ACLR Final Project

Rachel, Elaine, and Yuthi

Table of contents

Re	eport	3
	Audience	3
	Problem Statement	3
	Analysis	
	Conclusion	3
1	Data Cleaning	4
2	Exploratory Data Analysis	9
	2.0.1 Pairplot of our chosen variables	9
3	Data Visualization	16
	3.1 Graph 1	16
	3.2 Graph 2:	18
	3.3 Graph 3:	20
4	Data Dictionary	24

Report

Audience		
-	ence/stakeholders include physicians and other ho have undergone ACL reconstruction surgery	
Problem Statement		
(ACLR) surgery. However, and health of patients we patients do not get reinjare many features that patient, the graft type up	anterior cruciate ligament (ACL), many under ver, physicians and other researchers are still exho have undergone ACLR. It is important to ured - in this study, 83% had no reinjuries after can affect reinjury rates after the surgery, such sed, and even their mental readiness. Specifical factors and what combination will lead to the agery is performed.	evaluating the recovery note that a majority of ACLR surgery. There h as the gender of the ly, our stakeholders are
Analysis		
[insert graph analyses]		
Conclusion		
[insert conclusion]		

1 Data Cleaning

«««< HEAD

1.0.0.1 Choosing our Variables:

With the given dataset, we decided to focus on the variables we deemed to be most relevant to our hypothesis regarding recovery trends. Categorical variables such as sex_dashboard, graft_dashboard2, reinjury, and tss_dashboard were inleuded along with numerical values such as age, ikdc, acl_rsi, and bmi.

Our categorical variables provide key insight into grouping individuals and focusing on patterns relevant to them, as well as stratifying their respective outcomes. For example, sex_dashboard allowed us to explore sex-based differences in recovery. Both graft_dashboard2 and reinjury helped us determine whether certain graft types experience reinjury more frequent with tss_dashboard establishing the time frame as to when individuals experienced their reinjury.

The numerical variables chosen are all continuous measures of both physical and psychological recovery factors that are key to affirming and establishing key numerical general descriptive statistics that provide a measure of evaluating outcome differences.

1.0.0.2 Cleaning Approach:

During our analysis, we took measures to address missing values, inconsistent data types, and outliers. For

For each variable, we assessed the proportion of missing values respective to the amount of osbservations. For our numerical columns, we decided to impute the missing values with the median, and for our categorical values decided to drop records entirely so that we could plot points accordingly when constructing our graphs and visualizations.

After completing our intial cleaning process, we went ahead with our next step, Exploratory Data Analysis (EDA), to examine any relations and patterns within our dataset. ====== ## Data Cleaning Outline: Documentation for our data cleaning process, including decisions regarding how we handle missing values, outliers, and other data quality issues.

First, we import the necessary libraries and set the dataset which is a .csv file provided by the UVA School of Data Science and the UVA Department of Kinesiology as a pandas dataframe.

```
# Setting up our environment, importing all necessary libraries:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

# Importing dataset as dataframe:
df = pd.read_csv('aclr data(in).csv')
```

```
# Previewing the dataframe:
df.head()
```

	record _id	redcap_event_name	redcap_repeat_instrument	sex_dashboard	graft_dashboa
0	1	baseline_arm_1	NaN	Male	Other
1	1	$visit_1_arm_1$	NaN	NaN	NaN
2	1	long_term_outcomes_arm_1	NaN	NaN	NaN
3	2	$baseline_arm_1$	NaN	Female	HS autograft
4	2	$visit_1_arm_1$	NaN	NaN	NaN

```
# Checking the dimensions of the dataframe:
print(df.shape)
```

(11150, 63)

The original dataframe has 11150 observations and 63 columns. We will be focusing on the variables we feel are most relevant to our hypothesis. We will be using the columns: sex_dashboard, graft_dashboard2, reinjury, age, height_m, mass_kg, bmi, ikdc, acl_rsi and dropping the rest from the dataframe.

```
df = df[['sex_dashboard', 'graft_dashboard2', 'reinjury', 'age', 'height_m', 'mass_kg', 'bmi
df.head()
```

