

YILDIZ TECHNICAL UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

STORAGE ROOM PROJECT

18065037 Hakan Aktaş

PROJECT 2 PREPARED AT HEAT PROCESS DIVISION

Advisor: Research Assistant, Ahmet, Doğan

STORAGE ROOM PROJECT

18065037 Hakan Aktaş

PROJECT 2 PREPARED AT HEAT PROCESS DIVISION

Advisor: Research Assistant, Ahmet, Doğan

CONTENDS

List of Symbols	2
List of Figures	2
List of Tables	2
ABSTRACT	3
1-DEFINING AND DETERMINING THE PROBLEM	3
2 DIMENSIONING	6
2-1 Determining a Suitable Fishsafe	6
2-2 Determining Number of Safe	6
2-3 Determining Number of Columns	7
2-4 Selecting Paddle and Safety Check	7
3 HEAT TRANSFER CALCULATIONS	10
3-1 Isolation	10
3-2 Infiltration Heat	13
3-3 Heat Caused by Productions	14
3-4 Other Heat Occurrences	15
4 – EQUIPMENT SELECTION	17
4-1 Suitability of Evoporator	17
4 - 2 Condenser and Compressor Selections	19
5-PIPING	22
Poforoncos	24

List of	Symbols	
°C	Celcius	
k	Heat Transfer Coefficient [kcal/hour°Cm^2]	
Q	Heat Transfer Rate / Work [kcal/day , Joule/day , Joule/second]	
A	Area [m^2]	
C	Specific Heat [kj/kg.K, kcal/kg.K]	
h	Enthalpy [kj/kg, kcal/kg]	
ṁ	Mass Flow Rate [kg/second , kg/hour]	
p	Density [kg/m^3]	
D	Diameter [m]	
List of	Figures	
Figure 1	L Technical Drawing of Safe	7
Figure 2	2 Technical Drawing of Paddle	8
-	3 Sketch of Storageroom	
_	4 Calculation of Heat Transfer Coefficient	
Figure 5	5 Inner and Outer Walls	11
Figure 6	6 Ceiling and Ground	12
_	7 Psychometric Diagram	
Figure 8	3 Cooling Formula	14
Figure 9	Instructions of SC2 Standarts	18
-	10 P/h diagram of R134a Cycle	
_	11 Technical Drawing of Condenser	
Figure 1	12 Engine Room	23
List of	Tables	
Table 1	Temperature Values of Cities	5
	Properties of Foods	
Table 3	Tempreature Differences	6
Table 4	Adjacent Temperatures	6
Table 5	k Values of Materials	11
	Heat Transfer Through the Surfaces	
	Air Change Table	
	Heat Load Caused by People	
	Heat Loads of Lighting Options	
	O Capacity Table of Evoporator	
	1 Heat Caused by Electricmotor	
	2 Standarts	
	3 Correction Tables for Coolers	
	4 Eurovent Table	
	5 Condenser Properties	
Table 1	6 Condenser Measurements	21

ABSTRACT

A cold room is a type of refrigeration chamber or insulated space designed to maintain an

artificially generated temperature or range of temperatures. Cold rooms are used for storing

temperature-sensitive, perishable items, such as food items and pharmaceutical products like

vaccines. Cold rooms can vary in size from very small walk-in rooms to very large warehouse

storage.

Cold rooms provide precise temperature control for commercial facilities where consistent,

powerful refrigeration or freezing is required. For food or chemical storage, this means long-

term temperature regulation for perishable or unstable products, lowered deterioration rates,

and peace of mind knowing that items are preserved in the optimal conditions.

In universe it's clear that things are tend to actualize in certain ways or even follow some

certain paths and it's safe to say that this concept applies to heat transfer as well.

As for the heat transfer it can be obversed that the energy (heat) is tend to move from warmer

material to colder material. As a result of this relationship between these objects colder

material becomes warmer. Depends on the demandings and conditions it can be both

beneficial or detrimental. Since we aim for storaging fish in our project avoiding of heat

transfer is required.

Avoiding of heat transfer is somewhat incorrect way to explain because heat transfer is going

to take place in either way. The thing that we engineers are executing is "slowing down (by

isolation) the heat transfer" and "cooling the room with the help of cooling instruments".

1-DEFINING AND DETERMINING THE PROBLEM

In this project storaging of 200 tons of fish has been demanded but of course without other

variables we can't get any reasonable results so at this stage we are going to assign some

requested values. (Most of these values has been taken from tables that shown in the textbook

of Nuri Özkol (Uygulamalı Soğutma Tekniği)).

✓ LOCATION (Table 1)

LOCATION :City of Samsun

DRYBULB TEMPERATURE : 32 °C

WETBULB TEMPERATURE: 25 °C

RELATIVE HUMIDITY: %50

✓ STORAGING PROPERTIES (Table 2)

3

STORAGEROOM TEMPERATURE: 1 °C RELATIVE HUMIDITY: %90

STORAGE TIME: 7 DAYS

✓ PRODUCT PROPERTIES (Table 2)

FREEZING POINT: -2,2 °C, SPECIFIC HEAT: 3,35 kilojoules/kg.°C (Before freezing)

✓ ADJACENT ROOMS AND CEILING TEMPERATURES (Table 4)

ENGINE ROOM: 42 °C

OFFICE AND WC: 12 °C

CEILING: 20 °C

✓ TEMPERATURE DIFFERENCES CAUSED BY SUN TIME (Table 3 light coloured)

FOR NORTH SIDES : $\Delta t = 0$ °C

FOR SOUTH SIDES: $\Delta t = +2$ °C

FOR EAST SIDES : $\Delta t = +3$ °C

FOR WEST SIDES : $\Delta t = +3$ °C

Şehir Adı	Kuru Term "C	Yaş Terin •C	Şehir Adı	Kuru Term •c	Yaş Term "C
Adana (Şehir)	38	26	İstanbul	3 3	2 4
Adıyaman	38	22	İzmir	3 7	2.5
Afyon	34	21	Kars	30	20
Ağrı	3 4	25	Kastamonu	3 4	22
Amasya	31	21	Kayseri	36	2 3
Ankara	3.5	21	Kırklareli	3.5	2.5
Antalya	39	28	Kırşehir	35	21
Artvin	30	26	Kocaeli (İzmit)	36	25
Aydın	39	26	Konya	34	22
Balıkesir	38	27	Kütahya	33	21
Bilecik	34	23	Malatya	38	21
Bingöl	33	21	Manisa	40	26
Bitlis	34	2 2	Kahramanmaraş	36	22
Bolu	3 4	24	Mardin	38	23
Burdur	36	21	Muğla	37	22
Bursa	37	25	M u ş	32	20
Çanakkale	3 4	25	Nevşehir	28	17
Çankırı	3 4	25	Niğde	34	20
Çorum	29	19	Ordu	30	22
Denizli	38	2 4	Rize	30	26
Diyarbakır	42	23	Sakarya (Adapazarı)	3.5	2 5
Edirne	36	25	Samsun	32	2.5
Elazığ	38	-21	Siirt	40	23
Erzincan	36	2 2	Sinop	30	2.5
Erzurum	31	23	Sivas	33	20

