

Γραμμική Άλγεβρα

Ενότητα 2: Επίλυση Γραμμικών Εξισώσεων

Ευστράτιος Γαλλόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Άδειες Χρήσης

- Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
- Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.
- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

Σκοπός Ενότητας

- Διανύσματα και Γραμμικές Εξισώσεις
- Έννοια της απαλοιφής
- Αντίστροφοι
- Απαλοιφή Χρησιμοποιώντας Μητρώα Απαλοιφή Gauss
- Απαλοιφή και Παραγοντοποίηση A = LU
- Μητρώα Μετάθεσης

Περιεχόμενα

- 1 Υπενθύμιση (Διάλεξη 20/2)
- 2 Ζητήματα κόστους
- 3 Αντίστροφα μητρώα
 - Ζητήματα σχετικά με το αντίστροφο και την αντιστροφή
- 4 Επίλυση Συστημάτων Γραμμικών Εξισώσεων
 - Γεωμετρική ερμηνεία

Υπενθύμιση και πρόγραμμα διάλεξης

Στην προηγούμενη διάλεξη μιλήσαμε για ορισμένες χρήσεις μητρώων και διανυσμάτων.

- Ανάκτηση πληροφορίας από διάνυσμα.
- Ανάκτηση πληροφορίας από μητρώο.
- το πρόβλημα του υπολογισμού τιμών πολυωνυμικής συνάρτησης και μητρώα Vandermonde
- μητρώα και γραφήματα
- μέτρηση διαδρομών με δυνάμεις και δυναμοσειρές μητρώων.

Σήμερα θα συζητήσουμε τα εξής:

- κόστη βασικών πράξεων με μητρώα,
- αντίστροφο μητρώου, ιδιότητες και το ζήτημα του υπολογισμού του,
- ορθογώνια και ορθομοναδιαία μητρώα,
- επίλυση γραμμικών εξισώσεων (εισαγωγή).

Υπό συζήτηση ενότητες

1	Ese	αγωγή στα Διανύσμ	εατα	1	5			295
-	1.1	Διανδοματα και Γραμ	μικοί Συνθυκαμοί	2			Οι Ιδιότητες των Οριζουσών	
<u>آ</u>	1.2	Μέση και Στικτά Γον	óugya	13			Μεταθέσους και Αλγεβρικά Συμπληρώματα	
	1.2 mapel van 2000 (1000 200 100 100 100 100 100 100 100 100						Κανόνας Cramer, Αντίστροφοι και Όγκοι	327
12	2 Επίλυση Γραμμικών Εξισώσεων 27			27	6	Iboo	τιμές και Ιδιοδιανύσμανα	347
-	2.1	Διανύσματα και Γρομ	μικές Εξισώσεις	27			Εισυγωγή στις Ιδιοτιμές	
-	2.2	Η Έννοια της Απολο	19hs	44			Διαγωνοποιώντας έναν Πίνανα	
	2.3	Απαλοιφή Χρησιμοπο	ιώντας Πίνακες	58			Εφαρμογές στις Δωφοροιές Εξισώσεις	
-	2.4	Κανόνες για τις Πράδ	rug Hrvátssav	71			Σημετροκί Πίνακες	
	2.5						Θετικά Ορισμένοι Πίνακες	
	2.6		vtono(non: $A = LU$			6.6	Ομούο Πλασες Ανάλυση Ιδιαζουσών Τιμών (SVD) *	443
	2.7		ritéries			6.7	Availari Inacoson Tipov (8*D)	
	2.1	wastbobor an uter	XORDERÇ	122	7			457
3	Διο	ενυσματικοί Χώροι κ	ιαι Υπόνωση	141			Η Έννοια του Γραμμικού Μετασχηματισμού	
			x	141			Ο Πίνακας ενός Γραμμοκού Μετασχηματισμού	
	3.2		A: Epiluan the $Ax = 0$				Αλλαγή Βάσης	
	3.3		Αναγμένων Γραμμών			7.4	Η Διαγωνοποίηση και ο Ψευδοαντίστροφος	
	3.4				8		πρμογές	507
			Ax = b				Πίνακες στη Μηχανοσή	
	3.5		ακ Διάσταση		►		Грогр f рати жи. Δ ierus	
	3.6	Διαστάσεις των Τεσσ	τάρων Υποχώρων	219			Πίνοσες Markov και Ουκονομικά Μοντέλα	
4	Oni	θογωνιότητα		233			Γραμμικός Προγραμματισμός	545
-						8.5	Σειρίς Fourier: Γραμμαή Άλγεβρα για Συναρτήσεις	553
			Γεσσάρων Υπηχώρων			8.6	Γραγικά με Ηλεκτρονικό Υπολογιστή	
	4.2							569
	4.3	Προσεγνίσειε Ελάνισ	των Τετρανώνων	261	9		ιθμητική Γραμμική Άλγεβρα Η Απαλοιοή Gauss στην Πράξη	
	4.4	Ondowings Birms va	Gram – Schmidt			9.1	Επάθμες και Δείκτος Κατάστασης	
		open james j					Επικαληπτοιές Μέθοδοι για τη Γραμμική Άλγεβρα	
			10 Μιγαδικά Διανόσματα και Πίνακες		603		Entransferred services (in of children) southless	
			10.1 Мгуайскої Аргдиої					
			10.2 Epperturvol son Movadualos Illvatore,					
			10.3 Ο Ταχός Μετασχηματισμός Fourier		625			
			Λύσεις σε Επιλεγμένες Ασκήσεις		635			
			Ένα Τελικό Διαγώνισμα		689			
			Παραγοντοποιήσεις Πινάκων		693			
			Ερωτήσεις Ανασκόπησης επί των Εννοιών		697			
			Γλωσσάριο		705			
			Κώδικες Διδασκαλίας ΜΑΤΙΑΒ		717			
			Η Γραμμική Άλγεβρα με Δύο Λόγια		719			
			Ευρετήριο		721			

