第一次习题课参考解答(多元函数极限、连续、偏导数及可微性)

1. 讨论下列函数在(0,0)点的累次极限与二重极限是否存在,若存在求其值,若不存在,说明理由。

(1)
$$f(x,y) = \frac{x-y}{x+y}$$
, $(x,y) \in \{(x,y) \mid x+y \neq 0\}$.

解: 直接计算可得 $\lim_{x\to 0} \lim_{y\to 0} f(x,y) = 1$,且 $\lim_{y\to 0} \lim_{x\to 0} f(x,y) = -1$.由于两个累次极限存在但不等,故 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在。

(2)
$$f(x, y) = \frac{x^3 + y^3}{x^2 + y}$$
, $(x, y) \neq (0, 0)$.

解:
$$\Rightarrow y = x$$
, 则 $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} \frac{2x^2}{x+1} = 0$; 取 $y = x^3 - x^2$, 则

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{x\to 0} (1+x^3(x-1)^3) = 1,$$

即,动点沿着两条不同的曲线趋近坐标原点,函数极限存在但不等,因此 $\lim_{(x,y)\to(0,0)}f(x,y)$

不存在. 而
$$\lim_{x\to 0} \lim_{y\to 0} f(x,y) = 0 = \lim_{y\to 0} \lim_{x\to 0} f(x,y)$$
.

(3)
$$f(x,y) = \frac{|x|^{\alpha} |y|^{\beta}}{x^2 + y^2}$$
, $\sharp + \alpha, \beta \ge 0$, $\sharp \alpha + \beta > 2$.

解: 因为 $\alpha, \beta \ge 0$, 且 $\alpha + \beta > 2$, $|x| \le (x^2 + y^2)^{\frac{1}{2}}$, $|y| \le (x^2 + y^2)^{\frac{1}{2}}$, 因此

$$0 \le \frac{\left|x\right|^{\alpha} \left|y\right|^{\beta}}{x^2 + y^2} \le \frac{\left(x^2 + y^2\right)^{\frac{\alpha + \beta}{2}}}{x^2 + y^2} = \left(x^2 + y^2\right)^{\frac{\alpha + \beta - 2}{2}} \to 0, \quad (x, y) \to (0, 0),$$

所以
$$\lim_{(x,y)\to(0,0)} \frac{|x|^{\alpha}|y|^{\beta}}{x^2+y^2} = 0.$$

任意固定 $x \neq 0$,因为 $\lim_{y \to 0} \frac{|x|^{\alpha}|y|^{\beta}}{x^2 + y^2} = 0$,因此 $\lim_{x \to 0} \lim_{y \to 0} \frac{|x|^{\alpha}|y|^{\beta}}{x^2 + y^2} = 0$,类似地,有

$$\lim_{y \to 0} \lim_{x \to 0} \frac{|x|^{\alpha} |y|^{\beta}}{x^2 + y^2} = 0.$$

2. 解答下列各题:

(1) 讨论
$$\lim_{\substack{x\to\infty\\x\to\infty}} \frac{x+y}{x^2-2xy+y^2}$$
 是否存在?

解: 取
$$y = x + 1$$
, 则 $\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x + y}{x^2 - 2xy + y^2} = \infty$,故 $\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x + y}{x^2 - 2xy + y^2}$ 不存在。

(2) 讨论
$$\lim_{\substack{x\to\infty\\y\to\infty\\y\to\infty}}\frac{x+y}{x^2-xy+y^2}$$
 是否存在?

解: 当 $(x, y) \neq (0,0)$ 时,

$$0 \le \left| \frac{x+y}{x^2 - xy + y^2} \right| \le \left| \frac{x}{x^2 - xy + y^2} \right| + \left| \frac{y}{x^2 - xy + y^2} \right|$$
$$= \frac{|x|}{\frac{3}{4}x^2 + (\frac{1}{2}x - y)^2} + \frac{|y|}{\frac{3}{4}y^2 + (\frac{1}{2}y - x)^2} \le \frac{4}{3} \left(\frac{1}{|x|} + \frac{1}{|y|} \right),$$

故
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{x+y}{x^2 - xy + y^2} = 0.$$

(3) 讨论 $f(x, y) = e^{x^2 - y^2} \sin(2xy)$ 在 $x \to +\infty$, $y \to -\infty$ 时的重极限与累次极限是否存在?