Table 1 Temperature Values of Cities

Gıda Maddesinin	Muha-	Oda	Takribi muha-	İçin- deki	Don ma		na İsisi kg . °C	Donma Isisi	Ön so odala	•
Cinsi-Tanımı	faza sı- caklığı (•C)	Nem'i R.R. (%)	faza sü- resi (*)	resi mikt.		Donma- dan önce	Donma- dan sonra	Kcal	Soğu- ma süres i Saat	me
Ahududu-Taze	0(-)	90-95	2-3 G	84	-0.5	0.87	0.45	67.8	_	
Armut-Kış-Sert	- ¹⁸ /-0.5	90-95	2-7 H	83	-1.6	0.87	0.45	66.5	24	1.25
Armut-Normal-Yeşil	0	90-95	1-2 H	74	-1	0.79	0.42	59.4	24	1.25
Ananas-Olgun-Taze	+7	85-90	2-4 H	85	-1	0.88	0.46	68.3	3	1.50
Ayva	O(-)	90	2-3 A	85	-2	0.88	0.46	68.1	24	1.50
Bal	s+10		1S(+)	18	_	0.34	0.26	13.6	_	
Balık-taze	• V ₊₂	90-95	5-15 G	60-80	-2.2	0.7-0.9	_	⁵ °/63.8	_	_
Balık-Dondurulmuş	•23/-29	90-95	6-12 A	62-85		_	°- ³⁸ /0.45	⁵ °/68.3	_	_
Balık-Salamura (Tuzlu)	+4/.10	90-95	10-12 A	_	_	0.76	0.41	56	_	_

Table 2 Properties of Foods

Tablo. VII-5) Güneş Işınları Etkisinin Sıcaklık Farkı Eşdeğerleri

Yüzey Cinsi	D	uvarın Cephe	esi	Düz Çatı
ruzey Cilisi	Doğu	Güney	Batı_	Duz Çatı
Koyu renkli yüzeyler Orta renkli yüzeyler Açık renkli yüzeyler	5 4 3	3 3 2	5 4 3	11 9 5

Table 3 Tempreature Differences

Komşu Hacimin Tarifi	Sıcaklığı (°Q	Dış Sıc. İle Komşu Hac. Sıc. Farkı
Toprak döşeme sıcaklığı-Çok soğuk iklimler	+7	_
Toprak döşeme sıcaklığı-Soğuk iklimler	+ 15	_
Toprak döşeme sıcaklığı-Serin iklimler	+20	_
Toprak döşeme sıcaklığı-Sıcak iklimler	+25	-
Klimatize edilen veya soğutulan s. oda hacimleri	Oda Dizay	yn Sıcaklığı
Toprak seviyesinin altında kalan klimasız, soğutulmamış hacimler ile toprakla temastaki duvarlar	_	-10
Klimatize edilmeyen normal kullanma maksatlı hacimler	_	-5
Cebri şekilde havalandırılmayan hacimler; depo, atölye, vs.	_	0
Kompresör makina dairesi (Sulu kondenser)	_	0
Kompresör makina dairesi (Havalı kondenser)	_	+5
Mutfak, çamaşırhane, kazan dairesi, ısı santralı, vs.	_	+ 10
Çok aşırı sıcak hacimler, aşırı ısı neşreden yerler	_	+ 15

*Adjacent temperatures has been asiggned by not only this table but also real life cases

Table 4 Adjacent Temperatures

2 DIMENSIONING

2-1 Determining a Suitable Fishsafe

We need such safes that can store the fish inside of it.So i have choosen a safe that can store 17 kg amount of fish.(BK 171) Outside measures of this safe are 58 cm (length), 38,5 cm (width), 27,5 cm (height), inside measures are 51cm (length), 32,5 cm (width), 21,2 cm (height)

2-2 Determining Number of Safe

By a basic operation we can find out how many safes we do need.

$$\frac{200000 \; kg}{17 \; kg} \cong 11765$$

2-3 Determining Number of Columns

The height of storage room has been considered as 4 meters and because of safety and porper needings in order to carrying out the loads throughout the doors we can assume that 6 consecutive saves on top of each other is a proper option. In this case the row number can be calculated

$$\frac{11765\,Safe}{6\,Safe/row}\cong 1961\,row$$

2-4 Selecting Paddle and Safety Check

A wooden paddle which has 115,5 x 120 (cm) width and length has been choosen and paddle can lift maximum of 2750 kg.

If we assume that every single safe has 2 kg of weight then in the critical (bottom of the paddle) section we get

 $36(17+2) kg = 684 kg \le 2750 kg$ (it's clear that this case satisfies safety condition)

Figure 1 Technical Drawing of Safe

Figure 2 Technical Drawing of Paddle

According to sketch (Figure 3) total required volüme can be calculated.(Height has been assumed as 4 meters)

 $Volume = 31.4 \ m \ x \ 31.1 \ m \ x \ 4 \ m \ \cong 3910 \ m^3$

Figure 3 Sketch of Storageroom

3 HEAT TRANSFER CALCULATIONS

3-1 Isolation

Heat transfer between two matters can be modelled as

$$\dot{Q}=-kArac{\Delta T}{\Delta x}$$
 In this formula A represents surface area and $rac{\Delta T}{\Delta x}$ represents

temperature difference between two surfaces. So what is k then ? k and how can we determine k?... k represents heat transfer coefficient for unit surface area per hour. In our example we are dealing with so many layers (isolation materials, bricks, air...) that's why we have to calculate a combined heat transfer coefficient by using this formula (Figure 2.4)

Figure 4 Calculation of Heat Transfer Coefficient

We also need k values of every single isolation element in order to calculate the combined k and h values. It has been shown in following table. (Table 5)

