

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по курсу «Data Science»

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Олейник Владимир Александрович

Постановка задачи

Произвести анализ данных Выполнить предварительную обработку данных Обучить нескольких моделей для прогноза модуля упругости при растяжении и прочности при растяжении Написать нейронную сеть, которая будет рекомендовать соотношение матрица-наполнитель Разработать приложение

На входе имеются данные о начальных свойствах компонентов композиционных материалов (количество связующего, наполнителя, температурный режим отверждения и т.д.). На выходе необходимо спрогнозировать ряд конечных свойств получаемых композиционных материалов. Кейс основан на реальных производственных задачах Центра НТИ «Цифровое материаловедение: новые материалы и вещества» (структурное подразделение МГТУ им. Н.Э. Баумана)

Анализ данных

Получена сводная и описательная статистическая информация, матрица корреляции, построены графики распределения, диаграммы «ящик с усами», графики «квантиль-квантиль», попарные графики рассеяния точек.

Результаты анализа:

- пропуски в данных отсутствуют;
- **д**убликаты отсутствуют;
- все признаки имеют числовой тип данных;
- признак «Угол нашивки, град» имеет только два уникальных значения, поэтому в дальнейшем изменим тип данных на категориальный;
- наличие выбросов;
- явная корреляция между признаками отсутствует;
- распределение близкое к нормальному по всем признакам, кроме «Поверхностная плотность, г/м2», признак имеет положительную асимметрию.

Предварительная обработка данных

Опробованы различные подходы устранения выбросов:

- правила трех сигм удалено 23 строки, при повторных итерациях еще 4;
- межквартильный размах удалено 87 строк, при повторных итерациях еще 14;
- 5- 95 квантилей удалено 727 строк.

Выполнены различные методы преобразования данных:

- StandardScale совместно с PowerTransformer;
- MinMaxScaler;
- RobustScaler;
- QuantileTransformer.

Результаты предобработки:

- выбросы устранены методом межквартильного размах;
- предобработка данных выполнена с помощью StandardScaler и PowerTransformer.

Разработка и оценка моделей

Создан препроцессинг данных, который состоит из следующих преобразований:

- StandardScaler для числовых признаков без асимметрии;
- PowerTransformer для числовых признаков с явной асимметрией;
- OneHotEncoder для категориальных признаков.

С помощью GridSearchCV (поиск по сетке) выполнен подбор наилучших параметров моделей машинного обучения.

Создан Pipeline из препроцессинга данных и инициализированных моделей.

Обучены и сохранены модели для прогнозирования модуля упругости при растяжении и прочности при растяжении:

- LinearRegression;
- DecisionTreeRegressor;
- LinearSVR;
- KNeighborsRegressor;
- RandomForestRegressor.

	Model	MAE	MSE	R2
0	LinReg	2.520664	9.494092	-0.028532
1	DecTreeReg	3.434590	18.378696	-0.991035
2	LinSVR	2.522822	9.529168	-0.032332
3	KNNReg	2.488656	9.199464	0.003386
4	RandForReg	2.526412	9.775038	-0.058968

Метрики моделей для прогноза модуля упругости при растяжении

	Model	MAE	MSE	R2	
0	LinReg	368.612465	210248.957038	-0.026610	
1	DecTreeReg	546.510000	455256.167719	-1.222940	
2	LinSVR	368.192588	206855.073445	-0.010039	
3	KNNReg	366.052595	204508.051117	0.001421	
4	RandForReg	383.447685	217757.993006	-0.063276	
Метрики моделей для прогноза прочности при растяжении					

Разработка нейронной сети

Модуль упругости при растяжении и прочность при растяжении будем считать дополнительными входными переменными для прогнозирования соотношения матрица-наполнитель.

Созданы два препроцессинга данных: один аналогичен препроцессингу созданному ранее, но с добавлением двух новых входных переменных, второй использует MinMaxScaler для преобразования числовых признаков и OneHotEncoder для категориальных признаков.

Инициализирована модель нейронной сети и выполнен ручной подбор параметров сети для датасета с разной предобработкой данных.

При обучении нейронной сети были использованы ModelCheckpoint для сохранения лучшей модели и EarlyStopping для ранней остановки обучения, при отсутствии улучшения точности модели после 20 эпох обучения.

