

Note If the repetition of the letters was allowed, how many words can be formed?
One can easily understand that each of the 4 vacant places can be filled in succession in 4 different ways. Hence, the required number of words = $4 \times 4 \times 4 \times 4 = 256$.
Example 2 Given 4 flags of different colours, how many different signals can be generated, if a signal requires the use of 2 flags one below the other?
Solution There will be as many signals as there are ways of filling in 2 vacant places
in succession by the 4 flags of different colours. The upper vacant place can

be filled in 4 different ways by anyone of the 4 flags; following which, the lower vacant place can be filled in 3 different ways by anyone of the remaining 3 different flags. Hence, by the multiplication principle, the required number of signals = $4 \times 3 = 12$.

Example 3 How many 2 digit even numbers can be formed from the digits 1, 2, 3, 4, 5 if the digits can be repeated?

Solution There will be as many ways as there are ways of filling 2 vacant places in succession by the five given digits. Here, in this case, we start filling in unit's place, because the options for this place are 2 and 4 only and this can be done in 2 ways; following which the ten's place can be filled by any of the 5 digits in 5 different ways as the digits can be repeated. Therefore, by the multiplication principle, the required number of two digits even numbers is 2×5 , i.e., 10.

Example 4 Find the number of different signals that can be generated by arranging at least 2 flags in order (one below the other) on a vertical staff, if five different flags are available.

Solution A signal can consist of either 2 flags, 3 flags, 4 flags or 5 flags. Now, let us count the possible number of signals consisting of 2 flags, 3 flags, 4 flags and 5 flags separately and then add the respective numbers.

There will be as many 2 flag signals as there are ways of filling in 2 vacant places

Similarly, there will be as many 3 flag signals as there are ways of filling in 3 vacant places in succession by the 5 flags.

The number of ways is $5 \times 4 \times 3 = 60$.

Continuing the same way, we find that

The number of 4 flag signals = $5 \times 4 \times 3 \times 2 = 120$

and the number of 5 flag signals = $5 \times 4 \times 3 \times 2 \times 1 = 120$

Therefore, the required no of signals = 20 + 60 + 120 + 120 = 320.

Solution (i)
$$5! = 1 \times 2 \times 3 \times 4 \times 5 = 120$$

(ii)
$$7! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 = 5040$$

and (iii)
$$7! - 5! = 5040 - 120 = 4920$$
.

Example 6 Compute (i)
$$\frac{7!}{5!}$$
 (ii) $\frac{12!}{(10!)(2!)}$

Solution (i) We have
$$\frac{7!}{5!} = \frac{7 \times 6 \times 5!}{5!} = 7 \times 6 = 42$$

and (ii)
$$\frac{12!}{(10!)(2!)} = \frac{12 \times 11 \times (10!)}{(10!) \times (2)} = 6 \times 11 = 66.$$

Example 7 Evaluate
$$\frac{n!}{r!(n-r)!}$$
, when $n = 5$, $r = 2$.

Solution We have to evaluate
$$\frac{5!}{2!(5-2)!}$$
 (since $n = 5$, $r = 2$)

We have
$$\frac{5!}{2!(5-2)!} = \frac{5!}{2! \times 3!} = \frac{5 \times 4}{2} = 10$$

Example 8 If
$$\frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!}$$
, find x.

Solution We have
$$\frac{1}{8!} + \frac{1}{9 \times 8!} = \frac{x}{10 \times 9 \times 8!}$$

Therefore
$$1 + \frac{1}{9} = \frac{x}{10 \times 9}$$
 or $\frac{10}{9} = \frac{x}{10 \times 9}$

So
$$x = 100$$
.

Example 9 Find the number of permutations of the letters of the word ALLAHABAD. **Solution** Here, there are 9 objects (letters) of which there are 4A's, 2 L's and rest are all different.

Therefore, the required number of arrangements =
$$\frac{9!}{4!2!} = \frac{5 \times 6 \times 7 \times 8 \times 9}{2} = 7560$$

Example 10 How many 4-digit numbers can be formed by using the digits 1 to 9 if repetition of digits is not allowed?

