Assignment Project Exam Help

 $\underbrace{\text{https://powcoder.com}}_{NP}\underbrace{(S[pss]\backslash NP)/NP}\underbrace{NP/N}\underbrace{NP/N}$

Add WeChat powcoder

Assignmento Projecto Exam Help

 $\underbrace{\text{https://powcoder.com}}_{NP} \underbrace{|\text{S[pss]}\backslash NP)/NP}_{NP/N} \underbrace{|\text{Rock of the properties of the prop$

Add WeChat powcoder

Assignment Project Exam Help

```
https://powcoder.com

NP (S[pss]\NP)/NP NP/N N

Add Wechat powcoder

Add Wechat powcoder
```

Assignment Project Exam Help

```
https://powcoder.com

NP (S[pss]\NP)/NP NP/N NP/N

Add Wednat powcoder

NP/NP (S[pt]\NP)/NP

(S[dcf]\NP)/NP
```

Neural Networks

(Fig: courtesy R Socher)

Neural Networks can be built for different input, output types.

Linear, multiple outputs (Linear, powcoder.com

- Single output binary (Logistic)

Multi output binary (Logistic)Add W

1 of k Multinomial output (Softmax)

- Linear, single output (Linear)

- Goal of training: Given the training data (inputs, targets) and the
- architecture, determine the model parameters. Model Parameters for a 3 layer network:

Weight matrix from input layer to the hidden (Wik)

 W_{23}

- Weight matrix from hidden layer to the output (Wki)
- Bias terms for hidden layer
- Bias terms for output layer

Our strategy will be:

- Compute the error at the output
- Determine the contribution of each parameter to the error by taking the differential of error wrt the parameter
- Update the parameter commensurate with the error it contributed.

Inputs can be:

- A scalar number
- **Vector of Real numbers**
- Vector of Binary

Design Choices

- When building a neural network, the designer would choose the following hyper parameters and non linearities based on the application characteristics:

 Assignment Project Exam Help

 Number of hidden layers

 - Number of hidden unithingsachplayecoder.com
 - Learning rate
 - Add WeChat powcoder Regularization coefft
 - Number of outputs
 - Type of output (linear, logistic, softmax)
 - Choice of Non linearity at the output layer and hidden layer (See next slide)
 - Input representation and dimensionality

Commonly used non linearities (fig: courtesy Socher)

logistic ("sigmoid")

$$f(z) = \frac{1}{1 + \exp(-z)}.$$

$$f'(z) = f(z)(1 - f(z))$$

 $f(z)=\tanh(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}},$

f'(z) = 1 - f(Assignment Project Exam Help

halfttps://powcoder.compft sign

rectified linear (ReLu)

tanh(z) = 2logistic(2z) - 1

Add WeChat powcoder

HardTanh(x) =
$$\begin{cases}
-1 & \text{if } x < -1 \\ x & \text{if } -1 <= x <= 1 \\ 1 & \text{if } x > 1
\end{cases} \text{ softsign}(z) = \frac{a}{1 + |a|} \quad \text{rect}(z) = \max(z, 0)$$

$$rect(z) = max(z,0)$$

Objective Functions and gradients

- Linear Mean squared error
 - $E(w) = \frac{1}{2N} \sum_{1}^{N} (t_n y_n)^2$
- Logistic with binary classifications: Cross Entropy Error https://powcoder.com
- Logistic with k outputs: k >A2dCross Fatropy Ester
- Softmax: 1 of K multinomial classification: Cross Entropy Error, minimize NLL

• In all the above cases we can show that the gradient is: $(y_k - t_k)$ where y_k is the predicted output for the output unit k and t_k is the corresponding target

High Level Backpropagation Algorithm

- Apply the input vector to the network and forward propagate. This
 will yield the activations for hidden layer(s) and the output layer
 - $net_j = \sum_i w_{ji} z_i$,
 - $z_j = h(net_j)$ where h is your choice of non linearity. Usually it is sigmoid or tanh. Rectified Linear Upit (Relly) Picoleeu Fedam Help
- Evaluate the error δ_k for all the output units $\delta_k = o_k t_k \text{ where } o_k \text{ is the output produced by the model and } t_k \text{ is the target provided in the training detectat powcoder}$
- Backpropagate the δ 's to obtain δ_j for each hidden unit j

$$\delta_j = h'(z_j) \sum_k w_{kj} \delta_k$$

Evaluate the required derivatives

$$\frac{\partial E}{\partial W_{ji}} = \delta_j z_i$$

Assignment Project Exam Help

https://powcoder.com

Recurrent neural methat methat

Recurrent neural networks

 Use the same computational function and parameters across different time steps of the sequence
Assignment Project Exam Help
• Each time step: takes the input entry and the previous hidden state to

compute the output entrops://powcoder.com

• Loss: typically computed every time step coder

Figure from Deep Learning, by Goodfellow, Bengio and Courville

Advantage

- Hidden state: a lossy summary of the past
- Shared functions and parameters: greatly reduce the capacity and good for generalization in learning
- Explicitly use the prior knowledge that the sequential data can be processed by in the same way at different time step (e.g., NLP)

Advantage

- Hidden state: a lossy summary of the past
- Shared functions and parameters: greatly reduce the capacity and good for generalization in learning
- Explicitly use the prior knowledge that the sequential data can be processed by in the same way at different time step (e.g., NLP)
- Yet still powerful (actually universal): any function computable by a Turing machine can be computed by such a recurrent network of a finite size (see, e.g., Siegelmann and Sontag (1995))

Figure 4: A simple recurrent network.

