

VBF Higgs to Invisible HIG-14-038, AN-14-243

Points in favour of a journal article

- ► This is a legacy result not an intermediate result:
- due to reduced trigger acceptance we don't expect to improve our expected limit until at least the end of 2016
- Systematic uncertainties are not all finalised:
- Uncertainty on the $Z \to \nu \nu$ background from the extrapolation from the $Z \to \mu \mu$ region and JES/JER
- ► The final limit from combining with ZH searches is significantly improved:
- first direct observed(expected) limit on B(H \rightarrow inv) below 50(40)%
- a relative improvement of 17% on the previous combined observed limit and 11% on the expected limit

VBF only limit

- We hope to improve the $Z/\gamma^* o \mu\mu$ to Z o
 u
 u extrapolation uncertainty
- This could double our improvement in expected limit over the prompt analysis
- It could allow us to reproduce the prompt data combined limit in the VBF channel alone

	Observed (expected) limit on $B(H o inv)$
Prompt analysis	0.65 (0.49)
Parked analysis (current $Z \rightarrow \nu \nu$ unc.)	0.60 (0.45)
Parked analysis (improved $Z ightarrow u u$ unc.)	0.58 (0.41)

Combination with ZH

- ► The improvement to the combined result is greater than that in VBF only
- Prompt limit was 0.58 (0.44) observed (expected)
- With the parked VBF analysis this becomes 0.48(0.39)
- We believe this to be due to the new VBF best fit signal strength being more similar to that from ZH.

Combination with ZH

-2 ∆ In L

Backup

Reminder

- ► Motivation is the same as run 1:
- ► For Run 1 we had two sets of triggers
- Prompt trigger used for published result: HIG-13-30
- Parked triggers: analysis presented today
- Parked analysis will be used as baseline for run 2

Overview

- ► Reminder of prompt analysis
- Details of parked analysis
- Emphasis on changes from established prompt analysis
- ► Trigger plans for run 2

Prompt Analysis

- Standard object definition:
- Details in backup
- Single bin counting experiment
- Signal region chosen to eliminate QCD and be above trigger turn ons
- Major backgrounds use data driven estimates:
- Z
 ightarrow
 u
 u , $W
 ightarrow \ell
 u$, QCD
- Minor backgrounds taken from MC:
- VV, W γ , $t\bar{t}$, single top
- ightharpoonup Expected limit 49% at $m_H=125{
 m GeV}$

Data driven background estimation

W:
$$N_S = N_S^{MC} \frac{N_C^{Data} - N_C^{Bkg}}{N_C^{MC}}$$

$$\text{Z: } N_{\text{S}}^{\text{Z} \rightarrow \nu\nu} = \left(N_{\text{C}}^{\text{Data}} - N_{\text{C}}^{\text{bkg}}\right) \cdot \frac{\sigma(\text{Z} \rightarrow \nu\nu)}{\sigma(\text{Z}/\gamma^* \rightarrow \mu\mu)} \cdot \frac{\epsilon_{\text{S}}^{\text{ZMC}}}{\epsilon_{\text{C}}^{\text{ZMC}}}$$

Parked Analysis

- ► All parked and prompt triggers are seeded by L1_ETM40
- ► Parked triggers have looser HLT thresholds:
- this allows us to look at new phase space regions and analysis techniques
- also increases QCD and PU backgrounds

Trigger Efficiency

- ► Trigger efficiency has been measured including correlation between variables
- This allows the trigger turn on region to be used
- Control triggers will be required to do this for run 2

Signal region

- ▶ QCD hard to model, signal region cuts are chosen to make remaining QCD small whilst enhancing real-MET using new Min $\Delta \phi$ (jet,MET) variable
- The signal region has been reoptimised for the looser parked triggers
- New region uses new variable has higher signal efficiency with much less QCD

