北京师范大学 2009 ~ 2010 学年第二学期期末考试试卷

课程名称:	复	变函数	任课老师姓名				
卷面总分:_ 院(系)·_3				钟 考数学专业			を口 其他 D 数非师和サ
姓名:			学り				
题号		W = 7		四	11	六	总分
阅卷老师(名	を字):						

一.(15 分) 下列函数在何处可微? 在何处解析?

(1)
$$f(z) = xy^2 + ix^2y$$
; (2) $f(z) = |z|^4$

二.(15 分)求解析函数 $f(z) = e^{iz} \cos(z-2)$ 在 z=-2 处的泰勒 (Taylor) 展式, 并指出其收敛范围

三.(25分)下列函数有哪些奇点,哪些奇点是孤立奇点?这些孤立奇点属于哪一种类型?

$$(1) \frac{\sin z}{\cos z}; \quad (2) (z-1) \cos \left(\frac{\pi}{z-1}\right); \quad (3) \frac{\operatorname{Ln} z}{z^2-1}$$
的每个解析分支.

四.(25分)计算积分:

(1)
$$\int_{|z|=2} \frac{\cos z}{z^3} dz; \quad (2) \int_{|z|=2} \frac{e^z}{z^2 (z^2 - 9)} dz; \quad (3) \int_0^{+\infty} \frac{\ln x \ dx}{4 + x^2}.$$

五. (10 分) 设 P(z) = z(1-z). 验证 $\sqrt[3]{P(z)}$ 在区域 $D = \mathbb{C} \setminus [0\ 1]$ 内可以分解成解析分支; 求出 $\sqrt[3]{P(z)}$ 在 (0,1) 的上沿取正实值的一个分支 $f_0(z)$ 在 z = -1 处的值及函数 $f_0(z)$ 在 (0,1) 的下沿的值.

六 (10 分) 设 $\Omega = \{z : -\frac{\pi}{2} < \text{Im} z < \frac{\pi}{2}\}$ 是带形、 技一个从 Ω 到单位圆盘 $U = \{w : |w| < 1\}$,且满足 f(0) = 0 和 f'(0) > 0 的保形映射 f(z),并计算 f'(0).