Теория на игрите Теория

Дефиниция: (равновесие по Неш) Нека $x_i \in X_i$ е стратегия на играч i и $P_i(x_1,\ldots,x_n)$ е функция на печалба на играч i

$$(\overline{X_1},\ldots,\overline{X_n})$$
 е равновесие по Неш $\iff P_i(\overline{x_i},\ldots,\overline{x_{i-1}},x_i,\overline{x_{i+1}},\ldots,\overline{x_n}) \leq P_i(\overline{x_i},\ldots,\overline{x_n}), orall i=\overline{1,n}$

(тоест никой не би променил най-оптималната си стратегия при фиксирани стратегии на другите играчи)

Дефиниция: (игра с нулева сума) Една игра е с нулева сума, ако за фиксиран вектор от стратегии X е изпълнено, че $\sum\limits_{i=1}^n P_i(x)=0$

(тоест е затворена система, играчите само си разпределят наградата от собствените залози)

I Антагонистична игра между двама играчи с нулева сума

Нека $(\overline{x}, \overline{y})$ е равновесие по Неш.

P(x,y) - печалбата на първия играч

Q(x,y) - печалбата на втория играч

Понеже играта е с нулева сума, имаме P(x,y) = -Q(x,y)

Тогава

$$egin{aligned} 1)P(\overline{x},\overline{y}) &\geq P(x,\overline{y}) \ 2)Q(\overline{x},\overline{y}) &\geq Q(\overline{x},y) \ -P(\overline{x},\overline{y}) &\geq -P(\overline{x},y) \ P(\overline{x},\overline{y}) &\leq P(\overline{x},y) \end{aligned}$$

$$\Longrightarrow P(x, \overline{y}) \leq P(\overline{x}, \overline{y}) \leq P(\overline{x}, y)$$

(това е условие за седлова точка - тах по х, тіп по у)

Ако имаме матрична игра с матрица $A=(a_{ij})_{m imes n}$, то $a_{ij}=P(x_i,y_j)$

Дефиниция: (цена на игра)

$$egin{aligned} v_{II} &= \min_{y \in Y} (\max_{x \in X} P(x,y)) \ v_{I} &= \max_{x \in X} (\min_{y \in Y} P(x,y)) \end{aligned}$$

Ако $v_{II}=v_I=v$, то v е цена на играта и $v=P(\overline{x},\overline{y})$ v е гарантираната печалба на първия играч.

Твърдение: $v_I \leq v_{II}$

Фиксираме $x_0 \in X, y_0 \in Y$ и тогава е вярно, че

$$egin{aligned} P(x_0,y) & \leq P(x_0,y_0) \leq P(x,y_0) \ \min_{y \in Y} P(x_0,y) & \leq P(x_0,y_0) \leq \max_{x \in X} P(x,y_0) \ \min_{y \in Y} P(x,y) & \leq \max_{x \in X} P(x_0,y) \ \max_{x_0 \in X} (\min_{y \in Y} P(x,y)) & \leq \min_{y_0 \in Y} (\max_{x \in X} P(x_0,y)) \ v_I & \leq v_{II} \end{aligned}$$

Твърдение: Една игра има цена тогава и само тогава когато има седлова точка (равновесие по Неш)

Смесени стратегии

Може при фиксирани стратегии играта да няма равновесие, тоест играчите да не могат да си изберат стратегия, с която да играят всеки път.

При смесените стратегии, всяка от наличните стратегии се избира с вероятност.

Например, ако $x=\left(\frac{1}{2},\frac{1}{3},\frac{1}{6},0\right)$ е стратегията на първия играч, то това означава, че той ще играе първата стратегия с вероятност 1/2, втората стратегия с вероятност 1/3, третата с вероятност 1/6 и четвъртата няма да играе никога.

Трябва задължително за даден вектор с вероятности за стратегия на играч да е изпълнено, че $\sum_{x=1}^n x_i = 1$ и $x_i \geq 0$

Чиста стратегия i е еквивалентно на записано със смесени стратегии $x=(0,\ldots,0,1,0,\ldots,0)$ тоест $x_i=1,x_j=0$

Тогава имаме, че
$$P(x,y) = \sum\limits_{i=1}^m \sum\limits_{j=1}^n a_{ij} x_i y_j$$

Записът P(x,j) означава смесена стратегия x на първия играч и чиста стратегия j на втория.

