MOOC Econometrics

Lecture 6.1 on Time Series:

Motivation

Dick van Dijk, Philip Hans Franses, Christiaan Heij

Erasmus University Rotterdam

Spurious regression

Dependent variable: Y (sample size $n=100$)						
	Coef.	t-Stat.	p-value	Coef.	t-Stat.	p-value
Constant	15.99	23.45	0.000	2.91	2.87	0.005
Χ	0.40	5.78	0.000	0.07	1.53	0.129
Y(-1)	-	-	-	0.82	14.01	0.000
R-squared	0.254			0.753		

Introduction

- Time series: variable is observed at regular frequency, yearly, quarterly, monthly, weekly, daily, split-second.
- Past values often have predictive power for future.
- Can get spurious regression results if own past is neglected.
- Data: $x_t = 1 + 0.9x_{t-1} + \varepsilon_{x,t}$ and $y_t = 2 + 0.9y_{t-1} + \varepsilon_{y,t}$ Two series completely uncorrelated: $E(\varepsilon_{x,t}\varepsilon_{y,s}) = 0$ for all t,s.

Lecture 6.1, Slide 2 of 9, Erasmus School of Economics

Test question

Dependent variable: Y (sample size $n=100$)						
	Coef.	t-Stat.	p-value	Coef.	t-Stat.	p-value
Constant	2.88	2.83	0.006	2.69	2.66	0.009
Y(-1)	0.83	14.02	0.000	0.86	17.03	0.000
X	0.15	1.61	0.110	-	-	-
X(-1)	-0.09	-0.99	0.324	-	-	-
R-squared	0.756			0.747		

Test

Is joint effect of X and X(-1) on Y significant? Note: The relevant 5% critical value is 3.1.

Answer test

• Use *F*-test (see Lecture 2): $F = \frac{(R_1^2 - R_0^2)/g}{(1 - R_1^2)/(n - k)}$

• number of restrictions: g = 2

number of observations: n = 100

number of parameters unrestricted model: k = 4

values of R-squared: $R_1^2 = 0.756$ and $R_0^2 = 0.747$

• Substitute these values in formula for *F*-test:

$$F = \frac{(0.756 - 0.747)/2}{(1 - 0.756)/(100 - 4)} = 1.8 < 3.1$$

• Joint effect of X and X(-1) on Y is not significant.

Lecture 6.1, Slide 5 of 9, Erasmus School of Economics

Two airline companies

- After taking logs, seems common trend for series X1 and X2.
- Issues:
 - \rightarrow univariate time series: relate RPK to its own past
 - \rightarrow bivariate time series: relate two RPK series to own and others past

Example: RPK

- RPK: Revenue Passenger Kilometers (in billions)
 yearly totals 1976-2015, trend somewhat exponential
- log(RPK): more linear trend

$$\label{eq:problem} \begin{split} \mathsf{Dlog}(\mathsf{RPK}) &= \mathsf{log}(\mathsf{RPK}) - \mathsf{log}(\mathsf{RPK}) (\text{-}1) \approx \frac{\mathsf{RPK} \text{-} \mathsf{RPK} (\text{-}1)}{\mathsf{RPK} (\text{-}1)} \end{split}$$
 yearly growth rate of RPK

Lecture 6.1, Slide 6 of 9, Erasmus School of Economics

Macroeconomic example

- IP: Monthly index of Industrial Production for USA
- CLI: Monthly Composite Leading Index USA
- Question: Can we predict IP one quarter ahead?
 - → Answers in Lecture 6.5

TRAINING EXERCISE 6.1

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lecture 6.1, Slide 9 of 9, Erasmus School of Economics

Erasmus School of

MOOC Econometrics

Lecture 6.2 on Time Series: Representation

Dick van Dijk, Philip Hans Franses, Christiaan Heij

Erasmus University Rotterdam

Autoregressive model

- Notation for white noise (uncorrelated series) with mean zero: ε_t
- AR(1): $y_t = \alpha + \beta y_{t-1} + \varepsilon_t$
- Stationary if $-1 < \beta < 1$

$$y_{t} = \alpha + \beta y_{t-1} + \varepsilon_{t} = \alpha + \beta (\alpha + \beta y_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t}$$
$$= \alpha (1 + \beta) + \varepsilon_{t} + \beta \varepsilon_{t-1} + \beta^{2} y_{t-2} = \dots$$
$$= \alpha \sum_{j=0}^{t-2} \beta^{j} + \sum_{j=0}^{t-2} \beta^{j} \varepsilon_{t-j} + \beta^{t-1} y_{1}$$

For $t \to \infty$ we get $\beta^{t-1} y_1 \to 0$ and $y_t = \alpha/(1-\beta) + \sum_{j=0}^{\infty} \beta^j \varepsilon_{t-j}$

- AR(2): $y_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \varepsilon_t$
- AR(p): $y_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \ldots + \beta_p y_{t-p} + \varepsilon_t$ Lecture 6.2, Slide 3 of 13, Erasmus School of Economics

Stationarity

- Time series: y_t , where t = 1, ..., n is time index.
- y_t stationary if
 - \rightarrow mean $E(y_t) = \mu$ is fixed (same for all t)
 - \rightarrow autocovariance $E((y_t \mu)(y_{t-k} \mu)) = \gamma_k$ (same for all t)
- Special case: $\gamma_k = 0$ for all k = 1, 2, ...
 - → WHITE NOISE
- Recall Assumption A5 (Lectures 1 & 2): $E(\varepsilon_i \varepsilon_i) = 0$ for all $i \neq j$.
- White noise cannot be predicted from own past (by linear models).
 - ightarrow Purpose: Time series model such that residuals are white noise.

