Автономная некоммерческая организация высшего образования «Университет Иннополис»

Лабораторный практикум курса
«Аналитическая геометрия и линейная алгебра»
(курс основывается на учебнике Д. В. Беклемишева)

4 неделя: методы Гаусса, смена базиса, векторное произведение.

лектор: И. В. Конюхов

преподаватель: Е. А. Марчук

1.3. Доказать, что для любых трех векторов **a**, **b**, **c** и любых трех чисел α , β , γ векторы α **a** $-\beta$ **b**, γ **b** $-\alpha$ **c**, β **c** $-\gamma$ **a** линейно зависимы.

$$\begin{aligned}
\vec{e}_1 &= \lambda \vec{a} - \beta \vec{b} \\
\vec{e}_2 &= \beta \vec{b} - \lambda \vec{c}
\end{aligned}$$

$$\begin{aligned}
\vec{e}_3 &= \beta \vec{c} - \beta \vec{a}
\end{aligned}$$

$$\begin{aligned}
\vec{e}_4 &= \lambda \vec{a} - \beta \vec{b} \\
-\delta \vec{c} &= \lambda \vec{c} - \delta \vec{a}
\end{aligned}$$

$$\begin{aligned}
\vec{e}_3 &= \beta \vec{c} - \delta \vec{a}
\end{aligned}$$

- **1.11.** Проверить, будут ли компланарны векторы \mathbf{l} , \mathbf{m} и \mathbf{n} ; в случае положительного ответа указать линейную зависимость, их связывающую (здесь \mathbf{a} , \mathbf{b} , \mathbf{c} три некомпланарных вектора):
 - 1) l = 2a b c, m = 2b c a, n = 2c a b;
 - 2) l = a + b + c, m = b + c, n = -a + c;
 - 3) l = c, m = a b c, n = a b + c.

Используя метод Гаусса, найти определитель матрицы:

г1	1	3	1	17
1	1	1	1 3	1
[1 1 3 1 1	1 1 1 3 1	1	-1	1 1 1 1
1	3	-1	-1 -1	1
L_1	1	1	1	1

Решить методом Гаусса систему уравнений:

$$\begin{cases} 3x + 2y - 5z = -1 \\ 2x - y + 3z = 13 \\ x + 2y - z = 9 \end{cases}$$

$$\begin{vmatrix} 3 & 2 & 5 \\ 2 & -7 & 3 \\ 1 & 2 & -7 \end{vmatrix} \cdot \begin{vmatrix} x \\ 3 \\ z \end{vmatrix} = \begin{vmatrix} -7 \\ 73 \\ 9 \end{vmatrix}$$

$$\begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & \frac{2}{1} & \frac{1}{1} \\
\frac{1}{2} & \frac{2}{1} & \frac{1}{3} & \frac{1}{3}
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 3 & | & -2 & 5 \\
0 & -5 & 5 & | & -5 \\
1 & 2 & -1 & | & 5
\end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 7 & | & -17 \\ 0 & -2 & 2 & | & -27 \\ 0 & 0 & 10 & | & -177 \\ 0 & 0$$

$$3 - (-2.25) = 9196 = 55 0 5 15 | -115 0 0 1 | -6 1 0 - 1 | 55 0 0 1 | -6$$

Используя метод Гаусса, найти решение системы линейных уравнений:

$$\begin{bmatrix} 2 & 3 & -1 & 1 \\ 1 & 2 & 1 & -2 \\ 1 & 0 & 2 & 1 \\ 2 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix}$$

Найти обратную матрицу с помощью элементарных преобразований

$$A = \begin{pmatrix} 3 & 4 & 2 \\ 2 & -1 & -3 \\ 1 & 5 & 1 \end{pmatrix}$$

$$\vec{A} \cdot \vec{A} = \vec{I}$$

$$\begin{vmatrix}
3 & 4 & 2 & | & 1 & 0 & 0 \\
2 & -1 & -3 & | & 0 & 1 & 0 \\
1 & 5 & 5 & | & 1 & -1 & 0 \\
2 & -1 & -3 & | & 0 & 1 & 0 \\
1 & 5 & 5 & | & 0 & 1 & 0
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 5 & 5 & | & 1 & -1 & 0 & 0 \\
2 & -1 & -3 & | & 0 & 1 & 0 & 0
\end{vmatrix}$$

Используя метод Гаусса, найти обратную матрицу:

$$\begin{bmatrix} 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \\ 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \end{bmatrix}^{-1}$$

- **4.3.** На плоскости даны две системы координат O, \mathbf{e}_1 , \mathbf{e}_2 и O', \mathbf{e}_1' , \mathbf{e}_2' . Начало второй системы координат имеет в первой системе координаты (-1,3), а базисные векторы второй системы имеют в базисе первой системы координаты (2,3) и (1,1) соответственно.
- 1) Найти координаты точки в первой системе, если известны ее координаты x', y' во второй системе координат.
- 2) Найти координаты точки во второй системе, если известны ее координаты x, y в первой системе координат.
- 3) Найти координаты точки O во второй системе и координаты векторов \mathbf{e}_1 , \mathbf{e}_2 в базисе второй системы координат.

