Applied Optimization for Wireless, Machine Learning, Big Data Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur

Lecture – 70 Examples: Linear objective with box constraints, Linear Programming

Keywords: Linear objective, Box constraints, Linear Programming

Hello, welcome to another module in this massive open online course. So we are looking at example problems in convex optimization.

(Refer Slide Time: 00:24)

So we are looking at example problems and let us look at problem number 1. So we have

 $\min_{c} \frac{c}{x} \frac{x}{1 \le x \le u}$ which means that if you have the elements of are component wise less than

or equal to the other elements.

(Refer Slide Time: 01:53)

Each $l_i \le x_i \le u_i$, so this is also known as box constraints and this is as shown in slide.

(Refer Slide Time: 02:36)

So therefore, $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ are confined to this box as shown in slide and hence this is also

termed as box type constraint. In fact, it is a simple linear program. So the solution for this is fairly straight forward.

(Refer Slide Time: 05:22)

So you have $c^{-r} = \sum_{i=1}^{n} c_i x_i$. Now, these box type constraints make sense only if $l_i \le u_i$. So we assume here that $l_i \le u_i$. If this is not so, then the problem becomes infeasible. Now, consider any x_i such that $l_i \le x_i \le u_i$.

(Refer Slide Time: 07:05)

Now, if $c_i \ge 0$, this implies $c_i l_i \le c_i x_i \le c_i u_i$. So minimum value for x_i lying in this box is $c_i l_i$ which occurs when $x_i = l_i$. On the other hand, if $c_i < 0$ this implies $c_i l_i \ge c_i x_i \ge c_i u_i$. Now the minimum value is $c_i u_i$.

(Refer Slide Time: 09:09)

And therefore, the optimal value of each x_i is $\begin{cases} l & \text{if } c \ge 0 \\ i & i \end{cases}$.

(Refer Slide Time: 10:16)

So
$$\min c^{-T} = \min \sum_{i=1}^{n} c_i x_i = \sum_{i=1}^{n} c_i^+ l_i + c_i^- u_i \text{ where } c_i^+ = \max \{c_i, 0\} = \begin{cases} c & \text{if } c_i \ge 0 \\ i & i \\ 0 & \text{otherwise} \end{cases}$$
 and

$$c_{i}^{-} = \begin{cases} c & \text{if } c < 0 \\ i & i \\ 0 & \text{otherwise} \end{cases}.$$

(Refer Slide Time: 11:08)

You can also write this as $\min_{s,t} \frac{-T}{t} = \sum_{i=1}^{n} c_{i}^{+} l_{i} + c_{i}^{-} u_{i}$ where c_{i}^{+} contains all positive

elements of \bar{c} and c_i contains only negative elements of \bar{c} and the rest are 0. So that is the optimal value of this problem.

(Refer Slide Time: 12:13)

Let us proceed to a slightly more sophisticated example for which the solution might not be very obvious and that is problem number 2 where we have $\begin{bmatrix} m & in & c & x \\ & & & x \\ & & & & - \end{bmatrix}$. This is a linear program, but slightly more sophisticated and the solution depends on the nature of A

which is a square full rank matrix. This implies that A is invertible.

(Refer Slide Time: 13:53)

Now we substitute, $Ax = y \Rightarrow x = A^{-1}y$.

(Refer Slide Time: 15:45)

Now, we will write the equivalent optimization problem in terms of \overline{y} . So we have the objective $\overline{c} = \overline{c} = \overline{c}$

(Refer Slide Time: 17:13)

So the objective becomes $\lim_{c \to \infty} \frac{c^{T} - c}{s \cdot t}$. So now, we have $c^{T} = \sum_{i=1}^{n} c_{i} y_{i}$.

(Refer Slide Time: 18:07)

And the constraint will be component wise constraint, this implies that each component of this vector y is less than or equal to each component of vector b. Now we consider if any $c_i > 0 \Rightarrow y_i \le b_i \Rightarrow c_i y_i \le c_i b_i$. So this implies that $c_i y_i \to -\infty$ as $y_i \to -\infty$. So objective becomes $-\infty$. So it is unbounded below.

(Refer Slide Time: 20:15)

Now, if all $c_i \le 0 \Rightarrow y_i \le b_i \Rightarrow c_i y_i \ge c_i b_i$. So the minimum occurs for $y_i = b_i$.

(Refer Slide Time: 21:01)

And therefore, the net minimum implies

$$\min c^{T} = \sum_{i=1}^{n} c_{i}b_{i} = c^{T} = c$$

(Refer Slide Time: 22:11)

Therefore, the minimum value is
$$\min \frac{-T}{c} = \begin{cases} -T & A^{-1}b \\ c & A^{-1}b \end{cases}$$

$$s.t \quad Ax \leq b \qquad if \quad A^{-1}c \leq 0$$

$$-\infty \quad otherwise$$

(Refer Slide Time: 23:32)

So that is basically the solution to this optimization problem. So let us stop here. Thank you very much.