

Resistência e Energia — Térmica

3 de dezembro de $2022\,$

Marco Maia — 1210951

Rúben Ferreira — 1210954

João Teixeira — 1210957

José Rente — 1211155

Conteúdo

Ι	Intr	oduça	0	2
2	Sele	eção de	e materiais	2
	2.1	Pared	es Exteriores	2
		2.1.1	Camada Exterior	2
		2.1.2	Camada Isolante e Estrutural	2
		2.1.3	Camada Interior	3
	2.2	Parede	es Interiores	3
		2.2.1	Camada Exterior	4
		2.2.2	Camada Isolante e Estrutural	4
	2.3	Telhac	lo	4
	2.4	Portas		5
	2.5	Janela	S	5
3	Esti	rutura		6
	3.1	Croqu	i	6
	3.2	Resist	encia Termica nas Seccoes	7
		3.2.1	Zona A	7
		3.2.2	Zona B	8
		3.2.3	Zona C	10
		3.2.4	Zona D	12
		3.2.5	Zona E	14
		3.2.6	Telhado	15

1 Introdução

No âmbito do Projeto Integrador a desenvolver, pretendeu-se elaborar uma estrutura correspondente a um armazém agrícola dividido em cinco zonas — A, B, C, D e E —, de forma a poder suportar diferentes temperaturas.

Este relatório tem, portanto, como objetivo detalhar o processo de escolha de materiais a utilizar na constituição das várias paredes — bem como o telhado — do armazém e as resistências térmicas respetivamente associadas.

2 Seleção de materiais

Perante o problema apresentado, investigar um conjunto de materiais para fazerem parte de uma estrutura, iniciou-se uma pesquisa em busca das melhores alternativas. Para tal, procurou-se materiais com um baixo valor de condutividade térmica (k).

2.1 Paredes Exteriores

Perante uma situação de diferentes temperaturas nas diversas secções da estrutura, optou-se por manter a consistência e utilizar os mesmos materiais em todas as paredes exteriores.

No final, obteve-se uma espessura de 32cm.

2.1.1 Camada Exterior

Para a camada exterior das paredes, escolheu-se o **cimento**. Este material é usado em infraestruturas de todo o mundo dado, não só às suas **características térmicas satisfatórias** mas, também, ao seu **baixo custo**.

Optou-se pela seguinte disposição:

Material
$$k (Wm^{-1}K^{-1})$$
 $\Delta x (m)$
Cimento $0,46$ $0,09$

2.1.2 Camada Isolante e Estrutural

Para a camada isolante e estrutural, destacaram-se os seguintes materiais:

- ICF;
- Tijolo refratário, $(k = 0,78 Wm^{-1}K^{-1})$.

Entre ambos, foi decidido utilizar o ICF. O ICF é uma sistema de construção distinguido pelo seu elevado **isolamento térmico** e acústico, baixo custo de manutenção e fácil aplicação. Este sistema é constituído por **dois blocos isolantes verticais** de **poliestireno expandido** que, após a sua respetiva montagem, são preenchidos por **betão armado**.

Figura 1: Sistema ICF, ainda por preencher com betão armado

Tendo sido desenvolvidos há pouco mais de 30 anos, estes sistemas têm sido utilizados um pouco por todo o mundo, com especial ênfase nos EUA e no Canadá, dadas as suas ótimas capacidades **térmicas** e acústicas

Apesar de, na figura 1, estar representado um reforço com barras de metal, essas serão ignoradas neste trabalho experimental.

Optou-se pela seguinte disposição:

Material	$k \left(W m^{-1} K^{-1}\right)$	$\Delta x (m)$
Poliestireno Expandido	0,037	0,02
Betão Armado	2	0, 18
Poliestireno Expandido	0,037	0,02

2.1.3 Camada Interior

Para a camada interior, destacaram-se os seguintes materiais:

- Gesso, $(k = 0, 25 Wm^{-1}K^{-1});$
- Estuque, $(k = 0, 4 Wm^{-1}K^{-1})$.

Pelas claras diferenças nos valores de condutividade térmica, escolheu-se o **gesso** para o revestimento interior das paredes exteriores.

