# Cálculo Numérico

Raízes de Equações: Método do Ponto Fixo

Wellington José Corrêa

Universidade Tecnológica Federal do Paraná

28 de Junho de 2021



Um número p é dito ponto fixo de uma função g se g(p) = p.

## Exemplo 1.1

Considere a função  $g(x) = x^2 - 2$  para  $-2 \le x \le 3$ . Verifique que, x = -1 e x = 2 são pontos fixos de g.

**Solução:** *Note que,* 
$$g(-1) = (-1)^2 - 2 = -1 \Rightarrow g(-1) = -1$$
  $g(2) = 2^2 - 2 = 2 \Rightarrow g(2) = 2$ .

Um número p é dito ponto fixo de uma função g se g(p) = p.

## Exemplo 1.1

Considere a função  $g(x) = x^2 - 2$  para  $-2 \le x \le 3$ . Verifique que, x = -1 e x = 2 são pontos fixos de g.

**Solução:** *Note que,* 
$$g(-1) = (-1)^2 - 2 = -1 \Rightarrow g(-1) = -1$$
.  $g(2) = 2^2 - 2 = 2 \Rightarrow g(2) = 2$ .

Um número p é dito ponto fixo de uma função g se g(p) = p.

## Exemplo 1.1

Considere a função  $g(x) = x^2 - 2$  para  $-2 \le x \le 3$ . Verifique que, x = -1 e x = 2 são pontos fixos de g.

Solução: Note que, 
$$g(-1) = (-1)^2 - 2 = -1 \Rightarrow g(-1) = -1$$
.  $g(2) = 2^2 - 2 = 2 \Rightarrow g(2) = 2$ .

Um número p é dito ponto fixo de uma função g se g(p) = p.

## Exemplo 1.1

Considere a função  $g(x) = x^2 - 2$  para  $-2 \le x \le 3$ . Verifique que, x = -1 e x = 2 são pontos fixos de g.

Solução: Note que, 
$$g(-1) = (-1)^2 - 2 = -1 \Rightarrow g(-1) = -1$$
.  $g(2) = 2^2 - 2 = 2 \Rightarrow g(2) = 2$ .

De fato, se p é raiz de f(p), então f(p) = 0, donde podemos definir várias outras funções com um ponto fixo em p, por exemplo,

$$g_1(x) = x - f(x)$$
  

$$g_2(x) = x + 3f(x)$$

$$g_1(p) = p - \underbrace{f(p)}_{=0} = p$$

$$e$$
 $g_2(p) = p + 3 \underbrace{f(p)}_{=0} = p$ 



De fato, se p é raiz de f(p), então f(p) = 0, donde podemos definir várias outras funções com um ponto fixo em p, por exemplo,

$$g_1(x) = x - f(x)$$
  

$$g_2(x) = x + 3f(x),$$

$$g_1(p) = p - \underbrace{f(p)}_{=0} = p$$

$$e$$

$$g_2(p) = p + 3 \underbrace{f(p)}_{=0} = p$$



De fato, se p é raiz de f(p), então f(p) = 0, donde podemos definir várias outras funções com um ponto fixo em p, por exemplo,

$$g_1(x) = x - f(x)$$
  

$$g_2(x) = x + 3f(x)$$

$$g_1(p) = p - \underbrace{f(p)}_{e} = p$$

$$e$$

$$g_2(p) = p + 3 \underbrace{f(p)}_{o} = p$$



De fato, se p é raiz de f(p), então f(p) = 0, donde podemos definir várias outras funções com um ponto fixo em p, por exemplo,

$$g_1(x) = x - f(x)$$
  

$$g_2(x) = x + 3f(x)$$

$$g_1(p) = p - \underbrace{f(p)}_{=0} = p$$

$$e$$

$$g_2(p) = p + 3 \underbrace{f(p)}_{=0} = p$$



Reciprocamente, suponha que g tenha um ponto fixo em p, ou seja, g(p)=p. A função

$$f(x) = x - g(x)$$

$$f(p) = p - \underbrace{g(p)}_{=p} = 0$$



Reciprocamente, suponha que g tenha um ponto fixo em p, ou seja, g(p) = p. A função

$$f(x) = x - g(x)$$

$$f(p) = p - \underbrace{g(p)}_{=p} = 0$$



Reciprocamente, suponha que g tenha um ponto fixo em p, ou seja, g(p)=p. A função

$$f(x) = x - g(x)$$

$$f(p) = p - \underbrace{g(p)}_{=p} = 0$$



Reciprocamente, suponha que g tenha um ponto fixo em p, ou seja, g(p)=p. A função

$$f(x) = x - g(x)$$

$$f(p) = p - \underbrace{g(p)}_{=p} = 0$$



O teorema a seguir, estabelece condições suficientes para a existência e a unicidade de um ponto fixo.

## Teorema 1.

Se  $g \in C([a,b])$  e  $g(x) \in [a,b]$  para todo  $x \in [a,b]$ , então, g terá um ponto fixo em [a,b]. Além disso, se g'(x) existir em (a,b) e houver uma constante 0 < k < 1 tal que,

$$|g'(x)| \le k; \ \forall x \in (a,b)$$

então, o ponto fixo em [a,b] será único.



O teorema a seguir, estabelece condições suficientes para a existência e a unicidade de um ponto fixo.

#### Teorema 1.3

Se  $g \in C([a,b])$  e  $g(x) \in [a,b]$  para todo  $x \in [a,b]$ , então, g terá um ponto fixo em [a,b]. Além disso, se g'(x) existir em (a,b) e houver uma constante 0 < k < 1 tal que,

$$|g'(x)| \le k; \ \forall x \in (a,b)$$

então, o ponto fixo em [a,b] será único.