Solution Here order matters for example 1234 and 1324 are two different numbers. Therefore, there will be as many 4 digit numbers as there are permutations of 9 different digits taken 4 at a time.

Therefore, the required 4 digit numbers =
$${}^9P_4 = \frac{9!}{(9-4)!} = \frac{9!}{5!} = 9 \times 8 \times 7 \times 6 = 3024$$
.

Example 11 How many numbers lying between 100 and 1000 can be formed with the digits 0, 1, 2, 3, 4, 5, if the repetition of the digits is not allowed?

Solution Every number between 100 and 1000 is a 3-digit number. We, first, have to

count the permutations of 6 digits taken 3 at a time. This number would be 6P_3 . But, these permutations will include those also where 0 is at the 100's place. For example, 092, 042, . . ., etc are such numbers which are actually 2-digit numbers and hence the number of such numbers has to be subtracted from 6P_3 to get the required number. To get the number of such numbers, we fix 0 at the 100's place and rearrange the remaining 5 digits taking 2 at a time. This number is 5P_3 . So

The required number
$$= {}^{6}P_{3} - {}^{5}P_{2} = \frac{6!}{3!} - \frac{5!}{3!}$$
$$= 4 \times 5 \times 6 - 4 \times 5 = 100$$

Example 12 Find the value of n such that

(i)
$${}^{n}P_{5} = 42 {}^{n}P_{3}, n > 4$$
 (ii) $\frac{{}^{n}P_{4}}{{}^{n-1}P_{4}} = \frac{5}{3}, n > 4$

Solution (i) Given that

or
$${}^{n}P_{5} = 42 {}^{n}P_{3}$$

or $n(n-1)(n-2)(n-3)(n-4) = 42 n(n-1)(n-2)$
Since $n > 4$ so $n(n-1)(n-2) \neq 0$

Therefore, by dividing both sides by n(n-1) (n-2), we get

or
$$(n-3)(n-4) = 42$$

or $n^2 - 7n - 30 = 0$
or $n^2 - 10n + 3n - 30$
or $(n-10)(n+3) = 0$
or $n-10 = 0$ or $n+3 = 0$
or $n=10$ or $n=-3$

As n cannot be negative, so n = 10.

(ii) Given that $\frac{{}^{n}P_{4}}{{}^{n-1}P_{4}} = \frac{5}{3}$

Therefore
$$3n(n-1)(n-2)(n-3) = 5(n-1)(n-2)(n-3)(n-4)$$

or $3n = 5(n-4)$ [as $(n-1)(n-2)(n-3) \neq 0, n > 4$]
or $n = 10$.

Example 13 Find r, if $5 \, {}^{4}P_{r} = 6 \, {}^{5}P_{r-1}$.

Solution We have $5^{-4}P_r = 6^{-5}P_{r-1}$

or
$$5 \times \frac{4!}{(4-r)!} = 6 \times \frac{5!}{(5-r+1)!}$$
or
$$\frac{5!}{(4-r)!} = \frac{6 \times 5!}{(5-r+1)(5-r)(5-r-1)!}$$
or
$$(6-r)(5-r) = 6$$
or
$$r^2 - 11r + 24 = 0$$
or
$$r^2 - 8r - 3r + 24 = 0$$
or
$$(r-8)(r-3) = 0$$
or
$$r = 8 \text{ or } r = 3.$$
Hence
$$r = 8, 3.$$

Example 14 Find the number of different 8-letter arrangements that can be made from the letters of the word DAUGHTER so that

- (i) all vowels occur together (ii) all vowels do not occur together.
- **Solution** (i) There are 8 different letters in the word DAUGHTER, in which there are 3 vowels, namely, A, U and E. Since the vowels have to occur together, we can for the time being, assume them as a single object (AUE). This single object together with 5 remaining letters (objects) will be counted as 6 objects. Then we count permutations of these 6 objects taken all at a time. This number would be ${}^6P_6 = 6!$. Corresponding to each of these permutations, we shall have 3! permutations of the three vowels A, U, E taken all at a time. Hence, by the multiplication principle the required number of permutations $= 6! \times 3! = 4320$.
- (ii) If we have to count those permutations in which all vowels are never together, we first have to find all possible arrangments of 8 letters taken all at a time, which can be done in 8! ways. Then, we have to subtract from this number, the number of permutations in which the vowels are always together.

