一、填空 20% (每小题 2 分)

- 1. 设 $A = \{x \mid (x \in N) \perp (x < 5)\}, B = \{x \mid x \in E^+ \perp x < 7\}$ (N: 自然数集,E+ 正偶数) 则 $A \cup B =$ ________。
- 2. A, B, C表示三个集合, 文图中阴影部分的集合表达式为

- 3. 设 P,Q 的真值为 0,R,S 的真值为 1,则 $\neg (P \lor (Q \to (R \land \neg P))) \to (R \lor \neg S)_{\text{的真值}=}$
- 4. 公式 $(P \land R) \lor (S \land R) \lor \neg P$ 的主合取范式为
- 5. 若解释 I 的论域 D 仅包含一个元素,则 $\exists x P(x) \to \forall x P(x)$ 在 I 下真值为 _____。
 - 6. 设 A={1, 2, 3, 4}, A 上关系图为

则 $\mathbf{R}^2 =$ _____

7. 设 A={a, b, c, d}, 其上偏序关系 R 的哈斯图为

则 R= ______

- 8. 图 C 的补图为 ______ 。
- 9. 设 A={a, b, c, d} , A 上二元运算如下:

*	a	b	c	d
a	a	b	c	d
b	ь	c	d	a
c	c	d	a	b
d	d	a	b	c

那么代数系统<A,*>的幺元是 ______,有逆元的元素为_____,它们的

逆元分别为

10. 下图所示的偏序集中,是格的为 ____

二、选择 20% (每小题 2分)

- 1、下列是真命题的有()
- Α.
- $\{a\} \subseteq \{\{a\}\}\$, $\{\{\Phi\}\} \in \{\Phi, \{\Phi\}\}\$,
- C. $\Phi \in \{\{\Phi\}, \Phi\}$:
- D. $\{\Phi\} \in \{\{\Phi\}\}\$
- 2、下列集合中相等的有()
 - A. $\{4, 3\} \cup \Phi$; B. $\{\Phi, 3, 4\}$; C. $\{4, \Phi, 3, 3\}$; D. $\{3, 4\}$.
- 3、设 A={1, 2, 3},则 A 上的二元关系有()个。
 - A. 2^3 ; B. 3^2 ; C. $2^{3\times3}$; D. $3^{2\times2}$.
- 4、设 R, S 是集合 A 上的关系,则下列说法正确的是()
 - A. 若R, S 是自反的, 则 $R \circ S$ 是自反的;
 - B. 若 R, S 是反自反的, 则 $R \circ S$ 是反自反的;
 - C. 若 R, S 是对称的, 则 $R \circ S$ 是对称的;
 - D. 若 R, S 是传递的, 则 $R \circ S$ 是传递的。
- 5、设 A={1, 2, 3, 4}, P(A)(A的幂集)上规定二元系如下

$$R = \{ \langle s, t \rangle | s, t \in p(A) \land (|s| = |t|) \text{ in } P(A) / R = (A)$$

- A. A; B. P(A); C. $\{\{\{1\}\}\}, \{\{1, 2\}\}\}, \{\{1, 2, 3\}\}, \{\{1, 2, 3, 4\}\}\};$
- D. $\{\{\Phi\}, \{2\}, \{2, 3\}, \{\{2, 3, 4\}\}, \{A\}\}\}$
- 6、设 A={ Φ , {1}, {1, 3}, {1, 2, 3}}则 A 上包含关系"⊆"的哈斯图为(

- 7、下列函数是双射的为()
- A. $f: I \rightarrow E$, f(x) = 2x; B. $f: N \rightarrow N \times N$, $f(n) = \langle n, n+1 \rangle$;
- C. $f: R \rightarrow I$, f(x) = [x]; D. $f: I \rightarrow N$, f(x) = |x|

(注: I一整数集, E一偶数集, N一自然数集, R一实数集)

8、图 中 从 v_1 到 v_3 长度为 3 的通路有 ()条。

- A. 0; B. 1; C. 2; D. 3.
- 9、下图中既不是 Eular 图,也不是 Hamilton 图的图是(

- 10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4度结点。
 - A. 1; B. 2; C. 3; D. 4 。

三、证明 26%

1、R 是集合 X 上的一个自反关系, 求证: R 是对称和传递的, 当且仅当 < a, b> 和 < a, c> 在 R 中有 < .b, c> 在 R 中。(8 分)

- 2、f和g都是群< G_1 ,★>到< G_2 ,*>的同态映射,证明<C,★>是< G_1 ,★>的一个子 群。其中 $C=\{x \mid x \in G_1 \exists f(x) = g(x)\}$ (8分)
- 3、G=<V, E> (|V| = v, |E|=e) 是每一个面至少由 k(k \geq 3)条边围成的连通平面 $e \leq \frac{k(v-2)}{k-2}$ 图,则 由此证明彼得森图(Peterson)图是非平面图。(11 分)

四、逻辑推演 16%

用 CP 规则证明下题 (每小题 8分)

- $A \lor B \to C \land D, D \lor E \to F \Rightarrow A \to F$
- $2 \Rightarrow \forall x (P(x) \to Q(x)) \Rightarrow \forall x P(x) \to \forall x Q(x)$

五、计算 18%

- 1、设集合 A={a, b, c, d}上的关系 R={<a,b>,<b,c>,<c,d>}用矩阵运算 求出 R 的传递闭包 t (R)。 (9分)
- 2、如下图所示的赋权图表示某七个城市 v_1, v_2, \dots, v_7 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。 (9分)

试卷一答案:

一、填空 20% (每小题 2 分)

1、 $\{0, 1, 2, 3, 4, 6\}$; 2、 $(B \oplus C) - A$; 3、1; 4、 $(\neg P \lor S \lor R) \land (\neg P \lor \neg S \lor R)$; 5、1; 6、 $\{<1,1>,<1,3>,<2,2>,<2,4>\}$; 7、 $\{<a.b>,<a,c>,<a,d>,<b,d>,<c,d>\}$ \bigcup I_A ; 8、

9, a; a, b, c, d; a, d, c, d; 10, c;

二、选择 20% (每小题 2分)

题目	1	2	3	4	5	6	7	8	9	10
答案	C D	В、С	С	A	D	С	A	D	В	A

三、证明 26%

1、证:

2、证
$$\forall a,b \in C$$
 , 有 $f(a) = g(a), f(b) = g(b)$, 又
$$f(b^{-1}) = f^{-1}(b), \quad g(b^{-1}) = g^{-1}(b) \therefore f(b^{-1}) = f^{-1}(b) = g^{-1}(b) = g(b^{-1})$$

$$\therefore f(a + b^{-1}) = f(a) * f^{-1}(b) = g(a) * g(b^{-1}) = g(a + b^{-1})$$

$$\therefore a \star b^{-1} \in C$$
 $\therefore < C, \star >$ 是 $< G_1, \star >$ 的子群。

3、证:

① 设
$$G$$
 有 r 个面,则
$$2e = \sum_{i=1}^r d(F_i) \ge rk$$
 ,即 $r \le \frac{2e}{k}$ 。而 $v-e+r=2$ 故
$$2 = v-e+r \le v-e+\frac{2e}{k}$$
 即得 $e \le \frac{k(v-2)}{k-2}$ 。(8分)

②彼得森图为
$$k = 5, e = 15, v = 10$$
, 这样 $e \le \frac{k(v-2)}{k-2}$ 不成立,

所以彼得森图非平面图。(3分)

二、逻辑推演 16%

1、证明:

$$\bigcirc$$
 A

P (附加前提)

$$\textcircled{2}$$
 $A \lor B$

T $\boxed{1}$ $\boxed{1}$

$$_{\scriptsize\textcircled{3}}A\lor B\to C\land D$$

P

$$\bigcirc$$
 $C \land D$

T231

$$\odot D$$

T4I

$$\bigcirc D \lor E$$

T⑤I

$$\bigcirc D \lor E \to F$$

P

$$\odot F$$

T(6)(7) I

$$\odot A \rightarrow F$$

CP

2、证明

$$\bigcirc$$
 $\forall x P(x)$

P (附加前提)

$$_{\bigcirc}P(c)$$

US(1)

$$_{\textcircled{3}} \forall x (P(x) \to Q(x))$$

P

$$_{\textcircled{4}}P(c) \to Q(c)$$

US3

$$_{\tiny{\textcircled{5}}}Q(c)$$

T(2)(4) I

$$\bigcirc \forall x Q(x)$$

UG⑤

$$_{(7)} \forall x P(x) \rightarrow \forall x Q(x)$$

CP

三、计算 18%

1、解:

$$M_R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad M_{R^2} = M_R \circ M_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^3} = M_{R^2} \circ M_R = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^4} = M_{R^3} \circ M_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{t(R)} = M_R + M_{R^2} + M_{R^3} + M_{R^4} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\begin{array}{l} \dot{\cdot} & t \ (R) = \{ <\! a \ , \ a > \ , <\! a \ , \ b > \ , <\! a \ , \ c > \ , <\! b \ , \ a > \ , <\! b \ , b > \ , <\! b \ , \ c \ . > \ , \\ & <\! b \ , \ d > \ , <\! c \ , \ d > \ \} \\ \end{array}$

2、解: 用库斯克(Kruskal)算法求产生的最优树。算法略。结果如图:

树权 C(T)=23+1+4+9+3+17=57 即为总造价。

试卷二试题与答案

一、填空 20% (每小题 2分)

- 2、论域 D={1, 2}, 指定谓词 P

P(1,1)	P (1,2)	P (2,1)	P (2,2)
T	Т	F	F

- 2、设 $S{=}\{a_1\ ,\ a_2\ ,\ \cdots,\ a_8\},\ B_i$ 是 S 的子集,则由 B_{31} 所表达的子集是
- 3、设 A={2, 3, 4, 5, 6}上的二元关系 $R = \{ < x, y > | x < y \lor x$ 是质数}, 则 R=

_____ (列举法)。

R 的关系矩阵 M_R=

 6、设代数系统<A, *>, 其中 A={a, b, c},

*	a	b	c	
a	a	b	c	
b	b	b	c	则幺元是; 是否有幂等
c	c	c	b	性; 是否有对称性。

- 8、下面偏序格是分配格的是 _____。

- 9、n 个结点的无向完全图 K_n 的边数为 ______, 欧拉图的充要条件是
- 10、公式 $(P \lor (\neg P \land Q)) \land ((\neg P \lor Q) \land \neg R)$ 的根树表示为

二、选择 20% (每小题 2 分)

1、在下述公式中是重言式为()

A.
$$(P \land Q) \rightarrow (P \lor Q)$$
; B. $(P \leftrightarrow Q) \leftrightarrow ((P \rightarrow Q) \land (Q \rightarrow P))$;
C. $\neg (P \rightarrow Q) \land Q$; D. $P \rightarrow (P \lor Q)$

- 2、命题公式 $(\neg P \to Q) \to (\neg Q \lor P)$ 中极小项的个数为 (),成真赋值的个数 为 ()。
 - A. 0; B. 1; C. 2; D. 3 .
- $_{3}$ 、设 $^{S} = \{\Phi, \{1\}, \{1,2\}\}$,则 2 有()个元素。
 - A. 3; B. 6; C. 7; D. 8 .
- 4、设 $S = \{1, 2, 3\}$, 定义 $S \times S$ 上的等价关系

 $R = \{ << a,b>, < c,d> | < a,b> \in S \times S, < c,d> \in S \times S, a+d=b+c \}$ 则由 R产生的 $S \times S$ 上一个划分共有() 个分块。

- A. 4; B. 5; C. 6; D. 9 .
- 5、设 $S = \{1, 2, 3\}$, S上关系R的关系图为

则 R 具有 () 性质。

- A. 自反性、对称性、传递性;
- C. 反自反性、反对称性、传递性; D. 自反性 。
- 6、设 $^{+,\circ}$ 为普通加法和乘法,则 () $^{< S,+,\circ>}$ 是域。

A.
$$S = \{x \mid x = a + b\sqrt{3}, a, b \in Q\}$$
 B. $S = \{x \mid x = 2n, a, b \in Z\}$

- C. $S = \{x \mid x = 2n+1, n \in Z\}$
- 7、下面偏序集()能构成格。

B. 反自反性、反对称性;

D. $S = \{x \mid x \in Z \land x \ge 0\} = N$

8、在如下的有向图中,从 V_1 到 V_4 长度为3的道路有()条。

- A. 1; B. 2;
- C. 3;
- D. 4 。
- 9、在如下各图中()欧拉图。

10,

设 R 是实数集合,"×"为普通乘法,则代数系统<R , ×> 是(

- A. 群; B. 独异点; C. 半群。

三、证明 46%

1、设R是A上一个二元关系,

 $S = \{ < a,b > | (a,b \in A) \land (对于某一个c \in A, 有 < a,c > \in R 且 < c,b > \in R) \}$ 试证明若 R 是 A 上一个等价关系,则 S 也是 A 上的一个等价关系。(9 分)

2、用逻辑推理证明:

所有的舞蹈者都很有风度,王华是个学生且是个舞蹈者。因此有些学生很有风度。 (11 分)

- 3、若 $f: A \to B$ 是从 A 到 B 的函数,定义一个函数 $g: B \to 2^A$ 对任意 $b \in B$ 有 $g(b) = \{x \mid (x \in A) \land (f(x) = b)\}$,证明: 若 f 是 A 到 B 的满射,则 g 是从 B 到 2^A 的单射。(10分)
- 4、若无向图 G 中只有两个奇数度结点,则这两个结点一定连通。(8分)
- $m = \frac{1}{2}(n-1)(n-2) + 2$ 5、设 G 是具有 n 个结点的无向简单图,其边数 $m = \frac{1}{2}(n-1)(n-2) + 2$,则 G 是 Hamilton 图(8 分)

四、计算 14%

- 1、设< Z_6 ,+ $_6$ >是一个群,这里+ $_6$ 是模 6 加法, Z_6 ={[0],[1],[2],[3],[4],[5]}, 试求出< Z_6 ,+ $_6$ >的所有子群及其相应左陪集。(7分)
- 2、 权数 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 构造一棵最优二叉树。(7分) 试卷二答案:
- 一、 填空 20% (每小题 2 分)

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

 $\frac{1}{2}n(n-1)$;图中无奇度结点且连通 10 、

选择 20% (每小题 2分)

题目	1	2	3	4	5	6	7	8	9	10
答案	B, D	D; D	D	В	D	A	В	В	В	В、С

三、 证明 46%

1、(9分)

(1) S自反的

 $\forall a \in A, \exists R \not \exists \not \subseteq, \therefore (\langle a, a \rangle \in R) \land (\langle a, a \rangle \in R). \therefore \langle a, a \rangle \in S$

(2) S 对称的

 $\forall a,b \in A$

(3) S 传递的

 $\forall a,b,c \in A$

$$\langle a, b \rangle \in S \land \langle b, c \rangle \in S$$

$$\Rightarrow$$
 $(\langle a, d \rangle \in R) \land (\langle d, b \rangle \in R) \land (\langle b, e \rangle \in R) \land (\langle e, c \rangle \in R)$

$$\Rightarrow$$
 ($\langle a, b \rangle \in R$) \land ($\langle b, c \rangle \in R$)

...*R* 传递

 $\Rightarrow < a, c > \in S$

...S 定义

由(1)、(2)、(3)得; S是等价关系。

2、11分

证明: 设 P(x): x 是个舞蹈者; Q(x): x 很有风度; S(x): x 是个学生; a: 王华 上述句子符号化为:

前提: $\forall x (P(x) \to Q(x))$ 、 $S(a) \land P(a)$ 结论: $\exists x (S(x) \land Q(x))$ 3 分

$$_{\scriptsize{\Large{\Large{1}}}}S(a)\wedge P(a)$$

P

$$\bigcirc \forall x (P(x) \to Q(x))$$

P

$$_{\scriptsize{\textcircled{3}}}P(a) \rightarrow Q(a)$$

US2

$$_{\widehat{(4)}}P(a)$$

T $\boxed{1}$ $\boxed{1}$

$$\odot Q(a)$$
.

T341

$$_{\odot}S(a)$$

T(1)I

$$_{\bigcirc}S(a) \wedge Q(a)$$

T561

$$\otimes$$
 $\exists x (S(x) \land Q(x))$

$$_{\odot}$$
 $\exists x(S(x) \land Q(x)$

EG(7)

……11分

3、10分

证明: $\forall b_1, b_2 \in B, (b_1 \neq b_2) :: f$ 满射 $\therefore \exists a_1, a_2 \in A$ 使 $f(a_1) = b_1, f(a_2) = b_2, \exists f(a_1) \neq f(a_2),$ 由于 f 是函数 $, \therefore a_1 \neq a_2$ 又 $g(b_1) = \{x \mid (x \in A) \land (f(x) = b_1)\}, g(b_2) = \{x \mid (x \in A) \land (f(x) = b_2)\}$ $\therefore a_1 \in g(b_1), a_2 \in g(b_2)$ 但 $a_1 \notin g(b_2), a_2 \notin g(b_1) :: g(b_1) \neq g(b_2)$ 由 b_1, b_2 任意性知 , g 为单射

4、8分

证明:设 G 中两奇数度结点分别为 u 和 v,若 u,v 不连通,则 G 至少有两个连通分支 G_1 、 G_2 ,使得 u 和 v 分别属于 G_1 和 G_2 ,于是 G_1 和 G_2 中各含有 1 个奇数度结点,这与图论基本定理矛盾,因而 u,v 一定连通。

5、8分

证明: 证 G 中任何两结点之和不小于 n。

反证法: 若存在两结点 u, v 不相邻且 $d(u) + d(v) \le n - 1$, 令 $V_1 = \{u, v\}$, 则 G-V₁

 $m' \geq \frac{1}{2}(n-1)(n-2) + 2 - (n-1)$ 是 具 有 n-2 个 结 点 的 简 单 图 , 它 的 边 数 $m' \geq \frac{1}{2}(n-1)(n-2) + 2 - (n-1)$,可 得 $m' \geq \frac{1}{2}(n-2)(n-3) + 1$, 这与 G_1 =G- V_1 为 n-2 个 结 点 为 简 单 图 的 题 设 矛 盾 , 因 而 G中任何两个相邻的结点度数和不少于 n。

所以 G 为 Hamilton 图.

