π - λ 定理と単調族定理

@schrott512

1π -系, λ -系, 単調族

以下, 全集合を Ω で表す.

Definition 1.1: π -系

 Ω の部分集合の族 \mathcal{P} が π -系であるとは、次の条件 1),2) を満たすときをいう:

- 1) $\Omega \in \mathcal{P}$,
- 2) $A, B \in \mathcal{P}$ $\alpha \in \mathcal{P}$.

Definition 1.2: λ -系; ディンキン族, Dynkin class

 Ω の部分集合の族 $\mathcal L$ が次の 1)-3) を満たすとき, $\mathcal L$ をディンキン族または λ -系であるという:

- 1) $\Omega \in \mathcal{L}$,
- 2) $A, B \in \mathcal{L}$, $A \subset B$ ならば, $B \setminus A \in \mathcal{L}$,
- 3) $A_1, A_2, \dots \in \mathcal{L}, A_1 \subset A_2 \subset \dots \not \approx b \not \in \bigcup_{n=1}^{\infty} A_n \in \mathcal{L}.$

Definition 1.3: 単調族

 Ω の部分集合の族 M が次の 1),2) を満たすとき, M を単調族であるという:

- 1) $A_1, A_2, \dots \in \mathcal{M}, A_1 \subset A_2 \subset \dots$ ならば, $\bigcup_{n=1}^{\infty} A_n \in \mathcal{M}$,
- 2) $A_1, A_2, \dots \in \mathcal{M}, A_1 \supset A_2 \supset \dots$ ならば, $\bigcap_{n=1}^{\infty} A_n \in \mathcal{M}$.

$2 \pi - \lambda$ 定理

Lemma 2.1

 Ω の部分集合の族 U に対し, U を含む最小の λ -系 \mathcal{L}_0 がただ 1 つ存在する. すなわち, $U \subset \mathcal{L}$ であるような任意の λ -系 \mathcal{L} に対し, $U \subset \mathcal{L}_0 \subset \mathcal{L}$ を満たす λ -系 \mathcal{L}_0 がただ 1 つ存在する.

Proof. 主張を満たす λ -系を \mathcal{L}_0 , \mathcal{L}_0' とする. このとき, どちらもお互いを含むので, すなわち, $\mathcal{L}_0 \subset \mathcal{L}_0'$ かつ $\mathcal{L}_0' \subset \mathcal{L}_0$ なので, $\mathcal{L}_0 = \mathcal{L}_0'$ である.

次に,

$$\mathcal{L}_0 = \bigcap_{\substack{\mathcal{U} \subset \mathcal{L} \\ \mathcal{L} \text{ it } \lambda - \constant{-}\constant{\beta}}} \mathcal{L}$$

とおくと, \mathcal{L}_0 は最小の λ -系である.

以後, Ω の部分集合の族 U に対し, Lemma 2.1 で定まる最小の λ -系を $\mathcal{L}(U)$ で表す.

Lemma 2.2

 Ω の部分集合の族 \mathcal{P} , \mathcal{L} をそれぞれ π -系, λ -系とする. このとき, 次の (1),(2) が成り立つ.

- (1) $\mathcal{G}_1 := \{A \subset \Omega \mid A \cap B \in \mathcal{L}, \forall B \in \mathcal{P}\}$ は λ -系である.
- (2) $\mathcal{G}_2 := \{A \subset \Omega \mid A \cap B \in \mathcal{L}, \forall B \in \mathcal{L}\}$ は λ -系である.

Proof. (1) まず, 任意の $B \in \mathcal{P}$ に対して, $\Omega \cap B = B \in \mathcal{P}$. ゆえに $\Omega \in \mathcal{G}_1$ である.

次に $A_1, A_2 \in \mathcal{G}_1$, $A_1 \subset A_2$ とすると, 任意の $B \in \mathcal{P}$ に対して, $A_1 \cap B$, $A_2 \cap B \in \mathcal{L}$, $A_1 \cap B \subset A_2 \cap B$ であり, \mathcal{L} は λ -系だから, $(A_2 \setminus A_1) \cap B = (A_2 \cap B) \setminus (A_1 \cap B) \in \mathcal{L}$ である. したがって, $A_2 \setminus A_1 \in \mathcal{G}_1$ を得る.

