Convergence of approximate Brownian distributions to the Wiener measure

Yvan Quinn, Don Kim

Math 8702

2 May 2022

OUTLINE

DEFINITIONS

DEFINITION (RANDOM PROCESS)

Let T be a set, (Ω, \mathcal{F}, P) a probability space, (X, \mathcal{B}) a measurable space. For every $t \in T$, we have an X-valued \mathcal{F} -measurable function $\xi_t = \xi_t(\omega)$, and ξ_t is a **random process** on T with values in X. For each ω , the function $\xi_t(\omega)$, viewed as a function of t, is called a **path** or a **trajectory of the process**.

NOTATION

Let $(X, \mathcal{B}(X))$ be a Polish space and T a set. The set of all X-valued functions on T is denoted by X^T . Denote by x_{\cdot} the points in X^T , and by x_t the value of x_{\cdot} at t.

DEFINITIONS (CONT.)

In this section, we will consider real–valued random processes on T=[0,1]. These processes are called **continuous** if all its trajectories are continuous functions on T.

For each ω , we have a continuous trajectory, i.e., we have an element in C=C([0,1]), the space of continuous functions on [0,1], a Polish space equipped with the metric $\rho(x_.,y_.)=\sup_{t\in[0,1]}|x_t-y_t|.$

Definition (Cylinder σ -field $\Sigma(C)$)

The **cylinder** σ -**field** $\Sigma(C)$ is the σ -algebra of C generated by all subsets of the form

$$\{x_{\cdot} \in C : x_t \in \Gamma\}, t \in [0,1], \Gamma \in \mathfrak{B}(\mathbb{R}).$$

LEMMA 1

We will need the following theorem.

Let X and Y be Polish spaces, and let $f: X \to Y$ be a continuous function. Then f is Borel.

Our first goal is to prove the following lemma.

$$\Sigma(C) = \mathfrak{B}(C)$$

LEMMA 1 (CONT.)

PROOF: Fix t, and let π_t be defined as

$$\pi_t(x_{\cdot}) = x_t.$$

First, we show that $\pi_t:C\to\mathbb{R}$ is a continuous function, i.e. that the preimage of an open set is open. WLOG, let $\pi_t(A)$ be the open ball

$$B_{\epsilon}(x_t) = (x_t - \epsilon, x_t + \epsilon) \subset \mathbb{R}$$

If $\rho(x_{\cdot},y_{\cdot})=\sup_{s}|x_{s}-y_{s}|<\epsilon$, then $\pi_{t}y_{\cdot}=y_{t}\in B_{\epsilon}(x_{t})$. Therefore A is open, so π_{t} is continuous.

A cylinder set (defined $\{x_: \pi_t x_: \in \Gamma\}$, for $\Gamma \in \mathfrak{B}(\mathbb{R})$) is the preimage of a Borel set, so Borel (in C). Thus $\Sigma(C) \subset \mathfrak{B}(C)$. For the other inclusion, we show that closed balls in C are generated by cylinder sets (thus generating the Borel algebra).

LEMMA 1 (CONT.)

PROOF: (cont.) Claim:

$$\overline{B_{\epsilon}}(x_{\cdot}^{0}) = \left\{ x_{\cdot} \in C : \rho(x_{\cdot}^{0}, x_{\cdot}) \leq \epsilon \right\}$$

$$= \bigcap_{r \in \mathbb{Q} \cap [0,1]} \left\{ x_{\cdot} \in C : x_{r} \in [x_{r}^{0} - \epsilon, x_{r}^{0} + \epsilon] \right\}$$

This follows from the continuity of x and density of \mathbb{Q} in \mathbb{R} , which gives the left implication below:

$$\rho(x_{\cdot}^{0}, x_{\cdot}) = \sup_{t \in [0, 1]} \left| x_{t}^{0} - x_{t} \right| \le \epsilon \Leftrightarrow \left| x_{r}^{0} - x_{r} \right| \le \epsilon, \forall r \in \mathbb{Q} \cap [0, 1]$$

As the countable intersection of elements of a σ -algebra is in the σ -algebra, closed balls in C are elements of $\Sigma(C)$. \square

THEOREM 2

THEOREM (CH.1, §4. THEOREM 2, P.17, [?])