$$\begin{cases} O', \vec{e}_{1}', \vec{e}_{2}' \\ \\ O, \vec{e}_{1}', \vec{e}_{2}' \\ \\ \end{cases} \end{cases} \begin{cases} \vec{e}_{1}', \vec{e}_{2}' \\ \\ \vec{e}_{2}' \\ \end{cases} \begin{cases} \vec{e}_{1}', \vec{e}_{2}' \\ \\ \vec{e}_{2}' \\ \end{cases} \end{cases} \begin{cases} \vec{e}_{1}', \vec{e}_{2}', \vec{e}_{2}' \\ \\ \vec{e}_{1}' = \lambda \vec{e}_{1}' + \lambda \vec{e}_{2}' \\ \vec{e}_{1}' = \lambda \vec{e}_{1}' + \lambda \vec{e}_{2}' \\ \vec{e}_{1}' - \lambda \vec{e}_{1}' = \vec{e}_{1}' \end{cases} \begin{cases} \vec{e}_{1}', \vec{e}_{2}', \vec{e}_{2}', \vec{e}_{2}' \\ \vec{e}_{1}' - \lambda \vec{e}_{1}' = \vec{e}_{1}' \end{cases} \begin{cases} \vec{e}_{1}', \vec{e}_{2}', \vec{e}_{2}' \\ \vec{e}_{1}' - \lambda \vec{e}_{1}' = \vec{e}_{2}' \end{cases} \end{cases} \begin{cases} \vec{e}_{1}', \vec{e}_{2}', \vec{e}_{2}', \vec{e}_{2}' = \vec{e}_{2}' \end{cases} \begin{cases} \vec{e}_{1}', \vec{e}_{2}', \vec{e}_{2}', \vec{e}_{2}' = \vec{e}_{2}' \end{cases} \end{cases} \begin{cases} \vec{e}_{1}', \vec{e}_{2}', \vec{e}_{2}', \vec{e}_{2}', \vec{e}_{2}', \vec{e}_{2}' = \vec{e}_{2}' \end{cases} \end{cases} \end{cases} \begin{cases} \vec{e}_{1}', \vec{e}_{2}', \vec{e}_{2}'$$

- **4.5.** Координаты x, y каждой точки плоскости в системе координат O, \mathbf{e}_1 , \mathbf{e}_2 выражаются через координаты x', y' этой же точки в системе O', \mathbf{e}_1' , \mathbf{e}_2' формулами x=2x'-y'+5, y=3x'+y'+2.
 - 1) Выразить координаты x', y' через координаты x, y.
- 2) Найти координаты начала O и базисных векторов \mathbf{e}_1 , \mathbf{e}_2 первой системы координат во второй системе.
- 3) Найти координаты начала O' и базисных векторов \mathbf{e}_1' , \mathbf{e}_2' второй системы координат в первой системе.

4.12. В параллелограмме ABCD точка E лежит на стороне BC, а точка F — на стороне AB, причем $|BE|:|BC|=1:4,\,|BF|:|AF|=2:5.$ Найти координаты точки плоскости в системе координат $C,\,\overline{CE},\,\overline{CD},\,$ если известны ее координаты $x',\,y'$ в системе координат $E,\,\overline{EF},\,\overline{ED}.$

1)
$$\vec{E}\vec{F} = \vec{E}\vec{\delta} + \vec{\delta}\vec{F} = \vec{5}\vec{C}\vec{E} + \vec{7}\vec{C}\vec{P}$$

 $\vec{E}\vec{D} = -\vec{C}\vec{E} + \vec{C}\vec{P}$
 $\vec{S} = \begin{pmatrix} \vec{5} & -1 \\ \frac{1}{2} & 1 \end{pmatrix}$ $\vec{C}\vec{E} = \begin{pmatrix} \begin{pmatrix} \\ \\ \\ \end{pmatrix} \end{pmatrix}$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} y' \\ y' \end{pmatrix} + \begin{pmatrix} y \\ 0 \end{pmatrix}$$

4.17. В трапеции ABCD длины оснований BC и AD относятся как 3:4, точка E является серединой основания AD, а продолжения боковых сторон пересекаются в точке F. Найти координаты точки плоскости в системе координат $E, \overline{EB}, \overline{EC},$ если известны ее координаты x', y' в системе координат

- **4.26.** На плоскости даны две прямоугольные системы координат O, \mathbf{e}_1 , \mathbf{e}_2 и O', \mathbf{e}_1' , \mathbf{e}_2' . Начало второй системы координат имеет в первой системе координаты 1,3, а векторы \mathbf{e}_1' и \mathbf{e}_2' получаются из векторов \mathbf{e}_1 и \mathbf{e}_2 соответственно поворотом на один и тот же угол φ в направлении кратчайшего поворота от \mathbf{e}_1 к \mathbf{e}_2 . Найти координаты точки в первой системе координат, если известны ее координаты x', y' во второй системе, считая угол φ равным:
 - 1) 60°; 2) 135°; 3) 90°; 4) 180°.

