	2) Vapor escoa no anel tubular de um trocador duplo-tubo condensando na superficie externa do tubo interno à temperatura de 80 °C. Sabendo que água a 60 °C entra no tubo interno (com diâmetro de 2,54 cm) a uma velocidade média de 2 cm/s. Supondo que o trocador de calor tenha 3,5 m de comprimento, pedese:				
	2.a) Calcule a temperatura de saída da água no tubo interno, empregando uma correlação empírica na solução. [Ts=:]				
	2.b) Calcule a vazão mássica de condensado gerado (na superficie externa do tubo interno). [M _{cond} =:]				
2.c) Admitindo que o trocador de calor esteja na posição vertical e que haja condensação pelicu calcule o coeficiente de transferência de calor médio sobre todo o comprimento do tubo e avalie q é o regime de condensação.					
	[h=:]				
	[Re = :]				
	2.d) Apresente a análise crítica dos resultados encontrados.				
	Resolução nas páginas abaixo!				

Dados: Tw= 80°C
aga To = 60°C
D=0,0254m
L = 3,5m
10x=0,02m/s
Hipóteses: escamento totalmente desenvolvido, nadiação desprezível, sem efeitos de entrada.
- SHOP REST CERTS OF ELECTION
Herarás partes 1,121
· N=1 TL(arbitrario) = 80°C => Tbulk = To + TL = 60°C + 80°C = 70°C
2 2
- Dados da agua em Tulk - TABELA - B. 2 Ozisi h
· ρ = 979,77 laylm3
- Cp = 4190,4 5/2mg°C
v = 4,21.10 m2/s
- le = 0,6595 W/mK
- Pr = 2,62
· CA b do R II R
· Calculo de Roynolds: Re = 102 D = 9102.0,0354 = 1207 < 10" = CAMINAR
V 4,21.70 ⁻⁷
- Concloção do Seider e Tatte p/negime Laminar:
- Mark = 4,04. 10 4 R. & Mark = 1.14 - DOUGH & The 975 1
1 1 = 3,55.16 8,5 Mw = 1,14 = 0,044 < Mile < 9,75 V
- Gz = Re.Pr = 22,94 => Gz 1/3. (Mail) = 2,893817 >2 V
· 0,43 < Pc < 16700 /
tilibra

As condições foram atingidas!	Portanto:						
· Num = 1,86.62 (Malk) = 1,86.2,893817 = 5,3825							
Num = h.D = D h = Num. la = 5,3825. Q6595 = 139,75							
· St = h = 139,75 = 90017 POLG 979,77.902.4190,4							
Portanto: In Ti-Tw + St. 4L = 0.	Isolando TL e substituindo os valores, en contra-se:						
	TL=72,17°C						
· Convergência: TL-7 L'arbitrino) = 72,1 · N=2 Segundo os mesmos passos:	111111111111111111111111111111111111111						
The lart trains) = 72,17 °C Toulk = 66,09	Mu= 3,55.10-4 Pais (Muh = 121)						
• Dados da Tabela 3-2 em Tbull: P = 981,9949 bylm3	G2 = 23,09 G23. (Months) 914 = 2,9237						
G=4188,0 J/by°C V=4,433.10-7 m2/5 b=0,6562 W/mK	Num = 5,43836 h = 140,50 St = 0,0017						
Pr= 2,7764	TL= 72,20°C						
Re= 1146 < 104 (tilibra) LAMINAR	· Convergencia · 72/20 - 72,17 = 0,03 \ TL= 72,20°C						

Portanto, $T_L = 72,20^{\circ}C$.

	E 1 1
6)	
TL: 72,20°C	
Tourk = TL+TO 7220+60 - 66,0995°C	
TElme = TELL+TW = 66,0995 + 80 = 73,0498	or
2 2	C
Dados das Tabelas B.2 e B.7 Ogsila para	in a Tahur
ρ= 978,035 leglm³	ager PAT thime.
Re: 0,6621 W/mK	Re = plan D: 1277 <1800 V
Mg 3,9.10-4 Pa.5	W - PORES - 1277 (1000 V
hry = 2326237	
0	
· Equação da condensação em topo honzontal:	
hm = 0,725 (g. A (Ac- Ra) hrg. Lo)	/4
ME AT. D	
	2 \1/
hm=0,725 (9,81. 978,035,2326237.0,66	5213) 74
3,9.104. (80 - 66,095).00	954 /
hm=10623(8 W/m2K	
O-16-AT-MOLL AT-MON	DEUL 3 C. 406.03 0 (00 04 -000)
Q= A.hm. DT = M.D.L.hm. DT = M.Qa Q= 41244,1 W	45-1, 215. 1002518.(XU-6610995)
Q=hfg, m = Q =41244,1	in= 0,01773 leg/s
N _{fg} 2326937	m= 63, 8278 bylh

Portanto, $\dot{m} = 0.01773 \, kg/s = 62.83 \, kg/h$.

```
c) Pela relação de hm, horizontal e hm, vertical:

hm.horiz = 2,432. hm, vert

10623, 8 W/m²K = 2,432. hm, vert = 12 (hm, vert = 4368,33 W/m²K)

· Cálculo do Re:

Re = 4.m² = 4.001773 &g/s = 2279

JR. P JR. N. D 3,9.104. N. 0,0054

Re > 1800 = 2 turbulento!
```

Portanto, $h_{m,vert} = 4368,33 \ W/m^2 K$

E também $Re = 2279 > 1800 \rightarrow turbulento!$

d)

d.) Os valores estão condigentes! A temperatura de saída calculada na letra a) está entre 60°C e 80°C, o que é espevado.

O ragime de tubo horizontal é lominar, enquanto no tubo vertical éturbulento.

Sabe-se que quando o regime é turbulento, é mais preferível usar os tubos verticais que proporcionam maior troca de energia. Portanto, o routado é condizente!