

STIC Search Report

EIC 1700

STIC Database Tracking Number: 112822

TO: Dawn Garrett
Location: REM 5C 75
Art Unit : 1774
January 30, 2004

Case Serial Number: 10/644872

From: Barba Koroma
Location: EIC 1700
REM EO4 A30
Phone: 571 272 2546

barba.koroma@uspto.gov

Search Notes

Examiner Garrett,
Please find attached results of the search you requested. Various components of the claimed invention as spelt out in the claims were searched in REGISTRY and CAPLUS databases. For your convenience, titles of hits have been listed to help you peruse the results set quickly. This is followed by a detailed printout of records. Please let me know if you have any questions.

Thanks.

Page 1Garrett10644872

=> file reg
FILE 'REGISTRY' ENTERED AT 11:15:12 ON 30 JAN 2004
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2004 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file
provided by InfoChem.

STRUCTURE FILE UPDATES: 28 JAN 2004 HIGHEST RN 642928-00-5
DICTIONARY FILE UPDATES: 28 JAN 2004 HIGHEST RN 642928-00-5

TSCA INFORMATION NOW CURRENT THROUGH JULY 14, 2003

Please note that search-term pricing does apply when
conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. For more
information enter HELP PROP at an arrow prompt in the file or refer
to the file summary sheet on the web at:
<http://www.cas.org/ONLINE/DBSS/registryss.html>

=> file caplus
FILE 'CAPLUS' ENTERED AT 11:15:17 ON 30 JAN 2004
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is
held by the publishers listed in the PUBLISHER (PB) field (available
for records published or updated in Chemical Abstracts after December
26, 1996), unless otherwise indicated in the original publications.
The CA Lexicon is the copyrighted intellectual property of the
American Chemical Society and is provided to assist you in searching
databases on STN. Any dissemination, distribution, copying, or storing
of this information, without the prior written consent of CAS, is
strictly prohibited.

FILE COVERS 1907 - 30 Jan 2004 VOL 140 ISS 6
FILE LAST UPDATED: 29 Jan 2004 (20040129/ED)

This file contains CAS Registry Numbers for easy and accurate
substance identification.

=> d que
L57 STR

KOROMA EIC1700

NODE ATTRIBUTES:

DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED
NUMBER OF NODES IS 9

STEREO ATTRIBUTES: NONE

L58 (6) SEA FILE=REGISTRY SSS FUL L57
L59 20 SEA FILE=CAPLUS ABB=ON PLU=ON L58

=> d ti 1-20

L59 ANSWER 1 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Intramolecular interactions in aromatic compounds: V. Electronic structure
of polyfluoroaromatic silanes and related hydrocarbons

L59 ANSWER 2 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Olefin polymerization and process therefor

L59 ANSWER 3 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Substituent effect on electronegativity of Ar₃Si and Ar₃Sn groups:
comparison of the results of ab initio quantum-chemical calculations with
¹⁹F NMR data for Ar₃MQC₆H₄F-4 compounds

L59 ANSWER 4 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI A convenient preparation of pentafluorophenyl(fluoro)silanes: reactivity
of pentafluorophenyltrifluorosilane

L59 ANSWER 5 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Thermodynamic simulation of deposition of molybdenum and tungsten
disilicides in metalorganic CVD processes

L59 ANSWER 6 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Photoelectron helium spectra of the pentafluorophenyl derivatives of Group
IV and V elements

L59 ANSWER 7 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Reactions of arylmethysilanes and tetraarylsilanes with xenon difluoride in the presence of fluoride ions

L59 ANSWER 8 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Pentafluorophenyliodine(V) compounds, part 1. Preparation of pentafluorophenyliodine tetrafluoride and other aryliodine tetrafluorides by reaction of iodine pentafluoride with arylsilanes

L59 ANSWER 9 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI The crystal structure of tetrakis(pentafluorophenyl)silane

L59 ANSWER 10 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI A fluorine-19 NMR investigation of the transmission of electronic effects in triaryl(4-fluorophenyl)silanes

L59 ANSWER 11 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI NMR studies of pentafluorophenyl-substituted silanes. I. Relations between chemical shifts, coupling constants, and $(p-d)\pi$ interactions

L59 ANSWER 12 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Fragmentation and rearrangement processes in the mass spectra of perhalogenoaromatic compounds. II. Pentafluorophenyl derivatives of group IV

L59 ANSWER 13 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI A direct preparation of some pentafluorophenyl-containing silanes

L59 ANSWER 14 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI The fluorine-19 NMR spectra of some pentafluorophenyl compounds of group IV elements

L59 ANSWER 15 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Polyhalo-organometallic and -organometalloidal compounds. VIII. Preparation of some pentafluorophenyl substituted organosilicon compounds

L59 ANSWER 16 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Pentafiuorophenyl organometallic compounds of group IV elements

L59 ANSWER 17 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Tetrakis(pentafluorophenyl)silane

L59 ANSWER 18 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Pentafluoroiodobenzene

L59 ANSWER 19 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Synthesis of organosilicon compounds, particularly those containing halophenyl groups

L59 ANSWER 20 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
TI Preparation and thermal stability of tetrakis(pentafluorophenyl)silane and

tris(pentafluorophenyl)phosphine

=> d ibib abs hitstr ind total

L59 ANSWER 1 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 2000:525583 CAPLUS
DOCUMENT NUMBER: 133:252494
TITLE: Intramolecular interactions in aromatic compounds: V.
Electronic structure of polyfluoroaromatic silanes and
related hydrocarbons
AUTHOR(S): Krupoder, S. A.; Okotrub, A. V.; Villem, N. V.;
Villem, J. J.; Furin, G. G.; Salakhutdinov, N. F.;
Poleshchuk, O. Kh.
CORPORATE SOURCE: Institute of Organic Chemistry, Siberian Branch,
Russian Academy of Sciences, Novosibirsk, Russia
SOURCE: Russian Journal of General Chemistry (Translation of
Zhurnal Obshchei Khimii) (2000), 70(1), 101-110
CODEN: RJGCEK; ISSN: 1070-3632
PUBLISHER: MAIK Nauka/Interperiodica Publishing
DOCUMENT TYPE: Journal
LANGUAGE: English
AB The electronic structure of pentafluorophenyl-substituted silanes
ArnSiMe4-n (Ar = C6H5, C6F5, 4-FC6H4, 2,3,5,6-F4C5N; n = 1; Ar = C6H5,
C6F5, n = 2, 4) was studied by x-ray emission and He(I) photoelectron
spectroscopy. The He(I) photoelectron spectra were measured and
interpreted from MNDO calcns., anal. of the p-fluoro effect, and relative
intensities. Substitution of C6F5 for C6H5 in aryltrimethyl- and
diaryldimethylsilanes results in enhanced π interaction between the
aryl and SiMen groups (n = 2, 3) by higher π levels and has almost no
effect on the charge on the Si atom.
IT 1524-78-3, Tetrakis(pentafluorophenyl)silane
RL: PRP (Properties)
(electronic structure determined by photoelectron spectra, x-ray emission
and MNDO calcns.)
RN 1524-78-3 CAPLUS
CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 29-6 (Organometallic and Organometalloidal Compounds)
Section cross-reference(s): 22
ST electronic structure silane phenyl fluorophenyl MNDO; photoelectron spectrum silane phenyl fluorophenyl; x ray emission silane phenyl fluorophenyl; fluorine substituent effect photoelectron spectrum fluorophenylosilane
IT Electronic structure
MNDO (molecular orbital)
Photoelectron spectra
X-ray emission
(of Ph and polyfluoroarom. silanes)
IT Substituent effects
(of fluorine in polyfluoroarom. silanes on photoelectron spectra)
IT Ionization potential
(of polyfluoroarom. silanes)
IT Silanes
RL: PRP (Properties)
(polyfluoroarom.; electronic structure determined by photoelectron spectra,
x-ray emission and MNDO calcns.)
IT 455-17-4, 4-Fluorophenyl(trimethyl)silane 768-32-1,
Trimethyl(phenyl)silane 778-24-5, Dimethyl(diphenyl)silane 1048-08-4,
Tetraphenylosilane 1206-46-8, Pentafluorophenyl(trimethyl)silane
1524-78-3, Tetrakis(pentafluorophenyl)silane 10536-62-6
16297-29-3
RL: PRP (Properties)
(electronic structure determined by photoelectron spectra, x-ray emission
and MNDO calcns.)
IT 75-76-3, Tetramethylsilane
RL: PRP (Properties)
(model compound; electronic structure determined by photoelectron spectra,
x-ray emission and MNDO calcns.)
REFERENCE COUNT: 36 THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS
RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L59 ANSWER 2 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
 ACCESSION NUMBER: 1998:490675 CAPLUS
 DOCUMENT NUMBER: 129:149360
 TITLE: Olefin polymerization and process therefor
 INVENTOR(S): Van Tol, Maurits Frederik Hendrik
 PATENT ASSIGNEE(S): DSM N.V., Neth.; Van Tol, Maurits Frederik Hendrik
 SOURCE: PCT Int. Appl., 21 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9830603	A1	19980716	WO 1997-NL696	19971215
W: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, ID, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
NL 1004991	C2	19980715	NL 1997-1004991	19970114
AU 9853475	A1	19980803	AU 1998-53475	19971215
EP 954540	A1	19991110	EP 1997-950491	19971215
R: AT, BE, CH, DE, ES, FR, GB, IT, LI, NL, SE, PT, FI				
CN 1248979	A	20000329	CN 1997-182023	19971215
JP 2002514247	T2	20020514	JP 1998-530771	19971215
US 6218487	B1	20010417	US 1999-352842	19990713
PRIORITY APPLN. INFO.:			NL 1997-1004991	A 19970114
			US 1997-38160P	P 19970213
			WO 1997-NL696	W 19971215

