

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2024-1

[Cod: CM4F1 Curso: Análisis y Modelamiento Numérico I] [Prof: L. Roca, I. Mantilla, C. Salinas.] Examen Sustitutorio Duración: 110 minutos.

1. Justifique si las siguientes proposiciones son verdaderas o falsas

- a) La iteración $x_n = \frac{1}{2}x_{n-1} + \frac{1}{x_{n-1}}, n \ge 1$, converge a $\sqrt{2}$ cuando $x_0 > \sqrt{2}$. [1 pt]
- b) La ecuación $x^5 + x^3 1$ tiene solo una raíz en (0, 1). [1 pt]
- c) Sea $f(x) = (x-1)^{10}$, p = 1 y $p_n = 1 + 1/n$, entonces $|f(p_n)| < 10^{-3}$ cuando n > 1 pero $|p p_n| < 10^{-3}$ requiere que n > 1000.
- d) Si A es simétrica, λ_1 es un valor propio y v_1 un vector propio asociado a λ_1 , entonces los valores propios de la matriz

$$B = A - \frac{\lambda_1}{v_1^t v_1} v_1 v_1^t$$

son el cero y los valores propios de A excepto λ_1 .

[1 pt]

Solución.

- a) La iteración $x_n = \frac{1}{2}x_{n-1} + \frac{1}{x_{n-1}}$, $n \ge 1$, converge a $\sqrt{2}$ cuando $x_0 > \sqrt{2}$. En efecto si $x_0 > \sqrt{2}$ definimos $g(x) = \frac{1}{2}x + \frac{1}{x}, \forall x \in [\sqrt{2}, x_0]$, de donde $0 \le g'(x) = \frac{1}{2} - \frac{1}{x^2} \le \frac{1}{2} < 1$ y ademas si $\sqrt{2} \le x \le x_0$ entonces $\sqrt{2} \le \frac{1}{2}x + \frac{1}{x} \le x_0$, y por el teorema del punto fijo la iteración $x_n = g(x_{n-1})$ converge a único c tal que g(c) = c. En el limite $c = \frac{1}{2}c + \frac{1}{c} \implies c = \sqrt{2}$.
- b) La ecuación $x^5 + x^3 1$ tiene solo una raíz en $\langle 0, 1 \rangle$. Si $f(x) = x^5 + x^3 - 1$ entonces es continua y ademas f(0)f(1) < 0 luego por teorema del valor intermedio existe 0 < c < 1 donde f(c) = 0, como $f'(x) = 5x^4 + 3x^2 > 0$, f es inyectiva y justifica la unicidad de la raíz.
- c) Sea $f(x)=(x-1)^{10}$, p=1 y $p_n=1+1/n$, entonces $|f(p_n)|<10^{-3}$ cuando n>1 pero $|p-p_n|<10^{-3}$ requiere que n>1000.

$$|f(p_n)| = \frac{1}{n^{10}} < 10^{-3} \implies n \ge 2$$

$$|p - p_n| = \frac{1}{n} < 10^{-3} \implies n > 1000$$

d) Si A es simétrica, λ_1 es un valor propio y v_1 un vector propio asociado a λ_1 , entonces los valores propios de la matriz

$$B = A - \frac{\lambda_1}{v_1^t v_1} v_1 v_1^t$$

son el cero y los valores propios de A excepto λ_1 .

Efecto si $\lambda \neq \lambda_1$ es un valor propio de A entonces

$$Bv = Av - \frac{\lambda_1}{v_1^t v_1} v_1(v_1^t v) = \lambda v$$

pues v_1 y v son ortogonales. Además

$$Bv_1 = Av_1 - \frac{\lambda_1}{v_1^t v_1} v_1(v_1^t v_1) = \lambda_1 v_1 - \lambda_1 v_1 = 0v_1$$

2. Use el método de Neville para aproximar $\sqrt{3}$ con las siguientes funciones y valores

a)
$$f(x) = 3^x$$
 y los valores $x_0 = -2$, $x_1 = -1$, $x_2 = 0$, $x_3 = 1$, y $x_4 = 2$. [2 pts]

b)
$$f(x) = \sqrt{x}$$
 y los valores $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, $x_3 = 4$, y $x_4 = 5$. [2 pts]

c) Determine la mejor aproximación comparando el error relativo cometido en las partes a) y b). [1 pts]

Solución.

