# Power, Area and Thermal Prediction in 3D Network-on-Chip using Machine Learning

Abhijith C, Anand M K
Department of Computer Science and Engineering
National Institute of Technology Karnataka (NITK)
Surathkal, India

Email: {abhijithc.242cs003, anandmk.242cs008}@nitk.edu.in

#### I. EXPERIMENTAL RESULTS

This section focuses on the experimental setup, dataset generation, dataset preprocessing, performance of different models, and comparison of their performance.

## A. Experimental Setup

The dataset is generated using PAT-Noxim and a shell script.PAT Noxim is a cycle-accurate simulator used to analyze power, area, and thermal metrics in networks-on-chip (NoC) architectures. The entire experiment is executed on a computer setup with the configurations: HP HP EliteDesk 800 G8 Tower PC, 16.0 GiB memory, 11th Gen Intel® Core™ i5-11500 @ 2.70GHz × 12 graphics, Mesa Intel® Graphics (RKL GT1), 1.0 TB disk capacity and Ubuntu 22.04.4 LTS.

#### B. Dataset Generation

The parameters used in NoC architecture configuration are as follows.

- dimx/ dimy/ dimz: Represents the dimensions of the NoC architecture in X, Y, and Z directions.
- **PIR** (**Packet Injection Rate**): The rate at which packets are injected into the network.
- **Buffer Size**: Storage capacity of the input buffers in each router
- **Routing Type**: Represents the packet routing algorithms, such as XYZ routing, OE 3D, or Fully adaptive routing.
  - XYZ (XYZ Routing): Packets are routed in three dimensions sequentially.
  - OE3D (Odd-Even 3D Routing): Extends the 2D odd-even routing strategy to three dimensions.
  - Fully Adaptive Routing: The path of each packet is determined based on congestion and link availability.
- **Traffic Type**: Represents the data traffic pattern in the network, such as Random.
  - Random Traffic: The source-destination pairs for packet communication are selected randomly.
- Cycles: Represents the number of simulation cycles the simulator runs.

The dataset is generated by simulating various configurations on PAT-Noxim. The configurations include mesh sizes ranging from 2 x 2 x 2 to 16 x 16 x 2, pir values from 0.01 to 0.1

with step size of 0.01, and buffer sizes 4, 6, 8, and 10. Three different routing algorithms are used: XYZ, Fully Adaptive, and Odd-Even 3D. The simulations are run for 200000 cycles. The traffic considered is Random.

The simulation output of PAT Noxim consists of the following parameters:

- **Steady State Temperature**: Refers to the final, stabilized temperature reached by the NoC system.
- Core Average Temperature: Represents the average temperature of all the processing cores in the NoC.
- Memory Average Temperature: Represents the average temperature of the memory units integrated within the NoC.
- **Router Average Temperature**: Represents the average temperature of all routers in the NoC.
- Average Power: Represents the total average power consumption of the NoC system.
- Average Core Power: Represents the average power consumption of all cores in the NoC.
- Average Router Power: Represents the average power consumption of the routers in the NoC.
- Average Power Per Router: Refers to the average power consumption per router in the NoC.
- Layer Area: Refers to the area occupied by a single layer in a 3D NoC.
- **Total Area**: The overall area used by the entire NoC system.
- Area Per Core: Refers to the area of each individual core in the NoC system.

## C. Data Preprocessing

The simulation results of PAT-Noxim include various metrics. The parameters considered in this experiment are power metrics such as average power, average core power, average router power, and average power per router; area metrics such as layer area, area per core, and total area; temperature metrics such as steady state temperature, core average temperature, memory average temperature, and router average temperature. The categorical column, such as the routing algorithm, is encoded. The dataset is split into training and test sets (80% train and 20% test). The parameters are standardized to the same scale, which improves the performance of ML models.

## D. Experiments conducted

The generated dataset is trained using AdaBoost with Decision Tree as the model. Decision tree regressor is used as a weak learner for the AdaBoost technique. Decision trees are non-linear models that split data based on feature values to predict a target. They are effective for modeling complex relationships between NoC parameters, which makes them ideal for use as base learners for AdaBoost. AdaBoost is an ensemble technique. It assigns weight to misclassified data points so subsequent learners focus on these more complex examples, thus improving accuracy.