解: 取
$$y = -x$$
, 则 $\lim_{\substack{x \to +\infty \\ y \to -\infty}} f(x, y) = \lim_{\substack{x \to +\infty \\ y \to -\infty}} \sin(-2x^2)$ 不存在,故 $\lim_{\substack{x \to +\infty \\ y \to -\infty}} f(x, y)$ 不存在。

任意固定 y < 0,则 $\lim_{x \to +\infty} f(x, y) = \lim_{x \to +\infty} e^{x^2 - y^2} \sin(2xy)$ 不存在,从而 $\lim_{y \to -\infty} \lim_{x \to +\infty} f(x, y)$ 不存

在;任意固定x>0,因为

$$\lim_{y \to -\infty} f(x, y) = \lim_{y \to -\infty} e^{x^2 - y^2} \sin(2xy) = 0,$$

因此 $\lim_{x\to +\infty} \lim_{y\to -\infty} f(x,y) = 0$.

3. 计算下列函数极限.

(1)
$$\lim_{(x,y)\to(1,0)} (x+y)^{\frac{x+y+1}{x+y-1}};$$
 (2) $\lim_{(x,y)\to(0,0)} (x+y)\ln(x^2+y^2).$

解: (1)
$$\lim_{(x,y)\to(1,0)} (x+y)^{\frac{x+y+1}{x+y-1}} = \lim_{(x,y)\to(1,0)} (1+(x+y-1))^{\frac{1}{x+y-1}\cdot(x+y+1)} = e^2$$
.

(2) 由于

$$0 \le \left| (x+y)\ln(x^2+y^2) \right| \le \left(\left| x \right| + \left| y \right| \right) \left| \ln(x^2+y^2) \right| \le \sqrt{2(x^2+y^2)} \left| \ln(x^2+y^2) \right|,$$

令 $x = \rho \cos \theta, y = \rho \sin \theta, \exists (x, y) \rightarrow (0, 0)$ 时,有 $\rho \rightarrow 0$,且

$$\sqrt{2(x^2 + y^2)} \left| \ln(x^2 + y^2) \right| = 2\sqrt{2}\rho \left| \ln \rho \right| \to 0 \ (\rho \to 0),$$

故双侧趋近定理表明 $\lim_{(x,y)\to(0,0)} (x+y) \ln(x^2+y^2) = 0$.

解法二、因为 $\lim_{y\to 0} \lim_{x\to 0} (x+y) \ln(x^2+y^2) = 2 \lim_{y\to 0} y \ln y = 0$,因此有

$$\lim_{(x,y)\to(0,0)} (x+y)\ln(x^2+y^2) = 0.$$

4. 设 \mathbb{R}^2 上的连续函数 f(x,y) 满足 $\lim_{x^2+y^2\to+\infty} f(x,y)=-\infty$. 证明: 对任意常数 C, f(x,y)=C的解集合是有界闭集。

证明: 显然, 空集是有界闭集. 因此, 对任意常数 C , 不妨设 $D = \{(x,y): f(x,y) = C\} \neq \emptyset$. 首先证明 D 是闭集。任取 D 中的收敛点列 $\{(x_n,y_n)\}$ 使得 $(x_n,y_n) \to (x_0,y_0)$, $n \to \infty$. 则 $f(x_n,y_n) = C \cdot \Diamond n \to \infty, \text{ a } f \text{ 的连续性}, \text{ } f$

$$f(x_0, y_0) = \lim_{n \to +\infty} f(x_n, y_n) = C.$$

故 $(x_0, y_0) \in D$. 所以D是闭集。

下证D是有界集。由 $\lim_{x^2+v^2\to +\infty} f(x,y) = -\infty$ 可知,存在x>0使得

$$f(x, y) < C - 1, \quad \forall (x, y) \in \{(x, y) | x^2 + y^2 > r^2\}.$$

所以对 $\forall (x,y) \in D$,有 $x^2 + y^2 \le r^2$,故D是有界集。

5. 若 f(x, y) 在 (0,0) 点的某个邻域内有定义, f(0,0) = 0 ,且

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}}=a\;,\;\; 其中 \,a\; 为常数。证明:$$

