1. Standard filtrations

Last time we proved \mathcal{O} has enough projectives and injectives. Hence for $M, N \in \mathcal{O}$, the vector space $\mathsf{Ext}^i_{\mathcal{O}}(M,N), i \geq 0$ is well-defined. It can be calculated in either of the following methods:

- Choose a projective resolution $P^{\bullet} \to M$ and consider the chain complex $\mathsf{Hom}_{\mathcal{O}}(P^{-\bullet}, N)$. Then $\mathsf{Ext}^i_{\mathcal{O}}(M, N)$ is the *i*-th cohomology of this complex.
- Choose an injective resolution $N \to I^{\bullet}$ and consider the chain complex $\mathsf{Hom}_{\mathcal{O}}(M, I^{\bullet})$. Then $\mathsf{Ext}^i_{\mathcal{O}}(M, N)$ is the *i*-th cohomology of this complex.

We will prove the following result:

Theorem-Definition 1.1. For an object $M \in \mathcal{O}$, the following conditions are equivalent:

- (a) The object M admits a finite filtration such that the subquotients are isomorphic to Verma modules.
- (b) For any weight μ and i > 0, $\operatorname{Ext}_{\mathcal{O}}^{i}(M, M_{\mu}^{\vee}) = 0$.
- (c) For any weight μ , $\operatorname{Ext}_{\mathcal{O}}^{1}(M, M_{\mu}^{\vee}) = 0$.

A filtration as in (a) is called a **standard filtration** of M. Let $\mathcal{O}^{\Delta} \subset \mathcal{O}$ be the full subcategory of objects admitting standard filtrations.

Via contragradient duality, the above result is equivalent to:

Theorem-Definition 1.2. For an object $M \in \mathcal{O}$, the following conditions are equivalent:

- (a) The object M admits a finite filtration such that the subquotients are isomorphic to dual Verma modules.
- (b) For any weight λ and i > 0, $\operatorname{Ext}_{\mathcal{O}}^{i}(M_{\lambda}, M) = 0$.
- (c) For any weight λ , $\operatorname{Ext}_{\mathcal{O}}^1(M_{\lambda}, M) = 0$.

A filtration as in (a) is called a **costandard filtration** of M. Let $\mathcal{O}^{\nabla} \subset \mathcal{O}$ be the full subcategory of objects admitting costandard filtrations.

As a particular case, we obtain

Corollary 1.3. For weights λ, μ and i > 0, we have $\operatorname{Ext}_{\mathcal{O}}^{i}(M_{\lambda}, M_{\mu}^{\vee}) = 0$.

We will also prove the following result.

Theorem 1.4. Every projective object of \mathcal{O} admits a standard filtration.

To prove these results, we need some preparations.

Lemma 1.5. The generalized Verma modules $M_{\lambda,n}$ admit standard filtrations.

Proof. Recall $M_{\lambda,n} \simeq \operatorname{ind}_{\mathfrak{b}}^{\mathfrak{g}}(U(\mathfrak{b})/I'_{\lambda,n})$, where $I'_{\lambda,n}$ is the left ideal of $U(\mathfrak{b})$ generated by the following elements:

• The element $t - \lambda(t)$ for any $t \in \mathfrak{t}$;

Date: Apr 22, 2024.

¹See [Proof of Lemma 4.10, Lecture 8].

• The element $x_1x_2\cdots x_n$ for $x_i \in \mathfrak{n}^+$.

By considering the weights, the finite-dimensional \mathfrak{b} -module $U(\mathfrak{b})/I'_{\lambda,n}$ has a filtration such that the subquotients are 1-dimensional. Since the functor $\operatorname{ind}_{\mathfrak{b}}^{\mathfrak{g}}$ is exact, we obtain a standard filtration of $M_{\lambda,n}$.

Lemma 1.6. Let $M \in \mathcal{O}^{\Delta}$ be an object admitting a standard filtration $\mathsf{F}^{\leq \bullet}M$ with length m. Let $v \in M$ be a nonzero highest weight vector with weight λ , and $M_{\lambda} \to M$ be the unique \mathfrak{g} -linear map sending v_{λ} to v. Let i be the smallest index such that the image $\mathsf{Im}(f)$ is contained in $\mathsf{F}^{\leq i}M$. Then:

- (1) The composition $M_{\lambda} \to M \to \operatorname{gr}^i M$ is an isomorphism. In particular, $M_{\lambda} \to M$ is injective.
- (2) The quotient M/M_{λ} admits a standard filtration with length m-1.

