

KR e Lógica de Primeira Ordem (LPO)

- É um formalismo de referência para representação de conhecimento
 - o mais estudado e o melhor formalizado
- Satisfaz em grande parte os seguintes critérios:
 - adequação representacional
 - permite representar o mundo (expressividade)
 - adequação inferencial
 - permite inferência
 - eficiência aquisicional
 - facilidade de adicionar conhecimento
 - modularidade

Sistema Formal em LPO

sintaxe + semântica

Base de Conhecimento = fatos e regras gerais do domínio (só axiomas)
Memória de Trabalho = fatos particulares à instância do problema e fatos
derivados (só fatos)

Máquina de Inferência = regras de inferência (de derivação)

LPO: Sintaxe

```
Sentença → SentençaAtômica | Sentença Conectivo Sentença
                 | Quantificador Variável,... Sentença
                 | ¬ Sentença | (Sentença)
SentençaAtômica → Predicado(Termo,...) | Termo = Termo | Verdade | Falso
Termo → Função(Termo,...) | Constante | Variável
Conectivo \rightarrow ^{\wedge} | ^{\vee} | \Rightarrow | \Leftrightarrow
Quantificador \rightarrow \forall \mid \exists
Constante → A | X | João | ...
Variável \rightarrow a | x | s | ...(letras minúsculas)
Predicado → Vermelho | Tem-cor | IrmãoDe | ...
Função → Mãe | MelhorAmigo | ...
```

- Constantes e Variáveis denotam Objetos:
 - ex. João, aluno, cadeira, estrela...
 - uma interpretação especifica a que objeto no mundo cada constante e cada variável livre se refere.
 - o mesmo objeto pode ser referenciado por mais de um símbolo:
 - ex. "Vênus" e "A estrela Dalva" referem-se ao mesmo objeto (planeta) no universo.

- Predicados denotam Propriedades e Relações:
 - uma interpretação especifica a que propriedade (predicado unário) ou relação no mundo o predicado se refere:
 - ex., irmão = predicado binário que se refere à relação de irmandade: Irmão(Caetano, Betânia)
 - ex. Feio(Maguila) faz referência à propriedade ser feio

- Funções denotam Relações Funcionais:
 - ligam um objeto (ou mais) a um único objeto no mundo
- Uma interpretação especifica
 - que relação funcional no mundo é referida pelo símbolo da função, e
 - que objetos s\u00e3o referidos pelos termos que s\u00e3o seus argumentos
 - Termos denotam Objetos:
 - são constantes, variáveis ou funções.

- Funções denotam Relações Funcionais:
 - Exemplos:
 - 1) Mãe(Roberto Carlos) -> LadyLaura
 - função que devolve o nome da mãe do seu argumento
 - 2) Nota(Zezinho) = 9
 - devolve a nota do argumento Zezinho

- Sentenças Atômicas: predicados + termos
 - o valor-verdade de uma sentença depende da interpretação e do mundo.
 - Irmão(Caetano, Betânia)
 - termos simples
 - Casados(PaiDe(Caetano), MãeDe(Betânia))
 - termos complexos

- Sentenças Complexas:
 - usam conectivos e quantificadores
 - a semântica dessas sentenças é atribuída da mesma maneira que na lógica proposicional:
 - semântica dos conectivos + valor-verdade das sentenças individuais.
 - Irmão(Caetano, Betânia) ^ Filho(Zeca, Caetano) =>
 Tia(Betânia, Zeca)

Igualdade:

- declara que dois termos se referem ao mesmo objeto
 - Mãe(Roberto Carlos) = Lady Laura
- pode ser visto como a relação identidade...

Exemplo

- Para dizer que Huguinho tem pelo menos dois irmãos (Luizinho e Zezinho), escreve-se:
- $-\exists x, y \text{ irmão(Huguinho,x)} \land \text{ irmão(Huguinho,y)} \land \neg(x = y)$

LPO: semântica dos quantificadores

- Universal (∀)
 - conjunção sobre o universo de objetos ∀x P(x) é verdade sse P é verdade para todos os objetos no mundo
 - Ex. \forall x Gato(x) \Rightarrow Mamífero(x)
 - o valor-verdade é dado pela semântica do quantificador universal e do conectivo ⇒

