Non-thermal particles

The distribution function

Lecture 17

March 27, 2017

Last time: How does 1 charged particle evolve?

A: x and v change in time – for particle on field line use s, v and μ

This time: How do we describe a collection of charged particles? (i.e. a plasma)

A: with a distribution function $f(s,v,\mu)$

Next time: How does the particle evolution produce an evolution of $f(s,v,\mu)$?

A: by the Fokker-Planck equation

particles in phasespace volume: $f(x,v_x) dx dv_x$ kinda-phase space: $v_x vs. x$

particles in phasespace volume: $f(x_v_x) dx dv_x$

particles in phase-

* non-relativistic: take c $\rightarrow \infty$

^{*} non-relativistic: take c $\rightarrow \infty$

The 3d dist'n function

- 3 spatial dimensions: $\mathbf{x} = x_i = (x, y, z)$
- 3 velocity dimensions: $\mathbf{v} = v_i = (v_x, v_y, v_z)$
- 6 Phase space dimensions

Oth moment (scalar): # density

$$n(\mathbf{x}) = \int f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

1st moment (vector): fluid velocity

$$u_i(\mathbf{x}) = \frac{1}{n(\mathbf{x})} \int v_i f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

2nd moment

(tensor):
$$p_{ij}(\mathbf{x}) = m \int [\mathbf{v}_i - u_i(\mathbf{x})][\mathbf{v}_j - u_j(\mathbf{x})] f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$
 pressure

Pressure

$$p_{ij}(\mathbf{x}) = m \int [\mathbf{v}_i - u_i(\mathbf{x})] [\mathbf{v}_j - u_j(\mathbf{x})] f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

$$\frac{1}{2}\operatorname{Tr}(\ddot{p}) = \frac{1}{2}\sum_{i} p_{ii} = \frac{1}{2}m\int |\mathbf{v} - \mathbf{u}|^{2} f(\mathbf{x}, \mathbf{v}) d^{3}\mathbf{v}$$

$$= \int \frac{1}{2}m|\mathbf{v}|^{2} f(\mathbf{x}, \mathbf{v}) d^{3}\mathbf{v} - \frac{1}{2}m|\mathbf{u}|^{2} \int f(\mathbf{x}, \mathbf{v}) d^{3}\mathbf{v}$$
particle kinetic
energy density e

$$e = \int \frac{1}{2}m|\mathbf{v}|^{2} f(\mathbf{x}, \mathbf{v}) d^{3}\mathbf{v} = \frac{1}{2}mn|\mathbf{u}|^{2} + \frac{1}{2}\operatorname{Tr}(\ddot{p})$$
bulk kinetic
energy
energy ϵ

The pressure

$$p_{ij}(\mathbf{x}) = m \int [\mathbf{v}_i - u_i(\mathbf{x})] [\mathbf{v}_j - u_j(\mathbf{x})] f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

decompose
$$p_{ij}(\mathbf{x}) = p(\mathbf{x})\delta_{ij} - \sigma_{ij}(\mathbf{x})$$
 scalar viscous pressure stress tensor force density $F_i = -\sum_j \frac{\partial p_{ij}}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \sum_j \frac{\partial \sigma_{ij}}{\partial x_j}$ pressure gradient: $-\nabla p$ viscous force

Pressure

$$p_{ij}(\mathbf{x}) = m \int [\mathbf{v}_i - u_i(\mathbf{x})] [\mathbf{v}_j - u_j(\mathbf{x})] f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

decompose
$$p_{ij}(\mathbf{x}) = p(\mathbf{x})\delta_{ij} - \sigma_{ij}(\mathbf{x})$$
 viscous pressure stress tensor

thermal energy:
$$\varepsilon = \frac{1}{2} \operatorname{Tr}(\vec{p}) = \frac{1}{2} p \operatorname{Tr}(\vec{I}) - \operatorname{Tr}(\vec{O})$$

