		$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
	$\mathcal{E}_{ec{w}_{uc}}$	$1,0000 \cdot 10^{-1}$	$1,0000 \cdot 10^{-1}$	$1,0000 \cdot 10^{-1}$	$1,0000 \cdot 10^{-1}$
0.1%(4)	$\mathcal{E}_{ec{w}_c}$	$5,3770 \cdot 10^{-5}$	$5,2340 \cdot 10^{-5}$	$5,2201 \cdot 10^{-5}$	$5,2203 \cdot 10^{-5}$
$0.1\tilde{g}(t)$	$\mathcal{E}_{ ho}$	$1,1396 \cdot 10^{-5}$	$7,8597 \cdot 10^{-5}$	$7,8595 \cdot 10^{-5}$	$7,8597 \cdot 10^{-5}$
	\mathcal{E}_q	$2,785 \cdot 4 \cdot 10^{-5}$	$2,7836 \cdot 10^{-4}$	$5,7043 \cdot 10^{-4}$	$5,7045 \cdot 10^{-4}$
	$\mathcal{E}_{ec{w}_{uc}}$	$5,0000 \cdot 10^{-1}$	$5,0000 \cdot 10^{-1}$	$5,0000 \cdot 10^{-1}$	$5,0000 \cdot 10^{-1}$
$0.5\tilde{g}(t)$	$\mathcal{E}_{ec{w}_c}$	$2,1970 \cdot 10^{-4}$	$2{,}1747\cdot10^{-4}$	$2,1735 \cdot 10^{-4}$	$2,1735 \cdot 10^{-4}$
$0.0g(\iota)$	$\mathcal{E}_{ ho}$	$2,4256 \cdot 10^{-5}$	$2,2878 \cdot 10^{-4}$	$2,2878 \cdot 10^{-4}$	$2,2879 \cdot 10^{-4}$
	\mathcal{E}_q	$3,3247 \cdot 10^{-5}$	$3,3227 \cdot 10^{-4}$	$6,8088 \cdot 10^{-4}$	$6,8090 \cdot 10^{-4}$
	$\mathcal{E}_{ec{w}_{uc}}$	$8,5568 \cdot 10^{-2}$	$8,5568 \cdot 10^{-2}$	$8,5568 \cdot 10^{-2}$	$8,5568 \cdot 10^{-2}$
$0.1\tilde{h}(x)$	$\mathcal{E}_{ec{w}_c}$	$5,3700 \cdot 10^{-5}$	$5,2250 \cdot 10^{-5}$	$5,2100 \cdot 10^{-5}$	$5,2103 \cdot 10^{-5}$
0.1n(x)	$\mathcal{E}_{ ho}$	$1,1704 \cdot 10^{-5}$	$7,7973 \cdot 10^{-5}$	$7,7969 \cdot 10^{-5}$	$7,7968 \cdot 10^{-5}$
	\mathcal{E}_q	$2,6426 \cdot 10^{-5}$	$2,6387 \cdot 10^{-4}$	$5,6982 \cdot 10^{-4}$	$5,6984 \cdot 10^{-4}$
	$\mathcal{E}_{ec{w}_{uc}}$	$4,2784 \cdot 10^{-1}$	$4,2784 \cdot 10^{-1}$	$4,2784 \cdot 10^{-1}$	$4,2784 \cdot 10^{-1}$
	$\mathcal{E}_{ec{w}_c}$	$2,1203 \cdot 10^{-4}$	$2,0982 \cdot 10^{-4}$	$2,0967 \cdot 10^{-4}$	$2,0968 \cdot 10^{-4}$
0.5h(x)	$\mathcal{E}_{ ho}$	$2,2565 \cdot 10^{-5}$	$2{,}1275\cdot10^{-4}$	$2,1274 \cdot 10^{-4}$	$\left \ 2{,}1275\cdot 10^{-4} \ \right $
	\mathcal{E}_q	$3,0225 \cdot 10^{-5}$	$3,0219 \cdot 10^{-4}$	$6,1920 \cdot 10^{-4}$	$6,1923 \cdot 10^{-4}$

Table 1: Test Problem 2: Error measures for \vec{w}_{uc} , \vec{w}_{c} , ρ , and q, for four perturbation strategies for \vec{w} , and a range of β .

