Semaine 15 : Début Topologie

Exercice 1: Enveloppe convexe d'un compact

Soit E un espace vectoriel normé de dimension n. Si F est un sous-ensemble quelconque de E, on appelle **enveloppe convexe de** F, et on note $\operatorname{Conv}(F)$, le plus petit sous-ensemble convexe (au sens de l'inclusion) contenant F. On note \mathcal{H} l'ensemble des $(\lambda_1, \ldots, \lambda_{n+1}) \in (\mathbb{R})^{n+1}$ tels que $\lambda_1 + \cdots + \lambda_{n+1} = 1$, et on admet que $\operatorname{Conv}(F)$ est l'ensemble des combinaisons linéaires de la forme $\sum_{i=1}^{n+1} \lambda_i x_i$, où $x_1, \ldots, x_{n+1} \in F$ et $(\lambda_1, \ldots, \lambda_{n+1}) \in \mathcal{H}$.

Le but de l'exercice est de démontrer que si K est une partie compacte de E, alors Conv(K) est aussi une partie compacte de E.

- 1) Démontrer que \mathcal{H} est une partie compacte de \mathbb{R}^{n+1} .
- 2) Définir une application continue $\phi : \mathbb{R}^{n+1} \times E^{n+1} \to E$ telle que $\operatorname{Conv}(K) = \phi(\mathcal{H} \times K^{n+1})$.
- 3) Conclure.

Exercice 2: Valeurs propres d'une matrice

Montrer que pour tout $A, B \in \mathcal{M}_n(\mathbb{C})$, on a $\chi_{AB} = \chi_{BA}$.

Exercice 3: Point fixe dans un compact

Soit K un compact non vide d'un espace vectoriel normé E de dimension finie. On considère une application $f:K\to K$ vérifiant

$$\forall x,y \in K, x \neq y \implies d(f(x),f(y)) < d(x,y).$$

Montrer que f admet un unique point fixe.

Exercice 4: Application lipschitzienne et point fixe

Soit K une partie compacte non vide d'un espace vectoriel normé E de dimension finie. On considère $f: K \to K$, une application ρ -lipschitzienne, i.e., vérifiant

$$\forall x, y \in K, ||f(y) - f(x)|| < \rho ||y - x||.$$

- a) On suppose $\rho < 1$. Montrer que f admet un point fixe.
- b) On suppose $\rho = 1$ et K convexe. Montrer à nouveau que f admet un point fixe. On pourra introduire, pour $a \in K$ et $n \in \mathbb{N}^*$, les fonctions

$$f_n: x \mapsto \frac{a}{n} + \frac{n-1}{n} f(x).$$

Exercice 5 : Recouvrements de la sphère

Si $a \in \mathbb{R}^n$, on note $B_{a,r} = \{x \in \mathbb{R}^n \mid ||x - a|| \le r\}$ la boule fermée de centre a et de rayon r. Soit K une partie compacte non vide de \mathbb{R}^n , et soit $\varepsilon > 0$.

Montrer que l'on peut trouver un sous-ensemble fini A de K tel que :

$$K \subset \bigcup_{a \in A} B_{a,\varepsilon}.$$

On pourra raisonner par l'absurde en utilisant le théorème de Bolzano-Weierstrass.

Exercice 6 : Suites de Cauchy

Une suite (u_n) de nombres réels est appelée suite de Cauchy si, pour tout $\varepsilon > 0$, il existe un entier N tel que, pour tout $p, q \geq N$, on a

$$|u_p - u_q| < \varepsilon.$$

- 1) Montrer que toute suite convergente est une suite de Cauchy.
- 2) On souhaite prouver la réciproque à la question précédente. Soit (u_n) une suite de Cauchy.
 - 2.1) Montrer que (u_n) est bornée.
 - 2.2) On suppose que (u_n) admet une suite extraite convergente. Montrer que (u_n) est convergente.
 - 2.3) Conclure.