Proof. By assumption $\operatorname{gr}^i M$ is a Verma module M_{μ} and the composition $M_{\lambda} \to M \to \operatorname{gr}^i M$ is nonzero. This implies $\lambda \leq \mu$. Sinnce λ is a highest weight of M. We get $\lambda = \mu$. This implies $M_{\lambda} \to M \to \operatorname{gr}^i M$ is an isomorphism because it preserves the nonzero highest weight vectors. This proves (1).

For (2), we have a short exact sequence $0 \to \mathsf{F}^{\leq i-1}M \to M/M_\lambda \to M/\mathsf{F}^{\leq i}M \to 0$. By assumption, $\mathsf{F}^{\leq i-1}M$ has a standard filtration of length i-1, and $M/\mathsf{F}^{\leq i}M$ has one of length m-i. It follows that M/M_λ admits a standard filtration with length (i-1)+(m-i)=m-1.

Lemma 1.7. For direct sum decomposition $M = M_1 \oplus M_2$ in \mathcal{O} , if M admits a standard filtration, so do M_1 and M_2 .

Proof. We use induction on the length of the standard filtration of M. When the length is 0, the claim is trivial. If the length is m > 0, then $M \neq 0$. Without lose of generality, we can assume M_1 contains a nonzero highest weight vector v of M with weight λ . By Lemma 1.6, we have injections $M_{\lambda} \hookrightarrow M_1 \hookrightarrow M$ such that M/M_{λ} admits a standard filtration of length m-1. Since $M/M_{\lambda} \simeq M_1/M_{\lambda} \oplus M_2$, by induction hypothesis, we have $M_1/M_{\lambda}, M_2 \in \mathcal{O}^{\Delta}$. It follows that we also have $M_1 \in \mathcal{O}^{\Delta}$.

Proof of Theorem 1.4. In the proof of [Theorem 4.3, Lecture 8], we proved any object in \mathcal{O} is a quotient of a direct sum of some $M_{\lambda,n}$. In general, if a projective object is a quotient of another object, then it is a direct summand of the latter. It follows that any projective object is a direct summand of a direct sum of some $M_{\lambda,n}$. Then the claim follows from Lemma 1.5 and Lemma 1.7.

 \square [Theorem 1.4]

Lemma 1.8. Let $0 \to K \to M \to N \to 0$ be a short exact sequence such that $N \in \mathcal{O}^{\Delta}$. Then $M \in \mathcal{O}^{\Delta}$ iff $K \in \mathcal{O}^{\Delta}$.

Warning 1.9. $K, M \in \mathcal{O}^{\Delta}$ does not imply $N \in \mathcal{O}^{\Delta}$. This can be seen from the \mathfrak{sl}_2 -case and the short exact sequence $0 \to M_{-l-2} \to M_l \to L_l \to 0$.

Proof. The "if" part is obvious. For the "only if" part, let $M \in \mathcal{O}^{\Delta}$. Using induction, it is easy to reduce to the case when N is a Verma module M_{μ} . Let $M_{\lambda} \to M$ be as in Lemma 1.6. Then $M/M_{\lambda} \in \mathcal{O}^{\Delta}$. Note that the composition $M_{\lambda} \to M \to M_{\mu}$ is either 0 or an isomorphism by considering the weights. If this is the zero map, then $M/M_{\lambda} \to M_{\mu}$ is still a surjection and we can finish the proof by using induction. Otherwise $M \simeq K \oplus M_{\mu}$ and the claim follows from Lemma 1.7.

