

Exact Solutions > Linear Partial Differential Equations > Second-Order Hyperbolic Partial Differential Equations > Linear Nonhomogeneous Wave Equation

2.2. Nonhomogeneous Wave Equation $\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2} + \Phi(x,t)$

2.2-1. Solutions of boundary value problems in terms of the Green's function.

We consider boundary value problems for the nonhomogeneous wave equation on a finite interval $0 \le x \le l$ with the general initial conditions

$$w = f(x)$$
 at $t = 0$, $\frac{\partial w}{\partial t} = g(x)$ at $t = 0$

and various homogeneous boundary conditions. The solution can be represented in terms of the Green's function as

$$w(x,t) = \frac{\partial}{\partial t} \int_0^l f(\xi) G(x,\xi,t) \, d\xi + \int_0^l g(\xi) G(x,\xi,t) \, d\xi + \int_0^t \int_0^l \Phi(\xi,\tau) G(x,\xi,t-\tau) \, d\xi \, d\tau.$$

2.2-2. Domain: $0 \le x \le l$. First boundary value problem for the wave equation.

Boundary conditions are prescribed:

$$w = 0$$
 at $x = 0$, $w = 0$ at $x = l$.

Green's function:

$$G(x,\xi,t) = \frac{2}{a\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi x}{l}\right) \sin\left(\frac{n\pi \xi}{l}\right) \sin\left(\frac{n\pi at}{l}\right).$$

2.2-3. Domain: $0 \le x \le l$. Second boundary value problem for the wave equation.

Boundary conditions are prescribed:

$$\frac{\partial w}{\partial x} = 0$$
 at $x = 0$, $\frac{\partial w}{\partial x} = 0$ at $x = l$.

Green's function:

$$G(x,\xi,t) = \frac{t}{l} + \frac{2}{a\pi} \sum_{n=1}^{\infty} \frac{1}{n} \cos\left(\frac{n\pi x}{l}\right) \cos\left(\frac{n\pi \xi}{l}\right) \sin\left(\frac{n\pi at}{l}\right).$$

2.2-4. Domain: $0 \le x \le l$. Third boundary value problem $(k_1 > 0, k_2 > 0)$.

Boundary conditions are prescribed:

$$\frac{\partial w}{\partial x} - k_1 w = 0$$
 at $x = 0$, $\frac{\partial w}{\partial x} + k_2 w = 0$ at $x = l$.

Green's function

$$G(x,\xi,t) = \frac{1}{a} \sum_{n=1}^{\infty} \frac{1}{\lambda_n \|u_n\|^2} \sin(\lambda_n x + \varphi_n) \sin(\lambda_n \xi + \varphi_n) \sin(\lambda_n at),$$

$$\varphi_n = \arctan \frac{\lambda_n}{k_1}, \quad \|u_n\|^2 = \frac{l}{2} + \frac{(\lambda_n^2 + k_1 k_2)(k_1 + k_2)}{2(\lambda_n^2 + k_1^2)(\lambda_n^2 + k_2^2)};$$

the λ_n are positive roots of the transcendental equation $\cot(\lambda l) = \frac{\lambda^2 - k_1 k_2}{\lambda (k_1 + k_2)}$.

References

Budak, B. M., Samarskii, A. A., and Tikhonov, A. N., Collection of Problems on Mathematical Physics [in Russian], Nauka, Moscow, 1980.

Polyanin, A. D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC, 2002

Linear Nonhomogeneous Wave Equation

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/lpde/lpde202.pdf