| Please check the examination details belo | ow before entering your candidate information |
|-------------------------------------------|-----------------------------------------------|
| Candidate surname                         | Other names                                   |
| Pearson Edexcel Interior                  |                                               |
| Friday 17 November                        | r 2023                                        |
| Morning (Time: 2 hours)                   | Paper reference 4PM1/02                       |
| Further Pure Math                         | hematics                                      |
| Calculators may be used.                  | Total Marks                                   |

# **Instructions**

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
  - there may be more space than you need.
- You must NOT write anything on the formulae page.
   Anything you write on the formulae page will gain NO credit.

# Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.

# **Advice**

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶





P 7 3 5 8 6 A 0 1 3 2

# **International GCSE in Further Pure Mathematics Formulae sheet**

#### Mensuration

**Surface area of sphere** =  $4\pi r^2$ 

**Curved surface area of cone** =  $\pi r \times \text{slant height}$ 

**Volume of sphere** = 
$$\frac{4}{3}\pi r^3$$

#### **Series**

## **Arithmetic series**

Sum to *n* terms, 
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

## Geometric series

Sum to *n* terms, 
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, 
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

#### **Binomial series**

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for  $|x| < 1, n \in \mathbb{Q}$ 

#### **Calculus**

# **Quotient rule (differentiation)**

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

# **Trigonometry**

### Cosine rule

In triangle ABC:  $a^2 = b^2 + c^2 - 2bc \cos A$ 

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

# Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$



# Answer all ELEVEN questions.

|   | You must write down all the stages in your working.                                |          |  |  |  |  |
|---|------------------------------------------------------------------------------------|----------|--|--|--|--|
|   |                                                                                    |          |  |  |  |  |
| 1 | The equation $kx^2 + 8x + 3k = 0$ where k is a constant, has real unequal roots.   |          |  |  |  |  |
|   | Find the set of values of <i>k</i> giving your answer in an exact simplified form. | (5)      |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
|   |                                                                                    |          |  |  |  |  |
| _ | (Total for Question 1 is 5                                                         | 5 marks) |  |  |  |  |



| 2     | In triangle ABC, $AB = 3x$ cm, $BC = 5x$ cm and $\angle ABC = 110^{\circ}$                       |     |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------|-----|--|--|--|--|
|       | (a) Find, in degrees to one decimal place, the size of $\angle BCA$                              |     |  |  |  |  |
|       | The area of triangle $ABC$ is $24 \text{ cm}^2$                                                  | (4) |  |  |  |  |
|       | The area of triangle ABC is 24 cm <sup>2</sup> (b) Find to 3 significant figures, the value of x |     |  |  |  |  |
|       | (b) Find, to 3 significant figures, the value of <i>x</i>                                        | (3) |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
| ***** |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |
|       |                                                                                                  |     |  |  |  |  |



| <br>P | 3 |  |  |  | 2 |  |
|-------|---|--|--|--|---|--|

| 3 | A particle <i>P</i> moves along the <i>x</i> -axis.                                                |     |
|---|----------------------------------------------------------------------------------------------------|-----|
|   | At time t seconds $(t \ge 0)$ the acceleration, $a \text{ m/s}^2$ , of P is given by $a = 6t - 16$ |     |
|   | When $t = 0$ , P is at the origin and is moving with velocity 12 m/s.                              |     |
|   | (a) Find an expression in terms of $t$ for                                                         |     |
|   | (i) the velocity of $P$ at time $t$ seconds                                                        |     |
|   | (ii) the displacement of $P$ at time $t$ seconds.                                                  | (4) |
|   | (b) Hence find the time at which <i>P</i> first returns to the origin.                             | (3) |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |
|   |                                                                                                    |     |



| Question 3 continued              |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| (Total for Question 3 is 7 marks) |
|                                   |



(a) On the axes opposite, draw the line with equation

(i) 
$$v = -x - 1$$

(i) 
$$y = -x - 1$$
 (ii)  $y - 3x + 8 = 0$ 

(iii) 
$$2y = x + 8$$

(3)

(b) Show, by shading on your graph, the region R defined by the inequalities

$$y \geqslant -x-1$$
 and  $y \geqslant 3x-8$  and  $2y \leqslant x+8$ 

(1)

For all points in R, with coordinates (x, y)

$$P = 2y - 3x$$

- (c) Find
  - (i) the greatest value of P
  - (ii) the least value of P

**(4)** 



# **Question 4 continued**



Turn over for a spare grid if you need to redraw your graph.



