Question 1: Functional Dependencies I [15 points]

Consider the following legal instance of a relational schema S with attributes XYZ:

S	X	Y	Z
	\overline{m}	20	T
	\overline{m}	10	F
	О	30	T
	n	30	T
	О	20	T

20 >T 10 > F 30 > T

Table 1: Legal instance of schema S for question 2.1

- (a) Which of the following dependencies are violated by the instances of S in Table 1?

 - ii. [2 points] $\ \ \Box$ Yes $\ \ \Box$ No : $Z \to X$ is violated.
 - iii. [2 points] \square Yes \square No : $Y \to Z$ is violated.
 - iv. [2 points] \square Yes \triangle No : $XY \rightarrow Z$ is violated.
 - v. [2 points] \Box Yes \Box No : $YZ \to X$ is violated.
 - vi. [2 points] $\ \ \Box \ \$ Yes $\ \ \ \Box \ \$ No $: XZ \to Y$ is violated.
- (b) [3 points] By only observing the instance of S in Table 1, can you identify the functional dependencies that hold on schema S? Why?

□ Yes □	ŲŃo
---------	-----

不能,因为我们只能看到美国一个不能看到属性

Question 2: Functional D		
		$\mathcal{L} = \{P, Q, R, S, T, U, V, W\}$ and
the set of functional depende	encies FD:	
Q→V, V→V,	$Q \rightarrow U$	$PQ \rightarrow S$ (1)
VT -> RIP -> R	$ \begin{array}{ccc} U & \rightarrow & V \\ PQ & \rightarrow & WST \end{array} $	$PQ \rightarrow SV$ (2)
SUAT => SUAV	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$VT \rightarrow RW$	$\begin{array}{ccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$
=> SU > RW	=> SU-RTX W	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & & &$
(a) [8 points] Which of th	e following is a minimum cover	of the FD? Mark all that qualify;
if none, mark according	ly, and give your own. answer.	
i. The given FDs (Eq	1-6), is a minimum cover alread	ly.
ii. $\{Q \rightarrow U, U \rightarrow V, H\}$	$PQ \to S, SU \to T, SU \to R, V$	$T \to R, VT \to W, R \to W$
iii $\{Q o U, U o V, H\}$	$PQ \to S, SU \to T, PQ \to W, V$	$TT \to R, PQ \to T, R \to W$
(iv.) $\{Q \rightarrow U, U \rightarrow V, H\}$	$PQ \to S, SU \to T, VT \to R, R$	$\rightarrow W$ } \nearrow
v. $\{Q \to U, U \to V, H\}$	$PQ \to S, SU \to T, SU \to R, V$	$T \to R, PQ \to T, R \to W$
vi. none of the above -	the cover is	
(b) Yes/No: Which of the fo	ollowing functional dependencie	s can be deduced, from the above
set of functional depend		
i. [3 points] \times Yes		
ii. [3 points] □ Yes	$\square No: QU \to R$	
iii. [3 points] ♥ Yes		
iv. [3 points] \to Yes	\square No : $SQ \to W$	0 > 1/2 0 > 1/2
v. [3 points] □ Yes	/	Q > U, Q > U
vi. [3 points] \square Yes	\bigcirc No : $VT \to Q$	
(c) [3 points] True or Fals	e: The attribute closure $\{Q\}^+$ is	$\{Q,U,V\}.$
\□ True □ False		
(d) [3 points] True or Fals	e: The attribute closure $\{PQ\}^+$	is $\{P, Q, W, S, T\}$.
□ True 📮 False		
\mathcal{C}		- 0 - 17
	- , D	$\mathcal{D} \mathcal{M} \gg 1/2$
	PR > R	P & -> V
	$pQ \rightarrow Q$	
		$PQ \rightarrow V$

PQ -> S PQ -> T Question 3: Decompositions.....[20 points]

For this set of questions, consider the relation with attributes, $\mathcal{X} = \{A, B, C, D, E, F\}$, Let the following functional dependencies FD be defined over the relation \mathcal{X} :

$$A \to B$$
$$B \to CD$$
$$E \to F$$

- (a) [2 points] Provide the attribute closure of $\{AB\}$.
- (b) Consider the decomposition AB, BCD, EF. Mark 'True' or 'False':
 - i. [3 points] □ True □ False: It is lossless
 - ii. [3 points]

 □ True □ False: It is dependency-preserving
- (c) Consider the decomposition AB, BCDF, EF. Mark 'True' or 'False':
 - i. [3 points] \square True \square False: It is lossless
 - ii. [3 points] True \Box False: It is dependency-preserving
- (d) Consider the decomposition ABCEF, EBD. Mark 'True' or 'False':
 - i. [3 points] True False: It is lossless
 - ii. [3 points] $\ \ \Box$ True $\ \ \Box$ False : It is dependency-preserving

(b)
$$V_1 = AB : A \rightarrow B$$
, $V_2 = ECD$; $B \rightarrow CD$
 $V_3 = EF$, $E \rightarrow F$
 $A \rightarrow B$ C D $F \rightarrow F$
 $A \rightarrow B$ $A \rightarrow B$

(c)
$$A \rightarrow B$$

 $B \rightarrow CD$
 $E \rightarrow F$

Question 4: Normal Forms. [33 points] Consider the relation with attributes, $\mathcal{E} = \{P, Q, R, S\}$. Suppose that the following functional dependencies hold:
$PQ \rightarrow R$ (7
$PQ \rightarrow S$ (8)
$R \rightarrow P$ (9)
$S \rightarrow Q \tag{10}$
(a) [6 points] List all the candidate key(s) for \mathcal{E} .
(a) [6 points] List all the candidate key(s) for \mathcal{E} . (b) [2 points] Is the relation \mathcal{E} in BCNF? \square Yes \square No (β) ((β))
(c) From the list below, select all applicable choices to justify whether \mathcal{E} is (or is not) in BCNF.
Note : when we refer to the <i>main requirement</i> for BCNF, we mean: <i>every determinant i</i> a super key.
i. [1 point] □ True □ False: All FD's satisfy the main requirement.
ii. [1 point] □ True □/False : FD (7) violates the main requirement.
iii. [1 point] □ True □/False: FD (8) violates the main requirement.
iv. [1 point] True \Box False : FD (9) violates the main requirement.
v. [1 point] True
(d) [2 points] Is the relation E in 3NF? □ Yes □ No 若是 违
(e) From the list below, select all applicable choices to justify whether \mathcal{E} is (or is not) in 3NF
Note: when we refer to the <i>secondary requirement</i> for 3NF, we mean: for every $FLX \rightarrow A$, A is part of a candidate key.
i. [1 point] True False : All FD's satisfy the secondary requirement.
ii. [1 point] True False: FD (7) violates the secondary requirement.
iii. [1 point] □ True □ False: FD (8) violates the secondary requirement.
iv. [1 point] True False: FD (9) violates the secondary requirement.
v. [1 point] True False: FD (10) violates the secondary requirement.
(f) [5 points] Give a 3NF decomposition of \mathcal{E} that is lossless, dependency preserving, and has as few tables as possible.
(g) [8 points] Give a BCNF decomposition of $\mathcal E$ that is lossless, and has as few tables a possible.
(f) F= {PQ→R, PQ→S, R→P, S→Q}
最小依賴策 {P→S,Q→R,R→P,S→Q}
TIPS 3, TORS, TRPS, TSQ
→ 3=(P,S,R,Q) 愈走立虚性

(g) $R_1(R,P)$ in BCNF D. $R_2(R,Q,S)$ => R3(SIQ) în BCNF B R4(RIS) în BCNF B

=> {RP, SQ, RS}