 $test document \ for \ random \ tests$

		$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
	$\mathcal{E}_{ ho}$	$1,9923 \cdot 10^{-7}$	$1,5993 \cdot 10^{-6}$	$1,6070 \cdot 10^{-6}$	$1,6070 \cdot 10^{-6}$
N = 20, n = 10	$\mid \mathcal{E}_q \mid$	$1,7247 \cdot 10^{-7}$	$2,9581 \cdot 10^{-6}$	$6,1709 \cdot 10^{-6}$	$6,1750 \cdot 10^{-6}$
	$ \mathcal{E}_{ec{w}} $	$1,2444 \cdot 10^{-6}$	$1,2719 \cdot 10^{-6}$	$1,2501 \cdot 10^{-6}$	$1,2595 \cdot 10^{-6}$
	$\mathcal{E}_{ ho}$	$1,2487 \cdot 10^{-7}$	$5,3744 \cdot 10^{-8}$	$2,9268 \cdot 10^{-8}$	$2,9268 \cdot 10^{-8}$
N = 30, n = 20	$ \mathcal{E}_q $	$1,0564 \cdot 10^{-7}$	$1,9502 \cdot 10^{-8}$	$1{,}1431\cdot10^{-7}$	$1{,}1021\cdot10^{-7}$
	$ \mathcal{E}_{ec{w}} $	$1,0349 \cdot 10^{-5}$	$7,8227 \cdot 10^{-8}$	$9,7042 \cdot 10^{-8}$	$3,0613 \cdot 10^{-8}$
	$ \mathcal{E}_{ ho} $	$1,2523 \cdot 10^{-7}$	$5,4211 \cdot 10^{-8}$	$2,9374 \cdot 10^{-8}$	$2,9374 \cdot 10^{-8}$
N = 40, n = 30	$\mid \mathcal{E}_q \mid$	$1,0158 \cdot 10^{-7}$	$2,3498 \cdot 10^{-8}$	$1{,}1346\cdot 10^{-7}$	$1{,}1651\cdot10^{-7}$
	$\mid \mathcal{E}_{ec{w}} \mid$	$9,8239 \cdot 10^{-6}$	$1{,}1950\cdot10^{-7}$	$1,0148 \cdot 10^{-7}$	$1,8463 \cdot 10^{-8}$

Table 2: Test Problem 2: Error measures for state ρ , adjoint q, and control \vec{w} , for a range of N, n, and β .

		Fixed Point	fsolve	Difference
	\mathcal{J}_{uc}	0,0438	0,0438	
	\mathcal{J}_c	0,0011	0,0011	
	Iter (funcEval)	670 (670)	38 (31 959)	
$\kappa = -1$	Time taken (s)	$2,4939 \cdot 10^{2}$	$9,1546 \cdot 10^3$	
	$\mathcal{E}_{ ho_{Diff}}$			$1,1348 \cdot 10^{-3}$
	$\mathcal{E}_{q_{Diff}}$			$7,2742 \cdot 10^{-5}$
	$\mathcal{E}_{ec{w}_{Diff}}$			$7,6725 \cdot 10^{-2}$
	\mathcal{J}_{uc}	0,0434	0,0434	
	\mathcal{J}_c	0,0020	0,0020	
	Iter (funcEval)	654 (654)	38 (34 239)	
$\kappa = 1$	Time taken (s)	$3,3794 \cdot 10^2$	$1,0167 \cdot 10^4$	
	$\mathcal{E}_{ ho_{Diff}}$			$3,0610 \cdot 10^{-4}$
	$\mathcal{E}_{q_{Diff}}$			$4,8701 \cdot 10^{-5}$
	$\mathcal{E}_{ec{w}_{Diff}}$			$8,9056 \cdot 10^{-3}$

Table 3: Comparison of the outputs of the fixed point method, with those obtained using fsolve.

