

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AD-A147 392

U.S. Department of Transportation
Federal Aviation Administration
Office of Environment & Energy
Washington D.C. 20591
FAA-/EE-84-15

HELICOPTER NOISE SURVEY PERFORMED AT LAS VEGAS, NEVADA JANUARY 19-21, 1984

Ву

Steven R. Albersheim

OTIC FILE COPY

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

84 10 31 04

Technical Report Documentation Page

1. Region. FAA-84-15 AD - AI 4 7 3 9 2	<u></u>
	3. Recipient's Catalog No.
4. Title and Subtitle Helicopter Noise Survey Performed at Las Vegas, NEVA	5. Report Date
January 19-21, 1984	6. Performing Organization Code
7. Author(s)	8. Perferming Organization Report No.
Steven R: Albersheim	•
9. Performing Organization Name and Address	10. Work Unit No. (TRAIS)
Department of Transportation, Federal Aviation Administration, Office of Environment and Energy,	11. Contract or Grant No.
AEE-110, Washington, D.C. 20591	13. Type of Report and Pariod Covered
12. Spensoring Agency Name and Address	7
Department of Transportation, Federal Aviation Administration, Office of Environment and Energy,	
AEE-110, Washington, D.C. 20591	14. Spensoring Agency Code
The FAA conducted a noise measurement survey of helicoduring the Annual Helicopter Association International performed during the period of January 19-21, 1984. It survey was to obtain additional noise data for a number models during normal operations in an urban environment test program which measured sideline noise levels beyoncollected are classified as survey type data, since the "target of opportunity" as apposed to "controlled test	l Convention. The survey was The purpose of this noise er of different helicopter nt. This survey was the first
noise impact	t data."
Helicopter, L _{MAX} , L _{EQ} , environmental noise impact	BUTION STATEMENT A oved for public releases
Helicopter, L _{MAX} , L _{EQ} , environmental noise impact Appro	BUTION STATEMENT A oved for public releases istribution Unlimited

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

ACKNOWLEDGMENT

ELECTION CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CO

Appreciation is expressed to the following individuals who participated during this survey. Without the their effort and commitment it would not have been possible to complete the project.

Sharon Yoshikami, FAA
Tony Fazio, FAA
Donna Warren, FAA
Dave Smith, FAA
Charles Cox, Bell Helicopter
Rick Riley, Bell Helicopter
George Tatten, Sikorsky
Don Piet, FAA Las Vegas
Bill Kramer, FAA Las Vegas
Gerry Ryser, FAA Las Vegas
Carl Wengel, FAA Las Vegas
Len Cook, FAA Las Vegas
Bent Junker, FAA Las Vegas
Bruce Hayden, FAA Las Vegas
Gerald L. Laurie, Hughes

CONTENTS

SECT	ION	Page
1.0	Introduction	1
2.0	Noise Measurement Program	2
3.0	Site Description	4
	3.1 Convention Center	5
	3.2 McCarran	7
4.0	Meteorological Conditions	10
5.0	Instrumentation	11
6.0	Discussion of the Data	13
	6.1 McCarran Departures	13
	6.2 McCarran Approaches	34
	6.3 Convention Center	37
7.0	Concluding Remark	42

	Accession For	
	NTIS GRA&I	
	DTIC TAB	
	Unannounced	
•	Justification	
!		-
	Bv	
	Distribution/	
	Availability Codes	
	Aveil sua/or	
	Dist Special	
	1 - I	
	M	

Proceduration of the state of t

LIST OF TABLES

TABL	E	Page
1.	Helicopter Noise Levels Measured At McCarran	
	During Departures For All Events (Altitude,	
	Slant Range, Lmax), January 19, 1984	14.
1a.	Helicopter Noise Levels Measured At McCarran	
	During Departures For All Events (Lmax,	
	Elevation Angle, Delta Lmax), January 19, 1984	17.
2 .	Helicopter Noise Levels Measured At McCarran	
	During Departures With At Least Two Sites	
	Reporting A Lmax, January 19, 1984	20.
3 .	Helicopter Noise Levels Measured At McCarran	
	During Departures For All Site Reporting An	
	Lmax, January 19, 1984 (Altitude, Slant Range,	
	Lmax)	22 .
3 a .	Helicopter Noise Levels Measured At McCarran	
	During Departures For All Sites Reporting An	
	Lmax, January 19, 1984 (Lmax, Elevation Angle,	
	Delta Lmax)	23.
4.	Helicopter Noise Measurements During Arrivals	
	at McCarran For Events Where The Helicopter	
	Passed Over Centerline (Altitude, Slant Range,	
	Lmax)	35.
44.	Helicopter Noise Measurements During Arrivals	
	At McCarran For Events Where The Helicopter	
	Passed Over Centerline (Lmax, Elevation Angle,	
	Delta Lmax)	36.
5 .	Noise Levels Measured At The Las Vegas	
	Convention Center	39.
6 .	Noise Levels Typically Encountered In An	
	Urban Environment	43.

LIST OF FIGURES

FIGURE	Page
 Noise Monitoring Stations at the Conven Center 	tion 6.
2. Noise Monitoring Stations at McCarran International Airport	8.
3. Acoustical Measurement Instrumentation	12 .
4. Lmax vs Distance for the Bell 206B for Departures at McCarran	27.
 Lmax vs Distance for the BK117 for Departures at McCarran 	28.
6. Lmax vs Distance for the AStar for Departures at McCarran	29.
7. Lmax vs Distance for the Dauphin for Departures at McCarran	30.
8. Lmax vs Distance for the Hughes 500E fo Departures at McCarran	r 31.
9. Lmax vs Distance for the Twin Star for Departures at McCarran	32 .
 Lmax vs Distance for the Hughes 500F fo Departures at McCarran 	or 33.

1.0 <u>Introduction</u>

At the present time, the FAA is in the process of examining noise levels associated with helicopter operations. Since helicopters operate at a much lower altitude and slower speed than fixed-wing aircraft, the noise associated with them appear to be more pronounced. The purpose of this study is to obtain additional noise level data of a number of different helicopter types during normal operations in an urban environment..

During the period of January 19-21, 1984, the Helicopter
Association Internation (HAI) held their annual convention at
Las Vegas, Nevada. Helicopter manufacturers participating in the
convention usually have on-hand demonstration helicopters at the
flight-line to give rides to potential customers with the purpose
being to demonstrate the performance capabilities and features of
the helicopter. On the average there are 200-300 operations per
day. Because of the high frequency of operations, this affords
the FAA the opportunity to take noise measurements for a
wide range of helicopter models at one location over a short
period of time for representative in-service operations. In
addition it provides the opportunity to determine the consistency
between L(max) values for the same helicopter model for different
events, but with variations in operations due to changes in
speed, glide slope, load, pilots, etc. During this convention

^{*} L(max) refers to the A-weighted sound level, expressed in decibels.

there were 14 models on the flight line.

The noise data collected during the convention are classified as survey type data, since the data obtained were from "targets of opportunity" as opposed to "controlled test data". The helicopter flight corridors into and out of the departure and landing sites were prescirbed by the airport to separate the helicopter operations from the fixed wing. However, there were no limitations placed on the helicopter pilots on individual flight paths, rate of climb, rate of descent, etc.

It should be noted that this test is a continuation of FAA's effort to develop a data base of noise levels associated with helicopter operations in an urban environment, which were conducted at Chicago, Long Beach, New Orleans, New York, Portland, and Seattle. In addition, this was the first test program which measured sideline noise levels beyond 500 feet. This test can be compared to the FAA/HAI Helicopter Flight Operations Noise Test where measurements were made out to 2000 feet for normal operations under "controlled" conditions.

2.0 Noise Measurement Program

The FAA in conjunction with support from Bell Helicopter and Sikorsky Aircraft conducted three separate noise measurement

programs during the convention. The test plan used for the noise monitoring program was developed and implemented by the FAA.

Industry participation consisted of providing coordination with helicopter traffic control and noise measurement crews who worked under the guidance of the FAA. With industry's assistance it was possible to deploy a number of noise monitoring stations.

There were two principal noise measurement programs conducted at Las Vegas. The first part of the noise measurement program was conducted at McCarran International Airport at the flight line. The second noise measurment program was conducted at the Las Vegas Convention Center where typical terminal flight operations were measured.

At McCarran the primary aims were to measure centerline and sideline maximum A-weighted noise level, L(max), during arrivals and departures from the flight line.

To measure sideline noise levels, noise monitoring stations were located at selected distances out to 1200 feet normal to centerline. Due to the physical constraints, (e.g. approach path and runway alignments) imposed on locating the noise monitoring stations for arrivals, it was only possible to measure sideline noise levels out to 200 feet from the centerline.

The purpose of the noise test at the Convention Center was to obtain a perspective of noise levels from helicopter operations at a representative in-service helipad. The operations consisted of hover-in-ground-effect at different headings and flat-pitch-idle-running.

3 0 Site Description

Las Vegas is located in a desert climate in a valley which runs in a north-south direction. McCarran International Airport is located approximately 4 miles south of the center of the city and is classified as a large hub airport. The HAI flight line was located on the southwest corner of the airport property, at the Hughes Terminal which services charter and general aviation operations. The control tower at the Hughes Terminal is not used on a daily basis, but was activated to coordinate the helicopter operations for the HAI Convention.

Vegetation around McCarran is sparse due to the arid climate. The ground is principally a rocky substrate. The significance of this with respect to the noise measurement program is that the monitoring sites were always located on an acoustically hard ground surface.

Locations of the noise stations for the monitoring conducted at the Convention Center, and departures and arrivals at McCarran. are described below.

3.1 Convention Center

At the Convention Center, two noise monitors were located on the centerline approach and departure path of the helipad as shown in Figure 1. These sites were designated as 1 and 2 and were 304 and 511 feet, respectively from the center of the helipad. Site 3 was located at 270 off the center of the helipad at a distance of 294 feet. This placed the site at a 90 angle to the centerline in order to provide some measure of directivity of the sound to the sideline. Ideally, an array of microphones surrounding the helipad would be used to measure the directivity of noise with respect to approach, departure, and routine terminal operations. Due to the limitation of personnel and equipment it was not feasible to establish such a sophisticated array. The fourth site was located at 33 off the centerline (i.e. toward the southwest at a distance of 775 feet from the center of the helipad. This site was to measure sideline noise levels during approach and departure.

333 PARADISE ROAD NOISE MONITORING STATIONS AT THE CONVENTION CENTER Œ (Not drawn to scale) FIGURE

All of the sites were exposed to a high level of ambient noise due to their proximity to Paradise Rd., which is a 6-lane highway running in a north-south direction parallel to the Convention Center. During the noise monitoring, traffic was consistently heavy with the majority of the vehicles passing by being automobiles interspersed with bus and heavy duty trucks. Site 4 which was the fartherest from the helipad was effected the most by the traffic. There were times during the test when noise levels from the helicopter did not exceed the ambient at site 4.

3.2 McCarran

Figure 2 shows the respective locations of the noise monitoring stations for departures. Sites 1 and 2 for departures were located at a distance of 1325 and 1525 feet on the centerline from the helipad. Sites 3, 4, 5, and 6 were located at a distance of 600, 800, 1000, and 1200 feet normal to site 1 to the south of the departure path. Site 1 was designated as the primary site. All of the sites were situated on a rocky/sandy surface and were located at a distance of 900 feet from Las Vegas Blvd. Hence, traffic did not interfere with the signal to noise ratio from the helicopters.

FIGURE 2 NOISE MONITORING STATIONS AT

McCARRAN NTERNATIONAL AIRPORT

Sites 4, 5, and 6 were closest to runway 07-25 which was the principal runway in use on January 19, 1984 for air carrier departures. Airlines departed predominantly to the west. As a result, many of the helicopter noise events were contaminated with jet noise. Data presented for these sites were screened and only those noise levels clearly set by the helicopter are reported.

It was not possible to use the same noise monitoring locations and array to monitor the noise levels for arrivals since the approach path was from the north for arrivals and departures were to the west. The only practical location to monitor noise for arrivals was to locate the noise stations between runway 01R-19L and the taxiway as shown in Figure 2. Because of the navigation restrictions at the airport for helicopter approaches, this was the only location available where the helicopters would be 200-300 feet directly overhead the centerline microphone. It was not feasible to set-up an array extending out to 1200 feet from the centerline as was done for departures. Site 4 which was the fartherest station from the centerline was 200 feet to the east along the normal. Site 5 was on the centerline 200 feet to the south of the primary site. As in the departures, all the sites

were located on a rocky/sandy surface. There was occasional interference from taxing aircraft resulting in a lost of some of the observations. Other events were lost as a result of the helicopter not flying over the centerline positions.

