Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2017/2018

Sémantika]Sémantika výrokovej logiky

4. prednáška

CNF Tablový kalkul

12. marca 2018

Obsah 4. prednášky

Výroková logika

Ekvivalencia formúl Konjunktívna a disjunktívna normálna forma

Kalkuly

Tablový kalkul Korektnosť

Opakovanie

Sémantika

Teória, model a splniteľnosť

Definícia 2.23

(Výrokovologickou) teóriou nazývame každú množinu formúl.

Definícia 2.25

Nech T je teória. Ohodnotenie v spĺňa teóriu T (skrátene $v \models T$) vtt v spĺňa každú formulu X z množiny T.

Spĺňajúce ohodnotenie nazývame modelom teórie T.

Definícia 2.28

Teória T je súčasne výrokovologicky splniteľná (skrátene splniteľná) vtt existuje aspoň jeden model T.

Teória je nesplniteľná vtt nie je splniteľná.

Vyplývanie

Výrokovologické vyplývanie

Definícia 2.31 (Výrokovologické vyplývanie)

Z teórie T výrokovologicky vyplýva formula X (tiež X je výrokovologickým dôsledkom T, skrátene $T \models X$) vtt každé ohodnotenie výrokových premenných, ktoré spĺňa T, spĺňa aj X.

Tvrdenie 2.33

Formula X výrokovologicky vyplýva z teórie T vtt teória $T \cup \{\neg X\}$ je nesplniteľná.

J. Kľuka, J. Šiška

Logika pre informatikov

Splniteľnosť a výrokovologické vyplývanie

Definícia 2.34

Formula X je nezávislá od teórie T, ak existuje dvojica ohodnotení v_1 , v_2 spĺňajúcich T, pričom v_1 spĺňa X, ale v_2 nespĺňa X.

2.6

Ekvivalencia formúl

Ekvivalentné úpravy

Definícia 2.38

Dve formuly X a Y sú (výrokovologicky) ekvivalentné ($X \Leftrightarrow Y$) vtt pre každé ohodnotenie v výrokových premenných platí, že v spĺňa X vtt v spĺňa Y.

Definícia 2.44 (Substitúcia)

Nech X, A, B sú formuly.

Substitúciou B za A v X (skrátene X[A|B])) nazývame formulu, ktorá vznikne nahradením každého výskytu A v X formulou B.

Ekvivalentné úpravy

Tvrdenie 2.45 (Dosadenie do ekvivalentných formúl)

Nech A a B sú navzájom ekvivalentné formuly, p je výroková premenná a Y je formula. Potom formuly A[p|Y] a B[p|Y] sú ekvivalentné.

Veta 2.46 (Ekvivalentné úpravy)

Nech X je formula, A a B sú ekvivalentné formuly. Potom formuly X a X[A|B] sú tiež ekvivalentné.

Lema 2.47

Nech X je výroková formula, p je výroková premenná, A je formula a v je ohodnotenie výrokových premenných.

Potom $v \models X[p|A]$ vtt $v_{p|A} \models X$, kde $v_{p|A}$ je ohodnotenie, pre ktoré platí:

- $v_{p|A}(r) = v(r)$, ak r je výroková premenná a $p \neq r$;
- $v_{p|A}(p) = t$, $ak v \models A$;
- $v_{p|A}(p) = f$, $ak v \not\models A$.

2.6.2

Konjunktívna a disjunktívna normálna forma

Nech $A_1, A_2, ..., A_n$ je konečná postupnosť formúl.

