

KHÓA CHUYÊN ĐỀ LIVE VIP 2K4|TYHH

LIVE 25: LÝ THUYẾT TRỌNG TÂM AMINO AXIT (VIP)

(Slidenote dành riêng cho lớp VIP)

1 - 1	KHÁI NIỆM		
Câu 1:	Amino axit là hợp chất hữu cơ trong phân tử có	alaíra	
Cau 1:	A. nhóm amin và nhóm cacboxyl.	Ciiua	
	B. nhóm amino và nhóm cacboxyl.		
	C. một nhóm amino và một nhóm cacbonyl.		
	D. nhóm amino và nhóm cacbonyl.		
	27 mon anno va mon cacconyn		
Câu 2:	Hợp chất nào dưới đây thuộc loại amino axit?		
	A. CH ₃ -NHCH ₂ COOH. B. HCOONH ₄ .	\mathbb{C} . $\mathbb{C}_2\mathbb{H}_5\mathbb{N}\mathbb{H}_2$.	D. H ₂ NCH ₂ COOH.
0	PÔNO BUÂN BANUBUÁB		
2 - 1	ĐỒNG PHÂN, DANH PHÁP		
	httns://Tail	LieuOnThi.Net	

	CÔ THÝ TIỂN THÝ THÝ TRÝ THÝ KÍ HIỆU CƠN THÝ							
Công thức	Tên thay thế	thống	Tên thường	PTK	CTPT			
CH ₂ - COOH								
NH ₂								
CH ₃ - CH - COOH								
$\stackrel{ }{\mathrm{NH}_2}$								
CH ₃ CH - CHCOOH								
$\dot{\text{CH}}_3$ $\dot{\text{NH}}_2$								
$H_2N[CH_2]_4CHCOOH$								
NH ₂								
HOOCCH[CH ₂] ₂ COOI	I							
NH_2								

					,		
Câu 3:	Alanin	- /	- ^	41/	- ^	4	1 \
t an v	Alanin	CO	cono	Thire	can	Tao	าล
Cuu J.	1 11u11111		COILE	uiuc	Cuu	uuo	Iu

A. $C_6H_5NH_2$.

B. H₂NCH₂COOH.

C. CH₃CH(NH₂)COOH.

D. H₂NCH₂CH₂COOH.

Câu 4: Công thức phân tử của axit glutamic là

A. C₅H₉NO₄.

B. $C_6H_{14}N_2O_2$.

 $C. C_5H_8O_4N.$

D. $C_5H_{11}NO_2$.

Câu 5: Amino axit (X) có phân tử khối bằng 146. Tên gọi của (X) là

A. Alanin.

B. Lysin.

C. Glyxin.

D. Valin.

Câu 6: Trong phân tử amino axit nào dưới đây có số nhóm –NH₂ ít hơn số nhóm –COOH?

A. Lysin.

B. Glyxin.

C. Axit glutamic.

D. Alanin.

Câu 7: Tên gọi nào sau đây không phù hợp với hợp chất NH₂CH(CH₃)COOH?

