Operating System (OS)

National Tsing Hua University 2021, Fall Semester

Mainframe Systems

Computer-system architecture

Special-purpose Systems

System Category

- Mainframe Systems
 - > Batch
 - Multi-programming
 - > Time-sharing
- Computer-system architecture
- Special-purpose Systems

- One of the earliest computers
 - > Slow I/O devices: card reader/printer, tape drivers
- **■** Evolution:
 - ➤ Batch → Multi-programming → Time-shared
- Still exists in today's world...
 - For critical application with better reliability & security
 - Bulk data processing
 - Widely used in hospitals, banks

IBM 704 mainframe in 1954

.

Mainframe: Batch Systems

Processing steps:

- Users submit jobs (program, data, control card)
- > Operator sort jobs with similar requirements
- > OS simply transfer control from one job to the next

Mainframe: Batch Systems

- Drawbacks:
 - One job at a time
 - > No interaction between users and jobs
 - > CPU is often idle
 - ♦ I/O speed << CPU speed (at least 1:1000)</p>
- OS doesn't need to make any decision

Mainframe: Multi-programming System

- Overlaps the I/O and computation of jobs
 - Keeps both CPU and I/O devices working at higher rates
- **Spooling** (Simultaneous Peripheral Operation On-Line)
 - > I/O is done with no CPU intervention
 - > CPU just needs to be notified when I/O is done

Mainframe: Multi-programming System

Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them

Mainframe: Multi-programming System

OS tasks

- ➤ Memory management (chap 9) the system must allocate the memory to several jobs
- ➤ CPU scheduling (chap6) the system must choose among several jobs ready to run.
- ► I/O system (chap13) I/O routine supplied by the system, allocation of devices

Mainframe: Time-sharing System (Multi-tasking System)

- An interactive system provides direct communication between the users and the system
 - CPU switches among jobs so frequently that users may interact with programs
 - Users can see results immediately (response time < 1s)</p>
 - Usually, keyboard/screen are used
- Multiple users can share the computer simultaneously
- Switch job when
 - > finish
 - waiting I/O
 - > a short period of time

Mainframe: Time-sharing System (Multi-tasking System)

OS tasks

- ➤ Virtual memory (chap 10) jobs swap in and out of memory to obtain reasonable response time
- ➤ File system and disk management (chap11,12) manage files and disk storage for user data
- Process synchronization and deadlock (chap7,8) support concurrent execution of programs

Mainframe System Summary

	Batch	Multi- programming	Time-sharing (Multi-tasking)	
System Model	Single user Single job	Multiple prog.	Multiple users Multiple prog.	
Purpose	Simple	Resource utilization	Interactive Response time	
OS features	N.A	CPU scheduling Memory Mgt. I/O system	File system Virtual memory Synchronization Deadlock	

System Category

- Mainframe Systems
- Computer-system architecture
 - Desktop Systems: single processor
 - Parallel Systems: tightly coupled
 - Distributed Systems: loosely coupled
- Special-purpose Systems

100

Desktop Systems: Personal Computers

- Personal computers (PC) computer system dedicated to a single user
- User convenience and responsiveness GUI
- I/O devices keyboards, mice, screens, printers
- Several different types of operating systems
 - ➤ Windows, MacOS, Unix, Linux
- Lack of file and OS protection from users
 - > Worm, Virus

The Death of CPU Scaling

- Increase of transistor density ≠ performance
 - The power consumption and clock speed improvements collapsed
 - Non-CPU bottleneck: memory and disk access speed

Parallel Systems

- A.k.a multiprocessor or tightly coupled system
 - More than one CPU/core in close communication
 - > Usually communicate through shared memory
- Purposes
 - > Throughput, Economical

Parallel Systems

- Symmetric multiprocessor system (SMP)
 - > Each processor runs the same OS
 - ➤ Most popular multiple-processor architecture
 - Require extensive synchronization to protect data integrity
- Asymmetric multiprocessor system
 - > Each processor is assigned a specific task
 - ➤ One Master CPU & multiple slave CPUs
 - More common in extremely large systems

Multi-Core Processor

- A CPU with multiple cores on the same die (chip)
- On-chip communication is faster than between-chip communication
- One chip with multiple cores uses significantly less power than multiple single-core chips

blade servers:

Each blade-processor board boots independently and run its

own OS

Many-Core Processor

- Nvidia General-Purpose GPU
 - > First release in Apr. 2008
 - High degree of parallelism
 - 2,880 thread processor
 - Single Instruction Multiple Data (SIMD)
 - Higher Performance per Watt
 - 1.43TFlops (x200 faster than a single Intel Core i7)
 - 245 WATTS
 - Lower clock frequency: 600~750 MHz
 - > \$3000 USD
- Intel Xeon Phi
 - First release in Nov. 2012
 - A coprocessor computer architecture based on Intel Many Integrated Core (MIC)
 - 61 cores , 1.2TFlops, 300WATTS
 - > It runs Intel assembly code just like the main CPU in your computer
 - Can be used as a standalone CPU

.

Memory Access Architecture

- Uniform Memory Access (UMA):
 - Most commonly represented today by Symmetric Multiprocessor (SMP) machines
 - Identical processors
 - Equal access times to memory
 - Example: most commodity computers
- Non-Uniform Memory Access (NUMA):
 - Often made by physically linking two or more SMPs
 - One SMP can directly access memory of another SMP
 - Memory access across link is slower
 - Example: IBM Blade server

Memory

CPU

CPU

re.