- Formulu ((($A_1 \wedge A_2) \wedge A_3$) $\wedge \cdots \wedge A_n$) budeme skrátene zapisovať ($A_1 \wedge A_2 \wedge A_3 \wedge \cdots \wedge A_n$), prípadne $\bigwedge_{i=1}^n A_i$ a nazývať konjunkcia postupnosti formúl A_1, \ldots, A_n .
- Formulu ((($A_1 \lor A_2) \lor A_3$) $\lor \cdots \lor A_n$) budeme skrátene zapisovať ($A_1 \lor A_2 \lor A_3 \lor \cdots \lor A_n$), prípadne $\bigvee_{i=1}^n A_i$ a nazývať disjunkcia postupnosti formúl A_1, \ldots, A_n .
- Pre n = 1 chápeme samotnú formulu A₁ ako konjunkciu aj ako disjunkciu jednoprvkovej postupnosti formúl A₁.
- Konjunkciu prázdnej postupnosti formúl (n = 0) chápeme ako ľubovoľnú tautológiu (napríklad (p₁ ∨ ¬p₁)) a označujeme ju ⊤.
- Disjunkciu prázdnej postupnosti formúl chápeme ako ľubovoľnú nesplniteľnú formulu (napríklad (p₁ ∧ ¬p₁)) a označujeme ju ⊥ alebo □.

Konjunktívna a disjunktívna normálna forma

Definícia 2.49

- Výrokovú premennú alebo negáciu premennej nazývame literál.
- Disjunkciu literálov nazývame klauzula (tiež "klauza").
- Hovoríme, že formula X je v disjunktívnom normálnom tvare (DNF), ak X je disjunkciou formúl, z ktorých každá je konjunkciou literálov.
- Hovoríme, že formula X je v konjunktívnom normálnom tvare (CNF), ak X je konjunkciou klauzúl.

Príklad 2.50

- Literály: p, ¬q
- Klauzuly: p, ¬q,
 (¬p ∨ q ∨ ¬r)
- DNF: $p, \neg q$, $(p \lor \neg q)$, $(p \land \neg q \land r)$, $((\neg p \land q) \lor (q \land r))$
- CNF: $p, \neg q,$ $(p \lor \neg q),$ $(p \land \neg q \land r),$ $((\neg p \lor q) \land (q \lor r))$

Veta 2.51

- 1 Ku každej formule X existuje ekvivalentná formula D v disjunktívnom normálnom tvare.
- 2 Ku každej formule X existuje ekvivalentná formula C v konjunktívnom normálnom tvare.

Dôkaz.

- ① Zoberme všetky ohodnotenia $v_1, ..., v_n$ také, že $v_i \models X$ a $v_i(q) = f$ pre všetky premenné $q \notin \text{vars}(X)$. Pre každé v_i zostrojme formulu C_i ako konjunkciu obsahujúcu p, ak $v_i(p) = t$, alebo $\neg p$, ak $v_i(p) = f$, pre každú $p \in \text{vars}(X)$. Očividne formula $D = \bigvee_{1 \le i \le n} C_i$ je v DNF a je ekvivalentná s X (vymenúva všetky možnosti, kedy je X splnená).
- 2 K $\neg X$ teda existuje ekvivalentná formula D v DNF. Znegovaním D a aplikáciou de Morganových pravidiel dostaneme formulu C v CNF, ktorá je ekvivalentná s X.

CNF — trochu lepší prístup

- Skúmanie všetkých ohodnotení nie je ideálny spôsob ako upraviť formulu do CNF — najmä keď má veľa premenných a jej splniteľnosť chceme rozhodnúť SAT solverom.
- Je nejaký lepší systematický postup?
- Všimnime si:

CNF je konjunkcia disjunkcií literálov — výrokových premenných alebo ich negácií

Teda:

- ► CNF neobsahuje implikácie ako sa ich zbavíme?
- Negácia sa vyskytuje iba pri výrokových premenných ako ju tam dostaneme, ak to tak nie je (napr. $\neg(A \lor B)$)?
- Disjunkcie sa nachádzajú iba vnútri konjunkcií ako presunieme "vonkajšie" disjunkcie "dovnútra" konjunkcií (napr. (A ∨ (B ∧ C)))?

