Section 1

Introduction and Potential Outcomes

Sooahn Shin

GOV 2003

Sept 9, 2021

Overview

- Logistics:
 - Section: Thur 3:00 4:15 pm @ K262 @ K105
 - TF Office Hours: Mon 1:30 2:30/Thur 4:30 5:30 pm @ TBD
 - Pset 1 released! Due at 11:59 pm (ET) on Sept 15
 - We encourage you to share your questions on Ed.
 - By September 17: Find a collaborator for the project (check the open thread for finding partners on Ed).
- Today's topics:
 - 1. Identification and estimation
 - 2. Example: Political canvassing

Identification and Estimation

- The fundamental problem of causal inference (Holland 1986)
 - We only observe one potential outcome per unit
 How do we infer the missing potential outcomes (= counterfactual)?
- Identification (definition of causal effects)
 Assumptions for defining effects: e.g., SUTVA
 - Estimands (= Quantity of Interest): e.g., Sample Average Treatment Effect (SATE)
- Treatment Errest (5/112)
- Estimation (learning from observed outcomes) Sample | population treated | SATE | PATE |

 Treated | SATT | PATT | group | SATT | PATT |

Example: Political canvassing¹

• Study of
$$n$$
 voters $\begin{cases} n_1 & \text{conjussed} \\ n_0 & \text{x} \end{cases}$ outcome $\begin{cases} 1 & \text{if cand. } A \\ 2 & \text{if } \end{cases}$ selection $\begin{cases} 1 & \text{if } i \text{ formed ont} \end{cases}$ • For each voter $i \in \{1, 2, \dots, n\}$, observe: Treatment $\begin{cases} 1 & \text{if } i \text{ formed ont} \end{cases}$

- Vote choice (observed outcome): $Y_i = 1$ if voter i cast ballot for candidate A, and 0 if the voter cast ballot for candidate B.
- Turnout (observed selection): $S_i = 1$ if voter i turned out, and 0 otherwise.
- Canvassing (treatment): $D_i = 1$ if canvassed, and 0 otherwise.
- Causal question: does canvassing (D_i) affect vote choice (Y_i) ?
- Selection on samples:
 - 1. canvassing may affect turnout (S_i) , and
 - 2. we only observe the vote choices of the voters who turned out → post-treatment bias F[Y; [Dz=1, Sz=1] - E[Yz, Dz=0, Sz=1]

Example adapted from 2021S STAT286/GOV2003 Review Question 1

Potential Outcomes and Principal Stratification Data

Si (1) | Si(0) | Si(1) - Si(1)

1	D:	\rightarrow	S:

:	r	Ase	Gerter	Di	Si	Yi	
	1	30	F	0		1	
	2	20	F	- 1	1	0	_
	3	40	M	0	0		
	7	4.5	1 -				

S_i: Observed turnout

3	40	M	0	0	
4	25	F	T	0	
	1	Ţ	1	1	3

- $S_i(d)$ for $d \in \{0,1\}$: **Potential** turnout
 - Recall the "consistency" assumption: $S_i = S_i(d)$ if $D_i = d$ (no hidden versions of treatment) counter example: Variation of amount /buel
 - If canvassed $[D_i = d]$, the potential turnout when the voter is canvassed $[S_i(d)]$ is the observed turnout $[S_i]$ Sisplection
- We have four principal strata defined by $(S_i(0), S_i(1))$
 - (1,1): turning out regardless of the canvassing
 - (0,1): turning out only when being canvassed
 - (1,0): turning out only when not being canvassed
 - (0,0): never turning out (Si(0), Si(1)) first \rightarrow d=0 < $< s_{i(0)=0} > 0$ or 2 entry < $< s_{i(0)=1} > 0$ or 2 second $< s_{i(1)=0} > 0$ or 2 entry > $< s_{i(1)=0} > 0$ or 2 botential Si given potential Si given

Potential Outcomes and Principal Stratification

- 2. Vote choice does not exist if a voter i does not turn out
 - Y_i: Observed vote choice
 - $Y_i(d,s)$ for $d,s \in \{0,1\}$: **Potential** vote choice
- Yil Si=1, Di=d

" selection"

- $Y_i(1,0)$ and $Y_i(0,0)$ are not well defined
 - Y_i(1,0): Potential vote choice if the voter is canvassed and didn't turn out → does not exist
 - Y_i(0,0): Potential vote choice if the voter is not canvassed and didn't turn out → does not exist
- -%: These two ave potential vote choice $Y_2(d,S)$ different $P_1(d,S)$ principal strata $(S_1(0),S_2(1))$

Estimands (Quantity of Interest) research question

- Suppose effect of interest is the effect among those who turn out regardless of the treatment.

 * This is only defined unters who always turn out
- What is the <u>individual causal effect</u> of canvassing on voting for candidate A among always turnout? (Si(a), Si(1)) ind. causal effect

$$\begin{array}{c} Y_{2}(1,0) & \xrightarrow{\downarrow} & \text{contradicts w/} \\ Y_{1}(0,0) & \xrightarrow{\downarrow} & \text{contradicts w/} \\ \text{the definition} & & & & & & & & \\ Y_{i}(1,1)-Y_{i}(0,1) & & & & & & \\ Y_{i}(1,1)-Y_{i}(0,1) & & & & & \\ Y_{i}(1,1)-Y_{i}(0,1) & & & & \\ Y_{i}(1,1)-Y_{i}(0,1) & & & & \\ Y_{i}(1,1)-Y_{i}(0,1) & & \\ Y_{i}(1,1)-$$

• What is the **population average treatment effect** of canvassing on voting for candidate A among always turnout?

$$\mathbb{E}[Y_i(1,1) - Y_i(0,1) \mid (S_i(0), S_i(1)) = (1,1)]$$

7

Estimands

- Vote share for candidate $A = \frac{\text{Number of votes for } A}{\text{Number of those who turn out}}$
- What is the group-level causal effect of canvassing on candidate A's vote share (among *n* voters in the study)? For all samples

$$Z(1)-Z(0) \text{ where } Z(t)=\frac{\sum_{i=1}^{n}Y_{i}(t)S_{i}(t)}{\sum_{i=1}^{n}S_{i}(t)} \text{ for } t \in \{0,1\}$$
 Q. Also, not $\sum_{i=1}^{n}Y_{i}(t)$ for new quantity everyone not canvased

7
 Use Yilt) Silt)

So that if $S_{\overline{i}(4)=0}$ → Yilt) Silt)=0

=1 → " = Yill

-b numerator