A Textbook of Engineering Chemistry

For the Students of B.E., B.Tech., B.Sc. [Engg.] A.M.I.E., M.Sc. (Environmental Chemistry), M.Tech. (Environmental Engineering) and other Competitive Courses.

S.S. UMARE

S. CHAND

A TEXTBOOK OF ENGINEERING CHEMISTRY

For the Students of B.E., B.Tech., B.Sc. [Engg.] A.M.I.E., M.Sc. (Environmental Chemistry), M. Tech. (Environmental Engineering) and other Competitive Courses.

S.S. DARA

M.Sc., Ph.D.

Former Professor & Head, Department of Applied Chemistry Visvesvaraya National Institute of Technology (Formerly VRCE), NAGPUR - 440 010,

Revised by

S.S. UMARE

M.Sc., Ph.D.

Professor & Head,
Department of Applied Chemistry
Visvesvaraya National Institute of Technology (Formerly VRCE),
NAGPUR - 440 010

S. CHAND & COMPANY LTD.

(An ISO 9001 : 2000 Company)
RAM NAGAR, NEW DELHI - 110 055

S. CHAND & COMPANY LTD.

(An ISO 9001 : 2000 Company)

Head Office: 7361, RAM NAGAR, NEW DELHI - 110 055 Phone: 23672080-81-82, 9899107446, 9911310888

Fax: 91-11-23677446

Shop at: schandgroup.com; e-mail: info@schandgroup.com

Branches:

: 1st Floor, Heritage, Near Gujarat Vidhyapeeth, Ashram Road, Ahmedabad - 380 014, **AHMEDABAD**

Ph: 27541965, 27542369, ahmedabad@schandgroup.com

BENGALURU : No. 6, Ahuja Chambers, 1st Cross, Kumara Krupa Road, Bengaluru - 560 001,

Ph: 22268048, 22354008, bangalore@schandgroup.com

: 238-A, M.P. Nagar, Zone 1, **Bhopal** - 462 011, Ph: 4274723. bhopal@schandgroup.com : S.C.O. 2419-20, First Floor, Sector - 22-C (Near Aroma Hotel), **Chandigarh** -160 022, **BHOPAL CHANDIGARH** Ph: 2725443, 2725446, chandigarh@schandgroup.com

CHENNAI 152, Anna Salai, Chennai - 600 002, Ph. 28460026, 28460027, chennai@schandgroup.com COIMBATORE

: Plot No. 5, Rajalakshmi Nagar, Peelamedu, Coimbatore -641 004, (M) 09444228242,

coimbatore@schandgroup.com

CUTTACK : 1st Floor, Bhartia Tower, Badambadi, Cuttack - 753 009, Ph: 2332580; 2332581,

cuttack@schandgroup.com

DEHRADUN : 1st Floor, 20, New Road, Near Dwarka Store, Dehradun - 248 001,

Ph: 2711101, 2710861, dehradun@schandgroup.com

: Pan Bazar, Guwahati - 781 001, Ph: 2738811, 2735640 guwahati@schandgroup.com GUWAHATI Padma Plaza, H.No. 3-4-630, Opp. Ratna College, Narayanaguda, Hyderabad - 500 029, **HYDERABAD**

Ph: 24651135, 24744815, hyderabad@schandgroup.com

JAIPUR : A-14, Janta Store Shopping Complex, University Marg, Bapu Nagar, Jaipur - 302 015,

Ph: 2719126, jaipur@schandgroup.com

: Mai Hiran Gate, Jalandhar - 144 008, Ph. 2401630, 5000630, jalandhar@schandgroup.com **JALANDHAR** JAMMU : 67/B, B-Block, Gandhi Nagar, Jammu - 180 004, (M) 09878651464

KOCHI : Kachapilly Square, Mullassery Canal Road, Ernakulam, Kochi - 682 011, Ph: 2378207,

cochin@schandgroup.com

KOLKATA : 285/J, Bipin Bihari Ganguli Street, Kolkata - 700 012, Ph: 22367459, 22373914,

kolkata@schandgroup.com

LUCKNOW : Mahabeer Market, 25 Gwynne Road, Aminabad, Lucknow - 226 018, Ph: 2626801, 2284815,

lucknow@schandgroup.com

Blackie House, 103/5, Walchand Hirachand Marg, Opp. G.P.O., Mumbai - 400 001, MUMBAI