四、 计算 14%

1、7分

解:子群有 $<\{[0]\},+_6>;<\{[0],[3]\},+_6>;<\{[0],[2],[4]\},+_6>;<\{Z_6\},+_6>$ $\{[0]\}$ 的左陪集: $\{[0]\},\{[1]\};\{[2]\},\{[3]\};\{[4]\},\{[5]\}$ $\{[0],[3]\}$ 的左陪集: $\{[0],[3]\};\{[1],[4]\};\{[2],[5]\}$ $\{[0],[2],[4]\}$ 的左陪集: $\{[0],[2],[4]\};\{[1],[3],[5]\}$ Z_6 的左陪集: Z_6 。

2、7分

试卷三试题与答案

一、 填空 20% (每空 2分)

3、给定推理

1,	设 f, g是自然数集 N 上的函数 $\forall x \in N$, $f(x) = x+1$, $g(x) = 2x$, $g(x) = 2x$
2、	设 A={a, b, c}, A 上二元关系 R={ <a,a>,<a,b>,<a,c>,<c,c>} , 则 s (R) =。</c,c></a,c></a,b></a,a>
3,	$A=\{1,\ 2,\ 3,\ 4,\ 5,\ 6\}$,A 上二元关系 $T=\{< x,y> \ x\div y$ 是素数 $\}$,则用列举法 $T= _{} $
	;
4、	T 具有 性质。 集 合 $A = \{\{\Phi, 2\}, \{2\}\}$ 的 幂 集 $2^A =$ 。
5、	P, Q 真值为 0; R, S 真值为 1。则 \textit{wff} $(P \land (R \lor S)) \rightarrow ((P \lor Q) \land (R \land S))$ 的 真值为。
6、	$wff \neg ((P \land Q) \lor R) \rightarrow R$ 的 主 合 取 范 式 为。
7、	设 $P(x)$: x 是素数, $E(x)$: x 是偶数, $O(x)$: x 是奇数 $N(x,y)$: x 可以整数 y 。 则谓词 wff $\forall x(P(x) \to \exists y(O(y) \land N(y,x)))$ 的自然语言是
8,	谓词 $wff \ \forall x \forall y (\exists z (P(x,z) \land P(y,z)) \rightarrow \exists u Q(x,y,u))$ 的前東范式为
0	
	选择 20% (每小题 2分)
1,	下述命题公式中,是重言式的为()。
A	$(p \land q) \rightarrow (p \lor q)$, $B \land (p \leftrightarrow q) \leftrightarrow ((p \rightarrow q)) \land (q \rightarrow p))$,
C,	$\neg (p \rightarrow q) \land q$; $D \land (p \land \neg p) \leftrightarrow q$
2,	wff $\neg (p \land q) \rightarrow r$ 的主析取范式中含极小项的个数为 ()。
	A , 2; B, 3; C, 5; D, 0; E, 8 .

推理过程中错在()。

A, (1)-(2); B, (2)-(3); C, (3)-(4); D, (4)-(5); E, (5)-(6)

 $S_5=\{3, 5\}$, 在条件 $X \subseteq S_1 \perp X \not\subset S_3 \vdash X \vdash ($)集合相等。

A、 $X=S_2$ 或 S_5 ; B、 $X=S_4$ 或 S_5 ;

 $C \times X=S_1$, S_2 或 S_4 ; $D \times X 与 S_1$, …, S_5 中任何集合都不等。

5、设 R 和 S 是 P 上 的 关 系 , P 是 所 有 人 的 集 合 , $R = \{ \langle x, y \rangle | x, y \in P \land x \neq y$ 的父亲 \} $S = \{ \langle x, y \rangle | x, y \in P \land x \neq y$ 的母亲 }

则 $S^{-1} \circ R$ 表示关系 ()。

A、 $\{\langle x,y\rangle | x,y \in P \land x$ 是y的丈夫 $\}$.

 $_{\mathbf{R}}$ {< $x,y > | x,y \in P \land x$ 是y的孙子或孙女}.

C、 Φ : D、 $\{\langle x,y \rangle | x,y \in P \land x \in Y \}$ 的祖父或祖母 $\}$

6、下面函数()是单射而非满射。

A,
$$f: R \to R$$
, $f(x) = -x^2 + 2x - 1$,

 $f: Z^+ \to R, \quad f(x) = \ln x$

C、 $f: R \to Z$, f(x) = [x], [x]表示不大于x的最大整数.

 $f: R \to R, \quad f(x) = 2x + 1$

其中R为实数集,Z为整数集,R+,Z+分别表示正实数与正整数集。

7、设 S={1, 2, 3}, R 为 S 上的关系, 其关系图为

则 R 具有 () 的性质。

- A、 自反、对称、传递; B、什么性质也没有;
- C、反自反、反对称、传递; D、自反、对称、反对称、传递。
- 8、设 $S = \{\Phi, \{1\}, \{1, 2\}\}$,则有() $\subseteq S$ 。
 - A, $\{\{1,2\}\}\}$; B, $\{1,2\}$; C, $\{1\}$; D, $\{2\}$
- 9、设 A={1,2,3},则 A 上有() 个二元关系。

 $A_{5} 2^{3}$; $B_{5} 3^{2}$; $C_{5} 2^{2^{3}}$; $D_{5} 2^{3^{2}}$.

10、全体小项合取式为()。

A、可满足式; B、矛盾式; C、永真式; D、A, B, C 都有可能。

用 CP 规则证明 16% (每小题 8分) 三、

- $_{1}$ $A \lor B \to C \land D$, $D \lor E \to F \implies A \to F$
- $\gamma \forall x (P(x) \lor Q(x)) \Rightarrow \forall x P(x) \lor \exists x Q(x)$

四、(14%)

集合 $X=\{<1,2>,<3,4>,<5,6>,\cdots\}$, $R=\{<<x_1,y_1>,<x_2,y_2>>|x_1+y_2=x_2+y_1\}$ 。

- 1、证明 R 是 X 上的等价关系。 (10 分)
- 2、 求出 X 关于 R 的商集。(4 分)

五、(10%)

设集合 A={ a,b,c,d} 上关系 R={<a,b>,<b,a>,<b,c>,<c,d>}

要求 1、写出 R 的关系矩阵和关系图。(4分)

2、用矩阵运算求出 R 的传递闭包。(6分)

六、(20%)

- 1、 $(10 \, \text{分})$ 设 f 和 g 是函数,证明 $f \cap g$ 也是函数。
- 2、(10 分) 设函数 $g:S \to T$ $f:T \to S$, 证明 $f:T \to S$ 有一左逆函数当且仅当 f 是 入射函数。

答案:

五、填空 20% (每空 2分)

 $1, 2(x+1); 2, \{ < a, a >, < a, b >, < a, c >, < c, c >, < b, a >, < c, a > \} : 3,$ $\{<2,1>,<3,1>,<5,1>,<4,2>,<6,2>,<6,3>\}$

4、

反对称性、反自反性; 4、 $\{\Phi,\{\{\Phi,2\}\},\{\{\Phi,2\},\{2\}\}\}$; 5、1:

6、 $(P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R) \land (P \lor Q \lor R)$; 7、任意 x, 如果 x 是素数则存在一个 y, y 是奇数且 y 整除 x ; 8、 $\forall x \forall y \forall z \exists u (\neg P(x,z) \lor \neg P(y,z) \lor Q(x,y,u))$ 。

六、选择 20% (每小题 2分)

题目	1	2	3	4	5	6	7	8	9	10
答案	С	С	С	С	A	В	D	A	D	С

七、证明 16%(每小题 8 分)

1,

 \bigcirc A

P (附加前提)

 \bigcirc $A \lor B$

T 1 I

 $_{\scriptsize{\textcircled{3}}}A \lor B \to C \land D$

P

 $_{\textcircled{4}}C \wedge D$

T(2)(3) I

 $\odot D$

T4I

 $\bigcirc D \lor E$

T⑤I

 $\bigcirc D \lor E \to F$

P

 $\odot F$

T671

 $\tiny \textcircled{9} \, A \rightarrow F$

CP

2,

 $\because \forall x P(x) \lor \exists x Q(x) \Leftrightarrow \neg(\forall x) P(x) \to \exists x Q(x)$

本题可证 $\forall x(P(x) \lor Q(x)) \Rightarrow \neg(\forall x P(x) \to \exists x Q(x))$

 $\neg (\forall x P(x))$

P (附加前提)

 \bigcirc $\exists x (\neg P(x))$

T(1)E

 $_{\scriptsize{\textcircled{3}}} \neg P(a)$

ES(2)

 $_{\bigcirc} \forall x (P(x) \lor Q(x))$

Р

 $_{\scriptsize{\textcircled{5}}}P(a)\vee Q(a)$

US(4)

 $_{\bigcirc}Q(a)$

T(3)(5) I

 \bigcirc $\exists x Q(x)$

EG6

八、14%

(1) 证明:

1、 自反性:
$$\forall < x, y > \in X$$
, 由于 $x + y = x + y$

$$\therefore$$
 << $x, y >$, < $x, y >$ > $\in R$ ····R自反

$$\gamma$$
 对称性: $\forall \langle x_1, y_1 \rangle \in X$, $\forall \langle x_2, y_2 \rangle \in X$

当 $<< x_1, y_1>, < x_2, y_2>> \in R$ 时 即 $x_1 + y_2 = x_2 + y_1$ 也即 $x_2 + y_1 = x_1 + y_2$ 故 $<< x_2, y_2>, < x_1, y_1>> \in R$ … R有对称性

3、 传递性:
$$\forall < x_1, y_1 > \in X$$
, $\forall < x_2, y_2 > \in X$ $\forall < x_3, y_3 > \in X$

当
$$<< x_1, y_1>, < x_2, y_2>> \in R$$
 且 $<< x_2, y_2>, < x_3, y_3>> \in R$ 时

故 $<< x_1, y_1 >, < x_3, y_3 >> \in R$ … R有传递性

由(1)(2)(3)知: R是X上的先等价关系。

$$_{2, X/R=}\{[<1,2>]_{R}\}$$

九、10%

2、

$$M_R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix};$$

关系图

$$M_{R^2} = M_R \circ M_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{R^3} = M_{R^2} \circ M_R = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{split} \boldsymbol{M}_{R^4} &= \boldsymbol{M}_{R^3} \circ \boldsymbol{M}_R = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \boldsymbol{M}_{R^2} \\ \boldsymbol{M}_{R^5} &= \boldsymbol{M}_{R^3} , \boldsymbol{M}_{R^6} = \boldsymbol{M}_{R^4} , \cdots \\ \boldsymbol{M}_{t(R)} &= \boldsymbol{M}_R + \boldsymbol{M}_{R^2} + \boldsymbol{M}_{R^3} + \boldsymbol{M}_{R^4} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{split}$$

六、20%

$$f \cap g = \{ \langle x, y \rangle | x \in domf \land x \in domg \land y = f(x) \land y = g(x) \}$$

$$= \{ \langle x, y \rangle | x \in domf \cap domg \land y = f(x) = g(x) \}$$

 $\diamondsuit h = f \cap g$

$$\therefore dom f \cap g = dom h = \{x \mid x \in dom f \cap dom g, f(x) = g(x)\}\$$

$$h = \{ \langle x, y \rangle | x \in domf \cap domg \land y = h(x) = f(x) = g(x) \}$$

对 $x \in domh$ 若有 v_1, v_2 使得

$$y_1 = h(x) = f(x) = g(x)$$
, $y_2 = h(x) = f(x) = g(x)$

由于 $f(\mathbf{g})$ 是函数,有 $y_1 = y_2$,即 $\forall x \in domh$ 有唯一y使得y = h(x)

 $∴ f \cap g$ 也是函数

2、证明:

"⇒"若f 有一左逆g,则对 $\forall t \in T$ $g \circ f(t) = t$ 故 $g \circ f$ 是入射,所以 f 是入射

"一"f 是入射, $f:T \to S$ 定义如下: $\forall s \in f(T)$,由 f 入射, $\exists | t \in T$,使f(t) = s 此时令g(s) = t, 若 $s \notin f(T)$ 令 $g(s) = c \in T$ 则对 $\forall s \in S$, g(s)只有一个值 t 或 c且若f(t) = s 则 $g \circ f(t) = g(s) = t$, 故g 是f 的左逆元

即若f入射,必能构造函数g,使g为f左逆函数。

试卷四试题与答案

一、 填空 10% (每小题 2分)

1、若 P, Q, 为二命题, $P \rightarrow Q$ 真值为 0 当且仅当 ______

- 7、"人总是要死的"谓词公式表示为()。 (论域为全总个体域) M(x): x 是人; Mortal(x): x 是要死的。 $A : M(x) \to Mortal(x)$. $B : M(x) \wedge Mortal(x)$ $C_{\lambda} \forall x (M(x) \rightarrow Mortal(x)) : D_{\lambda} \exists x (M(x) \land Mortal(x))$ 8、公式 $A = \exists x (P(x) \to Q(x))$ 的解释 I 为: 个体域 D={2}, P(x): x>3, Q(x): x=4 则 A 的真值为()。 $A_{\lambda} 1; B_{\lambda} 0;$ C、可满足式; D、无法判定。 9、下列等价关系正确的是()。 $A \searrow \forall x (P(x) \vee Q(x)) \Leftrightarrow \forall x P(x) \vee \forall x Q(x) .$ $B_{\lambda} \exists x (P(x) \lor Q(x)) \Leftrightarrow \exists x P(x) \lor \exists x Q(x)$. $C_{\lambda} \forall x (P(x) \to Q) \Leftrightarrow \forall x P(x) \to Q$. $D_{\lambda} \exists x (P(x) \to Q) \Leftrightarrow \exists x P(x) \to Q$ 10、下列推理步骤错在($\bigcap \forall x (F(x) \to G(x))$ $_{\bigcirc}F(y) \rightarrow G(y)$ US(1) $\Im xF(x)$ P $_{\bigcirc}F(y)$ ES3
- A、②; B、④; C、⑤; D、⑥

三、 逻辑判断 30%

 $_{\bigcirc}G(y)$

 \odot $\exists x G(x)$

1、用等值演算法和真值表法判断公式 $A = ((P \to Q) \land (Q \to P)) \leftrightarrow (P \leftrightarrow Q)$ 的类型。 $(10 \, \%)$

T(2)(4)I

EG(5)

- 2、下列问题, 若成立请证明, 若不成立请举出反例: (10分)
 - (1) 己知 $A \lor C \Leftrightarrow B \lor C$. 问 $A \Leftrightarrow B$ 成立吗?
 - (2) 已知 $\neg A \Leftrightarrow \neg B$, 问 $A \Leftrightarrow B$ 成立吗?
- 3、如果厂方拒绝增加工资,那么罢工就不会停止,除非罢工超过一年并且工厂撤换了 厂长。问:若厂方拒绝增加工资,面罢工刚开始,罢工是否能够停止。(10分)

四、计算 10%

- 1、设命题 A_1 , A_2 的真值为 1, A_3 , A_4 真值为 0, 求命题 $(A_1 \lor (A_2 \to (A_3 \land \neg A_1))) \leftrightarrow (A_2 \lor \neg A_4)$ 的真值。(5分)
- 2、利用主析取范式,求公式 $\neg(P \rightarrow Q) \land Q \land R$ 的类型。(5分)

五、谓词逻辑推理 15%

符号化语句:"有些人喜欢所有的花,但是人们不喜欢杂草,那么花不是杂草"。并推证其结论。

六、证明: (10%)

设论域 D={a,b,c}, 求证: $\forall x A(x) \lor \forall x B(x) \Rightarrow \forall x (A(x) \lor B(x))$ 。 答案:

十、 填空 10% (每小题 2分)

1、P 真值为 1,Q 的真值为 0;2、 $\forall x(F(x) \land L(x,0) \to \exists y(F(y) \land L(y,x))$;3、 $\exists x(\neg P(x) \lor Q(x))$;4、约束变元;5、 $\exists x A(x) \Rightarrow A(y)$,y 为 D 的某些元素。

十一、 选择 25% (每小题 2.5 分)

题目	1	2	3	4	5	6	7	8	9	10
答案	A,C	A,D	C,D	A,D	В,С	A,B,C,D,E	С	A	В	(4)

十二、 逻辑判断 30%

1、(1) 等值演算法

$$A = ((P \to Q) \land (Q \to P)) \leftrightarrow (P \leftrightarrow Q) \Leftrightarrow (P \leftrightarrow Q) \leftrightarrow (P \leftrightarrow Q) \Leftrightarrow T$$

(2) 真值表法

P	Q	$P \rightarrow Q$	$Q \rightarrow P$	$(P \to Q) \land (Q \to P)$	$P \leftrightarrow Q$	A
1	1	1	1	1	1	1
1	0	0	1	0	0	1
0	1	1	0	0	0	1
0	0	1	1	1	1	1

