Information Theory and Statistics

∷ 태그	
② 생성일	@2024년 4월 8일 오전 2:45

1. Method of Types

1-1. Basic Concepts

1-1-1. Type

- 1. Notation
 - a. $x = \left[x_1, x_2, ..., x_n
 ight]$ = A sequence whose length is n
 - b. N(a|x) = The number of occurrences of symbol a in x
 - c. P_x = (probability mass function of type) = (Relative proportion of occurrences of each symbol of X) = $\frac{N(a|x)}{n}$

2. Type

- a. Empirical probability distribution of a specific sequence x as a sample \to sequence를 sequence에 속하는 alphabet의 출현 빈도 및 sequence의 길 이를 기준으로 분류하겠다는 의도
- b. Components
 - i. Sample Space : Set of sequences whose length is \boldsymbol{n}
 - ii. Event Space: Collection of set of sequences which has same occurrences in each sequence for all symbols
 - 1. example: aab, baa
 - 2. stationary + sequence를 하나의 표본 집단으로 생각 (하나의 표본이 아니라)
 - iii. Random Variable = Probability Mass Function of Type

1-1-2. Probability Simplex

1. Probability Simplex = $\{(x_1,x_2,...,x_m)|x_1+x_2+...+x_m=1,x_i\geq 0 (i=1,2,3...,m)\}$

1-1-3. Set of Types with denominator n

1. Sequence의 길이가 n인 type들의 집합 (Probability Distribution들의 집합)

1-1-4. Type Class

1. Set of Types with denominator n의 원소인 type들에 대응하는 길이가 n인 sequence들의 집합

1-2. Properties

1-2-1. Size of Set of Types with denominator n

- 1. Notation
 - a. $P_n={\sf A}$ set of types with denominator n
 - b. χ = A set of alphabets
- 2. Theorem
 - a. $|P_n| \leq (n+1)^{|\chi|}$: type set의 cardinality는 sequence의 길이 n의 polynomial이다.

1-2-2. Probability of Sequence

- 1. Notation
 - a. $X_1,...,X_n$ = a sequence of i.i.d random variables (alphabet을 event로함)

- b. $X_i \sim Q$ (i=1,...,n) = 각 Random Variable이 따르는 identical distribution
- c. $Q^n(x)$ = $X_1,...,X_n$ 의 특정 instance에 대응하는 sequence x에 대한 pmf
- d. P_x = 특정 sequence x에 대한 type

2. Theorem

a.
$$Q^n(x)=2^{-n(H(P_x)+D(P_x||Q))}$$
 (for any P)

1-2-3. Size of a Type Class (T(P))

- 1. Notation
 - a. P_n = A set of types with denominator n
 - b. $P \in P_n$ = A type as a element of P_n
 - c. χ = A set of alphabets
 - d. T(P) = A set of sequences corresponding to the given type P
- 2. Theorem

a.
$$rac{1}{(n+1)^{|\chi|}}2^{nH(P)} \leq T(P) \leq 2^{nH(P)}$$
 (for any P)

1-2-4. Probability of Type Class

- 1. Notation
 - a. P_n = A set of types with denominator n
 - b. $P \in P_n$ = A type as a element of P_n
 - c. T(P) = A type class for type $P\,$ = A set of sequences whose type is $P\,$
 - d. Q(x) = Any probability distribution for alphabet χ
 - e. $Q^n(x)$ = Probability of a squence whose length is n and alphabet is χ
 - f. $Q^n(T(P))$ = Probability of a type class of sequences whose type is P (calculated as the sum of $Q^n(x)(x\in T(P))$

2. Theorem

a.
$$rac{1}{(n+1)^{|\chi|}} 2^{-nD(P||Q)} \leq Q^n(T(P)) \leq 2^{-nD(P||Q)}$$

2. Universal Source Coding

2-1. Basic Concepts

2-1-1. Encoder / Decoder

- 1. Code Rate(R)
 - a. Entropy Rate = n의 값이 증가함에 따라 Entropy가 증가하는 정도
 - b. n(=sequence의 길이)의 값이 증가함에 따라 Code의 개수가 증가하는 정도 (= code 개수의 sequence 길이에 대한 평균)
- 2. Fixed Code Rate: Code Rate의 값이 고정되어있다고 가정하는 상황
- 3. Encoder: n개의 symbol들로 이루어진 특정 Sequence를 특정 code로 mapping하는 함수

a.
$$f_n:\chi^n o\{1,2,...,2^{nR}\}$$

4. Decoder: 특정 code를 n개의 symbol들로 이루어진 특정 sequence로 mapping하는 함수

a.
$$\phi_n: \{1, 2, ..., 2^n\} \to \chi^n$$

5. Error of Probability: Decoding된 Sequence가 Encoding 전의 Sequence와 다르다고 할 때 즉 Error가 발생 했다고 할 때 특정 Sequence가 관측될 확률

a.
$$P_e^{(n)}=Q^n(X^n|\phi_n(f_n(X^n))
eq X^n)$$

2-1-2. Universality of Code

- 1. Property of a rate R block code
- 2. Condition
 - a. f_n and ϕ_n do not depend on Q, the distribution for symbol
 - b. Under the condition, if R>H(Q), then $\lim_{n o\infty}P_e^{(n)}=0$

