Novo Espaço - Matemática A, 10.º ano

Proposta de resolução do teste de avaliação [março - 2023]

1. $x^2 + y^2 + 4x - 2y + 1 = 0 \iff x^2 + 4x + 2^2 - 2^2 + y^2 - 2y + 1 = 0 \iff (x+2)^2 + (y-1)^2 = 4$

Trata-se de uma circunferência de centro (-2,1) e raio 2, ou seja, C_1 . Opção: (A)

- 2.
- **2.1** Equação da reta BC: $3y-2x+6=0 \iff 3y=2x-6 \iff y=\frac{2}{3}x-2$ C(0,c) e pertence à reta BC.

Então, c = -2. As coordenadas do ponto C são (0,-2).

- 2.2 Equação reduzida da reta BC: $y = \frac{2}{3}x 2$. O declive é igual a $\frac{2}{3}$.

 Então, $\vec{u} = (3,2)$ é um vetor diretor da reta e B(3,0) é um ponto da reta.

 Uma equação vetorial da reta BC é: (x,y) = (3,0) + k(3,2), $k \in \mathbb{R}$
- **2.3** Como a circunferência de centro *B* é tangente ao eixo *Oy*, o raio é igual a 3.

Equação da circunferência de centro *B* e raio 3: $(x-3)^2 + y^2 = 9$

Equação da circunferência de centro A e raio 1: $(x-3)^2 + (y-2)^2 = 1$

Equação reduzida da reta *BC*: $y = \frac{2}{3}x - 2$

A região colorida é constituída pelos pontos (x, y) do plano tais que:

$$(x-3)^2 + y^2 \le 9$$
 \wedge $(x-3)^2 + (y-2)^2 \ge 1$ \wedge $y \ge \frac{2}{3}x - 2$

2.4 A reta paralela a *BC* e que passa pelo ponto *A* tem o mesmo declive de *BC*.

$$y = \frac{2}{3}x + b$$

Como a reta passa por A(3,2), então: $2 = \frac{2}{3} \times 3 + b \iff 0 = b$

Logo, a equação reduzida é $y = \frac{2}{3}x$.

2.5 Seja A_c a área da região colorida.

$$A_c = \frac{\pi \times 3^2}{2} - \pi \times 1^2 = \frac{9}{2}\pi - \pi = \frac{7}{2}\pi \approx 11$$

A medida da área é, aproximadamente, igual a 11.

Opção: (D)

3.

3.1
$$A(-1,6)$$
, $B(2,5)$, $C(\frac{2}{3},-4)$ e $P(1-4m,9m^2-9)$, $m \in \mathbb{R}$

$$\overrightarrow{AB} = B - A = (2, 5) - (-1, 6) = (3, -1)$$

$$\overrightarrow{CP} = \overrightarrow{AB} = P - C = (3, -1)$$

$$\left(1-4m-\frac{2}{3}, 9m^2-9+4\right)=\left(3,-1\right) \iff \left(\frac{1}{3}-4m, 9m^2-5\right)=\left(3,-1\right) \iff$$

$$\Leftrightarrow \begin{cases} \frac{1}{3} - 4m = 3\\ 9m^2 - 5 = -1 \end{cases} \Leftrightarrow \begin{cases} 1 - 12m = 9\\ 9m^2 = 4 \end{cases} \Leftrightarrow \begin{cases} m = -\frac{8}{12}\\ m^2 = \frac{4}{9} \end{cases} \Leftrightarrow \begin{cases} m = -\frac{2}{3}\\ m = \frac{2}{3} \lor m = -\frac{2}{3} \end{cases}$$

Conclui-se que $m = -\frac{2}{3}$.

3.2
$$A(-1,6) \in B(2,5)$$
. Então, $\overrightarrow{AB} = (3,-1)$. O declive de $AB \in -\frac{1}{3}$.

A: $(x, y) = (1,7) + k(2,-6), k \in \mathbb{R}$ define uma reta com declive -3.

C: $(x, y) = (2,5) + k(-1, 6), k \in \mathbb{R}$ define uma reta com declive -6.