Έστω ότι $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n}$, $p \in \mathbb{R}^m$, $q \in \mathbb{R}^m$, $w \in \mathbb{R}^n$ Πόσες αριθμητικές πράξεις χρειάζονται:

lacktriangle ο γραμμικός συνδυασμός διανυσμάτων lpha p + eta q;

Έστω ότι $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n}$, $p \in \mathbb{R}^m$, $q \in \mathbb{R}^m$, $w \in \mathbb{R}^n$ Πόσες αριθμητικές πράξεις χρειάζονται:

ο γραμμικός συνδυασμός διανυσμάτων $\alpha p + \beta q$; $\Omega = 3m$

- lacktriangle ο γραμμικός συνδυασμός διανυσμάτων lphap + etaq; $\Omega = 3m$
- το εσωτερικό γινόμενο $p^{\top}q$;

- ο γραμμικός συνδυασμός διανυσμάτων $\alpha p + \beta q$; $\Omega = 3m$
- το εσωτερικό γινόμενο $p^{\top}q$; $\Omega = 2m 1$

- **ο** γραμμικός συνδυασμός διανυσμάτων $\alpha p + \beta q$; $\Omega = 3m$
- το εσωτερικό γινόμενο $p^{\top}q$; $\Omega = 2m 1$
- το γινόμενο μητρώου επί διάνυσμα Bw;

```
Έστω ότι A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}, p \in \mathbb{R}^m, q \in \mathbb{R}^m, w \in \mathbb{R}^n Πόσες αριθμητικές πράξεις χρειάζονται:
```

- lacktriangle ο γραμμικός συνδυασμός διανυσμάτων lphap + etaq; Ω = 3m
- το εσωτερικό γινόμενο $p^{\top}q$; $\Omega = 2m 1$
- lacktriangle το γινόμενο μητρώου επί διάνυσμα Bw; $\Omega = k(2n-1)$

```
Έστω ότι A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}, p \in \mathbb{R}^m, q \in \mathbb{R}^m, w \in \mathbb{R}^n Πόσες αριθμητικές πράξεις χρειάζονται:
```

