ID: 170104082

Loss Curves for Hyperparameters:

Fig-Loss curves for Hyperparameters K and iterations

HyperParameter Tuning:

GridSearchCV hyper parameter tuning technique is performed for getting the combination of hyperparameters that gives the smallest minimum squared error(MSE).

```
iterations=[800,1000,2000,3000]
K=[2,3,4,5,6,10,12]
```

Among these hyper parameters, K=2 and iteration=3000 gives the smallest MSE = 30.45

Cosine Similarities between all pairs of users:

Cosine similarities between all pairs of users:											
	26062	3768	42704	2826	22922	21038	41762	7850	39250	1884	
26062	1.000000	0.344417	0.273235	-0.491742	-0.574108	0.050667	0.317969	-0.305980	-0.539872	0.760489	
3768	0.344417	1.000000	0.833185	-0.774853	-0.560460	-0.312565	0.771827	0.478501	-0.216684	-0.275768	
42704	0.273235	0.833185	1.000000	-0.694482	-0.205042	0.098791	0.859272	0.312989	-0.220002	-0.282722	
2826	-0.491742	-0.774853	-0.694482	1.000000	0.807217	0.051484	-0.552276	0.124294	0.776769	0.130157	
22922	-0.574108	-0.560460	-0.205042	0.807217	1.000000	0.316678	-0.174991	0.205891	0.745220	-0.123269	
12874	0.139384	0.768266	0.651049	-0.255015	-0.067600	-0.543266	0.832179	0.869625	0.329850	-0.151743	
48984	0.072407	-0.101914	0.347022	0.241924	0.622766	0.746728	0.130167	-0.078610	0.302279	0.100759	
11304	0.957423	0.227026	0.150731	-0.494239	-0.624901	0.214379	0.087166	-0.524296	-0.641212	0.716385	
10676	-0.674945	-0.562656	-0.303951	0.660579	0.771834	0.591484	-0.565917	-0.095417	0.566243	-0.389639	
20724	0.464031	0.702180	0.356003	-0.581155	-0.703676	-0.095564	0.140157	0.093381	-0.234833	-0.061655	

Cosine Similarities between all pairs of movies:

Cosine similarities between all pairs of movies:													
	0	314	628	942	1256	1570	1884	2198	2512	2826	3140	3454	3768
0	1.000000	0.577384	0.530667	0.570010	0.795306	0.632813	0.593908	0.235875	0.736754	0.333345	0.871564	0.433730	0.473786
314	0.577384	1.000000	0.602238	0.794208	0.892201	0.748607	0.494397	0.662904	0.887125	0.715605	0.802298	0.781501	0.874160
628	0.530667	0.602238	1.000000	0.932800	0.537593	0.820001	0.608971	0.863075	0.809662	0.675488	0.376934	0.599453	0.815622
942	0.570010	0.794208	0.932800	1.000000	0.713542	0.813421	0.754401	0.921695	0.938117	0.873067	0.568964	0.832301	0.899846
1256	0.795306	0.892201	0.537593	0.713542	1.000000	0.587102	0.529806	0.437862	0.832013	0.594531	0.955191	0.765197	0.649371
1570	0.632813	0.748607	0.820001	0.813421	0.587102	1.000000	0.533532	0.736175	0.866798	0.558067	0.536104	0.452967	0.927982
1884	0.593908	0.494397	0.608971	0.754401	0.529806	0.533532	1.000000	0.670893	0.791804	0.843956	0.545573	0.774663	0.578636
2198	0.235875	0.662904	0.863075	0.921695	0.437862	0.736175	0.670893	1.000000	0.797224	0.886182	0.261329	0.750573	0.882695
2512	0.736754	0.887125	0.809662	0.938117	0.832013	0.866798	0.791804	0.797224	1.000000	0.829792	0.771999	0.816064	0.910879
2826	0.333345	0.715605	0.675488	0.873067	0.594531	0.558067	0.843956	0.886182	0.829792	1.000000	0.479652	0.944675	0.767077

Suggestion of 5 movies for user id '26062':

```
MovieIds------Rating of user26062 [('314', 0.4183034432545269), ('1884', 1.9376907497417184), ('2198', -0.6246079144830606), ('2512', 1.213494169130356), ('3140', 2.6833295556358303)]
```

Results:

As we can see , we got many results after performing hyper parameter tuning(GridSearchCV). After trying so many combinations of K and iterations, it is found that K=2 and iterations=3000 gives the best result. For this, training MSE and testing MSE are found 21.10 and 30.45 respectively.

Application of Matrix Factorization:

The application of matrix factorization is applied in the Recommendation system. We can identify industries that stand to gain from recommendation systems:

Amazon

There are many e-commerce companies that generate accurate recommendations based on online customers' behaviour data. Such as- Amazon.com recommends many products based on item collaborative recommendations in their website.

Netflix:

Netflix is a data-driven company that uses recommendations of movies to the users to increase the customer satisfaction.

Social Media:

There are many social media websites like Facebook, Linkedin etc. that give "You may also know" or "You may also like" type recommendations to the users to enhance the user experiences.