		$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
	\mathcal{J}_{uc}	0,0438	0,0438	0,0438	0,0438
$\kappa = -1$	\mathcal{J}_c	0,0011	$0,\!0267$	$0,\!0435$	0,0438
	Iter	670	650	449	1
	\mathcal{J}_{uc}	0,0417	0,0417	0,0417	0,0417
$\kappa = 0$	\mathcal{J}_c	0,0014	0,0283	$0,\!0415$	0,0417
	Iter	665	656	434	1
	\mathcal{J}_{uc}	0,0434	0,0434	0,0434	0,0434
$\kappa = 1$	\mathcal{J}_c	0,0020	0,0322	0,0432	0,0434
	Iter	654	682	422	1

Table 4: Example 1: Cost \mathcal{J}_{uc} of applying no control (i.e., $\vec{w} = \vec{0}$), optimal control cost \mathcal{J}_c , and number of iterations (PDE solves) *Iter* required, for a range of values of the interaction strength κ and regularization parameter β .

		Fixed Point	fsolve	Difference
	\mathcal{J}_{uc}	0,0438	0,0438	
	\mathcal{J}_c	0,0011	0,0011	
	Iter (funcEval)	670 (670)	38 (31 959)	
$\kappa = -1$	Time taken (s)	$2,4939 \cdot 10^{2}$	$9,1546 \cdot 10^3$	
	$\mathcal{E}_{ ho_{Diff}}$			$1,1348 \cdot 10^{-3}$
	$\mathcal{E}_{q_{Diff}}$			$7,2742 \cdot 10^{-5}$
	$\mathcal{E}_{ec{w}_{Diff}}$			$7,6725 \cdot 10^{-2}$
	\mathcal{J}_{uc}	0,0434	0,0434	
	\mathcal{J}_c	0,0020	0,0020	
	Iter (funcEval)	654 (654)	38 (34 239)	
$\kappa = 1$	Time taken (s)	$3,3794 \cdot 10^{2}$	$1,0167 \cdot 10^4$	
	$\mathcal{E}_{ ho_{Diff}}$			$3,0610 \cdot 10^{-4}$
	$\mathcal{E}_{q_{Diff}}$			$4,8701 \cdot 10^{-5}$
	$\mathcal{E}_{ec{w}_{Diff}}$			$8,9056 \cdot 10^{-3}$

Table 5: Comparison of the outputs of the fixed point method, with those obtained using fsolve.

		$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
	$\mathcal{E}_{ ho}$	$1,5459 \cdot 10^{-8}$	$1,5442 \cdot 10^{-8}$	$1,5442 \cdot 10^{-8}$	$1,5442 \cdot 10^{-8}$
N = 20, n = 10	\mathcal{E}_q	$2,1715 \cdot 10^{-8}$	$2,1714 \cdot 10^{-8}$	$2,1714 \cdot 10^{-8}$	$2,1714 \cdot 10^{-8}$
	$\mathcal{E}_{ec{w}}$	$3,4321 \cdot 10^{-8}$	$2,8836 \cdot 10^{-8}$	$2,6645 \cdot 10^{-9}$	$2,6645 \cdot 10^{-11}$
	$\mathcal{E}_{ ho}$	$1,4448 \cdot 10^{-8}$	$1,4448 \cdot 10^{-8}$	$1,4448 \cdot 10^{-8}$	$1,4448 \cdot 10^{-8}$
N = 30, n = 20	\mathcal{E}_q	$1,6518 \cdot 10^{-8}$	$1,6518 \cdot 10^{-8}$	$1,6518 \cdot 10^{-8}$	$1,6518 \cdot 10^{-8}$
	$\mathcal{E}_{ec{w}}$	$4,7422 \cdot 10^{-8}$	$2,6410 \cdot 10^{-8}$	$1,6519 \cdot 10^{-9}$	$1,6519 \cdot 10^{-11}$
	$\mathcal{E}_{ ho}$	$9,9528 \cdot 10^{-9}$	$1,3036 \cdot 10^{-8}$	$1,3254 \cdot 10^{-8}$	$1,3254 \cdot 10^{-8}$
N = 40, n = 30	\mathcal{E}_q	$1,2911 \cdot 10^{-8}$	$1,4268 \cdot 10^{-8}$	$1,4375 \cdot 10^{-8}$	$1,4375 \cdot 10^{-8}$
	$\mathcal{E}_{ec{w}}$	$3,6419 \cdot 10^{-8}$	$3,4172 \cdot 10^{-8}$	$1,4577 \cdot 10^{-9}$	$1,4577 \cdot 10^{-11}$

Table 6: Test Problem 5: Error measures for state ρ , adjoint q, and control \vec{w} , for a range of N, n, and β .

