FOI2023 " 简单" 数学

张志心

Zhejiang University

2023年7月14日

写在前面

关于今天的上课大纲:

排列组合、卡特兰数、斐波那契数、快速幂、欧几里得算法同余式、线性筛、欧拉定理与欧拉函数、费马小定理

- 1 快速幂
- 2 组合数学
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数
- 5 同余方程
- 6 欧拉函数

若
$$n = 2^{k_1} + 2^{k_2} + \dots + 2^{k_m}, k_1 < k_2 < \dots < k_m;$$

若
$$n = 2^{k_1} + 2^{k_2} + \dots + 2^{k_m}, k_1 < k_2 < \dots < k_m;$$

 $x^n = \prod_{i=1}^m x^{2_i^k}.$

若
$$n = 2^{k_1} + 2^{k_2} + \dots + 2^{k_m}, k_1 < k_2 < \dots < k_m;$$
 $x^n = \prod_{i=1}^m x^{2^k_i}.$ 把 x 不断变成 x^2 ,得到 x^{2^k} 的形式,把需要的项乘人答案中。

直接看代码:

```
const int Mod = 1e9+7;
int Mul(int x, int y) {return (1ll * x * y) % Mod;}
int Add(int x, int y) {return (x + y) % Mod;}
int qpow(int x, long long y) {
   int ret = 1;
   for(;y;y>>=1, x=Mul(x,x))
        if(y&1) ret = Mul(ret, x);
   return ret;
}
```

- ① 快速幂
- ② 组合数学 排列组合 容斥原理
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数
- 5 同余方程
- 6 欧拉函数

- ① 快速幂
- ② 组合数学 排列组合
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数
- 5 同余方程
- 6 欧拉函数

加法原理和乘法原理

加法原理:

如果完成一件事有 n 个方法,第 i 种方法有 a_i 种方案完成,则总共有 $\sum_{i=1}^{n} a_i$ 种方案完成这件事。

加法原理和乘法原理

加法原理:

如果完成一件事有 n 个方法,第 i 种方法有 a_i 种方案完成,则总共有 $\sum_{i=1}^{n} a_i$ 种方案完成这件事。

乘法原理:

如果完成一件事有 n 个步骤,第 i 个步骤有 a_i 种方案完成,则总共有 $\prod_{i=1}^n a_i$ 种方案完成这件事。

全排列

• n 个不同的物品排成一列,求方案数。

全排列

- n 个不同的物品排成一列, 求方案数。
- 选出的第一个物品有 *n* 种方案,第二个物品有 *n* − 1 种方案……第 *n* 个物品有 1 种方案。

全排列

- n 个不同的物品排成一列, 求方案数。
- 选出的第一个物品有 n 种方案,第二个物品有 n-1 种方案……第 n 个物品有 1 种方案。
- 因此, 总方案数为 $n(n-1)\cdots 1=n!$ 。

• n 个不同的物品,选出 m 个排成一列, $m \le n$,求方案数。

- n 个不同的物品,选出 m 个排成一列, $m \le n$,求方案数。
- 选出的第一个物品有 n 种方案,第二个物品有 n-1 种方案……第 m 个物品有 n-m+1 种方案。

- n 个不同的物品, 选出 m 个排成一列, $m \le n$, 求方案数。
- 选出的第一个物品有 n 种方案,第二个物品有 n-1 种方案……第 m 个物品有 n-m+1 种方案。
- 因此, 总方案数为 $n(n-1)\cdots(n-m+1) = \frac{n!}{(n-m)!}$

- n 个不同的物品,选出 m 个排成一列, $m \le n$, 求方案数。
- 选出的第一个物品有 n 种方案,第二个物品有 n-1 种方案……第 m 个物品有 n-m+1 种方案。
- 因此, 总方案数为 $n(n-1)\cdots(n-m+1) = \frac{n!}{(n-m)!}$
- 记该方案数为 P_n^m 或 A_n^m。

- n 个不同的物品, 选出 m 个排成一列, $m \le n$, 求方案数。
- 选出的第一个物品有 n 种方案,第二个物品有 n-1 种方案……第 m 个物品有 n-m+1 种方案。
- 因此, 总方案数为 $n(n-1)\cdots(n-m+1) = \frac{n!}{(n-m)!}$
- 记该方案数为 P_n^m 或 A_n^m 。
- 特别地,若 m = n,则排列方案数为 $P_n^n = n!$ 。

- n 个不同的物品, 选出 m 个排成一列, $m \le n$, 求方案数。
- 选出的第一个物品有 n 种方案,第二个物品有 n-1 种方案……第 m 个物品有 n-m+1 种方案。
- 因此, 总方案数为 $n(n-1)\cdots(n-m+1) = \frac{n!}{(n-m)!}$
- 记该方案数为 P_n^m 或 A_n^m 。
- 特别地, 若 m = n, 则排列方案数为 $P_n^n = n!$ 。
- 例如 $P_5^3 = 5 \times 4 \times 3 = \frac{5!}{3!} = 60.$

• n 个不同的物品,选出 m 个, $m \le n$,求方案数。**顺序不同的算作** 一种。

- n 个不同的物品,选出 m 个, $m \le n$,求方案数。**顺序不同的算作** 一种。
- 因为顺序不同的算一种,所以方案数就是 $\frac{P_n^m}{m!} = \frac{n!}{m!(n-m)!}$ ·
- 记该方案数为 C_n^m 或 $\binom{n}{m}$ 。

- n 个不同的物品,选出 m 个, $m \le n$,求方案数。**顺序不同的算作** 一种。
- 因为顺序不同的算一种,所以方案数就是 $\frac{P_n^m}{m!} = \frac{n!}{m!(n-m)!}$ 。
- 记该方案数为 C_n^m 或 $\binom{n}{m}$ 。
- 由于阶乘本身非常大,所以在遇到需要用排列数和组合数的问题时,一般会要求答案对某个大质数(指比题中条件大 2 个数量级以上)取模。此时我们预处理出阶乘和阶乘的逆元,即可 *O*(1) 求出所有组合数。

- n 个不同的物品,选出 m 个, $m \le n$,求方案数。**顺序不同的算作** 一种。
- 因为顺序不同的算一种,所以方案数就是 $\frac{P_n^m}{m!} = \frac{n!}{m!(n-m)!}$ 。
- 记该方案数为 C_n^m 或 $\binom{n}{m}$ 。
- 由于阶乘本身非常大,所以在遇到需要用排列数和组合数的问题时,一般会要求答案对某个大质数(指比题中条件大 2 个数量级以上)取模。此时我们预处理出阶乘和阶乘的逆元,即可 *O*(1) 求出所有组合数。
- 例如 $\binom{7}{3} = \frac{7 \times 6 \times 5}{1 \times 2 \times 3} = \frac{7!}{3!4!} = 35.$

- n 个不同的物品,选出 m 个, $m \le n$,求方案数。**顺序不同的算作** 一种。
- 因为顺序不同的算一种,所以方案数就是 $\frac{P_n^m}{m!} = \frac{n!}{m!(n-m)!}$ 。
- 记该方案数为 C_n^m 或 $\binom{n}{m}$ 。
- 由于阶乘本身非常大,所以在遇到需要用排列数和组合数的问题时,一般会要求答案对某个大质数(指比题中条件大 2 个数量级以上)取模。此时我们预处理出阶乘和阶乘的逆元,即可 O(1) 求出所有组合数。
- 例如 $\binom{7}{3} = \frac{7 \times 6 \times 5}{1 \times 2 \times 3} = \frac{7!}{3!4!} = 35.$
- 因为阶乘逆元如果全部现算,复杂度会多一个 log, 这在 10⁷ 的范围下会超时。因此我们一般倒序求阶乘逆元,这样就只需求一遍 n! 的逆元了。

求组合数代码

```
11 fac[N], inf[N];
 void init(int n){
      fac[0]=1:
      for(int i=1;i<=n;++i)</pre>
          fac[i]=fac[i-1]*i%mod:
      inf[n]=inv(fac[n]);
      for(int i=n-1;~i;--i)
          \inf[i]=\inf[i+1]*(i+1) %mod:
 11 C(int n,int m){
      return fac[n]*inf[m]%mod*inf[n-m]%mod;
12 }
```

