https://www.kaggle.com/shivamb/data-science-glossary-on-kaggle					
Topic	Sub Topic	Link	Com plete d	Docu ment	Comments
		Price analysis and Linear Regression Predictions with XGboost and Linear			
	Linear Regression	Regression In-Depth Simple Linear Regression			
	J	Linear regression (LB: 0.0091176)			
		Simple One Feature Linear Regression			
1. Regression		Category + TF-IDF + Linear Regression			
Algorithms		Logistic regression with words and char n-grams			
		Logistic regression with words and char			
	Logistic Regression	n-grams Example: Attacking logistic regression			
	_	Simple logistic model - PORTO			
		Logistic of Genetic Features			
		Logistic Regression TFIDF			
		Ridge (LB 0.41943)			
		Ridge Script			
		Mercari RNN + 2Ridge models with			
		notes (~0.42755)			
		More Effective Ridge LGBM Script (LB 0.44823)			
	D. I	avito LightGBM with Ridge Feature V			
	Ridge	2.0			
		<u>LightGBM with Ridge Feature</u>			
		Ridge (LB: 0.0100659)			
		Wordbatch+Ridge + FM FRTL + Target Encoding + LGBM			
2.		avito_LightGBM with Ridge Feature V 3.0 [0.2219]			
Regularization Algorithms		Modified Wordbatch + Ridge +			
-		FM FTRL + LGB XGBoost + Lasso			
		Lasso model for regression problem			
		You got this!!!! Feature Engineering			
		and Lasso			
	Lasso	XGboost + Ridge + Lasso			
		FS(Lasso)+HyperParamTuning(HyperOp			
		<u>t)</u>			
<u> </u>		<u>Lasso model for regression problem</u>			
		Top 7% using ElasticNet with Interactions			
	Elasticnet	ElasticNet (LB 0.547+) and feature			
	LIASTICIET	importance			
		Stack of SVM,ElasticNet,XGBoost,RF //			

		<u>~ 0.55</u>	
		House Price predict score 0.14205 by	
		<u>ElasticNet</u>	
		Introduction to Decision Trees (Titanic	
		dataset) Decision Trees for Binary Classification	
	Decision Tree	(0.99)	
		Topic 3. Decision Trees and kNN	
		Stephen Curry's Decision Tree	
		Random Forests	
		Random Forest Starter with numerical	
		<u>features</u>	
	Random Forest	Feature Ranking RFE, Random Forest,	
		linear models	
		Titanic Random Forest: 82.78%	
		Random forest using elemental properties	
		[Updated 0.792 LB] LightGBM with	
		Simple Features	
		LightGBM (Fixing unbalanced data) LB:	
		0.9680	
		Aggregated features & LightGBM	
		preprocessing, model averaging by xgb + lgb [1.39]	
		EDA, feature engineering and xgb + lgb	
	Lightgbm	1st Place LGB Model(public:0.470,	
3. Tree Based		private:0.502)	
Models		non-blending lightGBM model LB: 0.977	
		light GBM benchmark 0.3692	
		TalkingData: Added new features in	
		<u>LightGBM</u>	
		LightGBM with weighted averages &	
		dropout [.787] Data Analysis & XGBoost Starter	
		(0.35460 LB)	
		Learning to Use XGBoost	
		XGBoost CV (LB .284)	
	Xgboost	TalkingData XGBoost - LB: 0.966	
		Simple XGBoost Starter (~0.0655)	
		mxnet + xgboost baseline [LB: 0.57]	
		XGB starter in python	
		LightGBM + XGBoost + Catboost	
		Stacking Test-Sklearn, XGBoost,	
		CatBoost, LightGBM	
		Simple CatBoost	
	Catboost	Concise catboost starter ensemble	
		(PLB: 0.06435)	
		<u>CatBooStarter</u>	
		CatBoost, StackedAE with MXNet, Meta	
		[1.40LB]	<u> </u>