Proof of Theorem-Definition 1.1. We first prove $(a) \Rightarrow (b)$. We prove by induction on i. For any fixed i, using the long exact sequences

$$\cdots \to \operatorname{Ext}\nolimits_{\mathcal{O}}^{i}(\mathsf{F}^{\leq k-1}M,M_{u}^{\vee}) \to \operatorname{Ext}\nolimits_{\mathcal{O}}^{i}(\mathsf{F}^{\leq k}M,M_{u}^{\vee}) \to \operatorname{Ext}\nolimits_{\mathcal{O}}^{i}(\operatorname{gr}^{k}M,M_{u}^{\vee}) \to \cdots,$$

we only need to show $\operatorname{Ext}_{\mathcal{O}}^i(\operatorname{gr}^k M, M_{\mu}^{\vee}) = 0$ for any k. By assumption, $\operatorname{gr}^k M \simeq M_{\lambda}$ for some weight λ . The case i=1 is just [Lemma 3.16, Lecture 8]. For i>1, let $0\to N\to P\to M_{\lambda}\to 0$ be a short exact sequence such that P is projective. We have a long exact sequence

$$\cdots \to \operatorname{Ext}^{i-1}_{\mathcal{O}}(P,M_{\mu}^{\vee}) \to \operatorname{Ext}^{i-1}_{\mathcal{O}}(N,M_{\mu}^{\vee}) \to \operatorname{Ext}^{i}_{\mathcal{O}}(M_{\lambda},M_{\mu}^{\vee}) \to \operatorname{Ext}^{i}_{\mathcal{O}}(P,M_{\mu}^{\vee}) \to \cdots$$

Since P is projective, we have $\mathsf{Ext}_{\mathcal{O}}^{i-1}(N, M_{\mu}^{\vee}) \simeq \mathsf{Ext}_{\mathcal{O}}^{i}(M_{\lambda}, M_{\mu}^{\vee})$. By Theorem 1.4 and Lemma 1.8, $N \in \mathcal{O}^{\Delta}$. Hence by induction hypothesis $\mathsf{Ext}_{\mathcal{O}}^{i-1}(N, M_{\mu}^{\vee}) \simeq 0$ as desired.

 $(b) \Rightarrow (c)$ is obvious.

It remains to show $(c) \Rightarrow (a)$.

We prove by induction on length(M). The case length(M) = 0 is obvious. If length(M) > 0, let λ be a highest weight vector of M and $n := \dim(M^{\text{wt}=\lambda})$. Then there is a nonzero \mathfrak{g} -linear map $M_{\lambda}^{\oplus n} \to M$. Let² N_1 and N_2 be the kernel and cokernel of this map, and $M' \neq 0$ be the image of it. We have short exact sequences

$$0 \to N_1 \to M_{\lambda}^{\oplus n} \to M' \to 0,$$

$$0 \to M' \to M \to N_2 \to 0.$$

They induce long exact sequences

$$0 \rightarrow \operatorname{Hom}_{\mathcal{O}}(M', M_{\mu}^{\vee}) \rightarrow \operatorname{Hom}_{\mathcal{O}}(M_{\lambda}^{\oplus n}, M_{\mu}^{\vee}) \rightarrow \operatorname{Hom}_{\mathcal{O}}(N_{1}, M_{\mu}^{\vee}) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}(M', M_{\mu}^{\vee}) \rightarrow \cdots$$

$$\cdots \rightarrow \operatorname{Hom}_{\mathcal{O}}(M, M_{\mu}^{\vee}) \rightarrow \operatorname{Hom}_{\mathcal{O}}(M', M_{\mu}^{\vee}) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}(N_{2}, M_{\mu}^{\vee}) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}(M, M_{\mu}^{\vee}) \rightarrow \cdots$$

$$\rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}(M', M_{\mu}^{\vee}) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{2}(N_{2}, M_{\mu}^{\vee}) \rightarrow \cdots$$

By assumption, $\mathsf{Ext}^1_\mathcal{O}(M, M_\mu^\vee) = 0$. We claim $\mathsf{Ext}^1_\mathcal{O}(N_2, M_\mu^\vee) = 0$. Indeed:

