Problem 13.2
$$\frac{Y}{X}(s) = \frac{H(s)}{1 + H(s)[K(s) + G(s)]}$$

For this system to Oscillate -ve FB \rightarrow +ve FB

 $1 + H(s)[K(s) + G(s)] = 0$ Let $K(s) + G(s) = N(s)$
 $H(s) N(s) = -1$
 $H(j\omega_{ac})[N(j\omega_{ac})] > 1$
 $H(j\omega_{ac})[N(j\omega_{ac})] = 10^{\circ}$

Problem 13.6

Loop Gain = LG =
$$\frac{U_{8}L}{U_{N}}$$
 = $\frac{U_{9}L}{U_{N}}$ = $\frac{U_{9}L}{U_{9}}$ = $\frac{U_{9}L}{U_{9}}$

$$LG = -\frac{A_0}{\left(1+\frac{S}{\omega p_1}\right)\left(1+\frac{S}{\omega p_2}\right)} = -H(s)$$

For the system to oscillate

Thus the system Connot oscillate However we need to calculate of design for good PM (> 60°)

$$\omega_{P_1} = \frac{1}{R_D(2C_B)} = \omega_d = \frac{1}{10 \text{ K xip}} = \frac{100 \text{ Trad/sec}}{100 \text{ Trad/sec}} \quad \left(\frac{\text{dominant pole}}{\text{dominant pole}}\right)$$

$$\omega_{P_2} = \frac{9m_4}{C_L} = \omega_{rd} = \frac{10m_5}{2p} = \frac{5000 \text{ Trad/sec}}{1p} \quad \left(\frac{\text{non-dominant pole}}{\text{non-dominant pole}}\right)$$

$$GBW = A_0 \cdot \omega_d = \frac{9m_2}{2C_B} = \frac{1m}{1p} = \frac{1000 \text{ Trad/sec}}{1p} = \frac{16 \text{ Grad/sec}}{1p} = \frac{1000 \text{ Trad/sec}}{1p} = \frac{1600 \text{ Trad/sec}}{1p} = \frac{1000 \text{ Trad/sec}}{1p} = \frac{100$$

* In this problem, we is fixed and word is at the output (CL)
This large CL would result in small word (GBW is fixed depend on (B) and bad PM

Problem 13.7

$$C_{SS} = \frac{1}{J} R_{S}$$

$$R_{S} + \frac{1}{9m_{k}} \simeq R_{S}$$

CL is considered open ...
when calculating Resistance to !...
of Cgs at node Uy

Problem 17.8 & 13.9

$$H_{\text{Unit}} = \frac{V_{X}}{V_{Z}} = -\frac{3R_{D}}{(1+\frac{S}{\omega_{p}})} \qquad \omega_{p} = \frac{1}{R_{D}C_{D}}$$

$$H(S) = H_{\text{Unit}}^{3} = \left(\frac{-A_{D}}{1+\frac{S}{\omega_{p}}}\right)^{2} = -\frac{A_{D}^{2}}{(1+\frac{S}{\omega_{p}})^{2}}$$

$$Edge of Oscillation H(S) = 1$$

$$-\frac{A_{D}^{3}}{(1+SR_{D}C_{D})^{3}} = 1 + A_{D}^{3} + 1+3SR_{D}C_{D} + 2(SR_{D}C_{D})^{2} + (SR_{D}C_{D})^{2} + (SR_{D}C_{D})^{2} = 0$$

$$Red = 1+A_{D}^{3} - 3\omega_{abc}(R_{D}C_{D})^{2} = 0 \implies A_{D} = 2 \pmod{gain}$$

$$Post S = j\omega_{abc}$$

$$I_{maginary} = 3\omega_{abc}R_{D}C_{D} - \omega_{abc}R_{D}^{2}C_{D} = 0 \implies \omega_{abc} = \frac{R_{D}C_{D}}{R_{D}C_{D}}$$

$$Stort...p Condition A_{D} \geqslant 2 + 3\omega_{abc}R_{D}C_{D} - \omega_{abc}R_{D}^{2}C_{D}^{2} = 0 \implies \omega_{abc} = \frac{R_{D}C_{D}}{R_{D}C_{D}}$$

$$Stort...p Condition A_{D} \geqslant 2 + 3\omega_{abc}R_{D}C_{D} - \omega_{abc}R_{D}^{2}C_{D}^{2} = 0 \implies \omega_{abc} = \frac{R_{D}C_{D}}{R_{D}C_{D}}$$

$$R_{D} \neq 2 + 2\omega_{abc}R_{D}^{2}C_{D}^$$

Problem 13.16

A
B

C
D

E

Do A DO B DO C DO D D E

Assume delay of each inverter
is TD

Tperiod = 10 TD = 2 * #stages * TD

fosc =
Tperiod