

"Recalculating ... recalculating ..."

CIS 522 Lecture 18

Introduction to Reinforcement Learning – Part 2 3/31/20

Today

- DQNA3C
- AlphaGo

...lots of DeepMind

- Most of today ended up being DeepMind algorithms
- DeepMind
 - Research company, focused on deep RL
 - Owned by Alphabet (Google parent company)
- OpenAl
 - Another major non-academic org focused on deep RL
 - Started only in 2015, so will discuss more in next class on recent research

DQN

Review of reinforcement learning terms

- "Agent" Something/someone that is learning
- "Environment" The world where the agent is learning
- "State" What the agent observes
- "Action" What the agent chooses to do
- "Policy" The rule (can be stochastic) by which the agent picks actions
- "Reward" Something the agent gets for certain (state, action) pairs

Review of Q-learning

Want an evaluation Q(state, action) of expected (discounted) reward under policy π :

/ ∞

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \right)$$

In particular, want Q*(state, action) for optimum policy:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s, \ a_t = a, \ \pi],$$

Q-learning - an initial Q function converges under update rule:

$$Q(s_t, a_a) = Q(s_t, a_a) + \alpha(r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t))$$

Standard Q-learning

Game Board:

Current state (s):

000

Q Table:

	000	0 0 0 0 1 0	0 0 0 0 0 1	100	0 1 0 0 0 0	0 0 1 0 0 0
Î	0.2	0.3	1.0	-0.22	-0.3	0.0
Ţ	-0.5	-0.4	-0.2	-0.04	-0.02	0.0
\Rightarrow	0.21	0.4	-0.3	0.5	1.0	0.0
\leftarrow	-0.6	-0.1	-0.1	-0.31	-0.01	0.0

y = 0.95

Could one do this to learn Atari games?

Why might this not work?

Deep Q-Network

- Problem: Too many possible (state, action) pairs for standard Q-learning
- Instead, we can estimate Q(state, action)
 - Can use many kinds of approximator (simplest: linear)
 - Let's use a neural network

DQN applied to Atari

- End-to-end learning of Q(state, action) from pixels
- States are images (what a player sees)
- Actions are 18 possible joystick/button positions
- Reward is change in score for that step

• (Because high frame rate: only look at every k frames and repeat predicted action k times, e.g. k = 4.)

The original DQN architecture

What is the loss?

Standard Q-learning:

$$Q(s_t, a_a) = Q(s_t, a_a) + \alpha(r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t))$$

Deep Q-learning - minimize:

$$\left((r_t + \gamma \max_{a_{t+1}} Q_{\text{old}}(s_{t+1}, a_{t+1})) - Q_{\text{new}}(s_t, a_t) \right)^2$$

- Can optimize this using gradient descent!
- Update the parameters for Q_{new} (keeping Q_{old} fixed)

Problem I. How to pick an action?

- RL algorithms give a way to learn how good different actions are
- But it's a separate question determining which actions to take during learning
- If you always pick what you think is best, then no exploration

Epsilon-greedy approach

- Epsilon prob of random action
- Otherwise, take the action with highest Q value
- Surprisingly good
- (Though terrible in tasks where some actions are fatal)

Problem 2. Distribution shift

- Data coming in may change over time
- E.g. mistakes made early on
- How to stop forgetting earlier learning?

Experience replay

Replay past experiences from a memory buffer, learn as if they were new:

Sample experiences from data-set and apply update

Experience replay

Problem 3. Instability

- What if a single update to Q changes the policy a lot?
- Solution: Don't use the same Q network both to learn and to choose the policy
- Target network and learner network
- Target network used to choose the policy
- Periodically, the learner network updates the target network
- But not every update

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory *D* to capacity *N*

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

What was that preprocessing step?

- Preprocessing input in an Atari-specific way
- Some objects appear only on even frames, so take max of current image and previous frame's image
- Rescale the luminance channel
- And input is actually not just one image:
 - Stack of ~4 past images to give a little past info

DQN applied to Atari

- At or above human performance on most Atari games
- Fails completely on some,
 e.g. Montezuma's Revenge
 (sparse rewards,
 exploration)

DQN vs standard Q-learning

- DQN: estimate Q values with a neural net
- Traditional Q-learning: start with some random Q and update iteratively
 - Reaches optimum Q* if visit each (state, action) pair some large number of times

Why does DQN work even though not every (state, action) pair is visited even once?

