1. (a)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

(b)
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

(c)
$$(a+b)^2 = a^2 + b^2 + 2ab$$

(d)
$$(a-b)^2 = a^2 + b^2 - 2ab$$

(e)
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

(f)
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

(g)
$$a^3 + b^3 = (a + b)^3 - 3ab(a + b)$$

(h)
$$a^3 - b^3 = (a - b)^3 + 3ab(a - b)$$

(i)
$$a^2 + b^2 + c^2 - ab - bc - ca = \frac{1}{2} \left[(a - b)^2 + (b - c)^2 + (c - a)^2 \right]$$

(j)
$$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$$

3. Limits of the values of trigonometrical functions.

(a)
$$-1 \le \sin A \le 1$$

(b)
$$-1 \le \cos A \le 1$$

(c)
$$\sec A \le -1$$
 or $\sec A \ge 1$

(d)
$$\csc A \le -1$$
 or $\csc A \ge 1$

(e)
$$-\infty < \tan A < \infty$$

(f)
$$-\infty < \cot A < \infty$$

(g) Each interior angle of a regular polygon of n sides =
$$\frac{n-2}{n} \times 180$$

														2.500
0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	240°	270°	300°	360°	960°
0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	0	$-\frac{\sqrt{3}}{2}$
1	$\frac{\sqrt{3}}{2}$	1	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	1	$-\frac{1}{2}$
0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	8	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	∞	$-\sqrt{3}$	0	$\sqrt{3}$
	0	$\begin{bmatrix} 0 & \frac{1}{2} \\ 1 & \frac{\sqrt{3}}{2} \end{bmatrix}$	$\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \end{bmatrix}$ $0 & \frac{1}{2} & 1$	$\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} \\ 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ 0 & \frac{1}{2} & 1 & \sqrt{3} \end{bmatrix}$	$\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} & 1 \\ 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 1 & \sqrt{3} & \infty \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0 & \frac{1}{30} & \frac{1}{43} & \frac{1}{00} & \frac{\sqrt{3}}{2} & \frac{1}{1} & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 \\ 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & 1 & \sqrt{3} & \infty & -\sqrt{3} & -1 & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & \frac{1}{30} & \frac{1}{43} & \frac{1}{60} & \frac{1}{70} & \frac{1}{120} & \frac{1}{120} & \frac{1}{120} & \frac{1}{120} & \frac{1}{120} \\ 0 & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} & 0 & -\frac{1}{2} \\ 1 & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{1}{\sqrt{2}} & 1 & \sqrt{3} & \infty & -\sqrt{3} & -1 & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{3}} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0 & \frac{1}{30} & \frac{1}{43} & \frac{1}{60} & \frac{1}{90} & \frac{1}{120} & \frac{1}{130} & \frac{1}{120} & $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

5. (a)
$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

(b)
$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

(c)
$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

(d)
$$\cot (A \pm B) = \frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}$$

(e)
$$\tan (A + B + C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan C \tan A}$$

6. (a)
$$\sin(A + B) + \sin(A - B) = 2\sin A \cos B$$

(b)
$$\sin(A + B) - \sin(A - B) = 2\cos A \sin B$$

(c)
$$cos(A + B) + cos(A - B) = 2cos A cos B$$

$$(d) - \cos(A + B) + \cos(A - B) = 2\sin A \sin B$$

(e)
$$\sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$
 (f) $\sin C - \sin D = 2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$

(g)
$$\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$
 (h) $\cos C - \cos D = -2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$

7. (a)
$$\sin 2A = 2\sin A \cos A = \frac{2\tan A}{1 + \tan^2 A}$$

(a)
$$\sin 2A = 2\sin A \cos A = \frac{2\tan A}{1 + \tan^2 A}$$
 (b) $\sin A = 2\sin \frac{A}{2} \cos \frac{A}{2} = \frac{2\tan \frac{A}{2}}{1 + \tan^2 \frac{A}{2}}$

(c)
$$\cos 2A = 2\cos^2 A - 1 = 1 - 2\sin^2 A = \cos^2 A - \sin^2 A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

(d)
$$\cos A = 2\cos^2\frac{A}{2} - 1 = 1 - 2\sin^2\frac{A}{2} = \cos^2\frac{A}{2} - \sin^2\frac{A}{2} = \frac{1 - \tan^2\frac{A}{2}}{1 + \tan^2\frac{A}{2}}$$

