Least Square Fit

Spoken Tutorial Project http://spoken-tutorial.org National Mission on Education through ICT

http://sakshat.ac.in

Script: Aditya Palaparthy

Narration: Kiran Kishore

IIT Bombay

16 November 2015

Objectives

At the end of this tutorial, you will be able to,

Objectives

At the end of this tutorial, you will be able to,

Generate the least square fit line for a given set of points.

▶ Ubuntu Linux 14.04

- ▶ Ubuntu Linux 14.04
- ▶ Python 2.7.6

- Ubuntu Linux 14.04
- Python 2.7.6
- ▶ IPython 4.0.0

To practise this tutorial, you should know how to -

To practise this tutorial, you should know how to -

use plot interactively.

To practise this tutorial, you should know how to -

- use plot interactively.
- load data from files.

To practise this tutorial, you should know how to -

- use plot interactively.
- load data from files.
- use arrays and matrices.

If not, see the pre-requisite Python tutorials on http://spoken-tutorial.org.

Exercise 1

Generate a least square fit line for I v/s t² using the data in the file 'pendulum.txt'.

Matrix Formulation

We need to fit a line through points for the equation

$$T^2 = m \cdot L + c$$

In matrix form, the equation can be represented as $T_{sq} = A \cdot p$,

where
$$T_{sq}$$
 is $\begin{bmatrix} T_1^2 \\ T_2^2 \\ \vdots \\ T_N^2 \end{bmatrix}$, A is $\begin{bmatrix} L_1 & 1 \\ L_2 & 1 \\ \vdots & \vdots \\ L_N & 1 \end{bmatrix}$

$$\begin{vmatrix} L_1 & 1 \\ L_2 & 1 \\ \vdots & \vdots \\ L_N & 1 \end{vmatrix}$$

Matrix Formulation

and p is
$$\begin{bmatrix} m \\ c \end{bmatrix}$$

We need to find p to plot the line

Summary

In this tutorial, we have learnt to,

 Generate a least square fit using matrices.

Summary

In this tutorial, we have learnt to,

- Generate a least square fit using matrices.
- Use the function lstsq() to generate a least square fit line.

Evaluation

1. What does ones_like([1, 2, 3]) produce

Evaluation

- 1. What does ones_like([1, 2, 3]) produce
 - array([1, 1, 1])
 - **▶** [1, 1, 1]
 - ▶ [1.0, 1.0, 1.0]
 - Error

Evaluation

- 1. What does ones_like([1, 2, 3]) produce
 - array([1, 1, 1])
 - **▶** [1, 1, 1]
 - ▶ [1.0, 1.0, 1.0]
 - Error
- The plot of "u" vs "v" is a bunch of scattered points that show a linear trend. How do you find the least square fit line of "u" v/s "v".

Solutions

Solutions

```
1. array([1, 1, 1])
```

```
2. A = array(u,
ones_like(u)).T
result = lstsq(A, v)
m, c = result[0]
lst line = m * u + c
```


Forum to answer questions

- Do you have questions in THIS Spoken Tutorial?
- Choose the minute and second where you have the question.
- Explain your question briefly.
- Someone from the FOSSEE team will answer them. Please visit

Forum to answer questions

- Questions not related to the Spoken Tutorial?
- Do you have general / technical questions on the Software?
- Please visit the FOSSEE Forum http://forums.fossee.in/
- Choose the Software and post your question.

Textbook Companion Project

- The FOSSEE team coordinates coding of solved examples of popular books
- We give honorarium and certificate to those who do this

For more details, please visit this site:

http://tbc-python.fossee.in/

Acknowledgements

- Spoken Tutorial Project is a part of the Talk to a Teacher project
- It is supported by the National Mission on Education through ICT, MHRD, Government of India
- More information on this Mission is available at:

http://spoken-tutorial.

org/NMEICT-Intro

THANK YOU!

For more Information, visit our website http://fossee.in/