A. Axit 2-aminopropanoic.

B. Alanin.

C. Axit α -aminopropionic.

D. Axit α -aminoisopropionic.

Câu 8: Chất X có công thức cấu tạo: CH₃CH(CH₃)CH(NH₂)COOH. Tên thay thế của X là

A. Axit α -aminoisovaleric.

B. Axit 2-amino-3-metylbutanoic.

C. Axit 3-amino-2-metylbutanoic.

D. Axit 2-amin-3-metylbutanoic.

Câu 9:	Chất X có công thức cấu tạo: H ₂ N-CH ₂ -CH ₂ -CH ₂ -CH _(NH₂) -COOH. Tên bán hệ thống của X là						
	A. Axit α , ω - diaminoca	aproic.					
	B. Axit α,ε - điaminca	proic.					
	C. Axit 2,6-diaminohex	anoic.					
	D. Axit α, ε - diaminoc	aproic.					
Câu 10:	Công thức chung của an	mino axit no, mạch hở c	có một nhóm NH ₂ và mớ	ột nhóm COOH là			
	A. $C_n H_{2n+3} NO_2 (n \ge 2)$.	B. $C_n H_{2n+1} NO_2 (n \ge 2)$	C. $C_n H_{2n+3} N_2 O_4 (n \ge 3)$). D. $C_n H_{2n-1} NO_2 (n \ge 2)$.			
Câu 11:	Công thức chung của an			•			
	$\mathbf{A.} \ \mathbf{C_n H_{2n-1} NO_4} \ .$	$\mathbf{B.} \ \mathbf{C_n} \mathbf{H_{2n+1}} \mathbf{NO_2}.$	C. C _n H _{2n-1} NO ₄ .	$\mathbf{D.} \; \mathbf{C_n} \mathbf{H_{2n+1}} \mathbf{NO_4}.$			
Câu 12:		· -	hai nhóm thế amino và	một nhóm chức cacboxyl. Côn			
	thức phân tử của T có d		C . $C_nH_{2n+2}O_2N_2$.	D C H. O N			
	A. $C_nH_{2n-1}O_2N_2$.	D. C _n 112 _n O ₂ 1\(\frac{1}{2}\).	C_{n} C_{n} C_{1} C_{2} C_{2	$\mathbf{D}_{\bullet} \mathbf{C}_{\mathbf{n}} \mathbf{H}_{2\mathbf{n}} + 1\mathbf{O}_{2}\mathbf{N}$.			
Câu 13:	Cho aminoaxit no, mạc	h hở, có công thức $\mathrm{C_nH}$	_m O ₂ N ₂ . Mối quan hệ giữ	řa n với m là			
	A. $m = 2n + 1$.	B. $m = 2n + 2$.	C. $m = 2n$.	D. $m = 2n + 3$.			
Câu 14:	Amino axit X no, mạch	hở có công thức phân t	ử C.HO₄N. Mối quan	hệ giữa m với n là			
cuu i ii	$\mathbf{A.} \mathbf{m} = 2\mathbf{n}.$	B. $m = 2n - 2$.	C. $m = 2n + 1$.	D. $m = 2n - 1$.			
Câu 15:	Số đồng phân cấu tạo a	mino axit có công thức	phân tử C4H9O2N là				
	A. 2.	B. 4.	C. 3.	D. 5.			
Câu 16:	Số đồng phân cấu tạo c	α -amino axit ứng với cô	ồng thức phân tử C ₄ H ₉ O	₂ N là			
	A. 2.	B. 3.	C. 4.	D. 5.			

3 - 1	ÍNH CHẤT	HÓA HỌC		
		•		
Câu 17:	Chất nào sau đâ	y vừa phản ứng với dung dị	ch NaOH vừa phản	ứng với dung dịch HCl?
	A. Anilin.	B. Metylamin.	C. Alanin.	D. Axit axetic.
		•		
CA 10		12.		
Câu 18:	Dung dịch chất	nào sau đây đổi màu quỳ tín	n chuyên sang xanh	?
	A. Axit-2,6-đian	ninohexanoic.	B. Axit axetic.	
	C. Axit glutami	c.	D. Alanin.	
	_			
GA 10				
Cau 19:			I, CH ₃ NH ₂ và CH ₃	$(CH_2)_3NH_2$, $C_6H_5NH_2$. Số chất làm đổi
	màu quỳ tím ẩm	ılà		A Comment of the Comm
	A. 1.	B. 3.	C. 4.	D. 2.
O2 20	C1 1	II NOU COOL CU CU	NIII VOODII 1100	CCH CH CHAIL SCOT
Cau 20:		u: H ₂ NCH ₂ COOH; CH ₃ CH(
	$H_2N(CH_2)_4CH(1$	NH ₂)COOH. Số chất làm qu	rỳ tím ấm chuyển m	àu là
	A. 2.	B. 1.	C. 3.	D. 4.