	$sex_dashboard$	$graft_dashboard2$	reinjury	age	height_m	mass_kg	bmi	ikdc	acl_rsi
0	Male	Other	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	NaN	NaN	No	21.7	1.9	87.4	24.210526	95.4	87.5

	sex_dashboard	$graft_dashboard2$	reinjury	age	height_m	mass_kg	bmi	ikdc	acl_rsi
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	Female	HS autograft	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	NaN	NaN	No	14.5	1.6	72.2	28.203125	79.3	8.3

Now that we have our columns of interest, we will first check for missing values across the dataset. We will use the <code>isnull()</code> method to check for missing values and the <code>sum()</code> method to get the total number of missing values in each column, as well as the percentage of missing values in each column.

```
# Checking for missing values:
missing_values = df.isnull().sum()

# Checking the percentage of missing values:
missing_percentage = (missing_values / len(df)) * 100

# Displaying missing values and their percentage:
missing_values = pd.DataFrame({'Missing Values': missing_values, 'Percentage': missing_percentage:

# Displaying the missing values:
print(missing_values)
```

	Missing	Values	Percentage
sex_dashboard		6413	57.515695
<pre>graft_dashboard2</pre>		6413	57.515695
reinjury		5975	53.587444
age		6024	54.026906
height_m		8632	77.417040
mass_kg		7899	70.843049
bmi		8633	77.426009
ikdc		8199	73.533632
acl_rsi		7750	69.506726
tss_dashboard		5913	53.031390

Now we will proceed by separating the variables into categorical and continuous variables. We will use the select_dtypes() method to select the categorical variables and the continuous variables. For our numerical variables, we will impute missing values with the respective mean for each column.

```
# Filtering for numeric columns:
numeric_columns = df.select_dtypes(include=['int', 'float']).columns

# Imputing missing values with the mean for each respective column/varibale:
mean_values = df[numeric_columns].mean()
m_df = df.fillna(mean_values)

# Displaying the first 5 rows of the modified dataframe:
(m_df.head(5))
```

_								
	$sex_dashboard$	$graft_dashboard2$	reinjury	age	height_m	$mass_kg$	bmi	ikdc
0	Male	Other	NaN	20.184761	1.725412	74.343033	25.201579	78.457377
1	NaN	NaN	No	21.700000	1.900000	87.400000	24.210526	95.400000
2	NaN	NaN	NaN	20.184761	1.725412	74.343033	25.201579	78.457377
3	Female	HS autograft	NaN	20.184761	1.725412	74.343033	25.201579	78.457377
4	NaN	NaN	No	14.500000	1.600000	72.200000	28.203125	79.300000

For our categorical variables, we have decided to fill the missing values with just an Unknown category, since this allows us to keep the rows with missing values without losing too much information so that we can continue with plotting later on.

```
# Filtering for Categorical columns:
categorical_columns = df.select_dtypes(include=['object']).columns
# Imputing missing values with the value 'Unknown' for each respective column/variable:
for column in categorical_columns:
    m_df[column] = m_df[column].fillna('Unknown')

# Displaying the first 5 rows of the modified dataframe:
(m_df.head(5))
```

	$sex_dashboard$	$graft_dashboard2$	reinjury	age	height_m	$mass_kg$	bmi	ikdc
0	Male	Other	Unknown	20.184761	1.725412	74.343033	25.201579	78.4573
1	Unknown	Unknown	No	21.700000	1.900000	87.400000	24.210526	95.40000
2	Unknown	Unknown	Unknown	20.184761	1.725412	74.343033	25.201579	78.45737
3	Female	HS autograft	Unknown	20.184761	1.725412	74.343033	25.201579	78.4573
4	Unknown	Unknown	No	14.500000	1.600000	72.200000	28.203125	79.30000

Now we have finished our early data cleaning process and are ready to explore relations in our EDA process. >>> 4f66144f6d344353bbf188acbb4f487803d24698