A₃C

Review of policy gradient methods

- Policy π (action | state) giving probabilities of actions given a state
- Basic policy gradient move policy so that reward increases:

$$\text{update} = \sum_{t=1}^{T} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \quad \nabla \mathbb{E}_{\pi_{\theta}} \left[r(\tau) \right] = \mathbb{E}_{\pi_{\theta}} \left[r(\tau) \left(\sum_{t=1}^{T} \nabla \log \pi_{\theta}(a_t | s_t) \right) \right]$$

• REINFORCE algorithm:

update =
$$\sum_{t=1}^{T} G(t) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$
 $G_t = r_{t+1} + \gamma r_{t+2} + \dots$

Actor-critic, reduces variance by using value function V(state_t) to estimate G(t)

update =
$$\sum_{t=1}^{T} (G(t) - V(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \approx \sum_{t=1}^{T} (r_{t+1} + \gamma V_{\pi}(s_{t+1}) - V(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$

Actor Critic

Actor-critic, reduces variance by using value function V(state_t) to estimate G(t)

update =
$$\sum_{t=1}^{T} (G(t) - V(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) \approx \sum_{t=1}^{T} (r_{t+1} + \gamma V_{\pi}(s_{t+1}) - V(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$

Need to train value function itself, use L2 loss

$$(r_{t+1} + \gamma V_{\pi}(s_{t+1}) - V_{\pi}(s_t))^2$$

- The "Critic" estimates the value function
- The "Actor" updates the policy distribution in the direction suggested by the Critic
- ullet Deep actor critic methods use neural networks to parameterize both V and π

Example architecture

- Input is state (often image)
- ConvNet (sometimes ResNet) processes image
- Fed into LSTM
- Two separate "heads" for:
 - Policy (fully connected, softmax)
 - Value function (fully connected)
- "Body" (rest of architecture) shared

A3C: Asynchronous Advantage Actor Critic

 Central learner accumulates experience from many parallel workers

 Workers send (state, action, policy, value, reward)

Learner performs a single gradient update

 Update broadcast to the workers

Why asynchronous?

• Parallel training - faster

 Separates gathering experience (in simulation, can be done on CPU, or from real-world interaction) from learning (GPU)

Different workers means (slightly) different policies, so more exploration

Algorithm S2 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

```
// Assume global shared parameter vectors \theta and \theta_v and global shared counter T=0
// Assume thread-specific parameter vectors \theta' and \theta'_{ij}
Initialize thread step counter t \leftarrow 1
repeat
     Reset gradients: d\theta \leftarrow 0 and d\theta_v \leftarrow 0.
     Synchronize thread-specific parameters \theta' = \theta and \theta'_v = \theta_v
     t_{start} = t
     Get state s_t
     repeat
          Perform a_t according to policy \pi(a_t|s_t;\theta')
          Receive reward r_t and new state s_{t+1}
          t \leftarrow t + 1
          T \leftarrow T + 1
     until terminal s_t or t - t_{start} == t_{max}
    R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t, \theta_v') & \text{for non-terminal } s_t \text{// Bootstrap from last state} \end{cases}
     for i \in \{t - 1, ..., t_{start}\} do
          R \leftarrow r_i + \gamma R
          Accumulate gradients wrt \theta': d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i;\theta')(R - V(s_i;\theta'_v))
          Accumulate gradients wrt \theta'_v: d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta'_v))^2 / \partial \theta'_v.
     end for
     Perform asynchronous update of \theta using d\theta and of \theta_v using d\theta_v.
```

until $T > T_{max}$

33

How to ensure exploration?

- Could do epsilon-greedy approach again
- But now have access to a policy function
- Can make the policy itself do the exploring!
- Add term to the loss function:

$$-\epsilon H(\pi) = -\epsilon \sum_{a} \pi(a) \log \pi(a)$$

- Pushes towards a higher entropy policy more exploration
- Less dangerous than just taking random actions

MuJoCo

- Physics simulation engine often used to create RL tasks
- E.g. simple balancing and walking
- Used for e.g. OpenAl Gym (open source task library) =>

HalfCheetah-v0 Make a 2D cheetah robot run.

Swimmer-v0 Make a 2D robot swim.

Hopper-v0 Make a 2D robot hop.

Walker2d-v0 Make a 2D robot walk.

Ant-v0 Make a 3D fourlegged robot walk.

Humanoid-v0 Make a 3D twolegged robot walk.