• 7 个人站成一排,其中 A, B, C 三个人必须站在一起,X, Y 两个人必须站在两侧,求总方案数。

7 个人站成一排,其中 A, B, C 三个人必须站在一起, X, Y 两个人必须站在两侧,求总方案数。
 2!×3!×3! = 72

- 7 个人站成一排,其中 A, B, C 三个人必须站在一起, X, Y 两个人必须站在两侧,求总方案数。
 2!×3!×3! = 72
- 7 个人站成一排, A, B, C 不能相邻, 求总方案数。

- 7 个人站成一排,其中 A, B, C 三个人必须站在一起, X, Y 两个人 必须站在两侧,求总方案数。
 2!×3!×3! = 72
- 7 个人站成一排,A, B, C 不能相邻,求总方案数。 $4! \times P_5^3 = 24 \times 60 = 1440$

- 7 个人站成一排,其中 A, B, C 三个人必须站在一起, X, Y 两个人必须站在两侧,求总方案数。
 2!×3!×3! = 72
- 7 个人站成一排,A, B, C 不能相邻,求总方案数。 $4! \times P_5^3 = 24 \times 60 = 1440$
- 求方程 $x_1 + x_2 + x_3 + x_4 = 12$ 的正整数解/非负整数解组数。

- 7 个人站成一排,其中 A, B, C 三个人必须站在一起, X, Y 两个人 必须站在两侧,求总方案数。
 2!×3!×3! = 72
- 7 个人站成一排,A,B,C 不能相邻,求总方案数。 4!×P₅ = 24×60 = 1440
- 算法一: $\binom{11}{3} = 165$. $\binom{11}{4} \binom{4}{11} \binom{11}{4} \binom{4}{11} \binom{11}{4} \binom{4}{11} = 165 + 220 + 66 + 4 = 45$

• 求方程 $x_1 + x_2 + x_3 + x_4 = 12$ 的正整数解/非负整数解组数。

$$\binom{11}{3} + \binom{4}{1} \binom{11}{2} + \binom{4}{2} \binom{11}{1} + \binom{4}{3} \binom{11}{0} = 165 + 220 + 66 + 4 = 455$$

- 7 个人站成一排,其中 A, B, C 三个人必须站在一起, X, Y 两个人 必须站在两侧,求总方案数。
 2!×3!×3! = 72
- 7 个人站成一排,A, B, C 不能相邻,求总方案数。 $4! \times P_5^3 = 24 \times 60 = 1440$
- 求方程 $x_1 + x_2 + x_3 + x_4 = 12$ 的正整数解/非负整数解组数。 算法一: $\binom{11}{3} = 165$.

$$\binom{11}{3} + \binom{4}{1} \binom{11}{2} + \binom{4}{2} \binom{11}{1} + \binom{4}{3} \binom{11}{0} = 165 + 220 + 66 + 4 = 455$$

算法二:
$$(x_1+1)+(x_2+1)+(x_3+1)+(x_4+1)=16$$

$$\binom{15}{3} = 455$$

• 8 个人报名节目,其中 3 个只会唱歌,3 个只会跳舞,2 个又会唱又会跳,选 4 个人参加演出,2 人唱歌 2 人跳舞,求方案数。

• 8 个人报名节目,其中 3 个只会唱歌, 3 个只会跳舞, 2 个又会唱又会跳,选 4 个人参加演出, 2 人唱歌 2 人跳舞,求方案数。

$$\binom{3}{0}\binom{2}{2}\binom{3}{2} + \binom{3}{1}\binom{2}{1}\binom{4}{2} + \binom{3}{2}\binom{2}{0}\binom{5}{2} = 3 + 36 + 30 = 69.$$

杨辉三角

• 这是组合数的前 9 行,从 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 到 $\begin{pmatrix} 8 \\ 8 \end{pmatrix}$ 。

图 1: 杨辉三角

杨辉三角

- 这是组合数的前 9 行,从 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 到 $\begin{pmatrix} 8 \\ 8 \end{pmatrix}$ 。
- 容易发现下面的数恰好是上面两个数的和,即

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

- - 图 1: 杨辉三角

杨辉三角

- 这是组合数的前 9 行,从 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 到 $\begin{pmatrix} 8 \\ 8 \end{pmatrix}$ 。
- 容易发现下面的数恰好是上面两个数的和,即

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

• 考虑实际意义。如果最后一个物品选了,那么其余部分的方案数为 $\binom{n-1}{m-1}$;没选,其余部分方案数为 $\binom{n-1}{m}$ 。因此总方案数就是二者相加。

图 1: 杨辉三角

杨辉三角

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
8 28 56 70 56 28 8 1

图 1: 杨辉三角

- 这是组合数的前 9 行,从 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 到 $\begin{pmatrix} 8 \\ 8 \end{pmatrix}$ 。
- 容易发现下面的数恰好是上面两个数的和,即

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$$

- 考虑实际意义。如果最后一个物品选了,那么其余部分的方案数为 $\binom{n-1}{m-1}$; 没选,其余部分方案数为 $\binom{n-1}{m}$ 。因此总方案数就是二者相加。
- 根据上面的递推公式,我们可以 $O(n^2)$ 求出所有的 $\binom{n}{m}$ 。

[NOIP2016] 组合数问题

求
$$i \le n, j \le m, k \mid \binom{i}{j}$$
 的 (i, j) 的数量,多组询问。 $n, m \le 2000, T \le 10^4$ 。

[NOIP2016] 组合数问题

求
$$i \le n, j \le m, k \mid \binom{i}{j}$$
 的 (i,j) 的数量,多组询问。 $n, m \le 2000, T \le 10^4$ 。

求出模 k 意义下的杨辉三角, 然后二维前缀和即可。

• *n* 个不同的物品排成一个环,旋转可得的算同一种方案,共有多少种方案?

• n 个不同的物品排成一个环,旋转可得的算同一种方案,共有多少种方案?

$$(n-1)!$$

• n 个不同的物品排成一个环,旋转可得的算同一种方案,共有多少种方案?

$$(n-1)!$$

• n 个不同的物品选出 m 个排成一个环,旋转可得的算同一种方案, 共有多少种方案?

• n 个不同的物品排成一个环,旋转可得的算同一种方案,共有多少种方案?

$$(n-1)!$$

• n 个不同的物品选出 m 个排成一个环,旋转可得的算同一种方案, 共有多少种方案?

$$\binom{n}{m}(m-1)! = P_n^m/m$$

可重集排列

• n 种物品,每种物品都有无穷多个,选出 m 个物品排成一列,求方案数。

可重集排列

• n 种物品,每种物品都有无穷多个,选出 m 个物品排成一列,求方案数。

 n^{m}

可重集排列

• n 种物品,每种物品都有无穷多个,选出 m 个物品排成一列,求方案数。

 n^{m}

• 等价于求 $x_1 + x_2 + \cdots + x_n = m$ 非负整数解组数

• 等价于求 $x_1 + x_2 + \cdots + x_n = m$ 非负整数解组数

$$\binom{n+m-1}{n-1}$$

• 等价于求 $x_1 + x_2 + \cdots + x_n = m$ 非负整数解组数

$$\binom{n+m-1}{n-1}$$

• 如果每种物品都必须选择?

