Sistemas Operacionais

Prof. Dr. Helder Oliveira

Plano de Aula

- Introdução
- Sistemas gerenciais de memória
 - Alocação contínua

Memória RAM

- Gerenciado cuidadosamente
- Programas estão mais rápidos e maiores.
- Programas tendem a expandir-se a fim de preencher a memória disponível para contê-los.
- Como sistemas operacionais criam abstrações a partir da memória e como eles as gerenciam?

Memória

- O que o programador gostaria?
 - Memória privada.
 - Grande.
 - Rápida.
 - Não volátil.
 - Barata.
- Infelizmente ainda não temos essas memórias.

Hierarquia de memórias

• Diferentes níveis de memória, associados a diferentes velocidades de acesso e tamanhos.

Velocidade

e deesso e tamamios.

Memória cache volátil.

• Cara e muito rápida.

- Memória principal volátil.
 - Velocidade e custo médios.
- Armazenamento em disco não volát
 - Estado sólido ou magnético.
 - Barato e lento.
- Armazenamento removível.
 - DVDs e dispositivos USB.

Gerenciador de Memória

- Parte do sistema operacional que gerencia (parte da) hierarquia de memórias.
- Função:
 - Gerenciar.
 - Controlar.
 - Alocar.
 - Liberar.

Sem abstração de memória

- Monoprogramação
- Abstração de memória mais simples.
- Primeiros computadores não tinham abstração de memória.
- Programas viam a memória física.

MOV REGISTER1,1000

• Não era possível ter dois programas em execução na memória ao mesmo tempo.

Variações da memória física

FIGURA 3.1 Três maneiras simples de organizar a memória com um sistema operacional e um processo de usuário. Também existem outras possibilidades.

Sem abstração de memória

- Um processo de cada vez pode ser executado.
- Copia do programa do disco para a memória e o executa.
- Processo termina, o sistema operacional exibe um prompt de comando.
- Paralelismo
 - Múltiplos threads.
 - Limitado.

Múltiplos programas sem abstração de Memoria

- Salvar o conteúdo inteiro da memória em um arquivo de disco.
- Introduzir e executar o programa seguinte.
- Se existir apenas um programa de cada vez na memória, não há conflitos.
- Swapping troca de processos

Múltiplos programas sem abstração de Memoria

- Monoprogramação Sistemas embarcados e cartões inteligentes.
- Rádios, máquinas de lavar roupas e fornos de micro-ondas
 - Cheios de software (em ROM),
 - Software se endereça à memória absoluta.

Abstração de memória

- Expor a memória física a processos tem várias desvantagens importantes.
- Abstração.
- Múltiplos programas executando ao mesmo tempo.

Espaços de endereçamento

- Problemas
 - Proteção
 - Realocação
- Definição: O conjunto de endereços que um processo pode usar para endereçar a memória.

Como dar a cada programa seu próprio espaço de endereçamento, de maneira que o endereço 28 em um programa significa uma localização física diferente do endereço 28 em outro programa?

Registradores base e registradores limite

- Solução simples.
- Realocação dinâmica.
- Equipar cada CPU com dois registradores de hardware especiais:
 - Registradores base.
 - Registradores limite.
- Posições de memória consecutivas.
- Espaço de endereçamento privado.
- **Desvantagem**: necessidade de realizar uma adição e uma comparação em cada referência de memória.

Registradores base ou limite podem ser usados para dar a cada processo um espaço de endereçamento em separado. 16384 32764 Registrador limite CMP 16412 16408 16404 16400 16396 16392 16388 JMP 28 16384 16384 16380 Registrador base MOV

JMP 24

Troca de processos (Swapping)

- Memoria demandada pelos processos maior que a memoria.
- Swapping
 - Abordagem gerais para lidar com a sobrecarga de memória.
 - Traz cada processo em sua totalidade, executa por um tempo e então coloca de volta no disco.
 - Processos ociosos estão armazenados em disco em sua maior parte, portanto não ocupam qualquer memória quando não estão sendo executados.
- Memória virtual
 - Programas possam ser executados mesmo quando estão apenas parcialmente na memória principal.

Troca de processos (Swapping)

FIGURA 3.4 Mudanças na alocação de memória à medida que processos entram nela e saem dela. As regiões sombreadas são regiões não utilizadas da memória.

Troca de processos (Swapping)

• Compactação de memória

- Utilizada quando as trocas de processos criam múltiplos espaços na memória.
- É a combinação dos espaços em um grande espaço movendo todos os processos para baixo, o máximo possível.
- Em geral ela não é feita porque exige muito tempo da CPU.
- Exemplo:
 - em uma máquina de 16 GB que pode copiar 8 bytes em 8 ns, ela levaria em torno de 16 s para compactar toda a memória.

Alocação de memória

- Quanta memória deve ser alocada para um processo quando ele é criado ou trocado?
- Alocação simples
 - Problema: e se um processo tenta crescer?
 - Se houver um espaço adjacente ao processo?
 - Se o processo for adjacente a outro?
 - Se um processo não puder crescer?
 - Se o esperado for que a maioria dos processos cresça?

Alocação de memória

FIGURA 3.5 (a) Alocação de espaço para um segmento de dados em expansão. (b) Alocação de espaço para uma pilha e um segmento de dados em expansão.

Gerenciamento de memória com mapas de bits

- A memória é dividida em unidades de alocação tão pequenas quanto umas poucas palavras e tão grandes quanto vários quilobytes.
- Correspondendo a cada unidade de alocação há um bit no mapa de bits, que é 0 se a unidade estiver livre e 1 se ela estiver ocupada (ou vice-versa).

Gerenciamento de memória com lista encadeadas

• Outra maneira de controlar o uso da memória é manter uma lista encadeada de espaços livres e de segmentos de memória alocados, onde um segmento contém um processo ou é um espaço vazio entre dois processos.

• Algoritmos:

- first fit (procura fazer a menor busca possível);
- next fit (uma pequena variação do first fit, exceto por memorizar a posição que se encontra um espaço livre adequado sempre que o encontra);
- best fit (faz uma busca em toda a lista, do início ao fim, e escolhe o menor espaço livre que seja adequado);
- worst fit (sempre escolhe o maior espaço livre);
- quick fit (mantém listas em separado para alguns dos tamanhos mais comuns solicitados).

Gerenciamento de memória com lista encadeadas

FIGURA 3.6 (a) Uma parte da memória com cinco processos e três espaços. As marcas indicam as unidades de alocação de memória. As regiões sombreadas (0 no mapa de bits) estão livres. (b) Mapa de bits correspondente. (c) A mesma informação como lista.

Gerenciamento de memória com lista encadeadas

 que termina, X.
 Antes de X terminar
 Após X terminar

 (a) A X B torna-se
 A B

 (b) A X B torna-se
 A B

 (c) X B torna-se
 B B

FIGURA 3.7 Quatro combinações de vizinhos para o processo

Leitura

- SISTEMAS OPERACIONAIS MODERNO 4ª edição
 - 3.1 Sem abstração de memória
 - 3.2 Uma abstração de memória: espaços de endereçamento

Dúvidas?