- (1) f(x, y) 在 (0,0) 点连续;
- (2) 若 $a \neq -1$, 则 f(x, y) 在 (0,0) 点连续,但不可微;
- (3) 若a = -1,则f(x, y)在(0,0)点可微。

证明: 因为
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-\sqrt{x^2+y^2}}{\sqrt{x^2+y^2}} = a$$
,因此

$$\frac{f(x,y) - \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} = a + o(1), \quad ((x,y) \to (0,0))$$

故
$$f(x, y) = (a+1)\sqrt{x^2 + y^2} + o(\sqrt{x^2 + y^2}), (x, y) \rightarrow (0, 0).$$

- (1) 由于 $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$, 因此 f(x,y) 在 (0,0) 点连续。
- (2) 若 $a \neq -1$, 容易看出 f(x, y) 在 (0,0) 点连续。由于

$$f_x'(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{(a+1)|x| + o(|x|)}{x}$$

不存在, 同理可知 $f'_y(0,0) = \lim_{y\to 0} \frac{f(0,y) - f(0,0)}{y}$ 不存在, 因此 f(x,y) 在 (0,0) 点不可微。

(3) 若
$$a = -1$$
, 则 $f(x, y) = o(\sqrt{x^2 + y^2})$, 且

$$f'_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{o(|x|)}{x} = 0$$
,

同理求得 $f'_{y}(0,0) = 0$, 因此

$$f(x, y) - f(0, 0) = f'_x(0, 0)dx + f'_y(0, 0)dy + o(\sqrt{x^2 + y^2}), (x, y) \rightarrow (0, 0),$$

故 f(x, y) 在 (0,0) 点可微.

6. 讨论函数
$$f(x,y) = \begin{cases} \frac{\sqrt{|xy|}}{x^2 + y^2} \sin(x^2 + y^2), & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 在 $(0,0)$ 点的连续性及可

微性。

解: (1) 因为

$$\left| \frac{\sqrt{|xy|}}{x^2 + y^2} \sin(x^2 + y^2) \right| \le \sqrt{|xy|} \to 0, \quad (x, y) \to (0, 0) ,$$

因此 $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$,故 f(x,y) 在 (0,0) 点连续。

(2) 因为
$$\frac{\partial f}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x,0) - f(0,0)}{\Delta x} = 0$$
,且
$$\frac{\partial f}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{f(\Delta y,0) - f(0,0)}{\Delta y} = 0$$
,

因此

$$\frac{f(\Delta x, \Delta y) - f(0,0) - \left(\frac{\partial f}{\partial x}(0,0)\Delta x + \frac{\partial f}{\partial y}(0,0)\Delta y\right)}{\sqrt{\Delta x^2 + \Delta y^2}} = \frac{\sqrt{|\Delta x \cdot \Delta y|}}{\left(\Delta x^2 + \Delta y^2\right)^{\frac{3}{2}}}\sin(\Delta x^2 + \Delta y^2).$$

$$\mathbb{E} \Delta y = \Delta x \,, \quad \mathbb{E} \frac{\sqrt{|\Delta x \cdot \Delta y|}}{\left(\Delta x^2 + \Delta y^2\right)^{\frac{3}{2}}} \sin(\Delta x^2 + \Delta y^2) \to \frac{1}{\sqrt{2}} \quad (\Delta x \to 0),$$

所以当 $(\Delta x, \Delta y) \to (0,0)$ 时, $\frac{\sqrt{|\Delta x \cdot \Delta y|}}{\left(\Delta x^2 + \Delta y^2\right)^{\frac{3}{2}}} \sin(\Delta x^2 + \Delta y^2)$ 不是无穷小量。因此 f(x,y) 在

(0,0) 点不可微。

7. 设函数 f(x,y) 在点 (0,0) 的邻域内有定义,若 f(x,y) 在点 (0,0) 处连续,且

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2+y^2}$$
存在,证明: $f(x,y)$ 在点 $(0,0)$ 处可微。

证明:因为
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2+y^2}$$
 存在,记 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2+y^2} = a$.由于函数 $f(x,y)$ 在点 $(0,0)$ 处

