Теория категорий

Тутанов Михаил и Копейкина Софья на основе лекций Петрова В.А. под редакцией @keba4ok

5 октября 2021 г.

Содержание

Основные определения	3
Примеры на основные определения	3
Ещё определения	4
Функтор	6
Примеры функторов	6
Мономорфизмы и эпиморфизмы	7
Естественные преобразования	8
Эквивалентность категорий	8
Скелеты	10
Лемма Йонеды	11
Пределы	11
Сопряжённые функторы	13

Основные определения

Определение 1. Категория C — это

- класс 1 Ob \mathcal{C} , элементы которого называются объектами;
- попарно непересекающиеся множества *морфизмов* $\operatorname{Hom}(X,Y)^2$ для любых двух X и Y из $\operatorname{Ob} \mathcal{C}$;
- операция композиции \circ : $\operatorname{Hom}(Y,Z) \times \operatorname{Hom}(X,Y) \to \operatorname{Hom}(X,Z)$, удовлетворяющая двум аксиомам.

Аксиомы композиции:

- ассоциативность $(f \circ g) \circ h = f \circ (g \circ h);$
- для любого A из C^3 существует $\mathrm{id}_A \in \mathrm{Hom}(A,A)$ такое, что $f \circ \mathrm{id}_A = f$, $\mathrm{id}_A \circ f = f$ для любого осмысленного f.

Определение 2. Два объекта X и Y в категории $\mathcal C$ называются *изоморфными*, если $\exists f \in \mathrm{Hom}(X,Y)$ и $g \in \mathrm{Hom}(Y,X)$ такие, что $f \circ g = \mathrm{id}_Y, \ g \circ f = \mathrm{id}_X.$ f и g в этом случае называются *изоморфизмами*.

Определение 3. Объект A в категории C называется *терминальным* (*инициальным*), если для любого X из $C \mid \text{Hom}(X, A) \mid = 1 \ (\mid \text{Hom}(A, X) \mid = 1)$

Утверждение 1. Если терминальный (инициальный) объект существует, то он единственен с точностью до единственного изоморфизма.

Доказательство. Пусть A и A' – терминальные объекты, тогда из определения существует единственный f из A в A' и единственный g из A' в A, композиция $f \circ g$ в этом случае будет элементом Hom(A',A'), но $\mathrm{id}_{A'}$ также элемент этого одноэлементного множества, поэтому $f \circ g = \mathrm{id}_{A'}$, аналогично $g \circ f = \mathrm{id}_A$, то есть A и A' изоморфны по определению.

Как можно заметить, инициальный и терминальный объекты подозрительно похожи, для того, чтобы формализовать наше подозрение, введём понятие двойственной (противоположной) категории.

Определение 4. Для категории \mathcal{C} определим следующую категорию \mathcal{C}^{op} , которую будем называть двойственной (противоположной): $\mathrm{Ob}\,\mathcal{C}^{op} = \mathrm{Ob}\,\mathcal{C}$, $\mathrm{Hom}_{\mathcal{C}^{op}}(X,Y) = \mathrm{Hom}_{\mathcal{C}}(Y,X)$, $f^{op} \circ^{op} g^{op} = g \circ f$.

Примечание 1. Иницальный объект в C соответсвует терминальному в C^{op} и наоборот.

Примеры на основные определения

Примеры категорий с указанием терминальных и инициальных объектов:

• Sets: Ob Sets = все множества, Hom(X,Y) = все отображения из X в Y, \circ – обычная композиция отображений. Инициальный объект – \emptyset , терминальный – любой, состоящий из одного элемента (нетрудно проверить, что они действительно попарно изоморфны);

 $^{^{1}}$ Если вдруг даже множество, то такая категория называется *малой*

 $^{^{2}}$ Обозначение Mor на мой взгляд логичнее, но используется сильно реже

³Оb по-хорошему писать надо, но оно часто опускается

- Groups, Rings и т.д. морфизмы были определены на первом курсе. В $Vect_F$ и инициальный, и терминальный объект -0;
- *Тор*: объекты топологические пространства, морфизмы непрерывные отображения. Инициальный и терминальный объект такие же, как и для *Sets*;
- *HTop*: Ob *HTop* компактно-порождённые топологические пространства, морфизмы непрерывные отображения, профакторизованные по гомотопиям;
- Категория с одним элементом, $\mathrm{Ob}\,\mathcal{C} = X$, морфизмы в этом случае образуют моноид.
- Частичный (пред)порядок на M (ЧУМ), $\mathrm{Ob}\,\mathcal{C}=M$, $\mathrm{Hom}(x,y)=\emptyset$, если $x\leq y,=\emptyset$, иначе.
- Rels, Ob Rels = все множества, Hom(X,Y) = все подмножества в $X \times Y$, $R \circ S = \{(x,z) | \exists y \in Y, (x,y) \in S, (y,z) \in T\}$