Tablo. VII-1) X Değerleri Kcal/h.°C. m^2 (x=100 cm kalınlık için ve normal oda sıcaklıklarında)

Malzemenin Cinsi	(X)	Malzemenin Cinai	(*->
Silica Aerojel	0.018	Biriket-Dolu-CuruTdan-Sert	0.75
Poliüretan	0.020	Biriket-Dolu-Kum ve kireç harç	0.90
Camyünu, Styropor, Mantar	0.035	Kireç Harç	0.75
Ruberoît	0.12	Cam-Ortalama	0^0
Kereste-Yumuşak (Cam, İradîn, Köknar, Ihlamur, Sunta)	0.12	Döşeme-Karo Mozayik, Fayans	0.90
Kereste-Scrt (Gürgen. Dişbudak, Ceviz, Kayın)	0.15	Döşeme-Grobeton veya Tesviye betonu	1.10
Bittim veya Katranlı kanaviçe	O.IS	Döşeme-Şap betonu	1.20
Biriket-Dolu-Hafif Betondan Y= 800 Kg/m'	0 3 5	Döşeme Blokajı. Mozaik, vs.	1.SO
Biriket-Dolu-Hafif Betondan Y=1200	0.45	Çimento Harç	1.20
Biriket-Dolu-Hafif Betondan y= 1600	0.68	Beton-12O	1 3 0
Biriket-IP.*JJ! <l.lt agrega="" hafif="" y="1000</td"><td>O.SO</td><td>Beton-16O</td><td>1.75</td></l.lt>	O.SO	Beton-16O	1.75
Biriket-Dalikli, hafif agrega v=1400	0.60	Ağır tabii Taşlar (Granit, Mermer vs.)	3.00
Biriket-:D»lifc". hafif agrega Üç sıra boşluktu	0.48	Kurşun (saf)	3 l.SO
Tugla-Delikli Y=lOOOKg/m³	0.40	Çelik (Ortalama)	39.0
Tugla-Delikli Y=12OOKg/m³	0.45	Demir (Saç. profil. vs)	40-45
Tugʻla-Delikli $y = 1400 \text{ Kg/m*}$	O.52	Demir (%99.9 saflıkta)	60
Tugla-Dolu-Hafif Y=12OOKg/m³	0.45	Pirinç ('36TO Bakır. %30 Çinko)	90
Tugla-Dolu-Hafif y = 1400 Kg/m ³	O.52	Çinko (%99.8 Saflıkta)	97 .S
Tugla-Dolu-Normal Y= 1800	0.68	Alüminyum (%99 Saflıkta)	170
Tugla-Dolu-Agir Y* 1900	0.90	Alüminyum C&99.7 Saflıkta)	196
Kiremit Y = 2000	0.90	Bakır (%99.9 Saflıkta)	326
Dış cephe Kapl. Tuğlası	1.12	Gümüş (Saf)	360

Table 5 k Values of Materials

Figure 5 Inner and Outer Walls

$$k_{innerwalls} = \frac{1}{\frac{1}{7} + \frac{0.03}{20} + \frac{0.1}{0.035} + \frac{0.25}{0.9} + \frac{0.03}{1.2} + \frac{1}{7}} = 0.29 \; kcal/hm^2 °C$$

$$k_{outerwalls} = \frac{1}{\frac{1}{7} + \frac{0.03}{20} + \frac{0.1}{0.035} + \frac{0.25}{9} + \frac{0.03}{1.2} + \frac{1}{20}} = 0.30 \; kcal/hm^2 {}^{\circ}C$$

$$h_{inner} = 7 \, kcal/hm^2 {}^{\circ}C$$
 $h_{outer} = 20 \, kcal/hm^2 {}^{\circ}C$

Figure 6 Ceiling and Ground

$$\begin{split} k_{ground} &= \frac{1}{\frac{0.05}{1.5} + \frac{0.1}{1.10} + \frac{0.1}{0.035} + \frac{0.05}{1.10} + \frac{0.03}{1.20} + \frac{0.03}{0.9} + \frac{1}{8}} = 0.31 \, kcal/hm^2 {}^{\circ}C \\ k_{roof} &= \frac{1}{\frac{1}{5} + \frac{0.03}{1.2} + \frac{0.1}{0.035} + \frac{0.2}{1.75} + \frac{0.02}{0.26}} = 0.31 \, kcal/hm^2 {}^{\circ}C \end{split}$$

Surface	Length m	Height- Width m	Quan tity	k kcal/hm^ 2°C	Δt °C	Surface Area m^2	Heat Transfer kcal/h
Outer Wall (North)	31.1	4	1	0.3	32-1	124.4	1156.92
Outer Wall(South)	20.1	4	1	0.3	32-1+2	80.4	795.96
Outer Wall (West)	31.4	4	1	0.3	32-1+3	125.6	1281.12
Outer Wall (East)	31.4	4	1	0.3	32-1+3	125.6	1281.12
Inner Wall(South 1)	4	4	1	0.29	42-1	16	190.24
Inner Wall (South 2)	7	4	1	0.29	12-1	28	89.32
Roof	31.4	31.1	1	0.31	32-1+11	976.54	12714.55
Ground	31.4	31.1	1	0.31	20-1	976.54	5751.82
Total Heat Transfer							$\dot{Q}_{iso} = 23261.05$
Total Heat Transfer (Joule/day)							$\dot{Q}_{iso} = 2337344640$

Table 6 Heat Transfer Through the Surfaces

3-2 Infiltration Heat

During the day load gate will be opened quite a few times and that means some amount of air will be charge into the room and bring their heat energy to the environment which we want to neutralize. At first we should calculate the room volume without isolation.

$$V^* = (31.1 - 0.26)x(31.4 - 0.26)x3.66 = 3515 m^3$$

And next we should determine the volume coefficient (Table 7)

Tablo. VII-12) S. Oda Kapı Açılmalarından Meydana Gelen Hava Değişimi (*)

Oda ia	24 saatte ha	ava değişimi	04- :-	24 saatte hava değişimi			
Oda iç Hacmi (m3)	Oda sıc. 0°C üstünde	Oda sic. 0°C altında	i nacini (inc)		Oda sic. 0° altında		
5	50.1	38	500	3.7	2.8		
10	31.1	24.2	625	3.3	2.5		
15	25.3	19.6	750	2.9	2.3		
20	21.2	16.9	1000	° 2.5	1.9		
-25	18.7	14.9	1250	2.2	1.7		
30	16.7	13.5	1800	1.66	1.42		
40	14.3	11.7	2400	1.43	1.22		
50	12.8	10.2	3000	1.35	1.11		
75	10.1	8.0	4000	1.23	0.99		
100	8.7	6.7	5000	1.17	0.93		
125	7.7	6.0	6000	1.11	0.86		
150	7.0	5.4	8000	1.05	0.85		
200	5.9	4.6	10000	0.97	0.83		
250	5.3	4.1	12000	0.91	0.81		
375	4.2	3.2	14000	0.87	0.80		

^(*) Aşırı kullanma halinde, verilen değerleri 2 ile çarpın. Uzun süreli muhafaza odaları için verilen değerleri 0.6 ile çarpın.

