# E-COMMERCE BOOK PURCHASE PREDICTION





In this project, I scraped data from an open-source e-commerce website and created a custom dataset of books.

After analyzing key patterns using exploratory data analysis (EDA), I simulated realistic purchase behavior based on price and rating, and trained a machine learning model to predict whether a user will purchase a book.

The final model takes just Price and Rating as input and predicts the purchase decision with over 94% accuracy. The entire workflow – from data scraping to model deployment – is showcased in a deployed Streamlit app.

## LIBRARIES USED FOR SCRAPPING, EDA, AND VISUALIZATION

- REQUESTS
- BEAUTIFULSOUP
- PANDAS
- NUMPY
- MATPLOTLIB
- SEABORN

## LIBRARIES USED FOR MACHINE LEARNING, APP INTERFACE

- SCIKIT-LEARN
- JOBLIB
- STREAMLIT



# Scrapping, EDA, & Visualization

#### Books to Scrape We love being scraped!

#### Home / All products

#### Books

- Travel
- Mystery
- Historical Fiction
- Seguential Art
- Classics
- Philosophy
- Romance
- Womens Fiction
- Fiction
- Childrens
- Religion
- Nonfiction
- Music
- Default
- Science Fiction
- Sports and Games
- Add a comment
- Fantasy
- New Adult
- Young Adult
- Science
- Poetry
- Paranormal

#### All products

**1000** results - showing **1** to **20**.

Warning! This is a demo website for web scraping purposes. Prices and ratings here were randomly assigned and have no real meaning.





A Light in the ...

£51.77



\*\*\*\*

Tipping the Velvet

£53.74



This Is the website I have

scrapped the data from

\*\*\*\*

Soumission

£50.10



\*\*\*\*

**Sharp Objects** 

£47.82

✓ In stock

✓ In stock ✓ In stock ✓ In stock

#### Visual on the scarped data

```
Title Rating Price Avalability
A Light in the Attic Three 51.77 In stock
Tipping the Velvet One 53.74 In stock
Soumission One 50.10 In stock
Sharp Objects Four 47.82 In stock
Sapiens: A Brief History of Humankind Five 54.23 In stock
```

### Modified Scrapped Data

| Title                                                  | Rating • | Price 🔻 | Avalability • | expensive 🔽   | purchased | quantity_purchased • | Gender 💌 | added_to_cart |
|--------------------------------------------------------|----------|---------|---------------|---------------|-----------|----------------------|----------|---------------|
| A Light in the Attic                                   | 3        | 51.77   | In stock      | Expensive     | 0         | 0                    | Male     | 5             |
| Tipping the Velvet                                     | 1        | 53.74   | In stock      | Expensive     | 0         | 0                    | Male     | 4             |
| Soumission                                             | 1        | 50.1    | In stock      | Expensive     | 0         | 0                    | Male     | 1             |
| Sharp Objects                                          | 4        | 47.82   | In stock      | Expensive     | 0         | 0                    | Female   | 3             |
| Sapiens: A Brief History of Humankind                  | 5        | 54.23   | In stock      | Expensive     | 0         | 0                    | Male     | 5             |
| The Requiem Red                                        | 1        | 22.65   | In stock      | Not Expensive | 0         | 0                    | Female   | 5             |
| The Black Maria                                        | 1        | 52.15   | In stock      | Expensive     | 0         | 0                    | Male     | 0             |
| Starving Hearts (Triangular Trade Trilogy, #1)         | 2        | 13.99   | In stock      | Not Expensive | 0         | 0                    | Male     | 1             |
| Scott Pilgrim's Precious Little Life (Scott Pilgrim #1 | 5        | 52.29   | In stock      | Expensive     | 0         | 0                    | Male     | 0             |
| Our Band Could Be Your Life: Scenes from the Am        | 3        | 57.25   | In stock      | Expensive     | 0         | 0                    | Female   | 3             |
| Olio                                                   | 1        | 23.88   | In stock      | Not Expensive | 0         | 0                    | Male     | 5             |
| Mesaerion: The Best Science Fiction Stories 1800-      | 1        | 37.59   | In stock      | Expensive     | 0         | 0                    | Female   | 5             |
| Libertarianism for Beginners                           | 2        | 51.33   | In stock      | Expensive     | 0         | 0                    | Female   | 4             |
| It's Only the Himalayas                                | 2        | 45.17   | In stock      | Expensive     | 0         | 0                    | Female   | 4             |
| In Her Wake                                            | 1        | 12.84   | In stock      | Not Expensive | 0         | 0                    | Male     | 5             |
| How Music Works                                        | 2        | 37.32   | In stock      | Expensive     | 0         | 0                    | Male     | 5             |
| Birdsong: A Story in Pictures                          | 3        | 54.64   | In stock      | Expensive     | 0         | 0                    | Male     | 5             |



#### **BOOK PRICE DISTRIBUTION:**

THIS VISUAL IS USED TO CHECK HOW MANY BOOKS WE HAVE AT A CERTAIN PRICE RANGE.

