Exploratory Factor Analysis and Canonical Correlation

3 Dec 2010 CPSY 501 Dr. Sean Ho Trinity Western University Please download:

SAQ.sav

Outline for today

- Factor analysis
 - Latent variables
 - Correlation ("R") matrix
 - Factor extraction
 - Rotation
 - Assumptions
 - Example in SPSS
- Canonical correlation ... and how it explains all!
- Structural Equation Modeling
 - Path analysis + factor analysis

Latent variables

- Often we have many, many variables (100s!) and don't know (from theory) which are important
 - e.g., Rosenberg Self-Esteem Scale (SES):
 rate 10 statements, each on 4-point Likert scale
- Latent variables: underlying quantity to measure
 - Often intangible, e.g., self-esteem
 - Latent vars are estimated via observed vars
- Variable selection: eliminate vars that don't help
 - → simplify model (parsimony)
- Orthogonalization: reduce multi-collinearity by combining highly correlated vars

Latent vars: Eysenck's factors

- Eysenck Personality Questionnaire (EPQ-R, 1985):
 - 100 yes/no questions (observed)
 - 3 underlying (latent) dimensions of personality

Linear factor analysis

- Define factors as linear combos of observed vars:
 - $\bullet F_1 = b_1 X_1 + b_2 X_2 + ... + b_n X_n$
 - b_i are the loadings of F_1 on the observed X_i
 - If X_i does not contribute to F_1 , then $b_i = 0$
- Exploratory Factor Analysis:
 - No prior theory: find the factors from the vars
 - Sample = pop: results may overfit to data
- Confirmatory Factor Analysis:
 - Already know the factors (from EFA, or theory)
 - Test their predictive power on larger dataset

Why use EFA?

- Parsimony: eliminate redundant vars and those with little variation (reduce 100's → 10's of vars)
 - c.f. multiple regression "backward selection": drop non-significant IVs from model (for DV)
 - But in EFA there is no DV, just a collection of IVs
 - Combining similar/redundant variables may be useful for enhanced reliability
 - Simplify variables for subsequent analysis
- Discover latent variables, construct new theory:
 - Group together highly inter-correlated variables
 - Interpretability of factors is key!

Outline for today

- Factor analysis
 - Latent variables
 - Correlation ("R") matrix
 - Factor extraction
 - Rotation
 - Assumptions
 - Example in SPSS
- Canonical correlation ... and how it explains all!
- Structural Equation Modeling
 - Path analysis + factor analysis

Factors in the R matrix

- The "R matrix" is the matrix of correlations between all pairs of (observed) variables
 - Symmetric, and all entries on diagonal are 1
- Groups of highly-correlated variables are good candidates for factors
 - Combine several variables into one factor

Internal consistency: Cronbach's α

Multivariate normal distribution

- (Pearson) correlation assumes normality
 - Although EFA is fairly robust to non-normality
- For multiple vars: multivariate normal distribution
 - Quartiles, etc. form ellipsoids around mean
- Multi-collinearity: some vars nearly perfect correl.
 - Ellipsoids become squashed; det(R) → 0

Factor extraction

Each factor is an axis through the data

- PCA extracts one factor at a time:
 - PC1 is the longest axis of the ellipsoid: capture as much variance in vars as possible
 - PC2 is longest axis perpendicular to PC1: capture as much leftover variance as possible
 - Etc.: capture most of variance w/just a few PCs
- PAF is similar but only cares about the portion of variance which is shared with other variables
 - Uses R matrix but diagonals are %shared var

CPSY501: EFA and Camon.Com. 3 Dec 2010

Communality and eigenvalues

Linear combinations of variables:

$$\bullet F_1 = b_{11}X_1 + b_{12}X_2 + ... + b_{1n}X_n$$

$$\bullet F_2 = b_{21}X_1 + b_{22}X_2 + ... + b_{2n}X_n$$

- Factor matrix lists the loadings
- Communality of a variable is% of its variance explained by the selected factors
 - Sum of squared loadings across the factors
- Eigenvalue of a factor is% of total variance explained by that factor

How many factors to use?