Lecture 6.2, Slide 2 of 13, Erasmus School of Economics

Test question

• AR(1) $y_t = \alpha + \beta y_{t-1} + \varepsilon_t$, ε_t uncorrelated with y_{t-k} for all $k = 1, 2, \ldots$

Test

If $\beta = 1$, then argue why y_t can not be stationary.

Answer:

• If $\alpha \neq 0$, then y_t can not have fixed mean:

$$E(\varepsilon_t) = 0$$
, so $\mu = E(y_t) = \alpha + E(y_{t-1}) + 0 = \alpha + \mu \neq \mu$

• And if $\alpha = 0$ then y_t can not have fixed variance:

$$y_t = y_{t-1} + \varepsilon_t$$
, so $(y_t - \mu) = (y_{t-1} - \mu) + \varepsilon_t$ (uncorrelated)

$$E((y_t - \mu)^2) = E((y_{t-1} - \mu)^2) + E(\varepsilon_t^2) > E((y_{t-1} - \mu)^2)$$

Lecture 6.2, Slide 4 of 13, Erasmus School of Economics

Moving average

- MA(1): $y_t = \alpha + \varepsilon_t + \gamma \varepsilon_{t-1}$
- As ε_t is uncorrelated with its own past and future, y_t is correlated with y_{t-1} but not with y_{t-k} for $k=2,3,\ldots$
- MA(q): $y_t = \alpha + \varepsilon_t + \gamma_1 \varepsilon_{t-1} + \ldots + \gamma_q \varepsilon_{t-q}$
- ARMA(1,1): $y_t = \alpha + \beta y_{t-1} + \varepsilon_t + \gamma \varepsilon_{t-1}$
- ARMA(p, q): $y_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + \varepsilon_t + \gamma_1 \varepsilon_{t-1} + \ldots + \gamma_q \varepsilon_{t-q}$

Lecture 6.2, Slide 5 of 13, Erasmus School of Economics

(Partial) Autocorrelation Function - (P)ACF

• k-th order sample autocorrelation coefficient:

$$ACF_{k} = cor(y_{t}, y_{t-k}) = \frac{\sum_{t=k+1}^{n} (y_{t} - \overline{y})(y_{t-k} - \overline{y})}{\sum_{t=k+1}^{n} (y_{t} - \overline{y})^{2}}$$

- If y_t is MA(q), then ACF_k ≈ 0 for all k > q.
- k-th order sample partial autocorrelation coefficient: PACF $_k$ is the OLS coefficient b_k in regression model $y_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_{k-1} y_{t-k+1} + \beta_k y_{t-k} + \varepsilon_t$
- If y_t is AR(p), then PACF_k ≈ 0 for all k > p.
- 5% critical value: not significant if $-2/\sqrt{n} < (P)ACF < 2/\sqrt{n}$

Two autoregressive equations

• If two autoregressive processes are related, the univariate process becomes ARMA.

Test

Let $\varepsilon_{x,t}$ and $\varepsilon_{y,t}$ be two mutually independent white noise processes, and let $y_t = \gamma x_t + \varepsilon_{y,t}$ and $x_t = \delta x_{t-1} + \varepsilon_{x,t}$. Derive the orders p and q for the ARMA model for y_t (that does not include x_t).

Hint: Eliminate x_t by considering $y_t - \delta y_{t-1}$.

Answer:

•
$$y_t - \delta y_{t-1} = \gamma (x_t - \delta x_{t-1}) + \varepsilon_{y,t} - \delta \varepsilon_{y,t-1}$$

 $y_t = \delta y_{t-1} + \gamma \varepsilon_{x,t} + \varepsilon_{y,t} - \delta \varepsilon_{y,t-1}$

• AR-order p=1, and error $\omega_t = \gamma \varepsilon_{x,t} + \varepsilon_{y,t} - \delta \varepsilon_{y,t-1}$ is MA(1): $E(\omega_t \omega_{t-1}) = -\delta \text{var}(\varepsilon_{y,t-1})$, $E(\omega_t \omega_{t-2}) = E(\omega_t \omega_{t-3}) = \dots = 0$

Lecture 6.2, Slide 6 of 13, Erasmus School of Economics

Example: RPK of airline - time series

- log(RPK) is not stationary
- first difference of log(RPK) (yearly growth rate) is stationary

