Roll	No.:	 	 ••

National Institute of Technology, Delhi

Name of the Examination: End Semester Examination: Autumn 2022: B. Tech

Branch

: ECE

Semester

Title of the Course

: Solid State Devices

Course Code

: ECB 201

Time: 3 Hours

Maximum Marks: 50

- Questions are printed on BOTH sides. Answers should be CLEAR AND TO THE POINT.
- All parts of a single question must be answered together. ELSE QUESTION SHALL NOT BE EVALUATED.

Use following data if not given in a problem: $\varepsilon_0 = 8.85 \times 10^{-14} \text{F/cm}$, $\varepsilon_r(\text{SiO}_2) = 3.9$, $\varepsilon_r(\text{Si}) = 11.8$, $room\ temperature\ for\ Si\ [\mu_n=1350cm^2/V\cdot S,\ \mu_p=480\ cm^2/V\cdot S,\ n_i=1.5x10^{10}/cm^3,\ E_g=1.12\ eV],$ = 8.62 x10⁻⁵ eV/K, τ_n = τ_p = 1 μ s, $E_g(Ge)$ = 0.7 eV, n_i (Ge)= 2.5x10¹³ /cm³ .

Αt k

For the following circuit in figure 1, calculate the output voltage and voltage amplification. [2M] Assume $\alpha_{ac} \sim 1$

- The following circuit, as shown in figure 2, is a CMOS logic circuit. Estimate the performance [3M] of the circuit and determine the following:
 - (a) The Boolean function representing the circuit.
 - (b) The truth table, representing the circuit.
 - (c) Name the circuit.

- 3. Consider a tunnel diode with $N_A = N_D = 4.41 \times 10^{19}$ /cm³. At room temperature, calculate the [2M] height of the potential energy barrier under open circuit conditions.
- 4. For the circuit, as shown in figure 3, $V_{CC} = 10 \text{ V}$, $V_{BB} = 5 \text{ V}$, $V_{BE} = 0.7 \text{ V}$, $R_b = 10 \text{K}$, $R_C = 500 \text{ Ohm}$, [3M] $R_e = 100 \text{ Ohm}$ and $h_{BE} = 100 \text{.}$ Calculate I_B , I_C , and I_E for this circuit.

5. Write brief notes on each of the following:

[3x2 = 6M]

- (a) Thermal Runway
- (b) Depletion Mode MOSFET.
- (c) Hall Effect.
- 6. Choose the appropriate answer and write the correct answer only in the answer booklet [5x1 = 5M] against respective questions.
- (a) Common Base current gain can be increased by enhancing the injection efficiency/ base transport factor/ both above of a transistor.
- (b) As reverse bias increases, collector current increases/ decreases/ remains the same in a Bipolar Junction Transistor.
- (c) Higher base doping increases/ decreases/ retains the same base current.
- (d) In a CRO, if the sweep rate frequency is 100 Hz with 2 full sinusoidal cycles observed, then the frequency of the input vertical voltage will be 100 Hz/200 Hz/ 1000 Hz.
- (e) At pinch-off situation in a JFET, pinch-off voltage refers to the corresponding gate-to-source voltage/ drain-to-source voltage/ gate-to-drain voltage.
- 7. Two p-n junction Ge diodes are connected in series, as shown in figure 4. Λ 5-volt battery is impressed upon this arrangement. Assuming that the magnitude of Zener voltage, V_Z , is greater than 5 volt. Find the voltage across each junction at room temperature. Let's assume the overall current flowing through the circuit is 2 Λ mpere, reverse saturation current can be neglected, and the operating temperature of the circuit is 300 K.

8. In an abrupt Si p-n junction diode with an area 10^{-4} cm² has $N_a = 10^{17}$ / cm³ and $N_d = 10^{18}$ cm³. [4M] The diode has a forward bias voltage of 1 volt. Mobility's for electrons and holes are 1350 cm²/v-sec and 400 cm²/v-sec, respectively. Carrier lifetimes for electrons and holes are 10 nano-sec each.

Find the excess carrier concentrations for electrons.

