МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт кибернетики Базовая кафедра №252 – информационной безопасности

КУРСОВАЯ РАБОТА

По дисциплине «Группы подстановок»

Тема курсовой работы: «Порядки классов сопряжённых элементов в конечных группах подстановок» (вариант№14)

Студент группы ККСО-03-19	Николенко В.О.	(nodnucb)
Руководитель курсовой работы	к.фм.н., проф. Зязин В.П.	$(no\partial nuc b)$
Консультант	асс. Плешаков А.С.	(подпись)
Работа представлена к защите	«» 2020 г.	
Допущен к защите	«» 2020 г.	

СОДЕРЖАНИЕ

1.	Введение	3
2.	Теоретическая часть	4
	2.1. Основы теории групп	4
	2.2. Строение групп	7
	2.3. Конечные группы подстановок	9
3.	Индивидуальная часть	13
4.	Заключение	25
5.	Список литературы	26

1. ВВЕДЕНИЕ

В мире на данный момент самый важный ресурс это информация. Не даром Натан Ротшильд сказал:"Кто владеет информацией — тот владеет миром". Еще в древние времена, при Юлии Цезаре был придуман один из старейших шифров - "Шифр Цезаря". Хоть он был весьма примитивен, но сумел дать толчок сфере защиты информации, ведь даже, если гонца с важным донесением перехватили, но не сумели прочитать, что написано в послании, то планы великих полководцев и не только не будут подвержены риску быть нарушенными людьми со злыми намерениями. Так постепенно и появился предмет "алгебра". Как писал в своей книге М.М. Глухов, "термин "алгебра" происходит от названия сочинения узбексого математика 9 века Муххамеда ал-Хорезми "Альджебр аль-Мукабала", в котором были систематизированны сведения о правилах действий с числами и общих приёмах решения задач, сводящихся к решению уравнений 1-й и 2-й степеней". Сегодня же "алгебра" - это предмет, без которого невозможно работать в сфере защиты информации. Алгебра даёт понять, какие операции можно производить над числами/цифрами и что в итоге у нас получается.

2. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

2.1. Основы теории групп

Задание №9(л)

Найти порядок элемента g в группе G.

Решение:

$$G = C_{n \times n}^* g = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

, где $\lambda_1, \lambda_2, \cdots, \lambda_n \in \Gamma_n$

Рассмотрим какую-либо конечную группу Γ_2 , $\{e^{i\Pi};1\}\in\Gamma_2$.

Тогда составим матрицу:

$$G = \left(\begin{array}{cc} e^{i\Pi} & 0\\ 0 & 1 \end{array}\right)$$

По определению 1, порядком элемента g группы G называется наименьшее из чисел $n \in N$, при котором $g^n = e$, если такие n существуют, и бесконечность - в противном случае.

Результатом перемножения двух матриц является матрица:

$$\begin{pmatrix} e^{i\Pi} & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} e^{i\Pi} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} e^{2i\Pi} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 \Rightarrow порядок группы Γ_2 равен 2.

Рассмотрим ещё одну произвольную конечную группу Γ_3 , $\{e^{i\frac{2\Pi}{3}},e^{i\frac{4\Pi}{3}},1\}$.

$$\begin{pmatrix} e^{i\frac{2\Pi}{3}} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{i\frac{4\Pi}{3}} \end{pmatrix}$$

Результатом перемножения уже трёх матриц является матрица:

$$\begin{pmatrix} e^{i\frac{2\Pi}{3}} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{i\frac{4\Pi}{3}} \end{pmatrix} \cdot \begin{pmatrix} e^{i\frac{2\Pi}{3}} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{i\frac{4\Pi}{3}} \end{pmatrix} \cdot \begin{pmatrix} e^{i\frac{2\Pi}{3}} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & e^{i\frac{4\Pi}{3}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Если группа будет увеличиваться, то будет расти и её порядок \Rightarrow можем сказать, что порядок группы Γ_n равен n.

Задание №10(д)

<u>Решение:</u> Рассмотрим мультипликативную группу классов вычетов \mathbb{Z}_{16}^* $\mathbb{Z}_{16} = \{1, 2, 3, 4, 5, ..., 15\};$

$$\mathbb{Z}_{16}^* = \{1,3,5,7,9,11,13,15\};$$

Составим таблицу Кэли:

*	1	3	5	7	9	11	13	15
1	1	3	5	7	9	11	13	15
3	3	9	15	5	11	1	7	13
5	5	15	9	3	13	7	1	11
		5						
9	9	11	13	15	1	3	5	7
11	11	1	7	13	3	9	15	5
13	13	7	1	11	5	15	9	3
15	15	13	11	9	7	5	3	1

Тогда найдём порядки для всех элементов:

$$ord(1) = 1$$

$$ord(3) = 4$$

$$ord(5) = 4$$

$$ord(7) = 2$$

$$ord(9) = 2$$

$$ord(11)=4$$

$$ord(13) = 4$$

$$ord(15) = 2$$

$$exp(\mathbb{Z}_{16}^*) = [1, 4, 4, 2, 2, 4, 4, 2] = 4$$

Задание №10(и)

<u>Решение:</u> Рассмотрим все случаи цикловых структур в группе S_n :

$$(\cdot)(\cdot)(\cdot)(\cdot)(\cdot) \Rightarrow ordS_5 = 1$$

$$(\cdot \cdot)(\cdot)(\cdot)(\cdot) \Rightarrow ordS_5 = 2$$

$$(\cdot \cdot \cdot)(\cdot)(\cdot) \Rightarrow ordS_5 = 3$$

$$(\cdot \cdot)(\cdot \cdot \cdot) \Rightarrow ordS_5 = 6$$

$$(\cdot \cdot \cdot \cdot)(\cdot) \Rightarrow ordS_5 = 4$$

$$(\cdots) \Rightarrow ordS_5 = 5$$

$$exp(S_n) = n! = 720$$

Задание №38

 $\Box H_1, H_2$ - подгруппы в группе G, причём $H_1 \in H_2$. Доказать, что если $|H_2:H_1|=n$ и $|G:H_2|=m,$ то $|G:H_1|=mn.$