Свойство:

Ако
$$\overline{x_{i_0}}>0\Longrightarrow P(i_0,\overline{y})=P(\overline{x},\overline{y})=v$$

Ако $\overline{y_{j_0}}>0\Longrightarrow P(\overline{x},j_0)=P(\overline{x},\overline{y})=v$

Свойство:

Ако
$$(\overline{x_1},\overline{y_1})$$
 и $(\overline{x_2},\overline{y_2})$ са равновесия по Неш, то $P(\overline{x_1},\overline{y_1})=P(\overline{x_1},\overline{y_2})=P(\overline{x_2},\overline{y_1})=P(\overline{x_2},\overline{y_2})$

Свойство: Всяка игра в смесени стратегии има цена.

Симетрични игри

$$a_{ij}=-aji
ightarrow a_{ii}=0$$

Свойство: Цената на симетрична игра винаги е 0

Свойство: Равновесието на Неш на симетрична игра е от вида $(\overline{x}, \overline{x})$

Правило за премахване на ред и стълб

Ако фиксираме ред i_0 и за произволни $lpha_i$ е изпълнено, че

$$egin{cases} \sum lpha_i a_i \geq a_{i_0} \ \sum lpha_i = 1 \ lpha_i \geq 0 \end{cases}$$

то можем да премахнем ред i_0 (a_{i_0}), тоест $\overline{x_{i_0}}=0$

Ако фиксираме стълб j_0 и за произволни eta_i е изпълнено, че

$$egin{cases} \sumeta_i b_i \leq b_{j_0} \ \sumeta_i = 1 \ eta_i \geq 0 \end{cases}$$

то можем да премахнем стълб j_0 (b_{j_0}), тоест $\overline{y_{j_0}}=0$

II Антагонистична игра между двама играчи - биматрична игра

Имаме $A_{m imes n}, B_{m imes n}$ Нека P(x,y) е функция на печалба на първия играч Нека Q(x,y) е функция на печалба на втория играч

Дефиниция: (равновесие по Hew) $(\overline{x}, \overline{y})$ е равновесие по Heш, ако

$$1)P(\overline{x},\overline{y}) \geq P(x,\overline{y})$$

 $2)Q(\overline{x},\overline{y}) \geq Q(\overline{x},y)$

където

$$egin{aligned} P(x,y) &= x^TAy = \sum\limits_{i=1}^m \sum\limits_{j=1}^n a_{ij}x_iy_j \ Q(x,y) &= x^TBy = \sum\limits_{i=1}^m \sum\limits_{j=1}^n b_{ij}x_iy_j \end{aligned}$$

III Кооперативни игри с двама играчи - биматрични

Заедно избират какви стратегии да играят, за да максимизират печалбата си.

$$egin{pmatrix} P(x,y) \ Q(x,y) \end{pmatrix} = \sum_{i=1}^m \sum_{j=1}^n egin{pmatrix} a_{ij} \ b_{ij} \end{pmatrix} x_i y_j = \sum_{i,j} p_{ij} egin{pmatrix} a_{ij} \ b_{ij} \end{pmatrix}$$

Нека S е затворено изпъкнало множество, образувано от линиите, свързващи точките $\{(a_{ij},b_{ij})\}$ от матриците A и B на двамата играчи Нека

$$v^* = \min_{y \in Y} (\max_{x \in X} Q(x,y))$$
 и $u^* = \max_{x \in X} (\min_{y \in Y} P(x,y))$

Тогава $(\overline{u},\overline{v})$ е решение на $(S,(u^*,v^*))$ и притежава следните свойства:

- $(\overline{u},\overline{v})\in S$
- $(\overline{u},\overline{v}) \geq (u^*,v^*)$
- ullet ако $(\overline{u},\overline{v})\in T\subset S$ е решение на $(S,(u^*,v^*))$, то е решение и на $(T,(u^*,v^*))$
- ако L(u,v)=(u',v') положителна биективна линейна трансформация, то щом $(\overline{u},\overline{v})$ е решение на $(S,(u^*,v^*))$, значи $L(\overline{u},\overline{v})$ е решение на $(L(S),L(u^*,v^*))$
- ullet $(u,v)\in S o (v,u)\in S$, решението на $(S,(u^*,u^*))$ е от вида $(\overline{u},\overline{u})$

Съществува единствена точка, която удовлетворява горните свойства и е решение на задачата

$$egin{cases} (u-u^*)(v-v^*)
ightarrow \max \ u \geq u^* \ v \geq v^* \ (u,v) \in S \end{cases}$$

IV Кооперативни игри с повече от двама играчи

$$N=\{1,\ldots,n\}$$
 - играчи

Дефиниция: (коалиция) Произволно непразно подмножество S на N се нарича коалиция.

