

Université de Montréal

FICHE RÉCAPITULATIVE

Analyse I

Julien Hébert-Doutreloux

Julien Hébert-Doutreloux —Page 2

1 Les nombre réels

Théorème 1. Les nombres réels sont ordonné tel que

$$\forall a, b \in \mathbb{R}_{\geq 0}, a+b \geq 0$$

$$a \in \mathbb{R}, \begin{cases} a < 0 \\ a = 0 \\ a > 0 \end{cases}$$

Théorème 2. Soit $\mathbb{R} \supset E \neq \emptyset$,

E borné supérieurement (resp. inférieurement) possède un supremum (resp. infimum) dans $\mathbb R$

Proposition 1. Soit $x, y \in \mathbb{R}, x > 0, x < y \implies \exists n \in \mathbb{N} \ tel \ que \ nx > y$

Définition 1.

$$x \in \mathbb{R}, |x| \le b \Longleftrightarrow -b \le x \le b$$
$$x, y \in \mathbb{R}, |x \cdot y| = |x| \cdot |y|$$
$$\forall x, y \in \mathbb{R}, |x \pm y| \le |x| + |y|$$
$$\forall x, y \in \mathbb{R}, ||x| - |y|| \le |x \pm y|$$

2 Les intervalles

Définition 2. I est un intervalle $\subset \mathbb{R}$ si lorsque $x, y \in I : x < y \implies \forall z \in \mathbb{R} : x < z < y$ est dans I

Définition 3. I est borné s'il possède un sup I = b et un inf I = a où $a, b \in \mathbb{R}$

Définition 4.

- Non-borné sup. : $\sup I \notin \mathbb{R}$
- Non-borné inf. : $\inf I \notin \mathbb{R}$
- \bullet Non-borné:

Définition 5. Voisinage centré en $x \in \mathbb{R}$ de rayon $\delta > 0$: $V(x, \delta)$ est l'intervalle ouvert

$$(x - \delta, x + \delta)$$

Définition 6. Voisinage pointé...: $V'(x, \delta) = V(x, \delta) \setminus \{x\}$

3 Les points

Définition 7. Un point $a \in E \subset \mathbb{R}$ est un point intérieur de E si

$$\exists \delta_{>0} : V(a, \delta) \subset E$$

Définition 8. Un point $a \in \mathbb{R}$ est un point d'accumulation de $E \subset \mathbb{R}$ si

$$\forall \delta_{>0}: V'(a,\delta) \cap E \neq \emptyset$$

Remarque : $a \notin E \Rightarrow a \notin E'$

Définition 9. Un point $a \in \mathbb{R}$ est un point adhérent de $E \subset \mathbb{R}$ si,

$$\forall \delta_{>0}, V(a,\delta) \cap E \neq \emptyset$$

Remarque:

$$a \in \bar{E} \implies a \in E'$$

 $a \in E \implies a \in \bar{E}$

Julien Hébert-Doutreloux —Page 3

4 Les ensembles

Définition 10. Soit $E \subset \mathbb{R}$, l'ensemble de ses point intérieur noté int E est tel que

$$int \ E = \{x \in E | \exists \delta_{>0}, V(x, \delta) \subset E\}$$
$$int \ E \subset E \subset \mathbb{R}$$

Remarque: int E est un ouvert

Définition 11. Soit $E \subset \mathbb{R}$, l'ensemble de ses point d'accumulation noté E' est tel que

$$E' = \{x \in E | \forall \delta_{>0}, V'(x, \delta) \cap E \neq \emptyset \}$$

$$E' \subset \mathbb{R} \supset E$$

Remarque : "Ensemble dérivé de E"

$$E \ fini \implies E' = \emptyset$$

$$E in fini \Rightarrow E' = \emptyset$$

Définition 12. *Soit* $E \subset \mathbb{R}$,

$$E \ ouvert \iff int \ E = E$$

$$E \subset int \ E \subset E \subset \mathbb{R}$$

Définition 13. Ensemble fermé Soit $E \subset \mathbb{R}$,

$$E \ ferm\'e \iff E' \subset E$$

Définition 14. *Soit* $E \subset \mathbb{R}$,

$$E \ compact \iff E \ ferm\'e \ et \ born\'e$$

Ensemble compact si tout recouvrement ouvert de E possède un sous-recouvrement fini.

Définition 15. Recouvrement ouvert Ensemble O: collection d'ensemble ouvert

$$\{O_{\lambda}, \lambda \in \Lambda\}$$

tel que

$$\mathbb{R}\supset E\subset\bigcup_{\lambda\in\Lambda}O_\lambda$$

Théorème 3. Soit O un recouvrement ouvert de $E \subset \mathbb{R}$

$$O' \subset O$$

sera appelé sous-recouvrement fini si O' est lui même un recouvrement ouvert de E et qu'il contient un nombre fini d'éléments.

Définition 16. Soit $E \subset \mathbb{R}$, la frontière de E noté Fr E = fr $E = \bar{E} \setminus \{int E\}$

$$\bar{E}\setminus\{int\ E\}\subset fr\ E\subset \bar{E}\setminus\{int\ E\}$$

5 Les théorème

Théorème 4 (Bolzano-Weierstrass). Tout ensemble borné et infini possède un point d'accumulation.

