AL/Autovalori/2020-06-18

1. Autovalori

Sia $a \in \mathbb{R}$ un parametro reale e si consideri la matrice

$$A = \begin{pmatrix} 10 & 3a & a \\ 0 & 9 & 2 \\ 0 & 2 & 6 \end{pmatrix}$$

(a) **Quanti** sono i valori possibili di a per i quali A è diagonalizzabile su \mathbb{R} ?

Risposta: 1 ✓

(b) Per a=0, trovare un valore **positivo** di b tale che

 $\begin{pmatrix} 0 \\ 2 \\ b \end{pmatrix}$

sia un autovettore di A.

Risposta: 1 ✓

(c) Per a=0, trovare $b\in\mathbb{R}$ tale che il sottospazio di \mathbb{R}^3

$$V = \operatorname{Span} \begin{pmatrix} 0 \\ 2 \\ b \end{pmatrix}^{\perp}$$

sia un autospazio di A.

Risposta: $\boxed{-4}$ \checkmark

2. Autovalori

Sia $a \in \mathbb{R}$ un parametro reale e si consideri la matrice

$$A = \begin{pmatrix} 10 & a & 3a \\ 0 & 9 & 2 \\ 0 & 2 & 6 \end{pmatrix}$$

(a) **Quanti** sono i valori possibili di a per quali A è diagonalizzabile du \mathbb{R} ?

Risposta: 1 ✓

(b) Per a = 0, trovare un valore **negativo** di b tale che

$$\begin{pmatrix} 0 \\ -2 \\ b \end{pmatrix}$$

sia un autovettore di A.

Risposta: -1

(c) Per a=0, trovare b tale che il sottospazio di \mathbb{R}^3

$$V = \operatorname{Span} \begin{pmatrix} 0 \\ -2 \\ b \end{pmatrix}^{\perp}$$

sia un autospazio di A.

Risposta: 4 ✓

AL/Matrice/2020-06-18

1. Matrice

Sia V lo spazio dei polinomi $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \in \mathbb{R}[x]$ di grado ≤ 4 e sia $\phi: V \to \mathbb{R}^3$ l'applicazione lineare definita da

$$\phi(f(x)) = \begin{pmatrix} f(1) \\ f'(2) \\ f''(3) \end{pmatrix}.$$

dove si ricorda che $f'(x) = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3$ e $f''(x) = 2a_2 + 6a_3x + 12a_4x^2$.

(a) Il vettore

$$\begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$

è contenuto nell'imagine di ϕ ? Sì \checkmark No

(b) Fissiamo basi in V e \mathbb{R}^3 e sia M la matrice di ϕ rispetto a queste basi. Qual è il rango di M?

Risposta: 3 ✓

(c) Le colonne di M sono linearmente dipendenti? Sì \checkmark No

Le righe di ${\cal M}$ sono linearmente dipendenti?

2. Matrice

Sia V lo spazio dei polinomi a coefficienti reali di grado ≤ 5 , e sia $\phi:V\to\mathbb{R}^3$ l'applicazione lineare definita da

$$\phi(f) = \begin{pmatrix} f(1) \\ f'(0) \\ f''(-1) \end{pmatrix},$$

dove si ricorda che $f'(x) = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3$ e $f''(x) = 2a_2 + 6a_3x + 12a_4x^2$.

(a) Il vettore

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

è contenuto nell'imagine di ϕ ? Sì \checkmark No

- (b) Fissiamo basi in V e \mathbb{R}^3 e sia M la matrice di ϕ rispetto a questi basi. Qual è il rango di M? Risposta: $\boxed{3}$
- (c) Le colonne di M sono linearmente indipendenti? Sì Le righe No \checkmark

di M sono linearmente indipendenti? Sì \checkmark No

MD/Counting/2020-06-18

1. Counting

Quanti sono i numeri $n \in \mathbb{N}$ tali che $\mathrm{MCD}(12,n) = 12$ e $\mathrm{mcm}(30^4,n) = 30^4$?

Risposta: 60 ✓

2. Counting

Quanti sono i numeri $n \in \mathbb{N}$ tali che $\mathrm{MCD}(45,n) = 45$ e $\mathrm{mcm}(30^6,n) = 30^6$?