O teorema a seguir, estabelece condições suficientes para a existência e a unicidade de um ponto fixo.

#### Teorema 1.

Se  $g \in C([a,b])$  e  $g(x) \in [a,b]$  para todo  $x \in [a,b]$ , então, g terá um ponto fixo em [a,b]. Além disso, se g'(x) existir em (a,b) e houver uma constante 0 < k < 1 tal que,

$$|g'(x)| \leq k$$
;  $\forall x \in (a, b)$ ,

então, o ponto fixo em [a,b] será único.



## Exemplo 1.2

Seja  $g(x) = \frac{x^2 - 1}{3}$ ,  $x \in [-1, 1]$ . Verifique que g satisfaz as condições do precedente teorema e exiba o ponto fixo de g.

Solução: À luz do Teorema 1.1, precisamos provar os seguintes fatos

- $\bigcirc$  g é contínua em [-1,1]
- $g(x) \in [-1,1];$
- $\bigcirc$  Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (-1, 1)$ .



## Exemplo 1.2

Seja  $g(x) = \frac{x^2 - 1}{3}$ ,  $x \in [-1, 1]$ . Verifique que g satisfaz as condições do precedente teorema e exiba o ponto fixo de g.

# Solução: À luz do Teorema 1.1, precisamos provar os seguintes fatos:

- $\bigcirc$  g é contínua em [-1,1]
- $g(x) \in [-1,1]$
- Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (-1,1)$ .



## Exemplo 1.2

Seja  $g(x) = \frac{x^2 - 1}{3}$ ,  $x \in [-1, 1]$ . Verifique que g satisfaz as condições do precedente teorema e exiba o ponto fixo de g.

Solução: À luz do Teorema 1.1, precisamos provar os seguintes fatos:

- $\bigcirc$  g é contínua em [-1,1];
- $g(x) \in [-1,1]$
- Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (-1,1)$ .



## Exemplo 1.2

Seja  $g(x) = \frac{x^2 - 1}{3}$ ,  $x \in [-1, 1]$ . Verifique que g satisfaz as condições do precedente teorema e exiba o ponto fixo de g.

Solução: À luz do Teorema 1.1, precisamos provar os seguintes fatos:

- $\bigcirc$  g é contínua em [-1,1];
- $g(x) \in [-1,1];$
- Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (-1,1)$ .



## Exemplo 1.2

Seja  $g(x) = \frac{x^2 - 1}{3}$ ,  $x \in [-1, 1]$ . Verifique que g satisfaz as condições do precedente teorema e exiba o ponto fixo de g.

Solução: À luz do Teorema 1.1, precisamos provar os seguintes fatos:

- $\bigcirc$  g é contínua em [-1,1];
- $g(x) \in [-1,1];$
- $\bigcirc$  Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (-1, 1)$ .



## Exemplo 1.2

Seja  $g(x) = \frac{x^2 - 1}{3}$ ,  $x \in [-1, 1]$ . Verifique que g satisfaz as condições do precedente teorema e exiba o ponto fixo de g.

Solução: À luz do Teorema 1.1, precisamos provar os seguintes fatos:

- $\bigcirc$  g é contínua em [-1,1];
- $g(x) \in [-1,1];$
- $\bigcirc$  Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (-1, 1)$ .



À seguir, provaremos o item (ii). O item (ii) nos diz que a imagem da função g(x) possui valores mínimo e máximo dentro do intervalo [-1,1].

Assim, como encontramos máximos e mínimos de uma função?





À seguir, provaremos o item (ii). O item (ii) nos diz que a imagem da função g(x) possui valores mínimo e máximo dentro do intervalo [-1,1].

Assim, como encontramos máximos e mínimos de uma função?





De fato, desde que  $g'(x) = \frac{2x}{3}$ , resulta que

$$g'(x) = 0 \Leftrightarrow x = 0,$$

donde temos a tabela:

| X  | g(x)           | Conclusão                      |
|----|----------------|--------------------------------|
| -1 | 0              | g tem um valor máximo absoluto |
|    | $-\frac{3}{1}$ | g tem um valor mínimo absoluto |
| 1  | Ö              | g tem um valor máximo absoluto |

Logo,

$$g(x) \in \left[-\frac{1}{3}, 0\right] \subset [-1, 1]$$



o que prova o item (ii).

De fato, desde que  $g'(x) = \frac{2x}{3}$ , resulta que

$$g'(x)=0 \Leftrightarrow x=0,$$

donde temos a tabela:

| X  | g(x)           | Conclusão                      |
|----|----------------|--------------------------------|
| -1 | 0              | g tem um valor máximo absoluto |
|    | $-\frac{3}{1}$ | g tem um valor mínimo absoluto |
| 1  | Õ              | g tem um valor máximo absoluto |

Logo,

$$g(x) \in \left[-\frac{1}{3}, 0\right] \subset [-1, 1]$$



o que prova o item (ii)

De fato, desde que  $g'(x) = \frac{2x}{3}$ , resulta que

$$g'(x)=0 \Leftrightarrow x=0,$$

donde temos a tabela:

| X  | g(x)           | Conclusão                                   |
|----|----------------|---------------------------------------------|
| -1 | 0              | $oldsymbol{g}$ tem um valor máximo absoluto |
| 0  | $-\frac{1}{3}$ | g tem um valor mínimo absoluto              |
| 1  | ŏ              | g tem um valor máximo absoluto              |

