

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia Mecânica

MECÂNICA GERAL

PROFESSOR: IGOR DOS SANTOS GOMES

E-MAIL: IGOR.GOMES@ITEC.UFPA.BR

ATRITO

5.1. Características do atrito seco

5.2. Problemas envolvendo atrito seco

- Atrito é uma força que resiste ao movimento de duas superfícies em contato que deslizam uma em relação à outra;
- Essa força sempre atua na direção tangente à superfície nos pontos de contato e no sentido oposto ao movimento possível ou existente entre as superfícies.
- ➢ O atrito seco às vezes é chamado de atrito de Coulomb, pois suas características foram muito estudadas pelo físico francês Charles-Augustin de Coulomb em 1781;
- O atrito seco ocorre entre as superfícies de contato dos corpos quando não existe um fluido lubrificante.

Teoria do atrito seco:

- A teoria do atrito seco pode ser explicada considerando-se os efeitos ao tentar puxar horizontalmente um bloco de peso uniforme *W* (Figura a) que está em repouso sobre uma superfície horizontal rugosa que seja *não rígida ou deformável;*
- A parte superior do bloco, porém, pode ser considerada rígida;
- \succ Conforme o diagrama de corpo livre do bloco (Figura b), o piso exerce uma distribuição desuniforme da força normal ΔN_n e da força de atrito ΔF_n ao longo da superfície de contato.

Teoria do atrito seco:

- Para o equilíbrio, as forças normais devem atuar para cima para equilibrar o peso do bloco W, e as forças de atrito atuam para a esquerda, para impedir que a força aplicada P mova o bloco para a direita;
- ➤ Um exame detalhado das superfícies em contato entre o piso e o bloco revela como se desenvolvem essas forças de atrito e normal (Figura c);
- \triangleright Pode-se ver que existem muitas irregularidades microscópicas entre as duas superfícies e, como resultado, as forças reativas ΔR_n são desenvolvidas em cada ponto de contato;
- \succ Conforme mostrado, cada força reativa contribui com ambas as componentes, a de atrito, ΔF_n , e a normal, ΔN_n .

Equilíbrio:

- ➢ O efeito das cargas normais e de atrito distribuídas é indicado por suas resultantes N e F no diagrama de corpo livre (Figura d);
- ightharpoonup Observe que N atua a uma distância x à direita da linha de ação de W;
- Essa posição, que coincide com o centroide ou centro geométrico da distribuição de força normal, é necessária a fim de equilibrar o "efeito de tombamento" causado por P.
- Por exemplo, se P for aplicada a uma altura h da superfície, então o equilíbrio do momento em relação ao ponto O é satisfeito se Wx = Ph ou x = Ph/W.

Iminência de movimento:

- Quando as superfícies de contato são muito "escorregadias", a força de atrito F pode não ser grande o suficiente para equilibrar P, e consequentemente o bloco tenderá a deslizar;
- \triangleright Ou seja, à medida que P aumenta lentamente, F aumenta de forma correspondente até que alcance um certo valor máximo F_s , chamado de força de atrito estática limite;
- Quando esse valor é atingido, o bloco está em equilíbrio instável, pois qualquer aumento adicional em P fará com que o bloco se mova;
- \blacktriangleright Determinou-se experimentalmente que essa força de atrito estática limite F_s é diretamente proporcional à força normal resultante N.

$$F_s = \mu_s N$$

 \triangleright Onde μ_s é o coeficiente de atrito estático.

Iminência de movimento:

- Assim, quando o bloco está no limiar de deslizamento, a força normal N e a força de atrito F_s se combinam para criar uma resultante R_s (Figura e);
- \triangleright O ângulo φ_s que R_s faz com N é chamado de ângulo de atrito estático. Da figura,

$$\phi_s = \operatorname{tg}^{-1}\left(\frac{F_s}{N}\right) = \operatorname{tg}^{-1}\left(\frac{\mu_s N}{N}\right) = \operatorname{tg}^{-1}\mu_s$$

TABELA	8.1	Valores	tínicos	nara uc
IADELA	O. I	valui c3	upicos	para $\mu \varsigma$

