Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Session 2: Linear and logistic regression as Generalized Linear Models

Levi Waldron

CUNY SPH Biostatistics 2

Levi Waldron

Objectives and Outline Review of multiple linear

Learning

Linear Regression as a GLM

regression

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Learning Objectives and Outline

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Learning objectives

- 1 define generalized linear models (GLM)
 - 2 define linear and logistic regression as special cases of GLMs
- 3 distinguish between additive and multiplicative models
- 4 define Pearson and deviance residuals
- 5 describe application of the Wald test

Levi Waldron

Objectives and Outline Review of

Learning

multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Outline

- 1 Brief overview of multiple regression (Vittinghoff 4.1-4.3)
- 2 Linear Regression as a Generalized Linear Model (Vittinghoff 4.1-4.3)
- 3 Statistical inference for logistic regression (Vittinghoff 5.1-5.3)

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Review of multiple linear regression

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Systematic component

$$E[y|x] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- x_p are the predictors or independent variables
- *y* is the outcome, response, or dependent variable
- E[y|x] is the expected value of y given x
- β_p are the regression coefficients

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Systematic plus random component

$$y_i = E[y|x] + \epsilon_i$$

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon_i$$

Assumption: $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma_{\epsilon}^2)$

- Normal distribution
- Mean zero at every value of predictors
- Constant variance at every value of predictors
- Values that are statistically independent

Levi Waldron

Objectives and Outline Review of multiple linear

Learning

Linear Regression as a GLM

regression

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Linear Regression as a GLM

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Generalized Linear Models (GLM)

- Linear regression is a special case of a broad family of models called "Generalized Linear Models" (GLM)
- This unifying approach allows to fit a large set of models using maximum likelihood estimation methods (MLE) (Nelder & Wedderburn, 1972)
- Can model many types of data directly using appropriate distributions, e.g. Poisson distribution for count data
- Transformations of Y not needed

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis

Additive vs. Multiplicative models

Components of GLM

- Random component specifies the conditional distribution for the response variable
 - doesn't have to be normal
 - can be any distribution in the "exponential" family of distributions
- Systematic component specifies linear function of predictors (linear predictor)
- **Link** [denoted by g(.)] specifies the relationship between the expected value of the random component and the systematic component
 - can be linear or nonlinear

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Linear Regression as GLM

• The model:

$$y_i = E[y|x] + \epsilon_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_p x_{pi} + \epsilon_i$$

• **Random component** of y_i is normally distributed: $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma_\epsilon^2)$

• **Systematic component** (linear predictor): $\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_p x_{pi}$

• Link function here is the *identity link*: g(E(y|x)) = E(y|x). We are modeling the mean directly, no transformation.

Levi Waldron

Objectives and Outline Review of multiple linear

Learning

regression
Linear
Regression as
a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Logistic Regression as a GLM

The logistic regression model

The model:

Logit(P(x)) =
$$log(\frac{P(x)}{1 - P(x)}) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_p x_p$$

- Random component: y_i follows a Binomial distribution (outcome is a binary variable)
- **Systematic component**: linear predictor $\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_n x_{ni}$
- Link function: *logit* (log of the odds that the event occurs)

$$g(P(x)) = logit(P(x)) = log\left(\frac{P(x)}{1 - P(x)}\right)$$

tive models
$$P(x) = \sigma^{-1} \left(\beta_0 + \beta_1 x_1 + \beta_0 x_2 + \dots + \beta_n x_n \right)$$

Levi Waldron

Learning
Objectives
and Outline

Objectives and Outline Review of multiple linear regression

Regression as a GLM Logistic Regression as a GLM

Linear

Residuals for logistic regression

Likelihood and

hypothesis

testing

Additive
vs. Multiplicative

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

The logit function

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Inverse logit function

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Example: contraceptive use data

Load the contraceptive use data

```
suppressPackageStartupMessages(library(dplyr))
cuse <- read.table("cuse.dat", header=TRUE)
cuse <- mutate(cuse, percentusing = using / (using + notUsing) * 100) %>%
mutate(n = using + notUsing)
cuse
```

Source: http://data.princeton.edu/wws509/datasets/#cuse

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Table One

```
Stratified by age
##
##
                               Overall
                                              < 25
                                                             25 - 29
##
                                  16
##
     education = low (%)
                                   8 (50.0)
                                                   2 (50.0)
                                                                 2 (50.0)
     wantsMore = yes (%)
                                   8 (50.0)
                                                   2 (50.0)
                                                                 2 (50.0)
##
##
     percentusing (mean (SD)) 32.92 (17.51) 18.78 (7.64)
                                                             27.15 (6.53)
##
                              Stratified by age
                               30-39
##
                                              40-49
##
     education = low (%)
                                   2 (50.0)
                                                   2 (50.0)
     wantsMore = yes (%)
                                   2 (50.0)
                                                   2 (50.0)
     percentusing (mean (SD)) 38.80 (15.65) 46.95 (23.82)
##
```