Доказательство:

□ для конечной группы справедливо:

По т. Лагранжа для конечных групп, а также её подгрупп:

$$|H_2:H_1|=\frac{|H_2|}{|H_1|}$$

$$|G| = m|H_2|, |H_1| = \frac{H_2}{n} \Rightarrow \frac{G}{H_1} = \frac{m|H_2|n}{|H_2|} = mn.$$

 $|G|=m|H_2|, |H_1|=rac{H_2}{n}\Rightarrow rac{G}{H_1}=rac{m|H_2|n}{|H_2|}=mn.$ В то же время рассмотрим бесконечные группы, которые мы можем разбить на бесконечное число конечный а также идентичных подмножеств, для которых справедливо:

Если для m элементов из $G \exists 1$ элемент H_2 , то и для km элементов G $\exists k$ элементов из H_2 .

2.2. Строение групп

Задание №8

 $\supset G$ - произвольная группа. Доказать, что равенство $|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$

справедливо для всех конечных подгрупп H, K < G.

Доказательство:

В силу того, что $\forall x \in K : xK = K$:

 $\forall x \in (H \cap K), h \in H : h = const \Leftrightarrow (hx)K = const = hK \Rightarrow$

$$\Rightarrow \{hK|h \in H\} \cong H/(H \cap K)| \Rightarrow$$

$$\Rightarrow \big|\{hK|h\in H\}\big|=\big|H/(H\cap K)\big|$$

Рассмотрим элементы множества левых классов:

$$\forall h \in H : |hK| = const = K \Rightarrow$$

$$\Rightarrow$$
 Основываясь на т. Лагранжа можно сказать, что: $|HK|=|K|\cdot \left|H/(H\cap K)\right|=\frac{|H|\cdot |K|}{|H\cap K|},$ ч.т.д.

Задание №21

Доказать, что силовская p-подгруппа группы G единственная т. и т. т., когда она нормальна с G.

Доказательство:

 \square порядок группы G имеет вид: $|G| = p^n s$,где (p, s) = 1.

Опираясь на 1 т. Силова можно сказать, что в группе $G \exists$ подгруппа порядка p^n и по условию она единственна. Поскольку по 2 т. Силова все силовские p-подгруппы сопряжены, то верно следующее:

$$g^{-1}H_pg = H_p.$$

⇒ выполняется определение нормальной подгруппы.

Обратно:

 \sqsupset 2 силовские p-подгруппы H_{p_1} и $H_{p_2},$ такие, что $H_{p_1},H_{p_2}\in G.$ По определению нормальной подгруппы и 2 теоремы Силова будет справедливо следующее:

$$\begin{cases} g^{-1}H_{p_1}g=H_{p_1}\\ g^{-1}H_{p_2}g=H_{p_2}\Rightarrow H_{p_1}=H_{p_2}\Rightarrow H\text{-единственная}.\\ g^{-1}H_{p_1}g=H_{p_2} \end{cases}$$

Задание №24(е)

Доказать, что любая группа порядка $n \in \mathbb{N}$ коммутативна.

Доказательство: Нам дано число 187, его можно разложить на произведение 11 и 17, тогда найдём количество силовских 11-подгрупп и 17-подгрупп.

$$s_{11}|187 \cup s_{11} \equiv 1 \pmod{11} \Rightarrow s_{11} = 1$$

 $s_{17}|187 \cup s_{17} \equiv 1 \pmod{17} \Rightarrow s_{17} = 1$

Силовские подгруппы H_{11} и H_{17} - циклические и имеют тривиальное пересечение из чего можно сделать вывод, что $G=H_{11}\dot{+}H_{17}\cong \mathbb{Z}_{11}\oplus \mathbb{Z}_{17}.\Rightarrow$ группа порядка 187 абелева.

2.3. Конечные группы подстановок

Задание №9

Определить, сколько инверсий образует число n, стоящее в нижней строке подстановки степени n на k-ом месте.

<u>Решение:</u> Рассмотрим каноническую запись подстановки степени 5 и \square $k{=}4$:

$$\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 1 & 2 & 5 & 3
\end{array}\right)$$

видим, что наше число 5 образует ровно одну инверсию в подстановке 5 степени, тогда (n-k) - формула по которой мы вычисляем число инверсий которые образует число n, расположенное на k—ом месте в подстановке степени n.

Задание №10

Показать, что от одной перестановки $(a_1,...,a_n)$ к другой перестанов- ке $(b_1,...,b_n)$ тех же элементов можно перейти путём не более чем n-1 транспозиций.

<u>Решение:</u> Возьмём группу S_3 , рассмотрим все её подстановки и найдём число транспозиций благодаря которым мы сможем перейти от одной подстановки к другой:

$$1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$6 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

Из подстановки (1) мы можем перейти в подстановку (2) при помощи транспозиций $(3\,2)$ и $(2\,1)$.

Из подстановки (1) мы можем перейти в подстановку (3) при помощи транспозиций $(3\,1)$ и $(1\,2)$.

Из подстановки (1) мы можем перейти в подстановку (4) при помощи транспозиций $(3\,2)$.

Из подстановки (1) мы можем перейти в подстановку (5) при помощи транспозиций (31).

Из подстановки (1) мы можем перейти в подстановку (6) при помощи транспозиций $(3\,2)$.

Из подстановки (2) мы можем перейти в подстановку (3) при помощи транспозиций $(3\,2), (1\,3).$

Из подстановки (2) мы можем перейти в подстановку (4) при помощи транспозиций $(2\,1)$.

