AE731

Theory of Elasticity

Dr. Nicholas Smith Wichita State University, Department of Aerospace Engineering August 26, 2019

upcoming schedule

- Aug 26 Principal Values
- Aug 28 Tensor Calculus
- Sep 2 Labor Day
- Sep 4 Displacement and Strain, Homework 1 Due
- Sep 9 Strain Transformation

outline

- coordinate transformation
- examples
- principal directions
- examples

coordinate transformation

dimensions

- The vector, v, remains fixed, but we transform our coordinate system
- In the new coordinate system, the x_2 portion of v is zero.
- To transform the coordinate system, we first define some unit vectors.
- \hat{e}_1 is a unit vector in the direction of x_1 , while \hat{e}'_1 is a unit vector in the direction of x_1'

- For this example, let us assume $v = \langle 2, 2 \rangle$ and $\theta = 45^{\circ}$
- We can write the transformed unit vectors, \hat{e}'_1 and \hat{e}'_2 in terms of \hat{e}_1 , \hat{e}_2 and the angle of rotation, θ .

$$\hat{e}_{1}' = \langle \hat{e}_{1} \cos \theta, \hat{e}_{2} \sin \theta \rangle$$
 $\hat{e}_{2}' = \langle -\hat{e}_{1} \sin \theta, \hat{e}_{2} \cos \theta \rangle$

- We can write the vector, v, in terms of the unit vectors describing our axis system
- $v = v_1 \hat{e}_1 + v_2 \hat{e}_2$
- (note: $\hat{e}_1 = \langle 1, 0 \rangle$ and $\hat{e}_2 = \langle 0, 1 \rangle$)
- $v = \langle 2, 2 \rangle = 2\langle 1, 0 \rangle + 2\langle 0, 1 \rangle$

- When expressed in the transformed coordinate system, we refer to v'
- $v' = \langle v_1 \cos\theta + v_2 \sin\theta, -v_1 \sin\theta + v_2 \cos\theta \rangle$
- $v'=\langle 2\sqrt{2},0\rangle$
- We can recover the original vector from the transformed coordinates:
- $v = v_1' \hat{e}_1' + v_2' \hat{e}_2'$
- (note: $\hat{e}_1' = \langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle$ and $\hat{e}_2' = \langle -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle$)
- $ullet v=2\sqrt{2}\langle rac{\sqrt{2}}{2},rac{\sqrt{2}}{2}
 angle, 0\langle -rac{\sqrt{2}}{2},rac{\sqrt{2}}{2}
 angle=\langle 2,2
 angle$

- Coordinate transformation can become much more complicated in three dimensions, and with higher-order tensors
- It is convenient to define a general form of the coordinate transformation in index notation
- We define Q_{ij} as the cosine of the angle between the x_i axis and the x_j axis.
- This is also referred to as the "direction cosine" $Q_{ij} = \cos(x_i', x_j)$

• We can use this form on our 2D transformation example

$$egin{aligned} Q_{ij} &= \cos(x_i',x_j) \ &= egin{bmatrix} \cos(x_1',x_1) & \cos(x_1',x_2) \ \cos(x_2',x_1) & \cos(x_2',x_2) \end{bmatrix} \ &= egin{bmatrix} \cos heta & \cos(90- heta) \ \cos(90+ heta) & \cos heta \end{bmatrix} \ &= egin{bmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{bmatrix} \end{aligned}$$

- We can transform any-order tensor using Q_{ij}
- Vectors (first-order tensors): $v_i' = Q_{ij}v_j$
- Matrices (second-order tensors): $\sigma_{mn}' = Q_{mi}Q_{nj}\sigma_{ij}$
- Fourth-order tensors: $C_{ijkl}' = Q_{im}Q_{jn}Q_{ko}Q_{lp}C_{mnop}$

- We can similarly use Q_{ij} to find tensors in the original coordinate system
- Vectors (first-order tensors): $v_i = Q_{ji}v_j'$
- Matrices (second-order tensors): $\sigma_{mn} = Q_{im}Q_{jn}\sigma_{ij}$
- Fourth-order tensors: $C_{ijkl} = Q_{mi}Q_{nj}Q_{ok}Q_{pl}C_{mnop}$

mental/emotional health warning

- Some texts flip the definition of Q_{ij} , and then flip their transformation law accordingly
- Any time you use tensor transformation, make sure you are following a consistent set of transformation laws

- We can derive some interesting properties of the transformation tensor, Q_{ij}
- We know that $v_i = Q_{ji}v_j'$ and that $v_i' = Q_{ij}v_j$
- If we substitute (changing the appropriate indexes) we find:
- $v_i = Q_{ji}Q_{jk}v_k$
- We can now use the Kronecker Delta to substitute $v_i = \delta_{ik}v_k$ which gives
- $\delta_{ik}v_k = Q_{ji}Q_{jk}v_k$

