Planche 1.

Question de cours. Soient I et J deux intervalles de \mathbb{R} . Montrer que si $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ sont continues telles que $f(I) \subset J$, alors $g \circ f$ est continue.

Exercice 1. E(x) désigne la partie entière d'un réel x. Étudier la continuité de la fonction suivante définie sur $\mathbb R$:

$$f(x) = E(x) + \sqrt{x - E(x)}$$

Planche 2.

Exercice 0. Soit $f:[0,1] \to [0,1]$ continue. Montrer que f admet un point fixe.

Exercice 1. Montrer qu'une fonction continue et périodique définie sur \mathbb{R} est bornée.

Solutions - Planche 1.

Question de cours. Utilisons le caractère séquentielle. Soit a_n une suite de I qui tend vers $a \in I$. Alors comme f est continue en a, alors $f(a_n) \to f(a)$. $f(a_n)$ est alors une suite de J (car $f(I) \subset J$) et f(a) aussi. Donc comme g est continue en f(a), $g(f(a_n)) \to g(f(a))$. Donc $g \circ f$ est continue en tout point de I donc est continue sur I.

On peut aussi faire avec des voisinages ou avec des ϵ .

Exercice 1. Pour montrer que f est continue sur \mathbb{R} on distingue les cas en fonction de la où on se place.

- $\diamond f$ est continue en tout point non entier : sur $\mathbb{R} \mathbb{Z}$.
- \diamond Il faut donc regarder si la fonction est continue aux points $a \in \mathbb{Z}$. Soit donc $a \in \mathbb{Z}$. On va calculer la limite à gauche et à droite. Il faut vérifier que ces deux limites valent $f(a) = a + \sqrt{0} = a$. Commencons en a^+ . Comme $E(x) \to a$ en a^+ , alors par continuité de la racine on a :

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} E(x) + \sqrt{x - E(x)} = \lim_{x \to a^+} a + \sqrt{a - a} = a = f(a)$$

Maintenant en a^- . $\lim_{x\to a^-} E(x) = a-1$. Donc par continuité de la racine, on a :

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{-}} E(x) + \sqrt{x - E(x)} = \lim_{x \to a^{-}} a - 1 + \sqrt{a - (a - 1)} = a - 1 + 1 = a = f(a)$$

Finalement, f est continue en a.

Donc f est continue sur \mathbb{R} . Notons que l'argument de la continuité de la racine est fondamental et est souvent oublié.

Solutions - Planche 2.

Exercice 0. On utilise la technique fondamentale suivante : si on veut montrer que f a un point fixe, on montre que f(x) - x a un zéro. Pourquoi ? Car on possède des critères efficaces pour montrer qu'une fonction a des zéros. Par exemple le théorème des valeurs intermédiaires. On pose g(x) = f(x) - x. Alors g est continue sur [0,1]. Or $g(0) = f(0) \ge 0$ et $g(1) = f(1) - 1 \le 0$. Donc par le théorème des valeurs intermédiaires appliqué à g sur [0,1], il existe un zéro pour g sur [0,1]. On le note g0. Alors g0 et g1 existe un point fixe de g2.

Exercice 1. Soit f continue et périodique. On note T sa période :

$$f(x+T) = f(x), \forall x \in \mathbb{R}$$

Sur [0,T], qui est un **segment**, f **est continue donc bornée**. Il existe donc M > 0 tel que $|f(x)| \le M$ sur [0,T]. On va maintenant ramener tout point hors de ce segment à ce segment.

Soit $x \in \mathbb{R}$, il existe un entier relatif n tel que $x + nT \in [0, T]$. Pourquoi ? On cherche n tel que $0 \le x + nT \le T$. Donc tel que $-x/T \le n \le 1 - x/T$. Il suffit donc de choisir n = E(-x/T). Du coup par périodicité, f(x + nT) = f(x). Or $x + nT \in [0, T]$ donc par ce qui précède, $|f(x + nT)| \le M$. Finalement, $|f(x)| \le M$ sur \mathbb{R} .