- 9. **(a)** Implement the following Boolean expression using minimum numbers of CMOS and [5M] construct a CMOS logic circuit.
 - (b) Write down the truth table.
 - (c) Use the K-Map solution as well to cross-verify it's answer.

$$F = \overline{(A.B) + C}$$

- 10. A doped Si sample Λ of thickness 3 mm, shows a Hall voltage of $V_y = 5$ mV for current density [4M] $J_x = 500 \text{ Amp/m}^2$ under a magnetic field of $B_z = 1 \text{ W/m}^2$.
 - (a) Find the toe of the semiconductor.
 - **(b)** Find the doping concentration of the semiconductor.
 - (c) Calculate the position of Fermi Level (E_F) w.r.t intrinsic Fermi Level (E_i).
 - (d) Sketch and label the energy band diagram indicating the value obtained in part (c).
- 11. (a) Λ p·n diode is reverse biased at V_r and the generated capacitance is 20 pF. If the doping of the p-side is doubled and the bias is changed to twice of the previous value, what will be the new value of capacitance from 20 pF value?
 - (b) If further the bias is changed to 10.V_r, what will be the revised value of capacitance?
- 12. The current equation for a p-n junction for $v > \frac{3.K.T}{q}$ is given as $I = I_0.exp\left(\frac{q.v}{K.T}\right)$, where, $I_0 = A.exp.\left[\frac{-1.12eV}{K.T}\right]$. Calculate the suitable forward bias voltage required at 320 K temperature for this diode to maintain the same current as available in this diode at 300 K temperature for 0.5 V forward bias voltage.
- 13. For a particular semiconductor material $N_C=1.5 \times 10^{18}/$ cm³, $N_V=1.3 \times 10^{19}/$ cm³ and [5M] $E_g=1.43$ eV at T=300 K.
 - (a) Determine the position of the intrinsic Fermi level E_i w.r.t the centre of band gap.
 - (b) What will be the position of Fermi level (E_F) w.r.t the top of the valence band (E_V).
 - (c) Draw the above energy band diagram.

Useful Equations

$$n_0 = n_i e^{(E_i - E_i)/kT}$$

$$p_0 = n_i e^{(E_i - E_i)/kT}$$

$$n_0 p_0 = n_i^2$$

$$n = N_e e^{-(E_e - F_e)/kT} = n_e e^{(E_e - E_e)/kT}$$

$$p = N_e e^{-(E_e - E_e)/kT} = n_e e^{(E_e - E_e)/kT}$$

$$np = n_i^2 e^{(F_n - F_n)/kT}$$

$$\frac{I_x}{A} = J_x = q(n\mu_n + p\mu_p)\mathcal{E}_x = \sigma\mathcal{E}_x \qquad \frac{p_n}{p_n} = \frac{n_n}{n_p} = e^{qV_d kT} \qquad W = \left[\frac{2\epsilon(V_0 - V)}{q}\left(\frac{N_\sigma + N_d}{N_\sigma N_d}\right)\right]^{1/2}$$

Diffusion length:
$$L = \sqrt{D\tau}$$
 Einstein relation: $\frac{D}{\mu} = \frac{kT}{q}$

Continuity:
$$\frac{\partial p(x,t)}{\partial t} = \frac{\partial \delta p}{\partial t} = -\frac{1}{q} \frac{\partial J_p}{\partial x} - \frac{\delta p}{\tau_p}$$
 $\frac{\partial \delta n}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} - \frac{\delta n}{\tau_n}$

For steady state diffusion:
$$\frac{d^2\delta n}{dx^2} = \frac{\delta n}{D_n \tau_n} = \frac{\delta n}{L_n^2} = \frac{d^2\delta p}{dx^2} = \frac{\delta p}{L_p^2}$$

Equilibrium:
$$V_0 = \frac{kT}{q} \ln \frac{p_p}{p_n} = \frac{kT}{q} \ln \frac{N_o}{n_i^2/N_d} = \frac{kT}{q} \ln \frac{N_o N_d}{n_i^2}$$

Equlibrium:
$$V_0 = K.T. ln\left(\frac{N_A.N_B}{n_i 2}\right)$$

$$I = I_0 \cdot \left[exp \cdot \left(\frac{V}{nK \cdot T} \right) - 1 \right]$$

$$I = q.A. \left[\frac{D_p}{L_p} \cdot p_n + \frac{D_n}{L_n} \cdot n_p \right] \cdot \left[exp \left(\frac{q.V}{K.T} \right) - 1 \right]$$

$$V = \frac{J}{q \cdot p_0} \cdot B \cdot t$$

Equilibrium:
$$V_0 = \frac{kT}{q} \ln \frac{p_p}{p_n} = \frac{kT}{q} \ln \frac{N_a}{n_i^2/N_d} = \frac{kT}{q} \ln \frac{N_a N_d}{n_i^2}$$