Условие задачи

Для кормления животного ежедневно требуются витамины A, B и C. Эти витамины содержатся в кормовых смесях двух видов. Известно процентное содержание каждого витамина в каждой из смесей, дневная норма витаминов и цена каждой смеси. Определить наиболее дешёвый рацион, обеспечивающий норму. При какой цене смеси 1 её будет невыгодно (выгодно) использовать в рационе?

	Смесь 1	Смесь 2	Норма
Α	-	0,1 %	0,003 г.
В	0,3 %	0,217%	0,027 г.
С	0,1%	0,267 %	0,022 г.
Цена	0,1 руб./г.	0,255 руб./г.	

Решить 3 способами:

- Симплекс-метод
- Графический метод
- Через двойственную задачу

II. Математическая постановка задачи

Обозначим x_1^* , x_2^* - вес оптимального количества корма 1 и 2 соответственно. Тогда нам надо решить следующую задачу линейного программирования: найти минимум f при ограничениях (1)

$$f = 0.1x_1 + 0.255x_2 \rightarrow min$$

$$\begin{cases} 0.001x_2 \ge 0.003\\ 0.003x_1 + 0.00217x_2 \ge 0.027\\ 0.001x_1 + 0.00267x_2 \ge 0.0215 \end{cases}$$

$$(1)$$

Или: $min\{C^TX \mid AX \ge B, X \ge 0\}$

Где C=
$$\begin{pmatrix} 0,1\\0,255 \end{pmatrix}$$
 A= $\begin{pmatrix} 0&0,001\\0,003&0,00217\\0,001&0,00267 \end{pmatrix}$ B= $\begin{pmatrix} 0,003\\0,027\\0,022 \end{pmatrix}$ X= $\begin{pmatrix} x_1\\x_2 \end{pmatrix}$

$$\begin{cases} x_2 \ge 3\\ 3x_1 + 2,17x_2 \ge 27\\ x_1 + 2,267 \ge 22 \end{cases}$$

III. Симплекс-метод.

Зная, что $min(0.1x_1 + 0.255x_2) = -max(-0.1x_1 - 0.255x_2)$, будем искать max функции -f.

Приведем задачу к каноническому виду, введя дополнительные переменные x_3 , x_4 , x_5 . При этом выберем эти переменные так, чтобы при их прибавлении к левым частям соотношений неравенства превращались в равенства.

$$\begin{cases} x_2 - x_3 = 3\\ 3x_1 + 2,17x_2 - x_4 = 27\\ x_1 + 2,67x_2 - x_5 = 22\\ x_i \ge 0, i = \overline{1,5} \end{cases}$$

Применим метод искусственного базиса. Для этого введем переменные y_1, y_2, y_3

$$\begin{cases} x_2 - x_3 + y_1 = 3\\ 3x_1 + 2,17x_2 - x_4 + y_2 = 27\\ x_1 + 2,67x_2 - x_5 + y_3 = 22\\ x_i \ge 0, i = \overline{1,5}\\ y_j \ge 0, j = \overline{1,3} \end{cases}$$

Будем решать вспомогательную задачу

W=
$$y_1 + y_2 + y_3 \rightarrow \min$$

 $y_1 = 3 - x_2 + x_3$
 $y_2 = 27 - 3x_1 - 2,17x_2 + x_4$
 $y_3 = 22 - x_1 - 2,67x_2 + x_5$
 $W = -4x_1 - 5,84x_2 + x_3 + x_4 + x_5 + 52$

	x_1	x_2	x_3	x_4	x_5	β
y_1	0	-1	1	0	0	3
y_2	-3	-2,17	0	1	0	27
y_3	-1	-2,67	0	0	1	22
W	-4	-5,84	1	1	1	52

Выбираем большую по модулю отрицательную Δ . Видим, что при увеличении x_2 быстрее всего до нуля доходит y_1 . Меняем y_1 и x_2 местами.

$$x_2 = 3 + x_3 - y_1$$

$$y_2 = 27 - 3x_1 - 2,17(3 + x_3 - y_1) + x_4 =$$

$$= 20,49 - 3x_1 - 2,17x_3 + 2,17y_1 + x_4$$

$$y_3 = 22 - x_1 - 2,67(3 + x_3 - y_1) + x_5 =$$

$$= 13,99 - x_1 - 2,67x_3 + 2,67y_1 + x_5$$

$$W = -4x_1 - 5,84(3 + x_3 - y_1) + x_3 + x_4 + x_5 + 52 =$$

$$= -4x_1 + 5,84y_1 - 4,84x_3 + x_4 + x_5 + 34,48$$

	x_1	y_1	x_3	x_4	x_5	β
x_2	0	-1	1	0	0	3
y_2	-3	2,17	-2,17	1	0	20,49
y_3	-1	2,67	-2,67	0	1	13,39
W	-4	5,84	-4,84	1	1	34,48