Ещё определения

Определение 5. Произведением объектов X и Y в категории $\mathcal C$ называется объект $X\times Y$, обладающий следующим универсальным свойством: фиксированы морфизмы $pr_X:X\times Y\to X$ и $pr_Y:X\times Y\to Y$ и для любого объекта Z с морфизмами $f:Z\to X$ и $g:Z\to Y$, существует единственный морфизм $h:Z\to X\times Y$, делающий диаграмму коммутативной: $pr_X\circ h=f,\ pr_Y\circ h=g$.

Пользуясь принципом двойственности можно определить копроизведение, развернув все стрелки.

Определение 6. Копроизведением объектов X и Y в категории $\mathcal C$ называется объект $X \coprod Y$, обладающий следующим универсальным свойством: фиксированы морфизмы $i_X: X \coprod Y \leftarrow X$ и $i_Y: X \coprod Y \leftarrow Y$ и для любого объекта Z с морфизмами $f: Z \leftarrow X$ и $g: Z \leftarrow Y$, существует единственный морфизм $h: Z \leftarrow X \coprod Y$, делающий диаграмму коммутативной: $h \circ i_X = f$, $h \circ i_Y = g$.

Утверждение 2. Если (ко)произведение существует, то оно единственно с точностью до единственного изоморфизма.

Доказательство. Следует из определения через универсальное свойство. Если взять два объекта с этим свойством, то из них будут единственные стрелки в друг друга, а композиция окажется id, подробнее см. утверждение1. Далее подобные доказательства будут полностью опускаться. □

Примеры на произведение и копроизведение:

- $Sets: X \times Y$ обычное декартово произведение; $X \coprod Y$ дизъюнктное объединение X и Y^4 ;
- Groups: $G \times H$ опять же декартово произведение; $G \coprod H = G * H$ свободное произведение групп (во втором семестре оно задавалось ровно этим универсальным свойством);
- Top: аналогично Sets;

⁴Здесь ранее было указано, что оно существует не всегда, это неправда, оно всегда есть

• $YYM: x \times y = min(x, y), x \coprod y = max(x, y).$

Определим ещё одну важную категорию (пока что в частном случае, когда-нибудь здесь появится значительно более общее определение)

Определение 7. *Категорией стрелки* \mathcal{C}/A , где \mathcal{C} – категория, а A – объект в ней, называется следующая категория: $\mathrm{Ob}\,\mathcal{C}/A = \mathrm{пары}\,(X,f)$, где $X \in \mathrm{Ob}\,\mathcal{C}, f \in \mathrm{Hom}(X,A)$; $\mathrm{Hom}((X,f),(Y,g)) = \{h \in \mathrm{Hom}(X,Y) | f = g \circ h\}$.

Терминальным объектом в этой категории будет (A, id_A) . Аналогично, развернув стрелки, можно определить категорию $\mathcal{C} \setminus A$

Определение 8. Произведение в категории стрелки называется *расслоённым произведением*.

Рассмотрим примеры расслоённых произведений:

- Sets: $X \times_A Y = \{(x, y) \in X \times Y | f(x) = g(y) \};$
- $Sets^{op}$: $X \coprod_A Y = X \coprod Y / \sim$, где \sim порождено $f(a) \sim g(a)$. В Top это просто склейка;
- Groups: произведение как на Sets, $G \coprod_K H$ свободное произведение с объединённой подгруппой.

Определение 9. Φ унктором \mathcal{F} называется отображение между двумя категориями \mathcal{C} и \mathcal{D} (определённое и на объектах, и на морфизмах) со свойствами:

- Если $f \in \text{Hom}(X,Y)$, то $\mathcal{F}(f) \in \text{Hom}(\mathcal{F}(X),\mathcal{F}(Y))$;
- $\mathcal{F}(f \circ q) = \mathcal{F}(f) \circ \mathcal{F}(q)$;
- $\mathcal{F}(\mathrm{id}_A) = \mathrm{id}_{\mathcal{F}(A)}$.

