Software-Defined Networks:

Architecture for Extended SDN Applications and Resource Optimization in Cloud Data Centers

Minh Pham

Supervisor

Professor Doan B. Hoang

A thesis submitted to Faculty of Engineering and Information Technology

University of Technology Sydney

in fulfillment of the requirements for the degree of Doctor of Philosophy

04/2020

DEDICATION

I dedicated this thesis to my parents, Bay Tan Pham and Dao Thi Nguyen, who always encourage me to study to have a better life, to my brothers Thanh Minh Pham, Xuan Tu Pham and Minh Nhut Pham for their support and encouragement me to complete my study.

ACKNOWLEDGEMENT

I sincerely express my deepest gratitude to my principal supervisor, Professor Doan B. Hoang, for his supervision and continuous encouragement, enthusiasm, technical comments, and constructive criticism throughout my whole PhD study. His full support, guidance, wisdom, and enthusiasm have made me both more mature as a person and more confident to be a good researcher. He has been outstanding in providing insightful feedback and guidance in each step of the creating of the research engagement. I admire his encouragement and determination to help me conquer all difficulties to achieve all results and to complete the thesis. Without his guidance, I would be in struggle in the research career. I feel so fortunate to have him as my supervisor for the past four and half years.

I thank Dr. Zenon Chaczko to co-supervise me. I am very thankful to him for his valuable feedback in research papers and the thesis. He is always there to help me when I need it, it does not matter it is a technical issue or other research-related issues. I believe that he is the most helpful person I ever known.

I thank the Australian Government to offer me the position of an HDR student and for all supports to help me in the study process.

I thank UTS Librarians to be so helpful in providing the books that I need during my time of studying. They are always there to help with the best books and journals when required. I always feel confident every time I go to UTS Library as I always can get the materials that I need.

I thank the SEDE School, SEDE Research and the Faculty Engineering and IT in supporting me in the research journey in the past four years. I realize that I can study in every corner of UTS as long as I feel comfortable. And UTS is a huge place where students can study to gain knowledge.

I thank Ms. Sarah Lok and the Counsellors at Student Services for their support. They are always so helpful with precious advices to support my study all the way.

I thank Dr. Marie Manidis, my GRS tutor since 2016 until now even when she did not work at UTS anymore. She is always there, very helpful in helping me out any questions that I have in my research journey.

I thank Prof. Robert Steele in giving the seeds to become a researcher to contribute to the Research Communities.

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Minh Nguyet Thi Pham, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering Faculty of Engineering and IT at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Date: ____

THE AUTHOR'S PUBLICATIONS

International Conferences Publications and Proceedings

Hoang, Doan & Pham, Minh, 2015, "On software-defined networking and the design of SDN controllers", presented at International conference of Network of the Future 2015, Montreal, Sep 30 – Oct 2, 2015, as a Poster

Pham, Minh & Doan, Hoang, 2016, "SDN applications - the intent- based Northbound interface realisation for extended applications", presented at IEEE conference on Network Softwarization 2016, Seoul, June 6 - June 10, 2016

Pham, Minh, Hoang, Doan & Chaczko, Zenon, 2019, "Realization of Congestion-aware Energy-aware virtual link embedding", presented at International Telecommunications Networks and Applications Conference (ITNAC), Nov 27th, 2019, Auckland, New Zealand

International Peer Review Journals

Pham, Minh, Hoang, Doan & Chaczko, Zenon, 2019, "Congestion- aware energy-aware virtual network embedding", IEEE/ACM Transactions on Networking, Vol. 28, Issue 1, Feb. 2020, pp 210-223

Pham, Minh, Hoang, Doan & Chaczko, Zenon, 2019, "Resource allocation optimization of latency aware network slicing in 5G core network", IEEE Transactions on Service and Network Management, submitted after peer reviewed

ABSTRACT

Virtualization is the main mechanism to share resources to many customers by creating virtual resources on the common physical resources. The challenge is to search for an optimal resource allocation mechanism that maximizes the capacity of the virtual resources. Network virtualization needs a new virtual network embedding (VNE) mechanism that focuses concurrently on control congestion, cost saving, energy saving; a link embedding mechanism needs to select actively based on multiple objectives the physical link resources, network slicing requires a new resource allocation mechanism that satisfies latency constraints of 5G mobile system. This research investigated and developed solutions for resource request delivery, and optimal resource allocation in network virtualization and 5G core network slicing applying SDN technology.