• 等价于求 $x_1 + x_2 + \cdots + x_n = m$ 非负整数解组数

$$\binom{n+m-1}{n-1}$$

如果每种物品都必须选择? 正整数解组数。

$$\binom{m-1}{n-1}$$

多重全排列

• n 种物品,第 i 种物品有 a_i 个,将所有物品排成一列,求方案数。

多重全排列

• n 种物品,第 i 种物品有 a_i 个,将所有物品排成一列,求方案数。

$$P(\sum_{i=1}^{n} a_i; a_1, a_2, \cdots, a_n) = \frac{(\sum_{i=1}^{n} a_i)!}{\prod_{i=1}^{n} a_i!}$$

$$P(9; 2, 3, 4) = \frac{9!}{2!3!4!} = 1260.$$

• n 个球装人 n 个箱子,每个箱子装一个球。要求第 i 个球不能装人 第 i 个箱子,求方案数。

- n 个球装入 n 个箱子,每个箱子装一个球。要求第 i 个球不能装入第 i 个箱子,求方案数。
- n 号球装人 i 号箱, i 号球装人 n 号箱: D(n-2)。

- n 个球装入 n 个箱子,每个箱子装一个球。要求第 i 个球不能装入第 i 个箱子,求方案数。
- n 号球装入 i 号箱, i 号球装入 n 号箱: D(n-2)。
- n号球装入 i 号箱, i 号球装入 j 号箱: 把 i 号箱和 n 号球 "扔掉", n号箱当做 i 号箱(因为限制了 i 号球不能装入 n 号箱), D(n-1)。

- n 个球装人 n 个箱子,每个箱子装一个球。要求第 i 个球不能装人第 i 个箱子,求方案数。
- n 号球装入 i 号箱, i 号球装入 n 号箱: D(n-2)。
- n号球装入i号箱,i号球装入j号箱:把i号箱和n号球"扔掉",n号箱当做i号箱(因为限制了i号球不能装入n号箱),D(n-1)。

$$D(n) = (n-1)(D(n-1) + D(n-2)).$$

$$D(1) = 0, D(2) = 1, D(3) = 2, D(4) = 9, D(5) = 44, D(6) = 265 \cdots$$

- n 个球装人 n 个箱子,每个箱子装一个球。要求第 i 个球不能装人第 i 个箱子,求方案数。
- n 号球装入 i 号箱, i 号球装入 n 号箱: D(n-2)。
- n号球装入i号箱,i号球装入j号箱:把i号箱和n号球"扔掉",n号箱当做i号箱(因为限制了i号球不能装入n号箱),D(n-1)。

$$D(n) = (n-1)(D(n-1) + D(n-2)).$$

$$D(1) = 0, D(2) = 1, D(3) = 2, D(4) = 9, D(5) = 44, D(6) = 265 \cdots$$

有多余元素的错排问题

• n个球, n个箱子,每个箱子装一个球,另有 m 个多余的球。要求 第 i 个球不能装入第 i 个箱子,求方案数。

有多余元素的错排问题

• n 个球, n 个箱子,每个箱子装一个球,另有 m 个多余的球。要求 第 i 个球不能装入第 i 个箱子,求方案数。

$$D_m(n) = (n-1)(D_m(n-1) + D_m(n-2)) + mD_m(n-1).$$

$$D_m(n) = (n+m-1)D_m(n-1) + (n-1)D_m(n-2).$$

$$D_m(1) = m, D_m(2) = m^2 + m + 1$$

• 二项式就是形如 $(x+y)^n$ 的式子。它完全展开一共有 2^n 项。

- 二项式就是形如 $(x+y)^n$ 的式子。它完全展开一共有 2^n 项。
- 我们合并同类项时,考虑 x^iy^{n-i} 有多少项。

- 二项式就是形如 $(x+y)^n$ 的式子。它完全展开一共有 2^n 项。
- 我们合并同类项时,考虑 x^iy^{n-i} 有多少项。
- 在n个数中选i个填x, n-i个填y, 因此有 $\binom{n}{i}$ 项。故

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

- 二项式就是形如 $(x + y)^n$ 的式子。它完全展开一共有 2^n 项。
- 我们合并同类项时,考虑 x^iy^{n-i} 有多少项。
- 在 n 个数中选 i 个填 x, n-i 个填 y, 因此有 $\binom{n}{i}$ 项。故

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

- 例如 $(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$.
- $\bar{x} (ax + by)^k$ 的 $x^n y^m$ 项系数?

- 二项式就是形如 $(x + y)^n$ 的式子。它完全展开一共有 2^n 项。
- 我们合并同类项时,考虑 x^iy^{n-i} 有多少项。
- 在 n 个数中选 i 个填 x, n-i 个填 y, 因此有 $\binom{n}{i}$ 项。故

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

- 例如 $(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$.
- $\bar{x} (ax + by)^k$ 的 $x^n y^m$ 项系数?

$$\binom{k}{n} \binom{k}{m} a^n b^m$$

多项式定理

• 二项式定理的扩展。

$$(x_1 + x_2 + \dots + x_m)^n = \sum_{\sum_{i=1}^m a_i = n} P(n; a_1, a_2, \dots, a_m) x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$

例如
$$(x + y + z)^3 = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3z^2x + 3zx^2 + 6xyz.$$

- ① 快速幂
- ② 组合数学 排列组合 容斥原理
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数
- 5 同余方程
- 6 欧拉函数

容斥原理

• 设 S_1, S_2 为有限集,令 |S| 表示 S 的大小,则

$$|S_1 \cup S_2| = |S_1| + |S_2| - |S_1 \cap S_2|$$

容斥原理

• 设 S_1, S_2 为有限集,令 |S| 表示 S 的大小,则

$$|S_1 \cup S_2| = |S_1| + |S_2| - |S_1 \cap S_2|$$

• 设 *S*₁, *S*₂, *S*₃ 为有限集,则

$$|S_1 \cup S_2 \cup S_3| = |S_1| + |S_2| + |S_3| - |S_1 \cap S_2| - |S_1 \cap S_3| - |S_2 \cap S_3| + |S_1 \cap S_2 \cap S_3|$$

容斥原理

• 设 S_1, S_2 为有限集,令 |S| 表示 S 的大小,则

$$|S_1 \cup S_2| = |S_1| + |S_2| - |S_1 \cap S_2|$$

• 设 *S*₁, *S*₂, *S*₃ 为有限集,则

$$|S_1 \cup S_2 \cup S_3| = |S_1| + |S_2| + |S_3| - |S_1 \cap S_2| - |S_1 \cap S_3| - |S_2 \cap S_3| + |S_1 \cap S_2 \cap S_3|$$

• 一般地,设 S_1, S_2, \dots, S_n 为 n 个有限集,则

$$|\cup_{i=1}^{n} S_{i}| = \sum_{1 \leq i \leq n} |S_{i}| - \sum_{1 \leq i < j \leq n} |S_{i} \cap S_{j}| + \sum_{1 \leq i < j < k \leq n} |S_{i} \cap S_{j} \cap S_{k}|$$
$$- \dots + (-1)^{n-1} |\cap_{i=1}^{n} S_{i}|$$

错排问题的容斥解法

- 下面让我们来重新看一下错排问题。
- n 个人排队,1 不能排在第一个,2 不能排在第二个,……n 不能排在第n 个,

错排问题的容斥解法

- 下面让我们来重新看一下错排问题。
- n 个人排队,1 不能排在第一个,2 不能排在第二个,……n 不能排在第n 个,

$$D(n) = n! - \binom{n}{1}(n-1)! + \binom{n}{2}(n-2)! - \dots + (-1)^n \binom{n}{n}0!$$

$$D(n) = n! \sum_{i=0}^n \frac{(-1)^n}{i!}$$

$$D_m(n) = P_{n+m}^n - \binom{n}{1} P_{n+m-1}^{n-1} + \binom{n}{2} P_{n+m-2}^{n-2} - \dots + (-1)^n \binom{n}{n} P_m^0$$

例题-引入-第二类斯特林数

6 个人分成 A, B, C, D 四个小组,且每组都不能为空。求分组方案数。

例题-引入-第二类斯特林数

6 个人分成 A, B, C, D 四个小组,且每组都不能为空。求分组方案数。

$$4^{6} - {4 \choose 1}3^{6} + {4 \choose 2}2^{6} - {4 \choose 3}1^{6} = 4096 - 2916 + 384 - 4 = 1560.$$

如果四组相同?