Ph: 22690881, 22610885, mumbai@schandgroup.com

NAGPUR : Karnal Bag, Model Mill Chowk, Umrer Road, Nagpur - 440 032, Ph: 2723901, 2777666

nagpur@schandgroup.com

PATNA : 104, Citicentre Ashok, Govind Mitra Road, Patna - 800 004, Ph: 2300489, 2302100,

patna@schandgroup.com

: 291/1, Ganesh Gayatri Complex, 1st Floor, Somwarpeth, Near Jain Mandir, **PUNE**

Pune - 411 011, Ph: 64017298, pune@schandgroup.com

RAIPUR Kailash Residency, Plot No. 4B, Bottle House Road, Shankar Nagar, Raipur - 492 007,

Ph: 09981200834, raipur@schandgroup.com

RANCHI Flat No. 104, Sri Draupadi Smriti Apartments, East of Jaipal Singh Stadium, Neel Ratan Street,

Upper Bazar, Ranchi - 834 001, Ph. 2208761, ranchi@schandgroup.com

VISAKHAPATNAM: Plot No. 7, 1st Floor, Allipuram Extension, Opp. Radhakrishna Towers, Seethammadhara

North Extn., Visakhapatnam - 530 013, (M) 09347580841,

visakhapatnam@schandgroup.com

© 1986, S.S. Dara & S.S. Umare

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the Publishers.

First Edition 1986

Subsequent Editions and Reprint 1988, 90, 92, 94, 95, 96, 97, 99, 2000, 2001, 2003, 2006, 2007, 2008 (Twice), 2009 (Twice), 2010

Twelfth Edition 2010

ISBN: 81-219-0359-9 Code: 10A 092

PRINTED IN INDIA

By Rajendra Ravindra Printers Pvt. Ltd., 7361, Ram Nagar, New Delhi -110 055 and published by S. Chand & Company Ltd., 7361, Ram Nagar, New Delhi -110 055.

PREFACE TO THE TWELFTH EDITION

Any good text book, particularly that in the fast changing fields such as engineering and technology, is not only expected to cater to the current curricular requirements of various institutions but also should provide a glimplse towards the latest developments in the concerned subject and the relevant disciplines. It should guide the periodic review and updating of the curriculum. It is precisely with this spirit that new topics have been constantly added in every Edition of this book. This approach has been appreciated and encouraged by the students and the faculty of the various engineering institutions in the country as indicated by the phenomenal response received for this book over the past two decades. This new Twelfth Edition of the book is another effort in that direction.

In this edition, several chapters have been updated and revised keeping in view of the recent developments. In the chapter on "Water treatment" desalination of water and some additional numericals on water treatment have been included. In the chapter on "Fuel and Combustion" the new topics such as catalytic converter, LPG, CNG, power alcohol, biodiesel and some numbericals on combustion calculation of current interest have been included. In the chapter "Cement" topics on properties such as soundness, fineness of cement and use of fly ash as cementing material have been included. In the chapter on "Lubricants" viscosity index and re-refining of lubricating oil is included. In the chapter on "Corrosion" the problem on corrosion tendency of metal is included.

In the chapter on polymer serveral advance topics such as conducting polymers, biopolymers, low dielectric constant polymers, liquid crystal polymers have been added and lot of text in this chapter has been re-written for greater clarity and simplicity. New diagrams have been incorporated and a number of the old one have been improved upon.

The text in the chapter composite have been added. One detailed section on the magnetic material have been added in the chapter, structure of solids. The title of the chapter "Ceramics" have been change by "Glass and Ceramics" and the text on glass is included. Further, the printing mistakes have been corrected and several other chapters have been updated wherever possible.

I sincerely thank the student and teaching community of engineering and technology faculty all over the country. It is solely their encouragement, suggestions, feedback and constructive criticism that is responsible in carving out this book in the present form.

This twelfth revised, enlarged and enriched edition of the book is sincerely offered at the service of students and teaching fraternity associated with engineering chemistry from the various engineering and technological institutions all over the country. It is hoped that this new edition of the book will be received with vibrant enthusiasm.

