Chapitre 3

Opérateurs linéaires bornés sur un espace de Hilbert

0.1 Opérateurs linéaires bornés

0.1.1 Définitions - continuité

Dans ce chapitre, \mathcal{H}_1 et \mathcal{H}_2 désignent deux espaces de Hilbert séparables complexes .

Définition 0.1. Une fonction $A \colon \mathcal{H}_1 \to \mathcal{H}_2$ est dite opérateur linéaire si pour tous $x, y \in \mathcal{H}_1$ et tout $\lambda \in \mathbb{C}$:

$$A(\lambda x + y) = \lambda A(x) + A(y)$$

On écrit souvent Ax au lieu de A(x) pour l'image d'un vecteur x de \mathcal{H}_1 par A.

Définition 0.2. Un opérateur linéaire $A \colon \mathcal{H}_1 \to \mathcal{H}_2$ est dit borné si

$$\sup_{\|x\| \le 1} \|Ax\| < +\infty$$

On a donc le résultat suivant

Théorème 0.1. Soit $A \colon \mathcal{H}_1 \to \mathcal{H}_2$ un opérateur linéaire. Les assertions suivantes sont équivalentes

- i. A est continu.
- ii. A est continu en un point quelconque de \mathcal{H}_1 .
- iii. A est borné.
- iv. $\exists c > 0 / \forall x \in \mathcal{H}_1 : ||Ax|| \le c ||x||$

Si A est borné, la norme de A notée $\|A\|$ est donnée par

$$||A|| = \sup_{\|x\| \le 1} ||Ax||$$

Exercice Montrer que

$$||A|| = \sup_{||x||=1} ||Ax|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=||y||=1} |\langle Ax, y \rangle|$$

On note par $\mathcal{L}(\mathcal{H}_1,\mathcal{H}_2)$ à l'espace des opérateurs linéaires bornés de \mathcal{H}_1 dans \mathcal{H}_2 .

Proposition 0.1. $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ *est un espace vectoriel sur* \mathbb{C} .

Proposition 0.2. $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ *est un espace de Banach.*

Exemples 1. Soit $A: \mathcal{H}_1 \to \mathcal{H}_2$ un opérateur linéaire avec $\dim \mathcal{H}_1 < +\infty$. Alors, A est borné. En effet, soit $(e_i)_{1 \leq i \leq n}$ une base orthonormale de \mathcal{H}_1 . Alors

$$\forall x \in \mathcal{H}_1 : x = \sum_{k=1}^n \langle x, e_k \rangle e_k \text{ et } Ax = \sum_{k=1}^n \langle x, e_k \rangle Ae_k$$

D'où

$$||Ax|| \le \sum_{k=1}^{n} |\langle x, e_k \rangle| ||Ae_k|| \le (\sum_{k=1}^{n} |\langle x, e_k \rangle|^2)^{\frac{1}{2}} (\sum_{k=1}^{n} ||Ae_k||^2)^{\frac{1}{2}}$$
$$= (\sum_{k=1}^{n} ||Ae_k||^2)^{\frac{1}{2}} ||x||$$

D'où, A est borné et $\|A\| \leq (\sum\limits_{k=1}^n \|Ae_k\|^2)^{\frac{1}{2}}$. Si de plus, $\mathcal{H}_1 = \mathcal{H}_2$, A est donc une matrice carrée. On suppose qu'il existe $\lambda_k \in \mathbb{C}$, $1 \leq k \leq n$ tels que

$$Ae_k = \lambda_k e_k, 1 \le k \le n$$

Alors

$$||Ax||^2 = \left\langle \sum_{k=1}^n \langle x, e_k \rangle A e_k, \sum_{k=1}^n \langle x, e_k \rangle A e_k \right\rangle$$
$$= \sum_{k=1}^n |\langle x, e_k \rangle|^2 |\lambda_k|^2 \le M^2 ||x||^2$$

où

$$M = \max_{1 \le k \le n} |\lambda_k|$$

Donc

$$||A|| \le M \tag{1}$$

D'autre part, soit $M=|\lambda_{j_0}|$, $1\leq j_0\leq n$. Comme $\|e_{j_0}\|=1$, on obtiendra par définition de $\|A\|$ que

$$||A|| \ge ||Ae_{i_0}||$$

Donc

$$||A|| \ge |\lambda_{i_0}| = M \tag{2}$$

De (1) et (2), $||A|| = M = \max_{1 \le k \le n} |\lambda_k|$ (maximum des valeurs propres de A en dimension finie)

