Wstęp do Algorytmów Ewolucyjnych Raport z testów

Kacper Sarnacki

Monika Żurkowska

6 czerwca 2016

1 Przypomnienie

Celem naszego projektu było zaimplementowanie zmodyfikowanego algorytmu ewolucji różnicowej, w którym jako pierwszy z 3 punktów stosowanych podczas mutacji wybierana była średnia punktów populacji a następnie porównanie tego rozwiązanie z klasycznym algorytmem ewolucji różnicowej wykorzystując benchmark "cec2013" do testowania.

2 Lista zmian

W związku z długim czasem wykonywania się testów zmuszeni byliśmy przyjąć kilka poprawek w stosunku do przyjętych założeń ze Specyfikacji Wstępnej:

- Rozmiar wektorów dla których przeprowadziliśmy testy: 5 oraz 10
- Mniejsza liczba kombinacji współczynników F i Cr (patrz 3)
- Liczba iteracji dla każdego testu: 10
- Algorytm porównujemy wyłącznie z klasycznym algorytmem z losowym doborem 3 punktów w przeciwieństwie do wcześniejszego założenia o porównaniu go z algorytmem losowym i algorytmem, w którym jako pierwszy z trzech punktów wybierany jest najlepszy spośród obecnej populacji
- W warunku stopu dla algorytmów brana była pod uwagę liczba wywołań funkcji ewaluacyjnej zamiast - jak wcześniej założono - liczby iteracji.

3 Testy

Zgodnie z wymaganiami, nasze testy przeprowadziliśmy na benchmarku "cec2013' dla naszego algorytmu oraz dla algorytmu klasycznego. Wyniki przedstawione zostały w tabelach poniżej.

Func	Expected	Be	est	М	ax	M	in	Med	dian	Me	ean	St	td
		Our	Classic										
1	-1400	-1384,18	-1400	-1333,31	-1400	-1384,18	-1400	-1370,25	-1400	-1367,35	-1400	15,01651	0
2	-1300	1156,728	4641,86	30107,53	56645,84	1156,728	4641,86	13810,68	14740,68	14887,49	21565,07	9928,977	17062,73
3	-1200	1805625	-1190,81	30634901	-1161,19	1805625	-1190,81	10470177	-1186,22	13080638	-1183,4	10998504	8,724086
4	-1100	-179,027	-887,022	4096,463	2511,969	-179,027	-887,022	1183,841	163,8953	1307,564	462,1636	1278,79	1090,967
5	-1000	-970,736	-1000	-925,914	-1000	-970,736	-1000	-953,681	-1000	-951,843	-1000	16,20861	1,07E-12
6	-900	-899,904	-899,693	-893,609	-898,24	-899,904	-899,693	-899,384	-899,194	-898,435	-899,125	1,955796	0,456921
7	-800	-794,186	-799,953	-785,075	-799,895	-794,186	-799,953	-790,403	-799,939	-789,952	-799,932	2,857585	0,021419
8	-700	-679,977	-684,684	-679,889	-679,908	-679,977	-684,684	-679,92	-681,66	-679,925	-682,022	0,02681	2,076632
9	-600	-597,886	-598,79	-597,355	-597,935	-597,886	-598,79	-597,672	-598,501	-597,657	-598,433	0,200396	0,243134
10	-500	-496,878	-499,891	-482,504	-499,687	-496,878	-499,891	-492,861	-499,762	-491,765	-499,782	4,61241	0,062525
11	-400	-396,778	-400	-385,093	-400	-396,778	-400	-392,298	-400	-391,709	-400	3,486724	1,26E-09
12	-300	-292,83	-297,54	-288,88	-293,938	-292,83	-297,54	-291,621	-295,78	-291,546	-295,881	1,20909	1,217766
13	-200	-192,943	-197,309	-184,228	-194,153	-192,943	-197,309	-187,264	-196,421	-187,856	-196,154	3,026232	1,081974
14	-100	-67,1905	-99,9354	51,84844	-99,2744	-67,1905	-99,9354	-6,45085	-99,7962	-3,86549	-99,7353	36,2726	0,196819
15	100	210,3635	261,8744	446,379	432,3495	210,3635	261,8744	290,8801	324,2369	301,3162	329,6543	73,56902	59,75628
16	200	200,4707	200,5415	201,0253	201,2906	200,4707	200,5415	200,7723	200,8942	200,79	200,8927	0,164523	0,208745
17	300	306,7785	305,0946	312,0947	305,5326	306,7785	305,0946	309,435	305,2736	309,3859	305,2815	1,666895	0,131651
18	400	408,9578	407,8309	415,9946	411,1644	408,9578	407,8309	413,2098	409,0763	412,9012	409,4512	1,803454	1,351567
19	500	500,6359	500,0637	505,6257	500,2472	500,6359	500,0637	501,9458	500,1375	502,103	500,1551	1,442106	0,065075
20	600	600,3134	600,4136	601,0394	600,8734	600,3134	600,4136	600,6032	600,553	600,6735	600,6167	0,269639	0,18462
21	700	844,5157	801,8614	1030,745	960,6034	844,5157	801,8614	1022,933	812,7865	989,7526	844,0738	73,52123	56,32839
22	800	1044,989	829,7369	1278,041	972,8128	1044,989	829,7369	1200,268	937,0022	1179,939	930,2421	87,21754	38,80239
23	900	1151,529	1224,047	1509,545	1500,409	1151,529	1224,047	1390,36	1397,02	1357,299	1375,178	113,8177	92,97693
24	1000	1037,015	1040,008	1120,786	1123,718	1037,015	1040,008	1096,209	1115,369	1088,377	1107,657	26,41211	24,6928
25	1100	1207,837	1202,398	1238,829	1209,036	1207,837	1202,398	1227,038	1206,578	1226,784	1206,551	8,914443	2,022087
26	1200	1221,544	1285,927	1325,223	1305,021	1221,544	1285,927	1312,022	1304,631	1292,703	1300,052	48,28356	9,419986
27	1300	1645,227	1609,652	1672,212	1632,696	1645,227	1609,652	1656,876	1619,612	1658,176	1620,329	7,842577	8,234934
28	1400	1711,453	1666,266	1720,882	1700	1711,453	1666,266	1714,859	1700	1715,513	1691,567	4,512685	16,8673

Rysunek 1: 5-wymiarowa populacja. Wyniki dla parametrów: F = 0.25, Cr = 0.25

Rysunek 2: 5-wymiarowa populacja. Wykres porównujący najlepsze rozwiązania dla naszego algorytmu oraz klasycznego. Parametry: F = 0.25, Cr = 0.25

Rysunek 3: 5-wymiarowa populacja. Parametry: F=0.25, Cr=0.25. Wykres porównujący liczbę lepiej znalezionych rozwiązań pomiędzy dwoma algorytmami.

