Blok

Konverter Kode

Rangkaian Kombinasional Kuliah#10 TKC205 Sistem Digital - TA 2013/2014

Eko Didik Widianto

Sistem Komputer - Universitas Diponegoro

23 Maret 2014

Blok Enkoder Blok

- Rangkaian digital dapat digolongkan dalam 2 tipe:
 - 1. Rangkaian kombinasional mempunyai nilai keluaran di suatu waktu hanya ditentukan oleh nilai dari masukannya di waktu tersebut
 - Tidak ada penyimpanan informasi atau ketergantungan terhadap nilai keluaran sebelumnya
 - 2. Rangkaian sekuensial mempunyai nilai keluaran di suatu waktu ditentukan oleh nilai masukannya waktu itu dan nilai keluaran sebelumnya
 - Mempunyai penyimpan (storage) untuk menyimpan nilai keluaran sebelumnya
- Kedua tipe rangkaian digital terdapat dalam komputer, misalnya ALU dan dekoder alamat (kombinasional) serta register dan pencacah (sekuensial)

Ringkasan

- Di kuliah sebelumnya dibahas tentang representasi bilangan dan operasi aritmatika (penjumlahan dan pengurangan)
 - Operasi aritmetika digital diwujudkan dalam rangkaian penjumlah/pengurang n bit
 - Merupakan komponen penyusun sistem komputer di unit logika dan aritmetika (ALU)
- Selanjutnya akan dibahas tentang rangkaian kombinasional dan blok komponen penyusunnya
 - Blok rangkaian kombinasional: multiplekser, enkoder, konverter kode, demultiplekser, dekoder
 - teorema ekspansi Shannon
 - komponen output 7-segmen
 - desain rangkaian kombinasional vang terdiri atas blok rangkaian tersebut

Blok

- Mahasiswa akan mampu:
 - ► [C2] menjelaskan fungsi karakteristik blok komponen rangkaian kombinasional dengan tepat
 - ► [C4] mengaplikasikan blok rangkaian kombinasional dalam desain sistem digital serta menganalisisnya
 - ► [C5] merancang dan menganalisis rangkaian multiplekser dari fungsi logika yang diinginkan, dengan menggunakan ekspansi Shannon
- ▶ Website: http://didik.blog.undip.ac.id/2014/02/25/ tkc205-sistem-digital-2013-genap/
 - Email: didik@undip.ac.id

Bahasan

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Konverter Kode

Multiplekser (MUX)

Blok Enkoder

Blok Dekoder/Demultiplekser

Konverter Kode

Ringkasan

Lisensi

Rangkaian Kombinasional

Rangkaian digital: kombinasional dan sekuensial

Rangkaian kombinasional

- Nilai keluaran rangkaian di suatu waktu hanya ditentukan oleh nilai dari masukannya di waktu tersebut
- Tidak ada penyimpanan informasi atau ketergantungan terhadap nilai sebelumnya
- Misalnya: multiplekser, enkoder, dekoder, demux, ALU

Rangkaian Sekuensial

- Nilai keluaran rangkaian di suatu waktu ditentukan oleh nilai masukannya waktu itu dan nilai keluaran sebelumnya
- Menyertakan storage untuk menyimpan nilai masukan
- Elemen dasar untuk menyimpan data 1-bit adalah flip-flop
- rangkaian sekuensial n-bit misalnya register, counter http://didik.blog.undib.ac.Sebagian besar rangkaian digital adalah sekuensial a

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok Dekoder

Konverter Kode

Ringkasan

Lisensi

TO DIGHT WIGHTNOWN G

Multiplekser

- Sebuah rangkaian multiplekser (MUX) mempunyai
- N buah masukan SELECT
 - Maksimal 2^N jalur data masukan
 - Satu output
- MUX melewatkan nilai sinyal dari salah satu data masukan ke jalur keluaran tergantung dari nilai masukan SELECT
- Untuk memilih n masukan diperlukan ²log (n) kontrol select
- Contoh: Diinginkan rangkaian untuk memilih 7 jalur data masukan. Tentukan jumlah jalur masukan Select
 - Solusi. Jumlah jalur Select, N, dapat dinyatakan sebagai $N = log_2(7) \approx 2,807$. Nilai N dibulatkan ke atas, sehingga jumlah jalur Select yang disediakan N=3. Dengan N=3, jumlah masukan yang bisa dipilih maksimal 8 jalur data masukan

@2014.Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Bahasan

Multiplekser (MUX)

@2014.Eko Didik Widianto

Multiplekser

Multiplekser 2 Masukan

MUX 2-masukan

S	$f(s,x_1,x_2)$
0	<i>X</i> ₁
1	<i>X</i> ₂

mempunyai 2 masukan data x₀ dan x₁, 1 jalur select s dan 1 keluaran f

Perilaku

- ▶ Jika s = 0, maka $f = x_0$
- ▶ Jika s = 1, maka $f = x_1$

$$f(s, x_0, x_1) = \begin{cases} x_0 & \text{untuk } s = 0 \\ x_1 & \text{untuk } s = 1 \end{cases}$$
$$f(s, x_0, x_1) = x_0 \cdot \overline{s} + x_1 \cdot s$$

Implementasi MUX

Berapa jumlah transistor CMOS untuk MUX-2 menggunakan NAND-NAND? Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Multiplekser 2 Masukan Multiplekser Banyak Masukan

Aplikasi Multiplekser Fungsi Logika dengan Mux (Ekspansi Shannon)

Blok Enkoder

Blok

Vanuantan Vada

Ringkasan

isensi

Bahasan

Multiplekser (MUX)

@2014.Eko Didik Widianto

Multiplekser

Multiplekser Banyak Masukan

- Kangkalan Kombinasional
- @2014,Eko Didik Widianto
- Multiplekser (MUX)
- Multiplekser 2 Masukan Multiplekser Banyak Masukan
- Aplikasi Multiplekser
 Fungsi Logika dengan Mux
 (Ekspansi Shannon)
- Blok Enkoder

Blok

ekodel/Demi

toriverter ru

.

