

Deep Learning

Codificación CIUO 08 bajo redes neuronales

Andrés Rojas Elgueta Bayron Espinoza Venegas Bastián Díaz Vergara

Agosto, 2024

Contenido de la presentación

- 1. Introducción
- 2. Objetivos
- 3. Descripción y análisis de los datos
- 4. Implementación
- 5. Descripción del proceso de entrenamiento
- 6. Modelo de RRNN para CIUO-08
- 7. Épocas
- 8. Validación
- 9. Conclusión y trabajos futuros

Introducción

- ¿Qué es el CIUO-08?
- Este proyecto presenta la siguiente metodología.

Figura 1: Esquema Metodológico

Resultados clasificador INE

Cuadro 11: Resultados CIUO 1 dígito

modelo	acc	macro	micro	weighted
secuencias feed-forward 1d	0.8858	0.8599	o.8858	0.8855
TF-IDF feed-forward 1d	0.8684	0.8362	o.8684	0.8686
embeddings feed-forward 1d	0.8793	0.8519	o.8793	0.8807
embeddings Gated Recurrent Unit 1d	0.8989	0.8796	o.8989	0.8990

Fuente: elaboración propia, Instituto Nacional de Estadísticas.

Cuadro 12: Resultados CIUO 2 dígitos

modelo	acc	macro	micro	weighted
secuencias feed-forward 2d	0.8456	0.7249	0.8456	0.8476
TF-IDF feed-forward 2d	0.8412	0.7355	0.8412	0.8431
embeddings feed-forward 2d	0.8324	0.7220	0.8324	0.8348
embeddings Gated Recurrent Unit 2d	0.8526	0.7364	0.8526	0.8543

Fuente: elaboración propia, Instituto Nacional de Estadísticas.

Objetivos

Objetivo General: Desarrollar un modelo de aprendizaje profundo para la codificación de al menos un nivel de la Clasificación Internacional Uniforme de Ocupaciones 2008 (CIUO-08).

Objetivos Específicos

- Representar de manera vectorial las respuestas textuales, capturando la relación semántica de las respuestas mediante la técnica de Words Embeddings.
- Implementar una red neuronal recurrente tipo LSTM bidireccional con MLP para codificar cada nivel de la clasificación a partir de la representación vectorial.

5/19

Descripción de Datos

Nombre	Descripción	Tipo	Valor
Ocupación	Ocupación del Encuestado	Texto	Hasta 249 Caracteres
Tarea	Tareas que cumple en su Ocupación	Texto	Hasta 492 Caracteres
CIUO_N		Factor	Nivel 1: 10 Grupos Nivel 2: 44 Grupos Nivel 3: 162 Grupos Nivel 4: 649 Ocupaciones

Tabla 1: Descripción de Variables

Descripción de los datos

Recordemos que las clasificaciones del 1 al 9 corresponde a una tarea u ocupación de la fuerza de trabajo chilena

Código	Tarea y ocupación
1	Directores, gerentes y administradores
2	Profesionales, científicos e intelectuales
3	Técnicos y profesionales de nivel medio
4	Personal de apoyo administrativo
5	Trabajadores de los servicios y vendedores de comercios y mercados
6	Agricultores y trabajadores calificados agropecuarios, forestales y pesqueros
7	Artesanos y operarios de oficios
8	Operadores de instalaciones, máquinas y ensambladores
9	Ocupaciones elementales
0	Ocupaciones de las fuerzas armadas

Tabla 2: Clasificación del primer nivel CIUO-08CL

Análisis de los datos

Proporción por categorías nivel 1

Figura 2: Gráfico de barras porcentual

Implementación

Figura 3: Metodología para el nivel uno de codificación

Descripción de Proceso de Entrenamiento

Descripción de Entrenamiento				
Uso de Datos	70% Entrenamiento			
USO de Datos	30% Validación			
	10			
Épocas	Patience: 3 val_loss			
	Early Stop: 7			
Función de Pérdida	Sparse Categorical Crossentropy			
GPU	No			
Plataforma	R			
Tiempo de Computo	1 hora 0 minutos 51 s			
	Precisión			
	Matriz de Confusión			
Métricas de Validación	Macro average			
	Micro average			
	Weighted average			

Tabla 3: Descripción de Entrenamiento → + ₹ → +

Descripción de Proceso de Entrenamiento

Capa	Neuronas
Bidirectional LSTM Layer 1	256
Bidirectional LSTM Layer 2	64
Dense Layer 1	16
Dense Layer 2 (Output Layer)	9
Total de neuronas	345

Tabla 4: Resumen de capas y neuronas del modelo

Capa	Regularización	Activación
Dense Layer 1	(Lasso(L1) & Ridge(L2))=0.01 Dropout = 0.45	Relu
Dense Layer 2	-	Softmax

