Review: Sampling December 13, 2019

Lectures 13 and 14 covered sampling. Here are some practice problems for review.

Problem 1 (Nyquist frequency) Can the following signals be reconstructed with sinc interpolation? If so, what is the minimum frequency ω_s at which the signal should be sampled?

(a)
$$x(t) = \cos(2\pi t) + \sin(\pi t)$$

(b)
$$x(t) = rect(t)$$

(c)
$$x(t) = \operatorname{sinc}(t)$$

(d)
$$x(t) = \operatorname{sinc}(t) * \operatorname{sinc}(t)$$

(e)
$$x(t) = sinc^2(t)$$

(f)
$$x(t) = e^{-t^2}$$

Problem 2 (Aliasing) A real analog signal x(t) has CTFT $X(j\omega)$:

We define the impulse train

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

for sampling rate T.

- (a) Let $\omega_N = \frac{2\pi}{T_N}$ be the Nyquist frequency corresponding to a signal with the bandwidth of x(t) above. What is T_N ? Sketch $P(j\omega)$, the CTFT of p(t), when $T = T_N$.
- (b) Sketch $X_N(j\omega)$, the CTFT of $x_N(t) = x(t)p(t)$, when $T = T_N$.
- (c) Let $x_A(t)$ be x(t) sampled at frequency $\omega_s = 2\omega_N$. Sketch $X_A(j\omega)$.

- (d) Let $x_B(t)$ be x(t) sampled at frequency $\omega_s = \frac{3\omega_0}{2}$. Sketch $X_B(j\omega)$. Indicate the region where aliasing occurs.
- (e) Sketch $H(j\omega)$, the the CTFT of h(t), the ideal reconstruction filter for a signal with the same bandwidth as x(t).
- (f) Draw $X_{BR}(j\omega)$, the CTFT of $x_{BR}(t) = x_B(t) * h(t)$.
- (g) Suppose that instead of the spectrum given above, we had $x(t) = \cos(\omega_0 t)$. Now what is $X_{BR}(j\omega)$?
- (h) For $x(t) = \cos(\omega_0 t)$, draw x(t) and $x_{BR}(t)$ on the same plot. Circle the points where x(t) was sampled to generate $x_B(t)$.

Problem 3 (Downsampling and Upsampling) Consider a signal x(t) with the following spectrum:

Let $x_A[n]$ be the vector of samples taken from x(t) with frequency $\omega_A = 4\omega_0$.

- (a) Sketch $X_A(e^{j\Omega})$, the DTFT of $x_A[n]$.
- (b) Let $x_B[n] = x_A[2n]$. How would you obtain $x_B[n]$ by sampling x(t), i.e., to what sampling rate T does $x_B[n]$ correspond? Sketch $X_B(e^{j\Omega})$. Is there aliasing?
- (c) Let $x_C[n] = x_A[3n]$. What is T for this sampled signal relative to x(t)? Sketch $X_C(e^{j\Omega})$. Is there aliasing?
- (d) Let $x_D[2n] = x_A[n]$ and $x_D[2n+1] = 0$. Devise a scheme to recover x(t) from $x_D[n]$ without downsampling. Is there aliasing?

Problem 4 (Uniform Sampling) This problem was inspired by 5.10 from Osgood (2019), *Lectures on the Fourier Transform and Its Applications*.

Suppose you are sampling a real signal x(t) with the spectrum as given in Problem 2 above for $\omega_0 = \pi$. You take evenly spaced samples, but they are not necessarily centered at zero. Match the impulse trains p(t) used for sampling to the resulting spectra of the sampled signal $x_S(t) = x(t)p(t)$.

