

REC'D 20 APR 2005
WIPO PCT

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 03 MARS 2005

Pour le Directeur général de l'Institut
national de la propriété industrielle
Le Chef du Département des brevets

Martine PLANCHE

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS
CONFORMÉMENT À LA
RÈGLE 17.1.a) OU b)

INSTITUT
NATIONAL DE
LA PROPRIÉTÉ
INDUSTRIELLE

SIEGE
26 bis, rue de Saint-Petersbourg
75800 PARIS cedex 08
Téléphone : 33 (0)1 53 04 53 04
Télécopie : 33 (0)1 53 04 45 23
www.inpi.fr

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

26bis, rue de Saint-Pétersbourg
75800 Paris Cédex 08
Téléphone: 01 53.04.53.04 Télécopie: 01.42.94.86.54

Code de la propriété intellectuelle-livreVI

REQUÊTE EN DÉLIVRANCE

DATE DE REMISE DES PIÈCES: N° D'ENREGISTREMENT NATIONAL: DÉPARTEMENT DE DÉPÔT: DATE DE DÉPÔT:	Jacques VESIN L'AIR LIQUIDE S.A. 75, quai d'Orsay 75321 PARIS CEDEX 07 France
Vos références pour ce dossier: S6510JV	

1 NATURE DE LA DEMANDE			
Demande de brevet			
2 TITRE DE L'INVENTION			
Procédé de traitement d'aluminium dans un four rotatif ou réverbère			
3 DECLARATION DE PRIORITE OU REQUETE DU BENEFICE DE LA DATE DE DEPOT D'UNE DEMANDE ANTERIEURE FRANCAISE		Pays ou organisation	Date
N°			
4-1 DEMANDEUR			
Nom	L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ÉTUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE		
Suivi par	Jacques VESIN		
Rue	75, quai d'Orsay		
Code postal et ville	75321 PARIS CEDEX 07		
Pays	France		
Nationalité	France		
Forme juridique	Société anonyme		
N° SIREN	552 096 281		
Code APE-NAF	241A		
N° de téléphone	01 40 62 57 32		
N° de télécopie	01 40 62 56 95		
Courrier électronique	jacques.vesin@airliquide.com		

5A MANDATAIRE			
Nom	VESIN		
Prénom	Jacques		
Qualité	Liste spéciale, Pouvoir général: PG10568		
Cabinet ou Société	L'AIR LIQUIDE S.A.		
Rue	75, quai d'Orsay		
Code postal et ville	75321 PARIS CEDEX 07		
N° de téléphone	01 40 62 57 32		
N° de télécopie	01 40 62 56 95		
Courrier électronique	jacques.vesin@airliquide.com		
6 DOCUMENTS ET FICHIERS JOINTS			
	Fichier électronique	Pages	Détails
Texte du brevet	textebrevet.pdf	11	D 8, R 2, AB 1
Dessins	dessins.pdf	4	page 4, figures 3, Abrégé: page 4, Fig.2
Désignation d'inventeurs			
Pouvoir général			
7 MODE DE PAIEMENT			
Mode de paiement	Prélèvement du compte courant		
Numéro du compte client	516		
8 RAPPORT DE RECHERCHE			
Etablissement immédiat			
9 REDEVANCES JOINTES			
	Devise	Taux	Quantité
062 Dépôt	EURO	0.00	1.00
063 Rapport de recherche (R.R.)	EURO	320.00	1.00
068 Revendication à partir de la 11ème	EURO	15.00	2.00
Total à acquitter	EURO		350.00

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire.
 Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, L'Air Liquide SA, J.Vesin

Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES
 PROCÉDÉS GEORGES CLAUDE (Demandeur 1)

BREVET D'INVENTION CERTIFICAT D'UTILITE

Réception électronique d'une soumission

Il est certifié par la présente qu'une demande de brevet (ou de certificat d'utilité) a été reçue par le biais du dépôt électronique sécurisé de l'INPI. Après réception, un numéro d'enregistrement et une date de réception ont été attribués automatiquement.

