Total No.	of Questions : 9]	90	SEAT No. :	7					
PA-1189			[Total No. of Pages : 5	5					
	[5025 [§]	211							
[5925]-211 S.E. (Electronics/E&TC) (Electronics & Computer)									
ENGINEERING MATHEMATICS - III									
(2019 Pattern) (Semester - III) (207005)									
Time : 21/2			[Max. Marks : 70	9					
	ons to the candidates:		<u> </u>	•					
1)	Q.1 is compulsory.								
2)	Attempt Q2 or Q3, Q4 or Q5, Q6								
3)	Neat diagrams must be drawn w		essary.						
<i>4</i>)	Figures to the right indicate full		,						
5) 6)	Use of electronic pocket calculate Assume suitable data, if necessar		l. (5)						
<i>7</i>)	Write numerical calculations cor	-	ur decimal places						
,			Securiar praces.						
	×								
<i>Q1</i>) Writ	te the correct option for the follow	wing multip	le choice questions :						
i)	The divergence of vector field	× 20%							
	$\vec{F} = 3x^2 \overline{i} + 3y^2 \overline{j} + 2xz \overline{k} \text{ at poir}$	nt (1,1,1) is	[2]]					
	a) 14	b) 2		3					
	c) 12	d) 8	; ئىن						
ii)	If $f(x) = x^2$, $h = 1$, $\Delta \nabla f(x)$ is g	iven by	[2]]					
	a) -2	b) 1	A C. No						
	c) 12 If $f(x) = x^2$, $h = 1$, $\Delta \nabla f(x)$ is g a) -2 c) 2	d) -1							
iii)	The value of $\int_{C}^{\infty} \frac{z^2 + 1}{z - 2} dz$ where C	C is $ z = 1$,]					
	a) 0	b) 2π	2,010,						
	c) 4π <i>i</i>	d) $\frac{\pi i}{2}$	5. P						
		· · · · · · · · · · · · · · · · · · ·	<i>(</i>						

P.T.O.

iv)	By Gauss - Divergence theorem	$\iint \hat{r}_0 \hat{n} ds \text{ is equal to}$	[2]
-----	-------------------------------	--	-----

a)
$$3\iiint_{v} dv$$
 b) $\iiint_{v} \frac{1}{r^2} dv$

c)
$$\iiint dv$$
 d) 0

a)
$$1 - \delta$$
 b) $1 + \delta^2$ c) $1 + \delta$ d) $1 - \nabla$

vi) If
$$f(z)$$
 is analytic on and within a closed conter C then by Cauchy's Integral theorem $\oint f(z)dz$ is equal to [1]

a)
$$2\pi i$$
 b) πi

Using Newton's forward difference formula, find a polynomial passing **Q2**) a) through the points (0,1), (1,1), (2,7), (3,25), (4,61), (5,121). Hence find y

and
$$\frac{dy}{dx}$$
 at $x = 0.5$. [5]

The speed (km/hr) of a train which starts from rest is given by the following b) table, the time being recorded in minutes.

t (minutes)	0	2	4.	6	8	10	12	14	16	18	20
v = ds/dt	0	100	18	25	29	32	20	11	5	2	00
(km/hr)		No.	• '								20°

Find approximately the total distance run in 20 minutes using Simpson's

$$\frac{1}{3}$$
 rd rule.

Determine using modified Euler's method the value of y at x = 0.1, given [5] $\frac{dy}{dx} = x^2 + y, y(0) = 1.$ Take h = 0.1. (Two iterations only)
OR c)

$$\frac{dy}{dx} = x^2 + y, y(0) = 1.$$

Q3) a) Given the table of square roots, calculate the value of $\sqrt{155}$ by Newton's backward difference formula. [5]

X	150	152	154	156
$y = \sqrt{x}$	12.247	12,329	12.410	12.490

b) Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^2}$$
 using Trapezoidal rule taking $h = \frac{1}{4}$. [5]