2 Exploratory Data Analysis

Preview of the cleaned dataset (first five rows)

	sex_dashboard	$graft_dashboard2$	reinjury	age	height_m	mass_kg	bmi	ikdc	acl_rsi
0	Male	Other	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	NaN	NaN	No	21.7	1.9	87.4	24.210526	95.4	87.5
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	Female	HS autograft	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	NaN	NaN	No	14.5	1.6	72.2	28.203125	79.3	8.3

```
# Filtering for numeric columns:
numeric_columns = df.select_dtypes(include=['int', 'float']).columns
# imputing missing values with the mean for each respective column
mean_values = df[numeric_columns].mean()
m_df = df.fillna(mean_values)
```

2.0.1 Pairplot of our chosen variables

```
# Pairplot of filtered variables:
sns.pairplot(df[['age', 'height_m', 'mass_kg', 'bmi', 'ikdc', 'acl_rsi']], plot_kws={"s": 5}
plt.title('Pairplot of Quantitative Variables')
plt.show()
```


This pairplot illustrates the relationship between each pair of variables in our dataset. This is a quick and straightforward tool to see if there are any obvious correlations/clusters between different elements. We can see that BMI and mass have the most postively correlated relationship, which is to be expected (since mass is used to calculate BMI). Other than that, there are no glaringly obvious trends between variables.

Looking at Specific Distributions

```
# Creating visualizations to illustrate distributions:
```

[#] SCATTERPLOT: Between height and mass_kg

```
plt.figure(figsize=(10,6))
sns.scatterplot(x='height_m', y='mass_kg', data=df)
# == SCAFFOLDING ==
plt.suptitle('Scatterplot of Height and Mass', weight = 'bold', fontsize = 16, x = 0.29)
# axis labels:
plt.xlabel('Height (m)', weight = 'bold')
plt.ylabel('Mass (kg)', weight = 'bold')
# removing spines
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['left'].set_visible(False)
plt.show()
```

Scatterplot of Height and Mass

This is a scatterplot that plots the distribution of height v mass between all the patients. There is a pretty positive correlation between the two variables, since as height increases, mass also tends to increase. There is one outlier where height is around 3.25 meters, or around 10 feet. This is most likely a typo and they intended to mark it as 1.25.

```
# Histogram for 'age':
plt.figure(figsize=(10,6))
df['age'].plot(kind='hist')
# == SCAFFOLDING ==
plt.suptitle('Histogram of Age', weight = 'bold', fontsize=16, x=0.20)
plt.title('Distribution of age values', fontsize=10, x=0.075)
plt.subplots_adjust(top = 0.91)
# axis labels:
plt.xlabel('Age', weight = 'bold')
plt.ylabel('Count', weight = 'bold')
# removing spines
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['left'].set_visible(False)
plt.show()
```

Histogram of Age Distribution of age values

This is

6. Examine Correlations (if relevant)

Interpret findings: What variables appear related?

```
# setting filtered_df to be the relevant columns:
filtered_df = df[['sex_dashboard', 'graft_dashboard2', 'reinjury', 'age', 'height_m', 'mass_"
# dropping categorical columns:
num_fil_df = filtered_df.drop(['sex_dashboard', 'graft_dashboard2', 'reinjury'], axis=1)
# creating correlation matrix of our filtered numerical columns
corr_matrix = num_fil_df.corr()

# plotting correlation heatmap:
plt.figure(figsize=(10,6))
sns.heatmap(corr_matrix, fmt=".1f", annot=True, cmap="coolwarm", center=0)
plt.title("Cleaned Dataframe: Correlation Heatmap", weight = 'bold', fontsize = 18, x=0.21)
plt.show()
```


Positively correlated variables seem to include: - ikdc and acl_rsi - bmi and mass_kg

