

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Plan de Estudios

Ingeniería en Computación

		Álgel	ora Lineal		
Clave	Semestre	Créditos	Área		
	2	9.0	Matemáticas		
Modalidad	Curso		Ti	Taérica	
Carácter	Obligatorio		Tipo	Teórico	
			Horas		
	Semana			Semestre	
Teóricas	4	.5	Teóricas	72.0	
Prácticas	0	.0	Prácticas	0.0	
Total	4	.5	Total	72.0	

Seriación indicativa				
Asignatura antecedente	Álgebra, Geometría Analítica			
Asignatura subsecuente	Métodos Numéricos			

Objetivo general: Analizar con un manejo formal matemático, los elementos básicos de los espacios vectoriales y las características principales que se obtienen, al establecer en ellos un producto interno y un operador lineal para aplicarlos en la solución de problemas que requieren de estos conceptos como instrumentos para su resolución.

Índice temático					
Na	o. Tema		Horas Semestre		
NO.			Prácticas		
1	SISTEMAS DE ECUACIONES LINEALES	9.0	0.0		
2	MATRICES Y DETERMINANTES	15.0	0.0		
3	ESPACIOS VECTORIALES	12.0	0.0		
4	ESPACIOS CON PRODUCTO INTERNO	12.0	0.0		
5	TRANSFORMACIONES LINEALES	15.0	0.0		
6	OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO	9.0	0.0		
	Total	72.0	0.0		
	Suma total de horas	7	2.0		

Contenido Temático

1. SISTEMAS DE ECUACIONES LINEALES

Objetivo: Adquirir las herramientas para resolver los sistemas de ecuaciones lineales.

- 1.1 Definiciones de ecuación lineal y de su solución.
- 1.1.1 Definición de sistemas de ecuaciones lineales y su solución.
- 1.1.2 Clasificación de los sistemas de ecuaciones lineales en cuanto a su solución.
- 1.2 Concepto de sistemas equivalentes.
- 1.2.1 Reducción de sistemas de ecuaciones lineales.
- 1.2.2 Método de eliminación de Gauss.
- 1.3 Representación y solución matricial de los sistemas de ecuaciones lineales.
 - 1.3.1 Regla de Cramer.
- 1.4 El sistema de ecuaciones lineales como modelo matemático de problemas.

2. MATRICES Y DETERMINANTES

Objetivo: Adquirir los conceptos y analizar las propiedades de las matrices y determinantes.

- 2.1 Definiciones de matriz y de igualdad de matrices.
- 2.1.1 Operaciones con matrices y sus propiedades: adición, sustracción y multiplicación de matrices.
- 2.1.2 Definición de matriz identidad.
- 2.2 Concepto de transformaciones elementales.
 - 2.2.1 Definición y propiedades de la inversa de una matriz.
 - 2.2.2 Calculo de la matriz inversa por transformaciones elementales.
- 2.3 Concepto de ecuación matricial y su solución.
- 2.4 Matrices triangulares, diagonales y sus propiedades.
- 2.4.1 Definición de traza de una matriz y sus propiedades.
- 2.5 Definición de transposición de una matriz y sus propiedades.
- 2.5.1 Definición: de matrices simétricas, de matrices antisimétricas y de matrices ortogonales.
- 2.5.2 Definición de matriz conjugada y sus propiedades.
- 2.5.3 Definición: de matrices Hermitianas, de matrices Antihermitianas y de matrices unitarias.
- 2.5.4 Concepto de potencia de una matriz y sus propiedades.
- 2.6 Definición de determinante de una matriz y sus propiedades.
- 2.6.1 Cálculo de determinantes: Regla de Sarrus, desarrollo por cofactores y método de la matriz triangular.
- 2.6.2 Cálculo de la matriz inversa por medio de la adjunta.

3. ESPACIOS VECTORIALES

Objetivo: Analizar el concepto de espacio vectorial y sus propiedades.

- 3.1 Definición de espacio vectorial.
 - 3.1.1 Propiedades elementales de los espacios vectoriales.
 - 3.1.2 El conjunto solución de un sistema homogéneo de ecuaciones lineales como un ejemplo de espacio vectorial.