AUTHORS

PREFACE TO THE FIRST EDITION

This book is written exclusively for students of various branches of engineering, keeping in view their professional requirements, after entering into their practical life. Many new products of the chemical industries are finding increasing application in all the fields of engineering. The scope of their application is mostly dictated by their chemical behaviour under a given set of conditions. For instance, an ideal selection of an appropriate metal, metal, alloy, or combination of metals, the design of an equipment to minimize corrosion, the selection of a proper lubricating oil to minimize friction and wear, the selection of suitable additives for a special cement or the selection of the right type of a ceramic, plastic or rubber for satisfactory performance for a given purpose under a given set of conditions, can be made only on the basis of the chemical properties of materials, even more than on their physical properties because slight changes in chemical composition may alter the physical properties considerably. Inadequate knowledge of the chemical principles involved may lead to serious errors in the selection and application of the materials used in any field of engineering. It is for this reason that the engineering faculties of many foreign universities are insisting on a second course in Chemistry for their students. This book lends further support for their conviction that "the engineering graduate who knows the differences in chemical properties of alternative materials and who understands the general chemical principles on which their behaviour depends will prove to be a better and more successful engineer than one who does not."

This book embodies 12 chapters which are of basic importance in the curriculum of engineering students and provide a core course of engineering chemistry for all branches of engineering. Each chapter consists of a methodical introduction, historical background, discussion of basic physico-chemical principles involved and practical applications and significance. Chapters on Water and Fuels also contain systematic methods of solving problems on Water Treatment and Combustion Calculations followed by several worked out examples. Further, at the end, enquiring questions on all the chapters are given which also include typical objective questions and answers. A list of reference books has also been included at the end, under bibliography.

This book is written solely with a conviction to severe the academic and professional requirements of the students of all branches of engineering.

Any suggestions and constructive criticism towards this objective are welcome. Jan. 1986

AUTHOR

ACKNOWLEDGEMENT

I wish to express my gratitute to late Prof. S. S. Dara (Prime author of this book) the former, Head Department of Chemistry of our Institution who was the source of inspiration for review of this book.

I sincerely acknowledge the encouragement, moral support and valuable suggestion of all of the following.

Prof. S. S. Gokhle, Director, VNIT Nagpur. Prof. M. C. Gupta, Prof. S. G. Viswanath of Nagpur University. All my collegues, teaching Engineering Chemistry in VNIT, Nagpur University, Amravati University, and other Universities in Maharashtra and India. Dr. B. M. Rao, Dr. J. D. Ekte, Dr. A. Kumar, Dr. R. K. Kowadkar, Dr. C. Das, Dr. R. T. Jadhav, Dr. S. J. Juneja, Dr. S. B. Gholse, Dr. M. K. N. Yenki., Prof. N. Sulochana NIT Tiruchirappalli, Prof. P. N. Rao NIT Warangal, Dr. A. C. Hegde NIT Suratkal, Dr. R. K, Patel NIT Rourkela, Dr. Masood Alam Jamia Milha Islamia University, New Delhi, Dr. V. K. Srivastava, Institute of Petrolium Technology, Gandhinagar, Dr. S. K. Singh, Institute of Technology, GGU Bilaspur, Dr. Y. Sharma, BHU Varanasi, Prof. A. K. Mishra Sagar University, Dr. Aswar Amravati University. I am duly bound to express my thanks to the authors and publishers of all the books which have been referred during the course of preparation of this revised book. Further, I wish to record my appreciation to Chitriv's Computers, Nagpur for typing the manuscript.

Last but not least, I wish to express my sincere appreciation to Mrs. Nirmala Gupta, Chairperson cum Managing Director, Shri Navin Joshi V.P. (Publishing) and Shri. Bhagirath Kaushik, General Manager (Sales) S.Chand & Company Ltd. and all the Branch Managers of S. Chand Company Ltd. for their whole hearted cooperation in all aspects of the revised publication and promotion of this book.