In the research, firstly, the three-tier architecture applying micro-service architecture for extended SDN application is presented to facilitate the flexibility, in which new services are created or composed, existing services are reused. The evaluation is the prototype of the Dynamic resource allocation using the proposed architecture.

Secondly, the multiple-objective VNE that focuses on congestion avoidance, energy saving and cost saving (CEVNE) is presented. The novelty lies in the CEVNE mathematical model for multiple-objective optimization problems, and its nodes and link embedding algorithms. The evaluation showed that CEVNE outperformed The-State-Of-The-Art in acceptance ratio in the challenged, near-congestion scenarios.

Thirdly, the architecture to realize virtual link mapping in CEVNE is presented. The novelty is in the SDN-based heuristic algorithm, and the applying of the architecture for extended SDN applications. The research results in the realization of the active virtual link embedding process that focuses on multi-objective concurrently. The evaluation showed that the solution outperformed the traditional link mapping in all three objectives.

Fourthly, the mathematical model of the resource allocation optimization in latency-aware 5G core network slicing is presented. The novelties lie in the satisfaction of different latency requirements of 5G applications: eMBB, uRLLC, and mMTC, and the solution strategy to linearize, convex-relax and decompose the program into sub-problems. The evaluation shows that the solution

Architecture for extended SDN applications and Resource Optimization in Cloud Data Centers

outperformed the The-State-Of-The-Art in resource allocation, execution time, latency satisfaction and the arrival rates.

In this thesis, the resource optimization problem and the architecture for extended SDN applications have been studied comprehensively. The results of this thesis can readily be applied to 5G vertical applications where resource optimization and network routing problems exist naturally in multiple domains and require software defined networking logically centralized control architecture for efficient and dynamic solutions.

TABLE OF CONTENTS

ACKNO	WLEDGEMENT	iı
ABSTR.	АСТ	v
LIST OI	FIGURES	xv
СНАРТ	ER 1 INTRODUCTION	1
1.1	Motivation and Research	1 Issues 1
1.2	Research aims and Resea	arch questions 3
1.2	.1 Research aims	3
1.2	.2 Research questions	4
1.3	Research objectives and	scope 4
1.3	.1 Research objective 1	4
1.3	.2 Research objective 2	5
1.3	.3 Research objective 3	6
1.3	.4 Research objective 4	6
1.4	Contributions of Thesis	
1.5	The significance of resea	rch 9
1.6	Methodology overview	10
1.7	Thesis outlines	
1.8	Summary	15
СНАРТ	ER 2 LITERATURE REV	/IEW AND RELATED WORK16
2.1	Software-defined netwo	rking17
2.1	.1 What is SDN paradigm?	
2.1	.2 SDN architecture	19
	2.1.2.1 Layer model	
	2.1.2.2 Service model	20

2.1.	2.3	Resource model	20
2.1.3	SDN	controller	21
2.1.	3.1	Main characteristics	21
2.1.	3.2	Core services	23
2.1.4	SDN	applications	24
2.1.5	SDN	switches	24
2.1.6	Min	inet	25
2.1.7	Segr	ment routing	25
2.1.8	Segr	ment routing architecture	26
2.1.9	Segr	ment routing with IPv6	26
2.2 N	letwo	ork virtualization	27
2.2.1	Wha	at is network virtualization	27
2.2.2	Reso	ource optimization	28
2.2.3	Curr	rent issues in network virtualization	29
2.2.4	Rela	ited works of chapter 4 Congestion aware, Energy-aware VNE	29
2.3 N	letwo	ork function virtualization	32
2.3.1	NFV	definition	32
2.3.2	Serv	rice function chaining	33
2.3.3	Curr	rent issues with NFV and SFC	33
2.3.4	Rela	ted work of chapter 5 Realization of CEVNE virtual link embedding	34
2.4 N	letwo	ork slicing in 5G networks	36
2.4.1	5G (core networks	36
2.4.	1.1	The control plane (CP) user plane (UP) separation (CUPS)	36
2.4.	1.2	The service-based architecture of 5G core network	37
2.4.	1.3	Three main types of 5G applications	37
2.4.2	Net	work slicing in 5G	38
2.4.	2.1	5G service	38
2.4.	2.2	5G network slicing	39
2.4.3	Rela	ited work of chapter 6 named Latency-aware resource optimization for	5G core network
slicing	41		
2.5 N	/licro	-service architecture and patterns	46
2.5.1	Mic	ro-service architecture	46