所以 A 为重言式。

2、(1) 不成立。

但 A 与 B 不一定等价,可为任意不等价的公式。

(2) 成立。

 $_{\text{证明}}$: $\neg A \Leftrightarrow \neg B$ 充要条件 $\neg A \leftrightarrow \neg B \Leftrightarrow T$

$$T \Leftrightarrow (\neg A \to \neg B) \land (\neg B \to \neg A) \Leftrightarrow (A \lor \neg B) \land (B \lor \neg A)$$

 $\exists \mathbb{D}: \Leftrightarrow (\neg B \lor A) \land (\neg A \lor B) \Leftrightarrow (A \to B) \land (B \to A) \Leftrightarrow A \leftrightarrow B$

所以 $A \leftrightarrow B \Leftrightarrow T$ 故 $A \Leftrightarrow B$

3、解:设P:厂方拒绝增加工资;Q:罢工停止;R罢工超壶过一年;R:撤换厂长

前提:
$$P \to (\neg (R \land S) \to \neg Q)$$
, P , $\neg R$ 结论: $\neg Q$

$$_{\bigcirc}P \rightarrow (\neg(R \land S) \rightarrow \neg Q)$$

P

@P

P

$$_{\scriptsize{\textcircled{3}}} \neg (R \land S) \rightarrow \neg Q$$

T(1)(2)I

 $\bigcirc R$

P

$$\bigcirc$$
 $\neg R \lor \neg S$

T(4)I

$$_{\widehat{(6)}} \neg (R \wedge S)$$

T(5)E

$$\bigcirc Q$$

T361

罢工不会停止是有效结论。

四、计算 10%

$$(1 \lor (1 \to 0 \land 0))) \leftrightarrow (1 \lor 1) = (1 \lor (1 \to 0) \leftrightarrow 1$$

$$(1)$$
 $\mathbb{A}_{\mathbf{H}} = (1 \lor 0) \longleftrightarrow 1 = 1 \longleftrightarrow 1 = 1$

$$\neg (P \to Q) \land Q \land R \Leftrightarrow \neg (\neg P \lor Q) \land (Q \land R)$$

 $(2) \qquad \Leftrightarrow (P \land \neg Q) \land (Q \land R) \Leftrightarrow P \land \neg Q \land Q \land R \Leftrightarrow F$

它无成真赋值, 所以为矛盾式。

五、谓词逻辑推理 15%

M(x): x是人; F(x): x是花; G(x): x是杂草; H(x,y): x喜欢y

$$\exists x (M(x) \land \forall y (F(y) \to H(x,y))) \quad \forall x (M(x) \to \forall y (G(y) \to \neg H(x,y)))$$

 $\Rightarrow \forall x (F(x) \rightarrow \neg G(x))$

证明:

$$(1)$$
 $\exists x (M(x) \land \forall y (F(y) \rightarrow H(x,y)))$

$$(2)$$
 $M(a) \land \forall y (F(y) \rightarrow H(a, y))$ ES(1)

$$_{(3)}M(a)$$
 T(2)I

$$(4)$$
 $\forall y (F(y) \rightarrow H(a, y))$ T(2)I

$$(5) \forall x (M(x) \to \forall y (G(y) \to \neg H(x, y)))$$

$$_{(6)}M(a) \rightarrow \forall y(G(y) \rightarrow \neg H(a,y))$$
 US(5)

$$(7) \forall y (G(y) \to \neg H(a, y))$$
 T(3)(6)I

$$_{(8)}\forall y(H(a,y)\to\neg G(y))$$
 T(7)E

$$_{(9)}F(z) \rightarrow H(a,z)$$
 US(4)

$$(0)H(a,z) \rightarrow \neg G(z)$$
 US(8)

$$\operatorname{T}(9)(0)I$$

$$(12) \forall x (F(x) \to \neg G(x))$$
 UG(11)

十三、 证明 10%

$$\forall x A(x) \lor \forall x B(x) \Leftrightarrow (A(a) \land A(b) \land A(c) \lor (B(a) \land B(b) \land B(c))$$

$$\Leftrightarrow (A(a) \vee B(a)) \wedge (A(a) \vee B(b)) \wedge (A(a) \vee B(c))$$

$$\land (A(b) \lor B(a)) \land (A(b) \lor B(b)) \land (A(b) \lor B(c))$$

$$\wedge (A(c) \vee B(a)) \wedge (A(c) \vee B(b)) \wedge (A(c) \vee B(c))$$

$$\Rightarrow$$
 $(A(a) \lor B(a)) \land (A(b) \lor B(b)) \land (A(c) \lor B(c))$

$$\Leftrightarrow \forall x (A(x) \lor B(x))$$

试卷五试题与答案

一、填空 15% (每空 3 分)

1、设 G 为 9 阶无向图,每个结点度数不是 5 就是 6,则 G 中至少有 _____ 个 5 度结点。

2、n 阶完全图, K_n 的点数 X (K_n) = ______。

3、有向图

中从 v₁ 到 v₂ 长度为 2 的通路有 _____ 条。

4、设[R, +, •]是代数系统,如果①[R, +]是交换群 ②[R, •]是半群

 $_{5}$ 、设 $[L,\otimes,\oplus]$ 是代数系统,则 $[L,\otimes,\oplus]$ 满足幂等律,即对 $\forall a\in L$ 有 ______。

二、选择 15% (每小题 3 分)

1、下面四组数能构成无向简单图的度数列的有()。)。

 A_{2} (2, 2, 2, 2);

 $B_{s}(1, 1, 2, 2, 3);$

 $C_{x}(1, 1, 2, 2, 2);$ $D_{x}(0, 1, 3, 3, 3).$

2、下图中是哈密顿图的为()。

- 3、如果一个有向图 D 是强连通图,则 D 是欧拉图,这个命题的真值为(
 - A、真; B、假。
- 4、下列偏序集()能构成格。

 $s = \{1, \frac{1}{2}, 2, \frac{1}{3}, 3, \frac{1}{4}, 4\}$, *为普通乘法,则[S, *]是()。 A、代数系统; B、半群; C、群; D、都不是。

三、证明 48%

- 1、(10%) 在至少有2个人的人群中,至少有2个人,他们有相同的朋友数。
- 2、(8%) 若图 G 中恰有两个奇数度顶点,则这两个顶点是连通的。
- 3、(8%)证明在6个结点12条边的连通平面简单图中,每个面的面数都是3。
- 4、(10%)证明循环群的同态像必是循环群。
- 5、(12%) 设 $[B, \times, +, -, 0, 1]$ 是布尔代数,定义运算*为 $a*b = (a \times \overline{b}) + (\overline{a} \times b)$, 求证[B,*]是阿贝尔群。

四、计算 22%

1、在二叉树中

- 1) 求带权为 2, 3, 5, 7, 8 的最优二叉树 T。(5 分)
- 2) 求 T 对应的二元前缀码。(5分)
- 2、下图所示带权图中最优投递路线并求出投递路线长度(邮局在 D 点)。

答案:

一、填空(15%)每空3分

1、 6; 2、n; 3、2; 4、+对•分配且•对+分配均成立; 5、 $a \otimes a = a$ 且 $a \oplus a = a$

二、选择(15%)每小题3分

题目	1	2	3	4	5
答案	A,B	B,D	В	С	D

三、证明(48%)

1、(10 分) 证明: 用 n 个顶点 v_1 , …, v_n 表示 n 个人,构成顶点集 $V=\{v_1, …, v_n\}$,设 $E=\{uv \mid u,v \in V, 且 \quad u,v \in I, \quad u \neq v\}, \quad \text{End } G=(V,E)$

现证 G 中至少有两个结点度数相同。

理矛盾。因而 u, v 必连通。

事实上,(1)若G中孤立点个数大于等于2,结论成立。

- (2) 若 G 中有一个孤立点,则 G 中的至少有 3 个顶点,既不考虑孤立点。设 G 中每个结点度数均大于等于 1,又因为 G 为简单图,所以每个顶点度数都小于等于 n-1,由于 G 中 n 顶点其度数取值只能是 1,2,…,n-1,由鸽巢原理,必然至少有两个结点度数是相同的。 2、(8 分)证:设 G 中两个奇数度结点分别为 u,v。若 u,v 不连通则至少有两个连通分支 G_1 、 G_2 ,使得 u,v 分别属于 G_1 和 G_2 。于是 G_1 与 G_2 中各含有一个奇数度结点,与握手定
- 3 (8分) 证: n=6,m=12 欧拉公式 n-m+f=2 知 f=2-n+m=2-6-12=8

由图论基本定理知: $\sum \deg(F) = 2 \times m = 24$, 而 $\deg(F_i) \ge 3$, 所以必有 $\deg(F_i) = 3$, 即 每个面用 3 条边围成。

4(10 分) 证: 设循环群[A,•]的生成元为 a,同态映射为 f,同态像为[f(A),*],于是 $\forall a^n, a^m \in A_{3n}$ $f(a^n \cdot a^m) = f(a^n)^* f(a^m)$

对 $_{n=1}$ 有 f(a) = f(a)

$$n=2$$
. 有 $f(a^2) = f(a \cdot a) = f(a) * f(a) = (f(a))^2$

若 n=k-1 时 有 $f(a^{k-1}) = (f(a))^{k-1}$

$$\operatorname{He}_{n=k}\operatorname{He}_{n}, \quad f(a^{k}) = f(a^{k-1} \cdot a) = f(a^{k-1}) * f(a) = (f(a))^{k-1} * f(a) = (f(a))^{k}$$

这表明,f(A)中每一个元素均可表示为 $(f(a))^n$,所以[f(A),*]为 f(a) 生成的循环群。5、证:

(1) 交換律:
$$\forall a,b \in B$$
 有 $a*b = (a \times \overline{b}) + (\overline{a} \times b) = (b \times \overline{a}) + (\overline{b} \times a) = b*a$

(2) 结合律: $\forall a,b,c \in B_{\widehat{q}}$

$$(a*b)*c = ((a \times \overline{b}) + (\overline{a} \times b))*c = (((a \times \overline{b}) + (\overline{a} \times b)) \times \overline{c}) + ((\overline{a} \times \overline{b}) + (\overline{a} \times b)) \times c$$

$$= (a \times \overline{b} \times \overline{c} + \overline{a} \times b \times \overline{c}) + ((\overline{a} + b) \times (a + \overline{b})) \times c$$

$$= a \times \overline{b} \times \overline{c} + \overline{a} \times b \times \overline{c} + (\overline{a} \times a + \overline{a} \times \overline{b} + b \times a + b \times \overline{b}) \times c$$

$$= a \times \overline{b} \times \overline{c} + \overline{a} \times b \times \overline{c} + b \times a \times c + \overline{a} \times \overline{b} \times c$$

$$= a \times b \times c + a \times \overline{b} \times \overline{c} + \overline{a} \times b \times \overline{c} + \overline{a} \times \overline{b} \times c$$

而:

$$a*(b*c) = a*((b \times \overline{c}) + (\overline{b} \times c)) = (a \times \overline{(b \times \overline{c}) + (\overline{b} \times c)}) + ((\overline{a} \times (b \times \overline{c}) + (\overline{b} \times c)))$$

$$= a \times (\overline{b} + c) \times (b + \overline{c}) + \overline{a} \times b \times \overline{c} + \overline{a} \times \overline{b} \times c$$

$$= a \times b \times c + a \times \overline{b} \times \overline{c} + \overline{a} \times b \times \overline{c} + \overline{a} \times \overline{b} \times c$$

$$\therefore (a*b)*c = a*(b*c)$$

(3) 幺: $\forall a \in B$ 有

$$a*0 = (a \times \overline{0}) + (\overline{a} \times 0) = a + 0 = a$$
 $0*a = (0 \times \overline{a}) + (\overline{0} \times a) = 0 + a = a$ $\therefore 0$ 是[B ,*]公元。

(4)
$$\text{if:} \forall a \in B \quad a * a = (a \times a) + (a \times a) = 0 + 0 = 0$$

 $\therefore a \in a$ 的逆元。

综上所述: [B,*]是阿贝尔群。

四、计算(22%)

1、(10分)

(1)(5分)由 Huffman 方法,得最佳二叉树为:

(2)(5分)最佳前缀码为:000,001,01,10,11

2、(12分)

图中奇数点为 E、F , d(E)=3,d(F)=3,d(E,F)=28 p=EGF 复制道路 EG、GF, 得图 G , 则 G 是欧拉图。

由 D 开始找一条欧拉回路: DEGFGEBACBDCFD。 道路长度为:

35+8+20+20+8+40+30+50+19+6+12+10+23=281.

试卷六试题与答案

一、 填空 15% (每小题 3分)

- 1、n 阶完全图结点 v 的度数 d(v) = ________。
- 2、设 n 阶图 G 中有 m 条边,每个结点的度数不是 k 的是 k+1,若 G 中有 N_k 个 k 度顶点, N_{k+1} 个 k+1 度顶点,则 N_k = _______。
- 3、 算式 $((a+(b*c)*d)\div(e*f)$ 的二叉树表示为

给出格 L,则 e的补元是 _____。

5、一组学生,用二二扳腕子比赛法来测定臂力的大小,则幺元是。

二、选择 15% (每小题 3分)

1、设 S={0,1,2,3},≤为小于等于关系,则{S, ≤}是 ()。 A、群, B、环, C、域, D、格。

2、设[{a,b,c},*]为代数系统,*运算如下:

*	a	b	c
a	a	b	c
b	b	a	c
с	С	с	с

则零元为(

A、a; B、b; C、c; D、没有。

)。

3、如右图

[A]

[B]

[C]

[D]

).

4、一棵无向树 T 有 7 片树叶, 3 个 3 度顶点, 其余顶点均为 4 度。则 T 有 () 4 度结点。

A, 1; B, 2; C, 3; D, 4_o

5、设[A, +, •]是代数系统, 其中+, • 为普通加法和乘法, 则 A= () 时, [A, +, •]是整环。

A, $\{x \mid x = 2n, n \in Z\}$, B, $\{x \mid x = 2n + 1, n \in Z\}$,

 $C_{s} \{x \mid x \ge 0, \exists x \in Z\}, \quad D_{s} \{x \mid x = a + b\sqrt[4]{5}, \quad a, b \in R\}$

三、证明 50%

$$m \le \frac{n^2}{4}$$
 1、设 G 是 (n,m) 简单二部图,则 $m \le \frac{n^2}{4}$ 。 $(10 分)$

- $m > \frac{1}{2}(n-1)(n-2)$ 2、设 G 为具有 n 个结点的简单图,且 , 则 G 是连通图。(10 分)
- 3、记"开"为 1,"关"为 0,反映电路规律的代数系统[$\{0,1\}$,+,•]的加法运算和乘法运算。如下:

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	0	1

证明它是一个环,并且是一个域。(14分)

4、 $[L, \otimes, \oplus]$ 是一代数格," \leq "为自然偏序,则 $[L, \leq]$ 是偏序格。(16分)

四、10%

设 $E(x_1,x_2,x_3)=(x_1\wedge x_2)\vee(x_2\wedge x_3)\vee(x_2\wedge x_3)$ 是布尔代数 $[\{0,1\},\vee,\wedge,-]$ 上的一个布尔表达式,试写出 $E(x_1,x_2,x_3)$ 的析取范式和合取范式(10 分)

五、10%

如下图所示的赋权图表示某七个城市 v_1, v_2, \cdots, v_7 及预先算出它们之间的一些直接通信成路造价(单位:万元),试给出一个设计方案,使得各城市之间既能够通信又使总造价最小。

答案:

一、填空 15% (每小题 3分)

1、n-1; 2、n(k+1)-2m; 3、如右图; 4、0; 5、臂力小者

二、选择 15% (每小题 3分)

题目	1	2	3	4	5
答案	D	С	A	A	D

三、证明 50%

(1)
$$\text{if: } \forall G = (V, E) \quad V = X \cup Y, |X| = n_1, |Y| = n_2, n_1 + n_2 = n_2$$

$$m=n_1\cdot n_2=n_1(n-n_1)=-n_1^2+n_1n=-(n_1-\frac{n}{2})^2+\frac{n^2}{4}$$
 对完全二部图有

故对任意简单二部图(n,m)有 $m \leq \frac{n^2}{4}$ 。

(2) 证: 反证法: 若 G 不连通,不妨设 G 可分成两个连通分支 G_1 、 G_2 ,假设 G_1 和 G_2 的顶点数分别为 n_1 和 n_2 ,显然 $n_1 + n_2 = n$

$$n_1 \ge 1$$
 $n_2 \ge 1$ $n_1 \le n-1$ $n_2 \le n-1$

$$\therefore m \le \frac{n_1(n_1 - 1)}{2} + \frac{n_2(n_2 - 1)}{2} \le \frac{(n - 1)(n_1 + n_2 - 2)}{2} = \frac{(n - 1)(n - 2)}{2}$$

与假设矛盾。所以 G 连通。

①[{0,1},+]是交换群

乘:由"+"运算表知其封闭性。由于运算表的对称性知:+运算可交换。

群:
$$(0+0) + 0=0+ (0+0) = 0$$
; $(0+0) + 1=0+ (0+1) = 1$; $(0+1) + 0=0+ (1+0) = 1$; $(0+1) + 1=0+ (1+1) = 0$; $(1+1) + 1=1+ (1+1) = 0$ ······

结合律成立。

幺: 幺元为0。

逆: 0,1逆元均为其本身。

②[{0,1},•]是半群

乘:由"•"运算表知封闭

群:
$$(0 \cdot 0) \cdot 0 = 0 \cdot (0 \cdot 0) = 0$$
; $(0 \cdot 0) \cdot 1 = 0 \cdot (0 \cdot 1) = 0$; $(0 \cdot 1) \cdot 0 = 0 \cdot (1 \cdot 0) = 0$; $(0 \cdot 1) \cdot 1 = 0 \cdot (1 \cdot 1) = 0$; $(1 \cdot 1) \cdot 1 = 1 \cdot (1 \cdot 1) = 0$.

