Cascade control and Rouths Stability Criterion

Outline

- Cascading for
 - Faster response / bandwith
 - Dampening of disturbances
 - Linearization
 - stabilization

Rouths stability criterion

Cascading

Series control.

Cascade control.

Advantage:

- Better disturbance rejection
- More robust to parameter variations
- Linearization of Plant
- Faster response

Disadvantage:

More measurements

Cascading - example on blackboard

Better stability

Cascading - example

The same plant controlled by a series controller and a cascade controller. If both controlled systems have a proportional controller and 45 o phasemargin, D(s)series = 6.8 and D(s)cas = 13.5.

Cascading example

The cascaded system is reformulated using the loop rule.

We will compare the reformulated cascaded system with the series controlled system.

Cascading example - bandwith

The cascaded system is easier to control than the series controlled WHY?

Closed loop frequency response

Closed loop step response

Cascading – example

parameter variation

$$D(s)_{series} = 6.8$$
$$D(s)_{cas} = 13.5$$

Series

$$\frac{Y(s)}{R(s)} = \frac{\frac{6.8}{(s+1.5)(s+1)}}{1 + \frac{6.8}{(s+1.5)(s+1)}} = \frac{6.8}{s^2 + 2.5s + 8.3}$$

Series with and without parameter variation

Cascade

Inner loop
$$\frac{\frac{3}{s+1.5}}{1+\frac{3}{s+1.5}} = \frac{3}{s+4.5}$$

Outer loop
$$\frac{\frac{13.5*3}{(s+4.5)(s+1)}}{1+\frac{13.5*3}{(s+4.5)(s+1)}} = \frac{40.5}{(s+4.5)(s+1)+40.5} = \frac{40.5}{s^2+5.5s+45}$$

cascading with and without parameter variation

Cascading – example - disturbance

The disturbance condition is better in the cascade. WHY?

We study the series and cascade controlled systems from disturbance, W(s), to output, Y(s):

Step responses from disturbance, W(s), to output, Y(s):

Impact of disturbance has been significantly reduced.

Cascading – example - linearity

Linearity:

$$Y_c = \sqrt{K_p(R_c - Y_c)} \Rightarrow$$

$$Y_c^2 = K_p(R_c - Y_c) \Rightarrow$$

$$Y_c = R_c - \frac{Y_c^2}{K_p}$$

for $K_p \to \infty$ we have $Y_c \to R_c$

Key

 $G_1(s)$, Outer process model $D_L(s)$, System load disturbance $G_{c1}(s)$, Outer process controller

 $G_2(s)$, Inner process model $D_S(s)$, System supply disturbance $G_{c2}(s)$, Inner process controller

Y(s), System output

 $N_1(s)$, Outer process measurement noise

 $U_1(s) = Y_2(s)$, Outer process input

 $Y_2(s) = U_1(s)$, Inner system output

 $N_2(s)$, Inner process measurement noise

 $U_2(s)$, Inner process input

R(s), Reference signal

Key DEN(s) = $1 + G_2(s)G_{c2}(s) + G_1(s)G_2(s)G_{c2}(s)G_{c1}(s)$

Table 2.4 Typical cascade control for simple process models.

Outer process	Outer controller forms		Inner process		Inner controller forms	
$G_1(s) = \left[\frac{K_1}{\tau_1 s + 1}\right]$	$G_{c1}(s) = k_{P1} + \frac{k}{s}$	<u>in</u> s	$G_2(s) = \left[\frac{1}{\tau}\right]$	$\frac{K_2}{2^{s+1}}$	$G_{c2}(s) = k_{P2} + \frac{k_{l2}}{s}$	
Performance	Outer : <i>G</i> _{c1} (<i>s</i>)-P	Outer: G	:1(s)-P	Outer: G _{c1} (s)-PI	Outer : G _{c1} (s)-PI	
	Inner: $G_{C2}(s)$ -P	Inner: G _C	₂ (s)-PI	Inner: $G_{c2}(s)$ -P	Inner: $G_{c2}(s)$ -PI	
Step ref. tracking	Offset exists	Offset exists		Offset eliminate	ed Offset eliminate	
Outer noise rejection High frequency	–40 dB per decade	–20 dB per decade		–40 dB per deca	ade –40 dB per deca	
Load disturbance rejection Step model	Offset exists	Offset ex	ists	Offset eliminate	ed Offset eliminate	
Supply disturbance rejection Step model	Offset exists	Offset eli	minated	Offset eliminate	ed Offset eliminate	
Inner noise rejection High frequency	-40 dB per decade	-40 dB pe	er decade	–40 dB per deca	ade –40 dB per deca	

- 1. <u>Disturbances arising within the inner loop</u>, $D_s(s)$, are corrected the inner-loop control before they can influence the outer loop output, Y(s).
- 2. Phase lag existing in the inner loop, $G_2(s)$, is reduced measurable by the inner loop. This improves the speed of response of the outer loop.
- 3. <u>Gain variations</u> in the inner loop (non-linearity's) are overcome within its own loop
- 4. The closed loop rise time can be chosen to 3-5 times faster than the rise time of $G_2(s)$.