Demande de brevet : X

Demande de CU :

DATE DE RECEPTION	25 février 2004	
TYPE DE DEPOT	INPI (PARIS) - Dépôt électronique	Dépôt en ligne: X
N° D'ENREGISTREMENT NATIONAL ATTRIBUE PAR L'INPI	0450351	Dépôt sur support CD:
Vos références pour ce dossier	S6510JV	

DEMANDEUR

Nom ou dénomination sociale	L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE
Nombre de demandeur(s)	1
Pays	FR

TITRE DE L'INVENTION

Procédé de traitement d'aluminium dans un four rotatif ou réverbère

DOCUMENTS ENVOYES

package-data.xml	Requetefr.PDF	fee-sheet.xml
Design.PDF	ValidLog.PDF	textebrevet.pdf
FR-office-specific-info.xml	application-body.xml	request.xml
dessins.pdf	indication-bio-deposit.xml	

EFFECTUE PAR

Effectué par:	J.Vesin
Date et heure de réception électronique:	25 février 2004 16:27:58
Empreinte officielle du dépôt	FB:21:5A:23:7C:88:71:6B:57:2E:83:10:94:0D:5A:A8:98:28:23:66

/ INPI PARIS, Section Dépôt /

SIEGE SOCIAL
 INSTITUT 26 bis, rue de Saint Peterbourg
 NATIONAL DE 75900 PARIS cedex 08
 LA PROPRIETE Téléphone : 01 53 04 53 04
 INDUSTRIELLE Télécopie : 01 42 93 59 30

Procédé de traitement d'aluminium dans un four rotatif ou réverbère

La présente invention concerne un procédé de traitement d'aluminium dans un four dans lequel on introduit dans le four au moins un matériau contenant de l'aluminium et éventuellement un ou plusieurs sels et/ou du laitier et/ou des crasses recyclées, on réalise la fusion de ce matériau par apport de chaleur à l'aide d'au moins un brûleur alimenté en comburant et en combustible, de manière à obtenir de l'aluminium fondu éventuellement recouvert d'un laitier comportant notamment de l'alumine, et on mesure la concentration en monoxyde de carbone et/ou en hydrogène dans l'atmosphère du four ou dans les fumées en sortie du four.

Dans le domaine de la fusion de l'aluminium secondaire, on réalise celle-ci dans un four rotatif ou un four dit à réverbération. Bien que ce procédé de fusion puisse être continu, la fusion est le plus souvent réalisée en discontinu : les matériaux sont chargés dans le four, en un ou plusieurs cycles successifs avant de couler le métal fondu vers son lieu d'utilisation. Pour cela, le métal fondu doit avoir une température d'environ 740°C. Au-delà de 750°C, la vitesse d'oxydation de l'aluminium fondu augmente considérablement, de manière presque exponentielle.

Au cours d'un cycle de fusion, on peut d'abord distinguer la période initiale, lorsque les matériaux sont solides, qui permet l'absorption d'une grande quantité de chaleur, la fusion de l'aluminium ayant lieu à environ 660°C.

Quelque soit le type de four utilisé, on constate l'existence d'un laitier ou de « crasses » à la surface du métal liquide. On distingue habituellement d'une part, les crasses dites « noires » qui sont un mélange de sels (le cas échéant, si le procédé utilise du sel), de différents composés organiques résiduels solides (hydrocarbures polycycliques aromatiques, suies, ...) qui proviennent de la pyrolyse des matériaux organiques, et plus généralement, non métalliques, présents initialement dans la charge, d'oxyde d'aluminium et d'aluminium emprisonné dans l'oxyde, et d'autre part les crasses dites « blanches », composées uniquement d'oxydes d'aluminium et d'aluminium, produites dans les fours traitant des charges « propres » constituées exclusivement d'alliages métalliques destinés à être fondus. Il est à noter que la production de « crasses noires » s'accompagnent de l'émission dans les fumées de grande quantités de composés organiques volatiles (COV), riches en hydrocarbures imbrûlés:

Ce laitier ou ces crasses renferment une quantité de métal perdu ou oxydé encore appelés « pertes au feu » qui représentent une perte de matière non négligeable pour le producteur d'aluminium et qu'il convient de réduire au minimum afin d'augmenter la rentabilité du procédé de fusion. Pour réduire cette oxydation, il est

connu de maintenir la température du bain d'aluminium fondu à une valeur inférieure à environ 750°C. Mais cette méthode reste empirique car des points chauds peuvent apparaître à la surface engendrant des oxydations localisées.

