

الامتدان الوطني الموحد للبكالوريا

الدورة العادية **2014** الموضوع

المركز الوطني للتقويم والامتحانات والتوجيه

NS 24

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب)	الشعبة أو المسلك

- مدة إنجاز الموضوع هي أربع ساعات.
- يتكون الموضوع من خمسة تمارين مستقلة فيما بينها .
- يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.

لا يسمح باستعمال الآلة الحاسبة كيفما كان نوعها

لا يسمح باستعمال اللون الأحمر بورقة التحرير

الصفحة 2 NS 24

الامتدان الوطني الموحد للبكالوريا – الدورة العادية 2014 – الموضوع – ماحة : الرياضياني – هعبة العلوم الرياضية (أ) و(بم)

التمرين الأول:(3 نقط)

(3 مرة الرقم (3 مرة الرقم (3 عنه
$$a_n = \underbrace{333......31}_{n}$$
 : خنصع \mathbf{x}^* نضع :

و ما العددين
$$a_1$$
 و العال. العددين a_2 و العال.

$$3a_n + 7 = 10^{n+1}$$
 : Y^* من n من 2

$$10^{30k+2} \equiv 7$$
 [31] : ¥ من k من 3 | 0.75

$$a_{30k+1}$$
 من a_{30k+1} ، ثم استنتج أن 31 يقسم a_{30k+1} ؛ a_{30k+1} ، ثم استنتج أن 31 يقسم a_{30k+1} .

$$\not\in$$
 2 في كان كان $a_n x + 31 y = 1$ فإن المعادلة n ؛ n وإذا كان n ، إذا كان n ، إذا كان n .

التمرين الثاني:(3.5 نقطة)

0.5

$$O=egin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$$
نذکر أن $(+,+,\times)$ جسم تبادلي و أن $(M_2(\square),+, imes)$ حلقة واحدية صفر ها

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
و وحدتها

$$E = \left\{ M\left(a,b
ight) / \left(a,b
ight) \in \square^2
ight\}$$
 : و b من ، نضع $M\left(a,b
ight) = \begin{pmatrix} a & a-b \ b & a+b \end{pmatrix}$ ككل a و b من ، نضع a

$$(M_2(\square),+)$$
 اـ- بين أن E زمرة جزئية للزمرة (0.5

$$N=egin{pmatrix} 1 & -1 \ 0 & 1 \end{pmatrix}$$
 : حيث $A*B=A imes N imes B$: بعرف على $M_2\left(\Box\right)$ قانون التركيب الداخلي $M_2\left(\Box\right)$ قانون التركيب الداخلي $M_2\left(\Box\right)$

ونعتبر التطبيق
$$\phi$$
 من * نحو $M_2(\square)$ الذي يربط كل عدد عقدي غير منعدم $a+ib$ و عددان حقيقيان) ونعتبر التطبيق $M_2(\square)$ نحو $M(a,b)$.

$$\left(M_2(\Box),st
ight)$$
ابین أن $\,arphi\,$ تشاکل من $\left(\Box^*, imes
ight)$ نحو (*)نحو (*

$$arphiig(\Box^*ig)=E^*$$
 بين أن: $E^*=E-\{O\}$ بين أن: 0.25

ج) بين أن
$$\left(E^{*},*\right)$$
زمرة تبادلية.

$$(\forall (A,B,C) \in E^3)$$
 $A*(B+C) = A*B + A*C$:بين أن -4 0.5

حسم تبادلی.
$$(E,+,*)$$
 جسم تبادلی.

الصفحة	
_3	NS 24

الامتدان الوحيى الموحد للبكالوريا – الحورة العاحية 2014 – الموضوع ماحة: الرياضيات — شعبة العلوم الرياضية (أ) و(بم) التمرين الثالث:(3.5 نقط)

المستوى العقدي منسوب إلى معلم متعامد ممنظم و مباشر (O, \vec{u}, \vec{v}) .

$$q$$
- $\overset{\circ}{\mathbb{Q}}, \frac{p}{2\mathring{\mathbf{u}}}$ $\overset{\circ}{\mathbb{Z}} \frac{p}{4}\overset{\circ}{\mathbb{H}}$ عددا حقيقيا بحيث: θ عددا عقيقيا بحيث:

$$(E)$$
 $z^2-\sqrt{2}e^{i heta}z+e^{2i heta}=0$:المعادلة التالية التالية المعادلة التالية -1

$$\mathrm{D} = \left(\sqrt{2}ie^{iq}
ight)^2$$
 هو: (E) هميز المعادلة (E

ب) اكتب على الشكل المثلثي z_1 و z_2 حلي المعادلة (E) في المجموعة z_1 0.75

$$\sqrt{2}e^{iq}$$
 و $e^{i\xi q \cdot \frac{p_{\pm}}{4^{+}}}$ و $e^{i\xi q \cdot \frac{p_{\pm}}{4^{+}}}$

اً) بين أن المستقيمين
$$(OA)$$
 و (T_1T_2) متعامدان .