 Definición de subespacio vectorial.
- 3.2 Condición necesaria y suficiente para que un subconjunto de un espacio sea un subespacio vectorial.
- 3.2.1 Conceptos de combinación lineal y dependencia lineal.
- 3.3 Concepto de conjunto generador de un espacio vectorial.
- 3.3.1 Definición de base y dimensión de un espacio vectorial.
- 3.3.2 Conceptos de base ordenada, coordenadas de un vector respecto a una base ordenada y matriz de transición.
- 3.4 Conceptos de isomorfismo entre espacios vectoriales de dimensión finita.
- 3.4.1 Definiciones del espacio renglón y el espacio columna de una matriz.
- 3.5 Concepto de espacio vectorial de funciones.
- 3.6 Concepto de los subespacios de dimensión finita compuestos por funciones.
- 3.6.1 Análisis de la dependencia lineal de funciones.
- 3.6.2 Definición de aplicación del Wronskiano.
- 3.6.3

4. ESPACIOS CON PRODUCTO INTERNO

Objetivo: Definir y comprender el concepto de producto interno de algunos espacios vectoriales.

- 4.1 Definición de producto interno en un espacio vectorial. Espacios Euclideos, reales y complejos, como casos particulares de los espacios con producto interno.
- 4.1.1 Definición y propiedades de la norma. Concepto de vectores unitario.
- 4.2 Definición de ortogonalidad y ángulo entre vectores de un espacio con producto interno.
- 4.2.1 Definición de: conjuntos ortogonales y ortonormales.
- 4.2.2 Obtención de las coordenadas de un vector respecto a una base ortogonal y una base ortonormal.
- 4.2.3 Proceso de ortogonalización de Gram-Schmidt.
- 4.2.4 Concepto de la serie trigonométrica de Fourier.

5. TRANSFORMACIONES LINEALES

Objetivo: Comprender y analizar el concepto de transformación lineal, así como sus correspondientes aplicaciones sobre los espacios vectoriales.

- 5.1 Definición de transformación entre espacios vectoriales, definiciones de dominio y codominio y propiedad de linealidad.
 - 5.1.1 Definición de transformación lineal.
 - 5.1.2 Definición de recorrido y núcleo de una transformación lineal.
- 5.2 El recorrido y el núcleo como subespacios vectoriales.
- 5.2.1 Caso de dimensión finita: relación entre las dimensiones del dominio, el recorrido y el núcleo de una transformación lineal.
- 5.2.2 Análisis de transformaciones lineales inyectivas, suprayectivas y biyectivas.
- 5.3 Concepto y obtención de la matriz asociada a una transformación lineal con dominio y codominio de dimensión finita. Álgebra de las transformaciones lineales; definición y propiedades de: adición, multiplicación por un escalar
- 5.3.1 y composición e inversa.

Concepto de operador lineal.

- 5.4 Definición de valores y vectores propiedades de un operador lineal.
- 5.4.1 Caso de dimensión finita.
- 5.4.2 Definición de polinomio característico propiedades de los vectores propios.
- 5.4.3 Definición de espacio propio.
- 5.4.4 Enunciado del teorema de Cayley-Hamilton.
- 5.5 Definición y propiedades de las matrices similares.
- 5.5.1 Concepto de operador diagonalizable.
- 5.5.2 Proceso de diagonalización de un operador lineal.
- 5.5.3

6. OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO

Objetivo: Adquirir las herramientas para trabajar con los operadores lineales en espacios vectoriales con producto interno.

- 6.1 Definición y propiedades de los operadores hermitianos y antihermitianos. Enunciado del teorema espectral.
- 6.1.1 Definición y propiedades de los operadores unitarios y ortogonales.
- 6.2 Definición y propiedades de las formas cuadráticas.
- 6.2.1 Aplicaciones al giro de ejes en dos y tres dimensiones.