OTHER SOURCE(S): MARPAT 129:149360
 AB Olefins are polymerized by contact with a transition metal catalyst, wherein the cocatalyst is either XR4 (X = Si, Ge, Sn, Pb; R = H, alkyl, aryl, arylalkyl, alkylaryl; at least one R is not H and contains one or more halogen atoms) or is [X'R'5]-Y+ (X' = Si, Ge, Sn, Pb; R' = H, alkyl, aryl, arylalkyl, alkylaryl; at least one R is not hydrogen and contains one or more halogen atoms; Y+ = cation); the cocatalyst replaces aluminoxanes which can be difficult to remove from polyolefin products. Thus, [(C₆F₅)₄SiMe] - [Li(THF)₄]⁺ was prepared and used with bis(cyclopentadienyl)zirconium monohydride monochloride and trioctylaluminum to polymerize ethylene.
 IT 1524-78-3P, Tetrakis(pentafluorophenyl)silane
 RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent)
 (cocatalyst intermediate; organosilane cocatalysts for polymerization of ethylene)
 RN 1524-78-3 CAPLUS
 CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

IT 210771-45-2DP, reaction products with triphenylchloromethane
210771-45-2P
RL: CAT (Catalyst use); IMF (Industrial manufacture); PREP (Preparation);
USES (Uses)
(cocatalyst; organosilane cocatalysts for polymerization of ethylene)
RN 210771-45-2 CAPLUS
CN Lithium(1+), tetrakis(tetrahydrofuran)-, (T-4)-,
methyltetrakis(pentafluorophenyl) silicate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 210771-44-1
CMF C25 H3 F20 Si
CCI CCS

CM 2

CRN 48186-27-2
CMF C16 H32 Li O4
CCI CCS

RN 210771-45-2 CAPLUS
CN Lithium(1+), tetrakis(tetrahydrofuran)-, (T-4)-,
methyltetrakis(pentafluorophenyl)silicate(1-) (9CI) (CA INDEX NAME)

CM 1

CRN 210771-44-1
CMF C25 H3 F20 Si
CCI CCS

CM 2

CRN 48186-27-2
CMF C16 H32 Li O4
CCI CCS

IC ICM C08F004-60
ICS C08F010-00; C07F007-08
CC 35-3 (Chemistry of Synthetic High Polymers)
ST ethylene polymer catalyst organosilane organozirconium; polyolefin prodn
catalyst silicon germanium
IT Polymerization catalysts
(metallocene; organosilane and -germane cocatalysts for polymerization of
olefins)
IT Polymerization catalysts
(organosilane and -germane catalysts for polymerization of olefins)
IT Polyolefins
RL: IMF (Industrial manufacture); PREP (Preparation)
(organosilane and -germane cocatalysts for polymerization of olefins)
IT 67108-80-9, Bis(pentamethylcyclopentadienyl)dimethylzirconium
RL: CAT (Catalyst use); USES (Uses)
(catalyst; organogermanium cocatalysts for polymerization of ethylene)
IT 1070-00-4, Trioctylaluminum 37342-97-5 178762-91-9 210771-60-1
RL: CAT (Catalyst use); USES (Uses)
(catalyst; organosilane cocatalysts for polymerization of ethylene)
IT 5121-90-4P
RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT
(Reactant or reagent)
(cocatalyst intermediate; organosilane and -germane cocatalysts for
polymerization of ethylene)
IT 1524-78-3P, Tetrakis(pentafluorophenyl)silane
RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT
(Reactant or reagent)
(cocatalyst intermediate; organosilane cocatalysts for polymerization of
ethylene)
IT 10038-98-9P, Tetrachlorogermane
RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT
(Reactant or reagent)
(cocatalyst starting material; organogermanium cocatalysts for
polymerization
of ethylene)

IT 917-54-4, Methylolithium 1074-91-5, 1-Bromo-2,3,4,5-tetrafluorobenzene
RL: RCT (Reactant); RACT (Reactant or reagent)
(cocatalyst starting material; organosilane and -germane cocatalysts
for polymerization of ethylene)

IT 344-04-7, Pentafluorobromobenzene 10026-04-7, Tetrachlorosilane
RL: RCT (Reactant); RACT (Reactant or reagent)
(cocatalyst starting material; organosilane cocatalysts for polymerization
of
ethylene)

IT 13628-95-0P
RL: CAT (Catalyst use); IMF (Industrial manufacture); PREP (Preparation);
USES (Uses)
(cocatalyst; organogermanium cocatalysts for polymerization of ethylene)

IT 1452-12-6P, Tetrakis(pentafluorophenyl)germane
RL: CAT (Catalyst use); IMF (Industrial manufacture); RCT (Reactant); PREP
(Preparation); RACT (Reactant or reagent); USES (Uses)
(cocatalyst; organogermanium cocatalysts for polymerization of ethylene)

IT 210771-66-7DP, reaction products with triphenylchloromethane
210771-66-7P
RL: IMF (Industrial manufacture); RCT (Reactant); PREP (Preparation); RACT
(Reactant or reagent)
(cocatalyst; organogermanium cocatalysts for polymerization of ethylene)

IT 210771-45-2DP, reaction products with triphenylchloromethane
210771-45-2P 210771-81-6P
RL: CAT (Catalyst use); IMF (Industrial manufacture); PREP (Preparation);
USES (Uses)
(cocatalyst; organosilane cocatalysts for polymerization of ethylene)

IT 52910-17-5P
RL: CAT (Catalyst use); IMF (Industrial manufacture); RCT (Reactant); PREP
(Preparation); RACT (Reactant or reagent); USES (Uses)
(cocatalyst; organosilane cocatalysts for polymerization of ethylene)

IT 76-83-5DP, Triphenylchloromethane, reaction products with organosilanes
and organogermanes
RL: CAT (Catalyst use); IMF (Industrial manufacture); PREP (Preparation);
USES (Uses)
(cocatalysts; organosilane and -germane cocatalysts for polymerization of
ethylene)

IT 210771-81-6DP, reaction products with triphenylchloromethane
RL: CAT (Catalyst use); IMF (Industrial manufacture); PREP (Preparation);
USES (Uses)
(cocatalysts; organosilane cocatalysts for polymerization of ethylene)

IT 925-90-6, Ethylmagnesium bromide
RL: NUU (Other use, unclassified); USES (Uses)
(in preparation of organosilane cocatalysts for polymerization of ethylene)

IT 9002-88-4P
RL: IMF (Industrial manufacture); PREP (Preparation)
(organosilane and -germane cocatalysts for polymerization of ethylene)

REFERENCE COUNT: 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS
RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

DOCUMENT NUMBER: 124:261208
TITLE: Substituent effect on electronegativity of Ar₃Si and Ar₃Sn groups: comparison of the results of ab initio quantum-chemical calculations with ¹⁹F NMR data for Ar₃MQC₆H₄F-4 compounds
AUTHOR(S): Kravtsov, D. N.; Peregudov, A. S.; Shcherbakova, O. V.; Borisov, Yu. A.
CORPORATE SOURCE: A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 117813, Russia
SOURCE: Izvestiya Akademii Nauk, Seriya Khimicheskaya (1995), (10), 1921-4
CODEN: IASKEA
PUBLISHER: Institut Organicheskoi Khimii im. N. D. Zelinskogo Rossiiskoi Akademii Nauk
DOCUMENT TYPE: Journal
LANGUAGE: Russian
AB Ab initio calcns. for the group electronegativity χ of Ar₃Si and Ar₃Sn groups containing 13 types of m-, p- and polysubstituted Ph groups was performed. The calculated values of χ (Ar₃Si) and χ (Ar₃Sn) correlate better with the σ_0 Taft consts. than with σ Hammett consts., which provides evidence for the inductive effect of aryl groups. Good correlation was found for ¹⁹F chemical shifts in Ar₃SiC₆H₄F-4, Ar₃SnC₆H₄F-4, Ar₃SnCH₂C₆H₄F-4 and Ar₃SnSC₆H₄F-4 with the corresponding values of χ (Ar₃Si) and χ (Ar₃Sn).
IT 63523-07-9 175029-06-8
RL: PRP (Properties)
(substituent effect on electronegativity of triarylsilyl and triarylstannyl groups in substituted fluorobenzenes)
RN 63523-07-9 CAPLUS
CN Silane, tetrakis(4-fluorophenyl)- (9CI) (CA INDEX NAME)