 MUX 4-masukan memilih satu dari 4 data masukan yang akan dilewatkan ke keluaran

- Ditentukan oleh nilai 2 jalur SELECT (s₀, s₁)
- Dapat dikonstruksi menggunakan 3 buah MUX 2-masukan

Perilaku MUX-4

Perilaku MUX 4-ke-1:

- ▶ Jika $s_1 s_0 = 00$, maka $f = x_0$
- ▶ Jika $s_1 s_0 = 01$, maka $f = x_1$
- ▶ Jika $s_1 s_0 = 10$, maka $f = x_2$
- ▶ Jika $s_1 s_0 = 11$, maka $f = x_3$

Persamaan fungsi MUX 4-ke-1:

$$f(s, x_0, x_1, x_2, x_3) = \begin{cases} x_0 & \textit{untuk } s_1 s_0 = 00 \\ x_1 & \textit{untuk } s_1 s_0 = 01 \\ x_2 & \textit{untuk } s_1 s_0 = 10 \\ x_3 & \textit{untuk } s_1 s_0 = 11 \end{cases}$$

@2014,Eko Didik Widianto

Multiplekser (MUX)

Multiplekser 2 Masukan Multiplekser Banyak Masukan

Aplikasi Multiplekser Fungsi Logika dengan Mux (Ekspansi Shannon)

Blok Enkoder

Blok Dekoder/Demultipl

Dekoder/Demultip

Nonverter No

Ringkas

Lisensi

Rangkaian MUX-4

- membutuhkan 4 AND-3, 1 OR-4 dan 2 NOT
 - Jumlah transistor CMOS= $4 \times 8 + 1 \times 10 + 2 \times 2 = 62$ transistor

Multiplekser Banyak Masukan

Blok Enkoder

Dekomposisi MUX-4

- disusun menggunakan 3 buah MUX 2-ke-1
 - Jika tiap MUX-2 diimplementasikan dengan rangkaian TG, maka jumlah transistor = 18 transistor

@2014.Eko Didik Widianto

Multiplekser

Multiplekser Banvak Masukan

Blok Enkoder

MUX-8

Secara umum, MUX n-ke-1 dapat dibentuk dengan susunan (n-1) MUX 2-ke-1 untuk membentuk rangkaian MUX $log_2(n)$ level

@2014,Eko Didik Widianto

Multiplekser (MUX)

Multiplekser 2 Masukan Multiplekser Banyak Masukan

Aplikasi Multiplekser Fungsi Logika dengan Mux (Ekspansi Shannon)

Blok Enkoder

Blok

Konverter Ko

_. .

Lisensi

Bahasan

Multiplekser (MUX)

@2014.Eko Didik Widianto

Multiplekser

Analisis Rangkaian MUX

Multiplekser 2 Masukan Multiplekser Banyak Masukan

Analisis Rangkaian MUX
Aplikasi Multiplekser
Fungsi Logika dengan Mux
(Ekanansi Shannan)

IC /4LS151

_...

ыок Dekoder/Demultip

Konverter Ko

Ringkas

isensi

Bahasan

Multiplekser (MUX)

@2014.Eko Didik Widianto

Multiplekser

Aplikasi Multiplekser

Aplikasi Multiplekser

Crossbar n × k

Saklar terprogram di FPGA

Serializer data paralel

Rangkaian LUT (Look-up Table) di CPLD

Selektor kanal di koverter analog ke digital (ADC)

- @2014.Eko Didik Widianto
- Multiplekser

Aplikasi Multiplekser

Blok Enkoder

http://didik.blog.undip.ac.id

@2014.Eko Didik Widianto

Aplikasi MUX: 2x2 Crossbar

- Crossbar n × k: rangkaian dengan n masukan dan k keluaran yang fungsinya untuk menyediakan koneksi dari sebarang masukan ke sebarang keluaran
- Crossbar 2 × 2: 2 masukan dan 2 keluaran
- Digunakan di aplikasi untuk menghubungkan satu set jalur ke jalur lainnya (misalnya jaringan switching telepon)

s	y ₀	<i>y</i> ₁
0	<i>x</i> ₀	<i>X</i> ₁
1	<i>X</i> ₁	<i>X</i> ₀

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Multiplekser 2 Masukan Multiplekser Banyak

Aplikasi Multiplekser
Fungsi Logika dengan Mux
(Ekspansi Shannon)

Blok Enkoder

Blok Dekoder/Demultiple

Konverter Ko

Ringkasa

Lisensi

Aplikasi MUX: Programmable Switch di FPGA

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Multiplekser 2 Masukan Multiplekser Banyak Masukan

Aplikasi Multiplekser Fungsi Logika dengan Mux

Blok Enkoder

Blok Eukodei

Dekoder/Demultiple

Konverter Kod

Ringkasa

isensi

(a) Implementasi transistor

(b) Implementasi MUX

Aplikasi MUX: LUT-2

- Widianto
- Lookup Table 2 masukan di CPLD
- ▶ Diinginkan fungsi: $f = X_1 \oplus X_2$

Analisis rangkaian MUX tersebut

@2014.Eko Didik

Multiplekser

Aplikasi Multiplekser

Blok Enkoder

Aplikasi Multiplekser
Fungsi Logika dengan Mux

Plak Enkada

ekoder/De

Converter Ko

Ringkasan

.