4.0 Meteorological Conditions

Weather conditions were quite suitable during the noise monitoring program of January 19-21, 1984. The surface temperature as measured by the National Weather Service at the airport ranged from 40 to 50F during the three day test period. On the 19th and 20th, the winds were principally from the north averaging 5 to 7 knots. On the 21st, the wind direction shifted to the south with an average speed of 5 to 9 knots with overcast conditions for much of the day. Relative humidity ranged from 19 to 50% during the test. The noise data presented in this report have not been adjusted for meteorological conditions.

5.0 Instrumentation

A schematic of the acoustic measurement system is shown in Figure 3 for a typical configuration of equipment used. The following equipment was used at different times during the noise monitoring program: Gen Rad 1988's Precision Integrating Sound Level Meter (ISLM), B&K Model 2218 Precision Integrating Sound Level Meter (ISLM), and NAGRA SVJ tape recorder.

Each Gen Rad 1988 ISLM used a P-42 microphone-preamplifier driving a Gen Rad 1/2 inch electret microphone. The microphone-preamplifier assembly was mounted on a tripod four (4) feet above ground level with the diaphragm oriented for grazing incidence. The analog signal was recorded as a hard copy through direct read out to a graphic level recorder and at the same time was converted to a digital output.

The B&K system used a 1/4 inch condenser microphone. The system is self contained in that the microphone was directly attached to the ISLM. Output was observed on an analog scale and digital read out on the ISLM. There was no hard copy made of the analog signal.

At the end of each event, the observer using either system noted

12 VOLT AUTO BATTERY GRAPHIC LEVEL RECORDER METROSONICS db-404 12 sec/cm TRANSPORT Systems 1 and 2 Community Noise Analyzer DC-OUTPUT Slow Response **GEN RAD 1945** System 3 SOUND level meter Weighting **GEN RAD 1988** INTEGRATING PRECISION To this point All Systems the same ,GR, X" electrot micro 15 ft. Merophens Oriented for Grating lesidence OR, P-42 pres

ACOUSTICAL MEASUREMENT INSTRUMENTATION

FIGURE 3

in a log the digital read out of the L(max), Leq, SEL, and the duration of the event.

All the microphones were located at distances of 20-30 feet from the observer to avoid any interference with the signal to noise ratio.

The NAGRA SVJ recorder analog signal was amplified to a suitable recording level and was recorded on channel one. A time code was recorded on channel two for traceability of events. Channel two was used to orally annotate the tape by the observer. The magnetic tapes were later reduced and analyzed in a laboratory.

6.0 Disucssion of the Data

6.1 McCarran Departures

Noise levels associated with departures were monitored on January 19, 1984, at McCarran International Airport. During the monitoring period there were 89 events which was comprised of 14 different helicopter models. Table 1 provides a listing of the

^{*} Leq refers to equivalent sound energy and SEL is the sound exposure level integration of the $L(\max)$ time history, normalized to 1 second

(Altitude, Stant Range, Lmax)

January 10, 1884

E * = 3 t	Helicopter	Aftitude	Modes	Notes Monte or in State one			_								
a den	-	Centerline :		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				_	at a t	6	Loc	Station Locations			
	-	333		•				_	~			-	5		•
•	EALT 264-1								- (1				- 1	-
	204-2		2				;;	•			•	٠		•	•
~	BK-117	- X	. ž	X X	: X	* *				2 4				: ;	
•	A-STAR :	1 691	422	710	1013	1211	=		2			70.0	6.5		
•	Enstrom 286 FX i	I WA I	¥	X	¥	ž	0 7		1.1			0.4		7.2	
•	Agusta 109A	- YX	¥	Y.	¥	ž	_	•	9.6	9	•		74.2	72	•
• (Twin Star		454	122	• 10 1	1215	-	-	15.2					4.7	•
,	Mughes 530F	- Y	Y :	Y :	ž	ž	=	•	2.0					•	•
	3000 seubnu	Y .	Y .	Y Y	X :	¥ .	= :	•					73.7		-
• •	BK-117	1.46	\$29	6.0	1015	1213	-	0	Ŧ :	1				1	•
2 :	- 4451 47455 4451	3 :		76.	7701	2771	2 :		•	•		•			
::	nughes sout	777	4 2 3		7701	0771	: :	n -	7 .	7	M .				
: =	2 204 1 204							•	7					• :	•
-	Hunkes 500E	740			101	122	: :			•				•	•
5	Hughes 530F	351	8 4 9	8.4	0 7 0 1		-				•	•		,	•
	Enstrom 280 FX 4		Y X	, V	2	2	9	• ~		7.8	•				
	Dauphin		Y Z	¥	¥ Z	ź	- 0 -	•		2		•		7.0	•
-	Bell 222	_	Y X	¥	Y Y	ž	1 29	17	79.7	76.7		_			٠.
13	80-108	1 438 1	743	112	1072	1277	=	•	79.5	70		0.89	. 5	9	0
70	Hughes 500E	1 276 1	099	946	1037	1231		•	79.0	71.3		1.49		63	•
31	Hughes 500D 1	-	¥N	¥N	ž	ž	17.	9		70.2			6.4	•	•
11	Bell 206-B	1 88 1	620	518	1012	1210	=	•	12.6	7	•	11.1		;	•
23	Mughes 500C	1 964 -	707	879	1064	1254	. 82	~	12.0	73.	80		71.6	-	•
7 7	Beil 206-E	1 772	989	2 4 5	1034	1221	=	-	-	72.	-	•		•	
2	ningued	-	¥ ;	Y Y	Y Y	Ž	.	~ `		7	~	74.3	49.2	7 0	•
• :	Hughes Soot	912		629	1023	1219	-		2						
, ,	777 138				6601	1228	= :		•	:			•		
	Engion 280 FX	982	9 7	- C S E	7 7 7 7	12.20	::	, -		, ,	? ;	. ~	7	: :	, 0
	80-108	296 1	699	853	1043	1236	; 	•		•				;	
31	Enstrom 280 f	282	6 6 3	9 7 8	1039	1233	1 79	•	7.7	7.6	0 73	-	69.3	7.0	•
32	Agusta 109A		¥	٧	ž	ž	1 82	•		75	5 73	=			
33	Hughes 500E	1 272 1	429	8 4 5	9601	1230		7	10.2	7		71.1	6.3	47	٠.
T	Dauphin	716	738	6 2 9	1023	1219	:	•	-	7	1 74	_	0 . 4 7	70	•
e .	Hughes 5000	262	99	65.3	1043	1236	_	_							
9 6	Tuin ster				700	2 4 6		•		2	9, 1	•		•	, -
	Engiron 280-FX 1		¥ 2	< 4 2 2	£ 2	£ 2	. :	٠,		כ		? =		:	9 6
	BK-117 ;	-	Z Z	: X	 	£ 2						•		•	
•	Beil 222	1 292 1	199	182	1042	1235	: =	-		73	•			7.1	•
Ŧ	80-105		627	921	1017	1214	=	-		7.4	7	3.0	69.0	4.7	•
42	Dauphin	- ••	622	817	1013	1 2 1 1	-	•	. 0	7.5	-			;	•
#3	Hughes 5000 :	298 -	670	884	1043	1236	9	•	11.2		72	•		6.7	
÷	Bell 206-B		Ž	Y N	٧X	ž	7.	•	5.0	62	4 63	0		;	
÷	Agusta 109A	-	¥	4	Y Z	Ź		_	3.0	22	2	5		7.1	•
*	Hughes 500E	200	299	-	0.36	1 2 3 2	. 2	~		7	7 69	٠.		Ţ	•
; :	- AVIO-A	807	,	220	1201	1218		~	•	•				7	9
		- 4/5			104	125		_	0	7	-	_		Ç	•
				•											

SONT CONTROL C

TABLE 1 (Conf')

			•				_									
					REPLY AND PRINCE PRINCE					1	•					
Ne de s		Centerline i		3					-	-	Station Locations	3	5	_ ,		
		3						-	~		en	•		.	•	
20	Enstrom 280-FX		NA NA	XX	٧×	¥	12	~	77.1	12		•			5	•
15	Hughes 5000	299 :	470	• 2 •	101	1237	-	_			_	72.1		٠	67.0	•
\$2	Bell 204-B :	384 (***	8 4 8	1040	1233	1 29	79.0	79.3		71.6	4.01		67.0	65.0	•
53	Bell 412	1 452	127		1033	1228	. 17	17.7	89.2			78.7		75.0	72.0	•
8	Mughes 500E	204	+64	929	1031	1217	1 62	۲,		7.3		71.0	59 -	•	44.0	•
8	Bell 204-L 1	707	169	936	101	1218	=	٠.	-			72.0	_			
3.6	Enstrom 280-FX :	-	Y.	Y.	¥	M	_			7.	71.3 (49.0	_		0 . 6 9	•
\$ 2	BK-117 ;	-	¥	¥	Y	¥	_		7.	_	•	0.69	_			
90	Dauphin		¥N	¥	¥	ž	=	•		7	74.3	73.1		•	67.0	•
90	Agusta 109A	••	Y X	Y.	¥	X	1 117	~		7.4	74.9	27.3		72.4	71.0	•
0,9	A-STAR	••	¥X	¥X	M	M	-	83.9	-	•	1 6 . 6 7	69.0	;	•	63.0	•
;	Hughes 500E	-	¥	¥	YN	¥	1 7 1	71.0			•	1 . 5 9		11.0	62.0	•
6.2	Bell 206-L		¥	¥	Y.	¥	7.	2.94	74.7	_	•	67.5	3	•	0.11	•
6.3	Hughes 5000	3 1 7 6	200	878	E 7 0 1	1253	1 29	24.2	71.1	_		72.0	;	•	0.99	•
44	Twin Star 1	1 + 7 +	758	925	1102	1287	1 79	79.7	79.3	70	n			•	65.0	•
5 9	Ball 206-B	1 124 :	425	619	1815	1213	_			_						
99	Hughes 530E :	276 h	099	;:	1037	1231	1 82	12.2	78.2	_			7	71.0		
4.7	BK-117 ;	301	471	8 2 2	101	1237	- 2	19.9	7.1	_		73.7	_		17.0	•
8 4	Ë	-	¥	Y X	¥	ž	1 78	•	79.1	_		71.0	_			
69	B		733	768	1078	1366	_		78.7	_		74.0	_		9.99	•
2 0	Ball 47 :	1 561	164	023	101	1214		•	7.07	_	•	1.19	3	•	0.6	•
7.1	A-STAR	203	£ 3 3	9 2 2	1020	1217	:	•	-	_		70.0	_		47.0	•
7.5		262 1	5 5 7	143	1034	1 2 2 8	=	1.0	7.0			7.6		• •		
7.3		244 :	•••	437	1030	1225	=	5 . 6	-	;	4.4	70.3		47.5	9 . 6	•
7.4	E 2 6	-	Y Y	¥	¥	ž	7	79.8	7.			71.5				
75		1 421	424	9 2 0	7 : 0 :	1213	T	•	=	•		72.6	3	.	9.5	•
7.	Ĭ	1 292	£55	7 7	T 0 0	1 2 2 6	2		7			2			9	
7.7			739	606		1275	=		79.1				;	•	67.0	•
2		202	\$ 9 S	627	100		:	9 .			•	•		•	•	
	9		***	7 :	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4771		•		_	•	2		9		•
		(Ž,	4	Y .	4 X	•		=					•	•	
	Bell 206-B	257	654	• •	1032	1221	=	=	•	_	•			7	-	•
(1 6			Y.	4	¥	ž	1 11.7			_			3		9	•
E #	_	214.00	437	0 2 0	1023	1219	12.2						;	5.44	45.0	•
7	E.	-	4	¥	¥	¥	7.		77.1				;	0.1	0.11	•
•		7 00 070	767	873	1059	1249	1 79.7		7	_			6.7	•	;	•
•	Twin Star .		123	8 8 9	1045	1 2 3 8	-	_	79.						•	•
		1 00 676	701	879	+ 7 0 1	1254	. 28	•	3				;	•	•	•
80	Enstrum 280-FX		2	2	2	2	•	•	•				•		٠	•

Site 2 is on the centerline 1835 ft. from the helipad Site 2 is on the centerline 1835 ft. from the helipad Site 3 is a sideline site 600 ft. south of site 1 Site 2 is a sideline site 800 ft. south of site 1 Site 2 is a sideline site 1000 ft. south of site 1 Site 6 is a sideline site 1000 ft. south of site 1 NUTE

Blanks are lost data due equipment malfunction, contamination, etc.

helicopters measured by their event of occurrence. In addition, Table 1 provides the altitude of the helicopter as it passed over the centerline position and associated slant ranges for the other monitoring sites and the L(max) in dB(A) as recorded for each position. Table 1a is a continuation of the information obtained during departures which lists the L(max), elevation angle, and the difference between the L(max) for centerline and the sideline sites.