CNF — trochu lepší prístup

Algoritmus CNF₁

- 1 Nahradíme implikáciu disjunkciou:
 - $\blacktriangleright (A \to B) \Leftrightarrow (\neg A \lor B).$
- Presunieme ¬ dovnútra pomocou de Morganových pravidiel a dvojitej negácie.
- 3 "Roznásobíme" ∧ s ∨ podľa distributívnosti a komutatívnosti:
 - $(A \lor (B \land C)) \Leftrightarrow ((A \lor B) \land (A \lor C))$
 - $((B \land C) \lor A) \Leftrightarrow (A \lor (B \land C)) \Leftrightarrow ((A \lor B) \land (A \lor C)) \Leftrightarrow$

$$((B \lor A) \land (A \lor C)) \Leftrightarrow ((B \lor A) \land (C \lor A))$$

Prezátvorkujeme na požadovaný tvar pomocou asociatívnych pravidiel.

Tvrdenie 2.52

Výsledná formula alg. CNF_1 je ekvivalentná s pôvodnou a je v CNF.

CNF — trochu lepší prístup

Príklad 2.53

$$(\neg(a \lor \neg b) \lor \neg(c \lor (d \land \neg e)))$$

3
$$((\neg a \land \neg \neg b) \lor \neg (c \lor (d \land \neg e)))$$

$$((\neg a \land b) \lor (\neg c \land \neg (d \land \neg e)))$$

$$((\neg a \land b) \lor (\neg c \land (\neg d \lor \neg \neg e)))$$

$$\bigcirc$$
 $((\neg a \land b) \lor (\neg c \land (\neg d \lor e)))$

8
$$(((\neg a \land b) \lor \neg c) \land ((\neg a \land b) \lor (\neg d \lor e)))$$

$$\bigcirc (((\neg a \lor \neg c) \land (b \lor \neg c)) \land ((\neg a \lor (\neg d \lor e)) \land (b \lor (\neg d \lor e))))$$
 [3]

$$0 ((\neg a \lor \neg c) \land (b \lor \neg c) \land (\neg a \lor (\neg d \lor e)) \land (b \lor (\neg d \lor e)))$$

$$(b \lor (\neg d \lor e)))$$
 [3]

$$(b \lor (\neg d \lor e))) [4]$$

$$(A \cup A \cup A)$$

CNF — prečo iba trochu lepší prístup

Distribúcia ∨ cez ∧ spôsobuje nárast formuly:

- $A_2 = ((p_1 \land q_1) \lor (p_2 \land q_2))$ $C_2 = ((p_1 \lor p_2) \land (p_1 \lor q_2) \land (q_1 \lor p_2) \land (q_1 \lor p_2))$ $A_2 \Leftrightarrow C_2, \deg(A_2) = 3, \deg(B_2) = 7$
- $A_3 = ((p_1 \land q_1) \lor (p_2 \land q_2) \lor (p_3 \land q_3))$ $C_3 = ((p_1 \lor p_2 \lor p_3) \land (p_1 \lor q_2 \lor p_3) \land (q_1 \lor p_2 \lor p_3) \land (q_1 \lor p_2 \lor q_3) \land (p_1 \lor p_2 \lor q_3) \land (p_1 \lor q_2 \lor q_3) \land (q_1 \lor p_2 \lor q_3) \land (q_1 \lor p_2 \lor q_3))$ $A_3 \Leftrightarrow C_3$, $\deg(A_3) = 5$, $\deg(C_3) = 23$
- A_n = ((p₁ ∧ q₁) ∨ · · · ∨ (p_n ∧ q_n))
 Koľko klauzúl bude obsahovať C_n?
 Akého bude stupňa?

CNF — dobrý prístup: Cejtinova transformácia

Dá sa vyhnúť exponenciálnemu nárastu formuly

$$A_n = ((p_1 \land q_1) \lor \cdots \lor (p_n \land q_n))$$
 kvôli distributívnosti?

