SECURE MEDICAL DATA SHARING USING DISEASE DIAGNOSIS NETWORKS

A MINI PROJECT REPORT

Submitted by

SABITHA S	(815120104034)
UMARANI R	(815120104049)
YAMINI M	(815120104058)
YOGESWARI M	(815120104060)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF ENGINEERING AND TECHNOLOGY DHANALAKSHMI SRINIVASAN UNIERSITY TRICHY- 621112

BONAFIDE CERTIFICATE

Certified that this project report for "SECURE DATA SHARING USING DISEASE DIAGNOSIS" is the bonafide work of S.SABITHA (815120104034), R.UMARANI (815120104049), M.YAMINI (815120104058), M.YOGESWARI (815120104060) who carried out the project work undermy supervision.

HEAD OF THE DEPARTMENT,

Department of Computer Science & Engineering, School of Engineering and Technology, Dhanalakshmi Srinivasan university, Trichy - 621 112.

GUIDE,

Department of Computer Science & Engineering, School of Engineering and technology, Dhanalakshmi Srinivasan university, Trichy - 621 112.

Sı	ubmitted	l for the	project '	Viva-`	Voice	hel	d on		
							_		

INTERNAL EXAMINER

EXTERNAL EXAMINER

ABSTRACT

Security is the most critical issue amid transmission of medical images because it contains sensitive information of patients. Medical image security is an essential method for secure the sensitive data when computerized images and their relevant patient data are transmitted across public networks. Sensitive images carry extensive important information and different features compared to standard images. Medical images have much more sensitive and essential information than any other digital image. Each pixel in the image can be necessary for the diagnosis process, and any deformation can result in a faulty diagnosis. The most robust securing of these images affects an image to the extent that it can be ignored; this is different from insensitive imagery as the border of redundancy is very low. The embedding capacity in medical images is deficient. Existing researchers present different data security techniques as cryptography and data hiding to guarantee data verification. But these approaches take more time and less security in medical image application. So in this project, implement Fragmented based Elliptical curve cryptography with Convolutional neural network algorithm to provide secure disease diagnosis system for medical images. Experimental results shows that the proposed system implemented Lung CT scan images that are collected from Open medical data sources and with high level security

TABLE OF CONTENT

CHAPTER NO	TITLE	PAGE NO
	ABSTRACT	iv
	LIST OF FIGURES	viii
	LIST OF ABBREVATION	ix
1	INTRODUCTION	10
	1.1 About the Project	10
	1.2 Goals of Project	12
	1.3 Problem Statement	13
2	LITERATURE SURVEY	14
	2.1 Secure and Robust Machine Learning for Healthcare	14
	2.2 A Lightweight Chaos-Based Medical Image Encryption Scheme Using Random Shuffling and XOR Operations	15
	2.3 Lightweight Encryption Technique to Enhance Medical Image Security on Internet of Medical Things Applications	16
	2.4 A New Image Encryption Algorithm for	17
	Grey and Color Medical Images	18
	2.5 Robust Detection Of Adversarial Attacks On Medical Images	

3	EXISTING SYSTEM	19
4	PROPOSED SYSTEM	20
5	SYSTEM REQUIREMENTS	21
	5.1 Hardware Requirements	21
	5.2 Software Requirements	21
	5.3 Software Description	22
6	SYSTEM DESIGN	27
	6.1 System Architecture	27
	6.2 Data Flow Diagram	29
	6.3 System Use Case	34
	6.4 Sequence Diagram	35
	6.5 Collaboration Diagram	36
	6.6 Activity diagram	37
7	SYSTEM IMPLEMENTATION	38
	7.1 List of Modules	38
	7.2 Module Description	38
	7.3 Algorithm	41

8	TESTING	43
	8.1 Testing Objectives	43
	8.2 System Testing	44
	8.2.1 Unit Test	44
	8.2.2 Functional Test	44
	8.2.3 Integration Test	45
	8.2.4 White Box Test	45
	8.2.5 Black Box Test	45
9	CONCLUSION AND FUTURE ENHANCEMENT	46
	9.1 Conclusion	46
	7.1 Conclusion	40
	9.2 Future Enhancement	46
10		
10	9.2 Future Enhancement	46
10	9.2 Future Enhancement APPENDIX	46 48

LIST OF FIGURES

FIGURE NO	FIGURE NAME	PAGE NO
6.1.1	Proposed System Architecture	28
6.2.1	Data Flow Diagram Level 0	29
6.2.2	Data Flow Diagram Level 1	30
6.2.3	Data Flow Diagram Level 2	31
6.2.4	Data Flow Diagram Level 3	32
6.2.5	Data Flow Diagram Level 4	32
6.2.6	Data Flow Diagram Level 5	33
6.3.1	System Use Case Diagram	34
6.4.1	Sequence Diagram	35
6.5.1	Collaboration Diagram	36
6.6.1	Activity Diagram	37

LIST OF ABBREVIATIONS

S.NO	ABBREVIATION	EXPANSION
1	CNN	Convolutional Neural Network
2	GC	Garbled Circuit
3	DP	Differential Privacy
4	НСС	Health Care Center
5	ECC	Elliptic Curve Cryptography
6	RDBMS	Relational Data Base Management System
7	ADL	Architecture Description Language
8	LSB	Least Significant Bit
9	SGD	Stochastic Gradient Descent
10	LSTM	Long Short Term Memory