COSC/MATH 303 Midterm Exam Review

Technicals

DATE: Feb 13th TIME: 3:30pm

LOCATION: ART 110

- Arrive early
- Bring ID
- Calculators are permitted.
- Phones, laptops, etc. are not permitted.
- Backpacks and Phones should be left at the front of the class

Topic 1: Error Analysis

- New notation $(f \in C^k[a, b])$
- Taylor's Theorem
- * Big Oh notation
- * Taylor's Theorem 2.0
- Absolute and Relative Errors
- * Significant Digits ($RE < 5 \cdot 10^{-d}$)
- * Rates of Convergence (Linear, Quadratic)

Topic 2: Linear Systems

- Review Linear Algebra
- * Triangular Systems, Backward Substitution
- * Complexity of Backward Substitution $(O(n^2))$
- * Gaussian Elimination
- Complexity of Gaussian Elimination $(O(n^3))$
- * LU Decomposition and its value
- PLU Decompositions when pivoting is required
- * Jacobi Iterative Method
- * Gauss-Seidel Iterative Method

Topic 3: Non-Linear Equations

- * Bisection Method
- * Rate of Convergence of Bisection
- * False Position Method
- * Fixed Point Methods
- Existence and Uniqueness of Fixed Points
- * Fixed Point Point Theorem
- * Newton-Raphson Method
- * Newton-Raphson Quadratically Converges (when $f'(\bar{x}) \neq 0$)
- Hybrid Methods

Advice

- Some questions (about 1/3) are taken from assignments (with functions changed)
- ullet Some questions (about 1/3) are taken from lecture examples
- Some questions (about 1/6) check general understanding of when specific algorithms are used
- One question is a 'proof' question
 - Taylor 2.0
 - Complexity of Back Substitution
 - Convergence of Newton-Raphson via Fixed Point Point Theorem

GOOD LUCK