Starting point for region choice

- ► Trigger turn ons and detector acceptance impose the following cuts:
- $\eta_{j1} \cdot \eta_{j2} < 0$, $|\eta_{j1,2}| < 4.7$, jet $1 p_T > 50$ GeV, $\Delta \eta_{jj} > 3.6$, jet $2 p_T > 40$ GeV, METnomu > 90 GeV, $M_{jj} > 800$ GeV
- QCD in plots is VBF enriched MC doesn't model all QCD
- ► Following cuts added due to poor data-MC agreement from QCD contamination:
- $> \frac{\textit{METnomu}}{\sigma_{\textit{METnomu}}} > 3.0, \ \mathsf{Min} \Delta \phi(\textit{all jets p}_{\textit{T}} > 30 \ \textit{GeV}, \textit{METnomu}) > 1.0, \ \textit{M}_{\textit{jj}} > 1000 \ \mathsf{GeV}$

Signal region selection

- ► As in the prompt analysis we veto events with 'veto' electrons or muons
- Can't model QCD shape so cut hard to remove most QCD
- Can then tolerate a larger uncertainty on QCD estimation
- Select region $\frac{METnoMU}{\sigma_{METnoMU}} > 4$ and $Min\Delta\phi(all\ jets, METnomu) > 2.0$
- ► Signal contribution also large in this region of parameter space
- We blind this region and use as a basis for signal region optimisation

Signal region selection

- ► We optimise by choosing the cut values with the best 95% C.L. expected limit
- Limit calculation details later
- ▶ We scanned through jet 2 p_T , $\frac{METnoMU}{\sigma_{METnoMU}}$, $Min\Delta\phi(all\ jets\ , METnomu)$ and M_{jj}
- Best limit was found for:
 - jet 2 $p_T > 45 \text{ GeV}$
 - $-\frac{METnoMU}{\sigma_{METnoMU}} > 4$
- $\mathsf{Min}\Delta\phi(\mathit{all\,jets}, \mathit{METnomu}) > 2.3$
- $M_{jj}>1200~{
 m GeV}$
- We defined this as our "signal region"
- Discrepancy outside signal region is from QCD

Top control region

- ► Top contribution to V+jets control regions is non-negligible
- Use method used for W backgrounds in prompt analysis
- Region: signal region with lepton veto replaced with requirement for 1 tight muon and 1 tight electron
- Very few events in $e\mu$ region so also removed Min $\Delta\phi(\mathit{all\,jets},\,\mathit{METnomu})$ cut

N ^{data}	$21\pm4.6(ext{stat.})$
N_C^{bkg}	$0.3 \pm 0.1 (MC\;stat.)$
N _S ^{top MC}	$5.3 \pm 1.3 (MC\;stat.)$
$N_C^{top\ MC}$	$24.6 \pm 4.0 (MC\;stat.)$
N ^{data} — N ^{bkg} NC MC	$0.8 \pm 0.2 (stat.) \pm 0.1 (MCstat.)$
N_S^{top}	$4.4\pm1.0(ext{stat.})\pm1.3(ext{MC stat.})$

$$W \rightarrow e \nu$$
, $W \rightarrow \mu \nu$, $Z \rightarrow \nu \nu$

- ► Data-MC agreement good
- ► Same method used as for prompt analysis
- ► Details in backup

Background	Number of events
W o e u	$57.4 \pm 7.3 (ext{stat.}) \pm 5.9 (ext{MC stat.})$
$W o \mu u$	$101.8 \pm 6.1 (extsf{stat.}) \pm 8.3 (extsf{MC stat.})$
Z ightarrow u u	157.3 ± 37.6 (datastat.) ±18.2 (MCstat.)

