

(12)(19)(CA) Demande-Application

(21)(A1) 2,271,718
(86) 1997/11/13
(87) 1998/05/22

(72) HARRINGTON, Lea A., CA

(72) ROBINSON, Murray O., US

(71) AMGEN INC., US

(71) AMGEN CANADA INC., CA

(51) Int.Cl.⁶ C12N 15/54, C12N 15/85, A61K 31/70, A01K 67/027,
C12Q 1/68, C12Q 1/48, A61K 38/45, C07K 16/40, C12N 1/21,
C12N 1/19, C12N 9/12, C12N 15/11

(30) 1996/11/15 (08/751,189) US

(30) 1997/06/11 (08/873,039) US

(30) 1997/10/16 (08/951,733) US

(54) GENES CODANT DES PROTEINES DE TELOMERASE

(54) GENES ENCODING TELOMERASE PROTEINS

(57) L'invention concerne des molécules d'acide nucléique, qui codent des polypeptides du complexe télomérase. L'invention se rapporte également à des procédés de préparation desdites molécules d'acide nucléique et desdits polypeptides et à des procédés d'utilisation desdites molécules.

(57) Disclosed are nucleic acid molecules encoding polypeptides of the telomerase complex. Also disclosed are methods of preparing the nucleic acid molecules and polypeptides, and methods of using these molecules.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		A1	(11) International Publication Number:	WO 98/2134:
C12N 15/54, 9/12, C12Q 1/68, 1/48, C12N 15/11, 15/85, A01K 67/027, C07K 16/40, A61K 38/45, 31/70, C12N 1/21, 1/19			(43) International Publication Date:	22 May 1998 (22.05.98)
(21) International Application Number:		PCT/US97/21248	(81) Designated States:	
(22) International Filing Date:		13 November 1997 (13.11.97)	AL, AM, AT, AU, AZ, BA, BB, BG, BF BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NC NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GF KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, A2 BY, KG, KZ, MD, RU, TJ, TM) European patent (AT, BE CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NI PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN ML, MR, NE, SN, TD, TG).	
(30) Priority Data:		15 November 1996 (15.11.96) US 11 June 1997 (11.06.97) US 16 October 1997 (16.10.97) US	Published <i>With international search report.</i> <i>With amended claims and statement.</i>	
(71) Applicants:		AMGEN INC. [US/US]; Amgen Center, 1840 De Havilland Drive, Thousand Oaks, CA 91320-1789 (US). AMGEN CANADA INC. [CA/CA]; Suite 303, 6733 Mississauga Road, Mississauga, Ontario LSN 6J5 (CA).	Date of publication of the amended claims and statement: 30 July 1998 (30.07.9	
(72) Inventors:		HARRINGTON, Lea, A.; 55 Pears Avenue, Toronto, Ontario M5R 1S9 (CA). ROBINSON, Murray, O.; 22623 Pacific Coast Highway, Malibu, CA 90265 (US).		
(74) Agents:		ODRE, Steven, M. et al.; Amgen, Inc., Amgen Center, 1840 De Havilland Drive, Thousand Oaks, CA 91320-1789 (US).		

(54) Title: GENES ENCODING TELOMERASE PROTEINS

(57) Abstract

Disclosed are nucleic acid molecules encoding polypeptides of the telomerase complex. Also disclosed are methods of preparing the nucleic acid molecules and polypeptides, and methods of using these molecules.

- 103 -

AMENDED CLAIMS

[received by the International Bureau on 19 June 1998 (19.06.98);
new claims 33-56 added; remaining claims unchanged (7 pages)]

1. A TP2 nucleic acid molecule encoding a polypeptide selected from the group consisting of:
 - 5 (a) the nucleic acid molecule of SEQ ID NO:13;
 - (b) the nucleic acid molecule that is nucleotides 1920-2820 of SEQ ID NO:13;
 - (c) the nucleic acid molecule of SEQ ID NO:19
 - 10 (d) a nucleic acid molecule encoding the polypeptide of SEQ ID NO:14, or a biologically active fragment thereof;
 - (e) a nucleic acid molecule encoding the polypeptide of SEQ ID NO:20, or a biologically active fragment thereof;
 - 15 (f) a nucleic acid molecule that encodes a polypeptide that is at least 90 percent identical to the polypeptide of SEQ ID NO:14;
 - (g) a nucleic acid molecule that encodes a polypeptide that is at least 90 percent identical to the polypeptide of SEQ ID NO:20;
 - 20 (h) a nucleic acid molecule that hybridizes under stringent conditions to any of (a)-(g) above; and
 - (i) a nucleic acid molecule that is the complement of any of (a)-(g) above.
- 25
2. The nucleic acid molecule that is SEQ ID NO:13 or SEQ ID NO:19.

- 30 3. The nucleic acid molecule that is nucleotides 1920-2820 of SEQ ID NO:13.

- 35 4. A nucleic acid molecule encoding the polypeptide of SEQ ID NO:14 of SEQ ID NO:20.

- 104 -

5. A nucleic acid molecule selected from the group consisting of: nucleotides 1-1689 of SEQ ID NO:13, nucleotides 1-1920 of SEQ ID NO:13, nucleotides 1920-2820 of SEQ ID NO:13, nucleotides 2089-2820 of SEQ 5 ID NO:13, and nucleotides 2089-2859 of SEQ ID NO:13.

6. A nucleic acid molecule encoding amino acids 640-940 of the polypeptide of SEQ ID NO:14.

10 7. A vector comprising the nucleic acid molecule of claim 1.

15 8. A vector comprising the nucleic acid molecule of claim 2.

9. A vector comprising the nucleic acid molecule of claim 3.

20 10. A vector comprising the nucleic acid molecule of claim 4.

11. A vector comprising the nucleic acid molecule of claim 5.

25 12. A vector comprising the nucleic acid molecule of claim 6.

13. A host cell comprising the vector of claim 7.

30 14. A host cell comprising the vector of claim 8.

15. A host cell comprising the vector of 35 claim 9.

AMENDED SHEET (ARTICLE 19)

16. A host cell comprising the vector of
claim 10.

5 17. A host cell comprising the vector of
claim 11.

18. A host cell comprising the vector of
claim 12.

10 19. A process for producing a TP2 polypeptide
comprising the steps of:

(a) expressing a polypeptide encoded by the
nucleic acid of claim 1 in a suitable host; and
15 (b) isolating the polypeptide.

20. The process of claim 19 wherein the
polypeptide is SEQ ID NO:14 or SEQ ID NO:20.

21. The process of claim 19 wherein the
polypeptide is amino acids 640-940 of SEQ ID NO:14.

22. A TP2 polypeptide selected from the group
consisting of:

25 (a) the polypeptide of SEQ ID NO:14;
(b) the polypeptide that is amino acids 640-
940 of SEQ ID NO:14;
(c) the polypeptide of SEQ ID NO:20; and
(d) a polypeptide that is at least 90 percent
30 identical to any of the polypeptides of (a)-(c).

23. A TP2 polypeptide that is the polypeptide
of SEQ ID NO:14, SEQ ID NO:20, or a biologically active
fragment thereof.

24. A TP2 polypeptide selected from the group consisting of: amino acids 1-563 of SEQ ID NO:14; amino acids 1-640 of SEQ ID NO:14; amino acids 640-940 of SEQ ID NO:14; amino acids 696-940 of SEQ ID NO:14; and
5 amino acids 696-953 of SEQ ID NO:14.

25. The TP2 polypeptide of claim 22 that does not possess an amino terminal methionine.

10 26. A method of increasing proliferation of a cell, comprising expressing a nucleic acid encoding TP2 or a biologically active fragment thereof, in the cell.

15 27. A method of increasing telomerase activity in a cell, comprising expressing a TP2 gene, or a biologically active fragment thereof, in the cell.

20 28. A method of decreasing telomerase in a cell, comprising expressing a TP2 mutant in a cell, wherein the mutant does not have TP2 biological activity.

25 29. A nucleic acid molecule encoding a mutant TP2 polypeptide, wherein the codon for aspartic acid at amino acid position 868 or 869 is changed to a codon for alanine.

30 30. A nucleic acid molecule encoding a mutant TP2 polypeptide, wherein the codons for aspartic acid at amino acid positions 868 and 869 are changed to codons for alanine.

35 31. A polypeptide encoded by the nucleic acid molecule of claim 29.

- 107 -

32. A polypeptide encoded by the nucleic acid molecule of claim 30.

5 33. A TRIP1 nucleic acid molecule encoding a polypeptide selected from the group consisting of:

- (a) the nucleic acid molecule of SEQ ID NO:1;
- (b) the nucleic acid molecule of SEQ ID NO:2;
- (c) a nucleic acid molecule encoding the

10 polypeptide of SEQ ID NO:3, SEQ ID NO:4, or a biologically active fragment thereof;

 (d) a nucleic acid molecule that encodes a polypeptide that is at least 70 percent identical to the polypeptide of SEQ ID NO:3 or SEQ ID NO:4;

15 (e) a nucleic acid molecule that hybridizes under stringent conditions to any of (a)-(d) above; and
 (f) a nucleic acid molecule that is the complement of any of (a)-(e) above.

20 34. The nucleic acid molecule that is SEQ ID NO:1.

 35. The nucleic acid molecule that is SEQ ID NO:2.

25 36. A nucleic acid molecule encoding the polypeptide of SEQ ID NO:3.

 37. A nucleic acid molecule encoding the polypeptide of SEQ ID NO:4.

 38. A nucleic acid molecule encoding amino acids 1-871 of the polypeptide of SEQ ID NO:3.

39. A vector comprising the nucleic acid molecule of claim 33.

40. A vector comprising the nucleic acid 5 molecule of claim 34.

41. A vector comprising the nucleic acid molecule of claim 35.

10 42. A vector comprising the nucleic acid molecule of claim 36.

43. A vector comprising the nucleic acid molecule of claim 37.

15 44. A vector comprising the nucleic acid molecule of claim 38.

20 45. A host cell comprising the vector of claim 39.

46. A host cell comprising the vector of claim 40.

25 47. A host cell comprising the vector of claim 41.

48. A host cell comprising the vector of claim 42.

30 49. A host cell comprising the vector of claim 43.

35 50. A host cell comprising the vector of claim 44.

