

Phønix Tag Materialer A/S MD-20009-DA_rev2

Ejer: Nr.: Revision Udgivet første gang Udstedt: Gyldig til:

3. PARTS **VERIFICERET**

Deklarationens ejer

Phønix Tag Materialer A/S Vester Allé 1 6600 Vejen CVR: 25711785

Udgivet af

EPD Danmark www.epddanmark.dk

☑ Produkt EPD

☐ Branche EPD

Deklareret produkt(er)

To systemer af PTM 2-lags tagpapdækning:

- System 1: PTM BituFlex (overpap) & PTM DuraFlex Kombi (underpap)
- System 2: PTM BituFlex Kombi (overpap) & PTM DuraFlex (underpap)

Antal deklarerede datasæt/produktvariationer: 2

Produktionssted

Produktionsstedet ligger i Vejen i Danmark.

Produktets(ernes) anvendelse

EPD'en dækker to produktsystemer, der er beregnet til tagdækning.

Deklareret/funktionel enhed

1 m² installeret 2-lags tagpapdækning, fra vugge til grav, med aktiviteter, der er nødvendige i en periode på 60 år for bygningen.

Derudover vises resultaterne pr. 1 m² produceret 2-lagsløsning (over- og underpap) til vugge-til-port som krævet i reference PCR.

Årstal for data

2019, med opdateret leverandørinformation i 2021.

EPD version

Revision 2, 25-02-2022: Opdateret med ny leverandørinformation og tilføjelse af et andet end-of-lifescenarie.

Udstedt 25-02-2022

Gyldig til: 09-11-2025

Beregningsgrundlag

Denne miljøvaredeklaration er udviklet iht. til kravene i EN 15804+A2.

Sammenlignelighed

Miljøvaredeklarationer for byggevarer er muligvis ikke sammenlignelige hvis ikke de overholder kravene i EN 15804. EPD data er muligvis ikke sammenlignelig med mindre alle anvendte datasæt er udviklet i henhold til EN 15804 og baggrundssystemerne baseres på samme database.

Gyldighed

Denne miljøvaredeklaration er verificeret i henhold til kravene i ISO 14025 og er gyldig i 5 år fra udstedelsesdatoen

Anvendelse

Den tilsigtede anvendelse af miljøvaredeklarationen er, at kommunikere videnskabeligt baserede miljøinformationer for produktet til/fra professionelle aktører med det formål, at kunne vurdere miljøpåvirkninger for bygninger.

EPD type

□Vugge-til-port med C1-C4 og D
□Vugge-til-port med tilvalg, C1-C4 og D
□Vugge-til-port og modul D

□Vugge-til-port

□Vugge-til-port med tilvalg

CEN standard EN 15804 udgør den grundlæggende

Uafhængig verificering af deklarationen og data, i henhold til EN ISO 14025

□ intern

⊠ ekstern

3. parts verifikator:

Guangli Du, Aalborg University, Denmark

Martha Kawine Sørensen
EPD Danmark

Systemgrænser (MND = module not declared) Produkt Byggeproces Endt levetid Udenfor systemgrænse Brug Affaldsbehandling Energiforbrug Råmaterialer Fremstilling Vandforbrug Bortskaffelse Indbygning /edligehold Udskiftning Renovering Reparation Nedrivning Transport Transport Transport Brug D Α1 A2 А3 Α4 Α5 В1 B2 ВЗ В4 B5 В6 В7 C1 C2 C3 C4 X X X X X X X X X X X X X X X X

Produktinformation

Produktbeskrivelse

Produktets hovedmaterialer er angivet i tabellen nedenfor.

Materiale	Vægt-% af deklareret produkt
Bitumen	54-55%
SBS-polymere	4-5%
Armering (polyester/glass	
fibre)	4%
Mineraler som kalk, sand	
og skifer	36-37%
Polypropylen film	<1%

Repræsentativitet

Denne deklarering, herunder dataindsamling og det modellerede forgrundssystem inklusive resultater, repræsenterer vugge til grav og modul D, påvirkninger fra to systemer af 2-lags tagpapdækning. Produktionsstedet er Vejen, Danmark. De produktspecifikke data, der dækker produktionsprocessen og emballagen leverandørplacering produkterne, samt og information om indgående transport, er indsamlet for året 2019. Produktionsdata er baseret på styklister, produktionsparametre og er opgjort per kvadratmeter. Baggrundsdata er baseret på GaBi ts 9.2.1.68 inkl. databaser 2020-udgave, Ecoinvent 3.6 og en LCI-profil fra Eurobitume og er mindre end 10 år gamle.

Produktbillede(-er)

Indhold af farlige stoffer

Produktet indeholder ikke stoffer fra REACH Kandidatlisten, "Candidate List of Substances of Very High Concern for authorisation", hvis indhold overskrider 0,1 vægt %.

(http://echa.europa.eu/candidate-list-table)

Væsentlige egenskaber

De elastomere bitumenmembraner er dækket af harmoniseret teknisk specifikation DS / EN13707: 2004 + A2: 2009. Ydelseserklæring i henhold til EU-regulering 305/2011 er tilgængelig for alle deklarerede produktvariationer.

Yderligere tekniske oplysninger kan fås ved at kontakte producenten eller på producentens websted:

https://www.phonixtagmaterialer.dk/produkter/

Levetid (RSL)

Bygningens referencelevetid er indstillet til 60 år i overensstemmelse med reference-PCR.

