

Mini proyecto: Redes neuronales

Aplicaciones en Ciencia de Datos e Inteligencia Artificial

Profesor : Francisco Pérez Galarce Ayudante : Yesenia Salinas

Fecha: 17 de diciembre de 2024

1 Introducción

En este proyecto, exploraremos la implementación y el entrenamiento de redes neuronales artificiales utilizando PyTorch. Compararemos el rendimiento de un perceptrón multicapa con redes neuronales convolucionales. Para ello, llevaremos a cabo experimentos con diferentes arquitecturas y estrategias de entrenamiento con el objetivo de maximizar la capacidad predictiva en un conjunto de datos de dígitos escritos a mano.

2 Instrucciones de la actividad

2.1 Perceptrón multicapa

2.1.1 Modificaciones de la arquitectura (10 ptos)

5 ptos El objetivo de esta sección de la actividad es evaluar diversas arquitecturas para el perceptrón multicapa y seleccionar el modelo que obtenga el mejor rendimiento en términos de accuracy. Para ello, se propone modificar los siguientes elementos: el número de neuronas por capa, la cantidad de capas ocultas y el tipo de función de activación utilizada.

5 ptos Elabore un informe detallado de los experimentos realizados, incluyendo las configuraciones probadas, los resultados obtenidos y las conclusiones que justifiquen la selección del modelo final.

2.1.2 Modificaciones del entrenamiento (10 ptos)

5 ptos El objetivo de esta sección de la actividad es evaluar distintas estrategias de entrenamiento y seleccionar la mejor alternativa en función de su *accuracy*. Para ello, se propone modificar los siguientes aspectos: el algoritmo de optimización, la tasa de aprendizaje (*learning rate*), el tamaño del lote (*batch size*) y el número de épocas.

5 ptos Elabore un informe detallado de los experimentos realizados, incluyendo las configuraciones evaluadas, los resultados obtenidos y las conclusiones que respalden la selección de la estrategia final.

2.2 Redes convolucionales

2.2.1 Modificaciones de la arquitectura (15 ptos)

10 ptos El objetivo de esta sección de la actividad es evaluar diversas arquitecturas para el perceptrón multicapa y seleccionar el modelo que obtenga el mejor rendimiento en términos de accuracy. Para ello, se propone modificar los siguientes elementos: el número de filtros, el número de neuronas en la capa posterior a las capas convolucionales, agregando más capas lineales y el parámetro asociado a dropout.

10 ptos Documente los resultados obtenidos, seleccione una arquitecture y entregue sus conclusiones.

2.2.2 Modificaciones del entrenamiento

10 ptos Al igual que la experimentación realizada con el perceptrón multicapa, compare diferentes algoritmos de optimización para el entrenamiento y evalue el comporramiento del entrenamiento para diferentes valores del learning rate.

2.3 Comparación

10 ptos Concluya comparando el rendimiento, el número de parámetros y tiempo de ejecución de cada una de las arquitecturas.

2.4 Entrega

- La actividad deberá entregarse en un archivo comprimido donde incluya archivos Jupyter notebook (.ipynb), Python (.py) y otros archivos para gestionar parámetros (ejemplo: .yaml, .json). El archivo comprimido debe subirse a la plataforma del curso y subirse a su repositorio del curso en Github^a. No subir el archivo con los datos originales.
- La actividad debe realizarse de forma individual.
- La actividad debe ser subida a la plataforma antes del domingo 22 a las 21:59 P.M.

^ahttps://github.com/