Introduction to Computer Networking

The Internet and IP

A day in the life of an application

- Connectivity
 - · two computers can exchange data
- Network applications
 - Read and write data over network
- Bidirectional reliable byte stream connection
 - · Dominant model
 - one sides reads what the other writes
 - · Operates in both directions
 - Reliable (unless connection breaks)
 - Either side can close, refuse connection
- World Wide Web
 - HTTP HyperText Transfer Protocol
 - command (get request the page)
 - Respond (200 OK request accepted and rest of the response are data, 400 bad request)
 - · HTTP document centric way to communicate
- BitTorrent
 - Breaks files to pieces
 - · Swarms collections of collaborating clients
 - torrent file
 - using WWW and download it
 - information about file and tracker

- Tracker
 - node that keeps track of what clients are members of swarm
- Skype
 - Proprietary system no official documentation
 - Case 1
 - · Case 2
 - Complication: NAT (Network Address Translation)
 - behind NAT you can open connection out to the Internet, other nodes can't easily open connection to you
 - personal computers are behind NAT (security), servers not
 - Rendezvous server
 - Reversed connection
 - Case 3
 - Both behind NAT communicate through relay

The 4-layer Internet Model

- Layering applications can reuse the same building blocks
- Link Layer
 - Carry the data over one link at a time
 - · Ethernet, WiFi
- Network Layer
 - Deliver packets end-to-end across the Internet
 - Network layer packets = datagrams
 - no concerns about how link layer sends the datagram
 - must use Internet Protocol (IP)
 - best effort attempt to deliver packets but no guarantees

- IP packets can get lost, deliver out of order, corrupted
- Transport Layer
 - TCP
 - Transmission Control Protocol
 - TCP/IP application uses both of them together
 - Right order, dropped datagrams retransmitted, correct
 - Email, web client
 - UDP
 - User Datagram Protocol
 - Bundles application data and hands it to the Network Layer
 - no delivery guarantees
 - Video
- Application Layer
- Each layer communicate with its peer layer
- IP is the "thin waist"
 - We have to use IP but otherwise we have many choices
- The 7 layer OSI Model
 - 1980 International Standart Organization =ISO
 - = & layer Open System Interconnection
 - Replaced by 4 layer model
 - numbering system (application layer = layer 7)

The IP Service Model

- Router forwarding table
- IP
 - no guarantees and detection

- Duplicated, lost, lateness, out of order
- Simple, minimum service
- doesn't maintain state = connectionless
- Why simple
 - Network simple -> fast, less maintenance
 - End-to-end principle
 - Where posible, implement features in the end host
 - Reliable communications and controlling congestion end points (not network)
 - Different from telephone system (radical)
 - · Reliability not ideal for some applications
 - · works over any link layer IP makes very few assumptions about link layer below
- Details
 - Tries to prevent packets looping forever TTL
 - · Fragment packets if they are too long
 - Header checksum to reduce chances of delivering datagram to wrong destination
 - Allows for new version of IP (IPv4, IPv6)
 - Allows for new options to be header
 - new features X no simple
- fields in the header
 - Protocol ID
 - what is inside of data field
 - Demultiplex arriving packets, sending them to the correct code to proccess
 - Internet Assigned Numbers Authority (IANA)
 - defines over 140 values of Protocol ID representing transport protocols
 - Version
 - version of IP

- · Total packet length
 - Up to 64 kB
 - Header + data
- · Packet ID, Flags, Fragment Offset
 - help routers to fragment IP packets
- Type of Service
 - for router, how important packet is
- Header Length
 - how big header is
 - Some headers have extra optional fields
- Checksum
 - Calculated over the whole header
 - when corrupted we are not likely to deliver it to the wrong destination