The performance of the AdaBoost with decision tree model is then evaluated against a few other models that are trained on the same dataset. The models used are:

- · Random Forest
- Decision Tree
- AdaBoost
- Support Vector Regressor (SVR)
- Linear Regression
- K-Nearest Neighbors
- 9-Layer CNN
- RNN (LSTM)
- Feedforward Neural Network(FNN)

# E. Performance Metrics

The performance metrics used for evaluating the performance of different models are:

• Mean Squared Error (MSE): Measures the average squared difference between the predicted values  $(\hat{y}_i)$  and actual values  $(y_i)$ .

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Mean Absolute Error (MAE): Measures the average of the absolute differences between the predicted values  $(\hat{y}_i)$  and actual values  $(y_i)$ .

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

•  ${\bf R}^2$  (Coefficient of Determination): Represents the proportion of variance in the dependent variable  $(y_i)$  explained by the independent variables, where  $\bar{y}$  is the mean of the actual values.

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

## F. Results Analysis

1) Temperature Analysis: This section analyzes temperature-related parameters such as steady-state temperature, core average temperature, memory average temperature, and router average temperature. Tables I and II analyze layer one and layer two steady-state temperatures. Layer one and two core average temperature metrics are provided in Tables III and IV. Tables V and VI analyze layer one and layer two memory average temperatures. Layer one and two router average temperature metrics are provided in Tables VII and VIII.

TABLE I: Performance Metrics for Different Algorithms - steady\_state\_temp\_L0

| Algorithm                   | MSE    | MAE    | $R^2$  |
|-----------------------------|--------|--------|--------|
| AdaBoost with Decision Tree | 0.0011 | 0.0125 | 0.9989 |
| Random Forest               | 0.0012 | 0.0154 | 0.9987 |
| Decision Tree               | 0.0021 | 0.0171 | 0.9978 |
| KNN                         | 0.0380 | 0.1171 | 0.9604 |
| SVR                         | 0.0613 | 0.1250 | 0.9362 |
| AdaBoost                    | 0.1979 | 0.3712 | 0.7939 |
| Linear Regression           | 0.4100 | 0.4848 | 0.5731 |
| 9-Layer CNN                 | 0.0252 | 0.0975 | 0.9737 |
| RNN (LSTM)                  | 0.0181 | 0.0813 | 0.9812 |
| FNN                         | 0.0360 | 0.1298 | 0.9635 |

TABLE II: Performance Metrics for Different Algorithms - steady\_state\_temp\_L1

| Algorithm                   | MSE    | MAE    | $R^2$  |
|-----------------------------|--------|--------|--------|
| AdaBoost with Decision Tree | 0.0011 | 0.0127 | 0.9988 |
| Random Forest               | 0.0012 | 0.0153 | 0.9987 |
| Decision Tree               | 0.0020 | 0.0169 | 0.9979 |
| KNN                         | 0.0383 | 0.1175 | 0.9601 |
| SVR                         | 0.0622 | 0.1252 | 0.9353 |
| AdaBoost                    | 0.1931 | 0.3624 | 0.7990 |
| Linear Regression           | 0.4123 | 0.4862 | 0.5709 |
| 9-Layer CNN                 | 0.0254 | 0.0981 | 0.9736 |
| RNN (LSTM)                  | 0.0177 | 0.0801 | 0.9816 |
| FNN                         | 0.0362 | 0.1301 | 0.9633 |

TABLE III: Performance Metrics for Different Algorithms - core\_avg\_temp\_L0

| Algorithm                                      | MSE                        | MAE                        | $\mathbb{R}^2$                       |
|------------------------------------------------|----------------------------|----------------------------|--------------------------------------|
| AdaBoost with Decision Tree                    | 0.0077                     | 0.0415                     | 0.9922                               |
| Random Forest                                  | 0.0069                     | 0.0436                     | 0.9930                               |
| Decision Tree                                  | 0.0106                     | 0.0506                     | 0.9892                               |
| AdaBoost                                       | 0.3740                     | 0.4481                     | 0.6203                               |
| KNN                                            | 0.2283                     | 0.2017                     | 0.7683                               |
| SVR                                            | 0.4741                     | 0.2536                     | 0.5188                               |
| Linear Regression                              | 0.6070                     | 0.4970                     | 0.3839                               |
| 9-Layer CNN                                    | 0.0276                     | 0.1096                     | 0.9720                               |
| RNN (LSTM)                                     | 0.0398                     | 0.1269                     | 0.9596                               |
| FNN                                            | 0.0378                     | 0.1323                     | 0.9627                               |
| Linear Regression<br>9-Layer CNN<br>RNN (LSTM) | 0.6070<br>0.0276<br>0.0398 | 0.4970<br>0.1096<br>0.1269 | 0.5188<br>0.3839<br>0.9720<br>0.9596 |