5 D'autres solutions connues visent à éviter l'oxydation en réduisant le contact de la surface du métal avec un oxydant.

10 Ainsi le document JP 58-227706 propose d'utiliser la mesure des teneurs en CO et en H₂ contenus dans les fumées pour s'assurer que, sur un four de fusion de métaux non-ferreux, les brûleurs installés fonctionnent en mode sous-stoechiométrique dans une plage de valeurs du rapport du débit d'oxydant au débit de combustible allant de 95 à 100 %, une partie du combustible n'étant pas consommée.

15 Le document EP 962 540 décrit un procédé de combustion en vue de la fusion d'un métal dans un four, dans lequel un gaz riche en oxygène est envoyé dans le four, au-dessus de la flamme d'un brûleur, au contact du métal liquide.

20 Le brûleur fonctionnant en sous-stoechiométrie, produit une flamme réductrice qui fait écran entre le gaz riche en oxygène et la surface du métal fondu.

25 Le document US 5 563 903 décrit un procédé dans lequel un gaz neutre ou réducteur fait écran entre la surface du métal aluminium fondu et une zone de combustion située dans la partie supérieure du four.

30 Le document US 3 759 702 décrit un procédé dans lequel la fusion a lieu initialement à l'air libre, avec un brûleur mobile au-dessus de la surface des matériaux à fondre. La flamme du brûleur est légèrement sous-stoechiométrique, donc réductrice.

Toutes ces méthodes donnent des résultats approximatifs et sont appliquées pendant toute la durée de la fusion et pas uniquement lorsqu'il existe un risque d'oxydation de l'aluminium.

25 Il existe à ce jour un besoin pour définir un procédé de traitement de l'aluminium qui soit applicable même si la première phase n'engendre pas de crasses « noires » et donc de fortes émissions de COV, tout en limitant l'oxydation de l'aluminium au cours de la phase finale du procédé.

30 Le procédé selon l'invention permet de résoudre le problème posé et réduire la formation d'oxydes d'aluminium.

35 Il est caractérisé en ce que le comburant qui alimente au moins un brûleur comporte plus de 10 % vol. d'oxygène, de préférence au moins 21 % vol. O₂, et en ce que le procédé comporte une phase finale de réduction de l'oxydation de l'aluminium au cours de laquelle le débit de comburant est sensiblement constant tandis que le débit de combustible injecté dans au moins un brûleur est fonction de la concentration en monoxyde de carbone et/ou en hydrogène dans l'atmosphère ou les fumées, ou

vice-versa (c'est-à-dire que le débit de combustible est sensiblement constant et le débit de comburant est fonction de la concentration en CO et/ou H₂ comprise dans les mêmes limites que celles définies ci-après), cette concentration en monoxyde de carbone et/ou en hydrogène étant comprise entre 3 % vol. et 15 % vol. (par vice-versa, on entend la possibilité selon laquelle le débit de combustible est constant et où le débit de comburant est fonction de la concentration en CO et/ou H₂).

De préférence, le comburant comporte plus de 88 % vol. en O₂, de préférence plus de 95 % vol. en O₂. Plus préférentiellement le comburant est de l'oxygène industriellement pur.

Le combustible peut être un hydrocarbure quelconque ou un fioul léger ou lourd (avec un système de pulvérisation de fioul adapté dans le brûleur) : de préférence on utilise le gaz naturel, le méthane, le propane, etc... Le rapport volumique oxygène sur combustible est maintenu entre 1 et 5, de préférence entre 1,5 et 3.

Selon une variante de l'invention, la concentration en CO et/ou H₂ est maintenue sensiblement constante pendant toute cette phase de réduction d'oxydation à une valeur comprise entre 6 % et 10 % vol. (la valeur de consigne C2 au cours de cette phase finale sera donc de préférence fixée à une valeur comprise dans cette plage).

En général, la phase de réduction d'oxydation est précédée par une phase de combustion des COV au cours de laquelle sensiblement tous les produits organiques présents dans le matériau sont détruits par pyrolyse, suivie éventuellement (mais non nécessairement) par une phase de stabilisation.

