- 1. Регрессионная модель имеет вид $y_i = \beta_1 + \beta_x x_i + \beta_z z_i + \beta_w w_i + u_i$. Исследователь Феофан оценил эту модель по 20 наблюдениям и оказалось, что $R^2 = 0.8$. Феофан хочет проверить гипотезу H_0 о том, что $\beta_x = \beta_z$ и одновременно $\beta_z + \beta_w = 0$. Предпосылки теоремы Гаусса-Маркова на ошибки u_i выполнены, кроме того, u_i нормально распределены.
 - а) Какую вспомогательную регрессию достаточно оценить Φ еофану для проверки H_0 ?
 - б) Во вспомогательной регрессии оказалось, что $R^2=0.7$. Отвергается ли H_0 на 5%-ом уровне значимости?
 - в) На сколько процентов изменилась несмещённая оценка дисперсии случайной ошибки при переходе ко вспомогательной регрессии?

Решение:

а) Подставляем ограничения и получаем

$$y_i = \beta_1 + \beta_x(x_i + z_i - w_i) + u_i$$

б) Применяем F-тест:

$$F_{obs} = \frac{(R_{UR}^2 - R_R^2)/n_{rest}}{(1 - R_{UR}^2)/(n - k_{UR})} = \frac{(0.8 - 0.7)/2}{(1 - 0.8)/16} = 4$$

По таблицам находим критическое значение:

$$F_{cr,2,16} = 3.63$$

Вывод: H_0 отвергается.

- в) На сколько процентов изменилась несмещённая оценка дисперсии случайной ошибки при переходе ко вспомогательной регрессии?
 - Вспоминаем, что $\hat{\sigma}^2=RSS/(n-k)=(1-R^2)\cdot TSS/(n-k)$. Величина TSS не изменяется. Меняется только $a=(1-R^2)/(n-k)$. В исходной регрессии $a_{old}=0.2/16$, во вспомогательной $a_{new}=0.3/18$. Процентное изменение равно $(a_{new}-a_{old})/a_{old}\approx 33\%$.
- 2. Исследователь Феофан изучает регрессию со 100 наблюдениями и 10 оцениваемыми коэффициентами. Предпосылки теоремы Гаусса-Маркова на ошибки u_i выполнены, кроме того, u_i нормально распределены.

Феофан хочет оценить неизвестную дисперсию $\sigma^2={\rm Var}(u_i)$ по формуле $\hat{\sigma}^2=c\cdot RSS$ так, чтобы величина среднеквадратичной ошибки была минимальной. Какое значение c получит Феофан?

Подсказка: Феофан смутно помнит, что дисперсия χ^2 -распределения с d степенями свободы равна 2d.

Решение:

Заметим, что $RSS/\sigma^2 \sim \chi^2_{n-k}$, поэтому:

$$MSE = Var(\hat{\sigma}^2) + bias^2(\hat{\sigma}^2) = \sigma^4 \cdot (c^2 2(n-k) + (c(n-k) - 1)^2).$$

Минимизируя по c, получаем c = 1/(n - k + 2) = 1/92.

3. На работе Феофан построил парную регрессию по трём наблюдениям и посчитал прогнозы \hat{y}_i . Придя домой он отчасти вспомнил результаты:

y_i	\hat{y}_i
0	1
6	?
6	?

Поднапрягшись, Феофан вспомнил, что третий прогноз был больше второго. Помогите Феофану восстановить пропущенные значения.

Решение:

На две неизвестных a и b нужно два уравнения. Эти два уравнения — ортогональность вектора остатков плоскости регрессоров. А именно:

$$\begin{cases} \sum_{i} (y_i - \hat{y}_i) = 0\\ \sum_{i} (y_i - \hat{y}_i) \hat{y}_i = 0 \end{cases}$$

В нашем случае

$$\begin{cases}
-1 + (6 - a) + (6 - b) = 0 \\
-1 + (6 - a)a + (6 - b)b = 0
\end{cases}$$

Решаем квадратное уравнение и получаем два решения: a=4 и a=7. Итого: $a=4,\,b=7$.