Примеры функторов:

- $\pi_1: Top \to Groups$;
- Если M_1 и M_2 моноиды (как категории с одним объектом), тогда \mathcal{F} гомоморфизм моноидов;
- M моноид, $\mathcal{F}: M \to Vect_K$ это выбор векторного пространства и гомоморфизма $M \to End(V)$;
- В ЧУМе функторы монотонные отображения;
- $\mathcal{F}: \mathbb{1} \to \mathcal{C}$ выбор объекта в \mathcal{C} , а если наоборот, то функтор единственен, то есть одноэлементная категория с одним морфизмом – это «терминальная» категория (строгое определение будет позднее).

Функтор

Определение 10. $\Phi y \mu \kappa mop$ - это отображение $F: C \to D$ между категориями со следующими свойствами:

- 1. Если $X \in \text{Ob } C$, то $F(x) \in \text{Ob } D$
- 2. $\forall A, B \in \text{Ob } C$ и $F: A \to B F(f): F(A) \to F(B)$, причем "произведение переходит в произведение" и "единичный гомоморфизм в единичный гомоморфизм т.е. $F(f \circ g) = F(f) \circ F(g)$ и $F(id_A) = id_{F(A)}$

Утверждение 3. $A \simeq B \Rightarrow F(A) \simeq F(B)$

Доказательство:

 $A \simeq B$, значит $\exists f: A \to B$ и $g: B \to A$ такие, что $f \circ g = id_B$ и $g \circ f = id_A$.

Вспомним, что функтор сохраняет произведение и единичный гомоморфизм:

$$F(f) \circ F(g) = id_{F(B)}$$
 и $F(g) \circ F(f) = id_{F(A)}$.

Мы нашли гомоморфизмы с нужными нам свойствами, а значит $F(A) \simeq F(B)$.

QED

Примеры функторов

1. Забывающий функтор

Такой функтор стандартно обозначается как U, он "забывает" алгебраические структуры. Рассмотрим на примере групп:

 $U: Groups \rightarrow Sets$

U(G) = G как множество

U(f) = f как отображение множеств

2. Свободный функтор

Это функтор, который "вспоминает" алгебраическую структуру. Рассмотрим также на примере групп:

 $F: Sets \rightarrow Groups$

F(X) =свободная группа, порожденная X

 $F(f): F(X) \to F(Y)$, который переводит образующие в образующие: $x \mapsto f(x)$

3. Конкретный пример свободного функтора между ассоциативными алгебрами с единицей и векторными пространствами:

$$K$$
 - поле, $U:K-Alg\to Vect_K$ и $F:Vect_K\to K-Alg$ $F(V)=T(V)=K\bigoplus V\bigoplus V\bigotimes^2\bigoplus V\bigotimes^3\bigoplus \dots$

Со следующей структурой:

$$V^{\bigotimes n} \times V^{\bigotimes m} \to V^{\bigotimes(n+m)}$$

$$(v_1 \otimes ... \otimes v_n; u_1 \otimes ... \otimes u_m) \mapsto v_1 \otimes ... \otimes v_n \otimes u_1 \otimes ... \otimes u_m$$

А с гомоморфизмами дела обстоят следующим образом:

 $f:V\to W$, тогда $F(f):T(V)\to T(W)$, который работает так:

 $V^{\bigotimes n} \to W^{\bigotimes n}$

$$v_1 \otimes ... \otimes v_n \to f(v_1) \otimes ... \otimes f(v_n)$$

4. Аналогично между коммутативными алгебрами и векторными пространствами:

$$S: K-CommAlg \rightarrow Vect_K$$

$$S(V) = T(V)_{(< u \otimes v - v \otimes u >)}$$
, что называется симметрической алгеброй

5. Еще пример - между абелевыми и обычными группами:

$$F: AbGroups \rightarrow Groups$$

 $F(G) = G_{/[G,G]}$
 $F(f)[g] = [f(g)]$

6. *Множества с выделенной точкой* и свободный функтор между ними и категорией множеств:

 $Sets_*$ - это категория, определенная следующим образом: $Ob\ Sets_*$ состоит из элементов следующего вида: $(A, a \in A)$. Гомоморфизмы устроены так: $f_*: (A, a) \to (B, b)$, причем переводит выделенную точку в выделенную точку.