		Simple CatBoost	
		Naive CatBoost	
		CatBoost Starter (LB 0.517)	
		Simple CatBoost CV (LB .281)	
		Deep Neural Network Keras way	
		Neural Network Approach	
		Neural Network Model for House Prices	
		(TensorFlow)	
		Surprise Me 2! Neural Networks(keras)	
	Neural Network	NEURAL NETWORK USING SGD	
		Recurrent Neural Network with Pytorch	
		3D Convolutional Neural Network w/o	
		Programming	
		Embedding with Neural Network	
		Manifold Learning And Autoencoders	
		H2O - Autoencoders and anomaly	
		detection (Python)	
		2D Visualization: PCA & ICA vs	
		Autoencoders Denoising: Autoencoders to the	
		rescue!!	
	Autoencoder	Simple denoise autoencoder with Keras	
		Denoising Autoencoder	
		1. Autoencoder with Keras	
		Visualizing MNIST using a Variational	
4. Neural		Autoencoder	
Networks and		Keras AutoEncoder with simple	
Deep Learning Models		CNN(kfold4/LB .1704)	
Widacis		Deep Learning Tutorial for Beginners	
		Intro to Deep Learning and Computer Vision	
		Deep learning support [.9663]	
		Welcome to deep learning (CNN 99%)	
		A Deeper Understanding of Deep	
		Learning	
	Deep Learning	Deep learning in TF with upsampling	
		[LB: .758]	
		EDA Recommender SystemDeep	
		<u>LearningModel Intuition</u>	
		Deep Learning	
		Starting Kit for PyTorch Deep Learning	
		Rectified Linear Units (ReLU) in Deep	
		Learning	
		Introduction to CNN Keras - 0.997 (top	
	Companient	6%) Welcome to deep learning (CNN 99%)	
	Convolutional Neural	Transfer Learning with VGG-16	
	Networks	CNN+AUG LB 0.1712	
		Keras CNN - StatOil Iceberg LB 0.1995	
		(now 0.1516)	

	Digit recognizer in Python using CNN	
	CNN with Keras	
	Bi-GRU-CNN-Poolings	
	Cancer Image TensorFlow CNN 80%	
	Valid. Acc.	
	1D CNN (single model score: 0.14, 0.16	
	<u>or 0.23)</u>	
	TextCNN (2D Convolution)	
	LSTM with word2vec embeddings	
	Improved LSTM baseline: GloVe +	
	dropout	
	Keras - Bidirectional LSTM baseline (lb	
	<u>0.069)</u>	
	Minimal LSTM + NB-SVM baseline	
	<u>ensemble</u>	
Lstm	Bidirectional LSTM with Convolution	
	keras lstm attention glove840b,lb 0.043	
	[LB 0.18+] LSTM with GloVe and magic	
	<u>features</u>	
	Basic NLP: Bag of Words, TF-IDF,	
	Word2Vec, LSTM	
	Explore TS with LSTM	
	LSTM Stock prediction-20170507	
	<u>Pooled GRU + FastText</u>	
	Capsule net with GRU	
	Bi-GRU-CNN-Poolings	
	(How to get 81%) GRU-ATT + LGBM +	
	<u>TF-IDF + EDA</u>	
	<u>LGB + GRU + LR + LSTM + NB-SVM</u>	
Gru	<u>Average Ensemble</u>	
	Pooled GRU (with preprocessing)	
	GRU(25-12-12)_with_Keras(512-	
	64,relu) SGDR LB0.432	
	NY Stock Price Prediction RNN LSTM	
	GRU	
	<u>Pooled GRU + GloVe trainable</u>	
	mxnet + xgboost baseline [LB: 0.57]	
	mxnet + xgboost simple solution	
Mxnet	CatBoost, StackedAE with MXNet, Meta	
WINTIEC	[1.40LB]	
	deep NN with MXnet	
	mxnet // cnn_1d 0.945 acc [FULL-SET]	
	EDA and CNN (resnet-18) (LB 0.2094)	
	Complete process using ResNet as a	
	starting point	
	End-to-End ResNet50 with TTA [LB	
Resnet	~0.93]	
	<u>resnet50 features + xgboost</u>	
	Keras ResNet with image augmentation	
	Objects + Bounding Boxes using	

