

Wrist-worn MPERS Device Model LC120 FCC SAR Test Report

FCC ID: ZQR-LC120

80-H1151-6 Rev. B

December 13, 2011

Submit technical questions to: regulatory.support@qualcomm.com

Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm.

QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners. CDMA2000 is a registered certification mark of the Telecommunications Industry Association, used under license, ARM is a registered trademark of ARM Limited. QDSP is a registered trademark of QUALCOMM Incorporated in the United States and other countries.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

QUALCOMM Incorporated 5775 Morehouse Drive San Diego, CA 92121-1714 U.S.A.

Copyright © 2011 QUALCOMM Incorporated. All rights reserved.

Revision history

Revision	Date	Description			
Α	November 7, 2011	Initial release			
В	November 23, 2011	Minor editorial corrections and clarifications Added test dates to Overview			

December 13, 2011

Wrist-worn MPERS Device Model LC120 FCC SAR Test Report 80-H1151-6 Rev. B

Overview

Test Report Reference:	80-H1151-6 Rev. B		
Responsible Engineer:	John Forrester		
Signature:	Jelin Jonester		
Test Engineer:	Mark Ortlieb		
Signature:	Marchin		
Date(s) of Testing:	30 August 2011 15 September 2011		
Date of Report issue:	13 December 2011		
Test Laboratory:	QUALCOMM Incorporated 5775 Morehouse Dr. San Diego CA 92121		
	(General Telephone) 1 858 587 1121		
Model Tested:	MPERS (Mobile Personal Emergency Response System) Watch, Model LC120		
Test Specification Standard(s):	FCC CFR47 Part 2.1093: Radiofrequency radiation exposure evaluation: portable devices		
	FCC/OET Bulletin 65, including Supplement C, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields		
	FCC "SAR Measurement Procedures for 3G Devices" (October 2007)		
	FCC "Mobile and Portable Device – RF Exposure Procedures and Equipment Authorization Policies" (KDB 447498)		
	ANSI/IEEE P1528/D1.2 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques		
Results:	The DUT complies with the above-mentioned test specifications.		

Contents

1. Test summary	8
1.1 Introduction	8
1.2 Equipment Usage	8
1.3 Compliance Standards	8
1.4 Maximum Measured SAR results (Worst Case Results)	
1.5 SAR Limits	
1.6 Simultaneous Transmission	
2. EUT Description	10
2.1 General	10
3. Conducted Transmit Power	11
4. SAR Test Program	12
4.1 Test Positions	12
4.2 Test Channels	
4.3 Dielectric Tissue Simulating Liquids	
5. SAR Test Facility	14
5.1 General	14
5.2 Dosimetry System	14
5.3 E-field probe	
5.4 Phantom	
5.5 Liquid Dielectric	
6. System Specifications and Calibration	17
7. SAR Measurement Procedure	
7.1 DUT Configuration	19
7.2 Power Verification	
7.3 Test Configurations	19
7.3.1 DUT Position	
7.4 Scan procedure	
8. Measurement Uncertainty	20
9. EUT Configuration Procedure	21
9.1 WWAN Transmission Setup	21
9.1.1 EUT Test Frequencies (WWAN)	
9.1.2 Call Box Simulator Information	
9.2 Duty Cycle	
9.3 Call set-up For CDMA2000 1x	

10. Low Duty Cycle RF Safety Evaluation	24
11. Numerical SAR Data	25
11.1 Numerical Data	25
12. Photos of DUT and test setup	26
12.1 Photos of DUT	26
13. System Performance Check	31
13.1 General System Check Procedure	31
13.2 System Performance Check Data	31
13.2.1 20110823_Val1900_Muscle_20dBm	34
14. SAR Plots	37
14.1 Band Class 0 Plots	37
14.1.1 Front of EUT toward phantom, 1 cm separation	37
14.1.2 Rear of EUT toward neck of phantom, 0 cm separation	38
14.2 Band Class 1 Plots	39
14.2.1 Front of EUT toward phantom, 1 cm separation	39
14.2.2 Rear of EUT toward neck of phantom, 0 cm separation	40
15. Calibration Data	43

Figures

Figure 4-1 Front of device toward phantom, 1.0 cm separation (Position 1)	12
Figure 4-2 Rear of device toward phantom at neck region, 0 cm separation (Position 2)	
Figure 5-1 DASY5 system: Robot Arm, Controller box, Device Positioning Holder	14
Figure 5-2 SAM Phantom	15
Figure 6-1 Diagram of DASY5 System, from S&P Applications Notes System Description and Setup	17
Figure 11-1 Edge View of MPERS LC120	26
Figure 11-2 Front and Oblique Views of MPERS LC120	27
Figure 11-2 Internal cross-section drawing of MPERS LC120 showing antenna location	28
Figure 11-3 DUT front toward phantom, 1.0 cm separation, set-up photo	29
Figure 11-4 DUT front toward phantom, 1.0 cm separation, as tested	29
Figure 11-5 DUT rear toward phantom, 0 cm separation	30

Tables

Table 1-1 Worst-case measured SAR	9
Table 1-2 Overall Measurement Uncertainty	
Table 1-3 1 Gram SAR Limits	
Table 2-1 EUT Information	10
Table 3-1 WWAN Measured Average Transmit Power (dBm)	11
Table 5-1 Tissue Dielectric Properties at Time of Testing	16
Table 6-1 Data Acquisition	17
Table 6-2 E-Field Probe	18
Table 6-3 Phantom	18
Table 6-4 Calibration	18
Table 8-1 Measurement Uncertainty	20
Table 9-1 Test Frequencies	21
Table 9-2 Communications Test Box Information	21
Table 9-3 Parameters for Max. Power with a single traffic code channel, SR1	23
Table 9-4 Parameters for Max. Power with multiple traffic code channel, SR1	23
Table 10-1 Duty Cycle Calculation	
Table 10-2 SAR Exclusion Calculation	24
Table 11-1 SAR Test Data for MPERS LC120	25
Table 13-1 1-g SAR System Check Data MPERS Test Program (Head TSL)	31
Table 13-2 10-g SAR System Check Data MPERS Test Program (Muscle TSL)	31

8

1. Test summary

1.1 Introduction

A MPERS (Mobile Personal Emergency Response System) wrist-worn watch device, model LC120, was tested for SAR compliance with respect to FCC Part 2.1093 RF exposure limits. This test report is intended to document performance of the EUT with respect to established SAR measurement procedures and is intended to demonstrate compliance with RF exposure limits.

1.2 Equipment Usage

The MPERS LC120 is designed to be worn on the user's wrist and is operated by the user pressing a call button and holding the device towards the user face during an emergency situation. The MPERS LC120 is not intended to be held to the ear as it only incorporates a far field speaker.

The device is only capable of making a voice phone call to a pre-configured emergency hotline number. Alternate phone numbers cannot be programmed into the device nor can it receive phone calls from anyone other than the call center.

During normal operation, the MPERS device also self-initiates short data burst transmissions (< 6 seconds) every 30 minutes to a monitoring service that provides information on the user's location and physical activity. Due to the low duty cycle, RF exposure evaluation was not conducted for data transmission. SAR exclusion for this normal operation mode is detailed in Section 10.

