Basic Matrix and vector computations

$$(\mathbf{AB})_{ij} = \sum_{s=1}^{n} a_{is} b_{sj} \qquad (\mathbf{Ax})_i = \sum_{j=1}^{n} a_{ij} x_j$$

Theorem 1: The following results hold

- i) Consider arbitrary $m \times j$, $j \times k$ and $k \times n$ matrices **A**, **B** and **C**. Then $(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$.
- ii) Consider arbitrary $m \times n$ matrix \mathbf{A} , n-dimensional vectors \mathbf{x} and \mathbf{y} and scalars a, b. We then have $\mathbf{A}(a\mathbf{x} + b\mathbf{y}) = a\mathbf{A}\mathbf{x} + b\mathbf{A}\mathbf{y}$
- iii) Consider arbitrary $m \times n$ matrices \mathbf{A} , \mathbf{B} and an arbitrary n-dimensional vectors \mathbf{x} . We then have that $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$ and $(\mathbf{A}\mathbf{x})^T = \mathbf{x}^T \mathbf{A}^T$.

Linearly independent vectors

Definition 3: The vectors $\mathbf{x}_1, \dots, \mathbf{x}_K$ in \mathbb{R}^n are linearly independent if the expression

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \ldots + c_K\mathbf{x}_K = 0$$

implies that

$$c_1 = c_2 = \ldots = c_K = 0$$

Definition 4: Let **A** be an arbitrary $m \times n$ matrix where $m \geq n$. Now perceive the columns of **A** as vectors in \mathbb{R}^m . The maximum number of linearly independent columns in **A** is denoted the **rank** of **A**. Furthermore, if the n columns of **A** all are linearly independent **A** is said to have full rank, i.e. the rank is n.

If A does not have have full rank it is said to be **singular**.

Orthogonality and Orthonormality

Definition 5: The vectors $\mathbf{x}_1, \mathbf{x}_2$ in a vectorspace \mathbb{R}^n are said to be **orthogonal** if $\mathbf{x}_1 \cdot \mathbf{x}_2 = 0$. Furthermore, if $\mathbf{x}_1 \cdot \mathbf{x}_1 = \mathbf{x}_2 \cdot \mathbf{x}_2 = 1$ then $\mathbf{x}_1, \mathbf{x}_2$ are said to be **orthonormal**.

Theorem 3: Orthonormal vectors are always linearly independent.

Definition 6: An $m \times n$ matrix \mathbf{U} $(m \geq n)$ is said to be **column orthonormal** if it consists of n pairwise orthonormal columns (the columns are perceived as vectors in \mathbb{R}^n).

If **U** is an $m \times n$ column orthonormal matrix then

$$(\mathbf{U}^T\mathbf{U})_{ij} = \sum_{k=1}^m \mathbf{U}_{ki} \mathbf{U}_{kj} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases} \qquad \mathbf{U}^T\mathbf{U} = \mathbf{I}_n$$
$$\mathbf{I}_n \text{ is the } n \times n \text{ identitymatrix}$$

Definition 7: An $n \times n$ matrix **V** is said to be **orthonormal** if it consists of n pairwise orthonormal columns (the columns are perceived as vectors in \mathbb{R}^n).

Subspace and Dimension

Definition 8: Consider $S \subseteq \mathbb{R}^n$. If for arbitrary elements $\mathbf{x}_1, \mathbf{x}_2 \in S$ and arbitrary scalars $c_1, c_2 \in \mathbb{R}$ applies that $c_1\mathbf{x}_1 + c_2\mathbf{x}_2 \in S$ then S is said to be a vector space. The vector space S is also said to be a subspace of \mathbb{R}^n .

Notice: \mathbb{R}^n is thus a vector space.

Definition 9: Let $S \subseteq \mathbb{R}^n$ be a vector space. The **dimension** of the vector space is the maximum number of linearly independent vectors, that can be found in S. Or stated differently: if $\mathbf{u}_1, \ldots, \mathbf{u}_K \in S$ are linearly independent and meet the condition that every $y \in S$ can be written as $y = c_1\mathbf{u}_1 + \ldots + c_K\mathbf{u}_K$ then S has dimension K. The vectors $\mathbf{u}_1, \ldots, \mathbf{u}_K$ is then said to form a **basis** for S. If $\mathbf{u}_1, \ldots, \mathbf{u}_K$ are orthonormal, $\mathbf{u}_1, \ldots, \mathbf{u}_K$ is said to form an orthonormal **basis** for S.

Notice: Hence \mathbb{R}^n has dimension n.