Из подстановки (2) мы можем перейти в подстановку (5) при помощи транспозиций $(3\,2)$.

Из подстановки (2) мы можем перейти в подстановку (6) при помощи транспозиций $(3\,1)$.

Из подстановки (3) мы можем перейти в подстановку (4) при помощи транспозиций (31).

Из подстановки (3) мы можем перейти в подстановку (5) при помощи транспозиций $(1\,2)$.

Из подстановки (3) мы можем перейти в подстановку (6) при помощи транспозиций (32).

Из подстановки (4) мы можем перейти в подстановку (5) при помощи транспозиций $(3\,1)$ и $(1\,2)$.

Из подстановки (4) мы можем перейти в подстановку (6) при помощи транспозиций $(3\,2)$ и $(1\,3)$.

Из подстановки (5) мы можем перейти в подстановку (6) при помощи транспозиций (32) и (31).

Видим, что максимально возможное число транспозиций n-1 т.е. 2 в нашем случае. Раз это свойство верно для S_3 , то верно и для S_n .

Задание №16(г)

Пусть $A \subset S_n$ - некоторое множество транспозиций степени $n \in N$. По свойствам графа Γ_A описать структуру группы $G = \langle A \rangle$ и определить, является ли множество A системой образующих или базисом группы S_n .

Решение:
$$A = \{(19), (26), (35), (48), (56), (69), (79), (810), (102)\}$$

Видим, что из каждой точки можно перейти в другую притом только одним способом ⇒ наша группа является базисом.

Задание №16(ж)

Пусть $A \subset S_n$ - некоторое множество транспозиций степени $n \in N$. По свойствам графа Γ_A описать структуру группы $G = \langle A \rangle$ и определить, является ли множество A системой образующих или базисом группы S_n .

Решение:
$$A = \{(15), (26), (37), (38), (49), (410), (78), (109)\}$$

Видим, что мы не можем из любой точки перейти любую в другую \Rightarrow наша группа является системой образующих.

Задание №21(в)

Найти централизатор подстановки $g \in S_6$.

<u>Решение:</u> Найдём количество всех решений, которые входят в наш нормализатор:

1	3	2	5	3	6
1	3	5	4	6	2
1	3	4	6	2	5
1	3	6	2	5	4
1	3	2	5	4	6
3	1	5	4	6	2
3	1	4	6	2	5
3	1	6	2	5	4
3	1	2	5	4	6
		1 3 1 3 1 3 1 3 1 3 3 1 3 1 3 1 3 1	1 3 2 1 3 5 1 3 4 1 3 6 1 3 2 3 1 5 3 1 4 3 1 6 3 1 2	1 3 2 5 1 3 5 4 1 3 4 6 1 3 6 2 1 3 2 5 3 1 5 4 3 1 4 6 3 1 6 2 3 1 2 5	

Переведём все наши подстановки в цикловую структуру и запишем их в множество нормализатора:

$$G = \{\varepsilon, (2546), (42)(65), (2645), (13)(2546), (13)(42)(65), (13)(2645), (13), (2546), (42)(65), (2645), (13)(2546), (13)(42)(65), (13)(2645), (13)\}$$

Задание №39(а)

Определить, является ли группа $G < S_n$ транзитивной. Решение: Рассмотрим группу $G = <(1\,2\,3)(4\,5\,6), (1\,3\,4\,6)>$

Найдём орбиты элементов:

$$G(1) = (1 2 3);$$

 $G(2) = (2 3);$

$$G(3)=(3\,1\,4);$$
 \Rightarrow т.к. орбиты не совпадают, то $G(4)=(4\,5\,6);$ G не транзитивна; $G(5)=(5\,6);$ $G(6)=(6\,4\,1);$

3. ИНДИВИДУАЛЬНАЯ ЧАСТЬ

Задание 1. Пусть перестановки элементов множества $\overline{1,n}$ задают нижние строки канонических записей подстановок $g,h \in \mathbf{S}_n$.

- а) Записать подстановки g и h в каноническом виде. Выписать элементы множеств $\mathrm{Mob}\,g$ и $\mathrm{Mob}\,h$, $\mathrm{Fix}\,g$ и $\mathrm{Fix}\,h$.
- б) Найти подстановки gh, hg, g^{-1}, h^{-1} .
- в) Разложить подстановки g и h на независимые циклы, указать их цикловые структуры и найти ord g и ord h.
- г) Разложить подстановки g и h в произведение транспозиций и определить их чётность.

Решение: Начнём с пункта А

Выпишем подстановки g и h в каноническом виде:

Для перестановок справедливы утверждения:

Mob $g = \{1,2,3,4,5,6,7,8,10,11,12,13,14,16,17,18,19\}$

Fix $g = \{9,15\}$

 $Mob\ h{=}\{1,\!2,\!3,\!4,\!5,\!6,\!7,\!8,\!9,\!10,\!11,\!12,\!13,\!14,\!15,\!16,\!17,\!18,\!19\}$

Fix h=Ø

Перейдём к пункту Б

$$g^{-1} = \begin{pmatrix} 13 & 6 & 4 & 16 & 7 & 3 & 10 & 2 & 9 & 11 & 17 & 19 & 5 & 12 & 15 & 14 & 18 & 1 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \end{pmatrix}$$

$$h^{-1} = \begin{pmatrix} 16 & 13 & 18 & 14 & 11 & 7 & 10 & 19 & 1 & 9 & 2 & 17 & 12 & 15 & 6 & 5 & 3 & 8 & 4 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \end{pmatrix}$$

Перейдём к пункту В

 $g = (1 \, 13 \, 5 \, 7 \, 10 \, 11 \, 17 \, 18)(2 \, 6 \, 3 \, 4 \, 16 \, 14 \, 12 \, 19 \, 8)$

