# 搜索树应用

多层搜索树: 二维及多维

別下了黄叶

几株不知名的树,已脱下了黄叶 只有那两三片,多么可怜在枝上抖怯 它们感到秋来到,要与世间离别



# 二维范围查询 = x-查询 + y-查询

❖ 推而广之,每一次m维的正交范围查询 都可通过m次的1维正交查询来回答

❖ 比如,每一次2维范围查询
都可由2次的1维正交查询来回答

- 先查找出沿x轴落在[ $x_1$ , $x_2$ ]内的点,进而
- 再筛选出沿y轴落在[ $y_1, y_2$ ]内的点

❖ 事情果然就如此简单?



## 最坏情况

- ❖ 完全有可能...
  - x查询虽命中了(几乎)所有点,而接下来
  - y查询却排除了 (几乎) 所有点

如此,花费Ω(n)时间却几乎一无所获输出量(几乎)为Ø

❖如何做到输出敏感 (output sensitivity)?



# 艺术与技术





### MLST = x-Tree \* y-Trees

- ❖ 首先,针对x-查询,构建一棵1维BBST (x-树)
- ❖ 然后,对于x-树中的任何一棵子树v,另外构造一棵关联的y-树
  - 二者对应于输入点集的同一子集,只不过
  - 顾名思义, y-树是将这些点按y-方向排序
- ❖ 每棵x-子树,可以通过引用,直接找到与之对应的y-树
- ❖ 如果还有更多维度,也可照此<mark>逐层</mark>推广 整个结构也称作多层搜索树(Multi-Level Search Tree)
- ❖ 那么,如何借助MLST来高效地完成范围查询呢?以下以2维为例...



# 二维范围查询 = x-查询 \* y-查询

**◆ 查询时间** = 
$$\mathcal{O}(r + \log^2 n)$$
 ~  $\mathcal{O}(r + \log n)$ 







## 查询算法

### ❖ 过程

- 首先,通过x-query(x<sub>1</sub>,x<sub>2</sub>) 从x-树中找出∂(logn)棵x-子树
- 再分别在与之对应的∅(logn)棵y-树中
   通过y-query(y₁,y₂), 分批地筛选出所有命中的点

#### ❖ 性质

- x-query和y-query都是基本的一维范围查询
- y-query各自输出的子集相互无交,且其并集正是原查询所需的输出
- 除却输出本身所需的♂(r)时间,x-query及所有的y-query总共只需♂(logn)时间



## 复杂度: 查询时间

## ⇔声明:

在将平面上的任何一组点整理为一棵2层的MLST之后 每次2维范围查询都只需要  $\mathcal{O}(r + \log^2 n)$  时间

#### ❖ 证明:

- $\mathbf{x}$ -query可在  $\mathcal{O}(\log n)$  时间内 锁定  $\mathcal{O}(\log n)$  棵 $\mathbf{x}$ -子树
- 接下来的  $\mathcal{O}(\log n)$  次y-query 各自也仅需  $\mathcal{O}(\log n)$  时间



## 复杂度: 预处理 + 存储空间

- ❖ 对于平面上任意的n个点
  - A> 都可以在  $O(n \log n)$  时间内建立一棵2层的MLST
  - B> 该结构只需  $O(n \log n)$  空间
- ❖ 为做到A, 可以"自底而上、逐层合并"的方式来构造
- $ightharpoonup 为理解B,只需注意到 输入的每一个点,都记录在 <math>\mathcal{O}(\log n)$  棵y-树中
- ❖ 也可以按照深度,对y-树分类统计...



# 更高维度

## \* 由欧氏空间 €d (d≥2) 中的任意n个点,都可以

- A> 在  $\mathcal{O}(n \cdot \log^{d-1} n)$  时间内 构造出一棵d层的MLST
- B> 该结构只需  $\mathcal{O}(n \cdot \log^{d-1} n)$  空间



即可将C>改进至  $\mathcal{O}(r + \log^{d-1} n)$  ...

