San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Formal Languages

(Part 1)

Lecture 04 Day 04/31

CS 154
Formal Languages and Computability
Fall 2019

Agenda of Day 04

- Waiting List Enrollment ...
- Summary of Lecture 03
- Lecture 04: Teaching ...
 - Formal Languages (Part 1)

Summary of Lecture 03: We learned ...

Cartesian Products

- We use Cartesian product when we need ordered collections.
- The Cartesian product of two sets A and B is ...
 - ... the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

- It does NOT have commutative property.
- Special cases: $(A = B) \lor (A = \phi) \lor (B = \phi)$
- We extended the Cartesian product to n sets to produce n-tuple.

$$S_1 \times S_2 \times ... \times S_n = \{(x_1, x_2, ..., x_n) : x_1 \in S_1, ..., x_n \in S_n\}$$

Any question?

Summary of Lecture 03: We learned ...

Functions

- We use Functions when we need a relation between two sets.
- A function f from D to R is ...
 - a rule that assigns to some elements of D (domain) a unique element of R (range).
 - Denoted by: $f: D \rightarrow R$
- A total function is ...
 - a function that all of its domain elements are defined.
- A partial function is ...
 - a function that at least one member of its domain is "undefined".

Any question?

Summary of Lecture 03: We learned ...

Graphs

- A graph is a mathematical construct consisting of two sets:
 - A non-empty and finite set of vertices $V = \{v_1, v_2, ..., v_n\}$
 - A finite set of edges
 E = {e₁, e₂, ..., e_m}
- A walk is ...
 - ... a sequence of edges from v_i to v_n . $(v_i, v_j), (v_j, v_k), ..., (v_m, v_n)$
- The length of a walk is ...
 - ... the number of edges traversed.
- A path is ...
 - ... a walk that no edge is repeated.

- A simple path is ...
 - a path that no vertices is repeated.
- A loop is ...
 - ... an edge from a vertex to itself.
- A cycle is ...
 - a path from a vertex (called base)
 to itself.
- A simple cycle is ...
 - a cycle that no vertices other than base is repeated.

Any question?

① The Big Picture of the Course

The foundation of the computer science is called:
 "Theory of Computation".

This theory is divided into four branches:

The Big Picture of the Course

The first three from the bottom show:

"What can be done with computers?"

The forth one, complexity, shows:

"What can be done in practice?"

Objective of This Lecture

- We start our journey with "Formal Languages"!
- But every language consists of "sentences" (aka "strings").
- And every string consists of "alphabets".
- So first, we'll introduce alphabets.
- Then, we'll define strings as mathematical objects.
- After that, we'll see some operations on strings.
- And finally, we'll introduce formal languages.

Alphabets & Strings

Alphabets

Definition

- An alphabet is a nonempty and finite set of "symbols".
- It is denoted by Σ.
 - Symbols are assumed to be indivisible.
- In this course, we usually use lowercase letters a, b, c, ... for alphabet symbols.
- In some cases, we might use digits like 0, and 1 or other symbols as well.

Alphabets Example

Example 1

• $\Sigma = \{a, b\}$

This is our celebrity alphabet!

- $\Sigma = \{0, 1\}$
- $\Sigma = \{\varepsilon, \alpha, \beta\}$

- Can the following set be an alphabet? $\Sigma = \{ \mathcal{E}, \mathcal{H}, \mathcal{L}, \Gamma \}$

Strings

Definition

- A string is a finite sequence of symbols.
- So, we do NOT have a string of INFINITE symbols.

Example 2

Let $\Sigma = \{a, c, d, e, g, l, o, p, t\}.$

The following strings are valid strings over Σ : cat , dog , apple

Strings Examples

Example 3

- Let $\Sigma = \{a, b\}$.
- -
- Are the following strings valid strings over Σ?
- baba , aabb , bbbbbbbbbbbbba , ...

Solution

- Not all of them!
 - "..." is not a valid string because "." is not in the alphabet!
- Note that in formal languages arena,
 we don't care whether the strings are meaningful or not!

Strings Variable

- We usually use lowercase letters w, u, v, ... for "string variables".
 - If we need more variable, then x, y, z, or other symbols are used.