The MPERS device has only a single WWAN transmitter with a single transmit antenna, and only supports CDMA 1x 850 (Band Class 0) MHz and 1900 MHz (Band Class 1) bands. There are no collocated transmitters, receive diversity antennas, or any other external connections other than for battery charging.

1.3 Compliance Standards

- FCC OET 65 Supplement C Evaluation Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields
- FCC KDB 447498 Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
- FCC KDB 941225 SAR Measurement Procedures for 3G Devices CDMA 2000/EV-DO WCDMA/HSDPA/HSPA
- FCC KDB 450824 SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz
- FCC Part 2.1093 Radiofrequency radiation exposure evaluation: portable devices
- **IEEE 1528** Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques

1.4 Maximum Measured SAR results (Worst Case Results)

Table 1-1 Worst-case measured SAR

Test position	1.4.1 Band	Channel	SAR (mW/g)	Limit
Rear of device toward neck portion of phantom, 0 cm separation (DUT worn on wrist)	850 (BC0)	383	1.72 mW/g (10 gram)	4.0 mW/g
Rear of device toward neck portion of phantom, 0 cm separation (DUT worn on wrist)	1900 (BC1)	600	3.05 mW/g (10 gram)	4.0 mW/g

Table 1-2 Overall Measurement Uncertainty

Combined Standard Uncertainty	10.0%
Extended Standard Uncertainty (k=2)	20.1%

1.5 SAR Limits

Table 1-3 gives 1 gram SAR limits for general public for the frequency range of 10 MHz to 10 GHz as called out in FCC CFR 47 Part 2.1093.

Table 1-3 1 Gram SAR Limits

Localized SAR (head and trunk)	1.6 mW/g (1 g)
Hands, Wrists, Feet and Ankles	4.0 mW/g (10 g)

1.6 Simultaneous Transmission

The MPERS LC120 device contains only a single transmitter, therefore simultaneous transmission consideration does not apply.

2. EUT Description

2.1 General

Table 2-1 EUT Information

EUT Model	LC120
FCC ID	ZQR-LC120
EUT Serial Number	4
EUT description	Wrist-worn mobile wireless personal emergency service (MPERS) device with WWAN transmit capability.
WWAN Technologies	CDMA 2000 1x
Unlicensed Technologies	None
TX Frequencies	CDMA 1x Band Class 0: 824.2 – 848.8 MHz CDMA 1x Band Class 1: 1850.2 – 1909.8 MHz
Nominal Factory Transmit Power (dBm)	Band Class 0: 24dBm Band Class 1: 24dBm
Duty Cycle(s)	CDMA: 100%
WWAN Antenna Type	PIFA
WLAN Antenna	None

3. Conducted Transmit Power

Conducted transmit power was tested in accordance with FCC 3G procedures and 3GPP2 standards. The test procedure for configuring the EUT to transmit at maximum output power for CDMA 1x is provided in Section 9.3. All SAR testing was conducted with the test call in RC3, S055 configuration.

Table 3-1 WWAN Measured Average Transmit Power (dBm)

		US Cellular 835 MHz (BC0)			US PC	S 1900 MHz	(BC1)
Mode	Service Option	1013	383	777	25	600	1175
CDMA 1x	RC1 SO2	24.3	24.0	23.9	24.0	24.0	24.3
CDMA 1x	RC1, SO55	24.4	24.1	23.7	24.0	24.0	24.3
CDMA 1x	RC2, SO9	24.4	24.1	23.7	23.9	24.1	24.2
CDMA 1x	RC2, SO55	24.4	24.1	23.7	23.9	24.0	24.3
CDMA 1x	RC3, SO55	24.4	24.1	23.7	24.1	24.2	24.3
CDMA 1x	RC3, SO32	24.4	24.1	23.7	23.8	23.8	24.2

4. SAR Test Program

4.1 Test Positions

The MPERS LC120 is intended to be operated by the user during a voice call by wearing the device on the wrist and speaking into the front face of the module. Therefore SAR was measured for the device in the positions shown in Figure 4-1 and Figure 4-2 for all channels shown in Section 4.2.

The watch band, with the integrated antenna, cannot be stretched out flat for testing on the flat phantom during rear position testing for wrist SAR. For this reason the neck portion of the SAM phantom (phantom defined in Section 5.4 was used. Pre-tests were completed to verify that the SAR hotspot was fully captured as shown in the reported test data.

Figure 4-1 Front of device toward SAM phantom, 1.0 cm separation (Position 1)

Figure 4-2 Rear of device with straps flush to SAM phantom at neck region (0 cm separation) (Position 2)

4.2 Test Channels

Technology	Band	Channel	Frequency
		1013	824.7
	Band Class 0 (Cellular)	383	836.49
CDMA 1x*		777	848.97
		25	1851.25
	Band Class 1 (PCS)	600	1880
		1175	1908.75

^{*}CDMA 1x, RC3, SO55, see Section 3. for further details.

4.3 Dielectric Tissue Simulating Liquids

Since the user is intended to hold the MPERS LC120 device toward the face, Head TSL was used for SAR measurements performed per The watch band, with the integrated antenna, cannot be stretched out flat for testing on the flat phantom during rear position testing for wrist SAR. For this reason the neck portion of the SAM phantom (phantom defined in Section 5.4 was used. Pre-tests were completed to verify that the SAR hotspot was fully captured as shown in the reported test data. Figure 4-1.

Since the device is worn on the wrist during a call, Muscle TSL was used for hand SAR measurements in the absence of a TSL specific to the wrist (Figure 4-2). Liquid properties are described in Section 5.5

5. SAR Test Facility

5.1 General

Test Location	QUALCOMM Incorporated 5775 Morehouse Dr. San Diego CA 92121
Temperature Range	15-35 °C (23°C actual)
Humidity Range	25-75% (38% actual)
Pressure	860-1060 mbar (1015 mB)

All Qualcomm dosimetry equipment is operated within a shielded screen room manufactured by Lindgren RF Enclosures to provide isolation from external EM fields. The E-field probes of the DASY5 system are capable of detecting signals as low as 5μ W/g in the liquid dielectric, and so external fields are minimized by the screen room, leaving the phone as the dominate radiation source. The floor of the screen room is reflective, so the phantom bench is placed on two ferrite panels measuring 2 ft² each, in order to minimize reflected energy that would otherwise re-enter the phantom and combine constructively or destructively with the desired results

5.2 Dosimetry System

The dosimetry equipment consists of a complete state-of-the-art DASY5 dosimetry system manufactured and calibrated by Schmid & Partner Engineering AG of Zurich, Switzerland. The DASY5 system consists of a six axis robot, a robot controller, a teach pendant, automation software on a 3.16 GHz Intel Core®2 Duo CPU E8500 computer, data acquisition system, isotropic E-field probe, device positioning holder, and validation kit.

Figure 5-1 DASY5 system: Robot Arm, Controller box, Device Positioning Holder

5.3 E-field probe

Manufactured by Schmid & Partner, Model ET3DV6. Calibrated by the manufacturer in head tissue simulating liquid at frequencies ranging from 835 MHz to 1.95 GHz. Dynamic range is said by the manufacturer to be 5 μ W/gm to approx. 100 mW/g. The probe contains 3 small dipoles positioned symmetrically on a triangular core to provide for isotropic detection of the field. Each dipole contains a diode at the feed point that converts the RF signal to DC, which is conducted down a high impedance line to the data acquisition system.