De préférence, la phase de combustion des COV se termine lorsque la valeur du ratio R des débits volumiques respectivement d'oxygène contenu dans le comburant et de combustible au cours de cette phase, devient inférieur à une valeur seuil S, définie ci-après. En général, afin de s'affranchir des fluctuations passagères, on maintiendra les conditions de cette phase de combustion des hydrocarbures encore pendant une durée Δt (comprise entre 5% et 20% de la phase de combustion des hydrocarbures considérée) de manière à confirmer le passage d'une valeur de R < S, avant de passer dans la deuxième phase en changeant la valeur de consigne (qui passe d'une valeur C1 à une valeur C2) du CO mesuré dans le four ou les fumées, (compte tenu des fluctuations possibles des variations de la concentration en CO, comme exemplifié sur la fig. 2, par exemple). Cette phase de durée Δt sera appelée ci-après phase de détection

Selon un mode préférentiel de l'invention, le procédé comportera deux phases (qui peuvent se répéter plusieurs fois avant la coulée de l'aluminium liquide)

éventuellement séparées par une phase de détection généralement courte, destinée à s'assurer que la destruction des produits organiques est terminée.

De préférence, au cours de la première phase, la concentration en CO dans l'atmosphère du four et/ou des fumées, sera comprise entre 0,1 % vol et 5 % vol (valeur de consigne C1). La limite inférieure est en fait déterminée de telle manière que l'on ait au plus 1000 ppm d'oxygène dans les fumées (ou l'atmosphère).

En général, on a constaté qu'une valeur de CO de l'ordre de 0,5 % vol, était appropriée. Au cours de cette première phase, le but recherché est d'obtenir le moins possible de CO dans l'atmosphère, c'est-à-dire de régler la valeur de consigne C1 de la concentration en CO à la valeur la plus faible possible dans l'intervalle 0,1 à 5 % vol, tout en conservant une atmosphère non oxydante dans le four.

En l'absence de contrôle, la concentration en CO et/ou H₂ se trouve au-delà de la valeur de consigne C1 choisie ci-dessus. Inversement, au cours de la phase finale, la concentration en H₂ et/ou CO (en l'absence d'application de l'invention) est inférieure à la valeur de consigne C2, et l'un des buts de l'invention est d'augmenter cette concentration.

Ainsi dans la phase initiale, il convient en général grâce à la régulation sur la valeur de consigne C1, de diminuer cette concentration en CO et/ou H₂, tandis que dans la phase finale, la régulation sur la valeur de consigne C2, d'augmenter la concentration en CO et/ou H₂.

Le passage d'une phase à l'autre est basé selon l'invention, par la détection d'une variation durable du ratio R ((débit volumique d'oxygène)/(débit volumique de combustible) = R) passant d'une valeur supérieure au seuil S à une valeur inférieure au seuil S.

Le seuil S du ratio R est défini par des essais préalables sur le four où l'invention sera mise en oeuvre, de la façon suivante :

- on fixe la valeur de consigne C1 sur laquelle on va réguler la concentration en CO dans les fumées et/ou l'atmosphère (grâce à une variation du ratio R) à la valeur la plus faible possible pour le four testé, sa charge (habituelle) et le détecteur de CO utilisé (généralement une diode laser selon l'invention). Cette valeur est souvent de l'ordre de 0,1 % vol. Le four ayant une charge telle que traitée habituellement, on régule la valeur de CO sur cette valeur de consigne très basse : le ratio des débits volumiques oxygène/combustible va, après un certain temps, se stabiliser. Le ratio R auquel on obtient cette stabilisation sera le seuil S défini ci-avant.

Ainsi dans le procédé selon l'invention, on procède durant la première phase (de combustion des composés organiques volatiles COV) à une régulation du CO et/ou

H₂ autour d'une valeur de consigne comprise entre 0,1 % vol et 5 % vol (0,5 % est souvent satisfaisant) et on mesure le ratio R défini ci-dessus. Lorsque R diminue et devient inférieur à S, on continue à réguler, en général, sur la valeur de consigne C1, puis après quelques instants (après être sûr que l'on a bien changé de phase, c'est-à-dire que tous les COV sont brûlés) on change la valeur de consigne pour une nouvelle valeur de consigne C2, comprise entre 3 % et 15 % vol., de préférence entre 6 et 10 % vol., début de la phase finale au cours de laquelle le ratio R va rester inférieur à S jusqu'à la coulée du métal liquide.

On peut, au contraire après une certaine durée en phase finale, réintroduire des déchets d'aluminium (.... boîtes, etc...) de manière à ré-engendrer une phase initiale au cours de laquelle on va à nouveau réguler autour de la valeur de consigne C1, puis comme précédemment réguler ensuite autour de la valeur de consigne C2.