- Find Q_{ij}^{1} for rotation of 60° about x_2
- Find Q_{ij}^2 for rotation of 30° about x_3'
- Find $e_i^{''}$ after both rotations

•
$$Q_{ij}^{1} = \cos(x_i', x_j)$$

• $Q_{ij}^{2} = \cos(x_i'', x_j')$

$$Q_{ij}^1 = egin{bmatrix} \cos 60 & \cos 90 & \cos 150 \ \cos 90 & \cos 0 & \cos 90 \ \cos 30 & \cos 90 & \cos 60 \end{bmatrix} \ Q_{ij}^2 = egin{bmatrix} \cos 30 & \cos 60 & \cos 90 \ \cos 120 & \cos 30 & \cos 90 \ \cos 90 & \cos 90 & \cos 90 \end{bmatrix}$$

- We now use Q_{ij} to find \hat{e}'_i and \hat{e}''_i
- First, we need to write \hat{e}_i in a manner more consistent with index notation
- We will indicate axis direction with a superscript, e.g. $\hat{e}_1 = e_i^1$
- $\bullet \ e_i^{'} = Q_{ij}^{1} e_j$
- $\bullet \ e_i^{''} = Q_{ij}^2 e_j^{'}$
- How do we find $e_i^{"}$ in terms of e_i ?
- $\bullet \ e_i^{''} = Q_{ij}^2 Q_{jk}^1 e_k$

principal directions

principal directions

- We defined principal directions earlier $(a_{ij} \lambda \delta_{ij})n_j = 0$
- λ are the principal values and n_i are the principal directions
- For each eigenvalue there will be a principal direction
- We find the principal direction by substituting the solution for λ back into this equation

- Find the principal directions for the earlier principal values example
- Recall $\lambda = 0, 5$, let us say $\lambda_1 = 5$, we find $n_j^{(1)}$ by

$$\left[egin{array}{cc} 1-\lambda_1 & 2 \ 2 & 4-\lambda_1 \end{array}
ight]\left\{egin{array}{c} n_1 \ n_2 \end{array}
ight\}=0$$

This gives

$$\left[egin{array}{cc} -4 & 2 \ 2 & -1 \end{array}
ight]\left\{egin{array}{c} n_1 \ n_2 \end{array}
ight\}=0$$

• We proceed to solve the equations using row-reduction, but we find

$$\left[egin{array}{cc} 2 & -1 \ 0 & 0 \end{array}
ight]\left\{egin{array}{c} n_1 \ n_2 \end{array}
ight\}=0$$

- This means we cannot uniquely solve for n_j
- We are only concerned with the direction, magnitude is not important
- Choose $n_2 = 1$, solve for n_1
- $ullet n^{(1)} = \langle rac{1}{2}, 1
 angle$

• Similarly, for $\lambda_2 = 0$, we find

$$\left[egin{array}{cc} 1 & 2 \ 2 & 4 \end{array}
ight]\left\{egin{array}{c} n_1 \ n_2 \end{array}
ight\}=0$$

• Which, after row-reduction, becomes

$$\left[egin{matrix} 1 & 2 \ 0 & 0 \end{matrix}
ight] \left\{egin{matrix} n_1 \ n_2 \end{matrix}
ight\} = 0$$

- If we choose $n_2 = 1$, we find $n_1 = -2$
- This gives $n^{(2)} = \langle -2, 1 \rangle$

- We can assemble a transformation matrix, Q_{ij} , from the principal directions
- First we need to normalize them to unit vectors

•
$$||n^{(1)}|| = \sqrt{rac{5}{4}}$$

$$ullet \; \hat{n}^{(1)} = rac{2}{\sqrt{5}} \langle rac{1}{2}, 1
angle = \langle rac{1}{\sqrt{5}}, rac{2}{\sqrt{5}}
angle$$

•
$$||n^{(2)}|| = \sqrt{5}$$

$$ullet \hat{n}^{(2)} = \langle rac{-2}{\sqrt{5}}, rac{1}{\sqrt{5}}
angle$$

• This gives

$$Q_{ij} = rac{1}{\sqrt{5}}egin{bmatrix} 1 & 2 \ -2 & 1 \end{bmatrix}$$

• And we find $A_{mn}' = Q_{mi}Q_{nj}A_{ij}$

$$A'_{ij} = egin{bmatrix} 5 & 0 \ 0 & 0 \end{bmatrix}$$

• Find principal values, principal directions, and invariants for the tensor

$$c_{ij} = egin{bmatrix} 8 & 0 & 0 \ 0 & 3 & 1 \ 0 & 1 & 3 \end{bmatrix}$$

- Characteristic equation simplifies to
- $-\lambda^3 + 14\lambda^2 56\lambda + 64 = 0$
- Which has the solutions $\lambda = 2, 4, 8$