		Resnet50 - ImageAl	
		ResNet50 Example	
		Feature Extraction by ResNet (keras	
		LB [0.56130] - resnet50 features +	
		xgboost	
		CapsuleNet on MNIST	
	Capsule Network	CapsuleNet on Fashion MNIST	
	Network	A Beginner's guide to Capsule Networks	
		Transfer Learning with VGG-16 CNN+AUG LB 0.1712	
		Extract avito image features via keras	
	Vgg	<u>VGG16</u>	
	- 88	Keras VGG19 Starter	
		VGG16 Train features	
		use Keras pre-trained VGG16 acc 98%	
		Intro to Deep Learning and Computer	
		Vision	
		Exercise: Convolutions for Computer	
		<u>Vision</u>	
	Inception	Basic Pure Computer Vision	
		Segmentation (LB 0.229)	
		Plant Seedlings Fun with Computer	
		<u>Vision</u> Optimizing Computer Vision	
		Segmentation	
		Intro to Deep Learning and Computer	
		Vision	
		Exercise: Convolutions for Computer	
		<u>Vision</u>	
	Computer	Basic Pure Computer Vision	
	Vision	Segmentation (LB 0.229)	
		Plant Seedlings Fun with Computer Vision	
		Optimizing Computer Vision	
		Segmentation	
		Transfer Learning with VGG-16	
		CNN+AUG LB 0.1712	
		Transfer Learning	
	Transfer	Exercise: Using Transfer Learning	
	Learning	Fruits-360 - Transfer Learning using	
		<u>Keras</u>	
		VGG16 Transfer Learning - Pytorch	
		Principal Component Analysis with	
		KMeans visuals	
		Log MA and Days of Week Means (LB:	
		<u>0.529)</u> Aggregates + SumValues + SumZeros +	
5. Clustering	Kmeans	K-Means + PCA	
Algorithms		Visualizing K-Means with Leaf Dataset	
		3D Kmeans animation	
		kmeans example	
		K-means Clustering of 1 million	

		<u>headlines</u>		
		Simple K-means clustering on the Iris		
		dataset		
		<u>Using K-Means Clustering to Predict</u>		
		<u>Helpfulness</u>		
	Hierarchical Clustering			
		DBSCAN Benchmark		
		HDBSCAN clustering II		
		DBSCAN Benchmark improvement - 0.2099		
		Chocolate ratings-Outlier analysis with		
	Dbscan	<u>DBScan</u>		
	Doscan	DBSCAN for CERN		
		Starter DBSCAN, Validation, Creating a		
		Submission		
		classifier+hdbscan+helixFitting		
		HDBSCAN and scaling of the		
,		<u>coordinates</u>		
		<u>Unsupervised Anomaly Detection</u>		
		<u>Unsupervised and supervised</u>		
		neighborhood encoding		
		<u>Distilled Features & Unsupervised</u> <u>Learning</u>		
		Topic 7. Unsupervised learning: PCA		
	Unsupervised	and clustering		
		Creating Customer Segments - Unsupervised Learning		
		Unsupervised Segmentation with Type-		
		Separation		
		<u>Unsupervised Approach-Kmeans</u>		
		clustering		
		Naive Bayesian Network with 7 features		
		Benouilli Naive Bayes		
	Naive Bayes	Bernoulli Naive Bayes - AUC 59% Spooky Simple Naive Bayes Scores		
		~0.399		
		Naive Bayes without a ML Library		
		Simple Naive Bayes & XGBoost		
		NB-SVM strong linear baseline		
6. Misc - Models		<u>Minimal LSTM + NB-SVM baseline</u> ensemble		
		Visualizing KNN, SVM, and XGBoost on		
	_	Iris Dataset		
	Svm	LGB + GRU + LR + LSTM + NB-SVM		
		Average Ensemble		
		LSTM with BN + NB-SVM + LR on Conv		
		AI(lb 0.041)		
		What's Cooking : TF IDF with OvR SVM		
	Knn	Visualizing KNN, SVM, and XGBoost on		
	131111	Iris Dataset		