Review of the data as presented in Tables 1 and 1a reveal that there were many events in which the L(max) values were not measured at several sites or there was no determination of altitude and subsequently slant range was not available. The primary cause for lost of events was the result of contamination from air carrier jet departures westbound from runway 07-25. Site locations 4, 5, and 6 were the principle sites effected as a result of air carrier operations. At site 3 there was a complete failure of the noise monitoring equipment beginning at event 78 resulting in a lost of L(max) values at this site for events 78 through 88.

Additional events were lost due to the helicopter's not flying over

January 18, 1884

													1	ì											
		_			1	=	MAN (dBA)	2	l		-		_	E 1 . v a	tion	Elevation Angle			-	Difference between	ice be		Conterline	• 4 4	
Event	He I scopter	 .	•				•						•	0.0	(Degrees)					and Sideline Bites	• • • •		(YMP)		
		- 	n -	_	4	, ,	1007 (10m	ē	_ ••	•		•		. •	- - -	19(10H TOCA(10HB	•	•		1-3	-	•	5-1	-	•
				,	1			1	-	1.] - -	:		1				:				3	20	:	
•	7-907 1198		•				•	:	•		• •	í		•		•	; ;							•	•
~ ~	211-38 211-38		• «		: 3	•	9 15	_					ž		4 4 2 2		£ £		 {				ź		
. ~	A-STAR	=	-		~			;	•			5		-		•	3.6	7	-		-		07 11	-	01.9
	Engirom 280 FX	•	-				4.0	_		72.0	-		ž		ž		MA	_	- 4N	2	_	0.7	¥	_	9 70
'n	Agusta 109A	_	•	•	:	•		7	~	72.0	-		z				4		- 4	2	_	¥	ž		ž
•	Twin Star	Ĭ	-	9						5	_	17	•	- 3		=	1	-	-	4	_	¥	ž	12	•
^	Hughes 530F	•	•	7						5	-		ź		۲X		¥	^	- 4	2	_	ž	Z	=	9 .
•	Hughes 500E	00	•	13.7				7.7	~	2.0	-		ž		ž		ž	~	- 1	2	_	¥	- 70		0
•	BK-117	-	•	•						70.0	_	7.	e	12	= :	•		•	- <u>-</u>	ì	_	ž		<u>-</u>	
0.	Agusta 109A	. 13	-	7.6	=	•		73		71.6	-	, 70 70	. 97	7.	10.1	17	5.6	. 0 1	-	•		z	~	_	9 . •
=	Hughes 500E	=	٠,	2	=	~		•	٠.	7.7	_	7 (20.14	-		~	;		-	Ō.	-			Ä	0.30
7	BK-117		-		7	•	53.7	3	•	65.0	-	-		12	٠	•	77.		- •	ď.			17.10	=	•
2	Bell 206-L	1 82	•	7	7	•	72.7	_		"	-	=	= :	- 13		-	Ξ.	•	_	-	97	0 . 20	¥	Ξ	9 .
=	Hughes 500E	1 62	. 7	9.								7	•	7.	. 70	2	95	•	<u>-</u>	2	_	Ź	¥		ž
2	Hughes 530F	- 83	7	4		-	=	;	•		-	3	0.33	23	9.49	=	Ť	16.3	-	2	= -	₹.	•	=)
	Enstrom 280 FX	0		-	2	9	-	7	9		-		¥		¥		¥	-	- YN	*		7	~		ž
1.7	Dauphin	. 17	•	9	23	•	73.4	5	•	Ξ.	-		ž		ž		۲	Z	 *	~	-	~	17.80	=	0 9 .
=	Bell 222	1 79.	5	6.3	"	7	2.3	7.7	•	-	-				ž		4		- 4	ě		3.30	9 · · ~	_	9 . 50
•	BO-105		~	5	70	•	•	5	•	٠.	_	96	7	3.8		73	5	9.	-	~		ē	15.20	=	9
. 20	Hughes 500E			•	7	7	-	-	•	-	-	ř		-	. 0.5	5	9		- 5	. 7	=	10.90	15.60	=	•
31	Hughes Soon	7.		•	20	~		•	S	-	-				ž		¥		- ≨			7.10	-	=	7 . 30
11	Bell 204-B		•		7	-	٠,				-	=	. 75	=		•	=		-	77.70	=			-	00.
33	Hughes 100C	- 53	~	~	73	5	20.0	7	•	Τ.	-	=	7.	7	٠	•	8	-	-	. 7	_	9	9 01	=	.
**	Bail 206-L	=	-	-	7.7	~ •	7.7	•	~	•	-	7	. 75	=		=	. 23	7.	- -	. 7	_	7.7	•	;	7 · 10
72	Dauphin		•	-	7			;	~	70.0							¥		- 4	7.00	_	9.40	14.70	=	. 40
36	Mughes 500E	-	-	2							-	1.9	•	•			=	•	_ _	Z	4	¥	¥		¥
27	B#11 222	=	9	9							-	73	•	=	ē		. 52		-	Z		_	z		ž
	BK-117	2	~	Ŧ.	77		73.0	;	- .	٠.	-	-	•				90	•	-	٦.		•	7 + 20	=	7
	Enstrem 280 FX		~	-	75	•				9	_		•	-	٠	=	•		- -	10.20	=		ž	ì	0 7
0 ·	BC-108			~							-	7	₩.	7		-	=	2	_	2	_	ž	Z		ž
	Ensitor 240 F		•		,		73.1	Ş	•	20		7		=	•		7.5		- ·	-		9.70			9
76	VAC 414574	71	•		Ċ		-				•				¥ :		< :		4				2		_
7 6			,	9 4	= .	, ·	- : : :	::				7				2 :	3 :	7			• :			- :	
	u u u do so	:	•	•	•	•	-	•				•		- 1		- :				•				-	
3 .			•	• •	ŕ		•		•					:		::				¥ .		<u> </u>	:	•	
3.5								•				•	2	:	:	•	: :	•	: :		•				
	Enstrom 250-FX	9	. ~		2			*					2		2		. ž	. 4	 ! <u> </u>				1	-	
3.6	BK-117	12		-				•			-		Z		Ž		¥	_	-			Z	_	•	
4	B+11 222	-	-	9	73	-				71.0	-	7		70		=	7		-	10.30	_	ž	¥	=	3 10
=	80-108	:	-			7	2	•	•	٠.	-	7.	96.	1 2		9	37	•		96.6	_	900	15.10	=	2 10
4	Dauphin	- 13	+		73	-	73.5	•	•		-	-	. 29	=		•	31	7.7	-	13.6	-	2.0	19.50	~	1.40
Ç	Hughes 500D	:	-	7		•	72.0	_		67.0	-	7 6		30	. 43	1.6	5.0	13.4	-	¥		0	¥	=	3.00
7	Bell 206-B	1 74		5	2	•	53.0	_		1,	-		ž		ž		¥	_	Y	00.4	-	1.40	¥	Ξ	5.40
4	Agusta 109A	- 85	-	0	7.5		4.5	7	'n	71.0					ž		¥	Z	- YX	•	-	0,1.0	14.40	-	1.10
74	Hughes 506E	1 29	. 7		7	~	19.7		•	-	-	7	. 02	-	92.	2	Ţ	2	-	. 50	=	00.0	13.70	Ξ	5.70
•	A-STAR		7	•	;	•	9.	_		7.79	_	1.0		Ξ		=	7.5	-	-	12.30	ì	2.0	ž	~	0 7 0
4	Twin Star	:	e .	9	7	-		-	•		_	3 2	. 0 .	7	21.	2	7	2		•	= :	0.70	14.30		90
?	Beil 222	:	•	•	73	•	7.7					7	4	7	=		93	-	_	11.00	=	. 40	ž		ž

TABLE 14 (Cont')

