End-to-End System Design for Stock Price Prediction

TeamSemiColon

1. Introduction

This document outlines the end-to-end system design for deploying a stock price prediction model in a financial analysis firm. The proposed system ensures **real-time data ingestion**, **feature engineering**, **scalable model training**, **monitoring**, **and insight delivery** to analysts and brokers.

Goals of the System:

- Automate data ingestion from multiple sources.
- Engineer high-quality features and ensure consistency between training and inference.
- Deploy a hybrid prediction model (Sinusoidal Regression + XGBoost) with high accuracy.
- Provide low-latency, scalable, and monitored predictions via APIs and dashboards.
- Trigger automatic retraining upon model drift detection.

2. System Architecture

The system consists of multiple components for data collection, processing, model training, inference, monitoring, and user insights.

2.1 System Architecture Diagram

End_User Applications

3. Component Justification

Component	Technology Stack	Justification	Tradeoffs
Data Streaming	Kafka + Spark	Real-time stock & macroeconomic data processing	Requires infra overhead
Data Storage	AWS S3 (raw), Redshift (structured), Delta Lake (historical)	Scalable and cost-effective for big data	Higher latency in querying
Feature Engineering	Feast (Feature Store), Pandas, NumPy	Ensures consistency between training & inference	More complex feature management
Model Training	XGBoost, Sinusoidal Regressor, Bayesian Optimization	Hybrid approach captures trends + cyclical patterns	Computationally expensive
Model Deployment	FastAPI + Kubernetes + Redis Cache	Low-latency, scalable inference	Needs load balancing
Monitoring	Evidently AI, Prometheus, Grafana	Detects drift, automates alerts & retraining	Requires tuning thresholds
User Insights	Streamlit, Plotly Dash, Webhooks	Intuitive UI & real-time alerts	Web dashboards need high availability

4. Advanced Data Flow Analysis

4.1 Step 1: Data Collection & Storage

- Streaming Data:
 - Stock prices and news sentiment are processed in real-time via Kafka.
 - o Market indicators (inflation, GDP) fetched via APIs hourly.
- Batch Processing:
 - o Daily historical data stored in Delta Lake for long-term analysis.
 - Features precomputed and stored in Feast (Feature Store).

4.2 Step 2: Feature Engineering & Model Training

- Feature Engineering:
 - o Generates lag variables, seasonal indicators, and sentiment scores.
 - Stores **precomputed features in Feast** for efficient inference.
- Training Pipeline:
 - Uses Boosted Hybrid Model:
 - Sinusoidal Regression captures seasonal patterns.
 - XGBoost models the residuals and non-linear dependencies.
 - Bayesian Optimization automatically tunes hyperparameters.

4.3 Step 3: Model Deployment & Inference

- FastAPI exposes a REST endpoint for traders & analysts.
- Redis Cache stores recent predictions to reduce latency.
- Inference Pipeline:
 - Retrieves latest stock price features from Feast Feature Store.
 - Runs prediction and returns results in <100ms.

4.4 Step 4: Model Monitoring & Retraining

- Monitoring:
 - Uses Evidently Al & Prometheus to detect drift.
 - Alert system (Slack, Email, Webhooks) triggers if predictions deviate from actuals.
- Retraining Triggered If:
 - Data Drift: Stock price behavior changes significantly.
 - o Concept Drift: Model performance deteriorates (high RMSE, low R2).

5. Key Challenges & Solutions

Challenge	Solution	
Latency in Real-Time Predictions	Redis Caching for faster retrieval	
Data Drift Due to Market Conditions	Evidently AI for auto-retraining	
High Infrastructure Costs	Use AWS Spot Instances & Kubernetes auto-scaling	
Multiple Data Sources Complexity	Centralized Feature Store (Feast) for consistency	
Outlier Impact on Model Performance	Anomaly detection with Z-score filtering	

6. Conclusion

This detailed architecture ensures a scalable, robust, and high-performance stock price prediction system. By integrating real-time data ingestion, hybrid modeling, scalable infrastructure, and automated retraining, the system continuously delivers value to financial analysts and traders.

With further enhancements like alternative boosting methods, external macroeconomic indicators, and additional deep learning models, the system can further improve accuracy and robustness in volatile financial markets.

Next Steps:

- Implement CI/CD pipelines for continuous deployment.
- Optimize infrastructure costs using cloud auto-scaling.
- Extend **multi-asset support** for broader financial applications.