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

| Question 4 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |

# **Question 4 continued**

Only use this grid if you need to redraw your graph.



(Total for Question 4 is 8 marks)



Figure 1

Figure 1 shows part of the curve S with equation  $y = px^2 + qx + r$  where p, q and r are constants.

The points A, B and P with coordinates (-2, 0), (6, 0) and (4, -6) respectively lie on S

(a) Show that an equation of S is 
$$y = \frac{x^2}{2} - 2x - 6$$
 (3)

The line l is the normal to S at the point P

(b) Show that an equation of *l* is 2y + x + 8 = 0

(5)

The finite region shown shaded in Figure 1 is bounded by S and l

(c) Use algebraic integration to find the exact area of the shaded region.

**(7)** 



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

| Question 5 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 5 continued                |
|-------------------------------------|
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
| (Total for Quarties 5 is 15 montes) |
| (Total for Question 5 is 15 marks)  |



| 6 | The volume of oil in a container is $V  \text{cm}^3$ when the height of the oil is $h  \text{cm}$ .<br>Oil is pouring into the container at a constant rate of $12  \text{cm}^3/\text{s}$ .<br>Given that $V = 3h^3$ |     |  |  |  |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
|   | find the exact rate, in cm/s, at which the height of the oil is increasing when $V = 1536 \text{ cm}^3$                                                                                                              |     |  |  |  |  |
|   |                                                                                                                                                                                                                      | (7) |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |
|   |                                                                                                                                                                                                                      |     |  |  |  |  |

| Question 6 continued              |
|-----------------------------------|
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| (Total for Question 6 is 7 marks) |
|                                   |



7 Two numbers x and y are such that 3x - y = 4

$$S = 5x^3 + y^2$$

(a) Show that  $S = 5x^3 + 9x^2 - 24x + 16$ 

(2)

Given that x can vary,

(b) use calculus to find the value of x for which S is a minimum, justifying that this value of x gives a minimum value of S

(5)

(c) Find the minimum value of S

(2)

| <br> | <br> |
|------|------|
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |

REA

| Question 7 continued |                                   |
|----------------------|-----------------------------------|
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      |                                   |
|                      | (Total for Question 7 is 9 marks) |



8 The sum to n terms of an arithmetic series A is  $S_n$ 

The sum of the first four terms of A is 42 and the fifth term of A is 23

(a) Show that  $S_n = \sum_{r=1}^{n} (Pr - Q)$  where P and Q are prime numbers.

**(6)** 

 $S_{2n} - 3U_n = 1062$  where  $U_n$  is the *n*th term of A

(b) Find the value of n

(4)

| Question 8 continued               |
|------------------------------------|
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
|                                    |
| (Total for Question 8 is 10 marks) |





Figure 2

A logo, AEBCD, is shown shaded in Figure 2.

The straight line *ABC* is the diameter of the semicircle *ADC AEB* is an arc of a circle with centre *O* All angles are measured in radians.

- BC = 2x cm
- OA = OB = x cm
- length of arc AEB = 1.8x cm

The perimeter of the logo is P

(a) Show that  $P = ax(\pi + \pi \sin 0.9 + b)$  where a and b are constants to be found.

**(7)** 

Given that x = 10 cm,

(b) find, in cm<sup>2</sup> to 3 significant figures, the area of the logo.