Logo,

$$g(x) \in \left[-\frac{1}{3}, 0\right] \subset [-1, 1]$$



De fato, desde que  $g'(x) = \frac{2x}{3}$ , resulta que

$$g'(x) = 0 \Leftrightarrow x = 0,$$

donde temos a tabela:

| X  | g(x)           | Conclusão                      |
|----|----------------|--------------------------------|
| -1 | 0              | g tem um valor máximo absoluto |
| 0  | $-\frac{1}{3}$ | g tem um valor mínimo absoluto |
| 1  | ŏ              | g tem um valor máximo absoluto |

Logo,

$$g(x) \in \left[-\frac{1}{3}, 0\right] \subset [-1, 1],$$



o que prova o item (ii).

$$|g'(x)| = \left|\frac{2x}{3}\right|.$$

Desde que por hipótese,  $x \in [-1, 1]$ , então,

$$-1 \le x \le 1 \Leftrightarrow |x| \le 1$$
.

$$|x| \le 1$$

$$\Leftrightarrow \frac{2}{3}|x| \le \frac{2}{3} \cdot 1$$

$$\Rightarrow |g'(x)| = \left|\frac{2x}{3}\right| = \frac{2}{3}|x| \le \frac{2}{3}.$$



$$|g'(x)| = \left|\frac{2x}{3}\right|.$$

Desde que por hipótese,  $x \in [-1, 1]$ , então,

$$-1 \le x \le 1 \Leftrightarrow |x| \le 1$$
.

$$|x| \le 1$$

$$\Leftrightarrow \frac{2}{3}|x| \le \frac{2}{3} \cdot 1$$

$$\Rightarrow |g'(x)| = \left|\frac{2x}{3}\right| = \frac{2}{3}|x| \le \frac{2}{3}.$$



$$|g'(x)| = \left|\frac{2x}{3}\right|.$$

Desde que por hipótese,  $x \in [-1, 1]$ , então,

$$-1 \le x \le 1 \Leftrightarrow |x| \le 1$$
.

$$|x| \le 1$$

$$\Leftrightarrow \frac{2}{3}|x| \le \frac{2}{3} \cdot 1$$

$$\Rightarrow |g'(x)| = \left|\frac{2x}{3}\right| = \frac{2}{3}|x| \le \frac{2}{3}.$$



$$|g'(x)| = \left|\frac{2x}{3}\right|.$$

Desde que por hipótese,  $x \in [-1, 1]$ , então,

$$-1 \le x \le 1 \Leftrightarrow |x| \le 1$$
.

$$|x| \le 1$$

$$\Leftrightarrow \frac{2}{3}|x| \le \frac{2}{3} \cdot 1$$

$$\Rightarrow |g'(x)| = \left|\frac{2x}{3}\right| = \frac{2}{3}|x| \le \frac{2}{3}.$$



$$|g'(x)| = \left|\frac{2x}{3}\right|.$$

Desde que por hipótese,  $x \in [-1, 1]$ , então,

$$-1 \le x \le 1 \Leftrightarrow |x| \le 1$$
.

$$|x| \le 1$$

$$\Leftrightarrow \frac{2}{3}|x| \le \frac{2}{3} \cdot 1$$

$$\Rightarrow |g'(x)| = \left|\frac{2x}{3}\right| = \frac{2}{3}|x| \le \frac{2}{3}.$$



$$|g'(x)| = \left|\frac{2x}{3}\right|.$$

Desde que por hipótese,  $x \in [-1, 1]$ , então,

$$-1 \le x \le 1 \Leftrightarrow |x| \le 1$$
.

$$|x| \le 1$$

$$\Leftrightarrow \frac{2}{3}|x| \le \frac{2}{3} \cdot 1$$

$$\Rightarrow |g'(x)| = \left|\frac{2x}{3}\right| = \frac{2}{3}|x| \le \frac{2}{3}.$$



## Deste modo, mostramos que

$$|g'(x)| \le \frac{2}{3} < 1, \, \forall \, x \in [-1, 1],$$

o que garante a condição (iii). Do exposto, g contempla todas as hipóteses do Teorema 1.1, garantindo a existência de um único ponto fixo no intervalo [-1,1].

Assim, podemos encontrar algebricamente um único ponto fixo para g



Deste modo, mostramos que

$$|g'(x)| \le \frac{2}{3} < 1, \ \forall x \in [-1, 1],$$

o que garante a condição (iii). Do exposto, g contempla todas as hipóteses do Teorema 1.1, garantindo a existência de um único ponto fixo no intervalo [-1,1].

Assim, podemos encontrar algebricamente um único ponto fixo para g.



Deste modo, mostramos que

$$|g'(x)| \le \frac{2}{3} < 1, \, \forall \, x \in [-1, 1],$$

o que garante a condição (iii). Do exposto, g contempla todas as hipóteses do Teorema 1.1, garantindo a existência de um único ponto fixo no intervalo [-1,1].

Assim, podemos encontrar algebricamente um único ponto fixo para g.



$$g(p) = p$$

$$\iff \rho = \frac{p^2 - 1}{3}$$

$$\iff \rho^2 - 3p - 1 = 0$$

$$\iff \rho = \frac{1}{2} (3 - \sqrt{13}) \in [-1, 1].$$

Note que a outra raiz desta equação do segundo grau não pertence ao intervalo [-1,1]

Doravante, g tem um único ponto fixo, a saber,  $p=\frac{1}{2}\left(3-\sqrt{13}\right)$ 



$$g(p) = p$$

$$\iff p = \frac{p^2 - 1}{3}$$

$$\iff p^2 - 3p - 1 = 0$$

$$\iff p = \frac{1}{2} (3 - \sqrt{13}) \in [-1, 1].$$

Note que a outra raiz desta equação do segundo grau não pertence ao intervalo [-1,1].