$$\rightarrow$$
 Ideal gas: $\mathcal{E} = \frac{3}{2}p$

$$\varepsilon = \frac{3}{2}p$$

Plasma pressure

charged particle in frame co-moving w/ fluid ($\mathbf{u}=0$)

$$p_{ij} = m \int \mathbf{v}_i \mathbf{v}_j f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

$$p = \frac{1}{3} \operatorname{Tr}(\vec{p}) = \frac{2}{3} p_{\perp} + \frac{1}{3} p_{\parallel}$$

gyromotion -

p_{zz} = p_{||} ←

•
$$p_{xy} = p_{xz} = p_{yz} = 0$$

•
$$p_{xx} = p_{yy} = p_{\perp}$$

$$\vec{p} = \begin{bmatrix} p_{\perp} & 0 & 0 \\ 0 & p_{\perp} & 0 \\ 0 & 0 & p_{\parallel} \end{bmatrix}$$

$$p = \frac{1}{3} \text{Tr}(\vec{p}) = \frac{2}{3} p_{\perp} + \frac{1}{3} p_{\parallel}$$
 $\vec{\sigma} = (p_{\parallel} - p_{\perp}) \left[\hat{\mathbf{b}} \hat{\mathbf{b}} - \frac{1}{3} \vec{I} \right]$

Flux of particle energy

energy in upward moving particles energy in downward moving particles

$$\Delta E = \int_{\mathbf{v} \cdot \hat{\mathbf{n}} > 0}^{\frac{1}{2}} m \mathbf{v}^2 A |\mathbf{v} \cdot \hat{\mathbf{n}}| \Delta t f(\mathbf{v}) d^3 \mathbf{v} - \int_{\mathbf{v} \cdot \hat{\mathbf{n}} < 0}^{\frac{1}{2}} m \mathbf{v}^2 A |\mathbf{v} \cdot \hat{\mathbf{n}}| \Delta t f(\mathbf{v}) d^3 \mathbf{v}$$

$$= A \Delta t \, \hat{\mathbf{n}} \cdot \int_{\mathbf{v} \cdot \hat{\mathbf{n}} > 0}^{\frac{1}{2}} m \mathbf{v}^2 \mathbf{v} f(\mathbf{v}) d^3 \mathbf{v} = A \Delta t \, \hat{\mathbf{n}} \cdot \vec{\Gamma}$$
energy volume

 $= A\Delta t \,\hat{\mathbf{n}} \cdot \int \frac{1}{2} m \, \mathbf{v}^2 \mathbf{v} \, f(\mathbf{v}) \, d^3 \mathbf{v} = A\Delta t \,\hat{\mathbf{n}} \cdot \vec{\Gamma}_E$

particle energy flux [erg s^{-1} cm⁻²]

$$\vec{\Gamma}_E = \int \frac{1}{2} m \, \mathbf{v}^2 \mathbf{v} \, f(\mathbf{v}) \, d^3 \mathbf{v}$$

Particle energy flux

$$\vec{\Gamma}_E = \int \frac{1}{2} m \, \mathbf{v}^2 \mathbf{v} \, f(\mathbf{v}) \, d^3 \mathbf{v}$$

introduce
$$\mathbf{v} = (\mathbf{v} - \mathbf{u}) + \mathbf{u}$$

NB:
$$\int (\mathbf{v} - \mathbf{u}) f(\mathbf{v}) d^3 \mathbf{v} = 0$$

a.k.a. skewness

1st moment of f(v) vanishes

use
$$2^{\text{nd}}$$
 moment $p_{ij} = m \int (\mathbf{v}_i - u_i)(\mathbf{v}_j - u_j) f(\mathbf{v}) d^3 \mathbf{v} = p \delta_{ij} - \sigma_{ij}$