- 2) Power Analysis: This section analyzes power-related parameters such as average power, average core power, average power per router, and average router power. Table IX analyzes the average core power. Average power metrics are provided in Table X. Table XI analyzes the average power per router. Average router power metrics are provided in Table XII.
- 3) Area Analysis: This section analyzes area-related parameters such as layer area, total area, and area per core. Table XIII analyzes the layer area. Total area metrics are provided in Table XIV. Table XV analyzes the area per core.

#### G. Comparison study

1) Temperature Analysis: This section compares the performance of different models across parameters such as steady-state temperature, core average temperature, memory average

TABLE IV: Performance Metrics for Different Algorithms - core\_avg\_temp\_L1

| Algorithm                   | MSE    | MAE    | $R^2$  |
|-----------------------------|--------|--------|--------|
| AdaBoost with Decision Tree | 0.0034 | 0.0267 | 0.9966 |
| Random Forest               | 0.0027 | 0.0265 | 0.9973 |
| Decision Tree               | 0.0043 | 0.0307 | 0.9958 |
| SVR                         | 0.3460 | 0.2720 | 0.6582 |
| KNN                         | 0.2191 | 0.2000 | 0.7835 |
| AdaBoost                    | 0.2557 | 0.4098 | 0.7474 |
| Linear Regression           | 0.9037 | 0.5865 | 0.1072 |
| 9-Layer CNN                 | 0.0213 | 0.0898 | 0.9790 |
| RNN (LSTM)                  | 0.0229 | 0.0896 | 0.9774 |
| FNN                         | 0.0310 | 0.1200 | 0.9696 |

TABLE V: Performance Metrics for Different Algorithms -

| Algorithm                   | MSE    | MAE    | $\mathbb{R}^2$ |
|-----------------------------|--------|--------|----------------|
| AdaBoost with Decision Tree | 0.0064 | 0.0432 | 0.9936         |
| Random Forest               | 0.0051 | 0.0398 | 0.9949         |
| Decision Tree               | 0.0082 | 0.0471 | 0.9918         |
| KNN                         | 0.4311 | 0.2576 | 0.5710         |
| AdaBoost                    | 0.1985 | 0.3481 | 0.8025         |
| SVR                         | 0.9742 | 0.3193 | 0.0304         |
| Linear Regression           | 0.8829 | 0.4742 | 0.1213         |
| 9-Layer CNN                 | 0.0349 | 0.1198 | 0.9653         |
| RNN (LSTM)                  | 0.0323 | 0.1170 | 0.9679         |
| FNN                         | 0.0510 | 0.1589 | 0.9511         |

mem\_avg\_temp\_L0

TABLE VI: Performance Metrics for Different Algorithms - mem\_avg\_temp\_L1

| Algorithm                   | MSE    | MAE    | $R^2$  |
|-----------------------------|--------|--------|--------|
| AdaBoost with Decision Tree | 0.0020 | 0.0212 | 0.9980 |
| Random Forest               | 0.0017 | 0.0198 | 0.9983 |
| Decision Tree               | 0.0030 | 0.0235 | 0.9971 |
| KNN                         | 0.2512 | 0.2029 | 0.7556 |
| AdaBoost                    | 0.1464 | 0.2762 | 0.8576 |
| SVR                         | 0.3990 | 0.2770 | 0.6118 |
| Linear Regression           | 1.0030 | 0.5763 | 0.0242 |
| 9-Layer CNN                 | 0.0195 | 0.0804 | 0.9810 |
| RNN (LSTM)                  | 0.0166 | 0.0774 | 0.9838 |
| FNN                         | 0.0314 | 0.1182 | 0.9695 |
|                             |        |        |        |

