

Elliptic Curve Cryptography (ECC) - 1

Bahan Kuliah Keamanan Data

Sevi **Nurafni**

Fakultas Sains dan Teknologi Universitas Koperasi Indonesia 2025

Get to Know

- Sebagian besar kriptografi kunci-publik (seperti RSA, ElGamal, Diffie-Hellman) menggunakan bilangan bulat yang sangat besar dalam komputasinya.
- Sistem seperti itu memiliki masalah yang signifikan dalam menyimpan, memproses kunci dan pesan, dan membutuhkan waktu komputasi yang lama.
- Sebagai alternatif adalah melakukan komputasi berbasis kurva eliptik (elliptic curve).
- Kriptografi yang menggunakan kurva eliptik dinamakan Elliptic Curve Cryptography (ECC).
- Komputasi dengan kurva eliptik menawarkan keamanan yang sama dengan algoritma-algoritma tersebut namun dengan ukuran kunci yang lebih kecil.

- ECC adalah kriptografi kunci-publik yang relatif lebih baru usianya.
- Dikembangkan oleh Neal Koblitz dan Victor S. Miller tahun 1985.
- Klaim: Panjang kunci ECC lebih pendek daripada kunci RSA, namun memiliki tingkat keamanan yang sama dengan RSA.
- Contoh: kunci ECC sepanjang 160-bit menyediakan tingkat keamanan yang sama dengan 1024-bit kunci RSA.
- Keuntungan: dengan panjang kunci yang lebih pendek, membutuhkan memori dan komputasi yang lebih sedikit.
- Cocok untuk piranti nirkabel, dimana prosesor, memori, umur batere terbatas.

Teori Aljabar Abstrak

 Sebelum membahas ECC, perlu dipahami konsep aljabar abstrak yang mendasarinya.

- Konsep aljabar abstrak:
 - 1. Grup (group)
 - 2. Medan (field)

Grup

- Grup (group) adalah sistem aljabar yang terdiri dari:
 - Sebuah himpunan G
 - Sebuah operasi biner *

Sedemikian sehingga untuk semua elemen a, b, dan c di dalam G berlaku aksioma berikut:

1. Closure: a*b harus berada di dalam G

2. Asosiatif: a * (b * c) = (a * b) * c

3. Elemen netral: terdapat $e \in G$ sedemikian sehingga a * e = e * a = a

4. Elemen invers: terdapat $a' \in G$ sedemikian sehingga a * a' = a' * a = e

• Notasi < G, * >

- < G, +> menyatakan sebuah grup dengan operasi penjumlahan.
- $< G, \cdot >$ menyatakan sebuah grup dengan operasi perkalian

Contoh-contoh grup:

- 1. $\langle \mathbb{R}, + \rangle$: grup dengan himpunan bilangan riil dengan operasi + e=0 dan a'=-a
- 2. $<\mathbb{R}^*$, >: grup dengan himpunan bilangan riil tidak nol (yaitu, $R^* = R \{0\}$) dengan operasi kali (\cdot) e = 1 dan $a' = \frac{1}{a} = a^{-1}$
- 3. $\langle \mathbb{Z}, + \rangle$ dan $\langle \mathbb{Z}, \cdot \rangle$ masing-masing adalah grup dengan himpunan bilangan bulat (integer) dengan operasi + dan \cdot

4. $\langle Z_n, \oplus \rangle$: grup dengan himpunan integer modulo n, yaitu

$$Z_n = \{0, 1, 2, ..., n-1\}$$
 dan \oplus adalah operasi penjumlahan modulo n .

Contoh:
$$n = 5$$
, $Z_n = \{0,1,2,3,4\}$, $(3 \oplus 4) = (3 + 4) \mod 5 = 2$

 $< Z_p, \oplus >$: grup dengan himpunan integer modulo p, p adalah bilangan prima, yaitu $Z_p = \{0,1,2,...,p-1\}$ dan \oplus adalah operasi penjumlahan modulo p.

 $< Z^*_p, \otimes >$: dengan himpunan integer bukan nol, p adalah bilangan prima, yaitu $Z^*_p = \{1,2,...,p-1\}$ dan \otimes adalah operasi perkalian modulo p.

• Sebuah grup < G, *> dikatakan group komutatif atau grup abelian jika berlaku aksioma komutatif a*b=b*a untuk semua a,b elemen G

- $\langle R, + \rangle$ dan $\langle R, \cdot \rangle$ adalah abelian
- $\langle Z, + \rangle$ dan $\langle Z, \cdot \rangle$ adalah abelian

• tetapi, $\langle M, \cdot \rangle$, dengan M adalah himpunan matriks 2 x 2 dengan determinan $\neq 0$ bukan abelian (tanya kenapa?)