Optou-se pela seguinte disposição:

Material	$k (Wm^{-1}K^{-1})$	$\Delta x (m)$
Gesso	0, 25	0,01

2.2 Paredes Interiores

Relativamente às paredes interiores, estas foram divididas em duas categorias — Estruturais e $N\tilde{a}o$ Estruturais —, sendo que o facto de ser uma parede estrutural ou não influenciou na escolha do materiais na camada estrutural.

2.2.1 Camada Exterior

Relativamente às paredes interiores, optou-se por utilizar o **gesso** como material para a camada exterior de ambos os lados das paredes, pois trata-se de um composto que enfortece [1] as paredes e, visto que estas são as camadas visíveis àqueles que circulam pelo armazém, convém conferir um certo valor estético às paredes. Para além disso, o gesso é um material relativamente barato e possui uma condutividade térmica apreciável ($k = 0.25 Wm^{-1}K^{-1}$) para o contexto [2].

Material	$k (Wm^{-1}K^{-1})$	$\Delta x (m)$
Gesso	0.25	0.01

Tabela 1: Dados da componente exterior

2.2.2 Camada Isolante e Estrutural

Para as paredes estruturais, o material escolhido foi o ICF, pelas mesmas razões referidas acima Já para as não estruturais, como estas não necessitam suportar bastante o edifício, foi decidido utilizar um composto de **Poliestireno extrudido** e a **Madeira Pinus**.

Material	$k (Wm^{-1}K^{-1})$	$\Delta x (m)$
Poliestireno extrudido	0.033	0.02 (estrutural)
Betão armado	2	0.18
Poliestireno extrudido	0.033	0.08 (não estrutural)
Madeira Pinus	0.12	0.1

Tabela 2: Dados da componente isolante

2.3 Telhado

Para o telhado, optou-se por um modelo de duas águas. Para a **estrutura exterior**, o que fez mais sentido foi uma cobertura de **cimento**, sobreposto por uma camada de **telha**. O cimento, pelas mesmas razões referidas no tópico 2.1.1, foi a melhor decisão, dado aos seus baixos valores de condutividade térmica de $k = 0,46 Wm^{-1}K^{-1}$.

Já o material isolante escolhido, difere do material isolante das paredes exteriores. Optouse por **espuma de poliuretano** que, permite obter um isolamento térmico que satisfaz as necessidades do caso de estudo. Este material apresenta um valor de condutividade térmica de $k = 0,028 W m^{-1} K^{-1}$ e, é muito popular nas indústrias que dependem de **espaços com** temperaturas controladas.

Figura 2: Espuma de poliuretano

Por fim, e, à semelhança das paredes exteriores, decidiu-se aplicar uma camada de **gesso**, como **revestimento interior do telhado**.

Optou-se pela seguinte disposição:

Estrutura	Material	$k \left(W m^{-1} K^{-1}\right)$	$\Delta x (m)$
Exterior	Telha	1, 2	0,06
Cobertura	Cimento	0,46	0,04
Isolante	Espuma de Poliuretano	0,028	0,17
Interior	Gesso	0, 25	0,03

2.4 Portas

De acordo com o enunciado providenciado pelo cliente, o armazém possuirua três tipos de portas

- 1. Porta de subir Zona A
- 2. Porta de duas folhas (dupla) Zona B
- 3. Porta simples Restantes zonas

Na escolha dos materiais não se achou necessidade de distinguir os materiais a usar na constituição da porta dupla e das simples e, portanto, decidiu-se utilizar a **Madeira Pinus**Já para a porta de vidro, o material escolhido foi a fibra de vidro.

2.5 Janelas

Por fim, foram idealizadas duas janelas que satisfazem as necessidades térmicas do espaço. Para tal, optou-se por uma construção de duas folhas, com uma estrutura de alumínio e vidro duplo.

Material	$k (Wm^{-1}K^{-1})$	$\Delta x (m)$
Madeira Pinus	0.12	0.1
Fibra de Vidro	0.04	0.1

Tabela 3: Dados da constituição das portas

Estrutura	Material	$k (Wm^{-1}K^{-1})$	$\Delta x (m)$
Perfil	Alumínio	237	0,053
Vidro	Vidro	0,79	0,004
Ar	Ar	0,025	0,023
Vidro	Vidro	0,79	0,004

3 Estrutura

3.1 Croqui

Após a seleção de todos os materiais e a decisão das suas respetivas larguras, obtivemos a seguinte estrutura para responder ao problema apresentado pelo cliente.