2. Soit $\mathcal H$ un espace de Hilbert, et soit $(\varphi_k)_{k\geq 1}$ une base orthonormale de $\mathcal H$. Soit $(\lambda_k)_{k\geq 1}$ une suite dans $\mathbb C$. On définit l'opérateur $A\colon \mathcal H\to \mathcal H$ par

$$Ax = \sum_{k=1}^{+\infty} \lambda_k \langle x, \varphi_k \rangle \varphi_k, \ x \in \mathcal{H}$$

Alors, A est linéaire. De plus, par l'inégalité de Bessel,

$$||Ax||^2 = \sum_{k=1}^{+\infty} |\lambda_k|^2 |\langle x, \varphi_k \rangle|^2 \le m^2 ||x||^2$$

où $m = \sup_{k \ge 1} |\lambda_k|$. D'où, A est borné et $||A|| \le m$ (1)

De plus, par la définition de la borne supérieure

$$\forall \epsilon > 0, \exists j \geq 1 : |\lambda_j| > m - \epsilon$$

D'où

$$||A|| \ge ||A\varphi_j|| = |\lambda_j| > m - \epsilon$$

comme $\epsilon > 0$ est arbitraire, $||A|| \ge m$ (2)

De (1) et (2) on obtient que

$$||A|| = m = \sup_{k \ge 1} |\lambda_k|$$

3. Sur l'espace

$$\mathcal{D}(\mathcal{D}) = \{ f \in L_2 [-\pi, \pi] : f' \in L_2 [-\pi, \pi] \}$$

muni de son produit scalaire usuel

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt, \ f, g \in \mathcal{D}(\mathcal{D})$$

on définit l'opérateur différentiel D par

$$Df(x) = \frac{df}{dx}(x) = f'(x)$$

Alors D n'est pas borné. En effet, pour la suite $(f_n)_n$ où

$$f_n(x) = \sin nx, (n > 1)$$

on a

$$||f_n|| = \sqrt{\pi}$$
 et $||Df_n|| = n\sqrt{\pi} \underset{n \to +\infty}{\longrightarrow} +\infty$

Proposition 0.3. Soient $A, B \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. On montre facilement que

$$i. \|\alpha A\| = |\alpha| \|A\|, (\alpha \in \mathbb{C})$$

$$ii. \|A + B\| \le \|A\| + \|B\|$$

iii. Soient \mathcal{H}_3 un espace de Hilbert, et $C \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_3)$. Alors

$$CA \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_3)$$
 et $||CA|| \le ||C|| \, ||A||$

0.2 Fonctionnelles linéaires bornées

Définition 0.3. Soit \mathcal{H} un espace de Hilbert. Une fonctionnelle (forme) linéaire sur \mathcal{H} est un opérateur linéaire de \mathcal{H} dans \mathbb{C} .

Une fonctionnelle linéaire bornée sur \mathcal{H} est un élément de l'espace dual $\mathcal{L}(\mathcal{H},\mathbb{C}).$

On a donc le résultat important suivant

0.2.1 Théorème de représentation de Riesz

1

Théorème 0.2. Pour toute forme linéaire continue f sur un espace de Hilbert \mathcal{H} , il existe un élément unique $a \in \mathcal{H}$ tel que

1.
$$\forall x \in \mathcal{H} : f(x) = \langle x, a \rangle$$
 (*)

2.
$$||f|| = ||a||$$

Inversement, tout élément $a \in \mathcal{H}$ définit une forme linéaire continue f_a sur \mathcal{H} par la formule (*)