- i. R > H(Q)
 - 1. 임의의 probability distribution에 대하여 sequence의 길이가 증가함에 따라 증가하는 code의 개수의 기댓값 > distribution Q에 대하여 개별 symbol에 필요한 code 개수의 기댓값
 - 2. symbol을 encoding하기에 충분한 code의 개수가 주어짐을 통계적으로 보장하기 위한 조건
 - a. sequence의 길이가 1 증가할 때 마다 사용할 수 있는 code의 개수가 증가하는 정도가
 - sequence의 길이가 1 증가할 때 마다 해당 slot에 들어갈 수 있는 symbol의 개수보다 큼을 보장하기 위한 조건

2-2. Theorem: Existence of Universal Code

- 1. Notation
 - a. n = Sequence의 길이 = Sequence에 포함된 symbol의 개수
 - b. R = code rate = n(Sequence의 길이)의 증가량에 대한 code의 개수 증가량
 - c. 2^{nR} = Sequence의 길이가 n이고 code rate이 R인 상황에서 총 code의 개수
 - d. a sequence of $(2^{nR},n)$ universal source code = Sequence의 길이가 n이고 code rate이 R이며 총 code의 개수가 2^{nR} 인 상황에서 universality 조건을 만족하는 code들의 집합
- 2. Theorem: There exists a sequence of $(2^{nR},n)$ universal source codes such that $P_e^{(n)} o 0$ for every source Q such that H(Q) < R
- 3. Proof
 - a. Assumption
 - i. The rate R is fixed

ii.
$$R_n = R - |\chi| rac{\log(n+1)}{n}$$

iii.
$$A=\{x\in\chi^n|H(P_x)\leq R_n\}$$

- iv. $T(P)={
 m type}\;P$ 의 ${
 m type}\;{
 m class}={
 m type}\;P$ 에 대응하는 ${
 m sequence}$ 들의 집합
- b. Proof

i. Upper Bound of $\left|A\right|$

1.
$$|A| = \sum_{P \in P_n | H(P) \le R_n} |T(P)|$$

2.
$$\leq \sum_{P \in P_n \mid H(P) \leq R_n} 2^{nH(P)}$$

$$3. \leq \sum_{P \in P_n | H(P) \leq R_n} 2^{nR_n}$$

4.
$$\leq 2^{nR_n} \sum_{P \in P_n \mid H(P) \leq R_n} 1 = 2^{nR_n} * (Size \ of \ the \ type \ set)$$

5.
$$\leq 2^{nR_n}(n+1)^{|\chi|}$$
 (By the theorem of "size of the type set")

6. =
$$2^{[|\chi|\log(n+1)+nR_n]}$$

$$7. = 2^{n(R_n + |\chi| \frac{\log(n+1)}{n})}$$

8.
$$=2^{nR_n}$$
 (By definition of R_n)

ii. Encoding / Decoding Scheme

- 1. A의 원소의 개수보다 code의 수가 많으므로 indexing이 가능함
- 2. indexing 방식으로 encoding function($f_n(x)$)을 구성 (code를 index 로 mapping)

a.
$$f_n(x) = egin{cases} index \ of \ x \ in \ A \ if \ x \in X \ 0 \end{cases}$$

- 3. decoding function (index를 code로 mapping)
- iii. Universality of Encoding/Decoding Scheme
 - 1. Assumption

a.
$$X_1, X_2, ..., X_n$$
 = i.i.d Random Variables

b. Q = Probability Distribution that each of the random variables $X_1, X_2, ..., X_n$ depends on

c.
$$H(Q) < R$$

2. Proof

a. Upper Bound of Error Probability

i.
$$P_{\epsilon}^{(n)} = 1 - Q^{(n)}(A)$$

ii.
$$=\sum_{P|H(P)>R_n}Q^{(n)}(T(P))$$

iii.
$$\leq \sum_{P|H(P)>R_n} \max_{P|H(P)>R_n} Q^{(n)}(T(P))$$

iv.
$$\leq \max_{P|H(P)>R_n} Q^{(n)}(T(P)) \sum_{P|H(P)>R_n} 1$$

$$\mathsf{v.} \leq \max_{P|H(P)>R_n} Q^{(n)}(T(P))(n+1)^{|\chi|}$$

vi.
$$\leq (n+1)^{|\chi|} (2^{-n \min_{P|H(P)>R_n} D(P||Q)})$$

b.
$$H(P) > R_n > H(Q)$$
 (for some n)

- i. R_n 은 R보다 작은 상태에서 R에 가까워짐 ($n o \infty, \; R_n o R$)
- ii. H(Q) < R
- iii. $H(Q) < R_n < R$ 을 만족하게 하는 임계값으로서 n_0 가 존재
- iv. $\min_{P|H(P)>R_n}$ 에 의해 $H(P)>R_n$ 이므로 $H(P)>R_n>H(Q)$

