VERFAHREN ZUR CC-BINDUNGSKNÜPFUNG ZWISCHEN ELEKTROPHILEN SUBSTRATEN UND PI-NUCLE OPHILEN IN NEUTRALEN BIS BASISCHEN WÄSSRIGEN ODER ALKOHOLISCHEN LÖSUNGSMITTELN O HNE DEN EINSATZ EINER LEWIS- ODER PROTONENSÄURE

Die Erfindung betrifft ein Verfahren zur Kohlenstoff-Kohlenstoff-Bindungskrüpfung durch Umsetzung von elektrophilen Substraten mit einer Solvolysegeschwindigkeit  $k_{EiOH}$  (25 °C) >  $10^{-6}$  s<sup>-1</sup> und  $\pi$ -Verbindungen, dadurch gekennzeichnet, dass die intermediären Carbokationen in neutralen bis basischen wässrigen oder alkoholischen Lösungsmitteln oder Lösungsmittelgemischen erzeugt werden, ohne dass eine Lewissäure oder Protonensäure zum Einsatz kommt.

5

20

25

30

Lewis-Säure- (oder auch Protonen-Säure-) induzierte Umsetzungen von Elektrophilen, wie z.B.
Alkylhalogeniden mit π-Verbindungen wie z.B. Arenen oder Heteroarenen (Friedel-Crafts-Alkylierungen: C. Friedel, J.M. Crafts, J. Chem. Soc. 1877, 32, 725; C.C. Price, Org. React. 1946, 3, 1-82; G.A. Olah, Friedel-Crafts and Related Reactions, Wiley, New York, 1963-1964, Bd. 1 und 2; R. Taylor, Electrophilic Aromatic Substitution, Wiley, New York, 1990, S. 187-203.), oder anderen ungesättigten Systemen stellen wichtige CC-verknüpfende Reaktionen zur Einführung von Alkylsubstituenten in Arene oder andere π-Systeme dar.

Bei diesen häufig als Friedel-Crafts-, Hoaglin-Hirsch- (R.I. Hoaglin, D.H. Hirsch, J. Am. Chem. Soc. 1949, 71, 3468-3472.), Hosomi-Sakurai- (A. Hosomi, Acc. Chem. Res. 1988, 21, 200-206; I. Fleming, J. Dunogues, R. Smithers, The Electrophilic Substitution of Allylsilanes and Vinylsilanes, in: Organic Reactions, A. S. Kende (Hrsg.), Wiley, New York, 1989, Vol. 37, 57-575.) oder Mukaiyama-Reaktionen (T. Mukaiyama, M. Murakami, Synthesis 1987, 1043-1054; R. Mahrwald, Chem. Rev. 1999, 99, 1095-1120; M.T. Reetz, W.F. Maier, H. Heimbach, Chem. Ber. 1980, 113, 3734-3740; M.T. Reetz, W.F. Maier, I. Chatziiosifidis, A. Giannis, H. Heimbach, U. Löwe, Chem. Ber. 1980, 113, 3741-3757.) bezeichneten Verfahren werden zur Aktivierung der elektrophilen Substrate üblicherweise Metallhalogenide des Formeltyps MX<sub>a</sub>, wie z.B. AlCl<sub>3</sub>, AlBr<sub>3</sub>, BCl<sub>3</sub>, BF<sub>3</sub>, FeCl<sub>3</sub>, TiCl<sub>4</sub>, SnCl<sub>4</sub>, SbF<sub>5</sub>, GaCl<sub>3</sub>, ZnCl<sub>2</sub> (G.A. Olah, S. Kobayashi, M. Tashiro, J. Am. Chem. Soc. 1972, 94, 7448.) oder POCl<sub>3</sub> eingesetzt, die bei der Aufarbeitung der Reaktionsansätze durch Hydrolyse irreversibel desaktiviert werden.

Als Lösungsmittel werden häufig chlorierte Kohlenwasserstoffe eingesetzt, die ein geringes Koordinierungsvermögen gegenüber Metallhalogeniden aufweisen. Da die Lewis-Säuren feuchtigkeitsempfindlich sind, wird unter striktem Feuchtigkeitsausschluss gearbeitet, was großen präparativen Aufwand verursacht.

Der Einsatz von wässrigen Reaktionsmedien hat große Bedeutung in der synthetischen organischen Chemie erlangt. CC-verknüpfende Reaktionen, die in solchen Lösungsmitteln durchgeführt werden

können, stellen hierbei eine große Herausforderung dar (A. Lubineau, J. Ange, Y. Queneau, Synthesis 1994, 741-760; C.J. Li, Chem. Rev. 1993, 93, 2923-2035.). Desweiteren werden in wässrigen Medien oft bessere Reaktivitäten und Selektivitäten erzielt als unter wasserfreien Bedingungen (S. Kobayashi, K. Manabe, Chem. Eur. J. 2002, 18, 4094-4101; S. Kobayashi, Eur. J. Org. Chem. 1999, 15-27.).

Die Anwendungsbreite von Friedel-Crafts-Reaktionen ist aus einer Vielzahl von Gründen begrenzt.

Viele Heteroaromaten eignen sich nicht für die Friedel-Crafts-Alkylierung. Weiterhin stören auch zahlreiche funktionelle Gruppen wie -OH, -OR, -NH<sub>2</sub>, -NR<sub>2</sub>, die von der Lewis-Säure komplexiert werden, den Reaktionsverlauf (T. Laue, A. Plagens, Namens- und Schlagwort-Reaktionen der organischen Chemie, Teubner, Stuttgart, 1994, S. 128-132.).

Beim Einsatz von Alkoholen als Elektrophile ist in einigen Fällen bekannt, dass Lewis-Säuren durch Protonen-Säuren, insbesondere H<sub>2</sub>SO<sub>4</sub> oder HF, ersetzt werden können. Jedoch ergeben sich vor allem beim Einsatz von HF erhebliche Nachteile. HF ist stark giftig und korrosiv.

Substrate, die säurelabile Gruppen, wie z.B. Alkylenolether, Silylenolether, Ketenacetale oder Enamine beinhalten, können durch Lewis- oder Protonensäuren zersetzt werden.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren bereitzustellen, durch welches eine Kohlenstoff-Kohlenstoff-Bindungsknüpfung im Sinne einer Friedel-Craftsoder dazu verwandten Reaktion ohne die Verwendung einer Lewis- oder Protonen-Säure in nichtchlorierten Lösungsmitteln bewerkstelligt wird und somit den Einsatz einer Vielzahl zusätzlicher Substrate unter moderaten Reaktionsbedingungen erlaubt, was gegenüber den etablierten Synthesemöglichkeiten prägnante ökologische und ökonomische Vorteile bietet.

Diese Aufgabe wird gelöst durch den Einsatz von Verbindungen des allgemeinen Formeltyps (I),

$$R^1 \xrightarrow{X} R^3$$
 (I)

25 welche Solvolysegeschwindigkeiten von k<sub>EiOH</sub> > 10<sup>-6</sup> s<sup>-1</sup> (25 °C) aufweisen.

20

Die relative Bildungsgeschwindigkeit von Carbokationen kann u.a. mit Hilfe der Ethanolyse-konstante k<sub>EiOH</sub>, d.h. der Geschwindigkeitskonstante der Solvolyse in 100 % Ethanol bei 25°C angegeben werden.

2

Insbesondere zur Angabe der relativen Reaktivität von Alkylhalogeniden, vor allem von Chloriden oder Bromiden, ist diese Bestimmungsgröße herangezogen worden. Die entsprechenden Werte für keich (25°C) können zahlreichen Veröffentlichungen (J.-P. Dau-Schmidt, H. Mayr, Chem. Ber. 1994, 127, 205-212; Dissertation J.-P. Dau-Schmidt, Medizinische Universität zu Lübeck 1992; P. Vogel, Carbocation Chemistry, Elsevier, Amsterdam, 1985, Kapitel 7; G.A. Olah, P. von R. Schleyer, Carbonium Ions, Vol. 1-5, Interscience, New York, 1968-1976; X. Creary, Advances in Carbocation Chemistry, Vol. 1, JAI, Greenwich, CT, 1989; J.M. Coxon, Advances in Carbocation Chemistry, Vol. 2, JAI, Greenwich, CT, 1995.) entnommen werden. Zur Bestimmung weiterer Solvolyse-geschwindigkeiten kann das bei Winstein und Grunwald (E. Grunwald, S. Winstein, J. Am. Chem. Soc. 1948, 70, 846-854; S. Winstein, E. Grunwald, H.W. Jones, J. Am. Chem. Soc. 1951, 73, 2700-2707.) beschriebene Verfahren verwendet werden.

