動態マクロ経済学

Week 4

佐藤健治 sato@eco.osakafu-u.ac.jp

2020/5/29

準備運動:IPython を起動してください

▶ いつものインポート文

```
import numpy as np
```

▶ np.arange() は等差数列

配列(ベクトル)の shape

- ▶ shape を確認する習慣を身に着けよう。
 - ▶ (24,) は1個の数字からなる「タプル」。
 - ▶ 24 個の数字が1列に並んだ配列,ということ。

A. shape

(24,)

shape の変更

- ▶ shape を上書きすると配列の形を変形できる。
 - ▶ 次のコードの結果はどうなる?

A. shape = (3, 8)

配列(行列)の shape

- ▶ shape = (3, 8) は 3 × 8 行列を作る。
 - ▶ 行方向に3つ,列方向に8つ数字が並ぶ。
 - ▶ 数字の並びは「行指向」(行方向に数字を埋めていく)

Α

- ▶ 「次元」 = shape に並ぶ数字の個数 (ここでは 2)
 - ▶ 各数字はその「軸 (axis)」のサイズ
 - (axis0, axis1)

もっと大きな次元

```
A. shape = (2, 3, 4)
Α
 array([[[ 0, 1, 2, 3],
        [4, 5, 6, 7],
        [8, 9, 10, 11]],
        [[12, 13, 14, 15],
         [16, 17, 18, 19].
         [20, 21, 22, 23]])
```

▶ 2個の3×4行列

軸ごとの sum()

行和,列和の計算で使う。

```
A. shape = (4, 6)
A.sum() \# (4, 6) \rightarrow ()
 276
A.sum(axis=0) \# (4, 6) -> (6,)
 array([36, 40, 44, 48, 52, 56])
A.sum(axis=1) \# (4, 6) \rightarrow (4,)
 array([ 15, 51, 87, 123])
```

for ループ

- ▶ 同じ処理を繰り返し実行するときに使う。
 - ▶ Python の for は「できるだけ使うな」と書いている。
- ▶ どうしても必要なとき以外は for を使わず NumPy のベクトル計算 を使う。
- どうしても必要なとき?
 - ▶ 「漸化式」で定義される数字の計算にはループが必要
 - ▶ 動学モデルのほとんど

基本の for

```
for i in range(5):
    print(i ** 3)

0
1
8
27
64
```


- ▶ range(5) は [0, 1, 2, 3, 4] と同じ数字の並びを表す。
- ▶ range(1, 8) はどんな数列か?

本日の目標

- ▶ テキスト 第3章
- ▶ やること
 - ► GDP の構成
 - ▶ 成長率
 - ▶ 成長率と寄与度

実質 GDP,成長率の計算は価格指数の計算とほぼ同じ。今回は for ループを使ってもう少しスマートにやってみる。

GDP

- $p_t = t$ 期の価格ベクトル
- $> x_t = t$ 期の数量ベクトル(すべての最終財)
- ▶ 名目 GDP

$$Y_t = \boldsymbol{p}_t \cdot \boldsymbol{x}_t$$

実質 GDP

- ▶ t = 0 を基準年とする。
- ightharpoonup t 期の実質 GDP(連鎖方式) y_t を次のように定義する。

$$y_0 = Y_0$$

$$y_t = y_{t-1} \times \frac{\boldsymbol{p}_{t-1} \cdot \boldsymbol{x}_t}{\boldsymbol{p}_{t-1} \cdot \boldsymbol{x}_{t-1}}$$

▶ 実質 GDP はラスパイレス式の数量指数である。

GDP デフレーター

ightharpoonup t 期の GDP デフレータ(インプリシット・デフレーター)DFL $_t$ は次のように定義される。

$$\mathsf{DFL}_t = \frac{Y_t}{y_t}$$

- ▶ これは一種の価格指数である。
- ▶ 実際,DFL_t は前回説明したパーシェ式の連鎖価格指数と一致する。

練習問題

 DFL_t がパーシェ式価格指数(連鎖方式)の定義式を満たすことを証明しなさい。

産業 A, B, C それぞれの平均価格と取引数量を以下のように表す。

価格	Α	В	С	
2000年	100	100	100	
2001年	101	99	103	
2002年	100	98	104	
2003年	99	99	106	

数量	Α	В	С
2000年	1000	2000	500
2001年	980	1980	510
2002年	1010	1990	520
2003年	1005	2005	530