3. Large Deviation Theory

3-1. Sanov's Theorem

- 1. Notation
 - a. E = A subset of the set of probability mass functions
 - b. P^n = Set of types with denominator n
 - c. $E\cap P^n$ = Subset of the set of types with denominator n
 - d. $Q^n(E)$ = 길이가 n인 Sequence에 대한 set of types에 대한 부분 집합의 확률

i.
$$Q^n(E)=Q^n(E\cap P_n)=\sum_{x\mid P_x\in E\cap P_n}Q^n(x)$$

- e. $X_1, X_2, ..., X_n$ = a sequence of i.i.d random variables
- f. Q(x) = A distribution that each of random variables $X_1,...,X_n$ depends on
- g. $P^* = \arg\min_{P \in E} D(P||Q)$ = Distribution in E that is closest to Q in relative entropy
- 2. Theorem

a.
$$Q^n(E)=Q^n(E\cap P_n)\leq (n+1)^{|\chi|}2^{-nD(P^*||Q)}$$

b.
$$rac{1}{n}\log Q^n(E)
ightarrow -D(P^*||Q)$$

- 3. Proof
 - a. Upper Bound of $Q^n(E)$

i.
$$Q^n(E) = \sum_{P \in E \cap P_n} Q^n(T(P))$$

ii.
$$\leq \sum_{P \in E \cap P_n} 2^{-nD(P||Q)}$$

iii.
$$\leq \sum_{P \in E \cap P_n} \max_{P \in E \cap P_n} 2^{-nD(P||Q)}$$

iv.
$$=\sum_{P\in E\cap P_n}2^{-n\min_{P\in E\cap P_n}D(P||Q)}$$

v.
$$\leq \sum_{P \in E \cap P_n} 2^{-n \min_{P \in E} D(P||Q)}$$

vi.
$$=\sum_{P\in E\cap P_n}2^{-nD(P^*||Q)}$$

vii.
$$\leq (n+1)^{|\chi|} 2^{-nD(P^*||Q)}$$

- b. Lower Bound of $Q^n(E)$
 - i. Additional Assumption for ${\it E}$
 - 1. For all large n, there is a distribution in $E\cap P_n$ that is close to P^*
 - 2. E is the closure of its interior ightarrow Thus, the interior must be nonempty for alla $n \geq n_0$
 - a. Limit Point
 - i. Notation
 - 1. (X, T, d) = Metric Space
 - 2. E = X의 subset
 - 3. $N_r(p)$ = 기준 거리 r에 대한 기준점 p의 Neighborhood= $\{p'|p'\in X, d(p,p')\leq r\}$
 - 4. $N_r'(p) = N_r(p) \backslash \{p\}$
 - ii. Definition: 다음의 조건을 만족하는 기준점 $p \in X$ 를 E의 limit point라고 함
 - 1. $\forall r>0$, $N'_r(p)\cap E\neq\emptyset$ = 임의의 양의 기준 거리 r에 대한 기준점 p의 스스로를 제외한 Neighborhood가 전체 집합

X와의 교집합을 가진다.

- b. Interior Point
 - i. Notation
 - 1. (X, T, d) = Metric Space
 - 2. E = X의 subset
 - 3. $N_r(p)$ = Point p의 기준 거리 r에 대한 Neighborhood = $\{p'|p'\in X, d(p,p')\leq r\}$
 - ii. Definition: 다음의 조건을 만족하는 기준점 $p \in X$ 를 E의 interior point라고 함
 - 1. $\exists r>0$, $N_r(p)\subseteq E$ = 기준 거리 r에 대한 기준점 p의 neighborhood가 X의 부분집합이다.
- c. Exterior Point
 - i. Notation
 - 1. (X, T, d) = Metric Space
 - 2. $E \subseteq X$ = X의 부분 집합
 - 3. $X \setminus E = X$ 중에서 E를 제외한 부분
 - 4. $N_r(p)$ = 기준 거리 r에 대한 기준점 p의 neighborhood = $\{p'|p'\in X, d(p',p)\leq r\}$
 - ii. Definition: 다음의 조건을 만족하는 기준점 $p \in X$ 를 E의 exterior point라고 함 = 다음의 조건을 만족하는 기준점 $p \in X$ 를 E^c 의 interior point라고 함
 - 1. $\exists r>0$, $N_r(p)\subseteq Xackslash E$ = 기준 거리 r에 대한 기준점 p 의 neighborhood가 Xackslash E의 부분집합
- d. open set
 - i. (X, T, d) = Metric Space
 - ii. $E \subseteq X$ = E는 X의 부분 집합
 - iii. Definition: 다음의 조건을 만족하는 집합 E를 open set이라고 함
 - 1. E의 모든 원소로서의 점이 E의 interior point임