Locations 5 4 1 2 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4					1	"	(ABA)	12		1		_		Elevation	tion A	Angle		-	Differen	Difference between		
Station Cocations Station St														(Deg F.	(\$ 0 0			••	apis pur	line Sites	(4BY)	
Column C			5	1	6	0	C. & C.	101			-	_		Stat 1:	9	4 t 1 0 n		- -				
Environ 280-FY 77 2 77 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-	•	~	e-1		7		v		•		m	•		v	•		1	1	ι	
Hart Step	- 1	77 2	7.7	1-	=	1	-	•			1		Y.		Y.	YZ.		1	6.20	8	Y Z	7
HUNDERS OF STATES OF STATE		-	: =	•			7.7		-	•			•	2.0				- 66	-	6.0	₹.	Ŧ.
No.		79 0	2	m	7			•	~	•	-		v	~				32 1		-	•	•
ERRICALES OF EST 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			•	~	78		7.8	1 1	_	~			9	1.7		0	1.3			6	~	۲.
No. 10.0-1.				1	7.7		7.1	_		•			7.1	=	- 1	N)		- 5	•	11.2		
No.			9	•	7.7		7.7				_	_	•	-		4	•			؞	ž	۲ 2
No.			•	m	7.1					•		_	¥X		ž	Z	-	- 4	ž		ž	¥
No.			7.	-						ı	•		42		¥	¥		 4	¥		ž	
Maintain			-	و ا	7		7.3	-		_	•	_	۲		¥	¥	-	 4		. 01		ζ.
NA NA NA NA NA NA NA NA			•	7	76	•	11		~		0		ž		ž	Z	_	 4		9	÷	
Hughen 500E 71 6 72 6 74 6 6 6 6 1 10 6 2 0 1 10 6 0 1 10 10 10 10 10 10 10 10 10 10 10 10			=	•	6		•	•		•			Z		ž	ž	-	4 N	•	13.9	÷	
Hughes 2000 79 5 78 9 70 6 6 0 0 10 2 20 1			;				57	7	_	7			¥		ž	ž	_	- 4	Y	o. 15	ö	•
Hydra 5000 79 5 70 6 70 65 0 10 10 20 11 24 10 10 10 10 10 10 10 10 10 10 10 10 10			,	~			~	, 4		•	-	-	ž		ž	ž	_	- 4X	Y	0.7	7.7	~
TWIN SELF. 79 79 2 10 2 10 2 10 11 24 89 21 14 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1				•				9		•	_		_	2.4			•	1 1 1	YX	7.5		. 55
Hughes 530F 120-6				~	20		•	_		4	٥		~			÷	_			01	٠	
Hughes 330F 82 2 78 2	•		•	۰ -	:	•				,			4		~			25 1	Y		ž	¥ Z
ENVIOLENZAGO E STATES S				٠,				•	-		-		7	=	•		~	9.5	Y		1.2	¥
Engload 280-EY 76 6 79 7 71 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							22		•	٧			4		•	7		1 10	Y Z	. 7	¥	
## # # # # # # # # # # # # # # # # # #												_	,	,		1		- Y	Z	7.6	¥	ž
## 1		•					. 4		. •	7		_	m	3.6		_	=		¥		ž	¥ Z
Name		•						~	4	•		_		13	-	_		23 :	X	0.1		'n
Entition 200-E			•	•		•		٠	,	, 4			9	-	~			. 04	ž	10.5	ž	•
Environ 200-EX 79 5 70 6 6 2 70 3 67 5 68 0 1 22 29 17 09 13 02 11 59 1 16 30 10 20 13 00 15 1			•	-	6.4			4	4	1		_		8	-	•		32	•	10.5		XX
Entition 280-EX 79 5 78 6			9	• •	-					•			. 7	17	•			5.9		10		
Twin Star			7.8	•				•			-		×		ž	ž	-	 4	¥	vi.	¥	Ź
Hughes 530F 83 9 83 4 76.6 67 0 23.59 18.13 14.68 12.32 NA 7.30 NA 18. BO-105 81 7:1 66 574 5 66.6 67 0 25.69 28.31 23.32 976 14.60 6.60 12.50 14.50			8	•	•	•	~	-	•	•			•	1.2	19.			-	•	0.	'n	
BO-105		6 0		4				•		•	٠.		5.5	8 1	-	÷	•	32 1	¥	7.	ž	
Daughin 65 6 5 9 73 0 70 0 67 0 1 19 12 14 37 11 75 9 63 1 NA			·-	-	9			_		~	•	••		3.8		3.3		7.6	÷	•		
Bell 206-L : 60 4 60 6 73 0 70.0 67.0 : 23.7\$ 18.26 14.79 12.41 : NA 7.40 10.40 13. Bell 222 : 89 4 88.1			5	•							_	-		=	4				XX		¥X	
Bell 222 69-4 86.1 12.09 NA NA NA NA NA NA NA N			9	•			73	-		•				=	~			- -	ž		•	
Bail 206-B 81 8 80 4 69 9 65 0 23 19 17 81 14 41 12 09 1 NA 12 00 14 50 18 Aquala 109A 81 7 79 0 65 0 19 63 0 19 63 0 19 63 0 19 63 0 10 NA NA NA NA NA 11 80 14 10 12 00 14 10 12 00 14 10 12 00 14 10 14		4.48		-							_	-	¥Z		ž	¥	-	- 4	ž		ž	
2 Aquala 109A ; 81 7 79 6 69.9 45.0 1 NA NA NA NA II.80 14 15 14 18 15 16 15 25 0 1 19.63 14.98 12.08 10.11 ; NA NA 15.70 17. 4 Enation 28F ; 80 4 77.1 66.0 64.0 ; NA NA NA NA NA NA NA NA 14.40 15. 5 BK-117 ; 79 7 78 8 66.0 64.0 ; 30.11 23.51 19.19 16.17 ; NA NA NA 12.70 13. 6 Twin 5tar ; 80 8 79 6 66.0 ; 30.11 23.51 19.19 16.17 ; NA NA NA 14.40 14. 7 A-25 Lar ; 80 4 79.2 69.0 66.0 ; 31.17 24 41 19.95 16.83 ; NA			8	4				_	2	4		_	~	17				- 60	¥	13	•	
3 Highles SOOE 82 2 81 5 66.5 65.0 19.63 14.98 12.08 10.11 NA NA 15.70 17. 4 Enation 28E 80 4 77.1 66.0 64.0 NA	14	: 81 7	29	٥				•		•		_	ž		¥	ž	-	 *	Z		•	
4 Enation 28E 80 4 77.1	•	: 82 2	8	v				•		4	-	_		Ξ	•			11	¥		•	
5 BK-117 179 7 28 8 62.0 64.0 30.11 23.51 19.19 16.17 NA NA 12.70 13.7	4	900	7.2					•		•			ž		¥	¥	-	 4	ž			
6 Twin Star : 80 8 79 6 66.0 : 26.79 20.74 : 16.86 : 14.17 : NA NA 14.8 : 7.84 79.2 69.0 66.0 : 31.17 24 41 19.95 : 16.83 : NA NA 9.40 : 12.4 8.5 : 12.4 8.4 8.4 8.0 67.0 : NA	v	1 73 7	7.8					~		~				2 3			•	17 1	Z		•	۲.
7 A.Star 178 4 79.2 69.0 66.0 1 31 17 24 41 19 95 16.83 1 NA NA 9.40 12.4 A.S.4 17.60 14.6	•		1 29	•						7	٦.			2 0			٠	17 ;	ž		4	•
2 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5	,,		66					•	•		0			24	-	٥		83 :	¥ Z	_	٠	Ť
	087 801111111111111111111111111111111111	7 18	7	4				•	4	(0				Y.	Y.		 4	Z			
			1	-			•	-		;			1 1 4 4	1								

Site 1 is the primary centerline site 1325 ft. from the helipad Site 2 is on the centerline 1525 ft from the helipad Site 3 is a sideline site 600 ft south of site 1 Site 4 is a sideline site 860 ft south of site 1 Site 5 is a sideline site 1000 ft south of site 1 HOTE

Biants of Ital date duspassit malfunction, contamination, etc.

the centerline position. Consequently, the altitude and slant distances could not be determined, but of greater importance, the noise associated with the passage of the helicopter would be inconsistent with the other events, since it would be a sideline measurment at the centerline site.

As stated early, the measurement of helicopter operations during the HAI Convention were targets of opportunity, thus the success of the noise monitoring program was contingent on the cooperation of the helicopter pilots since their principle mission was to demonstrate the helicopter's capabilities and features to perspective customers. Therefore, for those events where the helicopter did not fly over the centerline position and altitude was not obtained, a meaningful relationship of L(max) associated with each helicopter was not obtained. Table 2 is a compilation of those events where altitude, slant range, and L(max) were obtained at more than one station. The data recovery was 60, 64, 38, 46, 40, and 53 percent, for sites 1,2,3,4,5, and 6 respectively. Even though there were some stations which lost a reading due to jet noise contamination, comparisons can still be made with respect to the slant range and other events. Table 3 is a compilation of those events where the altitude of the helicopter was obtained

TABLE 2 Helicopter Noise Levels Measured At McCarran During Departures
With At Least Two Sites Reporting A Lmax January 19, 1984

		81	Stant Range					3	(was (dBA)	4 Y		
Helicopter	Altitude	No. se I	Noise Monitoring	Stattons	_	_						
	Centerline !		3			_		t ton	Loca	1001	_ '	
	3					- 	~	~	-	_	.	•
A-Star	1691	622	910	1013	t	=	1 17	0 72	7 70	77 0	5	
A-Star	1 208 1	969	627	101	1218	. 62	2 80	4 4	. 11	•		-
A-8 t & F	1 203 1	633	8 2 5	1020	1317		•	•	70	•	•	12.0
A-8tar	1 696	102	8 2 8	1064	1254	2.	4 79.	~		•	•	0 9 9
AVERAGE						:	. 6 82.	0 71	;	.3 67	•	0 . 8 4
Agusta 109A	230	113	832	1014	1222	5	.1 17.	0.04 1.	•	7.3	~	71.0
BK-117	126 1	625	919	1015	1213	-	•	•				0 0
BK-117	101	627	9 3 0	7101	1314	-	7	5 71	. 6 1	7 66	•	٠.
BK-117	1 210 1	430	929	1023	1220		:	72	7.3	•	=	
BK-117	1000 1	129	8 2 3	1044	1237	79.		•	72.			٠.
BK-117		• • •	873	1059	1349	719.7	7 78.	-		4.7	•	0.11
AVERAGE					~ 		0	. 7.1. 9	7.1	.1 67	₹.	67.2
	-				-	_						
80-105		8 T C	912	1092	1277	. 0	7	2 20	0.11	0	•	0 5
		A .	7 .	7	9821		7 9				•	
	904	, ,	70		P171				? .		,	
					271	-			Ċ	•	•	-
AVERAGE					•	- 7	0 01.1	1 70.	1 72.1	1 67	6	E . 34
		7.0	913	1012	1210	-	8 2	. 4 71.		,	•	0.
_	1 284 :	* * *	8 4 9	1040	1233	79.(7.9	.3 71	. 0.4	. 9 67	•	9
	174 :	6 2 3	•	1015	1213		-	-				
m-907 11 eg	7 292	4 ·	7 7	F01	1228			. 63	67 6	•	•	
B-+07 11+9		F 0 +	•	1032	1221	- -		•	•		m	9
AVERAGE	· •• ·					=	2 8 2	6 9 6	0 40	27 0	0	45.3
Bell 204-L	353	74.9	124	0 7 0 1	1251	11	4 27	\$ 74	-	3	•	9 7 7
	1 261	432	121	4101	1216		2		0 72			9 9
	1 344 -	757	113	1034	1229		0 1	1 72.	73	"	~	Ξ.
	1 707 1	† 8 †	928	101	1218	=		. 72.	\$ 72	•		
	- FOF	723	76	107	1244		7	~				0 4
7-902 11#8	 792	757	143	1034	1229		•	•	7.3	0 20	•	0
AVERAGE						80.7	1.04	7.3	1 73.	•	•	
	360	454	:	1033	1228	=	3 16	,				
Bell 222	292 1	647	.52	1042	1235	4	2	6 73	•		~	71.0
Bell 222	312 :	729	8 5 9	104	1240	=	. 83	. 67	4 74.	~		
AVERAGE								5 73	7 24	~	~	210
413		7 2 7					•				•	
-	-	P ?	- -	7			<u> </u>		7. 7. 7. 17	C .	•	0 7

TABLE 2 (Cont')

Marked M		-	S	Slant Range for	lor.		_		-	man (dBA)	(dB	2		
10 10 10 10 10 10 10 10			No. se	Honi toring			 .			٠				
1		-		3					2 5	֓֞֞֜֞֩֞֩֩֞֩֩֩֞֩֞֩֩֞֩֩֞֩֞֩	1	• • •	n	•
						1		1			ļ			
	B-11 42	1 541	187	6.2.3	=	7	~						•	9
10	Dauphin	314 :	1 38	0.2.9	1023	1219	:	_	•		74.		•	
200	Dauphin	- **:	777	117	1013	1311	-		9		73		•	•
282	u i den to	200	567	137	1031	1218	:	-						
200	AVERACE	• •• •					:		•	-			•	•
200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Engiron 280 F	787	***	:	1039	1 2 3 3			~			•		
Color	Enstrom 200 FX	266 :	5 7 7	9 2 0	1040	1234	7	_	ø,					•
Second S	AVERAGE						:	_	-	•	1.		•	•
10 10 10 10 10 10 10 10		-					-							
100 100	Mughes 500C		702	111	104	254	•	_	•	'n		2		0
C		342	•••	.53	1043	1236		=						
See		3 9 6 2	670		1043	1234	•	_	~					
CE		-	470	124	1044	1237	:	_	•				•	2
Color					1043	1253	. 2					•		
\$00E \$00E	AVERAGE		-				•		•	•		•		. 1
SOUR 1224				•	•		•				•			
STORE STOR		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	, ,	9 9 9	1028	1224	•		•	•				
STORE STOR		1 276 :	077	***	1037	1231	:		۰		•		•	9
SOUR		216 :	167	929	1023	1319								
500E		272	409		7.0	1230	•		~ •			• •	-	•
Corr		204	7	77	1021	1217			•			• •		
STATE STAT		300	.,	637	1030	1225		•	•			•		
STORE STOR	200	214 1	437	838	1023	1319		•				;		
530F : 351 : 495 874 1040 1259 : 43 2 82.4 71 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	AVERAGE						•		•			•		7
530F 276 640 846 1047 1248 77 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 87 70 70		35.	567		1040	~	•				_		4	
330F 1231 123 1231 123 133 1			174	20	1042	13.40	: =						•	
530F 542 553 642 1034 1226 63 9 63 4 76 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		374 1	0 7 9	:	1037	1231	- 12		~			7		
AGE	\$30F		455	17	1034	1220	-	-	-			_	•	
Star i 188 i 429 822 1018 1215 i 84 i 85 2 3 4 70 1 64 0 55 2 1 6 7 0 8 64 1 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7									•	m		•	•	9
Star : 374 : 708 884 1048 1758 : 60 3 80 5 71 4 70.1 64 0 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 6 5 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 6 7 6 6 6 6	3146		429	812	4101		•						•	
Star : 464 ; 738 925 1102 1287 ; 79 7 79 2 70 5 69 67 0 a Star : 179 : 626 820 1014 1213 83 4 81 8 64 6 72 6 68 3 a Star : 303 472 855 1045 1238 80 8 79 6 6 8 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 . 4 .		700	:		- 25.6	-	-	-	•		•		
Star : 179 : 424 420 1014 1213 : 43 4 41 8 44 6 72 4 48 3 4 514 : 303 : 472 855 1045 1238 : 80.8 79 4 6 72 4 4 6 76 5 1 1045 1238 : 80.8 79 4 6 70 4 6 4 4 6 70 5 70 5 70 70 70 70 70 70 70 70 70 70 70 70 70	31.5		754	915	1102	1267	7.1		~			•	•	-
	5115		727	9 2 0	1101	1213	=	•	•		~	•	•	_
1 61 7 61 8 68 61 8 61 8 61 8 61 8 61 8			472	n n	- 0	1238		^	-				•	•
	AVLAAGE						=		•	•			•	•

NOTE Site i is primary centerline site 1325 ft from the helipad Site 2 is on the centerline 1525 ft from the center of the helipad Site 3 is a sideline site 600 ft, south of site 1 Site 5 is a sideline site 1000 ft, south of site 1 Site 6 is a sideline site 1000 ft, south of site 1 Site 6 is a sideline site 1200 ft, south of site 1

Blanks are lost data due to equipment malfunction, contamination, etc.

