АЛЮМИНИЙ И ЕГО СОЕДИНЕНИЯ ТИПЫ РЕАКЦИЙ

более сильный ВЫТЕСНЯЕТ более слабого - вытеснение ПРИМЕРЫ:

основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ:

электролит + электролит (р-р) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ:

- 1) NaOH + HCl = NaCl + H,O
- 2) KCl + AgNO, = KNO, + ÁgI

АЛЮМИНИЙ ОБЩИЕ СВЕДЕНИЯ

Нахождение: IIIA-группа ПС Электронная формула: 3s²3p¹ Степени окисления: 0, +3

НАХОЖДЕНИЕ В ПРИРОДЕ:

только в составе соединений!

Al₂O₃ - корунд

 $Na_{_3}[AlF_{_6}]$ - криолит

 $Al_2O_3*2SiO_2*2H_2O$ - каолинит

 $Al_2O_3*nH_2O$ - боксит

К₂O*Al₂O₃*6SiO₂ - полевой шпат

ФИЗИЧЕСКИЕ СВОЙСТВА:

серебристо-белый металл

пластичный

лёгкий

электропроводный

теплопроводный

быстро окисляется

на воздухе покрыт

оксидной плёнкой

химические свойства

Очень активен при снятии оксидной плёнки!!!
Получают: 1) электролизом расправа $AlCl_3$: $2AlCl_3$ (эл.ток) = $2Al + 3Cl_2$;
2) электролизом расплава Al_2O_3 в криолите $Na_3[AlF_6]$: $2Al_2O_3$ (эл.ток) = $4Al + 3O_3$

Al + неМе = бинарное соединение

Al + O₂ = Al₂O₃ , Al + F₂ = AlF₃ Al + Cl₂ = AlCl₃ , Al + N₂ = AlN Al + S = Al₂S₃ , Al + C = Al₄C₃ Al + P = AlP , Al + H₂ = AlH₃

Al + щёлочь = средняя соль/комплекс + H_2 Al + NaOH + H_2 O = Na[Al(OH),] + H_2 Al + NaOH (t) = NaAlO, + Na,O + H,

Al + H₂O - только при снятии окс. плёнки! Al + H₂O = Al(OH)₃ + H₂

Al + кислота

Al + HCl = AlCl₃ + H₂ Al + HNO₁(конц) = Al(NO₃)₃ + H₂O + N₂O

Al + соль/оксид Me (вытеснение) Al + CuSO_{$_{\perp}$} (t) = Al₂(SO_{$_{\perp}$})₃ + Cu Al + Fe₃O_{$_{\perp}$} (t) = Fe + Al₂O₃ На воздухе алюминий покрыт оксидной плёнкой, которая его от всех защищает.

Поэтому, чтобы алюминий вступил в ту или иную реакцию, нам нужно снять эту самую оксидную плёнку/нарушить её целостность:

 погрузить в р-р щёлочи
 нарушить целостность наждаком
 обработать поверхность металла ртутью (амальгировать)

"Необычная" реакция из ЕГЭ: Al + KOH + KNO, + H,O = K[Al(OH),] + NH,

ОКСИД АЛЮМИНИЯ АІ,О,

твёрдое тугоплавкое вещество

амфотерный оксид

не растворяется в воде

обладает амфотерными свойствами: реагирует с щелочами, с основными оксидами Щ/Щ3 металлов, с кислотами, с кислотными оксидами (только с высшими!); НЕ РЕАГИРУЕТ С ВОДОЙ; способен вытеснять летучие оксиды из солей

При взаимодействии с оксидами и гидроксидами Щ или ЩЗ металлов образует среднюю соль (в расплаве) или комплексную (в растворе).

Два комплекса: [Al(OH),] и [Al(OH),] 3-

Al₂O₃ + H₂O = реакция не идёт Al₂O₃ + NaOH (t) = NaAlO₂ + H₂O Al₂O₃ + NaOH + H₂O = Na[Al(OH)₄] Al₂O₃ + SO₂ = реакция не идёт Al₂O₃ + SO₃ = Al₂(SO₄)₃ Al₂O₃ + HCl = AlCl₃ + H₂O Al₂O₃ + H₂SO₄ = Al₂(SO₄)₃ + H₂O Al₂O₃ + K₂O (t) = KAlO₂ Rb₂O + Al₂O₃ + H₂O = Rb[Al(OH)₄] Al₂O₃ + ZnO = реакция не идёт Al₂O₃ + FeO = реакция не идёт Al₂O₃ + Na₂CO₃ (t) = NaAlO₂ + CO₂ Al₂O₃ + K₂SO₃ (t) = KAlO₂ + SO₂ Al₂O₃ + CO + Cl₂ = AlCl₃ + CO₂

ГИДРОКСИД АЛЮМИНИЯ AL(OH),

твёрдое вещество

амфотерный гидроксид

нерастворим в воде

Al(OH)₃ (t) = Al₂O₃ + H₂O Al(OH)₃ + HNO₃ = Al(NO₃)₃ + H₂O Al(OH)₃ + HCl = AlCl₃ + H₂O Al(OH)₃ + NaOH = Na[Al(OH)₄] Al(OH)₃ + Fe(NO₃)₂ = реакция не идёт Al(OH)₃ + Na₂O + H₂O = Na[Al(OH)₄] твёрдое вещество

амфотерный гидроксид

нерастворим в воде

обладает амфотерными свойствами: реагирует со щелочами, с основными оксидами Щ и Щ3 металлов, с кислотами и некоторыми кислотными оксидами (высшими!); разлагается!

Образует комплексы, которые:

- + разрушаются кислотами
 - + разрушаются CO₂ и SO₂
 - + разрушаются ĀlCl₃
 - + разлагаются при t

Образует средние соли, к-е:

- + реагируют с кислотами
 - + реагируют с водой

 $Al(OH)_{1} + KOH(t) = KAlO_{1} + H_{1}O$

 $Al(OH)_{1}^{3} + K_{2}O(t) = KAlO_{2}^{2} + H_{2}^{2}O$

Al(OH), + Cl, = реакция не идёт

AL,S, + H2O = AL(OH), + H2S

 $Al_4C_3 + H_2O = Al(OH)_3 + CH_4$

AlCl, + Na,CO, + H,O = NaCl + Al(OH), + CO,

Na[Al(OH),] + HCl(N36) = NaCl + AlCl, + H,O

 $Na[Al(OH)_{L}] + HCl(Heд) = NaCl + Al(OH)_{3} + H_{2}O$

 $Na[Al(OH)](t) = NaAlO_{1} + H_{1}O_{2}$

 $Na[Al(OH)_{i}] + CO_{i}(Hed) = Na_{i}CO_{i} + Al(OH)_{i} + H_{i}O$

 $Na[Al(OH)_4] + CO_2(n36) = NaHCO_3 + Al(OH)_3 + H_2O$

Al(OH), + H,O + лакмус = фиолетовое окрашивание

 $NaAlO_1 + H_2O = Na[Al(OH)_2]$

 $Na[Al(OH)_{L}] + AlCl_{3} = NaCl + Al(OH)_{3}$

NaAlO, + HCl(u36) = NaCl + AlCl, + H,O

 $NaAlO_2 + HCl(Heд) = NaCl + Al(OH)_3 + H_2O$

ПРИМЕНЕНИЕ АЛЮМИНИЯ И ЕГО СОЕДИНЕНИЙ

авиационная промышленность

пищевая промышленность

электротехническая промышленность

машиностроительная промышленность

использование сплавов алюминия

использование чистого алюминия (алюмотермия)