1 Question 1

Specific calculation question, involving information fusion using Bayes rule (like the drone landing example from lectures).

2 Question 2

A moving robot obtains GPS observations z^{GPS} and image observations of a single landmark z^{im} at each time index $t_{0:k}$.

2.1

Develop the posterior at time k

2.2

Draw the corresponding factor graph. Explain in detail what each node and edge correspond to.

2.3

Assume now that poses are precisely known. Derive posterior and draw factor graph.

Question 3

2.4

Camera 6 DoF pose is given $x_1=(R_1\equiv R_{c_1}^G,t_1\equiv t_{c_1\to G}^G)$. Landmark in camera coordinate system (3D) is given l^{c_1} . Find l^G

2.5

Another camera $x_2 = (R_{c_2}^G, t_2 \equiv t_{c_2 \to G}^G)$ observes landmark l^G .

2.5.1

Write down the ideally projected point (in homogeneous coordinates) $\begin{pmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{pmatrix}$

2.5.2

Camera observes landmark at $z_2 = \begin{pmatrix} u_2 \\ v_2 \end{pmatrix}$ What is the reprojection error?