香港考試局 HONG KONG BXAMINATIONS AUTHORITY

一九九一年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1991

> 附加數學卷二 ADDITIONAL MATHEMATICS PAPER II

> > 評卷參考 MARKING SCHEME

這份內部文件,只限閱卷員參閱,不得以任何形式翻印。

This is a restricted document.

It is mean for use by markers of this paper for marking purposes only.

Reproduction in any form is strictly prohibited.

It is highly undesirable that this marking scheme should fall into the hands of students. They are likely to regard it as a set of model answers, which it certainly is not.

Markers should therefore resist pleas from their students to have access to this document. Making it available to students vould constitute misconduct on the part of the marker.

本評卷參考並非標準答案,故極不宜 落於學生手中,以免引起誤會。

遇有學生求取此文件時, 閱卷員應嚴 予拒絕。閱卷員如向學生披露本評卷參考 內容, 即達背閱卷員守則。

©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1991

RESTRICTED 内部文件

P.1

#### GENERAL INSTRUCTIONS TO MARKERS

- It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method. <u>In general, a correct answer merits</u> all the marks allocated to that part, provided that the method used is sound.
- In a question consisting of several parts each depending on the previous parts, marks should be awarded to steps or methods correctly deduced from previous erroneous answers. However, marks for the corresponding answer should NOT be awarded. In the marking scheme, 'M' marks are awarded for showing correct method use, and 'A' marks are awarded for the accuracy of the answers.
- 3. The symbol (pp-1) should be used to denote marks deducted for poor presentation (p.p.). Marks entered in the box should be the net total scored on that page. Note the following points:
  - (a) At most deduct 1 mark for p.p. in each question, up to a maximum of 3 marks for the whole paper.
  - (b) For similar p.p., deduct only 1 mark for the first time that it occurs, i.e. do not penalise candidates twice in the whole paper for the same p.p.
- 4. Numerical answers should be given in exact value unless otherwise specified in the question. However answers not in exact values would be accepted this year provided that they are correct to at least 3 significant figures.

|    | KESTRICTED PARKATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------|
| 1. | (a) $(1 + x + ax^2)^8 = [1 + x(1 + ax)]^8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | For grouping terms.                                                |
|    | $= 1 + {}_{8}C_{1}x(1 + ax) + {}_{8}C_{2}x^{2}(1 + ax)^{2} + {}_{8}C_{3}x^{3}(1 + ax)^{3} + \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | (pp-1) for omitting dots in all expressions                        |
|    | .: k <sub>i</sub> = 8a + 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1A      | Accept <sub>8</sub> C <sub>1</sub> a + <sub>8</sub> C <sub>2</sub> |
|    | $k_2 = 56a + 56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1A      | $2_8C_2 + _8C_3$                                                   |
|    | (b) $k_1 = 8a + 28 = 4$ $\frac{1}{2} \times \frac{1}{2} \times $ |         |                                                                    |
|    | a = -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1A      |                                                                    |
|    | $k_2 = 56(-3) + 56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                    |
|    | = -112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1A<br>5 |                                                                    |
| 2. | $\int_{a}^{\pi/2} (\sin x + \cos x)^2 dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 直移。陰平夏間。                                                           |
|    | <b>40</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                    |
|    | $= \int_0^{\pi/2} (\sin^2 x + 2\sin x \cos x + \cos^2 x) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1A      |                                                                    |
|    | $= \int_0^{\pi/2} (1 + 2\sin x \cos x) dx \qquad OR = \int_0^{\pi/2} (1 + \sin 2x) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1A      |                                                                    |
|    | $= [x + \sin^2 x]_0^{\pi/2} $ $= [x - \frac{1}{2}\cos 2x]_0^{\pi/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1A+1A   |                                                                    |
|    | $=\frac{\pi}{2}+1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1A      | Accept 2.57                                                        |
|    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5       |                                                                    |
| 3. | $\cos 4\theta + \cos 2\theta = \cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                    |
|    | $2\cos 3\theta \cos \theta = \cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1A      |                                                                    |
|    | $\cos\theta = 0$ or $\cos 3\theta = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1A+1A   |                                                                    |
|    | $3\theta = 2n\pi \pm \frac{\pi}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                                                    |
|    | $\theta = 2n\pi \pm \frac{\pi}{2} \qquad \qquad \theta = \frac{2n\pi}{3} \pm \frac{\pi}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1A+17   | 360n°±90°<br>(or (2n + 1)90°),                                     |
|    | $(or(2n+1)\frac{\pi}{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 120n°±20°                                                          |
|    | (n being any integer.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 建筑是这一样的,然后是                                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5       | 4                                                                  |
|    | 4 . 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                                                                    |
| 4. | $\left \frac{4+3k}{\sqrt{(2-k)^2+(1+2k)^2}}\right =1 \qquad \left(\text{or}\frac{4+3k}{\sqrt{(2-k)^2+(1+2k)^2}}=\pm 1\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1A      | Omit absolute sign (pp-1)                                          |
|    | $(4 + 3k)^2 = (2 - k)^2 + (1 + 2k)^2$<br>$4k^2 + 24k + 11 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                                    |
|    | $k = -\frac{1}{2}  \text{or}  \frac{-11}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1A+1    | A                                                                  |
|    | Equations of lines: $x = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1A      | 3 5                                                                |
|    | 3x - 4y + 5 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1A      | $y = \frac{3}{4}x + \frac{5}{4}$                                   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5       | +                                                                  |
| _  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +       |                                                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1       | 1                                                                  |

