BACS HW13

106070020 2021年5月21日

Question 1 Let's visualize how weight and acceleration are related to mpg.

(a) Let's visualize how weight might moderate the relationship between acceleration and mpg:

(i)Create two subsets of your data, one for light-weight cars (less than mean weight) and one for heavy cars (higher than the mean weight)

(ii)Create a single scatter plot of acceleration vs. mpg, with different colors and/or shapes for light versus heavy cars

single scatter plot of acceleration vs. mpg

(iii)Draw two slopes of acceleration-vs-mpg over the scatter plot: one slope for light cars and one slope for heavy cars (use different line styles)

single scatter plot of acceleration vs. mpg

(b)Report the full summaries of two separate regressions for light and heavy cars where log.mpg. is dependent on log.weight., log.acceleration., model_year and origin

```
light<-na.omit(light)
heavy<-na.omit(heavy)
l<-lm(light$log.mpg.~light$log.weight.+light$log.acceleration.+light$model_year+factor(light$origin))
summary(1)</pre>
```

```
##
## Call:
## lm(formula = light$log.mpg. ~ light$log.weight. + light$log.acceleration. +
##
      light$model_year + factor(light$origin))
##
## Residuals:
##
       Min
                 1Q
                     Median
## -0.36684 -0.06688 0.00620 0.06448 0.31576
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           6.817512 0.606080 11.249
## light$log.weight.
                          -0.820783
                                     0.066717 -12.302
                                                         <2e-16 ***
## light$log.acceleration. 0.111434
                                     0.058800
                                               1.895
                                                         0.0595
                                                        <2e-16 ***
## light$model_year
                           0.033109
                                     0.002096 15.798
## factor(light$origin)2
                           0.039695 0.021455
                                                1.850
                                                        0.0658 .
## factor(light$origin)3
                           0.020798
                                     0.019458
                                                1.069
                                                         0.2864
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1109 on 196 degrees of freedom
## Multiple R-squared: 0.7034, Adjusted R-squared: 0.6958
## F-statistic: 92.97 on 5 and 196 DF, p-value: < 2.2e-16
```

```
\label{lem:hamiltonian} $h<-lm(heavy\$log.mpg.$\sim heavy\$log.weight.$+heavy\$log.acceleration.$+heavy\$model\_year+factor(heavy\$origin))$ summary(h)
```

```
##
## Call:
## lm(formula = heavy$log.mpg. ~ heavy$log.weight. + heavy$log.acceleration. +
##
       heavy$model_year + factor(heavy$origin))
##
## Residuals:
       Min
                1Q Median
                                3Q
## -0.37106 -0.07150 0.00276 0.06702 0.42505
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 7.096619 0.690120 10.283 < 2e-16 ***
## heavy$log.weight. -0.824266 0.069657 -11.833 < 2e-16 ***
## heavy$log.acceleration. 0.031170 0.056250 0.554 0.58017
## heavy$model_year 0.032086 0.003325 9.649 < 2e-16 ***
## factor(heavy$origin)2  0.098291  0.034250  2.870  0.00459 **
## factor(heavy$origin)3  0.061596  0.066222  0.930  0.35351
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.122 on 184 degrees of freedom
## Multiple R-squared: 0.754, Adjusted R-squared: 0.7473
## F-statistic: 112.8 on 5 and 184 DF, p-value: < 2.2e-16
```

(c)(not graded) Using your intuition only: What do you observe about light versus heavy cars so far?

Both log.weight. and model_year have the significant effects on both light and heavy cars. While the log.acceleration. is only have a significant effect on light cars at 10% significance.

Question 2

(a)(not graded) Between weight and acceleration ability, use your intuition and experience to state which variable might be a moderating versus independent variable, in affecting mileage.

```
##
## Call:
## lm(formula = log.mpg. ~ log.weight. + log.acceleration. + model_year +
##
       factor(origin), data = cars_log)
##
## Residuals:
    Min 1Q Median 3Q
##
## -0.38275 -0.07032 0.00491 0.06470 0.39913
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.431155 0.312248 23.799 < 2e-16 ***
## log.weight. -0.876608 0.028697 -30.547 < 2e-16 ***
## log.acceleration. 0.051508 0.036652 1.405 0.16072
## model_year 0.032734 0.001696 19.306 < 2e-16 ***
## factor(origin)2 0.057991 0.017885 3.242 0.00129 **
## factor(origin)3 0.032333 0.018279 1.769 0.07770 .
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1156 on 392 degrees of freedom
## Multiple R-squared: 0.8856, Adjusted R-squared: 0.8841
## F-statistic: 606.8 on 5 and 392 DF, p-value: < 2.2e-16
```

In my opinion, log.acceleration. variable might be a moderating versus independent variable, in affecting mileage.