Tablo. VII-12'de verilen hava değişimi değerlerine göre soğuk odaya giren harici havanın ısı tutumu ile soğuk oda şartlarındaki havanın ısı tutumu farkı ve havanın özgül ağırlığı uygulanmak suretiyle infiltrasyon ısısı hesaplanabilir.

İnfiltrasyon ısısı = Hava Değişimi x Oda Hacmi x (i, - i,) x y

Table 7 Air Change Table

In this formula y represents density of air (ρ) which as been assumed as 1.14kg/m³. Applying interpolation we get air coefficient as 1.29. Enthalpy difference between inner and outer air can be determined from the Figure 7.

Figure 7 Psychometric Diagram

So we can calculate infiltration heat

$$\dot{Q}_{inf} = 1.29 \ x \ 3515 \ x \ 1.14 \ (70 - 10) x 10^3 = 310149540 \ \text{Joule/day}$$

3-3 Heat Caused by Productions

In this chapter we will calculate the heat energy which safes and products dissipate.

1) Donma noktasının üstündeki sıcaklıklarda soğutma:

Figure 8 Cooling Formula

We can assume that daily load value is 20000 kg.

$$\dot{Q}_{fish} = 20000 \ x \ 0.8 \ x \ (32 - 1) = 496000 \ \frac{kcal}{day} = 2076686208 \ \frac{Joule}{day}$$

As for the safes we can apply same formula. It has been mentioned that we have 11765 safes and we can assume safe specific heat as 0.27 kcal /kg $^{\circ}C$.

$$\dot{Q}_{safe} = 11765 \times 0.27 \times (32 - 1) = 196946 \frac{kcal}{day} = 824565312 \frac{Joule}{day}$$

$$\dot{Q}_{products} = \dot{Q}_{fish} + \dot{Q}_{safe} = 2901251520 \frac{Joule}{day}$$

3-4 Other Heat Occurrences

Aside from previous heat eenrgy sources there are still a few other heat sources as well: Workers, Lighting, Defrost, Electric Motor, Forklift

Tablo. VII-14) İnsanlardan Gelen Ortalama Soğuk Oda İsi Yükü

Oda Sıcaklığı (°C)	lsı Neşri Kcal/h x şahıs	Oda Sıcaklığı (°C)	lsı Neşri Kcal/h x şahıs						
+10°C	180	-10°C	290						
+5°C	210	-15°C	315						
o°C	235	-20°C	340						
-5°C 260 -25°C 365									
Not: Sık sık girip çıkma	Not: Sık sık girip çıkma halinde %10 ile %25 ilave edilecektir.								

Table 8 Heat Load Caused by People

We can assume that 4 workers work 6 hours per day (Table 8) so

$$\dot{Q}_{worker} = 235 \ x \ 4 \ x \ 6 = 5640 \ \frac{kcal}{day} = 23613552 \ \frac{Joule}{day}$$

Inkandesant tip için günlük ısı (Kcal/gün) : 1000 Watt x 0.86 Kcal/h x Saat/gün Fluorasant tip için günlük ısı (Kcal/gün) : 1000 Watt x 1.06 Kcal/h x Saat/gün

Table 9 Heat Loads of Lighting Options

We can choose incandecant type lightening and let's assume that we do need lightening 4 hours per day (Table 9).

$$\dot{Q}_{lighting} = 1000 \ x \ 0.86 \ x \ 4 = 3440 \ \frac{kcal}{day} = 14402880 \ \frac{Joule}{day}$$

Defrost can be summerized as heating to overcome the froozening layer which occurs on the evaporator.

IV-d) Defrost Sırasında Verilen Isi (Elektrikle Defrostlu Sistemler): Soğutulan hacimde bulunan evaporatör/soğutucuların içerisinde bulunan elektrikli defrost ısıtıcıların Watt olarak güçleri ve günde kaç saat çalıştırıldıkları belli ise defrost sırasında verilen ısı şöyle hesaplanabilir:

0^: n (adet) x W (watt) x 0.86 Kcal/vvatt x H (saat/günde) x F (defrost faktörü)

F-defrost faktörü, elektrik enerjisinin soğuk odaya ısı yükü olarak giren kısmını ifade eder ve elektrikli defrost için 0.5 alınabilir. Bunun anlamı; verilen ısının diğer bölümünün eritilen buzun su haline dönüşmesiyle dışarıya drenaja intikal etmekte olduğudur.

Defrost ısıtıcısının gücü ve günlük çalışma süresi bilinemiyorsa bu taktirde evaporatörün 5.5°C evaporasyon -oda sıcaklık farkında vereceği her 3000 Kcal/h (beher ton frigo) için 2800 watt ısıtıcı gücü veya takriben, beher Kcal/h evaporatör kapasitesi için 1 Watt ısıtıcı gücü alınabilir. Günlük çalışma süresi ise:

- -2 ile +1°C oda sıcaklıklarında günde 4 defa 15'er dak. (1 saat)
- -15 ve daha aşağı sıcaklıklarında günde 6 defa 20'şer dak. (2 saat) alınabilir.
- ** I have selected FEH 45.32 (5 amount of)