- lacktriangle ο γραμμικός συνδυασμός διανυσμάτων lphap + etaq; Ω = 3m
- το εσωτερικό γινόμενο $p^{\top}q$; $\Omega = 2m 1$
- \blacksquare το γινόμενο μητρώου επί διάνυσμα Bw; $\Omega = k(2n-1)$
- το γινόμενο διανύσματος στήλης επί διανύσματος γραμμή ρw[⊤];

```
Έστω ότι A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}, p \in \mathbb{R}^m, q \in \mathbb{R}^m, w \in \mathbb{R}^n Πόσες αριθμητικές πράξεις χρειάζονται:
```

- lacktriangle ο γραμμικός συνδυασμός διανυσμάτων lphap + etaq; $\Omega = 3m$
- το εσωτερικό γινόμενο $p^{\top}q$; $\Omega = 2m-1$
- \blacksquare το γινόμενο μητρώου επί διάνυσμα Bw; $\Omega = k(2n-1)$
- το γινόμενο διανύσματος στήλης επί διανύσματος γραμμή ρw^T;
 Ω = mn

```
Έστω ότι A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}, p \in \mathbb{R}^m, q \in \mathbb{R}^m, w \in \mathbb{R}^n Πόσες αριθμητικές πράξεις χρειάζονται:
```

- lacktriangle ο γραμμικός συνδυασμός διανυσμάτων lphap + etaq; $\Omega = 3m$
- το εσωτερικό γινόμενο $p^{\top}q$; $\Omega = 2m 1$
- \blacksquare το γινόμενο μητρώου επί διάνυσμα Bw; $\Omega = k(2n-1)$
- το γινόμενο διανύσματος στήλης επί διανύσματος γραμμή pw^{\top} ; $\Omega=mn$
- το γινόμενο μητρώων AB;

```
Έστω ότι A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}, p \in \mathbb{R}^m, q \in \mathbb{R}^m, w \in \mathbb{R}^n Πόσες αριθμητικές πράξεις χρειάζονται:
```

- ο γραμμικός συνδυασμός διανυσμάτων $\alpha p + \beta q$; $\Omega = 3m$
- το εσωτερικό γινόμενο $p^{\top}q$; $\Omega = 2m 1$
- \blacksquare το γινόμενο μητρώου επί διάνυσμα Bw; $\Omega=k(2n-1)$
- το γινόμενο διανύσματος στήλης επί διανύσματος γραμμή pw^{\top} ; $\Omega = mn$
- lacksquare το γινόμενο μητρώων AB; $\Omega = (2k-1)mn$

```
Έστω ότι A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}, p \in \mathbb{R}^m, q \in \mathbb{R}^m, w \in \mathbb{R}^n Πόσες αριθμητικές πράξεις χρειάζονται:
```

- ο γραμμικός συνδυασμός διανυσμάτων $\alpha p + \beta q$; $\Omega = 3m$
- το εσωτερικό γινόμενο $p^{\top}q$; $\Omega = 2m 1$
- \blacksquare το γινόμενο μητρώου επί διάνυσμα Bw; $\Omega=k(2n-1)$
- το γινόμενο διανύσματος στήλης επί διανύσματος γραμμή pw^{\top} ; $\Omega = mn$
- lacksquare το γινόμενο μητρώων AB; $\Omega = (2k-1)mn$

Ταυτοτικά μητρώα (υπενθύμιση)

Είδαμε ότι για κάθε $A \in \mathbb{R}^{n \times n}$ υπάρχει το μηδενικό μητρώο

$$A + 0 = 0 + A = A$$

Ταυτοτικό ως προς την πρόσθεση μητρώων

Ορίζουμε και το ταυτοτικό μητρώο $I \in \mathbb{R}^{n \times n}$

$$AI = IA = A$$

Ταυτοτικό ως προς τον πολλαπλασιασμό μητρώων

Ερώτημα Υπάρχει αντίστροφο μητρώο;

$$A$$
; $=$; $A = I$

Αν υπήρχε ...

πώς θα το γράφαμε; Μάλλον Α⁻¹ πώς θα έμοιαζε;

$$A = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \stackrel{\textcircled{\bullet}}{\Longrightarrow} A^{-1} = \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

Αν υπήρχε ...