Doravante, g tem um único ponto fixo, a saber,  $p = \frac{1}{2} (3 - \sqrt{13})$ 



$$g(p) = p$$

$$\iff p = \frac{p^2 - 1}{3}$$

$$\iff p^2 - 3p - 1 = 0$$

$$\iff p = \frac{1}{2} (3 - \sqrt{13}) \in [-1, 1].$$

Note que a outra raiz desta equação do segundo grau não pertence ao intervalo [-1,1].

Doravante, g tem um único ponto fixo, a saber,  $p=\frac{1}{2}\left(3-\sqrt{13}\right)$ 



$$g(p) = p$$

$$\iff p = \frac{p^2 - 1}{3}$$

$$\iff p^2 - 3p - 1 = 0$$

$$\iff p = \frac{1}{2} (3 - \sqrt{13}) \in [-1, 1].$$

Note que a outra raiz desta equação do segundo grau não pertence ao intervalo [-1,1].

Doravante, g tem um único ponto fixo, a saber,  $p=\frac{1}{2}\left(3-\sqrt{13}\right)$ 



$$g(p) = p$$

$$\iff p = \frac{p^2 - 1}{3}$$

$$\iff p^2 - 3p - 1 = 0$$

$$\iff p = \frac{1}{2} (3 - \sqrt{13}) \in [-1, 1].$$

Note que a outra raiz desta equação do segundo grau não pertence ao intervalo [-1,1].

Doravante, g tem um único ponto fixo, a saber,  $p = \frac{1}{2}(3 - \sqrt{13})$ .



Agora, considere f uma função contínua em [a,b] e  $\xi$  um número pertencente a este intervalo, tal que  $f(\xi)=0$ , isto é,  $\xi$  é a raiz da equação f(x)=0.

Admita que por um artifício algébrico (você estenderá isso posteriormente) pode-se transformante f(x) = 0 em

$$x = F(x),$$

onde F é chamada de função de iteração.



Agora, considere f uma função contínua em [a,b] e  $\xi$  um número pertencente a este intervalo, tal que  $f(\xi)=0$ , isto é,  $\xi$  é a raiz da equação f(x)=0.

Admita que por um artifício algébrico (você estenderá isso posteriormente) pode-se transformar f(x) = 0 em

$$x = F(x),$$

onde F é chamada de função de iteração.



(1)

Eis o método: Sendo  $x_0$  uma aproximação de  $\xi$ , calcula-se  $F(x_0)$ . Faz-se,

$$x_1 = F(x_0)$$
  
 $x_2 = F(x_1)$   
 $x_3 = F(x_2)$   
 $\vdots$   
 $x_{k+1} = F(x_k), k = 0, 1, 2, 3, ...$ 

Se a seguência  $x_0, x_1, x_2, ...$  é convergente para  $\mathcal{E}$ , então.

$$\lim_{k \to +\infty} x_k = \xi$$



(1)

Eis o método: Sendo  $x_0$  uma aproximação de  $\xi$ , calcula-se  $F(x_0)$ . Faz-se,

$$x_1 = F(x_0)$$
  
 $x_2 = F(x_1)$   
 $x_3 = F(x_2)$   
 $\vdots$   
 $x_{k+1} = F(x_k), k = 0, 1, 2, 3, ...$ 

Se a sequência  $x_0, x_1, x_2, ...$  é convergente para  $\xi$ , então,

$$\lim_{k \to +\infty} x_k = \xi$$



(1)

Eis o método: Sendo  $x_0$  uma aproximação de  $\xi$ , calcula-se  $F(x_0)$ . Faz-se,

$$x_1 = F(x_0)$$
  
 $x_2 = F(x_1)$   
 $x_3 = F(x_2)$   
 $\vdots$   
 $x_{k+1} = F(x_k), k = 0, 1, 2, 3, ...$ 

Se a sequência  $x_0, x_1, x_2, ...$  é convergente para  $\xi$ , então,

$$\lim_{k \to +\infty} x_k = \xi$$



 $x_1 = F(x_0)$ 

#### Método do Ponto Fixo

(1)

Eis o método: Sendo  $x_0$  uma aproximação de  $\xi$ , calcula-se  $F(x_0)$ . Faz-se,

Se a seguência x<sub>0</sub>, x<sub>1</sub>, x<sub>2</sub>,... é convergente para £, então

$$\lim_{k \to +\infty} x_k = \xi.$$



Eis o método: Sendo  $x_0$  uma aproximação de  $\xi$ , calcula-se  $F(x_0)$ . Faz-se,

$$x_1 = F(x_0)$$
  
 $x_2 = F(x_1)$   
 $x_3 = F(x_2)$   
:

(1) 
$$x_{k+1} = F(x_k), k = 0, 1, 2, 3, ...$$

Se a sequência  $x_0, x_1, x_2, ...$  é convergente para  $\xi$ , então,

$$\lim_{k \to +\infty} x_k = \xi$$



(1)

Eis o método: Sendo  $x_0$  uma aproximação de  $\xi$ , calcula-se  $F(x_0)$ . Faz-se,

$$x_1 = F(x_0)$$
  
 $x_2 = F(x_1)$   
 $x_3 = F(x_2)$   
 $\vdots$   
 $x_{k+1} = F(x_k), k = 0, 1, 2, 3, ...$ 

Se a sequência  $x_0, x_1, x_2, \dots$  é convergente para  $\xi$ , então,

$$\lim_{k \to +\infty} x_k = \xi$$



(1)

