Digital Signal Processing

Ryan Hou

Invalid Date

Table of contents

Preface					
Resources					
1	1.1 1.2	Perspective	6		
2	Sign 2.1	al Transform DFT, IDFT	7 7 7 7		
3	Wir 6 3.1	Modulation	8 8 8 9		
	3.2	Wireless Channel Model	9		
		3.3.3 OFDM	9 9 9 9 9 10 10 10 10		
4		ce Channel Coding Information Entropy	11		

Re	References				
6 Summary		nmary	13		
5	DSF	P & VLSI	12		
		Cyclic Redundancy Check			
		Scrambler / De-Scrambler			
	4.3	Finite Field (Galois Field)	11		
		4.2.1 Huffman Decode	11		
	4.2	Huffman Code	11		

Preface

My notes on ???.

Resources

Some relevant resources:

• Resource Name

Textbooks:

• Book 1

1 Introduction

1.1 Perspective

i Note 1: Definition - Some definition

 \mathbf{Term} is defined as blah blah blah...

This note does \dots

1.2 High Level Ideas

2 Signal Transform

What is signal transform?

- Basis
- Coefficients

Transform Examples:

- DFT (FFT)
- DCT
- Wavelet Transform
- Laplace Transform, Z transform, ...

Why signal transform needed?

- Feature extraction
- Compression (compact signal representation)
- Complexity reduction
- Easier manipulation and analysis of signal

2.1 DFT, IDFT

- 2.1.1 Orthogonal Basis Function
- 2.1.2 Linear vs Circular Convolution
- 2.2 Fast Fourier Transform (FFT)

3 Wireless Communication Systems

- Source Coding
 - Entropy coding, transform compression, compressive sensing
 - * Entropy Coding: Uses principles from information theory (Shannon entropy) to remove redundancy. Examples: Huffman coding, Arithmetic coding.
 - * Transform Compression: Uses mathematical transforms (e.g., DCT in JPEG, FFT in OFDM) to represent signals efficiently.
 - * Compressive Sensing: Uses sparse signal representations to reduce the number of required samples while preserving information.
- Cryptography
 - Authentication, encryption
 - Mostly in finite field arithmetic
- Channel Coding
 - Error correction coding: convolutional code, block code, Polar, LDPC,turbo code,
 ...

3.1 Modulation

High-level: Converts digital data into analog signals for transmission.

3.1.1 Linear Modulation

Used in WiFi, LTE, 5G due to efficient spectral usage.

3.1.2 Non-Linear Modulation

Used in Bluetooth, GSM due to power efficiency.

3.1.3 Passband Modulation

High-level: Involves shifting baseband signals to a higher frequency for RF transmission.

3.2 Wireless Channel Model

3.3 Demodulation

High-level: The process of recovering transmitted data.

3.3.1 Demodulation: Down-Conversion

High-level: Converts the received RF signal back to baseband using a local oscillator.

3.3.2 Demodulation: AWGN, Linear & Non-Linear Modulation

- AWGN: Basic noise model.
- Linear & Non-Linear Modulation: Different detection techniques apply based on the modulation scheme.

3.3.3 OFDM

(Orthogonal Frequency Division Multiplexing)

Uses multiple subcarriers to mitigate frequency-selective fading. Used in WiFi, LTE, 5G.

3.3.4 Zigbee (BPSK) Example

3.3.5 Bluetooth Example

3.3.6 WiFi IEEE 802.11a/g/n

Uses OFDM with various QAM levels for high data rates.

3.3.7 MIMO

High-level: Enhances spectral efficiency and reliability by using multiple antennas.

3.3.8 Spatial Multiplexing

High-level: Transmits independent data streams over multiple antennas to increase data rates.

3.3.9 MIMO Detection

3.3.10 MMSE

3.3.11 Eigen Beam-Forming

4 Source Channel Coding

- 4.1 Information Entropy
- 4.2 Huffman Code
- 4.2.1 Huffman Decode
- 4.3 Finite Field (Galois Field)
- 4.4 Scrambler / De-Scrambler
- 4.5 Cyclic Redundancy Check

5 DSP & VLSI

Summary

In summary...

References