

SEQUENCE LISTING

<110> Role, Lorna W.
Talmage, David
Bao, Jianxin

<120> A-FORM OF CYTOPLASMIC DOMAIN OF nARIA (CRD-NEUREGULIN
AND USES THEREOF

<130> 0575/59360

<140> 09/312,596

<141> 1999-05-14

<160> 4

<170> PatentIn Ver. 2.1

<210> 1

<211> 3212

<212> DNA

<213> CHICKEN nARIA

<400> 1

cggatgtgc tgctactgtc acttctgccc ctggccgtgt tgttacagat tttgcttttg 60
ctccttctac cgcatgacaa ttgtttcct cgcctaagca gataccagcc tcagatgctc 120
aaggtagag tcttcgtttt cgctctggcc tattggttca cttaatccgg tcaattttgtt 180
cgctgctcgt ggttgtcttt ctccccgccc tccttccccc tgttttgtt tgtttcgctt 240
gcttcgggg ggacgctcct tccctcagtc agaagagctg gaattgctt agaggcgtat 300
aaggaattat aaaagtggcc aggaaacacg agcgcagtga ctgcagagct gcccctggct 360
tcggcaaggc agcgtgagcg gcagagggct cgggcagggg gcggggggct tccttttcc 420
cgtcggttcc tcttcctcca gttcggatga tgttgtctt tcggacctct cgctgactcc 480
tgccctgtga ttttgctga gcgctgtgac tgttactccg tctctttctg tctgtgtttc 540
acagtaatgg actgtgatag agttaaggcc ttttgaggt gagctgtgtc acagctgatg 600
cttaaacatg tctgaagtag gcaccgagac tttccccagc ccctcggctc agctgagccc 660
tgatgcattc cttggcgggc tcccggctga ggagaacatg ccggggcccc acagagagga 720
cagcagggtc ccaggtgtgg caggcctggc ctcgacactgc tgctgtgtcc tggaagcaga 780
gcgactgaag ggctgcctca actctgagaa gatctgcattc gcccctatcc tggcttgcc 840
gctcagcctc tgcctctgca ttgctggct caagtgggtc tttgtggaca agattttga 900
gtatgactct cctacacacc ttgaccctgg gaggatagga caagacccaa ggagcaactgt 960
ggatcctaca gctctgtctg cctgggtgcc ttcggaggtg tatgcctcac cttccccat 1020
accttagcctt gagagcaagg ctgaagtgac agtcaaact gacagctcgc tcgtgcctc 1080
caggcccttc cttagcctt ctctctacaa ccgcattcata gatgtgggt tgtggtcctc 1140
tgccacaccc tcactgtcac catcctccct ggagcctacc acggcatctc aggacacaagc 1200
aacagaaacc aatctccaaa ctgctccaaa actttccact tctacatcta caactggac 1260
aagtcatctc acaaaatgtg acataaagca gaaagccttc tgtgtaaatg gggagagtg 1320
ctacatggta aaagacctcc caaaccctcc acgataccta tgcaggtgcc caaatgaatt 1380
tactggtgat cgctgccaaa actacgtaat ggccagcttc tacaagcatt ttggattga 1440

