Übung zur Vorlesung

Theoretische Informatik I

Blatt 4 (Version 1)—Abgabe bis 18.11.2013, 13:00 Uhr

Prof. Dr. Christoph Kreitz/ Nuria Brede Wintersemester 2013/14

Vorbereitung

- Zur Bearbeitung des Übungsblatts lesen Sie erneut die Folien der Einheit 2.1 (Folien 12 14) und 2.2 bis Folie 17, ausserdem Kapitel 2.3-2.6 des HMU-Buches.
- Zur Vorbereitung der nächsten Vorlesung lesen Sie Kapitel 2 des HMU-Buches zuende.

Quiz

- Ein NEA A akzeptiert ein Wort w über dem Eingabealphabet des Automaten genau dann, w f (1)wenn alle möglichen Wege der Abarbeitung vom Startzustand in Zielzustände führen.
- w f Mit einem NEA kann man Parallelität simulieren.
- (3)Jeder DEA ist auch ein NEA.
- w f NEA akzeptieren mehr Sprachen als DEA. (4)
- Bei einem ε -NEA bezeichnet für jeden Zustand q des Automaten die ε -Hülle von q die Menge wf aller von q durch einen ε -Übergang erreichbaren Zustände.

Präsenzaufgaben

Präsenzaufgabe 4.1: (Beweis mit Konfigurationen)

Gegeben sei der DEA $A = (\{q_0, q_1\}, \{a, b, c\}, \delta, q_0, \{q_1\})$, wobei δ durch folgendes Diagramm definiert sei:

- (a) Beschreiben Sie die Abarbeitung des Wortes "baacbab" mit Hilfe von Konfigurationen.
- (b) Beweisen Sie induktiv mit Hilfe von Konfigurationen, dass der Automat A die Sprache $L = \{w \in \{a, b, c\}^* \mid (|w|_a + |w|_c) \text{ ist ungerade}\}\ \text{akzeptiert.}$

Präsenzaufgabe 4.2: (Konstruktion von ε -NEA)

Entwerfen Sie zu jeder der folgenden Sprachen einen ε -NEA, der diese Sprache akzeptiert. Begründen Sie kurz dessen Korrektheit:

- (a) $L_1 = \{ w \in \{a, b, c, d\}^* \mid \exists u, v \in \{a, b, c, d\}^* . w = uabcv \lor w = uabdv \lor w = uaacdv \}.$
- (b) $L_2 = \{ w \in \{a, b, c\}^* \mid \exists v \in \{a, b, c\}^* . w = vabc \land |w| \mod 3 = 0 \}.$
- (c) $L_3 = \{ w \in \{0\}^* \mid \exists k, n \in \mathbb{N}. \ w = 0^k \land (k = 2n \lor k = 3n) \}.$

Präsenzaufgabe 4.3: (Analyse von ε -NEA)

Gegeben sei der ε -NEA $N=(\{q_0,q_4\},\{a,b\},\delta,q_0,\{q_1,q_3,q_4\})$ wobei δ durch folgendes Übergangsdiagramm beschrieben wird:

- (a) Nennen Sie fünf Wörter, die N akzeptiert und beschreiben Sie deren Abarbeitung (auf einem akzeptierenden Pfad). Beschreiben Sie für eines der akzeptierten Wörter einen nicht-akzeptierenden Abarbeitungs-Pfad.
- (b) Geben Sie formal an, welche Sprache N akzeptiert und begründen Sie dies umgangsprachlich.

Hausaufgaben

Hausaufgabe 4.1: (DEA – Beweise mit Konfigurationen)

Gegeben sei der DEA $A = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$, mit folgender tabellarischer Darstellung für δ :

- 1. Beschreiben Sie die Abarbeitung des Wortes baaababab mithilfe von Konfigurationen.
- 2. Beweisen Sie mithilfe von Konfigurationen, dass $L(A) = \{w \in \{a,b\}^* \mid (|w|_a |w|_b) \mod 3 = 2\}$

Hausaufgabe 4.2: (ε -NEA – Konstruktion)

Entwerfen Sie zu den folgenden Sprachen jeweils einen ε -NEA, diese Sprache akzeptiert und begründen Sie kurz dessen Korrektheit:

- (a) $L_1 = \{w \in \{0,1\}^* \mid w \text{ enthält zwei 0en, die durch ein } u \in \{0,1\}^* \text{ mit } |u| = 4i \text{ getrennt sind, } i \in \mathbb{N}\}$
- (b) $L_2 = \{w \in \{a, b, c\}^* \mid \exists s, u, v \in \{a, b, c\}^*, w = sabcucbav\}$

Hausaufgabe 4.3: (Eigenschaften von NEA)

Zeigen Sie, dass jeder ε -NEA in einen äquivalenten ε -NEA umgewandelt werden kann, der nur einen akzeptierenden Zustand hat. Skizzieren Sie einen Beweis für die Korrektheit Ihrer Konstruktion.