Example 4

- The following strings can be assigned to w as a variable:
- w = ab
- w = aabb
- w = aaabbb
- ...

Strings Size (aka Length)

Definition

- The size of a string w is the number of its symbols.
- It is denoted by |w|.

Example 5

```
|aaa| = 3
|babba| = 5
|aaba| = 4
```

In general:

$$|a_1 a_2 ... a_n| = n$$

Empty String

Definition

- An empty string is a string with no symbol.
 - In other words: A sequence of zero symbols
- It is denoted by λ (pronounced lambda).
- What is the length of λ?

$$|\lambda| = 0$$

Notes

- 1. Some authors might show empty string as ε (pronounced epsilon).
- 2. λ cannot be used as a symbol in alphabet.

Operations on Strings

Concatenation of Strings

Definition

Concatenation of two strings u and v is the string uv.

Example 6

```
Let u = aaba and v = bb ; uv = ?

uv = aababb
```

The length of concatenation:

$$|uv| = |u| + |v|$$

λ is the neutral element for concatenation:

$$\lambda w = w\lambda = w$$

Example 7

 $\lambda aabb = aab\lambda b = a\lambda abb = a\lambda abb\lambda = aabb$

Reverse of Strings

Definition

- Reverse of a string w is obtained by writing the symbols in reverse order.
- It is denoted by w^R. (pronounced w-reverse)
- If $w = a_1 a_2 ... a_{n-1} a_n$, then $w^R = a_n a_{n-1} ... a_2 a_1$

Example 8

```
Let w = aaba; w^R = ?
w^R = abaa
```

A Side Note: Palindrome

 The string w is called palindrome if w reads the same from left to right as from right to left.

Example 9

radar, reviver, rotator

Some Funny Palindromes (Ignore spaces, apostrophes, commas)

- MADAM I'M ADAM
- STEP NOT ON PETS
- NO LEMONS, NO MELON
- DENNIS AND EDNA SINNED
- A MAN, A PLAN, A CANAL, PANAMA

Homework

• Prove that $(uv)^R = v^R u^R$

Substring

Definition

Substring of a string w is any string of consecutive symbols of w.

Cultipation of

aababb

Example 10

aababb

String	Substring
<u>aa</u> babb	aa
a <u>ab</u> abb	ab
aa <u>bab</u> b	bab
aaba <u>b</u> b	b
aababb	λ

Prefix and Suffix

Definition

Let w be a string. If w = uv, then ...u is called "prefix".v is called "suffix".

Example 11

Let w = aababb

If we consider u = aa as a prefix of w, then the rest, v = babb, would be the suffix.

Are these the only prefix and suffix?

Prefix and Suffix

Example 11 (cont'd)

The complete list of all possible prefixes and suffixes of w are:

Prefix = u	$\underline{Suffix} = v$
λ	aababb
a	ababb
aa	babb
aab	abb
aaba	bb
aabab	b
aababb	λ

• So, λ is prefix and suffix of every string (NOT at the same time). because: $w = \lambda w = w \lambda$

Exponential Operator

Definition

- Let w be a string and n be a natural number.
- wⁿ is defined as the concatenation of n copies of w.

$$w^n = w w w ... w$$
n times

Example 12

Let
$$w = a$$
; $w^2 = ?$; $w^3 = ?$
 $w^2 = w$ $w = aa = a^2$
 $w^3 = w$ w $w = aaa = a^3$

 Concatenation in formal languages looks like multiplication in elementary algebra.

Exponential Operator

Example 13

```
Let w = aaba; w^2 = ?; w^3 = ?

w^2 = w w = aabaaaba = a^2ba^3ba

w^3 = w w w = aabaaabaaaba = a^2ba^3ba^3ba
```

In general: w wⁿ = wⁿ w = wⁿ⁺¹
 where n ∈ N (natural numbers)

Example 14

```
Let w = a^m b^m where m is a constant.

|w| = ?

|w| = |a^m b^m| = 2m
```

Exponential Operator

Special case

- $W^0 = ?$
- - How can you prove this?
 - Hint: use w $w^n = w^n w = w^{n+1}$ and $w = \lambda w = w \lambda$

Example 15

$$(aaba)^0 = \lambda$$

O Note that aaba⁰ = aab

27

Formal Languages

Introduction

- Before introducing formal languages,
 we need to introduce two new operations on alphabets.
- We did not mention them before because we needed the concept of concatenation.

