

遨游"视"界 做你所想 Explore World, Do What You Want

开源协同下的视频云

— 以开放合作的心态打磨视频产品

赵军@Tencent 2019.8.24

- 在腾讯云负责视频云系统优化
- 老码农,每天坚持读<mark>代码</mark>BUG写<mark>代码</mark>BUG
- FFmpeg maintainer,入选FFmpeg决策委员会
- · 开源爱好者,参与过大量开源项目,包括Linux Kernel等
- 坚信简单胜过复杂

腾讯云主题概述

明眸 音视频编解码/画质增强方案

智眸 智能媒体检索/分析/审核方案

云剪 在线媒体内容生产方案

开源 取自开源,回馈开源

- 编码优化
- 画质增强
- 智能检索
- * 智能分析
- 在线编辑
- 无缝发布 无缝发布
- 外部开源
- 内部协同

超高清晰度

体育赛事、游戏等直播清晰度要求提升升、带动视频行业要求提升

• 国家政策鼓励 4K、8K爆发增长

网络带宽约束

- 4G已经普及,5G开始试点
- 网速仍是制约视频发展的最大因素之一

更高追求

- 设备能力越来越强,需要配合终端实现更好的效果
- 人们已不满足纯摄像头拍摄的效果,追求更多的趣味性、附加能力

明眸 —— 极速高清

"如果人能从历史中学习,我们将能学到多少东西啊!但是 激忿和党派蒙住了我们的双眼, 而经验的光亮就像船的艉灯, 只能在我们背后的波涛上留下一点余辉。

未来已来

北京

混合编码框架

北京 2019

在不降低视频质量情况下降低视频码率,把编码bits放在重要的地方,提高视频主观画质。

游戏 秀场 体育 户外 场景识别 影视剧… 动漫 美食 锐化 去伪影 反交错 前置处理 去块 视频降噪 色阶补偿 插帧、降帧 ROI指定区域增强

智能场景|纹理|运动|编码情况|残差|qp

gop级动态参数帧级

帧级码率控制

宏块级降噪

编码后视频

固定压缩码率提升质量 降低码率保证视频质量

PSNR和SSIM的问题

- 1. 它只能衡量其与原图的差异也即相对质量,不能计算绝对质量。
- 2. 孤立地计算每一帧,无法利用视频中相邻帧的相关性和运动信息。
- 3. PSNR/SSIM值的计算法过于straight-forward, 结果跟人眼的主观感受并不总能匹配。

