Contents

	Bibl	iograph	y	1	
		0.0.1	What is Influence	2	
		0.0.2	Quantifying Influence	3	
	0.1	Extens	sion of techniques to LME Models	4	
	0.2	Residu	ial diagnostics	5	
		0.2.1	Residuals diagnostics in mixed models	5	
		0.2.2	Marginal and Conditional Residuals	5	
	0.3	CPJ's	Three Propositions	6	
		0.3.1	Proposition 2	6	
		0.3.2	Proposition 3	6	
1	7 or 7	-a+i-n'a	Donon	7	
1	Zew	otir's	•	"	
1.1 Efficient Updating Theorem				7	
	1.2	Zewotir Measures of Influence in LME Models			
		1.2.1	Cook's Distance	7	
		1.2.2	Information Ratio	9	
	1.3	Comp	utation and Notation	10	
	1.4	Measu	ures 2		
		1.4.1	Cook's Distance	11	
		1.4.2	Variance Ratio	11	
		1.4.3	Cook-Weisberg statistic	11	
		1.4.4	Andrews-Pregibon statistic	11	

	1.5	Haslett's Analysis	12
	1.6	Demidenko's I Influence	12
2	Aug	gmented GLMs	13
	2.1	Hierarchical likelihood	13
	2.2	Importance-Weighted Least-Squares (IWLS)	13
3	Арр	plication to Method Comparison Studies	14
	3.1	Application to MCS	14
	3.2	Grubbs' Data	14
		3.2.1 Influence measures using R	17
4	Арр	pendices	18
	4.1	The Hat Matrix	19
	4.2	Sherman Morrison Woodbury Formula	19
		4.2.1 Hat Values for MCS regression	20
	4.3	Cross Validation	21
		4.3.1 Cross Validation: Updating standard deviation	21
	4.4	Updating Estimates	23
		4.4.1 Updating of Regression Estimates	23
		4.4.2 Updating Standard deviation	23
		4.4.3 Updating of Regression Estimates	23
		4.4.4 Updating Regression Estimates	24
		4.4.5 Inference on intercept and slope	25
	4.5	Lesaffre's naper	26

0.0.1 What is Influence

Broadly defined, influence is understood as the ability of a single or multiple data points, through their presence or absence in the data, to alter important aspects of the analysis, yield qualitatively different inferences, or violate assumptions of the statistical model. The goal of influence analysis is not primarily to mark data points for deletion so that a better model fit can be achieved for the reduced data, although this might be a result of influence analysis (Schabenberger, 2004).

0.0.2 Quantifying Influence

The basic procedure for quantifying influence is simple as follows:

- Fit the model to the data and obtain estimates of all parameters.
- Remove one or more data points from the analysis and compute updated estimates of model parameters.
- Based on full- and reduced-data estimates, contrast quantities of interest to determine how the absence of the observations changes the analysis.

Cook (1986) introduces powerful tools for local-influence assessment and examining perturbations in the assumptions of a model. In particular the effect of local perturbations of parameters or observations are examined.

0.1 Extension of techniques to LME Models

Model diagnostic techniques, well established for classical models, have since been adapted for use with linear mixed effects models. Diagnostic techniques for LME models are inevitably more difficult to implement, due to the increased complexity.

Beckman, Nachtsheim and Cook (1987) Beckman et al. (1987) applied the local influence method of Cook (1986) to the analysis of the linear mixed model.

While the concept of influence analysis is straightforward, implementation in mixed models is more complex. Update formulae for fixed effects models are available only when the covariance parameters are assumed to be known.

If the global measure suggests that the points in U are influential, the nature of that influence should be determined. In particular, the points in U can affect the following

- the estimates of fixed effects,
- the estimates of the precision of the fixed effects,
- the estimates of the covariance parameters,
- the estimates of the precision of the covariance parameters,
- fitted and predicted values.

0.2 Residual diagnostics

For classical linear models, residual diagnostics are typically implemented as a plot of the observed residuals and the predicted values. A visual inspection for the presence of trends inform the analyst on the validity of distributional assumptions, and to detect outliers and influential observations.

0.2.1 Residuals diagnostics in mixed models

The marginal and conditional means in the linear mixed model are $E[Y] = X\beta$ and $E[Y|u] = X\beta + Zu$, respectively.

