# Interpretation of the logistic regression model

HL Chapter 3 – part 2 Confounding and interactions in logistic regression

# Confounding





# Confounding Odds Ratio (OR) Configuracy (or 2 x 2) Table Expected 2 x 3 table Configuracy (or 2 x 2) Table (an'd) / (b'c) Configuracy (or 2 x 2) Table Configuracy (or 2 x 2) Table (an'd) / (b'c) Odds Ratio (OR) Configuracy (or 2 x 2) Table (an'd) / (b'c) Odds Ratio (OR) Configuracy (or 2 x 2) Table (an'd) / (b'c) Odds Ratio (OR) Configuracy (or 2 x 2) Table Configuracy (or 2 x



# Interaction - Multiplicative



## Interaction - Additive



## Goals

- Learn to investigate confounding using logistic regression
- Learn to investigate multiplicative interactions using logistic regression
- Learn to investigate additive interactions using a trick

## Confounding - 2×2 table approach

- 1. Calculate crude 2x2 table and OR
- Calculate stratum-specific 2x2 tables and ORs
- 3. Calculate adjusted OR = weighted (Mantel-Haenszel) average of stratum-specific ORs
- 4. Compare crude and adjusted OR using the 10% rule

# Confounding - 2×2 table approach

- $\left| \frac{Crude\ OR\ Adjusted\ OR}{Adjusted\ OR} \right| < about\ 10\%$   $\Longrightarrow$  No evidence of confounding
- $\left| \frac{Crude\ OR\ -Adjusted\ OR}{Adjusted\ OR} \right| > about\ 10\%$   $\Longrightarrow$  Evidence of confounding
- Note: Continuous confounders must be categorized

## Confounding in logistic regression

Example: MYOPIA data set

Risk factor = gender

Potential confounder or effect modifier = SPHEQ

 Run the model <u>without</u> the potential confounder

proc logistic descending data=myopia; model myopic=gender;

run;

# Confounding in logistic regression

| Parameter | Coefficient | Pr > ChiSq | OR    | 95% Wald<br>Confidence Limits |       |
|-----------|-------------|------------|-------|-------------------------------|-------|
| Intercept | -2.0829     | <.0001     |       |                               |       |
| GENDER    | 0.3665      | 0.1274     | 1.443 | 0.901                         | 2.311 |

This table was created by combining results from two tables in the SAS output

## Confounding in logistic regression

- Run the model with the potential confounder
- Note: Continuous confounders do <u>not</u> have to be categorized
- Note: SPHEQ ranges from -0.699 to 4.372; therefore, a unit change of 1 (SAS default) is too big; use 0.1

## Confounding in logistic regression

proc logistic descending data=myopia; model myopic=gender spheq/clodds=wald; units gender=1 spheq=0.1;

run;

| Odds Ratio Estimates and Wald Confidence Intervals |        |       |             |  |  |
|----------------------------------------------------|--------|-------|-------------|--|--|
| Effect Unit Estimate 95% Confidence Limits         |        |       |             |  |  |
| GENDER                                             | 1.0000 | 1.747 | 0.999 3.055 |  |  |
| SPHEQ 0.1000 0.681 0.627 0.739                     |        |       |             |  |  |

## Confounding in logistic regression

- $\left| \frac{Crude\ OR\ -Adjusted\ OR}{Adjusted\ OR} \right| = \left| \frac{1.443 1.747}{1.747} \right| = 17\%$
- There is evidence that SPHEQ is a confounder of GENDER

#### Continuous confounders

- Note: SPHEQ is the spherical equivalent refraction, a continuous variable
- What does adjusting for a continuous variable mean?
- Adjusting for a continuous variable means holding its value constant

#### Continuous confounders

- It doesn't matter at which value of SPHEQ we compare males to females as long as we use the same value of SPHEQ for males and females
- This only works if there is no multiplicative interaction between GENDER and SPHEQ, i.e. if the OR for GENDER does not depend on the level of SPHEQ

## 10% rule vs. stat. significance

- Why do we use the 10% rule rather than statistical significance to assess confounding?
- Confounders must be associated with the outcome
  - Statistical significance addresses this
- Confounders must be associated with the risk factor of interest
  - Statistical significance does not address this

