Math 317: Homework 1

Due Friday, February 1, 2019

- 1. (1.1) Prove $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$ for all positive integers n.
- 2. (1.6) Prove $11^n 4^n$ is divisible by 7 when n is a positive integer. (An integer k is divisible by an integer q if there exists an integer m so that k = mq.)
- 3. (4.3, partial) For each subset of \mathbb{R} below, determine both the **supremum** and the **infimum**, if they exist. If either doesn't exist, say so. You do not need to give a rigorous proof of your answer.

a.
$$A = \{3, 4, 5\}$$

b.
$$B = \left\{ n + \frac{(-1)^n}{n} : n \in \mathbb{N} \right\}$$

c.
$$C = \left\{ \sin\left(\frac{n\pi}{3}\right) : n \in \mathbb{N} \right\}$$

d.
$$D = \{r : r \in \mathbb{Q}, r^2 < 3\}$$

e.
$$E = \left\{1 - \frac{1}{3^n} : n \in \mathbb{N}\right\}$$

- 4. Don't worry about writing out any formal proofs in this problem. Decide whether each of the following statements is true. If the statement is **true**, you don't need to do anything more. If the statement is **false**, give a concrete example (that is, a counterexample) that shows the statement failing.
 - a. For a nonempty, bounded set $S \subseteq \mathbb{R}$, inf $S < \sup S$.
 - b. If $r \neq 0$ is rational and α is irrational, then $r\alpha$ is irrational.
 - c. If $T \subset S \subset \mathbb{R}$, T is nonempty and S is bounded, then $\sup T \leq \sup S$.
 - d. A finite, nonempty set always contains its supremum.
- 5. Let A be a nonempty set of real numbers which is bounded below. Let -A be the set $\{-x : x \in A\}$. Prove that

$$\inf A = -\sup(-A).$$

(Note: This is the bulk of the proof of Corollary 4.5. You're welcome to make use of all of the theorems and properties in Section 3, including Theorem 3.2. \mathbb{R} is an ordered field.)

1