Grado en Ingeniería Informática y Matemáticas

Modelos matemáticos I (curso 2021/22)

Modelo de Leslie. (Planteamiento teórico)

Son sistemas de la forma

$$\vec{x}_{n+1} = L \, \vec{x}_n,$$

donde A es una matriz cuadrada que tiene entradas.

$$A = \begin{pmatrix} f_1 & f_2 & \cdots & f_{k-1} & f_k \\ s_1 & 0 & \cdots & 0 & 0 \\ 0 & s_2 & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & s_{k-1} & 0 \end{pmatrix}$$

donde $f_i \geq 0$ es el número medio de crías hembras que tiene cada hembra del grupo i (la llamada tasa de fertilidad), y $0 < s_i \leq 1$ es la probabilidad de que un individuo del grupo i sobreviva al siguiente (la tasa de supervivencia del grupo). El vector \vec{x}_0 que inicia la iterada es siempre de coordenadas nonegativas. Si $\vec{x}_0 = \vec{0}$ entonces $\vec{x}_n = \vec{0}$.

1 La ecuación de Euler-Lotka

Escribiendo la ecuacion

 $A\vec{x} = \lambda \vec{x}$

У

$$\vec{x} = \left(\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_k \end{array}\right)$$

la segunda hasta la k-ésima ecuación nos dice que

$$s_1x_1 = \lambda x_2,$$

$$s_2x_2 = \lambda x_3,$$

$$\vdots$$

$$s_{k-1}x_{k-1} = \lambda x_k,$$

de donde y es posible escribirlo todo en funcion de x_1

$$x_{2} = \frac{s_{1}}{\lambda}x_{1},$$

$$x_{3} = \frac{s_{1}s_{2}}{\lambda^{2}}x_{1},$$

$$\vdots$$

$$x_{k} = \frac{s_{1}s_{2}\cdots s_{k-1}}{\lambda^{k-1}}x_{1},$$

Si \vec{x} es un vector propio asociado a un valor propio $\lambda \neq 0$, entonces todas sus componentes son no cero. Ademas tomando $\ell_1 = 1$ y para cada i > 1, $\ell_i = s_1 s_2 \cdots s_{i-1}$, se tiene que $x_i = \frac{\ell_i}{\lambda^{i-1}}$. El valor

$$\ell_i = \mathbb{P}\{ \text{ Estado } 1 \to \text{ Estado } i \}$$

(\mathbb{P} probabilidad), se llaman supervivencias acumulada.

La primera ecuacion de $A\vec{x} = \lambda \vec{x}$, nos dice

$$f_1x_1 + f_2x_2 + \dots + f_kx_k = \lambda x_1,$$

sustituimos la expresion anterior de x_i , dividimos por x_1 y λ obtenemos la ecuacion de Euler-Lotka:

$$\frac{\ell_1 f_1}{\lambda} + \frac{\ell_2 f_2}{\lambda^2} + \dots + \frac{\ell_k f_k}{\lambda^k} = 1.$$

Consecuencias:

- Una matriz de Leslie se dice fertil si algun f_i es no cero. En este caso la ecuacion de Euler-Lotka tiene una unica solucion $\lambda_p > 0$.
- La ecuación de Euler-Lotka es equivalente al polinomio característico si $\lambda \neq 0$.
- Para $\lambda = \lambda_p > 0$ el vector propio asociado se puede tomar de coordenadas positivas $(\vec{x} >> \vec{0})$ el vector \vec{x}_p se toma como aquel que esta normalizado $\vec{x}_p \in \Delta$.
- La matriz de Leslie no siempre es transitiva.

Ejemplo 1 Tomo la tabla:

Grupo	Crias	Jovenes	Adultos
Fertilidad	0.2	2.8	0
Supervivencia	0.8	0.5	0

Que tiene matriz:

$$\left(\begin{array}{ccc}
0.2 & 2.8 & 0 \\
0.8 & 0 & 0 \\
0 & 0.5 & 0
\end{array}\right)$$

2 La evolucion de la población

Theorem 1. • $Si \lambda_p \in (0,1)$ entonces para cualquier dato inicial $\vec{x}_0 \geq \vec{0}$,

$$\vec{x}_n \to \vec{0}$$
.

