Übung 2

Max Wisniewski, Alexander Steen

Aufgabe 1.

Sei G = (V, E) ein Graph und $v \in V$ ein Blatt.

Zu zeigen: G ist ein Baum $\Leftrightarrow G' := (V \setminus \{v\}, E \setminus \delta(v))$ ist ein Baum.

Beweis:

" \Rightarrow ": Sei G ein Baum.

- (1) In G' kann kein Kreis entstanden sein, da keine Kanten hinzu kamen.
- (2) G' ist zusammenhängend: Da v ein Blatt ist, gibt es genau einen Knoten, der adjazent zu v ist. Damit kann durch das Entfernen von v eine neue Zusammenhangskomponente entstehen. (MUSS HIER MEHR HIN?)
- "\(:= \) (V \ \{v\}, E \ \delta(v)) ein Baum.
- (1) G ist kreisfrei: G' war kreisfrei; der hinzugefügte Knoten v kann nicht Teil eines neuen Kreises sein da d(v) = 1 gilt, jeder auf einem Kreis liegende Knoten aber mindestens Grad 2 haben muss.
- (2) G ist zusammenhängend,
da keine Kanten entfernt worden sind und ein Knoten mit genau einer Kante hinzugefügt worden ist.

Aufgabe 2.

Zu zeigen: Ein Baum G mit Maximalgrad $\Delta(G)$ hat mindestens $\Delta(G)$ Blätter. Die Aussage ist offensichtlich falsch für Bäume mit unendlich vielen Knoten (man betrachte z.B. einen unendlichen Pfad). Darum beschränken wir uns auf eine endliche Anzahl von Knoten.

Beweis:

Sei G = (V, E) ein Baum mit $|V| < \omega$ und Maximalgrad $\Delta(G)$. Dh. es existiert ein Knoten $v \in V$ mit $d(v) = \Delta(G) =: d$. Falls $\Delta(G) = 0$ folgt die Behauptung direkt, also nehmen wir im folgenden $\Delta(G) \geq 1$ an. Seien G_1, \ldots, G_d die Unterbäume von v; dann gilt $1 \leq |G_i| < \omega$. Seien \tilde{G}_i die Bäume die man durch Hinzufügen von (1) v und (2) der Originalkante von v nach G_i aus G_i enthält. Nach dem "Blattlemma" (2.5) haben alle \tilde{G}_i jeweils mindestens 2 Blätter. Betrachten wir also wieder den Originalgraphen $G = \bigcup \tilde{G}_i$, kann jedes \tilde{G}_i höchstens ein Blatt verloren haben (nämlich v falls es nicht selber ein Blatt in G ist). Damit enthält G mindestens $\Delta(G)$ Blätter (in jedem G_i eines).

Aufgabe 3.

Beweis:

Aufgabe 4.

a)

Wie viele Klassen isomorpher Bäume gibt es in T_5 ?

Lösung:

Es gibt genau drei Klassen isomorpher Bäume:

- (1) Alle isomorphen Bäume mit maximaler Pfadlänge 3 (links).
- (2) Alle isomorphen Bäume mit maximaler Pfadlänge 4 (mitte).
- (3) Alle isomorphen Bäume mit maximaler Pfadlänge 5 (rechts).

b)

Gesucht: |[T]| für alle Isomorphieklassen. Seien T_1, T_2, T_3 die Bäume aus (a), dann ist:

1. $|[T_1]|$

 $\mathbf{c})$

 $\sum_{[T]} |[T]| = 125 = 5^3$ (Auch Satz von Cayley)