最後に $A_1, A_2, \dots \in \mathcal{G}_1$, $A_1 \subset A_2 \subset \dots$ とすると, 任意の $B \in \mathcal{P}$ に対して, $A_1 \cap B, A_2 \cap B, \dots \in \mathcal{L}$ であり, かつ $A_1 \cap B \subset A_2 \cap B \subset \dots$ である. \mathcal{L} は λ -系でだから, $\bigcup_{n=1}^{\infty} A_n \cap B = \bigcup_{n=1}^{\infty} (A_n \cap B) \in \mathcal{L}$ である. よって, $\bigcup_{n=1}^{\infty} A_n \in \mathcal{G}_1$ である. 以上より, \mathcal{G}_1 は λ -系である.

(2) も(1) と同様にして分かる.

Lemma 2.3

集合族 \mathcal{P} を π -系とする. このとき, $\mathcal{L}(\mathcal{P})$ は π -系である.

Proof. $\mathcal{L} = \mathcal{L}(\mathcal{P})$ とおく.

 $\Omega \in \mathcal{P}$ かつ $\mathcal{P} \subset \mathcal{L}$ より $\Omega \in \mathcal{L}$ である.

 $\mathcal{G} = \{A \in \Omega \mid A \cap B \in \mathcal{L}, \forall B \in \mathcal{P}\}$ とおく. $A \in \mathcal{P}$ とすると, 任意の $B \in \mathcal{P}$ に対し $A \cap B \in \mathcal{L}$ である. よって, $A \in \mathcal{G}$, すなわち $\mathcal{P} \subset \mathcal{G}$ である. Lemma 2.2 (1) より \mathcal{G} は λ -系だから, $\mathcal{L} \subset \mathcal{G}$ を得る.

 $\mathcal{G}' = \{A \in \Omega \mid A \cap B \in \mathcal{L}, \forall B \in \mathcal{L}\}$ とおく. $A \in \mathcal{P}, B \in \mathcal{L}$ とする. $\mathcal{L} \subset \mathcal{G}$ より, $A \cap B \in \mathcal{L}$ である. よって, $A \in \mathcal{G}'$ であり, したがって $\mathcal{P} \subset \mathcal{G}'$ を得る. Lemma 2.2 (2) より \mathcal{G}' は λ -系だから, $\mathcal{L} \subset \mathcal{G}'$ である. したがって, $A, B \in \mathcal{L}$ ならば $A \cap B \in \mathcal{L}$ であり, 結論を得る.

Theorem 2.4: Dynkin の π - λ 定理

A, \mathcal{L} , \mathcal{P} を Ω の部分集合の族とするとき, 次の (1)-(3) が成り立つ.

- (1) A が π -系かつ λ -系ならば, A は σ -加法族である.
- (2) \mathcal{P} , \mathcal{L} をそれぞれ π -系, λ -系とする. このとき, $\mathcal{P} \subset \mathcal{L}$ ならば $\sigma(\mathcal{P}) \subset \mathcal{L}$ である.
- (3) \mathcal{P} を π -系とする. このとき, $\sigma(\mathcal{P}) = \mathcal{L}(\mathcal{P})$ である.

ここで, $\sigma(\mathcal{P})$ は \mathcal{P} を含む最小の σ -加法族を表す.

Proof. (1) \mathcal{A} は π -系より, $\Omega \in \mathcal{A}$ である.

 $A \in A$ とする. $\Omega \in A$ であり, A は λ -系なので, $A^c = \Omega \setminus A \in A$ が分かる.

 $A_1,A_2,\dots\in\mathcal{A}$ とする. $B_n=\bigcup_{j=1}^nA_j\;(n=1,2,\dots)$ とおくと、各 $A_n^c\in\mathcal{A}$ であり \mathcal{A} は π -系なので、各 $B_n=(\bigcap_{j=1}^nA_j^c)^c$ なので $B_1,B_2,\dots\in\mathcal{A}$ である. また $B_1\subset B_2\subset\dots$ である. \mathcal{A} は λ -系だから $\bigcup_{n=1}^\infty A_n=\bigcup_{n=1}^\infty B_n\in\mathcal{A}$ を得る.

したがって, A は σ -加法族である.

