COMS W4701: Artificial Intelligence

Lecture 19: Inference and Sampling

Instructor: Tony Dear

*Lecture materials derived from UC Berkeley's AI course at <u>ai.berkeley.edu</u>

Review: Bayesian Networks

- Joint distribution: directed acyclic graph
- Nodes: Random variables (with domains)
- Arcs: Correlation or influence between variables

 Each node encodes a conditional probability distribution based on its parents

$$P(x_i | x_1, ..., x_{i-1}) = P(x_i | parents(X_i))$$

$$P(A_1)$$
 $P(A_n)$

$$A_1 \cdots A_n$$

$$P(X \mid A_1 \dots A_n)$$

$$P(x_1, ..., x_n) = P(x_1) \prod_{i=2}^{n} P(x_i \mid x_1, ..., x_{i-1}) = \prod_{i=1}^{n} P(x_i \mid parents(X_i))$$

Conditional Independence in BNs

 Two RVs are (conditionally) independent if all paths between their nodes contain inactive triples

 Corollary: A RV is conditionally independent of the rest of the BN given its Markov blanket (parents, children, children's parents)

- Parents $(X) = \{U_k\}$
- Children $(X) = \{Y_i\}$
- Parents $(Y_i) = \{Z_{ij}\}$

Inactive Triples

Active Triples

For the common effect case, conditioning on either the effect or a **descendant** activates the triple!

Today

Exact inference: Inference by enumeration

- Approximate inference: Monte Carlo methods
- Rejection sampling
- Likelihood weighting
- Gibbs sampling

Exact Inference

- We want to find $P(X \mid e)$
- Query variables X; evidence variables e; hidden variables Y

 Enumeration strategy: Construct joint distributions using chain rule, apply conditional independences, and marginalize out hidden variables

$$P(X \mid e) = \alpha P(X, e) = \alpha \sum_{y} P(X, y, e)$$

- This is not an easy task!!!
- Intermediate joint distributions grow exponentially

Example: Exact Inference

• Query variables X; evidence variables e; hidden variables Y

When joining distributions, pointwise multiply matching rows

$$P(R|s,c) = P(R|s) \propto P(R,s) = \sum_{t,d} P(R,t,d,s)$$
Conditional independence
$$= \sum_{t,d} P(R)P(t|R)P(d|R)P(s|t,d)$$

Example: Exact Inference

$$P(R|+c,+d) \propto \sum_{t,s} P(R)P(t|R)P(+d|R)P(s|t,+d)P(+c|s)$$

R	P(R)
+r	0.5
-r	0.5

R	P(R,+c,+d)
+r	0.12775
-r	0.111

Need to construct table with 2³ rows and lots of repetitive information!

R	Т	S	P(R,T,+d,S,+c)
+r	+t	+\$	(0.5)(0.7)(0.7)(0.1)(0.8)
+r	+t	-S	(0.5)(0.7)(0.7)(0.9)(0.3)
+r	-t	+\$	(0.5)(0.3)(0.7)(0.2)(0.8)
+r	-t	-S	(0.5)(0.3)(0.7)(0.8)(0.3)
-r	+t	+\$	(0.5)(0.6)(0.6)(0.1)(0.8)
-r	+t	-S	(0.5)(0.6)(0.6)(0.9)(0.3)
-r	-t	+\$	(0.5)(0.4)(0.6)(0.2)(0.8)
-r	-t	-S	(0.5)(0.4)(0.6)(0.8)(0.3)

R	T,D	P(T R), P(D R)
+r	+t,+d	0.7
-r	+t,+d	0.6

Т	D	S	P(S T,D)
+t	+d	+\$	0.1
+t	-d	+\$	0.4
-t	+d	+\$	0.2
-t	-d	+5	0.9

S	С	P(C S)
+\$	+C	0.8
-S	+C	0.3

Approximate Inference: Sampling

- Complexity of computing probabilities grows with number of variables
- Monte Carlo methods: Repeated sampling from known probability distribution (e.g., Bayes net model probabilities) to estimate unknown distribution
- A sample from a joint distribution assigns a value to each RV—how to do so consistently?
- Idea: Order the RVs s.t. we can use all $P(X_i \mid parents(X_i))!$