$W \to \tau \nu$ control region

- Control regions for other W backgrounds:
- signal region with lepton veto replaced with a requirement for a single lepton
- For $W \to \tau \nu$ there are not enough events in this region:
- Remove the $Min\Delta\phi(all\ jets,\ METnomu)$ cut
- This leads to QCD contamination so we require:
- $Min\Delta\phi(leading\ 2\ jets,\ METnomu) > 1.0$
- m_T of the lepton-MET system $> 20~{
 m GeV}$
- We add a 20% systematic on the $W \rightarrow \tau \nu$ background
- Final $W \rightarrow \tau \nu$ estimate: 98.0 \pm 13.2(stat.) \pm 12.6(MCstat.)

QCD background estimation: Shape

- Other background methods estimate unreconstructed contribution from reconstructed
- For QCD use MET near reconstructed jets to model MET from unreconstructed/mismeasured jets
- Use region with low MinΔφ(all jets, METnomu) but high MinΔφ(leading jets, METnomu)
- $\mathsf{Min}\Delta\phi(\mathit{all\,jets},\, \mathit{METnomu}) < 1.0$
- $\mathsf{Min}\Delta\phi(\mathit{leading jets},\,\mathit{METnomu}) > 1.0$
- ► Has good shape agreement with enriched QCD MC
- Use shape from this region

QCD background estimation: Normalisation

- ▶ MET significance and min $\Delta\phi(METnomu, all jets)$ correlated
- Cannot use ABCD to normalise
- Normalisation shows strong dependence on cut variables
- Fit normalisation variation in norm 1
- Check consistency in norm 2 and 3
- Final prediction: $N_S^{QCD} = 17 \pm 14$

Results

Background	$N_{est} \pm (stat) \pm (syst)$
Z o u u	$157.3 \pm 37.6 \pm 38.3$
$W o \mu u$	$101.8 \pm 6.1 \pm 11.9$
W o e u	$57.4 \pm 7.3 \pm 7.0$
W o au u	$98.0 \pm 13.2 \pm 25.4$
top	$4.4 \pm 1.0 \pm 1.4$
VV	$3.8 \pm 0.0 \pm 0.7$
QCD multijet	$17\pm0\pm14$
Total Background	$439.7 \pm 41.0 \pm 55.8$
Signal(VBF) 100% BF	$273.4 \pm 0.0 \pm 31.2$
Signal(ggH) 100% BF	$22.6 \pm 0.0 \pm 15.6$

- Uncertainties considered are mostly the same as the prompt analysis
- Details in backup
- ▶ The size of each uncertainty is given as a percentage of total signal/background
- ▶ Data and MC statistics still largest single contribution

Expected limits

- Used Higgs combine package with Asymptotic CLs method
- ► Remaining backgrounds very signal like
- Performed a single bin counting experiment
- Analysis blind so have expected limits only
- ▶ 95% C.L. Median limit on B(H \rightarrow inv.) for $m_H = 125$ GeV is: 38%
- ► Prompt paper expected limit was 49%

Available on the CMS information server

Documentation HIG-14-038

AN-14-243

CMS NOTE AN-14-243

2014/12/01 Head Id: 269377 Archive Id: 266572-269470M Archive Date: 2014/11/27 Archive Tag: trunk

Search for a Higgs boson decaying to invisible final states

Chayanit Asawatangtrakuldee², Jim Beooke³, David Colling¹, Gavin Davies², Patrick Dunne³, Arne-Marie Marnan³, Alexander Nikitenko³, and Jaso Pela⁵

> ¹ Imperial College London (UK) ² Peking University, Beijing (China) ³ University of Bristol (UK)

> > Abstract

In this foot, investigations airs made Intis improving the analysis for the search of a Higg become produced by Velete-Boom Fusion and decaying to investible particles, compared to what two published in HIG-15-030 with the \$150 Velatoset, and in view of payaring for \$150 Veril De packed triggers are used instead of the Percept ones, which allow a small incontain in statistics due to different requirements at HLT, in particular no requirements the HLT and Inconst refresheds or not begin \$27.0 An improved cells to be a requirement of the AllT and Inconst refresheds or not begin \$27.0 An improved cells or the Compared of the AllT and Inconst the Percept of the Percept of the Percept of the AllT and Inconst the Percept of the

This box is only visible in draft mode. Please make sure the values below make sense.