 $h = (1\,16\,5\,11\,2\,13\,12\,17\,3\,18\,8\,19\,4\,14\,15\,6\,7\,10\,9)$

$$[g] = [8^1, 9^1, 1^2] \Rightarrow \text{ord } g = 72$$

$$[h] = [19^1] \Rightarrow \text{ ord h} = 19$$

Перейдём к пункту Γ

Разложим наши подстановки на произведение транспозиций:

$$g = (1\,18)(13\,18)(5\,18)(7\,18)(10\,18)(11\,18)(17\,18)(2\,8)(6\,8)(3\,8)(4\,18)(16\,8)(14\,8)(12\,8)(12\,8)(13\,18)(13$$

Видим, что у нас нечётное количество транспозиций \Rightarrow перестановка g нечётная

Видим, что у нас чётное количество транспозиций ⇒ перестановка h чётная

Задание 2. Пусть перестановки элементов множества $\overline{1,n}$ задают нижние строки канонических записей подстановок $q,h \in \mathbf{S}_n$.

- а) Доказать, что подстановки g и h сопряжены в S_n .
- б) Определить число решений уравнений $x^{-1}gx = h$ и $y^{-1}hy = g$.
- в) Составить таблицы, описывающие множества всех решений каждого из уравнений.
- г) Выписать по два произвольных решения каждого из уравнений и осуществить их проверку.

Решение: Начнём с пункта А

Выпишем нижние строки подстановок g и h:

$$g = (1,2,6,3,9,4,5,7,8)$$

$$h=(6,2,8,4,9,5,3,7,1)$$

Разложим подстановки g и h на цикловые структуры:

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 6 & 3 & 9 & 4 & 5 & 7 & 8 \end{pmatrix} = (7, 5, 9, 8)(3, 6, 4)$$

Где
$$[g] = [4^1, 3^1, 1^2]$$

$$h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 2 & 8 & 4 & 1 & 9 & 3 & 7 & 5 \end{pmatrix} = (1, 6, 9, 5)(3, 8, 7)$$

Где
$$[h] = [4^1, 3^1, 1^2]$$

Перейдём к пункту Б

Число решений для уравнений $x^{-1}gx = h$ и $y^{-1}hy = g$ одинаково так как в g и h одинаковые цикловые структуры.

Поскольку цикловые структуры подстановок g и h совпадают, то согласно следствию теоремы о порядке нормализатора, множество всех решений заданного уравнения есть правый смежный класс $N_{S_n}(g) \cdot f$, где f - произвольное решение. Тогда справедлива формула: $|N_{S_n}(g)| = \prod_{i=1}^r (k_i)! \cdot l_i^{k_i}$, где k_i - число циклов заданной длины l_i .

$$\Rightarrow$$
число решений равно $(1!\cdot 4^1)\cdot (1!\cdot 3^1)\cdot (2!\cdot 1^2)=24$

Перейдём к пункту В

Составим таблицу для уравнения $x^{-1}gx = h$ со всеми его решениями:

$N_{\overline{0}}$	7	5	9	8	3	6	4	1	2
1	1	6	5	9	3	8	7	4	2
2	1	6	5	9	8	7	3	4	2
3	1	6	5	9	7	3	8	4	2
4	6	5	9	1	3	8	7	4	2
5	6	5	9	1	8	7	3	4	2
6	6	5	9	1	7	3	8	4	2
7	5	9	1	6	3	8	7	4	2
8	5	9	1	6	8	7	3	4	2
9	5	9	1	6	7	3	8	4	2
10	9	1	6	5	3	8	7	4	2
11	9	1	6	5	8	7	3	4	2
12	9	1	6	5	7	3	8	4	2
13	1	6	5	9	3	8	7	2	4
14	1	6	5	9	8	7	3	2	4
15	1	6	5	9	7	3	8	2	4
16	6	5	9	1	3	8	7	2	4
17	6	5	9	1	8	7	3	2	4
18	6	5	9	1	7	3	8	2	4
19	5	9	1	6	3	8	7	2	4
20	5	9	1	6	8	7	3	2	4
21	5	9	1	6	7	3	8	2	4
22	9	1	6	5	3	8	7	2	4
23	9	1	6	5	8	7	3	2	4

Составим таблицу для уравнения $y^{-1}hy=g$ со всеми его решениями:

$N_{\overline{0}}$	1	6	5	9	3	8	7	4	2
1	7	5	9	8	3	6	4	1	2
2	7	5	9	8	6	4	3	1	2
3	7	5	9	8	4	3	6	1	2
4	5	9	8	7	3	6	4	1	2
5	5	9	8	7	6	4	3	1	2
6	5	9	8	7	4	3	6	1	2
7	9	8	7	5	3	6	4	1	2
8	9	8	7	5	6	4	3	1	2
9	9	8	7	5	4	3	6	1	2
10	8	7	5	9	3	6	4	1	2
11	8	7	5	9	6	4	3	1	2
12	8	7	5	9	4	3	6	1	2
13	7	5	9	8	3	6	4	2	1
14	7	5	9	8	6	4	3	2	1
15	7	5	9	8	4	3	6	2	1
16	5	9	8	7	3	6	4	2	1
17	5	9	8	7	6	4	3	2	1
18	5	9	8	7	4	3	6	2	1
19	9	8	7	5	3	6	4	2	1
20	9	8	7	5	6	4	3	2	1
21	9	8	7	5	4	3	6	2	1
22	8	7	5	9	3	6	4	2	1
23	8	7	5	9	6	4	3	2	1
24	8	7	5	9	4	3	6	2	1

