$T.D. N^{\circ}3$

Exercice n⁰ 01: Une boîte contient quatre boules numérotées 0, 1, 1, 2. On effectue n tirages avec remise. Soit S_n la somme des numéros tirés. Déterminer la loi de probabilité de la v.a. S_n .

Exercice n^0 02:

- 1. Calculer les fonctions génératrices des lois suivantes :
 - a. Géométrique de paramètre $p \in [0, 1[$.
 - **b.** Poisson de paramètre $\lambda > 0$.
- 2. Calculer les fonctions génératrices des moments pour les lois suivantes :
 - **a.** Uniforme discrète de loi $\frac{1}{n}$.
 - **b.** Uniforme sur [0,1].
 - **c.** Loi normale $\mathcal{N}(m, \sigma^2)$ et $\mathcal{N}(0, 1)$.

Exercice n⁰ 03: On effectue une suite de parties de pile ou face. Soit u_n $(n \ge 1)$ la probabilité de ne pas avoir trois fois "face" à la suite au cours des n premières parties.

a. On a évidemment $u_1 = u_2 = 1$ et l'on pose $u_0 = 1$. Montrer que pour $n \ge 3$ on a la relation de récurrence $1 \qquad 1 \qquad 1$

$$u_n = \frac{1}{2}u_{n-1} + \frac{1}{4}u_{n-2} + \frac{1}{8}u_{n-3}.$$

b. On pose $U(s) = \sum_{n\geq 0} u_n s^n$. En déduire

$$U(s) = \frac{2s^2 + 4s + 8}{8 - 4s - 2s^2 - s^3}.$$

Exercice \mathbf{n}^0 04: Donner la fonction caractéristique de X :

- 1. Si X suit une loi de Bernoulli de paramètre $p\in]0,1[.$
- 2. Si X suit une loi Binomiale $\mathfrak{B}(n,p)$.
- 3. Si X suit une loi de Poisson de paramètre $\lambda.$

Exercice \mathbf{n}^0 05 : La densité de probabilité d'une variable aléatoire X est donnée par

 $f(x) = Ce^{-a|x|}; x \in \mathbb{R}; \text{ où } a > 0 \text{ et } C \text{ une constante donnée.}$

- 1. Trouver la fonction caractéristique de X.
- 2. En déduire $E(X^k)$, $k \in \mathbb{N}$.

Exercice \mathbf{n}^0 06: Donner la fonction caractéristique de X:

- 1. Si X suit une loi exponentielle de paramètre $\lambda > 0$.
- 2. Si Y suit une loi exponentielle symétrique de paramètre $\lambda>0$, c'est-à-dire si Y a pour densité

$$f(y) = \frac{\lambda}{2} e^{-\lambda|y|}$$

3. Si Z suit une loi de Cauchy de paramètre λ , c'est-à-dire si Z a pour densité

$$f(z) = \frac{\lambda}{\pi \left(\lambda^2 + z^2\right)}.$$

Exercice n⁰ **07:** Soit $X \hookrightarrow \mathcal{N}(0, \sigma^2)$ et $\Phi(t)$ sa fonction caractéristique.

- 1. Montrer que $\Phi'(t) = -t\sigma^2\Phi(t)$, pour tout $t \in \mathbb{R}$.
- 2. En déduire $\Phi(t)$ pour tout $t \in \mathbb{R}$.

Exercice n⁰ 08: Montrer, en utilisant la fonction caractéristique, que

- 1. La somme de deux v.a. de Poisson indépendantes est une v.a. de Poisson.
- 2. La somme de deux v.a. Gaussiennes indépendantes est une v.a. Gaussienne.
- 3. La somme de deux v.a. de Cauchy indépendantes est une v.a. de Cauchy.

Exercice n⁰ **09:** On considère $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes de même loi. On suppose que $E[X_1] = 0$ et $Var(X_1) = \sigma^2$ et on note $\varphi(t)$ la fonction caractéristique de X. On considère la variable aléatoire

$$Y_n := \frac{1}{\sqrt{n}} \left(X_1 + \dots + X_n \right)$$

- 1. Donner la fonction caractéristique de Y_n , $\Phi_n(t)$, en fonction de φ , t et n.
- 2. Montrer que, lorsque $x \to 0$, on a $\varphi(x) = 1 \frac{1}{2}\sigma^2 x^2 + o(x^2)$.
- 3. En déduire que, pour tout $t \in \mathbb{R}$, $\log \Phi_n(t) \to -\frac{1}{2}\sigma^2 t^2$ et donc que $\Phi_n(t) \to \Phi(t)$, où
- $\Phi(t)$ est la fonction caractéristique d'une loi que l'on précisera.