Théorème 5 (Heine-Borel). Soit $E \subset \mathbb{R}$, un recouvrement ouvert de E est un ensemble O d'ensemble ouvert

$$\{O_{\lambda}, \lambda \in \Lambda\}$$

tel que

$$\mathbb{R}\supset E\subset\bigcup_{\lambda\in\Lambda}O_\lambda$$

Théorème 6 (Densité des nombres réels). Soit a < b deux nombres réels (resp. irrationels) dans les réels, alors

$$\exists x \in \mathbb{Q} \ (resp. \ \mathbb{Q}^C) : a < x < b$$

Théorème 7 (Corolaire). Soit a < b deux nombres réels, alors il existe un nombre infini de rationnels (resp. irrationels) entre a et b.

6 Les propriétés

Ouvert/Fermé/Compact

Proposition 2 ($\bigcup \bigcap$ ouvert). Soit $\{O_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble ouvert

- $\bigcup_{\lambda \in \Lambda} O_{\lambda} \ ouvert$
- $\bigcap_{\lambda \in \Lambda}^{n} O_{\lambda} \text{ ouvert } si |\Lambda| < \infty$

(i.e) Un nombre fini d'ensemble

Proposition 3 ($\bigcup \bigcap$ fermé). Soit $\{F_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble fermé

- $\bigcup_{\lambda \in \Lambda} F_{\lambda}$ fermé fermé si $|\Lambda| < \infty$
- $\bigcap_{\lambda \in \Lambda}^{n} F_{\lambda} ferm\acute{e}$

(i.e) Un nombre fini d'ensemble

Proposition 4 ($\bigcup \bigcap$ compact). Soit $\{K_{\lambda}, \lambda \in \Lambda\}$, une collection d'ensemble compact

- $\bigcup_{\lambda \in \Lambda} K_{\lambda} \ compact \ si \ |\Lambda| < \infty$
- $\bigcap_{\lambda \in \Lambda}^{n} K_{\lambda} \ compact \ si \ |\Lambda| < \infty$

(i.e) Un nombre fini d'ensemble

Proposition 5. • Ø ouvert

- $\bullet \ A, B \ ouverts \implies \begin{cases} A \cup B \ ouvert \\ A \cap B \ ouvert \end{cases}$
- ullet E ouvert \Longleftrightarrow E^C fermé
- $\bullet \ E \ ferm\acute{e} \Longleftrightarrow E' \subset E$
- $E \ compact \implies \sup E \in E$
- F ferm'e, E $compact: F \subset E \subset \mathbb{R} \implies F$ compact
- Soit $E \subset \mathbb{R}$

$$- int E = \bigcup_{O \subseteq E} O$$

(L'intérieur d'un ensemble E est la réunion de tous les ensembles ouvert contenue dans E)

- int E ouvert
- int E plus grand ouvert contenue dans E

Adhérence/Accumulation/Intérieur

Proposition 6. • $\bar{E} = E \cup E'$

- $(\bar{E}) = int (E^C)$
- \bullet \bar{E} ferm'e
- $A, B \subset \mathbb{R}$,

Julien Hébert-Doutreloux —Page 5

$$-A \subset B \implies \bar{A} \subset \bar{B}$$

$$-\overline{A \cup B} \implies \bar{A} \cup \bar{B}$$

$$-int (A \cap B) = int (A) \cap int (B)$$

$$-int (A \cup B) = int (A) \cup int (B)$$

• Soit $A \subset \mathbb{R}_{\neq \emptyset}$,

$$-d(x,A) = \inf\{|x-a| : a \in A\} \text{ la distance } x \text{ de } A$$
$$-x \in \bar{A} \Longleftrightarrow d(x,A) = 0$$
$$-A \text{ ferm\'e et } d(x,A) = 0 \Longrightarrow x \in A$$

Proposition 7 (Supremum/Infimum). Soit $E \subset \mathbb{R}$ non-vide et borné,

$$\forall \varepsilon_{>0}, \exists x,y \in E : \begin{cases} \sup E - \varepsilon < x \le \sup E \\ \inf E \ge x < \inf E + \varepsilon \end{cases}$$

\mathbf{Index}

A	l	
Archimède	Infimum	5
Axiome de complétude $\dots 2$	Intervalle	
Bolzano-Weierstrass 3 Borné 2	Inégalité triangulaire N Non-borné	
D	Р	
Densité de \mathbb{R}	Point adhérent	. 2
Delisite de №	Point d'accumulation	2
E	Point intérieur	2
Ensemble compact	S	
Ensemble des points d'accumulations 3	Sous-recouvrement ouvert	q
Ensemble des points intérieurs3	Supremum	
Ensemble fermé	Supremum	
Ensemble ouvert $\dots 3, 4$	T	
F	Trichotomie	2
Frontière 3	V	
	Valeur absolue	2
H	Voisinage	
Heine-Borel	Vosinage pointé	