

# Non-degenerate surfaces of revolution in Minkowski space that satisfy the relation $aH + bK = c$

Özgür Boyacıoğlu Kalkan  
 Mathematics Department  
 Afyon Kocatepe University  
 Afyon 03200 Turkey  
 email: bozgur@aku.edu.tr

Rafael López\*  
 Departamento de Geometría y Topología  
 Universidad de Granada  
 18071 Granada, Spain  
 email: rcamino@ugr.es

Derya Saglam  
 Mathematics Department  
 Afyon Kocatepe University  
 Afyon 03200 Turkey

## Abstract

In this work, we study spacelike and timelike surfaces of revolution in Minkowski space  $\mathbf{E}_1^3$  that satisfy  $aH + bK = c$ , where  $H$  and  $K$  denote the mean curvature and the Gauss curvature of the surface and  $a$ ,  $b$  and  $c$  are constants. The classification depends on the causal character of the axis of revolution and in all the cases, we obtain a first integral of the equation of the generating curve of the surface.

---

\*Partially supported by MEC-FEDER grant no. MTM2007-61775 and Junta de Andalucía grant no. P06-FQM-01642.

## 1 Introduction

Consider the three-dimensional Minkowski space  $\mathbf{E}_1^3$ , that is, the real vector space  $\mathbb{R}^3$  endowed with the Lorentzian metric  $\langle , \rangle = (dx)^2 + (dy)^2 - (dz)^2$ , where  $(x, y, z)$  stand for the usual coordinates of  $\mathbb{R}^3$ . A vector  $v \in \mathbf{E}_1^3$  is said spacelike if  $\langle v, v \rangle > 0$  or  $v = 0$ , timelike if  $\langle v, v \rangle < 0$  and lightlike if  $\langle v, v \rangle = 0$  and  $v \neq 0$ . A submanifold  $S \subset \mathbf{E}_1^3$  is said spacelike, timelike or lightlike if the induced metric on  $S$  is a Riemannian metric (positive definite), a Lorentzian metric (a metric of index 1) or a degenerated metric, respectively. In the case that  $S$  is a straight-line  $L = \langle v \rangle$ , this means that  $v$  is spacelike, timelike or lightlike, respectively. If  $S$  is a plane  $P$ , this is equivalent that any orthogonal vector to  $P$  is timelike, spacelike or lightlike respectively.

An immersion  $x : M \rightarrow \mathbf{E}_1^3$  of a surface  $M$  is said non-degenerated if the induced metric  $x^*(\langle , \rangle)$  on  $M$  is non-degenerate. In this setting, there is only two possibilities: if  $x^*(\langle , \rangle)$  is positive definite, that is, it is a Riemannian metric and the immersion is called *spacelike* or  $x^*(\langle , \rangle)$  is a Lorentzian metric, that is, a metric of index 1, and the immersion is called *timelike*. For spacelike surfaces, the tangent planes are spacelike everywhere, and for timelike surfaces, they are timelike.

We consider spacelike or timelike surfaces in  $\mathbf{E}_1^3$  that satisfy the relation

$$aH + bK = c, \quad (1)$$

where  $H$  and  $K$  are the mean curvature and the Gauss curvature of the surface, and  $a$ ,  $b$  and  $c$  are constants. We say that the surface is a *linear Weingarten surface* of  $\mathbf{E}_1^3$ . In general, a Weingarten surface is a surface that satisfies a certain smooth relation  $W = W(H, K) = 0$  and our case, that is, surfaces that satisfy (1) is the simplest case of  $W$ , that is, that  $W$  is a linear function in its variables. The family of linear Weingarten surfaces include the surfaces with constant mean curvature ( $b = 0$ ) and the surfaces with constant Gauss curvature ( $a = 0$ ).