ب)لیکن
$$K$$
 منتصف القطعة T_1 . بین أن النقط T_2 و T_3 مستقیمیة .

.
$$[T_1T_2]$$
 هو واسط القطعة (OA) ج)استنتج أن المستقيم

$$rac{p}{2}$$
 الدوران الذي مركزه T_1 و قياس زاويته r

اعط الصيغة العقدية للدوران
$$r$$
 . r

$$b=\sqrt{2}e^{iq}+i$$
 جوز النقطة I بالدوران r هوز النقطة B صورة النقطة B صورة النقطة B بالدوران P

ج)بين أن المستقيمين
$$(IJ)$$
 و (AB) متعامدان .

$$\begin{pmatrix} 1 \\ - \end{pmatrix}$$
 معتبها متجهتها $\begin{pmatrix} 1 \\ - \end{pmatrix}$ صورة النقطة $\begin{pmatrix} 1 \\ - \end{pmatrix}$ صورة النقطة $\begin{pmatrix} 1 \\ - \end{pmatrix}$ صورة النقطة $\begin{pmatrix} 1 \\ - \end{pmatrix}$

. [
$$BC$$
] بين أن النقطة A هي منتصف القطعة 0.25

التمرين الرابع: (8 نقط)

$$\int_{\mathcal{L}}^{\mathcal{L}} f(x) = \frac{-x \ln x}{1 + x^2} \; ; \; x > 0$$

$$\int_{\mathcal{L}}^{\mathcal{L}} f(0) = 0$$

المعرفة على
$$[0,\pm rac{1}{2}]$$
 بما يلي: I بما يلي:

$$[0,+rac{1}{2}]$$
 الدالة f متصلة على المجال f أيين أن الدالة f

$$[0,+rac{1}{4}]$$
 على المجال بائدرس إشارة $f(x)$ على المجال 0.25

$$\left(\forall x \in \square^*_+\right)$$
 $f\left(\frac{1}{x}\right) = -f\left(x\right)$ نين أن: 0.25

$$\mathbb{D},+rac{1}{4}$$
 بين أن الدالة f قابلة للاشتقاق على المجال $(-1,+1)$

الامتحان الوحني الموحد للبكالوريا – الحورة العاحية 2014 – الموضوع – NS 24 – الموضوع – ماحة : الرياضيات – شعبة العلوم الرياضية (أ) و(بم)	
$\left(\exists lpha \in \left]0,1\right[ight)$ $f'(lpha)=0$: بین أن $f'(lpha)=0$	0.5
$f'\left(\frac{1}{\alpha}\right) = 0$:د)استنتج أن	0.5
$F(x)=\int\limits_0^x f(t)dt$ يما يلي: $f(t)=0,+$ بما يلي: $F(x)=0$ بما يلي: $F(x)=0$	
ليكن (C) المنحنى الممثل للدالة F في معلم متعامد ممنظم.	
$(\forall t \in [1,+\infty[)$ $\frac{1}{2} \le \frac{t^2}{1+t^2} \le 1$:انحقق أن -1	0.5
$(\forall x \in [1, +\infty[) F(1) - \frac{1}{2}(\ln x)^2 \le F(x) \le F(1) - \frac{1}{4}(\ln x)^2$ بين أن:	1
$(F(x) = \int_0^1 f(t)dt - \int_1^x \frac{t^2}{1+t^2} \cdot \frac{\ln t}{t} dt$ (الاحظ أن:	
ج) أحسب $\lim_{x o +\infty} F(x)$ و $\lim_{x o +\infty} \frac{F(x)}{x}$ ثم اعط تأويلا هندسيا للنتيجة المحصل عليها.	1
$F'(x)$ بين أن الدالة F قابلة للاشتقاق على المجال $+ \{0,+\}$ ثم أحسب (2- أ)بين أن الدالة أ	0.5
$[0,+rac{1}{4}]$ ادرس تغيرات الدالة F على المجال	0.25
$ig(orall t\in ig]0,+\inftyig[ig)$ بين أن : $-t\ln t \leq rac{1}{e}$: بين أن	0.5
$\left(orall t \in \left[0, + \infty \right] \right) f\left(t \right) \leq rac{1}{e}$: ب)بين أن	0.25
$("x ightarrow p,+ \mbox{Ψ})$ استنتج أن: $F(x) < x > 0$	0.25
("n otin otin)	
$("n eq \cup)$ بین أن: $[0,1[$ $\cup \cup)$ بین أن:	0.5
. بين أن المتتالية $\left(u_{n} ight)_{n^{3}}$ تناقصية قطعا ثم استنتج أنها متقاربة	0.5
$\lim_{n \oplus + \frac{1}{4}} u_n \implies (\pi$	0.5

