Code: 9A05407

B.Tech II Year II Semester (R09) Supplementary Examinations December/January 2015/2016

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science & Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE questions
All questions carry equal marks

- 1 (a) Define string and Alphabet. Discuss the operations on string.
 - (b) Define language. Discuss its operations.
- The Moore machine to determine residue mod 3 for binary number is given below convert into equivalent Mealy machine.

Q^{Σ}	0	1	Output (λ)
qo	q_0	q ₁	0
q ₁	q ₂	q_0	1
q ₂	q ₁	q_2	2

- 3 Use closure operations to show that the following language is not regular: $L = \{x \in \{a,b,c\}^* | \text{ the middle symbol of } x \text{ is b; and } x \text{ is of odd-length} \}.$
- 4 Construct regular grammar for following languages:
 - (a) $\{a^{2n}|n\geq 1\}$.
 - (b) $\{(ab)^n | n \ge 1\}.$
 - (c) The set of all strings over {a,b} ending in a.
- 5 (a) Show that CFL's are closed under Kleene closure operation.
 - (b) Check whether the following grammar is ambiguous or not. Provide at least two examples to support your answer.

 $S \rightarrow AB / aaB$

 $A \rightarrow a/Aa$

 $B \rightarrow b$

- 6 (a) Define PDA. Design a PDA for $L = \{xcx^r / x \in \{a,b\}^*\}$. Process the string abbacabba. Note: x^r stands for reverse of the string x.
 - (b) What do you mean by an instantaneous description of a PDA? Explain with example
- Design a TM for recognizing $L = \{ xx / x \in \{a, b\}^* \}$. Show the moves of the TM for the strings abaaba and abaabb.
- 8 (a) Explain in detail about PCP and MPCP.
 - (b) Write about Universal Turing Machine.