		grid knn	
		kNN from scratch in Python at 97.1%	
		Comparing random forest, PCA and	
		knn	
		kNN approach	
		kNN from scratch in Python at 97.1%	
		Rental List: KNN on lat/long data	
		grid knn	
		Breast cancer prediction: KNN, SVC,	
		and Logistic	
		Film recommendation engine	
		Simple content-based recommendation	
	Recommendati	<u>engine</u>	
	on Engine	Film recommendation engine-	
	_	converted to use TMDb	
		Recommendation Engine + EDADonorsChoose	
	7.1	EDADOHOI SCHOOSE	
	Preprocessing		
	,	Comprehensive data exploration with	
		Python	
		Simple Exploration Notebook - Zillow	
		<u>Prize</u>	
	Eda	EDA To Prediction(DieTanic)	
		Speech representation and data	
	Eua	<u>exploration</u>	
		Mercari Interactive EDA + Topic	
		Modelling	
		\$ - Toxic Comments EDA	
		Home Credit: Complete EDA + Feature	
		Importance 🗸 🗸	
		Feature Engineering & Importance Testing	
7. Important		Introduction to Manual Feature	
Data Science		Engineering	
Techniques		EDA, feature engineering and xgb + lgb	
	Feature	Creative Feature Engineering (LB 0.35)	
	Engineering	Feature engineering	
		Feature Engineering & Validation	
		Strategy	
		Automated Feature Engineering Basics	
		HOME CREDIT - BUREAU DATA -	
		FEATURE ENGINEERING	
		<u>Feature Selection and Data</u>	
		Visualization	
		Feature Selection with Null	
	Feature	Importances Evaluration estudie on facture collection	
	Selection	Exploratory study on feature selection	
		Introduction to Feature Selection	
		Feature Selection and Prediction	
		<u>6 Ways for Feature Selection</u>	

I	Easy Feature Selection pipeline: 0.55+	1	I
	at LB		
	Feature Selection and Ensemble of 5		
	Models		
	Model-based Feature Selection		
	(Newbie)		
	Using XGBoost For Feature Selection		
	Unrolling of helices + outliers removal		
	XGB w/o outliers & LGB with outliers		
	combined		
	Home Credit EDA: Distributions and		
	Outliers		
	Standard Prices vs. Outliers		
Outlier			
Treatment	You want outliers? We got them outliers!		
	Beware of Outliers !!		
	Outlier Detection Practice: uni/multivariate		
	XGBoost without outliers (LB ~ 0.06450		
	AGBOOST WITHOUT OUTHERS (LB 0.00430		
	Semi-Supervised Anomaly Detection		
	Survey		
	Unsupervised Anomaly Detection		
	Anomaly Detection using Gaussian		
	Distribution		
Anomaly	H2O - Autoencoders and anomaly		
Detection	detection (Python)		
	Numerical feature density -> anomaly		
	detection?		
	Anomaly Detection Using Tensorflow		
	Time Series and anomaly detection		
	Credit Card Fraud Prediction - [RF +		
	SMOTE]		
Smote	Fraud detection with SMOTE and		
	RandomForest		
	<u>Titanic Survival Prediction End to End</u>		
	ML Pipeline		
	<u>Pipelines</u>		
	Full pipeline demo: poly -> pixels -> ML		
	-> poly		
	Titanic: Voting, Pipeline, Stack, and		
	Guide		
	Pipeline Kernel, xgb + fe [LB1.39]		
Pipeline	A Deep Dive Into Sklearn Pipelines		
	Preprocessing Pipeline and Convnet		
	<u>Trainer</u>		
	Easy Feature Selection pipeline: 0.55+		
	at LB		
	A Complete ML Pipeline Tutorial (ACU ~		
	86%)		
	Manager Skill for Cross-Validation		
	<u>Pipelines</u>		
7.2			

Dimentionality Reduction		
Dataset	Dataset Decomposition Techniques	
Decomposition	Dimentionality Reduction SVD in batch	
	Customer Segments with PCA	
	Tutorial: PCA Intuition and Image	
	Completion	
	Dimensionality reduction (PCA, tSNE)	
	Visualizing PCA with Leaf Dataset	
	All You Need is PCA (LB: 0.11421, top	
Pca	<u>4%)</u>	
	PCA visualization	
	Aggregates + SumValues + SumZeros +	
	K-Means + PCA	
	Use Partial PCA for Collinearity, LB	
	~0.328 w/ XGB	
	TSNE vs PCA	
	<u>Dimensionality reduction (PCA, tSNE)</u>	
	Mapping digits with a t-SNE lens	
	TSNE vs PCA	
Tsne	TSNE & PCA Quick and Dirty Visuals	
	PCA and T-SNE	
	Four Blob TSNE - with (legal)	
	supplements	
7.3 Post		
Modelling		
Techniques	Cross Validation	
	Cross-Validation	
	<u>Cross-validation, weighted linear</u> blending, errors	
	Correct time-aware cross-validation	
	scheme	
	Manager Skill for Cross-Validation	
	<u>Pipelines</u>	
Cross Validation	Simple Grasp Cross-validation	
	Proper Cross-Validation	
	Training set split for cross validation	
	Simple Keras Model with k-fold cross	
	validation	
	<u>Cross Validation Schemes with Food</u>	
	Consumption	
	Quora EDA & Model selection (ROC, PR plots)	
	Cervix EDA & Model selection	
	Montecarlo Model Selection	
Model Selection	Model-based Feature Selection (Newbie)	
	Feature Selection and Ensemble of 5	
	Models	
	Model and feature selection with	

