Epreuve écrite

Examen de fin d'études secondaires 2011

Section: C

Branche: Mathématiques I

Numéro d'ordre du candidat

Question I (12+8 = 20 points)

1) On donne les nombres complexes suivants:

$$z_1 = \frac{3}{2} - \frac{\sqrt{3}}{2}i$$
, $z_2 = \frac{-5\sqrt{2}}{2} + \frac{5\sqrt{2}}{2}i$ et $u = \frac{(z_1)^2}{z_2}$

- a) Mettre z_1 et z_2 sous forme trigonométrique.
- b) Mettre u sous forme algébrique et sous forme trigonométrique.
- c) En déduire $\tan \frac{11\pi}{12}$.
- 2) Résoudre dans C les équations suivantes (les solutions seront données sous forme algébrique ou trigonométrique, au choix):

a)
$$z^3 = 8$$

b)
$$2z^2 + (i-3)z + 10 + 6i = 0$$

Question II (11+9 = 20 points)

1) Dans l'espace muni d'un repère orthonormé, on considère les deux plans suivants:

 π_1 , d'équation cartésienne 2x - 4y + 3z + 5 = 0;

 π_2 , d'équation cartésienne x - 2y + 3z - 2 = 0.

- a) Montrer que l'intersection des plans π_1 et π_2 est une droite d dont on donnera une représentation paramétrique, un vecteur directeur \overrightarrow{u} et un point P.
- b) Déterminer une équation cartésienne du plan π_3 passant par A(2;-2;0) et perpendiculaire à la droite d.
- c) Etablir un système d'équations cartésiennes de la droite d' qui passe par A et qui est perpendiculaire au plan π_1 .
- 2) Résoudre le système suivant, en discutant suivant les valeurs du paramètre réel m:

$$\begin{cases} (m+2)x + my = 1 \\ -3x + (m-2)y = -1 \end{cases}$$

Epreuve écrite

Examen	de	fin	ď'é	tudes	secondaires	201	11
AJZKOGARA CAR	40	AAAA			Decomment of	-0.	

Section: C

Branche: Mathématiques I

Nun	néro d'o	ordre d	u candi	idat	

Question III (13+7 = 20 points)

1) Au jeu de toto (*Toto-Elferwette*), il s'agit de parier sur l'issue de 11 matchs de football. Pour cela, il faut remplir 11 cases soit par un « 0 », soit par un « 1 », soit par un « 2 ». Le « 0 » représente un match nul, le « 1 » représente une victoire de l'équipe qui joue à domicile, et le « 2 » représente une victoire de l'équipe qui joue à l'extérieur. Voici un exemple de fiche remplie:

| match |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 0 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 2 | 1 |

- a) Combien de fiches différentes peut-on remplir?
- b) Un joueur remplit chaque case au hasard avec un « 0 », un « 1 » ou un « 2 ». Calculer la probabilité de l'événement A « écrire 11 numéros corrects » (c.-à-d. deviner correctement les issues de tous les matchs).
- c) Un joueur remplit chaque case au hasard avec un « 0 », un « 1 » ou un « 2 ». Calculer la probabilité de l'événement *B* « écrire au moins un 0 ».
- d) Un joueur remplit chaque case au hasard avec un « 0 », un « 1 » ou un « 2 ». Calculer la probabilité de l'événement *C* « écrire exactement deux numéros incorrects » (c.-à-d. se tromper exactement deux fois).
- 2) Dans une colonie de vacances, il y a 16 filles, 18 garçons et 5 animateurs. Pour faire des excursions, la colonie dispose d'un minibus de 12 places.
 - a) Calculer le nombre de remplissages possibles du minibus, sachant qu'<u>exactement</u> deux animateurs doivent participer à l'excursion (par l'emploi du mot « remplissage », on sous-entend que <u>toutes</u> les places dans le minibus doivent être occupées).
 - b) Calculer le nombre de remplissages possibles du minibus, sachant que l'animateur A, exactement un autre animateur, exactement 5 garçons et exactement 5 filles doivent participer à l'excursion.