Определение 1. Окрестностью точки называется произвольный содержащий её интервал (всюду в этом листке под интервалами понимаются в том числе и бесконечные: открытые лучи и вся прямая). Пусть $Y \subseteq \mathbb{R}$. Точка $x \in \mathbb{R}$ называется

- *внутренней точкой* множества Y, если у неё найдётся окрестность, целиком содержащаяся в Y,
- внешней точкой множества Y, если у неё найдётся окрестность, не пересекающаяся с Y,
- граничной точкой множества Y, если она не является ни внутренней, ни внешней,
- uзолированной точкой множества Y, если у неё найдётся окрестность, пересечение которой с Y состоит только из x.

Задача 1. Докажите, что если x — граничная точка множества Y, то

- а) либо $x \notin Y$, либо в любой её окрестности бесконечно много точек, не принадлежащих Y;
- **б)** либо $x \in Y$, либо в любой её окрестности бесконечно много точек, принадлежащих Y.
- **в)** Выкинем из множества все его граничные точки. Может ли так оказаться, что мы ничего не выкинули? Выкинули всё?

Задача 2. Найдётся ли множество, у которого **a)** нет внутренних точек; **б)** ровно одна внутренняя точка? **в)** все точки внутренние?

Определение 2. Подмножество $U \subseteq \mathbb{R}$ называется *открытым*, если все его точки — внутренние. Подмножество $V \subseteq \mathbb{R}$ называется *замкнутым*, если оно содержит все свои граничные точки.

Задача 3. Найдите внутренние, внешние, граничные и изолированные точки для

- а) интервала (0,1); б) отрезка [0,1]; в) множества $\{\frac{1}{n} \mid n \in \mathbb{N}\}$;
- г) множества всех рациональных точек на прямой;

Задача 4. Докажите, что а) интервал, дополнение к отрезку — открытые подмножества прямой; б) отрезок, дополнение к интервалу — замкнутые подмножества прямой.

Задача 5. Верно ли, что открытое множество отрезка определяется рациональными числами, которые оно содержит?

Задача 6. Докажите, что множество граничных точек любого множества замкнуто.

Задача 7. Пусть $M \subset \mathbb{R}$ — непустое подмножество, и x — произвольная точка. Расстояние от x до M по определению равно $\inf\{|x-y|\colon y\in M\}$. Докажите, что если M — замкнуто, то в M всегда найдётся точка y такая, что |x-y| равно расстоянию от x до M.

Задача 8°. а) Существуют ли множества, не являющиеся ни замкнутыми, ни открытыми?

- **б)** Всегда ли дополнение замкнутого множества открыто? Всегда ли дополнение открытого множества замкнуто? (Дополнением множества A называется разность $\mathbb{R} \setminus A$. Обозначения: \overline{A} .)
- Задача 9. а) Докажите, что конечное пересечение (то есть пересечение конечного числа) и произвольное объединение (то есть объединение произвольного количества) открытых множеств открыто.
- б) Докажите, что конечное объединение и любое пересечение замкнутых множеств замкнуто.

Задача 10. Найдите все множества, являющиеся одновременно открытыми и замкнутыми.

Задача 11. Пусть f — непрерывная функция. Докажите, что множество $\{x \mid f(x) = 0\}$ замкнуто.

Задача 12. Опишите все подмножества прямой, не имеющие граничных точек.

Задача 13°. Докажите, что любое открытое подмножество множества $\mathbb R$ либо совпадает с $\mathbb R$, либо представляет собой объединение конечного или счетного множества непересекающихся интервалов и открытых лучей.

1 a	<u>1</u> б	1 B	2 a	2 6	2 B	3 a	3 6	3 B	3 Г	4 a	4 б	5	6	7	8 a	8 6	9 a	9 6	10	11	12	13

Листок №51 Страница 2

Определение 3. Непустое множество M называется κ омпактом, если из произвольного покрытия M открытыми множествами можно выделить конечное подпокрытие.

Задача 14^{\circ}. Докажите, что

- а) компакты на прямой это в точности непустые замкнутые ограниченные множества;
- **б)** у любой последовательности вложенных компактов $K_1 \supset K_2 \supset K_3 \supset \dots$ пересечение непусто.

Канторово множество и канторова лестница

Может показаться, что раз открытые множества — объединение интервалов, то замкнутые — объединения точек и отрезков. Увы, это не так, замкнутые множества могут быть достаточно противными.

Задача 15. (Канторово множество) Возьмём отрезок $K_0=[0,1]$. Разделим его на три равные части и средний интервал $I_1^1=(\frac{1}{3},\frac{2}{3})$ выкинем. Первый и третий отрезки образуют множество K_1 . Каждый из них разделим на три части и выкинем средние интервалы $I_1^2=(\frac{1}{9},\frac{2}{9}),\ I_2^2=(\frac{7}{9},\frac{8}{9}).$ Получится множество K_2 . И так далее: на n-м шаге будем делить каждый из 2^{n-1} отрезков, образующих K_{n-1} , на три равные части и выкидывать все средние интервалы $I_1^n,I_2^n,\ldots,I_{2^{n-1}}^n$. Так получается множество K_n , состоящее из 2^n отрезков. Устремим n к бесконечности. Множество, получающееся в пределе, т. е. $\bigcap_{n=1}^{\infty} K_n$, называется канторовым (всюду дальше будем обозначать его K).

- а) Конечно ли это множество? Счётно?
- б) Является ли оно открытым? Замкнутым?

Задача 16. Бесконечно ли множество рациональных чисел, принадлежащих канторову множеству?

Задача 17. а) Как выглядит запись точек из канторова множества в троичной системе счисления? **б**) Докажите, что канторово множество имеет мощность континуума.

Задача 18. (Канторова лестница) В точках 0 и 1 значение функции K(x) принимается равным соответственно 0 и 1. Далее интервал (0,1) разбивается на три равные части $\left[0,\frac{1}{3}\right],\left[\frac{1}{3},\frac{2}{3}\right]$ и $\left[\frac{2}{3},1\right]$. На среднем отрезке полагаем $K(x)=\frac{1}{2}$. Оставшиеся два отрезка снова разбиваются на три равные части каждый, и на средних отрезках K(x) полагается равной $\frac{1}{4}$ (на левом) и $\frac{3}{4}$ (на правом). Каждый из оставшихся отрезков снова делится на три части, и на внутренних отрезках K(x) определяется как постоянная, равная среднему арифметическому между соседними, уже определенными значениями K(x), и т.д. На остальных точках единичного отрезка определяется «по непрерывности» (так чтобы в итоге получилась непрерывная функция). Полученная функция называется канторовой лестницей.

Докажите, что вот это «определяется по непрерывности» работает: K(x) однозначно определена в каждой точке отрезка [0,1], нестрого монотонна и непрерывна.

Задача 19. Будем наугад брать точку x из отрезка [0,1]. С какой вероятностью найдётся такая окрестность точки x, в которой канторова лестница K(x) постоянна?

14 a	14 б	15 a	15 б	16	17 a	17 б	18	19