## 10% rule vs. stat. significance

- It can be shown that the "effect" of a risk factor is  $\beta_1 + \beta_2(\overline{c_1} \overline{c_0})$
- I.e. it is a combination of
  - The actual "effect" of the risk factor on the outcome  $(\beta_1)$  AND
  - The "effect" due to confounding  $(\beta_2(\overline{c_1}-\overline{c_0}))$
- $\overline{c_0}$ = average of the confounder among those not exposed to the risk factor
- $\overline{c_1}$ = average of the confounder among those exposed to the risk factor

## 10% rule vs. stat. significance

- The "effect" due to confounding, is the product of
  - The "effect" of the confounder on the outcome  $(\beta_2)$  and
  - The difference between the average of the confounder among the exposed and the unexposed  $(\overline{c_1} \overline{c_0})$
- Confounding does not only depend on the significance of the confounder, i.e. the significance of  $\beta_2$
- Even if  $\beta_2$ , the age coefficient, is non-significant, confounding may be present if  $\overline{a_1} \overline{a_0}$  is large

# Multiplicative interaction - 2×2 table approach

- Stratum-specific 2x2 tables and ORs
  - ORs similar → No multiplicative interaction
  - OR in exposed stratum greater
    - → Synergistic multiplicative interaction
  - OR in unexposed stratum greater
    - → Antagonistic multiplicative interaction
- Note: Continuous effect modifiers must be categorized

#### Multiplicative interaction – 4-row table

- OR<sub>both</sub> < OR<sub>one</sub> × OR<sub>other</sub> → Antagonistic multiplicative interaction
- $OR_{both} = OR_{one} \times OR_{other} \rightarrow$  No multiplicative interaction
- OR<sub>both</sub> > OR<sub>one</sub> × OR<sub>other</sub> → Synergistic multiplicative interaction
- Note: Continuous effect modifiers must be categorized

# Multiplicative interaction in logistic regression

- The logistic regression model is a multiplicative model and checks for multiplicative interactions
- If additive interactions are of interest, we can use a linear link model (HL Chapter 10.9)

# Multiplicative interaction in logistic regression

Example: MYOPIA example continued

- Recall: Adjusting GENDER for SPHEQ means comparing males to females at the same value of SPHEQ
- This only works if there is no multiplicative interaction between GENDER and SPHEQ, i.e. if the OR for GENDER does not depend on the level of SPHEQ

# Multiplicative interaction in logistic regression

proc logistic descending data=myopia;
model myopic=gender spheq gender\*spheq;
run;

| Parameter    | Coefficient | Pr > ChiSq |
|--------------|-------------|------------|
| Intercept    | -0.1911     | 0.5240     |
| GENDER       | 0.4916      | 0.2369     |
| SPHEQ        | -3.9483     | <.0001     |
| GENDER*SPHEQ | 0.1850      | 0.8261     |

# Multiplicative interaction in logistic regression

- There is no significant multiplicative interaction between GENDER and SPHEQ (p=0.8261)
- Note: Testing the significance of interaction terms often suffers from low power.
   Therefore, an α level of 0.1 is often used instead of the traditional 0.05

# Interpretation of the OR in the presence of confounding

- Interaction not statistically significant
  - → drop interaction term
- Back to this table...

| Odds Ratio Estimates and Wald Confidence Intervals |        |                          |  |  |  |
|----------------------------------------------------|--------|--------------------------|--|--|--|
| Effect Unit Estimate 95% Confidence Limits         |        |                          |  |  |  |
| GENDER                                             | 1.0000 | <b>1.747</b> 0.999 3.055 |  |  |  |
| SPHEQ 0.1000 <b>0.681</b> 0.627 0.739              |        |                          |  |  |  |

# Interpretation of the OR in the presence of confounding

- After adjusting for SPHEQ (i.e. holding SPHEQ constant), females are about 1.75 times as likely to be myopic as males (75% more likely to be myopic than males)
- After adjusting for GENDER (i.e. holding)
   GENDER constant), an increase in SPHEQ of
   0.1 results in a 32% decreased risk of myopia

# Interpretation of the OR in the presence of multiplicative interaction

Example: GLOW500 data set Risk factor = PRIORFRAC

Potential confounder or effect modifier = Age

proc logistic descending data=glow500; model fracture=priorfrac; run;

| Parameter | Coefficient | Pr > ChiSq | OR    | 95% Wald<br>Confidence Limits |       |
|-----------|-------------|------------|-------|-------------------------------|-------|
| Intercept | -1.4167     | <.0001     |       |                               |       |
| PRIORFRAC | 1.0638      | <.0001     | 2.897 | 1.871                         | 4.486 |