RN 175029-06-8 CAPLUS
CN Silane, tris(3-fluorophenyl)(4-fluorophenyl)- (9CI) (CA INDEX NAME)

CC 29-8 (Organometallic and Organometalloidal Compounds)
Section cross-reference(s): 22
ST group electronegativity silyl stannyl substituent effect; triarylsilyl group electronegativity substituent effect; triarylstannyl group electronegativity substituent effect; Taft substituent const triarylstannyl triarylsilyl group
IT Electronegativity
Linear free energy relationship
Substituent effect
(substituent effect on electronegativity of triarylsilyl and triarylstannyl groups)
IT Molecular orbital
(MNDO, of triarylstannyl- and triarylsilyl-substituted fluorobenzenes)
IT Substituent constant
(Taft, substituent effect on electronegativity of triarylsilyl and triarylstannyl groups)
IT Functional groups
(silyl, triarylsilyl; substituent effect on electronegativity of triarylsilyl and triarylstannyl groups)
IT Functional groups
(stannyl, triarylstannyl; substituent effect on electronegativity of triarylsilyl and triarylstannyl groups)
IT 426-81-3 1251-03-2 34243-46-4 38186-04-8 51053-80-6 51053-81-7
51053-82-8 51053-83-9 51107-58-5 51107-59-6 51107-60-9
51107-61-0 51107-62-1 51107-63-2 63523-02-4 63523-03-5
63523-04-6 63523-05-7 63523-06-8 63523-07-9 63523-08-0
63523-09-1 63523-11-5 78788-05-3 78788-06-4 78788-07-5
78788-08-6 78788-09-7 78788-10-0 78788-11-1 78788-12-2
78795-74-1 84761-46-6 84761-47-7 84761-48-8 84761-49-9
84761-50-2 84761-51-3 84761-52-4 84761-53-5 84761-54-6
175029-06-8 175029-07-9
RL: PRP (Properties)
(substituent effect on electronegativity of triarylsilyl and triarylstannyl groups in substituted fluorobenzenes)

L59 ANSWER 4 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1996:58862 CAPLUS

DOCUMENT NUMBER: 124:232542
TITLE: A convenient preparation of pentafluorophenyl(fluoro)silanes: reactivity of pentafluorophenyltrifluorosilane
AUTHOR(S): Frohn, H. J.; Giesen, M.; Klose, A.; Lewin, A.; Bardin, V. V.
CORPORATE SOURCE: Fachgebiet Anorganische Chemie, Gerhard-Mercator-Universitaet Duisburg, Lotharstr. 1, Duisburg, D-47048, Germany
SOURCE: Journal of Organometallic Chemistry (1996), 506(1-2), 155-64
CODEN: JORCAI; ISSN: 0022-328X
PUBLISHER: Elsevier
DOCUMENT TYPE: Journal
LANGUAGE: English
OTHER SOURCE(S): CASREACT 124:232542
AB Pentafluorophenyl(fluoro)silanes (C_6F_5) $_n$ SiF $_4-n$ ($n = 1, 2$) were prepared from the corresponding ethoxysilanes by sequential chlorodeethoxylation with SOCl $_2$ and fluoridation of chlorosilanes with SbF $_3$. The conversion of C $_6$ F $_5$ Si(OEt) $_3$ and C $_6$ F $_5$ SiCl $_3$ into C $_6$ F $_5$ SiF $_3$ with anhydrous HF is described. Some reactions of C $_6$ F $_5$ SiF $_3$ with electrophiles and nucleophiles were studied.
IT 1524-78-3, Tetrakis(pentafluorophenyl) silane
RL: PRP (Properties)
(NMR)
RN 1524-78-3 CAPLUS
CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 29-6 (Organometallic and Organometalloidal Compounds)
ST pentafluorophenylfluorosilane prep reaction; silane
pentafluorophenylfluoro prep reaction; ethoxysilane chlorodeethoxylation
fluoridation
IT Fluorination
(of pentafluorophenyl(chloro)silanes)

IT Silanes
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(pentafluorophenyl(fluoro)silanes; preparation and reactions with electrophiles and nucleophiles)

IT Ethoxylation
(retro, chloro-; of pentafluorophenyl(ethoxy)silanes)

IT 1524-78-3, Tetrakis(pentafluorophenyl)silane 20160-39-8,
Chlorotris(pentafluorophenyl)silane 35370-01-5,
Fluorotris(pentafluorophenyl)silane
RL: PRP (Properties)
(NMR)

IT 371-20-0P, Diethoxy(fluoro)borane 86802-17-7P
RL: SPN (Synthetic preparation); PREP (Preparation)
(formation from pentafluorophenyltriethoxysilane and boron fluoride etherate)

IT 344-04-7P, Bromopentafluorobenzene 174743-13-6P,
Bromodifluoro(pentafluorophenyl)silane
RL: SPN (Synthetic preparation); PREP (Preparation)
(formation from pentafluorophenyltrifluorosilane and bromine)

IT 14188-35-3P, Dibromodifluorosilane 18356-67-7P, Tribromo(fluoro)silane
RL: SPN (Synthetic preparation); PREP (Preparation)
(formation from pentafluorophenyltrifluorosilane and bromine/aluminum bromide)

IT 7783-61-1P, Silicon tetrafluoride 121827-61-0P,
Bis(pentafluorophenyl)iodonium
RL: SPN (Synthetic preparation); PREP (Preparation)
(formation from pentafluorophenyltrifluorosilane and fluoroiodonium fluoroantimonate)

IT 20160-47-8P, Chloro(ethoxy)bis(pentafluorophenyl)silane 174743-04-5P,
Ethoxydifluoro(pentafluorophenyl)silane 174743-05-6P,
Diethoxy(fluoro)(pentafluorophenyl)silane 174743-08-9P,
Dichloro(ethoxy)(pentafluorophenyl)silane
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(intermediate; convenient preparation of fluorophenyl(fluoro)silanes: reactivity of fluorophenylfluorosilane)

IT 174743-11-4P, Dibutyl(ethoxy)(pentafluorophenyl)silane
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(preparation and reaction with acetyl chloride/zinc chloride)

IT 20083-38-9P, Trichloro(pentafluorophenyl)silane 20160-45-6P,
Dichlorobis(pentafluorophenyl)silane
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(preparation and reaction with antimony fluoride)

IT 5272-26-4P, Trifluoro(pentafluorophenyl)silane
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(preparation and reactions with electrophiles and nucleophiles)

IT 27585-17-7P, Difluorobis(pentafluorophenyl)silane
RL: SPN (Synthetic preparation); PREP (Preparation)

(preparation and reactions with electrophiles and nucleophiles)
IT 174743-06-7P, Difluoro(pentafluorophenyl)(1-piperidino)silane
174743-07-8P, Fluoro(pentafluorophenyl)bis(1-piperidino)silane
174743-09-0P, Tributyl(pentafluorophenyl)silane 174743-10-3P,
Dibutyl(fluoro)(pentafluorophenyl)silane 174743-12-5P,
Dibutyl(4-butyltetrafluorophenyl)(pentafluorophenyl)silane
RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of)
IT 693-03-8, Bromo(butyl)magnesium
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction with pentafluorophenyltrifluorosilane)
IT 13888-69-2, Diethoxybis(pentafluorophenyl)silane
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction with thionyl chloride/pyridinium chloride)
IT 20083-34-5, Triethoxy(pentafluorophenyl)silane
RL: RCT (Reactant); RACT (Reactant or reagent)
(reactions with hydrofluoric acid, thionyl chloride/pyridinium
chloride, boron fluoride and other reagents)
IT 109-72-8, Butyllithium, reactions
RL: RCT (Reactant); RACT (Reactant or reagent)
(reactions with pentafluorophenyltrifluorosilane)

