Introduction to Machine Learning

Group 2: Final Project Presentation

Jan Heinrich Schlegel, Robert Bibaj, Simon Klaassen, Thomas Meier April 26, 2022

Data Cleaning

- Concatenating the Datasets: Creating an excess return feature and modifying the existing class feature
- Dealing with NaN's:Threshold of 30%, KNN-imputer
- Dealing with Outliers: Isolation Forest Algorithm, works well with high volume data and can detect data anomalies considering multiple variables

Class Imbalance

- ightharpoonup SMOTE algorithm and SMOTENC algorithm \Rightarrow many problems

Feature Engineering With SGM

Sustainable Growth Model as Fundamental Analysis Framework

Feature Selection

Dimension Reduction

- ▶ Many features are only barely correlated ⇒ PCA problematic

Weighted-Averaged F_1 -Score:

$$F_1$$
-Score = $2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$

The weighted average is calculated by taking the mean of all per-class F_1 -Scores (calculated in a One-vs-Rest approach) whilst considering the number of occurences of each class.

- Baseline: Choose class randomly according to class proportions in train set
- \triangleright Baseline weighted F_1 -Score: 0.466

Approach	Log Reg	Naive Bayes	Random Forest	XGBoost	SVM	Neural Network
All Features	0.508	0.358	0.544	0.578	0.470	0.540
Feature Sel RF	0.440	0.390	0.492	0.470	0.416	0.535
Feature Sel XGB	0.466	0.505	0.494	0.446	0.273	0.536
(Kernel) PCA	0.456	0.508	0.507	0.526	0.459	-
Feature Engineering	0.513	0.463	0.535	0.581	0.493	0.531

Finance Theory

- Do our results imply that the "Efficient Market Hypothesis" does not hold?
- Not necessarily, since we do not know whether the heightened prediction reliability of our algorithms translates into a superior market performance

References

- Clarke, K. A. (2005). The phantom menace: Omitted variable bias in econometric research. Conflict Management and Peace Science, 22(4), 341–352. https://doi.org/10.1080/ 07388940500339183
- Fama, E. F. (1960). Efficient market hypothesis. Diss. PhD Thesis, Ph. D. dissertation.
- Higgins, R. C. (1977). How much growth can a firm afford? Financial Management, 6(3), 7–16. http://www.jstor.org/stable/3665251
- Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. 2008 Eighth IEEE International Conference on Data Mining, 413–422. https://doi.org/10.1109/ICDM.2008.17
- Lo, A. W., & MacKinlay, A. C. (2011). A non-random walk down wall street. A non-random walk down wall street. Princeton University Press.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
- Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 10(5), 1299-1319. https://doi.org/10.1162/089976698300017467
- Shrive, F. M., Stuart, H., Quan, H., & Ghali, W. A. (2006). Dealing with missing data in a multi-question depression scale: A comparison of imputation methods. BMC medical research methodology, 6(1), 1–10.
- Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep learning is not all you need. Information Fusion, 81, 84–90. https://doi.org/https://doi.org/10.1016/j.inffus. 2021.11.011