Számítógépes alkalmazások Hardver–Szoftver–Hálózat

Soós Sándor

Nyugat-magyarországi Egyetem Simonyi Károly Műszaki, Faanyagtudományi és Művészeti Kar Informatikai és Gazdasági Intézet

E-mail: soossandor@inf.nyme.hu

Sopron, 2015.

Tartalomjegyzék

- Hardver-Szoftver
 - A számítógép hardver-szoftver felépítése
 - A szoftver
 - Operációs rendszer
- Málózatok
 - A hálózatok előnyei
 - Hálózatok osztályozása
 - Hálózatok működése

SZALK - HW-SW-Net

Miről lesz szó a mai órán? l

- A hardver és szoftver rendszer modellje
- A szoftver összetevői, a szoftverfejlesztés fázisai
- A gépi kódú és az assembly programozás lényege
- Magas szintű programnyelvek csoportosítása
- A szintaktika és a szemantika fogalma
- Az operációs rendszer és rendszer-közeli szoftver
- Az ismert operációs rendszerek jellemzői
- Az operációs rendszer csatlakozási és kezelői felülete
- A felhasználók csoportosítása és jellemzőik
- Virtualizáció
- Számítógépek összekapcsolása
- A hálózatok előnyei, jellemző topológiák

Miről lesz szó a mai órán? II

- Hálózatok osztályozása
- Hálózati topológiák
- Hálózatok működése, alapszolgáltatások
- A hálózatok ISO-OSI modellje
- Gyakori hálózati szolgáltatások
- Az intranet fogalma

Outline

- Mardver-Szoftver
 - A számítógép hardver-szoftver felépítése
 - A szoftver
 - Operációs rendszer
- 2 Hálózatok
 - A hálózatok előnyei
 - Hálózatok osztályozása
 - Hálózatok működése

A számítógép hardver-szoftver felépítése

Felhasználói Interfész			
Alkalmazói Programrendszer			
Alkalmazói Programinterfész			
Adatbázis kezelő rendszer			
Operációs rendszer interfész			
Operációs rendszer			
Hardver interfész			
Hardver			

- A múlt órán beszéltünk a hardverről
- Most következik a szoftver

Outline

- Mardver-Szoftver
 - A számítógép hardver-szoftver felépítése
 - A szoftver
 - Operációs rendszer
- 2 Hálózatok
 - A hálózatok előnyei
 - Hálózatok osztályozása
 - Hálózatok működése

A szoftver

- Mi a különbség a program és a szoftver között?
- Miből áll a szoftver?
 - programmodulok
 - rendszerdokumentáció, fejlesztői dokumentáció
 - konfigurációs adatok, és ezeket tároló fájlok
 - felhasználói dokumentáció
 - a szoftver bevezetését és használatát támogató eszközök: weblap, fórum, oktatóanyagok, demók, stb.
- Ezt mindig figyelembe kell venni, ha szoftvert készítünk, vagy vásárolunk

A szoftver

- Mi a különbség a program és a szoftver között?
- Miből áll a szoftver?
 - programmodulok
 - rendszerdokumentáció, fejlesztői dokumentáció
 - konfigurációs adatok, és ezeket tároló fájlok
 - felhasználói dokumentáció
 - a szoftver bevezetését és használatát támogató eszközök: weblap, fórum, oktatóanyagok, demók, stb.
- Ezt mindig figyelembe kell venni, ha szoftvert készítünk, vagy vásárolunk

A szoftver

- Mi a különbség a program és a szoftver között?
- Miből áll a szoftver?
 - programmodulok
 - rendszerdokumentáció, fejlesztői dokumentáció
 - konfigurációs adatok, és ezeket tároló fájlok
 - felhasználói dokumentáció
 - a szoftver bevezetését és használatát támogató eszközök: weblap, fórum, oktatóanyagok, demók, stb.
- Ezt mindig figyelembe kell venni, ha szoftvert készítünk, vagy vásárolunk

