Lexical Analyzer

- Lexical Analyzer reads the source program character by character to produce tokens.
- Normally a lexical analyzer doesn't return a list of tokens at one shot, it returns a token when the parser asks a token from it.

1

Token

- Token represents a set of strings described by a pattern.
 - Identifier represents a set of strings which start with a letter continues with letters and digits
 - The actual string (newval) is called as *lexeme*.
 - Tokens: identifier, number, addop, delimeter, ...
- Since a token can represent more than one lexeme, additional information should be held for that specific lexeme. This additional information is called as the *attribute* of the token.
- For simplicity, a token may have a single attribute which holds the required information for that token.
 - For identifiers, this attribute a pointer to the symbol table, and the symbol table holds the actual attributes for that token.
- Some attributes:
 - <id,attr> where attr is pointer to the symbol table
 - <assgop,_> no attribute is needed (if there is only one assignment operator)
 - <num,val> where val is the actual value of the number.
- Token type and its attribute uniquely identifies a lexeme.
- *Regular expressions* are widely used to specify patterns.

Token, Patterns and Lexemes

- A token is a set of string over the source alphabet
- A pattern is a rule that describes that set.
- A lexemes is a sequence of characters matching that pattern.
 - Ex: float pi = 3.14
 - The substring pi is a lexeme for the token identifier

Example tokens, lexemes, patterns

Token Sample Lexemes		Informal description of pattern	
if	if	if	
While	While	while	
Relation	<, <=, = , <>, >>=	< or <= or = or <> or > or >=	
Id	count, sun, i, j, pi, D2	Letter followed by letters and digits	
Num	0, 12, 3.1416, 6.02E23	Any numeric constant	

Terminology of Languages

- Alphabet: a finite set of symbols (ASCII characters)
- String :
 - Finite sequence of symbols on an alphabet
 - Sentence and word are also used in terms of string
 - ϵ is the empty string
 - |s| is the length of string s.
- Language: sets of strings over some fixed alphabet
 - \emptyset the empty set is a language.
 - { ϵ } the set containing empty string is a language
 - The set of well-formed C programs is a language
 - The set of all possible identifiers is a language.
- Operators on Strings:
 - Concatenation: xy represents the concatenation of strings x and y. $s \varepsilon = s$ $\varepsilon s = s$
 - $s^n = s s s ... s (n times) s^0 = \varepsilon$

Operations on Languages

- Concatenation:
 - $L_1L_2 = \{ s_1s_2 | s_1 \in L_1 \text{ and } s_2 \in L_2 \}$
- Union
 - $L_1 \cup L_2 = \{ s \mid s \in L_1 \text{ or } s \in L_2 \}$
- Exponentiation:

$$-\quad L^0=\{\epsilon\} \qquad \quad L^1=L \qquad \qquad L^2=LL$$

• Kleene Closure

$$- L^* = \bigcup_{i=0}^{\infty} L^i$$

- Positive Closure
 - $L^+ = \bigcup_{i=1}^{\infty} L^i$

Example

•
$$L_1 = \{a,b,c,d\}$$
 $L_2 = \{1,2\}$

•
$$L_1L_2 = \{a1,a2,b1,b2,c1,c2,d1,d2\}$$

- $L_1 \cup L_2 = \{a,b,c,d,1,2\}$
- L_1^3 = all strings with length three (using a,b,c,d)
- L_1^* = all strings using letters a,b,c,d and empty string
- L_1^+ = doesn't include the empty string

Regular Expressions

- We use regular expressions to describe tokens of a programming language.
- A regular expression is built up of simpler regular expressions (using defining rules)
- Each regular expression denotes a language.
- A language denoted by a regular expression is called as a regular set.

