TIII I DISTALLED	Entonces
laller de Problemas 1	
생선 뒤를 내고 있는데 얼마를 하게 하면 하는데 맛있는 것 같다. 그리고 하는데 살아 없네요?	$ \vec{v} ^2 = v_1^2 + v_2^2 + v_3^2 = \cos(\alpha)^2 + \cos(\beta)^2 + \cos(\gamma)^2 = 1$
B) Demuestre que: A" A" = 3"	$+\cos(\gamma)^2=1$
3) Demuestre que: A' A' = 5 d', además, como un caso especial,	
establecer la relación con los cosenos	4) Considere el radio vector posición
linectores que satisforen:	P= xit = xI+ 45 en 2 dimenciones
	P= x't; = xt + y f en 2 dimensiones. Dado el conjunto de transformaciones
$\cos(\alpha)^2 + \cos(\beta)^2 + \cos(\gamma)^2 = 1$	que se indican a continuación, demue.
1 1 1 Lan ach las and does loss	en cuoles coxos los componentes de r
polución: Sean xº los coordenados	transforman como verdaderos componen
originales y xillas coordenadas	de vectores.
ransformados, La matrit de	
rons formados. La matrit de rons formación Au se define como las	$(x,y) \rightarrow (-y, x), (x,y) \rightarrow (x,-y),$
berivados parciales de los nuevas	
coordenadas respecto a las originales:	$(x,y) \rightarrow (x-y, x+y), (x,y) \rightarrow (x+y, x-y)$
00,000,000	
$A^{ij} = \partial x^{ij}$	Interview :
$A_{\mathcal{U}}^{\mathcal{U}} = \frac{\partial x^{i}}{\partial x^{i}}$	30lución: $\bullet(x,y) \rightarrow (-y,x)$ $A_{i} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
0%	0/20 1 3/ 1 1 0 10 -11
	(2, g) 7(-g, x) K1= [0]
il inversa Ai es el jacobiano de la	(10)
ou inversa Ai es el jacobiano de la ronsformación inversa:	(0-1/2)=1-9
	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}$
$A = \partial x^{0}$	
$\widetilde{A}_{i}^{0} = \frac{\partial x^{0}}{\partial x^{i}}$	det(A1) = 1 (rotación)
	THE STATE OF THE S
Por lo tanto, las derivadas parciales satisface	Norma preservada: (-y)2+ x2 = x2+y2
satisface	
	51 os transformación vectorial
220 220 221	11 e) Gairsia machon vacasa.
$\frac{\partial x^{\partial}}{\partial x^{\mu}} = \frac{\partial x^{\partial}}{\partial x^{\mu}} \frac{\partial x^{\mu}}{\partial x^{\mu}}$	011 0 1/21 121 (2 4) 2/2 (1)
0% 0% 0%	$ \begin{array}{c c} \circ \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \left(\begin{array}{c} \chi \\ y \end{array}\right) = \left(\begin{array}{c} \chi \\ -y \end{array}\right) \left(\begin{array}{c} \chi, y \\ \end{array}\right) \rightarrow \left(\begin{array}{c} \chi, -y \\ \end{array}\right) $
= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(0-1/19/19/
ti lodo izquierdo es la delta de Kronecker 8 y el lodo derecho es el producto Ri Ax, por lo fonto	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Kronecker di y el lado derceho es	$A_2 = \begin{pmatrix} 1 & 0 \end{pmatrix} det(A_2) = -1 (reflexion)$
el producto Ai Au, por lo fonto	$A_2 = \begin{pmatrix} 1 & 0 \end{pmatrix} det(A_2) = -1 \text{ (reflexion)}$ Norma preservada: $x^2 + (-y)^2 = x^2 + y$
	Norma preservada: x2+(-y) = x+y
$A_{\kappa}^{\lambda}A_{ij}^{\delta}=\delta_{\kappa}^{\delta}$	
	Si es transformación vectorial
Cosenos Directores:	
	011-1/x - (x-9) det (A) = 7
Para un contax unitaria 3- (N N A)	1 1 1 9 - 12 - 1
Para un vector unitorio $\vec{v} = (v_1, v_2, v_3)$ los cosenos directores son:	$ \begin{array}{c c} \circ \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{c} \chi \\ y \end{array} \right) = \left(\begin{array}{c} \chi - y \\ \chi + y \end{array} \right) \begin{array}{c} \det \left(A_3 \right) = 2 \end{array} $
ios cosenos exectores 30h.	A3
	The state of the s
$(05(\alpha) = v_1, \cos(\beta) = v_2, \cos(\gamma) = v_3$	Norma no preservada: 2 x2+2y2 + x2+y
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
londe & B Y son les ángules entre	No es transformación vectorial estándas
i u la viel v. u 3	The hall have been a few and the second of t