PDFAuthor: P. Dunne, A.-M. Magnan

PDFflide: Search for a Higgs boson decaying to invisible final states

PDFKeywords: CMS, physics, Higgs boson, invisible

Please also write that the shatract does not use one user defined symbols

DRAFT

CMS Physics Analysis Summary
The content of this note is intended for CMS internal use and distribution only

2014/12/02 Head Id: 269969 Archive Id: 269969P Archive Date: 2014/12/02 Archive Tag: trunk

CMS PAS HIG-14-038

Search for invisible decays of Higgs bosons in the vector boson fusion production mode

The CMS Collaboration

Abstract

A search for invisible decays of Higgs bosons in the vector boson fusion (VBS) production mode is carried out using data received for 2012 at a contra-c6-mass energy of \$25 Vely the CAS defector corresponding to an integrated luminosity of \$12 curves family. The production cross section times invisible branching function, as a function of the Higgs boson mass. Assuming standard model Higgs-boson cross sections and acceptances, the observed (sepected) upper limit on the invisible branching families on in q. 152 CM is found to to \$12 CM, 2003, 40 % confidence on the contraction of the contraction

This box is only visible in draft mode. Please make sure the values below make sense.

PDFAuthor: CMS Collaboration
PDFTitle: Search for invisible decays of Higgs bosons in the vector boson fusion pro

PDFKeywords: CMS, physics, Higgs

Please also verify that the abstract does not use any user defined symbols

Why Higgs to Invisible?

Experimental motivation

- Current measurements of the 125 GeV Higgs boson are compatible with Standard Model (SM) expectations
 - large uncertainties can still accommodate significant beyond the SM (BSM) properties
- Additional Higgs bosons with exotic decays are not excluded

Theoretical motivation

- ▶ Many BSM theories predict Higgs boson decays to invisible final states:
 - e.g. SUSY, extra dimensions, fourth-generation neutrinos
- These final state particles are often dark matter candidates

Trigger efficiency

- Variables used in prompt and parked triggers are highly correlated:
 - dijet mass, METnoMU, jet 2 p_T
- ▶ In the prompt analysis correlations were neglected as we cut to ensure trigger was > 95% efficient
- For the parked analysis we use a 2D binning in dijet mass and jet 2 p_T
- MJJ: 0,600,800,900,1000,5000
- Jet 2 p_T : 30,40,50,60,1000
- ► In each bin we fit the METnoMU trigger turn on using an error function
- We then combine the turn ons from runs A, BC and D weighted by luminosity and apply this to MC events

Prompt vs Parked selection

► Summary of differences in signal region selection

Variable	Prompt cut	Parked cut
Lepton veto	no veto e or μ	
$\eta_{j1,2}$	<	4.7
$\eta_{j1}\cdot\eta_{j2}$	< 0	
jet 1 <i>p_T</i>	> 50 GeV	
jet 2 p _T	> 50 GeV	> 45 GeV
$\Delta \eta_{jj}$	> 4.2	> 3.6
M_{jj}	> 1100 GeV	> 1200 GeV
METnomu	> 130 GeV	> 90 GeV
Central jet veto	yes	no
$\Delta \phi_{jj}$	< 1.0	no cut
METnoMU σ METnoMU	no cut	> 4
$Min\Delta\phi(alljets,METnomu)$	no cut	> 2.3