De to systemer af 2-lags tagpapdækninger forventes at udføre deres funktion i 50 år, hvorfor et nyt lag tagpap (overpap) er inkluderet for at opretholde funktionen i bygningens 60-årige betragtningsperiode.

LCA baggrund

Funktionel enhed

LCI- og LCIA-resultaterne i denne EPD vedrører den deklarerede enhed til de to produktsystemer (overpap + underpap) defineret som: "1 m² installeret 2-lags tagpapdækning, fra vugge til grav, med aktiviteter nødvendige i en betragtningsperiode på 60 år for bygningen.

Navn	Værdi	Enhed
PTM BituFlex (over	pap) & PTM	DuraFlex Kombi (underpap)
Funktionel enhed	1	m² installeret 2-lags tagpapdækning over 60 år
Konverteringsfaktor til 1 kg	0,07	m² installeret 2-lags tagpapdækning over 60 år/kg
PTM BituFlex Komb	i (overpap)	& PTM Duraflex (underpap)
Funktionel enhed	1	m² installeret 2-lags tagpapdækning over 60 år
Konverteringsfaktor til 1 kg	0,07	m² installeret 2-lags tagpapdækning over 60 år/kg

Deklareret enhed

Ud over den funktionelle enhed kræver PCR, at resultaterne også vises pr. 1 m² produceret 2-lagsløsning (over- og underpap) fra vugge-tilport.

I denne EPD svarer resultaterne pr. deklareret enhed (1 m^2 overpap + 1 m^2 underpap) til den første kolonne med resultaterne pr. funktionel enhed.

Navn	Værdi	Enhed
PTM BituFlex (overpap) & I	PTM Dur	aFlex Kombi (underpap)
Deklareret enhed	1	m² producet 2-lagsløsning
Konverteringsfaktor til 1 kg	0,12	m² producet 2-lagsløsning /kg
PTM BituFlex Kombi (overp	ap) & P	TM Duraflex (underpap)
Deklareret enhed	1	m^2
Konverteringsfaktor til 1 kg	0,12	m²/kg

PCR

Denne EPD er udviklet i henhold til reglerne for produktkategorien af byggevarer i EN 15804 og NPCR 022 version 2.0 (PCR - del B til tagtætning).

Flowdiagram

Systemgrænse

Denne EPD er baseret på en LCA, hvor der er taget højde for 99,9 vægt-%. Emballagematerialet til indgående råvarer er udelukket.

De generelle regler for udeladelse af inputs og outputs i LCA'en følger bestemmelserne i EN 15804:2012+A2:2019, 6.3.6, hvor den totale udeladelse af input flow pr. modul højst må være 5 % af energiforbrug og masse og max 1% per enhedsproces.

Produktfasen (A1-A3):

A1 – Udvinding og produktion af råmaterialer

Modul A1 omfatter påvirkninger fra udvinding og forarbejdning af råmaterialer inklusive bitumen, SBS-polymer, armeringer (polyester / glas- og polyesterfiber), fyldstoffer osv. Modulet inkluderer også produktion af købt el og vand brugt på PTM-produktionsstedet.

A2 - Transport til fremstilling

Modul A2 omfatter påvirkninger fra transport af råmaterialer til PTM-produktionsstedet, som inkluderer udvinding og produktion af brændstoffer samt forbrænding af brændstoffet under transporten.

A3 - Materialefremstilling

Modul A3 inkluderer fremstilling af det endelige produkt, produktion af emballagematerialer, forbrænding af brændstoffer på stedet samt behandling af affald, der genereres under fremstillingen. Arealanvendelse også inkluderet, både og jordinddragelse jordtransformation samt tilstrømning udstrømning af vand, der bruges i fremstillingen. Virkninger fra disse affaldshåndteringsprocesser er inkluderet i modul A3.

Byggeprocesfasen (A4-A5):

A4 - Transport

Modul A4 inkluderer påvirkninger fra transport af de færdige produkter (over- og underpap) til et formodet installationssted i Danmark. Modulet inkluderer udvinding og forarbejdning af brændstoffer og forbrænding af brændstof under transporten.

A5 - Installationsproces for byggeri

repræsenterer installation produkterne (over- og underpap) på bygningen installationsstedet. Modulet inkluderer yderligere det tagpap, der medgår til overlæg for at sikre en vandtæt løsning samt afskær fra selve installationen. Det inkluderer også produktion af fastgørelsesmaterialer og produktion forbrænding af propan til svejsning. Affald fra anlægget klassificeres som materialer til genbrug eller affald til forbrænding med energigenvinding. Virkninger fra disse affaldshåndteringsprocesser er inkluderet i modul A5, mens potentielle fordele udenfor systemgrænsen rapporteres i modul D.

Brugsfasen (B1-B7):

B1 - Brug

Ingen påvirkninger fra brug er inkluderet i overensstemmelse med standardværdierne i reference PCR.

B2 - Vedligeholdelse

Ingen påvirkninger fra vedligeholdelse er inkluderet i overensstemmelse med standardværdierne i reference-PCR.

B3 - Reparation

Ingen påvirkninger fra reparation er inkluderet i overensstemmelse med standardværdierne i reference-PCR.

B4 - Udskiftning

Modul B4 inkluderer udskiftning efter 50 år for at bevare tagpappens funktion. Modulet inkluderer produktion af et nyt lag tagpap (overpap) og dets installation ved svejsning oven på det eksisterende tagpap samt propan til svejsning. afskåret materiale Produktion af installationen er også inkluderet. Affald fra erstatningen klassificeres som materialer til genbrug eller affald til forbrænding med energigenvinding. Virkninger fra disse processer er inkluderet i modul B4, mens potentielle fordele udenfor systemgrænsen rapporteres i modul D.

