Instituto Politécnico de Viana do Castelo

Escola Superior de Tecnologias e Gestão

Análise e Processamento de Sinal

sil@estg.ipvc.pt & joao.pedro.faria@estg.ipvc.pt

Mini Projetos - Ano letivo 2023/2024

O mini projecto será desenvolvido em grupos de 2 alunos.

Cada um dos grupos deverá manter um documento no moodle com a evolução/estado do trabalho. Todas as semanas até ao inicio da aula deve ser adicionado 1 página ao documento. Cada página deve conter a data e o ponto de situação do mini-projecto composto por: 1) trabalho desenvolvido e resultados alcançados na última semana (top achievements); 2) próximos passos; 3) obstáculos que dificultam/impedem a implementação da solução.

Nas últimas aulas será feita a apresentação e defesa do trabalho. Cada grupo deverá preparar uma apresentação em powerpoint que introduiza os conceitos básicos necessários à compreensão do trabalho e descreva a metodologia abordada no seu desenvolvimento. Segue um exemplo daquela que poderá ser a estrutura base com os devidos ajustes:

Introdução (1 slide max.): Âmbito e motivação
Trabalhos relacionados (1-2 slides max.): Estado da Arte, enquadramento Teórico, etc.
Desenvolvimento (4-6 slides): Descrição detalhada da implementação, etc)
Demonstração / Discussão dos Resultados (1-2 slides max.)
Conclusões (1 slide max.)

O espírito critico dos alunos que assistem às apresentações será também alvo de avaliação. Esta terá como base as questões colocadas aos colegas após cada uma das apresentações.

PRJ-01 - Medição de volume de líquidos

Implementar um sistema que com base no som produzido pelo toque de um metal num recipiente de vidro permita determinar o volume aproximado de líquido que se encontra no recipiente.

Tarefas:

Gravar vários ficheiros do som do metal a bater no vidro para diferentes volumes de líquido no recipiente (p.ex: vazio, 1/3, 2/3 e cheio). O ficheiro deve ser gravado em formato .wav com frequência de amostragem 22050Hz/16bit/Mono.

Usar o octave para:

- Estudar e propor uma (ou várias) características do espectro que permitam distinguir os sons;
- Caracterizar o sistema;
- Implementar uma solução no octave e testar a solução com sinais de teste.

PRJ-02 - Emissor de código morse

Implementar um sistema que permita codificar um sinal em código Morse.

Tarefas:

Estudar a codificação Morse.

- Codificar em Morse uma string introduzida pelo utilizador.
- Gerar um ficheiro .wav com a string codificada usando uma frequência definida pelo utilizador (para simular um canal de comunicação deve ser adicionado ruído ao sinal codificado)
- Testar a solução podendo o resultado ser comparado com os ficheiros obtidos em https://www.meridianoutpost.com/resources/etools/calculators/calculator-morse-code.php.

PRJ-03 - Recetor de código morse

Implementar um sistema que permita descodificar um sinal em código Morse.

Tarefas:

Estudar a codificação Morse.

Usar o octave para:

- Implementar uma solução que permita analisar o audio de um ficheiro .wav com código morse e que apresente uma string com a informação codificada no ficheiro.
- Testar a solução usando vários ficheiros de teste que podem ser obtidos em: https://www.meridianoutpost.com/resources/etools/calculators/calculator-morse-code.php.

PRJ-04 - Transmissão de mensagens em ASCII com modulação ASK

Implementar um sistema que permita codificar uma sequência de caracteres usando o seu código ASCII em binário e modulação ASK.

Tarefas:

Estudar a modulação ASK e obter a tabela de códigos ASCII.

- Ler uma string introduzida pelo utilizador.
- Obter o código ASCII em binário de cada um dos caracteres da string.
- Gerar um ficheiro .wav com todos os bits usando modulação ASK (para simular um canal de comunicação deve ser adicionado ruido ao sinal codificado).
- Ler o ficheiro .wav e descodificar a sequencia de bits gravada no ficheiro.
- A partir dos bits que representam o código ASCII obter a sequência de caracteres que deve corresponder à string inicialmente introduzida pelo utilizador.