Soós Sándor

A szoftverfejlesztés fázisai

- szoftverspecifikáció (Mit csináljon a szoftver?)
- szoftvertervezés (A rendszer megtervezése)
- implementáció (A programkód előállítása)
- tesztelés, validáció (A program helyességének ellenőrzése, bizonyítása)
- szoftverevolúció (üzemeltetés, továbbfejlesztés)

A programozás szintjei

- gépi kódú programozás (bitek)
- assembly programozás (szimbolikus kódok, mnemonik)
 - assembly nyelv: a programozási nyelv
 - assembler: az assembly nyelvű fordító program assembly nyelvű forráskód ⇒ gépi kód
- magasszintű programozási nyelvek ("mondatok")

A programozás szintjei – Példa

gépi kód:	10011100	0000101000110000	0000101000110001
assembly:	ADD	adat1	adat2
Pascal:	adat1 := adat1 + adat2;		
C:	adat1 = adat1 + adat2;		
Basic:	LET $adat1 = adat1 + adat2$		
Java:	adat1 = adat1 + adat2;		

Magasszintű programnyelvek l

- Imperatív (procedurális) programnyelvek
 - a programozónak le kell írnia a végrehajtandó algoritmust
 - FORTRAN 1954
 - ALGOL 60 1960
 - COBOL 1959
 - BASIC 1964
 - PASCAL 1968
 - C 1974
- Funkcionális (logikai) programnyelvek
 - nem a megoldást írja le a programozó, hanem a feladat logikai/matematika modelljét, a kielégítendő szabályokat
 - ezek után a feltett kérdésekre automatikusan tud válaszolni a program
 - Prolog
 - LISP

Magasszintű programnyelvek II

- Szimulációs nyelvek
 - a feladat statisztikai modelljéből kiindulva kísérletezi ki a megoldást
 - GPSS
 - Simula 67
 - TUTSIM
 - ASYST
- Grafikus programozást biztosító nyelvek
 - két- és háromdimenziós ábrák előállításához szükséges paraméterezhető rajzelemek az elemi utasítások
 - LabVIEW
 - VisSim

Magasszintű programnyelvek III

- Adatbázis-kezelő nyelvek
 - az adatbázis-kezelő szerverek programozását lehetővé tevő nyelvek
 - SQL
 - Progress
- Objektum alapú és objektum-orientált nyelvek
 - a feladat modelljét objektumokkal, ezek kapcsolataival és a hozzájuk köthető eseményekkel írják le
 - Smalltalk
 - Eiffel
 - C++
 - Java
 - Delphi (Object Pascal)
 - C#

A programozási nyelvek definiálása

- A számítógéppel való kommunikációhoz teljesen egyértelműen kell definiálni a szabályokat
- A programozási nyelveket két szinten definiáljuk:
 - Szintaktika, szintaxis
 - nyelvtani szabályok
 - megmondja, hogy melyek a helyes programok
 - a fordítóprogram el tudja dönteni, hogy melyek a szintaktikailag helyes programok, hiba esetén jelzi ezeket
 - Szemantika
 - jelentés, tartalom
 - meghatározza, hogy a szintaktikailag helyes programok mit jelentenek
 - szemantikai hiba esetén nem kapunk hibaüzenetet, de a program nem azt csinálja, amit várunk tőle

Outline

- Mardver-Szoftver
 - A számítógép hardver-szoftver felépítése
 - A szoftver
 - Operációs rendszer
- 2 Hálózatok
 - A hálózatok előnyei
 - Hálózatok osztályozása
 - Hálózatok működése

Operációs rendszer és rendszerközeli szoftverek

- operációs rendszernek (rendszerszoftvernek) nevezzük azoknak a gyári programoknak az összességét, mely a számítógépes eszközök és a hálózat működését, az erőforrások elosztását és igénybevételét vezérlik (pl: DOS, UNIX, WINDOWS..., NOVELL NETWARE, Mac OS, stb.)
- rendszerközeli szoftvernek nevezzük azoknak a gyári programoknak összességét, melyek általános és gyakran szükséges szolgáltatásokkal az operációs rendszerhez tartozó programokat kiegészítik (pl. Total Commander)
- nincs éles határ a két kategória között
- Miért nevezzük operációs rendszernek?