IMPALA: Importance-Weighted Actor-Learner Architectures

- Designed to fix a problem in A3C where workers' policies can deviate from the policy of the learner
- What if the worker tries actions that the learner doesn't think are probable, and the worker gets a large gradient update?
 - The learner would update its parameters a lot
 - But it shouldn't, since it wouldn't take that action
- Idea: Re-weight observed actions according to ratio between worker and learner policies

IMPALA: Importance-Weighted Actor-Learner Architectures

Formally, let θ denote the network parameters, π_{θ} the (current) policy of the network over actions a, μ the policy generating the observed experience, and h_s the hidden state of the network at time s. Then, the V-Trace target v_s is given by:

$$v_s := V(h_s) + \sum_{t=s}^{s+n-1} \gamma^{t-s} \left(\prod_{i=s}^{t-1} c_i\right) \delta_t V,$$

where $\delta_t V := \rho_t \left(r_t + \gamma V(h_{t+1}) - V(h_t) \right)$ for truncated importance sampling weights $c_i := \min(\bar{c}, \frac{\pi_{\theta}(a_i|h_i)}{\mu(a_i|h_i)})$, and $\rho_t = \min(\bar{\rho}, \frac{\pi_{\theta}(a_t|h_t)}{\mu(a_t|h_t)})$ (with \bar{c} and $\bar{\rho}$ constants). The policy gradient loss is:

$$L_{\text{policy-gradient}} := -\rho_s \log \pi_{\theta}(a_s|h_s) \left(r_s + \gamma v_{s+1} - V_{\theta}(h_s)\right).$$

The value function update is given by the L2 loss, and we regularize policies using an entropy loss:

$$L_{ ext{value}} := \left(V_{ heta}(h_s) - v_s
ight)^2, \quad L_{ ext{entropy}} := \sum_a \pi_{ heta}(a|h_s) \log \pi_{ heta}(a|h_s).$$

Brief interlude: DDPG

Continuous action spaces

- All the algorithms we've talked about were for discrete actions
- We even used softmax vector output
- What about continuous actions, e.g. moving a robot?

Where DQN would break for continuous

actions?

End For

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
        With probability \varepsilon select a random action a_t
        otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
        Execute action a_t in emulator and observe reward r_t and image x_{t+1}
        Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
      Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
       Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
        network parameters \theta
       Every C steps reset \hat{Q} = Q
   End For
```

Where DQN would break for continuous

actions?

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
        With probability \varepsilon select a random action a_t
        otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
        Execute action a_t in emulator and observe reward r_t and image x_{t+1}
        Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from D
       Set y_j = \left\{ \begin{array}{c} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{array} \right.
        Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
        network parameters \theta
       Every C steps reset \hat{Q} = Q
   End For
End For
```

DDPG: Deep Deterministic Policy Gradient

- Q-network trained mostly as in DQN
- Policy network that approximates the best action
 - Train policy network by gradient ascent with objective given by Q-network

Algorithm 1 Deep Deterministic Policy Gradient

- 1: Input: initial policy parameters θ , Q-function parameters ϕ , empty replay buffer \mathcal{D}
- 2: Set target parameters equal to main parameters $\theta_{\text{targ}} \leftarrow \theta$, $\phi_{\text{targ}} \leftarrow \phi$
- 3: repeat
- 4: Observe state s and select action $a = \text{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$, where $\epsilon \sim \mathcal{N}$
- 5: Execute a in the environment
- 6: Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- 7: Store (s, a, r, s', d) in replay buffer \mathcal{D}
- 8: If s' is terminal, reset environment state.
- 9: **if** it's time to update **then**
- 10: for however many updates do
- 11: Randomly sample a batch of transitions, $B = \{(s, a, r, s', d)\}$ from \mathcal{D}
- 12: Compute targets

$$y(r, s', d) = r + \gamma (1 - d) Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s'))$$

13: Update Q-function by one step of gradient descent using

$$\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^2$$

14: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s))$$

15: Update target networks with

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho) \phi$$
$$\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho) \theta$$

- 16: end for
- 17: end if
- 18: **until** convergence

AlphaGo

Hardness of games for Al

• Tic-Tac-Toe: evaluate all positions

Chess: play out possible moves

• Go: ???

xkcd from 2012

Why is Go hard?

- Chess: ~35 possible moves, ~80 moves per game
- Go: ~250 possible moves, ~150 moves per game
- Too many for playing out possible games ($\sim 10^{172}$ possible positions)
- High intuition, widely seen as an art form

Why not just explore the game tree?

