

La Necesidad de IPv6

- IPv6 está diseñada para suceder a IPv4
- El agotamiento del espacio de direccionamiento IPv4 ha motivado el hecho de cambiarse a IPv6
- Proyecciones mostraron que los cinco RIRs se quedarán sin direcciones IPv4 entre el 2015 y 2020
- Con una población de Internet incrementándose, un espacio de direcciones IPv4 limitado, problemas con NAT y la Internet de las cosas, ha llegado el momento de la transición a IPv6!

La necesidad de IPv6

- IPv4 tiene teóricamente un máximo de 4.3 miles de millones de direcciones más las direcciones privadas combinadas con NAT
- IPv6 tiene un largo de 128-bit, proveyendo un espacio de direcciones de 340 decillones de direcciones
- IPv6 fija los límites de IPv4 e incluye mejoras adicionales como ICMPv6

Coexistencia de IPv4 e IPv6

Las técnicas de migración se pueden dividir en tres

categorías:

#1

Dual-stack: Permite IPv4 e IPv6 coexistir en la misma red. Los dispositivos corren los stack de protocolos IPv4 e IPv6 simultanemente.

Coexistencia de IPv4 e IPv6

Las técnicas de migración se pueden dividir en tres categorías :

Tunnelling: Un método de transporte de un paquete IPv6 sobre una red IPv4. El paquete IPv6 es encapsulado dentro de un paquete IPv4.

Coexistencia de IPv4 e IPv6

Las técnicas de migración se pueden dividir en tres categorías :

Translation: Network Address Translation 64 (NAT64) permite a un dispositivo habilitado-IPv6 comunicarse con dispositivos habilitados-IPv4 usando una técnica de traducción similar al NAT de IPv4. Un paquete IPv6 es traducido a un paquete IPv4, y vice versa.

Sistema de numeración Hexadecimal

- Hexadecimal es un sistema de base dieciseis
- El sistema de numeración de base dieciseis usa los números del 0 al 9 y las letras de la A a F
- Cuatro bits (la mitad de un byte) pueden ser representados con un único valor hexadecimal

Hexadecimal
0
1
2
3
4
5
6
7
8
9
Α
<u> </u>
ੌ c
D
Е
F

Decimal
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Representación de direcciones IPv6

 Mira el patrón de bits binarios que coincide con los valores decimal y hexadecimal

Hexadecimal	Decimal
00	0
01	1
02	2
03	3
04	4
05	5
06	6
07	7
08	8
0A	10
0F	15
10	16
20	32
40	64
80	128
C0	192
CA	202
F0	240
FF	255

Binary
0000 0000
0000 0001
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110
0000 0111
0000 1000
0000 1010
0000 1111
0001 0000
0010 0000
0100 0000
1000 0000
1100 0000
1100 1010
1111 0000
1111 1111

Representación de direcciones IPv6

- 128 bits de largo y escrito en un string de valores hexadecimal
- En IPv6, 4 bits representan un único dígito hexadecimal, 32 valores hexadecimal = dirección IPv6

2001:0DB8:0000:1111:0000:0000:0000:0200

FE80:0000:0000:0000:0123:4567:89AB:CDEF

- Hextet (nombre usado por cada bloque de 4 valores hexadecimales) usado para referenciar un segmento de 16 bits o cuatro hexadecimales
- Puede ser escrito en minúscula o mayúscula

Regla 1- Omisión de los primeros 0s

- La primera regla que ayuda a reducir la notación de direccionamiento IPv6 es que cualquier cero a la izquierda en cualquier sección de 16-bit o hextet puede ser omitido
- 01AB puede ser representado como 1AB
- 09F0 puede ser representado como 9F0
- 0A00 puede ser representado como A00
- 00AB puede ser representado como AB

Preferred	2001:0DB8:000A:1000:0000:0000:0000:0100	
No leading 0s	2001: DB8: A:1000: 0: 0: 100	
Compressed	2001:DB8:A:1000:0:0:100	