Medan (Field)

- Medan (*field*) adalah himpunan elemen (disimbolkan dengan F) dengan dua operasi biner, biasanya disebut penjumlahan (+) dan perkalian (\cdot) .
- Sebuah struktur aljabar $< F, +, \cdot >$ disebut medan jika dan hanya jika:
 - 1. $\langle F, + \rangle$ adalah grup abelian
 - 2. $\langle F \{0\}, \cdot \rangle$ adalah grup abelian
 - 3. Operasi · menyebar terhadap operasi + (sifat distributif)

Distributif:
$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

$$(x + y) \cdot z = (x \cdot z) + (y \cdot z)$$

• Jadi, sebuah medan memenuhi aksioma: closure, komutatif, asosiatif, dan distributif

Contoh medan:

- $^{\circ}$ medan bilangan bulat, $<\mathbb{Z},+,\cdot>$
- $^{\circ}$ medan bilangan riil, $<\mathbb{R},+,\cdot>$
- o medan bilangan rasional $(\frac{p}{q}) < \mathbb{Q}, +, \cdot >$
- Sebuah medan disebut berhingga (finite field) jika himpunannya memiliki jumlah elemen yang berhingga.
 - Jika jumlah elemen himpunan adalah n, maka notasinya F_n
 - Contoh: F_2 adalah medan dengan elemen 0 dan 1
- Medan berhingga sering dinamakan juga Galois Field, untuk menghormati Evariste Galois, seorang matematikawan Perancis (1811 1832)

Medan Berhingga F_p

- ullet Kelas medan berhingga yang penting adalah F_p
- F_p adalah adalah medan berhingga dengan himpunan bilangan bulat $\{0,1,2,\ldots,p-1\}$ dengan p bilangan prima, dan dua operasi yang didefinisikan sbb:

1. Penjumlahan

Jika $a,b\in F_p$, maka a+b=r, yang dalam hal ini $r=(a+b) \bmod p,\, 0\leq r\leq p-1$

2. Perkalian

Jika $a,b\in F_p$, maka $a\cdot b=s$, yang dalam hal ini $s=(a\cdot b) \bmod p, \ 0\leq s\leq p-1$

Contoh: F_{23} mempunyai anggota $\{0,1,2,\cdots,22\}$

Contoh operasi aritmatika:

$$12 + 20 = 9$$
 (karena $12 + 20 = 32 \mod 23 = 9$)

$$8 \cdot 9 = 3$$
 (karena $8 \times 9 = 72 \mod 23 = 3$)

$$5 + 4 = \cdots$$

$$7 \cdot 4 = \cdots$$

Medan Galois (Galois Field)

- Medan Galois adalah medan berhingga dengan p^n elemen, p adalah bilangan prima dan $n \geq 1$.
- Notasi: $GF(p^n)$
- Kasus paling sederhana: bila $n=1 \to GF(p)$, yang dalam hal ini elemenelemennya dinyatakan di dalam himpunan $\{0,1,2,\ldots,p-1\}$ dan operasi penjumlahan dan perkalian dilakukan dalam modulus p.

$$p = 2 \rightarrow GF(2)$$
:

+	0	1			
0	0	1			
1	1	0			

$$p = 3 \rightarrow GF(3)$$
:

+	0	1	2	
0	0	1	2	
1	1	2	0	
2	2	0	1	

•	0	1	2	
0	0	0	0	_
1	0	1	2	
2	0	2	1	

• Contoh: Bentuklah tabel perkalian untuk GF(11), kemudian tentukan solusi untuk $x^2 \equiv 5 \pmod{11}$

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	0 7	8	9	10
2	0	2	4	6	8	10	1	3 10	5	7	9
3	0	3	6	9	1	4	7	10	2	5	8
(4)	0	4	8	1	(5)	9	2	6	10	4	7
5	0	5	10	4	9	3	8	2	7	1	6
6	0	6	1	7	2	8	3	9	4	10	5
7	0	7	3	10	6	2	9	2 9 <u>5</u>	1	8	4
8	0	8	5	2	10	7	4	1	9	6	3
9 10	0	9	7	5	3	1	10	8	6	4	2
10	0	10	9	8	7	6	5	4	3	2	1

$$x^{2} \equiv 5 \pmod{11}$$
Maka:
 $x^{2} = 16 \rightarrow x_{1} = 4$
 $x^{2} = 49 \rightarrow x_{2} = 7$

Cara lain: cari elemen diagonal = 5, lalu ambil elemen mendatar atau elemen Vertikalnya (dilingkari).