L59 ANSWER 5 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1992:602108 CAPLUS
DOCUMENT NUMBER: 117:202108
TITLE: Thermodynamic simulation of deposition of molybdenum
and tungsten disilicides in metalorganic CVD processes
AUTHOR(S): Kuznetsov, F. A.; Titov, V. A.; Golubenko, A. N.;
Titov, A. A.
CORPORATE SOURCE: Inst. Inorg. Chem., Novosibirsk, 630090, USSR
SOURCE: Proceedings of SPIE-The International Society for
Optical Engineering (1992), 1783(Int. Conf.
Microelectron., 1992), 541-50
CODEN: PSISDG; ISSN: 0277-786X
DOCUMENT TYPE: Journal
LANGUAGE: English
AB Modeling of disilicide deposition in the systems with volatile metalorg.
and fluorinated Si organic compds. was performed for a number of systems
M-Si-C-H-Ar, M-Si-C-O-Cl-H-Ar, M-Si-C-H-F-Ar, M-Si-C-O-F-H-Ar (M = W, Mo).
In some of these systems (especially with fluorinated compds.) there are wider
regions of quasi-equilibrium deposition of disilicides.
IT 1524-78-3
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with tungsten cyclopentadienyl complex in tungsten
disilicide deposition)
RN 1524-78-3 CAPLUS
CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 75-1 (Crystallography and Liquid Crystals)
Section cross-reference(s): 69
ST deposition molybdenum tungsten silicide metalorg simulation
IT Vapor deposition processes
 (of molybdenum and tungsten disilicide, thermodn. simulation of
 metalorg.)
IT 12039-88-2, Tungsten silicide (WSi₂) 12136-78-6, Molybdenum silicide
(MoSi₂)
 RL: PEP (Physical, engineering or chemical process); PROC (Process)
 (deposition of, thermodn. simulation of metalorg. vapor-phase)
IT 1271-33-6
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with silicon compds. in tungsten disilicide deposition)
IT 1524-78-3 122571-42-0
 RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with tungsten cyclopentadienyl complex in tungsten
 disilicide deposition)

L59 ANSWER 6 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1992:539948 CAPLUS
DOCUMENT NUMBER: 117:139948
TITLE: Photoelectron helium spectra of the pentafluorophenyl
derivatives of Group IV and V elements
AUTHOR(S): Petrachenko, N. E.; Vovna, V. I.; Furin, G. G.
CORPORATE SOURCE: Nauchno-Issled. Fiz.-Tekh.-Inst., Vladivostok, Russia
SOURCE: Zhurnal Fizicheskoi Khimii (1992), 66(2), 515-20
CODEN: ZFKHA9; ISSN: 0044-4537
DOCUMENT TYPE: Journal
LANGUAGE: Russian
AB In the compds. of tricoordinated P and As, intramol. interaction is observed
of a lone electron pair with the π -MO fluorinated benzene ring, while
in the P-containing compds. this interaction is stronger, than in As-containing
compds. In tetracoordinated compds., the interaction between orbitals of
the group X = O (X=P,As) with groups of π -MO substituents was not observed

The basic contribution to the bonding is from σ -orbitals localized on X-C bonds.

IT 1524-78-3

RL: PRP (Properties)
(photoelectron spectrum of)

RN 1524-78-3 CAPLUS

CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 73-6 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)

ST photoelectron fluorophenyl Group IVA VA deriv; phenyl fluoro Group IVA VA photoelectron; bonding fluorophenyl Group IVA VA deriv

IT Bond
(in fluorophenyl derivs. of Group IVA and VA elements)

IT Photoelectron spectroscopy
(of pentafluorophenyl derivs. of Group IVA and VA elements)

IT 1065-49-2 1259-34-3 1259-35-4, Tris(pentafluorophenyl)phosphine
1452-12-6 1524-78-3 2729-11-5, Tris(pentafluorophenyl)phosphine oxide
18005-77-1

RL: PRP (Properties)
(photoelectron spectrum of)

L59 ANSWER 7 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1989:534254 CAPLUS

DOCUMENT NUMBER: 111:134254

TITLE: Reactions of arylmethylsilanes and tetraarylsilanes with xenon difluoride in the presence of fluoride ions

AUTHOR(S): Bardin, V. V.; Stennikova, I. V.; Furin, G. G.;
Leshina, T. V.; Yakobson, G. G.

CORPORATE SOURCE: Novosib. Inst. Org. Khim., Novosibirsk, USSR

SOURCE: Zhurnal Obshchey Khimii (1988), 58(11), 2580-8
CODEN: ZOKHA4; ISSN: 0044-460X

DOCUMENT TYPE: Journal

LANGUAGE: Russian

OTHER SOURCE(S) : CASREACT 111:134254

AB The reaction of RnSiMe4-n (R = C6F5, p-F3CC6F4, tetrafluoro-4-pyridyl; n = 1, 2, 4) with XeF2 in the presence of MF (M = K, Rb, Cs) gave protodesilylation products and diaryls. The reaction is a convenient method for generation of polyfluoroaryl and polyfluorohetaryl radicals under mild conditions.

IT 1524-78-3

RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with xenon difluoride)

RN 1524-78-3 CAPLUS

CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 29-6 (Organometallic and Organometalloidal Compounds)

Section cross-reference(s) : 25, 27

ST arylmethylsilane xenon difluoride reaction; pyridylmethylsilane xenon difluoride reaction; xenon difluoride fluoroaryl methylsilane reaction; protodesilylation arylmethylsilane xenon difluoride reaction; radical polyfluoroaryl polyfluorohetaryl

IT Heterocyclic compounds

RL: PROC (Process)
(aromatic, fluoro, radicals, generation of, from reaction of hetaryl methylsilanes with xenon difluoride)

IT Aromatic hydrocarbons, preparation

RL: PREP (Preparation)
(fluoro, radicals, generation of, from reaction of arylmethylsilanes with xenon difluoride)

IT Silylation

(retro, in reaction of arylmethylsilanes with xenon difluoride)

IT 768-32-1, Trimethylphenylsilane 1048-08-4, Tetraphenylsilane
3728-43-6, Trimethyl-p-tolylsilane 4405-33-8, Trimethyl-p-nitrophenylsilane

RL: RCT (Reactant); RACT (Reactant or reagent)

(attempted reaction of, with xenon difluoride)

IT 92-52-4P, 1,1'-Biphenyl, preparation 98-08-8P 344-04-7P 363-72-4P

434-90-2P 581-80-6P 651-80-9P 2875-18-5P 2875-19-6P 3511-91-9P
17823-47-1P
RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of)
IT 7789-23-3, Potassium fluoride 13400-13-0, Cesium fluoride 13446-74-7,
Rubidium fluoride
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of arylmethyldisilanes with xenon difluoride in presence of)
IT 13709-36-9, Xenon difluoride
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with arylmethyldisilanes)
IT 75-25-2, Tribromomethane
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with trimethylpentaphenylsilane and xenon
difluoride)
IT 312-75-4 1206-46-8 1524-78-3 16297-29-3 122571-41-9
122571-42-0
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with xenon difluoride)

L59 ANSWER 8 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1984:510434 CAPLUS
DOCUMENT NUMBER: 101:110434
TITLE: Pentafluorophenyliodine(V) compounds, part 1.
Preparation of pentafluorophenyliodine tetrafluoride
and other aryliodine tetrafluorides by reaction of
iodine pentafluoride with arylsilanes
AUTHOR(S): Frohn, Hermann Josef
CORPORATE SOURCE: Fachber.-Chem., Univ. Gesamthochsch. Duisburg,
Duisburg, 4100/1, Fed. Rep. Ger.
SOURCE: Chemiker-Zeitung (1984), 108(4), 146-7
CODEN: CMKZAT; ISSN: 0009-2894
DOCUMENT TYPE: Journal
LANGUAGE: German
OTHER SOURCE(S): CASREACT 101:110434
AB RIF₄ (R = C₆F₅, Ph, p-F, -Me-, -MeOC₆H₄) were prepared by treating IF₅ with
RnSiX_{4-n} (X = F, Me; n = 1-4). The effect of solvent and pyridine on the
reaction was studied.
IT 1524-78-3 63523-07-9
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with iodine pentafluoride)
RN 1524-78-3 CAPLUS
CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

RN 63523-07-9 CAPLUS

CN Silane, tetrakis(4-fluorophenyl)- (9CI) (CA INDEX NAME)

CC 25-3 (Benzene, Its Derivatives, and Condensed Benzenoid Compounds)
Section cross-reference(s): 29

ST fluorophenyliodine tetrafluoride; phenyliodine tetrafluoride; iodine pentafluorophenyl tetrafluoride; silane phenyl iodine pentafluoride reaction

IT Solvent effect

(on reaction of iodine pentafluoride with phenylsilanes)

IT 22121-26-2P 22121-27-3P 29848-54-2P 38091-68-8P 91679-75-3P

RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of)

IT 110-86-1, uses and miscellaneous

RL: USES (Uses)

(reaction of iodine pentafluoride with phenylsilanes in presence of)

IT 368-47-8 1048-08-4 1206-46-8 1524-78-3 5272-26-4

10256-83-4 10536-62-6 13688-78-3 24727-90-0 35370-01-5

50625-30-4 63523-07-9
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with iodine pentafluoride)

IT 7783-66-6
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with phenylsilanes)

IT 75-05-8, uses and miscellaneous
RL: PRP (Properties)
(solvent effect of, on reaction of iodine pentafluoride with
phenylsilanes)

L59 ANSWER 9 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1978:624407 CAPLUS

DOCUMENT NUMBER: 89:224407

TITLE: The crystal structure of tetrakis(pentafluorophenyl) silane

AUTHOR(S): Karipides, Anastas; Foerst, Barbara

CORPORATE SOURCE: Dep. Chem., Miami Univ., Oxford, OH, USA

SOURCE: Acta Crystallographica, Section B: Structural

Crystallography and Crystal Chemistry (1978), B34(11),
3494-6

CODEN: ACBCAR; ISSN: 0567-7408

DOCUMENT TYPE: Journal

LANGUAGE: English

AB The crystal structure of (C₆F₅)₄Si was determined from 3-dimensional single-crystal x-ray data collected on a computer-automated diffractometer. The compound crystallizes in space group I41/a with cell dimensions of a 17.165 (12) and c 8.128 (8) Å; Z = 4. The (C₆F₅)₄Si mols. have S4 crystallog. imposed symmetry. Full-matrix least squares refinement yielded a conventional R factor of 0.070.

