TP 5 medida aprimorada de Russel

Tasso Augusto Tomaz Pimenta 2021072198

Table of contents

Os Dados usados são:	1 2
Modelo da medida aprimorada de Russel Metas	3 4 4
Comparações com outros modelos Diferença dos retornos de escala erm /radiais(mudando o tipo de retorno, ccr, bcc,	5
irs, drs)	5 6 6
Analise de apenas um imput	0
1 dados de Provisão	2 2

Definição do Tp

Rode o modelo da medida aprimorada de Russel e compare com o resultado dos modelos BCC, CCR, Pareto-Koopmans, e baseado em folgas obtidos nos laboratórios I a IV. Analise os resultados identifique os itens abaixo:

- a eficiência (pura, total e escala) das DMUs
- identifique em que escala as DMUs operam para cada modelo

- histograma das eficiências
- identifique as DMUs dentro das eficiências do histograma
- os benchmarks para cada DMU
- os pesos relativos dos inputs e outputs

Os Dados usados são:

Table 1: dados de Provisão

DMU	codigo	I1	I2	O1
Air Canada	1	2293	7217121	13028613
ANA All Nippon Airways	2	2591	14651828	14683532
American Airlines	3	1112	26310000	34707729
British Airways	4	4624	19279420	21401581
Delta Air Lines	5	6628	23357000	27292425
Emirates	6	3457	20837627	27369447
Garuda Indonesia	7	102	4736127	2834184
KLM	8	4850	6706203	15090771
Lufthansa	9	1979	31867956	27007957
Malaysia Airlines	10	3762	3953020	7292543
Qantas	11	6074	15118143	17368244
SAS Scandinavian Airlines	12	2047	2954620	4152670
Singapore Airlines	13	438	22323127	21286125
TAM	14	2789	8314066	7840248
Thai Airways	15	4620	33144669	10441041
United Airlines	16	4897	12195000	29065589

Table 2: dados de Distribuição

DMU	codigo	I1	I2	I3	O1	O2
Air Canada	1	8352	1302813	3060770.35	6420786	1157081
ANA All Nippon Airways	2	6479	1468332	2556513.78	4286268	2059289
American Airlines	3	23102	3470729	8654892.94	17866791	2417898
British Airways	4	16563	2140181	5304411.47	10079586	4438214
Delta Air Lines	5	17408	2729225	7349946.47	14571329	1671083
Emirates	6	13153	2736947	4717271.61	11276662	6531110
Garuda Indonesia	7	2187	283484	676346.53	1514745	282129
KLM	8	8101	1509071	3027818.18	7347192	4093466
Lufthansa	9	33288	2700757	5759785.56	12398774	6928900
Malaysia Airlines	10	5231	729243	1606904.02	2997171	2072022

DMU	codigo	I1	I2	I3	O1	O2
Qantas	11	12156	1736844	3156052.26	9945797	2623457
SAS Scandinavian Airlines	12	4046	415270	1108178.33	2304528	344994
Singapore Airlines	13	9467	2128625	3513668.99	7733939	6559460
TAM	14	6810	784048	2015096.39	3935997	155797
Thai Airways	15	7374	1044141	2417856.19	4725671	2157255
United Airlines	16	18460	2906589	7647835.29	14645900	2340509

Modelo da medida aprimorada de Russel

$\overline{\mathrm{DMU}}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.41	0.0	0.0	0.026	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.72	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0	0.11	0.0	0.0	0.0
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.38	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.69	0.0	0.0	0.13	0.0	0.57	0.0	0.0	0.0
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.055	0.0	0.0	0.059	0.0	0.0	0.0	0.0	0.0
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.27	0.0	0.0	0.0
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.18	0.0	0.0	0.0	0.0	0.21	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.036	0.0	0.0	0.12	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.063	0.0	0.0	0.012	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.42	0.0	0.0	0.0	0.0	0.12	0.0	0.0	0.0
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.76	0.0	0.0	0.16	0.0	0.0	0.0	0.0	0.0

DMU	EF	$inp_ef(0)$	$inp_ef(1)$	$inp_ef(2)$	$1/\text{out}_\text{ef}(0)$	$1/\text{out}_\text{ef}(1)$	t
1	45.51%	43.19%	50.51%	42.85%	198.00%	66.89%	0.5050533193520552
2	57.26%	58.57%	58.11%	55.09%	138.27%	78.32%	0.5856845859754823
3	41.03%	40.91%	46.17%	36.01%	216.60%	65.01%	0.4616726618493166
4	70.63%	58.20%	85.80%	67.87%	116.55%	87.57%	0.8580200817002831
5	41.17%	45.10%	45.94%	32.46%	217.68%	64.91%	0.45938822352895503
6	93.25%	94.85%	90.05%	94.85%	105.43%	95.10%	0.9484642090238421
7	56.91%	53.17%	65.42%	52.14%	152.86%	74.31%	0.654199200312709
8	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	0.999999999999997

DMU	EF	$inp_ef(0)$	$inp_ef(1)$	$inp_ef(2)$	$1/\text{out}_\text{ef}(0)$	$1/\text{out}_\text{ef}(1)$	t
9	74.08%	40.08%	95.71%	86.45%	104.48%	95.89%	0.9570955461055105
10	81.30%	65.82%	98.31%	79.77%	101.72%	98.34%	0.9830730784849672
11	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	0.999999999922553
12	50.90%	43.88%	64.17%	44.64%	155.83%	73.62%	0.6417264575595903
13	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	1.0
14	11.87%	9.59%	14.72%	11.30%	679.15%	53.97%	0.14724236242068825
15	71.90%	61.29%	84.66%	69.74%	118.12%	86.70%	0.8465689968930465
16	43.29%	44.01%	49.11%	36.75%	203.62%	66.27%	0.4911062229723268