10

15

20

Beispiele für die Substituenten R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> an den Verbindungen des Typs (I) mit den angegebenen Mindestwerten an ketott die jedoch keine erschöpfende Aufzählung darstellen, sind Substituenten, die unabhängig voneinander gewählt sind aus der Gruppe verzweigtes oder unverzweigtes Alkyl, vorzugsweise C1-C4 Alkyl, insbesondere Methyl, Aryl, vorzugsweise C6-C10-Aryl, insbesondere Phenyl, substituiertes Aryl, vorzugsweise durch Amino-, Alkoxy- oder Alkylsubstituenten, insbesondere 4-Methoxyphenyl (Anisyl) und 4-Methylphenyl (Tolyl), substituiertes oder unsubstituiertes Heteroaryl, insbesondere Thiophen, Furan und Pyrrol, verzweigtes oder unverzweigtes Alkenyl, vorzugsweise C2-C10-Alkenyl, insbesondere 3-Methylbut-2-enyl, Cycloalk-2-enyl, vorzugsweise C<sub>4</sub>-C<sub>7</sub>-Cycloalk-2-enyl, Cyclopent-2-enyl und Cyclohex-2-enyl, Cyclo-, Bicyclo- und Tricycloalkyl, vorzugsweise C3-C8-Cycloalkyl und C5-C8-Bicyclo- und Tricycloalkyl, Alkoxy, vorzugsweise Methoxy, Ethoxy, Aryloxy oder Wasserstoff. Desweiteren können zwei der Reste R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> einen Alkylring bilden, vorzugsweise C3-C8-Cycloalkyl und C5-C8-Bicyclo- und Tricycloalkyl.

25 X entspricht einer durch die angegebene Solvolysegeschwindigkeit vorgegebenen Abgangsgruppe; insbesondere ist X = Halogen, Alkoxy, vorzugsweise Methoxy, Ethoxy, und Benzyloxy, Alkyloder Arylsulfonato, insbesondere Methansulfonato, Trifluormethansulfonato, Benzolsulfonato, p-Toluolsulfonato; es kann aber auch gewählt sein aus der Gruppe substitu-iertes oder unsubstituiertes Phenoxy, Acyloxy, Benzoyloxy, Carbamoyl, Alkyloxycarbonyloxy, 30 Aryloxycarbonyloxy, Siloxy, insbesondere Trimethylsiloxy, Phosphato, Phosphonato. Hypophosphonato, Alkylperoxy, Sulfato, Sulfenyl, Sulfonyl, S-Alkylsulfoxy, S-Arylsulfoxy, Alkylthio, Arylthio, Thiocyanato, Isothiocyanato, Ureato und Imidyl. Synthetisch leicht zugänglich und als sehr effektiv erwiesen haben sich Verbindungen mit X = Halogen. Halogen steht für Fluor, Chlor, Brom oder Iod, bevorzugt für Chlor und Brom. Eine Zusammenstellung möglicher 35 Abgangsgruppen zeigt Aufstellung 1.1.

#### Aufstellung 1.1

Halogen -I, -Br, -CI, -F

Sauerstoff-Substituenten

$$-\mathrm{OCH_3}$$
 ,  $-\mathrm{OC}_2\mathrm{H_3}$  ,  $-\mathrm{OCH_2Ph}$  ,  $-\mathrm{OCH_2CH}{=}\mathrm{CH_2}$  ,  $-\mathrm{OCH_2CF_3}$ 

$$-0- \bigcirc \ , -0- \bigcirc \ -O_2 \ , -O_2 \ )$$

$$-0-\overset{\circ}{C}-\overset{\circ}{\bigcirc}$$
 ,  $-0-\overset{\circ}{C}-\overset{\circ}{\bigcirc}-B_{f}$  ,  $-0-\overset{\circ}{C}-\overset{\circ}{\bigcirc}-NO_{2}$  ,  $-0-\overset{\circ}{C}-\overset{\circ}{\bigcirc}NO_{2}$ 

$$- \text{OSiMe}_3 \ , \ - \text{OSiMe}_2 \\ \text{fBu} \ , \ - \text{OSiPh}_3 \ , \ - \text{OSi(OEt)}_3 \ , \ - \text{OSiMe}_2 \\ \text{Ph} \ , \ - \text{OSi(i-Pr)}_3 \\$$

-O-OtBu

Stickstoff-Substituenten

mit R = Alkyl

5

15

Die bei dem Verfahren erfindungsgemäß als nucleophile Verbindungen einsetzbaren π-Verbindungen sind aliphatische  $\pi$ -Nucleophile, wie z.B. substituierte Alkene und Alkine, Allylund Propargylsilane, Alkylenolether, Silylenolether, (Silyl-) Ketenacetale und Enamine, oder aromatische  $\pi$ -Nucleophile, wie z.B. donorsubstituierte Aromaten, Heteroaromaten, vorzugsweise substituierte oder unsubstituierte Furane, Thiophene, Pyrrole oder Indole.

Die eingesetzten  $\pi$ -Verbindungen werden als Lösungen in einem Konzentrationsbereich von 0.01 M bis 20 M, vorzugsweise 0.1 M bis 5 M, insbesondere 0.5 M bis 2 M in den nachfolgend aufgeführten Lösungsmitteln oder Lösungsmittelgemischen eingesetzt.

10 Die eingesetzten Lösungsmittel oder Lösungsmittelgemische sind oder setzen sich zusammen aus der Gruppe Alkohole, insbesonders Ethanol, Methanol, 2,2,2-Trifluorethanol oder 1,1,1,3,3,3-Hexafluoroisopropanol, Tetrahydrofuran, Wasser, Aceton, Acetonitril und Dioxan.

Insbesondere kommen Aceton/Wasser-Mischungen, vorzugsweise 80 % wässriges Aceton (80A20W (v/v)), Acetonitril/Wasser-Mischungen, vorzugsweise 90 % wässriges Acetonitril (90AN10W (v/v)), oder reines 2,2,2-Trifluorethanol zum Einsatz.

Die Solvolyse von Verbindungen des Typs (I) in den oben angeführten Lösungsmitteln oder Lösungsmittelgemischen folgt dem Reaktionsschema gemäß Fig. 1, wobei SOH die nucleophile Komponente in einem der verwendeten Lösungsmitteln ist:

5

Es wurden zahllose Untersuchungen über Geschwindigkeiten und Produkte von S<sub>N</sub>1-Reaktionen durchgeführt (J.-P. Dau-Schmidt, H. Mayr, Chem. Ber. 1994, 127, 205-212; Dissertation J.-P. Dau-Schmidt, Medizinische Universität zu Lübeck 1992; P. Vogel, Carbocation Chemistry, Elsevier, Amsterdam, 1985, Kapitel 7; G.A. Olah, P. von R. Schleyer, Carbonium Ions, Vol. 1-5, Interscience, New York, 1968-1976; X. Creary, Advances in Carbocation Chemistry, Vol. 1, JAI, Greenwich, CT, 1989; J.M. Coxon, Advances in Carbocation Chemistry, Vol. 2, JAI, Greenwich, CT, 1995.). Ein beträchtlicher Teil der Kenntnisse über den Zusammenhang zwischen Struktur und Reaktivität von Carbokationen (R<sup>1</sup>R<sup>2</sup>R<sup>3</sup>C<sup>+</sup>), den Zwischenstufen dieser Reaktionen, wurde aus Solvolyse-Studien abgeleitet.

5

30

Im zweiten Reaktionsschritt des Reaktionsschemas gemäß Fig. 1 wird in einer schnellen Reaktion das intermediär gebildete Carbokation durch das entsprechende Lösungsmittel abgefangen.

