STA 235H - Natural Experiments & Difference-In-Differences

Fall 2022

McCombs School of Business, UT Austin

Announcements

- Grades for Homework 3 will be posted this week.
 - Review the Answer Key on the course website.
- Midterm will be posted on Friday (12.00pm):
 - Take it as an in-class exam (try to finish it in two hours) -> You have 24 hrs.
 - Only clarification questions for the midterm (<u>no questions on Chatter</u>).
- Reminder that collaboration on assignments is not permitted.
 - Every student is responsible for their own work, <u>especially in the Midterm</u>.
- Review session this Friday 10am (UTC 3.102).
 - Slides will be posted with answers on the course website.
- As a reminder:
 - Announcements are official communications.
 - Office hours go from 3.30pm 5.30pm Tue and Thur.

Last week

- Finished with randomized controlled trials.
 - Limitations in Generalizability and Interference.
- Introduced observational studies:
 - Controlling for observable confounders (e.g. matching)

Today

- Talk about other **Observational Studies**:
 - Natural Experiments
 - o Difference-in-Differences
- First half: Material
- Second half: You will tackle an exercise.

Recap from last week

What did we see last week?

- Limitations in RCTs:
 - Generalizability
 - o Breaking SUTVA: Spillover effects and General Equilibrium Effects.
- Introduced Observational Studies:
 - Matching

Identification strategies (designs) we have seen so far...

Randomized Controlled trials (RCTs)

- Treatment assignment is <u>randomized</u>
- Ignorability assumption holds by design: Groups are comparable in obs. and unobs. characteristics.
- Analysis? (i) Check balance and (ii) difference in means.

Selection on Observables (Matching, Regressions with covariates):

- Treatment assignment is <u>not randomized</u>
- Ignorability assumption holds if we can control for all confounders (assumes all confounders are observed)
 - After adjusting for covariates, assignment to treatment is as good as random (Is this a credible assumption?).
- Analysis? (i) Compare balance before matching, (ii) compare balance after matching, and (iii) difference in means for the matched sample.

Is there randomness out there?

Finding "RCTs" in the wild

• Given that we can't run RCTs for everything, the next best thing is finding a source of random variation that, for all practical purposes, would work as an RCT

Natural Experiments

You, as a researcher, did not assign units to treatment levels

- 1. Random: Assignment to an intervention is random (e.g. lottery)
- 2. As if random: Assignment to an intervention is not random, but it's not correlated with potential outcomes.

Context matters!

Examples of natural experiments

- Oregon Health experiment: Lotteries for Medicaid expansion.
- Vietnam Draft: Impact of military service/education (GI Bill) on earnings.
- Lottery winners: Impact of unearned income on labor earnings.
- GreatSchool ranking availability: Roll-out between states.

What do we do if we have something like a natural experiment but <u>both our groups are not necessarily balanced</u>?

Two wrongs make a right

Raising the minimum wage

What happens if we raise the minimum wage

Economic theory says there should be fewer jobs

New Jersey in 1992

\$4.25 \to \$5.05

The setup

Before vs After

Avg. # of jobs per fast food restaurant in NJ

New Jersey_{before} = 20.44

New Jersey_{after} = 21.03

 Δ = 0.59

Is this a causal effect?

Treatment vs Control

Avg. # of jobs per fast food restaurant

Pennsylvania_{after} = 21.17

New Jersey_{after} = 21.03

 Δ = -0.14

Is this a causal effect?

Problems

Before vs After

Only looking at the treatment group

Impossible to separate changes because of treatment or time

Treatment vs Control

Only looking at post-treatment values

Impossible to separate changes because of treatment or differences in growth

Difference-in-Differences

The idea of a DD analysis is to take the within-unit growth...

	Pre mean	Post mean	(post - pre)
Control	A (never treated)	B (never treated)	B - A
Treatment	C (not yet treated)	D (treated)	D-C

 \triangle (post – pre) = within-unit growth

Difference-in-Differences

... and the across-group growth...

	Pre mean	Post mean	(post - pre)
Control	A (never treated)	B (never treated)	
Treatment	C (not yet treated)	D (treated)	
<u>(treatment - control)</u>	C - A	D - B	

△ (treatment - control) = across-group growth

Difference-in-Differences

... and combine them!