Câu 21:	Cho các chất sau: lysin, axit glutamic, valin, glyxin, alanin, trimetylamin, anilin. Số chất làm quỳ tím chuyển màu hồng, màu xanh và không đổi màu lần lượt là:							
	A. 2, 2, 3.	B. 3, 1, 3.	C. 1, 2, 4.	D. 2, 1, 4.				
Câu 22:	Cho các dung dịch loãng có cùng nồng độ sau: alanin (1); lysin (2); axit glutamic (3); HCl (4). Dung dịch có pH nhỏ nhất là							
	A. (1).	B. (2).	C. (3).	D. (4).				
Câu 23:	Để phân biết các dung dịch riêng biệt, không màu sau: alanin, axit axetic, etylamin, anilin bằng phương pháp hóa học có thể dùng các thuốc thử là:							
	A. Nước brom, Cu(OH) ₂ .							
	B. Dung dịch Na ₂ CO ₃ , dung dịch AgNO ₃ /NH ₃ .							
	C. Quỳ tím, Cu(OH) ₂ .							
	D. Quỳ tím, nước b	rom.						
Câu 24:	Cho dãy các chất: H ₂ NCH ₂ COOH, C ₆ H ₅ NH ₂ , C ₂ H ₅ NH ₂ , CH ₃ COONH ₄ . Số chất trong dãy vừa tác dụng với dung dịch NaOH vừa tác dụng với dung dịch HCl là							
	A. 2.	B. 4.	C. 3.	D. 1.				
Câu 25:	Cho sơ đồ chuyển hóa sau: Alanin—+HCl → X—+NaOH → Y. Chất Y là chất nào sau đây?							
	A. H ₂ NCH ₂ CH ₂ CO	OH.	B. CH ₃ CH(NH ₃ Cl)	COONa.				
	C. CH ₃ CH(NH ₂)CC	OONa.	D. CH ₃ CH(NH ₃ Cl)	D. CH ₃ CH(NH ₃ Cl)COOH.				
Câu 26:	Cho ba dung dịch có cùng nồng độ mol: (1) H ₂ NCH ₂ COOH, (2) CH ₃ COOH, (3) CH ₃ CH ₂ NH ₂ . Dãy sắp xếp theo thứ tự pH tăng dần là:							
	A. (3), (1), (2).	B. (2), (1), (3).	C. (2), (3), (1).	D. (1), (2), (3).				
Câu 27:	Dung dịch chất nào sau đây làm quỳ tím chuyển thành màu hồng?							
	A. Axit α -aminogle	utaric.	B. Axit α -aminop	B. Axit α -aminopropionic.				
	C. Axit aminoaxetic	c.	D. Axit α,ε-điamin	D. Axit α,ε-điaminocaproic.				
Câu 28:	Cho dãy các chất: H ₂ NCH ₂ COOH, C ₂ H ₅ NH ₂ , CH ₃ NH ₂ , CH ₃ COOH. Số chất trong dãy không phản ứng với HCl trong dung dịch là							
	A. 4.	B. 1.	C. 2.	D. 3.				

- Câu 29: Phát biểu nào sau đây sai?
 - A. Nhóm chức COOH trong amino axit có phản ứng este hóa với ancol.
 - B. Amino axit là hợp chất hữu cơ tạp chức.
 - C. Amino axit là những chất rắn, kết tinh, tan tốt trong nước và có vị ngọt.
 - **D.** Trong phân tử α -amino axit chỉ có một nhóm NH₂.
- Câu 30: Hai hợp chất hữu cơ X và Y có cùng công thức phân tử là C₃H₇O₂N, đều là chất rắn ở điều kiện thường. Chất X phản ứng với dung dịch NaOH, giải phóng khí. Chất Y có phản ứng trùng ngưng. Các chất X và Y lần lượt là:
 - A. vinylamoni fomat và amoni acrylat.

 B. axit 2-aminopropionic và axit 3-aminopropionic.
 - C. amoni acrylat và axit 2-aminopropionic.

 D. axit 2-aminopropionic và amoni acrylat.

Tự học – TỰ LẬP – Tự do! ---- (Thầy Phạm Thắng | TYHH) ----

BÀI TẬP TỰ LUYỆN – HỌC SINH CHĂM CHỈ TỰ LÀM! (Trong quá trình làm, nếu có thắc mắc, em hãy đăng lên group HỎI ĐÁP nhé)