PRJ-05 - Modulação ASK com multiportadora

Implementar um sistema que permita transmitir e receber várias sequência de bits usando modulação ASK com multiportadoras.

Tarefas:

Estudar a modulação ASK;

- Gerar um sinal com modulação ASK que codifique uma sequência de bits (0s e 1s) introduzida pelo utilizador.
- Gerar um ficheiro .wav com a soma de vários sinais modulados com diferentes frequências (para simular um canal de comunicação deve ser adicionado ruido ao sinal modulado).
- Analisar o áudio de um ficheiro .wav que contem a modulação de várias sequencias de bits e descodificar cada uma das sequencias.
- Testar a solução usando 3 sequências de bits transmitidas em simultâneo no mesmo canal.

PRJ-06 - Sequenciador e Sintetizador de Ficheiros MIDI

Sintetizar um ficheiro midi com apenas um instrumento. Da informação presente no ficheiro MIDI deverá utilizar apenas a informação relativa à duração (inicio e fim) e pitch de cada nota. Para leitura do ficheiro e obtenção da informação necessária deverá usar as funções readmidi() e midiInfo() que se encontram disponíveis em https://kenschutte.com/midi#Files

A síntese devera ser feita através de sinais gerados com recurso à utilização de Séries de Fourier discretas. A envolvente dos sinais gerados deverá ser posteriormente modulada em amplitude, ver figura seguinte, de forma a tornar os sons produzidos mais orgânicos.

Tarefas:

Fazer download das funções e ler um ficheiro midi com apenas 1 instrumento.

Identificar a informação relativa à duração e pitch de cada nota.

Gerar diferentes sinais (onda quadrada e triangular) utilizando séries de fourier tendo em conta a informação de pitch e duração lidos do ficheiro.

Implementar uma função para modular a envolvente do sinal gerado (imagem acima) Gravar os resultados em ficheiros .wav.

PRJ-07 - Síntese de Pauta Musical

Implementar um sistema que permita sintetizar uma sequencia de notas relativas a uma pauta musical utilizando a duração e o pitch de cada nota.

Tarefas:

A partir de uma pauta musical, obter a informação da nota e respectiva duração.

Gravar num ficheiro txt a informação de cada nota (pitch e duração relativa), exemplo:

Tempo; Nota 8;'D' % Colcheia (1/8) Ré 8;'D' % Colcheia (1/8) Ré 4;'E' % Semínima (1/4) Mi 4;'D' % Semínima (1/4) Ré 4;'G' % Semínima (1/4) Sol

Gerar diferentes sinais (onda quadrada e dente de serra) utilizando séries de fourier tendo em conta a informação de pitch e duração gravada no ficheiro .txt.

Implementar uma função para modular a envolvente do sinal gerado (imagem acima) Gravar os resultados em ficheiros .wav usando 3 oitavas distintas (uma oitava acima tem o dobro da frequência e uma oitava abaixo tem metade da frequência).

Note Frequency Chart

Octave 0 Octave 1 Octave 2 Octave 3 Octave 4 Octave

	Octave 0	Octave 1	Octave 2	Octave 3	Octave 4	Octave 5	Octave 6	Octave 7	Octave 8
С	16.35	32.70	65.41	130.81	261.63	523.25	1046.50	2093.00	4186.01
C#	17.32	34.65	69.30	138.59	277.18	554.37	1108.73	2217.46	4434.92
D	18.35	36.71	73.42	146.83	293.66	587.33	1174.66	2349.32	4698.64
D#	19.45	38.89	77.78	155.56	311.13	622.25	1244.51	2489.02	4978.03
E	20.60	41.20	82.41	164.81	329.63	659.26	1318.51	2637.02	5274.04
F	21.83	43.65	87.31	174.61	349.23	698.46	1396.91	2793.83	5587.65
F#	23.12	46.25	92.50	185.00	369.99	739.99	1479.98	2959.96	5919.91
G	24.50	49.00	98.00	196.00	392.00	783.99	1567.98	3135.96	6271.93
G#	25.96	51.91	103.83	207.65	415.30	830.61	1661.22	3322.44	6644.88
Α	27.50	55.00	110.00	220.00	440.00	880.00	1760.00	3520.00	7040.00
A#	29.14	58.27	116.54	233.08	466.16	932.33	1864.66	3729.31	7458.62
В	30.87	61.74	123.47	246.94	493.88	987.77	1975.53	3951.07	7902.13