TABLE VII: Performance Metrics for Different Algorithms - router\_avg\_temp\_L0

| Algorithm                   | MSE    | MAE    | $R^2$  |
|-----------------------------|--------|--------|--------|
| AdaBoost with Decision Tree | 0.0047 | 0.0313 | 0.9952 |
| Random Forest               | 0.0050 | 0.0362 | 0.9950 |
| Decision Tree               | 0.0075 | 0.0413 | 0.9925 |
| KNN                         | 0.2341 | 0.1797 | 0.7651 |
| AdaBoost                    | 0.2079 | 0.3494 | 0.7915 |
| SVR                         | 0.5236 | 0.2204 | 0.4748 |
| Linear Regression           | 0.5870 | 0.4415 | 0.4112 |
| 9-Layer CNN                 | 0.0233 | 0.0906 | 0.9766 |
| RNN (LSTM)                  | 0.0229 | 0.0940 | 0.9770 |
| FNN                         | 0.0416 | 0.1258 | 0.9593 |

TABLE VIII: Performance Metrics for Different Algorithms - router\_avg\_temp\_L1

| Algorithm                   | MSE    | MAE    | $\mathbb{R}^2$ |
|-----------------------------|--------|--------|----------------|
| AdaBoost with Decision Tree | 0.0020 | 0.0193 | 0.9981         |
| Random Forest               | 0.0020 | 0.0211 | 0.9981         |
| Decision Tree               | 0.0033 | 0.0244 | 0.9968         |
| KNN                         | 0.2300 | 0.1786 | 0.7807         |
| AdaBoost                    | 0.1616 | 0.3120 | 0.8459         |
| SVR                         | 0.3708 | 0.2496 | 0.6464         |
| Linear Regression           | 0.9080 | 0.5579 | 0.1340         |
| 9-Layer CNN                 | 0.0156 | 0.0688 | 0.9851         |
| RNN (LSTM)                  | 0.0155 | 0.0653 | 0.9853         |
| FNN                         | 0.0379 | 0.0851 | 0.9630         |
|                             |        |        |                |

TABLE IX: Performance Metrics for Different Algorithms - avg\_cores\_power

| Algorithm                   | MSE    | MAE    | $R^2$  |
|-----------------------------|--------|--------|--------|
| AdaBoost with Decision Tree | 0.0004 | 0.0063 | 0.9996 |
| Random Forest               | 0.0004 | 0.0076 | 0.9996 |
| Decision Tree               | 0.0007 | 0.0081 | 0.9993 |
| SVR                         | 0.0027 | 0.0429 | 0.9974 |
| KNN                         | 0.0062 | 0.0614 | 0.9939 |
| AdaBoost                    | 0.0695 | 0.2264 | 0.9309 |
| Linear Regression           | 0.1159 | 0.2551 | 0.8849 |
| 9-Layer CNN                 | 0.0043 | 0.0497 | 0.9958 |
| RNN (LSTM)                  | 0.0030 | 0.0390 | 0.9970 |
| FNN                         | 0.0004 | 0.0076 | 0.9996 |

TABLE X: Performance Metrics for Different Algorithms - avg\_power

| Algorithm                   | MSE    | MAE    | $R^2$  |
|-----------------------------|--------|--------|--------|
| AdaBoost with Decision Tree | 0.0007 | 0.0086 | 0.9993 |
| Random Forest               | 0.0007 | 0.0101 | 0.9993 |
| Decision Tree               | 0.0012 | 0.0108 | 0.9988 |
| SVR                         | 0.0029 | 0.0427 | 0.9971 |
| KNN                         | 0.0066 | 0.0611 | 0.9933 |
| AdaBoost                    | 0.1072 | 0.2854 | 0.8927 |
| Linear Regression           | 0.1355 | 0.2651 | 0.8644 |
| 9-Layer CNN                 | 0.0045 | 0.0499 | 0.9955 |
| RNN (LSTM)                  | 0.0039 | 0.0424 | 0.9961 |
| FNN                         | 0.0006 | 0.0096 | 0.9994 |

TABLE XI: Performance Metrics for Different Algorithms - avg\_power\_per\_router

| Algorithm                   | MSE    | MAE    | $R^2$  |
|-----------------------------|--------|--------|--------|
| AdaBoost with Decision Tree | 0.0040 | 0.0204 | 0.9959 |
| Random Forest               | 0.0079 | 0.0371 | 0.9919 |
| KNN                         | 0.0080 | 0.0368 | 0.9918 |
| Decision Tree               | 0.0121 | 0.0393 | 0.9877 |
| SVR                         | 0.0143 | 0.0796 | 0.9854 |
| AdaBoost                    | 0.1188 | 0.2933 | 0.8785 |
| Linear Regression           | 0.1873 | 0.3189 | 0.8085 |
| 9-Layer CNN                 | 0.0139 | 0.0795 | 0.9858 |
| RNN (LSTM)                  | 0.0197 | 0.0947 | 0.9799 |
| FNN                         | 0.0063 | 0.0337 | 0.9936 |

