Elementary Statistics – Decision Errors and Power

Dr. Ab Mosca (they/them)

Plan for Today

- Hypothesis Testing
 - Decision Errors
 - Power

Pieces of a Hypothesis test:

- 1. Two competing and complementary claims about the world
- 2. Test Statistic
- 3. Null Distribution
- 4. P-value

Warm Up: Statistics and Cls

The **z-score** of an observation characterizes the number of standard deviations it falls above or below the mean.

$$Z = \frac{x-\mu}{\sigma}$$
, for a sample proportion, \hat{p} , $Z = \frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}$

Practice:

Suppose I rolled a 10 sided die 100 times and recorded the number of times I rolled a 9 (which was 45). I want to know if my die is fair so I do a hypothesis test with these hypotheses: H_0 : my die is fair, H_A : my die is not fair

What is Z? What p-value does Z imply? Should I reject my null hypothesis?

Outcomes of a Hypothesis Test

A hypothesis test has 4 possible outcomes

		Test Conclusion	
		Reject H_0 (we suspect H_0 is false)	Fail to reject H_0 (we suspect H_0 is true)
Truth	H_0 is true	A	В
	H_0 is false $(H_A$ is true)	C	D

In which scenario(s) have we made the correct decision? Why?

Outcomes of a Hypothesis Test

A hypothesis test has 4 possible outcomes

		Test Conclusion	
		Reject H_0 (we suspect H_0 is false)	Fail to reject H_0 (we suspect H_0 is true)
Truth	H_0 is true	A	
	H_0 is false $(H_A$ is true)		D

Decision Errors

A hypothesis test has 4 possible outcomes

		Test Conclusion	
		Reject H_0 (we suspect H_0 is false)	Fail to reject H_0 (we suspect H_0 is true)
Truth	H_0 is true	Type 1 Error	
	H_0 is false (H_A is true)		Type 2 error

Decision Errors

A hypothesis test has 4 possible outcomes

		Test Conclusion	
		Reject H_0 (we suspect H_0 is false)	Fail to reject H_0 (we suspect H_0 is true)
Truth	H_0 is true	Type 1 Error	
	H_0 is false $(H_A$ is true)		Type 2 error

- Because we reject H_0 when $p \leq \alpha$, the probability of a Type 1 error is α
- The probability of a Type 2 error is β

Decision Errors

A hypothesis test has 4 possible outcomes

		Test Conclusion	
		Reject H_0 (we suspect H_0 is false)	Fail to reject H_0 (we suspect H_0 is true)
Truth	H_0 is true	Type 1 Error	
	H_0 is false $(H_A$ is true)		Type 2 error

- Because we reject H_0 when $p \leq \alpha$, the probability of a Type 1 error is α
- The probability of a Type 2 error is β

• The *power* of a statistical test is the probability of correctly rejecting a false H_0 (1 $-\beta$)

		Test Conclusion	
		Reject H_0 (we suspect H_0 is false)	Fail to reject H_0 (we suspect H_0 is true)
Truth	H_0 is true	Type 1 Error	
	H_0 is false $(H_A$ is true)		Type 2 error

Suppose you are the manager of a professional baseball team.

- One of the players on your team consistently had a 0.250 batting average (they hit about one out of every four times at the plate).
- When you sit down to negotiate, this player claims they have been working hard in the off season and improved to become a 0.333 hitter.

Should you offer this player a raise (at the expense of another players salary)?

- What is the parameter of interest in this context?
- > If you were to conduct a hypothesis test, what would your null and alternative hypotheses be?
- What would a Type 1 error be in the context of this problem?
- What would a Type 2 error be in the context of this problem?
- > Who would be most worried about each type of error (you or the player)?

Practical Significance

Suppose that we want to determine whether a generic formulation of a drug is more harmful (i.e., produces more side effects) than the name brand version, which has a 10% adverse event rate.

Aside: This is called a H_0 : p = 0.10 one-sided test. If H_A : $p \neq$ H_A : p > 0.10 0.10 we'd be doing a twosided test.

We conduct a clinical trial and find that the sample proportion of patients who experience a side effect on the generic is $\hat{p} =$ 0.105.

Practical Significance

Suppose that we want to determine whether a generic formulation of a drug is more harmful (i.e., produces more side effects) than the name brand version, which has a 10% adverse event rate.

$$H_0$$
: $p = 0.10$
 H_A : $p > 0.10$

We conduct a clinical trial and find that the sample proportion of patients who experience a side effect on the generic is $\hat{p}=0.105$.

What is the corresponding z-score if the sample size for the trial is n = 100?

What is the corresponding z-score if the sample size for the trial is n = 50000?