TABLE 3

Helicopter Noise Levels Measued At McCarran During Departures

For Ail Sites Reporting An Lmax January 19, 1984

(Altitude, Slant Range, Lmax)

				ชา	lant Range	e for No	ise	LBAN	(ABP)	for E	sch Bit	te Locati	tion
	T T T T T T T T T T T T T T T T T T T	Centerlin	rline!	Y	onitoring	g Stations	8 (££)						
Number			 ; ; ;	m	•	ĸ	•		~	M	•	'n	•
6	A-STAR		163	~	⊢ →	1013	→	1 .	1	7	0	14	1 .
12	BK-117		181	627	820	1014	1214	1 83.1			•	•	65.0
2.88	DK-117		218 ;	~	~	02	~	e			ص	•	
1.9	BO-105	••	438	4	-	1092	~	•	•			·	10
-	80-105		183	~	~	5	-	4	ص	÷		•	۲.
11	BO-105		431 1	m	0	0 8	~	_	٠.	Ġ	÷		2
\$2	Bell 206-B	••	284 :	9	849		m	1 79.0	٠		•	•	'n
24	Bell 206-L		264 :	6	4	•	~	_:			e	•	•
53	Bell 412	•	259 !	5			~	٠	٠ •	•		'n	
34	Dauphin	••	216	3	æ	~	-	.	÷	•	÷	•	
4.2	Dauphin		164 :	622	817	1013	1211	<u>,</u>	90.3	75.8	73.5	6.69	
31	Enstrom 280 F		282	•	4		G	<u>٠</u>		9		ċ	
23	Hughes 500 C		364	0		÷	87	1 82.2	7	'n	٠	٠	_
5.1		, 	299 1	2	6	2	m	•					۲.
11	Hughes 500 E	••	220 ;	e	e	7	N			_		•	_
2 0	Hughes 500 E		276 :	•	4	(C)	(C)		•	_	پ	.	m
33	Hughes 500 E		272 :	S	4	1036	~			_:	_	•	7 .
96	Hughes 500 E	••	280 :	•	4	n	3	1 79.7	•		<u>.</u>	•	•
7.3	Hughes 500 E		246 :	4	e	m	~	0		4			
36	Hughes 530 F		311 :	2	5	1047	4	•		ო	Ö	•	•
48	Twin Star	••	376 1	0	•	•	8				ó	.	
6 4	Twin Star		464	758		-	•	1 79.7	•		Š		٠. د
7.5	Twin Star		179 1	~	~	1016	-	(C)	81.8	4			
	Average		277.0 1	9	20	040	234.	. 1	_	. 7	_:	7	Ġ
	Maximum	.	1 0 199	758.5	924.8	1102.4	1286.6	89.4	90.3	78.7	78.7	75.0	72.0
	Minimom	?	1 0 69	21	16.	013.	211.	· •		4		m	
	Count		23.0 1	m	m	23.0	ص	-		ري دي	•	٠	Ī,

NOTC. Site number 1 is the centerline site

TABLE 34

Helicopter Noise Measured At McCarran During Departures

For All Sites Reporting An Lmex January 19, 1984

(Lmax, Elevation Angle, Delta Lmax)

3 4 5 6 6 6 6 7 0 15 2 11 5 7 10 0 6 9 0 15 2 11 5 7 10 0 6 9 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0		1 2		N .				• • ·	6	•	v		1	1-1	1 - 5	1 - 6
A.STAR		1 2	.	N				• ⋅	m	~	'n	-	ı	ì	ı	i
A-STAR 81 87 0 67 0 65 0 15 2 11 5 0 15 1 1 1 1 1 1 1 1		1 2			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		65.0	•				,				
A-STAR 81 1 87 0 72 7 70 0 65 0 1 15.2 11.5 9 3 7 7 1 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ü		the second of the second of the second	2 4 4 6 5 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6		67.0					- 1				
BK-117		ü		and the second second second	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		6.0		15.2	11.5	6	•	₹. 60	11.1	14.1	1 6 . 1
### ### ### ### ### ### ### ### ### ##		ü		and the second second	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		69.1		•	12.7				13.4	17.1	18.1
BO-105 BO-105		ü			7 7 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7		45.6			15.2	12.3			10.3	14.2	15.3
## ## ## ## ## ## ## ## ## ## ## ## ##		ü			72.4				•	28.7	13.7	0		12.8	15.2	15.8
BO-105 Boll 206-B 1 79.0 79.3 71.6 5.7 5.6 6.0 1 35.7 28.3 23.3 19.8 1 14.1 206-B Boll 206-C Bouphin Dauphin Boll 412 Boll 412 Boll 412 Boll 412 Boll 413 Boll 414 Boll 414 Boll 415 Dauphin Boll 416 Boll 417 Boll 417 Boll 417 Boll 418 Bo		ü			66.5 72.8 78.7 78.7			1 0.73	٠.	12.9	10.4	•	•	10.3	15.1	17.1
Bell 206-B 79.0 79.3 71.8 70.9 67.0 65.0 25.3 19.5 15.9 13.3 7.9 80.1 206-L 81.1 80.1 72.4 73.4 68.0 69.0 23.7 18.3 14.8 12.4 80.1 14.2 18.1 18.		ü			71.8			•	,	28.3	m		•	9.9	12.5	14.1
Bell 206-L 80 1 22 4 73 4 66 0 69 0 1 23 7 7 9 1 1 1 2 2 1 1 2 2 2		Ü		0 0 4	72.4			•	6	•	٠.	13.3		1.8	12.0	
Bell 412 Dauphin B4 8 84 4 76 4 74 1 69 0 70 0 1 19 B 15 1 12 2 10 2 1 19 Entertrol Dauphin B4 8 84 4 76 4 74 1 69 0 70 0 1 19 B 15 1 12 2 10 2 1 13 1 13 2 1 1		Ü		~ •	78.7			•			٦.	12.4	8.7	7.7	•	•
Dauphin 1 84 8 84 4 76 4 74 1 69 0 70 0 1 19 8 15 11 12 2 10 2 1 1 1 1 1 1 1 1 1 1 1 1 1		u			24.4		, 10		m		٠,		9.0		•	٠
Enstrom 280 F : 79 6 78.7 76.0 73.1 69.3 70.0 1 25.2 19.4 15.7 13.2 13.2 Hughes 500 C : 82.2 82.8 75.5 73.4 71.6 71.0 1 31.2 24.5 20.0 16.9 1 64.0 1 10.0 1		u			,	1.1	•		-	•	٠	٠.	T . 9	10.7	15.8	14.8
Enstrom 280 F : 79 6 78.7 76.0 73.1 69.3 70.0 1 25.2 19.4 15.7 13.2 1 3 1 4 1 4 1 5 5 5 73.4 71.6 71.0 1 31.2 24.5 20.0 16.9 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		u	٠.		75.8				•	•	•	7.8	13.6		•	•
Hughes 500 C : 82 2 82 8 75 5 73 4 71.6 71.0 1 31.2 24.5 20.0 16.9 1 6 10 10 10 10 10 10 10 10 10 10 10 10 10	Hughes				76.0		•		'n			13.2 1	3.6	6.5	•	9.6
Hughes 500 D : 81.4 81.9 74.4 72.1 68.0 67.0 ; 26.5 20.5 16.6 14.0 ; 7 Hughes 500 E : 81 5 82.5 71.2 68.0 63.7 61.2 ; 20.1 15.4 12.4 10.4 ; 10 Hughes 500 E : 80 0 79.0 71.3 69.1 64.4 63.0 ; 24.7 19.0 15.4 13.0 ; 8 Hughes 500 E : 80 0 79.0 71.3 69.1 64.4 63.0 ; 24.7 19.0 15.4 13.0 ; 8 Hughes 500 E : 79.7 79.0 71.1 66.3 67.0 ; 24.4 18.8 15.2 12.8 ; 8 Hughes 500 E : 79.7 79.0 73.1 76.8 65.0 ; 22.3 17.1 13.6 ; 11.6 ; 16.4 Hughes 530 E : 79.7 79.0 73.1 70.8 67.8 65.0 ; 27.4 21.2 17.3 11.6 ; 16.4 Hughes 530 E : 79.7 79.0 73.1 70.8 67.8 65.0 ; 27.4 21.2 17.3 14.5 ; 16.5 IT.				. 7	75.5		_				-,	•	6.7		10.6	11.2
Hughes 500 E : 81 5 82.5 71.2 68.0 63.7 61.2 : 20.1 : 15.4 : 12.4 : 10.4	Hughes		٠,	٠	74.4	- -	•	ć	•				7.0	Ø.	•	
Hughes 500 E : 80 0 79 0 71 3 69 1 64 4 63 0 1 24 7 19 0 15 4 18 8 18 18 18 18 18 18 18 18 18 18 18 1	Hughes				71.2	•	m				٠.		•	•	•	•
Hughes 500 E : 80.3 80.2 71.9 71.1 66.3 67.0 1 24.4 18.8 15.2 12.8 1 8 Hughes 500 E : 79.7 78 5 71.2 69.7 65.8 64.0 1 25.0 19.3 15.6 13.1 1 8 Hughes 500 E : 79.7 78 5 71.2 69.7 65.8 64.0 1 25.0 19.3 15.6 13.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hughes					9.1	•		4	٠	٠,		6.7	٠	٠	٠
Hughes 500 E : 79.7 78.5 71.2 69.7 65.8 64.0 1 25.0 19.3 15.6 19.1 1 6 1 16 Hughes 500 E : 80.5 80.3 64.2 70.3 67.5 65.0 1 22.3 17.1 13.8 11.6 1 16 1 16 Hughes 530 F : 79.7 79.0 73.1 70.8 67.8 65.0 1 27.4 21.2 17.3 14.5 1 6 1 16 1 16 1 16 1 16 1 16 1 16 1 1	Hughes				71.9	_	•	•	÷	•	٠,	~	+ .	9.2	14.0	13.3
Hughes 500 E : 80.5 80.3 64.2 70.3 67.5 65.0 1 22.3 17.1 13.6 11.6 1 16 Hughes 530 F : 79.7 79.0 73.1 70.8 67.8 65.0 1 27.4 21.2 17.3 14.5 1 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. Hughes				71.2	•	'n	÷	'n	•	٠.		17		13.9	15.7
Hughes 530 F : 79.7 79.0 73.1 70.8 67.8 65.0 ; 27.4 21.2 17.3 14.5 ; 6 Twin Star ; 80.3 80.5 71.4 70.1 64.0 65.0 ; 32.1 25.2 20.6 17.4 ; 8 Twin Star ; 79.7 79.2 70.5 69.0 67.0 65.0 ; 37.7 30.1 24.9 21.1 ; 9 Twin Star ; 83.4 81.8 64.6 72.6 68.0 65.0 ; 16.6 12.6 10.1 8.5 ; 18 Average ; 81.9 81.7 72.1 71.7 67.7 66.5 ; 24.4 18.9 15.4 12.9 ; 9 Hinmum ; 99.4 90.3 78.7 78.7 78.0 72.0 137.7 30.1 24.9 21.1 ; 18	Hughes	_		ď	64.2		٠	•	~	ć	٦.	_	•	10.2		15.5
Twin Star : 80.3 80.5 71.4 70.1 64.0 65.0 32.1 25.2 20.6 17.4 8 Twin Star : 79 7 79 2 70.5 69.0 67.0 65.0 37.7 30.1 24.9 21.1 9 Twin Star : 83 4 81.8 64.6 72.6 68.0 65.0 16.6 12.6 10.1 8.5 18 Average : 81.9 81.7 72.1 71.7 67.7 66.5 24.4 18.9 15.4 12.9 9 Haximum : 89 4 90 3 78.7 78.7 75.0 72.0 1 37.7 30.1 24.9 21.1 18	Hughes	530 F :		<u>.</u>	73.1	·.	~	•	2	_			9.9			14.7
Twin Star : 79 7 79 2 70 5 69 0 67 0 65 0 1 37 7 30 1 24 9 21 1 1 9 7 7 7 1 1 8 1 8 64 6 72 6 68 0 65 0 1 16 6 12 6 10 1 8 5 1 18 1 8 1 8 1 8 1 8 1 8 1 8 1 8	TWIN	Star :			71.4		4	•	~		٠.	~	6.	10.2	16.3	15.3
Twin Star : 83 4 81.8 64.6 72.6 68.0 65.0 1 16.6 12.6 10.1 8.5 1 18. Average : 81.9 81.7 72.1 71.7 67.7 66.5 1 24.4 18.9 15.4 12.9 1 9. Maximum : 99.4 90.3 78.7 75.0 72.0 1 37.7 30.1 24.9 21.1 18.	Twin	Star :			70.5	٠	~		~		٠.	_	9.2	10.7	12.7	14.7
	TEIR	Star	С											10.	15.4	
1 89.4 90 3 78.7 78.7 75.0 72.0 1 37.7 30.1 24.9 21.1 1 18.1 18.1 19.1 19.1 19.1 19.1 19.1	4			, 14	, ,,	_			•		·			•		4
. 70 0 78 5 48 7 48 7 48 7 48 1 18 7 18 18 18 18 18 18 18 18 18 18 18 18 18								٠	,			٠.			•	
				.			n (•		- 6	•		n .	
				, B	7			-	n	٠			•	n.		•

