5장: 스트림 암호

정보보호이론

Spring 2015

5.1 스트림 암호와 블록 암호

- 블록 암호 vs 스트림 암호
 - * 블록 단위로 암호화 vs 스트림 암호:비트 단위로 암호화
- 스트림 암호
 - × 패딩과 운영모드에 대한 개념 X
 - 빠른 암/복호화가 가능
 - 효율적인 "PRESENT" 나 "HIGHT" 와 같은 블록 암호가 존재

5.2 키 스트림 생성

- **키 스트림**(Key Stream)으로부터 출력되는 1 비트가 평문 1비트와 XOR되어 암호문 1 비트를 생성
 - 스트림 암호의 안전성은 키 스트림이 어떻게 생성되는지에 따라 전적으로 결정
- 스트림 암호의 암호화 및 복호화 과정
 - * 암호화 : $E_{s_i}(p_i) = p_i \oplus s_i = c_i$
 - * 복호화 : $D_{s_i}(c_i) = c_i \oplus s_i = (p_i \oplus s_i) \oplus s_i = p_i$

5.2 키 스트림 생성

- ※ 동기식 스트림 암호(Synchronous Stream Cipher)
 - ▶키 스트림의 생성이 키에만 의존 : OFB, CRT, OTP
- ▼ 비동기식 스트림 암호(Asynchronous Stream Cipher)
 - ► CFB
- 스트림 암호의 오류 확산

동기식(Self-Synchronizing) 스트림 암호

비동기식(Self-Synchronizing) 스트림 암호

- 난수 생성기(True Random Number Generator, TRNG)
 - * 비예측성 & 비결정성
 - 전자 저항에서 생성되는 열 잡음의 표본을 추출하거나, 방사 선 관측기로부터 나오는 출력 값을 반복해서 사용 → 환경적 제약
- 의사 난수 생성기(PRNG: Pseudo Random Number Generator)
 - * 초기값을 입력받아 계산되는 의사 난수열을 출력하며, 같은 입력 값에 대하여 같은 출력 값을 생성하는 결정적 (Deterministic) 알고리즘 > 통계적 검증

	생성시간	결정성	주기성
TRNG	비효율적	비결정적	비주기적
PRNG	효율적	결정적	주기적

- PRNG 예) 선형 합동 생성기(Linear Congruential Generator)
 - * $R_{i+1} \equiv (a \times R_i + b) \mod n, \ 0 \le R_0 < n : 초기 값$
 - \star a,b를 비밀키로 공유, 법 n은 공개
 - \star a = 3, b = 2, n = 17

i	R_i	$a \times R_i + b$	R_{i+1}	i	R_i	$a \times R_i + b$	R_{i+1}
0	8	$3 \times 8 + 2$	9	10	3	$3 \times 3 + 2$	11
1	9	$3 \times 9 + 2$	12	11	11	$3 \times 11 + 2$	1
2	12	$3 \times 12 + 2$	4	12	1	$3 \times 1 + 2$	5
3	4	$3 \times 4 + 2$	14	13	5	$3 \times 5 + 2$	0
4	14	$3 \times 14 + 2$	10	14	0	$3 \times 0 + 2$	2
5	10	$3 \times 10 + 2$	15	15	2	$3 \times 2 + 2$	8
6	15	$3 \times 15 + 2$	13	16	8	$3 \times 8 + 2$	9
7	13	$3 \times 13 + 2$	7	17	9	$3 \times 9 + 2$	12
8	7	$3 \times 7 + 2$	6	18	12	$3 \times 12 + 2$	4
9	6	$3 \times 6 + 2$	3	•••			

- PRNG 예) 선형 합동 생성기(Linear Congruential Generator)
 - × 최대 주기를 갖기 위해서는 다음과 같은 조건을 고려
 - 1. 모듈로 n의 크기에 따라 최대 주기가 결정되기 때문에, 효율성과 안전성을 고려하여 n을 선택(보통 컴퓨터가 한번에 데이터를 처리할 수 있는 워드의 크기만큼을 n으로 선택함)
 - 2. n의 크기와 같은 주기를 갖기 위해서는 a를 n과 서로소인 수로 선택
 - 3. b의 값은 주기에 영향을 미치진 않지만, 계산의 효율성을 위하여 일반적으로 0으로 사용