PRJ-08 - Reconhecimento de voz (Água vs Fogo)

Implementar um sistema de reconhecimento de voz simples que reconheça as palavras "agua" e "fogo" tendo em conta apenas análise no domínio da frequência com recurso à FFT. O sistema deverá tirar partido de características que distingam de forma eficaz as duas palavras no espetro.

Tarefas:

Gravar 15 ficheiros de teste (pedir a "voz" aos colegas), para cada palavra, todos com frequência de amostragem 22050Hz/16bit/Mono. Usar o Audacity para o efeito: http://audacity.sourceforge.net/. Editar os sinais de teste de forma a conterem apenas sinal de voz. Deverá existir um ficheiro .wav para cada sinal de teste, num total de 20 ficheiros (10 com "água" e 10 com "fogo").

Estudar e propor uma (ou várias) características que distingam as duas palavras baseada no espetro. Implementar uma solução no Octave.

Testar o sistema com os sinais de teste e escrever o resultado após classificação num ficheiro TXT.

PRJ-09 - Reconhecimento de voz (Sol vs Lua)

Implementar um sistema de reconhecimento de voz simples que reconheça as palavras "sol" e "lua" tendo em conta apenas análise no domínio da frequência com recurso à FFT. O sistema deverá tirar partido de características que distingam de forma eficaz as duas palavras no espetro.

Tarefas:

Gravar 15 ficheiros de teste (pedir a "voz" aos colegas), para cada palavra, todos com frequência de amostragem 22050Hz/16bit/Mono. Usar o Audacity para o efeito: http://audacity.sourceforge.net/. Editar os sinais de teste de forma a conterem apenas sinal de voz. Deverá existir um ficheiro .wav para cada sinal de teste, num total de 20 ficheiros (10 com "sol" e 10 com "lua").

Estudar e propor uma (ou várias) características que distingam as duas palavras baseada no espetro. Implementar uma solução no Octave.

Testar o sistema com os sinais de teste e escrever o resultado após classificação num ficheiro TXT.

PRJ-10 - Processador de Efeitos áudio: Wahwah, Tremolo e Reverb

Implementar um sistema que processe um ficheiro de áudio e gere um novo ficheiro com o efeito pretendido (*Wahwah, Tremolo* ou *Reverb*).

Tarefas:

Estudar os efeitos Wahwah, Tremolo e Reverb bem como o seu princípio de funcionamento.

Para o efeito Reverb é obrigatória a utilização da resposta impulsional de sala. Para isso deve obter a resposta impulsional de 3 salas distintas através da gravação de um ficheiro ficheiro wav (Fs=44100/16Bits) em cada uma delas. As salas escolhidas devem ter áreas substancialmente diferentes (p. ex: wc, sala de aula, anfiteatro).

Implementar uma função no Octave que receba o nome do ficheiro original e o efeito pretendido e gere um novo ficheiro cujo nome deve corresponder ao nome do ficheiro original com um sufixo que identifique o efeito aplicado (deverá considerar vários efeitos de reverb distintos obtidos a partir das diferentes respostas impulsionais).

Testar o sistema com vários ficheiros áudio.

PRJ-11 - Equalizador de sinais áudio de N Bandas

Implementar um sistema que permita ler um ficheiro de áudio e efetuar a sua equalização através de parâmetros introduzidos pelo utilizador, tais como frequência de corte e ganho.

O sistema deverá ler a informação relativa à equalização de um ficheiro de texto e gerar um novo ficheiro de áudio com a versão equalizada.

