HELINI Taura Syndrome virus [TSV] Real-time PCR Kit

Instructions for use

For use with: Agilent, Bio-Rad, Roche Lightcycler-96, Roche-Z480/Cobas-480, Applied Bio systems [ABI], Thermo-Piko-Real, Rotor gene 5/6plex, Alta-96, Cepheid Real time PCR machines.

6005

25

HELINI Biomolecules, Chennai, INDIA

Version 1.0 Page 1 Version 1.0 Page 2

www.helini.in

Contents

Intended use	5
Kit components	5
Storage	6
Material and Instruments required	6
Product use limitations	7
Lyophilized – PC - dilution	9
Product description	10
Specificity & Linear range	10
Analytical sensitivity	11
Note – RNA purification	11
Endogenous control system	12
Detection protocol – reaction setup	13
Programming – Thermal profile & Dye selection	14
Reading the graph	15
Qualitative interpretation	16
Limitations	17
Quality control	18

 Version 1.0
 Page 3
 Version 1.0
 Page 4

Intended Use

The HELINI TSV Real-time PCR Kit is an in vitro nucleic acid amplification kit for the detection and quantification of Taura syndrome virus specific RNA.

Kit components

	Volume	Number	Volume
Components	Per	of	Per
_	reaction	vials	vials
TSV Master Mix	13μ1	2	250μ1
RT- Enzyme Mix	2μ1	1	50µl
TSV Positive control	10μ1	1	150µl
Water, PCR grade		1	4ml

All components are supplied in lyophilized form. Please refer Page.9 for dilution procedure.

Storage

- The kit is shipped on gel ice. Upon arrival, all components should be stored in -20°C. They are stable until the expiration date stated on the label.
- Repeated thawing and freezing should be avoided, as this might affect the performance of the assay.
- If the reagents are to be used only intermittently, they should be frozen in aliquots. Storage at 2 to 8°C should not exceed a period of 5 hours.

Material and instruments required

- Real-time PCR instrument having FAM & HEX channels
- Automatic Nucleic acid extraction system or spin column based purification kit for the purification of nucleic acids
- Desktop centrifuge having 13000rpm or above with a rotor for 1.5/2 ml reaction tubes
- Centrifuge with a rotor for PCR strips/tubes and 96 well plates
- Optical cap qPCR tubes or strips or 96 wells
- Micro Pipettes (variables)
- Micro Pipette tips with filters (disposable)
- Powder-free gloves (disposable)

[Please ensure that all instruments used have been installed, calibrated, checked and maintained according to the manufacturer's instructions and recommendations.]

Version 1.0 Page 5 Version 1.0 Page 6

Product Use Limitations

- All reagents may exclusively be used in molecular diagnosis.
- The product is to be used by personnel specially instructed and trained in Molecular diagnosis.
- Strict compliance with the user manual is required for optimal PCR results.
- Attention should be paid to expiration dates printed on the box and labels of all components. Do not use expired components.
- Wear protective disposable powder-free gloves, a laboratory coat and eye protection when handling specimens and kit components.
- Avoid microbial and nuclease (RNAse/RNase) contamination of the specimens and the components of the kit.
- Always use RNAse/RNase-free disposable pipette tips with aerosol barriers.
- Use separated and segregated working areas for sample preparation, reaction setup and amplification/detection activities.
- The workflow in the laboratory should proceed in unidirectional manner. Always wear disposable gloves in each area and change them before entering a different area.
- Store positive and/or potentially positive material separated from all other components of the kit.
- Do not open the reaction tubes/plates post amplification, to avoid contamination with amplicons.

- Additional controls may be tested according to guidelines or requirements of local, state and/or federal regulations or accrediting organizations.
- Do not autoclave reaction tubes after the PCR, since this will not degrade the amplified nucleic acid and will bear the risk to contaminate the laboratory area.
- Discard sample and assay waste according to your local safety regulations.