πώς θα το γράφαμε; Μάλλον Α⁻¹ πώς θα έμοιαζε;

$$A = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \stackrel{\bigodot}{\Longrightarrow} A^{-1} = \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & 0 \\ 1 & 2 \end{pmatrix} \stackrel{\mathbf{\textcircled{o}}}{\Longrightarrow} A^{-1} = \begin{pmatrix} \frac{1}{4} & 0 \\ -\frac{1}{8} & \frac{1}{2} \end{pmatrix}, \quad A = \begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix} \stackrel{\mathbf{\textcircled{o}}}{\Longrightarrow} A^{-1} = \begin{pmatrix} \frac{1}{4} & -\frac{1}{8} \\ 0 & \frac{1}{2} \end{pmatrix}$$

Αν υπήρχε ...

πώς θα το γράφαμε; Μάλλον Α⁻¹ πώς θα έμοιαζε;

$$A = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \stackrel{\bigodot}{\Longrightarrow} A^{-1} = \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & 0 \\ 1 & 2 \end{pmatrix} \stackrel{\bigodot}{\Longrightarrow} A^{-1} = \begin{pmatrix} \frac{1}{4} & 0 \\ -\frac{1}{8} & \frac{1}{2} \end{pmatrix}, \ \ A = \begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix} \stackrel{\bigodot}{\Longrightarrow} A^{-1} = \begin{pmatrix} \frac{1}{4} & -\frac{1}{8} \\ 0 & \frac{1}{2} \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix} \stackrel{\mathbf{\mathfrak{C}}}{\Longrightarrow} A^{-1} = \begin{pmatrix} \frac{2}{7} & -\frac{1}{7} \\ -\frac{1}{7} & \frac{4}{7} \end{pmatrix}$$

πώς θα το υπολογίζαμε;;;;

Ιδιότητες αντιστρόφου

- **Α**κόμα και αν $A \neq 0$, μπορεί να μην υπάρχει αντίστροφο! Δεν φαίνεται πάντα με 'γυμνό μάτι!' $\stackrel{\square}{\hookrightarrow}$
- Αν δεν υπάρχει αντίστροφο, το Α λέγεται μη αντιστρέψιμο, ή ιδιάζον ή και ιδιόμορφο.
- Ένα διαγώνιο ή τριγωνικό μητρώο είναι αντιστρέψιμο ⇔ τα διαγώνια στοιχεία είναι όλα μη μηδενικά.
- Το αντίστροφο διαγωνίου είναι διαγώνιο. Το αντίστροφο τριγωνικού είναι τριγωνικό (ίδιας δομής.)

Ιδιότητες και Ορθογώνια μητρώα

- $(A^{-1})^{-1} = A$
- $(AB)^{-1} = B^{-1}A^{-1}$
- Γενικά $(A + B)^{-1} \neq A^{-1} + B^{-1}$,
- lacktriangle ενώ πάντα $(A+B)^ op = A^ op + B^ op$
- Γενικά, άλλο η ΑΝΤΙΣΤΡΟΦΗ και άλλο η ΑΝΑΣΤΡΟΦΗ
- $(A^{-1})^{\top} = (A^{\top})^{-1} = A^{-\top}$
- Για ορισμένα ειδικά μητρώα, μπορεί να ισχύει $A^{-1} = A^{\top}$ οπότε $AA^{\top} = A^{\top}A = I$. Κάθε πραγματικό τετραγωνικό μητρώο που ικανοποιεί $A^{\top} = A^{-1}$ αποκαλείται ΟΡΘΟΓΩΝΙΟ ΜΗΤΡΩΟ.
- **■** Αν ένα μιγαδικό μητρώο $A \in \mathbb{C}^{n \times n}$ ικανοποιεί $C^*C = I$, αποκαλείται ορθομοναδιαίο (unitary).
- ... προσέξτε ότι για όλες τις στήλες (και αντίστοιχα για τις γραμμές) ενός ορθογώνιου ή ορθομοναδιαίου μητρώου ισχύει ότι

$$\langle a_i, a_j \rangle = \left\{ egin{array}{ll} 1 & ext{av } i = j, \ 0 & ext{av } i
eq j. \end{array}
ight.$$

Παράδειγμα

Το μητρώο

$$A = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

είναι ορθογώνιο:

$$\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Προσέξτε ότι αν

$$R(\phi) = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix}$$

τότε $A = R(\frac{\pi}{6})$.