Nach Meinung der Fachwelt sind solche Abfangreaktionen durch Lösungsmittel zu schnell, als dass eine Reaktion zwischen dem intermediär generierten Carbokation und einem eventuell anwesenden  $\pi$ -Nucleophil stattfinden könnte.

Lediglich im speziellen Beispiel des α-(N,N-Dimethylthiocarbamoyl)-4-methoxybenzylkations wurde im Rahmen mechanistischer Untersuchungen gezeigt, dass dieses Intermediat durch π-Nucleophile, die durch N > 6 der Mayr-Skala gekennzeichnet sind, abgefangen werden kann, wenn es solvolytisch in 50 % wässrigem Acetonitril (50AN50W (v/v)) erzeugt wird. Da Nucleophilie-Parameter für Lösungsmittel damals nicht zur Verfügung standen, konnte diese Beobachtung nicht verallgemeinert werden. Weder war es erkennbar, dass dies auch für andere Typen von Carbokationen gelten muss, noch konnten Konsequenzen für die Organische Synthese gezogen werden. Seit der von Richard zitierten Veröffentlichung von Mayr (Angew. Chem. 1994, 106, 990-1010.) wurden für zahlreiche weitere π-Systeme die Nucleophilie-Parameter N und s publiziert (H. Mayr, B. Kempf, A.R. Ofial, Acc. Chem. Res. 2003, 36, 66-77; B. Kempf, N. Hampel, A.R. Ofial,
H. Mayr, Chem. Eur. J. 2003, 9, 2209-2218.). Für zahlreiche nucleophile π-Systeme können die Werte N und s diesen Veröffentlichungen entnommen werden.

Der Durchbruch zu der nun vorliegenden Erfindung kam dadurch zustande, dass mit Hilfe photometrischer Messungen durch konventionelle UV-Vis-Spektroskopie, Stopped-Flow-Methoden und Laser-Flash-Techniken jetzt auch N- und s-Parameter für die erfindungsgemäß verwendeten Lösungsmittel und Lösungsmittelgemische ermittelt werden konnten (Tab. 1).

<u>Tab. 1</u>

| Solvens *       | N    | S    | _ |
|-----------------|------|------|---|
| W               | 5.20 | 0.89 | - |
| 91W9AN          | 5.16 | 0.91 |   |
| 80W20AN         | 5.04 | 0.89 |   |
| 67W33AN         | 5.05 | 0.90 |   |
| 50W50AN         | 5.05 | 0.89 |   |
| 33W67AN         | 5.02 | 0.90 |   |
| 20W80AN         | 5.02 | 0.89 |   |
| 10W90AN         | 4.56 | 0.94 |   |
| 20W80A          | 5.77 | 0.87 |   |
| 10W90A          | 5.70 | 0.85 |   |
| T               | 1.23 | 0.92 |   |
| 90T10W          | 2.93 | 0.88 |   |
| 80T20W          | 3.20 | 0.88 |   |
| 60T40W          | 3.42 | 0.90 |   |
| 50 <b>T</b> 50W | 3.57 | 0.89 |   |
| 40T60W          | 3.77 | 0.88 |   |
| 20T80W          | 4.78 | 0.83 |   |
| 10T90W          | 5.04 | 0.90 |   |
| Е               | 7.44 | 0.90 |   |
| 90E10W          | 7.03 | 0.86 |   |
| 80E20W          | 6.68 | 0.85 |   |
| 60E40W          | 6.28 | 0.87 |   |
| 50E50W          | 5.96 | 0.89 |   |
| 40E60W          | 5.81 | 0.90 |   |
| 20E80W          | 5.54 | 0.94 |   |

|                      |      | · · · · · · · · · · · · · · · · · · · |
|----------------------|------|---------------------------------------|
| Solvens <sup>a</sup> | . И  | S                                     |
| 10E90W               | 5.38 | 0.91                                  |
| 91E9AN               | 7.10 | 0.90                                  |
| 80E20AN              | 6.94 | 0.90                                  |
| 67E33AN              | 6.74 | 0.89                                  |
| 50E50AN              | 6.37 | 0.90                                  |
| 33E67AN              | 6.06 | 0.90                                  |
| 20E80AN              | 5.77 | 0.92                                  |
| 10E90AN              | 5.19 | 0.96                                  |
| M                    | 7.54 | 0.92                                  |
| 91M9AN               | 7.45 | 0.87                                  |
| 80M20AN              | 7.20 | 0.89                                  |
| 67M33AN              | 7.01 | 0.91                                  |
| 50M50AN              | 6.67 | 0.90                                  |
| 33M67AN              | 6.38 | 0.92                                  |
| 20M80AN              | 6.04 | 0.94                                  |
| 10M90AN              | 5.55 | 0.97                                  |

Lösungsmittelgemische sind in Vol-% angegeben (v/v): M = Methanol, E = Ethanol,

W = Wasser, T = 2,2,2-Trifluorethanol, AN = Acetonitril, A = Aceton. Die Zahl vor dem jeweiligen Lösungsmittelkürzel entspricht der Mengenangabe in %.

Zudem wurden durch Korrelation der von der Arbeitsgruppe Mayr erhaltenen N-Werte mit den Nucleophilie-Werten N<sub>T</sub>, die von der Arbeitsgruppe Kevill (Advances in Quantitative Structure-Property Relationships, Vol. 1, Charton, M. ed., JAI Press, Greenwich, Conneticut, 1996, 81-115) aus Solvolysegeschwindigkeiten von Methylsulfoniumionen ermittelt wurden, Näherungswerte für zahlreiche weitere Lösungsmittel und Lösungsmittelgemische bestimmt (Tabelle 2).

<u>Tab. 2</u>

| a        | N <sub>T</sub> b | Ν°                |
|----------|------------------|-------------------|
| 70E30W   | -0.20            | 6.48 <sup>d</sup> |
| 30E70W   | -0.93            | 5.68 <sup>d</sup> |
| 95A5W    | -0.49            | 6.05              |
| 70A30W   | -0.42            | 6.16              |
| 60A40W   | -0.52            | 6.00              |
| 50A50W   | -0.70            | 5.73              |
| 40A60W   | -0.83            | 5.54              |
| 30A70W   | -0.96            | 5.34              |
| 20A80W   | -1.11            | 5.11              |
| 10A90W   | -1.23            | 4.93              |
| 80D20W   | -0.46            | 6.10              |
| 70D30W   | -0.37            | 6.23              |
| 60D40W   | -0.54            | 5.97              |
| 50D50W   | -0.66            | 5.79              |
| 40D60W   | -0.84            | 5.52              |
| 20D80W   | -1.12            | 5.10              |
| 97T3W °  | -3.30            | 1.81              |
| 80T20W ° | -2.19            | 3.48              |
| 80T20E   | -1.76            | 4.13              |
| 60T40E   | -0.94            | 5.37              |
| 50T50E   | -0.64            | 5.82              |
| 40T60E   | -0.34            | 6.28              |
| 20T80E   | 0.08             | 6.91              |
| 97H3W °  | -5.26            | -1.15             |
| 90H10W ° | -3.84            | 0.99              |
| 70H30W ° | -2.94            | 2.35              |
| 50H50W ° | -2.49            | 3.03              |
|          |                  |                   |

<sup>a</sup> Lösungsmittelgemische sind in Vol-% angegeben (v/v): M = Methanol, E = Ethanol, W = Wasser, T = 2,2,2-Trifluorethanol, A = Aceton, D = Dioxan, H = 1,1,1,3,3,3-Hexafluoro-2-propanol. <sup>b</sup> N<sub>T</sub>-Werte von Kevill. <sup>c</sup> Für diese Lösungsmittel (-gemische) wird ein typischer s-Parameter von 0.9 vorgeschlagen. <sup>d</sup> interpolierter Wert. <sup>c</sup> Lösungsmittel (-gemische) in Gew.-%.

Mit diesen neu ermittelten Parametern ist es nun möglich, die Nucleophilie der erfindungsgemäß eingesetzten Lösungsmittel und Lösungsmittelgemische der Nucleophilie von typischen π-Systemen gegenüberzustellen (vgl. Fig. 2).

