Devoir maison n°8

À faire pour le lundi 27/01

Théorème de Chomsky-Schützenberger

1 Langage de Dyck

Pour $n \in \mathbb{N}^*$, on définit un **alphabet à** n **paires de parenthèses**, noté Σ_n , comme un alphabet à 2n lettres $\Sigma_n = \{a_1, \overline{a_1}, a_2, \overline{a_2}, \ldots, a_n, \overline{a_n}\}$. Les lettres a_i seront appelées **parenthèses ouvrantes** et les $\overline{a_i}$ sont les **parenthèses fermantes**.

Pour $n \in \mathbb{N}^*$, on appelle **langage de Dyck d'ordre** n, noté D_n , le langage engendré par la grammaire hors-contexte $G_n = (\Sigma_n, \{S\}, S, P)$, où P contient les règles de production :

$$S \to a_1 S \overline{a_1} S \mid a_2 S \overline{a_2} S \mid \dots a_n S \overline{a_n} S \mid \varepsilon$$

Pour $u \in \Sigma^*$, on note $\operatorname{Pref}(u)$ l'ensemble de ses préfixes.

Question 1 Représenter graphiquement un arbre de dérivation de $u = a_1 a_2 \overline{a_2} a_3 \overline{a_3} \overline{a_1}$ pour G_3 .

Question 2 On note $\Sigma_1 = \{a, \overline{a}\}$. Montrer que $D_1 = \{u \in \Sigma_1 \mid \forall v \in \operatorname{Pref}(u), |v|_a \geqslant |v|_{\overline{a}}\}$.

Question 3 En déduire que D_1 n'est pas rationnel.

Question 4 Pour n > 1, est-il vrai que $D_n = \{u \in \Sigma_n \mid \forall v \in \text{Pref}(u), \forall i \in [1, n], |v|_{a_i} \ge |v|_{\overline{a_i}}\}$? Justifier.

On définit les types suivants :

```
type lettre = Ouv of int | Fer of int
type mot = lettre list
```

tel qu'une lettre a_i sera représentée par \mathtt{Ouv} i et une lettre $\overline{a_i}$ par \mathtt{Fer} i, et un mot de Σ_n^* comme une liste de lettres.

Question 5 Écrire une fonction dyck : mot -> bool qui détermine si un mot u est un mot d'un langage de Dyck D_n pour un certain $n \in \mathbb{N}$.

2 Propriétés sur les langages algébriques

Soient Σ et Γ deux alphabets. On appelle **morphisme de mots** une fonction $\varphi : \Sigma \to \Gamma$ telle que pour tout $u, v \in \Sigma^*$, $\varphi(uv) = \varphi(u)\varphi(v)$.

Question 6 Montrer que si φ est un morphisme de mots, alors $\varphi(\varepsilon) = \varepsilon$.

Question 7 Soit φ un morphisme de mots. Montrer que si L est algébrique, alors $\varphi(L)$ est algébrique. La réciproque est-elle vraie? Justifier.

Soit $G = (\Sigma, V, P, S)$ une grammaire hors-contexte. On dit que G est en **forme normale de Chomsky** si toutes les règles de production sont de l'une des formes suivantes :

- $-X \to a$, avec $a \in \Sigma$;
- $-X \to YZ$, avec $Y, Z \in V$.

On admet que si G est une grammaire quelconque, alors il existe une grammaire G' en forme normale de Chomsky telle que $L(G') = L(G) \setminus \{\varepsilon\}$.

Question 8 Déterminer, en justifiant succinctement, le langage engendré par la grammaire G_0 en forme normale de Chomsky définie par les règles suivantes :

- $-S \rightarrow AX \mid AB$;
- $-X \rightarrow SB$;
- $-A \rightarrow a$;
- $-B \rightarrow b$.

Question 9 Soit $L \subseteq \Sigma^*$ un langage algébrique et $R \in \text{Rat}(\Sigma)$. Montrer que $L \cap R$ est algébrique. On pourra partir d'une grammaire en forme normale de Chomsky engendrant $L \setminus \{\varepsilon\}$ et d'un automate fini reconnaissant R et construire une grammaire dont les variables sont des triplets état×variable× état.

Question 10 Si L et L' sont deux langages algébriques, peut-on conclure que $L \cap L'$ est algébrique? Justifier.

3 Théorème de Chomsky-Schützenberger

Dans cette partie, on cherche à montrer le théorème de Chomsky-Schützenberger, dont l'énoncé est le suivant :

Théorème 3.1

Soit $L \subseteq \Sigma^*$ un langage. Alors les deux propriétés suivantes sont équivalentes :

- 1. L est algébrique;
- 2. il existe $n \in \mathbb{N}^*$, $R \in \text{Rat}(\Sigma)$ et $\varphi : \Sigma_n \to \Sigma$ un morphisme de mots tels que $L = \varphi(D_n \cap R)$.

Question 11 Montrer l'implication $2 \Rightarrow 1$ du théorème.

Soit $G = (\Sigma, V, P, S)$ une grammaire hors-contexte en forme normale de Chomsky. On numérote les règles de production de la forme $X \to YZ$ par r_1, r_2, \ldots, r_k . On pose $G' = (\Sigma', V, P', S)$ où :

- $\Sigma' = \Sigma \cup \{\overline{a} \mid a \in \Sigma\} \cup \bigcup_{i=1}^{k} \{a_i, \overline{a_i}, b_i, \overline{b_i}, c_i, \overline{c_i}\};$
- $-P' = \{X \to a_i b_i Y \overline{b_i} c_i Z \overline{c_i} \overline{a_i}, \text{pour } i \in [\![1,k]\!] \text{ et } r_i = X \to YZ\} \cup \{X \to a\overline{a}, \text{pour } X \to a \in P\}.$

Question 12 Déterminer la grammaire G'_0 , pour G_0 la grammaire de la question 8.

Question 13 Montrer que L(G') est inclus dans un langage de Dyck d'ordre n, pour n bien choisi.

On pose $\varphi: \Sigma'^* \to \Sigma^*$ le morphisme de mots défini par :

- pour $a \in \Sigma$, $\varphi(a) = a$ et $\varphi(\overline{a}) = \varepsilon$;
- pour $i \in [1, k]$, $\varphi(a_i) = \varphi(\overline{a_i}) = \varphi(b_i) = \varphi(\overline{b_i})\varphi(c_i) = \varphi(\overline{c_i}) = \varepsilon$.

Pour L un langage sur un alphabet Σ , on note $P(L) \subseteq \Sigma$ l'ensemble des premières lettres des mots de L, $F(L) \subseteq \Sigma^2$ l'ensemble des facteurs de taille 2 des mots de L et $N(L) = \Sigma^2 \setminus F(L)$.

 $\textbf{Question 15} \qquad \text{On pose } R = P(L(G'))\Sigma'^* \setminus \Sigma'^* N(L(G'))\Sigma'^*. \text{ Montrer que } R \in \operatorname{Rat}(\Sigma').$

Question 16 Montrer l'implication $1 \Rightarrow 2$ du théorème.
