Let H be a compact convex set in \mathbb{R}^k , with nonempty interior. Let $f \in \mathcal{C}(H)$, put $f(\mathbf{x}) = 0$ in the complement of H, and define $\int_H f$ as in Definition 10.3.

Prove that $\int_H f$ is independent of the order in which the k integrations are carried out.

Hint: Approximate f by functions that are continuous on R^k and whose supports are in H, as was done in Example 10.4.

pf.

By, Proposition 5.1, in Introduction to Topological Manifolds, by J.M. Lee, GTM 202, pp. 128-129. $H \subset \mathbb{R}^k$ is a compact convex set with non-empty interior it is homeomorphic to \overline{B}^k the closed unit ball centered at the origin, with the homeomorphism ϕ mapping $\partial H \to S^{k-1} = \partial B^k$. Let $I^k = \{\mathbf{x} \in \mathbb{R}^k | , -1 \le x_i \le 1, \ 1 \le i \le k\}$, then since I^k is also a compact convex set with non-empty interior it is homeomorphic to \overline{B}^k , with the homeomorphism ψ mapping $\partial I^k \to S^{k-1} = \partial B^k$. Then $\psi^{-1} \circ \phi$ is a homeomorphism between H and I^k , that is a continuous bijection from ∂H to ∂I^k .

Since
$$\forall \varepsilon > 0: S^{k-1} \subset D^{k-1}_{1+\varepsilon}(0) \setminus D^{k-1}_{1-\varepsilon}(0) \implies 0 \leq \mu(S^{k-1}) \leq \mu(D^{k-1}_{1+\varepsilon}(0) \setminus D^{k-1}_{1-\varepsilon}(0)) = 0.$$

So, $\mu(S^{k-1})=0$, see Fractals and Self-similarity, Hutchinson, 1981, pp. 719-720.

Therefore, by the continuity of ψ^{-1} , $\mu(\partial I^k) = 0$.

Then for a function f that's continuous on H, we can define

$$\int_H f = \int_{I^k} (\phi^{-1} \circ \psi \circ f) |J_{\phi^{-1} \circ \psi}|$$

And, we can approximate f by a continuous function F on \mathbb{R}^k , so that, for all $\varepsilon > 0$,

$$\left| \int_{H} F - \int_{H} f \right| < \varepsilon.$$

Then, we can apply theorem 10.4, as

$$\int_H F = \int_{I^k} (\phi^{-1} \circ \psi \circ F) |J_{\phi^{-1} \circ \psi}|,$$

is independent of the order of integration.

So that $\int_H f$ is independent of the order of integration.