Coordinates and Distance computations

Assume that the vectors $\mathbf{u}_1, \dots, \mathbf{u}_n$ form an orthonormal basis for \mathbb{R}^n . We know then that an arbitrary \mathbf{x} can be written as

$$\mathbf{x} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n$$

We call $(\alpha_1, \ldots, \alpha_n)$ the **coordinates** of **x** w.r.t. the base $\mathbf{u}_1, \ldots, \mathbf{u}_n$ We now immediately get for all i that

$$\mathbf{x} \cdot \mathbf{u}_i = \mathbf{x} \cdot (\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n) = \alpha_i$$

Theorem 4: Let $\mathbf{u}_1 \dots, \mathbf{u}_K$ be orthonormal vectors and let

$$\mathbf{x} = \sum_{k=1}^{K} \alpha_k \mathbf{u}_k$$

Then $\|\mathbf{x}\|^2 \equiv \mathbf{x} \cdot \mathbf{x} = \sum_{k=1}^K \alpha_k^2$. "generalized Pythagorean Theorem"

Gram-Schmidt method

Assume that the vectors $\mathbf{x}_1, \dots, \mathbf{x}_k$ are linearly independent and let S be the subspace for which these vectors form a basis. Now we can construct a set of orthonormal vectors $\mathbf{e}_1, \dots, \mathbf{e}_k$, which form an orthonormal basis for S in this way:

The Gram-Schmidt method:

```
\mathbf{e}_{1} := \mathbf{x}_{1}/\|\mathbf{x}_{1}\|
For i := 2, \dots, k do {
\mathbf{e}_{i} := \mathbf{x}_{i} - \sum_{j=1}^{i-1} (\mathbf{x}_{i} \cdot \mathbf{e}_{j}) \mathbf{e}_{j}
\mathbf{e}_{i} := \mathbf{e}_{i}/\|\mathbf{e}_{i}\|
}
```

Range, Null Space and the Least Squares solution

Definition 10: Let **A** be an arbitrary $m \times n$ $(m \ge n)$ matrix. The function $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is then said to be a **linear mapping** from $\mathbb{R}^n \to \mathbb{R}^m$. The **range** of the linear mapping is the set $B(\mathbf{A}) \subseteq \mathbb{R}^m$, that meets the condition that for any $\mathbf{y} \in B(\mathbf{A})$ exists an $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{y}$. **The null space** of the linear mapping is the set $N(\mathbf{A}) \subseteq \mathbb{R}^n$, that meets the condition that for any $\mathbf{x} \in N(\mathbf{A})$ it applies that $\mathbf{A}\mathbf{x} = 0$.

Theorem 5 Let $\mathbf{u}_1 \dots, \mathbf{u}_K$ be an arbitrary orthonormal basis for $B(\mathbf{A})$. Then the least squares solution \mathbf{x} that minimizes $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ satisfies

$$\mathbf{A}\mathbf{x} = \sum_{k=1}^{K} (\mathbf{b} \cdot \mathbf{u}_k) \mathbf{u}_k \equiv \mathbf{b}_{LS}$$

Singular Value Decomposition

Theorem 6 Consider an arbitrary $m \times n$ matrix **A**. Then we can write **A** as $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$, where **U** is an $m \times n$ column othonormal matrix, **V** is an $n \times n$ orthonormal matrix and **W** is an $n \times n$ diagonal matrix having non-negative diagonal elements $w_1, \ldots w_n$ ordered such that $w_1 \geq w_2 \geq \ldots \geq w_n$. This is said to be a **Singular Value Decomposition** (SVD) of **A**.

$$\begin{pmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{V} & \mathbf{V} \end{pmatrix} = \begin{pmatrix} \mathbf{U} & \mathbf{V} & \mathbf{V} & \mathbf{V} \end{pmatrix} \cdot \begin{pmatrix} w_1 & \mathbf{V} \end{pmatrix}$$

 $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$, where \mathbf{U} is an $m \times n$ column othonormal matrix, \mathbf{V} is an $n \times n$ orthonormal matrix and \mathbf{W} is an $n \times n$ diagonal matrix having non-negative diagonal elements $w_1, \dots w_n$ ordered such that $w_1 \geq w_2 \geq \dots \geq w_n$.

Theorem 7 Consider an arbitrary $m \times n$ matrix **A** and assume that for **W** it applies that w_1, \ldots, w_K are positive and w_{K+1}, \ldots, w_n are equal to zero. Then it applies that

- i) $N(\mathbf{A})$ has dimension n-K and the last n-K columns of \mathbf{V} form an orthonormal basis for $N(\mathbf{A})$.
- ii) $B(\mathbf{A})$ has dimension K and the first K columns of \mathbf{U} form an orthonormal basis for $B(\mathbf{A})$.
- iii) The SVD solution $\mathbf{x} = \mathbf{V}\tilde{\mathbf{W}}^{-1}\mathbf{U}^T\mathbf{b}$, where $[\tilde{\mathbf{W}}^{-1}]_{jj} = 0$ if $\mathbf{W}_{jj} = 0$, otherwise $[\tilde{\mathbf{W}}^{-1}]_{jj} = 1/\mathbf{W}_{jj}$, is the least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$. (Notice that it then follows that if all of the \mathbf{W}_{jj} 's are positive, i.e. \mathbf{A} has full rank it applies that $\mathbf{x} = \mathbf{V}\mathbf{W}^{-1}\mathbf{U}^T\mathbf{b}$ is the least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$).