MOTE Site number 1 is the centerline site

and all of the sites were able to measure an uncontaminated L(max) reading. Of the 89 events recorded, there were only 23 events (26% data recovery) with a complete record (e.g. no contamination at all sites and altitude was determined).

Initially, it would seem that the data recovery was low, however, a recovery of 26% is not unreasonable considering the elements that had to be dealt with, volunteer cooperation from each pilot and persistent contamination of events from routine air carrier operations off of runway 07-25.

مشاعدة والمستمعة ومناهدتا ومناهدا ومنامين أماهما وبالمناه والمناه والمناهمة والمناهمة ومناهما والمستماعة والمالية

For those events where there was a complete record, the average L(max) at the primary centerline position was 81.9 dB(A), the maximum was 89.4 dB(A) and the minimum was 79.0 dB(A).

The secondary centerline position which was 200 feet further west, indicated similar values except the L(max) was at times slightly higher. After the helicopters passed site 2 they began their turn to the north to fly to the demonstration area. At times there were operations where the pilot initiated his turn between the primary site and site 2. This might account for some of the higher readings observed at site 2 when the values are compared.

The highest recorded L(max) as presented in Table 3 was 89.4 dB(A) associated with the Dauphin which passed over the primary centerline site at an altitude of 164 feet. This L(max) was slightly exceeded at the secondary site with a L(max) reading of 90.3 dB(A). In examining the noise levels for all the events by helicopter model, there tends to be a repeatability in the L(max) values as recorded at the primary centerline site (Table 2). Remembering that these events are targets of opportunity, the variations in L(max) values are not without expectation, since the flight path would change for each pass, the load factor would change, angle of climb may vary, speed of climb may vary, point of turning would be different for each helicopter, a different pilot may be operating the aircraft, etc. Even with these variations, which can all directly effect the level of noise associated with each helicopter as it passes the primary site, there was a tendency for the L(max) to vary by ± 3 dB(A) for each helicopter model.

بيزيم تنقي تمنيه وكالمحيات والمتابي والمريش والميتان والمتابية والمتابي والمتابي والمتابي والمتابي والمتابي والمتابي

The Hughes 500-E is a good example of this variation in L(max) readings. There were 11 events for the 500-E. The altitude varied from 204 to 280 feet. There were two events for which the

altitude could not be determined, since the aircraft turned before passing over the primary site leaving then 9 events (Table 2). The L(max) values as recorded ranged from 79.7 (associated with an early turn) to 82.7 dB(A). In general, the L(max) values tend to center around 80-82 dB(A).

On the other hand, it is extremely difficult to obtain a perspective of the L(max) readings for the Agusta 109A. Even though the L(max) values were recorded at most of the sites for the 109A, there was no altitude data, since the Agusta always turned before reaching the primary site (Table 1). Even with the 109A turning early, the L(max) values tended to be higher than the other helicopters which passed directly over the primary site.

Figures 4 to 10 show the L(max) value vs distance for some of the helicopter events. Viewing of these graphs indicates that the L(max) values decreased at an approximate rate of 6 dB(A) per doubling of distance.

Data for SEL are not being reported since the majority of the data were contaminated by the air carrier operations off runway 0.7-2.5.

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

6.2 McCarran Approaches

Noise levels associated with arrivals were monitored on January 21, 1984, at McCarran International Airport. There were a total of 69 events which were comprised of 14 different helicopter models. Due to the physical constraints imposed in locating the monitoring sites with respect to the approach path, not all of the helicopters passed directly over the established centerline site. There were 27 events in which the helicopter passed within a reasonable distance of the primary centerline site. Table 4 presents the L(max) values for each event, the altitude over the priamry centerline site and the slant range. Table 4a is a continuation of Table 4 with L(max), elevation angle, and the difference in dB(A) between the centerline and sideline sites.

The maximum recorded L(max) value of 95.0 dB(A) during approaches was associated with a BO-105 which passed over the primary site at an altitude of 62 feet. The minimum L(max) value of 84.2 dB(A) was associated with the A-Star which passed over the primary centerline site at an altitude of 179 feet. The average L(max) at the primary centerline site for all the events was 88.6 dB(A). Variations in the L(max) values for each helicopter

ARIE A

Helicopter Noise Measurements During Arrivals At McCarran

For Events Where The Helicopter Passed Over Centerline

(Altitude, Slant Range, Lmax)

					SIANT RANGE		-									
			Centerline		H 101	for Monitoring	ring	5) X 4	Lmax (dBA) for Each Site Location		ach f		Loci	-	4
Event	Helicopter		Altitude		Stati	Stations (ft)	- · 2 `		•	•					•	
					-	"	•		-	•		,			7	
0.7	A-Star	! -	179	. –	205	205	268		83.0	84.2	_	9.30	=	٥	2	•
	A-Star		187		212	212	274		0.18	87.8	_	89.1	8 7	•		₹.
33	A-Star		101	-	146	146	227		83.0	T .	_	1.00	9	0 · S	95.2	٠.
45	A-Star		901		9 6 1	146	326		ž	84.7		84.3	=	0.1	9.0	٠.
17	BK-117	_	50		131	131	217		90.5	6.6	_	9.4	6	3.0	87.8	٦.
24	BO-105	_	0 7	_	206	707	369		92.0	91.1	_	ž	88	•	-	•
32	BO-105	-	77		1 18	118	209		87.5	95.0	_	94.2	8.7	7.0	94.3	•
2.0	BO-105	4,	191	-	190	1 90	257		90.0	85.1		82.2	79.	•	=	٠.
5.2	Be11 206-B		224	-	2 4 5	245	300		83.0	94.7	_	82.9	8	•	87.	•
0 1	Dell 206-L	٠	117		154	154	132		86.0	9.0	_	87.8	69	0	~	٠.
2.5	Bell 206-L	<u>.</u>	1 11	_	152	152	230		87.5	92.5		87.4	0.0	•	Ĭ	•
36	Bell 206-L	_	134		167	167	241		85.5	86.1		90.3	-	84.0	9.2	•
1 3	Bell 222		353		367	367	704		84.5			81.9	7.8	78.0	7	Ξ.
4.6	De 11 222		164		192	192	259		87.0	89.3	_	87.0	6	3.0	9	
11	Bell 412	-	273		291	291	338		92.0	=	_	16.7	8	9.0	9	٠.
23	De11 412		336		256	256	309		92.5		_	85.5		۲	-	٠.
2.2	Bell 412		167		195	195	3 6 1		90.5		_	90.5	-	0.1	92	٠.
0 1	Dauphin		223		2 4 4	244	300		92.0	91.0	_	9.6	8 2	82.0	9.2	٦.
03	Hughes 5000		127		162	162	237		91.5	0.06	_	83.6	79.(•	9.2	٠.
1 6	Hughes 5000		103		1 4 4	144	225		87.0	88.1	_	ž	. 7	•	6	
1 2	Hughes 500D		6.6		141	141	223 1		90.0	92.2		ž	12	82.0	6	
89	Hughes 500E	-	364		282	282	331		89.0	90.3		8 . 8		ž	9.2	
80	Hughes 530F		234		254	254	308		9.0	9.98		84.5	=	0 . 1 8	11	٠.
3.6	Hughes 530F		204		227	227	286		86.0	87.7	_	91.3	8 2	82.0	8.7	٠,
5.9	Hughes 530F		204		227	227	286		96.0	87.3	_	85.8	8 2	0.20	17	
ĩ +	Twin Star		192		216	216	277		ž	91.3	_	97.2	8	0.8	•	٠,
9	Twin Star		202		228	2 2 8	786		0 · 9 8	9 ' 2 9	_	87.5	9	•	8 7	٠.
	MINCHON	-	7	_	1 1 8	1 1 8	209		93.0	84.2		81.9	7.8	•	11	
	Makinum		353		367	367	901		92.5	5	_	97.2	:	0	6	
	Average	_	174	_	204	204	270		87.7			87.3	9	0	-	
	40:00	_		•	•	1				•				,		

NOTE. Site 2 is the Centerline Location and NA are data not available Site 1 is a sideline site 100 ft. to the west of site 2 Site 3 is a sideline site 100 ft. to the east of site 2 Site 4 is a sideline site 200 ft. to the east of site 2 Site 5 is on the centerline 200 ft. to the south of site 2

TABLE 44

Helicopter Noise Measurements During Arrivals At McCarran For Events Where The Helicopter Passed Over Centerline (Lmax, Elevation Angle, Delta Lmax)