4.28. В прямоугольном треугольнике ABC, длины катетов которого равны |AB| = 3 и |BC| = 4, точка D является основанием высоты, проведенной из вершины прямого угла. Векторы \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_1' , \mathbf{e}_2' имеют длину 1, причем \mathbf{e}_1 сонаправлен с \overline{BA} , \mathbf{e}_2 сонаправлен с \overline{BC} , \mathbf{e}_1' сонаправлен с \overline{AC} , \mathbf{e}_2' сонаправлен с \overline{DB} . Найти координаты точки плоскости в системе координат B, \mathbf{e}_1 , \mathbf{e}_2 , если известны ее координаты x', y' в системе координат D, \mathbf{e}_1' , \mathbf{e}_2' .

- 3.1. Найти векторное произведение векторов а и b, заданных своими координатами:
 - 1) $\mathbf{a}(3, -1, 2), \mathbf{b}(2, -3, -5);$ 2) $\mathbf{a}(2, -1, 1), \mathbf{b}(-4, 2, -2);$ 3) $\mathbf{a}(6, 1, 0), \mathbf{b}(3, -2, 0).$

- 3.2. Упростить выражения: 1) $[\mathbf{a} + \mathbf{b}, \, \mathbf{a} \mathbf{b}];$ 2) $[\mathbf{a} \mathbf{b} + \mathbf{c}/2, \, -\mathbf{a} + 2\mathbf{b} 5\mathbf{c}].$

- **3.5.** Векторы e_1 , e_2 , e_3 образуют:
- 1) ортонормированный правый базис;
- 2) ортонормированный левый базис;
- 3) ортогональный правый базис.

Выразить векторные произведения $[\mathbf{e}_1, \, \mathbf{e}_2], \, [\mathbf{e}_2, \, \mathbf{e}_3], \, [\mathbf{e}_3, \, \mathbf{e}_1]$ через векторы $\mathbf{e}_1, \, \mathbf{e}_2, \, \mathbf{e}_3$.

3.6. Известно, что $\mathbf{a}=[\mathbf{b},\,\mathbf{c}],\;\mathbf{b}=[\mathbf{c},\,\mathbf{a}],\;\mathbf{c}=[\mathbf{a},\,\mathbf{b}].$ Найти длины векторов $\mathbf{a},\,\mathbf{b},\,\mathbf{c}$ и углы между ними.

- **3.8.** На векторах $\mathbf{a}(2,3,1)$ и $\mathbf{b}(-1,1,2)$, отложенных из одной точки, построен треугольник. Найти:
 - 1) площадь этого треугольника;
 - 2) длины трех его высот.

3.9 (р). Длины базисных векторов e_1 и e_2 общей декартовой системы координат на плоскости равны соответственно 3 и 2, а угол между ними равен 30° . В этой системе координат даны координаты трех последовательных вершин параллелограмма: (1,3), (1,0) и (-1,2). Найти площадь параллелограмма.

					S				2		4	ก													
	P	, =	- i 4	+ 5	i			e	1	=	1	-	ان	,											
	2		<u>'</u>		0							.	~												
	6,	<u> </u>	- i 4	4				e,	,	=	4:	+	21												
			<u>'</u>	. (<u>ل</u>			•					0												
			_																						
1) (0.1		<u>;</u>	_	i																				
J			T.	· (,																				
7	ر ا	=	4:	+ 2	7																				
	,		Ċ	-	ડ																				
	-5		1 5 i		1		ج																		
(2	e,	' +	e') ·	6	=	i																		
,																									
																								_	
																								_	
																								_	
																				_				\perp	
																				-				+	
																								_	
																				\dashv				+	
																				\dashv				+	
																				-				+	
																				\dashv				+	
																				\dashv				+	
																				\dashv				+	
																								+	
																				1				+	
																				\dashv				+	
																								+	
																								+	
																								+	
																								+	
																								\top	

$$\vec{P} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} \vec{E} = \begin{pmatrix} 7 \\ 2 \\ -2 \end{pmatrix}$$

$$\vec{P}_{p} = \vec{P}_{rosp} \vec{P} = \frac{\vec{P}_{rosp} \vec{P}}{||\vec{P}_{p}||^{2}} \cdot \vec{E} = -\frac{1}{3} \vec{E}$$

$$\vec{P}_{p} = \vec{P}_{rosp} \vec{P} = \vec{P}_{rosp} \vec{P} = \vec{P}_{rosp} \vec{P} = \vec{P}_{rosp} \vec{$$