Exercice Modèle Black-Litterman

Version: 01 mars 2022

```
library(xts)
library(hornpa)
library(lubridate)
library(xtable)
library(PerformanceAnalytics)
library(TTR)
library(lubridate)
library(roll)
library(Hmisc)
library(nFactors)
library(kableExtra)
#library(broom)
library(quadprog)
```

L'objet de cet exercice est de combiner l'approche de Black-Litterman et le modèle moyenne-variance classique pour imposer des contraintes à la solution.

Rappel

Distribution ex=ante des rendements:

 $r \sim \mathcal{N}(\mu, \Sigma)$

Rendements espérés d'équilibre

 $\Pi = \delta \Sigma w_{eq}$

Distribution de l'espérance de rendement:

 $\mu = \Pi + \epsilon^{(e)}$

avec

 $\epsilon^{(e)} \sim \mathcal{N}(0, \tau \Sigma)$

where τ is a scalar.

Expression des vues:

 $P\mu = Q + \epsilon^{(v)}$

avec

 $\epsilon^{(v)} \sim \mathcal{N}(0, \Omega)$

Solution ex-post:

After algebraic manipulations:

Espérance de rendement

$$\mu^* = [(\tau \Sigma)^{-1} + P^T \Omega^{-1} P]^{-1} [(\tau \Sigma)^{-1} \Pi + P^T \Omega^{-1} Q]$$

Covariance des rendements

$$M^{-1} = \left[(\tau \Sigma)^{-1} + P^T \Omega^{-1} P \right]^{-1}$$

Distribution ex-post des rendements:

$$r \sim \mathcal{N}(\mu^*, \Sigma^*)$$

avec $\Sigma^* = \Sigma + M^{-1}$.

Données

Données de He & Litterman:

Rendements d'équilibre

```
# risk aversion parameter
delta = 2.5
Pi = delta * Sigma %*% w.eq
```

Assets	Std Dev	Weq	PΙ
Australia	16	1.6	3.9
Canada	20.3	2.2	6.9
France	24.8	5.2	8.4
Germany	27.1	5.5	9
Japan	21	11.6	4.3
UK	20	12.4	6.8
USA	18.7	61.5	7.6

Calculs

Résoudre le programme d'optimisation en imposant la vue #1 (le marché allemand sur-performe) tels que $w_i >= 0$.