CSE 4/574 Project 3

Sargur N. Srihari
University at Buffalo, State University of New York
USA

Project 3 Components

1. Classification Task

2. Classifiers

- Multiclass Logistic Regression (Softmax Regression)
- Library Functions
 - Neural Network, SVM, Random Forest
- Classifier Combination

3. Keras Code

The Task

 This project is to implement machine learning methods for the task of classification.

- Implement an ensemble of four classifiers for a given task.
- Then the results of the individual classifiers are combined to make a final decision
- The classification task:
 - Recognizing 28 × 28 grayscale handwritten digit images
 - Identify it as a digit among $0, 1, 2, \dots, 9$

Data Sets (MNIST)

Training data: MNIST

28 x 28 gray-scale images 60,000 training, 10,000 testing

Testing data: MNIST and USPS

2000 samples per digit, 100ppi cropped Resize to 28 x 28

Classifier Ensemble

Logistic regression

 which you implement yourself using backpropagtion and tune hyperparameters.

Three Library Functions

- multilayer perceptron neural network, train it on the MNIST digit images and tune hyperparameters.
- Random Forest package, train it on the MNIST digit images and tune hyperparameters.
- SVM package, train it on the MNIST digit images and tune hyperparameters.

Logistic Regression with Softmax

- For 10 classes, we work with soft-max function Input $\phi = [\phi_1,...,\phi_M]^T$
- Activations $a_k = \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{\phi} + b_k$, k = 1,...,10 $\boldsymbol{w}_k = [w_{k,1},...,\ w_{k,10}]^{\mathrm{T}}$ and $\boldsymbol{a} = \{a_1,...a_{10}\}$
- We learn a set of 10 weight vectors $\{\boldsymbol{w}_1,...,\,\boldsymbol{w}_{10}\}$ and biases \boldsymbol{b}
- Arranging weight vectors as a matrix W

$$\begin{bmatrix} \boldsymbol{w}_1 \\ \vdots \\ \boldsymbol{w}_K \end{bmatrix} = \begin{bmatrix} w_{11} & w_{1M} \\ \vdots \\ w_{K1} & w_{KM} \end{bmatrix}$$

$$\boldsymbol{a} = W^T \boldsymbol{\phi} + \boldsymbol{b}$$

$$\begin{aligned} \boldsymbol{y} &= \operatorname{softmax}(\boldsymbol{a}) \\ \boldsymbol{y}_i &= \frac{\exp(\boldsymbol{a}_i)}{\sum_{j=1}^{3} \exp(\boldsymbol{a}_j)} \end{aligned}$$

$$p(C_k \mid \mathbf{\phi}) = y_k(\mathbf{\phi}) = \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

One-hot vector representation

- Classes $C_1, ... C_{10}$ represented by 1-of-10 scheme
 - One-hot vector:
 - class C_k is a 10-dim vector or $[t_1,...,t_{10}]^{\mathrm{T}}$, t_i ε $\{0,1\}$ With K=10, class C_3 is $(0,0,1,0,0,0,0,0,0)^T$
 - The class probabilities obey

$$\boxed{\sum\nolimits_{k=1}^{10} p(C_k) = \sum\nolimits_{k=1}^{10} t_k = 1}$$

- If $p(t_k=1) = \mu_k$ then

$$p(C_k) = \prod_{k=1}^{10} \mu_k^{t_k} \text{ where } \boldsymbol{\mu} = (\mu_1, ..., \mu_{10})^T$$

e.g., probability of C_3 is

$$p([0,0,1,0,0,0,0,0,0]) = \mu_3$$

Target Matrix, T

- Classes have values 1, .., 10
- Each represented as a 10-dimensional binary vector
- We have N labeled samples
 - So instead of target vector t we have a target matrix T

