	Learning outcomes	Additional guidance
	Learners should be able to demonstrate and apply their knowledge and understanding of:	
(a)	Newton's three laws of motion	HSW7
(b)	linear momentum; <i>p</i> = <i>mv</i> ; vector nature of momentum	
(c)	net force = rate of change of momentum; $F = \frac{\Delta p}{\Delta t}$	Learners are expected to know that $F = ma$ is a special case of this equation. HSW9, 10 M2.1, M3.9
(d)	impulse of a force; impulse = $F\Delta t$	
(e)	impulse is equal to the area under a force–time graph.	Learners will also be expected to estimate the a under non-linear graphs.
		HSW3 Using a spreadsheet to determine impulsion $F\!\!\!\!-\!\!t$ graph.
		M3.8, M4.3
3.5.	2 Collisions	
	Learning outcomes	Additional guidance
	Learners should be able to demonstrate and apply their knowledge and understanding of:	
(a)	the principle of conservation of momentum	HSW7
(b)	collisions and interaction of bodies in one dimension and in two dimensions	Two-dimensional problems will only be assesse A level. HSW11, 12
(c)	perfectly elastic collision and inelastic collision.	HSW1, 2, 6
	Impulse STARTER: Sketch a resul	
	<u>Impulse</u>	tant force potball, initially
	Impulse STARTER: Sketch a result against time graph on a for	tant force potball, initially
	STARTER: Sketch a result against time graph on a for stationary and then kicker Extension: What is impulse? How can it be calculated from this	tant force potball, initially
	STARTER: Sketch a result against time graph on a for stationary and then kicker Extension: What is impulse? How can it be calculated from this graph?	itant force potball, initially
	Impulse STARTER: Sketch a result against time graph on a for stationary and then kicker Extension: What is impulse? How can it be calculated from this graph? F(N) 800- 600-	tant force potball, initially
	STARTER: Sketch a result against time graph on a for stationary and then kicker stationary and the kicker	Point of maximum compression Contact ends.
	Extension: What is impulse? How can it be calculated from this graph? F (N) 800 600 400 200 Contact begins. O 20 40 60 Duration A	Point of maximum compression Contact ends.
	STARTER: Sketch a result against time graph on a for stationary and then kicker. Extension: What is impulse? How can it be calculated from this graph? F(N) 800 400 200 Contact begins. 0 20 40 60	Point of maximum compression Contact ends. 0 80 100 t (ms) elerating an

(6) M - Define impulse (7) S - recall and apply the equation impulse = change in momentum (8) C - Find accuratly the impulse from a graph of force against time. **Impulse Key definition: Impulse** Force x time for which the force acts OR FΔt with both symbols defined kgms1 Question: A stationary 50g squash ball experiences an impulse of 1.1Ns. Calculate its final velocity Ex: Why can't we use F=ma for this to find a and then find

- (6) M Define impulse
- (7) S recall and apply the equation impulse = change in momentum (8) C Find accuratly the impulse from a graph of force against time.

Impulse = area under a force against time graph

Explain why using the graphs below?

Example 1: Easy graph

A stationary squash ball of 25g.

Q1: Calculate the final speed of the ball.

Area =
$$\frac{1}{2} \times ban \times height = \frac{1}{2} \times 0.05 \times 40 = 1 \text{ NS}$$

Impuls = $(V - b)_M = 1$ $V = \frac{1}{0.025} + \frac{1}{100}$

Example 2: More difficult grap

- a) Find the impulse
- b) Find the final speed of the same ball

(6)) M -	Define	impulse
-----	-------	--------	---------

- (7) S recall and apply the equation impulse = change in momentum (8) C Find accuratly the impulse from a graph of force against time.

Demo impulse.
Use the data e-mailed to you to find the impulse in
situation a) with no crumple zone b) with a crumple zone.
What do you notice?
Ex: Use the information to explain the need for a crumple zone.
ZONG.

(6) M - Define impulse
(7) S - recall and apply the equation impulse = change in momentum
(8) C - Find accuratly the impulse from a graph of force against time.

Impulse practice questions.

Ex: Continue with the summary questions on page

9 A 900 kg car crashes into a safety barrier. The diagram below show how the force *F* acting on the car changes with time *t* while the car is being stopped. The final velocity of the car is zero.

a Use the graph above to determine the impulse of the force.

[3] [3]

b Calculate the initial velocity of the car.

A small rocket is used to detach a satellite of mass 180 kg from the spacecraft. Fig. 2.2 shows the variation of the force F created by the rocket on the satellite with time t.