连续, 因此

$$f(0,0) = \lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2 + y^2} (x^2 + y^2)$$
$$= \left(\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2 + y^2}\right) \cdot \left(\lim_{(x,y)\to(0,0)} (x^2 + y^2)\right) = 0.$$

从而
$$f'_x(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{f(x,0)}{x^2} \lim_{x \to 0} x = 0,$$

$$f_y'(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{x \to 0} \frac{f(0,y)}{y^2} \lim_{x \to 0} y = 0,$$

这样

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - f(0,0) - f'_x(0,0)x - f'_y(0,0)y}{\sqrt{x^2 + y^2}} = \left(\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{x^2 + y^2}\right) \cdot \left(\lim_{(x,y)\to(0,0)} \sqrt{x^2 + y^2}\right) = 0,$$

- 故,由函数可微的定义知,函数f(x,y)在点(0,0)处可微。
- 8. 设函数 f(x,y) 的两个偏导函数存在,且这两个偏导函数在点(0,0) 处连续。

已知
$$f'_x(0,0) = 3$$
, $f'_y(0,0) = 4$. 求极限 $\lim_{t\to 0} \frac{f(t,t) - f(0,0)}{t}$.

解: 因为函数 f(x,y) 的两个偏导函数 $f'_x(x,y)$, $f'_y(x,y)$ 在点 (0,0) 处连续, 因此由可微的 充分条件知,函数 f(x,y) 在点 (0,0) 处可微, 故

$$f(t,t) - f(0,0) = f'_{y}(0,0)t + f'_{y}(0,0)t + o(t), (t \to 0)$$

$$\text{Ff} \boxtimes \lim_{t \to 0} \frac{f(t,t) - f(0,0)}{t} = f'_x(0,0) + f'_y(0,0) + \lim_{t \to 0} \frac{o(t)}{t} = 7.$$

9. 求解下列问题:

(1) 设函数
$$f(x, y)$$
 满足 $\frac{\partial f}{\partial x} = \sin y + \frac{1}{1 - xy}$,且 $f(1, y) = \sin y$,求 $f(x, y)$.

解: 对
$$\frac{\partial f}{\partial x} = \sin y + \frac{1}{1 - xy}$$
 两边关于 x 求不定积分,得

$$f(x, y) = x \sin y - \frac{1}{y} \ln |1 - xy| + g(y)$$
.

已知 $f(1, y) = \sin y$, 所以 $g(y) = \frac{1}{y} \ln |1 - y|$, 故

$$f(x, y) = x \sin y - \frac{1}{y} \ln |1 - xy| + \frac{1}{y} \ln |1 - y|$$

(2) 设函数 f(x, y) 的全微分为 $df(x, y) = e^{xy}(y \sin x + \cos x) dx + xe^{xy} \sin x dy$,且 f(0,0) = 1,求 f(x, y).

解: 由 $df(x, y) = e^{xy}(y \sin x + \cos x)dx + xe^{xy} \sin xdy$ 可知,

$$f'_x(x, y) = e^{xy} (y \sin x + \cos x)$$
, $\coprod f'_y(x, y) = xe^{xy} \sin x$.

对 $f_y'(x,y) = xe^{xy}\sin x$ 两边关于 y 求不定积分,得 $f(x,y) = e^{xy}\sin x + g(x)$, 两边关于 x 求偏导,有 $f_x'(x,y) = ye^{xy}\sin x + e^{xy}\cos x + g'(x)$,又知

$$f'_x(x, y) = e^{xy} (y \sin x + \cos x),$$

因此 g'(x) = 0,故 g(x) = c 且 $f(x, y) = e^{xy} \sin x + c$.由于 f(0, 0) = 1,所以 c = 1 且 $f(x, y) = e^{xy} \sin x + 1$.

10. 设函数 f(x,y) 的两个偏导函数在点 $P_0(x_0,y_0)$ 的某邻域 U 内存在且有界,证明: f(x,y) 在点 $P_0(x_0,y_0)$ 处连续。

证明: 因为函数 f(x,y) 的两个偏导函数在点 $P_0(x_0,y_0)$ 的某邻域 U 内存在且有界,

因此存在M > 0 使得对任意的 $(x, y) \in U$,有 $|f'_x(x, y)| \le M$, $|f'_y(x, y)| \le M$.

