Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МИЭТ»

Кафедра: Электротехника

Дисциплина: Электротехника

ЛАБОРАТОРНАЯ РАБОТА ПО ТЕМЕ «ЭЛЕМЕНТЫ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ»

Элемент	Название	Путь в библиотеке
+V2	Идеальный источник	Sources – POWER_SOURCES –
27 V	ЭДС	DC-POWER
	Земля	Sources – POWER_SOURCES –
		GROUND
. R3 100Ω	Резистор	Basic – RESISTOR
+11	Идеальный источник	Sources –
1 A	тока	SIGNAL_CURRENT_SOURCES
l l		- DC_CURRENT
· C1 · — 10μF	Конденсатор	Basic –CAPICITOR
L1 10mH	Катушка индуктивности	Basic - INDUCTOR
XMM1	Мультиметр	Боковая панель справа от рабочего поля

Измерить напряжение идеального источника ЭДС. Построить схемы цепей в Multisim. Нарисовать график зависимости напряжения от тока.

Дано: $E_1 = N^{\circ}$ (номер компьютера) B, $E_2 = N^{\circ} + 3$ B, $E_3 = N^{\circ} + 5$ B

Рисунок 1 - Эквивалентная схема в Multisim

Рисунок 1.2 - Зависимости напряжения от тока

Измерить сопротивление. Построить схему цепи в Multisim.

Дано: R = № (номер компьютера) кОм

Рисунок 2 - Эквивалентная схема в Multisim.

Эксперимент 3

Измерить и вычислить общее сопротивление при параллельном, последовательном и смешанном соединениях резисторов. Построить схемы цепей в Multisim. Убедиться, что значения сопротивлений, вычисленные при помощи формул и измеренные программой, совпадают.

Дано: $R_1 = N^{\circ}$ кОм, $R_2 = N^{\circ} + 1$ кОм, $R_3 = N^{\circ} + 2$ кОм

Рисунок 3.1 - Эквивалентная схема в Multisim

$$R_9 = R_1 + R_2 + R_3$$

Рисунок 3.2 - Эквивалентная схема в Multisim

$$\frac{1}{R_9} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Рисунок 3.3 - Эквивалентная схема в Multisim.

$$R_9 = R_3 + \frac{R_1 * R_2}{R_1 + R_2}$$

Составить схему цепи в Multisim. Построить BAX сопротивления.

Дано: $R_{\scriptscriptstyle H}=N^{\scriptscriptstyle 0}$ кОм, $E_1=N^{\scriptscriptstyle 0}$ В, $E_2=N^{\scriptscriptstyle 0}+3$ В, $E_3=N^{\scriptscriptstyle 0}+5$ В

Рисунок 4.1 - Эквивалентная схема в Multisim

Рисунок 4.2 - ВАХ сопротивления

$$I_R = \frac{U_R}{R}$$

Построить ВАХ реального источника ЭДС. Для этого провести опыты холостого хода и короткого замыкания. Составить схему цепи в Multisim.

Дано: E = Nº B, $R_{\mbox{\tiny BH}}=100~\mbox{Om}$.

Рисунок 5.1 - Эквивалентная схема в Multisim

 $U_{xx}=E\,$

Рисунок 5.2 - Эквивалентная схема в Multisim

$$I_{\text{k3}} = \frac{E}{R_{\text{BH}}}$$

Рисунок 5.3 – Нагрузочная характеристика реального источника ЭДС

$$I_{_{\rm H}} = \frac{E - U_{_{\rm H}}}{R_{_{\rm BH}}} = \frac{E}{R_{_{\rm BH}}} - \frac{U_{_{\rm H}}}{R_{_{\rm BH}}} = I_{_{\rm K3}} - \frac{U_{_{\rm H}}}{R_{_{\rm BH}}}$$

Определить рабочую точку реального источника ЭДС при его работе на нагрузку:

- измерить ток и напряжение на нагрузке;
- построить на одном графике ВАХ сопротивления и реального источника ЭДС;
- убедиться, что показания приборов соответствуют показаниям графика, составить схему цепи в Multisim.

Дано: $E_{{\scriptscriptstyle H}1} = N^{{\scriptscriptstyle \Omega}}$ В, $R_{{\scriptscriptstyle B}{\scriptscriptstyle H}} = 100$ Ом, $R_{{\scriptscriptstyle H}} = N^{{\scriptscriptstyle \Omega}}$ кОм

Рисунок 6.1 - Эквивалентная схема в Multisim

$$I = \frac{E}{R_{\text{BH}} + R_{\text{H}}}$$

Рисунок 6.2 - ВАХ сопротивления и реального источника ЭДС

Проанализировать изменения положения рабочей точки при изменении напряжения, внутреннего сопротивления и сопротивления нагрузки. Составить схемы цепей в Multisim. Сравнить результаты эксперимента с расчётами цепей.

