

A template for Seismica

A. Author1 $^{\circ}$ *1 , B. author2 $^{\circ}$ 1 , C. Author3 $^{\circ}$

¹affil Author 1 and 2, ²affil author 3

Author contributions: Funding acquisition: Alice, Bob. Writing: Charlie, Doris. Writing - review & editing: Emilio, Francis.

Abstract Abstract text goes here.

Résumé Abstract text goes here.

Edited by: E. Editorname Typeset by: C. Copyed

Received:
March 5, 2021
Accepted:
March 5, 2021
Published:
April 15, 2022

1 Introduction

Cite with (Metropolis and Ulam, 1949) or Metropolis and Ulam (1949)

To refer to a figure, use Fig. 2 or Figs 1, 2 (Tab. and Tabs).

Figure 1 column-wide figure.

Description	Price (\$)
per gram	13.65
each	0.01
stuffed	92.50
stuffed	33.33
frozen	8.99
	per gram each stuffed stuffed

Table 1 Use the command seistable for tables, instead of tabular

Data availability

Authors should direct readers to an open access repository such as figshare or Github, where data are made available.

References

Metropolis, N. and Ulam, S. The Monte Carlo Method. *Journal of the American Statistical Association*, 44(247):335–341, Sept. 1949. doi: 10.1080/01621459.1949.10483310.

2 Section 1

2.1 Subsection

$$\mathbf{G} = \frac{1}{2} (2\cos z) + (1/2)(2\cos z + j\sin z - j\sin z) + (1/2)(\cos z + j\sin z + \cos z - j\sin z) - (1/2)(e^{jz} + e^{-jz})$$
(1)

Acknowledgements

Thank all relevant parties and acknowledge funding sources, if any.

^{*.} Corresponding author : bla@som.ac.edu

Figure 2 Full-width figure.