Number Holloopter Last (48h) for Each Site Location Elevation Angle (or Contestline and Sideline Number Last (48h) for Each Site Last (48h) Last (4														Difference	ı	be tween	1
Helicopter Hel			. Lma.	78P) 1	A) for	Each	ite L	ocati	u o	<u></u>	levation	Angle	0	Cente			ine
A-Star A-	Event	Helicopter								<u></u>	<u>s</u>	_		: Site	-		
A-Star A-Star B4.0 84.2 85.9 84.0 87.5 60.8 61.9 41.8 1.2 1.2 -1.7 A-Star B5.0 84.2 85.1 87.0 88.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Negper		·	_	~	m	•		'n		-	.	-	- 2 -	-	2 - 3	1
A-Star A-	0.7	A-Star		0	84.2		2	0		_	9 09	9.09	41.8		1.2		0 . 2
A-Star No. 200	9 7	A-Star		0.1	87.8	•		0	•	_	61.9	6.19	13.1	-	3.8	-1.3	•
### ### ### ### #### #### #### ########		A-5 tar		٦. ٥	-	•		•			6.91	6.91	28.1	-			~
Be-117 90.5 89.9 84.0 83.0 40.4 40.4 23.0 -0.4 91.5 80.10 80.1	4.5	A-Star		¥	1.7	•	-	•		_		46.7	27.9	-	×		3.7
BO-105 92.0 91.1 NA 88.0 88.3 60.9 60.9 60.9 62.0 1 -0.9 NA 88.1 206-105 95.0 94.2 9	1.7	BK-117			89.9	•		•			1.01	F . 0 F	23.0	-	9 .0	6 . 6	6.4
BO-105 1975 97.0 94.2 131.8 31.8 17.2 17.5 19.8 19.8 19.1 19.2 19.0 19.1	24	BO-105			91.1	ž		•				6 ' 0 9	42.0	-		¥	- m
Bell 206-L6 90.0 85.1 82.2 79.0 84.4 58.2 58.2 38.8 -4.9 2.9 2.9 80.1 206-L8 83.0 84.7 82.9 80.0 87.8 83.0 84.7 82.9 65.9 65.9 65.9 65.0 80.0 82.0 8	3.2	BO-105			95.0		8.7	•	•		31.8	31.8	17.2	-	7.5	•	0.
Bell 206-B 1 83.0 84.7 82.9 80.0 87.1 1 65.9 65.9 48.2 1 1.7 1.8 Bell 206-L 1 86.0 88.0 87.8 83.0 91.4 1 49.5 49.5 30.3 1 2.0 0.2 Bell 206-L 1 85.5 86.1 90.3 84.0 92.7 1 53.3 33.8 1 NA -4.2 Bell 222 1 84.5 84.6 81.9 78.0 85.0 83.0 1 74.2 7 29.7 2 9.7 2	0. 0.	BO-105		0.	65.1	N		•	•	_		58.2	38.8	-	▾		1 . 9
Bell 206-L 166.0 80.0 87.8 83.0 9114 49.5 49.5 30.3 1 2.0 0.2 83.1 206-L 165.5 87.5 87.0 80.0 94.2 48.7 48.7 29.7 5.0 9.1 1.0	22			3.0	11.7			•		_	62.9	6.89	48.2	_	1.7	.	4.7
Bell 206-L 85.5 86.1 90.3 84.0 94.2 48.7 29.7 5.0 5.0 5.1 84.1 206-L 85.5 86.1 90.3 84.0 92.7 53.3 53.3 53.8 NA -4.2 P. 2 P	01		_	. o	9.0	6		•		_	49.5	49.5	30.3		2 · 0	7 .	0
Bell 206-L 185.5 86.1 90.3 84.0 92.7 53.3 53.8 NA -4.2 Bell 222 84.6 81.9 78.0 84.8 74.2 40.5 10.1 2.3 Bell 412 122 84.6 81.9 78.0 84.8 19.3 1				5.5	92.5						18.7	18.7		•		5.1	12.5
Bell 222 84.5 84.6 81.9 78.0 86.8 74.2 74.2 60.5 0.1 2.7 83.8 84.5 84.6 87.0 89.3 87.0 89.1 58.6 58.6 39.4 2.3 2.3 82.3 84.5 84.5 87.0 89.2 87.0 89.1 58.6 58.6 39.4 2.3 2.3 2.3 88.1 41.2 92.5 88.7 86.7 85.0 89.7 67.0 67.0 49.9 33.8 -3.1 2.2 2.2 88.1 41.2 92.5 88.7 89.5 88.7 85.	36			2	1 98			0	2.7	_		53.3		-	¥	-4.2	- .
Bell 222 87.0 89.3 87.0 89.1 58.6 58.6 59.6 59.4 2.3 2.3 Estimated 2.2 2	13	-	•	2.1	9 1 9	_		•				74.2		-	1.0	2.7	9.9
Bell 412 92.0 88.9 66.7 85.0 89.7 1 69.9 69.9 53.8 -3.1 2.2 Bell 412 92.5 88.7 85.0 NA 89.7 1 67.0 67.0 49.7 -3.8 3.2 Bell 412 90.5 88.7 86.0 92.5 1 59.1 59.1 99.1 -0.6 -0.6 -0.	48	_			6.6	2	69	0		_		58.6	39.4	-	2 . 3	2.3	£ . 3
Bell 412 92.5 88.7 85.5 NA 89.7 67.0 67.0 49.7 -3.8 -3.2 Bell 412 90.5 89.9 90.5 84.0 92.5 59.1 59.1 39.9 -0.6 -0.6 Bell 412 90.5 89.9 90.5 84.0 92.5 59.1 59.1 39.9 -0.6 -0.6 Hughes 500D 91.0 88.4 92.0 92.0 65.8 48.1 -1.5 64.4 Hughes 500D 90.2 86.8 NA 82.0 91.7 44.7 24.3 -1.5 Hughes 500E 89.0 90.2 86.8 NA 92.5 64.9 64.9 64.9 62.2 -1.1 Hughes 500E 86.0 86.6 84.5 81.0 77.7 66.9 64.9 63.9 63.9 63.9 Hughes 530F 86.0 87.2 88.0 87.2 87.5 64.0 64.0 65.5 Twin Star 86.0 87.6 87.5 86.0 87.7 64.0 64.0 65.7 1.6 Twin Star 86.0 87.2 88.0 97.2 88.0 97.2 88.0 Twin Star 83.0 87.2 88.0 97.2 88.0 Twin Star 83.0 87.2 88.0 97.2 88.0 Twin Star 83.0 87.2 88.0 97.2 87.5 Twin Star 83.0 87.2 88.0 97.2 87.5 Twin Star 83.0 87.2 88.0 97.2 87.5 Twin Star 83.0 87.2 88.0 97.2 Twin Star 83.0 87.2 87.5 97.5 Twin Star 87.0 87.0 87.0 87.0 87.0 Twin Star 87.0 87.0 87.0 87.0 Twin Star 87.0 87.0 87.0 87.0 Twin Star 87.0 Twin Star	11			0.7	86.9	ø	10	•	6.3		6.69	6.69		-		2 . 2	9. O
Bell 412	23		•	ر د.	8.8	6	Z	_				67.0		-	3.6	9	
Dauphin 1 92.0 91.0 88.4 82.0 92.0 1 65.8 65.9 48.1 -1.5 6.4 1 Hughes 500D 91.5 90.0 92.0 1 51.8 92.4 1 -1.5 6.4 1 Hughes 500D 1 90.0 92.2 NA 82.0 93.3 1 44.7 24.3 1 1.1 NA Hughes 500D 1 90.2 86.0 87.7 1 44.7 24.3 1 2.2 1 1.1 NA 1.1 2 3.4 1 1.2 3.4 1 1.2 3.4 1 1.1 1.2 3.4 1 1.2 1.1 1.2 3.4 1 1.2 1.1 1.2 3.4 1 1.2 3.4 1.1 2.2 1.1 1.1 1.2 3.1 1.1 3.1 1.1 3.1 1.1 3.1 3.1 3.1	SS		0.	٠.		0	•	•			٠	59.1	39.9	ī -	9.0	•	8.0
Hughes 500D 1 91.5 90.0 83.6 79.0 92.0 1 51.8 51.8 32.4 11.5 6.4 1 149 hughes 500D 1 87.0 88.1 NA 82.0 93.3 1 45.8 27.2 1 1.1 NA 82.0 Hughes 500D 1 87.0 88.6 87.2 86.0 91.7 1 44.7 44.7 26.3 1 2.2 NA 14.4 Hughes 500E 1 89.0 90.2 86.8 NA 91.3 62.0 87.7 1 64.9 64.9 45.6 1 1.2 3.4 Hughes 530E 1 86.0 87.7 91.3 82.0 87.7 1 63.9 63.9 45.6 1 1.7 -3.6 Hughes 530E 1 86.0 87.7 91.3 82.0 87.7 1 63.9 63.9 45.6 1 1.7 -3.6 Hughes 530E 1 86.0 87.7 91.3 87.8 82.0 87.7 1 64.0 64.0 45.7 1 1.6 0.1 1.8 1.5 1 1.8 1.5 1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1	0	Dauphin	•	٠.	91.0	•	8 2					65.8	1:	•	0.1	7 . 6	9.0
Hughes 500D 87.0 88.1 NA 82.0 91.7 44.7 26.3 1.1 NA 1.2 NA 1.1 NA 1.2 NA 1.3 NA	03		-		90.0	m	79.	•		_	-	51.8	32.4	¹ 	2 · 5	T .	11.0
Hughes 500D i 90.0 92.2 NA 82.0 91.7 i 44.7 26.3 i 2.2 NA 1 Hughes 500E i 89.0 90.2 86.8 NA 92.5 i 69.3 69.3 52.9 i 1.2 3.4 Hughes 500E i 86.0 86.6 84.5 81.0 77.7 i 66.9 69.9 63.9 i 52.9 i 1.2 3.4 Hughes 530E i 86.0 87.7 91.3 82.0 87.7 i 64.9 65.9 45.6 i 1.7 -3.6 Hughes 530E i 86.0 87.7 91.3 82.0 87.7 i 63.9 63.9 63.9 63.9 1.3 1.5 Twin Star i NA 91.3 97.2 88.0 99.4 i 62.5 62.5 63.9 i 1.4 5.9 Twin Star i 86.0 87.5 86.0 87.7 i 64.0 64.0 65.7 i 1.6 0.1 MA -5.9 Maximum i 83.0 84.2 81.9 78.0 77.7 i 31.8 17.2 i -4.9 -5.9 Maximum i 82.5 95.0 97.2 88.0 95.2 i 74.2 60.5 i 7.5 6.4 i 7.5 Count i 25.0 27.0 27.0 27.0 1 27.0 27.0 i 27.0 i 27.0 i 27.0 27.0 27.0 i 27.0 27.0 27.0 i 27.0 27.0 27.0 27.0 i 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	16				9.1	ž	. 8	_			v	45.8	27.2	_		٧	4 . 4
Hughes 500E 89.0 90.2 86.8 NA 92.5 69.3 69.3 52.9 1.2 3 Hughes 530E 86.0 86.6 84.5 81.0 77.7 66.9 66.9 49.5 0.6 2 Hughes 530E 86.0 87.7 91 3 82.0 87.7 66.9 63.9 63.9 45.6 1.7 -3 Hughes 530E 86.0 87.7 91 3 82.0 87.7 63.9 63.9 63.9 45.6 1.7 -3 1 Twin Star NA 91.3 97.2 88.0 94.4 62.5 62.5 43.8 1.3 1 NA -5 Twin Star 86.0 87.5 86.0 87.7 64.0 64.0 64.0 45.7 1.6 0 MAINING 83.0 84.2 81.9 78.0 77.7 31.8 31.8 17.2 7.5 MAINING 92.5 95.0 97.2 88.0 95.2 74.2 74.2 60.5 7.5 60.5	2.1				92.2	¥	8	•		_	44.7	44.7	26.3		2 . 2	¥ Z	10.2
Hughes 530F 86.0 86.6 84.5 81.0 77.7 66.9 66.9 49.5 0.6 2 Hughes 530F 86.0 87.7 91 3 82.0 87.7 63.9 63.9 45.6 1.7 -3 Hughes 530F 86.0 87.3 85.8 82.0 87.7 63.9 63.9 45.6 1.7 -3 Twin Star 86.0 87.2 88.0 94.4 62.5 62.5 43.8 1.4 -5 Minumum 83.0 84.2 81.9 78.0 77.7 31.8 31.8 17.2 -4.9 -5 Average 87.7 88.6 87.3 88.0 99.8 57.5 57.5 39.4 0.9 1 Count 25.0 27.0 24.0 25.0 27.0 27.0 27.0 27.0 27.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	8 4				2 0 6	•	z		~			69.3		-	1.2		
Hughes 530F : 86.0 87.7 91.3 82.0 87.9 ; 63.9 63.9 45.6 ; 1.7 -3 Hughes 530F : 86.0 87.3 85.8 82.0 87.7 ; 63.9 63.9 45.6 ; 1.3 1 1 2 -3 Twin Star : 86.0 87.2 88.0 94.4 ; 62.5 62.5 43.8 ; NA -5 Twin Star : 86.0 87.5 86.0 87.7 ; 64.0 64.0 45.7 ; 1.6 0 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80		•			•	-			_	•	6.99	49.5	-	J .		9.8
Hughes 530F 86.0 87.3 85.8 82.0 87.7 63.9 63.9 45.6 1.3 1 Twin Star NA 91.3 97.2 88.0 94.4 62.5 62.5 43.8 NA -5 Twin Star 86.0 87.6 87.5 86.0 87.7 64.0 64.0 45.7 1.6 Minumum 83.0 84.2 81.9 78.0 77.7 31.8 31.8 17.2 -4.9 -5 Average 87.7 88.6 87.3 88.0 95.2 74.2 60.5 7.5 6 6 Count 25.0 27.0 24.0 25.0 27.0 27.0 27.0 27.0 27.0 24.0 24.0 24.0 Hughes 530F 1 24.0 24.0 27.0 27.0 27.0 24.0 24.0 Twin Star 24.0 24.0 27.0 27.0 27.0 24.0 24.0 Hughes 530F 1 24.0 24.0 27.0 27.0 27.0 24.0 Hughes 530F 1 24.0 24.0 Hughes 530F 1 27.0 Hughes 530F 1 24.0 Hughes 530F 1 24.0 Hughes 530F 1 Hughes 54.0 24.0 Hughes 54.0	3.6					_	~	•		_	•	63.9	9 5		1.7	e	5.7
Twin Star i 66.0 87.6 87.2 88.0 94.4 1 62.5 62.5 43.8 i NA -5 Twin Star i 66.0 87.6 87.5 86.0 87.7 1 64.0 64.0 45.7 1 1.6 0 Minumum i 63.0 84.2 81.9 78.0 77.7 1 31.8 31.8 17.2 1 -4.9 -5 Average i 87.7 88.6 87.3 83.0 89.8 1 57.5 57.5 39.4 1 0.9 1 Count i 25.0 27.0 24.0 25.0 1 27.0 27.0 27.0 27.0 27.0 27.0 24.0 24.0	8.0					ø	~	•	~	_	m	6.69	45.6	_	£ . 1	5 .	В.
Twin Star i 86.0 87.6 87.5 86.0 87.7 i 64.0 64.0 45.7 i 1.6 0 Hindum i 83.0 84.2 81.9 78.0 77.7 i 31.8 31.8 17.2 i -4.9 -5 Maximum i 92.5 95.0 97.2 88.0 95.2 i 74.2 60.5 i 7.5 6 Average i 87.7 88.6 87.3 83.0 89.8 i 57.5 57.5 39.4 i 0.9 1 Count i 25.0 27.0 24.0 25.0 27.0 1 27.0 27.0 1 24.0 24.0 24.0 25.0 27.0 27.0 27.0 27.0 27.0 27.0 24.0 24.0 24.0 25.0 27.0 27.0 27.0 27.0 27.0 24.0 24.0 24.0 25.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	7	Twin Star		¥	91.3	6		0	•	_	~	62.5	43.8		ž	5	B. B
HBURN 1 83.0 84.2 81.9 78.0 77.7 1 31.8 31.8 17.2 1 -4.9 HBURN 1 92.5 95.0 97.2 88.0 95.2 1 74.2 74.2 60.5 1 7.5 AGE 1 87.7 88.6 87.3 83.0 89.8 1 57.5 57.5 39.4 1 0.9 ALT 1 25.0 27.0 24.0 25.0 27.0 1 27.0 27.0 1 24.0 2	98	Twin Star		•			•	•	~		4	64.0		-	9 . 1		9 . 1
1 83.0 84.2 81.9 78.0 77.7 1 31.8 31.8 17.2 1 -4.9 -1 1 52.5 95.0 97.2 88.0 95.2 1 74.2 74.2 60.5 1 7.5 1 87.7 88.6 87.3 83.0 89.8 1 57.5 57.5 39.4 1 0.9 1 25.0 27.0 27.0 1 24.0 2										_				-			
1 92.5 95.0 97.2 88.0 95.2 1 74.2 74.2 60.5 1 7.5 1 87.7 88.6 87.3 83.0 89.8 1 57.5 57.5 39.4 1 0.9 1 25.0 27.0 24.0 25.0 27.0 1 27.0 27.0 1 24.0		Minumen				81.9	78		1.7		_	31.8	17.2	í -	6 .4	6.8-	0
1 87.7 88.6 87.3 83.0 89.8 1 57.5 57.5 39.4 1 0.9 1 25.0 27.0 24.0 25.0 27.0 1 27.0 27.0 1 24.0		Maximum	.6		٦,	97.2	8 8					74.2			7.5	7 · 9	12.5
1 25.0 27.0 24.0 25.0 27.0 1 27.0 27.0 1 24.0		AVECAGE				87.3	89	•			~	57.5		-	6.0	0 . 1	87 80
		Count		•	27.0	24.0	25	0		_	~	27.0		7	0.1	24.0	25.0