A SHARP INCEASE IS NOTICED IN THE IO-20 RANGE FOLLOWED BY A SIMILAR DECEND IN 20-30 RANGE.

IMPLYING THERE IS A HIGH VARIENCE IN THE PRICE TO QUANTITY RATIO.

#### CODE USED:

sns.histplot(df['Price'], kde=True, bins=15)
plt.title('Book Price Distribution')
plt.xlabel('Price in euros')



CODE USED:

sns.countplot(df,x='Rating')
plt.title("Book Ratings Count")



code used:
sns.countplot(x='quantity\_purchased',data=df)
plt.title("Purchase Count ")
plt.xlabel("Purchased Quantity")



CODE USED: sns.countplot(x='quantity\_purchased',data=df)
plt.title("Purchase Count ")
plt.xlabel("Purchased Quantity")



# CODE USED: sns.barplot(x='expensive', y='purchased', data=df) plt.title("Purchase Rate: Expensive vs Non-Expensive")





# Machine Learning & App Interface

#### CODE USED:

#### **OUTPUT:**

| <del></del> * | RandomForestClassifier precision recall f1-score support |         |      |      |    |  |  |  |  |  |  |
|---------------|----------------------------------------------------------|---------|------|------|----|--|--|--|--|--|--|
|               |                                                          | ·       |      |      |    |  |  |  |  |  |  |
|               | 0                                                        | 0.94    | 0.98 | 0.96 | 45 |  |  |  |  |  |  |
|               | 1                                                        | 0.96    | 0.88 | 0.92 | 25 |  |  |  |  |  |  |
|               |                                                          |         |      |      |    |  |  |  |  |  |  |
|               | accuracy                                                 |         |      | 0.94 | 70 |  |  |  |  |  |  |
|               | macro avg                                                | 0.95    | 0.93 | 0.94 | 70 |  |  |  |  |  |  |
|               | weighted avg                                             | 0.94    | 0.94 | 0.94 | 70 |  |  |  |  |  |  |
|               |                                                          |         |      |      |    |  |  |  |  |  |  |
|               | Confustion M<br>[[44 1]<br>[ 3 22]]                      | latrix: |      |      |    |  |  |  |  |  |  |

Mean Squared Error:

0.05714285714285714



CODE USED:

```
CODE USED: (FOR VISUALS & INPUT FIELDS)
                                                   Predictor",
st.set_page_config(page_title="Book
                                    Purchase
page_icon="="")
st.title(" Book Purchase Predictor")
st.markdown("Predict whether a customer will purchase a book
based on product and user behavior.")
st.sidebar.header(" Input Features")
# Input fields
price = st.sidebar.number_input("Book Price (£)", min_value=0.0,
max_value=200.0, value=25.0)
rating = st.sidebar.selectbox("Rating", [1, 2, 3, 4, 5], index=2)
# Prepare the feature array
input_data = np.array([[price, rating]])
```

```
CODE USED: (FOR PREDICTION OUTPUT)
if st.button(" Predict Purchase"):
 prediction = model.predict(input_data)[0]
 probability = model.predict_proba(input_data)[0][prediction]
 if prediction == 1:
   st.success(f" This customer is likely to purchase the book!
(Confidence: {probability:.2f})")
 else:
      st.warning(f" \times This customer is unlikely to make a
purchase. (Confidence: {probability:.2f})")
 # Showing the prediction probability for both classes
 st.subheader("  Prediction Probabilities:")
 st.write({
   "Not Purchased (0)": round(model.predict_proba(input_data)
[0][0], 2),
   "Purchased (I)": round(model.predict_proba(input_data)[0][I],
2)
 })
```



Book Price (£)

32.00

Rating



#### **Book Purchase Predictor**

Predict whether a customer will purchase a book based on product and user behavior.



Predict Purchase

This customer is likely to purchase the book! (Confidence: 0.87)



#### Prediction Probabilities:

```
"Not Purchased (0)": 0.13
"Purchased (1)": 0.87
```

RESULT

# DEGUSSION

This project demonstrates how simple product attributes – price and rating - can drive purchase decisions in an e-commerce setting. By combining web scraping, simulated behavior modeling, and machine learning, I built a system that predicts purchase likelihood with over 94% accuracy. The model was deployed via a live Streamlit app, turning data insights into an interactive experience. This reflects a full data science pipeline — from raw data to real-world usability.