Ενδιαφέρον: Τα $R(\phi)$ είναι μητρώα με στοιχεία που είναι συναρτήσεις κάποιας παραμέτρου ϕ . Επίσης, για κάθε ϕ , το μητρώο $R(\phi)$ είναι ορθογώνιο.

Σχετικά με το αντίστροφο μητρώο

ΥΠΑΡΧΕΙ;	ΕΙΝΑΙ ΜΟΝΑΔΙΚΟ;	ΠΩΣ ΤΟ ΥΠΟΛΟΓΙΖΟΥΜΕ;
όχι πάντα (1 0)	vaı, óтаv uпáрхеі $Av\ AB = BA = I,$	σπάνια απλά
(0 0)	,	$D = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} \Rightarrow D^{-1} = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{4} \end{pmatrix}$
δεν ξεχωρίζει εύκολα	τότε	$D = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} \Rightarrow D^{-1} = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{4} \end{pmatrix}$ $L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix} \Rightarrow L^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}$	$\underbrace{(CA)B}_{} = BI = B$	συνήθως <mark>κοπιαστικά</mark>
από ένα αντιστρέψιμο	=C(AB)=C	
$A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$		$A^{-1} = \begin{pmatrix} 5 & -2 & -2 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$
$H = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{pmatrix}$		$A^{-1} = \begin{pmatrix} 5 & -2 & -2 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$ $H^{-1} = \begin{pmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{pmatrix}$

Υπενθύμιση

Είδαμε ότι στο λογισμό μητρώων μπορεί AB=0 ενώ $A\neq 0, B\neq 0.$ Παράδειγμα

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \Rightarrow AB = 0$$

Στο λογισμό μητρώων, τα ιδιόμορφα μητρώα έχουν το ρόλο του μηδεν!

- Αν Α ιδιόμορφο, τότε ΒΑ και ΑΒ είναι ιδιόμορφα για οποιοδήποτε Β.
- Προσοχή: Ιδιόμορφο δεν σημαίνει 0, απλά ε έχει το ρόλο ιδεατού μηδενικού: Ό,τι πολλαπλασιάσει, το κάνει ιδιόμορφο.

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \alpha + 2\gamma & \beta + 2\delta \\ 2\alpha + 4\gamma & 2\beta + 4\delta \end{pmatrix},$$

και προσέξτε οτι οι στήλες (και οι γραμμές) του γινομένου είναι γραμμικά εξαρτημένες ό,τι και να είναι τα $\alpha,\beta,\gamma,\delta.$

Ελέγξτε ότι για να υπάρχει $B=A^{-1}$ θα πρέπει AB=I. Για να υπάρχει τέτοιο B θα πρέπει η πρώτη στήλη του B(:,1) που μπορούμε χάριν οικονομίας να τη συμβολίσουμε ως $b_1=[\beta_{11},\beta_{21}]^{\top}$ να ικανοποιεί

$$Ab_1 = e_1 \Rightarrow \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} \beta_{11} \\ \beta_{21} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

επομένως

$$\beta_1 + 2\beta_2 = 1$$

 $2\beta_1 + 4\beta_2 = 0$

που είναι αδύνατο γιατί τότε

$$2(\beta_1 + 2\beta_2) - (2\beta_1 + 4\beta_2) = 2 - 0 \Rightarrow 2 = 0$$

Αναζήτηση αντιστρόφου

αν υπάρχει

Θα το αναζητήσουμε λύνοντας μία σειρά από υποπροβλήματα (που εντέλει είναι πιο σημαντικό)!

Δίνεται $A \in \mathbb{R}^{n \times n}$ και ζητούμε το $B \in \mathbb{R}^{n \times n}$ ώστε

$$AB = I \Leftrightarrow A[b_1,b_2,...,b_n] = [\mathbf{e}_1,\mathbf{e}_2,...,\mathbf{e}_n], \quad \text{\'otou } \mathbf{e}_1 = (1,0,...)^\top, \text{ к. λп.}$$

Υπολογίζουμε το *B* ανά στήλες, δηλ. κάθε διάνυσμα b_j που ικανοποιεί το γραμμικό σύστημα

$$Ab_j = e_j, j = 1, ..., n.$$

Το επόμενο βασικό ζήτημα είναι η επίλυση γραμμικού συστήματος

Από τα A, b να υπολογιστεί το x ώστε Ax = b.

