MATH 220 Video Notes

Videos from PLP by Prof. Rechnitzer.

V1 Introduction to Sets

- $a \in A$: a is in the set A
- $a \notin A$: a is not in the set A

Describing a set

- {1,2,3}: list out a set
- $\{x \mid x \in \mathbb{R}, x \geq 1\}$: set builder notation
- $\varnothing = \{\}$: empty set
- |S|: cardinality of S (number of elements)

V2 Logical Statements

- Statement: either true or false
- Open sentence P(x): can be true or false, depending on the input x

V3 And, Or, Not

- Negation: $\sim P$
- And: $P \wedge Q$. must both be true
- Or: $P \lor Q$. at least one has to be true
- Exclusive Or: $P \times Q$. exactly one has to be true

V4 Conditional

<u>Conditional/Implication:</u> if P then Q. Written as $P \implies Q$, where P is the hypothesis and Q is the conclusion.

Truth table for the conditional:

P	Q	$P \implies Q$
Т	Т	Т
Т	F	F
F	Т	T (vacuously true)
F	F	T (vacuously true)

To prove that $P \implies Q$, we assume that P is true and prove that Q must be true.

V5 Modus Ponens

 $(P \implies Q)$ and P are true, so Q must be true.

To prove that $P \implies Q$, we can prove that:

$$P \Longrightarrow P_1$$

$$P_1 \Longrightarrow P_2$$

$$\vdots$$

$$P_n \Longrightarrow Q$$

• When we assume that P is true, we can chain Modus Ponens to conclude that Q must be true, which proves $P \implies Q$.

V6 Converse, Contrapositive, Biconditional

Given the implication $P \implies Q$:

- Converse: $Q \implies P$. Switch order, not the same logically
- Contrapositive: $(\sim Q) \implies (\sim P)$. logically equivalent to $P \implies Q$.
- <u>Biconditional:</u> $P \iff Q$. Equivalent to $(P \implies Q) \land (Q \implies P)$

V7 Statement Types and Definitions

Statement Types

- axioms: fundamental statements that are accepted to be true without proof
- facts: statements we accept to be true but don't prove (although they can be proved from axioms)
- · theorems: important true statements
- · corollaries: true statements that follows from theorems
- <u>lemmas:</u> a true statement that helps us prove a more important result
- results/proposition: true statements that we prove as exercises. Called a proposition if it is more important, otherwise called a result

Number Theory Definitions

- n is <u>even</u> if n=2k for some $k\in\mathbb{Z}$
- n is odd if n=2l+1 for some $l\in\mathbb{Z}$
- k divides n if there is $l \in \mathbb{Z}$ so that n = lk
 - $k \mid n$: k is a divisor of n, n is a multiple of k
- n is <u>prime</u> if it has exactly two divisors: 1 and itself
- n is composite if it has more than two divisors. Note that 1 is neither prime nor composite.
- gcd(a,b) and lcm(a,b): largest/smallest integer that is a divisor/multiple of a and b
- Euclidean division: let $a, b \in \mathbb{Z}$ with b > 0. There exists unique $q, r \in \mathbb{Z}$ so that a = bq + r with $0 \le r < b$.
- a congruent to b modulo n when $n \mid (a b)$. Written as $a \equiv b \pmod{n}$

V8 First Proof

Result 1: n be an integer. If n is even, then n^2 is even.

Proof: Assume that n is an even number. Hence, we know that n=2k for some $k\in\mathbb{Z}$. It follows that $n^2=4k^2=2(2k^2)$. Since $2k^2$ is an integer, we conclude that n^2 is even.

V9 More Proofs

Inequality proofs: oftentimes, the actual proof is written in backwards order compared to the natural brainstorming.

For example, to prove $x^2 + y^2 \ge 2xy$, we start from $(x - y)^2 \ge 0$ which we know is true.

V10 Logical Equivalence

- <u>Tautology:</u> statement that is always true
- Contradiction: statement that is always false

R and S are <u>logically equivalent</u> when $R \iff S$ is a tautology. Written as $R \equiv S$.

- Implication: $P \implies Q \equiv (\sim P) \vee Q$
- Contrapositive: $P \implies Q \equiv ((\sim Q) \implies (\sim P))$
- Biconditional: $P \iff Q \equiv ((P \implies Q) \land (Q \implies P))$
- Negation: $\sim (\sim P) \equiv P$
- ∧ and ∨ are commutative, associative, and distributive
- DeMorgan's Laws:
 - $\sim (P \lor Q) \equiv (\sim P) \land (\sim Q)$
 - $\sim (P \wedge Q) \equiv (\sim P) \vee (\sim Q)$

V11 Proof by Contrapositive

Result 1: let $n \in \mathbb{Z}$. If n^2 is even then n is even.

Proof: We prove the contrapositive: if n is odd, then n^2 is odd. Assume that n is odd.

- Hence n = 2l + 1 for some $l \in \mathbb{Z}$ and so $n^2 = 4l^2 + 4l + 1 = 2(2l^2 + 2l) + 1$.
- Since $2l^2 + 2l \in \mathbb{Z}$, it follows that n^2 is odd.

Since the contrapositive is true, the original statement is true.

Result 2: let $n \in \mathbb{Z}$. If 3n + 7 is odd then n is even.