F	E 40 • 45 •	50						K/	APAS	İTE TA	BLOS	U • C	APAC	ITY TA	BLE •	LEIST	UNG	STABI	ELLE
abstand		эсре	Caj	Kapa pacity / N	enn-Leistu	ung	Debisi Luftmenge	fesi fweite	Boru Hacmi Volume / Rohrinhalt	Fan	Fanlar s / Ventilati		0 V AC 50 400 d/d - rj		Elect	Defrost Isiticular Electric Defrost / Elektrische Abtaul			
len		v serfic		(R 40)4 A)		ebis	lesa Wun	acm / Ro						E1	E	2		, J
Hatve Fin Spacing / Lamel/enabstand	MODEL MODEL MODEL	Vüzey Surface / Oberflache	SC 1	SC 2	SC 3	SC 4	Hava Debisi Air Flow / <i>Luftm</i> e	Üfleme Mesafesi Air Throw / Wurfweite	Boru H Tube Volume	Fanlar Fans Ventilatoren	Sayısı Number Anzahl	Güç Power <i>Leistung</i>	Akım Current Strom	Ses Basınç Seviyesi Sound Pressure Level Schalldruckpegel	Batarya Coil Batterie	Batarya Coil Batterie	Tava D. Tray Tropfwanne	Fan Fan Ventilator	Drenaj Hattı Drain Line Wasserablauf
iE		m ²	W	W	W	W	m³/h	m	dm ³	mm	n	W	Α	(3m)dB(A)	W	W	W	W	W
	FEH 40.11	16,7	5.600	4.050	3.050	2.300	3.700	14	4,54	400	1	160	0,73	54	5x350	5x350	2x350	-	150.0
	FEH 40.12	25,0	7.875	5.450	3.975	2.950	3.475	13	6,81	400	1	160	0,73	54	7x350	7x350	2x350	-	150.0
	FEH 45.11	25,0	8.475	5.875	4.275	3.200	4.150	15	6,81	450	1	245	1,10	56	8x350	8x350	2x350	-	150.0
	FEH 45.12	33,4	9.975	6.725	5.150	3.950	3.850	14	9,08	450	1	245	1,10	56	9x350	9x350	2x350	-	150.0
	FEH 50.11	35,3	12.200	8.800	6.775	5.075	6.675	17	9,58	500	1	780	3,40	56	9x450	9x450	2x450	-	150.0
	FEH 50.12	47,1	15.275	10.575	7.875	5.850	6.100	16	12,77	500	1	780	3,40	56	11x450	11x450	2x450	-	150.0
	FEH 40.21	33,4	11.250	8.150	6.200	4.700	7.375	16	9,08	400	2	320	1,46	57	5x700	5x700	2x700	-	150.0
	FEH 40.22	50,1	15.250	10.325	7.950	6.100	6.700	15	13,62	400	2	320	1,46	57	7x700	7x700	2x700	-	150.0
	FEH 45.21	50,2	16.450	11.575	8.825	6.725	8.075	17	13,62	450	2	490	2,20	59	7x700	7x700	2x700	-	150.0
	FEH 45.22	66,9	20.075	14.025	10.475	8.025	7.425	16	18,15	450	2	490	2,20	59	9x700	9x700	2x700	-	150.0
	FEH 50.21	70,6	25.975	17.925	13.400	10.150	13.325	20	19,15	500	2	1560	6,80	59	10x850	10x850	2x850	-	150.0
E	FEH 50.22	94,1	30.900	21.425	16.100	12.050	12.200	19	25,54	500	2	1560	6,80	59	12x850	12x850	2x850	-	150.0
9	FEH 40.31	50,1	17.425	12.425	9.175	6.950	11.050	18	13,62	400	3	480	2,19	59	6x1000	6x1000	2x1000	-	150.0
	FEH 40.32	75,3	24.100	16.725	12.725	9.575	10.425	17	20,42	400	3	480	2,19	59	8x1000	8x1000	2x1000	-	150.0
	FEH 45.31	75,3	26.125	18.100	13.900	10.375	12.400	19	20,42	450	3	735	3,30	61	8x1000	8x1000	2x1000	-	150.0
-	FEH 45.32	100,4	31.150	21.525	16.075	12.050	11.550	18	27,23	450	3	735	3,30	61	9x1000	9x1000	2x1000	-	150.0
	FEH 50.31	105,9	36.900	26.675	20.825	15.600	20.000	23	28,73	500	3	2340	10,20	61	10x1250	10x1250	2x1250	-	300.0
	FEH 50.32	141,2	45.450	31.800	24.100	18.400	18.300	22	38,30	500	3	2340	10,20	61	12x1250	12x1250	2x1250	-	300.0
	FEH 40.41	61,8	21.575	15.525	12.125	9.075	14.475	20	16,76	400	4	640	2,92	60	6x1250	6x1250	2x1250	-	300.0
	FEH 40.42	92,6	30.325	20.950	15.400	11.575	13.475	19	25,14	400	4	640	2,92	60	7x1250	7x1250	2x1250	-	300.0
	FEH 45.41	92,6	32.650	22.550	16.450	12.500	16.025	22	25,14	450	4	980	4,40	62	8x1250	8x1250	2x1250	-	300.0
	FEH 45.42	123,5	38.200	26.375	18.625	14.625	14.825	21	33,52	450	4	980	4,40	62	10x1250	10x1250	2x1250	-	300.0
	FEH 50.41	141,2	52.400	36.150	27.150	20.675	26.650	26	38,30	500	4	3120	13,60	62	10x1650	10x1650	2x1650	-	300.0
	FEH 50.42	188,2	62.200	43.100	32.575	24.475	24.375	25	51,07	500	4	3120	13,60	62	12x1650	12x1650	2x1650	-	300.0

Table 10 Capacity Table of Evoporator

$$\dot{Q}_{defrost} = 4x9x1000x1x0.5 = 18000 \frac{kcal}{day} = 75427200 \frac{Joule}{day}$$

IV-c) Elektrik Motorları: Elektrik motorunun gücüne ve tipine göre güç faktörü değişeceğinden ısıya dönüşen güç oranı da değişecektir. Ayrıca, elektrik motorunun güce dönüştürdüğü enerjinin kullanıldığı mahal soğutulan hacmin içerisinde ise bu taktirde tüm enerji oda içerisinde kalıyor demektir. Aşağıdaki tablo ve şekiller değişik güçteki motor grupları uygulama şekilleri için soğuk oda ısı yükünü vermektedir.