- (2) $\mathcal{L}(\mathcal{P})$ は λ -系であり、Lemma 2.3 より π -系でもある.よって (1) より $\mathcal{L}(\mathcal{P})$ は σ -加法族である. $\mathcal{P} \subset \mathcal{L}(\mathcal{P})$ より、 $\sigma(\mathcal{P}) \subset \mathcal{L}(\mathcal{P})$ であり、また $\mathcal{L}(\mathcal{P}) \subset \mathcal{L}$ なので結論を得る.
- (3) (2) より $\sigma(\mathcal{P})$ \subset $\mathcal{L}(\mathcal{P})$ は明らか. また、 σ -加法族は λ -系でもあるので、 \mathcal{P} \subset $\sigma(\mathcal{P})$ より $\mathcal{L}(\mathcal{P})$ \subset $\sigma(\mathcal{P})$ を得る.

3 単調族定理

Lemma 2.1 と同様にして次が得られる.

Lemma 3.1

 Ω の部分集合の族 U に対し, U を含む最小の単調族 \mathcal{M}_0 がただ 1 つ存在する. すなわち, $U \subset \mathcal{M}$ であるような任意の単調族 \mathcal{M} に対し, $U \subset \mathcal{M}_0 \subset \mathcal{M}$ を満たす単調族 \mathcal{M}_0 がただ 1 つ存在する.

以後, Ω の部分集合の族 \mathcal{U} に対し、Lemma 3.1 で定まる最小の単調族を $\mathcal{M}(\mathcal{U})$ で表す.

Lemma 3.2

 \mathcal{M} , \mathcal{F} をそれぞれ Ω の単調族, 有限加法族とする. このとき次の (1)-(3) が成り立つ.

- (1) $\mathcal{M}_1 := \{ A \in \Omega \mid A^c \in \mathcal{M} \}$ は単調族である.
- (2) $\mathcal{M}_2 := \{ A \in \Omega \mid A \cup B \in \mathcal{M}, \forall B \in \mathcal{F} \}$ は単調族である.
- (3) $\mathcal{M}_2 := \{ A \in \Omega \mid A \cup B \in \mathcal{M}, \forall B \in \mathcal{M} \}$ は単調族である.

Proof. (1) $A_1, A_2, \dots \in \mathcal{M}_1, A_1 \subset A_2 \subset \dots$ とする. よって $A_1, A_2, \dots \in \mathcal{M}, A_1^c \supset A_2^c \supset \dots$ であり、 \mathcal{M} は単調族なので、 $(\bigcup_{n=1}^{\infty} A_n)^c = \bigcap_{n=1}^{\infty} A_n^c \in \mathcal{M}$ である. したがって $\bigcup_{n=1}^{\infty} A_n \in \mathcal{M}_1$ である.

 $A_1, A_2, \dots \in \mathcal{M}_1, A_1 \supset A_2 \supset \dots$ に対して $\bigcap_{n=1}^{\infty} A_n \in \mathcal{M}_1$ であることについても同様である.

(2) $A_1, A_2, \dots \in \mathcal{M}_2, A_1 \subset A_2 \subset \dots$ とし, $B \in \mathcal{F}$ を任意にとる. このとき $A_1 \cup B, A_2 \cup B, \dots \in \mathcal{M}$, $A_1 \cup B \subset A_2 \cup B \subset \dots$ であり, \mathcal{M} は単調族だから, $\bigcup_{n=1}^{\infty} A_n \cup B = \bigcup_{n=1}^{\infty} (A_n \cup B) \in \mathcal{M}$ である. したがって $\bigcup_{n=1}^{\infty} A_n \in \mathcal{M}_2$ を得る.

 $A_1, A_2, \dots \in \mathcal{M}_2, A_1 \supset A_2 \supset \dots$ に対して $\bigcap_{n=1}^{\infty} A_n \in \mathcal{M}_2$ であることについても同様である.

(3)(2)と同様である.

Lemma 3.3

 \mathcal{F} を Ω の有限加法族とする. このとき, $\mathcal{M}(\mathcal{F})$ は有限加法族である.

Proof. $\mathcal{M} = \mathcal{M}(\mathcal{F})$ とおく.