5.4 Phantom

The phantom is the Standard Anthropomorphic Model ("SAM") phantom supplied by Schmid & Partner AG, and is designed for compliance to the guidelines provided in standard IEEE P1528. It consists of a left and right side head for simulating phone usage on both sides of the head, as well as a flat area for simulating phone usage against the body. The phantom is constructed of fiberglass with 2 mm ±0.1mm shell thickness. The DASY5 system uses a homogeneous tissue phantom based on studies concerning energy absorption of the human head, and the different absorption rates between adults and children. These studies indicated that a homogeneous phantom should overestimate SAR by no more than 15% for 10 g averages and should not underestimate SAR.

Figure 5-2 SAM Phantom

5.5 Liquid Dielectric

The tissue simulating liquid filling the phantom is mixed by Qualcomm staff per manufacturer instructions and regulatory standards. There are separate formulas for the various applicable frequencies. Before the test, the permittivity and conductivity were measured with an automated Hewlett-Packard 85070B dielectric probe in conjunction with a HP 8752C network analyzer to monitor permittivity change due to evaporation and settling of ingredients. The electromagnetic parameters of the liquid were maintained as shown in Table 5-1. The target values were obtained from the FCC OET 65 Supplement C.

Lab temperature is controlled to ensure stable liquid temperatures do not vary more than $\pm 2^{\circ}$ C.

Table 5-1 Tissue Dielectric Properties at Time of Testing

			Permit	tivity (ε _r)			Conduc	ctivity (σ)	
Test Date	Frequency (MHz)	Measured Values	Target Values	Deviation (%)	Limit	Measured Values	Target Values	Deviation (%)	Limit
15 Sept 11	836.5	40.673	41.5	-1.99%	±5%	0.891	0.900	-1.00%	±5%
15 Sept 11	836.5	56.253	55.2	1.91%	±5%	0.964	0.970	-0.62%	±5%
30 Aug 11	1880	38.149	40.0	-4.63%	±5%	1.439	1.40	2.79%	±5%
15 Sept 11	1851.25	52.066	53.3	-2.32%	±5%	1.465	1.52	-3.62%	±5%

25 L of each of the tissue simulating liquids were prepared using the following proportions of ingredients (percent by weight):

Head TSL:

835 MHz Head Tissue Simulating Liquid

Water - 51.07%

Cellulose - 0.23%

Sugar - 47.31%

Preventol-0.24%

Salt - 1.15%

1900 MHz Head Tissue Simulating Liquid

Water - 55.3 %

Glycol Monobutyl Ether – 44.5%

Salt - 0.31%

Muscle TSL:

835 Mhz Body Tissue Simulating Liquid

Water-50.8%

Salt - 9.94%

Preventol - 0.01%

Sugar - 48%

1900 Mhz Body Tissue Simulating Liquid

Water -70.2%

Glycol Monobutyl Ether – 29.4%

Salt-0.4%

6. System Specifications and Calibration

Figure 6-1 shows a diagram of the Schmid & Partner DASY5 system.

Figure 6-1 Diagram of DASY5 System, from S&P Applications Notes System Description and Setup

Table 6-1 Data Acquisition

Processor	Intel Core®2 Duo CPU E8500 GHz
Operating System	Microsoft® Windows® XP
Software	DASY5 V52.6.1.408, Schmid & Partners Eng. AG, Switzerland SEMCAD X V 14.4.2 Build 57
Surface Detection	Mechanical

Table 6-2 E-Field Probe

Offset tip to sensor center	2.7 mm
Offset surface to probe tip	1.8 ± 0.2
Frequency	30 MHz to 3.0 GHz
Dynamic Range	5μW/g to 100 mW/g
Isotropy	±0.15 dB (in brain liquid)

Table 6-3 Phantom

Dielectric	835 MHz band: homogeneous water/sugar/salt/ cellulose liquid 1900 MHz band: Homogeneous water/glycol/salt liquid
Shell	2 mm ± 0.2 mm polyester fiber glass
Ear	Integral model per SAM phantom specification

Table 6-4 Calibration

Equipment Mfr & Type	Serial number	Last Calibrated	Next Calibration
Schmid & Partner Engineering AG Dosimetric E-field Probe, ET3DV5	1733	16 February 2011	16 February 2012
Schmid & Partner Engineering AG dipole validation kit, D835V2	466	19 October 2010	19 October 2011
Schmid & Partner Engineering AG dipole validation kit, D1900V2	5d096	21 October 2010	21 October 2011
Schmid & Partner Engineering AG Data Acquisition Electronics, DAE3 V1	400	8 February 2011	8 February 2012
Gigatronics 8541C RF Power Meter	K81354	17 May 2011	17 May 2012
Gigatronics 80401A Power Sensor	G000517	20 January 2011	20 January 2012
Hewlett-Packard 8720E Network Analyzer	K100454	20 April 2011	20 April 2012
Hewlett-Packard 85070M Dielectric Probe System	N/A	N/A	N/A

7. SAR Measurement Procedure

7.1 DUT Configuration

The DUT was configured into the desired transmit configuration per the procedures defined in section 9.

7.2 Power Verification

Prior to beginning SAR testing, conducted power was measured on the MPERS device to verify functionality and the WWAN maximum transmit power values using the procedures defined in section 9. The results of the conducted power measurements are in section 3.

7.3 Test Configurations

7.3.1 DUT Position

The DUT was positioned as described in Section 4. SAR Test Program.

7.4 Scan procedure

The scan routine is set up as follows:

- Power reference measurement
- Area scan
- Power Drift measurement
- 60 second delay
- Power reference measurement
- 7x7x7 cube (zoom) scan
- Power Drift measurement
- Robot movement to maximum location
- Z-axis scan

8. Measurement Uncertainty

The possible errors included in this measurement arise from device positioning uncertainty, device manufacturing uncertainty, liquid dielectric permittivity uncertainty, liquid dielectric conductivity uncertainty, and uncertainty due to disturbance of the fields by the probe.

Table 8-1 Measurement Uncertainty

	1		1	1	1	I		
	Uncertainty value (± %)	Prob. DIST	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g) (± %)	Std. Unc. (10g)	(vi) veff
Measurement System								
Probe Calibration	4.8	N	1	1	1	4.8	4.8	∞
Axial Isotropy	4.7	R	√3	0.7	0.7	1.9	1.9	∞
Hemispherical Isotropy	9.6	R	√3	0.7	0.7	3.9	3.9	∞
Boundary Effects	1	R	√3	1	1	0.6	0.6	∞
Linearity	4.7	R	√3	1	1	2.7	2.7	∞
System Detection Limits	1	R	√3	1	1	0.6	0.6	∞
Readout Electronics	1	N	1	1	1	1.0	1.0	∞
Response Time	0.8	R	√3	1	1	0.5	0.5	∞
Integration Time	2.6	R	√3	1	1	1.5	1.5	∞
RF Ambient Conditions	3	R	√3	1	1	1.7	1.7	∞
Probe Positioner	0.4	R	√3	1	1	0.2	0.2	∞
Probe Positioning	2.9	R	√3	1	1	1.7	1.7	∞
Max. SAR Eval.	1	R	√3	1	1	0.6	0.6	∞
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Power Drift	5	R	√3	1	1	2.9	2.9	∞
Phantom and Setup								
Phantom Uncertainty	4	R	√3	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5	R	√3	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5	R	√3	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞
Combined Std. Uncertainty						10.3 %	10.0 %	330
Expanded STD Uncertainty						20.6 %	20.1 %	