In this work we study linear Weingarten surfaces that are rotational, that is, invariant by a group of motions of  $\mathbf{E}_1^3$  that pointwised fixed a straight-line. In such case, Equation (1) is a second ordinary differential equation that describes the shape of the generating curve of the surface. One can not expect to integrate this equation, because even in the trivial cases that  $a = 0$  or  $b = 0$ , this integration is not possible. We are going to discard the cases that  $H$  is constant or  $K$  is constant, which are known: see for example [1, 2, 3]. We will obtain a first integration of (1). For the particular case that  $a^2 - 4bc\epsilon = 0$ , we describe all solutions, exactly, we have

**Theorem 1.1** *Let  $M$  be a non-degenerate rotational surface in  $\mathbf{E}_1^3$ , and take  $\epsilon = 1$  if  $M$  is spacelike and  $\epsilon = -1$  if  $M$  is timelike. Assume that  $M$  is a linear Weingarten surface*

such that  $a^2 - 4bc\epsilon = 0$ . After a rigid motion of the ambient space, a parametrization  $X(u, v)$  of  $M$  is as follows:

1. If the axis is timelike,  $X(u, v) = (u \cos(v), u \sin(v), z(u))$ , where

$$z(u) = \pm \sqrt{\frac{4\epsilon b^2}{a^2} + \left(\frac{C}{a} \pm u\right)^2 + \mu}, \quad C = 2\sqrt{b\epsilon(-b + \lambda)}, \quad \mu, \lambda \in \mathbb{R}.$$

2. If the axis is spacelike, we have two possibilities:

- (a) The parametrization is  $X(u, v) = (u, z(u) \sinh(v), z(u) \cosh(v))$ , where

$$z(u) = \pm \frac{C}{a} \pm \sqrt{\frac{4\epsilon b^2}{a^2} \pm (u \pm \mu)^2}, \quad C = 2\sqrt{b\epsilon\lambda}, \quad \mu, \lambda \in \mathbb{R}.$$

- (b) The parametrization is  $X(u, v) = (u, z(u) \cosh(v), z(u) \sinh(v))$ , where

$$z(u) = \frac{-C}{a} \pm \sqrt{\frac{4b^2}{a^2} \pm (u \pm \mu)^2}, \quad C = 2\sqrt{b\lambda}, \quad \mu, \lambda \in \mathbb{R}.$$

3. If the axis is lightlike,  $X(u, v) = (-2uv, z(u) + u - uv^2, z(u) - u - uv^2)$ , where

$$z(u) = \frac{1}{48} \left( \frac{-4ac\lambda + (cC^2 - 2a^2\lambda)u}{\epsilon c\lambda(2\lambda + cu^2)} + \epsilon \frac{cC^2 + 2a^2\lambda}{\sqrt{-2c\lambda}} \operatorname{arctanh}\left(\sqrt{-\frac{c}{2\lambda}} u\right) \right) + \mu, \quad \mu, \lambda \in \mathbb{R}.$$

## 2 Rotational surfaces in $\mathbf{E}_1^3$

In this section we describe the surfaces of revolution of  $\mathbf{E}_1^3$  and we recall the concepts of mean curvature and Gauss curvature for a non-degenerate surface. We consider the rigid motions of the ambient space that leave a straight-line pointwised fixed, called, the axis of the surface. Let  $L$  be the axis of the surface. Depending on  $L$ , there are three types of rotational motions. After an isometry of  $\mathbf{E}_1^3$ , the expressions of rotational motions with respect to the canonical basis  $\{e_1, e_2, e_3\}$  are as follows:

$$\begin{aligned} R_v : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} &\longmapsto \begin{pmatrix} \cos v & \sin v & 0 \\ -\sin v & \cos v & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}. \\ R_v : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} &\longmapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cosh v & \sinh v \\ 0 & \sinh v & \cosh v \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}. \end{aligned}$$

$$R_v : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 1 & -v & v \\ v & 1 - \frac{v^2}{2} & \frac{v^2}{2} \\ v & -\frac{v^2}{2} & 1 + \frac{v^2}{2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

See [4, 5] for more details.

**Definition 2.1** A surface  $M$  in  $\mathbf{E}_1^3$  is a surface of revolution, or rotational surface, if  $M$  is invariant by some of the above three groups of rigid motions.