B5 - Renovering

Ingen påvirkninger fra renoveringen er inkluderet i overensstemmelse med standardværdierne i reference-PCR. Planlagt udskiftning medregnes i B4 som krævet i reference PCR.

B6 - Operationel energiforbrug

Tagpappen kræver ikke energi for at fungere, og der er derfor intet operativt energiforbrug til nogen af produktsystemerne.

B7 - Operationel vandforbrug

Tagpappen kræver ikke vand for at fungere, og der er derfor ingen brug af vand til nogen af produktsystemerne.

Endt levetid (C1-C4):

C1 - Ombygning, nedrivning

Afmontering af tagpappen blev anslået til ikke at kræve nogen processer, der er emissionskilder, der har en miljøpåvirkning, da tagpappen fjernes manuelt.

C2 - Transport (til affaldsbehandling)

Modul C2 omfatter påvirkninger fra transport af de afmonterede produkter efter 60 år til affaldsbehandling (forbrændings- eller genbrugssted). Affaldsbehandlingen består af to forskellige scenarier.

C3 - Affaldsbehandling

Modul C3 består af affaldsbehandlingstrinnene, det vil sige forbrænding af tagpappen ved levetidens afslutning. Emissioner fra forbrænding rapporteres i modul C3, og fordelene ved produktion af varme og elektricitet overføres til modul D. Det afmonterede tagpap fra C1, der genanvendes, rapporteres som materialer til

genbrug i C3. Affald til genbrug efterlader systemgrænsen, og potentielle fordele rapporteres i modul D.

C4 - Bortskaffelse

Aske og andre rester efter forbrænding rapporteres i trin C4, dette inkluderer slaggedeponi og restdeponi. Bemærk, at dette ikke inkluderer aske fra de andre moduler med tagpapaffald, dvs. modul A5 og B4, da emissionerne rapporteres i deres respektive moduler.

Potentiale for genbrug, genanvendelse og energigenvinding (D):

Modul D inkluderer potentiale for genbrug, nyttiggørelse og / eller genanvendelse udtrykt som nettoeffekt og fordele på grund af genbrug og forbrænding af materialer med energigenvinding. I systemet forbrændes en del af produktet i løbet af levetiden, og der produceres elektricitet og varme. Energien genvindes og antages at erstatte elektricitet og varme, der ville være produceret fra andre kilder.

For tagpappen, der sendes til genbrug, antages det at bitumen erstatter jomfruelige materialer i asfaltproduktion.

LCA resultater

Resultater pr. funktionel enhed - System 1

PTM BituFlex (overpap) & PTM DuraFlex Kombi (underpap)

			MILJØ	PÅVIRI	KNI I	NGI	ER I	PER [m	² in	sta	llere	et 2	-lags ta	gpa	apda	ækning	i 60 år]			
Parameter	Enhed	A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	B7	C1		100%	genbr	ug	30%	% genbrug, 70%	6 energigenv	inding
Parameter	Enned	A1-A3	A4	AS	DI	D2	БЗ	D4	БЭ	Бб	Б/	Ci	C2	С3	C4	D	C2	C3	C4	D
GWP-total	[kg CO ₂ eq.]	3,64E+00	1,05E-01	1,93E+00	0	0	0	3,46E+00	0	0	0	0	1,67E-01	0	0	-1,79E+00	7,34E-02	2,40E+01	1,00E-02	-9,16E+00
GWP-fossil	[kg CO ₂ eq.]	3,62E+00	1,03E-01	1,91E+00	0	0	0	3,44E+00	0	0	0	0	1,64E-01	0	0	-1,79E+00	7,20E-02	2,40E+01	9,98E-03	-9,19E+00
GWP- biogenic	[kg CO ₂ eq.]	1,15E-02	1,12E-03	1,70E-02	0	0	0	1,07E-02	0	0	0	0	1,78E-03	0	0	-2,19E-03	7,84E-04	1,25E-03	2,68E-05	3,64E-02
GWP-luluc	[kg CO ₂ eq.]	1,16E-02	8,41E-04	1,75E-03	0	0	0	7,68E-03	0	0	0	0	1,34E-03	0	0	-3,34E-04	5,90E-04	2,84E-04	9,27E-07	-7,18E-03
ODP	[kg CFC 11 eq.]	4,14E-08	1,91E-17	1,58E-07	0	0	0	1,49E-07	0	0	0	0	3,04E-17	0	0	1,05E-07	1,34E-17	1,07E-07	2,01E-09	3,29E-08
AP	[mol H ⁺ eq.]	7,26E-03	1,20E-04	4,09E-03	0	0	0	6,29E-03	0	0	0	0	1,92E-04	0	0	2,41E-03	8,43E-05	8,44E-03	1,00E-04	-7,35E-03
EP- freshwater	[kg P eq.]	1,87E-04	3,17E-07	5,78E-05	0	0	0	1,16E-04	0	0	0	0	5,05E-07	0	0	-7,68E-05	2,22E-07	1,15E-04	5,66E-07	-3,95E-05
EP-marine	[kg N eq.]	3,46E-03	3,69E-05	1,22E-03	0	0	0	2,75E-03	0	0	0	0	5,89E-05	0	0	-3,96E-03	2,59E-05	2,43E-03	4,29E-05	-4,07E-03
EP- terrestrial	[mol N eq.]	3,82E-02	4,38E-04	1,33E-02	0	0	0	3,00E-02	0	0	0	0	6,98E-04	0	0	-4,44E-02	3,07E-04	2,24E-02	4,70E-04	-4,36E-02
POCP	[kg NMVOC eq.]	7,26E-03	9,95E-05	3,77E-03	0	0	0	6,96E-03	0	0	0	0	1,59E-04	0	0	2,89E-03	6,98E-05	5,69E-03	1,31E-04	-6,68E-03
ADPm ¹	[kg Sb eq.]	1,56E-06	8,40E-09	1,19E-05	0	0	0	1,88E-06	0	0	0	0	1,34E-08	0	0	7,02E-07	5,90E-09	1,17E-05	1,46E-08	-1,33E-06
ADPf ¹	[MJ]	2,71E+02	1,39E+00	4,95E+01	0	0	0	1,89E+02	0	0	0	0	2,21E+00	0	0	-6,28E+02	9,73E-01	5,76E+00	1,34E-01	-3,20E+02
WDP ¹	[m³]	6,80E-01	1,01E-03	2,62E-01	0	0	0	4,01E-01	0	0	0	0	1,62E-03	0	0	-1,94E-01	7,11E-04	5,67E-01	3,10E-04	-2,94E-01
Caption		change; ODP	= Ozone Depl	etion; AP = A	cidifica	tion; E	P-fresl	hwater = Eutre	ophica	tion – a	aquatio	fresh	water; EP-ma	rine = I	Eutrop	ential - biogenic; hication – aquat lepletion Potenti	ic marine; EF	-terrestrial = Eu	trophication -	
Disclaimer		1 T	he results of th	nis environme	ntal inc	dicator	shall b	e used with c	are as	the ur	certair	nties o	n these result	s are h	igh or	as there is limite	ed experience	ed with the indicate	ator.	