Proof: We prove the contrapositive. Assume that n is odd, so n=2k+1 for some $k\in\mathbb{Z}$. Then 3n+7=2(3k+5) and since $3k+5\in\mathbb{Z}$ it follows that 3n+7 is even. Since the contrapositive is true, the result holds.

V12 Proof by Cases

Relies on
$$(P \lor Q) \implies R \equiv (P \implies R) \land (Q \implies R)$$

Result 1: Let $n \in \mathbb{Z}$. Then $n^2 + 5n - 7$ is odd.

Proof: Assume the hypothesis is true, so that $n \in \mathbb{Z}$. Hence n is even or odd.

- Case 1: Assume that n is even, so that n=2k for some $k\in\mathbb{Z}$. Hence $n^2+5n-7=4k^2+10k-7=2(2k^2+5k-4)+1$. Thus n^2+5n-7 is odd.
- Case 2: Assume that n is odd, so that n=2l+1 for some $l\in\mathbb{Z}$. Hence

$$n^2 + 5n + 7 = 4l^2 + 4l + 1 + 10l + 5 - 7 = 2(4l^2 + 7l + 1)$$
. Thus $n^2 + 5n - 7$ is odd.

Since $n^2 + 5n - 7$ is odd in both cases, the result holds.

Result 2: Let $n \in \mathbb{Z}$. If $3 \mid n^2$ then $3 \mid n$.

Proof: We prove the contrapositive, so assume that $3 \nmid n$. By Euclidean division, we know that n = 3a + 1 or n = 3a + 2.

- Case 1: Let n = 3a + 1, then $n^2 = 9a^2 + 6a + 1 = 3(3a^2 + 2a) + 1$ and so is not divisible by 3.
- Case 2: Let n = 3a + 2, then $n^2 = 9a^2 + 12a + 4 = 3(3a^2 + 4a + 1) + 1$ and so is not divisible by 3.

Since $3 \nmid n^2$ in both cases, the result holds.

V13 Quantifiers

Quantifiers can be used to turn open sentences into statements by adding scope.

- Universal quantifier ∀: "for all".
- Existential quantifier ∃: "there exists".
- Such that/so that: s. t.

V14 Negating Quantifiers

Let P(x) be an open sentence over the domain A, then

- $\sim (\forall x \in A, P(x)) \equiv \exists x \in A \text{ s. t. } \sim (P(x))$
- $\sim (\exists x \in A \text{ s. t. } P(x)) \equiv \forall x \in A, \sim (P(x))$

Prove or disprove: $\exists n \in \mathbb{N} \text{ s. t. } 4 \mid (n^2 + 1)$

We show the statement is false by proving its negation is true. We want to show that $\forall n \in \mathbb{N}, 4 \nmid (n^2 + 1)$. Since $n \in \mathbb{N}$ it is either even or odd.

- Assume that n is even, so n=2k and thus $n^1+1=4k^1+1$.
- Now assume that n is odd, so n = 2l + 1 and thus $n^2 = 4l^2 + 4l + 2$.

V15 Nested Quantifiers

Quantifiers do not commute

Result: $\forall x \in \mathbb{Z}, \exists w \in \mathbb{N} \text{ s.t. } z^2 < w.$

Proof: Let z be any integer. Now choose $w=z^2+1$. We know that $w\in\mathbb{Z}$ and that $w\geq 1$, so $w\in\mathbb{N}$. Further, we know that $w>z^2$ so the statement is true.

V16 Existence Proofs

Constructive proof: give an example that works (do not need to show how we found the value)

<u>Non-constructive proof:</u> proof that it must exist (i.e. using Intermediate Value Theorem). Example is not explicitly given.

<u>Uniqueness proof:</u> First show existence. let x and y be such that both P(x) and P(y) are true. Then show that we must have x = y.

V17 Disproofs

- To disprove P, we prove $\sim P$.
- To disprove a universal quantifier, we need to provide a counterexample.
- To disprove an existential quantifier, we need to prove that it is always false.

V18 Induction

Used to proof $\forall n \in \mathbb{N}, P(n)$.

- Base case: prove P(1)
- Inductive step: prove $P(k) \implies P(k+1)$

Mathematical Induction

For all $n \in \mathbb{N}$ let P(n) be a statement. Then if

- P(1) is true, and
- ullet $P(k) \implies P(k+1)$ is true for all $k \in \mathbb{N}$

then P(n) is true for all $n \in \mathbb{N}$.

Result 1: for all $n \in \mathbb{N}, n^2 + 5n - 7$ is odd.

Proof: We prove the result by induction.

- Base case: When n = 1 we have 1 + 5 7 = -1 which is odd.
- Inductive step: Assume that $k^2 + 5k 7$ is odd, so we can write

$$k^2+5k-7=2l+1$$
 for some $l\in\mathbb{Z}$ and so

$$(k+1)^2 + 5(k+1) - 7 = 2(l+k+3) + 1$$

and since $l+k+3 \in \mathbb{Z}$. it follows that $(k+1)^2 + 5(k+1) - 7$ is odd.

Since the base case and inductive step hold, the result follows by induction.

Result 2: For every natural number $n, 3 \mid (4^n - 1)$.

Proof: We prove the result by induction.