 $\xi_t(\omega)$ is a continuous process (all trajectories continuous) on [0,1] if and only if ξ . is a C-valued random variable.

PROOF: (\Rightarrow) We want to show $\xi_{\cdot}^{-1}(B) := \{\omega : \xi_{\cdot}(\omega) \in B\}$ measurable for every $B \in \mathfrak{B}(C)$ (this is what it means to be a random variable). Note that $\{B \subset C : \xi_{\cdot}^{-1}(B) \text{ is measurable}\}$ form a sub- σ -algebra of $\mathfrak{B}(C)$. If B is a cylinder set, the measure of $\xi_{\cdot}^{-1}(B)$ is $\mathbb{P}(\xi_{t} \in \Gamma)$. In particular, this means that

$$\Sigma(C) \subset \{B \subset C : \xi_{\cdot}^{-1}(B) \text{ is measurable}\} \subset \mathfrak{B}(C)$$

By lemma 1, $\Sigma(C) = \mathfrak{B}(C)$.

(\Leftarrow) $\pi_t \circ \xi$ is measurable since π_t continuous. $\xi_\cdot(\omega) \in C$ for any ω , so $\xi_t(\omega) = \pi_t(\xi_\cdot(\omega))$ is a continuous function of t. \square

LEMMA 4

LEMMA (CH. 1, §4, LEMMA 4, P.18, [?])

Let x_t be a real-valued function defined on [0,1]. Assume that there exist a constant a>0 and an integer $n\geq 0$ such that

$$\left| x_{(i+1)/2^m} - x_{i/2^m} \right| \le \frac{1}{2^{ma}}$$

for all $m \geq n$ and $0 \leq i \leq 2^m-1$. Then for all binary numbers $t,s \in [0,1]$, i.e. numbers of the form $\sum_{i=0}^{\infty} \epsilon 2^{-i}, \epsilon = 0$ or 1, such that $|t-s| \leq 2^{-n}$, we have that

$$|x_t - x_s| \le N(a)|t - s|^a,$$

where $N(a) = 2^{2a+1}(2^a - 1)^{-1}$.

THEOREM 6

THEOREM (CH.1, $\S4$, THEOREM 6, p.19 – 20, [?])

Let ξ_t be a continuous process, and let $\alpha > 0, \beta > 0, N \in (0, \infty)$ be constants such that

$$E|\xi_t - \xi_s|^{\alpha} \le N|t - s|^{1+\beta}, \forall s, t \in [0, 1].$$
 (1)

Then, for $0 < a < \frac{\beta}{\alpha}$ and for every $\epsilon > 0$, there's an $n \in \mathbb{N}$ such that

$$P\left\{\xi_{\cdot} \in K_n(a)\right\} \ge 1 - \epsilon,$$

where

$$K_n(a) = \{x_{\cdot} : |x_0| \le 2^n, |x_t - x_s| \le N(a)|t - s|^a, \forall |t - s| \le 2^{-n}\}$$

THEOREM 6 (CONT.)

Proof: Let

$$A_n = \{\omega : |\xi_0| \ge 2^n\} \cup \left\{\omega : \sup_{m \ge n} \max_{i=0,\dots,2^m-1} \left| \xi_{\frac{i+1}{2^m}} - \xi_{\frac{i}{2^m}} \right| \ge 2^{-ma} \right\}$$

and recall the definition of $K_n(a)$:

$$K_n(a) = \{x_{\cdot} : |x_0| \le 2^n, |x_t - x_s| \le N(a)|t - s|^a, \forall |t - s| \le 2^{-n}\}$$

Lemma 4 says $\left|x_{(i+1)/2^m}-x_{i/2^m}\right| \leq 2^{-ma}, \forall m \geq n, i < 2^m \Longrightarrow \left|x_t-x_s\right| \leq N(a) |t-s|^a, \forall t,s \text{ binary s.t. } |t-s| \leq 2^{-n}.$ Note that $\xi_\cdot(\omega)$ satisfies the first requirement to be in $K_n(a)$ whenever ω is outside the first set comprising A_n . Lemma 4 does the same for the second, so $\omega \notin A_n \Longrightarrow \xi_\cdot(\omega) \in K_n(a)$. Thus, $P\left\{\xi_\cdot \notin K_n(a)\right\} \leq P(A_n)$

$$\leq P\{|\xi_0| \geq 2^n\} + P\left\{ \sup_{m \geq n} \max_{i=0,\dots,2^m-1} \left| \xi_{(i+1)/2^m} - \xi_{i/2^m} \right| \geq 2^{-ma} \right\}$$

THEOREM 6 (CONT.)

