Metarules APPM 5630 Spring 2023 Advanced Convex Optimization

Caveat: most of these rules implicitly assume that the minimizers exist. All mistakes due to Stephen Becker.

- 1. $\min_{x \in C} f(x) = -\max_{x \in C} -f(x)$
 - $\operatorname{argmin}_{x \in C} f(x) = \operatorname{argmax}_{x \in C} f(x)$
 - $\left[\operatorname{argmin}_{x \in C} f(x) = \operatorname{argmin}_{x \in C} \varphi(f(x)) \right]$ if φ is a monotonic increasing function on the range of f.
 - What can you say if φ is simply monotonic non-decreasing? e.g., take $\varphi(\beta) \equiv 0$.
 - Example: $\operatorname{argmin}_{x} \|Ax b\| = \operatorname{argmin}_{x} \frac{1}{2} \|Ax b\|^{2}$
- 2. $\min_{x \in C} f(x) \le \min_{x \in D} \text{ if } D \subset C$
 - Caveat: existence. e.g., take f(x) = x and D = (0,1) and C = [0,1], then $\min_{x \in D} x$ does not exist but $\min_{x \in C} x$ does. Or vice-versa: take C = (0,1) and $D = \{0.5\}$.
- 3. $\min_{x} [f(x) + g(x)] \neq [\min_{x} f(x)] + [\min_{y} f(y)]$
 - In fact, you can say the following: $\min_x [f(x) + g(x)] \ge [\min_x f(x)] + [\min_y f(y)]$
- 4. $\left[\min_{x}\min_{y}f(x,y)=\min_{y}\min_{y}f(x,y)\right]$ (hence $\min_{x,y}f(x,y)$ is well-defined). [Caveat: minima need to exist, e.g., $\min_{x\geq 0}\min_{y}x\cdot e^{-y}$, where the joint minimum value is 0 (e.g., at (0,2)) but for an arbitrary $x\neq 0$ the problem $\min_{y}x\cdot e^{-y}$ is il-defined since there is no minimizer]
 - Proof Let $f(x^*, y^*) = \min_x \min_y f(x, y) \equiv A$, and let $B \equiv \min_y \min_x$. Then

$$B = \min_{y} \min_{x} f(x, y) \le \min_{x} f(x, y^{*})$$
$$\le f(x^{*}, y^{*}) = A$$

hence $B \leq A$, and similarly you could show $A \leq B$, hence A = B.

- A similar statement (probably?) holds with inf inf (and of course with max max and sup sup too).
- On the other hand, if you have a **mixed** min/max or inf/sup, now it is not always true, and you need to satisfy the conditions of a saddle point theorem. What is always true is an **inequality**, $\sup_y \inf_x f(x,y) \leq \inf_x \sup_y f(x,y)$.

Myths

See Harvey Greenberg's nice document from about 2010. I only point out a few here:

- 1. Myth: $\min_{x,y} g(x) + h(y)$: y = g(x) is equivalent to $\min_y y + h(x)$ (via direct substitution)
 - This is true sometimes (e.g., under some conditions), but in general, it is not true, and you need to do a proper Lagrange multiplier treatment. Here's a counter-example. Take $\min_{x,y} x^2 + (y-5)^2$ subject to $16y = x^2$. So substitute in the x^2 and get $\min_y 16y + (y-5)^2$, which is unconstrained and has just one critical point at y = -3, but at this point, there is no real value of x, so we don't have a solution to the original problem! The issue is we needed to divide into cases of whether $x \ge 0$ or x < 0. The true minimum is at (x, y) = (0, 0).