7. Explore Relationships (if relevant)

Dig into potential causal or descriptive relationships Use visualizations and statistical summaries.

```
# Records were mismatched so we shifted row values by 1
# (for every graft_type recorded, reinjury was blank so shifted by 1 to match)
df['reinjury_shifted'] = df['reinjury'].shift(-1)
df_cleaned = df[df['graft_dashboard2'].notna()][['graft_dashboard2', 'reinjury_shifted']]
df_cleaned.columns = ['graft_dashboard2', 'reinjury']
print(df_cleaned.head()) # previewing cleaned dataset
df_cleaned = df_cleaned[
    (df_cleaned['reinjury'].str.upper() != 'BLANK') &
    (df_cleaned['graft_dashboard2'].str.upper() != 'BLANK')]
grouped_counts = (
    df_cleaned.groupby(['graft_dashboard2', 'reinjury'])
    .size()
    .reset_index(name='count')
)
# #graft_order = ['HS allograft', 'BTB allograft', 'QT autograft', 'Allograft', 'Other']
# # Convert 'graft_dashboard2' to a categorical type w order
# #grouped_counts['graft_dashboard2'] = pd.Categorical(
      grouped_counts['graft_dashboard2'],
      categories=graft_order,
      ordered=True
# )
# sort the DataFrame by this order for plotting
#grouped_counts = grouped_counts.sort_values('graft_dashboard2')
# plotting stacked bar chart:
plt.figure(figsize=(10, 6))
sns.barplot(
    data=grouped_counts,
    x='graft_dashboard2',
    y='count',
    hue='reinjury',
    palette='Set2'
# == SCAFFOLDING ==
plt.xlabel('Graft Type')
plt.ylabel('Count', weight = 'bold')
plt.title('Reinjury Types by Graft Type', weight = 'bold', fontsize = 16, x = 0.2)
```

```
plt.legend(title='Reinjury Type')
# removing spines
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['left'].set_visible(False)

plt.tight_layout()
plt.show()
```

```
graft_dashboard2 reinjury
0
               Other
                            No
3
       HS autograft
                           No
8
       HS autograft
                        BLANK
       HS autograft
10
                            No
15
       HS autograft
                            No
```

Reinjury Types by Graft Type

HS Autograft has the highest proportion of no reinjuries, while the BTB autograft seems to have the highest recorded count of Contralateral reinjuries.

3 Data Visualization

```
# Environment Setup:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns
from matplotlib import font_manager
```

3.1 Graph 1

```
# importing data as dataframe:
df = pd.read_csv('aclr data(in).csv')
# filtering df to be consistent with relevant variables of interest:
df = df[['sex_dashboard', 'graft_dashboard2', 'reinjury', 'age', 'height_m', 'mass_kg', 'bmi
# previewing df with relevant columns:
#df.head()
# Filtering for numeric columns:
numeric_columns = df.select_dtypes(include=['int', 'float']).columns
# imputing missing values with the mean for each respective column
mean_values = df[numeric_columns].mean()
m_df = df.fillna(mean_values)
# previewing the imputed dataframe:
#print(m_df.head(5))
df['sex_dashboard'] = df['sex_dashboard'].shift(-1)
# == PLOT PREPARATION ==
# data for graphing (getting rid of NaN values):
df_clean = df[['ikdc', 'acl_rsi', 'sex_dashboard', 'tss_dashboard']].dropna()
```

```
# Filter by sex
df_male = df_clean[df_clean['sex_dashboard'] == 'Male']
df_female = df_clean[df_clean['sex_dashboard'] == 'Female']
# setting plot size:
plt.figure(figsize=(10, 6))
# male graph:
plt.scatter(df_male['ikdc'], df_male['acl_rsi'],
            marker='x', label='Male', color='#0070BB', alpha=0.7, s=40)
# Plot females with square markers
plt.scatter(df_female['ikdc'], df_female['acl_rsi'],
            marker='o', label='Female', color='#F653A6', alpha=0.5, s=40)
# == SCAFFOLDING ==
# setting titles:
plt.suptitle('Physical and Mental Recovery Go Hand in Hand', weight = 'bold', fontsize = 16,
plt.title('Physical gains mirror mental gains in ACL Recovery Journey', color='#585757', for
plt.subplots_adjust(top = 0.905) # adjusting spacing between sub and main title
# setting x-axis and y-axis labels:
plt.xlabel('IKDC (Knee Function)', weight = 'bold', fontsize = 12)
plt.ylabel('ACL_RSI (Mental Readiness)', weight = 'bold', fontsize = 12)
# reducing clutter on the end of the x-axis:
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.locator_params(axis='x', nbins=8) # reduces x-axis ticks
# extra formatting (removing spines for cleaner look):
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().spines['left'].set_visible(False)
# adding source as annotation:
plt.figtext(0.1, -0.05, 'Source: UVA Department of Kinesiology and School of Data Science', I
plt.show()
```

