Math Review Summary

CSc 245, Summer 2020

This is a summary of important math concepts from the math review appendix from Dr. McCann's book. For a more detailed review, please read the appendix (on the course webpage).

1 **Fractions**

Common Fraction Equalities

(a)
$$\frac{x}{x} + \frac{y}{x} = \frac{x+y}{x}$$

(b)
$$\frac{x}{z} - \frac{y}{z} = \frac{x-y}{z}$$

(a)
$$\frac{x}{z} + \frac{y}{z} = \frac{x+y}{z}$$
 (b) $\frac{x}{z} - \frac{y}{z} = \frac{x-y}{z}$ (c) $\frac{x}{z} \frac{y}{z} = \frac{xy}{z^2}$ (d) $\frac{\frac{x}{z}}{\frac{y}{z}} = \frac{x}{y}$

(e)
$$\frac{x}{w} + \frac{y}{z} = \frac{xz+yw}{wz}$$
 (f) $\frac{x}{w} - \frac{y}{z} = \frac{xz-yw}{wz}$ (g) $\frac{x}{w}\frac{y}{z} = \frac{xy}{wz}$ (h) $\frac{x}{w} = \frac{xz}{wy}$

(f)
$$\frac{x}{w} - \frac{y}{z} = \frac{xz - yw}{wz}$$

(g)
$$\frac{x}{w} \frac{y}{z} = \frac{xy}{wz}$$

$$(h)\frac{\frac{x}{w}}{\frac{y}{z}} = \frac{x}{w}$$

Rational Numbers 2

Rational Number: A value that can be expressed as the ratio of two integers

Set Basics 3

• **Set**: an unordered collection of unique objects $S = \{x_1, x_2, \ldots\}$

• Notation:

 $-s \in S$ s is a member of S

 $-\emptyset$ is the empty set $(S = \{\})$

- { variables | constraints for membership } ("variables such that they satisfy the constraints for membership")

 $-\mathcal{U}$ is the universal set (all objects that could possibly be in the set)

• Operators:

- Union: $A \cup B$, all objects in A or B (or both)

- Intersection: $A \cap B$, all objects in both A and B

- **Difference**: A - B, all objects in both A that are not also in B

- Complement: \overline{A} , all objects in \mathcal{U} that are not in A ($\mathcal{U} - A$)

- Cardinality: |A|, the number of objects in A

• Venn Diagram:

1

• Notations of Sets of Numbers:

```
- \mathbb{Z}: All integers \{\ldots, -2, -1, 0, 1, 2, \ldots\}
- \mathbb{Z}^+: Positive integers \{1, 2, 3, \ldots\}
- \mathbb{Z}^0: Non-negative integers \{0, 1, 2, 3, \ldots\}
- \mathbb{Z}^-: Negative integers \{\ldots, -3, -2, -1\}
- \mathbb{Z}^{even}: Even integers \{\ldots, -4, -2, 0, 2, 4, \ldots\}
- \mathbb{Z}^{odd}: Odd integers \{\ldots, -3, -1, 1, 3, \ldots\}
- \mathbb{Q}: Rational numbers
- \mathbb{Q}: Irrational numbers
- \mathbb{R}: all real numbers
```

4 Associative, Commutative, Distributive, and Transitive properties

- **Associative**: An operation \diamond is associative if $a \diamond (b \diamond c) = (a \diamond b) \diamond c$
- Commutative: An operation \diamond is commutative if $a \diamond b = b \diamond a$
- <u>Distributive</u>: Operations \diamond and \square are distributive if: $a\square(b\diamond c)=(a\square b)\diamond(a\square c)$ (\square is left-distributive over \diamond) <u>and</u> $(b\diamond c)\square a=(b\square a)\diamond(c\square a)$ (\square is right-distributive over \diamond)
- Transitive: An relationship \circ is transitive if whenever $a \circ b$ and $b \circ c$, then $a \circ c$ (e.g. a < b and b < c implies a < c).

5 Properties of Inequalities

- Addition: If a < b, then a + c < b + c. This holds for $\leq, >, \geq$.
- Multiplication (c > 0): If a < b, then ac < bc. This holds for $\leq, >, \geq$.
- Multiplication (c < 0): If a < b, then ac > bc. This holds for $\leq, >, \geq$ (the sign flips).
- Subtraction follows the rules of addition. Division follows the rules of multiplication.

6 Summation and Product Notations

- Summation Notation: In $\sum_{i=0}^{k} s(i)$, i is the *index*, i = 0 is the *lower limit*, k is the *upper limit*, and s(i) is the sequence we are summing.
- <u>Product Notation</u>: In $\prod_{i=0}^{k} s(i)$, everything is the same as summation, except we use π to indicate that we multiply the sequence.

Integer Division

- Modulo Denoted by % or mod, the modulus operator gives the remainder of an integer division. E.g. 10% 4 = 2
- Congruency a is congruent to b modulo m (denoted $a \equiv b \pmod{m}$), if a % m = b % m
- <u>Divides:</u> The "divides" operator, denoted a|b, returns True if b% a = 0 and False otherwise.

Evens and Odds

- Even An integer, n is even if there exists an integer k such that n=2k (or 2|n, $n \% 2 = 0, n \equiv 0 \mod 2$
- Odd An integer, n is odd if there exists an integer k such that n = 2k + 1 (or $2 \nmid n$, $n \% 2 = 1, n \equiv 1 \mod 2$

Logarithms and Exponents 9

Laws of Exponents and Logarithms:

(a)
$$w^{x+y} = w^x w^y$$

(b)
$$(w^x)^y = w^{xy}$$

(c)
$$v^x w^x = (vw)^x$$

(d)
$$\frac{w^x}{w^y} = w^{x-y}$$

(e)
$$\frac{v^x}{w^x} = (\frac{v}{w})^x$$

(f)
$$\log_b(x^y) = y \log_b x$$

(a)
$$\frac{w}{w} = w$$
 (b) $(\frac{w}{w})^{s} = w$ (c) $\frac{v^{x}}{w^{y}} = (\frac{v}{w})^{x}$ (g) $\log_{b}(xy) = \log_{b} x + \log_{b} y$ (h) $\log_{b}(\frac{x}{y}) = \log_{b} x - \log_{b} y$

(h)
$$\log_b(\frac{x}{y}) = \log_b x - \log_b y$$

(i)
$$b^{\log_b x} = x$$

(j)
$$\log_a x = \frac{\log_b x}{\log_b a}$$

(k) If
$$b^y = x$$
, then $\log_b x = y$

Quadratic Equations 10

- Quadratic Equation: Equation of the form $ax^2 + bx + c$ where $a \neq 0$
- Factoring Quadratics: $(fx+d)(gx+e) = (fg)x^2 + (gd+fe)x + de$
- Quadratic Formula: $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

Number Systems 11

- Binary: Base 2, Digits 0,1 Decimal: Base 10, Digits 0-9
- Octal: Base 8, Digits 0-7
- Hexadecimal: Base 16, Digits 0-9,A-F