

Линейная зависимость векторов

Содержание лекции:

В данной лекции мы введем и обсудим аксиомы линейного пространства. Главным объектом нашего исследования будут линейные комбинации векторов, рассмотрение которых приводит к понятиям линейной зависимости или независимости набора векторов, а также полноты заданного набора. Эти понятия затем лягут в основу определения одного из главных понятий линейной алгебры - размерности линейного пространства.

Ключевые слова:

Аксомы линейного пространства, набор векторов, набор коэффициентов, тривиальный набор, линейная комбинация векторов, линейнозависимый набор, линейнонезависимый набор, полный набор.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

1.1 Аксиомы линейного пространства

Линейным пространством $X(\mathbb{k})$ над полем \mathbb{k} называется абелева группа X, снабженная алгебраической структурой \mathbb{k} -модуля:

Nota bene В связи с тем, что линейные пространства играют ключевую роль во многих практических задачах, перечислим явно аксиомы согласования в этой алгебраической структуре. Положим далее, что x,y,z,\ldots - элементы группы X, а α,β,\ldots - элементы поля \Bbbk .

- 1. $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in X$, $\alpha, \beta \in K$;
- 2. $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in X$, $\alpha \in K$;
- 3. $\alpha(\beta x) = (\alpha \beta)x = \beta(\alpha x), \forall x \in X, \alpha, \beta \in K;$
- $4. \ \exists 1 \in K : 1 \cdot x = x, \quad \forall x \in X;$

Nota bene Элементы линейного пространства $X(\mathbb{k})$ принято называть векторами.

Пример 1.1.

- 1. $\mathbb{R}^n(\mathbb{C}^n) = \left\{ x = (\xi^1, \xi^2, \dots, \xi^n)^T, \xi^i \in \mathbb{R}(\mathbb{C}) \right\}$ линейное пространство над $\mathbb{R}(\mathbb{C})$;
- 2. $\mathbb{k}[x]_n = \{p \in \mathbb{k}[x] : \deg p \le n, n \in \mathbb{N}\}$ линейное пространство над \mathbb{R} ;
- 3. $\mathrm{Mat}_{\Bbbk}(m,n)=\{A\in \Bbbk_n^m: \quad a_{i,j}\in \Bbbk\}$ линейное пространство $m\times n$ матриц.

Лемма 1.1. Имеет место: $0 \cdot x = 0_X$.

$$0 \cdot x = 0_X \quad \Rightarrow \quad 0 \cdot x + y = y \quad \forall y \in X(\mathbb{k}).$$

$$0 \cdot x + y = 0 \cdot x + 0_X + y = 0 \cdot x + x + (-x) + y = 0 \cdot x + 1 \cdot x + (-x) + y = 0$$

$$= (0+1) \cdot x + (-x) + y = 1 \cdot x + (-x) + y = x + (-x) + y = 0_X + y = y.$$

Лемма 1.2. *Имеет место*: $(-1) \cdot x = -x$.

$$-1 \cdot x = -1 \cdot x + 0_X = -1 \cdot x + x + (-x) = (-1+1)x + (-x) = 0 \cdot x + (-x) = 0_X + (-x) = -x.$$

Лемма 1.3. Имеет место: $\forall \alpha \in \mathbb{k}, \quad \alpha \cdot 0_X = 0_X$.

▶

$$\alpha \cdot 0_X = 0_X \quad \Rightarrow \quad \alpha \cdot 0_X + y = y \quad \forall y \in X.$$

$$y = 0_X + y = x + (-x) + y = 1 \cdot x + (-x) + y = (\alpha + (-\alpha) + 1) \cdot x + (-x) + y =$$

$$\alpha x + (-\alpha)x + 1 \cdot x + (-x) + y = \alpha x + (-1)\alpha x + x + (-x) + y = \alpha (x + (-1)x) + 0_X + y =$$

$$= \alpha \cdot (x + (-x)) + y = \alpha \cdot 0_X + y.$$

◀

1.2 Линейная зависимость векторов

Набором $\{x_i\}_{i\in I}$ элементов некоторого множества M будем называть конечную и упорядоченную совокупность его элементов с учетом их кратностей.

Пусть $\{x_i\}_{i=1}^n \in X(\mathbb{k})$ - набор векторов линейного пространства $X(\mathbb{k})$, и $\{\alpha^j\}_{j=1}^n \in \mathbb{k}$ - набор коэффициентов из поля \mathbb{k} . Конструкция вида

$$v = x_1 \alpha^1 + x_2 \alpha^2 + \ldots + x_n \alpha^n$$

называется **линейной комбинацией** векторов $\left\{x_i\right\}_{i=1}^n$ с коэффициентами $\left\{\alpha^j\right\}_{j=1}^n$.

Тривиальным набором коэффициентов договоримся называть набор, все элементы которого равны нулю.

Набор векторов $\{x_i\}_{i=1}^n$ называется **линейнозависимым** (ЛЗ), если существует нетривиальный набор коэффициентов $\{\alpha^j\}_{j=1}^n$, такой что

$$x_1\alpha^1 + x_2\alpha^2 + \ldots + x_n\alpha^n = 0.$$

Набор векторов $\{x_i\}_{i=1}^n$ называется **линейнонезависимым** (ЛНЗ), если

$$x_1\alpha^1 + x_2\alpha^2 + \ldots + x_n\alpha^n = 0.$$

имеет место только тогда, когда набор $\left\{\alpha^j\right\}_{j=1}^n$ тривиальный.

Пример 1.2. Пусть
$$X(\mathbb{R}) = \mathbb{R}^n = \left\{ x = (\xi^1, \xi^2, \dots, \xi^n)^T, \xi^i \in \mathbb{R} \right\}$$
, тогда

$$x_1\alpha^1 + x_2\alpha^2 + \ldots + x_n\alpha^n = 0.$$

записывается в виде

$$\alpha_1 \begin{pmatrix} \xi_1^1 \\ \xi_1^2 \\ \vdots \\ \xi_n^n \end{pmatrix} + \alpha_2 \begin{pmatrix} \xi_2^1 \\ \xi_2^2 \\ \vdots \\ \xi_n^n \end{pmatrix} + \dots + \alpha_n \begin{pmatrix} \xi_n^1 \\ \xi_n^2 \\ \vdots \\ \xi_n^n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

или в форме системы

$$\begin{cases} \xi_1^1 \alpha^1 + \xi_2^1 \alpha^2 + \dots + \xi_n^1 \alpha^n = 0, \\ \xi_1^2 \alpha^1 + \xi_2^2 \alpha^2 + \dots + \xi_n^2 \alpha^n = 0, \\ \dots & \dots \\ \xi_1^n \alpha^1 + \xi_2^n \alpha^2 + \dots + \xi_n^n \alpha^n = 0. \end{cases}$$

Отсюда нетрудно получить, что система векторов:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix},$$

является линейнонезависимой, что следует из

$$\begin{cases} 1 \cdot \alpha^1 + 0 \cdot \alpha^2 + \ldots + 0 \cdot \alpha^n = 0, \\ 0 \cdot \alpha^1 + 1 \cdot \alpha^2 + \ldots + 0 \cdot \alpha^n = 0, \\ \ldots & \ldots \\ 0 \cdot \alpha^1 + 0 \cdot \alpha^2 + \ldots + 1 \cdot \alpha^n = 0. \end{cases} \Rightarrow \begin{cases} \alpha^1 = 0, \\ \alpha^2 = 0, \\ \vdots \\ \alpha^n = 0. \end{cases}$$

Пример 1.3. Пусть $X = \mathbb{k}[x]_n$, рассмотрим набор $\{1, x, x^2, \dots, x^{n-1}, x^n\}$ и линейную комбинацию

$$\alpha_0 \cdot 1 + \alpha_1 x^1 + \alpha_2 x^2 + \ldots + \alpha_n x^n = 0(x).$$

В точке t=0 рассмотрим производные до n-го порядка включительно:

$$0: \quad \alpha_0 \cdot 1 + \alpha_1 \cdot 0 + \alpha_2 \cdot 0 + \ldots + \alpha_n \cdot 0 = 0 \quad \Rightarrow \quad \alpha_0 = 0.$$

$$1: \quad 0 + \alpha_1 \cdot 1 + 2\alpha_2 \cdot 0 + \ldots + n\alpha_n \cdot 0 = 0 \quad \Rightarrow \quad \alpha_1 = 0.$$

...

$$n: n(n-1)(n-2)\dots 2 \cdot 1\alpha_n \cdot 1 = 0 \implies \alpha_n = 0.$$

Отсюда следует, что набор $\{1, x, x^2, \dots, x^{n-1}, x^n\}$ линейнонезависимый.

Пример 1.4. Положим $X = \operatorname{Mat}_{\Bbbk}(m,n)$ и рассмотрим набор $\{e_{ij}\}$ матриц, у каждой из которых единственный ненулевой элемент имеет индексы (i,j) $(e_{i,j}$ называют матричной единицей). Тогда

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha^{ij} e_{ij} = 0 \quad \Leftrightarrow \quad \alpha^{ij} = 0.$$

Лемма 1.4. Любой набор, содержащий нулевой вектор, является ЛЗ.

Лемма 1.5. Набор, содержащий ЛЗ поднабор, является ЛЗ.

Лемма 1.6. Любой поднабор ЛНЗ набора также является ЛНЗ.

Лемма 1.7. Система векторов линейнозависима тогда и только тогда, когда хотя бы один из векторов набора выражается линейной комбинацией остальных.

$$\{x_i\}_{i=1}^n - \mathcal{J}3 \quad \Leftrightarrow \quad \exists k \in 1 \dots n : \quad x_k = \sum_{i=1, i \neq k}^n x_i \beta^i.$$

 \Rightarrow Пусть $\{x_i\}_{i=1}^n$ - линейнозависимый набор, тогда

$$\exists k \in 1 \dots n : \quad \sum_{i=1}^{n} \alpha^{i} x_{i} = 0, \quad \alpha^{k} \neq 0 \quad \Rightarrow \quad x_{k} = -\sum_{i=1, i \neq k}^{n} x_{i} \frac{\alpha^{i}}{\alpha^{k}}.$$

 \Leftarrow Пусть набор $\{x_i\}_{i=1}^n$ такой, что

$$\exists k \in 1 \dots n : \quad x_k = \sum_{i=1, i \neq k}^n x_i \beta^i \quad \Rightarrow \quad \sum_{i=1, i \neq k}^n x_i \beta^i - 1 \cdot x_k = 0 \quad \Rightarrow \quad \{x_i\}_{i=1}^n - \text{II3}.$$

1.3 Полный набор

Набор векторов $\{x_i\}_{i=1}^n$ называется **полным** в линейном пространстве $X(\mathbb{k})$, если выполняется следующее условие:

$$\forall x \in X \quad \exists \alpha^1 \dots \alpha^n \in \mathbb{k} : \quad x = \sum_{i=1}^n x_i \alpha^i.$$

Пример 1.5. Пусть $X = \mathbb{R}^n$, тогда введенный выше набор $\{e_i\}_{i=1}^n$ является полным:

$$x = \begin{pmatrix} \xi^1 \\ \xi^2 \\ \vdots \\ \xi^n \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \xi^1 + \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \xi^2 + \dots + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \xi^n = \sum_{i=1}^n x_i \xi^i.$$

Пример 1.6. Пусть $X = \mathbb{k}[x]_n$, тогда набор $\{1, x, x^2, \dots, x^{n-1}, x^n\}$ является полным:

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \ldots + \alpha_n x^n = \sum_{k=0}^{n} \alpha_k x^k.$$

Пример 1.7. Пусть $X = \mathrm{Mat}_{\Bbbk}(m,n)$, тогда набор $\{e_{ij}\}$ является полным:

$$A = \alpha^{11}e_{11} + \alpha^{12}e_{12} + \ldots + \alpha^{mn}e_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha^{ij}e_{ij}.$$

Базис и размерность

Содержание лекции:

Предметом нашего интереса в настоящей лекции будет обсуждение связи между линейной независимостью и полнотой заданного набора векторов. Рассмотрение приведет нас к понятию базиса, а также важным соотношениям между числами векторов в различных наборах, что в свою очередь позволит доказать важнейшее утверждение о независимости числа векторов от выбора базиса и ввести понятие размерности линейного пространства. Оставшуюся часть мы посвятим обсуждению координат векторов в выбранном базисе.

Ключевые слова:

Конечномерное линейное пространство, замещение векторов в полном наборе, базис, процедура прореживания, размерность линейного пространства, координаты вектора в базисе, единственность координат, координаты линейной комбинации.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

2.1 Линейная независимость и полнота

Линейное пространство $X = X(\mathbb{k})$ называется **конечномерным**, если в нем существует конечный и полный набор векторов.

Nota bene Далее под $X(\mathbb{k})$ будем понимать именно конечномерное пространство.

Лемма 2.1. Если набор $\{y_i\}_{i=1}^n$ - полный в $X(\Bbbk)$, тогда линейнозависим набор

$$\{y_1, y_2, \dots, y_n; x\} \quad \forall x \in X(\mathbb{k}),$$

Так как набор $\{y_i\}_{i=1}^n$ - полный, то

$$\forall x \in X \quad \exists \left\{\alpha^i\right\}_{i=1}^n : \quad x = \sum_{i=1}^n y_i \alpha^i.$$

Но тогда из критерия линейной зависимости следует, что $\{y_1, y_2, \dots, y_n; x\}$ - ЛЗ.

Лемма 2.2. Пусть $\{y_1, y_2, \dots, y_n\}$ - полный набор в $X(\Bbbk)$, тогда

$$\forall x \in X \quad x \neq 0_X \quad \exists \, k \in 1 \dots n : \quad \{y_1, y_2, \dots, y_k, \dots y_n; x\}$$
 - полный набор.

Из линейной зависимости набора $\{y_1, y_2, \dots, y_n; x\}$ следует

$$\exists \left\{\alpha^i\right\}_{i=1}^n : \quad x = \sum_{i=1}^n y_i \alpha^i = \sum_{i=1, i \neq k}^n y_i \alpha^i + y_k \alpha^k \quad \Rightarrow \quad y_k = \left(x - \sum_{i=1, i \neq k}^n y_i \alpha^i\right) \frac{1}{\alpha^k}$$

Тогда для любого $z \in X$ будем иметь

$$\exists \left\{ \beta^{i} \right\}_{i=1}^{n} : \quad z = \sum_{i=1}^{n} y_{i} \beta^{i} = \sum_{i=1, i \neq k}^{n} y_{i} \beta^{i} + y_{k} \beta^{k} = \sum_{i=1, i \neq k}^{n} y_{i} \beta^{i} + \left(x - \sum_{i=1, i \neq k}^{n} y_{i} \alpha^{i} \right) \frac{\beta^{k}}{\alpha^{k}}.$$

И лемма доказана.

_

Будем называть процедурой замещения векторов в полном наборе следующую:

$$\{y_1, y_2, \dots, y_n\} \to \{y_1, y_2, \dots, y_k, \dots, y_n; x\}$$

БАЗИС И РАЗМЕРНОСТЬ

Лемма 2.3. Число векторов ЛНЗ набора в конечномерном пространстве не превосходит числа векторов полного набора:

$$\begin{cases} \{x_1,x_2,\ldots,x_m\} & \text{- } ЛH3 \text{ набор}, \\ \{y_1,y_2,\ldots,y_n\} & \text{- } полный \text{ набор} \end{cases} \Rightarrow n \geq m.$$

▶

От противного, пусть m > n. Воспользуемся последовательно процедурой замещения векторов в полном наборе $\{y_i\}_{i=1}^n$ векторами набора $\{x_j\}_{j=1}^m$. Будем иметь:

- 1. $\{y_1,\ldots,y_n\} \rightarrow \{y_1,\ldots,y_k,\ldots;x_1\};$
- 2. $\{y_1,\ldots;x_1\} \rightarrow \{y_1,\ldots,y_k,\ldots,y_l,\ldots,y_n;x_1,x_2\};$
- n. $\{y_q; ..., x_{n-1}\} \rightarrow \{y_1, ..., y_n; x_1, ..., x_n\};$

Построенный набор $\{x_j\}_{j=1}^n$ является полным и значит

$$\forall z \in X \quad \exists \left\{\alpha^{j}\right\}_{j=1}^{n} : \quad z = \sum_{j=1}^{n} x_{j} \alpha^{j} \quad \Rightarrow \quad x_{n+1} = \sum_{j=1}^{n} x_{j} \alpha^{j} \quad \Rightarrow \quad \text{II3!}$$

Таким образом, пришли к противоречию, так как набор $\{x_j\}_{j=1}^m$ - ЛНЗ.

