Microarray Data Analysis

Statistical methods to detect differentially expressed genes

Outline

- The class comparison problem
- Statistical tests
 - Calculation of p-values
 - The volcano plot
- Multiple testing
- Extensions
- Examples

Class comparison

- Identifying differentially expressed genes means ->Identify genes whose expression is significantly associated with different conditions
 - Treatment, cell type,... (qualitative covariates)
 - Dose, time, ... (quantitative covariate)
 - Survival, infection time,...!
 - Estimate effects/differences between groups probably using log-ratios, i.e. the difference on log scale log(X)-log(Y) [=log(X/Y)]

What is a "significant change"?

- Depends on the variability within groups, which may be different from gene to gene.
- To assess the statistical significance of differences, conduct a statistical test for each gene.

Different settings for statistical tests

- Indirect comparisons: 2 groups, 2 samples, unpaired
 - E.g. 10 individuals: 5 suffer diabetes, 5 healthy
 - One sample from each individual
 - Typically: Two sample t-test or similar
- Direct comparisons: Two groups, two samples, paired
 - E.g. 6 individuals with brain stroke.
 - Two samples from each: one from healthy (region 1) and one from affected (region 2).
 - Typically: One sample t-test (also called paired t-test) or similar based on the individual differences between conditions.

Different ways to do the experiment

- An experiment use cDNA arrays ("twocolour") or affy ("one-colour).
- Depending on the technology used allocation of conditions to slides changes.

Type of chip Experiment	cDNA (2-col)	Affy (1-col)
10 indiv. Diab (5) Heal (5)	Reference design. (5) Diab/Ref (5) Heal/Ref	Comparison design. (5) Diab vs (5) Heal
6 indiv. Region 1 Region 2	6 slides 1 individual per slide (6) reg1/reg2	12 slides (6) Paired differences

"Natural" measures of discrepancy (1)

- From now on we will use R as a measure of the (log) ratio, instead of M.
- For Direct comparisons in two colour or paired-one colour.

Mean (log) ratio =
$$\frac{1}{n_T} \sum_{i=1}^{n_T} R_i$$
, (R or M used indistinctly)

Classical t-test = $t = (\overline{R})/SE$, (SE estimates standard error of \overline{R})

Robust t-test = Use robust estimates of location &scale

"Natural" measures of discrepancy (2)

For Indirect comparisons in two colour or Direct comparisons in one colour.

Mean difference =
$$\frac{1}{n_T} \sum_{i=1}^{n_T} T_i - \frac{1}{n_C} \sum_{i=1}^{n_C} C_i = \overline{T} - \overline{C}$$

Classical t-test =
$$t = (\overline{T} - \overline{C})/s_p \sqrt{1/n_T + 1/n_C}$$

Robust t-test = Use robust estimates of location &scale

Some issues in gene selection

- Gene expression values have peculiarities that have to be dealt with.
- Some related with small sample sizes
 - Variance instability
 - Non-normality of the data
- Other related to big number of variables
 - Multiple testing

Variance instability

- Can we trust average effect sizes (average difference of means) alone?
- Can we trust the t statistic alone?
- Here is evidence that the answer is no.

Gene	M1	M2	M3	M4	M5	M6	Mean	SD	t
Α	2.5	2.7	2.5	2.8	3.2	2	2.61	0.40	16.10
В	0.01	0.05	-0.05	0.01	0	0	0.003	0.03	0.25
С	2.5	2.7	2.5	1.8	20	1	5.08	7.34	1.69
D	0.5	0	0.2	0.1	-0.3	0.3	0.13	0.27	1.19
Е	0.1	0.11	0.1	0.1	0.11	0.09	0.10	0.01	33.09

Courtesy of Y.H. Yang

Variance unstability (1): outliers

Gene	M1	M2	M3	M4	M5	M6	Mean	SD	t
A	2.5	2.7	2.5	2.8	3.2	2	2.61	0.40	16.10
В	0.01	0.05	-0.05	0.01	0	0	0.003	0.03	0.25
С	2.5	2.7	2.5	1.8	20	1	5.08	7.34	1.69
D	0.5	0	0.2	0.1	-0.3	0.3	0.13	0.27	1.19
Е	0.1	0.11	0.1	0.1	0.11	0.09	0.10	0.01	33.09

Courtesy of Y.H. Yang

Variance unstability (2): tiny variances

Gene	M1	M2	M3	M4	M5	M6	Mean	SD	t
A	2.5	2.7	2.5	2.8	3.2	2	2.61	0.40	16.10
В	0.01	0.05	-0.05	0.01	0	0	0.003	0.03	0.25
С	2.5	2.7	2.5	1.8	20	1	5.08	7.34	1.69
D	0.5	0	0.2	0.1	-0.3	0.3	0.13	0.27	1.19
Е	0.1	0.11	0.1	0.1	0.11	0.09	0.10	0.01	33.09

Courtesy of Y.H. Yang

Solutions: Adapt t-tests

- Let
 - ullet R_q mean observed log ratio
 - SE_g standard error of R_g estimated from data on gene g.
 - SE standard error of R_g estimated from data across all genes.
- Global t-test: $t=R_g/SE$
- Gene-specific t-test $t=R_{\sigma}/SE_{\sigma}$

Some pro's and con's of t-test

Test

Pro's

Con's

Global t-test:

 $t=R_g/SE$

Yields stable variance estimate

Assumes variance homogeneity \rightarrow biased if false

Gene-specific:

 $t=R_g/SE_g$

Robust to variance heterogeneity

Low power

Yields unstable variance estimates

(due to few data)

T-tests extensions

SAM (Tibshirani, 2001)

EB-moderated t (Smyth, 2003)

$$S = \frac{R_g}{c + SE_g}$$

$$t = \frac{R_g}{\sqrt{\frac{v_0 SE^2 + (n-1)SE_g^2}{v_0 + n - 2}}}$$

$$\dot{t} = \frac{R_g}{\sqrt{\frac{d_0 \times SE_0^2 + d \times SE_g^2}{d_0 + d}}}$$

Up to here...: Can we generate a list of candidate genes?