Выбираем большую по модулю отрицательную Δ . Видим, что при увеличении x_3 быстрее всего до нуля доходит y_3 . Меняем y_3 и x_3 местами.

$$x_{3} = -0.375x_{1} + y_{1} - 0.375y_{3} + 0.375x_{5} + 5.24$$

$$x_{2} = 3 + (-0.375x_{1} + y_{1} - 0.375y_{3} + 0.375x_{5} + 5.24) - y_{1} =$$

$$= 8.24 - 0.375x_{1} - 0.375y_{3} + 0.375x_{5}$$

$$y_{2} = 20.37 - 3x_{1} - 2.21(-0.375x_{1} + y_{1} - 0.375y_{3} + 0.375x_{5} +$$

$$+5.24) + 2.17y_{1} + x_{4} = 9.119 - 2.186x_{1} + 0.814y_{3} +$$

$$+x_{4} - 0.814x_{5}$$

$$W = -4x_{1} + 5.84y_{1} - 4.84(+(-0.375x_{1} + y_{1} - 0.375y_{3} +$$

$$+0.375x_{5} + 5.24) + x_{4} + x_{5} + 34.48 =$$

$$= -2.185x_{1} + y_{1} + 1.815y_{3} + x_{4} - 0.815x_{5} + 9.089$$

	x_1	y_1	<i>y</i> ₃	x_4	<i>x</i> ₅	β
x_2	-0,375	0	-0,375	0	0,375	8,246
y_2	-2,186	0	0,814	1	-0,814	9,119
x_3	-0,375	1	-0,375	0	0,375	5,246
W	-2,185	1,815	1	1	-0,815	9,089

Выбираем большую по модулю отрицательную Δ . Видим, что при увеличении x_1 быстрее всего до нуля доходит y_2 . Меняем y_2 и x_1 местами.

$$x_1 = -0.457y_2 + 0.372y_3 + 0.457x_4 - 0.372x_5 + 4.17$$

$$x_2 = -0.375(-0.457y_2 + 0.372y_3 + 0.457x_4 - 0.372x_5 + 4.17)$$

$$-0.375y_3 + 0.375x_5 + 8.24 =$$

$$= 0.171y_2 - 0.515y_3 - 0.171x_4 + 0.515x_5 + 6.678$$

$$x_3 = -0.375(-0.457y_2 + 0.372y_3 + 0.457x_4 - 0.372x_5 + 4.17)$$

$$+y_1 - 0.375y_3 + 0.375x_5 + 5.24 =$$

$$= 0.171y_2 + y_1 - 0.515y_3 - 0.171x_4 + 0.515x_5 + 3.678$$

$$W = -2.185(-0.457y_2 + 0.372y_3 + 0.457x_4 - 0.372x_5 + 4.17)$$

$$+y_1 + 1.815y_3 + x_4 - 0.815x_5 + 9.089 = y_1 + y_2 + y_3$$

	y_2	y_1	y_3	x_4	x_5	β
x_2	0,171	0	-0,515	-0,171	0,515	6,678
x_1	-0,457	0	0,372	0,457	-0,372	4,17
x_3	0,171	1	-0,515	-0,171	0,515	3,678
W	1	1	1	0	0	0

Видим, что выполнен критерий оптимальности: все $\Delta \ge 0$. Вспомогательная задача решена. Вернёмся теперь к исходной задаче. Выбросим вспомогательные переменные y_1 , y_2 , y_3 , так как они нам больше не понадобятся.

$$x_1 = 4.17 + 0.457x_4 - 0.372x_5$$

 $x_2 = 6.678 - 0.171x_4 + 0.515x_5$
 $x_3 = 3.678 - 0.171x_4 + 0.515x_5$
 $f = 0.1x_1 + 0.255x_2 = 0.1(4.17 + 0.457x_4 - 0.372x_5) + 0.255(6.678 - 0.1761 + 0.515x_5) = 0.211949 + 0.0021x_4 + 0.0941x_5$

	x_4	<i>x</i> ₅	β
χ_2	-0,171	0,515	6,678
x_1	0,457	-0,372	4,17
χ_3	-0,171	0,515	3,678
-f	-0,0021	-0,0941	-2,11949

Обе характеристические разности отрицательные. Найдено оптимальное решение.

$$x_1^* = 4,17$$

$$x_2^* = 6,678$$

$$f^* = 2,11949 \approx 2,12$$

IV. Графический метод.

$$f = 0.1x_1 + 0.255 \rightarrow \min$$

При следующих ограничениях:

$$\begin{cases} x_2 \ge 3\\ 3x_1 + 2,17x_2 \ge 27\\ x_1 + 2,67x_2 \ge 2,2 \end{cases}$$
 (2)