- e. closed set
 - i. (X,T,d) = Metric Space
 - ii. $E\subseteq X$ = E는 X의 부분집합
 - iii. Definition: 다음의 조건을 만족하는 집합 E를 closed set이라고 함
 - 1. E의 모든 limit point가 E의 원소임
- f. closure
 - i. 모든 limit point들의 집합
- g. interior
 - i. 모든 interior point들의 집합
- ii. There are distributions P_n such that $P_n \in E \cap P_n$ and $D(P_n||Q) o D(P^*||Q)$
- iii. For each $n \geq n_0$, the followings are true

1.
$$Q^n(E) = \sum_{P \in E \cap P_n} Q^n(T(P))$$

2.
$$\geq Q^n(T(P_n))$$

$$3. \geq rac{1}{(n+1)^{|\chi|}} 2^{-nD(P_n||Q)}$$

- c. Convergence
 - i. $\liminf rac{1}{n} \log Q^n(E) \geq \liminf (-rac{|\chi| \log (n+1)}{n} D(P_n||Q)) = -D(P^*||Q)$

4. Conditional Limit Theorem

4-1. Pythagorean Theorem

- 1. Notation
 - a. E = Closed convex set
 - b. P = Probability distribution의 집합

c.
$$E \subset P$$
 = P 의 부분 집합

- 2. Condition
 - a. $P^* \in E$ = Distribution that achieves the minimum distance to $Q \equiv D(P^*||Q) = \min_{P \in E} D(P||Q)$
 - b. $Q \not\in E$
- 3. Theorem

a.
$$D(P||Q) \ge D(P||P^*) + D(P^*||Q)$$
 ($\forall P$)

- 4. Usecase
 - a. Suppose that we have a sequence $P_n \in E$ that yields $D(P_n||Q)
 ightarrow D(P^*||Q)$
 - b. Then, $D(P_n||P^*) o 0$ (P_n 이 최적화되고 있다.)

4-2. L_1 distance

- 1. Notation
 - a. P_1 , P_2 = Probability Distributions
 - b. χ = Set of symbols
 - c. a = specific symbol
- 2. Definition: L_1 distance

a.
$$||P_1-P_2||=\sum_{a\in\chi}|P_1(a)-P_2(a)|$$

3. Lemma 11.6.1: Lower bound of Relative Entropy with L_1 distance

a.
$$D(P_1||P_2) \geq rac{1}{2\ln 2}(||P_1-P_2||_1)^2$$

4-3. Conditional Limit Theorem

- 1. Notation
 - a. P= set of types with denominator n
 - b. E = closed convex set as a subset of P

c. $X_1, X_2, ..., X_n \sim Q$ = i.i.d discrete random variables

d.
$$p^* = \min_{p \in E} D(p||Q)$$

e. a = specific symbol

2. Theorem

a.
$$n o \infty$$
, $P(X_1 = a | P_{X^n} \in E) o p^*(a)$

b. The conditional distribution of X_1 is close to p^st for large n

3. Proof of Theorem

- a. Preliminary
 - i. $S_t = \{p \in P | D(P||Q) \leq t\}$ (기준 거리가 t인 Pseudo Neighborhood 이자 subset of set of types)
 - 1. D(P||Q) is a convex function. Therefore the set S_t is convex

ii.
$$D^*=D(P^*||Q)=\min_{P\in E}D(P||Q)$$

1. D(P||Q) is strictly convex in P. Therefore P^{st} is unique

iii.
$$A = S_{D^* + 2\delta} \cap E$$
 =

iv.
$$B=E-S_{D^*+2\delta}\cap E=E-A$$

v.
$$A \cup B = E$$

- vi. $Q^{(n)}(B)=$ Subset of set of types with denominator n로서 B의 각 type p에 대응하는 type class T(p)들의 합집합에 대한 probability
- b. Upper Bound of $Q^n(B)$

i.
$$Q^n(B) = \sum_{p \in E \cap P_n \mid D(P \mid \mid Q) > D^* + 2\delta} Q^n(T(p))$$

ii.
$$\leq \sum_{p \in E \cap P_n \mid D(p \mid \mid Q) > D^* + 2\delta} 2^{-nD(p \mid \mid Q)}$$

iii.
$$\leq \sum_{p \in E \cap P_n \mid D(p \mid \mid Q) > D^* + 2\delta} 2^{-n(D^* + 2\delta)}$$

iv.
$$= 2^{-n(D^*+2\delta)} \sum_{p \in E \cap P_n | D(p||Q) > D^*+2\delta} 1$$

v.
$$\leq 2^{-n(D^*+2\delta)}\sum_{p\in P_n}1$$

vi.
$$=2^{-n(D^*+2\delta)}(n+1)^{|\chi|}$$

c. Lower Bound of $Q^n(A)$

i.
$$Q^n(A) \geq Q^n(S_{D^*+\delta} \cap E)$$

ii.
$$=\sum_{p\in E\cap P_n|D(p||Q)}rac{1}{(n+1)^{|\chi|}}2^{-nD(P||Q)}$$

iii.
$$\geq \sum_{p \in E \cap P_n \mid D(p \mid \mid Q)} rac{1}{(n+1)^{\mid \chi \mid}} 2^{-n(D^*+\delta)}$$

iv.
$$\geq rac{1}{(n+1)^{|\chi|}} 2^{-n(D^*+\delta)}$$
 (for sufficiently large n)