Regular Expressions (Rules)

Regular expressions over alphabet Σ

Reg. Expr	Language it denotes
3	$\{\epsilon\}$
$a \in \Sigma$	{a}
$(\mathbf{r}_1) \mid (\mathbf{r}_2)$	$L(\mathbf{r}_1) \cup L(\mathbf{r}_2)$
$(\mathbf{r}_1)(\mathbf{r}_2)$	$L(r_1) L(r_2)$
$(r)^*$	$(L(r))^*$
(r)	L(r)

- $\bullet \quad (r)^+ = (r)(r)^*$
- (r)? = $(r) \mid \epsilon$

Regular Expressions (cont.)

We may remove parentheses by using precedence rules.

```
- * highest
- concatenation next
- | lowest
```

• $ab^*|c$ means $(a(b)^*)|(c)$

• Ex:

```
 \begin{array}{lll} - & \Sigma = \{0,1\} \\ - & 0|1 => \{0,1\} \\ - & (0|1)(0|1) => \{00,01,10,11\} \\ - & 0^* => \{\epsilon,0,00,000,0000,....\} \\ - & (0|1)^* => \mbox{ all strings with 0 and 1, including the empty string} \end{array}
```

Regular Definitions

- To write regular expression for some languages can be difficult, because their regular expressions can be quite complex. In those cases, we may use *regular definitions*.
- We can give names to regular expressions, and we can use these names as symbols to define other regular expressions.
- A *regular definition* is a sequence of the definitions of the form:

 $d_1 \rightarrow r_1$

 $d_2 \rightarrow r_2$

 $d_n \rightarrow r_n$

where d_i is a distinct name and

r_i is a regular expression over symbols in

Regular Definitions (cont.)

• Ex: Identifiers in Pascal

letter
$$\rightarrow$$
 A | B | ... | Z | a | b | ... | z
digit \rightarrow 0 | 1 | ... | 9
id \rightarrow letter (letter | digit) *

- If we try to write the regular expression representing identifiers without using regular definitions, that regular expression will be complex.

$$(A|...|Z|a|...|z) ((A|...|Z|a|...|z) | (0|...|9))^*$$

• Ex: Unsigned numbers in Pascal

```
digit \rightarrow 0 | 1 | ... | 9
digits \rightarrow digit +
opt-fraction \rightarrow ( . digits ) +
opt-exponent \rightarrow ( E (+|-)+ digits ) +
unsigned-num \rightarrow digits opt-fraction opt-exponent
```

Finite Automata

- A *recognizer* for a language is a program that takes a string x, and answers "yes" if x is a sentence of that language, and "no" otherwise.
- We call the recognizer of the tokens as a *finite automaton*.
- A finite automaton can be: deterministic(DFA) or non-deterministic (NFA)
- This means that we may use a deterministic or non-deterministic automaton as a lexical analyzer.
- Both deterministic and non-deterministic finite automaton recognize regular sets.
- Which one?
 - deterministic faster recognizer, but it may take more space
 - non-deterministic slower, but it may take less space
 - Deterministic automatons are widely used lexical analyzers.
- First, we define regular expressions for tokens; Then we convert them into a DFA to get a lexical analyzer for our tokens.
 - Algorithm1: Regular Expression → NFA → DFA (two steps: first to NFA, then to DFA)
 - Algorithm2: Regular Expression → DFA (directly convert a regular expression into a DFA)

Non-Deterministic Finite Automaton (NFA)

- A non-deterministic finite automaton (NFA) is a mathematical model that consists of:
 - S a set of states
 - $-\Sigma$ a set of input symbols (alphabet)
 - move a transition function move to map state-symbol pairs to sets of states.
 - s₀ a start (initial) state
 - F a set of accepting states (final states)
- ε- transitions are allowed in NFAs. In other words, we can move from one state to another one without consuming any symbol.
- A NFA accepts a string x, if and only if there is a path from the starting state to one of accepting states such that edge labels along this path spell out x.

