

מחלקה למדעי המחשב

י"ז באלול תשפ"ד 20/09/24

08:30-11:30

תורת המשחקים

מועד ב'

מרצה: ד"ר ירמיהו מילר

תשפ"ד סמסטר ב'

. השאלון מכיל 7 עמודים (כולל עמוד זה וכולל דף נוסחאות).

בהצלחה!

הנחיות למדור בחינות שאלוני בחינה

- לשאלון הבחינה יש לצרף מחברת.
- . ניתן להשתמש במחשבון מדעי לא גרפי עם צג קטן

חומר עזר

. און. מצורפים לשאלון. (A4 עמודים בפורמט 3), מצורפים לשאלון.

אחר / הערות יש לענות על השאלות באופן הבא:

- יש לנמק היטב כל שלב של פתרון. תשובה ללא הסבר וללא נימוק, אפילו נכונה, לא תתקבל.
 - יש לפתור 4 מתוך 5 השאלות הבאות. משקל כל שאלה 25 נקודות.
 - סדר התשובות אינו משנה, אך יש לרשום ליד כל תשובה את מספרה.
 - הסבר היטב את מהלך הפתרון.

שאלה 1 (25 נקודות)

מצאו את כל שיווי המשקל של המשחק הבא:

שאלה 2 (25 נקודות)

(15 נקודות) (א

נתון משחק שני שחקנים סכום אפס.

הצורה האסטרטגית של המשחק נתונה בטבלה הבאה:

I	L	R
T	2	50
В	100	18

חשבו את הערך של המשחק וחשבו את התשלום האופטימלי לכל שחקן במשחק הזה.

ב) (10 נקודות)

A הוא A הוא מטחיצה שני שחקנים סכום אפס הנתון על ידי מטריצה חוא הוכיחו או הפריכו על ידי דוגמה נגדית:

-A הוא המטריצה של שני שחקנים סכום אפס הנתון על ידי המטריצה שוחק הערך

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | אַמפּוֹס באר שבע ביאליק פינת בזל 1000 | קמפוס אשדוד אונסקי

שאלה 3 (25 נקודות)

(15 נקודות) (א

נתון משחק שני שחקנים.

II תהי S_1 קבוצת האסטרטגיות של שחקן I, ותהי S_2 קבוצת האסטרטגיות של שחקן אחקן S_1 ותהי $S_1\in S_1$ הפונקציות תשלום של שחקן ושחקן ושחקן ווער בהתאמה, כאשר $u_2(s_1,s_2)$ הפונקציות תשלום של שחקן ווערטגיה של שחקן I ווערטגיה של שחקן I ווערטגיה של שחקן I ווערטגיה של שחקן I ווערטגיה של שחקן ווער בהתאמה של שחקן ווער שחקן ווער בהתאמה של בתחת של בתח

משחק שני שחקנים נקרא סימטרי אם השני תנאים הבאים מתקיימים:

1) הקבוצות אסטרטגיות של שני השחקנים זהות, ז"א

$$S_1 = S_2$$
.

2) הפונקציות תשלום מקיימות את התנאי

$$u_1(s_1, s_2) = u_2(s_2, s_1)$$
.

 $.s_2 \in S_2$ ולכל $s_1 \in S_1$

הוכיחו את הטענה הבאה:

 $(s_1=s_2^*,s_2=s_1^*)$ אם הווקטור אסטרטגיות $(s_1=s_1^*,s_2=s_2^*)$ שיווי משקל אז הווקטור אסטרטגיות שיווי משקל.

ב) (10 נקודות)

תהיינה A ו- B שתי מטריצות שונות עם תשלומים חיוביים (בעלות ממדים סופיים).

שחקן II שחקן
$$A = 0$$
 B

הוכיחו כי למשחק לא קיים ערך.

