

What is game theory?

How do we study it?

Where is research headed?

What?

Email Password | Login | Keep me logged in Forgot your password?

Facebook helps you connect and share with the people in your life.

Sociology

Sign Up

It's free and always will be.

First Name:	
Last Name:	
Your Email:	
Re-enter Email:	
New Password:	
I am:	Select Sex: ‡
	Month: \$ Day: \$ Year: \$
Why do I need to provide this?	
	Sign Up

Create a Page for a celebrity, band or business.

English (US) Español Português (Brasil) Français (France) Deutsch Italiano シャル (記) 中文(简体) 日本語 »

AdSense is an ad serving application run by Google Inc. Website owners can enroll in this program to enable text, image, and video advertisements on their ... en wikinedia org/wiki/AdSense - Cached - Similar

Different agendas

What?

- study of interacting decision makers
- interdisciplinary field
- different agendas

How?

Decision maker

- ▶ choices, C
- preferences, \succeq utility function, $u:C\to\mathbb{R}$

$$c_1 \succeq c_2 \iff u(c_1) \geq u(c_2)$$

 $L \mapsto 0$ $R \mapsto 1$

$$\xrightarrow{r(t)} e(t) \xrightarrow{E(t)} K \xrightarrow{S(t)} P \xrightarrow{y(t)}$$

 $ightharpoonup C = \{ \text{stabilizing controller } K \}$

- $u(K) = -\tau_r(K)$

Optimality

Decision maker:

- ▶ choices, C
- utility function, u

Goal of decision maker:

$$\max_{c \in C} u(c)$$

Game Theory

- ightharpoonup players, $\{i\}$
- \blacktriangleright choices for player i, C_i
- ▶ joint choices, $C = \prod_i C_i$ $c \in C = (c_i, c_{-i})$
- utility function for player $i, u_i : C \to \mathbb{R}$

Optimality?

Goal of decision maker i:

$$\max_{c \in C} u_i(c_i, c_{-i}) \left(\neq \max_{c \in C} u_i(c_i) \right)$$

Example: Prisoner's dilemma

Best response, $BR_i: C_{-i} \rightrightarrows C_i$

- ▶ $BR_1(C) = \{D\}, BR_1(D) = \{D\}$
- ▶ $BR_2(C) = \{D\}, BR_2(D) = \{D\}$

Nash equilibrium

- $a^* = (a_i^*, a_{-i}^*)$ is a Nash equilibrium:
 - $ightharpoonup orall i, \ a_i^*$ is a best response to a_{-i}^*
 - no unilateral deviation is profitable
 - $\rightarrow \forall i, \forall a_i \in A_i,$

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*)$$

Existence of Nash equilibria

Every n-player game has a Nash equilibrium.

Extensions

- history-dependent strategy
- imperfect information
- cooperation
- large populations

Back to the agendas

- descriptive
- predictive
- manipulative

How?

- interacting decision maker
- best response
- Nash equilibrium

Where?

Learning

Controls \Rightarrow Game Theory:

- stability and robustness
- derivative control

Decentralized control

Game Theory \Rightarrow Controls:

- network formation
- communication limitations

Dynamic Games

- network security
- learning in repeated games

Where?

- learning
- decentralized control
- dynamic games

Questions?

Comments?