See tableone vignette for e.g. how to export to Word / Excel

https://cran.rproject.org/web/packages/tableone/vignettes/introduction.html

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Perform regression

```
##
## Call:
## glm(formula = cbind(using, notUsing) ~ age + education + wantsMore,
      family = binomial("logit"), data = cuse)
##
## Deviance Residuals:
      Min
                10
                    Median
                                 30
                                         Max
## -2 5148 -0 9376
                    0.2408
                             0.9822
                                      1.7333
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8082
                           0.1590 -5.083 3.71e-07 ***
## age25-29
              0.3894
                           0.1759 2.214 0.02681 *
              0.9086 0.1646 5.519 3.40e-08 ***
## age30-39
## age40-49 1.1892 0.2144 5.546 2.92e-08 ***
## educationlow -0.3250 0.1240 -2.620 0.00879 **
## wantsMoreves -0.8330
                           0.1175 -7.091 1.33e-12 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 165.772 on 15 degrees of freedom
## Residual deviance: 29.917 on 10 degrees of freedom
## ATC: 113.43
##
## Number of Fisher Scoring iterations: 4
```

Levi Waldron

Learning
Objectives
and Outline
Review of

multiple linear regression Linear Regression as

Logistic Regression as a GLM

a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Residuals for logistic regression

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis

Additive vs. Multiplicative models

Pearson residuals for logistic regression

- Traditional residuals $y_i E[y_i|x_i]$ don't make sense for binary y.
- One alternative is *Pearson residuals*
 - take the difference between observed and fitted values (on probability scale 0-1), and divide by the standard deviation of the observed value.
- Let \hat{y}_i be the best-fit predicted probability for each data point, i.e. $g^{-1}(\beta_0 + \beta_1 x_{1i} + ...)$
- y_i is the observed value, either 0 or 1.

$$r_i = \frac{y_i - \hat{y}_i}{\sqrt{Var(\hat{y}_i)}}$$

Summing the squared Pearson residuals produces the *Pearson Chi-squared statistic*:

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis

Additive vs. Multiplicative models

Deviance residuals for logistic regression

- Deviance residuals and Pearson residuals converge for high degrees of freedom
- Deviance residuals indicate the contribution of each point to the model *likelihood*
- Definition of deviance residuals:

$$d_i = s_i \sqrt{-2(y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i))}$$

Where $s_i = 1$ if $y_i = 1$ and $s_i = -1$ if $y_i = 0$.

• Summing the deviances gives the overall deviance: $D = \sum_i d_i^2$

Levi Waldron

Learning
Objectives
and Outline
Review of

multiple linear regression

Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Likelihood and hypothesis testing

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

What is likelihood?

- The likelihood of a model is the probability of the observed outcomes given the model, sometimes written as:
 - $L(\theta|data) = P(data|\theta)$.
- Deviance residuals and the difference in log-likelihood between two models are related by:

$$\Delta(D) = -2 * \Delta(\log likelihood)$$

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Likelihood Ratio Test

- Use to assess whether the reduction in deviance provided by a more complicated model indicates a better fit
- It is equivalent of the nested Analysis of Variance is a nested Analysis of Deviance
- The difference in deviance under H₀ is chi-square distributed, with df equal to the difference in df of the two models.

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Likelihood Ratio Test (cont'd)

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Wald test for individual regression coefficients

Can use partial Wald test for a single coefficient:

•
$$\frac{\hat{\beta}}{\sqrt{\mathit{var}(\hat{\beta})}} \sim t_{n-1}$$

•
$$\frac{(\hat{\beta} - \beta_0)^2}{var(\hat{\beta})} \sim \chi^2_{df=1}$$
 (large sample)

• Wald CI for
$$\beta$$
: $\hat{\beta} \pm t_{1-\alpha/2,n-1} \sqrt{var(\hat{\beta})}$

• Wald CI for odds-ratio:
$$e^{\hat{eta}\pm t_{1-lpha/2,n-1}\sqrt{var(\hat{eta})}}$$

Note: Wald test confidence intervals on coefficients can provide poor coverage in some cases, even with relatively large samples

Levi Waldron

Learning Objectives and Outline Review of

multiple linear regression Linear Regression as

a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Additive vs. Multiplicative models

Levi Waldron

Learning Objectives and Outline

Review of multiple linear regression

Linear Regression as a GLM

Logistic Regression as a GLM

Residuals for logistic regression

Likelihood and hypothesis testing

Additive vs. Multiplicative models

Additive vs. Multiplicative models

- Linear regression is an additive model
 - e.g. for two binary variables $\beta_1 = 1.5$, $\beta_2 = 1.5$.
 - If $x_1 = 1$ and $x_2 = 1$, this adds 3.0 to E(y|x)
- Logistic regression is a *multiplicative* model
 - If $x_1 = 1$ and $x_2 = 1$, this adds 3.0 to $log(\frac{P}{1-P})$
 - Odds-ratio $\frac{P}{1-P}$ increases 20-fold: exp(1.5+1.5) or exp(1.5)*exp(1.5)