- c) Using fourth order Range-Kutta method, solve $\frac{dy}{dx} = \sqrt{(x+y)}$, y(0) = 1, to find y at x = 0.2 taking h = 0.2. [5]
- **Q4)** a) Find angle between the normal to the surface $xy = z^2$ at (1,4,2) and (-3,-3,3).
 - b) Find the directional derivative of $\varphi = x^2 y^2 2z^2$ at the point p(2,-1,3), in the direction PQ where Q is (5,6,4). [5]
 - c) Show that the vector field $\overline{F} = (8xy + z^4) \overline{i} (4x^2 2) \overline{j} + (4xz^3 y) \overline{k}$ is irrotational. Find scalar potential function φ . [5]

OR

Q5) a) Find directional derivative of $\varphi = e^{2x} \cos(yz)$ at the origin in the direction tangent to the curve $\overline{r} = a \sin t + \overline{i} + a \cos t \overline{j} + a \overline{k}$ at $t = \frac{\pi}{4}$. [5]

b) Prove that
$$\overline{b} \times \nabla(\overline{a} \cdot \nabla \log r) = \frac{\overline{b} \times \overline{a}}{r^2} - \frac{2(\overline{a} \cdot \overline{r})}{r^4} (\overline{b} \times \overline{r}).$$
 [5]

Find angle between the tangents to the curve $\vec{r} = t^2 \vec{i} + 2t \vec{j} - t^3 \vec{k}$ at the points t = 1 and t = -1. [5]

0 ()		~ .		•	
Q6) a)	Apply	Green's	theorem	to evaluate	3 :

$$\int_C (x^2 dx + xy dy)$$

Where C is the curve of region enclosed by $y = x^2$ and the line y = x.

[5]

Using Gauss - Divergence theorem, evaluate: b)

$$\iint (x^3 \overline{i} + y^3 \overline{j} + z^3 \overline{k}) \circ d\overline{s}$$

Over the surface of $x^2 + y^2 + z^2 = 1$.

[5]

$$\iint_{S} (\nabla \times \overline{F}) \circ \hat{n} \, ds$$

for $\overline{F} = (x^2 + y - 4)\overline{i} + 3xy\overline{j} + (2xz + z^2)\overline{k}$ over the surface of hemisphere $x^2 + y^2 + z^2 = 16$ above the XOY plane.

Find the work done in moving a particle once around the ellipse **Q7**) a)

$$\frac{x^2}{25} + \frac{y^2}{16} = 1, z = 0 \text{ under the field of force given by}$$

$$\overline{F} = (2x - y + z)\overline{i} + (x + y + z^2)\overline{j} + (3x - 2y + 4z)\overline{k}.$$

b)

$$\iiint \frac{1}{r} dV = \iint \frac{1}{r} \circ \hat{n} ds$$

c)

$$\iint_{S} (\nabla \times \overline{F}) \circ d\overline{S}$$

Solution [5]

Solution [5]

From Eq. ($\nabla \times \overline{F}$) $\circ d\overline{s}$ Where $\overline{F} = (x^3 - y^3)\overline{i} - xyz\overline{j} + y^3\overline{k}$ and S is the surface $x^2 + 4y^2 + z^2 - 2x = 4$ above the plane x = 0.

$$x^2 + 4y^2 + z^2 - 2x = 4$$
 above the plane $x = 0$

- Use Cachy's integral formula to evaluate $\oint_C \frac{e^z}{z+2} dz$ where C is the circle b) [5]
- Find the bilinear transformation which maps the points 0,1,2 from z plane on to the points 1, $\frac{1}{2}$, $\frac{1}{3}$ of the W - plane. [5]
- Show that the analytic function f(z) with constant modulus is constant. **Q9**) a) [5]
 - Use residue theorem to evaluate $\int_{C}^{\infty} \frac{e^{z}}{(z+1)(z+2)} dz$ where C is the contour

$$|z+1| = \frac{1}{2}$$
. [5]

ellipse [5] Show that the transformation $w = z + \frac{1}{z} - 2i$ maps the circle |z| = 2 into an c) ellipse. Find centre, semi-major and semi-minor axes of ellipse