21

9. EUT Configuration Procedure

9.1 WWAN Transmission Setup

9.1.1 EUT Test Frequencies (WWAN)

Table 9-1 Test Frequencies

	850 MHz				1900 MHz							
	Low Mid High		Low		Mid	d	High					
	Ch	Freq	Ch	Freq	Ch	Freq	Ch	Freq	Ch	Freq	Ch	Freq
CDMA	1013	824.7	384	836.52	777	848.31	25	1851.25	600	1880	1175	1908.75

9.1.2 Call Box Simulator Information

Table 9-2 Communications Test Box Information

Make	Agilent						
Model	8960						
Cal Date	15 September 2010						
Serial Number	GB44052409	GB44052409					
SW Revision	GSM TA	E1968A-101					
	GPRS TA	E1968A-102					
	EGPRS TA	E1968A-103					
	WCDMA	E1963A					
	HSDPA TEST MODES	E1963A-403					
	HSuPA TEST MODES	E1963A-413					
	cdma 2000 TA	E1962B					
	1xEV-DO TA	E1966A					
	1xEV-DO FTM TA	E1976A					
	1xEV-DO Release A	E1966A-102					
	1xEV-DO RelA FTM	E1976A-102					
	Fast Switch Test App	E1987A					

9.2 Duty Cycle

Duty cycle for all CDMA 1x calls was 100%.

9.3 Call set-up For CDMA2000 1x

Use CDMA2000 Rev 6 protocol in the call box.

- 1) Test for Reverse/Forward TCH RC1, Reverse/Forward TCH RC2, and RC3 Reverse FCH and demodulation of RC 3, 4 or 5.
 - a. Set up a call using Fundamental Channel Test Mode 1 (RC1, SO 2) with 9600 bps data rate only.
 - b. As per C.S0011 or TIA/EIA-98-F Table 4.4.5.2-1, set the test parameters as shown in Table 9-3.
 - c. Send continuously '0' power control bits to the EUT.
 - d. Measure the output power at EUT's antenna connector as recorded on the power meter with values corrected for cables losses.
 - e. Repeat step b through d for Fundamental Channel Test Mode:
 - i. RC1, SO55
 - ii. RC3, SO55
 - iii. RC2, SO55
 - iv. RC3, SO55
- 2) Test for RC 3 Reverse FCH, RC3 Reverse SCH0 and demodulation of RC 3, 4 or 5.
 - a. Set up a call using Supplemental Channel Test Mode 3 (RC 3, SO 32) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
 - b. As per C.S0011 or TIA/EIA-98-F Table 4.4.5.2-2, set the test parameters as shown in Table 9-4.
 - c. Send alternating '0' and '1' power control bits to the EUT.
 - d. Determine the active channel configuration. If the desired channel configuration is not the active channel configuration, increase Îor by 1 dB and repeat the verification. Repeat this step until the desired channel configuration becomes active.
 - e. Measure the output power at the EUT's antenna connector.
 - f. Decrease Îor by 0.5 dB.
 - g. Determine the active channel configuration. If the active channel configuration is the desired channel configuration, measure the output power at the EUT's antenna connector.
 - h. Repeat step f and g until the output power no longer increases or the desired channel configuration is no longer active. Record the highest output power achieved with the desired channel configuration active.
 - i. Repeat step a through h ten times and average the result.
- 3) Test for RC3 Reverse FCH, RC 3 DCCH and demodulation of RC3, 4 or 5.
 - a. Use the same procedure as described in 2).

Table 9-3 Parameters for Max. Power with a single traffic code channel, SR1

Parameter	Units	Value
Îor	dBm/1.23 MHz	-104
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

Table 9-4 Parameters for Max. Power with multiple traffic code channel, SR1

Parameter	Units	Value
$\frac{\text{Pilot } E_c}{I_{or}}$	dB	-7
$\frac{\text{Traffic } E_c}{I_{or}}$	dB	-7.4

10. Low Duty Cycle RF Safety Evaluation

This section provides numerical calculations justifying SAR measurement exclusion based on average power <60/f (f=frequency in GHz) for MPERS low duty cycle data transmissions.

The device transmits a burst of data approximately 6 seconds long every 30 minutes.

The calculations below are based on the nominal transmit power setting of 24 dBm for the LC120 device. The measured conducted power reported in this test report is higher/lower due to device tolerances and measurement uncertainty. Given the adjusted average power for defined duty cycle is much lower than the 60/f power, the transmit power tolerance does not impact the conclusion.

Table 10-1 Duty Cycle Calculation

	Duty Cycl		
Maximum Transmission Time within Duty Cycle Period (sec)	Min	Sec	Duty Cycle
6	30	1800	0.33%

Table 10-2 SAR Exclusion Calculation

Mode Frequency Duty (MHz) Cycle		Nominal Average Conducted TX Power (dBm)		Adjusted Transmit Power		60/f Power		Result	
			dBm	mW	dBm	mW	dBm	mW	
CDMA 850 MHz	824	0.33%	24	251	-0.8	0.8	18.6	72.8	SAR measurement exclusion (Adjusted Avg Pwr<60/f)
CDMA 1900 MHz	1850	0.33%	24	251	-0.8	0.8	15.1	32.4	SAR measurement exclusion (Adjusted Avg Pwr<60/f)

80-H1151-6 Rev. B

11. Numerical SAR Data

11.1 Numerical Data

Table 11-1 SAR Test Data for MPERS LC120

Test position	TSL	Band	Channel	Limit	1g SAR (mW/g)	10 g SAR (mW/g)	Comment	Average Conducted Transmit Power (dBm)
Front of device toward flat phantom, 1 cm separation	Head	CDMA 1x,	383	1.6 mW/g (1 g)	0.673 ⁽¹⁾	N/A	1g less than 3dB below limit	24.0
Rear of device toward neck portion of phantom, 0 cm separation	Muscle	850 (BC0)	383	4.0 mW/g (10 g)	N/A	1.72 ⁽¹⁾	10g less than 3dB below limit	24.0
Front of device toward flat phantom, 1 cm separation	Head	- CDMA 1x, 1900 (BC1)	600	1.6 mW/g (1 g)	0.361 ⁽¹⁾	N/A	1g less than 3dB below limit	24.4
Rear of device toward neck portion of phantom, 0 cm separation	Muscle		25	4.0 mW/g (10 g)	N/A	2.55		24.2
			600		N/A	3.05		24.4
			1175		N/A	2.55	·	24.2

⁽¹⁾ As permitted by KDB 447498 only the middle channel was measured since the measured data was more than 3.0 dB below the SAR limit.

13. System Performance Check

13.1 General System Check Procedure

System performance check scans were performed at the beginning of testing of each test program day. A dipole antenna was selected that roughly matched the center frequency of the bands being tested (835 MHz and 1900 MHz). A CW sine wave with a matching frequency is then applied to the antenna from a signal generator through an amplifier for a power level shown in Table 13-1 (for 1-g system checks) and Table 13-2 (for 10-g system checks). Measured SAR is then scaled to 30 dBm for comparison to the dipole manufacturer's scaled SAR at 30 dBm. System performance check SAR has a tolerance of ±10%.

