Professor: ROSALVO FILHO	Disciplina: S.O Sistemas Operacionais	Aluno: GIOVANNA BRANDÂO PAULO - BP3052401.

- 1. Qual a diferença entre escalonamento FIFO e Circular?
- R: O FIFO (*First-In, First-Out*) funciona de forma que o primeiro processo a chegar é o primeiro a ser atendido, operando como uma fila de atendimento única, na qual uma tarefa é executada completamente antes da próxima. Trata-se de um método simples, que garante que todas as tarefas sejam eventualmente realizadas. No entanto, tarefas mais longas, que exigem mais tempo, podem acabar atrasando a execução de tarefas mais curtas. Já o escalonamento Circular opera de maneira diferente: ele distribui fatias de tempo de forma equitativa entre todas as tarefas na fila. Funciona como um rodízio, buscando atender a todos e agilizar especialmente as tarefas mais curtas. Contudo, seu desempenho depende diretamente do tamanho dessas fatias de tempo. Além disso, o constante revezamento entre tarefas pode levar a uma sobrecarga no sistema. Em resumo: o FIFO prioriza a ordem de chegada, enquanto o escalonamento Circular prioriza a divisão igualitária do tempo de processamento.
- 2. Considere que cinco processos sejam criados no instante de tempo 0 (P1 , P2 , P3, P4 e P5) e possuam as características descritas na tabela a seguir:

Processo	Tempo de UCP	Prioridade
P1	10	3
P2	14	4
P3	5	1
P4	7	2
P5	20	5

Desenhe um diagrama ilustrando o escalonamento dos processos e seus respectivos tempos de turnaround, segundo as políticas especificadas a seguir. O tempo de troca de contexto deve ser desconsiderado.

- a) FIFO
- b) SJF
- c) Prioridade (número menor implica prioridade maior)
- d) Circular com fatia de tempo igual a 2 u.t.
- R: A) Executado por ordem de chegada.

Tempo de Turnaround:

- P1: 10 0 = 10
- P2: 24 0 = 24
- P3: 29 0 = 29
- P4: 36 0 = 36
- P5: 56 0 = 56
- B) Executados na ordem de menor tempo de UCP.

Tempo de Turnaround:

P3: 5 - 0 = 5

• P4: 12 - 0 = 12

• P1: 22 - 0 = 22

• P2: 36 - 0 = 36

P5: 56 - 0 = 56

C) Executados na ordem de prioridade crescente.

Tempo de Turnaround:

• P3: 5 - 0 = 5

• P4: 12 - 0 = 12

• P1: 22 - 0 = 22

• P2: 36 - 0 = 36

• P5: 56 - 0 = 56

D)Executados em rodadas de duas unidades de tempo.

Tempo de Turnaround:

• P1: 38 - 0 = 38

• P2: 40 - 0 = 40

• P3: 25 - 0 = 25

P4: 34 - 0 = 34
P5: 52 - 0 = 52

- 3. Considere um sistema operacional com escalonamento por prioridades onde a avaliação do escalonamento é realizada em um intervalo mínimo de 5 ms. Neste sistema, os processos A e B competem por uma única UCP. Desprezando os tempos de processamento relativo as funções do sistema operacional, a tabela a seguir fornece os estados dos processos A e B ao longo do tempo, medido em intervalos de 5 ms (E = execução, P = pronto e W = espera). O processo A tem menor prioridade que o processo B.
 - a. Em que tempos A sofre preempção?
 - b. Em que tempos B sofre preempção?
 - c. Refaça a tabela anterior supondo que o processo A é mais prioritário que o processo B.