Επίλυση γραμμικών συστημάτων

`Μητέρα των προβλημάτων' της Γραμμικής 'Αλγεβρας:

Δίδονται n «γραμμικές εξισώσεις» για m αγνώστους και ζητάμε να υπολογίσουμε τους αγνώστους ξ_1,\ldots,ξ_n .

$$\alpha_{11}\xi_{1} + \alpha_{12}\xi_{2} + \dots + \alpha_{1n}\xi_{n} = \beta_{1}$$

$$\alpha_{21}\xi_{1} + \alpha_{22}\xi_{2} + \dots + \alpha_{2n}\xi_{n} = \beta_{2}$$

$$\vdots = \vdots$$

$$\alpha_{m1}\xi_{1} + \alpha_{12}\xi_{2} + \dots + \alpha_{mn}\xi_{n} = \beta_{m}$$

$$\mathsf{A} \mathsf{x} = \mathsf{b} \, \mathsf{o} \mathsf{nou} \, \mathsf{A} = \left(\begin{array}{cccc} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{array} \right), \mathsf{x} = \left(\begin{array}{c} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{array} \right), \mathsf{b} = \left(\begin{array}{c} \beta_1 \\ \beta_2 \\ \vdots \\ \vdots \\ \beta_m \end{array} \right)$$

Παράδειγμα

Θεωρούμε ότι οι βαθμωτοί α_{11} ως α_{44} και β_1 ως β_4 είναι «γνωστές» τιμές που δεν έχουν ακόμα προσδιοριστεί.

$$\begin{array}{ccccccc} \alpha_{11}\xi_1 & +\alpha_{12}\xi_2 & & +\alpha_{14}\xi_4 & = 1 \\ \alpha_{21}\xi_1 & & +\alpha_{23}\xi_3 & & = -500 \\ & & +\alpha_{32}\xi_2 & +\alpha_{33}\xi_3 & & = \frac{1}{43} \\ \alpha_{41}\xi_1 & & & +\alpha_{44}\xi_4 & = 0 \end{array}$$

Αλγεβρική γραφή

Δοθέντων $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, θέλουμε να βρούμε τη λύση, $x \in \mathbb{R}^n$ του Ax = b.

Υπαρξη Υπάρχει λύση;

Μοναδικότητα Αν υπάρχει, είναι μοναδική;

Εύρεση Ποιά ή ποιές είναι;

Δηλ. θέλουμε να υπολογιστεί το σύνολο

$$\mathcal{X} = \arg_{\mathbf{x} \in \mathbb{R}^n} \{ A\mathbf{x} = \mathbf{b} | A \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m \}$$

ή απλά να βρεθεί ένα $x \in \mathbb{R}^n$ τέτοιο ώστε Ax = b.

Παρατηρήσεις

Με ένα μόνο σύμβολο συνοψίζουμε

- Με Α τους mn συντελεστές (γνωστοί)
- Με x το διάνυσμα με τους n αγνώστους,
- Με b το διάνυσμα των m στοιχείων του δεξιού μέλους (γνωστά).

Η σύντομη διατύπωση βασίζεται στην «ειδική» πράξη πολλαπλασιασμού μητρώων-διανυσμάτων και επιτυγχάνει εξαιρετική οικονομία στη γραφή.

Στη συνέχεια και μέχρι να δηλωθεί διαφορετικά, θα ασχολούμαστε με τετραγωνικά συστήματα (m=n)

Παράδειγμα

Παράδειγμα

Μη γραμμικό σύστημα!

$$\begin{array}{ccccc} \sqrt{\xi_1} & +\xi_1\xi_2 & & +\xi_4 & = 1 \\ \pi\xi_1 & & +e^2\xi_3 & & = -500 \\ & +2.0\xi_2 & -44\xi_3 & & = \frac{1}{43} \\ -\xi_1 & & +\sqrt{7}\xi_4 & = 0 \end{array}$$

