

# 第1章 电路元件和电路定律

- 1. 电压、电流的参考方向
- 2. 电路元件特性(<u>元件约束</u>)
- 3. 基尔霍夫定律(<u>拓扑约束</u>) (基本形式+推广形式)
- 4. 电路元件的功率



# 第2章 电阻电路的等效变换

- 1. 电路等效的概念;
- 2. 电阻的串、并联;
- 3. Y—∆ 变换;
- 4. 电压源和电流源的等效变换;
- 5. 一端口(两端网络)输入电阻的计算。





# 第3章 电阻电路的一般分析

## 熟练掌握电路方程的列写方法:

#### 2b法

支路电流 (电压)法

回路电流法

结点电压法

### 电阻电路的一般分析方法



| 分析方法      | 电路变量               | 方程数                        | 方程类型                               | 特点适用性                                        | 注意问题                            |
|-----------|--------------------|----------------------------|------------------------------------|----------------------------------------------|---------------------------------|
| 支路法 (2b)  | 支路电流、<br>支路电压      | 2 <b>b</b>                 | KCL (n-1)<br>KVL b- (n-1)<br>支路方程b | 最灵活、任何<br>电路、方程组<br>庞大                       |                                 |
| 支路电流法     | 支路电流               | b                          | KCL (n-1)<br>KVL b- (n-1)          | 指定支路电流<br>参考方向,任<br>何电路                      | 电流源在<br>KVL方程                   |
| 回路法 (网孔法) | 回路电流<br>(网孔电<br>流) | <i>l=b-</i> ( <i>n-</i> 1) | KVL                                | 选择回路电流<br>(网孔电流),<br>任何电路,对<br>回路少的电路<br>有优势 | 电流源在<br>KVL方程                   |
| 结点法       | 结点电压               | n-1                        | KCL                                | 选择参考结点,<br>任何电路,对<br>结点少的电路<br>有优势           | 电压源在<br>KCL方程;<br>电流源串联<br>电阻支路 |



回路法 
$$\begin{cases} R_{11}i_{11} + R_{12}i_{12} + \cdots + R_{11}i_{11} = u_{S11} \\ R_{21}i_{11} + R_{22}i_{12} + \cdots + R_{21}i_{11} = u_{S22} \\ R_{11}i_{11} + R_{12}i_{12} + \cdots + R_{11}i_{11} = u_{S11} \end{cases}$$

结点法  $\begin{cases} G_{11}u_{n1} + G_{12}u_{n2} + \ldots + G_{1(n-1)}u_{n(n-1)} = i_{S11} \\ G_{21}u_{n1} + G_{22}u_{n2} + \ldots + G_{2(n-1)}u_{n(n-1)} = i_{S22} \\ \ldots \\ G_{(n-1)1}u_{n1} + G_{(n-1)2}u_{n2} + G_{(n-1)(n-1)}u_{n(n-1)} = i_{S(n-1)(n-1)} \end{cases}$ 

#### 写出回路法方程。





#### 列结点法方程











#### 电子线路的习惯表示方法







#### 【题1】 求: (1) a、b、c、d、e各点电位;

#### (2) 2mA电流源的输出功率。



$$u_a = 2V, u_b = u_a + 6 = 8V, u_c = u_b + 18 - 5 \times 2 = 16V$$
  
 $u_a = u_c - 2 \times 2 = 12V, u_e = u_b + 1 \times 2 = 10V$ 

$$p_{2mA\%} = (u_e - u_d) \times 2 = -4(mw)$$
, 实际上吸收4mw功率

#### 【题2】

# 求支路a、b的输入功率并判断吸收功率还是发出功率。





$$i = \frac{u - 12}{0.2} = -10A$$
 $p_{\text{W}} = u \times i = -100(\text{w})$ 

实际上发出100mw功率



$$i = \frac{12 + u}{0.2} = 110A$$

$$p_{\text{\tiny TM}} = u \times i = 1100(\text{w})$$

实际吸收1100mw功率



$$I = 5 + I_2 = 10mA$$

# 【题4】 将电路化成能求I的最简形式(用等效变换





















#### 【题5】

#### 用回路法求 $u_{ab}$ 、I。









 $10 \Omega$ 

$$20I_{l1} - 5I_{l2} + 10I_{l3} = 0$$

$$I_{l2} = 2$$

$$10I_{l1} + 5I_{l2} + 15I_{l3} = -5 + 10$$

$$I_{l1} = 1A,$$
 $I_{l2} = 2A,$ 
 $I_{l3} = -1A$ 

$$\therefore I = I_{l3} = -1A,$$
 $u_{ab} = 10 \times (I_{l1} + I_{l3}) = 0$ 







$$20I_{l1} + 5I_{l2} + 10I_{l3} = 0$$

$$I_{l2} = 2$$

$$10I_{l1} + 15I_{l3} = -5 + 10$$

$$I_{l1} = -1A,$$
 $I_{l2} = 2A,$ 
 $I_{l3} = 1A$ 

$$\therefore I = I_{l3} - I_{l2} = -1A,$$
 $u_{ab} = 10 \times (I_{l1} + I_{l3}) = 0$ 







 $10\,\Omega$ 

### 用结点法求 $u_{ab}$ 、I。





$$u_a = 10$$

$$(\frac{1}{5} + \frac{1}{5})u_d - \frac{1}{5}u_a - \frac{1}{5}u_b = 2$$

$$(\frac{1}{10} + \frac{1}{5} + \frac{1}{5})u_b - \frac{1}{5}u_d - \frac{1}{10}u_a = 1$$

$$u_a = 10V, u_b = 10V$$
$$u_d = 15V$$
$$\therefore u_{ab} = 0$$

$$I = \frac{u_{ab}}{10} + \frac{u_a - u_d}{5} = -1A$$



21





### 用结点法求 $u_{ab}$ 、I。



#### 增设结点在e处

$$\begin{cases} u_{a} = 10 \\ (\frac{1}{5} + \frac{1}{5} + \frac{1}{30})u_{d} - \frac{1}{5}u_{a} - \frac{1}{5}u_{b} - \frac{1}{30}u_{e} = 0 \\ (\frac{1}{10} + \frac{1}{5} + \frac{1}{5})u_{b} - \frac{1}{5}u_{d} - \frac{1}{10}u_{a} = 1 \\ \frac{1}{30}u_{e} - \frac{1}{30}u_{d} = 2 \\ u_{a} = 10V, u_{b} = 10V \\ u_{d} = 15V, u_{e} = 75V \\ \therefore u_{ab} = 0 \\ I = \frac{u_{ab}}{10} + \frac{u_{a} - u_{d}}{5} = -1A \end{cases}$$

#### 【题6】

#### 用结点法求u=?





#### 【题6】 用结点法求u=?









#### 【题6】

#### 用结点法求u=?





## 书面测试题: 求图示电路中的电流 $i_1$ 和 $i_2$



要求: 学号尾号为单数的同学用回路法;

学号尾号为双数的同学用结点法。



### 作业



• 3-26 【多个无伴电压源】