例题-引入-第二类斯特林数

6 个人分成 A, B, C, D 四个小组,且每组都不能为空。求分组方案数。

$$4^{6} - {4 \choose 1}3^{6} + {4 \choose 2}2^{6} - {4 \choose 3}1^{6} = 4096 - 2916 + 384 - 4 = 1560.$$

如果四组相同?

$$\frac{1560}{4!} = 65.$$

n 个物品划分成 m 组,每组不为空且每组相同时的方案数称为"第二类斯特林数",记作 S(n,m),例如 S(6,4)=65。

n 个物品划分成 m 组,每组不为空且每组相同时的方案数称为 "第二类 斯特林数",记作 S(n,m),例如 S(6,4)=65。

递推:考虑最后一个人是新开还是加入老组。

n 个物品划分成 m 组,每组不为空且每组相同时的方案数称为"第二类斯特林数",记作 S(n,m),例如 S(6,4)=65。

递推: 考虑最后一个人是新开还是加入老组。

$$S(n, m) = S(n - 1, m - 1) + mS(n - 1, m)$$

n 个物品划分成 m 组,每组不为空且每组相同时的方案数称为"第二类斯特林数",记作 S(n,m),例如 S(6,4)=65。 说推:考虑最后一个人是新开还是加入老组。

$$S(n, m) = S(n-1, m-1) + mS(n-1, m)$$

容斥求通项:

$$S(n,m) = \frac{1}{m!} \sum_{i=0}^{m} (-1)^{i} \binom{m}{i} (m-i)^{n}$$

n 个物品划分成 m 组,每组不为空且每组相同时的方案数称为"第二类斯特林数",记作 S(n,m),例如 S(6,4)=65。 递推:考虑最后一个人是新开还是加入老组。

S(n, m) = S(n-1, m-1) + mS(n-1, m)

容斥求通项:

$$S(n,m) = \frac{1}{m!} \sum_{i=0}^{m} (-1)^{i} \binom{m}{i} (m-i)^{n}$$

 $O(n^2)$ 求出 $i \le n, j \le m$ 的所有 S(i, j); O(n) 求出一项。

划分数

把正整数 n 划分为 m 个正整数的和,顺序不同的方案算同一种。

划分数

把正整数 n 划分为 m 个正整数的和,顺序不同的方案算同一种。

$$P(n,m) = P(n-1,m-1) + P(n-m,m), P(n,n) = 1, P(n,1) = 1$$
 $O(n^2) \ \mathsf{DP}_\circ$

n 个球,m 个盒子,求: 球相同/不相同,盒子相同/不相同,盒子可空/不可空的方案数。 $n, m \leq 2000$ 。

• 球不同, 盒子不同, 盒子可空: 可重集排列问题;

- 球不同, 盒子不同, 盒子可空: 可重集排列问题;
- 球相同, 盒子不同, 盒子不可空: 可重集组合;

- 球不同, 盒子不同, 盒子可空: 可重集排列问题;
- 球相同, 盒子不同, 盒子不可空: 可重集组合;
- 球相同, 盒子不同, 盒子可空: 可重集组合;

- 球不同, 盒子不同, 盒子可空: 可重集排列问题;
- 球相同, 盒子不同, 盒子不可空: 可重集组合;
- 球相同, 盒子不同, 盒子可空: 可重集组合;
- 球相同, 盒子相同, 盒子可空: 可重集组合;

- 球不同, 盒子不同, 盒子可空: 可重集排列问题;
- 球相同, 盒子不同, 盒子不可空: 可重集组合;
- 球相同, 盒子不同, 盒子可空: 可重集组合;
- 球相同, 盒子相同, 盒子可空: 可重集组合;
- 球相同, 盒子相同, 盒子不可空: 划分数;

- 球不同, 盒子不同, 盒子可空: 可重集排列问题;
- 球相同, 盒子不同, 盒子不可空: 可重集组合;
- 球相同, 盒子不同, 盒子可空: 可重集组合;
- 球相同, 盒子相同, 盒子可空: 可重集组合;
- 球相同, 盒子相同, 盒子不可空: 划分数;
- 球不同, 盒子相同, 盒子不可空: 第二类斯特林数;

- 球不同, 盒子不同, 盒子可空: 可重集排列问题;
- 球相同, 盒子不同, 盒子不可空: 可重集组合;
- 球相同, 盒子不同, 盒子可空: 可重集组合;
- 球相同, 盒子相同, 盒子可空: 可重集组合;
- 球相同, 盒子相同, 盒子不可空: 划分数;
- 球不同, 盒子相同, 盒子不可空: 第二类斯特林数;
- 球不同, 盒子不同, 盒子不可空: 第二类斯特林数;

- 球不同, 盒子不同, 盒子可空: 可重集排列问题;
- 球相同, 盒子不同, 盒子不可空: 可重集组合;
- 球相同, 盒子不同, 盒子可空: 可重集组合;
- 球相同, 盒子相同, 盒子可空: 可重集组合;
- 球相同, 盒子相同, 盒子不可空: 划分数;
- 球不同, 盒子相同, 盒子不可空: 第二类斯特林数;
- 球不同, 盒子不同, 盒子不可空: 第二类斯特林数;
- 球不同, 盒子相同, 盒子可空: 第二类斯特林数

自然数幂和

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

自然数幂和

但是 k > 4 时,我们就没有特别简便的公式了。

$$n^{k+1} = \sum_{i=1}^{n} i^{k+1} - (i-1)^{k+1}$$

$$\sum_{i=1}^{n} (i^{k+1} - \sum_{j=0}^{k+1} (-1)^{k+1-j} {k+1 \choose j} i^{j})$$

$$\sum_{i=1}^{n} \sum_{j=0}^{k} (-1)^{k-j} {k+1 \choose j} i^{j}$$

$$\sum_{i=1}^{k} (-1)^{k-j} {k+1 \choose j} \sum_{i=1}^{n} i^{j} = n^{k+1}$$
读 $S_k = \sum_{i=1}^{n} i^k$, $S_k = \frac{1}{k+1} (n^{k+1} - \sum_{j=0}^{k-1} (-1)^{k-j} {k+1 \choose j} S_j)$

张志心 (Zhejiang University)

初始: $S_0 = n$

Lucas 定理

$$\binom{n}{m} \mod p = \binom{n/p}{m/p} \binom{n\%p}{m\%p} \mod p$$

Lucas 定理证明

设
$$n = sp + q, m = tp + r$$
, 且 $0 \le q, r < p$, 构造多项式
$$(1+x)^n = (1+x)^{sp+q} = ((1+x)^p)^s (1+x)^q$$

因为对任意的 $1 < i < p, p \mid \binom{p}{i}$,所以

$$(1+x)^p = 1 + x^p \mod p$$

所以

$$(1+x)^{sp+q} = (1+x^p)^s (1+x)^q = \sum_{i=0}^s {s \choose i} x^{ip} \cdot \sum_{j=0}^q {q \choose j} x^j \mod p$$

比较等式两端 x^{tp+r} 的系数,则有

$$\binom{sp+q}{tp+r} = \binom{s}{t} \binom{q}{r}$$

即定理得证。

组合数前缀和 - [SHOI2015] 超能粒子炮 · 改

求 $\sum_{i=0}^{k} {n \choose i} \mod p$, $n, k \le 10^9, p = 2333$, T 组询问, $T \le 10^5$ 。 Solution:

每 p 个分一段:

$$\sum_{i=0}^{k} \binom{n/p}{i/p} \binom{n\%p}{i\%p}$$

$$\sum_{i=0}^{k/p-1} \binom{n/p}{i} \sum_{j=0}^{p-1} \binom{n\%p}{j} + \binom{n/p}{k/p} \sum_{j=0}^{k\%p} \binom{n\%p}{j}$$

设
$$f(n,k) = \sum_{i=0}^{k} \binom{n}{i}$$

$$f(n,k) = f(n/p, k/p - 1)f(n\%p, p - 1) + \binom{n/p}{k/p}f(n\%p, k\%p)$$

$$O(p^2 + T \log n)$$

- 1 快速幂
- 2 组合数学
- 3 特殊的数 斐波那契数 卡特兰数
- 4 质数, 合数, 约数, 倍数
- 5 同余方程
- 6 欧拉函数

- ① 快速幂
- 2 组合数学
- 3 特殊的数 斐波那契数 卡特兰数
- 4 质数, 合数, 约数, 倍数
- 5 同余方程
- 6 欧拉函数

Fibnacci 数列

$$F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2} (n \ge 3, n \in \mathcal{N})$$

Fibnacci 数列

$$F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2} (n \ge 3, n \in \mathcal{N})$$

通项公式:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n + \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$$