In particular, there exists a planar curve  $\alpha = \alpha(u)$  that generates the surface, that is,  $M$  is the set of points given by  $\{R_v(\alpha(u)); u \in I, v \in \mathbb{R}\}$ . We now describe the parametrizations of a rotational surface.

1. *Case L is a timelike axis.* Consider that  $L$  is the  $x_3$ -axis. If  $p = (x_0, y_0, z_0) \notin L$ , then  $\{R_v(p); v \in \mathbb{R}\}$  is an Euclidean circle of radius  $\sqrt{x_0^2 + y_0^2}$  in the plane  $z = z_0$ . If  $\alpha(u) = (u, 0, z(u))$  is a planar curve in the plane  $y = 0$ , then the surface of revolution generated by  $\alpha$  writes as

$$X(u, v) = (u \cos(v), u \sin(v), z(u)), \quad u \neq 0. \quad (2)$$

2. *Case L is a spacelike axis.* Consider that  $L$  is the  $x_1$ -axis. If  $p = (x_0, y_0, z_0)$  does not belong to  $L$ , then  $\{R_v(p); v \in \mathbb{R}\}$  is an Euclidean hyperbola in the plane  $x = x_0$  and with equation  $y^2 - z^2 = y_0^2 - z_0^2$ . For this kind of rotational surfaces, we have two type of surfaces:

- (a) If  $\alpha(u) = (u, 0, z(u))$  is a planar curve in the plane  $y = 0$ , then the surface of revolution generated by  $\alpha$  writes as

$$X(u, v) = (u, z(u) \sinh(v), z(u) \cosh(v)), \quad u \neq 0. \quad (3)$$

- (b) If  $\alpha(u) = (u, z(u), 0)$  is a planar curve in the plane  $z = 0$ , then the surface is given by

$$X(u, v) = (u, z(u) \cosh(v), z(u) \sinh(v)), \quad u \neq 0. \quad (4)$$

3. *Case L is a lightlike axis.* Consider that  $L$  is the straight-line  $v_1 = <(0, 1, 1)>$ . If  $p = (x_0, y_0, z_0)$  does not belong to the plane  $<e_1, v_1>$ , the orbit  $\{R_v(p); v \in \mathbb{R}\}$  is the curve

$$\beta(v) = (x - (y - z)v, xv + y - (y - z)\frac{v^2}{2}, xv + z - (y - z)\frac{v^2}{2}).$$

The curve  $\beta$  lies in the plane  $y - z = y_0 - z_0$  and describes a parabola in this plane, namely,

$$\beta(v) = (x, y, z) + v(-(y - z)e_1 + xv_1) - \frac{y - z}{2}v^2v_1.$$

Consider  $\alpha(u)$  a planar curve in the plane  $\langle (0, 1, 1), (0, 1, -1) \rangle$  given as a graph on the straight-line  $\langle (0, 1, -1) \rangle$ , that is,  $\alpha(u) = (0, u + z(u), -u + z(u))$ . The surface of revolution generated by  $\alpha$  is

$$X(u, v) = (-2uv, z(u) + u - uv^2, z(u) - u - uv^2), \quad u \neq 0. \quad (5)$$

Let  $M$  be surface and  $x : M \rightarrow \mathbf{E}_1^3$  a non-degenerate immersion and we simply say that  $M$  is non-degenerate. The surface could be not orientable, but if the immersion is spacelike, then  $M$  is necessarily orientable. This is due to the following fact. At each point  $p \in M$  there are two possible choices of a unit normal vector to the tangent plane  $T_p M$  of  $M$  at  $p$ . The normal vector to  $M$  is a timelike vector, and in Minkowski space, two any timelike vectors are not orthogonal. Thus, if  $E_3 = (0, 0, 1)$ , at each point  $p \in M$ , we take that unit normal vector  $N(p)$  such that  $\langle N(p), E_3 \rangle < 0$ . This allows to define an global orientation on  $M$ , proving that  $M$  is orientable. With this choice of  $N$ , we say that  $N$  is future directed. In the case that the immersion is timelike, we will assume that  $M$  is orientable.

