Seminário - Computação Móvel

Fernando Omar Aluani

10 de junho de 2013

Nanonetworks: A New Frontier in Communications

Ian F. Akyildiz, Josep Miquel Jornet, Massimiliano Pierobon

Nanotecnologia consiste no processamento, separação, consolidação e deformação de materiais por um átomo ou por uma molécula.

Entre os vários objetivos da nanotecnologia, essa pesquisa se foca no desenvolvimento de **nanomáquinas**: Dispositivos funcionais consistindo de componentes em nanoescala e capazes de realizar tarefas simples nessa escala.

Ela também se foca na interconexão de nanomáquinas em uma rede, ou **nanorede**, como uma forma de solucionar as limitações de uma nanomáquina individual.

As aplicações potenciais de uma nanoredes são imensas, e podem ser classificadas em quatro grandes áreas:

- Aplicações Biomedicinais.
- Aplicações Industriais.
- Aplicações Ambientais.
- Aplicações Militares.

Seminário - Computação Móvel Pesquisa - Keynote Criando Nanomáquinas

Manufatura de Nanomáquinas

Criando Nanomáquinas

Capacidades de uma nanomáquina dependem muito de como ela é feita.

Classificações de métodos de desenvolvimento de nanomáquinas:

- Top-Down.
- Bottom-Up.
- Bio-Hibrídas.

Seminário - Computação Móvel Pesquisa - Keynote Criando Nanomáquinas

Componentes *Man-Made*: já foram criados diversos componentes em nano-escala, como nanotubos de carbono, transistores de grafeno, etc;

Componentes Biológicos: reuso de componentes biológicos como organelas, ATP e DNA, enquanto não foram experimentados ainda poderiam ser muito úteis para criação de nanomáquinas com aplicações biomédicas.

Seminário - Computação Móvel

Pesquisa - Keynote

Habilitando Nanocomunicação

Habilitando Nanocomunicação

O jeito que nanomáquinas comunicam entre si depende da forma que foram feitas.

A aplicação alvo dessas nanomáquinas também limita o tipo de nanocomunicação que pode ser usado.

Métodos propostos vão desde miniaturização de métodos de comunicação existentes (baseados em eletromagnetismo, luz, som ou meios mecânicos) a desenvolvimento de novos métodos inspirados na biologia.

Nanoantenas de grafeno sofrem fenomenos quânticos que a fazem ser mais eficiente que antenas normais, mas também fazem a sua eficiência de radiação ser prejudicada.

Nanotubos de carbono foram propostos como a base de um nano-rádio eletromecânico. Essa técnica já foi provada para recepção, mas necessitaria de fontes de energia poderosas em nano-escala para transmissão ativa.

Banda de Terahertz (0.1THz-10Thz): frequência de resonância esperada de uma nanoantena de grafeno de um μm de comprimento. Essa banda tem uma janela de transmissão bem larga, suportando altas taxas de transmissão em curtas distâncias (Terabits/segundo em menos de 1 metro).

Métodos propostos inspirados na biologia:

- Difusão livre de moléculas;
- Feromônios;
- Baseados em neurônios (usando fibras nervosas);
- Circuitos de fluxos de capilares;
- Transporte de moléculas usando bácterias ou nanomotores;

Pesquisa - Keynote

Protocolos de Nanocomunicação

Protocolos de Nanocomunicação

Nanoredes de Terahertz: tem uma largura de banda bem larga. Isso permite:

- Transmissões rápidas de dados;
- Mais canais de acesso facilita protocolo MAC;

Nanoredes Moleculares: no artigo, autor acredita que estudo de protocolos vão seguir dois caminhos:

- Estruturas e protocolos diretamente inspirados dos processos de comunicação achados na natureza;
- Paradigmas clássicos adaptados para nanoredes moleculares;