CB n°1 - Compléments d'algèbre linéaire - Sujet 1

1. On considère les matrices $A = \begin{pmatrix} 3 & 0 & 2 \\ 0 & -1 & 0 \\ -4 & 0 & -3 \end{pmatrix}$, et $B = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix}$.

Déterminer la nature des endomorphismes de \mathbb{R}^3 canoniquement associés à A et B, ainsi que leurs éléments caractéristiques.

 $A^2 = I_3$ donc A est la matrice de la symétrie s par rapport à $Ker(s - Id_{\mathbb{R}^3}) = Vect\{(1, 0, -1)\}$ parallèlement à $Ker(s + Id_{\mathbb{R}^3}) = Vect\{(0, 1, 0), (1, 0, -2)\}$.

 $B^2 = B$ donc B est la matrice de la projection p sur $Im(p) = Vect\{(0, 1, 1), (1, 1, 0)\}$ parallèlement à $Ker(p) = Vect\{(1, 1, 1)\}$.

- **2.** On considère les sous-espaces vectoriels de \mathbb{R}^3 suivants : $F = \{(x, y, z) \in \mathbb{R}^3, y + z = 0\}, G = \{(x, y, z) \in \mathbb{R}^3, x z = 0 \text{ et } x y + z = 0\}$
 - **a.** Déterminer des bases de F et de G. $F = \text{Vect}\{(1,0,0),(0,1,-1)\},$ et $G = \text{Vect}\{(1,2,1)\}.$
 - **b.** Montrer que F et G sont supplémentaires dans \mathbb{R}^3 , à l'aide d'un déterminant (justifier la réponse).

On note $f_1 = (1,0,0), f_2 = (0,1,-1)$ et g = (1,2,1). $\det(f_1, f_2, g) = 3 \neq 0$, donc la famille (f_1, f_2, g) est libre, de cardinal 3, c'est donc une base de \mathbb{R}^3 ; F et G sont supplémentaires.

c. Donner la matrice dans la base canonique de la projection sur F parallèlement à G.

La matrice de passage de la base canonique $\mathscr C$ à la base (f_1, f_2, g) est $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & -1 & 1 \end{pmatrix}$.

On a:
$$Mat_{\mathscr{C}}(p) = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1} = \begin{pmatrix} 1 & -\frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{3} & -\frac{2}{3} \\ 0 & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

Spé PT B

CB n°1 - Compléments d'algèbre linéaire - Sujet 2

1. On considère la matrice $A = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 2 & 0 & 2 \end{pmatrix}$, et $B = \begin{pmatrix} -1 & 2 & -2 \\ -2 & 3 & -2 \\ -2 & 2 & -1 \end{pmatrix}$.

Déterminer la nature des endomorphismes de \mathbb{R}^3 canoniquement associés à A et B, ainsi que leurs éléments caractéristiques.

 $A^2 = A$ donc A est la matrice de la projection p sur $Im(p) = Vect\{(-1,0,2),(0,1,0)\}$ parallèlement à $Ker(p) = Vect\{(1,0,-1)\}$.

 $B^2 = I_3$ donc B est la matrice de la symétrie s par rapport à $Ker(s - Id_{\mathbb{R}^3}) = Vect\{(1, 1, 0), (0, 1, 1)\}$ parallèlement à $Ker(s + Id_{\mathbb{R}^3}) = Vect\{(1, 1, 1)\}$.

- **2.** On considère les sous-espaces vectoriels de \mathbb{R}^3 suivants : $F = \{(x, y, z) \in \mathbb{R}^3, x + y z = 0\}, G = \{(x, y, z) \in \mathbb{R}^3, x + z = 0 \text{ et } x + y + z = 0\}.$
- **a.** Déterminer des bases de F et de G. $F = \text{Vect}\{(1,0,1),(0,1,1)\},$ et $G = \text{Vect}\{(1,0,-1)\}.$
- **b.** Montrer que F et G sont supplémentaires dans \mathbb{R}^3 , à l'aide d'un déterminant (justifier la réponse). On note $f_1 = (1,0,1), f_2 = (0,1,1)$ et g = (1,0,-1). det $(f_1,f_2,g) = -2 \neq 0$, donc la famille (f_1,f_2,g) est libre, de cardinal 3, c'est donc une base de \mathbb{R}^3 ; F et G sont supplémentaires.
- c. Donner la matrice dans la base canonique de la symétrie par rapport à F, parallèlement à G.

La matrice de passage de la base canonique \mathscr{C} à la base (f_1, f_2, g) est $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$.

On a:
$$Mat_{\mathscr{C}}(s) = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} P^{-1} = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}.$$