Physical and Mental Recovery Go Hand in Hand

Physical gains mirror mental gains in ACL Recovery Journey

Source: UVA Department of Kinesiology and School of Data Science

3.2 Graph 2:

```
# setting font
georgia_font = font_manager.FontProperties(family='Georgia')
plt.rcParams['font.family'] = georgia_font.get_name()

df = df[['sex_dashboard', 'graft_dashboard2', 'reinjury', 'age', 'height_m', 'mass_kg', 'bmi
# cleaning reinjury variable
df = df[df['reinjury'].str.upper() != 'BLANK']

#proportion of patients with no reinjury
prop_noreinjury = df['reinjury'].value_counts(normalize=True).get('No', 0)
print(f"Proportion of patients with no reinjury: {prop_noreinjury:.2%}")
# cleaning dataframe
```

```
df['reinjury_shifted'] = df['reinjury'].shift(-1) #align reinjury with other values
df_cleaned = df[df['graft_dashboard2'].notna()][['graft_dashboard2', 'reinjury_shifted']] #graft_dashboard2'
df_cleaned.columns = ['graft_dashboard2', 'reinjury']
#get counts of graft and reinjury
counts = (
    df_cleaned.groupby(['graft_dashboard2', 'reinjury'])
    .reset_index(name='count')
#order of grafts
graft_order = ['Allograft', 'QT autograft', 'HS autograft', 'BTB autograft', 'Other']
counts['graft_dashboard2'] = pd.Categorical( #set order in counts
    counts['graft_dashboard2'],
    categories=graft_order,
    ordered=True
total_per_graft = counts.groupby('graft_dashboard2')['count'].transform('sum') #get sums
counts['proportion'] = counts['count'] / total_per_graft #calculate proportions
# print(counts)
# print('No reinjury proportions by Graft type:\nAllograft: 0.83\nBTB autograft: 0.89\nHS au
#get rid of no reinjury bar for readability
counts_noreinjury = counts[counts['reinjury'] != 'No']
#make grouped barplot
plt.figure(figsize=(10, 6))
sns.barplot(
    data=counts_noreinjury,
    x='graft_dashboard2',
    y='proportion',
    hue='reinjury',
    palette='mako'
)
# graph labels and scaffolding
plt.xlabel('Graft Type')
plt.ylabel('Proportion of Reinjury Type')
plt.title('Undergoing ACLR Surgery? Consider a Hamstring (HS) Tendon Autograft', fontsize=14
plt.text(0.01, 0.98, 'Comparing Proportions of Reinjury Types Across Different Graft Types',
         ha='left', va='center', transform=plt.gca().transAxes, fontsize=10, color='gray')
plt.legend(title='Reinjury Type', loc='upper left', bbox_to_anchor=(0.775, 1.0))
plt.text(-0.8, -0.02, 'Source: UVA Department of Kinesiology and School of Data Science', has
```

```
sns.despine(top=True, right=True, left=True) #get rid of axes
plt.show()
```

findfont: Font family ['Georgia'] not found. Falling back to DejaVu Sans. /tmp/ipykernel_8604/1847392337.py:30: FutureWarning:

The default of observed=False is deprecated and will be changed to True in a future version

