Zadanie 6

October 15, 2023

Niech $X_{\rm fl} \in 2^{32}$,

wezmy $x = y = 2^{30}$.

Wtedy
$$\sqrt{x^2 + y^2} = \sqrt{(2^{30})^2 + (2^{30})^2} = \sqrt{2^{60} + 2^{60}} = 2^{30}\sqrt{2} \in X_{\mathrm{fl}}$$
,

jednak $2^{60} \notin X_{\mathrm{fl}}$.

Aby temu zapobiec przeksztal
cmy wzor (dla $x \geq y$ w razie potrzeby zamieniamy zmienn
exiy) :

$$\sqrt{x^2 + y^2} = \sqrt{x^2 \left(1 + \frac{y^2}{x^2}\right)} = |x| \sqrt{1 + \left(\frac{y}{x}\right)^2}$$

Skoro
$$x \ge y$$
 to $\sqrt{1 + \left(\frac{y}{x}\right)^2} \le 2$,

wic $\sqrt{2} \cdot \max(|x|, |y|) \in X_{\text{fl}}$.

Dlugosc euklidesowa:
$$||x_n|| = \sqrt{x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2}$$
,

Optymalizujemy w nastpujcy sposób (zakladajac $x_i \geq x_{i+1}$) :

$$||x_n|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

$$= \sqrt{x_1^2 \left(1 + \frac{x_2^2}{x_1^2} + \frac{x_3^2}{x_1^2} + \dots + \frac{x_n^2}{x_1^2}\right)}$$

$$= |x_1| \sqrt{\left(1 + \frac{x_2^2}{x_1^2} + \frac{x_3^2}{x_1^2} + \dots + \frac{x_n^2}{x_1^2}\right)}$$

$$= |x_1| \sqrt{n}$$

$$= \max(x_1, x_2, \dots, x_n) \sqrt{n}.$$