Statistical Modelling - Concise Notes

MATH50011

Arnav Singh

Colour Code - Definitions are green in these notes, Consequences are red and Causes are blue

Content from MATH40005 assumed to be known.

Contents

1	Statistical Models	2		
	1.2 Parametric Statistical Models	2		
	1.3 Using Models	2		
		2		
2	2 Point Estimation			
	2.1 Properties of estimators	2		
	2.1.1 Bias	2		
	2.1.2 Standard error	2		
	2.1.3 Mean Square Error	2		
3	The Cramér-Rao Lower Bound	3		
4	Asymptotic Properties	3		
5	Maximum Likelihood Estimation	5		
	5.1 Properties of Maximum Likelihood estimators	5		
	5.1.1 MLEs functionally invariant	5		
	5.1.2 Large Sample property	5		
6	Confidence Regions	6		
Ū	6.1 Construction of confidence intervals	6		
	6.2 Asymptotic confidence intervals	6		
	6.3 Simultaneous Confidence Interval/Confidence regions	7		
		·		
7	Hypothesis Testing	7		
	7.1 Prelim	7		
	7.2 Power of a Test	8		
	7.3 p-Value	8		
	7.4 Connection between tests & confidence intervals	8		
	7.4.1 Constructing a test from confidence region	8		
	7.4.2 Constructing confidence region from tests	8		
8	Likelihood Ratio Tests	9		

1 Statistical Models

1.2 Parametric Statistical Models

Definition 1.1 Statistical Model

Statistical model; collection of probability distribution $\{P_{\theta}: \theta \in \Theta\}$ on a given sample space. Set Θ - (Parameter Space) - set of all possible parametric values, $\Theta \subset \mathbb{R}^p$

Definition 1.2 Identifiablee

Statistical model is identifiable if map $\theta \mapsto P_{\theta}$, one-to-one, $P_{\theta_1} = P_{\theta_2} \implies \theta_1 = \theta_2 \quad \forall \theta_1, \theta_2 \in \Theta$

1.3 Using Models

Requirements for a model

- 1. Agree with observed data "reasonable" well
- 2. reasonably simple (no excess parameters)
- 3. easy to interpret (parameter have practical meaning)

2 Point Estimation

Definition 2.1 Statistic

Statistic - function of observable random variable.

Definition 2.2 Estimate/Estimators

t a statistic

 $t(y_1, \ldots, y_n)$ called **estimate** of θ $T(Y_1, \ldots, Y_n)$ an **estimator** of Θ

2.1 Properties of estimators

2.1.1 Bias

Definition 2.3 Bias

T estimator for $\theta \in \Theta \subset \mathbb{R}$

$$bias_{\theta}(T) = E_{\theta}(T) - \theta$$

unbiased if $bias_{\theta}(T) = 0$, $\forall \theta \in \Theta$

If $\Theta \subset \mathbb{R}^k$ often interested in $g(\theta)$, $g: \theta \to \mathbb{R}$

extend
$$bias_{\theta}(T) = E_{\theta}(T) - g(\theta)$$

2.1.2 Standard error

Definition 2.4

T estimator for $\theta \in \Theta \subset \mathbb{R}$

$$SE_{\theta}(T) = \sqrt{Var_{\theta}(T)}$$

Standard error, is standard deviation of sampling distribution of T

2.1.3 Mean Square Error

Definition 2.5

T estimator for $\theta \in \Theta \subset \mathbb{R}$ Mean square error of T

$$MSE_{\theta}(T) = E_{\theta}(T - \theta)^{2}$$

= $Var_{\theta}(T) + [bias_{\theta}(T)]^{2}$

3 The Cramér-Rao Lower Bound

Theorem 3.1 (Cramér-Rao Lower Bound)

T = T(X) unbiased estimator for $\theta \in \Theta \subset \mathbb{R}$ for $X = (X_1, \dots, X_n)$ with just pdf $f_{\theta}(x)$ under mild regularity conditions:

$$Var_{\theta}(T) \ge \frac{1}{I(\theta)}$$

For I_{θ} the Fisher information of sample

$$I(\theta) = E_{\theta} \left[\left\{ \frac{\partial}{\partial \theta} \log f_{\theta}(x) \right\}^{2} \right]$$
$$= -E_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(x) \right]$$
$$I_{n}(\theta) = -nE_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(x) \right]$$

Proposition.