•
$$F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$$

•
$$F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$$

•
$$F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$$

•
$$F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$$

•
$$F_1^2 + F_2^2 + \cdots + F_n^2 = F_n F_{n+1}$$

•
$$F_1 + F_3 + F_5 + \cdots + F_{2n-1} = F_{2n}$$

•
$$F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$$

•
$$F_1^2 + F_2^2 + \cdots + F_n^2 = F_n F_{n+1}$$

•
$$F_1 + F_3 + F_5 + \cdots + F_{2n-1} = F_{2n}$$

•
$$F_2 + F_4 + F_6 + \cdots + F_{2n} = F_{2n+1} - 1$$

•
$$F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$$

•
$$F_1^2 + F_2^2 + \cdots + F_n^2 = F_n F_{n+1}$$

•
$$F_1 + F_3 + F_5 + \cdots + F_{2n-1} = F_{2n}$$

•
$$F_2 + F_4 + F_6 + \cdots + F_{2n} = F_{2n+1} - 1$$

•
$$F_n = F_m F_{n-m+1} + F_{m-1} F_{n-m}$$

•
$$F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$$

•
$$F_1^2 + F_2^2 + \cdots + F_n^2 = F_n F_{n+1}$$

•
$$F_1 + F_3 + F_5 + \cdots + F_{2n-1} = F_{2n}$$

•
$$F_2 + F_4 + F_6 + \cdots + F_{2n} = F_{2n+1} - 1$$

•
$$F_n = F_m F_{n-m+1} + F_{m-1} F_{n-m}$$

•
$$F_{n-1}F_{n+1} = F_n^2 + (-1)^n$$

其他性质

• 相邻项互质: $gcd(F_n, F_{n-1}) = 1$;

其他性质

- 相邻项互质: $gcd(F_n, F_{n-1}) = 1$;
- 辗转相除法: $gcd(F_n, F_m) = F_{gcd(n,m)}$;

其他性质

- 相邻项互质: $gcd(F_n, F_{n-1}) = 1$;
- 辗转相除法: $gcd(F_n, F_m) = F_{gcd(n,m)}$;
- 整除的等价表示: $n|m \Leftrightarrow F_n|F_m$.

- ① 快速幂
- 2 组合数学
- ③ 特殊的数 斐波那契数 卡特兰数
- 4 质数, 合数, 约数, 倍数
- 5 同余方程
- 6 欧拉函数

卡特兰数

卡特兰数 C(n) 定义为凸 n+2 边形不同的三角剖分数。

$$C(1) = 1, C(2) = 2, C(3) = 5, C(4) = 14, C(5) = 42, C(6) = 132, \cdots$$

卡特兰数

卡特兰数 C(n) 定义为凸 n+2 边形不同的三角剖分数。

$$C(1) = 1, C(2) = 2, C(3) = 5, C(4) = 14, C(5) = 42, C(6) = 132, \cdots$$

根据这个定义,可得递推公式:

$$C(n) = \sum_{i=0}^{n-1} C(i)C(n-i-1)$$

若干等价定义

卡特兰数有若干种等价定义。例如:

• n 个数按 $1 \sim n$ 的次序入栈,不同的出栈序列数为 C(n)。

若干等价定义

卡特兰数有若干种等价定义。例如:

- n 个数按 $1 \sim n$ 的次序入栈,不同的出栈序列数为 C(n)。
- n 个点的二叉搜索树个数(即根的序号大于左儿子,小于右儿子)为 C(n)。

若干等价定义

卡特兰数有若干种等价定义。例如:

- n 个数按 $1 \sim n$ 的次序入栈,不同的出栈序列数为 C(n)。
- n 个点的二叉搜索树个数(即根的序号大于左儿子,小于右儿子)为 C(n)。
- $n \uparrow 1$ 和 $n \uparrow -1$ 组成一个长 2n 的序列,且满足序列的所有前缀和都非负,序列数量为 C(n)。

通项和递推式

$$C(n) = {2n \choose n} - {2n \choose n+1}$$

$$C(n) = \frac{{2n \choose n}}{n+1}$$

$$C(n) = C(n-1) \cdot \frac{4n-2}{n+1}.$$

- ① 快速幂
- 2 组合数学
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数 筛法
- 5 同余方程
- 6 欧拉函数

若存在 d 使得 y = dx, 则称 x 整除 y, 记作 x|y。

若存在 d 使得 y = dx,则称 x 整除 y,记作 x|y。 若 x|y,则称 x 是 y 的约数(又称因数),y 是 x 的倍数。

若存在 d 使得 y = dx, 则称 x 整除 y, 记作 x|y。 若 x|y, 则称 x 是 y 的约数(又称因数), y 是 x 的倍数。 若 p > 1 且只有 1 和自身两个约数,则称 p 是质数。

若存在 d 使得 y = dx,则称 x 整除 y,记作 x|y。 若 x|y,则称 x 是 y 的约数(又称因数),y 是 x 的倍数。若 p > 1 且只有 1 和自身两个约数,则称 p 是质数。 若 x > 1 且有超过两个约数,则称 x 是合数。

若存在 d 使得 y = dx, 则称 x 整除 y, 记作 x|y。 若 x|y, 则称 x 是 y 的约数(又称因数),y 是 x 的倍数。 若 p > 1 且只有 1 和自身两个约数,则称 p 是质数。 若 x > 1 且有超过两个约数,则称 x 是合数。 0,1 不是质数也不是合数。

算术基本定理/唯一分解定理

任意一个数 x 均可分解为若干质数幂次的乘积。即

$$x = \prod_{i=1}^{m} p_i^{c_i}$$

其中 p_1, \dots, p_m 是不同的质数, $c_1, \dots, c_m \geq 1$ 。

 $O(\sqrt{n})$ 判定法,每个数最多只有一个 $> \sqrt{n}$ 的因数。

$O(\sqrt{n})$ 判定法,每个数最多只有一个 $> \sqrt{n}$ 的因数。

```
bool prime(int n){
    for(int i=2;i*i<=n;++i)if(!(n%i))return 1;
    return 0;
}</pre>
```

$O(\sqrt{n})$ 判定法,每个数最多只有一个 $> \sqrt{n}$ 的因数。

```
bool prime(int n){
    for(int i=2;i*i<=n;++i)if(!(n%i))return 1;
    return 0;
}</pre>
```

上述过程用于分解质因数:

```
for(int i=2;i*i<=n;++i)if(!(n%i)){
    while(!(n%i))n/=i,++cnt;
    //do something for (i,cnt)
}
if(n>1) //do something for (n,1)
```

$O(\sqrt{n})$ 判定法,每个数最多只有一个 $> \sqrt{n}$ 的因数。

```
bool prime(int n){
    for(int i=2;i*i<=n;++i)if(!(n%i))return 1;
    return 0;
}</pre>
```

上述过程用于分解质因数:

```
for(int i=2;i*i<=n;++i)if(!(n%i)){
    while(!(n%i))n/=i,++cnt;
    //do something for (i,cnt)
}
if(n>1) //do something for (n,1)
```

更高效的质数判定: Miller-Rabin 二次探测法, 复杂度 $O(\log^2 n)$;

$O(\sqrt{n})$ 判定法,每个数最多只有一个 $> \sqrt{n}$ 的因数。

```
bool prime(int n){
    for(int i=2;i*i<=n;++i)if(!(n%i))return 1;
    return 0;
}</pre>
```

上述过程用于分解质因数:

```
for(int i=2;i*i<=n;++i)if(!(n%i)){
    while(!(n%i))n/=i,++cnt;
    //do something for (i,cnt)
}
if(n>1) //do something for (n,1)
```

更高效的质数判定: Miller-Rabin 二次探测法,复杂度 $O(\log^2 n)$; 更高效的质因数分解: Pollard-Rho 算法,复杂度 $O(n^{\frac{1}{4}})$ 。

- 1 快速幂
- 2 组合数学
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数 筛法
- 5 同余方程
- 6 欧拉函数

1-n 中所有质数的判定

如何快速找到 1 到 n 中的全部质数? $n \le 10^7$ 。

1-n 中所有质数的判定

如何快速找到 1 到 n 中的全部质数? $n \le 10^7$ 。 如果对于每个数都 $O(\sqrt{n})$ 暴力判定,复杂度 $O(n\sqrt{n})$ 无法接受。

埃氏筛

```
先把所有数列出来,然后划掉除 2 外所有被 2 整除的数字;划掉除 3 外所有被 3 整除的数字;划掉除 5 外所有被 5 整除的数字(为什么不是 4?);……划到 \sqrt{n} 为止,剩下的就都是质数了。复杂度 O(n\log\log n)。
```