**(6)** 

DO NOT WRITE IN THIS AREA

| Question 9 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |

| Question 9 continued |                             |
|----------------------|-----------------------------|
|                      |                             |
|                      |                             |
|                      |                             |
|                      |                             |
|                      |                             |
|                      |                             |
|                      |                             |
|                      |                             |
|                      |                             |
|                      |                             |
|                      |                             |
|                      |                             |
|                      |                             |
|                      |                             |
| (Total               | for Question 9 is 13 marks) |
| (1011)               |                             |



10 The roots of a quadratic equation are  $\alpha$  and  $\beta$  where

$$\alpha + \beta = -\frac{5}{2}$$
 and  $\alpha^{3} + \beta^{3} = \frac{115}{8}$ 

(a) Show that  $\alpha\beta = 4$ 

(3)

**(7)** 

(b) Form a quadratic equation with integer coefficients, that has roots

$$\frac{\alpha^2+1}{\beta}$$
 and  $\frac{\beta^2+1}{\alpha}$ 

| <br> |  |
|------|------|------|------|------|------|------|------|------|------|--|
| <br> | <br> | <br> | <br> | <br> | <br> |      | <br> | <br> | <br> |  |







DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

| Question 10 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |

| Question 10 continued |                            |
|-----------------------|----------------------------|
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
|                       |                            |
| (Total fo             | r Question 10 is 10 marks) |
| (Total To             | Yuchon Iv is Iv marks)     |





Figure 3

Figure 3 shows quadrilateral OABC where

$$\overrightarrow{OA} = 4\mathbf{p} + 5\mathbf{q}$$
  $\overrightarrow{OB} = 3\mathbf{p} + \mathbf{q}$   $\overrightarrow{OC} = 2\mathbf{p} - 4\mathbf{q}$ 

The point M is the midpoint of OC

(a) Find  $\overrightarrow{MA}$  as a simplified expression in terms of **p** and **q** 

(3)

The point N lies on OB such that M, N and A are collinear.

(b) Find the ratio MN: NA

**(6)** 

| <br> | ••••• |       | <br> | <br> | <br> | <br>   |
|------|-------|-------|------|------|------|--------|
|      |       |       |      |      |      |        |
| <br> | ••••• | ••••• | <br> | <br> | <br> | •••••• |
| <br> |       |       | <br> | <br> | <br> | <br>   |
|      |       |       |      |      |      |        |
| <br> |       |       | <br> | <br> | <br> | <br>   |