Example: RPK of airline - ACF and PACF

Lecture 6.2, Slide 9 of 13, Erasmus School of Economics

Examples of deterministic and stochastic trends

- DGP: $y_t = a + bt + cy_{t-1} + \varepsilon_t$
- Stochastic trend: c = 1 (bottom row)

Lecture 6.2, Slide 11 of 13, Erasmus School of Economics

Trends: stochastic and deterministic

- $y_t = y_{t-1} + \varepsilon_t$: random walk, stochastic trend, no clear direction
- $y_t = \alpha + y_{t-1} + \varepsilon_t$ $(\alpha \neq 0)$: stochastic trend
- $y_t = \alpha + \beta t + y_{t-1} + \varepsilon_t$ ($\beta \neq 0$): stochastic (explosive) trend
- $y_t = \alpha + \beta t + \varepsilon_t$ ($\beta \neq 0$): deterministic trend
- $y_t = \alpha + \beta t + \gamma y_{t-1} + \varepsilon_t \ (\beta \neq 0, \ |\gamma| < 1)$: deterministic trend
- Stochastic trend can be removed by taking first difference: Example: $y_t = \alpha + y_{t-1} + \varepsilon_t$, then $\Delta y_t = y_t - y_{t-1} = \alpha + \varepsilon_t$

Lecture 6.2, Slide 10 of 13, Erasmus School of Economics

Cointegration

- Sometimes: x_t and y_t each have stochastic trend, but $y_t cx_t$ is stationary for some value of c.
- Cointegration (common stochastic trend)

Test

Suppose that $z_t = z_{t-1} + \varepsilon_{z,t}$ is unobserved, whereas $x_t = \alpha_1 + \gamma_1 z_t + \varepsilon_{x,t}$ and $y_t = \alpha_2 + \gamma_2 z_t + \varepsilon_{y,t}$ are observed, where $\varepsilon_{z,t}, \varepsilon_{x,t}, \varepsilon_{y,t}$ are white noise processes. Show that x_t and y_t are cointegrated, and find the value of c for which $y_t - cx_t$ is stationary.

Answer:

$$\begin{split} & \bullet \ \, \gamma_1 y_t - \gamma_2 x_t = (\gamma_1 \alpha_2 - \gamma_2 \alpha_1) + (\gamma_1 \varepsilon_{y,t} - \gamma_2 \varepsilon_{x,t}), \\ & \text{where } \varepsilon_t = \gamma_1 \varepsilon_{y,t} - \gamma_2 \varepsilon_{x,t} \text{ is white noise } \rightarrow \text{ stationary} \\ & \gamma_1 y_t - \gamma_2 x_t = \gamma_1 (y_t - \gamma_2 / \gamma_1 x_t), \text{ so } \underbrace{c = \gamma_2 / \gamma_1.}_{\text{Lecture 6.2, Slide 12 of 13, Erasmus School of Economics} \end{split}$$

TRAINING EXERCISE 6.2

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lecture 6.2, Slide 13 of 13, Erasmus School of Economics

Erasmus School of Economics

MOOC Econometrics

Lecture 6.3 on Time Series:

Specification and Estimation

Dick van Dijk, Philip Hans Franses, Christiaan Heij

Erasmus University Rotterdam

Univariate time series model

- Forecast: $\hat{y}_t = F(PY_{t-1})$ where $PY_{t-1} = \{y_{t-1}, y_{t-2}, \dots, y_1\}$.
- Find forecast model F so that $\varepsilon_t = y_t \hat{y}_t$ uncorrelated with PY_{t-1} .
- Popular choice: F linear function of p past values:

$$\widehat{y}_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p}.$$

- $y_t = \hat{y}_t + \varepsilon_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + \varepsilon_t$.
- AR(p) model, because ε_t is white noise.

Forecasting

- Past values of time series \rightarrow Model \rightarrow Forecast future values
- Notation:

 y_t : time series of interest (t = 1, ..., n)

 x_t : time series possible explanatory factor (restrict to one)

 $PY_{t-1} = \{y_{t-1}, y_{t-2}, \dots, y_1\}$: past information on y at time t

$$PX_{t-1} = \{x_{t-1}, x_{t-2}, \dots, x_1\}$$

Univariate time series forecast model: $\hat{y}_t = F(PY_{t-1})$

Forecast model with explanatory factor: $\hat{y}_t = F(PY_{t-1}, PX_{t-1})$

- Aim: Optimal use of past information to get best forecasts.
- Wish: Forecast error $\varepsilon_t = y_t \widehat{y}_t$ uncorrelated with past information.

 Lecture 6.3, Slide 2 of 13, Erasmus School of Economics

Test question

- Forecast: $\hat{y}_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p}$.
- Forecast error $\varepsilon_t = y_t \widehat{y}_t$ uncorrelated with y_s for all s < t.

Test

Show that ε_t is white noise, i.e., ε_t is uncorrelated with ε_s for all $t \neq s$.

Answer:

- Without loss of generality, consider case s < t.
- $\varepsilon_s = y_s \alpha \sum_{i=1}^p \beta_j y_{s-j}$ linear function of y_r , $r \le s < t$.
- ε_t is uncorrelated with y_r for all r < t, so also uncorrelated with ε_s .

