<u>Lab 06</u>

Part 1: Differential Amplifier Design:

• Specs:

Parameter	value
VDD	1.8 <i>V</i>
ISS	$40\mu A$
Differential gain	8
CM output level	0.6
Load capacitance	1pF

Schematic:

> Choose **RD** to meet the CM output level spec:

Each branch will have $20\mu A$ then $0.6 = 20\mu A * RD$ then $RD = 30K\Omega$.

➤ Choose **V** * to meet the differential gain spec:

$$V^* = \frac{1.82 * VRD}{Av} = \frac{1.82 * 0.6}{8} = 136.5 mV.$$

Assume we will set *VDS* of the tail current source to 300*mV* to allow more output swing. Report the input pair sizing using SA:

We got sizing of the input pair: $\frac{W}{L}=\frac{30.33\mu m}{350nm}$ and we got VGS and VDSsat as we will need them I hand analysis.

➤ Given the above assumption for *VDS* of the tail current source, calculate the required CM input level:

$$VCM = -|VGS4| + 1.5 = -0.94 + 1.5 = 560mV$$

- Tail current source sizing:
- ➤ Given the compliance voltage spec, report the above figure with a cursor added to the selected design point:
- o L vs Vstar:

O W vs Vstar:

o Area vs Vstar:

> Calculate the min and max CM input levels. Is the previously selected CM input level in the valid range:

Minimum: VCMmin = -|VGS4| + |VDsat4| + 0.6 = -0.2184V. Maximum: VCMmax = -|VGS4| - Vcomp + VDD = 0.66V.

Part 2: Differential Amplifier Simulation:

• Differential Amplifier symbol:

> Testbench Schematic:

1) OP simulation:

Report a snapshot clearly showing the following parameters:

```
device
                      m.x1.xm4.m0
                                              m.x1.xm3.m0
                                                                     m.x1.xm2.m0
     model
                      pmos_3p3.12
                                              pmos 3p3.12
                                                                     pmos 3p3.13
                      1.90478e-05
                                              1.90478e-05
        id
                                                                            2e-05
                                                                     0.000205292
                      0.000281025
                                              0.000281025
        gm
       gds
                      3.05838e-06
                                              3.05838e-06
                                                                     1.01521e-06
                         0.938679
                                                 0.938679
                                                                         0.939579
       vgs
                         0.874456
                                                 0.874456
                                                                        0.788987
       vth
                         0.927244
                                                 0.927244
                                                                        0.939578
       vds
                         0.117562
                                                 0.117562
                                                                        0.166155
     vdsat
                                                                     9.19137e-05
      gmbs
                      9.13729e-05
                                              9.13729e-05
BSIM4v5: Berkeley Short Channel IGFET Model-4
    device
                      m.x1.xm1.m0
     model
                      pmos 3p3.13
        id
                      3.80956e-05
                      0.000390035
        gm
                      5.79813e-06
       gds
       vgs
                         0.939579
       vth
                          0.78946
       vds
                         0.301318
     vdsat
                         0.165804
                      0.000174742
      gmbs
```

The region can be determined by comparing VDS with VDsat and we find all transistors are in saturation as VDS>VDsat. There is no direct way to calculate region in xschem.

2) Diff small signal ccs:

Report the Bode plot of small signal diff gain: Magnitude in dB:

Phase:

Gain and BW results:

Hand Analysis:

$$A = gm(RD//ro) = 7.72$$

 $BW = \frac{1}{Cl*(RD//ro)}$ then $BW = \frac{1}{27.48*10^3*10^{-12}} = 5.79MHz$

	Analytical	Simulation
Gain	7.72	7.72
BW	5.79MHz	5.67 <i>MHz</i>

3) CM small signal ccs:

Report the Bode plot of small signal CM gain:

Magnitude in dB:

Phase:

Hand Analysis:

$$ACM = \frac{gm*RD}{1+gm*2ro1} = 0.086$$

```
No. of Data Rows : 101
cmgain = 6.455234e-02 at= 1.000000e+00
binary raw file "lab6_ac.raw"
ngspice 1 ->
```

	Analytical	Simulation
Gain	0.086	0.06455

Gain is smaller than 1 as in CM the transistor is degenerated with a large resistance ro of device M1.

Justify the variation of Avcm vs frequency:

At high frequencies the impedance of the capacitance CL decreases a lot which decreases ZD and decreases the gain.

Plot Avd/Avcm in dB. Compare Avd/Avcm @ DC with hand analysis in a table:

Hand Analysis:

$$\frac{Avd}{Avcm} = \frac{7.72}{0.086} = 89.767 = 39dB$$

	Analytical	Simulation
CMRR	39dB	41.56 <i>dB</i>

CMRR decreases at high frequencies as CMRR is proportional to RSS and at high frequencies the capacitance associated with the drain of M1 decreases the equivalent impedance.

4) Diff large signal ccs:

Report diff large signal ccs (VODIFF vs VIDIFF). Compare the extreme values with hand analysis in a table.

VODIFF vs VIDIFF:

Extreme values:

Hand analysis:

At Vid =VDD: Vod = ISS * RD = 1.2VAt Vid =-VDD: Vod = -ISS * RD = -1.2V

	Analytical	Simulation
Vod at Vid=VDD	1.2	1.175
Vod at Vid=-VDD	-1.2	-1.175

5) CM large signal ccs (GBW vs Vicm):

Report CM large signal ccs (GBW vs VICM):

Common mode input range:


```
vcm_min = -4.30000e-01
vcm_max = 8.100000e-01
ngspice 1 ->
```

Hand analysis was done in first part.

	Analytical	Simulation
VICM min	-0.2184	-0.43
VICM max	0.66	0.81