$W o e \nu$

- Data-MC agreement good
- ► Same method used as for prompt analysis

	Signal region	Control region	
N ^{data}	XXX	$68 \pm 8.2 ({\sf stat.})$	
N ^{bkg}	N/A	$3.1 \pm 1.5 ({\sf stat.})$	
N ^{WMC}	$114.6 \pm 8.9 (ext{stat.})$	$129.6 \pm 8.1 (stat.)$	
$(N^{data} - N^{bkg})/N_C^{WMC}$	$0.50 \pm 0.06 ({\sf stat.}) \pm 0.03 ({\sf MC stat.})$		
Final estimate	$57.4 \pm 7.3 ({\sf stat.}) \pm 5.9 ({\sf MC stat.})$	N/A	

$$W \rightarrow \mu \nu$$

- Data-MC agreement good
- ► Same method used as for prompt analysis

	Signal region Control region	
N ^{data}	XXX	$300 \pm 17.3 ({\sf stat.})$
N ^{bkg}	N/A	$12.7 \pm 4.6 ({ m stat.})$
NWMC	$142.1\pm10.1 ext{(stat.)}$	$401.1 \pm 15.1 ({\sf stat.})$
$(N^{data} - N^{bkg})/N_C^{MC}$	$0.72 \pm 0.04 ({\rm stat.}) \pm 0.03 ({\rm MC \ stat.})$	
Final estimate	$101.8 \pm 6.1 (ext{stat.}) \pm 8.3 (ext{MC stat.})$	N/A

$W \to \tau \nu$ control region

- ► Difference in weight between control region and signal region cuts used to estimate error
- ▶ Measured in $W \to \mu \nu$ which has enough events to see data driven weight variation with Min $\Delta \phi(\textit{all jets}, \textit{METnomu})$ cut
- weight changes by 20% when loosening cut from 2.3 to 1.0.
- We add a 20% systematic on the $W \to au
 u$ background

N ^{data}	$76\pm 8.7 (stat.)$	
N_C^{bkg}	$11.3 \pm 4.6 (MCstat.)$	
N _S ^{MC}	$122.6 \pm 8.8 (MCstat.)$	
N_C^{MC}	$81.0 \pm 6.4 (MCstat.)$	
N ^{data} — N ^{bkg} N ^{MC}	$0.80\pm0.11(ext{stat.})\pm0.08(ext{MC stat.})$	
N_S^W	$98.0 \pm 13.2 (stat.) \pm 12.6 (MCstat.)$	

$$Z \rightarrow \nu \nu$$

- ► Data-MC agreement good for limited statistics
- Same method used as for prompt analysis

	Signal region	Control region
N ^{data}	XXX	$18 \pm 4.2 (stat.)$
N ^{bkg}	N/A	$0.2 \pm 0.1 (stat.)$
$N^{MC}(EWK)$	$7.9 \pm 0.2 (stat.)$	$6.0 \pm 0.2 (stat.)$
N ^{MC} (QCD)	$29.5 \pm 3.0 (stat.)$	20.7 ± 2.5(stat.)
$\frac{N^{data} - N^{bkg}}{N^{MC}(EWK) + N^{MC}(QCD)}$	$0.67\pm0.16(\textit{stat.})\pm0.06(\textit{MCstat.})$	
FinalN ^{Z$\rightarrow \nu \nu$} estimate	157.3 ± 37.6 (datastat.) ±18.2 (MCstat.)	N/A

Normalisation variation

Jet met dphi

MET significance

QCD background estimation: Result and systematics

Region	Factor	Extrapolation	Extrapolation
		mindphi> 2.5	metsig> 4
Norm 1	0.17 ± 0.02	0.014 ± 0.008	0.05 ± 0.04
Norm 1+2	0.12 ± 0.01	0.013 ± 0.004	0.01 ± 0.01
Norm 1+3	0.24 ± 0.03	0.03 ± 0.01	0.55 ± 0.06
Norm 2	0.06 ± 0.01	-	0.01 ± 0.02
Norm 3	0.5 ± 0.1	0.21 ± 0.11	-

- Good agreement in mindphi extrapolations
- Norm 3 agreement in metsig is poor
 - As norm 3 has low statistics and is an odd region: drop
- ▶ Use envelope of norm 1 scale factors
- Final prediction: $N_S^{QCD} = 17 \pm 14$