Therefore, the required number
$$8! - 6! \times 3! = 6! (7 \times 8 - 6)$$

= $2 \times 6! (28 - 3)$
= $50 \times 6! = 50 \times 720 = 36000$

Example 15 In how many ways can 4 red, 3 yellow and 2 green discs be arranged in a row if the discs of the same colour are indistinguishable?

Solution Total number of discs are 4 + 3 + 2 = 9. Out of 9 discs, 4 are of the first kind

(red), 3 are of the second kind (yellow) and 2 are of the third kind (green).

Therefore, the number of arrangements $\frac{9!}{4!3!2!} = 1260$.

Example 16 Find the number of arrangements of the letters of the word INDEPENDENCE. In how many of these arrangements,

- (i) do the words start with P
- (ii) do all the vowels always occur together
- (iii) do the vowels never occur together
- (iv) do the words begin with I and end in P?

Solution There are 12 letters, of which N appears 3 times, E appears 4 times and D appears 2 times and the rest are all different. Therefore

The required number of arrangements $=\frac{12!}{3! \ 4! \ 2!} = 1663200$

(i) Let us fix P at the extreme left position, we, then, count the arrangements of the remaining 11 letters. Therefore, the required number of words starting with P

$$=\frac{11!}{3!2!4!}=138600$$

(ii) There are 5 vowels in the given word, which are 4 Es and 1 I. Since, they have to always occur together, we treat them as a single object **EEEI** for the time being. This single object together with 7 remaining objects will account for 8 objects. These 8 objects, in which there are 3Ns and 2 Ds, can be rearranged in

 $\frac{8!}{3! \, 2!}$ ways. Corresponding to each of these arrangements, the 5 vowels E, E, E,

E and I can be rearranged in $\frac{5!}{4!}$ ways. Therefore, by multiplication principle, the required number of arrangements

$$= \frac{8!}{3! \, 2!} \times \frac{5!}{4!} = 16800$$

(iii) The required number of arrangements= the total number of arrangements (without any restriction) – the number of arrangements where all the vowels occur together.

$$= 1663200 - 16800 = 1646400$$

(iv) Let us fix I and P at the extreme ends (I at the left end and P at the right end). We are left with 10 letters.

Hence, the required number of arrangements

$$= \frac{10!}{3! \ 2! \ 4!} = 12600$$

Example 17 If ${}^{n}C_{9} = {}^{n}C_{8}$, find ${}^{n}C_{17}$.

Therefore

Solution We have
$${}^{n}C_{9} = {}^{n}C_{8}$$

i.e., $\frac{n!}{9!(n-9)!} = \frac{n!}{(n-8)! \, 8!}$
or $\frac{1}{9} = \frac{1}{n-8}$ or $n-8=9$ or $n=17$
Therefore ${}^{n}C_{17} = {}^{17}C_{17} = 1$.

Example 18 A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?

Solution Here, order does not matter. Therefore, we need to count combinations. There will be as many committees as there are combinations of 5 different persons

taken 3 at a time. Hence, the required number of ways =
$${}^5C_3 = \frac{5!}{3! \ 2!} = \frac{4 \times 5}{2} = 10$$
.

Now, 1 man can be selected from 2 men in ${}^{2}C_{1}$ ways and 2 women can be selected from 3 women in ³C₂ ways. Therefore, the required number of committees

$$= {}^{2}C_{1} \times {}^{3}C_{2} = \frac{2!}{1! \ 1!} \times \frac{3!}{2! \ 1!} = 6$$
.