- Guided by theory: # underlying dimensions
 - Can you understand/interpret each factor?
- Kaiser's criterion: eigvals < 1 → unstable factors</p>
- Not adding appreciably to total explained variance
- If a (theoretically) important variable has low communality, may want more factors to capture

its variance

Scree plot: eigenvalues of successive factors

Rotation

- Factors as extracted using PCA or PAF are often difficult to interpret
 - Each variable may show up in several factors
- Rotation can shuffle the extracted factors to ease interpretation
- Several methods of rotation. The most common:
 - Varimax (orthogonal): minimise #factors each var shows up in ("Are you in or out?")
 - Oblimin (oblique): increases eigenvalues by allowing factors to be a bit correlated (use δ)
 - → in psychology, latent vars are rarely uncorrelated!

Outline for today

- Factor analysis
 - Latent variables
 - Correlation ("R") matrix
 - Factor extraction
 - Rotation
 - Assumptions
 - Example in SPSS
- Canonical correlation ... and how it explains all!
- Structural Equation Modeling
 - Path analysis + factor analysis

Assumptions for EFA

- Sufficient sample size
 - 300 or more; rule of thumb is ~20 per var
 - Kaiser-Meyer-Olkin (r² / partial-r²) close to 1
 - Diagonals of anti-image correlation matrix > 0.5 (drop any vars < 0.5) (partial correl)
- Linearity of relationships amongst vars (scatter)
 - Normality is good, too (but not critical)
- Good correlations in R matrix (many > 0.5)
 - Bartlett's test of sphericity (tests for goodness): if R matrix differs significantly from identity, i.e., off-diagonal entries not all zero

EFA in SPSS: SAQ.sav

- Dataset: SAQ.sav (artificial data from textbook)
 - 23 questions on "SPSS anxiety" (5pt-Likert)
- EFA: Analyze → Dimension Reduction → Factor
 - Variables: select all 23 questions
- Descriptives: Correlation Matrix:
 - Coeffs, Det., Anti-image, KMO+Bartlett
- Extraction: Method → Principal Components
 - Display: Unrotated, Scree; Extract: Eigvals > 1
- Rotation: Varimax; Display: Rotated, Loading plot
- Options: Sort, Suppress < 0.4</p>

Interpreting output: SAQ.sav

- Assumptions: correlation matrix
 - Ensure each var has several |r| > 0.3
 - Should really look at significance of correl., too
 - Determinant not close to 0? (multi-collinearity)
- Diagonal entries of anti-image: >0.5?
- KMO close to 1?
- Bartlett's test? (sig is good)

Interpreting output: factors

- How many factors were selected?
 - Total Variance Explained
 - Scree plot
- Component Matrix: shows unrotated loadings
- Rotated Component Matrix:
 - Each var should show up in only 1 or 2 factors
 - We asked for cut-off at 0.4
 - Factors indicate groupings of vars and relative importance of each var within a grouping
- Try to interpret the factors? Fear of computers, fear of stats, fear of math, peer evaluation

EFA summary

- A way of reducing the number of variables and finding underlying structure
 - Factors are linear combinations of the variables
- Extraction: one factor (axis) at a time
 - Largest eigenvalues first
 - PCA: total variance, good for variable reduction
 - PAF: shared variance, good for theory explor.
- Rotation: to ease interpretation of the factors
 - Varimax: orthogonal, each var in 1-2 factors
 - Oblimin: oblique, may reflect theory better

Factor Analysis: References

Kristopher J. Preacher & Robert C. MacCallum (2003).

Repairing Tom Swift's Electric Factor Analysis Machine.

Understanding Statistics, 2(1), 13–43.

Anna B. Costello & Jason W. Osborne (2005). Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most From Your Analysis.

Practical Assessment Research & Evaluation, 10(7), 1–9.