Câu 1:	Chất nào sau đây không phải là amino axit?								
	A. Alanin.	B. Glyxin.	C. Valin.	D. Glixerol.					
Câu 2:	α-amino axit là amin	o axit có nhóm amino g	ắn với cacbon ở vị tr	rí số					
	A. 2.	B. 4.	C. 1.	D. 3.					
Câu 3:	Số nhóm amino và số	nhóm cacboxyl có tro	ng một phân tử axit g	glutamic tương ứng là					
	A. 2 và 1.	B. 2 và 2.	C. 1 và 2.	D. 1 và 1.					
Câu 4:	Số nhóm amino (NH	2) có trong một phân tử	axit aminoaxetic là						
	A. 2.	B. 3.	C. 4.	D. 1.					
Câu 5:	Số nhóm cacboxyl và	à amino trong một phân	tử lysin lần lượt là:						
	A. 1 và 2.	B. 2 và 3.	C. 2 và 2.	D. 2 và 1.					
Câu 6:	Trong các amino axit sau: glyxin, alanin, axit glutamic, lysin và valin có bao nhiêu chất có số nhóm amino bằng số nhóm cacboxyl?								
	A. 2.	B. 4.	C. 3.	D. 1.					
Câu 7:	Cho A có công thức CH ₃ -CH(NH ₂)-COOH. Tên của A là:								
	A. Axit glutamic.	B. Alanin.	C. Valin.	D. Glyxin.					
Câu 8:	Kí hiệu viết tắt Glu là chỉ chất amino axit có tên là:								
	A. axit glutamic.	B. axit glutaric.	C. glyxin.	D. glutamin.					
Câu 9:	Alanin là tên gọi của	α-amino axit có phân t	ử khối bằng						
	A. 103.	B. 117.	C. 75.	D. 89.					
Câu 10:	Tên gọi nào sai với công thức tương ứng?								
	A. HOOCCH ₂ CH ₂ CI	A. HOOCCH ₂ CH ₂ CH(NH ₂)COOH: axit glutamic.							
		B. H ₂ N[CH ₂] ₆ NH ₂ : hexan-1,6-điamin.							
	C. CH ₃ CH(NH ₂)COOH: glyxin.								
	D. CH ₃ CH(NH ₂)COOH: alanin.								
Câu 11:	Valin có công thức cấu tạo như sau:								
	CH ₃ —CH—COOH								
	CH ₃ NH ₂								
	Tên gọi của valin the	Tên gọi của valin theo danh pháp thay thế là							
	•	A. axit 3-metyl -2- aminobutiric. B. axit 2-amino-3-metylbutanoic.							
	C. axit 2-amin-3-met	ylbutanoic.	D. axit 3-metyl-2	2-aminbutanoic.					
Câu 12:	Trong các tên dưới đ	ây, tên nào không phù l	nợp với chất C ₆ H ₅ -Cl	H ₂ -CH(NH ₂)-COOH?					
	A. Phenylalanin.		B. Axit 2-amino	-3-phenylpropanoic.					
	C. Axit 2-amino-2-benzyletanoic.D. Axit α-amino-β-phenylpropionic.								

Câu 13:	13: Cho các chất hữu cơ: CH ₃ CH(CH ₃)NH ₂ (X) và CH ₃ CH(NH ₂)COOH (Y). Tên thay thế của X và Y lượt là						
	A. propan-2-amin và ax	it aminoetanoic.	B. propan-2-amin và a	xit 2-aminopropanoic.			
	C. propan-1-amin và ax	it 2-aminopropanoic.	D. propan-1-amin và axit aminoetanoic.				
Câu 14:	Amino axit E no, mạch thức phân tử của E có dạ	-	ột nhóm thế amino và n	một nhóm chức cacboxyl. Công			
	$\mathbf{A.} \ C_n H_{2n} O_2 N.$	B. $C_nH_{2n+1}O_2N$.	C. $C_nH_{2n-1}O_2N$.	D. $C_nH_{2n+2}O_2N$.			
Câu 15:	Công thức chung của an	nino axit no, mạch hở, c	có hai nhóm cacboxyl vá	à một nhóm amino là:			
	A. $C_nH_{2n-1}NO_4$.	B. $C_nH_{2n+1}NO_2$.	$C. C_nH_{2n}NO_4.$	D. $C_nH_{2n+1}NO_4$.			
Câu 16:	Amino axit T no, mạch 7. Giá trị của n và m lần		cử CnHmO₄N, trong đó c	có tỉ lệ khối lượng m_C : $m_N = 24$:			
	A. 5 và 9.	B. 4 và 9.	C. 4 và 7.	D. 5 và 11.			
Câu 17:	Amino axit E no, mạch 4. Giá trị của n và m lần		tử C _n H _m O ₂ N ₂ , trong đó	có tỉ lệ khối lượng m_C : $m_O = 9$:			
	A. 6 và 12.	B. 6 và 14.	C. 4 và 10.	D. 4 và 8.			
Câu 18:	Công thức tổng quát của 1, tác dụng với dung dịc			dung dịch HCl theo tỉ lệ mol 1:			
	A. $C_nH_{2n+2}O_2N_2$.	$\mathbf{B.} \; \mathbf{C_n} \mathbf{H_{2n}} \mathbf{O_2} \mathbf{N_2}.$	\mathbf{C} . $\mathbf{C}_{n}\mathbf{H}_{2n+1}\mathbf{O}_{4}\mathbf{N}$.	D. $C_nH_{2n-1}O_4N$.			
Câu 19:	Chất nào sau đây không	phản ứng được với dun	g dịch NaOH?				
	A. Alanin.	B. Phenol.	C. Anilin.	D. Vinylaxetat.			
Câu 20:	Chất nào sau đây không	phản ứng với dung dịch	n NaOH ở nhiệt độ phòi	ng?			
	A. NH ₂ CH ₂ COOH.	B. NH ₂ CH ₂ COONa.	C. Cl ⁻ NH ₃ ⁺ CH ₂ COOH	I. D. $NH_2CH_2COOC_2H_5$.			
Câu 21:	Dãy gồm các chất đều tá	ác dụng với dung dịch N	laOH là				
	A. metyl axetat, alanin,	axit axetic.	B. metyl axetat, glucoz	zo, etanol.			
	C. glixerol, glyxin, anili	n.	D. etanol, fructozo, mo	etylamin.			
Câu 22:	Cả 3 chất: anilin, alanin	và axit glutamic đều ph	iản ứng với				
	A. dung dịch NaOH.	B. dung dịch HCl.	C. dung dịch NaCl.	D. dung dịch brom.			
Câu 23:	Chất nào sau đây không	tác dụng với dung dịch	HCl?				
	A. Metylamin.	B. Natri hiđrocacbonat	t. C. Glyxin.	D. axit fomic.			
Câu 24:	Chất nào sau đây không	phản ứng với dung dịch	h HCl?				
	A. H ₂ N-CH ₂ -COOH.	B. CH₃COOH.	$C. C_2H_5NH_2.$	D. C6H5NH2.			
Câu 25:	Dãy chất nào sau đây đề A. C ₂ H ₅ NH ₂ ; H ₂ NCH ₂ C B. C ₂ H ₅ NH ₂ ; ClH ₃ NCH C. CH ₃ NH ₂ ; ClH ₃ NCH ₂	COOH; H ₂ NCH(CH ₃)CO ₂ COOH; NH ₂ CH ₂ CO-N	O-NHCH ₂ COOH. NHCH ₂ COOH.				
	D. C ₂ H ₅ NH ₂ ; CH ₃ COOl	H; NH ₂ CH(CH ₃)CO ₋ NE	ICH-COOH Lieu On Thi. Net				