A Day in the Life of a Packet

- Application: steam of data -> transport: segment of data -> network: packets of data
- 3 way handshake
 - SYN Client sends synchronize message to server
 - SYN-ACK Server responds with synchronize message that also acknowledges the clients synchronize
 - ACK Client responds by acknowledging the server's synchronize
- For network layer packets sent to different application on the same computer looks the same
 - we need IP address and TCP port address
 - IP packets to pc's IP address, packets have TCP segments with destination port 80
- forwarding table

- Best = most specific match
- Default route = least specific route
 - Useful in edge network
 - Everything that is not in network send to Internet = default route
- Wireshark
 - Tell Wireshark to listen on specific port and IP
 - Open web browser and request web page
 - · Wireshark displays info
 - TCP port 80 the HyperText Transport Protocol port on the server
 - · We can see that in Info column
 - it is SYN packet
 - Then 3 way handshake -> GET request -> 200 OK
 - this is how it looks like in network layer
- Traceroute
 - shows you the hops that packets to a destination take
 - Wireless router
 - he is at home and he has cable modem and his ISP is Astound
 - Then routers in San Fransisco -> San Jose -> New York -> Boston
 - 3 stars there is a router that won't tell trace route about itself
 - stars are trace route's way to showed it waited for a reply but the replied timed out

http://www.t1shopper.com/tools/traceroute/

The Principle of Packet Switching

Packet

- a self contained unit of data that carries information necessary for it to reach its destination
- packet switching
 - idea
 - Break data up into discrete, self contained chunks of data
 - Each chunk (called packet) carries sufficient information that a network can deliver it
 - Indenpendently for each arriving packet, pick its outgoing links. If link is free, sent it.
 Else hold the packet for later
- Self (source) routing
 - Each packet contains explicit route, specifying the IDs of each packet switch along the way
 - · Internet supports this
 - but it is generally turned off because of security issues
- Consequences of packets switching
 - Simple packets forwarding
 - Switch can make individual decisions
 - Switch doesn't need keep state
 - · Efficient sharing of links
 - Data structure is bursty
 - Packet switching allows flows to use all available link capacity
 - Packet switching allows flows to share link capacity
 - statistical multiplexing
 - user receives a statistical share of the resource based on how much others are using it
- Flow
 - A collection of datagrams belonging to the same end-to-end communication

- Switch doesn't need state for each flow (each packet is self-contained)

Layering Principle

- used outside networking too
- Hierarchical and communicate sequentially
 - Each layer has an interface only to the layer directly above or below
- reason for layering
 - Modularity break down the system into smaller, more manageable modules
 - Well defined service each layer provides service to the layer above
 - Reuse
 - separation of concerns each layer focuses on its own job
 - Continuous improvement

Encapsulation Principle

- principle by which you organize information in packets so that you can maintain layers
- Each protocol layer has some header. Followed by some footers
- we can see encapsulation in Wireshark
- Encapsulation allows you to layer recursively
- VPN
 - Virtual Private Network
 - Secure connection to the network office network
 - use Transport Layer Security it protects message
 - Access private resources that are accessible only with IP address in your office

Memory Layout and Endianness

- generate message

- Generate -> create copy of it in the memory -> pass to networking card
- Receive message
 - Receive -> networking card puts that massage in memory
- Memory
 - · in bytes
 - · program has an address space
 - most computers are 64 bits
 - = memory addresses are 64 bits long
 - so computer has up to 2 to the 64 bytes
- Representation of a multibyte value
 - Endianness how you lay out a multibyte value in memory
 - 2 options
 - LSB makes more sense from a computational and architectural standpoint
 - MSB more sense for human (this is how we write numbers)
- Computers need to agree on representation of numbers
 - big (iPhone) or little (Intel) endian
 - Different professors use different endianness
- Protocol choose endian
 - all protocols that are Internet specifications use a big endian
- Libraries provide you functions so you can write network code that is independent of your processor architecture
- TLS
 - Transport Layer Security
 - Web browsers use that for secure connection (https)
 - hides data but we can see headers
 - TLS payload is inside a TCP segment to port 443 (standard TLS port)