AUTHORS

CONTENTS

1.	WAT	TER TREATMENT	1—76
	1.1	Introduction	1
	1.2	Sources of water	1
	1.3	Effect of water on rocks and minerals	3
	1.4	Types of impurities present in water	3
	1.5	Effect of impurities in natural waters	4
	1.6	Methods of treatment of water for domestic and industrial purposes	22
	1.7	Removal of dissolved salts	29
	1.8	Boiler feed waters (Water for stream making)	58
	1.9	Bioler trouble	60
	1.10	Cooling waters: Requisites and treatement	69
	1.11	Desalination of water	72
2.	FUE	LS AND COMBUSTION	77—177
	2.1	Definition of a fuel	77
	2.2	Classification	77
	2.3	Calorific value	78
	2.4	Calorific intensity and flame temperature	80
	2.5	Flexibility and control	80
	2.6	Determination of calorific value of solid and non-volatile liquid fuels	80
	2.7	Determination of calorific value of gases and volatile liquid fuels	86
	2.8	Criteria for selecting a fuel	87
	2.9	Solid fuels	88
	2.10	Coal – origin, composition, Analysis	90
	2.11	Indian coals and their properties	96
	2.12	Classification of coals.	96
	2.13	Grading of coals	97
	2.14	Characteristics of Coal	97
	2.15	Selection of coal	98
	2.16	Commercial types of coal	98
	2.17	Coal technology	98
	2.18	Storage of coal	99
	2.19	Pulverised coal	100
	2.20	Secondary solid fuels	102
	2.21	Combustion of coal	107
	2.22	Liquid fuels	107
	2.23	Gaseous fuels	141
	2.24	Biodiesel	150
	2.25	Efficiency of combustion and flue gas analysis, orsat's apparatus	154
	2.26	Combustion calculations	156
		(ix)	

3.	NUC	CLEAR FUELS AND NUCLEAR POWER GENERATION	178–195
	3.1	Nuclear Binding Energy	178
	3.2	Nuclelar Fission	179
	3.3	Conditions for Maintaining a Sustaining Chain Reaction	182
		Nuclear Power Reactors	183
	3.5	Reactor Concepts	183
	3.6	Components of a Nuclear Power Reactor	184
	3.7	Breeder Reactors	189
		Nuclear Power Stations in India	190
	3.9	Environmental Aspects of Nuclear Power Generation	191
		Energy from Nuclear Fusion	192
	3.11	Controlled Thermonuclear Reactors	193
	3.12	Environmental Aspects of Thermonuclear Power Generation	195
4.	COF	RROSION	196-237
	4.1	Introduction	196
	4.2	Nernst Theory	196
	4.3	Standard Electrode Potentials	197
	4.4	Galvanic Series	198
	4.5	Galvanic or Electric Cells	199
	4.6	Concentration Cells	200
	4.7	Reversible Cells	200
		Polarization	201
		Decomposition Potential	201
		Overvoltage or Over-potential	202
	4.11	Corrosion	204
5.	LUB	BRICANTS	238–286
	5.1	Historical	238
	5.2	Introduction	238
	5.3	Surface tension and surface energy	238
	5.4	Adsorption	239
	5.5	Surface roughness	239
		Surface attraction	239
	5.7	Classical laws of friction	240
	5.8	Wear	241
	5.9	Lubrication	242
		Mechanism of lubrication	243
		Lubricants for extreme ambient conditions and for special applications	247
	5.12	Biodegradable lubricants.	249
	5.13	Classification of lubricants	250
	5.14	Solid lubricants	250
	5.15	Semi Solid lubricants	253
		Liquid lubricants	256
		Lubricating emulsions	264
		Properties of lubricants and Tests	265
		Selection of lubricants for different purposes	279
	5.20	Methods of lubrication	282
		Degradation of lubricating oils and re-refining	282