A residual is the difference between an observed quantity and its estimated or predicted value. In the mixed model you can distinguish marginal residuals r_m and conditional residuals r_c .

0.2.2 Marginal and Conditional Residuals

A marginal residual is the difference between the observed data and the estimated (marginal) mean, $r_{mi} = y_i - x'_0 \hat{b}$ A conditional residual is the difference between the observed data and the predicted value of the observation, $r_{ci} = y_i - x'_i \hat{b} - z'_i \hat{\gamma}$

In linear mixed effects models, diagnostic techniques may consider 'conditional' residuals. A conditional residual is the difference between an observed value y_i and the conditional predicted value \hat{y}_i .

$$eps\hat{i}lon_i = y_i - \hat{y}_i = y_i - (X_ib\hat{e}ta + Z_i\hat{b}_i)$$

However, using conditional residuals for diagnostics presents difficulties, as they tend to be correlated and their variances may be different for different subgroups, which can lead to erroneous conclusions.

0.3 CPJ's Three Propositions

Proposition 1

$$oldsymbol{V}^{-1} = \left[egin{array}{cc}
u^{ii} & \lambda_i' \ \lambda_i & \Lambda_{[i]} \end{array}
ight]$$

$$oldsymbol{V}_{[i]}^{-1} = oldsymbol{\Lambda}_{[i]} - rac{\lambda_i \lambda_i'}{\lambda_i}$$

0.3.1 Proposition 2

(i)
$$\boldsymbol{X}_{[i]}^T \boldsymbol{V}_{[i]}^{-1} \boldsymbol{X}_{[i]} = \boldsymbol{X}' \boldsymbol{V}^{-1} \boldsymbol{X}$$

(ii) =
$$(X'V^{-1}Y)^{-1}$$

(iii)
$$oldsymbol{X}_{[i]}^T oldsymbol{V}_{[i]}^{-1} oldsymbol{Y}_{[i]} = oldsymbol{X}' oldsymbol{V}^{-1} oldsymbol{Y}$$

0.3.2 Proposition 3

This proposition is similar to the formula for the one-step Newtown Raphson estimate of the logistic regression coefficients given by Pregibon (1981) and discussed in Cook Weisberg.

Chapter 1

Zewotir's Paper

1.1 Efficient Updating Theorem

Zewotir and Galpin (2005) describes the basic theorem of efficient updating.

•

$$m_i = \frac{1}{c_{ii}}$$

1.2 Zewotir Measures of Influence in LME Models

Zewotir and Galpin (2005) describes a number of approaches to model diagnostics, investigating each of the following;

- Variance components
- Fixed effects parameters
- Prediction of the response variable and of random effects
- likelihood function

1.2.1 Cook's Distance

• For variance components γ : $CD(\gamma)_i$,

- For fixed effect parameters β : $CD(\beta)_i$,
- For random effect parameters \boldsymbol{u} : $CD(u)_i$,
- For linear functions of \hat{beta} : $CD(\psi)_i$

Random Effects

A large value for $CD(u)_i$ indicates that the i-th observation is influential in predicting random effects.

linear functions

 $CD(\psi)_i$ does not have to be calculated unless $CD(\beta)_i$ is large.

1.2.2 Information Ratio

1.3 Computation and Notation

with V unknown, a standard practice for estimating $X\beta$ is the estime the variance components σ_j^2 , compute an estimate for V and then compute the projector matrix A, $X\hat{\beta} = AY$.

? remarks that \boldsymbol{D} is a block diagonal with the i-th block being $u\boldsymbol{I}$

1.4 Measures 2

1.4.1 Cook's Distance

• For variance components γ

Diagnostic tool for variance components

$$C_{\theta i} = (\hat{\theta})_{[i]} - \hat{\theta})^T \operatorname{cov}(\hat{\theta})^{-1} (\hat{\theta})_{[i]} - \hat{\theta})$$

1.4.2 Variance Ratio

• For fixed effect parameters β .

1.4.3 Cook-Weisberg statistic

• For fixed effect parameters β .

1.4.4 Andrews-Pregibon statistic

• For fixed effect parameters β .