Operációs rendszerek

A számítógép alapműködését, az erőforrásaival optimálisan történő gazdálkodást a felhasználás céljától függetlenül biztosító, általános programok együttese az operációs rendszer

- MS-DOS (Disk Operating System, 1981-): egyfeladatos, egyfelhasználós (single user, single tasking), assemblyben írták, parancsnyelv bázisú, interpreteres (a kapott utasítást azonnal végrehajtja, ha nem hibás a parancs)
- Windows (1985-): eredetileg egyfelhasználós, többfeladatos (multitasking), újabb változatai (XP) már többfelhasználósak (multiuser) assembly-ben és C-ben írták, grafikus bázisú (ikonok, menü, egér, ...)
- UNIX (1973-): többfelhasználós, többfeladatos, C-ben írták, nyílt (nyilvános) forráskódú, parancsnyelv bázisú; a PC-ktől a nagyszámítógépekig használt operációs rendszer.

Az operációs rendszer környezete

- Három csatlakozási felületet kell megvalósítani (OS = Operating Sytem):
 - OS Felhasználók (kezelők)
 - OS Alkalmazások (programok)
 - OS Hardver
- Fő feladata virtuális gép(ek) megvalósítása és működtetése
- Mit nevezünk virtuális gépnek?

OS – Felhasználók – Felhasználói felület

- Ember gép kapcsolat
 - tájékoztatni kell a felhasználót a gép működéséről
 - lehetővé kell tenni a beavatkozást
- Kezelni kell az ehhez szükséges eszközöket
 - képernyő, billentyűzet, egér, hangeszközök, egyéb be-kimeneti eszközök
- A felhasználók nem egyformák:
 - "egyszerű" felhasználók
 - alkalmazás fejlesztők, programozók
 - rendszermenedzserek, rendszergazdák

Kezelői felület / Egyszerű felhasználók l

- elsősorban programokat futtatnak, a felhasználói programokkal kerülnek kapcsolatba, az operációs rendszerrel kevésbé
- a legfontosabb operációs rendszer szolgáltatás számukra a fáilrendszer
- bizonyos megbízhatóságot, biztonságot elvárnak, cserébe hajlandók bizonyos szabályokat követni, pl. bejelentkezés, jogosultságok, stb.
- számukra az operációs rendszer lehetőséget ad programok és adatok tárolására, használatára

Kezelői felület / Egyszerű felhasználók II

- az egyszerű felhasználók számára a legfontosabb operációs rendszer szolgáltatások:
 - bejelentkezés
 - fájlok, adatok kezelése
 - programok áttekintése
 - programok futtatása
 - programok párhuzamos futtatása
 - programok leállítása (kilövése)

Kezelői felület / Alkalmazásfejlesztők

- természetesen a programozók egyben "egyszerű" felhasználók is, de ezen felül...
- elsősorban programokat írnak, tesztelnek, elemeznek
- az operációs rendszer programozói felületét ismerik, bizonyos mértékig a belső működését is
- többnyire speciális fejlesztői környezeteket használnak
- szükségük van az operációs rendszer szolgáltatásaira ahhoz, hogy adatokat, statisztikákat kapjanak a rendszer állapotáról (memória, erőforrások kihasználtsága, stb.)
- az alkalmazásfejlesztők számára a legfontosabb operációs rendszer szolgáltatások:
 - API-k (Application Programming Interface) a különböző rendszer erőforrások programozásához
 - programok futtatása különböző módokon (debug)

Kezelői felület / Rendszermenedzserek

- természetesen a rendszermenedzserek egyben "egyszerű" felhasználók is, de ezen felül...
- Feladataik:
 - az operációs rendszer telepítése, konfigurálása
 - Adminisztráció: felhasználók, jogosultságok, más erőforrások
 - Hangolás: a rendszer teljesítményét befolyásoló paraméterek figyelése és beállítása
 - Felügyelet: hibák észlelése, elhárítása, log fájlok ellenőrzése, kezelése
 - Biztonsági mentések rendszeres készítése
- részletesen ismerik a rendszert
- olyan eszközökre van szükségük, amelyekre a többi felhasználónak nincs szüksége és ők nem is érhetik el azokat