 $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$, where \mathbf{U} is an $m \times n$ column othonormal matrix, \mathbf{V} is an $n \times n$ orthonormal matrix and \mathbf{W} is an $n \times n$ diagonal matrix having non-negative diagonal elements $w_1, \dots w_n$ ordered such that $w_1 \geq w_2 \geq \dots \geq w_n$.

- IF!!! w_1, \ldots, w_K are positive and w_{K+1}, \ldots, w_n are equal to zero
 - i) $N(\mathbf{A})$ has dimension n-K and the last n-K columns of \mathbf{V} form an orthonormal basis for $N(\mathbf{A})$.
 - ii) $B(\mathbf{A})$ has dimension K and the first K columns of \mathbf{U} form an orthonormal basis for $B(\mathbf{A})$.

Proof: As **V** is orthonormal the columns $\mathbf{v}_1, \dots, \mathbf{v}_n$ are orthonormal and thus form an orthonormal basis for \mathbb{R}^n . Then we can write an arbitrary $\mathbf{x} \in \mathbb{R}^n$ as $\mathbf{x} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n$. Now we can calculate

$$\mathbf{A}\mathbf{x} = \mathbf{U}\mathbf{W}\mathbf{V}^{T}(c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \ldots + c_{n}\mathbf{v}_{n})$$
$$= c_{1}\mathbf{U}\mathbf{W}\mathbf{V}^{T}\mathbf{v}_{1} + c_{2}\mathbf{U}\mathbf{W}\mathbf{V}^{T}\mathbf{v}_{2} + \ldots + c_{n}\mathbf{U}\mathbf{W}\mathbf{V}^{T}\mathbf{v}_{n}$$

 $\mathbf{A}(a\mathbf{x} + b\mathbf{y}) = a\mathbf{A}\mathbf{x} + b\mathbf{A}\mathbf{y}$

We notice that $\mathbf{V}^T \mathbf{v}_i = (0, \dots, 0, 1, 0, \dots, 0)$ where the 1 is at the *i*'th position. Insertion gives us

$$\mathbf{A}\mathbf{x} = c_1 w_1 \mathbf{u}_1 + c_2 w_2 \mathbf{u}_2 + \dots c_n w_n \mathbf{u}_n$$

 $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$, where \mathbf{U} is an $m \times n$ column othonormal matrix, \mathbf{V} is an $n \times n$ orthonormal matrix and \mathbf{W} is an $n \times n$ diagonal matrix having non-negative diagonal elements $w_1, \dots w_n$ ordered such that $w_1 \geq w_2 \geq \dots \geq w_n$.

iii) The SVD solution $\mathbf{x} = \mathbf{V}\tilde{\mathbf{W}}^{-1}\mathbf{U}^T\mathbf{b}$, where $[\tilde{\mathbf{W}}^{-1}]_{jj} = 0$ if $\mathbf{W}_{jj} = 0$, otherwise $[\tilde{\mathbf{W}}^{-1}]_{jj} = 1/\mathbf{W}_{jj}$, is the least squares solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

In order to show iii), i.e. that the SVD solution is the same as the least squares solution we exploit that we know that the first K columns of \mathbf{U} form an orthonormal basis for the range of \mathbf{A} . I.e. that the nearest point in $B(\mathbf{A})$ (the least squares mapping) according to Theorem 5 is given by $\mathbf{b}_{LS} = \sum_{j=1}^{K} (\mathbf{u}_j \cdot \mathbf{b}) \mathbf{u}_j$. Now let \mathbf{x} be the SVD solution. I.e.

$$\mathbf{A}\mathbf{x} = \sum_{k=1}^{K} (\mathbf{b} \cdot \mathbf{u}_k) \mathbf{u}_k \equiv \mathbf{b}_{LS}$$

$$\mathbf{A}\mathbf{x} = (\mathbf{U}\mathbf{W}\mathbf{V}^{T})(\mathbf{V}[\tilde{\mathbf{W}}^{-1}]\mathbf{U}^{T}b) = \mathbf{U}(\mathbf{W}[\tilde{\mathbf{W}}^{-1}]\mathbf{U}^{T}b)$$

$$= [\mathbf{u}_{1} \dots \mathbf{u}_{K}|\mathbf{u}_{K+1} \dots \mathbf{u}_{n}] \begin{bmatrix} \mathbf{u}_{1} \cdot \mathbf{b} \\ \mathbf{u}_{2} \cdot \mathbf{b} \\ \dots \\ \mathbf{u}_{K} \cdot \mathbf{b} \\ ---- \\ 0 \\ \dots \\ 0 \end{bmatrix} = \sum_{j=1}^{K} (\mathbf{u}_{j} \cdot \mathbf{b})\mathbf{u}_{j} = \mathbf{b}_{LS}$$