Estimation

- Forecast error: $\varepsilon_t = y_t \alpha \sum_{i=1}^p \beta_i y_{t-i}$.
- Minimize sum of squared forecast errors: $\sum_{t=p+1}^{n} \varepsilon_t^2$.
- OLS!
- Estimation of ARMA models: Maximum Likelihood.

Lecture 6.3, Slide 5 of 13, Erasmus School of Economics

Granger causality

- Two variables of interest: y_t and x_t .
- Make ADL model for each variable:

$$y_t = \alpha + \sum_{j=1}^{p} \beta_j y_{t-j} + \sum_{j=1}^{r} \gamma_j x_{t-j} + \varepsilon_t.$$

$$x_t = \alpha^* + \sum_{j=1}^{p^*} \beta_j^* x_{t-j} + \sum_{j=1}^{r^*} \gamma_j^* y_{t-j} + \varepsilon_t^*.$$

- x_t helps to predict y_t if $\gamma_j \neq 0$ for some j y_t helps to predict x_t if $\gamma_j^* \neq 0$ for some j
- x_t is Granger causal for y_t if it helps to predict y_t , whereas y_t does not help to predict x_t .
- Test $H_0: \gamma_j^* = 0$ for all $j = 1, \dots, r^*$ by means of F-test.
- Note: Two ADL equations are estimated by SOLTS, per equation, Economics

Time series model with explanatory factor

- Forecast: $\hat{y}_t = F(PY_{t-1}, PX_{t-1})$.
- Find F such that $\varepsilon_t = y_t \hat{y}_t$ uncorrelated with PY_{t-1} and PX_{t-1} .
- Popular choice: linear *F*:

$$\widehat{y}_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + \gamma_1 x_{t-1} + \ldots + \gamma_r x_{t-r}.$$

- $y_t = \hat{y}_t + \varepsilon_t = \alpha + \sum_{j=1}^p \beta_j y_{t-j} + \sum_{j=1}^r \gamma_j x_{t-j} + \varepsilon_t$. Autoregressive Distributed Lag model: ADL(p, r).
- Estimation: minimize $\sum_{t=m+1}^{n} \varepsilon_t^2$, where $m = \max(p, r) \to \mathsf{OLS}!$

Lecture 6.3, Slide 6 of 13, Erasmus School of Economics

Consequences of non-stationarity

- Regression assumption A2 not satisfied: regressors y_{t-j} are random.
- Standard OLS *t* and *F*-tests hold true in large enough samples provided all variables in equation are <u>stationary</u>.
- So: First test for non-stationarity before any estimation.
- AR(1): $y_t = \alpha + \beta y_{t-1} + \varepsilon_t$, test $H_0: \beta = 1$ against $H_1: -1 < \beta < 1$.
- Rewrite: $\Delta y_t = y_t y_{t-1} = \alpha + (\beta 1)y_{t-1} + \varepsilon_t = \alpha + \rho y_{t-1} + \varepsilon_t$ where $\rho = \beta - 1$
- So: $\Delta y_t = \alpha + \rho y_{t-1} + \varepsilon_t$, test $H_0: \rho = 0$ against $H_1: \rho < 0$.
- Reject H₀ of non-stationarity if $t_{\widehat{\rho}} < -2.9$ (not conventional -1.65!).

Test question

Test

Rewrite the AR(2) model $y_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \varepsilon_t$ as $\Delta y_t = \delta + \rho y_{t-1} + \gamma \Delta y_{t-1} + \varepsilon_t$, and express the parameters (δ, ρ, γ) in terms of $(\alpha, \beta_1, \beta_2)$.

Answer:

•
$$\Delta y_t = y_t - y_{t-1}$$

= $\alpha + (\beta_1 - 1)y_{t-1} + \beta_2 y_{t-2} + \varepsilon_t$
= $\alpha + (\beta_1 + \beta_2 - 1)y_{t-1} - \beta_2 y_{t-1} + \beta_2 y_{t-2} + \varepsilon_t$
= $\alpha + (\beta_1 + \beta_2 - 1)y_{t-1} - \beta_2 (y_{t-1} - y_{t-2}) + \varepsilon_t$
= $\alpha + (\beta_1 + \beta_2 - 1)y_{t-1} - \beta_2 \Delta y_{t-1} + \varepsilon_t$

• So: $\delta = \alpha$, $\rho = \beta_1 + \beta_2 - 1$, and $\gamma = -\beta_2$.

Lecture 6.3, Slide 9 of 13, Erasmus School of Economics

Summary of Specification and Estimation

- AR model for y_t :
 - Step 1: Perform ADF test on y_t .
 - ightarrow Non-stationarity rejected ightarrow model y_t
 - ightarrow Non-stationarity not rejected ightarrow take Δy_t and perform ADF test on Δy_t
 - Step 2: Estimate AR model for stationary series by OLS.
- ADL model for y_t with explanatory factor x_t :
 - Step 1: Perform ADF tests on y_t and x_t .
 - \rightarrow Take difference until non-stationarity is rejected.
 - Step 2: Estimate ADL model for stationary series by OLS.
- One exception: if x_t and y_t are cointegrated.

