Random Variables & Distributions

_

STAT 330 - Iowa State University

Outline

In this lecture, students will learn what a random variable is. We start with discrete random variables. Students are introduced to the probability distribution of a discrete random variable that can be described with:

- 1. A probability mass function (pmf)
- 2. A cumulative distribution function (cdf)

Random Variable

Random Variable

- Random variables (R.V.) connect a random experiment to data
- Denote random variables with capital letters (X, Y, Z, etc)
- The values of a R.V. are determined by the outcome of a random experiment.

Definition

A random variable (R.V.) is a function that maps the sample space (Ω) to real numbers (\mathbb{R})

$$X:\Omega \to \mathbb{R}$$

Random Variable Cont.

Example 1: Suppose you toss 3 coins, and observe the face up for each flip. $\Omega = \{HHH, HHT, \dots, TTT\}.$ $|\Omega| = 8$

We are interested in the number of heads we obtain in 3 coin tosses.

What is the random variable X?

X = # of heads in 3 coin tosses

Notation:

 $X \equiv \mathsf{Random} \ \mathsf{variable}$

 $x \equiv \text{Realized value}$

 $X = x \Rightarrow$ "random variable X takes on the value x".

 ${X = x}$ is just an event

Consider the event 1 or 2 heads. This is $\{X = 1\} \cup \{X = 2\}$

Types of Random Variables

Types of Random Variables

Two types of random variables:

Discrete Random Variable

Sample space (Ω) maps to finite or countably infinite set in \mathbb{R} Ex: $\{1,2,3\}, \{1,2,3,4,\ldots\}$

Continuous Random Variable

Sample space (Ω) maps to an uncountable set in $\mathbb{R}.$

Ex: $(0, \infty)$, (10, 20)

Image of a Random Variable

Definition

The *image* of a random variable is defined as the values the random variable can take on.

$$Im(X) = \{x : x = X(\omega) \text{ for some } \omega \in \Omega\}$$

Example 2:

- 1. Put a disk drive into service. Let Y= time till the first major failure. $Im(Y)=(0,\infty)$.
 - Image of Y is an interval (uncountable)
 - $\rightarrow Y$ is a continuous random variable.
- 2. Flip a coin 3 times. Let X = # of heads obtained.
 - $Im(X) = \{0, 1, 2, 3\}$. Image of X is a finite set
 - $\rightarrow X$ is a discrete random variable.

Probability Mass Function

Probability Mass Function

Two things to know about a random variable X:

- (1) What are the values X can take on? (what is its image?)
- (2) What is the probability that X takes on each value?
- (1) and (2) together gives the *probability distribution* of X.

Definition

Let X be a discrete random variable.

The probability mass function (pmf) of X is $p_X(x) = \mathbb{P}(X = x)$.

Properties of pmf:

- 1. $0 \le p_X(x) \le 1$
- 2. $\sum_{x \in Im(x)} p_X(x) = 1$

Probability Mass Function Cont.

<u>Example 3:</u> Which of the following are *valid* probability mass functions (pmfs)?

2.
$$\frac{y}{p_Y(y)}$$
 | 0.1 | 0.45 | 0.25 | -0.05 | 0.25

3.
$$\frac{z}{\rho_Z(z)}$$
 0.22 0.18 0.24 0.17 0.18

Probability Mass Function Cont.

Example 4: Suppose you toss 3 coins, and observe the face up for each flip. We are interested in the number of heads we obtain in 3 coin tosses.

- 1. Define the random variable X.
- 2. What is the image of X?

3. What is the pmf of X? (find $p_X(x)$ for all x)

Cumulative Distribution Function

Cumulative Distribution Function

Definition

The cumulative distribution function (cdf) of X is

$$F_X(t) = \mathbb{P}(X \leq t)$$

- The pmf is $p_X(x) = \mathbb{P}(X = x)$, the probability that R.V. X is equal to value x.
- The cdf is $F_X(t) = \mathbb{P}(X \le t)$, the probability that R.V. X is less than or equal to t.

Relationship between pmf and cdf

•
$$F_X(t) = \mathbb{P}(X \le t) = \sum_{x \le t} p_X(x) = \sum_{x \le t} \mathbb{P}(X = x)$$

Properties of CDFs

Properties of CDFs

- 1. $0 \le F_X(t) \le 1$
- 2. F_X is non-decreasing (if $a \le b$, then $F(a) \le F(b)$.
- 3. $\lim_{t\to -\infty} F_X(t)=0$ and $\lim_{t\to \infty} F_X(t)=1$
- 4. F_X is right-continuous with respect to t

Cumulative Distribution Function Cont.

Example 6: Roll a fair die. Let X= the number of dots on face up

X						
$\begin{array}{c} \text{(pmf) } p_X(x) \\ \text{(cdf) } F_X(x) \end{array}$	1/6	1/6	1/6	1/6	1/6	1/6
(cdf) $F_X(x)$	1/6	2/6	3/6	4/6	5/6	1

Cumulative Distribution Function Cont.

<u>Example 7:</u> Suppose you toss 3 coins, and observe the face up for each flip. We are interested in the number of heads we obtain in 3 coin tosses.

From example 4, the pmf is

What is the cdf of X?

Recap

Students should now be familiar with the concept of a random variable. They should be able to present the probability distribution in table form. They should be able to use the pmf or cdf to find probabilities for a discrete random variable.