Különböző felhasználói felületek

- A felhasználók különböző csoportokba tartozhatnak (egyszerű felhasználó, programozó, rendszergazda)
- Egy felhasználó több csoportba is tartozhat
- A felhasználók felkészültsége, tapasztalata is nagyon eltérő lehet
- Ugyanaz a felhasználó is többféle felületet igényel az eltérő feladatokhoz
- Akkor milyen a jó felhasználói felület?
 - sokféle
 - jól paraméterezhető
 - karakteres-grafikus
- Melyik operációs rendszer tudja mindezt?
- Biztos, hogy egyetlen operációs rendszert kell használnunk?
- Hogyan használhatunk több operációs rendszert egy számítógépen?

Virtualizáció

- Napjainkban az informatika talán leggyakrabban emlegetett fogalma, technológiája
- Nagyon sokféle dolgot értünk alatta
- "A virtualizáció számítástechnikai kifejezés, számítógépi erőforrások különböző absztrakcióinak gyűjtőneve"
- Mit lehet virtualizálni egy számítógépben?
 - egyes hardvereszközöket:
 - virtuális memória
 - virtuális nyomtató
 - tároló virtualizáció, virtuális kötetek, fájlrendszerek
 - egy teljes számítógépet:
 - szervervirtualizáció virtuális szerver
 - desktop virtualizáció virtuális munkaállomás, operációs rendszer
- Cloud Computing (erről külön fogunk beszélni)

Outline

- Hardver-Szoftver
 - A számítógép hardver-szoftver felépítése
 - A szoftver
 - Operációs rendszer
- 2 Hálózatok
 - A hálózatok előnyei
 - Hálózatok osztályozása
 - Hálózatok működése

A hálózatok előnyei

- Erőforrások megosztása, közös használata
 - Milyen erőforrásokat oszthatunk me
 - nyomtató, plotter, szkenner, . . .
 - háttértárak
 - processzor
 - hálózat
 - alkalmazások
 - adatok, adatbázisok
 - Ezáltal csökkentjük a rendszerben lévő redundanciát!
- Erőforrások többszörözése, biztonság
 - háttértárak, RAID
 - hálózat
 - adatok, adatbázisok
 - Ez növeli a redundanciát
- Kommunikáció, online szolgáltatások elérése

A hálózatok előnyei

- Erőforrások megosztása, közös használata
 - Milyen erőforrásokat oszthatunk meg?
 - nyomtató, plotter, szkenner, . .
 - háttértárak
 - processzoi
 - hálózat
 - alkalmazások
 - adatok, adatbázisok
 - Ezáltal csökkentjük a rendszerben lévő redundanciát!
- Erőforrások többszörözése, biztonság
 - háttértárak, RAID
 - hálózat
 - adatok, adatbázisok
 - Ez növeli a redundanciát
- Kommunikáció, online szolgáltatások elérése

A hálózatok előnyei

- Erőforrások megosztása, közös használata
 - Milyen erőforrásokat oszthatunk meg?
 - nyomtató, plotter, szkenner, . . .
 - háttértárak
 - processzor
 - hálózat
 - alkalmazások
 - adatok, adatbázisok
 - Ezáltal csökkentjük a rendszerben lévő redundanciát!
- Erőforrások többszörözése, biztonság
 - háttértárak, RAID
 - hálózat
 - adatok, adatbázisok
 - Ez növeli a redundanciát
- Kommunikáció, online szolgáltatások elérése

Outline

- 1 Hardver-Szoftver
 - A számítógép hardver-szoftver felépítése
 - A szoftver
 - Operációs rendszer
- Málózatok
 - A hálózatok előnyei
 - Hálózatok osztályozása
 - Hálózatok működése

Hálózatok osztályozása méret szerint

- LAN (Local Area Network / Helyi Hálózat)
 - kis kiterjedésű, épületen belül
 - nagy sebességű: 10-100 Mbps (megabit per mp)
- MAN (Metropolitan Area Network / Nagyvárosi Hálózat)
 - nagyobb kiterjedésű, két telephely között, egy városon belül
 - sebessége általában kisebb, mint a LAN esetében
 - tipikusan LAN hálózatokat kapcsol össze
- WAN (Wide Area Network / Nagy Kiterjedésű Hálózat)
 - nagy kiterjedésű, városok közötti, országokat, kontinenseket átívelő

Ez a hagyományos felosztás, ma már csak nagyon speciális esetekben van értelme saját MAN, vagy WAN hálózatot építeni az Internet használata helyett.

