Personal Genome Project: Hackathon 1.0 example projects

Brad Chapman Bioinformatics Core, Harvard Chan School

http://bit.ly/pgp-resources-1 http://bit.ly/pgp-analysis

21 July 2018

What we'll do

- Understand the types of data in the personal genome project
- Learn how to query and find a genome to analyze
- Analyses you can do with a single genome

Types of analyses

- Looking at small variants for traits
- HLA typing: the adaptive immune system
- Structural variants: larger events

- Overview of the Personal Genome Project and Data
- Identify participants of interest
- Overview of human variant data analysis
- Example of looking at small variant data: ApoE
- Additional analyses with BAM reads:
 - HLA typing
 - Structural variant analysis
- Platform for data analysis: CWL, Arvados, bcbio

Personal Genome Project

The Personal Genome Project

The Personal Genome Project, initiated in 2005, is a vision and coalition of projects across the world dedicated to creating public genome, health, and trait data. Sharing data is critical to scientific progress, but has been hampered by traditional research practices. The PGP approach is to invite willing participants to publicly share their personal data for the greater good.

http://www.personalgenomes.org/us

Whole genome sequencing data plus metadata

Public Profile -- huD57BBF

Real Name

James L Vick

Personal Health Records

Demographic Information		
Date of Birth	1949-04-30 (69 years old)	
Gender	Male	
Weight	165lbs (75kg)	
Height	5ft 10in (177cm)	
Blood Type	0+	
Race	White	

https://my.pgp-hms.org/profile/huD57BBF

Rich set of associated data

https://www.openhumans.org/member/jameslvick/

Collections of data in PGP

- Processed data: variants
 - Per participant portable ready to use VCFs
- Raw data: reads
 - Per participant BAM files of reads

http://bit.ly/pgp-analysis

https://github.com/bcbio/bcbio_validation_workflows/tree/master/pgp#find-bam-and-vcf-files-in-arvados-collections

Outline

- Overview of the Personal Genome Project and Data
- Identify participants of interest
- Overview of human variant data analysis
- Example of looking at small variant data: ApoE
- Additional analyses with BAM reads:
 - HLA typing
 - Structural variant analysis
- Platform for data analysis: CWL, Arvados, bcbio

Find a participant of interest

- Untap SQL database: https://github.com/abeconnelly/untap
- Participants plus associated metadata
- Regularly updated with new participants

 $https://collections.su921.arvadosapi.com/c=\\2210f7ee07fc1c8b926e5db28eff9635-3284/_/html/index.html?disposition=inline$

Query for participant

■ Example query and selection of participant

http://bit.ly/pgp-analysis

■ huD57BBF https://my.pgp-hms.org/profile/huD57BBF

Command line

```
$ cd /mnt/work/pgp/examples
$ bcbiovm_python \
    scripts/extract_veritas_pgp.py \
    untap.db
huD57BBF 53Gb No demographics
 [u'Family Tree DNA', u'Veritas Genetics',
 u'23andMe'l
```

Query, SQL to python pandas dataframe

Other example queries

- Jupyter notebooks
- Summarize Age, Bloodtype, Ethnicity, Gender

https://github.com/swzCuroverse/PGPGraphics

Outline

- Overview of the Personal Genome Project and Data
- Identify participants of interest
- Overview of human variant data analysis
- Example of looking at small variant data: ApoE
- Additional analyses with BAM reads:
 - HLA typing
 - Structural variant analysis
- Platform for data analysis: CWL, Arvados, bcbio

Human whole genome sequencing

http://ensembl.org/Homo_sapiens/Location/Genome

High throughput sequencing

Variant calling

http://en.wikipedia.org/wiki/SNV_calling_from_NGS_data

SNPs and Indels

http://carolguze.com/text/442-2-mutations.shtml

Genome Analysis Toolkit (GATK)

The Genome Analysis Toolkit or GATK is a software package developed at the Broad Institute to analyze high-throughput sequencing data. The toolkit offers a wide variety of tools, with a primary focus on variant discovery and genotyping as well as strong emphasis on data quality assurance. Its robust architecture, powerful processing engine and high-performance computing features make it capable of taking on projects of any size.

https://www.broadinstitute.org/gatk/

GATK Best Practices

Best Practices for Germline SNPs and Indels in Whole Genomes and Exomes - June 2016

https://software.broadinstitute.org/gatk/best-practices/

HaplotypeCaller

Effects prediction

http://www.ensembl.org/info/genome/variation/predicted_data.html

Annotation and analysis - GEMINI

VCF – overview

http://vcftools.sourceforge.net/VCF-poster.pdf

VCF – representations

Types of variants

SNPs

Alignment VCF representation
ACGT POS REF ALT
ATGT 2 C T

Deletions

Alignment VCF representation
ACGT POS REF ALT
A--T 1 ACG A

Large structural variants

VCF representation
POS REF ALT INFO
100 T SVTYPE=DEL:END=300

Insertions

Alignment VCF representation
AC-GT POS REF ALT
ACTGT 2 C CT

Complex events

Alignment VCF representation
ACGT POS REF ALT
A-TT 1 ACG AT

http://vcftools.sourceforge.net/VCF-poster.pdf

Learning to read VCFs

■ Step by step guide from Broad

https://www.broadinstitute.org/gatk/guide/article?id=1268

Specification

http://samtools.github.io/hts-specs/

Outline

- Overview of the Personal Genome Project and Data
- Identify participants of interest
- Overview of human variant data analysis
- Example of looking at small variant data: ApoE
- Additional analyses with BAM reads:
 - HLA typing
 - Structural variant analysis
- Platform for data analysis: CWL, Arvados, bcbio