(e)
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$
; $\tan A = \frac{2 \tan A/2}{1 - \tan^2 A/2}$

8.
$$\sin(-\theta) = -\sin\theta$$
; $\cos(-\theta) = +\cos\theta$; $\tan(-\theta) = -\tan\theta$

9.
$$\sin (A + B) \sin (A - B) = \sin^2 A - \sin^2 B = \cos^2 B - \cos^2 A$$

 $\cos (A + B) \cos (A - B) = \cos^2 A - \sin^2 B = \cos^2 B - \sin^2 A$

10.
$$\sin 3A = 3 \sin A - 4 \sin^3 A$$

$$\cos 3A = 4\cos^3 A - 3\cos A$$

$$\tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$$

$$\cot 3A = \frac{\cot^3 A - 3\cot A}{3\cot^2 A - 1}$$

11.
$$\sin 18^\circ = \frac{\sqrt{5} - 1}{4}$$
; $\cos 36^\circ = \frac{\sqrt{5} + 1}{4}$

12. If
$$T = a \cos \theta + b \sin \theta$$
, then $T_{\text{max}} = \sqrt{a^2 + b^2}$, $T_{\text{min}} = -\sqrt{a^2 + b^2}$

13. (a) If
$$\sin \theta = 0$$
 or $\tan \theta = 0$ then $\theta = n\pi$

(b) If
$$\cos \theta = 0$$
 or $\cot \theta = 0$, then $\theta = (2n + 1)\frac{\pi}{2}$

(c) If
$$\sin \theta = \sin \alpha$$
, then $\theta = n\pi + (-1)^n \alpha$

(d) If
$$\cos \theta = \cos \alpha$$
, then $\theta = 2n\pi \pm \alpha$

(e) If
$$\tan \theta = \tan \alpha$$
, then $\theta = n\pi + \alpha$ when $n = 0, \pm 1, \pm 2, \dots$

In a $\triangle ABC$, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$, where R is the radius of the circumcircle of $\triangle ABC$. 14.

Tangent Rule: In any $\triangle ABC$: 15.

(i)
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$$

(ii)
$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$$

(iii)
$$\tan \frac{C-A}{2} = \frac{c-a}{c+a} \cot \frac{B}{2}$$

Cosine Rule : In any $\triangle ABC$: 16.

(i)
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

(ii)
$$\cos B = \frac{c^2 + a^2 - b^2}{2ac}$$

(iii)
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Projection Formulae: In any ΔABC:

(i)
$$c = a \cos B + b \cos A$$

(ii)
$$b = a \cos C + c \cos A$$

(iii)
$$a = b \cos C + c \cos B$$

18. (i)
$$\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$$

(ii)
$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$$

(iii)
$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

where
$$2s = a + b + c$$

If Δ be the area of ΔABC , then : $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$. 19.

(i)
$$\sin A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}$$

(ii)
$$\sin B = \frac{2}{ca} \sqrt{s(s-a)(s-b)(s-c)}$$

(ii)
$$\sin B = \frac{2}{ca} \sqrt{s(s-a)(s-b)(s-c)}$$
 (iii) $\sin C = \frac{2}{ab} \sqrt{s(s-a)(s-b)(s-c)}$

Area of triangle: If Δ denotes the area of ΔABC , then 21.

(i)
$$\Delta = \frac{1}{2} ab \sin C$$

(ii)
$$\Delta = \frac{1}{2} \operatorname{bc} \sin A$$

$$\Delta = \frac{1}{2} \operatorname{ab} \sin C$$
 (ii) $\Delta = \frac{1}{2} \operatorname{bc} \sin A$ (iii) $\Delta = \frac{1}{2} \operatorname{ca} \sin B$

If Δ be the area of Δ ABC and R be the radius of its circumcircle, then $\Delta = \frac{abc}{\Delta R}$. 22.

(i)
$$\tan \frac{A}{2} = \frac{(s-b)(s-c)}{\Delta}$$
 (ii) $\cot \frac{A}{2} = \frac{s(s-a)}{\Delta}$

i)
$$\cot \frac{A}{2} = \frac{s(s-a)}{\Delta}$$

Circum-radius, In-radius and Ex-radius 24.

Circle ABC is known as circumcircle. Its centre O is the point where perpendicular bisectors of the sides of the triangle meet. Point O is known as circumcentre and its radii OA, OB, OC are denoted by R and are known as circumradius.