- If $\lambda \neq \mu$, then $\mathsf{Hom}_{\mathcal{O}}(M_{\lambda}^{\oplus n}, M_{\mu}^{\vee}) = 0$ ([Lemma 3.14, Lecture 8]). By the first sequence, $\mathsf{Hom}_{\mathcal{O}}(M', M_{\mu}^{\vee}) = 0$. By the second sequence, $\mathsf{Ext}_{\mathcal{O}}^{1}(N_{2}, M_{\mu}^{\vee}) = 0$.
- If $\lambda = \mu$, note that μ is a highest weight of both M' and M and by construction, $(M')^{\mathsf{wt}=\mu} \simeq M^{\mathsf{wt}=\mu}$. Hence we have

$$\operatorname{Hom}_{\mathcal{O}}(M',M_{\mu}^{\vee}) \simeq ((M')^{\operatorname{wt}=\mu})^* \simeq (M^{\operatorname{wt}=\mu})^* \simeq \operatorname{Hom}_{\mathcal{O}}(M,M_{\mu}^{\vee}).$$

By the second sequence, $\operatorname{Ext}_{\mathcal{O}}^1(N_2, M_{\mu}^{\vee}) = 0$.

Note that length(N_2) < length(M). By the induction hypothesis, $N_2 \in \mathcal{O}^{\Delta}$. Using $(a) \Rightarrow (b)$, we get $\operatorname{Ext}^2_{\mathcal{O}}(N_2, M_{\mu}^{\vee}) = 0$. By the second sequence, $\operatorname{Ext}^1_{\mathcal{O}}(M', M_{\mu}^{\vee}) = 0$. Now we have two cases:

- If $N_2 \neq 0$, then $\operatorname{length}(M') < \operatorname{length}(M)$. By the induction hypothesis, $M' \in \mathcal{O}^{\Delta}$. Then $M \in \mathcal{O}^{\operatorname{length}}$ because it is an extension of N_2 by M'.
- If $N_2 = 0$, then $M \simeq M'$. An argument similar to that in the last paragraph implies $\mathsf{Hom}_{\mathcal{O}}(N_1, M_{\mu}^{\vee}) = 0$. Note that μ can be any weight. This forces $N_1 = 0$ and therefore $M \simeq M_{\lambda}^{\oplus n}$. Then it is clear $M \in \mathcal{O}^{\Delta}$.

 \square [Theorem-Definition 1.1]

Lemma 1.10. Let $M \in \mathcal{O}_{\chi}$ and $M' \in \mathcal{O}_{\chi'}$ such that $\chi \neq \chi'$. Then $\mathsf{Ext}^i(M,N) = 0$ for any $i \geq 0$.

²The following language can be rewritten in the language of spectral sequences.

Proof. Let $P^{\bullet} \to M$ be a projective resolution of M. We can replace each P^{-n} by its image under the functor $\mathcal{O} \to \mathcal{O}_{\chi}$ and obtain a projective resolution of M contained in \mathcal{O}_{χ} . Now the claim follows from the case i = 0.

Exercise 1.11. This is Homework 4, Problem 4. Let λ be a weight. Prove:

- (1) If $M \in \mathcal{O}$ such that $\mathsf{wt}(M) \cap \{\mu \mid \mu \geq \lambda\} = \emptyset$, then $\mathsf{Ext}_{\mathcal{O}}^i(M, M_\lambda^\vee) = 0$ for $i \geq 0^3$.
- (2) $\operatorname{Ext}_{\mathcal{O}}^{i}(L_{\lambda}, M_{\lambda}^{\vee}) = 0 \text{ for } i > 0.$

4

(3) Combining (1) and (2), deduce $\operatorname{Ext}_{\mathcal{O}}^{i}(M_{\lambda}, L_{\mu}) = 0$ and $\operatorname{Ext}_{\mathcal{O}}^{i}(L_{\mu}, M_{\lambda}^{\vee}) = 0$ for i > 0 and $\mu \neq \lambda$.

2. BGG reciprocity

The following result follows from Theorem-Definition 1.1 by dévissage.

Proposition-Definition 2.1. Let $M \in \mathcal{O}^{\Delta}$, then for any standard filtration of M, the multiplicity of M_{λ} in the subquotients does not depend on the filtration. We denote this number by $(M:M_{\lambda})$. Moreover, we have

$$(M:M_{\lambda}) \simeq \dim(\mathsf{Hom}_{\mathcal{O}}(M,M_{\lambda}^{\vee})).$$

Theorem 2.2 (BGG reciprocity). For weights $\lambda, \mu \in \mathfrak{t}^*$, we have

$$(P_{\mu}:M_{\lambda})=[M_{\lambda}^{\vee}:L_{\mu}]=[M_{\lambda}:L_{\mu}].$$

Proof. The last identity follows from $L_{\mu}^{\vee} \simeq L_{\mu}$. The first one follows from Proposition-Definition 2.1 and [Corollary 4.9, Lecture 8].