③•对+的分配律 $\forall x, y \in \{0,1\}$

I
$$0 \cdot (x+y) = 0 = 0 + 0 = (0 \cdot x) + (0 \cdot y);$$

 $II \quad 1 \cdot (x+y)$

当 x=y (x+y)=0 则

$$1 \cdot (x+y) = 1 \cdot 0 = 0 = \begin{cases} 0+0 \\ 1+1 \end{cases} = \begin{cases} (1 \cdot 0) + (1 \cdot 0) \\ (1 \cdot 1) + (1 \cdot 1) \end{cases} = (1 \cdot x) + (1 \cdot y)$$

 $\underline{\exists} x \neq y \quad (x + y = 1)$

$$1 \cdot (x+y) = 1 \cdot 1 = 1 = \begin{cases} 1+0 \\ 0+1 \end{cases} = \begin{cases} (1 \cdot 1) + (1 \cdot 0) \\ (1 \cdot 0) + (1 \cdot 1) \end{cases} = (1 \cdot x) + (1 \cdot y)$$

所以 $\forall x, y, z \in \{0,1\}$ 均有 $z \cdot (x+y) = (z \cdot x) + (z \cdot y)$

同理可证: $(x+y)\cdot z = (x\cdot z) + (y\cdot z)$

所以•对+是可分配的。

由①②③得,[{0,1},+,•]是环。

(2) [{0, 1}, +, •]是域

因为[{0,1},+,•]是有限环,故只需证明是整环即可。

- ①乘交环: 由乘法运算表的对称性知,乘法可交换。
- ②含幺环:乘法的幺元是1
- ③无零因子: 1 1=1≠0

因此[{0,1},+,•]是整环,故它是域。

- 4、证: (1) " \leq " 是偏序关系, \leq 自然偏序 $\forall a,b \in L$ $a \otimes b = a$
 - ①反自反性:由代数格幂等关系: $a \otimes a = a : a \leq a$ 。
 - ②反对称性: $\forall a,b \in L$ 若 $a \leq b,b \leq a$ 即: $a \otimes b = a, b \otimes a = b$

 $a = a \otimes b = b \otimes a = b \qquad b \leq a$

③传递性: $a \le b, b \le c_{\text{则}}$:

$$a \otimes c = (a \otimes b) \otimes c$$
 $a \leq b$ 即 $a \otimes b = a$
 $= a \otimes (b \otimes c)$ 结合律
 $= a \otimes b$ $b \leq c$ 即 $b \otimes c = b$
 $= a$ $a \leq b$ 即 $a \otimes b = a$

 $\therefore a \leq c$

(2) $\forall x, y \in L$ 在 L 中存在 $\{x,y\}$ 的下 (上) 确界

 $_{i \not \subseteq} x, y \in L_{[y]}: x \otimes y = \inf\{x, y\}$

事实上: $x \otimes (x \otimes y) = (x \otimes x) \otimes y = x \otimes y$

 $\therefore x \otimes y \leq x$ 同理可证: $x \otimes y \leq y$

若 $\{x,y\}$ 有另一下界c,则 $c\otimes(x\otimes y)=(c\otimes x)\otimes y=c\otimes y=c$

 $\therefore c \le x \otimes y$ $\therefore x \otimes y$ 是 $\{x,y\}$ 最大下界,即 $x \otimes y = \inf\{x,y\}$ 同理可证上确界情况。

四、14%

解:函数表为:

x_1	x_2	x_3	$E(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$E(x_1, x_2, x_3) = (\bar{x}_1 \wedge \bar{x}_2 \wedge x_3) \vee (\bar{x}_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge \bar{x}_2 \wedge x_3)$$

$$\vee (x_1 \wedge x_2 \wedge \bar{x}_3) \vee (x_1 \wedge x_2 \wedge x_3)$$

析取范式:

合取范式:
$$E(x_1, x_2, x_3) = (x_1 \lor x \lor_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

五、10%

解: 用库斯克(Kruskal)算法求产生的最优树。算法为:

结果如图:

树权 C(T)=23+1+4+9+3+17=57(万元)即为总造价 试卷七试题与答案

一、填空 15% (每小题 3分)

4	KH()	ELO (II D)	ユ ロエ ヒツルム ソーテ 日	
1.	1十1川(n, m)		边与顶点数的关系是	0

- 2. 当 n 为 _____ 时,非平凡无向完全图 K_n是欧拉图。
- 3. 已知一棵无向树 T 有三个 3 顶点,一个 2 度顶点,其余的都是 1 度顶点,

则 T 中有______个 1 度顶点。

- 4. n 阶完全图 K_n的点色数 X (K_N) = ______
- 5. 一组学生,用两两扳腕子比赛来测定臂力大小,则幺元

选择 15% (每小题 3分)

- 1、下面四组数能构成无向图的度数列的有()。
 - A, 2, 3, 4, 5, 6, 7; B, 1, 2, 2, 3, 4;
 - C, 2, 1, 1, 1, 2;
- D, 3, 3, 5, 6, 0.

2、图

) 。

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{pmatrix}; B, \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{pmatrix}; C, \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{pmatrix}; D, \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{pmatrix}$$

- 3、下列几个图是简单图的有()。
 - A. $G_1 = (V_1, E_1)$, $\sharp P V_1 = \{a, b, c, d, e\}$, $E_1 = \{ab, be, eb, ae, de\}$;
 - B. $G_2 = (V_2, E_2) \not\equiv V_1, E_2 = \{\langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle, \langle a, d \rangle, \langle d, a \rangle, \langle d, e \rangle\};$
 - C. $G=(V_3, E_3)$, $E_3=\{ab, be, ed, cc\}$;
 - D. $G=(V_4, E_4)$, $\sharp + V_4=V_1, E_4=\{(a, a), (a, b), (b, c), (e, c), (e, d)\}$.
- 4、下列图中是欧拉图的有(

 $_{5}$ 、 $G=(2^{s},\oplus)$, 其中 $S=\{1,2,3\}$, \oplus 为集合对称差运算,

则方程 {1,2} ⊕ x = {1,3} 的解为 ()。

- $A, \{2,3\}; B, \{1,2,3\}; C, \{1,3\}; D, \Phi.$

三、 证明 34%

- 1、证明:在至少有2个人的人群中,至少有2个人,他的有相同的朋友数。(8分)
- 2、 若图 G 中恰有两个奇数顶点,则这两个顶点是连通的。(8分)
- 3、证明:在6个结点12条边的连通平面简单图中,每个面的面度都是3。(8分)
- 4、证明循环群的同态像必是循环群。(10分)

在通讯中,八进制数字出现的频率如下:

0: 30% 1: 20% 2: 15% 3: 10% 4: 10% 5: 5% 6: 5% 7: 5% 求传输它们最佳前缀码(写出求解过程)。

六、 10%

设 B₄={e,a,b,ab}, 运算*如下表,

|--|

e	e	а	b	ab
a	а	e	ab	b
b	b	ab	e	а
ab	ab	b	а	e

则<B4,*>是一个群(称作 Klein 四元群

答案:

十四、 填空 15% (每小题 3分)

$$\sum_{v \in V} d(v) = 2m$$
1、 $v \in V$; 2、奇数; 3、5; 4、n; 5、臂力小者

十五、 选择 15% (每小题 3分)

题目	1	2	3	4	5
答案	В	С	В	В	A

十六、 证明 34%

1、(10 分)证明:用 n 个顶点 v_1 , …, v_n 表示 n 个人,构成顶点集 $V=\{v_1, …, v_n\}$, 设 $E=\{uv | u, v \in V, 且 u, v 是朋友 (u \neq v)\}$, 无向图 G=(V, E)

现证 G 中至少有两个结点度数相同。

事实上,(1) 若 G 中孤立点个数大于等于 2,结论成立。

- (2) 若 G 中有一个孤立点,则 G 中的至少有 3 个顶点,现不考虑孤立点。设 G 中每个结点度数均大于等于 1,又因为 G 为简单图,所以每个顶点度数都小于等于 n-1,由于 G 中顶点数到值只能是 1,2, ··· ,n-1 这 n-1 个数,因而取 n-1 个值的 n 个顶点的度数至少有两个结点度数是相同的。
- 2、 $(8\, \%)$ 证:设 G 中两个奇数度结点分别为 u, v。若 u, v 不连通,即它们中无任何通路,则至少有两个连通分支 G_1 、 G_2 ,使得 u, v 分别属于 G_1 和 G_2 。于是 G_1 与 G_2 中各含有一个奇数度结点,与握手定理矛盾。因而 u, v 必连通。
 - 3、(8分) 证: n=6,m=12 欧拉公式 n-m+f=2 知 f=2-n+m=2-6-12=8

由图论基本定理知: $\sum \deg(F) = 2 \times m = 24$, 而 $\deg(F_i) \ge 3$, 所以必有 $\deg(F_i) = 3$. 即每个而用 3 条边围成。

4、(10 分) 证: 设循环群[A,・]的生成元为 a,同态映射为 f,同态像为<f(A), *>,于是 $\forall a^n, a^m \in A$ 都有 $f(a^n \cdot a^m) = f(a^n) * f(a^m)$ 对 n=1 有f(a) = f(a)

$$_{n=2}$$
, $f(a^2) = f(a \cdot a) = f(a) * f(a) = (f(a))^2$

若 n=k-1 时 有
$$f(a^{k-1}) = (f(a))^{k-1}$$

$$\forall n = k \exists f, f(a^k) = f(a^{k-1} \cdot a) = f(a^{k-1}) * f(a) = (f(a))^{k-1} * f(a) = (f(a))^k$$

这表明,f(A)中每一个元素均可表示为 $(f(a))^n$,所以< f(A),*>是以 f(a) 生成元的循环群。

十七、 中国邮递员问题 14%

解: 图中有 4 个奇数结点,
$$d(v_1) = 3$$
, $d(v_2) = 5$, $d(v_3) = 3$, $d(v_5) = 5$

(1) 求 v_1,v_2,v_3,v_5 任两结点的最短路

$$d(v_1v_2) = 3, \quad d(v_2v_3) = 5, \quad d(v_1v_5) = 4, \quad d(v_2v_3) = 2, \quad d(v_2v_5) = 3, \quad d(v_3v_5) = 4$$

$$p_1 = v_1v_2, \quad p_2 = v_1v_2v_3, \quad p_3 = v_1v_7v_5, \quad p_4 = v_2v_3, \quad p_5 = v_2v_6v_5, \quad p_6 = v_3v_7v_5$$

再找两条道路使得它们没有相同的起点和终点, 且长度总

和最短:
$$p_3 = v_1 v_7 v_5$$
, $p_4 = v_2 v_3$,

(2) 在原图中复制出 p_3 , p_4 , 设图 G, 则图 G 中每个结点度数均为偶数的图 G 存在欧拉回路 $C = v_1 v_7 v_3 v_2 v_4 v_5 v_6 v_2 v_7 v_5 v_{.3} v_2 v_1 v_7 v_5 v_{1}$, 欧拉回路 C 权长为 43。

十八、 根树的应用 13%

解:用100乘各频率并由小到大排列得权数

$$w_1 = 5, w_2 = 5, w_3 = 5, w_4 = 10, w_5 = 10, w_6 = 15, w_7 = 20, w_8 = 30$$

(1) 用 Huffman 算法求最优二叉树:

(2) 前缀码

用 00000 传送 5; 00001 传送 6; 0001 传送 7; 100 传送 3; 101 传送 4; 001 传送 2; 11 传送 1; 01 传送 0 (频率越高传送的前缀码越短)。

十九、 10%

证明:

- (1) 乘:由运算表可知运算*是封闭的。
- (2) 群: 即要证明(x*y)*z = x*(y*z), 这里有 4^3 =64 个等式需要验证 但: ① e 是幺元, 含 e 的等式一定成立。
 - ②ab=a*b=b*a,如果对含a,b的等式成立,则对含a、b、ab的等式也都成立。
 - ③剩下只需验证含 a、b 等式, 共有 23=8 个等式。即:
 - (a*b)*a=ab*a=b=a*(b*a)=a*ab=b; (a*b)*b=ab*b=a=a*(b*b)=a*e=a;
 - (a*a)*a=e*a=a=a*(a*a)=a*e=a; (a*a)*b=e*b=b=a*(a*b)=a*ab=b;
 - (b*b)*a=e*a=a=b*(b*a)=b*ab=a; (b*b)*b=e*b=b=b*(b*b)=b*e=b;
 - $(b^*a)^*a = ab^*a = b = b^*(a^*a) = b^*e = b \; ; \qquad (b^*a)^*b = ab^*b = a = b^*(a^*b) = b^*ab = a \quad .$
- (3) 幺: e 为幺元

所以<B4,*>为群。

试卷八试题与答案

一、 填空 15% (每小题 3分)

1、n 阶完全图 K_n 的边数为 _____。

- 2、右图的邻接矩阵
 - A= _____ 。
- 4、完全二叉树中,叶数为 n_t,则边数 m= ______。
 - 5、 设< {a,b,c}, *>为代数系统, * 运算如下:

第3题

*	a	b	c
a	a	b	c

b	b	a	c
c	c	c	c

则它的幺元为 : 零元为 :

a、b、c 的逆元分别为

二、 选择 15% (每小题 3分)

1、图

相对于完全图的补图为(

)。

则

2、对图 G

 $k(G), \lambda(G), \delta(G)$ 分别为 (

A, 2, 2, 2; B, 1, 1, 2; C, 2, 1, 2; D, 1, 2, 2 o

- 3、一棵无向树 T 有 8 个顶点, 4 度、3 度、2 度的分枝点各 1 个, 其余顶点均为树叶,则 T 中有 () 片树叶。
 - A, 3; B, 4; C, 5; D, 6
- 4、设<A,+,•>是代数系统,其中+,•为普通的加法和乘法,则 A=()时<A,+,•>是整环。
 - A, $\{x \mid x = 2n, n \in Z\}$; B, $\{x \mid x = 2n + 1, n \in Z\}$;
 - $(x \mid x \ge 0, \exists x \in Z)$, $(x \mid x = a + b\sqrt[4]{5}, a, b \in R)$
- 5、设 A={1, 2, ···, 10}, 则下面定义的运算*关于 A 封闭的有()。
 - A、 x*y=max(x,y); B、 x*y=质数 p 的个数使得 $x \le p \le y$;
 - $C \times x^*y = \gcd(x, y)$; $(\gcd(x, y)$ 表示 x 和 y 的最大公约数);

三、 证明 45%

- $m \le \frac{n^2}{4}$ 1、设 G 是 (n,m) 简单二部图,则 $= \frac{n^2}{4}$ 。 (8 %)
- $m>\frac{1}{2}(n-1)(n-2)$ 2、设 G 为具有 n 个结点的简单图,且 则 G 是连通图。(8 分)
- 3、设G是阶数不小于11的简单图,则G或 \overline{G} 中至少有一个是非平图。(14 分)
- 4、记"开"为 1,"关"为 0,反映电路规律的代数系统[$\{0,1\}$, +,•]的加法运算和乘法运算。如下:

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	0	1

证明它是一个环,并且是一个域。(15分)

四、 生成树及应用 10%

1、(10 分)如下图所示的赋权图表示某七个城市 v_1, v_2, \cdots, v_7 及预先测算出它们之间的一些直接通信线路 造价,试给出一个设计方案,使得各城市之间既能够通信 而且总造价最小。

2、(10分)构造 H、A、P、N、E、W、R、对应的前缀码,

并画出与该前缀码对应的二叉树,写出英文短语 HAPPY NEW YEAR 的编码信息。

五、5%

对于实数集合 R, 在下表所列的二元远算是否具有左边一列中的性质, 请在相应位上填写"Y"或"N"。

	Max	Min	+
可结合性			
可交换性			
存在幺元			

存在零元

答案:

二十、 填空 15% (每小题 3 分)

$$\frac{1}{2}n(n-1); 2,
\begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0
\end{pmatrix}; 3; 4, 2(n_t-1); 5, a, c, a,$$

b、没有

二十一、选择 15% (每小题 3分)

题目	1	2	3	4	5
答案	A	A	С	D	A, C

二十二、证明 45%

1、 (8分): 设 G= (V, E),
$$V = X \cup Y$$
, $|X| = n_1$, $|Y| = n_2$,则 $n_1 + n_2 = n_2$

对完全二部图有
$$m = n_1 \cdot n_2 = n_1(n - n_1) = -n_1^2 + n_1 n = -(n_1 - \frac{n}{2})^2 + \frac{n^2}{4}$$

$$n_1 = \frac{n}{2}$$
 时,完全二部图 (n,m) 的边数 m 有最大值 $\frac{n^2}{4}$ 。

故对任意简单二部图(n,m)有 $m \leq \frac{n^2}{4}$ 。

2、(8 分)反证法: 若 G 不连通,不妨设 G 可分成两个连通分支 G_1 、 G_2 ,假设 G_1 和 G_2 的顶点数分别为 n_1 和 n_2 ,显然 $n_1 + n_2 = n$ 。

$$\therefore n_1 \ge 1 \quad n_2 \ge 1 \quad \therefore n_1 \le n - 1 \quad n_2 \le n - 1$$

$$\therefore m \le \frac{n_1(n_1 - 1)}{2} + \frac{n_2(n_2 - 1)}{2} \le \frac{(n - 1)(n_1 + n_2 - 2)}{2} = \frac{(n - 1)(n - 2)}{2}$$

