Notation

- LHS means left hand side and RHS means right hand side.
- CT means continuous time, and DT means discrete time.
- A system being LTI means the system is linear and time-invariant.
- The binary operator * denotes convolution for both CT and DT.
- The unit sample delta signal is given by

$$\delta[n] \triangleq \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

• $\delta(t)$ represents the unit impulse and satisfies

$$x(t) \star \delta(t - t_0) = x(t - t_0)$$

• The CT unit step and DT unit step functions, u(t) and u[n], respectively:

$$u(t) = \begin{cases} 1 & \text{for } t \ge 0 \\ 0 & \text{for } t < 0 \end{cases} \qquad u[n] = \begin{cases} 1 & \text{for } n \ge 0 \\ 0 & \text{for } n < 0 \end{cases}$$

Transform Definitions

1. Fourier Series (FS): For x(t) = x(t+T) periodic with period T and $\omega_0 = 2\pi/T$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}, \quad t \in \mathbb{R}$$
 (Synthesis)

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt, \quad k \in \mathbb{Z}$$
 (Analysis)

2. Discrete Time Fourier Series (DTFS): For x[n] = x[n+N] periodic with period N and $\omega_0 = 2\pi/N$

$$x[n] = \sum_{k=0}^{N-1} a_k e^{jk\omega_0 n}$$
 (Synthesis)

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk\omega_0 n}, \quad k \in \mathbb{Z}$$
 (Analysis)

3. Fourier Transform (FT):

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega, \quad t \in \mathbb{R}$$
 (Synthesis)

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt, \quad \omega \in \mathbb{R}$$
 (Analysis)

4. Discrete Time Fourier Transform (DTFT):

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega, \quad n \in \mathbb{Z}$$
 (Synthesis)

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}, \quad \omega \in \mathbb{R}$$
 (Analysis)

5. CT Frequency Response: The CT Frequency Response is defined by

$$H(j\omega) \triangleq \int_{-\infty}^{\infty} h(t) e^{-j\omega t} dt$$

6. DT Frequency Response: The DT Frequency Response is defined by

$$H(e^{j\omega}) \triangleq \sum_{n=-\infty}^{\infty} h[n] e^{-j\omega n}$$

Useful Formulas

Complex Numbers and Complex Exponentials

$$j = \sqrt{-1}$$

$$j^{2} = -1$$

$$\frac{1}{j} = -j$$

$$e^{j\pi n} = (-1)^{n}$$

$$e^{-j\pi n} = (-1)^{n}$$

$$e^{j2\pi n} = 1$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$e^{-j2\pi n} = 1$$

$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Trigonometric Identities

$$\sin(\theta) = \cos\left(\theta - \frac{\pi}{2}\right)$$

$$\cos(\theta) = \sin\left(\theta + \frac{\pi}{2}\right)$$

$$\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2}$$

$$\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$$

$$\sin^3(\theta) = \frac{3\sin(\theta) - \sin(3\theta)}{4}$$

$$\cos^3(\theta) = \frac{3\cos(\theta) + \cos(3\theta)}{4}$$

Geometric series

If α is a complex number then the following relationships hold:

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha} \quad |\alpha| < 1$$

$$\sum_{n=k}^{\infty} \alpha^n = \frac{\alpha^k}{1-\alpha} \quad |\alpha| < 1$$

$$\sum_{n=-k}^{\infty} \alpha^n = \frac{\alpha^k}{1-\alpha} \quad |\alpha| < 1$$

$$\sum_{n=-k}^{\infty} \alpha^n = \alpha^{-k} \left(\frac{\alpha}{\alpha-1}\right) \quad |\alpha| > 1$$

$$\sum_{n=-k}^{N-1} \alpha^n = \begin{cases} N \quad \alpha = 1, \\ \frac{1-\alpha^N}{1-\alpha} \quad \alpha \neq 1 \end{cases}$$

$$\sum_{n=k}^{\ell} \alpha^n = \begin{cases} \ell - k + 1 \quad \alpha = 1, \\ \frac{\alpha^k - \alpha^{\ell+1}}{1-\alpha} \quad \alpha \neq 1 \end{cases}$$

Integration

The letters n, a and b are constants.