Distributed Systems

- Also known as loosely coupled system
 - Each processor has its own local memory
 - processors communicate with one another through various communication lines (I/O bus or network)
 - ➤ Easy to scale to large number of nodes (hundreds of thousands, e.g. Internet)
- Purposes
 - Resource sharing
 - Load sharing
 - > Reliability
- Architecture: peer-to-peer or client-server

Client-Server Distributed System

- Easier to manage and control resources
- But, server becomes the bottleneck and single

Clients

Peer-to-Peer Distributed System

- Every machine is identical in its role in the distributed system – decentralized
- Example: ppStream, bitTorrent, Internet

Clustered Systems

- Definition:
 - ➤ Cluster computers share storage and are closely linked via a local area network (LAN) or a faster interconnect, such as InfiniBand (up to 300Gb/s).
- *Asymmetric clustering*: one server runs the application while other servers standby
- Symmetric clustering: two or more hosts are running application and are monitoring each other

Heterogeneous Computing

- Heterogeneous computing is an integrated system that consists of different types of (programmable) computing units.
 - DSP (digital signal processor)
 - FPGA (field-programmable gate array)
 - ASIC (application-specific integrated circuit)
 - GPU (graphics processing unit)
 - Co-processor (Intel Xeon Phi)
- A system can be a cell phone or a supercomputer

Shift of Computing Paradigm

Heterogeneous System Architecture (HSA)

 Aim to provide a common system architecture for designing higher-level programming models for all

devices

- Unified coherent memory
 - Single virtual memory address space
 - Prevent memory copy

Today's Typical Parallel Computers

Supercomputers

- Definition: A computer with a high-level computational capacity compared to a general-purpose computer
- Its performance is measured in floatingpoint operations per second (FLOPS) instead of million instructions per second (MIPS)
- Ranked by the TOP500 list since 1993
 - > According to the HPL benchmark results
 - > Announced twice a year at ISC and SC conferences

TOP500 List (2021 June)

	Country	System	Vendor	Power (kW)	#cores	Accelerator	Rmax	Rpeak (PFLOPS)		
1	Japan	Fugaku	Fujitsu	29,899	7.6M		442.0	537.2		
2	US	Summit	IBM	10,096	2.4M	Volta V100	148.6	200.8		
3	US	Sierra	IBM	7,438	1.5M	Volta V100	94.6	125.7		
4	China	TaihuLight	NRCPC	15,371	10.6M		93.0	125.4		
5	US	Perlmutter	Cray	2,528	706K	Volta A100	64.6	90.0		
15	Swiss	Piz Daint	Cray	2,384	387K	Volta P100	21.2	27.1		
2016 June										
8	Swiss	Piz Daint	Cray	2,325	116K	Tesla K20X	6.2	7.8		

- Accelerators/Many-core processors provide huge computing power with better energy efficiency
 - Fugaku is the first processor to use the ARMv8.2-A Scalable Vector Extension SIMD instruction set
 - TaihuLight uses manycore 64-bit RISC processors
 - Perlmutter uses the latest A100 GPUs to have highest power efficiency 30

System Architecture Summary

Tightly coupled

Loosely coupled

Trend of Parallel Computers/Computing

Single-Core Era

Enabled by:
Moore's Law
Voltage Scaling

Constraint by:
Power
Complexity

Assembly \rightarrow C/C++ \rightarrow Java ...

Heterogeneous Systems Era

Enabled by:
Abundant data
parallelism
Power efficient GPUs

Constraint by:
Programming
models
Comm. overhead

Shader → CUDA → OpenCL ...

Muti-Core Era

Enabled by: Moore's Law SMP Constraint by:
Power
Parallel SW
Scalability

Pthread → OpenMP ...

Distributed System Era

Enabled by: Networking Constraint by:
Synchronization
Comm. overhead

MPI → MapReduce ...

System Category

- Mainframe Systems
- Computer-system architecture
- Special-purpose Systems
 - ➤ Real-Time Systems
 - Multimedia Systems
 - > Handheld Systems

Real-Time Operating Systems (Chap19)

- Well-defined fixed-time constraints
 - "Real-time" doesn't mean speed, but keeping deadlines
- Guaranteed response and reaction times
- Often used as a control device in a dedicated application:
 - Scientific experiments, medical imaging systems, industrial control systems, weapon systems, etc
- Real-time requirement: hard or soft

Soft vs. Hard Real-Time

- Soft real-time requirements:
 - Missing the deadline is unwanted, but is not immediately critical
 - ➤ A critical real-time task gets priority over other tasks, and retains that priority until it completes
 - > Examples: multimedia streaming
- Hard real-time requirements:
 - > Missing the deadline results in a fundamental failure
 - Secondary storage limited or absent, data stored in short term memory, or read-only memory (ROM)
 - > Examples: nuclear power plant controller

Multimedia Systems (Chap20)

■ A wide range of applications including audio and video files (e.g. ppstream, online TV)

Issues:

- > Timing constraints: 24~30 frames per second
- On-demand/live streaming: media file is only played but not stored
- Compression: due to the size and rate of multimedia systems

Handheld/Embedded Systems

- Personal Digital Assistants (PDAs)
- Cellular telephones
- HW specialized OS
- Issues
 - > Limited memory
 - Slow processors
 - Battery consumption
 - Small display screens

.

Computer Systems

Computer Systems

- Which system to use? How to use it?
- They have many things in common, but also with different design decisions for their OS.

Review Slides

- Mainframe system
 - Batch, Multi-programming and Time-sharing
- Comparison
 - > Tightly coupled system vs. Loosely coupled system
 - Client-server vs. P2P
 - Memory architecture: NUMA vs. UMA
 - Real-time system: Soft vs. Hard real-time
- Computer systems
 - Multi-core processor
 - Supercomputer
 - Distributed / Cluster system
 - Heterogeneous computing system