CS 440 - Assignment 2

Team member:

Junhyeok Jeong - <u>jeongju@oregonstate.edu</u>, jeongju Ashyan Ashley Rahavi - <u>rahavia@oregonstate.edu</u>, rahavia

1: BCNF and 3NF (2 points)

Consider a relation R with five attributes A, B, C, D, and E. You are given the following functional dependencies: $A \rightarrow B$, $BC \rightarrow E$, and $ED \rightarrow A$.

- (a) List all keys for R. (1 point)
 - C,D is not on the right side in FD, so C,D are candidate keys.
 - Therefore, keys can be ACD, BCD, and CDE
- (b) Is R in BCNF? If it is not, decompose it into a collection of BCNF relations. (0.5 point)
 - For each non-trivial FD X Y, X is a super key of R
 - R is not in BCNF because ED is not a super key for ACDE.
 - (A,B)
 - (A,D,E)
 - (B,C,E)
- (c) Is R in 3NF? If it is not, convert it into a collection of 3NF relations. (0.5 point)
 - If the relation R is in 3NF, then a function dependency X -> Y holds in R, either
 - (a) X is a superkey of R
 - (b) Y is a prime attribute of R.
 - Therefore, R is in 3NF because A, B, E are part of keys for R as a 3NF condition (b).

2: BCNF and 3NF (1.5 points)

Consider the relation schema R with attributes A, B, C, and D and the following functional dependencies: $AB \rightarrow C$, $AC \rightarrow B$, $B \rightarrow D$, $BC \rightarrow A$.

- (a) List all keys for R. (0.5 point)
 - AB, AC, BC
- (b) Is R in BCNF? If it is not, decompose it into a collection of BCNF relations. (0.5 point)
 - R is not in BCNF, it needs to decompose into the following:
 - (B,D)
 - (A,B,C)
- (g) Is R in 3NF? If it is not, convert it into a collection of 3NF relations. (0.5 point)
 - No, because of FD B->D. Since B is not a super-key and D is not part of any key, then it is not in 3NF. Since the decomposition in part B is already in 3NF, then a collection of 3NF relations can look like:
 - (B,D)

3: FD Implication & Schema Decomposition (1 point)

- (a) Given that X, Y, W, Z are attributes in a relation, using the Armstrong's axioms, prove that if we have $X \to Y$ and $Y \to Z$, then $XW \to Z$. (0.25 point)
 - By the augmentation axiom, since X -> Y, then we know XW -> YW. Since we know that YW -> Z, we can use the transitivity axiom to to replace YW with XW, giving us XW -> Z
- (b) Given that X, Y, Z are attributes in a relation, using the Armstrong's axioms, prove that if we have $X \to Y$ and $X \to Z$, then $X \to Y$ Z. (0.25 point)
 - 1. Using the augmentation axiom, given X -> Z, we know X Y -> Z Y
 - Using augmentation with X > Y, we know that X X -> X Y, which reduces down to X -> XY
 - 3. Using the transitive axiom with 1 and 2, we can derive X -> ZY, or X -> Y Z
- (c) Prove that, if relation R has only one simple key, it is in BCNF if and only if it is in 3NF. (0.5 point)
 - If R has only one simple key, then every attribute can be defined with only one key. To be 3NF, the FDs should follow one or two of the below rules:
 - (a) X is a superkey of R
 - (b) Y is a prime attribute of R.
 - Since every key is simple, every prime attribute is a key itself. R is in 3NF. When it comes to BCNF, there are no transitive dependencies due to R being in 3NF. This implies that X is not a prime attribute but a superkey of R. Therefore, R is in BCNF also.

4: Information preservation (0.5 point)

- (a) Suppose you are given a relation R(A,B,C,D) with functional dependencies $B\rightarrow C$ and $D\rightarrow A$. State whether the decomposition of R to S1(B,C) and S2(A,D) is lossless or dependency preserving and briefly explain why or why not. (0.5 point)
 - I think this is dependency preserving not lossless. First, S1 and S2 violates the condition of lossless, which is R1 \cap R2 = R1 or R2. For S1 and S2, S1 \cap S2 = no common. As dependency preserving, the union of relations should be all attributes. In S1 and S2, it satisfies with S1 U S2 = (A,B,C,D).