PROOF: (cont.) By Chebyshev's inequality, $\forall \alpha > 0$ this is $\leq P\{|\xi_0| \geq 2^n\} + E \sup_{m > n} \max_{i=0,\dots,2^m-1} |\xi_{(i+1)/2^m} - \xi_{i/2^m}|^{\alpha} 2^{ma\alpha}$

$$\leq P\{|\xi_{0}| \geq 2^{n}\} + \sum_{m=n}^{\infty} \sum_{i=0}^{2^{m}-1} 2^{m\alpha a} E |\xi_{(i+1)/2^{m}} - \xi_{i/2^{m}}|^{\alpha}$$

$$\leq P\{|\xi_{0}| \geq 2^{n}\} + \sum_{m=n}^{\infty} \sum_{i=0}^{2^{m}-1} 2^{m\alpha a} E |\xi_{(i+1)/2^{m}} - \xi_{i/2^{m}}|^{\alpha}$$

$$\leq P\{|\xi_{0}| \geq 2^{n}\} + \sum_{m=n}^{\infty} \sum_{i=0}^{2^{m}-1} 2^{ma\alpha} N 2^{-m(1+\beta)} \ (\because \ (\ref{eq:partial_state_sta$$

$$\leq P\{|\xi_0| \geq 2^n\} + N \sum_{m=n} 2^{ma\alpha - m\beta} \xrightarrow{n \to \infty} 0$$

Since $P\{\xi \notin K_n(a)\} \to 0$, we have $P\{\xi \in K_n(a)\} \to 1$. \square

THEOREM 7

THEOREM (CH.1, §4. THEOREM 7, p.20, [?])

For k=1,2,..., let $\xi^k_.$ be continuous processes on [0,1] such that $\sup_k P(|\xi^k_0| \geq c) \xrightarrow[c \to \infty]{} 0$, and for some constants $\alpha,\beta,N>0$,

$$E|\xi_t^k - \xi_s^k|^{\alpha} \le N|t - s|^{1+\beta}, \forall s, t \in [0, 1], k \ge 1$$

Then the sequence of distributions of ξ^k on C is relatively compact.

PROOF: Since every $K_n(a)$ is compact, given any $\epsilon>0$ the previous theorem allows us to find a compact set $K:=K_n(c)$ such that $\mu_k(K^c):=P(\xi^k\in K^c)=1-P(\xi^k\in K)\leq \epsilon$. By hypothesis $P\{|\xi^k_0|\geq 2^n\}\xrightarrow[n\to\infty]{}0$ for any k. Notice that this is exactly the term on the left in the above proof. Since N doesn't depend on k, the term on the right is the same $\forall \xi^k$. We choose the same K for every μ_k and apply Prokhorov. \square

LEMMA 2.1

THEOREM (CH.2, §1. LEMMA 1, p.28, [?])

Let
$$\xi_t^n = \frac{1}{\sqrt{n}} \left(S_{\lfloor nt \rfloor} + (nt - \lfloor nt \rfloor) \eta_{\lfloor nt \rfloor} \right)$$
, where $S_k = \eta_1 + \ldots + \eta_k$, $\xi_0^n = 0$ for all n , and the η_j are i.i.d. with mean 0 and variance 1. The sequence of distributions of ξ_j^n on C is relatively compact.