Augmented Dicky-Fuller test

- Two types of test equations: with or without deterministic trend.
- Test without deterministic trend if data no clear trend direction:

$$\Delta y_t = \alpha + \rho y_{t-1} + \gamma_1 \Delta y_{t-1} + \ldots + \gamma_L \Delta y_{t-L} + \varepsilon_t$$

- Reject H_0 of non-stationarity if $t_{\widehat{\rho}} < -2.9$
- Test with deterministic trend if data clear trend direction:

$$\Delta y_t = \alpha + \beta t + \rho y_{t-1} + \gamma_1 \Delta y_{t-1} + \ldots + \gamma_L \Delta y_{t-L} + \varepsilon_t$$

- Reject H_0 of non-stationarity if $t_{\widehat{\rho}} < -3.5$
- Choice lag L: serial correlation check, or AIC/BIC (see Lecture 3).

 Lecture 6.3, Slide 10 of 13, Erasmus School of Economics

Cointegration and error correction model

- x_t and y_t are cointegrated if both series are non-stationary, but a linear combination (say $y_t cx_t$) is stationary.
- $y_t = cx_t$: long-run equilibrium.
- Engle-Granger test for cointegration:
 - \rightarrow Step 1: OLS in $y_t = \alpha + \beta x_t + \varepsilon_t \rightarrow b$ and residuals e_t
 - ightarrow Step 2: Cointegrated if ADF test on e_t rejects non-stationarity $\Delta e_t = \alpha + \rho e_{t-1} + \gamma_1 \Delta e_{t-1} + \ldots + \gamma_L \Delta e_{t-L} + \omega_t$ Critical value $t_{\widehat{\rho}}$: -3.4 (if extra term βt : -3.8)
- Error Correction Model (ECM): if x_t and y_t cointegrated, estimate $\Delta y_t = \alpha + \beta_1 (y_{t-1} b x_{t-1}) + \beta_2 \Delta y_{t-1} + \beta_3 \Delta x_{t-1} + \varepsilon_t$ (or more lags for Δy_t and Δx_t)

TRAINING EXERCISE 6.3

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lecture 6.3, Slide 13 of 13, Erasmus School of Economics

Erasmus School of Economics

MOOC Econometrics

Lecture 6.4 on Time Series: Evaluation and Illustration

Dick van Dijk, Philip Hans Franses, Christiaan Heij

Erasmus University Rotterdam

Check for cointegration

- If x_t and y_t are both non-stationary: check for cointegration.
- Test method: Engle-Granger two-step method
 - ightarrow OLS in $y_t = lpha + eta x_t + arepsilon_t$ ightarrow b and OLS residuals e_t
 - \rightarrow OLS in $\Delta e_t = \alpha + \beta t + \rho e_{t-1} + \gamma_1 \Delta e_{t-1} + \ldots + \gamma_L \Delta e_{t-L} + \omega_t$ Critical value $t_{\widehat{\rho}}$: -3.4 if $\beta = 0$, -3.8 if $\beta \neq 0$
- If x_t and y_t are cointegrated, estimate ECM:

$$\Delta y_t = \alpha + \beta t + \gamma_0 (y_{t-1} - bx_{t-1}) + \sum_{j=1}^p \gamma_{y,j} \Delta y_{t-j} + \sum_{j=1}^r \gamma_{x,j} \Delta x_{t-j} + \varepsilon_t$$
 (or with $\beta = 0$)

• t- and F-tests as usual.

First evaluation step: Check for stationarity

- Take difference of time series until stationarity.
- Test equation: Augmented Dickey-Fuller

$$\Delta y_t = \alpha + \beta t + \rho y_{t-1} + \gamma_1 \Delta y_{t-1} + \ldots + \gamma_L \Delta y_{t-L} + \varepsilon_t$$
Critical value $t_{\widehat{o}}$: -2.9 if $\beta = 0$, -3.5 if $\beta \neq 0$

- For stationary data:
 - ightarrow OLS in AR: $y_t = \alpha + \sum_{j=1}^p \beta_j y_{t-j} + \varepsilon_t$ with trend: $y_t = \alpha + \gamma t + \sum_{j=1}^p \beta_j y_{t-j} + \varepsilon_t$
 - ightarrow OLS in ADL: $y_t = \alpha + \sum_{j=1}^p \beta_j y_{t-j} + \sum_{j=1}^r \gamma_j x_{t-j} + \varepsilon_t$ with trend: $y_t = \alpha + \delta t + \sum_{j=1}^p \beta_j y_{t-j} + \sum_{j=1}^r \gamma_j x_{t-j} + \varepsilon_t$
- t- and F-tests as usual.