2.	5.2 N	Nicro-service Patterns	47
	2.5.2.1	Decomposition pattern	47
	2.5.2.2	Discovery pattern	48
	2.5.2.3	Database patterns	48
	2.5.2.4	Integration into an application	48
2.6	Sof	tware architecture patterns: module pattern	49
		eusable function blocks and Next generation PaaS	
	2.6.1.1	-	
	2.6.1.2		
2.7	•	imization and Mathematical modelling	
		Nathematical models	
2.		olving mathematical programs	
2.	7.3 N	Aulti-objective programming	53
2.	7.4 L	arge systems, structure systems	54
2.8	Que	eueing theory and performance modelling	56
2.8	8.1 P	robability models and overview	56
	2.8.1.1	Performance metrics	57
	2.8.1.2	Job response time	57
	2.8.1.3	Job waiting time	57
	2.8.1.4	Other metrics	57
	2.8.1.5	Random variables	57
	2.8.1.6	Kendall notation	59
2.8	8.2 N	farkov chains	59
	2.8.2.1	Discrete-Time Markov Chain (DTMC)	59
	2.8.2.2	Continuous-Time Markov Chain (CTMC)	61
2.8	8.3 N	/I/M/1 queue	61
2.	8.4 <i>N</i>	1t /G/1 queue	62
	2.8.4.1	Definition	62
	2.8.4.2	Two-rate MMPP	63
	2.8.4.3	State transition diagram of MMPP process	63
	2.8.4.4	Phase-type distribution and the matrix analytic method	64
	2.8.4.5	Functional behaviors	65

2.9	P4	4 language and SDN 2.0	65
2.	.9.1	What is P4 language	65
2.	.9.2	The in-band network telemetry	66
2.10) Su	ummary	67
CUAD	TED 1	AN INTENT CERVICE RACER (ICR) ARCUITECTURE FOR CRA	
CHAP		• •	
APPLI	CATIO	ONS 68	
3.1	Int	troduction	68
3.2	NE	BI and application layer in SDN architecture	69
3.	.2.1	NBI: Intent, Flow rules, Flow objectives	69
3.	.2.2	The application layer	72
3.3	Th	ne proposed solution architecture	73
3.	.3.1	The requirements of the architecture	73
3.	.3.2	The proposed solution architecture	74
	3.3.2	1 Micro service architecture (MSA) design	74
	3.3.2	.2 The three-tier application architecture	75
	3.3.2	2.3 Domain driven design	77
	3.3.2	2.4 The controller platform	77
3.4	Pr	roposed architecture for applications in service-based architecture	79
3.	.4.1	Requirements for the 5G custom core services	79
3.	4.2	Proposed architecture for 5G custom core services	79
	3.4.2	MSA, MS design pattern, and three-tier architecture	80
3.5	Th	ne realization of the architecture for extended SDN application	81
3.	.5.1	MSA and MS design patterns	82
3.	.5.2	Three-tier architecture	82
3.6	Pr	rototypes	83
3.	.6.1	DRM application prototype	83
	3.6.1	1 Test bed setup	83
	3.6.1	2 DRM application setup	85
	3.6.1	3 Results	87
	261	Annlying the proposed architecture	07