- Base case: When n=1 we have $3\mid (4-1)$, so the result holds.
- Inductive step: Assume that $3 \mid (4^k 1)$, so $4^k = 3l + 1$ for some $l \in \mathbb{Z}$. Then

$$4^{k+1} - 1 = 4(3l+1) - 1 = 3(4l+1)$$

and so $3 \mid (4^{k+1} - 1)$ as required.

Since the base case and the inductive step hold, the result follows by induction.

V19 Proof of Induction

Sketch of a proof behind why induction works.

V20 More Induction

Result 1: Let x > -1, then for all $n \in \mathbb{N}$, $(1+x)^n \ge 1 + nx$.

Proof: We proceed by induction. Assume that x > -1.

- Base case: When n = 1 we have 1 + x = 1 + x, as required.
- Inductive step: Assume the result holds for n = k, so $(1 + x)^k \ge (1 + kx)$. Then

$$(1+x)^{k+1} \ge (1+x)(1+kx)$$
 since $1+x>0$
= $1+(k+1)x+kx^2$
 $\ge 1+(k+1)x$ since $kx^2 \ge 0$

and so the result holds for n = k + 1.

By induction, the result holds for all $n \in \mathbb{N}$.

Result 2: for all $n \in \mathbb{N}$, $1 + 3 + \cdots + (2n - 1) = n^2$.

Proof: We prove the result by induction.

- Base case: when n = 1 we have $(2 1) = 1^2$.
- Inductive step: Assume $1+3+\cdots+(2k-1)=k^2$. Then

$$1+3+\cdots+(2k-1)+(2k+1)=k^2+(2k+1)=(k+1)^2$$
 as required.

By induction, the result holds for all $n \in \mathbb{N}$.

V21 Generalizing Induction

Induction (arbitrary starting point)

Let $l \in \mathbb{Z}$ and $s = \{n \in \mathbb{Z} \text{ s.t. } n \geq l\}$. Let P(n) be a statement for all $n \in S$. Then if

- P(l) is true, and
- $P(k) \implies P(k+1)$ is true for all integers $k \in S$

then P(n) is true for all $n \in S$.

Result 1: For every integer $n \geq 5, 2^n \geq n^2$.

Proof: We prove the result by induction. Since $2^5=32>25=5^2$, the result holds when n=5. Now assume that $k\geq 5$ and that $2^k\geq k^2$. Then

$$egin{aligned} 2^{k+1} &\geq 2k^2 \ &= k^2 + k^2 \ &\geq k^2 + 5k = k^2 + 2k + 3k \ &\geq k^2 + 2k + 1 \ &= (k+1)^2 \end{aligned}$$

Theorem: Strong Mathematical Induction

Let $l \in \mathbb{Z}$ and $S = \{n \in \mathbb{Z} \text{ s.t. } n \geq l\}$. Let P(n) be a statement for all $n \in S$. Then if

- P(l) is true, and
- $(P(l) \land P(l+1) \land P(l+2) \land \cdots \land P(k)) \implies P(k+1)$ is true for all integer $k \in S$

then P(n) is true for all $n \in S$.

Result 2: Let $\theta \in \mathbb{R}$ be fixed. Let $p_0 = 1$, $p_1 = \cos \theta$, and $p_n = 2p_1p_{n-1} - p_{n-2}$. Then $p_n = \cos(n\theta)$ for all integers $n \ge 0$.

Recall that $\cos(a+b) = \cos a \cos b - \sin a \sin b$ and $\cos(a-b) = \cos a \cos b + \sin a \sin b$.

Proof: We prove the result by strong induction. When n=0 we have $p_0=\cos 0=1$ as required. Now assume that $p_j=\cos j\theta$ for $j=0,1,2,\ldots,k$. Now consider $p_{k+1}=2p_1p_k-p_{k-1}$.

$$\begin{aligned} p_{k+1} &= 2\cos\theta\cos k\theta - \cos(k-1)\theta \\ &= 2\cos\theta\cos k\theta - (\cos k\theta\cos theta + \sin\theta\sin k\theta) \\ &= \cos\theta\cos k\theta - \sin\theta\sin k\theta \\ &= \cos(k+1)\theta \end{aligned}$$

V22 Subsets and Power Sets

Subset

Let A, B be sets.

- A is a subset of B means every element of A is also an element of B.
- Denoted as $A \subseteq B$. B is a superset of A, written as $B \supset A$
- Proper subset $A \subset B$: at least one element of B is not in A

$$A = B \iff ((A \subseteq B) \land (B \subseteq B))$$

Power Set

Let A be a set. The power set of A, denoted as $\mathcal{P}(A)$, is the set of all subsets of A.

If
$$|A| = n$$
 then $|\mathcal{P}(A)| = 2^n$

V23 Set Operations

Let A, B be sets.

<u>Union</u>

The union of A and B is $A \cup B = \{x : x \in A \text{ or } x \in B\}.$

Intersection

The intersection of A and B is $A \cap B = \{x : x \in A \text{ and } x \in B\}$.

If $A \cap B = \emptyset$, then A and B are disjoint.

Difference

The difference $A - B = A \setminus B$ is $A \setminus B = \{x \in A : x \notin B\}$.

<u>Universal</u>

Given a universal set U (depends on context) and $A \subset U$, the complement of A is

$$ar{A} = \{x \in U : x \notin A\}$$
 or equivalently $x \in \bar{A} \iff x \notin A$.

Ordered Pair

Written as (a, b). Order matters. Do not confuse with interval notation.