	5.22	Marketing and manufacture of lubricants in India	282
		Conclusion	283
	5.24	Electrical insulating oils	283
		White oils	285
6.	POR	TLAND CEMENT	287-312
	6.1	Introduction	287
	6.2	Raw materials	288
	6.3	Important process parameters for manufacturing a good cement clinker.	289
	6.4	Methods of manufacturing cements	289
	6.5	Dry process Vs. wet process	290
	6.6	Sequence of operations	291
	6.7	Characteristics of constitutional compounds	293
		Additives for cement	294
	6.9	Properties of cement –	295
		Testing of cement	297
		General Composition of ordinary portland cement	298
		Reactions taking place in the rotary kiln	298
		Thermochemical changes taking place during cement formation	299
		Action of some chemicals on concrete	299
		Computation of the amount of constitutional compounds	299
		Types of Portland cement and its derivatives	302
		Other types of cement	306
		Use of fly ash as cementing material	306
		Mortars and concretes	307
		Prestressed concrete	307
		Post-tensioning	308
		Curing	308
	6.23	Overall scenario of cement industry	308
7.		SE RULE	313–334
		Introduction	313
		Gibb's Phase Rule	313
		Application of Phase Rule to One-Component System	317
		Two-Component System Uses of Phase Rule	323
		Limitations of Phase Rule	333 333
0			
δ.		EMICAL BONDING	335–364
		Ionic or Electrovalent Bond	335
		Covalent Bond	338
		Exceptions to the Octet rule	340
		Resonance Variable Valency	341 342
		Variable Valency Coordinate or Dative Bond	342
		Complex Ions	344
		Coordination Number or Ligancy	345
			212

8.9	Werner's Coordination Theory	345
	Hydrogen Bond	346
	Valence Bond Theory	349
	Metallic Bond	357
9. POL	YMERS	365–444
9.1	Introduction	365
	Classification of Polymers	366
	Types of Polymerization	372
	Mechanism of Chain Polymerization	373
	Serio-specific Polymerization	377
	Step Polymerization	378
9.1.6	Polymerizability of a Monomer	378
	Thermodynamics of Polymerization Process	378
	Practical Methods of Polymerization	379
	Molecular Weight of Polymers	381
	Engineering and Speciality	383
	Electrically Conducting Polymers	384
	Photoconductive Polymers	388
9.1.13	Structure Property Relationships in Polymers	390
9.2	Resins and Platics	932
9.2.1	Constituents of Plastics	393
9.2.2	Fabrication of Plastic Articles	394
9.2.3	Thermoplastic Resins	396
9.2.4	Thermoset Resins	407
9.2.5	Low Dielectric Constant Polymers	418
	Biopolymers	420
9.2.7	Liquid Crystal Polymers	423
9.3	Rubbers	425
	Natural Rubber	429
9.3.2	Synthetic Rubbers	431
9.4	Flow sheet for Producing Scheme Important Polymers	436
	MPOSITE MATERIALS	445–457
	Introduction	445
	Constitution	445
	Classification	448
	(A) Particle-Reinforced Composites	448
	(B) Fibre-Reinforced Composites	448
	Fibre Glass - Reinforced Composites	451
	Other Fibre-Reinforced Composites	451
	Metal Matrix - Fiber Composites	451
	Hybrid Composites	452
	Processing of Fiber - Reinforced Composites	452
	Structural Composites	455
10.11	Applications of Composite Materials	456

11.	THE	CRMODYNAMICS EQUILIBRIUM AND KINETICS	458-473
	11.1	Laws of Thermodynamics	458
	11.2	Internal Energy (E)	460
	11.3	Enthalpy (H)	460
	11.4	Entropy	462
	11.5	Entropy and Equilibrium	468
	11.6	Gibbs and Helmholtz Free Energy	468
	11.7	Metastable Equilibrium	469
	11.8	Kinetics	470
12.	CRY	STAL STRUCTURES	474–484
	12.1	Introduction	474
	12.2	Fundamental Laws of Crystal Structures	475
	12.3	X-rays and Crystal Structure	479
	12.4	Bragg's Law	479
		Types of Imperfections	482
	12.6	Discussion of Some Defects	483
13.	STR	UCTURE OF SOLIDS	485–496
	13.1	Crystalline Solids	485
	13.2	Amorphous Solids	486
	13.3	Types of Solids	486
	13.4	Structure of Solids	488
	13.5	Magenetic Materials	492
14.	ME(CHANICAL PROPERTIES	497–516
	14.1	Stress and Strain	497
	14.2	Hooke's Law	500
	14.3	Moduli of Elasticity	501
	14.4	Relation between E (Young's Modulus) and K (Bulk Modulus)	501
		Significance of Modulus of Elasticity	502
		Variation of Modulus of Elasticity with Temperature	502
		Atomic Basis of Elastic Behaviour	503
		Anelastic Behaviour	505
		Thermo-elastic Effect	506
		Relaxation Process	507
		Plastic Deformation	508
		Plastic Deformation of a Single Crystal	509
		Plastic Deformation of Polycrystalline Metals	509
		Twinning	510
		Dislocations Vive and set of	511
		Visco-elasticity	512
		Creep	513
		Creep in Metals	515
		Creep in Amorphous Materials Effect of Precipitation Particles on Dislocation Motion	515 516
	14.ZU	ETIECT OF PTECIDITATION FAITUCIES OIL DISTOCATION MIOUON	.)10