- 1. For sufficiently large n, $S_{D^*+\delta}\cap E\cap P_n
 eq\emptyset$ (n을 sample의 크기로 봐야할 듯)
- d. Upper Bound of $P(p_{X^n} \in B | p_{X^n} \in E)$

i.
$$p_{X^n}$$
 = Sequence $X^n=(X_1,X_2,...,X_n)$ 에 대한 type

ii.
$$P(p_{X^n} \in B | p_{X^n} \in E) = rac{Q^n(B \cap E)}{Q^n(E)}$$

iii.
$$\leq \frac{Q^{(n)}(B)}{Q^n(A)}$$

iv.
$$\leq rac{(n+1)^{|\chi|}2^{-n(D^*+2\delta)}}{rac{1}{(n+1)^{|\chi|}}2^{-n(D^*+\delta)}}$$

v.
$$=(n+1)^{2|\chi|}2^{-n\delta}$$

e. Upper bound of $P(p_{X^n} \in B | p_{X^n} \in E)$ implies the followings

i.
$$n o \infty$$
, $P(p_{X^n} \in B | p_{X^n} \in E) o 0$

ii.
$$n o \infty$$
, $P(p_{X^n} \in A | p_{X^n} \in E) o 1$

- f. All members of A are close to p^* in relative entropy
 - i. By definition

1.
$$D(p||Q) \leq D^* + 2\delta$$

ii. By upper inequality and Pythagorean theorem,

1.
$$D(p||P^*) + D(p^*||Q) \le D(p||Q) \le D^* + 2\delta$$

2.
$$D(p||P^*) + D^* \leq D(p||Q) \leq D^* + 2\delta$$
 ,

3.
$$D(p||P^*) \leq 2\delta$$
 (by definition, $D* = D(p^*||Q)$)

- iii. $p_X \in A$ implies that $\ D(p_x||Q) \leq D^* + 2\delta.$ Therefore, $\ D(p_x||P) \leq 2\delta$
- g. $P(p_{X^n}\in A|p_{X^n}\in E) o 1.$ Therefore, $P(D(p_{X^n}||p^*)\leq 2\delta|p_{X^n}\in E) o 1$ as $n o\infty$
- h. By Lemma 11.6.1 : Lower bound of Relative Entropy with L_1 distance

- i. "The relative entropy is small" implies that L_1 distance is small
- ii. " L_1 distance is small" implies that " $\max_{a \in \chi} |P_{X^n}(a) P^*(a)|$ is small" (by sum \geq max for non-negative values)
- iii. Thus, $P(|P_{X^n}(a) P^*(a)| \geq \epsilon |P_{X^n} \in E) o 0$ as $n o \infty$
 - 1. L_1 distance is small $\equiv |P_{X^n}(a) P^*(a)| < \epsilon$
- iv. Alternatively, this can be written as follows
 - 1. $P(X_i=a|P_{X^n}\in E)
 ightarrow P^*(a)$ in probability, $a\in\chi$
 - 2. Since $X_1,...,X_n$ is i.i.d, $P(X_1=a|P_{X^n}\in E) o P^*(a)$ in probability, $a\in\chi$

5. Hypothesis Testing

5-1. Hypothesis Testing

- 1. Intuitive definition: Decision problem between alternative explanations(hypothesis) for the data observed
- 2. Formal definition
 - a. Notation
 - i. X_1 , X_2 ,, $X_n \sim Q(x)$ = I.I.D Random Variables
 - ii. Probability Distributions
 - 1. Q = The unknown probability distribution that $X_1,...,X_n$ depends on in real
 - 2. P_1 , P_2 = The known probability distributions that $X_1,...,X_n$ may depend on
 - iii. Hypotheses

- 1. $H_1:Q=P_1$ = The first hypothesis that $X_1,X_2,...,X_n$ depends on the probability distribution P_1
- 2. $H_2:Q=P_2$ = The second hypothesis that $X_1,X_2,...,X_n$ depends on the probability distribution P_2
- iv. Decision function
 - 1. $g(x_1, x_2, ..., x_n)$
 - a. $g(x_1, x_2, ..., x_n) = 1$ = The first hypothesis H_1 is accepted
 - b. $g(x_1,x_2,...,x_n)=2$ = The second hypothesis H_2 is accepted
 - 2. Decision Region: Inverse image of g = Acceptance Region

a.
$$A = \{(x_1, x_2, ..., x_n) | g(x_1, x_2, ..., x_n) = 1\} = g^{-1}(1)$$

b.
$$A^c = \{(x_1, x_2, ..., x_n) | g(x_1, x_2, ..., x_n) = 2\} = g^{-1}(2)$$

- v. Probabilities of Error → Recall / Precision과도 관련 있음
 - 1. $lpha=P(g(X_1,X_2,...,X_n)=2|H_1\;is\;true)=P_1^n(A^c)$ (Type 1 Error -1 -Precision)
 - 2. $eta=P(g(X_1,X_2,...,X_n)=1|H_2\;is\;true)=P_2^n(A)$ (Type 2 Error Recall)