Cartesian Product

$$A\times B=\{(a,b):a\in A,b\in B\}$$

V24 Set Proofs

Let A, B be sets.

Subset and Equality

- $\bullet \ \ (A\subseteq B) \quad \equiv \quad (\forall x\in A, x\in B) \quad \equiv \quad (x\in A \implies x\in B).$
- $\bullet \ \ (A=B) \quad \equiv \quad ((A\subseteq B) \land (B\subseteq A)) \quad \equiv \quad ((x\in A) \iff (x\in B))$

Intersection and Union

- $(x \in A \cap B) \equiv (x \in A \land x \in B)$
- $(x \in A \cup B) \equiv (x \in A \lor x \in B)$

Complement and Difference

- $(x \in \bar{A}) \equiv (x \notin A) \equiv \sim (x \in A)$
- $(x \in A B) \equiv ((x \in A) \land (x \notin B)) \equiv ((x \in A) \land \sim (x \in B))$

Result 1: Let $A = \{n \in \mathbb{Z} : 6 \mid n\}$ and $B = \{n \in \mathbb{Z} : 2 \mid n\}$, then $A \subseteq B$.

Proof: Let the sets A, B as stated and assume that $a \in A$. Hence, we know that $6 \mid a$ and so a = 6k. This implies that a = 2(3k) and so $2 \mid a$. By the definition of the set B, $a \in B$. So $A \subseteq B$ as required.

Result 2: Let A, B, C be sets. If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Proof: Assume that $A \subseteq B$ and $B \subseteq C$. Further, let $x \in A$. Since $A \subseteq B$, we know that $x \in B$. Then similarly, since $B \subseteq C$, we know that $x \in C$. Hence $A \subseteq C$ as required.

Result 3: Let A, B, C be sets, then $A \cup (B \cap C) = (A \cup C) \cap (A \cup B)$.

Strategy: prove LHS is a subset of RHS, then prove that RHS is a subset of LHS.

Proof: Let $x \in A \cup (B \cap C)$, so that $x \in A$ or $x \in B \cap C$. We consider each case separately.

- Assume that $x \in A$, then we know that $x \in A \cup B$. Similarly, we have $x \in A \cup C$.
- Now assume that $x \in B \cap C$, so that $x \in B$ and $x \in C$.

Since $x \in B$ it follows that $x \in B \cup A$. Similarly, because $x \in C$, $x \in C \cup A$.

In both cases, $x \in (A \cup B)$ and $x \in (A \cup C)$. Hence $x \in (A \cup C) \cap (A \cup B)$ as required.

Now let $x \in (A \cup C) \cap (A \cup B)$, so that $x \in A \cup C$ and $x \in A \cup B$.

- If $x \in A$, then $x \in A \cup (B \cap C)$.
- If $x \notin A$, then we must have $x \in B$ and $x \in C$, which implies that $x \in B \cap C$, so $x \in A \cup (B \cap C)$.

In both cases, we have $x \in A \cup (B \cap C)$ as required.

V25 More Set Proofs

Cartesian and Power Set Proofs

Result: Let A, B, C be sets, then $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof: First, we will show that $A \times (B \cup C) \supseteq (A \times B) \cup (A \times C)$.

Assume that $(x,y) \in (A \times B) \cup (A \times C)$. Then either $(x,y) \in A \times B$ or $(x,y) \in A \times C$.

- Case 1: When $(x,y) \in A \times B$, we have $x \in A$ and $y \in B$. Hence, $y \in B \cup C$.
- Case 2: When $(x,y) \in A \times C$, we have $x \in A$ and $y \in C$. Hence, $y \in C \cup B$.

In both cases, $x \in A$ and $y \in B \cup C$, so $(x, y) \in A \times (B \cup C)$.

Next, we will show that $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$.

Assume that $(x,y) \in A \times (B \cup C)$. Then $x \in A$ and $y \in B \cup C$. Either $y \in B$ or $y \in C$.

- Case 1: When $y \in B$, we have $(x,y) \in A \times B$, so $(x,y) \in (A \times B) \cup (A \times C)$.
- Case 2: When $y \in C$, we have $(x,y) \in A \times C$, so $(x,y) \in (A \times C) \cup (A \times B)$.

In both cases, $(x,y) \in (A \times B) \cup (A \times C)$.

Useful Results for Sets

- 1. $X \subseteq A \implies X \subseteq A \cup B$.
- $2. X \subseteq A \cap B \implies X \subseteq A.$
- 3. $(X \subseteq A) \land (X \subseteq B) \iff X \subseteq A \cap B$.

Result 1: Let A, B be sets. Then $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Proof: Let $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then $X \subseteq A$ or $X \subseteq B$.

- Case 1: If $X \subseteq A$ then $X \subseteq A \cup B$ so $x \in \mathcal{P}(A \cup B)$.
- Case 2: If $X \subseteq B$ then $X \subseteq A \cup B$ so $x \in \mathcal{P}(A \cup B)$.

Disproof of Reverse Inclusion:

Let $A = \{1\}, B = \{2\}$, and $X = \{1, 2\}$. Then $X \in \mathcal{P}(A \cup B)$, however $X \notin \mathcal{P}(A) \cup \mathcal{P}(B)$. Hence $\mathcal{P}(A \cup B) \nsubseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.

