Homework 10 Honors Analysis I

Homework 10

ALECK ZHAO

November 27, 2017

Chapter 10: Sequences of Functions

7. Let (f_n) and (g_n) be real-valued functions on a set X, and suppose that (f_n) and (g_n) converge uniformly on X. Show that $(f_n + g_n)$ converges uniformly on X. Give an example showing that $(f_n g_n)$ need not converge uniformly on X.

Proof. Suppose $f_n \to f$ and $g_n \to g$ uniformly. Then we claim that $(f_n + g_n) \to f + g$ uniformly. Take $\varepsilon > 0$, so there exists N and M such that $|f_n(x) - f(x)| < \varepsilon/2$ and $|g_n(x) - g(x)| < \varepsilon/2$ for $n \ge N$ and $n \ge M$, respectively. Take $K = \max\{N, M\}$, so we have

$$|(f_n(x) + g_n(x)) - (f(x) + g(x))| \le |f_n(x) - f(x)| + |g_n(x) - g(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon$$

for all $n \geq K$, so $(f_n + g_n)$ is uniformly convergent.

Take $f_n(x) = 1/x$ and $g_n(x) = 1/n$ over (0,1). Then $f_n \to 1/x$ and $g_n \to 0$ uniformly. Suppose $f_n g_n \to fg = 0$ uniformly. Then let $\varepsilon > 0$ and there exists N such that

$$\left| \frac{1}{nx} - 0 \right| < \varepsilon$$

for all $n \ge N$. However, this is clearly impossible since given any n, if 0 < x < 1/n, then $\left|\frac{1}{nx}\right| > 1$ so $(f_n g_n)$ does not converge uniformly.

12. Prove that a sequence of functions $f_n: X \to \mathbb{R}$, where X is any set, is uniformly convergent if and only if it is uniformly Cauchy. That is, prove that there exists some $f: X \to \mathbb{R}$ such that $f_n \Rightarrow f$ on X if and only if, for each $\varepsilon > 0$, there exists an $N \ge 1$ such that $\sup_{x \in X} |f_n(x) - f_m(x)| < \varepsilon$ whenever $m, n \ge N$. (Hint: Notice that if (f_n) is uniformly Cauchy, then it is also pointwise Cauchy. That is, if $\sup_{x \in X} |f_n(x) - f_m(x)| \to 0$ as $m, n \to \infty$, then $(f_n(x))$ is Cauchy in \mathbb{R} for each $x \in X$.)

Proof. (\Longrightarrow): If there is an f such that $f_n \Rightarrow f$, then for any $\varepsilon > 0$, there exists N such that $|f_n(x) - f(x)| < \varepsilon/2$ and $|f(x) - f_m(x)| < \varepsilon/2$ for all $n, m \ge N$ and $x \in X$. Then

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\implies \sup_{x \in X} |f_n(x) - f_m(x)| < \varepsilon$$

so (f_n) is uniformly Cauchy.

 (\Leftarrow) : If (f_n) is uniformly Cauchy, then it is also pointwise Cauchy, so $(f_n(x))$ is Cauchy in \mathbb{R} for any x, and therefore convergent since \mathbb{R} is complete. Thus, set $f(x) := \lim_{n \to \infty} f_n(x)$ to be this limit. Then $|f_n(x) - f(x)| \to 0$ as $n \to \infty$ so $f_n \Rightarrow r$.

Homework 10 Honors Analysis I

18. Here is a partial converse to Theorem 10.4, called Dini's theorem. Let X be a compact metric space, and suppose that the sequence (f_n) in C(X) increases pointwise to a continuous function $f \in C(X)$; that is, $f_n(x) \leq f_{n+1}(x)$ for each n and x, and $f_n(x) \to f(x)$ for each x. Prove that the convergence is actually uniform. The same is true if (f_n) decreases pointwise to f. (Hint: First reduce to the case where (f_n) decreases pointwise to 0. Now, given $\varepsilon > 0$, consider the (open) sets $U_n = \{x \in X : f_n(x) < \varepsilon\}$.) Give an example showing that $f \in C(X)$ is necessary.

Proof. Since f_n converges pointwise to f, let $g_n(x) := f(x) - f_n(x)$. Since f_n is increasing pointwise, g_n is decreasing pointwise, and converges pointwise to 0. Now given $\varepsilon > 0$, consider the open set $U_n = \{x \in X : g_n(x) < \varepsilon\}$. We have $U_n \subset U_{n+1}$ since $g_n(x) \geq g_{n+1}(x)$, and $g_n(x) \to 0$, so $\bigcup_{n=1}^{\infty} U_n = X$. Since this is an open cover and X is compact, there exists a finite subcover, and since $U_n \subset U_{n+1}$, there exists some N such that $U_N = X$. Thus, $g_N(x) < \varepsilon$ for all x, and therefore $g_n(x) < \varepsilon$ for all x and $x \geq 0$, so $x \leq 0$. Thus, $x \leq 0$ for all $x \in 0$. Thus, $x \leq 0$ for all $x \in 0$. Thus, $x \leq 0$ for all $x \in 0$.

If X = [0,1] and $f_n(x) = x^{1/n}$, then $f_n \to g$ where g(0) = 0 and g(x) = 1 for $x \in (0,1]$. Here, the convergence is not uniform, but g is also not continuous.