Définition 0.4. L'espace $\mathcal{L}(\mathcal{H}, \mathbb{C})$ des formes linéaires continues sur \mathcal{H} est dit espace dual de l'espace \mathcal{H} , et est noté \mathcal{H}^* . (Pour le distinguer de l'espace de Banach)

Remarque 1 Le Théorème de représentation de Riesz affirme l'existence d'un isomorphisme isométrique

$$I \colon \mathcal{H}^* \to \mathcal{H}$$

 $f \mapsto I(f) = a_f$

A. Nasli Bakir 6 2018/2019

^{1.} Frigyes Riesz, 1880-1956, est un mathématicien hongrois. Il est l'un des fondateurs de l'analyse fonctionnelle.

Ce qui nous permet d'identifier isométriquement les espaces \mathcal{H} et \mathcal{H}^* , i.e., $\mathcal{H} = \mathcal{H}^*$.

Exemple
$$(\mathbb{C}^n)^* = \mathbb{C}^n$$
, $\ell_2^* = \ell_2$ et $(L_2([a,b]))^* = L_2([a,b])$.

Remarque 2 Si $\{\varphi_k\}_{k\geq 1}$ est une base orthonormale de \mathcal{H} , alors l'élément a correspondant à la forme linéaire dans le Théorème 3.2 est défini par

$$a = \sum_{k=1}^{+\infty} \overline{f(\varphi_k)} \varphi_k$$

En effet, comme $f(\varphi_k) = \langle \varphi_k, a \rangle, k \geq 1$:

$$a = \sum_{k=1}^{+\infty} \langle a, \varphi_k \rangle \varphi_k = \sum_{k=1}^{+\infty} \overline{\langle \varphi_k, a \rangle} \varphi_k = \sum_{k=1}^{+\infty} \overline{f(\varphi_k)} \varphi_k$$

Exemples 1. $\mathcal{H} = L_2([a,b])$: Une forme linéaire T sur \mathcal{H} est continue si et seulement s'il existe $g \in \mathcal{H}$ telle que

$$\forall f \in \mathcal{H} : T(f) = \langle f, g \rangle = \int_{a}^{b} f(t) \overline{g(t)} dt$$

De plus

$$||T|| = ||g||$$

et dans ce cas

$$g(t) = \sum_{k=1}^{+\infty} \overline{T(\frac{e^{int}}{\sqrt{2\pi}})} \frac{e^{int}}{\sqrt{2\pi}}$$
$$= \frac{1}{2\pi} \sum_{k=1}^{+\infty} \overline{T(e^{int})} e^{int}, \ t \in [a, b]$$

2. $\mathcal{H}=\ell_2$. Une forme linéaire T sur ℓ_2 est continue si et seulement s'il existe $a=(a_k)_{k\geq 1}\in\ell_2$ tel que

$$\forall x = (x_k)_{k \ge 1} \in \ell_2 : Tx = \langle x, a \rangle = \sum_{k=1}^{+\infty} x_k \overline{a_k}$$

De plus

$$\|T\| = \|a\|$$

et si $(e_k)_{k\geq 1}$ est la base standard de $\ell_2,$ on aura dans ce cas

$$a = \sum_{k=1}^{+\infty} \overline{T(e_k)} e_k$$

0.3 Opérateurs inversibles

Définition 0.5. Un opérateur $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ est dit inversible s'il existe un opérateur noté $A^{-1} \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$ tel que

$$A^{-1}A = I_{\mathcal{H}_2}$$
 et $AA^{-1} = I_{\mathcal{H}_1}$

où $I_{\mathcal{H}_i}$ est l'opérateur identité sur \mathcal{H}_i , $(1 \leq i \leq 2)$.

Définition 0.6. L'opérateur A^{-1} est dit opérateur inverse de A.

Définition 0.7. Soit $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. Le noyau de A est l'ensemble

$$\ker A = \{x \in \mathcal{H}_1 : Ax = 0\}$$

. A est injectif si $\ker A = \{0\}$.