Latihan

• Bentuklah tabel perkalian untuk GF(7), kemudian tentukan solusi untuk $x^2 \equiv 4 \pmod{7}$

Galois Field $GF(2^m)$

- Disebut juga medan berhingga biner
- $GF(2^m)$ atau F_2^m adalah ruang vektor berdimensi m pada GF(2). Setiap elemen di dalam $GF(2^m)$ adalah integer dalam representasi biner sepanjang maksumal m bit.
- String biner $a_{m-1}a_{m-2}\cdots a_1a_0$ $a_i\in\{0,1\}$, dapat dinyatakan dalam polinom $a_{m-1}x^{m-1}+a_{m-2}x^{m-2}+\cdots+a_1x+a_0$
- Jadi, setiap $a \in GF(2^m)$ dapat dinyatakan sebagai

$$a = a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \dots + a_1x + a_0$$

• Contoh: $m = 4 \rightarrow a = 1101$ dapat dinyatakan dengan $x^3 + x^2 + 1$

Operasi aritmetika $GF(2^m)$

- Misalkan $a=(a_{m-1}\cdots a_1a_0)$ dan $b=(b_{m-1}\cdots b_1b_0)\in \mathrm{GF}(2^m)$
- Penjumlahan:

$$a + b = c = (c_{m-1} \cdots c_1 c_0)$$
 yang dalam hal ini $c_i = (a_i + b_i)$ mod 2, $c \in GF(2^m)$

• Perkalian: $a\cdot b=c=(c_{m-1}\cdots c_1c_0)$ yang dalam hal ini c adalah sisa pembagian polinom $a(x)\cdot b(x)$ dengan irreducible polynomial derajat $m,c\in GF(2^m)$

Contoh: Misalkan
$$a = 1101 = x^3 + x^2 + 1$$
 dan $b = 0110 = x^2 + x$
a dan $b \in GF(2^4)$

(i)
$$a + b = (x^3 + x^2 + 1) + (x^2 + x) = x^3 + 2x^2 + x + 1 \pmod{2}$$

Bagi tiap koefisien dengan 2, lalu ambil sisanya

$$= x^3 + 0x^2 + x + 1$$

= $x^3 + x + 1$

Dalam representasi biner:

$$0110 +$$

1011 -> sama dengan hasil operasi XOR

$$\therefore$$
 a + b = 1011 = a XOR b

Latihan

Diberikan dua elemen dari $GF(2^4)$:

•
$$a = 1101 = x^3 + x^2 + 1$$

•
$$b = 0110 = x^2 + x$$

Hitung a+b di $GF(2^4)$. Tuliskan dalam bentuk biner dan polinomial

(ii)
$$a \cdot b = (x^3 + x^2 + 1) \cdot (x^2 + x) = x^5 + 2x^4 + x^3 + x^2 + x \pmod{2}$$

= $x^5 + x^3 + x^2 + x = 10110$

Karena m = 4 hasilnya direduksi menjadi derajat < 4 oleh sebuah irreducible polynomial $f(x) = x^4 + x + 1$

Proses pembagiannya ditunjukkan sebagai berikut:

$$x^{4} + x + 1 \sqrt{\begin{array}{c} x \\ x^{5} + x^{3} + x^{2} + x \\ \underline{x^{5} + x^{2} + x} - \\ x^{3} \rightarrow \text{sisa pembagian} \end{array}}$$

Jadi,
$$(x^5 + x^3 + x^2 + x) \mod f(x) = x^3 = 1000$$

Note: Sebuah polinom dikatakan tidak dapat direduksi (*irreducible*) jika ia tidak dapat dinyatakan sebagai perkalian dari dua buah polinom lain (kecuali 1 dan dirinya sendiri).

Polinom $x^2 + 1$ dan $x^4 + x + 1$ adalah *irreducible* di dalam $GF(2^n)$, tetapi polinom $x^5 + x^2 + x + 1$ *reducible* karena

$$x^5 + x^2 + x + 1 = (x^5 + x^2 + 1) \cdot (x^2 + 1)$$

Latihan

Diberikan dua elemen dari $GF(2^4)$:

•
$$a = 1011 = x^3 + x + 1$$

•
$$b = 0101 = x^2 + 1$$

Dengan irreducible polynomial $f(x) = x^4 + x + 1$

Hitung $a \cdot b \mod f(x)$ di $GF(2^4)$. Tuliskan dalam bentuk biner dan polinomial

SELAMAT BELAJAR