欧拉筛

埃氏筛的思路是先枚举质数 p,再枚举另一个约数 i,将所有 $i \times p$ 都标记为合数。

欧拉筛则相反,先枚举另一个约数 i,再枚举质数 p。只不过我们强制这个 p 是 $i \times p$ 的最小质因数。

当 p 枚举到 i 的质因数时,p 就不再是 $i \times p$ 的最小质因数了(可以退出了)。因为每个数只会被筛一次,所以复杂度为 O(n)。

欧拉筛

埃氏筛的思路是先枚举质数 p,再枚举另一个约数 i,将所有 $i \times p$ 都标记为合数。

欧拉筛则相反,先枚举另一个约数 i,再枚举质数 p。只不过我们强制这个 p 是 $i \times p$ 的最小质因数。

当 p 枚举到 i 的质因数时,p 就不再是 $i \times p$ 的最小质因数了(可以退出了)。因为每个数只会被筛一次,所以复杂度为 O(n)。

```
bool np[N];
  int pri[N], cnt=0;
 void sieve(int n){
      for(int i=2;i<=n;++i){</pre>
           if (!np[i])pri[++cnt]=i;
                for(int j=1; j <= cnt; ++ j) {</pre>
                     np[i*pri[j]]=1;
                     if(!(i%pri[j]))break;
10
11
```

区间素数筛法

求区间 [L,R] 之间的素数个数, $L,R \le 10^{12}, R-L \le 10^6$ 。

区间素数筛法

求区间 [L,R] 之间的素数个数, $L,R \le 10^{12},R-L \le 10^6$ 。 10^{12} 的范围不允许我们从头筛, 10^6 的区间长度不允许我们判断每个质数是否为质数。

那我们就只能"从中间筛"!

我们用小于 \sqrt{R} 的所有质数去筛 L 到 R 的数,如果整除则标记为合数。复杂度为 $O(n\log n)$ $(n=10^6=\sqrt{10^{12}})$

Acwing 1291 轻拍牛头

给 n 个数,对每个 i,求满足 $a_j|a_i,j\neq i$ 的 j 的数量(即有多少个数是它的约数)。

 $1 \le n \le 10^6, 1 \le a_i \le 10^6$

因为 $a_i \leq 10^6$,所以考虑把每个数的因数都求出来,并预处理每个数的个数(count 数组)

复杂度降为 $O(n\sqrt{M})$,然而还是过不去(众所周知除法和取模比加减乘要慢三倍, 10^9 次除法或取模就别想了)。

因为 $a_i \leq 10^6$,所以考虑把每个数的因数都求出来,并预处理每个数的个数(count 数组)

复杂度降为 $O(n\sqrt{M})$,然而还是过不去(众所周知除法和取模比加减乘要慢三倍, 10^9 次除法或取模就别想了)。

枚举倍数:

我们把枚举因数的两层循环"倒过来",就变成了枚举倍数——

```
for(int i=1;i<=M;++i)
for(int j=i;j<=M;j+=i)
//do something</pre>
```

因为 $a_i \leq 10^6$,所以考虑把每个数的因数都求出来,并预处理每个数的个数(count 数组)

复杂度降为 $O(n\sqrt{M})$,然而还是过不去(众所周知除法和取模比加减乘要慢三倍, 10^9 次除法或取模就别想了)。

枚举倍数:

我们把枚举因数的两层循环"倒过来",就变成了枚举倍数——

```
for(int i=1;i<=M;++i)
for(int j=i;j<=M;j+=i)
//do something</pre>
```

这样就可以得到 $1 \cdots 10^6$ 每个数在 $\{a_i\}$ 里的约数个数。

因为 $a_i \leq 10^6$,所以考虑把每个数的因数都求出来,并预处理每个数的个数(count 数组)

复杂度降为 $O(n\sqrt{M})$,然而还是过不去(众所周知除法和取模比加减乘要慢三倍, 10^9 次除法或取模就别想了)。

枚举倍数:

我们把枚举因数的两层循环"倒过来",就变成了枚举倍数——

```
for(int i=1;i<=M;++i)
for(int j=i;j<=M;j+=i)
    //do something</pre>
```

这样就可以得到 $1\cdots 10^6$ 每个数在 $\{a_i\}$ 里的约数个数。 我们来分析一下这样做的复杂度。内层循环一共进行了 $M+\frac{M}{2}+\frac{M}{3}+\cdots+\frac{M}{M}=M(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{M})=O(M\log M)$ 次! 于是我们的复杂度成功降到了 $O(n+M\log M)$ 。

gcd 和 lcm

若 d|x,d|y 同时成立,则称 d 是 x,y 的公约数。最大公约数记为 $\gcd(a,b)$ 。

gcd 和 lcm

若 d|x,d|y 同时成立,则称 $d \in x,y$ 的公约数。最大公约数记为 $\gcd(a,b)$ 。

若 x|m,y|m 同时成立,则称 m 是 x,y 的公倍数。最小公倍数记为 lcm(a,b)。

gcd 和 lcm

若 d|x,d|y 同时成立,则称 $d \in x,y$ 的公约数。最大公约数记为 $\gcd(a,b)$ 。

若 x|m,y|m 同时成立,则称 m 是 x,y 的公倍数。最小公倍数记为 lcm(a,b)。

辗转相除求最大公约数

int gcd(int x,int y){return y?gcd(y,x%y):x;}

我们一般记

$$\sigma_m(n) = \prod_{d|n} d^m$$

我们一般记

$$\sigma_m(n) = \prod_{d|n} d^m$$

常用的: $\sigma_0(n)$ 表示约数个数, $\sigma_1(n)$ 表示约数和。

我们一般记

$$\sigma_m(n) = \prod_{d|n} d^m$$

常用的: $\sigma_0(n)$ 表示约数个数, $\sigma_1(n)$ 表示约数和。 若 $n = \prod_{i=1}^k p_i^{c_i}$, 则考虑 n 的约数的唯一分解, 每个 p_i 的幂次都 $\leq c_i$, 因此由乘法原理可得

$$\sigma_0(n) = \prod_{i=1}^k (c_i + 1)$$

$$\sigma_1(n) = \prod_{i=1}^k (1 + p_i + p_i^2 + \dots + p_i^{c_i}) = \prod_{i=1}^k \frac{p_i^{c_i+1} - 1}{p_i - 1}$$

我们一般记

$$\sigma_m(n) = \prod_{d|n} d^m$$

常用的: $\sigma_0(n)$ 表示约数个数, $\sigma_1(n)$ 表示约数和。 若 $n = \prod_{i=1}^k p_i^{c_i}$, 则考虑 n 的约数的唯一分解,每个 p_i 的幂次都 $\leq c_i$,因此由乘法原理可得

$$\sigma_0(n) = \prod_{i=1}^k (c_i + 1)$$

$$\sigma_1(n) = \prod_{i=1}^k (1 + p_i + p_i^2 + \dots + p_i^{c_i}) = \prod_{i=1}^k \frac{p_i^{c_i+1} - 1}{p_i - 1}$$

因此我们对 n 分解质因数后,即可直接得到 n 的约数个数、约数和。

我们一般记

$$\sigma_m(n) = \prod_{d|n} d^m$$

常用的: $\sigma_0(n)$ 表示约数个数, $\sigma_1(n)$ 表示约数和。 若 $n = \prod_{i=1}^k p_i^{c_i}$, 则考虑 n 的约数的唯一分解,每个 p_i 的幂次都 $\leq c_i$,因此由乘法原理可得

$$\sigma_0(n) = \prod_{i=1}^k (c_i + 1)$$

$$\sigma_1(n) = \prod_{i=1}^k (1 + p_i + p_i^2 + \dots + p_i^{c_i}) = \prod_{i=1}^k \frac{p_i^{c_i+1} - 1}{p_i - 1}$$

因此我们对 n 分解质因数后,即可直接得到 n 的约数个数、约数和。 当 n 很大,而 n 的质因数分解已知时,上述两个公式可以快速求得 n 的约数个数、约数和(举个最简单的例子、求 n! 的约数和、 $n < 10^6$)。

[JLOI2014] 聪明的燕姿

已知
$$\sigma_1(x) = n$$
,求所有的 x 。 T 组询问。 $n < 2 \times 10^9$

[JLOI2014] 聪明的燕姿 - Solution

将 n 分解(不一定是质因数),然后考虑把 n 写成约数和公式的形式。例如:

$$n = 42 = 6 \times 7 = (1+5) \times (1+2+2^2) \rightarrow x = 5 \times 2^2 = 20$$

$$n = 42 = 3 \times 14 = (1+2) \times (1+13) \rightarrow x = 2 \times 13 = 26$$

$$n = 42 = 1 + 41 \rightarrow x = 41$$

因此我们用 DFS 分解 n。从 1 到 \sqrt{n} 枚举 x 的质因数及其幂次,并检验 $1+p+\cdots+p^c$ 是否可整除 n,若能整除则搜下一层。