# Interpretation of the OR in the presence of multiplicative interaction

proc logistic descending data=glow500; model fracture=priorfrac age/clodds=wald; units priorfrac=1 age=10;

run;

| Odds Ratio Estimates and Wald Confidence Intervals |        |       |             |  |  |  |
|----------------------------------------------------|--------|-------|-------------|--|--|--|
| Effect Unit Estimate 95% Confidence Limits         |        |       |             |  |  |  |
| PRIORFRAC                                          | 1.0000 | 2.314 | 1.462 3.661 |  |  |  |
| AGE 10.0000 1.510 1.189 1.917                      |        |       |             |  |  |  |

# Interpretation of the OR in the presence of multiplicative interaction

- $\left| \frac{Crude\ OR\ -Adjusted\ OR}{Adjusted\ OR} \right| = \left| \frac{2.897 2.314}{2.314} \right| = 25\%$
- There is evidence that AGE is a confounder of PRIORFRAC
- Note: Adjusting for age means holding age constant

# Interpretation of the OR in the presence of multiplicative interaction

 For this interpretation to be valid, there cannot be evidence of multiplicative interaction

proc logistic descending data=glow500; model fracture=priorfrac age priorfrac\*age;

run;

| Parameter     | Estimate | Pr > ChiSq |
|---------------|----------|------------|
| Intercept     | -5.6893  | <.0001     |
| PRIORFRAC     | 4.9612   | 0.0061     |
| AGE           | 0.0625   | <.0001     |
| PRIORFRAC*AGE | -0.0574  | 0.0218     |

Evidence of multiplicative interaction

# Interpretation of the OR in the presence of multiplicative interaction

- There is evidence of multiplicative interaction between PRIORFRAC and AGE
- The OR of PRIORFRAC depends on age
- Presenting just one "average" adjusted OR doesn't make sense
- How do we calculate ORs in the presence of interactions?
  - Logit differences and contrast statements

#### **IMPORTANT**

In the presence of multiplicative interaction, it does not make sense to present just one OR

#### OR for PRIOFRAC yes (1) vs. no (0) at age a

- Logit = g(PRIORFRAC, AGE)=  $\beta_0 + \beta_1 PRIORFRAC + \beta_2 AGE + \beta_3 PRIORFRAC \times AGE$
- Logit difference = g(PRIORFRAC = 1, AGE = a)- g(PRIORFRAC = 0, AGE = a)

$$= (\beta_0 + \beta_1 1 + \beta_2 a + \beta_3 1 \times a) - (\beta_0 + \beta_1 0 + \beta_2 a + \beta_3 0 \times a)$$

$$= \beta_1 + a\beta_3 \implies OR = e^{\beta_1 + a\beta_3}$$
Plug in different ages for a, e.g., 55, 65, 75, 85

#### OR for PRIOFRAC yes (1) vs. no (0) at age a

•  $OR = e^{\beta_1 + a\beta_3}$  Coefficient Corresponding model covariate  $\begin{array}{ccc} & & & & & & & \\ & \beta_1 & & & & & \\ & & \beta_2 & & & & \\ & & & \beta_3 & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & & \\$ 

| Age | OR                      | SAS                                |
|-----|-------------------------|------------------------------------|
| 55  | $e^{\beta_1+55\beta_3}$ | priorfrac 1 age 0 priorfrac*age 55 |
| 65  | $e^{\beta_1+65\beta_3}$ | priorfrac 1 age 0 priorfrac*age 65 |
| 75  | $e^{\beta_1+75\beta_3}$ | priorfrac 1 age 0 priorfrac*age 75 |
| 85  | $e^{\beta_1+85\beta_3}$ | priorfrac 1 age 0 priorfrac*age 85 |
|     |                         |                                    |

# OR for a 10 year increase in age <u>at PRIORFRAC=p</u>

- Logit = g(PRIORFRAC, AGE)=  $\beta_0 + \beta_1 PRIORFRAC + \beta_2 AGE + \beta_3 PRIORFRAC \times AGE$
- Logit difference = g(PRIORFRAC = p, AGE = a + 10) g(PRIORFRAC = p, AGE = a) $= (\beta_0 + \beta_1 p + \beta_2 (a + 10) + \beta_3 p \times (a + 10)) (\beta_0 + \beta_1 p + \beta_2 a + \beta_3 p \times a)$  $= 10\beta_2 + 10p\beta_3 \implies OR = e^{10\beta_2 + 10p\beta_3}$