Définition 0.8. L'image de A est l'ensemble

$$ImA = \{Ax, x \in \mathcal{H}_1\}$$

- . A est surjectif si $ImA = \mathcal{H}_2$.
- . A est inversible si et seulement si A est injectif et surjectif à la fois.
- . S'il existe $B \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$ tel que $BA = I_{\mathcal{H}_1}$, on dit que A admet un inverse à gauche. On dit aussi que A est l'inverse droit de B.

A. Nasli Bakir 8 2018/2019

Il est clair que dans ce cas, A est injectif.

. De même, s'il existe $C \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$ tel que $AC = I_{\mathcal{H}_2}$, on dit que A admet un inverse à droite, et que A est l'inverse gauche de C.

Il est clair dans ce cas, que A est surjectif.

. Si $\mathcal{H}_1 = \mathcal{H}_2$ et est de dimension finie, alors A est inversible si et seulement si A admet soit un inverse à gauche, soit un inverse à droite, car dans ce cas on a

$$\dim \mathcal{H}_1 = \dim \mathcal{H}_2 = \dim \ker A + \dim ImA$$

. En dimension infinie, la remarque précédente n'est pas vraie en général. En effet, l'opérateur shift (de décalage) droit S_r défini sur ℓ_2 par

$$S_r x = S_r(x_1, x_2, ...) = (x_2, x_3,)$$

est l'inverse droit du shift gauche S_l où $S_lx = S_l(x_1, x_2, ...) = (0, x_1, x_2, x_3,)$. Or, S_l n'est pas inversible car $e_1 = (1, 0, 0, ...) \in \ker S_l$. De même, S_r n'est pas inversible car $e_1 \notin ImS_r$.

Théorème 0.3. Soit $A \in \mathcal{L}(\mathcal{H})$ tel que ||A|| < 1. Alors l'opérateur I - A est inversible, et l'on a

$$(I-A)^{-1} = \sum_{k=0}^{+\infty} A^k, \ A^0 = I$$

De plus

$$\left\| (I-A)^{-1} - \sum_{k=0}^{n} A^k \right\| \underset{n \to +\infty}{\to} 0$$

et

$$\left\| (I - A)^{-1} \right\| \le \frac{1}{1 - \|A\|}$$

0.4 Adjoint d'un opérateur linéaire

Définition 0.9. Soit $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. Il existe un opérateur unique $A^* \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$ tel que

$$\forall x \in \mathcal{H}_1, \forall y \in \mathcal{H}_2 : \langle Ax, y \rangle = \langle x, A^*y \rangle$$

De plus, on a $||A|| = ||A^*||$.

Définition 0.10. L'opérateur A^* est dit opérateur adjoint de l'opérateur A.

Exemples 1. $I^* = I$ et $0^* = 0$.

- 2. $S_r^* = S_l$ et $S_l^* = S_r$, où S_r et S_l sont respectivement les opérateurs shift droit (de décalage) et shift gauche sur ℓ_2 .
- 3. Considérons l'opérateur de multiplication M sur $L_2\left([a,b]\right)$ défini comme suit

$$(Mf)(t) = \mu(t)f(t), f \in L_2([a,b])$$

où μ est une fonction complexe continue et Lebesgue mesurable sur [a,b] . On a pour tous $f,g\in L_2\left([a,b]\right)$:

$$\langle Mf, g \rangle = \int_{a}^{b} M(f)(t)\overline{g(t)} dt = \int_{a}^{b} \mu(t)f(t) \overline{g(t)} dt$$
$$= \int_{a}^{b} f(t) \mu(t)\overline{g(t)} dt = \int_{a}^{b} f(t) \overline{\mu(t)}\overline{g(t)} dt$$
$$= \langle f, M^*g \rangle$$

D'où

$$(M^*g)(t) = \overline{\mu(t)}g(t), \ t \in [a, b]$$

On a donc les propriétés suivantes

Théorème 0.4. *Soient* $A, B \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. *Alors*

1.
$$(A+B)^* = A^* + B^*$$

2.
$$(\alpha A)^* = \overline{\alpha} A^*, (\alpha \in \mathbb{C})$$

$$3. (A^*)^* = A$$

4. Si $D \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_3)$ où \mathcal{H}_3 est un espace de Hilbert, alors $(DA)^* = A^*D^*$

