Projet VaR & Expected Shortfall (ES)

Guenole Wariol KOPANGOYE

August 20, 2025

1 Introduction

L'objectif de ce projet est de mesurer le risque de perte d'un portefeuille sur un horizon donné, en utilisant deux indicateurs financiers : la Value-at-Risk (VaR) et l'Expected Shortfall (ES). Ces mesures sont fondamentales pour quantifier les pertes extrêmes potentielles.

2 Rendements et portefeuille

On considère un portefeuille composé de n actifs. Si $r_{i,t}$ est le rendement de l'actif i au temps t, et w_i son poids dans le portefeuille, le rendement du portefeuille est :

$$r_t^{\text{portefeuille}} = \sum_{i=1}^n w_i r_{i,t}.$$

3 Value-at-Risk (VaR)

La VaR à un niveau de confiance α est la perte maximale attendue avec une probabilité de $1-\alpha$:

3.1 VaR historique

La VaR historique correspond au α -quantile empirique des rendements :

$$VaR_{\alpha}^{hist} = quantile_{\alpha}(r_t^{portefeuille}).$$

3.2 VaR paramétrique

En supposant que les rendements suivent une loi normale $\mathcal{N}(\mu, \sigma^2)$, la VaR s'écrit :

$$VaR_{\alpha}^{param} = \mu + \sigma \Phi^{-1}(\alpha),$$

où Φ^{-1} est l'inverse de la fonction de répartition normale.

1

4 Expected Shortfall (ES)

L'ES, ou Conditional VaR, représente la perte moyenne au-delà de la VaR.

4.1 ES historique

$$\mathrm{ES}_{\alpha}^{\mathrm{hist}} = \frac{1}{N_{\alpha}} \sum_{r_t < \mathrm{VaR}_{\alpha}} r_t,$$

où N_{α} est le nombre de rendements inférieurs à la VaR.

4.2 ES paramétrique

$$ES_{\alpha}^{param} = \mu - \sigma \frac{\phi(\Phi^{-1}(\alpha))}{\alpha},$$

avec ϕ la densité normale.

5 Simulation Monte Carlo (bonus)

On peut générer des rendements simulés selon la loi normale estimée et recalculer VaR et ES pour comparer avec les méthodes historique et paramétrique.

_

6 Conclusion

Ce projet montre comment quantifier le risque extrême sur un portefeuille et compare différentes méthodes (historique, paramétrique, Monte Carlo).