VMAF优点

- 1. 算法主要关注三个指标: VIF/DLM/TI 以及SVM预测
- 2. 根据人眼感官打分,训练模型,更符 合真实人眼感受

结果

VMAF评分提升10+,同VMAF分码率节省30%

智眸 --- AI + 视频

遨游"视"界 做你所想 Explore World, Do What You Want

海 勝田云 视频AI

人像

声音/文字

图像

拆条/集锦

封面

分类

标签

涉黄

涉暴

涉政

智能识别

智能分析

智能审核

根据需求,灵活组合

冷腾讯云

泛娱乐直播场景

广电媒资管理场景

内容编辑场景

内容审核场景

内容监控场景

北京 2019 遨游"视"界 做你所想 Explore World, Do What You Want

云剪 —— 视频生产

上传/汇聚

制作与处理

内容管理

传输与分发

终端播放

- 多终端采集
- 高速上传

- 编辑能力
- 模版管理
- 素材管理
- Al智能编辑
- 多平台发布

- 媒资管理
- AI标签
- 视频编目
- 结构化分析

- 多协议适配
- 跨网络传输
- 多运营商
- 版权保护

- 多屏适配
- 场景数据
- 广告变现
- 视频播放

- 1. 轻量、模版化、智能、素材库
- 2. 内容生态: 泛娱乐、电竞等行业的PGC对于在线编辑刚需
- 3. 打通内容媒体全链条,提供完整的端到端方案。

遨游"视"界 做你所想 Explore World, Do What You Want

内容制作者/机构

云端剪辑工具

内容分发平台

PGC/UPGC MCN 直播平台 电竞内容

采 本地上传/网络截取

编 图文声特效

播 合成/预览/超清

存 云端存储

发 多平台一站分发

使用视频云基础组件

高效内容输出 分发

付费

分发平台接入

「媒体引擎

存储/转码/视频处理/AI技术

视频云PaaS能力

开源 —— 开源协同

FFmpeg简介

- multiplatform software project (Linux, Mac, Windows, Android, etc...)
- Comprises several **command line tools**: ffmpeg, ffplay, ffprobe, ···
- Comprises C libraries to handle multimedia at several levels
- Free Software / FLOSS: LGPL/GPL

北京 2019

北京 遨游"视"界 做你所想 2019 Explore World, Do What You Want

"Why Software Is Eating The World

--By Marc Andreessen"

统一版本管理

- 38 个repo的故事
- 避免重复的轮子, 经常看到造出来半个轮子, 三角形的轮子

及时反馈社区

- Feature, Bug Fix, 性能优化,文档更新, samples……

打造一个完整的工作流程

"Before I built a wall I'd ask to know What I was walling in or walling out, And whom I was like to give offense. Something there is that doesn't love a wall, That wants it down."

-Robert Frost, "Mending Wall"

接口与框架上的考虑:

- 使用FFmpeg 屏蔽不同的Os,不同的硬件平台,不同的Codec细节
- 使用FFmpeg构建灵活的media pipeline
- 集成Deep Learning 框架到FFmpeg 的AVFilter 模块是个好主意吗?

"If you can't measure it, you can't improve it.

"Premature optimization is the root of all evil

--Donald Knuth"

优化是永恒的话题

- 所有优化的前提是理解**算法与数据流向**
- 用Profiling的数据说话

理解硬件(多核,多线程,SIMD,Cache等等;GPU又是怎么一回事,FPGA,SoC呢)

CPU 优化的两大利器

- pthread: 解码(Frame/Slice), Filter(Slice), 编码器的性能优化(x264)
- SIMD 到底是什么?

GPU 优化的方式

- 尝试与CUDA对抗的OpenCL
- OpenGL也可以用来做加速
- Vulkan 会一统江湖吗

be ideo 北京 遨游"视"界 做你所想 Explore World, Do What You Want

CPU加速

Thread 加速

- 充分释放多核的能力
- AVFilter 的 AVFILTER_FLAG_SLICE_THREADS 意味着什么?
- FFmpeg 使用了工作组模式,对不相关的数据以行 (row)为单位划分处理
- 内部某个项目,线程优化之后,从7ms到了2ms

SIMD 加速

- 三种汇编优化形式**:**
 - intrinsics
 - inline assembly
 - hand-written assembly
- 以nasm/yasm 汇编语法为主 (why?)
- 复用了x264 的汇编优化库 x86inc.asm
- NImeans 的 优化是个典型的例子

多讲一点线程的问题

我们的窘境:

一核有难,八核围观

l'ts okay, I didn't need speed anyway

多讲一点线程的问题 续

考试时间

使用FFmpeg的时候,如何设置我们的线程?

真实的故事

故事一:增加一行代码,一条复杂的Pipeline的执行时间减半

故事二: 嘿,哥们,我们拥有1200个线程在一个进程 里面

故事三: QA告诉我AV1 encoder crash了,但我始终不能重现这个问题

故事四: 什么? 线程不只是影响转码性能?

SIMD 优化面临的一些问题

- 发现数据并行算法有时候并非易事
- 不同硬件之间的移植性
 - sse-to-neon
 - neon-to-sse
- **边界处理**(SIMD 一般都有内存对齐的需求)
 - Padding, Predication, Fallback
- 分支的处理
 - Predication, Fallback to scalar
- 不是所有Ops都被SIMD指令支持
 - Division, High-level function (eg: math functions)
- Floating-Point
 - Unsupported/cross-deivce Compatiblilty

GPU加速

FFmpeg HWAccel with Intel GPU:

- FFmpeg QSV plugins are based on MediaSDK; it has widely accepted by customers.
- VAAPI is lower level API; FFmpeg VAAPI plugins provides more flexible solution for customers.
- Integrate 3rd-party OCL/OpenCV/Vulkan video processing library to enrich the solution.
- FFmpeg Plugins with HW acceleration will speed up development for different usage

一个有趣的问题:

什么,我不知道我是否真的使用了硬件加速功能?