Let  $x : M \rightarrow \mathbf{E}_1^3$  be a non-degenerate immersion of a surface  $M$  and let  $N$  be a Gauss map. Let  $U, V$  be vector fields to  $M$  and we denote by  $\nabla^0$  and  $\nabla$  the Levi-Civita connections of  $\mathbf{E}_1^3$  and  $M$  respectively. The Gauss formula says  $\nabla_U^0 V = \nabla_U V + \text{II}(U, V)$ , where  $\text{II}$  is the second fundamental form of the immersion. The Weingarten endomorphism is  $A_p : T_p M \rightarrow T_p M$  defined as  $A_p(U) = -(\nabla_U^0 N)_p^\top = (-dN)_p(U)$ . We have then  $\text{II}(U, V) = -\epsilon \langle \text{II}(U, V), N \rangle N = -\epsilon \langle AU, V \rangle N$ , where  $\epsilon = 1$  if  $M$  is spacelike and  $\epsilon = -1$  if  $M$  is timelike. The mean curvature vector  $\vec{H}$  is defined as  $\vec{H} = (1/2)\text{trace}(\text{II})$  and the Gauss curvature  $K$  as the determinant of  $\text{II}$  computed in both cases with respect to an orthonormal basis. The mean curvature  $H$  is the function given by  $\vec{H} = HN$ , that is,  $H = -\epsilon \langle \vec{H}, N \rangle$ . If  $\{e_1, e_2\}$  is an orthonormal basis at each tangent plane, with  $\langle e_1, e_1 \rangle = 1$ ,  $\langle e_2, e_2 \rangle = \epsilon$ , then

$$\begin{aligned} \vec{H} &= \frac{1}{2}(\text{II}(e_1, e_1) + \text{II}(e_2, e_2)) = -\epsilon \frac{1}{2}(\langle Ae_1, e_1 \rangle + \epsilon \langle Ae_2, e_2 \rangle)N = -\epsilon \left(\frac{1}{2}\text{trace}(A)\right)N \\ K &= -\epsilon \det(A). \end{aligned}$$

In this work we need to compute  $H$  and  $K$  using a parametrization of the surface. Let  $X : D \subset \mathbb{R}^2 \rightarrow \mathbf{E}_1^3$  be a parametrization of the surface,  $X = X(u, v)$ . Then  $A = \text{II}(I)^{-1}$ ,  $I = \langle \cdot, \cdot \rangle$  and we have the known formulae ([5]):

$$H = -\epsilon \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2}, \quad K = -\epsilon \frac{eg - f^2}{EG - F^2}, \quad (6)$$

where  $\{E, F, G\}$  and  $\{e, f, g\}$  are the coefficients of I and II, respectively:

$$E = \langle X_u, X_u \rangle, \quad F = \langle X_u, X_v \rangle, \quad G = \langle X_v, X_v \rangle,$$

$$e = -\langle N_u, X_u \rangle, \quad f = -\langle N_u, X_v \rangle, \quad g = -\langle N_v, X_v \rangle,$$

where the subscripts denote the corresponding derivatives. Here  $N$  is

$$N = \frac{X_u \times X_v}{\sqrt{\epsilon(EG - F^2)}}.$$

We recall that

$$W := EG - F^2 = \epsilon |X_u \times X_v|^2 \begin{cases} \text{is positive if } M \text{ is spacelike} \\ \text{is negative if } M \text{ is timelike} \end{cases}$$