IT 1524-78-3

RL: PRP (Properties)
(crystal structure of)

RN 1524-78-3 CAPLUS

CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 75-5 (Crystallization and Crystal Structure)
ST structure pentafluorophenylsilane; fluorophenylsilane structure; silane
pentafluorophenyl structure; phenyl pentafluorosilane structure
IT Crystal structure
Molecular structure
(of tetrakis(pentafluorophenyl)silane)
IT 1524-78-3
RL: PRP (Properties)
(crystal structure of)

L59 ANSWER 10 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1977:452639 CAPLUS
DOCUMENT NUMBER: 87:52639
TITLE: A fluorine-19 NMR investigation of the transmission of
electronic effects in triaryl(4-fluorophenyl)silanes
AUTHOR(S): Pombrik, S. I.; Kravtsov, D. N.; Peregudov, A. S.;
Fedin, E. I.; Nesmeyanov, A. N.
CORPORATE SOURCE: Inst. Organo-Elem. Compd., Moscow, USSR
SOURCE: Journal of Organometallic Chemistry (1977), 131(3),
355-63
CODEN: JORCAI; ISSN: 0022-328X
DOCUMENT TYPE: Journal
LANGUAGE: English
AB For the title compds., a linear relation between the F chemical shifts and
the $\Sigma\sigma_0$ values of the substituted phenyl groups attached to
the S atom has been found. The transmission of electronic effects from
one aromatic ring to another in tetraarylsilanes occurs mainly by an
inductive mechanism. The transmitting ability of Si-C bonds is somewhat
higher than that of Sn-C bonds.
IT 3869-53-2 63523-07-9
RL: PRP (Properties)
(fluorine-19 NMR spectrum of)
RN 3869-53-2 CAPLUS
CN Silane, tetrakis(3-fluorophenyl)- (9CI) (CA INDEX NAME)

RN 63523-07-9 CAPLUS
CN Silane, tetrakis(4-fluorophenyl)- (9CI) (CA INDEX NAME)

CC 22-9 (Physical Organic Chemistry)
ST fluorine NMR silane; LFER NMR fluorophenylsilane
IT Linear free energy relationship
(in fluorine-19 NMR spectra of triaryl(4-fluorophenyl)silanes)
IT Nuclear magnetic resonance
(of fluorine-19, in triaryl(fluorophenyl)silanes, substituent effect
in)
IT 3869-53-2 63523-02-4 63523-03-5 63523-04-6 63523-05-7
63523-06-8 63523-07-9 63523-08-0 63523-09-1 63523-10-4
63523-11-5
RL: PRP (Properties)
(fluorine-19 NMR spectrum of)
IT 349-91-7P
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
(Reactant or reagent)
(preparation and reaction of, with trichlorobromobenzene)
IT 13190-50-6 21928-51-8
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with (fluorophenyl)trichlorosilane)

IT 76-86-8
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with bromofluorobenzene)

IT 10026-04-7
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with fluorophenylmagnesium bromide)

IT 352-13-6
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with silicon tetrachloride)

IT 460-00-4
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with triphenylsilane)

L59 ANSWER 11 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1973:123476 CAPLUS
DOCUMENT NUMBER: 78:123476
TITLE: NMR studies of pentafluorophenyl-substituted silanes.
I. Relations between chemical shifts, coupling
constants, and (p-d) π interactions
AUTHOR(S): Haegele, Gerhard; Weidenbruch, Manfred
CORPORATE SOURCE: Inst. Anorg. Chem., Univ. Duesseldorf, Duesseldorf,
Fed. Rep. Ger.
SOURCE: Chemische Berichte (1973), 106(2), 460-70
CODEN: CHBEAM; ISSN: 0009-2940
DOCUMENT TYPE: Journal
LANGUAGE: German
AB The 60-100 MHz ^{19}F -NMR spectra of 21 silanes $\text{RnSiX}_4\text{-n}$ ($\text{R} = \text{C}_6\text{F}_5$, $n = 1-4$,
 $\text{X} = \text{H}$, alkyl, halo, or amino), $\text{RSiMe}_2\text{SiMe}_2\text{R}$, and $\text{RSiMe}_2\text{SiMe}_3$ were determined
and analyzed using [AX]2M approxns. The relations between the title
parameters were discussed in terms of the π -acceptor action of the SiX
groups and long-range interannular F-F and F-H couplings.
IT 1524-78-3
RL: PRP (Properties)
(NMR of, fluorine-19 of, π interactions in relation to)
RN 1524-78-3 CAPLUS
CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 22-2 (Physical Organic Chemistry)
ST fluorophenylsilane NMR; silane pentafluorophenyl NMR; fluorine 19 NMR
fluorophenylsilane; pi acceptor fluorophenylsilane
IT Conjugation
(in pentafluorosilanes, NMR in relation to)
IT Spin, nuclear coupling
(of fluorine with fluorine, in pentafluorophenylsilanes, conjugation in
relation to)
IT Nuclear magnetic resonance
(of fluorine-19, of pentafluorophenylsilanes, conjugation in relation
to)
IT 1206-46-8 1524-78-3 5272-26-4 10536-62-6 17067-70-8
17067-71-9 18920-98-4 20160-39-8 21655-08-3 27585-17-7
35369-97-2 35369-98-3 35370-01-5
RL: PRP (Properties)
(NMR of, fluorine-19 of, π interactions in relation to)
IT 7782-41-4, properties
RL: PRP (Properties)
(NMR of, in pentafluorophenylsilanes)
IT 13888-77-2 20160-40-1 23761-73-1 23761-74-2 23761-75-3
23761-76-4 27490-05-7 27491-93-6 33558-55-3 33558-56-4
RL: PRP (Properties)
(NMR of, π interactions in relation to fluorine in)

L59 ANSWER 12 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1969:119359 CAPLUS
DOCUMENT NUMBER: 70:119359
TITLE: Fragmentation and rearrangement processes in the mass
spectra of perhalogenoaromatic compounds. II.
Pentafluorophenyl derivatives of group IV
AUTHOR(S): Miller, Jack M.
CORPORATE SOURCE: Brock Univ., St. Catharines, ON, Can.
SOURCE: Canadian Journal of Chemistry (1969), 47(10), 1613-20
CODEN: CJCHAG; ISSN: 0008-4042

DOCUMENT TYPE: Journal
LANGUAGE: English

AB The mass spectra of compds. of the type $(C_6F_5)_4M$ ($M = Si, Ge, Sn, and Pb$) have been studied. Bond forming rearrangements were detected, involving F abstraction by the central atom, forming perfluorophenylene ions and neutral metal fluoride species. The heavier metals give simpler spectra and fragmentation schemes. The bulk of the ion current is carried by fluorocarbon ions for the Si derivative and by organometallic or metal fluoride ions in the other three cases, SnF^+ and PbF^+ forming the base peaks in their spectra. When M is C in the compds. $(C_6F_5)_3COH$ and $(C_6F_5)_2CO$ there is little evidence for rearrangements and transfer of F to the central C atom.

IT 1524-78-3

RL: PRP (Properties)
(mass spectrum of)

RN 1524-78-3 CAPLUS

CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 71 (Electric Phenomena)

ST perhaloaroms mass spectra; silicon perfluorophenyls mass spectra; germanium perfluorophenyls mass spectra; tin perfluorophenyls mass spectra; lead perfluorophenyls mass spectra; perfluorophenyls mass spectra; fluorophenyls mass spectra

IT Mass spectra

(of Group IVA fluorophenyl derivs.)