3.6	5.1.5	Running DRM on ONOS controller	88
3.6.2	Prot	totype of CEVNE LiM application	89
3.7	Summ	nary	89
CHAPTER	R 4	CONGESTION-AWARE ENERGY-AWARE VIRTUAL NETWORK	
EMBEDD		90	
4.1	CEVNI	E Overview	91
4.1.1		Virtual network embedding problem	
4.1	1.1.1	Substrate networks and virtual networks	
4.1	1.1.2	The virtual network embedding	93
4.1.2	Ove	rview of CEVNE multi-objectives	94
4.1	1.2.1	Cost saving objective	94
4.1	1.2.2	Energy saving objective	95
4.1	1.2.3	Congestion avoidance objective	95
4.1	1.2.4	The maximum congestion ratio	96
4.1	1.2.5	Modelling techniques and solution approaches	97
4.1.3	The	augmented substrate networks	97
4.2	CEVNI	E Problem formulation	98
4.2.1	The	problem statements	98
4.2.2	The	problem formulation	98
4.2.3	CEV	NE's enabling technologies	101
4.2	2.3.1	Software-defined networks	101
4.2	2.3.2	Segment routing	101
4.3	CEVNI	E Algorithms	102
4.3.1	CEV	NE node embedding algorithm	102
4.3.2	CEV	NE Link embedding algorithm	105
4.3.3	CEV	NE embedding algorithm	105
4.4	Perfor	rmance evaluation of CEVNE node embedding	106
4.4.1		NE evaluation setup	
4.4	4.1.1	Topology generation	
4.4	1.1.2	Resource and demand generation	107
4 4	1.1.3	The congestion ratio parameter	108

	4.4.	1.1.4 The simulation environment and scenario generators	109
	4.4.2	Challenging and near congestion experiments	109
	4.4.	1.2.1 The design of near-congestion or challenging scenarios	109
	4.4.	1.2.2 Introduction of Approximate resource scarcity concept	109
	4.4.	1.2.3 Network parameters in challenging scenarios	110
	4.4.	1.2.4 Evaluation results of challenging scenarios	111
	4.4.3	The node embedding evaluation results	112
	4.4.	l.3.1 Runtime	113
	4.4.	1.3.2 Average active node stress	114
	4.4.4	Energy consumption	115
	4.4.	I.4.1 Energy consumption	115
	4.4.	1.4.2 Acceptance ratio	116
	4.4.	1.4.3 Total costs	117
4.	.5 S	Summary	117
		•	
CHA	NPTER	R 5 REALIZATION OF CEVNE VIRTUAL LINK EMBED	DING118
5.	.1 N	Motivation for a heuristic algorithm	119
	5.1.1	The review of CEVNE problem and solution approach	119
	5.1.2	Motivation for a heuristic virtual link embedding	120
5.	.2 P	Proposed architecture to realize CEVNE LiM	120
	5.2.1		
	5.2.	2.1.1 Cost saving	
	5.2.	2.1.2 Energy saving	
	5.2.	2.1.3 Congestion avoidance	
	5.2.2	•	
	5.2.3	The initialization processes	
	5.2.4	Path selection algorithm	128
5.	, r	CEVALE LIM algorithm and realization	120
5.		CEVNE LIM algorithm and realization	
	5.3.1	CEVNE LiM algorithm	
	5.3.2	Operational diagram of CEVNE LIM	
	5.3.3	Realization of CEVNE LIM application	132
5.	1 D	Performance evaluation	133

5.	4.1	Test scenarios	133
5.	4.2	CEVNE LiM application execution platform	134
5.	4.3	Evaluation results	136
	5.4.3	.1 Runtime	136
	5.4.3	.2 Average path length	136
	5.4.3	.3 Average node stress and average link stress	137
	5.4.3	.4 Energy consumption	138
	5.4.3	.5 Acceptance ratio	138
5.5	Sı	ımmary	139
СНАР	TER (LATENCY-AWARE RESOURCE OPTIMIZATION FOR 5G CORE	NETWORK
SLICIN	IG	141	
6.1	N	odelling network slicing for mobile services in 5G core networks	142
6.	1.1	Application classification in 5G	142
6.	1.2	Control plane data plane separation (CUPS)	143
6.	1.3	Network slicing and related concepts	
6.	1.4	Resource model of network slicing	144
6.	1.5	Network slicing performance model using queueing theory	145
	6.1.5	.1 Markov-modulated Poisson Process	147
	6.1.5	.2 VNF performance model	148
6.	1.6	VNF total delay	151
6.	1.7	Linear function of delay on allocated resources	152
6.	1.8	Solution approach	154
6.2	P	oblem statement	155
6.	2.1	Network slicing problem statement	155
6.	2.2	Network slicing: objectives	155
6.	2.3	Problem formulation	156
6.3	So	olution design	158
6.	3.1	Solution strategy	158
6.	3.2	Convex relaxation	159
6.	3.3	Decomposition	159
	6.3.3	.1 Strategy for resource optimization	160

