Análisis de bases de datos

Taller 4: Análisis multidimensional de criminalidad

Laura Nicole Bermudez Santa - labermudezs@unal.edu.co David Sebastián Mendoza Cruz - damendozac@unal.edu.co David Alejandro Alquichire Rincón - dalquichire@unal.edu.co Laura Nicole Bermudez Santa - labermudezs@unal.edu.co Juan David Bernal - jubernalv@unal.edu.co

Considere los datos del archivo Excel adjunto; en él se muestran los datos de criminalidad, fondos policiales y educación de la población en las ciudades pequeñas de los Estados Unidos.

Las variables (X1, X2, X3, X4, X5, X6, X7) representan la siguiente información:

- X1: reporte total de criminalidad por millón de residentes.
- **X2:** tasa de crímenes violentos por 100.000 residentes.
- X3: fondos anuales policiales en dólares por habitante.
- X4: porcentaje de personas de 25 años o más con bachillerato.
- X5: porcentaje de la población de 16 a 19 años sin bachillerato.
- X6: porcentaje de la población entre 18 a 24 años que realiza estudios universitarios.
- **X7:** porcentaje de la población de 25 o más años con por lo menos 4 años de estudios universitarios.

```
In [1]: # Importamos algunas Librerias necesarias
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb

# Leemos el archivo
criminalidad = pd.read_csv('Datos Criminalidad.csv')
criminalidad.head(5)
```

```
Out[1]:
            X1
                X2 X3 X4 X5 X6 X7
        0 478 184
                    40
                         74
                             11
                                 31
                                     20
        1 494
               213
                    32
                        72
                                     18
                            11
                                43
        2 643
                347
                     57
                         70
                             18
                                 16
                                     16
                     31
                                 25
                                     19
          341
                565
                         71
                             11
        4 773 327
                    67
                        72
                                 29
                                     24
```

In [2]: criminalidad.info() # Información basica de las columnas que conforman el dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	X1	50 non-null	int64
1	X2	50 non-null	int64
2	Х3	50 non-null	int64
3	X4	50 non-null	int64
4	X5	50 non-null	int64
5	X6	50 non-null	int64
6	X7	50 non-null	int64

dtypes: int64(7)
memory usage: 2.9 KB

A. Presente un análisis estadístico básico por variable indicando sus opiniones sobre cada uno de los valores calculados. En este literal debe efectuar el cálculo de todas las medidas vistas en clase de centralización y dispersión, debe incluir un análisis intercuartílico.

In [3]: criminalidad.describe() # Estadisticas basicas de las columnas que conforman el dat

