

Intel® 64 and IA-32 Architectures Software Developer's Manual

Volume 2D: Instruction Set Reference

NOTE: The Intel[®] 64 and IA-32 Architectures Software Developer's Manual consists of ten volumes: Basic Architecture, Order Number 253665; Instruction Set Reference A-L, Order Number 253666; Instruction Set Reference M-U, Order Number 253667; Instruction Set Reference V-Z, Order Number 326018; Instruction Set Reference, Order Number 334569; System Programming Guide, Part 1, Order Number 253668; System Programming Guide, Part 2, Order Number 253669; System Programming Guide, Part 3, Order Number 326019; System Programming Guide, Part 4, Order Number 332831; Model-Specific Registers, Order Number 335592. Refer to all ten volumes when evaluating your design needs.

Order Number: 334569-070US

May 2019

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2019, Intel Corporation. All Rights Reserved.

6.1 OVERVIEW

This chapter describes the Safer Mode Extensions (SMX) for the Intel 64 and IA-32 architectures. Safer Mode Extensions (SMX) provide a programming interface for system software to establish a measured environment within the platform to support trust decisions by end users. The measured environment includes:

- Measured launch of a system executive, referred to as a Measured Launched Environment (MLE)¹. The system executive may be based on a Virtual Machine Monitor (VMM), a measured VMM is referred to as MVMM².
- Mechanisms to ensure the above measurement is protected and stored in a secure location in the platform.
- Protection mechanisms that allow the VMM to control attempts to modify the VMM.

The measurement and protection mechanisms used by a measured environment are supported by the capabilities of an Intel[®] Trusted Execution Technology (Intel[®] TXT) platform:

- The SMX are the processor's programming interface in an Intel TXT platform.
- The chipset in an Intel TXT platform provides enforcement of the protection mechanisms.
- Trusted Platform Module (TPM) 1.2 in the platform provides platform configuration registers (PCRs) to store software measurement values.

6.2 SMX FUNCTIONALITY

SMX functionality is provided in an Intel 64 processor through the GETSEC instruction via leaf functions. The GETSEC instruction supports multiple leaf functions. Leaf functions are selected by the value in EAX at the time GETSEC is executed. Each GETSEC leaf function is documented separately in the reference pages with a unique mnemonic (even though these mnemonics share the same opcode, 0F 37).

6.2.1 Detecting and Enabling SMX

Software can detect support for SMX operation using the CPUID instruction. If software executes CPUID with 1 in EAX, a value of 1 in bit 6 of ECX indicates support for SMX operation (GETSEC is available), see CPUID instruction for the layout of feature flags of reported by CPUID.01H:ECX.

System software enables SMX operation by setting CR4.SMXE[Bit 14] = 1 before attempting to execute GETSEC. Otherwise, execution of GETSEC results in the processor signaling an invalid opcode exception (#UD).

If the CPUID SMX feature flag is clear (CPUID.01H.ECX[Bit 6] = 0), attempting to set CR4.SMXE[Bit 14] results in a general protection exception.

The IA32_FEATURE_CONTROL MSR (at address 03AH) provides feature control bits that configure operation of VMX and SMX. These bits are documented in Table 6-1.

^{1.} See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide.

^{2.} An MVMM is sometimes referred to as a measured launched environment (MLE). See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide

Table 6-1. La	yout of IA32	FEATURE	CONTROL
---------------	--------------	----------------	----------------

Bit Position	Description
0	Lock bit (0 = unlocked, 1 = locked). When set to '1' further writes to this MSR are blocked.
1	Enable VMX in SMX operation.
2	Enable VMX outside SMX operation.
7:3	Reserved
14:8	SENTER Local Function Enables: When set, each bit in the field represents an enable control for a corresponding SENTER function.
15	SENTER Global Enable: Must be set to '1' to enable operation of GETSEC[SENTER].
16	Reserved
17	SGX Launch Control Enable: Must be set to '1' to enable runtime re-configuration of SGX Launch Control via the IA32_SGXLEPUBKEYHASHn MSR.
18	SGX Global Enable: Must be set to '1' to enable Intel SGX leaf functions.
19	Reserved
20	LMCE On: When set, system software can program the MSRs associated with LMCE to configure delivery of some machine check exceptions to a single logical processor.
63:21	Reserved

- Bit 0 is a lock bit. If the lock bit is clear, an attempt to execute VMXON will cause a general-protection exception.
 Attempting to execute GETSEC[SENTER] when the lock bit is clear will also cause a general-protection exception. If the lock bit is set, WRMSR to the IA32_FEATURE_CONTROL MSR will cause a general-protection exception. Once the lock bit is set, the MSR cannot be modified until a power-on reset. System BIOS can use this bit to provide a setup option for BIOS to disable support for VMX, SMX or both VMX and SMX.
- Bit 1 enables VMX in SMX operation (between executing the SENTER and SEXIT leaves of GETSEC). If this bit is clear, an attempt to execute VMXON in SMX will cause a general-protection exception if executed in SMX operation. Attempts to set this bit on logical processors that do not support both VMX operation (Chapter 6, "Safer Mode Extensions Reference") and SMX operation cause general-protection exceptions.
- Bit 2 enables VMX outside SMX operation. If this bit is clear, an attempt to execute VMXON will cause a generalprotection exception if executed outside SMX operation. Attempts to set this bit on logical processors that do
 not support VMX operation cause general-protection exceptions.
- Bits 8 through 14 specify enabled functionality of the SENTER leaf function. Each bit in the field represents an enable control for a corresponding SENTER function. Only enabled SENTER leaf functionality can be used when executing SENTER.
- Bits 15 specify global enable of all SENTER functionalities.

6.2.2 SMX Instruction Summary

System software must first query for available GETSEC leaf functions by executing GETSEC[CAPABILITIES]. The CAPABILITIES leaf function returns a bit map of available GETSEC leaves. An attempt to execute an unsupported leaf index results in an undefined opcode (#UD) exception.

6.2.2.1 GETSEC[CAPABILITIES]

The SMX functionality provides an architectural interface for newer processor generations to extend SMX capabilities. Specifically, the GETSEC instruction provides a capability leaf function for system software to discover the available GETSEC leaf functions that are supported in a processor. Table 6-2 lists the currently available GETSEC leaf functions.

Index (EAX)	Leaf function	Description
0	CAPABILITIES	Returns the available leaf functions of the GETSEC instruction.
1	Undefined	Reserved
2	ENTERACCS	Enter
3	EXITAC	Exit
4	SENTER	Launch an MLE.
5	SEXIT	Exit the MLE.
6	PARAMETERS	Return SMX related parameter information.
7	SMCTRL	SMX mode control.
8	WAKEUP	Wake up sleeping processors in safer mode.
9 - (4G-1)	Undefined	Reserved

Table 6-2. GETSEC Leaf Functions

6.2.2.2 GETSEC[ENTERACCS]

The GETSEC[ENTERACCS] leaf enables authenticated code execution mode. The ENTERACCS leaf function performs an authenticated code module load using the chipset public key as the signature verification. ENTERACCS requires the existence of an Intel® Trusted Execution Technology capable chipset since it unlocks the chipset private configuration register space after successful authentication of the loaded module. The physical base address and size of the authenticated code module are specified as input register values in EBX and ECX, respectively.

While in the authenticated code execution mode, certain processor state properties change. For this reason, the time in which the processor operates in authenticated code execution mode should be limited to minimize impact on external system events.

Upon entry into , the previous paging context is disabled (since the authenticated code module image is specified with physical addresses and can no longer rely upon external memory-based page-table structures).

Prior to executing the GETSEC[ENTERACCS] leaf, system software must ensure the logical processor issuing GETSEC[ENTERACCS] is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP = 1. System software must ensure other logical processors are in a suitable idle state and not marked as BSP.

The GETSEC[ENTERACCS] leaf may be used by different agents to load different authenticated code modules to perform functions related to different aspects of a measured environment, for example system software and Intel® TXT enabled BIOS may use more than one authenticated code modules.

6.2.2.3 GETSEC[EXITAC]

GETSEC[EXITAC] takes the processor out of . When this instruction leaf is executed, the contents of the authenticated code execution area are scrubbed and control is transferred to the non-authenticated context defined by a near pointer passed with the GETSEC[EXITAC] instruction.

The authenticated code execution area is no longer accessible after completion of GETSEC[EXITAC]. RBX (or EBX) holds the address of the near absolute indirect target to be taken.

6.2.2.4 GETSEC[SENTER]

The GETSEC[SENTER] leaf function is used by the initiating logical processor (ILP) to launch an MLE. GETSEC[SENTER] can be considered a superset of the ENTERACCS leaf, because it enters as part of the measured environment launch.

Measured environment startup consists of the following steps:

- the ILP rendezvous the responding logical processors (RLPs) in the platform into a controlled state (At the completion of this handshake, all the RLPs except for the ILP initiating the measured environment launch are placed in a newly defined SENTER sleep state).
- Load and authenticate the authenticated code module required by the measured environment, and enter authenticated code execution mode.
- Verify and lock certain system configuration parameters.
- Measure the dynamic root of trust and store into the PCRs in TPM.
- Transfer control to the MLE with interrupts disabled.

Prior to executing the GETSEC[SENTER] leaf, system software must ensure the platform's TPM is ready for access and the ILP is the boot-strap processor (BSP), as indicated by IA32_APIC_BASE.BSP. System software must ensure other logical processors (RLPs) are in a suitable idle state and not marked as BSP.

System software launching a measurement environment is responsible for providing a proper authenticate code module address when executing GETSEC[SENTER]. The AC module responsible for the launch of a measured environment and loaded by GETSEC[SENTER] is referred to as SINIT. See *Intel*® *Trusted Execution Technology Measured Launched Environment Programming Guide* for additional information on system software requirements prior to executing GETSEC[SENTER].

6.2.2.5 GETSEC[SEXIT]

System software exits the measured environment by executing the instruction GETSEC[SEXIT] on the ILP. This instruction rendezvous the responding logical processors in the platform for exiting from the measured environment. External events (if left masked) are unmasked and Intel® TXT-capable chipset's private configuration space is re-locked.

6.2.2.6 GETSEC[PARAMETERS]

The GETSEC[PARAMETERS] leaf function is used to report attributes, options and limitations of SMX operation. Software uses this leaf to identify operating limits or additional options.

The information reported by GETSEC[PARAMETERS] may require executing the leaf multiple times using EBX as an index. If the GETSEC[PARAMETERS] instruction leaf or if a specific parameter field is not available, then SMX operation should be interpreted to use the default limits of respective GETSEC leaves or parameter fields defined in the GETSEC[PARAMETERS] leaf.

6.2.2.7 GETSEC[SMCTRL]

The GETSEC[SMCTRL] leaf function is used for providing additional control over specific conditions associated with the SMX architecture. An input register is supported for selecting the control operation to be performed. See the specific leaf description for details on the type of control provided.

6.2.2.8 GETSEC[WAKEUP]

Responding logical processors (RLPs) are placed in the SENTER sleep state after the initiating logical processor executes GETSEC[SENTER]. The ILP can wake up RLPs to join the measured environment by using GETSEC[WAKEUP]. When the RLPs in SENTER sleep state wake up, these logical processors begin execution at the entry point defined in a data structure held in system memory (pointed to by an chipset register LT.MLE.JOIN) in TXT configuration space.

6.2.3 Measured Environment and SMX

This section gives a simplified view of a representative life cycle of a measured environment that is launched by a system executive using SMX leaf functions. *Intel*® *Trusted Execution Technology Measured Launched Environment Programming Guide* provides more detailed examples of using SMX and chipset resources (including chipset registers, Trusted Platform Module) to launch an MVMM.

The life cycle starts with the system executive (an OS, an OS loader, and so forth) loading the MLE and SINIT AC module into available system memory. The system executive must validate and prepare the platform for the measured launch. When the platform is properly configured, the system executive executes GETSEC[SENTER] on the initiating logical processor (ILP) to rendezvous the responding logical processors into an SENTER sleep state, the ILP then enters into using the SINIT AC module. In a multi-threaded or multi-processing environment, the system executive must ensure that other logical processors are already in an idle loop, or asleep (such as after executing HLT) before executing GETSEC[SENTER].

After the GETSEC[SENTER] rendezvous handshake is performed between all logical processors in the platform, the ILP loads the chipset authenticated code module (SINIT) and performs an authentication check. If the check passes, the processor hashes the SINIT AC module and stores the result into TPM PCR 17. It then switches execution context to the SINIT AC module. The SINIT AC module will perform a number of platform operations, including: verifying the system configuration, protecting the system memory used by the MLE from I/O devices capable of DMA, producing a hash of the MLE, storing the hash value in TPM PCR 18, and various other operations. When SINIT completes execution, it executes the GETSEC[EXITAC] instruction and transfers control the MLE at the designated entry point.

Upon receiving control from the SINIT AC module, the MLE must establish its protection and isolation controls before enabling DMA and interrupts and transferring control to other software modules. It must also wake up the RLPs from their SENTER sleep state using the GETSEC[WAKEUP] instruction and bring them into its protection and isolation environment.

While executing in a measured environment, the MVMM can access the Trusted Platform Module (TPM) in locality 2. The MVMM has complete access to all TPM commands and may use the TPM to report current measurement values or use the measurement values to protect information such that only when the platform configuration registers (PCRs) contain the same value is the information released from the TPM. This protection mechanism is known as sealing.

A measured environment shutdown is ultimately completed by executing GETSEC[SEXIT]. Prior to this step system software is responsible for scrubbing sensitive information left in the processor caches, system memory.

6.3 GETSEC LEAF FUNCTIONS

This section provides detailed descriptions of each leaf function of the GETSEC instruction. GETSEC is available only if CPUID.01H:ECX[Bit 6] = 1. This indicates the availability of SMX and the GETSEC instruction. Before GETSEC can be executed, SMX must be enabled by setting CR4.SMXE[Bit 14] = 1.

A GETSEC leaf can only be used if it is shown to be available as reported by the GETSEC[CAPABILITIES] function. Attempts to access a GETSEC leaf index not supported by the processor, or if CR4.SMXE is 0, results in the signaling of an undefined opcode exception.

All GETSEC leaf functions are available in protected mode, including the compatibility sub-mode of IA-32e mode and the 64-bit sub-mode of IA-32e mode. Unless otherwise noted, the behavior of all GETSEC functions and interactions related to the measured environment are independent of IA-32e mode. This also applies to the interpretation of register widths passed as input parameters to GETSEC functions and to register results returned as output parameters.

This chapter uses the 64-bit notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because processors that support SMX also support Intel 64 Architecture. The MVMM can be launched in IA-32e mode or outside IA-32e mode. The 64-bit notation of processor registers also refer to its 32-bit forms if SMX is used in 32-bit environment. In some places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register

SAFER MODE EXTENSIONS REFERENCE

The GETSEC functions ENTERACCS, SENTER, SEXIT, and WAKEUP require a Intel[®] TXT capable-chipset to be present in the platform. The GETSEC[CAPABILITIES] returned bit vector in position 0 indicates an Intel[®] TXT-capable chipset has been sampled present¹ by the processor.

The processor's operating mode also affects the execution of the following GETSEC leaf functions: SMCTRL, ENTER-ACCS, EXITAC, SENTER, SEXIT, and WAKEUP. These functions are only allowed in protected mode at CPL = 0. They are not allowed while in SMM in order to prevent potential intra-mode conflicts. Further execution qualifications exist to prevent potential architectural conflicts (for example: nesting of the measured environment or authenticated code execution mode). See the definitions of the GETSEC leaf functions for specific requirements.

For the purpose of performance monitor counting, the execution of GETSEC functions is counted as a single instruction with respect to retired instructions. The response by a responding logical processor (RLP) to messages associated with GETSEC[SENTER] or GTSEC[SEXIT] is transparent to the retired instruction count on the ILP.

^{1.} Sampled present means that the processor sent a message to the chipset and the chipset responded that it (a) knows about the message and (b) is capable of executing SENTER. This means that the chipset CAN support Intel® TXT, and is configured and WILLING to support it.

GETSEC[CAPABILITIES] - Report the SMX Capabilities

Opcode	Instruction	Description
NP 0F 37	GETSEC[CAPABILITIES]	Report the SMX capabilities.
(EAX = 0)		The capabilities index is input in EBX with the result returned in EAX.

Description

The GETSEC[CAPABILITIES] function returns a bit vector of supported GETSEC leaf functions. The CAPABILITIES leaf of GETSEC is selected with EAX set to 0 at entry. EBX is used as the selector for returning the bit vector field in EAX. GETSEC[CAPABILITIES] may be executed at all privilege levels, but the CR4.SMXE bit must be set or an undefined opcode exception (#UD) is returned.

With EBX = 0 upon execution of GETSEC[CAPABILITIES], EAX returns the a bit vector representing status on the presence of a Intel $^{\textcircled{R}}$ TXT-capable chipset and the first 30 available GETSEC leaf functions. The format of the returned bit vector is provided in Table 6-3.

If bit 0 is set to 1, then an Intel[®] TXT-capable chipset has been sampled present by the processor. If bits in the range of 1-30 are set, then the corresponding GETSEC leaf function is available. If the bit value at a given bit index is 0, then the GETSEC leaf function corresponding to that index is unsupported and attempted execution results in a #UD.

Bit 31 of EAX indicates if further leaf indexes are supported. If the Extended Leafs bit 31 is set, then additional leaf functions are accessed by repeating GETSEC[CAPABILITIES] with EBX incremented by one. When the most significant bit of EAX is not set, then additional GETSEC leaf functions are not supported; indexing EBX to a higher value results in EAX returning zero.

Table 6-3. GETSEC Capability Result Encoding (EBX = 0)

Field	Bit position	Description
Chipset Present	0	Intel® TXT-capable chipset is present.
Undefined	1	Reserved
ENTERACCS	2	GETSEC[ENTERACCS] is available.
EXITAC	3	GETSEC[EXITAC] is available.
SENTER	4	GETSEC[SENTER] is available.
SEXIT	5	GETSEC[SEXIT] is available.
PARAMETERS	6	GETSEC[PARAMETERS] is available.
SMCTRL	7	GETSEC[SMCTRL] is available.
WAKEUP	8	GETSEC[WAKEUP] is available.
Undefined	30:9	Reserved
Extended Leafs	31	Reserved for extended information reporting of GETSEC capabilities.

```
Operation
```

```
IF (CR4.SMXE=0)
   THEN #UD;
ELSIF (in VMX non-root operation)
   THEN VM Exit (reason="GETSEC instruction");
IF (EBX=0) THEN
        BitVector\leftarrow 0;
        IF (TXT chipset present)
             BitVector[Chipset present]\leftarrow 1;
        IF (ENTERACCS Available)
             THEN BitVector[ENTERACCS]\leftarrow 1;
        IF (EXITAC Available)
             THEN BitVector[EXITAC]\leftarrow 1;
        IF (SENTER Available)
             THEN BitVector[SENTER]\leftarrow 1;
        IF (SEXIT Available)
             THEN BitVector[SEXIT] \leftarrow 1;
        IF (PARAMETERS Available)
             THEN BitVector[PARAMETERS]← 1;
        IF (SMCTRL Available)
             THEN BitVector[SMCTRL]\leftarrow 1;
        IF (WAKEUP Available)
             THEN BitVector[WAKEUP]← 1;
        EAX← BitVector;
ELSE
   EAX \leftarrow 0;
END;;
```

Flags Affected

None

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).

Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored. Address size Ignored. REX Ignored.

Protected Mode Exceptions

#UD IF CR4.SMXE = 0.

Real-Address Mode Exceptions

#UD IF CR4.SMXE = 0.

Virtual-8086 Mode Exceptions

#UD IF CR4.SMXE = 0.

Compatibility Mode Exceptions

#UD IF CR4.SMXE = 0.

64-Bit Mode Exceptions

#UD IF CR4.SMXE = 0.

VM-exit Condition

Reason (GETSEC) IF in VMX non-root operation.

GETSEC[ENTERACCS] - Execute Authenticated Chipset Code

Opcode	Instruction	Description
NP 0F 37	GETSEC[ENTERACCS]	Enter authenticated code execution mode.
(EAX = 2)		EBX holds the authenticated code module physical base address. ECX holds the authenticated code module size (bytes).

Description

The GETSEC[ENTERACCS] function loads, authenticates and executes an authenticated code module using an Intel® TXT platform chipset's public key. The ENTERACCS leaf of GETSEC is selected with EAX set to 2 at entry.

There are certain restrictions enforced by the processor for the execution of the GETSEC[ENTERACCS] instruction:

- Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and EFLAGS.VM = 0.
- Processor cache must be available and not disabled, that is, CR0.CD and CR0.NW bits must be 0.
- For processor packages containing more than one logical processor, CR0.CD is checked to ensure consistency between enabled logical processors.
- For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be set.
- An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on configuration capability field after reset.
- The processor can not already be in authenticated code execution mode as launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction without a subsequent exiting using GETSEC[EXITAC]).
- To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction if it currently is in SMM or VMX operation.
- To insure consistent handling of SIPI messages, the processor executing the GETSEC[ENTERACCS] instruction must also be designated the BSP (boot-strap processor) as defined by IA32 APIC BASE.BSP (Bit 8).

Failure to conform to the above conditions results in the processor signaling a general protection exception.

Prior to execution of the ENTERACCS leaf, other logical processors, i.e., RLPs, in the platform must be:

- Idle in a wait-for-SIPI state (as initiated by an INIT assertion or through reset for non-BSP designated processors), or
- In the SENTER sleep state as initiated by a GETSEC[SENTER] from the initiating logical processor (ILP).

If other logical processor(s) in the same package are not idle in one of these states, execution of ENTERACCS signals a general protection exception. The same requirement and action applies if the other logical processor(s) of the same package do not have CR0.CD = 0.

A successful execution of ENTERACCS results in the ILP entering an authenticated code execution mode. Prior to reaching this point, the processor performs several checks. These include:

- Establish and check the location and size of the specified authenticated code module to be executed by the processor.
- Inhibit the ILP's response to the external events: INIT, A20M, NMI and SMI.
- Broadcast a message to enable protection of memory and I/O from other processor agents.
- Load the designated code module into an authenticated code execution area.
- Isolate the contents of the authenticated code execution area from further state modification by external agents.
- Authenticate the authenticated code module.
- Initialize the initiating logical processor state based on information contained in the authenticated code module header.
- Unlock the Intel[®] TXT-capable chipset private configuration space and TPM locality 3 space.

Begin execution in the authenticated code module at the defined entry point.

The GETSEC[ENTERACCS] function requires two additional input parameters in the general purpose registers EBX and ECX. EBX holds the authenticated code (AC) module physical base address (the AC module must reside below 4 GBytes in physical address space) and ECX holds the AC module size (in bytes). The physical base address and size are used to retrieve the code module from system memory and load it into the internal authenticated code execution area. The base physical address is checked to verify it is on a modulo-4096 byte boundary. The size is verified to be a multiple of 64, that it does not exceed the internal authenticated code execution area capacity (as reported by GETSEC[CAPABILITIES]), and that the top address of the AC module does not exceed 32 bits. An error condition results in an abort of the authenticated code execution launch and the signaling of a general protection exception.

As an integrity check for proper processor hardware operation, execution of GETSEC[ENTERACCS] will also check the contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit must be cleared and the IERR processor package pin (or its equivalent) must not be asserted, indicating that no machine check exception processing is currently in progress. These checks are performed prior to initiating the load of the authenticated code module. Any outstanding valid uncorrectable machine check error condition present in these status registers at this point will result in the processor signaling a general protection violation.

The ILP masks the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. This masking remains active until optionally unmasked by GETSEC[EXITAC] (this defined unmasking behavior assumes GETSEC[ENTERACCS] was not executed by a prior GETSEC[SENTER]). The purpose of this masking control is to prevent exposure to existing external event handlers that may not be under the control of the authenticated code module.

The ILP sets an internal flag to indicate it has entered authenticated code execution mode. The state of the A20M pin is likewise masked and forced internally to a de-asserted state so that any external assertion is not recognized during authenticated code execution mode.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode, memory (excluding implicit write-back transactions) access and I/O originating from other processor agents are blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until the ILP executes GETSEC[EXITAC].

Prior to launching the authenticated execution module using GETSEC[ENTERACCS] or GETSEC[SENTER], the processor's MTRRs (Memory Type Range Registers) must first be initialized to map out the authenticated RAM addresses as WB (writeback). Failure to do so may affect the ability for the processor to maintain isolation of the loaded authenticated code module. If the processor detected this requirement is not met, it will signal an Intel® TXT reset condition with an error code during the loading of the authenticated code module.

While physical addresses within the load module must be mapped as WB, the memory type for locations outside of the module boundaries must be mapped to one of the supported memory types as returned by GETSEC[PARAMETERS] (or UC as default).

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM (ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can it depend on the value of the data used to fill the pad area.

At the successful completion of GETSEC[ENTERACCS], the architectural state of the processor is partially initialized from contents held in the header of the authenticated code module. The processor GDTR, CS, and DS selectors are initialized from fields within the authenticated code module. Since the authenticated code module must be relocatable, all address references must be relative to the authenticated code module base address in EBX. The processor GDTR base value is initialized to the AC module header field GDTBasePtr + module base address held in EBX and the GDTR limit is set to the value in the GDTLimit field. The CS selector is initialized to the AC module header SegSel field, while the DS selector is initialized to CS + 8. The segment descriptor fields are implicitly initialized to BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write access for DS, and execute/read access for CS. The processor begins the authenticated code module execution with the EIP set to the AC module header EntryPoint field + module base address (EBX). The AC module based fields used for initializing the processor state are checked for consistency and any failure results in a shutdown condition.

A summary of the register state initialization after successful completion of GETSEC[ENTERACCS] is given for the processor in Table 6-4. The paging is disabled upon entry into authenticated code execution mode. The authenticated code module is loaded and initially executed using physical addresses. It is up to the system software after execution of GETSEC[ENTERACCS] to establish a new (or restore its previous) paging environment with an appropriate mapping to meet new protection requirements. EBP is initialized to the authenticated code module base physical address for initial execution in the authenticated environment. As a result, the authenticated code can reference EBP for relative address based references, given that the authenticated code module must be position independent.

Table 6-4. Register State Initialization after GETSEC[ENTERACCS]

Register State	Initialization Status	Comment
CR0	$PG\leftarrow 0$, $AM\leftarrow 0$, $WP\leftarrow 0$: Others unchanged	Paging, Alignment Check, Write-protection are disabled.
CR4	MCE←0: Others unchanged	Machine Check Exceptions disabled.
EFLAGS	00000002H	
IA32_EFER	OH	IA-32e mode disabled.
EIP	AC.base + EntryPoint	AC.base is in EBX as input to GETSEC[ENTERACCS].
[E R]BX	Pre-ENTERACCS state: Next [E R]IP prior to GETSEC[ENTERACCS]	Carry forward 64-bit processor state across GETSEC[ENTERACCS].
ECX	Pre-ENTERACCS state: [31:16]=GDTR.limit; [15:0]=CS.sel	Carry forward processor state across GETSEC[ENTERACCS].
[E R]DX	Pre-ENTERACCS state: GDTR base	Carry forward 64-bit processor state across GETSEC[ENTERACCS].
EBP	AC.base	
CS	Sel=[SegSel], base=0, limit=FFFFFh, G=1, D=1, AR=9BH	
DS	Sel=[SegSel] +8, base=0, limit=FFFFFh, G=1, D=1, AR=93H	
GDTR	Base= AC.base (EBX) + [GDTBasePtr], Limit=[GDTLimit]	
DR7	00000400H	
IA32_DEBUGCTL	OH	
IA32_MISC_ENABLE	See Table 6-5 for example.	The number of initialized fields may change due to processor implementation.

The segmentation related processor state that has not been initialized by GETSEC[ENTERACCS] requires appropriate initialization before use. Since a new GDT context has been established, the previous state of the segment selector values held in ES, SS, FS, GS, TR, and LDTR might not be valid.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by ENTERACCS. Since paging is disabled upon entering authenticated code execution mode, a new paging environment will have to be reestablished in order to establish IA-32e mode while operating in authenticated code execution mode.

Debug exception and trap related signaling is also disabled as part of GETSEC[ENTERACCS]. This is achieved by resetting DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL. These debug functions are free to be re-enabled once supporting exception handler(s), descriptor tables, and debug registers have been properly initialized following

entry into authenticated code execution mode. Also, any pending single-step trap condition will have been cleared upon entry into this mode.

The IA32_MISC_ENABLE MSR is initialized upon entry into authenticated execution mode. Certain bits of this MSR are preserved because preserving these bits may be important to maintain previously established platform settings (See the footnote for Table 6-5.). The remaining bits are cleared for the purpose of establishing a more consistent environment for the execution of authenticated code modules. One of the impacts of initializing this MSR is any previous condition established by the MONITOR instruction will be cleared.

To support the possible return to the processor architectural state prior to execution of GETSEC[ENTERACCS], certain critical processor state is captured and stored in the general- purpose registers at instruction completion. [E|R]BX holds effective address ([E|R]IP) of the instruction that would execute next after GETSEC[ENTERACCS], ECX[15:0] holds the CS selector value, ECX[31:16] holds the GDTR limit field, and [E|R]DX holds the GDTR base field. The subsequent authenticated code can preserve the contents of these registers so that this state can be manually restored if needed, prior to exiting authenticated code execution mode with GETSEC[EXITAC]. For the processor state after exiting authenticated code execution mode, see the description of GETSEC[SEXIT].

Field	Bit position	Description
Fast strings enable	0	Clear to 0.
FOPCODE compatibility mode enable	2	Clear to 0.
Thermal monitor enable	3	Set to 1 if other thermal monitor capability is not enabled. ²
Split-lock disable	4	Clear to 0.
Bus lock on cache line splits disable	8	Clear to 0.
Hardware prefetch disable	9	Clear to 0.
GV1/2 legacy enable	15	Clear to 0.
MONITOR/MWAIT s/m enable	18	Clear to 0.
Adjacent sector prefetch disable	19	Clear to 0.

Table 6-5. IA32 MISC ENABLE MSR Initialization 1 by ENTERACCS and SENTER

NOTES:

- 1. The number of IA32_MISC_ENABLE fields that are initialized may vary due to processor implementations.
- 2. ENTERACCS (and SENTER) initialize the state of processor thermal throttling such that at least a minimum level is enabled. If thermal throttling is already enabled when executing one of these GETSEC leaves, then no change in the thermal throttling control settings will occur. If thermal throttling is disabled, then it will be enabled via setting of the thermal throttle control bit 3 as a result of executing these GETSEC leaves.

The IDTR will also require reloading with a new IDT context after entering authenticated code execution mode, before any exceptions or the external interrupts INTR and NMI can be handled. Since external interrupts are reenabled at the completion of authenticated code execution mode (as terminated with EXITAC), it is recommended that a new IDT context be established before this point. Until such a new IDT context is established, the programmer must take care in not executing an INT n instruction or any other operation that would result in an exception or trap signaling.

Prior to completion of the GETSEC[ENTERACCS] instruction and after successful authentication of the AC module, the private configuration space of the Intel TXT chipset is unlocked. The authenticated code module alone can gain access to this normally restricted chipset state for the purpose of securing the platform.

Once the authenticated code module is launched at the completion of GETSEC[ENTERACCS], it is free to enable interrupts by setting EFLAGS.IF and enable NMI by execution of IRET. This presumes that it has re-established interrupt handling support through initialization of the IDT, GDT, and corresponding interrupt handling code.

Operation in a Uni-Processor Platform

```
(* The state of the internal flag ACMODEFLAG persists across instruction boundary *)
IF (CR4.SMXE=0)
   THEN #UD;
ELSIF (in VMX non-root operation)
   THEN VM Exit (reason="GETSEC instruction");
ELSIF (GETSEC leaf unsupported)
   THEN #UD;
ELSIF ((in VMX operation) or
   (CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
   (CPL>0) or (EFLAGS.VM=1) or
   (IA32 APIC BASE.BSP=0) or
   (TXT chipset not present) or
   (ACMODEFLAG=1) or (IN SMM=1))
       THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)
   FOR I = 0 to IA32 MCG CAP.COUNT-1 DO
       IF (IA32 MC[I] STATUS = uncorrectable error)
            THEN #GP(0);
   OD:
FI;
IF (IA32_MCG_STATUS.MCIP=1) or (IERR pin is asserted)
   THEN #GP(0);
ACBASE← EBX;
ACSIZE← ECX;
IF (((ACBASE MOD 4096) \neq 0) or ((ACSIZE MOD 64) \neq 0) or (ACSIZE < minimum module size) OR (ACSIZE > authenticated RAM
capacity)) or ((ACBASE+ACSIZE) > (2^32 -1)))
   THEN #GP(0);
IF (secondary thread(s) CR0.CD = 1) or ((secondary thread(s) NOT(wait-for-SIPI)) and
   (secondary thread(s) not in SENTER sleep state)
   THEN #GP(0);
Mask SMI, INIT, A20M, and NMI external pin events;
IA32 MISC ENABLE← (IA32 MISC ENABLE & MASK CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M← 0:
IA32 DEBUGCTL← 0;
Invalidate processor TLB(s);
Drain Outgoing Transactions;
ACMODEFLAG← 1;
SignalTXTMessage(ProcessorHold);
Load the internal ACRAM based on the AC module size;
(* Ensure that all ACRAM loads hit Write Back memory space *)
IF (ACRAM memory type ≠ WB)
   THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version is not supported) OR (ACRAM[ModuleType] \neq 2)
   THEN TXT-SHUTDOWN(#UnsupportedACM);
(* Authenticate the AC Module and shutdown with an error if it fails *)
KEY← GETKEY(ACRAM, ACBASE);
KEYHASH \leftarrow HASH(KEY);
CSKEYHASH← READ(TXT.PUBLIC.KEY);
IF (KEYHASH ≠ CSKEYHASH)
   THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE\leftarrow DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE_LEN_CONST is implementation-specific*)
```

```
FOR I=0 to SIGNATURE LEN CONST - 1 DO
   ACRAM[SCRATCH.I]← SIGNATURE[I];
COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE LEN CONST - 1 DO
   ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] \leftarrow COMPUTEDSIGNATURE[I];
IF (SIGNATURE ≠ COMPUTEDSIGNATURE)
   THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL← ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))
   THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)
   THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch size)) OR
   ((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
   THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))
   THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];
ELSE
   ACEntryPoint← ACBASE+ACRAM[EntryPoint];
IF ((ACEntryPoint >= ACSIZE) OR (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch size)))THEN TXT-SHUTDOWN(#BadACMFormat);
IF (ACRAM[GDTLimit] & FFFF0000h)
   THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SeqSel] > (ACRAM[GDTLimit] - 15)) OR (ACRAM[SeqSel] < 8))
   THEN TXT-SHUTDOWN(#BadACMFormat):
IF ((ACRAM[SeqSel].TI=1) OR (ACRAM[SeqSel].RPL≠0))
   THEN TXT-SHUTDOWN(#BadACMFormat);
CR0.[PG.AM.WP] \leftarrow 0;
CR4.MCE \leftarrow 0;
EFLAGS← 00000002h;
IA32 EFER← 0h;
[E|R]BX← [E|R]IP of the instruction after GETSEC[ENTERACCS];
ECX← Pre-GETSEC[ENTERACCS] GDT.limit:CS.sel;
[E|R]DX← Pre-GETSEC[ENTERACCS] GDT.base;
EBP← ACBASE;
GDTR.BASE← ACBASE+ACRAM[GDTBasePtr]:
GDTR.LIMIT← ACRAM[GDTLimit];
CS.SEL← ACRAM[SeqSel];
CS.BASE← 0;
CS.LIMIT← FFFFFh;
CS.G \leftarrow 1;
CS.D \leftarrow 1;
CS.AR← 9Bh;
DS.SEL\leftarrow ACRAM[SegSel]+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1:
DS.D← 1;
DS.AR← 93h:
DR7← 00000400h;
IA32_DEBUGCTL← 0;
SignalTXTMsq(OpenPrivate);
SignalTXTMsq(OpenLocality3);
EIP← ACEntryPoint;
```

END;

Flags Affected

All flags are cleared.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).

Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored.

Address size Ignored.

REX Ignored.

Protected Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If a Intel® TXT-capable chipset is not present.

If in VMX root operation.

If the initiating processor is not designated as the bootstrap processor via the MSR bit

IA32 APIC BASE.BSP.

If the processor is already in authenticated code execution mode.

If the processor is in SMM.

If a valid uncorrectable machine check error is logged in IA32 MC[I] STATUS.

If the authenticated code base is not on a 4096 byte boundary.

If the authenticated code size > processor internal authenticated code area capacity.

If the authenticated code size is not modulo 64.

If other enabled logical processor(s) of the same package CR0.CD = 1.

If other enabled logical processor(s) of the same package are not in the wait-for-SIPI or

SENTER sleep state.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[ENTERACCS] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[ENTERACCS] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[ENTERACCS] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions

All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below 2^32 -1.

VM-exit Condition

Reason (GETSEC) IF in VMX non-root operation.

GETSEC[EXITAC]—Exit Authenticated Code Execution Mode

Opcode	Instruction	Description
NP 0F 37	GETSEC[EXITAC]	Exit authenticated code execution mode.
(EAX=3)		RBX holds the Near Absolute Indirect jump target and EDX hold the exit parameter flags.

Description

The GETSEC[EXITAC] leaf function exits the ILP out of authenticated code execution mode established by GETSEC[ENTERACCS] or GETSEC[SENTER]. The EXITAC leaf of GETSEC is selected with EAX set to 3 at entry. EBX (or RBX, if in 64-bit mode) holds the near jump target offset for where the processor execution resumes upon exiting authenticated code execution mode. EDX contains additional parameter control information. Currently only an input value of 0 in EDX is supported. All other EDX settings are considered reserved and result in a general protection violation.

GETSEC[EXITAC] can only be executed if the processor is in protected mode with CPL = 0 and EFLAGS.VM = 0. The processor must also be in authenticated code execution mode. To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction if it is in SMM or in VMX operation. A violation of these conditions results in a general protection violation.

Upon completion of the GETSEC[EXITAC] operation, the processor unmasks responses to external event signals INIT#, NMI#, and SMI#. This unmasking is performed conditionally, based on whether the authenticated code execution mode was entered via execution of GETSEC[SENTER] or GETSEC[ENTERACCS]. If the processor is in authenticated code execution mode due to the execution of GETSEC[SENTER], then these external event signals will remain masked. In this case, A20M is kept disabled in the measured environment until the measured environment executes GETSEC[SEXIT]. INIT# is unconditionally unmasked by EXITAC. Note that any events that are pending, but have been blocked while in authenticated code execution mode, will be recognized at the completion of the GETSEC[EXITAC] instruction if the pin event is unmasked.

The intent of providing the ability to optionally leave the pin events SMI#, and NMI# masked is to support the completion of a measured environment bring-up that makes use of VMX. In this envisioned security usage scenario, these events will remain masked until an appropriate virtual machine has been established in order to field servicing of these events in a safer manner. Details on when and how events are masked and unmasked in VMX operation are described in *Intel*® 64 and *IA-32 Architectures Software Developer's Manual, Volume 3C.* It should be cautioned that if no VMX environment is to be activated following GETSEC[EXITAC], that these events will remain masked until the measured environment is exited with GETSEC[SEXIT]. If this is not desired then the GETSEC function SMCTRL(0) can be used for unmasking SMI# in this context. NMI# can be correspondingly unmasked by execution of IRET.

A successful exit of the authenticated code execution mode requires the ILP to perform additional steps as outlined below:

- Invalidate the contents of the internal authenticated code execution area.
- Invalidate processor TLBs.
- Clear the internal processor AC Mode indicator flag.
- Re-lock the TPM locality 3 space.
- Unlock the Intel[®] TXT-capable chipset memory and I/O protections to allow memory and I/O activity by other processor agents.
- Perform a near absolute indirect jump to the designated instruction location.

The content of the authenticated code execution area is invalidated by hardware in order to protect it from further use or visibility. This internal processor storage area can no longer be used or relied upon after GETSEC[EXITAC]. Data structures need to be re-established outside of the authenticated code execution area if they are to be referenced after EXITAC. Since addressed memory content formerly mapped to the authenticated code execution area may no longer be coherent with external system memory after EXITAC, processor TLBs in support of linear to physical address translation are also invalidated.

Upon completion of GETSEC[EXITAC] a near absolute indirect transfer is performed with EIP loaded with the contents of EBX (based on the current operating mode size). In 64-bit mode, all 64 bits of RBX are loaded into RIP if REX.W precedes GETSEC[EXITAC]. Otherwise RBX is treated as 32 bits even while in 64-bit mode. Conventional CS limit checking is performed as part of this control transfer. Any exception conditions generated as part of this control transfer will be directed to the existing IDT; thus it is recommended that an IDTR should also be established prior to execution of the EXITAC function if there is a need for fault handling. In addition, any segmentation related (and paging) data structures to be used after EXITAC should be re-established or validated by the authenticated code prior to EXITAC.

In addition, any segmentation related (and paging) data structures to be used after EXITAC need to be re-established and mapped outside of the authenticated RAM designated area by the authenticated code prior to EXITAC. Any data structure held within the authenticated RAM allocated area will no longer be accessible after completion by EXITAC.

Operation

```
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)
   THEN #UD:
ELSIF (in VMX non-root operation)
   THEN VM Exit (reason="GETSEC instruction");
ELSIF (GETSEC leaf unsupported)
   THEN #UD:
ELSIF ((in VMX operation) or ( (in 64-bit mode) and ( RBX is non-canonical) )
   (CR0.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
   (ACMODEFLAG=0) or (IN_SMM=1)) or (EDX \neq 0))
   THEN #GP(0):
IF (OperandSize = 32)
   THEN tempEIP← EBX;
ELSIF (OperandSize = 64)
   THEN tempEIP\leftarrow RBX:
FLSE
   tempEIP← EBX AND 0000FFFFH;
IF (tempEIP > code segment limit)
   THEN #GP(0):
Invalidate ACRAM contents:
Invalidate processor TLB(s);
Drain outgoing messages:
SignalTXTMsq(CloseLocality3);
SignalTXTMsq(LockSMRAM);
SignalTXTMsq(ProcessorRelease);
Unmask INIT:
IF (SENTERFLAG=0)
   THEN Unmask SMI, INIT, NMI, and A20M pin event;
ELSEIF (IA32_SMM_MONITOR_CTL[0] = 0)
   THEN Unmask SMI pin event:
ACMODEFLAG \leftarrow 0:
EIP← tempEIP;
END:
```

Flags Affected

None.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).

Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored. Address size Ignored.

REX.W Sets 64-bit mode Operand size attribute.

Protected Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL>0 or EFLAGS.VM =1.

If in VMX root operation.

If the processor is not currently in authenticated code execution mode.

If the processor is in SMM.

If any reserved bit position is set in the EDX parameter register.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[EXITAC] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[EXITAC] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[EXITAC] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-Bit Mode Exceptions

All protected mode exceptions apply.

#GP(0) If the target address in RBX is not in a canonical form.

VM-Exit Condition

Reason (GETSEC) IF in VMX non-root operation.

GETSEC[SENTER]—Enter a Measured Environment

Opcode	Instruction	Description
NP 0F 37	GETSEC[SENTER]	Launch a measured environment.
(EAX=4)		EBX holds the SINIT authenticated code module physical base address.
		ECX holds the SINIT authenticated code module size (bytes).
		EDX controls the level of functionality supported by the measured environment launch.

Description

The GETSEC[SENTER] instruction initiates the launch of a measured environment and places the initiating logical processor (ILP) into the authenticated code execution mode. The SENTER leaf of GETSEC is selected with EAX set to 4 at execution. The physical base address of the AC module to be loaded and authenticated is specified in EBX. The size of the module in bytes is specified in ECX. EDX controls the level of functionality supported by the measured environment launch. To enable the full functionality of the protected environment launch, EDX must be initialized to zero.

The authenticated code base address and size parameters (in bytes) are passed to the GETSEC[SENTER] instruction using EBX and ECX respectively. The ILP evaluates the contents of these registers according to the rules for the AC module address in GETSEC[ENTERACCS]. AC module execution follows the same rules, as set by GETSEC[ENTERACCS].

The launching software must ensure that the TPM.ACCESS_0.activeLocality bit is clear before executing the GETSEC[SENTER] instruction.

There are restrictions enforced by the processor for execution of the GETSEC[SENTER] instruction:

- Execution is not allowed unless the processor is in protected mode or IA-32e mode with CPL = 0 and EFLAGS.VM = 0.
- Processor cache must be available and not disabled using the CR0.CD and NW bits.
- For enforcing consistency of operation with numeric exception reporting using Interrupt 16, CR0.NE must be set.
- An Intel TXT-capable chipset must be present as communicated to the processor by sampling of the power-on configuration capability field after reset.
- The processor can not be in authenticated code execution mode or already in a measured environment (as launched by a previous GETSEC[ENTERACCS] or GETSEC[SENTER] instruction).
- To avoid potential operability conflicts between modes, the processor is not allowed to execute this instruction if it currently is in SMM or VMX operation.
- To insure consistent handling of SIPI messages, the processor executing the GETSEC[SENTER] instruction must also be designated the BSP (boot-strap processor) as defined by A32_APIC_BASE.BSP (Bit 8).
- EDX must be initialized to a setting supportable by the processor. Unless enumeration by the GETSEC[PARAM-ETERS] leaf reports otherwise, only a value of zero is supported.

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction leaf starts the launch of a measured environment by initiating a rendezvous sequence for all logical processors in the platform. The rendezvous sequence involves the initiating logical processor sending a message (by executing GETSEC[SENTER]) and other responding logical processors (RLPs) acknowledging the message, thus synchronizing the RLP(s) with the ILP.

In response to a message signaling the completion of rendezvous, RLPs clear the bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and enter an SENTER sleep state. In this sleep state, RLPs enter an idle processor condition while waiting to be activated after a measured environment has been established by the system executive. RLPs in the SENTER sleep state can only be activated by the GETSEC leaf function WAKEUP in a measured environment.

A successful launch of the measured environment results in the initiating logical processor entering the authenticated code execution mode. Prior to reaching this point, the ILP performs the following steps internally:

- Inhibit processor response to the external events: INIT, A20M, NMI, and SMI.
- Establish and check the location and size of the authenticated code module to be executed by the ILP.
- Check for the existence of an Intel[®] TXT-capable chipset.
- Verify the current power management configuration is acceptable.
- Broadcast a message to enable protection of memory and I/O from activities from other processor agents.
- Load the designated AC module into authenticated code execution area.
- Isolate the content of authenticated code execution area from further state modification by external agents.
- Authenticate the AC module.
- Updated the Trusted Platform Module (TPM) with the authenticated code module's hash.
- Initialize processor state based on the authenticated code module header information.
- Unlock the Intel[®] TXT-capable chipset private configuration register space and TPM locality 3 space.
- Begin execution in the authenticated code module at the defined entry point.

As an integrity check for proper processor hardware operation, execution of GETSEC[SENTER] will also check the contents of all the machine check status registers (as reported by the MSRs IA32_MCi_STATUS) for any valid uncorrectable error condition. In addition, the global machine check status register IA32_MCG_STATUS MCIP bit must be cleared and the IERR processor package pin (or its equivalent) must be not asserted, indicating that no machine check exception processing is currently in-progress. These checks are performed twice: once by the ILP prior to the broadcast of the rendezvous message to RLPs, and later in response to RLPs acknowledging the rendezvous message. Any outstanding valid uncorrectable machine check error condition present in the machine check status registers at the first check point will result in the ILP signaling a general protection violation. If an outstanding valid uncorrectable machine check error condition is present at the second check point, then this will result in the corresponding logical processor signaling the more severe TXT-shutdown condition with an error code of 12.

Before loading and authentication of the target code module is performed, the processor also checks that the current voltage and bus ratio encodings correspond to known good values supportable by the processor. The MSR IA32_PERF_STATUS values are compared against either the processor supported maximum operating target setting, system reset setting, or the thermal monitor operating target. If the current settings do not meet any of these criteria then the SENTER function will attempt to change the voltage and bus ratio select controls in a processor-specific manner. This adjustment may be to the thermal monitor, minimum (if different), or maximum operating target depending on the processor.

This implies that some thermal operating target parameters configured by BIOS may be overridden by SENTER. The measured environment software may need to take responsibility for restoring such settings that are deemed to be safe, but not necessarily recognized by SENTER. If an adjustment is not possible when an out of range setting is discovered, then the processor will abort the measured launch. This may be the case for chipset controlled settings of these values or if the controllability is not enabled on the processor. In this case it is the responsibility of the external software to program the chipset voltage ID and/or bus ratio select settings to known good values recognized by the processor, prior to executing SENTER.

NOTE

For a mobile processor, an adjustment can be made according to the thermal monitor operating target. For a quad-core processor the SENTER adjustment mechanism may result in a more conservative but non-uniform voltage setting, depending on the pre-SENTER settings per core.

The ILP and RLPs mask the response to the assertion of the external signals INIT#, A20M, NMI#, and SMI#. The purpose of this masking control is to prevent exposure to existing external event handlers until a protected handler has been put in place to directly handle these events. Masked external pin events may be unmasked conditionally or unconditionally via the GETSEC[EXITAC], GETSEC[SEXIT], GETSEC[SMCTRL] or for specific VMX related operations such as a VM entry or the VMXOFF instruction (see respective GETSEC leaves and Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C for more details). The state of the A20M pin is masked and forced internally to a de-asserted state so that external assertion is not recognized. A20M masking as set by

GETSEC[SENTER] is undone only after taking down the measured environment with the GETSEC[SEXIT] instruction or processor reset. INTR is masked by simply clearing the EFLAGS.IF bit. It is the responsibility of system software to control the processor response to INTR through appropriate management of EFLAGS.

To prevent other (logical) processors from interfering with the ILP operating in authenticated code execution mode, memory (excluding implicit write-back transactions) and I/O activities originating from other processor agents are blocked. This protection starts when the ILP enters into authenticated code execution mode. Only memory and I/O transactions initiated from the ILP are allowed to proceed. Exiting authenticated code execution mode is done by executing GETSEC[EXITAC]. The protection of memory and I/O activities remains in effect until the ILP executes GETSEC[EXITAC].

Once the authenticated code module has been loaded into the authenticated code execution area, it is protected against further modification from external bus snoops. There is also a requirement that the memory type for the authenticated code module address range be WB (via initialization of the MTRRs prior to execution of this instruction). If this condition is not satisfied, it is a violation of security and the processor will force a TXT system reset (after writing an error code to the chipset LT.ERRORCODE register). This action is referred to as a Intel® TXT reset condition. It is performed when it is considered unreliable to signal an error through the conventional exception reporting mechanism.

To conform to the minimum granularity of MTRR MSRs for specifying the memory type, authenticated code RAM (ACRAM) is allocated to the processor in 4096 byte granular blocks. If an AC module size as specified in ECX is not a multiple of 4096 then the processor will allocate up to the next 4096 byte boundary for mapping as ACRAM with indeterminate data. This pad area will not be visible to the authenticated code module as external memory nor can it depend on the value of the data used to fill the pad area.

Once successful authentication has been completed by the ILP, the computed hash is stored in a trusted storage facility in the platform. The following trusted storage facility are supported:

- If the platform register FTM_INTERFACE_ID.[bits 3:0] = 0, the computed hash is stored to the platform's TPM at PCR17 after this register is implicitly reset. PCR17 is a dedicated register for holding the computed hash of the authenticated code module loaded and subsequently executed by the GETSEC[SENTER]. As part of this process, the dynamic PCRs 18-22 are reset so they can be utilized by subsequently software for registration of code and data modules.
- If the platform register FTM_INTERFACE_ID.[bits 3:0] = 1, the computed hash is stored in a firmware trusted module (FTM) using a modified protocol similar to the protocol used to write to TPM's PCR17.

After successful execution of SENTER, either PCR17 (if FTM is not enabled) or the FTM (if enabled) contains the measurement of AC code and the SENTER launching parameters.

After authentication is completed successfully, the private configuration space of the Intel[®] TXT-capable chipset is unlocked so that the authenticated code module and measured environment software can gain access to this normally restricted chipset state. The Intel® TXT-capable chipset private configuration space can be locked later by software writing to the chipset LT.CMD.CLOSE-PRIVATE register or unconditionally using the GETSEC[SEXIT] instruction.

The SENTER leaf function also initializes some processor architecture state for the ILP from contents held in the header of the authenticated code module. Since the authenticated code module is relocatable, all address references are relative to the base address passed in via EBX. The ILP GDTR base value is initialized to EBX + [GDTBasePtr] and GDTR limit set to [GDTLimit]. The CS selector is initialized to the value held in the AC module header field SegSel, while the DS, SS, and ES selectors are initialized to CS+8. The segment descriptor fields are initialized implicitly with BASE=0, LIMIT=FFFFFh, G=1, D=1, P=1, S=1, read/write/accessed for DS, SS, and ES, while execute/read/accessed for CS. Execution in the authenticated code module for the ILP begins with the EIP set to EBX + [EntryPoint]. AC module defined fields used for initializing processor state are consistency checked with a failure resulting in an TXT-shutdown condition.

Table 6-6 provides a summary of processor state initialization for the ILP and RLP(s) after successful completion of GETSEC[SENTER]. For both ILP and RLP(s), paging is disabled upon entry to the measured environment. It is up to the ILP to establish a trusted paging environment, with appropriate mappings, to meet protection requirements established during the launch of the measured environment. RLP state initialization is not completed until a subsequent wake-up has been signaled by execution of the GETSEC[WAKEUP] function by the ILP.

Table 6-6. Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP]

Register State	ILP after GETSEC[SENTER]	RLP after GETSEC[WAKEUP]
CR0	PG←0, AM←0, WP←0; Others unchanged	$PG\leftarrow 0$, $CD\leftarrow 0$, $NW\leftarrow 0$, $AM\leftarrow 0$, $WP\leftarrow 0$; $PE\leftarrow 1$, $NE\leftarrow 1$
CR4	00004000H	00004000H
EFLAGS	0000002H	00000002H
IA32_EFER	ОН	0
EIP	[EntryPoint from MLE header ¹]	[LT.MLE.JOIN + 12]
EBX	Unchanged [SINIT.BASE]	Unchanged
EDX	SENTER control flags	Unchanged
EBP	SINIT.BASE	Unchanged
CS	Sel=[SINIT SegSel], base=0, limit=FFFFFh, G=1, D=1, AR=9BH	Sel = [LT.MLE.JOIN + 8], base = 0, limit = FFFFFH, G = 1, D = 1, AR = 9BH
DS, ES, SS	Sel=[SINIT SegSel] +8, base=0, limit=FFFFFh, G=1, D=1, AR=93H	Sel = [LT.MLE.JOIN + 8] +8, base = 0, limit = FFFFFH, G = 1, D = 1, AR = 93H
GDTR	Base= SINIT.base (EBX) + [SINIT.GDTBasePtr], Limit=[SINIT.GDTLimit]	Base = [LT.MLE.JOIN + 4], Limit = [LT.MLE.JOIN]
DR7	00000400H	00000400H
IA32_DEBUGCTL	ОН	OH
Performance counters and counter control registers	ОН	OH
IA32_MISC_ENABLE	See Table 6-5	See Table 6-5
IA32_SMM_MONITOR _CTL	Bit 2←0	Bit 2←0

NOTES:

Segmentation related processor state that has not been initialized by GETSEC[SENTER] requires appropriate initialization before use. Since a new GDT context has been established, the previous state of the segment selector values held in FS, GS, TR, and LDTR may no longer be valid. The IDTR will also require reloading with a new IDT context after launching the measured environment before exceptions or the external interrupts INTR and NMI can be handled. In the meantime, the programmer must take care in not executing an INT n instruction or any other condition that would result in an exception or trap signaling.

Debug exception and trap related signaling is also disabled as part of execution of GETSEC[SENTER]. This is achieved by clearing DR7, TF in EFLAGs, and the MSR IA32_DEBUGCTL as defined in Table 6-6. These can be reenabled once supporting exception handler(s), descriptor tables, and debug registers have been properly re-initialized following SENTER. Also, any pending single-step trap condition will be cleared at the completion of SENTER for both the ILP and RLP(s).

Performance related counters and counter control registers are cleared as part of execution of SENTER on both the ILP and RLP. This implies any active performance counters at the time of SENTER execution will be disabled. To reactive the processor performance counters, this state must be re-initialized and re-enabled.

Since MCE along with all other state bits (with the exception of SMXE) are cleared in CR4 upon execution of SENTER processing, any enabled machine check error condition that occurs will result in the processor performing the TXT-

^{1.} See Intel® Trusted Execution Technology Measured Launched Environment Programming Guide for MLE header format.

shutdown action. This also applies to an RLP while in the SENTER sleep state. For each logical processor CR4.MCE must be reestablished with a valid machine check exception handler to otherwise avoid an TXT-shutdown under such conditions.

The MSR IA32_EFER is also unconditionally cleared as part of the processor state initialized by SENTER for both the ILP and RLP. Since paging is disabled upon entering authenticated code execution mode, a new paging environment will have to be re-established if it is desired to enable IA-32e mode while operating in authenticated code execution mode.

The miscellaneous feature control MSR, IA32_MISC_ENABLE, is initialized as part of the measured environment launch. Certain bits of this MSR are preserved because preserving these bits may be important to maintain previously established platform settings. See the footnote for Table 6-5 The remaining bits are cleared for the purpose of establishing a more consistent environment for the execution of authenticated code modules. Among the impact of initializing this MSR, any previous condition established by the MONITOR instruction will be cleared.

Effect of MSR IA32 FEATURE CONTROL MSR

Bits 15:8 of the IA32_FEATURE_CONTROL MSR affect the execution of GETSEC[SENTER]. These bits consist of two fields:

- Bit 15: a global enable control for execution of SENTER.
- Bits 14:8: a parameter control field providing the ability to qualify SENTER execution based on the level of functionality specified with corresponding EDX parameter bits 6:0.

The layout of these fields in the IA32 FEATURE CONTROL MSR is shown in Table 6-1.

Prior to the execution of GETSEC[SENTER], the lock bit of IA32_FEATURE_CONTROL MSR must be bit set to affirm the settings to be used. Once the lock bit is set, only a power-up reset condition will clear this MSR. The IA32_FEATURE_CONTROL MSR must be configured in accordance to the intended usage at platform initialization. Note that this MSR is only available on SMX or VMX enabled processors. Otherwise, IA32_FEATURE_CONTROL is treated as reserved.

The Intel® Trusted Execution Technology Measured Launched Environment Programming Guide provides additional details and requirements for programming measured environment software to launch in an Intel TXT platform.

Operation in a Uni-Processor Platform

```
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
GETSEC[SENTER] (ILP only):
IF (CR4.SMXE=0)
   THEN #UD:
ELSE IF (in VMX non-root operation)
   THEN VM Exit (reason="GETSEC instruction"):
ELSE IF (GETSEC leaf unsupported)
   THEN #UD:
ELSE IF ((in VMX root operation) or
   (CR0.PE=0) or (CR0.CD=1) or (CR0.NW=1) or (CR0.NE=0) or
   (CPL>0) or (EFLAGS.VM=1) or
   (IA32 APIC_BASE.BSP=0) or (TXT chipset not present) or
   (SENTERFLAG=1) or (ACMODEFLAG=1) or (IN_SMM=1) or
   (TPM interface is not present) or
   (EDX ≠ (SENTER EDX support mask & EDX)) or
   (IA32_FEATURE_CONTROL[0]=0) or (IA32_FEATURE_CONTROL[15]=0) or
   ((IA32\_FEATURE\_CONTROL[14:8] \& EDX[6:0]) \neq EDX[6:0]))
       THEN #GP(0);
IF (GETSEC[PARAMETERS].Parameter_Type = 5, MCA_Handling (bit 6) = 0)
   FOR I = 0 to IA32 MCG CAP.COUNT-1 DO
       IF IA32 MCII1 STATUS = uncorrectable error
            THEN #GP(0);
       FI;
   OD:
```

```
FI;
IF (IA32 MCG STATUS.MCIP=1) or (IERR pin is asserted)
   THEN #GP(0);
ACBASE← EBX;
ACSIZE← ECX;
IF (((ACBASE MOD 4096) \neq 0) or ((ACSIZE MOD 64) \neq 0) or (ACSIZE < minimum
   module size) or (ACSIZE > AC RAM capacity) or ((ACBASE+ACSIZE) > (2^32 -1)))
       THEN #GP(0);
Mask SMI, INIT, A20M, and NMI external pin events;
SignalTXTMsg(SENTER);
DO
WHILE (no SignalSENTER message);
TXT_SENTER__MSG_EVENT (ILP & RLP):
Mask and clear SignalSENTER event;
Unmask SignalSEXIT event;
IF (in VMX operation)
   THEN TXT-SHUTDOWN(#IllegalEvent);
FOR I = 0 to IA32 MCG CAP.COUNT-1 DO
   IF IA32 MC[I] STATUS = uncorrectable error
       THEN TXT-SHUTDOWN(#UnrecovMCError);
   FI;
OD;
IF (IA32 MCG STATUS.MCIP=1) or (IERR pin is asserted)
   THEN TXT-SHUTDOWN(#UnrecovMCError);
IF (Voltage or bus ratio status are NOT at a known good state)
   THEN IF (Voltage select and bus ratio are internally adjustable)
       THEN
            Make product-specific adjustment on operating parameters;
       ELSE
            TXT-SHUTDOWN(#IllegalVIDBRatio);
FI;
IA32 MISC ENABLE← (IA32 MISC ENABLE & MASK CONST*)
(* The hexadecimal value of MASK_CONST may vary due to processor implementations *)
A20M← 0;
IA32 DEBUGCTL← 0;
Invalidate processor TLB(s);
Drain outgoing transactions;
Clear performance monitor counters and control;
SENTERFLAG← 1;
SignalTXTMsg(SENTERAck);
IF (logical processor is not ILP)
   THEN GOTO RLP SENTER ROUTINE;
(* ILP waits for all logical processors to ACK *)
DO
   DONE← TXT.READ(LT.STS);
WHILE (not DONE);
SignalTXTMsg(SENTERContinue);
SignalTXTMsg(ProcessorHold);
FOR I=ACBASE to ACBASE+ACSIZE-1 DO
   ACRAM[I-ACBASE].ADDR \leftarrow I;
   ACRAM[I-ACBASE].DATA← LOAD(I);
OD;
```

```
IF (ACRAM memory type ≠ WB)
   THEN TXT-SHUTDOWN(#BadACMMType);
IF (AC module header version is not supported) OR (ACRAM[ModuleType] \neq 2)
   THEN TXT-SHUTDOWN(#UnsupportedACM);
KEY← GETKEY(ACRAM, ACBASE);
KEYHASH← HASH(KEY);
CSKEYHASH← LT.READ(LT.PUBLIC.KEY);
IF (KEYHASH ≠ CSKEYHASH)
   THEN TXT-SHUTDOWN(#AuthenticateFail);
SIGNATURE← DECRYPT(ACRAM, ACBASE, KEY);
(* The value of SIGNATURE LEN CONST is implementation-specific*)
FOR I=0 to SIGNATURE LEN CONST - 1 DO
   ACRAM[SCRATCH.I]← SIGNATURE[I];
COMPUTEDSIGNATURE← HASH(ACRAM, ACBASE, ACSIZE);
FOR I=0 to SIGNATURE LEN CONST - 1 DO
   ACRAM[SCRATCH.SIGNATURE_LEN_CONST+I] \leftarrow COMPUTEDSIGNATURE[I];
IF (SIGNATURE ≠ COMPUTEDSIGNATURE)
   THEN TXT-SHUTDOWN(#AuthenticateFail);
ACMCONTROL← ACRAM[CodeControl];
IF ((ACMCONTROL.0 = 0) and (ACMCONTROL.1 = 1) and (snoop hit to modified line detected on ACRAM load))
   THEN TXT-SHUTDOWN(#UnexpectedHITM);
IF (ACMCONTROL reserved bits are set)
   THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[GDTBasePtr] < (ACRAM[HeaderLen] * 4 + Scratch size)) OR
   ((ACRAM[GDTBasePtr] + ACRAM[GDTLimit]) >= ACSIZE))
   THEN TXT-SHUTDOWN(#BadACMFormat):
IF ((ACMCONTROL.0 = 1) and (ACMCONTROL.1 = 1) and (snoop hit to modified
   line detected on ACRAM load))
   THEN ACEntryPoint← ACBASE+ACRAM[ErrorEntryPoint];
FI SF
   ACEntryPoint← ACBASE+ACRAM[EntryPoint];
IF ((ACEntryPoint >= ACSIZE) or (ACEntryPoint < (ACRAM[HeaderLen] * 4 + Scratch_size)))
   THEN TXT-SHUTDOWN(#BadACMFormat);
IF ((ACRAM[SeqSel] > (ACRAM[GDTLimit] - 15)) or (ACRAM[SeqSel] < 8))
   THEN TXT-SHUTDOWN(#BadACMFormat):
IF ((ACRAM[SeqSel].TI=1) \text{ or } (ACRAM[SeqSel].RPL \neq 0))
   THEN TXT-SHUTDOWN(#BadACMFormat);
IF (FTM_INTERFACE_ID.[3:0] = 1 ) (* Alternate FTM Interface has been enabled *)
   THEN (* TPM LOC CTRL 4 is located at 0FED44008H, TMP DATA BUFFER 4 is located at 0FED44080H *)
       WRITE(TPM_LOC_CTRL_4) \leftarrow 01H; (* Modified HASH.START protocol *)
       (* Write to firmware storage *)
       WRITE(TPM_DATA_BUFFER_4) ← SIGNATURE_LEN_CONST + 4;
       FOR I=0 to SIGNATURE LEN CONST - 1 DO
            WRITE(TPM DATA BUFFER 4 + 2 + 1) \leftarrow ACRAM[SCRATCH.I];
       WRITE(TPM DATA BUFFER 4 + 2 + SIGNATURE LEN CONST) \leftarrow EDX;
       WRITE(FTM.LOC_CTRL) ← 06H; (* Modified protocol combining HASH.DATA and HASH.END *)
   ELSE IF (FTM INTERFACE ID.[3:0] = 0) (* Use standard TPM Interface *)
       ACRAM[SCRATCH.SIGNATURE_LEN_CONST]← EDX;
       WRITE(TPM.HASH.START) \leftarrow 0;
       FOR I=0 to SIGNATURE LEN CONST + 3 DO
            WRITE(TPM.HASH.DATA) \leftarrow ACRAM[SCRATCH.I];
       WRITE(TPM.HASH.END)\leftarrow 0;
FI;
```

ACMODEFLAG← 1; $CR0.[PG.AM.WP] \leftarrow 0;$ CR4← 00004000h; EFLAGS← 00000002h; IA32_EFER← 0; EBP← ACBASE; GDTR.BASE← ACBASE+ACRAM[GDTBasePtr]; GDTR.LIMIT← ACRAM[GDTLimit]; $CS.SEL \leftarrow ACRAM[SegSel];$ CS.BASE← 0; CS.LIMIT← FFFFFh; CS.G← 1; CS.D← 1; CS.AR← 9Bh; DS.SEL← ACRAM[SegSel]+8; DS.BASE← 0; DS.LIMIT← FFFFFh; DS.G \leftarrow 1; DS.D← 1; DS.AR← 93h; $SS \leftarrow DS$; ES← DS; DR7← 00000400h; IA32 DEBUGCTL← 0; SignalTXTMsg(UnlockSMRAM); SignalTXTMsg(OpenPrivate); SignalTXTMsg(OpenLocality3); EIP← ACEntryPoint;

RLP_SENTER_ROUTINE: (RLP only)

Mask SMI, INIT, A20M, and NMI external pin events Unmask SignalWAKEUP event; Wait for SignalSENTERContinue message; IA32_APIC_BASE.BSP← 0; GOTO SENTER sleep state; END;

Flags Affected

END;

All flags are cleared.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).

Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) If CR0.CD = 1 or CR0.NW = 1 or CR0.NE = 0 or CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.

If the initiating processor is not designated as the bootstrap processor via the MSR bit

IA32_APIC_BASE.BSP.

If an Intel[®] TXT-capable chipset is not present.

If an Intel[®] TXT-capable chipset interface to TPM is not detected as present.

If a protected partition is already active or the processor is already in authenticated code

mode.

If the processor is in SMM.

If a valid uncorrectable machine check error is logged in IA32_MC[I]_STATUS.

If the authenticated code base is not on a 4096 byte boundary.

If the authenticated code size > processor's authenticated code execution area storage

capacity.

If the authenticated code size is not modulo 64.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SENTER] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[SENTER] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SENTER] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below 2^32 -1.

64-Bit Mode Exceptions

All protected mode exceptions apply.

#GP IF AC code module does not reside in physical address below 2^32 -1.

VM-Exit Condition

Reason (GETSEC) IF in VMX non-root operation.

GETSEC[SEXIT]—Exit Measured Environment

Opcode	Instruction	Description
NP 0F 37	GETSEC[SEXIT]	Exit measured environment.
(EAX=5)		

Description

The GETSEC[SEXIT] instruction initiates an exit of a measured environment established by GETSEC[SENTER]. The SEXIT leaf of GETSEC is selected with EAX set to 5 at execution. This instruction leaf sends a message to all logical processors in the platform to signal the measured environment exit.

There are restrictions enforced by the processor for the execution of the GETSEC[SEXIT] instruction:

- Execution is not allowed unless the processor is in protected mode (CR0.PE = 1) with CPL = 0 and EFLAGS.VM = 0.
- The processor must be in a measured environment as launched by a previous GETSEC[SENTER] instruction, but not still in authenticated code execution mode.
- To avoid potential inter-operability conflicts between modes, the processor is not allowed to execute this instruction if it currently is in SMM or in VMX operation.
- To insure consistent handling of SIPI messages, the processor executing the GETSEC[SEXIT] instruction must also be designated the BSP (bootstrap processor) as defined by the register bit IA32_APIC_BASE.BSP (bit 8).

Failure to abide by the above conditions results in the processor signaling a general protection violation.

This instruction initiates a sequence to rendezvous the RLPs with the ILP. It then clears the internal processor flag indicating the processor is operating in a measured environment.

In response to a message signaling the completion of rendezvous, all RLPs restart execution with the instruction that was to be executed at the time GETSEC[SEXIT] was recognized. This applies to all processor conditions, with the following exceptions:

- If an RLP executed HLT and was in this halt state at the time of the message initiated by GETSEC[SEXIT], then execution resumes in the halt state.
- If an RLP was executing MWAIT, then a message initiated by GETSEC[SEXIT] causes an exit of the MWAIT state, falling through to the next instruction.
- If an RLP was executing an intermediate iteration of a string instruction, then the processor resumes execution of the string instruction at the point which the message initiated by GETSEC[SEXIT] was recognized.
- If an RLP is still in the SENTER sleep state (never awakened with GETSEC[WAKEUP]), it will be sent to the waitfor-SIPI state after first clearing the bootstrap processor indicator flag (IA32_APIC_BASE.BSP) and any pending SIPI state. In this case, such RLPs are initialized to an architectural state consistent with having taken a soft reset using the INIT# pin.

Prior to completion of the GETSEC[SEXIT] operation, both the ILP and any active RLPs unmask the response of the external event signals INIT#, A20M, NMI#, and SMI#. This unmasking is performed unconditionally to recognize pin events which are masked after a GETSEC[SENTER]. The state of A20M is unmasked, as the A20M pin is not recognized while the measured environment is active.

On a successful exit of the measured environment, the ILP re-locks the Intel® TXT-capable chipset private configuration space. GETSEC[SEXIT] does not affect the content of any PCR.

At completion of GETSEC[SEXIT] by the ILP, execution proceeds to the next instruction. Since EFLAGS and the debug register state are not modified by this instruction, a pending trap condition is free to be signaled if previously enabled.

Operation in a Uni-Processor Platform

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

```
GETSEC[SEXIT] (ILP only):
IF (CR4.SMXE=0)
   THEN #UD;
ELSE IF (in VMX non-root operation)
   THEN VM Exit (reason="GETSEC instruction");
ELSE IF (GETSEC leaf unsupported)
   THEN #UD;
ELSE IF ((in VMX root operation) or
   (CRO.PE=0) or (CPL>0) or (EFLAGS.VM=1) or
   (IA32_APIC_BASE.BSP=0) or
   (TXT chipset not present) or
   (SENTERFLAG=0) or (ACMODEFLAG=1) or (IN_SMM=1))
        THEN #GP(0);
SignalTXTMsg(SEXIT);
WHILE (no SignalSEXIT message);
TXT_SEXIT_MSG_EVENT (ILP & RLP):
Mask and clear SignalSEXIT event;
Clear MONITOR FSM;
Unmask SignalSENTER event;
IF (in VMX operation)
   THEN TXT-SHUTDOWN(#IllegalEvent);
SignalTXTMsg(SEXITAck);
IF (logical processor is not ILP)
   THEN GOTO RLP SEXIT ROUTINE;
(* ILP waits for all logical processors to ACK *)
   DONE← READ(LT.STS);
WHILE (NOT DONE);
SignalTXTMsq(SEXITContinue);
SignalTXTMsg(ClosePrivate);
SENTERFLAG← 0;
Unmask SMI, INIT, A20M, and NMI external pin events;
END;
RLP SEXIT ROUTINE (RLPs only):
Wait for SignalSEXITContinue message;
Unmask SMI, INIT, A20M, and NMI external pin events;
IF (prior execution state = HLT)
   THEN reenter HLT state;
IF (prior execution state = SENTER sleep)
   THEN
        IA32 APIC BASE.BSP← 0;
        Clear pending SIPI state;
        Call INIT PROCESSOR STATE;
        Unmask SIPI event;
        GOTO WAIT-FOR-SIPI;
FI;
END;
```

Flags Affected

ILP: None.

RLPs: all flags are modified for an RLP. returning to wait-for-SIPI state, none otherwise.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).

Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored. Address size Ignored. REX Ignored.

Protected Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.

If the initiating processor is not designated via the MSR bit IA32 APIC BASE.BSP.

If an Intel[®] TXT-capable chipset is not present.

If a protected partition is not already active or the processor is already in authenticated code

mode.

If the processor is in SMM.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0

If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SEXIT] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[SEXIT] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SEXIT] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-Bit Mode Exceptions

All protected mode exceptions apply.

VM-Exit Condition

Reason (GETSEC) IF in VMX non-root operation.

GETSEC[PARAMETERS]—Report the SMX Parameters

Opcode	Instruction	Description
NP 0F 37	GETSEC[PARAMETERS]	Report the SMX parameters.
(EAX=6)		The parameters index is input in EBX with the result returned in EAX, EBX, and ECX.

Description

The GETSEC[PARAMETERS] instruction returns specific parameter information for SMX features supported by the processor. Parameter information is returned in EAX, EBX, and ECX, with the input parameter selected using EBX.

Software retrieves parameter information by searching with an input index for EBX starting at 0, and then reading the returned results in EAX, EBX, and ECX. EAX[4:0] is designated to return a parameter type field indicating if a parameter is available and what type it is. If EAX[4:0] is returned with 0, this designates a null parameter and indicates no more parameters are available.

Table 6-7 defines the parameter types supported in current and future implementations.

Table 6-7. SMX Reporting Parameters Format

Parameter Type EAX[4:0]	Parameter Description	EAX[31:5]	EBX[31:0]	ECX[31:0]
0	NULL	Reserved (0 returned)	Reserved (unmodified)	Reserved (unmodified)
1	Supported AC module versions	Reserved (0 returned)	Version comparison mask	Version numbers supported
2	Max size of authenticated code execution area	Multiply by 32 for size in bytes	Reserved (unmodified)	Reserved (unmodified)
3	External memory types supported during AC mode	Memory type bit mask	Reserved (unmodified)	Reserved (unmodified)
4	Selective SENTER functionality control	EAX[14:8] correspond to available SENTER function disable controls	Reserved (unmodified)	Reserved (unmodified)
5	TXT extensions support	TXT Feature Extensions Flags (see Table 6-8)	Reserved	Reserved
6-31	Undefined	Reserved (unmodified)	Reserved (unmodified)	Reserved (unmodified)

Table 6-8. TXT Feature Extensions Flags

Bit	Definition	Description
5	Processor based S-CRTM support	Returns 1 if this processor implements a processor-rooted S-CRTM capability and 0 if not (S-CRTM is rooted in BIOS). This flag cannot be used to infer whether the chipset supports TXT or whether the processor support SMX.
6	Machine Check Handling	Returns 1 if it machine check status registers can be preserved through ENTERACCS and SENTER. If this bit is 1, the caller of ENTERACCS and SENTER is not required to clear machine check error status bits before invoking these GETSEC leaves.
		If this bit returns 0, the caller of ENTERACCS and SENTER must clear all machine check error status bits before invoking these GETSEC leaves.
31:7	Reserved	Reserved for future use. Will return 0.

Supported AC module versions (as defined by the AC module HeaderVersion field) can be determined for a particular SMX capable processor by the type 1 parameter. Using EBX to index through the available parameters reported by GETSEC[PARAMETERS] for each unique parameter set returned for type 1, software can determine the complete list of AC module version(s) supported.

For each parameter set, EBX returns the comparison mask and ECX returns the available HeaderVersion field values supported, after AND'ing the target HeaderVersion with the comparison mask. Software can then determine if a particular AC module version is supported by following the pseudo-code search routine given below:

If only AC modules with a HeaderVersion of 0 are supported by the processor, then only one parameter set of type 1 will be returned, as follows: EAX = 00000001H,

FBX = FFFFFFFFH and FCX = 00000000H.

The maximum capacity for an authenticated code execution area supported by the processor is reported with the parameter type of 2. The maximum supported size in bytes is determined by multiplying the returned size in EAX[31:5] by 32. Thus, for a maximum supported authenticated RAM size of 32KBytes, EAX returns with 00008002H.

Supportable memory types for memory mapped outside of the authenticated code execution area are reported with the parameter type of 3. While is active, as initiated by the GETSEC functions SENTER and ENTERACCS and terminated by EXITAC, there are restrictions on what memory types are allowed for the rest of system memory. It is the responsibility of the system software to initialize the memory type range register (MTRR) MSRs and/or the page attribute table (PAT) to only map memory types consistent with the reporting of this parameter. The reporting of supportable memory types of external memory is indicated using a bit map returned in EAX[31:8]. These bit positions correspond to the memory type encodings defined for the MTRR MSR and PAT programming. See Table 6-9.

The parameter type of 4 is used for enumerating the availability of selective GETSEC[SENTER] function disable controls. If a 1 is reported in bits 14:8 of the returned parameter EAX, then this indicates a disable control capa-

bility exists with SENTER for a particular function. The enumerated field in bits 14:8 corresponds to use of the EDX input parameter bits 6:0 for SENTER. If an enumerated field bit is set to 1, then the corresponding EDX input parameter bit of EDX may be set to 1 to disable that designated function. If the enumerated field bit is 0 or this parameter is not reported, then no disable capability exists with the corresponding EDX input parameter for SENTER, and EDX bit(s) must be cleared to 0 to enable execution of SENTER. If no selective disable capability for SENTER exists as enumerated, then the corresponding bits in the IA32_FEATURE_CONTROL MSR bits 14:8 must also be programmed to 1 if the SENTER global enable bit 15 of the MSR is set. This is required to enable future extensibility of SENTER selective disable capability with respect to potentially separate software initialization of the MSR.

Table 6-9. External Memory Types Using Parameter 3

EAX Bit Position	Parameter Description
8	Uncacheable (UC)
9	Write Combining (WC)
11:10	Reserved
12	Write-through (WT)
13	Write-protected (WP)
14	Write-back (WB)
31:15	Reserved

If the GETSEC[PARAMETERS] leaf or specific parameter is not present for a given SMX capable processor, then default parameter values should be assumed. These are defined in Table 6-10.

Table 6-10. Default Parameter Values

Parameter Type EAX[4:0]	Parameter Type EAX[4:0] Default Setting Parameter Description			
1 0.0 only Supported AC module versions.		Supported AC module versions.		
2	32 KBytes	Authenticated code execution area size.		
3	UC only	External memory types supported during AC execution mode.		
4	None	Available SENTER selective disable controls.		

Operation

```
(* example of a processor supporting only a 0.0 HeaderVersion, 32K ACRAM size, memory types UC and WC *)
IF (CR4.SMXE=0)
   THEN #UD:
ELSE IF (in VMX non-root operation)
   THEN VM Exit (reason="GETSEC instruction");
ELSE IF (GETSEC leaf unsupported)
   THEN #UD:
   (* example of a processor supporting a 0.0 HeaderVersion *)
IF (EBX=0) THEN
   EAX← 0000001h;
   EBX← FFFFFFFh;
   ECX← 00000000h:
ELSE IF (EBX=1)
   (* example of a processor supporting a 32K ACRAM size *)
```

THEN EAX← 00008002h;

ESE IF (EBX= 2)

(* example of a processor supporting external memory types of UC and WC *)

THEN EAX← 00000303h:

ESE IF (EBX= other value(s) less than unsupported index value)

(* EAX value varies. Consult Table 6-7 and Table 6-8*)

ELSE (* unsupported index*)

EAX" 00000000h;

END;

Flags Affected

None.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).

Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[PARAMETERS] is not reported as supported by GETSEC[CAPABILITIES].

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-Bit Mode Exceptions

All protected mode exceptions apply.

VM-Exit Condition

Reason (GETSEC) IF in VMX non-root operation.

GETSEC[SMCTRL]—SMX Mode Control

Opcode	Instruction	Description
NP 0F 37 (EAX = 7)	GETSEC[SMCTRL]	Perform specified SMX mode control as selected with the input EBX.

Description

The GETSEC[SMCTRL] instruction is available for performing certain SMX specific mode control operations. The operation to be performed is selected through the input register EBX. Currently only an input value in EBX of 0 is supported. All other EBX settings will result in the signaling of a general protection violation.

If EBX is set to 0, then the SMCTRL leaf is used to re-enable SMI events. SMI is masked by the ILP executing the GETSEC[SENTER] instruction (SMI is also masked in the responding logical processors in response to SENTER rendezvous messages.). The determination of when this instruction is allowed and the events that are unmasked is dependent on the processor context (See Table 6-11). For brevity, the usage of SMCTRL where EBX=0 will be referred to as GETSEC[SMCTRL(0)].

As part of support for launching a measured environment, the SMI, NMI and INIT events are masked after GETSEC[SENTER], and remain masked after exiting authenticated execution mode. Unmasking these events should be accompanied by securely enabling these event handlers. These security concerns can be addressed in VMX operation by a MVMM.

The VM monitor can choose two approaches:

- In a dual monitor approach, the executive software will set up an SMM monitor in parallel to the executive VMM (i.e. the MVMM), see Chapter 34, "System Management Mode" of Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3C. The SMM monitor is dedicated to handling SMI events without compromising the security of the MVMM. This usage model of handling SMI while a measured environment is active does not require the use of GETSEC[SMCTRL(0)] as event re-enabling after the VMX environment launch is handled implicitly and through separate VMX based controls.
- If a dedicated SMM monitor will not be established and SMIs are to be handled within the measured environment, then GETSEC[SMCTRL(0)] can be used by the executive software to re-enable SMI that has been masked as a result of SENTER.

Table 6-11 defines the processor context in which GETSEC[SMCTRL(0)] can be used and which events will be unmasked. Note that the events that are unmasked are dependent upon the currently operating processor context.

ILP Mode of Operation	SMCTRL execution action
In VMX non-root operation	VM exit
SENTERFLAG = 0	#GP(0), illegal context
In authenticated code execution mode (ACMODEFLAG = 1)	#GP(0), illegal context
SENTERFLAG = 1, not in VMX operation, not in SMM	Unmask SMI
SENTERFLAG = 1, in VMX root operation, not in SMM	Unmask SMI if SMM monitor is not configured, otherwise #GP(0)
SENTERFLAG = 1, In VMX root operation, in SMM	#GP(0), illegal context

Table 6-11. Supported Actions for GETSEC[SMCTRL(0)]

Operation

(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)

IF (CR4.SMXE=0) THEN #UD;

ELSE IF (in VMX non-root operation)

THEN VM Exit (reason="GETSEC instruction");

ELSE IF (GETSEC leaf unsupported)

THEN #UD;

ELSE IF ((CRO.PE=0) or (CPL>0) OR (EFLAGS.VM=1))

THEN #GP(0);

ELSE IF((EBX=0) and (SENTERFLAG=1) and (ACMODEFLAG=0) and (IN_SMM=0) and

(((in VMX root operation) and (SMM monitor not configured)) or (not in VMX operation)))

THEN unmask SMI;

ELSE

#GP(0);

END

Flags Affected

None.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).

Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored. Address size Ignored. REX Ignored.

Protected Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX root operation.

If a protected partition is not already active or the processor is currently in authenticated code

mode.

If the processor is in SMM.

If the SMM monitor is not configured.

Real-Address Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SMCTRL] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[SMCTRL] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[SMCTRL] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-Bit Mode Exceptions

All protected mode exceptions apply.

VM-exit Condition

Reason (GETSEC) IF in VMX non-root operation.

GETSEC[WAKEUP]—Wake up sleeping processors in measured environment

Opcode	Instruction	Description
NP 0F 37	GETSEC[WAKEUP]	Wake up the responding logical processors from the SENTER sleep state.
(EAX=8)		

Description

The GETSEC[WAKEUP] leaf function broadcasts a wake-up message to all logical processors currently in the SENTER sleep state. This GETSEC leaf must be executed only by the ILP, in order to wake-up the RLPs. Responding logical processors (RLPs) enter the SENTER sleep state after completion of the SENTER rendezvous sequence.

The GETSEC[WAKEUP] instruction may only be executed:

- In a measured environment as initiated by execution of GETSEC[SENTER].
- Outside of authenticated code execution mode.
- Execution is not allowed unless the processor is in protected mode with CPL = 0 and EFLAGS.VM = 0.
- In addition, the logical processor must be designated as the boot-strap processor as configured by setting IA32_APIC_BASE.BSP = 1.

If these conditions are not met, attempts to execute GETSEC[WAKEUP] result in a general protection violation.

An RLP exits the SENTER sleep state and start execution in response to a WAKEUP signal initiated by ILP's execution of GETSEC[WAKEUP]. The RLP retrieves a pointer to a data structure that contains information to enable execution from a defined entry point. This data structure is located using a physical address held in the Intel[®] TXT-capable chipset configuration register LT.MLE.JOIN. The register is publicly writable in the chipset by all processors and is not restricted by the Intel[®] TXT-capable chipset configuration register lock status. The format of this data structure is defined in Table 6-12.

Offset	Field
0	GDT limit
4	GDT base pointer
8	Segment selector initializer
12	EIP

Table 6-12. RLP MVMM IOIN Data Structure

The MLE JOIN data structure contains the information necessary to initialize RLP processor state and permit the processor to join the measured environment. The GDTR, LIP, and CS, DS, SS, and ES selector values are initialized using this data structure. The CS selector index is derived directly from the segment selector initializer field; DS, SS, and ES selectors are initialized to CS+8. The segment descriptor fields are initialized implicitly with BASE = 0, LIMIT = FFFFFH, G = 1, D = 1, P = 1, S = 1; read/write/access for DS, SS, and ES; and execute/read/access for CS. It is the responsibility of external software to establish a GDT pointed to by the MLE JOIN data structure that contains descriptor entries consistent with the implicit settings initialized by the processor (see Table 6-6). Certain states from the content of Table 6-12 are checked for consistency by the processor prior to execution. A failure of any consistency check results in the RLP aborting entry into the protected environment and signaling an Intel® TXT shutdown condition. The specific checks performed are documented later in this section. After successful completion of processor consistency checks and subsequent initialization, RLP execution in the measured environment begins from the entry point at offset 12 (as indicated in Table 6-12).

Operation

```
(* The state of the internal flag ACMODEFLAG and SENTERFLAG persist across instruction boundary *)
IF (CR4.SMXE=0)
   THEN #UD;
ELSE IF (in VMX non-root operation)
   THEN VM Exit (reason="GETSEC instruction");
ELSE IF (GETSEC leaf unsupported)
   THEN #UD;
ELSE IF ((CRO.PE=0) or (CPL>0) or (EFLAGS.VM=1) or (SENTERFLAG=0) or (ACMODEFLAG=1) or (IN SMM=0) or (in VMX operation) or
(IA32_APIC_BASE.BSP=0) or (TXT chipset not present))
   THEN #GP(0);
ELSE
   SignalTXTMsg(WAKEUP);
END;
RLP_SIPI_WAKEUP_FROM_SENTER_ROUTINE: (RLP only)
WHILE (no SignalWAKEUP event);
IF (IA32 SMM MONITOR CTL[0] ≠ ILP.IA32 SMM MONITOR CTL[0])
   THEN TXT-SHUTDOWN(#IllegalEvent)
IF (IA32 SMM MONITOR CTL[0] = 0)
   THEN Unmask SMI pin event;
ELSE
   Mask SMI pin event;
Mask A20M, and NMI external pin events (unmask INIT);
Mask SignalWAKEUP event;
Invalidate processor TLB(s);
Drain outgoing transactions;
TempGDTRLIMIT← LOAD(LT.MLE.JOIN);
TempGDTRBASE← LOAD(LT.MLE.|OIN+4);
TempSeqSel\leftarrow LOAD(LT.MLE.|OIN+8);
TempEIP← LOAD(LT.MLE.|OIN+12);
IF (TempGDTLimit & FFFF0000h)
   THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSeqSel > TempGDTRLIMIT-15) or (TempSeqSel < 8))
   THEN TXT-SHUTDOWN(#BadJOINFormat);
IF ((TempSegSel.TI=1) or (TempSegSel.RPL≠0))
   THEN TXT-SHUTDOWN(#BadJOINFormat);
CRO.[PG,CD,NW,AM,WP] \leftarrow 0;
CR0.[NE,PE] \leftarrow 1;
CR4← 00004000h;
EFLAGS← 00000002h;
IA32 EFER← 0;
GDTR.BASE \leftarrow TempGDTRBASE;
GDTR.LIMIT← TempGDTRLIMIT;
CS.SEL← TempSeqSel;
CS.BASE← 0:
CS.LIMIT← FFFFFh;
CS.G \leftarrow 1;
CS.D← 1;
CS.AR← 9Bh;
DS.SEL← TempSeqSel+8;
DS.BASE← 0;
DS.LIMIT← FFFFFh;
DS.G← 1;
```

DS.D← 1; DS.AR← 93h; SS← DS; ES← DS;

 $\begin{array}{l} \mathsf{DR7} \leftarrow \mathsf{00000400h}; \\ \mathsf{IA32_DEBUGCTL} \leftarrow \mathsf{0}; \\ \mathsf{EIP} \leftarrow \mathsf{TempEIP}; \end{array}$

END;

Flags Affected

None.

Use of Prefixes

LOCK Causes #UD.

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ).

Operand size Causes #UD.

NP 66/F2/F3 prefixes are not allowed.

Segment overrides Ignored.
Address size Ignored.
REX Ignored.

Protected Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) If CR0.PE = 0 or CPL > 0 or EFLAGS.VM = 1.

If in VMX operation.

If a protected partition is not already active or the processor is currently in authenticated code

mode.

If the processor is in SMM.

#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD If CR4.SMXE = 0.

If GETSEC[WAKEUP] is not reported as supported by GETSEC[CAPABILITIES].

#GP(0) GETSEC[WAKEUP] is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

All protected mode exceptions apply.

64-Bit Mode Exceptions

All protected mode exceptions apply.

VM-exit Condition

Reason (GETSEC) IF in VMX non-root operation.

CHAPTER 7 INSTRUCTION SET REFERENCE UNIQUE TO INTEL® XEON PHI™ PROCESSORS

This chapter describes the instruction set that is unique to Intel[®] Xeon Phi[™] Processors based on the Knights Landing and Knights Mill microarchitectures. The set is not supported in any other Intel processors. Included are Intel[®] AVX-512 instructions. For additional instructions supported on these processors, see Chapter 3, "Instruction Set Reference, A-L", Chapter 4, "Instruction Set Reference, M-U", and Chapter 5, "Instruction Set Reference, V-Z".

PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to Write and T1 Hint

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
OF OD /2 PREFETCHWT1 m8	М	V/V	PREFETCHWT1	Move data from m8 closer to the processor using T1 hint with intent to write.

Instruction Operand Encoding

Op/En	Operand 1	Operand 2	Operand 3	Operand 4
М	ModRM:r/m (r)	NA	NA	NA

Description

Fetches the line of data from memory that contains the byte specified with the source operand to a location in the cache hierarchy specified by an intent to write hint (so that data is brought into 'Exclusive' state via a request for ownership) and a locality hint:

• T1 (temporal data with respect to first level cache)—prefetch data into the second level cache.

The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement occurs. Prefetches from uncacheable or WC memory are ignored.

The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed, this instruction moves data closer to the processor in anticipation of future use.

The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a processor implementation. The amount of data prefetched is also processor implementation-dependent. It will, however, be a minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from system memory regions that are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can occur at any time and is not tied to instruction execution, a PREFETCHh instruction is not ordered with respect to the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction is also unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHh instructions, or any other general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.

This instruction's operation is the same in non-64-bit modes and 64-bit mode.

Operation

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by 'mem' into the cache level specified by 'Level'; a request for exclusive/ownership is done if 'State' is 1. Note that the memory location ignore cache line splits. This operation is considered a hint for the processor and may be skipped depending on implementation.

