Hierarchical Clustering

CSCI 347

Adiesha Liyana Ralalage

Hierarchical clustering

- K-means clustering requires us to pre-specify the number of clusters K.
- **DBSCAN** requires approximating appropriate values for ϵ and **minpt.**
- Hierarchical clustering is an alternative approach which does not require that we commit to a particular choice of K and don't require estimates for parameters.
- The goal of hierarchical clustering is to create a sequence of nested partitions, which can be conveniently visualized via a tree or hierarchy of clusters, also called the cluster dendrogram.

Hierarchical clustering

- The clusters in the hierarchy range from the fine-grained to the coarse-grained —the lowest level of the tree (the leaves) consists of each point in its own cluster, whereas the highest level (the root) consists of all points in one cluster.
- At some intermediate level, we may find meaningful clusters.
 - If the user provides the number of clusters k, we can choose the level at which there are k clusters
- In this lecture, we discuss bottom-up or agglomerative clustering. This is the most common type of hierarchical clustering.

Hierarchical clustering

- There are two main approaches in Hierarchical clustering.
 - Agglomerative clustering
 - Divisive clustering
- Agglomerative strategies work in a bottom-up manner.
 - We start with each n points in a separate cluster and repeatedly merge if they are similar until all points are members of the same cluster.
- Divisive strategy works completely opposite, it starts with all points in the same cluster and then recursively split the clusters until all points are in separate clusters.

Hierarchical clustering algorithm

- Higher level idea:
 - Start each point in its own cluster.
 - Identify closest two clusters and merge them.
 - Repeat.
 - Ends when all points are in a single cluster.

Hierarchical clustering algorithm

- Some notations we are going to use in this lecture.
- $D = \{x_1, x_2, x_3, \dots, x_n\}$ is the dataset, where $x_i \in \mathbb{R}^d$
- A clustering $C = \{C_1, C_2, C_3, \dots, C_k\}$ is a partition of D.
 - Each cluster is a set of points $C_i \subseteq D$, such that the clusters are pairwise disjoint $C_i \cap C_j = \emptyset$ for all $i \neq j$ and $\bigcup C_i = D$.
- A clustering $\mathcal{A} = \{A_1, A_2, A_3, ..., A_r\}$ is said to be nested in another clustering $\mathcal{B} = \{B_1, B_2, B_3, ..., B_s\}$ if and only if r > s, and for each cluster $\forall A_i \in \mathcal{A} : \exists B_i \in \mathcal{B} : A_i \subseteq B_i$.
- Hierarchical clustering yields a sequence of n nested partitions $\mathcal{C}_1,\ldots,\mathcal{C}_n$ ranging from the trivial clustering $\mathcal{C}_1=\left\{\{x_1\},\ldots,\{x_n\}\right\}$ where each point is a separate cluster, to the trivial clustering $\mathcal{C}_n=\left\{\{x_1,\ldots,x_n\}\right\}$, where all points are in the same cluster

Hierarchical clustering algorithm

• Cluster dendrogram is basically represents the hierarchy of clusters.

Clustering	Clusters
\mathcal{C}_1	$\{A\}, \{B\}, \{C\}, \{D\}, \{E\}$
\mathcal{C}_2	$\{AB\}, \{C\}, \{D\}, \{E\}$
\mathcal{C}_3	$\{AB\}, \{CD\}, \{E\}$
\mathcal{C}_4	$\{ABCD\}, \{E\}$
\mathcal{C}_5	{ABCDE}

Agglomerative clustering algorithm

AgglomerativeClustering(D, k)

1.
$$C \leftarrow \{C_i = \{x_i\} | x_i \in D\}$$

2.
$$\Delta = \{\delta(x_i, x_j) : x_i, x_j \in D\}$$

3. Repeat:

- 1. Find the closest pair of clusters C_i , $C_i \in \mathcal{C}$
- 2. $C_{i,j} = C_i \cup C_j$
- 3. $C \leftarrow (C \setminus \{C_i, C_j\}) \cup \{C_{ij}\}$
- 4. Update the distance matrix Δ to reflect new clustering.
- 4. Until $|\mathcal{C}| = k$

Agglomerative clustering algorithm

- When it comes to computing distances between two clusters, we can employ several strategies.
 - Single Link
 - Complete Link
 - Group average
 - Mean distance

How to calculate the distance between clusters?

