

NORTHWEST UNIVERSITY

3.3 完备化

距离子空间

设(X,d)是距离空间,E是X的一个非空子集,则 $\rho=d|_{E\times E}$ 满足非负性、对称性、三角不等式,即 (E,ρ) 是距离空间,称为(X,d)的子空间.

 (E, ρ) 是(X, d)的子空间 $\iff E \subset X, \ d|_{E \times E} = \rho.$

等距映射的定义

设T是从(X,d)到 (X_1,d_1) 的映射. 如果对任意的 $x,y \in X$,有

$$d_1(Tx, Ty) = d(x, y)$$

则称T为**等距映射**.

注 等距映射一定是连续映射,并且是单射.

等距映射的例

例 1

设 $X = \mathbb{R}. X_1 = \{xi \mid x \in \mathbb{R}\}.$ i 其中 是虚数单位. 定T 映射

Tx = xi.

则 T 是等距映射, 且为双射.

证

$$d_1(Tx, Ty) = |xi - yi| = |x - y| = d(x, y).$$

等距映射的例

例 2

设
$$X = \mathbb{Q}.X_1 = \{xi \mid x \in \mathbb{R}\}.$$
 i 其中 是虚数单位. 定 T 映射

Tx = xi.

则T是等距映射.

等距同构的定义

设T是从(X,d)到 (X_1,d_1) 的映射. 如果T是等距映射且为双射, 则称 T 为**等距同构映射**. 此时称 (X,d) 与 (X_1,d_1) **等距同构**.

将两个等距同构的距离空间视为同一个距离空间.

igoplus 2 若距离空间X与距离空间 \widetilde{X} 的子空间等距同构,则称X为 \widetilde{X} 的子空间.

完备化空间的定义

设E是距离空间,若存在完备的距离空间 \widetilde{E} 满足

- $\mathbf{1}$ $E \in \widetilde{E}$ 的子空间,
- $\mathbf{2}$ 对任何以 E为子空间的完备距离空间 X,有 \widetilde{E} 是 X 的子空间,

则称 \widetilde{E} 为E的**完备化空间**.

注 E 的完备化空间是包含 E 的最小的完备距离空间.

完备化空间的定义

设E是距离空间,若存在完备的距离空间 \widetilde{E} 满足

- $\mathbf{1}$ $E \in \widetilde{E}$ 的子空间,
- ② 对任何以 E为子空间的完备距离空间 X,有 \widetilde{E} 是 X 的子空间,

则称 \widetilde{E} 为E 的**完备化空间**.

 \succeq E 的完备化空间是唯一的(在等距同构意义下).

子空间的完备性

定理

设(X,d)是完备的, $E \subset X$. 则(E,d) 完备的充要条件是 $E \in X$ 中的闭集.

子空间的完备化

(X,d) 完备, $E \subset X$, E 不是 X 中的闭集.

 \overline{E} 是X中的闭集,且是包含E 的最小闭集.

(E,d)不完备. (\overline{E},d) 完备,且是包含E 的最小完备子空间.

完备化空间的判定

命题

设 $(\widetilde{E},\widetilde{d})$ 是以(E,d) 为子空间的完备的距离空间,且 E 在 \widetilde{E} 中稠密,则 \widetilde{E} 是 E 的完备化空间.

完备化定理

定理

任一距离空间(E,d)都存在完备化空间 $(\widetilde{E},\widetilde{d})$.

- **1** 构造 $(\widetilde{E},\widetilde{d})$.
- 2) 证明 (E,d)与 $(\widetilde{E}_0,\widetilde{d})$ 等距同构.
- ③) 证明 $(\widetilde{E}_0,\widetilde{d})$ 在 $(\widetilde{E},\widetilde{d})$ 中稠密.
- $oldsymbol{4}$ 证明 $(\widetilde{E},\widetilde{d})$ 完备.

小结

- 等距映射与等距同构
- 完备化空间的定义
- 完备化空间的判定
- 完备化定理