The Andrews-Pregibon statistic AP_i is a measure of influence based on the volume of the confidence ellipsoid. The larger this statistic is for observation i, the stronger the influence that observation will have on the model fit.

1.5 Haslett's Analysis

For fixed effect linear models with correlated error structure Haslett (1999) showed that the effects on the fixed effects estimate of deleting each observation in turn could be cheaply computed from the fixed effects model predicted residuals.

A general theory is presented for residuals from the general linear model with correlated errors. It is demonstrated that there are two fundamental types of residual associated with this model, referred to here as the marginal and the conditional residual.

These measure respectively the distance to the global aspects of the model as represented by the expected value and the local aspects as represented by the conditional expected value.

These residuals may be multivariate.

Haslett and Hayes (1998) developes some important dualities which have simple implications for diagnostics.

1.6 Demidenko's I Influence

The concept of I Influence is generalized to the non linea regression model.

Chapter 2

Augmented GLMs

2.1 Hierarchical likelihood

Inferential method was developed for the mixed linear model via Lee and Nelder's (1996) hierarchical-likelihood (h-likelihood).

2.2 Importance-Weighted Least-Squares (IWLS)

Chapter 3

Application to Method Comparison Studies

3.1 Application to MCS

Let $\hat{\beta}$ denote the least square estimate of β based upon the full set of observations, and let $\hat{\beta}^{(k)}$ denoted the estimate with the k^{th} case excluded.

3.2 Grubbs' Data

For the Grubbs data the $\hat{\beta}$ estimated are $\hat{\beta}_0$ and $\hat{\beta}_1$ respectively. Leaving the fourth case out, i.e. k=4 the corresponding estimates are $\hat{\beta}_0^{-4}$ and $\hat{\beta}_1^{-4}$

$$Y^{-Q} = \hat{\beta}^{-Q} X^{-Q} \tag{3.1}$$

When considering the regression of case-wise differences and averages, we write $D^{-Q} = \hat{\beta}^{-Q} A^{-Q}$

	F	\mathbf{C}	D	A
1	793.80	794.60	-0.80	794.20
2	793.10	793.90	-0.80	793.50
3	792.40	793.20	-0.80	792.80
4	794.00	794.00	0.00	794.00
5	791.40	792.20	-0.80	791.80
6	792.40	793.10	-0.70	792.75
7	791.70	792.40	-0.70	792.05
8	792.30	792.80	-0.50	792.55
9	789.60	790.20	-0.60	789.90
10	794.40	795.00	-0.60	794.70
11	790.90	791.60	-0.70	791.25
12	793.50	793.80	-0.30	793.65

$$Y^{(k)} = \hat{\beta}^{(k)} X^{(k)} \tag{3.2}$$

Consider two sets of measurements , in this case F and C , with the vectors of case-wise averages A and case-wise differences D respectively. A regression model of differences on averages can be fitted with the view to exploring some characteristics of the data.

When considering the regression of case-wise differences and averages, we write

$$D^{-Q} = \hat{\beta}^{-Q} A^{-Q} \tag{3.3}$$

Let $\hat{\beta}$ denote the least square estimate of β based upon the full set of observations, and let $\hat{\beta}^{(k)}$ denoted the estimate with the k^{th} case excluded.

For the Grubbs data the $\hat{\beta}$ estimated are $\hat{\beta}_0$ and $\hat{\beta}_1$ respectively. Leaving the fourth case out, i.e. k=4 the corresponding estimates are $\hat{\beta}_0^{-4}$ and $\hat{\beta}_1^{-4}$

$$Y^{(k)} = \hat{\beta}^{(k)} X^{(k)} \tag{3.4}$$

Consider two sets of measurements , in this case F and C , with the vectors of case-wise averages A and case-wise differences D respectively. A regression model of differences on averages can be fitted with the view to exploring some characteristics of the data.

Call: lm(formula = D ~ A)

Coefficients: (Intercept) A

-37.51896 0.04656

When considering the regression of case-wise differences and averages, we write

$$D^{-Q} = \hat{\beta}^{-Q} A^{-Q} \tag{3.5}$$

3.2.1 Influence measures using R

 ${\tt R}$ provides the following influence measures of each observation.

