# Set - 5: Modelling data with power laws (Pareto's law and Zipf's law)

Natansh Shah (202201445)\* and Tirth Modi (202201513)<sup>†</sup>

Dhirubhai Ambani Institute of Information & Communication Technology,

Gandhinagar, Gujarat 382007, India

CS302, Modelling and Simulation

This study models power law distributions in two distinct domains: wealth distribution in India using Pareto's law and dependency networks in Debian using Zipf's law. By analyzing real-world data, it reproduces key plots and derives insights into inequality and structural dependencies.

# I. PARETO DISTRIBUTION OF WEALTH IN INDIA

### A. Model

To model the power law that the data follow, apply the function

$$N(x) = A + Bx^{-\alpha} \tag{1}$$

Given that x is the amount of wealth and N(x) is the frequency distribution of wealth holders.

### B. Results

Fig. 1 shows pareto distribution of wealth in India.



FIG. 1: Here A=60, B=340000 and  $\alpha = 5/4$ .

\*Electronic address: 202201445@daiict.ac.in †Electronic address: 202201513@daiict.ac.in

## II. ZIPF'S LAW IN THE DEPENDENCY NETWORK OF DEBIAN

### A. Model

The global power law distribution is given by,

$$\phi(x) = \left[\eta + \left(\frac{x+\lambda}{c}\right)^{-\mu\alpha}\right]^{-1/\mu} \tag{2}$$

in which  $\alpha$  is a power-law exponent,  $\mu$  is a nonlinear saturation exponent,  $\eta$  is a "tuning" parameter for nonlinearity, and  $\lambda$  is another parameter that is instrumental in setting a limiting scale for the poorly connected nodes.

With  $\mu=-1$  (implying a power-law in the distribution) and with  $\alpha=-2$  (implying that the power-law is specifically Zipf's law), the saturation properties of the network (for any value of  $\lambda$  and  $\eta$ ) can be abstracted from equation (2) as

$$\phi(x) = \eta + (\frac{c}{x+\lambda})^2 \tag{3}$$

# B. Results

Fig. 2 shows the network of incoming links in the Etch release.



FIG. 2: Here  $\alpha=-2,\,\mu=-1$  ,  $\eta=-8$  ,  $\lambda=1.5$  and c = 190.

Fig. 3 shows the network of outgoing links in the Etch release.



FIG. 3: Here  $\alpha=-2,~\mu=-1$ ,  $\eta=1$ ,  $\lambda=0.25$  and the data is fitted for c = 80. A solitary top node is to be seen for x = 9025.

Fig. 4 shows the network of incoming links in the Lenny release.



FIG. 4: Here  $\alpha=-2,\,\mu=-1$  ,  $\eta=-15$  ,  $\lambda=1.6$  and c = 210.

Fig. 5 shows the network of outgoing links in the Lenny release.



FIG. 5: Here  $\alpha=-2,\,\mu=-1$  ,  $\eta=1$  ,  $\lambda=0.35$  and the data is fitted for c = 90. A solitary top node is to be seen for x = 10446.

Fig. 6 shows the network of incoming links in the Squeeze release.



FIG. 6: Here  $\eta = -28$ ,  $\lambda = 2.2$  and c = 265.

Fig. 7 shows the network of outgoing links in the Squeeze release.



FIG. 7: Here  $\eta=1$  ,  $\lambda=0.45$  and the data is fitted for c = 110. The richest node in this distribution has 12470 links.

## III. CONCLUSIONS

In conclusion, our exploration involved a basic mathematical model, the logistic equation, with respect to pareto distribution and ziff's law.

- $\Rightarrow$  A mathematical pattern that is closely similar to Zipf's law is the power law distribution, which describes the frequency of packages in the Debian dependency network.
- $\Rightarrow$ The value  $\eta$  in Debian data Modelling for Outgoing data, however, models the saturation behaviour towards a limiting scale of  $\phi$  for large values of x.
- ⇒According to the Pareto distribution, a very small percent of the population controls majority of the country's wealth.

 $Open\mbox{-}Source\ Software'.$ 

<sup>[1]</sup> Rajiv Nair, G. Nagarjuna, and Arnab K. Ray, 'Finite-Size Effects in the Dependency Networks of Free and