- Single Link:
 - $\delta(C_i, C_j) = \min\{\delta(x, y) \mid x \in C_i, y \in C_j\}$
 - Distance between two clusters is defined as the minimum distance between a point in C_i and a point in C_i
- Complete Link:
 - $\delta(C_i, C_j) = \max\{\delta(x, y) \mid x \in C_i, y \in C_j\}$
 - Distance between two clusters is defined as the maximum distance between a point in C_i and a point in C_j .
- Group average

•
$$\delta(C_i, C_j) = \frac{\sum_{x \in C_i} \sum_{y \in C_j} \delta(x, y)}{n_i \cdot n_j}$$

• Distance is defined as the average pairwise distance between points in \mathcal{C}_i and \mathcal{C}_j

How to calculate the distance between clusters?

- Mean distance:
 - $\delta(C_i, C_j) = \delta(\mu_i, \mu_j)$
 - $\mu_i = \frac{1}{n} \sum_{x \in C_i} x$
 - Distance between two clusters is defined as the distance between the means or centroids of the two clusters
- There are several other strategies as well.

	X_1	X_2
x_1	3	2
x_2	13	5
x_3	4	3
x_4	14	4
x_5	13	3
x_6	12	3
<i>x</i> ₇	11	4
<i>x</i> ₈	12	5
<i>x</i> ₉	14	6
x ₁₀	4	2
x ₁₁	3	3
<i>x</i> ₁₂	4	4
<i>x</i> ₁₃	2	3

Agglomerative clustering algorithm

AgglomerativeClustering(D, k)

1.
$$C \leftarrow \{C_i = \{x_i\} | x_i \in D\}$$

2.
$$\Delta = \{\delta(x_i, x_j) : x_i, x_j \in D\}$$

3. Repeat:

- 1. Find the closest pair of clusters C_i , $C_i \in \mathcal{C}$
- 2. $C_{i,j} = C_i \cup C_j$
- 3. $C \leftarrow (C \setminus \{C_i, C_j\}) \cup \{C_{i,j}\}$
- 4. Update the distance matrix Δ to reflect new clustering.
- 4. Until $|\mathcal{C}| = k$

	<i>X</i> ₁	<i>X</i> ₂
x_1	3	2
x_2	13	5
x_3	4	3
x_4	14	4
x_5	13	3
x_6	12	3
x_7	11	4
<i>x</i> ₈	12	5
<i>x</i> ₉	14	6
x ₁₀	4	2
<i>x</i> ₁₁	3	3
<i>x</i> ₁₂	4	4
<i>x</i> ₁₃	2	3

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	<i>x</i> ₈	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃
x_1	0												
x_2		0											
x_3			0										
x_4				0									
x_5					0								
x_6						0							
<i>x</i> ₇							0						
<i>x</i> ₈								0					
<i>x</i> ₉									0				
x ₁₀										0			
x ₁₁											0		
<i>x</i> ₁₂												0	
<i>x</i> ₁₃													0

	<i>X</i> ₁	<i>X</i> ₂
x_1	3	2
x_2	13	5
x_3	4	3
x_4	14	4
x_5	13	3
x_6	12	3
x_7	11	4
x_8	12	5
<i>x</i> ₉	14	6
<i>x</i> ₁₀	4	2
<i>x</i> ₁₁	3	3
<i>x</i> ₁₂	4	4
<i>x</i> ₁₃	2	3

	<i>X</i> ₁	X_2
x_1	3	2
x_2	13	5
x_3	4	3
x_4	14	4
x_5	13	3
x_6	12	3
x_7	11	4
x_8	12	5
<i>x</i> ₉	14	6
x ₁₀	4	2
<i>x</i> ₁₁	3	3
<i>x</i> ₁₂	4	4
<i>x</i> ₁₃	2	3

$$\delta(x_1, x_2) = \sqrt{(3-13)^2 + (2-5)^2} = \sqrt{109} = 10.44$$

	X_1	X_2
x_1	3	2
x_2	13	5
x_3	4	3
x_4	14	4
x_5	13	3
x_6	12	3
x_7	11	4
x_8	12	5
<i>x</i> ₉	14	6
<i>x</i> ₁₀	4	2
<i>x</i> ₁₁	3	3
<i>x</i> ₁₂	4	4
<i>x</i> ₁₃	2	3