Eis o método: Sendo  $x_0$  uma aproximação de  $\xi$ , calcula-se  $F(x_0)$ . Faz-se,

$$x_1 = F(x_0)$$
  
 $x_2 = F(x_1)$   
 $x_3 = F(x_2)$   
 $\vdots$   
 $x_{k+1} = F(x_k), k = 0, 1, 2, 3, ...$ 

Se a sequência  $x_0, x_1, x_2, \dots$  é convergente para  $\xi$ , então,

$$\lim_{k \to \infty} |x| = 1$$



(1)

Eis o método: Sendo  $x_0$  uma aproximação de  $\xi$ , calcula-se  $F(x_0)$ . Faz-se.

$$x_1 = F(x_0)$$
  
 $x_2 = F(x_1)$   
 $x_3 = F(x_2)$   
 $\vdots$   
 $x_{k+1} = F(x_k), k = 0, 1, 2, 3, ...$ 

Se a sequência  $x_0, x_1, x_2, \dots$  é convergente para  $\xi$ , então,

$$\lim_{k\to+\infty}x_k=\xi.$$



Sendo F contínua, ao passar o limite de (1), tendo em mente (2), obtemos:

$$\xi = \lim_{k \to +\infty} x_{k+1}$$

$$= \lim_{k \to +\infty} F(x_k)$$

$$= F\left(\lim_{k \to +\infty} x_k\right)$$

$$= F(\xi).$$



Sendo F contínua, ao passar o limite de (1), tendo em mente (2), obtemos:

$$\xi = \lim_{k \to +\infty} x_{k+1}$$

$$= \lim_{k \to +\infty} F(x_k)$$

$$= F\left(\lim_{k \to +\infty} x_k\right)$$

$$= F(\xi).$$



Sendo F contínua, ao passar o limite de (1), tendo em mente (2), obtemos:

(3) 
$$\xi = \lim_{k \to +\infty} x_{k+1}$$
$$= \lim_{k \to +\infty} F(x_k)$$
$$= F\left(\lim_{k \to +\infty} x_k\right)$$
$$= F(\xi).$$



Sendo F contínua, ao passar o limite de (1), tendo em mente (2), obtemos:

(3) 
$$\xi = \lim_{k \to +\infty} x_{k+1}$$
$$= \lim_{k \to +\infty} F(x_k)$$
$$= F\left(\lim_{k \to +\infty} x_k\right)$$
$$= F(\xi).$$



Sendo F contínua, ao passar o limite de (1), tendo em mente (2), obtemos:

(3) 
$$\xi = \lim_{k \to +\infty} x_{k+1}$$

$$= \lim_{k \to +\infty} F(x_k)$$

$$= F\left(\lim_{k \to +\infty} x_k\right)$$

$$= F(\xi).$$



Sendo F contínua, ao passar o limite de (1), tendo em mente (2), obtemos:

(3) 
$$\xi = \lim_{k \to +\infty} x_{k+1}$$
$$= \lim_{k \to +\infty} F(x_k)$$
$$= F\left(\lim_{k \to +\infty} x_k\right)$$
$$= F(\xi).$$



























































#### Método do Ponto Fixo

#### Teorema 1.

Seja  $\xi \in [a,b]$  uma raiz da equação f(x)=0 e F(x) contínua, diferenciável em [a,b] e  $F(x) \in [a,b]$ . Se  $|F'(x)| \le k < 1$  para todos os pontos em [a,b] e  $x_0 \in [a,b]$ , então, os valores dados pela equação

$$x_{k+1} = F(x_k), k = 0, 1, 2, ...$$

converge para ξ.



A partir de uma função f(x), podem-se obter várias funções de iteração F(x), porém nem todas poderão ser utilizadas para avaliar  $\xi$ . É oportuno enfatizar que só se deve usar uma função F(x) que satisfaça o teorema anterior.

# Exemplo 2.1

Seja 
$$f(x) = x^3 - x - 1 = 0$$
, determine uma raiz de  $f$  com  $\varepsilon \le 10^{-3}$ 

- ① Escolher  $a \in b$  de modo que  $f(a) \cdot f(b) < 0$ ;
- $\bigcirc$  g é contínua em [a, b];
- Solution Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (a, b)$



A partir de uma função f(x), podem-se obter várias funções de iteração F(x), porém nem todas poderão ser utilizadas para avaliar  $\xi$ . É oportuno enfatizar que só se deve usar uma função F(x) que satisfaça o teorema anterior.

# Exemplo 2.3

Seja 
$$f(x) = x^3 - x - 1 = 0$$
, determine uma raiz de  $f$  com  $\varepsilon \le 10^{-3}$ .

- ① Escolher  $a \in b$  de modo que  $f(a) \cdot f(b) < 0$ ;
- 0 g é contínua em [a, b];
- Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (a, b)$ .



A partir de uma função f(x), podem-se obter várias funções de iteração F(x), porém nem todas poderão ser utilizadas para avaliar  $\xi$ . É oportuno enfatizar que só se deve usar uma função F(x) que satisfaça o teorema anterior.

# Exemplo 2.1

Seja 
$$f(x) = x^3 - x - 1 = 0$$
, determine uma raiz de  $f$  com  $\varepsilon \le 10^{-3}$ .

- ① Escolher  $a \in b$  de modo que  $f(a) \cdot f(b) < 0$ ;
- $\bigcirc$  g é contínua em [a, b];
- Solution Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (a, b)$ .