13.2 System Performance Check Data

Table 13-1 shows system check data.

Table 13-1 1-g SAR System Check Data MPERS Test Program (Head TSL)

		1 g SAR (mW/g)					
Date	Date Frequency (MHz)		Scaled to 30 dBm	Target	Difference (%)		
9/15/11	835	0.983	9.83	9.64	1.97%		
8/30/11	1900	4.1	41	40	2.50%		

Table 13-2 10-g SAR System Check Data MPERS Test Program (Muscle TSL)

		10 g SAR (mW/g)					
Date	Frequency (MHz)	Measured	Scaled to 30 dBm	Target	Difference (%)		
9/15/11	835	0.632	6.32	6.64	-4.82%		
8/24/11	1900	2.14	21.4	21.4	+0.0%		
9/15/11	1900	2.13	21.3	21.4	-0.47%		

Date/Time: 9/15/2011 8:11:31 AM, Date/Time: 9/14/2011 8:18:17 AM

Test Laboratory: QUALCOMM Incorporated

20110914_Val835_Head_20dBm

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:466

Communication System: CW; Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Communication System

PAR: 0 dB

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1733; ConvF(6.56, 6.56, 6.56); Calibrated: 2/16/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn400; Calibrated: 2/8/2011
- Phantom: SAM with CRP; Type: SAM; Phantom Serial: 209
- Measurement SW: DASY52, V52.6 Build 1; Postprocessing SW: SEMCAD X, V14.2 Build 4Version 14.2.4 (1957) (Deployment Build)

Configuration/d=15mm, Pin=20dBm, dist=4.0mm (ET-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 1.09 mW/g

Configuration/d=15mm, Pin=20dBm, dist=4.0mm (ET-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.6 V/m; Power Drift = -0.157 dB

Peak SAR (extrapolated) = 1.43 W/kg

SAR(1 g) = 0.983 mW/g; SAR(10 g) = 0.646 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.07 mW/g

Date/Time: 9/15/2011 10:20:24 AM, Date/Time: 9/13/2011 10:27:11 AM

Test Laboratory: QUALCOMM Incorporated

20110913_Val835_Body_20dBm

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:466

Communication System: CW; Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Communication System

PAR: 0 dB

Medium parameters used (interpolated): f = 835 MHz; σ = 0.935 mho/m; ϵ_r = 55.5; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1733; ConvF(6.45, 6.45, 6.45); Calibrated: 2/16/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn400; Calibrated: 2/8/2011
- Phantom: SAM with CRP; Type: SAM; Phantom Serial: 209
- Measurement SW: DASY52, V52.6 Build 1; Postprocessing SW: SEMCAD X, V14.2 Build 4Version 14.2.4 (1957) (Deployment Build)

Configuration/d=15mm, Pin=20dBm, dist=4.0mm (ET-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 1.04 mW/g

Configuration/d=15mm, Pin=20dBm, dist=4.0mm (ET-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.9 V/m; Power Drift = -0.128 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.945 mW/g; SAR(10 g) = 0.632 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.02 mW/g

Date/Time: 8/23/2011 10:52:53 AM, Date/Time: 8/23/2011 10:59:39 AM

Test Laboratory: QUALCOMM Incorporated

13.2.1 20110823_Val1900_Muscle_20dBm

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:xxx

Communication System: CW; Communication System Band: D1900 (1900 MHz); Frequency: 1900 MHz; Communication System

PAR: 0 dB

Medium parameters used (interpolated): f = 1900 MHz; σ = 1.511 mho/m; ε_r = 52.434; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1733; ConvF(4.61, 4.61, 4.61); Calibrated: 2/16/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn400; Calibrated: 2/8/2011
- Phantom: SAM with CRP; Type: SAM; Phantom Serial: 209
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Configuration/d=15mm, Pin=20dBm, dist=4.0mm (ET-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 4.878 mW/g

Configuration/d=15mm, Pin=20dBm, dist=4.0mm (ET-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.818 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 6.452 W/kg

SAR(1 g) = 3.96 mW/g; SAR(10 g) = 2.14 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.485 mW/g

Date/Time: 8/30/2011 11:49:49 AM, Date/Time: 8/30/2011 11:56:38 AM

Test Laboratory: QUALCOMM Incorporated

20110830 Val1900 Head 20dBm

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d096

Communication System: CW; Communication System Band: D1900 (1900 MHz); Frequency: 1900 MHz; Communication System

PAR: 0 dB

Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.46 \text{ mho/m}$; $\epsilon_r = 38.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1733; ConvF(5.2, 5.2, 5.2); Calibrated: 2/16/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn400; Calibrated: 2/8/2011
- Phantom: SAM with CRP; Type: SAM; Phantom Serial: 209
- Measurement SW: DASY52, V52.6 Build 1; Postprocessing SW: SEMCAD X, V14.2 Build 4Version 14.2.4 (1957) (Deployment Build)

Configuration/d=15mm, Pin=20dBm, dist=4.0mm (ET-Probe)/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 5.08 mW/g

 $\textbf{Configuration/d=15mm, Pin=20dBm, dist=4.0mm (ET-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube \ 0: \ \textit{Measurement grid: } \\ \textbf{Measurement grid: } \\ \textbf{Mea$

dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.7 V/m; Power Drift = -0.141 dB

Peak SAR (extrapolated) = 7.26 W/kg

SAR(1 g) = 4.1 mW/g; SAR(10 g) = 2.15 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.61 mW/g

0 dB = 4.61 mW/g

Date/Time: 9/15/2011 11:14:31 AM, Date/Time: 9/12/2011 11:21:17 AM

Test Laboratory: QUALCOMM Incorporated 20110912_Val1900_Muscle_20dBm

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d096

Communication System: CW; Communication System Band: D1900 (1900 MHz); Frequency: 1900 MHz; Communication System

PAR: 0 dB

Medium parameters used (interpolated): f = 1900 MHz; σ = 1.53 mho/m; ϵ_r = 51.9; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1733; ConvF(4.61, 4.61, 4.61); Calibrated: 2/16/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn400; Calibrated: 2/8/2011
- Phantom: SAM with CRP; Type: SAM; Phantom Serial: 209
- Measurement SW: DASY52, V52.6 Build 1; Postprocessing SW: SEMCAD X, V14.2 Build 4Version 14.2.4 (1957) (Deployment Build)

Configuration/d=15mm, Pin=19.86dBm, dist=4.0mm (ET-Probe) 2/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 4.86 mW/g

Configuration/d=15mm, Pin=19.86dBm, dist=4.0mm (ET-Probe) 2/Zoom Scan (7x7x7) (7x8x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.4 V/m; Power Drift = 0.0074 dB

Peak SAR (extrapolated) = 6.57 W/kg

SAR(1 g) = 3.97 mW/g; SAR(10 g) = 2.13 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 4.53 mW/g

0 dB = 4.53 mW/g

14. SAR Plots

14.1 Band Class 0 Plots

14.1.1 Front of EUT toward phantom, 1 cm separation

Date/Time: 9/15/2011 7:53:49 AM, Date/Time: 9/15/2011 8:01:26 AM

Test Laboratory: QUALCOMM Incorporated

20110914_MPERS_#4_Watch_CDMA_BC0-front

DUT: MPERS Watch Band; Type: Module phone; Serial: 4

Communication System: CDMA835; Communication System Band: CDMA CELL; Frequency: 836.49 MHz; Communication

