- Atommasse
- Mol-begrepet
- Molar masse
- Bestemmelse av kjemisk formel for forbindelser
- Kjemiske reaksjoner
- Balansere kjemiske reaksjoner
- Beregninger ifbm kjemiske reaksjoner

3.1 Atommasse

NATURAL ISOTOPES OF CARBON

(6P + 6N)

Atomic Mass = 12 u Abundance: 98.89% Abundance: 1.109%

(6P + 7N)

Atomic Mass = 13.00335 u Atomic Mass = 14.003241 u Abundance: 1 Part Per Trillion Half-life: 5,730 ± 40 Years

(6P + 8N)

- Standard: 1 amu = 1/12 av massen til et atom av 12 C
- Massen av alle nukleider kan bestemmes ved å måle massen relativt til ¹²C

- Grunnstoffer finnes naturlig som en blanding av flere ulike isotoper
- Atommassen vi benytter er gjennomsnittmassen for isotopene

SI-enheter

Egenskap	Enhet	Symbol for enhet
elektrisk strøm	ampere	A
masse	kilogram	kg
lengde	meter	m
tid	sekund	S
temperatur	kelvin	K
stoffmengde	mol	mol
lysstyrke	candela	cd

Avledede enheter: f.eks. hertz, newton, joule, volt, tesla...

Joule (enhet for energi): $J = kg m^2 s^{-2}$

SI-enheten for volum blir m³. Men i kjemien bruker vi stort sett dm³ eller liter.

3.2 Stoffmengde (mol)

- Definisjon: Et mol er en stoffmengde som tilsvarer antall atomer i 12 g ren ¹²C
- Antallet atomer i 12 g ren ¹²C:
 - $-6,022141 \times 10^{23}$ Avogadros tall, N_A

Mengdeenheter			
•	Størrelse 💠	Bruksområde 💠	
dusin	= 12 stk.	Småvarer, knapper, skruer	
gross	= 12 dusin =144 stk.	Småvarer, knapper, skruer	
keg	= 3 snes = 60 stk.	Fisk	
kiste	= 48 flasker	Fransk rødvin	
	= 225 plater	Hvitblikk	
lest	= 12 barrel =14 400 stk.	Sild	
	= 144 stk.	Huder, skinn	
	= 12 sekker	UII	
mol	= 6,022 141	SI-enhet for antall	
	29×10 ²³ mol ⁻¹ = N _A	atomer, molekyler,	
	(Avogadro-konstanten)	partikler	
ol	= 4 snes = 80 stk	Sild	
par	= 2 stk.		
ris	= 20 bøker = 500 ark	Papir	
simmer	= 4 deker = 40 stk.	Huder, skinn	
skokk	= 3 snes = 60 stk.	Egg, fisk	
snes	= 20 stk.	Egg, fisk	

 $1 \text{ mol} = 6,022 \times 10^{23}$

Hva er forholdet mellom amu og g?

Hva veier 1 mol H-atomer i g?

Alkali Metal Alkaline Earth Transition Metal

Semimetal

Nonmetal

Basic Metal Halogen

Noble Gas Lanthanide

Actinide

© 2013 Todd Helmenstin

3.3 Molar masse (molvekt)

molvekt (g/mol) =
$$\frac{\text{masse (g)}}{\text{stoffmengde (mol)}}$$

$$M = \frac{m}{n}$$

Molvekt av atomer er gitt i periodesystemet.

Molar masse (molvekt)

- Molvekt av forbindelser: summen av molvektene til atomene forbindelsen består av.
- Bruker molekylformel eller formelenhet.

Eks:

1 mol O veier 15,999 g => M til O er 15,999 g/mol

1 mol H_2O veier $2 \cdot 1,008g + 15,999g = 18,02g => <math>M_{H2O} = 18,02 \text{ g/mol}$

- Hvor mye veier 3,58 mol av Al_2O_3 ?
- Hvor mange mol er det i 23,4 g FeO?