Example 19 What is the number of ways of choosing 4 cards from a pack of 52 playing cards? In how many of these

- (i) four cards are of the same suit,
- (ii) four cards belong to four different suits,
- (iii) are face cards,
- (iv) two are red cards and two are black cards,
- (v) cards are of the same colour?

Solution There will be as many ways of choosing 4 cards from 52 cards as there are combinations of 52 different things, taken 4 at a time. Therefore

The required number of ways =
$${}^{52}C_4 = \frac{52!}{4! \cdot 48!} = \frac{49 \times 50 \times 51 \times 52}{2 \times 3 \times 4}$$

= 270725

(i) There are four suits: diamond, club, spade, heart and there are 13 cards of each suit. Therefore, there are ${}^{13}C_4$ ways of choosing 4 diamonds. Similarly, there are ${}^{13}C_4$ ways of choosing 4 clubs, ${}^{13}C_4$ ways of choosing 4 spades and ${}^{13}C_4$ ways of choosing 4 hearts. Therefore

The required number of ways =
$${}^{13}C_4 + {}^{13}C_4 + {}^{13}C_4 + {}^{13}C_4$$

= $4 \times \frac{13!}{4! \ 9!} = 2860$

(ii) There are 13 cards in each suit.

Therefore, there are ${}^{13}C_1$ ways of choosing 1 card from 13 cards of diamond, ${}^{13}C_1$ ways of choosing 1 card from 13 cards of hearts, ${}^{13}C_1$ ways of choosing 1 card from 13 cards of clubs, ${}^{13}C_1$ ways of choosing 1 card from 13 cards of spades. Hence, by multiplication principle, the required number of ways

$$= {}^{13}C_{1} \times {}^{13}C_{1} \times {}^{13}C_{1} \times {}^{13}C_{1} = 13^{4}$$

(iii) There are 12 face cards and 4 are to be selected out of these 12 cards. This can be done in ${}^{12}C_4$ ways. Therefore, the required number of ways = $\frac{12!}{4! \ 8!} = 495$.

(iv) There are 26 red cards and 26 black cards. Therefore, the required number of ways = ${}^{26}C_{2} \times {}^{26}C_{2}$

$$= \left(\frac{26!}{2! \ 24!}\right)^2 = \left(325\right)^2 = 105625$$

(v) 4 red cards can be selected out of 26 red cards in $^{26}C_4$ ways. 4 black cards can be selected out of 26 black cards in $^{26}C_4$ ways.

Therefore, the required number of ways = ${}^{26}C_4 + {}^{26}C_4$

$$= 2 \times \frac{26!}{4! \ 22!} = 29900.$$

Example 20 How many words, with or without meaning, each of 3 vowels and 2 consonants can be formed from the letters of the word INVOLUTE?

Solution In the word INVOLUTE, there are 4 vowels, namely, I,O,E,Uand 4 consonants, namely, N, V, L and T.

The number of ways of selecting 3 vowels out of $4 = {}^{4}C_{3} = 4$.

The number of ways of selecting 2 consonants out of $4 = {}^{4}C_{2} = 6$.

Therefore, the number of combinations of 3 vowels and 2 consonants is $4 \times 6 = 24$.

Now, each of these 24 combinations has 5 letters which can be arranged among themselves in 5! ways. Therefore, the required number of different words is $24 \times 5! = 2880.$

Example 21 A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl? (ii) at least one boy and one girl? (iii) at least 3 girls?

Solution (i) Since, the team will not include any girl, therefore, only boys are to be selected. 5 boys out of 7 boys can be selected in ⁷C₅ ways. Therefore, the required

number of ways =
$${}^{7}C_{5} = \frac{7!}{5!} = \frac{6 \times 7}{2} = 21$$

- Since, at least one boy and one girl are to be there in every team. Therefore, the (ii) team can consist of
 - (a) 1 boy and 4 girls
- (b) 2 boys and 3 girls
- (c) 3 boys and 2 girls (d) 4 boys and 1 girl.

