Max Knutsen

maxknutsen.com | mknutsen99@gmail.com | 703.300.6216

Job Skills

programming languages C, C++, Python, Java

experience areas

UEFI app/driver development windows driver development distributed system engineering

version control

git, mercurial, subversion, cvs

Education

Bachelors of Science, Computer Science

University of Maryland, Baltimore County GPA 3.3

Coursework

Operating Systems
Artificial Intelligence
Distributed Systems
Robotics
Databases
Graph Theory

Leadership

Retreiver Robotics

Founding member (2013) Lead programmer (2013-15) Treasurer (2014) Programming mentor (2013-16)

Experience

Software Engineer - Core UEFI

Microsoft Redmond, WA | Aug, 2017 - Present

Wrote SMM driver, UEFI app, and runtime Python application to facilitate open source investigation of new feature.

Software Engineer - Hyper-V

Microsoft Redmond, WA | Feb - Aug 2017

Exposed memory management features to server engineers through new driver level API and accompanying Python script.

Software Engineer Intern - Distributed Storage

Facebook Menlo Park, CA | May - Aug 2016

Implemented caching mechanism to avoid initial twenty minute setup, increasing the availability of the Namenode service.

Architected test layer to distributed server to test fallback in a production environment, which was used to discover errors in redundancy systems.

Jr. Software Engineer Intern - Robotics R&D

Cougaar Software Tysons Corner, VA | 2014 - 2016

Designed goal-oriented distributed robotics framework. Built robot which could balance water tanks with an introduced leak.

Projects

Distributed Systems

Java | February - May 2016

Used Twitter garden hose with Avro, Kafka, Storm, Redis to track trending hashtags in real time.

Water Rescue Robot

Python | March - May 2016

Used Robot Operating System (ROS) to task modified waterresistant AR.Drone to land near objects in the water.

Real Time Video Game Al

Java | May 2016

Built artificial intelligence that used modular action sequences to respond to stimuli in real time.