		$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
	$\mathcal{E}_{ ho}$	$1,9923 \cdot 10^{-7}$	$1,5993 \cdot 10^{-6}$	$1,6070 \cdot 10^{-6}$	$1,6070 \cdot 10^{-6}$
N = 20, n = 10	\mathcal{E}_q	$1,7247 \cdot 10^{-7}$	$2,9581 \cdot 10^{-6}$	$6,1709 \cdot 10^{-6}$	$\left 6,1750 \cdot 10^{-6} \right $
	$\mathcal{E}_{ec{w}}$	$1,2444 \cdot 10^{-6}$	$1,2719 \cdot 10^{-6}$	$1,2501 \cdot 10^{-6}$	$1,2595 \cdot 10^{-6}$
	$\mathcal{E}_{ ho}$	$1,2487 \cdot 10^{-7}$	$5,3744 \cdot 10^{-8}$	$2,9268 \cdot 10^{-8}$	$2,9268 \cdot 10^{-8}$
N = 30, n = 20	\mathcal{E}_q	$1,0564 \cdot 10^{-7}$	$1,9502 \cdot 10^{-8}$	$1,1431 \cdot 10^{-7}$	$\left 1{,}1021\cdot10^{-7} \; \right $
	$\mathcal{E}_{ec{w}}$	$1,0349 \cdot 10^{-5}$	$7,8227 \cdot 10^{-8}$	$9,7042 \cdot 10^{-8}$	$3,0613 \cdot 10^{-8}$
	$\mathcal{E}_{ ho}$	$1,2523 \cdot 10^{-7}$	$5,4211 \cdot 10^{-8}$	$2,9374 \cdot 10^{-8}$	$2,9374 \cdot 10^{-8}$
N = 40, n = 30	\mathcal{E}_q	$1,0158 \cdot 10^{-7}$	$2,3498 \cdot 10^{-8}$	$1,1346 \cdot 10^{-7}$	$ 1,1651 \cdot 10^{-7} $
	$\mathcal{E}_{ec{w}}$	$9,8239 \cdot 10^{-6}$	$1{,}1950\cdot 10^{-7}$	$1,0148 \cdot 10^{-7}$	$1,8463 \cdot 10^{-8}$

Table 7: Test Problem 2: Error measures for state ρ , adjoint q, and control \vec{w} , for a range of N, n, and β .

		Fixed Point	fsolve	Difference
	\mathcal{J}_{uc}	0,0438	0,0438	
	\mathcal{J}_c	0,001 1	0,001 1	
	Iter (funcEval)	670 (670)	38 (31 959)	
$\kappa = -1$	Time taken (s)	$2,4939 \cdot 10^{+2}$	$9,1546 \cdot 10^{+3}$	
	$\mathcal{E}_{ ho_{Diff}}$			$1,1348 \cdot 10^{-3}$
	$\mathcal{E}_{q_{Diff}}$			$7,2742 \cdot 10^{-5}$
	$\mathcal{E}_{ec{w}_{Diff}}$			$7,6725 \cdot 10^{-2}$
	\mathcal{J}_{uc}	0,0434	0,0434	
	\mathcal{J}_c	0,0020	0,0020	
	Iter (funcEval)	654 (654)	38 (34 239)	
$\kappa = 1$	Time taken (s)	$3,3794 \cdot 10^{+2}$	$1,0167 \cdot 10^{+4}$	
	$\mathcal{E}_{ ho_{Diff}}$			$3,0610 \cdot 10^{-4}$
	$\mathcal{E}_{q_{Diff}}$			$4,8701 \cdot 10^{-5}$
	$\mathcal{E}_{ec{w}_{Diff}}$			$8,9056 \cdot 10^{-3}$

Table 8: Comparison of the outputs of the fixed point method, with those obtained using fsolve.

