L'épreuve est composée de trois exercices indépendants

Exercice 1

Notations

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2 et $\mathcal{M}_n(\mathbb{R})$ désigne l'espace vectoriel des matrices carrées d'ordre n.

Tout vecteur $x = (x_1, x_2, ..., x_n)$ de \mathbb{R}^n est identifié à la matrice $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ de ses coordonnées dans la base

canonique de \mathbb{R}^n .

On appelle spectre d'une matrice A, noté Sp(A) (respectivement d'un endomorphisme f noté Sp(f)), l'ensemble des valeurs propres de cette matrice (respectivement de cet endomorphisme).

On rappelle que la base canonique de $\mathcal{M}_2(\mathbb{R})$ est $\mathcal{B} = (E_1, E_2, E_3, E_4)$, avec :

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Si A est une matrice fixée de $\mathcal{M}_n(\mathbb{R})$, on considère l'application φ_A définie par :

$$\varphi_A: \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ M & \longmapsto & AM \end{array}$$

Partie 1 - Étude d'un premier exemple

On suppose dans cette partie que n=2 et que A est la matrice définie par :

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- 1. Calculer A^2 .
- 2. (a) Déterminer un polynôme annulateur de φ_A .
 - (b) En déduire que l'application φ_A est bijective et déterminer φ_A^{-1} .
 - (c) Déterminer le spectre de φ_A ainsi qu'une base de chacun de ses sous-espaces propres.

Partie 2 - Étude d'un deuxième exemple

On suppose dans cette partie que n=2 et que A est la matrice de $\mathcal{M}_2(\mathbb{R})$ définie par :

$$A = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$$

- 1. Donner les valeurs propres de A.
- 2. Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice non nulle de $\mathcal{M}_2(\mathbb{R})$.
 - (a) Résoudre l'équation $\varphi_A(M) = \lambda M$, où λ appartient à \mathbb{R} .
 - (b) En déduire les valeurs propres de φ_A ainsi qu'une base de chacun des sous-espaces propres de φ_A .
- 3. Montrer que φ_A est diagonalisable.

Partie 3 - Étude d'un troisième exemple

On suppose dans cette partie que n=2 et que A est la matrice de $\mathcal{M}_2(\mathbb{R})$ définie par :

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

- 1. (a) A est-elle diagonalisable?
 - (b) Donner les deux valeurs propres λ_1 et λ_2 de A, avec $\lambda_1 < \lambda_2$.
 - (c) Déterminer une base (V_1) (respectivement V_2) du sous-espace propre de A associé à la valeur propre λ_1 (respectivement λ_2).
- 2. (a) Donner la matrice de φ_A dans la base \mathcal{B} .
 - (b) Vérifier que les valeurs propres de A sont également valeurs propres de φ_A .
 - (c) Vérifier que les quatre matrices formées d'une colonne nulle et d'une autre colonne qui est soit V_1 soit V_2 sont vecteurs propres de φ_A .
 - (d) En déduire que φ_A est diagonalisable.

Partie 4 - Réduction de φ_A

On revient au cas général où n est un entier naturel quelconque supérieur ou égal à 2, et A une matrice fixée de $\mathcal{M}_n(\mathbb{R})$.

- 1. (a) Soit λ une valeur propre de φ_A et M un vecteur propre associé. Montrer, en raisonnant par l'absurde, que $A - \lambda I$ est non inversible.
 - (b) En déduire que $Sp(\varphi_A) \subset Sp(A)$.
- 2. Soit μ une valeur propre de A, V un vecteur propre associé et M la matrice de $\mathcal{M}_n(\mathbb{R})$ dont une colonne est V et dont toutes les autres colonnes sont nulles.
 - (a) Montrer que M est vecteur propre de φ_A .
 - (b) Montrer que $Sp(\varphi_A) = Sp(A)$.
- 3. On suppose que A est diagonalisable et on note (V_1, V_2, \ldots, V_n) une base de \mathbb{R}^n constituée de vecteurs propres de A.

En considérant les matrices $M_{i,j}$ ($1 \le i \le n, 1 \le j \le n$), où M_{ij} est la matrice dont la $j^{\text{ème}}$ colonne est V_i et où toutes les autres colonnes sont nulles, montrer que φ_A est diagonalisable.

Exercice 2

On note \mathcal{E} l'ensemble des triplets (α, f, F) , où :

- α est un réel strictement positif
- f est une fonction continue de \mathbb{R}_+ dans \mathbb{R}_+^*
- F est une fonction dérivable de \mathbb{R}_+ dans [0,1[, vérifiant :

$$\begin{cases} \forall t \in \mathbb{R}_{+}^{*}, & F'(t) = f(t) \left[F(t) \right]^{\alpha} (1 - F(t)) \\ \forall x \in \mathbb{R}_{+}, & F(x) = 0 \Longleftrightarrow x = 0 \end{cases}$$

1. En considérant le triplet (α_0, f_0, F_0) où $\alpha_0 = \frac{1}{2}$, pour tout t positif, $f_0(t) = \frac{1}{1+t}$, pour tout x positif, $F_0(x) = \left(\frac{x}{x+2}\right)^2$, vérifier que l'ensemble \mathcal{E} est non vide.

Dans toute la suite, (α, f, F) désigne un élément de \mathcal{E} .