Result 2: Let A, B be sets. Then $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

Proof: Assume that $X \in LHS$. Then $X \in \mathcal{P}(A)$ and $X \in \mathcal{P}(B)$, and so $X \subseteq A$ and $X \subseteq B$. Hence $X \subseteq A \cap B$, and thus $X \in RHS$.

• Now assume that $Y \in RHS$. Then $Y \in \mathcal{P}(A \cap B)$ and so $Y \subseteq A \cap B$. This means that $Y \subseteq A$ and $Y \subseteq B$. Hence $Y \in \mathcal{P}(A)$ and $Y \in \mathcal{P}(B)$, and thus $Y \in LHS$.

V26 Relations

Relations

Let A be a set.

- A relation, R, on A is a subset $R \subseteq A \times A$.
- If $(x,y) \in R$, we write x R y and otherwise we write $x \not R y$

Special relations

- $R = \emptyset$ is the trivial relation on A
- $S = B \times B$ is the universal relation on A

V27 Properties and Congruence

Properties of Relations

Let R be a relation on a set A. Then R is

- **Reflexive** when a R a.
- Symmetric when $a R b \implies b R a$.
- Transitive when $(a R b) \wedge (b R c) \implies a R c$

Theorem: congruence modulo n is reflexive, symmetric, and transitive.

V28 Equivalence Relations & Classes

Equivalence Relations

 $\it R$ is an equivalence relation when it is reflexive, symmetric, and transitive.

Equivalence Classes

Let R be an equivalence relation on A.

The equivalence class of $x \in A$ (with respect to R) is $[x] = \{a \in A : a R x\}$.

- We always have $a \in [a]$.
- If $a, b \in A$, then $[a] = [b] \iff a R b$.

V29 Set Partitions

Properties of equivalence classes

• Equivalence classes are either equal or disjoint (completely separate). Either [a] = [b] or $[a] \cap [b] = \emptyset$.

Partition

A partition of the set A is a set \mathcal{P} of non-empty subsets of A so that

- $\varnothing \notin \mathcal{P}$.
- If $x \in A$ then there is $X \in \mathcal{P}$ such that $x \in X$.
- If $X, Y \in \mathcal{P}$ then either $X \cap Y = \emptyset$ or X = Y.

The elements of \mathcal{P} are called parts or pieces.

Theorem: The set of equivalence classes of R form a set partition.

Theorem: Let \mathcal{P} be a set partition of A. Define a relation by $x R y \iff \exists X \in \mathcal{P} \text{ s.t. } x, y \in X$. Then R is an equivalence relation.

V30 Integers Modulo n

The equivalence relation $\equiv \pmod{n}$ partitions \mathbb{Z} : $\{[0], [1], [2], \dots, [n-1]\}$.

Theorem: Let $n \in \mathbb{N}$ and let $a, b \in \{0, 1, \dots, n-1\}$.

If $x \in [a]$ and $y \in [b]$ then $x + y \in [a + b]$ and $x \cdot y \in [a \cdot b]$.

Integers modulo n: $\mathbb{Z}_n = \{[0], [1], [2], \dots, [n-1]\}$

[a] + [b] = [a + b] and $[a] \cdot [b] = [a \cdot b]$.

V31 Functions

A function $f: A \to B$ takes inputs from A and gives outputs in B. $f \subseteq A \times B$.

- Existence: for every $a \in A$, there exists $b \in B$ so that $(a, b) \in f$.
- Uniqueness: If $(a, b) \in f$ and $(a, c) \in f$ then b = c.
- <u>Domain</u> is A, <u>codomain</u> is B. range $(f) \subseteq \text{codomain}(f)$
- If $(a,b) \in f$ we write f(a) = b. b is the <u>image</u> of a

V32 Images and Preimages

Let $f: A \to B$ be a function and let $C \subseteq A$ and $D \subseteq B$.

- The <u>image</u> of *C* in *B* is $f(C) = \{f(x) \text{ s.t. } x \in C\}.$
- The <u>preimage</u> of *D* in *A* is $f^{-1}(D) = \{x \in A \text{ s.t. } f(x) \in D\}.$
 - $\bullet \ \ x \in f^{-1}(D) \iff f(x) \in D.$

Theorem: Let $f: A \to B$ and $C \subseteq A$ and $D \subseteq B$. Then

- ullet $C\subseteq f^{-1}(f(C))$
- $f(f^{-1}(D)) \subseteq D$.

Let $C_1, C_2 \subseteq A$ and $D_1, D_2 \subseteq B$.

• $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$

- $f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$
- $ullet f^{-1}(D_1\cap D_2)=f^{-1}(D_1)\cap f^{-1}(D_2)$
- $ullet f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$

V33 Injections, Surjections, and Bijections

Let $f: A \to B$ be a function.

- <u>Injective:</u> for all $a_1, a_2 \in A$, if $a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$. Contrapositive: $f(a_1) = f(a_2) \implies a_1 = a_2$.
- Surjective: for all $b \in B$, exists $a \in A$ such that f(a) = b.
- Bijective: both injective and surjective.

V34 Compositions

Let $f: A \to B$ and $g: B \to C$. The <u>composition</u> of f and g, denoted by $g \circ f$, defines a new function $g \circ f: A \to C$, where $(g \circ f)(a) = g(f(a))$.

Theorems

- If f and g are injective then so is $g \circ f$.
- If f and g are surjective then so is $g \circ f$.
- If f and g are bijective then so is $g \circ f$.

