

Model Development Phase Template

Date	9 July 2024
Team ID	SWTID1720104839
Project Title	Human Resource Management: Predicting Employee Promotions Using Machine Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
from sklearn.model_selection import cross_val_score
```


Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matr
Decision Tree	classification report precision recall f1-score support 0 0.94 0.92 0.93 9981 1 0.92 0.94 0.93 10075 accuracy 0.93 20056 macro avg 0.93 0.93 0.93 20056 weighted avg 0.93 0.93 0.93 20056	<pre>def DecisionTree(x_train,x_test,y_train,y_test): det=DecisionTreeClassifier() det.fit(x_train,y_train) y_pred-det.predict(x_test) print("***DecisionTreeClassifier***") print("confusion_matrix") print(confusion_matrix(y_test,y_pred)) print("classification_report") print(classification_report(y_test,y_pred))</pre>	<pre>***DecisionTreeClassifier** confusion matrix [[9206 775] [561 9514]]</pre>
Random Forest	classification report	<pre>def RandomForest(x_train,x_test,y_train,y_test): rf-RandomForestClassifier() rf.fit(x_train,y_train) y_pred=rf.predict(x_test) print("***RandomForestClassifier***") print("confusion_matrix") print(confusion_matrix(y_test,y_pred)) print("classification_report") print(classification_report(y_test,y_pred))</pre>	***RandomForestClassifier* confusion matrix [[9430 551] [472 9603]]
KNN	classification report precision recall f1-score support 0 0.92 0.86 0.89 9981 1 0.87 0.93 0.90 10075 accuracy 0.90 20056 macro avg 0.90 0.89 0.89 20056 weighted avg 0.90 0.90 0.89 20056	<pre>def KNN(x_train,x_test,y_train,y_test): knn=KNeighborsClassifier() knn.fit(x_train,y_train) y_pred=knn.predict(x_test) print("****KNeighborsClassifier***") print("confusion matrix") print(confusion_matrix(y_test,y_pred)) print("classification_report") print(classification_report(y_test,y_pred))</pre>	***KNeighborsClassifier*** confusion matrix [[8582 1399] [706 9369]]
XG Boost	classification report	<pre>import xgboost as xgb def xgboost(x_train,x_test,y_train,y_test): y_train = y_train.astype(int) y_test = y_test.astype(int) xx=xgb.XGBClassifier() xx.fit(x_train,y_train) y_pred=xx_predict(x_test) print("***y_gBoostingClassifier***") print("confusion_matrix") print(confusion_matrix(y_test,y_pred)) print("classification_report(y_test,y_pred)) print(classification_report(y_test,y_pred))</pre>	***XgBoostingClassifier*** confusion matrix [[9370 611] [1085 8990]]

Gradient Boosting

```
classification report
             precision
                         recall f1-score support
                  0.88
                           0.84
                                     0.86
                                              9981
                  0.85
                           0.89
                                     0.87
                                              10075
                                     0.86
   accuracy
                                              20056
   macro avg
                  0.86
                           0.86
                                     0.86
                                              20056
weighted avg
                  0.86
                           0.86
                                     0.86
                                              20056
```

def gboost(x_train,x_test,y_train,y_test):
 g=GradientBoostingclassifier()
 g.fit(x_train,y_train)
 y_pred=g.predict(x_test)
 print("-""GradientBoostingclassifier""")
 print("confusion matrix")
 print(confusion matrix(y_test,y_pred))
 print("classification report")
 print(classification_report(y_test,y_pred))

GradientBoostingClassifier
confusion matrix
[[8359 1622]
[1138 8937]]