

Gradient Boosted Utility Models

Nicolas Salvadé, Tim Hillel

Behaviour and Infrastructure Group, UCL

15th Workshop on Discrete Choice Models

02.06.2023

Gradient Boosted Utility Models

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Future work

1. Introduction

Interpretable ML model

 Attempts to make machine learning models interpretable, but with little success.

 We propose a machine learning model that is fully interpretable based on gradient boosting decision trees (GBDT), and inspired by random utility models (RUM)

• We are able to derive non-linear utility functions

Introductory example – RUM

3 alternatives

Driving

 TT_d $Cost_d$

PT

 TT_{PT} $Cost_{PT}$

Walking

 TT_w

RUM (MNL)

$$V_{driving} = ASC_d + \beta_d TT_d + \beta_d Cost_d$$

$$V_{PT} = ASC_{PT} + \beta_{PT} \underline{T} \underline{T}_{PT} + \beta_{PT} \underline{Cost}_{PT}$$

$$V_{walking} = ASC_w + \beta_w TT_w$$

5

Introductory example – GBDT

3 alternatives

Driving PT Wal TT_d $Cost_d$ TT_{PT} $Cost_{PT}$ T

Introductory example – 1st modification

3 alternatives

1. Choosing which features compose an ensemble

Introductory example – 2nd modification

3 alternatives

Walking TT_w

- 1. Choosing which features compose an ensemble
- 2. Restricting feature interaction

Introductory example – 3rd modification

GBDT – 3rd modification

- 1. Choosing which features compose an ensemble
- 2. Restricting feature interaction
- 3. Monotonic constraint

Introductory example – Utility function

RUMBooster

Motivations

- GBDT have great predictive power
 LightGBM and XGBoost are state-of-the art libraries and powerful tools
- Lack behaviour interpretability and exhibit poor extrapolation properties (Martin-Baos et al. 2023)
- We propose gradient boosted utility models (RUMBooster) were we aim to combine the predictive power of GBDT with RUM interpretability

RUMBoost

- 1. Utility specification: only chosen features can contribute to an alternative utility function
- 2. Feature interaction constraint: only specified features can interact with each other
- 3. Monotonic constraint: left and right leaf values can only be increasing or decreasing for a feature

RUMBooster

Interpretable model where non-linear utilities can be derived

2. Methodology

RUM to RUMBoost

- We can estimate any MNL model with gradient boosting
- We follow the **same** utility specification
- Bounds on Beta parameters are interpreted as monotonic constraints
- Since there is no feature interaction in RUMBoost, very few risk of overfitting

15

3. Results

LIVE DEMO

MNL model and dataset

• Used MNL model from Martin-Baos et al. (2023)

The model has **76 parameters**, and its performance is compared with several ML models

• The model is trained on the **LPMC** dataset (Hillel et al. 2018)

4 alternatives: walking, cycling, PT and driving, and over 80000 observations

Model specification

- Ensembles of RUMBooster are based on the LightGBM library
- No interaction between features
- Monotonic constraints:

Table 1: Monotonic constraints on features						
Negative	Positive					
Travel time, cost	Car ownership*, driving license*					

Negative cross-entropy

Table 2: Benchmark of classification on LTDS dataset (negative cross-entropy)

			(0		107		
	MNL	NN	DNN	RF	SVM	XGBoost	RUMBooster
Martin-Baos et al. (2023)	0.7164	0.6728	0.6702	0.6900	0.6755	0.6568	0.6791

Impact of travel time

Impact of age

4. Further work

Further work

 Intersecting continuous and categorical variables as latent variables to keep nonlinear utility interpretability but increase predictive power

Generalise RUMBooster to MEV models

Apply the methodology on different datasets

Thank you!

References

- Bierlaire, M. 2023. A short introduction to Biogeme. Technical report TRANSP-OR 230620. Transport and Mobility Laboratory, ENAC, EPFL.
- Cano, J.-R., Gutiérrez, P.A., Krawczyk, B., Woźniak, M., García, S., 2019. Monotonic classification: An overview on algorithms, performance measures and data sets. Neurocomputing 341, 168–182. https://doi.org/10.1016/j.neucom.2019.02.024
- Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 785–794. https://doi.org/10.1145/2939672.2939785
- Friedman, J., Hastie, T., Tibshirani, R., 2001. ADDITIVE LOGISTIC REGRESSION: A STATISTICAL VIEW OF BOOSTING.
- Friedman, J.H., 2001. Greedy function approximation: A gradient boosting machine. Ann. Statist. 29. https://doi.org/10.1214/aos/1013203451
- Hillel, T., Bierlaire, M., Elshafie, M., Jin, Y., 2019. Weak teachers: Assisted specification of discrete choice models using ensemble learning.
- Hillel, T., Bierlaire, M., Elshafie, M.Z.E.B., Jin, Y., 2021. A systematic review of machine learning classification methodologies for modelling passenger mode choice. Journal of Choice Modelling 38, 100221. https://doi.org/10.1016/j.jocm.2020.100221
- Hillel, T., Elshafie, M.Z.E.B., Jin, Y., 2018. Recreating passenger mode choice-sets for transport simulation: A case study of London, UK. Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction 171, 29–42. https://doi.org/10.1680/jsmic.17.00018
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y., 2017. LightGBM: A Highly Efficient Gradient Boosting Decision Tree.
- Martín-Baos, J.Á., López-Gómez, J.A., Rodriguez-Benitez, L., Hillel, T., García-Ródenas, R., 2023. A prediction and behavioural analysis of machine learning methods for modelling travel mode choice.
- Shi, Y., Li, J., Li, Z., 2019. Gradient Boosting With Piece-Wise Linear Regression Trees.