Selon une variante de l'invention ne comportant qu'une phase finale (charge propre sans émission de COV), on réalise une régulation directement sur une valeur C2, comprise entre 3 % et 15 % vol. de CO, valeur C2 supérieure à la concentration en CO dans le même four avec la même charge, en l'absence de régulation sur une valeur de consigne par le CO et/ou le H₂.

La phase de réduction d'oxydation de l'aluminium se termine par réintroduction dans la four d'une nouvelle charge de matériau contenant de l'aluminium, ou bien par la coulée d'aluminium liquide vers son point d'utilisation.

Le matériau contenant de l'aluminium dans le cadre de l'invention pourra être notamment, par exemple de l'aluminium en lingot, des copeaux de tournage de pièces en aluminium, des boîtes de boissons, de conserves, des rebuts, des chutes de production, des crasses, du laitier contenant de l'aluminium, et d'une manière générale tout matériau contenant de l'aluminium. Bien entendu, l'invention s'applique également aux fours de maintien en température de l'aluminium liquide.

L'invention sera mieux comprise à l'aide des exemples de réalisation suivants, donnés à titre d'exemple non limitatif, conjointement avec les figures qui représentent :

- la figure 1, une vue schématique d'un four avec un seul brûleur représenté, l'analyse des fumées et le contrôle du brûleur ;

- la figure 2, un diagramme explicatif des phases I et II d'un procédé selon l'invention ;

- la figure 3, un graphique explicitant les variations de (CO) en fonction du temps illustrant les phases (ou sous-phases) du procédé selon l'invention ;

La figure 1 est une vue schématique d'un four 1 (vu en coupe) et du système de contrôle selon l'invention.

Un brûleur 10 crée une flamme 2 qui chauffe et fond le métal 3, sous forme liquide. Les fumées 4 issues du four 1 et résultant de la combustion, notamment du brûleur sont évacuées par le conduit 18, dans lequel sont placés des détecteurs 5 et 6 (connues en soi) de CO et/ou de H₂ respectivement permettant de mesurer la concentration en CO et/ou H₂ dans lesdites fumées. Le signal issu de chacun des détecteurs 5 et 6 est transmis par l'intermédiaire de la ligne de connexion à un ensemble de contrôle 8 dont le fonctionnement sera expliqué ci-après. Le brûleur 10 est alimenté respectivement en comburant 13 et combustible 14 par l'intermédiaire de vannes commandées (débitmètres massiques, par exemple) respectivement 12 et 11 permettant de délivrer un débit adapté de comburant et de combustible au brûleur. Ce débit est commandé par le dispositif de contrôle 8, par l'intermédiaire de la ligne de connexion 15. Les lignes de connexion 17 et 16 transmettent la mesure de l'ouverture des vannes 12 et 11 au système de contrôle 8, qui reçoit également une information de température du métal fondu 3 par l'intermédiaire d'un capteur. Le système de contrôle 8 comporte un réglage du point de consigne de la concentration en CO (et/ou H₂), qui peut être modifié en fonction du temps, notamment pour passer de la valeur C1 à la valeur C2.

Selon que la mesure de la concentration en CO et/ou H₂ transmise par les capteurs 5 et/ou 6 au dispositif de contrôle 8 est supérieure ou inférieure au point de consigne, celui-ci engendre un signal de commande via la connexion 15 aux vannes commandées 12 et 11 qui régulent l'injection du comburant 13 et du combustible 14 pour obtenir une réduction ou une augmentation de la concentration en monoxyde de carbone et/ou hydrogène dans les fumées.

Sur la figure 2 sont représentées les variations typiques du ratio R (le débit de comburant ou préférentiellement le débit de combustible est maintenu constant) et celles de la concentration de CO et/ou H₂ dans les fumées dans le cadre de la gestion à deux phases du cycle de fusion décrite précédemment. Lors de la phase I, la consigne du CO et/ou H₂ est fixée à la valeur C1 comprise entre 0,1 % et 5 % vol alors qu'en phase II, cette consigne est réglée à la valeur C2, sensiblement élevée, entre 3 % et 15 % avec dans tous les cas dans un même cycle successif de phases I et II C1 ≠ C2 et C1 < C2 (si l'on avait C1 = C2, on aurait alors une seule phase). En début de fusion, afin d'asservir le CO et/ou H₂ à la consigne, le régulateur augmente la valeur du ratio R afin de fournir en excès le comburant pour brûler les COV. La production de COV par la charge et leur combustion atteint un maximum puis diminue pour devenir nulle en fin de phase I. La ratio R suit cette tendance en passant par un maximum, noté R_{MAX} avant de décroître en phase I. Compte tenu de la consigne C1, lorsque les

