EOSC 211: Interpolation

Group #: _____ Name: _____

Interpolation:

The figure above contains estimates, f_i , of a function f(x) taken at data points x_i . The values of x_i , f_i are given in Table 1 below.

Table 1:

Xi	0.3	1.1	3.5	3.9	5.8	8.0
f_i	-2.5	-0.6	-1.2	-1.8	-4.6	-3.6

A. Using the graph only estimate the values of f(x) at evenly spaced points x=1,2,3,...8. Plot the points on the graph and enter the estimated values of f(x) from the graph in table 2 below

Xi	1	2	3	4	5	6	7	8
f_i								

B. Now we will use math and find an "exact" value of f(x) at the point x=7 by linearly interpolating between the 2 nearest points.

a.	What are the two x value	es in Table	that are closest to $x=7$?	Call these two	points x_i and x_i	x_{i+1} .
----	--------------------------	-------------	-----------------------------	----------------	------------------------	-------------

$$\begin{array}{l} x_j \! = \\ x_{j+1} \! = \end{array}$$

b. What is the slope of the line joining these two points? Call this
$$m$$

$$m =$$

c. How would you estimate the value f_{new} of f(x) at a point x_{new} that is part way between x_i and x_{i+1} . Write down the formula you would use to estimate f_{new} and calculate its value at $x_{new} = 7$.