Lecture 6.4, Slide 2 of 12, Erasmus School of Economics

Diagnostic tests

- Choice of lag lengths: BIC (see Lecture 3).
- Stability check: Chow tests (see Lecture 3).
- Normal residuals: Jarque-Bera (see Lecture 3), critical value: 6.0.
- Out-of-sample forecasting: Lecture 6.5.
- Model should in particular capture autocorrelation in time series.
 - \rightarrow Test if model residuals are uncorrelated: white noise.
- Two tests: ACF and Breusch-Godfrey.
- ACF rule-of-thumb: significant if $|ACF| > 2/\sqrt{n}$.

Test question

Test

Let y_t be white noise with variance σ^2 . Show that OLS estimator b in $y_t = \alpha + \beta y_{t-1} + \varepsilon_t$ gives the first-order autocorrelation of y_t . Further show that $(-2/\sqrt{n},\ 2/\sqrt{n})$ is approximate 95% confidence interval for β . Hint: Use results of Lecture 1.

Answer:

- $y_t = \alpha = \beta x_t + \varepsilon_t$ where $x_t = y_{t-1}$, $t = 2, \dots, n$, so $b = \sum_{t=2}^n (y_t \overline{y})(y_{t-1} \overline{y}) / \sum_{t=2}^n (y_{t-1} \overline{y})^2$
- $\operatorname{var}(b) = \sigma^2 / \sum_{t=2}^n (y_{t-1} \overline{y})^2$, where $\sum_{t=2}^n (y_{t-1} \overline{y})^2 = (n-1) \sum_{t=2}^n (y_{t-1} \overline{y})^2 / (n-1) \approx (n-1)\sigma^2$, $\operatorname{var}(b) \approx \sigma^2 / ((n-1)\sigma^2) = 1/(n-1) \approx 1/n$
- If n large then $b \approx 0$ and $SE(b) \approx 1/\sqrt{n}$ $b 2SE(b) < \beta < b 2SE(b) \longrightarrow_{\text{Lecture } 0.4, \text{ Vide } 5 \le f} \beta, \le 2 \text{ Serasmus Vehool of Economics}$

Illustration: Revenue Passenger Kilometers (RPK)

• Graphs suggest: X_1 and X_2 non-stationary, ΔX_1 and ΔX_2 stationary.

3, 1

Test on serial correlation: Breusch-Godfrey

- Step 1: Estimate model and get residuals e_t .
- Step 2: Regress e_t on all variables of model and r lags of e_t .
- Step 3: BG = nR^2 of Step 2, and BG $\approx \chi^2(r)$ if e_t white noise.
- Example: Model $y_t = \alpha + \beta y_{t-1} + \gamma x_{t-1} + \varepsilon_t$
 - \rightarrow Step 1: OLS residuals $e_t = y_t a by_{t-1} cx_{t-1}$.
 - \rightarrow Step 2: OLS in $e_t = \alpha + \beta y_{t-1} + \gamma x_{t-1} + \delta_1 e_{t-1} + \delta_2 e_{t-2} + \omega_t$
 - \rightarrow Step 3: BG = $nR^2 \approx \chi^2(2)$ if e_t white noise.
 - \rightarrow Conclusion: Model not correctly specified if BG > 6.0.
 - \rightarrow Should then adjust model, e.g. more lags of y_t and x_t .

Lecture 6.4, Slide 6 of 12, Erasmus School of Economics

Tests on stationarity

- Let y_t denote log(RPK), either X_{1t} or X_{2t} : trend ADF: $\Delta y_t = \alpha + \beta t + \rho y_{t-1} + \gamma \Delta y_{t-1} + \varepsilon_t$ t-value of $\widehat{\rho}$: t = -2.8 for X_1 , t = -1.2 for X_2
- Let y_t denote either ΔX_{1t} or ΔX_{2t} : no trend ADF: $\Delta y_t = \alpha + \rho y_{t-1} + \gamma \Delta y_{t-1} + \varepsilon_t$ t-value of $\widehat{\rho}$: t = -3.3 for X_1 , t = -3.7 for X_2

Test

What conclusions do you draw from these outcomes?

Answer:

- As t > -3.5, X_1 and X_2 not stationary.
- As t < -2.9, ΔX_1 and ΔX_2 are both stationary.

Granger causality tests

	ADL for ΔX_{1t}			ADL for ΔX_{2t}		
	Coef.	t-Stat.	p-value	Coef.	t-Stat.	p-value
Constant	0.01	1.85	0.07	0.01	2.86	0.01
$\Delta X_{1,t-1}$	0.87	4.96	0.00	0.18	1.29	0.21
$\Delta X_{1,t-2}$	-0.42	-2.02	0.05	0.61	3.68	0.00
$\Delta X_{2,t-1}$	0.35	1.74	0.09	-0.29	-1.81	0.08
$\Delta X_{2,t-2}$	-0.19	-1.27	0.21	-0.13	-1.05	0.30

- Company 1 Granger causal for company 2, not other way round.
 - \rightarrow See *t*-tests (confirmed by *F*-tests on two coefficients jointly).