Перейдём к пункту Γ

Проведём проверку двух произвольных решений (под номерами 1 и 2 в обоих случаях) наших уравнений:

$$x = \begin{pmatrix} 7 & 5 & 9 & 8 & 3 & 6 & 4 & 1 & 2 \\ 1 & 6 & 5 & 9 & 3 & 8 & 7 & 4 & 2 \end{pmatrix} = (1,4,7)(5,6,8,9)$$

$$x^{-1} = \begin{pmatrix} 1 & 6 & 5 & 9 & 3 & 8 & 7 & 4 & 2 \\ 7 & 5 & 9 & 8 & 3 & 6 & 4 & 1 & 2 \end{pmatrix} = (7, 4, 1)(9, 8, 6, 5)$$

$$x^{-1}gx = (7,4,1)(9,8,6,5) \cdot (7,5,9,8)(3,6,4) \cdot (1,4,7)(5,6,8,9) =$$

$$= (7,3,8)(1,6,5,9) = h$$

$$x = \begin{pmatrix} 7 & 5 & 9 & 8 & 3 & 6 & 4 & 1 & 2 \\ 1 & 6 & 5 & 9 & 8 & 7 & 3 & 4 & 2 \end{pmatrix} = (7,1,4,3,8,9,5,6)$$

$$x^{-1} = \begin{pmatrix} 1 & 6 & 5 & 9 & 8 & 7 & 3 & 4 & 2 \\ 7 & 5 & 9 & 8 & 3 & 6 & 4 & 1 & 2 \end{pmatrix} = (1,7,6,5,9,8,3,4)$$

$$x^{-1}gx = (1,7,6,5,9,8,3,4) \cdot (7,5,9,8)(3,6,4) \cdot (7,1,4,3,8,9,5,6) =$$

$$= (1,6,5,9)(3,8,7) = h$$

$$y = \begin{pmatrix} 1 & 6 & 5 & 9 & 3 & 8 & 7 & 4 & 2 \\ 7 & 5 & 9 & 8 & 3 & 6 & 4 & 1 & 2 \end{pmatrix} = (1,7,4)(6,5,9,8)$$

$$y^{-1} = \begin{pmatrix} 7 & 5 & 9 & 8 & 3 & 6 & 4 & 1 & 2 \\ 1 & 6 & 5 & 9 & 3 & 8 & 7 & 4 & 2 \end{pmatrix} = (4,7,1)(8,9,5,6)$$

$$y^{-1}hy = (7,1,4)(5,6,8,9) \cdot (1,6,5,9)(3,8,7) \cdot (1,7,5)(6,5,9,8) =$$

$$= (7,5,9,8)(4,3,6) = g$$

$$y = \begin{pmatrix} 1 & 6 & 5 & 9 & 3 & 8 & 7 & 4 & 2 \\ 7 & 5 & 9 & 8 & 6 & 4 & 3 & 1 & 2 \end{pmatrix} = (1,7,3,6,5,9,8,4)$$

$$y^{-1} = \begin{pmatrix} 7 & 5 & 9 & 8 & 6 & 4 & 3 & 1 & 2 \\ 1 & 6 & 5 & 9 & 3 & 8 & 7 & 4 & 2 \end{pmatrix} = (4,8,9,5,6,3,7)$$

$$y^{-1}hy = (4,8,9,5,6,3,7) \cdot (1,6,5,9)(3,8,7) \cdot (1,7,3,6,5,9,8,4) =$$

$$= (7,5,9,8)(4,3,6) = g$$

Задание 3. Определить какую цикловую структуру и чётность могут иметь подстановки порядка k в группе S_n . Найти количество подстановок каждого из описанных типов.

<u>Решение:</u> Имеем порядок k=8 в группе S_{17} , т.к. порядок группы это НОК длин всех циклов нашей подстановки, то в любом из представлений данной перестановки будет фигурировать хотя бы один цикл длины 8 и все остальные не больше 8.

Иначе говоря, $ordg = [l_1^{k_1}, l_2^{k_2}, ..., l_r^{k_r}]$

Мы можем найти число решений этих уравнений по формуле:

$$|N_{s_n}(g)| = \frac{n!}{\prod_{i=1}^r (k_i)! \cdot l_i^{k^i}}$$

Составим список всех возможных циклов в виде которых может быть представлена наша подстановка:

1)
$$[8^2, 1^1] \Rightarrow \frac{17!}{(2! \cdot 8^2)(1! \cdot 1^1)} = 2778808032000$$

$$\begin{array}{l} 2) \; [8^{1},4^{2},1^{1}] \Rightarrow \frac{17!}{(1!\cdot8^{1})(2!\cdot4^{2})(1!\cdot1^{1})} = 1389404016000 \\ 3) \; [8^{1},2^{4},1^{1}] \Rightarrow \frac{17!}{(1!\cdot8^{1})(4!\cdot2^{4})(1!\cdot1^{1})} = 115783668000 \\ 4) \; [8^{1},4^{1},2^{2},1^{1}] \Rightarrow \frac{17!}{(1!\cdot8^{1})(1!\cdot4^{1})(2!\cdot2^{2})(1!\cdot1^{1})} = 1389404016000 \\ 5) \; [8^{1},4^{1},2^{1},1^{3}] \Rightarrow \frac{17!}{(1!\cdot8^{1})(1!\cdot4^{1})(1!\cdot2^{1})(3!\cdot1^{3})} = 926269344000 \\ 6) \; [8^{1},4^{1},1^{5}] \Rightarrow \frac{17!}{(1!\cdot8^{1})(1!\cdot4^{1})(5!\cdot1^{5})} = 92626934400 \\ 7) \; [8^{1}.2^{2},1^{5}] \Rightarrow \frac{17!}{(1!\cdot8^{1})(2!\cdot2^{2})(5!\cdot1^{5})} = 46313467200 \\ 8) \; [8^{1},2^{1},1^{7}] \Rightarrow \frac{17!}{(1!\cdot8^{1})(2!\cdot2^{1})(7!\cdot1^{7})} = 4410806400 \\ 9) \; [8^{1},1^{9}] \Rightarrow \frac{17!}{(1!\cdot8^{1})(9!\cdot1^{9})} = 122522400 \\ \end{array}$$