	SU	PPLER	ENDE	MILJØF	PÅ۱	/IR	KNI	INGER	PE	R [ı	n² i	nst	alleret	2-la	ags	tagpapo	dæknin	g i 60 å	r]	
Parameter	Enhed	A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1		100%	genbi	rug	30	% genbrug, 70	0% energige	nvinding
raiametei	Elilled	A1-A3	A4	AS	ы	BZ	В	D4	Б3	В	Б/	5	C2	СЗ	C4	D	C2	C3	C4	D
PM	[Disease incidence]	1,20E-07	7,96E-10	4,94E-08	0	0	0	9,29E-08	0	0	0	0	1,27E-09	0	0	-4,64E-08	5,59E-10	5,05E-08	2,60E-09	-8,01E-08
IRP ²	[kBq U235 eq.]	2,25E-01	3,79E-04	7,60E-02	0	0	0	1,85E-01	0	0	0	0	6,04E-04	0	0	2,65E-02	2,66E-04	2,60E-02	5,85E-04	-2,22E-01
ETP-fw ¹	[CTUe]	4,77E+01	1,04E+00	1,30E+01	0	0	0	3,75E+01	0	0	0	0	1,65E+00	0	0	-3,11E+01	7,28E-01	1,01E+01	1,03E-01	-2,22E+01
HTP-c ¹	[CTUh]	3,25E-09	2,14E-11	1,06E-08	0	0	0	2,05E-09	0	0	0	0	3,42E-11	0	0	2,34E-10	1,50E-11	6,81E-10	2,97E-12	-1,58E-09
HTP-nc ¹	[CTUh]	6,62E-08	1,09E-09	1,93E-08	0	0	0	7,05E-08	0	0	0	0	1,74E-09	0	0	-4,13E-09	7,68E-10	2,45E-08	1,19E-10	-2,85E-08
SQP ¹	-	3,79E+01	4,87E-01	6,34E+00	0	0	0	2,33E+01	0	0	0	0	7,76E-01	0	0	3,25E-01	3,42E-01	2,50E+00	6,07E-01	-4,34E+01
Caption	PM = Particulate M	atter emission	ns; IRP = Ion	izing radiation	n – hu	man h	ealth;	ETP-fw = Ec		city – f Quality				an tox	icity –	cancer effects; I	HTP-nc = Hu	man toxicity –	non cancer e	ffects; SQP = Soil
Disalsimo	_	¹ The res	sults of this e	nvironmental	indica	itor sh	all be	used with car	e as t	he und	certain	ties o	n these result	s are	high o	r as there is limi	ted experienc	ced with the inc	dicator.	
Disclaimers	² This impact cate exposure nor															oes not conside n some construc				

			RES	SOUR	CEI	FOF	RBF	RUG PE	R [m²	ins	talle	eret 2-la	ags	taç	papdæ	kning i	i 60 år]		
Parameter	Enhed	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	1	00% 9	jenbri	1g		30% genb	rug, 70% en	ergigenvinding
Parameter	Ennea	A1-A3	A4	AS	ы	BZ	ВЗ	Б4	БЭ	Б0	ы	Ci	C2	С3	C4	D	C2	C3	C4	D
PERE	[MJ]	1,71E+01	8,02E-02	2,43E+00	0	0	0	1,03E+01	0	0	0	0	1,28E-01	0	0	-1,67E+00	5,63E-02	2,38E-01	1,02E-03	-6,09E+01
PERM	[MJ]	7,20E-01	0	8,64E-02	0	0	0	4,03E-01	0	0	0	0	0	0	0	0	0	0	0	0
PERT	[MJ]	1,78E+01	8,02E-02	2,52E+00	0	0	0	1,07E+01	0	0	0	0	1,28E-01	0	0	-1,67E+00	5,63E-02	2,38E-01	1,02E-03	-6,09E+01
PENRE	[MJ]	8,20E+01	1,39E+00	2,68E+01	0	0	0	6,79E+01	0	0	0	0	2,22E+00	0	0	-1,16E+02	9,77E-01	5,76E+00	1,34E-01	-1,57E+02
PENRM	[MJ]	2,02E+02	0	2,42E+01	0	0	0	1,29E+02	0	0	0	0	0	0	0	-5,50E+02	0	0	0	-1,75E+02
PENRT	[MJ]	2,84E+02	1,39E+00	5,10E+01	0	0	0	1,97E+02	0	0	0	0	2,22E+00	0	0	-6,66E+02	9,77E-01	5,76E+00	1,34E-01	-3,32E+02
SM	[kg]	2,04E-01	0	2,47E-02	0	0	0	9,31E-02	0	0	0	0	0	0	0	0	0	0	0	0
RSF	[MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	[MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	[m³]	1,69E-02	9,34E-05	6,54E-03	0	0	0	9,99E-03	0	0	0	0	1,49E-04	0	0	-4,91E-03	6,56E-05	1,32E-02	7,23E-06	-2,87E-02
Caption	renewa	ble primary e	nergy resource	es; PENRE =	= Use	of non	renew	able primary	energ	y exclu ergy re	uding r	on rer	newable prima	ary en conda	ergy re y mate	esources used	as raw mate	rials; PENRM	1 = Use of no	aterials; PERT = Total use of n renewable primary energy F = Use of non renewable

		AFFA	LDSKA	TEGO	RIE	R C	G (DUTPUT	FL	OW	S P	ER	[m² ins	talleret :	2-lag	s tagpa	pdækni	ing i 60	år]	
Parameter	Enh	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1		100% gen	brug		30%	genbrug, 70%	6 energigenvi	nding
rarameter	ed	A1-A3	A4	AS	ы	D2	ВЗ	D#	B3	Б0	ы	Ci	C2	СЗ	C4	D	C2	СЗ	C4	D
HWD	[kg]	1,42E-07	6,44E-08	2,89E-08	0	0	0	1,51E-07	0	0	0	0	1,03E-07	0	0	8,10E-10	4,52E-08	0	0	-7,96E-08
NHWD	[kg]	4,90E-02	2,21E-04	7,99E-03	0	0	0	2,32E-02	0	0	0	0	3,52E-04	0	0	7,37E-01	1,55E-04	0	0	8,93E-02
RWD	[kg]	1,12E-03	2,57E-06	9,93E-05	0	0	0	7,22E-04	0	0	0	0	4,09E-06	0	0	-3,73E-05	1,80E-06	0	0	-2,19E-03
CRU	[kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MFR	[kg]	0	0	1,14E-01	0	0	0	1,56E-01	0	0	0	0	0	1,45E+01	0	0	0	4,35E+00	0	0
MER	[kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EEE	[MJ]	0	0	4,49E-01	0	0	0	2,69E-01	0	0	0	0	0	0	0	0	0	3,95E+01	0	0
EET	[MJ]	0	0	8,68E-01	0	0	0	5,19E-01	0	0	0	0	0	0	0	0	0	7,64E+01	0	0
Caption	HWE) = Bortska	ffet farligt a					ikke-farligt af il energigenvi										MFR = Mate	riale til gena	nvendelse;

BIOGENT KULSTOF PER [m ² i	installeret 2-lags tagpa	pdækning i 60 år]
Parameter	Enhed	Ved fabriksport
Biogent carbon indhold i produktet	[kg C]	0
Biogent carbon indhold I medfølgende emballage	[kg C]	2,25E-02
Note	1 kg biogent carbon er a	ækvivalent til 44/12 kg af CO ₂

Resultater pr. funktionel enhed - System 2

PTM BituFlex Kombi (overpap) & PTM DuraFlex (underpap)