Свободный функтор выглядит так:

```
F: Sets \rightarrow Sets_* A \mapsto A \sqcup \{\varnothing\} f \mapsto f \times (\varnothing; \varnothing)
```

7. *Копредставимый функтор* - это функтор, действующий их категории в категорию множеств $F: C \to Sets$, построенный следующим образом:

$$A \in \text{Ob } C \ F(X) = Hom(A, X)$$

$$f: X \to Y - F(f): Hom(A, X) \to Hom(A, Y)$$

$$\phi \mapsto f \circ \phi$$

 $Onpedenenue\ 11.\ Kонтрвариантный функтор из <math>C$ в D - это функтор из C^{op} в D^{op} :

$$A \in \mathrm{Ob}\ C - F(A) \in \mathrm{Ob}\ D$$

 $f: A \to B - F(f): F(B) \to F(a)$ и $F(f \circ g) = F(g) \circ F(f), F(id_A) = id_{F(A)}$

Определение 12. Представимый функтор - это такой функтор $h_A: C^{Op} \to Sets, A \in \mathrm{Ob}\ C,$ действующий по правилу:

$$h_A(X) = Hom(X, A), h_A(f) : \phi \mapsto \phi \circ f$$

Мономорфизмы и эпиморфизмы

Мы хотим определить "инъективность" и "сюръективность" для гомоморфизмов между элементами категорий. Делается это следующим образом:

Определение 13. Гомоморфизм f называется *мономорфизмом*, если "на него можно сокращать слева т.е. $f \circ g = f \circ h \Rightarrow g = h$

Примеры

- Sets инъективные отображения
- Groups инъективне гомоморфизмы групп
- Rings инъективные гомоморфизмы колец

Примечание 2. Сохраняют ли функторы мономорфизмы? НЕТ

Определение 14. Гомоморфизм $f:X\to Y$ называется расщепимым мономорфизмом, если $\exists r:Y\to X$ такой, что $r\circ f=id_X$

Примечание 3. Сохраняют ли функторы расщепимые мономорфизмы? ДА

Определение 15. Гомоморфизм f называется эпиморфизмом, если "на нее можно сокращать справа т.е. $g \circ f = h \circ f \Rightarrow g = h$

Аналогично можно определить расщепимый эпиморфизм:

Определение 16. Гомоморфизм $f: X \to Y$ называется расщепимым эпиморфизмом, если $\exists s: Y \to X$ такой, что $f \circ s = id_Y$ Примеры эпиморфизмов

- Sets сюръективные отображения
- Groups сюръективные гомоморфизмы групп
- ullet HausTop непрерывные отображения с f(X)=Y

 $Упражнение 1. \ Pасщепимый мономорфизм + эпиморфизм = изоморфизм и <math>Pасщепимый эпиморфизм + мономорфизм = изоморфизм$

Естественные преобразования

Определение 17. $\alpha: F \to G$ называется естественным преобразованием для функторов $F, G: C \to D$, если $\forall A \in C \ \exists \alpha_A: F(A) \to G(A)$ такой, что $\forall f \in Hom(A,B) \ \exists \alpha_B: F(B) \to G(B)$, причем следующая диаграмма коммутативна:

natural_transformation_diagram.PNG

Упраженение 2. $I = [Ob\ I = \{0,1\}, Hom(I) = \{Hom(0,0) = \{id_0\}, Hom(0,1) = \{f = \{(0,1)\}\}, Hom(1,0) = \varnothing, Hom(1,1) = \{id_1\}\}].$ Задать естественное преобразование это все равно, что задать следующий функтор: $H: C \times I \to D \mid H(\ ,0) = F$ и $H(\ ,1) = G$, со следующей структурой категории $C \times I$: $Ob\ C \times I = Ob\ C \times Ob\ I, Hom(C \times I) = Hom(C) \times Hom(I)$ Примеры

- $V \in Vect_K$. Для функторов $Vect_K \to Vect_K \ F: V \mapsto V, f \mapsto f$ и $G: V \mapsto V^{**}, \phi \mapsto \phi^{**}$ есть естественное преобразование $\alpha \mid \alpha_V: F \to G: V = F(V) \mapsto G(V) = V^{**}$ такое, что $\alpha_V(f)(v) = f(v)$
- Топологическая группа это группа с топологической структурой, на которой заданы две непрерывные операции: $G \times G \to G : (a,b) \mapsto ab$ и $G \to G : a \mapsto a^{-1}$ (к примеру, $(\mathbb{R},+)$ и (S^1,\cdot) это топологические группы). В данном примере нас будет интересовать локально компактные топологические абелевы группы. Для каждой группы A определим двойственную: $A^* = Hom(A,S^1)$ непрерывные гомоморфизмы групп (вместе с какой-то топологией). Итак, для функторов $LocCompAb \to LocCompAb$ F = Id и $G : A \mapsto A^{**}$ есть естественное преобразование $\alpha : F \to G$, которое определяется так же, как и в предыдущем

Эквивалентность категорий

примере.