Theorems

- If $g \circ f$ is an injection then f is an injection
- If g ∘ f is a surjection then g is a surjection

V35 Inverse Functions

Let $f: A \to B$ and $g: B \to A$ be functions.

- If $g \circ f = i_A$ then g is a <u>left-inverse</u> of f
- If $f \circ g = i_B$ then we say that g is a <u>right-inverse</u> of f.
- If g is both a left-inverse and right-inverse, then we call it an inverse of f

Inverse is denoted by f^{-1} .

Theorems

- If f has a left-inverse then it is injective
- If f has a right-inverse then it is surjective

Lemma

• If f has a left-inverse g and a right-inverse h, then g = h

Theorem: inverse functions

• Let $f: A \to B$. Then f has an inverse if and only if f is bijective. The inverse, if it exists, is unique.

V36 Proof by Contradiction

Warning: Do NOT overuse proof by contradiction. They are often suitable for **not-** results (i.e. non-existence or irrationality).

Relies on law of the excluded middle and modus tollens

- Law of the excluded middle: $P \lor \sim P$ is a tautology.
- Modus tollens: $(P \Longrightarrow Q)$ is true and Q is false, so P must be false

Proof by contradiction to prove P

- Assume $\sim P$ is true
- Prove a chain of implications

$$(\sim P) \Longrightarrow P_1$$
 $P_1 \Longrightarrow P_2$
 \vdots
 $P_{n-1} \Longrightarrow P_n$
 $P_n \Longrightarrow \text{contradiction}$

• By modus tollens, $(\sim P)$ must be false, and so P is true.

Result: There is no smallest positive real number.

Proof: Assume, to the contrary, that there does exist a smallest real number q. Then the number r=q/2 satisfies 0 < r < q. Hence, r is a positive real number that is smaller than q, which contradicts our assumption that q is the smallest positive real. Thus, there is no smallest positive real number.

V37 Proof by Contradiction - Examples

Result 1: There are no integers a, b so that 2a + 4b = 1.

Proof: Assume, to the contrary, that the result is false. So there are $a, b \in \mathbb{Z}$ so that 2a + 4b = 1. Dividing by 2 gives $a + 2b = \frac{1}{2}$. However, this cannot happen since the sum of integers is an integer. Hence there cannot be such integers a, b and so the result holds.

Result 2: There are no integers a, b so that $a^2 - 4b = 3$.

Proof: Assume, to the contrary, that we can find $a,b\in\mathbb{Z}$ with $a^2-4b=3$. Rewrite as $a^2=3+4b$ and notice that RHS is odd, so the LHS must also be odd, which means that a is odd (which we have shown previously). Hence we can write a=2k+1 for some $k\in\mathbb{Z}$ and so we have

$$3 = a^2 - 4b = (2k+1)^2 - 4b = 4k^2 + 4k + 1 - 4b = 4(k^2 + k - b) + 1$$

which means that $3 \equiv 1 \pmod{4}$, a contradiction. Thus, the result follows.

Rational and Irrational

Let q be a real number.

• Rational: q is rational if we can write $q = \frac{a}{b}$ with $a, b \in \mathbb{Z}$ and $b \neq 0$.

$$\exists a \in \mathbb{Z} \text{ s.t. } \exists b \in \mathbb{Z} - \{0\} \text{ s.t. } q = \frac{a}{b}.$$

• <u>Irrational:</u> *q* is irrational if it is not rational.

$$orall a \in \mathbb{Z}, orall b \in \mathbb{Z} - \{0\}, q
eq rac{a}{b}.$$

Denoted as $\mathbb{I} = \mathbb{R} - \mathbb{Q}$

Result 3: If $x \in \mathbb{Q}$ and $y \in \mathbb{I}$ then $x + y \in \mathbb{I}$.

Proof: Assume, to the contrary, that there is $x\in\mathbb{Q}$ and $y\in\mathbb{I}$ so that $x+y\in\mathbb{Q}$. This implies that $x=\frac{a}{b}$ and $(x+y)=\frac{c}{d}$ with $a,b,c,d\in\mathbb{Z}$ and $b,d\neq 0$. From this we see that $y=(x+y)-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$ and hence $y\in\mathbb{Q}$. This contradicts our assumption that $y\in\mathbb{I}$, and so the result follows.

V38 Proof by Contradiction - Famous Proofs

Lemma 1: let $n \in \mathbb{N}$, then n is even if and only if n^2 is even.

Forward implication is easy to prove, reverse implication can be proven with contrapositive

Result 1: $\sqrt{2}$ is irrational.

Proof: Assume, to the contrary, that $\sqrt{2} \in \mathbb{Q}$. Hence we can write $\sqrt{2} = \frac{a}{b}$ so that $b \neq 0$ and $\gcd(a,b) = 1$. Since $\sqrt{2} = \frac{a}{b}$, we have $a^2 = 2b^2$. Thus a^2 is even, and so a is even. Hence write a = 2c where $c \in \mathbb{Z}$. But now, since $a^2 = 2b^2$, we know that $4c^2 = 2b^2$ and so $b^2 = 2c^2$. Hence b^2 is even, and so b is even. This gives a contradiction since we assumed that $\gcd(a,b) = 1$. Thus, $\sqrt{2}$ is irrational.