5-2. Neyman-Pearson lemma

- 1. Notation
 - a. $X_1,...,X_n \sim Q$ = I.I.D Random Variables
 - b. Probability distributions
 - i. Q = The unknown probability distribution that $X_1,...,X_n$ depends on
 - ii. P_1 , P_2 = The known probability distributions that $X_1,...,X_n$ may depend on
 - c. Hypothesis

i.
$$H_1: Q = P_1$$

ii.
$$H_2: Q = P_2$$

d. Decision function

i.
$$g(x_1, x_2, ..., x_n)$$

1.
$$g(x_1,x_2,...,x_n)=1$$
 (if $rac{P_1(x_1,x_2,...,x_n)}{P_2(x_1,x_2,...,x_n)}>T$)

2.
$$g(x_1,x_2,...,x_n)=2$$
 (if $rac{P_1(x_1,x_2,...,x_n)}{P_2(x_1,x_2,...,x_n)}\leq T$)

ii. Decision Region = Acceptance Region

1.
$$A_n(T)=\{x^n|rac{P_1(x_1,x_2,...,x_n)}{P_2(x_1,x_2,...,x_n)}>T\}=g^{-1}(1)$$

2.
$$A_n^c(T)=\{x^n|rac{P_1(x_1,x_2,...,x_n)}{P_2(x_1,x_2,...,x_n)}\leq T\}=g^{-1}(2)$$

3. B_n = Any decision region/acceptance region other than A_n

e. Probabilities of Error

i.
$$lpha^* = P(g(X_1, X_2,, X_n) = 2 | H_1 \ is \ true) = P_1^n(A_n^c(T))$$

ii.
$$eta^*=P(g(X_1,X_2,...,X_n)=1|H_2~is~true)=P_2^n(A_n(T))$$

iii.
$$\alpha = P_1^n(B_n^c)$$

iv.
$$eta=P_2^n(B_n)$$

2. Theorem

a. If $\alpha \le \alpha^*$, then $\beta \ge \beta^*$ = Hypothesis 1의 Error Probability가 감소하면 Hypothesis 2의 Error Probability가 증가한다.

3. Proof

a. Notation

i. Acceptance Region

1.
$$A=A_n(T)=\{x^n|rac{P(x_1,x_2,...,x_n)}{P_2(x_1,x_2,...,x_n)}>T\}\subseteq \chi^n$$

2. $B\subseteq \chi^n$ = Any decision/acceptance region other than A_n

ii. Indicator Function

1. $\phi_A(x) = c_A * 1(x \in A)$ (Indicator fucntion for Acceptance Region A)

2. $\phi_B(x) = c_B * 1(x \in B)$ (Indicator function for Acceptance Region B)

iii.
$$x = (x_1, x_2, ..., x_n) \in \chi^n$$

b. Base Inequality

i.
$$(\phi_A(x) - \phi_B(x))(P_1(x) - TP_2(x)) \geq 0$$

ii.
$$[\phi_A(x)*P_1(x)-T*\phi_A(x)*P_2(x)-\phi_B(x)*P_1(x)+T\phi_B(x)P_2(x)]\geq 0$$

c.
$$\sum_x [\phi_A(x)*P_1(x)-T*\phi_A(x)*P_2(x)-\phi_B(x)*P_1(x)+T\phi_B(x)P_2(x)]\geq 0$$

i.
$$\sum_{x\in A}[\phi_A(x)*P_1(x)-T*\phi_A(x)*P_2(x)]-\sum_{x\in B}[\phi_B(x)*P_1(x)-T*\phi_B(x)*P_2(x)]\geq 0$$

ii.
$$=\sum_{x\in A}[P_1(x)-T*P_2(x)]-\sum_{x\in B}[P_1(x)-T*P_2(x)]$$

iii.
$$=\sum_{x\in A}[P_1(x)]-T*\sum_{x\in A}[P_2(x)]-\sum_{x\in B}[P_1(x)]+T*\sum_{x\in B}[P_2(x)]$$

iv.
$$=P_1^n(A)-T*P_2^n(A)-P_1^n(B)+T*P_2^n(B)$$

$$\mathsf{v.} = (1 - P_1^n(A^c)) - T * P_2^n(A) - (1 - P_1^n(B)) + T * (P_2^n(B))$$

vi.
$$=(1-lpha^*)-T*lpha^*-(1-lpha)+T*(eta)$$

vii.
$$= (\alpha - \alpha^*) + T(\beta - \beta^*)$$

viii.
$$=T(eta-eta^*)-(lpha^*-lpha)\geq 0$$
 ($T\geq 0$)

d.
$$T(\beta-\beta^*)\geq (\alpha^*-\alpha)$$
 ($T\geq 0$). Therefore, if $\alpha^*\geq \alpha$, then $\beta\geq \beta^*$