Tablo. VII-15) Elektrik Motorlarından Gelen Isi Yükü (Kcal/h x HP)

	Motor ve Tahrik edilen eleman S. oda içinde	Tahrik edilen elemanın bulunduğu hacim	Motorun bulunduğu hacim
Motor Gücü (HP)	No to 1	事の事	H
1/8 - 1/2	1070	640	430
1/2 - 2.0	930	640	290
3.0 - 20.0	740	640	100

Table 11 Heat Caused by Electricmotor

Let's assume that this electricmotor works 22 hours per day.

$$\dot{Q}_{electricmotor} = 4x3x0.985x930x22 = 241837.2 \ \frac{kcal}{day} = 108172800 \ \frac{Joule}{day}$$
** $\dot{Q}_{forklift}$ can be assumed as $10000 \ \frac{kcal}{day} = 41868576 \ \frac{Joule}{day}$

$$\dot{Q}_{other} = \dot{Q}_{worker} + \dot{Q}_{lighting} + \dot{Q}_{defrost} + \dot{Q}_{electric motor} + \dot{Q}_{forklift}$$

$$= 263485008 \frac{Joule}{day}$$

$$\dot{Q}_{total} = \dot{Q}_{iso} + \dot{Q}_{inf} + \dot{Q}_{products} + \dot{Q}_{other} = 5812230708 \frac{Joule}{day} = 67271 \, Watt$$

4 – EQUIPMENT SELECTION

4-1 Suitability of Evoporator

To stay in standarts (EUROVENT) let's think of that we are using R134-a cooling liquid and also neglecting the temperature difference between the table and our case (1-0=1 °C). Thickness of lamella can be assigned as 6 mm.(Table 12)

Next k_2 must be determined (1.05) (Table 13) and we must divide \dot{Q}_{total} to this value

$$\frac{67271}{1.05} = 64068 \, Watt$$

And just incase lets use %10 safety factor so it means $\dot{Q}_{required} = 70475 \, Watt \text{Since our}$ evopoators are able to generate 21525 Watt for every single of them we have

 $\dot{Q}_{evop} = 86100 \ Watt$ and since this value is greater than $\dot{Q}_{required}$ our selection is proper.

TABLO 2 / TABLE 2 / TABELLE 2 Oda sıcaklığına bağlı olarak tavsiye edilen lamel aralıkları Recommended efficient fin spacings according to the room temperatures Die in Verbindung mit Raumtemperatur empfohlenen Lamellenabstände											
ENV 328 STANDARDI ENV 328 STANDARD ENV 328 NORMEN	ENV 328 STANDARD FIN SPACING ROOM TEMPERATUR.										
SC 4	6 m	m 8 m	m 10	mm	12 mm	-25°C					
SC 3	6 m	m 8 m	m 10	mm	12 mm	-18°C					
SC 2 SC 7		4 mm	6 mm	8 mm		0°C					
SC 1 SC 6		4 mm	6 mm	8 mm		10°C 16°C					
SERİ KODLAR	N / SERIAL CODES / SERIENCODE	A=4 mm	H=6 mm	M=8 mm	D=10 mm	L=12 mm					

Table 12 Standarts

```
ODA SOGUTUCU SEÇIMI

Oda sıcaklığını belirleyiniz. T1

Evaporasyon sıcaklığını belirleyiniz. T2

Sıcaklık farkını hesaplayınız. DT1= T1 - T2

Uygulamaya, oda ölçülerine göre oda soğutucu grubunu seçiniz.

Tablo 2'den oda sıcaklığına bağıı olarak lamel aralığını seçiniz.

T1 ve T2, EUROVENT standartlarına (SC 1, SC 2, SC 3, SC 4) uyuyor mu? (Tablo 1)
 ODA SOĞUTUCU SEÇİMİ
                                                                                                                                                                                                               UNIT COOLER SELECTION

    Determine the room temperature.T1
    Determine the evaporation temperature.T2
    Calculate the temperature difference. DT1=T1-T2
    According to the application and room dimensions, select the cooler
                                                                                                                                                                                                              oroup.
Select fin spacing according to the room temperature (Table 2).
Are T1 and T2 in accordance with the EUROVENT standards?
(SC1, SC2, SC3, SC4) (Table 1)
EVET DİYORSANIZ:
Örnek 1:

T1: -18 °C T2: -25 °C Kapasite Qoda = 6000 W
Soğutucu: R 404 A Uygulama: Et Muhafaza
DT1 = -18 - (-25) = 7 °C

Standart oda soğutucu ve 10 mm lamel aralığı bu uygulamaya uyuyor.
EUROVENT standartlarına uyuyor.
* R 22 ve R 507'den farklı akışkanları için Tablo 3'den katsayıyı (K2)
belirleyiniz, kapasitenizi bu katsayıya bölünüz.

KZ84044 = 1.03
QSC3 = QODA / KZ84044 = 6000 / 1.03 = 5825 W
                                                                                                                                                                                                              IF YES
                                                                                                                                                                                                             IF YES

Example 1:

T1: -18 °C T2: -25 °C Capacity QROOM: 6000 W

Refrigerant : R404A Application : Meat storage

DT1 = -18 - (-25) = 7 °C

Standard coolers and 10 mm fin spacing are selected for this
                                                                                                                                                                                                               oranization and case is in accordance with the EUROVENT standards.

For refrigerants other than R22 and R507, determine the factor K2 (Table 3) and divide the capacity by this factor.
 Qsc3 = Qoba / K2r4o4a = 6000 / 1.03 = 5825 W
• Secilen oda soğutucu serisinde, seçilen lamel aralığına ve hesaplanan
                                                                                                                                                                                                                   K2R404A = 1.03
Qsc3 = Qroom / K2R404A = 6000 / 1.03 = 5825 W
   kapasiteye uygun soğutucuyu seçiniz.

    According to the selected fin spacing and calculated capacity, chose
the cooler from the selected group.

   Seçenek 1: FED 45.21 2: FEL 45.21
6171 W 5832 W
                                                                                                                                                                                                              Option 1: FED 45.21 2: FEL 45.21
6171 W 5832 W
 HAYIR DİYORSANIZ:
                                                                                                                                                                                                              IF NO
                                                                                                                                                                                                              IF NO

Example 2:

T1: 5°C T2: -5°C Capacity Ordow: 6000 W

Refrigerant : R134A Application : Meat storage

DT1 = 5 - (-5) = 10°C

Dual Cross coolers and 4 mm fin spacing are selected for this application. The conditions are not in accordance with the EUROVENT standards.

Define the frequent 1, K2 and K15CV, the factor of the property.
Örnek 2:
T1: 5℃ T2: -5℃ Kapasite Qoba= 6000 W
Soğutucu: R134A Uygulama: Et işleme
DT1 = 5 - (-5) = 10℃
DTİ = 5 - (-5) = 10 °C

Çok düşük hızlı oda soğutucu ve 4mm lamel aralığı bu uygulamaya uyuyor. EUROVENT standartlarına uymuyor.

- 12, DTİ ve soğutucu akışkana göre Tablo 3'den K1 ve K2 katsayılarını ve çalışma şartlarınıza en yakın Eurovent standart şartındaki K1 scx katsayısı bulunuz.

K2n134a = 0.97 K1 = 1.43 K1scı = 1.48

- Kapasitenizi K1 ve K2 'ye bölünüz ve K1scx ile çarpınız. R 22 için nominal kapasiteniz bulunmuş oldu.

QSCı = QODA x K1scı / (K2n134a x K1)

= 6000 x 1.48 / (0.97 x 1.43) = 6402 W

- Secilen oda soğutucu serisinde, hesaplanan nominal kapasitede ve
                                                                                                                                                                                                                 Define the factors K1, K2 and K1SCX the factor of the nearest 
EUROVENT standard from Table 3 according to T2, DT1 and the
                                                                                                                                                                                                                   refrigerant.
                                                                                                                                                                                                                   K2R134A = 0.97
                                                                                                                                                                                                                                                                           K1 = 1.43
                                                                                                                                                                                                                                                                                                                         K1sc1 = 1.48

    Seçilen oda soğutucu serisinde, hesaplanan nominal kapasitede ve seçtiğiniz EUROVENT standart şartındaki uygun oda soğutucusunu seçiniz.

    Choose the proper cooler according to calculated capacity and
selected EUROVENT standard in the selected cooler series.

 Seçilen: FDCA 25.21 (6932 W)
                                                                                                                                                                                                                    Selected Cooler: FDCA 25.21 (6932 W)
```