Задание 4. Доказать, что отбражение $\varphi: G \to G$ является гомоморфизмом групп. Найти его образ и ядро. Вычислить порядок факторгруппы $G/Ker\varphi$ и определить, какой группе она изоморфна.

```
<u>Решение:</u> Докажем, что отображение \varphi:G\to G - гомоморфизм групп.
                              G = \mathbb{Z}_{14} \oplus \mathbb{Z}_{18} \oplus \mathbb{Z}_{25}; отображение \varphi : (g_1, g_2, g_3) \mapsto (9g_1, 16g_2, 15g_3)
                              \varphi((a,b,c)+(d,e,f)) = \varphi(a+d,b+e,c+f) = (9(a+d),16(b+e),15(c+f))
                              \varphi((a,b,c)) + \varphi((d,e,f)) = (9a,16b,15c) + (9d,16e,15f) = (9(a+d),16(b+d))
(e), 15(c+f)
                               \Rightarrow \varphi: G \to G - гомоморфизм.
                              Порядок группы G: |G| = 14 \cdot 18 \cdot 25 = 6300
                              Im\varphi = \{(9a, 16b, 15c) | a \in \mathbb{Z}_{14}, b \in \mathbb{Z}_{18}, c \in \mathbb{Z}_{25}\}
                              \mathbb{Z}_{14} = \{\mathbf{0}, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}
                              9\mathbb{Z}_{14} = \{0, 9, 4, 13, 8, 3, 12, 7, 2, 11, 6, 1, 10, 5\}
                              \mathbb{Z}_{18} = \{\mathbf{0}, 1, 2, 3, 4, 5, 6, 7, 8, \mathbf{9}, 10, 11, 12, 13, 14, 15, 16, 17\}
                               16\mathbb{Z}_{18} = \{0, 16, 14, 12, 10, 8, 6, 4, 2\}
                              \mathbb{Z}_{25} = \{\mathbf{0}, 1, 2, 3, 4, \mathbf{5}, 6, 7, 8, 9, \mathbf{10}, 11, 12, 13, 14, \mathbf{15}, 16, 17, 18, 19, \mathbf{20}, 21, \mathbf{10}, \mathbf{10},
                               22, 23, 24}
                               15\mathbb{Z}_{25} = \{0, 15, 5, 20, 10\}
                              \operatorname{Ker}\varphi = \{(0,0,0) (0,9,0) (0,0,5) (0,9,5) (0,0,10) (0,9,10) (0,0,15) (0,9,15) \}
                              (0,0,20) (0,9,20)} \Rightarrowвсего 10 сочетаний. |G/Ker\varphi| = \frac{|G|}{|Ker\varphi|} = \frac{|\mathbb{Z}_{14} \cdot \mathbb{Z}_{18} \cdot \mathbb{Z}_{25}|}{10} = \frac{6300}{10} = 630
                              По теореме о гомоморфизме групп, |G/Ker\varphi| \cong Im\varphi = 9\mathbb{Z}_{14} \oplus
                               \oplus 6\mathbb{Z}_{18} \oplus 15\mathbb{Z}_{25};
                              9\mathbb{Z}_{14} = \mathbb{Z}_{14};
                               16\mathbb{Z}_{18} = 2\mathbb{Z}_{18} \cong \mathbb{Z}_9;
                               15\mathbb{Z}_{25} = 3\mathbb{Z}_{25} \cong \mathbb{Z}_5;
                               \Rightarrow |G/Ker\varphi| \cong Im\varphi = \mathbb{Z}_{14} \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_5
```

Задание 5. Пусть G и H- конечные абелевы группы.

- а) Вычислить порядки групп G и H.
- б) Выписать канонические разложения групп G и H.
- в) Найти $typ \ G$ и $typ \ H$ и определить, изоморфны ли группы G и H.

$$51 = 17 \cdot 3; 15 = 3 \cdot 5; 187 = 17 \cdot 11$$

Для Н справедливо следующее:

$$45 = 9 \cdot 5; 187 = 17 \cdot 11;$$

Канонические записи G и H:

$$\mathbb{Z}_{4} = <1>$$
 $\mathbb{Z}_{15} \cong \mathbb{Z}_{3} \oplus \mathbb{Z}_{5} = <5> \dot{+} <3>$
 $\mathbb{Z}_{51} \cong \mathbb{Z}_{17} \oplus \mathbb{Z}_{3} = <3> \dot{+} <17>$
 $\mathbb{Z}_{187} \cong \mathbb{Z}_{17} \oplus \mathbb{Z}_{11} = <11> \dot{+} <17>$

$$G = <(17,0,0,0) > \dot{+} < (3,0,0,0) > \dot{+} < (0,3,0,0) > \dot{+}$$

$$\dot{+} < (0,5,0,0) > \dot{+} < (0,0,1,0) > \dot{+} < (0,0,0,17) > \dot{+}$$

$$\dot{+} < (0,0,0,11) > \cong \mathbb{Z}_{17} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{17} \oplus \mathbb{Z}_{11}$$

$$\mathbb{Z}_4 = <1>$$
 $\mathbb{Z}_{17} = <1>$
 $\mathbb{Z}_{45} \cong \mathbb{Z}_9 \oplus \mathbb{Z}_5 = <5> \dot{+} <9>$
 $\mathbb{Z}_{187} \cong \mathbb{Z}_{17} \oplus \mathbb{Z}_{11} = <11> \dot{+} <17>$

