Relatório - DASA, Desafio 1

Controle de Estoque – Desafio 1

Sprint de Dynamic Programming (DASA)

Equipe:

- 554608 (Lucca Borges)
- 557599 (Ruan Vieira)
- 558148 (Rodrigo Carnevale)

Sumário

1.	1. Introdução 2	
2.	2. Metodologia 2	
3.	2.1 Modelo de Dados2	
4.	2.2 Implementação2	
5.	3. Discussão de Limitações e Próximos Passos	3
6	4 Conclusão 4	

1. Introdução

O controle de estoque em tempo real é fundamental para operações logísticas eficientes em setores como saúde e varejo. Este trabalho propõe uma solução baseada em células de carga conectadas a um ESP32 que enviam dados via MQTT para um sistema Python, permitindo monitoramento contínuo e decisões rápidas de reposição.

2. Metodologia

2.1 Modelo de Dados

Os dados de peso são enviados pelo ESP32 como JSON, contendo os campos:

- sensor_id
- produto
- peso_atual (kg)
- peso_ideal (kg)

Em Python cada mensagem é convertida para: estoque: Dict[str, List[float]] # [peso_atual, peso_ideal]

2.2 Implementação

As principais funções implementadas foram:

- diferenca(item): retorna peso_ideal peso_atual
- produtos_em_falta(estoque): dicionário de produtos em falta
- produtos_sobrando(estoque): dicionário de produtos em excesso
- busca_binaria(lista, alvo): busca em O(log n)
- Decorador @memoize para otimizar recursões

Exemplo de código (em controle_estoque.py):

```
def diferenca(item: str, estoque: Dict[str, List[float]]) ->
float:
    atual, ideal = estoque[item]
    return ideal - atual
```

3. Discussão de Limitações e Próximos Passos

Embora o sistema forneça monitoramento em tempo real, há limitações conhecidas:

Precisão dos sensores: ±0,02 kg

• Latência máxima observada: até 500 ms

• Dependência de conectividade MQTT

Próximos passos:

- Notificações automáticas (e-mail/SMS) em casos de falta
- Interface web para visualização em tempo real
- Testes de campo para validar robustez

4. Conclusão

O sistema atende aos objetivos iniciais, oferecendo monitoramento contínuo e identificação de produtos em falta/excesso. Com notificações e interface aprimoradas, pode ser estendido a outros setores.