Mengubah data paralel menjadi serial

Aplikasi MUX: Pemilih Kanal ADC

@2014.Eko Didik Widianto

Multiplekser

Aplikasi Multiplekser

Bahasan

Multiplekser (MUX)

Blok Enkoder

Blok Dekoder/Demultiplekser

Konverter Kode

Ringkasar

Lisens

@2014,Eko Didik Widianto

Multiplekser (MUX)

Multiplekser 2 Masukan Multiplekser Banyak Masukan

Analisis Hangkalan MUX
Aplikasi Multiplekser
Fungsi Logika dengan Mux

(Ekspansi Shannon) IC 74LS151

Blok Enkoder

зюк Dekoder/Demultip

Konverter Kode

Ringkasan

isensi

- @2014.Eko Didik Widianto
- Multiplekser
- Fungsi Logika dengan Mux (Ekspansi Shannon)
- Blok Enkoder

- MUX dapat digunakan untuk mensintesis fungsi logika
- ► Misalnya: $f(x_1, x_2) = x_1 \oplus x_2$

Fungsi $f(x_1, x_2) = x_1 \oplus x_2$ dapat dinyatakan:

$$f = \begin{cases} x_2 & \text{untuk } x_1 = 0\\ \overline{x}_2 & \text{untuk } x_1 = 1 \end{cases}$$

Blok Enkoder

▶ Sebarang fungsi Boolean $f(w_1, \dots, w_n)$ dapat dituliskan dalam bentuk

$$f(w_1,\cdots,w_n)=\overline{w}_1\cdot f(0,w_2,\cdots,w_n)+w_1\cdot f(1,w_2,\cdots,w_n)$$

Misalnya

$$f(x_1, x_2, x_3) = \sum_{\overline{x}_1} m(3, 5, 6, 7)$$

$$= \overline{x}_1 x_2 x_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3 + x_1 x_2 x_3$$

$$= \overline{x}_1 (x_2 x_3) + x_1 (\overline{x}_2 x_3 + x_2 \overline{x}_3 + x_2 x_3)$$

$$= \overline{x}_1 (x_2 x_3) + x_1 (x_2 + x_3)$$

Atau dapat dinyatakan bahwa:

$$f(x_1, x_2, x_3) = \begin{cases} x_2 x_3 & \text{saat } x_1 = 0 \\ x_2 + x_3 & \text{saat } x_1 = 1 \end{cases}$$

Blok Enkoder

Fungsi Logika dengan Mux (Ekspansi Shannon)

► Sintesis rangkaian $f(x_1, x_2, x_3) = \sum m(3, 5, 6, 7)$

$$f(x_{1}, x_{2}, x_{3}) = \sum_{\overline{x}_{1} \overline{x}_{2} \overline{x}_{3} + \overline{x}_{1} \overline{x}_{2} x_{3} + \overline{x}_{1} \overline{x}_{2} x_{3} + x_{1} \overline{x}_{2} \overline{x}_{3} + x_{1} \overline{x}_{2} x_{3} = \overline{x}_{1} (\overline{x}_{2} \overline{x}_{3} + \overline{x}_{2} x_{3} + x_{2} x_{3}) + x_{1} (\overline{x}_{2} \overline{x}_{3} + \overline{x}_{2} x_{3}) = \overline{x}_{1} (\overline{x}_{2} + x_{3}) + x_{1} (\overline{x}_{2}) = \underline{x}_{1} (\overline{x}_{2} + x_{3}) + \underbrace{x_{1} (\overline{x}_{2})}_{f \text{ saat } x_{1} = 1}$$

Pilih x₂ sebagai variabel ekspansi (opsi #2)

$$f(x_{1}, x_{2}, x_{3}) = \sum_{x_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}x_{3} + \overline{x}_{1}x_{2}x_{3} + x_{1}\overline{x}_{2}\overline{x}_{3} + x_{1}\overline{x}_{2}x_{3}$$

$$= \overline{x}_{2}(\overline{x}_{1}\overline{x}_{3} + \overline{x}_{1}x_{3} + x_{1}\overline{x}_{3} + x_{1}x_{3}) + x_{2}(\overline{x}_{1}x_{3})$$

$$= \overline{x}_{2}(1) + \underbrace{x_{2}(\overline{x}_{1}x_{3})}_{f \ saat \ x_{2}=0} + \underbrace{x_{2}(\overline{x}_{1}x_{3})}_{f \ saat \ x_{2}=1}$$

@2014.Eko Didik Widianto

Multiplekser

Fungsi Logika dengan Mux (Ekspansi Shannon)

Blok Enkoder

Konverter Kode

Rangkaian $f(x_1, x_2, x_3) = \sum m(0, 1, 3, 4, 5)$

$$f(x_1, x_2, x_3) = \sum_{f \text{ saat } x_2 = 0} m(0, 1, 3, 4, 5)$$

$$= \underbrace{\overline{x}_2(1)}_{f \text{ saat } x_2 = 0} + \underbrace{x_2(\overline{x}_1 x_3)}_{f \text{ saat } x_2 = 1}$$

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Multiplekser 2 Masukan Multiplekser Banyak Masukan Analisis Bangkajan MUX

Aplikasi Multiplekser
Fungsi Logika dengan Mux
(Ekspansi Shannon)

Blok Enkoder

Blok Dekoder/Demultipl

Konverter Ko

Ringkasa

Lisensi

 XOR 3-masukan dapat diimplementasikan dengan 2 buah MUX 2-masukan

$$f(x_1,x_2,x_3) = \overline{x}_1(x_2 \oplus x_3) + x_1(\overline{x_2 \oplus x_3})$$