NOTE: Site 2 is the Centerline Location

Site 1 is a sideline site 100 ft. to the west of site 2 Site 3 is a sideline site 100 ft. to the east of site 2 Site 4 is a sideline site 200 ft. to the east of site 2 Dite 5 is on the centerline 200 ft. to the south of site

can be attributed to changes in the flight path over the centerline site (e.g. the helicopter might have passed further to the right or left for each subsequent pass), change in load, change in glide slope, change in speed, etc.

A prime example of the variation is the A-Star. There were four approaches in which the A-Star passed within a reasonable distance over the centerline position. For the first two events the A-Star passed by at an altitude of 179 and 187 feet but the L(max) values at the primary site was 84.2 and 87.8 dB(A). On the third and fourth pass the altitude was 107 and 106 feet, however, the L(max) was 88.4 and 84.7 dB(A). In reviewing the Hughes 530-F there was a repeatability in the L(max) values recorded with a consistency in the altitude for each pass over the primary site. Keeping these variation within perspective, the observed L(max) values for all events appears to be in the high 80's dB(A) associated with an altitude range of 62 to 353 feet.

6.3 Convention Center

Noise levels associated with arrivals and departures at the Convention Center were monitored on January 20, 1984. The HAI

had a prototype all-weather type helipad set up at the Convention Center. The helipad clearly showed how versatile the helicopter can be as a mode of transportation in the urban environment. Four noise monitoring sites were deployed to measure the L(max) values during approach, departure, and terminal operations including flat-pitch-idle-running and hover. There were eight events recorded. The helicopters consisted of the Bell 47G, 206-B and 206-L, Aerospatiale Twin Star and Dauphin, and the Hughes 500-D.

Table 5 presents the L(max) and L(eq) values observed from the helicopters that flew into the Convention Center helipad. For the first four events site 3 was not able to record the data due to equipment malfunction. Because of the high volume of traffic on Paradise Rd. the ambient Leq levels as recorded at site 4 exceeded the Leq values during the terminal operations at the helipad. This site was located the fartherest from the helipad; therefore, it is not unexpected that the ambient L(eq) values would be dominated by the local traffic.

The highest L(max) observed from the helicopters of 98.4 dB(A) was associated with the Dauphin during the approach. The minimum

TABLE 6 Noise Levels Measured At The Las Vegas Convention Center

LMAX Values in dbA

Event Number	Helicopter		۲ _	Approach 2	e ch	•	. <u>.</u> .	: -	7 7				_	7		•	•		_	~	2	•		
	2000 000 000 000 000 000 000 000 000 00			N 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AN A	73.0 73.0 74.0 74.0 77.0		73 S 70 B NA 78 7 78 7 78 7 83 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NA N	3 32		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	272	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1	NA N	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1
		Į.	3	3	LEG Values in dBA	489	1												į					
Event Number	Nelicopter	_	-	~	•	•		-	~	•	-		-		**	•	•		_	64	•	•		
	De11 47G	• • • • • • • • • • • • • • • • • • •	-	12.9	2			72.1		23		 \$ \$	74.2	2.69.5		4 4	žź	1 73.1		12.7	žž	źź		
	Bell 204-6		n 19		ž		 {	2				 { 1	2			ž	ź	177.9		6.1	ž :	ž :		
	Twin Star	-	•	90.9	Ž		-	3		Ž ;	_		z ;		.	4 :	1	2 .	; • §	۲ °	¥ 7	ž		
	Twin Star	1 87	-	7.	Ž			76.9				 1 :	, ,			 	źź	: =		74.1	1 1	ž		
	Dauphin	1 92	-	2	Ž				7 6			 [ź	1 76.3			73.5	ž	_	
	Hughes 5000	: : 	• •		7.5		 4 4			75.7	, ~	 	7.	7.7		1.07	ź	1 77			3.2	ź	_	

Departure	-	NA NA NA	ž	NA 79.6	0.08 AN	2 NA 80.0	15.3 70.0	01.9 74.0	.0 04.7 79.5			+ c z	NA NA	4 X	ž	AN NA	T NA NA	.2 79.7 NA		
	-	VN -	1 86.6 81.	1 91.6 87.2	1 1 1 1	1 92.7 90.6	1 95.1 91.0	1 92.2 87.2	1 70.4 87.0			 	- WW -	1 83.7 71.	1 85.7 82.	1 17.4 14	1 88.3 84	11 1 11 1	1 07.7 01	11 4.51
(3g) e(P)	~	l	NA NA	NA 64.5	NA NA	0 47 VN	0.07 70.0	24.1 40.0	76.5 71.0	tab at		-	NA NA	NA AN	NA AN	MA MA	Z V	1.2 NA	72.4 NA	4 1 N
Flat-pitch-idle (SE)	1	74.4 70.8	1 69 0 69	74.4 48.5	NA NA	60.2 72.1	71.3	76.3 NA 7		LEG Values in dBA		7	76.6 69.5	67.8 67.1	72 3 66 0	MA	26 6 70 5	77.4 68.9 7	74.9 48 7 7	10.4 73.0 7
	Number Helicoptes 1	¦-	Ball 206-8		Twin Star :		-	-	-			Halicopter ;		Bell 206-8	••	Twin Blar :	Twin Star ;	Dauphin	E-11 104-18 ;	Muchas 5000
Event	- 4 - 2 ×	-	~	m	•	v	•	,	•		Event	Number	-	. ~	•	-	•	•	٠	-

THAK Vaues in dBA

L(max) value observed during approaches was 72.0 dB(A) for the Bell 47G, Soloy. In comparing the L(max) values for sites 1 and 2 the values are in close agreement. This would be expected since both sites were on the centerline for approach separated only by 200 feet. Differences in the observed values are in part attributed to the glide slope of the helicopter and descent rate used by each helicopter pilot. As to the L(max) values observed during departures, they were comparable to those for approach but were lower by approximately 2 to 5 dB(A).

Variations were a function of the individual performance of the helicopter pilot in departing the helipad, including load factors, rate of ascent, and rate of climb over the centerline.

•

Even though site 4 was the fartherest site of all of the locations and was affected by the ambient noise levels from the local traffic, it was still able to observe a L(max) value for most of the events, including flat-pitch-idle-running and hover. The values, however, were barely above the ambient noise levels.

For the terminal operations, the L(eq) values ranged from the low 70's to the mid 80's dB(A). Each of the four operations had a duration of approximately 20-30 seconds. For events 6,

7, and 8, there was considerable variation in the observed L(eq) values, with site 2 showing the lowest values consistently. This would be expected, since site 2 was 511 feet from the center of the helipad vs 294 feet for site 3. In comparing the values between sites 1 and 3 the L(eq) values were consistently higher at site 1 when the nose of the helicopter was oriented toward the northeast. Part of this may be attributed to the tail rotor and exhaust port pointing directly to site 1, however, when the aircraft rotated to the southeast the differences between the two sites was not as sharp, with the tail rotor and exhaust port oriented more toward site 3, but not necessarily a direct line.

In essence, some directivity in the noise levels were observed, but because these events were targets of opportunity and there were high ambient noise levels from the local traffic, definitive conclusions as to the degree of changes in the L(max) and L(eq) and the exposure can not be concluded from this test program for the Convention Center location.

7.0 Concluding Remark

Table 6 presents typical L(max) values for noise associated with the urban environment. When comparing the observations as presented in this report to those of Table 6 one can easily see that the helicopter is not necessarily that intrusive. One has to be within a relatively close proximity to the helipad to be impacted by the noise as was shown by the lost of data at site 4 at the Convention Center. Even at McCarran International Airport where the ambient noise was relatively low, the noise associated with the helicopter operations was comparatively insignificant to the jet air carriers. However, this is not to say that the noise may not be intrusive, since this term is very qualitative and is a function of personal perception.

والمعنا فرادها منا مناهنا عنادها عزا ماهما بالامالين فراهد برامه والمعارية المامية والماري والمرابع

NOISE LEVELS TYPICALLY ENCOUNTERED

IN AN URBAN ENVIRONMENT

Source of Noise	L (max
Rustling leaves	20
Room in a quiet dwelling at midnight	3 2
Soft whispers at 5 feet	3 4
Window air conditioner	55
Conversational speech	60
Busy restaurant	65
Vacuum cleaners in a quiet residence (at 10 ft) 69
Ringing alarm clock (at 2 ft)	80
Heavy city traffic	92
Home lawn mower	98
Banging of steel plate	104
Air hammer	107
Tab simlines (EAA feet excepted)	

EILMED

12-84

DIC