Algorithm

Assignment #2

Due: Apr.-21 (Wed.) (before 11:59pm)

Instruction.

- a. You have 2 problems in this assignment.
- b. Submit your report to iCampus in PDF file format (ID A2.pdf).
 - You can scan or take a picture of your paper.
- c. Any work that you turn in should be your own.

Problem #1. Asymptotics (50 pts)

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Fill each box of the table in the form with "yes" or "no". You are required to **show your steps**.

	A	В	0	o	Ω	ω	Θ
<i>a</i> .	$\lg^k n$	n^{ϵ}					
b.	n^k	c^n					
С.	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$					
e.	$n^{\lg c}$	$c^{\lg n}$					
f.	lg(n!)	$\lg(n^n)$					

Problem #2. Recurrences (50 pts)

1) Use a recursion tree to determine good asymptotic upper bounds for T(n) in each of the following recurrences. Show your steps.

a.
$$T(n) = 4T\left(\frac{n}{2}\right) + n$$

b.
$$T(n) = 2T(n-1) + 1$$

2) Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for sufficiently small n. Show your steps.

a.
$$T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n}$$

b.
$$T(n) = 3T\left(\frac{n}{3}\right) + \frac{n}{\lg n}$$