Regla 2- Omisión de segmentos de todos 0

- Un doble colon (::) puede reemplazar algún único, contiguo string de uno o más segmentos de 16-bit (hextets) que consisten de sólo 0's
- Double colon (::) puede ser usado una vez dentro de una dirección de otra manera la dirección será ambigua
- Conocer como es el formato comprimido
- Dirección incorrecta 2001:0DB8::ABCD::1234

Regla 2- Omisión de segmentos de todos 0

Ejemplos

#1

Preferred	2001:0DB8:0000:0000:ABCD:0000:0000:0100		
Omit leading 0s	2001: DB8: 0: 0:ABCD: 0: 0: 100		
Compressed	2001:DB8::ABCD:0:0:100		
OR			
Compressed	2001:DB8:0:0:ABCD::100		

Only one :: may be used.

#2

Preferred	FE80:0000:0000:0000:0123:4567:89AB:CDEF
Omit leading 0s	FE80: 0: 0: 123:4567:89AB:CDEF
Compressed	FE80::123:4567:89AB:CDEF

2001:0DB8:0000:0000:ABCD:0000:0000:0100

FE80:0000:0000:0000:0123:4567:89AB:CDEF

FF02:0000:0000:0000:0000:0000:0000:0001

FF02:0000:0000:0000:0000:0001:FF00:0200

0000:0000:0000:0000:0000:0000:0000:0001

0000:0000:0000:0000:0000:0000:0000:0000

Tipos de direcciones IPv6

Hay tres tipos de direcciones IPv6:

- Unicast
- Multicast
- Anycast.

Nota: IPv6 no tiene dirección de broadcast.

Largos de prefijo IPv6

- IPv6 no usa máscara de subred de notación decimal punteada
- Largo de prefijo indica la porción de la red de una dirección IPv6 usando el siguiente formato:
 - Dirección IPv6/largo de prefijoprefix length
 - Largo de prefijo puede ser de 0 a 128
 - Típicamente el largo de prefijo es /64

Direcciones Unicast IPv6

Unicast

- Identifica exclusivamente una interfaz en un dispositivo habilitado-IPv6
- Un paquete enviado a una dirección unicast es recibido por la interfaz que tiene asignada esa dirección.

Direcciones Unicast IPv6

Direcciones Unicast IPv6

Global unicast

- Similar a la dirección pública IPv4
- Globalmente única
- Dirección ruteable por Internet.
- Puede ser asignada estáticamente o dinámicamente

Link-local

- Usada para comunicarse con otros dispositivos en el mismo enlace local
- Confinada a un único enlace no es ruteable más allá del enlace

Direcciones Unicast IPv6

Loopback

- Usada por host para enviar paquetes a si mismo y no puede ser adsignada a una interfaz física
- Ping a una dirección IPv6 loopback prueba la configuración de TCP/IP en el host local
- Todos-0s excepto por el último bit, representado como ::1/128 o sólo
 ::1

Dirección no especificada (Unspecified)

- Todos-0's representada como ::/128 o sólo ::
- No puede ser asignada a una interfaz y es solamente usada como una dirección origen
- Una dirección no especificada es usada como una dirección origen cuando el dispositivo aún no tiene una dirección IPv6 o cuando el origen del paquete es irrelevante al destino

Direcciones Unicast IPv6

Local única (Unique local)

- Similar a direcciones privadas IPv4
- Usada para el direccionamiento local dentro de un sitio o entre un número limitado de sitios
- En el rango de FC00::/7 a FDFF::/7
- Si inicia el rango en FC00::/7 cuales bits podrían cambiar?

