

Complementos de Programação de Computadores — Aula 11 Estuturas de Dados: Árvores

Mestrado Integrado em Electrónica Industrial e Computadores

Luís Paulo Reis

Ipreis@dsi.uminho.pt

Professor Associado do Departamento de Sistemas de Informação, Escola de Engenharia, Universidade do Minho, Portugal

(Slides Baseados em Cortez 2011, Reis, Rocha e Faria, 2007)

Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 1

Recursividade

- Recursividade em C++: Função/método chamar-se a si própria/o de modo recursivo
- Para evitar ciclos infinitos, tem de haver uma condição de paragem.

Exemplo: factorial

```
#include <iostream>
using namespace std;
                                                        5! = 1 \times 2 \times 3 \times 4 \times 5 = 120
int factorial(int n)
                                       // condição de paragem
   if(n==0) return 1;
   else return n*factorial(n-1); // chamada recursiva
}
int main()
{
                                                         factorial(3)=3*2*1*1
   cout << factorial(3) << "\n";</pre>
                                                         factorial(2)=2*1*1
}
                                                         factorial(1)=1*1
                                                         factorial(0)=1
```


- Dados estruturados numa árvore
- Cada nodo tem somente 2 ramos: esquerda e direita
- Se ordenada, a pesquisa é mais eficiente: O(log2n) (se árvore balanceada!)
- Aplicações: bases de dados, expressões de texto, jogos, ...

Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 3

Árvores Binárias

Manipulação (operações/métodos) sobre árvores:

- remove remove elemento da árvore O(log2n), se balanceada
- find procura o nodo do elemento na árvore O(log2n), se bal.
- insert sort insere elemento de modo ordenado O(log2n), se bal.
- empty determina se a árvore está vazia O(1)
- size devolve o número de elementos O(n)
- init (construtor) cria uma árvore vazia O(1)
- destroy (destrutor) elimina toda a árvore O(n)

Implementação proposta:

- Existem 2 classes: TNode e BTree:
- Node: contém o atributo d_left, d_right e d_data (será do tipo int, mas pode ser uma qualquer classe...
- BTree: contém o atributo root, do tipo TNode* e que aponta para a raiz da árvore...

```
#include <iostream> // exemplo num único ficheiro tree.cpp
class TNode // nodo de uma arvore binaria
private:
   int d_data; // pode ser string ou ate uma classe
   TNode *d_left; TNode *d_right;
public:
   TNode(int data, TNode *left, TNode *right) {
        d_data=data; d_left=left; d_right=right;
   }
  void setData(int data) { d_data=data;}
  void setLeft(TNode *left) { d_left=left;}
  void setRight(TNode *right) { d_right=right;}
   int data() const { return d_data;}
  TNode *left() const { return d_left;}
  TNode *right() const { return d_right;}
  void print() const { cout << d_data << " ";}</pre>
};
```


Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 5

- Existem 3 tipos de travessias: inorder, preorder e postorder:
 - Inorder: esquerda, nodo, direita (1,2,4,5,6,7)
 - Preorder: nodo, esquerda, direita (4,2,1,6,5,7)
 - Postorder: esquerda, direita, nodo (1,2,5,7,6,4)

 Muitos dos métodos (quase todos...) para manipular árvores binárias, incluindo as travessias, funcionam via uma recursividade. Exemplo: motores das travessias

```
Tipo inorder(TNode *N) {
    if(N!=0) { inorder(N->left());
    // usar nodo
    inorder(N->right());}
}
Tipo preorder(TNode *N) {
    if(N!=0) {
        // usar nodo
        preorder(N->left());
        preorder(N->right());
    }
}
Tipo postorder(TNode *N) {
    if(N!=0) {
        postorder(N->left());
        postorder(N->left());
        postorder(N->right());
        // usar nodo
    }
}
```


Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 7


```
class BTree  // arvore de int, continuação do tree.cpp
{
    private: TNode *root; // nodo raiz
    public:
    BTree(){ root=0;} // lista ligada vazia
    ~BTree() // destrutor
        { destroy(root);}
    void destroy(TNode *N) { // O(N)
        if(N!=0) {
            destroy(N->left()); destroy(N->right()); delete N;}
    }
    bool empty() const { return (root==0);} // O(1)
    int size() const { return size(root);} // O(N), trav. preorder
    int size(TNode *N) const { // travesia preorder
        if(N!=0) { return 1+size(N->left())+size(N->right());}
        else return 0;
    }
}
```



```
// continuacao do tree.cpp
void print() const {
    print(root); cout << "\n";} // O(N), travesia preorder</pre>
void print(TNode *N) const { // travesia preorder
    {
        if(N!=0) { N->print(); cout << "[";</pre>
        print(N->left()); cout << "][";</pre>
        print(N->right()); cout << "]";}</pre>
TNode *find(int elem) const {
        find(root,elem);
    } // O(log2n), se bal.
TNode *find(TNode *N,int elem) const { // preorder
    if(N==0 | N->data()==elem) return N;
    else if(N->data()>elem) return find(N->left(),elem);
    else return find(N->right(),elem);
}
```


Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 9

Imagine que o resultado de: T.print() é:
 5 [3 [1 [][2 [][]][4 [][]][7 [6 [][]][8 [][9 [][]]]]

Desenhe a árvore binária correspondente


```
int main()
    BTree T;
    T.insert_sort(4);
    T.insert_sort(2);
    T.insert_sort(3);
    T.insert sort(7);
    T.insert_sort(6);
    T.insert_sort(9);
    T.print();
    int s = T.size();
    cout << "size:" << s << "\n";
    TNode *N = T.find(7);
    cout << "data:" << N->data() << "\n";</pre>
    cout << "min. de 7:" << T.minData(N) << "\n";</pre>
    return 0;
}
```


Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 13

- Em termos do algoritmo, a remoção em árvores é bem mais elaborada do que a inserção (insert_sort) e procura de elementos (find);
- Ver todos detalhes em:
 - http://www.algolist.net/Data_structures/Binary_search_tree/Removal
- Existem 3 cenários:
 - 1 o nodo a remover não tem filhos; (simples)

- Existem 3 cenários:
 - 2) nodo a remover tem 1 filho

Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 15

Árvores Binárias

Cenário 3 – O nodo a remover tem 2 filhos;

- Caso mais complexo, tendo que fazer-se o seguinte:
 - Encontrar o valor mínimo na subárvore à direita
 - Substituir o valor do nodo a remover com o mínimo
 - Aplicar a remoção da subárvore à direita para remover o duplicado (cenário 1 ou 2)


```
// acrescentar dentro da class BTree:
void remove(int elem) // O(log2n) se balanceada
    { if(root==0)
        cerr << "Error: " << elem << "not found."; // elem nao existe
        else { if(root->data() == elem) // remover a root!
        { TNode* aux=new TNode(0,root,0);
        TNode* removedNode = remove(root,aux,elem); // metodo auxiliar
        root = aux->left();
        if(removedNode!=0) delete removedNode;
    }
    else // remover outro nodo
    { TNode* removedNode = remove(root,0,elem); // metodo auxiliar
        if(removedNode != NULL) delete removedNode;
    }
}
```


Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 17


```
// acrescentar dentro da class BTree:
TNode *remove(TNode *N, TNode *parent, int elem) // metodo auxiliar
     { if(elem < N->data()) {
        if (N->left()!= 0) return remove(N->left(),N,elem);
        else return 0;}
       else if(elem > N->data()){
           if (N->right() !=0) return remove(N->right(),N,elem);
           else return 0;}
        else{ if(N->left()!=0 && N->right()!=0) // cenario 3
        { N->setData(minData(N->right()));
        return remove(N->right(),N,N->data());
       } else if(parent->left()==N)
       { if(N->left()!=0) parent->setLeft(N->left()); // cenario 2
       else parent->setLeft(N->right()); // cenario 1
       return N;
       } else if(parent->right()==N)
       { if(N->left()!=0) parent->setRight(N->left()); // cenario 2
      else parent->setRight(N->right()); // cenario 1
      return N;
     }}
```

```
// continuação...
int main()
{
    BTree T;
    T.insert_sort(4);
    T.insert_sort(2);
    T.insert_sort(3);
    T.insert_sort(7);
    T.insert_sort(6);
    T.insert_sort(9);
    T.remove(2);
    T.remove(3);
    T.remove(4);
    T.print();
    return 0;
}
```


Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 19

Algoritmos de Pesquisa de Soluções

- Terminologia:
 - Fronteira: coleção de nós que foram gerados mas não expandidos (nós abertos).
 - Nó Folha: qualquer elemento da fronteira (sem sucessores na árvore)
 - Estratégia de Pesquisa : função que seleciona o próximo nó a ser expandido da fronteira
- Algoritmos de Pesquisa Cega (Sem Informação):
 - Pesquisa em Largura
 - Pesquisa por Custo Uniforme
 - Pesquisa em Profundidade
 - Pesquisa em Profundidade Limitada
 - Pesquisa em Profundidade Interativa
 - Pesquisa Bidirecional
- Algoritmos de Pesquisa Inteligente (Informada):
 - Pesquisa Gulosa
 - Algoritmo A*


```
function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
   static: seq, an action sequence, initially empty
            state, some description of the current world state
            goal, a goal, initially null
            problem, a problem formulation
   state \leftarrow \text{Update-State}(state, percept)
   if seq is empty then do
        goal \leftarrow FORMULATE-GOAL(state)
        problem \leftarrow Formulate-Problem(state, goal)
        seq \leftarrow Search(problem)
   action \leftarrow First(seq)
   seq \leftarrow \text{Rest}(seq)
   return action
```


Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 21

Algoritmos de Pesquisa de Soluções

Exemplo: Mapa da Roménia (Russel e Norvig, 1995)

Exemplo: Mapa da Roménia (Russel e Norvig, 1995)

Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 23

Algoritmos de Pesquisa de Soluções

• Exemplo: Npuzzle

- Estados?
- Acções?
- Teste Objectivo?
- Custo Acções?

7	2	4
5		6
8	3	1

	1	2
3	4	5
6	7	8

Goal State

Algoritmos de Pesquisa de Soluções

Pesquisa em Largura:

- Completude: Sim. Encontra a solução óptima, se o fator de ramificação b é finito
- Optimalidade: Sim, se o custo do caminho for uma função não decrescente da profundidade do nó (ou seja, se todos os caminhos tiverem o mesmo custo)
- Complexidade no Tempo: $1 + b + b^2 + b^3 + ... + b^d + (b^{d+1}-b) = O(b^{d+1})$
- Complexidade no Espaço: O(b^{d+1}) guarda todos os nós na memória
- Grande quantidade de espaço e tempo exigida. Pode facilmente gerar muitos MB de nós que devem ser guardados.

b = número máximo de filhos (ou fator de ramificação) d = altura do nó solução

• Pesquisa em Profundidade (Limitada):

- Completude: Sim, somente se o espaço de estados n\u00e3o tiver ciclos.
- Complexidade de Memória: Armazena só um caminho simples da raiz até à folha
 - Para um fator de ramificação b e uma profundidade máxima de m armazena bm nós (busca em largura = b^d)
- Complexidade no Tempo: O(b^m) no pior caso -> examinar todos os ramos
 - Muito mau se *m* é muito maior que *d* (m profundidade máxima de qq nó)
- Otimalidade: Não. Necessita de um espaço de busca finito e não cíclico

Algoritmos de Pesquisa de Soluções

• Pesquisa em Profundidade Iterativa:

- Tenta todos os possíveis limites de profundidade
- Combina os benefícios da pesquisa em largura e em profundidade

• Pesquisa em Profundidade Iterativa:

- Tenta todos os possíveis limites de profundidade
- Combina os benefícios da pesquisa em largura e em profundidade

Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 29

Algoritmos de Pesquisa de Soluções

Pesquisa em Profundidade Iterativa:

