Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский государственный авиационный технический университет»

Кафедра	Информатики												
	100	1	2	3	4	5	6	7	8	9	10	11	12
	90												
	80												
	70												
	60												
	50												
	40												
	30												
	20												
	10												
	0												
	OTU	Œ	Γ										
по лабо	ораторн	ой ј	раб	оте	No2	2							
«Расчеты н	на прочн	юст	гь и	же	стк	ост	Ь						
	при из	гиб	e»										

по дисциплине Основы конструкции объектов ОТС

1306.558208.000 ПЗ

(обозначение документа)

Группа СТС-407	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Гараев Д.Н.			
Консультант	Минасов Ш. М.			
Принял	Минасов Ш. М.			

Содержание

OI	'4ET'	.7
1	Цель и задачи лабораторной работы	3
	Выполнение индивидуального задания	
Зак	лючение	. 12
Сп	исок литературы	. 13

	I							
					1306.558208	.000	ПЗ	
Изм	Лист	№ докум	Подп	Дата	10001000200	.000		
Раз	зраб	Гараев Д.Н.			Taganaman nagama Naga	Лит	Лист	Листов
Прс	овер.	Минасов Ш.М			Лабораторная работа №2		2	13
					«Расчеты на прочность и жест- кость при изгибе»			
Н. к	контр				кость при изгиое»	УГА	ТУ, СТ	C-407
Ут	в							

1 Цель и задачи лабораторной работы

Целью лабораторной работы является закрепление знаний и получение практических навыков расчетов напряжений и деформаций при поперечном изгибе стержней.

Для стержня, расчетная схема которого соответствует варианту 8 (Рисунок 1.1) и исходных данных (Таблица 1), требуется назначить размеры поперечного сечения с отношением сторон b:h=1:4 из условий прочности и жесткости.

Рисунок 1.1 – Расчетная схема по варианту 8

Таблица 1 – Исходные данные по варианту 8

L, м	F, ĸH	М, кН*м	q, кH/м	Тип про-	R _и , МПа	R _{cp} , МПа	Δ L
				филя			
5.4	12	9	8	[]	180	120	1/300

Изм.	Лист	№ докум	Подп	Дата

2 Выполнение индивидуального задания

Обозначим на расчетной схеме реакции опор А и В:

Рисунок 2.1 – Действующие силы и реакции

Для назначения размеров поперечного сечения балки из условий прочности необходимо найти сечения, в которых внутренние усилия достигают экстремума, т.е необходимо построить эпюры внутренних усилий. Расчеты начинаются с определения величины и направления опорных реакций, для чего составляются следующие уравнения равновесия рассматриваемой балки:

$$R_{B} = \frac{q \frac{9L^{2}}{32} - M + F \frac{3L}{4}}{L} = \frac{8 \cdot 10^{3} \cdot 9 \cdot 5, 4^{2}}{32} - 9 \cdot 10^{3} + \frac{12 \cdot 10^{3} \cdot 3 \cdot 5, 4}{4}$$

$$= 19,483\kappa H.$$

$$\sum M_B = 0 = > -M + R_A L - q \frac{3L}{4} \cdot \frac{5L}{8} - F \frac{L}{4} = 0;$$

$$R_A = \frac{M + q \frac{15L^2}{32} + F \frac{L}{4}}{L} = \frac{9000 + \frac{8000 \cdot 15 \cdot 5, 4^2}{32} + \frac{12000 \cdot 5, 4}{4}}{5, 4} = 24,917\kappa H.$$

$$\sum Y = 0 = > R_A + R_B - q \frac{3L}{4} - F = 24,917 + 19,483 - \frac{8 \cdot 3 \cdot 5, 4}{4} - 12 = 0.$$

Для построения эпюр внутренних усилий балка разбивается на характерные участи, границами которых являются сечения, где приложены сосредоточенные усилия и начинается или кончается распределенная нагрузка. Построение эпюр внутренних усилий показано ниже.