Note that t_{nk} corresponds to sample n and class k

Loss Function & Gradient

Likelihood of observations

$$\boxed{p(T \mid \boldsymbol{w}_{\!_{1}}, .., \boldsymbol{w}_{\!_{10}}) = \prod_{n=1}^{N} \prod_{k=1}^{10} p(C_{\!_{k}} \mid \boldsymbol{\phi}_{\!_{n}})^{t_{n,k}} = \prod_{n=1}^{N} \prod_{k=1}^{10} y_{nk}^{t_{nk}}}$$

$$T = \left[egin{array}{cccc} t_{_{11}} & \ldots & t_{_{1K}} \ & & & & \ & \ddots & & & \ & & & & \ & t_{_{N1}} & & t_{_{NK}} \end{array}
ight]$$
 is

- Where, for feature vector ϕ_n $y_{nk} = y_k(\phi_n) = \frac{\exp(\boldsymbol{w}_k^T \phi_n)}{\sum_{k} \exp(\boldsymbol{w}_k^T \phi_k)}$
- Loss Function: negative log-likelihood

$$\left| E(\boldsymbol{w}_{\!_{1}}, \! ..., \! \boldsymbol{w}_{\!_{10}}) = - \ln \, p(T \mid \boldsymbol{w}_{\!_{1}}, \! ..., \! \boldsymbol{w}_{\!_{10}}) = - \sum_{n=1}^{N} \sum_{k=1}^{10} t_{nk} \ln y_{nk} \right|$$

- Known as cross-entropy error for multi-class
- Gradient of error function wrt parameter ${m w}_i$

$$\nabla_{\mathbf{w}_{j}} E(\boldsymbol{w}_{1}, ..., \boldsymbol{w}_{10}) = -\sum_{n=1}^{N} (y_{nj} - t_{nj}) \phi_{n}$$

$$y_{k}(\phi) = \frac{\exp(a_{k})}{\sum_{j} \exp(a_{j})} \quad a_{k} = \boldsymbol{w}_{k}^{T} \phi$$

$$y_{k}(\phi) = \frac{\exp(a_{k})}{\sum_{j} \exp(a_{j})} \quad a_{k} = \boldsymbol{w}_{k}^{T} \phi$$

$$y_{k}(\phi) = \frac{\exp(a_{k})}{\sum_{j} \exp(a_{j})} \quad a_{k} = \boldsymbol{w}_{k}^{T} \phi$$

$$y_k(\phi) = \frac{\exp(a_k)}{\sum_j \exp(a_j)} \quad a_k = \mathbf{w}_k^{\mathrm{T}} \phi$$

$$\frac{\partial y_k}{\partial a_j} = y_k (I_{kj} - y_j) \text{where } I_{kj} \text{ are elements of }$$
 the identity matrix

Gradient Descent for Multi-class Logistic Regression

• Cross-Entropy Error
$$E(\mathbf{w}_{1},...,\mathbf{w}_{10}) = -\ln p(T \mid \mathbf{w}_{1},...,\mathbf{w}_{10}) = -\sum_{n=1}^{N} \sum_{k=1}^{10} t_{nk} \ln y_{nk}$$

$$T = \begin{bmatrix} t_{11} & . & . & t_{1K} \\ . & & & \\ t_{N1} & & & t_{NK} \end{bmatrix}$$

Gradient of E

$$\nabla_{\mathbf{w}_{j}} E(\mathbf{w}_{1}, ..., \mathbf{w}_{K}) = \sum_{n=1}^{N} (y_{nj} - t_{nj}) \phi(\mathbf{x}_{n})$$

Weight update

$$\mathbf{w}^{\tau+1} = \mathbf{w}^{\tau} - \eta \nabla E_n$$

$$y_{nk} = y_k(\phi(\mathbf{x}_n)) = \frac{\exp(\mathbf{w}_k^T \phi(\mathbf{x}_n))}{\sum_{j} \exp(\mathbf{w}_j^T \phi(\mathbf{x}_n))}$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \dots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & & & \\ \phi_0(\mathbf{x}_N) & & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

$$\phi(\mathbf{x}_n) = \begin{pmatrix} \phi_0(\mathbf{x}_n) & \phi_1(\mathbf{x}_n) & \dots & \phi_{M-1}(\mathbf{x}_n) \end{pmatrix}^T$$