51. A process for producing a TRIP1 polypeptide comprising the steps of:
5 (a) expressing a polypeptide encoded by the nucleic acid of claim 1 in a suitable host; and
 (b) isolating the polypeptide.

52. The process of claim 51 wherein the polypeptide is SEQ ID NO:3.

10 53. The process of claim 51 wherein the polypeptide amino acids 1-871 of SEQ ID NO:3.

15 54. A TRIP1 polypeptide selected from the group consisting of:
 (a) the polypeptide of SEQ ID NO:3;
 (b) the polypeptide that is amino acids 1-871 of SEQ ID NO:3; and
20 (c) a polypeptide that is at least 70 percent identical to the polypeptide of (a) or (b).

55. A TRIP1 polypeptide that is the polypeptide of SEQ ID NO:3 or a biologically active fragment thereof.

25 56. The TRIP1 polypeptide of claim 52 that does not possess an amino terminal methionine.

- 110 -

STATEMENT UNDER ARTICLE 19

The claims of International Application WO 98/21248, published 22 May 1998, have been amended. Original claims 1 through 32 have not been amended, however, new claims 33 through 56 have been added. Claims 33 through 56 are directed to an aspect of the invention not originally claimed by Applicants. Specifically, claims 33 through 56 encompass telomerase protein 1 and DNA encoding therefor. Such claims are fully supported by the written description and the drawings.

1 / 46

FIG. 1A

ATGGAAAAACTCCATGGCATGTGTCTGCCATCCAGACATCCTCTCCT
TGGAGAACCGGTGCCTGGCTATGCTCCCTGACTTACAGCCCTGGAGAA
ACTACATCAGCATGTATCTACCCACTCAGATATCCTCTCCTGAAGAAC
CAGTGCCTAGCCACGCTTCCTGACCTGAAGACCATTGGAAAAACCAACATG
GATATGTGTCTGCCACCCAGACATCCTCTCCTGGAGAACCAACAGTGCCT
GGCCACACTTCTGACCTGAAGACCATTGGAGAAACCAACATGGACATGTT
TCTGCCACCCAGACATCCTCTCCTGGAGAACCGGTGCCTGCCACCC
TCCCTAGTCTAAAGAGCACTGTGTCTGCCAGCCCCCTGTTCCAGAGTCT
ACAGATATCTCACATGACGCAAGCTGATTGTACCGTGTGAACAAACAGC
AATTGCCTGCTCTTGAGCCTCCAAGTTGGAGGGCTCAGCATTCTCTA
AGGGACTAGACCTTCAACCTGCCCTATAGCCCTGAAATCCATCTCTGC
CACAGAGACAGCTCAGGAAGCAACTTGGGTCGTTGGTTGATTCAAGAA
GAGAAGAAAGGGCAGAGACCCAAATGCCCTCTTATAGTCTGAGCTTGG
GAGAGGAGGAGGAGGTGGAGGATCTGGCCGTGAAGCTCACCTCTGGAGA
CTCTGAATCTCATCCAGAGCCTACTGACCATGTCCCTCAGGAAAAGAAG
ATGGCTCTACTGAGCTTGCTGTGCTCTACTCTGGTCTCAGAAGTAAACA
TGAACAAATACATCTGACCCCCACCCCTGGCTGCCATTGGAAATCTGTCG
TGAACCTGCCCTCCTGGAGCCTGAGTTATCCTCAAGGCATTTGTAT
GCCAGGCAGCAGCTGAACGTCCGGAATGTGGCCAATAACATCTTGGCCA

2 / 46

FIG. 1B

TTGCTGCTTCTTGC CGCGTGTGCC CACCTGCGACGATATTCTG
TGCCATTGTCCAGCTGCCTTCTGACTGGATCCAGGTGGCTGAGCTTTAC
CAGAGCCTGGCTGAGGGAGATAAGAATAAGCTGGTGC CCCTGCCGCCT
GTCTCCGTACTGCCATGACGGACAAATTGCCAGTTGACGAGTACCA
GCTGGCTAAGTACAACCCTCGGAAGCACC GGCCAAGAGACACCCCCGC
CGGCCACCCCGCTCTCCAGGGATGGAGCCTCCATTTCTCACAGATGTT
TTCCAAGGTACATAGGGTTCTCAGAGAAGAGCAGAGAAAGTTGAGAA
GGCCGGTGATACTGTCAGAGAAAAAGAACCTCCAAGGTTCACCCCTG
AAGAAGCTGGTCAGCGACTGCACATCCACAAGCCTGCCAGCACGTT
AAGCCCTGCTGGTTACAGATA CCCCTCCAACCTACAGCTTTCTCG
AAGTCGCCTCCTGGCCTGGGATTCTAGCAGAGCTGGGAAGAGGATG
AAGCTGTCTAGGCCAGAGACCTGGGAGCTGAGCCTACGGGG
ACAAAGCGTCGGTCTGGGAGGAACTCATTGAAAATGGGAAGCTCCCTT
CATGGCCATGCTCGAACCTGTGCAACCTGCTGCCGGTTGGAATCAGT
TCCCGCCACCATGAGCTCATTCTCCAGAGACTCCAGCATGGGAAGTCGG
TGATCCACAGTCGGCAGTTCCATTCAAGATTCTTAACGCCATGATGC
CATTGATGCCCTCGAGGCTCAACTCAGAAATCAAGCATTGCCCTTCCT
TCGAATATAACACTGATGAGGCCGATACTAACTAGAAATGAAAAGAAC
GTCCCAGGCCGGAGGTTCTTGCCACCTAACGCCGTAGCAGCTTCGTAT

3 / 4 6

FIG.1C

GGCAATGAGGATACTGTGTTGAGCAGCTCAAGAGGGAGAAGCTG
AGAGTACACAAGGCCAGACAGTGGAAATATGATGGTGAGATGCTGAACA
GGTACCGACAGGCCCTAGAGACAGCTGTGAACCTCTCTGTGAAGCACAG
CCTGCCCTGCTGCCAGGCCGCACTGTCTGGTCTATCTGACAGATGCT
AATGCAGACAGGCTCTGTCCAAAGAGCAACCCACAAGGGCCCCGCTGA
ACTATGCACTGCTGTTGATTGGGATGATGATCACGAGGGCGGAGCAGGT
GGACGTCGTGCTGTGGAGGTGACACTCTGAAGACTGCAGTGCTTAAG
GCAGAAGAAGGCATCCTGAAGACTGCCATCAAGCTCCAGGCTCAAGTCC
AGGAGTTGATGAAATGATGGATGGTCCCTGAATACTTTGGAAATA
CCTGCTGTCTCTGGCTGCCAAAGGGTCCTGTGGACAGGGTCATCCTC
CTTGGCCAAAGCATGGATGATGGAATGATAAATGTGGCCAAACAGCTTT
ACTGGCAGCGTGTGAATTCCAAGTGCCTCTTGTGGTATCCTCTAAG
AAGGGTACAATACTGTCAACAGATTGAATCCAATGATGTGACACTC
TCAGGCTGTACTGCGATACTGAAGTTCATTCAGAGCATGGGCCT
CCCATCTTCTGGAACATGTGGCCAAATGGACAAAATATTCAAGATTCC
ACCACCCCCAGGAAAGACAGGGTCCAGTCTCTCCGGCCACTGGAAGAG
GACACTCCAAGCCCCCTGGCTCCTGTTCCCAGCAAGGATGGCGCAGCA
TCCGGCTTTCATTCACCTTCCGAGACATGCACGGGGAGCGGGGA
CCTGCTGCTGAGGTCTGTGCTGCCAGCACTGCAGGCCAGCAGGCCCT

4 / 46

FIG. 1D

CACCGTATCAGCCTCACGGAATCGACCTCCGCTGGGGCGTCACTGAGG
AGGAGACCCGTAGGAACAGACAACCTGGAAGTGTGCCTGGGGAGGTGGA
GAACGCACAGCTGTTGTGGGGATTCTGGGCTCCCGTTATGGATACATT
CCCCCCCAGCTACAAACCTCCTGACCATCCACACTCCACTGGGCCAGC
AGTACCCCTTCAGGGCGCTCTGTGACAGAGATGGAGGTGATGCAGTTCC
GAACCGGAACCAACGTCTGCAGCCCTCTGCCCAAGCTCTCATCTACTTC
CGGGATTCCAGCTTCCTCAGCTCTGTGCCAGATGCCTGGAAATCTGACT
TTGTTTCTGAGTCTGAAGAGGCCGCATGTCGGATCTCAGAACTGAAGAG
CTACCTAACGAGACAGAAAGGGATAACCTGCCAGATACCCCTGTGAG
TGGGGGGGTGTGGCAGCTGGCCGCCCTATGTTGGCGGGCTGGAGGAGT
TTGGGCAGTTGGTCTGCAGGATGTATGGAATATGATCCAGAAGCTCTA
CCTGCAGCCTGGGCCCTGCTGGAGCAGCCAGTGTCCATCCCAGACGAT
GACTTGGTCCAGGCCACCTTCAGCAGCTGCAGAACGCCACCGAGTCCTG
CCCGGCCACGCCTCTTCAGGACACAGTGCAACAGCTGATGCTGCCCA
CGGAAGGCTGAGCCTGGTGACGGGCAGTCAGGACAGGGCAAGACAGCC
TTCCTGGCATCTCTGTGTCAGCCCTGCAGGCTCCTGATGGGCCAAGG
TGGCACCAATTAGTCTTCTTCCACTTTCTGGGGCTCGTCCTGACCAGGG
TCTTGCCTCACTCTGCTCAGACGCCCTGTACCTATTCGCGTGGCAA
CTAAAAGAGGCCAGGTGCCCTCCCCAGCACCTACCGAACGCCCTGGTGTGG

