Linear Algebra cheat sheet

Ellin Zhao

May 23, 2018

1 Chapter 1

Thm Given $\mathbf{A}\vec{x} = \vec{b}$, \mathbf{A} is $m \times n$, the following statements are logically equivalent:

- a) For each \vec{b} in \mathbb{R}^m , $\mathbf{A}\vec{x} = \vec{b}$ has a solution.
- b) Each \vec{b} in \mathbb{R}^m is a linear combination of columns of **A**.
- c) The columns of **A** span \mathbb{R}^m .
- d) A has a pivot position in every row.

1.1 Transformations

Def A transformation T is linear if:

- a) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}), \forall \vec{u}, \vec{v} \in T$ check. does this mean each vector in the domain of T?
- b) $T(c\vec{u}) = cT(\vec{u}), \forall c \in \mathbb{R}, \vec{u} \in T$

Def A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** \mathbb{R}^m if each \vec{b} in \mathbb{R}^m is the image of at least one \vec{x} in \mathbb{R}^n . This is assuming the mapping is Ax=b.

• pivots in every row iff columns span \mathbb{R}^m .

Def A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** if each \vec{b} in \mathbb{R}^m is the image of at most one \vec{x} in \mathbb{R}^n . This is assuming the mapping is Ax=b.

• pivots in every column iff columns are linearly independent.

2 Chapter 2

Thm Matrix transpose, inverse identities:

a)
$$(\mathbf{A}^{\intercal})^{\intercal} = \mathbf{A}$$

b)
$$(\mathbf{A} + \mathbf{B})^{\intercal} = \mathbf{A}^{\intercal} + \mathbf{B}^{\intercal}$$

c)
$$(r \mathbf{A})^{\intercal} = r \mathbf{A}^{\intercal}, \forall r \in \mathbb{R}$$

d)
$$(\mathbf{A}\mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}$$

e)
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

f)
$$(AB)^{-1} = B^{-1}A^{-1}$$

g)
$$(\mathbf{A}^{\intercal})^{-1} = (\mathbf{A}^{-1})^{\intercal}$$

Thm Inverse of a 2×2 matrix:

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Thm Invertible Matrix Thereom: Given **A** is $n \times n$, the following statements are logically equivalent:

- a) A is invertible.
- b) **A** is row equivalent to $\mathbf{I}_{n\times n}$.
- c) **A** has n pivot positions.
- d) $\mathbf{A}\vec{x} = \vec{0}$ has only trivial solutions.
- e) Columns of **A** form a linearly independent set.
- f) $\mathbf{A}\vec{x} = \vec{b}$ has at least one solutions for each \vec{b} in \mathbb{R}^n .
- g) $\vec{x} \mapsto \mathbf{A}\vec{x}$ is one-to-one.
- h) Columns of **A** span \mathbb{R}^n .
- i) $\vec{x} \mapsto \mathbf{A}\vec{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j) $\exists \mathbf{C}_{n \times n}$ such that $\mathbf{C}\mathbf{A} = \mathbf{I}$.
- k) $\exists \mathbf{D}_{n \times n}$ such that $\mathbf{AD} = \mathbf{I}$.
- l) \mathbf{A}^{\intercal} is an invertible matrix.
- m) Columns of **A** form a basis of \mathbb{R}^n .
- n) Col $\mathbf{A} = \mathbb{R}^n$.
- o) dim Col $\mathbf{A} = n$.
- p) rank $\mathbf{A} = n$.
- q) Nul $\mathbf{A} = \vec{0}$ check this...
- r) dim Nul $\mathbf{A} = 0$.
- s) 0 is not an eigenvalue of \mathbf{A} .
- t) The determinant of A is not 0.