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax)$$

$$\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$$

$$\int \sin^{2}(ax) dx = \frac{x}{2} + \frac{\sin(2ax)}{4a}$$

$$\int x \cos(ax) dx = \frac{\cos(ax) + ax \sin(ax)}{a^{2}}$$

$$\int e^{ax} \cos(bx) dx = \frac{e^{ax} (a \cos(bx) + b \sin(bx))}{a^{2} + b^{2}}$$

$$\int e^{ax} \sin(bx) dx = \frac{e^{ax} (a \sin(bx) - b \cos(bx))}{a^{2} + b^{2}}$$

$$\int e^{ax} \sin(bx) dx = \frac{e^{ax} (a \sin(bx) - b \cos(bx))}{a^{2} + b^{2}}$$

Differentiation

The letters f and g represent functions of x, whereas n, a and b are constants.

$$\frac{d}{dx}(af) = a\frac{df}{dx}$$

$$\frac{d}{dx}(f+g) = \frac{df}{dx} + \frac{dg}{dx}$$

$$\frac{d}{dx}(e^{ax}) = a e^{ax}$$

$$\frac{d}{dx}(x^n) = n x^{n-1}$$

$$\frac{d}{dx}(fg) = \left(\frac{df}{dx}\right)g + f\left(\frac{dg}{dx}\right)$$

$$\frac{d}{dx}\cos(ax+b) = -a\sin(ax+b)$$

$$\frac{d}{dx}\sin(ax+b) = a\cos(ax+b)$$

Properties of CT Fourier Series

Property	Periodic Signal, Period T Fundamental Frequency $\omega_0 = \frac{2\pi}{T}$	Fourier Series Coefficients
	x(t)	a_k
	y(t)	b_k
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time Shifting	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0}$
Periodic Convolution	$x(t) \star y(t) = \int_T x(\tau) y(t - \tau) d\tau$	Ta_kb_k
Differentiation	$\frac{dx(t)}{dt}$	$jk\omega_0a_k$
Real and Even Signals	x(t) real and even	a_k real and even
Real and Odd Signals	x(t) real and odd	a_k purely imaginary and odd

Also note Parseval's relation:

$$\frac{1}{T} \int_T |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

Discrete-time Fourier Transform Properties

Property	Signal	Fourier Transform
	x[n]	$X(e^{j\omega})$
	y[n]	$Y(e^{j\omega})$
Linearity	ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$
Time Shifting	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
Convolution	$x[n] \star y[n] = \sum_{k=-\infty}^{\infty} x[k] y[n-k]$	$X(e^{j\omega})Y(e^{j\omega})$
Differencing in Time	x[n] - x[n-1]	$(1 - e^{-j\omega})X(e^{j\omega})$

Properties of Fourier Transform

Property	Signal	Fourier Transform
	x(t)	$X(j\omega)$
	y(t)	$Y(j\omega)$
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Time and Frequency Scaling	x(at)	$\frac{1}{ a }X(\frac{j\omega}{a})$
Convolution	$x(t) \star y(t) = \int x(\tau) y(t - \tau) d\tau$	$X(j\omega)Y(j\omega)$
Multiplication	x(t) y(t)	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\theta) Y(j(\omega - \theta)) d\theta$
Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even
Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd

Fourier Transform Pairs

Signal	Fourier Transform	Fourier Series Coefficients (if Periodic)
$\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - k\omega_0)$	a_k
$\cos \omega_0 t$	$\pi \Big[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \Big]$	$a_1 = a_{-1} = \frac{1}{2}, a_k = 0 \text{ otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j} \Big[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \Big]$	$a_1 = -a_{-1} = \frac{1}{2j}, a_k = 0 \text{ otherwise}$
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	_
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_
$e^{-at}u(t), Re\{a\} > 0$	$\frac{1}{a+j\omega}$	-
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T})$	$a_k = \frac{1}{T}$ for all k