Dokumentacja techniczna projektu Rękawica Sensoryczna

Projekt realizowany w ramach kursu Roboty Mobilne 1 na Politechnice Wrocławskiej

Temat Projektu: Rękawica sensoryczna

Autorzy: Krzysztof Dąbek 218549, Dymitr Choroszczak 218627,

Anna Postawka 218556

Kierunek: Automatyka i Robotyka Specjalność: Robotyka (ARR)

Prowadzący: dr inż. Andrzej Wołczowski

Kurs: Roboty Mobilne 1

Termin zajęć: pn TN 11:15, śr TN 14:30

Spis treści

1	Głó	wne założenia projektowe:	2				
2	Opis czujników						
	$2.\overline{1}$	Dane czujnika nacisku	2				
	2.2	Dane czujnika ugięcia					
	2.3	Dane z akcelerometru					
3	Elementy składowe projektu 4						
	3.1	Połączenie z komputerem	4				
	3.2	Odczyt danych z czujników	5				
		3.2.1 Tensometry					
			5				
			5				
	3.3	Wizualizacja dłoni	5				
	3.4	Pomiar parametrów w czasie rzeczywistym					
4	Badania z wykorzystaniem rękawicy 6						
	4.1	Przykładowe gesty	6				
5	Podsumowanie 9						
	5.1	Problemy podczas konstrukcji	9				
	5.2	Zmiany w założeniach projektowych					
	5.3		10				

1 Główne założenia projektowe:

- Stworzenie rękawicy z czujnikami ugięcia w trzech palcach oraz czujnikami nacisku na opuszkach
- Zamontowanie na opuszkach LEDów (np. RGB) wizualizujących odczyty z czujników nacisku
- Wykorzystanie płytki STM32F3Discovery do przetwarzania danych
- Użycie akcelerometru zawartego na płytce do określenia położenia dłoni względem pionu (wektora przyśpieszenia grawitacyjnego)
- Bezprzewodowe przesyłanie danych do komputera za pomocą modułu Bluetooth HC-06
- Przewodowe przesyłanie danych do komputera za pomocą interfejsu USB
- Zewnętrzne zasilanie z akumulatora
- Uproszczony model dłoni w wizualizacji 3D

2 Opis czujników

- Na opuszkach palców zamontowano czujniki nacisku FSR-400 Short od Interlink Electronics. Spadek rezystancji przy przyłożonej sile pozwala zmierzyć siłę nacisku [rys. 1].
- Do wykrycia zgięcia stawów międzypaliczkowych i śródręczno-paliczkowych oraz stawów kciuka zastosowano czujniki ugięcia Flex Sensory 2.2" firmy Spectra Symbol. Zgięcie tych sensorów powoduje wzrost rezystancji.
- Akcelerometr LSM303DLHC, znajdujący się na płytce Discovery został użyty do określenia orientacji rękawicy względem wektora grawitacji.

2.1 Dane czujnika nacisku

- Średnica powierzchni czynnej: 5 mm
- Zakres pomiarowy nacisku: 0.2 20 N

• Zakres rezystancji: 150 Ohm - 10 MOhm

• Rezystor pomiarowy do dzielnika: 3 kOhm

2.2 Dane czujnika ugięcia

• Długość powierzchni czynnej: 55.37 mm

• Zakres rezystancji: 25 kOhm - 125 kOhm

• Rezystor pomiarowy do dzielnika: 62 kOhm

2.3 Dane z akcelerometru

- Protokół komunikacyjny: I^2C

• Ilość osi: 3

• Maksymalne przeciążenie: 16g

• Dokładność pomiaru: 16 bitów

Zakres	0,2-20 N
Masa	0,15 g
Wymiary zewnętrzne	$7.6 \times 7.6 \times 0.4 \text{ mm}$

Tabela 1: Czujnik siły nacisku FSR-400

Min. wartość rezystancji	25 kΩ
Zakres rezystancji podczas zginania	$45-125 \text{ k}\Omega$
Dł. całkowita	73,66 mm
Dł. użyteczna czujnika	55,37 mm
Szerokość	6,35 mm

Tabela 2: Czujnik ugięcia Flex Sensor 2.2"

Rysunek 1: Układ pomiarowy oraz wykresy zależności napięć i rezystancji od przyłożonej siły dla czujnika FSR-400

3 Elementy składowe projektu

Rękawica sensoryczna zbiera dane z trzech palców prawej ręki. Czujniki ugięcia przyszyto na zewnętrznej stronie dłoni [rys. 2a]. Przetestowano kilka ustawień czujników i takie zdaje się najlepiej spełniać założenia, czyli poprawnie odczytywać zgięcia konkretnych stawów palców, nie ograniczając przy tym ruchów dłoni. Czujniki nacisku przymocowano na opuszkach [rys. 2b]. Zostały one przyklejone klejem błyskawicznym. Przymocowano również na wierzchu dłoni 2 listwy żeńskie do wpięcia płytki Discovery F3, aby móc pobierać dane z akcelerometru i wykrywać obrót ręki [rys. 2a].

3.1 Połączenie z komputerem

Płytka STM32F3DISCOVERY potrafi połączyć się z komputerem za pomocą interfejsu USB i Bluetooth.