· (x,y) -> (x+y, x-y)

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x-y \end{pmatrix} A_{4} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

det(Ay) = -2

Norma no preservada: 2x2+2y2 +x2ty2

No es transformación vectorial estándar

Oller de Problemas L

2) Considere que:

· デ= xi+yj+をル= xili

• $\vec{a} = \vec{a}(\vec{r}) = \vec{a}(x,y,z) = a^{i}(x,y,z)\hat{x}_{i}$ $\vec{b} = \vec{b}(\vec{r}) = \vec{b}(x,y,z) = b^{i}(x,y,z)\hat{x}_{i}$

 $\phi = \phi(\vec{r}) = \phi(x, y, z) \quad y = \phi(\vec{r}) = \psi(x, y, z) \quad y$

Utilizando la notoción de indices, e inspiróndose en el ejemplo, demuestre los siguientes identidades ecctoriales:

a) V(04) = 474+474.

0) V·(V x d) d'avé se puede decir de VX(V·a)?

F) TX(TX 0) = V(T.0) - Va.

Solución.

a) Expresames el gradiente en notación de indices:

 $(\nabla(\phi\psi))_{i} = \partial_{i}(\phi\psi)$

Aplicamos la regla del producto

 $\partial_i(\phi \psi) = \phi \partial_i \psi + \psi \partial_i \phi$

Reemplatames con notoción vectordal

7(04) = 074+47¢

d) V·(Vxa) = di(Vxa)i = di(Eijudion)

Usamos la antisimetria del tensor Eija

Di Eight di ON = Eight di di Og ON

Didj es simétrico en i, j, pero Eija es antisimétrico, la contracción entre estas das es o

Eijk 20; an = 0

Para Tx(7.2)

Sobemos que Vio forma un escalar, luego, el producto vectorial no estó desinido para un escalar. Por lo tanto, esto aperación es invólida.

f) TX(DXO) = Eight of (TXO) N

= Eiju dj Eumn dman

= Eiju Eumn dj dm an = Eiju Emnu djoman

= (3m on - on om) dj dman

= 3m3n djoman - 5n 3m djom an

= 3mdm on djan - 3n an 3m djom

= di (djan) - ai (djam)