(i) determine the change in the velocity of the satellite as a result of the force F applied for the period of 12 ms.

	change in velocity = m s ⁻¹ [4]
(ii)	describe how the acceleration of the satellite varies between 0 and 10 ms.
	[2]

Ir	mpulse	practice questions		
	1S	prudude queducilo		
_9 a Impul	se = area	under force against time graph		
impul	$se = \frac{1}{2} \times$	$4.0 \times 10^4 \times 2.0$		
		\times 10 ⁴ N s		
b Chang	ge in moi 4.0×10 ⁴	mentum = impulse = 4.0×10^4 kg m s ⁻¹ (final momentum of car = 0)		
$v = \frac{4}{}$.0×10 ⁴	$= 44.4 \text{ m s}^{-1} \approx 44 \text{ m s}^{-1}$		
	900	,		
	(b) (i)	Area under graph in range 10.5 to 11.5 (Ns) Area under graph in range 10.8 to 11.2 (Ns)	C1 C1	
		$\Delta v = \frac{\text{impulse}}{1} = \frac{\text{area}}{1}$		
		$ \begin{array}{ccc} & m & m \\ & = \frac{11.0}{1.0} \end{array} $	C1	Possi
		180		Use o
		$= 6.1 \times 10^{-2} (ms^{-1})$	A1	marks
	(ii)	From 0 to 3 (ms) acceleration <u>increases</u> linearly/uniformly/ at constant rate/ at a steady rate.	B1	Allow Do no
		(From 6.5 ms) onwards/later/at end the acceleration decreases	B1	Not 'c
		(FIGH 6.5 HIS) Griwalds/later/at end the acceleration decreases	ы	Not
		change in the velocity of the satellite as a result of the	force F	- appli
	nine the		force F	- applie
			force F	- applie
			force F	- appli
			force F	- applie
			force F	- appli
			force F	- applii
			force F	ē appli∙
			force F	- appli
			force F	- appli
		2 ms.		
the pe	riod of 1	change in velocity =		
the pe	riod of 1	2 ms.		
the pe	be how	change in velocity =	 ms.	ms
(ii) descri	be how	change in velocity =the acceleration of the satellite varies between 0 and 10	ms.	ms
(ii) descri	be how	change in velocity =the acceleration of the satellite varies between 0 and 10	ms.	ms
(ii) descri	be how	change in velocity =the acceleration of the satellite varies between 0 and 10	ms.	ms
(ii) descri	be how	change in velocity =the acceleration of the satellite varies between 0 and 10	ms.	m

	Plen	ary											
impulse		•	when each		-	s inter	act, th	ey ex	kert e	qual a	nd opp	posite	force
Newton second law	's •	•	rate o	of cha	nge o	f mom	ientum						
net forc	e •						ing on a						
Newton first law	I		veloci	ity un	less a	cted u	t rest o	a re	sultar			th cor	nstant
Newton third la	-	•	the ar	rea ur	nder a	force	-time <u>c</u>	graph	1				
Statemen									True	/False			
Total kine								-			_		
Magnitud collision i Total mor	s the sa	me.						\perp					
conserve		.J. U	.s obje	J. 111	olas		JIJ11 13						
Total ene	rgy in a	n inel	astic c	ollision	is con	served							
				e in th	ne velo	ocity of	the sat	ellite	as a r	esult o	of the fo	orce F	= applie
	ermine period			e in th	ne velo	ocity of	the sat	ellite	as a r	esult o	of the f	orce F	= applie
				e in th	ue velo	ocity of	the sat	ellite	as a r	esult o	of the fo	orce F	- applie
				e in th	ne velo	ocity of	the sat	ellite	as a r	esult c	of the fo	orce F	= applie
				e in th	ne velo	ocity of	the sat	ellite	as a r	esult o	of the fo	orce f	= applie
				e in th	ue vela	ocity of	the sat	ellite	as a r	esult c	of the fo	orce F	= applie
				e in th	ue velo	ocity of	the sat	ellite	as a r	esult c	of the fo	orce F	= applie
				e in th	ne velo	ocity of	the sat	ellite	as a r	esult c	of the fo	orce F	₹ appli∈
				e in th	ne velo	ocity of	the sat	ellite	as a r	esult o	of the fo	orce F	₹ appli∈
				e in th	ne velo	ocity of	the sat	ellite	as a r	esult c	of the fo	orce I	= applie
				e in th	ne velo	ocity of	the sat	ellite	as a r	esult c	of the fo	orce F	F applie
				e in th	ue velo	ocity of	the sat	ellite	as a r	esult c	of the fo	orce F	F applie
				e in th	ue vela	ocity of	the sat	ellite	as a r	esult c	f the f	orce F	F applie
				e in th	ue vela	ocity of	the sat	ellite	as a r	esult c	of the fo	orce F	F applie
				e in th	e velo	ocity of	the sat	ellite	as a r	esult c	of the fo	orce f	F applie
				e in th			the sat						
the	period	of 12	2 ms.		chang	ge in ve		=					
(ii) des	period	of 12	≥ms.	elerat	chang	ge in ve	elocity =	·	betwe	en 0 a	nd 10 r	ms.	ms
(ii) des	period	of 12	≥ms.	elerat	chanç	ge in vo	elocity = tellite va	= aries	betwe	en 0 a	nd 10r	ms.	ms
(ii) des	period	of 12	ene acc	elerat	chanç ion of	ge in vo	elocity = tellite va	=	betwe	en 0 a	nd 10 r	ms.	ms
(ii) des	period	of 12	ene acc	elerat	chanç ion of	ge in vo	elocity =	=	betwe	en 0 a	nd 10 r	ms.	ms