4

2.2 Базис линейного пространства

Базисом в линейном пространстве $X(\mathbb{k})$ называется полный ЛНЗ набор.

Пример 2.1. Набор

- 1. $\{e_i\}_{i=1}^n$ образует базис в \mathbb{R}^n ;
- 2. $\{1,x,x^2,\dots,x^{n-1},x^n\}$ образует базис в $\Bbbk[x]_n$
- 3. $\{e_{ij}\}_{i=1}^{j=1...n}$ образует базис в $\mathrm{Mat}_{\Bbbk}(m,n)$.

Лемма 2.4. В любом конечномерном пространстве существует базис.

>

Пусть $X(\mathbb{k})$ - конечномерное линейное пространство, тогда в нем существует полный набор векторов $\{y_i\}_{i=1}^m$. Если данный набор линейнонезависимый, то лемма доказана, если нет, тогда воспользуемся npoyedypoù npopeæubahus:

1.
$$\{y_1\}$$
 - ЛНЗ;

2.
$$\{y_1, y_2\} - \Pi 3 \Rightarrow \{y_1, y_2\},$$

 $\{y_1, y_2\} - \Pi H 3 \Rightarrow \{y_1, y_2\};$

3.
$$\{y_1, ..., y_3\} - \Pi 3 \Rightarrow \{y_1, ..., y_3\}, \{y_1, ..., y_3\} - \Pi H 3 \Rightarrow \{y_1, ..., y_3\}; ...$$

m.
$$\{y_1, \dots, y_m\} - \Im \exists \Rightarrow \{y_1, \dots, y_m\},$$

 $\{y_1, \dots, y_m\} - \Im \exists \exists \Rightarrow \{y_1, \dots, y_m\};$

После процедуры прореживания оставшиеся векторы набора все еще образуют полную систему (так как выбрасывались только линейнозависимые векторы) и линейнонезависимы, а значит образуют базис.

•

Лемма 2.5. В конечномерном линейном пространстве любой ЛНЗ набор может быть дополнен до базиса.

Пусть $\{e_j\}_{j=1}^n$ - базис $X(\mathbb{k})$ и $\{x_1, x_2, \dots, x_m\}$ - имеющийся ЛНЗ набор. Воспользуемся процедурой замещения:

1.
$$\{e_1, e_2, \dots e_n\} \Rightarrow \{e_1, \dots, e_k, \dots, e_n; x_1\},\$$

2.
$$\{e_1, \dots, \not e_k, \dots, e_n, x_1\} \Rightarrow \{e_1, \dots, \not e_k, \dots, \not e_l, \dots, e_n; x_1, x_2\},$$

$$\dots \dots \dots$$

$$m. \{ \dots, e_q, \dots; x_1, x_2, \dots, x_{m-1} \} \Rightarrow \{ \dots, \not e_q, \dots; x_1, \dots, x_m \}.$$

После процедуры остается полный ЛНЗ набор (базис), содержащий векторы набора $\{x_1, x_2, \dots, x_m\}$.

Ì

Nota bene Число векторов любого ЛНЗ набора в конечномерном пространстве не превосходит числа базисных векторов этого пространства.

Теорема 2.1. Количество векторов в двух разных базисах конечномерного линейного пространства одинаково.

•

Пусть $\{e_i\}_{i=1}^n$ и $\{\tilde{e}_j\}_{j=1}^m$ пара базисов в в линейном пространстве $X(\Bbbk)$. Тогда из того, что $\{e_i\}_{i=1}^n$ - полный набор, а $\{\tilde{e}_j\}_{j=1}^m$ - ЛНЗ, следует что $m \leq n$. С другой стороны $\{e_i\}_{i=1}^n$ - ЛНЗ, а $\{\tilde{e}_j\}_{j=1}^m$ - полный набор, и тогда $n \leq m$. Значит m=n.

_

 $\|$ **Размерностью** линейного пространства $X(\mathbb{k})$ называется мощность его базиса.

Пример 2.2. Важные частные случаи:

1. $\dim_{\mathbb{R}} \mathbb{R}^n = n$;

 $2. \dim_{\mathbb{R}} \mathbb{R}[x]_n = n+1;$

3. $\dim_{\mathbb{C}} \mathbb{C}^n = n$, $\dim_{\mathbb{R}} \mathbb{C}^n = 2n$;

4. $\dim_{\mathbb{R}} \operatorname{Mat}_{\mathbb{R}}(m, n) = n \cdot m;$

5. $\dim_{\mathbb{R}} C[a, b] = \infty$.

Nota bene Если $\{x_i\}_{i=1}^m$ - ЛНЗ в $X(\mathbb{k})$, то $m \leq \dim_{\mathbb{k}} X$.

Nota bene Чтобы ЛНЗ набор $\{x_i\}_{i=1}^m$ был базисом в $X(\mathbb{k})$ необходимо и достаточно выполнение условия $m = \dim_{\mathbb{k}} X$.

Nota bene Базис в конечномерном линейном пространстве - это ЛНЗ набор максимального размера.

2.3 Координаты вектора в базисе

Пусть $\{e_i\}_{i=1}^n$ - базис линейного пространства $X(\mathbb{k})$. Тогда

$$\exists \left\{ \xi^i \in \mathbb{k} \right\}_{i=1}^n : \quad x = \sum_{i=1}^n e_i \xi^i \quad \forall x \in X.$$

Набор чисел $\{\xi^i\}_{i=1}^n$ называется **координатами** вектора x в базисе $\{e_i\}_{i=1}^n$.

Лемма 2.6. Координаты любого вектора из $X(\mathbb{k})$ в заданном базисе определяются единственным образом.

Пусть $\{\xi^i\}_{i=1}^n$ и $\{\tilde{\xi}^i\}_{i=1}^n$ два набора координат вектора x в базисе $\{e_i\}_{i=1}^n$. Тогда:

$$x = e_1 \xi^1 + e_2 \xi^2 + \dots + e_n \xi^n,$$

$$x = e_1 \tilde{\xi}^1 + e_2 \tilde{\xi}^2 + \dots + e_n \tilde{\xi}^n.$$

Вычитая второе разложение из первого, будем иметь:

$$e_1(\xi^1 - \tilde{\xi}) + e_2(\xi^2 - \tilde{\xi}^2) + \dots + e_n(\xi^n - \tilde{\xi}^n) = 0$$

В силу ЛНЗ векторов базиса равенство нулю полученной линейной комбинации имеет место только когда $\xi^i = \tilde{\xi}^i$.

БАЗИС И РАЗМЕРНОСТЬ

Лемма 2.7. Координаты в базисе $\{e_k\}_{k=1}^n$ линейной комбинации векторов $\{x_i\}_{i=1}^m$ равны линейным комбинациям соответствующих координат данных векторов. Именно если

$$x_i = \sum_{k=1}^n e_k \xi_i^k, \quad y = \sum_{i=1}^m x_i \alpha^i,$$

тогда

$$y = \sum_{j=1}^{n} e_j \eta^j, \quad \Rightarrow \quad \eta^k = \sum_{j=1}^{m} \xi_i^k \alpha^i.$$

▶

$$y = \sum_{i=1}^{m} x_i \alpha^i = \sum_{i=1}^{m} \left(\sum_{k=1}^{n} e_k \xi_i^k \right) \alpha^i = \sum_{k=1}^{n} e_k \left(\sum_{i=1}^{m} \alpha^i \xi_i^k \right) = \sum_{k=1}^{n} e_k \eta^k.$$

Использование леммы о единственности набора координат вектора в заданном базисе завершает доказательство.

4

Изоморфизм линейных пространств.

Содержание лекции:

В настоящей лекции мы обсудим важную концепцию изоморфизма линейных пространств. Изоморфные пространства как алгебраические структуры неотличимы. Мы покажем, что исследование структуры этих пространств можно без потери общности ограничить только некоторыми представителями, а именно координатными пространствами.

Ключевые слова:

Биекция, линейность, изоморфизм, изоморфные пространства, изоморфизм и линейная зависимость, классы изоморфных пространств.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

ИЗОМОРФИЗМ ЛИНЕЙНЫХ ПРОСТРАНСТВ.

3.1 Определение изоморфизма

Пусть $X(\mathbb{k})$ и $Y(\mathbb{k})$ - линейные пространства над одним и тем же полем \mathbb{k} .

Nota bene Напомним что отображение $\sigma: X \to Y$ между *множеествами* X и Y называется **биекцией**, если существует отображение $\psi: Y \to X$, такое что

$$\forall x \in X \quad \psi(\sigma(x)) = x, \quad \forall y \in Y \quad \sigma(\psi(y)) = y,$$

то есть

$$\psi \circ \sigma = \mathrm{id}_X, \quad \sigma \circ \psi = \mathrm{id}_Y.$$

Лемма 3.1. Биекция является взаимно-однозначным отображением.

Отображение $\sigma:X\to Y$ линейного пространства $X(\Bbbk)$ в линейное пространство $Y(\Bbbk)$ называется **линейным**, если

$$\forall x_1, x_2 \in X \quad \sigma(x_1 + x_2) = \sigma(x_1) + \sigma(x_2),$$

 $\forall x \in X, \quad \forall \alpha \in \mathbb{k} \quad \sigma(\alpha x) = \alpha \sigma(x).$

 $Nota\ bene$ Если $\sigma: X(\mathbb{k}) \to Y(\mathbb{k})$ - линейно, тогда

$$\sigma(0_X) = 0_Y$$

Отображение $\sigma: X(\Bbbk) \to Y(\Bbbk)$ называется **изоморфизмом** линейных пространств $X(\Bbbk)$ и $Y(\Bbbk)$, если σ биективно и линейно.

Пример 3.1. Пусть $\{e_j\}_{j=1}^n$ - базис $X(\mathbb{k})$, тогда отображение

$$\sigma: X(\mathbb{k}) \to \mathbb{k}^n,$$

сопоставляющее каждому вектору $x \in X(\mathbb{k})$ набор его координат в базисе $\{e_j\}_{j=1}^n$ является изоморфизмом.

Лемма 3.2. Отображение σ^{-1} , обратное изоморфизму σ является изоморфизмом.

По определению, σ^{-1} является биекцией. Таким образом, необходимо доказать только линейность. Пусть $y_1, y_2 \in Y(\mathbb{k})$, тогда

$$\sigma^{-1}(y_1), \sigma^{-1}(y_2) \in X(\mathbb{k}).$$

Из линейности σ следует

$$\sigma(\sigma^{-1}(y_1) + \sigma^{-1}(y_2)) = \sigma(\sigma^{-1}(y_1)) + \sigma(\sigma^{-1}(y_2)) = y_1 + y_2.$$

Применим к обеим частям σ^{-1} и получим

$$\sigma^{-1}(y_1 + y_2) = \sigma^{-1}(y_1) + \sigma^{-1}(y_2).$$

Пусть теперь $y \in Y$, тогда

$$\sigma\left(\alpha\sigma^{-1}(y)\right) = \alpha\sigma\left(\sigma^{-1}(y)\right) = \alpha y \quad \Rightarrow \quad \sigma^{-1}(\alpha y) = \alpha\sigma^{-1}(y).$$

•

ИЗОМОРФИЗМ ЛИНЕЙНЫХ ПРОСТРАНСТВ.

3.2 Изоморфизм и линейная зависимость

Лемма 3.3. Пусть $\sigma: X(\Bbbk) \to Y(\Bbbk)$ - линейное отображение и $\{x_i\}_{i=1}^m$ - ЛЗ набор в $X(\Bbbk)$, тогда $\{\sigma(x_i)\}_{i=1}^m$ - ЛЗ набор в $Y(\Bbbk)$.

Пусть $\{x_i\}_{i=1}^m$ - ЛЗ набор в $X(\mathbb{k})$, тогда

$$\exists \left\{ \alpha^i \right\}_{i=1}^m \in \mathbb{k} : \quad \sum_{i=1}^n x_i \alpha^i = 0_X.$$

После отображения σ будем иметь:

$$\sigma\left(\sum_{i=1}^{n} x_i \alpha^i\right) = \sum_{i=1}^{n} \sigma(x_i) \alpha^i = 0_Y.$$

Так как набор $\{\alpha^i\}_{i=1}^m$ нетривиален, то набор $\{\sigma(x_i)\}_{i=1}^m$ - линейно зависимый.

Nota bene Образ ЛНЗ набора $\{x_i\}_{i=1}^m$ в этом случае не обязан быть ЛНЗ.

Лемма 3.4. При изоморфизме ЛНЗ набор векторов отображается в ЛНЗ набор.

Пусть $\{x_i\}_{i=1}^m$ - ЛНЗ набор, а $\{\sigma(x_i)\}_{i=1}^m$ - ЛЗ, но тогда $\{\sigma^{-1}(\sigma(x_i))\}_{i=1}^m$ - ЛЗ набор.

Лемма 3.5. При изоморфизме полный набор отображается в полный набор.

Покажем, что из полноты набора $\{x_i\}_{i=1}^m$ следует полнота набора $\{\sigma(x_i)\}_{i=1}^m$. Действительно для любого $y \in Y(\mathbb{k})$ имеет место

$$\exists \left\{ \alpha^i \right\}_{i=1}^n : \quad \sigma^{-1}(y) = \sum_{i=1}^n e_i \alpha^i \quad \Rightarrow \quad y = \sum_{i=1}^n \sigma(e_i) \alpha^i,$$

Nota bene Таким образом, при изоморфизме базис пространства $X(\mathbb{k})$ отображается в базис пространства $Y(\mathbb{k})$. Ниже мы покажем, что данное условие является также достаточным для существования изоморфизма между данными пространствами.

3.3 Изоморфные пространства

Линейные пространства $X(\Bbbk)$ и $Y(\Bbbk)$ называются **изоморфными**, если между ними существует изоморфизм $\sigma: X(\Bbbk) \to Y(\Bbbk)$.

ИЗОМОРФИЗМ ЛИНЕЙНЫХ ПРОСТРАНСТВ.

Nota bene Тот факт, что пространство $X(\mathbb{k})$ изоморфно пространству $Y(\mathbb{k})$ будем обозначать $X(\mathbb{k}) \simeq Y(\mathbb{k})$.

Лемма 3.6. Изоморфность линейных пространств - отношение эквивалентности.

Докажем необходимые свойства:

- 1. рефлексивность $(X(\Bbbk) \simeq X(\Bbbk))$: тождественное отображение $\mathrm{id}_X: X \to X$ является изоморфизмом;
- 2. симметричность $(X(\Bbbk) \simeq Y(\Bbbk) \Rightarrow Y(\Bbbk) \simeq X(\Bbbk))$ было доказано, что обратное отображение также изоморфизм;
- 3. транзитивность $(X(\Bbbk) \simeq Y(\Bbbk), \quad Y(\Bbbk) \simeq Z(\Bbbk) \Rightarrow X(\Bbbk) \simeq Z(\Bbbk))$ пусть $\sigma: X(\Bbbk) \to Y(\Bbbk)$ и $\psi: Y(\Bbbk) \to Z(\Bbbk)$ соответствующие изоморфизмы, тогда $\psi \circ \sigma$ изморфизм и $X(\Bbbk) \simeq Z(\Bbbk)$.

Nota bene Полученное отношение эквивалентности порождает классы эквивалентности изоморфных пространств.

