RoCE & QoS

Jan 05, 2015 V-1.0.0

Changqing Li licq@mellanox.com

Agenda

- Background
- What is RoCE
- RoCE Packet Format
- RoCE packet encapsulation
- RoCE QoS with Verbs API
- RoCE QoS with RDMA_CM API
- Differences between RDMA programming over IB and RoCE
- Performance
- RoCEv2
- Reference
- Q&A

Background

Advantage of RDMA(Zero-copy, full protocol offload, high performance, good latency, low CPU utilization).

Lots of Ethernet device and equipment deployed in data center

Legecy TCP/IP stack becoming a problem with the growth of BW

■ IEEE 802.1 DCB ensures lossless Ethernet network.

What is RoCE

RoCE - RDMA over Converged Ethernet

- 802.1Qbb PFC
- 802.1az ETS
- 802.1AB LLDP, DCBx
- 802.1Qau CN

Defined by IBTA

 Annex A16: RDMA over Converged Ethernet (RoCE) of "InfiniBand Architecture Specification Volume 1 Release 1.2.1"

RoCE Packet Format

Legacy RoCE Packet

RoCE Packet with Vlan Tag

RoCE packet captured by ibdump

DMA Length: 3


```
⊕ Frame 10100: 94 bytes on wire (752 bits), 94 bytes captured (752 bits)

    □ Ethernet II, Src: Mellanox_47:66:80 (f4:52:14:47:66:80), Dst: Mellanox_2e:71:50 (f4:52:14:2e:71:50)

    ⊕ Destination: Mellanox_2e:71:50 (f4:52:14:2e:71:50)

    ⊞ Source: Mellanox_47:66:80 (f4:52:14:47:66:80)

    Type: 802.10 Virtual LAN (0x8100)

■ 802.1Q Virtual LAN, PRI: 0, CFI: 0, ID: 100

    000. .... = Priority: Best Effort (default) (0)
    ...0 .... = CFI: Canonical (0)
    .... 0000 \ 0110 \ 0100 = ID: 100
    Type: RDMA over Converged Ethernet (0x8915)
□ InfiniBand

    □ Global Route Header

■ Base Transport Header

 ■ RETH - RDMA Extended Transport Header
      Virtual Address: 140341841166784
      Remote Key: 3355510020
```

RoCE Packet Encapsulation – PRM description

Source MAC Address

22:16	Eth/IB	mlid / smac_index	0	For Ethernet QP - index to MAC table this QP is connected to. For IB - LMC bits of LID	
-------	--------	-------------------	---	--	--

Destination MAC Address

024h	31:16		reserved		
	15:0	Eth	dmac[47:32]	1	Upper 16 bits of Remote MAC address. Valid for a QP connected to an Ethernet port
028h	31:0	Eth	dmac[31:0]	1	Upper 32 bits of Remote MAC address. Valid for a QP connected to an Ethernet port

RoCE Packet Encapsulation – PRM description

Vlan ID

22:16	Eth	vlan_index	Index to the VLAN-ID Table. This VLAN-ID will be inserted for outgoing packets, to be checked on received packets. Priority bits are according to the SL in the Schedule Queue number.
			according to the SL in the Schedule Quede number.

UP (Vlan Priority)

Table 59 - sched_queue Field Parameter Description

Bits	Name	Description
6	port	Port index: 0x0 - port 1 0x1 - port 2
5:2	SL	IB Service Level
5:3	priority	Ethernet user Priority

RoCE Packet Encapsulation – Application Behavior

User space RoCE application needs to do:

```
int flags
             = IBV_QP_STATE;
attr->qp state = IBV QPS RTR;
attr->ah_attr.is_global
                          = 1;
attr->ah_attr.grh.dgid = <Destination GID>;
attr->ah_attr.grh.sgid_index = <Local GID index>;
attr->ah attr.grh.hop limit
                           = 1:
attr->ah_attr.sl
                           = <SL>:
ibv modify qp(qp, attr, flags);
```

RoCE Packet Encapsulation – Hardware Behavior

RoCE Packet Encapsulation – Driver Behavior


```
-> uverbs modify qp
            -> ib_query_gid(sgid_index, &sgid)
            -> rdma_addr_find_dmac_by_grh(sgid, dgid, (char*)dmac, &vlan_id)
                        -> sip = rdma_gid2ip(sgid)
                        -> dip = rdma_gid2ip(dgid)
                        -> rdma_resolve_ip(sip, dip, &dev_addr)
                        -> memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); // Got dmac
                        -> dev = dev_get_by_index(bound_dev_if)
                        -> vlan id = rdma vlan dev vlan id(dev)
                                                                               // Got Vlan ID
            -> rdma_addr_find_smac_by_sgid(sgid, (char*)smac)
                        -> sip = rdma_gid2ip(sgid)
                        -> rdma translate ip(sip, &dev addr)
                        -> memcpy(smac, dev addr.src dev addr, ETH ALEN); // Got dmac
            -> ib modify ap
                        -> mlx4 ib modify qp
                                     -> mlx4 ib modify qp
                                                 -> mlx4 set path
                                                              -> path->sched_queue = (ah->sl & 7) << 3; // Set Prio
```