With the tools we have, the reasonable steps to generate a list of candidate genes may be:

We need an idea of how significant are these values \rightarrow We'd like to assign them *p-values*

Hypothesis testing overview for a single gene

		Reported (
		H₀ is Rejected (gene is Selected)	H _o is Accepted (gene not Selected)	
State of	H _o is false (Affected)	TP, prob: 1-α	FN, prob: 1-β Type II error	Sensitiviy TP/ [TP+FN]
the nature ("Truth")	H₀ is true (Not Affected)	FP, $P[Rej H_0 H_0] \le \alpha$ $Type \ I \ error$	TN , prob: β	Specificity TN/ [TN+FP]
		Positive predictive value TP/[TP+FP]	Negative predictive value TN/[TN+FN]	

Calculation of p-values

- Standard methods for calculating pvalues:
 - (i) Refer to a statistical distribution table (*Normal, t, F*, ...) or
 - (ii) Perform a permutation analysis

(i) Tabulated p-values

- Tabulated p-values can be obtained for standard test statistics (e.g.the t-test)
- They often rely on the assumption of normally distributed errors in the data
- This assumption can be checked (approximately) using a
 - Histogram
 - Q-Q plot

Volcano Plots

Volcano plots are a graphical means for visualising results of large numbers of t-tests allowing us to plot both the Effect and significance of each test in an easy to interpret way

Volcano plots

- In a volcano plot:
- X-axis represents effect measured as fold change:

Effect =
$$log_2(WT) - log_2(KO)$$
 = $log_2(WT / KO)$

If
$$WT = KO$$
, Effect Fold Change = 0,

If
$$WT = 2 KO$$
, Effect Fold Change = 1

Numerical Interpretation (Effect)

Volcano plots

- In a volcano plot:
- y-axis represents the number of zeroes in the p-value
 - (remember with a p-value of 0.0001, you are more confident than with a p-value of 0.01
 - This is just a trick so that higher values on the graph are more important

Calculate Significance as : - log₁₀ (p_value)

If
$$p = 0.1$$
, $-log(0.1) = 1$ (1 decimal point)
If $p = 0.01$, $-log(0.01) = 2$ (2 decimal points)

. . .

Numerical Interpretation (Significance)

Visualise the Result : Volcano Plot

- Effect vs.
 Significance
- Selections of items that have both a large effect and are highly significant can be identified easily.

High Effect & Significance

Choosing log scales is a matter of convenience

Effect can be both +ve or -ve

Multiple testing

How far can we trust the decision?

- The test: "Reject H_0 if p-val $\leq \alpha$ "
 - is said to *control* the type I error because, under a certain set of assumptions, the probability of falsely rejecting H_0 is less than a fixed small threshold

$$P[Reject H_0|H_0 true] = P[FP] \le \alpha$$

- Nothing is warranted about P[FN]→
 - "Optimal" tests are built trying to minimize this probability
 - In practical situations it is often high

Test more than one gene at once (1)

- Consider more than one test at once
 - Two tests each at 5% level. Now probability of getting a false positive is 1 0.95*0.95 = 0.0975
 - Three tests $\rightarrow 1 0.95^3 = 0.1426$
 - n tests $\rightarrow 1 0.95^{\circ}$
 - Converge towards 1 as n increases
- Small p-values don't necessarily imply significance!!! → We are not controlling the probability of type I error anymore

Multiple testing: Counting errors

		H₀ is Re (Genes S		H₀ is accepted (Genes not Selected)		Total
State of the nature ("Truth")	H _o is false (Affected)	m_{α} – αm_{θ}	(S)	$(m-m_o)-$ $(m_\alpha-m_{o)}$	(T)	m-m _o
	H _o is true (Not Affected)	$lpha m_o$	(V)	m_o - αm_o	(U)	m_{o}
Total		m_{α}	(R)	m-m _α	(m-R)	m

V = # Type I errors [false positives]

T = # Type II errors [false negatives]

All these quantities could be known if m₀ was known

Extension to multiple testing situations

- Selecting genes with a p-value less than α doesn't control for P[FP] anymore
- What can be done?
 - Extend the idea of type I error
 - FWER and FDR are two such extensions
 - Look for procedures that control the probability for these extended error types
 - Mainly adjust raw p-values

Two main error rate extensions

- Family Wise Error Rate (FWER)
 - FWER is probability of at least one false positive

FWER= Pr(# of false discoveries > 0) = Pr(V > 0)

- False Discovery Rate (FDR)
 - FDR is expected value of proportion of false positives among rejected null hypotheses

 $FDR = E[V/R; R>0] = E[V/R | R>0] \cdot P[R>0]$

FDR and FWER controlling procedures

FWER

- Bonferroni (adj Pvalue = min{n*Pvalue,1})
- Holm (1979)
- Hochberg (1986)
- Westfall & Young (1993) maxT and minP

FDR

- Benjamini & Hochberg (1995)
- Benjamini & Yekutieli (2001)

Difference between controlling FWER or FDR

- FWER→ Controls for no (0) false positives
 - gives many fewer genes (false positives),
 - but you are likely to miss many
 - adequate if goal is to identify few genes that differ between two groups
- FDR→ Controls the proportion of false positives
 - if you can tolerate more false positives
 - you will get many fewer false negatives
 - adequate if goal is to pursue the study e.g. to determine functional relationships among genes

Steps to generate a list of candidate genes revisited (2)