Technical Assistance

For technical assistance and more information, please contact;

0091-9382810333

0091-44-244490433

helinibiomolecules@gmail.com

Version 1.0 Page 7 Version 1.0 Page 8

Dilution before Use

TSV Master Mix:

Perform the following steps in the sterile area [Laminar air flow/PCR cabinet, etc.]

- Centrifuge the vials at 10000rpm for 2min.
- Add 210µl of PCR grade water to TSV Master Mix, close the vial.
- Incubate at room temperature for 15min.
- Gentle vortex for 5 seconds OR gentle inverting several times.
- Incubate 15min at room temperature.
- Gentle vortex for 5 seconds OR gentle inverting several times.
- Centrifuge at 1000 2000rpm for 10seconds. [Pulse spin]
- Now, it is ready for use. After use, store at -20C.

Positive control

Caution: High Positive template, Use dedicated pipette and tips box and unique area other than the regular qPCR Mix preparation cabinet or place.

Prepare as above. Add 150µl of PCR grade water to the Positive control vial. After use, store at -20C.

Product description

HELINI TSV Real-time PCR kit constitutes a ready-to-use system for the detection of Taura syndrome virus specific RNA using polymerase chain reaction (PCR). It contains reagents and enzymes for the specific amplification of the conserved region of the TSV genome, and for the direct detection of the specific amplicon in FAM channel. In addition, it contains an endogenous control amplification system to identify possible PCR inhibition and RNA purification efficiency. External positive control is supplied to assist the run.

Specificity

TSV primer and probe have been designed for the specific and exclusive *in vitro* detection of TSV. The target sequence is highly conserved and sequences in this kit have 100% homology with a broad range of relevant reference sequences based on a comprehensive bioinformatics analysis.

Dynamic linear range

The linear range was evaluated by analyzing a logarithmic dilution series of pDNA concentrations ranging from 1.00E+09 to 1.00E+00 copies/μl. At least six replicates per dilution were analyzed. The linear range is 1.00E+09 to 1.00E+00 copies/μl.

Version 1.0 Page 9 Version 1.0 Page 10

Analytical Sensitivity

The analytical sensitivity is defined as the concentration of RNA molecules (copies/µl) that can be detected with a positivity rate of 95%. The analytical sensitivity was determined by analysis of dilution series of quantified TSV specific pDNA from 0.001copies to 10copies/µl in triplicates. Under optimal PCR conditions, the analytical sensitivity is 0.95 copies per micro liter.

Note:

RNA Purification

Purified RNA is the starting material for the Real-time PCR assay. The quality of the purified RNA has a profound impact on the performance of the entire test system. It has to be ensured that the purification system used for RNA purification is compatible with real-time PCR technology.

If you are using a spin column based sample preparation procedure having washing buffers containing ethanol, it is highly recommended to perform an additional centrifugation step for 10 min at approximately 17000 x g (~ 13000 rpm), using a new collection tube, prior to the elution of the RNA.

Endogenous control

Shrimp [Monodon & Vannamei] housekeeping gene is given as endogenous control. It amplifies a single copy gene from the test samples. A successful amplification indicates that test sample is properly collected and has its biological property with required amount of cells for PCR.

The Endogenous control primer and probe present at PCR limiting concentrations which allows multiplexing with the target sequence primers. Amplification of the endogenous control template does not interfere with detection of the pathogen even when present at low copy number. The endogenous control is detected through the HEX channel and gives a CT value of 23 +/-9.

Version 1.0 Page 11 Version 1.0 Page 12

Detection Protocol

Things to do before starting

- Before use, all kit components need to be thawed completely, mixed by gently inverting and centrifuged briefly.
- Make sure that Positive and Negative control is included in every run.

To the qPCR tube, add	
Components	Volume per reaction
TSV Master Mix	13µ1
RT-Enzyme Mix	2μ1
Thoroughly mix the sample RNA by pipetting up and down.	
Purified RNA	2μl to 10μl
Final reaction volume make up with water to	25μ1

RNA concentration:

RNA purified from Gills – use 10µl of RNA.

Other samples such as PL/ hepatopancreas/Legs – starts with 2 to $5\mu l$ of RNA. Based on the purification system, increase and decrease the volume of the RNA. Make up the final reaction volume to $25\mu l$ with sterile water.

