Semester V (B.Tech)

Er. No.3 118083... Academic Year: 2023-24

Jaypee University of Engineering & Technology, Guna

T-2(Odd Semester 2023)

18B11CI511 - Theory of Computation

Maximum Duration: 1 Hour 30 minutes

Maximum Marks: 25

Notes:

- 1. This question paper has five questions.
- 2. Write relevant answers only.
- 3. Do not write anything on question paper (Except your Er. No.).
- 4. Marks are indicated in the square bracket

Q1.		Show that $G_1 = (\{S\}, \{a, b\}, P_1, S)$, where $P_1 = \{S \rightarrow aSb \mid ab\}$ is equivalent to $G_2 = (\{S, A, B, C\}, \{a, b\}, P_2, S)$, Here P_2 consists of: $S \rightarrow AC, C \rightarrow SB$,	Marks [03]	CO No. CO2
		to $G_2 = (\{S, A, B, C\}, \{a, b\}, \{2, b\}, \{n\}, \{n\}, \{n\}, \{n\}, \{n\}, \{n\}, \{n\}, \{n$	[02]	CO4
	(b)	S \rightarrow AB, A \rightarrow a, B \rightarrow b. Construct a regular grammar G over {a, b} for L (G) = {a ⁿ b ^m : n \geq 1, m \geq 0} Construct a regular expression corresponding to the automata given below:	[05]	CO3
O2.		Construct a regular expression corresponding		

		Consider regular expression (a + b)*abb. Construct an equivalent		CO4
Q3.			[02]	
	(a)	NFA with null- moves	[02]	
	(p)	Convert machine constructed in (a) into NFA without null moves	[02]	
	(c)	Convert machine constructed in (b) into DFA.	[04]	CO2
Q4.		Using the pumping lemma, prove or disprove that the following set is not tegular:	7 =	
		$\{a^n \ b^{2n} \mid n \ge 0\}$		
-			1051	CO3

	$\{a^n b^{-n} \mid n \ge 0\}$		
Q5.	Reduce the following grammar to Chomsky normal form:	[05]	CO3
	$S \rightarrow ASA, S \rightarrow bA, A \rightarrow B, A \rightarrow S, B \rightarrow c$		