For a random sample: Fisher info proportional to sample size

Jensen's inequality

For X a random variable with φ a convex function

$$\varphi(E[X]) \le E[\varphi(X)]$$

Call $E[\varphi(X)] - \varphi(E[X])$ the **Jensen gap**

4 Asymptotic Properties

Definition 4.1

Sequence of estimators $(T_n)_{n\in\mathbb{N}}$ for $g(\theta)$ called (weakly) consistent if $\forall \theta \in \Theta$

$$T_n \xrightarrow{P_\theta} g(\theta) \quad (n \to \infty)$$

Definition 4.2

Convergence in probability: $T_n \xrightarrow{P_{\theta}} g(\theta)$

$$\forall \epsilon > 0 : \lim_{n \to \infty} P_{\theta}(|T_n - g(\theta)| < \epsilon) = 1$$

Lemma - (Portmanteau Lemma)

 X, X_n real valued random value.

Following are equivalent:

- 1. $X_n \to X$ as $n \to \infty$
- 2. $E[f(X_n)] \to E[f(X)]$ $n \to \infty$ for all bounded + continuous functions $f: \mathbb{R} \to \mathbb{R}$

Definition 4.3

Sequence of estimators $(T_n)_{n\in\mathbb{N}}$ for $g(\theta)$ asymptotically unbiased if $\forall \theta \in \Theta$

$$E_{\theta} \to g(\theta) \quad n \to \infty$$

Lemma.

 (T_n) asymptotically unbiased for $g(\theta)$ and $\forall \theta \in \Theta$

$$Var_{\theta}(T_n) \to 0 \quad n \to \infty$$

 $\implies (T_n)$ consistent for $g(\theta)$

Definition 4.4

Sequence (T_n) of estimators for $\theta \in \mathbb{R}$ asymptotically normal if

$$\sqrt{n}(T_n - \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$$

for some σ^2)(θ)

Theorem 4.1 (Central Limit Theorem)

 Y_1, \ldots, Y_n be iid random variable with $E(Y_i) = \mu$, $Var(Y_i) = \sigma^2$

$$\implies$$
 sequence $\sqrt{n}(\bar{Y} - \mu) \xrightarrow{d} N(0, \sigma^2)$

Remark.

Under mild regularity conditions for asymptotically normal estimators T_n

$$SE_{\theta}(T_n) \approx \frac{\sigma(T_n)}{\sqrt{n}}$$

Lemma. (Slutsky)

 X_n, X, Y_n random variables

If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$ for constant c

- 1. $X_n + Y_n \xrightarrow{d} X + c$
- 2. $Y_n X_n \xrightarrow[d]{} cX$
- 3. $Y_n^{-1}X_n \xrightarrow{d} c^{-1}X$ provided $c \neq 0$

Theorem 4.2 (Delta Method)

Suppose T_n asymptotically normal estimator of θ with

$$\sqrt{n}(T_n - \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$$

 $g:\Theta\to\mathbb{R}$) differentiable function with $g'(\theta)\neq 0$. Then

$$\sqrt{n}[g(T_n) - g(\theta)] \xrightarrow{d} N(0, g'(\theta)^2 \sigma^2(\theta))$$

Theorem 4.3 (Continuous Mapping Theorem)

 $k, m \in \mathbb{N}, X, X_n$, \mathbb{R}^k -valued random variable. $g : \mathbb{R}^k \to \mathbb{R}^m$ continuous function at every point of C s.t $P(X \in C) = 1$

- If $X_n \to X \implies g(X_n) \to g(x)$ as $n \to \infty$
- If $X_n \xrightarrow[p]{} X \implies g(X_n) \xrightarrow[p]{} g(X)$ as $n \to \infty$
- If $X_n \xrightarrow{a.s} X \implies g(X_n) \xrightarrow{a.s} g(X)$ as $n \to \infty$

5 Maximum Likelihood Estimation

Definition 5.1 (Likelihood function)

Suppose observer Y with realisation y

Likelihood function

$$L(\theta) = L(\theta : y) = \begin{cases} P(Y = y : \theta) & \text{discrete data} \\ f_Y(y : \theta) & \text{absolutely continuous data} \end{cases}$$

Likelihood function is the joint pdf/pmf or observed data as a function of unknown parameter.