Napięcie pracy	2,2–3,6 V
Interfejs komunikacyjny	I2C
Rozdzielczość	16 bitów
Regulowany zakres akcelerometru	$\pm 2g, \pm 4g, \pm 8g, \pm 16g$
Zakres magnetometru	od $\pm 1,3$ do $\pm 8,1$ gauss
Wymiary płytki	37 x 15 mm

Tabela 3: LSM303DLHC – 3-osiowy akcelerometr i magnetometr I2C

3.2 Odczyt danych z czujników

3.2.1 Tensometry

Dane z czujników są odczytywane za pomocą przetwornika ADC oraz przy użyciu DMA (Direct Memory Access), co pozwala na bezpośrednie przekierowanie danych z czujników do odpowiednich zmiennych, bez wywoływania dodatkowej funkcji zwracającej wynik pomiaru.

3.2.2 Czujniki nacisku

Obsługa taka sama jak w: Tensometry.

3.2.3 Akcelerometr

Z akcelerometrem komunikacja następuje po interfejsie I2C.

3.3 Wizualizacja dłoni

Aplikacja pozwala na wizualizację modelu ręki na podstawie odczytów z czujników. Powstała we frameworku Qt. Aktualny interfejs graficzny wyświetla uproszczony model dłoni [rys. 4].

3.4 Pomiar parametrów w czasie rzeczywistym

Projekt umożliwia podglądanie następujących parametrów w programie STM-Studio:

- Przetwarzanie na wolty
- Przetwarzanie na m/s^2
- Przetwarzanie na nastawy przegubów
- Przetwarzanie na kąty RPY

(a) Zewnętrzna część dłoni

(b) Wewnętrzna część dłoni

Rysunek 2: Gotowa rękawica

Powyższe wartości są filtrowane na bieżąco przez filtr
 dolnoprzepustowy ze zmiennym parametrem $\beta.$

$$y[n] - \beta y[n-1] = (1-\beta)x[n]$$
 (1)

4 Badania z wykorzystaniem rękawicy

Rękawica sensoryczna pozwala na zbieranie pomiarów i próbę jak najdokładniejszego wykrycia konkretnych gestów ludzkiej dłoni na podstawie odczytów z czujników. Takie badania mogą być wykorzystywane m.in. przy rozwoju protez biomedycznych.

4.1 Przykładowe gesty

Pięść rys. 6

Rysunek 3: Zdjęcie rękawicy w fazie montażu (aktualny rozkład czujników jest zmieniony)

Rysunek 4: Aktualny interfejs graficzny

Otwarta dłoń rys. 7

Wskazywanie rys. 8

Zetknięcie palców rys. 9

(a) Testowanie czujników nacisku

(b) Testowanie czujników ugięcia

Rysunek 5: Testy

- (a) Zdjęcie przykładowego gestu
- (b) Wizualizacja w 3D

Rysunek 6: Gest zamkniętej pięści

- (a) Zdjęcie przykładowego gestu
- (b) Wizualizacja w 3D

Rysunek 7: Gest otwartej dłoni

- (a) Zdjęcie przykładowego gestu
- (b) Wizualizacja w 3D

Rysunek 8: Gest pokazywania palcem wskazującym

- (a) Zdjęcie przykładowego gestu
- (b) Wizualizacja w 3D

Rysunek 9: Gest zetknięcia palca wskazującego i kciuka

5 Podsumowanie

5.1 Problemy podczas konstrukcji

- Mała powierzchnia czujników nacisku przy niektórych chwytach człowiek wykorzystuje różne części palców, np. powierzchnię boczną, a czujniki umieszczone są tylko na opuszkach
- Problem z umieszczeniem czujnika rotacji kciuka jest to złożony ruch, trudno wychwycić go jednym wąskim czujnikiem
- Różnice w dłoniach konstruktorów rękawica musi pasować do konkretnej dłoni, żeby czujniki były na odpowiednich miejscach i poprawnie zbierały pomiary
- Mała dokładność czujników, przesuwanie się ich na rękawicy
- Niedoskonałość pomiarów kątów zgięcia palców przy danej konstrukcji i typie czujników nie jest możliwe uzyskanie tak wysokiej dokładności, jak zakładano
- Trudności w uzyskaniu poprawnego działania aproksymacji kątów z akcelerometru
- *Kłopoty z interpolacją / aproksymacją –* jest to trudne do uzyskania w C
- Komplikacje przy zamówieniu elementów elektronicznych na katedrę brak kontaktu z laborantem sprawił, że przez pewien czas nie można było uzyskać informacji, czy zamówienie zostało złożone, co poskutkowało opóźnieniem projektu

5.2 Zmiany w założeniach projektowych

- Bezprzewodowe przesyłanie danych do komputera za pomocą modułu Bluetooth zrezygnowano, bo okazało się za wolne (BaudRate 9600 nie wystarcza)
- Zamontowanie na opuszkach LEDów wizualizujących odczyty z czujników nacisku – zabrakło miejsca, bo czujniki trzeba było przesunąć w stosunku do wstępnego schematu, a poza tym każda dioda wymagałaby 4 kabli, co utrudniałoby ruchy dłoni

5.3 Pomysły na rozwinięcie projektu

- $\bullet~{\rm RPY}$ z wielu akcelerometrów
- Dokładniejsze pomiary i metoda interpolacji
- Wykrywanie większej ilości gestów
- Sterowanie robotem za pomocą gestów
- Dodatkowe czujniki nacisku