Построим область G, заданную системой неравенств (2) и

$$graf = \begin{pmatrix} 0.1\\ 0.255 \end{pmatrix}$$

Удобно построить $\binom{1}{2,55}$

Движемся противоположно направлению градиента и определим оптимальное решение. Оно расположено на пересечении следующих прямых:

$$\begin{cases} 3x_1+2,17x_2=27 \ x_1+2,67x_2=22 \end{cases}$$
 $\begin{cases} 66-8,01x_2+2,17x_2=27 \ x_1=22-2,67x_2 \end{cases}$ $\begin{cases} 5,84x_2=39 \ x_1=22-2,67 \end{cases}$ $\begin{cases} x_2=6,678 \ x_1=4,1695 \end{cases}$ Следовательно $x_1^*=4,1695$ $x_2^*=6,678$ $X^*=\begin{pmatrix} 4,1695 \ 6,678 \end{pmatrix}$

Вычислим f^*

$$f^* = 0.1x_1^* + 0.255x_2^* = 0.1 * 4.1695 + 0.255 * 6.678 = 2.11984$$

 ≈ 2.12

V. Решение двойственной задачи.

Прямая задача:

 $min\{C^TX \mid AX{\geq}B, \ X{\geq}0\}$

$$\begin{cases} x_2 \ge 0,003 \\ x_1 \ge 0 \\ 0,003x_1 + 0,00217x_2 \ge 0,027 \\ x_1 + 0,00267x_2 \ge 0,022 \end{cases}$$

и функционал $min\{0,1x_1+0,255x_2\}$

Двойственная задача:

 $\max\{B^{\mathsf{T}}\lambda \mid A^{\mathsf{T}}\lambda \leq C, \lambda \geq 0\}$

$$A = \begin{pmatrix} 0 & 0,001 \\ 0,003 & 0,00217 \\ 0.001 & 0.00267 \end{pmatrix} \quad B = \begin{pmatrix} 0,003 \\ 0,027 \\ 0.022 \end{pmatrix} \quad C = \begin{pmatrix} 0,1 \\ 0,255 \end{pmatrix}$$

$$A^T = \begin{pmatrix} 0 & 0,003 & 0,001 \\ 0.001 & 0.00217 & 0.00267 \end{pmatrix}$$

Двойственная задача имеет вид:

 $\max\{0.003\lambda_1 + 0.027\lambda_2 + 0.022\lambda_3\}$ при ограничениях:

$$\begin{cases} 0,003\lambda_2 + 0,001\lambda_3 \le 0,1\\ \lambda_1 + 0,00217\lambda_2 + 0,00267\lambda_3 \le 0,255\\ \lambda_i \ge 0, i = \overline{1,3} \end{cases}$$

Решим двойственную задачу Симплекс-методом.

Приведём к каноническому виду, введя дополнительные переменные λ_4 , λ_5 . При этом выберем эти переменные так, чтобы при их прибавлении к левым частям соотношений неравенства превращались в равенства.

$$\begin{cases} 3\lambda_2 + \lambda_3 + \lambda_4 = 100 \\ \lambda_1 + 2,17\lambda_2 + 2,67\lambda_3 + \lambda_5 = 255 \end{cases}$$

Построим симплекс-таблицу:

$$\lambda_4 = -3\lambda_2 - \lambda_3 + 0.1$$

$$\lambda_5 = -\lambda_1 - 2.17\lambda_2 - 2.67\lambda_3 + 0.255$$

$$f_{\text{Д}} = 3\lambda_1 + 27\lambda_2 + 22\lambda_3$$

	λ_1	λ_2	λ_3	β
λ_4	0	-3	-1	100
λ_5	-1	-2,17	-2,67	255
$f_{\rm Д}$	0,003	0,027	0,022	0

Выбираем наибольшую положительную Δ . Видим, что при увеличении λ_2 быстрее всего до нуля дойдёт λ_4 . Меняем λ_2 и λ_4 местами.

$$\lambda_2 = \frac{1}{3}(-\lambda_3 - \lambda_4 + 100) = -0.33333\lambda_3 - 0.33333\lambda_4 + 33.33$$

$$\lambda_5 = -\lambda_1 - 2.17(-0.33333\lambda_3 - 0.33333\lambda_4 + 33.33) - 2.67\lambda_3 + 255 = -\lambda_1 - 1.9467\lambda_3 + 0.72333\lambda_4 + 182.7$$

$$f_{\text{A}} = 0.003\lambda_1 + 0.027(-0.33333\lambda_3 - 0.33333\lambda_4 + 33.33) + 0.022\lambda_3 = 0.003\lambda_1 + 0.013009\lambda_3 - 0.0089991\lambda_4 + 0.8999$$

