ACCQ 206 - Entanglement and quantum algorithms

Alex Bredariol Grilo Alex.Bredariol-Grilo@lip6.fr

Product states vs. entangled states

Product states

Can be written as
$$|\psi\rangle\otimes|\phi\rangle$$
 Example: $|+\rangle\otimes|+\rangle$, $(|00\rangle+|11\rangle)\otimes|0\rangle$

Entangled states

Can**not** be written as
$$|\psi\rangle\otimes|\phi\rangle$$
 Examples: $(|0\rangle_A|00\rangle_B + |1\rangle_A|10\rangle_B)$ Bell basis
$$\left\{ \begin{array}{l} |\Psi_{00}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\Psi_{01}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi_{10}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \\ |\Psi_{11}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{array} \right\}$$

CHSH

Classical strategies

 $x, y \in_R \{0, 1\}$ $x \cdot y = a \oplus b$ $a \neq b$ iff x = v = 1

Optimal winning value ω (CHSH) = 3/4

Quantum strategies

$$x, y \in_R \{0, 1\}$$

 $x \cdot y = a \oplus b$
 $a \neq b \text{ iff } x = y = 1$

Optimal winning value $\omega^*(CHSH) = \cos^2(\pi/8)$

Bell inequalities

Experimental way of testing "quantumness" (or at least "super-classicality")

Alain Aspect (1982, Institut d'Optique)

QuTech group (2015, TU Delft)

Quantum teleportation

Problem: Alice wants to send a qubit $|\psi\rangle$ to Bob. If they have a quantum channel to communicate:

If they have a classical channel to communicate:

If they have a classical channel to communicate + pre-shared quantum state:

Quantum teleportation

Super-dense coding

Alice receives two random bits a and b and she wants Bob to learn both of them.

If Alice sends a single classical bit:

If Alice sends a single qubit:

Super-dense coding

Mixed states

• Mixed states: probabilistic distribution of quantum states

Examples

$$\big(\big(\frac{1}{2},|0\rangle\big),\big(\frac{1}{2},|+\rangle\big)\big)$$
 , $\big(\big(\frac{1}{3},|0\rangle\big),\big(\frac{2}{3},|1\rangle\big)\big)$

 \bullet Density matrices: mathematical representation of mixed states $(1,|\psi\rangle)$

$$((p_1, |\psi_1\rangle), (p_2, |\psi_2\rangle), ..., (p_k, |\psi_k\rangle))$$

- Properties of density matrices
 - ▶ Its trace is 1 (The trace of a square matrix is $\sum_{i} a_{i,i}$)
 - ▶ Positive semi-definitive (all its eigenvalues are non-negative)
- Definition of evolution and measurements can be extended to density matrices

"Parts" of quantum states

• Trace-out: ignore qubits of a larger quantum state

$$\mathit{Tr}_{B}(|a_{1},b_{1}\rangle\langle a_{2},b_{2}|_{A,B})=\langle b_{1}|\,b_{2}\rangle\,|a_{1}\rangle\langle a_{2}|$$

Quantum algorithms

Quantum operations

Evolution of quantum states is described by unitary operators

- $UU^{\dagger} = U^{\dagger}U = I$
 - For every quantum state $|\psi\rangle$, $U|\psi\rangle$ is also a quantum state
 - ► Reversible: no information loss
- Equivalent models of quantum computation:
 - Quantum Turing Machines
 - Quantum circuits
 - Adiabatic quantum computation
 - Measurement-based quantum computation
 - **...**

Classical circuits

Quantum circuits

Universal gateset

Definition

 ε -approximation An *n*-qubit unitary U ε -approximates an *n*-qubit unitary U' if

$$\max_{|\psi\rangle\in\mathbb{C}^{2^n}}||U|\psi\rangle-U'|\psi\rangle||\leq \varepsilon.$$

Definition

Universal gateset A gateset \mathcal{G} is universal if for every unitary U, there exists a unitary U' composed by gates in \mathcal{G} such that U' ε -approximates U.

Lemma

The following gatesets are universal:

- {1-qubit gates, CNOT}
- {CNOT, H, T}
- {H, CCNOT} (for unitaries with real entries)

Template for quantum circuits

Oracle gates

Problem

Given oracle access to $f: \{0,1\}^n \to \{0,1\}$ with the promise that:

- f is constant
- f is balanced

Find out which is the case.

Problem

Given oracle access to $f: \{0,1\}^n \to \{0,1\}$ with the promise that:

- f is constant
- f is balanced

Find out which is the case.

Deterministic algorithms:

Randomized algorithms:

Quantum algorithms:

Quantum parallelism

Analysis

Analysis

Problem

Given oracle access to $f:\{0,1\}^n \to \{0,1\}$ with the promise that:

- f is constant
- f is balanced

Find out which is the case.

Problem

Given oracle access to a function $f:\{0,1\}^n \to \{0,1\}^n$ such that:

$$\exists s \neq 0^n$$
 such that $f(x) = f(y)$ iff $y \in \{x, s \oplus y\}$.

Find s.

Problem

Given oracle access to a function $f:\{0,1\}^n \to \{0,1\}^n$ such that:

$$\exists s \neq 0^n \text{ such that } f(x) = f(y) \text{ iff } y \in \{x, s \oplus y\}.$$

Find s.

Deterministic algorithms:

Randomized algorithms:

Lemma

With a single quantum query, we can compute a random $d \in \{0,1\}^n$ such that

$$d \cdot s = 0$$
.

Theorem

There is a quantum algorithm that retrieves s with high probability with O(n) queries.

Proof

Simon's algorithm - sampling d s.t. $d \cdot s = 0$

Analysis (cont.)

Simon's algorithm - recap

Problem

Given oracle access to a function $f: \{0,1\}^n \to \{0,1\}^n$ such that:

$$\exists s \neq 0^n \text{ such that } f(x) = f(y) \text{ iff } y \in \{x, s \oplus y\}.$$

Find s.

The following circuit samples random d such that

Sampling it O(n) times, with high probability we have n linearly independent d_i 's and we can solve the following linear system of equations to compute s

$$\forall 1 \leq i \leq n, d_i \cdot s = 0.$$