Systematics

- Changes are:
- Top background now data driven so has data stat. error
- New W
 ightarrow au
 u extrapolation error
- QCD background error procedure now as described above
- ▶ We are reevaluating the $Z/\gamma^* \to \mu\mu$ to $Z \to \nu\nu$ with aMC@NLO
- Waiting on MC jobs, very quick to update results

Systematics

- Uncertainties considered are mostly the same as the prompt analysis
 - Details in backup
- ▶ The size of each uncertainty is given as a percentage of total signal/background
- Still statistically dominated

Control region data stat. $Z/\gamma^* \to \mu\mu$ to $Z \to \nu\nu$ extrapolation	9.30 7.16 5.54	0.00 0.00 3.82
	5.54	
		3.82
MC stat.	1.04	
Jet energy scale	4.94	10.70
W ightarrow au u control region extrapolation	4.46	0.00
Lepton ID efficiency	3.22	0.00
QCD normalisation	3.18	0.00
Jet energy resolution	2.86	1.81
Unclustered energy scale	2.28	1.64
Pileup weight	0.95	1.56
Luminosity	0.02	2.60
Theory Uncertainty	0.01	5.14

Source of gain

- Expected limits from prompt and parked analyses have been obtained from the prompt and parked data
- ggH signal and UES uncertainty not included
- This explains 2% difference in parked cuts parked trigger number
- Data driven top control region used for both prompt and parked cuts
- ▶ Prompt trigger weights ignore correlations in turn on part of parked cut region

	Prompt trigger	parked trigger
Prompt cuts	45%	46%
Parked cuts	47%	40%

Interpretation

- lacktriangle Prompt cuts limits \sim same as old card with both prompt and parked trigger
- slight difference as paper limit had extra $W\gamma$
- ► The parked cuts give a worse limit with prompt trigger than with parked trigger
- Improvement comes from using the new phase space made available by the parked trigger

Uncertainty impact table - impacts larger than 0%

Expected limit with:	All Nuisances: 37.8%	No Nuisances: 14.3%
Nuisance	Removal effect (relative %)	Addition effect (relative %)
Z ightarrow u u data stat.:	-12.4%	65.8%
$Z \rightarrow \nu \nu$ extrapolation:	-8.3%	53.5%
JES:	-6.5%	12.2%
W ightarrow au u extrapolation:	-4.1%	24.5%
Z ightarrow u u MC stat.:	-2.6%	24.5%
W ightarrow au u MC stat.:	-1.5%	12.2%
W ightarrow au u data stat.:	-1.5%	13.6%
QCD normalisation:	-1.5%	7.5%
$W ightarrow \mu u$ MC stat.:	-1.0%	6.1%
Muon ID efficiency:	-0.5%	6.8%
Tau ID efficiency:	-0.5%	5.5%
W o e u data stat.:	-0.5%	4.8%
$W ightarrow \mu u$ data stat.:	-0.5%	3.4%
W ightarrow e u MC stat.:	-0.5%	3.4%
Electron ID efficiency:	0.0%	0.6%
PU weight:	0.0%	0.6%

Data Samples

Dataset/JSON	Int. Lumi $[pb^{-1}]$
/MET/Run2012A-22Jan2013-v1/AOD	889
/VBF1Parked/Run2012B-22Jan2013-v1/AOD	3871
/VBF1Parked/Run2012C-22Jan2013-v1/AOD	7152
/VBF1Parked/Run2012D-22Jan2013-v1/AOD	7317
Total analysed	19229
Cert_190456-208686_8TeV_22Jan2013ReReco_Collisions12_JSON.txt	19789