Membentuk rangkaian MUX-2 2 level

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Multiplekser 2 Masukar Multiplekser Banyak

Analisis Rangkaian MUX Aplikasi Multiplekser Fungsi Logika dengan Mux (Ekspansi Shannon)

Blok Enkoder

iok Elikodei

ekoder/Demultiple

onverter Koc

Ringkasa

isensi

Analisis Rangkaian MUX
Aplikasi Multiplekser
Fungsi Logika dengan Mux

(Ekspansi Shannon) IC 74LS151

Blok Enkoder

Dekoder/Demi

Konverter Kod

Ringkasa

Lisensi

► Rancang rangkaian 2 level MUX-MUX $f(x_1, x_2, x_3) = \sum m(0, 1, 3, 4, 5)$

▶ Solusi. menggunakan x₂ dan x₃ sebagai selektor

$$f(x_1, x_2, x_3) = \overline{x}_2(1) + x_2(\overline{x}_1 x_3) = \overline{x}_2(1) + x_2(\overline{x}_3(0) + x_3(\overline{x}_1))$$

▶ atau menggunakan x₂ dan x₁ sebagai selektor

$$f(x_1, x_2, x_3) = \overline{x}_2(1) + x_2(\overline{x}_1 x_3) = \overline{x}_2(1) + x_2(\overline{x}_1(x_3) + x_1(0))$$

Ekspansi Shannon dengan MUX-4

Ekspansi Shannon

$$f(x_1, \dots, x_n) = \overline{x}_1 \overline{x}_2 \cdot f(0, 0, x_3, \dots, x_n) + \overline{x}_1 x_2 \cdot f(0, 1, x_3, \dots, x_n) + x_1 \overline{x}_2 \cdot f(1, 0, x_3, \dots, x_n) + x_1 x_2 \cdot f(1, 1, x_3, \dots, x_n)$$

$$f(x_{1}, x_{2}, x_{3}) = \sum_{\overline{X}_{1}} m(0, 1, 3, 4, 5)$$

$$= \overline{x}_{1} \overline{x}_{2} \overline{x}_{3} + \overline{x}_{1} \overline{x}_{2} x_{3} + \overline{x}_{1} x_{2} x_{3} + x_{1} \overline{x}_{2} \overline{x}_{3} + x_{1} \overline{x}_{2} x_{3}$$

$$= \overline{x}_{1} \overline{x}_{2} (\overline{x}_{3} + x_{3}) + \overline{x}_{1} x_{2} (x_{3}) + x_{1} \overline{x}_{2} (\overline{x}_{3} + x_{3}) + x_{1} x_{2} (0)$$

$$= \overline{x}_{1} \overline{x}_{2} (1) + \overline{x}_{1} x_{2} (x_{3}) + x_{1} \overline{x}_{2} (1) + x_{1} x_{2} (0)$$

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Multiplekser 2 Masukan Multiplekser Banyak Masukan

Aplikasi Multiplekser Fungsi Logika dengan Mux (Ekspansi Shannon)

Blok Enkoder

Blok

Konverter Kor

D: 1

Lisensi

Bahasan

Multiplekser (MUX)

@2014.Eko Didik Widianto

Multiplekser

IC 74I S151

IC TTL Multiplekser

Nomor IC	Deskripsi	Jumlah MUX
74150	MUX 16-ke-1	1
74151/152	MUX 8-ke-1	1
74153	dual MUX 4-ke-1	2
74157	quad MUX 2-ke-1, non-inverting	4
74158	quad MUX 2-ke-1, inverting	4

IC 74LS151

74157: Quad MUX-2

$$nY = \begin{cases} 0 & \textit{untuk } \overline{E} = 1 \\ nI_0 & \textit{untuk } s = 0 \& \overline{E} = 0 \\ nI_1 & \textit{untuk } s = 1 \& \overline{E} = 0 \end{cases}$$

atau
$$nY = \overline{E} \cdot (\overline{S} \cdot nI_0 + S \cdot nI_1)$$

@2014.Eko Didik Widianto

Multiplekser

IC 74I S151

Blok Enkoder

Analisis Rangkaian MUX Aplikasi Multiplekser Fungsi Logika dengan Mux (Fkspansi Shannon)

IC 74LS151 Blok Enkoder

Blok

Konverter Ko

Ringkas

isensi

 Diinginkan rangkaian untuk memilih data 4 bit dari A dan B

Analisis rangkaian

74158: Quad MUX-2, Inverting

$$nY = \begin{cases} \frac{0}{nI_0} & \textit{untuk } \overline{E} = 1\\ \frac{1}{nI_1} & \textit{untuk } s = 0 \& \overline{E} = 0\\ \frac{1}{nI_1} & \textit{untuk } s = 1 \& \overline{E} = 0 \end{cases}$$

atau
$$nY = \overline{E} \cdot \left(\overline{S} \cdot \overline{nI}_0 + S \cdot \overline{nI}_1 \right)$$

@2014.Eko Didik Widianto

Multiplekser

IC 74I S151

Blok Enkoder

74157: MUX-4

@2014.Eko Didik Widianto

Multiplekser

IC 74LS151

74151: MUX 1-ke-8

4 01

GND 🕮

74151

@2014.Eko Didik Widianto

Multiplekser

IC 74LS151

Enkoder (ENC)

 Enkoder biner mengkodekan informasi (data) dari masukan 2ⁿ ke dalam kode keluaran n-bit

