Part A, Problem #1:
· Giveu:
- Bivary classification: L & {0,13, D & {0,13}
- Loss matrix: Xij = loss when you decide i a truth is j
- Priors: P(L=0) = 0.65, P(L=1) = 0.35
· Find: express the winjurum expected rest classification role in the form:
P(x/L=1) ? y where y is a function of privas i loss values
p(x/L=0) > V. where y is a touchou of priors 2 loss values
: Risk of deciding D=i, given x:
$\Rightarrow \mathbb{P}(\mathbb{D}=\mathbb{I} X) = \lambda_{i0} \cdot \mathbb{P}(\mathbb{L}=\mathbb{O} X) + \lambda_{i1} \cdot \mathbb{P}(\mathbb{L}=\mathbb{I} X)$
$\therefore R(0=0 x) = \lambda_{\infty} \cdot P(L=0 x) + \lambda_{01} \cdot P(L=1 x)$
$\therefore R(D=1 X) = \lambda_1 \cdot P(L=0 X) + \lambda_1 \cdot P(L=1 X)$
Decision Role: Choose D=1 when R(D=1 x) < R(D=0 x)
$\Rightarrow \lambda_{10} \cdot P(L=0 x) + \lambda_{11} \cdot P(L=1 x) < \lambda_{00} \cdot P(L=0 x) + \lambda_{01} \cdot P(L=1 x)$
$\Rightarrow (\lambda_{10} - \lambda_{00}) \cdot P(L=0 x) < (\lambda_{01} - \lambda_{}) \cdot P(L=1 x)$
Applying Bayes' Theorem:
$\frac{P(x \mid L=0) \cdot P(L=0)}{P(x)} \leftarrow (x_{01} - x_{11}) \cdot \frac{P(x \mid L=1) \cdot P(L=1)}{P(x)}$
P(x) P(x)
→ (\(\lambda_{10} - \lambda_{00} \) \ \ \(\lambda_{10} - \lambda_{00} \) \ \ \ \(\lambda_{01} - \lambda_{11} \) \ \ \ \(\lambda_{01} - \lambda_{11} \) \ \ \ \ \ \(\lambda_{01} - \lambda_{11} \) \ \ \ \ \ \ \(\lambda_{01} - \lambda_{11} \) \ \ \ \ \ \ \ \ \\ \\ \\ \\ \\ \\ \\
:. Form Likelihood Ratio:
$\frac{P(x L=1)}{P(x L=0)} > \frac{(\lambda_{10} - \lambda_{00}) \cdot P(L=0)}{(\lambda_{01} - \lambda_{11}) \cdot P(L=1)}$
$\therefore \text{Griven} \lambda_{oo} = 0, \ \lambda_{u} = 0, \ \lambda_{ot} = 1, \ \lambda_{to} = 1$
CHOOL PAGE - J J W - J J FL J J LO J
γ = 1.857
P(x t=t) $P(t=0)$
$\frac{P(x L=0)}{P(x L=0)} > f \text{where} \gamma = \frac{(\lambda_u - \lambda_{00}) \cdot P(L=0)}{(\lambda_{01} - \lambda_{11}) \cdot P(L=1)} = 1.867$
(Not - Na) P(C=1)