	λ_1	λ_4	λ_3	β
λ_2	0	-0,3333	-0,3333	33,33
λ_5	-1	0,7233	-1,9467	182,7
$f_{\mathrm{Д}}$	0,003	-0,0089991	0,013009	0,8999

Выбираем наибольшую положительную Δ . Видим, что при увеличении λ_3 быстрее всего до нуля дойдёт λ_5 . Меняем λ_3 и λ_5 местами.

$$\begin{split} \lambda_3 &= \frac{1}{1,9467} (-\lambda_1 + 0.7233\lambda_4 - \lambda_5 + 182.7) = \\ &= -0.5137\lambda_1 + 0.372\lambda_4 - 0.5137\lambda_5 + 93.85 \\ \lambda_2 &= -0.3333 (-0.5137\lambda_1 + 0.372\lambda_4 - 0.5137\lambda_5 + 93.85) - \\ &-0.3333\lambda_4 + 33.33 = \\ &= 0.1712\lambda_1 - 0.4573\lambda_4 + 0.1712\lambda_5 + 0.00202 \\ f_{\mathcal{I}} &= 0.003\lambda_1 + 0.013009 (-0.5137\lambda_1 + 0.372\lambda_4 - 0.5137\lambda_5 + \\ &+93.85) - 0.008999\lambda_4 + 0.8999 = \\ &= -0.003683\lambda_1 - 0.0041598\lambda_4 - 0.006683\lambda_5 + 2.1203 \end{split}$$

	λ_1	λ_4	λ_5	β
λ_2	0,1712	-0,4573	0,1712	2,02
λ_3	-0,5137	0,372	-0,5137	93,85
$f_{ m Z}$	-0,003683	-0,0041598	-0,006683	2,1203

Видим, что выполнен критерий оптимальности: все ∆≤0.

Итак
$$\lambda_2^*=2,02$$

$$\lambda_3^*=93,85$$

$$f^*=2,1203$$

$$\lambda_1^*=\frac{1}{3}(0,027\lambda_2^*+0,022\lambda_3^*-f^*)=\frac{1}{3}(0,027*2,02+0,022*93,85-2,1203)=0$$

Найдем оптимальный план в исходной задаче с помощью уравнения:

$$\lambda_i^* (AX^* - B)_i = 0$$

$$\lambda^* = \begin{pmatrix} 0 \\ 2,02 \\ 93,85 \end{pmatrix} A = \begin{pmatrix} 0 & 0.001 \\ 0.003 & 0.00217 \\ 0.001 & 0.00267 \end{pmatrix} b = \begin{pmatrix} 0.003 \\ 0.027 \\ 0.022 \end{pmatrix}$$

Производим умножение матриц и получаем систему уравнений:

$$\begin{cases}
0,006x_1^* + 0,0043x_2^* - 0,054 = 0 \\
0,094x_1^* + 0,25x_2^* - 2,068 = 0
\end{cases}$$

Из которой

$$X^* = \binom{6.678}{4.17}$$

$$f_{\Pi}(x^*) = 0.1 * 4.17 + 0.255 * 6.678 = 2.11989 \approx 2.12$$

Вывод: видим, что во всех трёх методах ответы совпадают.

VI. Найдем при какой цене на смесь 1 её будет невыгодно использовать в рационе.

Будем поворачивать градиент по часовой стрелке до тех пор, пока он не станет перпендикулярен прямой $3x_1+2,17x_2=27$. В случае, когда градиент перпендикулярен этой прямой, оптимальным решением будут являться все точки этой прямой, лежащие в G. Если мы будем поворачивать градиент дальше по часовой стрелке, то оптимальным решением будет $x_1^*=0$, $x_2^*=12,4424$, то есть смесь 1 будет невыгодно использовать в рационе.

Обозначим C_1^* - цена на смесь 1, выше которой её невыгодно будет использовать в рационе.

Тогда $grad'f = (C_1^*, 0,255)^T$ перпендикулярен прямой $3x_1+2,17x_2=27$ и параллелен вектору $\binom{3}{2,17}$. Тогда

$$\frac{C_1^*}{3} = \frac{0,255}{2,17}$$
 $C_1^* = 0,3525$

Таким образом если $C_1 > 0,3525$ р/кг, то смесь 1 невыгодно использовать в рационе.

Общий вывод: мы определили наиболее дешевый рацион, который состоит из 4,136 г. смеси 1 и 6,602 г. смеси 2 и нашли цену на смесь 1, при которой её будет невыгодно использовать в рационе.

Ответ:
$$x_1^* = 4,17$$
 г. $x_2^* = 6,678$ г. $f^* = 2,12$ руб. $C_1^* = 0,3525$ руб. $\lambda_1^* = 0$ $\lambda_2^* = 2,02$ $\lambda_3^* = 93,85$ $f_{\Pi} = 2,12$