= V(V·0) - V20

2) Demuestre

 α) $\cos(3\alpha) = \cos^3(\alpha) - 3\cos(\alpha) \sin^2(\alpha)$

b| sen $(3\alpha) = 3\cos^2(\alpha)$ sen $(\alpha) - 5en^3(\alpha)$

rolución: Utilizamos la fórmula de De Moine

 $[\cos(\theta) + i\sin(\theta)]^n = \cos(n\theta) + i\sin(n\theta)$

t,= 12[co)(51)+isen(51)] Entonces cos(3x)+isen(3x) = [cos(a) +isen(x)] Zy=-V6+ iV2 = $\cos^3(\alpha)$ - $3\cos(\alpha)$ $\sin^2(\alpha)$ + $i[3\cos^2(\alpha)$ $\sin(\alpha)$ Z=-1 - 121=1 0=1T - sen3(x)] $z_0 = \cos\left(\frac{\pi}{3}\right) + i \operatorname{sen}\left(\frac{\pi}{3}\right) =$ igualando la parte real e imaginaria tendremos: En = 1/2 + i/31/2 $cos(301) = cos^3(\alpha) - 3cos(\alpha) sen^2(\alpha)$ = cos(π) + isen(π) sen(3a) = 3cos 2(a) sen(a) - sen3(a) Z, = -1 5) Encuentre todas las vaices de las = cos(51) + i sen (51) siguientes expresiones a) $\sqrt{2}i$ c) $(-1)^{\frac{1}{3}}$ e) $\sqrt[4]{-8-8\sqrt{3}}i$ b) $\sqrt{1-\sqrt{3}}i$ d) $8^{\frac{1}{6}}$ Z= 1/2- i 13/2 d) = 8 -> 1=1= 8 0=0 Solución: == \(\frac{1}{2} \) \(\cos(0) \) t \(\in \)en (0)] Los raices de un número complejo se obtiene de la siguiente relación: ₹o = \2' $z^{\eta_n} = [121(\cos(\theta) + i \sin(\theta))]^{\eta_n}$ $\overline{t}_1 = \sqrt{2} \left[\cos\left(\frac{\pi}{3}\right) + i \operatorname{sen}\left(\frac{\pi}{3}\right) \right]$ = $|z|^{7/n} [\cos(\frac{\theta + 2N\pi}{n}) + i \epsilon en(\frac{\theta + 2N\pi}{n})]$ = 12 (1/2+ i 13/2) $z_2 = \sqrt{2} \left[\cos \left(\frac{2\pi}{3} \right) \right] + i \operatorname{sen} \left(\frac{2\pi}{3} \right)$ donde K = 0, 1, ..., n-1. Z2 = VZ (-1/2+1/3/2) 0) =2 = 2i → == √2i 171 = 2 0 = T/2 n = 2 Z2 = √2 [cos(π) + Ben(π)] -Zo = 12 [cos (₹) + i sen (₹)] Zz = - 12 $\overline{z}_{4} = \sqrt{2} \left[\cos \left(\frac{41}{3} \right) \right]$ tisen $\left(\frac{41}{3} \right)$ 20 = 1 + i $\overline{z}_i = \sqrt{2} \left[\cos \left(\frac{517}{4} \right) + i \operatorname{sen} \left(\frac{517}{4} \right) \right]$ Zy = 12 (-1/2 - i 13/2) 元= 12[cos(部)+isen(部)] |== -1-i == 12(1/2-i3/2) b) z = 1 - i/3 -> 121 = 2 0 = - 17/3 Zo = 12[cos(-#)+isen(-#)] e) == -8 - 853i → 121=16 0=417/3 Zo = V6/2 - 1/2/2

20 = 2[cos(₹) +isen(₹)] Zo = 1+1/3 == 2[cos(51) +isen(51)] =7= - V3 +i == 2 [cos(41) +i sen(41)] Zz=-1-1/3 $z_3 = 2 \left[\cos\left(\frac{11\pi}{6}\right) + i \cdot \sin\left(\frac{11\pi}{6}\right) \right]$ == \square -i 6) Demuestre que: a) Log(-ie) = 1- iT/2 6) Log(1-1) = 1/2 th(2) - i 11/4 c) Log(e) = 1+2hTi d Log(i) = (2n+1/2) Ti Solución: utilizames Log(z) = Ln/21 + i (+ +21m) a) Log (-ie) = Ln(e) + i(-11/2 +211/1) = 1 = i 11/2 + 2 11 ni Log(-ie) = 1-iT/2 → n=0 6) Log (1-i) = Ln /2 + i (-11/4 +211n) = 1/2 - in/4 +2 mm Log(1-i)=12n2-i1/4-) n=0 $C|Log(e) = Lne + i(0 + 2\pi n)$ Log(e) = 1 + 2 Tri d) Log (i) = Ln(1) + i (11/2 + 2mn) Log(i)=it(1/2+2n)