3.4/3.5 Sammensetning basert på vekt%

- Kjemisk formel gir informasjon om antallet atomer i en forbindelse
- I noen sammenhenger kan vekt% av atomene være mer nyttig
- F.eks. ved analyse av et ukjent stoff:

Empirisk formel

• **Empirisk formel**: gir forholdet mellom antall mol av atomer i en forbindelse

eks: C_6H_6 (benzen) vil ha empirisk formel CH eller $(CH)_n$ C_2H_4 (eten) => $(CH_2)_n$ $C_6H_{12}O_6$ (druesukker) => $(CH_2O)_n$

3.6 Kjemiske reaksjonsligninger

$$H_2 + O_2 \longrightarrow H_2O$$

reaktanter → produkter

$$H_2(g) + O_2(g) \longrightarrow H_2O(g)$$

$$H_2(g) + O_2(g) \longrightarrow H_2O(1)$$

Aggregattilstander gir ekstra informasjon.

Aggregattilstander:

s=solid, l=liquid, g=gas, aq=aqueous solution

3.7 Balansering av reaksjonsligninger

$$H_2 + O_2 \longrightarrow H_2O$$
 reaktanter \Rightarrow produkter
$$2H_2 + O_2 \longrightarrow 2H_2O$$
 balansert => like mange atomer på hver side

Balansering av kjemiske reaksjonsligninger:

- Konservering av masse (dvs. like mange atomer på hver side)
- Lavest mulig støkiometrisk koeffisient

Balansering av reaksjonsligninger

- Innebærer litt prøving og feiling.
- Tips: Bruk den mest kompliserte formelen som utgangspunkt.
- Balanser:
 - $Al + O_2 \rightarrow Al_2O_3$
 - $C_2H_5OH + O_2 \rightarrow CO_2 + H_2O$
 - $\operatorname{Fe_2O_3} + \operatorname{H_2SO_4} \rightarrow \operatorname{Fe_2(SO_4)_3} + \operatorname{H_2O}$

3.8 Støkiometriske beregninger

- Stoffer reagerer alltid med hverandre i et bestemt forhold mellom tallene på partiklene; MF (=molforhold)
- Angis av den balanserte rx-ligninga

$$n_{ukjent} = n_{kjent} \cdot MF \left(\frac{ukjent}{kjent} \right)$$

Beregning av mengde reaktanter og produkter i kjemiske reaksjoner

- 1. Balanser reaksjonsligningen.
- 2. Konverter kjente masser til mol.
- 3. Bruk den balanserte ligningen til å finne molforholdet.
- 4. Bruk molforholdet til å regne ut antall mol andre reaktanter og/eller produkter.
- 5. Konverter fra mol til masse hvis det trengs.

Gå veien om mol!

3.8 Begrensende reaktant

- Noen ganger brukes en av reaktantene opp før de andre.
- Denne vil begrense reaksjonen og mengden produkt.
- Denne kalles den begrensende reaktant

Beregning av mengde produkter i kjemiske reaksjoner

- 1. Balanser reaksjonsligningen.
- 2. Konverter kjente masser til mol.
- 3. Finn begrensende reaktant.
 - Sammenligne antall mol reaktanter med molforholdene i den balanserte reaksjonsligningen.
- 4. Bruk antall mol begrensende reaktant, og molforholdet til å regne ut antall mol produkter.
- 5. Konverter fra mol til masse hvis det trengs.

Ustøkiometriske forbindelser

- Noen forbindelser kan ha et ikke-heltallig forhold mellom atomene
- Eks: $x Cu + S \rightarrow Cu_x S$

Fra øving 1

OPPGAVE 1 (Kap. 3)

- a) Hva er ett mol av et kjemisk stoff (definisjon)?
- b) Hvor mange kg Al kan teoretisk framstilles av 36,8 kg Al₂O₃?
- c) Hvor mange gram barium er det i 35,0 g BaSO₄?
- d) Hvor mange mol karbon er det i $0,530 \text{ mol } K_4[Fe(CN)_6]$?

