

Problem BinSearch

Input file stdin
Output file stdout

```
bool binary_search(int n, int p[], int target){
   int left = 1, right = n;
   while(left < right){
      int mid = (left + right) / 2;
      if(p[mid] == target)
           return true;
      else if(p[mid] < target)
           left = mid + 1;
      else
           right = mid - 1;
   }
   if(p[left] == target) return true;
   else return false;
}</pre>
```

Είναι γνωστό ότι εάν ο p τυχαίνει να είναι ταξινομημένος, τότε αυτός ο κώδικας επιστρέφει true εάν και μόνο εάν το target εμφανίζεται εντός του p. Από την άλλη, αυτό μπορεί να μην ισχύει εάν ο p δεν έχει ταξινομηθεί.

Σας δίνεται ένας θετικός ακέφαιος αφιθμός n και μια ακολουθία $b_1, \ldots, b_n \in \{\text{true}, \text{false}\}$. Είναι εγγυημένο ότι $n = 2^k - 1$ για κάποιο θετικό ακέφαιο k.

Πρέπει να δημιουργήσετε μια μετάθεση p του $\{1,\ldots,n\}$ που ικανοποιεί συγκεκριμένες συνθήκες. Έστω S(p) ο αριθμός των δεικτών $i\in\{1,\ldots,n\}$ για τους οποίους η συνάρτηση binary_search(η, p, i) δεν επιστρέφει το b_i . Πρέπει να ορίσετε το p έτσι ώστε το S(p) να είναι μικρό (όπως περιγράφεται στην ενότητα "Restrictions").

(Σημείωση: μια μετάθεση του $\{1,\ldots,n\}$ είναι μια ακολουθία n ακεραίων που περιέχει κάθε ακέραιο από το 1 έως το n ακριβώς μία φορά.)

Input data

Η είσοδος περιέχει πολλαπλά test case. Η πρώτη γραμμή εισαγωγής περιέχει το T, τον αριθμό των test cases. Ακολουθούν τα test cases.

Η πρώτη γραμμή ενός test case περιέχει τον ακέραιο αριθμό n. Η δεύτερη γραμμή ενός test case περιέχει μια συμβολοσειρά μήκους n που περιέχει μόνο τους χαρακτήρες "0" και "1". Αυτοί οι χαρακτήρες δεν χωρίζονται με κενά. Εάν ο i-οστός χαρακτήρας είναι "1", τότε b_i = true, και αν είναι "0", τότε b_i = false.

Output data

Τα δεδομένα εξόδου αποτελούνται από τις απαντήσεις για κάθε ένα από τα T test cases. Η απάντηση για ένα test case αποτελείται από τη μετάθεση p που δημιουργήθηκε για το test case.

Restrictions

- Έστω $\sum n$ είναι το άθροισμα όλων των τιμών n σε μία μόνο είσοδο.
- $1 \le \sum n \le 100\,000$.
- $1 \le T \le 7000$.
- $n = 2^k 1$ για κάποιο $k \in \mathbb{N}, k > 0$.
- Εάν $S(p) \le 1$ για όλα τα test cases σε ένα subtask, τότε βαθμολογείστε με 100% των πόντων για αυτό το subtask.
- Αλλιώς, εάν $0 \le S(p) \le \lceil \log_2 n \rceil$ (δηλαδή $1 \le 2^{S(p)} \le n+1$) για όλα τα test cases σε ένα subtask, τότε βαθμολογείστε με 50% των πόντων για αυτό το subtask.

#	Points	Restrictions
1	3	$b_i = exttt{true}.$
2	4	$b_i = { t false}.$
3	16	$1 \le n \le 7$.
4	25	$1 \le n \le 15.$
5	22	$n=2^{16}-1$ και κάθε b_i επιλέγεται ομοιόμορφα και ανεξάρτητα τυχαία από το σύνολο $\{ { m true},$
6	30	Χωρίς πρόσθετους περιορισμούς.

Examples

Input file	Output file
4	1 2 3
3	1 2 3 4 5 6 7
111	3 2 1
7	7 6 5 4 3 2 1
1111111	
3	
000	
7	
00000000	
2	3 2 1
3	7 3 1 5 2 4 6
010	
7	
0010110	

Explanations

Παράδειγμα 1 Στα δύο πρώτα test cases του πρώτου παραδείγματος έχουμε S(p) = 0.

Στο τρίτο test case, έχουμε S(p)=1, καθώς n συνάρτηση binary_search(n, p, 2) επιστρέφει true, αν και $b_2=$ false.

Στο τέταςτο test case, έχουμε S(p)=1, καθώς n συνάςτηση binary_search(n, p, 4) επιστςέφει true, αν και $b_4=$ false.

Παράδειγμα 2. Έχουμε S(p)=0 και για τα δύο test cases.