Many moves

 each node has
 many branches

Trimming the game tree

AlphaGo

Training Algorithm

Training algorithm

- I. Acquire large amounts of data from human gameplay
- 2. Train a supervised learning (SL) model to predict human moves based on the position of the board
- 3. Use final parameters from SL model to initialize an RL model
- 4. Have the RL model train and improve via policy gradient by playing many simulated games against itself
- 5. Use the data set of self-play games to train a value network that predicts who will win a game based on the current board position

Training details for RL models

Policy network

- Reward only at terminal state: +1 if wins, -1 if loses
- In self-play, plays against past version of self (from random time)
- Trained by policy gradient:

$$\Delta
ho \propto rac{\partial {
m log}\, p_{
ho}(a_t|s_t)}{\partial
ho} z_t$$

Value network

- Completely separate from policy network and trained after it
- Unlike in actor-critic framework we've seen
- Trained by regression to minimize L2 loss between value and outcome
 - Looks a bit like supervised learning:)

$$\Delta heta\!\propto\!rac{\partial
u_ heta(s)}{\partial heta}(z\!-\!
u_ heta(s))$$

Gameplay algorithm

 When playing, uses Monte Carlo tree search to expand possible paths of play for many moves and determine which one will be best

Figure 3 | **Monte Carlo tree search in AlphaGo. a**, Each simulation traverses the tree by selecting the edge with maximum action value Q, plus a bonus u(P) that depends on a stored prior probability P for that edge. **b**, The leaf node may be expanded; the new node is processed once by the policy network p_{σ} and the output probabilities are stored as prior probabilities P for each action. **c**, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network v_{θ} ; and by running a rollout to the end of the game with the fast rollout policy p_{π} , then computing the winner with function r. **d**, Action values Q are updated to track the mean value of all evaluations $r(\cdot)$ and $v_{\theta}(\cdot)$ in the subtree below that action.

Gameplay algorithm

In exploring possible games, actions are taken according to

$$a_t = \underset{a}{\operatorname{argmax}}(Q(s_t, a) + u(s_t, a))$$

• Two components - one is exploration:

$$u(s,a) \propto \frac{P(s,a)}{1+N(s,a)}$$
 $N(s,a) = \sum_{i=1}^{n} 1(s,a,i)$

Other is estimated Q-value:

$$Q(s,a) = \frac{1}{N(s,a)} \sum_{i=1}^{n} 1(s,a,i) V(s_L^i)$$

The V-value is actually a combination of value network and fast rollout policy:

$$V(s_L) = (1 - \lambda)\nu_{\theta}(s_L) + \lambda z_L$$

Network architecture

- ConvNet that takes board as input image
- 13 conv layers, then a fully connected layer
- Softmax for policy network
- Scalar output for value network

Details

- Symmetries of board 8 rotations/reflections
- Take average of output of network over all of these
- Additional features as input:

Extended Data Table 2 | Input features for neural networks

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

Resources

SL model:

- 30M human moves
- 50 GPUs for 3 weeks

RL model:

- Policy network: 50 GPUs for I day, IM games of self-play
- Value network: 50 GPUs for I week, 30M games of self-play
 - Just one position from each game used (otherwise ended up overfitting)

Match Versus Lee Sedol

- March 2016
- Lee Sedol ranked 2nd in world
- AlphaGo won 4 games to 1
- Move 37

- Huge event for much of the world
- And in perception of deep RL

AlphaZero

- General-purpose plays Go, chess, shogi, etc.
- Trained using only self-play
- Simpler algorithm
- Beats AlphaGo
- Beats Chess algorithms like Stockfish

AlphaZero

- No SL network, just RL
- Single shared network outputs both policy and value (different heads)
- Trained just on self-play
- Monte Carlo tree search rolled into the training, not the game play:
 - Policy trained to replicate probabilities from tree search
 - Value trained to replicate ultimate game outcome

$$l = (z - v)^2 - \boldsymbol{\pi}^{\top} \log \mathbf{p} + c||\theta||^2,$$

No special features or symmetries, just the board

Summary

- DQN
 - Approximate Q-values with deep net
 - Trained to satisfy Bellman equations
- A3C
 - Policy and value functions with shared deep net
 - Actor-critic training of both simultaneously
- AlphaGo
 - Policy network trained by policy gradient
 - Value network trained on game outcomes
 - Monte Carlo tree search
 - AlphaZero rolls all this into one network

Model-free and model-based methods

- DQN, A3C, etc. are all examples of model-free RL
 - No knowledge/learning of explicitly how the task works
- Deep learning often works this way
- But can be limiting when we do know stuff about the world
- AlphaGo is a model-based method that incorporates knowledge of how the task works
 - Simulates possible games
 - Uses deep learning within that framework

What could have been better about this lecture?

