6	(a)	State Hooke's law.

.....

(b) The variation with extension x of the force F for a spring A is shown in Fig. 6.1.

Fig. 6.1

The point L on the graph is the elastic limit of the spring.

(i)	Describe the	meaning	of ela	astic limit.

(ii) Calculate the spring constant $k_{\rm A}$ for spring A.

 $k_{A} = \dots N m^{-1} [1]$

	(iii)	Calculate the work done	in extending the spring with a force of 6.4 N.
			work done = J [2
(c)	A s Fig.	econd spring B of spring 6.2.	g constant $2k_A$ is now joined to spring A, as shown in
			spring A spring B 6.4 N
			Fig. 6.2
	A fo	orce of 6.4N extends the co	ombination of springs.
		the combination of springs	s, calculate
	(i)	the total extension,	
	(ii)	the spring constant.	extension = m [1
			spring constant = N m ⁻¹ [1