Func	Expected	Be	est	M	ax	M	in	Me	dian	Me	ean	S	td
		Our	Classic										
1	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	2,14E-13	1,63E-11
2	-1300	1588,435	18950,02	11561,2	86180,02	1588,435	18950,02	4834,593	34112,63	5957,9	44753,49	3639,269	23380,64
3	-1200	-1197,64	-1177,06	8579,192	-1091,32	-1197,64	-1177,06	-833,569	-1144,71	1089,477	-1142,78	3955,759	29,4977
4	-1100	-513,23	-165,438	234,2526	2809,427	-513,23	-165,438	-227,623	883,4135	-156,911	954,1101	285,072	924,5247
5	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	4,4E-05	3,46E-09
6	-900	-900	-899,696	-899,931	-898,434	-900	-899,696	-899,977	-898,986	-899,972	-898,975	0,023367	0,381019
7	-800	-799,769	-799,803	-794,397	-799,287	-799,769	-799,803	-799,008	-799,573	-798,523	-799,561	1,666884	0,145909
8	-700	-686,007	-685,446	-679,881	-679,911	-686,007	-685,446	-683,54	-680,327	-683,461	-681,286	2,001536	1,979801
9	-600	-599,065	-598,433	-597,967	-597,866	-599,065	-598,433	-598,412	-598,037	-598,425	-598,078	0,311568	0,183084
10	-500	-499,807	-499,806	-498,154	-499,413	-499,807	-499,806	-499,331	-499,574	-499,234	-499,584	0,482623	0,135821
11	-400	-399,954	-400	-397,811	-400	-399,954	-400	-399,559	-400	-399,275	-400	0,721132	4,31E-06
12	-300	-297,84	-296,804	-296,197	-290,377	-297,84	-296,804	-297,313	-294,544	-297,149	-294,267	0,536334	1,938666
13	-200	-196,644	-196,615	-193,772	-190,656	-196,644	-196,615	-194,629	-194,662	-194,948	-194,59	0,980529	1,929896
14	-100	-85,9144	-98,5011	-29,174	-91,0722	-85,9144	-98,5011	-79,066	-96,747	-71,8439	-96,3732	19,0171	2,075153
15	100	176,2218	220,7642	342,9022	493,7058	176,2218	220,7642	222,7768	348,3604	227,3364	355,0503	46,28518	101,4671
16	200	200,4419	200,6361	201,2797	201,2379	200,4419	200,6361	200,9413	200,9589	200,9378	200,9303	0,260089	0,19717
17	300	305,1286	305,0692	306,7551	305,1952	305,1286	305,0692	306,0143	305,0995	306,0015	305,1085	0,467775	0,039818
18	400	406,8389	408,1977	408,5966	412,8689	406,8389	408,1977	408,0266	409,943	407,8326	410,1152	0,639312	1,701436
19	500	500,025	500,0926	500,3582	500,2567	500,025	500,0926	500,1164	500,1842	500,1287	500,1822	0,095088	0,049058
20	600	600,3068	600,5311	600,5979	601,0122	600,3068	600,5311	600,4409	600,8883	600,4437	600,8065	0,09997	0,171601
21	700	862,6459	820,947	1014,52	1000,087	862,6459	820,947	979,4532	853,4012	961,0143	868,6285	53,22655	53,11894
22	800	861,8404	917,3707	1148,477	1043,88	861,8404	917,3707	970,6623	999,7371	972,27	995,8678	80,72027	36,72017
23	900	1115,615	1303,753	1473,192	1602,689	1115,615	1303,753	1230,152	1489,355	1246,501	1465,482	105,9872	117,2121
24	1000	1060,556	1085,258	1113,606	1130,682	1060,556	1085,258	1078,279	1124,533	1085,247	1119,958	23,68046	12,93618
25	1100	1202,885	1208,729	1209,214	1221,97	1202,885	1208,729	1206,653	1214,028	1206,21	1214,523	2,223992	4,299298
26	1200	1302,344	1300,327	1306,273	1307,206	1302,344	1300,327	1302,945	1305,429	1303,627	1304,598	1,792886	3,070708
27	1300	1608,93	1604,449	1626,197	1651,689	1608,93	1604,449	1618,119	1643,837	1617,61	1639,387	5,872554	14,23622
28	1400	1626,85	1700	1707,245	1700,018	1626,85	1700	1700,488	1700,001	1683,768	1700,005	38,07865	0,008682

Rysunek 4: 5-wymiarowa populacja. Wyniki dla parametrów: F = 0.5, Cr = 0.25

Rysunek 5: 5-wymiarowa populacja. Wykres porównujący najlepsze rozwiązania dla naszego algorytmu oraz klasycznego. Parametry: F=0.5, Cr=0.25

Rysunek 6: 5-wymiarowa populacja. Parametry: F = 0.25, Cr = 0.25. Wykres porównujący liczbę lepiej znalezionych rozwiązań pomiędzy dwoma algorytmami.

4 Wnioski

Zarówno algorytm klasyczny, jak i z wyborem elementu średniego zwracaj porównywalne wyniki. Bardzo duże znaczenie na zwracane przez nie wyniki ma liczebność populacji początkowej oraz jej początkowe rozłożenie na przestrzeni rozwiązań.