		M	IILJØP	ÅVIRKI	NIN	GE	R P	ER [m²	² in	stal	ler	et 2	-lags t	agp	apd	ækning	i 60 år]			
	Estad	44.40	.,	A5	- 1	D2	D0	D4	Dr.	D2	D =	C1		100%	⁄⁄ genbr	ug	30% g	enbrug, 70%	energigenv	inding
Parameter	Enhed	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	Cī	C2	СЗ	C4	D	C2	СЗ	C4	D
GWP-total	[kg CO ₂ eq.]	3,97E+00	1,05E-01	1,97E+00	0	0	0	3,57E+00	0	0	0	0	1,68E-01	0	0	-1,80E+00	7,38E-02	2,42E+01	1,01E-02	-9,21E+00
GWP-fossil	[kg CO ₂ eq.]	3,95E+00	1,03E-01	1,95E+00	0	0	0	3,55E+00	0	0	0	0	1,65E-01	0	0	-1,80E+00	7,24E-02	2,41E+01	1,00E-02	-9,24E+00
GWP- biogenic	[kg CO ₂ eq.]	1,60E-02	1,12E-03	1,77E-02	0	0	0	1,90E-02	0	0	0	0	1,79E-03	0	0	-2,21E-03	7,88E-04	1,26E-03	2,69E-05	3,66E-02
GWP-luluc	[kg CO ₂ eq.]	1,22E-02	8,41E-04	1,80E-03	0	0	0	7,95E-03	0	0	0	0	1,35E-03	0	0	-3,36E-04	5,94E-04	2,86E-04	9,32E-07	-7,22E-03
ODP	[kg CFC 11 eq.]	eq.] 2,25E-08 1,91E-17 1,54E-07 0 0 0 1,50E-07 0 0 0 0 3,06E-17 0 0 1,05E-07 1,35E-17 1,08E-07 2,02E-09 3,31E-08																		
AP	[mol H ⁺ eq.]	mol H* eq.] 7,21E-03 1,20E-04 3,96E-03 0 0 0 6,67E-03 0 0 0 0 1,93E-04 0 0 2,42E-03 8,47E-05 8,48E-03 1,01E-04 -7,39E-03																		
EP- freshwater	[kg P eq.]	1,52E-04	3,17E-07	5,33E-05	0	0	0	1,22E-04	0	0	0	0	5,08E-07	0	0	-7,73E-05	2,23E-07	1,16E-04	5,69E-07	-3,98E-05
EP-marine	[kg N eq.]	3,57E-03	3,69E-05	1,21E-03	0	0	0	2,87E-03	0	0	0	0	5,92E-05	0	0	-3,98E-03	2,60E-05	2,44E-03	4,31E-05	-4,10E-03
EP-terrestrial	[mol N eq.]	3,88E-02	4,38E-04	1,32E-02	0	0	0	3,12E-02	0	0	0	0	7,02E-04	0	0	-4,47E-02	3,09E-04	2,25E-02	4,72E-04	-4,39E-02
POCP	[kg NMVOC eq.]	7,71E-03	9,95E-05	3,78E-03	0	0	0	7,07E-03	0	0	0	0	1,60E-04	0	0	2,91E-03	7,02E-05	5,72E-03	1,32E-04	-6,72E-03
ADPm ¹	[kg Sb eq.]	1,05E-06	8,40E-09	1,18E-05	0	0	0	1,92E-06	0	0	0	0	1,35E-08	0	0	7,06E-07	5,93E-09	1,18E-05	1,47E-08	-1,34E-06
ADPf ¹	[MJ]	2,84E+02	1,39E+00	5,06E+01	0	0	0	1,98E+02	0	0	0	0	2,22E+00	0	0	-6,31E+02	9,78E-01	5,79E+00	1,35E-01	-3,22E+02
WDP ¹	[m³]	5,76E-01	1,01E-03	2,50E-01	0	0	0	4,08E-01	0	0	0	0	1,63E-03	0	0	-1,96E-01	7,15E-04	5,70E-01	3,12E-04	-2,95E-01
Caption		ige; ODP = O	zone Depleti	on; AP = Acid	dificati	on; EF	-fresh	water = Eutro	ophica	tion -	aquat	ic fres	hwater; EP-n	narine	= Eutrop	ential - biogenio bhication – aqua Depletion Poten	tic marine; EP-t	errestrial = E	utrophication	
Disclaimer		¹ The r	esults of this	environment	al indi	cator s	shall be	e used with c	are as	the u	ncerta	inties	on these resi	ults ar	e high or	as there is limit	ed experienced	with the indic	ator.	

	SU	PPLER	ENDE	MILJØF	PÅ۱	/IR	KNI	NGER	PE	R [ı	n² i	inst	alleret	2-la	ags	tagpapd	ækning	i 60 år]		
	Folial	44.40		45				D.4	D.F.					100%	6 gent	orug	30% g	enbrug, 70%	6 energigenv	rinding
Parameter	Enhed	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	СЗ	C4	D	C2	C3	C4	D
PM	[Disease incidence]	1,13E-07	7,96E-10	4,72E-08	0	0	0	9,49E-08	0	0	0	0	1,28E-09	0	0	-4,66E-08	5,62E-10	5,08E-08	2,62E-09	-8,06E-08
IRP ²	[kBq U235 eq.]	2,45E-01	3,79E-04	7,79E-02	0	0	0	1,93E-01	0	0	0	0	6,07E-04	0	0	2,67E-02	2,67E-04	2,62E-02	5,89E-04	-2,24E-01
ETP-fw ¹	[CTUe]	4,98E+01	1,04E+00	1,32E+01	0	0	0	3,83E+01	0	0	0	0	1,66E+00	0	0	-3,13E+01	7,32E-01	1,02E+01	1,04E-01	-2,24E+01
HTP-c1	[CTUh]	2,83E-09	2,14E-11	1,05E-08	0	0	0	2,06E-09	0	0	0	0	3,44E-11	0	0	2,36E-10	1,51E-11	6,84E-10	2,98E-12	-1,58E-09
HTP-nc ¹	[CTUh]	1,13E-07	1,09E-09	2,47E-08	0	0	0	7,50E-08	0	0	0	0	1,75E-09	0	0	-4,15E-09	7,72E-10	2,46E-08	1,20E-10	-2,86E-08
SQP ¹	-	3,60E+01	4,87E-01	6,08E+00	0	0	0	2,24E+01	0	0	0	0	7,81E-01	0	0	3,27E-01	3,43E-01	2,52E+00	6,11E-01	-4,36E+01
Caption	PM = Particulate M	atter emission	ns; IRP = Ion	izing radiation	n – hu	man h	ealth;	ETP-fw = Ec			reshw (dime			an tox	icity –	cancer effects; H	ΓP-nc = Human	toxicity - nor	n cancer effec	ts; SQP = Soil
Distriction of		¹ The res	sults of this e	nvironmental	indica	itor sh	all be	used with car	e as t	he und	certair	ities o	n these resul	ts are	high o	r as there is limite	d experienced v	vith the indica	ntor.	
Disclaimers	² This impact cate exposure nor															oes not consider n some constructi				