Lecture 6.4, Slide 9 of 12, Erasmus School of Economics

ECM: Check for serial correlation and normality

- ECM models for log(RPK) of airline companies 1 and 2 (n = 39): $\Delta X_{1t} = 0.00 + 1.02 \Delta X_{1t} + 0.46(X_{2,t-1} 0.92X_{1,t-1}) + e_{1t}$
 - $\Delta X_{2t} = 0.02 0.45(X_{2,t-1} 0.92X_{1,t-1}) + e_{2t}$
- Jarque-Bera test: $JB_1=0.4<6$, $JB_2=1.8<6$. Breusch-Godfrey test (1 lag): $BG_1=0.3<3.9$, $BG_2=1.2<3.9$. ACF: $2/\sqrt{n}=2/\sqrt{39}=0.32$.

Lecture 6.4, Slide 11 of 12, Erasmus School of Economics

Engle-Granger test and ECM

- Step 1: OLS: $X_{2t} = 0.01 + 0.92X_{1t} + e_t$.
- Step 2: ADF: $\Delta e_t = 0.00 0.50e_{t-1} + 0.30\Delta e_{t-1} + \text{res}_t$ \rightarrow *t*-value of coefficient e_{t-1} : t = -3.5 < -3.4 $\rightarrow e_t$ stationary $\rightarrow X_{1t}$ and X_{2t} cointegrated.
- ECM (after removing insignificant coefficients): $\Delta X_{1t} = 0.00 + 1.02 \Delta X_{1t} + 0.46 (X_{2,t-1} \underline{0.92}X_{1,t-1}) + e_{1t}$ $\Delta X_{2t} = 0.02 0.45 (X_{2,t-1} \underline{0.92}X_{1,t-1}) + e_{2t}$
- If $D_{t-1}=X_{2,t-1}-0.92X_{1,t-1}$ is positive, then 0.46>0 \rightarrow X_{1t} \uparrow \rightarrow $D_t=X_{2t}-0.92X_{1t}$ \downarrow -0.45<0 \rightarrow X_{2t} \downarrow \rightarrow $D_t=X_{2t}-0.92X_{1t}$ \downarrow
- Error correction mechanism acts on both variables 10 of 12, Erasmus School of Economics

TRAINING EXERCISE 6.4

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Erasmus School of Economics

MOOC Econometrics

Lecture 6.5 on Time Series:
Application

Dick van Dijk, Philip Hans Franses, Christiaan Heij

Erasmus University Rotterdam

Monthly growth rates: GRIP and GRCLI

- Monthly growth rates: $GRIP = \Delta log(IP)$, $GRCLI = \Delta log(CLI)$
- Estimation sample: 1986 2005 (n = 240)
- Hold-out forecast sample: 2006 2007 (n = 24)

Industrial Production and Composite Leading Index

- IP: Industrial production USA (monthly data 1986 2007, n = 264)
- CLI: Composite Leading Index USA (Conference Board)
- Goal: Forecast IP one quarter (three months) ahead

Lecture 6.5, Slide 2 of 15, Erasmus School of Economics

Tests on stationarity

- Let y_t denote $\log(\text{IP})$ or $\log(\text{CLI})$: trend ADF: $\Delta y_t = \alpha + \beta t + \rho y_{t-1} + \sum_{j=1}^3 \gamma_j \Delta y_{t-j} + \varepsilon_t$ $t_{\widehat{\rho}} = -1.6$ for $\log(\text{IP})$, $t_{\widehat{\rho}} = -1.8$ for $\log(\text{CLI}) \rightarrow \text{not stationary}$
- Let y_t denote GRIP = $\Delta \log(\text{IP})$ or GRCLI = $\Delta \log(\text{CLI})$: no trend ADF: $\Delta y_t = \alpha + \rho y_{t-1} + \sum_{j=1}^3 \gamma_j \Delta y_{t-j} + \varepsilon_t$ $t_{\widehat{\rho}} = -5.2$ for GRIP, $t_{\widehat{\rho}} = -5.6$ for GRCLI \rightarrow stationary
- Engle-Granger test on cointegration:

Step 1: OLS:
$$\log(\mathsf{IP}_t) = 0.08 + 1.01 \log(\mathsf{CLI}_t) + e_t$$

Step 2: ADF: $\Delta e_t = 0.00 + 0.00t - 0.01e_{t-1} + 0.04 \Delta e_{t-1} + \mathrm{res}_t$
 t -value e_{t-1} is $-0.6 > -3.8 \rightarrow \mathrm{not}$ cointegrated

Forecast IP growth rate 3 months ahead

- Forecast $GRIP_t$ with information $\{GRIP_{t-i}, GRCLI_{t-i}, j = 3, 4, \ldots\}$.
- Two models: AR for GRIP, and ADL in terms of GRIP and GRCLI.

Lecture 6.5, Slide 5 of 15, Erasmus School of Economics

AR model for GRIP

- $\mathsf{GRIP}_t = \alpha + \sum_{j=3}^L \beta_j \mathsf{GRIP}_{t-j} + \varepsilon_t$
- L = 12: lags 4-12 individually not significant.
- L = 12 has $R^2 = 0.0988$, and L = 3 gives $R^2 = 0.0519$

Test

Test if model with lags 3-12 can be simplified to one with lag 3 only. Note: The relevant 5% critical value is 1.9.