Func	Expected	Be	st	М	ax	M	in	Med	dian	Me	ean	St	td
		Our	Classic										
1	-1400	-1399,98	-1400	-1399,78	-1400	-1399,98	-1400	-1399,88	-1400	-1399,88	-1400	0,14583	4,18E-12
2	-1300	7428,328	7367,017	17557,65	10235,71	7428,328	7367,017	12492,99	8801,363	12492,99	8801,363	7162,511	2028,472
3	-1200	450,0426	-1191,93	55947,68	-1169,44	450,0426	-1191,93	28198,86	-1180,68	28198,86	-1180,68	39242,76	15,9017
4	-1100	722,4114	-866,878	912,4373	-761,862	722,4114	-866,878	817,4243	-814,37	817,4243	-814,37	134,3686	74,2573
5	-1000	-999,585	-1000	-997,784	-1000	-999,585	-1000	-998,685	-1000	-998,685	-1000	1,273605	1,27E-09
6	-900	-899,928	-899,587	-899,906	-899,444	-899,928	-899,587	-899,917	-899,516	-899,917	-899,516	0,015043	0,101248
7	-800	-797,176	-799,961	-795,059	-799,942	-797,176	-799,961	-796,117	-799,952	-796,117	-799,952	1,496924	0,013601
8	-700	-679,918	-681,346	-679,904	-679,906	-679,918	-681,346	-679,911	-680,626	-679,911	-680,626	0,009493	1,018249
9	-600	-598,001	-598,253	-597,799	-597,932	-598,001	-598,253	-597,9	-598,092	-597,9	-598,092	0,142851	0,226614
10	-500	-499,381	-499,807	-496,57	-499,793	-499,381	-499,807	-497,975	-499,8	-497,975	-499,8	1,987565	0,0103
11	-400	-398,98	-399,904	-397,936	-399,895	-398,98	-399,904	-398,458	-399,9	-398,458	-399,9	0,738776	0,006026
12	-300	-297,655	-295,138	-296,627	-294,966	-297,655	-295,138	-297,141	-295,052	-297,141	-295,052	0,727366	0,122108
13	-200	-193,732	-197,332	-192,81	-194,151	-193,732	-197,332	-193,271	-195,741	-193,271	-195,741	0,652166	2,249903
14	-100	-54,6408	-78,6143	-52,1206	-72,4392	-54,6408	-78,6143	-53,3807	-75,5268	-53,3807	-75,5268	1,78209	4,366478
15	100	294,2928	264,7415	309,8213	360,3045	294,2928	264,7415	302,0571	312,523	302,0571	312,523	10,98033	67,57321
16	200	201,0183	201,0594	201,12	201,1816	201,0183	201,0594	201,0691	201,1205	201,0691	201,1205	0,071903	0,086398
17	300	305,5726	305,6235	306,2736	305,86	305,5726	305,6235	305,9231	305,7417	305,9231	305,7417	0,495617	0,167205
18	400	408,8925	408,3276	409,1066	413,5725	408,8925	408,3276	408,9996	410,95	408,9996	410,95	0,151349	3,70871
19	500	500,2998	500,3499	500,3855	500,3547	500,2998	500,3499	500,3427	500,3523	500,3427	500,3523	0,060588	0,003432
20	600	600,4338	601,0813	600,6322	601,2034	600,4338	601,0813	600,533	601,1424	600,533	601,1424	0,140251	0,086365
21	700	1002,285	863,6733	1003,048	1000	1002,285	863,6733	1002,666	931,8368	1002,666	931,8368	0,539351	96,39765
22	800	946,6394	1053,48	991,7085	1147,238	946,6394	1053,48	969,174	1100,359	969,174	1100,359	31,86861	66,29706
23	900	1126,014	1293,098	1283,178	1336,155	1126,014	1293,098	1204,596	1314,626	1204,596	1314,626	111,1321	30,44607
24	1000	1108,336	1111,704	1126,041	1120,041	1108,336	1111,704		1115,872	-	1115,872	12,51936	5,894599
25	1100	1207,327	1209,436	1207,569	1210,549	1207,327	1209,436	1207,448	1209,993	1207,448	1209,993	0,170941	0,786856
26	1200	1303,64	1302,712	1303,991	1309,552	1303,64	1302,712	1303,815	1306,132	1303,815	1306,132	0,248222	4,836426
27	1300	1622,628	1626,738	1625,554	1636,468	1622,628	1626,738	1624,091	1631,603	1624,091	1631,603	2,068565	6,880332
28	1400	1700,334	1700	1700,985	1700	1700,334	1700	1700,66	1700	1700,66	1700	0,460081	8,34E-06

Rysunek 7: 5-wymiarowa populacja. Wyniki dla parametrów: F = 0.5, Cr = 0.5

Rysunek 8: 5-wymiarowa populacja. Wykres porównujący najlepsze rozwiązania dla naszego algorytmu oraz klasycznego. Parametry: F=0.5, Cr=0.5

Najbardziej problematycznymi funkcjami dla obu algorytmów okazały się funkcje o indeksach 2, 3, 4. Często dla tych funkcji algorytmy dawały znacznie gorsze wyniki od oczekiwanego rozwiązania. Bardziej

Rysunek 9: 5-wymiarowa populacja. Parametry: F = 0.25, Cr = 0.25. Wykres porównujący liczbę lepiej znalezionych rozwiązań pomiędzy dwoma algorytmami.

Func	Expected	Bes	t	Ma	х	M	in	Medi	an	Me	an	S	td
		Our	Classic	Our	Classic	Our	Classic	Our	Classic	Our	Classic	Our	Classic
1	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	0	2,57E-08
2	-1300	2641,205827	43632,7426	38731,69331	149504,491	2641,205827	43632,7426	20033,12356	74820,867	21996,02165	83056,681	12205,72	30116,92
3	-1200	-1189,359564	-1114,5248	1239,639608	184,116562	-1189,35956	-1114,5248	-1150,384848	-805,2054	-804,301798	-672,66508	749,0751	398,4963
4	-1100	-538,2202457	39,2707742	282,5290922	3896,28533	-628,353973	39,2707742	-71,91528375	1715,5675	-119,317093	1894,4261	314,6242	1351,143
5	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	5,47E-12	7,35E-07
6	-900	-899,8526674	-899,68691	-898,2316222	-897,9969	-899,852667	-899,68691	-899,1364574	-898,8485	-899,099239	-898,81086	0,563098	0,508973
7	-800	-799,9048873	-798,61454	-799,4168242	-797,53177	-799,904887	-798,61454	-799,6133927	-798,2279	-799,622857	-798,14625	0,16613	0,40289
8	-700	-687,4251382	-679,97364	-679,8746751	-679,81346	-687,425138	-679,97364	-680,4433413	-679,8885	-681,356438	-679,8961	2,317733	0,051659
9	-600	-598,4431876	-598,34308	-597,7151825	-597,4586	-598,443188	-598,34308	-598,1117156	-597,9049	-598,122281	-597,88813	0,232293	0,257978
10	-500	-499,8260991	-499,47324	-499,645052	-499,09109	-499,826099	-499,47324	-499,7399741	-499,2526	-499,734516	-499,27765	0,060626	0,125345
11	-400	-399,9152082	-399,99939	-397,8904688	-399,98692	-399,915208	-399,99939	-398,7577897	-399,9964	-398,764777	-399,9954	0,544233	0,00427
12	-300	-298,7196054	-296,28878	-294,0812163	-291,31959	-298,719605	-296,28878	-296,0723905	-292,9259	-296,238584	-293,20398	1,438901	1,41353
13	-200	-197,3068991	-197,67327	-194,0134055	-190,48962	-197,306899	-197,67327	-195,3131667	-193,0764	-195,438863	-193,75407	1,264511	2,097517
14	-100	-80,69918688	-97,899265	-42,9841503	-89,201003	-80,6991869	-97,899265	-53,61233036	-93,47985	-56,5435824	-93,745073	12,8137	2,61659
15	100	200,6742886	273,135575	516,6266546	643,558234	200,6742886	273,135575	353,3463836	447,33995	366,0872009	429,85794	96,34582	123,6529
16	200	200,4254656	200,771073	201,068015	201,336382	200,4254656	200,771073	200,7979701	201,00966	200,7848449	201,03952	0,211387	0,225259
17	300	305,6288381	305,782732	306,3075529	306,881326	305,6288381	305,782732	305,8842818	306,39376	305,9467306	306,39941	0,224849	0,31072
18	400	406,4622736	409,234551	412,1021421	415,940271	406,4622736	409,234551	409,0648287	411,88269	409,1180176	412,17231	1,378758	2,096871
19	500	500,0940972	500,096491	500,3003974	500,365141	500,0940972	500,096491	500,2355994	500,21744	500,2177346	500,23446	0,061476	0,081323
20	600	600,5878289	600,443101	600,9867115	601,196652	600,5878289	600,443101	600,8058348	600,88036	600,7898179	600,86222	0,136243	0,250092
21	700	824,2299421	833,428466	1002,595272	924,509468	824,2299421	833,428466	851,9038598	886,43861	869,8742862	884,4605	53,8011	27,59442
22	800	942,4361213	917,405253	1022,199334	1026,93611	942,4361213	917,405253	975,712639	990,921	975,651549	984,2058	24,62439	31,26805
23	900	1102,727978	1352,17068	1505,740351	1631,55418	1102,727978	1352,17068	1285,708545	1478,3716	1308,310288	1478,6555	131,4922	91,15193
24	1000	1063,603426	1094,06702	1124,4904	1135,56604	1063,603426	1094,06702	1119,181442	1122,4272	1107,254158	1121,0495	20,88839	11,67902
25	1100	1196,679912	1212,2566	1217,861083	1227,7736	1196,679912	1212,2566	1209,571499	1220,2677	1209,113315	1220,4551	5,270627	4,374888
26	1200	1298,814923	1306,44915	1310,390195	1316,09284	1298,814923	1306,44915	1307,250232	1312,2154	1305,926395	1311,7432	4,972696	3,992576
27	1300	1614,604136	1649,18204	1642,291815	1668,55012	1614,604136	1649,18204	1625,393503	1658,3325	1625,712579	1659,0699	7,710709	5,352687
28	1400	1635,118293	1696,92592	1711,428359	1700,41934	1635,118293	1696,92592	1688,636187	1700,0684	1680,954756	1699,3705	35,02171	1,638168

