Appendix

A. Coordinates set-up

1. (Forward Kinematics) Consider the robot shown in Fig. 1, where the system has six degrees as $\mathbf{q} = [q_1 \ q_2 \ q_3 \ q_4 \ q_5 \ q_6]^T$.

Figure 1: A PRRRRP robot

B. Some corner cases to verify DH table and the implementation of Matlab code/script.

If $qc = [0\ 0\ 0\ 0\ 0]$, the manipulator should be the same as the configuration shown in Figrue. 1 in the question sheet. The frame of end effector is

-0.0000	1.0000	0.0000	1.5000
-1.0000	-0.0000	0.0000	-0.5000
0.0000	-0.0000	1.0000	1.0000
0 0	0		1.0000

, which is right.

If qc=[0 90° 0 0 0 0], The frame of end effector is

, which is also right.

If qc=[0 0 90° 0 0 0], The frame of end effector is

1.0000	0.0000	-0.0000	1.0000
-0.0000	1.0000	0.0000	1.0000
0.0000	-0.0000	1.0000	1.0000
0	0	0	1.0000

, which is also right.

If qc=[0 0 0 90° 0 0], The frame of end effector is

, which is also right.

In all, the DH params should be correct.

C. Simulate the forward kinematics for 5 seconds with a 1 Hz sinusoid movement for joint 2 and joint 5 (Amp = 45°, Phase = 0) and a 1 Hz sinusoid movement at joint 1 and joint 6 (Amp = 0.2 meters, Phase = 0). Joint 3 keeps 45° and Joint 4 keeps at 60°. (I just attach the result or figure here and please check the MATLAB code for detail.)

Fig. 1 Joint angles

Fig. 2 Cartesian Trajectory

Cartesian Orientation

Fig. 3 Cartesian Orientation