Η «έφοδος» του Θυμαρίδα (400-350 π.Χ.) (Ιάμβλιχος, 245-325 μ.X.)

$$\frac{\xi_1 + \cdots + \xi_n = \beta_1}{\xi_1 + \xi_2} = \beta_2$$

$$\vdots + \vdots = \vdots$$

$$\xi_1 + \xi_n = \beta_n$$

$$\Leftrightarrow \underbrace{\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots \\ 1 & 0 & \cdots & 1 \end{pmatrix}}_{A}$$

$$\frac{\xi_1}{\vdots}$$

$$\vdots = \begin{pmatrix} \beta_1 \\ \vdots \\ \vdots \\ \xi_n \end{pmatrix}$$

Ερμηνεία με γεωμετρία

Ο γεωμετρικός τόπος των σημείων $x \in \mathbb{R}^n$ που ικανοποιούν την εξίσωση

$$\alpha_{1,1}\xi_1 + \alpha_{1,2}\xi_2 + \cdots + \alpha_{1,n}\xi_n = \beta_n$$

ονομάζεται υπερεπίπεδο του \mathbb{R}^n . Λέγεται επίσης ότι έχει διάσταση n-1.

- $n=1\Rightarrow$ σημείο στον \mathbb{R} .
- $n=2 \Rightarrow$ ευθεία στον \mathbb{R}^2 .
- $ightharpoonup n=3\Rightarrow$ επίπεδο στον \mathbb{R}^3 .

Θεώρηση γραμμών:

- lacktriangle Κάθε εξίσωση αντιστοιχεί σε ένα υπερεπίπεδο στον \mathbb{R}^n
- Η λύση x είναι το σημείο τομής των n υπερεπιπέδων (π.χ. ευθειών όταν n=2).

Θεώρηση στηλών:

- **Ε**στω οι στήλες (διανύσματα) του μητρώου $A = [a_1, ..., a_n]$.
- Η λύση x είναι οι συντελεστές του γραμμικού συνδυασμού που παράγει το b, δηλ. $\sum_{i=1}^n \xi_i a_i = b$.

Προσοχή: ΥΠΑΡΧΕΙ ΛΥΣΗ; ΕΙΝΑΙ ΜΟΝΑΔΙΚΗ; ΠΩΣ ΥΠΟΛΟΓΙΖΕΤΑΙ;

Θεώρηση γραμμών:

- lacktriangle Κάθε εξίσωση αντιστοιχεί σε ένα υπερεπίπεδο στον \mathbb{R}^n
- Η λύση x είναι το σημείο τομής των n υπερεπιπέδων (π.χ. ευθειών όταν n=2).

Θεώρηση στηλών:

- **Σ** Έστω οι στήλες (διανύσματα) του μητρώου $A = [a_1, ..., a_n]$.
- Η λύση x είναι οι συντελεστές του γραμμικού συνδυασμού που παράγει το b, δηλ. $\sum_{i=1}^{n} \xi_{i} a_{i} = b$.

Προσοχή: ΥΠΑΡΧΕΙ ΛΥΣΗ; ΕΙΝΑΙ ΜΟΝΑΔΙΚΗ; ΠΩΣ ΥΠΟΛΟΓΙΖΕΤΑΙ;

Είπε ότι κόκκινες γραμμές είναι **να μην υπάρξουν υφεσιακά μέτρα** και να επιλυθεί ένα σύστημα εξισώσεων με τρεις αγνώστους: πρωτογενές πλεόνασμα σε σχέση με το ποια θα είναι η αναδιάρθρωση του χρέους και επενδύσεις μεγαλύτερες από τις αποταμιεύσεις.