count 50.000000 50.00000 50.000000 50.00000 50.00000 50.00000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 70.00000 50.00000 80.00000 40 49 49 40 40 40 40 25.00000 11.000000 11.000000 25.00000 12.000000 50% 654.500000 454.000000 34.500000 59.000000 14.000000 25.000000 15.750000 75% 820.500000 3545.000000 86.000000 81.000000 34.000000 81.000000 36.000000	[-].							,
mean 717.960000 616.180000 37.760000 58.800000 15.400000 29.900000 13.820000 std 293.938766 573.739175 13.820364 9.965246 6.023762 14.801062 5.157479 min 341.000000 29.000000 16.000000 42.000000 4.000000 7.000000 8.000000 25% 497.000000 230.750000 30.000000 49.000000 11.000000 21.250000 11.000000 50% 654.500000 454.000000 34.500000 59.000000 14.000000 25.000000 12.000000 75% 820.500000 822.500000 42.250000 67.000000 19.000000 34.250000 15.750000	ut[3]:	X1	Х2	Х3	X4	Х5	Х6	Х7
std 293.938766 573.739175 13.820364 9.965246 6.023762 14.801062 5.157479 min 341.000000 29.000000 16.000000 42.000000 4.000000 7.000000 8.000000 25% 497.000000 230.750000 30.000000 49.000000 11.000000 21.250000 11.000000 50% 654.500000 454.000000 34.500000 59.000000 14.000000 25.000000 12.000000 75% 820.500000 822.500000 42.250000 67.000000 19.000000 34.250000 15.750000	count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000000
min 341.000000 29.000000 16.000000 42.000000 4.000000 7.000000 8.000000 25% 497.000000 230.750000 30.000000 49.000000 11.000000 21.250000 11.000000 50% 654.500000 454.000000 34.500000 59.000000 14.000000 25.000000 12.000000 75% 820.500000 822.500000 42.250000 67.000000 19.000000 34.250000 15.750000	mean	717.960000	616.180000	37.760000	58.800000	15.400000	29.900000	13.820000
25% 497.000000 230.750000 30.000000 49.000000 11.000000 21.250000 11.000000 50% 654.500000 454.000000 34.500000 59.000000 14.000000 25.000000 12.000000 75% 820.500000 822.500000 42.250000 67.000000 19.000000 34.250000 15.750000	std	293.938766	573.739175	13.820364	9.965246	6.023762	14.801062	5.157479
50% 654.500000 454.000000 34.500000 59.000000 14.000000 25.000000 12.000000 75% 820.500000 822.500000 42.250000 67.000000 19.000000 34.250000 15.750000	min	341.000000	29.000000	16.000000	42.000000	4.000000	7.000000	8.000000
75% 820.500000 822.500000 42.250000 67.000000 19.000000 34.250000 15.750000	25%	497.000000	230.750000	30.000000	49.000000	11.000000	21.250000	11.000000
	50%	654.500000	454.000000	34.500000	59.000000	14.000000	25.000000	12.000000
тах 1740.000000 3545.000000 86.000000 81.000000 34.000000 81.000000 36.000000	75%	820.500000	822.500000	42.250000	67.000000	19.000000	34.250000	15.750000
	max	1740.000000	3545.000000	86.000000	81.000000	34.000000	81.000000	36.000000

La tabla anterior presenta un análisis estadístico básico por cada variable contemplando los 50 registros del dataset. Se expone en su orden la cantidad de datos no nulos evaluados, la

media aritmética, la desviación estandar, el valor mínimo, primer y tercer cuartil, mediana y por ultimo el valor máximo. Algunas observaciones que podemos deducir del análisis estadístico basico son:

- El reporte total de criminalidad por millón de residentes (X1) tiene una media de 717.96, con un rango desde 341 hasta 1740. Lo cual nos indica que existe una variabilidad significativa en los niveles de criminalidad entre los reportes realizados.
- La tasa de crímenes violentos por 100,000 residentes (X2) tiene una media de 616.18, con una desviación estándar alta de 573.74, lo cual sugiere una gran dispersión en los datos, variando desde 29 hasta 3545.
- El porcentaje de personas de 25 años o más con bachillerato (X4) tiene una media de 58.8%, con un rango de 42% a 81%.
- El porcentaje de la población de 16 a 19 años sin bachillerato (X5) tiene una media de 15.4%, con un rango de 4% a 34%.
- El porcentaje de la población entre 18 a 24 años que realiza estudios universitarios (X6) tiene una media de 29.9%, con un rango de 7% a 81%.
- El porcentaje de la población de 25 o más años con al menos 4 años de estudios universitarios (X7) tiene una media de 13.82%, con un rango de 8% a 36%.
- **B.** Presente una matriz de "calor" para las correlaciones (de Person) entre pares de variables. Indique cuales son los cuatro pares de variables con mayor correlación.

