

Representation

Template Models

Temporal Models

Distributions over Trajectories Aircretize time Pick time granularity O 1 2 3 4 5

- $(X^{(t)})$ variable X at time $t\Delta$
- $X^{(\dagger;\dagger')} = \{X^{(\dagger)}, ..., X^{(\dagger')}\}, (\dagger \leq \dagger')$
- Want to represent P(X^(p:t')) for any t, t'

Markov Assumption

$$P(X^{(0:T)}) = P(X^{(0)}) \prod_{t=0}^{T-1} P(X^{(\underline{t+1})} \mid X^{(\underline{0:t})}) \text{ probabilities}$$
 time flows forward
$$(\underline{X^{(t+1)}} \perp \underline{X^{(0:t-1)}} \mid \underline{X^{(t)}}) \text{ bracking}$$

$$(\underline{X^{(t+1)}} \perp \underline{X^{(0:t-1)}} \mid \underline{X^{(t)}}) \text{ bracking}$$

$$P(X^{(0:T)}) = P(X^{(0)}) \prod_{t=0}^{T-1} P(X^{(t+1)} \mid \underline{X^{(t)}})$$
 Ly thus true?
$$X = \text{location of robot probably not}$$
 enrich state by adding via an other variables depends on the probable of the probable

Daphne Koller

Time Invariance

- Template probability mode (P(X' | X))
- For all t:

$$P(old X^{(t+1)} \mid old X^{(t)}) = P(old X' \mid old X)$$
 traffic time of day day of week, both all enrich model by including

Template Transition Model

Initial State Distribution

Time slice 0

Ground Bayesian Network

2-time-slice Bayesian Network

- A transition model (2TBN) over X₁,...,X_n is specified as a BN fragment such that:

$$P(oldsymbol{X}'\mid oldsymbol{X}) = \prod_{i=1}^n P(X_i'\mid \mathbf{Pa}_{X_i'})$$
 chain tule

Dynamic Bayesian Network

• A dynamic Bayesian network (DBN) over $X_1,...,X_n$ is defined by a

+ - a Bayesian network BN⁽⁰⁾ over $X_1^{(0)}$,..., $X_n^{(0)}$

Ground Network

- For a trajectory over 0,..., T we define a ground (unrolled network) such that
- The dependency model for $X_1^{(0)}$,..., $X_n^{(0)}$ is copied from $BN^{(0)}$
- The dependency model for $X_1^{(\dagger)}$,..., $X_n^{(\dagger)}$ for all t > 0 is copied from BN_

Summary

- DBNS are a compact representation for encoding structured distributions over arbitrarily long temporal trajectories
- They make assumptions that may require appropriate model (re)design:
 - Markov assumption
 - Time invariance