Recurrent Network Variations

- This network can theoretically learn contexts arbitrarily far back
- Many structural variations oject Exam Help
 - Elman/Simple Net
 - https://powcoder.com Jordan Net
 - Mixed
 - Context sub-blocks, etc. Chat powcoder
 - Multiple hidden/context layers, etc.
 - Generalized row representation
- How do we learn the weights?

Simple Recurrent Training – Elman Training

- Can think of net as just being a normal MLP structure where part of the input happens to be a copy of the last set of state/hidden node activations. The MLP itself does not even need to be aware that the context inputs are coming from the hidden layer.
- Then can train with standard BP training
- While network can the oretically dook back arbitrarily far in time, Elman learning gradient goes back only 1 step in time, thus limited in the context it can learn
 - Would if current output depended on input 2 time steps back
- Can still be useful for applications with short term dependencies

BPTT - Backprop Through Time

- BPTT allows us to look back further as we train
- However we have to pre-specify a value k, which is the maximum that learning will look back
- During transing we unfold the network in time as if it were a standard feedfoward network with k layers
 - But where the weights of each unfolded layer are the same (shared)
- We then train the unfolded k layer feedforward net with standard BP
- Execution still happens with the actual recurrent version
- Is not knowing k apriori that bad? How do you choose it?
 - Cross Validation, just like finding best number of hidden nodes, etc., thus we can find a good k fairly reasonably for a given task
 - But problematic if the amount of state needed varies a lot

Figure 5: The effect of unfolding a network for BPTT ($\tau = 3$).

- k is the number of feedback/context blocks in the unfolded net.
- Note k=1 is just standard MLP with no feedback
- Ist block h(0) activations are just initialized to a Assignment Project Examchit or 0 so k=1 is still same as standard MLP, so feedforward MLP weights v Averd WeChat powcode ast context block is h(k
 - k=2 is Elman training

rks

Training RNN

- Principle: unfold the computational graph, and use backpropagation
- Called back-propagation through time (BPTT) ralgorithm
- Can then apply any general-purpose gradient-based techniques https://powcoder.com

Add WeChat powcoder

Training RNN

- Principle: unfold the computational graph, and use backpropagation
- Called back-propagation through time (BPTT) ralgorithm
- Can then apply any general-purpose gradient-based techniques https://powcoder.com
- Conceptually: first compute the gradients of the internal nodes, then compute the gradients of the parameters

Figure from *Deep Learning*, Goodfellow, Bengio and Courville

Dealing with the vanishing/exploding gradient in RNNs

- Gradient clipping for large gradients type of adaptive LR
- Linear self connection near one for gradient Leaky unit
- Skip connections nment Project Exam Help
 - Make sure can be influenced by units d skips back, still limited by amount of skipping etc//powcoder.com
- Time delays and different time scales
- LSTM Long short terms memory Current state of the art
 - Gated recurrent network
 - Keeps self loop to maintain state and gradient constant as long as needed self loop is gated by another learning node forget gate
 - Learns when to use and forget the state

Other Recurrent Approaches

- LSTM
- RTRL Real Time Recurrent Learning
 - Do not have to specify a k, will look arbitrarily far back
 - But note, that with an expectation of looking arbitrarily far back, you create a very difficult problem expectation.
 - Looking back more requires increase in data, else overfit Lots of irrelevant options which could lead to minor accuracy improvements
 - Have reasonable expectations
 - n^4 and n^3 versions too expensive in practice
- Recursive Network Dynamic treets Puctures der
- Reservoir computing: Echo State Networks and Liquid State machines
- Hessian Free Learning
- Tuned initial states and momentum
- Neural Turing Machine RNN which can learn to read/write memory
- Relaxation networks Hopfield, Boltzmann, Multcons, etc.

Assignment Project Exam Help

- Using only dense features
 - -Input termed in power der. com
 - capitalization
- The input byelver concate lation of all embeddings of all words in accontext findow

1-best Supertagging Results: dev

Assignment Project Exam Help

	iviodei	Accuracy	Time
_	C&C (gold POS)	92.60	-
httma	C&C (auto POS)	91.50	com
HUDS	N/V DOW	91.td (t	21.QC () []
I	RNN	92.63	-
	RNN + dropout	93.07	2.02

Table 14. Plest tage in actuacy independ to parket in O Bark Section 00 with a single CPU core (1,913 sentences), tagging time in secs.

1-best Supertagging Results: test

Assignment Project Exam Help

	Model	Section 23	VVIKI	Bio
	C&C (gold POS)	93.32		91.85
1-44	C&C (auto POS)	92.02	B8.80	89.08
ΠU	ps. (auto pos)	M 5C()	BUDO	8.16
	RNN	93.00	90.00	88.27

Table 2 1-hest tagging accuracy tomparison on CCGBank Section 23 (2,407 sentences), Willingedia 2/10 sertences and Bic Ot NAV, (0) sertences

Multi-tagging Results: dev

Multi-tagging Results: test

Final Parsing Results

Assignment Project Exam Help

	LP	LR	LF	COV.	LP	LR	LF	
C&C	86.24	84.85	85.54	99.42	81.58	80.08	80.83	99.50
(NN)	18674	y 85 / 5ø 1	86.13	799.92	C\$2651	81-36	182,00	100
(RNN)	87 68	86.47		V 99/96	63.22	81.78	82.49	100
C&C	86.24	84.17	85.19	100	81.58	79.48	80.52	100
(NN)	86.71	85.40	86.05	100	-	-	-	-
(RNN)	87.68	26 41	87.04	100		-	- 1	. =
Add WeChat powcoder								
		* *				• • • •		_

Table 3: Parsing test results (auto POS). We evaluate on all sentences (100% coverage) as well as on only those sentences that returned spanning analyses (% cov.). RNN and NN both have 100% coverage on the Wikipedia data.