MAT 182: Trigonometry

Exam 3

Spring 2007

Name:	

No books, notes, friends, or calculators. Sit in every other seat. You have 1 hour and 10 minutes for this exam. Answer the questions in the spaces provided. If you run out of room for an answer, write *see back* and continue on the back of the page. One sheet of scratch paper is included on the last page.

If something is unclear quietly come up and ask me.

Unless indicated, angles are in radians. Answers should be given in radians for angles unless requested in degrees. Simplify all final answers. Show steps where appropriate. **Circle final answers** — if it's unclear what your final answer is or you have multiple answers, full credit cannot be given.

There are 7 questions for a total of 50 points on 6 pages. Make sure this exam contains all pages.

This Exam is being given under the guidelines of our institution's **Code of Academic Ethics**. You are expected to respect those guidelines.

Total Points Earned:	out of 50 total points
Exam Score:	

1. (5 points) Find the length of the side b given the following parts of an oblique triangle:

$$a=\frac{2}{\sqrt{6}},\ \alpha=\frac{\pi}{4},\ \beta=\frac{\pi}{3}$$

2. (5 points) Find the algebraic representation of \vec{v} given:

$$|\vec{v}| = 5, \ \theta = \frac{3\pi}{2}$$

3. Given the following vectors:

$$\vec{v} = \sqrt{3}\hat{i} - \hat{j} \text{ and } \vec{w} = -2\hat{j}$$

(a) (5 points) Find $3\vec{v} - \vec{w}$

(b) (5 points) Find $|\vec{v}|$ and $|\vec{w}|$

(c) (5 points) Find $\vec{v} \cdot \vec{w}$

(d) (5 points) Find the angle θ between \vec{v} and \vec{w}

4. (2 points) Simplify $-i^3$

5. Given the following complex numbers:

$$z_1 = 2 + 3i$$
, and $z_2 = 3 - 4i$

(a) (5 points) Simplify $(2i)z_1 + z_2$

(b) (5 points) Simplify $\frac{z_1}{z_2}$

6. (5 points) Convert the following polar equation to rectangular form (write it in terms of x and y.)

 $r = 2\cos\theta$

Instructor: Anthony Tanbakuchi

Points earned: _____ / 5 points

7. (3 points) Plot the following polar equation on the grid below:

$$r=2.5,\ \frac{\pi}{2}\leq\theta\leq\pi$$

Instructor: Anthony Tanbakuchi

 $Scratch\ Paper$