(C) $\int_1^s (\ln y - y \ln y) dy$; (D) $\int_0^1 (\ln y - y \ln y) dy$.

(B) $\int_{1}^{e} (e^{x} - xe^{x}) dx;$

(A) $\int_0^1 (e^x - ex) dx$;

70分	(2) $t(x)$ 在区间I内等于零. 则 $f(x)$ 在区间I内等于零. 3. $x = 0$ 是函数 $f(x) = \arctan \frac{1}{x}$ 的 ().	(A)连续点; (B)可去间断点; (C)跳跃间断点; (D) 无穷间断点. 4. 定积分∫ ₀ sin 2x dx 的值是(). (A) 0; (B) 2; (C) -2; (D) 4.	5. 函数 $f(x) = x - \ln(1+x)$ 在区间[0,1] 上满足拉格朗目定理的点 $\xi = ($). (A) $1 - \ln 2$; (B) $\frac{1}{\ln 2} - 1$; (C) $1 - \frac{1}{\ln 2}$; (D) $\frac{1}{\ln 2}$. 6. $\left[(\frac{1}{1} + \frac{1}{1}) dx = ($).	Cos x sin x' (A) -2cot x + C; (B) 2cot x + C; (C) -cot x + tan x + C; (D) cot x - tan x + C'. 7. $\frac{d}{dx} \int_{a}^{x} \arcsin t dt = ()$.	(A) $\frac{1}{\sqrt{1-x^2}}$; (B)0; (C)arcsin x – arcsin a ; (D)arcsin x . 8. 曲线 $y=e^x$ 与该曲线过原点的切线及 y 轴所围的平面图形面积为 ().
	題 号 一 二 1 2 3 4 5 6 四 五 六 分 分	<u>注意: 本卷总共 4 页, 总分 100 分, 时间 120 分钟</u>	1. $\frac{2\pi \lim_{x \to x} \frac{ax + \sin x}{x} = 2$, $\frac{1}{2} = 2$.	 ∫(e^{-2x} + 1)dx = 微分方程 y'x = y 滿足 y(1) = 3 的特解为 	5.设函数 $f(x) = \begin{cases} \frac{1}{(1+x)^{2x}}, & x \neq 0 \\ a, & x = 0 \end{cases}$,且 $f(x)$ 在 $x = 0$ 处连续,则 $a = $

6. $y = \ln(1-x)$ 的带佩亚诺余项的 n 阶麦克劳林表达式为

三、简单计算題 (共 6 小題, 每題 6 分, 共 36 分)	\overline{a} 3. 求函数 $f(x) = x^2 + \frac{1}{4x}$ 的极值.
羽分 2. 设 $y = \ln \sqrt{4 - x^2}$, 求 $\frac{dy}{dx} _{x=1}$ 的值.	4. 己知 $\begin{cases} x = e^{-t} \cos t \\ y = e^{-t} \sin t \end{cases}$,
	第 2 页 共 4 页

(共10分)	
综合计算题	
町	
\	
得分	

5. 举∫arcsin xdx.

得分

1. $[4 \ ext{分}]$ 方程 $xy + e^{y^2} - x = 0$ 确定隐函数 y = y(x) , 求曲线 y = y(x) 在点 (1,0) 处的切线方程.

2. [6分] 求微分方程 $y'' + 5y' - 6y = xe^{-2x}$ 的通解.

6. $\forall \not \equiv I = \int_0^2 x^2 \sqrt{4 - x^2} \, dx$.

	$\boxed{ 199 }$ 五、应用题(本題 7 分) 已知平而图形由直线 $y=x+2$ 和曲线 $y=x^2$ 围成,试求该平面图形的面积以及它绕 x 输旋转一周生成的旋转体的体积。
AN 10 11 12 11	\overline{ay} 六、证明曆 (本題 5 分) 设 $f(x)$ 和 $g(x)$ 在区间 $[a,b]$ 上连续,且满足: (1) 当 $x \in [a,b]$ 时, $\int_a^x f(t)dt \ge \int_a^x g(t)dt$: (2) $\int_a^b f(t)dt = \int_a^b g(t)dt$. 试证明: $\int_a^b xf(x)dx \le \int_a^b xg(x)dx$.

共4页