Remark 2.3. The previous discussions on standard filtrations and BGG reciprocity can be axiomized using the language of highest weight categories. See [CPS].

Remark 2.4. In O, or any highest weight category, if an object admits both a standard filtration and a costandard filtration, then it is called a tilting object. One can show the set of indecomposable tilting objects is bijective to the set of irreducible objects. Tilting objects play important roles in representation theory. For a geometry-oriented introduction, see [BBM].

3. Translation functors

Construction 3.1. Let V be a finite-dimensional \mathfrak{g} -module. Consider the functor

$$\mathfrak{g}\text{-mod} \to \mathfrak{g}\text{-mod}, \ M \mapsto V \otimes M,$$

where (recall) the \mathfrak{g} -module structure on $V \otimes M$ is given by the Lebniz rule. It is easy to see this functor preserves \mathcal{O} . We denote the obtained functor by $T_V:\mathcal{O}\to\mathcal{O}$. Note that T_V is exact.

Lemma 3.2. The functor $T_V: \mathcal{O} \to \mathcal{O}$ commutes with contragradient duality.

Proof. For any finite dimensional \mathfrak{g} -module, we have $V^{\vee} \simeq V$ because $L_{\lambda}^{\vee} \simeq L_{\lambda}$.

Lemma 3.3. The functor T_{V^*} is both left and right adjoint to T_V . In particular, T_V preserves both projectives and injectives.

³Hint: Step 1: reduce to the case $M = L_{\mu}$ with $\varpi(\mu) = \varpi(\lambda)$ and $\mu \not\succeq \lambda$. Step 2: consider $0 \to K \to M_{\mu} \to M_{\mu}$ $L_{\mu} \to 0$ and note that $\operatorname{wt}(K) \prec \mu$.

4You should ask experts in representation theory for other good references.

LECTURE 9 5

Proof. We have the unit and pairing maps $k \to V \otimes V^*$ and $V^* \otimes V \to k$, which induce natural transformations $T_k \to T_{V \otimes V^*}$ and $T_{V^* \otimes V} \to T_k$. Note that $T_k \simeq \operatorname{Id}$ and $T_{V \otimes V'} \simeq T_V \circ T_{V'}$. Hence we obtain natural transformations $\operatorname{Id} \to T_V \circ T_{V^*}$ and $T_{V^*} \circ T_V \to \operatorname{Id}$. Now the duality data between V and V^* are translated exactly to the djunction data between T_V and T_{V^*} .

Remark 3.4. It follows formally that T_{V^*} and T_V are adjoint in the derived sense, i.e. $\operatorname{Ext}^i(T_V(M),N) \simeq \operatorname{Ext}^i(M,T_{V^*}(N))$.

Lemma 3.5. For any weight λ , the module $T_V(M_{\lambda})$ admits a standard filtration $\mathsf{F}^{\leq k}(T_V(M_{\lambda}))$ such that the highest weights of $\mathsf{gr}^k(T_V(M_{\lambda}))$ is (non-strictly) decreasing in k. Moreover,

$$(T_V(M_\lambda):M_\mu)=\dim V^{\mathsf{wt}=\mu-\lambda}.$$

Proof. Follows from the projection formula

$$\operatorname{ind}_{\mathfrak{h}}^{\mathfrak{g}}(V_1) \otimes V_2 \simeq \operatorname{ind}_{\mathfrak{h}}^{\mathfrak{g}}(V_1 \otimes V_2), \ V_1 \in \mathfrak{b}\mathrm{-mod}, V_2 \in \mathfrak{g}\mathrm{-mod}.$$

Indeed, any finite-dimensional weight \mathfrak{b} -module, such as $V \otimes k_{\lambda}$, admits a finite filtration whose subquotients are 1-dimensional modules with decreasing weights.