	x_1	x_2	x_3	x_4)	κ_5	x	6		x_7		x_8		<i>x</i> ₉		x_{10})	2	x ₁₁		<i>x</i> ₁₂	<i>x</i> ₁₃
x_1	0																					
x_2	10.44	0					<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	.x ₇	x ₈	x	x_{10}	x	11	<i>x</i> ₁₂	x ₁₃		
x_3			0			x_1	0 10.44	0							H					+		
x_4				0		<i>x</i> ₃			0	0								_				
x_5					0	x_4				U	0											
x_6						<i>x</i> ₆ <i>x</i> ₇	0					0	0									
x_7						<i>x</i> ₈ <i>x</i> ₉			0					0	0							
<i>x</i> ₈						<i>x</i> ₁₀					C					0	0					
x_9						x_{11} x_{12}								0	Ħ		U		0	#		
x_{10}						<i>x</i> ₁₃									Ħ	0				0		
x_{11}																		0				
x_{12}																					0	
x_{13}																				\dagger		0

$$\delta(x_1, x_2) = \sqrt{(3-13)^2 + (2-5)^2} = \sqrt{109} = 10.44$$

	X_1	<i>X</i> ₂
x_1	3	2
x_2	13	5
x_3	4	3
x_4	14	4
x_5	13	3
x_6	12	3
x_7	11	4
x_8	12	5
<i>x</i> ₉	14	6
<i>x</i> ₁₀	4	2
<i>x</i> ₁₁	3	3
<i>x</i> ₁₂	4	4
<i>x</i> ₁₃	2	3

	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃
x_1	0												
x_2	10.44	0					Examp	le for hier	archical cl	ustering	х9		
x_3	1.41		0			i.0 -					•		
x_4				0		i.5 -				x8	x2		
x_5						.5 -	x12			x7	x4		
x_6					Q 4	5 -	•			•	•		
x_7						x13 x1	1 x3			x6	x5		
<i>x</i> ₈						2.5 - x1	x10						
<i>x</i> ₉						2.0 -	4	6	8 10 X1	12	14		
<i>x</i> ₁₀									XI	U			
x ₁₁											0		
<i>x</i> ₁₂												0	
<i>x</i> ₁₃													0

$$\delta(x_1, x_3) = \sqrt{(3-4)^2 + (2-3)^2} = \sqrt{2} = 1.41$$

	X_1	X_2
x_1	3	2
x_2	13	5
x_3	4	3
x_4	14	4
x_5	13	3
<i>x</i> ₆	12	3
<i>x</i> ₇	11	4
x_8	12	5
x_9	14	6
<i>x</i> ₁₀	4	2
<i>x</i> ₁₁	3	3
<i>x</i> ₁₂	4	4
<i>x</i> ₁₃	2	3

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	x_{13}
x_1	0												
x_2	10.44	0											
x_3	1.41	9.21	0										
x_4	11.18	1.41	10.05	0									
x_5	10.05	2	9	1.41	0								
x_6	9.06	2.24	8	2.24	1	0							
x_7	8.25	2.24	7.07	3	2.24	1.41	0						
x_8	9.49	1	8.25	2.23	2.24	2	1.41	0					
x_9	11.70	1.41	10.44	2	3.16	3.61	3.61	2.24	0				
<i>x</i> ₁₀	1	9.49	1	10.20	9.06	8.06	7.28	8.54	10.77	0			
x_{11}	1	10.20	1	11.05	10	9	8.06	7.28	8.54	10.77	0		
<i>x</i> ₁₂	2.24	9.06	1	10	9.06	8.06	7	8.06	10.20	2	1.41	0	
<i>x</i> ₁₃	1.41	11.18	2	12.04	11	10	9.06	10.20	12.37	2.24	1	2.2	0
												4	

Agglomerative clustering algorithm

AgglomerativeClustering(D, k)

1.
$$C \leftarrow \{C_i = \{x_i\} | x_i \in D\}$$

2.
$$\Delta = \{\delta(x_i, x_j) : x_i, x_j \in D\}$$

3. Repeat:

- 1. Find the closest pair of clusters C_i , $C_i \in \mathcal{C}$
- 2. $C_{i,j} = C_i \cup C_j$
- 3. $C \leftarrow (C \setminus \{C_i, C_j\}) \cup \{C_{i,j}\}$
- 4. Update the distance matrix Δ to reflect new clustering.
- 4. Until $|\mathcal{C}| = k$

	X_1	X_2
x_1	3	2
x_2	13	5
x_3	4	3
x_4	14	4
x_5	13	3
x_6	12	3
x_7	11	4
x_8	12	5
<i>x</i> ₉	14	6
<i>x</i> ₁₀	4	2
<i>x</i> ₁₁	3	3
<i>x</i> ₁₂	4	4
<i>x</i> ₁₃	2	3

