A Scalable Algorithm for Sparse and Robust Portfolios

The Sparse Markowitz Model [1]

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \ \frac{1}{2\gamma} \boldsymbol{x}^\top \boldsymbol{x} + \frac{\sigma}{2} \boldsymbol{x}^\top \boldsymbol{\Sigma} \boldsymbol{x} - \boldsymbol{\mu}^\top \boldsymbol{x}, \tag{1}$$

s.t.
$$\boldsymbol{l} \leq \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{u}, \boldsymbol{e}^{\top}\boldsymbol{x} = 1, \boldsymbol{x} \geq \boldsymbol{0}.$$
 (2)

- ▶ Where $||x||_0 \le k$, to reduce transaction fees.
- $ightharpoonup \gamma$ enforces sparsity in big-M free manner.
- ▶ Big-M approach: introduce binary z where $x \le z, e^{\top}z \le k$. Yields weaker relaxations.

Main Contributions

- ► A **tractable** nonlinear transformation which decouples the discrete, continuous.
- A **scalable** cutting-plane method which solves real-world problem instances, including the S&P 500, Wilshire 5000.
- A **generalizable** approach which also solves facility location, network design, unit commitment, sparse learning problems [4].

Overview of the Approach

- Introduce new variables $\hat{x}_i = z_i x_i$, $\boldsymbol{z} \in \{0, 1\}^n$, $\boldsymbol{Z} = \text{Diag}(\boldsymbol{z})$.
- ▶ Perform a non-linear reformulation of (1) into:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{z} \in \{0,1\}^n} \frac{1}{2\gamma} \boldsymbol{x}^\top \boldsymbol{x} + \frac{\sigma}{2} \boldsymbol{x}^\top \boldsymbol{Z} \boldsymbol{\Sigma} \boldsymbol{Z} \boldsymbol{x} - \boldsymbol{\mu}^\top \boldsymbol{Z} \boldsymbol{x}.$$
(5)

- Strengthened the formulation by omitting Z in $\frac{1}{2\gamma}x^{\top}x$ (if $z_i=0$, best choice of $x_i=0$).
- ightharpoonup This is equivalent to (A), via duality.

A Saddle-Point Reformulation

$$(\boldsymbol{A}): \min_{\boldsymbol{z} \in \{0,1\}^n: \sum_{i=1}^n z_i \le k} f(\boldsymbol{z}) \text{ where } f(\boldsymbol{z}):= \max_{\boldsymbol{w} \in \mathbb{R}^n} h(\boldsymbol{w}) - \frac{\gamma}{2} \sum_i z_i w_i^2$$
(3)

- \blacktriangleright h(w) is concave in dual vars.
- ▶ Subgradients of f(z) are given by $\frac{\partial f(z)}{\partial z_i} = \frac{-\gamma}{2} w_i^2$.
- ► Solvable via outer-approximation, using lazy callbacks.
- ► Invoking duality repeatedly gives a SOCP relaxation of (A); rediscovery of perspective relaxation of [2].

Analysis of SOCP Relaxation Quality [4]

▶ If z^* solves the SOCP relaxation of (**A**), a random rounding $z_i \sim \text{Bernoulli}(z_i^*)$ is ϵ -optimal with probability at least

$$1 - |\mathcal{R}| \exp\left(\frac{-2\epsilon^2}{\gamma^2 L^4 |\mathcal{R}|^2}\right) \tag{4}$$

- \triangleright $|\mathcal{R}|$ is no. fractional entries in z^* . L is bound on $|w_i^*(z)|$.
- ► Randomized rounding scheme bounds the SOCP gap via the probabilistic method. The gap is $O(\frac{1}{2}|\mathcal{R}|\ln\sqrt{|\mathcal{R}|})$, or smaller.

Big-M vs. Ridge Regularization [4]

- ▶ Sensitivity to M, γ for Russell 1000 with k = 5.
- $lackbox{M}$, γ play fundamentally same role. But γ -regularization is smoother, always feasible, while M can induce infeasibility.

Comparison With State-of-the-Art

ightharpoonup Comparison vs. big-M for OR-lib problems [3].

 \blacktriangleright 4 **orders of magnitude** speedup over big-M.

The Edge of Our Approach

Set of securities	Sparsity	Min Time (s)	Max Time (s)
S&P 500	k = 50	105 s	374 s
S&P 500	k = 200	169 s	370 s
Russell 1000	k = 50	$1,732\;\mathrm{s}$	$3,320\;\mathrm{s}$
Russell 1000	k = 200	$3,647\;\mathrm{s}$	$4642 \mathrm{\ s}$
Wilshire 5000	k = 50	18 s	457 s
Wilshire 5000	k = 200	18 s	104 s

We used a different solver for Wilshire 5000 SOCP bound.

References

- [1] D. Bertsimas and R. Cory-Wright, "A scalable algorithm for sparse and robust portfolios," *Under major revisions at Oper. Res., available at Opt. Online*, 2018.
- [2] M. S. Aktürk, A. Atamtürk, and S. Gürel, "A strong conic quadratic reformulation for machine-job assignment with controllable processing times," *Oper. Res. Letters*, 2009.
- [3] T.-J. Chang *et al.*, "Heuristics for cardinality constrained portfolio optimisation," *Comp. Oper. Res.*, 2000.
- [4] D. Bertsimas, R. Cory-Wright, and J. Pauphilet, "A unified approach to mixed-integer optimization: Nonlinear formulations and scalable algorithms," *Opt. Online*, 2019.