Лемма 3.7. Чтобы пространства $X(\mathbb{k})$ и $Y(\mathbb{k})$ были изоморфны необходимо и достаточно чтобы их размерности совпадали:

$$X(\mathbb{k}) \simeq Y(\mathbb{k}) \quad \Leftrightarrow \quad \dim_{\mathbb{k}} X = \dim_{\mathbb{k}} Y.$$

 \Rightarrow Пусть $X(\mathbb{k}) \simeq Y(\mathbb{k})$, тогда образом базиса пространства $X(\mathbb{k})$ будет некоторый базис пространства $Y(\mathbb{k})$. В силу биективности изоморфизма, количества векторов в соответствующих наборах будут совпадать.

 \Leftarrow Если $\dim_{\mathbb{k}} X = \dim_{\mathbb{k}} Y$, тогда $X \simeq \mathbb{k}^n$ и $Y(\mathbb{k}) \simeq \mathbb{k}^n$. В силу симметричности и транзитивности мы получим $X(\mathbb{k}) \simeq Y(\mathbb{k})$.

Nota bene Таким образом, каждый класс эквивалентности изоморфных пространств содержит линейные пространства одинаковой размерности. Типичными представителями данных классов являются "арифметические" пространства столбцов:

$$[n=1] \leftrightarrow \mathbb{k}^1, \quad [n=2] \leftrightarrow \mathbb{k}^2, \quad \dots, \quad [n=m] \leftrightarrow \mathbb{k}^m$$

 ${\it Nota \ bene}$ Выберем базис в каждом из пространств $X(\Bbbk)$ и $Y(\Bbbk)$:

$$\{e_j\}_{j=1}^n \in X(\mathbb{k}), \quad \{f_j\}_{j=1}^n \in Y(\mathbb{k}), \quad e_j \leftrightarrow f_j \quad \forall j.$$

Изоморфизм между $X(\mathbb{k})$ и $Y(\mathbb{k})$ устанавливается следующим соответствием:

$$x = \sum_{i=1}^{n} e_i \alpha^i \quad \leftrightarrow \quad y = \sum_{i=1}^{n} f_i \alpha^i.$$

Линейные подпространства

Содержание лекции:

В настоящей лекции мы поговорим о подструктурах линейного пространства - линейных подпрострастранствах. Чаще всего приходится иметь дело именно с ними. Подпространства и линейные многообразия играют важную роль в геометрических приложениях линейной алгебры, а также, как будет указано, в теории систем линейных алгебраических уравнений.

Ключевые слова:

Линейное подпространство, линейная оболочка, линейное многообразие, размерность линейного многообразия.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

4.1 Подпространства

Подмножество $L \subset X$ линейного пространства $X(\mathbb{k})$ называется линейным подпространством пространства $X(\mathbb{k})$, если оно само является линейным простанством над полем \mathbb{k} относительно операций, определенных в $X(\mathbb{k})$.

Теорема 4.1. (Критерий линейного подпространства) Для того, чтобы непустое подмножество L линейного пространства $X(\mathbb{k})$ являлось подпространством, необходимо и достаточно выполнение следующих условий:

- 1. $\forall x_1, x_2 \in L(\mathbb{k}) \quad x_1 + x_2 \in L(\mathbb{k});$
- 2. $\forall \alpha \in \mathbb{k}, \quad \forall x \in L(\mathbb{k}) \quad \alpha x \in L(\mathbb{k}).$

 \Rightarrow Пусть $L(\mathbb{k})$ - подпространство линейного пространства $X(\mathbb{k})$, тогда условия (1) и (2) содержатся в его определении.

 \Leftarrow Пусть выполняются условия (1) и (2), тогда прямой проверкой аксиом, убеждаемся, что $L(\Bbbk)$ - подпространство линейного пространства $X(\Bbbk)$.

◀

Nota bene Обычно пишут $L(\mathbb{k}) \leqslant X(\mathbb{k})$.

Пример 4.1. Примеры подпространств:

- 1. Само $X(\mathbb{k})$ и $\{0\}$ примеры несобственного и тривиального подпространств;
- 2. Множество симметричных 2×2 матриц подпространство $\mathrm{Mat}_{\mathbb{C}}(2)$;
- 3. Множество четных полиномов подпространство $\mathbb{R}[x]_n$;

Лемма 4.1. Пусть $L(\mathbb{k}) \leqslant X(\mathbb{k})$, тогда

$$\dim_{\mathbb{k}} L \leq \dim_{\mathbb{k}} X.$$

▶

Так как $L(\mathbb{k})$ является подмножеством $X(\mathbb{k})$, то любой набор элементов $L(\mathbb{k})$ также содержится и в $X(\mathbb{k})$. Лемму доказывает выбор базиса $L(\mathbb{k})$ в качестве такого набора.

4

Лемма 4.2. Имеет место:

$$L(\mathbb{k}) = X(\mathbb{k}) \quad \Leftrightarrow \quad \dim_{\mathbb{k}} L = \dim_{\mathbb{k}} X.$$

⇒ Утверждение очевидно.

 \Leftarrow Наряду с тем, что $L \subseteq X$, имеет место критерий:

$$\dim_{\mathbb{k}} X = \dim_{\mathbb{k}} L \quad \Leftrightarrow \quad X(\mathbb{k}) \simeq L(\mathbb{k}),$$

Лемма 4.3. Любой базис подпространства $L(\mathbb{k})$ может быть дополнен до базиса всего пространства $X(\mathbb{k})$.

Пусть $\{f_i\}_{i=1}^m$ базис $L(\mathbb{k})$. Применим процедуру замещения к системе

$$\{e_1, e_2, \dots, e_n\} \quad \Rightarrow \quad \{\dots; f_1, f_2, \dots, f_m\}$$

где $\{e_j\}_{j=1}^n$ - базис $X(\Bbbk)$. \blacktriangleleft

Лемма 4.4. Из произвольного базиса пространства $X(\mathbb{k})$, вообще говоря, нельзя выбрать базис его подпространства $L(\mathbb{k})$.

Лемму доказывает контрпример:

$$X(\mathbb{k}) = \mathcal{L}\left\{e_1, e_2\right\} \quad L(\mathbb{k}) = \mathcal{L}\left\{e_1 + e_2\right\}.$$

4.2 Линейная оболочка

Линейной оболочкой системы векторов x_1, x_2, \dots, x_k называется множество $\mathcal{L}\{x_1, x_2, \dots, x_k\}$ всех линейных комбинаций этих векторов:

$$\mathcal{L}\{x_1, x_2, \dots, x_k\} = \left\{ x \in X : \quad x = \sum_{i=1}^k \alpha^i x_i \right\}.$$

Лемма 4.5. Линейная оболочка векторов $\{x_1, x_2, \dots, x_k\}$ - подпространство $X(\mathbb{k})$:

$$\forall y, y_1, y_2 \in \mathcal{L}, \quad \forall \lambda \in \mathbb{k} \quad \Rightarrow \quad y_1 + y_2 \in \mathcal{L}, \quad \lambda y \in \mathcal{L}.$$

Так как $y, y_1, y_2 \in \mathcal{L}(\mathbb{k})$, то

$$y = \sum_{i=1}^{k} x_i \alpha^i, \quad y_1 = \sum_{i=1}^{k} x_i \alpha_1^i, \quad y_2 = \sum_{i=1}^{k} x_i \alpha_2^i,$$

и осталось только проверить существование соответствующих линейных комбинаций:

$$y_1 + y_2 = \sum_{i=1}^k x_i \alpha_1^i + \sum_{i=1}^k x_i \alpha_2^i = \sum_{i=1}^k x_i \left(\alpha_1^i + \alpha_2^i\right) \in \mathcal{L},$$
$$y\lambda = \sum_{i=1}^k x_i \alpha^i \cdot \lambda = \sum_{i=1}^k x_i \alpha^i \lambda \in \mathcal{L}.$$

Лемма 4.6. (минимальность) Линейная оболочка векторов $\mathcal{L}\{x_1, x_2, \dots, x_k\}$ является наименьшим подпространством в $X(\mathbb{k})$, содержащим эти векторы.

Всякое линейное пространство, содержащее векторы $\{x_1, x_2, \dots, x_k\}$ также должно содержать и все их линейные комбинации, а значит - линейная оболочка $\{x_1, x_2, \dots, x_k\}$ - наименьшее из таких подпространств.

Линейная оболочка векторов $\mathcal{L}\{x_1, x_2, \dots, x_k\}$ называется подпространством, натянутым на данные векторы.

4.3 Линейное многообразие

Линейным многообразием M, параллельным подпространству $L(\mathbb{k})$ линейного пространства $X(\mathbb{k})$ называется множество

$$M_{x_0} = \{ y \in X(\mathbb{k}) : y = x_0 + x, x_0 \in X(\mathbb{k}), x \in L(\mathbb{k}) \}.$$

Nota bene Линейное подпространство $L(\mathbb{k})$ называется также несущим подпространством для многообразия M.

Теорема 4.2. Следующие утверждения эквивалентны:

(1)
$$x_0 + L = y_0 + L \Leftrightarrow (2) \quad y_0 \in x_0 + L \Leftrightarrow (3) \quad y_0 - x_0 \in L.$$

На протяжении всего доказательства положим $z, z' \in L$. Импликация $(1) \Rightarrow (2)$:

$$x_0 + L = y_0 + L \implies x_0 + z = y_0 + z' \implies y_0 = x_0 + (z - z') \in x_0 + L.$$

Импликация $(2) \Rightarrow (3)$:

$$y_0 \in x_0 + L \quad \Rightarrow \quad y_0 = x_0 + z \quad \Rightarrow \quad y_0 - x_0 = z \in L.$$

Импликация $(3) \Rightarrow (1)$:

$$y_0 - x_0 \in L \quad \Rightarrow \quad y_0 = x_0 + z.$$

Пусть $x \in x_0 + L$, тогда $x = x_0 + z'$, $z' \in L$ и

$$x = x_0 + z' = y_0 + (z' - z)$$
 \Rightarrow $x_0 + L \subseteq y_0 + L$.

аналогично для $y \in y_0 + L$.

4

 $Nota\ bene$ Многообразие M_{x_0} порождается любым своим представителем.

Nota bene Для того, чтобы линейное многообразие M_{x_0} было подпространством необходимо и достаточно, чтобы $x_0 \in L(\mathbb{k})$, то есть, чтобы $M_{x_0} \equiv L(\mathbb{k})$.

Лемма 4.7. Несущее подпространство линейного многообразия определяется единственным образом.

Пусть $x_0, y_0 \in X$ и $L(\mathbb{k}), L'(\mathbb{k}) \leqslant X(\mathbb{k})$, тогда

$$x_0 + L = y_0 + L' \quad \Rightarrow \quad L = L'$$

Из предыдущей теоремы следует:

$$x_0 + L = y_0 + L' \implies x_0 + L = x_0 + L' \implies$$

$$\forall x \in L \quad \exists y \in L' : \quad x_0 + x = x_0 + y \implies x = y \implies L \subseteq L',$$

$$\forall y \in L' \quad \exists x \in L : \quad x_0 + x = x_0 + y \implies y = x \implies L' \subseteq L.$$

4

Определяют размерность многобразия M, параллельного подпространству L

$$\dim_{\mathbb{K}} M_{x_0} = \dim_{\mathbb{K}} L.$$

Многообразие M, параллельное L называется:

- прямой, если $\dim_{\mathbb{k}} L = 1$;
- плоскостью, если $\dim_{\mathbb{k}} L = 2$;
- k-мерной плоскостью, если $\dim_{\mathbb{k}} L = k$;
- гиперплоскостью $\dim_{\mathbb{k}} L = \dim_{\mathbb{k}} X 1$.

Сумма и пересечение подпространств

Содержание лекции:

Настоящая лекция посвящена обсуждению операций с подпространствами. Рассматриваемые здесь понятия имеют непосредственное приложение в геометрии. Формулируемое условие единственности разложения произвольного вектора имеет прямое отношение к описанию геометрических объектов и исследованию их свойств. Мы начнем с общих понятий суммы и пересечения линейных подпространств.

Ключевые слова:

Пересечение подпространств, сумма подпротранств, прямая сумма подпространств, компоненты вектора, проекция вектора, дополнение пространства, коразмерность пространства.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

5.1 Сумма и пересечение подпространств

Nota bene Пусть $X(\mathbb{k})$ - линейное пространство над некоторым полем \mathbb{k} и $L_1, L_2 \subset X(\mathbb{k})$ - два его собственных подпространства.

Множество L' называется пересечением подпространств L_1 и L_2 , если

$$L' = \{x \in X : x \in L_1 \land x \in L_2\}.$$

 $Nota\ bene$ Тот факт, что множество L' является пересечением подпространств L_1 и L_2 обозначают следующим образом:

$$L'=L_1\cap L_2.$$

Лемма 5.1. Множество L' - подпространство $X(\mathbb{k})$.

Докажем замкнутость множества L' относительно линейных операций, индуцированных из $X(\Bbbk)$. Действительно,

$$x, x_1, x_2 \in L' \quad \Rightarrow \quad x, x_1, x_2 \in L_1 \cap L_2 \quad \Rightarrow \quad x, x_1, x_2 \in L_1, \quad x, x_1, x_2 \in L_2.$$

Так как L_1 и L_2 - подпространство, то сразу получаем:

$$x_1 + x_2 \in L_1$$
, $x_1 + x_2 \in L_2$ \Rightarrow $x_1 + x_2 \in L_1 \cap L_2 = L'$, $x\lambda \in L_1$, $x\lambda \in L_2$ \Rightarrow $x\lambda \in L'$.

Множество L'' называется **суммой подпространств** L_1 и L_2 , если

$$L'' = \{x \in X : x = x_1 + x_2, \ x_1 \in L_1, \ x_2 \in L_2\}.$$

 ${\it Nota \ bene}$ Тот факт, что множество L' является суммой подпространств L_1 и L_2 обозначают следующим образом:

$$L'' = L_1 + L_2$$
.

Лемма 5.2. Множество $L'' \equiv L_1 + L_2$ - подпространство X.

Пусть $x,y\in L'',$ тогда

$$x = x_1 + x_2, \quad y = y_1 + y_2, \quad x_1, y_1 \in L_1, \quad x_2, y_2 \in L_2,$$

$$x + y = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) \quad \Rightarrow \quad x + y \in L'',$$

$$x\lambda = (x_1 + x_2)\lambda = x_1\lambda + x_2\lambda \quad \Rightarrow \quad x\lambda \in L''.$$

Nota bene Определение суммы подпространств, определенное выше не эквивалентно теоретико-множественному объединению L_1 и L_2 .

5.2 Теорема о размерностях

Теорема 5.1. (Грассман) Пусть L_1 и L_2 - подпростраства X, тогда

$$\dim_{\mathbb{k}} L_1 + \dim_{\mathbb{k}} L_2 = \dim_{\mathbb{k}} (L_1 + L_2) + \dim_{\mathbb{k}} (L_1 \cap L_2)$$

Утверждение теоремы эквивалентно следующему. Пусть

$$\{e_1,e_2,\dots,e_m\}$$
 - базис $L_1\cap L_2,$ $\{e_1,e_2,\dots,e_m,f_1,\dots,f_k\}$ - базис $L_1,$ $\{e_1,e_2,\dots,e_m,g_1,\dots,g_l\}$ - базис $L_2,$

тогда

$$\{e_1, e_2, \dots, e_m, f_1, \dots, f_k, g_1, \dots, g_l\}$$
 - базис $L_1 + L_2$.

