

Introduction

Sequential Circuit

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Introduction

How to realize Storage (Memory) Element

Basic Building Block for Storage/Memory

Latch

- Latch is level triggered single-bit memory element.
- Latch responds immediately to change in input(s)and (possibly in the presence of level enables control signal).
- Output can change multiple times during active enable (clock) signal.

Flip-flop

- Flip-flop is edge triggered single-bit memory element.
- Output can change only one time during clock cycle.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Building Block for Storage/Memory

Case I

Consider the Circuit

This circuit is level triggered or edge triggered?

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Consider the Circuit

5. How to operate the same circuit as in level triggered or edge triggered configuration?

What do you mean by edge triggered?

How circuit can operate at edge of control signal?

Fundamentally, how circuit see level/edge triggering?

Γiming Iss

Case II

Consider the Circuit Let initially Q = 0

Clk

Clk Q'

(

• As long as Clk = 1, the value of Q continues to change.

- The change are based on the delay present on the loop through the connection from Q to Q.
- This behavior is unacceptable not desirable.
- Desired Behavior: Q changes only once clock pulse

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Latch Timing Issu

Case II

Consider the Circuit

Let initially Q = 0

Clk Q

What to do...?

The solution to the latch timing issue is to **break** the closed path from Q to Q within the storage element.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Building Block for Storage/Memory

Issues in Case I and Case II

- 1. How edge triggering concept can be executed...?
- 2. How to break closed path?

Solutions to both Case I and Case II

- 1. Pulse Generator
- 2. Master-Slave Configuration

1. Pulse Generation

Basic Building Block for Storage/Memory

* The pulse width \leq propagation delay (t_n) of flip-flop

Propagation delay of each gate (AND, NAND) is t_n. Clk X Block diagram representation t_p NP Dr. Yash Agrawal @ DA-HCT Gandhinagar

Negative Pulse Forming Circuit

Basic Building Block for Storage/Memory

2. Master-Slave Configuration

Consider the Circuit

Basic Hardware Designs for Storage/Memory Element Master-Slave Configuration The Master-Slave circuit behaves as triggered by short pulse Clk In1 Out1 Out2 Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

Negative Pulse

Types of Flip-flop

Different Flip-flops that will be discussed are:

- S-R
- D
- J-K
- T

Dr. Yash Agrawal @ DA-IICT Gandhinagar

17

S-R Flip-flop

S-R Flip-flop is known as SET-RESET Flip-flop.

It can be used to either Set/Reset output or store previous value.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

How to implement S-R Flip-flop...?

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Dr. Yash Agrawal @ DA-IICT Gandhinagar

20

S-R Flip-flop

Truth Table

Input of Flip-Flop Output of flip-flop

Clk	S	R	Q_{n+1}	State		
1	0	0	Previous State	No Change		
1	0	1	0	Reset		
1	1	0	1	Set		
1	1	1	Undefined	Forbidden		
0	X	X	Previous State	No Change		

* Q'_{n+1} is complementary to Q_{n+1} .

Dr. Yash Agrawal @ DA-IICT Gandhinagar

_

Basic Hardware Designs for Storage/Memory Element

S-R Flip-flop

Characteristic Table

Inputs of FF Output of FF

S	R	$\mathbf{Q}_{\mathbf{n}}$	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	x
1	1	1	X

X

Characteristic equation

Determination of Q_{n+1} using K-map $Q_n = \begin{pmatrix} SR & 00 & 01 & 11 \\ 0 & m0 & m2 & m6 \end{pmatrix}$

$$\mathbf{Q}_{n+1} = \mathbf{S} + \mathbf{R}'\mathbf{Q}_n$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

S-R Flip-flop

(Characteristic Table				
	Input	s ofFF		Output	of FF
	S	R	Q.	Q_{n+1}	
	0	0	(Q	0	
	0	0	Œ.	1	
	0	1	(Q.	0	
	0	1	(1)	0	
	1	0	(0	1	
	1	0	(II)	1	
	1	1	0	x	
	1	1	1	x	

Excitation Table

D Flip-flop

- D flip-flop is also known as Delay and Transparent flip-flop.
- It is derived from S-R flip-flop where 'R' input is inverted of 'S' input.
- In D flip-flop '00' or '11' doesn't exist. Hence, there is no indefinite/forbidden condition.
- D flip-flop is often used a 1-bit memory element.

Gated D Latch

Level triggered

How to implement D Flip-flop...?