(b)Use various regression models to model the possible moderation on log.mpg.:

(i)Report a regression without any interaction terms

```
## Call:
## lm(formula = log.mpg. ~ log.weight. + log.acceleration. + model_year +
##
        factor(origin), data = cars_log)
##
## Residuals:
                   1Q Median
                                        3Q
## -0.38275 -0.07032 0.00491 0.06470 0.39913
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 7.431155 0.312248 23.799 < 2e-16 ***
## log.weight. -0.876608 0.028697 -30.547 < 2e-16 ***
## log.acceleration. 0.051508 0.036652 1.405 0.16072
## model_year 0.032734 0.001696 19.306 < 2e-16 ***
## factor(origin)2  0.057991  0.017885  3.242  0.00129 **
## factor(origin)3  0.032333  0.018279  1.769  0.07770 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1156 on 392 degrees of freedom
## Multiple R-squared: 0.8856, Adjusted R-squared: 0.8841
## F-statistic: 606.8 on 5 and 392 DF, p-value: < 2.2e-16
```

(ii)Report a regression with an interaction between weight and acceleration

```
##
## Call:
## lm(formula = log.mpg. ~ log.weight. + log.acceleration. + model_year +
##
      factor(origin) + log.weight. * log.acceleration., data = cars_log2)
##
## Residuals:
##
       Min
                1Q
                     Median
                                 3Q
## -0.37807 -0.06868 0.00463 0.06891 0.39857
##
## Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                               1.089642 2.752872 0.396 0.69245
## log.weight.
                              -0.096632 0.337637 -0.286 0.77488
                               2.357574 0.995349 2.369 0.01834 *
## log.acceleration.
## model_year
                               0.058737
                                         0.017789
                                                   3.302 0.00105 **
## factor(origin)2
## factor(origin)3
                               0.028179
                                         0.018266
                                                   1.543 0.12370
## log.weight.:log.acceleration. -0.287170   0.123866  -2.318   0.02094 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.115 on 391 degrees of freedom
## Multiple R-squared: 0.8871, Adjusted R-squared: 0.8854
## F-statistic: 512.2 on 6 and 391 DF, p-value: < 2.2e-16
```

```
cor(cbind(cars_log2,cars_log2$log.weight.*cars_log2$log.acceleration.))
```

```
##
                                                           log.mpg. log.weight.
## log.mpg.
                                                        1.000000000 -0.8744686
## log.weight.
                                                       -0.874468594
                                                                      1.0000000
                                                        0.464053310 -0.4256194
## log.acceleration.
## model_year
                                                        0.576342261 -0.2840090
                                                        0.558329285 -0.6048831
## origin
## cars_log2$log.weight. * cars_log2$log.acceleration. 0.007445392 0.1083055
##
                                                       log.acceleration.
## log.mpg.
                                                               0.4640533
## log.weight.
                                                               -0.4256194
                                                               1.0000000
## log.acceleration.
                                                               0.3107471
## model_year
## origin
                                                               0.2210906
## cars_log2$log.weight. * cars_log2$log.acceleration.
##
                                                       model_year
                                                        0.5763423 0.5583293
## log.mpg.
                                                       -0.2840090 -0.6048831
## log.weight.
## log.acceleration.
                                                        0.3107471 0.2210906
## model year
                                                        1.0000000 0.1806622
## origin
                                                        0.1806622 1.0000000
## cars_log2$log.weight. * cars_log2$log.acceleration. 0.1853457 -0.1078488
                                                       cars_log2$log.weight. * cars_log2$log.acceleration.
##
                                                                                                0.007445392
## log.mpg.
                                                                                                0.108305532
## log.weight.
                                                                                                0.852881042
## log.acceleration.
## model year
                                                                                                0.185345672
## origin
                                                                                               -0.107848822
## cars_log2$log.weight. * cars_log2$log.acceleration.
                                                                                                1.000000000
```