Examine existing variation files

- Portable VCFs with small variant data
- Hosted as data collection with standard wget retrieval
- Also downloaded on work machines for PGP event: /mnt/work/pgp/vcf

https://workbench.su921.arvadosapi.com/collections/su921-4zz18-2rwb81xy8f1eh42

- ApoE https://www.snpedia.com/index.php/APOE
- Two variants, on chromosome 19, that impact risk of Alzheimer's disease and cholesterol metabolism

rs429358	rs7412	Name
С	T	ε1
Т	T	ε2
Т	С	ε3
С	С	ε4

- Apo-ε1/ε1 gs267 rs429358(C;C) rs7412(T;T) the rare missing allele
- Apo-ε1/ε2 gs271 (C;T) (T;T)
- Apo-ε1/ε3 gs270 (C;T) (C;T) ambiguous with ε2/ε4
- Apo-ε1/ε4 gs272 (C;C) (C;T)
- Apo-ε2/ε2 gs268 (T;T) (T;T)
- Apo-ε2/ε3 gs269 (T;T) (C;T)
- Apo-ε2/ε4 gs270 (C;T) (C;T) ambiguous with ε1/ε3
- Apo-ε3/ε3 gs246 (T;T) (C;C) the most common
- Apo-ε3/ε4 gs141 (C;T) (C;C)
- Apo-ε4/ε4 gs216 (C;C) (C;C) ~11x increased Alzheimer's risk

ApoE analysis

http://bit.ly/pgp-analysis

Outline

- Overview of the Personal Genome Project and Data
- Identify participants of interest
- Overview of human variant data analysis
- Example of looking at small variant data: ApoE
- Additional analyses with BAM reads:
 - HLA typing
 - Structural variant analysis
- Platform for data analysis: CWL, Arvados, bcbio

Performing additional analyses

- Raw files of reads in BAM format
- Also hosted as data collection by participant
- Demonstrate using open platforms for performing additional data analyses

https://workbench.su921.arvadosapi.com/collections/su921-4zz18-1rqqi0kpkfmfite

Major histocompatibility complex (MHC) – HLA

- human leukocyte antigen (HLA)
- Apative immune system
- Cell surface display and recognition
- Organ transplants, Cancer immunotherapy

https://en.wikipedia.org/wiki/Human_leukocyte_antigen

HLA – complex and repetitive


```
http://www.ebi.ac.uk/ipd/imgt/hla/
http://sciscogenetics.com/technology/human-leukocyte-antigen-complex/
```

HLA typing

- 1000 genomes: build 38 + IMGT/HLA-3.18.0
- bwa mem extracts HLA reads
- Map reads only to HLA sequences
- OptiType: Call HLA types

https://github.com/lh3/bwa/blob/master/README-alt.md\#hla-typing https://github.com/FRED-2/OptiType

HLA outputs

HLA-A*11:01; HLA-A*24:02 HLA-B*27:05; HLA-B*55:01 HLA-C*07:02; HLA-C*07:02

Structural variations

Tools used

- Manta: https://github.com/Illumina/manta Split and paired end reads
- Lumpy: https://github.com/arq5x/lumpy-sv Split and paired ends reads
- CNVkit: https://github.com/etal/cnvkit Read depth based

Example deletion call – 3 callers

Viewing deletion – SV-plaudit

https://github.com/jbelyeu/SV-plaudit

Viewing deletion – svviz

Deletion::chr19:50,827,241-50,830,635(3394)

Sample	Alt	Ref	Amb
huD57BBF-sort	20	191	146
Total	20	191	146

Alternate Allele

Reference Allele

http://svviz.readthedocs.io

Genomic region with deletion - KLK15

http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38

KLK15 known function

KLK15

From Wikipedia, the free encyclopedia

Kallikrein-15 is a protein that in humans is encoded by the KLK15 gene. [5][6][7][8][9]

