

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès Ecole Nationale d'Ingénieurs de Gabès

EPREUVE D'EVALUATION

Année Universitaire:	2020-2021	Date de l'Examen:	
Nature:	Examen	Durée:	2h
Diplôme: Section:	Ingénieur	Nombre de pages:	1 D M Locale
Niveau d'études:	GCV		Mohamed Ben Mabrouk
Matière:	1 année	Doc autorisés:	Non
Matiere:	Analyse Numérique	Remarque:	

Exercice. 1. Considérons un système linéaire

$$(\mathcal{E}): AX = b$$

avec A une matrice triangulaire supérieur de $\mathcal{M}_{n\times n}$ et $det(A) \neq 0$

(1) Écrire un algorithme qui permet de résoudre (\mathcal{E}) et de retourner X.

(2.) Calculer la complexité de l'algorithme précèdent. (expliquer)

Exercice. 2. Soit f une fonction définie $par(f(x) = cos(x) - x)sur\ I = [0, \pi/2]$

(1) Vérifier que f admet au moins une racine dans I.,

 $\forall k \in \mathbb{N}^*$, donner $x^{(k+1)}$ en fonction de $x^{(k)}$ et $x^{(k-1)}$ par la méthode de la sécante.

 $(3)x^{(0)} = \pi/4, x^{(1)} = \pi/3,$ exécuter 2 itérations par la méthode de la sécante.

Exercice. 3. Soit f une fonction définie sur I = [-2, 2] par

$$f(x) = \frac{1}{1+x^2}$$

On veut interpoler f en utilisant 5 points équidistants .

- 1. Déterminer les points x_k et leurs images y_k par f.
- 2. Vérifier que le problème d'interpolation polynomiale admet une solution, préciser la nature.
- 3. Déterminer la base de Lagrange relative aux points x_k .
- 4. Déterminer le polynôme P qui interpole f aux points x_k .
- 5. Calculer P(1).

Exercice. 4. Soit

$$A = \left(\begin{array}{rrr} -2 & 0 & 1\\ -2 & 1 & 2\\ -1 & 0 & 3 \end{array}\right)$$

Donner M_G et N_G et discuter la convergence de la méthode de Gauss-Seidel.

Donner M_J et N_J et discuter la convergence de la méthode de Jacobi. $(3)\omega = 1/4$, Donner M_S et N_S et discuter la convergence de la méthode SOR.

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès Ecole Nationale d'Ingénieurs de Gabès

Réf : DE-EX-01 Indice: 3 Date: 02/12/2019

EPREUVE D'EVALUATION

Année Universitaire:	2020-2021	Date de l'Examen:	-
Nature:	Examen	Durée:	1h30
Diplôme:	Ingénieur	Nombre de pages:	11130
Section:	GCV & GCP	Enseignant:	Mohamed Ben Mabrouk
Niveau d'études:	l année	Doc autorisés:	Non
Matière:	Analyse Numérique	Remarque:	1102

Exercice. 1. Considérons un système linéaire

$$(\mathcal{E}): \begin{pmatrix} -2 & 0 & 1\\ -2 & 1 & 2\\ -1 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} 1\\ 3\\ 2 \end{pmatrix}$$

- 1. Verifier si E admet une solution.
- 2. Résoudre par gauss à pivot total.
- 3. Donner D, E et F telle que A = D (E + F)4. Donner les conditions pour qu'une méthode itérative $MX^{(k+1)} \stackrel{!}{=} NX^{(k)} + b$ soit convergeante.
- \searrow 5. Gauss-Seidel, donner M_G et N_G , étudier la convergence.
 - 6. Jacobi, donner M_J et N_J , étudier la convergence.
 - 7. SOR, $\omega = 2$, donner M_S et N_S , étudier la convergence.
- 8. Gauss-Seidel, $X^{(0)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, calculer $X^{(1)}$ et $X^{(2)}$

Exercice. 2. Considérons la fonction f :

$$f(x) = e^x + \sin(x)$$

- 1. Vérifier f(x) = 0 admet au moins une solution dans I = [-1, 1].
- 2. Dichotomie, combien faut-il d'itérations pour obtenir un encadrement de longeur
- 3. Newton, pour $k \ge 1$, donner $x^{(k+1)}$ en fonction de $x^{(k)}$.
- 4. Newton, $x^{(0)} = 0$, calculer $x^{(1)}$ et $x^{(2)}$