Rysunek 10: 5-wymiarowa populacja. Wyniki dla parametrów: F $=0.75,\,\mathrm{Cr}=0.25$

podatny na tego typu błędy okazał się algorytm klasyczny.

Rozmiar wektora okazuje się mieć znaczenie na rozwiązanie. Dla wektorów 10-wymiarowych algorytmy częściej były podatne na pułapkę funkcji 2, 3, 4. Warto jednak zaznaczyć, że przyczyną tego może być fakt, że testowana liczebność populacji początkowej była równa dla obu wymiarów.

Współczynniki F i c_r okazują się mieć znaczenie na działanie algorytmów. Wartości dające najlepsze

Rysunek 11: 5-wymiarowa populacja. Wykres porównujący najlepsze rozwiązania dla naszego algorytmu oraz klasycznego. Parametry: $F=0.75,\, Cr=0.25$

Rysunek 12: 5-wymiarowa populacja. Parametry: F=0.25, Cr=0.25. Wykres porównujący liczbę lepiej znalezionych rozwiązań pomiędzy dwoma algorytmami.

rezultaty to F=0.75 i $c_r=0.75$. Jest to zauważalne dla algorytmu z wyborem elementu średniego dla obu wymiarów. Z kolei wartości przynoszące najgorsze rezultaty to F=0.25 i $c_r=0.25$. Można to wywnioskować na podstawie klasycznego algorytmu, który dla 10 wymiarów charakteryzuje się największą liczbą wartości znacznie odbiegających od oczekiwanych.

Func	Expected	Ве	st	М	ax	M	in	Med	dian	Me	an	St	td
		Our	Classic										
1	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	0	1,09E-07
2	-1300	-948,537	14361,29	1103,97	76960,81	-948,537	14361,29	421,4619	35400,56	236,2005	35308,54	735,3569	19080,86
3	-1200	-1197,45	-1146,35	-1193,02	-730,753	-1197,45	-1146,35	-1193,8	-1022,55	-1194,47	-1013,96	1,52228	134,9131
4	-1100	-1069,04	-389,788	-950,542	936,5605	-1069,04	-389,788	-1022,89	442,6823	-1018,34	344,2446	37,35708	416,5603
5	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	1,37E-13	3,64E-06
6	-900	-899,812	-899,672	-898,677	-899,333	-899,812	-899,672	-899,278	-899,496	-899,283	-899,52	0,293529	0,115687
7	-800	-799,905	-798,615	-799,417	-797,532	-799,905	-798,615	-799,613	-798,228	-799,623	-798,146	0,16613	0,40289
8	-700	-681,325	-681,764	-679,913	-679,887	-681,325	-681,764	-680,258	-679,944	-680,507	-680,18	0,593663	0,596981
9	-600	-598,443	-598,343	-597,715	-597,459	-598,443	-598,343	-598,112	-597,905	-598,122	-597,888	0,232293	0,257978
10	-500	-499,927	-499,886	-499,782	-499,571	-499,927	-499,886	-499,878	-499,69	-499,869	-499,704	0,046456	0,101164
11	-400	-399,915	-399,999	-397,89	-399,987	-399,915	-399,999	-398,758	-399,996	-398,765	-399,995	0,544233	0,00427
12	-300	-297,222	-294,872	-294,399	-291,496	-297,222	-294,872	-296,008	-292,903	-295,823	-292,908	0,909424	1,171595
13	-200	-197,307	-197,673	-194,013	-190,49	-197,307	-197,673	-195,313	-193,076	-195,439	-193,754	1,264511	2,097517
14	-100	-14,5728	-44,0822	99,07942	29,34322	-14,5728	-44,0822	41,14872	3,734683	42,20246	0,984359	35,78269	27,04602
15	100	200,6743	273,1356	516,6267	643,5582	200,6743	273,1356	353,3464	447,3399	366,0872	429,8579	96,34582	123,6529
16	200	200,6101	200,544	201,2273	201,5633	200,6101	200,544	200,8808	200,9435	200,886	200,9821	0,233536	0,306667
17	300	305,6288	305,7827	306,3076	306,8813	305,6288	305,7827	305,8843	306,3938	305,9467	306,3994	0,224849	0,31072
18	400	407,8169	411,7178	411,1888	414,8282	407,8169	411,7178	409,055	413,8126	409,2492	413,5056	1,192571	1,034694
19	500	500,0941	500,0965	500,3004	500,3651	500,0941	500,0965	500,2356	500,2174	500,2177	500,2345	0,061476	0,081323
20	600	600,4777	600,4439	600,9725	601,1893	600,4777	600,4439	600,6017	601,0855	600,6502	600,9818	0,153551	0,226496
21	700	824,2299	833,4285	1002,595	924,5095	824,2299	833,4285	851,9039	886,4386	869,8743	884,4605	53,8011	27,59442
22	800	1095,012	1040,445	1307,034	1234,147	1095,012	1040,445	1213,495	1169,243	1203,22	1155,978	70,75198	59,50289
23	900	1102,728	1352,171	1505,74	1631,554	1102,728	1352,171	1285,709	1478,372	1308,31	1478,656	131,4922	91,15193
24	1000	1110,533	1111,098	1119,801	1122,194	1110,533	1111,098	1117,156	1117,847	1116,382	1117,475	3,022075	2,834872
25	1100	1196,68	1212,257	1217,861	1227,774	1196,68	1212,257	1209,571	1220,268	1209,113	1220,455	5,270627	4,374888
26	1200	1303,957	1304,25	1307,599	1311,692	1303,957	1304,25	1305,242	1307,8	1305,643	1307,585	1,301178	2,172317
27	1300	1614,604	1649,182	1642,292	1668,55	1614,604	1649,182	1625,394	1658,333	1625,713	1659,07	7,710709	5,352687
28	1400	1700	1500,211	1700	1700,012	1700	1500,211	1700	1700,006	1700	1660,05	5,43E-07	84,23767