与假设矛盾。所以G连通。

3、(14 分)(1) 当 n=11 时, $G \cup \overline{G} = K_{11} K_{11}$ 边数 $m' = \frac{11 \times 10}{2} = 55$ 条,因而必有 G

或 \overline{G} 的边数大于等于 28,不妨设G的边数 $m \ge 28$,设G有 k 个连通分支,则G中必有回路。(否则 G 为 k 棵树构成的森林,每棵树的顶点数为 n_i ,边数 m_i ,则

$$m_i = n_i - 1, i = 1 \cdots k$$
, $\sum_{i=1}^k n_i = n = 11, \sum_{i=1}^k m_i = m$

∴
$$28 \le m = \sum_{i=1}^{k} m_i = \sum_{i=1}^{k} (n_i - 1) = n - k = 11 - k$$

下面用反证法证明 G 为非平面图。

假设 G 为平面图,由于 G 中有回路且 G 为简单图,因而回路长大于等于 3 。于是 G

的每个面至少由 $g(g \ge 3)$ 条边围成,由点、边、面数的关系 $m \le \frac{g}{g-2}(n-k-1)$,得:

$$28 \le m \le \frac{g}{g-2}(11-k-1) \le \frac{3}{3-1}(11-(k+1)) \le 3(11-(1+1)) = 3 \times 11 - 3 \times 2 = 27$$

而 28≤27矛盾, 所以 G 为非平面图。

(2) 当 n>11 时,考虑 G 的具有 11 个顶点的子图 G' ,则 G' 或 \overline{G}' 必为非平面图。如果 G' 为非平面图,则 G' 为非平面图。

如果 \overline{G}' 为非平面图,则 \overline{G} 为非平面图。

4、(15分)

- 1)[{0,1},+,•]是环
 - ①[{0, 1}, +]是交换群

乘:由"+"运算表知其封闭性。由于运算表的对称性知:+运算可交换。

群:
$$(0+0) + 0=0+ (0+0) = 0$$
; $(0+0) + 1=0+ (0+1) = 1$; $(0+1) + 0=0+ (1+0) = 1$; $(0+1) + 1=0+ (1+1) = 0$; $(1+1) + 1=1+ (1+1) = 0$ ······

结合律成立。

幺: 幺元为0。

逆: 0,1 逆元均为其本身。所以,<{0,1},+>是 Abel 群。

②<{0, 1}, •>是半群

乘:由"•"运算表知封闭

群:
$$(0 \cdot 0) \cdot 0 = 0 \cdot (0 \cdot 0) = 0$$
 ; $(0 \cdot 0) \cdot 1 = 0 \cdot (0 \cdot 1) = 1$; $(0 \cdot 1) \cdot 0 = 0 \cdot (1 \cdot 0) = 1$; $(0 \cdot 1) \cdot 1 = 0 \cdot (1 \cdot 1) = 0$; $(1 \cdot 1) \cdot 1 = 1 \cdot (1 \cdot 1) = 0$; ...

③•对+的分配律

 $\forall x, y \in \{0,1\}$

$$[0 \cdot (x+y) = 0 = 0 + 0 = (0 \cdot x) + (0 \cdot y)$$

 $II \quad 1 \cdot (x+y)$

当 x=y (x+y)=0 则

$$1 \cdot (x+y) = 1 \cdot 0 = 0 = \begin{cases} 0+0 \\ 1+1 \end{cases} = \begin{cases} (1 \cdot 0) + (1 \cdot 0) \\ (1 \cdot 1) + (1 \cdot 1) \end{cases} = (1 \cdot x) + (1 \cdot y)$$

$$1 \cdot (x+y) = 1 \cdot 1 = 1 = \begin{cases} 1+0 \\ 0+1 \end{cases} = \begin{cases} (1 \cdot 1) + (1 \cdot 0) \\ (1 \cdot 0) + (1 \cdot 1) \end{cases} = (1 \cdot x) + (1 \cdot y)$$

所以 $\forall x, y, z \in \{0,1\}$ 均有 $z \cdot (x + y) = (z \cdot x) + (z \cdot y)$

同理可证: $(x+y)\cdot z = (x\cdot z) + (y\cdot z)$

所以•对+是可分配的。

由①②③得, <{0, 1}, +, •>是环。

(2) <{0, 1}, +, •>是域

因为<{0,1},+,•>是有限环,故只需证明是整环即可。

- ①乘交环: 由乘法运算表的对称性知,乘法可交换。
- ②含幺环: 乘法的幺元是1
- ③无零因子: 1 1=1≠0

因此[{0,1},+,•]是整环,故它是域。

二十三、 树的应用 20%

1、(10分)解: 用库斯克(Kruskal)算法求产生的最优树。算法略。结果如图:

树权 C(T)=23+1+4+9+3+17=57 即为总造价

五、(10分)

由二叉树知

H、A、P、Y、N、E、W、R 对应的

编码分别为

000, 001, 010, 011, 100, 101, 110, 111.

显然{000,001,010,011,100,101,110,111}为前缀码。

英文短语 HAPPY NEW YEAR 的编码信息为

六、5%

	Max	Min	+
可结合性	Y	Y	Y
可交换性	Y	Y	Y
存在幺元	N	N	Y
存在零元	N	N	N

试卷九试题与答案

一、 填空 30% (每空 3分)

7、偏序集 < A, R≤ > 的哈斯图为

则

1,	选择合适的论域和谓词表达集合 A="直角坐标系中,单位元(不包括单位圆周)
	的点集"则 A=。
2、	集合 A={ Φ ,{ Φ }}的幂集 $\mathcal{P}(A)$ =。
3、	设 A={1, 2, 3, 4}, A 上二元关系 R={<1, 2>, <2, 1>, <2, 3>, <3, 4>}画出 R 的关系图
4、	· 设 A={<1,2>,<2 , 4 >,<3 , 3 >} , B={<1,3>,<2,4>,<4,2>}, 则 $A \cup B =$ 。
	$A \circ B =$ \Box
5、	设 A =3,则 A 上有 个二元关系。
6、	A={1, 2, 3}上关系 R= 时, R 既是对称的又是反对称的。 d e f g d e f g

(2) 当 n, m 满足 _____ 时, 存在双射有_____ 个不同的双射。

8、设|X|=n, |Y|=m则(1)从 X 到 Y 有 ______ 个不同的函数。

9、	$\sqrt{2}$ 是有理数的真值为。
10、	Q: 我将去上海, R: 我有时间, 公式 $(Q \to R) \land (R \to Q)$ 的
	自 然 语 言
为 _	
1,	$公式(Q \to P) \land (\neg P \land Q)$ 的
	主 合 取 范 式
是	
2,	
则 足	它
	选择 20% (每小题 2分)
l,	设全集为 I, 下列相等的集合是 ()。
۸.	$A = \{x \mid x$ 是偶数或奇数 $\}$, $B = \{x \mid \exists y (y \in I \land x = 2y)\}$,
	$C = \{x \mid \exists \ y(y \in I \land x = 2y + 1)\}; \qquad D = \{x \mid 0, 1, -1, 2, -2, 3, -3, 4, -4, \cdots\}$
	设 S={N, Q, R}, 下列命题正确的是 ()。
۸.	$2 \in N, N \in S$ 则 $2 \in S$; $B \setminus N \subset Q, Q \in S$ 则 $N \subset S$;
	$N \subset Q, Q \subset R \bowtie N \subset R$, $D \subset N, \Phi \subset S \bowtie \Phi \subset N \cap S$
3、	设 C={{a},{b},{a,b}}, 则 $S \in C$ 分别为 ()。
	A、C和{a,b};B、{a,b}与 Φ ;C、{a,b}与{a,b};D、C与C
``	下列语句不是命题的有()。
	A、x=13; B、离散数学是计算机系的一门必修课; C、鸡有三只脚;
	D、太阳系以外的星球上有生物; E、你打算考硕士研究生吗? $(P \rightarrow Q) \rightarrow R$
	$(P \to Q) \to R$ 的合取范式为 ()。
	A, $(P \wedge \neg Q) \vee R$; B, $(P \vee R) \wedge (\neg Q \vee R)$;
$(P \wedge$	$C,$ $\neg Q \land R) \lor (P \land \neg Q \land \neg R) \lor (P \land Q \land R) \lor (P \land \neg Q \land R) \lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R)$ $C,$ $(P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor \neg Q \lor R)$
1	6、设 A =n,则 A 上有()二元关系。
	x_1 x_2 x_3 x_4 x_4 x_5 x_4 x_5 x_5 x_4 x_5

7、设r为集合 A 上的相容关系, 其简化关系图 (如图),

则 [I] r产生的最大相容类为 ();

第7题
$$A \times \{x_1, x_2\}; B \times \{x_1, x_2, x_3\}; C \times \{x_4, x_5\}; D \times \{x_2, x_4, x_5\}$$
 [II] A 的完全覆盖为 ()。

A.
$$\{x_1, x_2, x_3, x_4, x_5\}$$
:
B. $\{\{x_1, x_2\}, \{x_1, x_2, x_3\}, \{x_4, x_5\}\}$:
C. $\{\{x_1, x_2, x_3\}, \{x_2, x_4, x_5\}\}$;
D. $\{\{x_1, x_2\}, \{x_3\}, \{x_4, x_5\}\}$

8、集合 A={1, 2, 3, 4}上的偏序关系图为

9、下列关系中能构成函数的是()。

A、
$$\{ \langle x,y \rangle | (x,y \in N) \land (x+y < 10) \}$$
; B、 $\{ \langle x,y \rangle | (x,y \in R) \land (y = x^2) \}$; C、 $\{ \langle x,y \rangle | (x,y \in R) \land (y^2 = x) \}$; D、 $\{ \langle x,y \rangle | (x,y \in I) \land (x \equiv y \mod 3) \}$ 。
10、N是自然数集,定义 $f: N \to N$, $f(x) = (x) \mod 3$ (即 x 除以 3 的余数),则 f是()。

A、满射不是单射; B、单射不是满射; C、双射; D、不是单射也不是满射。

三、 简答题 15%

1、(10 分)设 S= $\{1,2,3,4,6,8,12,24\}$," \leq "为 S 上整除关系,问:(1)偏序集 $^{< S}$, \leq 》的 Hass 图如何?(2)偏序集 $^{\{S,\leq\}}$ 的极小元、最小元、极大元、最大元是什么?

2、(5 分) 设解释 R 如下: D_R 是实数集, D_R 中特定元素 a=0, D_R 中特定函数 $f(x,y)=x-y \qquad , \qquad \text{特 } \quad \text{定 } \quad \text{词 } \quad \text{词 } \quad F(x,y):x< y \qquad , \qquad \text{问 } \quad \text{公 } \quad \text{式}$ $A=\forall x\forall y\forall z(F(x,y)\to F(f(x,z),f(y,z)))$ 的涵义如何?真值如何?

四、 逻辑推理 10%

或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学。因此,如果许多学生喜欢逻辑,那么数学并不难学。

五、10%

设 X={1,2,3,4,5}, X 上的关系 R={<1,1>,<1,2>,<2,4>,<3,5>,<4,2>}, 用 Warshall 方法, 求 R 的传递闭包 t (R)。

六、证明 15%

- 1、每一有限全序集必是良序集。(7分)
- 2、设 $g \circ f$ 是复合函数,如果 $g \circ f$ 满射,则g 也是满射。(8分)

答案

二十四、 填空 20% (每小题 2 分)

1,

2,

3、见右图;

4, $\{<1,2>,<2,4>,<3,3>,<1,3>,<2,4>,<4,2>\}$, $\{<1,4>,<2,$

2 >;

- $5, 2^9;$ $6, \{<1, 1>, <2, 2>, <3, 3>;$
- 7、 {<a,b>,<a,d>,<a,e>,<b,d>,<b,e>,<a,c>,<a,f>,<a,g>,<c,f>,<c,g>}
- 8、mⁿ、n=m、n!; 9、假; 10、我将去上海当且仅当我有空;

11,

12,

二十五、 选择 20% (每小题 2分)

题目	1	2	3	4	5	6	7	8	9	10
答案	A, D	С	В	A, E	B, D	С	B, D; C	A	В	D

二十六、 简答题 15%

1、(10分)

 $(1) \leqslant = \{<1,2>,<1,3>,<1,4>,<1,6>,<1,8>,<1,12>,<1,24>,<2,4>,<2,6>,<2,8> ,$

<2,12>,<2,24>,<3,6>,<3,12>,<3,24>,<4,8>,<4,12>,<4,24>,<6,12>,<6,24>,<8,24>,<12,24>}

covS={<1,2>,<1,3>,<2,4>,<2,6>,<3,6>,<4,8>,<4,12>,<6,12>,<8,24>,<12,24>} Hass 图为

(2) 极小元、最小元是 1, 极大元、最大元是 24。

2、(5分)

解: 公式 A 涵义为: 对任意的实数 x,y,z, 如果 x < y 则 (x-z) < (y-z) A 的真值为: 真(T)。

二十七、 逻辑推理 10%

解:设P:逻辑难学;Q:有少数学生不喜欢逻辑学;R:数学容易学符号化:

证: ① P

② T(1)E

③ P

4) T23I

⑤ T4E

二十八、 (10分)

解:

1时, [1,1]=1, A= 2时, A[1,2]=A[4,2]=1 A=

3 时, A 的第三列全为 0, 故 A 不变 4 时 A[1,4]=A[2,4]=A[4,4]=1

A=

5 时, A 的第五行全为 0, 故 A 不变。 所以 t (R)={<1,1>, <1,2>,<1,4>,<2,2>,<2,4>,<3,5>,<4,2>,<4,4>}。

二十九、证明 15%

1、(7分)

证明:设 , 全序集。

若 不是良序集,那么必有一子集 ,在B中不存在最小元素,由

于 B 是一有限集合, 故一定可找出两元素 x , y 是无关的, 由于 是全序集。

所以 x , y 必有关系, 矛盾。故 必是良序集。

2、(8分)

证明:设 , 由于 满

射,故必有 使得 ,由复合函数定义知,存在 使得

又因为 g 是函数, 必对任 , 必 使 , 任每个 z 在 g 作用下都是 Y 中元素的一个映象, 由 Z 的任意性, 所以 g 是满射。

试卷十试题与答案

为

一、 填空 10% (每小题 2分)

1,	若 P,Q 为二命题, $P \leftrightarrow Q$ 真值为 1,当且仅当	_ 。
2、	对公式 $(\forall y P(x,y) \land \exists z Q(x,z)) \lor \forall x R(x,y)$ 中自由变元进行代入的	
	公	定

- $C_{\lambda} \forall x \forall y (P(x,y) \lor Q(y,z)) \land \exists x P(x,u) : D_{\lambda} \forall u \forall y (P(u,y) \lor Q(y,z)) \land \exists u P(u,y)$
 - 8、给定公式 $\exists x P(x) \to \forall x P(x)$, 当 $D=\{a,b\}$ 时,解释 () 使该公式真值 为 0。
 - A, P(a)=0, P(b)=0; B, P(a)=0, P(b)=1; C, P(a)=1, P(b)=0; D, P(a)=1, P(b)=1
 - 9、下面蕴涵关系成立的是()。
 - $A_{\Sigma} \forall x P(x) \land \forall x Q(x) \Rightarrow \forall x (P(x) \lor Q(x)).$
 - $_{\rm B}$, $\exists x P(x) \to \forall x Q(x) \Rightarrow \forall x (P(x) \to Q(x))$.
 - C_{\bullet} $\forall x P(x) \rightarrow \forall x Q(x) \Rightarrow \forall x (P(x) \rightarrow Q(x))$.
 - $D_{\lambda} \exists x \forall y A(x,y) \Rightarrow \forall y \exists x A(x,y)$
- 10、下列推理步骤错在()。
- $(1) \forall y \exists y F(x, y)$
- $2 \exists y F(z, y)$ US①
- $_{\textcircled{3}}F(z,c)$ ES②
- $\textcircled{4} \forall x F(x,c)$ UG③

A, $(1) \rightarrow (2)$; B, $(2) \rightarrow (3)$; C, $(3) \rightarrow (4)$; D, $(4) \rightarrow (5)$.

P

三、 逻辑判断 28%

- 1、(8分)下列命题相容吗? $A \rightarrow B$, $\neg (B \lor C)$, A
- 2、(10分) 用范式方法判断公式 $(P \to Q) \land (P \to R), P \to Q \land R$ 是否等价。
- 3、(10分)下列前提下结论是否有效?

今天或者天晴或者下雨。如果天晴,我去看电影,若我去看电影,我就不看书。故我在 看书时,说明今天下雨。

四、 计算 12%

- 1、(5分) 给定 3 个命题: P: 北京比天津人口多; Q: 2 大于 1; R: 15 是素数。 求复合命题: $(Q \to R) \leftrightarrow (P \land \neg R)$ 的直信。
- 2、(7分) 给定解释 I: D= $\{2,3\}$, L(x,y) 为 L(2,2)=L(3,3)=1, L(2,3)=L(3,2)=0,

求谓词合式公式 $\exists y \forall x L(x,y)$ 的真值。

五、 逻辑推理 20%

- 1、(10分)所有有理数是实数,某些有理数是整数,因此某些实数是整数。
- 2、(10分)符号化语句:"有些病人相信所有的医生,但是病人都不相信骗子,所以医生都不是骗子"。并推证其结论。

答案

三十、 填空 15% (每小题 3 分)

1、P,Q的真值相同; 2、 $(\forall y P(u,y) \land \exists z Q(u,z)) \lor \forall x R(x,v)$; 3、 $\forall x (F(x) \land \neg G(x))$;

$$_{4}, \ \forall x A(x) \Rightarrow A(y), \ _{5}, \ _{Q} \longrightarrow \longrightarrow P^{\uparrow} Q$$

P

三十一、选择 30% (每小题 3分)

题目	1	2	3	4	5	6	7	8	9	10
答案	В、С	A, C	В	C, D	C	D	A	В、С	B, D	С

三十二、逻辑判断 28%

1、(8分)

 $\widehat{A} \rightarrow B$

②A P

③B T①②I

 $_{\widehat{4}}$ $\neg (B \lor C)$

 $\bigcirc \neg B \land \neg C$ T④E

⑥ ¬*B* T⑤I

7F T36I

所以 $A \rightarrow B$, $\neg (B \lor C)$, $A_{\text{不相容}}$.