Estrategias didácticas		Evaluación del aprendizaje		Recursos	
Exposición	(X)	Exámenes parciales	(X)	Aula interactiva	(X)
Trabajo en equipo	(X)	Examen final	(X)	Computadora	(X)
Lecturas	(X)	Trabajos y tareas	()	Plataforma tecnológica	(X)
Trabajo de investigación	(X)	Presentación de tema	()	Proyector o Pantalla LCD	(X)
Prácticas (taller o laboratorio)	()	Participación en clase	(X)	Internet	(X)
Prácticas de campo	()	Asistencia	()		
Aprendizaje por proyectos	()	Rúbricas	()		
Aprendizaje basado en problemas	()	Portafolios	()		
Casos de enseñanza	()	Listas de cotejo	()		
Otras (especificar)		Otras (especificar)		Otros (especificar)	

Perfil profesiográfico				
Título o grado	 Poseer un título a nivel licenciatura en Ingeniería, Matemáticas, Física o carreras cuyo perfil sea afín al área de Matemáticas. 			
Experiencia docente	 Poseer conocimientos y experiencia profesional relacionados con los contenidos de la asignación a impartir. Tener la vocación para la docencia y una actitud permanentemente educativa a fin de formar íntegramente al alumno: Para aplicar recursos didácticos. Para motivar al alumno. Para evaluar el aprendizaje del alumno, con equidad y objetividad. 			
Otra característica	 Poseer conocimientos y experiencia pedagógica referentes al proceso de enseñanza-aprendizaje. Tener disposición para su formación y actualización, tanto en los conocimientos de su área profesional, como en las pedagógicas. Identificarse con los objetivos educativos de la institución y hacerlos propios. Tener disposición para ejercer su función docente con ética profesional: Para observar una conducta ejemplar fuera y dentro del aula. Para asistir con puntualidad y constancia a sus cursos. Para cumplir con los programas vigentes de sus asignaturas. 			

Bibliografía básica	Temas para los que se recomienda
Antón, H. (2003). Introducción al Álgebra Lineal. México: Limusa.	1,2,3,4,5 y 6
Bretscher, O. (2009). Linear algebra with applications. New Jearsey: Pearson.	1,2,3,4,5 y 6
Grossman, S. (2012). Algebra lineal. México: Mc Graw Hill.	1,2,3,4,5 y 6
Hitte, F. (2002). Álgebra Lineal. México: Pearson.	1,2,3,4,5 y 6
Howard, A. (2003). Introducción al algebra lineal. México: Limusa Wiley.	1,2,3,4,5 y 6

Kaufmann, J. (2000). Álgebra Intermedia. México: Thomson.	1
Larson, R. (2008). <i>Introducción al álgebra lineal.</i> México: Limusa.	1,2,3,4,5 y 6
Larson, R. y Falvo C. (2016). Fundamentos de álgebra lineal. USA: Cengage Learning Editores.	1,2,3,4,5 y 6
Lipschutz, S. (1993). <i>Álgebra Lineal.</i> España: McGraw-Hill.	1,2,3,4,5 y 6
Petersen, P. (2012). Linear Algebra. USA: Springer.	2,3,4,5,6
Poole, D. (2016). Álgebra lineal una introducción moderna. EUA: Cengage Learning Editores.	1, 2, 3
Sanz, A. P. (2013). Álgebra lineal. Madrid: Garceta.	1,2,3,4,5 y 6
Shafarevich, I. R. (2012). Linear Algebra and Geometry. USA: Springer.	1,2,3,4,5 y 6
Sullivan, M. (2012). Algebra and trigonometry. New Jersey: Pearson.	1,2,3,4,5 y 6

Bibliografía complementaria	Temas para los que se recomienda
Dauben, J. y Scriba, C. J. (2002). Writing the History of Mathematics: Its Historical Development. Germany: Birkhäuser.	1,2,3,4,5 y 6
Emmer, M. (2012). Imagine Math. Between Culture and Mathematics. USA: Springer.	1,2,3,4,5 y 6
Gindikin, S. (2007). Tales of Mathematicians and Physicists. New York: Springer.	1,2,3,4,5 γ 6