Дефиниция: (характеристична функция) v е характеристична функция на игра с n играчи, дефинирана от подмножество на N като $\forall S\subseteq N$ показва максималната цена на игра с двама играчи S и $N\setminus S$

$$v(S) = \max_{x \in S} \min_{y \in N \setminus S} P(x,y)$$

Свойство: Характеристичната функция v(S) има следните свойства:

- $v(\emptyset) = 0$
- $v(S \cup T) \geq v(S) + v(T)$ ako $S \cap T = \emptyset$

Дефиниция: (делба) Делба на игра с n играчи е вектор $x\in\mathbb{R}^n$, показващ на кой играч колко

ще дадем и има свойствата
$$egin{cases} x_i \geq v(\{i\}) \ \sum\limits_{i=1}^n x_i = v(N) \end{cases}$$

Дефиниция: (множество от делби)

 $\Delta(v)=E(v)=\{x\in\mathbb{R}^n|\;\;x_i\geq v(\{i\})\;,\;\;\sum x_i=v(N)\}$ е множеството от делбите за дадена игра

Дефиниция: (симетрична игра) v не зависи от елементите на коалицията, а само от броя им

Дефиниция: (доминирана делба) делбата x е по-лоша от делбата y за членовете на коалицията S и казваме, че x се доминира от y : x < y, ако $x_i < y_i, i \in S$ и $\sum_{i \in S} y_i \le v(S)$

Дефиниция: (ядро на игра) Всички недоминируеми делби: $x \in C(v) \Leftrightarrow \nexists y \underset{S}{>} x$

Дефиниция: (проста игра) Една игра е проста, ако $v(S) \in \{0,1\}, \ \ \forall S \subseteq R$

Дефиниция: (изоморфни игри) Две игри u и v са изоморфни, ако съществуват биекция $f:E(u)\to E(v)$, такива, че за всяко $x\in E(u)\ni E(v)$ и $S\subset N$ имаме $y>x\Longleftrightarrow f(y)>_S f(x)$

Дефиниция: (еквивалентни игри) Две игри u и v са еквивалентни, ако съществуват $r>0,\alpha_1,\dots,\alpha_n$, такива, че $v(S)=r.u(S)+\sum\limits_{i\in S}\alpha_i$ за всяка коалиция $S\subseteq N$

Дефиниция: (нормализирана игра) Играта v е в (0,1) нормализация, ако $v(\{i\})=0, v(N)=1$

Теорема: (условие за ядро) $x\in C(u)\Longleftrightarrow \sum\limits_{i\in S}x_i\geq u(S)$ за $S\subset N$ и $\sum\limits_{i=1}^nx_i=u(N)$

Дефиниция: (съществена игра) Една игра е съществена, ако $v(N) > \sum\limits_{i=1}^n v(\{i\})$

Дефиниция: (игра с постоянна сума) Една игра е с постоянна сума (или още нулева), ако $v(N) = v(S) + v(N \setminus S)$

Твърдение: Ядрото на всяка симетрична игра е празно

Твърдение: Ядрото на всяка съществена игра с постоянна сума е празно

Твърдение: Всяка съществена игра е еквивалентна на точно една (0,1)-нормализирана игра

Дефиниция: (N-M решение) Едно множество делби V е N-M решение, ако за множеството имаме:

- вътрешна устойчивост: $x,y \in V \Rightarrow y \not>_S x$
- ullet външна устойчивост: $x
 otin V\Rightarrow\exists y\in V:\quad y>_S x$

Теорема: (N-M решение) Нека u е (0,1)-нормализирана игра и S е коалиция, такава, че u(S)=1 и u(T)=0 за всяко $T\subset S$. Тогава $V_S=\{x\in E(u)|x_i=0$ за $i\notin S\}$ е N-M решение

Дефиниция: (носител на игра) Една коалиция T е носител на играта v, ако $v(S) = v(S \cap T)$ за произволна коалиция S

Дефиниция: (вектор на Шепли) $\varphi(v)$ е вектор на Шепли на играта v, ако показва кой играч колко ще получи и определя еднозначно делбата на всяка кооперативна игра v (другаде: $\varphi(v)$ е единствената делба, която е N-M решение)

$$ullet \sum_{i \in S} arphi_i(v) = v(S)$$

•
$$\varphi_{\pi_i}(\pi v) = \varphi_i(v)$$

•
$$arphi(v+w)=arphi(v)+arphi(w)$$
 и $arphi(lpha v)=lphaarphi(v)$

Където $\pi:N o N$ е пермутация на N

•
$$\pi v(S) = v(\pi^{-1}(S))$$

Твърдение: (вектор на Шепли)
$$arphi_i(u) = \sum\limits_{i \in T \subseteq N} rac{(t-1)!(n-t)!}{n!} (u(T) - u(T \setminus i))$$