Plug in different values for p, i.e. 0, 1

# OR for a 10 year increase in age <u>at PRIORFRAC=p</u>

| $ OR = e^{10\beta_2 + 10p\beta_3} $ | Coefficient | Corresponding model covariate |
|-------------------------------------|-------------|-------------------------------|
|                                     | $eta_1$     | PRIORFRAC                     |
|                                     | $eta_2$     | AGE                           |
|                                     | $eta_3$     | PRIORFRAC *AGE                |

| PRIOR<br>FRAC | OR                         | SAS contrasts                       |
|---------------|----------------------------|-------------------------------------|
| 0             | $e^{10\beta_2+10p\beta_3}$ | priorfrac 0 age 10 priorfrac*age 0  |
| 1             | $e^{10\beta_2+10p\beta_3}$ | priorfrac 0 age 10 priorfrac*age 10 |
|               |                            |                                     |

#### SAS code

```
proc logistic descending data=glow500;
model fracture=priorfrac age priorfrac*age;
```

contrast 'Priorfrac 1 vs 0, age=55'

priorfrac 1 age 0 priorfrac\*age 55 /estimate=exp;

contrast 'Priorfrac 1 vs 0, age=65'

priorfrac 1 age 0 priorfrac\*age 65/estimate=exp;

contrast 'Priorfrac 1 vs 0, age=75'

priorfrac 1 age 0 priorfrac\*age 75/estimate=exp;

contrast 'Priorfrac 1 vs 0, age=85'

priorfrac 1 age 0 priorfrac\*age 85/estimate=exp;

Continued on next slide

#### SAS code

Continued from previous slide

contrast '10 year age increase, priorfrac=0'
priorfrac 0 age 10 priorfrac\*age 0 /estimate=exp;
contrast '10 year age increase, priorfrac=1'
priorfrac 0 age 10 priorfrac\*age 10 /estimate=exp;
run;

## OR for PRIOFRAC yes (1) vs. no (0) at age a

| Contrast                 | OR     | Confidence Limits |         | Pr > ChiSq |
|--------------------------|--------|-------------------|---------|------------|
| Priorfrac 1 vs 0, age=55 | 6.0818 | 2.3816            | 15.5307 | 0.0002     |
| Priorfrac 1 vs 0, age=65 | 3.4263 | 1.9593            | 5.9918  | <.0001     |
| Priorfrac 1 vs 0, age=75 | 1.9303 | 1.1993            | 3.1069  | 0.0068     |
| Priorfrac 1 vs 0, age=85 | 1.0875 | 0.4944            | 2.3921  | 0.8348     |

#### OR for PRIOFRAC yes (1) vs. no (0) at age a

• Graph of ORs and 95% CIs for PRIORFRAC=1 vs. 0 by age



#### Interpretation of the results

- At age 55, persons with a prior facture are about 6 times as likely to have a fracture in the first year than persons without a prior fracture. This increased risk is statistically significant.
- As age increases, the effect of prior fracture on fracture in first year decreases
- At about age 78, the increased risk is no longer statistically significant
- Above age 80 no increased risk is observed

# OR for a 10 year increase in age <u>at</u> PRIORFRAC=p

| Contrast                          | OR     | Confidence | e Limits | Pr > ChiSq |
|-----------------------------------|--------|------------|----------|------------|
| 10 year age increase, priorfrac=0 | 1.8685 | 1.3800     | 2.5298   | <.0001     |
| 10 year age increase, priorfrac=1 | 1.0527 | 0.7160     | 1.5476   | 0.7941     |

## Interpretation of the results

- Among persons <u>without</u> a prior fracture, a 10 year increase in age increases the risk of fracture in first year by about 86%; the increase is statistically significant
- Among persons with a prior fracture, a 10 year increase in age does not significantly increases the risk of fracture in first year

# Additive interactions in logistic regression

- Example: Myopia data set
- Logistic regression of MYOPIC on
  - DADMY
  - SPHEQ\_50 (1 if SPHEQ≤0.5 and 0 if SPHEQ>0.5)

# Additive interactions in logistic regression

| Parameter      | Estimate | Pr > ChiSq |
|----------------|----------|------------|
| Intercept      | -3.4701  | <.0001     |
| DADMY          | 0.8310   | 0.0790     |
| spheq_50       | 2.2661   | <.0001     |
| DADMY*spheq_50 | 0.0852   | 0.8834     |

- Interaction p-value much greater than 0.1
  - → no evidence of multiplicative interaction