Для доказательства достаточно показать, что $\{e_1,\ldots,f_1,\ldots,g_1\ldots\}$ - ПН и ЛНЗ в L_1+L_2 . Действительно, для любого $x\in L_1+L_2$ имеем:

$$x = x_1 + x_2 = \left(\sum_{i=1}^m e_i \alpha_1^i + \sum_{j=1}^k f_j \beta_1^j\right) + \left(\sum_{i=1}^m e_i \alpha_2^i + \sum_{s=1}^l g_s \beta_2^s\right) =$$

$$= \sum_{i=1}^m e_i \left(\alpha_1^i + \alpha_2^i\right) + \sum_{j=1}^k f_j \beta_1^j + \sum_{s=1}^l g_s \beta_2^s,$$

что доказывает полноту набора. Для доказательства линейной независимости рассмотрим линейную комбинацию:

$$e_1\alpha^1 + \ldots + e_m\alpha^m + f_1\beta^1 + \ldots + f_k\beta^k + g_1\gamma^1 + \ldots + g_l\gamma^l = 0,$$

 $e_1\alpha^1 + \ldots + e_m\alpha^m + f_1\beta^1 + \ldots + f_k\beta^k = -g_1\gamma^1 - \ldots - g_l\gamma^l \equiv z,$

где $z \in L_1 \cap L_2$ и значит:

$$z = e_1 \delta^1 + \ldots + e_m \delta^m.$$

Из определения $z=-g_1\gamma^1-\ldots-g_l\gamma^l$ следует

$$g_1\gamma^1 + \ldots + g_l\gamma^l + e_1\delta^1 + \ldots + e_m\delta^m = 0 \quad \Rightarrow \quad \gamma^1 = \ldots = \gamma^l = \delta^1 = \ldots = \delta^m = 0,$$

откуда имеем z = 0 и

$$e_1\alpha^1 + \ldots + e_m\alpha^m + f_1\beta^1 + \ldots + f_k\beta^k = z = 0 \quad \Rightarrow \quad \alpha^1 = \cdots = \alpha^m = \beta^1 = \ldots = \beta^k = 0.$$

4

Nota bene Понятие суммы и пересечения подпространств распространяется на произвольное конечное их число, именно:

$$L_1 \cap L_2 \cap \ldots \cap L_k = \{x \in X : x \in L_i, i = 1 \ldots k\},\$$

 $L_1 + L_2 + \ldots + L_k = \{x \in X : x = x_1 + x_2 + \ldots + x_k, x_i \in L_i\}.$

То, что это линейные подпространства $X(\mathbb{k})$ доказываются аналогично.

5.3 Прямая сумма подпространств. Проекция

Прямой суммой подпространств L_1 и L_2 называется их сумма \tilde{L} :

$$\forall x \in \tilde{L} \quad x = x_1 + x_2, \quad x_1 \in L_1, \quad x_2 \in L_2,$$

когда такое разложение единственно.

 ${\it Nota \ bene}$ Тот факт, что \tilde{L} является прямой суммой L_1 и L_2 обозначают следующим образом:

$$\tilde{L} = L_1 \dot{+} L_2$$
.

Теорема 5.2. (критерий прямой суммы)

$$L_1 + L_2 = L_1 + L_2 \quad \Leftrightarrow \quad L_1 \cap L_2 = \{0_X\}.$$

⇒ Докажем от противного. Пусть

$$L = L_1 \dotplus L_2, \quad L_1 \cap L_2 \neq \{0\} \quad \Rightarrow \quad \exists z \in L_1 \cap L_2, \quad z \neq 0,$$

 $x = x_1 + x_2 = x_1 + x_2 + z - z = (x_1 + z) + (x_2 - z).$

← Докажем от противного. Пусть

$$L_1\cap L_2=\{0_X\}\,,\quad L=L_1+L_2,$$
 - непрямая сумма $x=x_1+x_2,\quad x=y_1+y_2\quad\Rightarrow\quad 0_X=(x_1-y_1)+(x_2-y_2),$ $x_1-y_1=y_2-x_2=z
eq 0_X,\quad z\in L_1\cap L_2.$

Теорема 5.3. Линейное пространство $X(\mathbb{k})$ является прямой суммой своих подпространств L_1 и L_2 тогда и только тогда, когда эти подпространства дизъюнктны, а сумма их размерностей совпадает с размерностью $X(\mathbb{k})$:

$$X = L_1 \dot{+} L_2 \quad \Leftrightarrow \quad \begin{cases} L_1 \cap L_2 = \{0_X\}, \\ \dim_{\mathbb{k}} L_1 + \dim_{\mathbb{k}} L_2 = \dim_{\mathbb{k}} X \end{cases}$$

⇒ Первая часть следует из признака прямой суммы. Вторая - из того что

$$X = L_1 + L_2$$
, $\dim_{\mathbb{K}} (L_1 \cap L_2) = 0_X$

 \Leftarrow Имеем $\dim (L_1 \cap L_2) = 0$ и значит

$$\dim_{\mathbb{k}} L_1 + \dim_{\mathbb{k}} L_2 = \dim_{\mathbb{k}} (L_1 + L_2) + 0,$$

$$\dim_{\mathbb{k}} L_1 + \dim_{\mathbb{k}} L_2 = \dim_{\mathbb{k}} X,$$

$$\Rightarrow \dim_{\mathbb{k}} X = \dim_{\mathbb{k}} (L_1 + L_2).$$

Кроме того,

$$\begin{cases} \dim_{\mathbb{k}} X = \dim_{\mathbb{k}} (L_1 + L_2), \\ L_1 + L_2 \subset X \end{cases} \Rightarrow X = L_1 + L_2 \Leftrightarrow X = L_1 \dot{+} L_2.$$

◀

Подпространство $L = \dot{+} \sum_{i=1}^k L_i$ называется **прямой суммой подпространств** L_1, L_2, \dots, L_k , если единственно разложение

$$\forall x \in L \quad x = x_1 + x_2 + \ldots + x_k, \quad x_j \in L_j.$$

Лемма 5.3.

$$\sum_{i=1}^{k} L_i = \dot{+} \sum_{i=1}^{k} L_i \quad \Rightarrow \quad L_i \cap L_{j \neq i} = \{0_X\}.$$

▶

Используем индукцию. Пусть

$$\sum_{i=1}^k L_i = \tilde{L}_{\mathbb{k}} + L_{\mathbb{k}}, \quad \tilde{L}_{\mathbb{k}} = \sum_{i=1}^{k-1} L_i,$$

тогда в силу критерия прямой суммы для двух подпространств будем иметь

$$\tilde{L}_{\mathbb{k}} + L_{\mathbb{k}} = \tilde{L}_{\mathbb{k}} + L_{\mathbb{k}} \quad \Rightarrow \quad \tilde{L}_{\mathbb{k}} \cap L_{\mathbb{k}} = \{0_X\}.$$

Таким образом, мы получим

$$L_{\mathbb{k}} \cap L_{\mathbb{k}} = \{0_X\}, \quad i = 1 \dots k - 1.$$

Для подпространства \tilde{L}_{\Bbbk} доказательство повторяется.

•

Теорема 5.4. Имеет место следующий критерий разложения линейного пространства $X(\Bbbk)$ в прямую сумму подпространств $L_1, L_2, \ldots, L_{\Bbbk}$:

$$X = \dot{+} \sum_{i=1}^{k} L_i \quad \Leftrightarrow \quad \begin{cases} L_i \cap L_{j \neq i} = \{0\}, \\ \dim_{\mathbb{k}} X = \sum_{i=1}^{k} \dim_{\mathbb{k}} L_i. \end{cases}$$

▶

⇒ следует из предыдущей леммы и теоремы о размерностях.

← Используем индукцию.

4

5.4 Проекция вектора на подпространство

Пусть $X = L_1 \dot{+} L_2$, тогда

- x_1, x_2 называются компонентами x в L_1 и L_2 ;
- $x_1 = \mathcal{P}_{L_1}^{\parallel L_2} x$ называется **проекцией** x на L_1 параллельно $L_2;$
- ullet $x_2 = \mathcal{P}_{L_2}^{\parallel L_1} x$ называется **проекцией** x на L_2 параллельно $L_1;$
- ullet $\mathcal{P}_{L_1}^{||L_2}$ называется проектором на подпространство $L_1;$
- ullet $\mathcal{P}_{L_2}^{\parallel L_1}$ называется проектором на подпространство $L_2;$
- L_1 называется дополнением L_2 до X;
- L_2 называется дополнением L_1 до X;

Nota bene Дополнение к заданному подпространству определяется не единственным образом.

Пример 5.1. Контрпример:

$$L_1 = \mathcal{L}\left\{e_1, e_2\right\}, \quad L_2 = \mathcal{L}\left\{e_3 + \alpha e_1 + \beta e_2\right\}, \quad X = L_1 \dot{+} L_2 \quad \forall \alpha, \beta \in \mathbb{k}.$$

Лемма 5.4. Размерность дополнения подпространства не зависит от конкретного выбора этого дополнения.

▶

Доказательство следует из определения дополнения и теоремы о размерностях.

_

Размерность дополнения подпространства L называется его **коразмерностью**:

$$\dim_{\mathbb{k}} X = n$$
, $\dim_{\mathbb{k}} L = k$, $\operatorname{codim}_{\mathbb{k}} L = n - k$.

Линейные формы

Содержание лекции:

В данной лекции мы начнем изучать свойства линейных отображений и разовьем методы, которыми будем активно пользоваться для системного их исследования в дальнейшем. Ближайшим предметом рассмотрения будет линейная форма - скалярная функция векторного аргумента.

Ключевые слова:

Линейная форма, ядро линейной формы, равенство линейных форм, нуль-форма, сумма форм, произведение формы на число, коэффициенты формы в базисе, сопряженные базисы, естественный изоморфизм.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

6.1 Основные определения

Линейной формой f на пространстве $X(\Bbbk)$ называется отображение

$$f: X(\mathbb{k}) \to \mathbb{k},$$

обладающее свойством линейности:

$$f(x_1 + x_2) = f(x_1) + f(x_2), \quad f(x)\alpha = f(x)\alpha, \quad \forall x, x_1, x_2 \in X(\mathbb{k}), \quad \forall \alpha \in \mathbb{k}.$$

Nota bene Для линейных форм приняты следующие обозначения:

$$f(x), \quad (f, x) \quad x \in X(\mathbb{k}).$$
 (6.1)

Пример 6.1. Примеры линейных форм:

- 1. $X = \mathbb{R}^n$: $(f, x) = \xi^k$, $x = \sum_{k=1}^n e_k \xi^k$;
- 2. $X = \mathbb{R}[x]_n$: $(f,p) = \int_a^b f(x)p(x)dx$, $f(x) \in \mathbb{R}[x]_n$;
- 3. $X = \mathbb{R}_n^n$: $(f, x) = \sum_{i=1}^n x_{ii} = \operatorname{tr} x$.

 ${f A}$ дром линейной формы f называется множество

$$\ker f = \{ x \in X(\mathbb{k}) : f(x) = 0 \}.$$

Лемма 6.1. Ядро $\ker f$ - линейное подпространство в $X(\mathbb{k})$.

Достаточно проверить замкнутость $\ker f$ относительно операций в $X(\Bbbk)$. Пусть

$$\forall x, x_1, x_2 \in \ker f, \quad \forall \alpha \in \mathbb{k}$$

тогда прямой проверкой можно убедиться в том, что

$$x_1 + x_2 \in \ker f$$
, $\alpha x \in \ker f$.

Nota bene Имеет место следующее неравенство (будет доказано позже):

$$\operatorname{codim}_{\mathbb{k}} \ker f \leq 1.$$

Nota bene Всякое уравнение вида

$$f(x) = \alpha, \quad \alpha \in \mathbb{k},$$

задает линейное многообразие M с несущим пространством $\ker f$.

$$M = x_0 + \ker f$$
, $f(x_0) = \alpha$.

6.2 Пространство линейных форм

Говорят, что линейные формы f и g равны (f = g), если

$$(f, x) = (g, x) \quad \forall x \in X(\mathbb{k}).$$

Линейная форма θ называется **нулевой** (нуль-формой), если

$$(\theta, x) = 0 \quad \forall x \in X(\mathbb{k}).$$

Суммой линейных форм f и g называется отображение u=f+g:

$$(u, x) = (f, x) + (g, x) \quad \forall x \in X(\mathbb{k}).$$

Лемма 6.2. Отображение u - линейная форма над $X(\mathbb{k})$.

Покажем, что

$$u(x_1 + x_2) = u(x_1) + u(x_2), \quad u(\alpha x) = \alpha u(x) \quad \forall x, x_1, x_2 \in X(\mathbb{k}).$$

Действительно, первое свойство следует из:

$$(u, x_1 + x_2) = (f, x_1 + x_2) + (g, x_1 + x_2) =$$

$$= (f, x_1) + (f, x_2) + (g, x_1) + (g, x_2) = (u, x_1) + (u, x_2).$$

Второе свойство доказывается аналогично

$$(u, x\alpha) = (f, x\alpha) + (g, x\alpha) = (f, x)\alpha + (g, x)\alpha = (u, x)\alpha.$$

Произведением линейной формы f на число $\alpha \in \mathbb{k}$ называется отображение $v = \alpha f$, такое что:

$$(v, x) = \alpha(f, x).$$

Лемма 6.3. Отображение v - линейная форма над $X(\mathbb{k})$.

Покажем, что

$$v(x_1 + x_2) = v(x_1) + v(x_2), \quad v(x\beta) = v(x)\beta \quad \forall x, x_1, x_2 \in X(\mathbb{k}).$$

Аналогично доказательству выше имеем:

$$(v, x_1 + x_2) = \alpha(f, x_1 + x_2) = \alpha(f, x_1) + \alpha(f, x_2) = (v, x_1) + (v, x_2),$$

$$(v, x\beta) = \alpha(f, x)\beta = \alpha(f, x)\beta = (v, x)\beta.$$

ЛИНЕЙНЫЕ ФОРМЫ

Теорема 6.1. Множество линейных форм на $X(\mathbb{k})$ может быть наделено структурой линейного пространства.

▶

Доказывается прямой проверкой аксиом линейного пространства.

4

Сопряженным пространством к линейному пространству $X(\mathbb{k})$ называется пространство $X^*(\mathbb{k})$ линейных форм на $X(\mathbb{k})$.

6.3 Сопряженное пространство

Коэффициентами линейной формы в базисе $\{e_j\}_{j=1}^n$ линейного пространства $X(\mathbb{k})$ называются ее значения на базисных векторах:

$$(f, e_i) = \varphi_i, \quad f \leftrightarrow (\varphi_1, \varphi_2, \dots, \varphi_n)$$

Теорема 6.2. Задание линейной формы эквивалентно заданию ее значений на базисных векторах, то есть заданию ее коэффициентов.

>

⇒ Очевидно.

 \leftarrow Пусть в выбранном базисе $\{e_j\}_{j=1}^n$ линейного пространства X линейная форма задана набором коэффициентов $(\varphi_1, \varphi_2, \dots, \varphi_n)$, тогда

$$(f,x) = \left(f, \sum_{j=1}^{n} e_j \xi^j\right) = \sum_{j=1}^{n} (f, e_j \xi^j) = \sum_{j=1}^{n} (f, e_j) \xi^j = \sum_{j=1}^{n} \varphi_j \xi^j, \quad \forall x \in X.$$

4

Теорема 6.3. (о базисе X^*) Множество линейных форм $\{f^k\}_{k=1}^n: X(\Bbbk) \to \Bbbk$, действующих на $X(\Bbbk)$ с базисом $\{e_j\}_{j=1}^n$ как

$$(f^k, x) = \xi^k, \quad x = \sum_{j=1}^n e_j \xi^j.$$

образует базис пространства $X^*(\Bbbk)$.

>

Покажем, что $\left\{f^k\right\}_{k=1}^n$ образуют полный и линейнонезависимый набор.

1. Полнота:

$$(f,x) = \sum_{j=1}^{n} \varphi_j \xi^j = \sum_{j=1}^{n} \varphi_j (f^j, x) \quad \forall x \in X \quad \Leftrightarrow \quad f = \sum_{j=1}^{n} \varphi_j f^j.$$

2. Линейная независимость:

$$\sum_{j=1}^{n} \alpha_j f^j = \theta \quad \Rightarrow \quad \left(\sum_{j=1}^{n} \alpha_j f^j, e_k\right) = 0 \quad \Rightarrow \quad \alpha_k = 0 \quad \forall k.$$

Nota bene Заметим, что в обозначениях теоремы мы получаем

$$(f^k, e_j) = \delta_j^k = \begin{cases} 0, & k \neq j, \\ 1, & k = j. \end{cases}$$

Базисы $\{e_j\}_{j=1}^n$, $\{f^k\}_{k=1}^n$ пространств X и X^* соответственно называются **сопряженными**, если они обладают свойством:

$$(f^k, e_j) = \delta_j^k.$$

Лемма 6.4. Для каждого базиса $\{e_j\}_{j=1}^n$ линейного пространства $X(\Bbbk)$ может быть построен сопряженный ему базис пространства $X^*(\Bbbk)$ и наоборот.