		Fixed Point	fsolve	Difference
	\mathcal{J}_{uc}	0,0438	0,0438	
	\mathcal{J}_c	0,001 1	0,001 1	
	Iter	670	38 (31 959)	
$\kappa = -1$	Time taken (s)	$2,4939 \cdot 10^{+2}$	$9,1546 \cdot 10^{+3}$	
	$\mathcal{E}_{ ho_{Diff}}$			0,0011
	$\mathcal{E}_{q_{Diff}}$			0,0001
	$\mathcal{E}_{ec{w}_{Diff}}$			0,0767
	\mathcal{J}_{uc}	0,0434	0,0434	
	\mathcal{J}_c	0,0020	$0,\!0020$	
	Iter	654	38 (34 239)	
$\kappa = 1$	Time taken (s)	$3,3794 \cdot 10^{+2}$	$1,0167 \cdot 10^{+4}$	
	$\mathcal{E}_{ ho_{Diff}}$			0,0003
	$\mathcal{E}_{q_{Diff}}$			0,0000
	$\mathcal{E}_{ec{w}_{Diff}}$			0,0089

Table 9: Comparison of the outputs of the fixed point method, with those obtained using fsolve.

		Fixed Point	fsolve	Difference
	\mathcal{J}_{uc}	0,0438	0,0438	
	\mathcal{J}_c	0,001 1	0,001 1	
	Iter	670	38 (31 959)	
$\kappa = -1$	Time taken (s)	$2,4939 \cdot 10^{+2}$	$9,1546 \cdot 10^{+3}$	
	$\mathcal{E}_{ ho_{Diff}}$			$1,1348 \cdot 10^{-3}$
	$\mathcal{E}_{q_{Diff}}$			$7,2742 \cdot 10^{-5}$
	$\mathcal{E}_{ec{w}_{Diff}}$			$7,6725 \cdot 10^{-2}$
	\mathcal{J}_{uc}	0,0434	0,0434	
	\mathcal{J}_c	0,0020	0,0020	
	Iter	654	38 (34 239)	
$\kappa = 1$	Time taken (s)	$3,3794 \cdot 10^{+2}$	$1,0167 \cdot 10^{+4}$	
	$\mathcal{E}_{ ho_{Diff}}$			$3,0610 \cdot 10^{-4}$
	$\mathcal{E}_{q_{Diff}}$			$4,8701 \cdot 10^{-5}$
	$\mathcal{E}_{ec{w}_{Diff}}$			$8,9056 \cdot 10^{-3}$

Table 10: Comparison of the outputs of the fixed point method, with those obtained using fsolve.

		$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
	\mathcal{J}_{uc}	0,0438	0,0438	0,0438	0,0438
$\kappa = -1$	\mathcal{J}_c	0,0011	0,0267	0,0435	0,0438
	Iter	670	650	449	1
	\mathcal{J}_{uc}	0,0417	0,0417	0,0417	0,0417
$\kappa = 0$	\mathcal{J}_c	0,0014	0,0283	0,0415	0,0417
	Iter	665	656	434	1
	\mathcal{J}_{uc}	0,0434	0,0434	0,0434	0,0434
$\kappa = 1$	\mathcal{J}_c	0,0020	0,0322	0,0432	0,0434
	Iter	654	682	422	1

Table 11: Example 1: Cost \mathcal{J}_{uc} of applying no control (i.e., $\vec{w} = \vec{0}$), optimal control cost \mathcal{J}_c , and number of iterations (PDE solves) *Iter* required, for a range of values of the interaction strength κ and regularization parameter β .

		$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
	\mathcal{J}_{uc}	0,043 75	0,043 75	0,043 75	0,043 75
$\kappa = -1$	\mathcal{J}_c	0,001 086	0,02668	0,04348	0,043 75
	Iter	670	650	449	1
	\mathcal{J}_{uc}	0,041 67	0,041 67	0,041 67	0,041 67
$\kappa = 0$	\mathcal{J}_c	0,001 447	0,02827	0,041 47	0,041 67
	Iter	665	656	434	1
	\mathcal{J}_{uc}	0,043 36	0,043 36	0,043 36	0,043 36
$\kappa = 1$	\mathcal{J}_c	0,002 03	0,032 23	0,043 21	0,043 37
	Iter	654	682	422	1

Table 12: Example 1: Cost \mathcal{J}_{uc} of applying no control (i.e., $\vec{w} = \vec{0}$), optimal control cost \mathcal{J}_c , and number of iterations (PDE solves) *Iter* required, for a range of values of the interaction strength κ and regularization parameter β .