19. Suppose that (f_n) is a sequence of functions in C[0,1] and that $f_n \Rightarrow f$ on [0,1]. True or false? $\int_0^{1-(1/n)} f_n \to \int_0^1 f$.

Solution. This is false. We have

$$\left| \int_0^1 f - \int_0^{1 - (1/n)} f_n \right| = \left| \int_0^1 f - \int_0^1 f_n + \int_{1 - (1/n)}^1 f_n \right| \le \left| \int_0^1 f - \int_0^1 f_n \right| + \left| \int_{1 - (1/n)}^1 f_n \right|$$

The left hand absolute value tends to 0 because $f_n \Rightarrow f$, but we can construct f_n such that the right hand absolute value does not tend to 0.

21. Use Dini's theorem to conclude that the sequence $(1 + (x/n))^n$ converges uniformly to e^x on every compact interval in \mathbb{R} . How does this explain the findings in Example 10.1 (a)?

Proof. Fix some x. Consider the numbers $x_1 = 1, x_2 = x_3 = \cdots = x_{n+1} = 1 + \frac{x}{n}$. Since these are all non-negative, by the AM-GM inequality, we have

Thus, the sequence $(1 + (x/n))^n$ is increasing in n. It is well known that it converges to e^x , so by Dini's theorem, it is uniformly convergent to e^x . Since the sequence is uniformly convergent to e^x , the sequences of derivatives and integrals also converge to the derivatives and integrals of e^x .

23. Show that B(X) is an algebra of functions; that is, if $f, g \in B(X)$, then so is fg and $||fg||_{\infty} \le ||f||_{\infty} ||g||_{\infty}$. Moreover, if $f_n \to f$ and $g_n \to g$ in B(X), show that $f_n g_n \to fg$ in B(X).

Proof. We have $|f(x)| \le M$ and $|g(x)| \le N$ for all $x \in X$ and some M, N. Then $|f(x)g(x)| \le MN$ for all x, so $fg \in B(X)$. We have $\sup_{x \in X} |f(x)| \ge f(x)$ and $\sup_{x \in X} |g(x)| \ge g(x)$ for all x, so

$$\sup_{x \in X} |f(x)| \cdot \sup_{x \in X} |g(x)| \ge f(x)g(x), \quad \forall x \in X \implies \|f\|_{\infty} \|g\|_{\infty} \ge \|fg\|_{\infty}$$

Homework 10 Honors Analysis I

Now, f_n and g_n are bounded, so suppose $|f_n(x)| \leq M_f$ and $|g_n(x)| \leq M_g$ for all n and x and some M_f, M_g . Let $M = \max\{M_f, M_g\}$. Then since f_n and g_n are also uniformly convergent to f and g, respectively, for $\varepsilon > 0$, we have $|f_n(x) - f(x)| < \frac{\varepsilon}{2M}$ and $|g_n(x) - g(x)| < \frac{\varepsilon}{2M}$. Next, $|f_n(x)| \leq M$ and $|g(x)| \leq M$, so

$$|f_n(x)g_n(x) - f(x)g(x)| = |f_n(x)g_n(x) - f_n(x)g(x) + f_n(x)g(x) - f(x)g(x)|$$

$$\leq |f_n(x)| |g_n(x) - g(x)| + |g(x)| |f_n(x) - f(x)|$$

$$< M \cdot \frac{\varepsilon}{2M} + M \cdot \frac{\varepsilon}{2M} = \varepsilon$$

so $f_n g_n \to f g$.

29. (a) For which values of x does $\sum_{n=1}^{\infty} ne^{-nx}$ converge? On which intervals is the convergence uniform? Solution. For any interval $[a, \infty)$ with a > 0, we have $ne^{-nx} \le ne^{-na}$ for all $x \in [a, b]$, so by the M-test, we have

$$\sum_{n=1}^{\infty} ne^{-nx} \le \sum_{n=1}^{\infty} ne^{-na} = \frac{e^{-a}}{(1 - e^{-a})^2}$$

It is also uniformly convergent on $[a, \infty)$ since $\sup_{x \in [a, \infty)} ne^{-nx} = ne^{-na} \to 0$ as $n \to 0$.

(b) Conclude that $\int_1^2 \sum_{n=1}^\infty n e^{-nx} \, dx = e/(e^2-1)$

Solution. Since it is uniformly convergent, we may switch the order of summation and integration:

$$\int_{1}^{2} \sum_{n=1}^{\infty} ne^{-nx} dx = \sum_{n=1}^{\infty} \int_{1}^{2} ne^{-nx} dx = \sum_{n=1}^{\infty} (-e^{-nx}) \Big|_{1}^{2}$$

$$= \sum_{n=1}^{\infty} \left(e^{-n} - e^{-2n} \right) = \sum_{n=1}^{\infty} e^{-n} - \sum_{n=1}^{\infty} e^{-2n}$$

$$= \frac{\frac{1}{e}}{1 - \frac{1}{e}} - \frac{\frac{1}{e^{2}}}{1 - \frac{1}{e^{2}}} = \frac{1}{e - 1} - \frac{1}{e^{2} - 1}$$

$$= \frac{e}{e^{2} - 1}$$