6.4 Изоморфизм пространств X и X^*

Nota bene Размерности пространств $X(\Bbbk)$ и $X^*(\Bbbk)$ одинаковы, а значит данные пространства изоморфны:

$$\dim_{\mathbb{k}} X = \dim_{\mathbb{k}} X^* \quad \Leftrightarrow \quad X(\mathbb{k}) \simeq X^*(\mathbb{k}).$$

Nota bene Аналогично пространству $X^*(\Bbbk)$ сопряженному $X(\Bbbk)$ можно ввести пространство $X^{**}(\Bbbk)$ сопряженное пространству $X^*(\Bbbk)$ - второе сопряженное пространство - множество линейных форм на $X^*(\Bbbk)$:

$$\begin{split} \hat{x}: X^* \to \mathbb{k}, \quad \hat{x}(f) = (\hat{x}, f) \in \mathbb{k}, \\ \hat{x}(f+g) = \hat{x}(f) + \hat{x}(g), \quad \hat{x}(\alpha f) = (\hat{x}\alpha)(f). \end{split}$$

Изоморфизм двух линейных пространств называется естественным изоморфизмом, если он устанавливается без применения понятия базиса.

Лемма 6.5. Изоморфизм между $X(\Bbbk)$ и $X^{**}(\Bbbk)$ - естественный.

Искомый изоморфизм устанавливается отношением:

$$\hat{x} \leftrightarrow x: \quad (\hat{x}, f) = (f, x), \quad \forall f \in X^*(\mathbb{k}).$$

Nota bene Таким образом на $X^{**}(\Bbbk)$ естественным образом индуцируется структура линейного пространства:

$$(\hat{x} + \hat{y}, f) = (\hat{x}, f) + (\hat{y}, f), \quad (\alpha \hat{x}, f) = \alpha(\hat{x}, f).$$

Преобразование базиса

Содержание лекции:

В настоящей лекции мы обсудим замену базиса в линейном пространстве и связанные с этой заменой преобразования коордиант. Как будет видно, имеются лишь две возможности - ковариантный закон, когда величины преобразуются также как и базисные векторы при переходе, и контравариантный закон - закон противоположный ковариантному. Любой разумный закон движения сопровождается квариантным или контравариантными преобравзованиями наблюдаемых величин.

Ключевые слова:

Матрица перехода, невырожденность матрицы перехода, ковариантные величины, контравариантные величины.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

7.1 Матрица перехода

 $Nota\ bene$ Пусть $X(\Bbbk)$ - линейное пространство и $\{e_j\}_{j=1}^n,\ \{\tilde{e}_k\}_{k=1}^n$ - базисы $X(\Bbbk)$:

$$\forall x \in X(\mathbb{k}), \quad x = \sum_{j=1}^{n} e_j \xi^j, \quad x = \sum_{k=1}^{n} \tilde{e}_k \tilde{\xi}^k.$$

В силу того, что оба набора $\{e_j\}_{j=1}^n$ и $\{\tilde{e}_k\}_{k=1}^n$ являются базисами, каждый из векторов одного набора единственным образом выражается через векторы другого набора:

$$\tilde{e}_k = \sum_{j=1}^n e_j \tau_k^j.$$

Набор коэффициентов $\|\tau_k^j\|=T$ образует матрицу, которая называется **матрицей** перехода от старого базиса $\{e_j\}_{j=1}^n$ к новому базису $\{\tilde{e}_k\}_{k=1}^n$.

Nota bene Вводя обозначения $E=[e_1,e_2,\ldots,e_n]$ и $\tilde{E}=[\tilde{e}_1,\tilde{e}_2,\ldots,\tilde{e}_n]$ получаем:

$$\tilde{E} = E \cdot T$$
.

Лемма 7.1. Матрица перехода невырождена:

$$\det T \neq 0$$
.

Набор векторов $\{e_j\}_{j=1}^n$ - ЛНЗ, а значит $\det T \neq 0$.

 $oldsymbol{Nota}$ bene Существует обратная матрица $T^{-1} = S = \|\sigma_i^l\|,$ такая что

$$\tilde{E} \cdot T^{-1} = E$$
 или $E = \tilde{E} \cdot S$.

Теорема 7.1. Пусть $\{f^i\}_{i=1}$ и $\{\tilde{f}^l\}_{l=1}$ - базисы $X^*(\Bbbk)$, сопряженные соответственно базисам $\{e_j\}_{j=1}^n$ и $\{\tilde{e}_k\}_{k=1}^n$, тогда

$$\tilde{f}^l = \sum_{i=1}^n \sigma_i^l f^i.$$

По определению сопряженных базисов, Имеем

$$\begin{split} \left(\tilde{f}^l, \tilde{e}_k\right) &= \left(\sum_{i=1}^n \alpha_i^l f^i, \sum_{j=1}^n e_j \tau_k^j\right) = \sum_{i=1}^n \sum_{j=1}^n \alpha_i^l \left(f^i, e_j\right) \tau_k^j = \\ \sum_{i=1}^n \sum_{j=1}^n \alpha_i^l \delta_j^i \tau_k^j &= \sum_{i=1}^n \alpha_i^l \tau_k^i = \delta_k^l \quad \Rightarrow \quad \tilde{f}^l = \sum_{i=1}^n \sigma_i^l f^i. \end{split}$$

Nota bene Вводя соответствующие обозначения, получаем:

$$F = (f^1, f^2, \dots, f^n)^T$$
 $\tilde{F} = (\tilde{f}^1, \tilde{f}^2, \dots, \tilde{f}^n)^T$ $\tilde{F} = S \cdot F$.

7.2 Замена координат при замене базиса

Теорема 7.2. (о замене координат в $X(\mathbb{k})$) Преобразование координат вектора X при переходе от базиса $\{e_j\}_{j=1}^n$ к $\{\tilde{e}_k\}_{k=1}^n$ имеет вид:

$$ilde{\xi}^k = \sum_{j=1}^n \sigma_j^k \xi^j, \quad$$
 или $\left(ilde{\xi}^1, ilde{\xi}^2, \dots, ilde{\xi}^n
ight)^T = S \cdot \left(\xi^1, \xi^2, \dots, \xi^n
ight)^T.$

Прямой проверкой убеждаемся, что

$$\tilde{\xi}^k = \left(\tilde{f}^k, x\right) = \left(\sum_{i=1}^n \sigma_i^k f^i, \sum_{j=1}^n e_j \xi^j\right) = \sum_{i=1}^n \sum_{j=1}^n \sigma_i^k \left(f^i, e_j\right) \xi^j = \sum_{i=1}^n \sum_{j=1}^n \sigma_i^k \delta_j^i \xi^j = \sum_{j=1}^n \sigma_j^k \xi^j.$$

Теорема 7.3. (о замене координат в $X^*(\mathbb{k})$) Преобразование координат формы в $X^*(\mathbb{k})$ при переходе от базиса $\{f^i\}_{i=1}^n$ к $\{\tilde{f}^l\}_{l=1}^n$ имеет вид:

$$\tilde{\eta}_l = \sum_{i=1}^n \eta_i \tau_l^i,$$
 или $(\tilde{\eta}^1, \tilde{\eta}^2, \dots, \tilde{\eta}^n) = (\eta^1, \eta^2, \dots, \eta^n) \cdot T.$

$$\tilde{\eta}_{l} = (y, \tilde{e}_{l}) = \left(\sum_{i=1}^{n} \eta_{i} f^{i}, \sum_{j=1}^{n} e_{j} \tau_{l}^{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \eta_{i} \left(f^{i}, e_{j}\right) \tau_{l}^{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} \eta_{i} \delta_{j}^{i} \tau_{l}^{j} = \sum_{i=1}^{n} \eta_{i} \tau_{l}^{i}.$$

Величины, преобразующиеся при переходе к новому базису так же, как базисные векторы (то есть, с использованием матрицы T), называются **ковариантными** величинами и снабжаются нижними индексами (ковекторы).

Величины, преобразующиеся при переходе к новому базису по обратному закону (то есть, с использованием матрицы S), называются **контравариантными** величинами и снабжаются верхними индексами (векторы).

Системы линейных уравнений

Содержание лекции:

Системы линейных алгебраических уравнений имеют важное прикладное значение в самых различных предметных областях. В настоящей лекции мы построим геометрическую теорию таких систем, научимся опеределять наличие у них решений и их количество. Также мы обсудим наиболее удобное представление данных решений и обсудим структуры на их множестве.

Ключевые слова:

Классификация систем линейных уравнений, геометрическое исследование систем, метод Гаусса, система Крамера, теорема Крамера, однородные системы, теорема Кронеккера-Капелли, альтернатива Фредгольма, фундаментальная система решений, неоднородные системы, общее решение.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

8.1 Основные определения

Система следующего вида

$$\begin{cases} \alpha_1^1 \xi^1 + \alpha_2^1 \xi^2 + \ldots + \alpha_n^1 \xi^n = \beta^1, \\ \alpha_1^2 \xi^1 + \alpha_2^2 \xi^2 + \ldots + \alpha_n^2 \xi^n = \beta^2, \\ \ldots & \ldots \\ \alpha_1^m \xi^1 + \alpha_2^m \xi^2 + \ldots + \alpha_n^m \xi^n = \beta^m. \end{cases}$$

называется **линейной алгебраической системой** из m уравнений и n неизвестных. Набор $\{\alpha_k^i\}_{k=1...n}^{i=1..m}$ называется **коэффициентами системы**, $\{\beta^i\}_{i=1}^m$ - **свободными членами**, $\{\xi^k\}_{k=1}^n$ - **неизвестными**:

$$\alpha_k^i, \beta^i, \xi^k \in \mathbb{k} \subset \mathbb{R}(\mathbb{C}).$$

Решением системы называется такой набор $\left\{\xi^k\right\}_{k=1}^n$, при подстановке которого в систему его уравнения превращаются в верные равенства.

Система называется **совместной**, если она имеет решение, в противном случае она называется **несовместной**.

Система называется определенной, если она совместна и имеет единственное решение, в противном случае она называется неопределенной.

Если все свободные члены системы равны нулю, то система называется **однород**ной, в противном случае она называется неоднородной.

Альтернативные формы записи

1. Матричная форма: AX = B

$$A = \begin{pmatrix} \alpha_1^1 & \alpha_2^1 & \dots & \alpha_n^1 \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \dots & \dots & \dots & \dots \\ \alpha_1^m & \alpha_2^m & \dots & \alpha_n^m \end{pmatrix}, \quad B = \begin{pmatrix} \beta^1 \\ \beta^2 \\ \vdots \\ \beta^m \end{pmatrix}, \quad X = \begin{pmatrix} \xi^1 \\ \xi^2 \\ \vdots \\ \xi^n \end{pmatrix}.$$

2. Векторная форма: $\sum_{i=1}^n a_i \xi^i = b$

$$a_{1} = \begin{pmatrix} \alpha_{1}^{1} \\ \alpha_{1}^{2} \\ \vdots \\ \alpha_{1}^{m} \end{pmatrix}, \quad a_{2} = \begin{pmatrix} \alpha_{2}^{1} \\ \alpha_{2}^{2} \\ \vdots \\ \alpha_{2}^{m} \end{pmatrix}, \quad \dots, \quad a_{n} = \begin{pmatrix} \alpha_{n}^{1} \\ \alpha_{n}^{2} \\ \vdots \\ \alpha_{n}^{m} \end{pmatrix}, \quad b = \begin{pmatrix} \beta^{1} \\ \beta^{2} \\ \vdots \\ \beta^{m} \end{pmatrix},$$

при этом $\{a_i\}_{i=1}^n$, $b \in \mathbb{K}^m$.

Nota bene Из векторной формы следует следующая интерпретация решения системы уравнений: нахождение коэффициентов $\left\{\xi^i\right\}_{i=1}^n$ линейной комбинации векторов из набора $\left\{a_i\right\}_{i=1}^n$, соответствующих вектору b.

В дальнейшем будем использовать векторную форму:

$$a_1\xi^1 + a_2\xi^2 + \ldots + a_n\xi^n = b \quad \Leftrightarrow \quad \sum_{i=1}^n a_i\xi^i = b,$$
 (8.1)

$$a_1\xi^1 + a_2\xi^2 + \ldots + a_n\xi^n = 0 \quad \Leftrightarrow \quad \sum_{i=1}^n a_i\xi^i = 0.$$
 (8.2)

8.2 Система Крамера

Система (8.1) называется **системой Крамера**, если m=n и набор векторов $\{a_i\}_{i=1}^n$ - .ЛНЗ.

Теорема 8.1. Система Крамера совместна и определена.

Из того, что m=n имеем $\{a_i\}_{i=1}^n, b\in \mathbb{k}^m=\mathbb{k}^n$ и

$$\dim_{\mathbb{k}} \mathcal{L}\left\{a_{1}, a_{2}, \dots, a_{n}\right\} = n = \dim_{\mathbb{k}} \mathbb{k}^{n} \quad \Rightarrow \quad \mathcal{L}\left\{a_{1}, a_{2}, \dots, a_{n}\right\} \simeq \mathbb{k}^{n},$$

$$\left\{a_{i}\right\}_{i=1}^{n} - \text{ЛНЗ} \quad \Rightarrow \quad \text{базис } \mathbb{k}^{n} \quad \Rightarrow \quad \forall b \in \mathbb{k}^{n} \; \exists \, ! \; \left\{\xi^{k}\right\}_{k=1}^{n} : \quad b = \sum_{k=1}^{n} \xi^{k} a_{k},$$

•

Пусть теперь $m \neq n$ и $\dim_{\mathbb{k}} \mathcal{L} \{a_1, a_2, \dots, a_n\} = r \leq m = \dim_{\mathbb{k}} \mathbb{k}^m$, тогда

$$\{a_{i_1}, a_{i_2}, \dots, a_{i_r}\}$$
 - ЛНЗ \Rightarrow базис \mathcal{L} .

Коэффициенты $\left\{\xi^{i_k}\right\}_{k=1}^r$ называются **базисными** или **главными** неизвестными системы:

$$\xi^{i_1} = \xi^1, \quad \xi^{i_2} = \xi^2, \quad \dots \quad \xi^{i_r} = \xi^r.$$

Оставшиеся неизвестные называются свободными или параметрическими:

$$\xi^{i_{r+1}} = \xi^{r+1}, \quad \xi^{i_{r+2}} = \xi^{r+2}, \quad \dots \quad \xi^{i_n} = \xi^n$$

В новых обозначениях систему (8.1) можно записать в виде:

$$a_1\xi^1 + a_2\xi^2 + \ldots + a_r\xi^r = b - a_{r+1}\xi^{r+1} - a_{r+2}\xi^{r+2} - \ldots - a_n\xi^n.$$
 (8.3)

Теорема 8.2. (Кронекера-Капелли) Чтобы система (8.3) была совместна необходимо и достаточно выполнение условия $b \in \mathcal{L}$. При этом, если r = n, то система определена а в противном случае r < n неопределена.

 \Rightarrow Пусть 8.3 - совместна, тогда $b \in \mathcal{L}$ и

$$b = a_1 \xi^1 + a_2 \xi^2 + \ldots + a_r \xi^r.$$

 \Leftarrow Пусть $b \in \mathcal{L}$, тогда существует набор $\left\{\xi^i\right\}_{i=1}^r$ такой что

$$a_1\xi^1 + a_2\xi^2 + \ldots + a_r\xi^r = b.$$

При этом, если r = n, тогда $\{a_i\}_{i=1}^n$ - ЛНЗ набор и базис в \mathcal{L} , а значит разложение вектора b по этому набору единственно. Если r < n, то единственно разложение для

$$b' = b - a_{r+1}\xi^{r+1} - a_{r+2}\xi^{r+2} - \dots - a_n\xi^n,$$

что дает неоднозначность в разложении b.

