Канальный уровень

Сети и системы телекоммуникаций

Mecto в модели OSI

Модель OSI

Прикладной

Представления

Сеансовый

Транспортный

Сетевой

Канальный

Физический

Передача *сообщений* по каналам связи – **кадров** (frame)

 Определение начала/конца кадра в потоке бит

Обнаружение и коррекция ошибок

Множественный доступ к каналу связи:

- Адресация
- [,] Согласованный доступ к каналу

Работа с кадрами

Физический уровень передает поток бит

Как выделить в этом потоке отдельные сообщения – кадры?

Формирование кадра

Физический

Методы выделения кадров

Указатель количества байт

Вставка байтов (byte stuffing)

Вставка битов (bit stuffing)

Средства физического уровня

Указатель количества байт

В начале каждого кадра указывается его длина в байтах

• Просто в реализации

Вставка байтов и битов

Начало и конец каждого кадра отмечаются специальными последовательностями байтов или бит

Протокол BSC – текстовые символы:

- DLE STX начало кадра
- DLE ETX конец кадра
- Escape последовательность в данных DLE

Протоколы HDLC и PPP – биты:

- 01111110 начало и конец кадра
- В данных после пяти последовательных 1 добавлялся 0

Средства физического уровня

Преамбула (классический Ethernet)

- Длина 8 байт
- Первые 7 байт: 10101010
- Последний байт: 10101011 (ограничитель начала кадра)

Передача неиспользуемых символов избыточного кода (Fast Ethernet)

- Начало кадра пара символы Ј (11000) и К (10001)
- Конец кадра символ Т (01101)

Обнаружение и исправление ошибок

Обнаружение ошибок

• Контрольная сумма

Исправление ошибок

- Коды исправляющие ошибки (с избыточной информацией)
- Позволяют обнаруживать и исправлять ошибки

Повторная отправка данных

- Если в кадре обнаружена ошибка, его можно отправить заново
- Повторная отправка кадра, который не дошел до получателя

Методы повторной отправки

Остановка и ожидание

- Отправитель передает кадр и останавливается
- Получатель отправляет подтверждение
- Отправитель передает новый кадр

Скользящее окно

- Отправитель передает несколько кадров один за другим, не дожидаясь подтверждения
- Количество кадров, которое можно отправить, называется **размером окна**
- Получатель подтверждает получение кадров
- Отправитель передает новую порцию кадров

Обнаружение и исправление ошибок

Модель OSI

Прикладной
Представления
Сеансовый
Транспортный
Сетевой
Канальный
Физический

Какой подход лучше использовать?

- Обнаружение ошибок
- Исправление ошибок
- Повторная отправка данных

На каком уровне модели OSI?

- Каналы связи с редкими ошибками – верхние уровни
- Каналы связи с частыми ошибками – канальный уровень

Множественный доступ к каналам

Модель OSI разрабатывалась для каналов связи точка-точка

• Последовательные линии связи для соединения больших компьютеров

Когда получили распространение разделяемые каналы связи, модель пришлось изменить

Подуровень управления логическим каналом (Logical Link Control, LLC)
Подуровень управления доступом к среде (Media Access Control, MAC)

Подуровни канального уровня

Подуровень управления логическим каналом (LLC)

- Отвечает за передачу данных (создание кадров, обработка ошибок и т.д.)
- Общий для разных технологий

Подуровень управления доступом к среде (МАС):

- Совместное использование разделяемой среды
- Адресация
- Специфичный для разных технологий
- Не является обязательным

Услуги подуровня LLC

Мультиплексирование

• Передача данных разных протоколов (IP, ARP, ICMP) на уровень МАС

Управление потоком:

• Предотвращение «затопления» медленного получателя быстрым отправителем

Множественный доступ к каналу связи

Данные искажаются, если несколько компьютеров передают одновременно

• Коллизия

Управление доступом:

• Обеспечение использования канала только одним отправителем

Методы управления доступом:

- Рандомизированный из N компьютеров выбирается один с вероятностью 1/N. (Ethernet, Wi-Fi).
- На основе правил использования. (Token Ring).

Технологии канального уровня

Ethernet

Wi-Fi

Token Ring

FDDI

ATM

100VG-AnyLAN

Итоги

Канальный уровень – второй уровень модели OSI Передача сообщений по каналам связи – кадров Обнаружение и исправление ошибок

Два подуровня

- Управления логическим каналом (LLC)
- Управления доступом к среде (МАС)

Технологии канального уровня:

- Ethernet, Wi-Fi (современные)
- Token Ring, FDDI, ATM, 100VG-AnyLAN (устаревшие)