Circle DEF is known as in-circle. Its centre I is the point where internal bisectors of the angles of the triangle meet. Point I is known as In-centre and its radii ID, IE, IF are denoted by r and are known as In - radius.

Circle LMN is known as escribed circle. Its centre I₁ is the point where internal bisector of angle A and external bisectors of angles B and C meet. Point I₁ is known as Ex-centre and its radii I₁L, I₁M, I₁N are denoted by r₁ and is known as ex-radius opposite to A.

Similarly we have two more radii ex-radii, r₂ opposite to B and r₃ opposite to C.

Escribed Circle:

$$I_1 = Ex - centre$$

$$r_1 = Ex - radius opposite to A$$

25. Some More Results

I. (a)
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

(b)
$$R = \frac{abc}{4\Delta}$$

(b)
$$R = \frac{abc}{4\Delta}$$
 (c) $\Delta = \frac{1}{2}bc \sin A$

(d)
$$\tan \frac{A}{2} = \frac{\Delta}{s(s-a)} = \frac{(s-b)(s-c)}{\Delta}$$

II. (a)
$$r = \frac{\Delta}{s} = (s-a)\tan\frac{A}{2} = (s-b)\tan\frac{B}{2} = (s-c)\tan\frac{C}{2} = 4R\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$$

(b)
$$r_1 = \frac{\Delta}{s-a} = s \tan \frac{A}{2} = 4R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \frac{a \cos(B/2) \cos(C/2)}{\cos(A/2)}$$

(c)
$$r_2 = \frac{\Delta}{s - b} = s \tan \frac{B}{2} = 4R \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2} = \frac{b \cos(C/2) \cos(A/2)}{\cos(B/2)}$$

(d)
$$r_3 = \frac{\Delta}{s - c} = s \tan \frac{C}{2} = 4R \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2} = \frac{c \cos(A/2) \cos(B/2)}{\cos(C/2)}$$

L(a) $r_1 + r_2 + r_3 = 4R + r$ (b) $r_1 r_2 + r_2 r_3 + r_3 r_1 = s^2$ (c) $r_1 + r_2 - r_3 = r_3 \cos(C/2)$

III.(a)
$$r_1 + r_2 + r_3 = 4R + r$$

(b)
$$r_1 r_2 + r_2 r_3 + r_3 r_1 = s^2$$

$$r_1 + r_2 - r_3 + r = 4R \cos C$$

Important Identities

IV.(a)
$$\sum_{m} \sin A = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$$

(b)
$$\sum \sin 2A = 4 \sin A \sin B \sin C$$

(c)
$$\sum \cos 2A = -1 - 4\cos A \cos B \cos C$$
 (d)
$$\sum \sin^2 A = 4\sin A \sin B \sin C$$

(e)
$$\sum \tan A = \tan A \tan B \tan C$$
 (f)
$$\sum \cot^2 A = 2(1 + \cos A \cos B \cos C)$$

(g)
$$\sum \tan^A A \cos^A B = 1$$

$$\sum \sin^2 A = 2(1 + \cos A \cos B \cos C)$$

(e)
$$\sum \tan A = \tan A \tan B \tan C$$

(f)
$$\sum_{cot A cot B} cot A cot B$$

(g)
$$\sum \tan \frac{A}{2} \tan \frac{B}{2} = 1$$

(h)
$$\sum \cos A = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$

Inverse Circular Function

Summary

	Function	Domain of the function	Range (Principal Value)
1.	$y = \sin^{-1} x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
2.	$y = \cos^{-1} x$	$-1 \le x \le 1$	$2 \stackrel{\exists y \leq \overline{2}}{2}$ $0 \leq y \leq \pi$
3.	$y = \tan^{-1} x$	$-\infty < x < \infty$	$-\frac{\pi}{2} < y < \frac{\pi}{2}$
4.	$y = \cot^{-1} x$	$-\infty < x < \infty$	$ \begin{array}{ccc} 2 & & 2 \\ 0 < y < \pi \end{array} $
5.	$y = \sec^{-1} x$	$x \le -1$ or $x \ge 1$	$0 \le y \le \pi, \ y \ne \frac{\pi}{2}$
6.	$y = cosec^{-1} x$	$x \le -1$ or $x \ge 1$	$\frac{\pi}{-\frac{\pi}{2}} \le y \le \frac{\pi}{2}, y \ne 0$

Website: www.aniotaroup edu in LE