			RES	SOUR	CEF	OF	RBR	UG PE	R [ı	m² i	inst	alle	eret 2-la	ags	tag	papdæ	kning i	60 år]		
B	Foliat	44.40	A4	45				B4					1	00%	genbr	ıg		30% genbi	rug, 70% ene	ergigenvinding
Parameter	Enhed	A1-A3	A4	A5	B1	B2	В3	D4	B5	В6	В7	C1	C2	СЗ	C4	D	C2	СЗ	C4	D
PERE	[MJ]	1,83E+01	8,02E-02	2,52E+00	0	0	0	1,08E+01	0	0	0	0	1,29E-01	0	0	-1,68E+00	5,66E-02	2,39E-01	1,03E-03	-6,12E+01
PERM	[MJ]	5,99E-01	0	7,18E-02	0	0	0	3,35E-01	0	0	0	0	0	0	0	0	0	0	0	0
PERT	[MJ]	1,89E+01	8,02E-02	2,59E+00	0	0	0	1,11E+01	0	0	0	0	1,29E-01	0	0	-1,68E+00	5,66E-02	2,39E-01	1,03E-03	-6,12E+01
PENRE	[MJ]	9,26E+01	1,39E+00	2,76E+01	0	0	0	7,19E+01	0	0	0	0	2,23E+00	0	0	-1,18E+02	9,82E-01	5,79E+00	1,35E-01	-1,56E+02
PENRM	[MJ]	2,05E+02	0	2,46E+01	0	0	0	1,34E+02	0	0	0	0	0	0	0	-5,53E+02	0	0	0	-1,78E+02
PENRT	[MJ]	2,97E+02	1,39E+00	5,22E+01	0	0	0	2,06E+02	0	0	0	0	2,23E+00	0	0	-6,70E+02	9,82E-01	5,79E+00	1,35E-01	-3,34E+02
SM	[kg]	1,73E-01	0	2,07E-02	0	0	0	1,00E-01	0	0	0	0	0	0	0	0	0	0	0	0
RSF	[MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	[MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	[m³]	1,51E-02	9,34E-05	6,34E-03	0	0	0	1,04E-02	0	0	0	0	1,50E-04	0	0	-4,94E-03	6,59E-05	1,33E-02	7,27E-06	-2,88E-02
Caption	renewa	ble primary e	nergy resource	es; PENRE =	: Use	of non	renew	able primary	energy ary ene	exclu	ding n	on ren	ewable prima	ry ene condar	ergy re y mate	sources used	as raw mater	rials; PENRM	= Use of nor	terials; PERT = Total use of renewable primary energy = Use of non renewable

	,	AFFAL	DSKA	TEGOF	RIEF	₹ 0	G (OUTPU	ΤF	LO	ws	PE	R [m² i	installe	eret	2-lags	tagpap	odækni	ng	i 60 år]
_														100% gen	brug			30% genb	rug, 7	0% energigenvinding
Parameter	Enhed	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D	C2	C3	C4	D
HWD	[kg]	1,56E-07	6,44E-08	3,04E-08	0	0	0	1,59E-07	0	0	0	0	1,03E-07	0	0	8,15E-10	4,54E-08	0	0	-8,01E-08
NHWD	[kg]	5,65E-02	2,21E-04	8,83E-03	0	0	0	2,87E-02	0	0	0	0	3,54E-04	0	0	7,42E-01	1,56E-04	0	0	9,00E-02
RWD	[kg]	1,28E-03	2,57E-06	9,74E-05	0	0	0	7,69E-04	0	0	0	0	4,12E-06	0	0	-3,76E-05	1,81E-06	0	0	-2,20E-03
CRU	[kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MFR	[kg]	0	0	1,09E-01	0	0	0	1,66E-01	0	0	0	0	0	1,46E+01	0	0	0	4,38E+00	0	0
MER	[kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EEE	[MJ]	0	0	4,49E-01	0	0	0	2,73E-01	0	0	0	0	0	0	0	0	0	3,97E+01	0	0
EET	[MJ]	0	0	8,68E-01	0	0	0	5,28E-01	0	0	0	0	0	0	0	0	0	7,68E+01	0	0
Caption	HWD =	Bortskaffe	et farligt af													RU = Komp ET = Ekspo			IFR :	= Materiale til genanvendelse;

BIOGENIC CARBON CONTENT PER [m2 installed 2-layer roof waterproofing during 60 years]				
Parameter	Enhed Ved fabriksport			
Biogent carbon indhold i produktet	[kg C]	0		
Biogent carbon indhold I medfølgende emballage	[kg C]	1,90E-02		
Note	1 kg biogent kulstof er ækvivalent til 44/12 kg af CO ₂			

Supplerende information

Teknisk information om underliggende scenarier

Transport til byggepladsen (A4)

Scenario information	Værdi En	
Brændstofmængde og –type (alternativt: transporttype)	ransporttype) Diesel	
Transportafstand	Euro 6, 28-32 t gross -	
Kapacitetsudnyttelse (inkl. tom returkørsel)	164	km
Brutto massefylde af transporteret produkt	61	
Kapacitetsudnyttelse, volumenfaktor	1	-