An Example of 3-class Logistic Regression

Input Data

C1 =	
1.7000	9.8000
1.2000	9.5000
1.5000	9.0000
1.6000	9.5000
1.5000	9.0000

C2 =	
5.1000	5.3000
5.2000	5.5000
5.5000	5.3000
5.2000	5.8000
5.0000	5.7000

 $\Phi_0(x)=1$, dummy feature

Three-class Logistic Regression

Three weight vectors (Initial)

```
W =

0.4709     0.5486     0.1839
-2.5932     6.0889     -2.3215
3.2777     -1.2836     0.0483
```

Gradient

```
Delta_E =

-0.0000 -0.0000 -0.0000

19.7000 1.2000 -20.9000

-21.4667 -2.2667 23.7333
```


Final Weight Vector, Gradient and Hessian (3-class)

Weight Vector

W	=					
	0.4685	0.7553	0.1523			
	-1.4499	1.0309	1.9186			
	1.8775	0.7173	-1.3135			

Gradient

```
Delta_E = 

0.0016 -0.0020 0.0004 

0.0603 -0.0174 -0.0429 

-0.0446 -0.0089 0.0535
```


Number of iterations: 6

Error (Initial and Final): 38.9394, 1.5000e-009

Keras Code invoking Library Functions

- About Keras
 - an <u>open source</u> <u>neural network</u> library written in <u>Python</u>
 - It is capable of running on top of <u>TensorFlow</u>.
 - Contains implementations of neural network building blocks
 - such as layers, <u>objectives, activation functions</u>, <u>optimizers</u>,
 - Tools to make working with image and text data easier.

Keras for MNIST Neural Network

- # Neural Network
- import keras
- from keras.datasets import mnist
- from keras.layers import Dense
- from keras.models import Sequential
- (x train, y train), (x test, y test) = mnist.load data()
- num classes=10
- image vector size=28*28
- $x_{train} = x_{train.reshape}(x_{train.shape}[0], image_vector_size)$
- $x_{test} = x_{test.reshape}(x_{test.shape}[0], image_vector_size)$
- y_train = keras.utils.to_categorical(y_train, num_classes)
- y_test = keras.utils.to_categorical(y_test, num_classes)
- image_size = 784 model = Sequential()
- model.add(Dense(units=32, activation='sigmoid', input_shape=(image_size,)))
- model.add(Dense(units=num_classes, activation='softmax'))
- model.compile(optimizer='sgd', loss='categorical_crossentropy',metrics=['accuracy'])
- history = model.fit(x_train, y_train, batch_size=128, epochs=10, verbose=False, validation_split=.1)
- $loss,accuracy = model.evaluate(x_test, y_test, verbose=False)$

Keras for MNIST SVM and Random Forest

- # SVM & RandomForest
- import numpy as np
- from sklearn.svm import SVC
- from sklearn.ensemble import RandomForestClassifier
- from sklearn.datasets import fetch mldata
- mnist = fetch_mldata('MNIST original')
- n train = 60000
- n test = 10000
- indices = arange(len(mnist.data))
- $train_idx = arange(0, n_train)$
- $test_idx = arange(n_train+1, n_train+n_test)$
- X_train, y_train = mnist.data[train_idx], mnist.target[train_idx] X_test, y_test = mnist.data[test_idx], mnist.target[test_idx]
- # SVM
- classifier1 = SVC(kernel='rbf', C=2, gamma = 0.05); classifier1.fit(X_train, y_train)
- #RandomForestClassifier
- classifier2 = RandomForestClassifier(n_estimator=10); classifier2.fit(X_train, y_train)

MNIST Performance

Neural Network: 0.980

• SVM: 0.918

Random Forest: 0.950

Combining Models

- The simplest method of combining models is to average the predictions of the classifiers
- Such as by taking a vote on the decisions
 - One such method is the Borda count

Ranking	Candidate	Formula	Points	Relative points
1st	Andrew	n	5	1.00
2nd	Brian	<i>n</i> –1	4	0.80
3rd	Catherine	n–2	3	0.60
4th	David	<i>n</i> –3	2	0.40
5th	Elizabeth	n-4	1	0.20