Examen TP OIS Marguet Bastien

Consignes

- 1. Votre travail s'effectue sur un nouveau fichier Excel renommé **NOM Prenom.xlsx**.
- 2. La rigueur, la clarté et le design de votre fichier seront notés sur 2 points (/20)
- 3. Une bonne utilisation de l'adressage sera valorisée.
- 4. Tous les graphiques doivent être affichés dans une nouvelle feuille spécifique.
- 5. Vous enverrez votre fichier Excel à l'adresse e-mail suivante :

bastien.marguet@univ-lyon1.fr

Contexte

Vous disposez de relevés expérimentaux de la vitesse d'une réaction chimique, notée $v_{exp}(t)$, qui dépendent du temps. La relation théorique pour la vitesse de réaction est donnée par la loi cinétique suivante :

$$v_{th}(t) = k \cdot C_0 \cdot e^{-kt} \tag{1}$$

οù

- $v_{th}(t)$ est la vitesse de réaction à l'instant t,
- C_0 est la concentration initiale du réactif,
- k est la constante de vitesse de la réaction,
- t est le temps.

Votre objectif est de comparer les mesures expérimentales à la relation théorique, d'ajuster les paramètres du modèle pour déterminer les valeurs de k et de C_0 , puis de réaliser une étude statistique.

Partie 1

- 1. Présentez vos tableaux de manière soignée.
- 2. À l'aide des données fournies pour les relevés expérimentaux, tracez la courbe de $v_{exp}(t)$.

Partie 2

3. Utilisez le complément Solveur d'Excel pour déterminer les paramètres k et C_0 qui minimisent l'écart entre les valeurs expérimentales $v_{exp}(t)$ et la relation théorique de l'équation (1). Réaliser la tâche 3 fois avec des contraintes différentes à chaque fois.

Aide: Pour faire apparaître le Solveur dans l'onglet **Données**: Cliquer sur Fichier/Options/Compléments/Complément Solveur/Atteindre/Cocher la case Complément Solveur/Ok.

Ici, avant d'utiliser le solveur, il faudra insérer comme valeur initiale pour les 2 paramètres à déterminer $k=1 \, min^{-1}$ et $C_0=1 \, mol/L$ comme indiqué en Figure 1.

Examen TP OIS Marguet Bastien

Е	F	G	Н		J	K	L
V _{Solveur1}	V _{Solveur2}	V _{Solveur3}		paramètres	V _{Solveur1}	V _{Solveur2}	V _{Solveur3}
1	1	1		k (min ⁻¹)	1	1	1
0,006738	0,006738	0,006738		C ₀ (mol/L)	1	1	1
4,54E-05	4,54E-05	4,54E-05					
3,06E-07	3,06E-07	3,06E-07					
2,06E-09	2,06E-09	2,06E-09					
1,39E-11	1,39E-11	1,39E-11					
9,36E-14	9,36E-14	9,36E-14					
6,31E-16	6,31E-16	6,31E-16					
4,25E-18	4,25E-18	4,25E-18					
2,86E-20	2,86E-20	2,86E-20					
1,93E-22	1,93E-22	1,93E-22					
1,3E-24	1,3E-24	1,3E-24					
8,76E-27	8,76E-27	8,76E-27					

FIGURE 1 – Avant d'utiliser le solveur

Partie 3

4. Quels que soient les résultats obtenus à la question 2 pour les valeurs des paramètres k et C_0 , utilisez $k = 0.1 \, min^{-1}$ et $C_0 = 2 \, mol/L$ pour tracer la courbe de $v_{th}(t)$. Superposez cette courbe avec celle de $v_{exp}(t)$ obtenue à la question 1 sur le même graphique. Comment expliquer les écarts observés entre les valeurs théoriques et expérimentales dans le cadre de ce procédé? (Vous répondrez à la question dans un nouvel onglet nommé **Réponses Questions**).

Partie 4

- 5. Construire un tableau à double entrée dans lequel vous calculerez les valeurs de $v_{th}(t) = k \cdot C_0 \cdot e^{-kt}$ pour :
 - C_0 variant de 1 à 10 mol/L par pas de 1 mol/L
 - t variant de 0 à 60 minutes par pas de 5 minutes
 - $-k = 0.1 \, min^{-1}$.
- 6. Tracez ensuite sur un même graphique les courbes de $v_{th}(t)$ pour toutes les valeurs de C_0 .

Partie 5

Vous disposez de valeurs expérimentales de k, obtenues lors de plusieurs expériences.

- 7. Calculez la moyenne, l'écart-type, la médiane, et les valeurs minimum et maximum pour cette série de données.
- 8. Tracez un histogramme des valeurs de k.
- 9. Interprétez cet histogramme. Discutez de la dispersion des valeurs autour de la moyenne et de la variabilité de la constante de vitesse dans les différentes expériences (vous répondrez à cette question dans l'onglet nommé **Réponses Questions**).