Multicore Project #3 - Problem02

Environment

208 Building 6th floor laboratory PC

CPU: Intel Core i7-8700 (# of cores: 12)

Memory: 16GB OS: Windows 10

IDE: Visual Studio 2019

Execution Result

(unit: ms)

exec_time	chunc size	1	2	4	6	8	10	12	14	16
static	1	263	131	92	49	42	37	62	48	45
dynamic	1	425	407	401	415	426	449	463	462	463
guided	1	254	123	83	44	36	31	26	28	45
static	5	257	125	87	54	37	32	31	51	45
dynamic	5	284	226	178	201	204	183	168	171	177
guided	5	252	123	85	42	37	32	27	27	46

exec_time	chunc size	1	2	4	6	8	10	12	14	16
static	10	250	125	84	48	39	33	31	57	45
dynamic	10	271	210	167	123	122	112	105	106	111
guided	10	249	127	83	43	35	31	28	48	49
static	100	252	128	84	45	38	31	29	50	38
dynamic	100	251	123	87	48	41	37	31	32	34
guided	100	251	124	83	43	35	32	26	27	27

performance = 1/exec_time

perfor- mance	chunc size	1	2	4	6	8	10	12	14	16
static	1	0.00380	0.00763	0.01087	0.02041	0.02381	0.02703	0.01613	0.02083	0.02222
dynamic	1	0.00235	0.00246	0.00249	0.00241	0.00235	0.00223	0.00216	0.00216	0.00216
guided	1	0.00394	0.00813	0.01205	0.02273	0.02778	0.03226	0.03846	0.03571	0.02222
static	5	0.00389	0.00800	0.01149	0.01852	0.02703	0.03125	0.03226	0.01961	0.02222
dynamic	5	0.00352	0.00442	0.00562	0.00498	0.00490	0.00546	0.00595	0.00585	0.00565
guided	5	0.00397	0.00813	0.01176	0.02381	0.02703	0.03125	0.03704	0.03704	0.02174
static	10	0.00400	0.00800	0.01190	0.02083	0.02564	0.03030	0.03226	0.01754	0.02222
dynamic	10	0.00369	0.00476	0.00599	0.00813	0.00820	0.00893	0.00952	0.00943	0.00901
guided	10	0.00402	0.00787	0.01205	0.02326	0.02857	0.03226	0.03571	0.02083	0.02041
static	100	0.00397	0.00781	0.01190	0.02222	0.02632	0.03226	0.03448	0.02000	0.02632
dynamic	100	0.00398	0.00813	0.01149	0.02083	0.02439	0.02703	0.03226	0.03125	0.02941
guided	100	0.00398	0.00806	0.01205	0.02326	0.02857	0.03125	0.03846	0.03704	0.03704

^{*} Because there were a lot of executions to do, I modified the code to automatically execute and print the time and result.

Analysis

The size of default chunk is 1.

I could see the performance is like:

```
(scheduling) dynamic < static =< guided
(chunk size) 1 < 5 < 10 =< 100
```

If other conditions are the same.

- Static scheduling was faster than dynamic scheduling
 - In this problem, it is assumed that there was large overhead in dynamic scheduling.
 Especially, dynamic scheduling with smaller chunk size had an obvious performance decrease.
 - Guided scheduling had a slight higher performance because of the better load-balance
- It became faster as chunk size increases
 - As chunk size gets smaller, overhead increases and it leads to decrease of performance.

Also, I could see that as the number of threads exceeds the actual cores, there was a disadvantage of performance.