Hálózati topológiák l

Bus (sín) topológia

- minden eszköz egy közös bus-ra csatlakozik
- minden eszköznek van egy egyedi címe, a csomagot ezzel címezzük meg
- minden eszköz megkap minden csomagot, kiválasztja a neki szólót
- speciális lezáró elem kell a kábel végére, hogy ne verődjenek vissza a csomagok
- ha bárhol megsérül a kábel, az egész hálózat leáll

Hálózati topológiák II

Csillag topológia

- minden eszköz közvetlenül a központban lévő szerverrel van összekapcsolva
- ha egy kábel megsérül, az csak egy munkaállomást érint
- a központ meghibásodásakor a teljes hálózat leáll

Hálózati topológiák III

Gyűrű topológia

- minden eszköz két szomszéddal áll kapcsolatban, a gyűrűnek nincsen végpontja
- a csomagok egy irányban haladnak körbe a gyűrben, amíg el nem érik a címzettet
- ha egy helyen megsérül a kábel, akkor a teljes hálózat leáll

Hálózati topológiák IV

Fa topológia

- az eszközök fastruktúrában vannak rendezve
- az egyes ágakat alhálózatoknak nevezzük
- aktív eszközök irányítják a csomagokat
- nagy hálózatok is kialakíthatók hatékonyan
- ha megsérül egy kábel, egy egész alhálózat elérhetetlenné válik

Outline

- Hardver-Szoftver
 - A számítógép hardver-szoftver felépítése
 - A szoftver
 - Operációs rendszer
- 2 Hálózatok
 - A hálózatok előnyei
 - Hálózatok osztályozása
 - Hálózatok működése

Hálózati címek, IP-címek

- A különböző hálózati rendszerek eltérő kommunikációs és azonosítási módokat használtak
- Mára szinte teljesen egyeduralkodóvá vált az Internet Protocol (IP) használata
- Minden Internet Protocol segítségével kommunikáló eszközt egy egyedi IP-cím azonosít
- Kétféle IP-cím szabvány:
 - IPv4
 - 32 bites egész szám, 4 darab (0-255 közötti) szám pontokkal elválasztva
 - 4 milliárd lehetséges IP-cím
 - IPv6
 - 128 bites egész szám, 8 darab 16 bites szám kettőspontokkal elválasztva, tizenhatos számrendszerben (hexa)
 - Hány lehetséges IP-cím van? $2^{128} = 3,2 \times 10^{38}$

36 / 49

- A 4 milliárd IP cím bőségesen elegendőnek tűnt, mára azonban elfogyóban vannak
- Nem adunk minden eszköznek önálló IP-címet:

Privát IP címtartományok	Tartomány kezdete	Tartomány vége	Címek száma
24 bites tömb (/8 prefix)	10.0.0.0	10.255.255.255	16 777 216
20 bites tömb (/12 prefix)	172.16.0.0	172.31.255.255	1 048 576
16 bites tömb (/16 prefix)	192.168.0.0	192.168.255.255	65 536

IPv6 "új" típusú IP-<u>címek</u>

- 1994-ben vált szabvánnyá
- Gyakorlatilag korlátlan címtartomány
- Minden elképzelhető eszköz egyedi IP-címet kaphat
- A két rendszer párhuzamosan élhet egymás mellett
- Példák IPv6 címekre:
 - fe80:0000:0000:0000:0202:b3ff:fe1e:8329
 - fe80:0:0:0:202:b3ff:fe1e:8329, elhagyhatjuk a vezető nullákat
 - fe80::202:b3ff:fe1e:8329, elhagyhatjuk az egymás melletti 0 tagokat, de csak egyszer!
 - Most még szokatlanok ezek a számok, de meg fogunk barátkozni velük!