6	.3.4	Line	arized problem formulation	161
6	.3.5	Algo	orithms	162
	6.3.	5.1	The master algorithm	162
	6.3.	5.2	VNF embedding optimization algorithm	162
	6.3.	5.3	Virtual links connecting VNFs Embedding optimization algorithm	165
	6.3.	5.4	Multiple NSR embedding optimization algorithms in a time window	167
6.4	P	erfor	mance evaluation	167
6	.4.1	The	evaluation setup	168
	6.4.	1.1	The infrastructure	168
	6.4.	1.2	The network slice requests	169
	6.4.	1.3	The simulation environment	171
6	.4.2	Eval	uation results	171
	6.4.	2.1	The embedding based on NSR topologies	171
	6.4.	2.2	Resource allocation by service types	172
	6.4.	2.3	Resource consumption	173
	6.4.	2.4	Latency satisfaction	174
	6.4.	2.5	Total latency by NSR topologies	175
	6.4.	2.6	Execution time	177
	6.4.	2.7	Expected total delay by arrival rates	178
6.5	S	umm	ary	179
СНАР	TER	7	CONCLUSIONS AND FUTURE WORK	180
7.1	S	umm	ary and contributions of the thesis	180
7.2	F	uture	e work	183
7.3	c	onclu	usion remarks	185
DIDIII	OGD.	∧ D LL\	<i>,</i>	100

LIST OF FIGURES

Figure 1.1: Steps in the development of Research methodology	11
Figure 1.2: Research model adapted (Bernardo 2012)	12
Figure 1.3: Thesis outline	13
Figure 2.1: Chapter 2 Literature review and roadmap	17
Figure 2.2: SDN technology roadmap	18
Figure 2.3: SDN architecture in layer view	20
Figure 2.4: SDN architecture in layer, service and resource views	21
Figure 2.5: ONOS intent state transition diagram (ONOS 2019a)	22
Figure 2.6: ONOS controller (ONF 2019a)	23
Figure 2.7: Main components of an OF switch (ONF 2014)	24
Figure 2.8: Main components of a table entry (ONF 2014)	25
Figure 2.9: Segment routing IPv6 extension header (Lebrun et al. 2018)	27
Figure 2.10: An example of virtual network embedding	28
Figure 2.11: CUPS interfaces (Schmitt, Landais & YongYang 2018)	37
Figure 2.12: Application types and their key performance indicators (Foukas et al. 2017	7)
	38
Figure 2.13: 5G core service: RESTFul API of the service-based interface and the	
northbound communication (Mayer 2018)	39
Figure 2.14: 5G network slice examples, adapted from (Perez 2017)	40
Figure 2.15: the characteristics of Micro-services (Fowler 2014)	47
Figure 2.16: RFB concept (Mimidis-Kentis et al. 2019)	51
Figure 2.17: The general structure of the main model and sub-models using matrix	
(Williams 2013)	55
Figure 2.18: The process of decomposing a system into sub-systems (Lasdon 1970),	
(Palomar & Chiang 2006)	55
Figure 2.19: the road map to explore queueing theory	56
Figure 2.20: CTMC of the customer number in M/M/1 queue, adapted (Harchol-Balter	r
2013)	.61