	$dfb.1_{-}$	dfb.A	dffit	cov.r	cook.d	hat
1	0.42	-0.42	-0.56	1.13	0.15	0.18
2	0.17	-0.17	-0.34	1.14	0.06	0.11
3	0.01	-0.01	-0.24	1.17	0.03	0.08
4	-1.08	1.08	1.57	0.24	0.56	0.16
5	-0.14	0.14	-0.24	1.30	0.03	0.13
6	-0.00	0.00	-0.11	1.31	0.01	0.08
7	-0.04	0.04	-0.08	1.37	0.00	0.11
8	0.02	-0.02	0.15	1.28	0.01	0.09
9	0.69	-0.68	0.75	2.08	0.29	0.48
10	0.18	-0.18	-0.22	1.63	0.03	0.27
11	-0.03	0.03	-0.04	1.53	0.00	0.19
12	-0.25	0.25	0.44	1.05	0.09	0.12

Chapter 4

Appendices

4.1 The Hat Matrix

The projection matrix H (also known as the hat matrix), is a well known identity that maps the fitted values \hat{Y} to the observed values Y, i.e. $\hat{Y} = HY$.

$$H = X(X^T X)^{-1} X^T (4.1)$$

H describes the influence each observed value has on each fitted value. The diagonal elements of the H are the 'leverages', which describe the influence each observed value has on the fitted value for that same observation. The residuals (R) are related to the observed values by the following formula:

$$R = (I - H)Y \tag{4.2}$$

The variances of Y and R can be expressed as:

$$var(Y) = H\sigma^{2}$$

$$var(R) = (I - H)\sigma^{2}$$
(4.3)

Updating techniques allow an economic approach to recalculating the projection matrix, H, by removing the necessity to refit the model each time it is updated. However this approach is known for numerical instability in the case of down-dating.

4.2 Sherman Morrison Woodbury Formula

The 'Sherman Morrison Woodbury' Formula is a well known result in linear algebra;

$$(A + a^T B)^{-1} = A^{-1} - A^{-1} a^T (I - bA^{-1} a^T)^{-1} bA^{-1}$$
(4.4)

This result is highly useful for analyzing regression diagnostics, and for matrices inverses in general. Consider a $p \times p$ matrix X, from which a row x_i^T is to be added or deleted. ? sets $A = X^T X$, $a = -x_i^T$ and $b = x_i^T$, and writes the above equation as

$$(X^T X \pm x_i x_i^T)^{-1} = (X^T X)^{-1} \mp \frac{(X^T X)^{-1} (x_i x_i^T (X^T X)^{-1}}{1 - x_i^T (X^T X)^{-1} x_i}$$
(4.5)

The projection matrix H (also known as the hat matrix), is a well known identity that maps the fitted values \hat{Y} to the observed values Y, i.e. $\hat{Y} = HY$.

$$H = X(X^T X)^{-1} X^T (4.6)$$

H describes the influence each observed value has on each fitted value. The diagonal elements of the H are the 'leverages', which describe the influence each observed value has on the fitted value for that same observation. The residuals (R) are related to the observed values by the following formula:

$$R = (I - H)Y \tag{4.7}$$

The variances of Y and R can be expressed as:

$$var(Y) = H\sigma^{2}$$

$$var(R) = (I - H)\sigma^{2}$$
(4.8)

Updating techniques allow an economic approach to recalculating the projection matrix, H, by removing the necessity to refit the model each time it is updated. However this approach is known for numerical instability in the case of down-dating.

4.2.1 Hat Values for MCS regression

With A as the averages and D as the casewise differences.

$$fit = lm(D^A)$$

$$H = A \left(A^{\top} A \right)^{-1} A^{\top},$$

4.3 Cross Validation

Cross validation techniques for linear regression employ the use 'leave one out' recalculations. In such procedures the regression coefficients are estimated for n-1covariates, with the Q^{th} observation omitted.

Let $\hat{\beta}$ denote the least square estimate of β based upon the full set of observations, and let $\hat{\beta}^{-Q}$ denoted the estimate with the Q^{th} case excluded.

In leave-one-out cross validation, each observation is omitted in turn, and a regression model is fitted on the rest of the data. Cross validation is used to estimate the generalization error of a given model. alternatively it can be used for model selection by determining the candidate model that has the smallest generalization error.