5 / 46

FIG. 1E

AGCTGCAGCAGAGGCTGCTGCCAAGTCTGCTGAGTCCTGCATCCTGG
CCAGACCCAGGTCTGATCATCGATGGGCTGATAGTTAGTGGACCAG
AATGGGCAGCTGATTTCAGACTGGATCCAAAGAACGTTCCCCGGTGTG
TACACCTGGTGCTGAGTGTCTAGTGATGCAGGCCTAGGGAGACCT
TGAGCAGAGCCAGGGTGCCACGTGCTGGCCTGGGCTCTGGAGGCC
TCTGCTCGGGCCGGCTGGTGAGAGAGAGCTGGCCTGTACGGGAAGC
GGCTGGAGGAGTCACCATTAAACAACCAGATGCGACTGCTGCTGGTGAA
GCGGGAATCAGGCCGGCGCTCACCTGCGCTTGGTCACCGATCACCTG
AGGCTCTCACGCTGTATGAGCAGGTGTCTGAGAGACTCCGGACCCTGC
CTGCCACTGTCCCCCTGCTGCTGCAGCACATCCTGAGCACACTGGAGAA
GGAGCACGGCCTGATGTCCTCCCCAGGCCTGACTGCCCTAGAACGTC
ACACGGAGTGGTTGACTGTGGACCAGCTGCACGGAGTGCTGAGTGTGT
GGCGGACACTACCGAAGGGACTAAGAGCTGGAAAGAACAGCAGTGGCTGC
TGGTAACAGTGGAGACCCCTACCCATGGGCCGTTGCCTGCCTCGTC
CAGAGTCTGCGCAGTTGCTAGGGAGGGCCCTCTGGAGCGCCCTGGTG
CCCGGCTGTGCCTCCCTGATGGGCCCTGAGAACAGCAGCTAACGTTG
CTATGGGAAGAGGCCAGGGCTAGAGGACACGGCACACATCCTCATTGCA
GCTCAGCTCTGGAAGACATGTGACGCTGATGCCTCAGGCACCTCCGAA
GTTGCCCTCTGAGGCTCTGGAGACCTGCCTTACCAACCTGCTCCAGAG

6 / 46

FIG. 1F

CGGGAACCGTGGACTTCTTCGAAGTCCTTACCAACCTCCATGTGGTG
GCTGCACACTTGGATTGGGTCTGGTCTCTCGGCTCTGGAGGCCATG
CCCTCTATGCTTCTTCAGTCCCCAAAGAGGAACAAAGCTCCCCGAGGC
TGACGTTGCAGTGTTCGCACCTCCTGAGGCAGCAGGCTTCAATCCTC
AGCCAGTACCCCCGGCTCCTGCCAGCAGGCCAACAGCCCCCTGG
ACTCACCTCTTGCCACCAAGCCTCGCTGCTCTCCGGAGATGGCACCT
CCAACACACACTACGATGGCTTAATAAACCCGGACCATGAAAAATCAG
CAAAGCTCCAGCCTGTCTCTGGCAGTTCCCTCATCCCTACTGCTGTGG
CCTTCTCCACCÄATGGCAAAGAGCAGCTGTGGCAGCTGCCAATGGGAC
AGTTTACCTGTTGGACCTGAGAACTTGGCAGGAGGAGAAGTCTGTGGTG
AGTGGCTGTGATGGAATCTCTGCTTGTTCCTCTCCGATGATACAC
TCTTTCTTACTGCCTCGACGGGCTCCTGGAGCTCTGGACCTGCAGCA
TGGTTGTCGGGTGCTGCAGACTAAGGCTCACCAACTGAGGCT
TGCTGCCTGAGCCCAGACTGCCGGCTGCTAGCCACCGTGTGCTGGGAG
GATGCCTAAAGCTGTGGGACACAGTCCGTGGCAGCTGGCCTTCCAGCA
CACCTACCCCAAGTCCCTGAACGTGTTGCCTTCCACCCAGAGGGGCAG
GTAATAGCCACAGGCAGCTGGCAGCAGCTCAGCTTCCAGGTGG
ATGGGCTCAAAGTCACCAAGGACCTGGGGCACCCGGAGCCTCTATCCG
TACCTTGGCCTTCAATGTGCCTGGGGGGTTGTGGCTGTGGCCGGCTG

7 / 46

FIG. 1G

GACAGTATGGTGGAGCTGTGGCCTGGCGAGAAGGGGCACGGCTGGCTG
CCTTCCCTGCCACCATGGCTTGTTGCTGCGCTTTCCTGCATGC
GGGTTGCCAGTTACTGACGGCTGGAGAGGATGGCAAGGTTCAAGGTGTGG
TCAGGGTCTCTGGTCGGCCCCGTGGCACCTGGTTCCCTTCTCTCT
CTCCTGCCCTCTGTGGCACTCAGCCCAGATGGTATCGGGTGGCTGT
TGGATATCGAGCGGATGGCATTAGGATCTACAAAATCTTCAGGTTCC
CAGGGGGCTCAGGGTCAGGCAGTGGATGTGGCAGTGTCCGCCCTGGCCT
GGCTAACGCCCAAGGTATTGGTGAGTGGTGCAGAAGATGGTCCTTGCA
GGGCTGGGCACTCAAGGAATGCTCCCTCAGTCCCTCTGGCTCCTGTCC
AGATTCCAGAACGCCTGTGCTAGGACTGGCCACTTCCCAGGAGCTTGG
CTTCTGCCTCAGAGGATTTCACAGTGCAGCTGTGGCCAAGGCAGCTGCT
GACGCCAACACAAGGCAGAAGACTTCCCTGTGGCACTGAGCTGCGG
GGACATGAGGGCCCTGTGAGCTGCTGTAGTTCAAGCAGTGGAGGCA
GCCTGGCCACCGGGGGCCGGATGGAGTCTCCTCTGCTGGACGTGAG
GACACCAAACCCCTGTTGATCCACTCCTCCCTGCCTGTCACCGT
GACTGGGTCACTGGCTGTGCCTGGACCAAAGATAACCTACTGATATCCT
GCTCCAGTGTGGCTCTGTGGGCTCTGGGACCCAGAGTCAGGACAGCG
GCTTGGTCAGTCCCTGGGTCACTCAGAGTGTGAGCGCTGTGGCAGCT
GTGGAGGAGCACGTGGTGTCTGTGAGGCCGGATGGACCTTGAAAGTGT

8 / 46

FIG.1H

GGGACCATCAAGGCGTGGAGCTGACCAGCATCCCTGCTCACTCAGGACC
CATTAGCCACTGTGCAGCTGCCATGGAGCCCCGTGCAGCTGGACAGCCT
GGGTCAGAGCTTCTGGTGGTAACCGTCGGCTAGATGGGCCACACGGT
TATGGCATCCACTCTTGGTGTGCCAAACCCACACCCCTCCTGGACACAG
CGGCCAGTCCGTGCTGCTGCTGTTTAGAAACCTCAGGCCTCATGCTG
ACCGCCTCTGAGGATGGTTCTGTACGGCTCTGGCAGGTTCTAAGGAAG
CAGATGACACATGTATAACCAAGGAGTTCTGCAGCCGTCACTGCTGTGGC
TTGGGCACCAGATGGTCCATGGCAGTATCTGGAAATCAAGCTGGGAA
CTAATCTTGTGGCAGGAAGCTAAGGCTGTGGCCACAGCACAGGCTCCAG
GCCACATTGGTGCTCTGATCTGGCCTCGGCACACACCTTTTGTCCCT
CAGTGCTGATGAGAAAATCAGCGAGTGGCAAGTGAAACTGCGGAAGGGT
TCGGCACCCGGAAATTGAGTCTTACCTGAACCGAATTCTACAGGAGG
ACTTAGGGGTGCTGACAAGTCTGGATTGGCTCCTGATGGTCACTTCT
CATCTTGGCCAAGCAGATTGAAAGTTACTTTGCATGAAGCCAGGGAT
GCTCCATCTGAAATCTGGAGCAGCTATACAGAAAATCCTATGATATTGT
CCACCCACAAGGAGTATGGCATATTTGTCCTGCAGCCCAAGGATCCTGG
AGTTCTTCTTCTTGAGGAAAAGGAATCAGGAGAGTTGAAGAGAGG
CTGAACCTTGATATAAACTTAGAGAATCCTAGTAGGACCCATAATATCGA
TAACTCAAGCCAACCTGAATCTGAGTCCTCATTTTGTGTGCCAGCTC

9 / 4 6

FIG. 11

TGATGGATCCTATGGAACCTGGCCAAATGCAGCCCAGAAGGAGAACATGG
ACCAACAGGTAACATGTGGCAGAAAAAAGCAAACACTCCAGAAACCCAAA
CTCCAGGGACAGACCCATCTACCTGCAGGGAAATCTGATGCCAGCATGGA
TAGTGATGCCAGCATGGATAGTGAGCCAACACCACATCTAAAGACACGG
CAGCGTAGAAAGATTCACTCGGGCTCTGTCACAGCCCTCCATGTGCTAC
CTGAGTTGCTGGTGACAGCTTCGAAGGACAGAGATGTTAAGCTATGGGA
GAGACCCAGTATGCAGCTGCTGGCCTGTTCCATGCGAAGGGTCAGTG
AGCTGCCTGGAACCTGGCTGGCGCTAACTCCACCCCTGCAGCTGCCG
TGGGAGACGTGCAGGGCAATGTGTACTTCTGAATTGGGAA

WO 98/21343

PCT/US97/21248 -

10 / 46

FIG. 2A

ATGGAGAACGCTCTGTGGCATGTGCCTGCCATTAGACACATCCTCTCCT
TGAAGAACCGGTGCCTGACCATGCTCCCTGACCTCCAGCCCCCTGGAGAA
AATACATGGACATAGATCTGTCCACTCAGACACATCCTTCCTGGAGAAC
CAGTGTCTGACCATGCTCTGACCTCCAGCCCACGGAGAGAATAGATG
GGCATATATCTGTCCACCCAGACACATCCTCTCCTGGAGAATCGGTGCCT
GACCATGCTCCCTGACCTCCAGCCTCTGGAGAAGCTATGTGGACATATG
TCTAGTCATCCAGACGTCCTTCTTGAAAACCAATGTCTAGCTACTC
TCCCCACTGTAAAGAGCACTGCATTGACCAGCCCCCTGCTCCAGGGTCT
TCACATATCTCATACGGCACAAAGCTGATCTGCATAGCCTGAAAACTAGC
AACTGCCTGCTCCCTGAGCTTCCTACCAAGAAGACTCCATGTTCTCTG
AGGAACTAGACCTCACCTGGACCCAGGGCCCTGAAATCCATGTCTGC
TACAGCTCAAGTCCAGGAAGTAGCCTGGGTCAATGGTGTCTCCAAA
GAAAAGGAATTCAAGAAGAAGAAAGCACAGAACAGTCCRATGCCTTG
ACAGTCTAAGCTTGGAAAGAAGAAGAACAGTGGAGGCACCGGTCTAAACT
CACATCTGGAGACTCTGGCTTCATCCTGAAACCACTGACCAGGTCTT
CAGGAGAAGAAGATGGCTCTCTGACCTTACTCTGCTCTGCTCTGGCCT
CAAATGTGAATGTGAAAGATGCATCTGACCTTACCCGGGACATCCATCCT
TGAAGTCTGTAGTGCCTGGCCTGGAAACCGGAGTTCATCCTTAAG
GCATCTTGTATGCTCGGCAGCAACTAACCTCCGGGACATGCCAATA