Figure 2.21: The arrival process is a Markov-modulated Poisson process with 2 states	3,
adapted (Harchol-Balter 2013)	63
Figure 2.22: State transition diagram of an MMPP model with two states (Bolch et al.	
2006)	64
Figure 2.23: INT use case to collect latency in details (Hira & Wobker 2015)	66
Figure 3.1: The roadmap of the Chapter 3	68
Figure 3.2: Intent, flow objective, and flow rule in NBI, adapted from (ONF 2019a)	70
Figure 3.3: ONOS controller and the NBI with the abstractions (ONF 2019a)	71
Figure 3.4: Use cases of the ONOS intent framework	72
Figure 3.5: Visualized the requirements of the architecture	74
Figure 3.6: The characteristics of Micro-services (Fowler 2014)	75
Figure 3.7: Component view of the three-tier architecture for SDN application	76
Figure 3.8: Domain driven design example	77
Figure 3.9: OSGi layered architecture (OSGi_Alliance 2016)	78
Figure 3.10: The proposed architecture for 5G custom core service	81
Figure 3.11: The visualization of the process to realize the proposed architecture	83
Figure 3.12: the sample of node and edge in GEANT.gml file	84
Figure 3.13: DRM running on GEANT topology (Mininet)	85
Figure 3.14: The data in the DB table	85
Figure 3.15: DRM REST interface	87
Figure 3.16: The intent view	87
Figure 4.1: The roadmap of chapter 4	90
Figure 4.2: An example of the VNE process (Fischer et al. 2013)	93
Figure 4.3: The summary of CEVNE modelling techniques and solution approaches	97
Figure 4.4: CEVNE node embedding algorithm	103
Figure 4.5: CEVNE link embedding algorithm	103
Figure 4.6: CEVNE algorithm	104
Figure 4.7: Node and link scarcity of near congestion experiments (Fischer 2016)	111
Figure 4.8: Showing experiment results in ARS map (Fischer 2016)	.112
Figure 4.9: an example to explain runtime result of CEVNE and VINE algorithms	113
Figure 4.10: Total runtime of 50-node network	114

Figure 4.11: Total runtime of 25-node network	114
Figure 4.12: Average active node stress of 50-node network	115
Figure 4.13: Average active node stress of 25-node network	115
Figure 4.14: Running nodes in 50-node network	116
Figure 4.15: Running nodes in 25-node network	116
Figure 5.1: The roadmap of Chapter 5	118
Figure 5.2: The architecture to realize CEVNE LiM.	121
Figure 5.3: the example of the cost saving between A and B	122
Figure 5.4: an example of energy saving of leaf-spine fabric	123
Figure 5.5: The algorithm to inactivate a spine node	123
Figure 5.6: Algorithm to activate an inactive spine node	124
Figure 5.7: An example of congestion avoidance in leaf-spine fabric	125
Figure 5.8: Result of INT monitor application at time T	126
Figure 5.9: Multi-route inspection application: each packet carries its own logs	
(Tahmasbi 2017)	126
Figure 5.10: Initialization process of CEVNE LiM	127
Figure 5.11: Example of PSA in a leaf-spine fabric	129
Figure 5.12: Virtual link embedding process of CEVNE LiM	129
Figure 5.13: CEVNE LiM algorithm	131
Figure 5.14: CEVNE node and link mapping processes on SDN fabric network	132
Figure 5.15: Substrate network configured as leaf-spine fabric in ONOS UI	133
Figure 5.16: CEVNE LiM application execution in ONOS UI	135
Figure 5.17: Results of runtime and average path length	137
Figure 5.18: Results of average node stress, average link stress, and energy consum	nption
	139
Figure 6.1: Chapter 6 roadmap	141
Figure 6.2: 5G network slice example - adapted from (Perez 2017)	144
Figure 6.3: The arrival process of MMPP (Harchol-Balter 2013)	148
Figure 6.4: State transition diagram of a two-state MMPP model (Bolch et al. 2006)	148
Figure 6.5: Packet processing by X86 Linux Kernel (Zinner et al. 2017)	148
Figure 6.6: Tandem server with the NIC queue and central queue	149

