8.8

Una sottile striscia metallica di larghezza $h=2\ cm$ è percorsa dalla corrente $i=10\ A.$

Calcolare il valore del campo magnetico $\vec{B}(x)$ a distanza x dal bordo della striscia (in particolare $x \gg h$) e il momento meccanico \vec{M} che agisce su un piccolo ago magnetico di momento $\vec{m} = 0.1 \vec{u_x} \ Am^2$ posto a distanza $x = 1 \ cm$

Formule utilizzate

$$\Phi \vec{B} = \frac{\mu_0 di}{2\pi(x+s)}$$

Soluzione punto a

$$di = \frac{i \ dx}{h}$$

Chiamo s
 la distanza fra il filo e il bordo. Quindi il campo sul ago avra direzione
 $-\vec{u_z}$

direzione
$$-\vec{u_z}$$

$$\Phi \vec{B} = \frac{\mu_0 di}{2\pi (x+s)} (-\vec{u_z})$$

$$d\vec{B} = \frac{\mu_0 di}{2\pi (x+s)} (-\vec{u_z})$$

$$\vec{B} = \int d\vec{B} = \frac{\mu_0 i}{2\pi h} \int_P^h \frac{ds}{x+s} (-\vec{u_z}) = \frac{\mu_0 i}{2\pi h} \left[ln(x+s) \right]_{s=0}^{s=h} (-\vec{u_z})$$
Se $x \gg h$

$$\vec{B} = \int_0^h d\vec{B} = \frac{\mu_0 i}{2\pi h} \int_0^h \frac{ds}{x+s} (-\vec{u_z}) = \frac{\mu_0 i}{2\pi h} ln\left(\frac{x+h}{h}\right) (-\vec{u_z})$$
per $x \gg h$: $\vec{B} = \frac{\mu_0 i}{2\pi} \frac{1}{x} (-\vec{u_z}) = 0$

Soluzione punto b

Da fare