Oth moment 2^{nd} moments

$$\vec{\Gamma}_E = \frac{1}{2} m n \mathbf{u} |\mathbf{u}|^2 + \frac{5}{2} p \mathbf{u} - \vec{\sigma} \cdot \mathbf{u} + \frac{1}{2} m \int (\mathbf{v} - \mathbf{u}) |\mathbf{v} - \mathbf{u}|^2 f(\mathbf{v}) d^3 \mathbf{v}$$

bulk kinetic enthalpy viscous heat flux = \mathbf{q}
energy flux flux work 3^{rd} moment of $f(\mathbf{v})$

$$= (\varepsilon + p)\mathbf{u}$$

Moments of f(v)

mom.	probability	fluid	
O th	integral	density	n
1 st	mean	fluid velocity	u _x
2 nd	variance	pressure	p _{xx}
3 rd	skewness	heat flux	q _x
4 th	Kurtosis	? (no name)	

What is a fluid?

Described by moments of f(x,v)

$$n(x)$$
, $u(x)$, & $p(x)$

which evolve according to fluid equations

Exactly correct
$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + mn(\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \nabla \cdot \vec{\sigma}$$

$$\frac{\partial p}{\partial t} + \mathbf{u} \cdot \nabla p = -\frac{5}{3} p \nabla \cdot \mathbf{u} + \frac{2}{3} \nabla \mathbf{u} : \vec{\sigma} - \frac{2}{3} \nabla \cdot \mathbf{q}$$

– but not "closed": evolution depends on "higher moments" σ_{ij} & q_i

How can we find these?

Strategy 1: relate σ_{ij} & q_i to spatial derivatives of $n(\mathbf{x})$, $\mathbf{u}(\mathbf{x})$, & $p(\mathbf{x})$

Works when <u>particle mfp is small</u> compared to gradient length scales – $f(\mathbf{x},\mathbf{v})$ will be close to Maxwellian given by $\mathbf{n}(\mathbf{x})$, $\mathbf{u}(\mathbf{x})$, & $\mathbf{p}(\mathbf{x})$. **Small** departures produce σ_{ij} & \mathbf{q}_i

Similar approach for σ_{ij} – coefficient = viscosity

Strategy 2: take $\sigma_{ij}(x) \& q_i(x)$ as given – use in fluid eqs.

$$h = -\nabla \cdot \mathbf{q} = \frac{\delta - 2}{6} \left(\frac{n_e F_{fl}}{\mu_0 N_c} \right) \left(\frac{N}{\mu_0 N_c} \right)^{-\delta/2} \begin{cases} B\left(\frac{N}{\mu_0 N_c}; \frac{\delta}{2}, \frac{1}{3} \right) &, N < \mu_0 N_c \\ B\left(\frac{\delta}{2}, \frac{1}{3} \right) = \frac{\Gamma(\frac{1}{2}\delta + \frac{1}{3})}{\Gamma(\frac{1}{2}\delta)\Gamma(\frac{1}{3})} &, N > \mu_0 N_c \end{cases}$$

→ fluid eqs. do include non-thermal electrons via q_i(x)

 $q_i(x)$ specified via parameters δ , μ_0 , E_c , & F_{fl}

Strategy 3: new eqs. for evolution of $\sigma_{ii}(x)$ & $q_i(x)$

• CGL eqns.* \rightarrow separate "energy eqs." for $p_{||} \& p_{\perp} \rightarrow \sigma_{||}(x)$

$$p = \frac{1}{3} \operatorname{Tr}(\vec{p}) = \frac{2}{3} p_{\perp} + \frac{1}{3} p_{\parallel}$$
 $\vec{\sigma} = (p_{\parallel} - p_{\perp}) \left[\hat{\mathbf{b}} \hat{\mathbf{b}} - \frac{1}{3} \vec{I} \right]$

- But eqn. for 3rd moment, q_i(x), involves 4th moment...
- ... eqn. for 4th moment involves 5th moment ...
- etc. ∞ hierarchy = no closure
- • moments
 • moments

Strategy 4: follow evolution of f(x,v)

Fokker-Planck equation (next 2 lectures)
$$\frac{\partial f}{\partial t} = \text{stuff}$$

