Discrete Mathematics

Chapter 4: Induction and Recursions

Department of Mathematics The FPT university

Topics covered:

4.1 Mathematical Induction

- 4.1 Mathematical Induction
- 4.2 Strong Induction and Well-Ordering

- 4.1 Mathematical Induction
- 4.2 Strong Induction and Well-Ordering
- 4.3 Recursive Definitions and Structural Induction

- 4.1 Mathematical Induction
- 4.2 Strong Induction and Well-Ordering
- 4.3 Recursive Definitions and Structural Induction
- 4.4 Recursive Algorithms

- 4.1 Mathematical Induction
- 4.2 Strong Induction and Well-Ordering
- 4.3 Recursive Definitions and Structural Induction
- 4.4 Recursive Algorithms
- 4.5 Program Correctness

Problem. Prove that the statement P(n) is true for all n = 1, 2, ...

Problem. Prove that the statement P(n) is true for all n = 1, 2, ...

Problem. Prove that the statement P(n) is true for all n = 1, 2, ...

Proof by Induction:

1: Prove that P(1) is true.

Problem. Prove that the statement P(n) is true for all n = 1, 2, ...

- 1: Prove that P(1) is true.
- 2: (Inductive hypothesis) Assume that P(k) is true for some positive integer k.

Problem. Prove that the statement P(n) is true for all n = 1, 2, ...

- 1: Prove that P(1) is true.
- 2: (Inductive hypothesis) Assume that P(k) is true for some positive integer k.
- 3: Prove that P(k+1) is true.

Problem. Prove that the statement P(n) is true for all n = 1, 2, ...

- 1: Prove that P(1) is true.
- 2: (Inductive hypothesis) Assume that P(k) is true for some positive integer k.
- 3: Prove that P(k+1) is true.
- 4: Conclusion: P(n) is true for all positive integers n.

Problem. Prove that the statement P(n) is true for all n = 1, 2, ...

- 1: Prove that P(1) is true.
- 2: (Inductive hypothesis) Assume that P(k) is true for some positive integer k.
- 3: Prove that P(k+1) is true.
- 4: Conclusion: P(n) is true for all positive integers n.

Example 1. Prove that for all positive integers
$$n$$
 we have $1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$

TrungDT (FUHN) MAD101 Chapter 4 4/18 **Example 1.** Prove that for all positive integers n we have

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Example 2. Prove that $n^3 - n$ is divisible by 6 for all integers $n \ge 1$.

4/18

TrungDT (FUHN) MAD101 Chapter 4

Example 1. Prove that for all positive integers n we have

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Example 2. Prove that $n^3 - n$ is divisible by 6 for all integers $n \ge 1$.

Example 3. Prove that $2^n > n^2$ for all integers n > 4.

Example 1. Prove that for all positive integers n we have

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Example 2. Prove that $n^3 - n$ is divisible by 6 for all integers $n \ge 1$.

Example 3. Prove that $2^n > n^2$ for all integers n > 4.

Example 4. Let n be a positive integer. Prove that every checkerboard of size $2^n \times 2^n$ with one square removed can be titled by triominoes.

Problem. Prove that P(n) is true for all n = 1, 2, ...

Problem. Prove that P(n) is true for all n = 1, 2, ...

Problem. Prove that P(n) is true for all n = 1, 2, ...

Proof by Strong Induction.

1: Prove that P(1) is true.

Problem. Prove that P(n) is true for all n = 1, 2, ...

- 1: Prove that P(1) is true.
- 2: (Induction hypothesis) Assume that $P(1), P(2), \dots, P(k)$ are all true for some $k \ge 1$.

Problem. Prove that P(n) is true for all n = 1, 2, ...

- 1: Prove that P(1) is true.
- 2: (Induction hypothesis) Assume that $P(1), P(2), \dots, P(k)$ are all true for some $k \ge 1$.
- 3: Prove that P(k+1) is also true.

Problem. Prove that P(n) is true for all n = 1, 2, ...

- 1: Prove that P(1) is true.
- 2: (Induction hypothesis) Assume that $P(1), P(2), \dots, P(k)$ are all true for some $k \ge 1$.
- 3: Prove that P(k+1) is also true.
- 4: Conclusion: P(n) is true for all positive integers n.

Problem. Prove that P(n) is true for all n = 1, 2, ...

