Team 01 CIT433027

Learning What Matters: A Problem in Robotic Reinforcement Learning

Baran Ozer Serife Damla Konur

Technical University of Munich {baran.oezer, konur.damla}@tum.de

Simulation Environments

AntBulletEnv-v0

LunarLanderContinuous-v3

Challenge

 Equip Proximal Policy Optimization (PPO) with selfattention to ignore noise injected into observations

Curriculum

- Baseline establisment with vanilla PPO
- Obtain upper-bound performance
- Integrate frame-stacking
- Integrate self-attention mechanism
- Evaluate performance against baseline

Proposed Network Architecture

Attention Architecture Investigation

- Frame-stack size = 4 selected
- Progressively added and ablated self-attention mechanisms
 - Feature-wise
 - Bottlenecked
 - Hard-gated
 - Temporal
- Different variants replaced the default MLP in value and/or policy nets
- To see which design best preserves performence under noise

Feature-Attention

Hard-Gated Attention

- Insert self-attention block inside every single observation frame
- Lets network learn correlations among raw features

Attended value overwrites the original

Forces network to replace noisy

dimensions instead of re-weighting

Selective-Attention

- Insert self-attention block inside every single observation frame
- The output is squeezed through a bottleneck
- Forces network to compress useful features

Frame-Attention

- Treats every stacked frame as a token
- Applies temporal attention across frame-stacked observations

Evaluation Against Baseline

- Policy Architecture:
 - Frame Attention Policy
- Observation Input:
 - Frame-stack size = 4
- Evaluation Protocol:
 - 3 seeds per setting, identical PPO hyper-parameters

• Ablations:

- Different noise types
- Different number of noisy dimensions

Noise Injection:

- Ramp noise: Linearly increasing by 0.001 at each step, resetting to zero after episode termination
- Uniform noise: Random noise sampled per feature from the range [-10, 10]
- Gaussian noise: Gaussian noise sampled per feature with std=1

Baseline

Results

Conclusion / Success Factors

- Frame Attention improves PPO robustness under ramp and uniform noise
- Enables dynamic noise filtering
- Integrates cleanly into standard RL pipelines with minimal overhead

Future

- Improve performance under Gaussian noise
- Deploy on real robots with real-world sensor noise