Kallikreins are a subgroup of serine proteases having diverse physiological functions. Growing evidence suggests that many kallikreins are implicated in carcinogenesis and some have potential as novel cancer and other disease biomarkers. This gene is one of the fifteen kallikrein subfamily members located in a cluster on chromosome 19.1 prostate cancer, this gene has increased expression, which indicates its possible use as a diagnostic or prognostic marker for prostate cancer. The gene contains multiple polyadenylation sites and alternative splicing results in multiple transcript variants encoding distinct isoforms.^[9]

https://en.wikipedia.org/wiki/KLK15

Tissue specific gene expression

Self reported conditions

Conditions		
Name	Start Date	
Benign Prostatic Hypertrophy (BPH)	1998-01-01	
Heart murmur	2005-01-01	
High Cholesterol	2000-01-01	
Thyroid Nodule	2006-01-01	

https://my.pgp-hms.org/profile/huD57BBF

Outline

- Overview of the Personal Genome Project and Data
- Identify participants of interest
- Overview of human variant data analysis
- Example of looking at small variant data: ApoE
- Additional analyses with BAM reads:
 - HLA typing
 - Structural variant analysis
- Platform for data analysis: CWL, Arvados, bcbio

Open source community analysis

https://github.com/bcbio/bcbio-nextgen

Supported analysis types

https://bcbio-nextgen.readthedocs.org/en/latest/contents/pipelines.html

Community: sustainability and support

Infrastructure Goals

- Local machines
- Clusters: SLURM, SGE, Torque, PBS, LSF
- Clouds: Amazon, Google, Azure
- Clinical environments
- User interface for researchers
- Integrate with LIMS
- Accessible to the general public

Better abstractions = more interoperability

 $\verb|https://bcbio-nextgen.readthedocs.io/en/latest/contents/cwl.html|$

Common Workflow Language (CWL)

Workflow	pipeline-se-narrow	v.cwl	
Sub-workflow 1	01-qc-se.cwl		
Step 1	extract.cwl	extract.py	-
Step 2	count.cwl	count.py	-
Step 3	fastqc.cwl	fastqc	-
Sub-workflow 2	02-trim.cwl		

http://www.commonwl.org/

https://f1000research.com/slides/5-1617

Arvados + Curoverse + Veritas

Welcome to the Arvados Project

The Arvados community is dedicated to building a new generation of open source distributed computing software for bioinformatics, data science, and production analysis using massive data sets.

https://arvados.org/

Why use a workflow abstraction?

- Integrate with multiple platforms
 - Arvados AWS, Azure
 - Cromwell HPC, local, GCP
 - Toil HPC, local
 - DNAnexus AWS, Azure
 - Seven Bridges + Cancer Genomics Cloud
- Stop maintaining bcbio specific infrastructure
- Focus on hard biological problems

CWL in bcbio

- Start with high level configuration file
- Generate CWL
- Run, on any infrastructure that supports CWL
 - Generated CWL
 - Docker or local bcbio installation
 - Genome data

https://bcbio-nextgen.readthedocs.io/en/latest/contents/cwl.html

bcbio-vm: CWL wrapper

- bcbio-like interface integrating with external tools
- Install wrapper plus supported runners

conda install -c conda-forge -c bioconda bcbio-nextgen-vm

https://github.com/bcbio/bcbio-nextgen-vm https://bioconda.github.io/

Describe your analysis

```
- files: huD57BBF.bam
  description: huD57BBF
  analysis: variant
  genome_build: hg38
  algorithm:
    aligner: bwa
    variantcaller: gatk-haplotype
    svcaller: [manta, lumpy, cnvkit]
    hlacaller: optitype
```

https://github.com/bcbio/bcbio_validation_workflows

Describe the platform resources

Build Common Workflow Language description

```
bcbio_vm.py cwl --systemconfig bcbio_system-arvados.yaml \
   pgp_sv_hla.yaml
```

Launch analysis

```
bcbio_vm.py cwlrun arvados pgp_sv_hla-workflow -- \
    --project-uuid su921-j7d0g-eoibug3nrwg8ysj

https:
//workbench.su921.arvadosapi.com/projects/su921-j7d0g-eoibug3nrwg8ysj
```

Arvados pipeline run

postprocess_variants ▼	Complete	1h15m / 1h15m (1.0×)
concat_batch_variantcalls ▼	Complete	1m / 1m (1.0×)
variantcall_batch_region_3 ▼	Complete	4h1m / 4h1m (1.0×)
variantcall_batch_region ▼	Complete	3h43m / 3h43m (1.0×)
summarize_sv ▼	Complete	0m13s / 0m13s (1.0×)
detect_sv ▼	Complete	2h4m / 2h4m (1.0×)
variantcall_batch_region_2 -	Complete	2h50m / 2h50m (1.0×)
detect_sv_2 •	Complete	46m / 46m (1.0×)
detect_sv_3 →	Complete	11m / 11m (1.0×)

Summary

- Overview of the Personal Genome Project and Data
- Identify participants of interest
- Overview of human variant data analysis
- Example of looking at small variant data: ApoE
- Additional analyses with BAM reads:
 - HLA typing
 - Structural variant analysis
- Platform for data analysis: CWL, Arvados, bcbio

Next steps

- Work through examples to get started
- Propose your own projects building off these ideas
- Brainstorm new research ideas from PGP data
- Help us improve data access and organization
- Improve documentation and resources