atttatggaa gctgaggaac tgtaccagaa acgggtgctg accataactg gcatttgc 1500
tgctttcta gtagttggca tcatgtgtgt ggtggcctac tgcaaaaacca agaagcagag 1560
aaaaaaagttg catgaccgccc ttccggcagag cttcgctca gagaggaaca acgttatgaa 1620
catggcaa at gggccacacc accccaaacc accaccagac aatgtccagc tggtaatca 1680
gtacgttca aaaaacataa tctccagtga acgtgtcggt gagcgagaaa ccgagacctc 1740
gttttcacaca agccactaca cctcaacaac tcatactcc atgacagtca cccagacgcc 1800
tagccacaggc tggagtaatg gccataccga aagcattctc tccgaaagcc actccgtgct 1860
cgtcagctcc tcagtgaga atagcaggca caccagccca acagggccac gaggccgc 1920
aatggcatt ggtggccaa ggaaaggcaa cagcttcctc cggcatgcaa gagagacccc 1980
tgactcctac cgagactctc ctcacagtga aaggtatgtc tcagctatga ccacaccaggc 2040
tcgcatgtca cccgttgcatt tccacactcc aacttctccc aagtcccctc catctgaaat 2100
gtcaccacca gttccagct tgaccatctc catcccttcg gtggcggtga gtccctttat 2160
ggacgaggag agaccgctgc tggtggtgc cccaccacgg ctgcgtgaga agtacgacaa 2220
ccacccctcag caattcaact cttccaccaa caatcccacc catgagagca acagtctgcc 2280
acccagtcct ctgaggatag tggaggatga agagtagttag accacgcagg agtacgaacc 2340
agcacaggag cctccaaaga aactcaccaa cagccggagg gtgaaaagaa caaagcccaa 2400
tggccatatt tccagcagg tagaagtggc ctccgacaca agctctcaga gcactagctc 2460
tgagagcgaa acagaagatg aaagaatagg tgaggataca ccatttctta gcatacaaaa 2520
tcccatggca accagtctgg agccagccgc tgcatatcgg ctggctgaga acaggactaa 2580
cccgccaaat cgcttcctca caccagaaga gttgcaagca aggttgtcca gtgtaatagc 2640
taaccaagac cctattgctg tataagacat aaacaaaaca catagattca catgtaaaac 2700
tttattttat ataatgaagt attccacctt taaattaaac aatttatttt atttagcaa 2760
ttccgctgat agaaaacaag agtggaaaaaa gaaacttta taaattaagt atacgtatgt 2820
acaaatgtgt tatgtccat atgttagcaat ttttacagt atttccaaaa tggggaaaga 2880
tatcaatggc gccttatgt tatgttatgt tgagagcaag ttttgcctacatgat 2940
tgctgtcccg tagtattttg caaaaccttc tagccctcag ttgttctggc tttttgtgc 3000
attgcattat aatgactgga tgtatgattt gcaagaattt cagaagtccc cattgcttgc 3060
ttgtggaatc cccagatcaa aaagccctgt tatggcactc acaccctatc cacttcacca 3120
ggaaaaaaaaaaa aaaatcaaaa aaaaaaaaaa aaaaaaaaaa aaagaaagag aaaaaagaaa 3180
agaaaaagaa aaaaaaagct gaaaaataa aa 3212

B
|
CMT
<210> 2
<211> 1070
<212> PRT
<213> CHICKEN nARIA

<400> 2
Gly Cys Cys Cys Tyr Cys His Phe Cys Arg Cys Arg Cys Cys Tyr Arg
1 5 10 15

Phe Cys Phe Cys Ser Phe Tyr Arg Met Thr Ile Val Phe Leu Ala Xaa
20 25 30

Ala Asp Thr Ser Leu Arg Cys Ser Arg Xaa Glu Ser Cys Leu Ser Leu
35 40 45

Trp Ala Ile Gly Ser Leu Asn Pro Val Asn Leu Phe Ala Ala Arg Gly

50

55

60

Cys Leu Ser Pro Arg Pro Pro Ser Pro Cys Phe Val Leu Phe Arg Leu
 65 70 75 80

Leu Ser Gly Gly Arg Ser Phe Pro Gln Ser Glu Glu Leu Glu Leu Leu
 85 90 95

Glu Arg Arg Ile Arg Asn Tyr Lys Ser Gly Gln Glu Thr Arg Ala Gln
 100 105 110

Xaa Leu Gln Ser Cys Pro Trp Leu Arg Gln Gly Ser Val Ser Gly Arg
 115 120 125

Gly Leu Gly Gln Gly Ala Gly Gly Leu Leu Phe Pro Val Arg Ser Ser
 130 135 140

Ser Pro Ser Ser Asp Asp Val Ala Val Ser Asp Leu Ser Leu Thr Pro
 145 150 155 160

Ala Leu Xaa Phe Leu Leu Ser Ala Val Thr Val Thr Pro Ser Leu Ser
 165 170 175

Val Cys Val Ser Gln Xaa Trp Thr Val Ile Glu Leu Arg Pro Phe Gly
 180 185 190

Gly Glu Leu Cys His Ser Xaa Cys Leu Asn Met Ser Glu Val Gly Thr
 195 200 205

Glu Thr Phe Pro Ser Pro Ser Ala Gln Leu Ser Pro Asp Ala Ser Leu
 210 215 220

Gly Gly Leu Pro Ala Glu Glu Asn Met Pro Gly Pro His Arg Glu Asp
 225 230 235 240

Ser Arg Val Pro Gly Val Ala Gly Leu Ala Ser Thr Cys Cys Val Cys
 245 250 255

Leu Glu Ala Glu Arg Leu Lys Gly Cys Leu Asn Ser Glu Lys Ile Cys
 260 265 270

Ile Ala Pro Ile Leu Ala Cys Leu Leu Ser Leu Cys Leu Cys Ile Ala
 275 280 285

Gly Leu Lys Trp Val Phe Val Asp Lys Ile Phe Glu Tyr Asp Ser Pro
 290 295 300

Thr His Leu Asp Pro Gly Arg Ile Gly Gln Asp Pro Arg Ser Thr Val

1
B
Cont

305 310 315 320
Asp Pro Thr Ala Leu Ser Ala Trp Val Pro Ser Glu Val Tyr Ala Ser
 325 330 335