FREON ODA SOĞUTUCULARI İÇİN DÜZELTME TABLOLARI CORRECTION TABLES FOR FREON UNIT COOLERS

	TABLO 3 / TABLE 3 / TABELLE 3											
Lamel Araliğı / Fin Spacing / Lamellenabstände: 4 mm - 6 mm - 8 mm - 10 mm - 12 mm												
Soğutucu / Re	<i>frigerant /</i> Kühlmittel	K1 R 22 / R 507									2	
ΔΤ	1 (°C)	c) 4 5 6 7 8 10 12 14 R				R 134 A	R 404 A					
	0,63	0,78	0,93	1,08	1,24	1,54	1,84	2,15	1,07	1,16		
_ ഉ ∄	5°C	0,60	0,75	0,90	1,05	1,20	1,50	1,80	2,10	1,03	1,14	
n Sicaklığı emperature -Temperatur	0°C	0,58	0,73	0,88	1,03	1,17	1,48 (SC1)	1,77	2,06	1,00	1,12	
7 % & &	-5°C	0,56	0,71	0,85	1,00	1,14	1,43	1,72	2,01	0,97	1,10	
Sign Sign	-8℃	0,50	0,63	0,76	0,88	1,00 (SC2)	1,26	1,51	1,76	0,94	1,09	
O	-10°C	0,49	0,61	0,73	0,86	0,98	1,23	1,48	1,73	0,93	1,08	
8 2 5	-15°C	0,48	0,60	0,72	0,84	0,96	1,19	1,43	1,66	0,89	1,07	
aging and a	-20°C	0,46	0,58	0,69	0,81	0,92	1,15	1,38	1,61	0,86	1,04	
A S E	-25°C	0,44	0,55	0,66	0,77 (SC3)	0,88	1,10	1,32	1,54	0,82	1,03	
Evaporasyon Evaporating Te /erdampfungs-	-30°C	0,42	0,53	0,63 (SC4)	0,74	0,84	1,05	1,26	1,47	-	1,01	
_ e iii _	-35°C	0,39	0,49	0,59	0,69	0,79	0,99	1,19	1,39	-	0,99	
	-40°C	0,37	0,46	0,55	0,64	0,73	0,91	1,09	1,27	-	0,97	

Table 13 Correction Tables for Coolers

Kapasite değerleri, EUROVENT / Cecomaf kuruluşunun Eurovent standart şartları ENV 328'de tanımlanan DT1 esasına göre verilmiştir.

DT1 = Oda Sıcaklığı - Evaporasyon Sıcaklığı

TABLO 1 ENV 328 Standart Şartları

	Oda Sıcaklığı	Evaporasyon Sıcaklığı
	°C	°C
SC1	+10	0
SC 2	0	-8
SC 3	-18	-25
SC 4	-25	-31
	Oda Sıcaklığı	Sıvı Giriş Sıcaklığı
	°C	%
SC 6	+16	+4
SC 7	0	-10

Nominal capasities in the catalog are given according to DT1 which is defined in ENV 328 standart conditions of EUROVENT.

DT1 = Room Temperature - Evaporation Temperature

TABLE 1 ENV 328 Standard Conditions

	Room	Evaporation
	Temperature	Temperature
	°C	°C
SC 1	+10	0
SC 2	0	-8
SC 3	-18	-25
SC 4	-25	-31
	Room	Liquid Inlet
	Temperature	Temperature
	°C	°C
SC 6	+16	+4
SC 7	0	-10

Table 14 Eurovent Table

4 - 2 Condenser and Compressor Selections

Properties of R134-a fluid (Figure 10)

$$T_{cond} = 40 \, ^{\circ}\text{C} \rightarrow \text{P} = 1 \text{Mpa} \text{ and } h_1 = 430.2 \frac{kj}{kg} \text{ and } h_2 = 256.35 \frac{kj}{kg}$$

$$T_{evop} = -8 \, ^{\circ}\text{C} \rightarrow P = 0.217 \, \text{Mpa} \text{ and } h_4 = 393.95 \, \frac{kj}{kg} \, and \, h_2 = \, h_3$$

We can find the mass flow rate of fluid

$$\dot{Q}_{evop} = 86100 = \dot{m}(h_4 - h_3)x \ 1000 \rightarrow \dot{m} = 0.63 \ \frac{kg}{s}$$

In this case the power that compressor should generate is

$$\dot{Q}_{comp} = \dot{m}(h_1 - h_4)x1000 = 22837 \; Watt$$

And as for the capacity of condenser

$$\dot{Q}_{condenser} = \dot{m}(h_1 - h_2)x1000 = 109526 \, Watt$$

Figure 10 P/h diagram of R134a Cycle

As result of these values we can select KCD-5023A-5 and Inversys22 Plus.