LPO: semântica dos quantificadores

- Existencial (∃)
 - disjunção sobre o universo de objetos
 ∃x P(x) é verdade sse P é verdade para algum objeto no mundo.
 - Ex. $\forall x \exists y \text{ pessoa}(x) \land m\tilde{a}e(y,x)$
- Correspondência entre os dois quantificadores
 - \forall x Gosta(x,Banana) $\Leftrightarrow \neg \exists$ x \neg Gosta(x,Banana)

LPO: Leis de De Morgan

 Leis de De Morgan: Equivalência entre sentenças quantificadas e entre sentenças não quantificadas

- Moral da história:
 - Não precisamos de ambos os quantificadores ∀ e ∃ nem de ambos os conectivos ^ e [∨] ao mesmo tempo!
 - Útil para melhorar a eficiência da inferência
 - ex. cláusulas de Horn (PROLOG)

Propriedades da Inferência Lógica

- Corretude
 - gera apenas sentenças válidas
- Composicionalidade
 - o significado de uma sentença é função do de suas partes
- Monotonicidade
 - Tudo que era verdade continua sendo depois de uma inferência
- Localidade
 - inferência apenas com comparações locais (porção da BC).
- Localidade e composicionalidade ---> modularidade ---> reusabilidade e extensibilidade

Representando sentenças no mundo:

Pedro possui um cachorro.

Todo dono de cachorro é um protetor dos animais.

Nenhum protetor dos animais mata um animal.

Representando sentenças na Lógica:

```
\exists x \ cachorro(x) \land possui(Pedro,x)
```

$$\forall x \exists y (cachorro(y) \land possui(x,y)) \Rightarrow protetorAnimais(x)$$

$$\forall x \text{ protetorAnimais(x)} \land \forall y \text{ animal(y)} \Rightarrow \neg \text{mata(x,y)}$$

- Base de Conhecimento
 - fatos e regras básicos, gerais, permanentes
 - $\forall (x,z) \text{ Av\'o}(x,z) \Leftrightarrow \exists (y) \text{ M\~ae}(x,y) \land (\text{M\~ae}(y,z)) \land \text{Pai}(y,z))$
- Memória de Trabalho
 - fatos particulares à instância do problema
 - Pai(Caetano, Zeca), Mãe(Canô, Caetano)
 - e fatos derivados
 - Avó(Canô, Zeca)
- Máquina de Inferência
 - regras de inferência

- Primeiros passos
 - 1. Armazenar as regras da BC na máquina de inferência (MI) e os fatos na memória de trabalho (MT)
 - 2. Adicionar os dados iniciais à memória de trabalho

Agentes baseados em LPO

função Agente-BC(percepção) retorna uma ação
 Tell(MT, Percepções-Sentença(percepção,t))
 ação ← Ask(MT, Pergunta-Ação(t))
 Tell(MT, Ação-Sentença(ação,t))
 t ← t + 1
 retorna ação

Onde...

- MT memória de trabalho
- função Pergunta-Ação cria uma query como: ∃ a Ação(a,6)
- função ASK devolve uma lista de instanciações:
 {a / Pegar} Pegar é atribuída à variável ação.
- função TELL grava a ação escolhida na memória de trabalho.

Agentes baseados em LPO

- Como a função ASK responde as queries
 - Quantificador ∀: a resposta é booleana
 - ASK(BC, Irmã(Betânia, Caetano)) -> true
 - ASK(BC, ∀x (Irmã(x,Caetano) ^ Cantora(x))) -> false
 - Quantificador 3: a resposta é uma lista de instanciações/substituições de variáveis - binding
 - ASK (BC, ∃x Irmã(x,Caetano)) -> {x/Betânia,x/Irene}
 - ASK (BC, ∃x (Irmã(x,Caetano) ^ Cantora(x))) -> {x/Betânia}

Hipótese do Mundo Fechado

- Tudo que n\u00e3o estiver presente na base \u00e9 considerado falso
- Isto simplifica (reduz) a BC
 - Ex. Para dizer que a população dos países Nova Zelândia, África do Sul, Irlanda e França gostam do jogo Rugby, não precisa explicitamente dizer que os outros não gostam...