Prefetch (m8, Level = 1, EXCLUSIVE=1);

Flags Affected

All flags are affected

C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char const *, int hint= _MM_HINT_ET1);

Protected Mode Exceptions

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

V4FMADDPS/V4FNMADDPS — Packed Single-Precision Floating-Point Fused Multiply-Add (4-iterations)

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.F2.0F38.W0 9A /r V4FMADDPS zmm1{k1}{z}, zmm2+3, m128	A	V/V	AVX512_4FMAPS	Multiply packed single-precision floating-point values from source register block indicated by zmm2 by values from m128 and accumulate the result in zmm1.
EVEX.512.F2.0F38.W0 AA /r V4FNMADDPS zmm1{k1}{z}, zmm2+3, m128	Α	V/V	AVX512_4FMAPS	Multiply and negate packed single-precision floating-point values from source register block indicated by zmm2 by values from m128 and accumulate the result in zmm1.

Instruction Operand Encoding

Op/En	Tuple	Operand 1	Operand 2	Operand 3	Operand 4
Α	Tuple1_4X	ModRM:reg (r, w)	ΕVΕΧ.νννν (г)	ModRM:r/m (r)	NA

Description

This instruction computes 4 sequential packed fused single-precision floating-point multiply-add instructions with a sequentially selected memory operand in each of the four steps.

In the above box, the notation of +3 is used to denote that the instruction accesses 4 source registers based on that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.

This instruction supports memory fault suppression. The entire memory operand is loaded if any of the 16 lowest significant mask bits is set to 1 or if a "no masking" encoding is used.

The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation portion of this instruction.

Rounding is performed at every FMA (fused multiply and add) boundary. Exceptions are also taken sequentially. Pre- and post-computational exceptions of the first FMA take priority over the pre- and post-computational exceptions of the second FMA, etc.

Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

```
define NFMA PS(kl, vl, dest, k1, msrc, regs loaded, src base, posneg):
   tmpdest \leftarrow dest
   // reg[] is an array representing the SIMD register file.
   FOR j \leftarrow 0 to regs_loaded-1:
       FOR i \leftarrow 0 to kl-1:
           IF k1[i] or *no writemask*:
               IF posneg = 0:
                   tmpdest.single[i] ← RoundFPControl_MXCSR(tmpdest.single[i] - reg[src_base + i ].single[i] * msrc.single[i])
           ELSE:
                   ELSE IF *zeroing*:
           tmpdest.single[i] \leftarrow 0
   dest \leftarrow tmpdst
   dest[MAX VL-1:VL] \leftarrow 0
V4FMADDPS and V4FNMADDPS dest[k1], src1, msrc (AVX512)
KL, VL = (16,512)
regs\_loaded \leftarrow 4
src_base ← src_reg_id & ~3 // for src1 operand
posneg ← 0 if negative form, 1 otherwise
NFMA PS(kl, vl, dest, k1, msrc, regs loaded, src base, posneg)
Intel C/C++ Compiler Intrinsic Equivalent
V4FMADDPS __m512 _mm512_4fmadd_ps( __m512, __m512x4, __m128 *);
V4FMADDPS m512 mm512 mask 4fmadd ps( m512, mmask16, m512x4, m128*);
V4FMADDPS __m512 _mm512_maskz_4fmadd_ps(__mmask16, __m512, __m512x4, __m128 *);
V4FNMADDPS __m512 _mm512_4fnmadd_ps(__m512, __m512x4, __m128 *);
V4FNMADDPS __m512 _mm512_mask_4fnmadd_ps(__m512, __mmask16, __m512x4, __m128 *);
V4FNMADDPS __m512 _mm512_maskz_4fnmadd_ps(__mmask16, __m512, __m512x4, __m128 *);
SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.
Other Exceptions
See Type E2; additionally
#UD
                     If the EVEX broadcast bit is set to 1.
#UD
                     If the MODRM.mod = 0b11.
```

V4FMADDSS/V4FNMADDSS —Scalar Single-Precision Floating-Point Fused Multiply-Add (4-iterations)

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.LLIG.F2.0F38.W0 9B /r V4FMADDSS xmm1{k1}{z}, xmm2+3, m128	A	V/V	AVX512_4FMAPS	Multiply scalar single-precision floating-point values from source register block indicated by xmm2 by values from m128 and accumulate the result in xmm1.
EVEX.LLIG.F2.0F38.W0 AB /r V4FNMADDSS xmm1{k1}{z}, xmm2+3, m128	А	V/V	AVX512_4FMAPS	Multiply and negate scalar single-precision floating-point values from source register block indicated by xmm2 by values from m128 and accumulate the result in xmm1.

Instruction Operand Encoding

Op/En	Tuple	Operand 1	Operand 2	Operand 3	Operand 4
Α	Tuple1_4X	ModRM:reg (r, w)	EVEX.vvvv (r)	ModRM:r/m (r)	NA

Description

This instruction computes 4 sequential scalar fused single-precision floating-point multiply-add instructions with a sequentially selected memory operand in each of the four steps.

In the above box, the notation of +3 is used to denote that the instruction accesses 4 source registers based that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.

This instruction supports memory fault suppression. The entire memory operand is loaded if the least significant mask bit is set to 1 or if a "no masking" encoding is used.

The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation portion of this instruction.

Rounding is performed at every FMA boundary. Exceptions are also taken sequentially. Pre- and post-computational exceptions of the first FMA take priority over the pre- and post-computational exceptions of the second FMA, etc.

Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

```
V4FMADDSS and V4FNMADDSS dest{k1}, src1, msrc (AVX512) VL = 128

regs_loaded ← 4

src_base ← src_reg_id & ~3 // for src1 operand posneg ← 0 if negative form, 1 otherwise

NFMA SS(vl, dest, k1, msrc, regs_loaded, src_base, posneg)
```

Intel C/C++ Compiler Intrinsic Equivalent

```
V4FMADDSS __m128 _mm_4fmadd_ss(__m128, __m128x4, __m128 *);
V4FMADDSS __m128 _mm_mask_4fmadd_ss(__m128, __mmask8, __m128x4, __m128 *);
V4FMADDSS __m128 _mm_maskz_4fmadd_ss(__mmask8, __m128, __m128x4, __m128 *);
V4FNMADDSS __m128 _mm_4fnmadd_ss(__m128, __m128x4, __m128 *);
V4FNMADDSS __m128 _mm_mask_4fnmadd_ss(__m128, __mmask8, __m128x4, __m128 *);
V4FNMADDSS __m128 _mm_maskz_4fnmadd_ss(__mmask8, __m128, __m128x4, __m128 *);
```

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Other Exceptions

See Type E2; additionally

#UD If the EVEX broadcast bit is set to 1.

#UD If the MODRM.mod = 0b11.

VEXP2PD—Approximation to the Exponential 2^x of Packed Double-Precision Floating-Point Values with Less Than 2⁻²³ Relative Error

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.66.0F38.W1 C8 /r VEXP2PD zmm1 {k1}{z}, zmm2/m512/m64bcst {sae}	A	V/V	AVX512ER	Computes approximations to the exponential 2^x (with less than 2^-23 of maximum relative error) of the packed double-precision floating-point values from zmm2/m512/m64bcst and stores the floating-point result in zmm1with writemask k1.

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
Α	Full	ModRM:reg (r, w)	ModRM:r/m (r)	NA	NA

Description

Computes the approximate base-2 exponential evaluation of the double-precision floating-point values in the source operand (the second operand) and stores the results to the destination operand (the first operand) using the writemask k1. The approximate base-2 exponential is evaluated with less than 2^-23 of relative error.

Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.

The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VEXP2xx can be found at https://software.intel.com/en-us/articles/refer-ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VEXP2PD

```
(KL, VL) = (8, 512)
FOR j ← 0 TO KL-1
   i ← j * 64
   IF k1[i] OR *no writemask* THEN
             IF (EVEX.b = 1) AND (SRC *is memory*)
                  THEN DEST[i+63:i] \leftarrow EXP2 23 DP(SRC[63:0])
                  ELSE DEST[i+63:i] \leftarrow EXP2_23_DP(SRC[i+63:i])
             FI;
   ELSE
        IF *merging-masking*
                                               ; merging-masking
             THEN *DEST[i+63:i] remains unchanged*
             ELSE
                                               ; zeroing-masking
                  DEST[i+63:i] \leftarrow 0
        FI;
   FI:
ENDFOR;
```

Table 6-1. Special Values Behavior

Source Input	Result	Comments
NaN	QNaN(src)	If (SRC = SNaN) then #I
+∞	+∞	
+/-0	1.0f	Exact result
-00	+0.0f	
Integral value N	2^ (N)	Exact result

Intel C/C++ Compiler Intrinsic Equivalent

VEXP2PD __m512d _mm512_exp2a23_round_pd (__m512d a, int sae); VEXP2PD __m512d _mm512_mask_exp2a23_round_pd (__m512d a, __mmask8 m, __m512d b, int sae); VEXP2PD __m512d _mm512_maskz_exp2a23_round_pd (__mmask8 m, __m512d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Overflow

Other Exceptions

See Exceptions Type E2.

VEXP2PS—Approximation to the Exponential 2^x of Packed Single-Precision Floating-Point Values with Less Than 2^-23 Relative Error

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.66.0F38.W0 C8 /r VEXP2PS zmm1 {k1}{z}, zmm2/m512/m32bcst {sae}	A	V/V	AVX512ER	Computes approximations to the exponential 2^x (with less than 2^-23 of maximum relative error) of the packed single-precision floating-point values from zmm2/m512/m32bcst and stores the floating-point result in zmm1with writemask k1.

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
Α	Full	ModRM:reg (r, w)	ModRM:r/m (r)	NA	NA

Description

Computes the approximate base-2 exponential evaluation of the single-precision floating-point values in the source operand (the second operand) and store the results in the destination operand (the first operand) using the writemask k1. The approximate base-2 exponential is evaluated with less than 2^-23 of relative error.

Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.

The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VEXP2xx can be found at https://software.intel.com/en-us/articles/refer-ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VEXP2PS

```
(KL, VL) = (16, 512)
FOR j ← 0 TO KL-1
   i ← j * 32
   IF k1[i] OR *no writemask* THEN
             IF (EVEX.b = 1) AND (SRC *is memory*)
                  THEN DEST[i+31:i] \leftarrow EXP2 23 SP(SRC[31:0])
                  ELSE DEST[i+31:i] \leftarrow EXP2_23_SP(SRC[i+31:i])
             FI;
   ELSE
        IF *merging-masking*
                                               ; merging-masking
             THEN *DEST[i+31:i] remains unchanged*
             ELSE
                                               ; zeroing-masking
                  DEST[i+31:i] \leftarrow 0
        FI;
   FI:
ENDFOR;
```

Table 6-2. Special Values Behavior

Source Input	Result	Comments
NaN	QNaN(src)	If (SRC = SNaN) then #I
+∞	+00	
+/-0	1.0f	Exact result
-00	+0.0f	
Integral value N	2^ (N)	Exact result

Intel C/C++ Compiler Intrinsic Equivalent

VEXP2PS __m512 _mm512_exp2a23_round_ps (__m512 a, int sae); VEXP2PS __m512 _mm512_mask_exp2a23_round_ps (__m512 a, __mmask16 m, __m512 b, int sae); VEXP2PS __m512 _mm512_maskz_exp2a23_round_ps (__mmask16 m, __m512 b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Overflow

Other Exceptions

See Exceptions Type E2.

VGATHERPFODPS/VGATHERPFOQPS/VGATHERPFODPD/VGATHERPFOQPD—Sparse Prefetch Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using TO Hint

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.66.0F38.W0 C6 /1 /vsib VGATHERPF0DPS vm32z {k1}	A	V/V	AVX512PF	Using signed dword indices, prefetch sparse byte memory locations containing single-precision data using opmask k1 and T0 hint.
EVEX.512.66.0F38.W0 C7 /1 /vsib VGATHERPF0QPS vm64z {k1}	А	V/V	AVX512PF	Using signed qword indices, prefetch sparse byte memory locations containing single-precision data using opmask k1 and T0 hint.
EVEX.512.66.0F38.W1 C6 /1 /vsib VGATHERPFODPD vm32y {k1}	А	V/V	AVX512PF	Using signed dword indices, prefetch sparse byte memory locations containing double-precision data using opmask k1 and T0 hint.
EVEX.512.66.0F38.W1 C7 /1 /vsib VGATHERPF0QPD vm64z {k1}	А	V/V	AVX512PF	Using signed qword indices, prefetch sparse byte memory locations containing double-precision data using opmask k1 and T0 hint.

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
А	Tuple1 Scalar	BaseReg (R): VSIB:base, VectorReg(R): VSIB:index	NA	NA	NA

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only be prefetched if their corresponding mask bit is one.

Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T0):

• T0 (temporal data)—prefetch data into the first level cache.

[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruction will prefetch eight values.

[PD data] For dword and gword indices, the instruction will prefetch eight memory locations.

Note that:

- (1) The prefetches may happen in any order (or not at all). The instruction is a hint.
- (2) The mask is left unchanged.
- (3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
- (4) No FP nor memory faults may be produced by this instruction.
- (5) Prefetches do not handle cache line splits
- (6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist

VINDEX stands for the memory operand vector of indices (a vector register)

SCALE stands for the memory operand scalar (1, 2, 4 or 8)

DISP is the optional 1, 2 or 4 byte displacement

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by 'mem' into the cache level specified by 'Level'; a request for exclusive/ownership is done if 'State' is 1. Note that the memory location ignore cache line splits. This operation is considered a hint for the processor and may be skipped depending on implementation.

VGATHERPFODPS (EVEX encoded version)

```
 \begin{split} &(\text{KL, VL}) = (16, 512) \\ &\text{FOR } j \leftarrow 0 \text{ TO KL-1} \\ &\text{$i \leftarrow j * 32$} \\ &\text{IF k1[j]} \\ &\text{Prefetch( [BASE\_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 0)} \\ &\text{FI;} \\ &\text{ENDFOR} \end{split}
```

VGATHERPFODPD (EVEX encoded version)

```
 \begin{aligned} &(\text{KL}, \text{VL}) = (8, 512) \\ &\text{FOR } j \leftarrow 0 \text{ TO KL-1} \\ &\text{$i \leftarrow j * 64$} \\ &\text{$k \leftarrow j * 32$} \\ &\text{$IF k1[j]$} \\ &\text{$Prefetch([BASE\_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = 0) } \\ &\text{$FI$;} \\ &\text{ENDFOR} \end{aligned}
```

VGATHERPFOQPS (EVEX encoded version)

```
 \begin{split} (\mathsf{KL},\mathsf{VL}) &= (8,256) \\ \mathsf{FOR} \ j \leftarrow 0 \ \mathsf{TO} \ \mathsf{KL-1} \\ & \ i \leftarrow j * 64 \\ & \ \mathsf{IF} \ \mathsf{k1[j]} \\ & \ \mathsf{Prefetch}(\ [\mathsf{BASE\_ADDR} \ + \ \mathsf{SignExtend}(\mathsf{VINDEX[i+63:i]}) \ * \ \mathsf{SCALE} \ + \ \mathsf{DISP]}, \ \mathsf{Level=0}, \ \mathsf{RFO} = 0) \\ & \ \mathsf{FI}; \\ & \ \mathsf{ENDFOR} \end{split}
```

VGATHERPFOQPD (EVEX encoded version)

```
 \begin{aligned} &(\text{KL, VL}) = (8, 512) \\ &\text{FOR } j \leftarrow 0 \text{ TO KL-1} \\ &\text{$i \leftarrow j * 64$} \\ &\text{$k \leftarrow j * 64$} \\ &\text{$IF k1[j]$} \\ &\text{$Prefetch([BASE\_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = 0)$} \\ &\text{$FI$;} \\ &\text{ENDFOR} \end{aligned}
```

Intel C/C++ Compiler Intrinsic Equivalent

```
VGATHERPFODPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint); VGATHERPFODPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint); VGATHERPFOQPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint); VGATHERPFOQPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
```

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E12NP.

VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHERPF1QPD—Sparse Prefetch Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T1 Hint

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.66.0F38.W0 C6 /2 /vsib VGATHERPF1DPS vm32z {k1}	А	V/V	AVX512PF	Using signed dword indices, prefetch sparse byte memory locations containing single-precision data using opmask k1 and T1 hint.
EVEX.512.66.0F38.W0 C7 /2 /vsib VGATHERPF1QPS vm64z {k1}	А	V/V	AVX512PF	Using signed qword indices, prefetch sparse byte memory locations containing single-precision data using opmask k1 and T1 hint.
EVEX.512.66.0F38.W1 C6 /2 /vsib VGATHERPF1DPD vm32y {k1}	A	V/V	AVX512PF	Using signed dword indices, prefetch sparse byte memory locations containing double-precision data using opmask k1 and T1 hint.
EVEX.512.66.0F38.W1 C7 /2 /vsib VGATHERPF1QPD vm64z {k1}	A	V/V	AVX512PF	Using signed qword indices, prefetch sparse byte memory locations containing double-precision data using opmask k1 and T1 hint.

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
А	Tuple1 Scalar	BaseReg (R): VSIB:base, VectorReg(R): VSIB:index	NA	NA	NA

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only be prefetched if their corresponding mask bit is one.

Lines prefetched are loaded into to a location in the cache hierarchy specified by a locality hint (T1):

• T1 (temporal data)—prefetch data into the second level cache.

[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruction will prefetch eight values.

[PD data] For dword and gword indices, the instruction will prefetch eight memory locations.

Note that:

- (1) The prefetches may happen in any order (or not at all). The instruction is a hint.
- (2) The mask is left unchanged.
- (3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
- (4) No FP nor memory faults may be produced by this instruction.
- (5) Prefetches do not handle cache line splits
- (6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist

VINDEX stands for the memory operand vector of indices (a vector register)

SCALE stands for the memory operand scalar (1, 2, 4 or 8)

DISP is the optional 1, 2 or 4 byte displacement

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by 'mem' into the cache level specified by 'Level'; a request for exclusive/ownership is done if 'State' is 1. Note that the memory location ignore cache line splits. This operation is considered a hint for the processor and may be skipped depending on implementation.

```
VGATHERPF1DPS (EVEX encoded version)
```

```
 \begin{aligned} &(\text{KL, VL}) = (16, 512) \\ &\text{FOR } j \leftarrow 0 \text{ TO KL-1} \\ &\text{$i \leftarrow j * 32$} \\ &\text{If k1[j]} \\ &\text{Prefetch( [BASE\_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1, RFO = 0)} \\ &\text{FI;} \\ &\text{ENDFOR} \end{aligned}
```

VGATHERPF1DPD (EVEX encoded version)

```
 \begin{aligned} &(\text{KL, VL}) = (8, 512) \\ &\text{FOR } j \leftarrow 0 \text{ TO KL-1} \\ &\text{$i \leftarrow j * 64$} \\ &\text{$k \leftarrow j * 32$} \\ &\text{IF k1[j]} \\ &\text{$Prefetch([BASE\_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1, RFO = 0)$} \\ &\text{$Fl$;} \\ &\text{ENDFOR} \end{aligned}
```

VGATHERPF1QPS (EVEX encoded version)

```
 \begin{aligned} &(\text{KL, VL}) = (8, 256) \\ &\text{FOR } j \leftarrow 0 \text{ TO KL-1} \\ &\text{$i \leftarrow j * 64$} \\ &\text{IF k1[j]} \\ &\text{Prefetch( [BASE\_ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1, RFO = 0)} \\ &\text{FI;} \\ &\text{ENDFOR} \end{aligned}
```

VGATHERPF1QPD (EVEX encoded version)

```
 \begin{aligned} &(\text{KL}, \text{VL}) = (8, 512) \\ &\text{FOR } j \leftarrow 0 \text{ TO KL-1} \\ &\text{$i \leftarrow j * 64$} \\ &\text{$k \leftarrow j * 64$} \\ &\text{$IF k1[j]$} \\ &\text{$Prefetch([BASE\_ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1, RFO = 0)$} \\ &\text{$FI$;} \\ &\text{ENDFOR} \end{aligned}
```

Intel C/C++ Compiler Intrinsic Equivalent

```
VGATHERPF1DPD void _mm512_mask_prefetch_i32gather_pd(__m256i vdx, __mmask8 m, void * base, int scale, int hint); VGATHERPF1DPS void _mm512_mask_prefetch_i32gather_ps(__m512i vdx, __mmask16 m, void * base, int scale, int hint); VGATHERPF1QPD void _mm512_mask_prefetch_i64gather_pd(__m512i vdx, __mmask8 m, void * base, int scale, int hint); VGATHERPF1QPS void _mm512_mask_prefetch_i64gather_ps(__m512i vdx, __mmask8 m, void * base, int scale, int hint);
```

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E12NP.

VP4DPWSSDS — Dot Product of Signed Words with Dword Accumulation and Saturation (4-iterations)

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.F2.0F38.W0 53 /r VP4DPWSSDS zmm1{k1}{z}, zmm2+3, m128	A	V/V	AVX512_4VNNIW	Multiply signed words from source register block indicated by zmm2 by signed words from m128 and accumulate the resulting dword results with signed saturation in zmm1.

Instruction Operand Encoding

Op/En	Tuple	Operand 1	Operand 2	Operand 3	Operand 4
Α	Tuple1_4X	ModRM:reg (r, w)	ΕVΕΧ.νννν (г)	ModRM:r/m (r)	NA

Description

This instruction computes 4 sequential register source-block dot-products of two signed word operands with doubleword accumulation and signed saturation. The memory operand is sequentially selected in each of the four steps.

In the above box, the notation of "+3" is used to denote that the instruction accesses 4 source registers based on that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.

This instruction supports memory fault suppression. The entire memory operand is loaded if any bit of the lowest 16-bits of the mask is set to 1 or if a "no masking" encoding is used.

The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation portion of this instruction.

Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

```
VP4DPWSSDS dest, src1, src2
(KL,VL) = (16,512)
N \leftarrow 4
ORIGDEST \leftarrow DEST
src_base ← src_reg_id & ~ (N-1) // for src1 operand
FOR i \leftarrow 0 to KL-1:
   IF k1[i] or *no writemask*:
        FOR m \leftarrow 0 to N-1:
              t \leftarrow SRC2.dword[m]
              p1dword \leftarrow reg[src\_base+m].word[2*i] * t.word[0]
              p2dword \leftarrow reg[src\_base+m].word[2*i+1] * t.word[1]
              DEST.dword[i] ← SIGNED DWORD SATURATE(DEST.dword[i] + p1dword + p2dword)
   ELSE IF *zeroing*:
         DEST.dword[i] \leftarrow 0
   ELSE
         DEST.dword[i] \leftarrow ORIGDEST.dword[i]
DEST[MAX_VL-1:VL] \leftarrow 0
```

Intel C/C++ Compiler Intrinsic Equivalent

```
VP4DPWSSDS __m512i _mm512_4dpwssds_epi32(__m512i, __m512ix4, __m128i *); 
VP4DPWSSDS __m512i _mm512_mask_4dpwssds_epi32(__m512i, __mmask16, __m512ix4, __m128i *); 
VP4DPWSSDS __m512i _mm512_maskz_4dpwssds_epi32(__mmask16, __m512i, __m512ix4, __m128i *);
```

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Type E4; additionally

#UD If the EVEX broadcast bit is set to 1.

#UD If the MODRM.mod = 0b11.

VP4DPWSSD — Dot Product of Signed Words with Dword Accumulation (4-iterations)

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.F2.0F38.W0 52 /r VP4DPWSSD zmm1{k1}{z}, zmm2+3, m128	А	V/V	AVX512_4VNNIW	Multiply signed words from source register block indicated by zmm2 by signed words from m128 and accumulate resulting signed dwords in zmm1.

Instruction Operand Encoding

Op/En	Tuple	Operand 1	Operand 2	Operand 3	Operand 4
Α	Tuple1_4X	ModRM:reg (r, w)	ΕVΕΧ.νννν (r)	ModRM:r/m (r)	NA

Description

This instruction computes 4 sequential register source-block dot-products of two signed word operands with doubleword accumulation; see Figure 7-1 below. The memory operand is sequentially selected in each of the four steps.

In the above box, the notation of "+3''' is used to denote that the instruction accesses 4 source registers based on that operand; sources are consecutive, start in a multiple of 4 boundary, and contain the encoded register operand.

This instruction supports memory fault suppression. The entire memory operand is loaded if any bit of the lowest 16-bits of the mask is set to 1 or if a "no masking" encoding is used.

The tuple type Tuple1_4X implies that four 32-bit elements (16 bytes) are referenced by the memory operation portion of this instruction.

Figure 7-1. Register Source-Block Dot Product of Two Signed Word Operands with Doubleword Accumulation NOTES:

1. For illustration purposes, one source-block dot product instance is shown out of the four.

Operation

src_reg_id is the 5 bit index of the vector register specified in the instruction as the src1 register.

```
VP4DPWSSD dest, src1, src2
(KL,VL) = (16,512)
N \leftarrow 4
ORIGDEST \leftarrow DEST
src base \leftarrow src req id & \sim (N-1) // for src1 operand
FOR i \leftarrow 0 to KL-1:
   IF k1[i] or *no writemask*:
        FOR m \leftarrow 0 to N-1:
             t \leftarrow SRC2.dword[m]
             p1dword ← reg[src_base+m].word[2*i] * t.word[0]
             p2dword \leftarrow req[src base+m].word[2*i+1] * t.word[1]
             DEST.dword[i] \leftarrow DEST.dword[i] + p1dword + p2dword
   ELSE IF *zeroing*:
        DEST.dword[i] \leftarrow 0
   ELSE
        DEST.dword[i] \leftarrow ORIGDEST.dword[i]
DEST[MAX_VL-1:VL] \leftarrow 0
Intel C/C++ Compiler Intrinsic Equivalent
VP4DPWSSD __m512i _mm512_4dpwssd_epi32(__m512i, __m512ix4, __m128i *);
VP4DPWSSD __m512i _mm512_mask_4dpwssd_epi32(__m512i, __mmask16, __m512ix4, __m128i *);
VP4DPWSSD __m512i _mm512_maskz_4dpwssd_epi32(__mmask16, __m512i, __m512ix4, __m128i *);
```

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Type E4; additionally

#UD If the EVEX broadcast bit is set to 1.

If the MODRM.mod = 0b11. #UD

VRCP28PD—Approximation to the Reciprocal of Packed Double-Precision Floating-Point Values with Less Than 2^-28 Relative Error

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.66.0F38.W1 CA /r VRCP28PD zmm1 {k1}{z}, zmm2/m512/m64bcst {sae}	A	V/V	AVX512ER	Computes the approximate reciprocals (< 2^-28 relative error) of the packed double-precision floating-point values in zmm2/m512/m64bcst and stores the results in zmm1. Under writemask.

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
Α	Full	ModRM:reg (w)	ModRM:r/m (r)	NA	NA

Description

Computes the reciprocal approximation of the float64 values in the source operand (the second operand) and store the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than 2^-28 of maximum relative error.

Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.

If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is $\pm \omega$, ± 0.0 is returned for that element. Also, if any source element is ± 0.0 , $\pm \omega$ is returned for that element.

The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28PD (EVEX encoded versions)

```
(KL, VL) = (8, 512)
FOR j ← 0 TO KL-1
   i ← i * 64
   IF k1[j] OR *no writemask* THEN
             IF (EVEX.b = 1) AND (SRC *is memory*)
                  THEN DEST[i+63:i] \leftarrow RCP 28 DP(1.0/SRC[63:0]);
                  ELSE DEST[i+63:i] \leftarrow RCP_28_DP(1.0/SRC[i+63:i]);
             FI;
   ELSE
        IF *merging-masking*
                                               ; merging-masking
             THEN *DEST[i+63:i] remains unchanged*
             ELSE
                                               ; zeroing-masking
                  DEST[i+63:i] \leftarrow 0
        FI;
   FI:
ENDFOR:
```

Table 6-3. VRCP28PD Special Cases

Input value	Result value	Comments
NAN	QNAN(input)	If (SRC = SNaN) then #I
0 ≤ X < 2 ⁻¹⁰²²	INF	Positive input denormal or zero; #Z
-2 ⁻¹⁰²² < X ≤ -0	-INF	Negative input denormal or zero; #Z
X > 2 ¹⁰²²	+0.0f	
X < -2 ¹⁰²²	-0.0f	
X = +ω	+0.0f	
Χ = -ω	-0.0f	
X = 2 ⁻ⁿ	2 ⁿ	Exact result (unless input/output is a denormal)
X = -2 ⁻ⁿ	-2 ⁿ	Exact result (unless input/output is a denormal)

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28PD __m512d _mm512_rcp28_round_pd (__m512d a, int sae); VRCP28PD __m512d _mm512_mask_rcp28_round_pd(__m512d a, __mmask8 m, __m512d b, int sae); VRCP28PD __m512d _mm512_maskz_rcp28_round_pd(__mmask8 m, __m512d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E2.

VRCP28SD—Approximation to the Reciprocal of Scalar Double-Precision Floating-Point Value with Less Than 2^-28 Relative Error

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.LIG.66.0F38.W1 CB /r VRCP28SD xmm1 {k1}{z}, xmm2, xmm3/m64 {sae}	A	V/V	AVX512ER	Computes the approximate reciprocal (< 2^-28 relative error) of the scalar double-precision floating-point value in xmm3/m64 and stores the results in xmm1. Under writemask. Also, upper double-precision floating-point value (bits[127:64]) from xmm2 is copied to xmm1[127:64].

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
Α	Tuple1 Scalar	ModRM:reg (w)	EVEX.vvvv	ModRM:r/m (r)	NA

Description

Computes the reciprocal approximation of the low float64 value in the second source operand (the third operand) and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with less than 2^-28 of maximum relative error. The result is written into the low float64 element of the destination operand according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the first source operand (the second operand).

A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result is flushed to zero and does not signal #UE, irrespective of MXCSR.FTZ.

If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is $\pm \omega$, ± 0.0 is returned for that element. Also, if any source element is ± 0.0 , $\pm \omega$ is returned for that element.

The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory location. The destination operand is a XMM register, conditionally updated using writemask k1.

A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28SD ((EVEX encoded versions)

```
IF k1[0] OR *no writemask* THEN DEST[63:0] \leftarrow RCP\_28\_DP(1.0/SRC2[63:0]); ELSE IF *merging-masking* ; merging-masking \\ THEN *DEST[63:0] remains unchanged* \\ ELSE ; zeroing-masking \\ DEST[63:0] \leftarrow 0 \\ FI; FI; ENDFOR; DEST[127:64] \leftarrow SRC1[127:64] DEST[MAXVL-1:128] \leftarrow 0
```

Table 6-4. VRCP28SD Special Cases

Input value	Result value	Comments
NAN	QNAN(input)	If (SRC = SNaN) then #I
0 ≤ X < 2 ⁻¹⁰²²	INF	Positive input denormal or zero; #Z
-2 ⁻¹⁰²² < X ≤ -0	-INF	Negative input denormal or zero; #Z
X > 2 ¹⁰²²	+0.0f	
X < -2 ¹⁰²²	-0.0f	
X = +ω	+0.0f	
Χ = -ω	-0.0f	
X = 2 ⁻ⁿ	2 ⁿ	Exact result (unless input/output is a denormal)
X = -2 ⁻ⁿ	-2 ⁿ	Exact result (unless input/output is a denormal)

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28SD __m128d _mm_rcp28_round_sd (__m128d a, __m128d b, int sae); VRCP28SD __m128d _mm_mask_rcp28_round_sd(__m128d s, __mmask8 m, __m128d a, __m128d b, int sae); VRCP28SD __m128d _mm_maskz_rcp28_round_sd(__mmask8 m, __m128d a, __m128d b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E3.

VRCP28PS—Approximation to the Reciprocal of Packed Single-Precision Floating-Point Values with Less Than 2^-28 Relative Error

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.66.0F38.W0 CA /r VRCP28PS zmm1 {k1}{z}, zmm2/m512/m32bcst {sae}	A	V/V	AVX512ER	Computes the approximate reciprocals (< 2^-28 relative error) of the packed single-precision floating-point values in zmm2/m512/m32bcst and stores the results in zmm1. Under writemask.

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
Α	Full	ModRM:reg (w)	ModRM:r/m (r)	NA	NA

Description

Computes the reciprocal approximation of the float32 values in the source operand (the second operand) and store the results to the destination operand (the first operand) using the writemask k1. The approximate reciprocal is evaluated with less than 2^-28 of maximum relative error prior to final rounding. The final results are rounded to 2^-23 relative error before written to the destination.

Denormal input values are treated as zeros and do not signal #DE, irrespective of MXCSR.DAZ. Denormal results are flushed to zeros and do not signal #UE, irrespective of MXCSR.FTZ.

If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is $\pm \infty$, ± 0.0 is returned for that element. Also, if any source element is ± 0.0 , $\pm \infty$ is returned for that element.

The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28PS (EVEX encoded versions)

```
(KL, VL) = (16, 512)
FOR j ← 0 TO KL-1
   i \leftarrow j * 32
   IF k1[j] OR *no writemask* THEN
             IF (EVEX.b = 1) AND (SRC *is memory*)
                  THEN DEST[i+31:i] \leftarrow RCP_28_SP(1.0/SRC[31:0]);
                  ELSE DEST[i+31:i] \leftarrow RCP_28_SP(1.0/SRC[i+31:i]);
             FI:
   FLSE
        IF *meraina-maskina*
                                                : meraina-maskina
             THEN *DEST[i+31:i] remains unchanged*
                                                ; zeroing-masking
                  DEST[i+31:i] \leftarrow 0
        FI:
   FI:
ENDFOR:
```

Table 6-5. VRCP28PS Special Cases

Input value	Result value	Comments
NAN	QNAN(input)	If (SRC = SNaN) then #I
0 ≤ X < 2 ⁻¹²⁶	INF	Positive input denormal or zero; #Z
-2 ⁻¹²⁶ < X ≤ -0	-INF	Negative input denormal or zero; #Z
X > 2 ¹²⁶	+0.0f	
X < -2 ¹²⁶	-0.0f	
X = +ω	+0.0f	
Χ = -ω	-0.0f	
X = 2 ⁻ⁿ	2 ⁿ	Exact result (unless input/output is a denormal)
X = -2 ⁻ⁿ	-2 ⁿ	Exact result (unless input/output is a denormal)

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28PS _mm512_rcp28_round_ps (__m512 a, int sae); VRCP28PS __m512 _mm512_mask_rcp28_round_ps(__m512 s, __mmask16 m, __m512 a, int sae); VRCP28PS __m512 _mm512_maskz_rcp28_round_ps(__mmask16 m, __m512 a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E2.

VRCP28SS—Approximation to the Reciprocal of Scalar Single-Precision Floating-Point Value with Less Than 2^-28 Relative Error

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.LIG.66.0F38.W0 CB /r VRCP28SS xmm1 {k1}{z}, xmm2, xmm3/m32 {sae}	A	V/V	AVX512ER	Computes the approximate reciprocal (< 2^-28 relative error) of the scalar single-precision floating-point value in xmm3/m32 and stores the results in xmm1. Under writemask. Also, upper 3 single-precision floating-point values (bits[127:32]) from xmm2 is copied to xmm1[127:32].

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
Α	Tuple1 Scalar	ModRM:reg (w)	EVEX.vvvv	ModRM:r/m (r)	NA

Description

Computes the reciprocal approximation of the low float32 value in the second source operand (the third operand) and store the result to the destination operand (the first operand). The approximate reciprocal is evaluated with less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to $< 2^-23$ relative error before written into the low float32 element of the destination according to writemask k1. Bits 127:32 of the destination is copied from the corresponding bits of the first source operand (the second operand).

A denormal input value is treated as zero and does not signal #DE, irrespective of MXCSR.DAZ. A denormal result is flushed to zero and does not signal #UE, irrespective of MXCSR.FTZ.

If any source element is NaN, the quietized NaN source value is returned for that element. If any source element is $\pm \omega$, ± 0.0 is returned for that element. Also, if any source element is ± 0.0 , $\pm \omega$ is returned for that element.

The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory location. The destination operand is a XMM register, conditionally updated using writemask k1.

A numerically exact implementation of VRCP28xx can be found at https://software.intel.com/en-us/articles/refer-ence-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRCP28SS ((EVEX encoded versions)

```
IF k1[0] OR *no writemask* THEN DEST[31:0] \leftarrow RCP\_28\_SP(1.0/SRC2[31:0]); ELSE IF *merging-masking* ; merging-masking \\ THEN *DEST[31:0] remains unchanged* \\ ELSE ; zeroing-masking \\ DEST[31:0] \leftarrow 0 \\ FI; FI; ENDFOR; DEST[127:32] \leftarrow SRC1[127:32] DEST[MAXVL-1:128] \leftarrow 0
```

Table 6-6. VRCP28SS Special Cases

Input value Result value		Comments		
NAN QNAN(input)		If (SRC = SNaN) then #I		
0 ≤ X < 2 ⁻¹²⁶ INF		Positive input denormal or zero; #Z		
-2 ⁻¹²⁶ < X ≤ -0 -INF		Negative input denormal or zero; #Z		
X > 2 ¹²⁶	+0.0f			
X < -2 ¹²⁶	-0.0f			
X = +ω	+0.0f			
Χ = -ω	-0.0f			
X = 2 ⁻ⁿ	2 ⁿ Exact result (unless input/output is a denormal)			
X = -2 ⁻ⁿ	-2 ⁿ	Exact result (unless input/output is a denormal)		

Intel C/C++ Compiler Intrinsic Equivalent

VRCP28SS __m128 _mm_rcp28_round_ss (__m128 a, __m128 b, int sae);
VRCP28SS __m128 _mm_mask_rcp28_round_ss(__m128 s, __mmask8 m, __m128 a, __m128 b, int sae);
VRCP28SS __m128 _mm_maskz_rcp28_round_ss(__mmask8 m, __m128 a, __m128 b, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E3.

VRSQRT28PD—Approximation to the Reciprocal Square Root of Packed Double-Precision Floating-Point Values with Less Than 2^-28 Relative Error

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.66.0F38.W1 CC /r VRSQRT28PD zmm1 {k1}{z}, zmm2/m512/m64bcst {sae}	A	V/V	AVX512ER	Computes approximations to the Reciprocal square root (<2^- 28 relative error) of the packed double-precision floating-point values from zmm2/m512/m64bcst and stores result in zmm1with writemask k1.

Instruction Operand Encoding

Ор	/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
1	Α	Full	ModRM:reg (w)	ModRM:r/m (r)	NA	NA

Description

Computes the reciprocal square root of the float64 values in the source operand (the second operand) and store the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than 2^-28 of maximum relative error.

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero) source numbers, as well as -\(\pi\), return the canonical NaN and set the Invalid Flag (#I).

A value of -0 must return - ω and set the DivByZero flags (#Z). Negative numbers should return NaN and set the Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative denormals return - ω and set the DivByZero flag.

The source operand is a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSORT28PD (EVEX encoded versions)

```
(KL, VL) = (8, 512)
FOR j ← 0 TO KL-1
   i ← j * 64
   IF k1[j] OR *no writemask* THEN
             IF (EVEX.b = 1) AND (SRC *is memory*)
                  THEN DEST[i+63:i] \leftarrow (1.0/ SQRT(SRC[63:0]));
                  ELSE DEST[i+63:i] \leftarrow (1.0/ SQRT(SRC[i+63:i]));
             FI:
   ELSE
        IF *merging-masking*
                                               ; merging-masking
             THEN *DEST[i+63:i] remains unchanged*
             ELSE
                                               ; zeroing-masking
                  DEST[i+63:i] \leftarrow 0
        FI;
   FI:
ENDFOR:
```

Table 6-7. VRSQRT28PD Special Cases

Input value	Result value	Comments
NAN	QNAN(input)	If (SRC = SNaN) then #I
X = 2 ⁻²ⁿ	2 ⁿ	
X < 0	QNaN_Indefinite	Including -INF
X = -0 or negative denormal	-INF	#Z
X = +0 or positive denormal	+INF	#Z
X = +INF	+0	

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28PD __m512d _mm512_rsqrt28_round_pd(__m512d a, int sae);
VRSQRT28PD __m512d _mm512_mask_rsqrt28_round_pd(__m512d s, __mmask8 m,__m512d a, int sae);
VRSQRT28PD __m512d _mm512_maskz_rsqrt28_round_pd(__mmask8 m,__m512d a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E2.

VRSQRT28SD—Approximation to the Reciprocal Square Root of Scalar Double-Precision Floating-Point Value with Less Than 2^-28 Relative Error

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.LIG.66.0F38.W1 CD /r VRSQRT28SD xmm1 {k1}{z}, xmm2, xmm3/m64 {sae}	A	V/V	AVX512ER	Computes approximate reciprocal square root (<2^-28 relative error) of the scalar double-precision floating-point value from xmm3/m64 and stores result in xmm1 with writemask k1. Also, upper double-precision floating-point value (bits[127:64]) from xmm2 is copied to xmm1[127:64].

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
Α	Tuple1 Scalar	ModRM:reg (w)	EVEX.vvvv (r)	ModRM:r/m (r)	NA

Description

Computes the reciprocal square root of the low float64 value in the second source operand (the third operand) and store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated with less than 2^-28 of maximum relative error. The result is written into the low float64 element of xmm1 according to the writemask k1. Bits 127:64 of the destination is copied from the corresponding bits of the first source operand (the second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero) source numbers, as well as $-\infty$, return the canonical NaN and set the Invalid Flag (#I).

A value of -0 must return - ω and set the DivByZero flags (#Z). Negative numbers should return NaN and set the Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative denormals return - ω and set the DivByZero flag.

The first source operand is an XMM register. The second source operand is an XMM register or a 64-bit memory location. The destination operand is a XMM register.

A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28SD (EVEX encoded versions)

```
IF k1[0] OR *no writemask* THEN
DEST[63: 0] \leftarrow (1.0/ SQRT(SRC[63: 0]));
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[63: 0] remains unchanged*
ELSE ; zeroing-masking
DEST[63: 0] \leftarrow 0
FI;
FI;
ENDFOR;
DEST[127:64] \leftarrow SRC1[127: 64]
DEST[MAXVL-1:128] \leftarrow 0
```

Table 6-8. VRSQRT28SD Special Cases

Input value	Result value	Comments
NAN	QNAN(input)	If (SRC = SNaN) then #I
X = 2 ⁻²ⁿ	2 ⁿ	
X < 0	QNaN_Indefinite	Including -INF
X = -0 or negative denormal	-INF	#Z
X = +0 or positive denormal	+INF	#Z
X = +INF	+0	

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28SD __m128d _mm_rsqrt28_round_sd(__m128d a, __m128d b, int rounding);

VRSQRT28SD __m128d _mm_mask_rsqrt28_round_sd(__m128d s, __mmask8 m,__m128d a, __m128d b, int rounding);

VRSQRT28SD __m128d _mm_maskz_rsqrt28_round_sd(__mmask8 m,__m128d a, __m128d b, int rounding);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E3.

VRSQRT28PS—Approximation to the Reciprocal Square Root of Packed Single-Precision Floating-Point Values with Less Than 2^-28 Relative Error

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.66.0F38.W0 CC /r VRSQRT28PS zmm1 {k1}{z}, zmm2/m512/m32bcst {sae}	A	V/V	AVX512ER	Computes approximations to the Reciprocal square root (<2^-28 relative error) of the packed single-precision floating-point values from zmm2/m512/m32bcst and stores result in zmm1with writemask k1.

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
Α	Full	ModRM:reg (w)	ModRM:r/m (r)	NA	NA

Description

Computes the reciprocal square root of the float32 values in the source operand (the second operand) and store the results to the destination operand (the first operand). The approximate reciprocal is evaluated with less than 2^-28 of maximum relative error prior to final rounding. The final results is rounded to $< 2^-23$ relative error before written to the destination.

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero) source numbers, as well as $-\infty$, return the canonical NaN and set the Invalid Flag (#I).

A value of -0 must return - ω and set the DivByZero flags (#Z). Negative numbers should return NaN and set the Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative denormals return - ω and set the DivByZero flag.

The source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM register, conditionally updated using writemask k1.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28PS (EVEX encoded versions)

```
(KL, VL) = (16, 512)
FOR j \leftarrow 0 TO KL-1
   i \leftarrow j * 32
   IF k1[j] OR *no writemask* THEN
             IF (EVEX.b = 1) AND (SRC *is memory*)
                  THEN DEST[i+31:i] \leftarrow (1.0/ SQRT(SRC[31:0]));
                  ELSE DEST[i+31:i] \leftarrow (1.0/ SQRT(SRC[i+31:i]));
             FI;
   ELSE
        IF *merging-masking*
                                                 ; merging-masking
             THEN *DEST[i+31:i] remains unchanged*
             ELSE
                                                 ; zeroing-masking
                  DEST[i+31:i] ← 0
        FI;
   FI;
ENDFOR;
```

Table 6-9, VRSORT28PS Special Cases

Input value	Result value	Comments
NAN	QNAN(input)	If (SRC = SNaN) then #I
X = 2 ⁻²ⁿ	2 ⁿ	
X < 0	QNaN_Indefinite	Including -INF
X = -0 or negative denormal	-INF	#Z
X = +0 or positive denormal	+INF	#Z
X = +INF	+0	

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28PS __m512 _mm512_rsqrt28_round_ps(__m512 a, int sae);
VRSQRT28PS __m512 _mm512_mask_rsqrt28_round_ps(__m512 s, __mmask16 m,__m512 a, int sae);
VRSQRT28PS __m512 _mm512_maskz_rsqrt28_round_ps(__mmask16 m,__m512 a, int sae);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E2.

VRSQRT28SS—Approximation to the Reciprocal Square Root of Scalar Single-Precision Floating-Point Value with Less Than 2^-28 Relative Error

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.LIG.66.0F38.W0 CD /r VRSQRT28SS xmm1 {k1}{z}, xmm2, xmm3/m32 {sae}	A	V/V	AVX512ER	Computes approximate reciprocal square root (<2^-28 relative error) of the scalar single-precision floating-point value from xmm3/m32 and stores result in xmm1 with writemask k1. Also, upper 3 single-precision floating-point value (bits[127:32]) from xmm2 is copied to xmm1[127:32].

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
Α	Tuple1 Scalar	ModRM:reg (w)	EVEX.vvvv (r)	ModRM:r/m (r)	NA

Description

Computes the reciprocal square root of the low float 32 value in the second source operand (the third operand) and store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated with less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to $< 2^-23$ relative error before written to the low float 32 element of the destination according to the writemask k1. Bits 127:32 of the destination is copied from the corresponding bits of the first source operand (the second operand).

If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero) source numbers, as well as $-\infty$, return the canonical NaN and set the Invalid Flag (#I).

A value of -0 must return - ω and set the DivByZero flags (#Z). Negative numbers should return NaN and set the Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative denormals return - ω and set the DivByZero flag.

The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory location. The destination operand is a XMM register.

A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/articles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2.

Operation

VRSQRT28SS (EVEX encoded versions)

```
IF k1[0] OR *no writemask* THEN

DEST[31: 0] ← (1.0/ SQRT(SRC[31: 0]));

ELSE

IF *merging-masking* ; merging-masking

THEN *DEST[31: 0] remains unchanged*

ELSE ; zeroing-masking

DEST[31: 0] ← 0

FI;

FI;

ENDFOR;

DEST[127:32] ← SRC1[127: 32]

DEST[MAXVL-1:128] ← 0
```

Table 6-10. VRSQRT28SS Special Cases

Input value	Result value	Comments
NAN	QNAN(input)	If (SRC = SNaN) then #I
X = 2 ⁻²ⁿ	2 ⁿ	
X < 0	QNaN_Indefinite	Including -INF
X = -0 or negative denormal	-INF	#Z
X = +0 or positive denormal	+INF	#Z
X = +INF	+0	

Intel C/C++ Compiler Intrinsic Equivalent

VRSQRT28SS __m128 _mm_rsqrt28_round_ss(__m128 a, __m128 b, int rounding);
VRSQRT28SS __m128 _mm_mask_rsqrt28_round_ss(__m128 s, __mmask8 m,__m128 a,__m128 b, int rounding);
VRSQRT28SS __m128 _mm_maskz_rsqrt28_round_ss(__mmask8 m,__m128 a,__m128 b, int rounding);

SIMD Floating-Point Exceptions

Invalid (if SNaN input), Divide-by-zero

Other Exceptions

See Exceptions Type E3.

VSCATTERPFODPS/VSCATTERPFOQPS/VSCATTERPFODPD/VSCATTERPFOQPD—Sparse Prefetch Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using TO Hint with Intent to Write

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.66.0F38.W0 C6 /5 /vsib VSCATTERPFODPS vm32z {k1}	A	V/V	AVX512PF	Using signed dword indices, prefetch sparse byte memory locations containing single-precision data using writemask k1 and T0 hint with intent to write.
EVEX.512.66.0F38.W0 C7 /5 /vsib VSCATTERPF0QPS vm64z {k1}	А	V/V	AVX512PF	Using signed qword indices, prefetch sparse byte memory locations containing single-precision data using writemask k1 and T0 hint with intent to write.
EVEX.512.66.0F38.W1 C6 /5 /vsib VSCATTERPFODPD vm32y {k1}	А	V/V	AVX512PF	Using signed dword indices, prefetch sparse byte memory locations containing double-precision data using writemask k1 and T0 hint with intent to write.
EVEX.512.66.0F38.W1 C7 /5 /vsib VSCATTERPF0QPD vm64z {k1}	А	V/V	AVX512PF	Using signed qword indices, prefetch sparse byte memory locations containing double-precision data using writemask k1 and T0 hint with intent to write.

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
Α	Tuple1 Scalar	BaseReg (R): VSIB:base, VectorReg(R): VSIB:index	NA	NA	NA

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only be prefetched if their corresponding mask bit is one.

cache lines will be brought into exclusive state (RFO) specified by a locality hint (T0):

• T0 (temporal data)—prefetch data into the first level cache.

[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruction will prefetch eight values.

[PD data] For dword and gword indices, the instruction will prefetch eight memory locations.

Note that:

- (1) The prefetches may happen in any order (or not at all). The instruction is a hint.
- (2) The mask is left unchanged.
- (3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
- (4) No FP nor memory faults may be produced by this instruction.
- (5) Prefetches do not handle cache line splits
- (6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist

VINDEX stands for the memory operand vector of indices (a vector register)

SCALE stands for the memory operand scalar (1, 2, 4 or 8)

DISP is the optional 1, 2 or 4 byte displacement

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by 'mem' into the cache level specified by 'Level'; a request for exclusive/ownership is done if 'State' is 1. Note that the memory location ignore cache line splits. This operation is considered a hint for the processor and may be skipped depending on implementation.

```
VSCATTERPFODPS (EVEX encoded version)
(KL, VL) = (16, 512)
FOR j ← 0 TO KL-1
   i \leftarrow j * 32
   IF k1[j]
        Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=0, RFO = 1)
   FI;
ENDFOR
VSCATTERPFODPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR i ← 0 TO KL-1
   i \leftarrow j * 64
   k \leftarrow j * 32
   IF k1[j]
        Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=0, RFO = 1)
   FI:
ENDFOR
VSCATTERPFOQPS (EVEX encoded version)
(KL, VL) = (8, 256)
FOR i ← 0 TO KL-1
   i ← j * 64
   IF k1[j]
        Prefetch([BASE ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=0, RFO = 1)
   FI:
ENDFOR
VSCATTERPFOQPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR i ← 0 TO KL-1
   i \leftarrow j * 64
   k \leftarrow j * 64
   IF k1[i]
        Prefetch( [BASE ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=0, RFO = 1)
   FI:
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalent
VSCATTERPF0DPD void _mm512_prefetch_i32scatter_pd(void *base, __m256i vdx, int scale, int hint);
VSCATTERPFODPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);
VSCATTERPFODPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPFODPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPF0QPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);
VSCATTERPFOQPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPF0QPS void _mm512_prefetch_i64scatter_ps(void * base, __m512i vdx, int scale, int hint);
VSCATTERPFOQPS void _mm512_mask_prefetch_i64scatter_ps(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
```

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E12NP.

VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCATTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T1 Hint with Intent to Write

Opcode/ Instruction	Op/ En	64/32 bit Mode Support	CPUID Feature Flag	Description
EVEX.512.66.0F38.W0 C6 /6 /vsib VSCATTERPF1DPS vm32z {k1}	А	V/V	AVX512PF	Using signed dword indices, prefetch sparse byte memory locations containing single-precision data using writemask k1 and T1 hint with intent to write.
EVEX.512.66.0F38.W0 C7 /6 /vsib VSCATTERPF1QPS vm64z {k1}	А	V/V	AVX512PF	Using signed qword indices, prefetch sparse byte memory locations containing single-precision data using writemask k1 and T1 hint with intent to write.
EVEX.512.66.0F38.W1 C6 /6 /vsib VSCATTERPF1DPD vm32y {k1}	А	V/V	AVX512PF	Using signed dword indices, prefetch sparse byte memory locations containing double-precision data using writemask k1 and T1 hint with intent to write.
EVEX.512.66.0F38.W1 C7 /6 /vsib VSCATTERPF1QPD vm64z {k1}	А	V/V	AVX512PF	Using signed qword indices, prefetch sparse byte memory locations containing double-precision data using writemask k1 and T1 hint with intent to write.

Instruction Operand Encoding

Op/En	Tuple Type	Operand 1	Operand 2	Operand 3	Operand 4
Α	Tuple1 Scalar	BaseReg (R): VSIB:base, VectorReg(R): VSIB:index	NA	NA	NA

Description

The instruction conditionally prefetches up to sixteen 32-bit or eight 64-bit integer byte data elements. The elements are specified via the VSIB (i.e., the index register is an zmm, holding packed indices). Elements will only be prefetched if their corresponding mask bit is one.

cache lines will be brought into exclusive state (RFO) specified by a locality hint (T1):

• T1 (temporal data)—prefetch data into the second level cache.

[PS data] For dword indices, the instruction will prefetch sixteen memory locations. For qword indices, the instruction will prefetch eight values.

[PD data] For dword and qword indices, the instruction will prefetch eight memory locations.

Note that:

- (1) The prefetches may happen in any order (or not at all). The instruction is a hint.
- (2) The mask is left unchanged.
- (3) Not valid with 16-bit effective addresses. Will deliver a #UD fault.
- (4) No FP nor memory faults may be produced by this instruction.
- (5) Prefetches do not handle cache line splits
- (6) A #UD is signaled if the memory operand is encoded without the SIB byte.

Operation

BASE_ADDR stands for the memory operand base address (a GPR); may not exist

VINDEX stands for the memory operand vector of indices (a vector register)

SCALE stands for the memory operand scalar (1, 2, 4 or 8)

DISP is the optional 1, 2 or 4 byte displacement

PREFETCH(mem, Level, State) Prefetches a byte memory location pointed by 'mem' into the cache level specified by 'Level'; a request for exclusive/ownership is done if 'State' is 1. Note that the memory location ignore cache line splits. This operation is considered a hint for the processor and may be skipped depending on implementation.

```
VSCATTERPF1DPS (EVEX encoded version)
(KL, VL) = (16, 512)
FOR j ← 0 TO KL-1
   i \leftarrow j * 32
   IF k1[j]
        Prefetch( [BASE_ADDR + SignExtend(VINDEX[i+31:i]) * SCALE + DISP], Level=1, RFO = 1)
   FI;
ENDFOR
VSCATTERPF1DPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR i ← 0 TO KL-1
   i \leftarrow j * 64
   k \leftarrow j * 32
   IF k1[j]
        Prefetch([BASE_ADDR + SignExtend(VINDEX[k+31:k]) * SCALE + DISP], Level=1, RFO = 1)
   FI:
ENDFOR
VSCATTERPF1QPS (EVEX encoded version)
(KL, VL) = (8, 512)
FOR i ← 0 TO KL-1
   i ← j * 64
   IF k1[j]
        Prefetch([BASE ADDR + SignExtend(VINDEX[i+63:i]) * SCALE + DISP], Level=1, RFO = 1)
   FI:
ENDFOR
VSCATTERPF1QPD (EVEX encoded version)
(KL, VL) = (8, 512)
FOR i ← 0 TO KL-1
   i \leftarrow j * 64
   k \leftarrow j * 64
   IF k1[i]
        Prefetch( [BASE ADDR + SignExtend(VINDEX[k+63:k]) * SCALE + DISP], Level=1, RFO = 1)
   FI:
ENDFOR
Intel C/C++ Compiler Intrinsic Equivalent
VSCATTERPF1DPD void _mm512_prefetch_i32scatter_pd(void *base, __m256i vdx, int scale, int hint);
VSCATTERPF1DPD void _mm512_mask_prefetch_i32scatter_pd(void *base, __mmask8 m, __m256i vdx, int scale, int hint);
VSCATTERPF1DPS void _mm512_prefetch_i32scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF1DPS void _mm512_mask_prefetch_i32scatter_ps(void *base, __mmask16 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPD void _mm512_prefetch_i64scatter_pd(void * base, __m512i vdx, int scale, int hint);
VSCATTERPF1QPD void _mm512_mask_prefetch_i64scatter_pd(void * base, __mmask8 m, __m512i vdx, int scale, int hint);
VSCATTERPF1QPS void _mm512_prefetch_i64scatter_ps(void *base, __m512i vdx, int scale, int hint);
VSCATTERPF1QPS void _mm512_mask_prefetch_i64scatter_ps(void *base, __mmask8 m, __m512i vdx, int scale, int hint);
```

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type E12NP.

Use the opcode tables in this chapter to interpret IA-32 and Intel 64 architecture object code. Instructions are divided into encoding groups:

- 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system, MMX technology, SSE/SSE2/SSE3/SSE4, and VMX instructions. Maps for these instructions are given in Table A-2 through Table A-6.
- Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used for floating-point instructions. The maps for these instructions are provided in Table A-7 through Table A-22.

NOTE

All blanks in opcode maps are reserved and must not be used. Do not depend on the operation of undefined or blank opcodes.

A.1 USING OPCODE TABLES

Tables in this appendix list opcodes of instructions (including required instruction prefixes, opcode extensions in associated ModR/M byte). Blank cells in the tables indicate opcodes that are reserved or undefined. Cells marked "Reserved-NOP" are also reserved but may behave as NOP on certain processors. Software should not use opcodes corresponding blank cells or cells marked "Reserved-NOP" nor depend on the current behavior of those opcodes.

The opcode map tables are organized by hex values of the upper and lower 4 bits of an opcode byte. For 1-byte encodings (Table A-2), use the four high-order bits of an opcode to index a row of the opcode table; use the four low-order bits to index a column of the table. For 2-byte opcodes beginning with 0FH (Table A-3), skip any instruction prefixes, the 0FH byte (0FH may be preceded by 66H, F2H, or F3H) and use the upper and lower 4-bit values of the next opcode byte to index table rows and columns. Similarly, for 3-byte opcodes beginning with 0F38H or 0F3AH (Table A-4), skip any instruction prefixes, 0F38H or 0F3AH and use the upper and lower 4-bit values of the third opcode byte to index table rows and columns. See Section A.2.4, "Opcode Look-up Examples for One, Two, and Three-Byte Opcodes."

When a ModR/M byte provides opcode extensions, this information qualifies opcode execution. For information on how an opcode extension in the ModR/M byte modifies the opcode map in Table A-2 and Table A-3, see Section A.4.

The escape (ESC) opcode tables for floating point instructions identify the eight high order bits of opcodes at the top of each page. See Section A.5. If the accompanying ModR/M byte is in the range of 00H-BFH, bits 3-5 (the top row of the third table on each page) along with the reg bits of ModR/M determine the opcode. ModR/M bytes outside the range of 00H-BFH are mapped by the bottom two tables on each page of the section.

A.2 KEY TO ABBREVIATIONS

Operands are identified by a two-character code of the form Zz. The first character, an uppercase letter, specifies the addressing method; the second character, a lowercase letter, specifies the type of operand.

A.2.1 Codes for Addressing Method

The following abbreviations are used to document addressing methods:

- A Direct address: the instruction has no ModR/M byte; the address of the operand is encoded in the instruction. No base register, index register, or scaling factor can be applied (for example, far JMP (EA)).
- B The VEX.vvvv field of the VEX prefix selects a general purpose register.

- C The reg field of the ModR/M byte selects a control register (for example, MOV (0F20, 0F22)).
- D The reg field of the ModR/M byte selects a debug register (for example, MOV (0F21,0F23)).
- E A ModR/M byte follows the opcode and specifies the operand. The operand is either a general-purpose register or a memory address. If it is a memory address, the address is computed from a segment register and any of the following values: a base register, an index register, a scaling factor, a displacement.
- F EFLAGS/RFLAGS Register.
- G The reg field of the ModR/M byte selects a general register (for example, AX (000)).
- H The VEX.vvvv field of the VEX prefix selects a 128-bit XMM register or a 256-bit YMM register, determined by operand type. For legacy SSE encodings this operand does not exist, changing the instruction to destructive form.
- I Immediate data: the operand value is encoded in subsequent bytes of the instruction.
- J The instruction contains a relative offset to be added to the instruction pointer register (for example, JMP (0E9), LOOP).
- L The upper 4 bits of the 8-bit immediate selects a 128-bit XMM register or a 256-bit YMM register, determined by operand type. (the MSB is ignored in 32-bit mode)
- M The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, LSS, LFS, LGS, CMPXCHG8B).
- N The R/M field of the ModR/M byte selects a packed-quadword, MMX technology register.
- O The instruction has no ModR/M byte. The offset of the operand is coded as a word or double word (depending on address size attribute) in the instruction. No base register, index register, or scaling factor can be applied (for example, MOV (A0–A3)).
- P The reg field of the ModR/M byte selects a packed quadword MMX technology register.
- Q A ModR/M byte follows the opcode and specifies the operand. The operand is either an MMX technology register or a memory address. If it is a memory address, the address is computed from a segment register and any of the following values: a base register, an index register, a scaling factor, and a displacement.
- R The R/M field of the ModR/M byte may refer only to a general register (for example, MOV (0F20-0F23)).
- S The reg field of the ModR/M byte selects a segment register (for example, MOV (8C,8E)).
- U The R/M field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by operand type.
- V The reg field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by operand type.
- W A ModR/M byte follows the opcode and specifies the operand. The operand is either a 128-bit XMM register, a 256-bit YMM register (determined by operand type), or a memory address. If it is a memory address, the address is computed from a segment register and any of the following values: a base register, an index register, a scaling factor, and a displacement.
- X Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS, OUTS, or LODS).
- Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS, STOS, or SCAS).

A.2.2 Codes for Operand Type

The following abbreviations are used to document operand types:

- a Two one-word operands in memory or two double-word operands in memory, depending on operand-size attribute (used only by the BOUND instruction).
- b Byte, regardless of operand-size attribute.
- c Byte or word, depending on operand-size attribute.
- d Doubleword, regardless of operand-size attribute.

- dg Double-guadword, regardless of operand-size attribute.
- p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.
- pd 128-bit or 256-bit packed double-precision floating-point data.
- pi Quadword MMX technology register (for example: mm0).
- ps 128-bit or 256-bit packed single-precision floating-point data.
- q Quadword, regardless of operand-size attribute.
- qq Quad-Quadword (256-bits), regardless of operand-size attribute.
- s 6-byte or 10-byte pseudo-descriptor.
- sd Scalar element of a 128-bit double-precision floating data.
- ss Scalar element of a 128-bit single-precision floating data.
- si Doubleword integer register (for example: eax).
- v Word, doubleword or quadword (in 64-bit mode), depending on operand-size attribute.
- w Word, regardless of operand-size attribute.
- x dq or qq based on the operand-size attribute.
- y Doubleword or quadword (in 64-bit mode), depending on operand-size attribute.
- z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

A.2.3 Register Codes

When an opcode requires a specific register as an operand, the register is identified by name (for example, AX, CL, or ESI). The name indicates whether the register is 64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on the operand-size attribute. eXX is used when 16 or 32-bit sizes are possible; rXX is used when 16, 32, or 64-bit sizes are possible. For example: eAX indicates that the AX register is used when the operand-size attribute is 16 and the EAX register is used when the operand-size attribute is 32. rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the opcode, this fact is indicated by adding "/x" to the register name to indicate the additional possibility. For example, rCX/r9 is used to indicate that the register could either be rCX or r9. Note that the size of r9 in this case is determined by the operand size attribute (just as for rCX).

A.2.4 Opcode Look-up Examples for One, Two, and Three-Byte Opcodes

This section provides examples that demonstrate how opcode maps are used.

A.2.4.1 One-Byte Opcode Instructions

The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-byte opcodes is arranged by row (the least-significant 4 bits of the hexadecimal value) and column (the most-significant 4 bits of the hexadecimal value). Each entry in the table lists one of the following types of opcodes:

- Instruction mnemonics and operand types using the notations listed in Section A.2
- Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for interpreting the byte following the primary opcode fall into one of the following cases:

A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter 2, "Instruction Format," of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2A. Operand types are listed according to notations listed in Section A.2.

- A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.
- Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction prefix or entries for instructions without operands that use ModR/M (for example: 60H, PUSHA; 06H, PUSH ES).

Example A-1. Look-up Example for 1-Byte Opcodes

Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte opcode map (Table A-2) as follows:

- The first digit (0) of the opcode indicates the table row and the second digit (3) indicates the table column. This locates an opcode for ADD with two operands.
- The first operand (type Gv) indicates a general register that is a word or doubleword depending on the operandsize attribute. The second operand (type Ev) indicates a ModR/M byte follows that specifies whether the operand is a word or doubleword general-purpose register or a memory address.
- The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement follows (00000000H). The reg/opcode portion of the ModR/M byte (bits 3-5) is 000, indicating the EAX register.

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is 00000000H.

Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode map table). Group numbers indicate that the instruction uses the reg/opcode bits in the ModR/M byte as an opcode extension (refer to Section A.4).

A.2.4.2 Two-Byte Opcode Instructions

The two-byte opcode map shown in Table A-3 includes primary opcodes that are either two bytes or three bytes in length. Primary opcodes that are 2 bytes in length begin with an escape opcode 0FH. The upper and lower four bits of the second opcode byte are used to index a particular row and column in Table A-3.

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and the escape opcode (0FH). The upper and lower four bits of the third byte are used to index a particular row and column in Table A-3 (except when the second opcode byte is the 3-byte escape opcodes 38H or 3AH; in this situation refer to Section A.2.4.3).

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into one of the following cases:

- A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter 2, "Instruction Format," of the *Intel*® *64 and IA-32 Architectures Software Developer's Manual, Volume 2A*. The operand types are listed according to notations listed in Section A.2.
- A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.
- Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction without operands that are encoded using ModR/M (for example: 0F77H, EMMS).

Example A-2. Look-up Example for 2-Byte Opcodes

Look-up opcode 0FA4050000000003H for a SHLD instruction using Table A-3.

- The opcode is located in row A, column 4. The location indicates a SHLD instruction with operands Ev, Gv, and Ib. Interpret the operands as follows:
 - Ev: The ModR/M byte follows the opcode to specify a word or doubleword operand.
 - Gv: The reg field of the ModR/M byte selects a general-purpose register.
 - Ib: Immediate data is encoded in the subsequent byte of the instruction.
- The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of ModR/M indicate that a 32-bit displacement is used to locate the first operand in memory and eAX as the second operand.
- The next part of the opcode is the 32-bit displacement for the destination memory operand (00000000H). The last byte stores immediate byte that provides the count of the shift (03H).

By this breakdown, it has been shown that this opcode represents the instruction: SHLD DS:00000000H, EAX,
 3

A.2.4.3 Three-Byte Opcode Instructions

The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary opcodes that are either 3 or 4 bytes in length. Primary opcodes that are 3 bytes in length begin with two escape bytes 0F38H or 0F3A. The upper and lower four bits of the third opcode byte are used to index a particular row and column in Table A-4 or Table A-5.

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and two escape bytes (0F38H or 0F3AH). The upper and lower four bits of the fourth byte are used to index a particular row and column in Table A-4 or Table A-5.

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into the following case:

A ModR/M byte is required and is interpreted according to the abbreviations listed in A.1 and Chapter 2,
"Instruction Format," of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2A. The
operand types are listed according to notations listed in Section A.2.

Example A-3. Look-up Example for 3-Byte Opcodes

Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.

- 66H is a prefix and 0F3AH indicate to use Table A-5. The opcode is located in row 0, column F indicating a PALIGNR instruction with operands Vdq, Wdq, and Ib. Interpret the operands as follows:
 - Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.
 - Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register or memory location.
 - Ib: Immediate data is encoded in the subsequent byte of the instruction.
- The next byte is the ModR/M byte (C1H). The reg field indicates that the first operand is XMM0. The mod shows that the R/M field specifies a register and the R/M indicates that the second operand is XMM1.
- The last byte is the immediate byte (08H).
- By this breakdown, it has been shown that this opcode represents the instruction: PALIGNR XMM0, XMM1, 8.

A.2.4.4 VEX Prefix Instructions

Instructions that include a VEX prefix are organized relative to the 2-byte and 3-byte opcode maps, based on the VEX.mmmmm field encoding of implied 0F, 0F38H, 0F3AH, respectively. Each entry in the opcode map of a VEX-encoded instruction is based on the value of the opcode byte, similar to non-VEX-encoded instructions.

A VEX prefix includes several bit fields that encode implied 66H, F2H, F3H prefix functionality (VEX.pp) and operand size/opcode information (VEX.L). See chapter 4 for details.

Opcode tables A2-A6 include both instructions with a VEX prefix and instructions without a VEX prefix. Many entries are only made once, but represent both the VEX and non-VEX forms of the instruction. If the VEX prefix is present all the operands are valid and the mnemonic is usually prefixed with a "v". If the VEX prefix is not present the VEX.vvvv operand is not available and the prefix "v" is dropped from the mnemonic.

A few instructions exist only in VEX form and these are marked with a superscript "v".

Operand size of VEX prefix instructions can be determined by the operand type code. 128-bit vectors are indicated by 'dq', 256-bit vectors are indicated by 'qq', and instructions with operands supporting either 128 or 256-bit, determined by VEX.L, are indicated by 'x'. For example, the entry "VMOVUPD Vx,Wx" indicates both VEX.L=0 and VEX.L=1 are supported.

A.2.5 Superscripts Utilized in Opcode Tables

Table A-1 contains notes on particular encodings. These notes are indicated in the following opcode maps by superscripts. Gray cells indicate instruction groupings.

Table A-1. Superscripts Utilized in Opcode Tables

Superscript Symbol	Meaning of Symbol
1A	Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section A.4, "Opcode Extensions For One-Byte And Two-byte Opcodes").
1B	Use the OFOB opcode (UD2 instruction), the OFB9H opcode (UD1 instruction), or the OFFFH opcode (UD0 instruction) when deliberately trying to generate an invalid opcode exception (#UD).
1C	Some instructions use the same two-byte opcode. If the instruction has variations, or the opcode represents different instructions, the ModR/M byte will be used to differentiate the instruction. For the value of the ModR/M byte needed to decode the instruction, see Table A-6.
i64	The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-byte INC and DEC) are REX prefix combinations when in 64-bit mode (use FE/FF Grp 4 and 5 for INC and DEC).
o64	Instruction is only available when in 64-bit mode.
d64	When in 64-bit mode, instruction defaults to 64-bit operand size and cannot encode 32-bit operand size.
f64	The operand size is forced to a 64-bit operand size when in 64-bit mode (prefixes that change operand size are ignored for this instruction in 64-bit mode).
V	VEX form only exists. There is no legacy SSE form of the instruction. For Integer GPR instructions it means VEX prefix required.
v1	VEX128 & SSE forms only exist (no VEX256), when can't be inferred from the data size.

A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS

See Table A-2 through Table A-5 below. The tables are multiple page presentations. Rows and columns with sequential relationships are placed on facing pages to make look-up tasks easier. Note that table footnotes are not presented on each page. Table footnotes for each table are presented on the last page of the table.

Table A-2. One-byte Opcode Map: (00H — F7H) *

	0	1	2	3	4	5	6	7
0		•	AD	D	•		PUSH	POP
	Eb, Gb	Ev, Gv	Gb, Eb	Gv, Ev	AL, Ib	rAX, Iz	ES ⁱ⁶⁴	ES ⁱ⁶⁴
1		•	AD	С	•		PUSH	POP
	Eb, Gb	Ev, Gv	Gb, Eb	Gv, Ev	AL, Ib	rAX, Iz	SS ⁱ⁶⁴	SS ⁱ⁶⁴
2			AN	D			SEG=ES	DAA ⁱ⁶⁴
	Eb, Gb	Ev, Gv	Gb, Eb	Gv, Ev	AL, Ib	rAX, Iz	(Prefix)	
3			XO	1		•	SEG=SS (Prefix)	AAA ⁱ⁶⁴
	Eb, Gb	Ev, Gv	Gb, Eb	Gv, Ev	AL, Ib	rAX, Iz	(Pielix)	
4		i	1	- 5	ster / REX ^{o64} Prefixe		•	
	eAX REX	eCX REX.B	eDX REX.X	eBX REX.XB	eSP REX.R	eBP REX.RB	eSI REX.RX	eDI REX.RXB
5					eneral register			
	rAX/r8	rCX/r9	rDX/r10	rBX/r11	rSP/r12	rBP/r13	rSI/r14	rDI/r15
6	PUSHA ⁱ⁶⁴ / PUSHAD ⁱ⁶⁴	POPA ⁱ⁶⁴ / POPAD ⁱ⁶⁴	BOUND ⁱ⁶⁴ Gv, Ma	ARPL ⁱ⁶⁴ Ew, Gw MOVSXD ⁰⁶⁴	SEG=FS (Prefix)	SEG=GS (Prefix)	Operand Size (Prefix)	Address Size (Prefix)
				Gv, Ev				
7	_	l	1	1	cement jump on cor		l	l
	0	NO	B/NAE/C	NB/AE/NC	Z/E	NZ/NE	BE/NA	NBE/A
8		Immedia	te Grp 1 ^{1A}		TE	ST	Х	CHG
	Eb, Ib	Ev, Iz	Eb, Ib ⁱ⁶⁴	Ev, Ib	Eb, Gb	Ev, Gv	Eb, Gb	Ev, Gv
9	NOP PALIOE (FO)			XCHG word, doul	ble-word or quad-wo	ord register with rAX		
	PAUSE(F3) XCHG r8, rAX	rCX/r9	rDX/r10	rBX/r11	rSP/r12	rBP/r13	rSI/r14	rDI/r15
Α		М	OV		MOVS/B	MOVS/W/D/Q	CMPS/B	CMPS/W/D
	AL, Ob	rAX, Ov	Ob, AL	Ov, rAX	Yb, Xb	Yv, Xv	Xb, Yb	Xv, Yv
В				MOV immediate b	yte into byte register	r		
	AL/R8L, lb	CL/R9L, Ib	DL/R10L, lb	BL/R11L, lb	AH/R12L, Ib	CH/R13L, lb	DH/R14L, lb	BH/R15L, lb
С	Shift C	Grp 2 ^{1A}	near RET ^{f64} lw	near RET ^{f64}	LES ⁱ⁶⁴ Gz, Mp	LDS ⁱ⁶⁴ Gz, Mp	Grp 11	^{1A} - MOV
	Eb, lb	Ev, Ib	IVV		VEX+2byte	VEX+1byte	Eb, lb	Ev, Iz
D		Shift (Grp 2 ^{1A}		AAM ⁱ⁶⁴	AAD ⁱ⁶⁴		XLAT/
	Eb, 1	Ev, 1	Eb, CL	Ev, CL	lb	lb		XLATB
E	LOOPNE ^{f64} /	LOOPE ^{f64} /	LOOP ^{f64}	JrCXZ ^{f64} /	II	N	(DUT
	LOOPNZ ^{f64} Jb	LOOPZ ^{f64} Jb	Jb	Jb	AL, lb	eAX, Ib	lb, AL	lb, eAX
F	LOCK	INT1	REPNE	REP/REPE	HLT	CMC	Unary	Grp 3 ^{1A}
	(Prefix)		XACQUIRE (Prefix)	XRELEASE (Prefix)			Eb	Ev

Table A-2. One-byte Opcode Map: (08H — FFH) *

	8	9	Α	В	С	D	E	F
0			C	R	•		PUSH CS ⁱ⁶⁴	2-byte
	Eb, Gb	Ev, Gv	Gb, Eb	Gv, Ev	AL, Ib	rAX, Iz	CS ¹⁰⁴	escape (Table A-3)
1			SI	3B			PUSH DS ⁱ⁶⁴	POP DS ⁱ⁶⁴
	Eb, Gb	Ev, Gv	Gb, Eb	Gv, Ev	AL, Ib	rAX, Iz	DSio	
2			SI	JB			SEG=CS	DAS ⁱ⁶⁴
	Eb, Gb	Ev, Gv	Gb, Eb	Gv, Ev	AL, Ib	rAX, Iz	(Prefix)	
3			CI	MP			SEG=DS	AAS ⁱ⁶⁴
	Eb, Gb	Ev, Gv	Gb, Eb	Gv, Ev	AL, Ib	rAX, Iz	(Prefix)	
4			[DEC ⁱ⁶⁴ general regis	ster / REX ⁰⁶⁴ Prefixe	S		
	eAX REX.W	eCX REX.WB	eDX REX.WX	eBX REX.WXB	eSP REX.WR	eBP REX.WRB	eSI REX.WRX	eDI REX.WRXB
5			•	POP ^{d64} into g	jeneral register			1
	rAX/r8	rCX/r9	rDX/r10	rBX/r11	rSP/r12	rBP/r13	rSI/r14	rDI/r15
6	PUSH ^{d64}	IMUL	PUSH ^{d64}	IMUL	INS/	INS/	OUTS/	OUTS/
	lz	Gv, Ev, Iz	lb	Gv, Ev, Ib	INSB Yb, DX	INSW/ INSD	OUTSB DX, Xb	OUTSW/ OUTSD
					, , , , , ,	Yz, DX	,	DX, Xz
7			Jcc ^f	⁶⁴ , Jb- Short displac	cement jump on cond	ition		
	S	NS	P/PE	NP/PO	L/NGE	NL/GE	LE/NG	NLE/G
8		Me	OV		MOV	LEA	MOV	Grp 1A ^{1A} POP ^{d64}
	Eb, Gb	Ev, Gv	Gb, Eb	Gv, Ev	Ev, Sw	Gv, M	Sw, Ew	Ev
9	CBW/	CWD/	far CALL ⁱ⁶⁴	FWAIT/	PUSHF/D/Q d64/	POPF/D/Q d64/	SAHF	LAHF
	CWDE/ CDQE	CDQ/ CQO	Ар	WAIT	Fv	Fv		
Α	TE	ST	STOS/B	STOS/W/D/Q	LODS/B	LODS/W/D/Q	SCAS/B	SCAS/W/D/Q
	AL, Ib	rAX, Iz	Yb, AL	Yv, rAX	AL, Xb	rAX, Xv	AL, Yb	rAX, Yv
В		· · · · · · · · · · · · · · · · · · ·	MOV immedi	ate word or double i	into word, double, or	quad register	<u> </u>	1
	rAX/r8, Iv	rCX/r9, Iv	rDX/r10, Iv	rBX/r11, Iv	rSP/r12, lv	rBP/r13, lv	rSI/r14, Iv	rDI/r15 , lv
С	ENTER	LEAVE ^{d64}	far RET	far RET	INT3	INT	INTO ⁱ⁶⁴	IRET/D/Q
	lw, lb		lw			lb		
D			E	SC (Escape to copro	ocessor instruction se	et)		
E	near CALL ^{f64}		JMP		l II	N	(<u> </u>
	Jz	near ^{f64}	far ⁱ⁶⁴	short ^{f64}	AL, DX	eAX, DX	DX, AL	DX, eAX
	02	Jz	Ар	Jb	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5, 5, 5,	D7,712	57, 575
F	CLC	STC	CLI	STI	CLD	STD	INC/DEC	INC/DEC
							Grp 4 ^{1A}	Grp 5 ^{1A}

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-3. Two-byte Opcode Map: 00H - 77H (First Byte is 0FH) *

	pfx	0	1	2	3	4	5	6	7
0		Grp 6 ^{1A}	Grp 7 ^{1A}	LAR Gv, Ew	LSL Gv, Ew		SYSCALL ⁰⁶⁴	CLTS	SYSRET ⁰⁶⁴
		vmovups Vps, Wps	vmovups Wps, Vps	vmovlps Vq, Hq, Mq vmovhlps Vq, Hq, Uq	vmovlps Mq, Vq	vunpcklps Vx, Hx, Wx	vunpckhps Vx, Hx, Wx	vmovhps ^{v1} Vdq, Hq, Mq vmovlhps Vdq, Hq, Uq	vmovhps ^{v1} Mq, Vq
1	66	vmovupd Vpd, Wpd	vmovupd Wpd,Vpd	vmovlpd Vq, Hq, Mq	vmovlpd Mq, Vq	vunpcklpd Vx,Hx,Wx	vunpckhpd Vx,Hx,Wx	vmovhpd ^{v1} Vdq, Hq, Mq	vmovhpd ^{v1} Mq, Vq
	F3	vmovss Vx, Hx, Wss	vmovss Wss, Hx, Vss	vmovsldup Vx, Wx				vmovshdup Vx, Wx	
	F2	vmovsd Vx, Hx, Wsd	vmovsd Wsd, Hx, Vsd	vmovddup Vx, Wx					
		MOV Rd, Cd	MOV Rd, Dd	MOV Cd, Rd	MOV Dd, Rd				
2									
3		WRMSR	RDTSC	RDMSR	RDPMC	SYSENTER	SYSEXIT		GETSEC
					CMOVcc, (Gv, E	v) - Conditional Move	L		
4		0	NO	B/C/NAE	AE/NB/NC	E/Z	NE/NZ	BE/NA	A/NBE
		vmovmskps Gy, Ups	vsqrtps Vps, Wps	vrsqrtps Vps, Wps	vrcpps Vps, Wps	vandps Vps, Hps, Wps	vandnps Vps, Hps, Wps	vorps Vps, Hps, Wps	vxorps Vps, Hps, Wps
5	66	vmovmskpd Gy,Upd	vsqrtpd Vpd, Wpd			vandpd Vpd, Hpd, Wpd	vandnpd Vpd, Hpd, Wpd	vorpd Vpd, Hpd, Wpd	vxorpd Vpd, Hpd, Wpd
	F3		vsqrtss Vss, Hss, Wss	vrsqrtss Vss, Hss, Wss	vrcpss Vss, Hss, Wss				
	F2		vsqrtsd Vsd, Hsd, Wsd						
		punpcklbw Pq, Qd	punpcklwd Pq, Qd	punpckldq Pq, Qd	packsswb Pq, Qq	pcmpgtb Pq, Qq	pcmpgtw Pq, Qq	pcmpgtd Pq, Qq	packuswb Pq, Qq
6	66	vpunpcklbw Vx, Hx, Wx	vpunpcklwd Vx, Hx, Wx	vpunpckldq Vx, Hx, Wx	vpacksswb Vx, Hx, Wx	vpcmpgtb Vx, Hx, Wx	vpcmpgtw Vx, Hx, Wx	vpcmpgtd Vx, Hx, Wx	vpackuswb Vx, Hx, Wx
	F3								
		pshufw Pq, Qq, lb	(Grp 12 ^{1A})	(Grp 13 ^{1A})	(Grp 14 ^{1A})	pcmpeqb Pq, Qq	pcmpeqw Pq, Qq	pcmpeqd Pq, Qq	emms vzeroupper ^v vzeroall ^v
7	66	vpshufd Vx, Wx, Ib				vpcmpeqb Vx, Hx, Wx	vpcmpeqw Vx, Hx, Wx	vpcmpeqd Vx, Hx, Wx	
	F3	vpshufhw Vx, Wx, Ib							
	F2	vpshuflw Vx, Wx, Ib							

Table A-3. Two-byte Opcode Map: 08H - 7FH (First Byte is 0FH) *

	pfx	8	9	Α	В	С	D	E	F
0		INVD	WBINVD		2-byte Illegal Opcodes UD2 ^{1B}		prefetchw(/1) Ev		
		Prefetch ^{1C} (Grp 16 ^{1A})	Reserved-NOP	bndldx	bndstx		Reserved-NOP		NOP /0 Ev
	66	(Grp 16"')		bndmov	bndmov				
1	F3			bndcl	bndmk				
	F2			bndcu	bndcn				
		vmovaps Vps, Wps	vmovaps Wps, Vps	cvtpi2ps Vps, Qpi	vmovntps Mps, Vps	cvttps2pi Ppi, Wps	cvtps2pi Ppi, Wps	vucomiss Vss, Wss	vcomiss Vss, Wss
2	66	vmovapd Vpd, Wpd	vmovapd Wpd,Vpd	cvtpi2pd Vpd, Qpi	vmovntpd Mpd, Vpd	cvttpd2pi Ppi, Wpd	cvtpd2pi Qpi, Wpd	vucomisd Vsd, Wsd	vcomisd Vsd, Wsd
	F3			vcvtsi2ss Vss, Hss, Ey		vcvttss2si Gy, Wss	vcvtss2si Gy, Wss		
	F2			vcvtsi2sd Vsd, Hsd, Ey		vcvttsd2si Gy, Wsd	vcvtsd2si Gy, Wsd		
3		3-byte escape (Table A-4)		3-byte escape (Table A-5)					
					CMOVcc(Gv, Ev)	- Conditional Move			
4		S	NS	P/PE	NP/PO	L/NGE	NL/GE	LE/NG	NLE/G
		vaddps Vps, Hps, Wps	vmulps Vps, Hps, Wps	vcvtps2pd Vpd, Wps	vcvtdq2ps Vps, Wdq	vsubps Vps, Hps, Wps	vminps Vps, Hps, Wps	vdivps Vps, Hps, Wps	vmaxps Vps, Hps, Wps
5	66	vaddpd Vpd, Hpd, Wpd	vmulpd Vpd, Hpd, Wpd	vcvtpd2ps Vps, Wpd	vcvtps2dq Vdq, Wps	vsubpd Vpd, Hpd, Wpd	vminpd Vpd, Hpd, Wpd	vdivpd Vpd, Hpd, Wpd	vmaxpd Vpd, Hpd, Wpd
	F3	vaddss Vss, Hss, Wss	vmulss Vss, Hss, Wss	vcvtss2sd Vsd, Hx, Wss	vcvttps2dq Vdq, Wps	vsubss Vss, Hss, Wss	vminss Vss, Hss, Wss	vdivss Vss, Hss, Wss	vmaxss Vss, Hss, Wss
	F2	vaddsd Vsd, Hsd, Wsd	vmulsd Vsd, Hsd, Wsd	vcvtsd2ss Vss, Hx, Wsd		vsubsd Vsd, Hsd, Wsd	vminsd Vsd, Hsd, Wsd	vdivsd Vsd, Hsd, Wsd	vmaxsd Vsd, Hsd, Wsd
		punpckhbw Pq, Qd	punpckhwd Pq, Qd	punpckhdq Pq, Qd	packssdw Pq, Qd			movd/q Pd, Ey	movq Pq, Qq
6	66	vpunpckhbw Vx, Hx, Wx	vpunpckhwd Vx, Hx, Wx	vpunpckhdq Vx, Hx, Wx	vpackssdw Vx, Hx, Wx	vpunpcklqdq Vx, Hx, Wx	vpunpckhqdq Vx, Hx, Wx	vmovd/q Vy, Ey	vmovdqa Vx, Wx
	F3								vmovdqu Vx, Wx
		VMREAD Ey, Gy	VMWRITE Gy, Ey					movd/q Ey, Pd	movq Qq, Pq
	66					vhaddpd Vpd, Hpd, Wpd	vhsubpd Vpd, Hpd, Wpd	vmovd/q Ey, Vy	vmovdqa Wx,Vx
7	F3							vmovq Vq, Wq	vmovdqu Wx,Vx
	F2					vhaddps Vps, Hps, Wps	vhsubps Vps, Hps, Wps		

Table A-3. Two-byte Opcode Map: 80H - F7H (First Byte is 0FH) *

	pfx	0	1	2	3	4	5	6	7
				Jcc ^{f6}	⁴ , Jz - Long-displace	ement jump on condition	on		
8		0	NO	B/CNAE	AE/NB/NC	E/Z	NE/NZ	BE/NA	A/NBE
				!	SETcc, Eb - Byte	Set on condition		!	
9		0	NO	B/C/NAE	AE/NB/NC	E/Z	NE/NZ	BE/NA	A/NBE
Α		PUSH ^{d64} FS	POP ^{d64} FS	CPUID	BT Ev, Gv	SHLD Ev, Gv, Ib	SHLD Ev, Gv, CL		
		CMPX	L CHG	LSS	BTR	LFS	LGS	MO'	VZX
В		Eb, Gb	Ev, Gv	Gv, Mp	Ev, Gv	Gv, Mp	Gv, Mp	Gv, Eb	Gv, Ew
		XADD Eb, Gb	XADD Ev, Gv	vcmpps Vps,Hps,Wps,Ib	movnti My, Gy	pinsrw Pq,Ry/Mw,lb	pextrw Gd, Nq, Ib	vshufps Vps,Hps,Wps,Ib	Grp 9 ^{1A}
С	66			vcmppd Vpd,Hpd,Wpd,Ib		vpinsrw Vdq,Hdq,Ry/Mw,Ib	vpextrw Gd, Udq, Ib	vshufpd Vpd,Hpd,Wpd,Ib	
	F3			vcmpss Vss,Hss,Wss,Ib					
	F2			vcmpsd Vsd,Hsd,Wsd,Ib					
			psrlw Pq, Qq	psrld Pq, Qq	psrlq Pq, Qq	paddq Pq, Qq	pmullw Pq, Qq		pmovmskb Gd, Nq
D	66	vaddsubpd Vpd, Hpd, Wpd	vpsrlw Vx, Hx, Wx	vpsrld Vx, Hx, Wx	vpsrlq Vx, Hx, Wx	vpaddq Vx, Hx, Wx	vpmullw Vx, Hx, Wx	vmovq Wq, Vq	vpmovmskb Gd, Ux
	F3							movq2dq Vdq, Nq	
	F2	vaddsubps Vps, Hps, Wps						movdq2q Pq, Uq	
		pavgb Pq, Qq	psraw Pq, Qq	psrad Pq, Qq	pavgw Pq, Qq	pmulhuw Pq, Qq	pmulhw Pq, Qq		movntq Mq, Pq
E	66	vpavgb Vx, Hx, Wx	vpsraw Vx, Hx, Wx	vpsrad Vx, Hx, Wx	vpavgw Vx, Hx, Wx	vpmulhuw Vx, Hx, Wx	vpmulhw Vx, Hx, Wx	vcvttpd2dq Vx, Wpd	vmovntdq Mx, Vx
	F3							vcvtdq2pd Vx, Wpd	
	F2							vcvtpd2dq Vx, Wpd	
			psllw Pq, Qq	pslld Pq, Qq	psllq Pq, Qq	pmuludq Pq, Qq	pmaddwd Pq, Qq	psadbw Pq, Qq	maskmovq Pq, Nq
F	66		vpsllw Vx, Hx, Wx	vpslld Vx, Hx, Wx	vpsllq Vx, Hx, Wx	vpmuludq Vx, Hx, Wx	vpmaddwd Vx, Hx, Wx	vpsadbw Vx, Hx, Wx	vmaskmovdqu Vdq, Udq
	F2	vlddqu Vx, Mx							

Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH) *

	pfx	8	9	A	В	С	D	Е	F
	F		_		<u> </u>	_			<u> </u>
8		S	NS	P/PE	NP/PO	L/NGE	NL/GE	LE/NG	NLE/G
			<u>.</u>		SETcc, Eb - Byte	Set on condition	<u>I</u>		
9		S	NS	P/PE	NP/PO	L/NGE	NL/GE	LE/NG	NLE/G
Α		PUSH ^{d64} GS	POP ^{d64} GS	RSM	BTS Ev, Gv	SHRD Ev, Gv, Ib	SHRD Ev, Gv, CL	(Grp 15 ^{1A}) ^{1C}	IMUL Gv, Ev
В		JMPE (reserved for emulator on IPF)	Grp 10 ^{1A} Invalid Opcode ^{1B}	Grp 8 ^{1A} Ev, lb	BTC Ev, Gv	BSF Gv, Ev	BSR Gv, Ev	MO Gv, Eb	VSX Gv, Ew
_	F3	POPCNT Gv, Ev				TZCNT Gv, Ev	LZCNT Gv, Ev	-	
			'		BS	WAP	•	!	
С		RAX/EAX/ R8/R8D	RCX/ECX/ R9/R9D	RDX/EDX/ R10/R10D	RBX/EBX/ R11/R11D	RSP/ESP/ R12/R12D	RBP/EBP/ R13/R13D	RSI/ESI/ R14/R14D	RDI/EDI/ R15/R15D
		psubusb	psubusw	pminub	pand	paddusb	paddusw	pmaxub	pandn
		Pq, Qq	Pq, Qq	Pq, Qq	Pq, Qq	Pq, Qq	Pq, Qq	Pq, Qq	Pq, Qq
D	66	vpsubusb Vx, Hx, Wx	vpsubusw Vx, Hx, Wx	vpminub Vx, Hx, Wx	vpand Vx, Hx, Wx	vpaddusb Vx, Hx, Wx	vpaddusw Vx, Hx, Wx	vpmaxub Vx, Hx, Wx	vpandn Vx, Hx, Wx
_	F3								
	F2								
		psubsb Pq, Qq	psubsw Pq, Qq	pminsw Pq, Qq	por Pq, Qq	paddsb Pq, Qq	paddsw Pq, Qq	pmaxsw Pq, Qq	pxor Pq, Qq
E	66	vpsubsb Vx, Hx, Wx	vpsubsw Vx, Hx, Wx	vpminsw Vx, Hx, Wx	vpor Vx, Hx, Wx	vpaddsb Vx, Hx, Wx	vpaddsw Vx, Hx, Wx	vpmaxsw Vx, Hx, Wx	vpxor Vx, Hx, Wx
_	F3								
	F2								
		psubb Pq, Qq	psubw Pq, Qq	psubd Pq, Qq	psubq Pq, Qq	paddb Pq, Qq	paddw Pq, Qq	paddd Pq, Qq	UD0
F	66	vpsubb Vx, Hx, Wx	vpsubw Vx, Hx, Wx	vpsubd Vx, Hx, Wx	vpsubq Vx, Hx, Wx	vpaddb Vx, Hx, Wx	vpaddw Vx, Hx, Wx	vpaddd Vx, Hx, Wx	
	F2								

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

	pfx	0	1	2	3	4	5	6	7
0		pshufb Pq, Qq	phaddw Pq, Qq	phaddd Pq, Qq	phaddsw Pq, Qq	pmaddubsw Pq, Qq	phsubw Pq, Qq	phsubd Pq, Qq	phsubsw Pq, Qq
	66	vpshufb Vx, Hx, Wx	vphaddw Vx, Hx, Wx	vphaddd Vx, Hx, Wx	vphaddsw Vx, Hx, Wx	vpmaddubsw Vx, Hx, Wx	vphsubw Vx, Hx, Wx	vphsubd Vx, Hx, Wx	vphsubsw Vx, Hx, Wx
1	66	pblendvb Vdq, Wdq			vcvtph2ps ^v Vx, Wx, Ib	blendvps Vdq, Wdq	blendvpd Vdq, Wdq	vpermps ^v Vqq, Hqq, Wqq	vptest Vx, Wx
2	66	vpmovsxbw Vx, Ux/Mq	vpmovsxbd Vx, Ux/Md	vpmovsxbq Vx, Ux/Mw	vpmovsxwd Vx, Ux/Mq	vpmovsxwq Vx, Ux/Md	vpmovsxdq Vx, Ux/Mq		
3	66	vpmovzxbw Vx, Ux/Mq	vpmovzxbd Vx, Ux/Md	vpmovzxbq Vx, Ux/Mw	vpmovzxwd Vx, Ux/Mq	vpmovzxwq Vx, Ux/Md	vpmovzxdq Vx, Ux/Mq	vpermd ^v Vqq, Hqq, Wqq	vpcmpgtq Vx, Hx, Wx
4	66	vpmulld Vx, Hx, Wx	vphminposuw Vdq, Wdq				vpsrlvd/q ^v Vx, Hx, Wx	vpsravd ^v Vx, Hx, Wx	vpsllvd/q ^v Vx, Hx, Wx
5									
6									
7									
8	66	INVEPT Gy, Mdq	INVVPID Gy, Mdq	INVPCID Gy, Mdq					
9	66	vgatherdd/q ^v Vx,Hx,Wx	vgatherqd/q ^v Vx,Hx,Wx	vgatherdps/d ^v Vx,Hx,Wx	vgatherqps/d ^v Vx,Hx,Wx			vfmaddsub132ps/d ^V Vx,Hx,Wx	vfmsubadd132ps/d ^V Vx,Hx,Wx
Α	66							vfmaddsub213ps/d ^V Vx,Hx,Wx	vfmsubadd213ps/d ^V Vx,Hx,Wx
В	66							vfmaddsub231ps/d ^V Vx,Hx,Wx	vfmsubadd231ps/d ^V Vx,Hx,Wx
С									
D									
Е									
		MOVBE Gy, My	MOVBE My, Gy	ANDN ^v Gy, By, Ey			BZHI ^v Gy, Ey, By		BEXTR ^v Gy, Ey, By
	66	MOVBE Gw, Mw	MOVBE Mw, Gw					ADCX Gy, Ey	SHLX ^V Gy, Ey, By
F	F3				Grp 17 ^{1A}		PEXT ^v Gy, By, Ey	ADOX Gy, Ey	SARX ^v Gy, Ey, By
	F2	CRC32 Gd, Eb	CRC32 Gd, Ey				PDEP ^V Gy, By, Ey	MULX ^V By,Gy,rDX,Ey	SHRX ^V Gy, Ey, By
	66 & F2	CRC32 Gd, Eb	CRC32 Gd, Ew						

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

	pfx	8	9	Α	В	С	D	E	F
		psignb Pq, Qq	psignw Pq, Qq	psignd Pq, Qq	pmulhrsw Pq, Qq				
0	66	vpsignb Vx, Hx, Wx	vpsignw Vx, Hx, Wx	vpsignd Vx, Hx, Wx	vpmulhrsw Vx, Hx, Wx	vpermilps ^v Vx,Hx,Wx	vpermilpd ^v Vx,Hx,Wx	vtestps ^v Vx, Wx	vtestpd ^v Vx, Wx
1						pabsb Pq, Qq	pabsw Pq, Qq	pabsd Pq, Qq	
	66	vbroadcastss ^v Vx, Wd	vbroadcastsd ^v Vqq, Wq	vbroadcastf128 ^v Vqq, Mdq		vpabsb Vx, Wx	vpabsw Vx, Wx	vpabsd Vx, Wx	
2	66	vpmuldq Vx, Hx, Wx	vpcmpeqq Vx, Hx, Wx	vmovntdqa Vx, Mx	vpackusdw Vx, Hx, Wx	vmaskmovps ^v Vx,Hx,Mx	vmaskmovpd ^v Vx,Hx,Mx	vmaskmovps ^v Mx,Hx,Vx	vmaskmovpd ^v Mx,Hx,Vx
3	66	vpminsb Vx, Hx, Wx	vpminsd Vx, Hx, Wx	vpminuw Vx, Hx, Wx	vpminud Vx, Hx, Wx	vpmaxsb Vx, Hx, Wx	vpmaxsd Vx, Hx, Wx	vpmaxuw Vx, Hx, Wx	vpmaxud Vx, Hx, Wx
4									
5	66	vpbroadcastd ^v Vx, Wx	vpbroadcastq ^v Vx, Wx	vbroadcasti128 ^v Vqq, Mdq					
6									
7	66	vpbroadcastb ^v Vx, Wx	vpbroadcastw ^v Vx, Wx						
8	66					vpmaskmovd/q ^v Vx,Hx,Mx		vpmaskmovd/q ^v Mx,Vx,Hx	
9	66	vfmadd132ps/d ^V Vx, Hx, Wx	vfmadd132ss/d ^V Vx, Hx, Wx	vfmsub132ps/d ^V Vx, Hx, Wx	vfmsub132ss/d ^v Vx, Hx, Wx	vfnmadd132ps/d ^V Vx, Hx, Wx	vfnmadd132ss/d ^V Vx, Hx, Wx	vfnmsub132ps/d ^V Vx, Hx, Wx	vfnmsub132ss/d ^V Vx, Hx, Wx
Α	66	vfmadd213ps/d ^V Vx, Hx, Wx	vfmadd213ss/d ^v Vx, Hx, Wx	vfmsub213ps/d ^V Vx, Hx, Wx	vfmsub213ss/d ^v Vx, Hx, Wx	vfnmadd213ps/d ^V Vx, Hx, Wx	vfnmadd213ss/d ^V Vx, Hx, Wx	vfnmsub213ps/d ^V Vx, Hx, Wx	vfnmsub213ss/d ^V Vx, Hx, Wx
В	66	vfmadd231ps/d ^v Vx, Hx, Wx	vfmadd231ss/d ^v Vx, Hx, Wx	vfmsub231ps/d ^v Vx, Hx, Wx	vfmsub231ss/d ^v Vx, Hx, Wx	vfnmadd231ps/d ^V Vx, Hx, Wx	vfnmadd231ss/d ^V Vx, Hx, Wx	vfnmsub231ps/d ^V Vx, Hx, Wx	vfnmsub231ss/d ^v Vx, Hx, Wx
С		sha1nexte Vdq,Wdq	sha1msg1 Vdq,Wdq	sha1msg2 Vdq,Wdq	sha256rnds2 Vdq,Wdq	sha256msg1 Vdq,Wdq	sha256msg2 Vdq,Wdq		
	66								
D	66				VAESIMC Vdq, Wdq	VAESENC Vdq,Hdq,Wdq	VAESENCLAST Vdq,Hdq,Wdq	VAESDEC Vdq,Hdq,Wdq	VAESDECLAST Vdq,Hdq,Wdq
Е									
F	66 F3								
	F3								
	66 & F2								
	00 Q I Z		1			l	l	l	l

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

	pfx	0	1	2	3	4	5	6	7
0	66	vpermq ^v Vqq, Wqq, Ib	vpermpd ^v Vqq, Wqq, Ib	vpblendd ^v Vx,Hx,Wx,Ib		vpermilps ^v Vx, Wx, lb	vpermilpd ^v Vx, Wx, Ib	vperm2f128 ^v Vqq,Hqq,Wqq,Ib	
1	66					vpextrb Rd/Mb, Vdq, Ib	vpextrw Rd/Mw, Vdq, Ib	vpextrd/q Ey, Vdq, Ib	vextractps Ed, Vdq, Ib
2	66	vpinsrb Vdq,Hdq,Ry/Mb,Ib	vinsertps Vdq,Hdq,Udq/Md,Ib	vpinsrd/q Vdq,Hdq,Ey,Ib					
3									
4	66	vdpps Vx,Hx,Wx,Ib	vdppd Vdq,Hdq,Wdq,Ib	vmpsadbw Vx,Hx,Wx,Ib		vpclmulqdq Vdq,Hdq,Wdq,Ib		vperm2i128 ^v Vqq,Hqq,Wqq,Ib	
5									
6	66	vpcmpestrm Vdq, Wdq, Ib	vpcmpestri Vdq, Wdq, Ib	vpcmpistrm Vdq, Wdq, Ib	vpcmpistri Vdq, Wdq, Ib				
7									
8									
9									
Α									
В									
С									
D									
Е									
F	F2	RORX ^v Gy, Ey, lb							

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

	pfx	8	9	Α	В	С	D	E	F
0									palignr Pq, Qq, Ib
	66	vroundps Vx,Wx,Ib	vroundpd Vx,Wx,Ib	vroundss Vss,Wss,Ib	vroundsd Vsd,Wsd,Ib	vblendps Vx,Hx,Wx,Ib	vblendpd Vx,Hx,Wx,Ib	vpblendw Vx,Hx,Wx,Ib	vpalignr Vx,Hx,Wx,Ib
1	66	vinsertf128 ^v Vqq,Hqq,Wqq,Ib	vextractf128 ^v Wdq,Vqq,Ib				vcvtps2ph ^v Wx, Vx, Ib		
2									
3	66	vinserti128 ^v Vqq,Hqq,Wqq,Ib	vextracti128 ^v Wdq,Vqq,Ib						
4	66			vblendvps ^v Vx,Hx,Wx,Lx	vblendvpd ^v Vx,Hx,Wx,Lx	vpblendvb ^v Vx,Hx,Wx,Lx			
5									
6									
7									
8									
9									
Α									
В						-14			
С						sha1rnds4 Vdq,Wdq,Ib			
D	66								VAESKEYGEN Vdq, Wdq, Ib
Е									
F									

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in Figure A-1) as an extension of the opcode.

Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3)

Opcodes that have opcode extensions are indicated in Table A-6 and organized by group number. Group numbers (from 1 to 16, second column) provide a table entry point. The encoding for the r/m field for each instruction can be established using the third column of the table.

A.4.1 Opcode Look-up Examples Using Opcode Extensions

An Example is provided below.

Example A-4. Interpreting an ADD Instruction

An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:

- Table A-6 indicates that the opcode extension field encoded in the ModR/M byte for this instruction is 000B.
- The r/m field can be encoded to access a register (11B) or a memory address using a specified addressing mode (for example: mem = 00B, 01B, 10B).

Example A-5. Looking Up 0F01C3H

Look up opcode 0F01C3 for a VMRESUME instruction by using Table A-2, Table A-3 and Table A-6:

- OF tells us that this instruction is in the 2-byte opcode map.
- 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table A-6.
- C3 is the ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the second of the Group 7 rows in Table A-6.
- The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for Group 7.
- Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the VMRESUME instruction.

A.4.2 Opcode Extension Tables

See Table A-6 below.

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *

					Encoding of	Bits 5,4,3	of the ModR/	M Byte (bits	2,1,0 in	parenthes	is)
Opcode	Group	Mod 7,6	pfx	000	001	010	011	100	101	110	111
80-83	1	mem, 11B		ADD	OR	ADC	SBB	AND	SUB	XOR	CMP
8F	1A	mem, 11B		POP							
C0,C1 reg, imm D0, D1 reg, 1 D2, D3 reg, CL	2	mem, 11B		ROL	ROR	RCL	RCR	SHL/SAL	SHR		SAR
F6, F7	3	mem, 11B		TEST lb/lz		NOT	NEG	MUL AL/rAX	IMUL AL/rAX	DIV AL/rAX	IDIV AL/rAX
FE	4	mem, 11B		INC Eb	DEC Eb						
FF	5	mem, 11B		INC Ev	DEC Ev	near CALL ^{f64} Ev	far CALL Ep	near JMP ^{f64} Ev	far JMP Mp	PUSH ^{d64} Ev	
0F 00	6	mem, 11B		SLDT Rv/Mw	STR Rv/Mw	LLDT Ew	LTR Ew	VERR Ew	VERW Ew		
		mem		SGDT Ms	SIDT Ms	LGDT Ms	LIDT Ms	SMSW Mw/Rv		LMSW Ew	INVLPG Mb
0F 01	7	11B		VMCALL (001) VMLAUNCH (010) VMRESUME (011) VMXOFF (100)	MWAIT (001) CLAC (010)	XGETBV (000) XSETBV (001) VMFUNC (100) XEND (101) XTEST (110) ENCLU(111)					SWAPGS 064(000) RDTSCP (001)
0F BA	8	mem, 11B						BT	BTS	BTR	BTC
0F C7	9	mem	66 F3		CMPXCH8B Mq CMPXCHG16B Mdq					VMPTRLD Mq VMCLEAR Mq VMXON	VMPTRST Mq
										Mq RDRAND Rv	RDSEED Rv
		11B	F3							KV	RDPID Rd/q
		mem				l	UD1		l		
0F B9	10	11B									
		mem		MOV							
C6	11	11B		Eb, Ib							XABORT (000) Ib
C7		mem 11B		MOV Ev, Iz							XBEGIN (000) Jz
		mem									
0F 71	12	11B				psrlw Nq, Ib		psraw Nq, Ib		psllw Nq, Ib	
			66			vpsrlw Hx,Ux,Ib		vpsraw Hx,Ux,Ib		vpsllw Hx,Ux,Ib	
		mem									
0F 72	13	11B				psrld Nq, Ib		psrad Nq, Ib		pslld Nq, lb	
			66			vpsrld Hx,Ux,Ib		vpsrad Hx,Ux,Ib		vpslld Hx,Ux,Ib	
		mem									
0F 73	14	11B	- 00			psrlq Nq, Ib				psllq Nq, lb	
			66			vpsrlq Hx,Ux,Ib	vpsrldq Hx,Ux,Ib			vpsllq Hx,Ux,Ib	vpslldq Hx,Ux,Ib

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number * (Contd.)

					Encoding of	Bits 5,4,3	of the ModR/	M Byte (bit	s 2,1,0 in	parenthesis)
Opcode	Group	Mod 7,6	pfx	000	001	010	011	100	101	110	111
		mem		fxsave	fxrstor	Idmxcsr	stmxcsr	XSAVE	XRSTOR	XSAVEOPT	clflush
0F AE	15								Ifence	mfence	sfence
UP AE		11B	F3	RDFSBASE Ry	RDGSBASE Ry	WRFSBASE Ry	WRGSBASE Ry				
0F 18	16	mem		prefetch NTA	prefetch T0	prefetch T1	prefetch T2	Reserved NOP			
		11B					Reserved	NOP			
VEX 0E38 E3	17	mem			BLSR	BLSMSK ^v	BLSI				
VEX.0F38 F3	17	11B			Ву, Еу	Ву, Еу	Ву, Еу				

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A.5 ESCAPE OPCODE INSTRUCTIONS

Opcode maps for coprocessor escape instruction opcodes (x87 floating-point instruction opcodes) are in Table A-7 through Table A-22. These maps are grouped by the first byte of the opcode, from D8-DF. Each of these opcodes has a ModR/M byte. If the ModR/M byte is within the range of 00H-BFH, bits 3-5 of the ModR/M byte are used as an opcode extension, similar to the technique used for 1-and 2-byte opcodes (see A.4). If the ModR/M byte is outside the range of 00H through BFH, the entire ModR/M byte is used as an opcode extension.

A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes

Examples are provided below.

Example A-6. Opcode with ModR/M Byte in the 00H through BFH Range

DD0504000000H can be interpreted as follows:

- The instruction encoded with this opcode can be located in Section . Since the ModR/M byte (05H) is within the 00H through BFH range, bits 3 through 5 (000) of this byte indicate the opcode for an FLD double-real instruction (see Table A-9).
- The double-real value to be loaded is at 00000004H (the 32-bit displacement that follows and belongs to this
 opcode).

Example A-7. Opcode with ModR/M Byte outside the 00H through BFH Range

D8C1H can be interpreted as follows:

- This example illustrates an opcode with a ModR/M byte outside the range of 00H through BFH. The instruction can be located in Section A.4.
- In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD instruction using ST(0), ST(1) as operands).

A.5.2 Escape Opcode Instruction Tables

Tables are listed below.

A.5.2.1 Escape Opcodes with D8 as First Byte

Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table A-7 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-7. D8 Opcode Map When ModR/M Byte is Within 00H t	to BFH *
---	----------

	nnn Field of ModR/M Byte (refer to Figure A.4)										
000B	001B	010B	011B	100B	101B	110B	111B				
FADD single-real	FMUL single-real	FCOM single-real	FCOMP single-real	FSUB single-real	FSUBR single-real	FDIV single-real	FDIVR single-real				

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-8. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH *

	i a si a											
	0	1	2	3	4	5	6	7				
С				FAI	DD							
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)				
D	FCOM											
	ST(0),ST(0)	ST(0),ST(1)	ST(0),T(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)				
Е				FS	UB							
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)				
F	FDIV											
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)				

	8	9	Α	В	С	D	E	F				
С				FM	UL							
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)				
D		FCOMP										
	ST(0),ST(0)	ST(0),ST(1)	ST(0),T(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)				
Е				FSU	JBR							
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)				
F		FDIVR										
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)				

NOTES:

A.5.2.2 Escape Opcodes with D9 as First Byte

Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-9 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-9. D9 Opcode Map When ModR/M Byte is Within 00H to BFH *

	nnn Field of ModR/M Byte											
000B	001B	010B	011B	100B	101B	110B	111B					
FLD single-real		FST single-real	FSTP single-real	FLDENV 14/28 bytes	FLDCW 2 bytes	FSTENV 14/28 bytes	FSTCW 2 bytes					

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-10. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *

	0	1	2	3	4	5	6	7
С				FL	.D			
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)
D	FNOP							
Е	FCHS	FABS			FTST	FXAM		
F	F2XM1	FYL2X	FPTAN	FPATAN	FXTRACT	FPREM1	FDECSTP	FINCSTP

	8	9	Α	В	С	D	E	F					
С		FXCH											
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)					
D													
Е	FLD1	FLDL2T	FLDL2E	FLDPI	FLDLG2	FLDLN2	FLDZ						
F	FPREM	FYL2XP1	FSQRT	FSINCOS	FRNDINT	FSCALE	FSIN	FCOS					

NOTES:

A.5.2.3 Escape Opcodes with DA as First Byte

Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table A-11 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-11. DA Opcode Map When ModR/M Byte is Within 00H to BFH *

	nnn Field of ModR/M Byte										
000B	001B	010B	011B	100B	101B	110B	111B				
FIADD dword-integer	FIMUL dword-integer	FICOM dword-integer	FICOMP dword-integer	FISUB dword-integer	FISUBR dword-integer	FIDIV dword-integer	FIDIVR dword-integer				

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-12 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-12. DA Opcode Map When ModR/M Byte is Outside 00H to BFH *

	0	1	2	3	4	5	6	7					
С				FCM	OVB								
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)					
D	FCMOVBE												
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)					
Е													
F													

	8	9	Α	В	С	D	E	F	
С	FCMOVE								
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)	
D	FCMOVU								
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)	
Е		FUCOMPP							
F									

NOTES:

A.5.2.4 Escape Opcodes with DB as First Byte

Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table A-13 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-13. DB Opcode Map When ModR/M Byte is Within 00H to BFH *

				•				
nnn Field of ModR/M Byte								
	000B	001B	010B	011B	100B	101B	110B	111B
	FILD dword-integer	FISTTP dword-integer	FIST dword-integer	FISTP dword-integer		FLD extended-real		FSTP extended-real

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-14. DB Opcode Map When ModR/M Byte is Outside 00H to BFH *

	0	1	2	3	4	5	6	7
С	FCMOVNB							
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)
D	FCMOVNBE							
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)
Е			FCLEX	FINIT				
F	FCOMI							
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)
	8	9	Α	В	С	D	E	F
С	FCMOVNE							
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)
D	FCMOVNU							
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)
Е	FUCOMI							
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)
F								

NOTES:

A.5.2.5 Escape Opcodes with DC as First Byte

Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table A-15 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-15. DC Opcode Map When ModR/M Byte is Within 00H to BFH *

	nnn Field of ModR/M Byte (refer to Figure A-1)								
	000B	001B	010B	011B	100B	101B	110B	111B	
,	FADD double-real	FMUL double-real	FCOM double-real	FCOMP double-real	FSUB double-real	FSUBR double-real	FDIV double-real	FDIVR double-real	

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case the first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-16. DC Opcode Map When ModR/M Byte is Outside 00H to BFH *

	0	1	2	3	4	5	6	7
С	FADD							
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)
D								
Е				FSU	JBR			
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)
F				FD	IVR			
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)
	8	9	Α	В	С	D	E	F
С				FM	IUL			
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)
D								
E	E FSUB							
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)
F				FC	DIV			
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)

NOTES:

A.5.2.6 Escape Opcodes with DD as First Byte

Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table A-17 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-17. DD Opcode Map When ModR/M Byte is Within 00H to BFH *

		•					
nnn Field of ModR/M Byte							
000B	001B	010B	011B	100B	101B	110B	111B
FLD double-real	FISTTP integer64	FST double-real	FSTP double-real	FRSTOR 98/108bytes		FSAVE 98/108bytes	FSTSW 2 bytes

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-18. DD Opcode Map When ModR/M Byte is Outside 00H to BFH *

		-	1	_			
0	1	2	3	4	5	6	7
FFREE							
ST(0)	ST(1)	ST(2)	ST(3)	ST(4)	ST(5)	ST(6)	ST(7)
			F	ST			
ST(0)	ST(1)	ST(2)	ST(3)	ST(4)	ST(5)	ST(6)	ST(7)
			FUC	СОМ			
ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)
8	9	Α	В	С	D	E	F
			FS	TP			
ST(0)	ST(1)	ST(2)	ST(3)	ST(4)	ST(5)	ST(6)	ST(7)
FUCOMP							
ST(0)	ST(1)	ST(2)	ST(3)	ST(4)	ST(5)	ST(6)	ST(7)
	ST(0) ST(0),ST(0) 8	0 1 ST(0) ST(1) ST(0) ST(1) ST(0),ST(0) ST(1),ST(0) 8 9 ST(0) ST(1)	0 1 2 ST(0) ST(1) ST(2) ST(0) ST(1) ST(2) ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) 8 9 A ST(0) ST(1) ST(2)	0 1 2 3 FFF ST(0) ST(1) ST(2) ST(3) FUC ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(0) ST(1) ST(2) ST(3) FS ST(0) ST(1) ST(2) ST(3) FUC	0 1 2 3 4 FFREE ST(0) ST(1) ST(2) ST(3) ST(4) FST ST(0) ST(1) ST(2) ST(3) ST(4) FUCOM ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) B 9 A B C FSTP ST(0) ST(1) ST(2) ST(3) ST(4) FUCOMP	0 1 2 3 4 5 FFREE ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) FST ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) FUCOM ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) 8 9 A B C D FSTP ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) FUCOMP	FFREE ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) FST ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) FUCOM ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) 8 9 A B C D E FST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6)

NOTES:

A.5.2.7 Escape Opcodes with DE as First Byte

Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH. Table A-19 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. In this case, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-19. DE Opcode Map When ModR/M Byte is Within 00H to BFH *

	nnn Field of ModR/M Byte							
000B 001B 010B 011B 100B 101B 110B 111B								
FIADD word-integer	FIMUL word-integer	FICOM word-integer	FICOMP word-integer	FISUB word-integer	FISUBR word-integer	FIDIV word-integer	FIDIVR word-integer	

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-20. DE Opcode Map When ModR/M Byte is Outside 00H to BFH *

				•				
	0	1	2	3	4	5	6	7
С	FADDP							
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)
D								
Е				FSU	BRP			
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)
F				FDI	VRP			
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)
	8	9	Α	В	С	D	E	F
С				FMI	JLP			
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)
D		FCOMPP						
Е				FSI	JBP			
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0)	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)
F				FD	IVP			
	ST(0),ST(0)	ST(1),ST(0)	ST(2),ST(0).	ST(3),ST(0)	ST(4),ST(0)	ST(5),ST(0)	ST(6),ST(0)	ST(7),ST(0)

NOTES:

A.5.2.8 Escape Opcodes with DF As First Byte

Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with DFH. Table A-21 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-21. DF Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte							
000B	001B	010B	011B	100B	101B	110B	111B
FILD word-integer	FISTTP word-integer	FIST word-integer	FISTP word-integer	FBLD packed-BCD	FILD qword-integer	FBSTP packed-BCD	FISTP qword-integer

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-22. DF Opcode Map When ModR/M Byte is Outside 00H to BFH *

	0	1	2	3	4	5	6	7
С								
D			I					
E	FSTSW AX							
F				FCC	MIP			
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)
	8	9	Α	В	С	D	E	F
С			T					
D		T	T	T		T	<u> </u>	
Е			r	1	OMIP		<u> </u>	
	ST(0),ST(0)	ST(0),ST(1)	ST(0),ST(2)	ST(0),ST(3)	ST(0),ST(4)	ST(0),ST(5)	ST(0),ST(6)	ST(0),ST(7)
F								

^{*} All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

This page was Ieft intentionally left blank.

This appendix provides machine instruction formats and encodings of IA-32 instructions. The first section describes the IA-32 architecture's machine instruction format. The remaining sections show the formats and encoding of general-purpose, MMX, P6 family, SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Those instruction formats also apply to Intel 64 architecture. Instruction formats used in 64-bit mode are provided as supersets of the above.

B.1 MACHINE INSTRUCTION FORMAT

All Intel Architecture instructions are encoded using subsets of the general machine instruction format shown in Figure B-1. Each instruction consists of:

- an opcode
- a register and/or address mode specifier consisting of the ModR/M byte and sometimes the scale-index-base (SIB) byte (if required)
- a displacement and an immediate data field (if required)

Figure B-1. General Machine Instruction Format

The following sections discuss this format.

B.1.1 Legacy Prefixes

The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H and F3H. They are optional, except when F2H, F3H and 66H are used in new instruction extensions. Legacy prefixes must be placed before REX prefixes.

Refer to Chapter 2, "Instruction Format," in the *Intel*® 64 and *IA-32 Architectures Software Developer's Manual, Volume 2A*, for more information on legacy prefixes.

B.1.2 REX Prefixes

REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC) in IA-32 operating modes and in compatibility mode. In 64-bit mode, the same opcodes represent the instruction prefix REX and are not treated as individual instructions.

Refer to Chapter 2, "Instruction Format," in the *Intel*® 64 and *IA-32 Architectures Software Developer's Manual, Volume 2A*, for more information on REX prefixes.

B.1.3 Opcode Fields

The primary opcode for an instruction is encoded in one to three bytes of the instruction. Within the primary opcode, smaller encoding fields may be defined. These fields vary according to the class of operation being performed.

Almost all instructions that refer to a register and/or memory operand have a register and/or address mode byte following the opcode. This byte, the ModR/M byte, consists of the mod field (2 bits), the reg field (3 bits; this field is sometimes an opcode extension), and the R/M field (3 bits). Certain encodings of the ModR/M byte indicate that a second address mode byte, the SIB byte, must be used.

If the addressing mode specifies a displacement, the displacement value is placed immediately following the ModR/M byte or SIB byte. Possible sizes are 8, 16, or 32 bits. If the instruction specifies an immediate value, the immediate value follows any displacement bytes. The immediate, if specified, is always the last field of the instruction.

Refer to Chapter 2, "Instruction Format," in the *Intel*® *64 and IA-32 Architectures Software Developer's Manual, Volume 2A*, for more information on opcodes.

B.1.4 Special Fields

Table B-1 lists bit fields that appear in certain instructions, sometimes within the opcode bytes. All of these fields (except the d bit) occur in the general-purpose instruction formats in Table B-13.

Field Name	Description	Number of Bits
гед	General-register specifier (see Table B-4 or B-5).	3
W	Specifies if data is byte or full-sized, where full-sized is 16 or 32 bits (see Table B-6).	1
S	Specifies sign extension of an immediate field (see Table B-7).	1
sreg2	Segment register specifier for CS, SS, DS, ES (see Table B-8).	2
sreg3	Segment register specifier for CS, SS, DS, ES, FS, GS (see Table B-8).	3
eee	Specifies a special-purpose (control or debug) register (see Table B-9).	3
tttn	For conditional instructions, specifies a condition asserted or negated (see Table B-12).	4
d	Specifies direction of data operation (see Table B-11).	1

Table B-1. Special Fields Within Instruction Encodings

B.1.4.1 Reg Field (reg) for Non-64-Bit Modes

The reg field in the ModR/M byte specifies a general-purpose register operand. The group of registers specified is modified by the presence and state of the w bit in an encoding (refer to Section B.1.4.3). Table B-2 shows the encoding of the reg field when the w bit is not present in an encoding; Table B-3 shows the encoding of the reg field when the w bit is present.

Table B-2. Encoding of reg Field When w Field is Not Present in Instruction

reg Field	Register Selected during 16-Bit Data Operations	Register Selected during 32-Bit Data Operations
000	AX	EAX
001	CX	ECX
010	DX	EDX
011	BX	EBX
100	SP	ESP
101	BP	EBP
110	SI	ESI
111	DI	EDI

Table B-3. Encoding of reg Field When w Field is Present in Instruction

	Register Specified by reg Field During 16-Bit Data Operations					
	Function	of w Field				
reg	When w = 0	When w = 1				
000	AL	AX				
001	CL	CX				
010	DL	DX				
011	BL	BX				
100	AH	SP				
101	CH	BP				
110	DH	SI				
111	BH	DI				

	Register Specified by reg Field During 32-Bit Data Operations						
	Function o	of w Field					
reg	When $w = 0$	When w = 1					
000	AL	EAX					
001	CL	ECX					
010	DL	EDX					
011	BL	EBX					
100	AH	ESP					
101	CH	EBP					
110	DH	ESI					
111	BH	EDI					

B.1.4.2 Reg Field (reg) for 64-Bit Mode

Just like in non-64-bit modes, the reg field in the ModR/M byte specifies a general-purpose register operand. The group of registers specified is modified by the presence of and state of the w bit in an encoding (refer to Section B.1.4.3). Table B-4 shows the encoding of the reg field when the w bit is not present in an encoding; Table B-5 shows the encoding of the reg field when the w bit is present.

Table B-4.	Encoding of rec	ı Field When w	Field is Not	Present in Instruction

reg Field	Register Selected during 16-Bit Data Operations	Register Selected during 32-Bit Data Operations	Register Selected during 64-Bit Data Operations
000	AX	EAX	RAX
001	CX	ECX	RCX
010	DX	EDX	RDX
011	BX	EBX	RBX
100	SP	ESP	RSP
101	BP	EBP	RBP
110	SI	ESI	RSI
111	DI	EDI	RDI

Table B-5. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field During 16-Bit Data Operations		
	Function of w Field	
reg	When w = 0 When w = 1	
000	AL	AX
001	CL	CX
010	DL	DX
011	BL	BX
100	AH ¹	SP
101	CH ¹	BP
110	DH^1	SI
111	BH ¹	DI

Register Specified by reg Field During 32-Bit Data Operations		
	Function of w Field	
reg	When $w = 0$	When w = 1
000	AL	EAX
001	CL	ECX
010	DL	EDX
011	BL	EBX
100	AH*	ESP
101	CH*	EBP
110	DH*	ESI
111	BH*	EDI

NOTES:

B.1.4.3 Encoding of Operand Size (w) Bit

The current operand-size attribute determines whether the processor is performing 16-bit, 32-bit or 64-bit operations. Within the constraints of the current operand-size attribute, the operand-size bit (w) can be used to indicate operations on 8-bit operands or the full operand size specified with the operand-size attribute. Table B-6 shows the encoding of the w bit depending on the current operand-size attribute.

Table B-6. Encoding of Operand Size (w) Bit

w Bit	Operand Size When Operand-Size Attribute is 16 Bits	Operand Size When Operand-Size Attribute is 32 Bits
0	8 Bits	8 Bits
1	16 Bits	32 Bits

^{1.} AH, CH, DH, BH can not be encoded when REX prefix is used. Such an expression defaults to the low byte.

B.1.4.4 Sign-Extend (s) Bit

The sign-extend (s) bit occurs in instructions with immediate data fields that are being extended from 8 bits to 16 or 32 bits. See Table B-7.

Table B-7. Encoding of Sign-Extend (s) Bit

s	Effect on 8-Bit Immediate Data	Effect on 16- or 32-Bit Immediate Data
0	None	None
1	Sign-extend to fill 16-bit or 32-bit destination	None

B.1.4.5 Segment Register (sreg) Field

When an instruction operates on a segment register, the reg field in the ModR/M byte is called the sreg field and is used to specify the segment register. Table B-8 shows the encoding of the sreg field. This field is sometimes a 2-bit field (sreg2) and other times a 3-bit field (sreg3).

Table B-8. Encoding of the Segment Register (sreg) Field

	Segment Register Selected
2-Bit sreg2 Field	
00	ES
01	CS
10	SS
11	DS

	Segment Register Selected
3-Bit sreg3 Field	
000	ES
001	CS
010	SS
011	DS
100	FS
101	GS
110	Reserved ¹
111	Reserved

NOTES:

1. Do not use reserved encodings.

B.1.4.6 Special-Purpose Register (eee) Field

When control or debug registers are referenced in an instruction they are encoded in the eee field, located in bits 5 though 3 of the ModR/M byte (an alternate encoding of the sreg field). See Table B-9.

Table B-9. Encoding of Special-Purpose Register (eee) Field

eee	Control Register	Debug Register
000	CR0	DRO
001	Reserved ¹	DR1
010	CR2	DR2
011	CR3	DR3
100	CR4	Reserved
101	Reserved	Reserved
110	Reserved	DR6
111	Reserved	DR7

NOTES:

1. Do not use reserved encodings.

B.1.4.7 Condition Test (tttn) Field

For conditional instructions (such as conditional jumps and set on condition), the condition test field (tttn) is encoded for the condition being tested. The ttt part of the field gives the condition to test and the n part indicates whether to use the condition (n = 0) or its negation (n = 1).

- For 1-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the opcode byte.
- For 2-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the second opcode byte.

Table B-10 shows the encoding of the tttn field.

Mnemonic Condition tttn 0 Overflow 0000 0001 NO No overflow 0010 B, NAE Below, Not above or equal NB, AE 0011 Not below, Above or equal 0100 E, Z Equal, Zero 0101 NE, NZ Not equal, Not zero BE, NA 0110 Below or equal, Not above 0111 NBE, A Not below or equal, Above 1000 Sign 1001 NS Not sign 1010 P. PF Parity, Parity Even 1011 NP, PO Not parity, Parity Odd L, NGE 1100 Less than, Not greater than or equal to 1101 NL, GE Not less than, Greater than or equal to LE, NG Less than or equal to. Not greater than 1110

Table B-10. Encoding of Conditional Test (tttn) Field

B.1.4.8 Direction (d) Bit

1111

In many two-operand instructions, a direction bit (d) indicates which operand is considered the source and which is the destination. See Table B-11.

Not less than or equal to, Greater than

NLE, G

- When used for integer instructions, the d bit is located at bit 1 of a 1-byte primary opcode. Note that this bit does not appear as the symbol "d" in Table B-13; the actual encoding of the bit as 1 or 0 is given.
- When used for floating-point instructions (in Table B-16), the d bit is shown as bit 2 of the first byte of the primary opcode.

d	Source	Destination
0	reg Field	ModR/M or SIB Byte
1	ModR/M or SIB Byte	reg Field

Table B-11. Encoding of Operation Direction (d) Bit

B.1.5 Other Notes

Table B-12 contains notes on particular encodings. These notes are indicated in the tables shown in the following sections by superscripts.

Table B-12. Notes on Instruction Encoding

Symbol	Note
Α	A value of 11B in bits 7 and 6 of the ModR/M byte is reserved.
В	A value of 01B (or 10B) in bits 7 and 6 of the ModR/M byte is reserved.

B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS FOR NON-64-BIT MODES

Table B-13 shows machine instruction formats and encodings for general purpose instructions in non-64-bit modes.

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes

Instruction and Format	Encoding
AAA - ASCII Adjust after Addition	0011 0111
AAD – ASCII Adjust AX before Division	1101 0101 : 0000 1010
AAM - ASCII Adjust AX after Multiply	1101 0100:0000 1010
AAS - ASCII Adjust AL after Subtraction	0011 1111
ADC - ADD with Carry	
register1 to register2	0001 000w:11 reg1 reg2
register2 to register1	0001 001w:11 reg1 reg2
memory to register	0001 001w: mod reg r/m
register to memory	0001 000w: mod reg r/m
immediate to register	1000 00sw : 11 010 reg : immediate data
immediate to AL, AX, or EAX	0001 010w : immediate data
immediate to memory	1000 00sw: mod 010 r/m: immediate data
ADD - Add	
register1 to register2	0000 000w:11 reg1 reg2
register2 to register1	0000 001w:11 reg1 reg2
memory to register	0000 001w: mod reg r/m
register to memory	0000 000w : mod reg r/m
immediate to register	1000 00sw : 11 000 reg : immediate data
immediate to AL, AX, or EAX	0000 010w : immediate data
immediate to memory	1000 00sw : mod 000 r/m : immediate data
AND - Logical AND	
register1 to register2	0010 000w:11 reg1 reg2
register2 to register1	0010 001w:11 reg1 reg2
memory to register	0010 001w: mod reg r/m
register to memory	0010 000w : mod reg r/m
immediate to register	1000 00sw : 11 100 reg : immediate data
immediate to AL, AX, or EAX	0010 010w : immediate data
immediate to memory	1000 00sw: mod 100 r/m: immediate data

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format	Encoding
ARPL - Adjust RPL Field of Selector	
from register	0110 0011 : 11 reg1 reg2
from memory	0110 0011 : mod reg r/m
BOUND - Check Array Against Bounds	0110 0010 : mod ^A reg r/m
BSF - Bit Scan Forward	
register1, register2	0000 1111 : 1011 1100 : 11 reg1 reg2
memory, register	0000 1111 : 1011 1100 : mod reg r/m
BSR - Bit Scan Reverse	
register1, register2	0000 1111 : 1011 1101 : 11 reg1 reg2
memory, register	0000 1111 : 1011 1101 : mod reg r/m
BSWAP - Byte Swap	0000 1111 : 1100 1 reg
BT - Bit Test	
register, immediate	0000 1111 : 1011 1010 : 11 100 reg: imm8 data
memory, immediate	0000 1111 : 1011 1010 : mod 100 r/m : imm8 data
register1, register2	0000 1111 : 1010 0011 : 11 reg2 reg1
memory, reg	0000 1111 : 1010 0011 : mod reg r/m
BTC - Bit Test and Complement	
register, immediate	0000 1111 : 1011 1010 : 11 111 reg: imm8 data
memory, immediate	0000 1111 : 1011 1010 : mod 111 r/m : imm8 data
register1, register2	0000 1111 : 1011 1011 : 11 reg2 reg1
memory, reg	0000 1111 : 1011 1011 : mod reg r/m
BTR - Bit Test and Reset	
register, immediate	0000 1111 : 1011 1010 : 11 110 reg: imm8 data
memory, immediate	0000 1111 : 1011 1010 : mod 110 r/m : imm8 data
register1, register2	0000 1111 : 1011 0011 : 11 reg2 reg1
memory, reg	0000 1111 : 1011 0011 : mod reg r/m
BTS - Bit Test and Set	
register, immediate	0000 1111 : 1011 1010 : 11 101 reg: imm8 data
memory, immediate	0000 1111 : 1011 1010 : mod 101 r/m : imm8 data
register1, register2	0000 1111 : 1010 1011 : 11 reg2 reg1
memory, reg	0000 1111 : 1010 1011 : mod reg r/m
CALL - Call Procedure (in same segment)	
direct	1110 1000 : full displacement
register indirect	1111 1111 : 11 010 reg
memory indirect	1111 1111 : mod 010 r/m
CALL - Call Procedure (in other segment)	
direct	1001 1010 : unsigned full offset, selector
indirect	1111 1111 : mod 011 r/m

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format	Encoding
CBW - Convert Byte to Word	1001 1000
CDQ - Convert Doubleword to Qword	1001 1001
CLC - Clear Carry Flag	1111 1000
CLD - Clear Direction Flag	1111 1100
CLI - Clear Interrupt Flag	1111 1010
CLTS - Clear Task-Switched Flag in CRO	0000 1111 : 0000 0110
CMC - Complement Carry Flag	1111 0101
CMP - Compare Two Operands	
register1 with register2	0011 100w:11 reg1 reg2
register2 with register1	0011 101w:11 reg1 reg2
memory with register	0011 100w : mod reg r/m
register with memory	0011 101w: mod reg r/m
immediate with register	1000 00sw : 11 111 reg : immediate data
immediate with AL, AX, or EAX	0011 110w : immediate data
immediate with memory	1000 00sw : mod 111 r/m : immediate data
CMPS/CMPSB/CMPSW/CMPSD - Compare String Operands	1010 011w
CMPXCHG - Compare and Exchange	
register1, register2	0000 1111 : 1011 000w : 11 reg2 reg1
memory, register	0000 1111 : 1011 000w : mod reg r/m
CPUID - CPU Identification	0000 1111 : 1010 0010
CWD - Convert Word to Doubleword	1001 1001
CWDE – Convert Word to Doubleword	1001 1000
DAA - Decimal Adjust AL after Addition	0010 0111
DAS – Decimal Adjust AL after Subtraction	0010 1111
DEC - Decrement by 1	
register	1111 111w:11 001 reg
register (alternate encoding)	0100 1 reg
memory	1111 111w: mod 001 r/m
DIV - Unsigned Divide	
AL, AX, or EAX by register	1111 011w:11 110 reg
AL, AX, or EAX by memory	1111 011w: mod 110 r/m
HLT - Halt	1111 0100
IDIV - Signed Divide	
AL, AX, or EAX by register	1111 011w:11 111 reg
AL, AX, or EAX by memory	1111 011w: mod 111 r/m

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format	Encoding
IMUL - Signed Multiply	
AL, AX, or EAX with register	1111 011w:11 101 reg
AL, AX, or EAX with memory	1111 011w: mod 101 reg
register1 with register2	0000 1111 : 1010 1111 : 11 : reg1 reg2
register with memory	0000 1111 : 1010 1111 : mod reg r/m
register1 with immediate to register2	0110 10s1 : 11 reg1 reg2 : immediate data
memory with immediate to register	0110 10s1 : mod reg r/m : immediate data
IN - Input From Port	
fixed port	1110 010w : port number
variable port	1110 110w
INC - Increment by 1	
гед	1111 111w:11 000 reg
reg (alternate encoding)	0100 0 reg
memory	1111 111w: mod 000 r/m
INS - Input from DX Port	0110 110w
INT n - Interrupt Type n	1100 1101 : type
INT - Single-Step Interrupt 3	1100 1100
INTO - Interrupt 4 on Overflow	1100 1110
INVD - Invalidate Cache	0000 1111 : 0000 1000
INVLPG - Invalidate TLB Entry	0000 1111 : 0000 0001 : mod 111 r/m
INVPCID - Invalidate Process-Context Identifier	0110 0110:0000 1111:0011 1000:1000 0010: mod reg r/m
IRET/IRETD - Interrupt Return	1100 1111
Jcc - Jump if Condition is Met	
8-bit displacement	0111 tttn:8-bit displacement
full displacement	0000 1111 : 1000 tttn : full displacement
JCXZ/JECXZ - Jump on CX/ECX Zero Address-size prefix differentiates JCXZ and JECXZ	1110 0011 : 8-bit displacement
JMP - Unconditional Jump (to same segment)	
short	1110 1011 : 8-bit displacement
direct	1110 1001 : full displacement
register indirect	1111 1111 : 11 100 reg
memory indirect	1111 1111 : mod 100 r/m
JMP - Unconditional Jump (to other segment)	
direct intersegment	1110 1010 : unsigned full offset, selector
indirect intersegment	1111 1111 : mod 101 r/m
LAHF - Load Flags into AHRegister	1001 1111

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

LAR - Load Access Rights Byte 0000 1111 : 0000 0010 : 11 reg1 reg2 from memory 0000 1111 : 0000 0010 : mod reg r/m LDS - Load Pointer to DS 1100 0101 : mod ^{A,B} reg r/m LEA - Load Effective Address 1000 1101 : mod ^A reg r/m LEAVE - High Level Procedure Exit 1100 1001 LES - Load Pointer to ES 1100 0100 : mod ^{A,B} reg r/m LFS - Load Pointer to FS 0000 1111 : 1011 0100 : mod ^A reg r/m LGDT - Load Global Descriptor Table Register 0000 1111 : 1011 0101 : mod ^A 010 r/m LGS - Load Pointer to GS 0000 1111 : 1011 0101 : mod ^A reg r/m LIDT - Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 011 r/m LLDT - Load Local Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 011 r/m
from memory 0000 1111 : 0000 0010 : mod reg r/m LDS - Load Pointer to DS 1100 0101 : mod ^{A,B} reg r/m LEA - Load Effective Address 1000 1101 : mod ^A reg r/m LEAVE - High Level Procedure Exit 1100 1001 LES - Load Pointer to ES 1100 0100 : mod ^{A,B} reg r/m LFS - Load Pointer to FS 0000 1111 : 1011 0100 : mod ^A reg r/m LGDT - Load Global Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 010 r/m LGS - Load Pointer to GS 0000 1111 : 1011 0101 : mod ^A reg r/m LIDT - Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 011 r/m
LDS - Load Pointer to DS 1100 0101 : mod ^{A,B} reg r/m LEA - Load Effective Address 1000 1101 : mod ^A reg r/m LEAVE - High Level Procedure Exit 1100 1001 LES - Load Pointer to ES 1100 0100 : mod ^{A,B} reg r/m LFS - Load Pointer to FS 0000 1111 : 1011 0100 : mod ^A reg r/m LGDT - Load Global Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 010 r/m LGS - Load Pointer to GS 0000 1111 : 1011 0101 : mod ^A reg r/m LIDT - Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 011 r/m
LEA - Load Effective Address 1000 1101 : mod ^A reg r/m LEAVE - High Level Procedure Exit 1100 1001 LES - Load Pointer to ES 1100 0100 : mod ^{A,B} reg r/m LFS - Load Pointer to FS 0000 1111 : 1011 0100 : mod ^A reg r/m LGDT - Load Global Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 010 r/m LGS - Load Pointer to GS 0000 1111 : 1011 0101 : mod ^A reg r/m LIDT - Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 011 r/m
LEAVE - High Level Procedure Exit 1100 1001 LES - Load Pointer to ES 1100 0100 : mod ^{A,B} reg r/m LFS - Load Pointer to FS 0000 1111 : 1011 0100 : mod ^A reg r/m LGDT - Load Global Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 010 r/m LGS - Load Pointer to GS 0000 1111 : 1011 0101 : mod ^A reg r/m LIDT - Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 011 r/m
LES - Load Pointer to ES 1100 0100 : mod ^{A,B} reg r/m LFS - Load Pointer to FS 0000 1111 : 1011 0100 : mod ^A reg r/m LGDT - Load Global Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 010 r/m LGS - Load Pointer to GS 0000 1111 : 1011 0101 : mod ^A reg r/m LIDT - Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 011 r/m
LFS - Load Pointer to FS 0000 1111 : 1011 0100 : mod ^A reg r/m LGDT - Load Global Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 010 r/m LGS - Load Pointer to GS 0000 1111 : 1011 0101 : mod ^A reg r/m LIDT - Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 011 r/m
LGDT - Load Global Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 010 r/m LGS - Load Pointer to GS 0000 1111 : 1011 0101 : mod ^A reg r/m LIDT - Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 011 r/m
LGS - Load Pointer to GS 0000 1111 : 1011 0101 : mod ^A reg r/m LIDT - Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 011 r/m
LIDT - Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : mod ^A 011 r/m
LLDT - Load Local Descriptor Table Register
LDTR from register 0000 1111 : 0000 0000 : 11 010 reg
LDTR from memory 0000 1111 : 0000 0000 : mod 010 r/m
LMSW - Load Machine Status Word
from register 0000 1111 : 0000 0001 : 11 110 reg
from memory 0000 1111 : 0000 0001 : mod 110 r/m
LOCK - Assert LOCK# Signal Prefix 1111 0000
LODS/LODSB/LODSW/LODSD - Load String Operand 1010 110w
LOOP - Loop Count 1110 0010 : 8-bit displacement
LOOPZ/LOOPE - Loop Count while Zero/Equal 1110 0001 : 8-bit displacement
LOOPNZ/LOOPNE - Loop Count while not Zero/Equal 1110 0000 : 8-bit displacement
LSL - Load Segment Limit
from register 0000 1111 : 0000 0011 : 11 reg1 reg2
from memory 0000 1111 : 0000 0011 : mod reg r/m
LSS - Load Pointer to SS 0000 1111 : 1011 0010 : mod ^A reg r/m
LTR - Load Task Register
from register 0000 1111 : 0000 0000 : 11 011 reg
from memory 0000 1111 : 0000 0000 : mod 011 r/m
MOV - Move Data
register1 to register2 1000 100w: 11 reg1 reg2
register2 to register1 1000 101w: 11 reg1 reg2
memory to reg 1000 101w: mod reg r/m
reg to memory 1000 100w: mod reg r/m
immediate to register 1100 011w: 11 000 reg: immediate data
immediate to register (alternate encoding) 1011 w reg : immediate data
immediate to memory 1100 011w: mod 000 r/m: immediate data
memory to AL, AX, or EAX 1010 000w: full displacement

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

AL, AX, or EAX to memory MOV - Move to/from Control Registers CR0 from register CR0 from register CR3 from register CR3 from register CR3 from register CR3 from register CR4 from register CR5 from register CR5 from register CR6 from register CR6 from register CR7 from register CR7 from register CR7 from register CR8 from register CR8 from register CR8 from register CR9 from DR4-DR5 CR9 from DR4-DR5 CR9 from DR4-DR5 CR9 from DR4-DR5 CR9 from CR9 from Register CR9 from Register from CR9 from Registers CR9 from Register from C	Instruction and Format	Encoding
CR0 from register 0000 1111:0010 0010:- 000 reg CR2 from register 0000 1111:0010 0010:- 010 reg CR3 from register 0000 1111:0010 0010:- 011 reg CR4 from register 0000 1111:0010 0000:- eee reg register from CR0-CR4 0000 1111:0010 0000:- eee reg MOV - Move to/from Debug Registers 0000 1111:0010 00011:- eee reg DR4-DR3 from register 0000 1111:0010 00011:- eee reg DR6-DR7 from register 0000 1111:0010 0001:- eee reg PR6-DR7 from DR4-DR5 0000 1111:0010 0001:- eee reg register from DR6-DR3 0000 1111:0010 0001:- eee reg MOV - Move to/from Segment Registers 1000 1110:111 sreg3 reg register to segment register 1000 1110:111 sreg3 reg memory to segment register 1000 1110:111 sreg3 reg memory to segment register to register 1000 1110:mod sreg3 r/m segment register to memory 1000 1100:mod sreg3 r/m MOVE - Move data after swapping bytes 1000 1100:mod sreg3 r/m memory to register 0000 1111:0011 1000:1111 0001:mod reg r/m MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 0100 MOVZX - Move with Sign-Extend 1000 1111:0111 111001:mod reg r/m </td <td>AL, AX, or EAX to memory</td> <td>1010 001w: full displacement</td>	AL, AX, or EAX to memory	1010 001w: full displacement
CR2 from register 0000 1111: 0010 0010: 010 reg CR3 from register 0000 1111: 0010 0010: 011 reg CR4 from register 0000 1111: 0010 0000: 001 reg register from CR0-CR4 0000 1111: 0010 0000: eee reg MOV - Move to/from Debug Registers 0000 1111: 0010 0011: eee reg DR0-DR3 from register 0000 1111: 0010 0011: eee reg DR6-DR7 from register 0000 1111: 0010 0001: eee reg PR6-DR7 from DR6-DR7 0000 1111: 0010 00001: eee reg register from DR4-DR5 0000 1111: 0010 00001: eee reg register from DR0-DR3 0000 1111: 0010 00001: eee reg MOV - Move to/from Segment Registers 1000 1110: 111 sreg3 reg register to segment register 1000 1110: 111 sreg3 reg memory to segment reg 1000 1110: 111 sreg3 reg memory to segment register to register 1000 1110: 111 sreg3 reg segment register to register 1000 1110: mod sreg3 r/m MOVBE - Move data after swapping bytes 1000 1100: 111 sreg3 reg memory to register 0000 1111: 0011 1000: 1111 0000: mod reg r/m MOVSX - Move with Sign-Extend 0000 1111: 0011 1000: 1111 0000: mod reg r/m MOVZX - Move with Sign-Extend <td>MOV - Move to/from Control Registers</td> <td></td>	MOV - Move to/from Control Registers	
CR3 from register 0000 1111: 0010 0010: - 011 reg CR4 from register 0000 1111: 0010 0010: - 100 reg register from CR0-CR4 0000 1111: 0010 0000: - eee reg MOV - Move to/from Debug Registers 0000 1111: 0010 0011: - eee reg DR0-DR3 from register 0000 1111: 0010 0011: - eee reg DR6-DR7 from register 0000 1111: 0010 0001: - eee reg register from DR6-DR7 0000 1111: 0010 0001: - eee reg register from DR0-DR3 0000 1111: 0010 0001: - eee reg register from DR0-DR3 0000 1111: 0010 0001: - eee reg register to segment registers 1000 1110: 11 sreg3 reg register to segment register 1000 1110: 11 sreg3 reg memory to segment register 1000 1110: mod sreg3 r/m memory to SS 1000 1110: mod sreg3 r/m segment register to memory 1000 1100: mod sreg3 r/m MOVBE - Move data after swapping bytes 0000 1111: 0011 1000: 1111 0000: mod reg r/m memory to register 0000 1111: 0011 1000: 1111 0001: mod reg r/m MOVS/MOVSM/MOVSM/MOVSD - Move Data from String to String	CRO from register	0000 1111 : 0010 0010 : 000 reg
CR4 from register	CR2 from register	0000 1111 : 0010 0010 : 010reg
register from CRO-CR4 0000 1111 : 0010 0000 : eee reg MOV - Move to/from Debug Registers 0000 1111 : 0010 0011 : eee reg DR4-DR5 from register 0000 1111 : 0010 0011 : eee reg DR6-DR7 from register 0000 1111 : 0010 0001 : eee reg PR6-DR7 from DR6-DR7 0000 1111 : 0010 0001 : eee reg register from DR4-DR5 0000 1111 : 0010 0001 : eee reg register from DR0-DR3 0000 1111 : 0010 0001 : eee reg MOV - Move to/from Segment Registers 1000 1110 : 11 sreg3 reg register to segment register 1000 1110 : 11 sreg3 reg memory to segment reg 1000 1110 : mod sreg3 r/m memory to segment register to memory 1000 1110 : mod sreg3 r/m memory to register to memory 1000 1100 : 11 sreg3 reg segment register to memory 1000 1100 : mod sreg3 r/m MOVBE - Move data after swapping bytes 0000 1111 : 0011 1000: 1111 0000 : mod reg r/m MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to String 0000 1111 : 0011 1000: 1111 0001 : mod reg r/m MOVSX - Move with Sign-Extend 0000 1111 : 1011 111 111 11 11 11 11 11 11 11 11 11	CR3 from register	0000 1111 : 0010 0010 : 011 reg
MOV - Move to/from Debug Registers 0000 1111: 0010 0011: eee reg DR4-DR5 from register 0000 1111: 0010 0011: eee reg DR4-DR5 from register 0000 1111: 0010 0001: eee reg DR6-DR7 from register 0000 1111: 0010 0001: eee reg register from DR6-DR7 0000 1111: 0010 0001: eee reg register from DR0-DR3 0000 1111: 0010 0001: eee reg MOV - Move to/from Segment Registers 0000 1110: 11 sreg3 reg register to segment register 1000 1110: 11 sreg3 reg register to segment register 1000 1110: mod sreg3 r/m memory to SS 1000 1110: mod sreg3 r/m segment register to register 1000 1100: mod sreg3 r/m segment register to memory 1000 1100: mod sreg3 r/m MOVBE - Move data after swapping bytes memory to register memory to register 0000 1111: 0011 1000: 1111 0000: mod reg r/m MOVSX-Move with Sign-Extend 1010 010w memory to register 0000 1111: 1011 1111 111 111 111 111 111	CR4 from register	0000 1111 : 0010 0010 : 100 reg
DRO-DR3 from register	register from CRO-CR4	0000 1111 : 0010 0000 : eee reg
DR4-DR5 from register 0000 1111: 0010 0011: eee reg DR6-DR7 from register 0000 1111: 0010 0001: eee reg register from DR6-DR7 0000 1111: 0010 0001: eee reg register from DR4-DR5 0000 1111: 0010 0001: eee reg MOV - Move to/from Segment Registers 0000 1110: 111 sreg3 reg register to segment register 1000 1110: 111 sreg3 reg register to SS 1000 1110: mod sreg3 r/m memory to SS 1000 1110: mod sreg3 r/m segment register to register 1000 1110: mod sreg3 r/m segment register to memory 1000 1100: mod sreg3 r/m MOVBE - Move data after swapping bytes 0000 1111: 0011 1000: 1111 0000: mod reg r/m MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 0100 MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 0100 MOVSX - Move with Sign-Extend 0000 1111: 1011 111w: mod reg r/m MOVZX - Move with Zero-Extend 0000 1111: 1011 011w: 11 reg1 reg2 memory to register 0000 1111: 1011 011w: mod reg r/m MUL - Unsigned Multiply 1111 011w: 111 001 reg AL, AX, or EAX with register 1111 011w: 110 010 reg AL, AX, or EAX with register 1111	MOV - Move to/from Debug Registers	
DR6-DR7 from register 0000 1111: 0010 0011: eee reg register from DR6-DR7 0000 1111: 0010 0001: eee reg register from DR4-DR5 0000 1111: 0010 0001: eee reg register from DR0-DR3 0000 1111: 0010 0001: eee reg MOV - Move to/from Segment Registers 1000 1110: 11 sreg3 reg register to segment register 1000 1110: 11 sreg3 reg memory to segment reg 1000 1110: mod sreg3 r/m memory to SS 1000 1110: mod sreg3 r/m segment register to register 1000 1100: 11 sreg3 reg segment register to memory 1000 1100: mod sreg3 r/m MOVBE - Move data after swapping bytes memory to register memory to register 0000 1111: 0011 1000: 1111 0000: mod reg r/m MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 010w MOVSX - Move with Sign-Extend 1010 010w memory to reg 0000 1111: 1011 111w: mod reg r/m MOVZX - Move with Zero-Extend 0000 1111: 1011 011w: 11 reg1 reg2 memory to register 0000 1111: 1011 011w: mod reg r/m MUL - Unsigned Multiply 1111 011w: 11 100 reg AL, AX, or EAX with register 1111 011w: 11 001 reg	DRO-DR3 from register	0000 1111 : 0010 0011 : eee reg
register from DR6-DR7 register from DR4-DR5 register from DR4-DR5 register from DR0-DR3 MOV - Move to/from Segment Registers register to segment register register to SS memory to segment reg memory to segment register 1000 1110:11 sreg3 reg memory to segment register 1000 1110:mod sreg3 r/m memory to SS 1000 1110:mod sreg3 r/m memory to SS 1000 1110:mod sreg3 r/m 1000 1110:mod sreg3 r/m 1000 1110:mod sreg3 r/m 1000 1110:mod sreg3 r/m MOVBE - Move data after swapping bytes memory to register to memory 1000 1100:mod sreg3 r/m MOVS-MOVSB/MOVSW/MOVSD - Move Data from String to String MOVS-Move with Sign-Extend memory to reg 1000 1111:1011 111w:mod reg r/m MOVZX - Move with Zero-Extend register2 to register1 1000 1111:1011 111w:mod reg r/m MUL - Unsigned Multiply AL, AX, or EAX with register 1111 011w: 11 101 reg memory NEG - Two's Complement Negation register 1111 011w:mod 011 r/m	DR4-DR5 from register	0000 1111 : 0010 0011 : eee reg
register from DR4-DR5 register from DR0-DR3 0000 1111:0010 0001: eee reg MOV - Move to/from Segment Registers register to segment register 1000 1110:11 sreg3 reg register to SS 1000 1110:11 sreg3 reg memory to segment reg 1000 1110:mod sreg3 r/m 1000 1110:mod sreg3 r/m memory to SS 1000 1110:mod sreg3 r/m memory to segment register 1000 1100:11 sreg3 reg segment register to register 1000 1100:mod sreg3 r/m MOVBE - Move data after swapping bytes memory to register 1000 1100:mod sreg3 r/m MOVSI/MOVSB/MOVSW/MOVSD - Move Data from String to String MOVSX - Move with Sign-Extend memory to reg 1000 1111:1011 111w:mod reg r/m MOVZX - Move with Zero-Extend register to register 1000 1111:1011 011w:mod reg r/m MUL - Unsigned Multiply AL, AX, or EAX with register 1111 011w:11 101 reg memory NEG - Two's Complement Negation register 1111 011w:mod 011 r/m	DR6-DR7 from register	0000 1111 : 0010 0011 : eee reg
register from DRO-DR3 MOV - Move to/from Segment Registers register to segment register register to segment register 1000 1110:11 sreg3 reg memory to segment reg 1000 1110:mod sreg3 r/m memory to SS 1000 1110:mod sreg3 r/m segment register to register 1000 1110:mod sreg3 r/m memory to SS 1000 1110:mod sreg3 r/m move data after swapping bytes memory to register 1000 1100:mod sreg3 r/m MOVBE - Move data after swapping bytes memory to register 1000 1111:0011 1000:1111 0000:mod reg r/m movs/MOVSB/MOVSB/MOVSW/MOVSD - Move Data from String to String MOVSX - Move with Sign-Extend memory to reg 1000 1111:1011 1111 111 111 mod reg r/m MOVZX - Move with Zero-Extend register 2 to register 1 1000 1111:1011 011w:mod reg r/m MUL - Unsigned Multiply AL, AX, or EAX with register 1111 011w:11 101 reg memory NEG - Two's Complement Negation register 1111 011w:mod 011 r/m	register from DR6-DR7	0000 1111 : 0010 0001 : eee reg
## MOV - Move to/from Segment Registers register to segment register 1000 1110 : 11 sreg3 reg register to SS 1000 1110 : 11 sreg3 reg memory to segment reg 1000 1110 : mod sreg3 r/m memory to segment register to register 1000 1110 : mod sreg3 r/m segment register to register 1000 1100 : 11 sreg3 reg segment register to memory 1000 1100 : mod sreg3 r/m MOVBE - Move data after swapping bytes memory to register 0000 1111 : 0011 1000: 1111 0000 : mod reg r/m register to memory 0000 1111 : 0011 1000: 1111 0000 : mod reg r/m MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 010w MOVSX - Move with Sign-Extend 1010 010w memory to reg 0000 1111 : 1011 111w : mod reg r/m MOVZX - Move with Zero-Extend 0000 1111 : 1011 011w : 11 reg1 reg2 memory to register 0000 1111 : 1011 011w : mod reg r/m MUL - Unsigned Multiply AL, AX, or EAX with register 1111 011w : 1100 reg AL, AX, or EAX with memory 1111 011w : mod 100 r/m NEG - Two's Complement Negation register 1111 011w : mod 011 r/m	register from DR4-DR5	0000 1111 : 0010 0001 : eee reg
register to segment register register to SS 1000 1110 : 11 sreg3 reg memory to segment reg 1000 1110 : 11 sreg3 reg memory to segment reg 1000 1110 : mod sreg3 r/m memory to SS 1000 1110 : mod sreg3 r/m segment register to register 1000 1100 : 11 sreg3 reg segment register to memory 1000 1100 : mod sreg3 r/m MOVBE - Move data after swapping bytes memory to register 1000 1111 : 0011 1000: 1111 0000 : mod reg r/m register to memory 1000 1111 : 0011 1000: 1111 0001 : mod reg r/m MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to String MOVSX - Move with Sign-Extend memory to reg 1000 1111 : 1011 1111 w : mod reg r/m MOVZX - Move with Zero-Extend register 2 to register 1 1000 1111 : 1011 011 w : 11 reg1 reg2 memory to register 1 MUL - Unsigned Multiply AL, AX, or EAX with register 1 AL, AX, or EAX with register 1 NEG - Two's Complement Negation register 1111 011 w : mod 011 r/m	register from DRO-DR3	0000 1111 : 0010 0001 : eee reg
register to SS	MOV - Move to/from Segment Registers	
memory to segment reg 1000 1110: mod sreg3 r/m memory to SS 1000 1110: mod sreg3 r/m segment register to register 1000 1100: 11 sreg3 reg segment register to memory 1000 1100: mod sreg3 r/m MOVBE - Move data after swapping bytes 0000 1111: 0011 1000:1111 0000: mod reg r/m memory to register to memory 0000 1111: 0011 1000:1111 0001: mod reg r/m MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 010w String 0000 1111: 1011 111w: mod reg r/m MOVZX - Move with Sign-Extend 0000 1111: 1011 011w: mod reg r/m memory to register 2 to register 1 0000 1111: 1011 011w: 11 reg1 reg2 memory to register 0000 1111: 1011 011w: mod reg r/m MUL - Unsigned Multiply 1111 011w: 11 100 reg AL, AX, or EAX with register 1111 011w: mod 100 r/m NEG - Two's Complement Negation 1111 011w: mod 011 r/m	register to segment register	1000 1110 : 11 sreg3 reg
memory to SS 1000 1110 : mod sreg3 r/m segment register to register 1000 1100 : 11 sreg3 reg segment register to memory 1000 1100 : mod sreg3 r/m MOVBE - Move data after swapping bytes 0000 1111 : 0011 1000:1111 0000 : mod reg r/m register to memory 0000 1111 : 0011 1000:1111 0001 : mod reg r/m MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 010w MOVSX - Move with Sign-Extend 0000 1111 : 1011 111 w : mod reg r/m MOVZX - Move with Zero-Extend 0000 1111 : 1011 011 w : 11 reg1 reg2 memory to register 0000 1111 : 1011 011 w : mod reg r/m MUL - Unsigned Multiply 1111 011 w : 11 100 reg AL, AX, or EAX with register 1111 011 w : mod 100 r/m NEG - Two's Complement Negation 1111 011 w : 11 011 reg memory 1111 011 w : mod 011 r/m	register to SS	1000 1110 : 11 sreg3 reg
segment register to register 1000 1100 : 11 sreg3 reg segment register to memory 1000 1100 : mod sreg3 r/m MOVBE - Move data after swapping bytes 0000 1111 : 0011 1000:1111 0000 : mod reg r/m register to memory 0000 1111 : 0011 1000:1111 0001 : mod reg r/m MOVSX/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 010w MOVSX - Move with Sign-Extend 0000 1111 : 1011 111w : mod reg r/m MOVZX - Move with Zero-Extend 0000 1111 : 1011 011w : 11 reg1 reg2 register2 to register1 0000 1111 : 1011 011w : mod reg r/m MUL - Unsigned Multiply 1111 011w : 11 100 reg AL, AX, or EAX with register 1111 011w : mod 100 r/m NEG - Two's Complement Negation 1111 011w : 11 011 reg register 1111 011w : mod 011 r/m	memory to segment reg	1000 1110 : mod sreg3 r/m
MOVBE - Move data after swapping bytes	memory to SS	1000 1110 : mod sreg3 r/m
MOVBE - Move data after swapping bytes 0000 1111: 0011 1000:1111 0000: mod reg r/m register to memory 0000 1111: 0011 1000:1111 0001: mod reg r/m MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 010w MOVSX - Move with Sign-Extend 0000 1111: 1011 111w: mod reg r/m MOVZX - Move with Zero-Extend 0000 1111: 1011 011w: 11 reg1 reg2 register2 to register1 0000 1111: 1011 011w: mod reg r/m MUL - Unsigned Multiply 0000 1111: 1011 011w: mod reg r/m AL, AX, or EAX with register 1111 011w: 11 100 reg AL, AX, or EAX with memory 1111 011w: mod 100 r/m NEG - Two's Complement Negation 1111 011w: 11 011 reg memory 1111 011w: mod 011 r/m	segment register to register	1000 1100 : 11 sreg3 reg
memory to register 0000 1111:0011 1000:1111 0000:mod reg r/m register to memory 0000 1111:0011 1000:1111 0001:mod reg r/m MOVSS/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 010w MOVSX - Move with Sign-Extend 0000 1111:1011 111w:mod reg r/m MOVZX - Move with Zero-Extend 0000 1111:1011 011w:11 reg1 reg2 register 2 to register 1 0000 1111:1011 011w:mod reg r/m MUL - Unsigned Multiply 0000 1111:1011 011w:mod 100 r/m AL, AX, or EAX with register 1111 011w:11 100 reg AL, AX, or EAX with memory 1111 011w:mod 100 r/m NEG - Two's Complement Negation 1111 011w:mod 011 r/m	segment register to memory	1000 1100 : mod sreg3 r/m
register to memory 0000 1111:0011 1000:1111 0001:mod reg r/m MOVSS/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 010w MOVSX - Move with Sign-Extend 0000 1111:1011 111w:mod reg r/m MOVZX - Move with Zero-Extend 0000 1111:1011 011w:11 reg1 reg2 register2 to register1 0000 1111:1011 011w:mod reg r/m MUL - Unsigned Multiply 0000 1111:1011 011w:mod reg r/m AL, AX, or EAX with register 1111 011w:11 100 reg AL, AX, or EAX with memory 1111 011w:mod 100 r/m NEG - Two's Complement Negation 1111 011w:11 011 reg memory 1111 011w:mod 011 r/m	MOVBE - Move data after swapping bytes	
MOVS/MOVSB/MOVSW/MOVSD - Move Data from String to String 1010 010w MOVSX - Move with Sign-Extend 0000 1111:1011 111w:mod reg r/m MOVZX - Move with Zero-Extend 0000 1111:1011 011w:11 reg1 reg2 register2 to register1 0000 1111:1011 011w:mod reg r/m MUL - Unsigned Multiply 0000 1111:1011 011w:mod reg r/m AL, AX, or EAX with register 1111 011w:11 100 reg AL, AX, or EAX with memory 1111 011w:mod 100 r/m NEG - Two's Complement Negation 1111 011w:11 011 reg memory 1111 011w:mod 011 r/m	memory to register	0000 1111 : 0011 1000:1111 0000 : mod reg r/m
String MOVSX - Move with Sign-Extend memory to reg 0000 1111 : 1011 111 w : mod reg r/m MOVZX - Move with Zero-Extend 0000 1111 : 1011 011 w : 11 reg1 reg2 register2 to register1 0000 1111 : 1011 011 w : mod reg r/m MUL - Unsigned Multiply 0000 1111 : 1011 w : 11 100 reg AL, AX, or EAX with register 1111 011 w : 11 100 reg AL, AX, or EAX with memory 1111 011 w : mod 100 r/m NEG - Two's Complement Negation 1111 011 w : 11 011 reg memory 1111 011 w : mod 011 r/m	register to memory	0000 1111 : 0011 1000:1111 0001 : mod reg r/m
memory to reg 0000 1111: 1011 111w: mod reg r/m MOVZX - Move with Zero-Extend 0000 1111: 1011 011w: 11 reg1 reg2 register2 to register 1 0000 1111: 1011 011w: mod reg r/m MUL - Unsigned Multiply AL, AX, or EAX with register 1111 011w: 11 100 reg 1111 011w: 11 100 reg AL, AX, or EAX with memory 1111 011w: mod 100 r/m 1111 011w: mod 101 r/m NEG - Two's Complement Negation register 1111 011w: 11 011 reg 1111 011w: mod 011 r/m		1010 010w
MOVZX - Move with Zero-Extend 0000 1111:1011 011w:11 reg1 reg2 register2 to register 0000 1111:1011 011w:mod reg r/m MUL - Unsigned Multiply 1111 011w:11 100 reg AL, AX, or EAX with register 1111 011w:mod 100 r/m NEG - Two's Complement Negation 1111 011w:11 011 reg register 1111 011w:mod 011 r/m	MOVSX - Move with Sign-Extend	
register2 to register1 0000 1111 : 1011 011 w : 11 reg1 reg2 memory to register 0000 1111 : 1011 011 w : mod reg r/m MUL - Unsigned Multiply 1111 011 w : 11 100 reg AL, AX, or EAX with register 1111 011 w : mod 100 r/m NEG - Two's Complement Negation 1111 011 w : 11 011 reg register 1111 011 w : mod 011 r/m	memory to reg	0000 1111 : 1011 111w : mod reg r/m
memory to register 0000 1111 : 1011 011 w : mod reg r/m MUL - Unsigned Multiply 1111 011 w : 11 100 reg AL, AX, or EAX with register 1111 011 w : mod 100 r/m NEG - Two's Complement Negation 1111 011 w : 11 011 reg register 1111 011 w : mod 011 r/m	MOVZX - Move with Zero-Extend	
MUL - Unsigned Multiply AL, AX, or EAX with register 1111 011w: 11 100 reg AL, AX, or EAX with memory 1111 011w: mod 100 r/m NEG - Two's Complement Negation 1111 011w: 11 011 reg register 1111 011w: mod 011 r/m	register2 to register1	0000 1111 : 1011 011w : 11 reg1 reg2
AL, AX, or EAX with register AL, AX, or EAX with memory 1111 011w: 11 100 reg 1111 011w: mod 100 r/m NEG - Two's Complement Negation register 1111 011w: 11 011 reg memory 1111 011w: mod 011 r/m	memory to register	0000 1111 : 1011 011w : mod reg r/m
AL, AX, or EAX with memory 1111 011w: mod 100 r/m NEG - Two's Complement Negation 1111 011w: 11 011 reg memory 1111 011w: mod 011 r/m	MUL - Unsigned Multiply	
NEG - Two's Complement Negation 1111 011 w : 11 011 reg register 1111 011 w : mod 011 r/m	AL, AX, or EAX with register	1111 011w:11 100 reg
register 1111 011 w : 11 011 reg memory 1111 011 w : mod 011 r/m	AL, AX, or EAX with memory	1111 011w: mod 100 r/m
memory 1111 011w: mod 011 r/m	NEG – Two's Complement Negation	
	register	1111 011w:11 011 reg
NOP - No Operation 1001 0000	memory	1111 011w: mod 011 r/m
	NOP - No Operation	1001 0000

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format	Encoding
NOP - Multi-byte No Operation ¹	-
register	0000 1111 0001 1111 : 11 000 reg
memory	0000 1111 0001 1111 : mod 000 r/m
NOT - One's Complement Negation	
register	1111 011w:11 010 reg
memory	1111 011w: mod 010 r/m
OR - Logical Inclusive OR	
register1 to register2	0000 100w : 11 reg1 reg2
register2 to register1	0000 101w:11 reg1 reg2
memory to register	0000 101w : mod reg r/m
register to memory	0000 100w : mod reg r/m
immediate to register	1000 00sw : 11 001 reg : immediate data
immediate to AL, AX, or EAX	0000 110w : immediate data
immediate to memory	1000 00sw: mod 001 r/m: immediate data
OUT - Output to Port	
fixed port	1110 011w: port number
variable port	1110 111w
OUTS - Output to DX Port	0110 111w
POP - Pop a Word from the Stack	
register	1000 1111 : 11 000 reg
register (alternate encoding)	0101 1 reg
memory	1000 1111 : mod 000 r/m
POP - Pop a Segment Register from the Stack (Note: CS cannot be sreg2 in this usage.)	
segment register DS, ES	000 sreg2 111
segment register SS	000 sreg2 111
segment register FS, GS	0000 1111: 10 sreg3 001
POPA/POPAD - Pop All General Registers	0110 0001
POPF/POPFD - Pop Stack into FLAGS or EFLAGS Register	1001 1101
PUSH - Push Operand onto the Stack	
register	1111 1111 : 11 110 reg
register (alternate encoding)	0101 0 reg
memory	1111 1111 : mod 110 r/m
immediate	0110 10s0 : immediate data
PUSH - Push Segment Register onto the Stack	
segment register CS,DS,ES,SS	000 sreg2 110
segment register FS,GS	0000 1111: 10 sreg3 000

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format	Encoding
PUSHA/PUSHAD - Push All General Registers	0110 0000
PUSHF/PUSHFD - Push Flags Register onto the Stack	1001 1100
RCL – Rotate thru Carry Left	
register by 1	1101 000w:11 010 reg
memory by 1	1101 000w: mod 010 r/m
register by CL	1101 001w:11 010 reg
memory by CL	1101 001w: mod 010 r/m
register by immediate count	1100 000w : 11 010 reg : imm8 data
memory by immediate count	1100 000w : mod 010 r/m : imm8 data
RCR - Rotate thru Carry Right	
register by 1	1101 000w:11 011 reg
memory by 1	1101 000w: mod 011 r/m
register by CL	1101 001w:11 011 reg
memory by CL	1101 001w: mod 011 r/m
register by immediate count	1100 000w : 11 011 reg : imm8 data
memory by immediate count	1100 000w : mod 011 r/m : imm8 data
RDMSR - Read from Model-Specific Register	0000 1111 : 0011 0010
RDPMC - Read Performance Monitoring Counters	0000 1111 : 0011 0011
RDTSC - Read Time-Stamp Counter	0000 1111 : 0011 0001
RDTSCP - Read Time-Stamp Counter and Processor ID	0000 1111 : 0000 0001: 1111 1001
REP INS - Input String	1111 0011 : 0110 110w
REP LODS - Load String	1111 0011 : 1010 110w
REP MOVS - Move String	1111 0011 : 1010 010w
REP OUTS - Output String	1111 0011 : 0110 111w
REP STOS - Store String	1111 0011 : 1010 101w
REPE CMPS - Compare String	1111 0011 : 1010 011w
REPE SCAS – Scan String	1111 0011 : 1010 111w
REPNE CMPS - Compare String	1111 0010 : 1010 011w
REPNE SCAS – Scan String	1111 0010 : 1010 111w
RET - Return from Procedure (to same segment)	
no argument	1100 0011
adding immediate to SP	1100 0010 : 16-bit displacement
RET - Return from Procedure (to other segment)	
intersegment	1100 1011
adding immediate to SP	1100 1010 : 16-bit displacement

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format	Encoding
ROL - Rotate Left	
register by 1	1101 000w:11 000 reg
memory by 1	1101 000w: mod 000 r/m
register by CL	1101 001w:11 000 reg
memory by CL	1101 001w: mod 000 r/m
register by immediate count	1100 000w : 11 000 reg : imm8 data
memory by immediate count	1100 000w : mod 000 r/m : imm8 data
ROR - Rotate Right	
register by 1	1101 000w:11 001 reg
memory by 1	1101 000w: mod 001 r/m
register by CL	1101 001w:11 001 reg
memory by CL	1101 001w: mod 001 r/m
register by immediate count	1100 000w : 11 001 reg : imm8 data
memory by immediate count	1100 000w : mod 001 r/m : imm8 data
RSM - Resume from System Management Mode	0000 1111 : 1010 1010
SAHF - Store AH into Flags	1001 1110
SAL - Shift Arithmetic Left	same instruction as SHL
SAR - Shift Arithmetic Right	
register by 1	1101 000w:11 111 reg
memory by 1	1101 000w: mod 111 r/m
register by CL	1101 001w:11 111 reg
memory by CL	1101 001w: mod 111 r/m
register by immediate count	1100 000w : 11 111 reg : imm8 data
memory by immediate count	1100 000w: mod 111 r/m: imm8 data
SBB - Integer Subtraction with Borrow	
register1 to register2	0001 100w:11 reg1 reg2
register2 to register1	0001 101w:11 reg1 reg2
memory to register	0001 101w: mod reg r/m
register to memory	0001 100w : mod reg r/m
immediate to register	1000 00sw : 11 011 reg : immediate data
immediate to AL, AX, or EAX	0001 110w : immediate data
immediate to memory	1000 00sw : mod 011 r/m : immediate data
SCAS/SCASB/SCASW/SCASD - Scan String	1010 111w
SETcc - Byte Set on Condition	
register	0000 1111 : 1001 tttn : 11 000 reg
memory	0000 1111 : 1001 tttn : mod 000 r/m
SGDT - Store Global Descriptor Table Register	0000 1111 : 0000 0001 : mod ^A 000 r/m

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format	Encoding
SHL - Shift Left	
register by 1	1101 000w:11 100 reg
memory by 1	1101 000w : mod 100 r/m
register by CL	1101 001w:11 100 reg
memory by CL	1101 001w: mod 100 r/m
register by immediate count	1100 000w : 11 100 reg : imm8 data
memory by immediate count	1100 000w : mod 100 r/m : imm8 data
SHLD - Double Precision Shift Left	
register by immediate count	0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8
memory by immediate count	0000 1111 : 1010 0100 : mod reg r/m : imm8
register by CL	0000 1111 : 1010 0101 : 11 reg2 reg1
memory by CL	0000 1111 : 1010 0101 : mod reg r/m
SHR - Shift Right	
register by 1	1101 000w:11 101 reg
memory by 1	1101 000w: mod 101 r/m
register by CL	1101 001w:11 101 reg
memory by CL	1101 001w: mod 101 r/m
register by immediate count	1100 000w : 11 101 reg : imm8 data
memory by immediate count	1100 000w : mod 101 r/m : imm8 data
SHRD - Double Precision Shift Right	
register by immediate count	0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8
memory by immediate count	0000 1111 : 1010 1100 : mod reg r/m : imm8
register by CL	0000 1111 : 1010 1101 : 11 reg2 reg1
memory by CL	0000 1111 : 1010 1101 : mod reg r/m
SIDT - Store Interrupt Descriptor Table Register	0000 1111 : 0000 0001 : mod ^A 001 r/m
SLDT - Store Local Descriptor Table Register	
to register	0000 1111 : 0000 0000 : 11 000 reg
to memory	0000 1111 : 0000 0000 : mod 000 r/m
SMSW - Store Machine Status Word	
to register	0000 1111 : 0000 0001 : 11 100 reg
to memory	0000 1111 : 0000 0001 : mod 100 r/m
STC - Set Carry Flag	1111 1001
STD - Set Direction Flag	1111 1101
STI - Set Interrupt Flag	1111 1011
STOS/STOSB/STOSW/STOSD - Store String Data	1010 101w
STR - Store Task Register	
to register	0000 1111 : 0000 0000 : 11 001 reg
to memory	0000 1111 : 0000 0000 : mod 001 r/m

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

SUB - Integer Subtraction cregister to register cregister to register 0010 101 w: 11 reg1 reg2 memory to register 0010 101 w: mod reg r/m register to memory 0010 100 w: mod reg r/m immediate to register 1000 005 w: 11 101 reg; immediate data immediate to AL, AX, or EAX 0010 110 w: immediate data immediate to memory 1000 005 w: mod 101 r/m: immediate data TEST - Logical Compare 1000 010 w: mod reg r/m register and register 1000 010 w: mod reg r/m immediate and register 1000 010 w: mod reg r/m immediate and register 1000 010 w: mod reg r/m immediate and register 1111 011 w: 11 000 reg; immediate data immediate and register 1111 011 w: 11 000 reg; immediate data UDO - Undefined instruction 0000 1111: 1111 1111 UD1 - Undefined instruction 0000 1111: 1111 1111 UD2 - Undefined instruction 0000 1111: 0000 0000: 111 100 reg wemony 0000 1111: 0000 0000: mod 100 r/m VERW - Verify a Segment for Reading 0000 1111: 0000 0000: mod 100 r/m VERW - Verify a Segment for Wirting 0000 1111: 0000 0000: mod 100 r/m </th <th>Instruction and Format</th> <th>Encoding</th>	Instruction and Format	Encoding
register2 to register1	SUB - Integer Subtraction	
memory to register 0010 101w: mod reg r/m register to memory 0010 100w: mod reg r/m 1000 005w: 11 101 reg : immediate data 1000 005w: 11 101 reg : immediate data 1000 005w: mod 101 r/m: immediate data 1000 005w: mod 101 r/m: immediate data 1000 005w: mod 101 r/m: immediate data 1000 010w: mod reg r/m 1000 010w: 11 reg1 reg2 1000 010w: 11 reg1 reg2 1000 010w: 11 reg1 reg2 1000 010w: mod reg r/m 1110 010 000w: mod reg r/m 1110 010 010 010 1110 010 010 010 1110 010 0	register1 to register2	0010 100w: 11 reg1 reg2
register to memory	register2 to register1	0010 101w: 11 reg1 reg2
immediate to register	memory to register	0010 101w: mod reg r/m
immediate to AL, AX, or EAX 0010 110w: immediate data immediate to memory 1000 00sw: mod 101 r/m: immediate data TEST - Logical Compare 1000 010w: 11 reg1 reg2 register1 and register2 1000 010w: mod reg r/m immediate and register 1111 011w: 11 000 reg: immediate data immediate and register 1111 011w: nod 000 r/m: immediate data immediate and memory 1111 011w: mod 000 r/m: immediate data UDD - Undefined instruction 0000 1111: 1111 1111 UD1 - Undefined instruction 0000 1111: 0000 1011 UD2 - Undefined instruction 0000 1111: 0000 0000: 11 100 reg register 0000 1111: 0000 0000: 11 100 reg memory 0000 1111: 0000 0000: mod 100 r/m VERW - Verify a Segment for Writing VERW - Verify a Segment for Writing register 0000 1111: 0000 0000: mod 100 r/m WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111: 0000 0000: mod 101 r/m WAND - Exchange and Add 0000 1111: 1100 000w: 11 reg2 reg1 register1, register2 0000 1111: 1100 000w: 11 reg2 reg1 memory, reg 0000 1111: 1100 000w: 11 reg1 reg2 AX or	register to memory	0010 100w: mod reg r/m
Immediate to memory	immediate to register	1000 00sw : 11 101 reg : immediate data
TEST - Logical Compare 1000 010w: 11 reg1 reg2 register1 and register2 1000 010w: mod reg r/m immediate and register 1111 011w: 11 0000 reg : immediate data immediate and AL, AX, or EAX 1010 100w: immediate data immediate and memory 1111 011w: mod 000 r/m: immediate data UDO - Undefined instruction 0000 1111: 1111 1111 UD1 - Undefined instruction 0000 1111: 0000 1011 UD2 - Undefined instruction 0000 1111: 0000 0000: 111 00 reg WERR - Verify a Segment for Reading 0000 1111: 0000 0000: 111 00 reg register 0000 1111: 0000 0000: mod 100 r/m VERW - Verify a Segment for Writing 0000 1111: 0000 0000: mod 100 r/m register 0000 1111: 0000 0000: mod 101 r/m wAIT - Wait 1001 1011 WBINUD - Writeback and Invalidate Data Cache 0000 1111: 0000 0000: mod 101 r/m WRMSR - Write to Model-Specific Register 0000 1111: 0000 1001 WRMSR - Write to Model-Specific Register 0000 1111: 0001 10000 XADD - Exchange and Add 0000 1111: 1110 0000w: 11 reg2 reg1 register1 with register2 1000 011w: 11 reg1 reg2 AX or EAX with reg 1001 0 reg	immediate to AL, AX, or EAX	0010 110w : immediate data
register1 and register2	immediate to memory	1000 00sw : mod 101 r/m : immediate data
memory and register	TEST - Logical Compare	
immediate and register 1111 011w: 11 000 reg: immediate data immediate and AL, AX, or EAX 1010 100w: immediate data immediate and memory 1111 011w: mod 000 r/m: immediate data UDO - Undefined instruction 0000 1111: 1111 1111 UDZ - Undefined instruction 0000 1111: 0000 1011 VERR - Verify a Segment for Reading 0000 1111: 0000 0000: 111 100 reg register 0000 1111: 0000 0000: mod 100 r/m VERW - Verify a Segment for Writing 0000 1111: 0000 0000: mod 100 r/m register 0000 1111: 0000 0000: mod 101 r/m WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111: 0000 1001 WRMSR - Write to Model-Specific Register 0000 1111: 0000 0000: 11 reg xADD - Exchange and Add 0000 1111: 1100 000w: 11 reg2 reg1 register 1, register 2 0000 1111: 1100 000w: mod reg r/m XCHG - Exchange Register/Memory with Register 1000 011w: 11 reg1 reg2 AX or EAX with reg 1000 011w: mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR 0011 000w: 11 reg1 reg2 register 1 to register 2 0011 000w: 11 reg1 reg2 </td <td>register1 and register2</td> <td>1000 010w: 11 reg1 reg2</td>	register1 and register2	1000 010w: 11 reg1 reg2
immediate and AL, AX, or EAX 1010 100w: immediate data immediate and memory 1111 011w: mod 000 r/m: immediate data UDO - Undefined instruction 0000 1111: 1111 1111 UD1 - Undefined instruction 0000 1111: 0000 1011 UERR - Verify a Segment for Reading 0000 1111: 0000 0000: 11 100 reg register 0000 1111: 0000 0000: 11 100 reg memory 0000 1111: 0000 0000: 11 101 reg wemory 0000 1111: 0000 0000: 11 101 reg memory 0000 1111: 0000 0000: 11 101 reg memory 0000 1111: 0000 0000: mod 101 r/m WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111: 0000 1001 WRMSR - Write to Model-Specific Register 0000 1111: 0011 0000 XADD - Exchange and Add 0000 1111: 1100 000w: 11 reg2 reg1 memory, reg 0000 1111: 1100 000w: mod reg r/m XCHG - Exchange Register/Memory with Register 1000 011w: 11 reg1 reg2 AX or EAX with reg 1000 011w: mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR 1101 001w: 11 reg1 reg2 register1 to register2 0011 000w: 11 reg1 reg2<	memory and register	1000 010w : mod reg r/m
immediate and memory 1111 011w:mod 000 r/m: immediate data UDO - Undefined instruction 0000 1111:1111 1111 UD1 - Undefined instruction 0000 1111:0000 1011 UD2 - Undefined instruction 0000 FFFF: 0000 1011 VERR - Verify a Segment for Reading register memory 0000 1111:0000 0000:mod 100 r/m VERW - Verify a Segment for Writing register register 0000 1111:0000 0000:mod 100 r/m WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111:0000 0000:mod 101 r/m WRMSR - Write to Model-Specific Register 0000 1111:0010 0000 WAND - Exchange and Add register1, register2 memory, reg 0000 1111:1100 000w:11 reg2 reg1 memory, reg 0000 1111:1100 000w:mod reg r/m XCHG - Exchange Register/Memory with Register 1000 011w:11 reg1 reg2 AX or EAX with reg 1000 011w:10 reg memory with reg 1000 011w:mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR 0011 000w:11 reg1 reg2 register1 to register2 0011 001w:11 reg1 reg2	immediate and register	1111 011w: 11 000 reg: immediate data
UDO - Undefined instruction 0000 1111:1111 1111 UD1 - Undefined instruction 0000 1111:0000 1011 UD2 - Undefined instruction 0000 FFFF:0000 1011 VERR - Verify a Segment for Reading register memory 0000 1111:0000 0000: mod 100 r/m VERW - Verify a Segment for Writing verify a Segment for Writing register 0000 1111:0000 0000: mod 101 r/m WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111:0000 1001 WRMSR - Write to Model-Specific Register 0000 1111:0011 0000 XADD - Exchange and Add register1, register2 memory, reg 0000 1111:1100 000w:11 reg2 reg1 xCHG - Exchange Register/Memory with Register register1 with register2 AX or EAX with reg 1000 011w:11 reg1 reg2 AX or EAX with reg 1000 011w: mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR register1 to register2 0011 000w: 11 reg1 reg2 register2 to register1 0011 001w: 11 reg1 reg2	immediate and AL, AX, or EAX	1010 100w : immediate data
UD1 - Undefined instruction 0000 1111:0000 1011 UD2 - Undefined instruction 0000 FFFF:0000 1011 VERR - Verify a Segment for Reading register memory 0000 1111:0000 0000: mod 100 r/m VERW - Verify a Segment for Writing register memory 0000 1111:0000 0000: mod 101 r/m WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111:0000 1001 WRMSR - Write to Model-Specific Register 0000 1111:0011 0000 XADD - Exchange and Add register1, register2 memory, reg 0000 1111:1100 000w:11 reg2 reg1 xCHG - Exchange Register/Memory with Register register1 with register2 AX or EAX with reg 1001 0 reg memory with reg 1001 0 reg memory with reg 1000 011w: mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR register1 to register2 register1 to register2 0011 000w: 11 reg1 reg2 register2 to register1 0011 001w: 11 reg1 reg2	immediate and memory	1111 011w: mod 000 r/m: immediate data
UD2 - Undefined instruction 0000 FFFF: 0000 1011 VERR - Verify a Segment for Reading 0000 1111: 0000 0000: 11 100 reg memory 0000 1111: 0000 0000: mod 100 r/m VERW - Verify a Segment for Writing register memory 0000 1111: 0000 0000: 11 101 reg wAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111: 0000 1001 WRMSR - Write to Model-Specific Register 0000 1111: 0011 0000 XADD - Exchange and Add register1, register2 memory, reg 0000 1111: 1100 000w: 11 reg2 reg1 memory, reg 0000 1111: 1100 000w: mod reg r/m XCHG - Exchange Register/Memory with Register 1000 011w: 11 reg1 reg2 AX or EAX with reg 1001 0 reg memory with reg 1000 011w: mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR register1 to register2 0011 000w: 11 reg1 reg2 register1 to register2 0011 001w: 11 reg1 reg2	UD0 - Undefined instruction	0000 1111 : 1111 1111
VERR - Verify a Segment for Reading 0000 1111: 0000 0000: 11 100 reg memory 0000 1111: 0000 0000: mod 100 r/m VERW - Verify a Segment for Writing register memory 0000 1111: 0000 0000: 11 101 reg memory 0000 1111: 0000 0000: mod 101 r/m WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111: 0000 1001 WRMSR - Write to Model-Specific Register 0000 1111: 0010 0000 XADD - Exchange and Add register1, register2 memory, reg 0000 1111: 1100 000w: 11 reg2 reg1 MCHG - Exchange Register/Memory with Register 1000 011w: 11 reg1 reg2 AX or EAX with reg 1000 011w: 11 reg1 reg2 MACT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR register1 to register2 0011 000w: 11 reg1 reg2 register2 to register1 0011 001w: 11 reg1 reg2	UD1 - Undefined instruction	0000 1111 : 0000 1011
register 0000 1111 : 0000 0000 : 11 100 reg memory 0000 1111 : 0000 0000 : mod 100 r/m VERW - Verify a Segment for Writing register 0000 1111 : 0000 0000 : 11 101 reg memory 0000 1111 : 0000 0000 : 11 101 reg MAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111 : 0000 1001 WRMSR - Write to Model-Specific Register 0000 1111 : 0011 0000 XADD - Exchange and Add register1, register2 0000 1111 : 1100 000w : 11 reg2 reg1 memory, reg 0000 1111 : 1100 000w : mod reg r/m XCHG - Exchange Register/Memory with Register register1 with register2 1000 011w : 11 reg1 reg2 AX or EAX with reg 1000 011w : mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR register2 0011 000w : 11 reg1 reg2 register2 to register1 0011 010w : 11 reg1 reg2	UD2 - Undefined instruction	0000 FFFF : 0000 1011
memory 0000 1111 : 0000 0000 : mod 100 r/m VERW - Verify a Segment for Writing 0000 1111 : 0000 0000 : 11 101 reg register 0000 1111 : 0000 0000 : mod 101 r/m WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111 : 0000 1001 WRMSR - Write to Model-Specific Register 0000 1111 : 0011 0000 XADD - Exchange and Add register1, register2 memory, reg 0000 1111 : 1100 000w : 11 reg2 reg1 XCHG - Exchange Register/Memory with Register register1 with register2 AX or EAX with reg 1000 011w : 11 reg1 reg2 AX or EAX with reg 1000 011w : mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR 0011 000w : 11 reg1 reg2 register1 to register2 0011 001w : 11 reg1 reg2	VERR - Verify a Segment for Reading	
VERW - Verify a Segment for Writing 0000 1111:0000 0000:11 101 reg memory 0000 1111:0000 0000:mod 101 r/m WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111:0000 1001 WRMSR - Write to Model-Specific Register 0000 1111:0010 0000 XADD - Exchange and Add register1, register2 memory, reg 0000 1111:1100 000w:nod reg r/m XCHG - Exchange Register/Memory with Register register1 with register2 AX or EAX with reg 1000 011w:11 reg1 reg2 AX or EAX with reg 1000 011w:mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR 0011 000w:11 reg1 reg2 register1 to register2 0011 000w:11 reg1 reg2	register	0000 1111 : 0000 0000 : 11 100 reg
register 0000 1111 : 0000 0000 : 11 101 reg memory 0000 1111 : 0000 0000 : mod 101 r/m WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111 : 0000 1001 WRMSR - Write to Model-Specific Register 0000 1111 : 0000 1000 XADD - Exchange and Add register1, register2 memory, reg 0000 1111 : 1100 000w : 11 reg2 reg1 xCHG - Exchange Register/Memory with Register register1 with register2 AX or EAX with reg 1000 011w : 11 reg1 reg2 AX or EAX with reg 1000 011w : mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR 0011 000w : 11 reg1 reg2 register1 to register2 0011 000w : 11 reg1 reg2	memory	0000 1111 : 0000 0000 : mod 100 r/m
memory 0000 1111: 0000 0000: mod 101 r/m WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111: 0000 1001 WRMSR - Write to Model-Specific Register 0000 1111: 0011 0000 XADD - Exchange and Add register1, register2 memory, reg 0000 1111: 1100 000w: mod reg r/m XCHG - Exchange Register/Memory with Register register1 with register2 register1 with register2 1000 011w: 11 reg1 reg2 AX or EAX with reg 1000 011w: mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR register1 to register2 register2 to register1 0011 000w: 11 reg1 reg2	VERW - Verify a Segment for Writing	
WAIT - Wait 1001 1011 WBINVD - Writeback and Invalidate Data Cache 0000 1111:0000 1001 WRMSR - Write to Model-Specific Register 0000 1111:0011 0000 XADD - Exchange and Add register1, register2 memory, reg 0000 1111:1100 000w:11 reg2 reg1 XCHG - Exchange Register/Memory with Register register1 with register2 AX or EAX with reg 1000 011w:11 reg1 reg2 AX or EAX with reg 1000 011w:mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR register1 to register2 register2 to register1 0011 000w:11 reg1 reg2	register	0000 1111 : 0000 0000 : 11 101 reg
WBINVD - Writeback and Invalidate Data Cache 0000 1111:0000 1001 WRMSR - Write to Model-Specific Register 0000 1111:0011 0000 XADD - Exchange and Add	memory	0000 1111 : 0000 0000 : mod 101 r/m
WRMSR - Write to Model-Specific Register 0000 1111 : 0011 0000 XADD - Exchange and Add 0000 1111 : 1100 000w : 11 reg2 reg1 register1, register2 0000 1111 : 1100 000w : mod reg r/m XCHG - Exchange Register/Memory with Register 0000 011w : 11 reg1 reg2 register1 with register2 1000 011w : 11 reg1 reg2 AX or EAX with reg 1000 011w : mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR 0011 000w : 11 reg1 reg2 register2 to register1 0011 001w : 11 reg1 reg2	WAIT - Wait	1001 1011
XADD - Exchange and Add register1, register2 0000 1111 : 1100 000w : 11 reg2 reg1 memory, reg 0000 1111 : 1100 000w : mod reg r/m XCHG - Exchange Register/Memory with Register register1 with register2 1000 011w : 11 reg1 reg2 AX or EAX with reg 1000 011w : mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR register1 to register2 0011 000w : 11 reg1 reg2 register2 to register1 0011 001w : 11 reg1 reg2	WBINVD - Writeback and Invalidate Data Cache	0000 1111 : 0000 1001
register1, register2	WRMSR - Write to Model-Specific Register	0000 1111 : 0011 0000
memory, reg XCHG - Exchange Register/Memory with Register register1 with register2 AX or EAX with reg memory with reg Tool 011w: 11 reg1 reg2 AX or EAX with reg 1000 011w: mod reg r/m 1000 011w: mod reg r/m XLAT/XLATB - Table Look-up Translation XOR - Logical Exclusive OR register1 to register2 0011 000w: 11 reg1 reg2 register2 to register1 0011 001w: 11 reg1 reg2	XADD - Exchange and Add	
XCHG - Exchange Register/Memory with Register register1 with register2 1000 011 w : 11 reg1 reg2 AX or EAX with reg 1001 0 reg memory with reg 1000 011 w : mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR register1 to register2 0011 000 w : 11 reg1 reg2 register2 to register1 0011 001 w : 11 reg1 reg2	register1, register2	0000 1111 : 1100 000w : 11 reg2 reg1
register1 with register2 1000 011 w : 11 reg1 reg2 AX or EAX with reg 1001 0 reg memory with reg 1000 011 w : mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR 0011 000w : 11 reg1 reg2 register1 to register2 0011 001 w : 11 reg1 reg2 register2 to register1 0011 001 w : 11 reg1 reg2	memory, reg	0000 1111 : 1100 000w : mod reg r/m
AX or EAX with reg 1001 0 reg memory with reg 1000 011 w : mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR register1 to register2 0011 000w : 11 reg1 reg2 register2 to register1 0011 001 w : 11 reg1 reg2	XCHG - Exchange Register/Memory with Register	
memory with reg 1000 011 w : mod reg r/m XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR register1 to register2 0011 000w : 11 reg1 reg2 register2 to register1 0011 001w : 11 reg1 reg2	register1 with register2	1000 011w: 11 reg1 reg2
XLAT/XLATB - Table Look-up Translation 1101 0111 XOR - Logical Exclusive OR 0011 000w: 11 reg1 reg2 register1 to register2 0011 001w: 11 reg1 reg2 register2 to register1 0011 001w: 11 reg1 reg2	AX or EAX with reg	1001 0 reg
XOR - Logical Exclusive OR register1 to register2	memory with reg	1000 011w: mod reg r/m
register1 to register2 0011 000w : 11 reg1 reg2 register2 to register1 0011 001w : 11 reg1 reg2	XLAT/XLATB - Table Look-up Translation	1101 0111
register2 to register1 0011 001w:11 reg1 reg2	XOR - Logical Exclusive OR	
	register1 to register2	0011 000w: 11 reg1 reg2
memory to register 0011 001w: mod reg r/m	register2 to register1	0011 001w: 11 reg1 reg2
	memory to register	0011 001w: mod reg r/m

Table B-13. General Purpose Instruction Formats and Encodings for Non-64-Bit Modes (Contd.)