- 1 Zoberme nové výrokové premenné r_1, \ldots, r_n, s
- 2 Vyjadrime, že r_i je ekvivalentným zástupcom konjunkcie $(p_i \wedge q_i)$: $(r_i \leftrightarrow (p_i \land q_i))$
- 3 Použime r; na vyjadrenie, že s je ekvivalentným zástupcom disjunkcie $A_n: (s \leftrightarrow (r_1 \lor \cdots \lor r_n))$
- 4 A_n teda môžeme nahradiť formulou $((s \leftrightarrow (r_1 \lor \cdots \lor r_n)) \land (r_1 \leftrightarrow (p_1 \land q_1)) \land \cdots \land (r_n \leftrightarrow (p_n \land q_n)) \land s)$

Pomôže nám to? Ekvivalentnými úpravami prvý konjunkt upravíme na n + 1 klauzúl spolu $4 \cdot n + 2$ klauzúl! ďalších n na 3 klauzuly každý

Použitie tohto princípu na všetky spojky: Cejtinova transformácia (angl. Tseytin) Cejtinova transformácia $T(A_n)$ nie je ekvivalentná A_n , iba ekvisplniteľná

2.7 Kalkuly

Dokazovanie ekvivalencie syntakticky vs. sémanticky

- Pomocou substitúcie ekvivalentných formúl vieme dokázať, že dve formuly sú ekvivalentné bez toho, aby sme vyšetrovali všetky ohodnotenia ich výrokových premenných.
- Výhodné pri formulách s veľkým počtom premenných.
- Formulu $X = ((a \lor \neg b) \to \neg(c \lor (d \land \neg e)))$ sme upravili do CNF $Y = ((\neg a \lor \neg c) \land (b \lor \neg c) \land (\neg a \lor \neg d \lor e) \land (b \lor \neg d \lor e))$ pomocou 12 substitúcií ekvivalentných podformúl.
- Zároveň sme dokázali, že X a Y sú ekvivalentné.
- Na dôkaz ich ekvivalencie tabuľkovou metódou by sme potrebovali vyšetriť 32 prípadov.

Ekvivalencia syntakticky vs. sémanticky

- Tabuľková metóda je sémantická
 - využíva ohodnotenia výrokových premenných a spĺňanie formúl ohodnoteniami
- Substitúcie ekvivalentných formúl sú syntaktickou metódou
 - pracujú iba s postupnosťami symbolov, nie s ohodnoteniami
- Navyše sú deduktívnou metódou
 - odvodíme iba formuly ekvivalentné s pôvodnou

Kalkuly – dokazovanie vyplývania syntakticky

- Ak začneme nejakou formulou a budeme substituovať ekvivalentné podformuly, dostávame postupne rôzne formuly, ktoré sú ale stále ekvivalentné s pôvodnou formulou.
- Čo keby sme začali s tautológiou?
 - Dostávame stále tautológie.
- Logiku viac zaujíma vyplývanie ako ekvivalencia a tautológie
- Vyplývanie dôsledkov z teórií sme doteraz dokazovali sémanticky vyšetrovaním všetkých ohodnotení.
- Na tento účel ale existujú aj syntaktické metódy kalkuly.
- Ukážeme si dva kalkuly:

```
tablový – stromový, prirodzenejší rezolvenciu – lineárny, strojový
```

2.8

Tablový kalkul

Dôkaz vyplývania sporom v slovenčine

Príklad 2.54

Dokážme, že z $T'_{party} = \{ (kim \rightarrow (jim \land \neg sarah)), (eva \rightarrow kim) \}$ vyplýva (sarah $\rightarrow \neg eva$). Poďme na to sporom:

Predpokladajme, že existuje také ohodnotenie v,

že $v \models T'_{party}$, teda (1) $v \models (kim \rightarrow (jim \land \neg sarah))$ a (2) $v \models (eva \rightarrow kim)$, ale pritom (3) $v \not\models (sarah \rightarrow \neg eva)$.

Podľa definície splnenia implikácie z faktu (3) vyplýva, že (4) $v \models sarah$ a zároveň (5) $v \not\models \neg eva$. Z (5) dostávame, že (6) $v \models eva$.

Podľa (2) máme dve možnosti: (7) $v \not\models eva$ alebo (8) $v \models kim$. Možnosť (7) je v spore s (6).