Out[4]:		variable_1	variable_2	correlación
	1	X1	X2	0.756505
	7	X2	X1	0.756505
	45	X7	X4	0.681072
	27	X4	X7	0.681072
	47	X7	X6	0.591663
	41	X6	X7	0.591663
	2	X1	Х3	0.533198
	14	Х3	X1	0.533198

```
In [5]: import seaborn as sns
        fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 8))
        sns.heatmap(
            corr_matrix,
            annot=True,
            cbar=True,
            annot_kws={"size": 8},
            vmin=-1,
            vmax=1,
            center=0,
            cmap=sns.diverging_palette(15, 150, n=20),
            square=True,
            ax=ax
        )
        ax.set_xticklabels(
            ax.get_xticklabels(),
            rotation=45,
            horizontalalignment='right',
        ax.tick_params(labelsize=10)
        ax.set_title("Correlaciones entre pares de variables")
        plt.tight_layout()
        plt.show()
```



```
In [6]: tab_corr = Tabular_corr_matrix(corr_matrix)

selected_pairs = set()
final_pairs = []

for _, row in tab_corr.iterrows():
    var1, var2 = row.variable_1, row.variable_2

# Evitar agregar el mismo par en orden inverso
    if (var1, var2) not in selected_pairs and (var2, var1) not in selected_pairs:
        selected_pairs.add((var1, var2))
        final_pairs.append((var1, var2, row.correlación))

if len(final_pairs) == 4:
        break
print(selected_pairs)

{('X1', 'X2'), ('X7', 'X4'), ('X7', 'X6'), ('X1', 'X3')}
```

Vemos que las variables con mayor correlación son:

```
1. (X1, X3)
2. (X1, X2)
3. (X7, X6)
4. (X7, X4)
```

C. Plotee los cuatro pares de variables con mayor correlación, mostrando la recta de regresión lineal que mejor se ajusta a los datos.

```
In [11]: import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
         def linear_regression(X, Y, xlabel, ylabel):
             a = np.inner(X, X)
             b = np.sum(X)
             c = np.inner(X, Y)
             d = np.sum(Y)
             N = len(X)
             Delta = a * N - b * b
             A = (N * c - b * d) / Delta
             B = (a * d - b * c) / Delta
             Y_pred = A * X + B
             plt.grid(True)
             plt.scatter(X, Y, color='red', label='Datos criminalidad')
             plt.plot(X, Y_pred, color='blue', label='Regresión Lineal')
             plt.xlabel(xlabel)
             plt.ylabel(ylabel)
             plt.legend()
             plt.show()
         linear_regression(criminalidad['X1'], criminalidad['X3'], 'X1', 'X3')
         linear_regression(criminalidad['X1'], criminalidad['X2'], 'X1', 'X2')
         linear_regression(criminalidad['X7'], criminalidad['X6'], 'X7', 'X6')
         linear_regression(criminalidad['X7'], criminalidad['X4'], 'X7', 'X4')
```


D. Haga un análisis multilineal tomando como variable dependiente los fondos anuales policiales por habitante, con las demás variables como variables predictorias. Indique la expresión que obtuvo.

Calcularemos los coeficientes de regresión β_i ; $0 \le i \le 6$ tales que permitan predecir las ventas mediante una igualdad de la forma:

$$X3_{pred} = \beta_0 + \beta_1 X1 + \beta_2 X2 + \beta_3 X4 + \beta_4 X5 + \beta_5 X6 + \beta_6 X7$$

```
In [8]: X = pd.DataFrame(criminalidad[['X1','X2', 'X4', 'X5', 'X6', 'X7']]).values
        Y = pd.DataFrame(criminalidad[['X3']]).values
        #Generamos una columna de unos y la insertamos como primera columna de X
        Unos = np.ones(len(criminalidad))
        X = np.insert(X, 0, Unos, axis=1)
        MPenrouse = np.linalg.pinv(np.matmul(X.transpose(),X)) # Cálculo de la seudo-invers
        C = np.matmul(MPenrouse, X.transpose())
        B = np.matmul(C,Y)
        print(B)
       [[-4.86463516]
        [ 0.01228691]
        [ 0.0057846 ]
        [ 0.27990054]
        [ 0.62677114]
        [-0.19446349]
        [ 0.71945018]]
```

Hemos obtenido la expresión

$$X3_{pred} = -4.864 + 0.012 \cdot X1 + 0.005 \cdot X2 + 0.279 \cdot X4 + 0.626 \cdot X5 - 0.194 \cdot X6 + 0.7$$

→

E. Indique que variables predictorias tiene mayor impacto sobre la variable independinte. ¿Tiene sentido lo obtenido? Explique.