(extincion)

- Si $\lambda_p = 1$ entonces para cualquier dato inicial $\vec{x}_0 \geq \vec{0}$, \vec{x}_n permanece acotada (poblacion estacionaria)
- Si $\lambda_p \in (1, \infty)$ entonces para cualquier dato inicial $\vec{x}_0 >> \vec{0}$,

$$\vec{x}_n \to \vec{\infty}$$
.

(superpoblacion en todas sus componentes.)

Demostracion del teorema Nociones de orden en \mathbb{R}^k . Dice que $\vec{x} \leq \vec{y}$ si el vector diferencia $\vec{y} - \vec{x}$ tiene sus coordenadas no negativas. Comprobar que esta relacion es de orden.

Lemma 1. • Sea A una matriz de componentes nonegativas, entonces la aplicacion $\vec{x} \to A\vec{x}$ es monotona creciente.

- Sea \vec{x} un vector de componentes (estrictamente) positivas e \vec{y} un vector cualquiera, entonces existe $\varepsilon > 0$ tal que $\varepsilon \vec{y} \leq \vec{x}$.
- Sea \vec{x}_n , \vec{y}_n y \vec{z}_n tres sucesiones verificando $\vec{x}_n \leq \vec{y}_n \leq \vec{z}_n$ y

$$\lim_{n \to \infty} \vec{x}_n = \lim_{n \to \infty} \vec{z}_n$$

entonces \vec{y}_n es convergente y tiende al mismo limite.

Nota: Si mirais Ejemplo 1, $\lambda_p > 1$ pero la poblacion inicial (0, 0, 1000) no se superpoblaciona.

3 Propedades espectrales de la matriz de Leslie.

Theorem 2. (Teorema general de Perron-Frobenius).

- Sea A una matriz de componentes nonegativas entonces $\rho(A) \in \sigma(A)$ y ademas existe un vector \vec{v} propio de componentes no negativas.
- Sea A una matriz de componentes nonegativas y $\lambda > 0$ un valor propio de $\sigma(A)$ tal que el correspondiente vector propio \vec{v} tiene componentes (estrictamente) positivas. Entonces $\lambda = \rho(A)$.
- Sea A una matriz transitiva entonces el vector propio \vec{v} asociado a $\rho(A)$ tiene componentes positivas

Con este teorema se obtiene que si A es una matriz de Leslie entonces $\lambda_p = \rho(A)$.

Demostracion

• Tomo $\varepsilon_n > 0$ y tendiendo a cero. Sea $A_n = A + \varepsilon_n B$ donde B es una matriz cualquiera de componentes positivas. Uso el teorema y encuentro \vec{v}_n tal que

$$A_n \vec{v}_n = \lambda_n \vec{v}_n.$$

con $\lambda_n = \rho(A_n)$. Tomo limite, \vec{v}_n la puedo tomar en la esfera por tanto salvo una parcial $\vec{v}_n \to \vec{v}^* \neq \vec{0}$. (El cuadrante de esfera es cerrado.)

Solo quedaria ver que $\lambda_n \to \rho(A)$. Lo cual se deduce de la continuidad del radio espectral la cual se obtiene de la continuidad de las raices complejas de un polinomio como funcion de los coeficientes.

