DMA Domácí úkol č. 12b

Tento úkol vypracujte a pak přineste na cvičení č. 13.

- 1. Najděte řešení pro rovnici $a_{n+2}-a_n=0, n\geq 0,$ které splňuje počáteční podmínky $a_0=0, a_1=2.$
- **2.** Najděte obecné řešení pro rovnici $a_{n+1} = 6a_n 9a_{n-1}, n \ge 2$. Jaká je jeho typická asymptotická rychlost růstu v nekonečnu? Poznámka: Nezapomeňte rovnici nejprve upravit na standardní tvar.

Řešení:

1. Charakteristická rovnice $\lambda^2 - \lambda^0 = \lambda^2 - 1 = (\lambda - 1)(\lambda + 1) = 0$, odtud charakteristická čísla $\lambda = \pm 1$, proto obecné řešení $a_n = 1^n u + (-1)^n v = u + (-1)^n v, n \ge 0$. Počáteční podmínky dávají $a_0 = u + v = 0$, $a_1 = u - v = 2$. Odtud u = 1, v = -1, proto řešení $a_n = 1 - (-1)^n, n \ge 0.$

Mimochodem, je to posloupnost $\{0, 2, 0, 2, 0, 2, 0, \ldots\}$.

Poznámky:

- Občas někdo zapomene dát -1 do závorky při vyrábění posloupností. Pozor, -1^n není totéž co $(-1)^n$. Například $-1^2 = -1$, ale $(-1)^2 = 1$.
- Pokud zadáváme posloupnost vzorcem, tak vždy musíme říct, odkud kam běhá index. Vzorec $a_n =$ $1-(-1)^n$ tedy nestačí. Ti, kdo píšou odpovědi jako $\{1-(-1)^n\}_{n=0}^\infty,$ mají vystaráno.
- Nestačí napsat u=1, v=-1. Otázka zní "najdi řešení", takže ho musíme ukázat.
- **2.** Přepis rovnice: $a_{n+1} 6a_n + 9a_{n-1} = 0, n \ge 2.$

Posun indexu: $a_{n+2} - 6a_{n+1} + 9a_n = 0$, $n \ge 1$. Charakteristická rovnice $\lambda^2 - 6\lambda^2 + 9\lambda^0 = \lambda^2 - 6\lambda + 9 = (\lambda - 3)^2 = 0$,

odtud charakteristická čísla $\lambda = 3, 3$ neboli $\lambda = 3$ (2×).

Proto obecné řešení (viz speciální trik) $a_n = 3^n u + n 3^n v, n \ge 1.$

V typickém případě (tedy $u, v \neq 0$) je $a_n = \Theta(n3^n)$ nebo také $a_n \sim n3^n v$ pro $n \sim \infty$.