- 5.01 Show that the taxicab metric on \mathbb{R}^2 satisfies the properties of a metric.
 - (1) Notice, by the definition of the Taxicab metric we take the addition of two absolute values. Since absolute values are never negative, we must have that for some $x,y\in\mathbb{R}^2, d(x,y)\geq 0$. Note, if x=y, we must have that d(x,y)=0 and if $x\neq y, d(x,y)>0$

Thus, property 1 is satisfied.

(2) Let $x, y \in \mathbb{R}^2$. Observe.

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

= $|y_1 - x_1| + |y_2 - x_2|$
= $d(y,x)$

Thus, property 2 is satisfied.

(3) Let $x, y, z \in \mathbb{R}^2$. Observe.

$$d(x,z) = |x_1 - z_1| + |x_2 - z_2|$$

$$= |x_1 - y_1 + y_1 - z_1| + |x_2 - y_2 + y_2 - z_2|$$

$$\leq |x_1 - y_1| + |y_1 - z_1| + |x_2 - y_2| + |y_2 - z_2|$$

$$= |x_1 - y_1| + |x_2 - y_2| + |y_1 - z_1| + |y_2 - z_2|$$

$$= d(x,y) + d(y,z)$$

Thus, property 3 is satisfied.

Therefore, the taxicab metric is a metric.

- 5.02 (a) Show that the max metric on \mathbb{R}^2 satisfies the properties of a metric.
 - (1) Notice, we are taking the max value of an absolute value. Since absolute values are never negative, we must have that for some $x, y \in \mathbb{R}^2$, $d(x, y) \geq 0$. Note, if x = y, we must have that d(x, y) = 0 and if $x \neq y$, d(x, y) > 0. Thus, property 1 is satisfied.
 - (2) Let $x, y \in \mathbb{R}^2$. Observe.

$$d(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

= $\max\{|y_1 - x_1|, |y_2 - x_2|\}$
= $d(y, x)$

Thus, property 2 is satisfied.

(3) Let $x, y, z \in \mathbb{R}^2$. Observe.

$$d(x,z) = \max\{|x_1 - z_1|, |x_2 - z_2|\}$$

$$= \max\{|x_1 - y_1 + y_1 - z_1|, |x_2 - y_2 + y_2 - z_2|\}$$

$$\leq \max\{|x_1 - y_1| + |y_1 - z_1|, |x_2 - y_2| + |y_2 - z_2|\}$$

$$= |x_i - y_i| + |y_i - z_i|$$

where i with value 1 or 2 holds the maximum value

$$|x_i - y_i| \le max\{|x_1 - y_1|, |x_2 - y_2|\}$$

 $|y_i - z_i| \le max\{|y_1 - z_1|, |y_2 - z_2|\}$

So.

$$d(x,z) \le \max\{|x_1 - y_1|, |x_2 - y_2|\} + \max\{|y_1 - z_1|, |y_2 - z_2|\} = d(x,y) + d(y,z)$$

Thus, property 3 is satisfied.

Therefore, the max metric is a metric.

- (b) Explain why $d(p,q) = \min\{|p_1 q_1|, |p_2 q_2|\}$ does not define a metric on \mathbb{R}^2 . The Triangle inequality does not hold.
 - (1,0)(2,0) Let $p,q,r \in \mathbb{R}^2$. Observe.

$$d(p,r) = min\{|p_1 - r_1|, |p_2 - r_2|\}$$

$$\geq min\{|p_1 - q_1| + |q_1 - r_1|, |p_2 - q_2| + |q_2 - r_2|\}$$

$$= |p_i - q_i| + |q_i - r_i|$$

where i with value 1 or 2 holds the minimum value

$$|p_i - q_i| \le min\{|p_1 - q_1|, |p_2 - q_2|\}$$

 $|q_i - r_i| \le min\{|q_1 - r_1|, |q_2 - r_2|\}$

So,

$$d(p,r) \le \min\{|p_1 - q_1|, |p_2 - q_2|\} + \min\{|q_1 - r_1|, |q_2 - r_2|\} \le d(p,q) + d(q,r)$$

5.03 For points $p = (p_1, p_2)$ and $q = (q_1, q_2)$ in \mathbb{R}^2 define

$$d_V(p,q) = \begin{cases} 1 & \text{if } p_1 \neq q_1 \text{ or } |p_2 - q_2| \ge 1\\ |p_2 - q_2| & \text{if } p_1 = q_1 \text{ and } |p_2 - q_2| < 1 \end{cases}$$

- (a) Show that d_V is a metric.
 - (1) Notice, by the definition of D_v we are either 1 or the absolute value less than 1. Since, absolute values are never negative, we must have that for some $p, q \in \mathbb{R}^2 d(p, q) \geq 0$. Note if x = y, we must have that d(p, q) = 0 and if $x \neq y, d(p, q) > 0$. Thus, property 1 is satisfied.