Um Exemplo de Construção de BC Do livro AIMA

Construindo uma BC

- 1) Decida sobre o que falar
- 2) Escolha o *vocabulário* de predicados, funções e constantes *(Ontologia do Domínio)*
- 3) Codifique o *conhecimento genérico* sobre o domínio *(axiomas)*
 - \forall x,y,z Americano(x) $^{\wedge}$ Arma(y) $^{\wedge}$ Nação(z) $^{\wedge}$ Hostil(z) $^{\wedge}$ Vende(x,z,y) \Rightarrow Criminoso(x)
- 4) Codifique uma *descrição* de uma instância específica do problema: *Nação(Cuba), Nação(USA)*
- 5) Proponha *questões* para o procedimento de inferência e obtenha *respostas:* West é criminoso?

Um Exemplo: Circuitos Digitais

Objetivo:

- determinar se o circuito está de acordo com sua especificação (o circuito acima é um somador)
- responder a perguntas sobre o valor da corrente em qualquer ponto do circuito

Decida sobre <u>o que</u> falar

- Para alcançar o objetivo, é relevante falar sobre
 - circuitos, terminais, sinais nos terminais, conexões entre terminais
- Para determinar quais serão esses sinais, precisamos saber sobre:
 - portas e tipos de portas: AND, OR, XOR e NOT
- Não é relevante falar sobre:
 - fios, caminhos dos fios, cor e tamanho dos fios, etc.

Decida qual vocabulário usar

- Usado para nomear objetos e relações do domínio com funções, predicados e constantes
 - constantes
 - distinguir as portas: X1, X2...
 - distinguir os tipos de porta: AND, OR, XOR...
 - funções e predicados
 - tipo de uma porta: Tipo(X1) = XOR, Tipo(X1, XOR), XOR(X1)
 - indicar entradas e saídas:

```
Out(1, X1), In(1, X2)
```

• indicar conectividade entre portas: Conectado(Out(1, X1), In(1, X2))

Codifique regras genéricas

(1) Dois terminais conectados têm o mesmo sinal:

```
\forall t1, t2 Conectado(t1, t2) \Rightarrow Sinal(t1) = Sinal(t2)
```

- (2) O sinal de um terminal é *On* ou *Off* (nunca ambos)
 - $\forall t \ Sinal(t) = On^{\lor} \ Sinal(t) = Off, \ On \neq Off$
- (3) Conectado é um predicado comutativo $\forall t1, t2$ Conectado(t1, t2) \Leftrightarrow Conectado(t2, t1)
- (4) Uma porta *OR* está *On sse* qualquer das suas entradas está *On*:

```
\forall g \ Tipo(g) = OR \Rightarrow Sinal(Out(1,g)) = On

\Leftrightarrow \qquad \exists n \ Sinal(In(n,g)) = On
```

Codifique a <u>instância específica</u>

Portas:

```
Tipo(X1) = XOR Tipo(X2) = XOR

Tipo(A1) = AND Tipo(A2) = AND

Tipo(O1) = OR
```

Conexões:

```
Conectado(Out(1,X1),In(1,X2))
Conectado(Out(1,X1),In(2,A2))
Conectado(Out(1,A2),In(1,O1)) . . .
```

Proponha <u>questões</u> ao mecanismo de Inferência

• Que entradas causam Out(1,C1) = Off e = On?

Out(2, C1)

□∃ i1, i2, i3 Sinal(In(1,C1)) = i1
$$^{\land}$$
□Sinal(In(2,C1)) = i2 $^{\land}$ Sinal(In(3,C1)) = i3 $^{\land}$
Sinal(Out(1,C1)) = Off $^{\land}$ Sinal(Out(2,C1) = On

Resposta:

Agentes LPO para o Mundo do Wumpus 31

Um Agente LPO para o Mundo do Wumpus

- Interface entre o agente e o ambiente:
 - sentença de percepções, que inclui as percepções e o tempo (passo) em que elas ocorreram
 - e.g.:
 - Percepção ([Fedor, Vento, Brilho, nada(~choque), nada(~grito)],
 6)
- Ações do agente:
 - Girar(Direita), Girar(Esquerda), Avançar, Atirar,
 Pegar, Soltar e Sair das cavernas

Um Agente LPO para o Mundo do Wumpus

- Três arquiteturas de Agentes baseados em LPO:
 - Agente reativo
 - Agente com Modelo do Mundo
 - Agente baseado em Objetivo