Figura 3: Croqui da estrutura concebida

3.2 Resistencia Termica nas Seccoes

3.2.1 Zona A

Tendo em conta os materiais apresentados na secção e, o croqui da estrutura, **a zona A**, para funcionar à temperatura de $15^{\circ}C$ possui as seguintes características:

Secção	Material	$k \left(W m^{-1} K^{-1}\right)$	$\Delta x (m)$	Área (m^2)
	Cimento	0.46	0.09	48, 5
Parede	Poliestireno Expandido	0.037	0.02	48,5
Exterior	Betão Armado	2	0.18	48,5
$(\times 2)$	Poliestireno Expandido	0.037	0.02	48, 5
	Gesso	0.25	0.01	48, 5
Parede	Gesso	0.25	0.01	40
Interior	Poliestireno Extrudido	0.033	0.08	40
Não Estrutural	Madeira Pinus	0.12	0.1	40
$(\times 1)$	Gesso	0.25	0.01	40
	Gesso	0.25	0.01	37
Parede	Poliestireno Extrudido	0.033	0.02	37
Interior	Betão Armado	2	0.18	37
Estrutural $(\times 1)$	Poliestireno Extrudido	0.033	0.02	37
	Gesso	0.25	0.01	37
	Alumínio	237	0,053	0,66
Janela	Vidro	0,79	0,004	1, 34
$(\times 1)$	Ar	0,025	0,023	1, 34
	Vidro	0,79	0,004	1,34
Porta de Subir $(\times 1)$	Fibra de vidro	0.04	0.1	15

Tabela 4: Composição da zona A

Com base na tabela 4, o cálculo das resistências para esta sucede-se da seguinte forma:

Janela: Os vidros e o ar estão associados em série:

$$R_{janelas} = \frac{1}{\frac{1}{R_{aluminio}} + \frac{1}{2 \times R_{vidro} + R_{ar}}}$$
 (1)

$$\Leftrightarrow R_{janelas} = \frac{1}{\frac{1}{0.053} + \frac{1}{2 \times \frac{0.004}{0.79 \times 1.34} + \frac{0.023}{0.025 \times 1.34}}} = 3.40 \times 10^{-4} \, KW^{-1} \tag{2}$$

Parede Exterior com Porta da Subir e Janela: Camadas associadas em série:

$$\frac{1}{R} = \frac{1}{R_{cimento} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} + R_{qesso}} + \frac{1}{R_{porta\ subir}} + \frac{1}{R_{janela}}$$
(3)

$$\Leftrightarrow \frac{1}{R} = \frac{1}{\frac{0.09}{0.460 \times 48.5} + 2 \times \frac{0.02}{0.037 \times 48.5} + \frac{0.18}{2 \times 48.5} + \frac{0.01}{0.25 \times 48.5} + \frac{1}{\frac{0.1}{0.04 \times 15}} + \frac{1}{\frac{3.40 \times 10^{-4}}{0.4}}}$$

$$(4)$$

$$\Leftrightarrow R_{parede\ ext+porta+janela} = 3.35 \times 10^{-4} \, KW^{-1} \tag{5}$$

Parede Interior Não Estrutural com porta: Paralelo entre a parede e a porta.

$$\frac{1}{R} = \frac{1}{2 \times R_{gesso} + R_{poliestireno_extrudido} + R_{madeira_pinus}} + \frac{1}{R_{porta}}$$
 (6)

$$\Leftrightarrow \frac{1}{R} = \frac{1}{2 \times \frac{0.01}{0.25 \times 40} + \frac{0.08}{0.033 \times 40} + \frac{0.1}{0.12 \times 40}} + \frac{1}{0.12 \times 3}$$
 (7)

$$\Leftrightarrow \frac{1}{R_{parede} \ n\tilde{a}o \ estrut+porta} = \frac{1}{8.34 \times 10^{-2}} + \frac{1}{2.78 \times 10^{-1}} = 6.42 \times 10^{-2} \ KW^{-1}$$
 (8)

