Chapter 7. Cluster Analysis

Dong-Kyu Chae

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University

Contents

- 1. What is Cluster Analysis?
- 2. Categories & Basic Concepts of Clustering
- 3. Partitioning Methods
- 4. Hierarchical Methods
- 5. Integration of Hierarchical & Distance-based Clustering
- 6. Density-Based Methods
- 7. Summary

CHAMELEON

Main idea

- Two clusters can be merged only if the interconnectivity and closeness (proximity) between two clusters are high
 - Relative to the internal interconnectivity of the clusters and internal closeness of items within the clusters

1. Draw a k-nearest neighbor graph (KNN graph) first

Node: object, edge: k-nearest neighbor's link, weight: similarity

2. Partition: Use a graph partitioning algorithm

Divide the KNN graph into a large number of relatively small sub-clusters

3. Merge: Use an agglomerative hierarchical clustering algorithm

 Iteratively find clusters by repeatedly combining these subclusters

Overall Framework of CHAMELEON

CHAMELEON: Partitioning

- Partition the KNN graph such that the edge cut is minimized.
 - The edge-cut of a partition is the sum of the weights of edges whose vertices lie in different partitions.

- □ hMeTiS library (**METIS**) is used
 - Tries to split a graph into two subgraphs of nearly equal sizes

not only edge (not is minimized) but also bulance number of south points inside

CHAMELEON: Merging

Merging the partitions

This step computes the cluster similarity based on the relative inter-connectivity and relative closeness of the clusters.

Relative inter-connectivity

$$RI(C_i, C_j) = \frac{|EC_{\{C_i, C_j\}}|}{\frac{1}{2}(|EC_{C_i}| + |EC_{C_j}|)}, \text{ final standard}$$

$$Ci$$

$$|EC_{\{C_i, C_j\}}|$$

$$|EC_{\{C$$

- \Box EC_{Ci, Cj} = edges that connect Ci and Cj.
- \Box EC_{Ci} = edges that partition the cluster into roughly equal parts.

CHAMELEON: Merging

Relative closeness

$$RC(C_{i},C_{j}) = \frac{\overline{S}_{EC_{\{C_{i}},C_{j}\}}}{\frac{|C_{i}|}{|C_{i}|+|C_{j}|}\overline{S}_{EC_{C_{i}}}}, \frac{\overline{S}_{C_{i}}}{\frac{|C_{i}|+|C_{j}|}{|C_{i}|+|C_{j}|}\overline{S}_{EC_{C_{j}}}}, \frac{\overline{S}_{C_{i}}}{\overline{S}_{C_{i}}}, \frac{\overline{S}_{C_{i}}}{\overline{S}_{C_{i}}}, \frac{\overline{S}_{C_{i}}}{\overline{S}_{C_{i}}}, \frac{\overline{S}_{C_{i}}}{\overline{S}_{C_{i}}}$$

- $\overline{S}_{EC_{\{Ci, Cj\}}}$ = average weight of the edges from Ci to Cj
- \overline{S} EC_{ci} = average of the weights of the edges in the cluster.

Merging

□ So far, we have got **Relative Inter-Connectivity** and **Relative Closeness**

Using them:

$$RI(C_i,C_j)*RC(C_i,C_j)^{\alpha} \subset \text{threshold yellow}$$

where alpha controls the importance of RC

CHAMELEON (Clustering Complex Objects)

Contents

- 1. What is Cluster Analysis?
- 2. Categories & Basic Concepts of Clustering
- 3. Partitioning Methods
- 4. Hierarchical Methods
- 5. Integration of Hierarchical & Distance-based Clustering
- 6. Density-Based Methods
- 7. Summary

Why Density-based Clustering?

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points, rather than just a distance
- Major features:
 - Discover clusters of arbitrary shape
 - □ Handle noise
 - One scan, thus being efficient
 - Need density parameters as termination condition

programmer 12 optimalist hyper parameter 2/240/2

- **Several interesting studies:**
 - DBSCAN
 - OPTICS
 - CLIQUE

Density-Based Clustering: Hyper-Parameters

■ Two parameters:

 $\square \varepsilon$: radius for the neighborhood of any point p:

 $N_{\varepsilon}(p) := \{ \text{any } q \text{ in dataset } D \mid dist(p, q) \leq \varepsilon \}$

- ε -Neighborhood Objects within a radius of ε from an object.
- MinPts: minimum number of points in the given neighborhood
 - "High density": ε-Neighborhood of an object contains at least *MinPts* of objects

Density-Based Clustering: Types of Points

- \Box A point is a core point if it has points more than *MinPts* within ε
- ightharpoonup A border point has fewer than MinPts within ϵ , but is in the neighborhood of a core point
- □ Outlier is any point that is not a core point nor a border point. It is thus a noise, or an outlier.

Directly Density-Reachable

Directly density-reachable: A point q is directly density-reachable from a point p if p is a core object and q is in p's ε -neighborhood.

MinPts = 4

- q is directly density-reachable from p
- p is **NOT** directly density-reachable from q
- Density-reachability is asymmetric.

Directly Density-Reachable

- Directly density-reachable: A point q is directly density-reachable from a point p if p is a core object and q is in p's ε-neighborhood.
 - \square *p* belongs to $N_{\varepsilon}(q)$
 - p is directly density-reachable from q
 - \square q is NOT directly density-reachable from p

Density-Reachability

- Density-Reachable (directly and indirectly):
 - A point p is directly density-reachable from p2;
 - p2 is directly density-reachable from p1;
 - p1 is directly density-reachable from q;
 - \square p \leftarrow p2 \leftarrow p1 \leftarrow q form a chain.
 - \square Then, p is (indirectly) density-reachable from q

- A point p is density-reachable from a point q if **there is a chain of points** $p_1, ..., p_n, p_1 = q$, $p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Thank You