A partir de uma função f(x), podem-se obter várias funções de iteração F(x), porém nem todas poderão ser utilizadas para avaliar  $\xi$ . É oportuno enfatizar que só se deve usar uma função F(x) que satisfaça o teorema anterior.

# Exemplo 2.1

Seja 
$$f(x) = x^3 - x - 1 = 0$$
, determine uma raiz de  $f$  com  $\varepsilon \le 10^{-3}$ .

- ① Escolher  $a \in b$  de modo que  $f(a) \cdot f(b) < 0$ ;
- $\bigcirc$  g é contínua em [a, b];
- Solution Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (a, b)$ .



A partir de uma função f(x), podem-se obter várias funções de iteração F(x), porém nem todas poderão ser utilizadas para avaliar  $\xi$ . É oportuno enfatizar que só se deve usar uma função F(x) que satisfaça o teorema anterior.

# Exemplo 2.1

Seja 
$$f(x) = x^3 - x - 1 = 0$$
, determine uma raiz de  $f$  com  $\varepsilon \le 10^{-3}$ .

- One Escolher  $a \in b$  de modo que  $f(a) \cdot f(b) < 0$ ;
- $\bigcirc$  g é contínua em [a, b];
- Solution Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (a, b)$ .



A partir de uma função f(x), podem-se obter várias funções de iteração F(x), porém nem todas poderão ser utilizadas para avaliar  $\xi$ . É oportuno enfatizar que só se deve usar uma função F(x) que satisfaça o teorema anterior.

# Exemplo 2.1

Seja 
$$f(x) = x^3 - x - 1 = 0$$
, determine uma raiz de  $f$  com  $\varepsilon \le 10^{-3}$ .

- $\bigcirc$  Escolher a e b de modo que  $f(a) \cdot f(b) < 0$ ;
- $\bigcirc$  g é contínua em [a, b];
- Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (a, b)$



A partir de uma função f(x), podem-se obter várias funções de iteração F(x), porém nem todas poderão ser utilizadas para avaliar  $\xi$ . É oportuno enfatizar que só se deve usar uma função F(x) que satisfaça o teorema anterior.

# Exemplo 2.1

Seja 
$$f(x) = x^3 - x - 1 = 0$$
, determine uma raiz de  $f$  com  $\varepsilon \le 10^{-3}$ .

- $\bigcirc$  Escolher a e b de modo que  $f(a) \cdot f(b) < 0$ ;
- $\bigcirc$  g é contínua em [a, b];
- Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (a, b)$



A partir de uma função f(x), podem-se obter várias funções de iteração F(x), porém nem todas poderão ser utilizadas para avaliar  $\xi$ . É oportuno enfatizar que só se deve usar uma função F(x) que satisfaça o teorema anterior.

#### Exemplo 2.3

Seja 
$$f(x) = x^3 - x - 1 = 0$$
, determine uma raiz de  $f$  com  $\varepsilon \le 10^{-3}$ .

- $\bigcirc$  Escolher a e b de modo que  $f(a) \cdot f(b) < 0$ ;
- g é contínua em [a, b];
- Existe uma constante 0 < k < 1 tal que,  $|g'(x)| \le k$ ;  $\forall x \in (a, b)$ .



$$f(0,5) = -1,375 < 0$$
 e  $f(2) = 7 > 0$ ,

logo,  $\xi \in [0,5,2]$ . Podemos facilmente obter duas funções de iteração para  $x^3 - x - 1 = 0$ .

O Isolando  $x \text{ em } x^3 - x - 1 = 0$ :

$$x = F_1(x) = x^3 - 1$$

Claramente  $F_1$  é contínua, pois é um polinômio. Por outro lado, veja que  $F_1(2) = 7 \notin [0,5,2]$ , logo a condição (iii) não é satisfeita, o que não nos garante a convergência do método para  $F_1(x)$ .

$$f(0,5) = -1,375 < 0$$
 e  $f(2) = 7 > 0$ ,

logo,  $\xi \in [0, 5, 2]$ . Podemos facilmente obter duas funções de iteração para  $x^3 - x - 1 = 0$ .

$$x = F_1(x) = x^3 - 1$$

Claramente  $F_1$  é contínua, pois é um polinômio. Por outro lado, veja que  $F_1(2) = 7 \notin [0, 5, 2]$ , logo a condição (iii) não é satisfeita, o que não nos garante a convergência do método para  $F_1(x)$ .

$$f(0,5) = -1,375 < 0$$
 e  $f(2) = 7 > 0$ ,

logo,  $\xi \in [0, 5, 2]$ . Podemos facilmente obter duas funções de iteração para  $x^3 - x - 1 = 0$ .

O Isolando  $x \text{ em } x^3 - x - 1 = 0$ :

$$x = F_1(x) = x^3 - 1.$$

Claramente  $F_1$  é contínua, pois é um polinômio. Por outro lado, veja que  $F_1(2) = 7 \notin [0,5,2]$ , logo a condição (iii) não é satisfeita, o que não nos garante a convergência do método para  $F_1(x)$ .

$$f(0,5) = -1,375 < 0$$
 e  $f(2) = 7 > 0$ ,

logo,  $\xi \in [0, 5, 2]$ . Podemos facilmente obter duas funções de iteração para  $x^3 - x - 1 = 0$ .

