Rechenregeln für Vektoren

1. Das Nullelement in einem VR V ist eindeutig bestimmt, denn:

Annahme: $0_1, 0_2$ seien Nullelemente

Dann gilt:
$$[0_2 = 0_1 + 0_2 = 0_1]$$

$$---v_4 Null elemente---v_4 Null elemente---noch mal nach fragen$$

2. Es gibt $0_k \cdot v = 0$ für jedes $v \in V$; denn:

$$0_k \cdot v = (0_k + 0_k) \cdot v = 0_k \cdot v + 0_k \cdot v$$

$$NOCHMAL-MACHEN-FRAGEN$$

3. $k \cdot 0_v = 0_v$ für alle $k \in K$

$$k \cdot 0_v = k \cdot (0_v + 0_v) = \dots$$

- 4. $k_v = 0_v \Leftrightarrow k = 0_k \text{ oder } v = 0_v$
- 5. $-v = (-1) \cdot v$ für alle $v \in V$
- 6. $-k \cdot v = (-k) \cdot v$ für alle $k \in K, v \in V$

Definition

Sei $(V, +, (k|k \in K))$ ein K-VR, $U \in V$

U heißt Untervektorraum (UVR) des K-VR V, denn:

- 1. $0_v \in U$
- 2. Sei $v_1, v_2 \in U$ dann $v_1 + v_2 \in U$ (Abgeschlossenheit bezüglich +)
- 3. Sei $k \in K$, $V \in U$ Denn $k \cdot V \in U$ (Abgeschlossenheit bezüglich Skalarmultiplikation)

Bemerkung

Jeder VR V hat die UVR

- 1. V
- 2. $0_v(Nullraum)$
- \rightarrow trivialer UVR