PROBLEMS:

- PDE in 6d [sic] phase space 6+1d PDE
 - gyromotion reduces to 5+1d
 - single field line: 3+1d still big!
- Can include very short time scales:

$$\tau^{-1} \sim \nu_{\text{col}}, \ \Omega_{\text{c}}, \ \omega_{\text{p}}$$

velocity space in polar coords

 $\begin{array}{l} \theta_{v} \text{: pitch angle} & \in (0,\pi) \\ \mu = \cos(\theta_{v}) \text{: pitch angle cosine} \\ & \in (-1,1) \\ \text{velocity} \\ \text{space} \\ \text{volume} \\ \text{elements:} \end{array} \qquad \begin{array}{l} d^{3}v = dv_{x}dv_{y}dv_{z} \\ = v^{2} dv d\Omega_{v} \\ = v^{2} dv \sin(\theta_{v}) d\theta_{v} d\phi_{v} \\ = v^{2} dv d\mu d\phi_{v} \end{array}$

integrate over gyrophase:

$$v^{2}dv d\mu \int_{0}^{2\pi} f(\mathbf{v}) d\phi_{v} = f(v,\mu) dv d\mu$$

gyromotion \rightarrow no dep'nce on ϕ_{V}

$$f(\mathbf{v}, \mu) = 2\pi \mathbf{v}^2 f(\mathbf{v})$$

integrate over pitch angles:

$$v^2 dv \int f(\mathbf{v}) d\mu d\phi_v = f(v) dv$$

$$f(\mathbf{v}) = 4\pi \mathbf{v}^2 \langle f(\mathbf{v}) \rangle_{\Omega_{\mathbf{v}}}$$

Different distributions you meet

density of particles

$$n = \int f(\mathbf{v})d^3\mathbf{v} = \int f(\mathbf{v}, \mu)d\mathbf{v}d\mu = \int_0^\infty f(\mathbf{v})d\mathbf{v} = \int_0^\infty f(E)dE$$

Energy distribution function

$$f(E) = f(v) \frac{dv}{dE} = \frac{f(v)}{mv} = \frac{4\pi v}{m} \langle f(\mathbf{v}) \rangle_{\Omega_v}$$

Energy density

$$e = \int \frac{1}{2} m |\mathbf{v}|^2 f(\mathbf{v}) d^3 \mathbf{v} = \frac{1}{2} m \int_0^\infty \mathbf{v}^2 f(\mathbf{v}) d\mathbf{v} = \int_0^\infty E f(E) dE$$

Different distributions you meet

energy flux along magnetic field $-\Gamma_{\rm E,z}$

$$\Gamma_{E,z} = \frac{1}{2} m \int \mathbf{v}_z |\mathbf{v}|^2 f(\mathbf{v}) d^3 \mathbf{v} = \frac{1}{2} m \int \mu \mathbf{v}^3 f(\mathbf{v}, \mu) d\mathbf{v} d\mu$$
$$= \int E F(E, \mu) dE d\mu$$

flux spectrum:
$$F(E,\mu) = \mu v f(v,\mu) \frac{dv}{dE} = \frac{\mu}{m} f(v,\mu)$$

- = flux of electrons per E per μ [e⁻/erg/s/cm²]
- most directly probed by flare observations
- typical model: $F(E,\mu) \sim E^{-\delta}$
- δ > 2 in order that $\Gamma_{\rm F,7}$ < ∞

Entropy

Entropy per unit volume:

$$s(\mathbf{x}) = -k_b \int \ln[f(\mathbf{x}, \mathbf{v})] f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

2nd Law of Thermo: short-range interactions between particles (i.e. collisions) can only **increase** s at a point

- elastic collisions must do so while conserving mass (mn), momentum (mnu), and energy (e).
- after sufficiently many collisions, s will reach a
 maximum max. subject to constraints on n, u & e
- \rightarrow collisions drive f(x,v) to steady state defined by maximum s local thermodynamic equilibrium*