1 1 / 4 6

FIG. 2B

CAGTTCTGGCTGTGGCTGCCCTCTGCCAGCCTGCCGCCCCATGTACG
ACGGTATTACTCCGCCATTGTTCACCTGCCTTCAGACTGGATCCAGGTA
GCCGAGTTCTACCAGAGCCTGGCAGAAGGGATGAGAAGAAGTTGGTGT
CCCTGCCTGCCTGTCTCGAGCTGCCATGACCGACAAATTGCCGAGTT
TGATGAGTACCAAGCTAGCTAAGTACAACCCACGGAAACATCGGTCCAAG
AGGCGGTCCCGCCAGCCACCCGCCCTCAAAAGACAGAACGTCCATT
CAGAGAGAGGGAAATGTTTCAAAGAGCCTTGGCCCTTAAAAATGA
ACAGATTACGTTGAAGCAGCTTATAATGCAATGCCAGAGAAAAACAGG
CTACCACGGTTCACTCTGAAGAAGTTGGTAGAGTATCTACATATCCACA
AGCCTGCTCAGCACGCCAGGCCCTGCTGGCTACAGGTACCCAGCCAC
CCTAGAGCTTTCTCGGAGTCACCTCCCTGGCGTGGAGTCTAGC
AGAGCTGGTCAGCGGATGAAGCTCCGAAGGCCAGAGACCTGGAGCGGG
AGCTGAGTTACGGGAAACAAAGCTCTGTGTGGAGGAGCTCATAGA
CAATGGAAACTGCCCTCATGCCATGCTCCGGAACCTGTGTAACCTG
CTGCGGACTGGGATCAGTGCCGCCACCATGAACTCGTTCTCCAGAGAC
TCCAGCATGAGAAATCTGTGGTCACAGTCGGCAGTTCCATTAGATT
CCTTAATGCTCATGACTCTATCGATAAACTTGAGGCTCAGCTCAGAAGC
AAAGCATCACCCCTCCCTCCAATACAACATTGATGAAACGGATAATGA
TTAGAAAATCAAAAAAAATAGGAGGCCTGCCAGTCGGAAGCACCTGTG

12 / 46

FIG.2C

CACCCCTGACGGCGCCGGCAGCTTCGGGCAGCAATGACTATACTGTGATG
TATGAGCAGCTCAAGCGGGAGAAACTGAGGCTGCACAAGGCCAGACAAT
GGAACGTGATGTTGAGTTGCTGGAGCGCTATGCCAGGCCCTGGAAAC
AGCTGTGAACCTCTCAGTAAAGCACAAACCTATCCCCGATGCCTGGCCGA
ACCCTCTTGGTCTATCTCACAGATGCAAATGCCGACAGGCTCTGTCCA
AGAGTCACTCACAAGGGCCTCCCTGAACATGTGCTGCTGATCGG
AATGATGGTGGCTCGAGCCGAGCAAGTGACTGTTGCTTGTGGGGGA
GGATTGTGAAGACACCGTACTTACAGCGATGAAGGCATCCTGAAGA
CTGCCATCAAACATTCAAGGCTCAAGTCCAGGAGTTAGAAGGCAATGATGA
GTGGCCCTGGACACTTTGGGAAGTATCTGCTGTCTGGCTGTCCAA
AGGACCCCCATTGACAGGGTCATCCTGTTGGTCAAAGGATGGATACCG
AGCTCCTGAAAGTAGCAAACAGATTATCTGGCAGCATGTGAATTCAA
GTGCCTCTTGTGGTGCCTCCTACAGAAAACACAGTACATATCACCA
AATTGAAATCCAACGATGTGACGCTCTCAGGCTGCAGTGACGGATCC
TGAAATTCAATTGCCAACATGGAGCCTCTCGTCTCCTGGAACATGTGG
ACAACTAGATAAAACTATTCAAGATCCCCCAGGAAAGACACAG
GCACCGTCTCTCCGGCCGCTGGAGGAGAACATCCCTGGTCCCTGGGTC
CTATTTCCCAGCATGGATGGCGCAATATCCGGCTTTCAATTCAATTCCAC
TTTCCGTGACATGCATGGGAGCGAGATTGCTGATGAGATCTGTTCTG

13 / 46

FIG.2D

CCCGCACTGCAGGCCAGAGTGTCCCCCACCGCATCAGTCTCACGCCA
TTGACCTGCGCTGGGTATCACAGAGGAAGAGACCCGCAGGAACAGACA
ACTGGAAGTGTGCCTTGGGAGGTGGAGAACTCACAGCTGTTGTTGGGG
ATTCTGGGCTCCCGCTATGGCTACATTCCCCCAGCTATGATCTTCCTG
ATCATCCCCACTTCACTGGACCCATGAGTACCCCTCAGGGCGATCCGT
GACAGAGATGGAGGTGATGCAATTCTGAACCGTGCCAACGCTCGCAG
CCTTCGGCCAAGCTCTCATCTACTTCCGAGATCCTGATTTCCTTAGCT
CTGTGCCAGATGCCTGGAAACCTGACTTTATATCTGAGTCAGAAGAAGC
TGCACATCGGGTCTCAGAGCTGAAGAGATATCTACACGAACAGAAAGAG
GTTACCTGTCGCAGCTACTCCTGTGAATGGGAGGTGTAGCGGCTGGCC
GGCCCTATACTGGGGCCTGGAGGAGTTGGACAGTTGGTTCTCCAGGA
TGTGTGGAGCATGATCCAGAACAGCACCTGCAGCCTGGGCCAGTTG
GAGCAGCCAACATCCATCTCAGAACAGCATTGATCCAGACCAGCTTTC
AGCAGCTGAAGACCCCAACGAGTCCGGCACGCCACGCCCTTCAGGA
TACAGTGCAGCAGCTGTTGCTGCCCATGGGAGGCTGAGCCTAGTGACT
GGGCAGGCAGGACAGGGAAAGACTGCCTTCTGGCATCCCTGTGCTG
CCCTGAAGGTCCCTGACCAGCCAATGAGCCCCGTTGTTCTTCCA
CTTIGCAGCAGCCGCCCTGACCAGTGTCTGCTCTAACCTCCTCAGA
CGCCTCTGTACCCATCTGCGTAAAAACTGGGAGAGCTGAGTGCCTCC

14 / 46

FIG.2E

CCAGCACTTACAGAGGCCTGGTGTGGAACTGCAGCAGAAGTTGCTCCT
CAAATTCGCTCAGTCGCTGCAGCCTGCTCAGACTTTGGTCCTTATCATC
GATGGGGCAGATAAGTTGGTGGATCGTAATGGGCAGCTGATTCAGACT
GGATCCCCAAGTCTCTTCCGCGGCGAGTACACCTGGTGCTGAGTGTGTC
CAGTGACTCAGGCCTGGTGAGAACCTTCAGCAAAGTCAGGGTGCTTAT
GTGGTGGCCTTGGGCTCTTGGTCCCATCTCAAGGGCTCAGCTTGTGA
GAGAAGAGCTAGCACTGTATGGAAACGACTGGAGGAGTCACCTTTAA
CAACCAGATGCGGCTGCTGGCAAAGCAGGGTTCAAGCCTGCCATTG
TACCTGCACCTTGTCACTGACTACCTGAGGCTTTCACACTGTATGAAC
AGGTGTCTGAGAGACTTCGAACCCCTGCCCGCCACTCTCCACTGCTCTT
GCAGCACATCCTGAGCACCTGGAGCAAGAACATGCCATGATGTCCTT
CCTCAGGCTTGACTGCCCTTGAGGTACACGAAGTGGTCTGACTGTGG
ACCAGCTACATGCAATCCTGAGCACATGGCTGATCTGCCCAAGGAGAC
TAAGAGCTGGGAAGAAGTGGCTGGCTGCCAGTCACAGTGGAAACCCCTTC
CCCTTGTGTCATTGCCTACCTTGTCCAGAGTCTACGCAGTTACTAG
GGGAGGGCCCAGTGGAGCGCCCTGGTGCCCGTCTGCCTCTGATGG
GCCCTGAGGACAACAATTAAACGTCGCTATGGAAAAGGCTGGGGCTA
GAGAAGACTGCGCATGTCCTCATTGCAGCTCACCTCTGGAAGACGTGTG
ATCCTGATGCCTCGGGCACCTCCGAAGTTGCCCTCTGAGGCTCTGAA

