디지털논리회로

이론, 실습, 시뮬레이션

(Problem Solutions of Chapter 4)

1. 3입력 AND 게이트 출력파형

2. 3입력 XOR 게이트 출력파형

3. 3입력 NOR 게이트 출력파형

4. 3입력 AND-OR 게이트 출력파형

5. 잡음여유도 계산

High Level의 잡음여유도 : $V_{NH}=V_{OH}(\min)-V_{IH}(\min)$ =2.7V-2.0V=0.7V Low level의 잡음여유도 : $V_{NL}=V_{IL}(\max)-V_{OL}(\max)$ =0.8V-0.4V=0.4V

6. 전파지연 시간 계산

게이트 X의 전파지연 : 5ns+4.5ns=9.5ns 게이트 Y의 전파지연 : 8ns+7.5ns=15.5ns ∴ 게이트 X가 더 높은 주파수에서 동작한다.

7. 잡음여유도 계산

 $V_{NL} = V_{IL}(\text{max}) - V_{OL}(\text{max}) = 0.8 \text{V} - 0.6 \text{V} = 0.2 \text{V}$

8. 계열별 IC의 잡음여유도 및 전파지연 시간 계산

	전파지연시간	잡음 여유도	
7400	22+15=37ns	V _{NH} =2.4-2=0.4V	V _{NL} =0.8-0.4=0.4V
74S00	4.5+5=9.5ns	V _{NH} =2.7-2=0.7V	V _{NL} =0.8-0.5=0.3V
74LS00	15+15=30ns	V _{NH} =2.7-2=0.7V	V _{NL} =0.8-0.4=0.4V
74ALS00	11+8=19ns	V _{NH} =3-2=1V	V _{NL} =0.8-0.4=0.4V
74F00	5+4.3=9.3ns	V _{NH} =2.5-2=0.5V	V _{NL} =0.8-0.5=0.3V
74HC00	23+23=46ns	V _{NH} =3.84-3.15=0.69V	V _{NL} =0.9-0.33=0.57V
74AC00	8+6.5=14.5ns	V _{NH} =4.4-3.15=1.25V	V _{NL} =1.35-0.1=1.25V
74ACT00	9+7=16ns	V _{NH} =4.4-2=2.4V	V _{NL} =0.8-0.1=0.7V

o 전파지연시간이 짧을수록 동작속도가 빠르므로

74F00 > 74S00 > 74AC00 > 74ACT00 > 74ALS00 > 74LS00 > 74UO > 74HC00

o 잡음 여유도는 클수록 좋으므로

74ACT00 > 74AC00 > 74ALS00 > 74HC00 > 74LS00 > 75S00 > 74F00 = 7400

9. AND 게이트 및 OR 게이트 확장

① AND 게이트 확장

ABC	AB	(AB)C
0 0 0	0	0
0 0 1	0	0
0 1 0	0	0
0 1 1	0	0
1 0 0	0	0
1 0 1	0	0
1 1 0	1	0
1 1 1	1	1

3-입력 AND 게이트의 결과와 일치하므로 Y = ABC이다. 따라서 AND 게이트의 입력 수를 증가하려면 AND 게이트들을 통과시킨 후 다시 AND를 하면 된다. 예를 들어 5-입력인 경우는 아래 그림과 같다 (Y = ABCDE).

② OR 게이트 확장

A B C	A+ B	(A+B)+C
0 0 0	0	0
0 0 1	0	1
0 1 0	1	1
0 1 1	1	1
1 0 0	1	1
1 0 1	1	1
1 1 0	1	1
1 1 1	1	1

3-입력 OR 게이트의 결과와 일치하므로 Y = A + B + C이다. 따라서 OR 게이트의 입력 수를 증가하려

면 OR 게이트들을 통과시킨 후 다시 OR를 하면 된다. 예를 들어 5-입력인 경우는 아래 그림과 같다 (Y=A+B+C+D+E).

10. AND, OR, NAND, NOR 게이트에서의 미사용 입력 처리문제

XABC	1	2	3	4
0000	0	0	1	1
0001	0	1	1	0
0010	0	1	1	0
0011	0	1	1	0
0100	0	1	1	0
0101	0	1	1	0
0110	0	1	1	0
0111	0	1	1	0
1000	0	1	1	0
1001	0	1	1	0
1010	0	1	1	0
1011	0	1	1	0
1100	0	1	1	0
1101	0	1	1	0
1110	0	1	1	0
1111	1	1	0	0

- ① X가 High(=5V)일 때, 출력 F는 3-입력 AND 게이트로 동작.
- ② X가 Low(=0V)일 때, 출력 F는 3-입력 OR 게이트로 동작.
- ③ X가 High(=5V)일 때, 출력 F는 3-입력 NAND 게이트로 동작.
- ④ X가 Low(=0V)일 때, 출력 F는 3-입력 NOR 게이트로 동작.

11. 2입력 XNOR 게이트를 2입력 XOR 게이트 2개를 사용하여 구현

12. 정논리와 부논리 이해

① 정논리인 경우, -5는 논리 0, +5는 논리1이므로 Exclusive-NOR 게이트이다.

X	Y	F	
-5	-5	+5	
-5	-5 +5 -5	+5 -5	\Rightarrow
+5 +5	-5	-5	
+5	+5	+5	

② 부논리인 경우, -5는 논리 1, +5는 논리0이므로 Exclusive-OR 게이트이다.

X	Y	F
-5	-5	+5
-5	+5	-5
+5	-5	-5
+5	+5	+5

X	Y	F
1	1	0
1	0	1
0	1	1
0	0	0

13. 정논리와 부논리 증명

정논리(Positive Logic) : Low Level \leftrightarrow 0, High Level \leftrightarrow 1 부논리(Negative Logic) : Low Level \leftrightarrow 1, High Level \leftrightarrow 0

AND 게이트의 진리표를 이용하여 이를 정논리와 부논리로 표현하면, 정논리 AND게이트와 부논리 OR 게이트의 논리동작이 서로 동일함을 알 수 있다.

A B	F	
LL	L	
LΗ	L	
H L	L	
ΗК	Н	
 진리표		

A	B	F
0	0	0
0	1	0
1	0	0
1	1	1
 정논리		

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0
부논리		

14. OR 게이트에서의 출력 파형

- (a) NOT 게이트에서의 전파지연을 무시한 경우
 - A high
- (b) NOT 게이트에서의 전파지연을 고려한 경우

15. AND 게이트에서의 출력 파형

(a) NOT 게이트에서의 전파지연을 무시한 경우

(b) NOT 게이트에서의 전파지연을 고려한 경우

16. OR 게이트에서의 출력 파형

(a) B 입력을 Low로 한 경우

17. AND 게이트에서의 출력 파형

(a) B 입력을 Low로 한 경우

18. AND 게이트 이해

19. 평균 전력소모

- 논리 1일 때, 전력 : $P_1 = 5 \times 1.5 \times 10^{-3} = 7.5 \text{mW}$

- 논리 0일 때, 전력 : $P_0 = 5 \times 12.5 \times 10^{-3} = 62.5 \,\mathrm{mW}$ 따라서 평균 전력은 35㎡W이다.

$$P_{avg} = \frac{P_1 + P_0}{2} = \frac{7.5 \times 10^{-3} + 62.5 \times 10^{-3}}{2} = 35 \times 10^{-3} = 35 \text{mW}$$