Vergleich der Nucleophilie-Parameter N von Lösungsmitteln (-gemischen) mit N-Parametern typischer  $\pi$ -Systeme; Lösungsmittelgemische sind in Vol.-% angegeben (v/v): M = Methanol, E = Ethanol, W = Wasser, T = 2,2,2-Trifluorethanol, AN = Acetonitril, H = 1,1,1,3,3,3-Hexafluoro-2-propanol (weitere Lösungsmittel können den Tab. 1 und 2 entnommen werden).

10

15

20

25

Wenn das fragliche  $\pi$ -System in Fig. 2 oberhalb des jeweiligen Lösungsmittels steht, ist es in der Lage, ein in diesem Lösungsmittel generiertes Carbokation abzufangen. Da die N-Parameter von  $\pi$ -Systemen durch Lösungsmitteleffekte etwas verändert werden, können auch  $\pi$ -Systeme, die in Fig. 2 um bis zu zwei Einheiten unterhalb des jeweiligen Lösungsmittels stehen, die intermediären Carbokationen abfangen.

Bevorzugterweise wurden in dem beanspruchten Verfahren Lösungen von  $\pi$ -Systemen eingesetzt, deren N-Parameter größer als der des jeweils verwendeten Lösungsmittels oder Lösungsmittelgemisches ist.

Vor der Zugabe der Elektrophile der allgemeinen Formel (I) wurden den Lösungen evtl. noch basische Zuschläge zugesetzt, welche die entstehenden Säuren HX (X ist vorzugsweise Halogen, insbesondere Chlor oder Brom) abfangen, die bei den Reaktionen als Nebenprodukte entstehen.

Als Zuschläge wurden basische anorganische sowie organische Verbindungen eingesetzt, vorzugsweise Hydrogencarbonate, Carbonate und Pyridine, insbesondere Ammonium-hydrogencarbonat (NH4HCO<sub>3</sub>), Natriumhydrogencarbonat (NaHCO<sub>3</sub>), Ammoniumcarbonat [(NH4)<sub>2</sub>CO<sub>3</sub>], 2-Chlorpyridin und 2,6-Lutidin. Die Wahl des Zuschlags wurde im jeweiligen Fall durch Vergleichsexperimente bestimmt.

Die Reaktionszeiten betragen im Allgemeinen 1 Sekunde bis 2 Tage, bevorzugt 1 Minute bis 5 30 Stunden.

Der Verlauf der Reaktion kann beispielsweise mit GCMS- oder NMR-spektroskopischen Untersuchungen verfolgt werden.

Sämtliche isolierte Produkte wurden durch NMR-spektroskopische Methoden, GCMS, IR und, teilweise, Elementaranalysen eindeutig charakterisiert.

Allgemeine Arbeitsvorschrift für die Durchführung der Synthesen:

Zu einer Lösung der π-Verbindung in dem jeweils angegebenen Lösungsmittel oder Lösungsmittelgemisch, vorzugsweise einer 0.5 bis 2 molaren Lösung des Nucleophils (welches vorzugsweise in 1.1 bis 10 Äquivalenten bezogen auf das Elektrophil eingesetzt wird), und eventueller Zugabe von vorzugsweise 1 bis 3 Äquivalenten (eq) (bezogen auf das eingesetzte Elektrophil) des basischen Zuschlags, wird das Elektrophil so langsam zugegeben, dass die Reaktionswärme problemlos abgeführt werden kann. Im Falle von Feststoffen werden diese entweder portionsweise zugegeben oder in möglichst wenig inertem Lösungsmittel wie Acetonitril gelöst und tropfenweise zugegeben. Die Reaktionsmischung wird erfindungsgemäß bevorzugt bei Raumtemperatur (rt) gerührt.

Nach beendeter Reaktion wird das Reaktionsgemisch mit demselben Volumen an Wasser versetzt und die wässrige Phase mehrfach mit Diethylether extrahiert. Die vereinigten organischen Extrakte werden über einem Trockenmittel, vorzugsweise Natriumsulfat oder Magnesiumsulfat, getrocknet und überschüssiges Lösungsmittel im Vakuum entfernt.

Die Rückstände werden zur weiteren Reinigung beispielsweise einer Destillation bzw. einer 20 Chromatographie an Kieselgel unterworfen.

Eine Durchführung der Synthesen in größerem Maßstab unter Einhaltung der Stöchiometrie der eingesetzten Substanzen ist möglich.

#### **Beispiele**

10

15

20

Allgemeine Arbeitsvorschrift für die Durchführung der Synthesen:

Zu einer Lösung der π-Verbindung in dem jeweils angegebenen Lösungsmittel oder Lösungsmittelgemisch, vorzugsweise einer 0.5 bis 2 molaren Lösung des Nucleophils (welches vorzugsweise in 1.1 bis 10 Äquivalenten bezogen auf das Elektrophil eingesetzt wird), und eventueller Zugabe von vorzugsweise 1 bis 3 Äquivalenten (eq) (bezogen auf das eingesetzte Elektrophil) des basischen Zuschlags, wird das Elektrophil so langsam zugegeben, dass die Reaktionswärme problemlos abgeführt werden kann. Im Falle von Feststoffen werden diese entweder portionsweise zugegeben oder in möglichst wenig inertem Lösungsmittel wie Acetonitril gelöst und tropfenweise zugegeben. Die Reaktionsmischung wird erfindungsgemäß bevorzugt bei Raumtemperatur (rt) gerührt.

Nach beendeter Reaktion wird das Reaktionsgemisch mit demselben Volumen an Wasser versetzt und die wässrige Phase mehrfach mit Diethylether extrahiert. Die vereinigten organischen Extrakte werden über einem Trockenmittel, vorzugsweise Natriumsulfat oder Magnesiumsulfat, getrocknet und überschüssiges Lösungsmittel im Vakuum entfernt.

Die Rückstände werden zur weiteren Reinigung beispielsweise einer Destillation bzw. einer Chromatographie an Kieselgel unterworfen.

#### Beispiele 1-2

Der Allgemeinen Arbeitsvorschrift folgend wurden gemäß des beanspruchten Verfahrens verschiedene Elektrophile mit 2-Methoxypropen (N = 5.41, s = 0.91) analog des nachfolgenden Reaktionsschemas (A) umgesetzt. Die eingesetzten Lösungsmittel(-gemische), Basen, Reaktionsbedingungen und Ausbeuten sind Tab. 3 zu entnehmen.

| Nr. | R <sup>1</sup>       | Х  | n <sub>El</sub><br>[mmol] | n <sub>Nu</sub><br>[mmol] | t<br>[min] | Solvens | V <sub>Solv+Nu</sub><br>[ml] | Base            | Aus-<br>beute |
|-----|----------------------|----|---------------------------|---------------------------|------------|---------|------------------------------|-----------------|---------------|
| 1   | 4-Methoxy-<br>phenyl | Cl | 3.81                      | 25                        | 15         | 90AN10W | 25                           | 2,6-<br>Lutidin | 62 %          |
| 2   | Н                    | Br | 4.97                      | 25                        | 180        | 90AN10W | 25                           | 2,6-<br>Lutidin | 67 %          |

Tab. 3 -  $n_{El}$  = Stoffmenge Elektrophil,  $n_{Nu}$  = Stoffmenge Nucleophil,  $V_{Solv+Nu}$  = Gesamtvolumen der 1 molaren Lösung des Nucleophils.

#### Beispiele 3-7

Gemäß des beanspruchten Verfahrens wurden verschiedene Elektrophile mit 2-Methylfuran (N = 3.61, s = 1.11) in den angegebenen Lösungsmitteln (-gemischen) nach der Allgemeinen Arbeitsvorschrift bei Raumtemperatur (rt) umgesetzt. Die jeweils eingesetzten Lösungsmittel (-gemische), Basen (eq bezogen auf das Elektrophil), Nucleophilkonzentrationen und Ausbeuten sind den Reaktionsgleichungen zu entnehmen.