Finally, in order to the computations for  $H$  and  $K$ , we recall that the cross-product  $\times$  satisfies that for any vectors  $u, v, w \in \mathbf{E}_1^3$ ,  $\langle u \times v, w \rangle = \det(u, v, w)$ . Then (6) writes as

$$H = -\frac{\epsilon}{2} \frac{G\det(X_u, X_v, X_{uu}) - 2F\det(X_u, X_v, X_{uv}) + E\det(X_u, X_v, X_{vv})}{(\epsilon(EG - F^2))^{3/2}} := \frac{H_1}{2W^{3/2}}. \quad (7)$$

$$K = -\frac{\det(X_u, X_v, X_{uu})\det(X_u, X_v, X_{vv}) - \det(X_u, X_v, X_{uv})^2}{(EG - F^2)^2} := \frac{K_1}{W^2}. \quad (8)$$

In Minkowski ambient space, the role of spheres is played by pseudohyperbolic surfaces and pseudospheres [4]. If  $p_0 \in \mathbf{E}_1^3$  and  $r > 0$  the pseudohyperbolic surface centered at  $p_0$  with radius  $r > 0$  is  $\mathbf{H}^{2,1}(r; p_0) = \{p \in \mathbf{E}_1^3; \langle p - p_0, p - p_0 \rangle = -r^2\}$  and the pseudosphere centered at  $p_0$  and radius  $r > 0$  is  $\mathbf{S}^{2,1}(r; p_0) = \{p \in \mathbf{E}_1^3; \langle p - p_0, p - p_0 \rangle = r^2\}$ . If  $M$  is spacelike (resp. timelike) then  $N$  is timelike (resp. spacelike) and  $N : M \rightarrow \mathbf{H}^{2,1}(1)$  (resp.  $N : M \rightarrow \mathbf{S}^{2,1}(1)$ ), where  $\mathbf{H}^{2,1}(1) = \mathbf{H}^{2,1}(1; O)$  (resp.  $\mathbf{S}^{2,1}(1) = \mathbf{S}^{2,1}(r; O)$ , being  $O$  the origin of coordinates of  $\mathbb{R}^3$ ). For both kind of surfaces, we can take  $N(p) = (p - p_0)/r$  and  $A = -\frac{1}{r}I$ . Then  $H = \epsilon/r$  and  $K = -\epsilon/r^2$ .

### 3 Rotational surfaces with timelike axis

We assume that the generating curve  $\alpha$  lies in the  $xz$ -plane and we parametrize  $\alpha$  as the graph of a function  $z = z(u)$ , that is,  $\alpha(u) = (u, 0, z(u))$ ,  $u > 0$ . Then the surface is parametrized as in (2) and  $W = u^2(1 - z'^2)$ . Thus  $z'^2 < 1$  if the surface is spacelike and  $z'^2 > 1$  if  $M$  is timelike. Using (7) and (8), the expressions of  $H$  and  $K$  are:

$$H = -\frac{1}{2} \left( \frac{\epsilon z'}{u\sqrt{\epsilon(1 - z'^2)}} + \frac{z''}{(\epsilon(1 - z'^2))^{3/2}} \right), \quad K = -\frac{z'z''}{u(1 - z'^2)^2}.$$

Then the relation (1) writes as

$$\frac{a}{2} \left( \frac{\epsilon z'}{u\sqrt{\epsilon(1 - z'^2)}} + \frac{z''}{(\epsilon(1 - z'^2))^{3/2}} \right) + b \frac{z'z''}{u(1 - z'^2)^2} = -c.$$

Multiplying by  $u$  we obtain a first integral. Exactly, we have

$$a\left(u \frac{\epsilon z'}{\sqrt{\epsilon(1-z'^2)}}\right)' + b\left(\frac{1}{1-z'^2}\right)' = -2cu.$$

Then there exists a integration constant  $\lambda \in \mathbb{R}$  such that

$$\epsilon \frac{auz'}{\sqrt{\epsilon(1-z'^2)}} + \frac{b}{1-z'^2} = -cu^2 + \lambda. \quad (9)$$

Let

$$\phi = \frac{z'}{\sqrt{\epsilon(1-z'^2)}}.$$

Then  $1 + \epsilon\phi^2 = 1/(1-z'^2)$  and Equation (9) writes as  $b\phi^2 + au\phi + \epsilon(b + cu^2 - \lambda) = 0$ . Hence, we obtain  $\phi$ :

$$\frac{z'}{\sqrt{\epsilon(1-z'^2)}} = \frac{-au \pm \sqrt{(a^2 - 4bc\epsilon)u^2 + 4b\epsilon(-b + \lambda)}}{2b}. \quad (10)$$