5. (a) 
$$\frac{dy}{dx} = 4 - 2x$$
  
 $y = 4x - x^2 + c$   
Subs. (1, 0)  
 $c = -3$   
 $\therefore y = -x^2 + 4x - 3$   
(b)  $y = 0$  at  $x = 1$  or  $3$   
Area  $= \int_{1}^{3} (-x^2 + 4x - 3) dx$ 



1A

1A

Area = 
$$\int_{1}^{3} (-x^{2} + 4x - 3) dx$$
  
=  $\left[\frac{-x^{3}}{3} + 2x^{2} - 3x\right]_{1}^{3}$   
=  $(-9 + 18 - 9) - \left(-\frac{1}{3} + 2 - 3\right)$   
=  $\frac{4}{3}$ 







$$OB = \frac{1}{2}\sqrt{4^2 + 4^2} = 2\sqrt{2}$$
1A

$$\sin \frac{\angle BXD}{2} = \frac{OB}{BX}$$

$$= \frac{2\sqrt{2}}{2\sqrt{3}}$$

$$\angle BXD = 109.5^{\circ}$$
1M

| Į.                                                                           |            |
|------------------------------------------------------------------------------|------------|
| Alternative solution for (b)                                                 |            |
| $BX = DX = 2\sqrt{3}$                                                        | 1A         |
| $BD = 4\sqrt{2}$                                                             | 1A         |
| $\cos \angle BXD = \frac{BX^2 + DX^2 - BD^2}{2BX \cdot DX}$                  |            |
| $=\frac{(2\sqrt{3})^2+(2\sqrt{3})^2-(4\sqrt{2})^2}{2(2\sqrt{3})(2\sqrt{3})}$ | 1M         |
| = -0.3333<br>∠BXD= 109.5°                                                    | 1 <b>A</b> |
|                                                                              |            |



For cosine rule

7. (a) For 
$$n = 1$$
, L.H.S. =  $1^2 = 1$ 

R.H.S. = 
$$\frac{1}{6}$$
 (1) (2) (3) = 1

... the statement is true for n = 1

Assume 
$$1^2 + 2^2 + ... + k^2 = \frac{1}{6}k(k+1)(2k+1)$$
  
(for some +ve integer k)

Then  $1^2 + 2^2 + \ldots + k^2 + (k+1)^2$ 

$$= \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$$

$$= \frac{1}{6} (k+1) [k(2k+1) + 6(k+1)]$$

$$=\frac{1}{6}(k+1)(k+2)(2k+3)$$

: the statement is also true for 
$$n = k + 1$$
 (if it is true for  $n = k$ )

$$\therefore$$
 (By the principle of mathematical induction) the statement is true for all +ve integers  $n$ 