15.	GLA	ASS AND CERAMICS	517-529
		Glass	517
		Ceramics	520
	15.3	Methods for Fabrication of Ceramic Ware	524
	15.4	Ceramic Products	525
	15.5	Glazes	528
	15.6	Procelain and Vitreous Enamels	529
16.	REF	TRACTORIES	530-552
	16.1	Requisites of a Good Refractory	530
	16.2	Classification of Refractories	530
	16.3	Properties of Refractories	532
		Raw Materials of Refractories	536
		Manufacture of Refractories	537
	16.6	Types of Refractory Products	541
17.	ELE	CCTROPLATING	553–559
		Applications of Electroplating	553
		Electroplating Equipment and Operating Conditions	556
		Electroplating Baths	557
		Characteristics of Electroplating Wastes	558
	17.5	Safety Precautions	559
18.		VIRONMENTAL CHEMISTRY AND CONTROL OF	5(0, (42
		VIRONMENTAL POLLUTION	560–643
		Environmental Chemistry	560
		Air Pollution Control	572
		Water Pollution Control	603
		Soil pollution.	632
10		Hazardous wastes and Treatment Technologies	634
19.		N-CONVENTIONAL ENERGY SOURCES	644–654
		Sources of Energy	644
		Other Renewable Energy Sources	653
20.	POV	VDER METALLURGY AND ITS INDUSTRIAL APPLICATIONS	655– 709
		Introduction	660
		Techniques for Producing Metal Powders	664
		Characteristics and Properties of Metal Ceramic Powders	668
		Technological Properties of Powders	679
2		Impurities in Powders	679
		Powders Conditioning	680
2		Heat Treatment Sefety Aspects during Handing of Motel Poyeders	682 682
		Safety Aspects during Handing of Metal Powders Compaction and Shaping	685 685
		Sintering	694
2		Important Powder Metallurgy Products and their Industrial Applications	699
		Conclusion	708

21.	BAT	TERIES AND BATTERY TECHNOLOGY	710-752
	21.1	Introduction	711
	21.2	Theoretical Principles	712
	21.3	Primary Cells	717
	21.4	Secondary Batteries	729
	21.5	Reserve Batteries	735
	21.6	Fuel Cells	740
	21.7	Solar Cells	752
22.	INS	FRUMENTAL TECHNIQUES IN CHEMICAL ANALYSIS	753–797
		Colorimetry and Visible Spectroseopy	753
		Ultraviolet Spectroscopy	761
		Infrared Spectrophotometry	768
		Chromatography	778
		Nuclear Magnetic Resonance (NMR) Spectroscopy	788
		Flame Photometry	792
		Atomic Absorption Spectrometry	794
23.		CEN CHEMISTRY FOR CLEAN TECHNOLOGY	798-816
		Introduction	798
		Goals of green chemistry	798
		Significance of green chemistry	799
		Basic components of green chemistry research	799
		Atom economy	808
		Functional group approaches to green chemistry	809
		Optimization of frameworks for the design of greener synthetic pathways.	811
		Industrial Applications of Green Chemistry	812
	23.9	Conclusion	815
24.	ME	CHANISM OF ORGANIC REACTIONS	817-855
	24.1	Introduction	817
	24.2	Electron Displacement Effects	817
	24.3	Reaction Mechanism	826
	24.4	Energy requirements of a reaction	835
	24.5	Types of organic reactions and mechanism	838
	24.6	Mechanism of some reactions	850
25.	REAC	CTION DYNAMICS & CATALYSIS	856-924
	25.1	Introduction	856
	25.2	Rate of a reaction or reaction velocity	856
	25.3	Reaction rate and time	857
	25.4	Factors influencing the reaction rate	857
	25.5	Rate law (or rate equation) and rate constant	858
		Measurement of rate of reaction	859
	25.7	Order of a reaction	859
	25.8	Zero order reaction	861
	25.9	Molecularity of a reaction	861
		Pseudo-order reactions	862