		<i>a</i> =			1	210 rpm		9	00 rpm ∆		640 rpm Y			
Açıklamalar Explanation	Model <i>Model</i>		ni ne	Isi Fan	50 hz-1/230V 1 Fan için Akım ve Güç değerleri Current and Power rate for 1 Fan I : 3.40 Amp P: 0.77 kW				hz-3/400\	_	50 hz-3/400V			
			Hacr Volun	Sayısı ər of Fa				1 Fan için Akım ve Güç değerleri Current and Power rate for 1 Fan I: 0,74 Amp P: 0,32 kW			1 Fan için Akım ve Güç değerleri Current and Power rate for 1 Fan I : 0.41 Amp P: 0.20 kW			
			Boru Hacmi Tube Volume	Fan Say Number of	Kapasite Capacity	Hava Debisi Air Flow	Ses Noise Level	Kapasite Capacity	Hava Debisi Air Flow	Ses Noise Level	Kapasite Capacity	Hava Debisi Air Flow	Ses Noise Level	
		(m²)	(dm ³)	(n)	(KW)	(m ³ /h)	(dB)	(KW)	(m ³ /h)	(dB)	(KW)	(m ³ /h)	(dB)	
	KCD 5011-A5	30,4	5,5	1x1	19,0	7980	48	15,5	5720	42	12,5	3950	36	
	KCD 5011-C5	40,5	7,4	1x1	22,2	7659	48	17,6	5480	42	13,9	3650	36	
	KCD 5012-A5	60,8	11,1	1x2	38,2	15961	51	31,2	11445	45	25,1	7900	39	
	KCD 5012-C5	81,0	14,8	1x2	48,3	15319	51	36,0	10965	45	28,1	7300	39	
	KCD 5013-A5	91,1	16,6	1x3	57,2	23942	53	46,2	17166	47	37,7	11850	41	
: 3/8" mm	KCD 5013-C5	121,5	22,2	1x3	67,7	22979	53	53,8	16450	47	42,0	10950	41	
neter 1500 : 2,5	KCD 5014-A5	121,5	22,2	1x4	76,7	31930	54	62,4	22890	48	50,2	15800	42	
Boru Çapı / Tube Diameter : 3/ Fan / Fan : Ø500 Hatve / Fin Spacing : 2,5mm	KCD 5014-C5	162,0	29,5	1x4	88,4	30640	54	71,4	21930	48	56,2	14600	42	
Tube In I Fe	KCD 5021-A5	60,8	11,0	2x1	37,8	15690	51	31,0	11440	45	24,6	7900	39	
Çapı Fa	KCD 5021-C5	81,0	14,8	2x1	44,5	15320	51	35,2	10965	45	28,1	7300	39	
3oru Çaş Hatve	KCD 5022-A5	121,6	22,2	2x2	76,7	31380	54	62,2	22885	48	50,0	15800	42	
_	KCD 5022-C5	162,0	29,6	2x2	90,0	30638	54	71,2	21930	48	56,0	14600	42	
	KCD 5023-A5	182,2	33,2	2x3	114,3	47885	56	92,2	34330	50	75,5	23700	44	
	KCD 5023-C5	243,0	44,4	2x3	135,2	45960	56	108,0	32900	50	84,2	21900	44	
	KCD 5024-A5	243,0	44,4	2x4	153,6	63860	57	124,7	45775	51	100,3	31600	45	
	KCD 5024-C5	324,0	59,0	2x4	177,0	61280	57	142,5	43860	51	112,2	29200	45	

Table 15 Condenser Properties

	KCD 50 - KCF 50 SERISI / SERIE												
Model	We	Net ağırlık Weight (kg)		Bağlantılar Connections		Boyutlar / Dimensions (mm)							
Model	1	5	(mm)										
Wodel	hatve 2,1	hatve 2,5	Giriş in	Çıkış out	L	Α	D	В	K	н	F		
KCD 5011-A	78	77	40	40	4005	050							
KCD 5011-C	83	82	19	16	1035	850			1140	1155	660		
KCD 5012-A	130	127	22	19	1785	1600	1						
KCD 5012-C	140	137	22	19	1700	1600	1000	340					
KCD 5013-A	179	176	28	22	2535	2350							
KCD 5013-C	195	190	20	22	2000	2000							
KCD 5014-A	230	225	35	28	3285	3100							
KCD 5014-C	249	244		20	0200	0100							
KCD 5021-A	147	193	28	22	1035	850							
KCD 5021-C	157	155	28	22	1785 1600								
KCD 5022-A	246	242				1600	1860						
KCD 5022-C	266	260											
KCD 5023-A	339	329	35	28 35		2350							
KCD 5023-C	371	361											
KCD 5024-A	436	426	42		3285	3100							
KCD 5024-C	474 146	464											
KCF 5012-A KCF 5012-C	164	142 159	28	22	1785	1600		340	1140	1155	660		
KCF 5012-C	229	221					-						
KCF 5013-A	265	255	35	28	2535	2350	1000						
KCF 5013-C	312	300					1						
KCF 5014-C	366	350			3285	3100							
KCF 5022-A	278	270	42	35									
KCF 5022-C	314	305		30	1785	1600							
KCF 5023-A	439	423											
KCF 5023-C	511	491			2535	2350	1860						
KCF 5024-A	600	576	54	42	0005	0400	1						
KCF 5024-C	708	676	54		3285	3100							

Table 16 Condenser Measurements

Figure 11 Technical Drawing of Condenser

5-PIPING

In the fluent flow depending on the flow speed both rotating and linear motions can be observed and this is what we would avoid of because it's chaotic structure is quite difficult to analyze.

This situation is called turbulent flow and to avoid this we can assume that max flow rate is 0.5 m/s. In that case pipe diameter can be calculated

$$vpA = \dot{m}, D = \sqrt{\frac{4\dot{m}}{v\pi\rho}} \to D = \sqrt{\frac{4x0.63}{0.5x\pi x 11}} \cong 0.4 \, m$$

And as for the pipe length with a %10 tolerance rate:

34.21 m for width section and 34.54 m for length section of storage room and in total 275 m pipe is required to maintain this process.

Figure 12 Engine Room

References

1-Cengel , Y, Afshin , J , , " Heat and Mass Transfer (in SI Units) "Vedat Tanyıldzı , İhsan Dağtekin ,None , 978-605-355-287-1, Koza Matbaacılık , Ankara, 2021.

2-Özkol, N, "*Uygulamalı Soğutma Tekniği*", 395-300-3, Özkan Matbaacılık, Ankara, 1999.