

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева Академия базовой подготовки

Институт, группа	К работе допущен	
	1 <u>J</u>	(дата, подпись преподавателя)
Студент	Работа выполнена	
		(дата, подпись преподавателя)
Преподаватель	Отчет принят	
		(дата, подпись преподавателя)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № М-6

момент инерции

Установка состоит из механического блока 1, электронного секундомера 2 набора опытных образцов 3 и динамометра 4.

1. Запишите цель проводимого эксперимента:
2. Дайте определение момента инерции. От чего зависит момент инерции?
3. Объясните, как получают формулы для расчета моментов инерции тел правильно формы. Приведите пример.

4. Сформулируйте теорему Штейнера. Поясните условия применения этой теоремь Приведите пример вычисления момента инерции сплошного диска для оси, проходяще через середину одного из радиусов.
5. Какие методы определения момента инерции используются в данной работе?

Технические параметры установки

Textin reckue nupus	tempoi yemunooku		
Полый цилиндр:	<u>Шар:</u>	Грузы на стержне:	
$m_{ m nu} = 0$,1511 кг	$m_{_{ m III}}=0$,5334 кг	$m_{ ext{rp}}=0$,031 кг	a = 0.09 M
$R_{\rm пц} = 0.03 \; {\rm M}$	$R_{ m III} = 0,045$ м	$R_1 = 0.0025 \text{ M}$	
Сплошной цилиндр	Стержень:	$R_2 = 0.01 \text{ M}$	
(эталонный образец):	$m_{ m c} = 0$,027 кг	$l_{ m rp}=0$,02 м	0.075
$m_{\scriptscriptstyle \mathrm{9 II}} = 0,5334$ кг	$l = 0.24 \; \mathrm{M}$		r = 0.075 M
$R_{\rm эц} = 0.03$ м			

3

Обработка экспериментальных результатов

1. Вычисление момента инерции установки.

1.1. Момент инерции стержня:

$$J_{\rm c} = \frac{m_{\rm c}l^2}{12} =$$

1.2. Момент инерции грузов:

$$J_{\rm rp} = \frac{m_{\rm rp} \cdot l_{\rm rp}^2}{12} + \frac{m_{\rm rp} (R_1^2 + R_2^2)}{4} =$$

1.3. Слагаемое:

$$2m_{\rm rp}a^2 =$$

1.4. Момент инерции установки:

$$J_{\rm ycr} = J_c + 2m_{\rm rp}a^2 + 2J_{\rm rp} =$$

2. Вычисление теоретических моментов инерции.

2.1. Полый цилиндр:

$$J_{\Pi \mathrm{II}}^{\mathrm{T}} = m_{\Pi \mathrm{II}} R_{\Pi \mathrm{II}}^2 =$$

2.2. Сплошной цилиндр (эталонный образец):

$$J_{\mathfrak{I}\mathfrak{U}} = \frac{m_{\mathfrak{I}\mathfrak{U}}R_{\mathfrak{I}\mathfrak{U}}^2}{2} =$$

2.3. Шар:

$$J_{\text{III}}^{\text{T}} = \frac{2m_{\text{III}}R_{\text{III}}^2}{5} =$$

Задание 1. Определение коэффициента упругости спиральной пружины с помощью динамометра.

Определение коэффициента упругости

Таблица 2

№	$oldsymbol{arphi}_i,{}^0$	$arphi_i$, рад	F_i , H	$k_i \cdot 10^{-3}, rac{ ext{H} \cdot ext{м}}{ ext{рад}}$
1	320			
2	330			
3	340			
4	350			
5	360			

Подпись преподавателя Дата

Определите среднее значение коэффициента упругости как среднее арифметическое:

$$\langle k \rangle = \frac{k_1 + k_2 + k_3 + k_4 + k_5}{5} =$$

Определите среднее квадратичное отклонение:

$$\sigma_{\langle k \rangle} = \sqrt{\frac{1}{5 \cdot (5-1)} \cdot \sum_{i=1}^{5} (k_i - \langle k \rangle)^2} =$$

Коэффициент Стьюдента: $t_{p,n}=$

Определите абсолютную погрешность:

$$\Delta k = \sigma_{\langle k \rangle} \cdot t_{p,n} =$$

Определите относительную погрешность

$$\delta_k = \frac{\Delta k}{\langle k \rangle} \cdot 100\% =$$

Запишите итоговый результат в стандартном виде:

$$k = \langle k \rangle \pm \Delta k$$
, ед. изм., при $\delta_k =$ ____%

$$k =$$

Задание 2. Определение момента инерции полого цилиндра методом крутильных колебаний.

Определение момента инерции полого цилиндра

Таблица 3

№	t_i	n	T_i	$\langle T_{\Pi extsf{I}} \rangle$
1		2		
2		2		
3		2		
4		2		
5		2		

Вычислите по формуле момент инерции полого цилиндра:

$$J_{\Pi \Pi} = \frac{T_{\Pi \Pi}^2 \cdot \langle k \rangle}{4\pi^2} - J_{\text{yct}} =$$

Вычислите степень несовпадения теоретического и экспериментального момента инерции:

$$\delta_{\text{пц}} = \frac{\left|J_{\text{пц}}^{\text{T}} - J_{\text{пц}}\right|}{J_{\text{пц}}} \cdot 100\% =$$

Задание 3. Определение момента инерции шара методом крутильных колебаний.

Опред

				Таблица 4		
еделение момента инерции полого цилиндра						
		-	-			
	_	<i>i</i> _ \				

№	t_i	n	T_i	$\langle T_{ ext{ iny III}} angle$
1		2		
2		2		
3		2		
4				
5				

Вычислите по формуле момент инерции шара:

$$J_{\text{III}} = \frac{T_{\text{III}}^2 \cdot \langle k \rangle}{4\pi^2} - J_{\text{ycr}} =$$

Вычислите степень несовпадения теоретического и экспериментального момента инерции:

$$\delta_{\rm nu} = \frac{\left|J_{\rm nu}^{\rm T} - J_{\rm iii}\right|}{J_{\rm iii}} \cdot 100\% =$$

Задание 4. Определение момента инерции полого цилиндра с использованием эталонного образца (сплошной цилиндр).

Таблица 5

Определение момента инерции сплошного цилиндра

№	t_i	n	T_i	$\langle T_{ m 9 extsf{i}} angle$
1		2		
2		2		
3		2		
4		2		
5		2		

Вычислите момент инерции полого цилиндра. Значение $\langle T_{\rm nц} \rangle$ возьмите из табл. 3:

$$J_{\text{пи}_3} = \left(\frac{\langle T_{\text{пц}} \rangle}{\langle T_{\text{эц}} \rangle}\right)^2 \cdot \left(J_{\text{уст}} + J_{\text{эц}}\right) - J_{\text{уст}} =$$

Вычислите степень несовпадения теоретического и экспериментального момента инерции:

$$\delta_{\text{пи}_3} = \frac{\left|J_{\text{пи}}^{\text{T}} - J_{\text{пи}_3}\right|}{J_{\text{пи}~3}} \cdot 100\% =$$

Подпись студента

19.	Сформулируйте	общие	выводы	ПО	выполненной	лабораторной	работе

Дата _____