COV sont presque entièrement consommés, le ratio R franchit nécessairement et définitivement le seuil S, défini précédemment, avant d'atteindre un minimum, noté R_MIN. Lorsque le ratio R atteint le seuil S, il reste en effet une faible quantité de COV dans la charge qui engendre un niveau de CO et/ou H₂ inférieur à la consigne C1. A 5 partir de cet instant, le régulateur contrôle le ratio R en le diminuant davantage (production de CO et/ou H₂ par le brûleur), afin de compenser l'écart par rapport à cette consigne C1. Tous les COV sont brûlés lorsque le ratio atteint R_MIN. Il est alors temps de changer de stratégie de contrôle car la phase II commence. L'invention consiste à utiliser l'instant t1 de franchissement du seuil S couplé à une durée de détection Δt comprise entre 5 % et 20 % de la phase I de fusion considérée (qui se termine à 10 l'instant t1) pour engendrer un changement de stratégie de contrôle, à l'instant t2 défini par t2 = t1 + Δt. A cet instant, la valeur de consigne devient égale à C2.

Selon une variante de l'invention, on peut détecter, inversement, l'introduction de nouveaux matériaux dans le four et basculer, de la phase de limitation de l'oxydation 15 à celle de combustion des COV. En effet, si l'on considère un chargement d'aluminium lors de la phase II, il y a dégagement de COV lié à une charge et le régulateur contrôle le ratio R en l'augmentant (diminution de la production de CO et/ou H₂ par le brûleur), afin de compenser l'écart par rapport à cette consigne C2. De la même façon, le ratio R dépasse le seuil S à un instant t3 donné, indiquant que le procédé physique est dans la 20 phase I, ainsi le changement de stratégie de contrôle, commandé par l'indicateur, à lieu à l'instant t4 défini par t4 = t3 + Δt. A cet instant t4, la consigne est donc ramenée à la valeur C1 définie ci-dessus. Pour l'ensemble de contrôle du procédé, la fin de la phase II est donc l'instant t4.

25 Exemple de réalisation :

Dans un four rotatif équipé d'un brûleur de 13 MW, on réalise le chargement de 27 tonnes de sel et de 27 tonnes de déchets d'aluminium, on chauffe la charge jusqu'à consommer 2550 Nm³ de gaz naturel, puis on charge à nouveau 65 tonnes de déchets d'aluminium (dans cet exemple, ce sont des boîtes de boisson) et on chauffe la charge jusqu'à consommer 850 Nm³ de gaz naturel supplémentaire. Ensuite, on charge 30 à nouveau 35 tonnes de déchets d'aluminium (tournures d'aluminium) et on chauffe la charge jusqu'à consommation de 1350 Nm³ de gaz naturel supplémentaire, on réalise ensuite la coulée de 99 tonnes d'aluminium, on procède alors au réchauffage des sels et crasses présents dans le four jusqu'à la consommation totale de 5500 Nm³ de gaz 35 naturel. Ensuite, on procède à la coulée de l'aluminium restant dans le four : 9 tonnes d'aluminium.

5

10

Sur la figure 3 sont représentées des variations du CO mesuré dans les fumées et celles du ratio R, défini précédemment, lors de la fusion des deux chargements d'aluminium décrits ci-dessus. Sur ces courbes, on voit clairement l'effet du changement automatique de stratégie. En effet, l'indicateur selon l'invention pilote le changement de phase au milieu de la fusion à l'instant t_2 car la première charge est constituée de canettes de boissons recouvertes de peinture, donc fortement chargées en composés organiques. D'autre part, lors de la fusion de la seconde charge, moins riche en composés organiques (tournures d'aluminium), l'indicateur contrôle le changement de phase en t'_2 peu après le début de la phase, optimisant ainsi le démarrage de la stratégie de contrôle adaptée à la phase II. Cet indicateur permet de diminuer les pertes par oxydation quel que soit le type de charge en entrée du four comme le montre le tableau ci-après :

	Type de matériau chargé	Unité	Procédé sans régulation	Procédé selon l'invention
Poids d'aluminium oxydé	boîtes	kg	1800	1750
Poids d'aluminium oxydé	tournures	kg	2000	1750