Изм.	Лист	№ докум	Подп	Дата

$$\begin{array}{c} \text{Сечение I} \ (0 \leq \mathtt{x_1} \leq 0,25\mathtt{L}) \\ Q_y = R_B; \\ x_1 = 0 \Rightarrow Q_y = R_B = 19,483\kappa H, \\ x_1 = \frac{L}{4} \Rightarrow Q_y = R_B = 19,483\kappa H. \\ M_z = R_B x_1; \\ x_1 = 0 \Rightarrow M_z = 0\kappa H \cdot \mathtt{M}, \\ x_1 = \frac{L}{4} \Rightarrow M_z = 19,483 \cdot \frac{5,4}{4} = 26,302\kappa H \cdot \mathtt{M}. \\ \hline \text{Сечение II} \ (0 \leq \mathtt{x_2} \leq 0,75\mathtt{L}) \\ Q_y = R_B - F - qx^2; \\ x_2 = 0 \Rightarrow Q_y = 19,483 - 12 = 7,483\kappa H, \\ x_2 = \frac{3L}{4} \Rightarrow Q_y = -24,917\kappa H. \\ M_z = R_B \left(\frac{L}{4} + x_2\right) - Fx_2 - q\frac{x_2^2}{2}; \\ x_2 = 0 \Rightarrow M_z = 19,483 \cdot \frac{5,4}{4} = 26,302\kappa H, \\ x_2 = \frac{L}{4} \Rightarrow M_z = 19,483 \cdot (\frac{5,4}{4} + \frac{5,4}{4}) - 12 \cdot \frac{5,4}{4} - 8 \cdot \frac{5,4^2}{16 \cdot 2} = 29,114\kappa H, \\ x_2 = \frac{3L}{4} \Rightarrow M_z = 19,483 \cdot (\frac{5,4}{4} + \frac{3 \cdot 5,4}{4}) - 12 \cdot \frac{3 \cdot 5,4}{4} - 8 \cdot \frac{9 \cdot 5,4^2}{16 \cdot 2} = -9\kappa H. \\ x_2 = \frac{2L}{4} \Rightarrow M_z = 19,483 \cdot (\frac{5,4}{4} + \frac{2 \cdot 5,4}{4}) - 12 \cdot \frac{2 \cdot 5,4}{4} - 8 \cdot \frac{4 \cdot 5,4^2}{16 \cdot 2} = 17.34615\kappa H \\ \hline \text{Сечение III} \ (0 \leq \mathtt{x_3} \leq 0,25\mathtt{L}) \\ Q_y = 0; \\ x_3 = 0 \Rightarrow Q_y = 0\kappa H, \\ x_3 = \frac{L}{4} \Rightarrow Q_y = 0\kappa H. \\ M_z = -M; \\ x_3 = 0 \Rightarrow M_z = -9\kappa H, \\ \end{array}$$

Максимальный изгибающий момент $M_{max} = 26,302 \text{ кH} \cdot \text{м}$, следовательно, расчет на прочность по нормальным напряжениям нужно произвести на это усилие: $M_{max}/W_z \leq R_{\text{u}}$; тогда требуемый момент сопротивления сечения

 $x_3 = \frac{L}{\Lambda} = > M_Z = -9\kappa H.$

$$W_{\rm z}^{\rm Tp} \ge \frac{M_{max}}{R_{\rm M}} \ge \frac{26,302 \cdot 10^{-3}}{180} = 146,12 \text{ cm}^3$$

 $W_z^{\rm тp}$ ≥ 146,12 см³, по сортаменту находим, что это условие выполняется для швеллера №20, у которого $W_z=152$ см³ .