- Tipe enkoder: one-hot dan prioritas
 - enkoder one-hot: hanya ada 1 masukan yang bernilai 1
 - enkoder prioritas: masukan yang bernilai 1 bisa lebih dari 1 sehingga pengkodean dilakukan berdasarkan prioritas masukan
- Kegunaan
 - sebagai konverter kode
 - untuk mengurangi jumlah bit data yang diperlukan. Misalnya, enkoding keyboard
 - mengontrol permintaan interupsi (enkoder prioritas)

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Enkoder One-Ho Enkoder Prioritas IC TTL Enkoder

Blok

Dekoder/Demultiplel

ioniventer moun

lingkasan

Blok Enkoder

Enkoder One-Hot

Multiplekser

@2014.Eko Didik Widianto

- Blok Enkoder
- Blok

- Salah satu masukan (dan hanya satu masukan) harus mempunyai nilai '1' → one-hot encoding
 - Keluaran merepresentasikan bilangan biner yang mengidentifikasi masukan mana yang mempunyai nilai '1'
- Enkoder mengurangi jumlah bit yang diperlukan untuk merepresentasikan suatu informasi (data)

Dekoder/Demultiplel

Enkoder 4-ke-2 (ENC 4-ke-2)

ХЗ	X2	x_1	х0	<i>y</i> ₁	Yo
0	0	0	1	0	0
0	0	1	1 0 0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

$$y_1 = x_2 + x_3$$

 $y_0 = x_1 + x_3$

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder Enkoder One-Hot

Blok Enkoder

- Salah satu kelas enkoder: enkoder prioritas
 - Sinyal masukan mempunyai level prioritas
 - Keluaran enkoder menunjukkan masukan aktif yang mempunyai prioritas tertinggi
 - Jika masukan dengan prioritas tinggi 'assert', masukan dengan prioritas lebih rendah diabaikan
 - Asumsi: w3 mempunyai prioritas lebih tinggi daripada w0
 - Keluaran z menunjukkan bahwa tidak ada masukan bernilai '1'
 - Persamaan fungsi yo, y1 dan z?

					1 Y		
0	(0 () () D	D	1	
0	(0 () 1	. 0	0 1 0 1	0	
0	(0 :	1 >	0	1	0	
0		1)	()	(1	0	0	
1)	()	()	(1	1	0	

Blok Dekoder/Demultii

Konverter Kode

Ringkasan

$$y_1 = x_2 + x_3$$

 $y_0 = x_1 + x_3$
 $z = \overline{x}_3 \overline{x}_2 \overline{x}_1 \overline{x}_0 = \overline{x_3 + x_2 + x_1 + x_0}$

Rangkaian ENC Prio 4-Ke-2

@2014.Eko Didik Widianto

Multiplekser

Enkoder Prioritas

Blok Enkoder

IC TTL Enkoder

Nomor IC	Deskripsi
74148/748	enkoder prioritas 8-ke-3
74348/848	enkoder prioritas 8-ke-3 dengan keluaran 3 keadaan
74147	enkoder prioritas 10-ke-4

@2014,Eko Didik Widianto

IC TTL Enkoder

IC 74148: Enkoder Prioritas 8-ke-3

	Masukan									K	elua	ıran	
ΕI	10	11	12	13	14	15	16	17	A2	A1	A0	GS	E0
н	Х	Х	Х	Х	х	х	х	х	н	н	н	н	н
L	Н	н	Н	н	н	Н	н	н	н	Н	н	н	L
L	X	X	X	X	X	X	X	L	L	L	L	L	н
L	X	X	X	X	X	X	L	Н	L	L	н	L	н
L	X	X	X	X	X	L	н	н	L	Н	L	L	н
L	X	X	X	X	L	Н	н	Н	L	Н	н	L	н
L	X	X	X	L	н	Н	н	Н	н	L	L	L	н
L	X	X	L	н	н	н	н	н	н	L	н	L	н
L	X	L	Н	н	н	Н	н	н	н	н	L	L	н
L	L	Н	Н	Н	Н	Н	Н	н	н	н	н	L	н

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

IC TTL Enkoder

X: apapun (prioritas), level H (one-hot)

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder IC TTL Enkoder

Blok

Menghasilkan enkoder 16-ke-4, aktif rendah

Blok

Konverter K

niigkasa

Lisens

Menghasilkan enkoder 16-ke-4, aktif tinggi

IC 74348: Enkoder Prioritas 8-ke-3, 3 State

10

ω Α0

	Masukan									k	(elua	ıran	
ΕI	10	11	12	13	14	15	16	17	A2	A1	Α0	GS	E0
Н	х	Х	Х	Х	Х	Х	Х	Х	Z	Z	Z	Н	Н
L	н	Н	н	Н	Н	Н	Н	Н	z	Z	Z	н	L
L	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	L	Н
L	Х	Х	Х	Х	Х	Χ	L	Н	L	L	Н	L	Н
L	Х	Х	Х	Х	Х	L	Н	Н	L	н	L	L	Н
L	Х	Х	Х	Х	L	Н	Н	Н	L	Н	Н	L	Н
L	Х	Х	Х	L	Н	Н	Н	Н	н	L	L	L	Н
L	Х	Х	L	Н	Н	Н	Н	Н	н	L	Н	L	Н
L	Х	L	н	Н	Н	Н	Н	Н	н	Н	L	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	н	Н	н	L	Н

H: level HIGH, L: level LOW, Z: high impedance X: apapun (prioritas), level H (one-hot)

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder Enkoder One-Hot

Enkoder One-Hot Enkoder Prioritas IC TTL Enkoder

Blok

Dekoder/Demultiple

converter Roae

Ringkasan

isensi

A1

GND 0

lok

Dekodel/Demailip

_. .