Pro Phe Pro Ile Pro Ser Leu Glu Ser Lys Ala Glu Val Thr Val Gln
 340 345 350

Thr Asp Ser Ser Leu Val Pro Ser Arg Pro Phe Leu Gln Pro Ser Leu
 355 360 365

Tyr Asn Arg Ile Leu Asp Val Gly Leu Trp Ser Ser Ala Thr Pro Ser
 370 375 380

Leu Ser Pro Ser Ser Leu Glu Pro Thr Thr Ala Ser Gln Ala Gln Ala
 385 390 395 400

Thr Glu Thr Asn Leu Gln Thr Ala Pro Lys Leu Ser Thr Ser Thr Ser
 405 410 415

Thr Thr Gly Thr Ser His Leu Thr Lys Cys Asp Ile Lys Gln Lys Ala
 420 425 430

Phe Cys Val Asn Gly Gly Glu Cys Tyr Met Val Lys Asp Leu Pro Asn
 435 440 445

Pro Pro Arg Tyr Leu Cys Arg Cys Pro Asn Glu Phe Thr Gly Asp Arg
 450 455 460

Cys Gln Asn Tyr Val Met Ala Ser Phe Tyr Lys His Leu Gly Ile Glu
 465 470 475 480

Phe Met Glu Ala Glu Glu Leu Tyr Gln Lys Arg Val Leu Thr Ile Thr
 485 490 495

Gly Ile Cys Ile Ala Leu Leu Val Val Gly Ile Met Cys Val Val Ala
 500 505 510

Tyr Cys Lys Thr Lys Lys Gln Arg Lys Lys Leu His Asp Arg Leu Arg
 515 520 525

Gln Ser Leu Arg Ser Glu Arg Asn Asn Val Met Asn Met Ala Asn Gln
 530 535 540

Pro His His Pro Asn Pro Pro Pro Asp Asn Val Gln Leu Val Asn Gln
 545 550 555 560

Tyr Val Ser Lys Asn Ile Ile Ser Ser Glu Arg Val Val Glu Arg Glu

565

570

575

Thr Glu Thr Ser Phe Ser Thr Ser His Tyr Thr Ser Thr Thr His His
 580 585 590

Ser Met Thr Val Thr Gln Thr Pro Ser His Ser Trp Ser Asn Gly His
 595 600 605

Thr Glu Ser Ile Leu Ser Glu Ser His Ser Val Leu Val Ser Ser Ser
 610 615 620

Val Glu Asn Ser Arg His Thr Ser Pro Thr Gly Pro Arg Gly Arg Leu
 625 630 635 640

Asn Gly Ile Gly Gly Pro Arg Glu Gly Asn Ser Phe Leu Arg His Ala
 645 650 655

Arg Glu Thr Pro Asp Ser Tyr Arg Asp Ser Pro His Ser Glu Arg Tyr
 660 665 670

Val Ser Ala Met Thr Thr Pro Ala Arg Met Ser Pro Val Asp Phe His
 675 680 685

Thr Pro Thr Ser Pro Lys Ser Pro Pro Ser Glu Met Ser Pro Pro Val
 690 695 700

Ser Ser Leu Thr Ile Ser Ile Pro Ser Val Ala Val Ser Pro Phe Met
 705 710 715 720

Asp Glu Glu Arg Pro Leu Leu Leu Val Thr Pro Pro Arg Leu Arg Glu
 725 730 735

Lys Tyr Asp Asn His Leu Gln Gln Phe Asn Ser Phe His Asn Asn Pro
 740 745 750

Thr His Glu Ser Asn Ser Leu Pro Pro Ser Pro Leu Arg Ile Val Glu
 755 760 765

Asp Glu Glu Tyr Glu Thr Thr Gln Glu Tyr Glu Pro Ala Gln Glu Pro
 770 775 780

Pro Lys Lys Leu Thr Asn Ser Arg Arg Val Lys Arg Thr Lys Pro Asn
 785 790 795 800

Gly His Ile Ser Ser Arg Val Glu Val Asp Ser Asp Thr Ser Ser Gln
 805 810 815

Ser Thr Ser Ser Glu Ser Glu Thr Glu Asp Glu Arg Ile Gly Glu Asp

B
Cmt

820 825 830

Thr Pro Phe Leu Ser Ile Gln Asn Pro Met Ala Thr Ser Leu Glu Pro
835 840 845

Ala Ala Ala Tyr Arg Leu Ala Glu Asn Arg Thr Asn Pro Ala Asn Arg
850 855 860