D Flip-flop

Using Pulse generator

Dr. Yash Agrawal @ DA-IICT Gandhinagar

25

D Flip-flop

Master

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

D Flip-flop

Characteristic Table

Output of FF Input of FF

•			
D	Q _n	Q_{n+1}	
0	0	0	
0	1	0	
1	0	1	
1	1	1	

Basic Hardware Designs for Storage/Memory Element

Q'

Using Master-Slave configuration

Determination of Q_{n+1} using K-map

Characteristic equation

Slave

 $\mathbf{Q}_{n+1} = \mathbf{D}$

Basic Hardware Designs for Storage/Memory Element

D Flip-flop

Truth Table

Input of FF Output of FF

Clk	D	Q_{n+1}	State		
↑	0	0	Reset		
↑	1	1	Set		
0	X	Previous State	No Change		

^{*} Q'_{n+1} is complementary to Q_{n+1} .

D Flip-flop

Characteristic Table

haracteristic Table				
Input	of FF	Output	ofFF	
D	Q.	\mathbf{Q}_{n+1}		
0	(0	0		
0	(XII	0		
1	(0	IX)		
1	(T	111		

Excitation Table

and Q to K.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

This condition is undesirable Leads to Race around condition

How to overcome it...?

J-K Flip-flop

- J-K flip-flop is proposed by Jack-Kilby.
- It is derived from S-R flip-flop where feedback is provided to overcome forbidden (11) condition. Here Q' is connected to J

Basic Hardware Designs for Storage/Memory Element

Truth Table

Input of flip-flop

Output of Flip-flop

		1	1	
Clk	J	K	Q_{n+1}	State
↑	0	0	Previous State	No Change
1	0	1	0	Reset
1	1	0	1	Set
1	1	1	Complement of previous output Q' _n	Toggle
0	х	Х	Previous State	No Change

^{*} Q'_{n+1} is complementary to Q_{n+1} .

Dr. Yash Agrawal @ DA-IICT Gandhinagar

J-K Flip-flop

Characteristic Table

Inputs of FF

Output of FF

J	K	Q _n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Characteristic equation

Determination of Q_{n+1} using K-map

$$\mathbf{Q}_{n+1} = \mathbf{JQ'}_{n} + \mathbf{K'Q}_{n}$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

J-K Flip-flop

Characteristic Table

Inputs of FF			Output	ofFF
J	K	Q.	Q_{n+1}	
0	0	(_a	0	
0	0	(III	1	
0	1	(_a	0	
0	1	(II	0	
1	0	(La	-1-	
1	0	(iii	1	
1	1	(_ Q	-1-	
1	1	(_1	_0_;	

Excitation Table

Output of FF Input of FF

	• • •					
$\mathbf{Q}_{\mathbf{n}}$	Q_{n+1}	J	K			
0	0	0	x			
0	1	1	x			
1	0	x	1			
1	1	x	0			

Dr. Yash Agrawal @ DA-IICT Gandhinagar

T Flip-flop

- T flip-flop is also known as Toggle Flip-flop.
- It is derived from J-K flip-flop where J and K input terminals are shorted with each other.
- The T flip-flop doesn't exhibits 01' or '10' condition of J-K flip-flop.
- Owing to its continuous Toggling output generation, it is many times used for clock generation or as frequency divider circuit.

Basic Hardware Designs for Storage/Memory Element

J-K Flip-flop

_ I	npu	t of flip	-flop	Output of	Flip-flop	
CI	k	J	K	Q _{n+1}	State	
\Box 1	Ξ.	0	0	Previous State	No Change	
1	1	0	1	0	Reset	Targeting
1	١	1	0	1	Set	these
1	Ĭ	1	1	Complement of previous output O'	Toggle	conditions
0)	x	х	Previous State	No Change	

T Flip-flop

T Flip-flop

Truth Table

Input	of FF	Output of Flip-flop		
Clk	T	Q_{n+1}	State	
↑	0	Previous State	No Change	
1	1	Complement of Previous output Q _n	Toggle	
0	X	Previous State	No Change	

* Q'_{n+1} is complementary to Q_{n+1} .

Dr. Yash Agrawal @ DA-IICT Gandhinagar

39

Basic Hardware Designs for Storage/Memory Element

T Flip-flop

Characteristic Table

Input of FF	Output of FF

T	Q _n	Q_{n+1}
0	0	0
0	1	
1	0	1
1	1	0

Characteristic equation

Determination of Q_{n+1} using K-map

$$\mathbf{Q}_{n+1} = \mathbf{Q}_n \mathbf{T}' + \mathbf{Q}'_n \mathbf{T}$$

Dr. Yash Agrawal @ DA-HCT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

T Flip-flop

Characteristic Table

input of FF		Output	OIF.
T	Q.	Q_{n+1}	
0	(0)	<u> </u>	
0	(III	\mathbb{H}	
1	اللق)	III)	
1	(III	<u> </u>	

Excitation Table

Output of FF Input of FF

Q _n	Q_{n+1}	T	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Asynchronous Flip-flops

• These have special inputs as preset (Pr) or clear (Cr).

