Section ONE (Induction)

11: A Sequence d1, d2, d3, ... is defined by letting d1=2 and dx=dx-1 for all integers $K \ge 2$. Show

that dn = 2 for all integers $n \ge 1$ using Mathematical Induction.

301:

Fust Step: As d1=2,

 $d\kappa = \frac{d\kappa - 1}{\kappa}$, $\kappa \ge 2$ and $d\eta = \frac{2}{m!}$, $n \ge 1$

 $\frac{\text{fol } m=1}{\text{dis} 2} = 2$

Bo dn is true for [m=1]

Second Step:

Let dn is true for n=K for n=K+1 dk=2 $dk+1=\frac{dk}{K+1}$ K+1 dk+1

Date:..... $d_{K+1} = \frac{Q}{K!} \cdot \frac{1}{K+1}$ $d_{K+1}=2=2$ (K+1)(K) (K+1)! C(K+1) = 2 (K+1)!So de is true for n= K+1 Hence by Principal of Mathematical Induction, and is true for all value of nEN Q#2 $\frac{1}{1:2} + \frac{1}{2\cdot3} + \dots = \frac{m}{m+1}$ For all integers Sol: Gist Step: Hence it is true for n=1 Let it be true for n=K Second Step:

L + L + · · · · L + L = K + L Date:.... K(K+1) (K+1) (K+1) K+1 (K+1) (K+ 1.2 23 $= K_1 + 1 = K(K+2)+1 = K^2+2K+1$ (K+1) (K+1)(K+2) (K+1)(K+2) (K+1)(K+2) $=(K+1)^2=K+1=K+1$ (K+1)(K+2) K+2 (K+1+1)= (K+1)(K+1)+1Hence, Statement is true for n= K+1, Thus · Proved, it is True for all integers 1-2 2.3 n(n+1) n+1

Date:	3
Section C	me Modular Arithmetic
3) Encrypt and Decrypt & Piffine Cipher	plowing words using
S) OPIC Frace	
a) K (19,4) b) K(/
TOPIC K(19,4)	AFKPUZ 0510152025
X, X, X, X	
Encuption:	
y = (x-a+b) Mod 2	ь
K(19,4)	→ K(9,5)
y=(19-19+4) Mod 26	y = (19.9+5) Mod 26
y - 365 Mad 26	y= 176 Mod 26
$y_1 = 1 = B$	$y_1 = 20 = 0$
y = (14.19+4) Mod 26	4 = (14,9+5) mad 26
9- 270 Nod 26	y = (14, 9 + 5) mod 26 $y = 131 usd 26$
y = (14.19+4) Mod 26 $y = 270 Mod 26$ $y = 10 = K$	y= 1= B
y = (15.19+4) Mod 26 y = 289 Mod 26 y = 2	9 = (15.9+5) Nod 26
1-93 - D	y = (13.9+5) Mod 26 y = 140 Mod 26 y = 10 = K
Ū3	13

 $x_1 = 11(1-4) \text{ Mod 26}$ $x_1 = -33 \text{ Mod 26}$ $x_1 = 19 \text{ Mod 26}$ $x_1 = 19 = 17$ $x_1 = 9(20 - 5)$ Mod 26 $x_1 = 45$ Mod 26 $x_1 = 19$ = T

 $x_2 = 11(10-4) \text{ Mod 2b}$ $x_2 = 66 \text{ Mod 2b}$ $x_2 = 14 = 0$ 362 = 3(1 - 5) Mod 26 26 = 3(-4) Mod 26 26 = 14 Mod 26 = 14 Mod 26 26 = 14 = 0

 $x_3 = 11(3-4) \text{ Mod } 26$ $x_3 = -11 \text{ Mod } 26$ $x_3 = 15 = P$ $x_3 = 9(10 - 5)$ Mod 26 $x_3 = 0.15$ Mod 26 $x_3 = 15 = 0.35$

xy = 11(0-4) Mod 26 xy = -44 Mod 26xy = 8 = I $x_4 = B(25 - 5) \text{ Mod } 26$ $x_4 = 60 \text{ Mod } 26$ $x_4 = 8 = I$