Rysunek 13: 5-wymiarowa populacja. Wyniki dla parametrów: F = 0.75, Cr = 0.5

Rysunek 14: 5-wymiarowa populacja. Wykres porównujący najlepsze rozwiązania dla naszego algorytmu oraz klasycznego. Parametry: F = 0.75, Cr = 0.5

Rysunek 15: 5-wymiarowa populacja. Parametry: F=0.25, Cr=0.25. Wykres porównujący liczbę lepiej znalezionych rozwiązań pomiędzy dwoma algorytmami.

Func	Expected	Ве	st	М	ax	M	in	Med	dian	Me	ean	St	td
			Classic		Classic	Our	Classic	Our	Classic	Our	Classic	Our	Classic
1	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	0	7,51E-07
2	-1300	-1300	-791,015	-1299,99	727,9761	-1300	-791,015	-1300	-112,038	-1300	-118,068	0,001859	372,7973
3	-1200	-1200	-1174,2	-1199,96	-1154,29	-1200	-1174,2	-1199,99	-1171,46	-1199,98	-1166,65	0,02178	10,79384
4	-1100	-1100	-1088,19	-1100	-1039,9	-1100	-1088,19	-1100	-1059,46	-1100	-1062,59	6,04E-05	14,81624
5	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	0	1,25E-05
6	-900	-899,842	-899,993	-897,911	-899,969	-899,842	-899,993	-899,589	-899,984	-899,404	-899,982	0,552674	0,006516
7	-800	-799,999	-799,758	-799,999	-799,663	-799,999	-799,758	-799,999	-799,709	-799,999	-799,71	0,000211	0,047246
8	-700	-681,325	-681,764	-679,913	-679,887	-681,325	-681,764	-680,258	-679,944	-680,507	-680,18	0,593663	0,596981
9	-600	-598,142	-598,311	-597,253	-597,425	-598,142	-598,311	-597,704	-598,207	-597,699	-597,981	0,444706	0,484633
10	-500	-499,927	-499,886	-499,782	-499,571	-499,927	-499,886	-499,878	-499,69	-499,869	-499,704	0,046456	0,101164
11	-400	-395,986	-399,161	-395,051	-396,583	-395,986	-399,161	-395,435	-397,11	-395,49	-397,618	0,47019	1,362018
12	-300	-297,222	-294,872	-294,399	-291,496	-297,222	-294,872	-296,008	-292,903	-295,823	-292,908	0,909424	1,171595
13	-200	-199,378	-196,463	-193,677	-189,74	-199,378	-196,463	-195,433	-190,229	-196,163	-192,144	2,919733	3,748099
14	-100	-14,5728	-44,0822	99,07942	29,34322	-14,5728	-44,0822	41,14872	3,734683	42,20246	0,984359	35,78269	27,04602
15	100	305,8923	356,6035	395,5426	579,91	305,8923	356,6035	346,152	481,0478	349,1957	472,5204	44,90258	111,8972
16	200	200,6101	200,544	201,2273	201,5633	200,6101	200,544	200,8808	200,9435	200,886	200,9821	0,233536	0,306667
17	300	306,7918	308,8648	307,5536	311,9687	306,7918	308,8648	307,059	309,0363	307,1348	309,9566	0,386546	1,744634
18	400	407,8169	411,7178	411,1888	414,8282	407,8169	411,7178	409,055	413,8126	409,2492	413,5056	1,192571	1,034694
19	500	500,3571	500,3426	500,4736	500,673	500,3571	500,3426	500,4579	500,3891	500,4295	500,4682	0,063184	0,178837
20	600	600,4777	600,4439	600,9725	601,1893	600,4777	600,4439	600,6017	601,0855	600,6502	600,9818	0,153551	0,226496
21	700	898,0333	800,8527	1000	1000,022	898,0333	800,8527	1000	1000,016	966,0111	933,6304	58,87052	114,9889
22	800	1095,012	1040,445	1307,034	1234,147	1095,012	1040,445	1213,495	1169,243	1203,22	1155,978	70,75198	59,50289
23	900	1381,068	1432,554	1386,935	1591,017	1381,068	1432,554	1385,035	1515,652	1384,346	1513,075	2,993615	79,26289
24	1000	1110,533	1111,098	1119,801	1122,194	1110,533		1117,156	1117,847	1116,382	1117,475	3,022075	2,834872
25	1100	1203,153	1208,539	1207,13	1209,53	1203,153	1208,539	1205,989	1208,911	1205,424	1208,993	2,047721	0,501017
26	1200	1303,957	1304,25	1307,599	1311,692		1304,25	1305,242	1307,8	1305,643	1307,585	1,301178	2,172317
27	1300	1600,193	1625,421	1600,674	1659,829	1600,193	1625,421	1600,395	1643,593	1600,421	1642,948	0,241796	17,21309
28	1400	1700	1500,211	1700	1700,012	1700	1500,211	1700	1700,006	1700	1660,05	5,43E-07	84,23767

Rysunek 16: 5-wymiarowa populacja. Wyniki dla parametrów: F = 0.75, Cr = 0.75

Podsumowując, oba algorytmy najlepiej działają dla mniejszej liczby wymiarów i dla współczynników

Rysunek 17: 5-wymiarowa populacja. Wykres porównujący najlepsze rozwiązania dla naszego algorytmu oraz klasycznego. Parametry: F=0.75, Cr=0.75

Rysunek 18: 5-wymiarowa populacja. Parametry: F=0.25, Cr=0.25. Wykres porównujący liczbę lepiej znalezionych rozwiązań pomiędzy dwoma algorytmami.