IPv4 embedded

Usada para ayudar a la transición de IPv4 a IPv6

Direcciones Unicast IPv6 Link-Local

- Cada interfaz de red habilitada-IPv6 NECESITA tener una dirección de link-local
- Permite a un dispositivo comunicarse con otro dispositivo habilitado-IPv6 en el mismo enlace y sólo en ese enlace (subred)
- Rango FE80::/10, los primeros 10 bits son 1111 1110 10xx xxxx
- 1111 1110 1000 0000 (FE80) 1111 1110 1011 1111 (FEBF)

Direcciones Unicast IPv6 Link-Local

 Paquetes con una dirección origen o destino de link-local no pueden ser ruteadas más allá del enlace de donde el paquete fue originado

Direcciones IPv6

Estructura de una dirección IPv6 global Unicast

- Direcciones IPv6 globales unicast son globalmente únicas y ruteables en la Internet IPv6
- Equivalente a direcciones IPv4 públicas
- ICANN asigna bloques de direcciones IPv6 a los cinco RIRs
- Actualmente, sólo direcciones globales unicast con los tres primeros bits de 001 o 2000::/3 están siendo asignadas
- Si se dan 48 bits como prefijo de routing y se están asignando actualmente direcciones 001/3 cual es el rango
- 2001:0DB8::/32 es usada para documentación y apredizaje

Direcciones IPv6

Estructura de una dirección IPv6 global Unicast

Actualmente, sólo direcciones globales unicast con los tres primeros bits de 001 o 2000::/3 están siendo asignadas

Estructura de una dirección IPv6 global Unicast

Una dirección global unicast tiene tres partes:

- Prefijo Global Enrutable- prefijo o porción de red de la dirección asignada por el proveedor, como un ISP, a un cliente o sitio, actualmente, RIR's asignan un prefijo global enrutable /48 a los clientes
- 2001:0DB8:ACAD::/48 tiene un prefijo que indica que los primeros 48 bits (2001:0DB8:ACAD) son el prefijo o porción de red

Estructura de una dirección IPv6 global Unicast

ID de Subred

 Usado por una organización para identificar subredes dentro de su sitio

ID de Interfaz

- Equivalente a la porción de host de una dirección IPv4
- Usada debido a que un host puede tener múltiples interfaces, cada una teniendo una o más direcciones IPv6

Direcciones IPv6 Unicast Configuración Estática de una dirección Global Unicast


```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ipv6 address 2001:db8:acad:1::1/64
R1(config-if) #no shutdown
R1(config-if) #exit
R1(config) #interface gigabitethernet 0/1
R1(config-if) #ipv6 address 2001:db8:acad:2::1/64
R1(config-if) #no shutdown
R1(config-if) #exit
R1(config) #interface serial 0/0/0
R1(config-if) #ipv6 address 2001:db8:acad:3::1/64
R1(config-if) #clock rate 56000
R1(config-if) #no shutdown
```


Direcciones IPv6 Unicast Configuración Estática de una dirección Global Unicast

Direcciones IPv6 Unicast Configuración Dinámica de una dirección Global Unicast usando SLAAC

Autoconfiguración de Dirección Sin estado (Stateless Address Autoconfiguraton SLAAC)

- Un método que permite a un dispositivo obtener su prefijo, largo de prefijo y default gateway desde un router IPv6
- Sin necesidad de un servidor DHCPv6
- Confía en mensajes ICMPv6 Router Advertisement (RA)

Routers IPv6 Reenvían paquetes IPv6 entre redes

- Puede ser configurado con rutas estáticas o un protocolo de enrutamiento dinámico IPv6
- Envía mensajes ICMPv6 RA

Direcciones IPv6 Unicast Configuración Dinámica de una dirección Global Unicast usando SLAAC

El Comando IPv6 unicast routing habillita enrutamiento IPv6

Mensajes RA pueden contener una de las siguientes tres opciones

- Sólo SLAAC usa la información contenida en el mensaje RA
- SLAAC y DHCPv6 usa la información contenida en el mensaje RA y obtiene otra información desde el servidor DHCPv6, stateless DHCPv6 (ejemplo: DNS)
- Sólo DHCPv6 el dispositivo no debería usar la información en el RA, stateful DHCPv6

Routers envían mensajes ICMPv6 RA usando la dirección linklocal como la dirección IPv6 origen

Direcciones IPv6 Unicast Configuración Dinámica de una dirección Global Unicast usando SLAAC

Router Solicitation and Router Advertisement Messages

Router Advertisement Options

Option 1 (SLAAC Only) – "I'm everything you need (Prefix, Prefix-length, Default Gateway)"

Option 2 (SLAAC and DHCPv6) – "Here is my information but you need to get other information such as DNS addresses from a DHCPv6 server."