(b) 
$$1x^2 + 2x^3 + \dots + n(n+1)$$

$$= 1x(1 + 1) + 2x(2 + 1) + \dots + nx(n + 1)$$

$$= (1^2 + 2^2 + \ldots + n^2) + (1 + 2 + \ldots + n).$$

$$= \frac{1}{6}n(n+1)(2n+1) + \frac{1}{2}n(n+1)$$

$$= \frac{1}{3}n(n+1)(n+2)$$

1

1

1

1<u>A</u>

$$\frac{1}{3}(n^3+3n^2+2n)$$



1A  $x = 1 + s\cos\theta$ 9. (a)  $y = 2 + ssin\theta$ Subs.  $x = 1 + s\cos\theta$ ,  $y = 2 + s\sin\theta$  into C,  $(1 + s\cos\theta)^2 + (2 + s\sin\theta)^2 - 6(1 + s\cos\theta) - 10(2 + s\sin\theta) + 30 = 0$ 1M  $x = 1 + s_1 \cos\theta$  $s^2 - (4\cos\theta + 6\sin\theta)s + 9 = 0$  $y = 2 + s_1 \sin \theta$ Since L and C intersects at H and K, so  $s_1$  and  $s_2$ Similarly for subs.  $x = 1 + s_2 \cos \theta$   $y = 2 + s_2 \sin \theta$ are the roots of the above equation. 1A  $HK^2 = (s_2 - s_1)^2$ (C) 1A  $= (s_1 + s_2)^2 - 4s_1s_2$  $= (4\cos\theta + 6\sin\theta)^2 - 36$ 1A  $= 16\cos^2\theta + 48\sin\theta\cos\theta + 36\sin^2\theta - 36$ =  $48\sin\theta\cos\theta$  -  $20\cos^2\theta$ 4 1M (d) HK = 0 $48\sin\theta\cos\theta - 20\cos^2\theta = 0$  $\cos\theta = 0$  or  $\tan\theta = \frac{5}{12}$ 1A+1A Equations of tangent : 2A x = 1

and  $\frac{y-2}{x-1} = \frac{5}{12}$ 

5x - 12y + 19 = 0

1M

 $y = \frac{5}{12}x + \frac{19}{12}$ 

10. (a) 
$$\frac{x}{8} - \frac{2y}{9} \frac{dy}{dx} = 0 \quad \text{or} \quad \frac{xx_1}{16} - \frac{yy_1}{9} = 1$$

$$\frac{dy}{dx} = \frac{9x}{16y} \quad \text{slope} = \frac{9x_1}{16y_1}$$

$$= \frac{5}{4} \quad = \frac{5}{4}$$

$$y = \frac{9x}{20}$$

$$\frac{x^2}{16} - \frac{1}{9} \left(\frac{9x}{20}\right)^2 = 1$$

The points are  $(5, \frac{9}{4})$  and  $(-5, -\frac{9}{4})$ .

| 1 <b>A</b> | For LMS only |
|------------|--------------|
| 1 <b>A</b> |              |
| 1M         | 一定影亮。200     |

For substitution

1**A+1A** 作表が 1 で表え

1M

1A

Alternative solution

(a) 
$$y = \frac{5}{4}x + c$$
 1A  
 $9x^2 - 16(\frac{5}{4}x + c)^2 = 144$  1M  
 $2x^2 + 5cx + 2(c^2 + 9) = 0$ 

 $25c^2 - 16c^2 - 144 = 0$   $c = \pm 4$ 

 $2x^2 \pm 20x + 50 = 0$ 

The points are  $(5, \frac{9}{4})$  and  $(-5, \frac{-9}{4})$ .

For substitution

1A+1A

## (b) RESTRICTED 內部文件 $\frac{x^2}{16} - \frac{1}{9} (\frac{5}{4}x + c)^2 = 1$ P.8 For substitution $2x^2 + 5cx + 2(c^2 + 9) = 0$ 在我一个人, 意思 $x = \frac{X_1 + X_2}{2}$ 1M $x = -\frac{5c}{4}$ $y = \frac{-9c}{16}$ Alternative solution (b) $x = \frac{-5c \pm \sqrt{25c^2 - 16(c^2 + 9)}}{4}$ M $x = \frac{1}{2} \left( \frac{-5c + \sqrt{25c^2 - 16(c^2 + 9)}}{4} + \frac{-5c - \sqrt{25c^2 - 16(c^2 + 9)}}{4} \right)$ 1**A** Eliminate c from $x = \frac{-5c}{4}$ and $y = \frac{-9c}{16}$ , (c) Equation of locus : $y = \frac{9x}{20}$ (x > 5 or x < -5) (x > 5 or x < -5)can be omitted. (Note: The 2 limiting end-points can be included). 1A End points 28 31

12. (a) 
$$y = (1 + x)^{m+1} (1-x)^n$$
  

$$\frac{dy}{dx} = (m+1) (1+x)^m (1-x)^n - n(1+x)^{m+1} (1-x)^{n-1}$$

$$\therefore (m+1) \int (1+x)^m (1-x)^n dx$$

$$= (1+x)^{m+1} (1-x)^n + n \int (1+x)^{m+1} (1-x)^{n-1} dx$$

(b) From (a),  

$$(m+1) \int_{-1}^{1} (1+x)^{m} (1-x)^{n} dx$$

$$= \left[ (1+x)^{m+1} (1-x)^{n} \right]_{-1}^{1} + n \int_{-1}^{1} (1+x)^{m+1} (1-x)^{n-1} dx$$

$$= n \int_{-1}^{1} (1+x)^{m+1} (1-x)^{n-1} dx$$

$$\therefore \int_{-1}^{1} (1+x)^{m} (1-x)^{n} dx = \frac{n}{m+1} \int_{-1}^{1} (1+x)^{m+1} (1-x)^{n-1} dx$$