25.11	Integrated rate equations	862
25.12	Reactions involving more than three molecules	874
25.13	Methods for determination of order of a reaction	874
25.14	Complex or simultaneous or composite reactions	877
25.15	Theories of reaction rates	883
25.16	Effect of temperature on rates of reaction Arrhenius equation	887
25.17	Activation energy and catalysis	888
25.18	Examples	889
	CATALYSIS	
25.19	Introduction	901
25.20	Action of a catalyst	901
25.21	Characteristics of catalytic reactions (or criteria of catalysis)	901
25.22	Types of catalysis	904
25.23	Catalytic promoters	906
25.24	Catalytic poisons	907
25.25	Negative catalysis and inhibition	908
25.26	Autocatalysis	910
25.27	Induced catalysis	911
25.28	Activation energy and catalysis	911
25.29	Theories of catalysis	912
25.30	Acid-base catalysis	918
25.31	Enzyme catalysis	921
25.32	Some industrial processes using catalysts important	922
25.33	Criterial for choosing a catalyst for industrial application	923
26. PHOT	TOCHEMISTRY	925-947
	Introduction	925
	Photochemical reactions	925
	Laws of Photochemistry	926
	Quantum efficiency	927
	High and low quantum yields	931
	Mechanism of some photochemical reactions	931
	Photosynthesis	935
	Types of photochemical reactions	936
	Apparatus for photochemical studies	937
	Applications of photochemistry in technology	938 938
	Photochemistry of vision Photocypythesis and Picenegatics	938 940
	Photosynthesis and Bioenergetics STION BANK	948–962
-		
	ENDIX-1: El Nino Phenomenon and Its Effects	963–964 965 965
APPENDIX-2: Basic Principles of Green Chemistry BIBLIOGRAPHY		965-965 966-968
IND		969-972
INDEA		707-714

Water Treatment

"Water is one of the most abundant commodities in nature, but is also the most misused one."

1.1. INTRODUCTION

One of the basic necessities of life is water. Living things exist on the earth because this is the only planet that has the presence of water. Water is necessary for the survival of all living things be it plant or animal life.

Water is one of the most abundant commodities in nature but is also the most misused one. Although earth is a blue planet and 80% of its surface is covered by water, the hard fact of life is that about 97% of it is locked in the oceans, and sea which is too saline to drink and for direct use for agricultural or industrial purposes. 2.4 % is trapped in polar ice caps and giant glaciers, from which icebergs break off and slowly melt at sea. >1% water is used by man for various development, industrial, agricultural, steam generation domestic.

1.2. SOURCES OF WATER

Water is required for agricultural, municipal and industrial purposes. For industrial purposes, natural waters may be broadly divided into the following categories:

- (1) Surface waters:
 - (a) Flowing waters e.g., streams and rivers (Moorland surface drainage)
 - (b) Still waters e.g., ponds, lakes and reservoirs (Lowland surface drainage)
- (2) Underground water: Water from shallow and deep springs and wells
- (3) Rain water
- (4) Estuarine and sea water

From the point of view of industrial applications, it is not usually feasible to use rain water and sea water. Rain water is irregular in supply and generally expensive to collect. Estuarine and sea waters are too saline for most industrial uses except cooling. The three major sources of water for industrial use are

- (a) Moorland surface drainage.
- (b) Lowland surface drainage.
- (c) Deep well water.

The important properties of these three types of waters are given in Table -1.

A Textbook Of Engineering Chemistry

Publisher: SChand Publications ISBN: 9788121903592

Author: S. S. Dara, S. S. Umare

Type the URL: http://www.kopykitab.com/product/11801

Get this eBook