Reaktion von 4-Methoxybenzylbromid (4.97 mmol) mit einer 1 molaren Lösung (25 ml) von 2-10 Methylfuran (25 mmol) in 90 % wässrigem Acetonitril (Beispiel 3):

Reaktion von Prenylbromid (6.71 mmol) mit einer 1 molaren Lösung (20 ml) von 2-Methylfuran (20 mmol) in 90 % wässrigem Acetonitril (Beispiel 4):

Reaktion von Chlor-bis(4-methoxyphenyl)methan (3.81 mmol) mit einer 1 molaren Lösung (20 ml) von 2-Methylfuran (20 mmol) in 2,2,2-Trifluorethanol (Beispiel 5):

Reaktion von 4-Methoxybenzylchlorid (12.8 mmol) mit einer 1 molaren Lösung (50 ml) von 2-Methylfuran (50 mmol) in 2,2,2-Trifluorethanol (Beispiel 6):

5 Reaktion von 1-Anisylethylchlorid (5.86 mmol) mit einer 1 molaren Lösung (25 ml) von 2-Methylfuran (25 mmol) in 2,2,2-Trifluorethanol (Beispiel 7):

### Beispiele 8 - 10

Der Allgemeinen Arbeitsvorschrift folgend wurden gemäß des beanspruchten Verfahrens verschiedene Elektrophile mit 1,3-Dimethoxybenzol (N = 2.48; s = 1.09) in 2,2,2-Trifluorethanol (TFE) analog des nachfolgenden Reaktionsschemas (B) umgesetzt. Die eingesetzten Basen, Reaktionsbedingungen und Ausbeuten sind Tab. 4 zu entnehmen.

| Nr. | R¹ | х  | n <sub>El</sub><br>[mmol] | n <sub>Nu</sub><br>[mmol] | V <sub>Solv+Nu</sub><br>[ml] | t [min] | Base                  | Ausbeute                              |
|-----|----|----|---------------------------|---------------------------|------------------------------|---------|-----------------------|---------------------------------------|
| 8   | Н  | Cl | 6.39                      | 25                        | 25                           | 30      | 1.5 eq<br>2,6-Lutidin | 84 % + 7 %<br>1,2,3-Substitution      |
| 9   | Н  | Cl | 6.39                      | 25                        | 25                           | 30      |                       | 79 % + 5 %<br>1,2,3-Substi-<br>tution |
| 10  | Me | Cl | 5.86                      | 25                        | 25                           | 30      | 1.1 eq                | 52 %                                  |
|     |    |    |                           |                           |                              |         | 2,6-Lutidin           |                                       |

Tab. 4 -  $n_{El}$  = Stoffmenge Elektrophil,  $n_{Nu}$  = Stoffmenge Nucleophil,  $V_{Solv+Nu}$  = Gesamtvolumen der 1 molaren Lösung des Nucleophils.

### Beispiel 11

Der Allgemeinen Arbeitsvorschrift folgend wurde gemäß des beanspruchten Verfahrens 4-Methoxybenzylbromid (3.73 mmol) mit einer 1 molaren Lösung (25 ml) von 3-Methylanisol (N = 0.13; s = 1.27) (25 mmol) in 2,2,2-Trifluorethanol (TFE) analog des nachfolgenden Reaktionsschemas umgesetzt. Die eingesetzte Base, die Reaktionsbedingungen und die Ausbeute sind der Reaktionsgleichung zu entnehmen.

Gesamtausbeute 97%

#### <u>Beispiele 12 – 13</u>

5

Der Allgemeinen Arbeitsvorschrift folgend wurden gemäß des beanspruchten Verfahrens verschiedene Elektrophile mit 2-Methylthiophen (N = 1.26; s = 0.96) in 2,2,2-Trifluorethanol (TFE) analog des nachfolgenden Reaktionsschemas (C) umgesetzt. Die eingesetzten Basen, Reaktionsbedingungen und Ausbeuten sind Tab. 5 zu entnehmen.

| Nr. | R <sup>1</sup>       | х  | n <sub>El</sub><br>[mmol] | n <sub>Nu</sub><br>[mmol] | V <sub>Solv+Nu</sub><br>[ml] | t [min] | Base                          | Ausbeute |
|-----|----------------------|----|---------------------------|---------------------------|------------------------------|---------|-------------------------------|----------|
| 12  | 4-Methoxy-<br>phenyl | C1 | 3.81                      | 20                        | 20                           | 2       | 1.1 eq<br>2-Chlor-<br>pyridin | 83 %     |
| 13  | Me                   | CI | 5.86                      | 25                        | 25                           | 30      | 1.1 eq<br>2-Chlor-<br>pyridin | 81 %     |

Tab. 5 -  $n_{El}$  = Stoffmenge Elektrophil,  $n_{Nu}$  = Stoffmenge Nucleophil,  $V_{Solv+Nu}$  = Gesamtvolumen der 1 molaren Lösung des Nucleophils.

#### Beispiele 14 – 17

15

Der Allgemeinen Arbeitsvorschrift folgend wurden gemäß des beanspruchten Verfahrens verschiedene Elektrophile mit 1-Methylpyrrol (N = 5.85; s = 1.03) und Pyrrol (N = 4.63; s = 1.00) in 80 % wässrigem Aceton (80A20W) oder Wasser (W) analog des nachfolgenden Reaktionsschemas (D) umgesetzt. Das jeweils verwendete Lösungsmittel (Solvens), die Reaktionsbedingungen und Ausbeuten sind Tab. 6 zu entnehmen.

| Nr. | R <sup>1</sup> | R <sup>2</sup> | х  | Y  | Solvens | n <sub>El</sub> | n <sub>Nu</sub> | V <sub>Solv+Nu</sub> | t [h] | Ausbeute                           |
|-----|----------------|----------------|----|----|---------|-----------------|-----------------|----------------------|-------|------------------------------------|
|     |                |                |    |    |         | [mmol]          | [mmol]          | [ml]                 |       | P <sub>Nu2</sub> /P <sub>Nu3</sub> |
| 14  | OMe            | Н              | Br | Me | 80A20W  | 4.97            | 25              | 25                   | 0.5   | 49 % / 21 %                        |
| 15  | Н              | Ph             | Cl | Me | 80A20W  | 4.93            | 25              | 25                   | 24    | 47 % / 21 %                        |
| 16  | н              | Ph             | Br | H  | 80A20W  | 4.05            | 25              | 25                   | 0.5   | 81 % / 13 %                        |
| 17  | н              | Ph             | Br | Н  | w       | 6.25            | 25              | 25                   | 0.5   | 74 % / 2 %                         |

Tab. 6 -  $n_{El}$  = Stoffmenge Elektrophil,  $n_{Nu}$  = Stoffmenge Nucleophil,  $V_{Solv+Nu}$  = Gesamtvolumen der 1 molaren Lösung des Nucleophils.

#### Beispiel 18

Der Allgemeinen Arbeitsvorschrift folgend wurde gemäß des beanspruchten Verfahrens 4-Methoxybenzylbromid (2.49 mmol) mit einer 1 molaren Lösung (25 ml) von Ethylprop-1-enylether (cis/trans-Isomerengemisch) (25 mmol) in 90 % wässrigem Acetonitril (90AN10W) analog des nachfolgenden Reaktionsschemas umgesetzt. Die eingesetzte Base, die exakten Reaktionsbedingungen sowie die Ausbeute sind in der Reaktionsgleichung angegeben.

#### 10 **Beispiele 19 – 20**

15

Der Allgemeinen Arbeitsvorschrift folgend wurde gemäß des beanspruchten Verfahrens 4-Methoxybenzylbromid mit 1-Trimethylsiloxycyclopenten (N = 6.57; s = 0.93) und 1-Phenyl-1-trimethylsiloxyethylen (N = 6.22; s = 0.96) in 90 % wässrigem Acetonitril (90AN10W) analog der nachfolgenden Reaktionsschemen umgesetzt. Die eingesetzten Basen, Reaktionsbedingungen und Ausbeuten sind in der jeweiligen Reaktionsgleichung angegeben.