Proof by Strong Induction.

- 1: Prove that P(1) is true.
- 2: (Induction hypothesis) Assume that $P(1), P(2), \dots, P(k)$ are all true for some $k \ge 1$.
- 3: Prove that P(k+1) is also true.
- 4: Conclusion: P(n) is true for all positive integers n.

Example 1. Prove that every integer greater than 1 can be written as a product of primes.

Problem. Prove that P(n) is true for all n = 1, 2, ...

Proof by Strong Induction.

- 1: Prove that P(1) is true.
- 2: (Induction hypothesis) Assume that $P(1), P(2), \dots, P(k)$ are all true for some $k \ge 1$.
- 3: Prove that P(k+1) is also true.
- 4: Conclusion: P(n) is true for all positive integers n.

Example 1. Prove that every integer greater than 1 can be written as a product of primes.

Example 2. Prove that every postage of 12 cents or more can be formed using only 4-cent and 5-cent stamps.

The validity of the Principle of Mathematical Induction follows from the Well-Ordering property of the set of non-negative integers.

The validity of the Principle of Mathematical Induction follows from the Well-Ordering property of the set of non-negative integers.

Well-Ordering

The validity of the Principle of Mathematical Induction follows from the Well-Ordering property of the set of non-negative integers.

Well-Ordering

Any nonempty set of non-negative integers has a least element.

4.3 Recursive Definitions and Structural Induction

4.3 Recursive Definitions and Structural Induction

The Fibonacci $\{F_n\}$, $n=1,2,\ldots$ is defined as follows:

TrungDT (FUHN)

The Fibonacci $\{F_n\}$, n = 1, 2, ... is defined as follows:

$$F_0=0, \, F_1=1, \,$$

The Fibonacci $\{F_n\}$, n = 1, 2, ... is defined as follows:

$$F_0 = 0, \, F_1 = 1, \, \text{and}$$

The Fibonacci $\{F_n\}$, n = 1, 2, ... is defined as follows:

$$F_0 = 0, F_1 = 1, \text{ and}$$

 $F_n = F_{n-1} + F_{n-2} \text{ for } n = 2, 3, \dots$

The Fibonacci $\{F_n\}$, n = 1, 2, ... is defined as follows:

$$F_0 = 0, F_1 = 1, \text{ and}$$

 $F_n = F_{n-1} + F_{n-2} \text{ for } n = 2, 3, \dots$

This definition is called recursive definition.

7 / 18

TrungDT (FUHN) MAD101 Chapter 4

The Fibonacci $\{F_n\}$, n = 1, 2, ... is defined as follows:

$$F_0 = 0, F_1 = 1, \text{ and}$$

 $F_n = F_{n-1} + F_{n-2} \text{ for } n = 2, 3, \dots$

This definition is called recursive definition.

7 / 18

TrungDT (FUHN) MAD101 Chapter 4

(a)
$$x_1 = 5$$
, $x_n = 3x_{n-1}$ for $n = 2, 3, ...$

- (a) $x_1 = 5$, $x_n = 3x_{n-1}$ for n = 2, 3, ...
- (b) $x_0 = 2$, $x_n = x_{n-1} + 1$ for n = 1, 2, ...

- (a) $x_1 = 5$, $x_n = 3x_{n-1}$ for n = 2, 3, ...
- (b) $x_0 = 2$, $x_n = x_{n-1} + 1$ for n = 1, 2, ...

- (a) $x_1 = 5$, $x_n = 3x_{n-1}$ for n = 2, 3, ...
- (b) $x_0 = 2$, $x_n = x_{n-1} + 1$ for n = 1, 2, ...

- (a) $x_1 = 5$, $x_n = 3x_{n-1}$ for n = 2, 3, ...
- (b) $x_0 = 2$, $x_n = x_{n-1} + 1$ for n = 1, 2, ...

(a)
$$x_n = 7 * 5^{n+1}$$

- (a) $x_1 = 5$, $x_n = 3x_{n-1}$ for n = 2, 3, ...
- (b) $x_0 = 2$, $x_n = x_{n-1} + 1$ for n = 1, 2, ...

- (a) $x_n = 7 * 5^{n+1}$
- (b) $x_n = n!$

- (a) $x_1 = 5$, $x_n = 3x_{n-1}$ for n = 2, 3, ...
- (b) $x_0 = 2$, $x_n = x_{n-1} + 1$ for n = 1, 2, ...

