Job No.:
 J2257 - 1
 Address:
 3/836 Hoskyns Road, Rolleston, New Zealand
 Date:
 04/03/2024

 Latitude:
 -43.535333
 Longitude:
 172.315393
 Elevation:
 103 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N4	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.8 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	38.22 m/s
Wind Pressure	0.88 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.5696

For roof CP,e from 0 m To 4 m Cpe = -0.9 pe = -0.71 KPa pnet = -1.11 KPa

For roof CP,e from 4 m To 8 m Cpe = -0.5 pe = -0.39 KPa pnet = -0.79 KPa

For wall Windward Cp, i = 0.4597 side Wall Cp, i = -0.5696

For wall Windward and Leeward CP,e from 0 m To 14 m Cpe = 0.7 pe = 0.55 KPa pnet = 1.05 KPa

For side wall CP,e from 0 m To 4 m Cpe = pe = -0.51 KPa pnet = -0.01 KPa

Maximum Upward pressure used in roof member Design = 1.11 KPa

Maximum Downward pressure used in roof member Design = 0.66 KPa

Maximum Wall pressure used in Design = 1.05 KPa

Maximum Racking pressure used in Design = 0.94 KPa

Design Summary

Girt Design Front and Back

Girt's Spacing = 900 mm Girt's Span = 4000 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.65 S1 Downward = 9.63 S1 Upward = 20.31

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.89 Kn-m	Capacity	1.38 Kn-m	Passing Percentage	73.02 %
$V_{0.9D\text{-W}nUp}$	1.89 Kn-m	Capacity	12.06 Kn-m	Passing Percentage	638.10 %

Deflections

First Page

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 53.49 mm

Limit by Woolcock et al, 1999 Span/100 = 40.00 mm

Sag during installation = 15.52 mm

Reactions

Maximum = 1.89 kn

Girt Design Sides

Girt's Spacing = 900 mm

Girt's Span = 4667 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.58 S1 Downward = 9.63 S1 Upward = 21.93

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	2.57 Kn-m	Capacity	1.21 Kn-m	Passing Percentage	47.08 %
V _{0.9D-WnUp}	2.21 Kn-m	Capacity	12.06 Kn-m	Passing Percentage	545.70 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 99.10 mm

Limit by Woolcock et al. 1999 Span/100 = 46.67 mm

Sag during installation =28.76 mm

Reactions

Maximum = 2.21 kn

Middle Pole Design

Geometry

250 SED H5 (Minimum 275 dia. at Floor Level)	Dry Use	Height	4500 mm
Area	54091 mm2	As	40568.5546875 mm2
Ix	232952248 mm4	Zx	1774874 mm3
Iy	232952248 mm4	Zx	1774874 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 28 m^2

Dead	7.00 Kn	Live	7.00 Kn
Wind Down	18.48 Kn	Snow	17.64 Kn
Moment wind	16.20 Kn-m	Moment snow	4.31 Kn-m
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Second page

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	778.92 Kn	PhiMnx Wind	51.54 Kn-m	PhiVnx Wind	96.07 Kn
PhiNcx Dead	467.35 Kn	PhiMnx Dead	30.93 Kn-m	PhiVnx Dead	57.64 Kn
PhiNcx Snow	623.13 Kn	PhiMnx Snow	41.23 Kn-m	PhiVnx Snow	76.85 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.36 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.15 < 1 \text{ OK}$

Deflection at top under service lateral loads = 22.80 mm < 45.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter	Ds =	0.6 mm	Pile Diameter
----------------------------	------	--------	---------------

L = 1700 mm Pile embedment length

f1 = 3600 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind =	16.20 Kn-m	Moment Snow =	Kn-m
Shear Wind =	4.50 Kn	Shear Snow =	4.31 Kn

Pile Properties

Safety Factory 0.55

Hu = 8.26 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 17.61 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.92 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1700) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1700)

Skin Friction = 23.34 Kn

Weight of Pile + Pile Skin Friction = 26.76 Kn

Uplift on one Pile = 24.78 Kn

Uplift is ok