Example for hierarchical clustering

X_1	X_2
3	2
13	5
4	3
14	4
13	3
12	3
11	4
12	5
14	6
4	2
3	3
4	4
2	3
	3 13 4 14 13 12 11 12 14 4 3 4

Example for hierarchical clustering

	X_1	X_2
x_1	3	2
x_2	13	5
x_3	4	3
x_4	14	4
x_5	13	3
x_6	12	3
x_7	11	4
<i>x</i> ₈	12	5
<i>x</i> ₉	14	6
<i>x</i> ₁₀	4	2
<i>x</i> ₁₁	3	3
<i>x</i> ₁₂	4	4
<i>x</i> ₁₃	2	3

Example for hierarchical clustering

Agglomerative clustering algorithm

AgglomerativeClustering(D, k)

1.
$$C \leftarrow \{C_i = \{x_i\} | x_i \in D\}$$

2.
$$\Delta = \{\delta(x_i, x_j) : x_i, x_j \in D\}$$

- 3. Repeat:
 - 1. Find the closest pair of clusters C_i , $C_i \in \mathcal{C}$

$$2. \quad C_{ij} = C_i \cup C_j$$

3.
$$C \leftarrow (C \setminus \{C_i, C_j\}) \cup \{C_{i,j}\}$$

- 4. Update the distance matrix Δ to reflect new clustering.
- 4. Until $|\mathcal{C}| = k$

$$1. C_{i,j} = C_i \cup C_j$$

1.
$$C_{i,j} = C_i \cup C_j$$

2. $C \leftarrow (C \setminus \{C_i, C_j\}) \cup \{C_{i,j}\}$

Update the distance matrix Δ to reflect new clustering.

We pick the single linkage strategy to compute the distance between two clusters.

	$\{x_1, x_{10}\}$	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	<i>x</i> ₁₁	x_{12}	<i>x</i> ₁₃
$\{x_1, x_{10}\}$	0											
x_2	9.49	0										
x_3	1	9.21	0									
x_4	10.20	1.41	10.05	0								
x_5	9.06	2	9	1.41	0							
x_6	3.61	2.24	8	2.24	1	0						
<i>x</i> ₇	7.28	2.24	7.07	3	2.24	1.41	0					
<i>x</i> ₈	8.54	1	8.25	2.23	2.24	2	1.41	0				
<i>x</i> ₉	10.77	1.41	10.44	2	3.16	3.61	3.61	2.24	0			
<i>x</i> ₁₁	1	10.20	1	11.05	10	9	8.06	9.22	11.40			
<i>x</i> ₁₂	2	9.06	1	10	9.06	8.06	7	8.06	10.20	1.41	0	
<i>x</i> ₁₃	1.41	11.18	2	12.04	11	10	9.06	10.20	12.37	1	2.2	0

Agglomerative clustering algorithm

AgglomerativeClustering(D, k)

1.
$$C \leftarrow \{C_i = \{x_i\} | x_i \in D\}$$

2.
$$\Delta = \{\delta(x_i, x_j) : x_i, x_j \in D\}$$

3. Repeat:

- 1. Find the closest pair of clusters C_i , $C_i \in \mathcal{C}$
- 2. $C_{i,j} = C_i \cup C_j$
- 3. $C \leftarrow (C \setminus \{C_i, C_j\}) \cup \{C_{i,j}\}$
- 4. Update the distance matrix Δ to reflect new clustering.
- 4. Until $|\mathcal{C}| = k$

	$\{x_1, x_{10}\}$	x_2	x_3	x_4	x_5	x_6	x_7	x_8	<i>x</i> ₉	x_{11}	x_{12}	<i>x</i> ₁₃
$\{x_1, x_{10}\}$	0											
x_2	9.49	0										
x_3	1	9.21	0									
x_4	10.20	1.41	10.05	0								
<i>x</i> ₅	9.06	2	9	1.41	0							
<i>x</i> ₆	3.61	2.24	8	2.24	1	0						
<i>x</i> ₇	7.28	2.24	7.07	3	2.24	1.41	0					
<i>x</i> ₈	8.54	1	8.25	2.23	2.24	2	1.41	0				
<i>x</i> ₉	10.77	1.41	10.44	2	3.16	3.61	3.61	2.24	0			
<i>x</i> ₁₁	1	10.20	1	11.05	10	9	8.06	9.22	11.40			
<i>x</i> ₁₂	2	9.06	1	10	9.06	8.06	7	8.06	10.20	1.41	0	
χ ₁₃	2	11.18	2	12.04	11	10	9.06	10.20	12.37	1	2.24	0