## 4-row table from logistic regression

- If the interaction variables are dichotomous, a 4-row table can be created
- For the logistic regression model  $g(DADMY, SPHEQ_{50})$

$$= \beta_0 + \beta_1 DADMY + \beta_2 SPHEQ_{50} + \beta_3 DADMY \times SPHEQ_{50}$$

## 4-row table from logistic regression

| DADMY | spheq_50 | $\widehat{\mathit{OR}} = e^{\widehat{g}},  where  \widehat{g} =$                                                         | SAS contrasts                                            |
|-------|----------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 1     | 1        | $\hat{g}(DADMY = 1, SPHEQ_{50} = 1) = \hat{\beta}_0 + \hat{\beta}_1(1) + \hat{\beta}_2(1) + \hat{\beta}_3(1 \times 1)$   | dadmy 1 spheq_50 1<br>dadmy*spheq_50 1                   |
| 1     | 0        | $\hat{g}(DADMY = 1, SPHEQ_{50} = 0)$<br>=\hat{\beta}_0 + \hat{\beta}_1(1) + \hat{\beta}_2(0) + \hat{\beta}_3(1 \times 0) | dadmy 1 spheq_50 0 dadmy*spheq_50 0                      |
| 0     | 1        | $\hat{g}(DADMY = 0, SPHEQ_{50} = 1) = \hat{\beta}_0 + \hat{\beta}_1(0) + \hat{\beta}_2(1) + \hat{\beta}_3(0 \times 1)$   | dadmy <b>0</b> spheq_50 <b>1</b> dadmy*spheq_50 <b>0</b> |
| 0     | 0        | Reference category                                                                                                       |                                                          |

## 4-row table from logistic regression

```
proc logistic descending data=myopia;
model myopic=dadmy spheq_50 dadmy*spheq_50;
```

contrast 'both vs. neither' dadmy 1 spheq\_50 1
dadmy\*spheq\_50 1/estimate=exp;
contrast 'DADMY vs. neither' dadmy 1 spheq\_50 0
dadmy\*spheq\_50 0/estimate=exp;
contrast 'SPHEQ vs. neither' dadmy 0 spheq\_50 1
dadmy\*spheq\_50 0/estimate=exp;

run;

#### 4-row table from logistic regression

- Multiplicative interaction? 9.64×2.3=22.2 ≈ 24.1
  - → No evidence of multiplicative interaction
- Additive interaction? 9.64+2.3-1=10.94 < 24.1</li>
  - → Evidence of synergistic additive interaction

| DADMY | spheq_50 | Contrast          | OR      | Confiden | ce Limits |
|-------|----------|-------------------|---------|----------|-----------|
| 1     | 1        | both vs. neither  | 24.1049 | 10.2825  | 56.5087   |
| 1     | 0        | DADMY vs. neither | 2.2957  | 0.9083   | 5.8025    |
| 0     | 1        | SPHEQ vs. neither | 9.6420  | 3.8491   | 24.1530   |
| 0     | 0        |                   | 1.00    |          |           |

## 4-row table from logistic regression

 Remember that all ORs must be greater than 1 for this method to work

# Additive interactions in an appropriate regression model

- To create an additive model for these data, use the linear link binomial model
- Advantage: Allows testing for additive interactions
- Disadvantage:
  - The linear link model can result in values of  $\hat{\pi}$  that are greater than 1 or less than 0
  - In this case the model cannot be used to test for additive interactions

## Fitting the linear link model

```
proc genmod descending data=myopia; model myopic = dadmy spheq_50 dadmy*spheq_50 / dist=bin link = identity; Linear link output out=pdat p=phat; run; Binomial distribution (0/1 outcome) Save \hat{\pi} to make sure 0 <= \hat{\pi} <= 1 proc univariate data=pdat; var phat; run; Check min and max of \hat{\pi}
```

## Results from proc genmod

| Parameter      | Coefficient | Pr > ChiSq |
|----------------|-------------|------------|
| Intercept      | 0.0302      | 0.0072     |
| DADMY          | 0.0365      | 0.0758     |
| spheq_50       | 0.2006      | <.0001     |
| DADMY*spheq_50 | 0.1613      | 0.0253     |

- Interaction p-value much less than 0.1
  - → evidence of additive interaction

## Results from proc univariate

- Minimum of  $\hat{\pi}$  is >0
- Maximum of  $\hat{\pi}$  is <1

| Quantile | Estimate  |
|----------|-----------|
| 100% Max | 0.4285714 |
| 0% Min   | 0.0301724 |