^{*} Stricter usage demands particles of all species, and radiation be in equilibrium with one another

Entropy density

$$s(\mathbf{x}) = -k_b \int \ln[f(\mathbf{x}, \mathbf{v})] f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

maximize entropy subject to conservation:

number: $\alpha \delta n = \int \alpha \delta f d^3 v = 0$ momentum: $\sum_{i} \mu_{i} \delta(mnu_{i}) = \int m \vec{\mu} \cdot \mathbf{v} \delta f d^3 v$

energy:

$$\beta \delta e = \int \beta \frac{1}{2} m |\mathbf{v}|^2 \delta f d^3 \mathbf{v} = 0$$

Lagrange multipliers

variation of f(x,v)

LTE: maximize
$$s(\mathbf{x}) = -k_b \int \ln[f(\mathbf{x}, \mathbf{v})] f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$$

number:
$$\alpha \delta n = \int \alpha \delta f \ d^3 v = 0$$

subject to constraints: $\alpha \delta n = \int \alpha \delta f \ d^3 \mathbf{v} = 0$ momentum: $\sum_i \mu_i \delta(mnu_i) = \int m \vec{\mu} \cdot \mathbf{v} \ \delta f \ d^3 \mathbf{v} = 0$ energy: $\beta \delta e = \int \beta \frac{1}{2} m |\mathbf{v}|^2 \ \delta f \ d^3 \mathbf{v} = 0$

$$\beta \delta e = \int \beta \frac{1}{2} m |\mathbf{v}|^2 \delta f d^3 \mathbf{v} = 0$$

Max:
$$\delta s = -k_b \int \left[\ln f + (1+\alpha) + m\vec{\mu} \cdot \mathbf{v} + \beta \frac{1}{2} m |\mathbf{v}|^2 \right] \delta f \ d^3 \mathbf{v} = 0$$

$$f \propto \exp\left[-m\vec{\mu} \cdot \mathbf{v} - \beta \frac{1}{2}m|\mathbf{v}|^2\right]$$
 The "Max" in Maxwellian is for **entropy**

is for **entropy**

define:
$$\begin{cases} \vec{\mu} = \beta \mathbf{u} \\ \beta = \frac{1}{k_b T} \end{cases} \Rightarrow f(\mathbf{v}) = \frac{n}{(2\pi k_b T / m)^{3/2}} \exp\left[-\frac{\frac{1}{2}m|\mathbf{v} - \mathbf{u}|^2}{k_b T}\right]$$

The Maxwellian

$$f(\mathbf{x}, \mathbf{v}) = \frac{n(\mathbf{x})}{(2\pi k_b T / m)^{3/2}} \exp\left[-\frac{\frac{1}{2}m|\mathbf{v} - \mathbf{u}(\mathbf{x})|^2}{k_b T(\mathbf{x})}\right]$$

$$p_{ij} = m \int (\mathbf{v}_i - u_i)(\mathbf{v}_j - u_j) f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v} = nk_b T \delta_{ij}$$
$$q_i = \frac{1}{2} m \int (\mathbf{v}_i - u_i) |\mathbf{v} - \mathbf{u}|^2 f(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v} = 0$$

$$\rightarrow$$
 ideal fluid: inviscid: $\vec{\sigma} = 0$ closed fluid no heat flux: $\vec{q} = 0$ equations

isotropic pressure $p = nk_bT$

The Maxwellian

in fluid ref.
frame (u=0)
$$f(\mathbf{v}) = \frac{n}{(2\pi k_b T / m)^{3/2}} \exp\left[-\frac{\frac{1}{2}m|\mathbf{v}|^2}{k_b T}\right]$$

$$f(\mathbf{v}) = 4\pi \mathbf{v}^2 \left\langle f(\mathbf{v}) \right\rangle_{\Omega_{\mathbf{v}}} = \frac{4\pi n}{(2\pi k_b T / m)^{3/2}} \mathbf{v}^2 \exp\left[-\frac{m\mathbf{v}^2}{2k_b T}\right]$$