I	Cold Calls: Data Mining and Model	Ī	İ
	Selection		
	EDA and Model Selection		
	[.96 acc] Model Selection +		
	Hyperparameter Tuning		
	Intro to Model Tuning: Grid and		
	Random Search		
	LGBM CV Tuning and Seed		
	<u>Diversification</u>		
	Automated Model Tuning		
	Microsoft LightGBM with parameter		
Model Tuning	tuning (~0.823)		
	Parameter tuning: 5 x 2-fold CV		
	<u>statistical test</u>		
	Tuning Automated Feature Engineering		
	(Exploratory)		
	Tuning Random Forest Parameters		
	Intro to Model Tuning: Grid and		
	Random Search		
	Hyperparameter Grid Search with		
	XGBoost		
	xgboost with GridSearchCV		
	Grid search xgboost with scikit-learn		
	GridSearchCV with feature in xgboost		
Gridsearch	GridSearchCV + XGBRegressor (0.556+		
	LB)		
	GridSearch vs RandomizedSearch on		
	XGboostRegressor		
	Parameter Tuning - Random Forest -		
	GridsearchCV		
	Random Forest from grid search to		
	hyperopt		
7.4 Ensemblling			
	Titanic Top 4% with ensemble modeling		
	Minimal LSTM + NB-SVM baseline		
	<u>ensemble</u>		
	EDA & Ensemble Model (Top 10		
	Percentile)		
	Porto Seguro Tutorial: end-to-end		
	<u>ensemble</u>		
Ensemble	Concise catboost starter ensemble		
	(PLB: 0.06435)		
	ML-Ensemble: Scikit-learn style		
	ensemble learning		
	<u>LGB + GRU + LR + LSTM + NB-SVM</u> <u>Average Ensemble</u>		
	Statoil CSV PyTorch SENet ensemble LB		
	0.1520		
	Introduction to Ensembling/Stacking in		
	Python		
Stacking	Stacked Regressions : Top 4% on		
	<u>LeaderBoard</u>		<u> </u>
	Explore Stacking (LB 0.1463)		
I	<u> </u>	I	<u> </u>

		Simple Stacker LB 0.284	
		stacked then averaged models [~	
		0.5697]	
		Stacking Starter	
		let's walk through stackoverflow	
		worldwide survey	
		OOF stacking regime	
		Simple Linear Stacking (LB .9730)	
		Keras starter with bagging (LB:	
		<u>1120.596)</u>	
		Keras starter with bagging 1111.84364	
		Predicting House Prices	
		[XGB/RF/Bagging-Reg Pipe]	
	Bagging	UnderBagging AUC = ~0.95	
		Naive Bagging CNN(PB0.985)	
		Topic 5. Ensembles. Part 1. Bagging	
		Boo! Keras + XGBoost bagging starter	
		Bagging with animal shelter outcomes	
		Spooky NLP and Topic Modelling	
		tutorial	
		Approaching (Almost) Any NLP Problem	
		on Kaggle	
		OMG! NLP with the DJIA and Reddit!	
		Basic NLP: Bag of Words, TF-IDF,	
	Nlp	Word2Vec, LSTM	
		Text Mining with Sklearn / Keras (MLP,	
		LSTM, CNN)	
		Scary NLP with SpaCy and Keras	
		Detailed NLP Project (Prediction &	
		Visualization)	
		Applying Text Mining	
		Mercari Interactive EDA + Topic Modelling	
		Spooky NLP and Topic Modelling	
		tutorial	
8. Text Data	Topic Modelling	Topic Modelling with LSA and LDA	
	Topic Wodening	Topic Modelling (LDA) on Elon Tweets	
		Kanye Lyrics: EDA, Song Generator,	
		Topic Modelling	
		Topic Modelling and sentiment analysis	
		Pooled GRU + FastText	
		LSTM with word2vec embeddings	
		Improved LSTM baseline: GloVe +	
		dropout	
	184 a mel	Spell Checker using Word2vec	
	Word Embedding	Simple Keras FastText: val loss 0.31	
	Linecading	keras Istm attention glove840b,lb 0.043	
		Using FastText models for robust	
		embeddings	
		[LB 0.18+] LSTM with GloVe and magic	
		<u>features</u>	