We completely solve this differential equation in two particular cases:

1. Consider  $\lambda = b$ . Then we have

$$\frac{z'}{\sqrt{\epsilon(1-z'^2)}} = \frac{-a \pm \sqrt{a^2 - 4bc\epsilon}}{2b}u = Cu, \quad C = \frac{-a \pm \sqrt{a^2 - 4bc\epsilon}}{2b}.$$

Then

$$z(u) = \pm \frac{\sqrt{\epsilon + C^2 u^2}}{C} + \mu, \quad \mu \in \mathbb{R}.$$

From the parametrization (2) of the surface, one concludes that  $M$  satisfies the equation  $x^2 + y^2 - (z - \mu)^2 = -\frac{\epsilon}{C^2}$ . Letting  $p_0 = (0, 0, \mu)$ , if  $\epsilon = 1$ , the surface  $M$  is the pseudohyperbolic surface  $\mathbf{H}^{2,1}(1/|C|; p_0)$  and when  $\epsilon = -1$ ,  $M$  is a pseudosphere  $\mathbf{S}^{2,1}(1/|C|; p_0)$ .

2. Assume  $a^2 - 4bc\epsilon = 0$ . Then

$$\frac{z'}{\sqrt{\epsilon(1-z'^2)}} = \frac{-au \pm C}{2b}, \quad C = 2\sqrt{b\epsilon(-b + \lambda)}.$$

The integration of this equation is

$$z(u) = \pm \sqrt{\frac{4\epsilon b^2}{a^2} + (\frac{C}{a} \pm u)^2} + \mu, \quad \mu \in \mathbb{R}.$$

## 4 Rotational surfaces with spacelike axis

We distinguish two cases according the two possible parametrizations.

1. Case I. Assume that the parametrization is given by (3). The relation (1) writes as

$$\frac{a}{2} \left( \frac{\epsilon}{z\sqrt{\epsilon(1-z'^2)}} + \frac{z''}{(\epsilon(1-z'^2))^{3/2}} \right) + b \frac{z''}{z(1-z'^2)^2} = -c.$$

Multiplying by  $zz'$ , we obtain a first integral. Exactly, we have

$$a \left( \frac{\epsilon z}{\sqrt{\epsilon(1-z'^2)}} \right)' + b \left( \frac{1}{1-z'^2} \right)' = -c(z^2)'.$$

Then there exists an integration constant  $\lambda \in \mathbb{R}$  such that

$$\epsilon \frac{az}{\sqrt{\epsilon(1-z'^2)}} + \frac{b}{1-z'^2} = -cz^2 + \lambda. \quad (11)$$

Now we take  $\phi = 1/\sqrt{\epsilon(1-z'^2)}$ . Then Equation (11) writes as

$$b\phi^2 + az\phi + \epsilon(cz^2 - \lambda) = 0.$$

Then

$$\frac{1}{\sqrt{\epsilon(1-z'^2)}} = \frac{-az \pm \sqrt{(a^2 - 4bc\epsilon)z^2 + 4b\epsilon\lambda}}{2b}. \quad (12)$$

We completely solve this differential equation in two particular cases:

- Consider  $\lambda = 0$ . Then we have

$$\frac{1}{\sqrt{\epsilon(1-z'^2)}} = \frac{-a \pm \sqrt{a^2 - 4bc\epsilon}}{2b} z = Cz, \quad C = \frac{-a \pm \sqrt{a^2 - 4bc\epsilon}}{2b}.$$

The solution of this differential equation is

$$z(u) = \pm \sqrt{\frac{\epsilon}{C^2} \pm (u \pm C\mu)^2}, \quad \mu \in \mathbb{R} \}.$$

From the parametrization (3) of the surface, one concludes that  $M$  satisfies the equation  $(x - C\mu)^2 + y^2 - z^2 = -\frac{\epsilon}{C^2}$ . Thus, if we set  $p_0 = (\pm C\mu, 0, 0)$ , for  $\epsilon = 1$  we obtain that  $M$  is the pseudohyperbolic surface  $\mathbf{H}^{2,1}(1/|C|; p_0)$  and for  $\epsilon = -1$ ,  $M$  is the pseudosphere  $\mathbf{S}^{2,1}(1/|C|; p_0)$ .