NFA (Example)

Transition graph of the NFA

0 is the start state
$$s_0$$

{2} is the set of final states F
 $\Sigma = \{a,b\}$
 $S = \{0,1,2\}$
Transition Function: a b
0 $\{0,1\}$ $\{0$

The language recognized by this NFA is $(a|b)^*$ a b

Deterministic Finite Automaton (DFA)

- A Deterministic Finite Automaton (DFA) is a special form of a NFA.
 - no state has ε- transition
 - for each symbol a and state s, there is at most one labeled edge a leaving s. i.e. transition function is from pair of state-symbol to state (not set of states)

The language recognized by this DFA is also (a|b)* a b

Implementing a DFA

• Le us assume that the end of a string is marked with a special symbol (say eos). The algorithm for recognition will be as follows: (an efficient implementation)

```
s \leftarrow s_0
                          { start from the initial state }
                          { get the next character from the input string }
c ← nextchar
while (c != eos) do
                          { do until the en dof the string }
   begin
       s \leftarrow move(s,c)
                         { transition function }
       c ← nextchar
   end
                          { if s is an accepting state }
if (s in F) then
   return "yes"
else
   return "no"
```

Implementing a NFA

```
S \leftarrow \epsilon-closure(\{s_0\})
                                         { set all of states can be accessible from s_0 by \varepsilon-transitions }
c ← nextchar
while (c != eos) {
    begin
         s \leftarrow \epsilon-closure(move(S,c)) { set of all states can be accessible from a state in S
        c ← nextchar
                                           by a transition on c }
    end
if (S \cap F := \Phi) then
                                         { if S contains an accepting state }
    return "yes"
else
    return "no"
```

• This algorithm is not efficient.

Converting A Regular Expression into A NFA (Thomson's Construction)

- This is one way to convert a regular expression into a NFA.
- There can be other ways (much efficient) for the conversion.
- Thomson's Construction is simple and systematic method. It guarantees that the resulting NFA will have exactly one final state, and one start state.
- Construction starts from simplest parts (alphabet symbols).

 To create a NFA for a complex regular expression, NFAs of its sub-expressions are combined to create its NFA,

Thomson's Construction (cont.)

• To recognize an empty string ε

ullet To recognize a symbol a in the alphabet Σ

- If $N(r_1)$ and $N(r_2)$ are NFAs for regular expressions r_1 and r_2
 - For regular expression $r_1 | r_2$

NFA for $r_1 | r_2$

Thomson's Construction (cont.)

• For regular expression $r_1 r_2$

Final state of $N(r_2)$ become final state of $N(r_1r_2)$

NFA for $r_1 r_2$

• For regular expression r*

Thomson's Construction (Example - (a|b) * a)

Converting a NFA into a DFA (subset construction)

```
put \varepsilon-closure(\{s_0\}) as an unmarked state into the set of DFA (DS)
while (there is one unmarked S_1 in DS) do
                                                                 \varepsilon-closure(\{s_0\}) is the set of all states can be accessible
    begin
                                                                 from s_0 by \epsilon-transition.
        mark S<sub>1</sub>
        for each input symbol a do
                                                             set of states to which there is a transition on
                                                              a from a state s in S_1
           begin
               S_2 \leftarrow \epsilon-closure(move(S_1,a))
              if (S_2 \text{ is not in DS}) then
                    add S<sub>2</sub> into DS as an unmarked state
               transfunc[S_1,a] \leftarrow S_2
           end
      end
```

- a state S in DS is an accepting state of DFA if a state in S is an accepting state of NFA
- the start state of DFA is ε -closure($\{s_0\}$)

Converting a NFA into a DFA (Example)

Converting a NFA into a DFA (Example – cont.)

