C1 Without Diagram Easy Answers P3

1 (i) *EITHER*: Solve the quadratic and use
$$\sqrt{-1} = i$$
 M1

Obtain roots $\frac{1}{2} + i \frac{\sqrt{3}}{2}$ and $\frac{1}{2} - i \frac{\sqrt{3}}{2}$ or equivalent

OR: Substitute $x + iy$ and solve for x or y M1

Obtain correct roots A1 2

(ii) State that the modulus of each root is equal to 1 State that the arguments are $\frac{1}{3}\pi$ and $-\frac{1}{3}\pi$ respectively $B1\sqrt{+}B1\sqrt{3}$ [Accept degrees and $\frac{5}{3}\pi$ instead of $-\frac{1}{3}\pi$. Accept a modulus in the form $\sqrt{\frac{p}{q}}$ or \sqrt{n} , where p, q, n are integers. An answer which only gives roots in modulus-argument form earns B1 for both the implied moduli and B1 for both the implied arguments.]

(iii) EITHER: Verify
$$z^3 = -1$$
 for each root B1 + B1

OR: State $z^3 + 1 = (z+1)(z^2 - z + 1)$

Justify the given statement B1

OR: Obtain $z^3 = z^2 - z$

Justify the given statement B1

B1

2

9709/03/M/J/04

B1√

)	(a) (i) <i>EIT</i>	HER: Carry out multiplication of numerator and denominator by $1 + 2i$, or equivalen	t M1	
		Obtain answer $2 + i$, or any equivalent of the form $(a + ib)/c$	A1	
	OR1	: Obtain two equations in x and y , and solve for x or for y	M1	
		Obtain answer 2 + i, or equivalent	A1	
	OR2	Using the correct processes express z in polar form	M1	
		Obtain answer $2 + i$, or equivalent	A1	[2]
	(ii) Stat	the that the modulus of z is $\sqrt{5}$ or 2.24	B1	
	State that the argument of z is 0.464 or 26.6°		B1	[2]
	(b) EITHER: Square $x + iy$ and equate real and imaginary parts to 5 and -12 respectively		M1	
		Obtain $x^2 - y^2 = 5$ and $2xy = -12$	A1	
		Eliminate one variable and obtain an equation in the other	M1	
		Obtain $x^4 - 5x^2 - 36 = 0$ or $y^4 + 5y^2 - 36 = 0$, or 3-term equivalent	A1	
		Obtain answer 3 –2i	A1	
		Obtain second answer $-3 + 2i$ and no others	A1	
	[SR: Allow a solution with $2xy = 12$ to earn the second A1 and thus a maximum of 3/6.]			
	OR:	Convert 5 – 12i to polar form (R, θ)	M1	
		Use the fact that a square root has the polar form $(\sqrt{R}, \frac{1}{2}\theta)$	M1	
		Obtain one root in polar form, e.g. $(\sqrt{13}, -0.588)$ or $(\sqrt{13}, -33.7^{\circ})$	A1 + A1	
		Obtain answer 3 –2i	A1	
		Obtain answer $-3 + 2i$ and no others	A1	[6]

2

© UCLES 2007 9709/03/O/N/07