Дано: 1) $E_1=N^{\circ}$ В, $E_2=N^{\circ}+3$ В, $E_3=N^{\circ}+5$ В, $R_{\rm BH}=100$ Ом, $R_{\rm H}=N^{\circ}$ кОм

- 2) $E_1=N^{\scriptscriptstyle D}$ В, $R_{\scriptscriptstyle BH1}=100$ Ом, $R_{\scriptscriptstyle BH2}=120$ Ом, $R_{\scriptscriptstyle BH3}=180$ Ом, $R_{\scriptscriptstyle H}=N^{\scriptscriptstyle D}$ кОм
- 3) $E_1 = N^{\circ} B$, $R_{\text{H}1} = N^{\circ} \kappa O$ м, $R_{\text{H}2} = N^{\circ} + 1 \kappa O$ м, $R_{\text{H}3} = N^{\circ} + 2 \kappa O$ м, $R_{\text{BH}} = 100 \text{ O}$ м
- 1) Изменение ЭДС.

Рисунок 7.1 - Эквивалентная схема в Multisim

Рисунок 7.2- Эквивалентная схема в Multisim

$$I_{\text{k31}} = \frac{E}{R_{\text{BH}}}$$

Рисунок 7.3 - Перемещение рабочей точки при изменении ЭДС

2) Изменение внутреннего сопротивления.

Рисунок 7.4 - Эквивалентная схема в Multisim

Рисунок 7.5 - Эквивалентная схема в Multisim

$$I_{k3} = \frac{E}{R_{BH}}$$

Рисунок 7.6 - Перемещение рабочей точки при изменении внутреннего сопротивления

3) Изменение сопротивления нагрузки.

Рисунок 7.7 - Эквивалентная схема в Multisim

Рисунок 7.8 - Эквивалентная схема в Multisim

$$I_{K3} = \frac{E}{R_{BH}}; U_{XX} = E$$

$$I, A$$

$$U, B$$

$$RBH$$

$$RH1$$

$$RH2$$

$$RH3$$

Рисунок 7.9 – Перемещение рабочей точки при изменении сопротивления нагрузки

Всследовать реальный источник тока. Составить схемы цепей в Multisim. Построить ВАХ реального источника тока.

Дано: I = 1 А, $R_{\scriptscriptstyle BH} = 100$ Ом

Рисунок 8.1 - Эквивалентная схема в Multisim

$$U_{xx} = IR_{BH} = E .$$

Рисунок 8.2 - Эквивалентная схема в Multisim

$$I_{\text{k3}} = I = \frac{E}{R_{\text{bh}}};$$

Рисунок 8.3 - ВАХ реального источника тока

Исследовать поведение характеристик индуктивности и ёмкости на постоянном токе. Составить схемы цепей в Multisim. Для индуктивности: убедиться, что вольтметр показывает «0» при наличии тока, т.е. сопротивление индуктивности равно «0». Для ёмкости: убедиться, что амперметр показывает «0», что означает разрыв цепи, т.е. сопротивление ёмкости равно ∞ .

Дано: $E = N^{\circ}$ В, $R_{_H} = 100$ Ом, L = 10 мГн, C = 10 мкФ.

Рисунок 9.1 - Эквивалентная схема в Multisim

Рисунок 9.2 - Эквивалентная схема в Multisim

Построить делитель напряжения. Составить схему цепи в Multisim. Сравнить расчёты, сделанные программой, с расчётами, сделанными вручную при помощи формул.

Дано: E = Nº B, R₁ = 100 Ом, R₂ = 200 Ом Решение:

Рисунок 10.1 - Эквивалентная схема в Multisim

$$I = \frac{E}{R_1 + R_2}$$

$$U_1 = IR_1$$

$$U_2 = IR_2$$

$$U_1 + U_2 = E$$

Построить делитель тока, составить схему цепи в Multisim, сравнить расчёты, сделанные программой, с расчётами, сделанными вручную при помощи формул.

Дано: I = 1 A,
$$R_1 = 120 \ \text{Ом}, \ R_2 = 240 \ \text{Ом}$$

Решение:

Рисунок 11.1 - Эквивалентная схема в Multisim

$$I_{1} = I \frac{R_{2}}{R_{1} + R_{2}}$$
$$I_{2} = I \frac{R_{1}}{R_{1} + R_{2}}$$