◀

Следствия теоремы Кронекера-Капелли

Однородная система

- 1. всегда совместна (всегда существует тривиальное решение):
- 2. имеет нетривиальные решения тогда и только тогда, когда r < n;
- 3. является неопределенной тогда и только тогда, когда m < n.

Nota bene Линейная оболочка \mathcal{L} является подпространством \mathbb{k}^m .

Теорема 8.3. (Альтернатива Фредгольма) Пусть m = n, тогда

- 1. или (8.2) имеет единственное тривиальное решение, а (8.1) совместна и определена при любом b;
- 2. или существуют нетривиальные решения (8.2) и система совместна не при любых b.

Из того, что m=n следует $\mathbb{k}^m=\mathbb{k}^n$.

- 1. Из единственности решения следует $\xi^1 = \xi^2 = \ldots = \xi^n = 0$ и линейная независимость набора $\{a_i\}_{i=1}^n$. Тогда при m=n система (8.1) является системой Крамера.
- 2. Из существования нетривиальных решений следует $\dim_{\mathbb{k}} \mathcal{L} = r < n = \dim_{\mathbb{k}} \mathbb{k}^m$ и существуют $\mathbb{k}^m \ni b \not\in \mathcal{L}$, такие что система (8.1) несовместна.

Фундаментальная система решений

Обозначим через S множество решений системы (8.2).

Теорема 8.4. Множество решений S однородной системы (8.2) является линейным подпространством \mathbb{k}^n :

$$x_1, x_2 \in S \quad \Rightarrow \quad \begin{cases} x_1 + x_2 \in S, \\ x\lambda \in S. \end{cases}$$

Имеем:

$$x_{1} \in S \implies \sum_{i=1}^{n} a_{i} \xi_{1}^{i} = 0, \quad x_{2} \in S \implies \sum_{i=1}^{n} a_{i} \xi_{2}^{i} = 0,$$

$$\sum_{i=1}^{n} a_{i} \left(\xi_{2}^{i} + \xi_{2}^{i} \right) = \sum_{i=1}^{n} a_{i} \xi_{1}^{i} + \sum_{i=1}^{n} a_{i} \xi_{2}^{i} = 0 + 0 = 0,$$

$$\sum_{i=1}^{n} a_{i} \xi^{i} \lambda = \sum_{i=1}^{n} a_{i} \xi^{i} \cdot \lambda = 0 \cdot \lambda = 0.$$

Теорема 8.5. Подпространство $S(\mathbb{k})$ изоморфно пространству \mathbb{k}^{n-r} :

$$\dim_{\mathbb{k}} S = n - r.$$

Изоморфизм пространств $S(\mathbb{k})$ и \mathbb{k}^{n-r} устанавливается отображением:

$$\mathbb{k}^{n-r} \ni \left(\xi^{r+1}, \xi^{r+2}, \dots, \xi^{n}\right)^{T} \quad \leftrightarrow \quad \left(\xi^{1}, \xi^{2}, \dots, \xi^{r}; \xi^{r+1}, \dots, \xi^{n}\right)^{T} \in S(\mathbb{k}).$$

Действительно, вектор

$$-a_{r+1}\xi^{r+1} - a_{r+2}\xi^{r+2} - \dots - a_n\xi^n$$

имеет единственное разложение по системе векторов $\{a_i\}_{i=1}^r$ и значит предложенное отображение является биекцией. Кроме того, полагая

$$y_1 = \sum_{i=r+1}^n a_i \eta_1^i \quad \leftrightarrow \quad x_1 = \sum_{i=1}^n a_i \xi_1^i,$$

$$y_2 = \sum_{i=r+1}^n a_i \eta_2^i \quad \leftrightarrow \quad x_2 = \sum_{i=1}^n a_i \xi_2^i,$$

будем иметь

$$y_1 + y_2 = \sum_{i=r+1}^n a_i \left(\eta_1^i + \eta_2^i \right) \quad \leftrightarrow \quad x_1 + x_2 = \sum_{i=1}^n a_i \left(\xi_1^i + \xi_2^i \right),$$
$$y_1 + y_2 = \sum_{i=r+1}^n a_i \left(\eta_1^i + \eta_2^i \right) \quad \leftrightarrow \quad x_1 + x_2 = \sum_{i=1}^n a_i \left(\xi_1^i + \xi_2^i \right),$$

Фундаментальной системой решений (ФСР) линейной однородной системы уравнений называется любая система из n-r линейнонезависимых решений этой системы, то есть базис пространтва решений однородной системы:

$$y_{1} = (1, 0, 0, \dots, 0)^{T}, \quad \leftrightarrow \quad x_{1} = (\xi_{1}^{1}, \xi_{1}^{2}, \dots, \xi_{1}^{r}; 1, 0, 0, \dots, 0)^{T},$$

$$y_{2} = (0, 1, 0, \dots, 0)^{T}, \quad \leftrightarrow \quad x_{2} = (\xi_{2}^{1}, \xi_{2}^{2}, \dots, \xi_{2}^{r}; 0, 1, 0, \dots, 0)^{T},$$

$$\dots \quad \dots$$

$$y_{n-r} = (0, 0, 0, \dots, 1)^{T}, \quad \leftrightarrow \quad x_{n-r} = (\xi_{n-r}^{1}, \xi_{n-r}^{2}, \dots, \xi_{n-r}^{r}; 0, 0, 0, \dots, 1)^{T}.$$

Nota bene Построенная выше ФСР называется нормальной ФСР.

Теорема 8.6. Любое решение однородной системы (8.2) может быть выражено следующим образом:

$$x! = x_1C_1 + x_2C_2 + \ldots + x_{n-r}C_{n-r} = \sum_{i=1}^{n-r} x_iC_i.$$

Очевидно.

Решение системы (8.2) выражающееся приведенной выше формулой называется общим решением однородной системы.

8.3 Неоднородная система

Рассмотрим случай, когда система (8.1) совместна, то есть:

$$b \in \mathcal{L}$$
, $\dim_{\mathbb{k}} \mathcal{L} = r < n$.

Пусть \tilde{S} - множество решений системы (8.1), а $S(\mathbb{k})$ множество решений соответствующей ей однородной системы (8.2).

Теорема 8.7. Пусть $z' \in \tilde{S}$ частное (фиксированное) решение, тогда

$$z = z' + x, \quad \forall z \in \tilde{S}, \quad \forall x \in S(\mathbb{k}).$$

С одной стороны:

$$z' = \{\zeta^{1}, \zeta^{2}, \dots, \zeta^{n}\}, \quad x = \{\xi^{1}, \xi^{2}, \dots, \xi^{n}\},$$

$$z = z' + x = \{\zeta^{1} + \xi^{1}, \zeta^{2} + \xi^{2}, \dots, \zeta^{n} + \xi^{n}\}:$$

$$\sum_{i=1}^{n} a_{i} (\zeta^{i} + \xi^{i}) = \sum_{i=1}^{n} a_{i} \zeta^{i} + \sum_{i=1}^{n} a_{i} \xi^{i} = b + 0 = b.$$

С другой стороны:

$$x = z - z'$$
 \Rightarrow $\sum_{i=1}^{n} a_i \left(\tilde{\zeta}^i - \zeta^i \right) = 0 = \sum_{i=1}^{n} a_i \xi^i,$

и значит $x \in S(\mathbb{k})$. \blacktriangleleft

Теорема 8.8. Любое решение $z \in \tilde{S}$ может быть представлено в виде:

$$z = z' + \sum_{i=1}^{n} x_i C_i, \quad \{x_j\}_{j=1}^n - \Phi CP$$
 (8.2).

Очевидно.

Приведенный выше вид решения неоднородной системы (8.1) называется ее **общим** решением.

 $Nota\ bene$ Таким образом, общее решение неоднородной системы представляет собой сумму ее частного решения неоднородной и общего решения соответствующей ей однородной системы.

Nota bene Множество решений \tilde{S} имеет структуру линейного многообразия, параллельного линейному пространству $S(\mathbb{k})$.

Лекция 1

Аффинное пространство

Содержание лекции:

В настоящей лекции мы начинаем рассматривать геометрическую сцену и геометрические объекты. Сценой для нас будет служить аффинное пространство - множество точее, на котром действует линейное пространство. Здесь мы обсудим аксиомы аффинного пространства и их простейшие следствия.

Ключевые слова:

Аффинное пространство, аксиомы Вейля, векторизация, размерность, аффинная плоскость, точка, прямая, гиперплосоксть, аффинная оболочка, параллельность плокскостей, скрещивающиеся плоскости, пересечение аффициных пространств.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

1.1 Аксиомы Вейля

Аффинным пространством называется тройка $\mathbb{A}_{\mathbb{k}}=(\mathbb{S},\mathbb{V},+)$, где \mathbb{S} - множество (элементы которого мы будем называть "точками"), \mathbb{V} - векторное пространство над полем \mathbb{k} и отображение

$$+ : \mathbb{S} \times \mathbb{V} \to \mathbb{S},$$

сопоставляющее каждой паре $(P, \vec{v}) \in \mathbb{S} \times \mathbb{V}$ элемент $P + \vec{v}$ множества \mathbb{S} .

Nota bene Свойства композиции + (аксиомы Вейля):

1. для любой точки $P \in \mathbb{S}$ имеет место

$$P + \vec{0} = P$$

2. для любой точки $P \in \mathbb{S}$ и для любых $\vec{v}, \vec{w} \in \mathbb{V}$ имеет место:

$$P + (\vec{v} + \vec{w}) = (P + \vec{v}) + \vec{w},$$

3. для любой упорядоченной пары точек $(P,Q) \in \mathbb{S} \times \mathbb{S}$ существует единственный элемент из $\vec{v} \in \mathbb{V}$, такой что:

$$Q = P + \vec{v}.$$

Nota bene Если $P + \vec{v} = Q$, то будем обозначать элемент $\vec{v} \in \mathbb{V}$ посредством $\vec{v} = \overrightarrow{PQ}$.

Лемма 1.1. Пусть P, Q, R - произвольные точки аффинного пространства $\mathbb{A}_{\mathbb{k}}$, тогда

$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$$

Введем обозначения $\vec{v} = \overrightarrow{PQ}$ и $\vec{w} = \overrightarrow{QR}$, тогда аксиома (2) дает

$$P + \left(\overrightarrow{PQ} + \overrightarrow{QR}\right) = \left(P + \overrightarrow{PQ}\right) + \overrightarrow{QR} = Q + \overrightarrow{QR} = R,$$

Затем из аксиомы (3) получаем требуемое.

Лемма 1.2. Имеет место равенство:

$$\overrightarrow{QP} = -\overrightarrow{PQ}$$

B случае R = P будем иметь

$$P + \overrightarrow{PQ} + \overrightarrow{QP} = P \quad \Leftrightarrow \quad \overrightarrow{PQ} + \overrightarrow{QP} = \overrightarrow{0} \quad \Rightarrow \quad \overrightarrow{QP} = -\overrightarrow{PQ}.$$

 $oldsymbol{Nota\ bene}$ Из предыдущей леммы, в частности, следует что $\overrightarrow{PP}=\vec{0}$

1.2 Векторизация аффинного пространства

Векторизацией аффинного пространства $\mathbb{A}_{\mathbb{k}}$ относительно точки $O \in \mathbb{A}_{\mathbb{k}}$ называется отображение $\mathrm{vect}_O : \mathbb{A}_{\mathbb{k}} \to \mathbb{V}$, такое что

$$\operatorname{vect}_O(P) = \overrightarrow{OP} = \overrightarrow{v}_P, \quad \forall P \in \mathbb{A}_k,$$

и при этом $P=O+\overrightarrow{OP}$ и вектор \overrightarrow{OP} называется радиусом-вектором точки P относительно точки O.

Теорема 1.1. Для любой точки $O \in \mathbb{A}_{\mathbb{k}}$ векторизация vect_O является взаимнооднозначным соответствием (биекцией) между $\mathbb{A}_{\mathbb{k}}$ и \mathbb{V} .

Иньективность:

$$\overrightarrow{OP} = \overrightarrow{OQ} \quad \Rightarrow \quad P = Q.$$

Действительно:

$$P = O + \overrightarrow{OP} = O + \overrightarrow{OQ} = Q.$$

Сюрьективность:

$$\forall \vec{v} \in \mathbb{V} \quad \exists P \in \mathbb{A}_{\mathbb{k}} : \quad P = O + \vec{v} \quad \Rightarrow \quad \vec{v} = \overrightarrow{OP}.$$

•

Размерностью аффинного пространства $\mathbb{A}_{\mathbb{k}}$ называется размерность соответствующего векторного пространства \mathbb{V} :

$$\dim \mathbb{A}_{\Bbbk} = \dim_{\Bbbk} \mathbb{V}.$$

1.3 Объекты аффинной геометрии

Аффинной плоскостью в пространстве $\mathbb{A}_{\mathbb{k}}$ называется подмножество вида:

$$\mathbb{P}_{\mathbb{k}} = \{ P_0 + \vec{u} : P_0 \in \mathbb{A}_{\mathbb{k}}, \quad \vec{u} \in \mathbb{U} \},$$

где $\mathbb{U} \leq \mathbb{V}$ - подпространство \mathbb{V} . Пространство \mathbb{U} называется направляющим подпространством плоскости $\mathbb{P}_{\mathbb{k}}$.

 $Nota\ bene$ По определению \mathbb{P}_{\Bbbk} - аффинное пространство и $\dim \mathbb{P}_{\Bbbk} = \dim_{\Bbbk} \mathbb{U}$.

Точкой и прямой называются, соответственно, плоскости размерности 0 и 1. Гиперплоскостью называется плоскость размерностью n-1, если dim $\mathbb{A}_{\mathbb{k}}=n$. **Пример 1.1.** Рассмотрим прямую $\mathbb{L}_{\mathbb{k}}$ в аффинном пространстве $\mathbb{A}_{\mathbb{k}}$ и положим $\mathbb{U} = \operatorname{span}_{\mathbb{k}}(\vec{a})$. Пусть далее \vec{r}_0 - образ точки P_0 при векторизации vect_O . Тогда для образа \vec{r} произвольной точки $P \in \mathbb{L}_{\mathbb{k}}$ будем иметь:

$$\vec{r} = \vec{r_0} + \alpha \vec{u}, \quad \alpha \in \mathbb{k}.$$

Аналогично, для плоскости вместе с $\mathbb{U}=\mathrm{span}_{\Bbbk}(\vec{a},\vec{b}),$ где $\vec{a},\vec{b}\in\mathbb{V}$ - два неколлинеарных вектора, в результате векториации получим:

$$\vec{r} = \vec{r_0} + \vec{w} = \vec{r_0} + \alpha \vec{a} + \beta \vec{b}, \quad \alpha, \beta \in \mathbb{k}.$$

Теорема 1.2. Через любые m+1 точек аффинного пространства $\mathbb{A}_{\mathbb{k}}$ проходит плоскость размерности меньшей или равной m. При этом, если эти точки не содержатся в плоскости размерности меньшей m, то через них проходит единственная плоскость размерности m.

▶

Пусть $P_0, P_1, \ldots, P_m \in \mathbb{A}_k$. Тогда

$$\mathbb{P}_{\mathbb{k}} = P_0 + \operatorname{span}_{\mathbb{k}}(\overrightarrow{P_0P_1}, \overrightarrow{P_0P_2}, \dots, \overrightarrow{P_0P_m}),$$

есть плоскости размерности меньшей или равной m, проходящие через точки $P_0, P_1, \dots P_m$. Если $\dim \mathbb{P}_{\Bbbk} = m$, то векторы $\left\{\overrightarrow{P_0P_j}\right\}_{j=1}^m$ линейнонезависимы и \mathbb{P}_{\Bbbk} является единственной m-мерной плоскостью, проходящей через $P_0, P_1, \dots P_m$.

4

Теорема 1.3. Всякая плоскость $\mathbb{P}_{\mathbb{k}}$ есть множество решений некоторой системы линейных уравнений.

▶

Векторизация $\mathbb{P}_{\mathbb{k}}$ относительно некоторой точки O дает структуру линейного многообразия в \mathbb{V} , которое можно интерпретировать как решение некоторой неоднородной системы.

4

 \mathbf{A} ффинной оболочкой множества $M \subset \mathbb{A}_k$ называется плоскость

aff
$$M = P_0 + \operatorname{span}_{\mathbb{k}}(\overrightarrow{P_0P} : P \in M), \quad M \subset \mathbb{A}_{\mathbb{k}}, \quad P_0 \in M.$$

Пример 1.2. Воспроизведем хорошо известные утверждения:

- aff $\{P_0, P_1\} = P_0 + \operatorname{span}_{\Bbbk}(\overrightarrow{P_0P_1})$ аффинная прямая;
- aff $\{P_0, P_1, P_2\} = P_0 + \operatorname{span}_{\Bbbk}(\overrightarrow{P_0P_1}, \overrightarrow{P_0P_2})$ аффинная плоскость;

1.4 Взаимное расположение плоскостей

Плоскости $\mathbb{P}_{\Bbbk}^{(1)}=\{P_1+\mathbb{U}_1\}$ и $\mathbb{P}_{\Bbbk}^{(2)}=\{P_2+\mathbb{U}_2\}$ называются

- параллельными, если $\mathbb{U}_1 \leqslant \mathbb{U}_2$ или $\mathbb{U}_2 \leqslant \mathbb{U}_1$, при этом они **совпадают**, если $\overrightarrow{P_1P_2} \in \mathbb{U}_{1(2)}$;
- скрещивающимися, если $\mathbb{P}_{\mathbb{k}}^{(1)} \cap \mathbb{P}_{\mathbb{k}}^{(2)} = \emptyset$ и $U_1 \cap U_2 = \{\vec{0}\}.$
- пересекающимимся в остальных случаях.

Лемма 1.3. Плоскости $\mathbb{P}_{\Bbbk}^{(1)}$ и $\mathbb{P}_{\Bbbk}^{(2)}$ пересекаются тогда и только тогда, когда

$$\overrightarrow{P_1P_2} \in \mathbb{U}_1 + \mathbb{U}_2.$$

Плоскости $\mathbb{P}_{\mathbb{k}}^{(1)}$ и $\mathbb{P}_{\mathbb{k}}^{(2)}$ пересекаются тогда и только тогда, когда существуют векторы $\vec{u}_1 \in \mathbb{U}_1, \ \vec{u}_2 \in \mathbb{U}_2,$ такие что

$$P_1 + \vec{u}_1 = P_2 + \vec{u}_2.$$

Это равенство может быть переписано в виде

$$\overrightarrow{P_1P_2} = \overrightarrow{u}_1 - \overrightarrow{u}_2.$$

Существование таких векторов \vec{u}_1 , \vec{u}_2 как раз означает, что $\overrightarrow{P_1P_2} \in \mathbb{U}_1 + \mathbb{U}_2$.

Пусть $\mathbb{A}_{\mathbb{k}}^{(1)}=(\mathbb{S}_1,\mathbb{V}_1,+)$ и $\mathbb{A}_{\mathbb{k}}^{(2)}=(\mathbb{S}_2,\mathbb{V}_2,+)$ - два аффинных подпространства аффинного пространства $\mathbb{A}_{\mathbb{k}}=(\mathbb{S},\mathbb{V},+)$. **Пересечением** $\mathbb{A}_{\mathbb{k}}^{(1)}$ и $\mathbb{A}_{\mathbb{k}}^{(2)}$ называется тройка $\mathbb{A}_{\mathbb{k}}^{\cap}=(\mathbb{S}_{\cap},\mathbb{V}_{\cap},+)$, такая что

$$\mathbb{S}_{\cap} = \mathbb{S}_1 \cap \mathbb{S}_2, \quad \mathbb{V}_{\cap} = \mathbb{V}_1 \cap \mathbb{V}_2,$$

где первое пересечение является теоретико-множественным, а второе - пересечением линейных подпространств.

Теорема 1.4. Пересечение аффинных подпространств - аффинное подпространство.

Лекция 2

Координаты в аффинном пространстве

Содержание лекции:

В настоящей лекции мы вводим в аффинное пространство координаты. Репер, или система координат может быть введена непосредственно применением векторизации аффинного пространства, однако есть более естественный способ это сделать.

Ключевые слова:

Система координат, барицентрическая комбинация, центр тяжести, аффинная независимость, барицентрические координаты.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

2.1 Координаты в аффинном пространстве

Системой координат в аффинном пространстве $\mathbb{A}_{\mathbb{k}}$ называется пара $C_O = \left(O, \{\vec{e_j}\}_{j=1}^n\right)$, состоящая из произвольно выбранной точки $O \in \mathbb{S}$ и произвольно выбранного базиса $\{\vec{e_j}\}_{j=1}^n$ пространства \mathbb{V} .

 $Nota\ bene$ При векторизации ${\rm vect}_O$ пространства относительно точки O координатами точки P будет набор $\{\xi^j\}_{i=1}^n$, такой что

$$P \to \text{vect}_O(P) = \overrightarrow{OP} = \sum_{j=1}^n \xi^j \vec{e_j}.$$

Nota bene Пусть $\{\xi^j\}_{j=1}^n$ - координаты точек P в системе координат C_O и $\{\eta^j\}_{j=1}^n$ - координаты точки Q в той же системе. Тогда из соотношения

$$\overrightarrow{OQ} = \overrightarrow{OP} + \overrightarrow{v},$$

следует выражение для координат вектора \vec{v} :

$$\vec{v} = \sum_{j=1}^{n} \left(\eta^j - \xi^j \right) \vec{e}_j.$$

2.2 Барицентрическая комбинация

Барицентрической линейной комбинацией точек $\{P_i\}_{i=0}^m \in \mathbb{A}_{\Bbbk}$ аффинного пространства \mathbb{A}_{\Bbbk} называется выражение вида

$$\sum_{i=0}^{m} \alpha^{i} P_{i}, \quad \text{где} \quad \sum_{i=0}^{m} \alpha^{i} = 1 \quad \alpha^{i} \in \mathbb{k}.$$

Nota bene При векторизации vect_O аффинного пространства барицентрическая линейная комбинация задает точку $Q \in \mathbb{S}$, чей радиус-вектор равен

$$\overrightarrow{OQ} = \sum_{i=0}^{m} \alpha^{i} \overrightarrow{OP_{i}}$$

Лемма 2.1. Точка Q - результат барицентрической линейной комбинации точек $\{P_i\}_{i=0}^m$ - определена корректно.

Пусть O' - другая точка, тогда

$$\overrightarrow{O'Q} = \overrightarrow{O'O} + \overrightarrow{OQ} = \overrightarrow{O'O} + \sum_{i=1}^{k} \alpha^i \overrightarrow{OP_i} = \sum_{i=1}^{k} \alpha^i \left(\overrightarrow{O'O} + \overrightarrow{OP_i} \right) = \sum_{i=1}^{k} \alpha^i \overrightarrow{O'P_i},$$

где было использовано свойство $\sum_{i=0}^{m} \alpha^i = 1$.

4

Пример 2.1. Центр тяжести системы точек $\{P_0, P_1, \dots P_m\}$:

$$center(P_0, P_1, \dots, P_m) = \frac{1}{m+1} (P_0 + P_1 + \dots + P_m).$$

Nota bene Барицентрическая комбинация $\lambda P + \mu Q$ двух точек P и Q есть точка R, лежащая на прямой PQ, и обладающая свойством

$$\overrightarrow{PR} = \frac{\mu}{\lambda} \overrightarrow{RQ}.$$

Лемма 2.2. Непустое множество $\mathbb{P}_{\mathbb{k}} \subset \mathbb{A}_{\mathbb{k}}$ является плоскостью тогда и только тогда, когда вместе с любыми двумя различными точками оно содержит проходящую через них прямую.

⇐ Утверждение очевидно.

 \Rightarrow Пусть $\mathbb{P}_{\mathbb{k}}$ обладает указанным свойством и $P_0 \in \mathbb{P}_{\mathbb{k}}$. Покажем, что множество

$$\mathbb{U} = \{ \vec{u} \in \mathbb{U} : \quad P_0 + u \in \mathbb{P}_{\mathbb{k}} \} \subset \mathbb{V},$$

является подпространством. Ясно, что $0 \in \mathbb{U}$ и если $\vec{u} \in \mathbb{U}$, а $\lambda \in \mathbb{k}$, то $P_0 + \lambda \vec{u}$ лежит на прямой, проходящей через точки P_0 и $P_0 + \vec{u}$. Следовательно $\lambda \vec{u} \in \mathbb{U}$. Пусть теперь $\vec{u}_1, \vec{u}_2 \in \mathbb{U}$ и $\lambda \in \mathbb{k}$, так что $\lambda \notin \{0,1\}$, тогда точка $P = P_0 + \vec{u}_1 + \vec{u}_2$ лежит на прямой, проходящей через точки

$$P_1 = P_0 + \lambda \vec{u}_1 \in \mathbb{P}_k, \quad P_2 = P_0 + \frac{\lambda}{\lambda - 1} \vec{u}_2 \in \mathbb{P}_k,$$

а именно:

$$P = \frac{1}{\lambda} P_1 + \frac{\lambda - 1}{\lambda} P_2 \quad \Rightarrow \quad P \in \mathbb{P}_k.$$

Аффинная независимость

Система точек $\{P_i\}_{i=0}^m$ называется **аффинно-независимой**, если никакую из этих точек нельзя представить в виде барицентрической линейной комбинации остальных.

Лемма 2.3. Система точек $\{P_i\}_{i=0}^m$ аффинно-независима тогда и только тогда, когда система векторов $\left\{\overline{P_0P_i}\right\}_{i=1}^k$ линейно-независима.

 \leftarrow Предположим, что $\{P_i\}_{i=0}^m$ - аффинно-зависима и

$$P_0 = \sum_{i=1}^{m} \alpha^i P_i, \quad \sum_{i=1}^{m} \alpha^i = 1,$$

тогда векторизация относительно точки P_0 дает

$$\vec{0} = \overrightarrow{P_0P_0} = \sum_{i=1}^m \alpha^i \overrightarrow{P_0P_i}, \quad \sum_{i=1}^m \alpha^i = 1,$$

и значит система векторов $\left\{\overrightarrow{P_0P_i}\right\}_{i=1}^k$ линейнозависима.

⇒ Предположим, что

$$\sum_{i=1}^{m} \alpha^i \overrightarrow{P_0 P_i} = \vec{0}.$$

Возможны два случая:

• $\sum_{i=1}^m \alpha^i \neq 0$, тогда без ограничения общности можно считать, что

$$\sum_{i=1}^{m} \alpha^{i} = 1 \quad \Rightarrow \quad P = \sum_{i=1}^{m} \alpha^{i} P_{i} \quad \Rightarrow \quad \overrightarrow{P_{0}P} = \sum_{i=1}^{m} \alpha^{i} \overrightarrow{P_{0}P_{i}} = \overrightarrow{0}, \quad \Rightarrow \quad P = P_{0}.$$

• $\sum_{i=1}^m \alpha^i = 0$, но $\alpha^1 \neq 0$, тогда используем соотношение:

$$\overrightarrow{P_0P_i} = -\overrightarrow{P_1P_0} + \overrightarrow{P_1P_i},$$

получаем линейную комбинацию

$$\alpha^0 \overrightarrow{P_1 P_0} + \sum_{i=2}^m \alpha^i \overrightarrow{P_1 P_i} = \vec{0},$$

в которой

$$\alpha^0 = -\sum_{i=1}^m \alpha^i = 0 \quad \Rightarrow \quad \alpha^0 + \sum_{i=2}^m \alpha^i = -\alpha^1 \neq 0,$$

и значит P_1 является барицентрической линейной комбинацией точек $\{P_0, P_2, \dots P_m\}$.

Барицентрические координаты

Теорема 2.1. Пусть dim $\mathbb{A}_{\mathbb{k}} = n$ и $\{P_i\}_{i=0}^n$ - аффинно-независимая система точек в $\mathbb{A}_{\mathbb{k}}$. Тогда каждая точка $Q \in \mathbb{A}_{\mathbb{k}}$ единственным образом представляется в виде

$$Q = \sum_{i=0}^{n} \xi^{i} P_{i}, \quad \sum_{i=0}^{n} \xi^{i} = 1.$$

Утверждение теоремы можно записть в виде

$$\overrightarrow{P_0Q} = \sum_{i=1}^n \xi^i \overrightarrow{P_0P_i}, \quad \xi^i \in \mathbb{k}.$$

Отсюда следует, что в качестве $\{\xi^i\}_{i=1}^n$ можно взять координаты вектора $\overrightarrow{P_0Q}$ в базисе $\{\overrightarrow{P_0P_i}\}_{i=1}^n$. После этого ξ^0 определяется равенством

$$\xi^0 = 1 - \sum_{i=1}^n \xi^i.$$

Совокупность чисел $\xi^0, \xi^1, \dots, \xi^k$ называется **барицентрическими координатами** точки $P \in \mathbb{A}_{\mathbb{k}}$ относительно системы точек $\{P_i\}_{i=0}^n$.

Лекция 3

Аффинные отображения

Содержание лекции:

В этой лекции мы рассмотрим свойства отображений аффинных пространсв, которые сохраняют аффинную структуру. Эти отображения называются аффинными. Их структура весьма проста, но в приложениях играет исключительно важную роль. Мы приближемся к аффинной геометрии.

Ключевые слова:

Аффиное отбражение, дифференциал, биективность аффинного отображения, изоморфизм аффинных пространств, аффинная зависимость, аффинно-линейная функция, многообразие уровня.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

3.1 Основные определения

Пусть $\mathbb{A}_{\mathbb{k}} = (\mathbb{S}_A, \mathbb{V}_A, +), \ \mathbb{B}_{\mathbb{k}} = (\mathbb{S}_B, \mathbb{V}_B, +)$ - аффинные пространства.

Аффинным отображением пространства $\mathbb{A}_{\mathbb{k}}$ в пространство $\mathbb{B}_{\mathbb{k}}$ называется всякое отображение, обладающее свойством

$$\sigma(P + \vec{u}) = \sigma(P) + \varphi(\vec{u}), \quad P \in \mathbb{A}_{\mathbb{k}}, \quad \vec{u} \in \mathbb{V}_A(\mathbb{k}),$$

где $\varphi \in \mathrm{Hom}_{\Bbbk}(\mathbb{V}_A, \mathbb{V}_B)$ - линейное отображение.

Лемма 3.1. Отображение φ однозначно определяется по σ :

$$\varphi\left(\overrightarrow{PQ}\right) = \overrightarrow{\sigma(P)\sigma(Q)}$$

Действительно, пусть $Q \in \mathcal{A}$, тогда

$$\sigma(Q) = \sigma\left(P + \overrightarrow{PQ}\right) = \sigma(P) + \varphi\left(\overrightarrow{PQ}\right).$$

 \parallel Отображение φ называется **дифференциалом** отображения σ и обозначается $d\sigma$.

Пример 3.1. Примеры аффинных преобразований:

1. параллельный перенос $\varphi = t_{\vec{w}}$:

$$t_{\vec{w}}(P+\vec{v}) = (P+\vec{w}) + \vec{v}$$

2. преобразование поворота $\varphi = r_{\theta}$:

$$r_{\theta}(P + \vec{v}) = P + R_{\theta}(\vec{v}).$$

 $Nota\ bene$ Векторизация пространств $\mathbb{A}_{\mathbb{k}}$ и $\mathbb{B}_{\mathbb{k}}$ относительно точек O и O' соответственно дает:

$$\sigma(\vec{r}) = d\sigma(\vec{r}) + \vec{b}, \quad \vec{b} = \overrightarrow{O'\sigma(O)} \in \mathbb{V}_B(\mathbb{k}),$$

где $\overrightarrow{r} = \overrightarrow{OP}$ - радиус вектор точки $P \in \mathbb{A}_{\Bbbk}$.