(iii)Report a regression with an interaction between weight and acceleration

```
##
## Call:
## lm(formula = cars_log2$log.mpg. ~ mlogw + mloga + cars_log2$model_year +
##
      factor(cars_log2$origin) + mlogw * mloga)
##
## Residuals:
##
      Min
                1Q Median
                                 3Q
## -0.37807 -0.06868 0.00463 0.06891 0.39857
##
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           -0.247095   0.008023   -30.799   < 2e-16 ***
## mlogw
                           0.013120 0.006789 1.932 0.054031 .
## mloga
## cars_log2$model_year
                           0.033685 0.001735 19.411 < 2e-16 ***
## factor(cars_log2$origin)2 0.058737 0.017789 3.302 0.001049 **
                                     0.018266
## factor(cars_log2$origin)3 0.028179
                                               1.543 0.123704
                          -0.014566
                                      0.006283 -2.318 0.020943 *
## mlogw:mloga
## --
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.115 on 391 degrees of freedom
## Multiple R-squared: 0.8871, Adjusted R-squared: 0.8854
## F-statistic: 512.2 on 6 and 391 DF, p-value: < 2.2e-16
```

(iv)Report a regression with an orthogonalized interaction term

```
logw_loga<-cars_log2$log.weight.*cars_log2$log.acceleration.
interaction_regr<-lm(logw_loga~cars_log2$log.weight.+cars_log2$log.acceleration.)
interaction_ortho<-interaction_regr$residuals
round(cor(cbind(cars_log2, interaction_ortho)),2)</pre>
```

```
##
                 log.mpg. log.weight. log.acceleration. model_year origin
                    1.00 -0.87
## log.mpg.
                                             0.46 0.58 0.56
## log.weight.
                    -0.87
                              1.00
                                             -0.43
                                                      -0.28 -0.60
## log.acceleration.
                   0.46
                             -0.43
                                             1.00
                                                      0.31 0.22
                                             0.31
                                                      1.00 0.18
## model year
                    0.58
                             -0.28
                             -0.60
## origin
                    0.56
                                             0.22
                                                      0.18 1.00
## interaction_ortho
                    0.04
                             0.00
                                             0.00
                                                      0.21 -0.07
##
               interaction_ortho
## log.mpg.
                            0.04
                            0.00
## log.weight.
## log.acceleration.
                            0.00
## model_year
                            0.21
## origin
                            -0.07
## interaction_ortho
                            1.00
```

```
##
## Call:
## lm(formula = log.mpg. ~ log.weight. + log.acceleration. + model_year +
##
       factor(origin) + interaction_ortho, data = cars_log2)
##
## Residuals:
               1Q Median
                                3Q
##
     Min
## -0.37807 -0.06868 0.00463 0.06891 0.39857
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.377176 0.311392 23.691 < 2e-16 ***
## log.weight. -0.876967 0.028539 -30.729 < 2e-16 ***
## log.acceleration. 0.046100 0.036524 1.262 0.20764
## model_year 0.033685 0.001735 19.411 < 2e-16 ***
## factor(origin)2 0.058737 0.017789 3.302 0.00105 **
## factor(origin)3 0.028179 0.018266 1.543 0.12370
## interaction_ortho -0.287170   0.123866   -2.318   0.02094 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.115 on 391 degrees of freedom
## Multiple R-squared: 0.8871, Adjusted R-squared: 0.8854
## F-statistic: 512.2 on 6 and 391 DF, \, p-value: < 2.2e-16
```

(c)For each of the interaction term strategies above (raw, mean-centered, orthogonalized) what is the correlation between that interaction term and the two variables that you multiplied together?

```
raw<-cor(cars_log2$log.weight., cars_log2$log.weight.*cars_log2$log.acceleration.)

raw

## [1] 0.1083055

mc<-as.numeric(cor(mlogw, mlogw*mloga))

mc

## [1] -0.2026948

oth<-round(cor(cbind(cars_log2$log.weight., interaction_ortho)),2)
oth

## interaction_ortho

## interaction_ortho

## 1 0

## interaction_ortho 0 1
```