Platí teda (8) a podľa (1) ďalej môžu nastať dva prípady: (9) $v \not\models kim$, ktorý je však v spore s (8), alebo (10) $v \models (jim \land \neg sarah)$. V tom prípade (11) $v \models jim$ a (12) $v \models \neg sarah$, čiže (13) $v \not\models sarah$, čo je zase v spore s (4).

Vo všetkých prípadoch sme prišli k sporu, predpoklad je teda neplatný a každé ohodnotenie, ktoré spĺňa T'_{narty} , spĺňa aj $(sarah \rightarrow \neg eva)$.

Tablová notácia pre dôkazy

Predchádzajúcu úvahu môžeme stručne zapísať, ak sa dohodneme, že:

- F X označuje, že v nespĺňa X;
- T X označuje, že v spĺňa X;
- ak z niektorého z predchádzajúcich faktov vyplýva priamo z definície spĺňania nový fakt, zapíšeme ho do ďalšieho riadka;
- ak z niektorého faktu vyplýva, že platí fakt F₁ alebo fakt F₂, rozdelíme úvahu na dve nezávislé vetvy, pričom prvá začne faktom F₁ a druhá faktom F₂;
- ak nastane spor, pridáme riadok so symbolom *.

Dôkaz vyplývania sporom v tablovej notácii

Príklad 2.55											
(1) (2) (3) (4) (5)	Т(z T' _{party} z T' _{party} dôkaz sporom z (3) z (3)									
$\frac{(6)}{(7)}$	T eva F eva z (2) (8) T kim						z (5) z (2)				
(1)	*	(6) a (7)	(9)	F kim *	z (1) (8) a (9)	(10) (11) (12) (13)	T(jim ∧ ¬sarah) T jim T ¬sarah F sarah *	z (2) z (10) z (10) z (12) (4) a (13)			

Spĺňanie a priame podformuly

Pozorovanie 2.56

Nech v je ľubovoľné ohodnotenie výrokových premenných. Nech X a Y sú ľubovoľné formuly.

- 1 T) Ak v spĺňa $\neg X$, tak v nespĺňa X.
 - F) Ak v nespĺňa $\neg X$, tak v spĺňa X.
- 2 T) Ak v spĺňa $(X \land Y)$, tak v spĺňa X a v spĺňa Y.
 - F) Ak v nespĺňa $(X \wedge Y)$, tak v nespĺňa X alebo v nespĺňa Y.
- 3 T) Ak v spĺňa $(X \vee Y)$, tak v spĺňa X alebo v spĺňa Y.
 - F) Ak v nespĺňa $(X \vee Y)$, tak v nespĺňa X a v nespĺňa Y.
- 4 T) Ak v spĺňa $(X \to Y)$, tak v nespĺňa X alebo v spĺňa Y.
 - F) Ak v nespĺňa $(X \to Y)$, tak v spĺňa X a v nespĺňa Y.

Označené formuly a ich sémantika

Definícia 2.57

Nech X je formula výrokovej logiky.

Postupnosti symbolov TX a FX nazývame označenými formulami.

Definícia 2.58

Nech v je ohodnotenie výrokových premenných a X je formula. Potom

- v spĺňa T X vtt v spĺňa X:
- v spĺňa F X vtt v nespĺňa Y.

Dohoda

Pre označené formuly budeme používať veľké písmená zo začiatku a konca abecedy s horným indexom + a prípadne s dolnými indexmi, napr. A^+ , X_7^+ . Pre množiny označených formúl budeme používať písmená S, T s horným indexom + a prípadne s dolnými indexmi, napr. S^+ , T_3^+ .

