Homework 5 Report -Text Sentiment Classifation

學號:B04501095 系級: 土木三 姓名:黃平瑋

1. **(1%) 請說明你實作的 RNN model,其模型架構、訓練過程和準確率為何?** 將training data 有label和沒有label的一起丟進gensim word2Vec 轉換成128維的vector ,只取出現次數大於三次的word, 其餘視為沒有出現, 再將所有的句子padding成40個字 的長度, 不足則在後面補0

RNN的model結構訓練為下圖:

Layer (type)	Output	Shape	 Param #
Layer (type)			Param #
lstm_1 (LSTM)	(None,	40, 256)	365568
lstm_2 (LSTM)	(None,	40, 256)	525312
lstm_3 (LSTM)	(None,	256)	525312
dropout_1 (Dropout)	(None,	256)	0
dense_1 (Dense)	(None,	512)	131584
batch_normalization_1 (Batch	(None,	512)	2048
dropout_2 (Dropout)	(None,	512)	0
dense_2 (Dense)	(None,	256)	131328
batch_normalization_2 (Batch	(None,	256)	1024
dropout_3 (Dropout)	(None,	256)	0
dense_3 (Dense)	(None,	128)	32896
batch_normalization_3 (Batch	(None,	128)	512
dropout_4 (Dropout)	(None,	128)	0
dense_4 (Dense)	(None,	2)	258
Total params: 1,715,842 Trainable params: 1,714,050 Non-trainable params: 1,792			

其他的訓練參數:

LSTM activation function: tanh DNN activation function: relu

LSTM Drop out: 0.2 DNN Drop out: 0.3

Loss function = binary_crossentropy, optimizer = adam

batch size = 1024, epoch = 50(with early stoping and checkpoint) training acc: 0.8365, public acc: 0.83088, private acc: 0.82859

2. (1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何?

先用keras的Tokenizer取出出現次數前30000的字, 透過keras 的 **text_to_matrix**紀錄 每個句子這30000個字出現的次數, 最後output一個 (200000, 30000) 的array當作training data, 並透過下圖的model訓練

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	1024)	30721024
dropout_1 (Dropout)	(None,	1024)	Θ
batch_normalization_1 (Batch	(None,	1024)	4096
dense_2 (Dense)	(None,	512)	524800
dropout_2 (Dropout)	(None,	512)	0
batch_normalization_2 (Batch	(None,	512)	2048
dense_3 (Dense)	(None,	256)	131328
dropout_3 (Dropout)	(None,	256)	0
batch_normalization_3 (Batch	(None,	256)	1024
dense_4 (Dense)	(None,	128)	32896
dropout_4 (Dropout)	(None,	128)	0
batch_normalization_4 (Batch	(None,	128)	512
dense_5 (Dense)	(None,	2)	258
Total params: 31,417,986 Trainable params: 31,414,146 Non-trainable params: 3,840			

Dropout rate = 0.4 Activation function = relu

loss = binary_crossentropy, Optimizer = Adam, Learning rate = 1e-4 batch size = 1024, epoch = 50(with early stoping and checkpoint) training acc: 0.79884, public acc: 0.79725, private acc:0.79103 我的bow模型明顯比RNN差了不少

3. (1%) 請比較bag of word與RNN兩種不同model對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

Sentence 1: "today is a good day, but it is hot"

在RNN和bag of word 模型中, 上面兩句的預測結果均為正面(output為1), 但機率略有不同

	sentence 1	sentence 2
RNN	positive: 0.773	positive: 0.8749
Bag of Word	positive: 0.7498	positive: 0.7498

可以看出Bag of Word 預測兩個句子情感的機率是完全相同的, 因為兩個句子中的各個word出現次數完全相同, 只是順序稍微調換了一下, 但因為Bag of Word 訓練的過程不會將sequence的順序考慮進去, 所以造成兩個句子在Bag of word模型中看起來是一樣的data, 所以訓練的結果也是相同的

在RNN中由於有LSTM所以neural network是會將sequence考慮進去, 所以最後的兩個句子的結果也不一樣

4. (1%) 請比較"有無"包含標點符號兩種不同tokenize的方式,並討論兩者對準確率的影響。

要將標點符號去除, 我使用的是gensim.parsing.preprocessing 中的 strip_punctuation, 即可去除, 若沒有使用這個function, 即是把標點符號當成一般的字一起去做word embedding (RNN訓練的model和參數和第一題相同)

	training acc	public testing acc	private testing acc
含標點符號	0.8365	0.83088	0.82859
不含標點符號	0.82340	0.82302	0.82083

可以從上表看出,不論是在training set還是testing set 中,保留標點符號的表現都比去除標點符號的結果高了將近**1%**,推測會有這樣的結果,是因為某些標點符號可能表達出人的情感,如驚嘆號,問號,或是刪節號

5. (1%) 請描述在你的semi-supervised方法是如何標記label,並比較有無 semi-surpervised training對準確率的影響。

我從no_label的data中挑選了400000筆,用 supervised training的方式 train了20個 epochs,再把model拿去fit這400000筆沒有no_label data,將output結果 > 0.9 和 < 0.1 的data標上**pseudo label 1, 0**,剩餘的資料則不取,再將這些data和原本的data合在一起繼續train,最後的結果有些微的進步 (RNN訓練的model和參數和第一題相同)

	training acc	public testing acc	private testing acc
有semi-supervised	0.83972	0.83415	0.83133
無semi-supervised	0.83654	0.83088	0.82859