15 / 46

FIG.2F

AGATTTACCTTACCACTGCTCCAGAGCGGGAACATGGTCTCCTTGCC
GAGTTTCTTACCAATCTCCATGTGGTTGCTGCATATCTGGAAGTGGGTC
TAGTCCCCGACCTCTGGAGGCTCATGTGCTCTATGCTTCTCAAAGCC
TGAAGCCAACCAGAAGCTCCCAGCGGCAGATGTTGCTGTTTCCATACC
TTCCTGAGACAACAGGCTTCACTCCTTACCCAGTATCCTTGCTCCTGC
TCCAGCAGGCAGCTAGCCAGCCTGAAGAGTCACCTGTTGCTGCCAGGC
CCCCCTGCTCACCCAGCGATGGCACGACCAGTCACACTGAAATGGATT
AATAAACCCAGACCCCTGAAGGGTCAGCAAAGCTTGTCTGTACAATGT
CCTCATCCCCAATGCTGTGGCCTTCTCCCCGAATGGCAAAGAGCAGC
TGTGGGGACCGCCAGTGGACAATTACCTGTTGAACTTGAAAACCTGG
CAGGAGGAGAAGGCTGTGGTAGTGGCTGTGACGGGATTCCTCTTTG
CATTCCCTTCGGACACTGCCCTTCCTTACTACCTCGACGGCACCT
AGAGCTTGGGACCTGCAACATGGTGTGGGTGTTCAGACCAAGGCC
CACCAAGTACCAAATCACTGGCTGCTGCCTGAGCCCAGACCGCCGCCTGC
TGGCCACTGTGTGTTGGGAGGATACCTAAAGCTGTGGGACACAGTCG
AGGACAGCTGGCTTTCAGTACACCCATCAAAGTCTCTCAACTGCGTT
GCCTTCCACCCAGAGGGCAGGTGGTAGCCACAGGCAGCTGGCTGGCA
GCATTACCTTCTTCCAGGCAGATGGACTCAAAGTCACCAAGGAACCTAGG
GGCCCCCGGACCCCTCTGTCTGTAGTTGGCATTCAACAAACCTGGGAAG

16 / 46

FIG. 2G

ATTGTGGCTGTGGCCGGATAGATGGGACAGTGGAGCTGTGGCCTGGC
AAGAGGGTGCCCCGGCTGGCGGCCCTCCCTGCACAGTGTGGCTGTGTCTC
TGCTGTTCTTTCTTGCATGCTGGAGACCGGTTCCCTGACTGCTGGAGAA
GATGGCAAGGCTCAGTTATGGTCAGGATTCTTGGCCGGCCCAGGGGTT
GCCTGGGCTCTCTCCTCTTCTCCTGCACTCTCGGTGGCTCTCAACCC
AGACGGTGACCAGGTGGCTGTGGTACCGAGAACGATGGCATTAACATC
TACAAGATTCTTCAGGTTCCCAGGGCCTCAGCATCAAGAGCTAAATG
TGGCGGTGTCTGCACTGGTGTGGCTGAGCCCTAGTGTGTTGGTGAGTGG
TGCAGAAGATGGATCCCTGCATGGTGGATGTTCAAGGGAGACTCCCTT
CATTCCCTGTGGCTGTTGTCGAGATAACAGAACGCTGTGCTGGACTGG
CTGCCTCCCAGGAACTCATGGCTGCTGCCCTCAGAGGACTTCAGTGTGAG
ACTGTGGCCCAGACAGCTGCTGACACAGCCACATGTGCATGCGGTAGAG
TTGCCCTGTTGCTGAACCTCGGGGACACGAGGGGCCAGTGTGCTGCT
GTAGCTTCAGCCCTGATGGAGGCATCTGGCCACAGCTGGCAGGGATCG
GAATCTCCTTGCTGGACATGAAGATAGCCAAGCCCCTCTCCTGATT
CACACTTCTCGTCCTGTCATCGTACTGGATCACTGGCTGTGCGTGGA
CCAAAGACAACATCCTGGTCTCCTGCTCGAGTGATGGCTCTGTGGACT
CTGGAACCCAGAGGCAGGGCAGCAACTGGCCAGTTCTCAGGCCACCA
AGTGCCGTGAGCGCCGTGGTGCTGTGGAGGAACACATTGTATCTGTGA

17 / 46

FIG.2H

GCCGAGATGGGACCTTGAAAGTGTGGGACCATCAGGGTGTGGAGCTGAC
CAGCATCCCTGCCATTCCGGACCCATCAGCCAGTGTGCAGCTGCTCTG
GAGCCCCGCCAGGGGGACAGCCTGGATCAGAGCTTCTGGTGGTGAUTG
TTGGACTAGATGGGCCACAAAGTTGTGGCATCCCTGTTGGTGTGCCA
AATACGTACTCTCCAGGGACACAGTGGCCCAGTCACAGCAGCTGCTGCT
TCAGAGGCCTCAGGCCTCCTGCTGACCTCAGATGATACTGCTGTACAGC
TCTGGCAGATACCAAAGGAAGCAGATGATTACAAACCTAGGAGTTG
TGTGGCCATCACTGCTGTGGCATGGCACCGGATGGTCTATGGTGGT
TCCGGAAATGAAGCCGGGAAC TGACACTGTGGCAGCAAGCCAAGGCTG
TGGCTACCGCACAGGCTCCAGGCCGCGTCAGTCACCTGATCTGGTACTC
GGCAAATTCAATTCTCGTTCTCAGTGCTAATGAAAACGTCAGCGAGTGG
CAAGTGGACTGAGGAAAGGTTAACGTCCACCAGTTCCAGTCTTCATC
TGAAGAGAGTTCTGCAGGAGGACTGGGAGTCTGACAGGTCTGGTCT
GGCCCTGATGCCAGTCTCATCTTGATGAAAGAGGATGTGGAATT
CTAGAGATGAAGCCTGGTCTATTCCATCTTCTATCTGCAGGAGGTATG
GAGTACATTCTTCAATACTGTGCACCAGCAAGGAGTACGGCTTCTTA
CCTGCAGCAGGGGGACTCCGGATTACTTCTATATTGGAGCAAAAGGAG
TCAGGGGAGTTGAAGAGATCCTGGACTTCAATCTGAACCTAAATAATC
CTAATGGGTCCCCAGTATCAATCACTCAGGCCAAACCTGAGTCTGAATC

1 8 / 4 6

FIG.2I

ATCCCTTTGTGCGCCACCTCTGATGGATGCTGTGAAACTTATCTGAA
TGTACCTCAGAGGGAGAATGGATCGTAGATAAACATTGGCAGAAAAAAG
CAAAAAAAACCTAAAACTCAGACTCTGGAGACAGAGTTGTCCCCGCACTC
AGAGTTGGATTTTCCATTGATTGCTGGATTGATCCCACAAATTAAAG
GCACAGCAGTGTAAAAAGATCCACTTGGGCTCTGTCACAGCCCTCCATG
TGCTTCCGGGATTGCTGGTGACAGCTTCGAAGGACAGAGATGTTAAGCT
GTGGGAGAGACCCAGTATGCAGCTGCTGGCTTGTCCGATGTGAAGGG
CCAGTGAGCTGTCTGGAACCTTGGATGGAGGCCAGCTCTCCCTGCAGC
TTGCTGTGGAGACACACAAGGAAACTTGTATTTCTATCTTGGAA

WO 98/21343

PCT/US97/21248

19 / 46

FIG.3A

MEKLHGHVSAHPDILSLENRCLAMLPDLQPLEKLHQHVSTHSDILSLKN
QCLATLPDLKTMEKPHGYVSAHPDILSLENQCLATLSDLKTMEKPHGHV
SAHPDILSLENRCLATLPSLKSTVSASPLFQSLQISHMTQADLYRVNNS
NCLLSEPPSWRAQHFSKGLDLSTCPIALKSISATETAQEATLGRWFDSE
EKKGAETQMPSYSLSLGEEEEVEDLAVKLTSGDSESHPEPTDHVLQEKK
MALLSLLCSTLVSEVNMMNTSDPTLAAIFEICRELALLEPEFILKASLY
ARQQLNVRNVANNILAIAAFLPACRPHLRRYFCAIQLPSDWIQAELY
QSLAEGDKNKLVPLPACLRTAMTDKFAQFDEYQLAKYNPRKHRKRHPR
RPPRSPGMEPFFSHRCFPFYIGFLREEQRKFKEAGDTVSEKKNPPRFTL
KKLVQRLHIHKPAQHVQALLGYRYPNLQFSRSRLPGPWDSSRAGKRM
KLSRPETWERELSLRGNKASVWEELIENGKLPFMAMLRNLCNLLRVGIS
SRHHELILQRLQHGKSVIHSRQFPFRFLNAHDADALEAQLRNQALPFP
SNITLMRRILTRNEKNRPRRRFLCHLSRQQLRMAMRIPVLYEQLKREKL
RVHKARQWKYDGEMLNRYRQALETAVNLSVKHSLPLPGRTVLVYLTDA
NADRLCPKSNPQGPPLNYALLLIGMMITRAEQVDVVLCGGDTLKTAVLK
AEEGILKTAIKLQAQVQEFDENDGWSLNTFGKYLLSLAGQRVPVDRVIL
LGQSMDDGMINVAKQLYWQRVNSKCLFVGILLRRVQYLSTDLNPDVTL
SGCTDAILKFIAEHGASHLLEHVGQMDKIFKIPPPPGBTGVQSLRPLEE
DTPSPLAPVSQQGWRSIRLFISSTFRDMHGERDLLRSVLPALQARAAP

WO 98/21343

PCT/US97/21248

20 / 46

FIG.3B

HRISLHGIDL RGVT EETRRNRQLEVCLGEVENAQLFVGILGSRYGYI
PPSYNLPDHPHFHWAQQYPSGRSVTEMEVMQFLNRNQRLQPSAQALIYF
RDSSFLSSVPDAWKSDFVSESEEAAXRISELKSYLSRKGITCRRYPCE
WGGVAAGR PYVGGLEEFGQLVLQDVWNMIQKLYLQPGALLEQPVSIPDD
DLVQATFQQLQKPPSPARPRLLQDTVQXLMLPHGRLSLVTGQSGQGKTA
FLASLV SALQAPDGAKVAXLVFFHFSGARP DQGLALTLLRRLC TYLRGQ
LKEPGALPSTYRSLVWELQQRLLPKSAESLHPGQTQVLIIDGADRLVDQ
NGQLISDWIPKKLPRCVHLVLSVSSDAGLGETLEQSQGAHV LALGP LEA
SARARLVREELALYGKRLEESP FNNQM RLLL V KRESGRPLYLRLVTDHL
RLFTLYEQV SERLRTLPATVPLLQHILSTLEKEHGP DVLPQ ALTALEV
TRSGLTVDQLHGVL SVWRTL PKGT KSWE EAVAAGNSGD P YPMGPFA CLV
QSLRSLLGEGPLERPGARLCLPDGPLRTAAKRCY GKR PGLED TAHILIA
AQLWKTCDADASGTFRSCPPEALGDL PYHLL QSGNRGLLSKFLT NLHV
AAHLELGLV SRLLEAHALYASSVPKEE QKLPEADVAVFRTFLRQQASIL
SQYPRLLPQQAANQPLDSPLCHQASLLSRRWHLQHTLRWLNK PRTMKNQ
QSSSLSLAVSSSPTAVAFSTNGQRAAVGTANGTVYLLDLRTWQEEKSVV
SGCDG I SACLFLSDDTLFLTAFDGLLELWDLQHGCRVLQTKAHQYQITG
CCLSPDCRLLATVCLGGCLKLWDTVRGQLAFQHTYPKS LNCVAFHPEGQ
VIATGSWAGSISFFQVDGLKVTKDLGAPGASIRTLA FNVP GGVVAVGRL