$$f(E) = \frac{4\pi v}{m} \langle f(\mathbf{v}) \rangle_{\Omega_v} = \frac{2}{\sqrt{\pi}} \frac{n}{(k_b T)^{3/2}} \sqrt{E} \exp\left[-\frac{E}{k_b T}\right]$$

checks:

$$\int_{0}^{\infty} f(E) dE = \frac{2}{\sqrt{\pi}} n \left[\int_{0}^{\infty} s^{1/2} e^{-s} ds \right] = n \qquad \int_{0}^{\infty} E f(E) dE = \frac{2}{\sqrt{\pi}} n k_{b} T \left[\int_{0}^{\infty} s^{3/2} e^{-s} ds \right] = \frac{3}{2} n k_{b} T$$

$$\Gamma(\frac{3}{2}) = \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$$

$$\Gamma(\frac{5}{2}) = \frac{3}{2} \Gamma(\frac{3}{2}) = \frac{3\sqrt{\pi}}{4}$$

The Maxwellian

$$f(E) = \frac{2}{\sqrt{\pi}} \frac{n}{(k_b T)^{3/2}} \sqrt{E} \exp\left[-\frac{E}{k_b T}\right]$$

Occurs when **something** maximizes entropy while conserving, mass, momentum and energy – i.e. elastic collisions between particles (see 2nd Law Thermo) – collisions "**relax**" distribution toward a Maxwellian

collision rate scales inversely w/ E

$$v_{\rm col} = n\sigma v = \frac{2\pi e^4 n\Lambda}{m^{1/2}} \frac{1}{E^{3/2}}$$
 quickly: Maxwellian

low energy particles relax quickly:

Maxwellian core

An artificial decomposition ...

... but common, useful, enlightening, ...

density of NT e⁻s:
$$\int_{0}^{\infty} f_{nt}(E) dE = \mathbf{n}_{nt} << \mathbf{n}_{th} \text{ typically}$$

An artificial decomposition ...

... but common, useful, enlightening, ...

Collisions

th/th: **no effect** – Maxwellian is steady state (attractor) of collisions (cannot further increase s)

nt/nt: negligible vs. nt/th $- n_{nt} << n_{th}$

 $\begin{array}{ccc} \text{nt/th: transfers } \Delta n & n_{\text{nt}} \to n_{\text{th}} \\ & \text{transfers } \Delta \epsilon & \epsilon_{\text{nt}} \to \epsilon_{\text{th}} - \text{thermalization} \end{array}$

see NT e⁻ heating h(s) in lecture 11

Acceleration

pre-flare state:

- thermal plasma: $n_{nt} = 0$
- quiescent AR: $n_{th} \sim 3 \times 10^9 \text{ cm}^{-3}$, $T \sim 3 \times 10^6 \text{ K}$

during flare: something

- transfers Δn $n_{th} \rightarrow n_{nt}$
- adds $\Delta \epsilon$ to ϵ_{nt}

- What something?
- Whence $\Delta \varepsilon$?
- Why is f_{nt}(E)
 a power-law?
- What sets n_{nt} , δ , E_c ?

Acceleration

- What something?
- Whence $\Delta \epsilon$?
- Why is f_{nt}(E) a power-law?
- What sets n_{nt} , δ , E_c ?

Starting points for As:

- Shocks (Fermi), DC E field, wave-particle interactions, ...
- Magnetic reconnection → magnetic energy, bulk KE, ...

These answers must lie in the evolution of f(E) or f(x,v) i.e. Fokker-Planck

Summary

- Collection of particles described by distribution function f(x,v)
- Moments of f(x,v) yield fluid properties
- Fluid equations capture most of behavior heat flux q is notable exception (sometimes)
- Collisions drive f(x,v) toward Maxwellian does so slowly for high-energy particles: the nonthermal tail

<u>Next:</u> How tail of f(x,v) evolves in time:

the Fokker-Planck equation