Metas

$\overline{\mathrm{DMU}}$	Meta-Inputs(0)	Meta-Inputs(1)	Meta-Inputs(2)	Meta-Outputs(0)	Meta-Outputs(1)
1	-14.49%	0.00%	-15.16%	0.00%	196.00%
2	-0.00%	-0.79%	-5.94%	23.49%	117.99%
3	-11.38%	-0.00%	-22.01%	-0.00%	233.21%
4	-32.17%	0.00%	-20.89%	0.00%	33.09%
5	-1.82%	-0.00%	-29.35%	-0.00%	235.36%
6	0.00%	-5.06%	0.00%	0.00%	10.87%
7	-18.72%	-0.00%	-20.29%	0.00%	105.72%
8	0.00%	0.00%	0.00%	0.00%	0.00%
9	-58.13%	0.00%	-9.67%	-0.00%	8.97%
10	-33.05%	-0.00%	-18.86%	0.00%	3.44%
11	-0.00%	0.00%	-0.00%	-0.00%	0.00%
12	-31.62%	0.00%	-30.44%	-0.00%	111.66%
13	0.00%	0.00%	0.00%	0.00%	0.00%
14	-34.88%	-0.00%	-23.23%	-0.00%	1158.30%
15	-27.61%	0.00%	-17.62%	-0.00%	36.25%
16	-10.38%	-0.00%	-25.17%	-0.00%	207.24%

retorno de escala

DMU	Constante	Variavel	Negative	Positive	Ef Escala	Retorno
1	45.50%	52.20%	52.20%	45.50%	87.10%	Decrescente
2	57.30%	65.50%	65.50%	57.30%	87.40%	Decrescente
3	41.00%	42.30%	41.00%	42.30%	97.10%	Crescente
4	70.60%	78.70%	70.60%	78.70%	89.70%	Crescente
5	41.20%	42.50%	42.50%	41.20%	96.90%	Decrescente

DMU	Constante	Variavel	Negative	Positive	Ef Escala	Retorno
6	93.20%	100.00%	93.20%	100.00%	93.20%	Crescente
7	56.90%	100.00%	100.00%	56.90%	56.90%	Decrescente
8	100.00%	100.00%	100.00%	100.00%	100.00%	Constante
9	74.10%	100.00%	74.10%	100.00%	74.10%	Crescente
10	81.30%	100.00%	100.00%	81.30%	81.30%	Decrescente
11	100.00%	100.00%	100.00%	100.00%	100.00%	Constante
12	50.90%	100.00%	100.00%	50.90%	50.90%	Decrescente
13	100.00%	100.00%	100.00%	100.00%	100.00%	Constante
14	11.90%	33.90%	33.90%	11.90%	35.00%	Decrescente
15	71.90%	77.90%	77.90%	71.90%	92.30%	Decrescente
16	43.30%	43.70%	43.70%	43.30%	99.20%	Decrescente

Comparações com outros modelos

Diferença dos retornos de escala erm /radiais(mudando o tipo de retorno, ccr, bcc, irs, drs)

tipo de retorno, modelo | erm x add x sbm x radiais(ccr)

DMU	ERM	ADD	SBM	CCR/BCC
1	Decrescente	Decrescente	Decrescente	Decrescente
2	Decrescente	Decrescente	Decrescente	Decrescente
3	Crescente	Crescente	Crescente	Crescente
4	Crescente	Crescente	Crescente	Crescente
5	Decrescente	Crescente	Constante	Crescente
6	Crescente	Crescente	Crescente	Crescente
7	Decrescente	Decrescente	Decrescente	Decrescente
8	Constante	Constante	Constante	Constante
9	Crescente	Crescente	Crescente	Crescente
10	Decrescente	Decrescente	Decrescente	Decrescente
11	Constante	Constante	Constante	Constante
12	Decrescente	Decrescente	Constante	Decrescente
13	Constante	Constante	Constante	Constante
14	Decrescente	Decrescente	Constante	Decrescente
15	Decrescente	Decrescente	Decrescente	Decrescente
16	Decrescente	Crescente	Crescente	Crescente

grafico da diferença das metas de cada modelo

Analise de apenas um imput

Divergencia KL: Kullback-Leibler (KL Divergence) é uma medida que quantifica o quanto uma distribuição de probabilidade diverge de uma distribuição de probabilidade esperada ou

de referência.

Divergência KL entre ERM e CCR: 7.667284582512339

Divergência KL entre ERM e SBM: 8.738893231154217

Divergência KL entre ERM e ADD: 1.3877804806881665e-17

Divergência KL entre CCR e SBM: 3.8295381031631357

Divergência KL entre CCR e ADD: 9.954485837318982

Divergência KL entre SBM e ADD: 8.658075079862162

Interpretação Geral Modelos ERM e ADD: Praticamente idênticos em termos de distribuição de metas, sugerindo que esses dois modelos produzem resultados muito semelhantes.

Modelos CCR e ADD: Muito diferentes, indicando que esses dois modelos têm abordagens ou resultados substancialmente diferentes.

Modelos ERM e CCR/SBM: Significativamente diferentes, com ERM tendo divergências consideráveis com ambos CCR e SBM.

Modelos CCR e SBM: Também diferem, mas a divergência é menor do que com ADD.

Modelos SBM e ADD: Bastante diferentes, mas um pouco menos que CCR e ADD.

Valores Altos (acima de 7-8): Indicativos de distribuições de metas substancialmente diferentes. Valores Baixos (próximos de zero): Indicativos de distribuições muito semelhantes. ## todos os Outputs de cada modelo

