Lab 4: Linear regression using matrix algebra

Data Science for Biologists • University of Washington • BIOL 419/519 • Winter 2019

Course design and lecture material by <u>Bingni Brunton (https://github.com/bwbrunton)</u> and <u>Kameron Harris (https://github.com/kharris/)</u>. Lab design and materials by <u>Eleanor Lutz</u> (https://github.com/eleanorlutz/), with helpful comments and suggestions from Bing and Kam.

Table of Contents

- 1. Reading in data using the Pandas library
- 2. Review of linear regression
- 3. Bonus exercises

Helpful resources

- <u>Python Data Science Handbook (http://shop.oreilly.com/product/0636920034919.do)</u> by Jake VanderPlas
- 10 minute Pandas tutorial (http://pandas.pydata.org/pandasdocs/stable/getting_started/10min.html)
- Pandas Cheat Sheet (https://datacamp-community-prod.s3.amazonaws.com/9f0f2ae1-8bd8-4302-a67b-e17f3059d9e8) by Python for Data Science
- Importing Data Cheat Sheet (https://datacamp-communityprod.s3.amazonaws.com/50d31142-3de0-4159-89b9-18b718a728ef) by Python for Data Science

Data

The data in this lab is from <u>Tager et al 1983</u>
 (https://www.nejm.org/doi/full/10.1056/NEJM198309223091204) and was edited for teaching purposes.

Lab 4 Part 1: Reading in data using the Pandas library

The Pandas library is a powerful tool for working with large datasets. We'll work with Pandas in depth throughout the quarter, so don't worry about understanding every single detail by the end of this lab. Today we'll mainly use Pandas to load in data to use for linear regression practice.

A Pandas dataframe is a type of object (like a Numpy array) that stores information. However, unlike a Numpy array, a Pandas dataframe can store values of many different types, such as strings or numbers. This can be very useful when working with biology data, which often includes descriptive variables like sex, color, or location.

It's conventional to import the Pandas library using the nickname pd:

```
In [1]: import pandas as pd
```

Also import the other libraries we plan to use today, and set up Matplotlib for inline plotting:

```
In [2]: import numpy as np
   import matplotlib.pyplot as plt
%matplotlib inline
```

Importing data in Pandas

In today's lab we'll investigate data from Tager et al 1983

(https://www.nejm.org/doi/full/10.1056/NEJM198309223091204) on the effects of smoking on lung function. The dataset includes 654 children aged 3 to 19. Tager's team collected information on each child's age, sex, and smoking status (non-smoker or smoking). Tager also recorded the child's height in inches, and measured the FEV, or Forced Expiratory Volume (a measure of healthy lung function).

In the following code block we'll read in this data from ${\tt FEV_data.csv}$, located in the Lab 04 folder.

We'll load the data in this file as a variable called df (short for "dataframe").

```
In [3]: df = pd.read_csv("./data/Lab_04/FEV_data.csv")
```

Inspecting data in Pandas

Pandas has its own set of useful functions to inspect data. Two examples of these functions are .head() and .tail().

In each of these functions, we first reference the name of our Pandas dataframe - df - and follow this by .head() or .tail(). df.head() prints the first five rows of the df dataframe, and df.tail() prints the last five rows.

Exercise 1: Run the code in the block below to look at the output. Then, create a new code block that prints the *last* five rows instead of the first five.

```
In [4]:
          df.head()
Out[4]:
             age
                   FEV
                          ht
                                 sex smoke
                                                      comments
                 1.708 57.0 Female
                                             Equipment malfunction
           0
                                         No
           1
                8 1.724 67.5 Female
                                                            NaN
                                         No
           2
               7 1.720 54.5 Female
                                         No
                                             Equipment malfunction
           3
               9 1.558 53.0
                                Male
                                         No
                                                            NaN
                9 1.895 57.0
                                Male
                                         No
                                                            NaN
In [5]:
          # Your code here
          df.tail()
Out[5]:
                     FEV
                                   sex smoke comments
               age
                            ht
           649
                 16 4.270 67.0
                                  Male
                                          Yes
                                                    NaN
           650
                15 3.727 68.0
                                  Male
                                          Yes
                                                    NaN
           651
                 18 2.853 60.0 Female
                                           No
                                                    NaN
           652
                 16 2.795 63.0 Female
                                          Yes
                                                    NaN
```

No

Notice that the Pandas dataframe has bold column names at the top of the table. Unlike in Numpy, we can use Pandas column names to directly reference a specific column. For example, df["ht"] refers to all values in just the **ht** (or height) column. We can use Numpy functions we already know to find interesting attributes of these columns, such as the median or mean height:

NaN

```
In [6]: np.median( df["ht"] )
Out[6]: 61.5
In [7]: np.mean( df["ht"] )
Out[7]: 61.143577981651376
```

Exercise 2: Print the minimum and maximum age of people in this dataset using the built-in functions min() and max().

