HW 2: PMATH 945 Due Jan. 26 at 11:59 pm

- (1) (a) Show that if $R \cong R_1 \times R_2$ for commutative rings R_1, R_2 , then $\operatorname{Spec} R \cong \operatorname{Spec} R_1 \coprod \operatorname{Spec} R_2$ (where \coprod is disjoint union, i.e. coproduct, of topological spaces) as ringed spaces (or equivalently, as schemes).
 - (b) Show that the topological space $\operatorname{Spec}(R)$ is disconnected if and only if $R \cong R_1 \times R_2$ for some commutative rings R_1, R_2 (recall that by assumption, a commutative ring has a unit, and thus is not zero).
 - (c) If we choose R_i for $i \in \mathbb{Z}_{\geq 0}$, consider the direct product $R = \prod_{i=0}^{\infty} R_i$. Show that $\coprod_{i=0}^{\infty} \operatorname{Spec}(R_i)$ is a proper subset of $\operatorname{Spec}(R)$ (Vakil suggests looking at the direct sum $\bigoplus_{i=0}^{\infty} R_i$ for an ideal not contained in any of the obvious ones).
- (2) Let M be an R-module.
 - (a) Prove there is a sheaf of \mathcal{O}_X -modules \tilde{M} on $X = \operatorname{Spec}(R)$ such that $\tilde{M}(D(f)) = R_f \otimes_R M$.
 - (b) Prove that the stalks $\tilde{M}_{[\mathfrak{p}]}$ is the localization $R_{\mathfrak{p}} \otimes_R M$ for $R_{\mathfrak{p}}$ the localization at the multiplicative set $R \setminus \mathfrak{p}$.
- (3) Show that for any affine scheme $\operatorname{Spec}(R)$ and $f \in R$, the restriction $\mathcal{O}_X|_{D(f)}$ of the structure sheaf to D(f) and the subspace topology make the ringed space $(D(f), \mathcal{O}_X|_{D(f)})$ into an affine scheme.

1