Projeção Ortográfica

Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

24 de novembro de 2006

Esta projeção é usada para fazer desenhos de objetos tridimensionais no papel ou na tela do computador. Com esta projeção os pontos no espaço são projetados ortogonalmente ao plano do desenho.

Para encontrar a projeção de um ponto P podemos encontrar as coordenadas de P em relação ao sistema $S' = \{O', U_1, U_2, U_3\}$ e tomar as duas primeiras coordenadas.

Como a projeção em qualquer plano paralelo ao plano do desenho fornece as mesmas coordenadas podemos supor que O' = O, ou seja, que os dois sistemas têm a mesma origem.

A relação entre as coordenadas de um ponto nos dois sistemas

$$S' = \{O, U_1, U_2, U_3\}$$
 e $S = \{O, \vec{i}, \vec{j}, \vec{k}\}$

é dada por

$$X' = Q^t X$$
, em que $Q = [U_1 U_2 U_3]$

Vamos encontrar os vetores U_1 , U_2 e U_3 em função dos ângulos θ e ϕ . O vetor U_1 é paralelo ao plano xy e é perpendicular ao vetor ($\cos \theta$, $\sin \theta$, 0), ou seja,

$$U_1 = (-\sin\theta, \cos\theta, 0).$$

Os vetores U_2 e U_3 estão no plano definido por \vec{k} e $(\cos \theta, \sin \theta, 0)$.

$$U_2 = -\cos\phi(\cos\theta, \sin\theta, 0) + \sin\phi\vec{k} = (-\cos\phi\cos\theta, -\cos\phi\sin\theta, \sin\phi)$$

$$U_3 = \cos\phi\vec{k} + \sin\phi(\cos\theta, \sin\theta, 0) = (\sin\phi\cos\theta, \sin\phi\sin\theta, \cos\phi)$$

Figura 1: Projeção ortográfica de um cubo

Figura 2: sistemas de coordenadas relacionados à projeção ortográfica

Figura 3: Bases relacionadas à projeção ortográfica

Figura 4: Relação entre os vetores das bases $\{U_1,U_2,U_3\}$ e $\{\vec{i},\vec{j},\vec{k}\}$

Assim a relação entre as coordenadas de um ponto nos dois sistemas

$$S' = \{O, U_1, U_2, U_3\}$$
 e $S = \{O, \vec{i}, \vec{j}, \vec{k}\}$

é dada por

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -\sin\theta & \cos\theta & 0 \\ -\cos\phi\cos\theta & -\cos\phi\sin\theta & \sin\phi \\ \sin\phi\cos\theta & \sin\phi\sin\theta & \cos\phi \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

e a projeção é dada por

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -\sin\theta & \cos\theta & 0 \\ -\cos\phi\cos\theta & -\cos\phi\sin\theta & \sin\phi \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

Por exemplo para $\theta = 30^{\circ}$ e $\phi = 60^{\circ}$ temos que

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{4} & -\frac{1}{4} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \approx \begin{bmatrix} -0.5 & 0.87 & 0 \\ -0.4 & -0.25 & 0.87 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

Usando esta projeção os vetores $\vec{i},\,\vec{j}$ e \vec{k} são desenhados como na figura abaixo.

Experimente desenhar o cubo que tem a origem O = (0,0,0) como um dos vértices e como vértices adjacentes à origem (1,0,0), (0,1,0) e (0,0,1). Observe que não é necessário calcular a projeção dos outros pontos (por que?)

No endereço http://www.mat.ufmg.br/~regi/zul/projortograf.html estão algumas páginas interativas que ilustram o que foi exposto aqui.

Figura 5: Vetores $\vec{i},\; \vec{j}$ e \vec{k} desenhados usando projeção ortográfica