$$H = <(9,0,0,0) > \dot{+} < (5,0,0,0) > \dot{+} < (0,17,0,0) > \dot{+}$$

$$\dot{+} < (0,11,0,0) > \dot{+} < (0,0,1,0) > \dot{+} < (0,0,0,1) > \cong$$

$$\cong \mathbb{Z}_9 \oplus \mathbb{Z}_5 \oplus \mathbb{Z}_{11} \oplus \mathbb{Z}_{17} \oplus \mathbb{Z}_{17} \oplus \mathbb{Z}_4$$

$$typG = [3^1, 3^1, 2^2, 5^1, 11^117^1, 17^1]$$

$$typH = [3^2, 2^2, 5^1, 11^117^1, 17^1]$$

$$\Rightarrow G \ncong H$$

Задание 6. Пусть $G = \langle g_1, g_2 \rangle$ - группа подстановок степени $n \in N$, порождённая элементами $g_1, g_2 \in S_n$.

- а) Определить, является ли группа G абелевой, и выписать все её элементы.
- б) Выписать орбиты и стабилизаторы для каждой из точек а $\in \overline{1,n}$ в группе G.
- в) Определить, является ли группа G транзитивной (k-транзитивной)или регулярной (k-регулярной).
- г) Определить, является ли группа G примитивной или импримитивной

Решение:
$$G = \langle g_1, g_2 \rangle, g_1 = (146253), g_2 = (12)(35)(46)$$

Начнём с пункта А

Найдём все элементы группы G:

По образующей g_1 :

$$g_{1} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 2 & 1 & 5 \end{pmatrix} = g_{3}$$

$$g_{1} \cdot g_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 4 & 5 & 1 \end{pmatrix} = g_{4}$$

$$g_{1} \cdot g_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 5 & 4 & 3 \end{pmatrix} = g_{5}$$

$$g_{1} \cdot g_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 1 & 2 & 3 \end{pmatrix} = g_{6}$$

$$g_{1} \cdot g_{5} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 3 & 6 & 1 \end{pmatrix} = g_{7}$$

$$g_{1} \cdot g_{6} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 3 & 6 & 5 \end{pmatrix} = g_{8}$$

$$g_{1} \cdot g_{7} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 1 & 2 & 4 \end{pmatrix} = g_{9}$$

$$g_{1} \cdot g_{8} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 1 & 5 & 4 & 2 \end{pmatrix} = g_{10}$$

$$g_{1} \cdot g_{9} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 1 & 5 & 4 & 2 \end{pmatrix} = \varepsilon$$

$$g_{1} \cdot g_{10} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6 \end{pmatrix} = g_{11}$$

$$g_{1} \cdot g_{11} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 6 & 3 & 4 \end{pmatrix} = g_{2}$$

$$g_{1} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 2 & 1 & 5 \end{pmatrix} = g_{3}$$

$$g_{2} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6 \end{pmatrix} = g_{11}$$

$$g_{3} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 5 & 4 & 3 \end{pmatrix} = g_{5}$$

$$g_{4} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 6 & 3 & 4 \end{pmatrix} = g_{2}$$

$$g_{5} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 3 & 6 & 1 \end{pmatrix} = g_{7}$$

$$g_{6} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 4 & 5 & 1 \end{pmatrix} = g_{4}$$

$$g_{7} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 1 & 2 & 4 \end{pmatrix} = g_{9}$$

$$g_{8} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 1 & 2 & 3 \end{pmatrix} = g_{6}$$

$$g_{9} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = \varepsilon$$

$$g_{10} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 3 & 6 & 5 \end{pmatrix} = g_{8}$$

$$g_{11} \cdot g_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 3 & 6 & 5 \end{pmatrix} = g_{10}$$

По образующей g_2 :

$$g_2 \cdot g_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6 \end{pmatrix} = g_{11}$$

$$g_2 \cdot g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = \varepsilon$$

$$g_2 \cdot g_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 1 & 5 & 4 & 2 \end{pmatrix} = g_{10}$$

$$g_2 \cdot g_4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 1 & 2 & 4 \end{pmatrix} = g_9$$

$$g_2 \cdot g_5 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 3 & 6 & 5 \end{pmatrix} = g_8$$

$$g_2 \cdot g_6 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 2 & 3 & 6 & 1 \end{pmatrix} = g_7$$

$$g_2 \cdot g_7 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 1 & 2 & 3 \end{array}\right) = g_6$$

$$g_2 \cdot g_8 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 5 & 4 & 3 \end{pmatrix} = g_5$$

$$g_2 \cdot g_9 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 4 & 5 & 1 \end{pmatrix} = g_4$$

$$g_2 \cdot g_{10} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 2 & 1 & 5 \end{pmatrix} = g_3$$

$$g_2 \cdot g_{11} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 1 & 6 & 3 & 2 \end{pmatrix} = g_1$$

$$g_1 \cdot g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 4 & 5 & 1 \end{pmatrix} = g_4$$

$$g_2 \cdot g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = \varepsilon$$

$$g_3 \cdot g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 1 & 2 & 3 \end{pmatrix} = g_6$$

$$g_4 \cdot g_2 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 1 & 6 & 3 & 2 \end{array}\right) = g_1$$

$$g_5 \cdot g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 3 & 6 & 5 \end{pmatrix} = g_8$$

$$g_6 \cdot g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 2 & 1 & 5 \end{pmatrix} = g_3$$

$$g_7 \cdot g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 1 & 5 & 4 & 2 \end{pmatrix} = g_{10}$$

$$g_8 \cdot g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 6 & 5 & 4 & 3 \end{pmatrix} = g_5$$

$$g_9 \cdot g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6 \end{pmatrix} = g_{11}$$

$$g_{10} \cdot g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6 \end{pmatrix} = g_7$$

$$g_{11} \cdot g_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 3 & 2 & 1 & 6 \end{pmatrix} = g_9$$