System PAR: 0 dB

Medium parameters used: f = 836.505 MHz; σ = 0.891 mho/m; ϵ_r = 40.673; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1733; ConvF(6.56, 6.56, 6.56); Calibrated: 2/16/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn400; Calibrated: 2/8/2011
- Phantom: SAM with CRP; Type: SAM; Phantom Serial: 209
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Configuration/MPERS Watch, Front of device toward phantom, 1.0 cm separation, Middle/Area Scan (81x71x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.720 mW/g

Configuration/MPERS Watch, Front of device toward phantom, 1.0 cm separation, Middle/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.502 V/m; Power Drift = -0.0024 dB

Peak SAR (extrapolated) = 0.955 W/kg

SAR(1 g) = 0.673 mW/g; SAR(10 g) = 0.449 mW/g

Maximum value of SAR (measured) = 0.725 mW/g

0 dB = 0.730 mW/g

14.1.2 Rear of EUT toward neck of phantom, 0 cm separation

Date/Time: 9/15/2011 11:45:57 AM, Date/Time: 9/15/2011 11:54:34 AM

Test Laboratory: QUALCOMM Incorporated

20110830_MPERS_#4_Watch_Band_CDMA_BC0-wrist-middle DUT: MPERS Watch Band; Type: Module phone; Serial: 4

Communication System: CDMA835; Communication System Band: CDMA CELL; Frequency: 836.49 MHz; Communication

System PAR: 0 dB

Medium parameters used: f = 836.505 MHz; σ = 0.964 mho/m; ε_r = 56.253; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1733; ConvF(6.45, 6.45, 6.45); Calibrated: 2/16/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn400; Calibrated: 2/8/2011
- Phantom: SAM with CRP; Type: SAM; Phantom Serial: 209
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Configuration/MPERS Watch module 3, at neck (wrist exposure), Middle 2/Area Scan (91x71x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 3.462 mW/g

Configuration/MPERS Watch module 3, at neck (wrist exposure), Middle 2/Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 61.921 V/m; Power Drift = -0.43 dB

Peak SAR (extrapolated) = 4.666 W/kg

SAR(1 g) = 2.74 mW/g; SAR(10 g) = 1.72 mW/g Maximum value of SAR (measured) = 3.052 mW/g

0 dB = 3.050 mW/g

14.2 Band Class 1 Plots

14.2.1 Front of EUT toward phantom, 1 cm separation

Date/Time: 8/30/2011 6:17:38 PM, Date/Time: 8/30/2011 6:25:21 PM

Test Laboratory: QUALCOMM Incorporated

20110831_MPERS_#4_Watch_CDMA_BC1-Front-flat

DUT: MPERS Watch Band; Type: Module phone; Serial: 4

Communication System: CDMA PCS; Communication System Band: CDMA PCS; Frequency: 1880 MHz; Communication

System PAR: 0 dB

Medium parameters used: f = 1880 MHz; σ = 1.439 mho/m; ε_r = 38.149; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1733; ConvF(5.2, 5.2, 5.2); Calibrated: 2/16/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn400; Calibrated: 2/8/2011
- Phantom: SAM with CRP; Type: SAM; Phantom Serial: 209
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Configuration/MPERS Watch TP3, PTT mode, Front of device toward phantom, 1.0 cm separation, Middle/Area Scan (81x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.447 mW/g

Configuration/MPERS Watch TP3, PTT mode, Front of device toward phantom, 1.0 cm separation, Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.538 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.557 W/kg

SAR(1 g) = 0.361 mW/g; SAR(10 g) = 0.225 mW/g Maximum value of SAR (measured) = 0.390 mW/g

0 dB = 0.390 mW/g

14.2.2 Rear of EUT toward neck of phantom, 0 cm separation

Date/Time: 9/15/2011 4:03:15 PM, Date/Time: 9/15/2011 4:13:56 PM

Test Laboratory: QUALCOMM Incorporated

20110906 MPERS #4 Watch Band CDMA BC1-wrist-low DUT: MPERS Watch Band; Type: Module phone; Serial: 4

Communication System: CDMA PCS; Communication System Band: CDMA PCS; Frequency: 1851.25 MHz; Communication

System PAR: 0 dB

Medium parameters used: f = 1851.25 MHz; σ = 1.465 mho/m; ϵ_r = 52.066; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1733; ConvF(4.61, 4.61, 4.61); Calibrated: 2/16/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn400; Calibrated: 2/8/2011
- Phantom: SAM with CRP; Type: SAM; Phantom Serial: 209
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Configuration/MPERS Watch module 3, at neck (wrist exposure), Low 2/Area Scan (91x71x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 7.210 mW/g

Configuration/MPERS Watch module 3, at neck (wrist exposure), Low 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 66.534 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 8.278 W/kg

SAR(1 g) = 5.04 mW/g; SAR(10 g) = 2.55 mW/g

Maximum value of SAR (measured) = 5.684 mW/g

0 dB = 5.680 mW/g

Date/Time: 8/23/2011 10:04:35 AM, Date/Time: 8/23/2011 10:08:01 AM

Test Laboratory: QUALCOMM Incorporated

20110823_MPERS_#4_Watch_Band_CDMA_BC1-wrist DUT: MPERS Watch Band; Type: Module phone; Serial: 4

Communication System: CDMA PCS; Communication System Band: CDMA PCS; Frequency: 1880 MHz; Communication

System PAR: 0 dB

Medium parameters used: f = 1880 MHz; σ = 1.49 mho/m; ϵ_r = 52.488; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1733; ConvF(4.61, 4.61, 4.61); Calibrated: 2/16/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn400; Calibrated: 2/8/2011
- Phantom: SAM with CRP; Type: SAM; Phantom Serial: 209
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Configuration/MPERS Watch module 3, at neck (wrist exposure), Middle/Area Scan (61x41x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 8.109 mW/g

Configuration/MPERS Watch module 3, at neck (wrist exposure), Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.046 V/m; Power Drift = -0.23 dB

Peak SAR (extrapolated) = 9.546 W/kg

SAR(1 g) = 5.9 mW/g; SAR(10 g) = 3.05 mW/g

Maximum value of SAR (measured) = 6.596 mW/g

0 dB = 6.600 mW/g

Date/Time: 8/23/2011 11:46:39 AM, Date/Time: 8/23/2011 11:50:29 AM

Test Laboratory: QUALCOMM Incorporated

20110823_MPERS_#4_Watch_Band_CDMA_BC1-wrist-high DUT: MPERS Watch Band; Type: Module phone; Serial: 4

Communication System: CDMA PCS; Communication System Band: CDMA PCS; Frequency: 1908.75 MHz; Communication

System PAR: 0 dB

Medium parameters used: f = 1908.75 MHz; σ = 1.52 mho/m; ε_r = 52.41; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ET3DV6 SN1733; ConvF(4.61, 4.61, 4.61); Calibrated: 2/16/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn400; Calibrated: 2/8/2011
- Phantom: SAM with CRP; Type: SAM; Phantom Serial: 209
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Configuration/MPERS Watch module 3, at neck (wrist exposure), High 2 2 2/Area Scan (61x41x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 10.567 mW/g

Configuration/MPERS Watch module 3, at neck (wrist exposure), High 2 2 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.929 V/m; Power Drift = -0.20 dB

Peak SAR (extrapolated) = 8.982 W/kg

SAR(1 g) = 5.19 mW/g; SAR(10 g) = 2.55 mW/g Maximum value of SAR (measured) = 5.949 mW/g

0 dB = 6.000 mW/g

15. Calibration Data

The following pages show calibration certification data for the Schmid & Partner AG DASY5 SAR system. Also included are Schmid & Partner's calibration lab accreditation certificates for ISO 17025.