任取 $(x,y) \in U$. 由一元函数的微分中值定理, 存在 $\theta_1, \theta_2 \in (0,1)$ 使得

$$\begin{aligned} \left| f(x,y) - f(x_0, y_0) \right| &\leq \left| f(x,y) - f(x, y_0) \right| + \left| f(x, y_0) - f(x_0, y_0) \right| \\ &= \left| f_y'(x, y_0 + \theta_1(y - y_0))(y - y_0) \right| + \left| f_y'(x_0 + \theta_2(x - x_0), y_0)(x - x_0) \right| \\ &\leq M(\left| y - y_0 \right| + \left| x - x_0 \right|) \end{aligned}$$

从而 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$. 所以 f(x,y) 在点 $P_0(x_0,y_0)$ 处连续。

11. 给定单位向量 $\vec{v} = (\cos\theta, \sin\theta)$,设l是以 $P_0(x_0, y_0)$ 为顶点, \vec{v} 为方向向量的射线,则称极限

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in l}} f(x,y) = \lim_{t\to 0^+} f(x_0 + t\cos\theta, y_0 + t\sin\theta)$$

为函数 f(x,y) 在 $P_0(x_0,y_0)$ 点沿着方向 \vec{v} 的方向极限。讨论下列函数在 (0,0) 点的方向极限及二重极限,并总结二者的关系。

(1)
$$f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$$
 $(x, y) \neq (0, 0);$

(2)
$$f(x, y) = \begin{cases} \frac{x^2}{y}, & y \neq 0, \\ 0, & y = 0. \end{cases}$$

解: (1) 对任意的单位向量 $\vec{v} = (\cos \theta, \sin \theta)$, $f(t \cos \theta, t \sin \theta) = \cos 2\theta$, 故

$$\lim_{t\to 0^+} f(t\cos\theta, t\sin\theta) = \cos 2\theta,$$

所以函数 f(x,y) 在 (0,0) 点沿着方向 \vec{v} 的方向极限是 $\cos 2\theta$. 故函数 f(x,y) 在 (0,0) 点沿着不同方向的方向极限不相等,从而 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在。

(2) 对任意的单位向量 $\vec{v} = (\cos \theta, \sin \theta)$, 当 $\theta \neq 0, \pi$ 时,

$$f(t\cos\theta, t\sin\theta) = \frac{t\cos^2\theta}{\sin\theta},$$

所以 $\lim_{t\to 0^+} f(t\cos\theta,t\sin\theta) = 0$. 当 $\theta = 0,\pi$ 时, $f(t\cos\theta,t\sin\theta) = f(\pm t,0) = 0$, 故 $\lim_{t\to 0^+} f(t\cos\theta,t\sin\theta) = 0$. 因此函数 f(x,y) 在 (0,0) 点沿着任何方向的方向极限都存在且都等于零。

由于
$$\lim_{\substack{(x,y)\to(0,0)\\y=x^3}} f(x,y) = \lim_{x\to 0} \frac{x^2}{x^3} = \infty$$
,所以二重极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在。

二重极限与方向极限的关系: 函数在一点的二重极限存在,则在该点沿着任意方向的方向极限都存在且都等于二重极限的值; 反之, 若沿着两个不同方向的方向极限存在但不等,则二重极限不存在,即便函数在该点沿着任意方向的方向极限都存在且相等,函数在该点的二重极限也不一定存在,例如本题(2)中的函数,原因是它沿不同方向趋于零的快慢程度不同,沿着靠近 Oy 轴的方向趋于零的速度快,而沿着靠近 Ox 轴的方向趋于零的速度慢,以至于当 $\theta \to 0$, π 时,函数 f(x,y) 在 (0,0) 点沿着方向 $\vec{v} = (\cos\theta, \sin\theta)$ 趋于零的速度无限地变慢。