الصفحة	
5	NS 24
ادحرا	

الامتدان الوطني الموحد للبكالوريا – الدورة العاحية 2014 – الموضوع – ماحة : الرياضيات – هعبة العلوم الرياضية (أ) و(بم)

التمرين الخامس: (2 نقط)

$$g(x) = \frac{1}{x^2}e^{-\frac{1}{x}}$$
; $x > 0$ يغتبر الدالة العددية $g(0) = 0$ المعرفة على $g(0) = 0$:

$$[0,+rac{1}{2}]$$
 متصلة على المجال g متصلة و 0.5

$$L(x)=\int_{-x}^{1}g(t)dt$$
 نضع $(0,\pm 1)$ ، نضع $(x)=1$ ، نضع 2- لكل عدد حقيقي

$$[0,+rac{1}{2}]$$
 أ)بين أن الدالة L متصلة على المجال أ

$$x > 0$$
 من أجل باأحسب $L(x)$ من أجل 0.25

$$L(0)$$
 أحسب أ $\lim_{x \circledast 0^+} L(x)$ أحسب (0.5

.
$$s_n=rac{1}{n}$$
 ه g و g g نضع: g نضع اکبر من أو يساوي 1 نضع اکبر من أو يساوي 1 نضع المجتم g عدد صحيح طبيعي g اکبر من أو يساوي 1 نضع

بين أن المتتالية
$$(s_n)_{n-1}$$
 متقاربة ثم حدد نهايتها.

انتهى

الامتحان الوطني الموحد للبكالوريا

الدورة العادية **2014** عناصر الإجابة

المركز الوطنى للتقويم والامتحانات والتوجيه

NR 24

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب)	الشعبة أو المسلك

سلم التنقيط و عناصر الإجابة

سلم التنقيط	عناصر الإجابة	التمرين الأول
تمنح 0.25 نقطة	$a_{ m l}=31$ التحقق من أجل –	-1
تمنح 0.25 نقطة	$a_2^{}=331$ - التحقق من أجل -	
تمنح 0.5 نقطة	البرهان بالترجع أو أية طريقة صحيحة أخرى	-2
تمنح 0.5 نقطة	- تطبيق مبر هنة فيرما: 10و31 أوليان فيما بينهما [31]	-3
تمنح 0.25 نقطة	- الحصول على الجواب النهائي	
تمنح 0.25 نقطة	- استعمال نتيجتي السؤالين 2- و3-	-4
تمنح 0.5 نقطة	- تطبيق مبر هنة كوص للاستنتاج	
تمنح 0.5 نقطة	إذا وجد الزوج (x,y) فحسب مبرهنة بوزو فإن 31 و a_n أوليين فيما بينهما	-5
	و هو ما يناقض نتيجة السؤال 4-	
	و تقبل أية طريقة صحيحة أخرى.	
		التمرين الثاني
تمنح 0.5 نقطة	الخاصية المميزة لزمرة جزئية	-1
تمنح 0.25 نقطة	J^2 حساب -	-2
تمنح 0.5 نقطة	J^2 و J و الإستنتاج	
تمنح 0.5 نقطة	j تشاكل	([†] -3
تمنح 0.25 نقطة	$j\left(\mathfrak{t}^{*}\right) = E^{*}$	ب)
تمنح 0.5 نقطة	زمرة تبادلية و صورة زمرة تبادلية بتشاكل	(ट

NR 24

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2014 – عناصر الإجابة – ماحة: الرياضيات – شعبة العلوم الرياضية (أ) و(بم)