Parede Interior Estrutural:

$$R = 2 \times R_{gesso} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} \tag{9}$$

$$\Leftrightarrow R_{parede_estrut} = 2 \times \frac{0.01}{0.25 \times 37} + 2 \times \frac{0.02}{0.033 \times 37} + \frac{0.18}{2 \times 37} = 3.74 \times 10^{-2} \, KW^{-1}$$
 (10)

Total: Tendo em conta que os componentes estão associados em série e considerando os resultados das equações 5, 8 e 10

$$R_{total} = \frac{1}{\frac{1}{3.35 \times 10^{-4}} + \frac{1}{6.42 \times 10^{-2}} + \frac{1}{3.74 \times 10^{-2}}} = 3.31 \times 10^{-4} \, KW^{-1} \tag{11}$$

3.2.2 Zona B

Tendo em conta os materiais apresentados na secção e, o croqui da estrutura, **a zona B**, para funcionar à temperatura de $20^{\circ}C$ possui as seguintes características:

Secção	Material	$k (Wm^{-1}K^{-1})$	$\Delta x (m)$	Área (m^2)
	Cimento	0.46	0.09	57.5
Parede	Poliestireno Expandido	0.037	0.02	57.5
Exterior	Betão Armado	2	0.18	57.5
$(\times 2)$	Poliestireno Expandido	0.037	0.02	57.5
	Gesso	0.25	0.01	57.5
Parede	Gesso	0.25	0.01	25
Interior	Poliestireno Extrudido	0.033	0.08	25
Não Estrutural	Madeira Pinus	0.12	0.1	25
$(\times 1)$	Gesso	0.25	0.01	25
	Gesso	0.25	0.01	40
Parede	Poliestireno Extrudido	0.033	0.02	40
Interior	Betão Armado	2	0.18	40
Estrutural $(\times 1)$	Poliestireno Extrudido	0.033	0.02	40
	Gesso	0.25	0.01	40
	Alumínio	237	0,053	0,66
Janela	Vidro	0,79	0,004	1,34
$(\times 1)$	Ar	0,025	0,023	1,34
	Vidro	0,79	0,004	1,34
Porta dupla (×1)	Madeira Pinus	0.12	0.1	6

Tabela 5: Composição da zona B

Com base na tabela 5, o cálculo das resistências para esta secção sucede-se da seguinte forma:

Janela: Os vidros e o ar estão associados em série:

$$\frac{1}{R} = \frac{1}{R_{aluminio}} + \frac{1}{2 \times R_{vidro} + R_{ar}} \tag{12}$$

$$\Leftrightarrow \frac{1}{R_{janelas}} = \frac{1}{\frac{0.053}{237 \times 0.66}} + \frac{1}{2 \times \frac{0.004}{0.79 \times 1.34} + \frac{0.023}{0.025 \times 1.34}} = 3.40 \times 10^{-4} \, KW^{-1}$$
 (13)

Parede Exterior com Porta Dupla e Janela: Camadas associadas em série:

$$\frac{1}{R} = \frac{1}{R_{cimento} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} + R_{gesso}} + \frac{1}{R_{porta_dupla}} + \frac{1}{R_{janela}}$$
(14)

$$\Leftrightarrow \frac{1}{R} = \frac{1}{0.09} + 2 \times \frac{0.02}{0.037 \times 57.5} + \frac{0.18}{2 \times 57.5} + \frac{0.01}{0.25 \times 57.5} + \frac{1}{0.12 \times 6} + \frac{1}{3.40 \times 10^{-4}}$$
(15)

$$\Leftrightarrow R_{parede\ ext+porta\ dupla+janela} = 3.34 \times 10^{-4} \ KW^{-1}$$
 (16)

Parede Interior Não Estrutural:

$$R_{parede\ n\tilde{a}o\ estrut} = 2 \times R_{gesso} + R_{poliestireno\ extrudido} + R_{madeira\ pinus}$$
 (17)

$$\Leftrightarrow R_{parede_n\tilde{a}o_estrut} = 2 \times \frac{0.01}{0.25 \times 25} + \frac{0.08}{0.033 \times 25} + \frac{0.1}{0.12 \times 25} = 1.34 \times 10^{-1} \ KW^{-1}$$
 (18)