	Pre mean	Post mean	(post - pre)
Control	A (never treated)	B (never treated)	B - A
Treatment	C (not yet treated)	D (treated)	D-C
(treatment - control)	C - A	D - B	(D - C) - (B - A) <i>or</i> (D - B) - (C - A)

 Δ within units Δ across groups = Difference-in-differences = causal effect!

Coming back to New Jersey

	Pre mean	Post mean	(post - pre)
Pennsylvania	23.33 A	21.17 B	-2.16 B - A
New Jersey	20.44	21.03 D	0.59 D - C
<u>(NJ - PA)</u>	-2.89 C - A	-0.14 D - B	(0.59) - (-2.16) = 2.76

How does it look in a plot?

... And the real plot!

Difference-in-Differences in practice

• There's no need to manually estimate all group means...

We can use regressions!

• If the two dimensions for our DD are time and treatment.

$$Y_i = \beta_0 + \beta_1 Treat_i + \beta_2 Post_i + \beta_3 Treat_i \times Post_i + \varepsilon_i$$

where Treat = 1 for the treatment group, and Post = 1 for the after period.

Can you identify the different coefficients?

Difference-in-Differences in practice

• There's no need to manually estimate all group means...

We can use regressions!

• If the two dimensions for our DD are time and treatment.

$$Y_i = eta_0 + eta_1 Treat_i + eta_2 Post_i + eta_3 Treat_i imes Post_i + arepsilon_i$$

where Treat = 1 for the treatment group, and Post = 1 for the after period.

 β_3 is the causal effect!

Let's see it with data

```
minwage <- read.csv("https://raw.githubusercontent.com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/Com/maibennett/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta235/main/exampleSite/content/sta2
```

```
##
         chain location wage full part
                                       date treat post
## 1
        wendvs
                     PA 5.00
                               20
                                    20 feb1992
## 2
        wendvs
                     PA 5.50
                              6 26 feb1992
    burgerking
                                                        0
                     PA 5.00
                                   35 feb1992
  4 burgerking
                     PA 5.00
                                   17 feb1992
                                                        0
## 5
           kfc
                     PA 5,25
                                  8 feb1992
                                                        0
           kfc
                     PA 5.00
                                    10 feb1992
## 6
                                                        0
```

Let's see it with data

```
summary(lm(full ~ treat*post, data = minwage))
##
## Call:
## lm(formula = full ~ treat * post, data = minwage)
##
## Residuals:
      Min
              1Q Median
                             30
                                   Max
## -10.664 -5.971 -2.405 3.653 52.029
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 10.664
                          1.007 10.589 <2e-16 ***
## treat
         -2.693 1.117 -2.411 0.0162 *
## post
       -2.493 1.424 -1.750
                                       0.0805 .
## treat:post 2.927
                          1.580
                                1.853
                                        0.0643 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.243 on 712 degrees of freedom
## Multiple R-squared: 0.008207, Adjusted R-squared: 0.004028
## F-statistic: 1.964 on 3 and 712 DF, p-value: 0.118
```

Can you interpret the treatment effect?

"Increasing the minimum wage has an average effect in New Jersey of 2.9 additional jobs per fast food restaurant"

Diff-in-Diff Assumptions

Assumptions

Parallel Trends

In the absence of the intervention, treatment and control group would have changed in the same way

Robustness Check

Parallel Trends

Check by pretending the treatment happened earlier; if there's an effect, there's likely an underlying trend

Wrapping up

- We don't always need randomization to make causal inference
- If we think the parallel trend assumption holds, we can find an Average Treatment Effect for the treated group (ATT)
 - Remember that we can't say anything about the treatment effect for the control group!
- Next week we will see more identification strategies.

References

- Angrist, J. and S. Pischke. (2015). "Mastering Metrics". Chapter 2.
- Angrist, J. and S. Pischke. (2015). "Mastering Metrics". Chapter 5.
- Heiss, A. (2020). "Program Evaluation for Public Policy". Class 8-9: Diff-in-diff I and II, Course at BYU.