○ Isolando  $x \text{ em } x^3 - x - 1 = 0$ :

$$x = F_1(x) = x^3 - 1.$$

Claramente  $F_1$  é contínua, pois é um polinômio. Por outro lado, veja que  $F_1(2) = 7 \notin [0, 5, 2]$ , logo a condição (iii) não é satisfeita, o que não nos garante a convergência do método para  $F_1(x)$ .

$$x^{3} = x + 1$$
  

$$\Rightarrow F_{2}(x) = x = \sqrt[3]{x + 1}.$$

#### Note que

- $\bigcirc$   $F_2$  é contínua, pois  $\operatorname{Dom} F_2 = \mathbb{R}$ ;
- Precisamos agora provar o item (iii):

$$F_2(x) \in [0,5,2], \forall x \in [0,5,2].$$

$$x^{3} = x + 1$$
  

$$\Rightarrow F_{2}(x) = x = \sqrt[3]{x + 1}.$$

#### Note que

- $\bigcirc$   $F_2$  é contínua, pois  $\operatorname{Dom} F_2 = \mathbb{R}$ ;
- Precisamos agora provar o item (iii):

$$F_2(x) \in [0,5,2], \forall x \in [0,5,2]$$

$$x^{3} = x + 1$$
  

$$\Rightarrow F_{2}(x) = x = \sqrt[3]{x + 1}.$$

#### Note que

- $\bigcirc$   $F_2$  é contínua, pois  $\operatorname{Dom} F_2 = \mathbb{R}$ ;
- Precisamos agora provar o item (iii):

$$F_2(x) \in [0,5,2], \forall x \in [0,5,2],$$

$$x^{3} = x + 1$$
  

$$\Rightarrow F_{2}(x) = x = \sqrt[3]{x + 1}.$$

#### Note que

- $\bigcirc$   $F_2$  é contínua, pois  $\operatorname{Dom} F_2 = \mathbb{R}$ ;
- Precisamos agora provar o item (iii):

$$F_2(x) \in [0,5,2], \forall x \in [0,5,2],$$

$$x^{3} = x + 1$$
  

$$\Rightarrow F_{2}(x) = x = \sqrt[3]{x + 1}.$$

#### Note que

- $\bigcirc$   $F_2$  é contínua, pois  $\operatorname{Dom} F_2 = \mathbb{R}$ ;
- Precisamos agora provar o item (iii):

$$F_2(x) \in [0,5,2], \forall x \in [0,5,2],$$

$$F'_2(x) = 0$$

$$\iff \frac{1}{3(1+x)^{2/3}} = 0$$

$$0 = 1 \text{ (Falso!)},$$

logo, não existem extremos absolutos em (0,5,2). Pelo Teorema do Valor extremos, resulta que os valores de mínimo e máximo absoluto estão nos extremos a = 0,5 e b = 2.



$$F_2'(x) = 0$$

$$\iff \frac{1}{3(1+x)^{2/3}} = 0$$

$$0 = 1 \text{ (Falsol)},$$

logo, não existem extremos absolutos em (0,5,2). Pelo Teorema do Valor extremos, resulta que os valores de mínimo e máximo absoluto estão nos extremos a=0,5 e b=2.



$$F_2'(x) = 0$$

$$\iff \frac{1}{3(1+x)^{2/3}} = 0$$

$$0 = 1 \text{ (Falso!)},$$

logo, não existem extremos absolutos em (0,5,2). Pelo Teorema do Valor extremos, resulta que os valores de mínimo e máximo absoluto estão nos extremos a=0,5 e b=2.



$$F_2'(x) = 0$$

$$\iff \frac{1}{3(1+x)^{2/3}} = 0$$

$$0 = 1 \text{ (Falso!)},$$

logo, não existem extremos absolutos em (0,5,2). Pelo Teorema do Valor extremos, resulta que os valores de mínimo e máximo absoluto estão nos extremos a=0,5 e b=2.



Para compreensão do fato que os extremos absolutos estão nos extremos a e b, recordemos o :

# Teorema 2.1 (Teorema do Valor Extremo)

Seja f contínua em [a, b]. Então f admite máximo e mínimo absoluto em [a, b].

Para clarificar as ideias, temos duas situações em que a função f(x) não possui extremos absoluto em (a,b), restando a única possibilidade em que os valores de mínimo e máximo absoluto estão pos extremos a e b



Figura: Note que pelo fato de  $f'(x) \neq 0$ , para todo  $x \in (a, b)$ , não existem extremos absolutos no interior de [a,b]. Logo, os extremos absolutos estão nos extremos  $a \in b$ .



Para compreensão do fato que os extremos absolutos estão nos extremos a e b, recordemos o :

# Teorema 2.1 (Teorema do Valor Extremo)

Seja f contínua em [a, b]. Então f admite máximo e mínimo absoluto em [a, b].

Para clarificar as ideias, temos duas situações em que a função f(x) não possui extremos absolutos em (a, b), restando a única possibilidade em que os valores de mínimo e máximo absoluto estão nos extremos a e b.



Figura: Note que pelo fato de  $f'(x) \neq 0$ , para todo  $x \in (a, b)$ , não existem extremos absolutos no interior de [a,b]. Logo, os extremos absolutos estão nos extremos  $a \in b$ .



Para compreensão do fato que os extremos absolutos estão nos extremos a e b, recordemos o :

# Teorema 2.1 (Teorema do Valor Extremo)

Seja f contínua em [a, b]. Então f admite máximo e mínimo absoluto em [a, b].

Para clarificar as ideias, temos duas situações em que a função f(x) não possui extremos absolutos em (a, b), restando a única possibilidade em que os valores de mínimo e máximo absoluto estão nos extremos a e b.



Figura: Note que pelo fato de  $f'(x) \neq 0$ , para todo  $x \in (a, b)$ , não existem extremos absolutos no interior de [a,b]. Logo, os extremos absolutos estão nos extremos  $a \in b$ .