TABLE XII: Performance Metrics for Different Algorithms - avg\_routers\_power

| Algorithm                   | MSE    | MAE    | $R^2$  |
|-----------------------------|--------|--------|--------|
| AdaBoost with Decision Tree | 0.0012 | 0.0123 | 0.9987 |
| Random Forest               | 0.0023 | 0.0170 | 0.9976 |
| Decision Tree               | 0.0034 | 0.0186 | 0.9965 |
| SVR                         | 0.0058 | 0.0494 | 0.9941 |
| KNN                         | 0.0085 | 0.0552 | 0.9913 |
| AdaBoost                    | 0.2717 | 0.4722 | 0.7219 |
| Linear Regression           | 0.2406 | 0.3368 | 0.7537 |
| 9-Layer CNN                 | 0.0066 | 0.0550 | 0.9933 |
| RNN (LSTM)                  | 0.0075 | 0.0504 | 0.9923 |
| FNN                         | 0.0019 | 0.0159 | 0.9981 |

TABLE XIII: Performance Metrics for Different Algorithms - layer\_area

| Algorithm                   | MSE      | MAE      | $R^2$  |
|-----------------------------|----------|----------|--------|
| AdaBoost with Decision Tree | 3.37E-32 | 2.77E-17 | 1.0000 |
| Random Forest               | 8.04E-05 | 0.0029   | 0.9999 |
| Decision Tree               | 0.0003   | 0.0025   | 0.9997 |
| SVR                         | 0.0041   | 0.0568   | 0.9960 |
| KNN                         | 0.0057   | 0.0594   | 0.9944 |
| AdaBoost                    | 0.0335   | 0.1462   | 0.9673 |
| Linear Regression           | 0.1023   | 0.2403   | 0.9000 |
| 9-Layer CNN                 | 0.0042   | 0.0493   | 0.9959 |
| RNN (LSTM)                  | 0.0025   | 0.0375   | 0.9976 |
| FNN                         | 0.0001   | 0.0036   | 0.9999 |

TABLE XIV: Performance Metrics for Different Algorithms - total\_area

| Algorithm                   | MSE      | MAE      | $\mathbb{R}^2$ |
|-----------------------------|----------|----------|----------------|
| AdaBoost with Decision Tree | 1.81E-10 | 6.88E-07 | 1.0000         |
| Random Forest               | 8.04E-05 | 0.0029   | 0.9999         |
| Decision Tree               | 0.0003   | 0.0025   | 0.9997         |
| SVR                         | 0.0041   | 0.0568   | 0.9960         |
| KNN                         | 0.0057   | 0.0594   | 0.9944         |
| AdaBoost                    | 0.0333   | 0.1469   | 0.9674         |
| Linear Regression           | 0.1023   | 0.2403   | 0.9000         |
| 9-Layer CNN                 | 0.0043   | 0.0504   | 0.9957         |
| RNN (LSTM)                  | 0.0023   | 0.0354   | 0.9977         |
| FNN                         | 0.0001   | 0.0036   | 0.9999         |

TABLE XV: Performance Metrics for Different Algorithms - area\_per\_core

| Algorithm                   | MSE | MAE | $R^2$ |
|-----------------------------|-----|-----|-------|
| AdaBoost with Decision Tree | 0   | 0   | 1     |
| AdaBoost                    | 0   | 0   | 1     |
| Random Forest               | 0   | 0   | 1     |
| Decision Tree               | 0   | 0   | 1     |
| SVR                         | 0   | 0   | 1     |
| KNN                         | 0   | 0   | 1     |
| Linear Regression           | 0   | 0   | 1     |
| 9-Layer CNN                 | 0   | 0   | 1     |
| RNN (LSTM)                  | 0   | 0   | 1     |
| FNN                         | 0   | 0   | 1     |

temperature, and router average temperature. After studying Tables I and II, it is evident that AdaBoost with Decision Tree and Random Forest achieved minimal errors (MSE, MAE) and the highest  $R^2$  values ( $\geq 0.998 \geq 0.998$ ) for both layers. Algorithms like KNN and SVR had higher errors and lower  $R^2$  values. Tables III, IV, V, VI, VII, and VIII show that AdaBoost with Decision Tree and Random Forest performs well with minimal MSE and MAE values and  $R^2$  values close to 1 across both layers. Linear regression and SVR show the worst performance.

