Voting Classifier

2021.11.28 김은희

Bagging

: 데이터의 복원 추출 → 각각의 모델 만들기 → 하나의 모델로 합치기

Ensemble

: 약한 모델의 연결 > 좋은 모델 만들기

Boosting

: 맞추지 못한 케이스에 높은 가중치

Voting

: 모델 간 투표 🗲 예측 결과 선정

Voting과 Bagging의 비교

Voting Classifier의 두 흐름

Hard Voting (majority voting)

- 각 분류기로부터 예측될 확률이 가장 높은 class를 선정
- Classifier 1, 2, 3이 각각 class A, A, B를 예측 → hard voting → A

Soft Voting (weighted voting)

- 분류기들이 예측한 값의 확률 평균이 가장 높은 class를 선정
- Hard voting보다 합리적이며, 예측 성능이 좋음

	Classifier 1	Classifier 2	Classifier 3	평균
Class A	0.30	0.47	0.53	0.4333
Class B	0.20	0.32	0.40	0.3067

Voting Classifier 사용 방법

sklearn.ensemble.VotingClassifier¶

class sklearn.ensemble.VotingClassifier(estimators, *, voting='hard', weights=None, n_jobs=None, flatten_transform=True, verbose=False) [source]

<u>logistic_regression</u> = LogisticRegression()

knn = KNeighborsClassifier(n_neighbors=neighbors)

voting_model = VotingClassifier(estimators=[('LogisticRegression', logistic_regression), ('KNN', knn)], voting=(soft')

Voting Classifier 사용 방법

```
# Fit it to the training set
voting_model.fit(X_train, y_tain)
# Predict
y_pred = voting_model.predict(X_test)
# Evaluate the performance with accuracy score
acc = accuracy_score(y_test, y_pred)
print("Accuracy score : %.3f" %acc )
```