Построим неполную таблицу Кэли, заполнив лишь те столбцы и строки, которые соответствуют g и g_2 :

	ε	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}
ε		g_1	g_2									
g_1	g_1	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	ε	g_{11}	g_2
g_2	g_2	g_{11}	ε	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_1
g_3		g_5	g_6									
g_4		g_2	g_1									
g_5		g_7	g_8									
g_6		g_4	g_3									
g_7		g_9	g_{10}									
g_8		g_6	g_5									
g_9		ε	g_{11}									
g_{10}		g_8	g_7									
g_{11}		g_{10}	g_9									

$$G = \{ \varepsilon, (146253), (12)(35)(46), (165)(234), (16)(23), (12)(36)(45), (14)(25)(36), (156)(243), (34)(56), (135264), (13)(26)(45), (15)(24) \}$$

Группа G не абелева, что следует из таблицы. В качестве примера рассмотрим результаты произведений $g_1 \cdot g_2$ и $g_2 \cdot g_1$. Переходим к пункту Б

Выпишем орбиты для всех элементов:

$$G(1) = \{1, 4, 2, 6, 3, 5\} = G(2) = G(3) = G(4) = G(5) = G(6)$$

Выпишем стабилизаторы для всех элементов:

$$St_G(1) = \{ \varepsilon, (34)(56) \}$$

$$St_G(2) = \{\varepsilon, (34)(56)\}\$$

$$St_G(3) = \{\varepsilon, (15)(24)\}\$$

$$St_G(4) = \{\varepsilon, (16)(23)\}\$$

$$St_G(5) = \{ \varepsilon, (16)(23) \}$$

$$St_G(6) = \{ \varepsilon, (15)(24) \}$$

Перейдём к пункту В

Группа G является транзитивной, т.к. существует ровно одна орбита для всех элементов, но не является регулярной, т.к. $|G|=12; n=6 \Rightarrow |G| \neq n$.

Выпишем орбиты для стабилизаторов:

$$St_G(1): \{1\}, \{2\}, \{3,4\}, \{5,6\}$$

$$St_G(2): \{1\}, \{2\}, \{3,4\}, \{5,6\}$$

$$St_G(3): \{1,5\}, \{2,4\}, \{3\}, \{6\}$$

$$St_G(4): \{4\}, \{5\}, \{1,6\}, \{2,3\}$$

$$St_G(5): \{4\}, \{5\}, \{1,6\}, \{2,3\}$$

$$St_G(6): \{1,5\}, \{2,4\}, \{3\}, \{6\}$$

Так же группа G не является k-транзитивной (при $k \ge 2$), т.к не выполняется условие: $|G| \nmid n(n-1)$ (и соответственно не является k-регулярной).

Перейдём к пункту Γ

Найдём все делители |G|=12: 1,2,3,4,6,12;

$$|St_G(1)| = \dots = |St_G(6)| = 2;$$

Нам нужно придерживаться условия максимальности подгрупп:

$$St_G(a) < H < G$$

Тогда рассмотрим циклическую подгруппу H, образующими которой являются 2 элемента из стабилизатора:

$$H = <(34)(56), (15)(24)> =$$

$$= \{ \varepsilon, (34)(56), (15)(24), (156)(243), (165)(234) \} < G \Rightarrow$$

 \Rightarrow т.к. $St_G(1),...,St_G(6)$ не является максимальной подгруппой (содержится в H < G), то G - импримитивна.

4. ЗАКЛЮЧЕНИЕ

Группы подстановок – весьма серьезный раздел математики, к которому нужно относиться с полной серьёзностью и постоянно совершенствовать себя в этом направлении, если желаешь не отставать от развития криптографии и новых тенденций информационной безопасности.

К сожалению, не у всех людей найдётся достаточное количество умственных ресурсов для осознания всех криптографических основ. Однако освоение подобного рода материала может значительно упростить понимание основных математических и криптографических моделей. Эти знания смогут помочь в освоении сложнейших шифров и методов дешифрования, найти путь к новейшим методам шифрования, которые смогут стать революционными.

5. СПИСОК ЛИТЕРАТУРЫ

- 1.Глухов М.М., Елизаров В.П., Нечаев А.А. Алгебра: Учебник. 2-ое, испр.
 - 2.и доп. изд. СПб : Издательство «Лань», $2020-608~\mathrm{c}$.
- 3.Куликов Л.Я. Алгебра и теория чисел: Учебное пособие для педагогических институтов. M: Высшая школа, 1979-559 с.
- 4. Применко Э.А. Алгебраические основы криптографии: Учебное пособие. — 2-ое, испр. изд. — M : ЛЕНАНД, 2018-288 с.
- 5. Кострикин А.И. Введение в алгебру. Ч. І: Основы алгебры. — 3-о
е, стереотип. изд. — М : МЦНМО, 2018 — 272 с.
- 6.Куликов Л.Я., Москаленко А.И., Фомин А.А. Сборник задач по алгебре и тео- рии чисел: Учеб. пособие для студентов физ.-мат. спец. пед. ин-тов. M: Про- свещение, 1993-288 с.
- 7. Сборник задач по алгебре / Под ред. Кострикина А.И. — 2-ое, стереотип. изд. — М : МЦНМО, 2015 — 416 с.
- $8.\Phi$ адеев Д.К., Соминский И.С. Задачи по высшей алгебре. 17-ое, стереотип. изд. СПб : Издательство «Лань», 2008-288 с.
- 9. Ляпин Е.С., Айзенштат А.Я., Лесохин М.М. Упражнения по теории групп: Учебное пособие. — 2-ое, стереотип. изд. — СПб : Издательство «Лань», 2010-272 с.