Complete analysis MYOPIA data set

# Step 1: Data step

```
libname sdat 'C:\ERHS642';

data myopia;
set sdat.myopia;
if -1<=spheq<=0.5 then spheq_50=1;
else if spheq> 0.5 then spheq_50=0;
run;
```

## Step 2: Confounding

```
proc logistic descending data=myopia;
  model myopic=dadmy;
run;

proc logistic descending data=myopia;
  model myopic=dadmy spheq_50;
run;
```

# Step 2: Confounding, cont.

| Effect | OR    | 95% Wald Co | onfidence Limits |
|--------|-------|-------------|------------------|
| DADMY  | 2.533 | 1.535       | 4.181            |

| Effect   | OR     | 95% Wald Co | onfidence Limits |
|----------|--------|-------------|------------------|
| DADMY    | 2.430  | 1.417       | 4.166            |
| spheq_50 | 10.195 | 5.921       | 17.554           |

- |(2.533-2.430)/2.430 |≈4%
  - → no evidence of confounding

# Step 3: Multiplicative interaction

```
proc logistic descending data=myopia;
model myopic = dadmy spheq_50
dadmy*spheq_50;
```

run;

# Step 3: Multiplicative interaction, cont.

| Analysis of Maximum Likelihood Estimates |    |          |                   |                    |            |
|------------------------------------------|----|----------|-------------------|--------------------|------------|
| Parameter                                | DF | Estimate | Standard<br>Error | Wald<br>Chi-Square | Pr > ChiSq |
| Intercept                                | 1  | -3.4701  | 0.3838            | 81.7549            | <.0001     |
| DADMY                                    | 1  | 0.8310   | 0.4731            | 3.0857             | 0.0790     |
| spheq_50                                 | 1  | 2.2661   | 0.4685            | 23.3944            | <.0001     |
| DADMY*spheq_50                           | 1  | 0.0852   | 0.5811            | 0.0215             | 0.8834     |

- Interaction p-value much greater than 0.1
  - → no evidence of multiplicative interaction

# Step 4: Interactions based on 4-row table

# Step 4: Interactions based on 4-row table, cont.

| DADMY | spheq_50 | Contrast          | OR      | Confiden | ce Limits |
|-------|----------|-------------------|---------|----------|-----------|
| 1     | 1        | both vs. neither  | 24.1049 | 10.2825  | 56.5087   |
| 1     | 0        | DADMY vs. neither | 2.2957  | 0.9083   | 5.8025    |
| 0     | 1        | SPHEQ vs. neither | 9.6420  | 3.8491   | 24.1530   |
| 0     | 0        |                   | 1.00    |          |           |

- Multiplicative interaction? 9.64x2.3=22.2 ≈ 24.1
  - → No evidence of multiplicative interaction
- Additive interaction? 9.64+2.3-1=10.94 < 24.1</li>
  - → Evidence of synergistic additive interaction

# Step 5: Additive interaction based on the linear link model

# Step 5: Results from proc genmod

| Parameter      | Coefficient | Pr > ChiSq |
|----------------|-------------|------------|
| Intercept      | 0.0302      | 0.0072     |
| DADMY          | 0.0365      | 0.0758     |
| spheq_50       | 0.2006      | <.0001     |
| DADMY*spheq_50 | 0.1613      | 0.0253     |

- Interaction p-value much less than 0.1
  - → evidence of additive interaction

## Step 5: Results from proc univariate

- Minimum of  $\hat{\pi}$  is >0
- Maximum of  $\hat{\pi}$  is <1

| Quantile | Estimate  |
|----------|-----------|
| 100% Max | 0.4285714 |
| 0% Min   | 0.0301724 |

# Step 6: Interpretation

- Confounding
  - There is no evidence that SPHEQ\_50 is a confounder of DADMY
- Multiplicative interaction
  - There is no evidence of multiplicative interaction between SPHEQ\_50 and DADMY
  - The OR of DADMY is not significantly different for subjects with SPHEQ\_50≤0.5 and for subjects with SPHEQ\_50>0.5

## Step 5: Interpretation, cont.

- Additive interaction
  - There is evidence of synergistic additive interaction
  - The risk difference of DADMY is significantly different for subjects with SPHEQ\_50≤0.5 and SPHEQ\_50>0.5
  - It appears that DADMY and SPHEQ\_50 do not act independently