• To find the principal direction for $\lambda_1 = 8$

$$\left[egin{array}{cccc} 8-8 & 0 & 0 \ 0 & 3-8 & 1 \ 0 & 1 & 3-8 \end{array}
ight] \left\{egin{array}{c} n_1 \ n_2 \ n_3 \end{array}
ight\} = 0$$

• After row-reduction, we find

$$egin{bmatrix} 0 & 0 & 0 \ 0 & 0 & -24 \ 0 & 1 & -5 \end{bmatrix} egin{bmatrix} n_1 \ n_2 \ n_3 \end{pmatrix} = 0$$

- This means that $n_3 = 0$ and, as a result, $n_2 = 0$.
- n_1 can be any value, we choose $n_1 = 1$ to give a unit vector.
- $n^{(1)} = \langle 1, 0, 0 \rangle$

• To find the principal direction for $\lambda_2 = 4$

$$\left[egin{array}{cccc} 8-4 & 0 & 0 \ 0 & 3-4 & 1 \ 0 & 1 & 3-4 \end{array}
ight] \left\{egin{array}{c} n_1 \ n_2 \ n_3 \end{array}
ight\} = 0$$

• After row-reduction, we find

$$egin{bmatrix} 4 & 0 & 0 \ 0 & -1 & 1 \ 0 & 0 & 0 \end{bmatrix} egin{bmatrix} n_1 \ n_2 \ n_3 \end{pmatrix} = 0$$

- This means that $n_1 = 0$
- We also know that $n_2 = n_3$, so we choose $n_2 = n_1 = 1$
- This gives $n^{(2)}=rac{1}{\sqrt{2}}\langle 0,1,1
 angle$ after normalization

• To find the principal direction for $\lambda_3 = 2$

$$\left[egin{array}{cccc} 8-2 & 0 & 0 \ 0 & 3-2 & 1 \ 0 & 1 & 3-2 \end{array}
ight] \left\{egin{array}{c} n_1 \ n_2 \ n_3 \end{array}
ight\} = 0$$

• After row-reduction, we find

$$\left[egin{array}{ccc} 6 & 0 & 0 \ 0 & 1 & 1 \ 0 & 0 & 0 \end{array}
ight] \left\{egin{array}{c} n_1 \ n_2 \ n_3 \end{array}
ight\} = 0$$

- This means that $n_1 = 0$
- We also know that $n_2 = -n_3$, so we choose $n_2 = 1$ and $n_1 = -1$
- This gives $n^{(3)}=rac{1}{\sqrt{2}}\langle 0,1,-1
 angle$ after normalization

- In summary, for c_{ij} we have:
- $\lambda_1 = 8 \text{ and } n^{(1)} = \langle 1, 0, 0 \rangle$
- $\lambda_2 = 4$ and $n^{(2)} = \frac{1}{\sqrt{2}} \langle 0, 1, 1 \rangle$
- $\lambda_3 = 2$ and $n^{(3)} = \frac{1}{\sqrt{2}} \langle 0, 1, -1 \rangle$
- We can assemble $n^{(i)}$ into a transformation tensor

$$Q_{ij} = rac{1}{\sqrt{2}} egin{bmatrix} \sqrt{2} & 0 & 0 \ 0 & 1 & 1 \ 0 & 1 & -1 \end{bmatrix}$$

- What is c_{ij} ? c_{ij} = $Q_{im}Q_{jn}c_{mn}$

$$c_{ij}' = egin{bmatrix} 8 & 0 & 0 \ 0 & 4 & 0 \ 0 & 0 & 2 \end{bmatrix}$$

• We can also find the invariants for

$$c_{ij} = egin{bmatrix} 8 & 0 & 0 \ 0 & 3 & 1 \ 0 & 1 & 3 \end{bmatrix}$$

• Recall:

$$egin{aligned} I_lpha &= a_{ii} \ II_lpha &= rac{1}{2}(a_{ii}a_{jj} - a_{ij}a_{ij}) \ III_lpha &= \det[a_{ij}] \end{aligned}$$

- First invariant $I_{\alpha} = a_{ii} = 8 + 3 + 3 = 14$
- Second invariant

$$II_lpha = rac{1}{2}(a_{ii}a_{jj} - a_{ij}a_{ij})$$

$$a_{ii}a_{jj} = 14 \times 14$$

$$a_{ij}a_{ij} = a_{11}a_{11} + a_{12}a_{12} + a_{13}a_{13} + \dots + a_{33}a_{33}$$

$$II_{lpha}=rac{1}{2}(196-84)=56$$

• Third invariant $III_{\alpha} = \det[a_{ij}] \, III_{\alpha} = 8 \times (3 \times 3 - 1 \times 1) = 64$