Kaggle Speech Recognition Challenge

Сиганов Илья, разработчик 7bits, ОмГУ

Организаторы

Google brain

Kaggle

Google cloud platform \$500

Призовой фонд: \$25,000

Say one of the words below!

Задача

1 секундный клипы 16Кгц

12 классов

модель < 5 Мб

выполнение < 200мс на RPi

	label			
Данные	silence	6	stop	246
Датпъто	down	2095	left	247
Train: 57929	off	2101	off	256
	no	2105	right	256
Validation: 6798	left	2106	on	257
	on	2110	go	260
Test: 158538	right	2111	up	260
11 1000	go	2112	yes	261
Users: 1698	up	2115	down	264
	yes	2116	no	270
	stop	2134	unknown	4221
	unknown	36818	unknown	1661

Как выглядит осциллограмма?

https://www.kaggle.com/davids1992/speech-representation-and-data-exploration

Как на самом деле выглядит осциллограмма

Первичный анализ

https://www.kaggle.com/davids1992/speech-representation-and-data-exploration

https://www.kaggle.com/davids1992/speech-representation-and-data-exploration

https://www.kaggle.com/davids1992/speech-representation-and-data-exploration

Признаки

FFT - переход в частотный домен

Спектральный анализ

FFT of recording sampled with 16000 Hz

Power Spectrogram

Мел

Mel spectrogram

Mel spectrogram

Mel-frequency Cepstral Coefficients

Чистый звук

Чистый звук

Подготовка звука

- Pre-emphasis: $y[n] = x[n] \alpha x[n-1]$
- Нормализация громкости:
 - MinMax -> [0..1]
 - Из-коробки librossa для np.float [-1..1]
 - 0 ...
- Удлинение коротких клипов (были баги в данных)

Аугментация

- Добавление шума (белый, розовый, автострада, кухня)
- Случайные сдвиги во времени (~200мс)
- Растягивание во времени (!)
- Случайные растягивание по амплитуде (?)

Первое вхождение в сон ~ 0.75 accuracy

Добавим ещё слоёв?

(Нет)

Оно не обучается

Какой <u>оптимизатор</u> использовать: Adam, SGD + nesterov,

RMSProp, Adadelta... тысячи их

Как подобрать <u>learning rate</u> для оптимизатора

Как подобрать learning rate decay

categorical_accuracy

loss

loss

val_loss

Новые слова

Batch normalization

Kernel_regularizer

categorical_accuracy

loss

loss

val_categorical_accuracy

val_loss

val_loss

Public 0.8

Снова новые слова

ReduceLROnPlateau

Residual Networks

1D ResNet

17 Residual блоки по 2 свёртки внутри

Итого 34 свертки

GlobalAveragePooling

1 Dense слой на выход (softmax)

categorical_accuracy

loss

loss

val_categorical_accuracy

val_loss

val_loss

Голосование моделей

Три лучшие модели на validation ~ [0.79..0.82]

Обычный HardVoting

Результата на private: <u>0.84</u>

Confusion matrix

	down	go	left	no	off	on	right	stop	unknown	up	yes
down	245	3	0	11	0	0	0	1	4	0	0
go	10	204	1	14	0	1	2	7	18	1	0
left	0	0	230	6	0	0	0	1	7	0	3
no	1	3	4	250	0	0	0	0	11	1	0
off	0	1	1	0	222	3	0	1	4	23	0
on	1	0	0	1	9	221	2	4	17	2	0
right	0	0	8	0	0	0	226	0	20	1	0
stop	0	3	3	0	3	0	0	229	6	2	0
unknown	52	30	67	65	20	24	51	30	3838	20	8
up	0	1	0	0	4	1	0	4	7	242	0
yes	1	0	17	5	0	0	0	3	2	0	233

Литература

- 1. https://github.com/blan4/kaggle_speech_recognition исходники
- 2. https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
- 3. https://www.youtube.com/watch?v=UMh9EmgkN6w
- 4. http://www.speech.cs.cmu.edu/15-492/slides/03 mfcc.pdf
- 5. http://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
- 6. https://habrahabr.ru/post/140828/ MFCC
- 7. https://arxiv.org/abs/1512.03385 ResNet
- 8. https://arxiv.org/abs/1710.06554 Honk решение организаторов
- 9. http://deeplearning.net/wp-content/uploads/2013/03/pseudo-label-final.pdf PseudoLabeling