

Symbiotic Adversarial Learning for Attribute-based Person Search

Yu-Tong Cao*, Jingya Wang*, and Dacheng Tao
UBTECH Sydney AI Centre, The University of Sydney
*Equal contribution

Problem – Attribute-based person search

Query attribute descriptions

- Teenager
- Backpack
- Pants
- Short bottom wear
- Short top wear
- Long hair
- Female
- Top white
- Bottom blue

Model

Gallery images

Images source: Market-1501 dataset.

Differences with zero-shot learning

- 1. No class prototypes for unseen classes
- 2. Large intra-class variations and inter-class similarities

Attribute-based person search (Market-1501)

-26 images per category

Teenager
Short top
Bottom
black
...

-609 images per

Black
White
Big
...

Category: giant panda

Inter-class similarity

Intra-class variation

Motivation – Symbiosis

- A close and long-term biological interaction
- Mutualistic symbiosis relationship

Image source: https://icanhas.cheezburger.com/tag/Symbiosis

Symbiotic adversarial

: Real features

: Synthetic features

: Common space features

: Semantic space

: Visual space

: Common space

 D_2

Three types of inputs to discriminator D_1 :

- (1) The fake input pairs (\tilde{f}_a, f_v) , where $\tilde{f}_a = G_a(f_v)$.
- (2) The fake input pairs (f_a, \tilde{f}_v) , where $\tilde{f}_v = G_v(f_a)$.
- (3) The real input pairs (f_a, f_v) .

$$L_{\text{gan1}}(G_A, G_V, D_1) = \mathbb{E}_{(f_a, f_v) \sim p(f_a, f_v))}[log(D_1(f_a, f_v))]$$

$$+ \frac{1}{2} \mathbb{E}_{f_a \sim p(f_a)}[log(1 - D_1(f_a, \widetilde{f}_v))]$$

$$+ \frac{1}{2} \mathbb{E}_{f_v \sim p(f_v)}[log(1 - D_1(\widetilde{f}_a, f_v))].$$

$$oxed{L_{embed}}$$
 $oxed{L_{align-adv}}$

 E_{V}

 $L_{\text{synth-adv}} = L_{\text{gan1}} + L_{\text{cvc}} + L_{\text{consis}}.$

$$L_{\text{cyc}}(G_A, G_V) = \mathbb{E}_{f_a \sim p(f_a)}[||G_A(G_V(f_a, z)) - f_a||_2].$$

$$L_{\text{consis}}(G_A, G_V) = \mathbb{E}_{f_v \sim p(f_v)}[||E_A(\widetilde{f}_a) - E_V(f_v)||_2] + \mathbb{E}_{f_a \sim p(f_a)}[||E_V(\widetilde{f}_v) - E_A(f_a)||_2]$$

$$+ \mathbb{E}_{(f_a, f_v) \sim p(f_a, f_v)}[||E_A(\widetilde{f}_a) - E_A(f_a)||_2] + \mathbb{E}_{(f_a, f_v) \sim p(f_a, f_v)}[||E_V(\widetilde{f}_v) - E_V(f_v)||_2],$$

Common Embedding

Space

Results

Table 1. Attribute-based person search performance evaluation. Best results are shown in **bold**. The second-best results are <u>underlined</u>.

Metric (%)		Market-1501 Attributes				PETA			
Model	Reference	mAP	rank1	rank5	rank10	mAP	rank1	rank5	rank10
DeepCCA [1]	ICML'13	17.5	30.0	50.7	58.1	11.5	14.4	20.8	26.3
DeepMAR [23]	ACPR'15	8.9	13.1	24.9	32.9	12.7	17.8	25.6	31.1
DeepCCAE [50]	ICML'15	9.7	8.1	24.0	34.6	14.5	14.2	22.1	30.0
2WayNet [8]	CVPR'17	7.8	11.3	24.4	31.5	15.4	23.7	38.5	41.9
CMCE [24]	ICCV'17	22.8	35.0	51.0	56.5	26.2	31.7	39.2	48.4
ReViSE [41]	ICCV'17	17.7	24.2	45.2	57.6	31.1	30.5	<u>57.0</u>	61.5
MMCC [9]	ECCV'18	22.2	34.9	<u>58.7</u>	70.2	33.9	33.5	<u>57.0</u>	<u>69.0</u>
AAIPR [53]	IJCAI'18	20.7	40.3	49.2	58.6	27.9	39.0	53.6	62.2
AIHM [7]	ICCV'19	<u>24.3</u>	43.3	56.7	64.5	-	-	-	_
SAL (Ours)		29.8	49.0	68.6	77.5	41.2	47.0	66.5	74.0

Ablation studies

Table 2. Component analysis of SAL on PETA dataset.

Metric (%)	mAP	rank1	rank5	rank10
Embed	31.3	34.0	57.0	64.5
Embed + adv	35.0	37.5	60.5	66.5
Embed + symb-adv	40.6	44.0	64.0	70.5
Embed + symb-adv + unseen(SAL)	41.2	47.0	66.5	74.0

Table 3. Effect of interactions between two GANs on PETA dataset.

Metric (%)	mAP	rank1	rank5	rank10
$SAL - L_{aug}$	35.4	38.0	60.0	69.0
\overline{SAL} - L_{consis}	35.2	39.5	56.5	66.0
SAL (Full interaction)	41.2	47.0	66.5	74.0

Table 4. Comparing stage-wise training vs. symbiotic training scheme.

Metric (%)	mAP	rank1	rank5	rank10
SAL w/ stage-wise training	35.0	41.0	58.0	65.0
SAL w/ symbiotic training	41.2	47.0	66.5	74.0

Visualized retrieval results

The green/red border represents correct/wrong selections respectively.

Thank you!

Code at:

https://github.com/ycao5602/SAL