F=0.75 i $c_r=0.75$. Dają dobre rezultaty, zbliżone bądź równe oczekiwanym wynikom. Częściej lepszy wynik zwracał algorytm z wyborem elementu średniego, co widać z wykresu 4.

Func	Expected	Ве	est	М	ax	M	in	Me	dian	Me	ean	St	td
		Our	Classic	Our	Classic								
1	-1400	-1023,65	-1400	-699,16	-1400	-1023,65	-1400	-875,961	-1400	-880,827	-1400	106,588	0
2	-1300	2560105	1015880	6323053	5337731	2560105	1015880	4678441	3319105	4754354	3025406	1233952	1367760
3	-1200	2,6E+08	81392,4	1,5E+09	2369625	2,6E+08	81392,4	8,9E+08	810745	9,2E+08	940504	4,5E+08	768939
4	-1100	7864,39	8832,69	13477,6	25971,7	7864,39	8832,69	10795,3	15889,5	10793,9	15552	1650,54	5253,5
5	-1000	-819,908	-1000	-575,828	-1000	-819,908	-1000	-693,512	-1000	-690,863	-1000	88,9898	3E-12
6	-900	-820,048	-890,092	-794,582	-889,884	-820,048	-890,092	-812,947	-889,987	-812,201	-889,986	7,11859	0,07703
7	-800	-774,661	-793,728	-735,931	-779,23	-774,661	-793,728	-751,881	-790,392	-752,045	-788,822	12,4283	4,65585
8	-700	-679,713	-679,791	-679,447	-679,474	-679,713	-679,791	-679,517	-679,586	-679,543	-679,609	0,08006	0,09564
9	-600	-594,267	-594,724	-592,186	-591,985	-594,267	-594,724	-593,603	-592,523	-593,393	-592,775	0,72414	0,7654
10	-500	-473,189	-498,772	-379,504	-497,479	-473,189	-498,772	-431,751	-498,542	-426,747	-498,407	30,5622	0,41215
11	-400	-378,451	-400	-353,294	-400	-378,451	-400	-365,273	-400	-365,341	-400	7,66501	2,7E-05
12	-300	-255,63	-281,413	-231,293	-267,822	-255,63	-281,413	-246,398	-272,944	-245,968	-273,423	7,02025	4,12306
13	-200	-148,804	-186,693	-126,946	-166,301	-148,804	-186,693	-141,83	-175,35	-139,963	-175,069	7,68667	5,98469
14	-100	241,902	-88,9565	475,536	-48,501	241,902	-88,9565	329,668	-73,9745	330,476	-72,4319	65,3575	13,2391
15	100	637,201	1355,6	1151,01	1701,4	637,201	1355,6	881,405	1579,3	891,173	1563,57	145,392	112,571
16	200	200,834	200,676	201,552	201,469	200,834	200,676	201,218	201,197	201,249	201,181	0,23852	0,23091
17	300	332,516	312,794	343,678	315,659	332,516	312,794	336,349	314,437	336,935	314,406	3,78873	1,00359
18	400	450,524	435,926	460,907	443,899	450,524	435,926	459,186	440,037	458,383	440,048	3,15974	3,01572
19	500	519,264	500,695	588,204	501,245	519,264	500,695	541,585	500,958	550,115	500,96	28,2535	0,16905
20	600	603,177	603,042	603,484	603,769	603,177	603,042	603,358	603,368	603,366	603,38	0,09654	0,2148
21	700	1104,99	1100,19	1122,04	1100,19	1104,99	1100,19	1116,06	1100,19	1113,92	1100,19	6,04896	0
22	800	1531,31	1071,47	1942,13	1302,38	1531,31	1071,47	1878,3	1134,13	1788	1146,28	155,139	65,6375
23	900	1885,19	2329,41	2623,74	2732,24	1885,19	2329,41	2263,01	2579,74	2301,83	2571,4	213,225	132,55
24	1000	1200,48	1175,09	1228,79	1219,97	1200,48	1175,09	1222,35	1215,2	1220,84	1206,94	7,72614	15,7367
25	1100	1297,25	1309,99	1323,57	1318,73	1297,25	1309,99	1318,84	1315,62	1317,07	1315,35	7,54455	2,4004
26	1200	1330,65	1324,67	1381,96	1358,48	1330,65	1324,67	1348,72	1349,82	1352,51	1345,04	16,3597	11,3797
27	1300	1713,61	1609,06	1794,98	1765,95	1713,61	1609,06	1730,62	1699,74	1736,77	1690,12	23,4177	55,7232
28	1400	2158,8	1700	2246,96	1700	2158,8	1700	2212,32	1700	2206,38	1700	25,5215	1,1E-06

Rysunek 19: 10-wymiarowa populacja. Wyniki dla parametrów: F = 0.25, Cr = 0.25

Rysunek 20: 10-wymiarowa populacja. Wykres porównujący najlepsze rozwiązania dla naszego algorytmu oraz klasycznego. Parametry: F = 0.25, Cr = 0.25

Rysunek 21: 5-wymiarowa populacja. Parametry: F=0.25, Cr=0.25. Wykres porównujący liczbę lepiej znalezionych rozwiązań pomiędzy dwoma algorytmami.

