Pilote automatique de voilier

On se propose d'analyser le fonctionnement et de régler un pilote automatique de cockpit pour bateau à voile de moins de 12m.

Le dispositif est le suivant :

• La commande de direction du bateau est constituée d'un safran (ou gouvernail) entraîné par une barre. Lorsque la barre est alignée sur l'axe du bateau, celui-ci se déplace en ligne droite suivant l'axe (Ox). Si la barre est déplacée en rotation d'un angle θ , le bateau "tourne" en sens inverse. Le changement de cap est stoppé lorsque la barre redevient alignée sur l'axe du bateau.

- La barre peut être actionnée manuellement ou par un pilote automatique, constitué des éléments suivants :
 - Un vérin électrique : c'est l'actionneur de la barre. Il est constitué d'un moteur à courant continu à aimants permanents qui entraine en translation l'axe du vérin, cet axe étant fixé à la barre.
 - Un capteur de cap du bateau (compas "flux gate") qui donne la position angulaire absolue de l'axe (Ox) : $S=0^\circ$ pour le Nord, $S=180^\circ$ pour le Sud. On suppose que l'information du compas, après mise en forme, est une tension notée V_S .

La boucle d'asservissement de cap est la suivante :

1) Analyse du fonctionnement en boucle ouverte

On va vérifier que, pour une vitesse moyenne de 6 nœuds le modèle du système à asservir est approximativement le suivant :

Avec : K1 = 9, K2 = 0.5, $\tau = 1s$

U est exprimée en volts, θ et S en degrés

- 1.1) En appliquant un échelon de position en tension U variant de 0 à 1 Volt, calculer et tracer θ (t). (Conditions initiales nulles : θ (t = 0)=0)
- 1.2) En appliquant un échelon de position sur θ d'amplitude 10° (manuellement ou à l'aide d'une "impulsion" sur U), calculer et tracer S(t). (S(t=0)=0)
- 1.3) La tension de sortie du compas $Vs \in [-10 \text{ Volts}, +10 \text{ Volts}]$ pour un cap $S \in [-180^\circ, +180^\circ]$ En négligeant son temps de réponse, donner le gain G_c de cet élément.

2) Etude de la stabilité de la boucle fermée en l'absence de régulateur

La boucle fermée sera analysée en choisissant comme variable de sortie la tension Vs. ATTENTION : <u>le modèle utilisé sera maintenant le suivant</u> :

- Tracer les lieux de Bode de la boucle ouverte en gain et en phase sur papier libre (tracer les asymptotes et placer approximativement les courbes réelles).
- Calculer le module (en dB) de la boucle ouverte à la pulsation : $\omega = 1 \text{ rad/s}$
- Déduire sur le tracé asymptotique la pulsation ω₀ correspondant au passage par 0 dB
- Conclusion sur la stabilité de la boucle fermée ?

3) Etude de la stabilité de la boucle fermée en présence d'un régulateur

Le modèle utilisé sera le suivant :

Pour les tracés de Bode, on confondra maintenant courbe et asymptote

On propose d'effectuer le réglage en trois étapes :

- **3.1**) Le régulateur est de type proportionnel, de gain G = 0.0625
 - Quelle est la nouvelle pulsation ω₁ correspondant au passage par 0 dB?
 - Conclusion sur la stabilité de la boucle fermée ?
- **3.2**) Le régulateur est maintenant le suivant : $\frac{V}{\varepsilon} = G \frac{1 + Tp}{1 + \theta p}$

avec : $T >> \theta$ et G = 0.0625

- Quel est le type de ce régulateur ?
- On choisit : T = 8s et $\theta = 8ms$. Tracer l'allure asymptotique des lieux de Bode en

gain et en phase du terme : $\frac{1+Tp}{1+\theta p}$ (documenter le tracé en indiquant toutes les

valeurs numériques caractéristiques)

• Déduire des tracés précédents l'allure asymptotique des lieux de Bode en gain et

en phase de la boucle ouverte corrigée : $0.0625 \frac{1+8p}{1+0.008p} \cdot 0.247 \frac{1}{p^2(1+p)}$

- Conclusion sur la stabilité de la boucle corrigée ?
- Quelle est la pulsation correspondant à un gain de 0 dB?
- Calculer l'argument de la boucle ouverte corrigée à cette pulsation
- En déduire la marge de phase M_φ
- 3.3) On va maintenant ajuster le réglage en modifiant la valeur de G.
- \bullet A quelle pulsation ω_2 faut-il placer le niveau 0dB pour obtenir la marge de phase maximale ?
- Calculer l'argument de la boucle ouverte corrigée à $\omega = \omega_2$
- ullet En déduire la nouvelle marge de phase M_{ϕ}
- De quelle valeur le gain (en dB) doit-il être modifié pour obtenir ce résultat ?

4) Schéma du Régulateur

Calculer les fonctions de transfert des deux régulateurs proposés.

Quel est celui qui permet de réaliser le régulateur proposé à la question 3.3 de la forme

$$G \frac{1+Tp}{1+\theta p}$$
 avec: T>> θ