A informação de equalização deverá ser parametrizada num ficheiro .txt (EQ_params.txt), com o seguinte formato:

```
# Ficheiro Dados dos Filtros
# name: EQ_params.txt
# type: matrix
# rows: 3
# columns: 4
0 500 0 -8 1
1 900 1100 3 2
2 0 2000 -3 3
```

O conteúdo da do ficheiro pode ser carregado para o Octave através do comando load. Cada linha representa a informação relativa a um filtro e cada coluna representa a seguinte informação:

1ª Coluna: Identificador do Filtro

2ª Coluna: Frequência de Corte Inferior

3ª Coluna: Frequência de Corte Superior

4ª Coluna: Ganho do Filtro em dB

5ª Coluna: Tipo de Filtro (1-LPF; 2-BPF; 3-HPF)

Tarefas:

Estudar os equalizadores típicos de N bandas em sistemas de áudio, vulgarmente conhecidas como, graves, médios e agudos.

Escolher o tipo de filtros e definir as suas bandas de funcionamento.

Implementar uma solução no Octave.

Testar com diferentes sinais de áudio.

PRJ-12 - Deteção de atividade a partir do telemóvel

Implementar um sistema que permita detetar e quantificar atividade a partir da dos dados fornecidos pela unidade inercial de medida de 9 eixos (IMU) existente no telemóvel. Deverá ser implementa uma função para leitura de um ficheiro do tipo .csv e processamento de cada um dos parâmetros identificados de forma a quantificar a vibração do equipamento e respetiva atividade.

Tarefas:

Identificar quais os parâmetros relevantes obtidos pelo IMU.

Importar os sinais correspondentes à aquisição do IMU do telemóvel para o Octave. Usar a App "Sensorstream IMU+GPS" (ou outra equivalente) existente no Google Play ou App Store.

Implementar uma solução no Octave, que permita detetar e quantificar a atividade.

PRJ-13 - Afinador de instrumentos musicais

Implementar um sistema para um ficheiro de áudio correspondente a um instrumento musical e detetar qual a nota musical correspondente. No caso de o instrumento estar desafinado, o sistema deverá sinalizar o utilizador com um valor que indique qual margem de desvio relativamente à frequência central da nota pretendida.

Note Frequency Chart Octave 3 Octave 4 16.35 32.70 65.41 130.81 261.63 523.25 1046.50 2093.00 4186.01 C# 17.32 34.65 69.30 138.59 277.18 554.37 1108.73 2217.46 4434.92 1174.66 D 73.42 587.33 1244.51 D# 19.45 38.89 77.78 155.56 311.13 622.25 2489.02 4978.03 20.60 41.20 82.41 164.81 329.63 659.26 1318.51 2637.02 5274.04 87.31 698.46 92.50 185.00 369.99 1479.98 5919.91 F# 23.12 46.25 739.99 2959.96 24.50 49.00 98.00 196.00 392.00 783.99 1567.98 3135.96 6271.93 51.91 103.83 830.61 1661.22 27.50 55.00 110.00 220.00 440.00 880.00 1760.00 3520.00 7040.00

7458.62

Tarefas:

Estudar modos de deteção de frequência fundamental em sinais periódicos. Implementar uma solução no Octave.

Testar o sistema com sinais de instrumentos musicais.

29.14

58.27

116.54

123.47

233.08

466.16

932.33

987.77

1864.66

3729.31

1975.53 3951.07

PRJ-14 - Modulação FSK

Implementar um sistema que permita transmitir e receber uma sequência de bits usando modulação FSK.

Tarefas:

Estudar a modulação FSK;

- Gerar um sinal com modulação FSK que codifique uma sequência de bits (0s e 1s) introduzida pelo utilizador.
- Gerar um ficheiro .wav com o sinal modulado (para simular um canal de comunicação deve ser adicionado ruido ao sinal).
- Analisar o áudio de um ficheiro .wav que contem uma sequencia de bits com modulação FSK e que descodifique a sequencia.
- Testar a solução usando diferentes frequências de modulação, diferentes data rates (duração de cada bit) e diferentes sequências de bits.