Instruction and Format	Encoding
register to memory	0011 000w : mod reg r/m
immediate to register	1000 00sw: 11 110 reg: immediate data
immediate to AL, AX, or EAX	0011 010w : immediate data
immediate to memory	1000 00sw : mod 110 r/m : immediate data
Prefix Bytes	
address size	0110 0111
LOCK	1111 0000
operand size	0110 0110
CS segment override	0010 1110
DS segment override	0011 1110
ES segment override	0010 0110
FS segment override	0110 0100
GS segment override	0110 0101
SS segment override	0011 0110

NOTES:

B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode

Table B-15 shows machine instruction formats and encodings for general purpose instructions in 64-bit mode.

Table B-14. Special Symbols

Symbol	Application
S	If the value of REX.W. is 1, it overrides the presence of 66H.
w	The value of bit W. in REX is has no effect.

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode

Instruction and Format	Encoding
ADC – ADD with Carry	
register1 to register2	0100 0R0B: 0001 000w: 11 reg1 reg2
qwordregister1 to qwordregister2	0100 1R0B: 0001 0001:11 qwordreg1 qwordreg2
register2 to register1	0100 0R0B: 0001 001w: 11 reg1 reg2
qwordregister1 to qwordregister2	0100 1R0B: 0001 0011:11 qwordreg1 qwordreg2
memory to register	0100 0RXB: 0001 001w: mod reg r/m
memory to qwordregister	0100 1RXB: 0001 0011: mod qwordreg r/m
register to memory	0100 0RXB: 0001 000w: mod reg r/m
qwordregister to memory	0100 1RXB: 0001 0001: mod qwordreg r/m
immediate to register	0100 000B : 1000 00sw : 11 010 reg : immediate
immediate to qwordregister	0100 100B : 1000 0001 : 11 010 qwordreg : imm32
immediate to qwordregister	0100 1R0B : 1000 0011 : 11 010 qwordreg : imm8

^{1.} The multi-byte NOP instruction does not alter the content of the register and will not issue a memory operation.

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
immediate to AL, AX, or EAX	0001 010w : immediate data
immediate to RAX	0100 1000 : 0000 0101 : imm32
immediate to memory	0100 00XB : 1000 00sw : mod 010 r/m : immediate
immediate32 to memory64	0100 10XB : 1000 0001 : mod 010 r/m : imm32
immediate8 to memory64	0100 10XB : 1000 0031 : mod 010 r/m : imm8
ADD - Add	
register1 to register2	0100 OROB : 0000 000w : 11 reg1 reg2
qwordregister1 to qwordregister2	0100 1R0B 0000 0000 : 11 qwordreg1 qwordreg2
register2 to register1	0100 OROB : 0000 001w : 11 reg1 reg2
qwordregister1 to qwordregister2	0100 1R0B 0000 0010 : 11 qwordreg1 qwordreg2
memory to register	0100 ORXB: 0000 001w: mod reg r/m
memory64 to qwordregister	0100 1RXB: 0000 0000: mod qwordreg r/m
register to memory	0100 ORXB: 0000 000w: mod reg r/m
qwordregister to memory64	0100 1RXB: 0000 0011: mod qwordreg r/m
immediate to register	0100 0000B : 1000 00sw : 11 000 reg : immediate data
immediate32 to qwordregister	0100 100B : 1000 0001 : 11 010 qwordreg : imm
immediate to AL, AX, or EAX	0000 010w : immediate8
immediate to RAX	0100 1000 : 0000 0101 : imm32
immediate to memory	0100 00XB : 1000 00sw : mod 000 r/m : immediate
immediate32 to memory64	0100 10XB: 1000 0001: mod 010 r/m: imm32
immediate8 to memory64	0100 10XB : 1000 0011 : mod 010 r/m : imm8
AND - Logical AND	
register1 to register2	0100 OROB 0010 000w: 11 reg1 reg2
qwordregister1 to qwordregister2	0100 1R0B 0010 0001 : 11 qwordreg1 qwordreg2
register2 to register1	0100 OROB 0010 001w:11 reg1 reg2
register1 to register2	0100 1R0B 0010 0011 : 11 qwordreg1 qwordreg2
memory to register	0100 ORXB 0010 001w: mod reg r/m
memory64 to qwordregister	0100 1RXB : 0010 0011 : mod qwordreg r/m
register to memory	0100 ORXB : 0010 000w : mod reg r/m
qwordregister to memory64	0100 1RXB : 0010 0001 : mod qwordreg r/m
immediate to register	0100 000B : 1000 00sw : 11 100 reg : immediate
immediate32 to qwordregister	0100 100B 1000 0001 : 11 100 qwordreg : imm32
immediate to AL, AX, or EAX	0010 010w : immediate
immediate32 to RAX	0100 1000 0010 1001 : imm32
immediate to memory	0100 00XB : 1000 00sw : mod 100 r/m : immediate
immediate32 to memory64	0100 10XB : 1000 0001 : mod 100 r/m : immediate32
immediate8 to memory64	0100 10XB: 1000 0011: mod 100 r/m: imm8
BSF - Bit Scan Forward	

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
register1, register2	0100 0R0B 0000 1111 : 1011 1100 : 11 reg1 reg2
qwordregister1, qwordregister2	0100 1R0B 0000 1111 : 1011 1100 : 11 qwordreg1 qwordreg2
memory, register	0100 0RXB 0000 1111 : 1011 1100 : mod reg r/m
memory64, qwordregister	0100 1RXB 0000 1111 : 1011 1100 : mod qwordreg r/m
BSR - Bit Scan Reverse	
register1, register2	0100 0R0B 0000 1111 : 1011 1101 : 11 reg1 reg2
qwordregister1, qwordregister2	0100 1R0B 0000 1111 : 1011 1101 : 11 qwordreg1 qwordreg2
memory, register	0100 0RXB 0000 1111 : 1011 1101 : mod reg r/m
memory64, qwordregister	0100 1RXB 0000 1111 : 1011 1101 : mod qwordreg r/m
BSWAP - Byte Swap	0000 1111 : 1100 1 reg
BSWAP - Byte Swap	0100 100B 0000 1111 : 1100 1 qwordreg
BT - Bit Test	
register, immediate	0100 000B 0000 1111 : 1011 1010 : 11 100 reg: imm8
qwordregister, immediate8	0100 100B 1111 : 1011 1010 : 11 100 qwordreg: imm8 data
memory, immediate	0100 00XB 0000 1111 : 1011 1010 : mod 100 r/m : imm8
memory64, immediate8	0100 10XB 0000 1111 : 1011 1010 : mod 100 r/m : imm8 data
register1, register2	0100 0R0B 0000 1111 : 1010 0011 : 11 reg2 reg1
qwordregister1, qwordregister2	0100 1R0B 0000 1111 : 1010 0011 : 11 qwordreg2 qwordreg1
memory, reg	0100 0RXB 0000 1111 : 1010 0011 : mod reg r/m
memory, qwordreg	0100 1RXB 0000 1111 : 1010 0011 : mod qwordreg r/m
BTC - Bit Test and Complement	
register, immediate	0100 000B 0000 1111 : 1011 1010 : 11 111 reg: imm8
qwordregister, immediate8	0100 100B 0000 1111 : 1011 1010 : 11 111 qwordreg: imm8
memory, immediate	0100 00XB 0000 1111 : 1011 1010 : mod 111 r/m : imm8
memory64, immediate8	0100 10XB 0000 1111 : 1011 1010 : mod 111 r/m : imm8
register1, register2	0100 0R0B 0000 1111 : 1011 1011 : 11 reg2 reg1
qwordregister1, qwordregister2	0100 1R0B 0000 1111 : 1011 1011 : 11 qwordreg2 qwordreg1
memory, register	0100 0RXB 0000 1111 : 1011 1011 : mod reg r/m
memory, qwordreg	0100 1RXB 0000 1111 : 1011 1011 : mod qwordreg r/m
BTR - Bit Test and Reset	
register, immediate	0100 000B 0000 1111 : 1011 1010 : 11 110 reg: imm8
qwordregister, immediate8	0100 100B 0000 1111 : 1011 1010 : 11 110 qwordreg: imm8
memory, immediate	0100 00XB 0000 1111 : 1011 1010 : mod 110 r/m : imm8
memory64, immediate8	0100 10XB 0000 1111 : 1011 1010 : mod 110 r/m : imm8
register1, register2	0100 0R0B 0000 1111 : 1011 0011 : 11 reg2 reg1

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
qwordregister1, qwordregister2	0100 1R0B 0000 1111 : 1011 0011 : 11 qwordreg2 qwordreg1
memory, register	0100 0RXB 0000 1111 : 1011 0011 : mod reg r/m
memory64, qwordreg	0100 1RXB 0000 1111 : 1011 0011 : mod qwordreg r/m
BTS - Bit Test and Set	
register, immediate	0100 000B 0000 1111 : 1011 1010 : 11 101 reg: imm8
qwordregister, immediate8	0100 100B 0000 1111 : 1011 1010 : 11 101 qwordreg: imm8
memory, immediate	0100 00XB 0000 1111 : 1011 1010 : mod 101 r/m : imm8
memory64, immediate8	0100 10XB 0000 1111 : 1011 1010 : mod 101 r/m : imm8
register1, register2	0100 0R0B 0000 1111 : 1010 1011 : 11 reg2 reg1
qwordregister1, qwordregister2	0100 1R0B 0000 1111 : 1010 1011 : 11 qwordreg2 qwordreg1
memory, register	0100 ORXB 0000 1111 : 1010 1011 : mod reg r/m
memory64, qwordreg	0100 1RXB 0000 1111 : 1010 1011 : mod qwordreg r/m
CALL - Call Procedure (in same segment)	
direct	1110 1000 : displacement32
register indirect	0100 WR00 ^w 1111 1111 : 11 010 reg
memory indirect	0100 W0XB ^w 1111 1111 : mod 010 г/m
CALL - Call Procedure (in other segment)	
indirect	1111 1111 : mod 011 r/m
indirect	0100 10XB 0100 1000 1111 1111 : mod 011 r/m
CBW - Convert Byte to Word	1001 1000
CDQ - Convert Doubleword to Qword+	1001 1001
CDQE - RAX, Sign-Extend of EAX	0100 1000 1001 1001
CLC - Clear Carry Flag	1111 1000
CLD - Clear Direction Flag	1111 1100
CLI – Clear Interrupt Flag	1111 1010
CLTS - Clear Task-Switched Flag in CRO	0000 1111 : 0000 0110
CMC – Complement Carry Flag	1111 0101
CMP - Compare Two Operands	
register1 with register2	0100 OROB 0011 100w:11 reg1 reg2
qwordregister1 with qwordregister2	0100 1R0B 0011 1001 : 11 qwordreg1 qwordreg2
register2 with register1	0100 0R0B 0011 101w:11 reg1 reg2
qwordregister2 with qwordregister1	0100 1R0B 0011 101w : 11 qwordreg1 qwordreg2
memory with register	0100 ORXB 0011 100w : mod reg r/m
memory64 with qwordregister	0100 1RXB 0011 1001 : mod qwordreg r/m
register with memory	0100 ORXB 0011 101w : mod reg r/m
qwordregister with memory64	0100 1RXB 0011 101w1 : mod qwordreg r/m
immediate with register	0100 000B 1000 00sw : 11 111 reg : imm

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
immediate32 with qwordregister	0100 100B 1000 0001 : 11 111 qwordreg : imm64
immediate with AL, AX, or EAX	0011 110w:imm
immediate32 with RAX	0100 1000 0011 1101 : imm32
immediate with memory	0100 00XB 1000 00sw : mod 111 r/m : imm
immediate32 with memory64	0100 1RXB 1000 0001 : mod 111 r/m : imm64
immediate8 with memory64	0100 1RXB 1000 0011 : mod 111 r/m : imm8
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ - Compare String Operands	
compare string operands [X at DS:(E)SI with Y at ES:(E)DI]	1010 011w
qword at address RSI with qword at address RDI	0100 1000 1010 0111
CMPXCHG - Compare and Exchange	
register1, register2	0000 1111 : 1011 000w : 11 reg2 reg1
byteregister1, byteregister2	0100 000B 0000 1111 : 1011 0000 : 11 bytereg2 reg1
qwordregister1, qwordregister2	0100 100B 0000 1111 : 1011 0001 : 11 qwordreg2 reg1
memory, register	0000 1111 : 1011 000w : mod reg r/m
memory8, byteregister	0100 00XB 0000 1111 : 1011 0000 : mod bytereg r/m
memory64, qwordregister	0100 10XB 0000 1111 : 1011 0001 : mod qwordreg r/m
CPUID - CPU Identification	0000 1111 : 1010 0010
CQO – Sign-Extend RAX	0100 1000 1001 1001
CWD - Convert Word to Doubleword	1001 1001
CWDE - Convert Word to Doubleword	1001 1000
DEC - Decrement by 1	
register	0100 000B 1111 111w:11 001 reg
qwordregister	0100 100B 1111 1111 : 11 001 qwordreg
memory	0100 00XB 1111 111w: mod 001 r/m
memory64	0100 10XB 1111 1111 : mod 001 r/m
DIV - Unsigned Divide	
AL, AX, or EAX by register	0100 000B 1111 011w:11 110 reg
Divide RDX:RAX by qwordregister	0100 100B 1111 0111 : 11 110 qwordreg
AL, AX, or EAX by memory	0100 00XB 1111 011w: mod 110 r/m
Divide RDX:RAX by memory64	0100 10XB 1111 0111 : mod 110 r/m
ENTER - Make Stack Frame for High Level Procedure	1100 1000 : 16-bit displacement : 8-bit level (L)
HLT - Halt	1111 0100
IDIV - Signed Divide	
AL, AX, or EAX by register	0100 000B 1111 011w:11 111 reg
RDX:RAX by qwordregister	0100 100B 1111 0111 : 11 111 qwordreg
AL, AX, or EAX by memory	0100 00XB 1111 011w : mod 111 r/m
RDX:RAX by memory64	0400 400/0 4444 0444 1444 1
<u></u>	0100 10XB 1111 0111 : mod 111 r/m

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
AL, AX, or EAX with register	0100 000B 1111 011w : 11 101 reg
RDX:RAX <- RAX with qwordregister	0100 100B 1111 011W . 11 1011eg
AL, AX, or EAX with memory	0100 00XB 1111 011w : mod 101 r/m
RDX:RAX <- RAX with memory64	0100 10XB 1111 0111 : mod 101 r/m
register1 with register2	
	0000 1111 : 1010 1111 : 11 : reg1 reg2 0100 1R0B 0000 1111 : 1010 1111 : 11 : qwordreg1
qwordregister1 <- qwordregister1 with qwordregister2	qwordreg2
register with memory	0100 0RXB 0000 1111 : 1010 1111 : mod reg r/m
qwordregister <- qwordregister withmemory64	0100 1RXB 0000 1111 : 1010 1111 : mod qwordreg r/m
register1 with immediate to register2	0100 0R0B 0110 10s1 : 11 reg1 reg2 : imm
qwordregister1 <- qwordregister2 with sign-extended immediate8	0100 1R0B 0110 1011 : 11 qwordreg1 qwordreg2 : imm8
qwordregister1 <- qwordregister2 with immediate32	0100 1R0B 0110 1001 : 11 qwordreg1 qwordreg2 : imm32
memory with immediate to register	0100 0RXB 0110 10s1 : mod reg r/m : imm
qwordregister <- memory64 with sign-extended immediate8	0100 1RXB 0110 1011 : mod qwordreg r/m : imm8
qwordregister <- memory64 with immediate32	0100 1RXB 0110 1001 : mod qwordreg r/m : imm32
IN - Input From Port	
fixed port	1110 010w: port number
variable port	1110 110w
INC - Increment by 1	
гед	0100 000B 1111 111w:11 000 reg
qwordreg	0100 100B 1111 1111 : 11 000 qwordreg
memory	0100 00XB 1111 111w : mod 000 r/m
memory64	0100 10XB 1111 1111 : mod 000 r/m
INS - Input from DX Port	0110 110w
INT n - Interrupt Type n	1100 1101 : type
INT - Single-Step Interrupt 3	1100 1100
INTO - Interrupt 4 on Overflow	1100 1110
INVD - Invalidate Cache	0000 1111 : 0000 1000
INVLPG - Invalidate TLB Entry	0000 1111 : 0000 0001 : mod 111 r/m
INVPCID - Invalidate Process-Context Identifier	0110 0110:0000 1111:0011 1000:1000 0010: mod reg r/m
IRETO - Interrupt Return	1100 1111
Jcc - Jump if Condition is Met	
8-bit displacement	0111 tttn : 8-bit displacement
displacements (excluding 16-bit relative offsets)	0000 1111 : 1000 tttn : displacement32
JCXZ/JECXZ – Jump on CX/ECX Zero	
Address-size prefix differentiates JCXZ and JECXZ	1110 0011 : 8-bit displacement
JMP - Unconditional Jump (to same segment)	
short	1110 1011 : 8-bit displacement
<u> </u>	1

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
direct	1110 1001 : displacement32
register indirect	0100 W00B ^w : 1111 1111: 11 100 reg
memory indirect	0100 W0XB ^w : 1111 1111 : mod 100 r/m

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
JMP - Unconditional Jump (to other segment)	<u> </u>
indirect intersegment	0100 00XB : 1111 1111 : mod 101 r/m
64-bit indirect intersegment	0100 10XB : 1111 1111 : mod 101 r/m
-	
LAR - Load Access Rights Byte	
from register	0100 OROB: 0000 1111: 0000 0010: 11 reg1 reg2
from dwordregister to qwordregister, masked by 00FxFF00H	0100 WR0B: 0000 1111: 0000 0010: 11 qwordreg1 dwordreg2
from memory	0100 ORXB : 0000 1111 : 0000 0010 : mod reg r/m
from memory32 to qwordregister, masked by 00FxFF00H	0100 WRXB 0000 1111 : 0000 0010 : mod r/m
LEA - Load Effective Address	
in wordregister/dwordregister	0100 0RXB : 1000 1101 : mod ^A reg r/m
in qwordregister	0100 1RXB : 1000 1101 : mod ^A qwordreg r/m
LEAVE - High Level Procedure Exit	1100 1001
LFS - Load Pointer to FS	
FS:r16/r32 with far pointer from memory	0100 ORXB : 0000 1111 : 1011 0100 : mod ^A reg r/m
FS:r64 with far pointer from memory	0100 1RXB : 0000 1111 : 1011 0100 : mod ^A qwordreg r/m
LGDT - Load Global Descriptor Table Register	0100 10XB : 0000 1111 : 0000 0001 : mod ^A 010 r/m
LGS - Load Pointer to GS	
GS:r16/r32 with far pointer from memory	0100 ORXB : 0000 1111 : 1011 0101 : mod ^A reg r/m
GS:r64 with far pointer from memory	0100 1RXB : 0000 1111 : 1011 0101 : mod ^A qwordreg r/m
LIDT - Load Interrupt Descriptor Table Register	0100 10XB : 0000 1111 : 0000 0001 : mod ^A 011 r/m
LLDT - Load Local Descriptor Table Register	
LDTR from register	0100 000B: 0000 1111: 0000 0000: 11 010 reg
LDTR from memory	0100 00XB :0000 1111 : 0000 0000 : mod 010 r/m
LMSW - Load Machine Status Word	
from register	0100 000B: 0000 1111: 0000 0001: 11 110 reg
from memory	0100 00XB :0000 1111 : 0000 0001 : mod 110 r/m
LOCK - Assert LOCK# Signal Prefix	1111 0000
LODS/LODSB/LODSW/LODSD/LODSQ - Load String Operand	
at DS:(E)SI to AL/EAX/EAX	1010 110w
at (R)SI to RAX	0100 1000 1010 1101
LOOP - Loop Count	
if count ≠ 0, 8-bit displacement	1110 0010
if count \neq 0, RIP + 8-bit displacement sign-extended to 64-bits	0100 1000 1110 0010
LOOPE - Loop Count while Zero/Equal	
if count ≠ 0 & ZF =1, 8-bit displacement	1110 0001
if count \neq 0 & ZF = 1, RIP + 8-bit displacement sign-extended to 64-bits	0100 1000 1110 0001

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

If count ≠ 0 & ZF = 0, 8-bit displacement 1110 0000 0011 110 0000 0011 110 0000 0011 110 0000 0011 110 0000 0011 110 0000 0011 110 0000 0011 110 0000 0011 110 0000 0011 110 0000 0011 110 0000 0011 110 0000 0011 110 0000 0011 100 0000 1110 0000 0011 100 0000 1110 0010 110 0010 110 0010 110 0000 1110 0010 11	Instruction and Format	Encoding
if count ≠ 0 8. ZF = 0, 8-bit displacement if count ≠ 0 8. ZF = 0, RIP + 8-bit displacement sign-extended to 64-bits ISL - Load Segment Limit from register 0000 1111:0000 0011:11 reg1 reg2 from memory16 0000 1111:0000 0011:11 reg1 reg2 from memory64 0100 1R00 0000 1111:0000 0011:11 qwordreg1 reg2 from memory64 1010 1RXB 0000 1111:0000 0011: mod qwordreg r/m ISS - Load Pointer to SS SST-16/32 with far pointer from memory 0100 1RXB 0000 1111:1011 0010: mod ^A reg r/m SS764 with far pointer from memory 0100 1RXB:0000 1111:1011 0010: mod ^A qwordreg r/m ITR - Load Task Register from register from register 1010 0R08:0000 1111:0000 0001: mod and order gr/m MOV - Move Data register1 to qwordregister2 1010 0R08:1000 1000 : 11 reg1 reg2 qwordregister1 to qwordregister2 1010 0R08:1000 1000 : 11 qwordreg1 qwordreg2 register2 to register1 1010 0R08:1000 1011:11 qwordreg1 qwordreg2 register2 to qwordregister1 1010 0R08:1000 1011:11 qwordreg1 qwordreg2 register2 to qwordregister 1010 0R08:1000 1010 : mod reg r/m memory to reg 1010 0RXB:1000 1011:11 qwordreg1 qwordreg2 memory to reg 1010 0RXB:1000 1011:11 qwordreg1 qwordreg2 memory to reg 1010 0RXB:1000 1011:11 qwordreg1 qwordreg2 memory to reg 1010 0RXB:1000 1011: mod qwordreg r/m 1010 0RXB:1000 1011: mod qwordreg r/m 1010 0RXB:1000 1011: mod qwordreg: mm 1010 0RXB:1000 1011: mod ono r/m: imm 1010 0RXB:1000 1010: mod reg		encoung
If count # 0 & ZF = 0, RIP + 8-bit displacement sign-extended to 64-bits	· · · · · · · · · · · · · · · · · · ·	1110,0000
SST-6 A	if count $\neq 0 \& ZF = 0$, RIP + 8-bit displacement sign-extended to	
from register		
from qwordregister	from register	0000 1111 : 0000 0011 : 11 reg1 reg2
from memory16		0100 1R00 0000 1111 : 0000 0011 : 11 gwordreg1 reg2
SS-Load Pointer to SS		0000 1111 : 0000 0011 : mod reg r/m
SS:r16/r32 with far pointer from memory 0100 0RXB: 0000 1111: 1011 0010: mod^A reg r/m SS:r64 with far pointer from memory 0100 1WXB: 0000 1111: 1011 0010: mod^A qwordreg r/m LTR - Load Task Register 0100 0RXB: 0000 1111: 1000 0000: 11 011 reg from register 0100 0RXB: 0000 1111: 0000 0000: mod 011 r/m MOV - Move Data 0100 0RXB: 1000 100w: 11 reg1 reg2 register1 to register2 0100 1RXB: 1000 1000: 111 qwordeg1 qwordreg2 register2 to register1 0100 0RXB: 1000 101w: 11 reg1 reg2 qwordregister2 to qwordregister1 0100 1RXB: 1000 101w: 11 reg1 reg2 memory to reg 0100 0RXB: 1000 101w: mod reg r/m memory64 to qwordregister 0100 1RXB: 1000 101w: mod reg r/m reg to memory 0100 0RXB: 1000 1001: mod qwordreg r/m qwordregister to memory64 0100 0RXB: 1000 1001: mod qwordreg r/m immediate to register 0100 000B: 1100 011w: 11 000 reg: imm immediate 20 qwordregister (zero extend) 0100 100B 1100 011l: 11 000 reg: imm32 immediate 40 to qwordregister (alternate encoding) 0100 100B 1101 wreg: imm64 immediate 32 to memory64 (zero extend) 0100 100B 1101 0001 ris imd000 r/m: imm32 immediate 40 to qwordregister (alternate encoding) 0100 000B: 1100 011w: mod 000 r/m:	from memory64	0100 1RXB 0000 1111 : 0000 0011 : mod qwordreg r/m
SS:r64 with far pointer from memory	LSS - Load Pointer to SS	
TR - Load Task Register 0100 0R00 : 0000 1111 : 0000 0000 : 11 011 reg from register 0100 0R00 : 0000 1111 : 0000 0000 : 11 011 reg from memory 0100 00XB : 0000 1111 : 0000 0000 : mod 011 r/m MOV - Move Data	SS:r16/r32 with far pointer from memory	0100 0RXB : 0000 1111 : 1011 0010 : mod ^A reg r/m
from register	SS:r64 with far pointer from memory	0100 1WXB : 0000 1111 : 1011 0010 : mod ^A qwordreg r/m
MOV - Move Data	LTR - Load Task Register	
MOV - Move Data register1 to register2 0100 0R08:1000 100w:11 reg1 reg2 qwordregister1 to qwordregister2 0100 1R0B 1000 1001:11 qwordeg1 qwordreg2 register2 to register1 0100 0R0B:1000 101w:11 reg1 reg2 qwordregister2 to qwordregister1 0100 1R0B 1000 1011:11 qwordreg1 qwordreg2 memory to reg 0100 0RXB:1000 101w:mod reg r/m memory64 to qwordregister 0100 0RXB:1000 100w:mod reg r/m reg to memory 0100 0RXB:1000 100w:mod reg r/m qwordregister to memory64 0100 1RXB 1000 0101:mod qwordreg r/m immediate to register 0100 000B:1100 011w:11 000 reg: imm immediate to register (alternate encoding) 0100 100B 1100 011w:11 000 reg: imm64 immediate 64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg: imm64 immediate to memory 0100 000XB:1100 011w:mod 000 r/m:imm immediate 22 to memory64 (zero extend) 0100 100XB 1010 011w:mod 000 r/m:imm32 memory to AL, AX, or EAX 0100 0000:1010 0000: displacement memory 64 to RAX 0100 0000:1010 0000: displacement AL, AX, or EAX to memory 0100 0000: 1010 001w: displacement64 MOV - Move to/from Control Registers 0100 0000: 01010 0011: displacement64 CRO-CR4 fr	from register	0100 0R00 : 0000 1111 : 0000 0000 : 11 011 reg
register1 to register2 0100 0R0B : 1000 100w : 11 reg1 reg2 qwordregister1 to qwordregister2 0100 1R0B 1000 1001 : 11 qwordeg1 qwordreg2 register2 to register1 0100 0R0B : 1000 101w : 11 reg1 reg2 qwordregister2 to qwordregister1 0100 1R0B 1000 1011 : 11 qwordreg1 qwordreg2 memory to reg 0100 0RXB : 1000 101w : mod reg r/m memory64 to qwordregister 0100 0RXB : 1000 100w : mod reg r/m reg to memory 0100 0RXB : 1000 100u : mod qwordreg r/m immediate to register to memory64 0100 1RXB 1000 1011 : mod qwordreg r/m immediate 22 to qwordregister (zero extend) 0100 100B 1100 011w : 11 000 reg : imm immediate 64 to qwordregister (alternate encoding) 0100 100B 1010 011l : mod 000 r/m : imm immediate 64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg : imm64 immediate 32 to memory 0100 00XB : 1100 011w : mod 000 r/m : imm immediate 32 to memory64 (zero extend) 0100 10XB 1100 011l : mod 000 r/m : imm32 memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement Memory 64 to RAX 0100 0000 : 1010 001l : displacement AL, AX, or EAX to memory 0100 0000 : 1010 001l : displacement64 MOV - Move to/from Control Registers 0100 0000 : 111 : 001l	from memory	0100 00XB : 0000 1111 : 0000 0000 : mod 011 r/m
qwordregister1 to qwordregister2 0100 1R0B 1000 1001 : 11 qwordreg1 qwordreg2 register2 to register1 0100 0R0B : 1000 101w : 11 reg1 reg2 qwordregister2 to qwordregister1 0100 1R0B 1000 1011 : 11 qwordreg1 qwordreg2 memory to reg 0100 0RXB : 1000 101w : mod reg r/m memory64 to qwordregister 0100 0RXB : 1000 100w : mod reg r/m reg to memory 0100 0RXB : 1000 100w : mod reg r/m qwordregister to memory64 0100 1RXB 1000 1001 : mod qwordreg r/m immediate to register 0100 000B : 1100 011w : 11 000 reg : imm immediate32 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg : imm32 immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm immediate to memory 0100 000B : 1011 000 reg : imm64 immediate to memory 0100 000XB : 1100 011w : mod 000 r/m : imm immediate 22 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32 memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement memory64 to RAX 0100 1000 1010 0010 : displacement64 AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement64 MOV - Move to/from Control Registers 0100 0000 : 0110 0001 : 11 eee reg (eee = CR#)	MOV - Move Data	
register2 to register1	register1 to register2	0100 0R0B: 1000 100w: 11 reg1 reg2
qwordregister2 to qwordregister1 0100 1R0B 1000 1011 : 11 qwordreg1 qwordreg2 memory to reg 0100 0RXB : 1000 101w : mod reg r/m memory64 to qwordregister 0100 1RXB 1000 1011 : mod qwordreg r/m reg to memory 0100 0RXB : 1000 100w : mod reg r/m qwordregister to memory64 0100 1RXB 1000 1001 : mod qwordreg r/m immediate to register 0100 000B : 1100 011w : 11 000 reg : imm immediate 32 to qwordregister (zero extend) 0100 100B 1100 011w : 11 000 reg : imm immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm immediate64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg : imm64 immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm immediate32 to memory64 (zero extend) 0100 10XB 1100 011w : mod 000 r/m : imm immediate32 to memory64 to RAX 0100 1000 1010 000w : displacement MAL, AX, or EAX to memory 0100 1000 1010 0010 : displacement64 AL, AX, or EAX to memory 0100 1000 1010 0011 : displacement64 MOV - Move to/from Control Registers 0100 0000 : 1010 0000 : 111 : 0010 0010	qwordregister1 to qwordregister2	0100 1R0B 1000 1001 : 11 qwordeg1 qwordreg2
memory to reg 0100 0RXB:1000 101w: mod reg r/m memory64 to qwordregister 0100 1RXB 1000 1011: mod qwordreg r/m reg to memory 0100 0RXB:1000 100w: mod reg r/m qwordregister to memory64 0100 1RXB 1000 1101: mod qwordreg r/m immediate to register 0100 000B:1100 011w: 11 000 reg: imm immediate32 to qwordregister (zero extend) 0100 100B 1100 0111: 11 000 qwordreg: imm32 immediate to register (alternate encoding) 0100 000B: 1011 w reg: imm immediate64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg: imm64 immediate to memory 0100 000XB: 1100 011w: mod 000 r/m: imm immediate32 to memory64 (zero extend) 0100 10XB 1100 0111: mod 000 r/m: imm32 memory to AL, AX, or EAX 0100 0000: 1010 000w: displacement memory64 to RAX 0100 1000 1010 0001: displacement64 AL, AX, or EAX to memory 0100 0000: 1010 001w: displacement64 MOV - Move to/from Control Registers 0100 1000 1010 0011: displacement64 MOV - Move to/from Control Registers 0100 0R0B: 0000 1111: 0010 0010: 11 eee reg (eee = CR#) CRx from qwordregister 0100 1R0B: 0000 1111: 0010 0010: 11 eee qwordreg (Reee	register2 to register1	0100 0R0B: 1000 101w: 11 reg1 reg2
memory64 to qwordregister reg to memory 0100 1RXB 1000 1011 : mod qwordreg r/m qwordregister to memory64 0100 1RXB 1000 1001 : mod qwordreg r/m immediate to register 0100 000B : 1100 011w : 11 000 reg : imm immediate 2 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg : imm32 immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm immediate 64 to qwordregister (alternate encoding) 0100 000B : 1010 v reg : imm64 immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm immediate 32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32 memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement memory64 to RAX 0100 1000 1010 0011 : displacement64 AL, AX, or EAX to memory 0100 0000 : 1010 0011 : displacement64 MOV - Move to/from Control Registers CRO-CR4 from register 0100 0ROB : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#) CRx from qwordregister 0100 1ROB : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	qwordregister2 to qwordregister1	0100 1R0B 1000 1011 : 11 qwordreg1 qwordreg2
reg to memory qwordregister to memory64 immediate to register immediate 2 to qwordregister (alternate encoding) immediate 64 to qwordregister (alternate encoding) immediate 52 to memory64 immediate 52 to memory64 immediate 64 to qwordregister (alternate encoding) immediate 52 to memory64 (zero extend) immediate 52 to memory64 (zero extend) immediate 64 to qwordregister (alternate encoding) immediate 65 to memory immediate 66 to memory immediate 67 to memory64 (zero extend) immediate 68 to memory64 (zero extend) immediate 69 to memory64 (zero extend) immediate 60 to memory (zero extend)	memory to reg	0100 0RXB : 1000 101w : mod reg r/m
qwordregister to memory64 0100 1RXB 1000 1001 : mod qwordreg r/m immediate to register 0100 000B : 1100 011w : 11 000 reg : imm immediate32 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg : imm32 immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm immediate64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg : imm64 immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm immediate32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32 memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement memory64 to RAX 0100 1000 1010 0001 : displacement64 AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement64 RAX to memory64 0100 1000 1010 0011 : displacement64 MOV - Move to/from Control Registers 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#) CR2-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	memory64 to qwordregister	0100 1RXB 1000 1011 : mod qwordreg r/m
immediate to register 0100 000B : 1100 011w : 11 000 reg : imm immediate32 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg : imm32 immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm immediate64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg : imm64 immediate to memory 0100 000XB : 1100 011w : mod 000 r/m : imm immediate32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32 memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement memory64 to RAX 0100 1000 1010 0001 : displacement64 AL, AX, or EAX to memory 0100 1000 1010 0011 : displacement64 MOV - Move to/from Control Registers 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#) CRO-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	reg to memory	0100 0RXB : 1000 100w : mod reg r/m
immediate 32 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg : imm32 immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm immediate 64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg : imm64 immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm immediate 32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32 memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement memory64 to RAX 0100 1000 1010 0001 : displacement64 AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement RAX to memory64 0100 1000 1010 0011 : displacement64 MOV - Move to/from Control Registers 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#) CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	qwordregister to memory64	0100 1RXB 1000 1001 : mod qwordreg r/m
immediate to register (alternate encoding) 0100 000B: 1011 w reg: imm immediate64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg: imm64 immediate to memory 0100 00XB: 1100 011w: mod 000 r/m: imm immediate32 to memory64 (zero extend) 0100 10XB 1100 0111: mod 000 r/m: imm32 memory to AL, AX, or EAX 0100 0000: 1010 000w: displacement memory64 to RAX 0100 1000 1010 0001: displacement64 AL, AX, or EAX to memory 0100 0000: 1010 001w: displacement RAX to memory64 0100 1000 1010 0011: displacement64 MOV - Move to/from Control Registers 0100 0R0B: 0000 1111: 0010 0010: 11 eee reg (eee = CR#) CR0-CR4 from register 0100 0R0B: 0000 1111: 0010 0010: 11 eee qwordreg (Reee	immediate to register	0100 000B: 1100 011w: 11 000 reg: imm
immediate 64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg : imm64 immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm immediate 32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32 memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement memory64 to RAX 0100 1000 1010 0001 : displacement64 AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement RAX to memory64 0100 1000 1010 0011 : displacement64 MOV - Move to/from Control Registers 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#) CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	immediate32 to qwordregister (zero extend)	0100 100B 1100 0111 : 11 000 qwordreg : imm32
immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm immediate32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32 memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement memory64 to RAX 0100 1000 1010 0001 : displacement64 AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement RAX to memory64 0100 1000 1010 0011 : displacement64 MOV - Move to/from Control Registers 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#) CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	immediate to register (alternate encoding)	0100 000B : 1011 w reg : imm
immediate32 to memory64 (zero extend) memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement memory64 to RAX 0100 1000 1010 0011 : displacement64 AL, AX, or EAX to memory RAX to memory64 0100 1000 1010 0011 : displacement64 0100 1000 1010 0011 : displacement64 MOV - Move to/from Control Registers CR0-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#) CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	immediate64 to qwordregister (alternate encoding)	0100 100B 1011 1000 reg : imm64
memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement memory64 to RAX 0100 1000 1010 0001 : displacement64 AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement RAX to memory64 0100 1000 1010 0011 : displacement64 MOV - Move to/from Control Registers 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#) CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	immediate to memory	0100 00XB : 1100 011w : mod 000 r/m : imm
memory64 to RAX 0100 1000 1010 0001 : displacement64 AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement RAX to memory64 0100 1000 1010 0011 : displacement64 MOV - Move to/from Control Registers 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#) CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	immediate32 to memory64 (zero extend)	0100 10XB 1100 0111 : mod 000 r/m : imm32
AL, AX, or EAX to memory RAX to memory64 0100 1000 1010 0011 : displacement64 MOV - Move to/from Control Registers CR0-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#) CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	memory to AL, AX, or EAX	0100 0000 : 1010 000w : displacement
RAX to memory64 0100 1010 0011 : displacement64 MOV - Move to/from Control Registers CR0-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#) CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	memory64 to RAX	0100 1000 1010 0001 : displacement64
MOV - Move to/from Control Registers 0100 0R0B: 0000 1111: 0010 0010: 11 eee reg (eee = CR#) CRx from qwordregister 0100 1R0B: 0000 1111: 0010 0010: 11 eee qwordreg (Reee	AL, AX, or EAX to memory	0100 0000 : 1010 001w : displacement
CR0-CR4 from register 0100 0R0B: 0000 1111: 0010 0010: 11 eee reg (eee = CR#) CRx from qwordregister 0100 1R0B: 0000 1111: 0010 0010: 11 eee qwordreg (Reee	RAX to memory64	0100 1000 1010 0011 : displacement64
CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee qwordreg (Reee	MOV - Move to/from Control Registers	
	CRO-CR4 from register	0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg (eee = CR#)
	CRx from qwordregister	
register from CRO-CR4 0100 0R0B: 0000 1111: 0010 0000: 11 eee reg (eee = CR#)	register from CRO-CR4	0100 0R0B : 0000 1111 : 0010 0000 : 11 eee reg (eee = CR#)

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
qwordregister from CRx	0100 1R0B 0000 1111 : 0010 0000 : 11 eee qwordreg
qwordregister from enx	(Reee = CR#)
MOV - Move to/from Debug Registers	
DRO-DR7 from register	0000 1111 : 0010 0011 : 11 eee reg (eee = DR#)
DRO-DR7 from quadregister	0100 100B 0000 1111 : 0010 0011 : 11 eee reg (eee = DR#)
register from DRO-DR7	0000 1111 : 0010 0001 : 11 eee reg (eee = DR#)
quadregister from DRO-DR7	0100 100B 0000 1111 : 0010 0001 : 11 eee quadreg (eee = DR#)
MOV - Move to/from Segment Registers	
register to segment register	0100 W00B ^w : 1000 1110: 11 sreg reg
register to SS	0100 000B: 1000 1110: 11 sreg reg
memory to segment register	0100 00XB : 1000 1110 : mod sreg r/m
memory64 to segment register (lower 16 bits)	0100 10XB 1000 1110 : mod sreg r/m
memory to SS	0100 00XB : 1000 1110 : mod sreg r/m
segment register to register	0100 000B: 1000 1100: 11 sreg reg
segment register to qwordregister (zero extended)	0100 100B 1000 1100 : 11 sreg qwordreg
segment register to memory	0100 00XB : 1000 1100 : mod sreg r/m
segment register to memory64 (zero extended)	0100 10XB 1000 1100 : mod sreg3 r/m
MOVBE - Move data after swapping bytes	
memory to register	0100 0RXB : 0000 1111 : 0011 1000:1111 0000 : mod reg r/m
memory64 to qwordregister	0100 1RXB: 0000 1111: 0011 1000:1111 0000: mod reg r/m
register to memory	0100 0RXB :0000 1111 : 0011 1000:1111 0001 : mod reg r/m
qwordregister to memory64	0100 1RXB :0000 1111 : 0011 1000:1111 0001 : mod reg r/m
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ - Move Data from String to String	
Move data from string to string	1010 010w
Move data from string to string (qword)	0100 1000 1010 0101
MOVSX/MOVSXD - Move with Sign-Extend	
register2 to register1	0100 0R0B : 0000 1111 : 1011 111w : 11 reg1 reg2
byteregister2 to qwordregister1 (sign-extend)	0100 1R0B 0000 1111 : 1011 1110 : 11 quadreg1 bytereg2
wordregister2 to qwordregister1	0100 1R0B 0000 1111 : 1011 1111 : 11 quadreg1 wordreg2
dwordregister2 to qwordregister1	0100 1R0B 0110 0011 : 11 quadreg1 dwordreg2
memory to register	0100 0RXB: 0000 1111: 1011 111w: mod reg r/m
memory8 to qwordregister (sign-extend)	0100 1RXB 0000 1111 : 1011 1110 : mod qwordreg r/m
memory16 to qwordregister	0100 1RXB 0000 1111 : 1011 1111 : mod qwordreg r/m
memory32 to qwordregister	0100 1RXB 0110 0011 : mod qwordreg r/m
MOVZX - Move with Zero-Extend	
register2 to register1	0100 0R0B: 0000 1111: 1011 011w: 11 reg1 reg2
dwordregister2 to qwordregister1	0100 1R0B 0000 1111 : 1011 0111 : 11 qwordreg1 dwordreg2

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
memory to register	0100 0RXB : 0000 1111 : 1011 011w : mod reg r/m
memory32 to qwordregister	0100 1RXB 0000 1111 : 1011 0111 : mod qwordreg r/m
MUL - Unsigned Multiply	
AL, AX, or EAX with register	0100 000B: 1111 011w: 11 100 reg
RAX with qwordregister (to RDX:RAX)	0100 100B 1111 0111 : 11 100 qwordreg
AL, AX, or EAX with memory	0100 00XB 1111 011w : mod 100 r/m
RAX with memory64 (to RDX:RAX)	0100 10XB 1111 0111 : mod 100 r/m
NEG - Two's Complement Negation	
register	0100 000B: 1111 011w: 11 011 reg
qwordregister	0100 100B 1111 0111 : 11 011 qwordreg
memory	0100 00XB : 1111 011w : mod 011 r/m
memory64	0100 10XB 1111 0111 : mod 011 r/m
NOP - No Operation	1001 0000
NOT - One's Complement Negation	
register	0100 000B: 1111 011w: 11 010 reg
qwordregister	0100 000B 1111 0111 : 11 010 qwordreg
memory	0100 00XB : 1111 011w : mod 010 r/m
memory64	0100 1RXB 1111 0111 : mod 010 r/m
OR - Logical Inclusive OR	
register1 to register2	0000 100w : 11 reg1 reg2
byteregister1 to byteregister2	0100 0R0B 0000 1000 : 11 bytereg1 bytereg2
qwordregister1 to qwordregister2	0100 1R0B 0000 1001 : 11 qwordreg1 qwordreg2
register2 to register1	0000 101w: 11 reg1 reg2
byteregister2 to byteregister1	0100 0R0B 0000 1010 : 11 bytereg1 bytereg2
qwordregister2 to qwordregister1	0100 0R0B 0000 1011 : 11 qwordreg1 qwordreg2
memory to register	0000 101w: mod reg r/m
memory8 to byteregister	0100 0RXB 0000 1010 : mod bytereg r/m
memory8 to qwordregister	0100 0RXB 0000 1011 : mod qwordreg r/m
register to memory	0000 100w : mod reg r/m
byteregister to memory8	0100 0RXB 0000 1000 : mod bytereg r/m
qwordregister to memory64	0100 1RXB 0000 1001 : mod qwordreg r/m
immediate to register	1000 00sw : 11 001 reg : imm
immediate8 to byteregister	0100 000B 1000 0000 : 11 001 bytereg : imm8
immediate32 to qwordregister	0100 000B 1000 0001 : 11 001 qwordreg : imm32
immediate8 to qwordregister	0100 000B 1000 0011 : 11 001 qwordreg : imm8
immediate to AL, AX, or EAX	0000 110w : imm
immediate64 to RAX	0100 1000 0000 1101 : imm64
immediate to memory	1000 00sw : mod 001 r/m : imm

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
immediate8 to memory8	0100 00XB 1000 0000 : mod 001 r/m : imm8
immediate32 to memory64	0100 00XB 1000 0001 : mod 001 r/m : imm32
immediate8 to memory64	0100 00XB 1000 0011 : mod 001 r/m : imm8
OUT - Output to Port	
fixed port	1110 011w: port number
variable port	1110 111w
OUTS - Output to DX Port	
output to DX Port	0110 111w
POP - Pop a Value from the Stack	
wordregister	0101 0101 : 0100 000B : 1000 1111 : 11 000 reg16
qwordregister	0100 W00B ^S : 1000 1111: 11 000 reg64
wordregister (alternate encoding)	0101 0101 : 0100 000B : 0101 1 reg16
qwordregister (alternate encoding)	0100 W00B: 0101 1 reg64
memory64	0100 W0XB ^S : 1000 1111 : mod 000 r/m
memory16	0101 0101 : 0100 00XB 1000 1111 : mod 000 r/m
POP - Pop a Segment Register from the Stack (Note: CS cannot be sreg2 in this usage.)	
segment register FS, GS	0000 1111: 10 sreg3 001
POPF/POPFQ - Pop Stack into FLAGS/RFLAGS Register	
pop stack to FLAGS register	0101 0101 : 1001 1101
pop Stack to RFLAGS register	0100 1000 1001 1101
PUSH - Push Operand onto the Stack	
wordregister	0101 0101 : 0100 000B : 1111 1111 : 11 110 reg16
qwordregister	0100 W00B ^S :1111 1111:11 110 reg64
wordregister (alternate encoding)	0101 0101 : 0100 000B : 0101 0 reg16
qwordregister (alternate encoding)	0100 W00B ^S : 0101 0 reg64
memory16	0101 0101 : 0100 000B : 1111 1111 : mod 110 r/m
memory64	0100 W00B ^S : 1111 1111 : mod 110 r/m
immediate8	0110 1010 : imm8
immediate16	0101 0101 : 0110 1000 : imm16
immediate64	0110 1000 : imm64
PUSH - Push Segment Register onto the Stack	
segment register FS,GS	0000 1111: 10 sreg3 000
PUSHF/PUSHFD - Push Flags Register onto the Stack	1001 1100
RCL - Rotate thru Carry Left	
register by 1	0100 000B: 1101 000w: 11 010 reg
qwordregister by 1	0100 100B 1101 0001 : 11 010 qwordreg
memory by 1	0100 00XB : 1101 000w : mod 010 r/m
memory64 by 1	0100 10XB 1101 0001 : mod 010 r/m

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
register by CL	0100 000B:1101 001w:11 010 reg
qwordregister by CL	0100 100B 1101 0011 : 11 010 qwordreg
memory by CL	0100 00XB : 1101 001w : mod 010 r/m
memory64 by CL	0100 10XB 1101 0011 : mod 010 r/m
register by immediate count	0100 000B : 1100 000w : 11 010 reg : imm
qwordregister by immediate count	0100 100B 1100 0001 : 11 010 qwordreg : imm8
memory by immediate count	0100 00XB : 1100 000w : mod 010 r/m : imm
memory64 by immediate count	0100 10XB 1100 0001 : mod 010 r/m : imm8
RCR - Rotate thru Carry Right	
register by 1	0100 000B: 1101 000w: 11 011 reg
qwordregister by 1	0100 100B 1101 0001 : 11 011 qwordreg
memory by 1	0100 00XB : 1101 000w : mod 011 r/m
memory64 by 1	0100 10XB 1101 0001 : mod 011 r/m
register by CL	0100 000B: 1101 001w: 11 011 reg
qwordregister by CL	0100 000B 1101 0010 : 11 011 qwordreg
memory by CL	0100 00XB:1101 001w:mod 011 r/m
memory64 by CL	0100 10XB 1101 0011 : mod 011 r/m
register by immediate count	0100 000B: 1100 000w: 11 011 reg: imm8
qwordregister by immediate count	0100 100B 1100 0001 : 11 011 qwordreg : imm8
memory by immediate count	0100 00XB : 1100 000w : mod 011 r/m : imm8
memory64 by immediate count	0100 10XB 1100 0001 : mod 011 r/m : imm8
RDMSR - Read from Model-Specific Register	
load ECX-specified register into EDX:EAX	0000 1111 : 0011 0010
RDPMC - Read Performance Monitoring Counters	
load ECX-specified performance counter into EDX:EAX	0000 1111 : 0011 0011
RDTSC – Read Time-Stamp Counter	
read time-stamp counter into EDX:EAX	0000 1111 : 0011 0001
RDTSCP – Read Time-Stamp Counter and Processor ID	0000 1111 : 0000 0001: 1111 1001
REP INS – Input String	
REP LODS – Load String	
REP MOVS - Move String	
REP OUTS - Output String	
REP STOS - Store String	
REPE CMPS – Compare String	
REPE SCAS - Scan String	
REPNE CMPS – Compare String	
REPNE SCAS - Scan String	
RET - Return from Procedure (to same segment)	

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
no argument	1100 0011
adding immediate to SP	1100 0010 : 16-bit displacement
RET - Return from Procedure (to other segment)	
intersegment	1100 1011
adding immediate to SP	1100 1010 : 16-bit displacement
ROL - Rotate Left	
register by 1	0100 000B 1101 000w : 11 000 reg
byteregister by 1	0100 000B 1101 0000 : 11 000 bytereg
qwordregister by 1	0100 100B 1101 0001 : 11 000 qwordreg
memory by 1	0100 00XB 1101 000w : mod 000 r/m
memory8 by 1	0100 00XB 1101 0000 : mod 000 r/m
memory64 by 1	0100 10XB 1101 0001 : mod 000 r/m
register by CL	0100 000B 1101 001w: 11 000 reg
byteregister by CL	0100 000B 1101 0010 : 11 000 bytereg
qwordregister by CL	0100 100B 1101 0011 : 11 000 qwordreg
memory by CL	0100 00XB 1101 001w : mod 000 r/m
memory8 by CL	0100 00XB 1101 0010 : mod 000 r/m
memory64 by CL	0100 10XB 1101 0011 : mod 000 r/m
register by immediate count	1100 000w: 11 000 reg: imm8
byteregister by immediate count	0100 000B 1100 0000 : 11 000 bytereg : imm8
qwordregister by immediate count	0100 100B 1100 0001 : 11 000 bytereg : imm8
memory by immediate count	1100 000w: mod 000 r/m: imm8
memory8 by immediate count	0100 00XB 1100 0000 : mod 000 r/m : imm8
memory64 by immediate count	0100 10XB 1100 0001 : mod 000 r/m : imm8
ROR - Rotate Right	
register by 1	0100 000B 1101 000w:11 001 reg
byteregister by 1	0100 000B 1101 0000 : 11 001 bytereg
qwordregister by 1	0100 100B 1101 0001 : 11 001 qwordreg
memory by 1	0100 00XB 1101 000w : mod 001 r/m
memory8 by 1	0100 00XB 1101 0000 : mod 001 r/m
memory64 by 1	0100 10XB 1101 0001 : mod 001 r/m
register by CL	0100 000B 1101 001w:11 001 reg
byteregister by CL	0100 000B 1101 0010: 11 001 bytereg
qwordregister by CL	0100 100B 1101 0011 : 11 001 qwordreg
memory by CL	0100 00XB 1101 001w: mod 001 r/m
memory8 by CL	0100 00XB 1101 0010 : mod 001 r/m
memory64 by CL	0100 10XB 1101 0011 : mod 001 r/m
register by immediate count	0100 000B 1100 000w : 11 001 reg : imm8

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
byteregister by immediate count	0100 000B 1100 0000 : 11 001 reg : imm8
qwordregister by immediate count	0100 100B 1100 0001 : 11 001 qwordreg : imm8
memory by immediate count	0100 00XB 1100 000w : mod 001 r/m : imm8
memory8 by immediate count	0100 00XB 1100 0000 : mod 001 r/m : imm8
memory64 by immediate count	0100 10XB 1100 0001 : mod 001 r/m : imm8
RSM - Resume from System Management Mode	0000 1111 : 1010 1010
SAL - Shift Arithmetic Left	same instruction as SHL
SAR - Shift Arithmetic Right	
register by 1	0100 000B 1101 000w:11 111 reg
byteregister by 1	0100 000B 1101 0000 : 11 111 bytereg
qwordregister by 1	0100 100B 1101 0001 : 11 111 qwordreg
memory by 1	0100 00XB 1101 000w : mod 111 r/m
memory8 by 1	0100 00XB 1101 0000 : mod 111 r/m
memory64 by 1	0100 10XB 1101 0001 : mod 111 r/m
register by CL	0100 000B 1101 001w:11 111 reg
byteregister by CL	0100 000B 1101 0010:11 111 bytereg
qwordregister by CL	0100 100B 1101 0011 : 11 111 qwordreg
memory by CL	0100 00XB 1101 001w : mod 111 r/m
memory8 by CL	0100 00XB 1101 0010 : mod 111 r/m
memory64 by CL	0100 10XB 1101 0011 : mod 111 r/m
register by immediate count	0100 000B 1100 000w : 11 111 reg : imm8
byteregister by immediate count	0100 000B 1100 0000 : 11 111 bytereg : imm8
qwordregister by immediate count	0100 100B 1100 0001 : 11 111 qwordreg : imm8
memory by immediate count	0100 00XB 1100 000w : mod 111 r/m : imm8
memory8 by immediate count	0100 00XB 1100 0000 : mod 111 r/m : imm8
memory64 by immediate count	0100 10XB 1100 0001 : mod 111 r/m : imm8
SBB - Integer Subtraction with Borrow	
register1 to register2	0100 0R0B 0001 100w:11 reg1 reg2
byteregister1 to byteregister2	0100 OROB 0001 1000 : 11 bytereg1 bytereg2
quadregister1 to quadregister2	0100 1R0B 0001 1001 : 11 quadreg1 quadreg2
register2 to register1	0100 0R0B 0001 101w:11 reg1 reg2
byteregister2 to byteregister1	0100 OROB 0001 1010 : 11 reg1 bytereg2
byteregister2 to byteregister1	0100 1R0B 0001 1011 : 11 reg1 bytereg2
memory to register	0100 ORXB 0001 101w: mod reg r/m
memory8 to byteregister	0100 ORXB 0001 1010 : mod bytereg r/m
memory64 to byteregister	0100 1RXB 0001 1011 : mod quadreg r/m
register to memory	0100 ORXB 0001 100w : mod reg r/m
byteregister to memory8	0100 ORXB 0001 1000 : mod reg r/m

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
quadregister to memory64	0100 1RXB 0001 1001 : mod reg r/m
immediate to register	0100 000B 1000 00sw : 11 011 reg : imm
immediate8 to byteregister	0100 000B 1000 0000 : 11 011 bytereg : imm8
immediate32 to qwordregister	0100 100B 1000 0001 : 11 011 qwordreg : imm32
immediate8 to qwordregister	0100 100B 1000 0011 : 11 011 qwordreg : imm8
immediate to AL, AX, or EAX	0100 000B 0001 110w : imm
immediate32 to RAL	0100 1000 0001 1101 : imm32
immediate to memory	0100 00XB 1000 00sw : mod 011 r/m : imm
immediate8 to memory8	0100 00XB 1000 0000 : mod 011 r/m : imm8
immediate32 to memory64	0100 10XB 1000 0001 : mod 011 r/m : imm32
immediate8 to memory64	0100 10XB 1000 0011 : mod 011 r/m : imm8
SCAS/SCASB/SCASW/SCASD - Scan String	
scan string	1010 111w
scan string (compare AL with byte at RDI)	0100 1000 1010 1110
scan string (compare RAX with qword at RDI)	0100 1000 1010 1111
SETcc - Byte Set on Condition	
register	0100 000B 0000 1111 : 1001 tttn : 11 000 reg
register	0100 0000 0000 1111 : 1001 tttn : 11 000 reg
memory	0100 00XB 0000 1111 : 1001 tttn : mod 000 r/m
memory	0100 0000 0000 1111 : 1001 tttn : mod 000 r/m
SGDT - Store Global Descriptor Table Register	0000 1111 : 0000 0001 : mod ^A 000 г/m
SHL - Shift Left	
register by 1	0100 000B 1101 000w:11 100 reg
byteregister by 1	0100 000B 1101 0000 : 11 100 bytereg
qwordregister by 1	0100 100B 1101 0001 : 11 100 qwordreg
memory by 1	0100 00XB 1101 000w : mod 100 r/m
memory8 by 1	0100 00XB 1101 0000 : mod 100 r/m
memory64 by 1	0100 10XB 1101 0001 : mod 100 r/m
register by CL	0100 000B 1101 001w:11 100 reg
byteregister by CL	0100 000B 1101 0010 : 11 100 bytereg
qwordregister by CL	0100 100B 1101 0011 : 11 100 qwordreg
memory by CL	0100 00XB 1101 001w : mod 100 r/m
memory8 by CL	0100 00XB 1101 0010 : mod 100 r/m
memory64 by CL	0100 10XB 1101 0011 : mod 100 r/m
register by immediate count	0100 000B 1100 000w : 11 100 reg : imm8
byteregister by immediate count	0100 000B 1100 0000 : 11 100 bytereg : imm8
quadregister by immediate count	0100 100B 1100 0001 : 11 100 quadreg : imm8
memory by immediate count	0100 00XB 1100 000w : mod 100 r/m : imm8

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
memory8 by immediate count	0100 00XB 1100 0000 : mod 100 r/m : imm8
memory64 by immediate count	0100 10XB 1100 0001 : mod 100 r/m : imm8
SHLD - Double Precision Shift Left	
register by immediate count	0100 0R0B 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8
qwordregister by immediate8	0100 1R0B 0000 1111 : 1010 0100 : 11 qworddreg2 qwordreg1 : imm8
memory by immediate count	0100 ORXB 0000 1111 : 1010 0100 : mod reg r/m : imm8
memory64 by immediate8	0100 1RXB 0000 1111 : 1010 0100 : mod qwordreg r/m : imm8
register by CL	0100 0R0B 0000 1111 : 1010 0101 : 11 reg2 reg1
quadregister by CL	0100 1R0B 0000 1111 : 1010 0101 : 11 quadreg2 quadreg1
memory by CL	0100 00XB 0000 1111 : 1010 0101 : mod reg r/m
memory64 by CL	0100 1RXB 0000 1111 : 1010 0101 : mod quadreg r/m
SHR - Shift Right	
register by 1	0100 000B 1101 000w:11 101 reg
byteregister by 1	0100 000B 1101 0000:11 101 bytereg
qwordregister by 1	0100 100B 1101 0001 : 11 101 qwordreg
memory by 1	0100 00XB 1101 000w : mod 101 r/m
memory8 by 1	0100 00XB 1101 0000 : mod 101 r/m
memory64 by 1	0100 10XB 1101 0001 : mod 101 r/m
register by CL	0100 000B 1101 001w:11 101 reg
byteregister by CL	0100 000B 1101 0010:11 101 bytereg
qwordregister by CL	0100 100B 1101 0011 : 11 101 qwordreg
memory by CL	0100 00XB 1101 001w : mod 101 r/m
memory8 by CL	0100 00XB 1101 0010 : mod 101 r/m
memory64 by CL	0100 10XB 1101 0011 : mod 101 r/m
register by immediate count	0100 000B 1100 000w: 11 101 reg: imm8
byteregister by immediate count	0100 000B 1100 0000 : 11 101 reg : imm8
qwordregister by immediate count	0100 100B 1100 0001 : 11 101 reg : imm8
memory by immediate count	0100 00XB 1100 000w : mod 101 r/m : imm8
memory8 by immediate count	0100 00XB 1100 0000 : mod 101 r/m : imm8
memory64 by immediate count	0100 10XB 1100 0001 : mod 101 r/m : imm8
SHRD – Double Precision Shift Right	
register by immediate count	0100 OROB 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8
qwordregister by immediate8	0100 1R0B 0000 1111 : 1010 1100 : 11 qwordreg2 qwordreg1 : imm8
memory by immediate count	0100 00XB 0000 1111 : 1010 1100 : mod reg r/m : imm8
memory64 by immediate8	0100 1RXB 0000 1111 : 1010 1100 : mod qwordreg r/m :
	imm8

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
qwordregister by CL	0100 1R0B 0000 1111 : 1010 1101 : 11 qwordreg2 qwordreg1
memory by CL	0000 1111 : 1010 1101 : mod reg r/m
memory64 by CL	0100 1RXB 0000 1111 : 1010 1101 : mod qwordreg r/m
SIDT - Store Interrupt Descriptor Table Register	0000 1111 : 0000 0001 : mod ^A 001 r/m
SLDT - Store Local Descriptor Table Register	
to register	0100 000B 0000 1111 : 0000 0000 : 11 000 reg
to memory	0100 00XB 0000 1111 : 0000 0000 : mod 000 r/m
SMSW - Store Machine Status Word	
to register	0100 000B 0000 1111 : 0000 0001 : 11 100 reg
to memory	0100 00XB 0000 1111 : 0000 0001 : mod 100 r/m
STC - Set Carry Flag	1111 1001
STD - Set Direction Flag	1111 1101
STI - Set Interrupt Flag	1111 1011
STOS/STOSB/STOSW/STOSD/STOSQ - Store String Data	
store string data	1010 101w
store string data (RAX at address RDI)	0100 1000 1010 1011
STR - Store Task Register	
to register	0100 000B 0000 1111 : 0000 0000 : 11 001 reg
to memory	0100 00XB 0000 1111 : 0000 0000 : mod 001 r/m
SUB - Integer Subtraction	
register1 from register2	0100 OROB 0010 100w:11 reg1 reg2
byteregister1 from byteregister2	0100 OROB 0010 1000 : 11 bytereg1 bytereg2
qwordregister1 from qwordregister2	0100 1R0B 0010 1000 : 11 qwordreg1 qwordreg2
register2 from register1	0100 OROB 0010 101w:11 reg1 reg2
byteregister2 from byteregister1	0100 OROB 0010 1010:11 bytereg1 bytereg2
qwordregister2 from qwordregister1	0100 1R0B 0010 1011 : 11 qwordreg1 qwordreg2
memory from register	0100 00XB 0010 101w : mod reg r/m
memory8 from byteregister	0100 ORXB 0010 1010 : mod bytereg r/m
memory64 from qwordregister	0100 1RXB 0010 1011 : mod qwordreg r/m
register from memory	0100 ORXB 0010 100w : mod reg r/m
byteregister from memory8	0100 ORXB 0010 1000 : mod bytereg r/m
qwordregister from memory8	0100 1RXB 0010 1000 : mod qwordreg r/m
immediate from register	0100 000B 1000 00sw:11 101 reg:imm
immediate8 from byteregister	0100 000B 1000 0000 : 11 101 bytereg : imm8
immediate32 from qwordregister	0100 100B 1000 0001 : 11 101 qwordreg : imm32
immediate8 from qwordregister	0100 100B 1000 0011 : 11 101 qwordreg : imm8
immediate from AL, AX, or EAX	0100 000B 0010 110w : imm
immediate32 from RAX	0100 1000 0010 1101 : imm32

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
immediate from memory	0100 00XB 1000 00sw : mod 101 r/m : imm
immediate8 from memory8	0100 00XB 1000 0000 : mod 101 r/m : imm8
immediate32 from memory64	0100 10XB 1000 0001 : mod 101 r/m : imm32
immediate8 from memory64	0100 10XB 1000 0011 : mod 101 r/m : imm8
SWAPGS - Swap GS Base Register	
Exchanges the current GS base register value for value in MSR C0000102H	0000 1111 0000 0001 1111 1000
SYSCALL - Fast System Call	
fast call to privilege level 0 system procedures	0000 1111 0000 0101
SYSRET - Return From Fast System Call	
return from fast system call	0000 1111 0000 0111
TEST - Logical Compare	
register1 and register2	0100 0R0B 1000 010w: 11 reg1 reg2
byteregister1 and byteregister2	0100 OROB 1000 0100 : 11 bytereg1 bytereg2
qwordregister1 and qwordregister2	0100 1R0B 1000 0101 : 11 qwordreg1 qwordreg2
memory and register	0100 0R0B 1000 010w : mod reg r/m
memory8 and byteregister	0100 ORXB 1000 0100 : mod bytereg r/m
memory64 and qwordregister	0100 1RXB 1000 0101 : mod qwordreg r/m
immediate and register	0100 000B 1111 011w : 11 000 reg : imm
immediate8 and byteregister	0100 000B 1111 0110 : 11 000 bytereg : imm8
immediate32 and qwordregister	0100 100B 1111 0111 : 11 000 bytereg : imm8
immediate and AL, AX, or EAX	0100 000B 1010 100w : imm
immediate32 and RAX	0100 1000 1010 1001 : imm32
immediate and memory	0100 00XB 1111 011w: mod 000 r/m: imm
immediate8 and memory8	0100 1000 1111 0110 : mod 000 r/m : imm8
immediate32 and memory64	0100 1000 1111 0111 : mod 000 r/m : imm32
UD2 - Undefined instruction	0000 FFFF : 0000 1011
VERR - Verify a Segment for Reading	
register	0100 000B 0000 1111 : 0000 0000 : 11 100 reg
memory	0100 00XB 0000 1111 : 0000 0000 : mod 100 r/m
VERW - Verify a Segment for Writing	
register	0100 000B 0000 1111 : 0000 0000 : 11 101 reg
memory	0100 00XB 0000 1111 : 0000 0000 : mod 101 r/m
WAIT - Wait	1001 1011
WBINVD – Writeback and Invalidate Data Cache	0000 1111 : 0000 1001
WRMSR - Write to Model-Specific Register	
write EDX:EAX to ECX specified MSR	0000 1111 : 0011 0000
write RDX[31:0]:RAX[31:0] to RCX specified MSR	0100 1000 0000 1111 : 0011 0000

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
XADD - Exchange and Add	-
register1, register2	0100 0R0B 0000 1111 : 1100 000w : 11 reg2 reg1
byteregister1, byteregister2	0100 0R0B 0000 1111 : 1100 0000 : 11 bytereg2 bytereg1
qwordregister1, qwordregister2	0100 0R0B 0000 1111 : 1100 0001 : 11 qwordreg2 qwordreg1
memory, register	0100 0RXB 0000 1111 : 1100 000w : mod reg r/m
memory8, bytereg	0100 1RXB 0000 1111 : 1100 0000 : mod bytereg r/m
memory64, qwordreg	0100 1RXB 0000 1111 : 1100 0001 : mod qwordreg r/m
XCHG - Exchange Register/Memory with Register	
register1 with register2	1000 011w: 11 reg1 reg2
AX or EAX with register	1001 0 reg
memory with register	1000 011w: mod reg r/m
XLAT/XLATB - Table Look-up Translation	
AL to byte DS:[(E)BX + unsigned AL]	1101 0111
AL to byte DS:[RBX + unsigned AL]	0100 1000 1101 0111
XOR - Logical Exclusive OR	
register1 to register2	0100 0RXB 0011 000w:11 reg1 reg2
byteregister1 to byteregister2	0100 0R0B 0011 0000 : 11 bytereg1 bytereg2
qwordregister1 to qwordregister2	0100 1R0B 0011 0001 : 11 qwordreg1 qwordreg2
register2 to register1	0100 0R0B 0011 001w:11 reg1 reg2
byteregister2 to byteregister1	0100 0R0B 0011 0010 : 11 bytereg1 bytereg2
qwordregister2 to qwordregister1	0100 1R0B 0011 0011 : 11 qwordreg1 qwordreg2
memory to register	0100 0RXB 0011 001w: mod reg r/m
memory8 to byteregister	0100 ORXB 0011 0010 : mod bytereg r/m
memory64 to qwordregister	0100 1RXB 0011 0011 : mod qwordreg r/m
register to memory	0100 0RXB 0011 000w: mod reg r/m
byteregister to memory8	0100 ORXB 0011 0000 : mod bytereg r/m
qwordregister to memory8	0100 1RXB 0011 0001 : mod qwordreg r/m
immediate to register	0100 000B 1000 00sw : 11 110 reg : imm
immediate8 to byteregister	0100 000B 1000 0000 : 11 110 bytereg : imm8
immediate32 to qwordregister	0100 100B 1000 0001 : 11 110 qwordreg : imm32
immediate8 to qwordregister	0100 100B 1000 0011 : 11 110 qwordreg : imm8
immediate to AL, AX, or EAX	0100 000B 0011 010w:imm
immediate to RAX	0100 1000 0011 0101 : immediate data
immediate to memory	0100 00XB 1000 00sw : mod 110 r/m : imm
immediate8 to memory8	0100 00XB 1000 0000 : mod 110 r/m : imm8
immediate32 to memory64	0100 10XB 1000 0001 : mod 110 r/m : imm32
immediate8 to memory64	0100 10XB 1000 0011 : mod 110 r/m : imm8

Table B-15. General Purpose Instruction Formats and Encodings for 64-Bit Mode (Contd.)

Instruction and Format	Encoding
Prefix Bytes	
address size	0110 0111
LOCK	1111 0000
operand size	0110 0110
CS segment override	0010 1110
DS segment override	0011 1110
ES segment override	0010 0110
FS segment override	0110 0100
GS segment override	0110 0101
SS segment override	0011 0110

B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS

The following table shows formats and encodings introduced by the Pentium processor family.

Table B-16. Pentium Processor Family Instruction Formats and Encodings, Non-64-Bit Modes

Instruction and Format	Encoding
CMPXCHG8B - Compare and Exchange 8 Bytes	
EDX:EAX with memory64	0000 1111 : 1100 0111 : mod 001 г/m

Table B-17. Pentium Processor Family Instruction Formats and Encodings, 64-Bit Mode

	3 ·
Instruction and Format	Encoding
CMPXCHG8B/CMPXCHG16B - Compare and Exchange Bytes	
EDX:EAX with memory64	0000 1111 : 1100 0111 : mod 001 r/m
RDX:RAX with memory128	0100 10XB 0000 1111 : 1100 0111 : mod 001 r/m

B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION EXTENSIONS

Non-64-bit mode instruction encodings for MMX Technology, SSE, SSE2, and SSE3 are covered by applying these rules to Table B-19 through Table B-31. Table B-34 lists special encodings (instructions that do not follow the rules below).

- 1. The REX instruction has no effect:
 - On immediates.
 - If both operands are MMX registers.
 - On MMX registers and XMM registers.
 - If an MMX register is encoded in the reg field of the ModR/M byte.
- 2. If a memory operand is encoded in the r/m field of the ModR/M byte, REX.X and REX.B may be used for encoding the memory operand.

- 3. If a general-purpose register is encoded in the r/m field of the ModR/M byte, REX.B may be used for register encoding and REX.W may be used to encode the 64-bit operand size.
- 4. If an XMM register operand is encoded in the reg field of the ModR/M byte, REX.R may be used for register encoding. If an XMM register operand is encoded in the r/m field of the ModR/M byte, REX.B may be used for register encoding.

B.5 MMX INSTRUCTION FORMATS AND ENCODINGS

MMX instructions, except the EMMS instruction, use a format similar to the 2-byte Intel Architecture integer format. Details of subfield encodings within these formats are presented below.

B.5.1 Granularity Field (gg)

The granularity field (gg) indicates the size of the packed operands that the instruction is operating on. When this field is used, it is located in bits 1 and 0 of the second opcode byte. Table B-18 shows the encoding of the gg field.

99	Granularity of Data
00	Packed Bytes
01	Packed Words
10	Packed Doublewords
11	Quadword

Table B-18. Encoding of Granularity of Data Field (gg)

B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg)

When MMX technology registers (mmxreg) are used as operands, they are encoded in the ModR/M byte in the reg field (bits 5, 4, and 3) and/or the R/M field (bits 2, 1, and 0).

If an MMX instruction operates on a general-purpose register (reg), the register is encoded in the R/M field of the ModR/M byte.

B.5.3 MMX Instruction Formats and Encodings Table

Table B-19 shows the formats and encodings of the integer instructions.

table b 15. This instruction formats and checomings	
Instruction and Format	Encoding
EMMS - Empty MMX technology state	0000 1111:01110111
MOVD - Move doubleword	
reg to mmxreg	0000 1111:0110 1110: 11 mmxreg reg
reg from mmxreg	0000 1111:0111 1110: 11 mmxreg reg
mem to mmxreg	0000 1111:0110 1110: mod mmxreg r/m
mem from mmxreg	0000 1111:0111 1110: mod mmxreg r/m
MOVQ - Move quadword	
mmxreg2 to mmxreg1	0000 1111:0110 1111: 11 mmxreg1 mmxreg2
mmxreg2 from mmxreg1	0000 1111:0111 1111: 11 mmxreg1 mmxreg2
mem to mmxreg	0000 1111:0110 1111: mod mmxreg r/m

Table B-19. MMX Instruction Formats and Encodings

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format	Encoding
mem from mmxreg	0000 1111:0111 1111: mod mmxreg r/m
PACKSSDW ¹ - Pack dword to word data (signed with saturation)	
mmxreg2 to mmxreg1	0000 1111:0110 1011: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111:0110 1011: mod mmxreg r/m
PACKSSWB ¹ - Pack word to byte data (signed with saturation)	
mmxreg2 to mmxreg1	0000 1111:0110 0011: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111:0110 0011: mod mmxreg r/m
PACKUSWB ¹ - Pack word to byte data (unsigned with saturation)	
mmxreg2 to mmxreg1	0000 1111:0110 0111: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111:0110 0111: mod mmxreg r/m
PADD - Add with wrap-around	
mmxreg2 to mmxreg1	0000 1111: 1111 11gg: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111: 1111 11gg: mod mmxreg r/m
PADDS - Add signed with saturation	
mmxreg2 to mmxreg1	0000 1111: 1110 11gg: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111: 1110 11gg: mod mmxreg r/m
PADDUS - Add unsigned with saturation	
mmxreg2 to mmxreg1	0000 1111: 1101 11gg: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111: 1101 11gg: mod mmxreg r/m
PAND - Bitwise And	
mmxreg2 to mmxreg1	0000 1111:1101 1011: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111:1101 1011: mod mmxreg r/m
PANDN - Bitwise AndNot	
mmxreg2 to mmxreg1	0000 1111:1101 1111: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111:1101 1111: mod mmxreg r/m
PCMPEQ - Packed compare for equality	
mmxreg1 with mmxreg2	0000 1111:0111 01gg: 11 mmxreg1 mmxreg2
mmxreg with memory	0000 1111:0111 01gg: mod mmxreg r/m
PCMPGT - Packed compare greater (signed)	
mmxreg1 with mmxreg2	0000 1111:0110 01gg: 11 mmxreg1 mmxreg2
mmxreg with memory	0000 1111:0110 01gg: mod mmxreg r/m
PMADDWD – Packed multiply add	
mmxreg2 to mmxreg1	0000 1111:1111 0101: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111:1111 0101: mod mmxreg r/m
PMULHUW – Packed multiplication, store high word (unsigned)	
mmxreg2 to mmxreg1	0000 1111: 1110 0100: 11 mmxreg1 mmxreg2

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format	Encoding
memory to mmxreg	0000 1111: 1110 0100: mod mmxreg r/m
PMULHW - Packed multiplication, store high word	
mmxreg2 to mmxreg1	0000 1111:1110 0101: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111:1110 0101: mod mmxreg r/m
PMULLW - Packed multiplication, store low word	
mmxreg2 to mmxreg1	0000 1111:1101 0101: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111:1101 0101: mod mmxreg r/m
POR - Bitwise Or	
mmxreg2 to mmxreg1	0000 1111:1110 1011: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111:1110 1011: mod mmxreg r/m
PSLL ² - Packed shift left logical	
mmxreg1 by mmxreg2	0000 1111:1111 00gg: 11 mmxreg1 mmxreg2
mmxreg by memory	0000 1111:1111 00gg: mod mmxreg r/m
mmxreg by immediate	0000 1111:0111 00gg: 11 110 mmxreg: imm8 data
PSRA ² - Packed shift right arithmetic	
mmxreg1 by mmxreg2	0000 1111:1110 00gg: 11 mmxreg1 mmxreg2
mmxreg by memory	0000 1111:1110 00gg: mod mmxreg r/m
mmxreg by immediate	0000 1111:0111 00gg: 11 100 mmxreg: imm8 data
PSRL ² - Packed shift right logical	
mmxreg1 by mmxreg2	0000 1111:1101 00gg: 11 mmxreg1 mmxreg2
mmxreg by memory	0000 1111:1101 00gg: mod mmxreg r/m
mmxreg by immediate	0000 1111:0111 00gg: 11 010 mmxreg: imm8 data
PSUB – Subtract with wrap-around	
mmxreg2 from mmxreg1	0000 1111:1111 10gg: 11 mmxreg1 mmxreg2
memory from mmxreg	0000 1111:1111 10gg: mod mmxreg r/m
PSUBS - Subtract signed with saturation	
mmxreg2 from mmxreg1	0000 1111:1110 10gg: 11 mmxreg1 mmxreg2
memory from mmxreg	0000 1111:1110 10gg: mod mmxreg r/m
PSUBUS - Subtract unsigned with saturation	
mmxreg2 from mmxreg1	0000 1111:1101 10gg: 11 mmxreg1 mmxreg2
memory from mmxreg	0000 1111:1101 10gg: mod mmxreg r/m
PUNPCKH - Unpack high data to next larger type	
mmxreg2 to mmxreg1	0000 1111:0110 10gg: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111:0110 10gg: mod mmxreg r/m
PUNPCKL - Unpack low data to next larger type	
mmxreg2 to mmxreg1	0000 1111:0110 00gg: 11 mmxreg1 mmxreg2
minixiege to minixieg i	

Table B-19. MMX Instruction Formats and Encodings (Contd.)

Instruction and Format	Encoding
PXOR - Bitwise Xor	
mmxreg2 to mmxreg1	0000 1111:1110 1111: 11 mmxreg1 mmxreg2
memory to mmxreg	0000 1111:1110 1111: mod mmxreg r/m

NOTES:

- 1. The pack instructions perform saturation from signed packed data of one type to signed or unsigned data of the next smaller type.
- 2. The format of the shift instructions has one additional format to support shifting by immediate shift-counts. The shift operations are not supported equally for all data types.

B.6 PROCESSOR EXTENDED STATE INSTRUCTION FORMATS AND ENCODINGS

Table B-20 shows the formats and encodings for several instructions that relate to processor extended state management.

Table B-20. Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions

Instruction and Format	Encoding
XGETBV - Get Value of Extended Control Register	0000 1111:0000 0001: 1101 0000
XRSTOR - Restore Processor Extended States ¹	0000 1111:1010 1110: mod ^A 101 r/m
XSAVE - Save Processor Extended States ¹	0000 1111:1010 1110: mod ^A 100 r/m
XSETBV - Set Extended Control Register	0000 1111:0000 0001: 1101 0001

NOTES:

1. For XSAVE and XRSTOR, "mod = 11" is reserved.

B.7 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS

Table B-20 shows the formats and encodings for several instructions that were introduced into the IA-32 architecture in the P6 family processors.

Table B-21. Formats and Encodings of P6 Family Instructions

Instruction and Format	Encoding
CMOVcc - Conditional Move	
register2 to register1	0000 1111: 0100 tttn : 11 reg1 reg2
memory to register	0000 1111 : 0100 tttn : mod reg r/m
FCMOVcc - Conditional Move on EFLAG Register Condition Codes	
move if below (B)	11011 010 : 11 000 ST(i)
move if equal (E)	11011 010 : 11 001 ST(i)
move if below or equal (BE)	11011 010 : 11 010 ST(i)
move if unordered (U)	11011 010 : 11 011 ST(i)
move if not below (NB)	11011 011 : 11 000 ST(i)
move if not equal (NE)	11011 011 : 11 001 ST(i)

Table B-21. Formats and Encodings of P6 Family Instructions (Contd.)

Instruction and Format	Encoding
move if not below or equal (NBE)	11011 011 : 11 010 ST(i)
move if not unordered (NU)	11011 011 : 11 011 ST(i)
FCOMI - Compare Real and Set EFLAGS	11011 011 : 11 110 ST(i)
FXRSTOR - Restore x87 FPU, MMX, SSE, and SSE2 State ¹	0000 1111:1010 1110: mod ^A 001 r/m
FXSAVE - Save x87 FPU, MMX, SSE, and SSE2 State ¹	0000 1111:1010 1110: mod ^A 000 r/m
SYSENTER - Fast System Call	0000 1111:0011 0100
SYSEXIT - Fast Return from Fast System Call	0000 1111:0011 0101

NOTES:

B.8 SSE INSTRUCTION FORMATS AND ENCODINGS

The SSE instructions use the ModR/M format and are preceded by the 0FH prefix byte. In general, operations are not duplicated to provide two directions (that is, separate load and store variants).

The following three tables (Tables B-22, B-23, and B-24) show the formats and encodings for the SSE SIMD floating-point, SIMD integer, and cacheability and memory ordering instructions, respectively. Some SSE instructions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode. Mandatory prefixes are included in the tables.

Table B-22. Formats and Encodings of SSE Floating-Point Instructions

Instruction and Format	Encoding
ADDPS—Add Packed Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 1000:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 1000: mod xmmreg r/m
ADDSS—Add Scalar Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	1111 0011:0000 1111:01011000:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:01011000: mod xmmreg r/m
ANDNPS—Bitwise Logical AND NOT of Packed Single- Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 0101:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 0101: mod xmmreg r/m
ANDPS—Bitwise Logical AND of Packed Single- Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 0100:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 0100: mod xmmreg r/m
CMPPS—Compare Packed Single-Precision Floating- Point Values	
xmmreg2 to xmmreg1, imm8	0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0000 1111:1100 0010: mod xmmreg r/m: imm8
CMPSS—Compare Scalar Single-Precision Floating- Point Values	

^{1.} For FXSAVE and FXRSTOR, "mod = 11" is reserved.

