Relation and Function

TYPES OF RELATIONS:

- **Empty Relation**: It is the relation R in X given by $R = \phi \subset X \times X$.
- Universal Relation: It is the relation R in X given by $R = X \times X$.
- Reflexive Relation: A relation R in a set A is called reflexive if (a, a) ∈ R for every a ∈ A.
- **Symmetric Relation**: A relation R in a set A is called symmetric if $(a_1, a_2) \in R$ implies that $(a_2, a_1) \in R$, for all $a_1, a_2 \in R$
- Transitive Relation: A relation R in a set A is called transitive if (a₁, a₂) ∈ R, and (a₂, a₃) ∈ R together imply that all a₁, a₂, a₃ ∈ A.
- **EQUIVALENCE RELATION**: A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.
- **Equivalence Classes:** Every arbitrary equivalence relation R in a set X divides X into mutually disjoint subsets (Ai) called partitions or subdivisions of X satisfying the following conditions:

All elements of Ai are related to each other for all i.

No element of Ai is related to any element of Aj whenever i eq j $Ai \cup Ai = X$ and $Ai \cap Ai = \Phi$, i
eq j

- · . These subsets $((A_i))$ are called equivalence classes.
- · For an equivalence relation in a set X, the equivalence class containing $a \in X$, denoted by [a], is the subset of X containing all elements b related to a.

**Function: A relation f: A ______ B is said to be a function if every clement of A is correlated to a

Unique element in B.

- *A is domain
- * B is codomain

- A function f: X o Y is one-one (or injective), if $f\left(x_1
 ight) = f\left(x_2
 ight) \Rightarrow x_1 = x_2, orall x_1, x_2 \in X$
- A function $f: {
 m X} o {
 m Y}$ is onto (or surjective), if $y \in {
 m Y}, \exists x \in {
 m X}$ such that f(x) = y.
- ullet A function $f: {
 m X}
 ightarrow {
 m Y}$ is one-one-onto (or bijective), if f is both one-one and onto.
- ullet The composition of function f: A o B and g: B o C is the function gof: A o C given by gof(x) = g(f(x)), $orall x \in A$.
- ullet A function $f: { exttt{X}} o { exttt{Y}}$ is invertible, if $\exists g: { exttt{Y}} o { exttt{X}}$ such that $gof = { exttt{I}}_x$ and $fog = { exttt{I}}_y.$
- ullet A **function** $f: { exttt{X}} o { exttt{Y}}$ is **invertible**, if and only if f is one-one and onto.
- Given a finite set X, a function $f: X \to X$ is one-one (respectively onto) if and only if f is onto (respectively one-one). This is the characteristics property of a finite set. This is not true for infinite set.
- **A binary function*** on A is a function * from A x A to A.
- An element $e \in X$ is the identity element for binary operation * : $X \times X \to X$ if $a*e=a=e*a \ \forall a \in X$.
- An element $e \not X$ is invertibel for binary operation $*: X \times X \to X$ if there exists $b \in X$ such that a*b*e*b*a, where is the binary identity for the binary operation *. The element b is called the inverse of and is denoted by a^{-1}
- An operation * on X is **commutative**, if a*b=b*a, $\forall a,b$ in X.
- An operation * on X is **associative**, if $(a*b)*c = a*(b*c), \forall a,b,c$ in X.