PROOF: For simplicity, assume the η_k have finite 4th moment which we denote $m_4:=E\eta_k^4$ (see Billingsley [?] for general case). Since $\xi_0^n=0$, it's sufficient to prove that ξ_1^n satisfies the inequality of the previous theorem. Note that η_{k+1} is independent of S_k , so

$$ES_{k+1}^4 = E(S_k + \eta_{k+1})^4$$

$$= ES_k^4 + 4ES_k^3\eta_{k+1} + 6ES_k^2\eta_{k+1}^2 + 4ES_k\eta_{k+1}^3 + E\eta_k^4$$

$$= ES_k^4 + 4(ES_k^3)(E\eta_{k+1}) + 6(ES_k^2)(E\eta_{k+1}^2) + 4(ES_k)(E\eta_{k+1}^3) + m_4$$

$$= ES_k^4 + 6ES_k^2 + 4(ES_k)(E\eta_{k+1}^3) + m_4 = ES_k^4 + 6k + m_4$$

LEMMA 2.1 (CONT.)

PROOF: (cont.) $ES_k^4 = ES_{k-1}^4 + 6k + m_4$ and $ES_1^4 = E\eta_1^4 = m_4$, so $ES_k^4 = \sum_{j=1}^k \left\{ 6(j-1) + m_4 \right\} = 3k(k-1) + km_4 \le 3k^2 + km_4$ When s,t are endpoints of intervals (i.e. ns,nt integers) we have

$$E|\xi_t^n - \xi_s^n|^4 = \frac{1}{n^2}E|S_{tn} - S_{sn}|^4 = \frac{1}{n^2}ES_{n|t-s|}^4 \le 3|t-s|^2 + \frac{m_4}{n}|t-s|$$

Since s,t are not inside the same interval $|t-s| \geq 1/n$, so

$$E|\xi_t^n - \xi_s^n|^4 \le (3 + m_4)|t - s|^2 \tag{2}$$

This will also prove useful when s,t are in different intervals. If s,t are both in the interval [k/n,(k+1)/n], we have that

$$E|\xi_t^n - \xi_s^n|^4 = E(\sqrt{n}|\eta_{k+1}||t-s|)^4 = n^2 m_4 |t-s|^4 \le m_4 |t-s|^2$$

For the remaining case, we split up $[s,t]=[s,s']\cup[s',t']\cup[t',t]$ where s',t' are the closest endpoints between s,t. Note also that

$$(a+b+c)^4 \le 81(a^4+b^4+c^4)$$

so
$$E|\xi_t^n - \xi_s^n|^4 \le E\left(|\xi_t^n - \xi_{t'}^n| + |\xi_{t'}^n - \xi_{s'}^n| + |\xi_{s'}^n - \xi_s^n|\right)^4$$

LEMMA 2.1 (CONT.

PROOF: (cont.) $\leq 81 \left(E|\xi^n_t - \xi^n_{t'}|^4 + E|\xi^n_{t'} - \xi^n_{s'}|^4 + E|\xi^n_{s'} - \xi^n_s|^4 \right)$ We apply our previous result to s,s' and t',t and (2) to s',t':

$$E|\xi_t^n - \xi_s^n|^4 \le 81 \left(m_4|t - t'|^2 + (3 + m_4)|t' - s'|^2 + m_4|s' - s|^2 \right)$$

Since each of [s, s'], [s', t'], [t', t] are subsets of [s, t], this is

$$\leq 81 \left(m_4 |t - s|^2 + (3 + m_4) |t - s|^2 + m_4 |t - s|^2 \right) = 81(3 + 3m_4) |t - s|^2$$

This is precisely the condition for $\alpha=4,\beta=1,N=243(1+m_4)$, which are all independent of n,s,t. Thus $\forall n,s,t$ we have that

$$E|\xi_t^n - \xi_s^n|^4 \le N|t - s|^2 := 243(1 + m_4)|t - s|^2$$

Therefore the sequence of distributions on is relatively compact. \Box

BIBLIOGRAPHY

- Krylov, N.V. Introduction to Theory of Random Processes (Graduate Studies in Mathematics, Volume 43). American Mathematical Society, 2002.
- Billingsley, P. Convergence of Probability Measures (Wiley Series in Probability and Statistics: Probability and Statistics), 2nd ed. John Wiley & Sons, Inc., 1999.