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format	Encoding
xmmreg2 to xmmreg1, imm8	1111 0011:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	1111 0011:0000 1111:1100 0010: mod xmmreg r/m: imm8
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS	3
xmmreg2 to xmmreg1	0000 1111:0010 1111:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0010 1111: mod xmmreg r/m
CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values	
mmreg to xmmreg	0000 1111:0010 1010:11 xmmreg1 mmreg1
mem to xmmreg	0000 1111:0010 1010: mod xmmreg r/m
CVTPS2PI—Convert Packed Single-Precision Floating- Point Values to Packed Doubleword Integers	
xmmreg to mmreg	0000 1111:0010 1101:11 mmreg1 xmmreg1
mem to mmreg	0000 1111:0010 1101: mod mmreg r/m
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value	
r32 to xmmreg1	1111 0011:0000 1111:00101010:11 xmmreg1 r32
mem to xmmreg	1111 0011:0000 1111:00101010: mod xmmreg r/m
CVTSS2SI—Convert Scalar Single-Precision Floating- Point Value to Doubleword Integer	
xmmreg to r32	1111 0011:0000 1111:0010 1101:11 r32 xmmreg
mem to r32	1111 0011:0000 1111:0010 1101: mod r32 r/m
CVTTPS2PI—Convert with Truncation Packed Single- Precision Floating-Point Values to Packed Doubleword Integers	
xmmreg to mmreg	0000 1111:0010 1100:11 mmreg1 xmmreg1
mem to mmreg	0000 1111:0010 1100: mod mmreg r/m
CVTTSS2SI—Convert with Truncation Scalar Single- Precision Floating-Point Value to Doubleword Integer	
xmmreg to r32	1111 0011:0000 1111:0010 1100:11 r32 xmmreg1
mem to r32	1111 0011:0000 1111:0010 1100: mod r32 r/m
DIVPS—Divide Packed Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 1110:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 1110: mod xmmreg r/m
DIVSS—Divide Scalar Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0101 1110:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:0101 1110: mod xmmreg r/m
LDMXCSR—Load MXCSR Register State	
m32 to MXCSR	0000 1111:1010 1110:mod ^A 010 mem
MAXPS—Return Maximum Packed Single-Precision Floating-Point Values	

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

	ngs of SSE Floating-Point Instructions (Contd.)
Instruction and Format	Encoding
xmmreg2 to xmmreg1	0000 1111:0101 1111:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 1111: mod xmmreg r/m
MAXSS—Return Maximum Scalar Double-Precision Floating-Point Value	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0101 1111:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:0101 1111: mod xmmreg r/m
MINPS—Return Minimum Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 1101:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 1101: mod xmmreg r/m
MINSS—Return Minimum Scalar Double-Precision Floating-Point Value	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0101 1101:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:0101 1101: mod xmmreg r/m
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0010 1000:11 xmmreg2 xmmreg1
mem to xmmreg1	0000 1111:0010 1000: mod xmmreg r/m
xmmreg1 to xmmreg2	0000 1111:0010 1001:11 xmmreg1 xmmreg2
xmmreg1 to mem	0000 1111:0010 1001: mod xmmreg r/m
MOVHLPS—Move Packed Single-Precision Floating- Point Values High to Low	
xmmreg2 to xmmreg1	0000 1111:0001 0010:11 xmmreg1 xmmreg2
MOVHPS—Move High Packed Single-Precision Floating-Point Values	
mem to xmmreg	0000 1111:0001 0110: mod xmmreg r/m
xmmreg to mem	0000 1111:0001 0111: mod xmmreg r/m
MOVLHPS—Move Packed Single-Precision Floating- Point Values Low to High	
xmmreg2 to xmmreg1	0000 1111:00010110:11 xmmreg1 xmmreg2
MOVLPS—Move Low Packed Single-Precision Floating- Point Values	
mem to xmmreg	0000 1111:0001 0010: mod xmmreg r/m
xmmreg to mem	0000 1111:0001 0011: mod xmmreg r/m
MOVMSKPS—Extract Packed Single-Precision Floating- Point Sign Mask	
xmmreg to r32	0000 1111:0101 0000:11 r32 xmmreg
MOVSS—Move Scalar Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0001 0000:11 xmmreg2 xmmreg1
mem to xmmreg1	1111 0011:0000 1111:0001 0000: mod xmmreg r/m

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format	Encoding
xmmreq1 to xmmreq2	1111 0011:0000 1111:0001 0001:11 xmmreg1 xmmreg2
xmmreg1 to mem	1111 0011:0000 1111:0001 0001: mod xmmreg r/m
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values	- · · · · · · · · · · · · · · · · · · ·
xmmreg2 to xmmreg1	0000 1111:0001 0000:11 xmmreg2 xmmreg1
mem to xmmreg1	0000 1111:0001 0000: mod xmmreg r/m
xmmreg1 to xmmreg2	0000 1111:0001 0001:11 xmmreg1 xmmreg2
xmmreg1 to mem	0000 1111:0001 0001: mod xmmreg r/m
MULPS—Multiply Packed Single-Precision Floating- Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 1001:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 1001: mod xmmreg r/m
MULSS—Multiply Scalar Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0101 1001:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:0101 1001: mod xmmreg r/m
ORPS—Bitwise Logical OR of Single-Precision Floating- Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 0110:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 0110: mod xmmreg r/m
RCPPS—Compute Reciprocals of Packed Single- Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 0011:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 0011: mod xmmreg r/m
RCPSS—Compute Reciprocals of Scalar Single- Precision Floating-Point Value	
xmmreg2 to xmmreg1	1111 0011:0000 1111:01010011:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:01010011: mod xmmreg r/m
RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 0010:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 0010: mode xmmreg r/m
RSQRTSS—Compute Reciprocals of Square Roots of Scalar Single-Precision Floating-Point Value	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0101 0010:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:0101 0010: mod xmmreg r/m
SHUFPS—Shuffle Packed Single-Precision Floating- Point Values	
xmmreg2 to xmmreg1, imm8	0000 1111:1100 0110:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0000 1111:1100 0110: mod xmmreg r/m: imm8
SQRTPS—Compute Square Roots of Packed Single- Precision Floating-Point Values	

Table B-22. Formats and Encodings of SSE Floating-Point Instructions (Contd.)

Instruction and Format	Encoding
xmmreg2 to xmmreg1	0000 1111:0101 0001:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 0001: mod xmmreg r/m
SQRTSS—Compute Square Root of Scalar Single- Precision Floating-Point Value	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0101 0001:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:0101 0001:mod xmmreg r/m
STMXCSR—Store MXCSR Register State	
MXCSR to mem	0000 1111:1010 1110:mod ^A 011 mem
SUBPS—Subtract Packed Single-Precision Floating- Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 1100:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 1100:mod xmmreg r/m
SUBSS—Subtract Scalar Single-Precision Floating- Point Values	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0101 1100:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:0101 1100:mod xmmreg r/m
UCOMISS—Unordered Compare Scalar Ordered Single- Precision Floating-Point Values and Set EFLAGS	
xmmreg2 to xmmreg1	0000 1111:0010 1110:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0010 1110: mod xmmreg r/m
UNPCKHPS—Unpack and Interleave High Packed Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0001 0101:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0001 0101: mod xmmreg r/m
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0001 0100:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0001 0100: mod xmmreg r/m
XORPS—Bitwise Logical XOR of Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 0111:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 0111: mod xmmreg r/m

Table B-23. Formats and Encodings of SSE Integer Instructions

Instruction and Format	Encoding
PAVGB/PAVGW—Average Packed Integers	
mmreg2 to mmreg1	0000 1111:1110 0000:11 mmreg1 mmreg2
	0000 1111:1110 0011:11 mmreg1 mmreg2
mem to mmreg	0000 1111:1110 0000: mod mmreg r/m
	0000 1111:1110 0011: mod mmreg r/m
PEXTRW—Extract Word	
mmreg to reg32, imm8	0000 1111:1100 0101:11 r32 mmreg: imm8
PINSRW—Insert Word	
reg32 to mmreg, imm8	0000 1111:1100 0100:11 mmreg r32: imm8
m16 to mmreg, imm8	0000 1111:1100 0100: mod mmreg r/m: imm8
PMAXSW—Maximum of Packed Signed Word Integers	
mmreg2 to mmreg1	0000 1111:1110 1110:11 mmreg1 mmreg2
mem to mmreg	0000 1111:1110 1110: mod mmreg r/m
PMAXUB—Maximum of Packed Unsigned Byte Integers	
mmreg2 to mmreg1	0000 1111:1101 1110:11 mmreg1 mmreg2
mem to mmreg	0000 1111:1101 1110: mod mmreg r/m
PMINSW—Minimum of Packed Signed Word Integers	
mmreg2 to mmreg1	0000 1111:1110 1010:11 mmreg1 mmreg2
mem to mmreg	0000 1111:1110 1010: mod mmreg r/m
PMINUB—Minimum of Packed Unsigned Byte Integers	
mmreg2 to mmreg1	0000 1111:1101 1010:11 mmreg1 mmreg2
mem to mmreg	0000 1111:1101 1010: mod mmreg r/m
PMOVMSKB—Move Byte Mask To Integer	
mmreg to reg32	0000 1111:1101 0111:11 r32 mmreg
PMULHUW—Multiply Packed Unsigned Integers and Store High Result	
mmreg2 to mmreg1	0000 1111:1110 0100:11 mmreg1 mmreg2
mem to mmreg	0000 1111:1110 0100: mod mmreg r/m
PSADBW—Compute Sum of Absolute Differences	
mmreg2 to mmreg1	0000 1111:1111 0110:11 mmreg1 mmreg2
mem to mmreg	0000 1111:1111 0110: mod mmreg r/m
PSHUFW—Shuffle Packed Words	
mmreg2 to mmreg1, imm8	0000 1111:0111 0000:11 mmreg1 mmreg2: imm8
mem to mmreg, imm8	0000 1111:0111 0000: mod mmreg r/m: imm8

Table B-24. Format and Encoding of SSE Cacheability & Memory Ordering Instructions

Instruction and Format	Encoding
MASKMOVQ—Store Selected Bytes of Quadword	
mmreg2 to mmreg1	0000 1111:1111 0111:11 mmreg1 mmreg2
MOVNTPS—Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint	
xmmreg to mem	0000 1111:0010 1011: mod xmmreg r/m
MOVNTQ—Store Quadword Using Non-Temporal Hint	
mmreg to mem	0000 1111:1110 0111: mod mmreg r/m
PREFETCHTO—Prefetch Temporal to All Cache Levels	0000 1111:0001 1000:mod ^A 001 mem
PREFETCHT1—Prefetch Temporal to First Level Cache	0000 1111:0001 1000:mod ^A 010 mem
PREFETCHT2—Prefetch Temporal to Second Level Cache	0000 1111:0001 1000:mod ^A 011 mem
PREFETCHNTA—Prefetch Non-Temporal to All Cache Levels	0000 1111:0001 1000:mod ^A 000 mem
SFENCE—Store Fence	0000 1111:1010 1110:11 111 000

B.9 SSE2 INSTRUCTION FORMATS AND ENCODINGS

The SSE2 instructions use the ModR/M format and are preceded by the 0FH prefix byte. In general, operations are not duplicated to provide two directions (that is, separate load and store variants).

The following three tables show the formats and encodings for the SSE2 SIMD floating-point, SIMD integer, and cacheability instructions, respectively. Some SSE2 instructions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode. These prefixes are included in the tables.

B.9.1 Granularity Field (gg)

The granularity field (gg) indicates the size of the packed operands that the instruction is operating on. When this field is used, it is located in bits 1 and 0 of the second opcode byte. Table B-25 shows the encoding of this gg field.

Table B-25. Encoding of Granularity of Data Field (gg)

	1007
99	Granularity of Data
00	Packed Bytes
01	Packed Words
10	Packed Doublewords
11	Quadword

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions

Instruction and Format	Encoding
ADDPD—Add Packed Double-Precision Floating- Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 1000:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 1000: mod xmmreg r/m
ADDSD—Add Scalar Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	1111 0010:0000 1111:0101 1000:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0010:0000 1111:0101 1000: mod xmmreg r/m
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 0101:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 0101: mod xmmreg r/m
ANDPD—Bitwise Logical AND of Packed Double- Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 0100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 0100: mod xmmreg r/m
CMPPD—Compare Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:1100 0010: mod xmmreg r/m: imm8
CMPSD—Compare Scalar Double-Precision Floating- Point Values	
xmmreg2 to xmmreg1, imm8	1111 0010:0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	11110 010:0000 1111:1100 0010: mod xmmreg r/m: imm8
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0010 1111:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0010 1111: mod xmmreg r/m
CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values	
mmreg to xmmreg	0110 0110:0000 1111:0010 1010:11 xmmreg1 mmreg1
mem to xmmreg	0110 0110:0000 1111:0010 1010: mod xmmreg r/m
CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers	
xmmreg to mmreg	0110 0110:0000 1111:0010 1101:11 mmreg1 xmmreg1
mem to mmreg	0110 0110:0000 1111:0010 1101: mod mmreg r/m
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value	
r32 to xmmreg1	1111 0010:0000 1111:0010 1010:11 xmmreg r32
mem to xmmreg	1111 0010:0000 1111:0010 1010: mod xmmreg r/m
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer	

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format	Encoding
xmmreg to r32	1111 0010:0000 1111:0010 1101:11 r32 xmmreg
mem to r32 CVTTPD2PI—Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers	1111 0010:0000 1111:0010 1101: mod r32 r/m
xmmreg to mmreg	0110 0110:0000 1111:0010 1100:11 mmreg xmmreg
mem to mmreg	0110 0110:0000 1111:0010 1100: mod mmreg r/m
CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer	
xmmreg to r32	1111 0010:0000 1111:0010 1100:11 r32 xmmreg
mem to r32	1111 0010:0000 1111:0010 1100: mod r32 r/m
CVTPD2PS—Covert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 1010:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 1010: mod xmmreg r/m
CVTPS2PD—Covert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 1010:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 1010: mod xmmreg r/m
CVTSD2SS—Covert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value	
xmmreg2 to xmmreg1	1111 0010:0000 1111:0101 1010:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0010:0000 1111:0101 1010: mod xmmreg r/m
CVTSS2SD—Covert Scalar Single-Precision Floating- Point Value to Scalar Double-Precision Floating- Point Value	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0101 1010:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:00001 111:0101 1010: mod xmmreg r/m
CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers	
xmmreg2 to xmmreg1	1111 0010:0000 1111:1110 0110:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0010:0000 1111:1110 0110: mod xmmreg r/m
CVTTPD2DQ—Convert With Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1110 0110:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:1110 0110: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format	Encoding
CVTDQ2PD—Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values	
xmmreg2 to xmmreg1	1111 0011:0000 1111:1110 0110:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:1110 0110: mod xmmreg r/m
CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed Doubleword Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 1011:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 1011: mod xmmreg r/m
CVTTPS2DQ—Convert With Truncation Packed Single-Precision Floating-Point Values to Packed Doubleword Integers	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0101 1011:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:0101 1011: mod xmmreg r/m
CVTDQ2PS—Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0000 1111:0101 1011:11 xmmreg1 xmmreg2
mem to xmmreg	0000 1111:0101 1011: mod xmmreg r/m
DIVPD—Divide Packed Double-Precision Floating- Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 1110:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 1110: mod xmmreg r/m
DIVSD—Divide Scalar Double-Precision Floating- Point Values	
xmmreg2 to xmmreg1	1111 0010:0000 1111:0101 1110:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0010:0000 1111:0101 1110: mod xmmreg r/m
MAXPD—Return Maximum Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 1111:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 1111: mod xmmreg r/m
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value	
xmmreg2 to xmmreg1	1111 0010:0000 1111:0101 1111:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0010:0000 1111:0101 1111: mod xmmreg r/m
MINPD—Return Minimum Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 1101:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 1101: mod xmmreg r/m
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value	
xmmreg2 to xmmreg1	1111 0010:0000 1111:0101 1101:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0010:0000 1111:0101 1101: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format	Encoding
MOVAPD—Move Aligned Packed Double-Precision	Circoding
Floating-Point Values	
xmmreg1 to xmmreg2	0110 0110:0000 1111:0010 1001:11 xmmreg2 xmmreg1
xmmreg1 to mem	0110 0110:0000 1111:0010 1001: mod xmmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0010 1000:11 xmmreg1 xmmreg2
mem to xmmreg1	0110 0110:0000 1111:0010 1000: mod xmmreg r/m
MOVHPD—Move High Packed Double-Precision Floating-Point Values	
xmmreg to mem	0110 0110:0000 1111:0001 0111: mod xmmreg r/m
mem to xmmreg	0110 0110:0000 1111:0001 0110: mod xmmreg r/m
MOVLPD—Move Low Packed Double-Precision Floating-Point Values	
xmmreg to mem	0110 0110:0000 1111:0001 0011: mod xmmreg r/m
mem to xmmreg	0110 0110:0000 1111:0001 0010: mod xmmreg r/m
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask	
xmmreg to r32	0110 0110:0000 1111:0101 0000:11 r32 xmmreg
MOVSD—Move Scalar Double-Precision Floating- Point Values	
xmmreg1 to xmmreg2	1111 0010:0000 1111:0001 0001:11 xmmreg2 xmmreg1
xmmreg1 to mem	1111 0010:0000 1111:0001 0001: mod xmmreg r/m
xmmreg2 to xmmreg1	1111 0010:0000 1111:0001 0000:11 xmmreg1 xmmreg2
mem to xmmreg1	1111 0010:0000 1111:0001 0000: mod xmmreg r/m
MOVUPD—Move Unaligned Packed Double- Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0001 0001:11 xmmreg2 xmmreg1
mem to xmmreg1	0110 0110:0000 1111:0001 0001: mod xmmreg r/m
xmmreg1 to xmmreg2	0110 0110:0000 1111:0001 0000:11 xmmreg1 xmmreg2
xmmreg1 to mem	0110 0110:0000 1111:0001 0000: mod xmmreg r/m
MULPD—Multiply Packed Double-Precision Floating- Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 1001:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 1001: mod xmmreg r/m
MULSD—Multiply Scalar Double-Precision Floating- Point Values	
xmmreg2 to xmmreg1	1111 0010:00001111:01011001:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0010:00001111:01011001: mod xmmreg r/m
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 0110:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 0110: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)

Instruction and Format	Encoding
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:1100 0110:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:1100 0110: mod xmmreg r/m: imm8
SQRTPD—Compute Square Roots of Packed Double- Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 0001:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 0001: mod xmmreg r/m
SQRTSD—Compute Square Root of Scalar Double- Precision Floating-Point Value	
xmmreg2 to xmmreg1	1111 0010:0000 1111:0101 0001:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0010:0000 1111:0101 0001: mod xmmreg r/m
SUBPD—Subtract Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 1100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 1100: mod xmmreg r/m
SUBSD—Subtract Scalar Double-Precision Floating- Point Values	
xmmreg2 to xmmreg1	1111 0010:0000 1111:0101 1100:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0010:0000 1111:0101 1100: mod xmmreg r/m
UCOMISD—Unordered Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0010 1110:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0010 1110: mod xmmreg r/m
UNPCKHPD—Unpack and Interleave High Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0001 0101:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0001 0101: mod xmmreg r/m
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0001 0100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0001 0100: mod xmmreg r/m
XORPD—Bitwise Logical OR of Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0101 0111:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0101 0111: mod xmmreg r/m

Table B-27. Formats and Encodings of SSE2 Integer Instructions

Instruction and Format	Encoding
MOVD—Move Doubleword	
reg to xmmreg	0110 0110:0000 1111:0110 1110: 11 xmmreg reg
reg from xmmreg	0110 0110:0000 1111:0111 1110: 11 xmmreg reg
mem to xmmreg	0110 0110:0000 1111:0110 1110: mod xmmreg r/m
mem from xmmreg	0110 0110:0000 1111:0111 1110: mod xmmreg r/m
MOVDQA—Move Aligned Double Quadword	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0110 1111:11 xmmreg1 xmmreg2
xmmreg2 from xmmreg1	0110 0110:0000 1111:0111 1111:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0110 1111: mod xmmreg r/m
mem from xmmreg	0110 0110:0000 1111:0111 1111: mod xmmreg r/m
MOVDQU—Move Unaligned Double Quadword	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0110 1111:11 xmmreg1 xmmreg2
xmmreg2 from xmmreg1	1111 0011:0000 1111:0111 1111:11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:0110 1111: mod xmmreg r/m
mem from xmmreg	1111 0011:0000 1111:0111 1111: mod xmmreg r/m
MOVQ2DQ—Move Quadword from MMX to XMM Register	
mmreg to xmmreg	1111 0011:0000 1111:1101 0110:11 mmreg1 mmreg2
MOVDQ2Q—Move Quadword from XMM to MMX Register	
xmmreg to mmreg	1111 0010:0000 1111:1101 0110:11 mmreg1 mmreg2
MOVQ—Move Quadword	
xmmreg2 to xmmreg1	1111 0011:0000 1111:0111 1110: 11 xmmreg1 xmmreg2
xmmreg2 from xmmreg1	0110 0110:0000 1111:1101 0110: 11 xmmreg1 xmmreg2
mem to xmmreg	1111 0011:0000 1111:0111 1110: mod xmmreg r/m
mem from xmmreg	0110 0110:0000 1111:1101 0110: mod xmmreg r/m
PACKSSDW ¹ —Pack Dword To Word Data (signed with saturation)	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0110 1011: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111:0110 1011: mod xmmreg r/m
PACKSSWB—Pack Word To Byte Data (signed with saturation)	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0110 0011: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111:0110 0011: mod xmmreg r/m
PACKUSWB—Pack Word To Byte Data (unsigned with saturation)	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0110 0111: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111:0110 0111: mod xmmreg r/m
PADDQ—Add Packed Quadword Integers	
mmreg2 to mmreg1	0000 1111:1101 0100:11 mmreg1 mmreg2

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format	Encoding
mem to mmreg	0000 1111:1101 0100: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:1101 0100:11 xmmreg1 xmmreg2
mem to xmmreq	0110 0110:0000 1111:1101 0100: mod xmmreg r/m
PADD—Add With Wrap-around	
xmmreg2 to xmmreg1	0110 0110:0000 1111: 1111 11gg: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111: 1111 11gg: mod xmmreg r/m
PADDS—Add Signed With Saturation	
xmmreg2 to xmmreg1	0110 0110:0000 1111: 1110 11gg: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111: 1110 11gg: mod xmmreg r/m
PADDUS—Add Unsigned With Saturation	
xmmreg2 to xmmreg1	0110 0110:0000 1111: 1101 11gg: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111: 1101 11gg: mod xmmreg r/m
PAND—Bitwise And	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1101 1011: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111:1101 1011: mod xmmreg r/m
PANDN—Bitwise AndNot	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1101 1111: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111:1101 1111: mod xmmreg r/m
PAVGB—Average Packed Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:11100 000:11 xmmreg1 xmmreg2
mem to xmmreg	01100110:00001111:11100000 mod xmmreg r/m
PAVGW—Average Packed Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1110 0011:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:1110 0011 mod xmmreg r/m
PCMPEQ—Packed Compare For Equality	
xmmreg1 with xmmreg2	0110 0110:0000 1111:0111 01gg: 11 xmmreg1 xmmreg2
xmmreg with memory	0110 0110:0000 1111:0111 01gg: mod xmmreg r/m
PCMPGT—Packed Compare Greater (signed)	
xmmreg1 with xmmreg2	0110 0110:0000 1111:0110 01gg: 11 xmmreg1 xmmreg2
xmmreg with memory	0110 0110:0000 1111:0110 01gg: mod xmmreg r/m
PEXTRW—Extract Word	
xmmreg to reg32, imm8	0110 0110:0000 1111:1100 0101:11 r32 xmmreg: imm8
PINSRW—Insert Word	
reg32 to xmmreg, imm8	0110 0110:0000 1111:1100 0100:11 xmmreg r32: imm8
m16 to xmmreg, imm8	0110 0110:0000 1111:1100 0100: mod xmmreg r/m: imm8
PMADDWD—Packed Multiply Add	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1111 0101: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111:1111 0101: mod xmmreg r/m

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format	Encoding
PMAXSW—Maximum of Packed Signed Word Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1110 1110:11 xmmreg1 xmmreg2
mem to xmmreg	01100110:00001111:11101110: mod xmmreg r/m
PMAXUB—Maximum of Packed Unsigned Byte Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1101 1110:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:1101 1110: mod xmmreg r/m
PMINSW—Minimum of Packed Signed Word Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1110 1010:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:1110 1010: mod xmmreg r/m
PMINUB—Minimum of Packed Unsigned Byte Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1101 1010:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:1101 1010 mod xmmreg r/m
PMOVMSKB—Move Byte Mask To Integer	
xmmreg to reg32	0110 0110:0000 1111:1101 0111:11 r32 xmmreg
PMULHUW—Packed multiplication, store high word (unsigned)	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1110 0100: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111:1110 0100: mod xmmreg r/m
PMULHW—Packed Multiplication, store high word	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1110 0101: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111:1110 0101: mod xmmreg r/m
PMULLW—Packed Multiplication, store low word	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1101 0101: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111:1101 0101: mod xmmreg r/m
PMULUDQ—Multiply Packed Unsigned Doubleword Integers	
mmreg2 to mmreg1	0000 1111:1111 0100:11 mmreg1 mmreg2
mem to mmreg	0000 1111:1111 0100: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:00001111:1111 0100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:00001111:1111 0100: mod xmmreg r/m
POR—Bitwise Or	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1110 1011: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111:1110 1011: mod xmmreg r/m
PSADBW—Compute Sum of Absolute Differences	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1111 0110:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:1111 0110: mod xmmreg r/m
PSHUFLW—Shuffle Packed Low Words	

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format	Encoding
xmmreg2 to xmmreg1, imm8	1111 0010:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	1111 0010:0000 1111:0111 0000:11 mod xmmreg r/m: imm8
PSHUFHW—Shuffle Packed High Words	
xmmreg2 to xmmreg1, imm8	1111 0011:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	1111 0011:0000 1111:0111 0000: mod xmmreg r/m: imm8
PSHUFD—Shuffle Packed Doublewords	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0111 0000:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0111 0000: mod xmmreg r/m: imm8
PSLLDQ—Shift Double Quadword Left Logical	
xmmreg, imm8	0110 0110:0000 1111:0111 0011:11 111 xmmreg: imm8
PSLL—Packed Shift Left Logical	
xmmreg1 by xmmreg2	0110 0110:0000 1111:1111 00gg: 11 xmmreg1 xmmreg2
xmmreg by memory	0110 0110:0000 1111:1111 00gg: mod xmmreg r/m
xmmreg by immediate	0110 0110:0000 1111:0111 00gg: 11 110 xmmreg: imm8
PSRA—Packed Shift Right Arithmetic	
xmmreg1 by xmmreg2	0110 0110:0000 1111:1110 00gg: 11 xmmreg1 xmmreg2
xmmreg by memory	0110 0110:0000 1111:1110 00gg: mod xmmreg r/m
xmmreg by immediate	0110 0110:0000 1111:0111 00gg: 11 100 xmmreg: imm8
PSRLDQ—Shift Double Quadword Right Logical	
xmmreg, imm8	0110 0110:00001111:01110011:11 011 xmmreg: imm8
PSRL—Packed Shift Right Logical	
xmmreg1 by xmmreg2	0110 0110:0000 1111:1101 00gg: 11 xmmreg1 xmmreg2
xmmreg by memory	0110 0110:0000 1111:1101 00gg: mod xmmreg r/m
xmmreg by immediate	0110 0110:0000 1111:0111 00gg: 11 010 xmmreg: imm8
PSUBQ—Subtract Packed Quadword Integers	
mmreg2 to mmreg1	0000 1111:11111 011:11 mmreg1 mmreg2
mem to mmreg	0000 1111:1111 1011: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:1111 1011:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:1111 1011: mod xmmreg r/m
PSUB—Subtract With Wrap-around	
xmmreg2 from xmmreg1	0110 0110:0000 1111:1111 10gg: 11 xmmreg1 xmmreg2
memory from xmmreg	0110 0110:0000 1111:1111 10gg: mod xmmreg r/m
PSUBS—Subtract Signed With Saturation	
xmmreg2 from xmmreg1	0110 0110:0000 1111:1110 10gg: 11 xmmreg1 xmmreg2
memory from xmmreg	0110 0110:0000 1111:1110 10gg: mod xmmreg r/m
PSUBUS—Subtract Unsigned With Saturation	
xmmreg2 from xmmreg1	0000 1111:1101 10gg: 11 xmmreg1 xmmreg2
memory from xmmreg	0000 1111:1101 10gg: mod xmmreg r/m

Table B-27. Formats and Encodings of SSE2 Integer Instructions (Contd.)

Instruction and Format	Encoding
PUNPCKH—Unpack High Data To Next Larger Type	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0110 10gg:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0110 10gg: mod xmmreg r/m
PUNPCKHQDQ—Unpack High Data	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0110 1101:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0110 1101: mod xmmreg r/m
PUNPCKL—Unpack Low Data To Next Larger Type	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0110 00gg:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0110 00gg: mod xmmreg r/m
PUNPCKLQDQ—Unpack Low Data	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0110 1100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0110 1100: mod xmmreg r/m
PXOR—Bitwise Xor	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1110 1111: 11 xmmreg1 xmmreg2
memory to xmmreg	0110 0110:0000 1111:1110 1111: mod xmmreg r/m

Table B-28. Format and Encoding of SSE2 Cacheability Instructions

Instruction and Format	Encoding
MASKMOVDQU—Store Selected Bytes of Double Quadword	
xmmreg2 to xmmreg1	0110 0110:0000 1111:1111 0111:11 xmmreg1 xmmreg2
CLFLUSH—Flush Cache Line	
mem	0000 1111:1010 1110: mod 111 r/m
MOVNTPD—Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint	
xmmreg to mem	0110 0110:0000 1111:0010 1011: mod xmmreg r/m
MOVNTDQ—Store Double Quadword Using Non- Temporal Hint	
xmmreg to mem	0110 0110:0000 1111:1110 0111: mod xmmreg r/m
MOVNTI—Store Doubleword Using Non-Temporal Hint	
reg to mem	0000 1111:1100 0011: mod reg r/m
PAUSE—Spin Loop Hint	1111 0011:1001 0000
LFENCE—Load Fence	0000 1111:1010 1110: 11 101 000
MFENCE—Memory Fence	0000 1111:1010 1110: 11 110 000

B.10 SSE3 FORMATS AND ENCODINGS TABLE

The tables in this section provide SSE3 formats and encodings. Some SSE3 instructions require a mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode. These prefixes are included in the tables.

When in IA-32e mode, use of the REX.R prefix permits instructions that use general purpose and XMM registers to access additional registers. Some instructions require the REX.W prefix to promote the instruction to 64-bit operation. Instructions that require the REX.W prefix are listed (with their opcodes) in Section B.13.

Table B-29. Formats and Encodings of SSE3 Floating-Point Instructions

Instruction and Format	Encoding
ADDSUBPD—Add /Sub packed DP FP numbers from XMM2/Mem to XMM1	
xmmreg2 to xmmreg1	01100110:00001111:11010000:11 xmmreg1 xmmreg2
mem to xmmreg	01100110:00001111:11010000: mod xmmreg r/m
ADDSUBPS—Add /Sub packed SP FP numbers from XMM2/Mem to XMM1	
xmmreg2 to xmmreg1	11110010:00001111:11010000:11 xmmreg1 xmmreg2
mem to xmmreg	11110010:00001111:11010000: mod xmmreg r/m
HADDPD—Add horizontally packed DP FP numbers XMM2/Mem to XMM1	
xmmreg2 to xmmreg1	01100110:00001111:011111100:11 xmmreg1 xmmreg2
mem to xmmreg	01100110:00001111:01111100: mod xmmreg r/m
HADDPS—Add horizontally packed SP FP numbers XMM2/Mem to XMM1	
xmmreg2 to xmmreg1	11110010:00001111:01111100:11 xmmreg1 xmmreg2
mem to xmmreg	11110010:00001111:01111100: mod xmmreg r/m
HSUBPD—Sub horizontally packed DP FP numbers XMM2/Mem to XMM1	
xmmreg2 to xmmreg1	01100110:00001111:01111101:11 xmmreg1 xmmreg2
mem to xmmreg	01100110:00001111:01111101: mod xmmreg r/m
HSUBPS—Sub horizontally packed SP FP numbers XMM2/Mem to XMM1	
xmmreg2 to xmmreg1	11110010:00001111:01111101:11 xmmreg1 xmmreg2
mem to xmmreg	11110010:00001111:01111101: mod xmmreg r/m

Table B-30. Formats and Encodings for SSE3 Event Management Instructions

Instruction and Format	Encoding
MONITOR—Set up a linear address range to be monitored by hardware	
eax, ecx, edx	0000 1111 : 0000 0001:11 001 000
MWAIT—Wait until write-back store performed within the range specified by the instruction MONITOR	
еах, есх	0000 1111 : 0000 0001:11 001 001

Table B-31. Formats and Encodings for SSE3 Integer and Move Instructions

Instruction and Format	Encoding
FISTTP—Store ST in int16 (chop) and pop	
m16int	11011 111 : mod ^A 001 r/m
FISTTP—Store ST in int32 (chop) and pop	
m32int	11011 011 : mod ^A 001 r/m
FISTTP—Store ST in int64 (chop) and pop	
m64int	11011 101 : mod ^A 001 r/m
LDDQU—Load unaligned integer 128-bit	
xmm, m128	11110010:00001111:11110000: mod ^A xmmreg r/m
MOVDDUP—Move 64 bits representing one DP data from XMM2/Mem to XMM1 and duplicate	
xmmreg2 to xmmreg1	11110010:000011111:00010010:11 xmmreg1 xmmreg2
mem to xmmreg	11110010:00001111:00010010: mod xmmreg r/m
MOVSHDUP—Move 128 bits representing 4 SP data from XMM2/Mem to XMM1 and duplicate high	
xmmreg2 to xmmreg1	11110011:00001111:00010110:11 xmmreg1 xmmreg2
mem to xmmreg	11110011:00001111:00010110: mod xmmreg r/m
MOVSLDUP—Move 128 bits representing 4 SP data from XMM2/Mem to XMM1 and duplicate low	
xmmreg2 to xmmreg1	11110011:00001111:00010010:11 xmmreg1 xmmreg2
mem to xmmreg	11110011:00001111:00010010: mod xmmreg r/m

B.11 SSSE3 FORMATS AND ENCODING TABLE

The tables in this section provide SSSE3 formats and encodings. Some SSSE3 instructions require a mandatory prefix (66H) as part of the three-byte opcode. These prefixes are included in the table below.

Table B-32. Formats and Encodings for SSSE3 Instructions

Instruction and Format	Encoding
PABSB—Packed Absolute Value Bytes	
mmreg2 to mmreg1	0000 1111:0011 1000: 0001 1100:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0001 1100: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0001 1100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0001 1100: mod xmmreg r/m
PABSD—Packed Absolute Value Double Words	
mmreg2 to mmreg1	0000 1111:0011 1000: 0001 1110:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0001 1110: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0001 1110:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0001 1110: mod xmmreg r/m
PABSW—Packed Absolute Value Words	

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format	Encoding
mmreg2 to mmreg1	0000 1111:0011 1000: 0001 1101:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0001 1101: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0001 1101:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0001 1101: mod xmmreg r/m
PALIGNR—Packed Align Right	
mmreg2 to mmreg1, imm8	0000 1111:0011 1010: 0000 1111:11 mmreg1 mmreg2: imm8
mem to mmreg, imm8	0000 1111:0011 1010: 0000 1111: mod mmreg r/m: imm8
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0000 1111:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0000 1111: mod xmmreg r/m: imm8
PHADDD—Packed Horizontal Add Double Words	
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 0010:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 0010: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 0010:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 0010: mod xmmreg r/m
PHADDSW—Packed Horizontal Add and Saturate	
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 0011:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 0011: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 0011:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 0011: mod xmmreg r/m
PHADDW—Packed Horizontal Add Words	
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 0001:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 0001: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 0001:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 0001: mod xmmreg r/m
PHSUBD—Packed Horizontal Subtract Double Words	
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 0110:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 0110: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 0110:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 0110: mod xmmreg r/m
PHSUBSW—Packed Horizontal Subtract and Saturate	
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 0111:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 0111: mod mmreg r/m

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format	Encoding
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 0111:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 0111: mod xmmreg r/m
PHSUBW—Packed Horizontal Subtract Words	
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 0101:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 0101: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 0101:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 0101: mod xmmreg r/m
PMADDUBSW—Multiply and Add Packed Signed and Unsigned Bytes	
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 0100:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 0100: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 0100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 0100: mod xmmreg r/m
PMULHRSW—Packed Multiply Hlgn with Round and Scale	
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 1011:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 1011: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 1011:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 1011: mod xmmreg r/m
PSHUFB—Packed Shuffle Bytes	
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 0000:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 0000: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 0000:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 0000: mod xmmreg r/m
PSIGNB—Packed Sign Bytes	
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 1000:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 1000: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 1000:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 1000: mod xmmreg r/m
PSIGND—Packed Sign Double Words	
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 1010:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 1010: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 1010:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 1010: mod xmmreg r/m
PSIGNW—Packed Sign Words	

Table B-32. Formats and Encodings for SSSE3 Instructions (Contd.)

Instruction and Format	Encoding
mmreg2 to mmreg1	0000 1111:0011 1000: 0000 1001:11 mmreg1 mmreg2
mem to mmreg	0000 1111:0011 1000: 0000 1001: mod mmreg r/m
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0000 1001:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0000 1001: mod xmmreg r/m

B.12 AESNI AND PCLMULQDQ INSTRUCTION FORMATS AND ENCODINGS

Table B-33 shows the formats and encodings for AESNI and PCLMULQDQ instructions.

Table B-33. Formats and Encodings of AESNI and PCLMULODO Instructions

Instruction and Format	Encoding
	Citcoding
AESDEC—Perform One Round of an AES Decryption Flow	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000:1101 1110:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000:1101 1110: mod xmmreg r/m
AESDECLAST—Perform Last Round of an AES Decryption Flow	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000:1101 1111:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000:1101 1111: mod xmmreg r/m
AESENC—Perform One Round of an AES Encryption Flow	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000:1101 1100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000:1101 1100: mod xmmreg r/m
AESENCLAST—Perform Last Round of an AES Encryption Flow	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000:1101 1101:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000:1101 1101: mod xmmreg r/m
AESIMC—Perform the AES InvMixColumn Transformation	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000:1101 1011:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000:1101 1011: mod xmmreg r/m
AESKEYGENASSIST—AES Round Key Generation Assist	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010:1101 1111:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010:1101 1111: mod xmmreg r/m: imm8
PCLMULQDQ—Carry-Less Multiplication Quadword	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010:0100 0100:11 xmmreg1 xmmreg2: imm8

Table B-33. Formats and Encodings of AESNI and PCLMULQDQ Instructions

Instruction and Format	Encoding
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010:0100 0100: mod xmmreg r/m: imm8

B.13 SPECIAL ENCODINGS FOR 64-BIT MODE

The following Pentium, P6, MMX, SSE, SSE2, SSE3 instructions are promoted to 64-bit operation in IA-32e mode by using REX.W. However, these entries are special cases that do not follow the general rules (specified in Section B.4).

Table B-34. Special Case Instructions Promoted Using REX.W

Instruction and Format	Encoding
CMOVcc—Conditional Move	
register2 to register1	0100 OROB 0000 1111: 0100 tttn : 11 reg1 reg2
qwordregister2 to qwordregister1	0100 1R0B 0000 1111: 0100 tttn : 11 qwordreg1 qwordreg2
memory to register	0100 ORXB 0000 1111 : 0100 tttn : mod reg r/m
memory64 to qwordregister	0100 1RXB 0000 1111 : 0100 tttn : mod qwordreg r/m
CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer	
xmmreg to r32	0100 OROB 1111 0010:0000 1111:0010 1101:11 r32 xmmreg
xmmreg to r64	0100 1R0B 1111 0010:0000 1111:0010 1101:11 r64 xmmreg
mem64 to r32	0100 0R0XB 1111 0010:0000 1111:0010 1101: mod r32 r/m
mem64 to r64	0100 1RXB 1111 0010:0000 1111:0010 1101: mod r64 r/m
CVTSI2SS—Convert Doubleword Integer to Scalar Single- Precision Floating-Point Value	
r32 to xmmreg1	0100 0R0B 1111 0011:0000 1111:0010 1010:11 xmmreg r32
r64 to xmmreg1	0100 1R0B 1111 0011:0000 1111:0010 1010:11 xmmreg r64
mem to xmmreg	0100 0RXB 1111 0011:0000 1111:0010 1010: mod xmmreg r/m
mem64 to xmmreg	0100 1RXB 1111 0011:0000 1111:0010 1010: mod xmmreg r/m
CVTSI2SD—Convert Doubleword Integer to Scalar Double- Precision Floating-Point Value	
r32 to xmmreg1	0100 0R0B 1111 0010:0000 1111:0010 1010:11 xmmreg r32
r64 to xmmreg1	0100 1R0B 1111 0010:0000 1111:0010 1010:11 xmmreg r64
mem to xmmreg	0100 0RXB 1111 0010:0000 1111:00101 010: mod xmmreg r/m

Table B-34. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format	Encoding
mem64 to xmmreg	0100 1RXB 1111 0010:0000 1111:0010 1010: mod xmmreg r/m
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer	
xmmreg to r32	0100 0R0B 1111 0011:0000 1111:0010 1101:11 r32 xmmreg
xmmreg to r64	0100 1R0B 1111 0011:0000 1111:0010 1101:11 r64 xmmreg
mem to r32	0100 0RXB 11110011:00001111:00101101: mod r32 r/m
mem32 to r64	0100 1RXB 1111 0011:0000 1111:0010 1101: mod r64 r/m
CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer	
xmmreg to r32	0100 0R0B 11110010:00001111:00101100:11 r32 xmmreg
xmmreg to r64	0100 1R0B 1111 0010:0000 1111:0010 1100:11 r64 xmmreg
mem64 to r32	0100 ORXB 1111 0010:0000 1111:0010 1100: mod r32 r/m
mem64 to r64	0100 1RXB 1111 0010:0000 1111:0010 1100: mod r64 r/m
CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer	
xmmreg to r32	0100 0R0B 1111 0011:0000 1111:0010 1100:11 r32 xmmreg1
xmmreg to r64	0100 1R0B 1111 0011:0000 1111:0010 1100:11 r64 xmmreg1
mem to r32	0100 0RXB 1111 0011:0000 1111:0010 1100: mod r32 r/m
mem32 to r64	0100 1RXB 1111 0011:0000 1111:0010 1100: mod r64 r/m
MOVD/MOVQ—Move doubleword	
reg to mmxreg	0100 OROB 0000 1111:0110 1110: 11 mmxreg reg
qwordreg to mmxreg	0100 1R0B 0000 1111:0110 1110: 11 mmxreg qwordreg
reg from mmxreg	0100 OROB 0000 1111:0111 1110: 11 mmxreg reg
qwordreg from mmxreg	0100 1R0B 0000 1111:0111 1110: 11 mmxreg qwordreg
mem to mmxreg	0100 ORXB 0000 1111:0110 1110: mod mmxreg r/m
mem64 to mmxreg	0100 1RXB 0000 1111:0110 1110: mod mmxreg r/m
mem from mmxreg	0100 ORXB 0000 1111:0111 1110: mod mmxreg r/m
mem64 from mmxreg	0100 1RXB 0000 1111:0111 1110: mod mmxreg r/m
mmxreg with memory	0100 ORXB 0000 1111:0110 01gg: mod mmxreg r/m
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask	
xmmreg to r32	0100 OROB 0000 1111:0101 0000:11 r32 xmmreg
xmmreg to r64	0100 1R0B 00001111:01010000:11 r64 xmmreg
PEXTRW—Extract Word	
mmreg to reg32, imm8	0100 OROB 0000 1111:1100 0101:11 r32 mmreg: imm8

Table B-34. Special Case Instructions Promoted Using REX.W (Contd.)

Instruction and Format	Encoding
mmreg to reg64, imm8	0100 1R0B 0000 1111:1100 0101:11 r64 mmreg: imm8
xmmreg to reg32, imm8	0100 0R0B 0110 0110 0000 1111:1100 0101:11 r32 xmmreg: imm8
xmmreg to reg64, imm8	0100 1R0B 0110 0110 0000 1111:1100 0101:11 r64 xmmreg: imm8
PINSRW—Insert Word	
reg32 to mmreg, imm8	0100 0R0B 0000 1111:1100 0100:11 mmreg r32: imm8
reg64 to mmreg, imm8	0100 1R0B 0000 1111:1100 0100:11 mmreg r64: imm8
m16 to mmreg, imm8	0100 0R0B 0000 1111:1100 0100 mod mmreg r/m: imm8
m16 to mmreg, imm8	0100 1RXB 0000 1111:11000100 mod mmreg r/m: imm8
reg32 to xmmreg, imm8	0100 0RXB 0110 0110 0000 1111:1100 0100:11 xmmreg r32: imm8
reg64 to xmmreg, imm8	0100 0RXB 0110 0110 0000 1111:1100 0100:11 xmmreg r64: imm8
m16 to xmmreg, imm8	0100 0RXB 0110 0110 0000 1111:1100 0100 mod xmmreg r/m: imm8
m16 to xmmreg, imm8	0100 1RXB 0110 0110 0000 1111:1100 0100 mod xmmreg r/m: imm8
PMOVMSKB—Move Byte Mask To Integer	
mmreg to reg32	0100 0RXB 0000 1111:1101 0111:11 r32 mmreg
mmreg to reg64	0100 1R0B 0000 1111:1101 0111:11 r64 mmreg
xmmreg to reg32	0100 0RXB 0110 0110 0000 1111:1101 0111:11 r32 mmreg
xmmreg to reg64	0110 0110 0000 1111:1101 0111:11 r64 xmmreg

B.14 SSE4.1 FORMATS AND ENCODING TABLE

The tables in this section provide SSE4.1 formats and encodings. Some SSE4.1 instructions require a mandatory prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes are included in the tables.

In 64-bit mode, some instructions requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is shown.

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format	Encoding
BLENDPD — Blend Packed Double-Precision Floats	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1010: 0000 1101:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1010: 0000 1101: mod xmmreg r/m
BLENDPS — Blend Packed Single-Precision Floats	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1010: 0000 1100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1010: 0000 1100: mod xmmreg r/m
BLENDVPD — Variable Blend Packed Double-Precision Floats	

Table B-35. Encodings of SSE4.1 instructions

	ys or 5554.1 mstructions
Instruction and Format	Encoding
xmmreg2 to xmmreg1 <xmm0></xmm0>	0110 0110:0000 1111:0011 1000: 0001 0101:11 xmmreg1 xmmreg2
mem to xmmreg <xmm0></xmm0>	0110 0110:0000 1111:0011 1000: 0001 0101: mod xmmreg r/m
${\tt BLENDVPS-Variable\ Blend\ Packed\ Single-Precision\ Floats}$	
xmmreg2 to xmmreg1 <xmm0></xmm0>	0110 0110:0000 1111:0011 1000: 0001 0100:11 xmmreg1 xmmreg2
mem to xmmreg <xmm0></xmm0>	0110 0110:0000 1111:0011 1000: 0001 0100: mod xmmreg r/m
DPPD — Packed Double-Precision Dot Products	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0100 0001:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0100 0001: mod xmmreg r/m: imm8
DPPS — Packed Single-Precision Dot Products	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0100 0000:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0100 0000: mod xmmreg r/m: imm8
EXTRACTPS — Extract From Packed Single-Precision Floats	
reg from xmmreg , imm8	0110 0110:0000 1111:0011 1010: 0001 0111:11 xmmreg reg: imm8
mem from xmmreg , imm8	0110 0110:0000 1111:0011 1010: 0001 0111: mod xmmreg r/m: imm8
INSERTPS — Insert Into Packed Single-Precision Floats	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0010 0001:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0010 0001: mod xmmreg r/m: imm8
MOVNTDQA — Load Double Quadword Non-temporal Aligned	
m128 to xmmreg	0110 0110:0000 1111:0011 1000: 0010 1010:11 r/m xmmreg2
MPSADBW — Multiple Packed Sums of Absolute Difference	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0100 0010:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0100 0010: mod xmmreg r/m: imm8
PACKUSDW — Pack with Unsigned Saturation	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0010 1011:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0010 1011: mod xmmreg r/m
PBLENDVB — Variable Blend Packed Bytes	
xmmreg2 to xmmreg1 <xmm0></xmm0>	0110 0110:0000 1111:0011 1000: 0001 0000:11 xmmreg1 xmmreg2
mem to xmmreg <xmm0></xmm0>	0110 0110:0000 1111:0011 1000: 0001 0000: mod xmmreg r/m

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format	Encoding
PBLENDW — Blend Packed Words	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0001 1110:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0000 1110: mod xmmreg r/m: imm8
PCMPEQQ — Compare Packed Qword Data of Equal	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0010 1001:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0010 1001: mod xmmreg r/m
PEXTRB — Extract Byte	
reg from xmmreg , imm8	0110 0110:0000 1111:0011 1010: 0001 0100:11 xmmreg reg: imm8
xmmreg to mem, imm8	0110 0110:0000 1111:0011 1010: 0001 0100: mod xmmreg r/m: imm8
PEXTRD — Extract DWord	
reg from xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0001 0110:11 xmmreg reg: imm8
xmmreg to mem, imm8	0110 0110:0000 1111:0011 1010: 0001 0110: mod xmmreg r/m: imm8
PEXTRQ — Extract QWord	
r64 from xmmreg, imm8	0110 0110:REX.W:0000 1111:0011 1010: 0001 0110:11 xmmreg reg: imm8
m64 from xmmreg, imm8	0110 0110:REX.W:0000 1111:0011 1010: 0001 0110: mod xmmreg r/m: imm8
PEXTRW — Extract Word	
reg from xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0001 0101:11 reg xmmreg: imm8
mem from xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0001 0101: mod xmmreg r/m: imm8
PHMINPOSUW — Packed Horizontal Word Minimum	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0100 0001:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0100 0001: mod xmmreg r/m
PINSRB — Extract Byte	
reg to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0010 0000:11 xmmreg reg: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0010 0000: mod xmmreg r/m: imm8
PINSRD — Extract DWord	
reg to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0010 0010:11 xmmreg reg: imm8

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format	Encoding
	-
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0010 0010: mod xmmreg r/m: imm8
PINSRQ — Extract QWord	
r64 to xmmreg, imm8	0110 0110:REX.W:0000 1111:0011 1010: 0010 0010:11 xmmreg reg: imm8
m64 to xmmreg, imm8	0110 0110:REX.W:0000 1111:0011 1010: 0010 0010: mod xmmreg r/m: imm8
PMAXSB — Maximum of Packed Signed Byte Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 1100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 1100: mod xmmreg r/m
PMAXSD — Maximum of Packed Signed Dword Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 1101:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 1101: mod xmmreg r/m
PMAXUD — Maximum of Packed Unsigned Dword Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 1111:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 1111: mod xmmreg r/m
PMAXUW — Maximum of Packed Unsigned Word Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 1110:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 1110: mod xmmreg r/m
PMINSB — Minimum of Packed Signed Byte Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 1000:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 1000: mod xmmreg r/m
PMINSD — Minimum of Packed Signed Dword Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 1001:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 1001: mod xmmreg r/m
PMINUD — Minimum of Packed Unsigned Dword Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 1011:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 1011: mod xmmreg r/m
PMINUW — Minimum of Packed Unsigned Word Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 1010:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 1010: mod xmmreg r/m
PMOVSXBD — Packed Move Sign Extend - Byte to Dword	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0010 0001:11 xmmreg1 xmmreg2

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format	Encoding
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0010 0001: mod xmmreg r/m
PMOVSXBQ — Packed Move Sign Extend - Byte to Qword	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0010 0010:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0010 0010: mod xmmreg r/m
PMOVSXBW — Packed Move Sign Extend - Byte to Word	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0010 0000:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0010 0000: mod xmmreg r/m
PMOVSXWD — Packed Move Sign Extend - Word to Dword	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0010 0011:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0010 0011: mod xmmreg r/m
PMOVSXWQ — Packed Move Sign Extend - Word to Qword	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0010 0100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0010 0100: mod xmmreg r/m
PMOVSXDQ — Packed Move Sign Extend - Dword to Qword	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0010 0101:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0010 0101: mod xmmreg r/m
PMOVZXBD — Packed Move Zero Extend - Byte to Dword	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 0001:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 0001: mod xmmreg r/m
PMOVZXBQ — Packed Move Zero Extend - Byte to Qword	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 0010:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 0010: mod xmmreg r/m
PMOVZXBW — Packed Move Zero Extend - Byte to Word	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 0000:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 0000: mod xmmreg r/m
PMOVZXWD — Packed Move Zero Extend - Word to Dword	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 0011:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 0011: mod xmmreg r/m
PMOVZXWQ — Packed Move Zero Extend - Word to Qword	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 0100:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 0100: mod xmmreg r/m
PMOVZXDQ — Packed Move Zero Extend - Dword to Qword	

Table B-35. Encodings of SSE4.1 instructions

Instruction and Format	Encoding
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0011 0101:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 0101: mod xmmreg r/m
PMULDQ — Multiply Packed Signed Dword Integers	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0010 1000:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0010 1000: mod xmmreg r/m
PMULLD — Multiply Packed Signed Dword Integers, Store low Result	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0100 0000:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0100 0000: mod xmmreg r/m
PTEST — Logical Compare	
xmmreg2 to xmmreg1	0110 0110:0000 1111:0011 1000: 0001 0111:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0001 0111: mod xmmreg r/m
ROUNDPD — Round Packed Double-Precision Values	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0000 1001:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0000 1001: mod xmmreg r/m: imm8
ROUNDPS — Round Packed Single-Precision Values	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0000 1000:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0000 1000: mod xmmreg r/m: imm8
ROUNDSD — Round Scalar Double-Precision Value	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0000 1011:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0000 1011: mod xmmreg r/m: imm8
ROUNDSS — Round Scalar Single-Precision Value	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0000 1010:11 xmmreg1 xmmreg2: imm8
mem to xmmreg, imm8	0110 0110:0000 1111:0011 1010: 0000 1010: mod xmmreg r/m: imm8

B.15 SSE4.2 FORMATS AND ENCODING TABLE

The tables in this section provide SSE4.2 formats and encodings. Some SSE4.2 instructions require a mandatory prefix (66H, F2H, F3H) as part of the three-byte opcode. These prefixes are included in the tables. In 64-bit mode, some instructions requires REX.W, the byte sequence of REX.W prefix in the opcode sequence is shown.

Table B-36. Encodings of SSE4.2 instructions

Instruction and Format	Encoding
CRC32 — Accumulate CRC32	
reg2 to reg1	1111 0010:0000 1111:0011 1000: 1111 000w :11 reg1 reg2
mem to reg	1111 0010:0000 1111:0011 1000: 1111 000w : mod reg r/m
bytereg2 to reg1	1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000 :11 reg1 bytereg2
m8 to reg	1111 0010:0100 WR0B:0000 1111:0011 1000: 1111 0000 : mod reg r/m
qwreg2 to qwreg1	1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0001 :11 qwreg1 qwreg2
mem64 to qwreg	1111 0010:0100 1R0B:0000 1111:0011 1000: 1111 0001 : mod qwreg r/m
PCMPESTRI— Packed Compare Explicit-Length Strings To Index	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0110 0001:11 xmmreg1 xmmreg2: imm8
mem to xmmreg	0110 0110:0000 1111:0011 1010: 0110 0001: mod xmmreg r/m
PCMPESTRM— Packed Compare Explicit-Length Strings To Mask	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0110 0000:11 xmmreg1 xmmreg2: imm8
mem to xmmreg	0110 0110:0000 1111:0011 1010: 0110 0000: mod xmmreg r/m
PCMPISTRI— Packed Compare Implicit-Length String To Index	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0110 0011:11 xmmreg1 xmmreg2: imm8
mem to xmmreg	0110 0110:0000 1111:0011 1010: 0110 0011: mod xmmreg r/m
PCMPISTRM— Packed Compare Implicit-Length Strings To Mask	
xmmreg2 to xmmreg1, imm8	0110 0110:0000 1111:0011 1010: 0110 0010:11 xmmreg1 xmmreg2: imm8
mem to xmmreg	0110 0110:0000 1111:0011 1010: 0110 0010: mod xmmreg r/m
PCMPGTQ— Packed Compare Greater Than	
xmmreg to xmmreg	0110 0110:0000 1111:0011 1000: 0011 0111:11 xmmreg1 xmmreg2
mem to xmmreg	0110 0110:0000 1111:0011 1000: 0011 0111: mod xmmreg r/m
POPCNT— Return Number of Bits Set to 1	
reg2 to reg1	1111 0011:0000 1111:1011 1000:11 reg1 reg2
mem to reg1	1111 0011:0000 1111:1011 1000:mod reg1 r/m
qwreg2 to qwreg1	1111 0011:0100 1R0B:0000 1111:1011 1000:11 reg1 reg2
mem64 to qwreg1	1111 0011:0100 1R0B:0000 1111:1011 1000:mod reg1 r/m

B.16 AVX FORMATS AND ENCODING TABLE

The tables in this section provide AVX formats and encodings. A mixed form of bit/hex/symbolic forms are used to express the various bytes:

The C4/C5 and opcode bytes are expressed in hex notation; the first and second payload byte of VEX, the modR/M byte is expressed in combination of bit/symbolic form. The first payload byte of C4 is expressed as combination of bits and hex form, with the hex value preceded by an underscore. The VEX bit field to encode upper register 8-15 uses 1's complement form, each of those bit field is expressed as lower case notation rxb, instead of RXB.

The hybrid bit-nibble-byte form is depicted below:

Figure B-2. Hybrid Notation of VEX-Encoded Key Instruction Bytes

Table B-37.	Encodings	of AVX	instructions
-------------	------------------	--------	--------------

Instruction and Format	Encoding
VBLENDPD — Blend Packed Double-Precision Floats	
xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_3: w xmmreg2 001:0D:11 xmmreg1 xmmreg3: imm
xmmreg2 with mem to xmmreg1	C4: rxb0_3: w xmmreg2 001:0D:mod xmmreg1 r/m: imm
ymmreg2 with ymmreg3 into ymmreg1	C4: rxb0_3: w ymmreg2 101:0D:11 ymmreg1 ymmreg3: imm
ymmreg2 with mem to ymmreg1	C4: rxb0_3: w ymmreg2 101:0D:mod ymmreg1 r/m: imm
VBLENDPS — Blend Packed Single-Precision Floats	
xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_3: w xmmreg2 001:0C:11 xmmreg1 xmmreg3: imm
xmmreg2 with mem to xmmreg1	C4: rxb0_3: w xmmreg2 001:0C:mod xmmreg1 r/m: imm
ymmreg2 with ymmreg3 into ymmreg1	C4: rxb0_3: w ymmreg2 101:0C:11 ymmreg1 ymmreg3: imm
ymmreg2 with mem to ymmreg1	C4: rxb0_3: w ymmreg2 101:0C:mod ymmreg1 r/m: imm
VBLENDVPD — Variable Blend Packed Double-Precision Floats	
xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask	C4: rxb0_3: 0 xmmreg2 001:4B:11 xmmreg1 xmmreg3: xmmreg4
xmmreg2 with mem to xmmreg1 using xmmreg4 as mask	C4: rxb0_3: 0 xmmreg2 001:4B:mod xmmreg1 r/m: xmmreg4
ymmreg2 with ymmreg3 into ymmreg1 using ymmreg4 as mask	C4: rxb0_3: 0 ymmreg2 101:4B:11 ymmreg1 ymmreg3: ymmreg4
ymmreg2 with mem to ymmreg1 using ymmreg4 as mask	C4: rxb0_3: 0 ymmreg2 101:4B:mod ymmreg1 r/m: ymmreg4
VBLENDVPS — Variable Blend Packed Single-Precision Floats	

xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask xmmreg2 with mem to xmmreg1 using xmmreg4 as mask ymmreg2 with ymmreg3 into ymmreg1 using ymmreg4 as mask ymmreg2 with ymmreg3 into ymmreg1 using ymmreg4 as mask ymmreg2 with mem to ymmreg1 using ymmreg4 as mask ymmreg2 with mem to ymmreg1 using ymmreg4 as mask ymmreg2 with xmmreg3 into xmmreg1 (4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: imm xmmreg2 with xmmreg3 into xmmreg1 (4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: imm ymmreg2 with mem to xmmreg1 (4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: imm ymmreg2 with mem to xmmreg1 (4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: imm ymmreg2 with mem to xmmreg1 (4: rxb0_3: w ymmreg2 001:40:11 xmmreg1 xmmreg3: imm ymmreg2 with mem to xmmreg1 (4: rxb0_3: w ymmreg2 001:40:11 xmmreg1 r/m: imm ymmreg2 with mem to ymmreg1 (4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 xmmreg3: imm ymmreg2 with mem to ymmreg1 (4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 r/m: imm ymmreg2 with mem to ymmreg1 (4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 r/m: imm ymmreg2 with xmmreg2 into ymmreg1 (4: rxb0_3: w ymmreg2 101:40:11 xmmreg1 r/m: imm ymmreg1 using imm ymmreg2 with xmmreg2 into xmmreg1 (4: rxb0_3: w ymmreg2 101:40:11 xmmreg1 r/m: imm ymmreg2 with xmmreg2 with xmmreg2 into xmmreg1 (4: rxb0_3: w ymmreg2 001:21:11 xmmreg1 r/m: imm ymmreg3 xmmreg3 with xmmreg2 into xmmreg1 (4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 r/m: imm ymmreg3 xmmreg3 with xmmreg2 into xmmreg1 (4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 r/m: imm ymmreg3 xmmreg3 xmmreg4 xmmreg3 xmmreg3 xmmreg3 xmmreg4 xmmreg3 xmmreg3 xmmreg3 xmmreg4 xmmreg3 x	Instruction and Format	Encoding
ymmreg2 with ymmreg3 into ymmreg1 using ymmreg4 as mask VOPPD — Packed Double-Precision Dot Products xmmreg2 with mem to ymmreg1 using ymmreg4 as mask VOPPD — Packed Double-Precision Dot Products xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 r/m: ymmreg3 imm xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 r/m: imm VDPPS — Packed Single-Precision Dot Products xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: imm xmmreg2 with ymmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: imm ymmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 r/m: imm VEXTRACTPS — Extract From Packed Single-Precision Floats reg from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm mem from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm wmmreg2 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 reg: imm VMOVNTQA — Load Double Quadword Non-temporal Aligned m128 to xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 r/m: imm VMPSADBW — Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:22:11 xmmreg1 r/m: imm VPACKUSDW — Pack with Unsigned Saturation xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:28:11 xmmreg1 r/m: imm VPACKUSDW — Pack with Unsigned Saturation xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm m128 and xmm		C4: rxb0_3: 0 xmmreg2 001:4A:11 xmmreg1 xmmreg3: xmmreg4
ymmreg2 with mem to ymmreg1 using ymmreg4 as mask VPPPD - Packed Double-Precision Dot Products xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3 imm xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3 imm VPPPS - Packed Single-Precision Dot Products xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3 imm VPPPS - Packed Single-Precision Dot Products xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3 imm ymmreg2 with mem to xmmreg1 C4: rxb0_3: w ymmreg2 001:40:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: imm VEXTRACTPS - Extract From Packed Single-Precision Floats reg from xmmreg1 using imm C4: rxb0_3: w ymmreg2 101:40:mod ymmreg1 r/m: imm VINSERTPS - Insert Into Packed Single-Precision Floats use imm to merge xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 reg: imm use imm to merge mem with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 r/m: imm VMOVATOQA - Load Double Quadword Non-temporal Alligned m128 to xmmreg1 C4: rxb0_3: w xmmreg2 001:22:11 xmmreg1 r/m: imm VMOVATOQA - Load Double Quadword Non-temporal Alligned m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:22:11 xmmreg1 r/m: imm VPACKUSDW - Pack with Unsigned Saturation xmmreg3 with xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm vPACKUSDW - Pack with Unsigned Saturation xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask xmmreg2 with mem to xmmreg1 using xmmreg4 as mask VPBLENDVB - Variable Blend Packed Words xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:06:11 xmmreg1 xmmreg3: imm C4: rxb0_3: w xmmreg2 001:06:11 xmmreg1 xmmreg3: imm C4: rxb0_3: w xmmreg2 001:06:11	xmmreg2 with mem to xmmreg1 using xmmreg4 as mask	C4: rxb0_3: 0 xmmreg2 001:4A:mod xmmreg1 r/m: xmmreg4
VPPPD – Packed Double-Precision Dot Products xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: imm VPPPS – Packed Single-Precision Dot Products xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: imm xmmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 001:40:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: imm VEXTRACTPS – Extract From Packed Single-Precision Floats reg from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm mem from xmmreg1 using imm C4: rxb0_3: w_F 001:17:mod xmmreg1 r/m: imm VINSERTPS – Insert Into Packed Single-Precision Floats use imm to merge xmmreg3 with xmmreg2 into xmmreg1 Use imm to merge mem with xmmreg2 into xmmreg1 C4: rxb0_3: w_xmmreg2 001:21:11 xmmreg1 xmmreg3: imm VMOVNTDQA – Load Double Quadword Non-temporal Aligned m128 to xmmreg1 VMPSADBM – Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm VPACKUSDW – Pack with Unsigned Saturation xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm vPALENDVB – Variable Blend Packed Bytes xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask VPBLENDVB – Blend Packed Words xmmreg2 with mem to xmmreg1 using xmmreg4 as mask VPBLENDVB — Blend Packed Words xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: imm C4: rxb0_3: w xmmreg2 001:40:11 x		C4: rxb0_3: 0 ymmreg2 101:4A:11 ymmreg1 ymmreg3: ymmreg4
xmmreg2 with xmmreg3 into xmmreg1	ymmreg2 with mem to ymmreg1 using ymmreg4 as mask	C4: rxb0_3: 0 ymmreg2 101:4A:mod ymmreg1 r/m: ymmreg4
xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:41:mod xmmreg1 r/m: imm VDPPS — Packed Single-Precision Dot Products C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: imm ymmreg2 with mem to xmmreg1 C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:40:10 ymmreg1 r/m: imm VEXTRACTPS — Extract From Packed Single-Precision Floats c4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm reg from xmmreg1 using imm C4: rxb0_3: w_F 001:17:mod xmmreg1 reg: imm VINSERTPS — Insert Into Packed Single-Precision Floats vse imm to merge xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 xmmreg3: imm use imm to merge mem with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:mod xmmreg1 r/m: imm VMOVNTDQA — Load Double Quadword Non-temporal Aligned c4: rxb0_3: w xmmreg2 001:22:mod xmmreg1 r/m: imm m128 to xmmreg1 C4: rxb0_3: w xmmreg2 o01:24:11 xmmreg1 xmmreg3: imm m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:22:11 xmmreg1 r/m: imm VPACKUSDW — Pack with Unsigned Saturation c4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm vPBLENDVB — Variable Blend Packed Bytes<	VDPPD — Packed Double-Precision Dot Products	
VDPPS — Packed Single-Precision Dot Products C4: rxb0_3: w xmmreg2 w01:40:11 xmmreg1 xmmreg3: imm xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: imm ymmreg2 with ymmreg3 into ymmreg1 C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: imm VEXTRACTPS — Extract From Packed Single-Precision Floats C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm reg from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm wise imm to merge xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm use imm to merge wmm with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 xmmreg3: imm wise imm to merge mem with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:mod xmmreg1 r/m: imm VMOVNTDQA — Load Double Quadword Non-temporal Aligned C4: rxb0_3: w xmmreg2 001:22:11 xmmreg1 r/m: imm VMPSADBW — Multiple Packed Sums of Absolute Difference C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm vPACKUSDW — Pack with Unsigned Saturation C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm vPBLENDVB — Variable Blend Packed Bytes C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4 </td <td>xmmreg2 with xmmreg3 into xmmreg1</td> <td>C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: imm</td>	xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_3: w xmmreg2 001:41:11 xmmreg1 xmmreg3: imm
xmmreg2 with xmmreg3 into xmmreg1	xmmreg2 with mem to xmmreg1	C4: rxb0_3: w xmmreg2 001:41:mod xmmreg1 r/m: imm
xmmreg2 with mem to xmmreg1	VDPPS — Packed Single-Precision Dot Products	
ymmreg2 with ymmreg3 into ymmreg1	xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_3: w xmmreg2 001:40:11 xmmreg1 xmmreg3: imm
ymmreg2 with mem to ymmreg1 VEXTRACTPS — Extract From Packed Single-Precision Floats reg from xmmreg1 using imm	xmmreg2 with mem to xmmreg1	C4: rxb0_3: w xmmreg2 001:40:mod xmmreg1 r/m: imm
reg from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm Mmem from xmmreg1 using imm C4: rxb0_3: w_F 001:17:mod xmmreg1 r/m: imm VINSERTPS — Insert Into Packed Single-Precision Floats use imm to merge xmmreg3 with xmmreg2 into xmmreg1 VMOVNTDQA — Load Double Quadword Non-temporal Aligned M128 to xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 r/m: imm VMPSADBW — Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 r/m: imm VMPSADBW — Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 r/m: imm VPACKUSDW — Pack with Unsigned Saturation xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_3: w xmmreg2 001:42:mod xmmreg1 r/m: imm VPBLENDVB — Variable Blend Packed Bytes xmmrreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 r/m: imm VPBLENDVB — Blend Packed Words xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 r/m: xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 r/m: xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 r/m: imm VPCMPEQQ — Compare Packed Qword Data of Equal xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 r/m: imm	ymmreg2 with ymmreg3 into ymmreg1	C4: rxb0_3: w ymmreg2 101:40:11 ymmreg1 ymmreg3: imm
reg from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm mem from xmmreg1 using imm C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm VINSERTPS — Insert Into Packed Single-Precision Floats use imm to merge xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 xmmreg3: imm use imm to merge mem with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 r/m: imm VMOVNTDQA — Load Double Quadword Non-temporal Aligned m128 to xmmreg1 C4: rxb0_2: w_F 001:2A:11 xmmreg1 r/m VMPSADBW — Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 r/m: imm VPACKUSDW — Pack with Unsigned Saturation xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 r/m: imm VPBLENDVB — Variable Blend Packed Bytes xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4 vPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: imm xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: imm xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: imm xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: imm xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 r/m: imm	ymmreg2 with mem to ymmreg1	C4: rxb0_3: w ymmreg2 101:40:mod ymmreg1 r/m: imm
mem from xmmreg1 using imm C4: rxb0_3: w_F 001:17:mod xmmreg1 r/m: imm VINSERTPS — Insert Into Packed Single-Precision Floats use imm to merge xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 xmmreg3: imm use imm to merge mem with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:mod xmmreg1 r/m: imm VMOVNTDQA — Load Double Quadword Non-temporal Aligned m128 to xmmreg1 C4: rxb0_2: w_F 001:2A:11 xmmreg1 r/m VMPSADBW — Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 r/m: imm VPACKUSDW — Pack with Unsigned Saturation xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm VPBLENDVB — Variable Blend Packed Bytes xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: xmmreg4 wmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 r/m: imm VPCMPEQQ — Compare Packed Qword Data of Equal xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3		
VINSERTPS — Insert Into Packed Single-Precision Floats use imm to merge xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 xmmreg3: imm USE imm to merge mem with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:mod xmmreg1 r/m: imm VMOVNTDQA — Load Double Quadword Non-temporal Aligned m128 to xmmreg1 C4: rxb0_2: w_F 001:2A:11 xmmreg1 r/m VMPSADBW — Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 r/m: imm VPACKUSDW — Pack with Unsigned Saturation xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm VPBLENDVB — Variable Blend Packed Bytes xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: xmmreg4 xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 r/m: xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm	reg from xmmreg1 using imm	C4: rxb0_3: w_F 001:17:11 xmmreg1 reg: imm
use imm to merge xmmreg3 with xmmreg2 into xmmreg1 use imm to merge mem with xmmreg2 into xmmreg1 VMOVNTDQA — Load Double Quadword Non-temporal Aligned m128 to xmmreg1 VMPSADBW — Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:21:mod xmmreg1 r/m: imm VMPSADBW — Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm VPACKUSDW — Pack with Unsigned Saturation xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm VPBLENDVB — Variable Blend Packed Bytes xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4 xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: imm C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: imm C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm	mem from xmmreg1 using imm	C4: rxb0_3: w_F 001:17:mod xmmreg1 r/m: imm
use imm to merge mem with xmmreg2 into xmmreg1 VMOVNTDQA — Load Double Quadword Non-temporal Aligned m128 to xmmreg1 VMPSADBW — Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 r/m VMPSADBW — Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm m128 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 r/m: imm VPACKUSDW — Pack with Unsigned Saturation xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm VPBLENDVB — Variable Blend Packed Bytes xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 r/m: imm VPCMPEQQ — Compare Packed Qword Data of Equal xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	VINSERTPS — Insert Into Packed Single-Precision Floats	
VMOVNTDQA — Load Double Quadword Non-temporal Aligned C4: rxb0_2: w_F 001:2A:11 xmmreg1 r/m vm128 to xmmreg1 C4: rxb0_2: w_F 001:2A:11 xmmreg1 r/m vmPSADBW — Multiple Packed Sums of Absolute Difference C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:mod xmmreg1 r/m: imm VPACKUSDW — Pack with Unsigned Saturation C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm VPBLENDVB — Variable Blend Packed Bytes C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4 VPBLENDW — Blend Packed Words C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: xmmreg4 vmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm VPCMPEQQ — Compare Packed Qword Data of Equal xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	use imm to merge xmmreg3 with xmmreg2 into xmmreg1	C4: rxb0_3: w xmmreg2 001:21:11 xmmreg1 xmmreg3: imm
Aligned m128 to xmmreg1 VMPSADBW — Multiple Packed Sums of Absolute Difference xmmreg3 with xmmreg2 into xmmreg1 c4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm m128 with xmmreg2 into xmmreg1 c4: rxb0_3: w xmmreg2 001:42:mod xmmreg1 r/m: imm VPACKUSDW — Pack with Unsigned Saturation xmmreg3 and xmmreg2 to xmmreg1 c4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 c4: rxb0_2: w xmmreg2 001:2B:nod xmmreg1 r/m: imm VPBLENDVB — Variable Blend Packed Bytes xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:nod xmmreg1 r/m: xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 c4: rxb0_3: w xmmreg2 001:0E:nod xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm VPCMPEQQ — Compare Packed Qword Data of Equal xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	use imm to merge mem with xmmreg2 into xmmreg1	C4: rxb0_3: w xmmreg2 001:21:mod xmmreg1 r/m: imm
VMPSADBW — Multiple Packed Sums of Absolute Difference C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm xmmreg3 with xmmreg2 into xmmreg1 C4: rxb0_3: w xmmreg2 001:42:mod xmmreg1 r/m: imm VPACKUSDW — Pack with Unsigned Saturation C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3: imm xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m: imm VPBLENDVB — Variable Blend Packed Bytes C4: rxb0_2: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4 xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 r/m: xmmreg4 VPBLENDW — Blend Packed Words C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm VPCMPEQQ — Compare Packed Qword Data of Equal C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3		
DifferenceC4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: immm128 with xmmreg2 into xmmreg1C4: rxb0_3: w xmmreg2 001:42:mod xmmreg1 r/m: immVPACKUSDW — Pack with Unsigned Saturationxmmreg3 and xmmreg2 to xmmreg1C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: immm128 and xmmreg2 to xmmreg1C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: immVPBLENDVB — Variable Blend Packed BytesC4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as maskC4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: xmmreg4VPBLENDW — Blend Packed WordsC4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: immxmmreg2 with xmmreg3 into xmmreg1C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: immVPCMPEQQ — Compare Packed Qword Data of EqualC4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	m128 to xmmreg1	C4: rxb0_2: w_F 001:2A:11 xmmreg1 r/m
m128 with xmmreg2 into xmmreg1 VPACKUSDW — Pack with Unsigned Saturation xmmreg3 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm VPBLENDVB — Variable Blend Packed Bytes xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm VPCMPEQQ — Compare Packed Qword Data of Equal xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3		
VPACKUSDW — Pack with Unsigned SaturationC4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: immxmmreg3 and xmmreg2 to xmmreg1C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: immVPBLENDVB — Variable Blend Packed BytesC4: rxb0_2: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as maskC4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 r/m: xmmreg4VPBLENDW — Blend Packed WordsC4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: immxmmreg2 with xmmreg3 into xmmreg1C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 r/m: immVPCMPEQQ — Compare Packed Qword Data of EqualC4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	xmmreg3 with xmmreg2 into xmmreg1	C4: rxb0_3: w xmmreg2 001:42:11 xmmreg1 xmmreg3: imm
xmmreg3 and xmmreg2 to xmmreg1 m128 and xmmreg2 to xmmreg1 C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm VPBLENDVB — Variable Blend Packed Bytes xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 r/m: imm VPCMPEQQ — Compare Packed Qword Data of Equal xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	m128 with xmmreg2 into xmmreg1	C4: rxb0_3: w xmmreg2 001:42:mod xmmreg1 r/m: imm
m128 and xmmreg2 to xmmreg1 VPBLENDVB — Variable Blend Packed Bytes xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask xmmreg2 with mem to xmmreg1 using xmmreg4 as mask VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 xmmreg2 with xmmreg3 into xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg3 into xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg3 into xmmreg1	VPACKUSDW — Pack with Unsigned Saturation	
VPBLENDVB — Variable Blend Packed BytesC4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as maskC4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4VPBLENDW — Blend Packed WordsC4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: immxmmreg2 with xmmreg3 into xmmreg1C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: immvPCMPEQQ — Compare Packed Qword Data of EqualC4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	xmmreg3 and xmmreg2 to xmmreg1	C4: rxb0_2: w xmmreg2 001:2B:11 xmmreg1 xmmreg3: imm
xmmreg2 with xmmreg3 into xmmreg1 using xmmreg4 as mask xmmreg2 with mem to xmmreg1 using xmmreg4 as mask C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4 VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm VPCMPEQQ — Compare Packed Qword Data of Equal xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm VPCMPEQQ — Compare Packed Qword Data of Equal xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	m128 and xmmreg2 to xmmreg1	C4: rxb0_2: w xmmreg2 001:2B:mod xmmreg1 r/m: imm
mask xmmreg2 with mem to xmmreg1 using xmmreg4 as mask VPBLENDW — Blend Packed Words xmmreg2 with xmmreg3 into xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm VPCMPEQQ — Compare Packed Qword Data of Equal xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	VPBLENDVB — Variable Blend Packed Bytes	
VPBLENDW — Blend Packed Words		C4: rxb0_3: w xmmreg2 001:4C:11 xmmreg1 xmmreg3: xmmreg4
xmmreg2 with xmmreg3 into xmmreg1C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: immxmmreg2 with mem to xmmreg1C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: immVPCMPEQQ — Compare Packed Qword Data of EqualC4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3xmmreg2 with xmmreg3 into xmmreg1C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	xmmreg2 with mem to xmmreg1 using xmmreg4 as mask	C4: rxb0_3: w xmmreg2 001:4C:mod xmmreg1 r/m: xmmreg4
xmmreg2 with mem to xmmreg1 C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm VPCMPEQQ — Compare Packed Qword Data of Equal C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	VPBLENDW — Blend Packed Words	
VPCMPEQQ — Compare Packed Qword Data of Equal xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_3: w xmmreg2 001:0E:11 xmmreg1 xmmreg3: imm
xmmreg2 with xmmreg3 into xmmreg1 C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3	xmmreg2 with mem to xmmreg1	C4: rxb0_3: w xmmreg2 001:0E:mod xmmreg1 r/m: imm
	VPCMPEQQ — Compare Packed Qword Data of Equal	
xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:29:mod xmmreg1 r/m:	xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_2: w xmmreg2 001:29:11 xmmreg1 xmmreg3
	xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:29:mod xmmreg1 r/m:

Instruction and Format	Encoding	
VPEXTRB — Extract Byte		
reg from xmmreg1 using imm	C4: rxb0_3: 0_F 001:14:11 xmmreg1 reg: imm	
mem from xmmreg1 using imm	C4: rxb0_3: 0_F 001:14:mod xmmreg1 r/m: imm	
VPEXTRD — Extract DWord		
reg from xmmreg1 using imm	C4: rxb0_3: 0_F 001:16:11 xmmreg1 reg: imm	
mem from xmmreg1 using imm	C4: rxb0_3: 0_F 001:16:mod xmmreg1 r/m: imm	
VPEXTRQ — Extract QWord		
reg from xmmreg1 using imm	C4: rxb0_3: 1_F 001:16:11 xmmreg1 reg: imm	
mem from xmmreg1 using imm	C4: rxb0_3: 1_F 001:16:mod xmmreg1 r/m: imm	
VPEXTRW — Extract Word		
reg from xmmreg1 using imm	C4: rxb0_3: 0_F 001:15:11 xmmreg1 reg: imm	
mem from xmmreg1 using imm	C4: rxb0_3: 0_F 001:15:mod xmmreg1 r/m: imm	
VPHMINPOSUW — Packed Horizontal Word Minimum		
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:41:11 xmmreg1 xmmreg2	
mem to xmmreg1	C4: rxb0_2: w_F 001:41:mod xmmreg1 r/m	
VPINSRB — Insert Byte		
reg with xmmreg2 to xmmreg1, imm8	C4: rxb0_3: 0 xmmreg2 001:20:11 xmmreg1 reg: imm	
mem with xmmreg2 to xmmreg1, imm8	C4: rxb0_3: 0 xmmreg2 001:20:mod xmmreg1 r/m: imm	
VPINSRD — Insert DWord		
reg with xmmreg2 to xmmreg1, imm8	C4: rxb0_3: 0 xmmreg2 001:22:11 xmmreg1 reg: imm	
mem with xmmreg2 to xmmreg1, imm8	C4: rxb0_3: 0 xmmreg2 001:22:mod xmmreg1 r/m: imm	
VPINSRQ — Insert QWord		
r64 with xmmreg2 to xmmreg1, imm8	C4: rxb0_3: 1 xmmreg2 001:22:11 xmmreg1 reg: imm	
m64 with xmmreg2 to xmmreg1, imm8	C4: rxb0_3: 1 xmmreg2 001:22:mod xmmreg1 r/m: imm	
VPMAXSB — Maximum of Packed Signed Byte Integers		
xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_2: w xmmreg2 001:3C:11 xmmreg1 xmmreg3	
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:3C:mod xmmreg1 r/m	
VPMAXSD — Maximum of Packed Signed Dword Integers		
xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_2: w xmmreg2 001:3D:11 xmmreg1 xmmreg3	
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:3D:mod xmmreg1 r/m	
VPMAXUD — Maximum of Packed Unsigned Dword Integers		
xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_2: w xmmreg2 001:3F:11 xmmreg1 xmmreg3	
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:3F:mod xmmreg1 r/m	
VPMAXUW — Maximum of Packed Unsigned Word Integers		
xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_2: w xmmreg2 001:3E:11 xmmreg1 xmmreg3	
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:3E:mod xmmreg1 r/m	
VPMINSB — Minimum of Packed Signed Byte Integers		
xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_2: w xmmreg2 001:38:11 xmmreg1 xmmreg3	
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:38:mod xmmreg1 r/m	
	•	

Instruction and Format	Encoding
VPMINSD — Minimum of Packed Signed Dword Integers	
xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_2: w xmmreg2 001:39:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:39:mod xmmreg1 r/m
VPMINUD — Minimum of Packed Unsigned Dword Integers	
xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_2: w xmmreg2 001:3B:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:3B:mod xmmreg1 r/m
VPMINUW — Minimum of Packed Unsigned Word Integers	
xmmreg2 with xmmreg3 into xmmreg1	C4: rxb0_2: w xmmreg2 001:3A:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:3A:mod xmmreg1 r/m
VPMOVSXBD — Packed Move Sign Extend - Byte to Dword	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:21:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:21:mod xmmreg1 r/m
VPMOVSXBQ — Packed Move Sign Extend - Byte to Qword	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:22:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:22:mod xmmreg1 r/m
VPMOVSXBW — Packed Move Sign Extend - Byte to Word	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:20:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:20:mod xmmreg1 r/m
VPMOVSXWD — Packed Move Sign Extend - Word to Dword	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:23:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:23:mod xmmreg1 r/m
VPMOVSXWQ — Packed Move Sign Extend - Word to Qword	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:24:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:24:mod xmmreg1 r/m
VPMOVSXDQ — Packed Move Sign Extend - Dword to Qword	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:25:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:25:mod xmmreg1 r/m
VPMOVZXBD — Packed Move Zero Extend - Byte to Dword	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:31:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:31:mod xmmreg1 r/m
VPMOVZXBQ — Packed Move Zero Extend - Byte to Qword	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:32:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:32:mod xmmreg1 r/m
VPMOVZXBW — Packed Move Zero Extend - Byte to Word	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:30:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:30:mod xmmreg1 r/m
VPMOVZXWD — Packed Move Zero Extend - Word to Dword	

Instruction and Format	Encoding
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:33:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:33:mod xmmreg1 r/m
VPMOVZXWQ — Packed Move Zero Extend - Word to Qword	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:34:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:34:mod xmmreg1 r/m
VPMOVZXDQ — Packed Move Zero Extend - Dword to Qword	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:35:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:35:mod xmmreg1 r/m
VPMULDQ — Multiply Packed Signed Dword Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m
VPMULLD — Multiply Packed Signed Dword Integers, Store low Result	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:40:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:40:mod xmmreg1 r/m
VPTEST — Logical Compare	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:17:11 xmmreg1 xmmreg2
mem to xmmreg	C4: rxb0_2: w_F 001:17:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_2: w_F 101:17:11 ymmreg1 ymmreg2
mem to ymmreg	C4: rxb0_2: w_F 101:17:mod ymmreg1 r/m
VROUNDPD — Round Packed Double- Precision Values	
xmmreg2 to xmmreg1, imm8	C4: rxb0_3: w_F 001:09:11 xmmreg1 xmmreg2: imm
mem to xmmreg1, imm8	C4: rxb0_3: w_F 001:09:mod xmmreg1 r/m: imm
ymmreg2 to ymmreg1, imm8	C4: rxb0_3: w_F 101:09:11 ymmreg1 ymmreg2: imm
mem to ymmreg1, imm8	C4: rxb0_3: w_F 101:09:mod ymmreg1 r/m: imm
VROUNDPS — Round Packed Single-Precision Values	
xmmreg2 to xmmreg1, imm8	C4: rxb0_3: w_F 001:08:11 xmmreg1 xmmreg2: imm
mem to xmmreg1, imm8	C4: rxb0_3: w_F 001:08:mod xmmreg1 r/m: imm
ymmreg2 to ymmreg1, imm8	C4: rxb0_3: w_F 101:08:11 ymmreg1 ymmreg2: imm
mem to ymmreg1, imm8	C4: rxb0_3: w_F 101:08:mod ymmreg1 r/m: imm
VROUNDSD — Round Scalar Double- Precision Value	
xmmreg2 and xmmreg3 to xmmreg1, imm8	C4: rxb0_3: w xmmreg2 001:0B:11 xmmreg1 xmmreg3: imm
xmmreg2 and mem to xmmreg1, imm8	C4: rxb0_3: w xmmreg2 001:0B:mod xmmreg1 r/m: imm
VROUNDSS — Round Scalar Single- Precision Value	
xmmreg2 and xmmreg3 to xmmreg1, imm8	C4: rxb0_3: w xmmreg2 001:0A:11 xmmreg1 xmmreg3: imm
	C4: rxb0_3: w xmmreg2 001:0A:mod xmmreg1 r/m: imm

Instruction and Format	Encoding
VPCMPESTRI — Packed Compare Explicit Length Strings, Return Index	
xmmreg2 with xmmreg1, imm8	C4: rxb0_3: w_F 001:61:11 xmmreg1 xmmreg2: imm
mem with xmmreg1, imm8	C4: rxb0_3: w_F 001:61:mod xmmreg1 r/m: imm
VPCMPESTRM — Packed Compare Explicit Length Strings, Return Mask	
xmmreg2 with xmmreg1, imm8	C4: rxb0_3: w_F 001:60:11 xmmreg1 xmmreg2: imm
mem with xmmreg1, imm8	C4: rxb0_3: w_F 001:60:mod xmmreg1 r/m: imm
VPCMPGTQ — Compare Packed Data for Greater Than	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:28:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:28:mod xmmreg1 r/m
VPCMPISTRI — Packed Compare Implicit Length Strings, Return Index	
xmmreg2 with xmmreg1, imm8	C4: rxb0_3: w_F 001:63:11 xmmreg1 xmmreg2: imm
mem with xmmreg1, imm8	C4: rxb0_3: w_F 001:63:mod xmmreg1 r/m: imm
VPCMPISTRM — Packed Compare Implicit Length Strings, Return Mask	
xmmreg2 with xmmreg1, imm8	C4: rxb0_3: w_F 001:62:11 xmmreg1 xmmreg2: imm
mem with xmmreg, imm8	C4: rxb0_3: w_F 001:62:mod xmmreg1 r/m: imm
VAESDEC — Perform One Round of an AES Decryption Flow	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:DE:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:DE:mod xmmreg1 r/m
VAESDECLAST — Perform Last Round of an AES Decryption Flow	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:DF:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:DF:mod xmmreg1 r/m
VAESENC — Perform One Round of an AES Encryption Flow	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:DC:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:DC:mod xmmreg1 r/m
VAESENCLAST — Perform Last Round of an AES Encryption Flow	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:DD:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:DD:mod xmmreg1 r/m
${\it VAESIMC-Perform\ the\ AES\ InvMixColumn\ Transformation}$	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:DB:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:DB:mod xmmreg1 r/m
VAESKEYGENASSIST — AES Round Key Generation Assist	
xmmreg2 to xmmreg1, imm8	C4: rxb0_3: w_F 001:DF:11 xmmreg1 xmmreg2: imm
mem to xmmreg, imm8	C4: rxb0_3: w_F 001:DF:mod xmmreg1 r/m: imm
VPABSB — Packed Absolute Value	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:1C:11 xmmreg1 xmmreg2

Instruction and Format	Encoding
mem to xmmreg1	C4: rxb0_2: w_F 001:1C:mod xmmreg1 r/m
VPABSD — Packed Absolute Value	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:1E:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:1E:mod xmmreg1 r/m
VPABSW — Packed Absolute Value	
xmmreg2 to xmmreg1	C4: rxb0_2: w_F 001:1D:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_2: w_F 001:1D:mod xmmreg1 r/m
VPALIGNR — Packed Align Right	
xmmreg2 with xmmreg3 to xmmreg1, imm8	C4: rxb0_3: w xmmreg2 001:DD:11 xmmreg1 xmmreg3: imm
xmmreg2 with mem to xmmreg1, imm8	C4: rxb0_3: w xmmreg2 001:DD:mod xmmreg1 r/m: imm
VPHADDD — Packed Horizontal Add	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:02:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:02:mod xmmreg1 r/m
VPHADDW — Packed Horizontal Add	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:01:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:01:mod xmmreg1 r/m
VPHADDSW — Packed Horizontal Add and Saturate	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:03:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:03:mod xmmreg1 r/m
VPHSUBD — Packed Horizontal Subtract	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:06:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:06:mod xmmreg1 r/m
VPHSUBW — Packed Horizontal Subtract	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:05:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:05:mod xmmreg1 r/m
VPHSUBSW — Packed Horizontal Subtract and Saturate	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:07:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:07:mod xmmreg1 r/m
VPMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:04:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:04:mod xmmreg1 r/m
VPMULHRSW — Packed Multiply High with Round and Scale	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:0B:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:0B:mod xmmreg1 r/m
VPSHUFB — Packed Shuffle Bytes	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:00:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:00:mod xmmreg1 r/m
VPSIGNB — Packed SIGN	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:08:11 xmmreg1 xmmreg3

Xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:08:mod xmmreg1 r/m VPSIGND — Packed SIGN xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:11 xmmreg1 r/m VPSIGNW — Packed SIGN xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:11 xmmreg1 xmmreg3 XMDDSUBPD — Packed Double-FP Add/Subtract xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:09:mod xmmreg1 r/m VADDSUBPD — Packed Sign xmmreg1 C4: rxb0_1: w xmmreg2 001:09:mod xmmreg1 r/m xmmreg2 with mem to xmmreg1 C5: rxmmreg1o2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 C5: rxmmreg1o2 001:00:mod xmmreg1 r/m xmmreg2 with ymmreg3 to ymmreg1 C5: rxmmreg1o2 001:00:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 C6: rxb0_1: w ymmreg2 101:00:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 C5: rxmmreg1o2 with mem to ymmreg1 C5: rxmmreg1o2 with ymmreg3 to ymmreg1 C5: rxmmreg1o2 with ymmreg3 to ymmreg1 C5: rxmmreg1o2 with ymmreg3 to ymmreg1 C5: rxmmreg1o2 with xmmreg3 to xmmreg1 C5: rxmmreg1o2 with xmmreg3 to xmmreg1 C5: rxmmreg1o2 with xmmreg3 to xmmreg1 C6: rxb0_1: w xmmreg2o2 101:00:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C6: rxb0_1: w xmmreg2o2 101:00:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C6: rxb0_1: w xmmreg2o2 101:00:11 xmmreg1 xmmreg3 xmmreg2 with ymmreg3 to xmmreg1 C6: rxb0_1: w xmmreg2o2 101:00:11 xmmreg1 xmmreg3 xmmreg2o2 with ymmreg3 to xmmreg1 C6: rxb0_1: w xmmreg2o2 101:00:11 xmmreg1 xmmreg3 xmmreg2o2 with mem to xmmreg1 C6: rxb0_1: w xmmreg2o2 101:00:11 ymmreg1 ymmreg3 xmmreg2o2 with mem to xmmreg1 C6: rxb0_1: w xmmreg2o2 101:00:11 ymmreg1 ymmreg3 xmmreg2o2 with mem to xmmreg1 C6: rxb0_1: w xmmreg2o2 101:7C:11 xmmreg1 xmmreg1o3 xmmreg2o2 with xmmreg3 to xmmreg1 C6: rxb0_1: w xmmreg2o2 101:7C:11 xmmreg1 xmmreg1o3 xmmreg2o2 with xmmreg3 to xmmreg1 C6: rxb0_1: w xmmreg2o2 101:7C:11 xmmreg1 xmmreg1o3 xmmreg2o2 with xmmreg3 to xmmreg1 C6: rxb0_1: w xmmreg2o2 101:7C:11 xmmreg1 xmmreg1o	Instruction and Format	Encoding
xmmreg2 with xmmreg3 to xmmreg1	xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:08:mod xmmreg1 r/m
xmnreg2 with mem to xmmreg1 VPSIGMW — Packed SIGN xmmreg2 with xmmreg3 to xmmreg1 VADDSUBPD — Packed Double-FP Add/Subtract xmmreg2 with mem to xmmreg1 VADDSUBPD — Packed Double-FP Add/Subtract xmmreg2 with mem to xmmreg1 VADDSUBPD — Packed Double-FP Add/Subtract xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:00:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:00:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreg1o2 001:00:11 xmmreg1 xmmreg13 xmmreg02 with mem to xmmreg1 C6: rxb0_1: w ymmreg2 001:00:11 xmmreg1 xmmreg103 xmmreg02 with mem to ymmreg1 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:00:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:00:11 ymmreg1 ymmreg3 ymmreg02 with mem to ymmreg1 C5: r_ymmreg1o2 101:00:11 ymmreg1 ymmreg103 xmmreg1o2 with xmmreg3 to ymmreg1 C5: r_ymmreg02 101:00:11 ymmreg1 ymmreg103 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:00:11 xmmreg1 xmmreg13 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:00:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:00:11 xmmreg1 xmmreg3 xmmreg02 with mem to xmmreg1 C5: r_xmmreg1o2 011:00:11 xmmreg1 xmmreg13 xmmreg02 with mem to xmmreg1 C5: r_xmmreg1o2 011:00:11 xmmreg1 ymmreg103 ymmreg02 with mem to xmmreg1 C5: r_xmmreg1o2 011:00:11 ymmreg1 ymmreg103 ymmreg2 with mem to xmmreg1 C4: rxb0_1: w ymmreg2 111:00:11 ymmreg1 ymmreg103 ymmreg02 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 011:00:mod ymmreg1 r/m ymmreg1o2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 011:00:mod ymmreg1 r/m C4: rxb0_1: w ymmreg2 011:00:mod ymmreg1 r/m VADDSUBPS xmmreg1o2 with mem to ymmreg1 C5: r_ymmreg02 111:00:11 ymmreg1 ymmreg103 ymmreg02 with mem to ymmreg1 C5: r_xmmreg1o2 111:00:11 ymmreg1 ymmreg103 ymmreg2 with xmmreg3 to xmmreg1 C5: r_ymmreg02 111:00:11 ymmreg1 ymmreg103 ymmreg02 with mem to xmmreg1 C6: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3 ymmreg02 with mem to xmmreg1 C6: rxb0_1: w xmmreg2 001:7C:11	VPSIGND — Packed SIGN	
VPSIGNW — Packed SIGN xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_2: w xmmreg2 001:09:mod xmmreg1 r/m VADDSUBPD — Packed Double-FP Add/Subtract xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:00:11 xmmreg1 xmmreg3 xmmreg02 with mem to xmmreg1 C5: r_xmmreglo2 001:00:11 xmmreg1 r/m xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:00:11 xmmreg1 r/m ymmreg0 with ymmreg3 to ymmreg1 C6: rxb0_1: w ymmreg2 101:00:11 ymmreg1 ymmreg3 ymmreg0 with mem to ymmreg1 C6: rxb0_1: w ymmreg2 101:00:11 ymmreg1 ymmreg3 ymmreg0 with mem to ymmreg1 C5: r_ymmreglo2 101:00:11 ymmreg1 ymmreg3 ymmreg0 with mem to ymmreg1 C5: r_ymmreg02 101:00:11 ymmreg1 ymmreg03 ymmreg0 with mem to ymmreg1 C5: r_ymmreg02 101:00:11 ymmreg1 ymmreg1 ymmreg0 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:00:11 xmmreg1 xmmreg3 xmmreg0 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:00:11 ymmreg1 ymmreg3 xmmreg0 with mem to xmmreg1 C5: r_xmmreg02 011:00:11 xmmreg1 xmmreg3 xmmreg02 with mem to xmmreg1 C5: r_xmmreg02 011:00:11 xmmreg1 xmmreg3 xmmreg02 with ymmreg3 to ymmreg1 C5: r_xmmreg02 011:00:11 ymmreg1 ymmreg3 xmmreg02 with ymmreg3 to ymmreg1 C5: r_xmmreg02 011:00:11 ymmreg1 ymmreg03 xmmreg02 with mem to xmmreg1 C5: r_xmmreg02 011:00:11 ymmreg1 ymmreg03 xmmreg02 with ymmreg3 to ymmreg1 C5: r_ymmreg02 011:00:11 ymmreg1 ymmreg1 ymmreg02 with ymmreg1 to ymmreg1 C5: r_ymmreg02 111:00:11 ymmreg1 ymmreg3 ymmreg02 with mem to ymmreg1 C5: r_ymmreg02 111:00:11 ymmreg1 ymmreg03 ymmreg02 with mem to ymmreg1 C6: rxb0_1: w ymmreg2 111:00:11 ymmreg1 ymmreg03 ymmreg02 with mem to ymmreg1 C6: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3 ymmreg02 with mem to xmmreg1 C6: rxb0_1: w xmmreg2 001:7C:11 ymmreg1 ymmreg03 ymmreg02 with mem to xmmreg1 C6: rxb0_1: w xmmreg2 001:7C:11 ymmreg1 ymmreg03 ymmreg02 with mem to ymmreg1 C6: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg03 ymmreg02 with mem to ymmreg1 C6: rxb0_1: w xmmreg2 001:7C:11 ymmreg1	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:0A:11 xmmreg1 xmmreg3
xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 XADDSUBPD — Packed Double-FP Add/Subtract xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 ymmreg1 xmmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 xmmreg1 xmmreg102 with ymmreg3 to ymmreg1 xmmreg102 with mem to ymmreg1 xmmreg102 with mem to ymmreg1 xmmreg102 with mem to ymmreg1 xmmreg2 with mem to ymmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg102 with xmmreg3 to xmmreg1 xmmreg102 with xmmreg3 to xmmreg1 xmmreg102 with mem to xmmreg1 xmmreg102 with xmmreg3 to ymmreg1 xmmreg102 with ymmreg3 to ymmreg1 ymmreg2 with mem to xmmreg1 xmmreg102 with ymmreg3 to ymmreg1 xmmreg102 with ymmreg3 to ymmreg1 xmmreg102 with mem to xmmreg1 xmmreg102 with ymmreg3 to ymmreg1 xmmreg102 with ymmreg3 to ymmreg1 xmmreg102 with ymmreg3 to ymmreg1 xmmreg102 with mem to ymmreg1 xmmreg102 with mem to xmmreg1 xmmreg2 with mem to xmmr	xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:0A:mod xmmreg1 r/m
xmmreg2 with mem to xmmreg1 (4: rxb0_2: w xmmreg2 001:09:mod xmmreg1 r/m VADDSUBPD — Packed Double-FP Add/Subtract (4: rxb0_1: w xmmreg2 001:00:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 (4: rxb0_1: w xmmreg2 001:00:mod xmmreg1 r/m xmmreg2 with mem to xmmreg1 (5: r_xmmreglo2 001:00:mod xmmreg1 r/m xmmreg2 with ymmreg3 to ymmreg1 (4: rxb0_1: w ymmreg2 101:00:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 (4: rxb0_1: w ymmreg2 101:00:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 (5: r_ymmreglo2 101:00:11 ymmreg1 ymmreg1 ymmreg02 with mem to ymmreg1 (5: r_ymmreglo2 101:00:11 ymmreg1 ymmreg03 ymmreg102 with mem to ymmreg1 (5: r_ymmreglo2 101:00:11 ymmreg1 ymmreg03 ymmreg2 with mem to ymmreg1 (4: rxb0_1: w xmmreg2 101:00:11 ymmreg1 ymmreg1 xmmreg2 with xmmreg3 to xmmreg1 (4: rxb0_1: w xmmreg2 011:00:mod xmmreg1 r/m xmmreg2 with mem to xmmreg1 (4: rxb0_1: w xmmreg2 011:00:mod xmmreg1 r/m xmmreg2 with ymmreg3 to xmmreg1 (5: r_xmmreglo2 011:00:11 xmmreg1 xmmreg03 xmmreg2 with ymmreg3 to ymmreg1 (5: r_xmmreglo2 011:00:11 xmmreg1 xmmreg1 ymmreg2 with ymmreg3 to ymmreg1 (5: r_xmmreg102 011:00:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 (5: r_xmmreg102 111:00:11 ymmreg1 r/m ymmreg2 with mem to ymmreg1	VPSIGNW — Packed SIGN	
VADDSUBPD — Packed Double-FP Add/Subtract xmmreg2 with xmmreg3 to xmmreg1	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: w xmmreg2 001:09:11 xmmreg1 xmmreg3
xmmreg2 with xmmreg3 to xmmreg1	xmmreg2 with mem to xmmreg1	C4: rxb0_2: w xmmreg2 001:09:mod xmmreg1 r/m
xmmreg2 with mem to xmmreg1 Xmmreglo2\frac{1}{2} with xmmreglo3 to xmmreg1 Xmmreglo2\frac{1}{2} with xmmreglo3 to xmmreg1 Xmmreglo2 with mem to ymmreg1 Xmmreglo3 with xmmreg3 to xmmreg1 Xmmreg2 with xmmreg3 to xmmreg1 Xmmreg2 with xmmreg3 to xmmreg1 Xmmreg2 with mem to xmmreg1 Xmmreg2 with ymmreg3 to ymmreg1 Xmmreg2 with ymmreg3 to ymmreg1 Xmmreg2 with mem to ymmreg1 Xmmreg2 with ymmreg3 to ymmreg1 Xmmreg2 with ymmreg3 to ymmreg1 Xmmreg2 with ymmreg3 to ymmreg1 Xmmreg2 with mem to xmmreg1 Xmmreg2 with ymmreg3 to ymmreg1 Xmmreg2 with mem to xmmreg1 Xmmreg2 with mem to xmmreg1 Xmmreg2 with mem to xmmreg1 Xmmreg2 with xmmreg3 to xmmreg1 Xmmreg2 with ymmreg3 to ymmreg1 Xmmreg2 with mem to xmmreg1 Xmmreg2 with mem to ymmreg1 Xmmreg2 with mem to ymmreg1 Xmmreg2 with ymmreg3 to ymmreg1 Xmmreg2 with ymmreg3 to ymmreg1 Xmmreg2 with ymmreg3 to ymmreg1 Xmmreg2 with mem to ymmreg1 Xmmreg3 to ymmreg3 Xmmreg3	VADDSUBPD — Packed Double-FP Add/Subtract	
xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg3 with ymmreg3 to ymmreg1 VADDSUBPS — Packed Single-FP Add/Subtract xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg3 with ymmreg3 to xmmreg1 xmmreg3 with ymmreg3 to xmmreg1 xmmreg3 with ymmreg3 to ymmreg1 xmmreg3 with mem to xmmreg1 xmmreg3 with mem to xmmreg1 xmmreg3 with mem to ymmreg1 xmmreg3 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg3 with ymmreg3 to ymmreg1 xmmreg3 with ymmreg3 to xmmreg1 xmmreg3 with ymmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with ymmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg3 to ymmreg1 xmmreg2 with ymmreg3 to ymmreg1 xmmreg3 to	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:D0:11 xmmreg1 xmmreg3
xmmreglo2 with mem to xmmreg1	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:D0:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg1o2 with mem to ymmreg1 Ymmreg2 with mem to ymmreg1 Ymmreg2 with xmmreg3 to xmmreg1 Xmmreg2 with mem to xmmreg1 Xmmreg2 with mem to xmmreg1 Ymmreg1o2 with xmmreg1o3 to xmmreg1 Xmmreg1o2 with ymmreg1o3 to xmmreg1 Xmmreg1o2 with mem to xmmreg1 Ymmreg2 with ymmreg3 to ymmreg1 Ymmreg2 with ymmreg3 to ymmreg1 Ymmreg2 with ymmreg3 to ymmreg1 Ymmreg2 with mem to ymmreg1 Ymmreg2 with mem to ymmreg1 Ymmreg2 with mem to ymmreg1 Ymmreg1o2 with mem to ymmreg1 Ymmreg1o2 with mem to ymmreg1 Ymmreg1o2 with mem to ymmreg1 Ymmreg1o3 Ymmreg1o4 with ymmreg3 to ymmreg1 Ymmreg2 with xmmreg3 to xmmreg1 Ymmreg2 with mem to xmmreg1 Ymmreg2 with xmmreg1o3 to ymmreg1 Ymmreg2 with ymmreg1 to ymmreg1 Ymmreg2 with ymmreg1 to ymmreg1 Ymmreg2 with ymmreg1 to ymmreg1 Ymmreg2 with ymmreg1o3 to ymmreg1 Ymmreg1o2 with mem to ymmreg1 Ymmreg1o3 to xmmreg1 Ym	xmmreglo2 ¹ with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:D0:11 xmmreg1 xmmreglo3
ymmreg2 with mem to ymmreg1	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:D0:mod xmmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1 ymmreglo2 with mem to ymmreg1 ymmreglo2 with mem to ymmreg1 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:D0:mod ymmreg1 r/m VADDSUBPS — Packed Single-FP Add/Subtract xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 011:D0:mod xmmreg1 r/m xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 011:D0:mod xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 c5: r_xmmreglo2 011:D0:mod xmmreg1 r/m ymmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 011:D0:mod xmmreg1 r/m ymmreglo2 with mem to ymmreg1 c4: rxb0_1: w ymmreg2 111:D0:mod ymmreg1 r/m ymmreglo2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 111:D0:mod ymmreg1 r/m ymmreglo2 with mem to ymmreg1 c5: r_ymmreglo2 111:D0:mod ymmreg1 r/m ymmreglo2 with mem to ymmreg1 c5: r_ymmreglo2 111:D0:mod ymmreg1 r/m VHADDPD — Packed Double-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 001:7C:mod xmmreg1 r/m xmmreglo2 with xmmreg3 to xmmreg1 c5: r_xmmreglo2 001:7C:mod xmmreg1 r/m ymmreg02 with ymmreg3 to ymmreg1 c5: r_xmmreglo2 001:7C:mod ymmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 c6: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m ymmreg02 with mem to ymmreg1 c6: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m ymmreglo2 with mem to ymmreg1 c6: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m ymmreglo2 with mem to ymmreg1 c6: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m ymmreglo2 with mem to ymmreg1 c6: rxb0_1: w xmmreg2 101:7C:mod ymmreg1 r/m ymmreglo2 with mem to ymmreg1 c6: rxb0_1: w xmmreg2 101:7C:mod ymmreg1 r/m ymmreglo2 with mem to ymmreg1 c6: rxb0_1: w xmmreg2 101:7C:mod ymmreg1 r/m vmmreg2 with xmmreg3 to xmmreg1 c6: rxb0_1: w xmmreg2 101:7C:mod ymmreg1 r/m	ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:D0:11 ymmreg1 ymmreg3
ymmreglo2 with mem to ymmreg1 VADDSUBPS — Packed Single-FP Add/Subtract xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 011:D0:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 011:D0:mod xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 c5: r_xmmreglo2 vith ymmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 011:D0:mod xmmreg1 r/m ymmreglo2 with mem to xmmreg1 c4: rxb0_1: w ymmreg2 111:D0:11 ymmreg1 ymmreg3 ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 111:D0:11 ymmreg1 ymmreg3 ymmreglo2 with mem to ymmreg1 c5: r_ymmreglo2 111:D0:11 ymmreg1 ymmreg1o3 ymmreglo2 with mem to ymmreg1 c5: r_ymmreglo2 111:D0:mod ymmreg1 r/m VHADDPD — Packed Double-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 001:7C:mod xmmreg1 r/m xmmreglo2 with xmmreg3 to xmmreg1 c5: r_xmmreglo2 001:7C:mod xmmreg1 r/m ymmreg02 with mem to xmmreg1 c5: r_xmmreglo2 001:7C:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m ymmreg2 with mem to ymmreg1 c6: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m ymmreg02 with mem to ymmreg1 c7: r_ymmreglo2 101:7C:mod ymmreg1 r/m ymmreglo2 with mem to ymmreg1 c7: r_ymmreglo2 101:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 c6: rxb0_1: w xmmreg2 011:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 c6: rxb0_1: w xmmreg2 011:7C:mod ymmreg1 r/m	ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:D0:mod ymmreg1 r/m
VADDSUBPS — Packed Single-FP Add/Subtract xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 011:D0:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 c5: r_xmmreglo2 011:D0:mod xmmreg1 r/m xmmreglo2 with ymmreg3 to ymmreg1 c5: r_xmmreglo2 011:D0:mod xmmreg1 r/m ymmreg2 with mem to xmmreg1 c6: rxb0_1: w ymmreg2 111:D0:mod xmmreg1 r/m ymmreg2 with mem to ymmreg1 c4: rxb0_1: w ymmreg2 111:D0:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 c5: r_ymmreglo2 111:D0:11 ymmreg1 ymmreg3 ymmreglo2 with ymmreglo3 to ymmreg1 c5: r_ymmreglo2 111:D0:11 ymmreg1 ymmreg1o3 ymmreglo2 with mem to ymmreg1 c5: r_ymmreglo2 111:D0:mod ymmreg1 r/m VHADDPD — Packed Double-FP Horizontal Add xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 001:7C:mod xmmreg1 r/m xmmreglo2 with xmmreg1o3 to xmmreg1 c5: r_xmmreglo2 001:7C:11 xmmreg1 r/m ymmreg1o2 with ymmreg3 to ymmreg1 c5: r_xmmreglo2 001:7C:11 ymmreg1 ymmreg3 ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 c6: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3 ymmreg02 with ymmreg13 to ymmreg1 c5: r_ymmreg1o2 101:7C:mod ymmreg1 r/m ymmreg1o2 with mem to ymmreg1 c5: r_ymmreg1o2 101:7C:mod ymmreg1 r/m ymmreg1o2 with mem to ymmreg1 c5: r_ymmreg1o2 101:7C:mod ymmreg1 r/m vmmreg1o2 with xmmreg3 to xmmreg1 c6: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 c6: rxb0_1: w xmmreg2 011:7C:mod ymmreg1 r/m vmmreg1o2 with xmmreg3 to xmmreg1 c6: rxb0_1: w xmmreg2 011:7C:mod ymmreg1 r/m	ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:D0:11 ymmreg1 ymmreglo3
xmmreg2 with xmmreg3 to xmmreg1	ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:D0:mod ymmreg1 r/m
xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg1 with ymmreg3 to ymmreg1 ymmreg1 with mem to ymmreg1 ymmreg1o2 with mem to ymmreg1 ymmreg1o2 with mem to ymmreg1 ymmreg1o2 with mem to ymmreg1 xmmreg1o2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg1o3 to xmmreg1 xmmreg2 with xmmreg1o3 to xmmreg1 xmmreg2 with xmmreg1o3 to xmmreg1 xmmreg1o2 with xmmreg1o3 to xmmreg1 xmmreg1o2 with ymmreg1o3 to xmmreg1 xmmreg1o2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg1o3 to ymmreg1 xmmreg1o2 with ymmreg1o3 to ymmreg1 ymmreg1o2 with ymmreg1o3 to ymmreg1 xmmreg1o2 with ymmreg1o3 to ymmreg1 ymmreg1o2 with ymmreg1o3 to ymmreg1 xmmreg1o3 with mem to ymmreg1 xmmreg1o3 with xmmreg1 ymmreg1o3 ymmreg1o2 with xmmreg1o3 to ymmreg1 xmmreg1o3 to ymmreg1 ymmreg1o3 ymmreg1o2 with xmmreg1o3 to ymmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg3 to xmmreg1 xmmreg3 to xmmreg1 xmmreg3 to xmmreg3 xmmreg3	VADDSUBPS — Packed Single-FP Add/Subtract	
xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg1 ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with ymmreg3 ymmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 ymmreg1 ymmreg1 ymmreg1 ymmreg2 ymmreg2 ymmreg2 ymmreg3 ymmreg3 ymmreg3 ymmreg3 ymmreg3 ymmreg3 ymmreg4 ymmreg5 ymmreg6 ymmreg6 ymmreg7 ymmreg9 ymmreg9 ymmreg9 ymmreg1 ymmreg1 ymmreg1 ymmreg1 ymmreg1 ymmreg1 ymmreg1 ymmreg2 ymmreg1 ymmreg1 ymmreg1 ymmreg1 ymmreg1 ymmreg2 ymmreg1 ymmreg2 ymmreg2 ymmreg2 ymmreg2 ymmreg3 ymmreg2 ymmreg3 ymmreg3 ymmreg1 ymmreg3 ymmreg3 ymmreg1 ymmreg1 ymmreg1 ymmreg3 ymmreg1 ymmreg2 ymmreg1 ymm	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:D0:11 xmmreg1 xmmreg3
xmmreglo2 with mem to xmmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreglo2 with ymmreglo3 to ymmreg1 ymmreglo2 with mem to ymmreg1 ymmreglo2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg1 with xmmreg1 wmmreg1 xmmreg1 with xmmreg1 wmmreg1 xmmreg1o2 with xmmreg1o3 to xmmreg1 ymmreg1o2 with mem to xmmreg1 xmmreg1o2 with mem to xmmreg1 ymmreg1o2 with mem to xmmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg1o2 with mem to ymmreg1 ymmreg1o3 to ymmreg1 ymmreg1o3 to ymmreg1 ymmreg1o4 rymmreg1o3 to ymmreg1 ymmreg1o5 r_ymmreg1o2 101:7C:mod ymmreg1 r/m ymmreg1o2 with mem to ymmreg1 ymmreg1o2 with ymmreg1o3 to ymmreg1 ymmreg1o2 with mem to ymmreg1 ymmreg1o3 to ymmreg1 ymmreg1o5 r_ymmreg1o2 101:7C:mod ymmreg1 r/m ymmreg1o2 with xmmreg3 to xmmreg1 ymmreg1o3 to xmmreg1 ymmreg1o4 rymmreg1o5 to xmmreg1 ymmreg1o5 r_ymmreg1o5 101:7C:mod ymmreg1 r/m ymmreg1o7 rymmreg1o7 rymmreg1o7 rymmreg1o7 rymmreg1 rymmreg1o7 rymmreg1 rymmreg1o7 rymmreg1 rymmreg1 rymmreg1 rymmreg1 rymmreg1 rymmreg1 rymmreg1 rymmreg2 rymmreg2 rymmreg2 rymmreg1 rymmreg1 rymmreg1 rymmreg1 rymmreg2 rymmreg2 rymmreg1 rymmreg1 rymmreg2 rymmreg2 rymmreg1 rymmreg1 rymmreg1 rymmreg2 rymmreg3 rymmreg3 rymmreg2 rymmreg2 rymmreg3 rymmreg2 rymmreg3 rym	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:D0:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:D0:11 xmmreg1 xmmreglo3
ymmreg2 with mem to ymmreg1 ymmreglo2 with ymmreglo3 to ymmreg1 ymmreglo2 with ymmreglo3 to ymmreg1 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:D0:11 ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:D0:mod ymmreg1 r/m VHADDPD — Packed Double-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreglo2 001:7C:11 xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:7C:11 xmmreg1 r/m ymmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:7C:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:D0:mod xmmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:D0:11 ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:D0:mod ymmreg1 r/m VHADDPD — Packed Double-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3 xmmreglo2 with xmmreglo3 to xmmreg1 c5: r_xmmreglo2 001:7C:11 xmmreg1 r/m xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 001:7C:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 c4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m ymmreglo2 with ymmreglo3 to ymmreg1 c5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 c4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 c4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 111:D0:11 ymmreg1 ymmreg3
ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 111:D0:mod ymmreg1 r/m VHADDPD — Packed Double-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreg3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 001:7C:11 xmmreg1 r/m c5: r_xmmreglo2 001:7C:11 xmmreg1 r/m ymmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 001:7C:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 c5: r_ymmreglo2 101:7C:mod ymmreg1 r/m ymmreglo2 with ymmreglo3 to ymmreg1 c5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 c5: r_ymmreglo2 101:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 111:D0:mod ymmreg1 r/m
VHADDPD — Packed Double-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreg1 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreglo2 with ymmreg1 to ymmreg1 ymmreg1 with ymmreg1 to ymmreg1 ymmreg2 with ymmreg1 to ymmreg1 ymmreg1 to ymmreg1 to ymmreg2 to ymmreg1 to ymmreg2 with ymmreg3 to ymmreg1 to ymmreg1 to ymmreg2 to ymmreg1 to ymmreg1 to ymmreg1 to ymmreg1 to ymmreg2 to ymmreg1 to ymmreg1 to ymmreg1 to ymmreg1 to ymmreg1 to ymmreg2 to ymmreg1 to ymmreg1 to ymmreg1 to ymmreg1 to ymmreg1 to ymmreg2 to ymmreg1 to ymmreg1 to ymmreg1 to ymmreg2 to ymmreg1 to ymmreg1 to ymmreg1 to ymmreg1 to ymmreg2 to ymmreg1 to ymmre	ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 111:D0:11 ymmreg1 ymmreglo3
xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 xmmreg1 c4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3 ymmreg2 with ymmreglo3 to ymmreg1 ymmreg1 c4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m ymmreglo2 with ymmreglo3 to ymmreg1 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 111:D0:mod ymmreg1 r/m
xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 001:7C:11 xmmreg1 xmmreglo3 xmmreglo2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with ymmreg1 ymmreg1 ymmreg1 ymmreg1 c4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3 c4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m ymmreglo2 with ymmreglo3 to ymmreg1 c5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 c5: r_ymmreglo2 101:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 c4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	VHADDPD — Packed Double-FP Horizontal Add	
xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 001:7C:11 xmmreg1 xmmreglo3 c5: r_xmmreglo2 001:7C:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 c4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3 ymmreglo2 with ymmreglo3 to ymmreg1 c5: r_ymmreglo2 101:7C:11 ymmreg1 r/m ymmreglo2 with ymmreglo3 to ymmreg1 c5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 c5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3 c6: rxb0_1: w xmmreg2 101:7C:mod ymmreg1 r/m c6: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 c6: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:7C:11 xmmreg1 xmmreg3
xmmreglo2 with mem to xmmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreglo2 with ymmreg1 ymmreglo3 to ymmreg1 ymmreglo2 with ymmreglo3 to ymmreg1 ymmreglo2 with mem to ymmreg1 ymmreglo2 101:7C:11 ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:7C:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg1 c4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3 ymmreg1 c4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m ymmreg1o2 with ymmreg1o3 to ymmreg1 ymmreg1o2 with mem to ymmreg1 C5: r_ymmreg1o2 101:7C:11 ymmreg1 ymmreg1o3 ymmreg1o2 with mem to ymmreg1 C5: r_ymmreg1o2 101:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:7C:11 xmmreg1 xmmreglo3
ymmreg2 with mem to ymmreg1 ymmreglo2 with ymmreglo3 to ymmreg1 ymmreglo2 with ymmreglo3 to ymmreg1 ymmreglo2 with mem to ymmreg1 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:7C:mod xmmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:7C:11 ymmreg1 ymmreg3
ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:7C:mod ymmreg1 r/m
VHADDPS — Packed Single-FP Horizontal Add xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:7C:11 ymmreg1 ymmreglo3
xmmreg2 with xmmreg3 to xmmreg1C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3xmmreg2 with mem to xmmreg1C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:7C:mod ymmreg1 r/m
xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m	VHADDPS — Packed Single-FP Horizontal Add	
	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:7C:11 xmmreg1 xmmreg3
xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 011:7C:11 xmmreg1 xmmreglo3	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:7C:mod xmmreg1 r/m
	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:7C:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 011:7C:mod xmmreg1 r/m	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:7C:mod xmmreg1 r/m

Instruction and Course	Conding
Instruction and Format	Encoding
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 111:7C:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 111:7C:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 111:7C:11 ymmreg1 ymmreglo3
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 111:7C:mod ymmreg1 r/m
VHSUBPD — Packed Double-FP Horizontal Subtract	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:7D:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:7D:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:7D:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:7D:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:7D:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:7D:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:7D:11 ymmreg1 ymmreglo3
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:7D:mod ymmreg1 r/m
VHSUBPS — Packed Single-FP Horizontal Subtract	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:7D:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:7D:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:7D:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:7D:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 111:7D:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 111:7D:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 111:7D:11 ymmreg1 ymmreglo3
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 111:7D:mod ymmreg1 r/m
VLDDQU — Load Unaligned Integer 128 Bits	
mem to xmmreg1	C4: rxb0_1: w_F 011:F0:mod xmmreg1 r/m
mem to xmmreg1	C5: r_F 011:F0:mod xmmreg1 r/m
mem to ymmreg1	C4: rxb0_1: w_F 111:F0:mod ymmreg1 r/m
mem to ymmreg1	C5: r_F 111:F0:mod ymmreg1 r/m
VMOVDDUP — Move One Double-FP and Duplicate	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 011:12:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 011:12:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 011:12:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 011:12:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 111:12:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 111:12:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_ F 111:12:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 111:12:mod ymmreg1 r/m
VMOVHLPS — Move Packed Single-Precision Floating-Point Values High to Low	
xmmreg2 and xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:12:11 xmmreg1 xmmreg3
-	

Instruction and Cornet	Casadiaa
Instruction and Format	Encoding
xmmreglo2 and xmmreglo3 to xmmreg1	C5: r_xmmreglo2 000:12:11 xmmreg1 xmmreglo3
VMOVSHDUP — Move Packed Single-FP High and Duplicate	CA LO 1 C0101C11 1
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 010:16:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 010:16:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 010:16:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 010:16:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 110:16:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 110:16:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 110:16:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 110:16:mod ymmreg1 r/m
VMOVSLDUP — Move Packed Single-FP Low and Duplicate	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 010:12:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 010:12:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 010:12:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 010:12:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 110:12:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 110:12:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 110:12:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 110:12:mod ymmreg1 r/m
VADDPD — Add Packed Double-Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:58:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:58:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:58:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:58:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:58:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:58:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:58:11 ymmreg1 ymmreglo3
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:58:mod ymmreg1 r/m
VADDSD — Add Scalar Double-Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:58:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:58:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:58:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5 r_xmmreglo2 011:58:mod xmmreg1 r/m
VANDPD — Bitwise Logical AND of Packed Double-Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:54:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:54:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:54:11 xmmreg1 xmmreglo3
	1

Instruction and Format	Encoding
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:54:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:54:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:54:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:54:11 ymmreg1 ymmreglo3
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:54:mod ymmreg1 r/m
VANDNPD — Bitwise Logical AND NOT of Packed Double- Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:55:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:55:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:55:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:55:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:55:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:55:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:55:11 ymmreg1 ymmreglo3
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:55:mod ymmreg1 r/m
VCMPPD — Compare Packed Double-Precision Floating- Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:C2:11 xmmreg1 xmmreg3: imm
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:C2:mod xmmreg1 r/m: imm
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:C2:11 xmmreg1 xmmreglo3: imm
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:C2:mod xmmreg1 r/m: imm
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:C2:11 ymmreg1 ymmreg3: imm
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:C2:mod ymmreg1 r/m: imm
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:C2:11 ymmreg1 ymmreglo3: imm
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:C2:mod ymmreg1 r/m: imm
VCMPSD — Compare Scalar Double-Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:C2:11 xmmreg1 xmmreg3: imm
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:C2:mod xmmreg1 r/m: imm
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:C2:11 xmmreg1 xmmreglo3: imm
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:C2:mod xmmreg1 r/m: imm
VCOMISD — Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 001:2F:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 001:2F:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 001:2F:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 001:2F:mod xmmreg1 r/m
VCVTDQ2PD— Convert Packed Dword Integers to Packed	
Double-Precision FP Values	
Double-Precision FP Values xmmreg2 to xmmreg1	C4: rxb0_1: w_F 010:E6:11 xmmreg1 xmmreg2

Instruction and Format	Encoding
xmmreglo to xmmreg1	C5: r_F 010:E6:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 010:E6:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 110:E6:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 110:E6:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 110:E6:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 110:E6:mod ymmreg1 r/m
VCVTDQ2PS— Convert Packed Dword Integers to Packed Single-Precision FP Values	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 000:5B:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 000:5B:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 000:5B:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 000:5B:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 100:5B:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 100:5B:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 100:5B:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 100:5B:mod ymmreg1 r/m
VCVTPD2DQ— Convert Packed Double-Precision FP Values to Packed Dword Integers	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 011:E6:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 011:E6:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 011:E6:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 011:E6:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 111:E6:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 111:E6:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 111:E6:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 111:E6:mod ymmreg1 r/m
VCVTPD2PS— Convert Packed Double-Precision FP Values to Packed Single-Precision FP Values	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 001:5A:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 001:5A:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 001:5A:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 001:5A:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 101:5A:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 101:5A:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 101:5A:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 101:5A:mod ymmreg1 r/m
VCVTPS2DQ— Convert Packed Single-Precision FP Values to Packed Dword Integers	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 001:5B:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 001:5B:mod xmmreg1 r/m

nstruction and Format	Encoding
xmmreglo to xmmreg1	C5: r_F 001:5B:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 001:5B:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 101:5B:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 101:5B:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 101:5B:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 101:5B:mod ymmreg1 r/m
/CVTPS2PD— Convert Packed Single-Precision FP Values o Packed Double-Precision FP Values	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 000:5A:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 000:5A:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 000:5A:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 000:5A:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 100:5A:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 100:5A:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 100:5A:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 100:5A:mod ymmreg1 r/m
/CVTSD2SI— Convert Scalar Double-Precision FP Value to nteger	
xmmreg1 to reg32	C4: rxb0_1: 0_F 011:2D:11 reg xmmreg1
mem to reg32	C4: rxb0_1: 0_F 011:2D:mod reg r/m
xmmreglo to reg32	C5: r_F 011:2D:11 reg xmmreglo
mem to reg32	C5: r_F 011:2D:mod reg r/m
ymmreg1 to reg64	C4: rxb0_1: 1_F 111:2D:11 reg ymmreg1
mem to reg64	C4: rxb0_1: 1_F 111:2D:mod reg r/m
/CVTSD2SS — Convert Scalar Double-Precision FP Value to Scalar Single-Precision FP Value	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:5A:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:5A:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:5A:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:5A:mod xmmreg1 r/m
/CVTSI2SD— Convert Dword Integer to Scalar Double- Precision FP Value	
xmmreg2 with reg to xmmreg1	C4: rxb0_1: 0 xmmreg2 011:2A:11 xmmreg1 reg
xmmreg2 with mem to xmmreg1	C4: rxb0_1: 0 xmmreg2 011:2A:mod xmmreg1 r/m
xmmreglo2 with reglo to xmmreg1	C5: r_xmmreglo2 011:2A:11 xmmreg1 reglo
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:2A:mod xmmreg1 r/m
ymmreg2 with reg to ymmreg1	C4: rxb0_1: 1 ymmreg2 111:2A:11 ymmreg1 reg
ymmreg2 with mem to ymmreg1	64 10 11 211120 1 1 1
/CVTSS2SD — Convert Scalar Single-Precision FP Value to	C4: rxb0_1: 1 ymmreg2 111:2A:mod ymmreg1 r/m
Scalar Double-Precision FP Value	C4: rxbU_1: 1 ymmreg2 111:2A:mod ymmreg1 r/m

Instruction and Format	Encoding
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 010:5A:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 010:5A:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 010:5A:mod xmmreg1 r/m
VCVTTPD2DQ— Convert with Truncation Packed Double- Precision FP Values to Packed Dword Integers	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 001:E6:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 001:E6:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 001:E6:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 001:E6:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 101:E6:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 101:E6:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 101:E6:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 101:E6:mod ymmreg1 r/m
VCVTTPS2DQ— Convert with Truncation Packed Single- Precision FP Values to Packed Dword Integers	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 010:5B:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 010:5B:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 010:5B:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 010:5B:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 110:5B:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 110:5B:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 110:5B:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 110:5B:mod ymmreg1 r/m
VCVTTSD2SI— Convert with Truncation Scalar Double- Precision FP Value to Signed Integer	
xmmreg1 to reg32	C4: rxb0_1: 0_F 011:2C:11 reg xmmreg1
mem to reg32	C4: rxb0_1: 0_F 011:2C:mod reg r/m
xmmreglo to reg32	C5: r_F 011:2C:11 reg xmmreglo
mem to reg32	C5: r_F 011:2C:mod reg r/m
xmmreg1 to reg64	C4: rxb0_1: 1_F 011:2C:11 reg xmmreg1
mem to reg64	C4: rxb0_1: 1_F 011:2C:mod reg r/m
VDIVPD — Divide Packed Double-Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:5E:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:5E:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:5E:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:5E:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:5E:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:5E:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:5E:11 ymmreg1 ymmreglo3

Instruction and Format	Encoding
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:5E:mod ymmreg1 r/m
VDIVSD — Divide Scalar Double-Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:5E:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:5E:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:5E:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:5E:mod xmmreg1 r/m
VMASKMOVDQU— Store Selected Bytes of Double Quadword	
xmmreg1 to mem; xmmreg2 as mask	C4: rxb0_1: w_F 001:F7:11 r/m xmmreg1: xmmreg2
xmmreg1 to mem; xmmreg2 as mask	C5: r_F 001:F7:11 r/m xmmreg1: xmmreg2
VMAXPD — Return Maximum Packed Double-Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:5F:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:5F:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:5F:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:5F:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:5F:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:5F:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:5F:11 ymmreg1 ymmreglo3
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:5F:mod ymmreg1 r/m
VMAXSD — Return Maximum Scalar Double-Precision Floating-Point Value	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:5F:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:5F:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:5F:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:5F:mod xmmreg1 r/m
VMINPD — Return Minimum Packed Double-Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:5D:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:5D:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:5D:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:5D:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:5D:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:5D:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:5D:11 ymmreg1 ymmreglo3
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:5D:mod ymmreg1 r/m
VMINSD — Return Minimum Scalar Double-Precision Floating-Point Value	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:5D:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:5D:mod xmmreg1 r/m

Instruction and Format	Encoding
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:5D:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:5D:mod xmmreg1 r/m
VMOVAPD — Move Aligned Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 001:28:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 001:28:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 001:28:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 001:28:mod xmmreg1 r/m
xmmreg1 to xmmreg2	C4: rxb0_1: w_F 001:29:11 xmmreg2 xmmreg1
xmmreg1 to mem	C4: rxb0_1: w_F 001:29:mod r/m xmmreg1
xmmreg1 to xmmreglo	C5: r_F 001:29:11 xmmreglo xmmreg1
xmmreg1 to mem	C5: r_F 001:29:mod r/m xmmreg1
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 101:28:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 101:28:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 101:28:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 101:28:mod ymmreg1 r/m
ymmreg1 to ymmreg2	C4: rxb0_1: w_F 101:29:11 ymmreg2 ymmreg1
ymmreg1 to mem	C4: rxb0_1: w_F 101:29:mod r/m ymmreg1
ymmreg1 to ymmreglo	C5: r_F 101:29:11 ymmreglo ymmreg1
ymmreg1 to mem	C5: r_F 101:29:mod r/m ymmreg1
VMOVD — Move Doubleword	
reg32 to xmmreg1	C4: rxb0_1: 0_F 001:6E:11 xmmreg1 reg32
mem32 to xmmreg1	C4: rxb0_1: 0_F 001:6E:mod xmmreg1 r/m
reg32 to xmmreg1	C5: r_F 001:6E:11 xmmreg1 reg32
mem32 to xmmreg1	C5: r_F 001:6E:mod xmmreg1 r/m
xmmreg1 to reg32	C4: rxb0_1: 0_F 001:7E:11 reg32 xmmreg1
xmmreg1 to mem32	C4: rxb0_1: 0_F 001:7E:mod mem32 xmmreg1
xmmreglo to reg32	C5: r_F 001:7E:11 reg32 xmmreglo
xmmreglo to mem32	C5: r_F 001:7E:mod mem32 xmmreglo
VMOVQ — Move Quadword	
reg64 to xmmreg1	C4: rxb0_1: 1_F 001:6E:11 xmmreg1 reg64
mem64 to xmmreg1	C4: rxb0_1: 1_F 001:6E:mod xmmreg1 r/m
xmmreg1 to reg64	C4: rxb0_1: 1_F 001:7E:11 reg64 xmmreg1
xmmreg1 to mem64	C4: rxb0_1: 1_F 001:7E:mod r/m xmmreg1
VMOVDQA — Move Aligned Double Quadword	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 001:6F:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 001:6F:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 001:6F:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 001:6F:mod xmmreg1 r/m

Instruction and Format	Encoding
xmmreg1 to xmmreg2	C4: rxb0_1: w_F 001:7F:11 xmmreg2 xmmreg1
xmmreg1 to mem	C4: rxb0_1: w_F 001:7F:mod r/m xmmreg1
xmmreg1 to xmmreglo	C5: r_F 001:7F:11 xmmreglo xmmreg1
xmmreg1 to mem	C5: r_F 001:7F:mod r/m xmmreg1
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 101:6F:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 101:6F:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 101:6F:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 101:6F:mod ymmreg1 r/m
ymmreg1 to ymmreg2	C4: rxb0_1: w_F 101:7F:11 ymmreg2 ymmreg1
ymmreg1 to mem	C4: rxb0_1: w_F 101:7F:mod r/m ymmreg1
ymmreg1 to ymmreglo	C5: r_F 101:7F:11 ymmreglo ymmreg1
ymmreg1 to mem	C5: r_F 101:7F:mod r/m ymmreg1
VMOVDQU — Move Unaligned Double Quadword	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 010:6F:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 010:6F:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 010:6F:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 010:6F:mod xmmreg1 r/m
xmmreg1 to xmmreg2	C4: rxb0_1: w_F 010:7F:11 xmmreg2 xmmreg1
xmmreg1 to mem	C4: rxb0_1: w_F 010:7F:mod r/m xmmreg1
xmmreg1 to xmmreglo	C5: r_F 010:7F:11 xmmreglo xmmreg1
xmmreg1 to mem	C5: r_F 010:7F:mod r/m xmmreg1
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 110:6F:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 110:6F:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 110:6F:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 110:6F:mod ymmreg1 r/m
ymmreg1 to ymmreg2	C4: rxb0_1: w_F 110:7F:11 ymmreg2 ymmreg1
ymmreg1 to mem	C4: rxb0_1: w_F 110:7F:mod r/m ymmreg1
ymmreg1 to ymmreglo	C5: r_F 110:7F:11 ymmreglo ymmreg1
ymmreg1 to mem	C5: r_F 110:7F:mod r/m ymmreg1
VMOVHPD — Move High Packed Double-Precision Floating- Point Value	
xmmreg1 and mem to xmmreg2	C4: rxb0_1: w xmmreg1 001:16:11 xmmreg2 r/m
xmmreg1 and mem to xmmreglo2	C5: r_xmmreg1 001:16:11 xmmreglo2 r/m
xmmreg1 to mem	C4: rxb0_1: w_F 001:17:mod r/m xmmreg1
xmmreglo to mem	C5: r_F 001:17:mod r/m xmmreglo
VMOVLPD — Move Low Packed Double-Precision Floating- Point Value	
xmmreg1 and mem to xmmreg2	C4: rxb0_1: w xmmreg1 001:12:11 xmmreg2 r/m
xmmreg1 and mem to xmmreglo2	C5: r_xmmreg1 001:12:11 xmmreglo2 r/m
xmmreg1 to mem	C4: rxb0_1: w_F 001:13:mod r/m xmmreg1

Instruction and Format	Encoding
xmmreglo to mem	C5: r_F 001:13:mod r/m xmmreglo
VMOVMSKPD — Extract Packed Double-Precision Floating- Point Sign Mask	
xmmreg2 to reg	C4: rxb0_1: w_F 001:50:11 reg xmmreg1
xmmreglo to reg	C5: r_F 001:50:11 reg xmmreglo
ymmreg2 to reg	C4: rxb0_1: w_F 101:50:11 reg ymmreg1
ymmreglo to reg	C5: r_F 101:50:11 reg ymmreglo
VMOVNTDQ — Store Double Quadword Using Non-Temporal Hint	
xmmreg1 to mem	C4: rxb0_1: w_F 001:E7:11 r/m xmmreg1
xmmreglo to mem	C5: r_F 001:E7:11 r/m xmmreglo
ymmreg1 to mem	C4: rxb0_1: w_F 101:E7:11 r/m ymmreg1
ymmreglo to mem	C5: r_F 101:E7:11 r/m ymmreglo
VMOVNTPD — Store Packed Double-Precision Floating- Point Values Using Non-Temporal Hint	
xmmreg1 to mem	C4: rxb0_1: w_F 001:2B:11 r/m xmmreg1
xmmreglo to mem	C5: r_F 001:2B:11 r/m xmmreglo
ymmreg1 to mem	C4: rxb0_1: w_F 101:2B:11r/m ymmreg1
ymmreglo to mem	C5: r_F 101:2B:11r/m ymmreglo
VMOVSD — Move Scalar Double-Precision Floating-Point Value	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:10:11 xmmreg1 xmmreg3
mem to xmmreg1	C4: rxb0_1: w_F 011:10:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:10:11 xmmreg1 xmmreglo3
mem to xmmreg1	C5: r_F 011:10:mod xmmreg1 r/m
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:11:11 xmmreg1 xmmreg3
xmmreg1 to mem	C4: rxb0_1: w_F 011:11:mod r/m xmmreg1
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:11:11 xmmreg1 xmmreglo3
xmmreglo to mem	C5: r_F 011:11:mod r/m xmmreglo
VMOVUPD — Move Unaligned Packed Double-Precision Floating-Point Values	
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 001:10:11 xmmreg1 xmmreg2
mem to xmmreg1	C4: rxb0_1: w_F 001:10:mod xmmreg1 r/m
xmmreglo to xmmreg1	C5: r_F 001:10:11 xmmreg1 xmmreglo
mem to xmmreg1	C5: r_F 001:10:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 101:10:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 101:10:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 101:10:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 101:10:mod ymmreg1 r/m
xmmreg1 to xmmreg2	C4: rxb0_1: w_F 001:11:11 xmmreg2 xmmreg1
xmmreg1 to mem	C4: rxb0_1: w_F 001:11:mod r/m xmmreg1

Instruction and Format	Encoding
xmmreg1 to xmmreglo	C5: r_F 001:11:11 xmmreglo xmmreg1
xmmreg1 to mem	C5: r_F 001:11:mod r/m xmmreg1
ymmreg1 to ymmreg2	C4: rxb0_1: w_F 101:11:11 ymmreg2 ymmreg1
ymmreg1 to mem	C4: rxb0_1: w_F 101:11:mod r/m ymmreg1
ymmreg1 to ymmreglo	C5: r_F 101:11:11 ymmreglo ymmreg1
ymmreg1 to mem	C5: r_F 101:11:mod r/m ymmreg1
VMULPD — Multiply Packed Double-Precision Floating- Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:59:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:59:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:59:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:59:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:59:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:59:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:59:11 ymmreg1 ymmreglo3
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:59:mod ymmreg1 r/m
VMULSD — Multiply Scalar Double-Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:59:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:59:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:59:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:59:mod xmmreg1 r/m
VORPD — Bitwise Logical OR of Double-Precision Floating- Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:56:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:56:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:56:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:56:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:56:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:56:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:56:11 ymmreg1 ymmreglo3
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:56:mod ymmreg1 r/m
VPACKSSWB— Pack with Signed Saturation	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:63:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:63:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:63:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:63:mod xmmreg1 r/m
VPACKSSDW— Pack with Signed Saturation	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:6B:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:6B:mod xmmreg1 r/m

Instruction and Format	Encoding
Instruction and Format	Encoding
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:6B:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:6B:mod xmmreg1 r/m
VPACKUSWB— Pack with Unsigned Saturation	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:67:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:67:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:67:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:67:mod xmmreg1 r/m
VPADDB — Add Packed Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:FC:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:FC:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:FC:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:FC:mod xmmreg1 r/m
VPADDW — Add Packed Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:FD:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:FD:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:FD:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:FD:mod xmmreg1 r/m
VPADDD — Add Packed Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:FE:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:FE:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:FE:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:FE:mod xmmreg1 r/m
VPADDQ — Add Packed Quadword Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:D4:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:D4:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:D4:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:D4:mod xmmreg1 r/m
VPADDSB — Add Packed Signed Integers with Signed Saturation	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:EC:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:EC:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:EC:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:EC:mod xmmreg1 r/m
VPADDSW — Add Packed Signed Integers with Signed Saturation	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:ED:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:ED:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:ED:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:ED:mod xmmreg1 r/m
Jg.	1 – 33

Instruction and Format	Encoding
VPADDUSB — Add Packed Unsigned Integers with Unsigned Saturation	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:DC:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:DC:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:DC:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:DC:mod xmmreg1 r/m
VPADDUSW — Add Packed Unsigned Integers with Unsigned Saturation	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:DD:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:DD:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:DD:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:DD:mod xmmreg1 r/m
VPAND — Logical AND	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:DB:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:DB:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:DB:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:DB:mod xmmreg1 r/m
VPANDN — Logical AND NOT	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:DF:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:DF:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:DF:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:DF:mod xmmreg1 r/m
VPAVGB — Average Packed Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:E0:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:E0:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:E0:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:E0:mod xmmreg1 r/m
VPAVGW — Average Packed Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:E3:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:E3:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:E3:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:E3:mod xmmreg1 r/m
VPCMPEQB — Compare Packed Data for Equal	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:74:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:74:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:74:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:74:mod xmmreg1 r/m
VPCMPEQW — Compare Packed Data for Equal	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:75:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:75:mod xmmreg1 r/m

Instruction and Format	Encoding
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:75:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:75:mod xmmreg1 r/m
VPCMPEQD — Compare Packed Data for Equal	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:76:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:76:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:76:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:76:mod xmmreg1 r/m
VPCMPGTB — Compare Packed Signed Integers for Greater Than	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:64:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:64:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:64:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:64:mod xmmreg1 r/m
VPCMPGTW — Compare Packed Signed Integers for Greater Than	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:65:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:65:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:65:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:65:mod xmmreg1 r/m
VPCMPGTD — Compare Packed Signed Integers for Greater Than	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:66:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:66:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:66:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:66:mod xmmreg1 r/m
VPEXTRW — Extract Word	
xmmreg1 to reg using imm	C4: rxb0_1: 0_F 001:C5:11 reg xmmreg1: imm
xmmreg1 to reg using imm	C5: r_F 001:C5:11 reg xmmreg1: imm
VPINSRW — Insert Word	
xmmreg2 with reg to xmmreg1	C4: rxb0_1: 0 xmmreg2 001:C4:11 xmmreg1 reg: imm
xmmreg2 with mem to xmmreg1	C4: rxb0_1: 0 xmmreg2 001:C4:mod xmmreg1 r/m: imm
xmmreglo2 with reglo to xmmreg1	C5: r_xmmreglo2 001:C4:11 xmmreg1 reglo: imm
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:C4:mod xmmreg1 r/m: imm
VPMADDWD — Multiply and Add Packed Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:F5:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:F5:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:F5:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:F5:mod xmmreg1 r/m
VPMAXSW — Maximum of Packed Signed Word Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:EE:11 xmmreg1 xmmreg3
	1

Instruction and Format	Encoding
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:EE:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:EE:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:EE:mod xmmreg1 r/m
VPMAXUB — Maximum of Packed Unsigned Byte Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:DE:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:DE:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:DE:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:DE:mod xmmreg1 r/m
VPMINSW — Minimum of Packed Signed Word Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:EA:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:EA:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:EA:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:EA:mod xmmreg1 r/m
VPMINUB — Minimum of Packed Unsigned Byte Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:DA:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:DA:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:DA:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:DA:mod xmmreg1 r/m
VPMOVMSKB — Move Byte Mask	
xmmreg1 to reg	C4: rxb0_1: w_F 001:D7:11 reg xmmreg1
xmmreg1 to reg	C5: r_F 001:D7:11 reg xmmreg1
VPMULHUW — Multiply Packed Unsigned Integers and Store High Result	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:E4:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:E4:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:E4:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:E4:mod xmmreg1 r/m
VPMULHW — Multiply Packed Signed Integers and Store High Result	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:E5:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:E5:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:E5:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:E5:mod xmmreg1 r/m
VPMULLW — Multiply Packed Signed Integers and Store Low Result	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:D5:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:D5:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:D5:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:D5:mod xmmreg1 r/m

VPMULDQ — Multiply Packed Unsigned Doubleword Integers xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:11 xmmreg1 xmmreg3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F4:11 xmmreg1 xmmreg03 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F4:11 xmmreg1 xmmreg03 xmmreglo2 with mem to xmmreg1 C6: r_xmmreglo2 001:F4:mod xmmreg1 r/m VPOR — Bittvise Logical OR xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:E8:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreg2 001:E8:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreg2 001:E8:mod xmmreg1 r/m VPSADBW — Compute Sum of Absolute Differences xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreg1o2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreg1o2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreg1o2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreg1o2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreg1o2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm VPSHUFHW — Shuffle Packed High Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C6: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C7: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C6: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm xmmreg0 to xmmreg1 using imm C7: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm C7: rxb0_1: w_F 010:70:11 xmmreg	Instruction and Format	Encoding
xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 c01:F4:11 xmmreg1 xmmreg3 xmmreg0e with mem to xmmreg1 C4: rxb0_1: w xmmreg2 c01:F4:mod xmmreg1 r/m xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 c01:F4:11 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 c01:F4:mod xmmreg1 r/m VPOR — Bitwise Logical OR C4: rxb0_1: w xmmreg2 c01:E8:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 c01:E8:mod xmmreg1 r/m xmmreg1c2 with xmmreg1 xmmreg1 C5: r_xmmreglo2 c01:E8:mod xmmreg1 r/m VPSADBW — Compute Sum of Absolute Differences xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 c01:F6:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 c01:F6:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C5: r_xmmreglo2 c01:F6:11 xmmreg1 xmmreg1 xmmreg3 xmmreg1c2 with xmmreg3 to xmmreg1 C5: r_xmmreglo2 c01:F6:11 xmmreg1 xmmreg1 xmmreg1 xmmreg1c2 with xmmreg1 xmmreg1 C5: r_xmmreglo2 c01:F6:11 xmmreg1 xmmreg2 xmmreg1 xmmreg2 with xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2 xmmreg2 xmmreg1 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmr		
xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F4:mod xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F4:mod xmmreg1 r/m VPOR—Bitwise Logical OR C5: r_xmmreglo2 vith mem to xmmreg1 r/m xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:mod xmmreg1 r/m xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:mod xmmreg1 r/m xmmreglo2 with xmmreg3 to xmmreg1 C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m ymmreglo2 with xmmreg3 to xmmreg1 C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m ymmreg1o2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:mod xmmreg1 r/m xmmreg1o2 with xmmreg3 to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m xmmreg1o2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m ymmreg1o2 with mem to xmmreg1 C5: r_xmmreg1o2 001:F6:mod xmmreg1 r/m ymmreg1o2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m ymmreg1o2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m ymmreg1o2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m ymmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1		
xmmreglo2 with xmmreglo3 to xmmreg1 Xmmreglo2 with xmmreg1		<u> </u>
VPOR — Bitwise Logical OR C4: rxb0_1: w xmmreg2 vith xmmreg3 to xmmreg1 C5: r_xmmreg1c2 vith xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 vith xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 vith xmmreg1 xmmreg3 C5: r_xmmreg1c2 vith xmmreg1c3 to xmmreg1 C5: r_xmmreg1c2 vith xmmreg1c3 to xmmreg1 C5: r_xmmreg1c2 vith xmmreg1c3 to xmmreg1 C5: r_xmmreg1c2 vith xmmreg1 xmmreg1c3 C5: r_xmmreg1c2 vith xmmreg1 xmmreg3 vith xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 vith xmmreg1 xmmreg3 vith xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 vith xmmreg1 xmmreg3 vith xmmreg1 vith xmmreg1 C5: r_xmmreg1c2 vith xmmreg1 vith xmmreg	<u> </u>	
VPOR — Bitwise Logical OR xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C5: r_xmmreglo2 vith xmmreg1 xmmreg1 xmmreglo2 with xmmreg3 to xmmreg1 C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m VPSADBW — Compute Sum of Absolute Differences xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreglo2 vith xmmreg1 xmmreg1 xmmreg1o2 with xmmreg1 to xmmreg1 xmmreg2 to xmmreg1 wing imm C4: rxb0_1: w_f 001:70:11 xmmreg1 xmmreg2: imm xmmreg0 to xmmreg1 using imm C4: rxb0_1: w_f 001:70:11 xmmreg1 xmmreg2: imm xmmreg1 using imm C5: r_f 001:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg1 to xmmreg1 using imm C5: r_f 001:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_f 001:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg0 to xmmreg1 using imm C4: rxb0_1: w_f 001:70:11 xmmreg1 xmmreg2: imm xmmreg1 to xmmreg1 using imm C4: rxb0_1: w_f 010:70:11 xmmreg1 xmmreg2: imm xmmreg0 to xmmreg1 using imm C5: r_f 010:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg0 to xmmreg1 using imm C5: r_f 010:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg0 to xmmreg1 using imm C5: r_f 010:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg1 to xmmreg1 using imm C5: r_f 010:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg1 to xmmreg1 using imm C5: r_f 010:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg1 to xmmreg1 using imm C5: r_f 010:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_f 011:70:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_f 010:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_f 010:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_f 010:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_f 010:70:11 xmmreg1 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_f 010:70:11 xmmreg1 xmmre	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:F4:11 xmmreg1 xmmreglo3
xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EB:mod xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m VPSADBW — Compute Sum of Absolute Differences C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:mod xmmreg1 r/m xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m xmmreg1 ving imm C4: rxb0_1: w_F 001:70:T1 xmmreg1 xmmreg1 r/m xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:Mod xmmreg1 r/m: imm xmmreg2 to xmmreg1 using imm C5: r_F 001:70:T1 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm xmmreg2 to	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:F4:mod xmmreg1 r/m
xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:EB:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m VPSADBW — Compute Sum of Absolute Differences xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg102 with mem to xmmreg1 xmmreg2 to xmmreg1 using imm xmmreg1 to xmmreg1 using imm xmmreg2 to xmmreg1 using imm xmmreg1 to xmmreg1 using imm xmmreg1 to xmmreg1 using imm xmmreg2 to xmmreg1 using imm xmmreg1 to xmmreg1 using imm xmmreg2 to xmmr	VPOR — Bitwise Logical OR	
xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EB:I11 xmmreg1 xmmreglo3 xmmreg2 with mem to xmmreg1 C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m VPSADBW — Compute Sum of Absolute Differences xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 001:F6:I11 xmmreg1 xmmreg3 xmmreglo2 with xmmreg1 c5: r_xmmreglo2 001:F6:I11 xmmreg1 xmmreg1 xmmreglo2 with xmmreg1 c5: r_xmmreglo2 001:F6:I11 xmmreg1 xmmreg1 xmmreglo2 with xmmreg1 xmmreg1 c5: r_xmmreglo2 001:F6:I11 xmmreg1 xmmreg1 xmmreglo2 with xmmreg1 xmmreg1 xmmreglo2 with xmmreg1 xmmreg1 xmmreglo2 with xmmreg1 xmmreg1 xmmreg1 using imm c4: rxb0_1: w_F 001:70:I11 xmmreg1 xmmreg2: imm xmmreg1 using imm c5: r_F 001:70:I11 xmmreg1 r/m: imm VPSHUFHW — Shuffle Packed High Words xmmreg2 to xmmreg1 using imm c4: rxb0_1: w_F 010:70:I11 xmmreg1 r/m: imm xmmreg1 using imm c4: rxb0_1: w_F 010:70:I11 xmmreg1 r/m: imm xmmreg1 using imm c4: rxb0_1: w_F 010:70:I11 xmmreg1 r/m: imm c5: r_F 010:70:I11 xmmreg1 r/m: imm c5: r_F 010:70:I11 xmmreg1 r/m: imm c7: rxb0_1: w_F 010:70:I11 xmmreg1 r/m: imm c7: rxb0_1: w_F 010:70:I11 xmmreg1 r/m: imm c8: r_F 010:70:I11 xmmreg1 r/m: imm c9: ryshUFHW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm c4: rxb0_1: w_F 010:70:I11 xmmreg1 xmmreg2: imm xmmreg0 to xmmreg1 using imm c4: rxb0_1: w_F 011:70:I11 xmmreg1 xmmreg2: imm xmmreg1 to xmmreg1 using imm c4: rxb0_1: w_F 011:70:I11 xmmreg1 xmmreg2: imm xmmreg1 to xmmreg1 using imm c4: rxb0_1: w_F 011:70:I11 xmmreg1 xmmreg2: imm xmmreg0 to xmmreg1 using imm c5: r_F 011:70:I11 xmmreg1 xmmreg0: imm c7: r_F 011:70:I11 xmmreg1 xmmreg0: imm xmmreg0 to xmmreg1 using imm c6: rxb0_1: w_F 011:73:I11 xmmreg1 xmmreg2: imm xmmreg0 to xmmreg1 using imm c7: r_F 011:70:I11 xmmreg1 xmmreg0: imm c8: r_F 011:70:I11 xmmreg1 xmmreg0: imm c8: r_F 011:70:I11 xmmreg1 xmmreg0: imm c8: r_F 011:70:I11 xmmreg1 xmmreg0: imm c9: r_F 011:70:I11 xmmreg1 xmmreg0: imm c9: r_F 011:70:I11 xmmreg1 xmmreg0: imm c9:	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:EB:11 xmmreg1 xmmreg3
xmmreglo2 with mem to xmmreg1 VPSADBW — Compute Sum of Absolute Differences xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3 xmmreglo2 with mmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F6:11 xmmreg1 xmmreg1o3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:11 xmmreg1 xmmreg1o3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m VPSHUFD — Shuffle Packed Doublewords xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreg1o: imm VPSHUFHW — Shuffle Packed High Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 r/m: imm VPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg1o: imm C6: r_F 010:70:11 xmmreg1 xmmreg1o: imm C7: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm C7: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm C7: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm C7: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg0: imm C7: rxb0_	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:EB:mod xmmreg1 r/m
VPSADBW — Compute Sum of Absolute Differences xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreg1 xmmreg1 xmmreglo2 with xmmreg1 xmmreg1 xmmreg2 to xmmreg1 using imm xmmreg2 to xmmreg1 using imm xmmreg2 to xm	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:EB:11 xmmreg1 xmmreglo3
xmmreg2 with xmmreg3 to xmmreg1	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:EB:mod xmmreg1 r/m
xmmreg2 with mem to xmmreg1	VPSADBW — Compute Sum of Absolute Differences	
xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m VPSHUFD — Shuffle Packed Doublewords xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreg1 imm xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreg1 imm xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreg1 imm VPSHUFHW — Shuffle Packed High Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm xmmreg1 to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg1 r/m: imm VPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm VPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm xmmreg0 to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm xmmreg1 to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:F6:11 xmmreg1 xmmreg3
xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m VPSHUFD — Shuffle Packed Doublewords C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:mod xmmreg1 r/m: imm xmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm vmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm vmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm vmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg1: imm vmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm vmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm vmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm vmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreg1: imm vmmreg2 to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm vmmreg2 to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm vmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm vmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg1: imm vmmreg2 with xmmreg3 to xmmreg1	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:F6:mod xmmreg1 r/m
VPSHUFD — Shuffle Packed Doublewords xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 001:70:mod xmmreg1 r/m: imm xmmreg1 to xmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm VPSHUFHW — Shuffle Packed High Words C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm xmmreg1 to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg1o: imm vmmreg2 to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm VPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm xmmreg1 to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 r/m: imm VPSLLQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C5: r_xmmreg1o2 001:F1:11 xmmreg1 xmmreg1	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:F6:11 xmmreg1 xmmreglo3
xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreg1: imm xmmreglo to xmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm VPSHUFHW — Shuffle Packed High Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg1: imm xmmreglo to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg0: imm vPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm c5: r_F 010:70:11 xmmreg1 xmmreg1: imm c7: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm c8: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm c9: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm c7: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg1: imm c8: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg0: imm c9: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg0: imm c7: rxb0_1: w_F 01:70:11 xmmreg1 xmmreg	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:F6:mod xmmreg1 r/m
mem to xmmreg1 using imm C4: rxb0_1: w_F 001:70:mod xmmreg1 r/m: imm xmmreglo to xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreglo: imm mem to xmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm VPSHUFHW — Shuffle Packed High Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg1 r/m: imm xmmreglo to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreglo: imm mem to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm VPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 r/m: imm xmmreglo to xmmreg1 using imm C5: r_F 01:70:11 xmmreg1 xmmreg1o: imm C5: r_F 01:70:11 xmmreg1 xmmreg2: imm C5: r_F 01:70:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C5: r_F 01:73:11 xmmreg1 xmmreg2: imm xmmreg1o to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm VPSLUD — Shift Packed Data Left Logical xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg1o3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg1o3 to xmmreg1 C5: r_xmmreg1o2 001:F1:11 xmmreg1 xmmreg1o3	VPSHUFD — Shuffle Packed Doublewords	
xmmreglo to xmmreg1 using imm C5: r_F 001:70:11 xmmreg1 xmmreglo: imm C5: r_F 001:70:mod xmmreg1 r/m: imm VPSHUFHW — Shuffle Packed High Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm xmmreglo to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreglo: imm mem to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreglo: imm WPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 r/m: imm xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreg0: imm c6: r_F 011:70:mod xmmreg1 r/m: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 xmmreg0: imm C5: r_F 011:70:mod xmmreg1 xmmreg0: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg0 to xmmreg1 using imm C5: r_F 011:73:11 xmmreg1 xmmreg1: imm VPSLLDQ — Shift Packed Data Left Logical xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg03 to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreg1o3	xmmreg2 to xmmreg1 using imm	C4: rxb0_1: w_F 001:70:11 xmmreg1 xmmreg2: imm
mem to xmmreg1 using imm C5: r_F 001:70:mod xmmreg1 r/m: imm VPSHUFHW — Shuffle Packed High Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg1: imm xmmreglo to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreglo: imm wem to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm VPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm c5: r_F 011:70:mod xmmreg1 r/m: imm VPSLLQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm C5: r_F 001:73:11 xmmreg1 xmmreg1 xmmreg2: imm C7: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm C5: r_F 001:73:11 xmmreg1 xmmreg0: imm C5: r_F 001:73:11 xmmreg1 xmmreg1: imm VPSLLW — Shift Packed Data Left Logical xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg1 C5: r_xmmreg1o2 001:F1:11 xmmreg1 xmmreg1o3	mem to xmmreg1 using imm	C4: rxb0_1: w_F 001:70:mod xmmreg1 r/m: imm
VPSHUFHW — Shuffle Packed High Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg1: imm xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreg1: imm wem to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm VPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm xmmreg1 to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreg0: imm c5: r_F 011:70:mod xmmreg1 r/m: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreg2: imm C5: r_F 011:70:11 xmmreg1 xmmreg0: imm VPSLLDQ — Shift Packed Data Left Logical xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 r/m xmmreg0 with xmmreg103 to xmmreg1 C5: r_xmmreg102 001:F1:11 xmmreg1 xmmreg1 r/m xmmreg102 with xmmreg103 to xmmreg1	xmmreglo to xmmreg1 using imm	C5: r_F 001:70:11 xmmreg1 xmmreglo: imm
xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm c4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm c5: r_F 010:70:11 xmmreg1 xmmreg1o: imm C5: r_F 010:70:11 xmmreg1 xmmreg1o: imm C5: r_F 010:70:mod xmmreg1 r/m: imm VPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreg1o: imm c5: r_F 011:70:11 xmmreg1 xmmreg1o: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm c5: r_F 001:73:11 xmmreg1 xmmreg2: imm c7: r_F 001:73:11 xmmreg1 xmmreg1: imm c7: r_F 001:73:11 xmmreg1 xmmreg2: imm c7: r_F 001:73:11 xmmreg1 xmmreg2: imm c7: r_F 001:73:11 xmmreg1 xmmreg1: imm c7: r_F 001:73:11 xmmreg1 xmmreg2: imm c7: r_F 001:73:11 xmmreg1 xmmreg1: imm c7: r_F 001:73:11 xmmreg1: imm c7: r_F 00	mem to xmmreg1 using imm	C5: r_F 001:70:mod xmmreg1 r/m: imm
mem to xmmreg1 using imm xmmreglo to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreglo: imm mem to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm VPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm c5: r_F 011:70:mod xmmreg1 r/m: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm VPSLLDQ — Shift Packed Data Left Logical xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:mod xmmreg1 r/m xmmreg2 with xmmreg1o3 to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreg3	VPSHUFHW — Shuffle Packed High Words	
xmmreglo to xmmreg1 using imm C5: r_F 010:70:11 xmmreg1 xmmreglo: imm C5: r_F 010:70:mod xmmreg1 r/m: imm VPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm mem to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm xmmreglo to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg1: imm VPSLLW — Shift Packed Data Left Logical xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:mod xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3	xmmreg2 to xmmreg1 using imm	C4: rxb0_1: w_F 010:70:11 xmmreg1 xmmreg2: imm
mem to xmmreg1 using imm C5: r_F 010:70:mod xmmreg1 r/m: imm VPSHUFLW — Shuffle Packed Low Words xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 r/m: imm c5: r_F 011:70:11 xmmreg1 r/m: imm C5: r_F 011:70:11 xmmreg1 r/m: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm C5: r_F 011:70:mod xmmreg1 r/m: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm C5: r_F 001:73:11 xmmreg1 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg103 to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreg1o3	mem to xmmreg1 using imm	C4: rxb0_1: w_F 010:70:mod xmmreg1 r/m: imm
VPSHUFLW — Shuffle Packed Low Words C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm mem to xmmreg1 using imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm vPSLLDQ — Shift Double Quadword Left Logical C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm xmmreglo to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg1o: imm VPSLLW — Shift Packed Data Left Logical C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 r/m xmmreg2 with xmmreg1o3 to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreg1o3	xmmreglo to xmmreg1 using imm	C5: r_F 010:70:11 xmmreg1 xmmreglo: imm
xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm C5: r_F 011:70:11 xmmreg1 r/m: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm xmmreglo to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm VPSLLW — Shift Packed Data Left Logical xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg1 to xmmreg1 C5: r_xmmreg102 001:F1:11 xmmreg1 xmmreg1 C5: r_xmmreg102 001:F1:11 xmmreg1 xmmreg1	mem to xmmreg1 using imm	C5: r_F 010:70:mod xmmreg1 r/m: imm
mem to xmmreg1 using imm xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm mem to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm xmmreglo to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg1 imm VPSLLW — Shift Packed Data Left Logical xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1	VPSHUFLW — Shuffle Packed Low Words	
xmmreglo to xmmreg1 using imm C5: r_F 011:70:11 xmmreg1 xmmreglo: imm C5: r_F 011:70:mod xmmreg1 r/m: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm xmmreglo to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg0: imm VPSLLW — Shift Packed Data Left Logical xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreg3 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3	xmmreg2 to xmmreg1 using imm	C4: rxb0_1: w_F 011:70:11 xmmreg1 xmmreg2: imm
mem to xmmreg1 using imm C5: r_F 011:70:mod xmmreg1 r/m: imm VPSLLDQ — Shift Double Quadword Left Logical xmmreg2 to xmmreg1 using imm xmmreglo to xmmreg1 using imm C5: r_F 001:73:11 xmmreg1 xmmreg2: imm C5: r_F 001:73:11 xmmreg1 xmmreg1o: imm VPSLLW — Shift Packed Data Left Logical xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg1 c4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg1 c5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreg1o3	mem to xmmreg1 using imm	C4: rxb0_1: w_F 011:70:mod xmmreg1 r/m: imm
VPSLLDQ — Shift Double Quadword Left LogicalC4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: immxmmreg2 to xmmreg1 using immC5: r_F 001:73:11 xmmreg1 xmmreg0: immVPSLLW — Shift Packed Data Left LogicalC4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3xmmreg2 with xmmreg3 to xmmreg1C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 r/mxmmreg2 with xmmreglo3 to xmmreg1C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreg1	xmmreglo to xmmreg1 using imm	C5: r_F 011:70:11 xmmreg1 xmmreglo: imm
xmmreg2 to xmmreg1 using immC4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: immxmmreglo to xmmreg1 using immC5: r_F 001:73:11 xmmreg1 xmmreglo: immVPSLLW — Shift Packed Data Left LogicalC4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3xmmreg2 with xmmreg3 to xmmreg1C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 r/mxmmreglo2 with xmmreglo3 to xmmreg1C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3	mem to xmmreg1 using imm	C5: r_F 011:70:mod xmmreg1 r/m: imm
xmmreglo to xmmreg1 using immC5: r_F 001:73:11 xmmreg1 xmmreglo: immVPSLLW — Shift Packed Data Left LogicalC4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3xmmreg2 with xmmreg3 to xmmreg1C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 r/mxmmreglo2 with xmmreglo3 to xmmreg1C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3	VPSLLDQ — Shift Double Quadword Left Logical	
VPSLLW — Shift Packed Data Left Logical xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:F1:mod xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3	xmmreg2 to xmmreg1 using imm	C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm
xmmreg2 with xmmreg3 to xmmreg1C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3xmmreg2 with mem to xmmreg1C4: rxb0_1: w xmmreg2 001:F1:mod xmmreg1 r/mxmmreglo2 with xmmreglo3 to xmmreg1C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3	xmmreglo to xmmreg1 using imm	C5: r_F 001:73:11 xmmreg1 xmmreglo: imm
xmmreg2 with mem to xmmreg1C4: rxb0_1: w xmmreg2 001:F1:mod xmmreg1 r/mxmmreglo2 with xmmreglo3 to xmmreg1C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3	VPSLLW — Shift Packed Data Left Logical	
xmmreglo2 with xmmreglo3 to xmmreg1	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:F1:11 xmmreg1 xmmreg3
	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:F1:mod xmmreg1 r/m
xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:F1:mod xmmreg1 r/m	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:F1:11 xmmreg1 xmmreglo3
	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:F1:mod xmmreg1 r/m

Instruction and Format	Encoding
xmmreg2 to xmmreg1 using imm8	C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm
xmmreglo to xmmreg1 using imm8	C5: r_F 001:71:11 xmmreg1 xmmreglo: imm
VPSLLD — Shift Packed Data Left Logical	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:F2:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:F2:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:F2:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:F2:mod xmmreg1 r/m
xmmreg2 to xmmreg1 using imm8	C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm
xmmreglo to xmmreg1 using imm8	C5: r_F 001:72:11 xmmreg1 xmmreglo: imm
VPSLLQ — Shift Packed Data Left Logical	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:F3:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:F3:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:F3:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:F3:mod xmmreg1 r/m
xmmreg2 to xmmreg1 using imm8	C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm
xmmreglo to xmmreg1 using imm8	C5: r_F 001:73:11 xmmreg1 xmmreglo: imm
VPSRAW — Shift Packed Data Right Arithmetic	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:E1:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:E1:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:E1:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:E1:mod xmmreg1 r/m
xmmreg2 to xmmreg1 using imm8	C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm
xmmreglo to xmmreg1 using imm8	C5: r_F 001:71:11 xmmreg1 xmmreglo: imm
VPSRAD — Shift Packed Data Right Arithmetic	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:E2:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:E2:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:E2:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:E2:mod xmmreg1 r/m
xmmreg2 to xmmreg1 using imm8	C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm
xmmreglo to xmmreg1 using imm8	C5: r_F 001:72:11 xmmreg1 xmmreglo: imm
VPSRLDQ — Shift Double Quadword Right Logical	
xmmreg2 to xmmreg1 using imm8	C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm
xmmreglo to xmmreg1 using imm8	C5: r_F 001:73:11 xmmreg1 xmmreglo: imm
VPSRLW — Shift Packed Data Right Logical	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:D1:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:D1:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:D1:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:D1:mod xmmreg1 r/m
xmmreg2 to xmmreg1 using imm8	C4: rxb0_1: w_F 001:71:11 xmmreg1 xmmreg2: imm

Instruction and Format	Encoding
xmmreglo to xmmreg1 using imm8	C5: r_F 001:71:11 xmmreg1 xmmreglo: imm
VPSRLD — Shift Packed Data Right Logical	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:D2:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:D2:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:D2:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:D2:mod xmmreg1 r/m
xmmreg2 to xmmreg1 using imm8	C4: rxb0_1: w_F 001:72:11 xmmreg1 xmmreg2: imm
xmmreglo to xmmreg1 using imm8	C5: r_F 001:72:11 xmmreg1 xmmreglo: imm
VPSRLQ — Shift Packed Data Right Logical	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:D3:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:D3:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:D3:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:D3:mod xmmreg1 r/m
xmmreg2 to xmmreg1 using imm8	C4: rxb0_1: w_F 001:73:11 xmmreg1 xmmreg2: imm
xmmreglo to xmmreg1 using imm8	C5: r_F 001:73:11 xmmreg1 xmmreglo: imm
VPSUBB — Subtract Packed Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:F8:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:F8:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:F8:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:F8:mod xmmreg1 r/m
VPSUBW — Subtract Packed Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:F9:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:F9:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:F9:11 xmmreg1 xmmreglo3
xmmrelog2 with mem to xmmreg1	C5: r_xmmreglo2 001:F9:mod xmmreg1 r/m
VPSUBD — Subtract Packed Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:FA:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:FA:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:FA:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:FA:mod xmmreg1 r/m
VPSUBQ — Subtract Packed Quadword Integers	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:FB:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:FB:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:FB:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:FB:mod xmmreg1 r/m
VPSUBSB — Subtract Packed Signed Integers with Signed Saturation	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:E8:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:E8:mod xmmreg1 r/m

Instruction and Format	Encoding
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:E8:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:E8:mod xmmreg1 r/m
VPSUBSW — Subtract Packed Signed Integers with Signed Saturation	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:E9:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:E9:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:E9:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:E9:mod xmmreg1 r/m
VPSUBUSB — Subtract Packed Unsigned Integers with Unsigned Saturation	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:D8:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:D8:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:D8:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:D8:mod xmmreg1 r/m
VPSUBUSW — Subtract Packed Unsigned Integers with Unsigned Saturation	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:D9:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:D9:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:D9:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:D9:mod xmmreg1 r/m
VPUNPCKHBW — Unpack High Data	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:68:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:68:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:68:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:68:mod xmmreg1 r/m
VPUNPCKHWD — Unpack High Data	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:69:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:69:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:69:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:69:mod xmmreg1 r/m
VPUNPCKHDQ — Unpack High Data	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:6A:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:6A:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:6A:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:6A:mod xmmreg1 r/m
VPUNPCKHQDQ — Unpack High Data	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:6D:11 xmmreg1 xmmreg3
·	
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:6D:mod xmmreg1 r/m
xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:6D:mod xmmreg1 r/m C5: r_xmmreglo2 001:6D:11 xmmreg1 xmmreglo3