(c) 
$$\int_{-1}^{1} (1+x)^{8} dx = \left[\frac{1}{9} (1+x)^{9}\right]_{-1}^{1}$$
$$= \frac{512}{9}$$

$$cos^{2}\theta = \frac{1}{1+x^{2}}$$

$$cos 2\theta = \frac{1-x^{2}}{1+x^{2}}$$

$$dx = sec^{2}\theta d\theta$$

$$d\theta = \frac{dx}{sec^{2}\theta} = \frac{dx}{1+x^{2}}$$

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{cos^{2}2\theta (1 + tan\theta)^{4}}{cos^{6}\theta} d\theta$$

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos^{6}\theta}{\cos^{6}\theta}$$

$$= \int_{-1}^{1} \frac{(\frac{1-x^{2}}{1+x^{2}})^{2}(1+x)^{4}}{(\frac{1}{1+x^{2}})^{3}} \frac{dx}{1+x^{2}}$$

$$= \int_{-1}^{1} (1-x^{2})^{2}(1+x)^{4}dx$$

$$= \int_{-1}^{1} (1+x)^{6}(1-x)^{2}dx$$

|          | 1A+1A<br>1    | Jan & Agraday                                     |
|----------|---------------|---------------------------------------------------|
| x        | 1A            |                                                   |
|          | 1A            | ·                                                 |
|          | <u>1</u><br>3 |                                                   |
|          | 1 <b>A</b>    | Expansion not accepted                            |
|          | 1A<br>2       | Accept $\frac{2^9}{9}$ , 56.9                     |
| <b>X</b> | 1A Ac         | $ext{cos}\theta = \frac{1}{\sqrt{1+x^2}}$         |
| 想之意理     | 1 <b>A</b>    |                                                   |
| 死。"      | 1A            |                                                   |
|          | 1A            |                                                   |
| )        | 1             | (pp-1) for not changing the limits of integration |

(

| RESTRICTED 內部文件                                                                                                                             | <b>+</b> , | P.11                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|
| Alternative solution $x = \tan \theta$                                                                                                      |            | +                                             |
| $dx = \sec^2\theta d\theta$                                                                                                                 | 1A         |                                               |
| $\int_{-1}^{1} (1+x)^{6} (1-x)^{2} dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (1+\tan\theta)^{6} (1-\tan\theta)^{2} \sec^{2}\theta d\theta$ | 1A         | (pp-1) for not                                |
| $=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{(1+\tan\theta)^4}{\cos^2\theta}\left(1-\tan^2\theta\right)^2\mathrm{d}\theta$                  | 1A         | changing the limits                           |
| $=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{(1+\tan\theta)^4}{\cos^2\theta}\frac{(\cos^2\theta-\sin^2\theta)^2}{\cos^4\theta}d\theta$      | 1A         | 対象には、100円 (100円 100円 100円 100円 100円 100円 100円 |
| $=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{\cos^2 2\theta \left(1+\tan\theta\right)^4}{\cos^6 \theta}d\theta$                             | 1          |                                               |
| $\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos^2 2\theta (1 + \tan \theta)^4}{\cos^6 \theta} d\theta$                                     |            |                                               |
| $= \int_{-1}^{1} (1+x)^{6} (1-x)^{2} dx$                                                                                                    |            |                                               |
| $= \frac{2}{7} \int_{-1}^{1} (1+x)^{7} (1-x) dx$                                                                                            | 1A         |                                               |
| $= \frac{2}{7} \cdot \frac{1}{8} \int_{-1}^{1} (1+x)^{8} dx$                                                                                | 1A         | + 1 3 2 2 2 1                                 |
| $\frac{2}{7} \cdot \frac{1}{8} \cdot \frac{512}{9}$                                                                                         |            |                                               |
| - <u>128</u><br>63                                                                                                                          | 1A         | Accept $\frac{2^7}{63}$ , 2.03                |
|                                                                                                                                             | 8          | 63 / 2.03                                     |
|                                                                                                                                             |            |                                               |
|                                                                                                                                             |            |                                               |
|                                                                                                                                             |            |                                               |
|                                                                                                                                             |            |                                               |
|                                                                                                                                             |            |                                               |
|                                                                                                                                             |            |                                               |
|                                                                                                                                             | 1          |                                               |