Materiais em contato	Coeficiente de atrito estático (μ_s)		
Metal com gelo	0,03-0,05		
Madeira com madeira	0,30-0,70		
Couro com madeira	0,20–0,50		
Couro com metal	0,30–0,60		
Cobre com cobre	0,74–1,21		

Movimento:

- \triangleright Se a intensidade de P que atua sobre o bloco for aumentada de modo que se torne ligeiramente maior que F_s , a força de atrito na superfície de contato cairá para um valor menor F_k , chamado força de atrito cinética;
- O bloco começará a deslizar com velocidade crescente (Figura a);
- Quando isso ocorre, o bloco "passará" sobre o topo desses picos nos pontos de contato (Figura b);
- A avaria continuada da superfície é o mecanismo dominante de criação do atrito cinético.

Movimento:

➤ Experimentos com blocos deslizantes indicam que a intensidade da força de atrito cinético é diretamente proporcional à intensidade da força normal resultante, o que é expresso matematicamente como:

$$F_k = \mu_k N$$

- \succ Aqui, a constante de proporcionalidade, μ_k , é chamada de **coeficiente de atrito cinético**;
- \triangleright Os valores típicos para μ_k são, aproximadamente, 25% menores do que os listados na tabela anterior para μ_s ;
- ightharpoonup Conforme mostrado na Figura a, neste caso, a força resultante na superfície de contato, R_k , tem uma linha de ação definida por φ_k . Esse ângulo é conhecido como **ângulo de atrito cinético**, em que

$$\phi_k = \operatorname{tg}^{-1}\left(\frac{F_k}{N}\right) = \operatorname{tg}^{-1}\left(\frac{\mu_k N}{N}\right) = \operatorname{tg}^{-1}\mu_k$$

Movimento:

> O ângulo de atrito estático é:

$$\phi_s = \operatorname{tg}^{-1}\left(\frac{F_s}{N}\right) = \operatorname{tg}^{-1}\left(\frac{\mu_s N}{N}\right) = \operatorname{tg}^{-1}\mu_s$$

> O ângulo de atrito cinético é:

$$\phi_k = \operatorname{tg}^{-1}\left(\frac{F_k}{N}\right) = \operatorname{tg}^{-1}\left(\frac{\mu_k N}{N}\right) = \operatorname{tg}^{-1}\mu_k$$

Por comparação, temos:

$$\phi_s \ge \phi_k$$

Movimento:

- > A força de atrito é categorizada em três maneiras diferentes:
- ❖ *F* é uma força de atrito estática se o equilíbrio for mantido.
- \clubsuit F é uma força de atrito estática limite F_s quando atinge um valor máximo necessário para manter o equilíbrio;
- \Leftrightarrow F é chamada de força de atrito cinética F_k quando ocorre deslizamento na superfície em contato.
- ightharpoonup Observe também, pelo gráfico, que para valores muito grandes de P ou para velocidades altas, os efeitos aerodinâmicos farão com que F_k e, de modo semelhante, μ_k , comecem a diminuir.

Características do atrito seco:

- A força de atrito atua na direção tangente às superfícies de contato e em sentido oposto ao movimento ou à tendência de movimento de uma superfície em relação a outra;
- \blacktriangleright A força de atrito estática máxima F_s que pode ser desenvolvida é independente da área de contato, desde que a pressão normal não seja muito baixa nem grande o suficiente para deformar ou esmagar seriamente as superfícies de contato dos corpos;
- \gt A força de atrito estática máxima geralmente é maior que a força de atrito cinética para quaisquer duas superfícies em contato. Porém, se um dos corpos estiver se movendo com uma velocidade muito baixa sobre a superfície de outro, F_k tornase, aproximadamente, igual a F_s , ou seja, $\mu_s \approx \mu_k$;
- \triangleright Quando o deslizamento na superfície de contato estiver para ocorrer, a força de atrito estática máxima é proporcional à força normal, de modo que $F_s = \mu_s N$;
- \triangleright Quando o deslizamento na superfície de contato estiver ocorrendo, a força de atrito cinética é proporcional à força normal, de modo que $F_k = \mu_k N$.

ATÉ A PRÓXIMA!