfahren

- ▶ Aufteilen des Integrals in Elemente $\rightarrow \Omega^{(e)}$
- lacktriangle Transformation auf das Referenzelement $ightarrow \Omega_{ref}^{(e)}$
- Integration mit der Gauß-Quadratur

$$\sum_{j} J_{ij} \left(\boldsymbol{T}^{(k)} \right) \Delta \hat{T}_{j}^{(k)} = -F_{i} \left(\boldsymbol{T}^{(k)} \right)$$

$$T_j^{(k+1)} = T_j^{(k)} + \Delta T_j^{(k)} \qquad k = 0, 1, 2, \dots.$$

Umsetzung im Programm: Dirichlet-Randbedingungen

[dbcsysmat,dbcrhs] = assignDBC_nlin(sysmat,rhs, dbc)

- Berücksichtigt Dirichlet-Ränder in der Systemmatrix bzw. im Systemvektor
- Wenden Sie folgendes Vorgehen auf alle Zeilen mit einer Dirichlet-Randbedingung an:
 - 1. Ersetzen Sie die Zeile der Systemmatrix durch 0-Einträge und setzen Sie den Wert auf der Hauptdiagonalen zu 1.

Newton-Verfahren

2. Ersetzen Sie den entsprechenden Eintrag im Systemvektor durch einen 0-Eintrag.

Und los...

Nächste Tutorsprechstunden:

Montag 23.01. 10:00 – 12:15 Uhr MW1264 Mittwoch 25.01. 15:30 – 17:45 Uhr MW1264

Montag 30.01. 10:00 - 12:15 Uhr MW1264

2. Überprüfung (Achtung Terminänderung!)

Dienstag 31.01.2023 MW1264