تمنح 0.5نقطة	توظيف توزيعية قانون الضرب " `" بالنسبة للجمع "+" في الحلقة	-4
	$(M_2(`),+,')$	
تمنح 0.5نقطة	من الأسئلة 1- و3-ج) و 4-	-5
		التمرين الثالث
تمنح 0.25نقطة	التحقق	(1
تمنح 0.25 نقطة	- تحديد حلي المعادلة	ب)
تمنح 0.25 نقطة لكل شكل	- الشكلين المثلثيين	
تمنح 0.5نقطة	تعامد المستقيمين	(1 -2
تمنح 0.25 نقطة	استقامية النقط	ب)
تمنح 0.25 نقطة	واسط القطعة	(ਣ
تمنح 0.25 نقطة	الصيغة العقدية للدوران تقبل حتى لو اقتصرت على صيغة غير مختصرة	(1 -3
تمنح 0.5نقطة	B لحق	ب)
تمنح 0.25 نقطة	تعامد المستقيمين	(ट
تمنح 0.25 نقطة	C لحق	-4
تمنح 0.25نقطة	[BC]منتصف A	-5
		التمرين الرابع
تمنح 0.25 نقطة	$]0,+\infty[$ على المجال المفتوح المجال الدالة f	(¹ -1- <i>I</i>
تمنح 0.25 نقطة	اتصال الدالة f على اليمين في 0 -	
تمنح 0.25 نقطة	f(x) إشارة	ب)
تمنح 0.25 نقطة	المتساوية	(1 -2
تمنح 0.25 نقطة	قابلية الاشتقاق	ب)
تمنح 0.5 نقطة	تطبيق مبر هنة رول على المجال [0,1]	(ट
تمنح 0.5 نقطة	الاستنتاج من السؤالين 2-أ) و2-ب)	(7
تمنح 0.5 نقطة	التحقق	(¹ -1- <i>II</i>
تمنح 0.25 نقطة	- الوصول إلى المتفاوتة المزدوجة	ب)

NR 24

الامتمان الوطبي الموحد للبالوريا – الدورة العادية 2014 – المناصر الإجابة المعدد الرياضيات – هعبة العلوم الرياضية (أ) و(بم)

	$\frac{1}{2} \int_{\xi}^{x} \frac{\ln t}{t} dt f \int_{\xi}^{x} \frac{t^{2}}{1+t^{2}} \frac{\ln t}{t} dt f \int_{\xi}^{x} \frac{\ln t}{t} dt$	
	1 1 1	
	x Int	
تمنح 0.25 نقطة	$\int_{1}^{x} \frac{lnt}{t} dt$ حساب التكامل - حساب	
تمنح 0.5 نقطة	- الوصول إلى النتيجة النهائية	
تمنح 0.25 نقطة	$\lim_{x \oplus + X} F(x)$	(ट
تمنح 0.5 نقطة	$\lim_{x \oplus + \frac{1}{4}} \frac{F(x)}{x} - \sum_{x \in \mathbb{R}} \frac{F(x)}{x}$	
تمنح 0.25 نقطة	- التأويل الهندسي	
تمنح 0.25 نقطة	و F و f هي المجال f و f هي المجال الشنقاق:الدالة f متصلة على المجال المجال f	([†] -2
	دالة اصلية للدالة f على هذا المجال .	
تمنح 0.25 نقطة	- حساب الدالة المشتقة	
تمنح 0.25 نقطة	تغيرات الدالة	ب)
تمنح 0.5 نقطة	المتفاوتة	(¹ -1- <i>III</i>
تمنح 0.25 نقطة	المتفاوتة	ب)
تمنح 0.25 نقطة	F(x) < x: النتيجة	(⋶
تمنح 0.5 نقطة	البرهان بالترجع أو أية طريقة صحيحة أخرى	(¹ -2
تمنح 0.25 نقطة	- المتتالية تناقصية قطعا	ب)
تمنح 0.25 نقطة	 المنتالية متقاربة 	
تمنح 0.5 نقطة	F(x) = x تحديد النهاية كالحل الوحيد للمعادلة	(€
		التمرين الخامس
تمنح 0.25 نقطة	اتصال الدالة g على المجال المفتوح $]\infty+,0[$	-1
تمنح 0.25 نقطة	المين في 0 على اليمين و g على اليمين المين الدالة g	
تمنح 0.25 نقطة	اتصال الدالة L على المجال $]\infty + \infty$ كدالة أصلية للدالة g على	(1 -2

NR 24

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2014 – عناصر الإجابة – ماحة: الرياضيات – شعبة العلوم الرياضية (أ) و(بم)

	$\left[0,+\infty ight[$ المجال	
تمنح 0.25 نقطة	x>0 من أجل $L(x)$ من أجل	ب)
تمنح 0.25 نقطة	$\lim_{x \to 0^+} L(x) = \frac{1}{e}$: حساب النهاية	(હ
تمنح 0.25 نقطة	الاستنتاج : بما أن الدالة L متصلة على اليمين في L فإن $L(0)=\lim_{x o 0^+}L(x)$	
تمنح 0.25 نقطة	الدالمة g متصلة على القطعة $[0,1]$ اذن المتتالية $(s_n)_n$ متقاربه – الدالم	-3
تمنح 0.25 نقطة	$\displaystyle \lim_{n \oplus + \mathbb{Y}} s_n = L(0) = rac{1}{e}$ - نهاية المنتالية هي -	