Изм.	Лист	№ докум	Подп	Дата

Для назначенного сечения необходимо проверить выполнение условия прочности по касательным напряжениям:

$$\tau_{max} = \frac{Q_{y} \cdot S_{z}^{\text{orc}}}{I_{z} \cdot b_{i}}$$

где $Q_y=24,917$ кН — максимальная поперечная сила; по сортаменту статический момент площади отсеченной части сечения $S_z^{\text{ отс}}=87,8$ см 3 , толщина стенки $b_i=5,2$ мм, I_x — момент инерции поперечного сечения балки (1520 см 4).

$$\tau_{max} = \frac{24,917 \cdot 10^3 \cdot 80,8 \cdot 10^{-6}}{1520 \cdot 10^{-8} \cdot 5,2 \cdot 10^{-3}} = 0,2547 \cdot 10^8$$

Из условий прочности по нормальным и касательным напряжениям принято: сечение балки – швеллер Γ 0CT-8240-89 №20 W = 152 см³ и A = 20,7 см².

Для обеспечения условия жесткости необходимо построить эпюры прогибов и по ней отыскать экстремальные значения прогиба балки.

Для рассматриваемой расчетной схемы универсальное уравнение, по которому определяется вертикальное перемещение оси балки:

Для нахождения сечения, в котором вертикальное перемещение достигает экстремального значения, необходимо знать очертание изогнутой оси балки, которое называют упругой линией. Построить упругую линию можно, используя универсальное уравнение метода начальных параметров для определения прогибов:

$$\theta_{x} = \theta_{0} + \frac{1}{EI} \left[\sum_{i} m_{i}(x - a_{i}) + \sum_{i} F_{i} \frac{(x - b_{i})^{2}}{2!} + \sum_{i} q_{i} \frac{(x - c_{i})^{3}}{3!} \right],$$

$$V_{x} = V_{0} + \theta_{0}x + \frac{1}{EI} \left[\sum_{i} m_{i} \frac{(x - a_{i})^{2}}{2!} + \sum_{i} F_{i} \frac{(x - b_{i})^{3}}{3!} + \sum_{i} q_{i} \frac{(x - c_{i})^{4}}{4!} \right],$$

где

 $\theta_{x},\,V_{x}$ – соответственно угловое и линейное перемещения рассматриваемого сечения балки;

 θ_0 , V_0 – угол наклона и прогиб сечения балки в выбранном начале координат;

m, F, q — все сосредоточенные моменты, силы (включая опорные реакции), и распределенные нагрузки, приложенные к рассматриваемой балке;

х – расстояние от выбранного НК до рассматриваемого сечения балки;

а, b – расстояния от НК до соответствующих моментов и сосредоточенных сил;

с – расстояние от НК до начала действия распределенной нагрузки;

Е – модуль продольной упругости материала балки;

I – момент инерции сечения относительно оси X.

Знаки отдельных слагаемых в универсальных уравнениях МНП принимаются по правилу знаков для изгибающего момента, т.е. слагаемые с нагрузками, которые на рассматриваемом участке стремятся сжать верхние слои балки, записываются положительными.

Если распределенная нагрузка q действует в пределах части длины балки (обрывается, не доходя до конца), то ее действие продлевается в сторону,

Изм.	Лист	№ докум	Подп	Дата

противоположную от начала координат, до конца балки и добавляется компенсирующая нагрузка той же интенсивности но обратного направления.

Для рассматриваемой расчетной схемы универсальное уравнение, по которому определяется вертикальное перемещение оси балки(НК в данной расчетной схеме выбираем в точке A, так как она расположена на опоре, и, следовательно, прогиб в этой точке будет отсутствовать):

$$EIV_{x} = EIV_{0} + EI\theta_{0}x + \frac{M_{0}x^{2}}{2} + \frac{R_{A}x^{3}}{6} - \frac{F\left(x - \frac{L}{4}\right)^{3}}{6} - \frac{q\left(x - \frac{L}{4}\right)^{4}}{24}$$

$$EI\theta_{x} = EI\theta_{0} + M_{0}x + \frac{R_{A}x^{2}}{2} + \frac{F\left(x - \frac{L}{4}\right)^{2}}{2} + \frac{q\left(x - \frac{L}{4}\right)^{3}}{6} - \frac{q\left(x - \frac{L}{4}\right)^{3}}{6}$$