Installation på bygningen (A5)

Scenario information	System 1	System 2	Enhed
Hisolog materials til installation	0,017 (plastik)	0,017 (plastik)	kg
Hjælpe-materiale til installation	0,056 (stål)	0,056 (stål)	
Vandforbrug	0	0	m³
Andre ressourcer	-	-	kg
Energitype og forbrug (f.eks. elforbrug inkl. grid-mix type)	2,49 (propane) 2,49 (propane)		kWh
Affaldsmaterialer	0,046 (træpalle til genbrug)	0,039 (træpalle til genbrug)	kg
	0,005 (træpalle til forbrænding)	0,0043 (træpalle til forbrænding)	
	0,03 (plastik til forbrænding)	0,039 (plastik til forbrænding)	
	0,12 (bitumen til forbrænding)	0,12 (bitumen til forbrænding)	
	0,050 (bitumen til genbrug)	0,050 (bitumen til genbrug)	
Output materialer i forbindelse med affaldshåndtering på pladsen	9,08 tagpap 9,08 tagpap		kg
Direkte emissioner til luft, jord og vand	Forbrænding af propan	Forbrænding af propan	kg

Reference service levetid

Navn	Enhed
Reference Service Life - RSL (Levetid)	60 år (bygning), 50 år (produkter)
Deklarerede produktegenskaber (ved port) etc.	Tagpap
Instruktioner om anvendelse (hvis givet af producenten)	Instruktioner er tilgængelige via https://www.phonixtagmaterialer.dk/
Vedligehold (frekvens, type, kvalitet, udskiftning af dele)	-

Brug (B1-B7)

Navn	Værdi	Enhed
B4 – Udskiftning		
Udskiftningscyklus	0,02	/år
Energiforbrug under udskiftning	2,2 (propane)	
Udskiftning af slidte komponenter/dele (angiv hvilke)	0	kg

End of life/Bortskaffelse (C1-C4)

Navn	30% genbrug; 70% energigenvinding		100% genbrug		Enhed
Navii	System 1	System 2	System 1	System 2	Effiled
Typeadskilt byggeaffald	14,5	14,6	14,5	14,6	kg
Blandet byggeaffald	0	0	0	0	kg
Til genbrug	0	0	0	0	kg
Til genanvendelse	4,35	4,38	14,5	14,6	kg
Til energigenvinding	10,15	10,22	0	0	kg
Til deponering	0	0	0	0	kg
Forudsætninger for udvikling af scenarier	30 km til forbrænding 150 km til genbrug	30 km til forbrænding 150 km til genbrug	150 km til genbrug	150 km til genbrug	-

Genanvendelse, genvinding og/eller genbrugspotentiale (D)

Nove	30% genbrug; 70% energigenvinding		100% genbrug		Enhad
Navn	System 1	System 2	System 1	System 2	Enhed
Materiale til genbrug	4,62	4,65	14,8	14,9	kg
Materiale til energigenvinding	10,15	10,22	0	0	kg

Indeluft

EPD'en angiver ikke noget omkring afgivelse af farlige stoffer til indeluften, da de horisontale standarder for måling af afgivelse af regulerede farlige stoffer fra byggevarer ved brug af harmoniserede testmetoder i henhold til bestemmelserne fra de respektive tekniske komitéer for Europæiske produktstandarder ikke er tilgængelige.

Jord og vand

EPD'en angiver ikke noget omkring afgivelse af farlige stoffer til jord og vand, da de horisontale standarder for måling af afgivelse af regulerede farlige stoffer fra byggevarer ved brug af harmoniserede testmetoder i henhold til bestemmelserne fra de respektive tekniske komitéer for Europæiske produktstandarder ikke er tilgængelige.

References

Udgiver	www.epddanmark.dk
Programoperatør	Teknologisk Institut Center for Bygninger og Miljø Gregersensvej DK-2630 Taastrup www.teknologisk.dk
LCA udvikler	Sara Tollin, David Lindén, Niclas Silfverstrand og Kristian Jelse Rambøll Sweden AB Vädursgatan 6 SE-412 50 Göteborg E-mail: sara.tollin@ramboll.se
LCA software /baggrundsdata	GaBi ts 9.2.1.68 incl. databases 2019 Edition Ecoinvent 3.6, LCI profile from Eurobitume (2019)
3. parts verifikator	Guangli Du, Aalborg University, Denmark

Generelle programinstruktioner

Version 2.0, www.epddanmark.dk

EN 15804

DS/EN 15804 + A2:2019 - "Bæredygtighed inden for byggeri og anlæg - Miljøvaredeklarationer - Grundlæggende regler for produktkategorien byggevarer"

Produktspecifik cPCR

NPCR 022 version 2.0 (PCR - Part B for roof waterproofing). 2018-06-06

EN 15942

DS/EN 15942:2011 – "Bæredygtighed inden for byggeri og anlæg - Miljøvaredeklarationer (EPD) - Kommunikationsformat: business-to-business (B2B)"

ISO 14025

DS/EN ISO 14025:2010 – "Miljømærker og -deklarationer - Type III-miljøvaredeklarationer - Principper og procedurer

ISO 14040

DS/EN ISO 14040:2008 – "Miljøledelse – Livscyklusvurdering – Principper og struktur"

ISO 14044

DS/EN ISO 14044:2008 – "Miljøledelse – Livscyklusvurdering – Krav og vejledning"