0.5					
-2	0.1111111	0.66666667	1.5	1.7777778	1.70833333
-1	0.3333333	1.33333333	1.83333333	1.66666667	
0	1	2	1.5		
1	3	0			
2	9				
3					
0	0	3	1.24264069	1.62132034	1.69060676
1	1	1.82842712	1.7475469	1.73679771	
2	1.4142136	1.70710678	1.72604853		
4	2	1.76393202			
5	2.236068				

$$\epsilon_1 = \frac{\sqrt{3} - 1,7083}{\sqrt{3}} = 0,01369329$$

$$\epsilon_2 = \frac{\sqrt{3} - 1,6906}{\sqrt{3}} = 0,023927729$$

La primera aproximación es mejor.

3. Demuestre que $g(x) = \pi + 0.5\sin(x/2)$ tiene un único punto fijo en $[0, 2\pi]$ y estime de forma teórica el número de iteraciones N necesarias para calcular el punto fijo con una precisión de 10^{-2} .

Solución. $g([0,2\pi])\subset [0,2\pi]$ y $g'(x)=0.25\cos(x/2)\leq 0.25<1$, por lo tanto existe un único punto fijo c y la iteración

$$x_{k+1} = g(x_k), \forall k \ge 0, x_0 \in [0, 2\pi]$$

converge a c.

Ademas como c = q(c)

$$|x_{k+1} - c| = |g(x_k) - g(c)| \le M|x_k - c| \le M^{k+1}|x_0 - c| \le M^k(b-a)$$

donde g es contractiva en [a, b] y M = 0.25

$$|x_{k+1} - c| \le \frac{2\pi}{4^{k+1}} < \frac{8}{4^{k+1}} < 10^{-2} \implies k + 1 > \frac{2 + 3\log(2)}{2\log 2} \implies k > 3.8$$

Basta N=4 iteraciones para aproximar c con un error de 10^{-2} .

4. El sistema no lineal $\begin{cases} 4x_1 - x_2 + x_3 &= x_1 x_4 \\ -x_1 + 3x_2 - 2x_3 &= x_2 x_4 \\ x_1 - 2x_2 + 3x_3 &= x_3 x_4 \end{cases}$ posee 6 soluciones. $\begin{cases} x_1 - x_2 + x_3 &= x_1 x_4 \\ x_1 - x_2 + x_3 &= x_2 x_4 \\ x_1 - x_2 + x_3 &= x_3 x_4 \end{cases}$

- a) Muestre que si $(x_1, x_2, x_3, x_4)^t$ es solución a sistema precedente, entonces $(-x_1, -x_2, -x_3, x_4)^t$ también es solución. [2 pts]
- b) Use el **método de Broyden** 3 veces para aproximar cada solución. [3 pts]

Solución. a) En efecto tenemos que $\begin{cases} 4(-x_1) - (-x_2) + (-x_3) &= (-x_1)x_4 \\ -(-x_1) + 3(-x_2) - 2(-x_3) &= (-x_2)x_4 \\ (-x_1) - 2(-x_2) + 3(-x_3) &= (-x_3)x_4 \\ (-x_1)^2 + (-x_2)^2 + (-x_3)^2 &= 1 \end{cases}$

```
b)
def fun(x):
return [4*x[0]-x[1]+x[2]-x[0]*x[3],
-x[0]+3*x[1]-2*x[2]-x[1]*x[3],
x[0]-2*x[1]+3*x[2]-x[2]*x[3],
x[0]**2 + x[1]**2+x[2]**2-1
]
from scipy import optimize
sol = optimize.broyden1(fun, [0, 0,1,0])
sol
array([ 2.24196230e-07, -7.07105312e-01, -7.07105527e-01, 9.99999386e-01])
sol = optimize.broyden1(fun, [1, 1,1,0])
sol
array([-0.81649513, -0.40824734, 0.40824769, 3.00000212])
sol = optimize.broyden1(fun, [0, 0,1,1])
array([9.41646999e-08, 7.07106850e-01, 7.07106787e-01, 9.99999453e-01])
```