 S_0 is the start state of DFA since 0 is a member of $S_0 = \{0,1,2,4,7\}$ S_1 is an accepting state of DFA since 8 is a member of $S_1 = \{1,2,3,4,6,7,8\}$

Converting Regular Expressions Directly to DFAs

- We may convert a regular expression into a DFA (without creating a NFA first).
- First we augment the given regular expression by concatenating it with a special symbol #.
 - r → (r)# augmented regular expression
- Then, we create a syntax tree for this augmented regular expression.
- In this syntax tree, all alphabet symbols (plus # and the empty string) in the augmented regular expression will be on the leaves, and all inner nodes will be the operators in that augmented regular expression.
- Then each alphabet symbol (plus #) will be numbered (position numbers).

Regular Expression → **DFA** (cont.)

$$(a|b)^* a \rightarrow (a|b)^* a #$$

augmented regular expression

Syntax tree of (a|b)* a #

- each symbol is numbered (positions)
- each symbol is at a leave
- inner nodes are operators

followpos

Then we define the function **followpos** for the positions (positions assigned to leaves).

followpos(i) -- is the set of positions which can follow the position i in the strings generated by the augmented regular expression.

followpos is just defined for leaves, it is not defined for inner nodes.

firstpos, lastpos, nullable

- To evaluate followpos, we need three more functions to be defined for the nodes (not just for leaves) of the syntax tree.
- **firstpos(n)** -- the set of the positions of the **first** symbols of strings generated by the sub-expression rooted by n.
- lastpos(n) -- the set of the positions of the last symbols of strings generated by the sub-expression rooted by n.
- **nullable(n)** -- *true* if the empty string is a member of strings generated by the sub-expression rooted by n *false* otherwise

How to evaluate firstpos, lastpos, nullable

<u>n</u>	nullable(n)	firstpos(n)	<u>lastpos(n)</u>
leaf labeled ε	true	Φ	Φ
leaf labeled with position i	false	{i}	{i}
c_1 c_2	nullable(c ₁) or nullable(c ₂)	$firstpos(c_1) \cup firstpos(c_2)$	$lastpos(c_1) \cup lastpos(c_2)$
c_1 c_2	nullable(c ₁) and nullable(c ₂)	if $(nullable(c_1))$ firstpos $(c_1) \cup firstpos(c_2)$ else firstpos (c_1)	if $(nullable(c_2))$ $lastpos(c_1) \cup lastpos(c_2)$ $else \ lastpos(c_2)$
* c ₁	true	firstpos(c ₁)	lastpos(c ₁)

How to evaluate followpos

- Two-rules define the function followpos:
- 1. If **n** is concatenation-node with left child **c**₁ and right child **c**₂, and **i** is a position in **lastpos(c₁)**, then all positions in **firstpos(c₂)** are in **followpos(i)**.
- 2. If **n** is a star-node, and **i** is a position in **lastpos(n)**, then all positions in **firstpos(n)** are in **followpos(i)**.
- If firstpos and lastpos have been computed for each node, followpos of each position can be computed by making one depth-first traversal of the syntax tree.

Example -- $(a | b)^* a \#$

Then we can calculate followpos

followpos(1) =
$$\{1,2,3\}$$

followpos(2) = $\{1,2,3\}$
followpos(3) = $\{4\}$
followpos(4) = $\{\}$

• After we calculate follow positions, we are ready to create DFA for the regular expression.

Algorithm (RE → DFA)

- Create the syntax tree of (r) #
- Calculate the functions: followpos, firstpos, lastpos, nullable
- Put firstpos(root) into the states of DFA as an unmarked state.
- while (there is an unmarked state S in the states of DFA) do
 - mark S
 - for each input symbol a do
 - let $s_1,...,s_n$ are positions in S and symbols in those positions are a
 - S' \leftarrow followpos(s₁) $\cup ... \cup$ followpos(s_n)
 - $move(S,a) \leftarrow S'$
 - if (S' is not empty and not in the states of DFA)
 - put S' into the states of DFA as an unmarked state.