Определение 18. Есть три функтора $F, G, H: C \to D$ и два естественных преобразования: $\alpha: F \to G$ и $\beta: G \to H$. Композиция (вертикальная) естественных преобразований это естественное преобразование $\beta \circ \alpha: F \to H \mid (\beta \circ \alpha)_A = \beta_A \circ \alpha_A$

Примечание 4. Заметим, что мы таким образом определили категорию Funct(C, D) - функторов из C в D, в которой морфизмы - это естественные преобразования.

Определение 19. Есть четыре функтора $F,G:C\to D,\ H,K:D\to E$ и два естественных преобразования: $\alpha:F\to G$ и $\beta:H\to E$.

Композиция (горизнтальная) естественных преобразований - это естественное преобразование $\beta \bullet \alpha : H \circ F \to K \circ G \mid (\beta \bullet \alpha)_A : H(F(A)) \to K(G(A))$, последнее работает следующим образом: $H(\alpha_A) : H(F(A)) \to H(G(A))$, $(\beta \bullet \alpha)_A = \beta_{G(A)}(H(\alpha_A))$

Упраженение 3. Композициии, определенные таким образом, действительно являются естественными преобразованиями.

Упражнение 4. Горизонтальная композиция коммутирует с вертикальной.

Определение 20. Категории C и D называются эквивалентными, если $\exists F: C \to D$ и $G: D \to C$, причем есть естественные преобразования

$$\alpha: Id_G \to F \circ G, \, \alpha^{-1}: F \circ G \to Id_G$$
 и $\beta: Id_C \to G \circ F, \, \beta^{-1}: G \circ F \to Id$ такие, что $\alpha \circ \alpha^{-1} = Id, \, \alpha^{-1} \circ \alpha = Id$ и $\beta \circ \beta^{-1} = Id, \, \beta^{-1} \circ \beta = Id$

Теперь приведём некоторые примеры двойственных категорий:

- Двойственность Понтрягина: $LocCompAb \simeq LocCompAb^{op}$ со следующими функторами: $F(A) = Hom(A, S^1)$, где на второй группе компактная открытая топология, и в обратную сторону также. Теперь надо указать естественное преобразование $id \to G \circ F$: $A \to Hom(Hom(A, S^1), S^1)$. Примеры: $\mathbb{Z} \longleftrightarrow S^1$, $(\mathbb{R}, +) \longleftrightarrow (\mathbb{R}, +)$, $CompAb \longleftrightarrow Ab$;
- Двойственность Стоуна: $TotDiscComp^{op} \simeq Bool$, где TotDiscComp вполне несвязные (дополнение открытого открыто) компактные топологичекие пространства, Bool коммутативные кольца с единицей, в которых квадрат любого элемента равен ему самого. F(X) = булева алгебра открытых множеств в X, умножение пересечение, сумма симметрическая разность. G(R) = множество максимальных идеалов в R с топологией Зарисского.
- Двойственность Гельфанда: $Comp^{op} \simeq \text{коммутативны} e^{-1}$ -алгебры, где e^{-1} -алгебра алгебра над e^{-1} с инволюцией e^{-1} , нормой, согласованной e^{-1} : ||a|| = ||a||, $||aa^*|| = ||a||^2$, и эта алгебра полна как метрическое простанство, с данной нормой, морфизмы морфизмы алгебр, не увеличивающие норму. e^{-1} с e^{-1} множество максимальных идеалов, e^{-1} устойчивых относительно инволюции, с некоторой топологией.
- Категория накрытий Cov(X): фиксируем компактно-порождённое связное топологическое пространство X, ObCov(X) = пары из Y и накрытия $Y \to X$, морфизмы непрерывные отображения из Y в Z, коммутирующее с выбранными накрытиями. Тогда $Cov(X)^{op} \simeq \pi_1(X)$ -множества 5 ;
- Есть двойственность категорий, возникающая из теории Галуа.

Теорема 1. Критерий эквивалентности категорий: $F: C \to D$ задаёт эквивалентность категорий тогда и только тогда, когда выполнены следующие три условия:

- F унивалентен, то есть отображение $Hom(X,Y) \to Hom(F(X),F(Y))$ интективно;
- F полон, то есть отображение $Hom(X,Y) \to Hom(F(X),F(Y))$ сюръективно;
- F существенно сюръективен: $\forall A \in D \ \exists X \in C : A \cong F(X)$. Примечание 5. первые два условия означают, что F(C) – полная подкатегория в D.

 $^{^{5}}$ здесь может быть когда-нибудь будет определение G- множеств

Доказательство.