不难证明,若 f(x,y) 在 $P_0(x_0,y_0)$ 点沿任何方向的方向极限都存在且相等,而且沿不同方向收敛的快慢一致,则 f(x,y) 在 $P_0(x_0,y_0)$ 点的二重极限存在且等于这些方向极限。
12.设 f(x,y) 定义在 $I_1=\{(x,y)\colon 0\leq x\leq 1,\ 0\leq y\leq 1\}$ 上,且在 $I_0=\{(x,0)\colon 0\leq x\leq 1\}$ 上 连续,证明: $\exists \delta>0$ 使得 f(x,y) 在 $I_\delta=\{(x,y)\colon 0\leq x\leq 1,0\leq y\leq \delta\}$ 上有界。
证明: 反证法。假设对 $\forall \delta>0$,f(x,y) 在 I_δ 上都无界,则 $\exists (x_n,y_n)\in I_{\frac{1}{n}}$ 使得 $\Big|f(x_n,y_n)|>n$.由于 $\{(x_n,y_n)\}$ 有界,因此存在收敛子列 $\Big\{(x_{n_k},y_{n_k})\Big\}$,设 $\Big((x_{n_k},y_{n_k})\to (x_0,y_0)$ $(k\to\infty)$,则 $x_0\in [0,1],y_0=0$,由于 f(x,y) 在 I_0 上连续,因此 $\lim_{k\to\infty}f(x_{n_k},y_{n_k})=f(x_0,0)$,这与 $\Big|f(x_{n_k},y_{n_k})\Big|>n_k$ 矛盾,结论得证。证毕

以下供学有余力的同学参考:

13. 函数 f(x, y) 在点 (x_0, y_0) 的去心邻域内有定义,满足下列条件:

(1) 存在 x_0 的去心邻域 $\{x \mid 0 < |x - x_0| < r\}$,使得对 $\forall x \in \{x \mid 0 < |x - x_0| < r\}$, $\lim_{y \to y_0} f(x,y) = g(x)$ 存在;

(2) $\lim_{x \to x_0} f(x, y) = h(y)$ 在 y_0 的某个去心邻域 $\{y \mid 0 < |y - y_0| < \eta\}$ 内一致,即

対 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得对 $\forall x \in U_o(x_0, \delta)$, 及对 $\forall y \in \{y \mid 0 < |y - y_0| < \eta\}$, 有 $|f(x, y) - h(y)| < \varepsilon.$

 $\text{III} \lim_{x \to x_0} g(x) = \lim_{y \to y_0} h(y) , \text{ III} \lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y) .$

证明: 因为 $\lim_{x \to x_0} f(x, y) = h(y)$ 在 y_0 的某个去心邻域 $\{y \mid 0 < |y - y_0| < \eta\}$ 内一致,所以

$$\forall \varepsilon > 0, \exists \delta > 0 (\delta < r), \forall x', x'' \in U_0(x_0, \delta), 0 < |y - y_0| < \eta$$

都有

$$|f(x',y)-f(x'',y)|<\varepsilon$$
.

对上述不等式在 $y \to y_0$ 取极限,则由第一个条件得 $\left|g(x') - g(x'')\right| \le \varepsilon$,故由函数极限的柯西收敛原理知, $\lim_{x \to x_0} g(x)$ 存在,记 $\lim_{x \to x_0} g(x) = A$. 因此

$$\forall \varepsilon > 0, \quad \exists \delta_1 > 0, \quad \forall x, \ 0 < |x - x_0| < \delta_1, \ |g(x) - A| < \frac{\varepsilon}{3}$$

又由条件(2)知,对上述给定的 $\varepsilon > 0$,

$$\exists \delta_2 > 0, \ \forall x, \ 0 < |x - x_0| < \delta_2, \ 0 < |y - y_0| < \eta,$$

有 $|h(y)-f(x,y)| < \frac{\varepsilon}{3}$. 取 $\delta = \min\{\delta_1,\delta_2\}$,则 $\delta > 0$.取定 $\overline{x} \in \{x \mid 0 < |x-x_0| < \delta\}$.由条

件(1),对上述给定的 $\varepsilon>0$, $\exists \eta_1\in(0,\eta), s.t.$ $\forall y,\ 0<\left|y-y_0\right|<\eta_1$, 有

$$|f(\overline{x},y)-g(\overline{x})|<\frac{\varepsilon}{3}$$

从而对 $\forall y$, 当 $0 < |y - y_0| < \eta_1$ 时, 有

$$|h(y) - A| \le |h(y) - f(\overline{x}, y)| + |f(\overline{x}, y) - g(\overline{x})| + |g(\overline{x}) - A| < \varepsilon$$

故 $\lim_{y \to y_0} h(y) = A$. 证毕

课堂思考题: 二元函数关于两个变量分别连续, 附加什么条件可得到函数的连续性?