Solución:

Vemos de lo anterior que las variables tienen impacto en el siguiente orden de mayor a menor sobre la independiente:

- 1. **X7:** Porcentaje de la población de 25 o más años con por lo menos 4 años de estudios universitarios.
- 2. **X5:** Porcentaje de la población de 16 a 19 años sin bachillerato.
- 3. **X4:** Porcentaje de personas de 25 años o más con bachillerato.
- 4. X6: Porcentaje de la población entre 18 a 24 años que realiza estudios universitarios.
- 5. X1: Reporte total de criminalidad por millón de residentes.
- 6. **X2:** Tasa de crímenes violentos por 100.000 residentes.

```
In [9]: from numpy import linalg as LA
Y_pred = np.matmul(X,B)
plt.scatter(Y,Y_pred, color='red')
plt.show()
P_int=np.matmul(np.transpose(Y),Y_pred)
Norm_Y=LA.norm(Y)
```

```
Norm_Yp=LA.norm(Y_pred)
c = P_int/(Norm_Y*Norm_Yp)
print("Coeficiente de correlación = ",c)
```


F. Haga un análisis de regresión lineal simple entre la variable fondos anuales reales y los predichos por el modelo. Con base en este análisis evalúe el modelo.

```
In [10]: Y_aux=np.array([int(x[0]) for x in Y])
    Y_pred_aux=np.array([int(x[0]) for x in Y_pred])
    linear_regression(Y_aux, Y_pred_aux)
```


Podemos observar varias cosas, en primer lugar antes de hacer la regresión hemos sacado el coeficiente de correlación entre la variable predicha y la real; podemos observar que este dio bastante cercano a 1, indicando así que el modelo se ajusta bien a los datos. Pero al observar los puntos graficados notaremos que para valores más grandes (mayores a 50), nuestra predicción tiende a estar más alejada del dato real, tendiendo a estar por debajo. Esto puede ser a la falta de más datos en ese rango, pues notamos que la mayoría está concentrado por debajo de 50, haciendo así más difícil la aproximación para valores altos.

Al hacer la regresión lineal entre los datos reales y los predichos podemos observar como la pendiente de la recta está visiblemente desviada de 1, por los datos mayores a 50 que hemos mencionado antes.

De lo anterior podemos concluir que aunque el modelo puede estar bien ajustado para valores pequeños, puede que para valores más grandes no sea fiable, y se requieran más observaciones en esas condiciones para refinar el modelo.

G. Plantee un modelo de regresión multilineal que permita explicar los índices de criminalidad con el grado de escolaridad de la población. Explique brevemente su modelo y los resultados que obtiene de él.

Primero, seleccionamos los datos y en este caso consideramos elsiguiente modelo que utiliza mínimos cuadrados para encontrar la mejor línea de ajuste. Se basa en la ecuación $\beta=(X^TX)^+X^TY$, donde X es la matriz de características y Y el vector de valores objetivo. En lugar de invertir X^TX , usamos su pseudo-inversa de Moore-Penrose. Así, el

modelo minimiza el error cuadrático entre las predicciones y los valores reales, ajustando los coeficientes de la regresión de manera óptima.

Por ende con los valores obtenidos tenemos el siguiente modelo de regresión multilineal:

```
y = 606.714 - 5.1024x_1 + 15.1246x_2 - 2.9871x_3 + 19.3678x_4
```

A continuación graficamos la correlación entre Y real y la predicción de Y realizada. Con su respectivo valor de correlación.

```
In [15]: import matplotlib.pyplot as plt

Y_pred = np.matmul(X, sol_least_square)
plt.scatter(Y, Y_pred, c='green')
plt.xlabel('Y real')
plt.ylabel('Predicción de Y')
plt.xlim([0,2000])
plt.ylim([0,2000])
plt.show()
```



```
In [16]: P_int = np.matmul(np.transpose(Y),Y_pred)
Norm_Y = np.linalg.norm(Y)
Norm_Yp = np.linalg.norm(Y_pred)
c = P_int/(Norm_Y*Norm_Yp)
print("Coeficiente de correlación = ",c)
```

Coeficiente de correlación = [[0.93743314]]

Como primeras impresiones, vemos en la gráfica que los datos entre Y real y Y predicha coinciden un poco, y estas forman ligeramente una relación lineal, salvo unos datos atípicos que vemos, que en Y real son mayores a 1250.

