Win, lose or tie: a computational model of the competition at the cell-ECM interface

Zeynep Karagöz¹, Thomas Geuens¹, Vanessa LaPointe¹.

Martijn van Griensven1, Aurélie Carlier¹

z.karagoz@maastrichtuniversity.nl

¹ Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute, Maastricht University, the Netherlands

BACKGROUND: Biophysical cues provided by the extracellular matrix (ECM) are translated into biochemical signals by transmembrane integrin molecules. Previous studies suggest that fine-tuning the ECM composition and mechanical properties can improve organoid development.

METHODS

- Define ordinary differential equation model to represent biochemical reactions between integrins and extracellular ligands.
- Reaction rate parameters derived from literature, ECM ligand concentrations derived from proteomics analysis of kidney organoid ECM.
- Local perturbations and sensitivity analysis to define important parameters.

Experimental observations:

- Kidney organoid development is disrupted after 18 days in cell culture
- Major changes in the composition of **ECM**

Need to understand how integrin signaling is affected by these changes to finetune the cell culture environment.

- Changes in initial concentration of ligands affect the timing of binding
- Competition between ligands is driven by the difference in their binding rates.

. CELL - ECM ADHESION

Up next:

 Include cellular signaling to the model & obtain cellular behavior estimations (e.g. proliferation, differentiation, motility)

When ligands have different binding rates