Phe Ser Thr Pro Glu Glu Leu Gln Ala Arg Leu Ser Ser Val Ile Ala
865 870 880

Asn Gln Asp Pro Ile Ala Val Xaa Asp Ile Asn Lys Thr His Arg Phe
885 890 895

Thr Cys Lys Thr Leu Phe Tyr Ile Met Lys Tyr Ser Thr Phe Lys Leu
900 905 910

Asn Asn Leu Phe Tyr Phe Ser Asn Ser Ala Asp Arg Lys Gln Glu Trp
915 920 925

Lys Lys Lys Leu Leu Xaa Ile Lys Tyr Thr Tyr Val Gln Met Cys Tyr
930 935 940

Val Pro Tyr Val Ala Ile Phe Tyr Ser Ile Ser Lys Met Gly Lys Asp
945 950 960

Ile Asn Gly Ala Phe Met Leu Cys Tyr Val Glu Ser Lys Phe Cys Thr
965 970 975

Ala Thr Met Ile Ala Val Pro Xaa Tyr Phe Ala Lys Pro Ser Ser Pro
980 985 990

Gln Leu Phe Trp Leu Phe Cys Ala Leu His Tyr Asn Asp Trp Met Tyr
995 1000 1005

Asp Leu Gln Glu Leu Gln Lys Ser Pro Phe Ala Cys Cys Gly Ile Pro
1010 1015 1020

Arg Ser Lys Ser Pro Val Met Ala Leu Thr Pro Tyr Pro Leu His Gln
1025 1030 1035 1040

Glu Lys Lys Lys Ile Lys Lys Lys Lys Lys Lys Arg Lys Glu Arg
1045 1050 1055

Glu Lys Arg Lys Glu Lys Glu Lys Lys Ser Xaa Lys Asn Lys
1060 1065 1070

<210> 3
<211> 1351
<212> DNA
<213> HUMAN nARIA

<400> 3
cggcctgtaa gatgctgtat cattggttg ggggggcctc tgcgtggtaa tggaccgtga 60
gagcggccag gccttcttct ggaggtgagc cgatggagat ttattccccca gacatgtctg 120
aggtcgccgc cgagaggtcc tccagccct ccactcagct gagtgcagac ccatctctt 180
atgggcttcc ggcagcagaa gacatgccag agccccagac tgaagatggg agaaccctg 240
gactcggtgg cctggccgtg ccctgctgtg cgtgcctaga agctgagcgc ctgagaggtt 300
gcctcaactc agagaaaatc tgcatgtcc ccattctggc ttgcctggtc agcctctgcc 360
tctgcacatcg cggcctcaag tgggtatttgc tggacaagat ctttgaatat gactctccta 420
ctcacattga ccctgggggg ttaggccagg accctattat ttctctggac gcaactgctg 480
cctcagctgt gtgggtgtcg tctgaggcat acacttcacc tgtctctagg gctcaatctg 540
aaagtgaggt tcaagttaca gtgcaaggtg acaaggctgt tgtctcctt gaaccatcag 600
cggcaccgac accgaagaat cgtattttgc cttttctt cttgccgtcc actgcgccat 660
ccttccttc acccaccggg aaccctgagg tgagaacgcc caagttagca actcagccac 720
aaacaacaga aactaatctc caaaactgctc cttaacttcc tacatctaca tccaccactg 780
ggacaagcca tcttgtaaaa tgtgcggaga aggagaaaac tttctgtgtg aatggagggg 840
agtgcattcat ggtgaaagac ctttcaaacc cctcgagata cttgtcaaa ggcggaggag 900
ctgtaccaga agagagtgt gaccataacc ggcattctgca tcgcctcct tttgggtcggc 960
atcatgtgtg tgggtggccta ctgcaaaacc aagaaacagc ggaaaaagct gcatgaccgt 1020
cttcggcaga gccttcggtc tgaacgaaac aatacgatga acattgccaa tgggcctcac 1080
catcctaacc caccccccga gaatgtccag ctggtaatc aatacgatc taaaaacgtc 1140
atctccagtg agcatattgt tgagagagaa gcagagacat cttttccac cagtcactat 1200
acttccacag cccatcactc cactactgtc acccagaactc ctggccacag ctggagcaac 1260
ggacacactg aaagcatcct ttccgaaagc cactctgtaa tcgtgatgtc atccgtagaa 1320
aacagtaggc acagcagccc aactggggcc g 1351