Como el coeficiente es 0.93, podemos confirmar que la relación lineal es buena.

```
In [17]:

def linear_regression(X, Y):
    a = np.inner(X,X)
    b = np.sum(X)
    c = np.inner(X,Y)
    d = np.sum(Y)
    N = len(X)
    Delta = a*N-b*b
    A = (N*c-b*d)/Delta
    B = (a*d-b*c)/Delta
    Y_pred = A*X+B
    plt.grid(True)
    plt.scatter(X, Y,color='red')
    plt.plot(X, Y_pred, color='blue')
    plt.xlim([0,2000])
```

```
plt.ylim([0,2000])
  plt.show()

Y_aux=np.array([int(x[0]) for x in Y])
Y_pred_aux=np.array([int(x[0]) for x in Y_pred])
linear_regression(Y_aux, Y_pred_aux)
```


Vemos que la regresión lineal es relativamente buena. Si eliminaramos los datos atípicos, la regresión sería un poco distinta.

```
In [19]: new_Y_aux = Y_aux[ Y_aux < 1250]
    new_Y_pred_aux = Y_pred_aux[ Y_aux < 1250]
    linear_regression(new_Y_aux, new_Y_pred_aux)</pre>
```


Al eliminar los datos atípicos, la regresión comienza a ser un poco más inclinada. Por tanto, existe mayor correlación en este caso respecto a la variable real respecto a la variable predicha.

H. ¿Es posible detectar datos atípicos en la base de datos con las herramientas vistas en clase?

Según (Devore, 2012), la detección de datos atípicos en una muestra, se hace con ciertas cuentas, usando los cuartiles.

En clase, vimos la definición de cuartil, por ende, sí es posible detectar datos atípicos. Un dato q es atípico si cumple las siguientes desigualdades:

$$q < Q_1 - 1.5 \cdot (Q_3 - Q_1)$$
 o $q > Q_1 + 1.5 \cdot (Q_3 - Q_1)$

Podemos verificar respecto a la base de datos:

```
In [21]: Q_1 = criminalidad.quantile(0.25)
Q_2 = criminalidad.quantile(0.50)
Q_3 = criminalidad.quantile(0.75)
IQR = Q_3 - Q_1 # El rango intercuartílico
```

Podemos ir verificando por columna los datos atípicos.

```
In [24]: criminalidad[criminalidad < Q_1 - 1.5 * IQR].head(9)</pre>
```

Out[24]: **X1 X2 X3 X4 X5 X6 X7 0** NaN NaN

Por ejemplo, en este caso no hay datos atípicos menores. Pero la siguiente si muestra datos atípicos por encima de los datos 'comunes'.

criminalidad[criminalidad > Q_1 + 1.5 * IQR].head(9) In [25]: Out[25]: **X1 X2 X3 X4 X5 X6 X7 0** NaN NaN NaN NaN NaN NaN 20.0 NaN NaN NaN NaN NaN 43.0 NaN NaN NaN 57.0 NaN 19.0 NaN NaN 67.0 NaN NaN NaN 24.0 NaN NaN

Bibliografía

8 NaN NaN

NaN

NaN

NaN

NaN

NaN NaN NaN

NaN

NaN

NaN NaN

NaN

Devore, J. L. (2012). Probabilidad y Estadistica para Ingenieria y Ciencias. https://openlibrary.org/books/OL26233421M/Probabilidad_y_estad%C3%ADstica_para_ingenier%