Machine Learning in Computational Biology Assignment 1

First Bonus Question — Using Optuna

Konstantinos Konstantinidis Student number: 7115152400017

April 6, 2025

 $\underline{\bf Repo:}$ The repository for this assignment can be found here: ${\tt https://github.com/KonsKons26/Assignment-1}$

Contents

1	Migration to Optuna	2
2	Hyperparameter tuning	2
3	Results	2

1 Migration to Optuna

Since the Regressor object I had created to perform all regression tasks was highly modularized, with specific methods for each task, moving from sklearn's GridSearchCV to Optuna was quite simple. I created a new class named RegressorOptuna which inherited from Regressor, to keep it's basic functionalities the same. Then I modified the private methods handling each model's hyperparameter optimization to allow me to pass the appropriate grid spaces—and in the appropriate format—for Optuna to tune the models.

The objective function **minimizes** the RMSE of the test set. The sampler I chose is the TPESampler, a tree-structured Parzen estimator, which fits one Gaussian Mixture Model (GMM) (lx) to the set of parameters associated with the best objective values and another GMM (g(x)) to the remaining parameter values. It chooses the parameter that minimizes the ratio l(x)/g(x).

All files are in the appropriate directories, src/ and notebooks/ and the models were saved in models/bonus1_optuna/. Since I used the features I selected in the previous task, to keep everything organized, the process includes copying the features files in the models/bonus1_optuna directory.

2 Hyperparameter tuning

I set the number of trials for each model tuning to 1000, which seemed appropriate, as it was not such a demanding number for my machine, and since the hyperparameter space has so many dimension, I believe that a small number of trials might not be enough to search the whole space. The complete hyperparameter space, along with the values chosen by Optuna are shown in Table 1.

Model	Parameter	Values	Picked value
ElasticNet	α	(0.01, 1.0)	0.11850
	l1 ratio	(0.0, 1.0)	0.77838
	tolerance	[1e-3, 1e-4, 1e-5, 1e-6, 1e-7]	0.00100
	kernel	['rbf', 'linear', 'poly', 'sigmoid']	'rbf'
	degree	(2, 5)	4
SVR	γ	['scale', 'auto']	'scale'
	coef_0	(0.0, 1)	0.93453
	tolerance	[1e-3, 1e-4, 1e-5, 1e-6, 1e-7]	1e-7
	C	(0.1, 10)	1.63421
	ϵ	(0.0, 10.0)	0.92788
	tolerance	[1e-3, 1e-4, 1e-5, 1e-6, 1e-7]	1e-7
	α_1	(1e-9, 1e-3)	0.0
BayesianRidge	α_2	(1e-9, 1e-3)	0.00065
Dayesiannidge	λ_1	(1e-3, 1e-9)	0.0009999
	λ_2	(1e-3, 1e-9)	0.0
	compute_score	[True, False]	True

Table 1: Hyperparameter spaces for each model.

3 Results