Reaktion von 4-Methoxybenzylbromid (1.24 mmol) mit einer 1 molaren Lösung (10 ml) von 1-Trimethylsiloxycyclopenten (10 mmol) in 90 % wässrigem Acetonitril (90AN10W) (Beispiel 19):

Reaktion von 4-Methoxybenzylbromid (1.24 mmol) mit einer 1 molaren Lösung (10 ml) von 1-Phenyl-1-trimethylsiloxyethylen (10 mmol) in 90 % wässrigem Acetonitril (90AN10W) (Beispiel 20):

#### Beispiel 21

5

10

Der Allgemeinen Arbeitsvorschrift folgend wurde gemäß des beanspruchten Verfahrens Chlorbis(4-methoxyphenyl)methan (3.81 mmol) mit einer 1 molaren Lösung (25 ml) von Indol (N = 5.80; s = 0.80) (25 mmol) in 80 % wässrigem Aceton (80A20W) analog des nachfolgenden Reaktionsschemas umgesetzt. Die eingesetzte Base, Reaktionsbedingungen und die Ausbeute sind der Reaktionsgleichung zu entnehmen.

#### **Beispiele 22 – 46:**

Der Allgemeinen Arbeitsvorschrift folgend wurden gemäß des beanspruchten Verfahrens die Umsetzungen gemäß Tab. 7 durchgeführt. Nukleophile, Elektrophile sowie deren eingesetzte Stoffmengen n, Lösungsmittel(-gemische) sowie deren Volumina V, gegebenenfalls eingesetzte Basen sowie deren Äquivalente bezogen auf die Stoffmenge des Elektrophils, Reaktionszeit t und die Ausbeuten sind Tab. 7 zu entnehmen. Die Umsetzungen wurden – sofern nicht anders angegeben – bei Raumtemperatur durchgeführt.

Tab. 7

| N. | Nucleophil <sup>[a]</sup> | п      | Elektrophil <sup>[b]</sup> | a      | Solvens <sup>[c]</sup> | V [ml] | Base (eq. bzgl.           | Ausbeute | -                  |
|----|---------------------------|--------|----------------------------|--------|------------------------|--------|---------------------------|----------|--------------------|
|    |                           | [mmol] |                            | [mmol] |                        |        | Elektrophil)              | [p][%]   |                    |
| 22 | 3-Methylanisol            | 25     | Ani2CHCl                   | 5.00   | TFE                    | 25     | 2-Chlorpyridin (1.5)      | 96       | 1 h                |
| 23 | Anisol                    | 23.8   | (3-CI)(3,-                 | 2.15   | TFE                    | 10     | NH,HCO <sub>3</sub> (2.3) | 30       | 24 h               |
|    |                           |        | CI)CHCI                    |        |                        |        |                           |          |                    |
| 24 | Anisol                    | 9.2    | (3-CI)PhCHCI               | 0.11   | TFE                    | 5      | NH,HCO3 (1.8)             | 36       | 1 h                |
| 25 | Anisol                    | 23.8   | (Ani)PhCHCI                | 2.00   | TFE                    | 10     | .NH,HCO, (2.5)            | 88       | 2 h                |
| 26 | Anisol                    | 23.8   | (Ani)PhCHCI                | 2.00   | TFE                    | 10     | 2-Chlorpyridin (1.2)      | 98       | 3 d                |
| 27 | Anisol                    | 23.8   | Ani <sub>2</sub> CHCl      | 2.99   | TFE                    | 25     | NH,HCO3 (1.7)             | 70       | 30 min             |
| 28 | Anisol                    | 23.8   | Ani,CHCl                   | 2.99   | TFE                    | 25     | 2-Chlorpyridin (1.2)      | 88       | 3 h                |
| 29 | Anisol                    | 10     | Ph2CHBr                    | 3.33   | H                      | 10     | NH4HCO3 (1.5)             | 80       | 1 h                |
| 30 | Anisol                    | 25     | Ph <sub>2</sub> CHCI       | 3.04   | TFE                    | 25     | NH4HCO3 (1.7)             | 94       | 1 h                |
| 31 | Anisol                    | 25     | Ph <sub>2</sub> CHCl       | 3.04   | TFE                    | 25     | 2-Chlorpyridin (1.2)      | 84       | 1 d                |
| 32 | Anisol                    | 23.8   | р-ОМе-а-                   | 2.43   | TFE                    | 5      | NH,HCO3 (2.1)             | 99       | 30 min             |
|    |                           |        | MeBnCl                     |        |                        |        |                           |          |                    |
| 33 | Anisol                    | 23.8   | р-ОМе-а-                   | 2.43   | TFB                    | 5      | 2-Chlorpyridin (1.2)      | 64       | 6 h                |
|    |                           |        | MeBnCl                     |        |                        |        |                           |          |                    |
| 34 | Anisol                    | 23.8   | TolyCHCI                   | 3.02   | TFE                    | 25     | NH4HCO3 (1.7)             | 96       | 3 h                |
| 35 | Anisol                    | 23.8   | Tol2CHCI                   | 3.02   | TFE                    | 25     | 2-Chlorpyridin (1.2)      | 06       | l d                |
| 36 | Dimethylanilin            | 10     | Ani2CHCl                   | 3.33   | 90AN10W                | 10     | NH4HCO3 (1.5)             | 98       | 1 d                |
| 37 | Dimethylanilin            | 10     | Ph2CHBr                    | 3.33   | 90AN10W                | 10     | NH4HCO3 (1.5)             | 73       | 20 h               |
| 38 | Dimethylanilin            | 10     | p-OMeBnBr                  | 3.33   | 100AN                  | 10     | 1                         | 69       | 3 h <sup>[e]</sup> |
|    |                           |        |                            |        |                        |        | A                         |          |                    |

| Nr. | Nucleophil <sup>[8]</sup> | u      | Elektrophil <sup>[6]</sup> | u      | Solvens <sup>[c]</sup> | V [ml] | V [ml] Base (eq. bzgl.  | Ausbeute | <b>+</b>             |
|-----|---------------------------|--------|----------------------------|--------|------------------------|--------|-------------------------|----------|----------------------|
|     |                           | [mmol] |                            | [mmo]] |                        |        | Elektrophil)            | [%][4]   |                      |
| 39  | Dimethylanilin            | 10     | p-OMeBnBr                  | 3.33   | 100AN                  | 10     | NH4HCO3 (1.5)           | 82       | 2 hel                |
| 40  | Dimethylanilin            | 10     | p-OMeBnBr                  | 3.33   | 90AN10W                | 10     | NH4HCO3 (1.5)           | 98       | 1.5 h <sup>[6]</sup> |
| 41  | Mesitylen                 | 10     | Ph2CHBr                    | 3.33   | ·Н                     | 10     | NH4HCO3 (1.5)           | 74       | 2 h                  |
| 42  | N-Methylindol             | 25     | p-OMeBnBr                  | 2.00   | 80A20W                 | 25     | NH,HCO3 (2)             | 73       | 1 h                  |
| 43  | N-Methylpyrrol            | 20.23  | Ph2CHBr                    | 4.05   | ı                      |        | E                       | 7.1      | 1 d                  |
| 44  | Pyrrol                    | 20.23  | Ph2CHBr                    | 4.05   | ,                      | •      |                         | 48       | 2 h                  |
| 45  | Рупо                      | 25     | Ph2CHBr                    | 8.33   | M                      | 25     | NH4HCO <sub>3</sub> (2) | 62       | 1 h                  |
| 46  | Pyrrol                    | 10     | Tol2CHCI                   | 3.33   | 80A20W                 | 10     | NH,HCO3 (2)             | 06       | 1 h                  |

[a] Abbildungen in Anhang Formelanhang – Nucleophile. [b] Abbildungen in Anhang Formelanhang – Elektrophile. [c] Lösungsmittelgemische sind in Vol.-% angegeben, hierin bedeuten: W = Wasser, TFE = 2,2,2-Trifluorethanol, H = 1,1,1,3,3,3-Hexafluoroisopropanol, AN = Acetonitril, A = Aceton. [d] Isoliertes Material, [e] Reaktionstemperatur 85 °C.

