

Differences in lidar-derived optical and microphysical properties of long-range transported biomass burning aerosol in troposphere and stratosphere

L. Janicka¹, D. Wang^{1,2}, Ch. Böckmann^{3,4}, R. Fortuna¹, M. Adam⁵, B. Heese⁶ and I.S. Stachlewska¹

¹Faculty of Physics, University of Warsaw (UW), Warsaw, Poland
²SEPCOIII Electric Power Construction Co., Ltd., Qingdao, China
³University of Potsdam (UP), Potsdam, Germany
⁴Alfred Wegener Institute for Poland and Marine Research (AWI), Potsdam, Germany
⁵National Institute of R&D for Optoelectronics - INOE 2000, Magurele, Romania
⁶Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany

03. Atmospheric aerosol and clouds properties28 June 2022 (Tuesday), 12:00 UTCPoster P22

Tropospheric and stratospheric biomass burning aerosol can have strong impact on climate.

What is the true spatial and temporal footprint of single-site single-measurement EARLINET lidar data?

Is a true link of lidar data to the models feasible?

Which lidar-derived information is crucial?

What have to be improved?

Examples of pathways of long-range transported biomass burning aerosol and differences in properties

SOURCE	Height [km]	LR 532 [sr]	LR 355 [sr]	AE 355/532	RH [%]	δ part. 532	δ part. 355
Aged North American	2,2-2,7	61	43	0,97	42	3,5	3,3
Fresh Ukrainian	3,5-4	71	100	1,71	34	8,3	5,4
Portuges	2,7-3,1	67	90	1,71	81	2,6	1
Aged Ukrainian	1,4-1,5	68	86	1,62	75	3	1.4

RH and LDR anti-correlated
Dry: semi-fresh Ukrainian & aged NA
Wet: Portuguese & aged Ukrainian
Larger size: aged NA

Fine-scale height-time resolved 2-dim maps of aerosol microphysical properties!

Layers of similar optical properties in colors

- 2-D spatio-temporal plots of microphysical properties are excellent input for models and they can be obtained from multi-wavelength Raman polarization lidar data using inversion methods.
- Application of different inversion methods on a large number of sub-layers defined in lidar-derived optical properties increases our confidence in the microphysical results inversion and allows for obtaining statistical significance of such results.
- Lidar observations of fine-scale aerosol optical and microphysical properties are still too rare, thus
 further developments and upgrades in lidar networks are necessary to provide combo of optical
 and microphysical properties.

Acknowledgements

This work was supported with Quality Assurance tools and assessments provided by CARS in relation to various EARLINET-ACTRIS projects financed by European Commission.