21 / 46

FIG.3C

DSMVELWAWAREGARLAAFPAAHGFVAAALFLHAGCQLLTAGEDGKVQWW
SGSLGRPRGHLSLSLSPALSVALSPDGDRVAVGYRADGIRIYKISSGS
QGAQGQALDVAVSALAWLSPKVLVSGAED GSLQGWALKECSLQLSLWLLS
RFQKPVLGLATSQUELLASASEDFTVQLWPRQLLTRPHKAEDFPCGTEL
GHEGPVSCCSFSTDGGSLATGGRDRSLLCWDVRTPKTPVLIHSFPACHR
DWVTGCAWTKDNLISCSSDGSVGLWDPESGQRLGQFLGHQS AVSAVAA
VEEHVVSVSRDGTLKVWDHQGVELTSIPAHS GPISHCAAAMEPRAAGQP
GSELLVVTVG LDGATRLWHPLLVCQTHTLLGHSGPVRAAVSETSGML
TASEDGSVRLWQVPKEADTCIPRSSAAVTAVA WAPDGSMAVSGNQAGE
LILWQEAKAVATAQAPGHIGALIWSSAHTFFVLSADEKISEWQVKLRKG
SAPGNLSLHLNRILQEDLGVLTSLDWAPDGHFLILAKADLKLLCMKPGD
APSEIWSSYTENPMILSTHKEYGIFVLQPKDPGVLSFLRQKESGEFEER
LNFDINLENPSRTLISITQAKPESESSFLCASSDGILWNLAKCSPEGEW
TTGNMWQKKANTPETQTPGTD P STCRES DASMDSDASMDSEPTPHLKTR
QRRKIHS GSVTALHVLPELLVTASKDRDVKLWERPSMQLLGLFRCEGSV
SCLEPWLGANSTLQLAVGDVQGNVYFLNWE

WO 98/21343

PCT/US97/21248

22 / 46

FIG.4A

MEKLCGHVPGHSDILSLKNRCLTMLPDLQPLEKIHGHRHSVHSDILSLEN
QCLTMLSDLQPTERIDGHISVHPDILSLENRCLTMLPDLQPLEKLCGHM
SSHPDVLSLENQCLATLPTVKSTALTSPLLQGLHISHTAQADLHSLKTS
NCLLPELPTKKTPCFSEELDLPPGPRALKSMSATAQVQEVALGQWCVSK
EKEFQEEESTEVPMPLYSLSLEEEEVEAPVLKLTSGDSGFHPETTDQVL
QEKKMALLTLLCSALASNVNVKDASDLTRASILEVCSALASLEPEFILK
ASLYARQQLNLRDIANTVLAVAALLPACRPHVRRYYSAIVHLPSDWIqv
AEFYQSLAEGDEKKLVSLPACLRAAMTDKFAEFDEYQLAKYNPRKHRSK
RRSRQPPRPQKTERPFSERGKCFPKSLWPLKNEQITFEAAYNAMPEKNR
LPRFTLKKLVEYLHIHKPAQHVQALLGYRYPATLELFSRSHLPGPWESS
RAGQRMKLRRPETWERELSLRGNKASVWEELIDNGKLPFMAMLRNLCNL
LRTGISARHHELVQLQRLQHEKSVVHSRQFPFRFLNAHDSIDKLEAQLRS
KASPPFSNTTLMKRIMIRNSKKNRRPASRKHLCTLTRRQLRAAMTIPVM
YEQLKREKLRLHKARQWNCDVELLERYRQALETAVNLSVKHNLSPMPGR
TLLVYLT DANADRLCPKSHSQGPPLNYVLLIGMMVARAEQVTVCLCGG
GFVKTPVLTADEGILKTAIKLQAQVQELEGNDEWPLDTFGKYLLSLAVQ
RTPIDRVILFGQRMDTELLKVAKQIIWQHVNSKCLFVGVLLQKTQYISP
NLNPNDVTL SGCTDGILKFIAEHGASRLLEHVGQOLDKLFKIPPPPQKTO
APSLRPLEENIPGPLGPISQHGWRNIRLFISSTFRDMHGERDILLMRSQL

23 / 46

FIG.4B

PALQARVFPHRISLHAIDLWRGITEEETRRNRQLEVCLGEVENSQLFVG
ILGSRYGYIPPSYDLPDHPHFWTHEYPSGRSVTEMEVMQFLNRGQRSQ
PSAQALIYFRDPDFLSSVPDAWKPDFISESEAAHRVSELKRYLHEQKE
VTCRSYSCEWGGVAAGR PYTGGLEEFQQLVLQDVWSMIQKQHLQPGAQL
EQPT SISEDDLIQTSFQQLKTPTSPARPRLLQDTVQQLLLPHGRLSLVT
GQAGQGKTAFLASLVALKVPDQPNEPPFVFFHFAAARP DQCLALNLLR
RLCTHRLRQKLGE SALPSTYRGLVWE LQQKLLLKFAQSLQPAQTLVLII
DGADKLVDRNGQLISDWIPKSLP RRVHLVLSVSSDSGLGETLQQSQGAY
VVALGSLVPSSRAQLVREELALYGKRLEESP FNNQMRLLLAKQGSSLPL
YLHLVTDYLR LFTLYEQVSERLRTL PATLPLLQHILSTLEQEHDV
PQALT ALEVTRSGLTVDQLHAILSTWLILPKETKSWE EVLAASHSGNPF
PLCPFAYLVQSLRSLLGEGPVERPGARLCLSDGPLRTTIKRRYKRLGL
EKTAHV LIA AHLWKTCDPDASGTFRSCPPEALKDL PYHLLQSGNHGLLA
EFLTNLHVVAAYLEVGLVPDLLEAHVLYASSKPEANQKLPAADVAVFHT
FLRQQASLLTQYPLLLQQAASQPEESP VCCQAPLLTQRWHDQFTLKWI
NKPQLKGQQSLSLTMSSSPTAVAFSPNGQRAAVGTASGTIYLLNLKTW
QEEKAVVSGCDGISSFAFLSDTALFLTFDGHLELWDLQHGCWVFQTKA
HQYQITGCCLSPDRRLLATVCLGGYLKLWDTVRGQLAFQYTHPKSLNCV
AFHPEGQVVATGSWAGSITFQADGLKVTKELGAPGPSVCSLAFNKPGK

24 / 46

FIG.4C

IVAVGRIDGTVELWAWQEGARLAAFPACQCGCVSAVFLHAGDRFLTAGE
DGKAQLWSGFLGRPRGCL GSLPLSPALSVALNP DGDQVAVGYREDGINI
YKISSGSQGPQHQELNVAVSALVWLSPSVLVSGAEDGSLHGWMFKGDSL
HSLWLLSRYQKPVLGLAASRELMAAASEDFTVRLWPRQLLTQPHVHAVE
LPCCAELRGHEGPVCCSFSPDGGILATAGRDRNLLCWDMKIAQAPLLI
HTFSSCHRDWITGCAWTKDNLILVSCSSDGSVGLWNPEAGQQLGQFSGHQ
SAVSAVVAVEEHHIVSVSRDGTLKVWDHQVELTSIPAHSGPISQCAAAL
EPRPGQPGSELLVVTVG LDGATKLWHPLLVCQIRTLQGHSGPVTA AAAA
SEASGLLLTSDSSVQLWQIPKEADDSYKPRSSVAITAVAWAPDGS MVV
SGNEAGELT LWQQAKAVATAQAPGRVSHLIWYSANSFFVLSANENVSEW
QVGLRKGSTSTSSSLHLKRLQEDWGVL TGLGLAPDGQSLILMKEDVEL
LEMKGPSIPSSICR RYGVHSSILCTSKEYGLFYLQQGDSGLLSILEQKE
SGEFEEILD FNLNLNNPNGSPVSITQAKPEESSLLCATSDGMLWNLSE
CTSEGEWIVDNIWQKKAKKPKTQTLET ELSPHSELD FSIDCWIDPTNLK
AQO CKKIHLGSVTALHVLPG LLVTASKDRDVKLWERPSMQLLGLFRCEG
PVSCLEPWMEPSSPLQLAVGDTQGNLYFLSWE

25 / 46

FIG.5A

CACCGCGTCCGGGAGCGCTGGTCCTGCTGCCACGTGGGAAGCCCTGG
CCCCGGCCACCCCGCGATGCCGCGCTCCCCGCTGCCAGGCCGTGCG
CTCCCTGCTGCGCAGCCACTACCGCGAGGTGCTGCCGCTGCCACGTT
GTGCAGGCGCCTGGGGCCCCAGGGCTGGCGCTGGTGCAGCGCGGGGACC
CGGCAGGCTTCCGCGCGCTGGTGGCCAGTGCCCTGGTGTGCGTGCCTG
GGACGCACGGCCGCCCGCCGCCGCCCCCTCCCTCCGCCAGGTGTCCTGC
CTGAAGGAGCTGGTGGCCCGAGTGCTGCAGAGGCTGTGCGAGCGCGGCG
CGAACGAAACGTGCTGGCCTTCGGCTTCGGCTGCGCTGGACGGGCCGCG
GGGCCCGAGGCCTTCACCACCAAGCGTGCGCAGCTACCTGCCAAC
ACGGTGACCGACGCAGTGCAGGGAGCGGGCGTGGGGCTGCTGCTGC
GCCCGTGCGACGACGTGCTGGTTACCTGCTGGCACGCTGCGCGCT
CTTGCTGGTGGCTCCCAGCTGCCCTACCAAGGTGCGGGCCGCG
CTGTACCAAGCTCGCGCTGCCACTCAGGCCGCCACACGCTA
GTGGACCCCGAAGGCGTCTGGGATGCGAACGGCCTGGAACCATAGCGT
CAGGGAGGCCGGGTCCCCCTGGCCTGCCAGCCCCGGGTGCGAGGAGG
CGCGGGGCAGTGCCAGCGAAGTCTGCCGTTGCCAACAGGCCAGGC
GTGGCGCTGCCCTGAGCCGGAGCGGACGCCGTTGGCAGGGCTG
GGCCACCCGGCAGGACCGTGGACCGAGTGACCGTGGTTCTGTGTG
GTGTCACCTGCCAGACCCGCCGAAGAACCCACCTTTGGAGGGTGC

