IPython的%魔术命令			
常用命令	说明		
%magic	显示所有魔术命令		
%hist	IPython命令的输入历史		
%pdb	异常发生后自动进入调试器		
%reset	删除当前命名空间中的全部变量或名称		
%who	显示Ipython当前命名空间中已经定义的变量		
%time statement	给出代码的执行时间, statement表示一段代码		

列表和数组

%timeit statement

一组数据的有序结构

区别

列表: 数据类型可以不同

3.1413, 'pi', 3.1404, [3.1401, 3.1349], '3.1376'

多次执行代码,计算综合平均执行时间

数组:数据类型相同

3.1413, 3.1398, 3.1404, 3.1401, 3.1349, 3.1376

NumPy

NumPy是一个开源的Python科学计算基础库。

- ♦ 一个强大的N维数组对象 ndarray
- ◆ 广播功能函数
- ◆ 整合C/C++/Fortran代码的工具
- ❖ 线性代数、傅里叶变换、随机数生成等功能

NumPy是SciPy、Pandas等数据处理或科学计算库的基础。

N维数组对象: ndarray

例: 计算 A²+B³, 其中, A和B是一维数组

```
def pySum():
    a = [0, 1, 2, 3, 4]
    b = [9, 8, 7, 6, 5]
    c = []
    for i in range(len(a)):
        c.append(a[i]**2 + b[i]**3)
    return c
print(pySum())
```

```
import numpy as np

def npSum():
    a = np.array([0, 1, 2, 3, 4])
    b = np.array([9, 8, 7, 6, 5])
    c = a**2 + b**3
    return c

print(npSum())
```

ndarray对象的属性

属性	说明
.ndim	秩,即轴的数量或维度的数量
.shape	ndarray对象的尺度,对于矩阵,n行m列
.size	ndarray对象元素的个数,相当于.shape中n*m的值
.dtype	ndarray对象的元素类型
.itemsize	ndarray对象中每个元素的大小,以字节为单位

ndarray实例

ndarray数组可以由非同质对象 构成。

非同质ndarray元素为对象类型。

非同质ndarray对象无法有效发 挥NumPy优势,尽量避免使用。

ndarray数组的创建方法

- ❖ 从Python中的列表、元组等类型创建ndarray数组。
- ◆ 使用NumPy中函数创建ndarray数组, 如: arange, ones, zeros等。
- ⇒ 从字节流(raw bytes)中创建ndarray数组。
- ❖ 从文件中读取特定格式,创建ndarray数组。

ndarray数组的创建方法

(2) 使用NumPy中函数创建ndarray数组, 如: arange, ones, zeros等

函數	说明
np.arange(n)	类似range()函数,返回ndarray类型,元素从0到n-1
np.ones(shape)	根据shape生成一个全1数组,shape是元组类型
np.zeros(shape)	根据shape生成一个全0数组,shape是元组类型
np.full(shape,val)	根据shape生成一个数组,每个元素值都是val
np.eye(n)	创建一个正方的n*n单位矩阵,对角线为1,其余为0

ndarray数组的创建方法

(3) 使用NumPy中其他函数创建ndarray数组

函數	说明	
np.linspace()	根据起止数据等间距地填充数据,形成数组	
np.concatenate()	将两个或多个数组合并成一个新的数组	

ndarray 数组的操作

数组的索引和切片

一维数组的索引和切片:与Python的列表类似

```
In [131]: a = np.array([9, 8, 7, 6, 5])
In [132]: a[2]
Out[132]: 7
In [133]: a[ 1 : 4 : 2 ]
Out[133]: array([8, 6])
```

数组的索引和切片

一维数组的索引和切片: 与Python的列表类似

```
In [131]: a = np.array([9, 8, 7, 6, 5])

In [132]: a[2]
Out[132]: 7

In [133]: a[1:4:2] ← 起始编号: 终止编号(不含): 步长
Out[133]: array([8, 6])

3元素冒号分割
```