MC Samples-1

Dataset	σ [pb] No. of Event		Eq. $\int L [fb^{-1}]$
$(Z ightarrow u u) + ext{jets } (50 < ext{HT} < 100 ext{ GeV})$	381.2	4040980	10.6
(Z ightarrow u u) + jets (100 < HT < 200 GeV)	160.3	4416646	27.6
$(Z \rightarrow \nu \nu)$ + jets (200 < HT < 400 GeV)	41.49	5055885	122
$(Z o u u) + \text{jets } (400 < \text{HT} < \infty \text{ GeV})$	5.274	1006928	191
$(W o l u) + ext{jets (inclusive)}$	37509(NNLO)	76102995	2.03
(W o l u) + 1 jet	5400	23141598	42.9
$(W \rightarrow l\nu) + 2$ jet	1750	34044921	19.5
$(W \rightarrow l\nu) + 3 \text{ jet}$	519	15539503	29.9
$(W \rightarrow l \nu) + 4 \text{ jet}$	214	13382803	62.5
$(Z/\gamma \rightarrow II) + \text{jets (MII} > 50)$	3503.71(NNLO)	30459503	8.7
$(Z/\gamma \rightarrow II) + 1$ jets (MII > 50)	561	24045248	42.9
$(Z/\gamma \rightarrow II) + 2 \text{ jets (MII} > 50)$	181	21852156	121
$(Z/\gamma \rightarrow II) + 3 \text{ jets (MII} > 50)$	51.1	11015445	216
$(Z/\gamma \rightarrow II) + 4 \text{ jets (MII} > 50)$	23.04	6402827	278
EWK $(Z/\gamma \rightarrow II) + 2$ jets	0.888	2978717	3354
EWK $(W^+ \rightarrow l\nu) + 2$ jets	6.48	8996164	1388
EWK $(W^- \rightarrow l\nu) + 2$ jets	4.09	5994018	1466

MC Samples-2

Dataset	σ [pb]	No. of Events	Eq. $\int L$ [fb ⁻¹]
WW	54.838(NLO)	10000431	182
WZ	33.21(NLO)	10000283	301
ZZ	17.654(NLO)	9799908	555
$W\gamma$	461.6	4802358	10.4
tt + jets	245.8(NNLO)	6923750	28.2
t (t-channel)	56.4(NLO)	3758227	66.6
t (tW-channel)	11.1(NLO)	497658	44.8
t (s-channel)	3.79(NLO)	259961	68.6
\bar{t} (t-channel)	30.7(NLO	1935072	63.0
\bar{t} (tW-channel)	11.1(NLO)	493460	44.5
\bar{t} (s-channel)	1.76(NLO)	139974	79.5

Objects

PFMET

- Ignore muons
- ► Type0+1 corrections
- Smeared PFMET for MC

AK5 PFJets

- ► L1FastJet+L2+L3(+L2L3Residual) JEC
- "Loose" PF Jet ID
- Cleaned with veto leptons
- ► "Loose" PU jet ID
- ► Smeared jet collection for MC (JER is smeared to match data)

Veto leptons

- loose+PFiso muons $p_T > 10$ GeV, $|\eta| < 2.1$
- veto+PFiso electrons $p_T > 10$ GeV, $|\eta| < 2.4$

Tight leptons

As veto leptons but "tight" ID and $p_T > 20 \text{ GeV}$

Hadronic taus

- $ightharpoonup p_T > 20 \text{ GeV}, \ |\eta| < 2.3, d_Z < 0.2 \text{ cm}$
- ► Tight ID, discriminant "byTightCombinedIsolationDelta-BetaCorr3Hits"
- ► Efficiency ~0.55, fake rate 0.02(barrel),0.03(endcap)

Data/MC reweighting

- ► We apply the following reweightings of the MC to match the data:
- Trigger efficiency
- Lepton efficiency: ID and isolation
- Pileup distribution

Other approaches investigated and run 2 prospects

Initial investigations

- ▶ Planned to define a loose pre-selection and model QCD shape
- Several options for analysis strategy:
- Rectangular cuts and counting experiment
- Rectangular cuts and shape experiment
- MVA and counting experiment
- MVA and shape experiment
- Due to trigger conditions no appropriate QCD control region found details later