Наилучший показатель детерминации показала модель со следующими параметрами сети:

- входной слой (количество нейронов 8, инициализация матрицы весов 'normal', функция активации 'relu');
- выходной слой (количество нейронов 1, инициализация матрицы весов 'normal', функция активации 'linear');
- функция ошибки 'mean_squared_error';
- оптимизатор Adam (скорость обучения 0.0001);
- метрика 'mean squared error'.

	Model	MAE	MSE	R2		Model	MAE	MSE	R2
30	Best_model31	1.963414	4.923813	-5.126551	10	Best_model11	0.746346	0.859275	-0.069170
29	Best_model30	1.740889	3.973470	-3.944068	11	Best_model12	0.737074	0.838771	-0.043657
28	Best_model29	1.621751	3.734108	-3.646237	5	Best_model6	0.732213	0.826989	-0.028997
31	Best_model32	1.088815	1.701520	-1.117150	 30	Best_model31	0.730297	0.816529	-0.015983
19	Best_model20	0.725915	0.807424	-0.004653	29	Best_model30	0.727404	0.803535	0.000186
21	Best_model22	0.724715	0.804841	-0.001439	15	Best_model16	0.724841	0.803500	0.000229
13	Best_model14	0.734034	0.804738	-0.001312	24	Best_model25	0.724744	0.803040	0.000801
23	Best_model24	0.725160	0.802765	0.001143	20	Best_model21	0.724952	0.802893	0.000985
27	Best_model28	0.724351	0.792748	0.013608	32	Best_model33	0.724462	0.798938	0.005906
17	Best_model18	0.724967	0.792472	0.013951	28	Best_model29	0.724881	0.798927	0.005920
33	Best_model34	0.722363	0.790095	0.016909	33	Best_model34	0.722947	0.796763	0.008611
7	Best_model8	0.715045	0.781157	0.028030	31	Best_model32	0.725978	0.796449	0.009003

Дополнительно была выполнена попытка параметров сети перебором через цикл. Параметры цикла:

Метрики моделей нейронной сети (слева – датасет после StandardScaler,

справа – датасет после MinMaxScaler)

- количество слоев [1, 2, 3];
- количество нейронов [8, 16, 32, 64];
- функции активации ['tanh', 'linear', 'relu'];
- оптимизаторы ['sgd', 'adam'].

Полученные модели не дали коэффициент детерминации выше, чем модель, указанная выше.

Разработка приложения

Для разработки приложения использован фреймворк Streamlit.

Разработанное приложение позволяет пользователю:

- 1. внести характеристики матрицы и наполнителя (по умолчанию, заполнены значениями из тестовой выборки);
- 2. выбрать модель машинного обучения (по умолчанию выбрана модель линейной регрессии);
- 3. получить прогнозы модуля упругости при растяжении, прочности при растяжении, соотношения матрица-наполнитель после нажатия кнопки «Получить прогнозы».

Принцип работы приложения после нажатия кнопки «Получить прогнозы» следующий:

- 1. формируется датасет из внесенных значений;
- 2. в зависимости от выбора пользователя загружаются модели для прогнозирования модуля упругости при растяжении и прочности при растяжении, и выполняется прогнозирование этих значений;
- 3. формируется датасет из внесенных и полученных значений из предыдущего пункта;
- 4. загружается модель препроцессинга данных и выполняется преобразования датасета из предыдущего пункта;
- 5. загружается модель нейронной сети и выполняется прогнозирование соотношения матрица-наполнитель;
- 6. вывод результатов работы.

Выпускная квалификационная работа по курсу «Data Science»

Прогнозирование конечных свойств новых материалов (композиционных материалов)

https://olvovchik-data-science-learn-applicationapp-tfgy2e.streamlit.app/ ссылка на приложение в сети Интернет.

Заключение

Полученный коэффициент детерминации обученных моделей и нейронной сети практически нулевой — это означает, что связь между переменными регрессионной модели отсутствует и получаемые прогнозы ничем не отличаются от прогноза средним значением.

Итоговое решение поставленной задачи не достигнуто, требуется более детальный анализ данных (желательно с привлечением специалистов предметной области). Также можно попробовать использовать другие методы и модели прогнозирования, которые не были рассмотрены в текущей работе.

Спасибо за внимание!

do.bmstu.ru

