Drs B. J. Morgan & A. R. McCluskey

Synopsis and Assessment

Combined lecture & practical session in PC room (CB 4.17) each week (10:15 – 13:05)

2 Oct	BJM overview ARM lecture 1 Worksheet 1	 What is computational chemistry? Course philosophy. Outline. Introduction to Python: Variable types; arithmetic; print and input, flow control using if, elif, else; logical operators. Introduction to Python programming in the Jupyter Notebook environment: Practice exercises: variables, arithmetic, printing, etc. Program to convert °F to °C to K. Program to calculate an equilibrium constant from free energies.
9 Oct	ARM lecture 2 Worksheet 2	Working with data: lists; loops, numpy arrays; plotting; importing data. • Write a program to calculate distances between atoms in a molecule. • Revise this to use NumPy arrays for handling your data.
16 Oct	ARM lecture 3 Worksheet 3	Functions and Modular code.Program to calculate Lennard-Jones interaction energies;Program to optimise interatomic distances.
23 Oct	ARM lecture 4 Worksheet 4	Debugging: Reading error messages and finding help. • Molecular rotations and rotation matrices.
30 Oct	ARM lecture 5 Worksheet 5	Writing legible and maintainable code: docstrings, testing, and "test-driven development".Writing code using tests.
6 Nov	Workshop 1	Hands-on practice.
13 Nov	Workshop 2	Hands-on practice.
20 Nov	BJM lecture 1	Introduction to linear algebra; vectors and matrices. Revisiting molecular rotations; moments of inertia; finding principal axes of rotation (eigenvalues and matrix diagonalization).
27 Nov	BJM lecture 2	Finding normal modes of vibration and their frequencies. Solving the Schrödinger equation → application to Hückel theory.
4 Dec	Test 1	10:15 – 13:05 (CB 4.17) TDD exercises (50% total mark)
11 Dec	Test 2	10:15 – 13:05 (CB 4.17) Single multistep problem (50%)

Assessment

Formative assessment:

- Lecture weeks (1–5, 8, 9): Includes time to work through small exercises, and one or more larger programming exercises to do (demonstrators available to answer questions and discuss).
- Workshop weeks (6 & 7): No lecture. Instead you will be given bigger problems to solve than in the previous weeks and asked to think about how to solve these / write the code (with demonstrators / advice / help available).

Summative assessment:

- Test 1 (week 10): Open-book test; working through a series of small exercises ("test-driven development")
 - \rightarrow 50% of the total mark
- Test 2 (week 11): Open-book test; single multistep problem to work through.
 - \rightarrow 50% of the total mark