Outline for today

- Factor analysis
 - Latent variables
 - Correlation ("R") matrix
 - Factor extraction
 - Rotation
 - Assumptions
 - Example in SPSS
- Canonical correlation ... and how it explains all!
- Structural Equation Modeling
 - Path analysis + factor analysis

Canonical correlation

- Hotelling, 1936: an idea to help understand many analyses: multiple regression, MANOVA, EFA, etc.
- Two groups of variables X_i and Y_j (not necc. IV/DV)
- Let U, V be linear combinations of the X_i and Y_j :

$$\bullet U = b_1 X_1 + b_2 X_2 + ... + b_m X_m$$

$$\bullet V = a_1 Y_1 + a_2 Y_2 + ... + a_n Y_n$$

■ The first canonical pair is the (U_1, V_1) which have max correlation; this corr. is 1st canonical correlation

$$X_1, X_2, ..., X_m$$
 $Y_1, Y_2, ..., Y_n$

Canonical corr. and regression

- Second canonical pair is the (U_2, V_2) which are orthogonal to (U_1, V_1) and maximize correlation
 - 3rd canonical pair, 3rd canonical correlation, etc.
 - # canonical pairs = min(#X, #Y) = min(m, n)
- Multiple regression is a special case:
 - Only one Y → only one canonical pair (U,V)
 - The canonical correlation is $R \rightarrow R^2!$
 - Coefficients of U are the b's (slopes)!

Canonical corr. and MANOVA

- MANOVA: multiple DVs → multiple canon. corrs.
 - Each V_k is a linear combo of the DVs:
 - → they are factors of the DVs!
 - Different from EFA, in that the factors are chosen to maximize correlation of Xs with Ys
 - Optimal factor of the IVs, plus optimal factor of the DVs → to maximize correl.
- **Canonical factor loadings:** correlation between a variable $(X_i \text{ or } Y_j)$ and one of its factors $(U_k \text{ or } V_k)$
 - These are equivalent to factor loadings in EFA

Outline for today

- Factor analysis
 - Latent variables
 - Correlation ("R") matrix
 - Factor extraction
 - Rotation
 - Assumptions
 - Example in SPSS
- Canonical correlation ... and how it explains all!
- Structural Equation Modeling
 - Path analysis + factor analysis

Structural Equation Modelling

- A way to do regression on latent variables
- SEM = Path analysis + Factor analysis
 - Structural model + Measurement model
- Structural model: causal links between variables
 - Vars may serve as both IV and DV (simultaneous equation analysis: econometrics)
- Measurement model:
 - Latent variables underlying the observed vars
- SEM may be exploratory: don't know structure, don't know latent vars (EFA)
- Or confirmatory: theory tells structure, latent vars

SEM: Path analysis

- Path diagrams indicate causation amongst vars
 - E.g., mediation diagram
- Often group vars as: Inputs → Processes → Output
- May be built from theory (confirmatory analysis)
- Or derived from correlations in the data (exploratory analysis) (might not generalize) Input **Processes** Output Psycho-somatic Genetics **Behavioural Environmental** Anxiety Coping **Emotional** Trauma Relational **Beliefs** Socialization

SEM: Simultaneous equations

- Originally developed for econometrics theory
- Exogenous vars serve only as IVs (inputs)
- Endogenous vars are DV or both (process, output)

$$\bullet Y_1 = a_{11}Y_1 + a_{12}Y_2 + b_{10} + b_{11}X_1 + b_{12}X_2 + \dots$$

$$\bullet Y_2 = a_{21}Y_1 + a_{22}Y_2 + b_{20} + b_{21}X_1 + b_{22}X_2 + \dots$$

- In matrix form: $Y = \alpha + BY + \Gamma X$ (plus resids)
 - Y: vector of endogenous variables
 - X: vector of exogenous variables
 - a: vector of intercepts
 - B: matrix of endogenous inter-relationships

SEM: putting it together

- SEM = Path analysis + Factor analysis
- The vars X, Y in the simultaneous equations need not be observed vars: can be latent vars (factors)
- Measurement model maps observed vars onto latent vars via factor loadings (either EFA or CFA)
- Model estimation step:
 - Build structural model (path diagram) w/latents
 - Build measurement model from observed vars
- Model testing step (goodness of fit): χ^2 , AIC, etc.
- Repeat to refine model

SEM: steps for modelling