2、(10分)

$$(P \to Q) \land (P \to R) \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$

$$\Leftrightarrow ((\neg P \lor Q) \lor (R \land \neg R)) \land ((\neg P \lor R) \lor (Q \land \neg Q))$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

$$=M_{100} \wedge M_{101} \wedge M_{110}$$

$$P \to Q \land R \Leftrightarrow \neg P \lor (Q \land R) \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$

$$\Leftrightarrow ((\neg P \lor Q) \lor (R \land \neg R)) \land ((\neg P \lor R) \lor (Q \land \neg Q))$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

$$\Leftrightarrow (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor Q \lor R)$$

$$= M_{100} \wedge M_{101} \wedge M_{110}$$

所以两式等价。

3、设 P: 今天天晴, Q: 今天下雨, R: 我不看书, S: 我看电影

符号化为: $P \lor Q$, $P \to S$, $S \to R \Rightarrow \neg R \to Q$

$$_{\bigcirc}P \rightarrow S$$

P

$$_{\tiny{\textcircled{2}}}S \rightarrow R$$

P

$$_{\scriptsize \textcircled{3}}P \rightarrow R$$

T1121

$$_{\widehat{(4)}} \neg R \rightarrow \neg P$$

T3I

$$_{(5)}P\vee Q$$

P

$$_{\stackrel{\textstyle \circ}{\scriptscriptstyle (6)}} \neg P \rightarrow Q$$

T⑤E

$$_{\tiny{(7)}} \neg R \rightarrow Q$$

T4)6)I

结论有效。

三十三、 计算 12%

1、(5分)解: P, Q是真命题, R是假命题。

$$(Q \rightarrow R) \leftrightarrow (P \land \neg R) = (1 \rightarrow 0) \leftrightarrow (1 \land 1) = 0 \leftrightarrow 1 = 0$$

2、(7分)

$$\exists y \forall x L(x,y) \Leftrightarrow \exists y (L(2,y) \land L(3,y)) \Leftrightarrow (L(2,2) \land L(3,2)) \lor (L(2,3) \land L(3,3))$$
$$\Leftrightarrow (1 \land 0) \lor (0 \land 1) = 0 \lor 0 = 0$$

三十四、 逻辑推理 20%

1、(10分)解:设R(x):x是实数,Q(x):x是有理数,I(x):x是整数

符号化: 前提: $\forall x(Q(x) \to R(x))$, $\exists x(Q(x) \land I(x))$ 结论: $\exists x(R(x) \land I(x))$

$$\exists x (Q(x) \land I(x))$$

F

$$\bigcirc Q(c) \wedge I(c)$$

ES(1)

$_{\textcircled{3}} \forall x (Q(x) \to R(x))$	P
$_{\textcircled{4}}Q(c) \rightarrow R(c)$	US③
$_{f ar{5}}{\it Q}(c)$	T@I
$_{\bigcirc} R(c)$	T45I
$\bigcirc I(c)$	T②I
$_{\textcircled{8}}R(c)\wedge I(c)$	T@⑦I
$ \exists x (R(x) \wedge I(x)) $	EG®
2、解: F(x): x 是病人, G(x): x 是[医生, H(x): x 是骗子, L(x,y): x 相信 y
符号化: 前提: $\exists x (F(x) \land \forall y (G(y)))$	$\forall y \mapsto L(x,y))) \ \forall x(F(x) \mapsto \forall y(H(y) \mapsto \neg L(x,y)))$
结论: $\forall x(G(x) \rightarrow \neg H(x))$	
(1) $\exists x (F(x) \land \forall y (G(y) \rightarrow L(x, y)))$	P
$_{(2)}F(a) \land \forall y(G(y) \rightarrow L(a,y))$	ES(1)
$_{(3)}F(a)$	T(2)I
$_{(4)}$ $\forall y (G(y) \rightarrow L(a,y))$	T(2)I
(5) $\forall x (F(x) \to \forall y (H(y) \to \neg L(x, y))$	y))) P
$_{(6)}F(a) \rightarrow \forall y (H(y) \rightarrow \neg L(a, y))$	US(5)
$_{(7)}$ $\forall y (H(y) \rightarrow \neg L(a, y))$	T(3)(6)I
$_{(8)} \forall y (L(a,y) \rightarrow \neg H(y))$	T(7)E
$_{(9)}G(z) \rightarrow L(a,z)$	US(4)
(0) $L(a,z) \rightarrow \neg H(z)$	US(8)
$_{(1]}G(z) \rightarrow H(z)$	T(9)(10)I
$(12) \forall x (G(x) \to \neg H(x))$	UG(11)
卷十一试题与答案	
一、 填空 20% (每小	、
, ,,=	
4 氏去,西朔七取子头	N 共別 有 PI 配烛 但 有 种

-。 、设 S=	={a,b, c}	则 S。的集合	表示为				
		\mathcal{P}			Ф))
						. 0	,
$A \oplus B$							=
		i的关系,则 <i>t</i> 是 集			⇒ 坐 亥	<u> </u>	D 滞
	白 K			ол Дня <i>Г</i> л	了大尔	,	N 1PA
	사라 그것	• • • • • • • • • • • • • • • • • • •	+ 1 HH -	<i>A</i> . \			
<u> </u>	延拌 4	20% (每		万)			
1,	下列命题』	E确的有()。				
		f _{是满射,则}		· B、若8°	o f _{是満射} .	回 g, f 都是	满射.
		f _{是单射,则}					11/3/21 ,
2,		函数,当(· +31, y	1。	
		f 都有 $f(x)$			idomf 且 j	$f \subseteq g$;	
C,	f与g的表	达式相同;		D_{s} domg =	domf,rang	ref = rangef	0
3,	下列关系,	()能构成	函数。			
	A, $f = {$	$[\langle x_1, x_2 \rangle x_1,$	$x_2 \in N \perp x_1$	$+x_2 = 10$;			
	B, $f = {$	$\langle x_1, x_2 \rangle x_1,$	$x_2 \in R, x_1 =$	$(x_2^2);$			
	$f = \{$	$\langle x_1, x_2 \rangle x_1,$	$x_2 \in N, x_2$	为小于x ₁ 的素	ξ数的个数}	;	
	D, f =	$= \{ \langle x, x > x $	$\in R$ }				
4、	下列函数()满射;()单	射;()双射();
	一般函数	()	0				
A	$f: N \to \mathbb{R}$	$N, f(x) = x^2$	+2 _; E	$f: N \to$	N, f(x) = x	$x \pmod{3}$	除以3
的余数):						
1不 奴	,						

5、令 P (x): x 是质数, E (x): x 是偶数, Q (x): x 是奇数, D (x, y): x 除尽 y. 则

 $f: N \to \{0,1\}, \quad f(x) = \begin{cases} 1 & x \in \text{偶数集} \\ 0 & x \in \text{奇数集} \end{cases}$, $f: R \to R, \quad f(x) = 2x - 5$ 。

5、集合 $A=\{1,2,3,4\}$ 上的偏序关系为 3

,则它的 Hass 图为().

6、 设集合 A={1, 2, 3, 4, 5}上偏序关系的 Hass 图为

则子集 B={2,3,4}的最大元(); 最小元(); 极大元();

极小元 (); 上界 (); 上确界 (); 下界 (); 下确界

().

A、 无, 4, 2、3, 4, 1, 1, 4, 4; B、 无, 4、5, 2、3, 4、5, 1, 1, 4, 4; C、无, 4, 2、3, 4、5, 1, 1, 4, 4; D、无, 4, 2、3, 4, 1, 1, 4, 无。

7、设R,S是集合A上的关系,则下列()断言是正确的。

A、R, S 自反的,则 $R \circ S$ 是自反的,B、若R, S 对称的,则 $R \circ S$ 是对称的, C、若 R , S 传递的,则 $R \circ S$ 是传递的, D、若 R , S 反对称的,则 $R \circ S$ 是反对称的

8、设 X 为集合, |X|=n, 在 X 上有(

)种不同的关系。

A, n^2 ; B, 2^n ; C, 2^{2^n} ; D, 2^{n^2}

9、下列推导错在(

)。

 \bigcirc $\forall x \exists y (x > y)$

 $\bigcirc \exists y(z > y)$

US(1)

$$_{\textcircled{3}}(z > C_z)$$
 ES②

$$\textcircled{4} \forall x(x > x)$$
 UG③

A、②; B、③; C、④; D、无。

10、"没有不犯错误的人"的逻辑符号化为()。

设 H (x): x 是人, P (x): x 犯错误。

A,
$$\exists x (H(x) \to P(x))$$
; B, $\neg (\exists x (H(x) \land \neg P(x)))$;
C, $\neg (\exists x (H(x) \to \neg P(x)))$; D, $\forall x (H(x) \to P(x))$

三、 命题演绎 28%

- 1、(10分)用反证法证明 $(P \lor Q) \land (P \to R) \land (Q \to S) \Rightarrow S \lor R$ 。
- 2、(8分) 用 CP 规则证明 $P \to (Q \to R), R \to (Q \to S) \Rightarrow P \to (Q \to S)$ 。
- 3、(10分)演绎推理: 所有的有理数都是实数,所有的无理数也是实数,虚数不是实数。 因此,虚数既不是有理数,也不是无理数。

四、8%

将 wff $\exists x(\neg(\exists y P(x,y)) \rightarrow (\exists z Q(z) \rightarrow R(x)))$ 化为与其等价的前束范式。

五、8%

 $A=\{a,b,c,d\}$, $R=\{\langle a,b\rangle,\langle b,c\rangle,\langle b,d\rangle,\langle c,b\rangle\}$ 为 A 上的关系,利用矩阵乘法求 R 的传递闭包,并画出 t(R)的关系图。

六、证明 16%

1、(8分)设A= $\{1, 2, 3, 4\}$,在 P(A) 上规定二元关系如下:

$$R = \{ \langle s, t \rangle | s, t \in _{\mathcal{P}(A)} \land (|s|=|t|) \}$$

证明 R 是 $\mathcal{P}(A)$ 上的等价关系并写出商集 $\mathcal{P}(A)$ /R。

2、 $(8 \, \text{分})$ 设 f 是 A 到 A 的满射,且 $f \circ f = f$,证明 f=I_A 。

答案

一、 填空 20% (每小题 2 分)

- 1、能够断真假的阵述句; 2、P的真值为 1, Q的真值为 0; 3、24=16; 4、永真式;
- 5、任意两数 x、y,如果 x 是偶数且能除尽 y,则 y 一定是偶数; 6、 S_{110} ={a,b};

7	0	0	
	; 8,	; 9,	;

10、自反性、反对称性、传递性

二、选择 20% (每小题 2分)

题目	1	2	3	4	5	6	7	8	9	10
答案	A, D	В	C, D	C, D; A, D; D; B	C	A	A	D	C	B, D

三、命题演绎 28%

1、(10分)证明:

(1) **P**(附加前提)

T(1)E

(3) P

T(3)E

(5) P

(6) T(4)(5)E

T(6)E

T(7)I

(9) T(2)(8)I

(10) P

T(10)E

(12) T(11)E

(13) T(9)(12)I

2、(8分)

① P (附加前提)

② P

③ T①②I

4 P

5 T34I

⑥ T⑤E

⑦ CP

3、证明:	设 Q	(x):	x 是有理数,	R(x):	x 是实数,	N(x):	x 是无理数,	C(x):	x是虚数。
前提:									
结论:									
(1)						P			
(2)						US(1)			
(3)						P			
(4)						US(3)			
(5)						P			
(6)						US(5)			
(7)						T(6)E			
(8)						T(2)(7)I			
(9)						T(4)(7)I			
(10)						T(8)(9)I			
(11)						T(10)E			
(12)						UG(11)			
п	四、 8	%							
解:	4 0	70							
五	, 8%								

解:

关系图为

六、证明 16%

1、(8分)

证明: (1) $\mathcal{P}(A)$, 由于 ,所以 ,即 R 自反的。

(2) $\mathcal{P}(A)$, 若 ,则 , R 是对称的。

(3) P(A), 若: ,即:

所以 R 是传递的。

由(1)(2)(3)知, R 是等价关系。

 $\mathcal{P}(A) / R = \{[\]_{R}, [\{1\}]_{R}, [\{1, 2\}]_{R}, [\{1, 2, 3\}]_{R}, [\{1, 2, 3, 4\}]_{R}\}$

2、(8分)

证明: 因为f是满射,所以 ,存在 使得 ,又因为f是函数,所以

即由

所以 ,又 ,所以 由 a 的任意性知: $f=I_A$ 。

卷十二试题与答案

五、 填空 20% (每空 2分)

- 4	数系统 <a,< th=""><th></th><th></th><th></th><th></th><th></th><th>普通乘法、除法和加法 运算具有封闭性。</th></a,<>						普通乘法、除法和加法 运算具有封闭性。
	没集合 S=						
	*	α	β	γ	δ	ζ	
	α	α	β	γ	δ	ζ	
	β	β	δ	α	γ	δ	
	γ	γ	α	β	α	β	
	δ	δ	α	γ	δ	γ	
	ζ	ζ	δ	α	γ	ζ	
, Ì	在群坯、\\ 设 <g,*>是 则 G =</g,*>						满足消去律。
、	拉格朗日定		,			群,则可	建立 G 中的等价关系
	若 G =n, F	H =m 则	m和nラ	关系为			
, ì							中的幺元,
	则f的同点	态核 Ker	(f)=				

A、G'的子群, B、G的子群 , C、包含G' , D、包含 G。

)。

2、设 <A ,+ ,• >是环, $\forall a,b \in A$,a • b 的关于 "+" 的逆元是(

3、设 <A , + , •>是一代数系统且<A , +>是 Abel 群, 如果还满足(

 A_{\cdot} (-a) • (-b); B_{\cdot} (-a) • b; C_{\cdot} a • (-b); D_{\cdot} a • b \circ

<A , + , • > 是域。 A、<A, •>是独异点且•对+可分配; $B < A < \{\theta\}$, •>是独异点, 无零因子目•对+可分配: C、 $<A-{\theta}$, •>是 Abel 群且无零因子; D、<A- $\{\theta\}$, •>是 Abel 目•对+可分配。 4、设<A , + , • >是一代数系统, +、• 为普通加法和乘法运算, 当 A 为 (时, <A, +, •>是域。 A、 $\{x \mid x = a + b\sqrt{5}, a, b$ 均为有理数 $\}$. B、 $\{x \mid x = a + b\sqrt[3]{5}, a, b$ 均为有理数 $\}$. $\{x\mid x=\frac{a}{b},a,b\in I_{+}, \exists a\neq kb\} \quad ; \quad \mathsf{D}, \ \{x\mid x\geq 0,\ x\in I\}_{\circ}$ 5、设<A, ≤>是一个格,由格诱导的代数系统为 $^{<}A$, $^{\lor}$, $^{\land}$,则() 成 $A < A, \lor, \land \gt$ 满足 \lor 对 \land 的分配律 $B \lor a, b \in A, a \le b \Leftrightarrow a \lor b = b$. C、 $\forall a,b,c \in A$, 若 $a \lor b = a \lor c$ 则b = c. D $\forall a,b \in A, 有a \lor (a \land b) = b$ 且 $a \land (a \lor b) = b$ 6、设<A, \leq >是偏序集, " \leq " 定义为: $\forall a,b \in A, a \leq b \Leftrightarrow a \mid b$, 则当 A= (时, <A, ≤>是格。 A, $\{1,2,3,4,6,12\}$; B, $\{1,2,3,4,6,8,12,14\}$; C, $\{1,2,3,\cdots,12\}$; D, $\{1,2,3,4\}$. 7、设 $^{< A}$, $^{\lor}$, $^{\land}$ 是由格 $^{\lt}$ A、 $^{\lt}$ >诱导的代数系统、若对 $^{\forall a,b,c \in A}$ 、当 $^{b \leq a}$ 时、 有() <A, ≤>是模格。 A, $a \wedge (b \vee c) = b \vee (a \wedge c)$:
B, $c \wedge (a \vee c) = a \vee (b \wedge c)$: $a \lor (b \land c) = b \land (a \lor c)$: $b \land (a \lor c) = b \land (a \lor c)$

 C、
 a > (b > c) = b > (a > c);
 D

 8、在 () 中, 补元是唯一的。

立。

A、有界格; B、有补格; C、分配格; D、有补分配格。

9、在布尔代数< A, \lor , \land ,->中, $b \land \overline{c} = 0$ 当且仅当(
A、 $b \le \overline{c}$; B、 $\overline{c} \le b$; C、 $b \le c$; D、 $c \le b$ 。

10、设 $^{<}A$, $^{\lor}$, $^{\land}$, $^{->}$ 是布尔代数,f是从 Aⁿ到 A 的函数,则(

) .