- (a) $x_n = 7 * 5^{n+1}$
- (b) $x_n = n!$
- (c) $x_n = (-1)^n$

- (a) $x_1 = 5$, $x_n = 3x_{n-1}$ for n = 2, 3, ...
- (b) $x_0 = 2$, $x_n = x_{n-1} + 1$ for n = 1, 2, ...

- (a) $x_n = 7 * 5^{n+1}$
- (b) $x_n = n!$
- (c) $x_n = (-1)^n$
- (d) $x_n = 2n 6$

- (a) $x_1 = 5$, $x_n = 3x_{n-1}$ for n = 2, 3, ...
- (b) $x_0 = 2$, $x_n = x_{n-1} + 1$ for n = 1, 2, ...

- (a) $x_n = 7 * 5^{n+1}$
- (b) $x_n = n!$
- (c) $x_n = (-1)^n$
- (d) $x_n = 2n 6$

Example 1. Determine the set *S* defined by:

Example 1. Determine the set *S* defined by:

Basic step: $3 \in S$

Example 1. Determine the set *S* defined by:

Basic step: $3 \in S$

Recursive step: If $x, y \in S$ then $x + y \in S$

Example 1. Determine the set *S* defined by:

Basic step: $3 \in S$

Recursive step: If $x, y \in S$ then $x + y \in S$

Example 2.

Example 1. Determine the set *S* defined by:

Basic step: $3 \in S$

Recursive step: If $x, y \in S$ then $x + y \in S$

Example 2.

(a) Give a recursive definition for the set of positive integers that are not divisible by 3

Example 1. Determine the set *S* defined by:

Basic step: $3 \in S$

Recursive step: If $x, y \in S$ then $x + y \in S$

Example 2.

- (a) Give a recursive definition for the set of positive integers that are not divisible by 3
- (b) Give a recursive definition for the set of integers that are not divisible by ${\bf 3}$

Example 1. Determine the set *S* defined by:

Basic step: $3 \in S$

Recursive step: If $x, y \in S$ then $x + y \in S$

Example 2.

- (a) Give a recursive definition for the set of positive integers that are not divisible by 3
- (b) Give a recursive definition for the set of integers that are not divisible by ${\bf 3}$

Basic step: A single vertex is a full binary tree.

Basic step: A single vertex is a full binary tree.

Recursive step: If T_1 and T_2 are two full binary trees then there is a full binary tree, denoted by $T_1.T_2$, consisting of a root r together with edges connecting this root to the root of the left subtree T_1 and the root of the right subtree T_2 .

Basic step: A single vertex is a full binary tree.

Recursive step: If T_1 and T_2 are two full binary trees then there is a full binary tree, denoted by $T_1.T_2$, consisting of a root r together with edges connecting this root to the root of the left subtree T_1 and the root of the right subtree T_2 .

(a) Leaves of full binary trees.

- (a) Leaves of full binary trees.
- (b) Height of full binary trees.

- (a) Leaves of full binary trees.
- (b) Height of full binary trees.

Structural Induction

Structural Induction

Let S be a set defined recursively.

12 / 18

Structural Induction

Let S be a set defined recursively. To prove that a property P is true for all elements of S we can use structural induction.

Structural Induction

Let S be a set defined recursively. To prove that a property P is true for all elements of S we can use structural induction.

Basic step: Prove that P is true for elements of S defined in the basic step.

Structural Induction

Let S be a set defined recursively. To prove that a property P is true for all elements of S we can use structural induction.

Basic step: Prove that P is true for elements of S defined in the basic step.

Recursive step: Show that if the property P is true for the elements used to construct new elements in the recursive step of the definition of S, then the property P is also true for these new elements.

Example 1.

Example 1. Let T be a full binary tree with the number of vertices n(T) and the number of leaves l(T). Prove that n(T) = 2l(T) - 1.

Example 1. Let T be a full binary tree with the number of vertices n(T) and the number of leaves l(T). Prove that n(T) = 2l(T) - 1.

Example 2. Let T be a full binary tree with the number of vertices n(T) and the height h(T). Prove that $n(T) \le 2^{h(T)+1} - 1$.

Example 1. Let T be a full binary tree with the number of vertices n(T) and the number of leaves l(T). Prove that n(T) = 2l(T) - 1.