- Completude: Sim
- Otimalidade: Sim (se o custo do caminho for uma função não decrescente da profundidade do nó,ou seja, quando todos os caminhos tiverem o mesmo custo)
- Tempo: O(b^d) alguns nós podem ser gerados várias vezes. Mas isso acontecerá nos níveis superiores que normalmente têm poucos nós
- Espaço: O(bd)
- Preferida quando o espaço de pesquisa é muito grande e a profundidade da solução não é conhecida
- É o método de pesquisa sem informação preferido quando existe um espaço de pesquisa grande e a profundidade da solução não é conhecida

b = número máximo de filhos (ou fator de ramificação)

d = altura do nó ótimo

Comparação das Estratégias de Pesquisa

	Largura	Custo Uniforme	Profun- didade	Profun- didade limitada	Profun- didade Interativa	Bidirecional (se aplicável)
Tempo	O(b ^{d+1})	O(b ^{d+1})	O(bm)	O(b ^ℓ)	O(bd)	O(b ^{d/2})
Espaço	>>pd	>>p _q	O(bm)	O(b ℓ)	O(bd)	O(b ^{d/2})
Optima?	Sim ³	Sim	Não	Não	sim ³	Sim ^{3,4}
Completa?	sim ¹	sim ^{1,2}	Não	Sim	Sim ¹	Sim ^{1,2}

- 1 completa se b é finito
- 2 completa se o custo do passo $\acute{e} >= c$, para c positivo
- 3 ótima se o custo dos passos são todos idênticos
- 4 se ambos os sentidos utilizam pesquisa em largura

Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 31

Algoritmos de Pesquisa de Soluções

Pesquisa Gulosa:

- Minimizar o custo estimado para alcançar o objetivo
- Muitas vezes o custo para se alcançar o objetivo pode ser estimado mas não pode ser determinado exactamente
- A pesquisa gulosa (greedy) expande o nó que aparenta estar mais próximo do objetivo
- Função de Avaliação utiliza somente h(n)

Para o exemplo da Roménia: $h_{DLR}(n) = distância em linha$ reta de n até Bucarest

Rimnicu Vilcea

Pesquisa Gulosa:

Straight-line distance	
to Bucharest	·C
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 33

Algoritmos de Pesquisa de Soluções

Pesquisa Gulosa:

- O solução encontrada não é a solução óptima!
 - Arad → Sibiu → Fagaras → Bucharest (140) + (99) + (211) = 450km
- A Solução ó+tima passa por Rimnicu Vilcea

e
366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Algoritmo A*

• Pesquisa gulosa

- minimiza o custo estimado de n até o objetivo => h(n)
- Não é completa nem óptima

• Pesquisa de custo uniforme

- minimiza o custo do caminho da raiz até $n \Rightarrow g(n)$
- É completa e óptima mas analisa muitos nós

• Algoritmo A*: combina as duas estratégias

- Evitar expandir caminhos que já são caros
- Função de Avaliação f(n) = g(n) + h(n)
 - f(n) = custo estimado total da solução de custo mais baixo passando por n

Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 35

Algortimo A*

Algortimo A*

Algortimo A*

Algoritmo A*

F(n) = G(n) + H(n), onde

- G = é o custo do movimento para se mover do estado inicial até ao estado atual
- H = é a heurística, ou seja, o custo estimado para se mover do estado atual até ao destino final (estado solução)
- Nota: Não sabemos realmente a distância real entre o estado atual e a solução (senão sabíamos os passos para resolver o problema e não precisávamos de pesquisa...)

Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 39

Algoritmo A*

F(n) = G(n) + H(n), onde

- G = é o custo do movimento para se mover do estado inicial até ao estado atual
- H = é a heurística, ou seja, o custo estimado para se mover do estado atual até ao destino final (estado solução)

Sendo G(N) = 10 mov. em linha reta e 14 mov. na diagonal Sendo $H(N) = sqrt((Xf-Xi)^2 + (Yf-Yi)^2)$

Algoritmo A*

Programação - MIEEIC | Luis Paulo Reis | Universidade do Minho - Escola de Engenharia | 41

Complementos de Programação de Computadores — Aula 11 Estuturas de Dados: Árvores

Mestrado Integrado em Electrónica Industrial e Computadores

Luís Paulo Reis

lpreis@dsi.uminho.pt

Professor Associado do Departamento de Sistemas de Informação, Escola de Engenharia, Universidade do Minho, Portugal

(Slides Baseados em Cortez 2011, Reis, Rocha e Faria, 2007)