IT 1065-49-2 1111-02-0 1452-12-6 1524-78-3

RL: PRP (Properties)
(mass spectrum of)

L59 ANSWER 13 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1968:477334 CAPLUS

DOCUMENT NUMBER: 69:77334

TITLE: A direct preparation of some pentafluorophenyl-containing silanes

AUTHOR(S): Whittingham, A.; Jarvie, A. W. P.
CORPORATE SOURCE: Univ. Aston, Birmingham, UK
SOURCE: Journal of Organometallic Chemistry (1968), 13(1),
125-9
CODEN: JORCAI; ISSN: 0022-328X
DOCUMENT TYPE: Journal
LANGUAGE: English
AB The reaction of pentafluorobromobenzene with both tetraethoxysilane and tetrachlorosilane, by a modified Grignard method, leads to the formation of compds. of the type $(C_6F_5)_nSiX_4-n$ (X = OEt and Cl and n = 1 - 4). These compds. have been characterized by phys. methods, elemental anal., interconversion and the preparation of derivs.
IT 1524-78-3P
RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of)
RN 1524-78-3 CAPLUS
CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 29 (Organometallic and Organometalloidal Compounds)
ST silanes perfluorophenyl; silicon org compds
IT 1206-46-8P 1524-78-3P 10536-62-6P 13888-69-2P 20083-34-5P
20083-38-9P 20160-45-6P
RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of)

L59 ANSWER 14 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1968:456104 CAPLUS
DOCUMENT NUMBER: 69:56104
TITLE: The fluorine-19 NMR spectra of some pentafluorophenyl compounds of group IV elements
AUTHOR(S): Jolley, K. W.; Sutcliffe, L. H.
CORPORATE SOURCE: Univ. Liverpool, Liverpool, UK
SOURCE: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (1968), 24(8), 1191-203

CODEN: SAMCAS; ISSN: 1386-1425

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Accurate chemical shifts were determined for the pentafluorophenyl F nuclei of
a

number of Group IV pentafluorophenyl compds. by the use of an extended lock
in the HA mode. All the compds. studied have a very large ortho shift,
the trends of which can be predicted by both the van der Waals elec. field
theory and the through bond theory of Hruska, et al. The m- and p-19F
chemical shifts were used to predict the π -electron accepting ability of
the various substituents attached to the Group IV atom. The coupling
consts. obtained from those compds. which give resolvable spectra supports
the chemical shift work. 35 references.

IT 1524-78-3

RL: PRP (Properties)

(nuclear magnetic resonance of fluorine in)

RN 1524-78-3 CAPLUS

CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 73 (Spectra and Other Optical Properties)

ST NMR F 19 fluorophenyls; fluorine 19 NMR; fluorophenyls NMR

IT Substituents

(electron accepting ability of, of Group IV compds., N.M.R. in determination
of)

IT Electron acceptors

(nuclear magnetic resonance in determination of)

IT Nuclear magnetic resonance

(of fluorine, in (pentafluorophenyl) derivs. of Group IV elements)

IT 801-79-6 1015-53-8 1058-08-8 1062-67-5 1062-71-1 1065-49-2
1080-51-9 1106-04-3 1111-02-0 1259-89-8 1262-57-3 1452-12-6
1524-78-3 10177-67-0 10177-68-1 10177-69-2 10360-39-1

RL: PRP (Properties)

(nuclear magnetic resonance of fluorine in)

L59 ANSWER 15 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
 ACCESSION NUMBER: 1968:13065 CAPLUS
 DOCUMENT NUMBER: 68:13065
 TITLE: Polyhalo-organometallic and -organometalloidal compounds. VIII. Preparation of some pentafluorophenyl substituted organosilicon compounds
 AUTHOR(S): Fearon, F. W. Gordon; Gilman, Henry
 CORPORATE SOURCE: Iowa State Univ., Ames, IA, USA
 SOURCE: Journal of Organometallic Chemistry (1967), 10(3), 409-19
 CODEN: JORCAI; ISSN: 0022-328X
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB The preparation and some properties of $(C_6F_5)_nSiPh_4-n$ (where n = 1-4) and $(C_6F_5)_nPh_3-nSiX$ (where n = 1 or 2 and X = H or Cl) are described. In general, these compds. were obtained by the reaction of a (pentafluorophenyl)metallic compound with the corresponding chlorosilane. However, $(C_6F_5)_nPh_3-nSiCl$ could not be obtained in this manner; they were prepared by the chlorination of the corresponding organosilicon hydrides. Evidence is presented which suggests that C_6Cl_5Li is more reactive towards $ClSiPh_3$ than is C_6F_5Li under similar conditions. The reaction of an alkylolithium compound with $HPh_2SiC_6F_5$ leads predominantly to cleavage of the C_6F_5 group from Si. The ir spectra of all the above compds. are discussed and the uv spectra of $(C_6F_5)_nSiPh_4-n$ (where n = 1-4) are reported. 18 references.

IT 1524-78-3P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)

RN 1524-78-3 CAPLUS

CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 29 (Organometallic and Organometalloidal Compounds)

ST SILANES PENTAFLUOROPHENYL; FLUORO AROM SILANES

IT 1206-46-8P 1524-78-3P 17067-69-5P 17067-70-8P 17067-71-9P

17067-73-1P 17067-74-2P 17067-75-3P 17067-76-4P
RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of)

L59 ANSWER 16 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN
ACCESSION NUMBER: 1965:498496 CAPLUS
DOCUMENT NUMBER: 63:98496
ORIGINAL REFERENCE NO.: 63:18136a-b
TITLE: Pentafiuorophenyl organometallic compounds of group IV elements
AUTHOR(S): Tamborski, C.; Soloski, E. J.; Dec, S. M.
CORPORATE SOURCE: Wright Patterson Air Force Base, Dayton, OH
SOURCE: Journal of Organometallic Chemistry (1965), 4(6), 446-54
CODEN: JORCAI; ISSN: 0022-328X
DOCUMENT TYPE: Journal
LANGUAGE: English
AB The synthesis of pentafiuorophenyl group IV elements $(C_6F_5)_4Si$, $(C_6F_5)_4Ge$, $(C_6F_5)_4Sn$, $(C_6F_5)_4Pb$, $(C_5H_5)_2Ti$ $(C_5F_5)_2$ and $(C_6H_5)_2Zr(C_6F_5)_2$ is reported. The above compounds are prepared through the reaction of the appropriate metal halide and pentafiuorophenyllithium. The various pentafiuorophenyl derivatives are subjected to the following studies: infrared and vapor phase chromatography analysis, acid and base hydrolysis, thermal stability, and reactions with bromine and lithium.
IT 1524-78-3, Silane, tetrakis(pentafluorophenyl)-
(preparation of)
RN 1524-78-3 CAPLUS
CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 39 (Organometallic and Organometalloidal Compounds)
IT Organometallic compounds
(heterocyclic)
IT Heterocyclic compounds
(metal complexes)

IT Spectra, infrared
(of tetrakis(pentafluorophenyl) derivs. of Group IV elements)
IT 1065-49-2, Tin, tetrakis(pentafluorophenyl)- 1111-02-0, Lead,
tetrakis(pentafluorophenyl)- 1452-12-6, Germane,
tetrakis(pentafluorophenyl) 1524-78-3, Silane,
tetrakis(pentafluorophenyl)- 12097-97-1, Zirconium,
dicyclopentadienylbis(pentafluorophenyl)- 12155-89-4, Titanium,
dicyclopentadienylbis(pentafluorophenyl)-
(preparation of)

L59 ANSWER 17 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1964:17001 CAPLUS
DOCUMENT NUMBER: 60:17001
ORIGINAL REFERENCE NO.: 60:3009f-g
TITLE: Tetrakis(pentafluorophenyl)silane
INVENTOR(S): Pummer, Walter J.; Wall, Leo A.
PATENT ASSIGNEE(S): United States Dept. of the Navy
SOURCE: 1 p.
DOCUMENT TYPE: Patent
LANGUAGE: Unavailable
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
US 3109855		19631105	US	19610626

AB Division of U.S. 3,046,313 (CA 57, 15003a). Pentafluorobromobenzene (I) is converted to the Grignard reagent and the Grignard reagent is treated with SiCl₄ to give the title compound, which can be used as a fuel-resistant substance. I (24.7 g.) and a small crystal of iodine are added to a mixture of 2.4 g. Mg in 50 ml. anhydrous ether, the mixture cooled to 0°, 2.83 ml. SiCl₄ added, the mixture agitated 1 hr. at 0°, refluxed 2.5 hrs., and allowed to cool overnight. The mixture is poured into 100 ml. 6N HCl, and the precipitate obtained separated, dried, and sublimed at 208° at 1 mm. to give 5.5 g. tetrakis(pentafluorophenyl)silane, m. 246-8°, 32% yield.