Option 3 (DHCPv6 Only) – "I can't help you. Ask a DHCPv6 server for all your information."

Configuración Dinámica de una dirección Global Unicast usando SLAAC

Dynamic Host Configuration Protocol para IPv6 (DHCPv6)

- Similar a IPv4
- Automáticamente recibe información de direccionamiento incluyendo una dirección global unicast, largo de prefijo, dirección default gateway y la dirección de servidores DNS usando los servicios de un servidor DHCPv6
- Los dispositivos pueden recibir toda o alguna de su información de direccionamiento IPv6 desde un servidor DHCPv6 dependiendo si la opción 2 (SLAAC y DHCPv6) o la opción 3 (sólo DHCPv6) es especificada en el mensaje ICMPv6 RA
- Los Host pueden elegir ignorar lo que está en el mensaje RA del router y obtener su dirección IPv6 y otra información directamente desde un servidor DHCPv6.

Configuración Dinámica de una dirección Global Unicast usando DHCPv6

Router Solicitation and Router Advertisement Messages

Note: An RA with option 3 (DHCPv6 Only) enabled will require the client to obtain all information from the DHCPv6 Server.

Proceso EUI-64 o aleatoriamente generado

Proceso EUI-64

- El proceso usa la dirección de 48-bit MAC Ethernet de un cliente, e inserta otros 16 bits en el medio de la dirección MAC para crear un ID de interfaz de 64-bit
- La ventaja es que la dirección MAC Ethernet puede ser usada para determinar la interfaz – facilmente rastreada

El ID de interfaz EUI-64 es representada en binario y se compone de tres partes:

- OUI de 24-bit de la dirección MAC cliente, pero el 7º bit es invertido (0 se hace un 1)
- un valor insertado de 16-bit FFFE
- Identificador del dispositivo de 24-bit de la dirección MAC cliente

Proceso EUI-64 o aleatoriamente generado

EUI-64 Process

Proceso EUI-64 o aleatoriamente generado

```
R1#show interface gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
  Hardware is CN Gigabit Ethernet, address is fc99.4775.c3e0
(bia fc99.4775.c3e0)
<Output Omitted>
Rl#show ipv6 interface brief
GigabitEthernet0/0
                        [up/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:1::1
GigabitEthernet0/1
                       [up/up]
                                        Link-local addresses using
    FE80::FE99:47FF:FE75:C3E1
                                        EUI-64
    2001:DB8:ACAD:2::1
Serial0/0/0
                        [up/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:3::1
Serial0/0/1
                        [administratively down/down]
    unassigned
R1#
```


Proceso EUI-64 o aleatoriamente generado

IDs de Interfaz Aleatoriamente Generado

- Dependiendo del sistema operativo, un dispositivo puede usar un ID de interfaz aleatoriamente generado en vez de usar la dirección MAC y el proceso EUI-64
- Comenzando con Windows Vista, Windows usa un ID de interfaz aleatoriamente generado en vez de uno creado con EUI-64
- Windows XP y versiones previas de Windows usaron el EUI-64

Direccionamiento de enlace local dinámico

Direcciones de Link-local

- Después de que una dirección global unicast es asignada a una interfaz, dispositivos habilitado-IPv6 automáticamente generan su dirección de link-local
- Debe tener una dirección link-local la cual permite a un dispositivo comunicarse con otro dispositivo habilitado-IPv6 en la misma subred
- Usa la dirección de link-local del router local como su default gateway IPv6
- Los Routers intercambian mensajes de protocolos de enrutamiento dinámicos usando direcciones de link-local
- Las tablas de enrutamiento de los Routers usan la dirección de link-local para identificar al router de next-hop cuando reenvían paquetes IPv6