Parede Interior Estrutural:

$$R_{parede\ estrut} = 2 \times R_{gesso} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o}$$
 (19)

$$\Leftrightarrow R_{parede_estrut} = 2 \times \frac{0.01}{0.25 \times 40} + 2 \times \frac{0.02}{0.033 \times 40} + \frac{0.18}{2 \times 40} = 3.46 \times 10^{-2} \, KW^{-1}$$
 (20)

Total: Tendo em conta que os componentes estão associados em série e considerando os resultados das equações 16, 18 e 20

$$R_{total} = \frac{1}{\frac{1}{3.34 \times 10^{-4}} + \frac{1}{1.34 \times 10^{-1}} + \frac{1}{3.46 \times 10^{-2}}} = 3.30 \times 10^{-4} \, KW^{-1} \tag{21}$$

3.2.3 Zona C

Tendo em conta os materiais apresentados na secção e, o croqui da estrutura, **a zona C**, para funcionar à temperatura de $-10^{\circ}C$ possui as seguintes características:

Secção	Material	$k \left(W m^{-1} K^{-1}\right)$	$\Delta x (m)$	Área (m^2)
	Cimento	0.46	0.09	40
Parede	Poliestireno Expandido	0.037	0.02	40
Exterior	Betão Armado	2	0.18	40
$(\times 1)$	Poliestireno Expandido	0.037	0.02	40
	Gesso	0.25	0.01	40
Parede	Gesso	0.25	0.01	50
Interior	Poliestireno Extrudido	0.033	0.08	50
Não Estrutural	Madeira Pinus	0.12	0.1	50
$(\times 2)$	Gesso	0.25	0.01	50
	Gesso	0.25	0.01	37
Parede	Poliestireno Extrudido	0.033	0.02	37
Interior	Betão Armado	2	0.18	37
Estrutural $(\times 1)$	Poliestireno Extrudido	0.033	0.02	37
	Gesso	0.25	0.01	37
Porta Simples $(\times 1)$	Madeira Pinus	0.12	0.1	3

Tabela 6: Composição da zona C

Com base na tabela 6, o cálculo das resistências para esta secção sucede-se da seguinte forma:

Parede exterior: Camadas associadas em série:

$$R_{parede_ext} = R_{cimento} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} + R_{gesso}$$
 (22)

$$\Leftrightarrow R_{parede_ext} = \frac{0.09}{0.46 \times 40} + 2 \times \frac{0.02}{0.037 \times 40} + \frac{0.18}{2 \times 40} + \frac{0.01}{0.25 \times 40} = 3.52 \times 10^{-2} \ KW^{-1} \ (23)$$

Paredes Interiores Não Estruturais:

$$R_{parede_n\tilde{a}o_estrut} = 2 \times R_{gesso} + R_{poliestireno_extrudido} + R_{madeira_pinus}$$
 (24)

$$\Leftrightarrow R_{parede_n\tilde{a}o_estrut} = 2 \times \frac{0.01}{0.25 \times 50} + \frac{0.08}{0.033 \times 50} + \frac{0.1}{0.12 \times 50} = 6.68 \times 10^{-2} \ KW^{-1}$$
 (25)

Parede Interior Estrutural com Porta: Paralelo entre a parede e a porta.

$$R_{parede_estrut+porta} = \frac{1}{2 \times R_{qesso} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o}} + \frac{1}{R_{porta}}$$
(26)

$$\Leftrightarrow R_{parede_estrut+porta} = \frac{1}{2 \times \frac{0.01}{0.25 \times 37} + 2 \times \frac{0.02}{0.033 \times 37} + \frac{0.18}{2 \times 37}} + \frac{1}{0.12 \times 3}$$
(27)

$$\Leftrightarrow R_{parede_estrut+porta} = 3.29 \times 10^{-2} \, KW^{-1} \tag{28}$$

Total: Tendo em conta que os componentes estão associados em série e considerando os resultados das equações 23, 25 e 28

$$R_{total} = \frac{1}{\frac{1}{3.52 \times 10^{-2}} + \frac{1}{6.67 \times 10^{-2}} + \frac{1}{3.29 \times 10^{-2}}} = 2.30 \times 10^{-2} \, KW^{-1} \tag{29}$$