שאלה 4 (25 נקודות)

1 שני יצרניים 1 ו- 2 מייצרים אותו מוצר ומתחרים על שוק הקונים הפוטנציאלים. יהי q_1 כמות המוצר שיצרן p_1 מייצר ו- q_2 כמות המוצר שיצרן p_3 מייצר. שחקן p_3 בוחר את המחיר של המוצר שלו להיות p_4 ליחידה. הכמות p_4 ששחקן p_4 צריך לייצר נקבע על ידי הפונקציה בוחר את המחיר של המוצר שלו להיות p_4 ליחידה. הכמות p_4 ששחקן p_4 צריך לייצר נקבע על ידי הפונקציה

$$q_1 = a - p_1 + bp_2$$

כאשר b>0 והכמות q_2 ששחקן b>0 צריך לייצר נקבע על ידי הפונקציה

$$q_2 = a - p_2 + bp_1 .$$

מצאו את השיווי משקל של המשחק.

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי

שאלה 5 (25 נקודות)

שני יצרנים 1 ו- 2 מייצרים אותו מוצר ומתחרים על שוק הקונים הפוטנציאלים. היצרנים מחליטים על הכמות שהם ייצרו, וההיצע הכולל קובע את מחיר המוצר, שהוא זהה לשני היצרנים. נסמן ב- q_1 וב- q_2 את הכמויות שמיצרים ייצרו, וההיצע הכולל קובע את מחיר המוצר, שהוא זהה לשני היוצרים בשוק הוא q_1+q_2 . נניח כי המחיר של יחידה שווה בי בהתאמה. אזי הכמות הכוללת של המוצרים בשוק הוא q_1+q_2 . נניח כי המחיר של יחידה משותפת בי e=2 כאשר e=2 כאשר e=2 פרמטר הביקוש. עלות הייצור של יחידה ליצרן השני אדן השני אדן אינה ידועה ליצרן בין שני היצרנים ושווה ל- e=2 עלות הייצור של יחידה ליצרן השני ידוע הוא שהעלות שווה ל- e=2 (עלות יצור נמוך) בהסתברות e=2 או e=2 (עלות יצור גבוהה) בהסתברות e=2 או e=2 (עלות יצור גבוהה) בהסתברות e=2 (עלות יצור גבוהה)

האם קיים שיווי משקל בייסיאני במשחק זה? אם כן, מה הוא?

פתרונות

שאלה 1 (25 נקודות)

:I קבוצות ידיעה של שחקן

$$x_0: (B, M, T), x_8x_9: (U, V).$$

:I קבוצת אסטרטגיות של אסטרטגיות

$$S_I = (B/U, B/V, M/U, M/V, T/U, T/V)$$
.

:II קבוצות ידיעה של

$$x_2: (a,b), x_3: (c,d).$$

:II קבוצת אסטרטגיות של

$$S_{II} = (a/c, a/d, b/c, b/d)$$
.

המכללה האקדמית להנדסה סמי שמעון

I	a/c	a/d	b/c	b/d
B/U	$\frac{2}{5}(25,10) + \frac{3}{5}(5,20)$	$\frac{2}{5}(25,10) + \frac{3}{5}(5,20)$	$\frac{2}{5}(25,10) + \frac{3}{5}(5,20)$	$\frac{2}{5}(25,10) + \frac{3}{5}(5,20)$
B/V	$\frac{2}{5}(25,10) + \frac{3}{5}(5,20)$	$\frac{2}{5}(25,10) + \frac{3}{5}(5,20)$	$\frac{2}{5}(25,10) + \frac{3}{5}(5,20)$	$\frac{2}{5}(25,10) + \frac{3}{5}(5,20)$
M/U	35, 5	35, 5	100, 15	100, 15
M/V	55,30	55,30	85,0	85,0
T/U	4,7	$\frac{3}{4}(8,4) + \frac{1}{4}(12,16)$	4,7	$\frac{3}{4}(8,4) + \frac{1}{4}(12,16)$
T/V	4,7	$\frac{3}{4}(8,4) + \frac{1}{4}(12,16)$	4,7	$\frac{3}{4}(8,4) + \frac{1}{4}(12,16)$

I	a/c	a/d	b/c	b/d
B/U	13, 16	13, 16	13, 16	13, 16
B/V	13, 16	13, 16	13, 16	13, 16
M/U	35, 5	35, 5	100, 15	100, 15
M/V	55,30	55,30	85,0	85,0
T/U	4, 7	9, 7	4, 7	9,7
T/V	4, 7	9,7	4, 7	9,7