Γεωμετρική ερμηνεία

Ερμηνεία λύσης ως σημείο τομής υπερεπιπέδων

Ένα υπερεπίπεδο (γραμμή στον \mathbb{R}^2) ανά εξίσωση

Ερμηνεία λύσης ως πολλαπλασιαστές διανυσμάτων

Ένα διάνυσμα ανά στήλη

Αναζητούμε το γραμμικό συνδυασμό των στηλών του $A=\left[a_1,a_2
ight]$ που παράγει το b:

$$egin{pmatrix} 2&1\\1&-1 \end{pmatrix}egin{pmatrix} \xi_1\\\xi_2 \end{pmatrix}=egin{pmatrix} 1\\2 \end{pmatrix}$$
 η λύση ικανοποιεί $b=\xi_1a_1+\xi_2a_2$

(Τα ζητούμενα ξ_1,ξ_2 αντιστοιχούν στην κλιμάκωση των a_1,a_2 ώστε $c_1=\xi_1a_1$,

Δυσχέρειες επίλυσης

όταν n = 2 Ερμηνεία γραμμών

- οι εξισώσεις ορίζουν ευθείες που είναι παράλληλες χωρίς κοινό σημείο
 ΔΕΝ ΥΠΑΡΧΕΙ ΛΥΣΗ
- οι εξισώσεις ορίζουν ευθείες που είναι παράλληλες και έχουν άπειρα κοινά σημεία - ΑΠΕΙΡΕΣ ΛΥΣΕΙΣ

Ερμηνεία στηλών

- οι στήλες του μητρώου είναι στην ίδια ευθεία και το διάνυσμα b ορίζει σημείο εκτός αυτής - ΔΕΝ ΥΠΑΡΧΕΙ ΛΥΣΗ
- οι στήλες του μητρώου είναι στην ίδια ευθεία και το διάνυσμα b ορίζει σημείο επ΄ αυτής - ΑΠΕΙΡΕΣ ΛΥΣΕΙΣ

Γενίκευση σε πολλές διαστάσεις

της ερμηνείας γραμμών (δυσκολεύει) Στις n=3 διαστάσεις

- σημεία προάγονται σε γραμμές
- γραμμές προάγονται σε επίπεδα
- η λύση είναι ο γεωμετρικός τόπος των σημείων τομής των 3 επιπέδων (ένα για κάθε εξίσωση)

Παραδείγματα δυσκολιών

- αν οποιαδήποτε 2 από τα επίπεδα ή και όλα είναι παράλληλα μεταξύ τους ⇒ ΛΥΣΗ ΜΗ ΔΥΝΑΤΗ
- lacktriangle αν η ευθεία τομής δυο επιπέδων κείται επί του τρίτου \Rightarrow ΑΠΕΙΡΕΣ ΛΥΣΕΙΣ

<u>ΠΡΟΣΟΧΗ:</u> Στην πράξη, οι δυσκολίες είναι περισσότερες γιατί οι υπολογισμοί γίνονται σε αριθμητική πεπερασμένης ακρίβειας ¹

¹περισσότερα στην Αριθμητική Ανάλυση & Περιβάλλοντα Υλοποίησης

Επίλυση γραμμικών συστημάτων

- Από τα πιο σημαντικά προβλήματα
- Εμφανίζεται σε πολλές εκδοχές και μεταμφιέσεις
- Μία από αυτές είναι ο υπολογισμός του αντιστρόφου μητρώου
- Πολλές μέθοδοι επίλυσης
- Στη σύγχρονη έρευνα αξιοποιούν «δομικές» πληροφορίες από την εφαρμογή για επιτάχυνση
- Εδώ θα εξετάσουμε έναν «πρωταρχικό» τρόπο
- Ονόματα κλειδιά: Απαλοιφή Gauss, παραγοντοποίηση LU.
- Στόχοι: Να προετοιμαστείτε για την «αυτοματοποίηση» της επίλυσης μέσω αλγορίθμου, που μπορεί να εφαρμοστεί και σε μεγάλα προβλήματα.

Βιβλιογραφία Ι

G. Strang.

Εισαγωγή στη Γραμμική Άλγεβρα.

Εκδόσεις Πανεπιστημιου Πατρών, 2006.

Σημείωμα Αναφοράς

Copyright Πανεπιστήμιο Πατρών - Ευστράτιος Γαλλόπουλος 2015

``Γραμμική Άλγεβρα΄΄, Έκδοση: 1.0, Πάτρα 2014-2015. Διαθέσιμο από τη δικτυακή διεύθυνση:

https://eclass.upatras.gr/courses/CEID1097/

Γεωμετρική ερμηνεία

Τέλος Ενότητας

ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣΜε τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης