Problem

If A is any language, let $A_{\frac{1}{3}-\frac{1}{3}}$ be the set of all strings in A with their middle thirds removed so that

$$A_{\frac{1}{3} - \frac{1}{3}} = \{xz | \text{ for some } y, \ |x| = |y| = |z| \text{ and } xyz \in A\}.$$

Show that if A is regular, then $A_{\frac{1}{3}-\frac{1}{3}}$ is not necessarily regular.

Step-by-step solution

Step 1 of 2

Constraints:

 $_A$ is any language and $_{\frac{1}{3}\frac{1}{3}} = \left\{ x \mid \text{ for some } y, |x| = |y| = |z| \text{ and } xyz \in A \right\}$ is the set of all strings in $_A$ with their middle thirds removed.

- Let $A = \{a * \#b *\}$ is regular language
- We know that $\{a*b*\}$ is a regular language.
- Also we know that "Regular languages are closed under intersection"
- Now $A_{\frac{1}{3}\frac{1}{3}} \cap \{a * b *\} = \{a^n b^n \mid n \ge 0\}$
- Clearly $\left\{a^nb^n\,|\,n\ge 0\right\}$ is not regular, because if p is the pumping length and

S = xyz = aabb is p = 2 Here x = a y = a z = bb, obtain $xy^2z = aaabb$

Comment

Step 2 of 2

<u>Pumping lemma</u>: If A is a regular language, then there is a pumping length p where, if s is any string in A of length at least P, then s may be divided into three pieces, s = xyz, satisfying following conditions

- (i) For each $i \ge 0$, $xy^i z \in A$
- (ii) |y| > 0 and
- (iii) $|xy| \le n$

So according to pumping lemma $xy^2z = a^3b^2 \notin \{a*b*\}$

Hence $\{0*1*\}$ is not regular.

As regular languages are closed under intersection and $\{0*1*\}$ is not regular, $\frac{A_{1-1}}{3-3}$ is not regular. If A is regular, then $\frac{A_{1-1}}{3-3}$ is not necessarily regular is proved.

Comment