I	a/c	a/d	b/c	b/d
B/U	$13, \underline{16}$	$13, \underline{16}$	$13, \underline{16}$	$13, \underline{16}$
B/V	$13, \underline{16}$	$13, \underline{16}$	13, <u>16</u>	13, <u>16</u>
M/U	35, 5	35, 5	<u>100, 15</u>	<u>100, 15</u>
M/V	55, 30	55, 30	85,0	85,0
T/U	$4, \underline{7}$	9, 7	4, 7	9, 7
T/V	4, 7	9, 7	4, 7	9, 7

שיווי משקל:

(M/U,b/c), (M/U,b/d), (M/V,a/c), (M/V,a/d).

שאלה 2 (בקודות)

א) (15 נקודות)

I	L	R	$\min_{s_2} u$
T	2	50	2
B	100	18	18
$\max_{s_1} u$	100	50	$\max_{\substack{s_1 \\ s_2 \\ s_1}} \min_{\substack{s_2 \\ s_1}} u = 50$

$$\underline{\mathbf{v}} = \max_{s_1} \min_{s_2} u = 50 \ , \qquad \overline{\mathbf{v}} = \min_{s_2} \max_{s_1} u = 18 \ . \label{eq:velocity}$$

. לכן למשחק אין ערך למשחק לכן שב $\underline{\mathbf{v}}=50 \neq 18=\overline{\mathbf{v}}$

לכן נחפש ערך למשחק באסטרטגיות מעורבות.

I	y(L)	(1-y)(R)
x(T)	2	50
(1-x)(B)	100	18

נחשב את ערך המשחק באסטרטגיות מעורבות באמצעות השיטה הישירה:

$$U\left(T,y^{*}\right) = U\left(B,y^{*}\right) \quad \Rightarrow \quad 2y^{*} + 50(1 - y^{*}) = 100y^{*} + 18(1 - y^{*}) \quad \Rightarrow \quad 130y^{*} = 32 \quad \Rightarrow \quad y^{*} = \frac{16}{65} \; .$$

$$U\left(x^{*},L\right) = U\left(x^{*},R\right) \quad \Rightarrow \quad 2x^{*} + 100(1 - y^{*}) = 50x^{*} + 18(1 - x^{*}) \quad \Rightarrow \quad 130y^{*} = 82 \quad \Rightarrow \quad x^{*} = \frac{41}{65} \, .$$

$$U(x^*, y^*) = U\left(\frac{41}{65}, \frac{16}{65}\right) = \frac{2482}{65}$$
.

ב) טענה לא נכונה. דוגמה נגדית:

תהי A מטירצה 2×2 של המשחק הבא:

I	L	R	$\min_{s_2} u$
T	0	1	0
B	0	2	0
$\max_{s_1} u$	0	2	$\max_{s_1} \min_{s_2} u = 0$ $\min_{s_2} \max_{s_1} u = 0$

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | אַספּוּם אַ אוֹדי אַי

המשחק של המטריצה -A הינו

I	L	R	$\min u$
T	0	-1	-1
B	0	-2	-2
$\max u$	0	-1	$\max_{s_1} \min_{s_2} u = -1$ $\min_{s_2} \max_{s_1} u = -1$

-1 הוא -A של המשחק של הערך הוא 0 בעוד הערך המשחק של המטריצה הוא -A

שאלה 3 (25 נקודות)

א) הוא נקודת ((s_1^*, s_2^*) אויי אסורוגיות (נניח כי הווקטור אסורוגיות שני שחקנים שני שחקנים סימטרי. אז משקל. אז

$$u_1(s_1^*, s_2^*) = \max_{\sigma \in S_1} u_1(\sigma, s_2^*)$$
,

-1

$$u_2(s_1^*, s_2^*) = \max_{\sigma \in S_2} u_2(s_1^*, \sigma)$$
.

