```
In [ ]: from __future__ import print_function
    import pandas as pd
    from statsmodels.formula.api import ols
```

```
In [2]: df = pd.read_csv('supermarket.csv')
```

In [3]: df.head()

Out[3]:

	EggSales	EggPrice	Ads	CookiePrice
0	18	4.77	0	4.74
1	20	4.67	0	4.81
2	23	4.75	0	4.36
3	23	4.74	0	4.29
4	23	4.63	0	4.17

```
In [4]: adYes = df.loc[df['Ads'] == 1]
    adYes = adYes.drop(columns = ['Ads'])
    adYes.head()
```

Out[4]:

	EggSales	EggPrice	CookiePrice
8	26	4.75	4.21
10	26	4.41	4.62
13	28	4.66	4.19
14	28	4.42	4.37
16	29	4.66	4.57

```
In [5]: price_model_adYes = ols("EggSales~EggPrice+CookiePrice", data=adYes
).fit()
print(price_model_adYes.summary())
```

OLS Regression Results

		=========	======		
Dep. Variable:		EggSales	R-sq	uared:	
0.885					
Model:		OLS Adj. R-squared:			
0.866					
Method:		Least Squares	F-statistic:		
46.29					
Date:	Sat	t, 18 Apr 2020	Prob	(F-statistic):	:
2.28e-06					
Time:		20:55:47	Log-l	Likelihood:	
-33.612					
No. Observation	ns:	15	AIC:		
73.22		10			
Df Residuals:		12	BIC:		
75.35		2			
Df Model:		2			
Covariance Type			======		:======
========					
5 0.975]	coef	std err	t	P> t	[0.02
Intercept 195.356	161.8078	15.398	10.509	0.000	128.25
EggPrice - 2 -14.470	-18.9614	2.061	-9.199	0.000	-23.45
CookiePrice - 4 -4.845	-10.5593	2.623	-4.026	0.002	-16.27
======================================		0.147	Durb	========= in-Watson:	
2.292		0.147	Durb.	III-watson:	
Prob(Omnibus):		0.929	Tara	ue-Bera (JB):	
0.361		0.727	Uarqu	re-pera (ob).	
Skew:		0.047	Prob	(.TB):	
0.835		0.047	1100	(00).	
Kurtosis:		2.246	Cond	. No.	

Warnings:

=========

[1] Standard Errors assume that the covariance matrix of the error s is correctly specified.

/Users/Work/PycharmProjects/AdultIncome_hfY/venv/lib/python3.7/sit e-packages/scipy/stats/stats.py:1535: UserWarning: kurtosistest on ly valid for n>=20 ... continuing anyway, n=15 "anyway, n=%i" % int(n))

```
In [6]: adNo = df.loc[df['Ads'] == 0]
adNo = adNo.drop(columns = ['Ads'])
adNo.head()
```

Out[6]:

	EggSales	EggPrice	CookiePrice
0	18	4.77	4.74
1	20	4.67	4.81
2	23	4.75	4.36
3	23	4.74	4.29
4	23	4.63	4.17

```
In [7]: price_model_adNo = ols("EggSales~EggPrice+CookiePrice", data=adNo).
    fit()
    print(price_model_adNo.summary())
```

OLS Regression Results

	-======	=======	-===	======	=========	======
Dep. Variable:	•	EggSa	ales	R-sqı	ared•	
0.802		падро	1105	ic bqc	idi ca.	
Model:			OLS	Adj.	R-squared:	
0.769			-	-		
Method:		Least Squa	ares	F-statistic:		
24.26						
Date:	Sa	t, 18 Apr 2	2020	Prob	(F-statistic)	:
6.08e-05						
Time:		20:55	5:47	Log-I	Likelihood:	
-32.652			1 -	3.7.0		
No. Observation 71.30	ons:		15	AIC:		
Df Residuals:			12	BIC:		
73.43			12	DIC.		
Df Model:			2			
Covariance Typ	oe:	nonrob	oust			
==========			-===			======
=========						
	coef	std err		t	P> t	[0.02
5 0.975]						
Intercept	118.3334	13.373		8.849	0.000	89.19
6 147.471	110.3331	13.373		0.019	0.000	0,11
EggPrice	-11.9195	2.553		-4.669	0.001	-17.48
2 -6.357						
CookiePrice	-8.7290	2.610		-3.345	0.006	-14.41
5 -3.043						
=========			-===		=========	======
Omnibus: 0.967 Durbin-Watson:						
Omnibus: 1.183		0.	907	Durb	In-watson:	
Prob(Omnibus):		0.	616	Jargi	ue-Bera (JB):	
0.787		•	.010	ourq	ie beru (ob).	
Skew:		0.	493	Prob	(JB):	
0.675			-		,	
Kurtosis:		2.	463	Cond	No.	
141.						
=========			-===			======

========

Warnings:

[1] Standard Errors assume that the covariance matrix of the error s is correctly specified.

/Users/Work/PycharmProjects/AdultIncome_hfY/venv/lib/python3.7/sit e-packages/scipy/stats/stats.py:1535: UserWarning: kurtosistest on ly valid for n>=20 ... continuing anyway, n=15 "anyway, n=%i" % int(n))

```
In [8]: coef adYes = -18.9614
         Elasticity adYes = coef adYes * adYes.mean(axis = 'rows')[1] / adY
         es.mean(axis = 'rows')[0]
         print(adYes.mean(axis = 'rows'))
         print("Price elasticity of eggs with ads is" + "Elasticity adYes")
         EggSales
                        34,200000
         EggPrice
                         4.300000
         CookiePrice
                         4.363333
         dtype: float64
         Price elasticity of eggs with ads isElasticity adYes
 In [9]: coef adNo = -11.9195
         Elasticity adNo = coef adNo * adNo.mean(axis = 'rows')[1] / adNo.m
         ean(axis = 'rows')[0]
         print(adNo.mean(axis = 'rows'))
         print("Price elasticity of eggs without ads is" + "Elasticity adNo"
         )
                        25.800000
         EggSales
         EggPrice
                         4.552667
         CookiePrice
                         4.384000
         dtype: float64
         Price elasticity of eggs without ads isElasticity adNo
In [10]: change in elasticity with ads = Elasticity adYes - Elasticity adNo
         print("Price elasticity of eggs:")
         print("WITHOUT ads:", Elasticity adNo,",")
         print("WITH ads :", Elasticity adYes, ":")
         if change in elasticity with ads < 0 :</pre>
             print("Ads have a desirable effect")
         elif change in elasticity with ads == 0 :
             print("Ads have no effect")
         else:
             print("Ads have an undesirable effect")
         Price elasticity of eggs:
         WITHOUT ads: -2.103314354005168 ,
         WITH ads : -2.38403567251462 :
         Ads have a desirable effect
```