Proof of Sectors in Square

Figure 1. Three regions, R_1 : purple, R_2 : yellow, and R_3 : blue Let ABCD be a square of side a that four sectors are drawn by treating A, B, C, and D as centers and side a as the radius. Let the region of the three colors be R_1 for the purple color area, R_2 for the yellow color area, and R_3 for the blue color area as shown in Figure 1.

Figure 2. Area of OHF, area(R₂)/4

We first consider region R_1 as shown in Figure 2. The area covered by the red curves is a quarter of R_1 . If we make point A as the origin and the curve HF is the curve $f(x) = \sqrt{a^2-x^2}$.

Consider Figure 3, line segments AG and OG have length a/2. Hence, line OF is of function g(x)=a/2. For triangle AEF, line segment AF is of length a, the radius of the sector. The length of line segment FE is the same as OG and it is a/2. Hence, the length of line segment $AE = \sqrt{a^2 - \left(\frac{a}{2}\right)^2} = \sqrt{3}a/2$.

Figure 3 Length AG and length AE

As the result, the quarter area of region R_1 is the area covered by two vertical line x=a/2 and $x=\sqrt{3}a/2$ and the two curves f(x) and g(x). Hence the area of the read curve in Figure 2 is:

area(R1)/4=
$$\int_{a/2}^{\sqrt{3}a/2} \left(\sqrt{a^2-x^2}-a/2 \right) dx$$
.

Figure 4. $area(R_1)/2+area(R_2)/4$

From Figure 4, we obtain the equations area $(R_1)/2$ +area $(R_2)/4$ = $(\pi a^2-2a^2)/4$. Furthermore area (R_1) +area (R_2) +area (R_3) = a^2 . Hence, we can compute the areas of regions: R_1 , R_2 , and R_3 .

Q.E.D.