 $\Omega \in \mathcal{F}, \mathcal{F} \subset \mathcal{M} \ \text{\downarrow} \ \text{\downarrow} \ \Omega \in \mathcal{M} \ \text{\circlearrowleft} \ \text{\circlearrowleft} \ \text{\circlearrowleft}.$

 $\tilde{\mathcal{M}} = \{A \in \Omega \mid A^c \in \mathcal{M}\}$ とおく. $A \in \mathcal{F}$ とすると, \mathcal{F} は有限加法族だから $A^c \in \mathcal{F}$ である. $\mathcal{F} \subset \mathcal{M}$ より $A^c \in \mathcal{M}$ であり, したがって $A \in \tilde{\mathcal{M}}$, すなわち $\mathcal{F} \subset \tilde{\mathcal{M}}$ である. Lemma 3.2 より, $\tilde{\mathcal{M}}$ は単調族なので, $\mathcal{M} \subset \tilde{\mathcal{M}}$ を得る. しがたって, すべての $A \in \mathcal{M}$ に対して $A^c \in \mathcal{M}$ である.

 $\tilde{\mathcal{M}}' = \{A \in \Omega \mid A \cup B \in \mathcal{M}, \forall B \in \mathcal{F}\}$ とおく. $A \in \mathcal{F}$ とすると, \mathcal{F} は有限加法族だから任意の $B \in \mathcal{F}$ に対して $A \cup B \in \mathcal{F}$ である. よって $A \in \tilde{\mathcal{M}}'$ であり, すなわち $\mathcal{F} \subset \tilde{\mathcal{M}}'$ である. Lemma 3.2 より, $\mathcal{M} \subset \tilde{\mathcal{M}}'$ を得る. したがって, すべての $A \in \mathcal{M}$ と $B \in \mathcal{F}$ に対し, $A \cup B \in \mathcal{M}$ である.

また, $\tilde{\mathcal{M}}'' = \{A \in \Omega \mid A \cup B \in \mathcal{M}, \forall B \in \mathcal{M}\}$ とおく. $A \in \mathcal{F}$ とすると先の議論により, 任意の $B \in \mathcal{M}$ に対し $A \cup B \in \mathcal{M}$ である. よって $A \in \tilde{\mathcal{M}}''$, すなわち $\mathcal{F} \subset \tilde{\mathcal{M}}''$ である. 同じく Lemma 3.2 を用いて $\mathcal{M} \subset \tilde{\mathcal{M}}''$ を得る. したがって, すべての $A, B \in \mathcal{M}$ に対して $A \cup B \in \mathcal{M}$ であることが得られる.

以上より, M が有限加法族であることが示された.

Theorem 3.4: 単調族定理

 \mathcal{M} , \mathcal{F} をそれぞれ Ω の部分集合の族とする. このとき, 次の (1)-(3) が成り立つ.

- (1) M が単調族かつ有限加法族であるならば, M は σ -加法族である.
- (2) \mathcal{F} , \mathcal{M} をそれぞれ有限加法族、 単調族とする. このとき、 $\mathcal{F} \subset \mathcal{M}$ ならば $\sigma(\mathcal{F}) \subset \mathcal{M}$ である.
- (3) \mathcal{F} を有限加法族とする. このとき, $\sigma(\mathcal{F}) = \mathcal{M}(\mathcal{F})$ である.

Proof. (1) $\Omega \in \mathcal{M}$ は \mathcal{M} が単調族, 有限加法族であることより明らか. また, $A \in \mathcal{M}$ に対し $A^c \in \mathcal{M}$ であることも同様に明らか.

 $A_1, A_2, \dots \in \mathcal{M}$ とし、 $B_n = \bigcup_{j=1}^n A_j$ とおく。 \mathcal{M} は有限加法族だから各 $B_n \in \mathcal{M}$ である。 $B_1 \subset B_2 \subset \dots$ で、 \mathcal{M} は単調族だから $\bigcup_{n=1}^\infty A_n = \bigcup_{n=1}^\infty B_n \in \mathcal{M}$ である。

以上より M は σ -加法族である.

- (2) $\mathcal{F} \subset \mathcal{M}$ とする. よって $\mathcal{M}(\mathcal{F}) \subset \mathcal{M}$ である. $\mathcal{M}(\mathcal{F})$ は単調族であり, Lemma 3.3 よりは有限加 法族でもあるので, (1) より σ -加法族である. したがって, $\sigma(\mathcal{F}) \subset \mathcal{M}(\mathcal{F})$ なので結論を得る.
- (3) (2) より $\sigma(\mathcal{F}) \subset \mathcal{M}(\mathcal{F})$ である. 一方, $\sigma(\mathcal{F})$ は \mathcal{F} を含む単調族でもあるので, $\mathcal{M}(\mathcal{F}) \subset \sigma(\mathcal{F})$ である. したがって結論を得る.