26 / 46

FIG.5B

TCTCTGGCACGCCACTCCCACCCATCCGTGGGCCAGCACCACGC
GGGCCCCCATCCACATCGCGGCCACCACGTCCCTGGGACACGCCCTTGT
CCCCCGGTGTACGCCAGACCAAGCACTTCCTACTCCTCAGGCGACA
AGGAGCAGCTGCCGCCCTCCTACTCAGCTCTGAGGCCAGCCT
GAATGGCGCTCGGAGGCTCGTGGAGACCATTTCTGGTTCCAGGCC
TGGATGCCAGGGACTCCCCGCAGGTTGCCCGCCTGCCAGCGCTACT
GGCAAATGCCGCCCTGTTCTGGAGCTGCTGGGAACCACGCCAGTG
CCCCCTACGGGTGCTCCTCAAGACGCACTGCCGCTGCCAGCTGCC
ACCCCAGCAGCCGGTGTCTGTGCCGGAGAAGCCCCAGGGCTCTGTGG
CGGCCCGAGGAGGAGGACACAGACCCCCGTCGCTGGCAGCTGCT
CCGCCAGCACAGCAGCCCTGGCAGGTGTACGGCTCGTGCAGGCC
CTGCCGCCGGCTGGTGCCCGCAGGCCTCTGGGCTCCAGGCACAACGAAC
GCCGCTTCCTCAGGAACACCAAGAAGTTCATCTCCCTGGGAAGCATGC
CAAGCTCTCGCTGCAGGAGCTGACGTGGAAGATGAGCGTGCAGGACTGC
GCTTGGCTGCGCAGGAGCCAGGGTTGGCTGTGTTCCGGCCGCAGAGC
ACCGTCTCGGTGAGGAGATCCTGGCCAAGTTCTGCAGGTCTTCTTATGTC
TGTGTACGTGTCGAGCTGCTCAGGTCTTCTTATGTCACGGAGACC
ACGTTCAAAAGAACAGGCTTTCTACCGGAAGAGTGTCTGGAGCA
AGTTGCAAAGCATTGGAATCAGACAGCACTGAAGAGGGTGCAGCTGCG

27 / 46

FIG.5C

GGAGCTGTCCGAAGCAGAGTCAGGCAGCATCGGAAGGCCAGGCCGCC
CTGCTGACGTCCAGACTCCGCTTCATCCCCAAGCCTGACGGGCTGCGGC
CGATTGTGAACATGGACTACGTCGTGGAGCCAGAACGTTCCGCAGAGA
AAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCAGTGTTCAGCGTG
CTCAACTACGAGCGGGCGCGCGCCCCGGCCTCCTGGCGCCTCTGTGC
TGGGCCTGGACGATATCCACAGGGCCTGGCGCACCTCGTGTGCTGCGTGT
GCGGGCCCAGGACCCGCCCTGAGCTGTACTTGTCAAGGTGGATGTG
ACGGGCGCGTACGACACCATCCCCCAGGACAGGCTCACGGAGGTACATCG
CCAGCATCATCAAACCCCAGAACACACGTACTGCGTGCCTCGGTATGCCGT
GGTCCAGAAGGCCGCCATGGGCACGTCCGAAGGCCTTCAAGAGCCAC
GTCTCTACTTGACAGACCTCCAGCCGTACATGCGACAGTCGTGGCTC
ACCTGCAGGAGACCAGCCGCTGAGGGATGCCGTGTCATCGAGCAGAG
CTCCTCCCTGAATGAGGCCAGCAGTGGCCTCTCGACGTCTTCCACGC
TTCATGTGCCACCAAGCCGTGCGCATCAGGGCAAGTCCTACGTCCAGT
GCCAGGGATCCCGCAGGGCTCCATCCTCTCCACGCTGCTGCGCCT
GTGCTACGGCGACATGGAGAACAAAGCTGTTGCGGGGATTCGGCGGGAC
GGGCTGCTCCTGCGTTGGTGGATGATTCTTGGTGAACACCTCACC
TCACCCACGCGAAAACCTCCTCAGGACCCCTGGTCCGAGGTGTCCCTGA
GTATGGCTGCGTGGTGAACCTGCGGAAGACAGTGGTGAACCTCCCTGTA

CA 02271718 1999-05-13

WO 98/21343

PCT/US97/21248

28 / 46

FIG.5D

GAAGACGAGGCCCTGGGTGGCACGGCTTGTTCAGATGCCGGCCCACG
GCCTAT

WO 98/21343

PCT/US97/21248

2 9 / 4 6

FIG. 6A

HASGQRCVLLRTWEALAPATPAMPRAPRCAVRSSLRSHYREVLPLATF
VRRLGPQGWRLVQRGDPAAFRALVAQCLVCVPWDARPPAAPSFRQVSC
LKEVARVLQRLCERGAKNVLAFGFALLDGARGGPPEAFTTSVRSYLPN
TVTDALRGSGAWGLLRRVGDDVLVHLLARCALFVLVAPSCAYQVCGPP
LYQLGAATQARPPP HASGPRRLGCERAWNHSVREAGVPLGLPAPGARR
RGGSASRSLPLPKRPRRGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCV
VSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPSTSRRPPRWDTPC
PPVYAETKHFLYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGSRP
WMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPYGVILLKTHCPLRAAV
TPAACGV CAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSPWQVYGFVRAC
LRRLVPPGLWGSRHNERFLRNTKKFISLGKHAKLSLQELTWKMSVRDC
AWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTET
TFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPA
LLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSV
LNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPP ELYFVKVDV
TGAYDTIPQDRLTEVIASIICKPQNTYCVRRYAVVQKAAGHVRKAFKSH
VSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSLNEASSGLFDVFLR
FMCHHAVRIRGKS YVQCQGIPOGSILSTLLCSLCYGD MENKL FAGIRRD

CA 02271718 1999-05-13

WO 98/21343

PCT/US97/21248

30 / 46

FIG.6B

GLLLRLVDDFLLVTPLHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPV

EDEALGGTAFVQMPAHGL

WO 98/21343

PCT/US97/21248

31 / 46

FIG. 7

TCCCCCTGGTGCAGGCGCTGCTGGATACCCGGACCCTGGAGGTGCAGAGCGACT
ACTCCAGCTATGCCCGGACCTCCATCAGAGCCAGTCTCACCTCAACCGCGGCT
TCAAGGCTGGGAGGAACATGCGTCGCAAACCTTTGGGTCTTGCAGGCTGAAGT
GTCACAGCCTGTTCTGGATTGCAAGGTAAACAGCCTCCAGACGGTGTGCACCA
ACATCTACAAGATCCTCCTGCTGCAGGCGTACAGGTTCACGCATGTGTGCTGC
AGCTCCCATTTCATCAGCAAGTTGGAAGAACCCACATTTTCTGCGCGTCA
TCTCTGACACGGCCTCCCTCTGCTACTCCATCCTGAAAGCCAAGAACGCAGGGA
TGTCGCTGGGGCCAAGGGCGCCGCCGGCCCTCTGCCCTCCGAGGCCGTGCAGT
GGCTGTGCCACCAAGCATTCTGCTCAAGCTGACTCGACACCGTGTACCTACG
TGCCACTCCTGGGTCACTCAGGACAGCCCAGACGCAGCTGAGTCGGAAGCTCC
CGGGGACGACGCTGACTGCCCTGGAGGCCAGCCAACCCGGCACTGCCCTCAG
ACTTCAAGACCATCCTGGACTGATGCCACCCGCCACAGCCAGGCCAGAGCA
GACACCAGCAGCCCTGTCAGCCGGCTCTACGTCCCAGGGAGGGAGGGCGGC
CCACACCCAGGCCCGCACCGCTGGAGTCTGAGGCCGTGAGTGAGTGTGTTGGCCG
AGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGGCCGTGAGCGAGTGT
CCAGCCAAGGGCTGAGTGTCCAGCACACCTGCCGTCTCACCTCCCCACAGGCT
GGCGCTCGGCTCCACCCAGGCCAGCTTCTCACCGAGGCCGGCTTCCA
CTCCCCACATAGGAATAGTCCATCCCCTGAT

3 2 / 4 6
FIG.8A

CCACGCGTCCGGGCAGCGCTGCGTCTGCTGCGCACGTGGGAAGCCCTGGCCCC
GGCCACCCCCCGCATGCCGCGCTCCCCGCTGCCGAGCCGTGCGCTCCCTGCT
GCGCAGCCACTACCGCGAGGTGCTGCCGCTGCCACGTTCGTGC GGCGCCTGG
GCCCGAGGGCTGGCGCTGGTGCAGCGCGGGACCCGGCGGCTTCGGCGCT
GGTGGCCCAGTGCCTGGTGTGCGTGCCCTGGACGCACGGCCGCCCCCGCCGC
CCCCTCCTCCGCCAGGTGTCCTGCCCTGAAGGAGCTGGTGGCCCGAGTGCTGCA
GAGGCTGTGCGAGCGCGGGCGAAGAACGTGCTGGCCTTCGGCTTCGCGCTGCT
GGACGGGGCCCGCGGGGGCCCCCGAGGCCTTCACCACCAGCGTGCAGCT
CCTGCCAACACGGTGACCGACGCAC TGCGGGGAGCGGGCGTGGGGCTGCT
GCTGCGCCCGGTGGGEGACGACGTGCTGGTCACCTGCTGGCACGCTGCGCGCT
CTTGCTGGCTGGCTCCAGCTGCCCTACAGGTGTGCGGGCCGCGCTGTA
CCAGCTCGCCGCTGCCACTCAGGCCGCCCCGCCACACGCTAGTGGACCCCG
AAGGCGTCTGGATGCGAACGGCCTGGAACCATAGCGTCAGGGAGGCCGGGGT
CCCCCTGGCCTGCCAGCCCCGGGTGCGAGGAGGCGCGGGGCAGTGCCAGCCG
AAGTCTGCCGTTGCCAAGAGGCCAGGCCTGGCGCTGCCCTGAGCCGGAGCG
GACGCCGTTGGCAGGGCTGGGCCACCCGGCAGGACGCGTGGACCGAG
TGACCGTGGTTCTGTGTGGTGTACCTGCCAGACCCGCCAAGAACGCCACCTC
TTTGGAGGGTGCCTCTGGCACGCCACTCCCACCCATCCGTGGCCGCCA
GCACCA CGCGGGCCCCCATCCACATCGCGGCCACCACGTCCTGGACACGCC
TTGTCCCCCGGTGTACGCCAGACCAAGCAACTTCCTACTCCTCAGGCCACAA

