Digital Signal Analysis and Processing

Madhav P Pandey* DoEEE, KU

Background of Signal Processing and DSP

What is Signal?

What is SP?

What is DSP?

Why DSP?

Where DSP?

SIGNALS

4 A *signal* is a function that conveys information about state or behavior of a physical system or variable.

In other words, signal is defined as any physical quantity that varies with time, space or any other independent variable or variables.

Example: a speech signal

SIGNAL EXAMPLES

Other examples include:

An ECG

♣ An Image

♣ Stock Price
and there can be so many others

SIGNAL -DIMENSIONS

- Based on number of independent variables
 - One dimensional e.g. speech signal (single independent variable: time)

- Two dimensional e.g. image (two independent variable: two spatial coordinates)
- Three dimensional e.g. video (two independent variable: two spatial coordinates and additional independent variable: time)

CT/DT SIGNALS

- ♣ Based on nature of independent variables, signals can be classified as :
 - Continuous Time (CT) Signals:
 - -Independent variable (usually time) is continuous.
 - Signal is defined for all time within an interval.
 - Discrete Time (DT) Signals:
 - Independent variable is discrete
 - Signal is defined only for discrete values of time

PERIODIC/NON-PERIODIC

- Based on repetitiveness:
 - Periodic Signal:
 - -Repeats its history
 - _
 - Aperiodic Signals
 - Doesnot repeat its history

CAUSAL/NON-CAUSAL

- **Based** on existence:
 - Causal Signals
 - Anticausal Signals
 - Twosided Signals

Causal

Anticausal

Noncausal

SYSTEMS AND PROCESSING

- 4 A *system* may be defined as a physical device that performs an operation on a signal.
- The operations performed on the signal are *signal* processing.
- ♣ An example is the filter used to reduce the noise and interference corrupting the information bearing signal.
- Filter is the system and filtering is the signal processing task.
- ♣ In many cases, the softwares and algorithms may also act as system

DSP

To implement DSP we must be able to:

convert analog signals into the digital information

- sampling & involves analog-to-digital conversion

convert the digital information, after being processed back to an analog signal

involves digital-to-analog conversion & reconstruction

DSP of Analog Signals

To implement DSP we must be able to:

perform both A/D and D/A conversions

 e.g. digital recording and playback of music (signal is sensed by microphones, amplified, converted to digital, processed, and converted back to analog to be played

APPLICATIONS AREAS OF DSP

Radar and Sonar:

Examples

target detection – position and velocity estimation

2) tracking

Biomedical: analysis of biomedical signals, diagnosis, patient monitoring, preventive health care, artificial organs

Examples:

electrocardiogram (ECG) signal – provides doctor with information about the condition of the patient's heart

electroencephalogram (EEG) signal – provides
 Information about the activity of the brain

Speech applications:

- -Speech generation
- -Speech recgnition

Examples

noise reduction – reducing background noise
 in the sequence produced by a sensing device (microphone)

speech recognition – differentiating between various speech sounds

Communications:

Telecomunications

- -Multiplexing
- -Compression
- -Echo control

Examples

telephony – transmission of information in digital form via
 telephone lines, modem technology, mobile phones

 encoding and decoding of the information sent over a physical channel (to optimise transmission or to detect or correct errors in transmission)

Image Processing:

- Medical
- Space

Examples

- Commercial product
- content based image retrieval browsing, searching and retrieving images from database

2) image enhancement

compression - reducing the redundancy in the image data to optimise transmission / storage

Music Applications:

Examples:

1) Recording

3) Manipulation (mixing, special effects

Multimedia:

generation storage and transmission of sound, still images, motion pictures

Examples:

1) digital TV

2) video conferencing

ADVANTAGES OF DSP

Many signals is nature are analog. We need additional A/D and D/A components for DSP.

Why still do it?

- Digital system can be simply reprogrammed for other applications / ported to different hardware / duplicated (Reconfiguring analog system means hadware redesign, testing, verification)
- DSP provides better control of accuracy requirements
 (Analog system depends on strict components tolerance, response may drift with temperature)
- Digital signals can be easily stored without deterioration
 (Analog signals are not easily transportable and often can't be processed off-line)
- More sophisticated signal processing algorithms can be implemented

(Difficult to perform precise mathematical operations in analog form)

ADVANTAGES OF DSP

- DSP systems are more robust
 (Precision not effected by external factors, hence reproducible results)
 (Less effected by noise)
- DSP structure are flexible

 (Easy interconnection of DSP blocks)
 (Possibility of sharing a processor between several tasks)

LIMITATIONS OF DSP

- Cost/Complexity added by A/D and D/A conversion.
- ♣ Increased bandwidth requirement for transmission after conversion to digital.
 - Sampling theorem says double the bandwidth
- Input bandwidth is technology limited:
 - Higher the bandwidth faster the A/D converter needed.
- Digitization (includes quantization) adds error:
 - Quantization error
- 4 Aliasing and limited frequency resolution.