- TCP segment inside IPv4 header

IPv4 Addresses

- IP
 - Routers decide where to send packet based on destination
 - Original goal take many networks and stitch them together
 - 32 bits, 4 octets, four 8 bits values
- Netmask
 - · which IP addresses are local (on the same link) and with needs to be send to router
 - Netmask is written as a string of consecutive 1s starting with the most significant bit
 - 255.255.255.0 24 bits match
 - 255.255.252.0 22 bits match
 - 255.128.0.0 9 bits match
 - any addresses that matches netmask are in the same network
 - Smaller netmask <-> larger network
- Config
 - · terminal command
 - · WiFi named is en1
 - IP 192.168.0.106
 - Netmask 0xffffff00 (= 255.255.255.0)
- Address Structure
 - Historical
 - 3 classes
 - 2 parts
 - · network administrative domain
 - host device with network

- Class A, B, C
- CIDR
 - · Classless InterDomain Routing
 - · Allows prefixes to be any number of bits
 - "slash 20" = netmask of length 20
 - Describe 2 to the 12 addresses
- IANA
 - Internet Assigned Numbers Authority
 - Manages IP addresses
 - gives out slash-8s to RIR (Regional Internet Registries, 5)
 - ran out of slash-8s -> now management is up to RIRs

Longest Prefix Match Algorithm

- LPM
- Client wants to open a TCP connection to a server on port 80 (web server)
- Fording table
 - · set of partial IP addresses
 - packet arrives -> router checks for the best match (= most specific)
- Forwarding table
 - Entry 2 parts
 - CIDR block of addresses
 - next hop

Address Resolution Protocol

- ARP

- Mechanism by which the network layer can discover the link address associated with a network address it's directly connected to
- is needed because each protocol layer has its own names and addresses
 - IP address network layer "this host"
 - link address link layer "this Ethernet card"
 - Describes particular network card device that sends and receive link layer frames
 - Ethernet 48 bits address, card is preconfigured with address, unique, 6 octets, hexadecimal
- gateway or router has several
 - IP addresses because of netmask
 - · link addresses for each card
- Register computer with a network register link layer address
- A wants to send packet to B
 - A checks if B is in the same network (netmask)
 - B is in different network -> send packet to gateway
 - A sends packet with network layer destination 171.43.22.5 but link layer destination is the link layer address of the gateway (0:18:e7:ce:1a)
 - Packet reaches the gateway
 - Gateway looks up to next hop and puts IP packet inside a link frame to B
- IP packet is encapsulated inside a link layer frame
- ARP
 - Request-reply protocol
 - Mapping between layer 2 and layer 3
 - "Who has network address XXX?" -> "I have network address XXX and link layer address YYY."
 - Broadcast every note will hear the packet

- ARP is structured so that it contains redundant data
 - Request contains the network and link layer address of requester
 - other notes will hear it and refresh a mapping in their cache
 - you can generate mapping for another packet is in response to a packet that node sends
 - if node is disconnected -> it will leave the network when caches mapping expire
 - Mapping expiration depends
 - Mac OSX 20 min, Cisco devices 4 hours
 - Mappings do not change often
 - Request sent to link layer broadcast address
 - Reply sent just to requesting address (unicast)
 - the original specification
 - · today it is common to broadcast it
- ARP packet
 - 10 fields
 - Hardware field what link layer this request or response is for (Ethernet)
 - Protocol field what network protocol this request or response is for (IP)
 - Length how many bytes long link layer and network layer addresses are
 - Opcode packet is request or respond (request 1, response 2)
 - four address fields are for requesting and specifying the mappings
 - Fields are stored in network order, or bigger endian
- Destination link layer address is the broadcast address ff:ff:ff:ff:ff
 - All ones
- Gratuitous ARP packets requesting nonexistent mappings
 - Advertise themselves on a network