Activité

Activité : introduction du nombre dérivé

On observe la distance parcourue par une voiture en accélération pendant les premières secondes après un démarrage. Celle-ci suit la fonction $d(t)=t^2$ reproduite sur le graphique ci-dessous.

distance (en mètres) d(t)

- 1. Le trajet dure secondes.
- 2. La distance parcourue est de mètres.
- 3. Sur l'ensemble du trajet, la vitesse moyenne est de

------ =

- 4. La vitesse moyenne entre les secondes 0 et 5 est : $\frac{\dots}{\dots}$ =
- 5. La vitesse moyenne entre les secondes 5 et 10 est : =
- 6. La vitesse moyenne entre les secondes 1 et 3 est : $\frac{\dots}{}$ =

Activité : introduction du nombre dérivé

On observe la distance parcourue par une voiture en accélération pendant les premières secondes après un démarrage. Celle-ci suit la fonction $d(t)=t^2$ reproduite sur le graphique ci-dessous.

- 1. Le trajet dure secondes.
- 2. La distance parcourue est de mètres.
- 3. Sur l'ensemble du trajet, la vitesse moyenne est de

------- =

- 4. La vitesse moyenne entre les secondes 0 et 5 est : $\frac{\dots}{\dots}$ =
- 5. La vitesse moyenne entre les secondes 5 et 10 est : =
- 6. La vitesse moyenne entre les secondes 1 et 3 est : =