3.2.4 Zona D

Tendo em conta os materiais apresentados na secção 2 e o croqui da secção 3.1, a zona D possui as seguintes características:

Secção	Material	$k \left(W m^{-1} K^{-1}\right)$	$\Delta x (m)$	Área (m^2)
	Cimento	0.46	0.09	40
Parede	Poliestireno Expandido	0.037	0.02	40
Exterior	Betão Armado	2	0.18	40
$(\times 1)$	Poliestireno Expandido	0.037	0.02	40
	Gesso	0.25	0.01	40
Parede	Gesso	0.25	0.01	22
Interior	Poliestireno Extrudido	0.033	0.08	22
Não Estrutural	Madeira Pinus	0.12	0.1	22
$(\times 2)$	Gesso	0.25	0.01	22
	Gesso	0.25	0.01	37
Parede	Poliestireno Extrudido	0.033	0.02	37
Interior	Betão Armado	2	0.18	37
Estrutural $(\times 1)$	Poliestireno Extrudido	0.033	0.02	37
	Poliestireno Extrudido	0.033	0.02	37
Porta Simples (×3)	Madeira Pinus	0.12	0.1	3

Tabela 7: Composição da zona D

Como esta zona deveria funcionar com uma temperatura interna de 0°C, o cálculo das resistências sucede-se da seguinte maneira:

Parede Exterior: Camadas associadas em série:

$$R_{parede\ ext} = R_{cimento} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} + R_{gesso}$$
 (30)

$$\Leftrightarrow R_{parede_ext} = \frac{0.09}{0.46 \times 40} + 2 \times \frac{0.02}{0.037 \times 40} + \frac{0.18}{2 \times 40} + \frac{0.01}{0.25 \times 40} = 3.52 \times 10^{-2} \ KW^{-1} \ (31)$$

Parede Interior Não Estrutural com Porta: Paralelo entre a parede e a porta. Como existem duas paredes, o cálculo possui o dobro do valor.

$$\frac{1}{R_{parede_n\tilde{a}o_estrut+porta}} = 2\left(\frac{1}{2 \times R_{gesso} + R_{poliestireno} + R_{madeira_pinus}} + \frac{1}{R_{porta}}\right)$$
(32)

$$\Leftrightarrow \frac{1}{R_{parede_n\tilde{a}o_estrut+porta}} = 2\left(\frac{1}{2 \times \frac{0.01}{0.25 \times 22} + \frac{0.08}{0.033 \times 22} + \frac{0.1}{0.12 \times 22}} + \frac{1}{0.12 \times 3}\right) (33)$$

$$\Leftrightarrow R_{parede_n\tilde{a}o_estrut+porta} = \frac{1}{2} \times 9.81 \times 10^{-2} = 4.91 \times 10^{-2} \ KW^{-1}$$
 (34)

Parede Interior Estrutural com Porta: Paralelo entre a parede e a porta.

$$\frac{1}{R_{parede_estrut+porta}} = \frac{1}{2 \times R_{gesso} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o}} + \frac{1}{R_{porta}}$$
(35)

$$\Leftrightarrow \frac{1}{R_{parede_estrut+porta}} = \frac{1}{2 \times \frac{0.01}{0.25 \times 37} + 2 \times \frac{0.02}{0.033 \times 37} + \frac{0.18}{2 \times 37}} + \frac{1}{0.12 \times 3}$$
(36)

$$\Leftrightarrow R_{parede_estrut+porta} = 3.29 \times 10^{-2} \, KW^{-1} \tag{37}$$

Total: Tendo em conta que os componentes estão associados em paralelo e considerando os resultados das equações 31, 34 e 37

$$R_{total} = \frac{1}{\frac{1}{3.52 \times 10^{-2}} + \frac{1}{4.90 \times 10^{-2}} + \frac{1}{3.29 \times 10^{-2}}} = 1.26 \times 10^{-2} \, KW^{-1}$$
 (38)

3.2.5 Zona E

Tendo em conta os materiais apresentados na secção e, o croqui da estrutura, **a zona E**, para funcionar à temperatura de $10^{\circ}C$ possui as seguintes características:

Secção	Material	$k \left(W m^{-1} K^{-1}\right)$	$\Delta x (m)$	Área (m^2)
	Cimento	0.46	0.09	90
Paredes	Poliestireno Expandido	0.037	0.02	90
Exteriores	Betão Armado	2	0.18	90
(Área com base no croqui)	Poliestireno Expandido	0.037	0.02	90
	Gesso	0.25	0.01	90
Parede	Gesso	0.25	0.01	47
Interior	Poliestireno Extrudido	0.033	0.08	47
Não Estrutural	Madeira Pinus	0.12	0.1	47
$(\times 1)$	Gesso	0.25	0.01	47
Porta Simples $(\times 1)$	Madeira Pinus	0.12	0.1	3

Tabela 8: Composição da zona E

Com base na tabela 8, o cálculo das resistências para esta secção sucede-se da seguinte forma:

Parede exterior: Camadas associadas em série:

$$R_{parede\ ext} = R_{cimento} + 2 \times R_{poliestireno} + R_{bet\tilde{a}o} + R_{gesso}$$
 (39)

$$\Leftrightarrow R_{parede_ext} = \frac{0.09}{0.46 \times 90} + 2 \times \frac{0.02}{0.037 \times 90} + \frac{0.18}{2 \times 90} + \frac{0.01}{0.25 \times 90} = 1.56 \times 10^{-2} \, KW^{-1}$$
 (40)

Parede Interior Não Estrutural com Porta: Paralelo entre a parede e a porta.

$$\frac{1}{R_{parede_n\tilde{a}o_estrut+porta}} = \frac{1}{2 \times R_{gesso} + R_{poliestireno_extrudido} + R_{madeira_pinus}} + \frac{1}{R_{porta}}$$
(41)

$$\Leftrightarrow \frac{1}{R_{parede_n\tilde{a}o_estrut+porta}} = \frac{1}{2 \times \frac{0.01}{0.25 \times 47} + \frac{0.08}{0.033 \times 47} + \frac{0.1}{0.12 \times 47}} + \frac{1}{0.12 \times 3}$$
(42)

$$\Leftrightarrow R_{parede_n\tilde{a}o_estrut+porta} = \frac{1}{7.10 \times 10^{-2} + 2,78 \times 10^{-2}} = 5.66 \times 10^{-2} \, KW^{-1}$$
 (43)

Total: Tendo em conta que os componentes estão associados em série e considerando os resultados das equações 40 e 43

$$R_{total} = \frac{1}{\frac{1}{1.56 \times 10^{-2}} + \frac{1}{5.65 \times 10^{-2}}} = 1.22 \times 10^{-2} \, KW^{-1} \tag{44}$$

3.2.6 Telhado

Para cada uma das secções, **a área do telhado é igual**. Deste modo, ao calcular a resistência do telhado para uma secção, estamos a obter também o seu valor para todas as outras.

Secção	Material	$k \left(W m^{-1} K^{-1}\right)$	$\Delta x (m)$	Área (m^2)
	Telha	1.2	0.06	80.1
Telhado _	Cimento	0.46	0.04	80.1
	Espuma de Poliuretano	0.028	0.17	80.1
	Gesso	0.25	0.03	80.1

Tabela 9: Composição da zona C

Com base na tabela 9, o cálculo das resistência para o telhado sucede-se da seguinte forma:

$$R_{telhado} = R_{telha} + R_{cimento} + R_{poliuretano} + R_{gesso}$$
 (45)

$$\Leftrightarrow R_{telhado} = \frac{0.06}{1.2 \times 80.1} + \frac{0.04}{0.46 \times 80.1} + \frac{0.17}{0.028 \times 80.1} + \frac{0.03}{0.25 \times 80.1} = 7.90 \times 10^{-2} \ KW^{-1} \ (46)$$

Referências

- [1] admin. «Why Plastering Your Wall Is Important?» (Fevereiro de 2021), URL: https://budgetpainting.sg/why-plastering-your-wall-is-important/ (acedido em 2022-11-29).
- [2] «Typical Thermal Conductivity of Building Materials,» em *Spon's Architects' and Builders' Price Book 2013*, CRC Press, setembro de 2012. DOI: 10.1201/b12706-61. URL: https://doi.org/10.1201%2Fb12706-61.