## Tutorial solutions (Part-II)

Om Swostik

## Contents

1 Tutorial-1 2

## 1 Tutorial-1

1:

Given 
$$\phi = \forall x \exists y \ R(x,y) \land \exists y \forall x \neg R(x,y)$$
.

Take the model to be the set of naturals  $\mathbb{N}$  with < relation.

Then,  $m \models \phi$  (Why?)

(Hint: N is an well-ordered set (i.e has a minimum) and isn't bounded above)

2:

$$\varphi_B(x,y) = \exists z (P(z,x) \land P(z,y)) \land \neg F(x)$$

$$\varphi_A(x,y) = \exists z (P(z,y) \land \varphi_S(x,z)) \qquad (\varphi_S(x,y) = \exists z (P(z,x) \land P(z,y)) \land F(x), x \text{ is sister of } y)$$

$$\varphi_C(x,y) = \exists z (\varphi_A(z,x) \land P(z,y))$$

$$\varphi_O(x) = \forall z, y (P(z,y) \land P(z,x) \Rightarrow (x=y))$$

The spousal relationship cannot be defined (Why?)

**3**:

$$Zero(x) = +(x,x) = x$$

$$One(x) = \forall y (\times (x, y) = y)$$

$$Two(x) = \exists z, w((+(z, w) = x) \land (One(z) \land One(w)))$$

$$Even(x) = \exists z, y((\times(z, y) = x) \land Two(y))$$

$$Odd(x) = \neg Even(x)$$

$$Prime(x) = \neg \exists w, y ((\times (w, y) = x) \land (\neg One(w) \land \neg One(y)))$$

Goldbach conjecture in FO:

$$\forall x (\neg One(x) \land \neg Two(x) \land Even(x) \Rightarrow \exists z, w (Prime(z) \land Prime(w) \land +(z, w) = x))$$

**4**:

Encoding associativity of +:  $\forall x, y, z(+(x, +(y, z)) = +(+(x, y), z))$ 

Encoding the right identity as 0:  $\forall x(+(x,0) = x)$ 

Encoding right inverse:  $\forall x \exists y (+(x,y) = 0)$ 

Encoding A(4): 
$$\forall x, y, z(+(x, z) = +(y, z) \Rightarrow x = y)$$

Here we have used the signature  $\tau = (0, +)$ .

**5**:

- (i) Consider the set of integers  $\mathbb{Z}$  with the induced relation  $+_Z$  referring to the usual addition in  $\mathbb{Z}$ . The constant  $0_Z$  refers to 0 in  $\mathbb{Z}$ . Observe that addition is associative and admits both left and right inverses. Also 0 is a identity for addition. We can conclude the  $\tau$ -structure  $\mathbb{Z}$  satisfies  $\psi$ .
- (ii) Consider the set  $\mathbb{N}_0$  of whole numbers and the corresponding induced relation being addition and the constant being 0 (in  $\mathbb{N}_0$ ). This  $\tau$ -structure doesn't satisfy  $\psi$  as  $\varphi_3$  fails to be true (non-zero elements in  $\mathbb{N}_0$  don't have inverses).
- (iii) Consider the set of all  $n \times n$  invertible matrices with complex values,  $GL_n(\mathbb{C})$ . Let the induced binary operation be matrix multiplication and let the constant 0 map to the identity  $n \times n$  matrix.

It's clear that the  $\tau$ -structure  $GL_n(\mathbb{C})$  satisfies  $\psi$ , however, it doesn't satisfy  $\forall x, y(+(x,y) = +(y,x))$  (Why?).

(iv) As before, consider the set  $\mathbb{N}_0$  of whole numbers with the usual addition. This satisfies  $\varphi_1 \wedge \varphi_2$  but doesn't satisfy  $\varphi_3$ .

Consider the set of non-negative reals  $\mathbb{R}_{\geq 0}$ , with the binary operation defined as +(a,b)=|a-b| and the constant mapping to 0. Show that this structure satisfies  $\varphi_2 \wedge \varphi_3$  but fails to satisfy  $\varphi_1$ . Consider  $\mathbb{Z}$  with the usual addition and the constant 0 mapping to 1 (in  $\mathbb{Z}$ ). This satisfies  $\varphi_1 \wedge \varphi_3$  but fails to satisfy  $\varphi_2$ .

We can conclude that  $\psi$  isn't equivalent to any of  $\varphi_1 \wedge \varphi_2$ ,  $\varphi_2 \wedge \varphi_3$  or  $\varphi_1 \wedge \varphi_3$ .

**7**:



Consider the undirected graph  $\mathcal{G}$  above (with loops). This (with its natural edge relation) satisfies the second formula but not the first.

8:

 $\exists^{\geq n} x (x=x) \land \neg \exists^{\geq n+1} x (x=x)$  is true for all models whose universe has exactly n elements.

Let 
$$\varphi = \exists x_1, x_2 \dots x_n (\land_{i \neq j} (x_i \neq x_j)).$$

$$\varphi \equiv \exists^{\geq n} x(x=x) \text{ (Why?)}$$

9:

Using counting quantifiers, we can write,

$$\varphi = \exists^{\geq n} x (x=x) \ \land \ \neg \exists^{\geq m+1} x (x=x)$$

 $\varphi$  evaluates to true only over models with at least n and at most m elements.