Ordering: C, S, R, W

- 1. Assign C using P(C)
- 2. Assign S using P(S|c)
- 3. Assign R using P(R|c)
- 4. Assign W using P(W|s,r)

Ordering C, R, S, W also works

Prior Sampling

Order all nodes such that all parents of X_i occur before X_i

for
$$i = 1: n$$

Sample x_i from $P(X_i \mid parents(X_i))$ We have these!

return sample =
$$(x_1, x_2, ..., x_n)$$

- (+c, -s, +r, +w)
- (+c, +s, +r, +w)
- (-c, +s, +r, -w)
- (+c, -s, +r, +w)
- (-c, -s, -r, +w)

 $\hat{P}(R)$ +r 0.8
-r 0.2

This is because +r occurs 4 times, and

-r occurs once

 $\widehat{P}(C,W)$

P((S V	V)
+W	+5	0.2

+W	+\$	0.25
	-5	0.75
-W	+\$	1
	-S	0

Rejection Sampling

- Counting samples can be done while generating them instead of all at the end
- If query contains evidence, many samples will often be irrelevant
- E.g., want P(A|+b), all samples with -b are useless to us!
- Idea: Discard irrelevant samples as they come and only count consistent ones

1.
$$(+c, -s, +r, +w)$$

$$P(C|+s)$$

Reject 1, 4, 5

2.
$$(+c, +s, +r, +w)$$

$$P(R|-c)$$

4.
$$(+c, -s, +r, +w)$$

5. (-c, -s, -r, +w)

$$P(S|+r,+w)$$

Reject 3, 5

Rejection Sampling

```
Order all nodes such that all parents of X_i occur before X_i for i=1:n

Sample x_i from P(X_i \mid \text{parents}(X_i)) We have these!

if x_i not consistent with evidence:

reject and return (no sample generated)

return sample =(x_1, x_2, ..., x_n)
```

- Problem: Lots of potentially wasted work due to rejected samples!
- As we condition on more and more evidence variables, fraction of consistent samples drops exponentially

Likelihood Weighting

```
Order all nodes such that all parents of X_i occur before X_i Instantiate all evidence variables, weight w=1.0 for i=1:n if X_i is evidence variable: w=w*P(x_i|parents(X_i)) We have these! else: Sample x_i from P(X_i \mid parents(X_i)) Update weight instead return sample =(x_1,x_2,\ldots,x_n),w of sampling evidence
```

- Idea: Fix evidence variables to the values that we want
- But we don't want to purposely bias our samples, so compensate by weighting each sample using probability of evidence given parents
- Weights are cumulative products for each evidence variable

Example: Likelihood Weighting

- Suppose we want $P(C, R \mid +s, +w)$
- Traverse nodes in order C, S, R, W

- Fix +s and +w
- We will require P(+s|parents(S))and P(+w|parents(W))

R	P(+w +s,R)
+r	0.99
-r	0.90

С	P(+s C)	R	P(+w +s,R)
+C	0.1	+r	0.99
-C	0.5	-r	0.90

When counting, sum up the weights of each sample, and then normalize

Do not sample S and W; instead, update

weight by multiplying prob of +s/+w

$$0.1 \times .99 = .099$$

$$0.1 \times .99 = .099$$

(+c, +s, +r, +w)

$$0.1 \times .99 = .099$$

$$0.1 \times .99 = .099$$

$$0.1 \times 0.9 = 0.09$$

$$0.5 \times 0.9 = 0.45$$

$$\hat{P}(C,R,+s,+w)$$
 $\hat{P}($

 \propto

+C	+r	0.198
	ŗ	0.09
- C	+r	0
	-r	0.45

\widehat{P}	(C,R)	+ s, -	+w
A ((\mathbf{c})	5)	, <i>, , ,</i>

+C	+r	0.268
	-r	0.122
-C	+r	0
	-r	0.610

Sampling as Local Search

 Drawback of likelihood weighting: With lots of evidence, weights become small and tallies are dominated by a few samples with larger weights

