ABSOLUTE CONTINUITY

Problem 1 (Spring'96, Spring'07). Let $f: [0,1] \to \mathbb{R}$.

- (i) Let $V_f(0,x)$ be the total variation of f on [0,x]. Prove that if f is absolutely continuous on [0,1], so is $V_f(0,x)$.
- (ii) Define what it means for f to be absolutely continuous.

Problem 2 (Spring'05). Let $\{f_n\} \in AC(I)$, I = [a, b]. Assume that $f_n \to f(L_1)$ and $\{f'_n\}$ is Cauchy (L_1) . Show that there exists $g \in AC(I)$ such that f(x) = g(x) a.e. $x \in I$.

Problem 3 (Spring'05). Let $f: I \to \mathbb{R}$, I = [a, b], and let $M \in \mathbb{N}$. Show that the following two statements are equivalent.

- (i) $f \in AC(I)$.
- (ii) For every $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that for every collection of intervals $\{J_k = [a_n, b_n] \subset I\}$ with $\sum_n \xi_{J_n}(x) \leq M$ and $\sum_n |J_n| \leq \delta$, we have $\sum_n |f(b_n) f(a_n)| \leq \varepsilon$.

Problem 4 (Fall'05). Suppose f is absolutely continuous on [0,1]. Prove that so is e^f .

Problem 5 (Spring'06). Let

$$f(x) = \begin{cases} x^p \sin(x^{-q}) & \text{if } 0 < x \le 1\\ 0 & \text{if } x = 0. \end{cases}$$

- (i) Show that if 0 < q < p, then f is absolutely continuous.
- (ii) However, if 0 , show that f is not of bounded variation.

Problem 6 (Spring'06). Let $f_n: [0,1] \to [-1,1], n \in \mathbb{N}$ be a sequence of absolutely continuous functions. Suppose that $f_n \to f$ uniformly. Is f absolutely continuous?

Problem 7 (Fall'06). Suppose that $f_n(x)$ is a sequence of increasing (in x), absolutely continuous functions on [0,1] for which $f_n(0) = 0$ for all n. Let

$$g(x) = \sum_{n=1}^{\infty} f_n(x).$$

Prove that if $g(1) < \infty$, then g is absolutely continuous on [0,1].