0.1 Lectures 13-14

Theorem (Integration by Parts). Let $u:[a,b]\to\mathbb{R}$ and $v:[a,b]\to\mathbb{R}$ are differentiable and let $u'\in R[a,b]$ and $v'\in R[a,b]$. Then we have

- (1) $uv' \in R[a, b]$
- (2) $u'v \in R[a,b]$
- (3) $\int_a^b uv' dx = u(b)v(b) u(a)v(a) \int_a^b u'v dx.$

Proof. (1) Since $u:[a,b]\to\mathbb{R}$ is differentiable, we have $u\in C[a,b]$. So, we have $u\in R[a,b]$. By assumption, $v'\in R[a,b]$ and so we can conclude that $uv'\in R[a,b]$.

- (2) Using the same argument above, we have $uv' \in R[a, b]$.
- (3) By the product rule, we have

$$(uv)' = u'v + uv'.$$

In particular, since (uv)' is a sum of integrable functions, it belongs to R[a, b]. Now, we integrate both sides

$$\int_{a}^{b} (uv)' dx = \int_{a}^{b} u'v dx + \int_{a}^{b} uv' dx.$$
 (I)

According to FTC I, we have

$$\int_{a}^{b} (uv)' dx = [uv]_{x=a}^{x=b} = u(b)v(b) - u(a)v(a).$$
 (II)

Hence, we have (I) and (II) imply that

$$u(b)v(b) - u(a)v(a) = \int_a^b u'v \ dx + \int_a^b uv' \ dx$$

which further implies that

$$\int_{a}^{b} uv' \ dx = u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'v \ dx.$$

0.2 Lectures 15-16

0.2.1 Topics