Лемма 1. $A \cong B$, $C \cong D$, тогда $Hom(A,C) \cong Hom(B,D)$, причём каждому морфизму слева сопоставляется единственный морфизм, делающий диаграмму из этого морфизма и двух фиксированных изоморфизмов коммутативной.

В одну сторону: $G: D \to C, \ F \circ G \simeq id_D, \ X \simeq F(G(X))$ – существенная сюръективность.

Пусть Ff = Fg, GFf = GFg, тогда и f, и g делают соответствующую диаграмму из леммы коммутативной, откуда совпадают, то есть F – унивалентен.

Полнота: $f:F(A)\to F(B)$, рассмотрим G(f) и диаграмму с A,B,GF(A),GF(B), есть единственное g, делающее диаграмму коммутативной, GF(g)=G(f), откуда F(g)=f. В другую сторону: построим G, так как F существенно сюръективно, можно определить $G(X)=Y:X\cong F(Y)^6$, определим G на морфизмах, сделав диаграмму из A,B,F(G(A)),F(G(B)) коммутативной получим $g:F(G(A))\to F(G(B))$, но F – полный и унивалентный, поэтому g=F(h),G(f):=h. Изоморфизм между id и $F\circ G$ есть по построению, дальше надо построить $\eta_X:X\to G(F(X))$, для этого найдём $F(\eta_X):F(X)\to F(G(F(X)))$, такое отображение $F(\eta_X)$ уже найдётся, и F можно убрать из-за его хороших свойств. \square

Скелеты

Определение 21. Категория скелетная, если в ней изоморфные объекты совпадают.

Определение 22. Скелет категории C – скелетная полная подкатегория D (для любого объекта из C есть изоморфный ему из D).

Примечание 6. Скелет категории эквивалентен исходной категории, так как можно взять одним из функторов вложение.

Примеры скелетов:

- Sets кардиналы;
- Вполне упорядоченные множества ординалы;
- $Vect_F F^{(I)}$, где I кардинал.

Утверждение 4. • В каждой категории существует скелет;

- Скелет эквивалентен исходной категории;
- Скелетные категории эквивалентны тогда и только тогда, когда изоморфны;
- Две категории эквивалентны 👄 их скелеты изоморфны.

Доказательство. Первое – возьмём по представителю из каждого класса эквивалентности по отношению изоморфности. Четвёртое следует из третьего. Третье: F и G задают эквивалентность C и D $A \cong F(G(A))$, но тогда A = F(G(A)), построим G', на объектах совпадает с G, f = F(h) из хороших свойств F, G(f) := h.

⁶при этом мы выбираем один элемент даже не из множества, а из класса

Лемма Йонеды

Лемма 2. (Лемма Йонеды) В произвольной категории C бозначим за h_A ковариантный функтор Hom(A, --), а за Nat(F, G) все естественные преобразования функторов F и G. Тогда теорема утверждает, что $Nat(h_a, F) \simeq F(A)$, где F действует из некоторой категории C в Sets.

Доказательство:

Сначала подберем отображение "слева-направо":

Есть естественное преобразование $\eta: h_A \to F$, задача состоит в том, чтобы поставить ему в соответствие элемент из F(A). Посмотрим, как оно действует на A: $Hom(A,A) \stackrel{\eta_A}{\to} F(A)$. Т.к. C - категория, то в Hom(A,A) есть id_A , тогда в соответствии этому естественному преобразованию поставим то, во что отобразится id_A , m.e. $G(\eta) = \eta_A(id_A) \in F(A)$.

Теперь "справа-налево":

Задан элемент $a \in F(A)$, ему в соответствие поставим естественное преобразование $\tau: h_A \to F$ так, что для кажедого $X \in Ob\ C$ задано отображение $Hom(A,X) \stackrel{\tau_X}{\to} F(X)$, действующее следующим образом: $A \stackrel{f}{\to} X \mapsto F(f)(a)$. Проверим его естественность:

 Π о верху:

$$f \mapsto F(f)(a) \mapsto (F(g) \circ F(f))(a)$$

По низу:

$$f \mapsto f \circ q \mapsto F(f \circ q)(a)$$

Вспомним, что наш функтор ковариантный, а он разворачивает композицию, поэтому наше преобразование действительно естественно.