Random sample $Y = (Y_1, ..., Y_n)$ Y_i iid. If Y_i has pdf $f(\cdot; \theta)$

$$\implies L(\theta) = \prod_{i=1}^{n} f(y_i : \theta)$$

Definition 5.2 (Maximum Likelihood Estimator)

MLE of θ is estimator $\hat{\theta}$ s.t

$$L(\hat{\theta}) = \sup_{\theta \in \Theta} L(\theta)$$

5.1 Properties of Maximum Likelihood estimators

5.1.1 MLEs functionally invariant

g bijective function $\hat{\theta}$ MLE of $\theta \implies \hat{\phi} = g(\hat{\theta})$ a MLE of $\phi = g(\theta)$

5.1.2 Large Sample property

Theorem 5.1

 X_1, X_2, \ldots iid observations with pdf/pmf f_{θ} $\theta \in \Theta$, Θ an open interval $\theta_0 \in \Theta$ - true parameter.

Under regularity conditions ($\{x: f_{\theta}(x) > 0\}$ independent of θ). We have

- 1. \exists consistent sequence $(\hat{\theta})_{n \in \mathbb{N}}$ of MLE
- 2. $(\hat{\theta})_{n\in\mathbb{N}}$ consistent sequence of MLEs $\Longrightarrow \sqrt{n}(\hat{\theta}_n \theta_0) \xrightarrow{d} N(0, (I_f(\theta_0))^{-1})$ (Asymptotic normality of MLE) Where $I_f\theta$ Fisher information of sample size = 1

Remark: if MLE unique $(\forall n) \implies$ sequence of MLEs consistent

Remark

Limiting distribution depends on $I_f(\theta_0)$, which is often unknown in practical situations. \implies need to estimate $I_f(\theta_0)$

iid sample; $I_f(\theta_0)$ estimated by

- $I_f(\hat{\theta})$
- $\frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial}{\partial \theta} \log(f(x_i : \theta)) |_{\theta = \hat{\theta}} \right)^2$
- $-\frac{1}{n}\sum_{i=1}^{n}(\frac{\partial}{\partial\theta})^2\log(f(x_i:\theta))|_{\theta=\hat{\theta}}$

Often consistent \implies converge to $I_f(\theta_0)$ in probability

Remark

Standard error of asymptotically normal MLE $\hat{\theta}_n$ Approximated by $SE(\hat{\theta}_n) = \sqrt{\hat{I}_n^{-1}}/\sqrt{n} \hat{I}_n$ estimator from above. Remark - Multivariate version.

 $\Theta \subset \mathbb{R}^k$ open set, $\hat{\theta}_n$ MLE based on n observation.

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} N(0, (I_f(\theta_0)^{-1}))$$

 θ_0 the true parameter, $I_f(\theta)$ Fisher information matrix

$$I_f(\theta) := E_{\theta} \left[(\nabla \log f(X; \theta))^T (\nabla \log f(X; \theta)) \right]$$

:= $-E_{\theta} \left[\nabla^T \nabla \log f(X; \theta) \right]$

Definition 5.3

Converges in distribution for random vector

 X, X_1, X_2 random vectors of dimension k

$$\mathbf{X}_n \xrightarrow{d} \mathbf{X} \quad (n \to \infty)$$

If
$$P(\mathbf{X}_n \leq z) \xrightarrow[n \to \infty]{} P(\mathbf{X} \leq z) \quad \forall z \in \mathbb{R}^k : z \mapsto P(X \leq Z)$$
 continuous