- A、f是布尔代数; B、f能表示成析取范式, 也能表示成合取范式;
- C、若 $A=\{0, 1\}$,则 f一定能表示成析取范式,也能表示成合取范式;
- D、若f是布尔函数,它一定能表示成析(合)取范式。

设 $A=\{1,2\}$,A 上所有函数的集合记为 A^A ,。是函数的复合运算,试给出 A^A 上运算。的运算表,并指出 A^A 中是否有幺元,哪些元素有逆元。

四、证明 42%

- 1、设<R,*>是一个代数系统,*是 R 上二元运算, $\forall a,b \in R$ $a*b=a+b+a\cdot b$,则 0 是幺元且<R,*>是独异点。(8分)
- 2、设<G,*>是 n 阶循环群,G=(a),设 b=a^k, $k \in I_+$ 则 元素 b 的阶为 \overline{d} ,这里 d=GCD (n , k)。(10 分)
- 3、证明如果 f 是由<A, \diamondsuit >到<B,*>的同态映射, g 是由<B,*>到<C, \triangle >的同态映射, 则 $g \circ f$ 是由<A, \diamondsuit >到<C, \triangle >的同态映射。(6 分)
- 4、设<A , + , >是一个含幺环,且任意 $a \in A$ 都有 a a=a,若 $|A| \ge 3$ 则<A , + , >不可能是整环。(8分)

五、布尔表达式 10%

设 $E(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (x_1 \land x_3)$ 是布尔代数 $< \{0,1\}, \lor, \land, \ > \bot$ 的一个布尔表达式,试写出其析取范式和合取范式。(10 分)

答案:

一、填空 20% (每空 2 分)

1、LCM (x,y); 2、乘法; 3、 α 、 δ , γ 、 ζ ; 4、群; 5、 $G = \{a,a^2,\cdots a^{n-1}, a^n = e\}$; $\{\langle a,b \rangle | a \in G, b \in G, a^{-1} * b \in H\}$ 、 m/n ; $\{x \mid x \in G \perp f(x) = e'\}$

二、选择 20% (每小题 2分)

• •	~311	-0/0 (- 1 VC	- /4 /							
	题目	1	2	3	4	5	6	7	8	9	10
	答案	В	В, С	D	A	В	A	A	D	С	C, D

= 80%

解: 因为|A|=2,所以 A 上共有 $2^2=4$ 个不同函数。令 $A^A=\{f_1,f_2,f_3,f_4\}$,其中:

n

由(1)、(2) 知,元素 b 的阶为 \overline{d}

3、(6分)

 $\forall a,b \in A, g \circ f(a \not \succsim b) = g(f(a \not \succsim b)) = g(f(a) * f(b))$

 $= g(f(a)) \triangle g(f(b)) = g \circ f(a) \triangle g \circ f(b)$

所以 $g\circ f$ 是由<A, $\diamondsuit>$ 到<c, $\triangle>$ 的同态映射。

4、(8分)

证明: 反证法: 如果<A ,+ ,•>是整环,且 $|A| \ge 3$,则 $\exists a \in A, a \ne \theta, a \ne 1$ 且 $a \cdot a = a$ 即有 $a \ne \theta, a - 1 \ne \theta$ 且 $a \cdot (a - 1) = a \cdot a - a = a - a = \theta$,这 与整环中无零因子矛盾。

所以<A ,+ , \bullet >不可能是整环。

5、(10分)

(1) 代数系统<K, LCM, GCD, ´> 是由格<K, |> 诱导的, 其 Hasst 图为

1

Hass 图中不存在与五元素格 所以<K,|>格是分配格。

 $\forall x \in K, \exists x' = 100/x$ 使得: LCM(x, x') = 110, GCD(x, x') = 1

如:
$$22' = \frac{110}{22} = 5$$
, $LCM(22,5) = 110, GCD(22,5) = 1$

即任元素都有补元,所以<K,|>有补格。

<K, LCM, GCD,'>是布尔代数。

五、布尔表达式 10%

解:函数表为:

x_1	x_2	x_3	$E(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$E(x_1, x_2, x_3) = (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_2 \wedge x_3)$$

$$\vee (x_1 \wedge \overline{x_2} \wedge \overline{x_3}) \vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge \overline{x_3})$$

析取范式:

合取范式: $E(x_1, x_2, x_3) = (x_1 \lor x \lor_2 x_3) \land (x_1 \lor x_2 \lor x_3)$

试卷十三试题与答案

七、 填空 10% (每小题 2分)

- $Z^+ = \{x \mid x \in Z \land x > 0\}$, *表示求两数的最小公倍数的运算(Z 表示整数集合),对于*运算的幺元是 ________________________。
 2、代数系统<A,*>中,|A|>1,如果 $e^{A}\theta$ 分别为<A,*>的幺元和零元,则 $e^{A}\theta$ 的关系为 _______________。
- 3 、 设 <G,*> 是 个 群 , <G,*> 是 阿 贝 尔 群 的 充 要 条 件

4 、 图 全 的 完 关 联 矩 阵 平 冬 是 面 冬 的 充 件

选择 10% (每小题 2分) 八、

- 1、下面各集合都是 N 的子集,()集合在普通加法运算下是封 闭的。
 - A、 $\{x \mid x$ 的幂可以被 16 整除 $\}$; B、 $\{x \mid x = 5 \subseteq 5 \subseteq 5\}$;

 - $C \times \{x \mid x \in 30 \text{ 的因子}\};$ $D \times \{x \mid x \in 30 \text{ 的倍数}\}.$
- $_{2}$ 、设 $_{G_1}$ =< $\{0,1,2\}$, $_{\circ}$ > , $_{G_2}$ =< $\{0,1\}$, $_{\ast}$ > , 其中 $_{\circ}$ 表示模 3 加法,*表示模 2 乘法,

则积代数 $G_1 \times G_2$ 的幺元是(

 $A_{x} < 0.0>; B_{x} < 0.1>; C_{x} < 1.0>; D_{x} < 1.1> ...$

- 3、设集合 S={1,2,3,6},"≤"为整除关系,则代数系统<S,≤>是()。 A、域: B、格,但不是布尔代数: C、布尔代数: D、不是代数系统。
- 4、设n阶图 G 有 m 条边,每个结点度数不是 k 就是 k+1,若 G 中有 N_k 个 k 度结点, 则 N_k= ()。

A, $n \cdot k$; B, n(k+1); C, n(k+1)-m; D, n(k+1)-2m .

5、一棵树有7片树叶,3个3度结点,其余全是4度结点,

) 个 4 度结点。 则该树有(

A, 1; B, 2; C, 3; D, 4 .

三、判断 10% (每小题 2分)

- 1、() 设 $S=\{1,2\}$,则 S 在普通加法和乘法运算下都不封闭。
- 2、()在布尔格<A,<>中,对 A 中任意原子 a,和另一非零元 b,在 $a \le b$ 或 $a \le \bar{b}$ 中 有且仅有一个成立。
- $_{)}$ 设 $S=\{x\mid x\in Z\land x\geq 0\}=N$, +, 为普通加法和乘法,则<S, +, •>是域。 3、(

- 4、()一条回路和任何一棵生成树至少有一条公共边。
- 5、() 没 T 是一棵 m 叉树, 它有 t 片树叶, i 个分枝点,则(m-1)i = t-1。

四、证明 38%

1、(8分)对代数系统<A,*>,*是A上二元运算,e为A中幺元,如果*是可结合的且每个元素都有右逆元,则(1)<A,*>中的每个元素在右逆元必定也是左逆元。

(2) 每个元素的逆元是唯一的。

2、(12 分)设 < A, \lor , \land , ->是一个布尔代数,如果在 A 上定义二元运算 \diamondsuit ,为 $a \diamondsuit b = (a \land \overline{b}) \lor (\overline{a} \land b)$,则< A. $\diamondsuit \gt$ 是一阿贝尔群。

3、(10分)证明任一环的同态象也是一环。

4、(8 分) 若 $G = \langle V, E \rangle$ (|V| = v, |E| = e) 是每一个面至少由 $k(k \ge 3)$ 条边围成的连通 k(v-2)

平面图,则
$$e \le \frac{k(v-2)}{k-2}$$
。

五、应用 32%

1、(8分)某年级共有9门选修课程,期 末考试前必须提前将这9门课程考完, 每人每天只在下午考一门课,若以课 程表示结点,有一人同时选两门课程, 则这两点间有边(其图如右),问至少 需几天?

- 2、用 washall 方法求图 v_2 的可达矩阵,并判断图的连通性。(8分)
- 3、设有 a、b、c、d、e、f、g 七个人,他们分别会讲的语言如下: a: 英,b: 汉、英,c: 英、西班牙、俄,d: 日、汉,e: 德、西班牙,f: 法、日、俄,g: 法、德,能否将这七个人的座位安排在圆桌旁,使得每个人均能与他旁边的人交谈? (8分)
- 4、用 Huffman 算法求出带权为 2, 3, 5, 7, 8, 9 的最优二叉树 T, 并求 W (T)。 若传递 a, b, c, d, e, f 的频率分别为 2%, 3%, 5%, 7%, 8%, 9%求传输它的最佳前缀码。(8分)

答案:

三十五、 填空 10% (每小题 2 分)

1、1, 不存在; 2、
$$e \neq \theta$$
; 3、 $\forall a,b \in G_{\overline{1}}(a*b)*(a*b) = (a*a)*(b*b)$;

	e_1	e_2	e_3	e_4	e_5
v_1	1	1	1	0	0
v_2	-1	0	0	0	1
v_3	0	-1	0	1	-1
v_4	0	0	-1	-1	0

5、它不包含与 K_{3,3} 或 K₅ 在 2 度结点内同构的子图。

三十六、选择 10% (每小题 2分)

题目	1	2	3	4	5
答案	A, D	В	С	D	A

三十七、判断 10%

题目	1	2	3	4	5
答案	Y	Y	N	N	N

三十八、 证明 38%

1、(8分)证明:

(1) 设 $a,b,c \in A$, b是 a 的右逆元,c是 b 的右逆元,由于 $b^*(a^*b) = b^*e = b$, $e = b^*c = b^*(a^*b)^*c = (b^*a)^*(b^*c) = (b^*a)^*e = b^*a$

所以 b 是 a 的左逆元。

(2)设元素 a 有两个逆元 b、c,那么

$$b = b * e = b * (a * c) = (b * a) * c = e * c = c$$

a 的逆元是唯一的。

2、(12分)证明:

[乘]∵∨, ∧, -在A上封闭, ∴ 运算☆在A上也封闭。

[群] $\forall a,b,c \in A$

$$(a \stackrel{\wedge}{\sim} b) \stackrel{\wedge}{\sim} c = ((a \wedge \overline{b}) \vee (\overline{a} \wedge b)) \stackrel{\wedge}{\sim} c$$

$$=(((a\wedge \overline{b})\vee (\overline{a}\wedge b))\wedge \overline{c})\vee (\overline{(a\wedge \overline{b})}\vee (\overline{a}\wedge b)\wedge c)$$

$$=(a\wedge \overline{b}\wedge \overline{c})\vee (\overline{a}\wedge b\wedge \overline{c})\vee ((\overline{a}\vee \overline{\overline{b}})\wedge (a\vee \overline{b})\wedge c)$$

$$= (a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee (((a \wedge b) \vee (\overline{a} \wedge \overline{b})) \wedge c)$$

$$= (a \wedge \overline{b} \wedge \overline{c}) \vee (\overline{a} \wedge b \wedge \overline{c}) \vee (a \wedge b \wedge c) \vee (\overline{a} \wedge \overline{b} \wedge c)$$

同理可得: $a \diamondsuit (b \diamondsuit c) = (a \land \overline{b} \land \overline{c}) \lor (\overline{a} \land b \land \overline{c}) \lor (a \land b \land c) \lor (\overline{a} \land \overline{b} \land c)$

$$\therefore (a \diamondsuit b) \diamondsuit c = a \diamondsuit (b \diamondsuit c)$$
 即众满足结合性。

[幺]
$$\forall a \in A, a \diamondsuit 0 = 0 \diamondsuit a = (0 \land \overline{a}) \lor (\overline{0} \land a) = 0 \lor (1 \land a) = 0 \lor a = a$$
 故全下界 0 是 A 中关于运算 \diamondsuit 的幺元。

[逆]
$$\forall a \in A$$
 $(a \Leftrightarrow a) = (a \land a) \lor (a \land a) = 0 \lor 0 = 0$

即A中的每一个元素以其自身为逆元。

$$\overrightarrow{\boxtimes} \quad a \stackrel{\wedge}{\bowtie} b = (a \wedge \overline{b}) \vee (\overline{a} \wedge b) = (b \wedge \overline{a}) \vee (\overline{b} \wedge a) = b \stackrel{\wedge}{\bowtie} a$$

即运算☆具有可交换性。

所以<A, ☆>是 Abel 群。

3、(10分)证明:

设
$$< A, +, •$$
>是 $-$ 环,且 $< f(A), ⊕, ⊗$ >是关于同态映射 f的同态象。

由
$$$$
是 Abel 群,易证 $< f(A),\oplus>$ 也是 Abel 群。

现只需证: ⊗对⊕是可分配的。

$$\forall b_1, b_2, b_3 \in f(A)$$
,则必有相应的 a_1, a_2, a_3 使得: $f(a_i) = b_i, i = 1,2,3$ 于是

$$b_1 \otimes (b_2 \oplus b_3) = f(a_1) \otimes (f(a_2) \oplus f(a_3)) = f(a_1) \otimes (f(a_2 + a_3))$$

$$= f(a_1 \cdot (a_2 + a_3)) = f((a_1 \cdot a_2) + (a_1 \cdot a_3)) = f(a_1 \cdot a_2) \oplus f(a_1 \cdot a_3)$$

$$= (f(a_1) \otimes f(a_2)) \oplus (f(a_1) \otimes f(a_3))$$

$$= (b_1 \otimes b_2) \oplus (b_1 \otimes b_3)$$

同理可证 $(b_2 \oplus b_3) \otimes b_1 = (b_2 \otimes b_1) \oplus (b_3 \otimes b_1)$

因此
$$< f(A)$$
, \oplus , \otimes >也是环。

5、(8分)证明:

设G有r个面,

$$\therefore \sum_{i=1}^{r} \deg(r_i) = 2e, \quad \overrightarrow{\text{mid}} \deg(r_i) \ge k \quad (1 \le i \le r) \quad \therefore 2e \ge kr \quad \mathbb{P} r \le \frac{2e}{k}$$

$$\overline{m}v - e + r = 2$$
, 故 $v - e + \frac{2r}{k} \ge 2$ 即 $e \le \frac{k(v-2)}{k-2}$

三十九、 应用 32%

1、(8分)

 \mathbf{R} : $\chi(G)$ 即为最少考试天数。

用 Welch-Powell 方法对 G 着色: $v_9v_3v_7v_1v_2v_4v_5v_8v_6$

第一种颜色的点 $v_9v_1v_4v_6$, 剩余点 $v_3v_7v_2v_5v_8$

第二种颜色的点 $v_3v_7v_5$, 剩余点 v_2v_8

第三种颜色的点 v_2v_8

所以 $\chi(G) \leq 3$

任 $v_2v_3v_9$ 构成一圈,所以 $\chi(G) \geq 3$

 $_{\dagger}\chi(G)_{=3}$

所以三天下午即可考完全部九门课程。

2、(8分)

$$A(G) = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}; \qquad i = 2; \quad A[4, 2] = 1,$$

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

i = 1: A[2, 1]=1,

$$A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

i = 3: A[1, 3]=A[2, 3]=A[4, 3]=1,

i = 4: A[k, 4]=1, k=1, 2, 3, 4,

p中的各元素全为1,所以G是强连通图,当然是单向连通 和弱连通。

3、(8分)

解:用 a,b,c,d,e,f,g 7 个结点表示 7 个人, 若两人能交谈可用

一条无向边连结, 所得无向图为

此图中的 Hamilton 回路即是圆桌安排座位的顺序。

Hamilton 回路为abdfgeca。

4、(8分)

解: (1)

 $W(T) = 2 \times 4 + 3 \times 4 + 5 \times 3 + 9 \times 2 + 7 \times 2 + 8 \times 2 = 83$

(1) 用 0000 传输 a、0001 传输 b、001 传输 c、01 传输 f、10 传输 d、11 传输 e 传输它们的最优前缀码为{0000,0001,001,01,10,11}。

试卷十四试题与答案

九、 填空 10% (每小题 2分)

- 1、设 $^{<A,\lor}$, $^{\land}$, $^{->}$ 是由有限布尔格 $^{<A, \le >}$ 诱导的代数系统,S 是布尔格 $^{<A, \le >}$, 中 所 有 原 子 的 集 合 , 则 $^{<A,\lor}$, $^{\land}$, $^{->}$ 。
- 2、集合 S={α,β, γ ,δ}上的二元运算*为

*	α	β	γ	δ
α	δ	α	β	γ
β	α	β	γ	δ
γ	β	γ	γ	γ
δ	α	δ	γ	δ

那么,代数系统<S,*>中的幺元是 _____, α的逆元是 _____。

3、设 I 是整数集合, Z₃ 是由模 3 的同余类组成的同余类集, 在 Z₃ 上定义+₃ 如下:

[i	$[i] +_3 [j] = [(i+j) \mod 3], $	的运算表为	;
	<z+,+3>是否构成群</z+,+3>	o	
4、	、 设 G 是 n 阶完全图,则 G 的边	b数 m=	o
5.	、如果有一台计算机,它有一条	加法指令,可计算四数的积	印。现有 28 个数需要计算

次这个加法指令。

十、 选择 20% (每小题 2分)

1、在有理数集 Q 上定义的二元运算*, $\forall x, y \in Q_{\overline{q}} x^* y = x + y - xy$,

则 Q 中满足 ()。

A、 所有元素都有逆元;

和,它至少要执行

- B、只有唯一逆元;
- C、 $\forall x \in Q, x \neq 1$ 时有逆元 x^{-1} ; D、所有元素都无逆元。
- 2、设 S={0, 1}, *为普通乘法,则<S,*>是()。
 - A、 半群, 但不是独异点; B、只是独异点, 但不是群;
 - C、群;
- D、环,但不是群。

3、图

A、分配格; B、有补格; C、布尔格; D、 A,B,C 都不对。

3、有向图 D=<V, E>

 $\mathbf{v_3}$ _{,则 v_1 到 v_4 长度为 2 的通路有 (}

条。

A, 0; B, 1; C, 2; D, 3 .