Func	Expected	Ве	st	M	ax	M	in	Med	dian	Me	ean	St	td
		Our	Classic	Our	Classic								
1	-1400	-1399,96	-1400	-1394,14	-1400	-1399,96	-1400	-1399,53	-1400	-1399,01	-1400	1,75775	8,7E-12
2	-1300	1824962	1387474	3879225	8157824	1824962	1387474	3074265	4937522	2890737	5022508	684813	1989861
3	-1200	6,1E+07	8209910	4,9E+08	4,3E+07	6,1E+07	8209910	1,2E+08	2,3E+07	1,6E+08	2,2E+07	1,2E+08	9889124
4	-1100	5515,68	7320,31	10550,4	24317,6	5515,68	7320,31	8573,86	14197,6	8315,02	14664,5	1489,54	5513,92
5	-1000	-999,707	-1000	-978,443	-1000	-999,707	-1000	-995,697	-1000	-993,143	-1000	6,83781	1,9E-08
6	-900	-827,517	-890,186	-805,158	-890,168	-827,517	-890,186	-823,455	-890,186	-821,921	-890,183	6,59429	0,00576
7	-800	-779,877	-782,094	-770,507	-772,114	-779,877	-782,094	-776,208	-777,546	-775,005	-777,265	3,49274	2,87071
8	-700	-679,675	-679,702	-679,508	-679,469	-679,675	-679,702	-679,625	-679,587	-679,614	-679,576	0,05162	0,06319
9	-600	-594,778	-593,515	-592,771	-591,984	-594,778	-593,515	-593,608	-592,442	-593,609	-592,637	0,53759	0,59339
10	-500	-462,506	-498,687	-457,772	-498,521	-462,506	-498,687	-460,139	-498,604	-460,139	-498,604	3,34712	0,11745
11	-400	-395,841	-399,997	-392,08	-399,715	-395,841	-399,997	-394,426	-399,896	-394,209	-399,881	1,15352	0,09071
12	-300	-278,088	-268,171	-271,721	-266,266	-278,088	-268,171	-274,905	-267,219	-274,905	-267,219	4,5021	1,34696
13	-200	-184,156	-175,613	-169,899	-160,541	-184,156	-175,613	-178,286	-168,617	-177,58	-168,598	4,66422	4,40092
14	-100	-34,9785	6,65801	259,088	11,9088	-34,9785	6,65801	112,055	9,28338	112,055	9,28338	207,936	3,71284
15	100	981,829	1310,57	1483,62	1763,43	981,829	1310,57	1341,35	1669,01	1322,02	1597,65	151,439	152,89
16	200	201,227	201,344	201,657	201,37	201,227	201,344	201,442	201,357	201,442	201,357	0,30418	0,01839
17	300	314,145	312,076	318,009	313,11	314,145	312,076	315,733	312,404	316,067	312,461	1,3127	0,35926
18	400	426,835	436,283	434,951	446,686	426,835	436,283	430,893	441,485	430,893	441,485	5,73903	7,35562
19	500	500,607	501,122	501,828	501,435	500,607	501,122	501,188	501,277	501,15	501,278	0,36533	0,09227
20	600	603,384	603,334	603,46	603,511	603,384	603,334	603,422	603,423	603,422	603,423	0,05401	0,12499
21	700	1100,21	1015,24	1100,58	1100,19	1100,21	1015,24	1100,33	1100,19	1100,35	1084,82	0,12348	32,6428
22	800	1103,15	1207,87	1500,73	1464,17	1103,15	1207,87	1301,94	1336,02	1301,94	1336,02	281,137	181,23
23	900	2217,68	2063,11	2581,96	2756,11	2217,68	2063,11	2421,1	2607,63	2390,65	2563,31	129,81	202,306
24	1000	1210,9	1218,88	1213,88	1220,88	1210,9	1218,88	1212,39	1219,88	1212,39	1219,88	2,10608	1,41662
25	1100	1303,67	1315,18	1309,18	1321,54	1303,67	1315,18	1306,93	1319,44	1306,26	1318,71	2,12777	2,48243
26	1200	1343,2	1370,3	1349,25	1372,7	1343,2	1370,3	1346,23	1371,5	1346,23	1371,5	4,27964	1,69243
27	1300	1622,16	1741,58	1706,16	1843,91	1622,16	1741,58	1643,4	1832,65	1650,77	1809,91	25,5249	38,4067
28	1400	1770,92	1700	2109,66	1700	1770,92	1700	1940,29	1700	1940,29	1700	239,525	0,00028

Rysunek 22: 10-wymiarowa populacja. Wyniki dla parametrów: F = 0.5, Cr = 0.25

Rysunek 23: 10-wymiarowa populacja. Wykres porównujący najlepsze rozwiązania dla naszego algorytmu oraz klasycznego. Parametry: F = 0.5, Cr = 0.25

Rysunek 24: 5-wymiarowa populacja. Parametry: F=0.25, Cr=0.25. Wykres porównujący liczbę lepiej znalezionych rozwiązań pomiędzy dwoma algorytmami.

Func	Expected	Вє	st	M	ax	М	in	Med	dian	Me	ean	St	td
		Our	Classic	Our	Classic								
1	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	-1400	0	4,6E-07
2	-1300	3521987	7373565	6119127	8034552	3521987	7373565	4820557	7704058	4820557	7704058	1836455	467389
3	-1200	5174951	1,2E+08	3,1E+07	2,4E+08	5174951	1,2E+08	9251344	1,6E+08	1,1E+07	1,7E+08	7644820	3,4E+07
4	-1100	6336,16	8776,41	12406,2	23143,3	6336,16	8776,41	9371,19	15959,9	9371,19	15959,9	4292,18	10159
5	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	-1000	5,5E-12	2,5E-05
6	-900	-890,05	-891,685	-889,801	-889,954	-890,05	-891,685	-889,925	-890,82	-889,925	-890,82	0,17581	1,22349
7	-800	-787,771	-778,182	-775,772	-755,702	-787,771	-778,182	-782,869	-763,501	-782,67	-763,6	3,92294	6,40679
8	-700	-679,742	-679,617	-679,592	-679,602	-679,742	-679,617	-679,667	-679,609	-679,667	-679,609	0,10562	0,01068
9	-600	-593,454	-593,537	-591,895	-591,324	-593,454	-593,537	-592,785	-592,422	-592,811	-592,335	0,51165	0,64054
10	-500	-498,218	-477,643	-498,043	-472,582	-498,218	-477,643	-498,131	-475,113	-498,131	-475,113	0,12354	3,57898
11	-400	-394,226	-396,288	-388,523	-393,332	-394,226	-396,288	-391,788	-394,808	-391,896	-394,74	1,87226	1,08511
12	-300	-272,635	-261,205	-270,704	-259,702	-272,635	-261,205	-271,669	-260,453	-271,669	-260,453	1,36523	1,06287
13	-200	-182,186	-170,569	-169,042	-156,546	-182,186	-170,569	-176,372	-165,574	-176,386	-164,454	3,5436	4,71096
14	-100	142,076	91,0851	282,367	96,1373	142,076	91,0851	212,221	93,6112	212,221	93,6112	99,2013	3,57247
15	100	1135,1	1200,35	1697,94	1727,03	1135,1	1200,35	1477,23	1572,87	1433,92	1524,63	180,705	182,148
16	200	201,365	201,051	201,511	201,229	201,365	201,051	201,438	201,14	201,438	201,14	0,10348	0,12621
17	300	313,794	318,478	317,396	322,562	313,794	318,478	315,756	320,386	315,594	320,4	0,9281	1,15919
18	400	442,145	443,429	443,685	446,999	442,145	443,429	442,915	445,214	442,915	445,214	1,08854	2,52425
19	500	500,741	500,931	501,149	501,743	500,741	500,931	501,049	501,495	501,012	501,403	0,12662	0,27178
20	600	603,524	603,282	603,554	603,765	603,524	603,282	603,539	603,523	603,539	603,523	0,02171	0,34132
21	700	1100,19	925,071	1100,26	1081,8	1100,19	925,071	1100,2	964,214	1100,2	988,933	0,01953	61,0154
22	800	1284,14	1321,56	1327,24	1431,94	1284,14	1321,56	1305,69	1376,75	1305,69	1376,75	30,4787	78,0469
23	900	2010,49	2424,66	2803,41	2826,18	2010,49	2424,66	2501,09	2520,98	2466,73	2554,83	223,329	125,732
24	1000	1217,96	1218,76	1220,76	1222,53	1217,96	1218,76	1219,36	1220,65	1219,36	1220,65	1,97936	2,66313
25	1100	1311,28	1315,53	1321,28	1323,8	1311,28	1315,53	1315,64	1321,47	1315,51	1321,09	2,79835	2,49518
26	1200	1361,2	1374,59	1368,68	1395,04	1361,2	1374,59	1364,94	1384,82	1364,94	1384,82	5,29169	14,4576
27	1300	1625,21	1826,41	1776,14	1862,87	1625,21	1826,41	1718,88	1859,62	1706,73	1855,6	44,4728	10,994
28	1400	1700,1	1700,17	1718,76	1700,6	1700,1	1700,17	1709,43	1700,38	1709,43	1700,38	13,192	0,30609