- Fixed evidence only affects sampling of variables that occur later
- Both "upstream" and "downstream" RVs should condition on evidence

- Can we also condition on evidence variables' descendants?
- Idea: Instead of generating each new sample from scratch, make small change to current one (just like local search!)

Gibbs Sampling

• **Gibbs sampling**: Fix evidence and start with random sample (state) of non-evidence RVs X. Generate next sample by sampling one X_i conditioned on all *current* X. Repeat for different X_i in order.

• Example: Evidence +r. Start (randomly) with (+c, -w, +r) and sample S.

Sample from $P(S \mid +c, +r, -w)$ and obtain +s

Sample from $P(C \mid +s, +r, -w)$ and obtain -c Sample from $P(W \mid -c, +s, +r)$ and obtain +w

Gibbs Sampling

- Problem: How do we sample from $P(X_i \mid all \ other \ nodes \ in \ the \ BN)$?
- This is exactly equal to $P(X_i \mid MarkovBlanket(X_i))!$
- Easy to compute analytically; size is same as size of marginal $P(X_i)$

$$P(x_i' | mb(X_i)) = \alpha P(x_i' | parents(X_i)) \times \prod_{Y_j \in Children(X_i)} P(y_j | parents(Y_j))$$

$$P(C \mid s, r, w) = P(C \mid s, r) \propto P(C)P(s|C)P(r|C)$$

$$P(S \mid c, r, w) \propto P(c)P(S|c)P(r|c)P(w|S, r) \propto P(S|c)P(w|S, r)$$

$$P(R \mid c, s, w) \propto P(c)P(s|c)P(R|c)P(w|s, R) \propto P(R|c)P(w|s, R)$$

$$P(W \mid c, s, r) = P(W \mid s, r)$$

Example: Gibbs Sampling

C	P(+s C)
+C	0.1
-C	0.5

(C)
0.5

С	P(+r C)
+C	0.8
-С	0.2

S	R	P(+w S,R)
+\$	+r	0.99
+s	-r	0.90
-\$	+r	0.90
-\$	-r	0

$$P(S \mid +c,+r,-w) \propto P(S \mid +c)P(-w \mid S,+r)$$

S	P(S,+c+r,-w)
+5	0.001
-S	0.09

S	P(S +c)
+\$	0.1
- S	0.9

S	P(-w S,+r)
+\$	0.01
-\$	0.1

$$P(C \mid +s,+r,-w) \propto P(C)P(+s|C)P(+r|C)$$

С	P(C,+s,+r)
+C	0.04
-C	0.05

С	P(C)
+C	0.5
-C	0.5

С	P(+s C)
+c	0.1
-C	0.5

	١	P(+1 C)
3	+C	0.8
•	-C	0.2

$$P(W \mid -c, +s, +r) = P(W \mid +s, +r)$$

W	P(W +s,+r)
+w	0.99
-W	0.01

Markov Chain Monte Carlo

- Gibbs sampling is a Markov chain Monte Carlo (MCMC) method
- We can think of Gibbs sampling as a Markov chain in the space of RVs
- Next sample depends only on current one
- Transition probability: likelihood of the next sample

The joint distribution of the BN, conditioned on the evidence, is the stationary distribution of this Markov chain!

Summary

- Exact inference involves alternating between generating joint probabilities and then marginalizing them
- Can be improved using efficient ordering but still NP-hard

- Inference can be approximated via Monte Carlo methods
 - Prior sampling
 - Rejection sampling
 - Likelihood weighting
 - Gibbs sampling