### Formelanhang - Nucleophile zu Tab. 7



# Formelanhang - Elektrophile zu Tab. 7



#### Patentansprüche:

25

1. Verfahren zur Kohlenstoff-Kohlenstoff-Bindungsknüpfung durch Umsetzung von Verbindungen des allgemeinen Formeltyps (I)

$$R^1 \xrightarrow{X} R^3$$
 (I)

mit  $\pi$ -Verbindungen in neutralen bis basischen wässrigen oder alkoholischen Lösungsmitteln oder Lösungsmittelgemischen, welche eine geringere Nucleophilie aufweisen als das  $\pi$ -Nucleophil,

wobei R<sup>1</sup>, R<sup>2</sup> und R<sup>3</sup> unabhängig voneinander organische oder metallorganische Reste oder Wasserstoff sind,

wobei X eine Abgangsgruppe der Art ist, dass die Verbindungen (I) in Ethanol mit einer Geschwindigkeitskonsante  $k_{EiOH} > 10^{-6} \text{ s}^{-1}$  (25 °C) solvolysiert werden,

dadurch gekennzeichnet, dass die intermediären Carbokationen in neutralen bis basischen wässrigen oder alkoholischen Lösungsmitteln oder Lösungsmittelgemischen erzeugt werden, ohne dass eine Lewissäure oder Protonensäure verwendet wird.

- Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass R¹, R² und R³ unabhängig voneinander gewählt sind aus der Gruppe verzweigtes oder unverzweigtes Alkyl, substituiertes oder unsubstituiertes Aryl, substituiertes oder unsubstituiertes Heteroaryl, verzweigtes oder unverzweigtes Alk-2-enyl, Cyclo-, Bicyclo- und Tricycloalkyl, Alkoxy, Aryloxy oder Wasserstoff. Desweiteren können zwei der Reste R¹, R² und R³ einen Alkylring bilden.
  - 3. Verfahren gemäss einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass X eine Abgangsgruppe ist, gewählt aus der Gruppe Halogen, Alkoxy, Alkyl- oder Arylsulfonato, substituiertes oder unsubstituiertes Phenoxy, Acyloxy, Benzoyloxy, Carbamoyl, Alkyloxycarbonyloxy, Aryloxycarbonyloxy, Siloxy, Phosphato, Phosphonato, Hypophosphonato, Alkylperoxy, Sulfato, Sulfenyl, Sulfonyl, S-Alkylsulfoxy, S-Arylsulfoxy, Alkylthio, Arylthio, Thiocyanato, Isothiocyanato, Ureato und Imidyl.
  - 4. Verfahren gemäss einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das verwendete Lösungsmittel bzw. Lösungsmittelgemisch Wasser oder einen Alkohol

22

5

10

umfasst. Lösungsmittelkomponeten sind Wasser, Ethanol, Methanol, 2,2,2-Trifluorethanol, 1,1,1,3,3,3-Hexafluoro-2-propanol, Tetrahydrofuran, Aceton, Acetonitril und Dioxan.

- 5. Verfahren gemäss einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass Verbindungen des Typs (I) mit einer Mischung aus einer π-Verbindung in dem entsprechenden Lösungsmittel oder Lösungsmittelgemisch und evtl. weiteren, basischen anorganischen oder organischen Zusätzen zur Reaktion gebracht werden.
- 6. Verfahren gemäss einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die als Nucleophil verwendeten π-Verbindungen aliphatische π-Verbindungen aus der Gruppe substituierte Alkene und Alkine, Allyl- und Propargylsilane, Alkylenolether, Silylenolether, (Silyl-) Ketenacetale und Enamine, oder aromatische π-Verbindungen aus der Gruppe der donorsubstituierten oder unsubstituierten Aromaten und Heteroaromaten sind.

$$R^{1} \stackrel{X}{\underset{R^{2}}{\longleftarrow}} R^{3} \qquad R^{2} \stackrel{R^{1}}{\underset{R^{3}}{\longleftarrow}} R^{3} + X \stackrel{SOH}{\underset{-HX}{\longleftarrow}} R^{1} \stackrel{OS}{\underset{R^{2}}{\longleftarrow}} R^{3}$$

Fig. 1

Fig. 2

### INTERNATIONAL SEARCH REPORT

In: 1al Application No Four P2005/001277

| A CLASS                    | IFICATION OF SUBJECT MATTER                                                                               | <del></del>                                                                                        |                                       |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------|--|--|
| ÎPC 7                      | CO7B37/O4                                                                                                 |                                                                                                    |                                       |  |  |
|                            |                                                                                                           |                                                                                                    |                                       |  |  |
| According t                | o International Patent Classification (IPC) or to both national classific                                 | calion and IPC                                                                                     |                                       |  |  |
|                            | SEARCHED                                                                                                  |                                                                                                    | ·                                     |  |  |
|                            | ocumentation searched (classification system followed by classificat                                      | ion symbols)                                                                                       |                                       |  |  |
| IPC /                      | C07B                                                                                                      |                                                                                                    |                                       |  |  |
|                            |                                                                                                           |                                                                                                    | · · · · · · · · · · · · · · · · · · · |  |  |
| Documenta                  | tion searched other than minimum documentation to the extent that                                         | such documents are included in the fields so                                                       | earched                               |  |  |
|                            |                                                                                                           |                                                                                                    |                                       |  |  |
| Electronic d               | lata base consulted during the International search (name of data ba                                      | ase and, where practical, search terms used                                                        | 0                                     |  |  |
| EPO-In                     | ternal, BEILSTEIN Data, WPI Data                                                                          |                                                                                                    |                                       |  |  |
| Ì                          | ,                                                                                                         |                                                                                                    |                                       |  |  |
|                            | ·                                                                                                         |                                                                                                    |                                       |  |  |
| C DOCUM                    | ENTS CONSIDERED TO BE RELEVANT                                                                            |                                                                                                    |                                       |  |  |
| Category •                 | Citation of document, with indication, where appropriate, of the re                                       | lavani naceznos                                                                                    | Relevant to claim No.                 |  |  |
| Category                   | oration of document, when managed, where appropriate, of the re                                           | izvani passages                                                                                    | Aerevant to Califf No.                |  |  |
| x                          | JOHN P. RICHARD ET AL.: "Solvent                                                                          | t Effects                                                                                          | 1-6                                   |  |  |
| <b>"</b>                   | on Carbocation-Nucleophilic Comb                                                                          |                                                                                                    | 10                                    |  |  |
|                            | Reactions: A Comparison of                                                                                |                                                                                                    |                                       |  |  |
|                            | pi-Nucleophilicity in Aqueous and                                                                         | d Organic                                                                                          |                                       |  |  |
|                            | Solvents"<br>  J. AM. CHEM. SOC.,                                                                         |                                                                                                    |                                       |  |  |
|                            | vol. 120, 1998, pages 10372-10378                                                                         | 8,                                                                                                 |                                       |  |  |
|                            | XP002328017                                                                                               | ·                                                                                                  |                                       |  |  |
|                            | the whole document                                                                                        |                                                                                                    |                                       |  |  |
| х                          | WEI ZHUANG AND KARL ANKER JORGENS                                                                         | SON -                                                                                              | 1,4-6                                 |  |  |
| ^                          | "Friedel-Crafts reactions in water of                                                                     |                                                                                                    |                                       |  |  |
|                            | carbonyl compounds with heteroaromatic                                                                    |                                                                                                    |                                       |  |  |
|                            | compounds"                                                                                                |                                                                                                    |                                       |  |  |
|                            | CHEM. COMMUN., 2002, pages 1336-1337,<br>XP002328018                                                      |                                                                                                    |                                       |  |  |
|                            | the whole document                                                                                        |                                                                                                    |                                       |  |  |
|                            |                                                                                                           | ,                                                                                                  |                                       |  |  |
|                            | -                                                                                                         | -/                                                                                                 |                                       |  |  |
|                            |                                                                                                           |                                                                                                    |                                       |  |  |
| X Furth                    | er documents are listed in the continuation of box C.                                                     | Patent family members are listed in                                                                | n annex.                              |  |  |
| * Special cat              | egories of cited documents ;                                                                              | "T" later document published after the inte                                                        |                                       |  |  |
|                            | nt defining the general state of the art which is not<br>ered to be of particular relevance               | or priority date and not in conflict with<br>clied to understand the principle or the<br>invention |                                       |  |  |
| 'E' earlier d              | ocument but published on or after the International                                                       | "X" document of particular relevance; the c                                                        |                                       |  |  |
| 'L' documer                | nl which may throw doubts on priority claim(s) or<br>s cited to establish the publication date of another | cannot be considered novel or cannot<br>involve an inventive step when the do                      | curnent is taken alone                |  |  |
| citation                   | or other special reason (as specified)                                                                    | "Y" document of particular relevance; the c<br>cannot be considered to involve an inv              | rentive step when the                 |  |  |
| other m                    |                                                                                                           | document is combined with one or mo<br>ments, such combination being obviou                        |                                       |  |  |
| 'P' document<br>later that | nt published prior to the international filing date but<br>an the priority date claimed                   | in the art.  *&* document member of the same patent                                                | family                                |  |  |
| Date of the a              | ctual completion of the international search                                                              | Oate of mailing of the international sear                                                          | rch report                            |  |  |
| 17                         | May 2005                                                                                                  | 01/06/2005                                                                                         |                                       |  |  |
|                            | alling address of the ISA                                                                                 |                                                                                                    | <del></del>                           |  |  |
|                            | European Patent Office, P.B. 5818 Patentlaan 2                                                            | Authorized officer                                                                                 | Į                                     |  |  |
|                            | NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.                                       | Diederen, J                                                                                        |                                       |  |  |
|                            | Fax: (+31-70) 340-3016                                                                                    | prederen, o                                                                                        | ļ                                     |  |  |