- 2) Power Analysis: This section compares the performance of different models across parameters such as average power, average core power, average power per router, and average router power. After studying Table IX, it is evident that AdaBoost with Decision Tree and Random Forest show close to zero errors (MSE, MAE) and the highest  $R^2$  values ( $\geq$ 0.99). Algorithms like Linear regression and KNN had higher errors and lower  $R^2$  values. Tables X, XII, and XI show that AdaBoost with Decision Tree performs better than all other algorithms with minimal MSE and MAE values and  $R^2$  values close to 1 for average power metrics. Linear regression and KNN show the worst performance with relatively high errors.
- 3) Area Analysis: This section compares the performance of different models across parameters such as layer area, total area, and area per core. After studying Tables XIII and XIV, it is evident that AdaBoost with Decision Tree and Random Forest show near-perfect performance with close to zero errors (MSE, MAE) and  $R^2$  values close to 1. Algorithms like SVR and KNN had higher errors and lower  $R^2$  values. Table XV shows that all algorithms made perfect predictions with MSE and MAE values as 0 and  $R^2$  value as 1 because the area per core is a constant value.

AdaBoost with Decision Tree and Random Forest consistently outperformed all other models with the lowest MSE and MAE values and the highest  $R^2$  values across the prediction of all the power, area, and thermal metrics. Random Forest shows slightly less performance than AdaBoost with Decision Tree. Linear Regression and SVR show the worst performance with higher errors and low  $R^2$  values. It is concluded that AdaBoost with Decision Tree is the most consistent and accurate model among all other models. This model works by training a series of 50 decision trees, each aimed at reducing the overall prediction error. Each round assigns higher weights to the samples, which are hard to predict. The subsequent trees give more importance to those challenging cases. The final prediction is the aggregation of each tree, which overall makes a robust prediction model.

Figures 1 to 7 compare actual values from PAT Noxim and predicted values from the AdaBoost model with the decision tree. The blue dots are individual data points from the test dataset, where each dot shows how closely the model's predictions match the actual values. The red dashed line represents the ideal fit where the model's predictions match the actual values. If points are closely clustered around the red line, this suggests that the model's predictions are relatively accurate. A larger spread from the red line indicates higher prediction

errors. Figures 1 to 4 show that the actual and predicted values are almost identical for the temperature parameters. Temperature is measured in degrees Celsius. The blue points and red lines are nearly perfectly aligned. Figures 5 and 6 illustrate that the predicted and actual values are perfectly aligned, highlighting the effectiveness of the AdaBoost model with the decision tree in predicting power values. Power is calculated in (J/cycle). Figure 7 demonstrates that the area is perfectly predicted by the AdaBoost model with the decision tree. The area is measured in  $(\mu m^2)$ .



(a) Actual vs Predicted for (b) Actual vs Predicted for steady\_state\_temp\_L0 steady\_state\_temp\_L1

Fig. 1: Actual vs Predicted for steady\_state\_temp\_L0 and steady\_state\_temp\_L1



(a) Actual vs Predicted for (b) Actual vs Predicted for router\_avg\_temp\_L0 router\_avg\_temp\_L1

Fig. 2: Actual vs Predicted for router\_avg\_temp\_L0 and router\_avg\_temp\_L1



(a) Actual vs Predicted for (b) Actual vs Predicted for core\_avg\_temp\_L0 core\_avg\_temp\_L1

Fig. 3: Actual vs Predicted for core\_avg\_temp\_L0 and core\_avg\_temp\_L1





(a) Actual vs Predicted for (b) Actual vs Predicted for mem\_avg\_temp\_L0 mem\_avg\_temp\_L1

Fig. 4: Actual vs Predicted for mem\_avg\_temp\_L0 and mem\_avg\_temp\_L1





(a) Actual vs Predicted for (b) Actual vs Predicted for avg\_power\_per\_router avg\_power

Fig. 5: Actual vs Predicted for avg\_power\_per\_router and avg\_power





(a) Actual vs Predicted for (b) Actual vs Predicted for avg\_cores\_power avg\_routers\_power