Direccionamiento de enlace local dinámico

Dinámicamente asignado

 Direcciones de Link-local son dinámicamente creadas usando el prefijo FE80::/10 y la interfaz ID

Direcciones de Link-local estáticas

Configurando link-local

```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ipv6 address fe80::1 ?
link-local Use link-local address

R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #exit
R1(config) #interface gigabitethernet 0/1
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #exit
R1(config-if) #exit
R1(config) #interface serial 0/0/0
R1(config-if) #ipv6 address fe80::1 link-local
R1(config-if) #ipv6 address fe80::1 link-local
```

Direcciones de Link-local estáticas

Configurando link-local

```
R1#show ipv6 interface brief
GigabitEthernet0/0
                         [up/up]
    FE80::1
    2001:DB8:ACAD:1::1
GigabitEthernet0/1
                         [up/up]
                                           Statically configured link-
    FE80::1
                                           local addresses
    2001:DB8:ACAD:2::1
Serial0/0/0
                         [up/up]
    FE80::1
    2001:DB8:ACAD:3::1
Serial0/0/1
                         [administratively down/down]
    unassigned
R1#
```

Direcciones IPv6 Global Unicast Verificando configuración de dirección IPv6

Cada interfaz tiene dos direcciones IPv6-

- Dirección global unicast que fue configurada
- 2. Una que comienza con FE80 es una dirección de linklocal unicast automáticamente agregada
- La interfaz serial tiene la misma link-local que la G0/0


```
R1#show ipv6 interface brief
GigabitEthernet0/0
                        [ap/up]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:1::1
GigabitEthernet0/1
                        [up/up]
    FE80::FE99:47FF:FE75:C3E1
    2001:DB8:ACAD:2::1
                        [qu/qu]
    FE80::FE99:47FF:FE75:C3E0
    2001:DB8:ACAD:3::1
Serial0/0/1
                        [administratively down/down]
    unassigned
R1#
```

Direcciones IPv6 Global Unicast Verificando configuración de dirección IPv6

```
R1#show ipv6 route
IPv6 Routing Table - default - 7 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static
<output omitted>
   2001:DB8:ACAD:1::/64 [0/0]
   via GigabitEthernet0/0, directly connected
   2001:DB8:ACAD:1::1/128 [0/0]
   via GigabitEthernet0/0, receive
   2001:DB8:ACAD:2::/64 [0/0]
   via GigabitEthernet0/1, directly connected
   2001:DB8:ACAD:2::1/128 [0/0]
   via GigabitEthernet0/1, receive
   2001:DB8:ACAD:3::/64 [0/0]
   via Serial0/0/0, directly connected
   2001:DB8:ACAD:3::1/128 [0/0]
   via Serial0/0/0, receive
  FF00::/8 [0/0]
    via NullO, receive
R1#
```

Dirección IPv6 Multicast asignada

- Direcciones IPv6 multicast tienen el prefijo FFxx::/8
- Hay dos tipos de direcciones IPv6 multicast:
 - Multicast asignada
 - Multicast Solicited node
 - Son de Destino, No de Origen.

Dirección IPv6 Multicast asignada

Dos grupos comunes multicast IPv6 asignado incluyen:

- FF02::1 All-nodes multicast group
 - todos los dispositivos habilitados-IPv6 participan
 - igual efecto que una dirección IPv4 broadcast
- FF02::2 All-routers multicast group
 - todos los routers IPv6 participan
 - un router se hace un miembro de este grupo cuando está habilitado como un router IPv6 con el comando de configuración global ipv6 unicast-routing
 - un paquete enviado a este grupo es recibido y procesado por todos los routers IPv6 en el enlace o red.