33 / 46

FIG.8B

GGAGCAGCTGCGGCCCTCCTCCTACTCAGCTCTTGAGGCCAGCCTGACTGG
CGCTCGGAGGCTCGTGGAGACCATCTTCTGGTTCCAGGCCCTGGATGCCAGG
GAUTCCCCGCAGGTTGCCCGCCTGCCCGACTGGCAAATGCCGGCCCT
GTTTCTGGAGCTGCTTGGGAACCACCGCGAGTGCCCTACGGGTGCTCCTCAA
GACGCACTGCCCGCTGCGAGCTGCCGTACCCAGCAGCCGGTGTCTGCCCG
GGAGAAGCCCCAGGGCTCTGTGGCGGCCCGAGGAGGAGGACACAGACCCCCG
TCGCCTGGTGCAGCTGCTCCGCCAGCACAGCAGCCCTGGCAGGTGTACGGCTT
CGTGCAGGCCCTGCCTGCCCGCTGGTGCCCGAGGCCCTCTGGGCTCCAGGCA
CAACGAACGCCGCTCCTCAGAACACCAAGAAGTTCATCTCCCTGGGAAGCA
TGCCAAGCTCGCTGCAGGAGCTGACGTGAAAGATGAGCGTGCAGGACTGCGC
TTGGCTGCGCAGGAGCCCAGGGTTGGCTGTGTTCCGGCCGAGAGCACCGTCT
GCGTGAGGAGATCCTGGCCAAGTTCTGCAGGCTGATGAGTGTACGTCGT
CGAGCTGCTCAGGTCTTCTTATGTCACGGAGACCACGTTCAAAAGAACAG
GCTCTTTCTACCGAAGAGTGTCTGGAGCAAGTTGCAAAGCATTGGAATCAG
ACAGCACTGAAGAGGGTGCAGCTGCCGGAGCTGTCGGAAAGCAGAGGTCAAGCA
GCATCGGGAAAGCCAGGCCGCCCTGCTGACGTCCAGACTCCGCTTCATCCCCAA
GCCTGACGGCTGCCGATTGTAAACATGGACTACGTCGTGGAGCCAGAAC
GTTCCGCAGAGAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTAAGGCACTGTT
CAGCGTGCTCAACTACGAGCGGGCGGGCGCCCGGCCCTCCTGGCGCCTCTGT
GCTGGGCCTGGACGATATCCACAGGGCCTGGCGCACCTCGTGTGCGTGTGCG

34 / 46

FIG.8C

GGCCCAGGACCCGCCGCCTGAGCTGTACTTGTCAAGGTGGATGTGACGGGCGC
GTACGACACCATCCCCCAGGACAGGCTCACGGAGGTACGCCAGCATCATCAA
ACCCCAGAACACGTACTGCGTGCCTCGGTATGCCGTGGTCCAGAAGGCCGCCA
TGGGCACGTCCGCAAGGCCTTCAAGAGGCCACGTCTCTACCTTGACAGACCTCCA
GCCGTACATGCGACAGTCGCTGGCTCACCTGCAGGAGACCAGCCCGCTGAGGGA
TGCCGTCGTCATCGAGCAGAGCTCCTCCCTGAATGAGGCCAGCAGTGGCCTCTT
CGACGTCTCCTACGCTTCATGTGCCACCACGCCGTGCGCATCAGGGCAAGTC
CTACGTCCAGTGCCAGGGATCCCGCAGGGCTCCATCCTCTCCACGCTGCTCTG
CAGCCTGTGCTACGGCGACATGGAGAACACAAGCTGTTGCCGGGATTCCGGCGGG
CGGGCTGCTCCTGCCTTGGATGATTCTTGTGGTACACCTCACCTCAC
CCACGCGAAAACCTCCTCAGGACCCCTGGTCCGAGGTGTCCCTGAGTATGGCTG
CGTGGTGAACCTGCGGAAGACAGTGGTGAACCTCCCTGTAGAACAGCAGGCCCT
GGGTGGCACGGCTTTGTTCAAGATGCCGGCCACGCCATTCCCTGGTGC
CCTGCTGCTGGATAACCGGACCCCTGGAGGTGCAGAGCGACTACTCCAGCTATGC
CCGGACCTCCATCAGAGCCAGTCTCACCTCAACCGCGGTTCAAGGCTGGAG
GAACATGCGTCGCAAACCTTTGGGCTTGCAGGTGAAGTGTACAGCCTGTT
TCTGGATTGCAAGGTGAACAGCCTCCAGACGGTGTGCACCAACATCTACAAGAT
CCTCCTGCTGCAGGGTACAGGTTCACGCATGTGTGCTGCAGCTCCATTCA
TCAGCAAGTTGGAAGAACCCACATTTCCTGCAGGTACATCTGTACACGGC
CTCCCTGCTACTCCATCCTGAAAGCCAAGAACGCAGGGATGTCGCTGGGGGC

35 / 40

FIG.8D

CAAGGGCGCCGCCGCCCCCTGCCCTCCGAGGCCGTGCAGTGGCTGTGCCACCA
AGCATTCCCTGCTCAAGCTGACTCGACACCGTGTCACCTACGTGCCACTCCTGGG
GTCACTCAGGACAGCCCAGACGCAGCTGAGTCGGAAGCTCCCGGGACGACGCT
GACTGCCCTGGAGGCCGCAGCCAACCCGGCACTGCCCTCAGACTTCAAGACCAT
CCTGGACTGATGGCCACCCGCCACAGCCAGGCCGAGAGCAGACACCAGCAGCC
CTGTCACGCCGGCTCTACGTCCCAGGGAGGGAGGGCGGCCACACCCAGGCC
CGCACCGCTGGAGTCTGAGGCCTGAGTGAGTGTGTTGGCCGAGGCCTGCATGTC
CGGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGCT
GAGTGTCCAGCACACCTGCCGTCTCACTTCCCCACAGGCTGGCGCTGGCTCC
ACCCCAGGCCAGCTTCTCACCAGGAGGCCGGCTTCCACTCCCCACATAGG
AATAGTCCATCCCCGTAT

WO 98/21343

PCT/US97/21248

36 / 46

FIG. 9A

HASGQRCVLLRTWEALAPATPAMPRAPRCAVRSSLRSHYREVLPLATF
VRRLGPQGWRLVQRGDPAAFRALVAQCLVCVPWDARPPPAAPSFRQVSC
LKEVARVLQRLCERGAKNVLAFGFALLDGARGGPPEAFTTSVRSYLPN
TVTDALRGSGAWGLLRRVGDDVLVHLLARCALFVLVAPSCAYQVCGPP
LYQLGAATQARPPP HASGPRRLGCERAWNHSVREAGVPLGLPAPGARR
RGGSASRSLPLPKRPRRGAAPEPERTPVGQGSWAHPGRTRGPSDRGFcv
VSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPPSTSRRPPRWDTpc
PPVYAETKHFLYSSGDKEQLRPSFLLSSLRPSLTGARRLVETIFLGSRP
WMPGTPRRLPRLPQRYWQMRPLFLELLGNHAQCPCYGVLLKTHCPLRAAV
TPAAGVCAREKPQGSVAAPEEEEDTDPRRLVQOLLRQHSSPWQVYGFVRAC
LRRLVPPGLWGSRHNERFLRNNTKKFISLGKHAKLSQLQELTWKMSVRDC
AWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELRSFFYVTET
TFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPA
LLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKALFSV
LNYERARRPGGLGASVLGLDDIHRAWRTFVLRVRAQDPPPELYFVKVDV
TGAYDTIPQDRLTEVIASIICKPQNTYCVRRYAVVQKAAGHVRKAFKSH
VSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSLNEASSGLFDVFLR
FMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGD MENKL FAGIRRD
GLLLRLVDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVNLRKTVVNFPV

WO 98/21343

PCT/US97/21248

37 / 46

FIG.9B

EDEALGGTAFVQMPAHGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASL
TFNRGFKAGRNMRRKLFGVRLKCHSLFLDLQVNSLQTVCTNIYKILL
QAYRFHACVLQLPFHQVWKNPTFFLRVISDTASLCYSILKAKNAGMSL
GAKGAAGPLPSEAVQWLCHQAFLKLTRHRVTYVPLLGSLSRTAQTQLSR
KLPGTTLTALLEAAANPALPSDFKTILD

38 / 46

FIG. 10

FIG. 11A

FIG. 11B

FIG. 11C

WO 98/21343

PCT/US97/21248

40 / 46

FIG. 12A

FIG. 12B

41 / 46

FIG. 13A

FIG. 13B

WO 98/21343

PCT/US97/21248

42 / 46

四
二

CA 02271718 1999-05-13

WO 98/21343

PCT/US97/21248 -

43 / 46

FIG. 15A

FIG. 15B

44 / 46

FIG. 16A

FIG. 16B

45 / 46

FIG. 17A

FIG. 17B

CA 02271718 1999-05-13

WO 98/21343

PCT/US97/21248

48 / 46

		TP2+hTR			
no DNA	1 2	-TP1		+ TP1	
		1	2	1	2
				$\mu\text{L assayed}$	

1 2 3 4 5 6

FIG.18