- 암호학적으로 안전한 의사 난수 생성기 (Cryptographically Secure Pseudo Random Number Generator, CSPRNG))
 - × 예측불가능성
 - 1. CSPRNG가 생성하는 키 스트림 $s_{i+1}, s_{i+2}, \cdots, s_{i+k}$ 가 주어졌을 때, 다음 비트 s_{i+k+1} 을 50% 이상의 확률로 예측하는 것이 계산적으로 불가능
 - 2. 주어진 키 스트림의 이전 비트인 s_i, s_{i-1}, \cdots 중 한 비트를 50% 이상의 확률로 예측하는 것이 계산적으로 불가능
 - ▶컴퓨터 과학이나 공학분야에서는 예측불가능성 불필요
 - 🗴 난수 생성방법
 - 1. 일방향 해쉬 함수 이용
 - 2. 블록 암호 이용
 - 3. 수학적 난제에 기반한 생성 방법

- 일방향 해쉬 함수를 사용한 의사 난수 생성기
 - $\overset{\mathsf{x}}{}$ 일방향함수 f(x) = y
 - ▶ 주어진 x에 대하여 함수 $f(\cdot)$ 를 이용하여 y를 계산하는 것은 쉽지만 반대로 y가 주어졌을 때 함수 $f(\cdot)$ 를 이용하여 $x = f^{-1}(y)$ 를 계산하는 것은 어려운 함수
 - ▶ p, q: prime, $g(p, q) = p \times q$
 - * 해쉬함수 f(x) = y
 - ▶ 상이한 입력값에 고정된 길이의 출력값
 - ▶ 압축함수

- 일방향 해쉬 함수를 사용한 의사 난수 생성기
 - 해쉬 함수의 일방향성에 의하여 해당 난수에 해당하는 카운 터 값을 예상할 수 없음
 - * 카운터 값을 알 수 없다면, 앞으로 생성될 난수열이나 이전에 생성된 난수열을 예측할 수 없게 되므로 앞에서 말한 CSPRNG를 위한 2가지 조건을 만족

- 암호를 사용한 의사 난수 생성기
 - 암호 알고리즘을 이용하기 때문에 의사 난수열을 보고 카운 터를 예상할 수 없음

5.4 이상적인 스트림 암호 : One-Time Pad (OTP)

■ 완전 안전성 (Perfect Secrecy)

- 무한한 계산 능력을 지닌 공격자가 암호문을 관찰하고도 아무 정보도 얻을 수 없는 시스템
- \sim Pr[M=m|C=c] = Pr[M=m]

5.4 이상적인 스트림 암호 : One-Time Pad (OTP)

- OTP는 암호화 함수로 $c = m \oplus k$ 를 가지며, 복호화 함수는 $m = c \oplus k$ 인 스트림 암호로 다음 조건을 만족
 - 1. TRNG를 사용하여 키 스트림을 생성
 - 2. 키 스트림은 송신자와 수신자만이 공유
 - 3. 각 키 스트림 비트는 단 한 번만 사용
 - $c_i = m_i \oplus k_i \ (0 = 0 \oplus 0 \text{ or } 1 \oplus 1, \ 1 = 0 \oplus 1 \text{ or } 1 \oplus 0)$
 - * k_i 가 0일 확률과 1일 확률은 50%(i.e., TRNG가 생성) \rightarrow 공격 자가 c_i 를 보고 m_i 를 맞출 확률은 50%
 - ightharpoonup Pr[M=m|C=c] = Pr[M=m]