- Tomo $B = \frac{1}{\lambda}A$, una matriz diagonal talque $D\vec{1} = \vec{v}$ entonces $C = D^{-1}BD$ verifica $C \ge 0_{k \times k}$ y $C\vec{1} = \vec{1}$. Entonces $\rho(C) = 1$ pues su transpuesta es de estados. Y por tanto $\rho(\frac{1}{\lambda}A) = 1$.
- Sea $\varepsilon > 0$ tal que $\varepsilon \rho(A) < 1$. Usando que $\varepsilon \rho(A) = \rho(\varepsilon A)$ y que evindentemente εA es transitiva entonces $B = (I A)^{-1}$ tiene sus componentes positivas, luego tiene un valor propio $\mu > 0$ y un vector propio de B, \vec{v} de componentes positivas tal que

$$(I - A)^{-1}\vec{v} = \mu \vec{v},$$

de donde $A \vec{v} = \frac{\mu-1}{\varepsilon} \vec{v}$ de donde $\lambda = \frac{\mu-1}{\varepsilon} > 0$ y por tanto $\frac{\mu-1}{\varepsilon} = \rho(A)$.

4 Número reproductivo básico

Se llama número reproductivo básico al valor

$$R_0 = \ell_1 f_1 + \ell_2 f_2 + \dots + \ell_k f_k.$$

Este valor tiene el significado de numero de hijas por madre (aves, mamiferos,...) a lo largo de su vida.

Theorem 3. Sea una matriz de Leslie con algun grupo fertil:

- $Si R_0 > 1$ entonces $\lambda_p > 1$ y tenemos superpoblación prara cualquier población inicial propia.
- Si $R_0 = 1$ entonces $\lambda_p = 1$ y tenemos una población acotada.
- $Si R_0 < 1$ entonces $\lambda_p < 1$ y tenemos extinción.

Demostración

Si tomo

$$p(\lambda) = \frac{\ell_1 f_1}{\lambda} + \frac{\ell_2 f_2}{\lambda^2} + \dots + \frac{\ell_k f_k}{\lambda^k},$$

entonces $p(1) = R_0$. Se deduce por tanto usando el decrecimiento estricto de p se razona de la siguiente forma, si p(1) > 1 la raíz de $p(\lambda_p) = 1$ estara por delante de 1, por tanto $1 < \lambda_p$ y el resto es similar.

5 Transitividad y dinámica reproductiva.

Partimos de un sistema

$$\vec{x}_{n+1} = A \, \vec{x}_n,$$

donde A es una matriz cuadrada que tiene entradas.

$$A = \begin{pmatrix} f_1 & f_2 & \cdots & f_{k-1} & f_k \\ s_1 & 0 & \cdots & 0 & 0 \\ 0 & s_2 & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & s_{k-1} & 0 \end{pmatrix}$$

Un grupo i se dice fertil si $f_i > 0$.

Proposition 1. La matriz de Leslie A es transitiva si y solo si el ultimo grupo es fertil.

Un grupo i se dice reproductivo si puede llegar a ser fertil. Es decir existe $j \ge i$ con $f_j > 0$. Obviamente el ultimo grupo reproductivo r tiene que ser fertil de donde la matriz tiene la estructura

$$A = \begin{pmatrix} f_1 & f_2 & \cdots & f_{r-1} & f_r & 0 & \cdots & 0 & 0 \\ s_1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & s_2 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & s_{r-1} & 0 & 0 & \cdots & 0 & 0 \\ \hline 0 & 0 & \cdots & 0 & s_r & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & s_{r+1} & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & s_{k-1} & 0 \end{pmatrix}$$

Sea

$$A_r = \begin{pmatrix} f_1 & f_2 & \cdots & f_{r-1} & f_r \\ s_1 & 0 & \cdots & 0 & 0 \\ 0 & s_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & s_{r-1} & 0 \end{pmatrix}$$

y el vector de poblaciones se escribe como $\vec{x} = \begin{pmatrix} \vec{p} \\ \vec{q} \end{pmatrix}$ donde \vec{p} es la parte reproductiva y \vec{q} la parte no reproductiva. El sistema dinámico que sale es:

$$\vec{p}_{n+1} = A_r \vec{p}_n,$$

 $\vec{q}_{n+1} = M \vec{p}_n + N \vec{q}_n.$

Donde

$$M = \begin{pmatrix} 0 & 0 & \cdots & 0 & s_r \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}, \qquad N = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ s_{r+1} & 0 & \cdots & 0 & 0 \\ 0 & s_{r+2} & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & s_{k-1} & 0 \end{pmatrix}.$$

Esto es lo que se llama un sistema desacoplado. Puedo resolver las primeras r ecuaciones si necesidad de calcular el resto.