Névszolgáltatás – DNS

- Az IP-címek emberi szem számára nehezen kezelhetők
- Megoldás: domain nevek és DNS Domain Name Service
- Hierarchikus adatbázis
- Fa struktúrájú domain nevek
- Sok ezer szerver tárol (domain név IP-cím) párokat
- Minden szerver a maga tartományának adatait tárolja és tartja karban
- Ha ismerünk egy domain nevet, akkor
 - megkérdezünk egy DNS szervert, hogy milyen IP-cím tartozik hozzá
 - vagy tudja, és visszaadja
 - vagy azt tudja, hogy melyik másik DNS szervertől kell megkérdezni, és továbbítja a kérést
 - így néhány lépés után megkapjuk a választ
 - a valóságban kicsit bonyolultabb a dolog, de ez az alapelv

A hálózati kommunikáció szabványos modellje

- ISO-OSI hétrétegű modellje
- Szabványokban definiálja két hálózati eszköz kommunikációjának módját
- ISO: International Organization for Standardization, Nemzetközi Szabványügyi Szervezet (iso görögül egyenlőt jelent)
- OSI: Open Systems Interconnection Reference Model, Nyílt rendszerek Összekapcsolása, referencia modell
 - az Internet működésének technikai alapja
 - minden eszköz összekapcsolható minden más eszközzel
 - Hogyan lehetséges ez?
 - 7 szintre osztja a hálózati kommunikációt
 - minden szint működését szabványok rögzítik
 - minden szint csak a közvetlenül alatta és felette lévő réteggel kommunikálhat, nem léphet át más szintekre

ISO-OSI példa: Vállalati kommunikáció

ISO-OSI hétrétegű modell

Alkalmazások, protokollok és az egyes OSI rétegek

Réteg	Fontos példa	TCP/IP készlet	SS7	AppleTalk készlet	OSI készlet	IPX készlet	SNA	UMTS
7 - Alkalmazás	HL7, Modbus, SIP	HTTP, SMTP,SMPP SNMP, FTP, Telnet, NFS, NTP	ISUP, INAP, MAP, TUP, TCAP	AFP, PAP	FTAM, X.400, X.500, DAP		APPC	
6 - Megjelenési	TDI, ASCII, EBCDIC, MIDI, MPEG	XDR, SSL, TLS		AFP, PAP	ISO 8823, X.226			
5 - Viszonylati	Named Pipes, NetBIOS, SAP, SDP	Viszonylat kiépítés TCP- vel		ASP, ADSP, ZIP	ISO 8327, X.225	NWLink	DLC?	
4 - Átviteli	NetBEUI	TCP, UDP, RTP, SCTP		ATP, NBP, AEP, RTMP	TP0, TP1, TP2, TP3, TP4, OSPF	SPX, RIP		
3 - Hálózati	NetBEUI, Q.931	IP, ICMP, IPsec, ARP, RIP, BGP, OSPF	MTP-3, SCCP	DDP	X.25 (PLP), CLNP	IPX		RRC (Radio Resource Control)
2 - Adatkapcsolati	Ethernet, Token ring, FDDI, PPP, HDLC, Q.921, Frame Relay, ATM, Fibre Channel		MTP-2	LocalTalk, TokenTalk, EtherTalk, Apple Remote Access, PPP	X.25 (LAPB), Token Bus	IEEE 802.3 framing, Ethernet II framing	SDLC	MAC (Media Access Control)
1 - Fizikai	RS-232, V.35, V.34, Q.911, T1, E1, 10BASE-T, 100Base- TX, ISDN, SONET, DSL		MTP-1	Localtalk árnyékolt, Localtalk árnyékolás nélküli kábelen (PhoneNet)	X.25 (X.21bis, EIA/TIA-232, EIA/TIA-449, EIA-530, G.703)		Twinax	PHY (Physical Layer)

Miért jó, ha megismerünk egy ilyen rendszert

- Jobban átlátjuk, hogy mi történik a háttérben, amikor szörfölünk az Interneten
- Jobban értjük, amikor aláírjuk a szerződést az Internet szolgáltatóval
- Példa arra, hogy hogyan lehet megtervezni egy nagy rendszert
- Ezt az elvet felhasználhatjuk máshol is
- Példaként lásd a vállalati kommunikációról szóló példát!