- 2. Montrer que la fonction F admet en $+\infty$ une limite ℓ et que cette limite, que l'on ne cherchera pas à calculer, appartient à [0,1].
- 3. On considère un réel a strictement positif et on définit sur [0, a] la fonction H par :

$$\forall x \in]0, a], \ H(x) = \int_{F(x)}^{F(a)} \frac{1}{t^{\alpha}(1-t)} dt - \int_{x}^{a} f(t) dt$$

- (a) Montrer que H est dérivable sur [0, a] et calculer, pour tout x de [0, a], H'(x).
- (b) En déduire quelle est la fonction H.
- (c) Montrer que l'intégrale impropre $\int_0^{F(a)} \frac{1}{t^{\alpha}(1-t)} dt$ est convergente et qu'elle est égale à $\int_0^a f(t) dt$.
- (d) En déduire que α est strictement inférieur à 1.
- 4. On considère la fonction Ψ , définie sur \mathbb{R} par :

$$\Psi(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

(a) Établir, pour tout réel x strictement positif, l'égalité suivante :

$$\int_0^{F(x)} \frac{1}{\sqrt{t}(1-t)} dt = \ln\left(\frac{1+\sqrt{F(x)}}{1-\sqrt{F(x)}}\right)$$

(b) Montrer que si $\alpha = \frac{1}{2}$, alors F et f sont liées par la relation :

$$\forall x \in \mathbb{R}_+, \ F(x) = \left[\Psi\left(\frac{1}{2}\int_0^x f(t)dt\right)\right]^2$$

- (c) Déterminer la fonction F dans le cas où $\alpha = \frac{1}{2}$ et où f est définie sur \mathbb{R}_+ par : $f(x) = \frac{2x}{x^2 + 1}$.
- 5. On définit sur]0,1[la fonction G par :

$$G(x) = \int_0^x \frac{1}{t^{\alpha}(1-t)} dt$$

avec donc $0 < \alpha < 1$.

(a) Établir, pour tout x de]0,1[, l'égalité suivante :

$$x^{\alpha-2}G(x) - \frac{1}{(1-\alpha)x} = x^{\alpha-2} \int_0^x \frac{1}{t^{\alpha-1}(1-t)} dt$$

(b) Montrer, pour tout réel x de [0,1[et pour tout entier naturel n, la relation suivante :

$$x^{\alpha-2}G(x) - \frac{1}{(1-\alpha)x} = \sum_{k=0}^{n} \frac{x^k}{k-\alpha+2} + x^{\alpha-2} \int_0^x \frac{t^{n-\alpha+2}}{1-t} dt$$

(c) Déduire de ce qui précède que :

$$\lim_{x \to 0^+} \left[(F(x))^{\alpha - 2} \int_0^{F(x)} \frac{1}{t^{\alpha} (1 - t)} dt - \frac{1}{F(x) (1 - \alpha)} \right] = \frac{1}{2 - \alpha}$$

- 6. On suppose dans cette question que $f(0) \neq 0$ et on définit sur \mathbb{R}_+ la fonction Φ par : $\Phi(x) = \int_0^x f(t)dt$.
 - (a) Calculer $\lim_{x\to 0^+} \frac{\Phi(x)}{x}$.
 - (b) Établir enfin l'équivalent suivant :

$$F(x) \underset{0^{+}}{\sim} [(1-\alpha)xf(0)]^{\frac{1}{1-\alpha}}$$

Exercice 3

Soit X une variable aléatoire à densité définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. On définit sur Ω l'application Y par :

$$\forall \omega \in \Omega, \ Y(\omega) = \int_{-1}^{1} |X(\omega) - t| dt$$

On admet que Y est une variable aléatoire définie sur $(\Omega, \mathcal{A}, \mathbb{P})$.

- 1. On suppose dans cette question que X suit la loi uniforme sur [-1,1].
 - (a) Exprimer Y en fonction de X.
 - (b) Donner la fonction de répartition de Y.
 - (c) Vérifier que Y est une variable à densité et donner une densité de Y.
 - (d) Calculer l'espérance de Y.
- 2. On suppose dans cette question qu'une densité de X est la fonction f définie sur $\mathbb R$ par :

$$\forall t \in \mathbb{R}, \ f(t) = \frac{1}{2}e^{-|t|}$$

(On ne demande pas de vérifier que f est une densité)

- (a) Donner la fonction de répartition de X.
- (b) On définit sur \mathbb{R} la fonction g par : $g(x) = \int_{-1}^{1} |x t| dt$. Donner, suivant les valeurs de x, l'expression explicite de g(x) en fonction de x et vérifier que g est continue sur \mathbb{R} .
- (c) On note F_Y la fonction de répartition de Y. Calculer $F_Y(y)$ pour tout réel y.
- (d) Vérifier que Y est une variable à densité et donner une densité de Y.
- 3. On considère dans cette question une suite $(X_n)_{n\geqslant 1}$ de variables aléatoires, toutes définies sur $(\Omega, \mathcal{A}, \mathbb{P})$, et telles que, pour tout entier naturel n non nul, X_n suit la loi $\mathcal{N}(0, \frac{1}{n})$, c'est-à-dire que X_n suit la loi normale centrée de variance $\frac{1}{n}$.

On définit, pour tout entier naturel n non nul, l'application Y_n par :

$$\forall \omega \in \Omega, Y_n(\omega) = \int_{-1}^1 |X_n(\omega) - t| dt$$

On admet que, pour tout entier naturel non nul, Y_n est une variable aléatoire définie sur $(\Omega, \mathcal{A}, \mathbb{P})$. On note F_{Y_n} la fonction de répartition de Y_n et Φ celle de la loi normale centrée réduite.

- (a) Exprimer, pour tout réel y, $F_{Y_n}(y)$ en fonction de $\Phi(y)$ et de n.
- (b) Montrer que la suite $(Y_n)_{n\geqslant 1}$ converge en loi vers une variable aléatoire Y dont on précisera la loi, c'est-à-dire que, pour tout réel y, on a : $\lim_{n\to+\infty} F_{Y_n}(y) = F_Y(y)$, où F_Y désigne la fonction de répartition de la variable Y.