(2.1)
$$p(f+g) \le p(f) + p(g)$$
 (f, g \in E)

(2.2)
$$p(\lambda f) = \lambda p(f)$$
 ($f \in E, \lambda \ge 0$).

The continuity of $\,p\,$ implies that there exists a constant $\,c\,$ $^>\,$ 0 such that

(2.3)
$$|p(f)| \le c||f||$$
 (f \in E).

Moreover, it follows from (2.1) and (2.2) that

(2.4)
$$p(f) + p(-f) \ge p(0) = 0$$
 (f \in E).

A bounded operator T on E is called p-contractive if p(Tf) \leq p(f) for all f \in E . Similarly, a semigroup $(T(t))_{t\geq 0}$ is called p-contractive if T(t) is p-contractive for all $t\geq 0$. Of course, the most important case we have in mind in this section is the case when p is the norm function N given by N(f) = ||f|| (f \in E). An N-contractive operator is just a contraction in the usual sense.

Remark. However in Chapter B-II and C-II it will be important to dispose of a variety of sublinear functionals other than N . For example, we will consider N⁺ on C[0,1] given by N⁺(f) = $\sup_{\mathbf{x} \in [0,1]} f(\mathbf{x})$. Then a bounded operator T is N⁺-contractive if and only if T is positive and $\|T\| \le 1$.

We first want to solve the following problem. Given the generator A of a semigroup $(T(t))_{t\geq 0}$ find a condition on A which is equivalent to T(t) being p-contractive for all $t\geq 0$.

The subdifferential dp of p in f is defined by

(2.5)
$$dp(f) = \{ \phi \in E' : \langle g, \phi \rangle \leq p(g) \text{ for all } g \in E, \\ \langle f, \phi \rangle = p(f) \}.$$

It follows from the Hahn-Banach theorem that $dp(f) \neq \emptyset$ for all $f \in E$.

<u>Definition</u> 2.1. An operator A on E is called p-<u>dissipative</u> if for all $f \in D(A)$ there exists $\phi \in dp(f)$ such that $\langle Af, \phi \rangle \leq 0$; A is called <u>strictly</u> p-dissipative if for all $f \in D(A)$ the inequality $\langle Af, \phi \rangle \leq 0$ holds for <u>all</u> $\phi \in dp(f)$.