6 Confidence Regions

Definition 6.1 (Confidence interval)

 $1-\alpha$ confidence interval for θ , a random interval I containing 'true' paramter with probability $\geq 1-\alpha$

$$P_{\theta \in I} \ge 1 - \alpha \quad \forall \theta \in \Theta$$

6.1 Construction of confidence intervals

Definition 6.2

Pivotal Quantity for θ a function $t(Y, \theta)$ of data and θ

s.t distribution of $t(Y, \theta)$ known (no dependency on unknown parameters)

Know distribution of
$$t(Y, \theta) \implies$$
 can find constant a_1, a_2 s.t $P(a_1 \le t(Y_1, \theta) \le a_2) \ge 1 - \alpha$
 $\implies P(h_1(Y) \le \theta \le h_2(Y)) \ge 1 - \alpha$

Call $[h_1(Y), h_2(Y)]$ a random interval

with observed interval $[h_1(y), h_2(y)]$ a $1 - \alpha$ confidence interval for θ

6.2 Asymptotic confidence intervals

We often know

$$\sqrt{n}(T_n - \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$$

$$\implies \sqrt{n}(\frac{T_n - \theta}{\sigma(\theta)}) \xrightarrow{d} N(0, 1)$$
use as pivotal quantity

Definition 6.3

Sequence of random intervals I_n an asymptotic $1 - \alpha$ Confidence Interval if

$$\lim_{n \to \infty} P_{\theta}(\theta \in_n) \ge 1 - \alpha \quad \theta$$

Simplification

Given consistent estimator $\hat{\sigma}_n$ for $\sigma(\theta)$ $\hat{\sigma}_n \xrightarrow{P_{\theta}} \sigma(\theta) \ \forall \theta$

$$\sqrt{n}(\frac{T_n - \theta}{\sigma(\theta)}) \xrightarrow{d} N(0, 1)$$

$$T_n \pm c_{\alpha/2} \times \underbrace{\frac{\hat{\sigma}_n}{\sqrt{n}}}_{\text{estimates } SE(T_n)}$$

$$T_n \pm c_{\alpha/2} SE(T_n)$$

Simplification.

$$\hat{\sigma}^2 = \frac{Y}{n} (1 - \frac{Y}{n}) \quad \hat{\sigma}^2 \xrightarrow{P} \theta (1 - \theta)$$

$$\underbrace{\sqrt{n} \frac{Y/n - \theta}{\sqrt{\frac{Y}{n} (1 - \frac{Y}{n})}}}_{\text{interposition}} \implies \frac{y}{n} \pm \frac{c_{\alpha/2}}{\sqrt{n}} \sqrt{\frac{y}{n} (1 - \frac{y}{n})}$$

6.3 Simultaneous Confidence Interval/Confidence regions.

Definition 6.4

$$\theta = (\theta_1, \dots, \theta_k)^T \in \Theta \in \mathbb{R}^k$$

With random intervals $(L_i(\mathbf{Y}), U_i(\mathbf{Y}))$ s.t

$$\forall \theta : P_{\theta}(L_i(\mathbf{Y} < \theta_i < U_i(\mathbf{Y}), i \in \{1, \dots, k\}) \ge 1 - \alpha$$

 $(L_i(\mathbf{y}, U_i(\mathbf{y})) \ i \in \{1, \dots, k\} \ \text{a} \ 1 - \alpha \ \text{simultaneous confidence interval for} \ \theta_1, \dots, \theta_k$ **Remark -** (Bonferroni correction) take $[L_i, U_i]$ a $1 - \alpha$ confidence interval for $\theta_i, \ i \in \{1, \dots, k\}$

7 Hypothesis Testing

7.1 Prelim

Definition 7.1 (Hypotheses)

We have 2 complementary hypothesis

- H_0 : Null hypothesis consider to be the status quo
- H_1 : Alternative hypothesis

Definition 7.2 (Hypthesis Test)

Hypothesis test a rule that specifies for which valus of a sample x_1, \ldots, x_n a decision is to be made