D: $(x, y) = (-1, 6) + k(3, -1), k \in \mathbb{R}$ define a reta AB.

B: $(x,y) = (9,2) + k(-6,2), k \in \mathbb{R}$ define uma reta com declive $-\frac{2}{6} = -\frac{1}{3}$.

Nenhum dos pontos A e B pertencem a esta reta, pelo que é estritamente paralela a AB.

Opção: (B)

3.3 A(-1,6), B(2,5). Então, $\overrightarrow{BA} = (-3,1)$.

$$(x, y) = (2,5) + k(-3,1), k \in \mathbb{R}_0^+$$

Opção: (C)

4.

4.1
$$x=3$$
 $\land z=6$ $\land 0 \le y \le 3$ Opção: **(D)**

4.2 Seja P(x, y, z). Pretende-se que $\overline{AP} = \overline{GP}$.

$$(x-3)^2 + y^2 + z^2 = x^2 + (y-3)^2 + (z-6)^2 \Leftrightarrow$$

$$\Leftrightarrow x^2 - 6x + 9 + y^2 + z^2 = x^2 + y^2 - 6y + 9 + z^2 - 12z + 36$$

$$\Leftrightarrow$$
 $-6x+6y+12z=36$

$$\Leftrightarrow$$
 $-x + y + 2z = 6$

4.3 B(3,3,0) e G(0,3,6)

$$M\left(\frac{3}{2},3,3\right) = \overline{AM} = M - A = \left(\frac{3}{2},3,3\right) - (3,0,0) = \left(-\frac{3}{2},3,3\right)$$

Reta AM: $(x, y, z) = (3,0,0) + k(-\frac{3}{2}, 3, 3), k \in \mathbb{R} \iff$

$$\Leftrightarrow$$
 $(x, y, z) = \left(3 - \frac{3}{2}k, 3k, 3k\right), k \in \mathbb{R}$

A face [EFGH] está contida no plano de equação z = 6.

 $3k = 6 \iff k = 2$. Então, o ponto de interseção é (0,6,6).

5.1
$$D'_f = \begin{bmatrix} -3.5 \\ 2\sqrt{5} \end{bmatrix}$$

5.2
$$f(-\pi) + f\left(-\frac{5}{2}\right) - f\left(\frac{9}{2}\right) = -2 + 2\sqrt{5} - (-1) = -2 + 2\sqrt{5} + 1 = 2\sqrt{5} - 1$$

Opção: (C)

5.3
$$f(1) < 0 \land f(4) < 0$$

O produto de dois números negativos é positivo, logo $f(1) \times f(4) > 0$

A afirmação $f(1) \times f(4) < 0$ é **Falsa**.

Novo Espaço – Matemática A, 10.º ano

Proposta de resolução do teste de avaliação [março - 2023]

5.4

х	$-\pi$		-3		-1		3		$\frac{9}{2}$
f(x)	-2	1	0	+	0	ı	0	ı	-1

$$f(x) \ge 0 \iff -3 \le x \le 1 \lor x = 3 \iff -3 \le x \le 1 \lor x = 3$$

$$x \in [-3,1] \cup \{3\}$$

5.5 Máximos: 0 e $2\sqrt{5}$

Mínimos: -3.5; -2; -1

Crescente: $\left[-\pi, -\frac{5}{2}\right]$ e em $\left[\frac{1}{2}, 3\right]$

Decrescente: $\left[-\frac{5}{2}, \frac{1}{2}\right]$ e em $\left[3, \frac{9}{2}\right]$

5.6 f(x) = k tem duas e só duas soluções quando $k \in]-3,5$; $-2[\bigcup]0$, $2\sqrt{5}[$.

5.7
$$D_g = \left[0, \frac{9}{2} + \pi\right]; \quad D'_g = \left[-7, 4\sqrt{5}\right]$$

6.
$$g(x) = 3x - 12kx + 5 \iff g(x) = (3 - 12k)x + 5$$

A função g é decrescente quando 3-12k < 0.

$$3-12k < 0 \iff k > \frac{1}{4} \iff k \in \left[\frac{1}{4}, +\infty\right]$$