653

15 3.211 66.5 Female

```
In [8]: print( "Minimum age is:", min(df["age"]) ) # df["age"].min() will also w
    print( "Maximum age is:", max(df["age"]) ) # df["age"].max() will also w

Minimum age is: 3
    Maximum age is: 19
```

Describing interesting properties of data in Pandas

We can use the Pandas function describe to calculate interesting attributes of our dataset. In the output below, you should see a new table with the same columns as df.head(). However, instead of showing the original data, we see descriptive variables such as count (the number of data points), mean (the mean), std (the standard deviation), etc.

In [9]: df.describe(include="all")

Out[9]:

	age	FEV	ht	sex	smoke	comments
count	654.000000	654.000000	654.000000	654	654	2
unique	NaN	NaN	NaN	2	2	1
top	NaN	NaN	NaN	Male	No	Equipment malfunction
freq	NaN	NaN	NaN	336	589	2
mean	9.931193	2.636780	61.143578	NaN	NaN	NaN
std	2.953935	0.867059	5.703513	NaN	NaN	NaN
min	3.000000	0.791000	46.000000	NaN	NaN	NaN
25%	8.000000	1.981000	57.000000	NaN	NaN	NaN
50%	10.000000	2.547500	61.500000	NaN	NaN	NaN
75 %	12.000000	3.118500	65.500000	NaN	NaN	NaN
max	19.000000	5.793000	74.000000	NaN	NaN	NaN

Cleaning data in Pandas

We'll talk more extensively about data hygiene later on in the course, but for now it's sufficient to know that we can use Pandas to filter out problematic data. For example, we can use a logical statement to remove all rows that say "Equipment malfunction" in the comment column.

```
In [10]: df = df[df["comments"] != 'Equipment malfunction']
```

Now when we print the head of the dataset, the problem rows at the 0 and 2 index have been removed (try comparing this to the output of Exercise 1).

In [11]: df.head()

Out[11]:

	age	FEV	ht	sex	smoke	comments
1	8	1.724	67.5	Female	No	NaN
3	9	1.558	53.0	Male	No	NaN
4	9	1.895	57.0	Male	No	NaN
5	8	2.336	61.0	Female	No	NaN
6	6	1.919	58.0	Female	No	NaN

In this lab we'll use least squares linear regression to describe the relationship between different variables in this dataset. For example, let's try to describe the relationship between child age and FEV using the equation $y = p_1 x + p_2$, where x is age and y is FEV.

To get a rough idea of the data we're working with, plot the x age column against the y FEV column in Matplotlib:

```
In [12]: x = df["age"]
y = df["FEV"]

plt.scatter(x, y, alpha=0.25, color="blue")
plt.xlabel("Age (years)")
plt.ylabel("FEV (liters)")
plt.title("Relationship of age and forced exhalation volume")
plt.show()
```


Lab 4 Part 2 Review of linear regression

In lecture we used matrix algebra to solve for p_1 and p_2 given datasets x and y and the equation $y = p_1 x + p_2$.

$$A \cdot B = C$$

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \cdot \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Once we make the matrices A and C in Python, we can solve for B (and therefore p_1 and p_2) using the Numpy linear algebra library. So if we want to find the least squares regression between x = age and y = FEV from our dataset, we want A and C matrices that look like this:

$$A \cdot B = C$$

$$A \cdot B = C$$

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \cdot \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Exercise 3: Create a matrix called A with the first column containing all x values from the df age column and the second column containing all 1s. Print A.

```
In [13]: | x = df["age"]
          ones = np.ones(len(x))
          A = np.vstack([x, ones]).T
          print(A)
               8.
                     1.1
          [ [
               9.
                     1.]
            9.
                     1.1
            [ 18.
                     1.1
            [ 16.
                     1.]
            <sup>[</sup> 15.
                     1.]]
```