Basic Hardware Designs for Storage/Memory Element

• This are sometimes also referred as Direct inputs.

Asynchronous Flip-flops

J-K Flip-flop

Dr. Yash Agrawal @ DA-IICT Gandhinagar

41

Basic Hardware Designs for Storage/Memory Element

Asynchronous Flip-flops

Truth Table

Direct Inputs		Output of Flip-flop		
Pr	Cr	Q_{n+1}	State	
0	0	Undefined	Invalid	
0	1	1	Preset	
1	0	0	Clear	
1	1	As per Flip-flop inputs	Normal operation	

* Q'_{n+1} is complementary to Q_{n+1} .

Dr. Yash Agrawal @ DA-IICT Gandhinagar

•

Flip-flop Timing Constraints

Propagation delay

Flip-flop Timing Constraints

Setup Time (t_{setup}) : Time before the clock edge for which data must remain stable (i.e. not changing).

Hold Time (t_{hold}): Time after the clock edge for which data must remain stable (i.e. not changing).

Aperture Time (t_a): Time around the clock edge for which data must remain stable (it is sum of setup and hold time).

Applications of Flip-flop

- Memory design and data storage
- Logic control devices
- Shift registers
- Frequency division
- Counters

Dr. Yash Agrawal @ DA-IICT Gandhinagar

45

1. Implementing N inputs adder

(using 2-input adder (s) only)

What can be other alternative...? (using sequential serial approach)

Dr. Yash Agrawal @ DA-IICT Gandhinagar

- 1. Determine output if the given circuit as
- D- Latch (get triggered at active high level of clk signal)

Inter-conversion between different flip-flops

2. Convert S-R to J-K Flip-flop

(Implement J-K Flip-flop using S-R flip-flop)

First Step: Write Required flip-flop at the LHS, then Q_n

Second Step: Determine Q_{n+1}

Third Step: From Excitation table, compute entire table

Fourth Step: Using K-map, determine inputs to the flip-flops.

Fifth Step: Realize the design.

Numerical

Inter-conversion between different flip-flops

2. Convert S-R to J-K Flip-flop

First Step: Write Required flip-flop at the LHS, then Q_n

J	K	Qn
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Dr. Yash Agrawal @ DA-IICT Gandhinagar

40

merical

Inter-conversion between different flip-flops

2. Convert S-R to J-K Flip-flop

Second Step: Determine Q_{n+1}

J	K	Qn	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Dr. Yash Agrawal @ DA-IICT Gandhinagar

•

Numerica

Inter-conversion between different flip-flops

2. Convert S-R to J-K Flip-flop

Third Step: From Excitation table, compute entire table

J	K	Q _n	Q_{n+1}	S	R
0	0	0	0	0	X
0	0	1	1	X	0
0	1	0	0	0	X
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	X	0
1	1	0	1	1	0
1	1	1	0	0	1

Excitation Table for SR FF

Output of FF Input of FF

		_	_
Q.	Q_{n+1}	S	R
0	0	0	x
0	1	1	0
1	0	0	1
1	1	x	0

Numerical

Inter-conversion between different flip-flops

2. Convert S-R to J-K Flip-flop

Fourth Step: Using K-map, determine inputs to the flip-flops.

J	K	Q _n	S	R
0	0	0	0	x
0	0	1	(x)	0
0	1	0	0	X
0	1	1	0	1
1	0	0		0
1	0	1	X	0
1	1	0	1	0
1	1	1	0	1

Boolean expression determination for 'S' using K-map

 $S = JQ'_n$

Numerica

Inter-conversion between different flip-flops

2. Convert S-R to J-K Flip-flop

Fourth Step: Using K-map, determine inputs to the flip-flops.

J	K	Qn	S	R
0	0	0	0	X
0	0	1	X	0
0	1	0	0	(x)
0	1	1	0	(1)
1	0	0	1	0
1	0	1	X	0
1	1	0	1	0
1	1	1	0	

Boolean expression determination for 'R' using K-map

$$R = KQ_n$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

53

Assignment-8

- 1. Convert S-R to D Flip-flop.
- 2. Implement J-K Flip-flop using D Flip-flop.

Numeric

Inter-conversion between different flip-flops

2. Convert S-R to J-K Flip-flop

Fifth Step: Realize the design.

$$S = JQ'_n$$

$$R = KQ_n$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

•