0

Star Operator on Alphabets

Definition

- Let Σ be an alphabet.
- Σ* is the set of "all possible strings" obtained by concatenating "ZERO or more" symbols from Σ.

Example 16

```
Let \Sigma = \{a\}; \Sigma^* = ?

\Sigma^* = \{a\}^* = \{\lambda, a, aa, aaa, aaaa, ...\}
```

Note that Σ* is an infinite set.

Star Operator on Alphabets

Example 17

Let
$$\Sigma = \{a, b\}$$
; $\Sigma^* = ?$
 $\Sigma^* = \{a, b\}^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}$

Note what strategy we used to enumerate all combinations.

• Let $\Sigma = \{a, b, c\}$; $\Sigma^* = ?$

0

Plus Operator on Alphabets

Definition

- Let Σ be an alphabet.
- Σ^+ is the set of "all possible strings" obtained by concatenating "ONE or more" symbols from Σ .

Example 18

```
Let \Sigma = \{a\}; \Sigma^+ = ?

\Sigma^+ = \{a\}^+ = \{a, aa, aaa, aaaa, ...\}
```

- Note that Σ⁺ is an infinite set.
- Also, note that the only difference between Σ^+ and Σ^* is that Σ^+ does NOT contain λ .

Plus Operator on Alphabets

Example 19

Let
$$\Sigma = \{a, b\}$$
; $\Sigma^+ = ?$
 $\Sigma^+ = \{a, b\}^+ = \{a, b, aa, ab, ba, bb, aaa, aab, ...\}$

• Since the only difference between Σ^+ and Σ^* is that Σ^+ does NOT contain λ , hence:

$$\Sigma^+ = \Sigma^* - \{\lambda\}$$

 $\Sigma^* = \Sigma^+ \cup \{\lambda\}$

① Formal Languages

Definition

- Let Σ be an alphabet.
- 49
- Any subset of Σ* is called a "formal language" over Σ.

- Σ* contains all possible strings that can be made by the symbols of Σ.
- That's why it's called the "universal formal language" over Σ.
 - Recall the definition of "universal set".

① Formal Languages: Examples

Example 20


```
Let \Sigma = \{a, b\} be an alphabet; \Sigma^* = ?
\Sigma^* = \{a, b\}^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}
```

- The following subsets of Σ* are examples of formal languages over Σ :
- L₁ = {a, b, aa, aab}
- L₂ = {λ, ba, bb, bbb, aaa, aab}
- $L_3 = \{a^n : n \ge 0\}$
 - Can you enumerate L₃?

- because $L_1 \subseteq \Sigma^*$
- because $L_2 \subseteq \Sigma^*$
- because $L_3 \subseteq \Sigma^*$

Formal Languages: Special Cases

Example 20 (cont'd)

How about the following sets? Are they formal languages? Why?

$$L_4 = \phi = \{ \}$$

$$L_5 = \{\lambda\}$$

Yes they are because both are subsets of Σ^* .

Two Special Formal Languages

- Empty language : { } or •
- λ-Language : {λ}

① Formal Languages: Notes

- For simplicity, from now on, we use "language" to refer to the formal language.
- A language is a "set".So, it has all properties of sets.
- 3. $\{\lambda\}$ is a language while λ is a string.
 - Language is a set while string is a sequence of symbols.
- 4. Some authors prefer to call strings as "sentences" to analogize the formal languages with the natural languages.
 - In this course, we mostly use strings!

① Languages Categorization: Finite and Infinite

Like sets, we have both "finite" and "infinite" languages.

- We'll categorize languages from different angles.
- This is our first categorization that is from the size point of view.

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790
- Alfred S. Posamentier, "Math Wonders," Association for Supervision and Curriculum Development, Alexandria, Virginia, USA, 2003 ISBN-13: 0-87120-775-3