Rysunek 25: 10-wymiarowa populacja. Wyniki dla parametrów: F = 0.75, Cr = 0.25

Rysunek 26: 10-wymiarowa populacja. Wykres porównujący najlepsze rozwiązania dla naszego algorytmu oraz klasycznego. Parametry: $F=0.75,\, Cr=0.25$

Rysunek 27: 5-wymiarowa populacja. Parametry: F=0.25, Cr=0.25. Wykres porównujący liczbę lepiej znalezionych rozwiązań pomiędzy dwoma algorytmami.

Func	Expected	Вє	st	M	ax	M	in	Me	dian	Me	ean	St	td
		Our	Classic	Our	Classic								
1	-1400	-1400	-1400	-1400	-1399,99	-1400	-1400	-1400	-1400	-1400	-1400	0	0,00392
2	-1300	1363,44	1642182	10993,8	4270371	1363,44	1642182	6434,14	3444090	6569,71	3153709	3541,96	967762
3	-1200	-1190,59	2,8E+07	-1186,87	1,3E+08	-1190,59	2,8E+07	-1188,73	7,8E+07	-1188,73	7,8E+07	2,6294	7E+07
4	-1100	-1009,98	11392,9	-514,082	25654,6	-1009,98	11392,9	-937,594	14266,7	-897,099	16182,8	145,915	5178,8
5	-1000	-1000	-999,985	-1000	-999,968	-1000	-999,985	-1000	-999,977	-1000	-999,977	0	0,01223
6	-900	-890,188	-898,51	-890,134	-892,231	-890,188	-898,51	-890,188	-897,772	-890,182	-896,961	0,01693	2,00409
7	-800	-799,963	-784,555	-799,959	-779,135	-799,963	-784,555	-799,961	-781,845	-799,961	-781,845	0,00295	3,8329
8	-700	-679,668	-679,725	-679,528	-679,491	-679,668	-679,725	-679,555	-679,57	-679,575	-679,59	0,04654	0,08072
9	-600	-591,937	-590,927	-591,65	-590,06	-591,937	-590,927	-591,793	-590,493	-591,793	-590,493	0,20282	0,61294
10	-500	-499,712	-496,478	-499,496	-491,872	-499,712	-496,478	-499,602	-495,243	-499,608	-494,894	0,07038	1,47753
11	-400	-390,381	-368,482	-387,724	-362,952	-390,381	-368,482	-389,053	-365,717	-389,053	-365,717	1,87839	3,90984
12	-300	-283,268	-265,318	-269,152	-253,748	-283,268	-265,318	-275,839	-258,402	-275,469	-258,783	4,48598	4,45773
13	-200	-172,998	-157,398	-172,774	-150,803	-172,998	-157,398	-172,886	-154,1	-172,886	-154,1	0,15823	4,66312
14	-100	487,502	986,014	1110,6	1289,91	487,502	986,014	988,15	1148,05	920,587	1152,01	219,72	99,7072
15	100	1066,23	1507,18	1694,42	1558,94	1066,23	1507,18	1380,32	1533,06	1380,32	1533,06	444,195	36,5988
16	200	200,933	200,893	201,73	201,768	200,933	200,893	201,242	201,269	201,259	201,257	0,23715	0,33205
17	300	327,505	339,852	330,203	344,565	327,505	339,852	328,854	342,208	328,854	342,208	1,90793	3,33257
18	400	430,966	448,287	440,442	461,016	430,966	448,287	436,115	451,787	436,119	452,293	2,90811	4,1168
19	500	502,01	502,787	502,031	503,018	502,01	502,787	502,02	502,903	502,02	502,903	0,01472	0,1634
20	600	602,551	603,245	603,38	603,694	602,551	603,245	603,068	603,621	603,026	603,544	0,24352	0,14806
21	700	1100,19	1100,2	1100,19	1100,2	1100,19	1100,2	1100,19	1100,2	1100,19	1100,2	0	8,9E-05
22	800	1782,11	1503,17	2195,6	1900,08	1782,11	1503,17	1978,08	1750,8	1974,62	1724,57	133,189	125,365
23	900	2138,67	2266,36	2298,31	2721,27	2138,67	2266,36	2218,49	2493,82	2218,49	2493,82	112,884	321,673
24	1000	1200,03	1213,81	1219,37	1220,14	1200,03	1213,81	1210	1218,58	1208,5	1218,19	7,94685	1,97457
25	1100	1300,12	1313,07	1300,19	1323,91	1300,12	1313,07	1300,16	1318,49	1300,16	1318,49	0,04783	7,66248
26	1200	1319,41	1400,06	1400,02	1400,13	1319,41	1400,06	1353,5	1400,09	1358,24	1400,08	29,336	0,02144
27	1300	1600,15	1831,46	1600,2	1842,5	1600,15	1831,46	1600,17	1836,98	1600,17	1836,98	0,03484	7,80633
28	1400	1700	1702,32	1700	1702,69	1700	1702,32	1700	1702,5	1700	1702,5	1,3E-10	0,25548

Rysunek 28: 10-wymiarowa populacja. Wyniki dla parametrów: F = 0.75, Cr = 0.75

Rysunek 29: 10-wymiarowa populacja. Wykres porównujący najlepsze rozwiązania dla naszego algorytmu oraz klasycznego. Parametry: F = 0.75, Cr = 0.75

Rysunek 30: 5-wymiarowa populacja. Parametry: F=0.25, Cr=0.25. Wykres porównujący liczbę lepiej znalezionych rozwiązań pomiędzy dwoma algorytmami.

Rysunek 31: Ogólne porównanie skuteczności obu algorytmów.