IT 1524-78-3, Silane, tetrakis(pentafluorophenyl)-
(preparation of)

RN 1524-78-3 CAPLUS

CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

NCL 260448200
 CC 39 (Organometallic and Organometalloidal Compounds)
 IT 1524-78-3, Silane, tetrakis(pentafluorophenyl)-
 (preparation of)

L59 ANSWER 18 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1962:475681 CAPLUS

DOCUMENT NUMBER: 57:75681

ORIGINAL REFERENCE NO.: 57:15003a-f

TITLE: Pentafluoroiodobenzene

INVENTOR(S): Pummer, Walter J.; Wall, Leo A.

PATENT ASSIGNEE(S): U.S. Dept. of the Navy

SOURCE: 3 pp.

DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 3046313		19620724	US	19600503

AB Pentafluoroiodobenzene (I), an intermediate in the preparation of perfluorophenyl derivs., was prepared from pentafluorobromobenzene (II) via the Grignard reagent or by iodination of pentafluorobenzene (III). Thus, to a refluxing solution of the Grignard reagent from 10 g. II and 1 g. Mg in 10 ml. Et₂O was added 9.76 g. F₂C₁C₆H₄I in 5 ml. Et₂O, the mixture refluxed 3 hrs., let stand overnight, 50 ml. 6N HCl added, the Et₂O layer separated, dried, and distilled to give 5.78 g. I, b₃₅ 77-8°, n_{20D} 1.4990. In another example the same amount of Grignard-reagent solution was treated at 0° with 12.4 g. F₂C₁C₆H₄I, the mixture stirred 1 hr., refluxed 2 hrs., and worked up as before to yield 1 g. I. I was also prepared by adding 255 g. mixture of 45% hexafluorobenzene, 40% III, and 10% tetrafluorobenzene to 200 g. iodine in 1 kg. 65% oleum. The mixture was stirred 4 hrs. at 55-60°, let cool overnight, then in an ice bath, diluted with 2 l. ice H₂O, decolorized with aqueous NaHSO₃, and separated. The crude I (177 g.)

was

dried and distilled to give 36 g. I. Condensation of II in the presence of Cu powder at 180-90° 48 hrs. then at 290° 6 hrs. gave 87% (C₆F₅)₂, sublimed at 50°/1 mm., m. 67.5-68°. I (5 g.) and 1.6 g. CuCN heated to 150° in 1.34 g. C₅H₅N, cooled to 100°, and distilled gave 3.07 g. crude C₆F₅CN (IV), b. 18590°, n_D 23.8D 1.4764. Hydrolysis of IV with 75% H₂SO₄ at 180° gave 16% C₆F₅CO₂H, m. 101-3°. To the Grignard reagent from 10 g. II was added 6.6 g. AcH at 0°, the solution stirred 1 hr. at 0°, decomposed with 50 ml. 6N HCl, the Et₂O layer separated, dried, and distilled to give 81% C₆F₅CHMeOH (V), b₃₇ 80-2°, n_D 20D 1.4426. To the Grignard reagent from 24.7 g. II in 50 ml. Et₂O was added 4.25 g. SiCl₄ at 0°, the mixture stirred 0.5 hr. at 0° refluxed 2.5 hrs., let cool overnight, poured into 100 ml. 6N HCl, and filtered. The solid was sublimed at 208°/1 mm. to give 32% (C₆F₅)₄Si, m. 246-8°. To the Grignard reagent from 30 g. II in 0.75 ml. Et₂O was added 5.0 g. PCl₃ in 20 ml. Et₂O in an ice bath, the mixture let stand at room temperature 15 min., hydrolyzed with 40 ml. cold 10% HCl, the Et₂O layer separated, dried, and concentrated Sublimation at 100-30° under reduced pressure gave 39.5% (C₆F₅)₃P (VI), m. 114-15°. Oxidation of 2.0 g. VI by refluxing in 10 g. Na₂Cr₂O₇, 25 ml. H₂O, 10 ml. concentrated H₂SO₄, and 25 ml. AcOH gave, after neutralization and extraction with CHCl₃, 2 g. (C₆F₅)₃PO, m. 167-8°. Pyrolysis of 2 g. V over Al₂O₃ at 345-50° gave, after distillation, 0.6 g. C₆F₅CH: CH₂, b. 140-1°, n_D 20D 1.4414.

IT 1524-78-3, Silane, tetrakis(pentafluorophenyl) -
(preparation of)

RN 1524-78-3 CAPLUS

CN Silane, tetrakis(pentafluorophenyl) - (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 29 (Noncondensed Aromatic Compounds)

IT Benzene, tetrabromo-
(manufacture of)

IT 608-71-9, Phenol, pentabromo-
(manufacture of)

IT 87-82-1, Benzene, hexabromo- 108-72-5, 1,3,5-Benzenetriamine 434-90-2,
 Biphenyl, decafluoro- 602-94-8, Benzoic acid, pentafluoro- 653-34-9,
 Styrene, 2,3,4,5,6-pentafluoro- 773-82-0, Benzonitrile, pentafluoro-
 827-15-6, Benzene, pentafluoroiodo- 830-50-2, Benzyl alcohol,
 2,3,4,5,6-pentafluoro- α -methyl- 1259-35-4, Phosphine,
 tris(pentafluorophenyl)- 1524-78-3, Silane,
 tetrakis(pentafluorophenyl)- 2729-11-5, Phosphine oxide,
 tris(pentafluorophenyl)- 13654-09-6, Biphenyl, decabromo- 27858-07-7,
 Biphenyl, octabromo- 90823-46-4, Aniline, tetrabromo-
 (preparation of)

L59 ANSWER 19 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1962:429701 CAPLUS

DOCUMENT NUMBER: 57:29701

ORIGINAL REFERENCE NO.: 57:5944a-h

TITLE: Synthesis of organosilicon compounds, particularly
 those containing halophenyl groups

AUTHOR(S): Gilman, Henry; Gorsich, Richard D.; Gaj, Bernard J.

CORPORATE SOURCE: Iowa State Univ., Ames

SOURCE: Journal of Organic Chemistry (1962), 27, 1023-6
 CODEN: JOCEAH; ISSN: 0022-3263

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB cf. CA 55, 5416e. Tetrasubstituted silanes RnSiR'4-n (I) were prepared by treating RLi with the appropriate chlorosilane or SiCl4. Several compds., R3SiR'SiR3 (II) were prepared BuLi (0.05 mole) in 170 ml. Et2O stirred rapidly with gradual addition of 0.05 mole m-C6H4BrF in 95 ml. Et2O at -45°, the mixture stirred 20 min. at -40° and carbonated, the organic layer extracted with NaHCO3, the extract boiled and acidified with concentrated

HCl yielded 65% m-FC6H4CO2H, m. 123-4°. Cl2SiPh2 (0.05 mole) in 80 ml. Et2O stirred with gradual addition of 0.12 mole m-FC6H4Li in 200 ml. Et2O and the mixture stirred 8 hrs. at 20°, refluxed 2 hrs. and the product taken up in ligroine (b. 60-70°), the solution decolorized (Norit) and evaporated yielded 26% I (R = m-FC6H4, R' = Ph, n = 2), m. 195-6°. Similarly were prepared I (R = m-FC6H4) (R', n, m.p. or b.p./mm., and % yield given): Ph, 1, 207-8° (AcOH), 51; Ph, 2, 195-6° (ligroine), 26; Ph, 3, 191.5-3.0° (dioxane), 51; 0, 4, 196-7° (ligroine), 62; C12H25, 3, 35-7°, 197 8°/0.02, n25D 1.5358, 62; C16H33, 8, 36-8°, 214-17°/0.05, 71; C18H37, 3, 38-40°, 234-5°/0.08, 71. GeCl4 (8.0 g.) and 0.178 mole m-FC6H4Li in 300 ml. Et2O yielded 25% (m-FC6H4)4Ge, m. 194-5° (ligroine). Similarly were prepared I using m-ClC6H4Li or p-ClC6H4Li (R, R', n, m.p. or b.p./mm., n25D, d25, MR, and % yield given): m-ClC6H4, Ph, 1, 156-7° (alc.), 78; m-ClC6H4, Ph, 2, 110-11° (alc.), 80; m-ClC6H4, Ph, 3, 87.5-9.0° (alc.), 43; m-ClC6H4, -, 4, 148-9° (ligroine), 43; m-ClC6H4, C12H25, 3, 229-30°/0.086 -, -, 78.5; m-ClC6H4, C16H33, 3, 240-1°/less than 0.01, 1.5579, 1.078, 175.9, 65.8; m-ClC6H4, C12H25, 3, 250-5°/0.04, 1.5595, 1.085, 183.5, 87.4; p-ClC6H4, C16H33, 3, 246-51°/0.03, 1.5530, 1.071, 175.7, 65.6; p-ClC6H4, C18H37, 3, 255-62°/0.001, 1.5558, 1.075, 183.4, 76.8. PhCH2MgCl