AI 是FFmpeg的一部分吗?

"To be, or not to be, that is the question

-- from Hamlet, spoken by Hamlet

- 实现一个特定 Inference filters? 还是集成一个重度的inference框架?
- 扩展已有的简单版本的DNN_Inference API?
 - FFmpeg 已经集成了部分DL的功能,主要是Super Resolution filter,Derain,但性能堪忧存在一个非常简单的DNN API

期望的架构

实际的产品

开放性问题

● CPU 与 GPU的调度问题

● CPU 与 GPU的数据交换问题

- ▶ 数据从 CPU到GPU与数据从GPU到CPU并不对等
 - ✓ Mmap
 - ✓ SSE4/AVX/···
 - ✓ GPU Copy
 - ✓ OpenCL SVM

➤ Buffer Sharing

https://www.khronos.org/registry/OpenCL/extensions/intel/cl_intel_va_api_media_sharing.txt https://www.freedesktop.org/wiki/Software/Beignet/howto/libva-buffer-sharing-howto/

Backup

编码参数模板

视频场景实时识别,直播场景识别 延时1-3分钟,根据场景识别结果 ,不同场景配置不同最优编码参数 模板

动态优化

结合纹理和运动检测因子, 在模板参数的基础上, 进行参数细化

结果

vmaf 评分提升10+,同vmaf评分 码率节省30%

高精度

MegaFace竞赛100万规模人脸检索首选识别率83.29%世界第一,同时通过异源数据训练提升各类不同场景下的照片的识别精度。

人脸质量评估

针对非配合场景下, 自动判断光线、姿态、 角度等,选择最优人 脸图片,提高人脸检 索精度。

人脸变化识别

腾讯优图自研人脸演变模型,即使随着年龄增长,皮肤、肌肉、骨骼发生明显变化,优图天眼也能正常识别。

多角度识别

腾讯优图自研去遮挡 技术,有效减少眼镜、 口罩、帽子等遮挡物 对人脸识别算法的影响。

微信智聆

腾讯优图

- ▶ 海量数据积累: 立足腾讯社交数据大平台,积累了数十万小时标注语音数据,识别率高。
- □ 算法业界领先:应用业内最领先语音识别算法,包括LSTM, BLSTM, Deep CNN, LFMMI, CTC 等算法;结合超大规模语言模型,覆盖广泛的垂直领域。
- <mark>□ 噪声环境识别</mark>:模型鲁棒性佳,能够识别来自嘈杂环境的音频信息,不需要客户进行降 噪处理。
- 准确性高: 腾讯云文字识别 OCR 可自动从图片中定位并识别字段,印刷体的平均准确率可达 90% 以上,手写体的识别平均准确率高达 85% 以上,鲁棒性强。
- **稳定性强**:腾讯云的身份证识别、名片识别、营业执照识别服务已成功应用于微众银行、 QQ、广点通等腾讯内部核心业务,接受过海量用户和复杂场景的考验,各项反馈良好。
- **适用性高**:优图自研的 OCR 技术,涵盖了整个证件检测识别框架的所有核心算法,支持横向、竖向拍摄,适应透视畸变、光照不均、部分遮挡的情况,具备非常高的复杂环境可用性。

北京 2019

致谢

• 腾讯云

vultureli; jorryliu; tasyticfan; definesun; chenxinliu; tomajsjiang; vacingfang; tstan

• 腾讯视频

geminili; peterzhuang; macweng

• FFmpeg社区

悟空; Ruiling Song; Michael Niedermayer; Zhongli

遨游"视"界 做你所想 Explore World, Do What You Want

Thank you