(b) Assume  $a^2 - 4bc\epsilon = 0$ . Then

$$\frac{1}{\sqrt{\epsilon(1-z'^2)}} = \frac{-az \pm C}{2b}, \quad C = 2\sqrt{b\epsilon\lambda}.$$

The integration of this equation is

$$z(u) = \pm \frac{C}{a} \pm \sqrt{\frac{4\epsilon b^2}{a^2} \pm (u \pm \mu)^2}, \quad \mu \in \mathbb{R}.$$

2. Case II. The expression of the parametrization is written in (4). In this case, the surface is timelike, since  $EG - F^2 = -z^2(1+z'^2)$ . The Weingarten relation (1) is

$$\frac{a}{2} \left( \frac{-1}{z\sqrt{1+z'^2}} + \frac{z''}{(1+z'^2)^{3/2}} \right) - b \frac{z''}{z(1+z'^2)^2} = c.$$

Multiplying by  $zz'$  again, we have

$$-a \left( \frac{z}{\sqrt{1+z'^2}} \right)' + b \left( \frac{1}{1+z'^2} \right)' = c(z^2)'.$$

It follows the existence of an integration constant  $\lambda \in \mathbb{R}$  such that

$$-\frac{az}{\sqrt{1+z'^2}} + \frac{b}{1+z'^2} = cz^2 + \lambda. \quad (13)$$

If we set  $\phi = 1/\sqrt{1+z'^2}$ , Equation (13) is  $b\phi^2 - az\phi - cz^2 - \lambda = 0$ , obtaining

$$\frac{1}{1+z'^2} = \frac{az \pm \sqrt{(a^2+4bc)z^2+4b\lambda}}{2b}. \quad (14)$$

As in the previous case, we solve this equation in the next two cases:

(a) If  $\lambda = 0$ , then

$$\frac{1}{\sqrt{1+z'^2}} = \frac{-a \pm \sqrt{a^2+4bc}}{2b} z = Cz, \quad C = \frac{a \pm \sqrt{a^2+4bc}}{2b}.$$

The solution of this equation is

$$z(u) = \pm \sqrt{\frac{1}{C^2} - (u \pm C\mu)^2}, \quad \mu \in \mathbb{R} \}.$$

This surface is the pseudosphere  $\mathbf{S}^{2,1}(1/|C|; p_0)$ , with  $p_0 = (\pm C\mu, 0, 0)$  since by the expression of the parametrization (4), the coordinates of  $M$  satisfies  $(x \pm C\mu)^2 + y^2 - z^2 = 1/C^2$ .

(b) If  $a^2 + 4bc = 0$ , then

$$\frac{1}{\sqrt{1+z'^2}} = \frac{az \pm C}{2b}, \quad C = 2\sqrt{b\lambda}.$$

The solution of this equation is

$$z(u) = \frac{-C}{a} \pm \sqrt{\frac{4b^2}{a^2} \pm (u \pm \mu)^2}, \quad \mu \in \mathbb{R}.$$

## 5 Rotational surfaces with lightlike axis

Consider the parametrization given in (5). Then  $EG - F^2 = 16u^2z'$  and the relation (1) writes as

$$\frac{a}{2} \left( \frac{1}{2u\sqrt{\epsilon z'}} - \frac{\epsilon z''}{4(\epsilon z')^{3/2}} \right) + b \frac{z''}{8uz'^2} = c.$$