RoCE & PFC

What will happen without PFC?

```
[sincereli@test04 ~]$ /opt/mvapich2/gdr/2.0/gnu/bin/mpirun rsh -np 2 test04
test05 MV2 USE RoCE=1 MV2 USE CUDA=1 MV2 USE GPUDIRECT=1 MV2 USE RDMA CM=1
opt/mvapich2/gdr/2.0/gnu/libexec/mvapich2/osu bw -d cuda D D
 OSU MPI-CUDA Bandwidth Test
 Send Buffer on DEVICE (D) and Receive Buffer on DEVICE (D)
             Bandwidth (MB/s)
                          0.68
                         5.49
                        43.91
                        87.99
256
                       175.36
512
1024
                       702.06
2048
                      1384.25
4096
                      2149.96
8192
                      2329.67
16384
                       980.21
32768
                       959.38
                      1232.04
524288
                      2962.36
1048576
                      2981.89
                      2989.36
4194304
                      2993.12
[sincereli@test04 ~]$
```

RoCE QoS with Verbs API

13

SL (Service Level) to UP mapping

$$UP = SL \& 0x7$$

Test RoCE QoS:

```
server$ ib_write_lat -x <GID_IDX> -S <SL> -a
client$ ib_write_lat -x <GID_IDX> -S <SL> <Server_IP_Addr>
watch -n 1 'ethtool -S | grep packets | grep prio'
```

RoCE QoS with Verbs API - Example


```
s6$ ib_write_lat -x 2 -S 2 -a
s5$ ib_write_lat -x 2 -S 2 -a 192.168.100.6
s5$ watch -n 1 'ethtool -S | grep packets | grep prio'
```

```
s5$ ifconfig eth3.100
eth3.100 Link encap:Ethernet HWaddr 00:02:C9:18:97:40
     inet addr: 192.168.100.5 Bcast: 192.168.100.255 Mask: 255.255.255.0
s6$ ifconfig eth3
       Link encap:Ethernet HWaddr 00:02:C9:A0:57:80
     inet addr:192.168.1.6 Bcast:192.168.1.255 Mask:255.255.255.0
s6$ ifconfig eth3.100
eth3.100 Link encap:Ethernet HWaddr 00:02:C9:A0:57:80
     inet addr: 192.168.100.6 Bcast: 192.168.100.255 Mask: 255.255.0
s6$ ibv_devinfo -v
hca id: mlx4 0
                          InfiniBand (0)
    transport:
    fw_ver:
                          2.32.5100
    raw_eth_odp_caps:
                       NO SUPPORT
    max dct:
                           0
         port: 1
                             PORT_ACTIVE (4)
              state:
                                4096 (5)
              max mtu:
              active width:
                                4X (2)
              active_speed:
                                 10.0 Gbps (4)
                                LINK_UP (5)
              phys_state:
              GID[ 0]:
                              fe80:0000:0000:0000:0202:c9ff:fea0:5780
                              0000:0000:0000:0000:0000:ffff:c0a8:0106 ----> 192.168.1.6
              GID[ 1]:
              GID[ 2]:
                              0000:0000:0000:0000:0000:ffff:c0a8:6406 ----> 192.168.100.6
```

RoCE QoS with rdma_cm API

Set QoS in user space application

```
rdma_set_option(rdma_cm_id, tos);
```

TOS_2_SL mapping(2 steps)

Kernel driver handles the mapping

```
skb_prio = rt_tos2priority(id_priv->tos);
ndev = ndev->priv_flags & IFF_802_1Q_VLAN ? vlan_dev_real_dev(ndev) : ndev;
sl = netdev_get_prio_tc_map(ndev, skb_prio);
```

RoCE QoS with rdma_cm API - Mapping from TOS to skb_prio

Static mapping


```
#define TC_PRIO_BESTEFFORT
                                         0
#define TC PRIO FILLER
#define TC PRIO BULK
#define TC PRIO INTERACTIVE BULK
#define TC PRIO INTERACTIVE
#define TC PRIO CONTROL
#define TC PRIO MAX
                                         15
const __u8 ip_tos2prio[16] = {
                    TC PRIO BESTEFFORT,
                    TC PRIO BESTEFFORT.
                    TC PRIO BESTEFFORT,
                    TC_PRIO_BESTEFFORT,
                    TC_PRIO_BULK,
                    TC PRIO BULK,
                    TC PRIO BULK.
                    TC PRIO BULK,
                    TC PRIO INTERACTIVE.
                    TC PRIO INTERACTIVE.
                    TC_PRIO_INTERACTIVE,
                    TC_PRIO_INTERACTIVE),
                    TC PRIO INTERACTIVE BULK,
                    TC_PRIO_INTERACTIVE_BULK,
                    TC_PRIO_INTERACTIVE_BULK,
                    TC_PRIO_INTERACTIVE_BULK
```

RoCE QoS with rdma_cm API - Mapping from skb_prio to SL

17

Set&Check netdev skprio2up mapping

```
Example:
    s6$ tc_wrap.py -i eth3 -u 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3
    UP 0
    UP 1
    UP 2
    UP 3
                                                 skprio: 0
                                                 skprio: 1
                                                 skprio: 2 (tos: 8)
                                                 skprio: 3
                                                 skprio: 4 (tos: 24)
                                                 skprio: 5
                                                 skprio: 6 (tos: 16)
                                                 skprio: 7
                                                 skprio: 8
                                                 skprio: 9
                                                 skprio: 10
                                                 skprio: 11
                                                 skprio: 12
                                                 skprio: 13
                                                 skprio: 14
                                                 skprio: 15
    UP 4
    UP 5
    UP 6
    UP 7
    s6$ cat /sys/class/net/eth3/qos/skprio2up
    33333333333333333
```

Reference

- How To Run RoCE and TCP over L2 Enabled with PFC
- RoCE Spec: Annex A16 RoCE.pdf

Q&A

THANK YOU