Risposta: 210 ✓

3. Counting

Quanti sono i numeri $n \in \mathbb{N}$ tali che MCD(24, n) = 24 e $mcm(42^6, n) = 42^6$?

Risposta: 168 ✓

4. Counting

Quanti sono i numeri $n \in \mathbb{N}$ tali che MCD(36, n) = 36 e $mcm(30^4, n) = 30^4$?

Risposta: 45 ✓

MD/Congruenze/2020-06-18

1. Congruenza

Trovare le soluzioni della congruenza $(3+x)^5 \equiv 2 \pmod{5}$. Scrivere la soluzione nella forma $x \equiv a \pmod{m}$ con $0 \le a < m$.

Soluzione: $x \equiv \boxed{4 \checkmark \pmod{5} \checkmark}$

2. Congruenza

Trovare le soluzioni della congruenza $(3+x)^7 \equiv 2 \pmod{7}$. Scrivere la soluzione nella forma $x \equiv a \pmod{m}$ con $0 \le a < m$.

Soluzione: $x \equiv \boxed{6 \checkmark} \pmod{7 \checkmark}$

3. Congruenza

Trovare le soluzioni della congruenza $(3+x)^{11} \equiv 2 \pmod{11}$. Scrivere la soluzione nella forma $x \equiv a \pmod{m}$ con $0 \le a < m$.

Soluzione: $x \equiv \boxed{10 \quad \checkmark \pmod{11 \quad \checkmark}}$

4. Congruenza

Trovare le soluzioni della congruenza $(3+x)^{13} \equiv 2 \pmod{13}$. Scrivere la soluzione nella forma $x \equiv a \pmod{m}$ con $0 \le a < m$.

Soluzione: $x \equiv \boxed{12 \ \checkmark \ (\text{mod} \boxed{13} \ \checkmark \)}$

MD/Polinomi/2020-06-18

1. Polinomi

Trovare $a \in \mathbb{R}$ tale che il polinomio $x^3 + ax^2 + x + 3$ sia divisibile per $(x^2 + 1)$ in $\mathbb{R}[x]$.

Soluzione: $a = \boxed{3} \checkmark$

2. Polinomi

Trovare $a \in \mathbb{R}$ tale che il polinomio $x^3 + ax^2 + x + 6$ sia divisibile per $(x^2 + 1)$ in $\mathbb{R}[x]$.

Soluzione: $a = \boxed{6}$

3. Polinomi

Trovare $a \in \mathbb{R}$ tale che il polinomio $x^3 - x^2 + x + a$ sia divisibile per $(x^2 + 1)$ in $\mathbb{R}[x]$.

Soluzione: $a = \boxed{-1} \checkmark$

4. Polinomi

Trovare $a \in \mathbb{R}$ tale che il polinomio $x^3 + 4x^2 + x + a$ sia divisibile per $(x^2 + 1)$ in $\mathbb{R}[x]$.

Soluzione: $a = \boxed{4 \checkmark}$

MD/Numeri-Complessi/2020-06-18

1. Numeri complessi

Trovare $a, b \in \mathbb{R}$ tali che il numero complesso $\frac{10i}{3+i}$ sia uguale ad a + bi.

Soluzione: $a = \boxed{1 \quad \checkmark}, b = \boxed{3 \quad \checkmark}$

2. Numeri complessi

Trovare $a, b \in \mathbb{R}$ tali che il numero complesso $\frac{25i}{4+3i}$ sia uguale ad a+bi.

Soluzione: $a = \boxed{3} \quad \checkmark$, $b = \boxed{4} \quad \checkmark$

3. Numeri complessi

Trovare $a, b \in \mathbb{R}$ tali che il numero complesso $\frac{1-i}{1+i}$ sia uguale ad a+bi.

Soluzione: $a = \boxed{0 \quad \checkmark}, b = \boxed{-1 \quad \checkmark}$

4. Numeri complessi

Trovare $a, b \in \mathbb{R}$ tali che il numero complesso $\frac{10i}{1-2i}$ sia uguale ad a+bi. Soluzione: $a = \boxed{-4}$, $b = \boxed{2}$

Soluzione:
$$a = \boxed{-4 \quad \checkmark}, b = \boxed{2 \quad \checkmark}$$