Construction 3.6. Let χ_1, χ_2 be two central characters. For any finite-dimensional \mathfrak{g} -module V, consider the composition

$$T_{\chi_1,V,\chi_2}: \mathcal{O}_{\chi_1} \to \mathcal{O} \xrightarrow{T_V} \mathcal{O} \to \mathcal{O}_{\chi_2}.$$

We call such functors the **translation functors**. It follows that T_{χ_1,V,χ_2} is exact, and is both left and right adjoint to T_{χ_2,V^*,χ_1} .

Construction 3.7. Let λ and μ be weights such that $\mu - \lambda$ is integral. Then the W-orbit (for the linear action) $W(\mu - \lambda)$ contains a unique dominant integral weight ν . Consider the finite-dimensional \mathfrak{g} -module L_{ν} . We write

$$T_{\lambda,\mu} \coloneqq T_{\varpi(\lambda),L_{\nu},\varpi(\mu)} : \mathcal{O}_{\varpi(\lambda)} \to \mathcal{O}_{\varpi(\mu)}.$$

Note that $w_0(-\nu)$ is also dominant and integral. By definition, we have

$$T_{\mu,\lambda} = T_{\varpi(\mu),L_{-w_0(\nu)},\varpi(\lambda)},$$

which is both left and right adjoint to $T_{\lambda,\mu}$ because $L_{-w_0(\nu)} \simeq L_{\nu}^{*5}$

Recall the following definition:

Definition 3.8. Let (E, Φ) be the root system of \mathfrak{g} . For $\lambda, \mu \in E$, we say they belong to the same **dot-Weyl facet** if the signs of $(\lambda + \rho, \check{\alpha})$ and $(\mu + \rho, \check{\alpha})$ are the same for any $\alpha \in \Phi$.

For $\lambda \in E$, let F_{λ} be the dot-Weyl facet containing it.

Definition 3.9. For a dot-Weyl facet F_{λ} , its **upper closure** F_{λ}^+ is the subset of $\mu \in E$ such that

$$\langle \mu + \rho, \check{\alpha} \rangle \begin{cases} > 0 & \text{if } \langle \lambda + \rho, \check{\alpha} \rangle > 0, \\ = 0 & \text{if } \langle \lambda + \rho, \check{\alpha} \rangle = 0, \\ \leq 0 & \text{if } \langle \lambda + \rho, \check{\alpha} \rangle < 0 \end{cases}$$

⁵Here L^*_{ν} is the usual linear dual of L_{μ} . It is not the contragradient dual. Note that $w_0(\nu)$ is indeed the lowest weight of L_{μ} .

Remark 3.10. When equipped with the standard topology, F_{λ} is a locally closed subset of E, and both the closure \overline{F}_{λ} and the upper closure F_{λ}^{+} are unions of dot-Weyl facets.

Note that each dot-Weyl facet is contained in the upper closure of a unique **dot-Weyl** chamber, i.e., open dot-Weyl facet. Also, λ is dot-regular iff F_{λ} is a dot-Weyl chamber.

Example 3.11. For \mathfrak{sl}_2 and the coordinate $l := (\lambda, \check{\alpha})$, there are three facets: $(-\infty, -1)$, $\{-1\}$ and $(-1, \infty)$. Note that $\{-1\}$ is contained in the upper closure of $(-\infty, -1)$.

We have the following theorem. For complete proofs and its generalization to non-integral weights, see [H, Sect. 7]⁶.

Theorem 3.12. Let λ and μ be dot-antidominant integral weights such that $F_{\mu} \subset \overline{F_{\lambda}}$. Then for any $w \in W$

$$T^{\mu}_{\lambda}(M_{w\cdot\lambda}) \simeq M_{w\cdot\mu}, \ T^{\mu}_{\lambda}(M^{\vee}_{w\cdot\lambda}) \simeq M^{\vee}_{w\cdot\mu}$$

and

$$T_{\lambda}^{\mu}(L_{w \cdot \lambda}) \simeq \left\{ \begin{array}{cc} L_{w \cdot \mu} & \textit{if } F_{w \cdot \mu} \subset F_{w \cdot \lambda}^{+}, \\ 0 & \textit{otherwise}. \end{array} \right.$$