		Your First Scikit-Learn Model		
		Scikit-Learn ML from Start to Finish		
		10 Classifier Showdown in Scikit-Learn		
		ML-Ensemble: Scikit-learn style		
		ensemble learning		
		Scikit-Learn ML from Start to Finish		
	Scikit	Grid search xgboost with scikit-learn		
	SCIKIL	Principal Component Analysis with		
		Scikit-Learn		
		Tips for Using Scikit-Learn for		
		Evaluation		
		Scikit-learn pipelines and pandas		
		Classifying News Headlines with scikit-		
		<u>learn</u>		
		TensorFlow deep NN		
		Predicting Fraud with TensorFlow		
		Nuclei DSB 2018 TensorFlow U-Net		
		<u>Score 0.352</u>		
		Data augmentation and Tensorflow U-		
		<u>Net</u>		
	Tamasuflam	Programming in TensorFlow and Keras		
	Tensorflow	Tensorflow starter: conv1d +		
		embeddings (0.442 LB) Cancer Image TensorFlow CNN 80%		
		Valid. Acc.		
9. Data Science		Multi-GPU tensorflow convnet [0.65]		
Tools		Neural Network Model for House Prices		
		(TensorFlow)		
		Tensorflow 1vs1		
		Theano+Lasange Starter		
		Fast LeNet5 CNN in Theano for GPU		
		Training a U-Net model in keras Theano		
		Open dataset - theano tensor first		
		image		
		tensor theano		
	Theano	TheanoLasagne - Fork Florian		
		<u>Muellerkle</u>		
		<u>Practice Theano Logistic Regression</u>		
		Test for theano		
		Fast LeNet5 CNN in Theano for GPU		
		Theano conv network		
		Introduction to CNN Keras - 0.997 (top		
		<u>6%)</u>		
		Keras U-Net starter - LB 0.277		
		Keras Model for Beginners (0.210 on		
	Keras	LB)+EDA+R&D		
	i.c.a.	Deep Neural Network Keras way		
		[For Beginners] Tackling Toxic Using		
		<u>Keras</u>		
		A simple nn solution with Keras		
		(~0.48611 PL)		

1	Dog Breed - Pretrained keras models(LB	1
	0.3)	
	Keras - Bidirectional LSTM baseline (lb	
	0.069)	
	End-to-end baseline with U-net (keras)	
	<u>CatdogNet - Keras Convnet Starter</u>	
	Starting Kit for PyTorch Deep Learning	
	Pytorch Tutorial for Deep Learning	
	Lovers	
	Statoil CSV PyTorch SENet ensemble LB 0.1520	
	Recurrent Neural Network with Pytorch	
Dutorch	PyTorch CNN DenseNet Ensemble LB 0.1538	
Pytorch	Pytorch starter	
	Pre-trained PyTorch Monkeys: A Deep	
	Dream	
	PyTorch GPU CNN & BCELoss with	
	predictions	
	PyTorch Tutorials on DSB2018	
	Simple PyTorch with kaggle's GPU	
	Vowpal Wabbit tutorial: blazingly fast	
	learning	
	Fast, low memory learning - part 1:	
	<u>VowpalWabbit</u>	
	Topic 8. Online learning and Vowpal Wabbit	
Vowpal Wabbit		
	Vowpal Wabbit - input file preparation LRM Fast - Vowpal Wabbit	
	Implementation	
	Vowpal Wabbit decides who lives and	
	who dies	
	try to understand vowpalwabbit	
	ELI5 for Mercari	
	Understanding Approval-	
	<u>DonorsChoose-EDA,FE,ELI5</u>	
Eli5	ELI5 for TOXIC	
	ELIS What's Different About the Test	
	Set? (EDA)	
	eli5 example	
	Tune and compare XGB, LightGBM, RF with Hyperopt	
	Home Credit Hyperopt optimization	
Hyperopt	Hyperparameter tuning using Hyperopt	
	<u>FS(Lasso)+HyperParamTuning(HyperOp</u> t)	
	Random Forest from grid search to	
	hyperopt	
	Selecting and Filtering in Pandas	
Pandas	Univariate plotting with pandas	
	Tutorial: Accessing Data with Pandas	
1	. assirant toocssing bata with Farinas	1