 - 1 boy and 4 girls can be selected in ${}^{7}C_{1} \times {}^{4}C_{4}$ ways.
 - 2 boys and 3 girls can be selected in ${}^{7}C_{2} \times {}^{4}C_{3}$ ways.
 - 3 boys and 2 girls can be selected in ${}^{7}C_{3} \times {}^{4}C_{2}$ ways.
 - 4 boys and 1 girl can be selected in ${}^{7}C_{4} \times {}^{4}C_{1}$ ways.

Therefore, the required number of ways

$$= {}^{7}C_{1} \times {}^{4}C_{4} + {}^{7}C_{2} \times {}^{4}C_{3} + {}^{7}C_{3} \times {}^{4}C_{2} + {}^{7}C_{4} \times {}^{4}C_{1}$$
$$= 7 + 84 + 210 + 140 = 441$$

- (iii) Since, the team has to consist of at least 3 girls, the team can consist of
 - (a) 3 girls and 2 boys, or (b) 4 girls and 1 boy.

Note that the team cannot have all 5 girls, because, the group has only 4 girls.

- 3 girls and 2 boys can be selected in ${}^4C_3 \times {}^7C_2$ ways.
- 4 girls and 1 boy can be selected in ${}^4C_4 \times {}^7C_1$ ways.

Therefore, the required number of ways

$$= {}^{4}C_{3} \times {}^{7}C_{2} + {}^{4}C_{4} \times {}^{7}C_{1} = 84 + 7 = 91$$

Example 22 Find the number of words with or without meaning which can be made using all the letters of the word AGAIN. If these words are written as in a dictionary, what will be the 50th word?

Solution There are 5 letters in the word AGAIN, in which A appears 2 times. Therefore,

the required number of words = $\frac{5!}{2!}$ = 60.

To get the number of words starting with A, we fix the letter A at the extreme left position, we then rearrange the remaining 4 letters taken all at a time. There will be as many arrangements of these 4 letters taken 4 at a time as there are permutations of 4 different things taken 4 at a time. Hence, the number of words starting with

A = 4! = 24. Then, starting with G, the number of words =
$$\frac{4!}{2!}$$
 = 12 as after placing G

at the extreme left position, we are left with the letters A, A, I and N. Similarly, there are 12 words starting with the next letter I. Total number of words so far obtained = 24 + 12 + 12 = 48.

The 49th word is NAAGI. The 50th word is NAAIG.

Example 23 How many numbers greater than 1000000 can be formed by using the digits 1, 2, 0, 2, 4, 2, 4?

Solution Since, 1000000 is a 7-digit number and the number of digits to be used is also 7. Therefore, the numbers to be counted will be 7-digit only. Also, the numbers have to be greater than 1000000, so they can begin either with 1, 2 or 4.

The number of numbers beginning with
$$1 = \frac{6!}{3! \ 2!} = \frac{4 \times 5 \times 6}{2} = 60$$
, as when 1 is

fixed at the extreme left position, the remaining digits to be rearranged will be 0, 2, 2, 2, 4, 4, in which there are 3, 2s and 2, 4s.

Total numbers begining with 2

$$=\frac{6!}{2!} = \frac{3 \times 4 \times 5 \times 6}{2} = 180$$

and total numbers beginning with $4 = \frac{6!}{3!} = 4 \times 5 \times 6 = 120$

Therefore, the required number of numbers = 60 + 180 + 120 = 360.

Example 24 In how many ways can 5 girls and 3 boys be seated in a row so that no two boys are together?

Solution Let us first seat the 5 girls. This can be done in 5! ways. For each such arrangement, the three boys can be seated only at the cross marked places.

$$\times G \times G \times G \times G \times G \times$$
.

There are 6 cross marked places and the three boys can be seated in 6P_3 ways. Hence, by multiplication principle, the total number of ways

=
$$5! \times {}^{6}P_{3} = 5! \times \frac{6!}{3!}$$

= $4 \times 5 \times 2 \times 3 \times 4 \times 5 \times 6 = 14400$.