4、在 Peterson 图

中,至少填加()条边才能构成 Euler

图。

 $A_1; B_2; C_4; D_5$

十一、 判断 10% (每小题 2分)

1、在代数系统< A.*>中如果元素 $a \in A$ 的左逆元 a_e^{-1} 存在,

则它一定唯一且 $a^{-1} = a_e^{-1}$

- 2、 设<S,*>是群<G,*>的子群,则<G,*>中幺元 e 是<S,*>中幺元。(
- 3、设 $A = \{x \mid x = a + b\sqrt{3}, a, b$ 均为有理数 $\}$, +, 为普通加法和乘法,则代数系 统<A, +, •>是域。()
- 4、设 G=<V .E>是平面图, |V|=v, |E|=e, r 为其面数,则 v-e+r=2。()
- 5、如果一个有向图 D 是欧拉图,则 D 是强连通图。()

四、证明 46%

- 1、 设<A,*>, 是半群, e 是左幺元且 $\forall x \in A$, $\exists \hat{x} \in A$. 使得 $\hat{x}^*x = e$. 则<A,*>是群。(10分)
- 2、 循环群的任何非平凡子群也是循环群。(10分)
- 3、 设 aH 和 bH 是子群 H 在群 G 中的两个左陪集,证明:要末 $aH \cap bH = \Phi$,要末 $aH = bH \cdot (8 \%)$
- 4、 设 $A,+,\bullet>$,是一个含幺环,|A|>3,且对任意 $\forall a\in A$,都有 $a\cdot a=a$,则 $A,+,\bullet>$ 不可能是整环(这时称<A,+,•>是布尔环)。(8分)
- 5、 若图 G 不连通,则 G 的补图 \overline{G} 是连通的。(10 分)

五、布尔表达式 8%

设 $E(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (x_2 \wedge x_3) \vee (x_2 \wedge x_3)$ 是 布 尔 代 数

六、图的应用 16%

- 1、构造一个结点 v 与边数 e 奇偶性相反的欧拉图。(6分)
- 2、假设英文字母, a, e, h, n, p, r, w, y 出现的频率分别为 12%, 8%, 15%, 7%, 6%, 10%, 5%, 10%, 求传输它们的最佳前缀码, 并给出 happy new year 的编码信息。(10 分)

答案

四十、 填空 10% (每小题 2 分)

+3	[0]	[1]	[2]
[0]	[0]	[1]	[2]
[1]	[1]	[2]	[0]
[2]	[2]	[0]	[1]

1 、 <
$$P$$
 (S), $^{\bigcirc, \bigcirc, \sim}$ > ; 2 、 β , γ ; 3 、 是;
$$\frac{1}{4}, \frac{1}{2}n(n-1)$$
; 5、9

$$\frac{1}{2}n(n-1)$$
; 5, 9

四十一、选择 10% (每小题 2分)

题目	1	2	3	4	5
答案	C	В	D	В	D

四十二、 判断 10% (每小题 2 分)

题目	1	2	3	4	5
答案	N	Y	Y	N	Y

四十三、证明 46%

1、(10分)证明:

事实上:::a*b = a*c:: $\exists \hat{a} \notin \hat{a}*(a*b) = \hat{a}*(a*c)$ $(\hat{a} * a) * b = (\hat{a} * a) * c, : e * b = e * c$

即:b = c

(2) e 是<A, *>之幺元。

事实上:由于 e 是左幺元,现证 e 是右幺元。

 $\forall x \in A, x^*e \in A, \exists \hat{x} \notin \hat{x}^*(x^*e) = (\hat{x}^*x)^*e = e^*e = e = \hat{x}^*x$ 由(1)即x*e=x, :: e为右幺元

(3) $\forall x \in A, \emptyset x^{-1} \in A$

事实上: $\forall x \in A \ (x^*\hat{x})^*x = x^*(\hat{x}^*x) = x^*e = x = e^*x$ $x^*\hat{x} = e$ 故有 $\hat{x}^*x = x^*\hat{x} = e$ ∴ x有逆元 \hat{x}

由(2),(3)知: <A,*>为群。

2、(10分)证明:

设<G,*>是循环群,G=(a),设<S,*>是<G,*>的子群。且 $S \neq \{e\}, S \neq G$,则存在最小正整数 m,使得: $a^m \in S$,对任意 $a^l \in S$,必有 l = tm + r, $0 \le r < m$, t > 0,

$$\forall a^r = a^{l-tm} = a^l * a^{-tm} = a^l * (a^m)^{-t} \in S$$
 $\exists a^l = a^r * (a^m)^t \in S$

所以 $a^r \in S$ 但 m 是使 $a^m \in S$ 的最小正整数,且 $0 \le r < m$,所以r=0即: $a^l = (a^m)^t$

这说明 S 中任意元素是 a^m 的乘幂。 所以<G,*>是以 a^m 为生成元的循环群。

3、(8分)证明:

对集合 aH 和 bH ,只有下列两种情况:

(1) $aH \cap bH \neq \Phi$, (2) $aH \cap bH = \Phi$

对于 $aH \cap bH \neq \Phi$,则至少存在 $h_1, h_2 \in H$,使得 $ah_1 = bh_2$,即有 $a = bh_2h_1^{-1}$,这时任意 $ah \in aH$,有 $ah = bh_2h_1^{-1}h \in bH$,故有 $aH \subseteq bH$

同理可证: $bH \subseteq aH$ 所以 aH = bH

4、(8分)证明:

反证法: 如果<A,+,•>, 是整环,且有三个以上元素,则存在 $a \in A, a \neq \theta, a \neq 1$ 且 $a \cdot a = a$ 即有: $a \neq \theta, a - 1 \neq \theta$ 但 $a \cdot (a - 1) = a \cdot a - a = a - a = \theta$ 这与整环中无零因子条件矛盾。因此<A,+,•>不可能是整环。

5、(10分)证明:

因为 G=< V, E> 不连通,设其连通分支是 $G(V_1),\cdots,G(V_k)$ $(k\geq 2)$, $\forall u,v\in V$,则有两种情况:

- (1) \mathbf{u} , \mathbf{v} , 分别属于两个不同结点子集 \mathbf{V}_{i} , \mathbf{V}_{j} , 由于 $\mathbf{G}(\mathbf{V}_{i})$, $\mathbf{G}(\mathbf{V}_{j})$ 是两连通分支,故(\mathbf{u} , \mathbf{v}) 在不 \mathbf{G} 中,故 \mathbf{u} , \mathbf{v} 在 \mathbf{G} 中连通。
- (2) u,v,属于同一个结点子集 V_i ,可在另一结点子集 V_j 中任取一点 w,故(u,w),(w,v) 均在 \overline{G} 中,故邻接边(u,w)(w,v) 组成的路连接结点 u 和 v,即 u,v 在 \overline{G} 中也是连通的。

五、布尔表达式 8%

函数表为:

x_1	x_2	x_3	$E(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$E(x_{1}, x_{2}, x_{3}) = (\overline{x_{1}} \wedge \overline{x_{2}} \wedge x_{3}) \vee (\overline{x_{1}} \wedge x_{2} \wedge x_{3}) \vee (x_{1} \wedge \overline{x_{2}} \wedge x_{3}) \vee (x_{1} \wedge \overline{x_{2}} \wedge x_{3}) \vee (x_{1} \wedge x_{2} \wedge x_{3}) \vee (x_{1} \wedge x_{2} \wedge x_{3})$$

析取范式:

合取范式:
$$E(x_1, x_2, x_3) = (x_1 \lor x \lor_2 x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

六、 树的应用 16%

1、(6分)解:

结点数5,边数6,每个结点度数均为偶数,所以它是欧拉图。

结点数6,边数7,每个 结点度数均为偶数,所 以它是欧拉图。

2、(10分)解:

根据权数构造最优二叉树:

传输它们的最佳前缀码如上图所示, happy new year 的编码信息为:
10 011 0101 0101 001 110 111

附: 最优二叉树求解过程如下:

试卷十五试题与答案

十二、 填空 20% (每空 2分)

1	、如果有限集合 A 有 n 个元素,则 2 ^A =。	
2	、某集合有 101 个元素,则有 个子集的元素为奇数	
3	、设 S={a ₁ , a ₂ ,…, a ₈ }, B _i 是 S 的子集, 由 B ₁₇ 表达的子集为	,
	子集{a ₂ ,a ₆ ,a ₇ }规定为。	
4	、由 A ₁ , A ₂ ,…, A _n , 生成的最小集的形式为	,它们的并为
	集,它们的交为	集。
5	、某人有三个儿子,组成集合 $A=\{S_1,S_2,S_3\}$,在 A 上的兄弟关系	
	具有	
厉	贡 。	
6	、每一个良序集必为全序集,而全序集必为良序	序集。
7	、若 $f:A \to B$ 是函数,则当 f 是 $A \to B$ 的, f	$C^c: B \to A_{\text{$\mathbb{Z}$ f }}$
Ē	函数。	
Ξ	E、 选择 15% (每小题 3分)	

十

1、集合
$$B = \{\Phi, \{\Phi\}, \{\Phi, \{\Phi\}\}\}\}$$
 的幂集为 ()。
A、 $\{\{\Phi\}, \{\{\Phi\}, \Phi\}, \Phi\}$;

$$B = \{\Phi, \{\Phi\}, \{\{\Phi\}\}, \{\{\Phi, \{\Phi\}\}\}, \{\Phi, \{\Phi\}\}\}, \{\Phi, \{\Phi, \{\Phi\}\}\}\}, \{\{\Phi\}, \{\Phi, \{\Phi\}\}\}\}, B\}$$

$$C_{\infty}$$
 { Φ ,{ Φ },{{ Φ }},{ Φ ,{ Φ }},{ Φ ,{ Φ }},{ Φ ,{ Φ }},{ Φ ,{ Φ }}},{ Φ ,{ Φ }}}.

$$D = \{\{\Phi\}\{\Phi,\{\Phi\}\},\{\Phi,\{\Phi,\{\Phi\}\}\}\},\{\{\Phi\},\{\Phi,\{\Phi\}\}\}\},\Phi,B\}$$

2、下列结果正确的是()。

A,
$$(A \cup B) - A = B$$
; B, $(A \cap B) - A = \Phi$; C, $(A - B) \cup B = A$;

$$D \setminus \Phi \cup \{\Phi\} = \Phi : E \setminus \Phi \cap \{\Phi\} = \Phi : F \setminus A \oplus A = A$$

3、集合 $A \cup \overline{B}$ 的最小集范式为 () (由 A、B、C 生成)。

$$(A \cap B \cap C) \cup (A \cap B \cap \overline{C}) \cup (A \cap \overline{B} \cap C) \cup (A \cap \overline{B} \cap C) \cup (A \cap \overline{B} \cap C) \cup (A \cap \overline{B} \cap \overline{C})$$

$$(A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap \overline{B} \cap C) \cup (\overline{A} \cap \overline{B} \cap \overline{C})$$

 $(A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B})$:

$$(\overline{A} \cup \overline{B} \cup \overline{C}) \cap (\overline{A} \cup \overline{B} \cup C) \cap (\overline{A} \cup B \cup \overline{C}) \cap$$

$$C_{\lambda}(\overline{A} \cup B \cup C) \cap (A \cup B \cup \overline{C}) \cap (A \cup B \cup C) \qquad \vdots \quad D_{\lambda}(\overline{A} \cup \overline{B}) \cap (\overline{A} \cup B) \cap (A \cup B)$$

4、在 () 下有
$$A \times B \subseteq A$$
 。

A,
$$A = B$$
; B, $B \subseteq A$; C, $A \subseteq B$; D, $A = Φ \vec{\bowtie} B = Φ$

5、下列二元关系中是函数的有()。

$$R = \{ \langle x, y \rangle | x \in N \land y \in N \land x + y < 10 \}$$
.

$$R = \{ \langle x, y \rangle | x \in R \land y \in R \land y = x^2 \}.$$

$$R = \{ \langle x, y \rangle | x \in R \land y \in R \land x = y^2 \}$$

三、15%

用 Warshall 算法,对集合 A={1,2,3,4,5}上二元关系 R={<1,1>,<1,2>,<2,4>,<3,5>,<4,2>}求 t(R)。

В

四、15%

集合 $C^* = \{a+bi \mid i^2 = -1, a, b$ 是任意实数, $a \neq 0\}$, C^* 上定义关系

 $R = \{ < a + bi, c + di > | ac > 0 \}$,则 R 是 C*上的一个等价关系,并给出 R 等价类的几何说明。

五、计算 15%

1、设 A={1, 2, 3, 4}, S={{1}, {2, 3}, {4}}, 为 A 的一个分划,求由 S 导出的等价关系。

(4分)

- 2、设 Z 为整数集,关系 $R = \{ \langle a,b \rangle | a,b \in Z \land a \equiv b \pmod{k} \}$ 为 Z 上等价关系,求 R 的模 K 等价关系的商集 Z/R,并指出 R 有秩。(5 分)
 - 3、设 A={1, 2, 3, 4, 5}, A 上的偏序关系为

求 A 的子集{3, 4, 5}和{1, 2, 3}, 的上界, 下界, 上确界

和下确界。(6分)

六、证明 20%

- 1、假定 $f:A\to B,g:B\to C$,且 $g\circ f$ 是一个满射,g是个入射,则 f 是满射。(10 分) 2、设 f,g是 A 到 B 的函数, $f\subseteq g$ 且 $domg\subseteq domf$,证明 f=g 。(10 分) 答案
 - 一、填空 20% (每空 2分)

1、2ⁿ; 2、2¹⁰⁰; 3、{a₄, a₈}, B₀₁₀₀₀₁₁₀ (B₇₀); 4、 $\hat{A}_1 \cap \hat{A}_2 \cap \cdots \cap \hat{A}_n (\hat{A}_i = A_i 或 \overline{A_i})$, 全集, Φ ; 5、反自反性、对称性、传递性;6、有限;7、双射。

二、选择 15% (每小题 3分)

题目	1	2	3	4	5
答案	В	В, Е	A	D	В

三、Warshall 算法 15%

$$\boldsymbol{M}_{R} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$i = 1 \text{ ff, } M_{R[1,1]=1, A} = M_{R}$$

$$i = 2 \text{ ff, } M[1,2] = M[4,2] = 1$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

i=3 时,A 的第三列全为 0,故 A 不变

i = 4 时,M[1,4]=M[2,4]=M[4,4]=1

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$i = 5 \text{ pt}, M[3,5]=1, \text{ in } \text{in }$$

所以 t (R)={<1,1>,<1,2>,<1,4>,<2,2>,<2,4>,<3,5>,<4,2>,<4,4>}。

四、5%

证明:

对称性: $\forall a + bi \in C^*, c + di \in C^*$ 且 $< a + bi, c + di > \in R, ac > 0$ $\Rightarrow ca > 0, \therefore < c + di, a + bi > \in R$

自反性: $\forall a + bi \in C^* (a \neq 0)$, aa > 0 $\therefore \langle a + bi, a + bi \rangle \in R$

传递性: 若 $\forall a + bi \in C^*$, $c + di \in C^*$, $e + fi \in C^*$

当 $< a + bi, c + di > \in R$ 且 $< c + di, e + fi > \in R$ 则 ac > 0, ce > 0, $\therefore acce > 0$ 即 ae > 0 $\therefore < a + bi$, $e + fi > \in R$ 所以 R 是 C*上等价关系。

R 两等价类:
$$\pi_1 = \{z \mid z = a + bi, a > 0\}$$
 右半平面; $\pi_2 = \{z \mid z = a + bi, a < 0\}$ 左半平面

五、计算 15%

1,
$$(4 \%)$$
 R={<1,1>,<2,2>,<2,3>,<3,2>,<3,3><4,4>} .

- 2、(5分) Z/R={[0], [1], ···, [k-1]}, 所以 R 秩为 k。
- 3、(6分) {3, 4, 5}: 上界: 1, 3; 上确界: 3; 下界: 无; 下确界: 无; {1, 2, 3}: 上界: 1; 上确界: 1; 下界: 4; 下确界: 4。

六、证明 20%

1、(10 分) 证明: $\forall b \in B$,由于 g 是入射,所以存在唯一 $c \in C$ 使 g(b) = c,又 $g \circ f$ 满射,对上述 c 存在 $a \in A$,使得 $g \circ f(a) = c$,也即 g(f(a)) = c,由 g 单射,所以 f(a) = b 即: $\forall b \in B$ 均存在 $a \in A$ 使得 f(a) = b,所以 f 满射。

2、(10分)证明:

 $\forall < x, y > \in g$ 则 $x \in domg$ 且 $y \in rangeg \Rightarrow x \in domf$ 且 $y \in rangeg$ 对上述 $x \in domf$ 则 $\exists | y' \in rangef$ 即 $< x, y' > \in f$ 而 $f \subseteq g$ $\therefore < x, y' > \in g$ 但 $< x, y > \in g$ 由g是函数知 y' = y $\therefore x \in domf$ 且 $y \in rangef$ 即 $< x, y > \in f$ $\therefore f = g$