Course: B.Tech Computer Science and Engineering

(Artificial Intelligence & Machine Learning)

Subject: Theory of Computation

Subject Code: ETCS-301 Semester: V

Time: 03 Hours

Max Marks: 70

Instructions to the Students:

- 1. This Question paper consists of two Sections. All sections are compulsory.
- 2. Section A comprises 10 questions of short answer type. All questions are compulsory. Each question carries 02 marks.
- Section B comprises 8 long answer type questions out of which students must attempt any
 Each question carries 10 marks.
- 4. Do not write anything on the question paper.

Q.No.	SECTION -A (SHORT ANSWER TYPE QUESTIONS)	Marks
1 a /Dif	Forentiate between DFA and NDFA.	(2)
1. a Differentiate between DFA and NDFA. b. Explain some properties and limitations of FSM.		
D. EXI	at is Pumping Lemma? Illustrate some applications of pumping lemma.	(2)
d. Wh	at do you mean by ambiguity in regular grammar? Give an example of	(2)
a De	ine Pushdown Machines. List some applications of it.	(2)
f (Ha	w Deterministic TM is different from Non-Deterministic TM?	(2)
1./10	te rules to convert CFG to CNF.	(2)
h, Wh	at do you mean by closure properties of regular sets? Discuss any two	(2)
clo	sure properties of regular languages.	(2)
j. Exp	blain the design of TM and halting problem in TM. ferentiate between NFA with ε moves and NFA without ε moves. SECTION –B (LONG ANSWER TYPE QUESTIONS)	(2)
	SECTION -D (LONG ALSWERT 1112 Quality	

2. Define Minimization of Finite Automaton. Construct a minimum state finite (10) automaton equivalent to the finite automaton given in figure 1.

Fig.1

3. Construct a DFA equivalent to following NDFA in figure 2. [10]

(10)

- 4. Sketch and describe the Chomsky Hierarchy of Grammar. (10)
- 5 What is primitive recursive function? Describe that factorial function is primitive recursive. (10)
- (a) Differentiate between Melay and Moore Machines.
 (b) Construct pushdown automata for A = { w ∈ {0, 1}* | w contains at least three
- 7 Describe the processing for strings 011, 0011, 001 for the Turing machine given (10) in table 1.

Present state	Tape symbol				
Present state	0	Paul de la	, x	y	b
$\rightarrow q_1$	xRq ₂		1-6.4	4 ,3	bRq ₅
q ₂	0Rq ₂	yLq ₃		yRq ₂	
q_3	OLq4		xRq5	yLq ₃	
q _e	0Lq4	The state of the s	.rRq1		
q 5				yxRq ₅	bRq ₅
(Q E)				THE RESERVE	

Table 1.

- 8. Remove the null production from the following grammar.
 - s→ ABAC
 - $A \rightarrow aA \mid \epsilon$
 - $B \rightarrow bB \mid \epsilon$
 - $C \rightarrow c$
- 9. Show that the set of all strings over {a, b} consisting of equal number of a's and b's (10) is accepted by a deterministic PDA.

===END OF PAPER===