Действительно, прямой проверкой можно убедиться, что

$$\sigma(P) = \sigma(O + \overrightarrow{OP}) = \sigma(O) + d\sigma(\overrightarrow{OP}),$$

$$\sigma(\overrightarrow{OP}) \triangleq \overrightarrow{O'\sigma(P)} = \overrightarrow{O'\sigma(O)} + d\sigma(\overrightarrow{OP}) \quad \Rightarrow \quad \sigma(\vec{r}) = d\sigma(\vec{r}) + \vec{b}.$$

Лемма 3.2. Пусть $\sigma: \mathbb{A}_{\Bbbk} \to \mathbb{B}_{\Bbbk}$ - аффинное отображение, тогда

$$\sigma\left(\sum_{i=0}^{m} \alpha^{i} P_{i}\right) = \sum_{i=0}^{m} \alpha^{i} \sigma(P_{i}),$$

для любой барицентрической линейной комбинации системы точек $\{P_i\}_{i=0}^m$.

Векторизация пространства А_к дает следующую цепочку равенств:

$$\sigma\left(\sum_{i=0}^{m}\alpha^{i}\overrightarrow{OP_{i}}\right) = \sigma\left(\sum_{i=0}^{m}\alpha^{i}\overrightarrow{OP_{i}}\right) + \overrightarrow{b} = \sum_{i=0}^{m}\alpha^{i}(d\sigma(\overrightarrow{OP_{i}}) + b) = \sum_{i=0}^{m}\alpha^{i}\sigma(\overrightarrow{OP_{i}}).$$

3.2 Изоморфизм аффинных пространств

Лемма 3.3. Аффинное отображение $\sigma: \mathbb{A}_{\Bbbk} \to \mathbb{B}_{\Bbbk}$ биективно тогда и только тогда, когда его дифференциал биективен.

Выберем начала отсчета O и O' в $\mathbb{A}_{\mathbb{k}}$ и $\mathbb{B}_{\mathbb{k}}$ так, чтобы $\sigma(O)=O'$. Тогда отображение σ в векторизованной форме будет совпадать со своим дифференциалом $d\sigma$, откуда следует доказательство утверждения.

Лемма 3.4. Пусть $\varphi: \mathbb{A}_{\Bbbk} \to \mathbb{B}_{\Bbbk}$ - биективное аффинное отображение. Тогда σ^{-1} является также аффинным отображением, причем $d(\sigma^{-1}) = (d\sigma)^{-1}$.

Пусть отображение $\sigma:\mathbb{A}_{\Bbbk}\to\mathbb{B}_{\Bbbk}$ задается парой $(d\sigma,\vec{b})$ в том смысле, что

$$\sigma(\vec{r}) = d\sigma(\vec{r}) + \vec{b}.$$

Пусть отображение $\chi: \mathbb{B}_{\mathbb{k}} \to \mathbb{A}_{\mathbb{k}}$ также задается парой $(d\chi, \vec{c})$, тогда

$$\chi \circ \sigma \leftrightarrow (d\chi, \vec{c}) \circ (d\sigma, \vec{b}) = (d\chi \circ d\sigma, d\chi(\vec{b}) + \vec{c}),$$

Откуда сразу получаем:

$$\sigma^{-1} \leftrightarrow (d\sigma^{-1}, -d\sigma^{-1}(\vec{b})),$$

иными словами

$$\sigma^{-1}(\vec{r}) = d\sigma^{-1}(\vec{r}) - d\sigma^{-1}(\vec{b}).$$

Изоморфизмом аффинных пространств называется биективное аффинное отображение.

АФФИННЫЕ ОТОБРАЖЕНИЯ

Лемма 3.5. Аффинные пространства изоморфны тогда и только тогда, когда они имеют одинаковую размерность.

При аффинном отображении $\sigma: \mathbb{A}_{\mathbb{k}} \to \mathbb{B}_{\mathbb{k}}$ всякая плоскость $\mathbb{P}_k = P_0 + \mathbb{U}(\mathbb{k})$ пространства $\mathbb{A}_{\mathbb{k}}$ переходит в плоскость $\sigma(\mathbb{P}_{\mathbb{k}}) = \sigma(P_0) + d\sigma(\mathbb{U})$ пространства $\mathbb{B}_{\mathbb{k}}$. Если σ - биективно, то dim $\mathbb{P}_{\mathbb{k}} = \dim \sigma(\mathbb{P}_{\mathbb{k}})$.

Лемма 3.6. При изоморфизме $\sigma: \mathbb{A}_{\Bbbk} \to \mathbb{B}_{\Bbbk}$ системы точек $\{P_i\}_{i=0}^m$ и $\{\sigma(P_i)\}_{i=0}^m$ аффинно зависимы или аффинно независимы одновременно.

Тривиально проверяется рассмотрением соответствующих наборов радиус-векторов.

3.3 Аффинно-линейные функции

Аффинно-линейной функцией на аффинном пространстве $\mathbb{A}_{\mathbb{k}}$ называется отображение $f: \mathbb{A}_{\mathbb{k}} \to \mathbb{k}$, обладающее свойством:

$$f(P + \vec{v}) = f(P) + \alpha(\vec{v}), \quad P \in \mathbb{A}_{\mathbb{k}}, \quad \vec{v} \in \mathbb{V}(\mathbb{k}).$$

Nota bene В векторизованной форме с началом в точке $O \in \mathbb{A}_k$, аффинно-линейная функция f записывается в виде:

$$f(\vec{r}) = \alpha(\vec{r}) + b, \quad b \in \mathbb{k}, \quad b = f(O).$$

или в координатах:

$$f(\xi^1, \xi^2, \dots, \xi^n) = \sum_{i=1}^n a_i \xi^i + b.$$

Nota bene Многообразия уровня f(P) = c аффинно линейной функции представляют собой параллельные гиперплоскости с направляющим подпространством, задаваемым уравнением $df(\vec{v}) = 0$.

Лемма 3.7. Барицентрические координаты - это аффинно-линейные функции.

Пусть $\{\xi^i\}_{i=0}^n$ - барицентрические координаты относительно системы точек $\{P_i\}_{i=0}^n$. Возьмем точку P_0 за начало отсчета и векторизуем пространство \mathcal{A} . Тогда $\{\xi^i\}_{i=1}^n$ - будут координатами относительно базиса $\{\overline{P_0P_i}\}_{i=1}^n$. Следовательно, $\{\xi^i\}_{i=1}^n$ - аффиннолинейные функции. Так как $\xi^0=1-\sum_{i=1}^n\xi^i$, то ξ^0 - также аффинно-линейная функция. \blacktriangleleft

6

Лекция 5

Структура евклидова пространства

Содержание лекции:

В настоящей лекции мы кратко обсудим структуру и объекты евклидова пространства. Будут введены понятия, минимально необходимые для построения евклидовой геометриии. Более близкое знакомство нас ждет в будущем, а пока познакомимся с основами...

Ключевые слова:

Вещественное линейное пространство, скалярное произведение, евклидово пространство, метрический тензор, матрица Грама, длина вектора, неравенство Шварца, ортогональные векторы, ортогональный базис, ортогональность вектора и подпространства, ортогональное дополнение, ортогональная проекция, ортогональный проектор, задача о перпендикуляре.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

5.1Скалярное произведение

∥ Вещественным будем называть линейное пространство, заданное над полем ℝ.

Скалярным произвежением называется отображение

$$g: X(\mathbb{R}) \times X(\mathbb{R}) \to \mathbb{R}, \quad (x, y) \mapsto \langle x, y \rangle,$$

обладающее следующими свойствами:

- 1. симметричность: $\forall x, y \in X(\mathbb{R}) \ \langle x, y \rangle = \langle y, x \rangle$,
- 2. билинейность: $\forall x, y, z \in X(\mathbb{R}) \quad \forall \alpha \in \mathbb{R} \quad \langle x + \alpha y, z \rangle = \langle x, z \rangle + \alpha \langle y, z \rangle,$ 3. положительность: $\forall x \in X(\mathbb{R}) \quad \langle x, x \rangle \geq 0, \quad \langle x, x \rangle = 0 \quad \Leftrightarrow \quad x = 0.$

Отображение g при этом называется метрической формой, а пара $E(\mathbb{R})=(X(\mathbb{R}),g)$ - евклидовым пространством.

Nota bene Пусть $\{e_j\}_{j=1}^n$ - базис пространства $X(\mathbb{R})$ и $x,y\in X(\mathbb{R})$, тогда

$$x = \sum_{i=1}^{n} \xi^{i} e_{i}, \quad y = \sum_{j=1}^{n} \eta^{j} e_{j},$$

и вычисление скалярного произведения дает

$$\langle x, y \rangle = \left\langle \sum_{i=1}^n \xi^i e_i, \sum_{j=1}^n \eta^j e_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n \xi^i \eta^j \left\langle e_i, e_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n \xi^i \eta^j g_{ij}.$$

Набор элементов $g_{ij} = \langle e_i, e_j \rangle$ называется **метрическим тензором**. Матрицу коэффициентов $G = \|g_{ij}\|$ называют **матрицей Грама**.

Длина и угол 5.2

Длиной вектора $x \in E(\mathbb{R})$ называется величина

$$||x|| = \sqrt{\langle x, x \rangle}$$

Лемма 5.1. (неравенство Шварца) Для любых $x, y \in E(\mathbb{R})$ имеет место неравенство:

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Рассмотрим билинейную форму, с параметром λ :

$$\|\lambda x + y\|^2 = \langle \lambda x + y, \lambda x + y \rangle = \langle \lambda x, \lambda x \rangle + \langle \lambda x, y \rangle + \langle y, \lambda x \rangle + \langle y, y \rangle =$$
$$= |\lambda|^2 \|x\|^2 + \lambda (\langle x, y \rangle + \langle y, x \rangle) + \|y\|^2 \ge 0.$$

Используем свойство $\langle x,y\rangle=\langle y,x\rangle$ и преобразуем выражение

$$|\lambda|^2 ||x||^2 + 2\lambda \langle x, y \rangle + ||y||^2 \ge 0.$$

Тогда $D/4 = |\langle x, y \rangle|^2 - ||x||^2 ||y||^2 \le 0.$

4

Лемма 5.2. Неравенство Шварца превращается в равенство тогда и только тогда, когда x и y линейнозависимы.

>

Пусть $y = \alpha x$, тогда

$$|\langle x, \alpha x \rangle| \le ||x|| \, ||\alpha x||, \quad \Rightarrow \quad |\alpha| \, ||x||^2 \le |\bar{\alpha}| \, ||x||^2, \quad |\bar{\alpha}| = |\alpha|.$$

Пусть $|\langle x, y \rangle| = ||x|| \, ||y||$, тогда

$$D/4 = |\langle x, y \rangle| = ||x|| \, ||y|| = 0 \quad \Leftrightarrow \quad \exists \lambda \neq 0 : \quad ||\lambda x + y||^2 = 0,$$
$$\Leftrightarrow \quad \lambda x + y = 0.$$

4

Nota bene Назовем углом между векторами величину θ , если

$$\cos \theta = \frac{\langle x, y \rangle}{\|x\| \|y\|}.$$

5.3 Ортогональность

Два ненулевых вектора x и y называются **ортогональными**, если их скалярное произведение равно нулю:

$$\langle x, y \rangle = 0, \quad x \neq 0, \quad y \neq 0.$$

Nota bene Обычно используется обозначение $x \perp y$.

Nota bene Набор ненулевых векторов $\{x_i\}_{i=1}^k$ называется ортогональным, если все векторы набора попарно ортогональны:

$$\langle x_i, x_{j \neq i} \rangle = 0.$$

Лемма 5.3. Всякий ортогональный набор является линейно-независимым.

•

Рассмотрим нулевую линейную комбинацию

$$\sum_{i=1}^{k} \alpha_i x_i = 0,$$

$$\left\langle \sum_{i=1}^{k} \alpha_i x_i, x_j \right\rangle = \sum_{i=1}^{k} \alpha_i \left\langle x_i, x_j \right\rangle = \alpha_j \left\langle x_j, x_j \right\rangle = \alpha_j \left\| x_j \right\|^2 = 0,$$

но $||x_i|| \neq 0$ и значит $\alpha_i = 0, \forall j$.

4

Ортогональным базисом называется полный набор ортогональных векторов.

5.4 Ортогональное дополнение

Говорят, что x ортогонален линейному подпространству $L \leq E$, если

$$x \perp L \quad \Leftrightarrow \quad x \perp y, \quad \forall y \in L.$$

Лемма 5.4. Следующее множество является подпространством $E(\mathbb{R})$.

$$L^{\perp} = \{ x \in E(\mathbb{R}) : \quad x \perp L \} .$$

Прямой проверкой убеждаемся, что L^{\perp} замкнуто относительно операций в $E(\mathbb{R}).$

•

 $\|$ Подпространство L^{\perp} называется **ортогональным дополнением** пространства L.

 $Nota\ bene$ Пространства L и L^{\perp} - евклидовы.

Лемма 5.5. Пусть $L(\mathbb{R}) \leq E(\mathbb{R})$, тогда имеет место разложение:

$$E(\mathbb{R}) = L(\mathbb{R}) \oplus L^{\perp}(\mathbb{R}),$$

где соответствующая сумма является прямой.

Ĺ

В силу определения ортогонального дополнения, необходимо проверить только тривиальность пересечения L и L^{\perp} :

$$z \in L \cap L^{\perp} \quad \Leftrightarrow \quad z \in L, z \in L^{\perp} \quad \Rightarrow \quad \langle z, z \rangle = \|z\|^2 = 0 \quad \Leftrightarrow \quad z = 0.$$

4

5.5 Ортогональная проекция

 $m{Nota\ bene}$ Напомним, что разложение $E=L\oplus L^\perp$ дает

$$\forall x \in E \quad \exists \, ! y \in L, z \in L^{\perp} : \quad x = y + z.$$

Компоненты вектора x в подпространствах L и L^{\perp} называются **ортогональными проекциями** вектора x, а соответствующие линейные отображения:

$$\mathcal{P}_L^{\perp} x = y, \quad \mathcal{P}_{L^{\perp}}^{\perp} x = z$$

называются **ортогональными проекторами** на подпространства L и L^{\perp} .

Nota bene Будем использовать следующие обозначения:

$$y = x_L, \quad z = x_L^{\perp}$$

для ортогональных проекций, для их длин такие:

$$||y|| = \prod p_L^{\perp} x, \quad ||z|| = \prod p_{L^{\perp}}^{\perp} x.$$

Пример 5.1. Рассмотрим задачу о нахождении ортогональной проекции вектора x на подпространство L, базисом которого является набор $\{y_i\}_{i=1}^k$. Имеем следующее разложение:

$$x = y + z = \sum_{i=1}^{k} \xi^{i} y_{i} + z, \quad y_{i} \perp z.$$

Построим скалярные произведения вектора x последовательно с векторами y_i :

$$\sum_{i=1}^{k} \xi^{i} \langle y_{i}, y_{j} \rangle = \langle x, y_{j} \rangle, \quad j = 1 \dots k.$$

Получившаяся система имеет единственное решение $\left\{\xi_0^i\right\}_{i=1}^k$, из которого определяются проекции y и z:

$$y = \sum_{i=1}^{k} \xi_0^i y_i, \quad z = x - y.$$

 $Nota\ bene$ Если базис $\{y_i\}_{i=1}^k$ является ортонормированным, тогда

$$\xi_0^j = \langle x, y_j \rangle, \quad x_j = \langle x, y_j \rangle y_j, \quad y = \sum_{i=1}^k \langle x, y_i \rangle y_i.$$