Figure 6.7: Visualization of the k rates between $\mu H - \mu L$	150
Figure 6.8: three NSR topologies (Agarwal et al. 2018)	152
Figure 6.9: Processing delay is a linear function of allocated resources (Alleg et al.	2017)
	153
Figure 6.10: The solution roadmap for our network slicing problem	155
Figure 6.11: Non-convex constraint $y \le x12$	159
Figure 6.12: Convex relaxation a linear constraint	159
Figure 6.13: The decomposition of the network slicing optimization problem	160
Figure 6.14: the algorithm of the master model	163
Figure 6.15: the algorithm of the VNF embedding.	164
Figure 6.16: the virtual link embedding algorithm	166
Figure 6.17: The leaf-spine fabric test beds	168
Figure 6.18: The NSR topologies with 8 VNFs	169
Figure 6.19: Results of the simple chain topology	171
Figure 6.20: Results of the lightly meshed topology	172
Figure 6.21: Latency of an IAC service (uRLLC)	172
Figure 6.22: Latency of an EN service (eMBB)	173
Figure 6.23: CPU resource consumption	174
Figure 6.24: Latency of EN with processing and transmission	175
Figure 6.25: Latency of IAC with processing and transmission	175
Figure 6.26: EN application, NSR latencies by topologies SC, LM, FM	176
Figure 6.27: ICA application, NSR latencies by topologies SC, LM, FM	177
Figure 6.28: The execution time compared to FRAM, SRAM	178
Figure 6.29: Normalized delay by arrival rates with the-state-of-the-arts (Agarwal	et al.
2018)	179

LIST OF TABLES

Table 3.1: Test results of running DRM on ONOS	88
Table 4.1: Notations and their explanations	91
Table 4.2: Notations and their explanation related to max congestion ratio	96
Table 4.3: Three topologies of the 50-node network	107
Table 4.4: Three topologies of the 25-node network	107
Table 4.5: Resource and demands	108
Table 4.6: The design of near congestion scenarios	110
Table 5.1: Substrate network capacities.	133
Table 5.2: The design of test scenarios.	134
Table 5.3: Results of CEVNE LiM when running a test case	135
Table 6.1: Notations and their explanation	145
Table 6.2: Realistic scenarios (Malandrino et al. Dec. 2019)	167
Table 6.3: The substrate fabric network	169
Table 6.4: NSR demand and thresholds	170
Table 6.5: Test scenario design	170

LIST OF ABBREVIATIONS AND ACRONYMS

AI	Artificial Intelligence	
ARP	Address resolution protocol	
ARS	Approximate resource scarcity	
ASR	Architecturally significant requirements	
BPM	Business process management	
C2X	Car to everything	
CAM/ TCAM	Content addressable memory / Ternary content addressable memory	
CAPEX	Capital expenditure	
CEVNE	Congestion-aware energy-aware virtual network embedding	
CEVNE NoM	Congestion-aware energy-aware virtual network embedding node embedding	
CEVNE LiM	Congestion-aware energy-aware virtual network embedding link embedding	
CL	Cloud computing	
CLI	Command line interface	
COS	Commercial off the shelf	
СР	Control plane	
CTMC	Continuous time Markov Chain	
CUPS	Control plane user plane separation	
DC	Data center	
DDD	Domain driven design	
DHCP	Dynamic host control protocol	
E2E	End-to-end	
ECMP	Equal cost multi-path	
eMBB	Enhanced mobile broadband	
eNB	The base station of the mobile system.	
EPC	Evolved packet core	
ICMP	Internet control message protocol	
INT	In-band network telemetry	
IoT	Internet of thing	
IP	Internet protocol	

ITU	International Telecommunication Unit
KPI	Key performance Indicators
LAN	Local area network
LiM	Link mapping
LP	Linear program
MILP	Mixed-integer linear program
MINLP	Mixed-integer non-linear program
MIQCP	mixed-integer quadratic constraint program
ML	Machine learning
MMPP	Markov-modulated Poisson process
mMTC	Massive machine type communication
MP	Mathematical program
MPLS	Multiprotocol label switching
MSA	Micro-service architecture
NBI	Northbound application interface
NEF	Network exposure function
NFV	Network function virtualization
NGPaaS	Next generation platform as a service
NIC	Network interface cards
NLP	Non-linear program
NoM	Node mapping
NOS	Network operating system
NRF	Network repository function
NS	Network slice
NSR	Network slice request
NSSF	Network slice selection function
NV	Network virtualization
OF	Openflow protocol
OPEX	Operational expenditure
PaaS	Platform as a service
PCE	Path computation element
PGW	Package data gateway
QoE	Quality of experience
QoS	Quality of service