 [Neyman-Pearson Lemma] means that the following test form (Likelihood Ratio Test) for two hypotheses is best

a.
$$\frac{P_1(X_1,X_2,...,X_n)}{P_2(X_1,X_2,...,X_n)} > T$$

6. Chernoff-Stein Lemma

6-1. AEP for Relative Entropy

1. Notation

- a. $X_1, X_2, ..., X_n \sim P_1(x)$: I.I.D random variables that depends on $P_1(x)$
- b. $P_2(x)$: Any probability distribution other than $P_1(x)$ on sample space χ

2. Theorem

a.
$$rac{1}{n}\lograc{P_1(X_1,X_2,...,X_n)}{P_2(X_1,X_2,...,X_n)} o D(P_1||P_2)$$
 in probability

6-2. Relative Entropy Typical Sequence

1. Notation

- a. n = Fixed number of occurrences of symbols in a sequence
- b. χ^n = Set of sequence with length n
- c. $(x_1,x_2,...,x_n)\in\chi^n$ = A sequence of symbols in χ
- d. $A_{\epsilon}^{(n)}(P_1||P_2)$ = Relative Entropy Typical Set = A set of relative entropy typical sequences

2. Definition

a. Relative Entropy Typical $\mathrm{Set}(A^{(n)}_\epsilon(P_1||P_2))$ is the set which meets the following condition

i.
$$D(P_1||P_2) - \epsilon \leq rac{1}{n}\lograc{P_1(x_1,x_2,...,x_n)}{P_2(x_1,x_2,...,x_n)} \leq D(P_1||P_2) + \epsilon$$

6-3. Basic Properties of Relative Entropy Typical Sequences

1. Notation

- a. n = Fixed number of occurrences of symbols in a sequence
- b. $(x_1,x_2,...,x_n)\in\chi^n$ = A sequence of symbols in χ
- c. $P_1(x_1,x_2,...,x_n)$ = Probability #1 of a sequence of $x_1,x_2,...,x_n$
- d. $P_2(x_1,x_2,...,x_n)$ = Probability #2 of a sequence of $x_1,x_2,...,x_n$
- e. $A_{\epsilon}^{(n)}(P_1||P_2)$ = A set of relative entropy typical sequences whose length is n

- f. $P_1(A_{\epsilon}^{(n)}(P_1||P_2))$ = Probability of a relative entropy typical set = Sum of elements of relative entropy typical sequences whose length is n
- 2. Properties
 - a. Bounds of P_2 for a relative entropy typical sequence

i.
$$P_1(x_1,x_2,...,x_n)*2^{-n[D(P_1||P_2)+\epsilon]}\leq P_2(x_1,x_2,...,x_n)\leq P_2(x_1,x_2,...,x_n)*2^{-n[D(P_1||P_2)-\epsilon]}$$

b. Convergence of P_1

i.
$$P_1(A_\epsilon^{(n)}(P_1||P_2))>1-\epsilon$$

- ii. for sufficiently large n
- c. Bounds of P_2 for a relative entropy typical set
 - i. Upper Bound

1.
$$P_2(A_{\epsilon}^{(n)}(P_1||P_2)) < 2^{-n[D(P_1||P_2)-\epsilon]}$$

- 2. for sufficiently large n
- ii. Lower Bound

1.
$$P_2(A_{\epsilon}^{(n)}(P_1||P_2)) > (1-\epsilon)2^{-n[D(P_1||P_2)+\epsilon]}$$

- 2. for sufficiently large n
- 3. Lemma 11.8.1: Lower Bound of P_2 distribution for a set of general sequence
 - a. Notation
 - i. χ = A set of symbols
 - ii. χ^n = A set of sequences which consist of n symbols
 - iii. $x_1, x_2, ..., x_n \in \chi^n$ = A sequence whose length is n
 - iv. $B_n \subset \chi^n$ = A subset of sequences which consist of n symbols
 - v. $P_1(B_n)$ = A probability distribution for a subset of sequences which consist of n symbols
 - vi. $P_2(B_n)$ = A probability distribution other than P_1 for a subset of sequences which consts of n symbols such that $D(P_1||P_2)<\infty$
 - b. Theorem

i.
$$P_2(B_n) > (1-2\epsilon)2^{-n(D(P_1||P_2)+\epsilon)}$$

6-4. Chernoff-Stein Lemma

- 1. Notation
 - a. Sequence
 - i. $X_1, X_2, ..., X_n \sim Q$ = I.I.D random variables that depends on Q
 - b. Probability Distributions
 - i. Q = The unknown probability distribution that $X_1,...,X_n$ depend on in real
 - ii. P_1 , P_2 = The known probability distributions that $X_1,...,X_n$ may depend on such that $D(P_1||P_2)<\infty$
 - c. Hypothesis

i.
$$H_1: Q = P_1, H_2: Q = P_2$$

- d. Decision Function
 - i. $g(x_1, x_2, ..., x_n)$

1.
$$g(x_1, x_2, ..., x_n) = 1$$
 (if H_1 is true)