Evidently leave-one-out cross validation has similarities with 'jackknifing', a well known statistical technique. However cross validation is used to estimate generalization error, whereas the jackknife technique is used to estimate bias.

4.3.1 Cross Validation: Updating standard deviation

The variance of a data set can be calculated using the following formula.

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i}^{2}) - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}}{n-1}$$
(4.9)

While using bivariate data, the notation Sxx and Syy shall apply to the variance of x and of y respectively. The covariance term Sxy is given by

$$Sxy = \frac{\sum_{i=1}^{n} (x_i y_i) - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n}}{n}$$
(4.10)

Let the observation j be omitted from the data set. The estimates for the variance identities can be updating using minor adjustments to the full sample estimates. Where (j) denotes that the jth has been omitted, these identities are

$$Sxx^{(j)} = \frac{\sum_{i=1}^{n} (x_i^2) - (x_j)^2 - \frac{((\sum_{i=1}^{n} x_i) - x_j)^2}{n-1}}{n-2}$$
(4.11)

$$Syy^{(j)} = \frac{\sum_{i=1}^{n} (y_i^2) - (y_j)^2 - \frac{((\sum_{i=1}^{n} y_i) - y_j)^2}{n-1}}{n-2}$$
(4.12)

$$Sxy^{(j)} = \frac{\sum_{i=1}^{n} (x_i y_i) - (y_j x_j) - \frac{((\sum_{i=1}^{n} x_i) - x_j)(\sum_{i=1}^{n} y_i) - y_k)}{n-1}}{n-2}$$
(4.13)

The updated estimate for the slope is therefore

$$\hat{\beta}_1^{(j)} = \frac{Sxy^{(j)}}{Sxx^{(j)}} \tag{4.14}$$

It is necessary to determine the mean for x and y of the remaining n-1 terms

$$\bar{x}^{(j)} = \frac{\left(\sum_{i=1}^{n} x_i\right) - (x_j)}{n-1},\tag{4.15}$$

$$\bar{y}^{(j)} = \frac{\left(\sum_{i=1}^{n} y_i\right) - (y_j)}{n-1}.$$
(4.16)

The updated intercept estimate is therefore

$$\hat{\beta}_0^{(j)} = \bar{y}^{(j)} - \hat{\beta}_1^{(j)} \bar{x}^{(j)}. \tag{4.17}$$

4.4 Updating Estimates

4.4.1 Updating of Regression Estimates

Updating techniques are used in regression analysis to add or delete rows from a model, allowing the analyst the effect of the observation associated with that row. In time series problems, there will be scientific interest in the changing relationship between variables. In cases where there a single row is to be added or deleted, the procedure used is equivalent to a geometric rotation of a plane.

Updating techniques are used in regression analysis to add or delete rows from a model, allowing the analyst the effect of the observation associated with that row.

4.4.2 Updating Standard deviation

A simple, but useful, example of updating is the updating of the standard deviation when an observation is omitted, as practised in statistical process control analyzes. From first principles, the variance of a data set can be calculated using the following formula.

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i}^{2}) - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n}}{n-1}$$
(4.18)

While using bivariate data, the notation Sxx and Syy shall apply hither to the variance of x and of y respectively. The covariance term Sxy is given by

$$Sxy = \frac{\sum_{i=1}^{n} (x_i y_i) - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n}}{n-1}.$$
 (4.19)

4.4.3 Updating of Regression Estimates

Updating techniques are used in regression analysis to add or delete rows from a model, allowing the analyst the effect of the observation associated with that row. In time series problems, there will be scientific interest in the changing relationship between variables. In cases where there a single row is to be added or deleted, the procedure used is equivalent to a geometric rotation of a plane.

