BCC_Prediction

Dipanta

2023-08-24

Problem Statement

We got the dataset of a U.S. bank customer for getting the information that, this particular customer will leave bank or not. Bases upon independent feature we have to predict the customer will exited or not.

Importing Libraries

```
library(tidyverse)
library(corrplot)
library(cowplot)
library(caret)
library(tibble)
library(car)
library(caTools)
library(knitr)
library(e1071)
library(randomForest)
library(xgboost)
```

Preprocessing

```
df = read.csv("Churn_Modelling.csv")
head(df)
```

```
RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
                                                                             2
## 1
                  15634602 Hargrave
                                             619
                                                    France Female 42
             1
## 2
             2
                  15647311
                               Hill
                                             608
                                                      Spain Female
                                                                    41
                                                                             1
                                                                             8
## 3
             3
                 15619304
                               Onio
                                             502
                                                    France Female
             4
                  15701354
                               Boni
                                             699
                                                    France Female
                                                                    39
                                                                             1
                                             850
                                                                             2
## 5
             5
                  15737888 Mitchell
                                                      Spain Female
                                                                    43
## 6
             6
                  15574012
                                Chu
                                             645
                                                      Spain
                                                                    44
                                                              Male
       Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
##
          0.00
                            1
                                                       1
                                                               101348.88
## 1
                                       1
                                                                               1
                                       0
## 2
      83807.86
                            1
                                                       1
                                                               112542.58
                                                                               0
```

```
## 3 159660.80
                                                               113931.57
## 4
          0.00
                            2
                                                                               0
                                                       0
                                                                93826.63
## 5 125510.82
                            1
                                       1
                                                       1
                                                                79084.10
                                                                               0
## 6 113755.78
                            2
                                       1
                                                       0
                                                               149756.71
                                                                               1
```

summary(df)

```
##
      RowNumber
                      CustomerId
                                         Surname
                                                           CreditScore
                           :15565701
##
         : 1
                    Min.
                                       Length: 10000
                                                          Min.
                                                                 :350.0
   1st Qu.: 2501
                    1st Qu.:15628528
                                       Class : character
                                                          1st Qu.:584.0
  Median: 5000
                   Median :15690738
                                       Mode :character
                                                          Median :652.0
## Mean
         : 5000
                   Mean
                           :15690941
                                                          Mean
                                                                 :650.5
##
   3rd Qu.: 7500
                    3rd Qu.:15753234
                                                          3rd Qu.:718.0
  Max.
          :10000
                   Max.
                           :15815690
                                                          Max.
                                                                 :850.0
##
    Geography
                          Gender
                                                              Tenure
                                               Age
   Length:10000
                       Length: 10000
                                          Min.
                                                :18.00
                                                          Min.
                                                                 : 0.000
   Class : character
                       Class :character
                                          1st Qu.:32.00
                                                          1st Qu.: 3.000
   Mode :character
                      Mode :character
                                          Median :37.00
                                                          Median : 5.000
##
                                                :38.92
                                          Mean
                                                          Mean
                                                                 : 5.013
                                                          3rd Qu.: 7.000
##
                                          3rd Qu.:44.00
##
                                          Max.
                                                :92.00
                                                          Max.
                                                                :10.000
##
       Balance
                     NumOfProducts
                                      HasCrCard
                                                     IsActiveMember
##
                     Min.
                           :1.00
                                           :0.0000
                                                     Min.
                                                            :0.0000
   Min.
         :
                                    Min.
##
   1st Qu.:
                0
                     1st Qu.:1.00
                                    1st Qu.:0.0000
                                                     1st Qu.:0.0000
                     Median :1.00
                                                     Median :1.0000
   Median : 97199
                                    Median :1.0000
  Mean
          : 76486
                     Mean
                           :1.53
                                    Mean
                                           :0.7055
                                                     Mean
                                                           :0.5151
##
   3rd Qu.:127644
                     3rd Qu.:2.00
                                    3rd Qu.:1.0000
                                                     3rd Qu.:1.0000
## Max.
           :250898
                           :4.00
                                          :1.0000
                                                     Max. :1.0000
                     Max.
                                    Max.
  EstimatedSalary
                            Exited
## Min.
         :
               11.58
                       Min.
                              :0.0000
## 1st Qu.: 51002.11
                       1st Qu.:0.0000
## Median :100193.91
                       Median :0.0000
          :100090.24
                        Mean
                             :0.2037
## 3rd Qu.:149388.25
                        3rd Qu.:0.0000
## Max.
          :199992.48
                              :1.0000
                       Max.
```

- There is no missing value.
- Exited is our dependent variable.

```
##
                            Column Correlation
## Age
                               Age 28.5323038
                                    11.8532769
## Balance
                           Balance
## EstimatedSalary EstimatedSalary
                                     1.2096861
## CustomerId
                        CustomerId
                                    -0.6247987
## HasCrCard
                         HasCrCard -0.7137766
## Tenure
                            Tenure -1.4000612
## RowNumber
                                    -1.6571371
                         RowNumber
## CreditScore
                       CreditScore
                                    -2.7093540
## NumOfProducts
                     NumOfProducts -4.7819865
## IsActiveMember
                    IsActiveMember -15.6128278
```

- IsActiveMember is has deep -ve correlation with a customer leaving (obvious). ie. Active/Regular customers are highly unlikely to leave.
- Age has a mild correlation with Exited. People with more age are likely to leave.
- Mild +ve correlation is observed for Balanced as well.

```
# Calculate correlations
cor_matrix = cor(df[, sapply(df, is.numeric)])
# Create a correlation heatmap
corrplot(cor_matrix, method = "color", tl.col = "black", tl.srt = 45)
```


head(df)

```
RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure
## 1
        1
              15634602 Hargrave
                                619 France Female 42
                                    608
## 2
          2
              15647311
                         Hill
                                          Spain Female 41
                                                             1
## 3
         3 15619304
                         Onio
                                  502 France Female 42
                                                             8
## 4
         4 15701354
                         Boni
                                  699 France Female 39
         5 15737888 Mitchell
                                    850
## 5
                                                             2
                                          Spain Female 43
## 6
          6 15574012
                      Chu
                                    645
                                           Spain Male 44
##
     Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
## 1
        0.00
                                                 101348.88
                     1
                             1
                                          1
## 2 83807.86
                      1
                               0
                                           1
                                                 112542.58
                                                               0
## 3 159660.80
                      3
                              1
                                           0
                                                 113931.57
                                                               1
                     2
## 4
        0.00
                              0
                                          0
                                                  93826.63
                                                               0
## 5 125510.82
                     1
                               1
                                          1
                                                  79084.10
                                                               0
                                          0 149756.71
## 6 113755.78
                      2
                               1
                                                               1
```

Checking data imbalance

Groups: Gender [2]

<chr>

1 Female ## 2 Female

3 Male

4 Male

##

Gender HasCrCard count

<int> <int> 0 1351

1 3192

0 1594 1 3863

```
# Group by Gender and calculate max credit score
max_credit_by_gender <- df %>%
  group_by(Gender) %>%
  summarize(max_credit = max(CreditScore))
print(max_credit_by_gender)
## # A tibble: 2 x 2
##
    Gender max_credit
##
     <chr>
                <int>
## 1 Female
                  850
## 2 Male
                   850
# Group by Gender and HasCrCard, then count the occurrences
card_counts_by_gender <- df %>%
  group_by(Gender, HasCrCard) %>%
 summarize(count = n())
## 'summarise()' has grouped output by 'Gender'. You can override using the
## '.groups' argument.
print(card_counts_by_gender)
## # A tibble: 4 x 3
```

```
# Create a bar plot
ggplot(card_counts_by_gender, aes(x = factor(HasCrCard), y = count, fill = factor(Gender))) +
geom_bar(stat = "identity", position = "dodge") +
labs(x = "Has Credit Card", y = "Count", fill = "Gender") +
scale_fill_discrete(name = "Gender") +
theme_minimal() +
theme(legend.position = "top")
```



```
# Gender Vs Credit_score
ggplot(df, aes(x = factor(Gender), y = CreditScore)) +
geom_boxplot(fill = "red", outlier.shape = NA) +
labs(x = "Gender", y = "Credit Score") +
theme_minimal()
```



```
# Has_credit vs Age
ggplot(df, aes(x = factor(HasCrCard), y = Age)) +
  geom_boxplot(fill = "blue", outlier.shape = NA) +
  labs(x = "Has Credit Card", y = "Age") +
  theme_minimal()
```


Label Encoding

```
# Create label encoding dictionaries
gender_labels = c("Female" = 0, "Male" = 1)
geography_labels = c("France" = 0, "Germany" = 1, "Spain" = 2)

# Apply label encoding to the Gender column
df$Gender = gender_labels[df$Gender]

# Apply label encoding to the Geography column
df$Geography = geography_labels[df$Geography]
```

Feature selection

```
# Remove specified columns
columns_to_remove = c("RowNumber", "CustomerId", "Surname")
df = df[, !(names(df) %in% columns_to_remove)]
```

Checking VIF

```
selected_vars <- c("CreditScore", "Gender", "Age", "Tenure", "Balance", "HasCrCard", "IsActiveMember",</pre>
model <- lm(df$Exited ~ ., data = df[, selected_vars])</pre>
# Calculate VIF
vif values <- vif(model)</pre>
print(vif_values)
       CreditScore
                            Gender
                                                                            Balance
##
                                                Age
                                                             Tenure
                                                           1.001823
##
          1.000841
                         1.001927
                                          1.009790
                                                                           1.006468
         HasCrCard IsActiveMember EstimatedSalary
##
                                                          Geography
          1.001169
                                                           1.005469
                         1.009901
                                          1.000570
Split The Data set
set.seed(123)
split = sample.split(df$Exited, SplitRatio = 0.8)
training_set = df[split, ]
test_set = df[!split, ]
# Feature Scaling
training set[-11] = scale(training set[-11])
test_set[-11] = scale(test_set[-11])
Model Building
```

 $Logistic\ Regression$

```
# Fitting Logistic Regression to the Training set
classifier1 = glm(formula = Exited ~ .,
                family = binomial,
                data = training_set)
# Predicting the Test set results
prob_pred = predict(classifier1, type = 'response', newdata = test_set[-11])
y_pred = ifelse(prob_pred > 0.5, 1, 0)
# Making the Confusion Matrix
conf_matrix1 = table(test_set[, 11], y_pred > 0.5)
print(conf_matrix1)
##
##
     FALSE TRUE
   0 1547 46
## 1 326
              81
```

Evalution matrics

```
# Calculate evaluation metrics
accuracy <- sum(diag(conf_matrix1)) / sum(conf_matrix1)</pre>
precision <- conf_matrix1[2, 2] / sum(conf_matrix1[, 2])</pre>
recall <- conf_matrix1[2, 2] / sum(conf_matrix1[2, ])</pre>
f1_score <- 2 * (precision * recall) / (precision + recall)</pre>
# Create a data frame for the metrics
metrics_df <- data.frame(</pre>
 Metric = c("Precision", "Recall", "F1 Score", "Accuracy"),
  Value = c(precision, recall, f1_score, accuracy)
# Print the metrics table
kable(metrics_df, format = "html", caption = "Evaluation Metrics for log_reg")
Evaluation Metrics for log_reg
Metric
Value
Precision
0.6377953
Recall
0.1990172
F1 Score
0.3033708
Accuracy
0.8140000
SVM
# Fitting SVM to the Training set
classifier2 = svm(formula = Exited ~ .,
                  data = training_set,
                  type = 'C-classification',
                 kernel = 'linear')
# Predicting the Test set results
y_pred = predict(classifier2, newdata = test_set[-11])
# Making the Confusion Matrix
conf_matrix2 = table(test_set[, 11], y_pred)
print(conf_matrix2)
##
      y_pred
##
          0
               1
##
     0 1593
               0
   1 407
##
               0
```

```
Naive\_bayes
```

Evalution matrics

1 305 102

##

```
# Calculate evaluation metrics
accuracy <- sum(diag(conf_matrix3)) / sum(conf_matrix3)
precision <- conf_matrix3[2, 2] / (conf_matrix3[2, 2] + conf_matrix3[1, 2])
recall <- conf_matrix3[2, 2] / sum(conf_matrix3[2, ])
f1_score <- 2 * (precision * recall) / (precision + recall)

# Create a data frame for the metrics
metrics_df <- data.frame(
    Metric = c("Precision", "Recall", "F1 Score", "Accuracy"),
    Value = c(precision, recall, f1_score, accuracy)
)

# Print the metrics table
kable(metrics_df, format = "html", caption = "Evaluation Metrics for Naive_Baiyes")</pre>
```

Evaluation Metrics for Naive_Baiyes

Metric

Value

Precision

0.7968750

Recall

0.2506143

F1 Score

0.3813084

Accuracy

0.8345000

XGBoost

```
# Fitting XGBoost to the Training set
classifier5 = xgboost(data = as.matrix(training_set[-11]), label = training_set$Exited, nrounds = 10)
## [1] train-rmse:0.419544
## [2] train-rmse:0.372652
## [3] train-rmse:0.344824
## [4] train-rmse:0.329253
## [5] train-rmse:0.318175
## [6] train-rmse:0.311981
## [7] train-rmse:0.308010
## [8] train-rmse:0.305611
## [9] train-rmse:0.303503
## [10] train-rmse:0.301551
# Predicting the Test set results
y_pred = predict(classifier5, newdata = as.matrix(test_set[-11]))
y_pred = (y_pred >= 0.5)
# Making the Confusion Matrix
conf_matrix5 = table(test_set[, 11], y_pred)
print(conf_matrix5)
##
     y_pred
##
      FALSE TRUE
##
     0 1531
              62
##
        208 199
```

Evalution matrics

```
# Calculate evaluation metrics
accuracy <- sum(diag(conf_matrix5)) / sum(conf_matrix5)
precision <- conf_matrix5[2, 2] / (conf_matrix5[2, 2] + conf_matrix5[1, 2])
recall <- conf_matrix5[2, 2] / sum(conf_matrix5[2, ])
f1_score <- 2 * (precision * recall) / (precision + recall)

# Create a data frame for the metrics
metrics_df <- data.frame(
    Metric = c("Precision", "Recall", "F1 Score", "Accuracy"),
    Value = c(precision, recall, f1_score, accuracy)
)

# Print the metrics table
kable(metrics_df, format = "html", caption = "Evaluation Metrics for Random forest")</pre>
```

Evaluation Metrics for Random forest

Metric

Value

```
Precision
0.7624521
Recall
0.4889435
F1 Score
0.5958084
Accuracy
0.8650000
# Applying k-Fold Cross Validation
folds = createFolds(df$Exited, k = 10)
cv = lapply(folds, function(x) {
 training_fold = df[-x, ]
 test fold = df[x,]
  classifier = xgboost(data = as.matrix(training_fold[-11]), label = training_fold$Exited, nrounds = 10
 y_pred = predict(classifier, newdata = as.matrix(test_fold[-11]))
 y_pred = (y_pred >= 0.5)
  cm = table(test_fold[, 11], y_pred)
 accuracy = (cm[1,1] + cm[2,2]) / (cm[1,1] + cm[2,2] + cm[1,2] + cm[2,1])
  return(accuracy)
})
## [1]
       train-rmse:0.418302
## [2]
       train-rmse:0.370219
## [3]
       train-rmse:0.342841
## [4]
       train-rmse:0.327062
## [5]
       train-rmse:0.317398
## [6]
       train-rmse:0.311022
## [7]
       train-rmse:0.306601
## [8]
       train-rmse:0.304373
## [9]
       train-rmse:0.301942
## [10] train-rmse:0.298806
## [1]
       train-rmse:0.418300
## [2]
       train-rmse:0.370277
## [3]
       train-rmse:0.342184
## [4]
       train-rmse:0.326322
## [5]
       train-rmse:0.317118
## [6]
       train-rmse:0.310666
## [7]
       train-rmse:0.306873
## [8]
       train-rmse:0.303867
## [9]
       train-rmse:0.300304
## [10] train-rmse:0.298492
## [1]
       train-rmse: 0.419538
## [2]
       train-rmse:0.372041
## [3]
       train-rmse:0.345068
## [4]
       train-rmse:0.329329
## [5]
       train-rmse:0.320171
```

[6]

train-rmse: 0.314364

[7] train-rmse:0.309129

```
[8]
        train-rmse:0.305668
        train-rmse: 0.303183
   [9]
   [10] train-rmse:0.300869
##
   [1]
        train-rmse:0.418897
##
   [2]
        train-rmse:0.371622
##
   [3]
        train-rmse:0.344170
   [4]
        train-rmse:0.329286
##
   [5]
        train-rmse: 0.320223
##
   [6]
        train-rmse: 0.313573
##
   [7]
        train-rmse: 0.309450
   [8]
        train-rmse: 0.306447
##
   [9]
        train-rmse: 0.304177
##
   [10]
        train-rmse:0.302097
        train-rmse: 0.418626
##
   [1]
##
   [2]
        train-rmse: 0.371110
##
   [3]
        train-rmse: 0.343417
##
   [4]
        train-rmse: 0.327903
##
   [5]
        train-rmse: 0.318374
   [6]
##
        train-rmse:0.311983
##
   [7]
        train-rmse:0.308026
##
   [8]
        train-rmse: 0.305182
   [9]
        train-rmse:0.302209
##
   [10] train-rmse:0.299338
        train-rmse: 0.418375
##
   [1]
##
   [2]
        train-rmse:0.370270
   [3]
        train-rmse: 0.343276
##
   [4]
        train-rmse: 0.328045
##
   [5]
        train-rmse: 0.317545
##
   [6]
        train-rmse: 0.311344
##
   [7]
        train-rmse: 0.307834
##
   [8]
        train-rmse: 0.305095
##
   [9]
        train-rmse: 0.302895
   [10] train-rmse:0.301189
##
   [1]
        train-rmse: 0.418001
##
   [2]
        train-rmse: 0.370064
##
   [3]
        train-rmse:0.342488
##
   [4]
        train-rmse: 0.327542
##
   [5]
        train-rmse: 0.317576
##
   [6]
        train-rmse:0.311102
##
   [7]
        train-rmse:0.306406
   [8]
        train-rmse:0.301882
##
   [9]
        train-rmse: 0.300026
   Γ10]
        train-rmse: 0.298625
##
   [1]
        train-rmse: 0.419506
   [2]
        train-rmse: 0.372092
   [3]
##
        train-rmse: 0.345222
##
   [4]
        train-rmse:0.327999
##
   [5]
        train-rmse: 0.318880
        train-rmse:0.312934
##
   [6]
##
   [7]
        train-rmse: 0.307536
##
   [8]
        train-rmse: 0.304414
   [9]
        train-rmse: 0.302761
## [10] train-rmse:0.300425
## [1]
       train-rmse:0.418878
```

```
## [2] train-rmse:0.371200
## [3]
       train-rmse:0.343088
## [4]
       train-rmse:0.327924
## [5]
       train-rmse:0.317874
## [6]
       train-rmse:0.312930
## [7]
       train-rmse:0.307719
## [8]
       train-rmse:0.305396
## [9]
       train-rmse:0.301979
## [10] train-rmse:0.300018
## [1]
       train-rmse:0.419283
## [2]
       train-rmse:0.371922
## [3]
       train-rmse:0.345234
## [4]
       train-rmse:0.330544
## [5]
       train-rmse:0.319466
## [6]
       train-rmse:0.312206
## [7]
       train-rmse: 0.308465
## [8]
       train-rmse:0.304685
## [9]
       train-rmse:0.302070
## [10] train-rmse:0.300406
accuracy = mean(as.numeric(cv))
print(accuracy)
## [1] 0.8592
Random Forest
training_set$Exited <- factor(training_set$Exited, levels = c(0, 1))
test_set$Exited <- factor(test_set$Exited, levels = c(0, 1))</pre>
# Fitting Random Forest Classification to the Training set
set.seed(123)
classifier4 = randomForest(x = training_set[-11],
                          y = training_set$Exited,
                          ntree = 50)
# Predicting the Test set results
y_pred = predict(classifier4, newdata = test_set[-11])
# Making the Confusion Matrix
conf_matrix4 = table(test_set[, 11], y_pred)
print(conf_matrix4)
##
      y_pred
##
               1
##
              55
     0 1538
     1 207
             200
```

Evalution matrics

```
# Calculate evaluation metrics
accuracy <- sum(diag(conf_matrix4)) / sum(conf_matrix4)
precision <- conf_matrix4[2, 2] / (conf_matrix4[2, 2] + conf_matrix4[1, 2])
recall <- conf_matrix4[2, 2] / sum(conf_matrix4[2, ])
f1_score <- 2 * (precision * recall) / (precision + recall)

# Create a data frame for the metrics
metrics_df <- data.frame(
    Metric = c("Precision", "Recall", "F1 Score", "Accuracy"),
    Value = c(precision, recall, f1_score, accuracy)
)

# Print the metrics table
kable(metrics_df, format = "html", caption = "Evaluation Metrics for Random forest")</pre>
```

Evaluation Metrics for Random forest

Metric

Value

Precision

0.7843137

Recall

0.4914005

F1 Score

0.6042296

Accuracy

0.8690000

Conclusion

• After using the models we conclude that XGBoost and RandomForest are the best model for the problem.