(25.3 g. PhCH₂Cl, 4.86 g. Mg) in 200 ml. Et₂O added with stirring to 5.9 g. Cl₃SiCH₂CH₂SiCl₃ in 55 ml. Et₂O and the mixture distilled 12 hrs., the Et₂O replaced with xylene and refluxed 50 hrs. at 100°, hydrolyzed with 5% HCl and the product (11.6 g.) recrystd. 3 times from ligroine (b. 60-70°) and from EtOAc yielded 81% II [R = PhCH₂, R' = (CH₂)₂], m. 136-7°. Similarly were prepared II (R, R', m.p. or b.p./mm., and % yield given): BuCH(Et)CH₂, (CH₂)₂, 215-20°/0.04, 54; C₁₆H₃₃, (CH₂)₂, 43-5° (CCl₄-alc.), 75; PhCH₂, m-C₆H₄, 155-7° (EtOAc), 16; C₁₀H₂₁, m-C₆H₄, 285-8°/0.03, n_{20D} 1.4811, d₂₀ 0.863, MR 323.8, 58; C₁₀H₂₁, p-C₆H₄, 290-4°/0.07, 20. Li (0.9 g.) in 60 ml. Et₂O and 8.0 g. BrCH₂CH₂CH₂CH₂:CH₂ in 70 ml. Et₂O at -30° treated with 7.38 g. Ph₃SiCl in 60 ml. Et₂O and the mixture stirred 15 min. at 0° and 11 hrs. at 20°, hydrolyzed and the product distilled in vacuo gave material, b_{0.15} 155-7°, recrystd. from alc. (ice bath) to yield 67% H₂C:CH(CH₂)₃SiPh₃ (III), m. 45-6°. Ph₃SiH (26 g.), 3.4 g. III, and 0.32 g. Bz₂O₂ stirred 20 hrs. at 80° in 25 ml. C₆H₁₄ and freed from excess Ph₃SiH at 148-60°/0.7 mm., the gummy solid crystallized from alc. MeCOEt and the product, m. 140-3°, recrystd. from alc.-EtOAc yielded 65% pure II [R = Ph, R' = (CH₂)₅] (IV), m. 145-6°. Li(CH₂)₅Li (from 20 g. Br(CH₂)₅Br) in 180 ml. Et₂O treated at -20° with 17.4 g. Ph₃SiCl in 160 ml. Et₂O and the mixture stirred 16 hrs. at 20°, hydrolyzed and the product crystallized from EtOAc gave IV. Et₂O (30 ml.) containing 6 g. (3-BrC₆H₄)₂ added with stirring to 0.038 mole BuLi in 75 ml. Et₂O at -30° and the mixture stirred 6 hrs. at 20°, refluxed 15 min. and the insol. reagent refluxed 45 min. with 11.3 g. Ph₃SiCl in 100 ml. Et₂O, diluted with 100 ml. C₆H₆ and distilled to a pot temperature of 53°, refluxed 15 min. and hydrolyzed, the mixture filtered and the product recrystd. from H₂O-dioxane yielded 69% II (R = Ph, R' = 3,3'-biphenylene), m. 221-3°.

IT 3869-53-2, Silane, tetrakis(m-fluorophenyl)-
(preparation of)

RN 3869-53-2 CAPLUS

CN Silane, tetrakis(3-fluorophenyl)- (9CI) (CA INDEX NAME)

CC 33 (Organometallic and Organometalloidal Compounds)

IT 7803-62-5, Silane
(halophenyl derivs.)

IT 2128-45-2, Silane, dodecyltris(m-fluorophenyl)- 2376-83-2, Silane,
tris(m-fluorophenyl)hexadecyl- 2559-39-9, Silane, (m-

fluorophenyl)triphenyl- 2736-28-9, Silane, 4-pentenyltriphenyl-
 2794-05-0, Silane, tris(m-fluorophenyl)octadecyl- 2804-88-8, Silane,
 tris(m-fluorophenyl)phenyl- 2804-94-6, Silane, bis(m-
 fluorophenyl)diphenyl- 3797-46-4, Germane, tetrakis(m-fluorophenyl)
3869-53-2, Silane, tetrakis(m-fluorophenyl)- 18733-70-5, Silane,
 bis(m-chlorophenyl)diphenyl- 18733-82-9, Silane, tetrakis(m-
 chlorophenyl)- 18733-90-9, Silane, tris(m-chlorophenyl)phenyl-
 18737-43-4, Silane, (m-chlorophenyl)triphenyl- 18759-06-3, Silane,
 tris(m-chlorophenyl)hexadecyl- 18759-07-4, Silane, tris(p-
 chlorophenyl)hexadecyl- 18764-96-0, Silane, tris(m-chlorophenyl)dodecyl-
 18817-52-2, Silane, tris(m-chlorophenyl)octadecyl- 18817-86-2, Silane,
 tris(p-chlorophenyl)octadecyl- 18826-15-8, Silane, 3,3'-
 biphenylenebis[triphenyl- 18828-71-2, 2,5-Disilahexane,
 2,2,5,5-tetrabenzyl-1,6-diphenyl- 18840-86-3, Silane,
 m-phenylenebis[tribenzyl- 18846-53-2, 1,7-Disilaheptane,
 1,1,1,7,7,7-hexaphenyl- 18863-01-9, Silane, m-phenylenebis[trisdecyl]-
 18863-02-0, Silane, p-phenylenebis[tris(decyl)- 18867-29-3,
 17,20-Disilahexatriacontane, 17,17,20,20-tetrahexadecyl- 18870-57-0,
 Benzhydrol, α -[(methyldiphenylsilyl)methyl]- 18882-14-9,
 7,10-Disilahexadecane, 5,12-diethyl-7,7,10,10-tetrakis(2-ethylhexyl)-
 (preparation of)

L59 ANSWER 20 OF 20 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1961:93280 CAPLUS
 DOCUMENT NUMBER: 55:93280
 ORIGINAL REFERENCE NO.: 55:17557a-c
 TITLE: Preparation and thermal stability of
 tetrakis(pentafluorophenyl)silane and
 tris(pentafluorophenyl)phosphine
 AUTHOR(S): Wall, Leo A.; Donadio, Robert E.; Pummer, Walter J.
 CORPORATE SOURCE: Natl. Bur. of Standards, Washington, DC
 SOURCE: Journal of the American Chemical Society (1960), 82,
 2846-8
 CODEN: JACSAT; ISSN: 0002-7863

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB To C₆F₅MgBr (from 24.7 g. C₆F₅Br, 2.43 g. Mg and 50 ml. dry Et₂O) was added dropwise 4.25 g. SiCl₄ at 0°, the whole stirred 1 hr. at 0° and refluxed 3 hrs. to give 32% (C₆F₅)₄Si (I), m. 248-50° (sublimation at 208°/1 mm. followed by recrystn. from Me₂CO-C₆H₆), λ 6.57, 7.72, 9.1, 10.26 μ . Attempts to prepare (C₆F₅)₂SiCl₂ by this procedure gave some I and tars. The same procedure gave 39.5% (C₆F₅)₃P (II), m. 116-17°, λ 6.08, 6.57, 6.78, 10.25 μ , λ MeOHmax. 253 $\text{m}\mu$ (ϵ = 10,400). II (2.0 g.), 10 g. Na₂CrO₇, 25 ml. H₂O, 10 ml. concentrated H₂SO₄, and 25 ml. AcOH refluxed 6 hrs. gave 2.0 g. (C₆F₅)₃PO (III), m. 169-70° (petr. ether), λ 6.08, 6.59, 6.75, 8.15, 10.15 μ ; λ MeOHmax. 2.75, 250 $\text{m}\mu$ (ϵ = 2600, 730). The thermal stability of I, II, III, Ph₂ (IV), (C₆F₅)₂ (V), Ph₄Si (VI), and Ph₃P (VII) at 200-660° indicated the following order: V ≥ IV > VI ≥ I > II > VII > III.

IT **1524-78-3**, Silane, tetrakis(pentafluorophenyl)-
 (preparation and thermal stability of)

RN 1524-78-3 CAPLUS
CN Silane, tetrakis(pentafluorophenyl)- (6CI, 7CI, 8CI, 9CI) (CA INDEX NAME)

CC 10E (Organic Chemistry: Benzene Derivatives)
IT Phosphine, diphenylpiperidino-
IT 1259-35-4, Phosphine, tris(pentafluorophenyl)- 1524-78-3,
Silane, tetrakis(pentafluorophenyl)- 2729-11-5, Phosphine oxide,
tris(pentafluorophenyl)-
(preparation and thermal stability of)
IT 35259-94-0, Phosphine sulfide, diphenylpiperidino-
(preparation of)
IT 92-52-4, Biphenyl 434-90-2, Biphenyl, decafluoro- 603-35-0, Phosphine,
triphenyl- 1048-08-4, Silane, tetraphenyl-
(thermal stability of)

=>