565 = 11(16-4) Mad 26 132 Mad 26 132 Mad 26132 Mad 26

 $x \le 3(23-5)$ rud 26 $x \le 54$ rusol 26 $x \le 2 = C$

BKDAQ Decrypt K(19,4) TOPIC UBKZX Decypt, K(4,5) TOPIC

Date:	(8)
2) FORCE	
5 14 17 2 4	*.
J. X. X. X.	
Encuption: y=((ax+6) Mob 26.
· K(19, 4)	·K(9,5)
y = (19.5 + 4) Modab	y = (9.5 +5) Mxd 26
y = 99 Mod 26	y = (49+1)Mod 2 b
y = 99 Mod 26 y= 21 = V	y = (49+1)Mbd 2 b $y_1 = 23+1 = 24 = 4$
<u> </u>	0.3
y = (19.14 + 4) Mod 26 $y = 270 Mod 26$ $y = 10 = K$	y = (9.14+5) Mod 26
y = 270 Mad 26	y - 130+1M2 2t
$\frac{9}{9} = 10 = K$	$y_2 = 0 + 1 = 1 = B$
(10, 17, 14, 10)	10.00
y = (19.17 + 4) Mod 26	y = (9.17 + 5) Mod 26
y = 32/ MW 26	y= 138 Mod 26 y= 2 = C
y = (19.17 + 4) Mod 26 $y = 327 Mod 26$ $y = 15 = P$ $y = 15 = P$	J3
y=(19.2+4) Mod 26 y=402 Mod 26 y=16=00	y - (9.2 + 5) mod 26
1 4 2 MM 2 b	7 = 23 Mod 26
Jr 16= 0	y=(9.2+5) mod 26 y=23 mod 26 y=23 - X
da	Jy .
	WWW WAR

Date:	
y = 119.4+91 Mod 26 y = 80 Mod 26 ys = 2 = B	y = (9.4 + 5) Nod 26 y = 41 Mod 26 ys = 15 = P
So the Enc	rypted value are
VKPQB	YBCXP
Decry x = a-1	phion: (y-b) Modab
V K P Q B 21 10 15 16 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y B C X P 24 1 2 23 15 2 1 1 1 1 3, 3, 3, 3, 3,
. K(14,4) a-' Mod 26 = 19' Mod 26 = 11 Mod 26	- K(9,5) a-1 Mod 26 = 9-1 Mod 26 = B Mod 26
$x_1 = 11(21 - 4) \text{ Mod 26}$ $x_1 = 187 \text{ Mod 26}$ $x_1 = 5 = F$	$x_1 = 3(24-5) \text{ Mod 26}$ $x_1 = 578 \text{ Mod 26}$ $x_1 = 5 = F$
x2 = 11(10-4) Mod 26 x2 = 66 Mod 26	$x_2 = 3(1-5) \text{ Mod } 26$ $x_2 = -12 \text{ Mod } 26$
	The well of

. ? (

...

.

.

*

Date:
order set = $8 = 3$
$n^6 = 6^3 = 216$
Thus we can form 216 three digit numbers with repetition.
2: How many three digits number com be fromed From the six digits 2.3, 4, 5, 7 and 9 without replacement
total numbers = n = 6
91der = 8 = 3
As repetition is not allowed thus
$m_1 = 6! = 61 = 6 \times 5 \times 4 = 120$
(m-6)! $(6-3)!$ $3!$
Thus, we can form 120 three digit numbers without repetition.
Q3: A Box contain 10 different colored light bulbs. Find
the of number of ordered sample of size 3 with
replacement.
Sel: total bulbs - n=10
0.01 = 8 = 3
As Repetition is allowed their
$m^{\chi} = 10^3 = 1000$
Thus, there will be 1000 different combinations of order 3 with replacement.
of older 3 with replacement.

.