- *F*-test with n = 240, k = 11, and g = 9.
- $F = \frac{(0.0988 0.0519)/9}{(1 0.0988)/229} = 1.3 < 1.9.$
- Yes, use lag 3 only.

AR model for GRIP

- $2/\sqrt{n} = 2/\sqrt{240} = 0.13 \rightarrow AR(3)$
- $GRIP_{t-1}$ and $GRIP_{t-2}$ may not be used
 - \rightarrow Start with lags 3-12 and reduce (down-testing).

Lecture 6.5, Slide 6 of 15, Erasmus School of Economics

AR model for GRIP

- Both models nearly identical residuals.
- Also nearly identical diagnostics:
 - \rightarrow p-value Breusch-Godfrey (6 lags): $p_{12} = 0.03$, $p_3 = 0.03$
 - \rightarrow p-value Jarque-Bera: $p_{12} = 0.03$, $p_3 = 0.01$

Lecture 6.5, Slide 8 of 15, Erasmus School of Economics

AR model for GRIP

• Four outliers GRIP cause four associated large residuals.

High growth: Feb 1996 (1.7%) and Aug 1998 (2.1%)
Large negative growth: Nov 1990 (-1.2%) and Sep 2005 (-1.8%)

• Our forecast model: $GRIP_t = 0.0018 + 0.2288GRIP_{t-3} + e_t$ ($t_b = 3.6$, $R^2 = 0.052$)

Lecture 6.5, Slide 9 of 15, Erasmus School of Economics

Out-of-sample forecast of monthly growth rate IP

- AR (lag 3) and ADL (lags 3 and 6) estimated from data 1986-2005.
- Forecast monthly GRIP for Jan 2006 Dec 2007 (n = 24) and the annual growth rates of IP for the years 2006 and 2007.

Lecture 6.5, Slide 11 of 15, Erasmus School of Economics

ADL model for GRIP

- Does Composite Leading Index help to predict GRIP 3 months ahead?
- If CLI is 'leading', by how many months?
- ADL: $\mathsf{GRIP}_t = \alpha + \sum_{j=3}^p \beta_j \mathsf{GRIP}_{t-j} + \sum_{j=3}^r \gamma_j \mathsf{GRCLI}_{t-j} + \varepsilon_t$
- Start with p = r = 6 and reduce (down-testing).
- Model: $GRIP_t = 0.001 + 0.193GRIP_{t-3} + 0.219GRCLI_{t-6} + e_t$ $(t_{b3} = 3.1, t_{b6} = 3.2, R^2 = 0.092) \rightarrow CLI$ leads IP by 6 months
- p-values: Breusch-Godfrey (6 lags): 0.36, no serial correlation
 Jarque-Bera 0.04 (same 4 outliers as before)

Lecture 6.5, Slide 10 of 15, Erasmus School of Economics

Test question

Test

Monthly growth rate of y_t is $g_t^m = \Delta \log(y_t)$, and annual growth rate is $g_t^y = \log(y_t) - \log(y_{t-12})$.

Show that the annual growth rate is simply obtained by adding monthly growth rates over the previous 12 months.

Answer:

•
$$g_t^y = \log(y_t) - \log(y_{t-12})$$

= $(\log(y_t) - \log(y_{t-1})) + (\log(y_{t-1}) - \log(y_{t-2})) + \dots$
 $+ \dots + (\log(y_{t-11}) - \log(y_{t-12}))$
= $g_t^m + g_{t-1}^m + \dots + g_{t-11}^m$.

Out-of-sample forecast of monthly growth rate IP

- Monthly growth rate IP much fluctuation, not easy to predict.
- Evaluation criteria: RMSE and MAE (see Lecture 3) SUM: sum of forecast errors $\sum_{t=1}^{24} (y_t \hat{y}_t)$
- Table shows forecast errors for the 24 months in 2006 and 2007.
- CLI improves the monthly IP growth forecast for 3-months ahead.

Model (lags)	AR(3-12)	AR(3)	ADL(AR 3, CLI 6)
RMSE (×100)	0.369	0.367	0.350
MAE $(\times 100)$	0.322	0.315	0.290
SUM (×100)	5.240	5.731	4.518

Lecture 6.5, Slide 13 of 15, Erasmus School of Economics

TRAINING EXERCISE 6.5

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lecture 6.5, Slide 15 of 15, Erasmus School of Economics

Out-of-sample forecast of annual growth rate IP

- Table shows actual anunal IP growth rate (in %) and forecasts.
- CLI improves annual IP growth forecast considerably.
- Such long-term forecasts are important for firms and investors.

	Actual	Forecast		
		AR(3-12)	AR(3)	ADL(AR 3, CLI 6)
2006	1.288	2.859	3.042	2.492
2007	2.037	2.382	2.689	2.025
2006 and 2007	3.325	5.240	5.731	4.518

Lecture 6.5, Slide 14 of 15, Erasmus School of Economics