如果 n=1 则将 x 加入答案并返回;如果 n-1 是质数则直接给当前的 x 乘 n-1 并加入答案。

- ① 快速幂
- 2 组合数学
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数
- 5 同余方程 线性同余方程 线性同余方程组
- 6 欧拉函数

概览

同余方程包括:线性同余数方程(exgcd 算法),线性同余方程组(中国剩余定理 CRT,扩展中国剩余定理),指数同余方程(BSGS 算法),高次同余方程(阶和原根)。

该部分涉及的数学知识较多,时间关系我们今天只介绍最简单的 exgcd 算法。CRT 算法作为了解。

- ① 快速幂
- 2 组合数学
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数
- 5 同余方程 线性同余方程 线性同余方程组
- 6 欧拉函数

裴蜀定理

若 (a,b) = d,则对任意整数 x,y,均有 $d \mid (ax + by)$,且二元一次不定方程 ax + by = d 必有解。特别地,(a,b) = 1 当且仅当 ax + by = 1 有解。

线性同余方程

关于 x 的形如 $ax = b \pmod{m}$ 的方程称为线性同余方程。

线性同余方程

关于 x 的形如 $ax = b \pmod{m}$ 的方程称为线性同余方程。由乘法逆元的定义可知, 若 (a, m) = 1,则该同余方程的解为 $x = ba^{-1} \mod m$ 。

线性同余方程

关于 x 的形如 $ax = b \pmod{m}$ 的方程称为线性同余方程。由乘法逆元的定义可知,

若 (a, m) = 1,则该同余方程的解为 $x = ba^{-1} \mod m$ 。

若 $(a, m) \neq 1$,设 d = (a, m)。若 d|b,则方程两边及模数同时除 d 即 可;否则方程无解。

例如 $3x = 2 \mod 6$ 就是无解的。

二元一次不定方程

形如 ax + by = c 的方程称为二元一次不定方程。 因为 ax + by = c 可写作 $ax = c \mod b$, 因此对于二元一次不定方程 ax + by = c,方程两边同时除以 (a, b, c)后,即可得到其通解为 $x = x_0 + bt$, $y = y_0 - at$,其中 $x_0 = ca^{-1}$ $ax_0 = ca^{-1}$

之前提到过,当 m 很大的时候,通过求 m 的欧拉函数得到 a 的逆元复杂度过高。

扩展欧几里得(exgcd)算法就是通过辗转相除得到方程 ax + by = 1((a,b)=1)的一组解,从而得到 a 模 b 意义下的逆元,解出线性同余方程或二元一次不定方程。

之前提到过,当 m 很大的时候,通过求 m 的欧拉函数得到 a 的逆元复杂度过高。

扩展欧几里得(exgcd)算法就是通过辗转相除得到方程 ax + by = 1((a,b)=1)的一组解,从而得到 a 模 b 意义下的逆元,解出线性同余方程或二元一次不定方程。 我们现有方程

$$ax + by = 1$$

之前提到过,当 m 很大的时候,通过求 m 的欧拉函数得到 a 的逆元复杂度过高。

扩展欧几里得(exgcd)算法就是通过辗转相除得到方程 ax + by = 1((a, b) = 1)的一组解,从而得到 a 模 b 意义下的逆元,解出线性同余方程或二元一次不定方程。 我们现有方程

$$ax + by = 1$$

辗转相除时, 我们令

$$a_1 = b, b_1 = a \pmod{b}$$

即

$$a_1 = b, b_1 = a - kb$$

其中
$$k = \lfloor \frac{a}{b} \rfloor$$
,

则若 $a_1x + b_1y = 1$ 的解为 $x = x_1, y = y_1$,即

$$bx_1 + (a - kb)y_1 = 1$$

即

$$ay_1 + b(x_1 - ky_1) = 1$$

则

$$x = y_1, y = x_1 - ky_1$$

当除到最后一步时,有 a=1,b=0,此时易知 x=1,y=0 是一组解。 因此直接返回即可。

exgcd 代码

```
int exgcd(int a,int b,int& x,int& y){
    if(!b){x=1,y=0;return;}
    exgcd(b,a%b,y,x);
    y-=x*(a/b);
}
```

exgcd 代码

```
int exgcd(int a,int b,int& x,int& y){
    if(!b){x=1,y=0;return;}
    exgcd(b,a%b,y,x);
    y-=x*(a/b);
}
```

用 exgcd 求逆元:

$$a(a^{-1}) + xM = 1$$

exgcd 代码

```
int exgcd(int a,int b,int& x,int& y){
    if(!b){x=1,y=0;return;}
    exgcd(b,a%b,y,x);
    y-=x*(a/b);
}
```

用 exgcd 求逆元:

$$a(a^{-1}) + xM = 1$$

其中 M 是模数, a 是要求逆元的数, 求解上述二元一次不定方程, 得到 a^{-1} 和 x 的值。

- ① 快速幂
- 2 组合数学
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数
- ⑤ 同余方程 线性同余方程 线性同余方程组
- 6 欧拉函数

问题形式

形如

$$\begin{cases} x \equiv a_1 & \pmod{m_1} \\ x \equiv a_2 & \pmod{m_2} \\ \dots \\ x \equiv a_n & \pmod{m_n} \end{cases}$$

的方程组称为线性同余方程组。

问题形式

形如

$$\begin{cases} x \equiv a_1 & \pmod{m_1} \\ x \equiv a_2 & \pmod{m_2} \\ \dots \\ x \equiv a_n & \pmod{m_n} \end{cases}$$

的方程组称为线性同余方程组。 该方程组的解形如 $x = A \mod M$,其中 $M = \text{lcm}(m_1, m_2, \cdots m_n)$ 。

中国剩余定理(CRT)

当 $m_1, m_2, \cdots m_n$ 两两互质时,我们可以直接用公式求解。 设 $M = m_1 m_2 \cdots m_n = \text{lcm}(m_1, m_2, \cdots, m_n), M_i = \frac{M}{m_i}, N_i = M_i^{-1} \mod m_i$, 则

$$x = \sum_{i=1}^{n} a_i M_i N_i \mod M$$

- ① 快速幂
- 2 组合数学
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数
- 5 同余方程
- 6 欧拉函数

积性函数,线性筛 欧拉定理/费马小定理

欧拉函数的定义

定义 n 的欧拉函数为 $1 \sim n$ 中与 n 互质的数的数量,记作 $\varphi(n)$ 。设 $n = \prod_{i=1}^k p_i^{c_i}$,则

$$\varphi(n) = n \prod_{i=1}^{k} (1 - \frac{1}{p_i}) = \prod_{i=1}^{k} p_i^{c_i - 1} (p_i - 1)$$

根据上面的公式, 我们可以 $O(\sqrt{n})$ 求出 $\varphi(n)$ 。

- ① 快速幂
- 2 组合数学
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数
- 5 同余方程
- 6 欧拉函数 积性函数,线性筛 欧拉定理/费马小定理

积性函数,线性筛

如果一个函数 f 满足以下性质:

- f(1) = 1
- 若 gcd(p,q) = 1, 则 f(pq) = f(p)f(q)

则称 f 是积性函数。

积性函数,线性筛

如果一个函数 f 满足以下性质:

- f(1) = 1
- 若 gcd(p,q) = 1, 则 f(pq) = f(p)f(q)

则称 f 是积性函数。

例如 $1, Id, \varphi, \sigma_0, \sigma_1$ 都是积性函数。

只要 $f(p^k)$ 可以 O(1) 算出,积性函数就可以使用欧拉筛在线性时间得到 $1 \sim n$ 的结果。

其中 f(i) 是积性函数值,F(p,k) 是 $f(p^k)$ 的值(可以直接算),c(i) 是 i 最小质因数的幂次。

```
如果 \frac{f(p^{k+1})}{f(p^k)} 为定值 F(p),则无需存 c。
```

```
1 f [1] = 1;
  for(int i=2;i<=n;++i){
      if (!np[i])f[i]=P(p),c[i]=1;
      for(int j=1;j<=cnt&&i*pri[j]<=n;++j){</pre>
           int p=pri[j],ip=i*p;
           np[ip]=1;
           if(!(i%p)){
               f[ip]=f[i]*F(p);
               break;
           f[ip]=f[i]*f[p];
11
12
13
```