		$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
	$\mathcal{E}_{ ho}$	$3,8317 \cdot 10^{-8}$	$1,9069 \cdot 10^{-8}$	$1,3796\cdot 10^{-8}$	$1,3553 \cdot 10^{-8}$
N = 20, n = 10	\mathcal{E}_q	$2,5380 \cdot 10^{-8}$	$2,3672 \cdot 10^{-8}$	$4,6464 \cdot 10^{-8}$	$ 4,3990 \cdot 10^{-8} $
	$\mathcal{E}_{ec{w}}$	$4{,}1191\cdot10^{-6}$	$1,3377 \cdot 10^{-7}$	$4,1771 \cdot 10^{-8}$	$3,9213 \cdot 10^{-8}$
	$\mathcal{E}_{ ho}$	$3,9206 \cdot 10^{-8}$	$1,9023 \cdot 10^{-8}$	$1,4019 \cdot 10^{-8}$	$1,3863 \cdot 10^{-8}$
N = 30, n = 20	\mathcal{E}_q	$3,9337 \cdot 10^{-8}$	$1,9436 \cdot 10^{-8}$	$1,3355 \cdot 10^{-8}$	$2,3327 \cdot 10^{-8}$
	$\mathcal{E}_{ec{w}}$	$6,4641 \cdot 10^{-6}$	$1,7823 \cdot 10^{-7}$	$2,025 \cdot 10^{-8}$	$1,9866 \cdot 10^{-8}$
	$\mathcal{E}_{ ho}$	$3,8069 \cdot 10^{-8}$	$1,9085 \cdot 10^{-8}$	$1,4844 \cdot 10^{-8}$	$1,4700 \cdot 10^{-8}$
N = 40, n = 30	\mathcal{E}_q	$3,6398 \cdot 10^{-8}$	$1,9813 \cdot 10^{-8}$	$1,5275 \cdot 10^{-8}$	$2,8452 \cdot 10^{-8}$
	$\mathcal{E}_{ec{w}}$	$5,9510 \cdot 10^{-6}$	$2{,}1531\cdot10^{-7}$	$2,3139 \cdot 10^{-8}$	$2,5820 \cdot 10^{-8}$

Table 13: Test Problem 1: Error measures for state ρ , adjoint q, and control \vec{w} , for a range of N, n, and β .

		Fixed Point	fsolve	Difference
$\kappa = -1$	\mathcal{J}_{FW}	$4,3751 \cdot 10^{-2}$	$4,3751 \cdot 10^{-2}$	
	\mathcal{J}_{Opt}	$1,0856 \cdot 10^{-3}$	$1,0857 \cdot 10^{-3}$	
	Iter	670	38	
	Time taken (s)	$2,4939 \cdot 10^{+2}$	$9,1546 \cdot 10^{+3}$	
	$\mathcal{E}_{ ho_{Diff}}$			$1,1348 \cdot 10^{-3}$
	$\mathcal{E}_{q_{Diff}}$			$7,2742 \cdot 10^{-5}$
	$\mathcal{E}_{ec{w}_{Diff}}$			$7,6725 \cdot 10^{-2}$
$\kappa = 1$	\mathcal{J}_{FW}	$4,3365 \cdot 10^{-2}$	$4,3365 \cdot 10^{-2}$	
	\mathcal{J}_{Opt}	$2,0299 \cdot 10^{-3}$	$2,0300 \cdot 10^{-3}$	
	Iter	654	38	
	Time taken (s)	$3,3794 \cdot 10^{+2}$	$1,0167 \cdot 10^{+4}$	
	$\mathcal{E}_{ ho_{Diff}}$			$3,0610 \cdot 10^{-4}$
	$\mathcal{E}_{q_{Diff}}$			$ 4,8701 \cdot 10^{-5} $
	$\mathcal{E}_{ec{w}_{Diff}}$			$8,9056 \cdot 10^{-3}$

Table 14: Comparison of the outputs of the fixed point method, with those obtained using fsolve.

