

Fig. 1

Fig. 2

Fig 3

Fig. 4

Fig. 5

Fig. 6

Figure 7: Erläuterung der Vorzüge des erfundungsgemäßen Verfahrens im Vergleich mit dem Stand der Technik

- a) zeitlicher Verlauf des instationären Rauschanteils eines zufällig, kontinuierlich, instationär gestörten Audiosignals
- b) resultierendes, instationäres Restrauschen nach einer Bearbeitung des gestörten Signals entsprechend des Standes der Technik (2. bekanntes Verfahren)
- c) resultierendes, stationäres Restrauschen nach einer Bearbeitung des gestörten Signals mit dem erfundungsgemäßen Verfahren

Figur 8: Schematische Wirkungsweise des begrenzten STSA-Verfahrens bei einer instationären Rauschstörung

- Repräsentation der Rauschstörung $N(m_i, l)$ einer diskreten Frequenz m_i (Betragssquadrat der Fouriertransformierten) und deren stationäre Schätzung $\hat{N}(m_i)$ in Abhängigkeit von der Zeit l
- Resultierende Filterfunktion $H_G(m_i, l)$ einer diskreten Frequenz m_i und zugehöriger, stationärer spektraler Boden $\gamma_{SF}(m_i)$ in Abhängigkeit von der Zeit l
- Resultierende, beschränkte Filterfunktion $H_G(m_i, l, \gamma_{SF}(m_i))$ einer diskreten Frequenz m_i in Abhängigkeit von der Zeit l
- Resultierende Reststörung im Ausgangssignal $\hat{S}(m_i, l)$ in Abhängigkeit von der Zeit l

Figur 9: Schematische Wirkungsweise einer Ausführungsform des bekannten Verfahrens bei Verwendung einer Abschätzung des aktuell enthaltenen Störsignalanteils, welcher die zeitliche Änderung der Störung beschreibt, zur Bestimmung der Filterfunktion $H_G^{\text{dyn}}(m, l)$ und deren Beschränkung mittels einer zeitlich konstanten Beschränkungsfunktion $\gamma_{SF}(m)$

- Repräsentation der Rauschstörung $N(m_i, l)$ (Betragssquadrat der Fouriertransformierten) einer diskreten Frequenz m_i und deren Schätzung durch das erfundungsgemäße Verfahren in Abhängigkeit von der Zeit l
- Resultierende Filterfunktion $H_G^{\text{dyn}}(m, l)$ einer diskreten Frequenz m_i und zugehöriger, stationärer spektraler Boden $\gamma_{SF}(m_i)$ in Abhängigkeit von der Zeit l
- Resultierende Filterfunktion $H_G^{\text{dyn}}(m_i, l, \gamma_{SF}(m_i))$ einer diskreten Frequenz m_i in Abhängigkeit von der Zeit l
- Resultierende Reststörung im Ausgangssignal $\hat{S}(m_i, l)$ in Abhängigkeit von der Zeit l

Figur 10: Schematische Wirkungsweise des erfundungsgemäßen Verfahrens

- Repräsentation der Rauschstörung $N(m_i, l)$ (Betragssquadrat der Fouriertransformation) einer diskreten Frequenz m_i und deren Schätzung $\hat{N}(m_i, l)$ durch das erfundungsgemäße Verfahren in Abhängigkeit von der Zeit l
- Resultierende Filterfunktion $H_G^{dyn}(m_i, l)$ einer diskreten Frequenz m_i , und nach dem erfundungsgemäßen Verfahren bestimmter, instationärer spektraler Boden $\gamma_{SF}(m_i, l)$ in Abhängigkeit von der Zeit l
- Resultierende, dynamisch begrenzte Filterfunktion $H_G^{dyn}(m_i, l, \gamma_{SF}(m_i, l))$ einer diskreten Frequenz m_i , in Abhängigkeit von der Zeit l
- Resultierende Reststörung im Ausgangssignal $\hat{S}(m_i, l)$ in Abhängigkeit von der Zeit l