80-H1151-6 Rev. B

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Qualcomm USA

Certificate No: ET3-1733 Feb11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1733

Calibration procedure(s) QA CAL-01.v7, QA CAL-12.v6, QA CAL-23.v4, QA CAL-25.v3

Calibration procedure for dosimetric E-field probes

Calibration date: February 16, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	01-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	01-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	23-Apr-10 (No. DAE4-654_Apr10)	Apr-11
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Name Function Signature

Calibrated by: Marcel Fehr Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: February 17, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- VR: VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1733_Feb11

ET3DV6 – SN:1733 February 16, 2011

Probe ET3DV6

SN:1733

Manufactured: September 27, 2002 Calibrated: February 16, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

ET3DV6- SN:1733 February 16, 2011

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1733

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.55	1.56	1.61	± 10.1 %
DCP (mV) ^B	99.8	96.3	98.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc [±] (k=2)
10000	cw	0.00	x	0.00	0.00	1.00	130.3	±2.5 %
		1	Ŷ	0.00	0.00	1.00	131.1	
			z	0.00	0.00	1.00	130.1	
10154	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	7.40	X	6.96	66.1	20.0	108.9	±3.0 %
			Υ	7.19	67.0	20.8	110.9	
			Z	7.05	66.4	20.3	109.3	
10155	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	8.10	Х	8.09	67.4	21.1	114.3	±3.8 %
			Υ	8.32	68.3	21.9	116.3	
			Ζ	8.11	67.5	21.2	115.2	
10175	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	6.50	×	5.55	66.5	20.0	134.0	±2.2 %
			Υ	5.61	67.0	20.6	135.1	
			Z	5.53	66.5	20.1	134.0	
10176	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	7.20	×	6.24	67.6	20.9	133.0	±3.3 %
			Υ	6.33	68.3	21.7	134.8	
		<u> </u>	Z	6.25	67.8	21.2	133.3	
10011	UMTS-FDD (WCDMA)	3.20	X	3.36	65.7	17.8	141.0	±0.7 %
			Υ	3.37	65.8	18.1	142.6	
			Z	3.36	66.0	18.2	140.4	
10012	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	1.90	X	2.73	67.0	17.7	143.8	±0.7 %
			Υ	2.55	65.8	17.5	145.4	
			Z	2.65	67.1	18.2	143.0	
10013	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	9.50	X	11.19	71.0	23.6	139.8	±5.2 %
-			Y	11.52	72.0	24.2	140.8	
			Z	11.12	70.8	23.7	139.2	
10023	GPRS-FDD (TDMA, GMSK, TN 0)	9.20	Х	6.15	78.3	19.4	136.8	±1.7 %
			Y	5.95	81.9	21.3	129.0	
			Z	4.50	75.8	18.4	126.5	
10024	GPRS-FDD (TDMA, GMSK, TN 0-1)	6.19	Х	9.83	82.6	18.5	123.3	±1.4 %
			Υ	24.60	97.3	23.2	117.4	
			Z	7.46	81.3	18.1	117.8	
10039	CDMA2000 (1xRTT, RC1)	4.60	Х	4.67	66.3	18.7	139.7	±1.2 %
			Υ	4.69	66.3	19.0	142.6	
			Z	4.67	66.3	18.8	140.0	

ET3DV6-SN:1733 February 16, 2011

Modulation Calibration Parameters (cont.)

10081	CDMA2000 (1xRTT, RC3)	4.00	Х	3.84	65.4	18.1	136.0	±0.9 %
			Υ	3.91	65.8	18.5	139.2	
			Z	3.87	65.8	18.4	137.6	
10103	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	5.75	Х	7.18	71.9	21.7	149.7	±1.9 %
			Υ	6.10	68.7	20.5	106.4	
			Z	5.96	68.1	19.9	104.5	
10104	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	6.40	Х	6.84	67.5	19.9	111.7	±2.7 %
			Υ	6.93	68.1	20.6	114.1	
			Z	6.83	67.6	20.1	112.9	
10108	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	5.75	Х	5.83	65.4	18.6	109.2	±1.7 %
			Y	6.07	66.3	19.4	113.2	-
			Z	5.97	66.0	19.1	111.0	*
10109	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	6.40	Х	6.90	66.3	19.4	116.0	±2.5 %
			Υ	7.08	67.0	20.0	119.6	
			Z	6.93	66.5	19.6	117.8	
10080	CDMA2000 (1xEV-DO, 153.6 kbps)	4.40	Х	4.42	66.3	18.8	142.2	±0.9 %
_			Υ	4.40	66.2	18.9	143.8	
			Z	4.48	66.7	19.2	141.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6– SN:1733 February 16, 2011

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1733

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	7.31	7.31	7.31	0.18	2.13	± 13.4 %
750	41.9	0.89	6.89	6.89	6.89	0.70	1.73	± 12.0 %
835	41.5	0.90	6.56	6.56	6.56	0.61	1.88	± 12.0 %
900	41.5	0.97	6.43	6.43	6.43	0.55	2.05	± 12.0 %
1640	40.3	1.29	5.78	5.78	5.78	0.52	2.44	± 12.0 %
1750	40.1	1.37	5.46	5.46	5.46	0.54	2.31	± 12.0 %
1900	40.0	1.40	5.20	5.20	5.20	0.51	2.38	± 12.0 %
1950	40.0	1.40	5.04	5.04	5.04	0.51	2.36	± 12.0 %
2450	39.2	1.80	4.46	4.46	4.46	0.78	1.66	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6- SN:1733 February 16, 2011

DASY/EASY - Parameters of Probe: ET3DV6- SN:1733

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.65	7.65	7.65	0.13	2.16	± 13.4 %
750	55.5	0.96	6.55	6.55	6.55	0.78	1.73	± 12.0 %
835	55.2	0.97	6.45	6.45	6.45	0.72	1.83	± 12.0 %
900	55.0	1.05	6.34	6.34	6.34	0.66	1.90	± 12.0 %
1640	53.8	1.40	5.23	5.23	5.23	0.57	2.72	± 12.0 %
1750	53.4	1.49	4.78	4.78	4.78	0.53	2.86	± 12.0 %
1900	53.3	1.52	4.61	4.61	4.61	0.55	2.79	± 12.0 %
1950	53.3	1.52	4.67	4.67	4.67	0.59	2.58	± 12.0 %
2450	52.7	1.95	4.05	4.05	4.05	0.88	1.36	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

February 16, 2011

ET3DV6- SN:1733

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2)

ET3DV6- SN:1733 February 16, 2011

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ET3DV6-SN:1733 February 16, 2011

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ET3DV6- SN:1733 February 16, 2011