Tabla 5: Regularización y función de activación

Descripción del Proceso de Entrenamiento


```
1 ### Ajuste del modelo ###
2 model <- keras model sequential() %> %
   layer embedding(input dim = vocab size, output dim = 128, mask zero = TRUE)

→ %> %

   bidirectional(layer lstm(units = 128, return sequences = TRUE)) %>%
   bidirectional(layer lstm(units = 32)) %>%
   layer dense(units = 16, activation = 'relu', kernel regularizer = regularizer l1 12(11 =
      \hookrightarrow 0.01. 12 = 0.01)) %>%
   layer_dropout(rate = 0.45) %>%
   layer_dense(units = num_classes, activation = 'softmax')
9 ### Parada temprana ###
10 early stop <- callback early stopping(
   monitor = "val loss",
   patience = 3.
   restore best weights = TRUE
15 ### Compilación del modelo ###
16 model %>% compile(
   loss = 'sparse categorical crossentropy',
   optimizer = optimizer adam(learning rate = 0.001, beta 1 = 0.9),
   metrics = c('accuracy')
  ### Entrenar el modelo ###
22 tiempo ini = Sys.time()
23 history <- model %>% fit(
                     # Conjunto de datos de entrenamiento
   train dataset,
   epochs = 10,
                      # Número de épocas
   validation data = test dataset, # Conjunto de datos de validación
   callbacks = list(early_stop)
29 tiempo_fin = Sys.time()
```

Modelo de RRNN para CIUO-08

> summary(model)

Model: "Modelo elegido"

Layer (type)	Output Shape	Param #
embedding_1 (Embedding) bidirectional_3 (Bidirectional)	(None, None, 128) (None, None, 256)	3112832 263168
bidirectional_2 (Bidirectional) dense_3 (Dense)	(None, 64) (None, 16)	73984 1040
dropout_1 (Dropout) dense 2 (Dense)	(None, 16) (None, 9)	0 153

Total params: 3451177 (13.17 MB)
Trainable params: 3451177 (13.17 MB)
Non-trainable params: 0 (0.00 Byte)

Figura 5: Resumen del modelo previo a entrenamiento

Épocas

Figura 6: Ajuste por épocas

Época	1	2	3	4	5	6	7
Acc validation	0.771	0.784	0.787	0.787	0.788	0.787	0.786
Acc training	0.621	0.720	0.745	0.759	0.771	0.782	0.791

Época	1	2	3	4	5	6	7
Loss validation	0.884	0.791	0.780	0.758	0.762	0.763	0.786
Loss training	1.355	0.987	0.896	0.840	0.796	0.758	0.731

Validación: Métricas

Predicted / Actual	1	2	3	4	5	6	7	8	9
1	999	80	77	20	164	10	16	5	12
2	250	5772	904	159	97	6	59	16	33
3	164	523	3093	494	360	36	191	66	84
4	28	77	501	2155	99	7	7	45	119
5	536	113	423	168	7882	28	128	49	651
6	48	18	39	16	63	2062	74	42	555
7	57	111	329	18	108	51	6711	232	421
8	13	17	48	43	41	40	167	4317	198
9	13	23	52	59	797	345	315	181	8800

Tabla 6: Matriz de Confusión

Validación: Métricas

Categoría	1	2	3	4	5	6	7	8	9
% Aciertos	47.39%	85.71%	56.59%	68.81%	82.02%	79.77%	87.52%	87.16%	80.93%

Tabla 7: Porcentaje de aciertos por categoría

Métrica	Fórmula	INE	Modelo Propuesto
Precisión	$Acc = \frac{\text{Predicciones Correctas}}{\text{Predicciones Totales}}$	0.8989	0.7876
Macro Average	$Macro = \frac{1}{N} \sum_{i=1}^{N} \operatorname{Presici\acute{o}n}_{i}$	0.8796	0.7509
Micro Average	$Micro = \frac{\sum \text{Verdaderos Positivos}}{\sum \text{Verdaderos Positivos} + \sum \text{Falsos Positivos}}$	0.8989	0.7866
Weighted Average	$Weighted = \frac{\sum_{i=1}^{N} (\text{Tamaño Categoria}_{i} \cdot \text{Precisión}_{i})}{\text{Tamaño Total}}$	0.8990	0.7868

Tabla 8: Métricas del modelo

Conclusiones

- Se logró implementar una red neuronal recurrente tipo LSTM bidireccional con MLP para codificar el primer nivel de clasificación a partir de una representación vectorial mediante words embeddings.
- En los grupos 2, 7 y 8 se logra una presición superior al 85 % y los grupos 5, 6 y 9 alcanzan alrededor del 80 % de presición.
- El grupo 6 a pesar de ser el tercer grupo con menos datos recopilados alcanza alrededor del 80% de presición.
- La inclusión de capas LSTM bidireccionales no proporciona una mejora en la presición de la codificación a nivel 1 respecto a la arquitectura propuesta por INE.

Trabajos Futuros

- Se cree que entrenar un *words embeddings* propio y agregarlo al flujo de trabajo aumentará significativamente la presición del modelo.
- Se propone implementar algoritmos de boosting y baggins para mejorar las métricas de validación, inclusive incorporarlas al flujo de trabajo ya propuesto, ya que su naturaleza resulta ideal para clasificar de manera jerárquica.

Referencias

- Géron, Aurélien. 2022. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, Inc
- Instituto Nacional de Estadísticas. (2018). Clasificador Chileno de Ocupaciones CIUO 08.CL. Instituto Nacional de Estadísticas, Subdirección Técnica, Departamento de Infraestructura Económica, Sección de Nomenclaturas. Disponible en https://www.ine.gob. cl/docs/default-source/buenas-practicas/ clasificaciones/ciuo/clasificador/ciuo-08-cl.pdf
- Gautam, H. (2020, marzo 1). Word Embedding. Basics. https: //medium.com/@hari4om/word-embedding-d816f643140
- DataScientest. (s.f.). Memoria a largo plazo a corto plazo (LSTM):
 ¿Qué es?. DataScientest. (2024, mayo 20)
 https://datascientest.com/es/
 memoria-a-largo-plazo-a-corto-plazo-lstm