Agente reativo baseado em LPO

- Possui regras ligando as seqüências de percepções a ações
 - Essas regras assemelham-se a reações
 - $\square \forall f, v, c, g, t Percepção([f, v, Brilho, c, g], t) \Rightarrow Ação(Pegar, t)$
- Essas regras dividem-se entre
 - Regras de (interpretação) da percepção
 - $\forall v,b,c,g,t \ Percepção([Fedor,v,b,c,g], t) \Rightarrow Fedor (t)$
 - $\square \forall f,b,c,g,t Percepção([f,Vento,b,c,g], t) \Rightarrow Vento (t)$
 - $\square \forall f, v, c, g, t Percepção([f, v, Brilho, c, g], t) \Rightarrow Junto-do-Ouro (t)$
 - . . .
 - Regras de ação
 - $\square \forall t Junto-do-Ouro (t) ⇒ Ação(Pegar, t)$

Limitações do agente reativo puro

- Como já vimos, um agente reativo puro nunca sabe quando parar
 - estar com o ouro e estar na caverna (1,1) não fazem parte da sua percepção
 - se pegou, esqueceu
 - esses agentes podem entrar em laços infinitos.
- Para ter essas informações, o agente precisa guardar uma representação do mundo.

Agentes LPO com Estado Interno

- Guardando modelo interno do mundo (MT)
 - sentenças sobre o estado atual do mundo
 - "agente está com o ouro"
 - O modelo será atualizado quando
 - O agente receber novas percepções e realizar ações
 - ex. o agente pegou o ouro,...
- Questão
 - Como manter, com simplicidade, o modelo do mundo corretamente atualizado?

Representando Mudanças no Mundo

- Como representar as mudanças?
 - Ex., "O agente foi de [1,1] para [1,2]"
 - 1. Apagar da MT sentenças que já não são verdade
 - ruim: perdemos o conhecimento sobre o passado, o que impossibilita previsões de diferentes futuros.
 - 2. Cada estado é representado por uma BC/MT diferente:
 - ruim: pode explorar situações hipotéticas, porém não pode raciocinar sobre mais de uma situação ao mesmo tempo.
 - ex. "existiam buracos em (1,2) e (3,2)?"

Cálculo Situacional

- Solução: Cálculo situacional!
 - uma maneira de escrever mudanças no tempo em LPO
 - Permite a representação de diferentes situações na mesma BC/MT
- Cap 10, pag. 329 do livro novo

Cálculo Situacional

- Predicados que mudam com o tempo têm um argumento adicional de situação (tempo, turno)
 - Ao invés de Em(Agente, local)
 - teremos Em(Agente,[1,1],S0) ^ Em(Agente,[1,2],S1)
- Predicados que denotam propriedades que não mudam com o tempo não necessitam de argumentos de situação
 - Parede(0,1) e Parede(1,0)

Cálculo Situacional

- O mundo consiste em uma seqüência de situações
 - situação N ===ação===> situação N+1
- Utiliza uma função Resultado para representar as mudanças no mundo:
 - Resultado (ação, situação N) = situação N+1

Exemplo de cálculo situacional

Representando Mudanças no Mundo Axiomas estado-sucessor

- Descrição completa de como o mundo evolui
 - uma coisa é verdade depois ⇔
 [uma ação acabou de torná-la verdade
 - ^v ela já era verdade e nenhuma ação a tornou falsa]
 - Ex. ∀ a −ação-,o −ouro-,sit Segurando(o, Resultado(a,s))
 - $\square \square [(a = Pegar ^ (Junto-do-ouro(s))]$
 - (Segurando (o,s) ^ (a ≠ Soltar)]
 - Obs.: Resultado(a,s) = s+1
- É necessário escrever uma axioma estado-sucessor para cada predicado que pode mudar seu valor no tempo.