Blok

Dekoder/Demultiplel

Dekoder dan Demultiplekser

Blok Dekoder/Demultiplekser

Dekoder (DEC)

- Rangkaian dekoder: mendekode informasi (data) terkode
- Mempunyai N masukan data dan 2^N keluaran (mis: dekoder 3 masukan mempunyai 8 jalur keluaran)

- Hanya satu keluaran yang di-assert (diaktifkan) dalam satu waktu (one-hot encoded)
 - Assert: ke nilai 1 (logika positif/active-high) atau 0 (logika negatif/active-low)
 - Tiap keluaran ditentukan oleh satu valuasi nilai masukan
- Masukan ENABLE (En) digunakan untuk mematikan (disable) keluaran
 - Asumsi keluaran active-high:
 - Jika En=0, tidak ada keluaran dekoder yang di-assert
 - Jika En=1, satu keluaran di-assert sesuai valuasi masukan

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiplel

Dekoder dan Demultiplekser Dekoder 2-ke-4 Demultiplekser 1-ke-4

n-ke-2ⁿ

Aplikasi Dekoder/Demux C TTL

Dekoder/Demultiplekse

onverter Kode

Ringkas

Blok

Dekoder/Demultiplel

Demultiplekser Dekoder 2-ke-4

Dekoder/Demultiplekser n-ke-2ⁿ

Aplikasi Dekoder/Demux IC TTL

Jekoder/Demultiplekse

Konverter Ko

Ringkas

Lisensi

- Melakukan fungsi kebalikan dari multiplekser
 - Multiplekser memilih satu dari sejumlah masukan data menjadi satu keluaran
 - Demultiplekser menempatkan nilai satu masukan ke salah satu keluaran dari sejumlah jalur keluaran

Masukan d_{in} akan disalurkan ke salah satu keluaran y_i sesuai dengan nilai selektor $s_{n-1}s_{n-2}\cdots s_1s_0$

Blok

Dekoder/Demultiplel

Dekoder dan

Demultiplekser

Demultiplekser

Dekoder 2-ke-4

Demultiplekser 1-ke-4

n-ke-2ⁿ Aplikasi Dekoder/Demux

: TTL lekoder/Demultipleksei

onverter Ko

Ringkasa

Lisensi

 Demultiplekser dapat diperoleh dari dekoder n - ke - 2ⁿ dan sebaliknya, sehingga rangkaian ini disebut juga dekoder/demultiplekser

- Sebagai dekoder, $x_{n-1} \cdots x_0$ digunakan sebagai masukan data dan E_n sebagai kontrol *enable*
- Sebagai demultiplekser, x_{n-1} ··· x₀ digunakan sebagai kontrol selektor dan E_n sebagai masukan data

Bahasan

Blok Dekoder/Demultiplekser

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Dekoder/Demultiplel

Dekoder 2-ke-4

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiplel

Dekoder dan

Dekoder 2-ke-4

Dekoder/Demultiplekser

Aplikasi Dekoder/Demux

Dekoder/Demultiplekse

Konverter Kode

Ringkasaı

Data masukan	x ₀ x ₁	y ₀ O keluara
Enable —C	En	у ₃ О—) ⁻

En	X 1	Х0	y _o	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	X	0 1 0 1 X	0	0	0	0

DEC 2-ke-4, Kontrol Enable, Aktif Rendah

- ► Kontrol *Enable* yang aktif-rendah mengaktifkan salah satu keluaran jika *En* = 0
 - Data keluaran akan menghasilkan nilai 0 untuk jalur yang aktif, sedangkan yang tidak aktif bernilai 1
- Jika En = 1 maka semua keluaran tidak aktif Data keluaran akan menghasilkan nilai 0 untuk jalur yang aktif, sedangkan yang tidak aktif bernilai 1.

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiplel

Demultiplekser

Dekoder 2-ke-4

Demultiplekser 1-ke-4
Dekoder/Demultiplekser

Aplikasi Dekoder/Demux IC TTL

ekodel/Dellidilipieksel

konverter Ko

lingkasan

Blok

Dekoder/Demultiplel

Demultiplekser 1-ke-4

Blok Dekoder/Demultiplekser

Demultiplekser 1-ke-4 (DEMUX 1-ke-4)

d _{in}	s ₁	S ₀	y _o	y ₁	<i>y</i> ₂	<i>y</i> ₃
1	0	0	1	0	0	0
1	0	1 0 1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	X	X	0	0	0	0

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiple

Demultiplekser Dekoder 2-ke-4

Demultiplekser 1-ke-4

Dekoder/Demultiplekse

n-ke-2ⁿ
Aplikasi Dekoder/Demux

IC TTL Dekoder/Demultiplekser

onverter Kode

Ringkasar

Dekoder/Demultiplel

Dekoder/Demultiplekser n-ke-2ⁿ

Blok Dekoder/Demultiplekser

Rangkaian Dekoder 3-ke-8

 Dekoder 3-ke-8 dapat tersusun dari 2 buah dekoder 2-ke-4 (mis: asumsi active-high)

- Dekoder 4-ke-16 dapat tersusun dari 5 dekoder 2-ke-4. Bagaimana?
 - Susunan tersebut disebut pohon dekoder

