General Relativity

By precise approach

Preliminaries

Manifolds

1. Topological Manifolds

Def 1.1 Topological Manifolds

A manifold M of dimension n is a topological space with the following properties.

- 1. M is Hausdorff
- 2. M is locally Euclidean of dimension n
- 3. M has a countable basis of open sets

Why?

- Hausdorff: In Hausdorff space, convergent sequences converge to only one point. If you want to do calculus, you should need Hausdorff space.
- Locally Euclidean: This is the main reason that why we require manifolds.
- Countable Basis: We need **partition of unity** to bring many properties of Euclidean space. For Hausdorff space, existence of partition of unity require **paracompactness**. And paracompactness follows from **second countability**. It is same as have countable basis.

1.1 Supplement

Thm 1.1.1 Paracompact \simeq Partition of unity

Let (X, τ) be a topological space that is T_1 (all points are closed). Then the following are equivalent:

- I. (X, τ) is paracompact and Hausdorff
- II. Every open cover of (X, τ) admits a subordinate partition of unity

To prove this, we need a wide background knowledge.

Def 1.1.2 Hausdorff

Given points x and y of S, if $x \neq y$, then there exist open neighborhoods U of x and Y of y in S that are disjoint: such that $U \cap V = \emptyset$.

Def 1.1.3 Locally finite cover

Let (X, τ) be a topological space.

An open cover $\{U_i \subset X\}_{i \in I}$ of X is called *locally finite* if $\forall x \in X$, there exists a neighbourhood $U_x \supset \{x\}$ such that it intersects only finitely many elements of the cover, hence such that $U_x \cap U_i \neq \emptyset$ for only a finite number of $i \in I$.

Def 1.1.4 Refinement of open covers

Let (X,τ) be a topological space, and let $\{U_i\subset X\}_{i\in I}$ be a open cover. Then a *refinement* of this open cover is a set of open subsets $\{V_j\subset X\}_{j\in J}$ which is still an open cover in itself and such that for each $j\in J$ there exists an $i\in I$ with $V_j\subset U_i$.

Def 1.1.5 Paracompact topological space

A topological space (X, τ) is called *paracompact* if every open cover of X has a refinement by a locally finite open cover.

Def 1.1.6 Partition of unity

Let (X, τ) be a topological space, and let $\{U_i \subset X\}_{i \in I}$ be an open cover. Then a partition of unity subordinate to the cover is

• a set $\{f_i\}_{i\in I}$ of continuous functions

$$f_i: X \to [0,1]$$

(where $[0,1] \subset \mathbb{R}$ is equipped with the subspace topology of the real numbers \mathbb{R} regarded as the 1D Euclidean space equipped with its metric topology)

such that with

$$Supp(f_i) := Cl\left(f_i^{-1}((0,1])\right)$$

denoting the support of f_i (the topological closure of the subset of points on which it does not vanish) then

- 1) $\forall_{i \in I} (Supp(f_i) \subset U_i)$
- 2) $\{Supp(f_i) \subset X\}_{i \in I}$ is a locally finite cover
- 3) $\forall \sum_{x \in X} (\sum_{i \in I} f_i(x) = 1)$

Figure 1: Gaussian Partition of Unity

Prop 1.1.7 Paracompact - Partition of unity

If (X, τ) is a paracompact topological space, then for every open cover $\{U_i \subset X\}_{i \in I}$ there is a subordinate partition of unity.

Proof will be given later.

Lem 1.1.8

Let (X,τ) be a topological space, $\{U_i\subset X\}_{i\in I}$ be an open cover and $\left(\phi:J\to I,\;\{V_j\subset X\}_{j\in J}\right)$ be a refinement to a locally finite cover. Then, for $\{W_i\subset X\}_{i\in I}$ with

$$W_i \equiv \left\{ \bigcup_{j \in \phi^{-1}(\{i\})} V_j \right\}$$

is still a refinement of $\{U_i \in X\}_{i \in I}$ to a locally finite cover.

Proof for 1.1.8

First we know, for $V, V_j \subset U_{\phi(j)=i}$. Conversely, $\forall j \in \phi^{-1}(\{i\}), V_j \subset U_i$. Thus, $W_i \in \bigcup_{j \in \phi^{-1}(\{i\})} V_j \subset U_i$.

Second, since $\{V_j\subset X\}_{j\in J}$ are locally finite, $\exists\, \mathcal{U}_x\supset \{x\}$ and a finite subset $K\subset J$ such that

$$\bigvee_{j\in J\setminus K} (\mathcal{U}_x\cap V_j=\emptyset)$$

(locally finite: $\mathcal{U}_x \cap V_j \neq \emptyset$ for just finite number of $j \in J$)

Then we can get by construction,

$$\bigvee_{i \in I \setminus \phi(K)} \left(\mathcal{U}_x \cap W_i = \emptyset \right)$$

Since $\phi(K)$ is still finite, we can find the number of i such that $\mathcal{U}_x \cap W_i = \emptyset$ is also finite. (If for $i \in K', \ \mathcal{U}_x \cap W_i = \emptyset$ then K' should be subset of $\phi(K)$.)

Therefore $\{W_i \in X\}_{i \in I}$ is locally finite.