Conversion Factor Assessment

Deviation from Isotropy in Air Error (φ, θ), f = 900 MHz

ET3DV6- SN:1733 February 16, 2011

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1733

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Qualcomm USA

Certificate No: D835V2-466_Oct10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D835V2 - SN: 466

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date: October 19, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	10 #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Altenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047,2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205 Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generalor R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D'Hier
Approved by:	Katja Pokovic	Technical Manager	MINI

Issued: October 19, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kallbrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Callbration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A not applicable

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.3 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 mW / g
SAR normalized	normalized to 1W	9.64 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.68 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.57 mW / g
SAR normalized	normalized to 1W	6.28 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.29 mW/g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittlvity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0,97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.53 mW / g
SAR normalized	normalized to 1W	10.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.93 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.66 mW / g
SAR normalized	normalized to 1W	6.64 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.55 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.9 Ω - 3.5 jΩ
Return Loss	- 28.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.1 Ω - 5.2 jΩ
Return Loss	- 25.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.385 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 27, 2002

DASY5 Validation Report for Head TSL

Date/Time: 18.10.2010 11:59:16

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:466

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.9 \text{ mho/m}$; $\varepsilon_r = 42.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.03, 6.03, 6.03); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DALA Sn601; Calibrated: 10.06,2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.3 V/m; Power Drift = 0.00578 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.57 mW/g

Maximum value of SAR (measured) = 2.79 mW/g

 $0 \, dB = 2.79 \, mW/g$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 19.10.2010 J1:39:01

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:466

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 54.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/M:C/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.86, 5.86, 5.86); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06,2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m: Power Drift = 0.00907 dB

Peak SAR (extrapolated) = 3.75 W/kg

SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.66 mW/g

Maximum value of SAR (measured) = 2.94 mW/g

() dB = 2.94 mW/g

Impedance Measurement Plot for Body TSL

Calibration Data

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

CUSTOMER COPY

DIPOLE REPAIR REPORT - SPEAG Production Center

PRODUCT	D835V2 DIPOLE				
SERIAL Nr.:	SN:466	1	N DATE:	11-0	0kt-2010
CUSTOMER:	Qualcomm USA				
DIPOLE REPAIR					
MATERIAL	WORK DESCRIPTION				WORKING TIME (h)
Dipole Arm	fixed X exchanged (re-soldere	ed	X	1.00 hours
Dipole Connector	fixed O exchanged (cleaned		X	hours
Gold Plating	fixed O exchanged (new gold	plating	0	hours
Housing	fixed O exchanged (new labe	L	0	hours
Disassemble/clean	fixed O exchanged (5			hours
	fixed O exchanged (hours
	fixed O exchanged 0	5			hours
Analysis:					hours
Final Assembly:		4	*		0.50 hours
Total hours					1.50 hours
COMMENTS:	The dipole was returned to were bent and one solder functionality, the dipole at cleaned as well. The dipole	r joint has a cra- rms were straig	ck. In order to	o re esta esoldere	ablish full dipole ed. The connector was
CONDUCTED BY:	A.C.	APPROV	/ED BY:		
DATE:	18.10.2010	DATE:	18.1	10.2010)
REPAIR COST: MATERI REPAIR	AL COST: 0.00 0.00	USD X X		Euro O O	
TOTAL COST:	No cost (S + M)	QUOTAT	TION #:		
APPROVED BY:	Il My	4			
DATE:	18.10.2010				

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Qualcomm USA

Accreditation No.: SCS 108

Certificate No: D1900V2-5d096_Oct10

CALIBRATION CERTIFICATE

D1900V2 - SN: 5d096 Object

QA CAL-05.v7 Calibration procedure(s)

Calibration procedure for dipole validation kits

October 21, 2010 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI), The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 + 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	10 #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house gheck: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D'Rier
Approved by:	Katja Pokovic	Technical Manager	77-31-1

Issued: October 22, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1,

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipote Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1,39 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 mW / g
SAR normalized	normalized to 1W	40.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.21 m/W / g
SAR normalized	normalized to 1W	20.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.8 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.34 mW / g
SAR normalized	normalized to 1W	21.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.3 Ω + 5.0 jΩ
Return Loss	- 25.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$47.1 \ \Omega + 5.7 \ \mathrm{j}\Omega$
Return Loss	- 23.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	September 26, 2007	

DASY5 Validation Report for Head TSL

Date/Time: 20.10.2010 13:46:26

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d096

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98 V/m; Power Drift = 0.043 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10 mW/g; SAR(10 g) = 5.21 mW/g

Maximum value of SAR (measured) = 12.5 mW/g

0 dB = 12.5 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 21.10.2010 15:14:04

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d096

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ mho/m}$; $\varepsilon_i = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.4 V/m; Power Drift = 0.00634 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.34 mW/g

Maximum value of SAR (measured) = 12.7 mW/g

0 dB = 12.7 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Qualcomm USA

Certificate No: DAE3-400_Feb11

Accreditation No.: SCS 108

C

S

CALIBRATION CERTIFICATE

Object DAE3 - SD 000 D03 AA - SN: 400

Calibration procedure(s) QA CAL-06.v22

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: February 8, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Calibrator Box V1.1	SE UMS 006 AB 1004	07-Jun-10 (in house check)	In house check: Jun-11

Name Function Signature
Calibrated by: Dominique Steffen Technician

Approved by: Fin Bomholt R&D Director

Issued: February 8, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

75

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	x	Υ	Z
High Range	404.600 ± 0.1% (k=2)	405.069 ± 0.1% (k=2)	403.612 ± 0.1% (k=2)
Low Range	3.96430 ± 0.7% (k=2)	3.96948 ± 0.7% (k=2)	3.94515 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	346.0°±1°

Appendix

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	200001.3	-0.40	-0.00
Channel X	+ Input	20007.38	7.58	0.04
Channel X	- Input	-19994.88	4.62	-0.02
Channel Y	+ Input	200008.4	-1.48	-0.00
Channel Y	+ Input	20001.13	1.33	0.01
Channel Y	- Input	-19998.86	0.64	-0.00
Channel Z	+ Input	200009.8	0.91	0.00
Channel Z	+ Input	19995.02	-4.68	-0.02
Channel Z	- Input	-20005.78	-6.38	0.03

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	1999.2	-0.99	-0.05
Channel X + Input	200.64	0.64	0.32
Channel X - Input	-200.02	-0.02	0.01
Channel Y + Input	2000.0	-0.00	-0.00
Channel Y + Input	198.79	-1.21	-0.60
Channel Y - Input	-200.16	0.04	-0.02
Channel Z + Input	1999.8	-0.31	-0.02
Channel Z + Input	199.03	-0.97	-0.49
Channel Z - Input	-200.53	-0.63	0.32

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-3.89	-6.46
	- 200	9.06	6.88
Channel Y	200	-7.54	-7.75
	- 200	6.80	6.84
Channel Z	200	20.10	20.36
	- 200	-23.41	-23.00

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	2.65	0.26
Channel Y	200	2.10	-	4.50
Channel Z	200	2.28	-1.17	•

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)	
Channel X	15633	15640	
Channel Y	15995	15623	
Channel Z	16566	16842	

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.53	-0.97	1.98	0.52
Channel Y	-1.24	-2.42	-0.16	0.45
Channel Z	-0.77	-2.19	0.64	0.59

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. **Input Resistance** (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9