В этом уравнении: $V_0=0$; $\theta_0\neq 0$; $M_0=0$; $Q_0=R_A$. Для определения неизвестного угла поворота сечения в начале отсчета используем следующее условие: при x=L $V_L=0$, тогда:

$$EIV_L = EI\theta_0 * L + \frac{R_A L^3}{6} - \frac{F\left(\frac{3L}{4}\right)^3}{6} - \frac{q\left(\frac{3L}{4}\right)^4}{24} = 0,$$

Отсюда:

$$EI\theta_{0} = \frac{1}{L} \left[-\frac{R_{A}L^{3}}{6} + \frac{F\left(\frac{3L}{4}\right)^{3}}{6} + \frac{q\left(\frac{3L}{4}\right)^{4}}{24} \right]$$

Результаты выполненных расчетов представлены ниже:

$$EI\theta_0 = -53,476 \text{ кHm}^2$$

Теперь, зная все начальные параметры системы, можно определить величину и направления угла поворота и вертикального перемещения оси балки для любого сечения (в интервале $0 \le x \le 5L/4$).

Выражения для определения прогибов и углов поворота следующие:

EIV =
$$\frac{\text{EI}\theta_0 L}{4} + R_A \frac{L^3}{64*6}$$
;
EI\text{\$I\$} = \text{\$EI\$}\theta_0 + R_A\$;
2. \text{\$X\$} = 3\text{\$L\$}/4

$$EIV = \frac{EI\theta_0 3L}{4} + R_A \frac{27L^3}{64*6} - F\left(\frac{3L}{4} - \frac{L}{4}\right)^3 - \frac{q\left(\frac{3L}{4} - \frac{L}{4}\right)^4}{24} =$$

$$= \frac{EI\theta_0 3L}{4} + R_A \frac{9L^3}{128} - F\left(\frac{L}{2}\right)^3 - \frac{qL^4}{16*24};$$

$$EI\theta = EI\theta_0 + \frac{R_A 9L^2}{16 * 2} - \frac{FL^2}{8} - \frac{qL^3}{8 * 6}$$

3)
$$x = L$$

$$EIV = 0;$$

$$EI\theta = EI\theta_0 + \frac{R_A L^2}{2} - \frac{9FL^2}{2*16} - \frac{27qL^3}{64*6}$$

Изм.	Лист	№ докум	Подп	Дата

$$4)x = 5L/4$$

$$EIV = \frac{EI\theta_0 5L}{4} + R_A \frac{125L^3}{64*6} - \frac{F(L)^3}{6} - \frac{q(L)^4}{24} + \frac{q(L)^4}{256*24} + \frac{R_B L^3}{64*6};$$

$$EI\theta_x = EI\theta_0 + \frac{R_A 25L^2}{16*2} - \frac{F(L)^2}{2} - \frac{q(L)^3}{6} + \frac{q(L)^3}{64*6} + \frac{R_B L^2}{16*2}$$

$$5) x = L/2$$

$$EIV = \frac{EI\theta_0 L}{2} + R_A \frac{L^3}{8*6} - F\left(\frac{2L}{4} - \frac{L}{4}\right)^3 - \frac{q\left(\frac{2L}{4} - \frac{L}{4}\right)^4}{24} = \frac{EI\theta_0 L}{2} + R_A \frac{L^3}{48} - F\left(\frac{L}{2}\right)^3 - \frac{qL^4}{256*24};$$

$$EI\theta = EI\theta_0 + \frac{R_A L^2}{4 * 2} - \frac{FL^2}{32} - \frac{qL^3}{64 * 6}$$

Таблица 2 – Результаты расчетов

X	0	L/4	L/2	3L/4	L	5L/4
EIV	0	-64.203	-317.7	-254.77	0	43.9
EΙθ	-53.476	-33.993	34.884	36.324	43.597	31.44

Таким образом эпюры углов поворота и прогибов выглядят следующим образом (Рисунок 2.3):