Centrifuge PCR vials briefly before placing into thermal cycler.

Negative Control setup [NTC]

Add 10µl of PCR grade water.

Qualitative Positive Control setup

Add 10µl of Positive control.

Programming Thermal cycler

Sample volume	25µl
Fluorescence Dyes	FAM & HEX
Passive reference	None
Ramping rate	Default

Thermal Profile

	Step	Time	Temp
Reverse transcription		20min	50°C
	Taq enzyme activation / Hold	15min	95°C
	Denaturation	20sec	95°C
45 cycles	Annealing/Data collection*	20sec	56°C
	Extension	20sec	72°C

Data collection/Acquisition	Targets
FAM	TSV
HEX	Endogenous control

Version 1.0 Page 13 Version 1.0 Page 14

Reading the graph:

Step-1 – Endogenous control Validation

Select the test samples alone for the endogenous control analysis. Select HEX dye and view the graph of endogenous control amplification. A successful amplification Ct value must be within Ct 23 +/- 9.

This range indicates that test sample purified well and NO PCR inhibition in the reaction. Any sample value goes beyond Ct 33 indicates that either issues in the purification OR inhibition in the PCR reaction.

Endogenous control will not get amplified in the negative and positive controls. Ignore a late noise HEX amplification graph in the NTC and Positive control wells.

Step-2 - FAM - Negative and Positive control validation

Select the NTC and Positive control wells, select FAM channel, and view the graph of amplification.

The NTC must be flat with no Ct value. If required adjust the threshold value just above the NTC. The PC must be amplified as per their copy numbers.

NTC justifies NO contamination in the reagent as well as fine pipetting and its environment. PC justifies the reagents storage conditions and reaction parameters are as prescribed.

Step-3 -FAM - Test Sample status

In FAM channel, select test sample well one by one, analyze the graph/amplification.

Qualitative interpretation of results:

Test Sample TSV	Negative control	Positive control	Endo Control	Interpretation
Positive	Negative	Positive	Positive	TSV specific RNA detected
Negative	Negative	Positive	Positive	No TSV specific RNA Detected. Sample does not contain detectable amounts of TSV specific RNA.
Negative	Negative	Negative	Negative	Experiment fail
Positive	Positive	Positive	Positive	Experiment fail

Version 1.0 Page 15 Version 1.0 Page 16

Limitations

Good laboratory practice is essential for proper performance of this assay. Strict compliance with the instructions for use is required for optimal results.

Analysts should be trained and familiar with testing procedures and interpretation of results prior to performing the assay.

A false negative result may occur if inadequate numbers of organisms are present in the sample due to improper collection, transport or handling. Appropriate specimen collection, transport, storage and processing procedures are required for the optimal performance of this test.

Extreme care should be taken to preserve the purity of the components of the kit and reaction setups. All reagents should be closely monitored for impurity and contamination. Any suspicious reagents should be discarded.

The presence of PCR inhibitors may cause under quantification, false negative or invalid results.

Potential mutations within the target regions of the pathogen's genome covered by the primers and/or probes used in the kit may result in under quantification and/or failure to detect.

As with any diagnostic test, the HELINI TSV Real-time PCR results need to be interpreted in consideration of all clinical and laboratory findings.

Quality Control

In accordance with the HELINI Biomolecules in house Quality Management System, each lot of HELINI TSV Real-time PCR kit is tested against predetermined specifications to ensure consistent product quality.

Explanations of symbols

In vitro diagnostic medical device

Catalogue number

Pack size – number of tests

Manufacturer

Version 1.0 Page 17 Version 1.0 Page 18

Manufactured by

HELINI Biomolecules, Ohmlina, 26, 2nd Avenue, Khuthubi Complex, Vettuvankeni, Chennai 600115, Tamilnadu, INDIA www.helini.in info@helini.in helinibiomolecules@gmail.com +91-44-24490433 / +91-9382810333

Page 19 Page 20 Version 1.0 Version 1.0