RDB Resource database REST Representational state transfer RFB Reusable function block RPC Remote procedure call SBA Service-based architecture SBI Southbound application interface SGW Service gateway SID Segment identifier SLA Service level agreement SN Substrate network SOA Service-Oriented Architecture SOAP Service-Oriented Architecture SOAP Service-Oriented Architecture SOAP Service-Oriented Architecture SRA Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User (data) plane uRLLC Ultra-reliable low latency communication VXX Vehicle to everything VM Virtual network VNE Virtual network function VYN Virtual network function VYN Virtual network request	RAN	Radio access network
RFB Reusable function block RPC Remote procedure call SBA Service-based architecture SBI Southbound application interface SGW Service gateway SID Segment identifier SLA Service level agreement SN Substrate network SOA Service-Oriented Architecture SOAP Service-Oriented Architecture protocol SPG Shortest path graph SR Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	RDB	Resource database
RPC Remote procedure call SBA Service-based architecture SBI Southbound application interface SGW Service gateway SID Segment identifier SLA Service level agreement SN Substrate network SOA Service-Oriented Architecture SOAP Service-Oriented Architecture protocol SPG Shortest path graph SR Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	REST	Representational state transfer
SBA Service-based architecture SBI Southbound application interface SGW Service gateway SID Segment identifier SLA Service level agreement SN Substrate network SOA Service-Oriented Architecture SOAP Service-Oriented Architecture protocol SPG Shortest path graph SR Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	RFB	Reusable function block
SBA Service-based architecture SBI Southbound application interface SGW Service gateway SID Segment identifier SLA Service level agreement SN Substrate network SOA Service-Oriented Architecture SOAP Service-Oriented Architecture protocol SPG Shortest path graph SR Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	RPC	Remote procedure call
SGW Service gateway SID Segment identifier SLA Service level agreement SN Substrate network SOA Service-Oriented Architecture SOAP Service-Oriented Architecture protocol SPG Shortest path graph SR Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	SBA	Service-based architecture
SID Segment identifier SLA Service level agreement SN Substrate network SOA Service-Oriented Architecture SOAP Service-Oriented Architecture protocol SPG Shortest path graph SR Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	SBI	Southbound application interface
SLA Service level agreement SN Substrate network SOA Service-Oriented Architecture SOAP Service-Oriented Architecture protocol SPG Shortest path graph SR Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	SGW	Service gateway
SN Substrate network SOA Service-Oriented Architecture SOAP Service-Oriented Architecture protocol SPG Shortest path graph SR Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane URLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	SID	Segment identifier
SOA Service-Oriented Architecture SOAP Service-Oriented Architecture protocol SPG Shortest path graph SR Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane URLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	SLA	Service level agreement
SOAP Service-Oriented Architecture protocol SPG Shortest path graph SR Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	SN	Substrate network
SPG Shortest path graph SR Segment routing SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane URLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	SOA	Service-Oriented Architecture
SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	SOAP	Service-Oriented Architecture protocol
SRA Segment routing application SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	SPG	Shortest path graph
SRH Segment routing header TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	SR	Segment routing
TCP Transport control protocol TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network function	SRA	Segment routing application
TDF Traffic detection function TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	SRH	Segment routing header
TE Traffic engineering UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	TCP	Transport control protocol
UDM Unified Data Management UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	TDF	Traffic detection function
UDP User Datagram protocol UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	TE	Traffic engineering
UDSF Unstructured data storage function UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	UDM	Unified Data Management
UP User (data) plane uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	UDP	User Datagram protocol
uRLLC Ultra-reliable low latency communication V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	UDSF	Unstructured data storage function
V2X Vehicle to everything VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	UP	User (data) plane
VM Virtual machine VN Virtual network VNE Virtual network embedding VNF Virtual network function	uRLLC	Ultra-reliable low latency communication
VN Virtual network VNE Virtual network embedding VNF Virtual network function	V2X	Vehicle to everything
VNE Virtual network embedding VNF Virtual network function	VM	Virtual machine
VNF Virtual network function	VN	Virtual network
	VNE	Virtual network embedding
VNR Virtual network request	VNF	Virtual network function
	VNR	Virtual network request