Tablové pravidlá

Podľa pozorovania 2.56 a definície 2.58 môžeme sformulovať pravidlá pre označené formuly:

$$\frac{\alpha}{\alpha_{1}} \qquad \frac{\beta}{\beta_{1} \mid \beta_{2}}$$

$$\frac{T(X \land Y)}{TX} \qquad \frac{F(X \land Y)}{FX \mid FY} \qquad \frac{T \neg X}{FX}$$

$$\frac{F(X \lor Y)}{FX} \qquad \frac{T(X \lor Y)}{TX \mid TY} \qquad \frac{F \neg X}{TX}$$

$$\frac{F(X \to Y)}{TX} \qquad \frac{T(X \to Y)}{FX \mid TY}$$

$$\frac{F(X \to Y)}{FX} \qquad \frac{T(X \to Y)}{FX \mid TY}$$

Jednotný zápis označených formúl typu α

Definícia 2.59 (Jednotný zápis označených formúl typu α)

Označená formula A^+ je typu α vtt má jeden z tvarov v ľavom stĺpci tabuľky pre nejaké formuly X a Y.

Takéto formuly budeme označovať písmenom α ;

 α_1 bude označovať príslušnú označenú formulu zo stredného stĺpca a α_2 príslušnú formulu z pravého stĺpca.

α	α_1	α_2
$T(X \wedge Y)$	TX	T Y
$F(X \vee Y)$	FX	FY
$F(X \to Y)$	TX	FY
$T\neg X$	FX	FX
$F \neg X$	TX	TX

Pozorovanie 2.60 (Stručne vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných. Ak v spĺňa α , tak v spĺňa α_1 a v spĺňa α_2 .

Jednotný zápis označených formúl typu β

Definícia 2.61 (Jednotný zápis označených formúl typu β)

Označená formula B^+ je typu β vtt má jeden z tvarov v ľavom stĺpci tabuľky pre nejaké formuly X a Y.

Takéto formuly budeme označovať písmenom β ;

 β_1 bude označovať príslušnú označenú formulu zo stredného stĺpca a β_2 príslušnú formulu z pravého stĺpca.

β	eta_1	eta_2
$F(X \wedge Y)$	FX	F Y
$T(X \vee Y)$	TX	T Y
$T(X \to Y)$	FX	T Y

Pozorovanie 2.62 (Stručne vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných.

Ak v spĺňa β , tak v spĺňa β_1 alebo v spĺňa β_2 .

Tablo pre množinu označených formúl

Definícia 2.63

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný podľa nasledovných rekurzívnych pravidiel:

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A^+ z S^+ je tablom pre S^+ .
- Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé priame rozšírenie \mathcal{T} ktoroukoľvek z operácií:
 - \triangle Ak sa na vetve π_v (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - B Ak sa na vetve π_{ν} vyskytuje nejaká označená formula β , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .
 - S⁺: Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$.

Nič iné nie je tablom pre S^+ .

Vetvy a uzavretosť

Definícia 2.64

Vetvou tabla \mathcal{T} je každá cesta od koreňa \mathcal{T} k niektorému listu \mathcal{T} . Označená formula X^+ sa vyskytuje na vetve π v \mathcal{T} vtt sa nachádza v niektorom vrchole na π .

Definícia 2.65

Vetva π tabla \mathcal{T} je uzavretá vtt obsahuje označené formuly $\mathsf{F} X$ a $\mathsf{T} X$ pre nejakú formulu X. Inak je π otvorená.

Tablo $\mathcal T$ je uzavreté vtt každá jeho vetva je uzavretá.

Naopak, $\mathcal T$ je otvorené vtt aspoň jedna jeho vetva je otvorená.

2.8.1 Korektnosť

Korektnosť tablového kalkulu

Veta 2.66 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl a $\mathcal T$ je uzavreté tablo pre S^+ . Potom je množina S⁺ nesplniteľná.

Dôsledok 2.67

Nech S je teória formúl a X je formula.

Ak existuje uzavreté tablo pre $\{T A \mid A \in S\} \cup \{F X\}$ (skr. $S \vdash X$), tak X vyplýva z S ($S \models X$).

Pozorovanie 2.68

Formula X je tautológia vtt F X je nesplniteľná.

Dôsledok 2.69

Nech X je formula a existuje uzavreté tablo pre $\{FX\}$ (skr. $\vdash X$). Potom X je tautológia ($\models X$).

Literatúra

Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.

Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.

Vítězslav Švejdar. *Logika*: *neúplnost*, *složitost*, *nutnost*. Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.