Zadanie 2.4

Albert Kołodziejski

Problem:

Czy język $\{0^{n!} : n \in N\}$ jest regularny?

Lemat o pompowaniu:

Niech L będzie językiem regularnym. Wtedy istnieje stała n taka że jeśli z jest dowolnym słowem z L oraz $|z| \geq n$, to z możemy przedstawić w postaci z = uvw, gdzie $|uv| \leq n$ i $|v| \geq 1$ oraz uv^iw należy do L dla każdego $i \geq 0$.

Rozwiązanie:

Zakładamy, że język ten jest regularny, oznacza to, że lemat o pompowaniu powinien zachodzić. Weźmy więc słowo $z=0^{n!}$, gdzie n jest z lematu o pompowaniu.

Zgodnie z lematem o pompowaniu istnieją $k \geq 0, j \geq 1, k+j \leq n,$ dla których słowo postaci:

$$0^k (0^j)^i 0^{n!-k-j}$$

należy do języka dla każdego $i \ge 0$. Natomiast już dla i = 0 mamy:

$$|0^k (0^j)^0 0^{n!-k-j}| = k+n!-k-j = n!-j < n!$$

bo $j \ge 1$

$$k+n!-k-j=n!-j \ge n!-n=(n-1)!(n-1)>(n-1)!$$

Więc długość naszego słowa musi być mniejsza niż n! oraz większa niż (n-1)! a to oznacza, że nasze słowo nie należy do języka.

Otrzymaliśmy sprzeczność, więc dany język nie jest regularny.