Lemma 2: let $n \in \mathbb{N}$. If $n \geq 2$ then n is divisible by a prime.

Proof: We prove this by strong induction.

- Base case: since 2 is prime and $2 \mid 2$, the result holds when n = 2
- Inductive step: let $k \in \mathbb{N}$ with $k \ge 2$ and assume that the result holds for all integers $2, 3, \dots, k$.
 - If k+1 is not prime then since $(k+1) \mid (k+1)$, the result holds at n=k+1.
 - If k+1 is not prime, then (k+1)=ab for integers $a,b\geq 2$. But by assumption, both a,b have prime divisors, ands o a=pc,b=qd where $c,d\in\mathbb{N}$ and p,q are prime. Hence (k+1)=pqcd and so the result holds at n=k+1.

The result follows by strong induction.

Result 2: there are an infinite number of primes.

Proof: Assume, to the contrary, that there is a finite list of primes: $\{p_1, p_2, \dots, p_n\}$.

Use this list to construct $N=p_1\cdot p_2\cdot p_3\cdots p_n\in\mathbb{N}$, and then consider (N+1).

- If (N+1) is prime, then we have found a new prime larger than all on our list, which is a contradiction.
- If it is not prime, then by Lemma 2, (N+1) has some p_k as a divisor. But then $p_k \mid N$ and $p_k \mid (N+1)$ so

$$1=(N+1)-N=p_kb-p_ka=p_k(b-a)$$
 for some $a,b\in\mathbb{N}$

which implies that $p_k \mid 1$, which is a contradiction.

So the list of primes cannot be finite.

V39 Cardinality of Finite Sets

Cardinality: |A| is the number of elements in A.

- |A| = n means there is a bijection from A to $\{1, 2, \dots, n\}$.
- If |A| = |B| then A and B are equinumerous.

Let A, B be sets. They have the same cardinality if $A = B = \emptyset$ or if there is a bijection from A to B.

Pigeonhole Principle: If n objects are placed in k boxes then:

- If n < k then at least one box has zero objects in it.
- If n > k then at least one box has at least two (or more refined $\lceil n/k \rceil$) objects in it.

Corollaries of Pigeonhole

Let A, B be finite sets and let $f: A \rightarrow B$. Then

- If f is an injection then $|A| \leq |B|$.
- If f is a surjection then $|A| \ge |B|$.

Result 1: there exist two pwoers of 3 whose difference is divisible by 220.

Proof: Consider the sequence of 221 numbers $3^0, 3^1, 3^2, 3^3, \dots, 3^{219}, 3^{220}$. There are at most 220 possible remainders, but 221 numbers in the sequence. Hence two numbers have the same remainder: $3^i = 220k + r$ and $3^j = 220l + r$ for some i, j. So their difference is a multiple of 220 as required.

We can check that $220 \mid (3^{20} - 3^0)$.

Result 2: place 5 points in an equilateral triangle of side-length 1. There is a pair at distance no greater than 0.5.

Proof: Split the triangle into 4 sub-triangles as shown. The subtriangle side-length is $\frac{1}{2}$.

One sub-triangle must contain 2 points, so those points are at distance $\leq \frac{1}{2}.$

V40 Towards Infinite Sets

Equinumerous: same size. "Being equinumerous" is an equivalence relation.

Result: Let $\mathcal{E} = \{n \in \mathbb{N}, \text{ s.t. } n \text{ is even}\}$ and $\mathcal{O} = \{n \in \mathbb{N} \text{ s.t. } n \text{ is odd}\}$, then $|\mathcal{O}| = |\mathcal{E}|$. Furthermore, $|\mathbb{N}| = |\mathcal{E}|$.

The function $f: \mathcal{O} \to \mathcal{E}$ defined by f(n) = n + 1 is a bijection.

The function $g: \mathbb{N} \to \mathcal{E}$ defined by g(n) = 2n is a bijection.

Let A, B with $A \subset B$.

- If A, B are finite then PHP tells us $|A| \neq |B|$.
- If A, B are infinite then a bijection maybe possible.

Infinite Set: a set A is infinite if there is a bijection from A to a proper subset of A.

The First Infinity:

- A set A is denumerable if there is a bijection $f: \mathbb{N} \to A$.
- Cardinality of denumerable set is ℵ₀ "aleph-null
- · Countable: either finite or denumerable

V41 Denumerable Sets

A set B is denumerable when we can "list out" its elements \iff there exists a bijection $g: \mathbb{N} \to B$.

- Elements in list do not repeat injective
- Any given element $y \in B$ appears at a finite position surjective

Result 1: The set of all integers is denumerable.

Proof: List the elements $z \in \mathbb{Z}$ as $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \ldots\}$ so that

- If $z \ge 1$, then z appears at position 2z;
- If $z \le 0$, then z appears at position 1 2z.

The list does not repeat and any given $z \in \mathbb{Z}$ appears at some finite position. Hence the list defines a bijection between \mathbb{N} and \mathbb{Z} .

Theorem: Let A, B be sets with $A \subseteq B$. If B is denumerable then A is countable; there is no smaller infinity.

Proof Sketch: If *A* is finite then *A* is countable.

If A is not finite, then list out B nicely, and then delete the elements in the list that are not in A. The resulting list does not repeat, and also every element in A appears at some finite position in the list. Hence A is denumerable and is thus countable.