■ 비현실적

- 키 스트림 생성기로 CSPRNG를 사용
 - * CSPRNG는 결정적이기 때문에 수신자와 송신자가 안전하게 공유한 비밀키 k를 PRNG의 초기값으로 사용하여 동일한 키스트림을 생성
 - × PRNG를 사용하면 안전하기 못함
 - ▶ 평문의 일부분을 알면 전체 암호문을 모두 복호화 가능
 - $R_{i+1} = (a \times R_i + b) \mod n,$
 - 비밀값은 a, b, R_0 이고 n은 공개된 값
 - $R_1 = (s_1, ..., s_{10}), R_2 = (s_{11}, ..., s_{20}), R_3 = (s_{21}, ..., s_{30}), ...$
 - R_i 는 $y_i = E_{si}(x_i) = x_i \oplus s_i$ 에서 사용되는 10개의 키 값을 생성
 - **단계 1.** 알고 있는 평문 30 비트 x_1, \ldots, x_{30} 와 관측해서 얻은 암호문 30 비트 y_1, \ldots, y_{30} 를 이용하여 $R_1 = (s_1, \ldots, s_{10}), R_2 = (s_{11}, \ldots, s_{20}), R_3 = (s_{21}, \ldots, s_{30})$ 를 얻는다.
 - **단계 2.** $R_2 \equiv (a \times R_1 + b) \mod n$ 와 $R_3 \equiv (a \times R_2 + b) \mod n$ 에서 $a \equiv (R_2 R_3)/(R_1 R_2) \mod n$ 와 $b \equiv R_2 R_1(R_2 R_3)/(R_1 R_2) \mod n$ 계산

- OTP의 비현실성 → TRNG 대신 CSPRNG 사용
 - * CSPRNG는 결정적이기 때문에 수신자와 송신자가 안전하게 공유한 비밀키 k를 PRNG의 초기값으로 사용하여 동일한 키스트림을 생성

■ 선형 피드백 쉬프트 레지스터(Linear Feedback Shift Register) 예)

$$b_3 = b_1 \oplus b_0$$

동기화 신호	S_2	S_1	S_0	
0	1 (= s_2)	$0(=s_1)$	$0(=s_0)$	
1	0 (= s_3)	1 (= s_2)	$0(=s_1)$	
2	1 (= <i>s</i> ₄)	$0(=s_3)$	1 (= s_2)	
3	$1(=s_5)$	1 (= s_4)	$0(=s_3)$	
4	1 (= <i>s</i> ₆)	1 (= s_5)	1 (= <i>s</i> ₄)	
5	0 (= s_7)	$1(=s_6)$	1 (= s_5)	
6	0 (=s ₈)	$0(=s_7)$	1 (= s_6)	
7	1 (= s_9)	$0(=s_8)$	$0(=s_7)$	
8	$0(=s_{10})$	$1(=s_9)$	$0(=s_8)$	
9	1 (= s_{11})	$0(=s_{10})$	$1(=s_9)$	
10	$1(=s_{12})$	$1(=s_{11})$	$0(=s_{10})$	
•••				

- 선형 피드백 쉬프트 레지스터(Linear Feedback Shift Register)
 - $s_m \leftarrow p_{m-1}s_{m-1} + \dots + p_1s_1 + p_0s_0 \mod 2$
 - ▶ 피드백 회로가 활성화 또는 비활성화의 여부는 피드백 계수 p_0, p_1, \dots, p_{m-1} 의 값으로 표현
 - 즉 특성 다항식 $x^m + p_{m-1}x^{m-1} + p_{m-2}x^{m-2} + \dots + p_0x^0 = 0$ 으로 표현
 - 최대 주기는 $2^m 1$ \uparrow $x^m = p_{m-1}x^{m-1} + p_{m-2}x^{m-2} + \dots + p_0x^0$ 계수는 GF(2)

■ eSTREAM (유럽 연합의 eSTREAM 공모사업)

- * 2008년 4월 총 3단계에 걸친 심사를 통하여 최종 스트림 암호가 당선
 - ▶ Profile1 : 높은 성능을 요구하는 소프트웨어 애플리케이션을 위한 스트림 암호
 - ▶ Profile2 : 제한된 자원(저장공간,게이트의 수, 전력량)을 가진 하드웨어 애플리케이션을 위한 스트림 암호

Profile 1 (SW)	Profile2 (HW)	
HC-128	Grain v1	
Rabbit	MICKEY v2	
Salsa20/12	Trivium	
SOSEMANUK		