לפי הסימטריות של המשחק:

$$u_2\left(s_2^*,s_1^*
ight)=\!u_1\left(s_1^*,s_2^*
ight)$$
 (הסימטריות של המשחק)
$$=\max_{\sigma\in S_1}u_1\left(\sigma,s_2^*
ight)$$
 (הגדרה של שיווי משקל)
$$=\max_{\sigma\in S_2}u_2\left(s_2^*,\sigma\right)$$
 (הסימטריות של המשחק)

וכן

$$u_1\left(s_2^*,s_1^*
ight)=\!u_2\left(s_1^*,s_2^*
ight)$$
 (הסימטריות של המשחק) $=\max_{\sigma\in S_2}u_2\left(s_1^*,\sigma
ight)$ (אבדרה של שיווי משקל) $=\max_{\sigma\in S_2}u_2\left(\sigma,s_1^*
ight)$ (הסימטריות של המשחק)

ז"א

$$u_{2}\left(s_{2}^{*}, s_{1}^{*}\right) = \max_{\sigma \in S_{2}} u_{2}\left(s_{2}^{*}, \sigma\right)$$

$$u_{1}\left(s_{2}^{*}, s_{1}^{*}\right) = \max_{\sigma \in S_{1}} u_{2}\left(\sigma, s_{1}^{*}\right)$$

לכן (s_2^*, s_1^*) גם שיווי משקל.

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי

ב) (10 נקודות)

תהיינה A ו- B מטריצות בעלות תשלומים חיוביים. אזי למשחק

$$T = \begin{array}{|c|c|c|} A & 0 \\ \hline 0 & B \end{array}.$$

 $T_{ij} \geq 0$ לכן

בכל עמודה יש לפחות אפס אחד, לכן

$$\underline{\mathbf{v}} = \max_{i} \min_{j} T_{ij} = \max_{i} 0 = 0.$$

מצד שני מכיוון ש-A ו-B מטריצות חיוביות, אזי קיים לפחות איבר חיובי אחד בכל שורה. לפיכך

$$\overline{\mathbf{v}} = \min_{j} \max_{i} T_{ij} > 0.$$

ערך. $\overline{v} \neq v$ ז"א ז"א קולכן למשחק אין ערך.

שאלה 4 (25 נקודות)

האסטרטגיות של שחקן 1 הן המחירים p_1 שהוא בוחר, אשר מהווה קבוצה רציפה של ערכים חיוביים, ובאותה מידה האסטרטגיות לשחקן p_1 הן הקבוצה הרציפה של מחירים p_2 . לכן קבוצת האטסטרגיות של כל שחקן היא p_2 הוא הקבוצה הרציפה של מחירים p_2 .

אם שחקן q_2 התשלום לשחקן p_1 ושחקן p_1 ושחקן p_2 בוחר באסטרטגיה ווחר באסטרטגיה אם שחקן p_1

$$u_1(p_1, p_2) = p_1q_1 - cq_1 = (p_1 - c)(a - p_1 + bp_2)$$

והתשלום לשחקן 2 הוא

$$u_2(p_1, p_2) = p_2q_2 - cq_2 = (p_2 - c)(a - p_2 + bp_1)$$

:חוקטור אסטרטגיות (p_1^*,p_2^*) שיווי משקל אם לכל שחקן

$$u_1(p_1^*, p_2^*) = \max_{0 \le p_1 \le \infty} u_1(p_1, q_2^*) = \max_{0 \le p_1 \le \infty} \left[(p_1 - c)(a - p_1 + bp_2^*) \right]$$

-1

$$u_2(p_1^*, p_2^*) = \max_{0 \le p_2 \le \infty} u_1(p_1^*, p_2) = \max_{0 \le p_2 \le \infty} \left[(p_2 - c)(a - p_2 + bp_1^*) \right]$$

המקסימום של $u_1(p_1,p_2^st)$ לפי p_1 מתקבל בנקודה שבה הנגזרת מתאפסת:

$$\frac{\partial u_1(p_1, p_2^*)}{\partial p_1} = a - 2p_1 + bp_2^* + c \stackrel{!}{=} 0 \quad \Rightarrow \quad p_1^* = \frac{a + c + bp_2^*}{2} ,$$

