

- I. Motivations: The problem of the conventional transportation ways
  - A. Conventional means of transport
  - B. Pros and cons
- II. Designing a better solution
  - A. The friction issue: solid and fluid contact
  - B. Quantifying the energy consumption: the combustion engine model
- III. The hyperloop project
- IV. Conclusion

# I. Motivation







# Speed that we can think of



# Safety issue



Data: Ian Savage, http://faculty.wcas.northwestern.edu/~ipsavage/436.pdf

# Pollution rate



Data: wikipedia.org

## SF to LA



Data: Department of Transportation; Oak Ridge Transportation Energy Data Book; Google Maps; Mikhail Chester, Arizona State University; Elon Musk, Hyperloop White Paper; Megan Ryerson, University of Pennsylvania; California High Speed Rail Authority

# In a nutshell

| Transport | Advantages                                                                                    | Disadvantages                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Car       | Cheap<br>You choose time for departure                                                        | Not safe<br>Slow                                                                                  |
| Plane     | Fast<br>Cheap                                                                                 | Long time to check-in and board<br>Airports are far away<br>Flights are rare<br>Big CO2 remission |
| Train     | Easy and fast to board Train stations are in a downtown normally Comfortable Low CO2 emission | Slow when distance is big Expensive                                                               |

# II. Designing a better solution

 What are the main physical issues faced by a body in motion?

How to quantify this dynamical constraint?

 How to build a motion engine by limiting the effect of this dynamical constraint?

- I. The friction issue: solid and fluid contact
- II. Quantifying the energy consumption: the combustion engine model
- III. Rethink the movement: the static movement model

### Formal definition (over one point):

Opposition force created by the motion

$$\overrightarrow{F_{friction}} = -\alpha * \overrightarrow{F_{mouvement}}$$

 $\circ \; lpha$  is the motion force



- I. The friction issue: solid and fluid contact
  - Definition of the friction energy
  - 2. How to fight friction.
  - Get rid of friction
- II. Quantifying the energy consumption: the combustion engine model
- III. Rethink the movement: the static movement model

### Formal definition (over all the solid):

$$\overrightarrow{F_{friction}} = \alpha_{tire/road} \qquad * \int_{tire} \overrightarrow{F_{mouvement}} +$$

$$\alpha_{sheetMetal/air} * \int_{\text{sheet metal}} \overrightarrow{F_{mouvement}}$$



- I. The friction issue: solid and fluid contact
  - 1. Definition of the friction energy
  - 2. How to fight friction.
  - 3. Get rid of friction
- II. Quantifying the energy consumption: the combustion engine model
- III. Rethink the movement: the static movement model

### Formal definition (over all the solid):

$$\overrightarrow{F_{friction}} = \alpha_{tire/road} \\ * \int_{tire} \overrightarrow{F_{mouvement}} + \\ \alpha_{sheetMetal/air} * \int_{\text{sheet metal}} \overrightarrow{F_{mouvement}}$$



- I. The friction issue: solid and fluid contact
  - Definition of the friction energy
  - 2. How to fight friction.
  - 3. Get rid of friction
- II. Quantifying the energy consumption: the combustion engine model
- III. Rethink the movement: the static movement model



- I. The friction issue: solid and fluid contact
  - Definition of the friction energy
  - 2. How to fight friction.
  - 3. Get rid of friction
- II. Quantifying the energy consumption: the combustion engine model
- III. Rethink the movement: the static movement model

### More formally:

- Newton's 1<sup>st</sup> principle: <u>"The rate change of linear momentum of an object is directly proportional to the external force on the object"</u>.
- Newton's 2<sup>nd</sup> "Every action has an equal and opposite reaction".
- Friction  $\iff$  Movement.

- The friction issue: solid and fluid contact
  - Definition of the friction energy
  - 2. How to fight friction.
  - 3. Get rid of friction
- II. Quantifying the energy consumption: the combustion engine model
- III. Rethink the movement: the static movement model

### Conclusion:

- Do not remove the friction
- Remove the biggest part of the friction: solid friction



- I. The friction issue: solid and fluid contact
  - Definition of the friction energy
  - 2. How to fight friction.
  - 3. Get rid of friction
- II. Quantifying the energy consumption: the combustion engine model
- III. Rethink the movement: the static movement model

# Quantifying the energy consumption

### Kinetic energy:

$$E_{\mathbf{k}} = \frac{1}{2}mv^2$$

- Only depends on the weight and the speed
- Represents the energy needed to create the motion and to fight friction

- I. The friction issue: solid and fluid contact
- II. Quantifying the energy consumption: the combustion engine model
  - 1. Formal quantification of the movement energy
- III. Rethink the movement: the static motion model

### Reconsider the movement

#### Formal definition a movement:

- Function of the referential
- Einstein: "Everything is relative"





- I. The friction issue: solid and fluid contact
- II. Quantifying the energy consumption: the combustion engine model
  - Formal quantification of the movement energy
  - 2. The reciprocating engine
- III. Reconsider the movement: the static motion model
  - 1. What is a movement
  - 2. Motion without impulse

### Reconsider the movement: the static motion model

### Creating a movement on a solid:

External impulse on the solid

Referential motion: idea of the referential

- I. The friction issue: solid and fluid contact
- II. Quantifying the energy consumption: the combustion engine model
  - Formal quantification of the movement energy
  - 2. The reciprocating engine
- III. Rethink the movement: the static motion model
  - 1. What is a movement
  - 2. Motion without impulse

## Reconsider the movement: the static motion model

### Creating a movement on a solid:

The movement by depression:

1<sup>st</sup> principle of thermodynamic: "A system where different parts have different level of energies will tend toward stabilisation"

- I. The friction issue: solid and fluid contact
- II. Quantifying the energy consumption: the combustion engine model
  - Formal quantification of the movement energy
  - 2. The reciprocating engine
- III. Rethink the movement: the static motion model
  - 1. What is a movement
  - 2. Motion without impulse

# III. The hyperloop project



# Main features

- Speed from 480 up to 1220 km/h depending on landscape
- Capsules every 30 seconds
- Air cushion
- Solar energy usage
- Energy production from braking of capsulas



# Vacuum idea

- No need to maintain ideal vacuum (0 Pa)
- Fore-vacuum of 100 Pa (1/1000 of air pressure) is enough
- Lower price of pumps and construction



# Air cushion

- Capsulas float on a 0.5-1.3 mm layer of air
- Active transfer of high air pressure air from front to the rear of the vessel





# Modeling problems

- Heating of the the capsule surface (Ansys)
- Rotation around the longitudinal axis (Ansys)
- Speed of 1220 is unreachable (The MathWorks)
- Diameter of the tube is too small (NASA Glenn Research Center)



## Conclusion

Very simple physical principles described by Isaac NEWTON in the 17<sup>th</sup> century

Improvement and implementation realised by Nikolas TESLA in the early 19<sup>th</sup> century (the <u>floating infinite engine</u>)

However, the industry still does not use it in the 21<sup>st</sup> century.
 Why?

# Conclusion

Albert EINSTEIN:

"The industry will never renew a process before having drawn all its profits"