		$\beta = 10^{-3}$	$\beta = 10^{-1}$	$\beta = 10^1$	$\beta = 10^3$
$0.1 ilde{g}(t)$	$\mathcal{E}_{ec{w}_{uc}}$	$1,0000 \cdot 10^{-1}$	$1,0000 \cdot 10^{-1}$	$1,0000 \cdot 10^{-1}$	$1,0000 \cdot 10^{-1}$
	$\mathcal{E}_{ec{w}_c}$	$5,3770 \cdot 10^{-5}$	$5,2340 \cdot 10^{-5}$	$5,2201 \cdot 10^{-5}$	$5,2203 \cdot 10^{-5}$
	$\mathcal{E}_{ ho}$	$1,1396 \cdot 10^{-5}$	$7,8597 \cdot 10^{-5}$	$7,8595 \cdot 10^{-5}$	$7,8597 \cdot 10^{-5}$
	\mathcal{E}_q	$2,7854 \cdot 10^{-5}$	$2,7836 \cdot 10^{-4}$	$5,7043 \cdot 10^{-4}$	$5,7045 \cdot 10^{-4}$
$0.5 \tilde{g}(t)$	$\mathcal{E}_{ec{w}_{uc}}$	$5,0000 \cdot 10^{-1}$	$5,0000 \cdot 10^{-1}$	$5,0000 \cdot 10^{-1}$	$5,0000 \cdot 10^{-1}$
	$\mathcal{E}_{ec{w}_c}$	$2,1970 \cdot 10^{-4}$	$2,1747 \cdot 10^{-4}$	$2,1735 \cdot 10^{-4}$	$\left \ 2{,}1735\cdot 10^{-4} \ \right $
	$\mathcal{E}_{ ho}$	$2,4256 \cdot 10^{-5}$	$2,2878 \cdot 10^{-4}$	$2,2878 \cdot 10^{-4}$	$2,2879 \cdot 10^{-4}$
	\mathcal{E}_q	$3,3247 \cdot 10^{-5}$	$3,3227 \cdot 10^{-4}$	$6,8088 \cdot 10^{-4}$	$6,8090 \cdot 10^{-4}$
$0.1\tilde{h}(x)$	$\mathcal{E}_{ec{w}_{uc}}$	$8,5568 \cdot 10^{-2}$	$8,5568 \cdot 10^{-2}$	$8,5568 \cdot 10^{-2}$	$8,5568 \cdot 10^{-2}$
	$\mathcal{E}_{ec{w}_c}$	$5,3700 \cdot 10^{-5}$	$5,2250 \cdot 10^{-5}$	$5,2100 \cdot 10^{-5}$	$5,2103 \cdot 10^{-5}$
	$\mathcal{E}_{ ho}$	$1,1704 \cdot 10^{-5}$	$7,7973 \cdot 10^{-5}$	$7,7969 \cdot 10^{-5}$	$7,7968 \cdot 10^{-5}$
	\mathcal{E}_q	$2,6426 \cdot 10^{-5}$	$2,6387 \cdot 10^{-4}$	$5,6982 \cdot 10^{-4}$	$5,6984 \cdot 10^{-4}$
$0.5\tilde{h}(x)$	$\mathcal{E}_{ec{w}_{uc}}$	$4,2784 \cdot 10^{-1}$	$4,2784 \cdot 10^{-1}$	$4,2784 \cdot 10^{-1}$	$4,2784 \cdot 10^{-1}$
	$\mathcal{E}_{ec{w}_c}$	$2,1203 \cdot 10^{-4}$	$2,0982 \cdot 10^{-4}$	$2,0967 \cdot 10^{-4}$	$2,0968 \cdot 10^{-4}$
	$\mathcal{E}_{ ho}$	$2,2565 \cdot 10^{-5}$	$2,1275 \cdot 10^{-4}$	$2,1274 \cdot 10^{-4}$	$\left \ 2{,}1275\cdot 10^{-4} \ \right $
	\mathcal{E}_q	$3,0225 \cdot 10^{-5}$	$3,0219 \cdot 10^{-4}$	$6,1920 \cdot 10^{-4}$	$6,1923 \cdot 10^{-4}$

Table 15: Test Problem 2: Error measures for \vec{w}_{uc} , \vec{w}_{c} , ρ , and q, for four perturbation strategies for \vec{w} , and a range of β .