Multiplying by  $u$  we obtain a first integral. Exactly, we have

$$\frac{a}{4} \left( \frac{u}{\sqrt{\epsilon z'}} \right)' - \frac{b}{8} \left( \frac{1}{z'} \right)' = cu.$$

Then there exists a integration constant  $\lambda \in \mathbb{R}$  such that

$$\frac{a}{4} \frac{u}{\sqrt{\epsilon z'}} - \frac{b}{8z'} = \frac{c}{2} u^2 + \lambda. \quad (15)$$

From (15), we obtain the value of  $\sqrt{\epsilon z'}$ :

$$\sqrt{\epsilon z'} = \frac{a\epsilon u \pm \sqrt{(a^2 - 4bc\epsilon)u^2 - 8b\epsilon\lambda}}{4\epsilon(cu^2 + 2\lambda)}.$$

As in the two previous cases, we distinguish two special cases:

1. If  $\lambda = 0$ , then

$$\sqrt{\epsilon z'} = \frac{a \pm \epsilon \sqrt{a^2 - 4bc\epsilon}}{4c} \frac{1}{u} := \frac{C}{u}, \quad C = \frac{a \pm \epsilon \sqrt{a^2 - 4bc\epsilon}}{4c}.$$

We solve this equation obtaining

$$z(u) = -\frac{\epsilon C^2}{u} + \mu, \quad \mu \in \mathbb{R}.$$

From the parametrization (5), we see that  $M$  satisfies the equation  $x^2 + y^2 - (z - \mu)^2 = -4\epsilon C^2$ . Thus, if  $p_0 = (0, 0, \mu)$ , we have that  $M = \mathbf{H}^{2,1}(2|C|; p_0)$  if  $\epsilon = 1$ , and  $M = \mathbf{S}^{2,1}(2|C|; p_0)$  if  $\epsilon = -1$ .

2. Assume  $a^2 - 4bc\epsilon = 0$ . Then

$$\sqrt{\epsilon z'} = \frac{a\epsilon u \pm C}{4\epsilon(cu^2 + 2\lambda)}, \quad C = \sqrt{-8b\epsilon\lambda}.$$

We point out that  $-8b\epsilon\lambda > 0$  and that combining with  $a^2 - 4bc\epsilon = 0$ , we have  $c\lambda \leq 0$ . The solution is

$$z(u) = \frac{1}{64} \left( \frac{\mp 4aC\lambda \pm \epsilon(cC^2 - 2a^2\lambda)u}{\epsilon c\lambda(2\lambda + cu^2)} + \epsilon \frac{cC^2 + 2a^2\lambda}{\sqrt{-2c^3\lambda^3}} \operatorname{arctanh}\left(\sqrt{-\frac{c}{2\lambda}} u\right) \right) + \mu, \quad \mu, \lambda \in \mathbb{R}.$$



Figure 1: Rotational surfaces with timelike axis, for  $a = 2$ ,  $b = \epsilon$  and  $\mu = 0$ : The surface is spacelike with  $\lambda = 2$  (left). The surface is timelike with  $\lambda = 0$  (right).



Figure 2: Rotational surfaces with spacelike axis, for  $a = 2$ ,  $b = \epsilon$ ,  $\lambda = 1$  and  $\mu = 0$ : The surface is spacelike (left). The surface is timelike (right).



Figure 3: Rotational surfaces with lightlike axis, for  $a = 2$ ,  $b = -\epsilon$ ,  $\lambda = 1$  and  $\mu = 0$ : The surface is spacelike (left). The surface is timelike (right).

## References

- [1] J.I. Hano, K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, *Tohoku Math. J.*, 36 (1984), 427-435.
- [2] R. López, Timelike surfaces in Lorentz 3-space with constant mean curvature, *Tohoku Math. J.*, 52 (2000), 515–532.
- [3] R. López, Surfaces of constant Gauss curvature in Lorentz-Minkowski 3-space, *Rocky Mount. J. Math.*, 33 (2003), 971–993.
- [4] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
- [5] T. Weinstein, An introduction to Lorentz surfaces, Walter de Gruyter, Berlin, 1995.