Voltando ao exemplo, tendo em mente que os valores de mínimo e máximo absoluto estão nos extremos a = 0, 5 e b = 2, notemos que  $F_2(0, 5) = 1, 14$  e  $F_2(2) = 1, 44$ , logo,

$$F_2(x) \in [0,5,2], \forall x \in [0,5,2],$$

o que prova o item (iii).



$$|F_2'(x)| \le k$$
;  $\forall x \in (0,5,2)$ .

Com efeito,

$$F_2'(x) = \frac{(x+1)^{-2/3}}{3}$$

$$= \frac{1}{3(x+1)^{2/3}}$$

$$< 1, \quad \forall x \in (0,5,2),$$



$$|F_2'(x)| \le k$$
;  $\forall x \in (0,5,2)$ .

Com efeito,

$$F_2'(x) = \frac{(x+1)^{-2/3}}{3}$$

$$= \frac{1}{3(x+1)^{2/3}}$$

$$< 1, \quad \forall x \in (0,5,2),$$



$$|F_2'(x)| \le k$$
;  $\forall x \in (0,5,2)$ .

Com efeito.

$$F_2'(x) = \frac{(x+1)^{-2/3}}{3}$$

$$= \frac{1}{3(x+1)^{2/3}}$$

$$< 1, \quad \forall x \in (0,5,2),$$



$$|F_2'(x)| \le k$$
;  $\forall x \in (0,5,2)$ .

Com efeito.

$$F_2'(x) = \frac{(x+1)^{-2/3}}{3}$$

$$= \frac{1}{3(x+1)^{2/3}}$$

$$< 1, \quad \forall x \in (0,5,2),$$



$$|F_2'(x)| \le k$$
;  $\forall x \in (0,5,2)$ .

Com efeito.

$$F_2'(x) = \frac{(x+1)^{-2/3}}{3}$$

$$= \frac{1}{3(\underbrace{x+1}_{>1})^{2/3}}$$

$$< 1, \quad \forall x \in (0,5,2),$$



# Assim, o método do ponto fixo há de convergir para $F_2(x)$ , face o teorema anterior.

Escolhendo  $x_0 = 1, 5 \in [0, 5, 2]$ , temos ao usar o método iterativo  $x_{k+1} = F(x_k)$ :

k = 0

$$x_1 = F_2(x_0) = F_2(1,5) = 1,357208808, |x_1 - x_0| = 0,14279 > \varepsilon = 10^{-3}$$

k = 1

$$x_2 = F_2(x_1) = F_2(1, 357208808) = 1, 330860959, |x_2 - x_1| = 0, 026347849 > \varepsilon = 10^{-3}.$$



Assim, o método do ponto fixo há de convergir para  $F_2(x)$ , face o teorema anterior.

Escolhendo  $x_0 = 1, 5 \in [0, 5, 2]$ , temos ao usar o método iterativo  $x_{k+1} = F(x_k)$ :

k = 0:

$$x_1 = F_2(x_0) = F_2(1,5) = 1,357208808, |x_1 - x_0| = 0,14279 > \varepsilon = 10^{-3}.$$

k = 1

$$x_2 = F_2(x_1) = F_2(1, 357208808) = 1, 330860959, |x_2 - x_1| = 0, 026347849 > \varepsilon = 10^{-3}.$$



Assim, o método do ponto fixo há de convergir para  $F_2(x)$ , face o teorema anterior.

Escolhendo  $x_0 = 1, 5 \in [0, 5, 2]$ , temos ao usar o método iterativo  $x_{k+1} = F(x_k)$ :

k = 0:

$$x_1 = F_2(x_0) = F_2(1,5) = 1,357208808, |x_1 - x_0| = 0,14279 > \varepsilon = 10^{-3}.$$

k = 1 :

$$x_2 = F_2(x_1) = F_2(1,357208808) = 1,330860959, |x_2 - x_1| = 0,026347849 > \varepsilon = 10^{-3}.$$



k = 2:

$$x_3 = F_2(x_2) = F_2(1,330860959) = 1,325883774, |x_3 - x_2| = 4,977185 \times 10^{-3} > \varepsilon = 10^{-3}$$
.

k = 3 :

$$x_4 = F_2(x_3) = F_2(1,325883774) = 1,324939363, |x_4 - x_3| = 9,4441065 \times 10^{-4} < \varepsilon = 10^{-3}$$

Doravante,  $\xi \approx x_4 = 1,324939363$ .



k = 2 :

$$x_3 = F_2(x_2) = F_2(1,330860959) = 1,325883774, |x_3 - x_2| = 4,977185 \times 10^{-3} > \varepsilon = 10^{-3}$$
.

k = 3 :

$$x_4 = F_2(x_3) = F_2(1,325883774) = 1,324939363, |x_4 - x_3| = 9,4441065 \times 10^{-4} < \varepsilon = 10^{-3}.$$

Doravante,  $\xi \approx x_4 = 1,324939363$ .



k = 2:

$$x_3 = F_2(x_2) = F_2(1,330860959) = 1,325883774, |x_3 - x_2| = 4,977185 \times 10^{-3} > \varepsilon = 10^{-3}$$
.

k = 3 :

$$x_4 = F_2(x_3) = F_2(1,325883774) = 1,324939363, |x_4 - x_3| = 9,4441065 \times 10^{-4} < \varepsilon = 10^{-3}$$
.

Doravante,  $\xi \approx x_4 = 1,324939363$ .



#### Exemplo 2.2

Obtenha uma raiz da equação  $f(x) = \cos x - x = 0$  com uma casa decimal de precisão  $(\varepsilon = 10^{-2})$ .