Representando Mudanças no Mundo do Wumpus Axiomas estado-sucessor

- O que muda com o tempo no mundo do Wumpus?
 - Pegar ouro, localização e orientação do agente
- Guardando localizações
 - O agente precisa lembrar por onde andou e o que viu
 - para poder deduzir onde estão os buracos e o Wumpus,
 e
 - para garantir uma exploração completa das cavernas

Representando Mudanças no Mundo do Wumpus

- O agente precisa saber:
 - localização inicial = onde o agente está Em (Agente,[1,1],S0)
 - orientação: a direção do agente (em graus)
 Orientação (Agente, S0) = 0
 - localização um passo à frente: função de locais e orientações
 - \forall x,y PróximaLocalização ([x,y],0) = [x+1,y]
 - \forall x,y PróximaLocalização ([x,y],90) = [x,y+1]
 - \forall x,y PróximaLocalização ([x,y],180) = [x-1,y]
 - \forall x,y PróximaLocalização ([x,y],270) = [x,y-1]

Representando Mudanças no Mundo do Wumpus

A partir desses axiomas, pode-se deduzir que caverna está em frente ao agente "ag" que está na localização "loc":

```
    ∀ ag,loc,s Em (ag,loc,s) ⇒
    localizaçãoEmFrente (ag,s) =
    PróximaLocalização (loc,Orientação (ag,s))
```

Assim, a informação sobre a localização em frente ao agente em cada situação fica diretamente disponível na MT

Representando Mudanças no Mundo do Wumpus

- Podemos também definir adjacência:
 - loc1,loc2 Adjacente (loc1,loc2) ⇔
 - ∃ d loc1 = PróximaLocalização (loc2,d)
- **E detalhes geográficos do mapa:** x,y Parede([x,y]) \Leftrightarrow (x =0 $^{\circ}$ x =5 $^{\circ}$ y =0 $^{\circ}$ y =5)
- Assim, informações sobre o mapa do ambiente ficam disponível na BC/MT

Resultado das ações do agente sobre sua localização

- Axioma Estado-Sucessor
 - avançar é a única ação que muda a localização do agente (a menos que haja uma parede)

Resultado das ações do agente sobre sua orientação

- Axioma Estado-Sucessor
 - girar é a única ação que muda a direção do agente

Deduzindo Propriedades do Mundo

- Agora que o agente sabe onde está em cada situação, ele pode associar propriedades aos locais:
 - $\square \forall \text{ ag,loc,s Em(ag,loc,s)} \land \text{Vento(s)} \Rightarrow \text{Ventilado(loc)}$
 - $\square \forall \text{ ag,loc,s Em(ag,loc,s)} \land \text{Fedor(s)} \Rightarrow \text{Fedorento(loc)}$
 - Observem que os predicados Ventilado e Fedorento não necessitam do argumento de situação
- Sabendo isto, o agente pode deduzir:
 - onde estão os buracos e o Wumpus, e
 - quais são as cavernas seguras (predicado OK).

Tipos de regras Que definem o tipo de sistema construído... 50

Tipos de regras

- Regras Diacrônicas (do grego "através do tempo")
 - descrevem como o mundo evolui (muda ou não) com o tempo
 - ∀ x,s Presente(x,s) ^ Portável(x)
 - ⇒ Segurando(x,Resultado(Pegar,s))

Regras Síncronas

- relacionam propriedades na mesma situação (tempo).
- \forall loc,s Em(Agente,loc,s) \(^\text{Vento}(s) \infty \text{Ventilado}(loc)\)
- possibilitam deduzir propriedades escondidas no mundo
- Existem dois tipos principais de regras síncronas:
 - Regras Causais e Regras de Diagnóstico.

Regras síncronas causais

- Regras Causais assumem causalidade
 - algumas propriedades no mundo causam certas percepções.
 - Exemplos
 - * as cavernas adjacentes ao Wumpus são fedorentas
 - □ ∀ loc1, loc2,s Em (Wumpus,loc1,s) ^ Adjacente(loc1,loc2) ⇒
 Fedorento (loc2)
 - Se choveu, a grama está molhada
 - Sistemas que raciocinam com regras causais são conhecidos como Sistemas Baseados em Modelos.

Regras síncronas de diagnóstico

- Regras de Diagnóstico:
 - Raciocínio abdutivo: supõe a presença de propriedades escondidas a partir das percepções do agente
 - Ex., a ausência de fedor ou Vento implica que esse local e os adjacentes estão OK
 - □ ∀ loc1,loc2,b,g,c,s Percepção ([nada, nada, b,g,c],s) ^ Em (Agente,loc1,s) ^ Adjacente(loc1,loc2) ⇒ OK(loc2)
 - se a grama está molhada, então é porque o aguador ficou ligado
 - Sistemas que raciocinam com regras de diagnóstico são conhecidos como Sistemas de Diagnóstico

Tipos de regras

- Atenção:
 - Não se deve misturar numa mesma BC regras causais e de diagnóstico!!!
 - se choveu é porque o aguador estava ligado...