15

REVENDICATIONS

1. Procédé de traitement d'aluminium dans un four dans lequel on introduit dans le four un matériau contenant de l'aluminium et éventuellement un ou plusieurs sels, on réalise la fusion de ce matériau par apport de chaleur à l'aide d'au moins un brûleur alimenté en comburant et en combustible, de manière à obtenir de l'aluminium fondu éventuellement recouvert d'un laitier comportant notamment de l'alumine et au moins un sel, et on mesure la concentration en monoxyde de carbone CO et/ou en hydrogène H₂ dans l'atmosphère du four ou dans les fumées en sortie du four, caractérisé en ce que le comburant qui alimente au moins un brûleur comporte plus de 10 % volume d'oxygène, de préférence plus de 21 % vol. d'oxygène, et en ce que le procédé comporte une phase finale de réduction de l'oxydation de l'aluminium fondu au cours de laquelle le débit de comburant est sensiblement constant tandis que le débit de combustible injecté dans au moins un brûleur est fonction de la concentration en monoxyde de carbone et/ou de l'hydrogène dans l'atmosphère ou les fumées, ou vice-versa, cette concentration en monoxyde de carbone et/ou en hydrogène étant régulée sur une valeur de consigne C2 comprise entre 3 et 15 % vol.

2. Procédé selon la revendication 1, caractérisé en ce que le comburant comporte plus de 88 % vol. en O₂, de préférence plus de 95 % vol. en O₂.

3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le comburant est de l'oxygène industriellement pur.

4. Procédé selon la revendication 1, caractérisé en ce que le combustible est choisi parmi le gaz naturel, les hydrocarbures, le fioul léger ou lourd.

5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le rapport volumique oxygène sur combustible est maintenu entre 1 et 5, de préférence 1,5 et 3.

6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la concentration en monoxyde de carbone et/ou en hydrogène est maintenue sensiblement constante pendant toute cette phase de réduction d'oxydation à une valeur C2 comprise entre 3 % et 15 %, de préférence 6 à 10 % vol.

7. Procédé selon les revendications 1 à 6, caractérisé en ce que la phase de réduction d'oxydation est précédée par une phase de combustion des hydrocarbures au cours de laquelle sensiblement tous les produits organiques présents dans le matériau sont détruits par pyrolyse.

8. Procédé selon la revendication 7, caractérisé en ce que la phase de combustion des hydrocarbures est considérée comme terminée lorsque la valeur

mesurée du ratio R du débit volumique d'oxygène divisé par le débit volumique de combustible devient inférieure à une valeur S prédéterminée..

9. Procédé selon les revendications 7 et 8, caractérisé en ce qu'une phase de stabilisation se déroule avec une concentration CO et/ou H₂ mesurée régulée sur la valeur de consigne C₁, cette phase se terminant lorsque le ratio R atteint son minimum.

10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que la phase de réduction d'oxydation de l'aluminium se termine par réintroduction dans la four d'une nouvelle charge de matériau contenant de l'aluminium.

11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que la mesure de CO est réalisée à l'aide d'une diode laser.

12. Utilisation d'une diode laser pour la mesure du CO dans un procédé selon l'une au moins des revendications précédentes.

1/3

FIG.1

1/3

FIG.1

2 / 3

FIG. 2

2/3

FIG.2

DEBUT DE FUSION
"BOITES"
"TOURNURES"

FIG. 3

3/3

FIG.3 $t_1 t_2$

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

Désignation de l'inventeur

Vos références pour ce dossier	S6510JV
N° D'ENREGISTREMENT NATIONAL	
TITRE DE L'INVENTION	
Procédé de traitement d'aluminium dans un four rotatif ou réverbère	
LE(S) DEMANDEUR(S) OU LE(S) MANDATAIRE(S):	
DÉSIGNÉ(NT) EN TANT QU'INVENTEUR(S):	
Inventeur 1	
Nom	LUCAS
Prénoms	Nicolas
Rue	23, allée des Alouettes
Code postal et ville	78200 MAGNANVILLE
Société d'appartenance	
Inventeur 2	
Nom	ZAMUNER
Prénoms	Bernard
Rue	20, Square Robinson
Code postal et ville	92330 SCEAUX
Société d'appartenance	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par

Signataire: FR, L'Air Liquide SA, J.Vesin

Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction

L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ÉTUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE (Demandeur 1)

1
2
3
4
5
6
7
8
9

PCT/FR2005/050074

