Matematika I

15. januára 09:00

Meno a priezvisko: Podpis: Podpis:
Ročník: študijný program:
1. (7b) Daná je všeobecná rovnica kužeľosečky $x^2 + y^2 - 2x - 4y + 1 = 0$.
Doplňte:
a) (2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je
b) (1b) Typ kužeľosečky je
c) (3b) Napíšte, ak existujú
c_1) súradnice stredu kužeľosečky:
d) (1b) Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \ln(9 - x^2 - y^2) + \sqrt{x^2 + y^2}$$

b)
$$f(x,y) = \frac{\ln(9 - x^2 - y^2)}{\sqrt{x^2 - y^2}}$$

c)
$$f(x,y) = \sqrt{9 - x^2 - y^2} + \ln(x^2 - y^2)$$

d)
$$f(x,y) = \frac{\ln(9 - x^2 - y^2)}{\sqrt{y^2 - x^2}}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} x^2 y \, \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je obdĺžnik s vrcholmi $A=[1,2],\,B=[2,2],\,C=[2,3]$ a D=[1,3].

Výsledok:....

- **4.** (4b) Bod M má v cylindrickej súradnicovej sústave nasledujúce súradnice: $M = \left[\sqrt{2}, \frac{5\pi}{4}, \sqrt{6}\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [1, -1, \sqrt{6}]$$

c)
$$M = [-1, 1, \sqrt{6}]$$

b)
$$M = [-1, -1, \sqrt{6}]$$

d)
$$M = [1, 1, \sqrt{6}]$$

b) (2b) Znázornite bod M v cylindrickej súradnicovej sústave.

Náčrt:

5. (8	Bb) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 3y'(x) - 4y(x) = 2$.
a)	(2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
	Charakteristická rovnica je:
b)	(2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
	Fundamentálny systém riešení je
c)	(2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
	Partikulárne riešene je
d)	(2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
	Všeobecné riešenie danej LODR je
6. (4	4b) Vypočítajte, ak existuje $2-\sqrt{4-xy}$
	$\lim_{[x,y]\to[1,0]} \frac{2-\sqrt{4-xy}}{xy}.$
	Výsledok:
7. (6	Sb) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y) = \frac{1}{x^2 - 2y}$ v bode $T = [1, y_0, 3]$.
	(2b) Nájdite y_0 a uveďte súradnice dotykového bodu :
	(4b) Rovnica dotykovej roviny τ je:
8. (6	5b) Daná je funkcia $f(x,y) = \ln(x+y^2)$, bod $A = [1, 2]$ a vektor $\vec{l} = (1, -2)$.
a)	(3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
	Gradient funkcie $f(x,y)$ v bode A je
b)	(3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
	Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (27b) Daná je funkcia $f(x,y)=xy+8y-2x^2-3y^2-9x-66$ a oblasť M . Oblasť M je mnohouholník $ABCD$ s vrcholmi $A=[-3,0],\ B=[-1,0],\ C=[-1,2]$ a $D=[-3,2].$	2]
a) Načrtnite oblasť M :	
Náčrt:	
Pomocou matematických vzťahov popíšte hranice oblasti M :	
(a) (2b) AB	
(b) $(2b) BC$	
(c) (2b) CD	
(d) (2b) AD	•
b) (5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".	
Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne	
c) Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti M . Ak hľadan lokálny extrém nejestvuje, napíšte "nie je".	ý
(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode viazané lokálne	
(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode viazané lokálne	
(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode viazané lokálne	
(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode $\ldots\ldots$ viazané lokálne $\ldots\ldots$	
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$	
$\mathbf{Najv\ddot{a}\check{c}\check{s}ia}$ hodnota funkcie $f(x,y)$ je:	
Najmenšia hodnota funkcie $f(x,y)$ je:	