Workshop 23 November 29, 2011

1. The parametric equations for the involute of the circle of radius r (the unwinding string from last time) are

$$x = r\cos t + rt\sin t,$$
 $y = r\sin t - rt\cos t,$

where $t \geq 0$ is the angle from the x-axis to the point of tangency of the string to the circle. Use this to find polar coordinates for the involute. (The formula for r in terms of t is reasonably nice, but putting this in terms of θ won't be so pretty.)

- 2. We can think of polar coordinates as a function from $\mathbb{R}^2 \to \mathbb{R}^2$. For each pair of numbers $(r,\theta) \in \mathbb{R}^2$ we get as output the point $(x,y) \in \mathbb{R}^2$ where $x = r \cos \theta$ and $y = r \sin \theta$.
 - (a) One oddity of this mapping is that it is not 1-to-1: for example the points $(r, \theta) = (3, \pi)$ and $(r, \theta) = (3, 3\pi)$ get mapped to the same point in (x, y)-space. Of course, there are even more such pairs (r, θ) ; describe all of them.
 - (b) Another problem is the preimage of the origin. What points in (r, θ) -space map to the point (x, y) = (0, 0)?
 - (c) Keeping the above issues in mind, find all points of intersection between the two polar curves $r = 1 + \sin \theta$ and $r = 1 2\cos \theta$. (Hint: you won't be able to solve all of the equations that come up explicitly; just simplify them a bit.)
- 3. Polar coordinates are great for describing some shapes, not so great for others. Find functions r of θ whose polar plots give rise to the following curves. Compare these to the Cartesian equations.
 - (a) A line with slope $\sqrt{3}$ through the origin.
 - (b) A line with slope m through the origin.
 - (c) The horizontal line y = 3.
 - (d) The circle with radius ρ centered at the origin.
 - (e) The circle with radius ρ centered at (x, y) = (5, 0).
 - (f) The parabola $y = x^2$.
- 4. Show that the curves $r = a \sin \theta$ and $r = a \cos \theta$ intersect at right angles.
- 5. Find the length of the curve given parametrically by $x = e^t + e^{-t}$, y = 5 2t, $t \in [0,3]$.
- 6. Find the length of the loop of the curve $x = 3t t^3$, $y = 3t^2$.