Run 2 prospects

- ▶ Prescaled looser control triggers planned to enable better QCD control region
- Will reinvistigate shape analysis and MVA

Software framework strategy

Prompt analysis

- ► Two frameworks: Analyses A and B
- independent ntuples and analysis code

Parked analysis

- ▶ Insufficient manpower to maintain and develop two frameworks
- Moved to one fully developed framework
- New framework is development of analysis B and uses same ntuples
- Synchronised yields in signal and control regions between new framework and old analyses A and B
- Repeated expected limit calculation from HIG-13-030 analysis with the new framework and parked data
- Agrees with HIG-13-030 to within 2%, which is good given rereco, and change of global tag and triggers

Software cross check

- Starting point region numbers also cross-checked in alternate software
- Agreement is better than 0.5%

Signal efficiency as a function of PU

Signal efficiency as a function of PU

Veto muons in signal MC

- Veto muons don't have a dz or dxy cut
- ► Concern that we would be vetoing muons from a different vertex
- ► Muon veto efficiency turns out to be very high:
- $\sim\!\!10$ signal MC events with a veto muon out of $\sim\!\!55000$
- nvetomuons doesn't seem correlated with PU

Right plot is zoom of left

Signal Region Control Plots

Control plots - nunu

Control plots - nunu

Trigger efficiency error

- ▶ Bin used with largest uncertainty picked for each run period
- Worst case scenario assumed of all bins having this uncertainty gives 2.3% uncertainty
- Error cancels in all data driven backgrounds
- Only affects signal and VV
- ► Small compared to other uncertainties and doesn't affect limit
- Treated as negligible

Trigger efficiency-Run A-1

Trigger efficiency-Run A-2

Trigger efficiency-Run BC-1

Trigger efficiency-Run BC-2

Trigger efficiency-Run D-1

Trigger efficiency-Run D-2

QCD options tried

Several methods tried to model QCD

Standard MC

- doesn't have enough events

Private VBF+MET enriched QCD MC sample

- Can only enrich in events with real met
- Can't model met from mismeasurement

Data-driven shape using different jet pairs in the event

- Jet kinematics are very biased
- Ordering in p_T and angle have been tried
- Reweighting individual distributions to fix others has been tried

VBF enriched QCD MC

MC Filter: Vectorial sum of neutrino $E_{\mathcal{T}}$

 $ightharpoonup \sum E_{\perp}(\vec{\nu}) > 40 \; GeV$

MC Filter: Dijet Filter

- Select jets with:
 - ▶ $p_{\perp} > 20 \; GeV$
 - ▶ $|\eta| < 5.0$
- From selected jets at least one pair with:
 - ► m_{ii} > 700 GeV
 - $ightharpoonup \Delta \eta > 3.2$

There 2 distict populations of events: real and fake met.

Sample	Ev. Gen.	Filter Eff.	Events	XS [pb]	Eq. Lumi. $[fb^{-1}]$
QCD-Pt-80to120	39376000000	0.000049	1614416	1033680	38.09
QCD-Pt-120to170	7000000000	0.000283	2051000	156293.3	44.79
QCD-Pt-170to300	1375000000	0.000987	1391500	34138.15	40.28
QCD-Pt-300to470	80000000	0.002659	207840	1759.549	45.47
QCD-Pt-470to600	25000000	0.004127	104675	113.8791	219.53

BDT Study

- Had a quick look at MVA analysis
- Started from cut based signal region
- Only region with negligible QCD
- ► Best expected limit obtained 37%
- Does not take into account any increased systematic
- Therefore unlikely to be worthwhile
- New variables could make MVA worthwile
- Ability to model QCD would enable looser starting selection which may make MVA worthwhile

No systematics limits

- ▶ Prompt limit with no systematics 16.6%
- ▶ Parked limit with no systematics 14.3%