14. 证明: 若函数 f(x,y) 关于两个变量分别连续,且对其中的一个变量单调,则 f(x,y) 是连续函数。

证明:设 f(x,y) 定义在集合 D 上,且关于变量 y 单调增加。任取 $P_0(x_0,y_0) \in D$.因为 f(x,y) 在 $P_0(x_0,y_0)$ 关于变量 y 连续,故存在 $\delta_1 > 0$ $s.t. |y-y_0| \le \delta_1$ 时,有

$$|f(x_0, y) - f(x_0, y_0)| < \frac{\varepsilon}{2}$$

特别地, $\left|f(x_0,y_0-\delta_1)-f(x_0,y_0)\right|<rac{\varepsilon}{2}$, $\left|f(x_0,y_0+\delta_1)-f(x_0,y_0)\right|<rac{\varepsilon}{2}$ 因为 f(x,y) 在 $P_1(x_0,y_0-\delta_1)$ 和 $P_2(x_0,y_0+\delta_1)$ 关于 x 连续,故存在 $\delta_2>0$ $s.t. \left|x-x_0\right|\leq \delta_2$ 时,有

$$|f(x, y_0 - \delta_1) - f(x_0, y_0 - \delta_1)| < \frac{\varepsilon}{2}, |f(x, y_0 + \delta_1) - f(x_0, y_0 + \delta_1)| < \frac{\varepsilon}{2}.$$

取 $\delta = \min\{\delta_1, \delta_2\}$,当 $\sqrt{(x-x_0)^2+(y-y_0)^2} \le \delta$ 时,因 f(x,y) 关于变量 y 单调增加,故

$$f(x, y) \le f(x, y_0 + \delta_1) < f(x_0, y_0 + \delta_1) + \frac{\varepsilon}{2} < f(x_0, y_0) + \varepsilon$$

同理可证, $f(x,y) > f(x_0,y_0) - \varepsilon$. 故当 $\sqrt{(x-x_0)^2 + (y-y_0)^2} \le \delta$ 时,有 $|f(x,y) - f(x_0,y_0)| < \varepsilon$,所以 f(x,y) 在 $P_0(x_0,y_0)$ 连续。证毕

- 15. 若函数 f(x,y) 在区域 D 上关于两个变量分别连续,证明:在下列条件之一满足时, f(x,y) 在区域 D 上处处连续。
- (1) 对其中的一个变量(例如 y)满足 Lipschitz 条件:即存在 $L>0 \ \textit{s.t.} \ \forall (x,y_1), \ (x,y_2) \in D \ , \ \ f \big| f(x,y_1) f(x,y_2) \big| \leq L \big| y_1 y_2 \big| \ .$
- (2) 对其中的一个变量(例如 x)连续,关于另一个变量(例如 y)是一致连续的,即对 $\forall x_0,\ \forall \varepsilon>0,\ \exists \delta>0\ \ (只与\varepsilon,\ x_0有关,而与 <math>y$ 无关),当 $\left|x-x_0\right|<\delta$ 时,对任意的 y ,有 $\left|f(x,y)-f(x_0,y)\right|<\varepsilon$.

证明: 任取 $(x_0, y_0) \in D$.

(1) 对任意的 $\varepsilon>0$,因为 $f(x,y_0)$ 连续,因此存在 $\delta_1>0$,当 $\left|x-x_0\right|<\delta_1$ 时,有

$$|f(x, y_0) - f(x_0, y_0)| < \frac{\varepsilon}{2}$$
. 又当 $|y - y_0| < \delta_2 = \frac{\varepsilon}{2L}$ 时,有

$$|f(x, y) - f(x, y_0)| \le L|y - y_0| < \frac{\varepsilon}{2}$$

取 $\delta = \min\{\delta_1, \ \delta_2\}$,则当 $\sqrt{(x-x_0)^2 + (y-y_0)^2} \le \delta$ 时,有 $\left| f(x,y) - f(x_0,y_0) \right| < \varepsilon$. 故 f(x,y) 在 (x_0,y_0) 连续,因为 $(x_0,y_0) \in D$ 是任意的,所以 f(x,y) 在区域 D 上处处连续。