Proportion of patients with no reinjury: 87.47%

3.3 Graph 3:

Looking at the relationship between different reinjuries between the sexes.

```
# small multiples bar chart
# Set font family to Georgia
georgia_font = font_manager.FontProperties(family='Georgia')
plt.rcParams['font.family'] = georgia_font.get_name()
# Records were mismatched so we shifted row values by 1
# (for every graft_type recorded, reinjury was blank so shifted by 1 to match)
m_df['reinjury_shifted'] = m_df['reinjury'].shift(-1)
df2 = m_df[m_df['sex_dashboard'].notna()][['sex_dashboard', 'reinjury_shifted']]
df2.columns = ['sex_dashboard', 'reinjury']
# print(df2.head()) # previewing cleaned dataset
df2 = df2[
         (df2['reinjury'].str.upper() != 'BLANK') &
         (df2['sex_dashboard'].str.upper() != 'BLANK')]
df2 = df2[df2['reinjury'].str.upper() != 'NO'] # dropping 'no' reinjury records
df2= df2[df2['reinjury'].str.upper() != 'BOTH'] # dropping 'both' reinjury records
grouped_counts2 = (
         df2.groupby(['sex_dashboard', 'reinjury'])
         .reset index(name='count')
)
# Create sub-dataframes for Contralateral and Ipsilateral
df_contra = grouped_counts2[grouped_counts2['reinjury'] == 'Contralateral']
df_ipsi = grouped_counts2[grouped_counts2['reinjury'] == 'Ipsilateral']
# Set up 1x2 subplot grid
fig, axs = plt.subplots(1, 2, figsize=(12, 5), sharey=True)
# Title
fig.suptitle('Males Reinjure Their ACLs More Than Females Overall', fontsize=14, weight='bold's action of the supplies of the 
# Contralateral subplot
colors_contra = df_contra['sex_dashboard'].map({'Male': '#C8E7F5', 'Female': '#F6D2E0'}) # ]
bars_contra = axs[0].barh(df_contra['sex_dashboard'], df_contra['count'], color=colors_contra
axs[0].set_title('Contralateral', loc='left', weight='bold', color='black')
```

```
axs[0].grid(axis='x', linestyle=':', color='gray')
axs[0].spines['top'].set_visible(False)
axs[0].spines['right'].set_visible(False)
axs[0].spines['bottom'].set_visible(False)
axs[0].tick_params(axis='x', length=0)
axs[0].tick_params(axis='y', length=0)
for bar in bars_contra:
    xval = bar.get_width()
    axs[0].text(xval + 0.5, bar.get_y() + bar.get_height()/2,
                round(xval), va='center', ha='left', fontsize=10)
# Ipsilateral subplot
colors_ipsi = df_ipsi['sex_dashboard'].map({'Male': '#C8E7F5', 'Female': '#F6D2E0'})
bars_ipsi = axs[1].barh(df_ipsi['sex_dashboard'], df_ipsi['count'], color=colors_ipsi)
axs[1].set_title('Ipsilateral', loc='left', weight='bold', color='black')
axs[1].grid(axis='x', linestyle=':', color='gray')
axs[1].spines['top'].set_visible(False)
axs[1].spines['right'].set_visible(False)
axs[1].spines['bottom'].set_visible(False)
axs[1].tick_params(axis='x', length=0)
axs[1].tick_params(axis='y', length=0)
for bar in bars_ipsi:
   xval = bar.get_width()
    axs[1].text(xval + 0.5, bar.get_y() + bar.get_height()/2,
                round(xval), va='center', ha='left', fontsize=10)
# Final layout
plt.text(-42, -0.8, 'Source: UVA Department of Kinesiology and School of Data Science', ha='
# plt.tight_layout()
plt.show()
```

Males Reinjure Their ACLs More Than Females Overall

Source: UVA Department of Kinesiology and School of Data Science

4 Data Dictionary

Here are the relevant variables we used to complete our analysis with their meanings.

Variable	Description			
acl_rsi	The return-to-sport-after-injury score is self-reported by the patient.			
age	The age at which the patient received surgery.			
bmi	Body mass index of the patient.			
$graft_dashboard2$	The types of grafts used in surgery are allograft, QT autograft,			
	HS autograft, BTB autograft, and others.			
height_m	The height of the patient in meters.			
ikdc	A patient-reported outcome measure used to assess knee function			
	and			
	symptoms.			
mass_kg	The weight of the patient in kilograms.			
reinjury	The different types of reinjuries: contralateral, ipsilateral, and both.			
sex dashboard The gender of the patient: male or female.				
tss_dashboard Categorizes the months post-surgery into subsets.				