Теперь остается только проверить, что сопоставления взаимно обратные:

В одну сторону:

$$a \in F(a) \longrightarrow A \xrightarrow{f} F(f)(a) \longrightarrow F(id_A)(a) = id_{F(A)}(a) = a$$
. Counoco.

$$B$$
 другую:

$$\eta_X : A \xrightarrow{f} \eta_A(f) \longrightarrow \eta_A(id_A) \longrightarrow \tau_X : A \xrightarrow{f} X \mapsto F(f)(\eta_A(id_A))$$
 $\tau_X(f) = F(f)(\eta_A(id_A)) = \eta_X(Hom(A, f)(id_A)) = \eta_X(f).$ Тоже $e = f$.

Cnedemeue 1. $Nat(h_A, h_B) = Hom(A, B) = h_B(A)$

Следствие 2. (Вложение Йонеды) $h_{-}: C \to Set^{C^{Op}}$ - полный унивалентный ковариантный функтор, который действует следующим образом: $A \mapsto h_A, f: B \to A \mapsto Hom(f, -)$

Пределы

Определение 23. Постоянный функтор - это функтор $const_Z: D \to C, Z \in Ob\ C$, действующий следующим образом: $A \mapsto Z, f \mapsto id$

 $Oпределение\ 24.\$ Категория D называется малой категорией (диаграммой), если ее объекты составляют множество.

Определение 25. D - малая категория, $F: D \to C$ - функтор. Предел - это объект $lim\ F$, представляющий функтор, который действует следующим образом: $Z \mapsto Nat(const_Z, F)$

 $\Pi pumeчanue 7.$ Предел это "произведение со стрелками, которые надо уважать" Примеры:

1. Расслоеное произведение: D - категория с тремя объектами 1, 2, 3 и стрелками $1 \to 3$, $2 \to 3$ - и есть то, во что функтор F переводит это все: $X, Y, W \in Ob\ C$, стрелки $X \to W,\ Y \to W$. Пределом такого функтора будет объект $X \times_W Y$ со следующим свойством: $\forall Z \in Ob\ C$ и $Z \to X,\ Z \to Y\ \exists !h: Z \to X \times_W Y$, сохраняющая коммутативность диаграммы.

2. Уравнитель морфизмов: D - категория с двумя объектами 1,2 и двумя стрелками $1 \to 2$ - и есть то, во что функтор F переводит это все: $X, Y \in Ob\ C$, две стрелки $f, g: X \to Y$. Пределом такого функтора будет объект Eq(f,g) со следующим свойством: $\forall Z \in Ob\ C$ и $h: Z \to X$, причем $f \circ h = g \circ h$, $\exists ! \alpha: Z \to Eq(f,g)$, сохраняющая коммутативность диаграммы.

Уравнитель для C = Sets будет такой: $Eq(f,g) = \{x \in X | f(x) = g(x)\}$

3. Пусть в D есть инициальный объект A. Тогда $\lim F = F(A)$

 $Onpedenehue\ 26.\ Konpeden\ F:D\to C$ - это объект, копредставляющий функтор $G:Z\mapsto Nat(F,const_Z)$. Копредставляющий в том смысле, что $G\simeq Hom(Colim\ F,--)$ Примеры:

- 1. D дискретная, т.е. есть категория, в которой есть только тождественные морфизмы. $Ob\ D=I,$ есть то, во что функтор их переводит: $(X_i\in C)_{i\in I}$. Копределом для такой конструкции называется копроизведение $\coprod X_i$. В Sets это дизъюнктное объединение
- 2. D категория "два объекта две параллельные стрелки" (как во втором примере предела). Копределом такого функтора называется коуравнитель Coeq(f,g) со следующим свойством: $\forall Z \in C$ со стрелкой $h: Y \to Z$, сохраняющей коммутативность диаграммы, т.е. $h \circ f = h \circ g$, $\exists ! \phi : Coeq(f,g) \to Z$, сохраняющая коммутативность диаграммы

3. D - натуральные числа как упорядоченное множество. Функтор переводит их в $(X_i)_{i\in\mathbb{N}}$. Если предположить, что C=Sets и $X_i\to X_{i+1}$ - вложения, то $Colim X_i=\cup X_i$

 $Onpedenehue\ 27.$ Категория C называется *полной*, если в C есть все (малые) пределы. Т.е. $\forall D$ - малой и $\forall F:D\to C$ $\exists \lim F$

к содержанию к списку объектов 13

Теорема 2. C - полная Lra в C существуют произведения и уравнители

Доказательство:

 \Rightarrow - очевидно (существуют все пределы, значит существуют и их частные случаи) $\Leftarrow: limF = Eq()$

Сопряжённые функторы

Определение 28. Функторы $F: C \longrightarrow D$ и $G: D \longrightarrow C$ называются сопряжёнными, если задан естественный изоморфизм бифункторов: $Hom_D(F(X), Y) \simeq Hom_C(X, G(Y))$. F в этом случае сопряжённый слева к G.