Dirección IPv6 Multicast asignada

Direcciones IPv6 Multicast Solicited Node

 Similar a la dirección multicast all-nodes, coincide sólo con los últimos 24 bits de la dirección IPv6 global unicast de un dispositivo

IPv6 Global Unicast Address: 2001:0DB8:ACAD:0001:0000:0000:0000:0010

IPv6 Solicited Node Multicast Address: FF02::1:FF00:0010

- Automáticamente creada cuando la dirección global unicast o dirección de link-local unicast son asignadas
- Creada combinando un prefijo especial FF02:0:0:0:0:FF00::/104
 con 24 bits de más a la derecha de su dirección unicast

Direcciones IPv6 Multicast Solicited Node

- La dirección multicast solicited nodeconsiste de dos partes:
- FF02:0:0:0:0:FF00::/104 multicast prefix primeros 104 bits de todas las direcciones multicast solicited node
- 24-bits menos significantes copiado desde los 24 bits de más a la derecha de la dirección global unicast o link-local unicast del dispositivo

IPv6 Global Unicast Address: 2001:0DB8:ACAD:0001:0000:0000:0000:0010

IPv6 Solicited Node Multicast Address: FF02::1:FF00:0010

Mensajes ICMPv4 e ICMPv6

- Mensajes ICMP comunes a ICMPv4 e ICMPv6 incluyen:
 - Confirmación de Host
 - Destino o Servicio Inalcanzable(Red, host, Procolo, Puerto)
 - Tiempo excedido
 - Redirección de ruta
- Aunque IP no es un protocolo confiable, la suite TCP/IP provee mensajes para ser enviados en el evento de ciertos errores, envía usando el servicio de ICMP

Mensajes Router Solicitation ICMPv6 y Router Advertisement

- ICMPv6 incluye cuatro nuevos protocolos como parte del Neighbor Discovery Protocol (ND or NDP):
 - Mensaje Router Solicitation
 - Mensaje Router Advertisement
 - Mensaje Neighbor Solicitation
 - Mensaje Neighbor Advertisement
- Mensaje Router Solicitation y Router Advertisement: Enviado entre hosts y routers.
- Mensaje Router Solicitation (RS): Mensajes RS es enviado como un mensaje multicast IPv6 a todos los routers
- Mensaje Router Advertisement (RA): Mensajes RA son enviados por los routers para proveer información de direccionamiento

Messages ICMPv6 Router Solicitation y Router Advertisement

Mensajes ICMPv6 Neighbor Solicitation y Neighbor Advertisement

Dos tipos de mensajes adicionales

- Neighbor Solicitation (NS)
- Neighbor Advertisement (NA)

Usados para:

- Resolución de direcciones
 - Usado cuado un dispositivo en la LAN conoce la dirección IPv6 unicast de un destino, pero no conoce su dirección MAC Ethernet
- Duplicate Address Detection (DAD)
 - Ejecutado en la dirección para asegurar que es único
 - El dispositivo enviará mensajes mensajes NS con su propia dirección IPv6 como la dirección IPv6 objetivo

Mensajes ICMPv6 Neighbor Solicitation y Neighbor Advertisement

ICMPv6 Neighbor Discovery Protocol

Prueba y verificación

Traceroute – Probando la ruta

Traceroute (tracert)

- Genera una lista de saltos que fueron exitosamente alcanzadados a lo largo de la ruta
- Proporciona una verificación e información importante de resolución de problemas
- Si el dato alcanza el destino, entonces la traza lista la interfaz de cada router en la ruta entre los hosts
- Si el dato falla en algunos saltos a lo largo de la ruta, la dirección del último router que respondió a la traza puede proporcionar una indicación de donde el problema o restricción de seguridad fue encontrado
- Proporciona el tiempo de ida y vuelta (round trip time) para cada salto a lo largo de la ruta e indica si un salto falla de responder

CALENTAMIENTO

En Global: ip route dirección máscara siguiente salto ipv6 route direcciónipv6/prefijo siguiente salto ipv6