Sketch. Let $\nu \in W(\mu - \lambda)$ be the unique dominant integral weight in this orbit. Write $V := L_{\nu}$. By Lemma 3.5, $T^{\mu}_{\lambda}(M_{w \cdot \lambda})$ admits a standard filtration and the multiplicity

$$(T^{\mu}_{\lambda}(M_{w\cdot\lambda}):M_{w'\cdot\mu})=\dim V^{\mathsf{wt}=w'\cdot\mu-w\cdot\lambda}$$

The RHS is nonzero unless $w' \cdot \mu - w \cdot \lambda \leq \nu$. Now a combinatorial argument (see [H, Lemma 7.5]) shows the latter can happen only if $w' \cdot \mu = w \cdot \mu$, and in this case the multiplicity is 1 because $w \cdot \mu - w \cdot \lambda = w(\mu - \lambda) \in W(\nu)$. This implies $T^{\mu}_{\lambda}(M_{w \cdot \lambda}) \simeq M_{w \cdot \mu}$.

The statement for dual Verma modules follows from the contragradient duality.

Now consider the chain $M_{w\cdot\lambda} \to L_{w\cdot\lambda} \to M_{w\cdot\lambda}^{\vee}$. Since T_{λ}^{μ} is exact, we obtain a chain $M_{w\cdot\mu} \to T_{\lambda}^{\mu}(L_{w\cdot\lambda}) \to M_{w\cdot\mu}^{\vee}$. This forces $T_{\lambda}^{\mu}(L_{w\cdot\lambda}) \simeq L_{w\cdot\mu}$ or 0 ([Lemma 3.14, Lecture 8]).

It remains to pinpoint these two cases. Since the exact functor T^{μ}_{λ} sends $M_{w \cdot \lambda}$ to $M_{w \cdot \mu}$, there exists a unique composition factor $L_{w' \cdot \lambda}$ of $M_{w \cdot \lambda}$ such that $T^{\mu}_{\lambda}(L_{w' \cdot \lambda}) \simeq L_{w \cdot \mu}$. By the last paragraph, we must have $w' \cdot \mu = w \cdot \mu$. Now we have two cases:

- If $F_{w \cdot \mu}$ is contained in the upper closure $F_{w \cdot \lambda}^+$, then a combinatorial argument shows $w' \cdot \lambda = w \cdot \lambda$ and therefore $T_{\lambda}^{\mu}(L_{w \cdot \lambda}) \simeq L_{w \cdot \mu}$ as desired.
- If $F_{w\cdot\mu}$ is not contained in the upper closure $F_{w\cdot\lambda}^+$, then there exists a reflection s_α such that $s_\alpha w \cdot \lambda \prec w \cdot \lambda$ while $s_\alpha w \cdot \mu = w \cdot \mu$. By Verma's theorem, there exists a proper embedding $M_{s_\alpha w \cdot \lambda} \subset M_{w \cdot \lambda}$ which is sent to an isomorphism by T_λ^μ . Hence $L_{w \cdot \lambda}$, which is a quotient of $M_{w \cdot \lambda}/M_{s_\alpha w \cdot \lambda}$, is sent to 0 as desired.

The following result is a formal consequence of the above theorem:

Theorem 3.13. Let λ and μ be dot-antidominant integral weights such that $F_{\lambda} = F_{\mu}$. Then $T_{\lambda}^{\mu} : \mathcal{O}_{\varpi(\lambda)} \to \mathcal{O}_{\varpi(\mu)}$ is an equivalence.

Proof. By the previous theorem, the exact functor $F := T^{\mu}_{\lambda}$ is left adjoint to the exact functor $G := T^{\lambda}_{\mu}$, and they induce a bijection between the sets of irreducible objects. In general, such adjoint functors are inverse to each other.

Proof: we only to show the adjunctions $\operatorname{Id} \to G \circ F$ and $F \circ G \to \operatorname{Id}$ are equivalences. We will prove the first equivalence and the second follows similarly. Note that for any object M, M and $G \circ F(M)$ have the same composition factors and multiplicities. Hence we only need to show $M \to G \circ F(M)$ is injective. Since F sends nonzero objects to nonzero objects, we only need to

⁶See [G, Sect. 4.23] for a simplified proof in a special case.