Théorème 0.5. *Soit* $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. *Alors*

1.
$$\ker A = (ImA^*)^{\perp}$$

2.
$$\ker A^* = (ImA)^{\perp}$$

3.
$$\overline{ImA} = (\ker A^*)^{\perp}$$

4.
$$\overline{ImA^*} = (\ker A)^{\perp}$$

Comme conséquence directe du Théorème précédent, on présente un résultat important relatif à la décomposition en somme directe orthogonale d'un espace de Hilbert. On a donc

Corollaire 0.1. (*Important*) Soit $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. Alors

$$\mathcal{H}_1 = \ker A \oplus \left(\overline{ImA^*}\right)$$
 et $\mathcal{H}_2 = \ker A^* \oplus \overline{ImA}$

0.5 Opérateurs auto-adjoints

Définition 0.11. Un opérateur $A \in \mathcal{L}(\mathcal{H})$ est dit auto-adjoint si $A^* = A$.

Théorème 0.6. Soit $A \in \mathcal{L}(\mathcal{H})$ un opérateur auto-adjoint. Alors $(\ker A)^{\perp} = \overline{ImA}$. De plus

$$\mathcal{H} = \ker A \oplus \left(\overline{ImA}\right)$$

Exemples 1. Soit M l'opérateur de multiplication sur $L_2([a,b])$ défini par

$$Mf = \mu f, \ f \in L_2([a, b])$$

On a alors

$$M^*f = \overline{\mu}f$$

Donc M est auto-adjoint si et seulement si $\overline{\mu}(t) = \mu(t)$ p.p sur [a,b] .

2. Soit $A \in \mathcal{L}(\mathcal{H})$. L'opérateur A^*A est auto-adjoint. En effet

$$(AA^*)^* = A^{**}A^* = AA^*$$

Théorème 0.7. L'opérateur $A \in \mathcal{L}(\mathcal{H})$ est auto-adjoint si et seulement si pour tout $x \in \mathcal{H}, \langle Ax, x \rangle \in \mathbb{R}.$

0.6 Orthoprojecteur sur un espace de Hilbert

Définition 0.12. Soit \mathcal{H} un espace de Hilbert, et soit \mathcal{M} un sous-espace vectoriel de \mathcal{H} . Un opérateur $P \in \mathcal{L}(\mathcal{H})$ est dit orthoprojecteur (Opérateur de projection orthogonale) sur \mathcal{M} si

$$\forall x \in \mathcal{M}, \forall y \in \mathcal{M}^{\perp} : P(x+y) = x$$

. Il est clair que P est linéaire sur \mathcal{H} . De plus

$$ImP = \mathcal{M}$$
 et $\ker P = \mathcal{M}^{\perp}$

et que

$$Px = x, x \in M$$

. I-P est un orthoprojecteur sur \mathcal{M}^{\perp} de noyau $\ker(I-P)=\mathcal{M}.$

. Si $\mathcal{M} \neq \{0\}$, alors $\|P\| = 1.$ En effet

$$\forall x = u + v \in \mathcal{H}, u \in \mathcal{M}, v \in \mathcal{M}^{\perp} : ||Px||^2 = ||u||^2 \le ||u||^2 + ||v||^2 = ||x||^2$$

par le théorème de Pythagore. D'où $||P|| \le 1$ (1)

D'autre part, si $u \in \mathcal{M}, u \neq 0$:

$$||P|| = \sup_{x \neq 0} \frac{||Px||}{||x||} \ge \frac{||Pu||}{||u||} = \frac{||u||}{||u||} = 1$$

 $\operatorname{car} u \in \mathcal{M}$. Donc $||P|| \ge 1$ (2)

De (1) et (2), découle que ||P|| = 1.

On a donc le résultat important suivant

Théorème 0.8. Un opérateur $P \in \mathcal{L}(\mathcal{H})$ est un orthoprojecteur si et seulement si $P^2 = P = P^*$.