1. Assign symbols to variables, then write a general linear model to analyze the following data (Daniel 1995 Ex 8.17 p337)

17. The following table shows the emotional maturity scores of 27 young adult males cross-classified by age and the extent to which the use marijuana.

Age (Factor A)		ana Use (Fac Occasional	
15-19	25	18	17
	28	23	24
	22	19	19
20-24	28	16	18
	32	24	22
	30	20	20
25-29	25	14	10
	35	16	8
	30	15	12

GLM $Sc = \beta_o + \beta_A \cdot A + \beta_{MJU} \cdot MJU + \beta_A *_{MJU} \cdot A \cdot MJU + \varepsilon$

2. Complete the ANOVA table for the data in the example above.

Source	DF	SS	MS	F	P
C2	2	113.0	56.48	4.02	0.036
C3	2	779.6	389.81	27.77	0.000
C2*C3	4	175.9	43.98	3.13	0.040
Error	<u>18</u>	252.7	14.04		
Total	26	1321.2			

3. Write an H_A/H_o pair for Factor A

 $H_o: \mu_{age17} = \mu_{age22} = \mu_{age27}$

 H_A : $\mu_{age17} \neq \mu_{age22} \neq \mu_{age27}$