(2) 对任意的 $\varepsilon > 0$, 因为 $f(x_0,y)$ 连续, 因此存在 $\delta_1 > 0$, 当 $\left| y - y_0 \right| < \delta_1$ 时, 有 $\left| f(x_0,y) - f(x_0,y_0) \right| < \frac{\varepsilon}{2} . \text{ 又由于 } f(x,y)$ 对 x 连续且关于 y 是一致连续的,

所以存在 $\delta_2 > 0$,当 $|x - x_0| < \delta_2$ 时,对任意的 y 满足 $|y - y_0| < \delta_1$,有

$$|f(x,y)-f(x_0,y)|<\frac{\varepsilon}{2}$$

取 $\delta = \min\{\delta_1, \ \delta_2\}$,则当 $\sqrt{(x-x_0)^2+(y-y_0)^2} \le \delta$ 时,有 $\left|f(x,y)-f(x_0,y_0)\right| < \varepsilon$. 故 f(x,y) 在 $(x_0,y_0)\theta$ 连续,因为 $(x_0,y_0)\in D$ 是任意的,因此 f(x,y) 在区域 D 上处处连续。证毕

16. 证明: 若函数 $f'_x(x,y)$ 在 (x_0,y_0) 连续,且 $f'_y(x_0,y_0)$ 存在,则 f(x,y) 在 (x_0,y_0) 可微。

证明:假设 f(x,y) 在 $\mathbf{x}_0 = (x_0,y_0)$ 点的邻域 G 内偏导函数 $\frac{\partial f}{\partial x}$ 存在,且在 \mathbf{x}_0 点连续。设 Δx , Δy 充分小使得 $(x_0 + \Delta x, y_0 + \Delta y)$, $(x_0, y_0 + \Delta y) \in G$,则 f(x,y) 在 $\mathbf{x}_0 = (x_0, y_0)$ 的全改变量

$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

= $[f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y)] + [f(x_0, y_0 + \Delta y) - f(x_0, y_0)]$

对于第一个括号内的表达式,固定 $y_0+\Delta y$,关于 x 的一元函数 $f(x,y_0+\Delta y)$ 在以 x_0 和 $x_0+\Delta x$ 为端点的区间上运用拉格朗日微分中值定理,则存在 $\theta_1\in(0,1)$ 使得

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0 + \Delta y) = f_x'(x_0 + \theta_1 \Delta x, y_0 + \Delta y) \Delta x$$
.

因为
$$\frac{\partial f}{\partial x}$$
 在 \mathbf{x}_0 连续,因此 $\lim_{(\Delta x, \Delta y) \to (0,0)} f_x'(x_0 + \theta_1 \Delta x, y_0 + \Delta y) = f_x'(x_0, y_0)$,从而
$$f_x'(x_0 + \theta_1 \Delta x, y_0 + \Delta y) = f_x'(x_0, y_0) + \alpha$$
,

其中 $\lim_{(\Delta x, \Delta y) \to (0,0)} \alpha = 0$.

对于第二个括号,由于 $f_y'(x_0,y_0)$ 存在,因此由偏导数的定义,

$$\lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y} = f_y'(x_0, y_0),$$

从而 $f(x_0, y_0 + \Delta y) - f(x_0, y_0) = f'_y(x_0, y_0) \Delta y + \beta \Delta y$, 其中 $\lim_{\Delta y \to 0} \beta = 0$. 所以

$$\Delta f = f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y + \alpha \Delta x + \beta \Delta y.$$

因为

$$0 \le \frac{\left|\alpha\Delta x + \beta\Delta y\right|}{\sqrt{\Delta x^2 + \Delta y^2}} \le \left|\alpha\right| \frac{\left|\Delta x\right|}{\sqrt{\Delta x^2 + \Delta y^2}} + \left|\beta\right| \frac{\left|\Delta y\right|}{\sqrt{\Delta x^2 + \Delta y^2}} \le \left|\alpha\right| + \left|\beta\right| \to 0 \quad \left((\Delta x, \Delta y) \to (0, 0)\right),$$

所以
$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} = 0$$
. 故 $f(x,y)$ 在 $\mathbf{x}_0 = (x_0, y_0)$ 可微. 证毕