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiplel

Dekoder dan Demultiplekser Dekoder 2-ke-

Demultiplekser 1-ke-4

Dekoder/Demultiplekser
n-ke-2ⁿ

Aplikasi Dekoder/Demux

GTTL Dekoder/Demultiplekser

Konverter Ko

Ringkas

DEC 4-ke-16

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultinl

Dekoder dan Demultiplekse

Dekoder 2-ke-4 Demultiplekser 1-ke-4

Dekoder/Demultiplekser n-ke-2ⁿ

Aplikasi Dekoder/Demux IC TTL

Jekoder/Demultiplekser

onverter Ko

Ringkasar

Bahasan

Blok Dekoder/Demultiplekser

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Dekoder/Demultiplel

Aplikasi Dekoder/Demux

Aplikasi Dekoder: Pemilih Jalur yang Aktif

- Multiplekser 4-ke-1 dengan satu dekoder dan 4 buah buffer tiga-keadaan
 - Misalnya sebagai dekoder alamat untuk mengaktifkan devais

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiplel

Dekoder dan Demultiplekse

Dekoder 2-ke-4 Demultiplekser 1-ke-4 Dekoder/Demultiplekse

Anlikasi Dekoder/Demux

IC TTI

Dekoder/Demultiplekse

onverter Koo

Ringkasar

Aplikasi Dekoder: Pengalamatan Memori

- Dekoder seringkali digunakan untuk mendekodekan jalur alamat chip memori
 - ▶ Misalnya di ROM (Read-only Memory) 2^m × n

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiplel

Dekoder dan Demultiplekser Dekoder 2-ke-4

Demultiplekser 1-ke-4
Dekoder/Demultiplekse

Aplikasi Dekoder/Demux

IC TTL Dekoder/Demultiplekse

Konverter Kod

Ringkasan

Aplikasi Dekoder: Memory-mapped I/O

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiplel

Dekoder dan Demultipleks

Demultiplekser 1-ke-4
Dekoder/Demultiplekse

Aplikasi Dekoder/Demux

IC TTL Dekoder/Demultiplekse

):nelrasan

Ringkasan

Aplikasi Dekoder: Memory-mapped I/O

Address Range (hex)	Address bits A15 A14 A13	Decoder Ouputs 76543210	Active Select: Memory I/O
(rich)	711971117113	70513210	memory 1, o
0000 - 1FFF	000	11111110	RAM 0
2000 - 3FFF	0 0 1	11111101	RAM 1
4000 - 5FFF	010	11111011	RAM 2
6000 - 7FFF	011	11110111	RAM 3
8000 - 9FFF	100	11101111	RAM 4
A000 - BFFF	101	11011111	RAM 5
C000 - DFFF	110	10111111	Output Port
E000 - FFFF	111	01111111	Input Port

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Dekoder/Demultiplel

Aplikasi Dekoder/Demux

Blok Dekoder/Demultiplekser

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Dekoder/Demultiplel

IC TTL Dekoder/Demultiplekser

Nomor IC	Deskripsi				
74137	Dekoder 3-ke-8 dengan pengunci alamat				
	(address latch)				
74138	Dekoder 3-ke-8				
74139/74155/7415	6 Dual dekoder 2-ke-4				
74237	Dekoder/demux 3-ke-8 dengan <i>address</i>				
	latch, keluaran aktif-tinggi				
74238	Dekoder 3-ke-8 , keluaran aktif-tinggi				
74239	Dual dekoder 2-ke-4, keluaran aktif-tinggi				
74154/74159	Dekoder 4-ke-16				

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Dekoder/Demultiplel

74139: Dekoder 2-ke-4 Dual

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Dekoder/Demultiplel

IC TTL

74139: Fungsi dan Rangkaian

Masukan			Keluaran							
ηĒ	nA ₀	nA ₁	n₹ ₀	n\overline{Y}_2	n₹₃					
Н	Х	Х	Н	Н	Н	Н				
L	L	L	L	н	Н	н				
L	Н	L	Н	L	Н	Н				
L	L	Н	Н	H	L	H				
L	Н	Н	Н	Н	Н	L				

H: level HIGH, L: level LOW

X: don't care

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiplel

Dekoder dan Demultiplekse

> ekoder 2-ke-4 emultiplekser 1-ke-4 ekoder/Demultiplekse

n-ke-2 Aplikasi Dekoder/Demux

IC TTL Dekoder/Demultiplekser

Democen Demonspiere

...........

Ringkasan

Lisensi

74138/74238: Dekoder 3-ke-8

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Dekoder/Demultiplel

IC TTL Dekoder/Demultiplekser

74138/74238: Tabel Fungsi

K	ontr	ol	Ma	ısuk	an									
Ē ₁	\overline{E}_2	E ₃	A ₂	A ₁	A ₀	₹ 7	₹ ₆	\overline{Y}_5	\overline{Y}_4	\overline{Y}_3	\overline{Y}_2	\overline{Y}_1	Ϋ́	
н	х	Х	х	х	н	н	н	н	н	н	н	н	н	
X	н	Х	Х	Х	Х	н	н	н	н	н	н	Н	Н	
X	X	L	Х	Х	Х	н	Н	Н	н	н	Н	Н	Н	
L	L	Н	L	L	L	н	Н	Н	н	н	н	Н	L	
L	L	Н	L	L	н	н	н	н	н	н	н	L	Н	
L	L	н	L	н	L	н	н	Н	н	н	L	Н	Н	
L	L	Н	L	н	н	н	Н	Н	Н	L	Н	Н	Н	
L	L	Н	н	L	L	н	н	н	L	н	н	Н	Н	
L	L	Н	Н	L	н	н	Н	L	Н	н	Н	Н	Н	
L	L	Н	н	н	L	н	L	н	н	н	н	Н	Н	
L	L	Н	н	н	н	L	н	Н	Н	н	н	Н	Н	
	ı				1	1								