NumPy

```
price = np.array([[100, 100, 100],
                     [101, 99, 103],
                     [100, 98, 104],
                     [99, 97, 106.]])
5
   quantity = np.array([[1000, 2000, 500],
                        [980, 1980, 510],
                        [1010, 1990, 520],
                        [1005, 2005, 530.]])
```

取引額と名目 GDP

```
price * quantity

array([[100000., 200000., 50000.],
        [ 98980., 196020., 52530.],
        [101000., 195020., 54080.],
        [ 99495., 194485., 56180.]])
```

各年度の名目 GDP を計算するにはどうすればよいか?

```
NGDP array([350000., 347530., 350100., 350160.])
```

実質 GDP

……としてもいいのだけど,年数が増えると大変なので for ループを使う。

実質 GDP (つづき)

```
T = price.shape[0] # 行数 = 年数
   GDP = np.emptv(T)
   GDP[0] = np.sum(price[0, :] * quantity[0, :])
5 for t in range(1, T):
       GDP[t] = (GDP[t-1]
                 * (np.sum(price[t-1, :] * quantity[t, :])
                  / np.sum(price[t-1, :] * quantity[t-1, :])))
   GDP
10
    array([350000. , 347000.
            352042.2985066 , 354063.44966341])
```

GDP の分解

▶ GDP(国内総生産)の支出面は次のように加法的に分解される

$$Y_t = C_t + I_t + G_t + NX_t$$

- ► *C_t*: 消費
- ► *I_t* : 粗投資
- ▶ G_t: 政府購入
- $ightharpoonup NX_t$: 純輸出 = 輸出 (EX_t) から輸入 (IM_t) を引いたもの。
- ► GDP の成長において,どの項目の成長が GDP の成長にどれだけ寄与したか?
 - ▶ 話を簡単にするために、名目 GDP の成長への寄与を計算しよう。

寄与度

$$Y_{t} = C_{t} + I_{t} + G_{t} + NX_{t}$$

$$\downarrow$$

$$Y_{t+1} = C_{t+1} + I_{t+1} + G_{t+1} + NX_{t+1}$$

例えば, C の寄与度は

$$\frac{\Delta C_{t+1}}{Y_t} = \frac{C_{t+1} - C_t}{Y_t}$$

寄与度(続き)

次の性質に注意する。

$$\begin{split} \frac{\Delta Y_{t+1}}{Y_t} &= \frac{\Delta C_{t+1}}{Y_t} + \frac{\Delta I_{t+1}}{Y_t} + \frac{\Delta G_{t+1}}{Y_t} + \frac{\Delta N X_{t+1}}{Y_t} \\ &= \frac{\Delta C_{t+1}}{Y_t} + \frac{\Delta I_{t+1}}{Y_t} + \frac{\Delta G_{t+1}}{Y_t} + \frac{\Delta E X_{t+1}}{Y_t} + \frac{\Delta (-IM_{t+1})}{Y_t} \end{split}$$

- ▶ 成長率を項目ごとに分解した。
- ▶ 控除項目は負数にしておくとよい。

各支出項目の寄与度を計算しなさい。

	С	1	G	EX	IM
2017 年度	298.88	101.56	132.33	91.43	92.62
2018 年度	299.05	102.28	139.39	92.87	94.62

expenditure = np.array([[298.88, 101.56, 132.33, 91.43, -92.62], [299.05, 102.28, 139.39, 92.87, -94.62]])

差分と GDP

▶ 列ごとの差分計算が必要。次のようにする。

▶ GDP は横方向に足すだけ。

```
gdp = expenditure.sum(axis=1)
gdp
```

array([531.58, 538.97])

寄与度

▶ GDP の準備:ちょっと小細工がすぎる気がするけどデータが大きくなっても大丈夫なように。

```
gdp_shift = np.r_[np.nan, gdp[:-1]]
gdp_shift.shape = (2, 1)
gdp_shift
```

```
array([[ nan], [531.58]])
```

▶ 寄与度は次のように計算

```
contribution = diff / gdp_shift
```

確認問題

練習問題

寄与度の総和が GDP の変化率に(ほぼ)一致することを確認しなさい。 2 つの実数が近いことを確認するには、np.allclose() を用いる。