		Learn Pandas with Pokemons	
		Predict hotel type with pandas	
		Global Religion 1945-2010: Plotly &	
		Pandas visuals	
		A Home for Pandas and Sklearn:	
		Beginner How-Tos	
		Bivariate plotting with pandas	
		Humble Intro to Analysis with Pandas	
		and Seaborn	
		Plotting with pandas, matplotlib, and seaborn	
		SQL Scavenger Hunt Handbook	
		SQL Scavenger Hunt: Day 1	
	Sql	SQL and Python primer - Bokeh Plotly	
		SQL Scavenger Hunt: Day 2	
		SQL Scavenger Hunt: Day 4	
		SQL Scavenger Hunt: Day 3	
		SQL Scavenger Hunt: Day 5	
		Getting Started with SQL and BigQuery	
		Data Analysis using SQL	
		SQL Scavenger Hunt: Day 1	
	Bigquery	Getting Started with SQL and BigQuery	
		Analyzing 3 Million Github Repos using	
		BigQuery	
		KB>MB>GB>TB>?B (BigQuery)	
		Getting started with Big Query	
		Air quality EDA using SQL-Bigquery	
		Beyond Queries: Exploring the	
		BigQuery API	
		My 15th solution features (mainly using	
		BigQuery)	
		How to integrate BigQuery & Pandas	
		No RAM? Fast feature engineering with	
		Big Query	
		BigQuery & Kaggle Tutorial with LB: 0.59 and 0.546	
	Visualization	Python Data Visualizations	
		Feature Selection and Data	
		Visualization	
		Strength of visualization-python visuals	
		tutorial In Donth Analysis & Visualisations	
		In-Depth Analysis & Visualisations - Avito	
10. Data Visualization		Geolocation visualisations	
		Detailed Cleaning/Visualization	
		(Python)	
		Welcome to data visualization	
		Interactive Porto Insights - A Plot.ly	
		Tutorial	
	Plotly	Decision Boundaries visualised via	
		Python & Plotly	

ı		1	1	1	
		Generation Unemployed? Interactive			
		Plotly Visuals			
		Plotly Tutorial for Beginners			
		SQL and Python primer - Bokeh Plotly			
		Global Religion 1945-2010: Plotly &			
		Pandas visuals			
		Intermediate visualization tutorial using			
		Plotly A Vary Extractive EDA of Plansies			
		A Very Extensive EDA of Physics Particles: Plotly			
		Seaborn Tutorial for Beginners			
		Visualizing Pokémon Stats with Seaborn			
		Plotting with seaborn			
		Humble Intro to Analysis with Pandas			
		and Seaborn			
	Seaborn	Faceting with seaborn			
		Plotting with pandas, matplotlib, and			
		seaborn			
		Seaborn Visualization			
		Python Seaborn PairPlot Example			
-		Comprehensive Python and D3.js			
		Favorita analytics			
		Interactive D3.js Visualisations in			
	D3.Js	Kaggle Kernels			
		Ghastly Network and D3.js Force-			•
		directed graphs			
		Zoomable Circle Packing via D3.js in			
		<u>IPython</u>			
		SQL and Python primer - Bokeh Plotly			
		Visualization: Bokeh Tutorial Part 1			
		Interactive Bokeh Tutorial Part 2			
		Karnataka Education EDA using Bokeh			
		Visualisation			
		EDA with python library bokeh			
	Bokeh	t-SNE + Bokeh			-
		Visualization of trips using bokeh and			
		Datashader Datashader			
		Exploratory Data Analysis with Bokeh			
		Interactive Visualization with Bokeh!			
					<u> </u>
		Exploring and Visualizing using bokeh			