- accept H_0 as true
- reject H_0 and accept H_1

Rejection region/Critical region - subset of sample space for which H_0 rejected

Definition 7.3 (Types of error)

	H_0 True	H_0 False
Don't reject H_0	✓	Type II Error
Reject H_0	Type I Error	✓

7.2 Power of a Test

Definition 7.4 (Power function)

 Θ parameter space with $\Theta_0 \subset \Theta$, $\Theta_1 = \Theta \setminus \Theta_0$ Consider:

$$H_0: \theta \in \Theta_0$$

 $H_1: \theta \in \Theta_1$

Given a test for this hypothsis, we have a Power function

$$\beta : \theta \to [0, 1]$$

 $\beta(\theta) = P_{\theta}(\text{reject}H_0)$

$$\theta \in \Theta_0 \implies \text{want } \beta(\theta) \text{ small } \theta \in \Theta_1 \implies \text{want } \beta(\theta) \text{ large}$$

7.3 p-Value

Definition 7.5 (p-value)

 $p = \sup_{\theta \in \Theta_0} P_{\theta}$ (observing something 'at least as extreme' as the observation)

reject $H_0 \iff p \leq \alpha$

For test based on statistic T with rejection for large value of T we have

$$p = \sup_{\theta \in \Theta_0} P_{\theta}(T \ge t)$$

for t our observed value

7.4 Connection between tests & confidence intervals

7.4.1 Constructing a test from confidence region

Y a random observation.

A(Y) a $1-\alpha$ confidence region for θ

$$P(\theta \in A(Y)) > 1 - \alpha \quad \forall \theta \in \Theta$$

Define test for $H_0: \theta \in \Theta_0$ $H_1: \theta \notin \Theta_0$ for $\Theta_0 \subset \Theta$ a fixed subset with level α s.t

Reject
$$H_0$$
 if $\Theta_0 \cap A(Y) = \emptyset$

$$P_{\theta}(\text{Type I error}) = P_{\theta}(\text{reject}) = P_{\theta}(\Theta_0 \cap A(Y) = \emptyset)$$

 $\leq P_{\theta}(\theta \notin A(Y)) \leq \alpha$

7.4.2 Constructing confidence region from tests

Suppose $\forall \theta_0 \in \Theta$ we have a level α test ϕ_{θ_0} for

$$H_0^{\theta_0}: \theta = \theta_0$$
 vs. $H_1^{\theta_0}: \theta \neq \theta_0$

A decision rule ϕ_{θ_0} to reject/not reject $H_0^{\theta_0}$ satisfying:

$$P_{\theta_0}(\phi_{\theta_0} \text{ reject } H_0^{\theta_0}) \leq \alpha$$

Consider random set:

$$A:=\left\{\theta_0\in\Theta:\phi_{\theta_0}\text{ doesn't reject }H_0^{\theta_0}\right\}$$

We see A a $1-\alpha$ confidence region for θ

$$\forall \theta \in \Theta \ P_{\theta}(\theta \in A) = P_{\theta}(\phi_{\theta} \text{ not rejects }) = 1 - P_{\theta}(\phi_{\theta} \text{ rejects }) \ge 1 - \alpha$$

8 Likelihood Ratio Tests

(Numbers don't line up with official notes!!!)

Definition 8.1 (Likelihood ratio statistic)

$$t(\mathbf{y}) = \frac{sup_{\theta \in \Theta}L(\theta; \mathbf{y})}{sup_{\theta \in \Theta_0}L(\theta; \mathbf{y})} = \frac{\text{max likelihood under } H_0 + H_1}{\text{max likelihood under } H_0}$$

Theorem 8.1

 $X_1, \ldots, X_n \sim N(0,1), X_i$ independent

$$\sum_{i=1}^{n} X_i^2 \sim \chi_n^2$$

Theorem 8.2

Under regularity conditions

$$2\log t(\mathbf{Y}) \xrightarrow{D} \chi_r^2 \quad (n \to \infty)$$

under H_0 where r the number of independent restrictions on θ needed to define H_0