University of Toronto- Time series club Lecture 3 Introduction to function fitting

Lim, Kyuson

05/18/2022

Today's outline

► Understand function fitting, bias-variance tradeoff, identify parametric and nonparametric methods.

Recall: Function fitting

- ▶ Let $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})^T$ be all the inputs.
- ▶ Let $f(x_i)$ be input to output y_i relationship.

Recall: A diagram

We allow y_i to be different from $f(x_i)$, perturbed by an observation-specific noise ϵ_i .

$$y_i = f(\mathbf{x}_i) + \epsilon_i.$$

Recall: Estimation and prediction

- \triangleright In practice, we don't know f.
- \blacktriangleright We estimate it from the data and denote it \hat{f} .
- ▶ To predict y_i for some input x_i , we'd use $\hat{y}_i = \hat{f}(x_i)$.

Recall: Source of error

The process introduce two source of errors.

- ▶ Reducible error/Approximation error: \hat{f} isn't close to f.
 - ▶ This error is reducible (using a better algorithm).
- ▶ Irreducible error: y_i isn't close to $f(x_i)$.
 - ► Incur this error even *f* is known.

How do we estimate f?

Generally have two steps,

- ightharpoonup Propose a model family \mathcal{F} .
 - \triangleright E.g., set of all linear functions of x_i .
- ▶ Define a procedure to choose $\hat{f} \in \mathcal{F}$ based on the data.
 - ► E.g., the choice of \hat{f} that minimizes $\sum_{i} (y_i \hat{f}(x_i))^2$.

- ► There is a bias-variance trade-off in fitting.
- ightharpoonup Finding the best function in a large class \mathcal{F} can be hard.

Figure 1: Blue line- true function, black points - training set, orange line - fitted function.

▶ We want our model to perform well on out-of-sample data.

Figure 2: Black: in-sample, Brown: out-of-sample

- ightharpoonup Finding the best function in a large class $\mathcal F$ can be hard.
 - High variance: different samples (x_i, y_i) might result in very different \hat{f} , even when f hasn't changed.

- ▶ This variance gets worse for the high-dimensional x_i .
- Incurring bias, for the sake of better stability, can improve the predictions.

12 / 24

Discussion

- ► What are the advantages of more or less flexible regression models? When would you prefer one versus the other?
 - ▶ How does your answer depend on the input dimension of x_i ?
 - How does your answer depend on the sample size?

Discussion - note

- ▶ Long format (sample size > p number of inputs).
 - More flexible models such as random forests, gradient boosting, deep learning.
- ▶ Wide format (sample size
 - Less flexible models such as LASSO, Elastic net.

Discussion - note

- Summary
 - If we don't have too many samples, we should prefer a simpler model.
 - If we have many samples, we can afford a more complex model.

Post-training Analysis

- ► There's a certain set of checks we should always do after we fit a model, no matter what family it is.
 - Yes, even deep learning models.
- We can do better than looking at the validation loss.
 - Residual analysis, error modeling, outliers, high-leverage.

Residual Analysis

- ▶ Make a histogram of residuals $e_i = y_i \hat{y}_i$.
- ▶ Plot residuals against a few input variables/fitted values.
 - ▶ If we notice systematic variation in them, this is information we can squeeze into *f*.

Figure 3: Above: residuals of linear fit (shows a quadratic pattern); Bottom: residuals of a quadratic fit.

Error Modeling

- \triangleright We can use models to seek out systematic variation in e_i .
 - \triangleright Cluster the x_i associated with large errors e_i .
 - ightharpoonup Train a model with e_i as response and clusters as predictors.

Outliers and Leverage

- ▶ Look for outliers either in x_i or y_i directions.
- ► High leverage points are those that, if they were perturbed slightly, would dramatically alter the fit.

Figure 4: Data point 7 has leverage greater than 1.

Note

- Statistics and data science involved more than simply running a machine learning algorithm on data.
- Examples:
 - ▶ What is a question of interest? How can I collect data or design an experiment to address this question?
 - What inferences can be drawn from the data?
 - ▶ What actions should I take as a result of what I've learned?
 - Do I need to worry about bias, confounding, generalizability, concept drift (statistical properties of the response variable change over time), and etc.

Examples of Model Families

- ► Lab
 - Let's get a feel for how different model families look like.
 - We will use Advertising dataset (how does advertising affect sales?)

References

- ► Function Fitting Intro by Kris Sankaran.
- ► ISLR Chapter 2.