其中 F1(p) 是 f(p) 的值。

积性函数举例说明

下面我们通过 φ , σ ₀, σ ₁, μ (莫比乌斯函数) 举例说明:

积性函数举例说明

下面我们通过 φ , σ ₀, σ ₁, μ (莫比乌斯函数) 举例说明: φ : F1(p) = p - 1, F(p) = p

积性函数举例说明

下面我们通过 φ , σ_0 , σ_1 , μ (莫比乌斯函数) 举例说明: φ : F1(p) = p - 1, F(p) = p σ_0 : F(p,k) = k+1

积性函数举例说明

下面我们通过 φ , σ_0 , σ_1 , μ (莫比乌斯函数) 举例说明:

$$\varphi: F1(p) = p - 1, F(p) = p$$

$$\sigma_0: F(p,k) = k+1$$

$$\sigma_1: F(p,k) = 1 + p + \cdots + p^k$$

积性函数举例说明

下面我们通过 φ , σ_0 , σ_1 , μ (莫比乌斯函数) 举例说明:

$$\varphi : F1(p) = p - 1, F(p) = p$$

 $\sigma_0 : F(p, k) = k + 1$

$$\sigma_0 : F(p, k) = k + 1$$

 $\sigma_1 : F(p, k) = 1 + p + \dots + p^k$

$$\sigma_1: F(p,k) = 1 + p + \cdots + p^k$$

 $\mu(n)$ 的定义:

$$\mu(\mathbf{n}) = \begin{cases} 1 & \mathbf{n} = 1\\ (-1)^{\mathbf{n}} & \mathbf{n} = \mathbf{p}_1...\mathbf{p}_k\\ 0 & \text{others} \end{cases}$$

即有平方因子的数的莫比乌斯函数值均为 0。

$$\mu : F1(p) = -1, F(p) = 0$$

[SDOI2008] 仪仗队

作为体育委员,C 君负责这次运动会仪仗队的训练。仪仗队是由学生组成的 $N \times N$ 的方阵,为了保证队伍在行进中整齐划一,C 君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。

 $n \leq 10^6$.

[SDOI2008] 仪仗队 - Solution

我们不妨把 (1,1) 看做原点,所有点的坐标就是 (0,0) 到 (n-1,n-1),(i,j) 可见当且仅当 (i,j)=1。 因此我们要求的就是(为方便起见令 $n\leftarrow n-1$)

$$\sum_{i=1}^{n} \sum_{j=1}^{n} [\gcd(i,j) == 1] + 2$$

gcd 矩阵对角线两边完全对称, 因此只需计算

$$2\sum_{i=1}^{n}\sum_{j=1}^{i}[\gcd(i,j) == 1] + 1$$

注意对角线上的 (1,1) 被重复计算,所以要减 1。 而根据 $\varphi(i)$ 的定义有

$$\sum_{j=1}^{i} [\gcd(i,j) == 1] = \varphi(i)$$

- ① 快速幂
- 2 组合数学
- 3 特殊的数
- 4 质数, 合数, 约数, 倍数
- 6 同余方程
- 6 欧拉函数 积性函数,线性筛 欧拉定理/费马小定理

问题引入

求 $a^b \mod p$ 的值, $a, b, p \le 10^9$ 。
——我会! 不就是快速幂吗?

问题引入

```
求 a^b \mod p 的值,a, b, p \le 10^9。
——我会! 不就是快速幂吗?
求 a^b \mod p 的值,a, b \le 10^{10000000}, p \le 10^9。
——????????
```

费马小定理

若 p 为质数,则对任意 $1 \le a \le p-1$,均有 $a^{p-1} \mod p = 1$ 。

费马小定理

若 p 为质数,则对任意 $1 \le a \le p-1$,均有 $a^{p-1} \mod p = 1$ 。

推论:

对任意 $1 \le a \le p-1, b \ge 0$, 均有 $a^b \mod p = a^{b \mod (p-1)} \mod p$ 。

欧拉定理

对任意
$$1 \le a \le m-1$$
, $(a, m) = 1$, 均有 $a^{\varphi(m)} \mod m = 1$.

欧拉定理

对任意 $1 \le a \le m-1$, (a, m) = 1, 均有 $a^{\varphi(m)} \mod m = 1$.

推论:

对任意 $1 \le a \le m-1$, (a,m)=1, $b \ge 0$, 均有 $a^b \mod m = a^b \mod \varphi(m) \mod m$ 。 事实上费马小定理可以看做欧拉定理的特殊情况。

扩展欧拉定理

对任意
$$1 \le a \le m-1, (a,m) > 1, b \ge \varphi(m)$$
,均有 $a^b \mod m = a^b \mod \varphi(m) + \varphi(m) \mod m$ 。

设 $1 \le a < m$,若存在 $1 \le b < m$ 满足 $ab \mod m = 1$,则称 $b \ne a$ 在 模 m 意义下的乘法逆元,简称逆元,记作 a^{-1} 。

设 $1 \le a < m$,若存在 $1 \le b < m$ 满足 $ab \mod m = 1$,则称 $b \ne a$ 在模 m 意义下的乘法逆元,简称逆元,记作 a^{-1} 。若 (a, m) = d > 1,则 $d \mid (ab \mod m)$,因此 a 存在逆元的充要条件是 (a, m) = 1。

设 $1 \le a < m$,若存在 $1 \le b < m$ 满足 $ab \mod m = 1$,则称 $b \ne a$ 在模 m 意义下的乘法逆元,简称逆元,记作 a^{-1} 。 若 (a,m) = d > 1,则 $d|(ab \mod m)$,因此 a 存在逆元的充要条件是 (a,m) = 1。 根据欧拉定理, $a^{-1} = a^{\varphi(m)-1} \mod m$ 。

设 $1 \le a < m$,若存在 $1 \le b < m$ 满足 $ab \mod m = 1$,则称 $b \ne a$ 在 模 m 意义下的乘法逆元,简称逆元,记作 a^{-1} 。 若 (a, m) = d > 1,则 $d \mid (ab \mod m)$,因此 a 存在逆元的充要条件是 (a, m) = 1。 根据欧拉定理, $a^{-1} = a^{\varphi(m)-1} \mod m$ 。 如果 p 为质数,则 $a^{-1} = a^{p-2} \mod p$ 。

设 $1 \le a < m$,若存在 $1 \le b < m$ 满足 $ab \mod m = 1$,则称 b 是 a 在 模 m 意义下的乘法逆元,简称逆元,记作 a^{-1} 。 若 (a,m)=d>1,则 $d|(ab \mod m)$,因此 a 存在逆元的充要条件是 (a,m)=1。 根据欧拉定理, $a^{-1}=a^{\varphi(m)-1}\mod m$ 。 如果 p 为质数,则 $a^{-1}=a^{p-2}\mod p$ 。 因为这种做法要求出欧拉函数,当 m 较大(超过 10^9)时复杂度过高。所以当 m 不是质数时,我们一般用下一节讲的扩展欧几里得算法 (exgcd) 去求逆元。

线性算法求逆元

当我们需要的逆元都较小而又很多时,可以用线性逆元一次性求出 $1 \sim n$ 的所有逆元。

设
$$p = k \cdot i + r, 1 < i < p, r < i, 则 $k = \lfloor \frac{p}{i} \rfloor$$$

$$k \cdot i + r = 0 \pmod{p}$$

两边同时乘 $i^{-1}r^{-1}$,则

$$k \cdot r^{-1} + i^{-1} = 0 \pmod{p}$$

故 $i^{-1} = -k \cdot r^{-1} = -\lfloor \frac{\rho}{r} \rfloor r^{-1}$ 因为 r^{-1} 已经求出,所以可以递推求出 inv。

inv[1]=1;
for(int i=2;i<=n;++i)inv[i]=inv[mod%i]*(mod-mod/i)%mod;</pre>

Thanks for listening!

Any Questions?

关于下午考试: 祝大家好运。