LECTURE 9 7

show $F(M) \to F \circ G \circ F(M)$ is injective. By the axiom of adjoint functors, this morphism has a left inverse, hence is indeed injective.

Remark 3.14. The above theorems essentially reduce the study about any integral block \mathcal{O}_{χ} to the principle block $\mathcal{O}_{\varpi(0)}$.

Example 3.15. Any dot-regular integral block \mathcal{O}_{χ} is equivalent to the principle block $\mathcal{O}_{\varpi(0)}$. Indeed, this is the special case of the above theorem when $\lambda = 0$ and $\mu \in \varpi^{-1}(\chi)$ is dot-antidominant. Note that the equivalence T_0^{μ} preserves (dual) Verma modules and irreducible modules.

Example 3.16. For $\mathfrak{g} = \mathfrak{sl}_2$ and the coordinate $l := \langle \lambda, \check{\alpha} \rangle$, then $\mathcal{O}_{\varpi(0)} \simeq \mathcal{O}_{\varpi(l)}$ for $l \in \mathbb{Z}^{\geq 0}$ such that the short exact sequence $0 \to M_{-2} \to M_0 \to L_0 \to 0$ is sent to $0 \to M_{-l-2} \to M_l \to L_l \to 0$.

On the other hand, the translation functor $\mathcal{O}_{\varpi(0)} \to \mathcal{O}_{\varpi(-1)}$ sends this sequence to $0 \to M_{-1} \to M_{-1} \to 0 \to 0$. Note that L_{-2} is sent to L_{-1} and $-1 \in F_{-2}^+$, while L_0 is sent to 0 and $-1 \notin F_0^+$.

Construction 3.17. Let μ be any dot-antidominant integral weight. The functor $T^{\mu}_{-\rho}$: $\mathcal{O}_{\varpi(-\rho)} \to \mathcal{O}_{\varpi(\mu)}$ is not covered by the above theorems (although its adjoint $T^{-\rho}_{\mu}$ is). Recall the most singular block $\mathcal{O}_{\varpi(-\rho)}$ is semi-simple ([Example 4.16, Lecture 7]) and contains a unique irreducible object $L_{-\rho}$, which is both projective and injective. It follows that

$$\Xi_{\mu} \coloneqq T^{\mu}_{-\rho}(L_{-\rho})$$

is both injective and projective.

Exercise 3.18. This is Homework 4, Problem 5. Let μ be any dot-antidominant integral weight. Prove⁷:

- (1) For any $w \in W$, $(\Xi_{\mu} : M_{w \cdot \mu}) = 1$ and there is a surjection $\Xi_{\mu} \twoheadrightarrow M_{\mu}$.
- (2) For any $w \in W$, $(P_{\mu}: M_{w \cdot \mu}) \ge 1$ and there is a surjection $P_{\mu} \twoheadrightarrow M_{\mu}$.
- (3) There exists an isomorphism $\Xi_{\mu} \simeq P_{\mu}$ compatible with the surjections to M_{μ} .
- (4) For any $w \in W$, $[M_{w \cdot \mu} : L_{\mu}] = 1^{8}$.

Remark 3.19. For dot-antidominant weight μ , the projective P_{μ} is called the **big projective** module, which plays an important role in representation theory.

REFERENCES

[BBM] Beilinson, A., R. Bezrukavnikov, and I. Mirkovic. Tilting Exercises. Moscow Mathematical Journal 4, no. 3 (2004): 547-557.

[CPS] Scott, L., Brian Parshall, and E. Cline. Finite dimensional algebras and highest weight categories. (1988): 85-99.

- [G] Gaitsgory, Dennis. Course Notes for Geometric Representation Theory, 2005, available at https://people.mpim-bonn.mpg.de/gaitsgde/267y/cat0.pdf.
- [H] Humphreys, James E. Representations of Semisimple Lie Algebras in the BGG Category O. Vol. 94. American Mathematical Soc., 2008.

⁷Hint: Lemma 3.5 for (1); Theorem 2.2 and [Corollary 4.15, Lecture 7] for (2). For (3), first find a surjection $\Xi_{\mu} \rightarrow P_{\mu}$ then use (1) and (2).

⁸See [G, Proposition 4.20] for a different proof of this fact.