H: level HIGH, L: level LOW, X: don't care

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Dekoder/Demultiplel

74138/74238: Rangkaian

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiple

Dekoder dar Demultiplek

Dekoder 2-ke-4

n-ke-2ⁿ

Aplikasi Dekoder/Demux

Dekoder/Demultiplekser

Conventer ic

ı ııııgıtasa

Lisensi

74154: Dec/Demux 4-ke-16

Rangkaian Kombinasional

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiplel

Dekoder dan Demultiplekser

Demultiplekser 1-ke-4 Dekoder/Demultiplekser

Aplikasi Dekoder/Demux IC TTL

Dekoder/Demultiplekser

Konverter Ko

Ringkasar

isensi

Lisensi

- Rangkaian konverter kode digunakan untuk mengkonversikan satu tipe enkoding masukan ke keluaran dengan tipe enkoding lainnya
 - Dekoder 3-ke-8 mengkonversikan bilangan biner ke satu enkoding one-hot di keluarannya
 - ► Enkoder 8-ke-3 melakukan sebaliknya
- Beberapa tipe rangkaian konverter kode dapat dibentuk
 - Contohnya: dekoder BCD-ke-7segmen
 - Mengkonversikan digit BCD ke 7 sinyal yang digunakan untuk mengaktifkan segmen tampilan
 - Tiap segmen diimplementasikan dengan sebuah LED

Blok Enkoder

Blok

Dekoder/Demultiple

Konverter Kode

Dekoder BCD-ke-7 Segmer Dekoder Hex-ke-7 Segmen IC TTL Dekoder BCD-ke-7 Segmen

Ringkasa

Lisen

Tipe: common-cathode (CC) dan common-anode (CA)

Konverter Kode

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Konverter Kode Dekoder BCD-ke-7 Segmen

Dekoder BCD-ke-7 Segment

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Konverter Kode Dekoder BCD-ke-7 Segmen

a	W_3	W_2	W_1	w_o	а	b	С	d	e	f	g	
- w , b	0	0	0	0	1	1	1	1	1	1	0	_
$\begin{array}{ccc} w^0 & c \\ w^1 & d \end{array}$	0	0	0	1	0	1	1	0	0	0	0	f
= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	0	0	1	0	1	1	0	1	1	0	1	е
$\begin{vmatrix} 3 & 7 \\ q \end{vmatrix}$	0	0	1	1	1	1	1	1	0	0	1	
	0	1	0	0	0	1	1	0	0	1	1	f
<u>a</u>	0	1	0	1	1	0	1	1	0	1	1	e ,
f b	0	1	1	0	1	0	1	1	1	1	1	νE
g c	0	1	1	1	1	1	1	0	0	0	0	r C
e g c	1	0	0	0	1	1	1	1	1	1	1	
d	1	0	0	1	1	1	1	1	0	1	1	e

Konverter Kode

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Konverter Kode

Dekoder Hex-ke-7 Segmen

Dekoder Hexa-ke-7 Segment

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Konverter Kode Dekoder Hex-ke-7 Segmen

Konverter Kode

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Konverter Kode

IC TTL Dekoder BCD-ke-7 Segmen

IC TTL Dekoder BCD-ke-7 Segmen

Nomor IC	level aktif	Konfigurasi keluaran
7446	Rendah	open collector, 30V
7447/74247	Rendah	open collector, 15V
7448/74248	Tinggi	<i>pullup</i> internal 2kΩ, 5,5V
7449/74249	Tinggi	open collector, 5,5V
74347	Tinggi	Seperti 7447, open collector, 7V
74447	Tinggi	Seperti 74247, open collector, 7V

@2014.Eko Didik Widianto

Multiplekser

Blok Enkoder

Blok

Konverter Kode

IC TTL Dekoder BCD-ke-7 Segmen

74247/74248/74249

@2014,Eko Didik Widianto

Multiplekser (MUX)

Blok Enkoder

Blok

Dekoder/Demultiple

Konverter Kode

Dekoder Hex-ke-7 Segmer
IC TTL Dekoder BCD-ke-7
Segmen

Ringkasa

Licano

- Yang telah kita pelajari hari ini:
 - Karakteristik rangkaian kombinasional
 - Multiplekser: fungsi, rangkaian, analisis, aplikasinya dan implementasi TTL
 - Ekspansi Shannon untuk desain rangkaian logika mengunakan MUX
 - Enkoder: one-hot dan prioritas serta implementasi TTI
 - Dekoder/Demultiplekser: fungsi, aplikasi dan implementasi TTL
 - Konverter kode: 7 segmen, dekoder BCD-ke-7Segmen dan dekoder Hexa-ke-7Segmen
- Yang akan kita pelajari di pertemuan berikutnya adalah elemen rangkaian sekuensial
 - Pelajari: http://didik.blog.undip.ac.id/2014/ 02/25/tkc205-sistem-digital-2013-genap/

Konverter Kode

Lisensi

Creative Common Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)

Anda bebas:

- untuk Membagikan untuk menyalin, mendistribusikan, dan menyebarkan karya, dan
- untuk Remix untuk mengadaptasikan karya

Di bawah persyaratan berikut:

- Atribusi Anda harus memberikan atribusi karya sesuai dengan cara-cara yang diminta oleh pembuat karya tersebut atau pihak yang mengeluarkan lisensi. Atribusi yang dimaksud adalah mencantumkan alamat URL di bawah sebagai sumber.
- Pembagian Serupa Jika Anda mengubah, menambah, atau membuat karya lain menggunakan karya ini, Anda hanya boleh menyebarkan karya tersebut hanya dengan lisensi yang sama, serupa, atau kompatibel.
- ► Lihat: Creative Commons Attribution-ShareAlike 3.0 Unported License
- Alamat URL: http://didik.blog.undip.ac.id/2014/02/25/tkc205-