VPUNPCKLBW — Unpack Low Data xmmreg2 with xmmreg3 to xmmreg1 xmmreg02 with xmmreg3 to xmmreg1 xmmreg02 with xmmreg10 to xmmreg1 xmmreg02 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:11 xmmreg1 xmmreg03 xmmreg02 with xmmreg10 to xmmreg1 C5: r_xmmreg02 001:60:mod xmmreg1 r/m VPUNPCKLWD — Unpack Low Data xmmreg02 with xmmreg3 to xmmreg1 xmmreg02 with xmmreg3 to xmmreg1 xmmreg02 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:mod xmmreg1 r/m xmmreg02 with mem to xmmreg1 xmmreg02 with mem to xmmreg1 C5: r_xmmreg02 001:61:11 xmmreg1 xmmreg03 xmmreg02 with mem to xmmreg1 C5: r_xmmreg02 001:61:11 xmmreg1 xmmreg03 xmmreg02 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:11 xmmreg1 xmmreg1 xmmreg02 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 r/m VPUNPCKLDQ — Unpack Low Data xmmreg02 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3 xmmreg02 with mem to xmmreg1 C5: r_xmmreg02 001:62:11 xmmreg1 xmmreg3 xmmreg02 with xmmreg3 to xmmreg1 C5: r_xmmreg02 001:62:11 xmmreg1 xmmreg3 xmmreg02 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3 xmmreg02 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:11 xmmreg1 xmmreg3 xmmreg02 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:65:11 xmmreg1 xmmreg3 xmmreg02 with mem to xmmreg1 C5: r_xmmreg02 001:65:11 xmmreg1 xmmreg3 xmmreg02 with mem to xmmreg1 C6: r_xmmreg02 001:65:11 xmmreg1 xmmreg3 xmmreg02 with xmmreg3 to xmmreg1 C6: r_xmmreg02 001:65:11 xmmreg1 xmmreg3 xmmreg02 with xmmreg3 to xmmreg1 C6: r_xmmreg02 001:65:11 xmmreg1 xmmreg03 xmmreg02 with xmmreg03 to xmmreg1 C6: r_xmmreg02 001:65:11 xmmreg1 xmmreg03 xmmreg02 with xmmreg03 to xmmreg1 C6: r_xmmreg02 001:65:11 xmmreg1 xmmreg03 xmmreg02 with xmmreg03 to xmmreg1 C6: r_xmmreg02 001:65:11 xmmreg1 xmmreg03 xmmreg02 with xmmreg03 to xmmreg1 C6: r_xmmreg02 001:65:11 xmmreg1 xmmreg03 xmmreg02 with xmmreg03 to xmmreg1 C6: r_xmmreg02 001:65:11 xmmreg1 xmmreg03 xmmreg02 with xmmreg03 to xmmreg1 C6: r_xmmreg02 001:6	Instruction and Format	Encoding
xmmreglo2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg3 to xmmreg1 xmmreg2 with xmm	VPUNPCKLBW — Unpack Low Data	
xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreg1	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:60:11 xmmreg1 xmmreg3
xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:60:mod xmmreg1 r/m VPUNPCKUND — Unpack Low Data C4: rxb0_1: w xmmreg2 001:61:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:61:11 xmmreg1 xmmreg1 r/m xmmreg1o2 with xmmreg1o3 to xmmreg1 C5: r_xmmreglo2 001:61:11 xmmreg1 xmmreg1o3 xmmreg1o2 with mem to xmmreg1 C5: r_xmmreglo2 001:61:11 xmmreg1 xmmreg1 r/m vPUNPCKUQ0 — Unpack Low Data C4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3 xmmreg1o2 with xmmreg1 to xmmreg1 C4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3 xmmreg1o2 with xmmreg1o3 to xmmreg1 C5: r_xmmreglo2 001:62:11 xmmreg1 xmmreg1o3 xmmreg1o2 with xmmreg1o3 to xmmreg1 C5: r_xmmreglo2 001:62:11 xmmreg1 xmmreg1o3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:11 xmmreg1 xmmreg3 xmmreg1o2 with xmmreg3 to xmmreg1 C5: r_xmmreglo2 001:60:11 xmmreg1 xmmreg1o3 xmmreg2 with xmmreg3 to xmmreg1 C5: r_xmmreglo2 001:60:11 xmmreg1 xmmreg1o3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:11 xmmreg1 xmmreg1o3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:60:11 xmmreg1 xmmreg03 xmmreg2 with xmmreg3 to xmmreg1 C	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:60:mod xmmreg1 r/m
VPUNPCKLWD — Unpack Low Data xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 001:61:11 xmmreg1 xmmreg3 xmmreg3 xmmreg2 with mem to xmmreg1 c5: r_xmmreglo2 001:61:11 xmmreg1 xmmreg1 r/m xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 001:61:11 xmmreg1 xmmreg1 r/m VPUNPCKLDQ — Unpack Low Data xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 c5: r_xmmreglo2 001:62:11 xmmreg1 xmmreg3 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 c5: r_xmmreglo2 001:62:11 xmmreg1 xmmreg3 xmmreg3 xmmreg1o2 with mem to xmmreg1 c5: r_xmmreglo2 001:62:11 xmmreg1 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 c6: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3 xmmreg3 xmmreg2 with mem to xmmreg1 c6: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 c7: rxmmreg1o2 001:62:11 xmmreg1 xmmreg3 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 c5: r_xmmreg1o2 001:62:11 xmmreg1 xmmreg3 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 c5: r_xmmreg1o2 001:65:11 xmmreg1 xmmreg1 xmmreg3 xmmreg2 wmmreg2 with mem to xmmreg1 c6: rxb0_1: w xmmreg2 001:65:11 xmmreg1 xmmreg3 xmmreg3 xmmreg2 wmmreg2 with xmmreg3 to xmmreg1 c7: rxmmreg1o2 001:65:11 xmmreg1 xmmreg3 xmmreg3 xmmreg2 xmmreg2 wmmreg3 xmmreg1 xmmreg1 c7: rxmmreg1o2 001:65:11 xmmreg1 xmmreg3 xmmreg3 xmmreg2 xmmreg2 wmmreg3 to xmmreg1 using imm8 c7: rxmmreg1o2 001:65:11 xmmreg1 xmmreg3 xmmreg3 xmmreg3 xmmreg2 wmmreg3 to xmmreg1 using imm8 c7: rxmmreg1o2 001:65:11 xmmreg1 xmmreg1 xmmreg3 xmmreg3 xmmreg2 xmmreg2 xmmreg3 to xmmreg1 using imm8 c7: rxmmreg1o2 001:65:11 xmmreg1 xmmreg1 xmmreg3 xmmreg3 xmmreg2 xmmreg2 xmmreg3 to xmmreg1 using imm8 c7: rxmmreg1o2 001:65:11 xmmreg1 xmmreg1 xmmreg3 xmmreg3 xmmreg2 xmmreg2 xmmreg3 to xmmreg1 using imm8 c7: rxmmreg1o2 001:65:11 xmmreg1 xmmreg1 xmmreg3 xmmreg3 xmmreg2 xmmreg2 xmmreg3 to xmmreg1 using imm8 c7: rxmmreg1o2 001:65:11 xmmreg1 xmmreg1 xmmreg3 xmmreg3 xmmreg2 xmmreg2 xmmreg3 to xmmreg1 using imm8 c7: rxmmreg1o2 001:65:11 xmmreg1 xmmreg3 xmmreg3	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:60:11 xmmreg1 xmmreglo3
xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg02 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg3 to xmmreg1 xmmreg02 with xmmreg3 to xmmreg1 xmmreg02 with xmmreg03 to xmmreg1 xmmreg02 with mem to xmmreg1 xmmreg02 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg02 with xmmreg3 to xmmreg1 xmmreg02 with xmmreg03 to xmmreg1 xmmreg02 with mem to xmmreg1 xmmreg02 with xmmreg03 to xmmreg1 using imm8 xmmreg02 with mem to ymmreg1 using	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:60:mod xmmreg1 r/m
xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 Xmmreglo2 with mem to xmmreg1 Xmmreglo2 with xmmreglo3 to xmmreg1 Xmmreg2 with xmmreg3 to xmmreg1 Xmmreglo2 with xmmreglo3 to xmmreg1 Xmmreglo2 with mem to xmmreg1 Xmmreg2 with xmmreg3 to xmmreg1 Xmmreg2 with xmmreg3 to xmmreg1 Xmmreg2 with xmmreg3 to xmmreg1 Xmmreg2 with mem to xmmreg1 Xmmreglo2 with xmmreg3 to xmmreg1 Xmmreglo2 with xmmreg3 to xmmreg1 Xmmreglo2 with mem to xmmreg1 Xmmreglo2 with mem to xmmreg1 Xmmreglo2 with mem to xmmreg1 Xmmreg2 with xmmreg3 to xmmreg1 Xmmreg2 with mem to xmmreg1 Xmmreg2 with xmmreg3 to xmmreg1 Xmmreg2 with mem to xmmreg1 using imm8 Xmmreg2 with xmmreg3 to ymmreg1 using imm8 Xmmreg2 with xmmreg3 to ymmreg1 using imm8 Xmmreg2 with xmmreg3 to ymmreg1 using imm8 Xmmreg2 with mem to ymmreg1 using imm8 Xmmreg02 with m	VPUNPCKLWD — Unpack Low Data	
xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreglo3 to xmmreg1 xmmreg2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreg2 with xmmreglo3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 using imm8 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with xmmreg3 to ymmreg1 using imm8 xmmreg2 with mem to xmmreg1 using imm8 xmmreg2 with mem to ymmreg1 using imm8 xmmreg2 with mem to ymmreg1 using imm8 xmmreg2 with ymmreg3 to ymmreg1 using imm8 xmmreg2 with xmmreg3 to xmmreg1 using imm	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:61:11 xmmreg1 xmmreg3
xmmreglo2 with mem to xmmreg1	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:61:mod xmmreg1 r/m
VPUNPCKLDQ — Unpack Low Data xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg102 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg102 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 c5: r_xmmreg1o2 001:6:11 xmmreg1 xmmreg1o3 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg1o2 with xmmreg3 to ymmreg1 using imm8 xmmreg1o2 with ymmreg3 to ymmreg1 using imm8 xmmreg1o2 with ymmreg3 to ymmreg1 using imm8 xmmreg1o2 with ymmreg3 to ymmreg1 using imm8 xmmreg1o2 with ymmreg1 sing imm8 xmmreg1o2 with ymmreg1o3 to ymmreg1 using imm8 xmmreg1o2 with ymmreg1o3 to ymmreg1 using imm8 xmmreg1o2 with ymmreg1 summreg1 using imm8 xmmreg1o2 with ymmreg3 to ymmreg1 using imm8 xmmreg1o2 w	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:61:11 xmmreg1 xmmreglo3
xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg1o2 with mem to xmmreg1 xmmreg1o2 with mem to xmmreg1 xmmreg1o2 with xmmreg3 to xmmreg1 xmmreg1o2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg1o2 with xmmreg1o3 to xmmreg1 using imm8 xmmreg2 with xmmreg1o3 to xmmreg1 using imm8 xmmreg1o2 with xmmreg1o3 to xmmreg1 using imm8 xmmreg1o2 with mem to xmmreg1 using imm8 xmmreg1o2 with mem to xmmreg1 using imm8 xmmreg2 with mem to xmmreg1 using imm8 xmmreg2 with mem to xmmreg1 using imm8 xmmreg1o2 with mem to xmmreg1 using imm8 xmmreg2 with mem to ymmreg1 using imm8 xmmreg1o2 with mem to ymmreg1 using imm8 xmmreg1o2 with mem to ymmreg1 using imm8 xmmreg1o2 with mem to ymmreg1 using imm8 xmmreg1o3 with mem to ymmreg1 using	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:61:mod xmmreg1 r/m
xmmreg2 with mem to xmmreg1	VPUNPCKLDQ — Unpack Low Data	
xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:62:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:62:mod xmmreg1 r/m VPUNPCKLQDQ — Unpack Low Data xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:11 xmmreg1 xmmreg3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:11 xmmreg1 xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 001:6C:mod xmmreg1 r/m VPXOR — Logical Exclusive OR xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:mod xmmreg1 r/m VPXOR — Logical Exclusive OR xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6F:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreglo2 001:6F:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreglo2 001:6F:11 xmmreg1 xmmreg3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6F:11 xmmreg1 xmmreg1 r/m VSHUFPD — Shuffle Packed Double-Precision Floating- Point Values xmmreg2 with xmmreg3 to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:6F:11 xmmreg1 xmmreg3: imm xmmreg2 with xmmreglo3 to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:6F:11 xmmreg1 r/m: imm xmmreglo2 with mem to xmmreg1 using imm8 C5: r_xmmreglo2 001:6F:11 xmmreg1 xmmreg03: imm xmmreglo2 with ymmreg3 to ymmreg1 using imm8 C5: r_xmmreglo2 001:6F:11 ymmreg1 ymmreg03: imm ymmreg2 with ymmreg3 to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:6F:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:6F:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:6F:11 ymmreg1 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:6F:11 ymmreg1 ymmreg1 r/m: imm ymmreg1 vmmreg2 with ymmreg1 using imm8 C5: r_ymmreg1 101:6F:11 ymmreg1 ymmreg1 r/m: imm ymmreg2 with mem to ymmreg1 using imm8 C6: rxb0_1: w ymmreg1 101:6F:11 ymmreg1 ymmreg3: imm C7: rxb0_1: w ymmreg1 101:6F:11 ymmreg1 ymmreg3: imm T5: r_ymmreg1 101:6F:11 ymmreg1 ymmreg1 r/m: imm VSQRTPD — Compute Square Roots of Packed Double- Precision Floating	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:62:11 xmmreg1 xmmreg3
xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:62:mod xmmreg1 r/m VPUNPCKLQDQ — Unpack Low Data C4: rxb0_1: w xmmreg2 001:6C:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:11 xmmreg1 xmmreg3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:11 xmmreg1 xmmreg1o3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:mod xmmreg1 r/m VPXOR — Logical Exclusive OR VPXOR — Logical Exclusive OR xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6E:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C5: r_xmmreglo2 001:6E:11 xmmreg1 xmmreg3 xmmreg1o2 with mem to xmmreg1 C5: r_xmmreglo2 001:6E:11 xmmreg1 xmmreg1o3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6E:11 xmmreg1 xmmreg1o3 VSHUFPD — Shuffle Packed Double-Precision Floating-Point Values C4: rxb0_1: w xmmreg2 001:6E:11 xmmreg1 r/m xmmreg2 with xmmreg3 to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:6E:11 xmmreg1 xmmreg3: imm xmmreg1o2 with mem to xmmreg1 using imm8 C5: r_xmmreglo2 001:6E:11 xmmreg1 xmmreg0: imm ymmreg2 with ymmreg3 to ymmreg1 using imm8 C5: r_xmmreglo2 001:6E:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:6E:11 ymmreg1 ymmreg3: imm ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:6E:1	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:62:mod xmmreg1 r/m
VPUNPCKLQDQ — Unpack Low Data C4: rxb0_1: w xmmreg2 001:6C:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6C:11 xmmreg1 xmmreg3 xmmreg1o2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:mod xmmreg1 r/m VPXOR — Logical Exclusive OR C4: rxb0_1: w xmmreg2 001:6F:mod xmmreg1 r/m xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 001:6F:11 xmmreg1 xmmreg3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6F:11 xmmreg1 xmmreg1 r/m VSHUFPD — Shuffle Packed Double-Precision Floating-Point Values C4: rxb0_1: w xmmreg2 001:6F:mod xmmreg1 r/m xmmreg2 with xmmreg3 to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:6F:11 xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:6F:11 xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 using imm8 C5: r_xmmreglo2 001:6F:11 xmmreg1 xmmreg3: imm xmmreglo2 with ymmreg3 to ymmreg1 using imm8 C5: r_xmmreglo2 001:6F:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:6F:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:6F:11 ymmreg1 r/m: imm ymmreg1o2 with mem to ymmreg1 using imm8 C4: rxb0_1: w ymmreg1o2 101:6F:11 ymmreg1 r/m: imm ym	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:62:11 xmmreg1 xmmreglo3
xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg1 cuith xmmreg2 with mem to xmmreg1 xmmreg1 cuith xmmreg2 o01:6C:11 xmmreg1 xmmreg1 r/m xmmreg1o2 with xmmreg1o3 to xmmreg1 xmmreg1o2 with mem to xmmreg1 C5: r_xmmreg1o2 001:6C:11 xmmreg1 xmmreg1o3 xmmreg1o2 with mem to xmmreg1 C5: r_xmmreg1o2 001:6C:mod xmmreg1 r/m VPXOR — Logical Exclusive OR xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 001:EF:11 xmmreg1 xmmreg3 xmmreg1o2 with xmmreg1o3 to xmmreg1 C5: r_xmmreg1o2 001:EF:11 xmmreg1 xmmreg1o3 xmmreg1o2 with mem to xmmreg1 C5: r_xmmreg1o2 001:EF:11 xmmreg1 xmmreg1o3 xmmreg1o2 with mem to xmmreg1 C5: r_xmmreg1o2 001:EF:mod xmmreg1 r/m VSHUFPD — Shuffle Packed Double-Precision Floating-Point Values xmmreg2 with mem to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:C6:11 xmmreg1 xmmreg3: imm xmmreg1o2 with xmmreg1o3 to xmmreg1 using imm8 C5: r_xmmreg1o2 001:C6:11 xmmreg1 xmmreg3: imm xmmreg1o2 with mem to xmmreg1 using imm8 C5: r_xmmreg1o2 001:C6:11 xmmreg1 xmmreg1o3: imm ymmreg2 with mem to xmmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm ymmreg1o2 with ymmreg1o3 to ymmreg1 using imm8 C5: r_ymmreg1o2 101:C6:11 ymmreg1 ymmreg1o3: imm ymmreg1o2 with mem to ymmreg1 using imm8 C5: r_ymmreg1o2 101:C6:mod ymmreg1 r/m: imm VSQRTPD — Compute Square Roots of Packed Double-Precision Floating-Point Values xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:62:mod xmmreg1 r/m
xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:mod xmmreg1 r/m VPXOR — Logical Exclusive OR xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg1 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EF:11 xmmreg1 xmmreg1o3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EF:mod xmmreg1 r/m VSHUFPD — Shuffle Packed Double-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 using imm8 c4: rxb0_1: w xmmreg2 001:C6:11 xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 using imm8 c4: rxb0_1: w xmmreg2 001:C6:mod xmmreg1 r/m: imm xmmreglo2 with ymmreg3 to xmmreg1 using imm8 c5: r_xmmreglo2 001:C6:mod xmmreg1 r/m: imm xmmreglo2 with mem to xmmreg1 using imm8 c4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 using imm8 c4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 r/m: imm ymmreg2 with mem to ymmreg1 using imm8 c4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm ymmreglo2 with mem to ymmreg1 using imm8 c5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm ymmreglo2 with mem to ymmreg1 using imm8 c6: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm ymmreglo2 with mem to ymmreg1 using imm8 c7: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm vmmreg102 with mem to ymmreg1 using imm8 c7: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm vmmreg102 with mem to ymmreg1 using imm8 c7: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm vmmreg2 vmmreg2 to xmmreg1 c4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 c4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	VPUNPCKLQDQ — Unpack Low Data	
xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:6C:mod xmmreg1 r/m VPXOR — Logical Exclusive OR xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 001:EF:11 xmmreg1 xmmreg3 xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 001:EF:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EF:mod xmmreg1 r/m VSHUFPD — Shuffle Packed Double-Precision Floating- Point Values xmmreg2 with xmmreg3 to xmmreg1 using imm8 c4: rxb0_1: w xmmreg2 001:C6:11 xmmreg1 xmmreg3: imm xmmreg2 with mem to xmmreg1 using imm8 c4: rxb0_1: w xmmreg2 001:C6:mod xmmreg1 r/m: imm xmmreglo2 with xmmreg1o3 to xmmreg1 using imm8 c5: r_xmmreglo2 001:C6:mod xmmreg1 r/m: imm xmmreglo2 with mem to xmmreg1 using imm8 c5: r_xmmreglo2 001:C6:11 ymmreg1 r/m: imm ymmreg2 with mem to ymmreg1 using imm8 c4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 using imm8 c4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm ymmreglo2 with ymmreg1o3 to ymmreg1 using imm8 c5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm ymmreglo2 with mem to ymmreg1 using imm8 c5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm VSQRTPD — Compute Square Roots of Packed Double- Precision Floating-Point Values xmmreg2 to xmmreg1 c4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 c4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:6C:11 xmmreg1 xmmreg3
xmmreglo2 with mem to xmmreg1 VPXOR — Logical Exclusive OR xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg1 xmmreg12 with xmmreg1 to xmmreg1 xmmreg12 with mem to xmmreg1 xmmreg12 with mem to xmmreg1 xmmreg12 with mem to xmmreg1 xmmreg12 with xmmreg1 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with xmmreg1 to xmmreg1 using imm8 xmmreg12 with mem to xmmreg1 using imm8 xmmreg12 with ymmreg13 to xmmreg1 using imm8 xmmreg12 with ymmreg3 to ymmreg1 using imm8 xmmreg12 with mem to xmmreg1 using imm8 xmmreg12 with mem to ymmreg1 using imm8 xmmreg2 with ymmreg3 to ymmreg1 using imm8 xmmreg2 with mem to ymmreg1 using imm8 xmmreg2 with ymmreg13 to ymmreg1 using imm8 xmmreg15 to xmmreg1 xmmreg15 to xmmreg1 xmmreg2 to xmmreg1 xmmreg2 to xmmreg1 xmmreg2 xmmreg2 to xmmreg1 xmmreg2 xmmreg1 xmmreg2 xmmreg1 xmmreg2 xmmreg2 xmmreg1 xmmreg1 xmmreg2 xmmreg1 xmmreg2 xmmreg1 xmm	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:6C:mod xmmreg1 r/m
VPXOR — Logical Exclusive OR xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg102 with xmmreg103 to xmmreg1 xmmreg102 with xmmreg103 to xmmreg1 xmmreg102 with mem to xmmreg1 xmmreg102 with mem to xmmreg1 xmmreg102 with mem to xmmreg1 xmmreg102 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg102 with xmmreg103 to xmmreg1 using imm8 xmmreg102 with xmmreg103 to xmmreg1 using imm8 xmmreg102 with mem to xmmreg1 using imm8 xmmreg102 with mem to xmmreg1 using imm8 xmmreg102 with mem to xmmreg1 using imm8 xmmreg2 with mem to ymmreg1 using imm8 xmmreg2 with ymmreg103 to ymmreg1 using imm8 xmmreg103 with ymmreg103 to ymmreg1 using imm8 xmmreg104 with ymmreg105 to ymmreg1 using imm8 xmmreg105 with ymmreg105 to ymmreg1 using imm8	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:6C:11 xmmreg1 xmmreglo3
xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with mem to xmmreg1 using imm8 xmmreg2 with xmmreg1 using imm8 xmmreg2 with xmmreg1o3 to xmmreg1 using imm8 xmmreglo2 with xmmreg1o3 to xmmreg1 using imm8 xmmreglo2 with mem to xmmreg1 using imm8 xmmreglo2 with mem to xmmreg1 using imm8 xmmreg2 with ymmreg3 to ymmreg1 using imm8 xmmreg2 with ymmreg3 to ymmreg1 using imm8 xmmreg2 with mem to ymmreg1 using imm8 xmmreg2 with ymmreg3 to ymmreg1 using imm8 xmmreg2 with ymmreg1 using imm8 xmmreg1 wymmreg1 wymmreg1 wymmreg1 ymmreg1 ymmr	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:6C:mod xmmreg1 r/m
xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EF:mod xmmreg1 r/m VSHUFPD — Shuffle Packed Double-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with mem to xmmreg1 using imm8 xmmreg2 with mem to xmmreg1 using imm8 xmmreglo2 with xmmreglo3 to xmmreg1 using imm8 xmmreglo2 with mem to xmmreg1 using imm8 xmmreg2 with ymmreg3 to ymmreg1 using imm8 xmmreg2 with mem to ymmreg1 using imm8 xmmreg1o2 with mem to ymmreg1 using imm8 xmmreg2 with mem to ymmreg1 using imm8 xmmreg1o2 with ymmreg2 to xmmreg1 wmmreg2 xmmreg1o2 with ym	VPXOR — Logical Exclusive OR	
xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EF:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 001:EF:mod xmmreg1 r/m VSHUFPD — Shuffle Packed Double-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 using imm8 C4: rxb0_1: w xmmreg2 001:C6:11 xmmreg1 xmmreg3: imm xmmreg102 with mem to xmmreg1 using imm8 C5: r_xmmreglo2 001:C6:11 xmmreg1 xmmreg1o3: imm xmmreglo2 with mem to xmmreg1 using imm8 C5: r_xmmreglo2 001:C6:11 xmmreg1 xmmreglo3: imm xmmreglo2 with mem to xmmreg1 using imm8 C5: r_xmmreglo2 001:C6:mod xmmreg1 r/m: imm ymmreg2 with ymmreg3 to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm ymmreg1o2 with mem to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm VSQRTPD — Compute Square Roots of Packed Double-Precision Floating-Point Values xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:EF:11 xmmreg1 xmmreg3
XSHUFPD — Shuffle Packed Double-Precision Floating- Point Values Xmmreg2 with xmmreg3 to xmmreg1 using imm8 Xmmreg2 with mem to xmmreg1 using imm8 Xmmreg2 with mem to xmmreg1 using imm8 Xmmreg102 with xmmreg3 to xmmreg1 using imm8 Xmmreg102 with xmmreg103 to xmmreg1 using imm8 Xmmreg102 with mem to xmmreg1 using imm8 Xmmreg2 with ymmreg3 to ymmreg1 using imm8 Xmmreg2 with mem to ymmreg1 using imm8 Xmmreg102 with mem to ymmreg1 using imm8 Xmmreg103 with mem to ymmreg1 using imm8 Xmmreg104 with mem to ymmreg1 using imm8 Xmmreg105 with mem to ymmreg1 using imm8 Xmmreg107 with mem to ymmreg1 using imm8 Xmmreg108 with mem to ymmreg1 using imm8 Xmmreg109 with mem to ymmreg1 using imm8 Xmmreg109 with mem to ymmreg1 using imm8 Xmmreg109 with ymmreg109 with with	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:EF:mod xmmreg1 r/m
VSHUFPD — Shuffle Packed Double-Precision Floating- Point Values xmmreg2 with xmmreg3 to xmmreg1 using imm8 xmmreg2 with mem to xmmreg1 using imm8 xmmreglo2 with xmmreg1 using imm8 xmmreglo2 with xmmreglo3 to xmmreg1 using imm8 xmmreglo2 with mem to xmmreg1 using imm8 xmmreglo2 with mem to xmmreg1 using imm8 c5: r_xmmreglo2 001:C6:11 xmmreg1 xmmreglo3: imm xmmreglo2 with mem to xmmreg1 using imm8 c5: r_xmmreglo2 001:C6:11 xmmreg1 xmmreglo3: imm ymmreg2 with ymmreg3 to ymmreg1 using imm8 c4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm ymmreglo2 with mem to ymmreg1 using imm8 c5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm ymmreglo2 with mem to ymmreg1 using imm8 c5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm ymmreglo2 with mem to ymmreg1 using imm8 c5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm VSQRTPD — Compute Square Roots of Packed Double- Precision Floating-Point Values xmmreg2 to xmmreg1 c4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 c4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:EF:11 xmmreg1 xmmreglo3
Point ValuesC4: rxb0_1: w xmmreg2 001:C6:11 xmmreg1 xmmreg3: immxmmreg2 with xmmreg3 to xmmreg1 using imm8C4: rxb0_1: w xmmreg2 001:C6:mod xmmreg1 r/m: immxmmreg1o2 with mem to xmmreg1 using imm8C5: r_xmmreg1o2 001:C6:mod xmmreg1 r/m: immxmmreg1o2 with mem to xmmreg1 using imm8C5: r_xmmreg1o2 001:C6:mod xmmreg1 r/m: immymmreg2 with ymmreg3 to ymmreg1 using imm8C4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: immymmreg2 with mem to ymmreg1 using imm8C4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: immymmreg1o2 with ymmreg1o3 to ymmreg1 using imm8C5: r_ymmreg1o2 101:C6:11 ymmreg1 ymmreg1o3: immymmreg1o2 with mem to ymmreg1 using imm8C5: r_ymmreg1o2 101:C6:mod ymmreg1 r/m: immVSQRTPD — Compute Square Roots of Packed Double-Precision Floating-Point ValuesC4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2xmmreg2 to xmmreg1C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:EF:mod xmmreg1 r/m
xmmreg2 with mem to xmmreg1 using imm8 xmmreglo2 with xmmreglo3 to xmmreg1 using imm8 c5: r_xmmreglo2 001:C6:mod xmmreg1 xmmreglo3: imm xmmreglo2 with mem to xmmreg1 using imm8 c5: r_xmmreglo2 001:C6:mod xmmreg1 r/m: imm ymmreg2 with ymmreg3 to ymmreg1 using imm8 c4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm ymmreg2 with mem to ymmreg1 using imm8 c4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm ymmreglo2 with ymmreglo3 to ymmreg1 using imm8 c5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm ymmreglo2 with mem to ymmreg1 using imm8 c5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm VSQRTPD — Compute Square Roots of Packed Double-Precision Floating-Point Values xmmreg2 to xmmreg1 c4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 c4: rxb0_1: w_F 001:51:mod xmmreg1 r/m		
xmmreglo2 with xmmreglo3 to xmmreg1 using imm8 xmmreglo2 with mem to xmmreg1 using imm8 c3: r_xmmreglo2 001:C6:11 xmmreg1 xmmreglo3: imm c4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm ymmreg2 with ymmreg1 using imm8 c4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm ymmreg2 with ymmreg1 using imm8 c4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm ymmreglo2 with ymmreglo3 to ymmreg1 using imm8 c5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm ymmreglo2 with mem to ymmreg1 using imm8 c5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm VSQRTPD — Compute Square Roots of Packed Double-Precision Floating-Point Values xmmreg2 to xmmreg1 c4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 c4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	xmmreg2 with xmmreg3 to xmmreg1 using imm8	C4: rxb0_1: w xmmreg2 001:C6:11 xmmreg1 xmmreg3: imm
xmmreglo2 with mem to xmmreg1 using imm8 ymmreg2 with ymmreg3 to ymmreg1 using imm8 ymmreg2 with mem to ymmreg1 using imm8 ymmreg2 with mem to ymmreg1 using imm8 ymmreglo2 with ymmreg1 using imm8 ymmreglo2 with ymmreglo3 to ymmreg1 using imm8 ymmreglo2 with ymmreglo3 to ymmreg1 using imm8 ymmreglo2 with mem to ymmreg1 using imm8 ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:mod ymmreg1 ymmreglo3: imm ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm VSQRTPD — Compute Square Roots of Packed Double-Precision Floating-Point Values xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	xmmreg2 with mem to xmmreg1 using imm8	C4: rxb0_1: w xmmreg2 001:C6:mod xmmreg1 r/m: imm
ymmreg2 with ymmreg3 to ymmreg1 using imm8 ymmreg2 with mem to ymmreg1 using imm8 ymmreglo2 with ymmreg1 using imm8 ymmreglo2 with ymmreglo3 to ymmreg1 using imm8 ymmreglo2 with ymmreglo3 to ymmreg1 using imm8 ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm VSQRTPD — Compute Square Roots of Packed Double-Precision Floating-Point Values xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	xmmreglo2 with xmmreglo3 to xmmreg1 using imm8	C5: r_xmmreglo2 001:C6:11 xmmreg1 xmmreglo3: imm
ymmreg2 with mem to ymmreg1 using imm8 C4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm ymmreglo2 with ymmreglo3 to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm VSQRTPD — Compute Square Roots of Packed Double- Precision Floating-Point Values xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	xmmreglo2 with mem to xmmreg1 using imm8	C5: r_xmmreglo2 001:C6:mod xmmreg1 r/m: imm
ymmreglo2 with ymmreglo3 to ymmreg1 using imm8 ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm C5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm VSQRTPD — Compute Square Roots of Packed Double-Precision Floating-Point Values xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	ymmreg2 with ymmreg3 to ymmreg1 using imm8	C4: rxb0_1: w ymmreg2 101:C6:11 ymmreg1 ymmreg3: imm
ymmreglo2 with mem to ymmreg1 using imm8 C5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm VSQRTPD — Compute Square Roots of Packed Double- Precision Floating-Point Values xmmreg2 to xmmreg1 C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	ymmreg2 with mem to ymmreg1 using imm8	C4: rxb0_1: w ymmreg2 101:C6:mod ymmreg1 r/m: imm
VSQRTPD — Compute Square Roots of Packed Double- Precision Floating-Point Values xmmreg2 to xmmreg1	ymmreglo2 with ymmreglo3 to ymmreg1 using imm8	C5: r_ymmreglo2 101:C6:11 ymmreg1 ymmreglo3: imm
Precision Floating-Point Values C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2 mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	ymmreglo2 with mem to ymmreg1 using imm8	C5: r_ymmreglo2 101:C6:mod ymmreg1 r/m: imm
mem to xmmreg1 C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m	VSQRTPD — Compute Square Roots of Packed Double- Precision Floating-Point Values	
		C4: rxb0_1: w_F 001:51:11 xmmreg1 xmmreg2
xmmreglo to xmmreg1 C5: r_F 001:51:11 xmmreg1 xmmreglo	mem to xmmreg1	C4: rxb0_1: w_F 001:51:mod xmmreg1 r/m
	xmmreglo to xmmreg1	C5: r_F 001:51:11 xmmreg1 xmmreglo

Instruction and Format	Encoding
mem to xmmreg1	C5: r_F 001:51:mod xmmreg1 r/m
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 101:51:11 ymmreg1 ymmreg2
mem to ymmreg1	C4: rxb0_1: w_F 101:51:mod ymmreg1 r/m
ymmreglo to ymmreg1	C5: r_F 101:51:11 ymmreg1 ymmreglo
mem to ymmreg1	C5: r_F 101:51:mod ymmreg1 r/m
VSQRTSD — Compute Square Root of Scalar Double- Precision Floating-Point Value	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:51:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:51:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:51:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:51:mod xmmreg1 r/m
VSUBPD — Subtract Packed Double-Precision Floating- Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:5C:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:5C:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:5C:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:5C:mod xmmreg1 r/m
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:5C:11 ymmreg1 ymmreg3
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:5C:mod ymmreg1 r/m
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:5C:11 ymmreg1 ymmreglo3
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:5C:mod ymmreg1 r/m
VSUBSD — Subtract Scalar Double-Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 011:5C:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 011:5C:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 011:5C:11 xmmreg1 xmmreglo3
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 011:5C:mod xmmreg1 r/m
VUCOMISD — Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS	
xmmreg2 with xmmreg1, set EFLAGS	C4: rxb0_1: w_F xmmreg1 001:2E:11 xmmreg2
mem with xmmreg1, set EFLAGS	C4: rxb0_1: w_F xmmreg1 001:2E:mod r/m
xmmreglo with xmmreg1, set EFLAGS	C5: r_F xmmreg1 001:2E:11 xmmreglo
mem with xmmreg1, set EFLAGS	C5: r_F xmmreg1 001:2E:mod r/m
VUNPCKHPD — Unpack and Interleave High Packed Double-Precision Floating-Point Values	
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:15:11 xmmreg1 xmmreg3
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:15:mod xmmreg1 r/m
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:15:11 xmmreg1 xmmreglo3
Allilliegion with Allilliegion to Allilliegi	
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:15:mod xmmreg1 r/m
	C5: r_xmmreglo2 001:15:mod xmmreg1 r/m C4: rxb0_1: w ymmreg2 101:15:11 ymmreg1 ymmreg3

Instruction and Format	Encoding					
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:15:11 ymmreg1 ymmreglo3					
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:15:mod ymmreg1 r/m					
VUNPCKHPS — Unpack and Interleave High Packed Single- Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 000:15:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 000:15:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 000:15:mod xmmreg1 r/m					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:15:mod ymmreg1 r/m					
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 100:15:11 ymmreg1 ymmreglo3					
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 100:15:mod ymmreg1 r/m					
VUNPCKLPD — Unpack and Interleave Low Packed Double- Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:14:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:14:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:14:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:14:mod xmmreg1 r/m					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:14:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:14:mod ymmreg1 r/m					
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 101:14:11 ymmreg1 ymmreglo3					
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 101:14:mod ymmreg1 r/m					
VUNPCKLPS — Unpack and Interleave Low Packed Single- Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 000:14:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 000:14:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 000:14:mod xmmreg1 r/m					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:14:mod ymmreg1 r/m					
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 100:14:11 ymmreg1 ymmreglo3					
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 100:14:mod ymmreg1 r/m					
VXORPD — Bitwise Logical XOR for Double-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 001:57:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 001:57:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 001:57:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 001:57:mod xmmreg1 r/m					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 101:57:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 101:57:mod ymmreg1 r/m					

Encoding					
C5: r_ymmreglo2 101:57:11 ymmreg1 ymmreglo3					
C5: r_ymmreglo2 101:57:mod ymmreg1 r/m					
C4: rxb0_1: w xmmreg2 000:58:11 xmmreg1 xmmreg3					
C4: rxb0_1: w xmmreg2 000:58:mod xmmreg1 r/m					
C5: r_xmmreglo2 000:58:11 xmmreg1 xmmreglo3					
C5: r_xmmreglo2 000:58:mod xmmreg1 r/m					
C4: rxb0_1: w ymmreg2 100:58:11 ymmreg1 ymmreg3					
C4: rxb0_1: w ymmreg2 100:58:mod ymmreg1 r/m					
C5: r_ymmreglo2 100:58:11 ymmreg1 ymmreglo3					
C5: r_ymmreglo2 100:58:mod ymmreg1 r/m					
C4: rxb0_1: w xmmreg2 010:58:11 xmmreg1 xmmreg3					
C4: rxb0_1: w xmmreg2 010:58:mod xmmreg1 r/m					
C5: r_xmmreglo2 010:58:11 xmmreg1 xmmreglo3					
C5: r_xmmreglo2 010:58:mod xmmreg1 r/m					
C4: rxb0_1: w xmmreg2 000:54:11 xmmreg1 xmmreg3					
C4: rxb0_1: w xmmreg2 000:54:mod xmmreg1 r/m					
C5: r_xmmreglo2 000:54:11 xmmreg1 xmmreglo3					
C5: r_xmmreglo2 000:54:mod xmmreg1 r/m					
C4: rxb0_1: w ymmreg2 100:54:11 ymmreg1 ymmreg3					
C4: rxb0_1: w ymmreg2 100:54:mod ymmreg1 r/m					
C5: r_ymmreglo2 100:54:11 ymmreg1 ymmreglo3					
C5: r_ymmreglo2 100:54:mod ymmreg1 r/m					
C4: rxb0_1: w xmmreg2 000:55:11 xmmreg1 xmmreg3					
C4: rxb0_1: w xmmreg2 000:55:mod xmmreg1 r/m					
C5: r_xmmreglo2 000:55:11 xmmreg1 xmmreglo3					
C5: r_xmmreglo2 000:55:mod xmmreg1 r/m					
C4: rxb0_1: w ymmreg2 100:55:11 ymmreg1 ymmreg3					
C4: rxb0_1: w ymmreg2 100:55:mod ymmreg1 r/m					
C5: r_ymmreglo2 100:55:11 ymmreg1 ymmreglo3					
C5: r_ymmreglo2 100:55:mod ymmreg1 r/m					
C5:1_ymmeglo2_roo:55:mod_ymmeg.r r/m					
C5: 1_ymmlegio2_100:55:mod ymmleg i 17m					

Instruction and Format	Encoding					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 000:C2:mod xmmreg1 r/m: imm					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 000:C2:11 xmmreg1 xmmreglo3: imm					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 000:C2:mod xmmreg1 r/m: imm					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:C2:11 ymmreg1 ymmreg3: imm					
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:C2:mod ymmreg1 r/m: imm					
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 100:C2:11 ymmreg1 ymmreglo3: imm					
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 100:C2:mod ymmreg1 r/m: imm					
VCMPSS — Compare Scalar Single-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 010:C2:11 xmmreg1 xmmreg3: imm					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 010:C2:mod xmmreg1 r/m: imm					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 010:C2:11 xmmreg1 xmmreglo3: imm					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 010:C2:mod xmmreg1 r/m: imm					
VCOMISS — Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS						
xmmreg2 with xmmreg1	C4: rxb0_1: w_F 000:2F:11 xmmreg1 xmmreg2					
mem with xmmreg1	C4: rxb0_1: w_F 000:2F:mod xmmreg1 r/m					
xmmreglo with xmmreg1	C5: r_F 000:2F:11 xmmreg1 xmmreglo					
mem with xmmreg1	C5: r_F 000:2F:mod xmmreg1 r/m					
VCVTSI2SS — Convert Dword Integer to Scalar Single- Precision FP Value						
xmmreg2 with reg to xmmreg1	C4: rxb0_1: 0 xmmreg2 010:2A:11 xmmreg1 reg					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: 0 xmmreg2 010:2A:mod xmmreg1 r/m					
xmmreglo2 with reglo to xmmreg1	C5: r_xmmreglo2 010:2A:11 xmmreg1 reglo					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 010:2A:mod xmmreg1 r/m					
xmmreg2 with reg to xmmreg1	C4: rxb0_1: 1 xmmreg2 010:2A:11 xmmreg1 reg					
xmmreg2 with mem to xmmreg1	xb0_1: 1 xmmreg2 010:2A:mod xmmreg1 r/m					
VCVTSS2SI — Convert Scalar Single-Precision FP Value to Dword Integer						
xmmreg1 to reg	C4: rxb0_1: 0_F 010:2D:11 reg xmmreg1					
mem to reg	C4: rxb0_1: 0_F 010:2D:mod reg r/m					
xmmreglo to reg	C5: r_F 010:2D:11 reg xmmreglo					
mem to reg	C5: r_F 010:2D:mod reg r/m					
xmmreg1 to reg	C4: rxb0_1: 1_F 010:2D:11 reg xmmreg1					
mem to reg	C4: rxb0_1: 1_F 010:2D:mod reg r/m					
VCVTTSS2SI — Convert with Truncation Scalar Single- Precision FP Value to Dword Integer						
xmmreg1 to reg	C4: rxb0_1: 0_F 010:2C:11 reg xmmreg1					
mem to reg	C4: rxb0_1: 0_F 010:2C:mod reg r/m					
	C5: r_F 010:2C:11 reg xmmreglo					
xmmreglo to reg	C5: r_F 010:2C:11 reg xmmreglo					

mem to reg C4: rxb0_1: 1_F 010:2C:11 reg xmmreg1 mem to reg C4: rxb0_1: 1_F 010:2C:mod reg r/m VDIVPS — Divide Packed Single-Precision Floating-Point values xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:mod xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5E:mod xmmreg1 r/m ymmreg2 with mem to xmmreg1 C5: r_xmmreglo2 000:5E:mod xmmreg1 r/m ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:mod ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:11 ymmreg1 ymmreg3 ymmreg2 with ymmreg3 to ymmreg1 C5: r_ymmreglo2 100:5E:11 ymmreg1 ymmreg1o3 ymmreg1o2 with ymmreg3 to ymmreg1 C5: r_ymmreglo2 100:5E:11 ymmreg1 ymmreg1o3 c5: r_ymmreglo2 100:5E:11 ymmreg1 ymmreg1o3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:11 xmmreg1 xmmreg3 xmmreg1o2 with xmmreg3 to xmmreg1 C5: r_xmmreglo2 010:5E:11 xmmreg1 r/m xmmreg1o2 with mem to xmmreg1 C5: r_xmmreglo2 010:5E:mod xmmreg1 r/m VLDMXCSR — Load MXCSR Register mem to MXCSR reg C4: rxb0_1: w xmmreg2 010:5E:mod xmmreg1 r/m VLDMXCSR — Return Maximum Packed Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 ymmreg1 ymmreg3 ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod xmmreg1 r/m xmmreg1o2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	Instruction and Format	Encoding					
VDIVPS — Divide Packed Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1	xmmreg1 to reg	C4: rxb0_1: 1_F 010:2C:11 reg xmmreg1					
Values C4: rxb0_1: w xmmreg2 000:5E:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:mod xmmreg1 r/m xmmreg1o2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5E:mod xmmreg1 r/m xmmreglo2 with ymmreg3 to ymmreg1 C5: r_xmmreglo2 000:5E:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5E:mod ymmreg1 r/m ymmreg1o2 with ymmreg03 to ymmreg1 C5: r_ymmreg1o2 100:5E:mod ymmreg1 r/m VDIVSS — Divide Scalar Single-Precision Floating-Point Values C5: r_ymmreg1o2 100:5E:mod ymmreg1 r/m xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5E:mod xmmreg1 r/m xmmreg2 with mem to xmmreg1 C5: r_xmmreg1o2 010:5E:mod xmmreg1 r/m xmmreg1o2 with xmmreg1o3 to xmmreg1 C5: r_xmmreg1o2 010:5E:mod xmmreg1 r/m VLDMXCSR — Load MXCSR Register C5: r_xmmreg1o2 010:5E:mod xmmreg1 r/m wmm to MXCSR reg C4: rxb0_1: w_F 000:AEmod 011 r/m VMAXPS — Return Maximum Packed Single-Precision Floating-Point Values C5: r_xmmreg2 000:5E:n1 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:n1 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5E:n0d xmmreg1 r/m xmmreg1o2 with mem t	mem to reg	C4: rxb0_1: 1_F 010:2C:mod reg r/m					
xmmreg2 with mem to xmmreg1							
xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with mem to xmmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg1 ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 ymmreg2 ymmreg3 ymmreg2 with xmmreg3 to xmmreg1 xmmreg1 xmmreg1 xmmreg10 ymmreg10 ymmreg1 ymmreg10 ymmreg10 ymmreg10 ymmreg10 ymmreg2 ymmreg2 ymmreg10 ymmreg1 ymmreg1 ymmreg1 ymmreg1 ymmreg1 ymmreg1 ymmreg2 ymmreg1 ymmreg3 ymmreg2 ymmreg3 ymmreg1 ymmreg3 ymmreg	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:5E:11 xmmreg1 xmmreg3					
xmmreglo2 with mem to xmmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 ymmreg1 c4: rxb0_1: w ymmreg2 100:5E:11 ymmreg1 ymmreg3 ymmreglo2 with ymmreg1o3 to ymmreg1 ymmreglo2 with mem to ymmreg1 c5: r_ymmreglo2 100:5E:mod ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 ymmreglo2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 010:5E:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 c5: r_xmmreglo2 010:5E:11 xmmreg1 xmmreg3 xmmreglo2 with xmmreglo3 to xmmreg1 c5: r_xmmreglo2 010:5E:mod xmmreg1 r/m ymmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 010:5E:mod xmmreg1 r/m ymmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 010:5E:mod xmmreg1 r/m ymmreglo3 with xmmreg3 to xmmreg1 c5: r_xmmreglo2 010:5E:mod xmmreg1 r/m ymmreg0 with xmmreg3 to xmmreg1 c4: rxb0_1: w_xmmreg2 000:5E:mod xmmreg1 r/m ymmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w_xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w_xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg1o2 with xmmreg1o3 to xmmreg1 c5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreg3 c5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 c6: rxb0_1: w_xmmreg2 000:5F:11 xmmreg1 xmmreg3 c7: rxmmreglo2 000:5F:11 xmmreg1 xmmreg1 ymmreg2 with ymmreg3 to ymmreg1 c6: rxb0_1: w_ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 c6: rxb0_1: w_ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 c6: rxb0_1: w_ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 000:5E:mod xmmreg1 r/m					
ymmreg2 with ymmreg3 to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg2 with mem to ymmreg1 ymmreg1 c4: rxb0_1: w ymmreg2 100:5E:nd ymmreg1 r/m ymmreg1o2 with ymmreg1o3 to ymmreg1 ymmreg1o2 with ymmreg1o3 to ymmreg1 ymmreg1o2 with mem to ymmreg1 ymmreg1o2 with ymmreg1 ymmreg1o3 ymmreg1o2 with ymmreg1 ymmreg1 c5: r_ymmreg1o2 100:5E:nd ymmreg1 r/m ynmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg1o2 with xmmreg1o3 to xmmreg1 xmmreg1o2 with xmmreg1o3 to xmmreg1 xmmreg1o2 with mem to xmmreg1 ynmmreg1o2 with xmmreg1o3 to xmmreg1 c5: r_xmmreg1o2 010:5E:nd xmmreg1 r/m ynmmreg1o2 with xmmreg1o3 to xmmreg1 c4: rxb0_1: w_F 000:AEmod 011 r/m mem to MXCSR reg c4: rxb0_1: w_F 000:AEmod 011 r/m ymmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg1 c4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 r/m xmmreg1o2 with xmmreg1o3 to xmmreg1 c5: r_xmmreg1o2 000:5F:11 xmmreg1 xmmreg1 ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:ndd ymmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:ndd ymmreg1 r/m	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 000:5E:11 xmmreg1 xmmreglo3					
ymmreg2 with mem to ymmreg1	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 000:5E:mod xmmreg1 r/m					
ymmreglo2 with ymmreglo3 to ymmreg1 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5E:11 ymmreg1 ymmreglo3 ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5E:mod ymmreg1 r/m VDIVSS — Divide Scalar Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg1 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 010:5E:11 xmmreg1 xmmreg03 xmmreglo2 with xmmreglo3 to xmmreg1 c5: r_xmmreglo2 010:5E:mod xmmreg1 r/m VDMXCSR — Load MXCSR Register mem to MXCSR reg c4: rxb0_1: w_F 000:AEmod 011 r/m VMAXPS — Return Maximum Packed Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 c4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/m xmmreg02 with xmmreg13 to xmmreg1 c4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/m xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 000:5F:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:5E:11 ymmreg1 ymmreg3					
ymmreglo2 with mem to ymmreg1 VDIVSS — Divide Scalar Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreg3 to xmmreg1 xmmreglo2 with xmmreg13 to xmmreg1 xmmreglo2 with xmmreg13 to xmmreg1 xmmreglo2 with xmmreg13 to xmmreg1 xmmreglo2 with ymmreg3 to ymmreg1 xmmreg2 with ymmreg3 to ymmreg1 xmmreg2 with ymmreg3 to ymmreg1 xmmreg2 with mem to ymmreg1 xmmreg2 with ymmreg2 100:5F:mod ymmreg1 r/m	ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:5E:mod ymmreg1 r/m					
VDIVSS — Divide Scalar Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg3 to xmmreg1 xmmreg1	ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 100:5E:11 ymmreg1 ymmreglo3					
Valuesxmmreg2 with xmmreg3 to xmmreg1C4: rxb0_1: w xmmreg2 010:5E:11 xmmreg1 xmmreg3xmmreg2 with mem to xmmreg1C4: rxb0_1: w xmmreg2 010:5E:mod xmmreg1 r/mxmmreglo2 with xmmreglo3 to xmmreg1C5: r_xmmreglo2 010:5E:11 xmmreg1 xmmreglo3xmmreglo2 with mem to xmmreg1C5: r_xmmreglo2 010:5E:mod xmmreg1 r/mVLDMXCSR — Load MXCSR RegisterC4: rxb0_1: w_F 000:AEmod 011 r/mmem to MXCSR regC5: r_F 000:AEmod 011 r/mVMAXPS — Return Maximum Packed Single-Precision Floating-Point ValuesC4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3xmmreg2 with xmmreg3 to xmmreg1C4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/mxmmreglo2 with xmmreglo3 to xmmreg1C5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3xmmreglo2 with mem to xmmreg1C5: r_xmmreglo2 000:5F:mod xmmreg1 r/mymmreg2 with ymmreg3 to ymmreg1C5: r_xmmreglo2 000:5F:mod xmmreg1 r/mymmreg2 with ymmreg3 to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 ymmreg3ymmreg2 with mem to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 100:5E:mod ymmreg1 r/m					
xmmreg2 with mem to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5E:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5E:mod xmmreg1 r/m VLDMXCSR — Load MXCSR Register mem to MXCSR reg C4: rxb0_1: w_F 000:AEmod 011 r/m VMAXPS — Return Maximum Packed Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 c5: r_xmmreglo2 000:5F:11 xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 c5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 000:5F:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3 c4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m							
xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5E:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5E:mod xmmreg1 r/m VLDMXCSR — Load MXCSR Register mem to MXCSR reg C4: rxb0_1: w_F 000:AEmod 011 r/m wmm to MXCSR reg C5: r_F 000:AEmod 011 r/m VMAXPS — Return Maximum Packed Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreglo2 with xmmreglo3 to xmmreg1 c5: r_xmmreglo2 000:5F:11 xmmreg1 r/m c5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 000:5F:11 ymmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 010:5E:11 xmmreg1 xmmreg3					
xmmreglo2 with mem to xmmreg1 VLDMXCSR — Load MXCSR Register mem to MXCSR reg C4: rxb0_1: w_F 000:AEmod 011 r/m mem to MXCSR reg C5: r_F 000:AEmod 011 r/m VMAXPS — Return Maximum Packed Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 c5: r_xmmreglo2 000:5F:11 xmmreg1 r/m xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 000:5F:11 ymmreg1 ymmreg1 ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 010:5E:mod xmmreg1 r/m					
VLDMXCSR – Load MXCSR Register mem to MXCSR reg C4: rxb0_1: w_F 000:AEmod 011 r/m mem to MXCSR reg C5: r_F 000:AEmod 011 r/m VMAXPS – Return Maximum Packed Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5F:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 010:5E:11 xmmreg1 xmmreglo3					
mem to MXCSR reg C4: rxb0_1: w_F 000:AEmod 011 r/m C5: r_F 000:AEmod 011 r/m VMAXPS — Return Maximum Packed Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 c4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with xmmreg1o3 to xmmreg1 c5: r_xmmreglo2 000:5F:11 xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 c5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3 c5: r_xmmreglo2 000:5F:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 010:5E:mod xmmreg1 r/m					
mem to MXCSR reg C5: r_F 000:AEmod 011 r/m VMAXPS — Return Maximum Packed Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 xmmreg2 with mem to xmmreg1 xmmreg2 with xmmreg103 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with xmmreglo3 to xmmreg1 xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 c5: r_xmmreglo2 000:5F:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 c4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	VLDMXCSR — Load MXCSR Register						
VMAXPS — Return Maximum Packed Single-Precision Floating-Point Values xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3 xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/m xmmreglo2 with xmmreglo3 to xmmreg1 C5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3 xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 000:5F:mod xmmreg1 r/m ymmreg2 with ymmreg3 to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3 ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	mem to MXCSR reg	C4: rxb0_1: w_F 000:AEmod 011 r/m					
Floating-Point Valuesxmmreg2 with xmmreg3 to xmmreg1C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3xmmreg2 with mem to xmmreg1C4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/mxmmreglo2 with xmmreglo3 to xmmreg1C5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3xmmreglo2 with mem to xmmreg1C5: r_xmmreglo2 000:5F:mod xmmreg1 r/mymmreg2 with ymmreg3 to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3ymmreg2 with mem to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	mem to MXCSR reg	C5: r_F 000:AEmod 011 r/m					
xmmreg2 with mem to xmmreg1C4: rxb0_1: w xmmreg2 000:5F:mod xmmreg1 r/mxmmreglo2 with xmmreglo3 to xmmreg1C5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3xmmreglo2 with mem to xmmreg1C5: r_xmmreglo2 000:5F:mod xmmreg1 r/mymmreg2 with ymmreg3 to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3ymmreg2 with mem to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m							
xmmreglo2 with xmmreglo3 to xmmreg1C5: r_xmmreglo2 000:5F:11 xmmreg1 xmmreglo3xmmreglo2 with mem to xmmreg1C5: r_xmmreglo2 000:5F:mod xmmreg1 r/mymmreg2 with ymmreg3 to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3ymmreg2 with mem to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:5F:11 xmmreg1 xmmreg3					
xmmreglo2 with mem to xmmreg1C5: r_xmmreglo2 000:5F:mod xmmreg1 r/mymmreg2 with ymmreg3 to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3ymmreg2 with mem to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	xmmreg2 with mem to xmmreg1	<u> </u>					
ymmreg2 with ymmreg3 to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3ymmreg2 with mem to ymmreg1C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	xmmreglo2 with xmmreglo3 to xmmreg1						
ymmreg2 with mem to ymmreg1 C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 000:5F:mod xmmreg1 r/m					
	ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:5F:11 ymmreg1 ymmreg3					
	ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:5F:mod ymmreg1 r/m					
ymmreglo2 with ymmreglo3 to ymmreg1 C5: r_ymmreglo2 100:5F:11 ymmreg1 ymmreglo3	ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 100:5F:11 ymmreg1 ymmreglo3					
ymmreglo2 with mem to ymmreg1 C5: r_ymmreglo2 100:5F:mod ymmreg1 r/m	ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 100:5F:mod ymmreg1 r/m					
VMAXSS — Return Maximum Scalar Single-Precision Floating-Point Value							
xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:11 xmmreg1 xmmreg3	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 010:5F:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 010:5F:mod xmmreg1 r/m	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 010:5F:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 010:5F:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1 C5: r_xmmreglo2 010:5F:mod xmmreg1 r/m	xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 010:5F:mod xmmreg1 r/m					
VMINPS — Return Minimum Packed Single-Precision Floating-Point Values							
xmmreg2 with xmmreg3 to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:11 xmmreg1 xmmreg3	xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:5D:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1 C4: rxb0_1: w xmmreg2 000:5D:mod xmmreg1 r/m	xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 000:5D:mod xmmreg1 r/m					

_					
Instruction and Format	Encoding				
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 000:5D:11 xmmreg1 xmmreglo3				
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 000:5D:mod xmmreg1 r/m				
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:5D:11 ymmreg1 ymmreg3				
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:5D:mod ymmreg1 r/m				
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 100:5D:11 ymmreg1 ymmreglo3				
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 100:5D:mod ymmreg1 r/m				
VMINSS — Return Minimum Scalar Single-Precision Floating-Point Value					
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 010:5D:11 xmmreg1 xmmreg3				
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 010:5D:mod xmmreg1 r/m				
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 010:5D:11 xmmreg1 xmmreglo3				
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 010:5D:mod xmmreg1 r/m				
VMOVAPS— Move Aligned Packed Single-Precision Floating-Point Values					
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 000:28:11 xmmreg1 xmmreg2				
mem to xmmreg1	C4: rxb0_1: w_F 000:28:mod xmmreg1 r/m				
xmmreglo to xmmreg1	C5: r_F 000:28:11 xmmreg1 xmmreglo				
mem to xmmreg1	C5: r_F 000:28:mod xmmreg1 r/m				
xmmreg1 to xmmreg2	C4: rxb0_1: w_F 000:29:11 xmmreg2 xmmreg1				
xmmreg1 to mem	C4: rxb0_1: w_F 000:29:mod r/m xmmreg1				
xmmreg1 to xmmreglo	C5: r_F 000:29:11 xmmreglo xmmreg1				
xmmreg1 to mem	C5: r_F 000:29:mod r/m xmmreg1				
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 100:28:11 ymmreg1 ymmreg2				
mem to ymmreg1	C4: rxb0_1: w_F 100:28:mod ymmreg1 r/m				
ymmreglo to ymmreg1	C5: r_F 100:28:11 ymmreg1 ymmreglo				
mem to ymmreg1	C5: r_F 100:28:mod ymmreg1 r/m				
ymmreg1 to ymmreg2	C4: rxb0_1: w_F 100:29:11 ymmreg2 ymmreg1				
ymmreg1 to mem	C4: rxb0_1: w_F 100:29:mod r/m ymmreg1				
ymmreg1 to ymmreglo	C5: r_F 100:29:11 ymmreglo ymmreg1				
ymmreg1 to mem	C5: r_F 100:29:mod r/m ymmreg1				
VMOVHPS — Move High Packed Single-Precision Floating- Point Values					
xmmreg1 with mem to xmmreg2	C4: rxb0_1: w xmmreg1 000:16:mod xmmreg2 r/m				
xmmreg1 with mem to xmmreglo2	C5: r_xmmreg1 000:16:mod xmmreglo2 r/m				
xmmreg1 to mem	C4: rxb0_1: w_F 000:17:mod r/m xmmreg1				
xmmreglo to mem	C5: r_F 000:17:mod r/m xmmreglo				
VMOVLHPS — Move Packed Single-Precision Floating-Point Values Low to High					
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:16:11 xmmreg1 xmmreg3				
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 000:16:11 xmmreg1 xmmreglo3				

Instruction and Format	Encoding					
VMOVLPS — Move Low Packed Single-Precision Floating- Point Values						
xmmreg1 with mem to xmmreg2	C4: rxb0_1: w xmmreg1 000:12:mod xmmreg2 r/m					
xmmreg1 with mem to xmmreglo2	C5: r_xmmreg1 000:12:mod xmmreglo2 r/m					
xmmreg1 to mem	C4: rxb0_1: w_F 000:13:mod r/m xmmreg1					
xmmreglo to mem	C5: r_F 000:13:mod r/m xmmreglo					
VMOVMSKPS — Extract Packed Single-Precision Floating- Point Sign Mask						
xmmreg2 to reg	C4: rxb0_1: w_F 000:50:11 reg xmmreg2					
xmmreglo to reg	C5: r_F 000:50:11 reg xmmreglo					
ymmreg2 to reg	C4: rxb0_1: w_F 100:50:11 reg ymmreg2					
ymmreglo to reg	C5: r_F 100:50:11 reg ymmreglo					
VMOVNTPS — Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint						
xmmreg1 to mem	C4: rxb0_1: w_F 000:2B:mod r/m xmmreg1					
xmmreglo to mem	C5: r_F 000:2B:mod r/m xmmreglo					
ymmreg1 to mem	C4: rxb0_1: w_F 100:2B:mod r/m ymmreg1					
ymmreglo to mem	C5: r_F 100:2B:mod r/m ymmreglo					
VMOVSS — Move Scalar Single-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 010:10:11 xmmreg1 xmmreg3					
mem to xmmreg1	C4: rxb0_1: w_F 010:10:mod xmmreg1 r/m					
xmmreg2 with xmmreg3 to xmmreg1	C5: r_xmmreg2 010:10:11 xmmreg1 xmmreg3					
mem to xmmreg1	C5: r_F 010:10:mod xmmreg1 r/m					
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 010:11:11 xmmreg1 xmmreg3					
xmmreg1 to mem	C4: rxb0_1: w_F 010:11:mod r/m xmmreg1					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 010:11:11 xmmreg1 xmmreglo3					
xmmreglo to mem	C5: r_F 010:11:mod r/m xmmreglo					
VMOVUPS— Move Unaligned Packed Single-Precision Floating-Point Values						
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 000:10:11 xmmreg1 xmmreg2					
mem to xmmreg1	C4: rxb0_1: w_F 000:10:mod xmmreg1 r/m					
xmmreglo to xmmreg1	C5: r_F 000:10:11 xmmreg1 xmmreglo					
mem to xmmreg1	C5: r_F 000:10:mod xmmreg1 r/m					
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 100:10:11 ymmreg1 ymmreg2					
mem to ymmreg1	C4: rxb0_1: w_F 100:10:mod ymmreg1 r/m					
ymmreglo to ymmreg1	C5: r_F 100:10:11 ymmreg1 ymmreglo					
mem to ymmreg1	C5: r_F 100:10:mod ymmreg1 r/m					
xmmreg1 to xmmreg2	C4: rxb0_1: w_F 000:11:11 xmmreg2 xmmreg1					
xmmreg1 to mem	C4: rxb0_1: w_F 000:11:mod r/m xmmreg1					
xmmreg1 to xmmreglo	C5: r_F 000:11:11 xmmreglo xmmreg1					

Instruction and Format	Encoding					
xmmreg1 to mem	C5: r_F 000:11:mod r/m xmmreg1					
ymmreg1 to ymmreg2	C4: rxb0_1: w_F 100:11:11 ymmreg2 ymmreg1					
ymmreg1 to mem	C4: rxb0_1: w_F 100:11:mod r/m ymmreg1					
ymmreg1 to ymmreglo	C5: r_F 100:11:11 ymmreglo ymmreg1					
ymmreg1 to mem	C5: r_F 100:11:mod r/m ymmreg1					
VMULPS — Multiply Packed Single-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:59:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 000:59:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 000:59:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 000:59:mod xmmreg1 r/m					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:59:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:59:mod ymmreg1 r/m					
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 100:59:11 ymmreg1 ymmreglo3					
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 100:59:mod ymmreg1 r/m					
VMULSS — Multiply Scalar Single-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 010:59:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 010:59:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 010:59:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 010:59:mod xmmreg1 r/m					
VORPS — Bitwise Logical OR of Single-Precision Floating- Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:56:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 000:56:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 000:56:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 000:56:mod xmmreg1 r/m					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:56:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:56:mod ymmreg1 r/m					
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 100:56:11 ymmreg1 ymmreglo3					
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 100:56:mod ymmreg1 r/m					
VRCPPS — Compute Reciprocals of Packed Single-Precision Floating-Point Values						
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 000:53:11 xmmreg1 xmmreg2					
mem to xmmreg1	C4: rxb0_1: w_F 000:53:mod xmmreg1 r/m					
xmmreglo to xmmreg1	C5: r_F 000:53:11 xmmreg1 xmmreglo					
mem to xmmreg1	C5: r_F 000:53:mod xmmreg1 r/m					
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 100:53:11 ymmreg1 ymmreg2					
mem to ymmreg1	C4: rxb0_1: w_F 100:53:mod ymmreg1 r/m					
ymmreglo to ymmreg1	C5: r_F 100:53:11 ymmreg1 ymmreglo					

Instruction and Format	Encoding					
mem to ymmreg1	C5: r_F 100:53:mod ymmreg1 r/m					
VRCPSS — Compute Reciprocal of Scalar Single-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 010:53:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 010:53:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 010:53:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 010:53:mod xmmreg1 r/m					
VRSQRTPS — Compute Reciprocals of Square Roots of Packed Single-Precision Floating-Point Values						
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 000:52:11 xmmreg1 xmmreg2					
mem to xmmreg1	C4: rxb0_1: w_F 000:52:mod xmmreg1 r/m					
xmmreglo to xmmreg1	C5: r_F 000:52:11 xmmreg1 xmmreglo					
mem to xmmreg1	C5: r_F 000:52:mod xmmreg1 r/m					
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 100:52:11 ymmreg1 ymmreg2					
mem to ymmreg1	C4: rxb0_1: w_F 100:52:mod ymmreg1 r/m					
ymmreglo to ymmreg1	C5: r_F 100:52:11 ymmreg1 ymmreglo					
mem to ymmreg1	C5: r_F 100:52:mod ymmreg1 r/m					
VRSQRTSS — Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point Value						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 010:52:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 010:52:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 010:52:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 010:52:mod xmmreg1 r/m					
VSHUFPS — Shuffle Packed Single-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1, imm8	C4: rxb0_1: w xmmreg2 000:C6:11 xmmreg1 xmmreg3: imm					
xmmreg2 with mem to xmmreg1, imm8	C4: rxb0_1: w xmmreg2 000:C6:mod xmmreg1 r/m: imm					
xmmreglo2 with xmmreglo3 to xmmreg1, imm8	C5: r_xmmreglo2 000:C6:11 xmmreg1 xmmreglo3: imm					
xmmreglo2 with mem to xmmreg1, imm8	C5: r_xmmreglo2 000:C6:mod xmmreg1 r/m: imm					
ymmreg2 with ymmreg3 to ymmreg1, imm8	C4: rxb0_1: w ymmreg2 100:C6:11 ymmreg1 ymmreg3: imm					
ymmreg2 with mem to ymmreg1, imm8	C4: rxb0_1: w ymmreg2 100:C6:mod ymmreg1 r/m: imm					
ymmreglo2 with ymmreglo3 to ymmreg1, imm8	C5: r_ymmreglo2 100:C6:11 ymmreg1 ymmreglo3: imm					
ymmreglo2 with mem to ymmreg1, imm8	C5: r_ymmreglo2 100:C6:mod ymmreg1 r/m: imm					
VSQRTPS — Compute Square Roots of Packed Single- Precision Floating-Point Values						
xmmreg2 to xmmreg1	C4: rxb0_1: w_F 000:51:11 xmmreg1 xmmreg2					
mem to xmmreg1	C4: rxb0_1: w_F 000:51:mod xmmreg1 r/m					
xmmreglo to xmmreg1	C5: r_F 000:51:11 xmmreg1 xmmreglo					
mem to xmmreg1	C5: r_F 000:51:mod xmmreg1 r/m					
ymmreg2 to ymmreg1	C4: rxb0_1: w_F 100:51:11 ymmreg1 ymmreg2					

Instruction and Format	Encoding					
ymmreglo to ymmreg1	C5: r_F 100:51:11 ymmreg1 ymmreglo					
mem to ymmreg1	C5: r_F 100:51:mod ymmreg1 r/m					
VSQRTSS — Compute Square Root of Scalar Single- Precision Floating-Point Value						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 010:51:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 010:51:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 010:51:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 010:51:mod xmmreg1 r/m					
VSTMXCSR — Store MXCSR Register State						
MXCSR to mem	C4: rxb0_1: w_F 000:AE:mod 011 r/m					
MXCSR to mem	C5: r_F 000:AE:mod 011 r/m					
VSUBPS — Subtract Packed Single-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:5C:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 000:5C:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 000:5C:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 000:5C:mod xmmreg1 r/m					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:5C:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:5C:mod ymmreg1 r/m					
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 100:5C:11 ymmreg1 ymmreglo3					
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 100:5C:mod ymmreg1 r/m					
VSUBSS — Subtract Scalar Single-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 010:5C:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 010:5C:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 010:5C:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 010:5C:mod xmmreg1 r/m					
VUCOMISS — Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS						
xmmreg2 with xmmreg1	C4: rxb0_1: w_F 000:2E:11 xmmreg1 xmmreg2					
mem with xmmreg1	C4: rxb0_1: w_F 000:2E:mod xmmreg1 r/m					
xmmreglo with xmmreg1	C5: r_F 000:2E:11 xmmreg1 xmmreglo					
mem with xmmreg1	C5: r_F 000:2E:mod xmmreg1 r/m					
UNPCKHPS — Unpack and Interleave High Packed Single- Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:15:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 000:15mod xmmreg1 r/m					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:15:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:15mod ymmreg1 r/m					
UNPCKLPS — Unpack and Interleave Low Packed Single- Precision Floating-Point Value						

Instruction and Format	Encoding					
	C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 xmmreg3					
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:14:11 xmmreg1 r/m					
xmmreg2 with mem to xmmreg1						
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:14:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:14mod ymmreg1 r/m					
VXORPS — Bitwise Logical XOR for Single-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_1: w xmmreg2 000:57:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_1: w xmmreg2 000:57:mod xmmreg1 r/m					
xmmreglo2 with xmmreglo3 to xmmreg1	C5: r_xmmreglo2 000:57:11 xmmreg1 xmmreglo3					
xmmreglo2 with mem to xmmreg1	C5: r_xmmreglo2 000:57:mod xmmreg1 r/m					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_1: w ymmreg2 100:57:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_1: w ymmreg2 100:57:mod ymmreg1 r/m					
ymmreglo2 with ymmreglo3 to ymmreg1	C5: r_ymmreglo2 100:57:11 ymmreg1 ymmreglo3					
ymmreglo2 with mem to ymmreg1	C5: r_ymmreglo2 100:57:mod ymmreg1 r/m					
VBROADCAST —Load with Broadcast						
mem to xmmreg1	C4: rxb0_2: 0_F 001:18:mod xmmreg1 r/m					
mem to ymmreg1	C4: rxb0_2: 0_F 101:18:mod ymmreg1 r/m					
mem to ymmreg1	C4: rxb0_2: 0_F 101:19:mod ymmreg1 r/m					
mem to ymmreg1	C4: rxb0_2: 0_F 101:1A:mod ymmreg1 r/m					
VEXTRACTF128 — Extract Packed Floating-Point Values						
ymmreg2 to xmmreg1, imm8	C4: rxb0_3: 0_F 001:19:11 xmmreg1 ymmreg2: imm					
ymmreg2 to mem, imm8	C4: rxb0_3: 0_F 001:19:mod r/m ymmreg2: imm					
VINSERTF128 — Insert Packed Floating-Point Values						
xmmreg3 and merge with ymmreg2 to ymmreg1, imm8	C4: rxb0_3: 0 ymmreg2101:18:11 ymmreg1 xmmreg3: imm					
mem and merge with ymmreg2 to ymmreg1, imm8	C4: rxb0_3: 0 ymmreg2 101:18:mod ymmreg1 r/m: imm					
VPERMILPD — Permute Double-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: 0 xmmreg2 001:0D:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_2: 0 xmmreg2 001:0D:mod xmmreg1 r/m					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_2: 0 ymmreg2 101:0D:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_2: 0 ymmreg2 101:0D:mod ymmreg1 r/m					
xmmreg2 to xmmreg1, imm	C4: rxb0_3: 0_F 001:05:11 xmmreg1 xmmreg2: imm					
mem to xmmreg1, imm	C4: rxb0_3: 0_F 001:05:mod xmmreg1 r/m: imm					
ymmreg2 to ymmreg1, imm	C4: rxb0_3: 0_F 101:05:11 ymmreg1 ymmreg2: imm					
mem to ymmreg1, imm	C4: rxb0_3: 0_F 101:05:mod ymmreg1 r/m: imm					
VPERMILPS — Permute Single-Precision Floating-Point Values						
xmmreg2 with xmmreg3 to xmmreg1	C4: rxb0_2: 0 xmmreg2 001:0C:11 xmmreg1 xmmreg3					
xmmreg2 with mem to xmmreg1	C4: rxb0_2: 0 xmmreg2 001:0C:mod xmmreg1 r/m					
xmmreg2 to xmmreg1, imm	C4: rxb0_3: 0_F 001:04:11 xmmreg1 xmmreg2: imm					
L						

Instruction and Format	Encoding					
mem to xmmreg1, imm	C4: rxb0_3: 0_F 001:04:mod xmmreg1 r/m: imm					
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_2: 0 ymmreg2 101:0C:11 ymmreg1 ymmreg3					
ymmreg2 with mem to ymmreg1	C4: rxb0_2: 0 ymmreg2 101:0C:mod ymmreg1 r/m					
ymmreg2 to ymmreg1, imm	C4: rxb0_3: 0_F 101:04:11 ymmreg1 ymmreg2: imm					
mem to ymmreg1, imm	C4: rxb0_3: 0_F 101:04:mod ymmreg1 r/m: imm					
VPERM2F128 — Permute Floating-Point Values						
ymmreg2 with ymmreg3 to ymmreg1	C4: rxb0_3: 0 ymmreg2 101:06:11 ymmreg1 ymmreg3: imm					
ymmreg2 with mem to ymmreg1	C4: rxb0_3: 0 ymmreg2 101:06:mod ymmreg1 r/m: imm					
VTESTPD/VTESTPS — Packed Bit Test						
xmmreg2 to xmmreg1	C4: rxb0_2: 0_F 001:0E:11 xmmreg2 xmmreg1					
mem to xmmreg1	C4: rxb0_2: 0_F 001:0E:mod xmmreg2 r/m					
ymmreg2 to ymmreg1	C4: rxb0_2: 0_F 101:0E:11 ymmreg2 ymmreg1					
mem to ymmreg1	C4: rxb0_2: 0_F 101:0E:mod ymmreg2 r/m					
xmmreg2 to xmmreg1	C4: rxb0_2: 0_F 001:0F:11 xmmreg1 xmmreg2: imm					
mem to xmmreg1	C4: rxb0_2: 0_F 001:0F:mod xmmreg1 r/m: imm					
ymmreg2 to ymmreg1	C4: rxb0_2: 0_F 101:0F:11 ymmreg1 ymmreg2: imm					
mem to ymmreg1	C4: rxb0_2: 0_F 101:0F:mod ymmreg1 r/m: imm					

NOTES:

^{1.} The term "lo" refers to the lower eight registers, 0-7

B.17 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS

Table B-38 shows the five different formats used for floating-point instructions. In all cases, instructions are at least two bytes long and begin with the bit pattern 11011.

Table B-38. General Floating-Point Instruction Formats

	Instruction										
	First Byte Second Byte								Optiona	l Fields	
1	11011	OI	PA	1	m	od	1	OPB	r/m	s-i-b	disp
2	11011	M	1F	OPA	m	mod OPB r/r			r/m	s-i-b	disp
3	11011	1011 d P OPA 1 1 OPB R ST(i)									
4	11011	11011 0 0 1 1 1 1 0P									
5	11011	0	1	1	1 1 1 OP						
	15-11 10 9 8 7 6 5 4 3 2 1 0										
00 -	MF = Memory Format 00 — 32-bit real						d = 0 — Destir R d = 1 — Sou				
	1 — 32-bit integer 0 — 64-bit real ST(i) — Pagistar stack element i										

11 — 16-bit integer

P = Pop

0 — Do not pop stack

1 — Pop stack after operation

d = Destination

0 — Destination is ST(0)

1 — Destination is ST(i)

ST(i) = Register stack element i

000 = Stack Top

001 = Second stack element

111 = Eighth stack element

The Mod and R/M fields of the ModR/M byte have the same interpretation as the corresponding fields of the integer instructions. The SIB byte and disp (displacement) are optionally present in instructions that have Mod and R/M fields. Their presence depends on the values of Mod and R/M, as for integer instructions.

Table B-39 shows the formats and encodings of the floating-point instructions.

Table B-39. Floating-Point Instruction Formats and Encodings

Instruction and Format	Encoding		
F2XM1 - Compute 2 ^{ST(0)} - 1	11011 001 : 1111 0000		
FABS - Absolute Value	11011 001 : 1110 0001		
FADD - Add			
$ST(0) \leftarrow ST(0) + 32$ -bit memory	11011 000 : mod 000 r/m		
$ST(0) \leftarrow ST(0) + 64$ -bit memory	11011 100 : mod 000 r/m		
$ST(d) \leftarrow ST(0) + ST(i)$	11011 d00 : 11 000 ST(i)		
FADDP - Add and Pop			
$ST(0) \leftarrow ST(0) + ST(i)$	11011 110 : 11 000 ST(i)		
FBLD - Load Binary Coded Decimal	11011 111 : mod 100 r/m		
FBSTP - Store Binary Coded Decimal and Pop	11011 111 : mod 110 r/m		
FCHS - Change Sign	11011 001 : 1110 0000		
FCLEX - Clear Exceptions	11011 011 : 1110 0010		
FCOM - Compare Real			

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format	Encoding
32-bit memory	11011 000 : mod 010 r/m
64-bit memory	11011 100 : mod 010 r/m
ST(i)	11011 000 : 11 010 ST(i)
FCOMP - Compare Real and Pop	
32-bit memory	11011 000 : mod 011 r/m
64-bit memory	11011 100 : mod 011 r/m
ST(i)	11011 000 : 11 011 ST(i)
FCOMPP - Compare Real and Pop Twice	11011 110:11 011 001
FCOMIP - Compare Real, Set EFLAGS, and Pop	11011 111 : 11 110 ST(i)
FCOS - Cosine of ST(0)	11011 001 : 1111 1111
FDECSTP - Decrement Stack-Top Pointer	11011 001 : 1111 0110
FDIV - Divide	
$ST(0) \leftarrow ST(0) \div 32$ -bit memory	11011 000 : mod 110 r/m
$ST(0) \leftarrow ST(0) \div 64$ -bit memory	11011 100 : mod 110 r/m
$ST(d) \leftarrow ST(0) \div ST(i)$	11011 d00 : 1111 R ST(i)
FDIVP - Divide and Pop	
$ST(0) \leftarrow ST(0) \div ST(i)$	11011 110: 1111 1 ST(i)
FDIVR - Reverse Divide	
ST(0) ← 32-bit memory ÷ ST(0)	11011 000 : mod 111 r/m
ST(0) ← 64-bit memory ÷ ST(0)	11011 100 : mod 111 r/m
$ST(d) \leftarrow ST(i) \div ST(0)$	11011 d00: 1111 R ST(i)
FDIVRP - Reverse Divide and Pop	
ST(0) " ST(i) ÷ ST(0)	11011 110:1111 0 ST(i)
FFREE - Free ST(i) Register	11011 101 : 1100 0 ST(i)
FIADD - Add Integer	
$ST(0) \leftarrow ST(0) + 16$ -bit memory	11011 110: mod 000 r/m
$ST(0) \leftarrow ST(0) + 32$ -bit memory	11011 010: mod 000 r/m
FICOM - Compare Integer	
16-bit memory	11011 110: mod 010 r/m
32-bit memory	11011 010 : mod 010 r/m
FICOMP – Compare Integer and Pop	
16-bit memory	11011 110: mod 011 r/m
32-bit memory	11011 010 : mod 011 r/m
FIDIV - Divide	
$ST(0) \leftarrow ST(0) \div 16$ -bit memory	11011 110: mod 110 r/m
$ST(0) \leftarrow ST(0) \div 32$ -bit memory	11011 010 : mod 110 r/m
FIDIVR - Reverse Divide	
$ST(0) \leftarrow 16$ -bit memory ÷ $ST(0)$	11011 110 : mod 111 r/m

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format	Encoding
$ST(0) \leftarrow 32$ -bit memory ÷ $ST(0)$	11011 010 : mod 111 r/m
FILD - Load Integer	
16-bit memory	11011 111 : mod 000 r/m
32-bit memory	11011 011 : mod 000 r/m
64-bit memory	11011 111 : mod 101 r/m
FIMUL- Multiply	
$ST(0) \leftarrow ST(0) \times 16$ -bit memory	11011 110 : mod 001 r/m
$ST(0) \leftarrow ST(0) \times 32$ -bit memory	11011 010 : mod 001 r/m
FINCSTP - Increment Stack Pointer	11011 001 : 1111 0111
FINIT - Initialize Floating-Point Unit	
FIST - Store Integer	
16-bit memory	11011 111 : mod 010 r/m
32-bit memory	11011 011 : mod 010 r/m
FISTP - Store Integer and Pop	
16-bit memory	11011 111 : mod 011 r/m
32-bit memory	11011 011 : mod 011 r/m
64-bit memory	11011 111 : mod 111 r/m
FISUB - Subtract	
$ST(0) \leftarrow ST(0)$ - 16-bit memory	11011 110 : mod 100 r/m
$ST(0) \leftarrow ST(0)$ - 32-bit memory	11011 010 : mod 100 r/m
FISUBR - Reverse Subtract	
$ST(0) \leftarrow 16$ -bit memory – $ST(0)$	11011 110 : mod 101 r/m
$ST(0) \leftarrow 32$ -bit memory – $ST(0)$	11011 010 : mod 101 r/m
FLD - Load Real	
32-bit memory	11011 001 : mod 000 r/m
64-bit memory	11011 101 : mod 000 r/m
80-bit memory	11011 011 : mod 101 r/m
ST(i)	11011 001 : 11 000 ST(i)
FLD1 - Load +1.0 into ST(0)	11011 001 : 1110 1000
FLDCW – Load Control Word	11011 001 : mod 101 r/m
FLDENV - Load FPU Environment	11011 001 : mod 100 r/m
FLDL2E – Load log ₂ (ε) into ST(0)	11011 001 : 1110 1010
FLDL2T - Load log ₂ (10) into ST(0)	11011 001 : 1110 1001
FLDLG2 - Load log ₁₀ (2) into ST(0)	11011 001 : 1110 1100
FLDLN2 - Load $\log_{\epsilon}(2)$ into ST(0)	11011 001 : 1110 1101
FLDPI – Load π into ST(0)	11011 001 : 1110 1011
FLDZ - Load +0.0 into ST(0)	11011 001 : 1110 1110
FMUL - Multiply	

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format	Encoding
$ST(0) \leftarrow ST(0) \times 32$ -bit memory	11011 000 : mod 001 r/m
$ST(0) \leftarrow ST(0) \times 64$ -bit memory	11011 100 : mod 001 r/m
$ST(d) \leftarrow ST(0) \times ST(i)$	11011 d00 : 1100 1 ST(i)
FMULP - Multiply	
$ST(i) \leftarrow ST(0) \times ST(i)$	11011 110 : 1100 1 ST(i)
FNOP - No Operation	11011 001 : 1101 0000
FPATAN - Partial Arctangent	11011 001 : 1111 0011
FPREM - Partial Remainder	11011 001 : 1111 1000
FPREM1 - Partial Remainder (IEEE)	11011 001 : 1111 0101
FPTAN - Partial Tangent	11011 001 : 1111 0010
FRNDINT – Round to Integer	11011 001 : 1111 1100
FRSTOR - Restore FPU State	11011 101 : mod 100 r/m
FSAVE - Store FPU State	11011 101 : mod 110 r/m
FSCALE - Scale	11011 001 : 1111 1101
FSIN - Sine	11011 001 : 1111 1110
FSINCOS - Sine and Cosine	11011 001 : 1111 1011
FSQRT - Square Root	11011 001 : 1111 1010
FST - Store Real	
32-bit memory	11011 001 : mod 010 r/m
64-bit memory	11011 101 : mod 010 r/m
ST(i)	11011 101 : 11 010 ST(i)
FSTCW - Store Control Word	11011 001 : mod 111 r/m
FSTENV - Store FPU Environment	11011 001 : mod 110 r/m
FSTP - Store Real and Pop	
32-bit memory	11011 001 : mod 011 r/m
64-bit memory	11011 101 : mod 011 r/m
80-bit memory	11011 011 : mod 111 r/m
ST(i)	11011 101 : 11 011 ST(i)
FSTSW - Store Status Word into AX	11011 111 : 1110 0000
FSTSW - Store Status Word into Memory	11011 101 : mod 111 r/m
FSUB - Subtract	
$ST(0) \leftarrow ST(0)$ – 32-bit memory	11011 000 : mod 100 r/m
$ST(0) \leftarrow ST(0)$ – 64-bit memory	11011 100 : mod 100 r/m
$ST(d) \leftarrow ST(0) - ST(i)$	11011 d00:1110 R ST(i)
FSUBP - Subtract and Pop	
$ST(0) \leftarrow ST(0) - ST(i)$	11011 110 : 1110 1 ST(i)
FSUBR - Reverse Subtract	
$ST(0) \leftarrow 32$ -bit memory – $ST(0)$	11011 000 : mod 101 r/m

Table B-39. Floating-Point Instruction Formats and Encodings (Contd.)

Instruction and Format	Encoding
$ST(0) \leftarrow 64$ -bit memory - $ST(0)$	11011 100 : mod 101 r/m
$ST(d) \leftarrow ST(i) - ST(0)$	11011 d00 : 1110 R ST(i)
FSUBRP - Reverse Subtract and Pop	
$ST(i) \leftarrow ST(i) - ST(0)$	11011 110 : 1110 0 ST(i)
FTST - Test	11011 001 : 1110 0100
FUCOM - Unordered Compare Real	11011 101 : 1110 0 ST(i)
FUCOMP - Unordered Compare Real and Pop	11011 101 : 1110 1 ST(i)
FUCOMPP - Unordered Compare Real and Pop Twice	11011 010 : 1110 1001
FUCOMI - Unorderd Compare Real and Set EFLAGS	11011 011 : 11 101 ST(i)
FUCOMIP - Unorderd Compare Real, Set EFLAGS, and Pop	11011 111 : 11 101 ST(i)
FXAM - Examine	11011 001 : 1110 0101
FXCH - Exchange ST(0) and ST(i)	11011 001 : 1100 1 ST(i)
FXTRACT - Extract Exponent and Significand	11011 001 : 1111 0100
FYL2X - ST(1) × log ₂ (ST(0))	11011 001 : 1111 0001
FYL2XP1 - ST(1) × log ₂ (ST(0) + 1.0)	11011 001 : 1111 1001
FWAIT - Wait until FPU Ready	1001 1011 (same instruction as WAIT)

B.18 VMX INSTRUCTIONS

Table B-40 describes virtual-machine extensions (VMX).

Table B-40. Encodings for VMX Instructions

Instruction and Format	Encoding			
INVEPT—Invalidate Cached EPT Mappings				
Descriptor m128 according to reg	01100110 00001111 00111000 10000000: mod reg r/m			
INVVPID—Invalidate Cached VPID Mappings				
Descriptor m128 according to reg	01100110 00001111 00111000 10000001: mod reg r/m			
VMCALL—Call to VM Monitor				
Call VMM: causes VM exit.	00001111 00000001 11000001			
VMCLEAR—Clear Virtual-Machine Control Structure				
mem32:VMCS_data_ptr	01100110 00001111 11000111: mod 110 r/m			
mem64:VMCS_data_ptr	01100110 00001111 11000111: mod 110 r/m			
VMFUNC—Invoke VM Function				
Invoke VM function specified in EAX	00001111 00000001 11010100			
VMLAUNCH—Launch Virtual Machine				
Launch VM managed by Current_VMCS	00001111 00000001 11000010			
VMRESUME—Resume Virtual Machine				
Resume VM managed by Current_VMCS	00001111 00000001 11000011			
VMPTRLD—Load Pointer to Virtual-Machine Control Structure				

Table B-40. Encodings for VMX Instructions

Instruction and Format	Encoding
mem32 to Current_VMCS_ptr	00001111 11000111: mod 110 r/m
mem64 to Current_VMCS_ptr	00001111 11000111: mod 110 r/m
VMPTRST—Store Pointer to Virtual-Machine Control Structure	
Current_VMCS_ptr to mem32	00001111 11000111: mod 111 r/m
Current_VMCS_ptr to mem64	00001111 11000111: mod 111 r/m
VMREAD—Read Field from Virtual-Machine Control Structure	
r32 (VMCS_fieldn) to r32	00001111 01111000: 11 reg2 reg1
r32 (VMCS_fieldn) to mem32	00001111 01111000: mod r32 r/m
r64 (VMCS_fieldn) to r64	00001111 01111000: 11 reg2 reg1
r64 (VMCS_fieldn) to mem64	00001111 01111000: mod r64 r/m
VMWRITE—Write Field to Virtual-Machine Control Structure	
r32 to r32 (VMCS_fieldn)	00001111 01111001: 11 reg1 reg2
mem32 to r32 (VMCS_fieldn)	00001111 01111001: mod r32 r/m
r64 to r64 (VMCS_fieldn)	00001111 01111001: 11 reg1 reg2
mem64 to r64 (VMCS_fieldn)	00001111 01111001: mod r64 r/m
VMXOFF—Leave VMX Operation	
Leave VMX.	00001111 00000001 11000100
VMXON—Enter VMX Operation	
Enter VMX.	11110011 000011111 11000111: mod 110 r/m

B.19 SMX INSTRUCTIONS

Table B-38 describes Safer Mode extensions (VMX). GETSEC leaf functions are selected by a valid value in EAX on input.

Table B-41. Encodings for SMX Instructions

Instruction and Format	Encoding
GETSEC—GETSEC leaf functions are selected by the value in EAX on input	
GETSEC[CAPABILITIES]	00001111 00110111 (EAX= 0)
GETSEC[ENTERACCS]	00001111 00110111 (EAX= 2)
GETSEC[EXITAC]	00001111 00110111 (EAX= 3)
GETSEC[SENTER]	00001111 00110111 (EAX= 4)
GETSEC[SEXIT]	00001111 00110111 (EAX= 5)
GETSEC[PARAMETERS]	00001111 00110111 (EAX= 6)
GETSEC[SMCTRL]	00001111 00110111 (EAX= 7)
GETSEC[WAKEUP]	00001111 00110111 (EAX= 8)

APPENDIX C INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS

The two tables in this appendix itemize the Intel C/C++ compiler intrinsics and functional equivalents for the Intel MMX technology, SSE, SSE2, SSE3, and SSSE3 instructions.

There may be additional intrinsics that do not have an instruction equivalent. It is strongly recommended that the reader reference the compiler documentation for the complete list of supported intrinsics. Please refer to http://www.intel.com/support/performancetools/.

Table C-1 presents simple intrinsics and Table C-2 presents composite intrinsics. Some intrinsics are "composites" because they require more than one instruction to implement them.

Intel C/C++ Compiler intrinsic names reflect the following naming conventions:

```
mm <intrin op> <suffix>
```

where:

<intrin_op> Indicates the intrinsics basic operation; for example, add for addition and sub for subtrac-

tion

<suffix> Denotes the type of data operated on by the instruction. The first one or two letters of

each suffix denotes whether the data is packed (p), extended packed (ep), or scalar (s).

The remaining letters denote the type:

S	single-precision floating point
d	double-precision floating point
i128	signed 128-bit integer
i64	signed 64-bit integer
u64	unsigned 64-bit integer
i32	signed 32-bit integer
u32	unsigned 32-bit integer
i16	signed 16-bit integer
u16	unsigned 16-bit integer
i8	signed 8-bit integer
u8	unsigned 8-bit integer

The variable r is generally used for the intrinsic's return value. A number appended to a variable name indicates the element of a packed object. For example, r0 is the lowest word of r.

The packed values are represented in right-to-left order, with the lowest value being used for scalar operations. Consider the following example operation:

```
double a[2] = {1.0, 2.0};
__m128d t = _mm_load_pd(a);
```

The result is the same as either of the following:

```
_{m128d t = _{mm_set_pd(2.0, 1.0);}

_{m128d t = _{mm_set_pd(1.0, 2.0);}
```

In other words, the XMM register that holds the value t will look as follows:

	2.0		1.0	
127		64 63		0

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments to be immediates (constant integer literals).

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_name (parameters)

Where:

data_type Is the return data type, which can be either void, int, __m64, __m128, __m128d, or

__m128i. Only the _mm_empty intrinsic returns void.

code instead of in-lining the actual instruction.

parameters Represents the parameters required by each intrinsic.

C.1 SIMPLE INTRINSICS

NOTE

For detailed descriptions of the intrinsics in Table C-1, see the corresponding mnemonic in Chapter 3, "Instruction Set Reference, A-L" of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2A, Chapter 4, "Instruction Set Reference, M-U" of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2B, or Chapter 5, "Instruction Set Reference, V-Z," of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2C.

T 1 1		-	C:				
Lab	Р	-1	Sim	NIA	Intr	ınsı	

Mnemonic	Intrinsic
ADDPD	m128d _mm_add_pd(m128d a,m128d b)
ADDPS	m128 _mm_add_ps(m128 a,m128 b)
ADDSD	m128d _mm_add_sd(m128d a,m128d b)
ADDSS	m128 _mm_add_ss(m128 a,m128 b)
ADDSUBPD	m128d _mm_addsub_pd(m128d a,m128d b)
ADDSUBPS	m128 _mm_addsub_ps(m128 a,m128 b)
AESDEC	m128i _mm_aesdec (m128i,m128i)
AESDECLAST	m128i _mm_aesdeclast (m128i,m128i)
AESENC	m128i _mm_aesenc (m128i,m128i)
AESENCLAST	m128i _mm_aesenclast (m128i,m128i)
AESIMC	m128i _mm_aesimc (m128i)
AESKEYGENASSIST	m128i _mm_aesimc (m128i, const int)
ANDNPD	m128d _mm_andnot_pd(m128d a,m128d b)
ANDNPS	m128 _mm_andnot_ps(m128 a,m128 b)
ANDPD	m128d _mm_and_pd(m128d a,m128d b)
ANDPS	m128 _mm_and_ps(m128 a,m128 b)
BLENDPD	m128d _mm_blend_pd(m128d v1,m128d v2, const int mask)
BLENDPS	m128 _mm_blend_ps(m128 v1,m128 v2, const int mask)
BLENDVPD	m128d _mm_blendv_pd(m128d v1,m128d v2,m128d v3)
BLENDVPS	m128 _mm_blendv_ps(m128 v1,m128 v2,m128 v3)
CLFLUSH	void _mm_clflush(void const *p)
CMPPD	m128d _mm_cmpeq_pd(m128d a,m128d b)

Table C-1. Simple Intrinsics (Contd.)

Mnemonic	Intrinsic (Contd.)
Tilleliioliie	m128d _mm_cmplt_pd(m128d a,m128d b)
	m128d _mm_cmple_pd(m128d a,m128d b)
	m128d _mm_cmpgt_pd(m128d a,m128d b)
	m128d _mm_cmpqe_pd(m128d a,m128d b)
	m128d _mm_cmpneq_pd(m128d a,m128d b)
	m128d _mm_cmpnlt_pd(m128d a,m128d b)
	m128d _mm_cmpngt_pd(m128d a,m128d b)
	m128d _mm_cmpnge_pd(m128d a,m128d b)
	m128d _mm_cmpord_pd(m128d a,m128d b)
	m128d _mm_cmpunord_pd(m128d a,m128d b)
	m128d _mm_cmpnle_pd(m128d a,m128d b)
CMPPS	m128 _mm_cmpeq_ps(m128 a,m128 b)
	m128 _mm_cmplt_ps(m128 a,m128 b)
	m128 _mm_cmple_ps(m128 a,m128 b)
	m128 _mm_cmpgt_ps(m128 a,m128 b)
	m128 _mm_cmpge_ps(m128 a,m128 b)
	m128 _mm_cmpneq_ps(m128 a,m128 b)
	m128 _mm_cmpnlt_ps(m128 a,m128 b)
	m128 _mm_cmpngt_ps(m128 a,m128 b)
	m128 _mm_cmpnge_ps(m128 a,m128 b)
	m128 _mm_cmpord_ps(m128 a,m128 b)
	m128 _mm_cmpunord_ps(m128 a,m128 b)
	m128 _mm_cmpnle_ps(m128 a,m128 b)
CMPSD	m128d _mm_cmpeq_sd(m128d a,m128d b)
	m128d _mm_cmplt_sd(m128d a,m128d b)
	m128d _mm_cmple_sd(m128d a,m128d b)
	m128d _mm_cmpgt_sd(m128d a,m128d b)
	m128d _mm_cmpge_sd(m128d a,m128d b)
	m128 _mm_cmpneq_sd(m128d a,m128d b)
	m128 _mm_cmpnlt_sd(m128d a,m128d b)
	m128d _mm_cmpnle_sd(m128d a,m128d b)
	m128d _mm_cmpngt_sd(m128d a,m128d b)
	m128d _mm_cmpnge_sd(m128d a,m128d b)
CMPSS	m128 _mm_cmpeq_ss(m128 a,m128 b)
	m128 _mm_cmplt_ss(m128 a,m128 b)
	m128 _mm_cmple_ss(m128 a,m128 b)
	m128 _mm_cmpgt_ss(m128 a,m128 b)
	m128 _mm_cmpge_ss(m128 a,m128 b)
	m128 _mm_cmpneq_ss(m128 a,m128 b)

Table C-1. Simple Intrinsics (Contd.)

Mnemonic	Intrinsic
	m128 _mm_cmpnlt_ss(m128 a,m128 b)
	m128 _mm_cmpnle_ss(m128 a,m128 b)
	m128 _mm_cmpngt_ss(m128 a,m128 b)
	m128 _mm_cmpnge_ss(m128 a,m128 b)
	m128 _mm_cmpord_ss(m128 a,m128 b)
	m128 _mm_cmpunord_ss(m128 a,m128 b)
COMISD	int _mm_comieq_sd(m128d a,m128d b)
COLISE	int _mm_comilt_sd(m128d a,m128d b)
	int _mm_comile_sd(m128d a,m128d b)
	int _mm_comigt_sd(m128d a,m128d b)
	int _mm_comige_sd(m128d a,m128d b)
	int _mm_cominge_sd(m128d a,m128d b)
COMISS	int _mm_comieq_ss(m128 a,m128 b)
COMISS	int _mm_comilt_ss(m128 a,m128 b)
	int _mm_comile_ss(m128 a,m128 b)
	int _mm_comigt_ss(m128 a,m128 b)
	int _mm_comige_ss(m128 a,m128 b)
	,
CRC32	int _mm_comineq_ss(m128 a,m128 b) unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)
CRC52	unsigned int _mm_crc32_u6(unsigned int crc, unsigned short data) unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)
	unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)
CVTDO2DD	unsignedint64 _mm_crc32_u64(unsingedint64 crc, unsignedint64 data)
CVTDQ2PD	m128d _mm_cvtepi32_pd(m128i a)
CVTDQ2PS	m128 _mm_cvtepi32_ps(m128i a)
CVTPD2DQ	m128i _mm_cvtpd_epi32(m128d a)
CVTPD2PI	m64 _mm_cvtpd_pi32(m128d a)
CVTPD2PS	m128 _mm_cvtpd_ps(m128d a)
CVTPI2PD	m128d _mm_cvtpi32_pd(m64 a)
CVTPI2PS	m128 _mm_cvt_pi2ps(m128 a,m64 b) m128 _mm_cvtpi32_ps(m128 a,m64 b)
CVTPS2DQ	m128i _mm_cvtps_epi32(m128 a)
CVTPS2PD	m128d _mm_cvtps_pd(m128 a)
CVTPS2PI	m64 _mm_cvt_ps2pi(m128 a) m64 _mm_cvtps_pi32(m128 a)
CVTSD2SI	int _mm_cvtsd_si32(m128d a)
CVTSD2SS	m128 _mm_cvtsd_ss(m128 a,m128d b)
CVTSI2SD	m128d _mm_cvtsi32_sd(m128d a, int b)
CVTSI2SS	m128 _mm_cvt_si2ss(m128 a, int b)m128 _mm_cvtsi32_ss(m128 a, int b)m128 _mm_cvtsi64_ss(m128 a,int64 b)
CVTSS2SD	m128d _mm_cvtss_sd(m128d a,m128 b)
CVTSS2SI	int _mm_cvt_ss2si(m128 a) int _mm_cvtss_si32(m128 a)

Table C-1. Simple Intrinsics (Contd.)

	Intrinsic
CVTTPD2DQ _	_m128i _mm_cvttpd_epi32(m128d a)
CVTTPD2PI _	m64 _mm_cvttpd_pi32(m128d a)
CVTTPS2DQ _	_m128i
CVTTPS2PI _	m64 _mm_cvtt_ps2pi(m128
CVTTSD2SI i	nt _mm_cvttsd_si32(m128d a)
CVTTSS2SI i	nt _mm_cvtt_ss2si(m128 a) nt _mm_cvttss_si32(m128 a)
-	m64 _mm_cvtsi32_si64(int i)
i	nt _mm_cvtsi64_si32(m64 m)
DIVPD _	_m128d _mm_div_pd(m128d a,m128d b)
DIVPS _	_m128 _mm_div_ps(m128 a,m128 b)
DIVSD _	_m128d _mm_div_sd(m128d a,m128d b)
DIVSS _	_m128 _mm_div_ss(m128 a,m128 b)
DPPD _	m128d _mm_dp_pd(m128d a,m128d b, const int mask)
DPPS _	m128 _mm_dp_ps(m128 a,m128 b, const int mask)
EMMS \	void _mm_empty()
EXTRACTPS i	nt _mm_extract_ps(m128 src, const int ndx)
HADDPD _	m128d _mm_hadd_pd(m128d a,m128d b)
HADDPS _	m128 _mm_hadd_ps(m128 a,m128 b)
HSUBPD _	m128d _mm_hsub_pd(m128d a,m128d b)
HSUBPS _	_m128 _mm_hsub_ps(m128 a,m128 b)
INSERTPS _	_m128 _mm_insert_ps(m128 dst,m128 src, const int ndx)
LDDQU	_m128i _mm_lddqu_si128(m128i const *p)
LDMXCSR _	_mm_setcsr(unsigned int i)
LFENCE	void _mm_lfence(void)
MASKMOVDQU	void _mm_maskmoveu_si128(m128i d,m128i n, char *p)
MASKMOVQ	void _mm_maskmove_si64(m64 d,m64 n, char *p)
MAXPD _	_m128d _mm_max_pd(m128d a,m128d b)
MAXPS _	_m128 _mm_max_ps(m128 a,m128 b)
MAXSD _	_m128d _mm_max_sd(m128d a,m128d b)
MAXSS	_m128 _mm_max_ss(m128 a,m128 b)
MFENCE \	void _mm_mfence(void)
MINPD _	_m128d _mm_min_pd(m128d a,m128d b)
MINPS _	_m128 _mm_min_ps(m128 a,m128 b)
MINSD _	m128d _mm_min_sd(m128d a,m128d b)
MINSS _	_m128 _mm_min_ss(m128 a,m128 b)
MONITOR	void _mm_monitor(void const *p, unsigned extensions, unsigned hints)
MOVAPD _	_m128d _mm_load_pd(double * p)
	void_mm_store_pd(double *p,m128d a)
MOVAPS	_m128 _mm_load_ps(float * p)
	void_mm_store_ps(float *p,m128 a)

Table C-1. Simple Intrinsics (Contd.)

Intrinsic
m128i _mm_cvtsi32_si128(int a)
int _mm_cvtsi128_si32(m128i a)
m64 _mm_cvtsi32_si64(int a)
int _mm_cvtsi64_si32(m64 a)
m128d _mm_movedup_pd(m128d a)
m128d _mm_loaddup_pd(double const * dp)
m128i _mm_load_si128(m128i * p)
void_mm_store_si128(m128i *p,m128i a)
m128i _mm_loadu_si128(m128i * p)
void_mm_storeu_si128(m128i *p,m128i a)
m64 _mm_movepi64_pi64(m128i a)
m128 _mm_movehl_ps(m128 a,m128 b)
m128d _mm_loadh_pd(m128d a, double * p)
void _mm_storeh_pd(double * p,m128d a)
m128 _mm_loadh_pi(m128 a,m64 * p)
void _mm_storeh_pi(m64 * p,m128 a)
m128d _mm_loadl_pd(m128d a, double * p)
void _mm_storel_pd(double * p,m128d a)
m128 _mm_loadl_pi(m128 a,m64 *p)
void_mm_storel_pi(m64 * p,m128 a)
m128 _mm_movelh_ps(m128 a,m128 b)
int _mm_movemask_pd(m128d a)
int _mm_movemask_ps(m128 a)
m128i _mm_stream_load_si128(m128i *p)
void_mm_stream_si128(m128i * p,m128i a)
void_mm_stream_pd(double * p,m128d a)
void_mm_stream_ps(float * p,m128 a)
void_mm_stream_si32(int * p, int a)
void_mm_stream_pi(m64 * p,m64 a)
m128i _mm_loadl_epi64(m128i * p)
void_mm_storel_epi64(_m128i * p,m128i a)
m128i _mm_move_epi64(m128i a)
m128i _mm_movpi64_epi64(m64 a)
m128d _mm_load_sd(double * p)
void_mm_store_sd(double * p,m128d a)
m128d _mm_move_sd(m128d a,m128d b)
m128 _mm_movehdup_ps(m128 a)
m128 _mm_moveldup_ps(m128 a)
m128 _mm_load_ss(float * p)
void_mm_store_ss(float * p,m128 a)
m128 _mm_move_ss(m128 a,m128 b)

Table C-1. Simple Intrinsics (Contd.)