- Câu 26: Chất nào sau đây vừa phản ứng với dung dịch NaOH vừa làm mất màu dung dịch brom?
 - A. Ancol benzylic.
- B. Anilin.
- C. Phenol.
- D. Alanin.
- Câu 27: Chất nào sau đây vừa phản ứng được với dung dịch KOH, vừa phản ứng được với dung dịch HCl?
 - A. $C_6H_5NH_2$.
- **B.** H₂NCH(CH₃)COOH.

- **C.** C₂H₅OH. **D.** CH₃COOH.
- Câu 28: Hợp chất hữu cơ A tác dụng được với dung dịch brom, dung dịch NaOH, không tác dụng với dung dịch NaHCO₃. A có thể là:
 - \mathbf{A} . $\mathbf{C}_6\mathbf{H}_5\mathbf{N}\mathbf{H}_2$.
- \mathbf{B} . $\mathbf{C}_6\mathbf{H}_5\mathbf{NH}_3\mathbf{Cl}$.
- C. CH₃C₆H₄OH.
- **D.** CH₂=CH-COOH.

- Câu 29: Phát biểu nào sau đây sai?
 - A. Dung dịch Alanin không làm giấy quỳ tím đổi màu.
 - B. Các amino axit đều tan được trong nước.
 - C. Tất cả các aminoaxit trong phân tử chỉ gồm một nhóm -NH₂ và một nhóm -COOH.
 - D. Hợp chất amino axit có tính lưỡng tính.
- Câu 30: Phát biểu nào sau đây là đúng?
 - A. Glucozo bị khử bởi dung dịch AgNO₃ trong NH₃.
 - **B.** Phân tử khối của amino axit có 1 nhóm -NH₂ và 1 nhóm -COOH luôn luôn là một số lẻ.
 - C. Dung dịch CH₃NH₂ làm quỳ tím chuyển sang màu hồng.
 - D. Ở điều kiện thường, có 3 amin no, mạch hở, đơn chức tồn tại trạng thái khí

BẢNG ĐÁP ÁN BÀI TẬP TỰ LUYÊN LIVE 25

1.D	2.A	3.C	4.D	5.A	6.C	7.B	8.A	9.D	10.C
11.B	12.C	13.B	14.B	15.A	16.C	17.B	18.D	19.C	20.B
21.A	22.B	23.D	24.B	25.A	26.C	27.B	28.C	29.C	30.B