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי

והמקסימום של $u_2(p_1^st,p_2)$ לפי $u_2(p_1^st,p_2)$ מתקבל בנקודה שבה הנגזרת מתאפסת:

$$\frac{\partial u_2(p_1^*, p_2)}{\partial p_2} = a - 2p_2 + bp_1^* + c \stackrel{!}{=} 0 \quad \Rightarrow \quad p_2^* = \frac{a + c + bp_1^*}{2} \ .$$

לפיכך, אם הצמד כמויות שיווי משקל אז הכמויות שיווי (p_1^*,p_2^*) שיווי ממקל לפיכך, אם הצמד כמויות

$$p_1^* = \frac{a+c+bp_2^*}{2}$$
, $p_2^* = \frac{a+c+bp_1^*}{2}$.

הפתרון למערכת זו הינו

$$p_1^* = p_2^* = \frac{a+c}{2-b} \ .$$

שאלה 5 (25 נקודות)

 $1- heta=rac{2}{3}$ אבהסתברות $q_2=q_2^H$ וכן $c_2=c_2^H$ -ו $heta=rac{1}{3}$ בהסתברות $q_2=q_2^L$ וכן $c_2=c_2^L$,1

$$u_1\left(q_1, q_2^H, q_2^L\right) = q_1\left(a - q_1 - \theta q_2^L - (1 - \theta)q_2^H - c_1\right) = q_1\left(2 - q_1 - \frac{1}{3}q_2^L - \frac{2}{3}q_2^H - 1\right)$$

 $c_2=c_2^L$ לשחקן 2, אם

$$u_2\left(q_1, q_2^L\right) = q_2^L\left(a - q_1 - q_2^L - c_2^L\right) = q_2^L\left(2 - q_1 - q_2^L - \frac{1}{4}\right) = q_2^L\left(\frac{7}{4} - q_1 - q_2^L\right) .$$

 $: c_2 = c_2^H$ אם

$$u_{2}(q_{1}, q_{2}^{H}) = q_{2}^{H} \left(a - q_{1} - q_{2}^{H} - c_{2}^{H} \right) = q_{2}^{H} \left(2 - q_{1} - q_{2}^{H} - \frac{7}{4} \right) = q_{2}^{H} \left(\frac{1}{4} - q_{1} - q_{2}^{H} \right) .$$

$$(u_{2})'_{q_{2}^{H}} = \frac{1}{4} - q_{1}^{*} - 2q_{2}^{H} \stackrel{!}{=} 0 \quad \Rightarrow \quad q_{2}^{H^{*}} = \frac{\frac{1}{4} - q_{1}^{*}}{2} .$$

$$(u_{2})'_{q_{2}^{L}} = \frac{7}{4} - q_{1}^{*} - 2q_{2}^{L} \stackrel{!}{=} 0 \quad \Rightarrow \quad q_{2}^{L^{*}} = \frac{\frac{7}{4} - q_{1}^{*}}{2} .$$

$$(u_1)'_{q_1} = 1 - 2q_1 - \frac{1}{3}q_2^{L^*} - \frac{2}{3}q_2^{H^*} \stackrel{!}{=} 0 \quad \Rightarrow \quad q_1^* = \frac{1 - \frac{1}{3}q_2^{L^*} - \frac{2}{3}q_2^{H^*}}{2}.$$

הפתרון למערכת הזה אוא

$$q_1^* = \frac{5}{12} , \qquad q_2^{H^*} = \frac{-1}{12}, \qquad q_2^{L^*} = \frac{2}{3} .$$

המכללה האקדמית להנדסה סמי שמעון

התשלומים הם:

$$u_1\left(q_1^* = \frac{5}{12}, q_2^{H^*} = \frac{-1}{12}, q_2^{L^*} = \frac{2}{3}\right) = \frac{25}{144} ,$$

$$u_2^L\left(q_1^* = \frac{5}{12}, q_2^{H^*} = \frac{-1}{12}, q_2^{L^*} = \frac{2}{3}\right) = \frac{4}{9} ,$$

$$u_2^H\left(q_1^* = \frac{5}{12}, q_2^{H^*} = \frac{-1}{12}, q_2^{L^*} = \frac{2}{3}\right) = \frac{1}{144} .$$