Result 2: Let $k \in \mathbb{N}$, then the following sets are denumerable.

$$k\mathbb{Z}=\{kn:n\in\mathbb{Z}\}\quad ext{and}\quad k\mathbb{N}=\{k\mathbb{m}:n\in\mathbb{N}\}$$

We can use the previous theorem. These sets are subset of \mathbb{Z} , which is denumerable. Since the sets are not finite, they must be denumerable.

Let A, B be countable sets, then:

- $A \cap B$ and $A \cup B$ are all countable.
- A × B is countable.

Result 3: The set of all rational numbers \mathbb{Q} is denumerable.

Proof Sketch:

- Note that any $q \in \mathbb{Q}$ can be written uniquely as $q = \frac{a}{b}$ with $a \in \mathbb{Z}, b \in \mathbb{N}$ and $\gcd(a, b) = 1$.
- We can rewrite rationals as $P = \{(a, b) \in \mathbb{Z} \times \mathbb{N} \text{ s.t. } \gcd(a, b) = 1\}.$
- There is a bijection $f: \mathbb{Q} \to P$ given by f(a/b) = (a,b), where a/b is the reduced fraction.
- Since $P \subseteq \mathbb{Z} \times \mathbb{N}$, we know that P is denumerable.
- Since $|P| = |\mathbb{Q}|$, we have that Q is also denumerable.

V42 Uncountable Sets

Facts:

- Every rational number has a repeating decimal expansion
- Some rationals have two repeating expansions. For example, 1/2 = 0.500000... = 0.499999... This only happens when the reduced fraction a/b is a product of 2s and 5s.
- Every irrational number has a unique non-repeating decimal expansion

Result 1 (Cantor 1891): The open interval $(0,1) = \{x \in \mathbb{R} \text{ s.t. } 0 < x < 1\}$ is uncountable.

Assume, to the contrary, that (0,1) is countable. Since it is infinite, it is denumerable, and so there is a bijection $f: N \to (0,1)$.

We can use this bijection to list all the numbers in (0,1), and if there are two decimal expansions then choose the expansion that ends in 0s.

Denote the k^{th} digit of f(n) as $f_{n,k}$. The diagonal is $\Delta=0.d_1d_2d_3d_4\ldots$, and the n^{th} digit of the diagonal as $d_n=f_{n,n}$.

Create a new number $z=0.z_1z_2z_3z_4\dots$ via $z_n=egin{cases} 1 & ext{if } d_n
eq 1 \\ 2 & ext{if } d_n=1 \end{cases}$, chosen so that for all $n\in\mathbb{N}$, $z_n
eq d_n=f_{n,n}$.

Since $0.111111... \le z \le 0.22222...$, we have $z \in (0,1)$ so z must be somewhere in the table. If z = f(k) then we must have $z_k = f_{k,k}$, but $f_{k,k} = d_k \ne z_k$ be construction, which is a contradiction.

Hence z is not in the table, so (0,1) is uncountable.

Result 2: The set of all real numbers is uncountable. Additionally $|(0,1)| = |\mathbb{R}| = c$.

Contrapositive of a previous theorem: if A is uncountable then its superset B is uncountable. Hence \mathbb{R} is uncountable.

To show that $|(0,1)|=|\mathbb{R}|$, we can show that $g:(0,1)\to\mathbb{R}$ defined by $g(x)=rac{1}{1-x}-rac{1}{x}$ is a bijection.

V43 More Infinities

Comparing Infinite Sets

- $|A| \leq |B|$ means there is an injection from A to B.
- |A| < |B| means there is an injection from A to B but no bijection. $|A| < |B| \iff (|A| \le |B|) \land (|A| \ne |B|)$.

Continuum Hypothesis: There is no set A so that $\aleph_0 < |A| < c$.

Cantor's Theorem: Let A be a set. Then $|A| < |\mathcal{P}(A)|$.

Proof Sketch:

First we show that $|A| \leq |\mathcal{P}(A)|$. Consider $f: A \to \mathcal{P}(A)$ defined by $f(a) = \{a\}$, which is an injection from A to $\mathcal{P}(A)$. Hence, $|A| \leq |\mathcal{P}(A)|$.

To show that $|A| \neq |\mathcal{P}(A)|$, it suffices to show that there cannot be a surjection from A to $\mathcal{P}(A)$.

Assume, to the contrary, that there exists a surjection $g: A \to \mathcal{P}(A)$, and define $B = \{x \in A \text{ s.t. } x \notin g(x)\}$. Since g is a surjection, there must exist some $b \in A$ so that g(b) = B.

We must either have $b \in B$ or $b \notin B$.

- If $b \in B$, then by definition, $b \notin g(b) = B$, a contradiction.
- If $b \notin B$, then by definition, $b \in g(b) = B$, also a contradiction.

Hence g is not surjective, so g is not bijective, which means $|A| \neq |\mathcal{P}(A)|$.

We conclude that $|A| < |\mathcal{P}(A)|$.

Cantor-Schröder-Bernstein Theorem: $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$.

Corollary of Cantor's Theorem: there are an infinite number of different infinities.

$$|\mathbb{N}|<|\mathcal{P}(\mathbb{N})|<|\mathcal{P}(\mathcal{P}(\mathbb{N}))|<|\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))|<\cdots$$

We can create larger and larger infinite sets by repeatedly taking power sets.