Proposition 2. En estas condiciones:

• A_r es siempre transitiva.

- $\lambda_p(A) = \lambda_p(A_r)$.
- λ_p es dominante en A si y solo si λ_p es dominante en A_r .

Demostración Se deduce de que la matriz N tiene espectro $\sigma(N) = \{0\}$ y a una propiedad relativa al las matrices triagulares $\sigma(A) = \sigma(A_r) \cup \sigma(N)$.

La dominancia del valor propio dominante en la matriz A_r se estudia mediante la aciclicidad. En particular el siguiente resultado se demuestra en matrices de Leslie

Proposition 3. Una matriz de Leslie con dos grupos fertiles consecutivos tiene valor propio dominante.

6 Comportamiento ergódico.

Theorem 4. Sea A una matriz con valor propio $\lambda_p > 0$ dominante. Sean \vec{v}_p y \vec{w}_p los vectores propios de A y A^t respectivamente. Entonces para todo dato inicial \vec{x}_0 verificando $<\vec{v}_p, \vec{x}_0 >> 0$ se verifica que $\vec{x}_n \neq \vec{0}$ y ademas

$$\frac{1}{|\vec{x}_n|}\vec{x}_n \to \frac{1}{|\vec{v}_p|}\vec{v}_p,$$

$$\frac{|\vec{x}_{n+1}|}{|\vec{x}_n|} \to \lambda_p.$$

Demostración

Se deduce de que

$$\frac{1}{\lambda_p^n} \vec{x}_n \to c \vec{v}_p,$$

donde $c = \frac{\langle \vec{w}_p, \vec{x}_0 \rangle}{\langle \vec{w}_p, \vec{v}_p \rangle}$.

- Esto es lo que se denomina comportamiento ergódico (en modelos poblacionales).
- En una matriz de Leslie diria que si \vec{x}_0 es reproductivo y $N(\vec{v}_p) = 1$ entonces

$$\frac{1}{N(\vec{x}_n)}\vec{x}_n \to \vec{v}_p,$$

$$\frac{N(\vec{x}_{n+1})}{N(\vec{x}_n)} \to \lambda_p.$$

• Esto es lo que se observo en el modelo que se vio al principio.

Simulación con ordenador

Adulto

■ Joven ■ Cría

Inicial	1000	570	430
Hijos	10	240	1230

	Cría	Joven	Adulto
Supervivencia	0,570	0,754	0
Fertilidad	0,01	0,421	2,860

Periodo	0	1	2	3	4	5	6	7	8	9	10
Cría	300	5976,6	1426,5	1817,6	7711,7	2267,9	4109,2	10071	3876,5	7510,1	13393
Joven	600	171,0	3406,6	813,1	1036,1	4395,7	1292,7	2342,2	5740,4	2209,6	4280,7
Adulto	2000	452,6	129,0	2569,9	613,4	781,6	3316,0	975,2	1767,0	4330,4	1666,9
Total	2900	6600,2	4962,1	5200,7	9361,2	7445,2	8718,0	13388	11384	14050	19340
Tasa		2,28	0,75	1,05	1,80	0,80	1,17	1,54	0,85	1,23	1,38

100	101	102
2,6E+09	3,0E+09	3,5E+09
1,3E+09	1,5E+09	1,7E+09
8,5E+08	9,8E+08	1,1E+09
4,8E+09	5,5E+09	6,3E+09
1,14958	1,14954	1,14955

Comportamiento ergódico.

Distribución asintótica.

	Unitario	%
Cría	0,5491	54,9
Joven	0,2723	27,2
Adulto	0.1787	17.9

Tasa 14,96%

Evolución de Tasas

