01 Message types in projects

September 22, 2021

Information: A collection of the message types used in my projects for quick reference.

Written by: Zihao Xu

Last update date: September.22.2021

1 geometry_msgs

geometry_msgs/Point.msg

Type	Name
float64	X
float64	У
float64	${f z}$

• Represents the **position** of a point in free space

geometry_msgs/Quaternion.msg

Type	Name
float64	X
float 64	У
float 64	${f z}$
float64	W

- Represents an **orientation** in free space in **quaternion** form
- In short, unit quaternions provide a convenient (though not intuitive) mathematical notation for representing spatial orientations and rotations of elements in three dimensional space
- ullet For detailed information, one available reference is the wikipedia taking about Quaternions and $spatial\ rotation$

geometry_msgs/Pose.msg

Type	Name
geometry_msgs/Point	position
geometry_msgs/Quaternion	orientation

• A representation of **pose** in free space, composed of position and orientation

geometry_msgs/PoseWithCovariance.msg

Type	Name
$\frac{geometry_msgs/Pose}{float64[36]}$	pose covariance

- Represent the **pose** in free space with uncertainty
- The 6×6 covariance matrix is represented in row-major form
- Use a fixed-axis representation for the orientation
- In order, the parameters are

- -R stands for *rolling*, meaning the rotation about X axis
- P stands for pitching, meaning the rotation about Y axis
- Y stands for yawing, meaning the rotation about Z axis

geometry_msgs/Vector3.msg

Type	Name
float64	X
float 64	У
float64	${f z}$

- Represents a vector in free space
- It is only meant to represent a direction
- It does make sense to apply a translation to it
 - When applying a generic rigid transformation to a *Vector3*, only the rotation will be applied

geometry_msgs/Twist.msg

Type	Name
geometry_msgs/Vector3 geometry_msgs/Vector3	

• Expresses velocity in free space broken into its linear and angular parts

geometry_msgs/TwistWithCovariance.msg

Type	Name
$\overline{geometry_msgs/Twist}$	twist
float 64 [36]	covariance

- Represent the velocity in free space with uncertainty
- The 6×6 covariance matrix is represented in row-major form
- Use a fixed-axis representation for the orientation
- In order, the parameters are

- -R stands for *rolling*, meaning the rotation about X axis
- P stands for pitching, meaning the rotation about Y axis
- Y stands for yawing, meaning the rotation about Z axis

geometry_msgs/Transform.msg

Type	Name
geometry_msgs/Vector3 geometry_msgs/Quaternion	translation rotation

• Represent the transform between two coordinate frames in free space

2 trajectory_msgs

trajectory_msgs/MultiDOFJointTrajectoryPoint.msg

Type	Name
geometry_msgs/Transform[] geometry_msgs/Twist[] geometry_msgs/Twist[] duration	transforms velocities accelerations time_from_start

- Represent a fully defined state point for a multi-joint robot, including positions, velocities and accelerations for for all joints
- transforms: Each multi-dof joint can specify a transform (up to 6 DOF)
- velocities: There can be a velocity specified for the origin of the joint
- accelerations: There can be an acceleration specified for the origin of the joint

trajectory_msgs/MultiDOFJointTrajectory.msg

Type	Name
$std_msgs/Header$	header
$string[\]$	$joint_names$
$trajectory_msgs/MultiDOFJointTrajectoryPoint[\]$	points

- The *header* is used to specify the coordinate frame and the reference time for the trajectory durations
- Use a series of fully defined state points to specify a multi-dof joint trajectory
- The order and length of every point must be same as the order of length as the <code>joint_names</code> array

3 Others

std_msgs/Header.msg

Type	Name
uint32	seq
time	stamp
string	$frame_id$

- Generally used to communicate timestamped data in a particular coordinate frame
- seq: Sequence ID, consecutively increasing ID
- stamp: Two-integer timestamp that is expressed s:
 - stamp.secs: seconds (stamp secs) since epoch
 - stamp.nsecs: nanoseconds since stamp_secs
- frame_id: Frame this data is associated with

nav_msgs.msg.Odometry

Type	Name
${std_msgs/Header}$	header
string	$child_frame_id$
$geometry_msgs/PoseWithCovariance$	pose
$geometry_msgs/TwistWithCovariance$	twist

- Represents an estimate of a position and velocity in free space
- pose should be specified in the coordinate frame given by header.frame_id
- twist should be specified in the coordinate frame given by the child_frame_id