Изм	Лист	№ докум	Подп	Дата

1	306.	.558208	000	П3
	\mathbf{O}	.000200		$\cdot \cdot \cdot \cdot \sim$

Максимальный прогиб определяется для сечения, где угол поворота равен 0, в нашем случае это сечение $x \le 4L/5$. Чтобы найти значение x, при котором $\theta = 0$, решим уравнение:

$$\theta_0 + \frac{1}{EI} \left[R_A \frac{(x)^2}{2!} - q \frac{(x)^3}{3!} \right] = 0$$

$$\frac{-35,7765}{EI} + \frac{1}{EI} \left[24,917 \frac{(x)^2}{2!} - 8 \frac{(x)^3}{3!} \right] = 0$$

$$-35,7765 + 12,459x^2 - 1,333x^3 = 0$$

Решив, это уравнение мы получаем x = -1,568; 1,898 и 9,016. Подходящим для нас значением является x = 1,898. Подставим это значение в уравнение прогибов второго участка балки. Получим следующее:

$$V = \theta_0 x + \frac{1}{EI} \left[R_A \frac{x^3}{3!} - q \frac{x^4}{4!} \right]$$

$$V = \frac{-35,698}{EI} \cdot 1,898 + \frac{1}{EI} \left[24,917 \frac{1,898^3}{6} - 8 \frac{1,898^4}{24} \right] = \frac{-18,815 \cdot 10^3}{EI} M = V_{max}$$

Подставляя полученное значение $|V_{\text{max}}|$ в условие жесткости, получим следующее:

$$\frac{18815}{EI} \le \frac{L}{300}$$

$$I^{mp} \ge \frac{18815 \cdot 300}{2 \cdot 10^5 \cdot 10^6 \cdot 5,4} = 12,2206 \cdot 10^{-6} M^4 = 1220,6cM^4.$$

По сортаменту ближайший момент инерции, превышающий 1220,6 см⁴, для швеллера №20: I = 15220 см⁴.

Так как по условию жесткости требуются большие размеры сечения, чем по условию прочности, окончательно принято: поперечное сечение балки — швеллер Γ 0CT-8240-89 №20 I = 15220 см⁴, W = 152 см³ и A = 20,7 см². Размеры прямо-угольного поперечного сечения определяются из условия:

$$I_z^{\text{TP}} = \frac{b(4b)^3}{12} \ge 1220,6$$

$$\frac{16b^4}{3} \ge 1220,6$$

$$b = 3,889 \text{ cm}$$

$$h = 15,56 \text{ cm}$$

прямоугольное сечение b x h = 3,889 x 15,56 см; сечение из швеллера профиля N = 20.

Изм	Лист	№ докум	Подп	Дата

		Заключе	ние							
н b	азна [,] :h =1	чены разме	ры пря	моуг	ольного 1	которого с поперечного кости. (b=3,	сечения	с отношен	нием стор	
						1200.1		2 000	ПО	Лист
Изм.	Лист	№ докум	Подп	Дата		1300.3	558208	טטט.כ	113	12

Список литературы

- 1. Александров А.В., Потапов В.Д., Державин Б.П. Сопротивление материалов: Учеб. для вузов. М.: Высш. шк., 2001.-560 с.
- 2. Дарков А.В., Шпиро Г.С. Сопротивление материалов: Учеб. для вузов. М.: Высш. шк. 1989, 624 с.
- 3. Сопротивление материалов с основами теории упругости и пластичности: Учеб., для вузов / под ред. Г.С. Варданяна. –М.: Изд-во АСВ, 1995. 568 с.
- 4. Сопротивление материалов: Учеб. для вузов / под ред. Г.С Писаренко. Киев: Высш.шк., 1986.-736 с.

Изм	Лист	№ докум	Подп	Дата