Mnemonic	Intrinsic
MOVUPD	m128d _mm_loadu_pd(double * p)
	void_mm_storeu_pd(double *p,m128d a)
MOVUPS	m128 _mm_loadu_ps(float * p)
	void_mm_storeu_ps(float *p,m128 a)
MPSADBW	m128i _mm_mpsadbw_epu8(m128i s1,m128i s2, const int mask)
MULPD	m128d _mm_mul_pd(m128d a,m128d b)
MULPS	m128 _mm_mul_ss(m128 a,m128 b)
MULSD	m128d _mm_mul_sd(m128d a,m128d b)
MULSS	m128 _mm_mul_ss(m128 a,m128 b)
MWAIT	void _mm_mwait(unsigned extensions, unsigned hints)
ORPD	m128d _mm_or_pd(m128d a,m128d b)
ORPS	m128 _mm_or_ps(m128 a,m128 b)
PABSB	m64 _mm_abs_pi8 (m64 a)
	m128i _mm_abs_epi8 (m128i a)
PABSD	m64 _mm_abs_pi32 (m64 a)
	m128i _mm_abs_epi32 (m128i a)
PABSW	m64 _mm_abs_pi16 (m64 a)
	m128i _mm_abs_epi16 (m128i a)
PACKSSWB	m128i _mm_packs_epi16(m128i m1,m128i m2)
PACKSSWB	m64 _mm_packs_pi16(m64 m1,m64 m2)
PACKSSDW	m128i _mm_packs_epi32 (m128i m1,m128i m2)
PACKSSDW	m64 _mm_packs_pi32 (m64 m1,m64 m2)
PACKUSDW	m128i _mm_packus_epi32(m128i m1,m128i m2)
PACKUSWB	m128i _mm_packus_epi16(m128i m1,m128i m2)
PACKUSWB	m64 _mm_packs_pu16(m64 m1,m64 m2)
PADDB	m128i _mm_add_epi8(m128i m1,m128i m2)
PADDB	m64 _mm_add_pi8(m64 m1,m64 m2)
PADDW	m128i _mm_add_epi16(m128i m1,m128i m2)
PADDW	m64 _mm_add_pi16(m64 m1,m64 m2)
PADDD	m128i _mm_add_epi32(m128i m1,m128i m2)
PADDD	m64 _mm_add_pi32(m64 m1,m64 m2)
PADDQ	m128i _mm_add_epi64(m128i m1,m128i m2)
PADDQ	m64 _mm_add_si64(m64 m1,m64 m2)
PADDSB	m128i _mm_adds_epi8(m128i m1,m128i m2)
PADDSB	m64 _mm_adds_pi8(m64 m1,m64 m2)
PADDSW	m128i _mm_adds_epi16(m128i m1,m128i m2)
PADDSW	m64 _mm_adds_pi16(m64 m1,m64 m2)
PADDUSB	m128i _mm_adds_epu8(m128i m1,m128i m2)
PADDUSB	m64 _mm_adds_pu8(m64 m1,m64 m2)
PADDUSW	m128i _mm_adds_epu16(m128i m1,m128i m2)
PADDUSW	m64 _mm_adds_pu16(m64 m1,m64 m2)

Table C-1. Simple Intrinsics (Contd.)

Mnemonic	Intrinsic
PALIGNR	m64 _mm_alignr_pi8 (m64 a,m64 b, int n)
1 / Clark	m128i _mm_alignr_epi8 (m128i a,m128i b, int n)
PAND	m128i _mm_and_si128(m128i m1,m128i m2)
PAND	m64 _mm_and_si64(m64 m1,m64 m2)
PANDN	m128i _mm_andnot_si128(m128i m1,m128i m2)
PANDN	m64 _mm_andnot_si64(_m64 m1,m64 m2)
PAUSE	void _mm_pause(void)
PAVGB	m128i _mm_avg_epu8(m128i a,m128i b)
PAVGB	m64 _mm_avg_pu8(m64 a,m64 b)
PAVGW	m128i _mm_avg_epu16(m128i a,m128i b)
PAVGW	m64 _mm_avg_pu16(m64 a,m64 b)
PBLENDVB	m128i _mm_blendv_epi (m128i v1,m128i v2,m128i mask)m128i _mm_blend_epi16(m128i v1,m128i v2, const int mask)
PBLENDW	
PCLMULQDQ	m128i _mm_clmulepi64_si128 (m128i,m128i, const int)
PCMPEQB	m128i _mm_cmpeq_epi8(m128i m1,m128i m2)
PCMPEQB	m64 _mm_cmpeq_pi8(m64 m1,m64 m2)
PCMPEQQ	m128i _mm_cmpeq_epi64(m128i a,m128i b)
PCMPEQW	m128i _mm_cmpeq_epi16 (m128i m1,m128i m2)
PCMPEQW	m64 _mm_cmpeq_pi16 (m64 m1,m64 m2)
PCMPEQD	m128i _mm_cmpeq_epi32(m128i m1,m128i m2)
PCMPEQD	m64 _mm_cmpeq_pi32(m64 m1,m64 m2)
PCMPESTRI	int _mm_cmpestri (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestra (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestrc (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestro (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestrs (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestrz (m128i a, int la,m128i b, int lb, const int mode)
PCMPESTRM	m128i _mm_cmpestrm (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestra (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestrc (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestro (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestrs (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestrz (m128i a, int la,m128i b, int lb, const int mode)
PCMPGTB	m128i _mm_cmpgt_epi8 (m128i m1,m128i m2)
PCMPGTB	m64 _mm_cmpgt_pi8 (m64 m1,m64 m2)
PCMPGTW	m128i _mm_cmpgt_epi16(m128i m1,m128i m2)
PCMPGTW	m64 _mm_cmpgt_pi16 (m64 m1,m64 m2)
PCMPGTD	m128i _mm_cmpgt_epi32(m128i m1,m128i m2)
PCMPGTD	m64 _mm_cmpgt_pi32(m64 m1,m64 m2)
PCMPISTRI	m128i _mm_cmpestrm (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestra (m128i a, int la,m128i b, int lb, const int mode)

Table C-1. Simple Intrinsics (Contd.)

Mnemonic	Intrinsic
	int _mm_cmpestrc (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestro (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpestrs (m128i a, int la,m128i b, int lb, const int mode)
	int _mm_cmpistrz (m128i a,m128i b, const int mode)
PCMPISTRM	m128i _mm_cmpistrm (m128i a,m128i b, const int mode)
	int _mm_cmpistra (m128i a,m128i b, const int mode)
	int _mm_cmpistrc (m128i a,m128i b, const int mode)
	int _mm_cmpistro (m128i a,m128i b, const int mode)
	int _mm_cmpistrs (m128i a,m128i b, const int mode)
	int _mm_cmpistrz (m128i a,m128i b, const int mode)
PCMPGTQ	m128i _mm_cmpgt_epi64(m128i a,m128i b)
PEXTRB	int _mm_extract_epi8 (m128i src, const int ndx)
PEXTRD	int _mm_extract_epi32 (m128i src, const int ndx)
PEXTRQ	int64 _mm_extract_epi64 (m128i src, const int ndx)
PEXTRW	int _mm_extract_epi16(m128i a, int n)
PEXTRW	int _mm_extract_pi16(m64 a, int n)
	int _mm_extract_epi16 (m128i src, int ndx)
PHADDD	m64 _mm_hadd_pi32 (m64 a,m64 b)
	m128i _mm_hadd_epi32 (m128i a,m128i b)
PHADDSW	m64 _mm_hadds_pi16 (m64 a,m64 b)
	m128i _mm_hadds_epi16 (m128i a,m128i b)
PHADDW	m64 _mm_hadd_pi16 (m64 a,m64 b)
	m128i _mm_hadd_epi16 (m128i a,m128i b)
PHMINPOSUW	m128i _mm_minpos_epu16(m128i packed_words)
PHSUBD	m64 _mm_hsub_pi32 (m64 a,m64 b)
	m128i _mm_hsub_epi32 (m128i a,m128i b)
PHSUBSW	m64 _mm_hsubs_pi16 (m64 a,m64 b)
	m128i _mm_hsubs_epi16 (m128i a,m128i b)
PHSUBW	m64 _mm_hsub_pi16 (m64 a,m64 b)
	m128i _mm_hsub_epi16 (m128i a,m128i b)
PINSRB	m128i _mm_insert_epi8(m128i s1, int s2, const int ndx)
PINSRD	m128i _mm_insert_epi32(m128i s2, int s, const int ndx)
PINSRQ	m128i _mm_insert_epi64(m128i s2,int64 s, const int ndx)
PINSRW	m128i _mm_insert_epi16(m128i a, int d, int n)
PINSRW	m64 _mm_insert_pi16(m64 a, int d, int n)
PMADDUBSW	m64 _mm_maddubs_pi16 (m64 a,m64 b)
	m128i _mm_maddubs_epi16 (m128i a,m128i b)
PMADDWD	m128i _mm_madd_epi16(m128i m1m128i m2)
PMADDWD	m64 _mm_madd_pi16(m64 m1,m64 m2)
PMAXSB	m128i _mm_max_epi8(m128i a,m128i b)
PMAXSD	m128i _mm_max_epi32(m128i a,m128i b)

Table C-1. Simple Intrinsics (Contd.)

Mnemonic	Intrinsic
PMAXSW	m128i _mm_max_epi16(m128i a,m128i b)
PMAXSW	m64 _mm_max_pi16(m64 a,m64 b)
PMAXUB	m128i _mm_max_epu8(m128i a,m128i b)
PMAXUB	m64 _mm_max_pu8(m64 a,m64 b)
PMAXUD	m128i _mm_max_epu32(m128i a,m128i b)
PMAXUW	m128i _mm_max_epu16(m128i a,m128i b)
PMINSB	_m128i _mm_min_epi8(m128i a,m128i b)
PMINSD	m128i _mm_min_epi32(m128i a,m128i b)
PMINSW	m128i _mm_min_epi16(m128i a,m128i b)
PMINSW	m64 _mm_min_pi16(m64 a,m64 b)
PMINUB	m128i _mm_min_epu8(m128i a,m128i b)
PMINUB	m64 _mm_min_pu8(m64 a,m64 b)
PMINUD	m128i _mm_min_epu32 (m128i a,m128i b)
PMINUW	m128i _mm_min_epu16 (m128i a,m128i b)
PMOVMSKB	int _mm_movemask_epi8(m128i a)
PMOVMSKB	int _mm_movemask_pi8(m64 a)
PMOVSXBW	m128i _mm_ cvtepi8_epi16(m128i a)
PMOVSXBD	m128i _mm_ cvtepi8_epi32(m128i a)
PMOVSXBQ	m128i _mm_ cvtepi8_epi64(m128i a)
PMOVSXWD	m128i _mm_ cvtepi16_epi32(m128i a)
PMOVSXWQ	m128i _mm_ cvtepi16_epi64(m128i a)
PMOVSXDQ	m128i _mm_ cvtepi32_epi64(m128i a)
PMOVZXBW	m128i _mm_ cvtepu8_epi16(m128i a)
PMOVZXBD	m128i _mm_ cvtepu8_epi32(m128i a)
PMOVZXBQ	m128i _mm_ cvtepu8_epi64(m128i a)
PMOVZXWD	m128i _mm_ cvtepu16_epi32(m128i a)
PMOVZXWQ	m128i _mm_ cvtepu16_epi64(m128i a)
PMOVZXDQ	m128i _mm_ cvtepu32_epi64(m128i a)
PMULDQ	m128i _mm_mul_epi32(m128i a,m128i b)
PMULHRSW	m64 _mm_mulhrs_pi16 (m64 a,m64 b)
	m128i _mm_mulhrs_epi16 (m128i a,m128i b)
PMULHUW	m128i _mm_mulhi_epu16(m128i a,m128i b)
PMULHUW	m64 _mm_mulhi_pu16(m64 a,m64 b)
PMULHW	m128i _mm_mulhi_epi16(m128i m1,m128i m2)
PMULHW	m64 _mm_mulhi_pi16(m64 m1,m64 m2)
PMULLUD	m128i _mm_mullo_epi32(m128i a,m128i b)
PMULLW	m128i _mm_mullo_epi16(m128i m1,m128i m2)
PMULLW	m64 _mm_mullo_pi16(m64 m1,m64 m2)
PMULUDQ	m64 _mm_mul_su32(m64 m1,m64 m2)
	m128i _mm_mul_epu32(m128i m1,m128i m2)

Table C-1. Simple Intrinsics (Contd.)

Mnemonic	Intrinsic
POPCNT	int _mm_popcnt_u32(unsigned int a)
	int64_t _mm_popcnt_u64(unsignedint64 a)
POR	m64 _mm_or_si64(m64 m1,m64 m2)
POR	m128i _mm_or_si128(m128i m1,m128i m2)
PREFETCHh	void _mm_prefetch(char *a, int sel)
PSADBW	m128i _mm_sad_epu8(m128i a,m128i b)
PSADBW	m64 _mm_sad_pu8(m64 a,m64 b)
PSHUFB	m64 _mm_shuffle_pi8 (m64 a,m64 b)
	m128i _mm_shuffle_epi8 (m128i a,m128i b)
PSHUFD	m128i _mm_shuffle_epi32(m128i a, int n)
PSHUFHW	m128i _mm_shufflehi_epi16(m128i a, int n)
PSHUFLW	m128i _mm_shufflelo_epi16(m128i a, int n)
PSHUFW	m64 _mm_shuffle_pi16(m64 a, int n)
PSIGNB	m64 _mm_sign_pi8 (m64 a,m64 b)
	m128i _mm_sign_epi8 (m128i a,m128i b)
PSIGND	m64 _mm_sign_pi32 (m64 a,m64 b)
	m128i _mm_sign_epi32 (m128i a,m128i b)
PSIGNW	m64 _mm_sign_pi16 (m64 a,m64 b)
	m128i _mm_sign_epi16 (m128i a,m128i b)
PSLLW	m128i _mm_sll_epi16(m128i m,m128i count)
PSLLW	m128i _mm_slli_epi16(m128i m, int count)
PSLLW	m64 _mm_sll_pi16(m64 m,m64 count)
	m64 _mm_slli_pi16(m64 m, int count)
PSLLD	m128i _mm_slli_epi32(m128i m, int count)
	m128i _mm_sll_epi32(m128i m,m128i count)
PSLLD	m64 _mm_slli_pi32(m64 m, int count)
	m64 _mm_sll_pi32(m64 m,m64 count)
PSLLQ	m64 _mm_sll_si64(m64 m,m64 count)
	m64 _mm_slli_si64(m64 m, int count)
PSLLQ	m128i _mm_sll_epi64(m128i m,m128i count)
	m128i _mm_slli_epi64(m128i m, int count)
PSLLDQ	m128i _mm_slli_si128(m128i m, int imm)
PSRAW	m128i _mm_sra_epi16(m128i m,m128i count)
	m128i _mm_srai_epi16(m128i m, int count)
PSRAW	m64 _mm_sra_pi16(m64 m,m64 count)
	m64 _mm_srai_pi16(m64 m, int count)
PSRAD	m128i _mm_sra_epi32 (m128i m,m128i count)
	m128i _mm_srai_epi32 (m128i m, int count)
PSRAD	m64 _mm_sra_pi32 (m64 m,m64 count)
	m64 _mm_srai_pi32 (m64 m, int count)
PSRLW	_m128i _mm_srl_epi16 (m128i m,m128i count)

Table C-1. Simple Intrinsics (Contd.)

m128i_mm_sril_epi16 (m128i m, int count)m64 _mm_sril_pi16 (m64 m,m64 count)m64 _mm_sril_epi32 (m128i m,m128i count)m128i _mm_sril_epi32 (m128i m,m128i count)m128i _mm_sril_epi32 (m64 m, int count)m64 _mm_sril_epi32 (m64 m, int count)m64 _mm_sril_epi32 (m64 m, _m64 count)m64 _mm_sril_epi64 (m128i m, int count)m128i _mm_sril_epi64 (m128i m, int count)m64 _mm_sril_epi64 (m128i m, int imm)m64 _mm_sril_epi64 (m128i m, _m128i m2)m128i _mm_sril_epi64 (m128i m, _m128i m2)m128i _mm_sril_epi64 (m64 m, _m64 m2)m128i _mm_sril_epi64 (m64 m, _m64 m2)m128i _mm_sril_epi64 (m128i m, _m128i m2)m128i _mm_sril_epi64 (m64 m, _m64 m2)m128i _mm_sril_epi64 (m128i m, _m128i m2)m64 _mm_sril_epi64 (m128i m, _m128i m2)m128i _mm_unpackhi_epi64 (m128i m, _m1	Mnemonic	Intrinsic
m64 _mm_srii_pi16(_m64 m, int count)		. , ,
PSRLD		
m128i _mm_srli_pi32 (m128i m, int count) -m64 _mm_srli_pi32 (_m64 m, _m64 count) -m64 _mm_srli_pi32 (_m64 m, _m128i m, int count) -m728i _mm_srli_pi64 (_m128i m, _m128i count) -m128i _mm_srli_pi64 (_m128i m, _m128i count) -m128i _mm_srli_pi64 (_m128i m, int count) -m84 _mm_srli_si64 (_m64 m, _m64 count) -m64 _mm_srli_si64 (_m64 m, _m64 count) -m958LDQ	PSRLD	, ,
PSRLD		
	PSRLD	
PSRLQ		
	PSRLQ	,
PSRLQ	-	
	PSRLQ	· · ·
PSRLDQ	-	· ·
PSUBB	PSRLDQ	· · · · · · · · · · · · · · · · · · ·
PSUBW	PSUBB	, , , , , , , , , , , , , , , , , , ,
PSUBW		
PSUBW m64 _mm_sub_pi16(_m64 m1,m64 m2) PSUBD m128i _mm_sub_epi32(m128i m1,m128i m2) PSUBD m64 _mm_sub_pi32(_m64 m1,m64 m2) PSUBQ m128i _mm_sub_epi64(m128i m1,m128i m2) PSUBQ m64 _mm_sub_si64(m64 m1,m64 m2) PSUBSB m128i _mm_subs_epi8(m64 m1,m128i m2) PSUBSB m64 _mm_subs_epi8(m64 m1,m128i m2) PSUBSW m64 _mm_subs_epi16(m128i m1,m128i m2) PSUBUSW m64 _mm_subs_epu8(m64 m1,m64 m2) PSUBUSB m64 _mm_subs_epu8(m64 m1,m64 m2) PSUBUSB m64 _mm_subs_epu8(m64 m1,m64 m2) PSUBUSW m128i _mm_subs_epu8(m64 m1,m64 m2) PSUBUSW m128i _mm_subs_epu16(m128i m1,m128i m2) PSUBUSW m64 _mm_subs_epu16(m64 m1,m64 m2) PTEST _int _mm_testz_si128(m128i s1,m128i s2) _int _mm_testz_si128(m128i s1,m128i s2) _int _mm_testz_si128(m128i s1,m128i s2) _pUNPCKHBW m64 _mm_unpackhi_epi8(m64 m1,m64 m2) _pUNPCKHBW m128i _mm_unpackhi_epi8(m128i m1,m128i m2) _pUNPCKHQQ m128i _mm_unpackhi_epi64(m128i m1,m128i m2)		
PSUBD		, , , , , , , , , , , , , , , , , , , ,
PSUBD _m64_mm_sub_pi32(_m64 m1, _m64 m2) PSUBQ _m128i _mm_sub_epi64(_m128i m1, _m128i m2) PSUBQ _m64_mm_sub_si64(_m64 m1, _m64 m2) PSUBSB _m128i _mm_subs_epi8(_m128i m1, _m128i m2) PSUBSB _m64_mm_subs_epi8(_m64 m1, _m64 m2) PSUBSW _m128i _mm_subs_epi16(_m64 m1, _m64 m2) PSUBUSB _m64_mm_subs_epi8(_m64 m1, _m64 m2) PSUBUSB _m64_mm_subs_epu8(_m128i m1, _m128i m2) PSUBUSB _m64_mm_subs_epu8(_m64 m1, _m64 m2) PSUBUSW _m128i _mm_subs_epu16(_m64 m1, _m64 m2) PSUBUSW _m64_mm_subs_epu16(_m64 m1, _m64 m2) PTEST _int _mm_testz_si128(_m128i s1, _m128i s2) _int _mm_testz_si128(_m128i s1, _m128i s2) _int _mm_testr_csi128(_m128i s1, _m128i s2) _PUNPCKHBW _m64 _mm_unpackhi_epi8(_m64 m1, _m64 m2) _PUNPCKHWD _m64 _mm_unpackhi_epi6(_m64 m1, _m64 m2) _PUNPCKHWD _m64 _mm_unpackhi_epi6(_m128i m1, _m128i m2) _PUNPCKHDQ _m64 _mm_unpackhi_epi32(_m64 m1, _m64 m2) _PUNPCKHQQ _m128i _mm_unpackhi_epi32(_m128i m1, _m128i m2) _PUNPCKLBW _m64 _mm_unpacklo_epi8 (_m128i m1, _m128i m2) _m128i _mm_unpacklo_epi8 (_m128i	PSUBD	· · ·
PSUBQ _m128i _mm_sub_epi64(_m128i m1, _m128i m2) PSUBQ _m64 _mm_sub_si64(_m64 m1, _m64 m2) PSUBSB _m128i _mm_subs_epi8(_m128i m1, _m128i m2) PSUBSB _m64 _mm_subs_epi8(_m64 m1, _m64 m2) PSUBSW _m128i _mm_subs_epi16(_m128i m1, _m128i m2) PSUBSW _m64 _mm_subs_epi8(_m64 m1, _m64 m2) PSUBUSB _m128i _mm_subs_epu8(_m64 m1, _m64 m2) PSUBUSB _m64 _mm_subs_epu8(_m64 m1, _m64 m2) PSUBUSW _m128i _mm_subs_epu16(_m64 m1, _m64 m2) PSUBUSW _m64 _mm_subs_pu16(_m64 m1, _m64 m2) PTEST _int _mm_testz_si128(_m128i s1, _m128i s2) _int _mm_testz_si128(_m128i s1, _m128i s2) _int _mm_testnzc_si128(_m128i s1, _m128i s2) _PUNPCKHBW _m64 _mm_unpackhi_epi8(_m64 m1, _m64 m2) _PUNPCKHBW _m64 _mm_unpackhi_epi6(_m128i m1, _m128i m2) _PUNPCKHWD _m64 _mm_unpackhi_epi16(_m64 m1, _m64 m2) _PUNPCKHDQ _m64 _mm_unpackhi_epi32(_m64 m1, _m64 m2) _PUNPCKHQQ _m128i _mm_unpackhi_epi32(_m128i m1, _m128i m2) _PUNPCKHQQ _m128i _mm_unpackhi_epi64(_m128i m1, _m128i m2) _m128i _mm_unpackhi_epi64(_m128i m1, _m128i m2) _m128i _mm_unpackhi_epi8(_m64 m1		·
PSUBQ _m64 _mm_sub_si64(_m64 m1, _m64 m2) PSUBSB _m128i _mm_subs_epi8(_m128i m1, _m128i m2) PSUBSB _m64 _mm_subs_epi8(_m64 m1, _m64 m2) PSUBSW _m128i _mm_subs_epi16(_m128i m1, _m128i m2) PSUBSW _m64 _mm_subs_epi3(_m64 m1, _m64 m2) PSUBUSB _m128i _mm_subs_epu8(_m64 m1, _m64 m2) PSUBUSB _m64 _mm_subs_epu8(_m64 m1, _m64 m2) PSUBUSW _m128i _mm_subs_epu16(_m128i m1, _m128i m2) PSUBUSW _m64 _mm_subs_epu16(_m64 m1, _m64 m2) PSUBUSW _m64 _mm_subs_epu16(_m128i s1, _m128i s2) int _mm_testz_si128(_m128i s1, _m128i s2) int _mm_testz_si128(_m128i s1, _m128i s2) PUNPCKHBW _m64 _mm_unpackhi_epi8(_m64 m1, _m64 m2) PUNPCKHBW _m128i _mm_unpackhi_epi8(_m128i m1, _m128i m2) PUNPCKHWD _m64 _mm_unpackhi_epi16(_m128i m1, _m128i m2) PUNPCKHWD _m64 _mm_unpackhi_epi32(_m64 m1, _m64 m2) PUNPCKHDQ _m128i _mm_unpackhi_epi32(_m128i m1, _m128i m2) PUNPCKHQQ _m128i _mm_unpackhi_epi64(_m128i m1, _m128i m2) PUNPCKLBW _m64 _mm_unpacklo_epi8 (_m64 m1, _m64 m2) PUNPCKLBW _m128i _mm_unpacklo_epi8 (_m128i m1, _m128i m2)	PSUBQ	· · ·
PSUBSB		
PSUBSW	PSUBSB	m128i _mm_subs_epi8(m128i m1,m128i m2)
PSUBSW _m64_mm_subs_pi16(_m64 m1, _m64 m2) PSUBUSB _m128i _mm_subs_epu8(_m128i m1, _m128i m2) PSUBUSB _m64_mm_subs_pu8(_m64 m1, _m64 m2) PSUBUSW _m128i _mm_subs_epu16(_m128i m1, _m128i m2) PSUBUSW _m64_mm_subs_pu16(_m64 m1, _m64 m2) PTEST int _mm_testz_si128(_m128i s1, _m128i s2) int _mm_testrz_si128(_m128i s1, _m128i s2) int _mm_testrz_si128(_m128i s1, _m128i s2) PUNPCKHBW _m64_mm_unpackhi_pi8(_m64 m1, _m64 m2) PUNPCKHBW _m128i _mm_unpackhi_pi16(_m64 m1, _m64 m2) PUNPCKHWD _m64_mm_unpackhi_pi16(_m64 m1, _m64 m2) PUNPCKHWD _m128i _mm_unpackhi_pi32(_m64 m1, _m128i m2) PUNPCKHDQ _m128i _mm_unpackhi_pi32(_m64 m1, _m64 m2) PUNPCKHDQ _m128i _mm_unpackhi_pi32(_m128i m1, _m128i m2) PUNPCKHQQQ _m128i _mm_unpackhi_pi64(_m128i m1, _m128i m2) PUNPCKLBW _m64_mm_unpacklo_pi8 (_m64 m1, _m64 m2) PUNPCKLBW _m64_mm_unpacklo_pi8 (_m64 m1, _m64 m2) PUNPCKLBW _m128i _mm_unpacklo_pi8 (_m128i m1, _m128i m2)	PSUBSB	m64 _mm_subs_pi8(m64 m1,m64 m2)
PSUBUSB _m128i _mm_subs_epu8(_m128i m1, _m128i m2) PSUBUSB _m64 _mm_subs_pu8(_m64 m1, _m64 m2) PSUBUSW _m128i _mm_subs_epu16(_m128i m1, _m128i m2) PSUBUSW _m64 _mm_subs_pu16(_m64 m1, _m64 m2) PTEST int _mm_testz_si128(_m128i s1, _m128i s2) int _mm_testr.c_si128(_m128i s1, _m128i s2) PUNPCKHBW _m64 _mm_unpackhi_pi8(_m64 m1, _m64 m2) PUNPCKHBW _m64 _mm_unpackhi_epi8(_m128i m1, _m128i m2) PUNPCKHWD _m64 _mm_unpackhi_epi16(_m128i m1, _m128i m2) PUNPCKHWD _m64 _mm_unpackhi_epi32(_m64 m1, _m64 m2) PUNPCKHDQ _m64 _mm_unpackhi_epi32(_m64 m1, _m64 m2) PUNPCKHDQ _m128i _mm_unpackhi_epi32(_m128i m1, _m128i m2) PUNPCKHQQQ _m128i _mm_unpackhi_epi64(_m128i m1, _m128i m2) PUNPCKLBW _m64 _mm_unpacklo_pi8 (_m64 m1, _m64 m2) PUNPCKLBW _m64 _mm_unpacklo_pi8 (_m64 m1, _m64 m2) PUNPCKLBW _m64 _mm_unpacklo_pi8 (_m64 m1, _m64 m2)	PSUBSW	m128i _mm_subs_epi16(m128i m1,m128i m2)
PSUBUSB m64_mm_subs_pu8(m64 m1,m64 m2) PSUBUSW m128i _mm_subs_epu16(m128i m1,m128i m2) PTEST int _mm_testz_si128(_m128i s1,m128i s2) int _mm_testrz_si128(_m128i s1,m128i s2) int _mm_testrz_si128(_m128i s1,m128i s2) PUNPCKHBW _m64 _mm_unpackhi_pi8(_m64 m1,m64 m2) PUNPCKHBW _m128i _mm_unpackhi_epi8(_m128i m1,m128i m2) PUNPCKHWD _m64 _mm_unpackhi_epi16(_m64 m1,m64 m2) PUNPCKHWD _m128i _mm_unpackhi_epi16(_m128i m1,m128i m2) PUNPCKHDQ m64 _mm_unpackhi_epi32(m64 m1,m64 m2) PUNPCKHDQ _m128i _mm_unpackhi_epi32(_m128i m1,m128i m2) PUNPCKHQDQ _m128i _mm_unpackhi_epi64(_m128i m1,m128i m2) PUNPCKLBW _m64 _mm_unpacklo_epi8 (_m64 m1,m64 m2) PUNPCKLBW _m64 _mm_unpacklo_epi8 (_m128i m1,m128i m2)	PSUBSW	m64 _mm_subs_pi16(m64 m1,m64 m2)
PSUBUSW m128i _mm_subs_epu16(m128i m1,m128i m2) PSUBUSW m64 _mm_subs_pu16(m64 m1,m64 m2) PTEST int _mm_testz_si128(m128i s1,m128i s2) int _mm_testnzc_si128(m128i s1,m128i s2) int _mm_testnzc_si128(m128i s1,m128i s2) PUNPCKHBW m64 _mm_unpackhi_pi8(m64 m1,m64 m2) PUNPCKHBW m128i _mm_unpackhi_pi8(m128i m1,m128i m2) PUNPCKHWD m64 _mm_unpackhi_pi16(m64 m1,m64 m2) PUNPCKHWD m128i _mm_unpackhi_pi32(m64 m1,m64 m2) PUNPCKHDQ m128i _mm_unpackhi_pi32(m64 m1,m64 m2) PUNPCKHDQ m128i _mm_unpackhi_epi64(m128i m1,m128i m2) PUNPCKLBW m64 _mm_unpacklo_pi8 (m64 m1,m64 m2) PUNPCKLBW m64 _mm_unpacklo_pi8 (m128i m1,m128i m2)	PSUBUSB	m128i _mm_subs_epu8(m128i m1,m128i m2)
PSUBUSW _m64_mm_subs_pu16(_m64 m1, _m64 m2) PTEST int _mm_testz_si128(_m128i s1, _m128i s2) int _mm_testc_si128(_m128i s1, _m128i s2) int _mm_testnzc_si128(_m128i s1, _m128i s2) PUNPCKHBW _m64_mm_unpackhi_pi8(_m64 m1, _m64 m2) PUNPCKHBW _m128i _mm_unpackhi_epi8(_m128i m1, _m128i m2) PUNPCKHWD _m64_mm_unpackhi_pi16(_m64 m1, _m64 m2) PUNPCKHWD _m128i _mm_unpackhi_epi16(_m128i m1, _m128i m2) PUNPCKHDQ _m64_mm_unpackhi_epi32(_m64 m1, _m64 m2) PUNPCKHDQ _m128i _mm_unpackhi_epi32(_m128i m1, _m128i m2) PUNPCKHQDQ _m128i _mm_unpackhi_epi64(_m128i m1, _m128i m2) PUNPCKLBW _m64_mm_unpacklo_pi8 (_m64 m1, _m64 m2) PUNPCKLBW _m128i _mm_unpacklo_pi8 (_m128i m1, _m128i m2)	PSUBUSB	m64 _mm_subs_pu8(m64 m1,m64 m2)
Int_mm_testz_si128(_m128i s1, _m128i s2)	PSUBUSW	m128i _mm_subs_epu16(m128i m1,m128i m2)
int _mm_testc_si128(m128i s1,m128i s2) int _mm_testnzc_si128(m128i s1,m128i s2) PUNPCKHBW _m64 _mm_unpackhi_pi8(m64 m1,m64 m2) PUNPCKHBW _m128i _mm_unpackhi_pi16(m64 m1,m64 m2) PUNPCKHWD _m64 _mm_unpackhi_pi16(_m64 m1,m64 m2) PUNPCKHWD _m128i _mm_unpackhi_pi32(_m64 m1,m64 m2) PUNPCKHDQ _m64 _mm_unpackhi_pi32(_m128i m1,m128i m2) PUNPCKHQDQ _m128i _mm_unpackhi_epi64(_m128i m1,m128i m2) PUNPCKLBW _m64 _mm_unpacklo_pi8 (m64 m1,m64 m2) PUNPCKLBW _m128i _mm_unpacklo_epi8 (m128i m1,m128i m2)	PSUBUSW	m64 _mm_subs_pu16(m64 m1,m64 m2)
int _mm_testnzc_si128(_m128i s1, _m128i s2) PUNPCKHBW	PTEST	int _mm_testz_si128(m128i s1,m128i s2)
PUNPCKHBW _m64 _mm_unpackhi_pi8(_m64 m1, _m64 m2) PUNPCKHBW _m128i _mm_unpackhi_epi8(_m128i m1, _m128i m2) PUNPCKHWD _m64 _mm_unpackhi_pi16(_m64 m1, _m64 m2) PUNPCKHWD _m128i _mm_unpackhi_epi16(_m128i m1, _m128i m2) PUNPCKHDQ _m64 _mm_unpackhi_epi32(_m64 m1, _m64 m2) PUNPCKHDQ _m128i _mm_unpackhi_epi64(_m128i m1, _m128i m2) PUNPCKHQDQ _m128i _mm_unpackhi_epi64(_m128i m1, _m128i m2) PUNPCKLBW _m64 _mm_unpacklo_pi8 (_m64 m1, _m64 m2) PUNPCKLBW _m128i _mm_unpacklo_epi8 (_m128i m1, _m128i m2)		int _mm_testc_si128(m128i s1,m128i s2)
PUNPCKHBW m128i _mm_unpackhi_epi8(m128i m1,m128i m2) PUNPCKHWD m64 _mm_unpackhi_pi16(m64 m1,m64 m2) PUNPCKHWD m128i _mm_unpackhi_epi16(m128i m1,m128i m2) PUNPCKHDQ m64 _mm_unpackhi_epi32(m64 m1,m64 m2) PUNPCKHDQ m128i _mm_unpackhi_epi32(m128i m1,m128i m2) PUNPCKHQDQ m128i _mm_unpackhi_epi64(m128i m1,m128i m2) PUNPCKLBW m64 _mm_unpacklo_pi8 (m64 m1,m64 m2) PUNPCKLBW m128i _mm_unpacklo_epi8 (m128i m1,m128i m2)		int _mm_testnzc_si128(m128i s1,m128i s2)
PUNPCKHWD _m64 _mm_unpackhi_pi16(_m64 m1,_m64 m2) PUNPCKHWD _m128i _mm_unpackhi_epi16(_m128i m1, _m128i m2) PUNPCKHDQ _m64 _mm_unpackhi_epi32(_m64 m1, _m64 m2) PUNPCKHDQ _m128i _mm_unpackhi_epi32(_m128i m1, _m128i m2) PUNPCKHQDQ _m128i _mm_unpackhi_epi64(_m128i m1, _m128i m2) PUNPCKLBW _m64 _mm_unpacklo_pi8 (_m64 m1, _m64 m2) PUNPCKLBW _m128i _mm_unpacklo_epi8 (_m128i m1, _m128i m2)	PUNPCKHBW	m64 _mm_unpackhi_pi8(m64 m1,m64 m2)
PUNPCKHWD m128i _mm_unpackhi_epi16(m128i m1,m128i m2) PUNPCKHDQ m64 _mm_unpackhi_pi32(m64 m1,m64 m2) PUNPCKHDQ m128i _mm_unpackhi_epi32(m128i m1,m128i m2) PUNPCKHQDQ m128i _mm_unpackhi_epi64(m128i m1,m128i m2) PUNPCKLBW m64 _mm_unpacklo_pi8 (m64 m1,m64 m2) PUNPCKLBW m128i _mm_unpacklo_epi8 (m128i m1,m128i m2)	PUNPCKHBW	m128i _mm_unpackhi_epi8(m128i m1,m128i m2)
PUNPCKHDQ m64 _mm_unpackhi_pi32(m64 m1,m64 m2) PUNPCKHDQ m128i _mm_unpackhi_epi32(m128i m1,m128i m2) PUNPCKHQDQ m128i _mm_unpackhi_epi64(m128i m1,m128i m2) PUNPCKLBW m64 _mm_unpacklo_pi8 (m64 m1,m64 m2) PUNPCKLBW m128i _mm_unpacklo_epi8 (m128i m1,m128i m2)	PUNPCKHWD	m64 _mm_unpackhi_pi16(m64 m1,m64 m2)
PUNPCKHDQ m128i _mm_unpackhi_epi32(m128i m1,m128i m2) PUNPCKHQDQ m128i _mm_unpackhi_epi64(m128i m1,m128i m2) PUNPCKLBW m64 _mm_unpacklo_pi8 (m64 m1,m64 m2) PUNPCKLBW m128i _mm_unpacklo_epi8 (m128i m1,m128i m2)	PUNPCKHWD	m128i _mm_unpackhi_epi16(m128i m1,m128i m2)
PUNPCKHQDQ m128i _mm_unpackhi_epi64(m128i m1,m128i m2) PUNPCKLBW m64 _mm_unpacklo_pi8 (m64 m1,m64 m2) PUNPCKLBW m128i _mm_unpacklo_epi8 (m128i m1,m128i m2)	PUNPCKHDQ	m64 _mm_unpackhi_pi32(m64 m1,m64 m2)
PUNPCKLBW m64 _mm_unpacklo_pi8 (m64 m1,m64 m2) PUNPCKLBW m128i _mm_unpacklo_epi8 (m128i m1,m128i m2)	PUNPCKHDQ	m128i _mm_unpackhi_epi32(m128i m1,m128i m2)
PUNPCKLBWm128i _mm_unpacklo_epi8 (m128i m1,m128i m2)	PUNPCKHQDQ	m128i _mm_unpackhi_epi64(m128i m1,m128i m2)
	PUNPCKLBW	m64 _mm_unpacklo_pi8 (m64 m1,m64 m2)
PUNPCKLWD m64 mm unpacklo pi16(m64 m1, m64 m2)	PUNPCKLBW	m128i _mm_unpacklo_epi8 (m128i m1,m128i m2)
	PUNPCKLWD	m64 _mm_unpacklo_pi16(m64 m1,m64 m2)

Table C-1. Simple Intrinsics (Contd.)

Mnemonic	Intrinsic
PUNPCKLWD	m128i _mm_unpacklo_epi16(m128i m1,m128i m2)
PUNPCKLDQ	m64 _mm_unpacklo_pi32(m64 m1,m64 m2)
PUNPCKLDQ	m128i _mm_unpacklo_epi32(m128i m1,m128i m2)
PUNPCKLQDQ	m128i _mm_unpacklo_epi64(m128i m1,m128i m2)
PXOR	m64 _mm_xor_si64(m64 m1,m64 m2)
PXOR	m128i _mm_xor_si128(m128i m1,m128i m2)
RCPPS	m128 _mm_rcp_ps(m128 a)
RCPSS	m128 _mm_rcp_ss(m128 a)
ROUNDPD	m128 mm_round_pd(m128d s1, int iRoundMode)
	m128 mm_floor_pd(m128d s1)
	m128 mm_ceil_pd(m128d s1)
ROUNDPS	m128 mm_round_ps(m128 s1, int iRoundMode)
	m128 mm_floor_ps(m128 s1)
	m128 mm_ceil_ps(m128 s1)
ROUNDSD	m128d mm_round_sd(m128d dst,m128d s1, int iRoundMode)
	m128d mm_floor_sd(m128d dst,m128d s1)
	m128d mm_ceil_sd(m128d dst,m128d s1)
ROUNDSS	m128 mm_round_ss(m128 dst,m128 s1, int iRoundMode)
	m128 mm_floor_ss(m128 dst,m128 s1)
	m128 mm_ceil_ss(m128 dst,m128 s1)
RSQRTPS	m128 _mm_rsqrt_ps(m128 a)
RSQRTSS	m128 _mm_rsqrt_ss(m128 a)
SFENCE	void_mm_sfence(void)
SHUFPD	m128d _mm_shuffle_pd(m128d a,m128d b, unsigned int imm8)
SHUFPS	m128 _mm_shuffle_ps(m128 a,m128 b, unsigned int imm8)
SQRTPD	m128d _mm_sqrt_pd(m128d a)
SQRTPS	m128 _mm_sqrt_ps(m128 a)
SQRTSD	m128d _mm_sqrt_sd(m128d a)
SQRTSS	m128 _mm_sqrt_ss(m128 a)
STMXCSR	_mm_getcsr(void)
SUBPD	m128d _mm_sub_pd(m128d a,m128d b)
SUBPS	m128 _mm_sub_ps(m128 a,m128 b)
SUBSD	m128d _mm_sub_sd(m128d a,m128d b)
SUBSS	m128 _mm_sub_ss(m128 a,m128 b)
UCOMISD	int _mm_ucomieq_sd(m128d a,m128d b)
	int _mm_ucomilt_sd(m128d a,m128d b)
	int _mm_ucomile_sd(m128d a,m128d b)
	int _mm_ucomigt_sd(m128d a,m128d b)
	int _mm_ucomige_sd(m128d a,m128d b)
	int _mm_ucomineq_sd(m128d a,m128d b)
UCOMISS	int _mm_ucomieq_ss(m128 a,m128 b)

Table C-1. Simple Intrinsics (Contd.)

Mnemonic	Intrinsic
	int _mm_ucomilt_ss(m128 a,m128 b)
	int _mm_ucomile_ss(m128 a,m128 b)
	int _mm_ucomigt_ss(m128 a,m128 b)
	int _mm_ucomige_ss(m128 a,m128 b)
	int _mm_ucomineq_ss(m128 a,m128 b)
UNPCKHPD	m128d _mm_unpackhi_pd(m128d a,m128d b)
UNPCKHPS	m128 _mm_unpackhi_ps(m128 a,m128 b)
UNPCKLPD	m128d _mm_unpacklo_pd(m128d a,m128d b)
UNPCKLPS	m128 _mm_unpacklo_ps(m128 a,m128 b)
XORPD	m128d _mm_xor_pd(m128d a,m128d b)
XORPS	m128 _mm_xor_ps(m128 a,m128 b)

C.2 COMPOSITE INTRINSICS

Table C-2. Composite Intrinsics

Mnemonic	Intrinsic
(composite)	m128i _mm_set_epi64(m64 q1,m64 q0)
(composite)	m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
(composite)	m128i _mm_set_epi16(short w7,short w6, short w5, short w4, short w3, short w2, short w1,short w0)
(composite)	m128i _mm_set_epi8(char w15,char w14, char w13, char w12, char w11, char w10, char w9, char w8, char w7,char w6, char w5, char w4, char w3, char w2,char w1, char w0)
(composite)	m128i _mm_set1_epi64(m64 q)
(composite)	m128i _mm_set1_epi32(int a)
(composite)	m128i _mm_set1_epi16(short a)
(composite)	m128i _mm_set1_epi8(char a)
(composite)	m128i _mm_setr_epi64(m64 q1,m64 q0)
(composite)	m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
(composite)	m128i _mm_setr_epi16(short w7,short w6, short w5, short w4, short w3, short w2, short w, short w0)
(composite)	m128i _mm_setr_epi8(char w15,char w14, char w13, char w12, char w11, char w10, char w9, char w8,char w7, char w6,char w5, char w4, char w3, char w2,char w1,char w0)
(composite)	m128i _mm_setzero_si128()
(composite)	m128 _mm_set_ps1(float w) m128 _mm_set1_ps(float w)
(composite)	m128cmm_set1_pd(double w)
(composite)	m128d _mm_set_sd(double w)
(composite)	m128d _mm_set_pd(double z, double y)
(composite)	m128 _mm_set_ps(float z, float y, float x, float w)
(composite)	m128d _mm_setr_pd(double z, double y)
(composite)	m128 _mm_setr_ps(float z, float y, float x, float w)
(composite)	m128d _mm_setzero_pd(void)
(composite)	m128 _mm_setzero_ps(void)

Table C-2. Composite Intrinsics (Contd.)

Mnemonic	Intrinsic
MOVSD + shuffle	m128d _mm_load_pd(double * p) m128d _mm_load1_pd(double *p)
MOVSS + shuffle	m128 _mm_load_ps1(float * p) m128 _mm_load1_ps(float *p)
MOVAPD + shuffle	m128d _mm_loadr_pd(double * p)
MOVAPS + shuffle	m128 _mm_loadr_ps(float * p)
MOVSD + shuffle	void _mm_store1_pd(double *p,m128d a)
MOVSS + shuffle	void _mm_store_ps1(float * p,m128 a) void _mm_store1_ps(float *p,m128 a)
MOVAPD + shuffle	_mm_storer_pd(double * p,m128d a)
MOVAPS + shuffle	_mm_storer_ps(float * p,m128 a)

Numerics	BOUND range exceeded exception (#BR) 3-106
0000 B-42	Branch hints 2-2
64-bit mode	Brand information 3-223
control and debug registers 2-12	processor brand index 3-226
default operand size 2-12	processor brand string 3-224
direct memory-offset MOVs 2-11	BSF instruction 3-108
general purpose encodings B-18	BSR instruction 3-110
immediates 2-11	BSWAP instruction 3-112
introduction 2-7	BT instruction 3-113
machine instructions B-1	BTC instruction 3-115, 3-549
reg (reg) field B-4	BTR instruction 3-117, 3-549
REX prefixes 2-8, B-2	BTS instruction 3-119, 3-549
RIP-relative addressing 2-12	
	Byte order 1-5 C
SIMD encodings B-38	-
special instruction encodings B-65	C/C++ compiler intrinsics
summary table notation 3-8	compiler functional equivalents C-1
A	composite C-14
AAA instruction 3-18, 3-20	description of 3-12
AAD instruction 3-20	lists of C-1
AAM instruction 3-22	simple C-2
AAS instruction 3-24	Cache and TLB information 3-217
ADC instruction 3-26, 3-549	Cache Inclusiveness 3-195
ADD instruction 3-18, 3-31, 3-286, 3-549	Caches, invalidating (flushing) 3-481, 5-552
ADDPD instruction 3-33	CALL instruction 3-122
ADDPS- Add Packed Single-Precision Floating-Point Values 3-36	GETSEC 6-3
Addressing methods	CBW instruction 3-136
RIP-relative 2-12	CDQ instruction 3-285
Addressing, segments 1-6	CDQE instruction 3-136
ADDSD- Add Scalar Double-Precision Floating-Point Values 3-39	CF (carry) flag, EFLAGS register 3-31, 3-113, 3-115, 3-117, 3-119,
ADDSD instruction 3-39	3-138, 3-151, 3-290, 3-455, 3-460, 4-148, 4-523, 4-588, 4-609,
ADDSS- Add Scalar Single-Precision Floating-Point Values 3-41	4-612, 4-653
ADDSUBPD instruction 3-43	CLC instruction 3-138
ADDSUBPS instruction 3-45	CLD instruction 3-139
AESDEC/AESDECLAST- Perform One Round of an AES Decryption	CLFLUSH instruction 3-142, 3-144
Flow 3-56	CPUID flag 3-216
AESIMC- Perform the AES InvMixColumn Transformation 3-52	CLI instruction 3-146
AESKEYGENASSIST - AES Round Key Generation Assist 3-59	CLTS instruction 3-148
AND instruction 3-61, 3-549	CMC instruction 3-151
ANDNPS- Bitwise Logical AND NOT of Packed Single Precision	CMOVcc flag 3-216
Floating-Point Values 3-73	CMOVcc instructions 3-152
ANDPD- Bitwise Logical AND of Packed Double Precision Float-	CPUID flag 3-216
ing-Point Values 3-64	CMP instruction 3-156
ANDPD instruction 3-63	CMPPD- Compare Packed Double-Precision Floating-Point Values
ANDPS- Bitwise Logical AND of Packed Single Precision Float-	3-158
ing-Point Values 3-67	CMPPS- Compare Packed Single-Precision Floating-Point Values
-	3-165
Arctangent, x87 FPU operation 3-372 ARPL instruction 3-76	
	CMPS instruction 3-172, 4-548 CMPSB instruction 3-172
authenticated code execution mode 6-3	
B	CMPSD- Compare Scalar Double-Precision Floating-Point Values
Base (operand addressing) 2-3	3-176
BCD integers	CMPSD instruction 3-172
packed 3-286, 3-288, 3-322, 3-324	CMPSQ instruction 3-172
unpacked 3-18, 3-20, 3-22, 3-24	CMPSS- Compare Scalar Single-Precision Floating-Point Values
BEXTR - Bit Field Extract 3-81	3-180
Binary numbers 1-6	CMPSW instruction 3-172
Bit order 1-5	CMPXCHG instruction 3-184, 3-549
BLSMSK - Get Mask Up to Lowest Set Bit 3-89	CMPXCHG16B instruction 3-186
bootstrap processor 6-16, 6-21, 6-29, 6-30	CPUID bit 3-214
BOUND instruction 3-106	CMPXCHG8B instruction 3-186

CPUID flag 3-216	processor serial number 3-194, 3-216
COMISD- Compare Scalar Ordered Double-Precision Floating-Point	processor type field 3-211
Values and Set EFLAGS 3-189	RDMSR flag 3-216
COMISS- Compare Scalar Ordered Single-Precision Floating-Point	returned in EBX 3-212
Values and Set EFLAGS 3-191	returned in ECX & EDX 3-212
Compatibility mode	self snoop 3-217
introduction 2-7	SpeedStep technology 3-213
see 64-bit mode	SS2 extensions flag 3-217
summary table notation 3-9	SSE extensions flag 3-217
Compatibility, software 1-5	SSE3 extensions flag 3-213
Condition code flags, EFLAGS register 3-152	SSSE3 extensions flag 3-213
Condition code flags, x87 FPU status word	SYSENTER flag 3-216
flags affected by instructions 3-14	SYSEXIT flag 3-216
setting 3-408, 3-410, 3-413	thermal management 3-221, 3-222, 3-223
Conditional jump 3-495	thermal monitor 3-213, 3-217
Conforming code segment 3-527	time stamp counter 3-216
Constants (floating point), loading 3-362	using CPUID 3-193
Control registers, moving values to and from 4-40	vendor ID string 3-210
Cosine, x87 FPU operation 3-338, 3-390	version information 3-194, 3-221
CPL 3-146, 5-92	virtual 8086 Mode flag 3-216
CPUID instruction 3-193, 3-216	virtual address bits 3-210
36-bit page size extension 3-216	WRMSR flag 3-216
APIC on-chip 3-216	CQO instruction 3-285
basic CPUID information 3-194	CRO control register 4-628
cache and TLB characteristics 3-194	CS register 3-123, 3-468, 3-488, 3-501, 4-36, 4-389
CLFLUSH flag 3-216	CVTDQ2PD- Convert Packed Doubleword Integers to Packed Dou-
CLFLUSH instruction cache line size 3-212	ble-Precision Floating-Point Values 3-235, 5-24, 5-30, 5-49, 5-51
CMPXCHG16B flag 3-214	5-56, 5-61, 5-76, 5-78
CMPXCHG8B flag 3-216	CVTDQ2PD instruction 3-232
CPL qualified debug store 3-213	CVTDQ2PS- Convert Packed Doubleword Integers to Packed Sin-
debug extensions, CR4.DE 3-216	gle-Precision Floating-Point Values 3-239
debug store supported 3-217	CVTPD2DQ- Convert Packed Double-Precision Floating-Point Val-
deterministic cache parameters leaf 3-194, 3-197, 3-199,	ues to Packed Doubleword Integers 3-242
3-200, 3-201, 3-202, 3-203, 3-204, 3-208	CVTPD2PI instruction 3-246
extended function information 3-208	CVTPD2PS- Convert Packed Double-Precision Floating-Point Val-
feature information 3-215	ues to Packed Single-Precision Floating-Point Values 3-247
FPU on-chip 3-216	CVTPI2PD instruction 3-251
FSAVE flag 3-217	CVTPI2PS instruction 3-252
FXRSTOR flag 3-217	CVTPS2DQ- Convert Packed Single Precision Floating-Point Values
IA-32e mode available 3-209	to Packed Signed Doubleword Integer Values 3-253
input limits for EAX 3-210	CVTPS2DQ- Convert Packed Single Precision Floating-Point Values
L1 Context ID 3-214	to Packed Singed Doubleword Integer Values 5-46, 5-65, 5-67
local APIC physical ID 3-212	CVTPS2PI instruction 3-259
machine check architecture 3-216	CVTSD2SI- Convert Scalar Double Precision Floating-Point Value
machine check exception 3-216	to Doubleword Integer 3-260
memory type range registers 3-216	CVTSI2SD- Convert Doubleword Integer to Scalar Double-Precision
MONITOR feature information 3-221	Floating-Point Value 5-24, 5-51, 5-56, 5-61, 5-78
MONITOR/MWAIT flag 3-213	CVTSI2SS- Convert Doubleword Integer to Scalar Single-Precision
MONITOR/MWAIT leaf 3-195, 3-196, 3-198, 3-199, 3-205,	Floating-Point Value 3-266
3-208	CVTSS2SD- Convert Scalar Single-Precision Floating-Point Value
MWAIT feature information 3-221	to Scalar Double-Precision Floating-Point Value 3-268
page attribute table 3-216	CVTSS2SI- Convert Scalar Single-Precision Floating-Point Value to
page size extension 3-216	Doubleword Integer 3-270
performance monitoring features 3-222	CVTTPD2DQ- Convert with Truncation Packed Double-Precision
physical address bits 3-210	Floating-Point Values to Packed Doubleword Integers 3-272
physical address extension 3-216	CVTTPD2PI instruction 3-276
power management 3-221, 3-222, 3-223	CVTTPS2DQ- Convert with Truncation Packed Single-Precision
processor brand index 3-212, 3-223	Floating-Point Values to Packed Signed Doubleword Integer Values 2, 277
processor brand string 3-209, 3-223	ues 3-277

CVTTPS2PI instruction 3-280	F
CVTTSD2SI- Convert with Truncation Scalar Double-Precision	F2XM1 instruction 3-316, 3-428
Floating-Point Value to Signed Integer 3-281	FABS instruction 3-318
CVTTSS2SI- Convert with Truncation Scalar Single-Precision Float-	FADD instruction 3-319
ing-Point Value to Integer 3-283	FADDP instruction 3-319
CWD instruction 3-285	Far pointer, loading 3-533
CWDE instruction 3-136	Far return, RET instruction 4-551
D	FBLD instruction 3-322
	FBSTP instruction 3-324
D (default operation size) flag, segment descriptor 4-393	
DAA instruction 3-286	FCHS instruction 3-326
DAS instruction 3-288	FCLEX instruction 3-328
Debug registers, moving value to and from 4-43	FCMOVcc instructions 3-330
DEC instruction 3-290, 3-549	FCOM instruction 3-332
Denormalized finite number 3-413	FCOMI instruction 3-335
Detecting and Enabling SMX	FCOMIP instruction 3-335
level 2 6-1	FCOMP instruction 3-332
DF (direction) flag, EFLAGS register 3-139, 3-173, 3-462, 3-551,	FCOMPP instruction 3-332
4-111, 4-180, 4-590, 4-642	FCOS instruction 3-338
Displacement (operand addressing) 2-3	FDECSTP instruction 3-340
DIV instruction 3-292	FDIV instruction 3-341
Divide error exception (#DE) 3-292	FDIVP instruction 3-341
DIVPD- Divide Packed Double-Precision Floating-Point Values	FDIVR instruction 3-344
3-295, 5-296	FDIVRP instruction 3-344
DIVPS- Divide Packed Single-Precision Floating-Point Values	Feature information, processor 3-193
3-298	FFREE instruction 3-347
DIVSD- Divide Scalar Double-Precision Floating-Point Values 3-301	FIADD instruction 3-319
DIVSS- Divide Scalar Single-Precision Floating-Point Values 3-303	FICOM instruction 3-348
DS register 3-172, 3-533, 3-551, 4-111, 4-180	FICOMP instruction 3-348
E	FIDIV instruction 3-341
EDI register 4-590, 4-642, 4-646	FIDIVR instruction 3-344
Effective address 3-537	FILD instruction 3-350
EFLAGS register	FIMUL instruction 3-368
condition codes 3-154, 3-330, 3-335	FINCSTP instruction 3-352
flags affected by instructions 3-14	FINIT instruction 3-353
popping 4-397	FINIT/FNINIT instructions 3-383
popping on return from interrupt 3-488	FIST instruction 3-355
pushing 4-516	FISTP instruction 3-355
pushing on interrupts 3-468	FISTTP instruction 3-358
saving 4-578	FISUB instruction 3-402
status flags 3-156, 3-498, 4-595, 4-677	
	FISUBR instruction 3-405
EIP register 3-123, 3-468, 3-488, 3-501	FLD instruction 3-360
EMMS instruction 3-310	FLD1 instruction 3-362
Encodings	FLDCW instruction 3-364
See machine instructions, opcodes	FLDENV instruction 3-366
ENTER instruction 3-311	FLDL2E instruction 3-362
GETSEC 6-3, 6-10	FLDL2T instruction 3-362
ES register 3-533, 4-180, 4-590, 4-646	FLDLG2 instruction 3-362
ESI register 3-172, 3-551, 4-111, 4-180, 4-642	FLDLN2 instruction 3-362
ESP register 3-123	FLDPI instruction 3-362
EVEX.R 3-5	FLDZ instruction 3-362
Exceptions	Floating point instructions
BOUND range exceeded (#BR) 3-106	machine encodings B-65
notation 1-6	Floating-point exceptions
overflow exception (#0F) 3-468	SSE and SSE2 SIMD 3-16
returning from 3-488	
	x87 FPU 3-16
GETSEC 6-3, 6-5	Flushing
Exponent, extracting from floating-point number 3-428	caches 3-481, 5-552
Extract exponent and significand, x87 FPU operation 3-428	TLB entry 3-483
EXTRACTPS- Extract packed floating-point values 3-314	FMUL instruction 3-368

FMULP instruction 3-368	H
FNCLEX instruction 3-328	HADDPD instruction 3-438, 3-439
FNINIT instruction 3-353	HADDPS instruction 3-441
FNOP instruction 3-371	Hexadecimal numbers 1-6
FNSAVE instruction 3-383	HLT instruction 3-444
FNSTCW instruction 3-396	HSUBPD instruction 3-445
FNSTENV instruction 3-366, 3-398	HSUBPS instruction 3-448
FNSTSW instruction 3-400	1
FPATAN instruction 3-372	IA-32e mode
FPREM instruction 3-374	CPUID flag 3-209
FPREM1 instruction 3-376	introduction 2-7, 2-13, 2-35
FPTAN instruction 3-378	see 64-bit mode
FRNDINT instruction 3-380	see compatibility mode
FRSTOR instruction 3-381	IDIV instruction 3-451
FS register 3-533	IDT (interrupt descriptor table) 3-469, 3-542
FSAVE instruction 3-383	IDTR (interrupt descriptor table register) 3-542, 4-624
FSAVE/FNSAVE instructions 3-381	IF (interrupt enable) flag, EFLAGS register 3-146, 4-643
FSCALE instruction 3-386	Immediate operands 2-3
FSIN instruction 3-388	IMUL instruction 3-454
FSINCOS instruction 3-390	IN instruction 3-458
FSQRT instruction 3-392	
FST instruction 3-394	INC instruction 3-460, 3-549
FSTCW instruction 3-396	Index (operand addressing) 2-3 Initialization x87 FPU 3-353
FSTENV instruction 3-398	initiating logical processor 6-4, 6-5, 6-10, 6-21, 6-22
FSTP instruction 3-394	INS instruction 3-462, 4-548
FSTSW instruction 3-400	INSB instruction 3-462
FSUB instruction 3-402	INSD instruction 3-462
FSUBP instruction 3-402	INSERTPS- Insert Scalar Single-Precision Floating-Point Value
FSUBR instruction 3-405	3-465
FSUBRP instruction 3-405	instruction encodings B-61, B-67, B-74
FTST instruction 3-408	Instruction format
FUCOM instruction 3-410	base field 2-3
FUCOMI instruction 3-335	description of reference information 3-1
FUCOMIP instruction 3-335	displacement 2-3
FUCOMP instruction 3-410	immediate 2-3
FUCOMPP instruction 3-410	index field 2-3
FXAM instruction 3-413	Mod field 2-3
FXCH instruction 3-415	ModR/M byte 2-3
FXRSTOR instruction 3-417	opcode 2-3
CPUID flag 3-217	operands 1-5
FXSAVE instruction 3-420, 5-549, 5-550, 5-574, 5-586, 5-591,	prefixes 2-1
5-595, 5-598, 5-601, 5-604, 5-607	r/m field 2-3
CPUID flag 3-217	reg/opcode field 2-3
FXTRACT instruction 3-386, 3-428	scale field 2-3
FYL2X instruction 3-430	SIB byte 2-3
FYL2XP1 instruction 3-432	See also: machine instructions, opcodes
G	Instruction reference, nomenclature 3-1
GDT (global descriptor table) 3-542, 3-545	Instruction set, reference 3-1
GDTR (global descriptor table register) 3-542, 4-598	INSW instruction 3-462
General-purpose instructions	INT 3 instruction 3-468
64-bit encodings B-18	Integer, storing, x87 FPU data type 3-355
non-64-bit encodings B-7	Intel 64 architecture
General-purpose registers	instruction format 2-1
moving value to and from 4-36	Intel NetBurst microarchitecture 1-3
popping all 4-393	Intel software network link 1-8
pushing all 4-514	Intel VTune Performance Analyzer
GETSEC 6-1, 6-2, 6-5	related information 1-8
GS register 3-533	Intel Xeon processor 1-1
-	Intel® Trusted Execution Technology 6-3

Inter-privilege level	LSL instruction 3-556
call, CALL instruction 3-122	LSS instruction 3-533
return, RET instruction 4-551	LTR instruction 3-559
Interrupts	LZCNT - Count the Number of Leading Zero Bits 3-561
returning from 3-488	M
software 3-468	Machine check architecture
INTn instruction 3-468	CPUID flag 3-216
INTO instruction 3-468	description 3-216
Intrinsics	Machine instructions
compiler functional equivalents C-1	64-bit mode B-1
composite C-14	condition test (tttn) field B-6
description of 3-12	direction bit (d) field B-6
list of C-1	floating-point instruction encodings B-65
simple C-2	general description B-1
INVD instruction 3-481	general-purpose encodings B-7-B-38
INVLPG instruction 3-483	legacy prefixes B-1
IOPL (I/O privilege level) field, EFLAGS register 3-146	MMX encodings B-39-B-42
IRET instruction 3-488	opcode fields B-2
IRETD instruction 3-488	operand size (w) bit B-4
1	P6 family encodings B-42
Jcc instructions 3-495	Pentium processor family encodings B-38
JMP instruction 3-500	reg (reg) field B-3, B-4
Jump operation 3-500	REX prefixes B-2
L	segment register (sreg) field B-5
L1 Context ID 3-214	sign-extend (s) bit B-5
LAHF instruction 3-526	SIMD 64-bit encodings B-38
LAR instruction 3-527	special 64-bit encodings B-65
Last branch	special fields B-2
interrupt & exception recording	special-purpose register (eee) field B-5
description of 4-563	SSE encodings B-43-B-49
LDDQU instruction 3-530	SSE2 encodings B-49-B-59
LDMXCSR instruction 3-532, 4-530, 5-554	SSE3 encodings B-60-B-61
LDS instruction 3-533	SSSE3 encodings B-61-B-64
LDT (local descriptor table) 3-545	VMX encodings B-118, B-119
LDTR (local descriptor table register) 3-545, 4-626	See also: opcodes
LEA instruction 3-537	Machine status word, CR0 register 3-547, 4-628
LEAVE instruction 3-539	MASKMOVDQU instruction 4-43
LES instruction 3-533 LFENCE instruction 3-541	MASKMOVQ instruction 5-291 MAXPD- Maximum of Packed Double-Precision Floating-Point Val
LFS instruction 3-533	ues 4-12
LGDT instruction 3-542	MAXPS- Maximum of Packed Single-Precision Floating-Point Val
LGS instruction 3-542	ues 4-15
LIDT instruction 3-542	MAXSD- Return Maximum Scalar Double-Precision Floating-Poin
LLDT instruction 3-545	Value 4-18
LMSW instruction 3-547	MAXSS- Return Maximum Scalar Single-Precision Floating-Poin
Load effective address operation 3-537	Value 4-20
LOCK prefix 3-27, 3-32, 3-61, 3-115, 3-117, 3-119, 3-184, 3-290,	measured environment 6-1
3-460, 3-549, 4-165, 4-168, 4-170, 4-588, 4-653, 5-565, 5-570,	Measured Launched Environment 6-1, 6-25
5-578	MFENCE instruction 4-22
Locking operation 3-549	MINPD- Minimum of Packed Double-Precision Floating-Point Val
LODS instruction 3-551, 4-548	ues 4-23
LODSB instruction 3-551	MINPS- Minimum of Packed Single-Precision Floating-Point Values
LODSD instruction 3-551	4-26
LODSQ instruction 3-551	MINSD- Return Minimum Scalar Double-Precision Floating-Poin
LODSW instruction 3-551	Value 4-29
Log (base 2), x87 FPU operation 3-432	MINSS- Return Minimum Scalar Single-Precision Floating-Point Val
Log epsilon, x87 FPU operation 3-430	ue 4-31
LOOP instructions 3-554	MLE 6-1
LOOPcc instructions 3-554	MMX instructions

CPUID flag for technology 3-217	Values 4-130
encodings B-39	MOVUPS- Move Unaligned Packed Single-Precision Floating-Point
Mod field, instruction format 2-3	Values 4-134
Model & family information 3-221	MOVZX instruction 4-138
ModR/M byte 2-3	MSRs (model specific registers)
16-bit addressing forms 2-5	reading 4-532
32-bit addressing forms of 2-6	MUL instruction 3-22, 4-148
description of 2-3	MULPD- Multiply Packed Double-Precision Floating-Point Values
MONITOR instruction 4-33	4-150
CPUID flag 3-213	MULPS- Multiply Packed Single-Precision Floating-Point Values
feature data 3-221	4-153
MOV instruction 4-35	MULSD- Multiply Scalar Double-Precision Floating-Point Values
MOV instruction (control registers) 4-40, 4-62, 4-64	4-156
MOV instruction (debug registers) 4-43, 4-53	MULSS- Multiply Scalar Single-Precision Floating-Point Values
MOVAPD- Move Aligned Packed Double-Precision Floating-Point	4-158
Values 4-45	Multi-byte no operation 4-165, 4-167, B-13
MOVAPS- Move Aligned Packed Single-Precision Floating-Point	MULX - Unsigned Multiply Without Affecting Flags 4-160
Values 4-49	MVMM 6-1, 6-5, 6-37
MOVD instruction 4-53	MWAIT instruction 4-162
MOVDDUP- Replicate Double FP Values 4-59	CPUID flag 3-213
MOVDQ2Q instruction 4-79	feature data 3-221
MOVDQA- Move Aligned Packed Integer Values 4-66	N NaN testing for 2,400
MOVDQU- Move Unaligned Packed Integer Values 4-71	NaN. testing for 3-408
MOVHLPS - Move Packed Single-Precision Floating-Point Values	Near
High to Low 4-80	return, RET instruction 4-551
MOVHPD- Move High Packed Double-Precision Floating-Point Values 4.93	NEG instruction 3-549, 4-165
ues 4-82	NetBurst microarchitecture (see Intel NetBurst microarchitecture)
MOVHPS- Move High Packed Single-Precision Floating-Point Val-	No operation 4-165, 4-167, B-12
ues 4-84 MOVI DD. Move Low Packed Double Presiring Floating Point Val	Nomenclature, used in instruction reference pages 3-1 NOP instruction 4-167
MOVLPD- Move Low Packed Double-Precision Floating-Point Values 4-88	
	NOT instruction 3-549, 4-168 Notation
MOVLPS- Move Low Packed Single-Precision Floating-Point Values 4-90	bit and byte order 1-5
MOVMSKPD instruction 4-92	exceptions 1-6
MOVMSKPS instruction 4-94	hexadecimal and binary numbers 1-6
MOVNTDQ instruction 4-110	instruction operands 1-5
MOVNTDQ-Store Packed Integers Using Non-Temporal Hint 4-98	reserved bits 1-5
MOVNTI instruction 4-110	segmented addressing 1-6
MOVNTPD- Store Packed Double-Precision Floating-Point Values	Notational conventions 1-5
Using Non-Temporal Hint 4-102	NT (nested task) flag, EFLAGS register 3-488
	0
MOVNTPS- Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint 4-104	OF (carry) flag, EFLAGS register 3-455
MOVNTQ instruction 4-106	OF (overflow) flag, EFLAGS register 3-31, 3-468, 4-148, 4-588,
MOVQ instruction 4-53, 4-107	4-609, 4-612, 4-653
MOVQ2DQ instruction 4-110	Opcode format 2-3
MOVS instruction 4-111, 4-548	Opcodes
MOVSB instruction 4-111	addressing method codes for A-1
MOVSD instruction 4-111	extensions A-17
MOVSD- Move or Merge Scalar Double-Precision Floating-Point	extensions tables A-18
Value 4-115	group numbers A-17
MOVSHDUP- Replicate Single FP Values 4-118	integers
MOVSLDUP- Replicate Single FP Values 4-121	one-byte opcodes A-7
MOVSQ instruction 4-111	two-byte opcodes A-7
MOVSS- Move or Merge Scalar Single-Precision Floating-Point Val-	key to abbreviations A-1
ue 4-124	look-up examples A-3, A-17, A-20
MOVSW instruction 4-111	ModR/M byte A-17
MOVSX instruction 4-118	one-byte opcodes A-3, A-7
MOVSXD instruction 4-128	opcode maps A-1
MOVUPD- Move Unaligned Packed Double-Precision Floating-Point	operand type codes for A-2
	, - · - · · - · · · · · · · · · · · · ·

register codes for A-3	PHADDD instruction 4-284
superscripts in tables A-6	PHADDSW instruction 4-288
two-byte opcodes A-4, A-5, A-7	PHADDW instruction 4-284
VMX instructions B-118, B-119	PHSUBD instruction 4-292
x87 ESC instruction opcodes A-20	PHSUBSW instruction 4-295
Operands 1-5	PHSUBW instruction 4-292
OR instruction 3-549, 4-170	Pi 3-362
ORPS- Bitwise Logical OR of Packed Single Precision Floating-Point	PINSRW instruction 4-300, 4-427
Values 4-175	PMADDUBSW instruction 4-302
OUT instruction 4-178	PMADDUDSW instruction 4-302
OUTS instruction 4-180, 4-548	PMADDWD instruction 4-305
OUTSB instruction 4-180	PMULHRSW instruction 4-365
OUTSD instruction 4-180	PMULHUW instruction 4-369
OUTSW instruction 4-180	PMULHW instruction 4-373
Overflow exception (#0F) 3-468	PMULLW instruction 4-381
P	PMULUDQ instruction 4-385
P6 family processors	POP instruction 4-388
description of 1-1	POPA instruction 4-393
machine encodings B-42	POPAD instruction 4-393
PABSB instruction 4-184, 4-198, 5-84, 5-405, 5-416, 5-431	POPF instruction 4-397
PABSD instruction 4-184, 4-198, 5-84, 5-405, 5-416, 5-431	POPFD instruction 4-397
PABSW instruction 4-184, 4-198, 5-84, 5-405, 5-416, 5-431	POPFO instruction 4-397
PACKSSDW instruction 4-190	POR instruction 4-401
PACKSSWB instruction 4-190	PREFETCHh instruction 4-404
PACKUSWB instruction 4-203	PREFETCHWT1—Prefetch Vector Data Into Caches with Intent to
PADDB/PADDW/PADDD/PADDQ - Add Packed Integers 4-208	Write and T1 Hint 4-408
PADDSB instruction 4-215	Prefixes
PADDSW instruction 4-215	Address-size override prefix 2-2
PADDUSB instruction 4-219	Branch hints 2-2
PADDUSW instruction 4-219	branch hints 2-2
PALIGNR instruction 4-223	instruction, description of 2-1
PAND instruction 4-227	legacy prefix encodings B-1
PANDN instruction 4-230	LOCK 2-1, 3-549
GETSEC 6-4	Operand-size override prefix 2-2
PAUSE instruction 4-233	REP or REPE/REPZ 2-1
PAVGB instruction 4-234	REP/REPE/REPZ/REPNE/REPNZ 4-547
PAVGW instruction 4-234	REPNE/REPNZ 2-1
PCE flag, CR4 register 4-537	REX prefix encodings B-2
PCLMULQDQ - Carry-Less Multiplication Quadword 5-315, 5-324	Segment override prefixes 2-2
PCMPEQB instruction 4-248	PSADBW instruction 4-408
PCMPEQD instruction 4-248	PSHUFB instruction 4-412
PCMPEQW instruction 4-248	PSHUFD instruction 4-416
PCMPGTB instruction 4-261	PSHUFHW instruction 4-420
PCMPGTD instruction 4-261	PSHUFLW instruction 4-423
PCMPGTW instruction 4-261	PSHUFW instruction 4-426
PDEP - Parallel Bits Deposit 4-274	PSIGNB instruction 4-427
PE (protection enable) flag, CRO register 3-547	PSIGND instruction 4-427
Pending break enable 3-217	PSIGNW instruction 4-427
Pentium 4 processor 1-1	PSLLD instruction 4-433
Pentium II processor 1-3	PSLLDQ instruction 4-431
Pentium III processor 1-3	PSLLQ instruction 4-433
Pentium Pro processor 1-3	PSLLW instruction 4-433
Pentium processor 1-1	PSRAD instruction 4-445
Pentium processor family processors	PSRAW instruction 4-445
machine encodings B-38	PSRLD instruction 4-4457
Performance-monitoring counters	PSRLDQ instruction 4-455
CPUID inquiry for 3-222	PSRLQ instruction 4-457
PEXT - Parallel Bits Extract 4-276	PSRLW instruction 4-4-57
PEXTRW instruction 4-281	PSUBB instruction 4-469
. C.C LOT	1 3 3 2 3 1 1 3 1 3 2 1 3 1 1 1 1 3 3

PSUBD instruction 4-469	Rounding
PSUBQ instruction 4-476	modes, floating-point operations 4-563
PSUBSB instruction 4-479	Rounding control (RC) field
PSUBSW instruction 4-479	MXCSR register 4-563
PSUBUSB instruction 4-483	x87 FPU control word 4-563
PSUBUSW instruction 4-483	Rounding, round to integer, x87 FPU operation 3-380
PSUBW instruction 4-469	ROUNDPD- Round Packed Double-Precision Floating-Point Values
PTEST- Packed Bit Test 3-521	4-654
PUNPCKHBW instruction 4-491	RPL field 3-76
PUNPCKHDQ instruction 4-491	RSM instruction 4-572
PUNPCKHQDQ instruction 4-491	RSQRTPS instruction 4-574
PUNPCKHWD instruction 4-491	RSQRTSS instruction 4-576
PUNPCKLBW instruction 4-501	S
PUNPCKLDQ instruction 4-501	Safer Mode Extensions 6-1
PUNPCKLQDQ instruction 4-501	SAHF instruction 4-578
PUNPCKLWD instruction 4-501	SAL instruction 4-580
PUSH instruction 4-511	SAR instruction 4-580
PUSHA instruction 4-514	SBB instruction 3-549, 4-587
PUSHAD instruction 4-514	Scale (operand addressing) 2-3
PUSHF instruction 4-516	Scale, x87 FPU operation 3-386
PUSHFD instruction 4-516	Scan string instructions 4-590
PXOR instruction 4-518	SCAS instruction 4-548, 4-590
R	SCASB instruction 4-546, 4-550
R/m field, instruction format 2-3	SCASD instruction 4-590
RC (rounding control) field, x87 FPU control word 3-355, 3-362,	SCASW instruction 4-590
3-394 PCI instruction 4-531	Segment
RCL instruction 4-521	descriptor, segment limit 3-556
RCPPS instruction 4-526	limit 3-556
RCPSS instruction 4-528 RCR instruction 4-521	registers, moving values to and from 4-36 selector, RPL field 3-76
RDMSR instruction 4-532, 4-537, 4-543	Segmented addressing 1-6
CPUID flag 3-216 RDPMC instruction 4-535, 4-537, 5-558	Self Snoop 3-217
	GETSEC 6-2, 6-4, 6-5 SENTED close state 6-10
RDTSC instruction 4-539, 4-543, 4-545	SENTER sleep state 6-10 SETcc instructions 4-594
Reg/opcode field, instruction format 2-3 Related literature 1-7	GETSEC 6-4
Remainder, x87 FPU operation 3-376	SF (sign) flag, EFLAGS register 3-31
REP/REPE/REPZ/REPNE/REPNZ prefixes 3-173, 3-463, 4-181, 4-547	SFENCE instruction 4-597 SGDT instruction 4-598
Reserved	
	SHAF instruction 4-578
use of reserved bits 1-5	Shift instructions 4-580
Responding logical processor 6-4	SHL instruction 4-580
responding logical processor 6-4, 6-5 RET instruction 4-551	SHLD instruction 4-609 SHR instruction 4-580
REX prefixes	
·	SHRD instruction 4-612
addressing modes 2-9	SHUFPD - Shuffle Packed Double Precision Floating-Point Values
and INC/DEC 2-8	4-615, 4-654 SHIJEDS - Shuffle Packed Single Precision Floating Point Values
encodings 2-8, B-2 field names 2-9	SHUFPS - Shuffle Packed Single Precision Floating-Point Values 4-620
ModR/M byte 2-8	SIB byte 2-3
overview 2-8	32-bit addressing forms of 2-7, 2-20
REX.B 2-8	description of 2-3
REX.R 2-8	SIDT instruction 4-598, 4-624
REX.W 2-8	Significand, extracting from floating-point number 3-428
special encodings 2-11	SIMD floating-point exceptions, unmasking, effects of 3-532,
RIP-relative addressing 2-12 ROL instruction 4-521	4-530, 5-554 Sine, x87 FPU operation 3-388, 3-390
ROR instruction 4-521	SINIT 6-4
RORX - Rotate Right Logical Without Affecting Flags 4-561	SLDT instruction 4-626
NONA Notate Night cogical without Affecting Llags 4-301	JCD 1 11134 ACTION 4-020

GETSEC 6-4	SUBSD- Subtract Scalar Double-Precision Floating-Point Values
SMSW instruction 4-628	4-660
SpeedStep technology 3-213	SUBSS- Subtract Scalar Single-Precision Floating-Point Values
SQRTPD- Square Root of Double-Precision Floating-Point Values	4-662
4-654	SWAPGS instruction 4-664
SQRTPD—Square Root of Double-Precision Floating-Point Values	SYSCALL instruction 4-666
4-630	SYSENTER instruction 4-668
SQRTPS- Square Root of Single-Precision Floating-Point Values	CPUID flag 3-216
4-633	SYSEXIT instruction 4-671
SQRTSD - Compute Square Root of Scalar Double-Precision Float-	CPUID flag 3-216
ing-Point Value 4-636, 4-654	SYSRET instruction 4-674
SQRTSS - Compute Square Root of Scalar Single-Precision Float-	T
ing-Point Value 4-638	Tangent, x87 FPU operation 3-378
Square root, Fx87 PU operation 3-392	Task register
SS register 3-533, 4-36, 4-389	loading 3-559
SSE extensions	storing 4-650
cacheability instruction encodings B-49	Task switch
CPUID flag 3-217	CALL instruction 3-122
floating-point encodings B-43	
instruction encodings B-43	return from nested task, IRET instruction 3-488
integer instruction encodings B-47	TEST instruction 4-677, 5-546 Thermal Monitor
memory ordering encodings B-49	CPUID flag 3-217
SSE2 extensions	Thermal Monitor 2 3-213
cacheability instruction encodings B-59	CPUID flag 3-213
CPUID flag 3-217	Time Stamp Counter 3-216
floating-point encodings B-50	Time-stamp counter, reading 4-543, 4-545
integer instruction encodings B-55	TLB entry, invalidating (flushing) 3-483
SSE3	Trusted Platform Module 6-5
CPUID flag 3-213	TS (task switched) flag, CR0 register 3-148
SSE3 extensions	TSS, relationship to task register 4-650
CPUID flag 3-213	TZCNT - Count the Number of Trailing Zero Bits 4-681
event mgmt instruction encodings B-60	UCOMISD Haardarad Campaga Saalar Davible Brasisian Clast
floating-point instruction encodings B-60	UCOMISD - Unordered Compare Scalar Double-Precision Floating Print Values and Set CCL ACS 4, CO2
integer instruction encodings B-61	ing-Point Values and Set EFLAGS 4-683
SSSE3 extensions B-61, B-67, B-74	UCOMISS Ligardered Company Scalar Single Precision Float
CPUID flag 3-213	UCOMISS - Unordered Compare Scalar Single-Precision Floating Point Volume and Set CCL ACS 4 COE
Stack, pushing values on 4-511	ing-Point Values and Set EFLAGS 4-685
Status flags, EFLAGS register 3-154, 3-156, 3-330, 3-335, 3-498,	UD2 instruction 4-687
4-595, 4-677 STG instruction 4-641	Undefined, format opcodes 3-408
STC instruction 4-641	Unordered values 3-332, 3-408, 3-410
STD instruction 4-642	UNPCKHPD- Unpack and Interleave High Packed Double-Precision
Stepping information 3-221	Floating-Point Values 4-692
STI instruction 4-643 STMXCSR instruction 4-645	UNPCKHPS- Unpack and Interleave High Packed Single-Precision
	Floating-Point Values 4-696
STOS instruction 4-548, 4-646	UNPCKLPD- Unpack and Interleave Low Packed Double-Precision
STOSB instruction 4-646	Floating-Point Values 4-700
STOSD instruction 4-646	UNPCKLPS- Unpack and Interleave Low Packed Single-Precision
STOSQ instruction 4-646	Floating-Point Values 4-704
STOSW instruction 4-646	VALICADA (ALICADA Alica Davible word (Austral Vesters 4.707
STR instruction 4-650	VALIGND/VALIGNQ- Align Doubleword/Quadword Vectors 4-707,
String instructions 3-172, 3-462, 3-551, 4-111, 4-180, 4-590,	5-5
4-646	VBLENDMPD- Blend Float64 Vectors Using an OpMask Control 5-9
SUB instruction 3-24, 3-288, 3-549, 4-652	VCVTPD2UDQ- Convert Packed Double-Precision Floating-Point
SUBPD- Subtract Packed Double Precision Floating-Point Values	Values to Packed Unsigned Doubleword Integers 5-27
4-654 SURDD Subtract Packed Pouble Precision Cleating Point Values	VCVTPS2UDQ- Convert Packed Single Precision Floating-Point Values to Packed Use and Doubleward Interest Values F. 40
SUBPD- Subtract Packed Double-Precision Floating-Point Values	ues to Packed Unsigned Doubleword Integer Values 5-40
4-654 SUBPS- Subtract Packed Single-Precision Floating-Point Values	VCVTSD2USI- Convert Scalar Double Precision Floating-Point Value to Unsigned Doubleword Integer 5-53
4-657	VCVTSS2USI- Convert Scalar Single-Precision Floating-Point Value

to Unsigned Doubleword Integer 5-54

VCVTTPD2UDQ- Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Unsigned Doubleword Integers 5-58

VCVTTPS2UDQ- Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Unsigned Doubleword Integer Values 5-63

VCVTTSD2USI- Convert with Truncation Scalar Double-Precision Floating-Point Value to Unsigned Integer 5-69

VCVTTSS2USI- Convert with Truncation Scalar Single-Precision Floating-Point Value to Unsigned Integer 5-70

VCVTUDQ2PD- Convert Packed Unsigned Doubleword Integers to Packed Double-Precision Floating-Point Values 4-707, 5-72

VCVTUDQ2PS- Convert Packed Unsigned Doubleword Integers to Packed Single-Precision Floating-Point Values 5-74

VCVTUSI2SD- Convert Unsigned Integer to Scalar Double-Precision Floating-Point Value 5-80

VCVTUSI2SS- Convert Unsigned Integer to Scalar Single-Precision Floating-Point Value 5-82

VERR instruction 5-92

Version information, processor 3-193

VERW instruction 5-92

VEX 3-3

VEX.B 3-3

VEX.L 3-3, 3-4

VEX.mmmmm 3-3

VEX.pp 3-3, 3-4

VEX.R 3-4

VEX.W 3-3

VEX.X 3-3

VEXP2PD—Approximation to the Exponential 2^x of Packed Double-Precision Floating-Point Values with Less Than 2^-23 Relative Error 5-94

VEXP2PS—Approximation to the Exponential 2^x of Packed Single-Precision Floating-Point Values with Less Than 2⁻²³ Relative From 6-10

VEXTRACTF128- Extract Packed Floating-Point Values 5-94 VFMADD132SS/VFMADD213SS/VFMADD231SS - Fused Multiply-Add of Scalar Single-Precision Floating-Point Values 5-137 VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD -

Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values 5-140

VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS - Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values 5-150

VFMSUB132PS/VFMSUB213PS/VFMSUB231PS - Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values 5-186

VFMSUB132SD/VFMSUB213SD/VFMSUB231SD - Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values 5-193

VFMSUB132SS/VFMSUB213SS/VFMSUB231SS - Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values 5-196

VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD - Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values 5-159

VFNMADD132PD/VFMADD213PD/VFMADD231PD - Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Val-

ues 5-199

VFNMADD132PS/VFNMADD213PS/VFNMADD231PS - Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values 5-206

VFNMADD132SD/VFNMADD213SD/VFNMADD231SD - Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values 5-212

VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD - Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values 5-230

VGATHERDPS/VGATHERDPD - Gather Packed Single, Packed Double with Signed Dword 5-255

VGATHERDPS/VGATHERQPS - Gather Packed SP FP values Using Signed Dword/Qword Indices 5-250

VGATHERPFODPS/VGATHERPFOQPS/VGATHERPFODPD/VGATHE RPFOQPD - Sparse Prefetch Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using TO Hint 5-258

VGATHERPF1DPS/VGATHERPF1QPS/VGATHERPF1DPD/VGATHE RPF1QPD - Sparse Prefetch Packed SP/DP Data Values with Signed Dword, Signed Qword Indices Using T1 Hint 6-14

VGATHERQPS/VGATHERQPD -Gather Packed Single, Packed Double with Signed Qword Indices 5-258

VINSERTF128/VINSERTF32x4/VINSERTF64x4- Insert Packed Floating-Point Values 5-283

VINSERTI128/VINSERTI32x4/VINSERTI64x4- Insert Packed Integer Values 5-287

Virtual Machine Monitor 6-1

VM (virtual 8086 mode) flag, EFLAGS register 3-488 VMM 6-1

VPBLENDMD- Blend Int32 Vectors Using an OpMask Control 5-298 VPBROADCASTM—Broadcast Mask to Vector Register 5-20

VPCMPD/VPCMPUD - Compare Packed Integer Values into Mask 5-318

VPCMPQ/VPCMPUQ - Compare Packed Integer Values into Mask 5-321

VPCONFLICTD/Q - Detect Conflicts Within a Vector of Packed Dword, Packed Qword Values into Dense Memory/Register 5-94 VPERM2I128 - Permute Integer Values 5-336

VPERMI2B - Full Permute of Bytes from Two Tables Overwriting the Index 5-5, 6-6

VPERMILPD- Permute Double-Precision Floating-Point Values 5-351

VPERMILPS- Permute Single-Precision Floating-Point Values 5-356

VPERMPD - Permute Double-Precision Floating-Point Elements 5-336

VPERMT2W/D/Q/PS/PD—Full Permute from Two Tables Overwriting one Table 5-370

VPGATHERDD/VPGATHERDQ- Gather Packed Dword, Packed Qword with Signed Dword Indices 5-385

VPGATHERDQ/VPGATHERQQ - Gather Packed Qword values Using Signed Dword/Qword Indices 5-388

VPGATHERQD/VPGATHERQQ- Gather Packed Dword, Packed Qword with Signed Qword Indices 5-392

VPLZCNTD/Q—Count the Number of Leading Zero Bits for Packed Dword, Packed Qword Values 5-395

VPMOVDB/VPMOVSDB/VPMOVUSDB - Down Convert DWord to Byte 5-408

VPMOVDW/VPMOVSDW/VPMOVUSDW - Down Convert DWord to

Word 5-412	saving 3-383, 3-398
VPMOVQB/VPMOVSQB/VPMOVUSQB - Down Convert QWord to	storing 3-396
Byte 5-419	x87 FPU data pointer 3-366, 3-381, 3-383, 3-398
VPMOVQD/VPMOVSQD/VPMOVUSQD - Down Convert QWord to	x87 FPU instruction pointer 3-366, 3-381, 3-383, 3-398
DWord 5-423	x87 FPU last opcode 3-366, 3-381, 3-383, 3-398
VPMOVQW/VPMOVSQW/VPMOVUSQW - Down Convert QWord to	x87 FPU status word
Word 5-427	condition code flags 3-332, 3-348, 3-408, 3-410, 3-413
VPTERNLOGD/VPTERNLOGQ - Bitwise Ternary Logic 5-466	loading 3-366
VPTESTMD/VPTESTMQ - Logical AND and Set Mask 5-469	restoring 3-381
VRCP28PD—Approximation to the Reciprocal of Packed Dou-	saving 3-383, 3-398, 3-400
ble-Precision Floating-Point Values with Less Than 2^-28 Relative	TOP field 3-352
Error 5-499	x87 FPU flags affected by instructions 3-14
VRCP28PS—Approximation to the Reciprocal of Packed Sin-	x87 FPU tag word 3-366, 3-381, 3-383, 3-398
gle-Precision Floating-Point Values with Less Than 2^-28 Relative	XABORT - Transaction Abort 5-563
Error 5-499	
	XADD instruction 3-549, 5-565
VRCP28SD—Approximation to the Reciprocal of Scalar Double Proximing Clostics Print Valve with Less Thomas 20, 20 Politics	XCHG instruction 3-549, 5-570
ble-Precision Floating-Point Value with Less Than 2^-28 Relative	XCR0 5-607, 5-608
Error 6-22	XEND - Transaction End 5-572
VRCP28SS—Approximation to the Reciprocal of Scalar Single-Pre-	XGETBV 5-574, 5-586, 5-591, B-42
cision Floating-Point Value with Less Than 2^-28 Relative Error	XLAB instruction 5-576
6-26	XLAT instruction 5-576
VRSQRT28PD—Approximation to the Reciprocal Square Root of	XOR instruction 3-549, 5-578
Packed Double-Precision Floating-Point Values with Less Than	XORPD- Bitwise Logical XOR of Packed Double Precision Float
2^-28 Relative Error 5-527	ing-Point Values 5-580
VRSQRT28PS—Approximation to the Reciprocal Square Root of	XORPS- Bitwise Logical XOR of Packed Single Precision Float
Packed Single-Precision Floating-Point Values with Less Than	ing-Point Values 5-583
2^-28 Relative Error 6-32	XRSTOR B-42
VRSQRT28SD—Approximation to the Reciprocal Square Root of	XSAVE 5-574, 5-589, 5-590, 5-593, 5-594, 5-595, 5-596, 5-597
Scalar Double-Precision Floating-Point Value with Less Than	5-598, 5-599, 5-600, 5-601, 5-603, 5-604, 5-606, 5-607, 5-608
2^-28 Relative Error 6-30	B-42
VRSQRT28SS—Approximation to the Reciprocal Square Root of	XSETBV 5-601, 5-607, B-42
Scalar Single-Precision Floating-Point Value with Less Than 2^-28	XTEST - Test If In Transactional Execution 5-609
Relative Error 6-34	Z
VSCATTERPFODPS/VSCATTERPFOQPS/VSCATTERPFODPD/VSCA	ZF (zero) flag, EFLAGS register 3-184, 3-527, 3-554, 3-556
TTERPFOQPD—Sparse Prefetch Packed SP/DP Data Values with	4-548, 5-92
Signed Dword, Signed Qword Indices Using TO Hint with Intent to	1 3 10, 3 32
Write 5-541	
VSCATTERPF1DPS/VSCATTERPF1QPS/VSCATTERPF1DPD/VSCA	
TTERPF1QPD—Sparse Prefetch Packed SP/DP Data Values with	
Signed Dword, Signed Qword Indices Using T1 Hint with Intent to	
Write 6-38	
W	
WAIT/FWAIT instructions 5-551	
GETSEC 6-4	
WBINVD instruction 5-552	
WBINVD/INVD bit 3-195	
Write-back and invalidate caches 5-552	
WRMSR instruction 5-556	
CPUID flag 3-216	
X	
x87 FPU	
checking for pending x87 FPU exceptions 5-551	
constants 3-362	
initialization 3-353	
instruction opcodes A-20	
x87 FPU control word	
loading 3-364, 3-366	
RC field 3-355, 3-362, 3-394	
restoring 3-381	