	00- 04	05- 09	10- 14	15- 19	20- 24	25- 29	30- 34	35- 39	40- 44	45- 49
Processo A	P	P	Е	Е	Е	P	P	P	Е	W
Processo B										

											100- 105
Processo A	P	Е	P	P	Е	Е	W	W	P	Е	Е
Processo B	W	P	Е	Е	W	W	P	Е	Е	-	-

- R: A) Entre 25 e 29 ms, o processo A estava Pronto (P) e continuou assim, enquanto o processo B começou a Executar (E). Isso mostra que, aos 25 ms, o escalonador deu prioridade ao processo B, interrompendo o processo A, que estava em execução antes. E entre 60 e 64 ms, o processo A ficou Pronto (P) o tempo todo, enquanto o processo B passou a Executar (E). Isso mostra que, aos 60 ms, o escalonador novamente deu prioridade ao processo B, interrompendo o processo A.
- **B)** Entre 10 e 14 ms, o processo B estava Executando (E), mas mudou para Espera (W). Com isso, ele parou de rodar, e o processo A assumiu a execução. Entre 40 e 44 ms, o processo B estava Executando (E), mas mudou para Espera (W),

interrompendo sua execução. E no intervalo 70 e 74 ms, o processo B estava Executando (E), mas mudou para Espera (W), mais uma vez interrompendo sua execução.

C)

											•										
Tempo (ms)	00-04	05-0	10-14	15-19	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	80-84	85-89	90-94	95-99	100-105
Processo A	Р	E	E	E	E	E	E	E	E	W	p	E	E	E	E	E	W	W	E	E	E
Processo B	Р	P	W	W	P	Р	Р	P	W	W	W	P	P	p	W	W	Р	E	Р	P	

4. Considere um sistema operacional que implemente escalonamento circular com fatia de tempo igual a 10 u.t. Em um determinado instante de tempo, existem apenas três processos (P1, P2 e P3) na fila de pronto, e o tempo de UCP de cada processo é 18, 4 e 13u.t., respectivamente. Qual o estado de cada processo (em execução; pronto, espera ou terminado) no instante de tempo T, considerando a execução dos processos P1, P2 e P3, nesta ordem, e que nenhuma operação de E/S é realizada?

a.
$$T = 8 \text{ u.t.}$$

b. $T = 11 \text{ u.t.}$
c. $T = 33 \text{ u.t.}$

R: A) Entre 0 e 10 u.t., o processo P1 foi o primeiro a executar, usando toda sua fatia de tempo (10 u.t.) e consumindo parte do seu tempo total de CPU (18 u.t.). No tempo 8 u.t., o P1 ainda estava em execução, já com 8 u.t. consumidas.

Estado dos processos em T = 8 u.t.:

- P1: Executando (usou 8 u.t. de CPU)
- **P2:** Pronto (ainda não executou)
- **P3:** Pronto (ainda não executou)

B) P1 executa por 10 u.t. e ainda precisa de mais 8 u.t. para terminar. O escalonador circular passa para P2. Como P2 precisa de apenas 4 u.t. (menos que a fatia de tempo), ele finaliza sua execução nesse intervalo.

Estado dos processos em T = 11 u.t.:

- **P1:** Pronto (já usou sua primeira fatia, espera a próxima)
- P2: Executando (começou no tempo 10 u.t., ainda dentro de uma única fatia)
- **P3:** Pronto (ainda não executou)
- C) 0-10 u.t.: P1 executa (restam 8 u.t.) 10-14 u.t.: P2 executa e termina (precisava de apenas 4 u.t.) 14-20 u.t.: Início de P3 (completa 6 u.t. da fatia de 10 u.t.) 20-30 u.t.: P3 continua executando (completa 10 u.t. no total; restam 3 u.t.) 30-38 u.t.: P1 executa sua segunda fatia e termina (restavam 8 u.t.) 38-43 u.t.: P3 executa suas 3 u.t. restantes e termina.

- **P1:** Em execução (começou sua segunda fatia em 30 u.t., termina em 38 u.t.)
- **P2:** Finalizado (terminou em 14 u.t.)
- **P3:** Pronto (terminou primeira fatia em 30 u.t., aguarda segunda fatia)