On the feasibility for the system of quadratic equations MATLAB Library: other functions

Anatoly Dymarsky, Elena Gryazina, Boris Polyak, Sergei Volodin

Name	Input	Call	Description	Return value	Exception
Random map	Dimensions n, m	get_random_f(n, m, is_complex)	Generates random map f	[A, b]	None
Value at x	The point $x \in X$	quadratic_map(A, b, x)	Calculates $f(x)$	y = f(x)	None
Product $c \cdot A$	Normal vector c	$get_Ac(A, c)$	Calculates $c \cdot A$	$A_c = c \cdot A$	None
$\mathbf{Get}\ H_c$	$c, y \in \mathbb{R}^m$	$get_H_c(A, b, c, y)$	$H_c = \left(\begin{array}{cc} A_c & b_c \\ b'_c & -(c, y) \end{array}\right)$	H_c	None
$\begin{array}{ c c c c }\hline \textbf{Minimize} \ z(c) \\ \hline \end{array}$	$c, c_+, \text{ step } \beta$	minimize_z_c(A, b, c, c_plus, beta_initial, max_step)	Calculates $\inf_{c \in C_{-}} z(c)$	[z, c_array, z_array]	If failed
\mathbb{R}^n projection		project(A, b, c, x ₋ 0, delta ₋ c, normal, search ₋ area ₋ size)	Projects $c + \Delta c$ to C_{-}	[c_new, lambda]	If failed
\mathbb{C}^n projection		project_descent(A, b, c, nor-mal_1, normal_2)	Projects c to C_{-}	[c_new, distance]	If failed
Gradient $\frac{\partial z}{\partial c}$	Normal c	$get_dz_dc(A, b, c)$	Calculates Q , $\nabla z(c)$, normal vectors n_1 , n_2	[Q, Q_inv, k, v, lambda_min, z, dz_dc, normal_re, normal_im, drho_dc]	None
Change of basis	c_{+}	change_basis(A, b, c_plus)	$\begin{cases} x = S(x' + x_0) \\ y = y' + y_0 \end{cases} $ s.t. $\begin{cases} c_+ \cdot A_0 = I \\ c_+ \cdot b_0 = 0 \end{cases}$	[A_new, b_new, x0, y0]	None