Fig. 6: Actual vs Predicted for avg\_cores\_power and avg\_routers\_power





(a) Actual vs Predicted for (b) Actual vs Predicted for tolayer\_area tal\_area

Fig. 7: Actual vs Predicted for layer\_area and total\_area

## H. Execution Time Comparison

The prediction time of the AdaBoost with Decision Tree model is compared with the simulation time of PAT Noxim simulator for various configurations. The configurations include squure mesh sizes ranging from 2 x 2 x 2 to 16 x 16 x 2, pir value of 0.1 and buffer size 8. The routing algorithm are used is XYZ. The simulations are run for 200000 cycles. The traffic considered is Random. The time is recorded in seconds.

| Mesh Size | PAT Noxim (s) | Proposed Method (s) |
|-----------|---------------|---------------------|
| 2x2x2     | 13            | 0.3359              |
| 3x3x2     | 13            | 0.3069              |
| 4x4x2     | 18            | 0.4791              |
| 5x5x2     | 26            | 0.5367              |
| 6x6x2     | 33            | 0.3252              |
| 7x7x2     | 47            | 0.5013              |
| 8x8x2     | 78            | 0.3649              |
| 9x9x2     | 158           | 0.3459              |
| 10x10x2   | 231           | 0.1781              |
| 11x11x2   | 318           | 0.4136              |
| 12x12x2   | 443           | 0.3890              |
| 13x13x2   | 539           | 0.3383              |
| 14x14x2   | 673           | 0.2346              |
| 15x15x2   | 833           | 0.2697              |
| 16x16x2   | 992           | 0.4806              |

TABLE XVI: Simulation time for PAT Noxim and prediction time for the proposed method across different mesh sizes.

It is observed from Table XVI that the predicted time of the proposed method is much less compared to the simulation time for the PAT Noxim simulator.

## I. Scalability

The PAT Noxim simulator can only simulate a restricted range of mesh sizes up to 16 x 16 x 2. In comparison to the PAT Noxim, the proposed method can predict Power, Area, and Thermal metrics for much larger mesh sizes. The configurations include pir value of 0.05 and buffer size 10. The routing algorithm are used is XYZ. The results of predictions for higher configurations are given in Table XVII.

| Parameter            | 32*32*2      | 50*50*2      | 64*64*2      |
|----------------------|--------------|--------------|--------------|
| Steady State Temp L0 | 395.228485   | 441.352966   | 481.141815   |
| Steady State Temp L1 | 378.136719   | 402.036530   | 425.022980   |
| Router Avg Temp L0   | 29.939732    | 31.092331    | 32.057034    |
| Router Avg Temp L1   | 28.664806    | 29.063614    | 29.503901    |
| Core Avg Temp L0     | 26.688856    | 26.758017    | 26.829973    |
| Core Avg Temp L1     | 26.616013    | 26.842722    | 27.072412    |
| Mem Avg Temp L0      | 25.991127    | 26.057503    | 26.102097    |
| Mem Avg Temp L1      | 25.969568    | 26.130873    | 26.268902    |
| Total Area           | 3.295609e+09 | 5.513879e+09 | 7.208206e+09 |
| Avg Power            | 3.00e-06     | 4.00e-06     | 5.00e-06     |
| Avg Cores Power      | 2.00e-06     | 3.00e-06     | 4.00e-06     |
| Avg Routers Power    | 7.01e-07     | 1.00e-06     | 1.00e-06     |
| Avg Power Per Router | 9.69e-10     | 1.22e-09     | 1.44e-09     |
| Layer Area           | 1644980000   | 2725601000   | 3552910000   |
| Area Per Core        | 4695230      | 4695230      | 4695230      |

TABLE XVII: Higher Configuration Results for Different Dimensions

## J. Adaptability

1) Adaptability to routing algorithms: The proposed method is capable of predicting for configurations that include different routing algorithms such as XYZ, OE 3D, and Fully Adaptive routing. Tables XVIII, XIX, and XX represent the predicted results of the proposed model and simulation results of PAT Noxim with XYZ, OE 3D, and Fully Adaptive as routing algorithms for the following configurations: Mesh size 8 x 8 x 2, buffer size 10, PIR 0.05, minimum packet size 4, maximum packet size 8, and traffic type random.