- the start state of DFA is firstpos(root)
- the accepting states of DFA are all states containing the position of #

Example --
$$(a | b)^* a #$$

$$followpos(1)=\{1,2,3\}$$
 $followpos(2)=\{1,2,3\}$ $followpos(3)=\{4\}$ $followpos(4)=\{\}$

$$S_1$$
=firstpos(root)={1,2,3}
 \downarrow mark S_1

a: followpos(1)
$$\cup$$
 followpos(3)={1,2,3,4}=S₂

b: followpos(2)=
$$\{1,2,3\}=S_1$$
 move(S_1,b)= S_1

$$\bigvee$$
 mark S_2

a: followpos(1)
$$\cup$$
 followpos(3)={1,2,3,4}=S₂ move(S₂,a)=S₂

b: followpos(2)=
$$\{1,2,3\}=S_1$$
 move(S_2,b)= S_1

start state: S₁

accepting states: {S₂}

 $move(S_1,a)=S_2$

Example -- $(a | \epsilon) b c^* \#$

$$followpos(1)=\{2\}$$
 $followpos(2)=\{3,4\}$ $followpos(3)=\{3,4\}$ $followpos(4)=\{\}$

$$S_1$$
=firstpos(root)={1,2}

$$\downarrow \text{ mark } S_1$$

a: followpos(1)=
$$\{2\}=S_2$$

$$move(S_1,a)=S_2$$

b: followpos(2)=
$$\{3,4\}=S_3$$

$$move(S_1,b)=S_3$$

$$\downarrow$$
 mark S_2

b: followpos(2)=
$$\{3,4\}=S_3$$

$$move(S_2,b)=S_3$$

$$\downarrow$$
 mark S_3

c: followpos(3)=
$$\{3,4\}=S_3$$

$$move(S_3,c)=S_3$$

start state: S₁

accepting states: $\{S_3\}$

Minimizing Number of States of a DFA

- partition the set of states into two groups:
 - G_1 : set of accepting states
 - G₂: set of non-accepting states
- For each new group G
 - partition G into subgroups such that states s_1 and s_2 are in the same group iff for all input symbols a, states s_1 and s_2 have transitions to states in the same group.
- Start state of the minimized DFA is the group containing the start state of the original DFA.
- Accepting states of the minimized DFA are the groups containing the accepting states of the original DFA.

Minimizing DFA - Example

$$G_1 = \{2\}$$

 $G_2 = \{1,3\}$

G₂ cannot be partitioned because

$$move(1,a)=2$$
 $move(1,b)=3$

$$move(1,b)=3$$

$$move(3,a)=2$$
 $move(2,b)=3$

$$move(2,b)=3$$

So, the minimized DFA (with minimum states)

Minimizing DFA – Another Example

So, the minimized DFA

Some Other Issues in Lexical Analyzer

- The lexical analyzer has to recognize the longest possible string.
 - Ex: identifier newval -- n ne new newv newva newval
- What is the end of a token? Is there any character which marks the end of a token?
 - It is normally not defined.
 - If the number of characters in a token is fixed, in that case no problem: +-
 - But < \rightarrow < or <> (in Pascal)
 - The end of an identifier: the characters cannot be in an identifier can mark the end of token.
 - We may need a lookhead
 - In Prolog: p:- X is 1. p:- X is 1.5.

 The dot followed by a white space character can mark the end of a number. if that is not the case, the dot must be treated as a part of the number.

But

Some Other Issues in Lexical Analyzer (cont.)

• Skipping comments

- Normally we don't return a comment as a token.
- We skip a comment, and return the next token (which is not a comment) to the parser.
- So, the comments are only processed by the lexical analyzer, and the don't complicate the syntax of the language.

Symbol table interface

- symbol table holds information about tokens (at least lexeme of identifiers)
- how to implement the symbol table, and what kind of operations.
 - hash table open addressing, chaining
 - putting into the hash table, finding the position of a token from its lexeme.
- Positions of the tokens in the file (for the error handling).