Second Moments

Second Moment Calculations

The **second moment**, or **moment of inertia**, measures how an area or mass is distributed about an axis. Below are the key concepts and formulas.

1. General Formula

The second moment of area about the (x)-axis or (y)-axis is:

$$I_x = \int_A y^2 \, dA, \quad I_y = \int_A x^2 \, dA$$

2. Polar Moment of Inertia

The polar moment of inertia about the origin is:

$$J = \int_A \left(x^2 + y^2 \right) \, dA$$

3. Composite Areas

For a composite area, the total moment of inertia is the sum of the moments of its components:

$$I_{\mathrm{total}} = \sum I_i$$

For each component:

$$I_i = I_{c,i} + A_i d_i^2$$

4. Parallel Axis Theorem

To find the moment of inertia about an axis parallel to the centroidal axis:

$$I = I_c + Ad^2$$

5. Moments of Common Shapes

Rectangle

For a rectangle with base (b) and height (h):

$$I_x=\frac{bh^3}{12},\quad I_y=\frac{b^3h}{12}$$

Circle

For a circle with radius (r):

$$I_x = I_y = \frac{\pi r^4}{4}, \quad J = \frac{\pi r^4}{2}$$

Triangle

For a triangle with base (b) and height (h):

$$I_x=\frac{bh^3}{36},\quad I_y=\frac{hb^3}{36}$$

Derivation of the Moment of Inertia of a Rectangle About its Centroidal Axis

We calculate the **moment of inertia** of a rectangle about its **centroidal** x-axis. The centroidal axis passes horizontally through the centroid of the rectangle, located at y = h/2 (mid-height of the rectangle).

1. Moment of Inertia Formula

The formula for the moment of inertia is:

$$I = \int y^2 \, dA$$

Here:

- y: distance from the axis of rotation (centroidal axis in this case),
- dA: the infinitesimal area element.

2. Setup for the Rectangle

- The rectangle is centered on the centroidal x-axis, so the height ranges from y = -h/2 to y = h/2.
- The width of the rectangle is b.
- The infinitesimal area element is dA = b dy.

The integral becomes:

$$I_{\text{centroidal}} = \int_{-h/2}^{h/2} y^2 b \, dy$$

3. Solve the Integral

Factor b (constant width) outside of the integral:

$$I_{\rm centroidal} = b \int_{-h/2}^{h/2} y^2 \, dy$$

The integral of y^2 is:

$$\int y^2 \, dy = \frac{y^3}{3}$$

Apply the limits y = -h/2 to y = h/2:

$$I_{\text{centroidal}} = b \left[\frac{y^3}{3} \right]_{-h/2}^{h/2}$$

Substitute the limits:

$$I_{\text{centroidal}} = b \left(\frac{(h/2)^3}{3} - \frac{(-h/2)^3}{3} \right)$$

Since $(-h/2)^3 = -(h/2)^3$, the terms simplify:

$$I_{\text{centroidal}} = b \left(\frac{(h/2)^3}{3} + \frac{(h/2)^3}{3} \right)$$

Combine the terms:

$$I_{\rm centroidal} = b \left(\frac{2(h/2)^3}{3} \right)$$

Simplify $(h/2)^3 = \frac{h^3}{8}$:

$$I_{\rm centroidal} = b \cdot \frac{2}{3} \cdot \frac{h^3}{8}$$

$$I_{\rm centroidal} = b \cdot \frac{h^3}{12}$$

4. Final Result

The moment of inertia of a rectangle about its centroidal x-axis is:

$$I_{\text{centroidal}} = \frac{bh^3}{12}$$

This is the standard formula for the moment of inertia of a rectangle about its centroidal axis.

Difference Between First Moment and Second Moment

The **first moment** and **second moment** are concepts from mathematics and physics, describing how quantities are distributed around a reference point (such as the mean or origin). Below is a detailed explanation:

1. First Moment

- **Definition**: The first moment measures the mean or center of mass relative to a reference point.
- Formula:

$$M_1 = \sum (x_i \cdot f_i)$$

where x_i is a value, and f_i is its weight.

Physical Interpretation: In mechanics, it determines the center of mass or centroid
of an object.

2. Second Moment

- **Definition**: The second moment measures the spread or dispersion of values around a reference point.
- Formula:

$$M_2 = \sum (x_i^2 \cdot f_i)$$

where x_i is a value, and f_i is its weight.

• Physical Interpretation: In mechanics, the second moment of area (I) is used to describe an object's resistance to bending or torsion (e.g., the moment of inertia).

Key Differences

Feature	First Moment	Second Moment
Reference	Measures position relative to a point (e.g., centroid).	Measures spread relative to a point.
Physical Meaning	Indicates center or balance point.	Indicates resistance or spread.
Example (Physics)	Center of mass.	Moment of inertia.

In summary, the **first moment** tells you where things are, while the **second moment** tells you how far things are spread.