chenna kesava reddy

Assoc Software Developer

chenna.kesavareddy@empower.com | +91 9949847084 | DOB - 21 mar, 2002

SKILLS

PROGRAMMING

Languages

• Advance: Java, Python

• Intermediate: C.

• Novice: JavaScript.

Tools

• GIT • Linux • Windows

Frameworks

- Scikit-Learn
- Pandas
- Numpy
- Matplotlib
- Collections

Technologies

- HTML CSS
- SQL React Js.

OTHERS

- Exploring new technologies
- doing final year projects

EDUCATION

B. Tech, CSE

Presidency University 2019-23 | Bangalore CGPA: 8.4

Intermediate, MPC

Narayana Junior College 2017-19 | Kurnool Points :9.94

SSC

Sri Sarada High School 2016-17 | Mydukur points :9.3

LANGUAGES KNOWN

• English • Hindi • Telugu • kannada

LINKS

Github:// Mynameischenna LinkedIn:// chenna GeekForGeeks:// 20PA1A0412 LeetCode:// chenna 951 Hackerrank:// chenna

EXPERIENCE

Empower

full time|WFH | Aug 2023 - Present | bangalore, India.

Assoc Software Developer

During my tenure at Empower Company in the US, I specialized in Java, Spring Boot, REST APIs, SQL databases, React, HTML, and CSS. I led the modernization of a key application, upgrading it with contemporary technologies. Leveraging Java and Spring Boot, I ensured robust backend systems for scalability and security. Utilizing REST APIs, Eager to bring my expertise and passion for innovation to a new opportunity.

PROJECT(S)

coronary heart disease Prediction

Python, scikit-learn, pandas

- Project Overview: Developed a customized risk prediction model for coronary heart disease (CHD) utilizing machine learning techniques and case similarity analysis.
- Key Responsibilities:
 - Data Preparation: Preprocessed patient datasets, handled missing values, and encoded categorical variables.
 - Exploratory Data Analysis (EDA): Conducted EDA to understand the distribution and relationships of patient characteristics with CHD.
 - Feature Engineering: Enhanced the dataset by creating and modifying features for improved model accuracy.
 - Model Training and Evaluation: Trained and evaluated multiple machine learning models, including XGBoost, Logistic Regression, Random Forest, and SVM, identifying XGBoost as the most effective model.
 - Clustering Analysis: Applied K-means clustering to categorize patients based on risk factors, optimizing the number of clusters using the Elbow Method.
 - Similarity-Based Recommendations: Implemented a recommendation system using case similarity, providing personalized CHD risk estimates.
 - User Interface Development: Created an interactive Gradio interface for easy input collection and risk prediction for medical practitioners.
- Results:
 - Achieved high model performance with the Random Forest model: 99% accuracy, 99% precision, 98% recall, and 99% F1-score.
 - Identified top three significant risk factors: age, tobacco usage, and LDL levels.
 - Successfully grouped patients into clusters, enhancing the understanding of different risk profiles.
- Technologies Used: Python, scikit-learn, pandas, K-means clustering, Random Forest, Gradio.

CFRTIFICATIONS

Java: By Udemy
Python: By Hackerrank
React Js: By Udemy
MySQL: By Linkdin

C languagesy Presidency University JavaScriptsy Presidency University