Sistema de Ação-Valor

Modularidade das Regras Adequação das regras

Modularidade das Regras

- As regras que definimos até agora não são totalmente modulares
 - mudanças nas crenças do agente sobre algum aspecto do mundo requerem mudanças nas regras que lidam com outros aspectos que não mudaram
- Para tornar essas regras mais modulares, separamos fatos e regras sobre ações de fatos e regras sobre objetivos
 - assim, o agente pode ser "reprogramado" mudando-se o seu objetivo quando necessário

Modularidade das Regras

- Ações descrevem como alcançar resultados.
- Objetivos descrevem a adequação (desirability) de estados resultado
 - não importando como foram alcançados.
- Assim, descrevemos a adequação das regras e deixamos que a máquina de inferência escolha a ação mais adequada

Adequação das Regras

- Ações podem ser
 - ótimas, boas, médias, arriscadas ou mortais.
 - Escala, em ordem decrescente de adequação
- Assim, pode-se escolher a ação mais adequada para a situação atual
 - meta regras que determinam a prioridade de execução das regras desempate
 - $\Box \forall$ a,s Ótima(a,s) \Rightarrow Ação(a,s)
 - $\Box \forall$ a,s Boa(a,s) $^{\land}$ ($\neg \exists b \acute{O}tima(b,s)$) \Rightarrow Ação(a,s)
 - $\square \forall$ a,s Média(a,s) $^{\land}$ ($\neg \exists b$ (Ótima(b,s) $^{\lor}$ Boa(b,s))) \Rightarrow Ação(a,s)
 - $\Box \forall$ a,s Arriscada(a,s) $^{\land}$ ($\neg \exists b$ (Ótima(b,s) $^{\lor}$ Boa(b,s)
 - $^{\lor}$ Média(a,s))) \Rightarrow Ação(a,s)

Adequação das Regras

- Essas regras são gerais, e podem ser usadas em situações diferentes:
 - uma ação arriscada na situação S0
 - onde o Wumpus está vivo
 - pode ser <u>ótima</u> na situação S2
 - quando o Wumpus já está morto
- Sistema de Ação-Valor
 - Sistema baseado em regras de adequação
 - Não se refere ao que a ação faz, mas a quão desejável ela é.

Sistema de Ação-Valor

- Prioridades do agente até encontrar o ouro:
 - ações ótimas: pegar o ouro quando ele é encontrado, e sair das cavernas.
 - ações boas: mover-se para uma caverna que está OK e ainda não foi visitada.
 - ações médias: mover-se para uma caverna que está
 OK e já foi visitada.
 - ações arriscadas:mover-se para uma caverna que não se sabe com certeza que não é mortal, mas também não é OK
 - ações mortais: mover-se para cavernas que sabidamente contêm buracos ou o Wumpus vivo.

Agentes Baseados em Objetivos

- O conjunto de regras de adequação (ações-valores) é suficiente para prescrever uma boa estratégia de exploração inteligente das cavernas
 - quando houver uma seqüência segura de ações , ele acha o ouro
- Depois de encontrar o ouro, a estratégia deve mudar...
 - novo objetivo: estar na caverna (1,1) e sair.
 □ ∀ s Segurando(ouro,s) ⇒ LocalObjetivo ([1,1],s)
- A presença de um objetivo explícito permite que o agente encontre uma seqüência de ações que alcançam esse objetivo

Como encontrar seqüências de ações

(1) Inferência:

- Idéia: escrever axiomas que perguntam à BC/MT uma seqüência de ações que com certeza alcança o objetivo.
- Porém, para um mundo mais complexo, isto se torna muito caro
 - como distinguir entre boas soluções e soluções mais dispendiosas (onde o agente anda "à toa" pelas cavernas)?

Como encontrar seqüências de ações

(2) Planejamento

 utiliza um sistema de raciocínio dedicado, projetado para raciocinar sobre ações e conseqüências para objetivos diferentes.

ficar rico e feliz

pegar o ouro

sair das cavernas

ações e conseqüências

ações e conseqüências