| $\times\!\!\times\!\!\times\!\!\times$                            |
|-------------------------------------------------------------------|
| $\times\!\!\times\!\!\times\!\!\times$                            |
| $\times\!\!\times\!\!\times\!\!\times$                            |
| ****                                                              |
| $\times$                                                          |
| $\times\!\!\times\!\!\times\!\!\times$                            |
| $\times\!\!\times\!\!\times\!\!\times$                            |
|                                                                   |
| X STXX                                                            |
| <b>⊘</b> Mari≪                                                    |
|                                                                   |
| X                                                                 |
| DO NOT WRITE IN THIS AREA                                         |
|                                                                   |
| $\times$ co $\times$                                              |
| ××××                                                              |
|                                                                   |
| ×                                                                 |
| $\times \times \times$                                            |
| $\times$                                                          |
| × <b>z</b> ×                                                      |
| $\times$                                                          |
| $\longleftrightarrow$                                             |
| X                                                                 |
| $\times$                                                          |
| $\leftrightarrow$                                                 |
| $\times$ 0 $\!\!$ C $\!\!\times$                                  |
| $\times = \times \times$                                          |
|                                                                   |
|                                                                   |
| $\times$                                                          |
| $\sim$                                                            |
| $\times$                                                          |
| X <del></del>                                                     |
|                                                                   |
| $\times \approx \times$                                           |
| $\times$                                                          |
| $\sim$                                                            |
| $\times$                                                          |
| $\times\!\!\times\!\!\times\!\!\times$                            |
| $\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$ |
| XXXX                                                              |
| $\times\!\!\times\!\!\times\!\!\times$                            |
| $\times\!\!\times\!\!\times\!\!\times$                            |
| $\times\!\!\times\!\!\times\!\!\times$                            |
| $\times\!\!\times\!\!\times\!\!\times$                            |
|                                                                   |
| $\times\!\!\times\!\!\times\!\!\times$                            |
| $\times\!\!\times\!\!\times\!\!\times$                            |
| ****                                                              |
| $\times\!\!\times\!\!\times\!\!\times$                            |
| XXXXX                                                             |
| $\times\!\!\times\!\!\times\!\!\times$                            |
| ****                                                              |
| $\times$                                                          |
| XXXXX                                                             |
| $\times\!\!\times\!\!\times\!\!\times$                            |
| THIS AREA                                                         |
|                                                                   |
|                                                                   |
| $\times \times \times \times$                                     |
| $\times$                                                          |
|                                                                   |
| $\longleftrightarrow$                                             |
| $\times$ co $\times$                                              |
| X <del>24</del> XX                                                |
| $\sim \sim$                                                       |
|                                                                   |
| $\times \times \times$                                            |
| $\times\times\times$                                              |
|                                                                   |
|                                                                   |
|                                                                   |
|                                                                   |
| <u>K</u>                                                          |
|                                                                   |
| ITEIN                                                             |
| RITEIN                                                            |
| RITEIN                                                            |
| WRITEIN                                                           |
| WRITEIN                                                           |
| F WRITE IN                                                        |
| OT WRITE IN                                                       |
| OT WRITE IN                                                       |
| VOT WRITE IN                                                      |
| NOT WRITE IN                                                      |
| NOT WRITE IN                                                      |
| O NOT WRITE IN                                                    |
| OO NOT WRITE IN                                                   |
| DO NOT WRITE IN                                                   |
| A DO NOT WRITE IN                                                 |
| EA DO NOT WRITE IN                                                |
| TEA DO NOT WRITE IN                                               |
| REA DO NOT WRITE IN                                               |
| REA DOI                                                           |
| AREA DO NOT WRITE IN                                              |
| AREA DOI                                                          |
| REA DOI                                                           |
| AREA DOI                                                          |
| AREA DOI                                                          |
| AREA DOI                                                          |
| AREA DOI                                                          |
| AREA DOI                                                          |
| AREA DOI                                                          |
| IN THIS AREA DO I                                                 |
| E IN THIS AREA DO I                                               |
| IN THIS AREA DO I                                                 |
| E IN THIS AREA DO I                                               |
| RITE IN THIS AREA DO I                                            |
| E IN THIS AREA DO I                                               |
| RITE IN THIS AREA DO I                                            |
| RITE IN THIS AREA DO I                                            |
| RITE IN THIS AREA DO I                                            |
| RITE IN THIS AREA DO I                                            |
| RITE IN THIS AREA DO I                                            |
| RITE IN THIS AREA DO I                                            |
| IOT WRITE IN THIS AREA DO I                                       |
| IOT WRITE IN THIS AREA DO I                                       |
| IOT WRITE IN THIS AREA DO I                                       |
| IOT WRITE IN THIS AREA DO I                                       |
| IOT WRITE IN THIS AREA DO I                                       |
| IOT WRITE IN THIS AREA DO I                                       |
| IOT WRITE IN THIS AREA DO I                                       |
| IOT WRITE IN THIS AREA DO I                                       |
| IOT WRITE IN THIS AREA DO I                                       |
| IOT WRITE IN THIS AREA DO I                                       |
| IOT WRITE IN THIS AREA DO I                                       |
| IOT WRITE IN THIS AREA DO I                                       |

| Question 11 continued |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

| uestion 11 continued |                                    |
|----------------------|------------------------------------|
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      |                                    |
|                      | (Total for Question 11 is 9 marks) |
|                      | TOTAL FOR PAPER IS 100 MARKS       |

