CLASS: Quotient Remanider Theorem

Due Feb 8 at 11:59pm **Points** 2 **Questions** 2 **Time Limit** None

Allowed Attempts Unlimited

Instructions

This CLASS assignment is a introduction to the application of the Quotient Remainder Theorem.

You have multiple attempts in answering the question

<u>Chapter 4 note</u> <u>→ (https://www.youtube.com/watch?</u> <u>v=L8LTE2xgm9g&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=2)</u>

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	8 minutes	2 out of 2

(!) Correct answers are hidden.

Score for this attempt: 2 out of 2

Submitted Feb 8 at 3:37pm This attempt took 8 minutes.

Question 1

1 / 1 pts

If a divides b and both positive, then a is smaller than or equal b

⇒ (https://www.youtube.com/watch?

v=qlbXdLdXW0Q&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=11(

The Only Divisors of 1 are 1 and -1 ⇒

(https://www.youtube.com/watch?

v=8QfZk1Uha70&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=110)

Transitive Property of Divisibility ⇒ (https://www.youtube.com/watch? v=Vcc5BrNbDBw&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=112

<u>Unique Factorization</u> ⇒ (https://www.youtube.com/watch? v=FTtPcnzYAMY&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=116

Suppose m is an integer such that $8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot m = 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10$. 17 divides m \Rightarrow

(https://www.youtube.com/watch?

v=mxG6faicwB8&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=117

Quotient Remainder Theorem Note.pdf

(https://deanza.instructure.com/courses/33250/files/10826784?wrap=1) ↓ (https://deanza.instructure.com/courses/33250/files/10826784/download? download_frd=1)

Now answer the following question:

Suppose today is Tuesday, and neither this year nor next year is a leap year. What day of the week will it be 1 year from today?

Solution There are 365 days in a year that is not a leap year, and each week has 7 days. Now

$$365 \, div \, 7 = 52$$
 and $365 \, mod \, 7 = 1$

because $365 = 52 \cdot 7 + 1$. Thus 52 weeks, or 364 days, from today will be a Tuesday, and so 365 days from today will be -

Monday

Tuesday

Wednesday

Friday

Saturday

Sunday

Question 2	1 / 1 pts		
If a divides b and both positive, then a is smaller than or	<u>equal b</u>		
	Sindov=11(
	ixiliuex-iii		
The Only Divisors of 1 are 1 and -1 (https://www.youtube.com/watch?			
((https://www.youtube.com/watch? v=8QfZk1Uha70&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh8	kindex=110)		
Transitive Property of Divisibility ⇒ (https://www.youtube.c	,		
v=Vcc5BrNbDBw&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfl	<u> &index=112</u>		
Unique Factorization ⊟ (https://www.youtube.com/watch?			
v=FTtPcnzYAMY&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh	<u>&index=116</u>		
Suppose m is an integer such that 8·7·6·5·4·3·2·m =			
<u>17·16·15·14·13·12·11·10. 17 divides m</u>			
(https://www.youtube.com/watch?			
v=mxG6faicwB8&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh			
Quotient Remainder Theorem (https://www.youtube.com			
v=rRUspOiF-tY&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&	<u> </u>		
Quotient Remainder Theorem Note.pdf			
(https://deanza.instructure.com/courses/33250/files/10826784?wrap=1) ↓ (https://deanza.instructure.com/courses/33250/files/10826784/download?			
download_frd=1)			
Now answer the following question:			
Suppose m is an integer. If $m \mod 11 = 6$, what is $4m$	mod 11?		
4	•		
2			

Quiz Score: 2 out of 2