Example 2. Let T be a full binary tree with the number of vertices n(T) and the height h(T). Prove that $n(T) \le 2^{h(T)+1} - 1$.

Example.

Example.

Given the sequence $\{a_{m,n}\}$ defined recursively as follows:

Example.

Given the sequence $\{a_{m,n}\}$ defined recursively as follows:

 $a_{0,0} = 0$, and

Example.

Given the sequence $\{a_{m,n}\}$ defined recursively as follows:

$$a_{0,0} = 0$$
, and $a_{m,n} = \left\{ egin{array}{ll} a_{m-1,n} + 1 & ext{if } n = 0 \ ext{và } m > 0, \ a_{m,n-1} + n & ext{if } n > 0 \end{array}
ight.$

TrungDT (FUHN)

Example.

Given the sequence $\{a_{m,n}\}$ defined recursively as follows:

$$a_{0,0} = 0$$
, and $a_{m,n} = \left\{ egin{array}{ll} a_{m-1,n} + 1 & ext{if } n = 0 \ ext{và } m > 0, \ a_{m,n-1} + n & ext{if } n > 0 \end{array}
ight.$

Prove that $a_{m,n} = m + n(n+1)/2$ for all $m, n \ge 0$.

TrungDT (FUHN)

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input

Example 1. A recursive algorithm that computes 5^n for $n \ge 0$.

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input

Example 1. A recursive algorithm that computes 5^n for $n \ge 0$.

Procedure power (n: non-negative) if n = 0 then power(0) := 1

else power(n) := power(n-1) * 5

Example 2. Write a recursive algorithm to compute n!.

Example 2. Write a recursive algorithm to compute n!.

Example 3. Write a recursive algorithm to compute the greatest common divisor of two non-negative integers.

Example 2. Write a recursive algorithm to compute n!.

Example 3. Write a recursive algorithm to compute the greatest common divisor of two non-negative integers.

Example 4. Express the linear search algorithm by a recursive procedure .

- **Example 2.** Write a recursive algorithm to compute n!.
- **Example 3.** Write a recursive algorithm to compute the greatest common divisor of two non-negative integers.
- **Example 4.** Express the linear search algorithm by a recursive procedure .
- **Example 5.** Express the binary search algorithm by a recursive procedure.

- **Example 2.** Write a recursive algorithm to compute n!.
- **Example 3.** Write a recursive algorithm to compute the greatest common divisor of two non-negative integers.
- **Example 4.** Express the linear search algorithm by a recursive procedure .
- **Example 5.** Express the binary search algorithm by a recursive procedure.

```
Procedure Iterative Fib (n)
if n = 0 then y := 0
else
x:=0
y:=1
for i := 1 to n - 1 do
z:=x+y
x:=y
y:=z
Print(y)
```

```
Procedure Iterative Fib (n)
if n = 0 then y := 0
else
    x:=0
    y:=1
    for i := 1 to n - 1 do
        z:=x+y
        x:=y
        y:=z
Print(y)
```

```
Procedure Fib (n)

if n = 0 then Fib(0) := 0

else if n = 1 then Fib(1) := 1

else

Fib(n) := Fib(n - 1) + Fib(n - 2)
```

```
Procedure mergesort (L = a_1, a_2, \dots, a_n)

if n > 1 then

m := \lfloor n/2 \rfloor

L_1 = a_1, a_2, \dots, a_m

L_2 = a_{m+1}, a_{m+2}, \dots, a_n

L := merge(mergesort(L_1), mergersort(L_2))

Print (L)
```

```
Procedure mergesort (L = a_1, a_2, \dots, a_n)

if n > 1 then

m := \lfloor n/2 \rfloor

L_1 = a_1, a_2, \dots, a_m

L_2 = a_{m+1}, a_{m+2}, \dots, a_n

L := merge(mergesort(L_1), mergersort(L_2))

Print (L)
```

Theorem

```
Procedure mergesort (L = a_1, a_2, \dots, a_n)
if n > 1 then
     m := |n/2|
      L_1 = a_1, a_2, \ldots, a_m
     L_2 = a_{m+1}, a_{m+2}, \dots, a_n
     L := merge(mergesort(L_1), mergersort(L_2))
```

Print (L)

Theorem

The number of comparisons needed to merge sort a list of n elements is $O(n \log n)$.