B
Cmt.
<210> 4
<211> 448
<212> PRT
<213> HUMAN nARIA

<400> 4
Ala Cys Lys Met Leu Tyr His Leu Val Gly Gly Ala Ser Ala Trp Xaa
1 5 10 15

Trp Thr Val Arg Ala Ala Arg Pro Ser Ser Gly Gly Glu Pro Met Glu
20 25 30

Ile Tyr Ser Pro Asp Met Ser Glu Val Ala Ala Glu Arg Ser Ser Ser
35 40 45

Pro Ser Thr Gln Leu Ser Ala Asp Pro Ser Leu Asp Gly Leu Pro Ala
50 55 60

Ala Glu Asp Met Pro Glu Pro Gln Thr Glu Asp Gly Thr Pro Gly Leu
65 70 75 80

Val Gly Leu Ala Val Pro Cys Cys Ala Cys Leu Glu Ala Glu Arg Leu
85 90 95

Arg Gly Cys Leu Asn Ser Glu Lys Ile Cys Ile Val Pro Ile Leu Ala
100 105 110

Cys Leu Val Ser Leu Cys Leu Cys Ile Ala Gly Leu Lys Trp Val Phe
115 120 125

Val Asp Lys Ile Phe Glu Tyr Asp Ser Pro Thr His Leu Asp Pro Gly
130 135 140

Gly Leu Gly Gln Asp Pro Ile Ile Ser Leu Asp Ala Thr Ala Ala Ser
145 150 155 160

Ala Val Trp Val Ser Ser Glu Ala Tyr Thr Ser Pro Val Ser Arg Ala
165 170 175

Gln Ser Glu Ser Glu Val Gln Val Thr Val Gln Gly Asp Lys Ala Val
180 185 190

Val Ser Phe Glu Pro Ser Ala Ala Pro Thr Pro Lys Asn Arg Ile Phe
195 200 205

Ala Phe Ser Phe Leu Pro Ser Thr Ala Pro Ser Phe Pro Ser Pro Thr
210 215 220

Arg Asn Pro Glu Val Arg Thr Pro Lys Ser Ala Thr Gln Pro Gln Thr
225 230 235 240

Thr Glu Thr Asn Leu Gln Thr Ala Pro Lys Leu Ser Thr Ser Thr Ser
245 250 255

Thr Thr Gly Thr Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr
260 265 270

Phe Cys Val Asn Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn
275 280 285

Pro Ser Arg Tyr Leu Cys Lys Gly Gly Ala Val Pro Glu Glu Ser
290 295 300

Ala Asp His Asn Arg His Leu His Arg Pro Pro Cys Gly Arg His His
305 310 315 320

Val Cys Gly Gly Leu Leu Gln Asn Gln Glu Thr Ala Glu Lys Ala Ala
325 330 335

Xaa Pro Ser Ser Ala Glu Pro Ser Val Xaa Thr Lys Gln Tyr Asp Glu
340 345 350

His Cys Gln Trp Ala Ser Pro Ser Xaa Pro Thr Pro Arg Glu Cys Pro
355 360 365

Ala Gly Glu Ser Ile Arg Ile Xaa Lys Arg His Leu Gln Xaa Ala Tyr
370 375 380

Cys Xaa Glu Arg Ser Arg Asp Ile Leu Phe His Gln Ser Leu Tyr Phe
385 390 395 400

His Ser Pro Ser Leu His Tyr Cys His Pro Asp Ser Xaa Pro Gln Leu
405 410 415

Glu Gln Arg Thr His Xaa Lys His Pro Phe Arg Lys Pro Leu Cys Asn
420 425 430

Arg Asp Val Ile Arg Arg Lys Gln Xaa Ala Gln Gln Pro Asn Trp Gly
435 440 445

3!
Concluded