数组的索引和切片

多维数组的索引:

```
数组的索引和切片
多维数组的切片:
                                                                      ・洗取一个维度用:
                                           In [150]: a[:, 1:3, :] -
                                                                     - 每个维度切片方法
  In [146]: a = mp.arange(24).reshape((2,3,4))
                                           array([[[ 4, 5, 6, 7], [ 8, 9, 10, 11]],
                                                                      与一维数组相同
 In [147]: a
 Out[147]:
                                                [[16, 17, 18, 19],
[28, 21, 22, 23]]])
 array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]],
                                           In [160]: a[:, :, ::2] ←── 每个维度可以使用
                                           Out[160]:
       [[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
                                           array([[[ 0, 2],
                                                                      步长跳跃切片
                                                   4, 6],
                                                  [ 8, 10]],
                                                  [16, 18],
                                                  [20, 22]]])
```

ndarray 数组的运算

```
数组与标量之间的运算
数组与标量之间的运算作用于数组的每一个元素
   实例:计算a与元素平均值的商
                                                               In [169]: a.mean()
                                                              Out[169]: 11.5
   In [146]: a = np.arange(24).reshape((2,3,4))
                                                              In [170]: a = a / a.meam()
   In [147]: a
                                                              In [171]: a
   Out[147]:
   array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]],
                                                                        [ 6. , 0.08695652, 0.17391304, 0.25086957], [ 6.34782609, 0.43478261, 0.52173913, 0.60809565], [ 0.69565217, 0.7826087 , 0.86956522, 0.95652174]],
                                                              annay([[[ 6.
                                                                      [[ 1.84347826, 1.13843478, 1.2173913 , 1.30634783], [ 1.39138435, 1.47026887, 1.56521739, 1.65217391], [ 1.73913843, 1.82668696, 1.91384348, 2. ]]])
           [[12, 13, 14, 15],
[16, 17, 18, 19],
            [20, 21, 22, 23]]])
```

NumPy—元函数

对ndarray中的数据执行元素级运算的函数

函数	说明
np.abs(x) np.fabs(x)	计算数组各元素的绝对值
np.sqrt(x)	计算数组各元素的平方根
np.square(x)	计算数组各元素的平方
np.log(x) np.log10(x) np.log2(x)	计算数组各元素的自然对数、10底对数和2底对数
np.ceil(x) np.floor(x)	计算数组各元素的ceiling值或floor值

NumPy—元函数

函数	说明			
np.rint(x)	计算数组各元素的四舍五人值			
np.modf(x)	将数组各元素的小数和整数部分以两个独立数组形式返回			
np.cos(x) np.cosh(x) np.sin(x) np.sinh(x) np.tan(x) np.tanh(x)	计算数组各元素的普通型和双曲型三角函数			
np.exp(x)	计算数组各元素的指数值			
np.sign(x)	计算数组各元素的符号值,1(+),0,-1(-)			

NumPy二元函数

函数	说明
+ = * / **	两个数组各元素进行对应运算
np.maximum(x,y) np.fmax() np.minimum(x,y) np.fmin()	元素级的最大值/最小值计算
np.mod(x,y)	元素级的模运算
np.copysign(x,y)	将数组y中各元素值的符号赋值给数组x对应元素
> < >= <= !=	算术比较,产生布尔型数组

NumPy二元函数实例

```
In [201]: a = np.arange(34).reshape((2,1,4))

In [202]: b = np.sqrt(a)

In [203]: a
Out[203]: a
In [203]: b
In [203]: b
In [204]: b
Out[203]: a
In [205]: b
Out[205]: a
In [205]: b
In [205]: b
Out[205]: a
In [205]: a
In [205]: b
Out[205]: a
In [205]: a
In [205]: b
Out[205]: a
In [205]: b
Out[205]: a
In [205]: a
In [2
```

小节

```
ndarray类型属性、创建和变换
.ndim
                                   .reshape(shape)
              np.arange(n)
                                   .resize(shape)
.shape
              np.ones(shape)
.size
              np.zeros(shape)
                                   .swapaxes(ax1,ax2)
.dtype
              np.full(shape,val)
                                   .flatten()
.itemsize
              np.eye(n)
              np.ones_like(a)
              np.zeros_like(a)
              np.full_like(a,val)
```