(2) Let $p, q \in \mathbb{R}^2$. Observe.

$$d(p,q) = 1 \text{ or } |p_2 - q_2|$$

= 1 or $|q_2 - p_2|$
= $d(q, p)$

04/05/2019

Thus, property 2 is satisfied.

(3) Let $p, q, r \in \mathbb{R}^2$. Observe.

$$d(p,r) = 1 \text{ or } |p_2 - r_2|$$

= 1 or $|p_2 - q_2 + q_2 - r_2|$
* =

Thus, property 3 is satisfied.

Therefore, D_v is a metric.

- (b) Describe the open balls in the metric d_V .
- 5.10 (a) Let (X, d) be a metric on a space. For $x, y \in X$, define

$$D(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

Show that D is also a metric on X

- (1) Notice, that $d(x, y) \ge 0$. Since, we always get a non-negative value back from d(x, y) we know that our definition for D(x, y) must also return a non-negative values Thus, property 1 is satisfied.
- (2) Let $x, y \in \mathbb{R}^2$. Observe.

$$D(x,y) + = \frac{d(x,y)}{1 + d(x,y)}$$
$$= \frac{d(y,x)}{1 + d(y,x)}$$
$$= D(y,x)$$

Thus, property 2 is satisfied.

(3) Let $x, y, z \in \mathbb{R}^2$. Observe.

$$D(x,y) + D(y,z) = \frac{d(x,y)}{1 + d(x,y)} + \frac{d(y,z)}{1 + d(y,z)}$$

$$= \frac{d(x,y)(1 + d(y,z))}{(1 + d(x,y))(1 + d(y,z))} + \frac{d(y,z)(1 + d(x,y))}{(1 + d(x,y))(1 + d(y,z))}$$

$$\geq \frac{d(x,y) + d(y,z)}{(1 + d(x,y))(1 + d(y,z))}$$

$$\geq \frac{d(x,z)}{(1 + d(x,y))(1 + d(y,z))}$$

$$\geq \frac{d(x,z)}{1 + dx,z}$$
As $d(x,z) = d(x,z)$ and $(1 + d(x,y))(1 + d(y,z)) > 1 + d(x,z)$

Thus, property 3 is satisfied.

Therefore, D is a metric.

- (b) Explain why no two points in X are distance one or more apart in the metric D. The top is always smaller than the bottom.
- 5.24 Prove Theorem 5.13: Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is continuous in the open set definition if and only if for each $x \in X$ and $\varepsilon > 0$, there exists a $\delta > 0$ such that if $x' \in X$ and $d_X(x, x') < \delta$ then $d_Y(f(x), f(x')) < \varepsilon$. (Hint: Consider Exercise 4.3 and the proof of Theorem 4.6.)
- 5.25 Let (X,d) be a metric space, and assume $p \in X$ and $A \subset X$
 - (a) Provide an example showing that $d(\{p\}, A) = 0$ need not imply that $p \in A$.
 - (b) Prove that if A is closed and $d(\{p\}, A) = 0$, then $p \in A$
- 5.26 Use Theorem 5.15 to prove that the taxicab metric and the max metric induce the same topology on \mathbb{R}^2 .
- 5.28 Let (X, d) be a metric space. The function

$$D(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

is a bounded metric on X . (See Exercise 5.10.) Show that the topologies induced by D and d are the same.

5.29 On the set of continuous functions C[a,b] consider the metrics ρ_M and ρ defined by

$$\rho_M(f,g) = \max_{x \in [a,b]} [|f(x) - g(x)|],$$

and

$$\rho(f,g) = \int_{a}^{b} |f(x) - g(x)| dx$$

These metrics were introduced in Exercise 5.8 and Example 5.5, respectively.

- (a) Use Theorem 5.15 to prove that the topology induced by ρ_M on C[a,b] is finer than the topology induced by ρ .
- (b) Show that for every $c_1, c_2 > 0$ there exists $f \in C[a, b]$ such that $\max_{x \in [a,b]} \{|f(x)|\} = c_1$ and

$$\int_{a}^{b} |f(x)| dx = c_2$$

- (c) Let $Z \in C[a, b]$ be the function defined by Z(x) = 0 for all $x \in [a, b]$ Given $\varepsilon > 0$, show that no $\delta > 0$ exists such that $B_{\rho}(Z, \delta) \subset B_{\rho M}(Z, \varepsilon)$ (Hint: Part (b) helps.)
- (d) What does Theorem 5.15 allow us to conclude from (c)?

Summary