Consider a $p \times p$ matrix X, from which a row x_i^T is to be added or deleted. ? sets $A = X^T X$, $a = -x_i^T$ and $b = x_i^T$, and writes the above equation as

$$(X^T X \pm x_i x_i^T)^{-1} = (X^T X)^{-1} \mp \frac{(X^T X)^{-1} (x_i x_i^T (X^T X)^{-1})}{1 - x_i^T (X^T X)^{-1} x_i}$$
(4.20)

4.4.4 Updating Regression Estimates

Let the observation j be omitted from the data set. The estimates for the variance identities can be updating using minor adjustments to the full sample estimates. Where (j) denotes that the jth has been omitted, these identities are

$$Sxx^{(j)} = \frac{\sum_{i=1}^{n} (x_i^2) - (x_j)^2 - \frac{((\sum_{i=1}^{n} x_i) - x_j)^2}{n-1}}{n-2}$$
(4.21)

$$Syy^{(j)} = \frac{\sum_{i=1}^{n} (y_i^2) - (y_j)^2 - \frac{((\sum_{i=1}^{n} y_i) - y_j)^2}{n-1}}{n-2}$$
(4.22)

$$Sxy^{(j)} = \frac{\sum_{i=1}^{n} (x_i y_i) - (y_j x_j) - \frac{((\sum_{i=1}^{n} x_i) - x_j)(\sum_{i=1}^{n} y_i) - y_k)}{n-1}}{n-2}$$
(4.23)

The updated estimate for the slope is therefore

$$\hat{\beta}_1^{(j)} = \frac{Sxy^{(j)}}{Sxx^{(j)}} \tag{4.24}$$

It is necessary to determine the mean for x and y of the remaining n-1 terms

$$\bar{x}^{(j)} = \frac{\left(\sum_{i=1}^{n} x_i\right) - (x_j)}{n-1},\tag{4.25}$$

$$\bar{y}^{(j)} = \frac{\left(\sum_{i=1}^{n} y_i\right) - \left(y_j\right)}{n-1}.$$
(4.26)

The updated intercept estimate is therefore

$$\hat{\beta}_0^{(j)} = \bar{y}^{(j)} - \hat{\beta}_1^{(j)} \bar{x}^{(j)}. \tag{4.27}$$

4.4.5 Inference on intercept and slope

$$\hat{\beta}_1 \pm t_{(\alpha, n-2)} \sqrt{\frac{S^2}{(n-1)S_x^2}} \tag{4.28}$$

$$\frac{\hat{\beta}_0 - \beta_0}{SE(\hat{\beta}_0)} \tag{4.29}$$

$$\frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_0)} \tag{4.30}$$

Inference on correlation coefficient

This test of the slope is coincidentally the equivalent of a test of the correlation of the n observations of X and Y.

$$H_0: \rho_{XY} = 0$$

$$H_A: \rho_{XY} \neq 0$$
 (4.31)

4.5 Lesaffre's paper.

Lesaffre considers the case-weight perturbation approach.

Cook's 86 describes a local approach wherein each case is given a weight w_i and the effect on the parameter estimation is measured by perturbing these weights. Choosing weights close to zero or one corresponds to the global case-deletion approach.

Lesaffre describes the displacement in log-likelihood as a useful metric to evaluate local influence

Lesaffre describes a framework to detect outlying observations that matter in an LME model. Detection should be carried out by evaluating diagnostics C_i , $C_i(\alpha)$ and $C_i(D, \sigma^2)$.

Lesaffre defines the total local influence of individual i as

$$C_i = 2|\triangle \iota_i L^{-1} \triangle_i|. \tag{4.32}$$

The influence function of the MLEs evaluated at the *i*th point IF_i , given by

$$IF_i = -L^{-1}\Delta_i \tag{4.33}$$

can indicate how theta changes as the weight of the ith subject changes.

The manner by which influential observations distort the estimation process can be determined by inspecting the interpretable components in the decomposition of the above measures of local influence.

Lesaffre comments that there is no clear way of interpreting the information contained in the angles, but that this doesn't mean the information should be ignored.

Bibliography

- Beckman, R., C. Nachtsheim, and R. Cook (1987). Diagnostics for mixed-model analysis of variance. *Technometrics* 29(4), 413–426.
- Cook, R. (1986). Assessment of local influence. Journal of the Royal Statistical Society. Series B (Methodological) 48(2), 133–169.
- Haslett, J. and K. Hayes (1998). Residuals for the linear model with general covariance structure. *Journal of the Royal Statistical Society (Series B)* 60, 201–215.
- Schabenberger, O. (2004). Mixed model influence diagnostics. 18929.
- Zewotir, T. and J. Galpin (2005). Influence diagnostics for linear mixed models. *Journal* of Data Science 3, 153–177.