Item 1.a

Figura 1: Esquema do circuito.

Figura 2: Simulação da circuito da figura 1.

Item 1.b

Observando a figura 2 vemos que, no início, a tensão no capacitor é mínima enquanto a tensão no resistor é máxima e, no decorrer do tempo, a tensão no capacitor aumenta e a tensão no resistor diminui.

O formato da curva da tensão no capacitor no domínio do tempo é uma exponencial com uma assíntota em E, como esperado teoricamente.

$$v_c(t) = E(1 - e^{-\frac{t}{\tau}}) \tag{1}$$

Pela segunda lei de Kirchhoff:

$$E - v_r - v_c = 0 \stackrel{\text{(1)}}{\Rightarrow} v_r = E - E(1 - e^{-\frac{t}{\tau}}) = -Ee^{\frac{t}{\tau}}$$
 (2)

Pela equação 2, é notado que a curva da tensão no resistor também possui uma forma esperada.

Item 1.c

Figura 3: Gráfico da simulação no domínio [0, T/2]. Cursor C1 marcando 25.202 μ s em x e 3.9286 V em y.

Da definição de logarítmo e da equação (6) da apostila teórica:

$$\log_b a = x \iff b^x = a \tag{3}$$

$$v_c(t) = E(1 - e^{-\frac{t}{\tau}}) \implies e^{-\frac{t}{\tau}} = 1 - \frac{v_c}{E}$$
 (4)

(1)
$$\Rightarrow$$
 (2):
$$\tau = -\frac{t}{\ln\left(1 - \frac{v_c}{E}\right)}$$
 (5)

Aplicando os valores E=10 V, $t=25.202~\mu s$ e $v_c=3.9286$ V da simulação na equação 5, temos:

$$\tau = 50.51 \; \mu s$$

Item 1.d

$$R_T = R_g + R = (50 + 5 \cdot 10^3) \ \Omega = 5.05 \ \text{k}\Omega$$

$$\tau = R_T C = (5.05 \cdot 10^3 \ \Omega)(10 \cdot 10^{-9} \ F) = 50.50 \ \mu s$$

Período do Sinal (T)	τ (simulado)	τ (calculado)	Diferença relativa
1 ms	$50.51 \ \mu s$	$50.50 \; \mu { m s}$	0.002 %

Tabela 1: Comparação dos valores teórico e simulado.

Item 1.e

$$V_1 = 0.1 \cdot 10 \text{ V} = 1 \text{ V}; \qquad V_2 = 0.9 \cdot 10 \text{ V} = 9 \text{ V}$$

Figura 4: Grádifo da simulação. Cursor C1 marcando 5.3763 μ s em x e 1.0094 mV em y e cursor C2 marcando 116.60 μ s em x e 9.0063 V em y. $\Delta x=111.22~\mu$ s

$$t_r = \Delta x = 111.22 \ \mu s$$

Item 1.f

Figura 5: Gráfico da simulação para resistência de 7 k Ω no potenciômetro.

Figura 6: Gráfico da simulação para resistência de 9.5 k Ω no potenciômetro.

Item 2.a

Figura 7: Esquema do circuito

Figura 8: Simulação do circuito da figura 7

Item 2.b

As curvas de tensão no resistor (exponencial crescente) e na bobina (exponencial decrescente) vistas na simulação da figura 8 apresentam uma forma coerente com a que se espera teoricamente.

$$V_L(t) = Ee^{-\frac{t}{\tau}}$$
 $V_R(t) = E(1 - e^{-\frac{t}{\tau}})$

Item 2.c

A curva de V_R é invertida nos circuitos. No circuito RC, V_R tende a zero para estabilizar durante o sinal alto do gerador. Já no circuito RL, o oposto é observado: V_R tende ao sinal do gerador para se estabilizar.

Item 2.d

Figura 9: Simulação do circuito com o gráfico da corrente em laranja. O cursor C1 indica o valor de 32.723 μ s no eixo x e 1.2114 mA no eixo y e o cursor C2 indica o valor de 408.16 μ s no eixo x e 1.9048 mA no eixo y.

No instante $t = \tau$, a corrente do circuito i(t) está reduzida a uma fração $\frac{1}{e}$ do valor inicial. Assim,

$$i(t=\tau) = \left(1 - \frac{1}{e}\right) \cdot i_o$$

Substituindo o valor da corrente do cursor C2 da figura 9:

$$i(t=\tau) = 1.21 \text{ mA}$$

Portanto, pela medição do cursor C1, $\tau = 32.72 \ \mu s$.

Item 2.e

Foi oberservado que, na subida, quanto maior o valor da resistência, mais rápida a curva V_R se aproxima da tensão V_g e, igualmente mais rápida, a curva V_b se aproxima de zero. O parâmetro afetado foi a frequência de corte, pois o valor de τ aumenta.

Item 2.f

Figura 10: Simulação da tensão e corrente do circuito para resistência do potenciômetro igual a 4 k Ω .

Figura 11: Simulação da tensão e corrente do circuito para resistência do potenciômetro igual a 10 k Ω .

Neste experimento foi notado que quanto maior a frequência da onda quadrada que alimenta o circuto, mais a tensão de saída (capacitor) demora para atingir o valor de

patamar antes da mudança de estado do sinal. Sendo que para frequências muito altas a curva nem chega a atingir o valor de patamar, pois, nestes casos, $\tau \ll T/2$.