Exercise 4: Create a column vector called C containing all y values from the df FEV column.

```
In [14]: y = df["FEV"]
C = np.vstack(y)
```

Now that we have A and C, we can use Numpy to solve this system of equations. The function np.linalg.lstsq solves matrix equations, and returns a variety of different values representing things like the p value and the solution constants. The first item returned is a list of each constant in order.

```
In [15]: ps = np.linalg.lstsq(A, C)[0]
    print(ps)

[[ 0.22178472]
       [ 0.43570982]]
```

For the matrix equation $y = p_1x + p_2$ we just solved, p_1 is the first constant and p_2 is the second:

```
In [16]: p1 = ps[0]
p2 = ps[1]
```

Using these constants we can plot our linear regression line and see how it compares to the actual data. To plot this line, we'll create a Numpy array of x values spanning the range of our data, and calculate the predicted y value for each x:

```
In [18]: # Plot the actual data
plt.scatter(x, y, color="blue", alpha=0.25)

# Plot the predicted y values from our regression
plt.plot(xhat, yhat, color="black")

plt.xlabel("Age (years)")
plt.ylabel("FEV (liters)")
plt.title("Forced exhalation volume increases with age")
plt.show()
```


Working with subsets of data in Pandas

So far we have one equation to describe our entire dataset. However, let's say that we're interested in creating two different models - one for smokers and one for non-smokers. We can select just the smokers in this Pandas dataframe by using a logical statement to pick just the rows where the smoke column value is Yes. This code creates a new Pandas dataframe containing just data from smokers.

```
In [19]: df_smokers = df[df["smoke"] == "Yes"]
    df_smokers.head()
```

Out[19]:

	age	FEV	ht	sex	smoke	comments
190	9	1.953	58.0	Male	Yes	NaN
331	14	2.236	66.0	Female	Yes	NaN
357	14	3.428	64.0	Female	Yes	NaN
365	13	3.208	61.0	Female	Yes	NaN
368	11	1.694	60.0	Male	Yes	NaN

Exercise 5A: Construct A and C for data in df_smokers . Use A, C, and np.linalg.lstsq to calculate p_1 and p_2 values for $y=p_1x+p_2$. Save the p_1 value as a variable called p1_smokers , and save p_2 as another variable called p2_smokers .

```
In [20]: x_smokers = df_smokers["age"]
y_smokers = df_smokers["FEV"]

ones = np.ones(len(x_smokers))
A = np.vstack([x_smokers, ones]).T
C = np.vstack(y_smokers)

pl_smokers, p2_smokers = np.linalg.lstsq(A, C)[0]
print(pl_smokers, p2_smokers)
```

[0.07985574] [2.19696626]

Exercise 5B: Similarly, calculate the least squares regression for data in $df_nonsmokers$. Save p_1 as p_2 nonsmokers and p_2 as p_2 nonsmokers.

```
In [21]: df_nonsmokers = df[df["smoke"] == "No"]
    df_nonsmokers.head()
```

Out[21]:

	age	FEV	ht	sex	smoke	comments
1	8	1.724	67.5	Female	No	NaN
3	9	1.558	53.0	Male	No	NaN
4	9	1.895	57.0	Male	No	NaN
5	8	2.336	61.0	Female	No	NaN
6	6	1.919	58.0	Female	No	NaN

```
In [22]: # Your code here
    x_nonsmokers = df_nonsmokers["age"]
    y_nonsmokers = df_nonsmokers["FEV"]

    ones = np.ones(len(x_nonsmokers))
    A = np.vstack([x_nonsmokers, ones]).T
    C = np.vstack(y_nonsmokers)

pl_nonsmokers, p2_nonsmokers = np.linalg.lstsq(A, C)[0]
    print(pl_nonsmokers, p2_nonsmokers)
```

[0.24233598] [0.25715252]

Exercise 5C: Create a scatterplot that shows the df_smokers age and FEV data in red and df_nonsmokers in blue. Plot the linear regression line for df_smokers in red and df_nonsmokers in blue.

