

Übungsblatt 9: Regelkreis und Stabilität

Aufgabe 1

Gegeben sei eine lineare, gewöhnliche Differenzialgleichung:

$$7\frac{d^2y(t)}{t^2} - 5\frac{dy(t)}{t} + 9y(t) = u(t)$$

Gegeben sei der folgende Regelkreis:

mit:
$$G_{PID}(s) = K_P + K_D \cdot s + K_I \cdot \frac{1}{s}$$

- 1. Stellen Sie die gegebene DGL als Übertragungsfunktion der Strecke dar.
- 2. Berechnen Sie die Übertragungsfunktion $G_{geschl.}(s)$ des geschlossenen Regelkreises.
- 3. Prüfen Sie die Stabilität von $G_{geschl.}(s)$ mit dem Hurwitz-Kriterium. Geben Sie eine stabile Kombination der Regelparameter an.

Hinweis:

Hurwitz-Kriterium zur Stabilitätsbeurteilung:

Eine Übertragungsfunktion in Polynomialdarstellung $G(s) = \frac{Y(s)}{W(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0}$ ist genau dann stabil, wenn gilt:

- a) Alle Koeffizienten a_i sind vorhanden und alle $a_i > 0$, mit i = 0,1,...,n, wobei n die Ordnung des Nennerpolynoms bezeichnet.
- b) Die Determinante der Hurwitzmatrix $H_{n.Ordnung}$ und deren Unterdeterminanten sind größer Null.

$$H_{3.Ordnung} = \begin{pmatrix} a_2 & a_0 \\ a_3 & a_1 \end{pmatrix}, H_{4.Ordnung} = \begin{pmatrix} a_3 & a_1 & 0 \\ a_4 & a_2 & a_0 \\ 0 & a_3 & a_1 \end{pmatrix}$$

Für Systeme mit $n \le 2$ ist Bedingung 1) ausreichend.

Aufgabe 2

Eine Magnetschwebebahn soll mit Elektromagneten in der Schwebe gehalten werden. Es wird nur die Bewegung der Schwebebahn in vertikaler Richtung betrachtet.

Abbildung 1: Prinzipskizze Magnetschwebebahn

	000001
Masse Magnetschwebebahn	$m = 80000 \ kg$
Magn. Proportionalitätskonstante	$k_M = 0.001 \ Nm^2/A^2$
Induktivität aller Spulen	$L = 1 \cdot 10^{-2} H$
Reibkoeffizient	d = 80 Ns/m
Arbeitsluftspalt	$y_0 = 0.5 mm$
	d
DGL der Spule	$U(t) = L \cdot \frac{d}{dt}I(t)$
Stellspannung	$U(t) = K_P e(t) + K_D \dot{e}(t)$
Regelfehler	e(t) = w(t) - y(t)
Magnetische Kraft	$F_M(t) = k_M \cdot \frac{I(t)^2}{y(t)^2}$
Reibkraft	$F_R(t) = d \cdot \dot{y}(t)$
Gewichtskraft	$F_G[N]$

- 1. Stellen Sie die Differenzialgleichung in vertikaler Richtung für die Magnete auf.
- 2. Legen Sie den Arbeitsstrom I_0 aus, sodass sich bei gegebenen Arbeitsluftspalt y_0 die Magnetkraft F_M und die Gewichtskraft F_G aufheben.

- 3. Linearisieren Sie die magnetische Kraft F_M um den Arbeitspunkt (y_0, I_0) . Setzen Sie diese in die DGL aus 1. ein. Erweitern Sie die DGL, sodass die Spulenspannung U anstelle des Spulenstroms I als Eingang verwendet wird.
- 4. Überführen Sie die DGL in die Übertragungsfunktion der Strecke. Schließen Sie den Regelkreis mit einem PD-Regler. Ermitteln Sie die Übertragungsfunktion des geschlossenen Regelkreises.
- 5. Ermitteln Sie mit dem Hurwitz-Kriterium den Bereich der Regelparameter, für die das System am Arbeitspunkt stabil ist. Geben Sie eine stabile Kombination als Reglereinstellung an.

Hinweis:

Linearisierung einer DGL mit den Eingangsgrößen x_1, x_2 und der Ausgangsgröße $f(x_1, x_2)$ im Arbeitspunkt $(x_{1,0}, x_{2,0})$:

$$\begin{aligned} f_{lin}(x_1, x_2) &= f(x_{1,0}, x_{2,0}) + \\ \frac{\partial f(x_1, x_2)}{\partial x_1} \bigg|_{x_{1,0}, x_{2,0}} \cdot (x_1 - x_{1,0}) + \\ \frac{\partial f(x_1, x_2)}{\partial x_2} \bigg|_{x_{1,0}, x_{2,0}} \cdot (x_2 - x_{2,0}) \end{aligned}$$