| Parameter            | Proposed Method | PAT Noxim    |
|----------------------|-----------------|--------------|
| Steady State Temp L0 | 167.580813      | 167.580813   |
| Steady State Temp L1 | 165.214625      | 165.474859   |
| Router Avg Temp L0   | 29.136848       | 29.136848    |
| Router Avg Temp L1   | 28.640883       | 28.640883    |
| Core Avg Temp L0     | 26.962495       | 26.962495    |
| Core Avg Temp L1     | 26.725548       | 26.726645    |
| Mem Avg Temp L0      | 26.008092       | 26.008092    |
| Mem Avg Temp L1      | 25.879767       | 25.879767    |
| Total Area           | 304998000.0     | 304998000.0  |
| Avg Power            | 3.073450e-07    | 3.073450e-07 |
| Avg Cores Power      | 2.224900e-07    | 2.226330e-07 |
| Avg Routers Power    | 8.526710e-08    | 8.526710e-08 |
| Avg Power Per Router | 6.661490e-10    | 6.661490e-10 |
| Layer Area           | 152499000.0     | 152499000.0  |
| Area Per Core        | 4695230.0       | 4695230.0    |

TABLE XVIII: XYZ Routing

| Parameter            | Proposed Method | PAT Noxim    |
|----------------------|-----------------|--------------|
| Steady State Temp L0 | 124.186594      | 124.186594   |
| Steady State Temp L1 | 122.930750      | 122.930750   |
| Router Avg Temp L0   | 26.989448       | 26.989448    |
| Router Avg Temp L1   | 26.759092       | 26.759092    |
| Core Avg Temp L0     | 26.195203       | 26.195203    |
| Core Avg Temp L1     | 26.057848       | 26.057848    |
| Mem Avg Temp L0      | 25.795822       | 25.795822    |
| Mem Avg Temp L1      | 25.700916       | 25.700916    |
| Total Area           | 304998000.0     | 304998000.0  |
| Avg Power            | 2.051910e-07    | 2.051910e-07 |
| Avg Cores Power      | 1.617970e-07    | 1.615370e-07 |
| Avg Routers Power    | 4.365420e-08    | 4.365420e-08 |
| Avg Power Per Router | 3.410490e-10    | 3.410490e-10 |
| Layer Area           | 152499000.0     | 152499000.0  |
| Area Per Core        | 4695230.0       | 4695230.0    |

TABLE XIX: OE 3D Routing

2) Adaptability to 2D: The proposed method is capable of predicting Power, Area, and Thermal metrics for 2D mesh sizes as shown in Table XXI.

| Parameter            | Proposed Method | PAT Noxim    |
|----------------------|-----------------|--------------|
| Steady State Temp L0 | 105.046969      | 105.053375   |
| Steady State Temp L1 | 104.180359      | 104.180359   |
| Router Avg Temp L0   | 26.174891       | 26.174891    |
| Router Avg Temp L1   | 26.033525       | 26.033525    |
| Core Avg Temp L0     | 25.92038        | 25.92038     |
| Core Avg Temp L1     | 25.812806       | 25.812806    |
| Mem Avg Temp L0      | 25.739359       | 25.739359    |
| Mem Avg Temp L1      | 25.651266       | 25.651266    |
| Total Area           | 304998000.0     | 304998000.0  |
| Avg Power            | 1.602690e-07    | 1.602880e-07 |
| Avg Cores Power      | 1.348980e-07    | 1.348900e-07 |
| Avg Routers Power    | 2.538780e-08    | 2.538780e-08 |
| Avg Power Per Router | 1.982700e-10    | 1.983420e-10 |
| Layer Area           | 152499000.0     | 152499000.0  |
| Area Per Core        | 4695230.0       | 4695230.0    |

TABLE XX: Fully Adaptive Routing

| Parameter            | Value        |
|----------------------|--------------|
| Dim X                | 4            |
| Dim Y                | 4            |
| Buffer Size          | 10           |
| Packet Size Min      | 4            |
| Packet Size Max      | 8            |
| Routing Type         | XYZ          |
| Selection Strategy   | Thermal      |
| Traffic Type         | Random       |
| Injection Rate       | 0.05         |
| Steady State Temp L0 | 99.3473      |
| Router Avg Temp L0   | 27.754863    |
| Core Avg Temp L0     | 26.844844    |
| Mem Avg Temp L0      | 25.852469    |
| Total Area           | 76249500.0   |
| Avg Power            | 7.773150e-08 |
| Avg Cores Power      | 6.081240e-08 |
| Avg Routers Power    | 1.691910e-08 |
| Avg Power Per Router | 5.287230e-10 |
| Layer Area           | 38124800.0   |
| Area Per Core        | 4695230.0    |

TABLE XXI: Results for 2D mesh size