In [23]: # Create a scatterplot of both sets of data plt.scatter(x smokers, y smokers, color="red", alpha=0.25, label="Smoker plt.scatter(x_nonsmokers, y_nonsmokers, color="blue", alpha=0.25, label= # Plot regression line for smokers only xhat smokers = np.arange(min(x smokers), max(x smokers)+1)yhat smokers = p1 smokers*xhat smokers + p2 smokers plt.plot(xhat smokers, yhat smokers, color="red", label="Smokers regress" # Plot regression line for nonsmokers only xhat nonsmokers = np.arange(min(x nonsmokers), max(x nonsmokers)+1)yhat_nonsmokers = p1_nonsmokers*xhat nonsmokers + p2 nonsmokers plt.plot(xhat nonsmokers, yhat nonsmokers, color="blue", label="Nonsmoke plt.xlabel("Age (years)") plt.ylabel("FEV (liters)") plt.title("Forced exhalation volume vs age for smokers and nonsmokers") plt.legend() plt.show()

Forced exhalation volume vs age for smokers and nonsmokers

Lab 4 Bonus exercises

Bonus Exercise 1: The principles we discussed in *Exercise 3* can be used to solve linear regression equations with more than two variables. For example, to find the least squares regression line for the equation $y = p_1 x^2 + p_2 x + p_3$, we would construct the following A and C matrices:

$$A \cdot B = C$$

$$\begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ \vdots & \vdots & \vdots \\ x_n^2 & x_n & 1 \end{bmatrix} \cdot \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

In Python, create A and C where x is age and y is FEV. Use <code>np.linalg.lstsq</code> to solve for p_1 , p_2 , and p_3 . Plot the resulting equation alongside the data.

```
In [24]: x = df["age"]
y = df["FEV"]

A = np.vstack([x**2, x, np.ones(len(x))]).T
C = np.vstack(y)
p1, p2, p3 = np.linalg.lstsq(A, C)[0]

xhat = np.arange(min(x), max(x)+1)
yhat = p1*xhat**2 + p2*xhat + p3

plt.scatter(x, y, color="blue", alpha=0.25)
plt.plot(xhat, yhat, color="black")

plt.xlabel("Age (years)")
plt.ylabel("FEV (liters)")
plt.title("Forced exhalation volume vs age")
plt.show()
```


Bonus Exercise 2: Create A and C to solve for p_1 , p_2 , and p_3 given the equation $z = p_1x + p_2y + p_3$ where x is age, y is height, and z is FEV. Make a plot that includes the original data and the fitted regression line.

The code to create a 3D matplotlib plot is given to you below.

```
In [25]: # your code here to solve for p
x = df["age"]
y = df["ht"]
z = df["FEV"]

A = np.vstack([x, y, np.ones(len(x))]).T
C = np.vstack(z)
bonus_p1, bonus_p2, bonus_p3 = np.linalg.lstsq(A, C)[0]
```

```
In [26]: from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(6, 6))
    ax = fig.add_subplot(111, projection='3d')

# Plot the original data
    ax.scatter(df["age"], df["ht"], df["FEV"], color="green", alpha=0.25)

# Your code here to plot your regression line:
    xhat = np.linspace(min(x), max(x)+1, 100)
    yhat = np.linspace(min(y), max(y)+1, 100)
    zhat = bonus_pl*xhat + bonus_p2*yhat + bonus_p3
    ax.plot(xhat, yhat, zhat, color="k", lw=2)
    ax.set_xlabel("Age (years)")
    ax.set_ylabel("Height (inches)")
    ax.set_zlabel("FEV (liters)")
    plt.show()
```


Bonus Exercise 3: Create A and C to solve for each p constant given the equation $z = p_1 x^2 + p_2 y^2 + p_3 x + p_4 y + p_5$ where x is age, y is height, and z is FEV. Make a 3D plot that includes the original data and the fitted regression line.

```
In [27]: x = df["age"]
         y = df["ht"]
         z = df["FEV"]
         A = np.vstack([x**2, y**2, x, y, np.ones(len(x))]).T
         C = np.vstack(z)
         p1, p2, p3, p4, p5 = np.linalg.lstsq(A, C)[0]
         xhat = np.linspace(min(x), max(x)+1, 100)
         yhat = np.linspace(min(y), max(y)+1, 100)
         zhat = p1*xhat**2 + p2*yhat**2 + p3*xhat + p4*yhat + p5
         fig = plt.figure(figsize=(6, 6))
         ax = fig.add_subplot(111, projection='3d')
         ax.scatter(x, y, z, color="green", alpha=0.25)
         ax.plot(xhat, yhat, zhat, color="k", lw=2)
         ax.set xlabel("Age (years)")
         ax.set ylabel("Height (inches)")
         ax.set zlabel("FEV (liters)")
         plt.show()
```


In []: