Package 'MBttest'

February 3, 2018

Type Package

Version 1.7.1

Title Multiple Beta t-Tests

Date 2015-01-04							
Author Yuan-De Tan							
Maintainer Yuan-De Tan <tanyuande@gmail.com></tanyuande@gmail.com>							
Description MBttest method was developed from beta t-test method of Baggerly et al(2003). Compared to baySeq (Hard castle and Kelly 2010), DESeq (Anders and Huber 2010) and exact test (Robinson and Smyth 2007, 2008) and the GLM of McCarthy et al(2012), MBttest is of high work efficiency,that is, it has high power, high conservativeness of FDR estimation and high stability. MBttest is suit- able to transcriptomic data, tag data, SAGE data (count data) from small samples or a few replicate libraries. It can be used to identify genes, mRNA isoforms or tags differentially expressed between two conditions.							
License GPL-3							
Depends R (>= 3.3.0), stats, gplots, gtools,graphics,base, utils,grDevices							
Suggests BiocStyle, BiocGenerics							
LazyLoad yes							
biocViews Sequencing, DifferentialExpression, MultipleComparison, SAGE, GeneExpression, Transcription, AlternativeSplicing,Coverage, DifferentialSplicing							
NeedsCompilation no							
PackageStatus Deprecated							
R topics documented:							
MBttest-package 2 betaparametab 3 betaparametVP 4 betaparametw 5 betattest 6 dat 7							
1							

2 MBttest-package

	jkttcell		 																		 	8
	maplot																					
	mbetattest		 																		 	10
	mtprocedure .		 																		 	12
	mtpvadjust		 																		 	13
	myheatmap .		 																		 	14
	oddratio		 																		 	16
	pratio		 																		 	17
	simulat		 																		 	18
	skjt		 																		 	19
	smbetattest .																					
Index																						22
	est-package		Μι	ılt	ipl	'e i	Вe	ta	t-1	tes	ts											

Description

This package is used to perform multiple beta t-test analyses of real data and gives heatmap of differential expressions of genes or differential splicings. The results listing geneid or isoformid, gene name, the other information, t-value, p-value, adjusted p-value, adjusted alpha value, rho, and symb are saved in csv file.

Details

Package: MBttest Type: Package Version: 1.0

Date: 2015-01-02 License: GPL-3

Author(s)

Yuan-De Tan

Maintainer: Yuan-De Tan <tanyuande@gmail.com>

References

Baggerly KA, Deng L, Morris JS, Aldaz CM (2003) Differential expression in SAGE: accounting for normal between-library variation. *Bioinformatics*, **19**: 1477-1483. \ Yuan-De Tan Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*, 10.1371/journal.pone.0123658.

See Also

betaparametab, betaparametVP, betaparametw, betattest, mbetattest, maplot, myheatmap, oddratio, pratio, simulat, smbetattest, mtprocedure, mtpvadjust

betaparametab 3

Examples

```
data(jkttcell)
mbetattest(X=jkttcell[1:500,],na=3,nb=3,W=1,alpha=0.05,file="jurkat_NS_48h_tag_mbetattest.csv")
```

betaparametab

Estimation of Beta Parameters alpha and beta

Description

parameters alpha(a) and beta (b) in beta distribution are estimated by using an iteration algorithm.

Usage

```
betaparametab(xn, w, P, V)
```

Arguments

xn column vector, a set of library sizes.w column vector, a set of weights

P proportion of counts of a gene or an isoform

V variance for proportions of counts of a gene or an isoform over m replicate

libraries in a condition

Value

return parameters a and b.

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

References

Baggerly KA, Deng L, Morris JS, Aldaz CM (2003) Differential expression in SAGE: accounting for normal between-library variation. *Bioinformatics* **19**: 1477-1483.

See Also

betaparametVP, betaparametw

Examples

```
 \begin{array}{l} XX < -c(2000,2000,2000) \\ p < -0.15 \\ V = 0.004 \\ w < -c(0.3,0.3,0.3) \\ betaparametab(xn=XX,w=w,P=p,V=V) \\ \#[1] 1.145868 6.493254 \\ \end{array}
```

betaparametVP

betaparametVP	Estimation of Binomal Parameters V And P in Count Data of RNA Reads

Description

This function is used to estimate parameters P and V by optimalizing estimation of parameters: alpha and beta.

Usage

```
betaparametVP(X, NX)
```

Arguments

X count dataset derived from m replicate libraries in one condition.

NX vector of m library sizes. Library size is sum of counts over the whole library.

Details

Count data of *RNA* reads are assumed to follow binomial distribution with parameters (P) and (V), while P is assumed to follow beta distribution with parameters alpha (a) and beta(b). Parameters P and V are estimated by optimal estimation of parameters a and b. The optimal method is an iteration method drived by weighting proportion of gene or isoform in each replicate library. This is a large-scale method for estimating these parameters. Estimation of parameters P and V is core of the multiple beta t-test method because P and V will be used to calculate t-value.

Value

return a list:

P N proportions estimated.V N variances estimated.

Note

betaparametVP requres functions betaparametab and betaparametw.

Author(s)

Yuan-DE Tan <tanyuande@gmail.com>

References

Baggerly KA, Deng L, Morris JS, Aldaz CM (2003) Differential expression in SAGE: accounting for normal between-library variation. *Bioinformatics*, **19**: 1477-1483.

Yuan-De Tan, Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*, 10.1371/journal.pone.0123658.

See Also

betaparametab, betaparametw

betaparametw 5

Examples

```
data(jkttcell)
X<-jkttcell[1:500,]
na<-3
nb<-3
cn<-length(X[1,])
rn<-length(X[,1])
XC<-X[,1:(cn-na-nb)]
XX<-X[,(cn-na-nb+1):cn]
n<-na+nb
XA<-XX[,1:na]
SA<-apply(XA,2,sum)
PA<-betaparametVP(XA,SA)</pre>
```

betaparametw

Estimation of proportion weights

Description

Function betaparametw is used to calculate weight.

Usage

```
betaparametw(xn, a, b)
```

Arguments

xn	vector of m library sizes. Library size is sum of counts over the whole library.
а	parameter alpha in beta distribution derived from output of function betaparametab
b	parameter beta in beta distribution derived from output of function betaparametab

Details

alpha and beta are used to calculate weight. Then weight is in turn used to correct bias of estimation of alpha and beta in betaparametab function.

Value

```
return weight(W)
```

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

References

Baggerly KA, Deng L, Morris JS, Aldaz CM (2003) Differential expression in SAGE: accounting for normal between-library variation. *Bioinformatics*, **19**: 1477-1483.

Yuan-De Tan, Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*. 2015 DOI: 10.1371/journal.pone.0123658.

6 betattest

See Also

betaparametab, betaparametVP.

Examples

```
XX<-c(2000,2000,2000)
a<-1.1458
b<-6.4932
betaparametw(xn=XX,a=a,b=b)
#[1] 0.3333333 0.3333333 0.3333333</pre>
```

betattest

Beta t-test

Description

Beta t-test and degree of freedom for each gene or isoform are calculated in this function.

Usage

```
betattest(X, na, nb)
```

Arguments

X count data of RNA reads containing N genes (or isoforms).

na number of replicate libraries in condition A
nb number of replicate libraries in condition B

Details

In beta t-test,

$$t = \frac{(P_A - P_B)}{\sqrt{(V_A + V_B)}}$$

where P_A and P_B are proportions of a gene or an isoform in conditions A and B, V_A and V_B are variances estimated in conditions A and B. They are outputted by betaparametVP.

Value

return two lists:

t t-value list.

df list. df is degree of freedom.

Note

If pooled standard error is zero, then the t-value is not defined and set to be zero.

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

dat 7

References

Baggerly KA, Deng L, Morris JS, Aldaz CM (2003) Differential expression in SAGE: accounting for normal between-library variation. *Bioinformatics*, **19**: 1477-1483.

Yuan-De Tan, Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*. 2015 DOI: 10.1371/journal.pone.0123658.

See Also

```
pratio, oddratio.
```

Examples

```
data(jkttcell)
X<-jkttcell[1:1000,]
na<-3
nb<-3
cn<-ncol(X)
rn<-nrow(X)
XC<-X[,1:(cn-na-nb)]
XX<-X[,(cn-na-nb+1):cn]
betattest<-betattest(XX,na=3,nb=3)</pre>
```

dat

The Transcriptomic data and t-test results.

Description

t-value and rho are results ouputed by mbttest.

Usage

```
data("dat")
```

Format

A data frame with 13409 observations on the following 16 variables.

```
tagid a numeric vector
geneid a numeric vector
name a string vector
chr a string vector
strand a character vector
pos a numeric vector
anno a string vector
Jurk.NS.A a numeric vector
Jurk.NS.B a numeric vector
Jurk.NS.C a numeric vector
```

Jurk.48h.A a numeric vector

8 jkttcell

```
Jurk.48h.B a numeric vector
Jurk.48h.C a numeric vector
beta_t a numeric vector
rho a numeric vector
symb a character vector
```

Details

t-values (beta_t) and means over all replicate libraries in two conditions are used to make MA plot. The count data of DE isoforms are selected by symb ="+" and W(omega) and used to make heatmap using myheatmap function.

Value

ID, information, count data of RNA reads, t-value and rho-value, symbol.

References

Yuan-De Tan Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*. DOI: 10.1371/journal.pone.0123658.

Examples

data(dat)

jkttcell

Jurkat T-cell Transcritomic Data

Description

The data are transcriptomic count data of *RNA* reads generated by next generation sequencing from Jurkat T-cells.

Usage

```
data("jkttcell")
```

Format

A data frame with 13409 observations on the following 13 variables.

```
tagid a numeric vector
geneid a numeric vector
name a string vector
chr a string vector
strand a charactor vector
pos a numeric vector
anno a string vector
```

maplot 9

```
Jurk.NS.A a numeric vector
Jurk.NS.B a numeric vector
Jurk.NS.C a numeric vector
Jurk.48h.A a numeric vector
Jurk.48h.B a numeric vector
Jurk.48h.C a numeric vector
```

Details

The data are count data generated by next generation sequencing from Jurkat T-cells. The T-cells were treated by resting and stimulating with *CD3/CD28* for 48 hours. The data have 7 columns for the information of poly(A) site: tagid, geneid, gene name, chromosome, strand, poly(A) site position, poly(A) site annotation and 6 columns for data: Jurk.NS.A, Jurk.NS.B, Jurk.NS.C, Jurk.48h.A, Jurk.48h.B, Jurk.48h.C. where NS means Normal state and 48h means 48 hours after *CD3/CD28* stimulatuin of T-cells. 13409 *RNA* isoforms were detected to have alternative poly(A) sites.

Value

ID, information, count data of RNA reads

Source

Real transcriptomic count data

References

Yuan-De Tan Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*. DOI: 10.1371/journal.pone.0123658.

Examples

```
data(jkttcell)
```

maplot

MA plot of t-values Against Log Mean

Description

This function is to display MA plot of t-value against log mean.

Usage

```
maplot(dat, r1, r2, TT, matitle)
```

10 mbetattest

Arguments

dat	object outputted by mbetattest containing data ordered by absolution of t-value and rho (ρ) .
r1	number of replicate libraries in condition 1.
r2	number of replicate libraries in condition 2.
TT	a numeric parameter that gives truncate value of t-values.
matitle	string for MA plot title.

Details

In MA plot, t-value is in y-axis and log mean in x-axis; Black points gathered nearby zero along log mean are genes without differential expressions or differential splicings while red points scattered out of black points are those of being differentially expressed or differentially spliced.

Value

no return value

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

Examples

```
data(dat)
maplot(dat=dat,r1=3,r2=3,TT=350,matitle="MA plot")
maplot(dat=dat,r1=3,r2=3,TT=50,matitle="MA plot")
```

mbetattest

Performance of multiple beta t-test on simulated data

Description

This function is to perform multiple beta t-test method on real data. The result lists geneid or isoformid, gene name, the other information, t-value, p-value, adjusted p-value, adjusted alpha value, rho (ρ) , and symb. All these lists are ordered by absolution of t-values.

Usage

```
mbetattest(X, na, nb, W, alpha=0.05, file)
```

Arguments

X	count data of RNA reads with na replicates in condition A ans nb replicates in condition B.
na	number of replicate libraries in condition A.
nb	number of replicate libraries in condition B.
W	numeric parameter, called omega (ω) that is a constant determined by null simulation.

mbetattest 11

alpha the probabilistic threshold. User can set alpha (α)= 0.05 or 0.01 or the other

values. Defalt value is 0.05

file a csv file. User needs to give file name and specify direction path. But if user uses setwd function, drive is not necessarily specified in file.

Details

t-statistic is defined as t-statistic multiplied by (rho/omega), that is,

$$T = t \times \frac{\rho}{\omega}$$

where

$$t = \frac{(P_A - P_B)}{\sqrt{(V_A + V_B)}}$$

$$\rho = \sqrt{\psi \zeta}$$

where

$$\psi = max(\frac{min(X_A)}{max(X_B) + 1}, \frac{min(X_B)}{max(X_A) + 1})$$

$$\zeta = log(1 + \frac{\bar{X}\sigma^2 + 1}{\bar{X}_A\sigma_A^2 + \bar{X}_B\sigma_B^2 + 1})$$

 ω is a constant as threshold estimated from null data.

Value

return a dat list: the data ordered by abs(t) contain information cloumns, data columns, t-values, rho and symb that are used to make heatmap and *MAplot*.

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

References

Yuan-De Tan Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*, 10.1371/journal.pone.0123658.

See Also

smbetattest.

Examples

data(jkttcell)

12 mtprocedure

mtprocedure	Multiple-Test Procedures	

Description

Similiar to Benjamini-Hochberg multiple-test procedure, alpha is adjusted to be a set of values.

Usage

```
mtprocedure(alpha, N, C)
```

Arguments

alpha	probabilistic threshold and is usually set to be 0.05 or 0.01 . Default value is 0.05
N	numeric constant, number of genes to be detected in transcriptome.
С	numeric constant, it can be taken from 0 to N. C is used to choose multipletest procedure. Default value is 0.01. This procedure is single test with C=0, Benjamini-Hochberg procedure with C=1.22 and Bonfroni procedure with C=N.

Details

This is a multiple-test procedure family including Benjamini-Hochberg procedure, Bonferroni procedure and single-test procedure. By choosing C-value, it can generat a multiple-test procedure for controling the false discovery rate, the expected proportion of false discoveries amongst the rejected hypotheses.

Value

return a list of adjusted alpha values.

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society Series B* **57**, 289-300. Yuan-De Tan and Hongyan Xu A general method for accurate estimation of false discovery rates in identification of differentially expressed genes. *Bioinformatics* (2014) **30** (14): 2018-2025. doi: 10.1093/bioinformatics/btu124.

See Also

p.adjust

mtpvadjust 13

Examples

```
mtprocedure(alpha=0.5,N=200,C=1.22)
# [1] 0.007501404 0.011906423 0.015914688 0.019682621 0.023284917 0.026763656
# [7] 0.030145311 0.033447843 0.036684127 0.039863779 0.042994217 0.046081313
# ....
#[175] 0.444073506 0.446322519 0.448570478 0.450817390 0.453063265 0.455308110
#[181] 0.457551933 0.459794741 0.462036542 0.464277343 0.466517153 0.468755977
#[187] 0.470993825 0.473230701 0.475466614 0.477701571 0.479935578 0.482168642
#[193] 0.484400770 0.486631969 0.488862244 0.491091603 0.493320052 0.495547597
#[199] 0.497774244 0.500000000
```

mtpvadjust

P-value Adjustment for Multiple Comparisons

Description

Given a set of N p-values, it returns a set of N p-values adjusted by choosing C-value

Usage

```
mtpvadjust(pv, C)
```

Arguments

pv numeric vector of p-values.

C numeric constant, the value can be taken from any number > 0 or equal to 0. C is used to choose multiple-test procedure.

Details

This is a multiple-test procedure family including Benjamini-Hochberg procedure, Bonferroni procedure and single-test procedure. By choosing C-value, it can generate a multiple-test procedure for controling the false discovery rate, the expected proportion of false discoveries amongst the rejected hypotheses. Benjamini-Hochberg procedure is given with C=1.22, Bonferroni procedure is given with C=N and single-test procedure can be given with C=0.

Value

return a list of adjusted p-values.

Note

p-value must be ordered from the largest value to the smallest value before executing tan_pvadjust.

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

14 myheatmap

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society Series B* **57**, 289-300. Yuan-De Tan and Hongyan Xu A general method for accurate estimation of false discovery rates in identification of differentially expressed genes. *Bioinformatics* (2014) **30** (14): 2018-2025. doi: 10.1093/bioinformatics/btu124.

See Also

```
p.adjust
```

Examples

```
set.seed(123)
x <- rnorm(50, mean = c(rep(0, 25), rep(3, 25)))
p <- 2*pnorm(sort(-abs(x)))
round(mtpvadjust(pv=p, C=1.22),4)
# [1] 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
#[11] 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6875 0.6174 0.4588
#[21] 0.4115 0.3644 0.2216 0.1554 0.1443 0.1249 0.1027 0.0964 0.0763 0.0319
#[31] 0.0166 0.0135 0.0123 0.0096 0.0091 0.0068 0.0045 0.0041 0.0020 0.0007
#[41] 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000</pre>
```

myheatmap

Heatmap

Description

This function is used to display heatmap of differential expressions of genes or isoforms or differential splicings of genes detected by the multiple beta t-test method in the real data.

Usage

```
myheatmap(dat, r1, r2, W, colrs, tree, method, rwangle, clangle, maptitle)
```

Arguments

dat	data outputted by mbetattest, includes information columns, data columns, t-value, rho and symbol columns;
r1	numeric argument: number of replicate libraries in condition 1.
r2	numeric argument: number of replicate libraries in condition 2
W	numeric argument: threshold for choosing genes or isoforms for heatmap. W value can be set to be 0 to any large number. If user sets $W=0$, then the function will select all differentially expressed genes with symb="+". To choose a appropriate W, user needs to refere to rho values in the result file. Default $W=1$.
colrs	heatmap colors. User has 5 options: "redgreen", "greenred", "redblue", "bluered" and "heat.colors". Default colrs="redgreen".

myheatmap 15

tree object of heatmap. User has four options: "both" for row and column trees, "row"

for only row tree, "column" for only column tree, and "none" for no tree speci-

fied. Default tree="both".

method method to be chosen to calculate distance between columns or rows. It has four

options: "euclidean", "pearson", "spearman" and "kendall". The latter three are

d=1-cc where cc is correlation coefficients. Default="euclidean".

rwangle angle of xlab under heatmap. Default value is 30.

clangle angle of ylab. Default value is 30

maptitle string for heatmap title.

Details

This function uses W (omega) and "symb" to choose genes or isoforms in the data ordered by t-values and then to normalize the selected data by using z-scale. This function has multiple options to select map color, distance, cluster and x- and y-lab angles. The heatmap was designed for publication and presentation, that is, zoom of the figure can be reduced without impacting solution.

Value

no return value but create a heatmap.

Note

myheatmap requres gplots

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

See Also

heatmap.2

Examples

```
require(gplots)
data(dat)

#dat<-mbetattest(X=jkttcell,na=3,nb=3,W=1,alpha=0.05,
#file="C:/mBeta_ttest/R_package/jurkat_NS_48h_tag_mbetattest.csv")

# data(mtcars)
#x <-as.matrix(mtcars)
#myheatmap(dat=x,r1=3,r2=3, maptitle="mtcars_heatmap")

myheatmap(dat=dat,r1=3,r2=3,maptitle="Jurkat T-cell heatmap2")

myheatmap(dat=dat,r1=3,r2=3,tree="none",maptitle="Jurkat T-cell heatmap")</pre>
```

16 oddratio

oddratio

Calculation of $Zeta(\zeta)$

Description

Zeta (ζ) is used to measure homogeneity intensity of two subdatasets. If $\zeta > 1$, these two subdatasets have good homogeneity; otherwise, $\zeta < 1$ indicates that two subdatasets have poor homogeneity (big noise).

Usage

```
oddratio(XX, na, nb)
```

Arguments

XX count data of RNA reads generated by next generation sequencing.

na number of replicate libraries in condition A.

nb number of replicate libraries in condition B.

Details

Zeta is defined as

$$\zeta = log(1 + \frac{\bar{X}\sigma^2 + 1}{\bar{X}_A\sigma_A^2 + \bar{X}_B\sigma_B^2 + 1})$$

where ζ is different from ψ . If two subdatasets have big a gap and good homogeneity, then ζ value has much larger than 1.

Value

oddrat list of zeta values

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

References

Yuan-De Tan Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*. 2015 DOI: 10.1371/journal.pone.0123658.

See Also

pratio, mbetattest.

pratio 17

Examples

```
XX<-matrix(NA,2,8)

XX[1,]<-c(112,122, 108,127,302, 314, 322, 328)

XX[2,]<-c(511, 230, 754, 335,771, 842, 1014,798)

#XX

# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

#[1,] 112 122 108 127 302 314 322 328

#[2,] 511 230 754 335 771 842 1014 798

oddratio(XX=XX,na=4,nb=4)

#[1] 3.9432676 0.8762017

# see example in mbetattest
```

pratio

Calculation of $Psi(\psi)$

Description

Psi is also called polar ratio.

$$\psi = max(\frac{min(X_A)}{max(X_B) + 1}, \frac{min(X_B)}{max(X_A) + 1})$$

•

Usage

```
pratio(xx, na, nb)
```

Arguments

xx count data of RNA reads generated by next generation sequencing.
na number of replicate libraries in condition A.

nb number of replicate libraries in condition B.

Details

Psi is defined as

$$\psi = \max(\frac{\min(X_A)}{\max(X_B) + 1}, \frac{\min(X_B)}{\max(X_A) + 1})$$

It is used to measure overlap of two subdatasets. $\psi>1$, these two subdatasets have a gap, not overlap. $\psi<1$ indicates that two subdatasets overlap.

Value

pratio pratio list

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

18 simulat

References

Yuan-De Tan Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*. 2015 DOI: 10.1371/journal.pone.0123658.

See Also

```
mbetattest, oddratio
```

Examples

```
XX<-matrix(NA,2,8)

XX[1,]<-c(112,122, 108,127,302, 314, 322, 328)

XX[2,]<-c(511, 230, 754, 335,771, 842, 1014,798)

#XX

# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

#[1,] 112 122 108 127 302 314 322 328

#[2,] 511 230 754 335 771 842 1014 798

pratio(xx=XX,na=4,nb=4)
```

simulat

Simulation Data

Description

This function uses negative binomial (NB) pseudorandom generator to create any count datasets of RNA isoform reads based on real data.

Usage

```
simulat(yy, nci, r1, r2, p, q, A)
```

Arguments

уу	real count data
nci	numeric argument: column number of information related to genes or isoforms.
r1	numeric argument: number of replicate libraries in condition 1.
r2	numeric argument: number of replicate libraries in condition 2.
p	numeric argument: proportion of genes or isoforms differentially expressed. The value is in range of $0 \sim 1$. Default value is 0 .
q	numeric argument: proportion of genes or isoforms artificially noised. The value is in range of $0 \sim 1$. Default value is 0 .
A	numeric argument: conditional effect value. The value is larger than or equal to 0. Default value is 0.

skjt 19

Details

Null count data are created by using R negative binomial pseudorandom generator rnbinom with mu and size. Parameters mu and size are given by mean and variance drawn from real read counts of a gene or an isoforms in a condition. Condition (or treatment) effect on differential transcription of isoforms is linearly and randomly assigned to genes or isoforms. The conditional effect = AU where U is uniform variable and A is an input constant. P percent of genes or isoforms are set to be differentially expressed or differentially spliced. Q percent of genes or isoforms have technical noise. If P = 0, then simulation is null simulation, the data are null data or baseline data.

Value

Return count data.

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

References

Yuan-De Tan Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*, 10.1371/journal.pone.0123658.

See Also

NegBinomial

Examples

```
data(jkttcell)
jknull<-simulat(yy=jkttcell[1:500,],nci=7,r1=3,r2=3,p=0,q=0.2,A=0)</pre>
```

skjt

Simulated Null Transcriptomic data

Description

The dataset generated by using R negative binomial pseudorandom generator rnbinom is used as an example for calculating omega.

Usage

```
data("skjt")
```

Format

A data frame with 13409 observations on the following 14 variables.

```
geneid a string vector
tagid a numeric vector
geneid.1 a numeric vector
```

20 smbetattest

```
name a string vector
chr a string vector
strand a character vector
pos a numeric vector
anno a string vector
Jurk.NS.A a numeric vector
Jurk.NS.B a numeric vector
Jurk.NS.C a numeric vector
Jurk.48h.A a numeric vector
Jurk.48h.B a numeric vector
Jurk.48h.B a numeric vector
```

Details

The dataset skjt was generated by using R negative binomial pseudorandom generator rnbinom with mu and size. Parameters mu and size are given by mean and variance drawn from real Jurkat T cell transcriptomic count data. Condition (or treatment) effect on differential transcription of isoforms was set to zero. The data have 13409 genes and 7 information columns: geneid tagid name chr,strand,pos,anno, and 6 data columns: Jurk.NS.A,Jurk.NS.B,Jurk.NS.C,Jurk.48h.A,Jurk.48h.B,Jurk.48h.C.

Value

ID, information, count data of RNA reads

Source

Simulation.

References

Yuan-De Tan Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*. DOI: 10.1371/journal.pone.0123658.

Examples

```
data(skjt)
## maybe str(skjt); plot(skjt) ...
```

smbetattest

Performance of multiple Beta t-test on simulated data

Description

This function is to perform mBeta t-test with rho=1 and omega=1 on simulated data. The result lists differentially expressed genes or isoforms marked by symbol="+" and their rho values. The rho values are used to calculate omega value for performance of mBeta t-tests on the real data.

smbetattest 21

Usage

```
smbetattest(X, na, nb, alpha)
```

Arguments

X simulated count data with N genes or isoforms.

na number of replicate libraries in condition A.

nb number of replicate libraries in condition B.

alpha statistical probabilistic threshold, default value is 0.05.

Details

Before performing mbeta t-test on real data, user needs omega (w) value for the threshold of $\operatorname{rho}(\rho)$. To determine omega value, user is required to simulate null data having the same gene or isoform number and the same numbers of replicate libraries in two conditions and then performs mbeta t-test on the simulated null data by setting rho =1 and omega =1. To calculate accurately omega value, user needs such performance on 4-6 simulated null datasets. Manual provides method for omega calculation.

Value

Return results from multple beta t-tests on simulated data.

Author(s)

Yuan-De Tan <tanyuande@gmail.com>

References

Yuan-De Tan Anita M. Chandler, Arindam Chaudhury, and Joel R. Neilson(2015) A Powerful Statistical Approach for Large-scale Differential Transcription Analysis. *Plos One*, 10.1371/journal.pone.0123658.

See Also

See Also as mbetattest

Examples

```
data(skjt)
mysim<-smbetattest(X=skjt[1:500,],na=3,nb=3,alpha=0.05)</pre>
```

Index

*Topic alpha adjustment	mbetattest, 10
mtprocedure, 12	*Topic t-test
*Topic alpha	smbetattest, 20
betaparametab, 3	*Topic t-value
*Topic beta distribution	betattest, 6
betattest, 6	*Topic variance
*Topic beta	betaparametVP,4
betaparametab, 3	*Topic weight
*Topic binomial	betaparametw, 5
simulat, 18	
*Topic datasets	betaparametab, 2 , 3 , 4 , 6
dat, 7	betaparametVP, 2 , 3 , 4 , 6
jkttcell, 8	betaparametw, 2-4, 5
skjt, 19	betattest, 2, 6
*Topic gap	
oddratio, 16	dat, 7
pratio, 17	heatman 2 15
*Topic heatmap	heatmap.2, <i>15</i>
myheatmap, 14	jkttcell,8
*Topic homogeneity	jike edell, o
oddratio, 16	maplot, 2, 9
*Topic maplot	mBetatest (MBttest-package), 2
maplot, 9	mBetatest-package (MBttest-package), 2
*Topic multiple test procedure	mbetattest, 2, 10, 16, 18, 21
· •	MBttest-package, 2
mtprocedure, 12	mtprocedure, 2, 12
*Topic multiple	mtpvadjust, 2, 13
mbetattest, 10	myheatmap, 2, 14
*Topic multple test procedure	
mtpvadjust, 13	NegBinomial, <i>19</i>
*Topic negative simulat, 18	
	oddratio, 2, 7, 16, <i>18</i>
*Topic overlap	n additat 12 14
pratio, 17	p.adjust, 12, 14
*Topic p-value adjustment	pratio, 2, 7, 16, 17
mtpvadjust, 13	simulat, 2, 18
*Topic package	skjt, 19
MBttest-package, 2	smbetattest, 2, 11, 20
*Topic proportion	5. 11, 20
betaparametVP, 4	
*Topic simulation	
simulat, 18	
smbetattest, 20	
*Topic t-tests	