2.
$$g(x_1, x_2, ..., x_n) = 2$$
 (if H_1 is false)

e. Acceptance Region = Inverse Image of g

i.
$$A_n = \{(x_1, x_2, ..., x_n) | g(x_1, x_2, ..., x_n) = 1\} = g^{-1}(1)$$

ii.
$$A_n^c = \{(x_1, x_2, ..., x_n) | g(x_1, x_2, ..., x_n)
eq 1\} = g^{-1}(2)$$

f. Probabilities of Error

i.
$$lpha_n=P_1^n(A_n^c)$$
 = Type 1 Error Probability

ii.
$$eta_n=P_2^n(A_n)$$
 = Type 2 Error Probability

iii.
$$eta_n^\epsilon = \min_{A_n \subseteq \chi^n, lpha_n < \epsilon} eta_n$$
 ($0 < \epsilon < rac{1}{2}$)

2. Theorem

a.
$$\lim_{n o\infty}rac{1}{n}\logeta_n^\epsilon=-D(P_1||P_2)$$

3. Proof

- a. [Part 1]: Exhibit a sequence of sets such that $\lim_{D(P_1||P_2)\to 0}\beta_n=0\equiv\lim_{D(P_1||P_2)\to 0}\log\beta_n=0$ (lineary for $\log\beta_n$, exponentially for β_n)
 - i. Notation
 - 1. A_n = A selected sequence of sets
 - 2. $A_n^\epsilon(P_1||P_2)$ = Relative entropy typical set from P_1 to P_2
 - ii. Proof
 - 1. By assumption

a.
$$A_n=A_\epsilon^{(n)}(P_1||P_2)$$

- 2. By the convergence property of P_1
 - a. Convergence Property

i.
$$P_1(A_{\epsilon}^{(n)}(P_1||P_2)) > 1 - \epsilon$$
 (for n sufficiently large)

- b. Convergence Property for complement
 - i. $P_1(A_{\epsilon}^{(n)}(P_1||P_2)^c)<\epsilon$ (for n sufficiently large)
 - ii. $\alpha_n < \epsilon$
- 3. By the upper bound property of P_2
 - a. $P_2(A_\epsilon^{(n)}(P_1||P_2)) < 2^{-n[D(P_1||P_2)-\epsilon]}$ (for sufficiently large n)
 - b. $\log P_2(A_\epsilon^{(n)}(P_1||P_2))<-n[D(P_1||P_2)-\epsilon]$ (for sufficiently large n)
 - c. $\frac{1}{n}\log P_2(A_\epsilon^{(n)}(P_1||P_2))<-[D(P_1||P_2)-\epsilon]$ (for sufficiently large n)
 - d. $\frac{1}{n}\log P_2(A_\epsilon^{(n)}(P_1||P_2))<-D(P_1||P_2)+\epsilon$ (for sufficiently large n)
 - e. $\lim_{n o\infty}rac{1}{n}\logeta_n=-D(P_1||P_2)$
- 4. Therefore, if $A_n=A^{(n)}_\epsilon(P_1||P_2)$, $\lim_{n o\infty} \frac{1}{n}\log \beta_n=-D(P_1||P_2)$ with $\alpha_n<\epsilon$
- b. [Part 2]: No sequence of sets including A_n can have a lower exponent in type 2 error probability (β_n) than $-D(P_1||P_2)$
 - i. Notation

1.
$$B_n = \{(x_1, ..., x_n) \in \chi^n | P_1(B_n) > 1 - \epsilon \} \ (\epsilon > 0)$$

- ii. Proof
 - 1. By lemma 11.8.1 (lower bound for P_2 distribution for a set of general sequences)

a.
$$P_2(B_n) > (1-2\epsilon)2^{-n[D(P_1||P_2)+\epsilon]}$$
 ($\epsilon < rac{1}{2}$)

b.
$$\log P_2(B_n) > \log(1-2\epsilon) - n[D(P_1||P_2) + \epsilon]$$

c.
$$rac{1}{n}\log P_2(B_n) > rac{1}{n}\log(1-2\epsilon) - \left[D(P_1||P_2) + \epsilon
ight]$$

- 2. Lower Bound for $\lim_{n o \infty} rac{1}{n} \log P_2(B_n)$
 - a. $\lim_{n o\infty}rac{1}{n}\log P_2(B_n)>\lim_{n o\infty}rac{1}{n}\log(1-2\epsilon)-[D(P_1||P_2)+\epsilon]$

b.
$$\lim_{n\to\infty} \frac{1}{n} \log P_2(B_n) > -[D(P_1||P_2)+\epsilon]$$

- c. [Part 2]에 따라 $\frac{1}{n}\log P_2(B_n)$ 에 대하여 $-D(P_1||P_2)$ 보다 더 작은 극한 값은 존재하지 않음.
- d. \log 는 monontic increasing function이므로 따라서 이에 대응하는 eta_n 의 값들도 동일하며 이 eta_n 들이 최솟값이 됨