# INTERNATIONAL SEARCH REPORT

Int ial Application No
Poirci<sup>2</sup>2005/001277

|            |                                                                                                                                                                                                                                                                                             | FG1/L/2005/0012//     |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|            | etion) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                  |                       |
| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                          | Relevant to claim No. |
| X          | FRANZ EFFENBERGER UND KARL-HEINZ SCHÖNWALDER: "Die Acylierung von Ketonenolethern mit Malonyldichlorid - Eine neue Synthese von Phloroglucinen" CHEM. BER., vol. 117, 1984, pages 3270-3279, XP008047037 Reaktion von 1a und 2a in Et20/MeOH/Et3N und Reaktion von 1 mit 2a in Et20/KOH/H2O | 1,3,5,6               |
|            | HERBERT MAYR ET AL.: "Pi-Nucleophilicity in Carbon-Carbon Bond Forming Reactions" ACC. CHEM. RES., vol. 36, no. 1, 2003, pages 66-77, XP002328019 cited in the application the whole document                                                                                               |                       |
|            |                                                                                                                                                                                                                                                                                             |                       |
|            |                                                                                                                                                                                                                                                                                             | ·                     |
|            |                                                                                                                                                                                                                                                                                             |                       |
|            |                                                                                                                                                                                                                                                                                             |                       |
|            |                                                                                                                                                                                                                                                                                             |                       |

# INTERNATIONALER RECHERCHENBERICHT

Inti 3les Aktenzelchen
PU., L. 2005/001277

|                                                                           | A KLASSIFIZIERUNG DES ANMEL DUNGSGEGENSTANDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                         |                                                       |  |  |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| A. KLASSI<br>IPK 7                                                        | IFIZIERUNG DES ANMELDUNGSGEGENSTANDES<br>C07B37/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                         |                                                       |  |  |  |  |
| Nach der in                                                               | nternationalen Patentklassifikation (IPK) oder nach der nationalen Kla:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | essifikation und der IPK                                                                                                                                                |                                                       |  |  |  |  |
|                                                                           | RCHIERTE GEBIETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         |                                                       |  |  |  |  |
|                                                                           | rter Mindestprüfstoff (Klassifikalionssystem und Klassifikalionssymbo<br>C07B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ole)                                                                                                                                                                    |                                                       |  |  |  |  |
| ļ<br>                                                                     | rle aber nicht zum Mindestprüfsloff gehörende Veröffentlichungen, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                       |  |  |  |  |
| i                                                                         | er internationalen Recherche konsultierte elektronische Datenbank (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name der Datenbank und evil. verwendele S                                                                                                                               | Such begriffe)                                        |  |  |  |  |
| EPO-In                                                                    | ternal, BEILSTEIN Data, WPI Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         |                                                       |  |  |  |  |
|                                                                           | ESENTLICH ANGESEHENE UNTERLAGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                         |                                                       |  |  |  |  |
| Kalegorie*                                                                | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e der in Betracht kommenden Telle                                                                                                                                       | Beir, Anspruch Nr.                                    |  |  |  |  |
| X                                                                         | JOHN P. RICHARD ET AL.: "Solvent on Carbocation-Nucleophilic Combine Reactions: A Comparison of pi-Nucleophilicity in Aqueous and Solvents"  J. AM. CHEM. SOC., Bd. 120, 1998, Seiten 10372-10378 XP002328017 das ganze Dokument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ination<br>d Organic                                                                                                                                                    | 1-6                                                   |  |  |  |  |
| X .                                                                       | WEI ZHUANG AND KARL ANKER JORGENS "Friedel-Crafts reactions in wate carbonyl compounds with heteroard compounds" CHEM. COMMUN., 2002, Seiten 1336-XP002328018 das ganze Dokument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er of<br>omatic                                                                                                                                                         | 1,4-6                                                 |  |  |  |  |
|                                                                           | Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu  Siehe Anhang Patentfamilie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |                                                       |  |  |  |  |
| 'A' Veröffen<br>aber ni                                                   | ntlichung, die den allgemeinen Stand der Technik definiert,<br>icht als besonders bedeutsam anzusehen ist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *T* Spätere Veröffentlichung, die nach dem<br>oder dem Prioritätsdatum veröffentlicht<br>Anmeldung nicht kollidiert, sondern nu<br>Erfindung zugrundellegenden Prinzips | t worden ist und mit der<br>r zum Verständnis des der |  |  |  |  |
| Anmelo<br>'L' Veröffen                                                    | itlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                         | chung nicht als neu oder auf                          |  |  |  |  |
| anderei<br>soll ode<br>ausgefü<br>'O' Veröffen<br>eine Be<br>'P' Veröffen | <ul> <li>*L' Veröffentlichung, die geeignat ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)</li> <li>*O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht dem beanspruchte vor dem internationalen Anmeldedatum, aber nach der Benutzung, die Mitglied derselben Patentiamille ist</li> <li>*A' Veröffentlichung, die Mitglied derselben Patentiamille ist</li> </ul> |                                                                                                                                                                         |                                                       |  |  |  |  |
|                                                                           | eanspruchten Prioritätsdatum veröffentlicht worden ist<br>Abschlusses der Internationalen Recherche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Absendedatum des internationalen Rec                                                                                                                                    | <del></del>                                           |  |  |  |  |
| 17                                                                        | 7. Mai 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01/06/2005                                                                                                                                                              |                                                       |  |  |  |  |
| Name und Po                                                               | ostanschrift der Internationalen Recherchenbehörde<br>Europäisches Patentamt, P.B. 5818 Patentlaan 2<br>NL – 2280 HV Rüswik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bevollmächtigter Bediensteter                                                                                                                                           |                                                       |  |  |  |  |
|                                                                           | Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diederen, J                                                                                                                                                             |                                                       |  |  |  |  |

# INTERNATIONALER RECHERCHENBERICHT

Int ales Aktenzelchen
Pur, Li'2005/001277

| C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN |                                                                                                                                                                                                                                                                                             |                    |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Kategorie*                                           | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                                                                                                                          | Betr. Anspruch Nr. |
| х                                                    | FRANZ EFFENBERGER UND KARL-HEINZ SCHÖNWALDER: "Die Acylierung von Ketonenolethern mit Malonyldichlorid - Eine neue Synthese von Phloroglucinen" CHEM. BER., Bd. 117, 1984, Seiten 3270-3279, XP008047037 Reaktion von 1a und 2a in Et20/Me0H/Et3N und Reaktion von 1 mit 2a in Et20/K0H/H20 | 1,3,5,6            |
| A                                                    | HERBERT MAYR ET AL.: "Pi-Nucleophilicity in Carbon-Carbon Bond Forming Reactions" ACC. CHEM. RES., Bd. 36, Nr. 1, 2003, Seiten 66-77, XP002328019 in der Anmeldung erwähnt das ganze Dokument                                                                                               | 1                  |
| Ð                                                    |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
| ļ                                                    |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |
|                                                      |                                                                                                                                                                                                                                                                                             |                    |