Hálózati szolgáltatások l

- Hagyományos szolgáltatások:
 - Elektronikus levelezés
 - FTP File Transfer Protocol
 - News, newsgroups Hírcsoportok
 - Gopher A www előfutára, hierarchikus menürendszerben tette elérhetővé az internetes tartalmakat
 - WWW World Wide Web
- Manapság minden hagyományos szolgáltatást magába olvasztott a World Wide Web
- Szinte minden szolgáltatást egyetlen böngésző programból érünk el
- Az e-mail és az FTP maradt használatban részben a www-tól függetlenül is, de ezeknek is megvan a webes megfelelőjük

Hálózati szolgáltatások II

- Új szolgáltatások:
 - Azonnali üzenetküldés
 - Videó átvitel
 - Távkonferencia
 - Keresés
 - Szemantikus web
 - Web2 Web 2.0
 - Cloud computing Számítási felhő
 - Internet of Things (IoT) Tárgyak Internete
 - •

Heterogén hálózatok

- Egy hagyományos vállalati rendszer 10 évvel ezelőtt:
 - belső vállalati hálózat:
 - megosztott szerverek, nyomtatók, stb.
 - belső kommunikáció, levelezés
 - elektronikus faliújság
 - céges telefonkönyv, a menza étlapja, hírek, megosztott fájlokban a szervereken
 - egyes gépeken, vagy minden gépen van Internet hozzáférés is:
 - webes keresés
 - kommunikáció, chat, Skype, stb.
 - a cég honlapja
 - partnerek honlapjai, egyéb internetes szolgáltatások
 - A cég informatikusai üzemeltetnek egy belső hálózatot a munkatársak számára, esetleg belépési lehetőséggel a partnercégek munkatársai számára
 - Ehhez kitalálnak, megvalósítanak és üzemeltetnek különböző egyedi megoldásokat

Intranet

- Ötlet: Miért kell más megoldásokat használnunk a belső hálózaton, mint amit az Interneten használunk?
- Hagyomány: az Internet elterjedése előtt épültek ki a helyi hálózatok egyedi technikákkal, más protokollokat használva
- Intranet: olyan belső hálózat, ami ugyanazokat a módszereket, hardver és szoftver eszközöket használja, mint az Interneten
 - TCP-IP protokoll a hálózati eszközök közötti kommunikációhoz
 - HTTP protokoll a hipertext dokumentumok továbbításához
 - A munkaállomásokon böngésző program fut
 - A szervereken webszerver, levelezőszerver, FTP szerver fut
 - Kommunikációhoz használhatjuk az e-mailt, chat-et, Skype-ot, MSN-t stb.
- Mi választja el a külső és a belső hálózatot?
 - Tűzfal Firewall

Intranet

- Ötlet: Miért kell más megoldásokat használnunk a belső hálózaton, mint amit az Interneten használunk?
- Hagyomány: az Internet elterjedése előtt épültek ki a helyi hálózatok egyedi technikákkal, más protokollokat használva
- Intranet: olyan belső hálózat, ami ugyanazokat a módszereket, hardver és szoftver eszközöket használja, mint az Interneten
 - TCP-IP protokoll a hálózati eszközök közötti kommunikációhoz
 - HTTP protokoll a hipertext dokumentumok továbbításához
 - A munkaállomásokon böngésző program fut
 - A szervereken webszerver, levelezőszerver, FTP szerver fut
 - Kommunikációhoz használhatjuk az e-mailt, chat-et, Skype-ot, MSN-t stb.
- Mi választja el a külső és a belső hálózatot?
 - Tűzfal Firewall

Befejezés

Köszönöm a figyelmet!