	$\{x_1, x_{10}\}$	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉	x ₁₁	x ₁₂	<i>x</i> ₁₃
$\{x_1, x_{10}\}$	0											
x_2	9.49	0										
<i>x</i> ₃	1	9.21	0									
x_4	10.20	1.41	10.05	0								
<i>x</i> ₅	9.06	2	9	1.41	0							
<i>x</i> ₆	3.61	2.24	8	2.24	1	0						
<i>x</i> ₇	7.28	2.24	7.07	3	2.24	1.41	0					
<i>x</i> ₈	8.54	1	8.25	2.23	2.24	2	1.41	0				
<i>x</i> ₉	10.77	1.41	10.44	2	3.16	3.61	3.61	2.24	0			
<i>x</i> ₁₁	1	10.20	1	11.05	10	9	8.06	9.22	11.40			
<i>x</i> ₁₂	2	9.06	1	10	9.06	8.06	7	8.06	10.20	1.41	0	
χ ₁₃	2	11.18	2	12.04	11	10	9.06	10.20	12.37	1	2.24	0

	$\{x_1, x_{10}\}$	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{11}	x_{12}	x_{13}
$\{x_1, x_{10}\}$	0											
x_2	9.49	0										
x_3	1	9.21	0									
x_4	10.20	1.41	10.05	0								
x_5	9.06	2	9	1.41	0							
x_6	3.61	2.24	8	2.24	1	0						
<i>x</i> ₇	7.28	2.24	7.07	3	2.24	1.41	0					
<i>x</i> ₈	8.54	1	8.25	2.23	2.24	2	1.41	0				
<i>x</i> ₉	10.77	1.41	10.44	2	3.16	3.61	3.61	2.24	0			
<i>x</i> ₁₁	1	10.20	1	11.05	10	9	8.06	9.22	11.40			
<i>x</i> ₁₂	2	9.06	1	10	9.06	8.06	7	8.06	10.20	1.41	0	
; ₁₃	2	11.18	2	12.04	11	10	9.06	10.20	12.37	1	2.24	0

	$\{x_1, x_{10}, x_{11}\}$	x_2	x_3	x_4	x_5	x_6	x ₇	<i>x</i> ₈	<i>x</i> ₉	x ₁₂	x ₁₃
$\{x_1, x_{10}, x_{11}\}$	0										
x_2	9.49	0									
x_3	1	9.21	0								
x_4	10.20	1.41	10.05	0							
x_5	9.06	2	9	1.41	0						
<i>x</i> ₆	3.61	2.24	8	2.24	1	0					
x_7	7.28	2.24	7.07	3	2.24	1.41	0				
<i>x</i> ₈	8.54	1	8.25	2.23	2.24	2	1.41	0			
<i>x</i> ₉	10.77	1.41	10.44	2	3.16	3.61	3.61	2.24	0		
<i>x</i> ₁₂	1.41	9.06	1	10	9.06	8.06	7	8.06	10.20	0	
x ₁₃	1	11.18	2	12.04	11	10	9.06	10.20	12.37	2.24	0

Different distance measures will affect results

Linkage	Description
Complete	Maximal inter-cluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B, and record the largest of these similarities
Single	Minimal inter-cluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B and record the smallest of these dissimilarities.
Average	Mean inter-cluster dissimilarity. Compute all pairwise dissimilarities between the observations in cluster A and the observations in cluster B and record the average of these dissimilarities.
Centroid	Dissimilarity between the centroid for cluster A (a mean vector of length p) and the centroid for cluster B. Centroid linkage can result in undesirable inversions.

Computation complexity of agglomerative clustering

- Initially it takes $O(n^2)$ time to create the pairwise distance matrix.
- At each merge step, the distance from the merge cluster to all other clusters needs to be recomputed.
 - Distance between the other clusters remain unchanged.
 - In step t, we need to compute O(n-t) distances, we can do this in O(n)
- Other operation is to find the closest point in the distance matrix.
 - We have $O(n^2)$ distances in the matrix.
 - If we try to naively find the min, it will take $O(n^2)$.
 - We can improve this by having a min heap.
 - Creating the heap takes $O(n^2)$, finding the min distance takes O(1), deleting and updating takes $O(\log n^2) = O(\log n)$
 - Total time for all merge steps takes $O(n^2 \log n)$

