四、(涡沟分)

1、对于TTL电路引脚是室相舒高电子

红笔为连线

蓝笔不用画

心壅酸。

A	В	C	D	P
0	0	0	0	1
0	0	٥	1	0
0	1	0	0	
0	ſ	0	1	-1
0	1	()	9	0
0	ſ	1	١	<i>0</i>
1	0	D	0	0
1	0	D	1	0
(0	1	D	1
١	0	1	1	0
١	١	0	O	0
1	ſ	D	1	0
1	((0	0
1	1	١	1	<u> </u>

(2) P=ABCO+AB'CD'+ A'BC'D+A'B'C'D'

所:假设动物时电影上电压为。此时 R=0,S=1 , Q'=0 , $V_0=1$, 在时电影通过 R_1 与 R_2 和 +SV 连接 (To截山) 有元电。至电影上电压为 $\frac{1}{3}V_{cc}$ 的 $\frac{1}{3}V_{cc}$ 的

周期公式拍导。由3定多公式 f(t)= fp(t)+[f(0+)-fp(0+)]e==

此时得场为直流恒压源,故 $f_{p(t)} = f(\omega)$ (推荐分量) $2J \quad f(t) - f(\omega) = [f(0+) - f(\omega)] e^{-t/\tau}$ 程项后取对数可得 $\tau \ln \frac{f(0+) - f(\omega)}{f(t) - f(\omega)} = t$, 从入 $\tau = \text{RCPP}$ 可,

(2) 由A、B通过数据选择器控制计数器的进制、

红笔为连线 蓝笔不用画

此诚意唯一的 真正难题、

(3) 方道用微分型单稳态电路。(激励胁宽计输出联宽)

(PS. 试着上似了用的是TTL电路,那样更复杂,没考虑输入、输出电路,而不能如CMOS电路直接删法输入, 此处略去)