Примеры сопряжённых функторов:

- $G: Groups \longrightarrow Sets$ забывающий функтор, $F: Sets \longrightarrow Groups F(X)$ свободная группа;
- $G: Ab \longrightarrow Groups$ в некотором смысле тоже забывающий, $F: Groups \longrightarrow Ab$: $F(H) = H^{ab} = H/[H,H];$
- $G: Vect_K \longrightarrow Sets$ забывающий, $F: Sets \to Vect_K$, $F(I) = K^{(I)}$;
- $G: CommRings \longrightarrow Sets$ забывающий, $F: Sets \longrightarrow CommRings: F(X) = \mathbb{Z}[X];$
- $G: Rings \longrightarrow Sets$ забывающий, $F: Sets \longrightarrow Rings, F(X) = \mathbb{Z}X = T^*(\mathbb{Z}^{(X)});$
- $G: K-Alg \longrightarrow Vect_K$ «забывающий», $F: Vect_K \longrightarrow K-Alg: F(V) = T^*(V);$ Упраженение 5. $F: (\mathbb{Z}, le) \longrightarrow (\mathbb{R}, le)$, найти сопряжённые слева и справа. **Теорема 3.** Если $F: C \longrightarrow D$ сопряжённый слева $\kappa G: D \longrightarrow C$, то G сохраняет пределы, а F копределы, то есть $G(\lim K) \simeq \lim (G \circ K)$.

Доказательство. Надо задать $Hom_C(X, G(\lim K)) \simeq Nat(const_X, G \circ K)$, воспользуемся сопряжённостью функторов и определением предела: $Hom_C(X, G(\lim K)) \simeq Hom_D(F(X), \lim K) \simeq Nat(const_{F(X)}, K) \simeq Nat(const_X, G \circ K)$.

Теорема 4. Теорема Фрейда: Пусть D полна, $G:D\longrightarrow C$ сохраняет пределы и выполнено условие (*):

 $\forall X \in C \exists \{A_i\}_{i \in I(X)}, \ \textit{где} \ I(X) - \textit{множество объектов } D, \ \textit{вместе } c \ f_i : X \longrightarrow G(A_i),$ такое что для любых $A \in D \ u \ f : X \longrightarrow G(A), \ \exists \phi_i : A_i \longrightarrow A : f = G(phi_i) \circ f_i.$ Тогда $y \ G \ \textit{есть сопряжённый слева.}$

Доказательство. Определим категорию стрелок: X/G, $ObX/G = f: X \to G(A)$, $Mor(f: X \to G(A), g: X \to G(B)) = \{\phi: A \to B: G(\phi) \circ f = g.$ Лемма 3. У G есть сопряжённый слева $\Leftrightarrow \forall X \in C$ в X/G есть инициальный объект.

Доказательство. Надо задать $forall XF(X) \in D, \eta_X : X \to G(F(X)) : Hom(X, G(Y)) \simeq Hom(F(X), Y)$ так что $\forall \phi \in Hom(F(X), Y), \phi \longleftrightarrow G(\phi) \circ \eta_X$ задаёт биекцию. Так как Hom(инициальный объект, -) – одноэлементное множество, для любых $X, Y, f : X \to G(Y)$, должен существовать единственный морфизм $G(F(X)) \to G(Y)$, делающий диаграмму коммутативной:

Пусть F у нас есть, возьмём в качестве η_X элемент $Hom(X, G(F(X)) \simeq Hom(F(X), F(X)),$ соответствующий $id_{F(X)}$.

В другую сторону: определим F(X) через лемму Йонеды как объект, такой что $Hom_D(F(X),Y) \simeq Hom_C(X,G(Y)), \phi \to G(\phi) \circ \eta_X. \ f: X \to X', Hom(F(X),F(X') \simeq Hom(X,G(F(X'))),$ определим F(f) как морфизм, соответствующий $\eta_{X'} \circ f$, тогда $G(F(f)) \circ \eta_X = \eta_{X'} \circ f.$ Проверим, что F сохраняет композицию: $X \xrightarrow{f} X' \xrightarrow{f'} X''.$ $F(f' \circ f) = F(f') \circ F(f) \Leftrightarrow G(F(f') \circ F(f)) \circ \eta_X = \eta_{X''} \circ f'circf.$ Левая часть равна $GF(f') \circ GF(f) \circ \eta_X$, правая $GF(f') \circ GF(f) \circ \eta_X$.