$m(E) < \infty$, $\{f_k\} \subset L(E)$, $\{f_k\}$ 依测度收敛于 f 于 E. 若 $\{f_k(x)\}$ 为 E 上积分等度连续的函数列,即 $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon)$, s.t., 对 $\forall A \subset E$, 若 $m(A) < \delta$, 则 $\int_A |f_k(x)| dx < \varepsilon$, 对所有k都成立. 则 $f \in L(E)$. 且

$$\lim_{k\to\infty}\int_E f_k(x)dx = \int_E f(x)\,dx.$$

 $m(E) < \infty$, $\{f_k\} \subset L(E)$, $\{f_k\}$ 依测度收敛于 f 于 E. 若 $\{f_k(x)\}$ 为 E 上积分等度连续的函数列,即 $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon)$, s.t., 对 $\forall A \subset E$, 若 $m(A) < \delta$, 则 $\int_A |f_k(x)| dx < \varepsilon$, 对所有k都成立. 则 $f \in L(E)$. 且

$$\lim_{k\to\infty}\int_E f_k(x)dx = \int_E f(x)\,dx.$$

Proof:

(i) f_k is bounded in L(E). It follows from $\{f_k\}$ being a sequence of functions of equicontinuity of integrals that, $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$, such that, if $m(A) < \delta$, $A \subset E$, we have

$$\int_{A} |f_k| < \varepsilon, \quad \forall k \in \mathbb{N}^+.$$

Take $\varepsilon=1$ above and divide E into $n=[rac{|E|}{\delta}]+1$ parts. Then $rac{|E|}{n}\leq \delta$,

and $E = \bigcup_{i=1}^n A_i$ with $A_i \cap A_j = \emptyset$ if $i \neq j$ and $m(A_i) \leq \delta$. Then we have,

$$\int_{A_i} |f_k| < 1 \quad \forall k, i.$$

$$\int_{\mathcal{E}} |f_k| = \sum_{i=1}^n \int_{A_i} |f_k| < n.$$

Thus, f_k is uniformly bounded in L(E).

(ii) $f \in L(E)$. f_k converges to f in measure \Rightarrow there exists a subsequence $\{f_{k_i}\}$ of $\{f_k\}$ such that

$$f_{k_j} \to f$$
 a.e. in E .

Then by Fatou's lemma,

$$\int_{E} |f| = \int_{E} \liminf_{j \to \infty} |f_{k_{j}}| \le \liminf_{j \to \infty} \int_{E} |f_{k_{j}}| \le n.$$

So, $f \in L(E)$.

(iii) The proof for $\lim_{k\to\infty}\int_E f_k=\int_E f$. It follows from the equicontinuity that, $\forall \varepsilon>0$, $\exists \delta=\delta(\varepsilon)$, such that

if
$$A \subset E$$
, $m(A) < \delta$, $\int_A |f_k(x)| dx \leq \frac{\varepsilon}{3}$.

Since $f \in L(E)$, it follows integral's absolute continuity that: $\forall \varepsilon > 0$, $\exists \delta_0 > 0$, if $m(A) \leq \delta_0$, then

$$\int_{A} |f| < \frac{\varepsilon}{3}.$$

We take $\eta = \min\{\delta, \delta_0\}$.

It follows from $f_k \stackrel{m}{\to} f$ that, for the above ε and η , $\exists N > 0$ such that if k > N, we have

$$m\{|f_k-f|>\frac{\varepsilon}{3|E|}\}<\eta.$$

Denote
$$E_k := \{x \in E : |f_k(x) - f(x)| > \frac{\varepsilon}{3|E|}\}.$$

5 / 18

Then

$$\int_{E} |f_{k} - f| = \int_{E_{k}} |f_{k} - f| + \int_{E \setminus E_{k}} |f_{k} - f|$$

$$\leq \int_{E_{k}} |f_{k} - f| + \frac{\varepsilon}{3}$$

$$\leq \int_{E_{k}} |f| + \int_{E_{k}} |f_{k}| + \frac{\varepsilon}{3}$$

$$\leq \frac{2\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \quad \text{for } k > N.$$

So, $\lim_{k\to\infty}\int_E f_k = \int_E f$.

第9周实变作业答案 6 / 18

Use Egorov's theorem to prove the bounded convergence theorem.

Proof:

First, we recall the Egorov theorem and Bounded convergence theorem. Egorov theorem for measurable sequence f_k ,

$$\begin{cases} f_k \to f, \text{ a.e.in } E \\ f \text{ is finite a.e. in } E, |E| < \infty. \end{cases} \Rightarrow \begin{cases} \forall \varepsilon > 0, \exists \ F \subset E \text{ s.t. } |E \setminus F| < \varepsilon, \text{ and } \\ f_k \to f \text{ uniformly in } F. \end{cases}$$

Bounded convergence theorem:

$$\begin{cases} f_k \to f, \text{ a.e. in } E \\ |f_k| \le M \text{ a.e. in } E, |E| < \infty. \end{cases} \Rightarrow \int_E f_k \to \int_E f.$$

第9周实变作业答案 7/

It follows from $f_k \to f$ a.e. in E and $|f_k| \le M$ a.e. in E that

$$|f(x)| \le M$$
 a.e. in E .

By Egorov's theorem, $\forall \varepsilon > 0$, \exists a closed set $F \subset E$ such that

$$m(E \setminus F) < \frac{\varepsilon}{4M}$$
 and $f_k \to f$ uniformly in F .

Therefore, for the above ε , $\exists N \in \mathbb{N}^+$, such that for all $k \geq N$,

$$|f_k(x)-f(x)|<\frac{\varepsilon}{2m(E)}\quad \forall x\in F.$$

Then we have,

$$\begin{split} |\int_{E} f_{k} - \int_{E} f | & \leq \int_{E} |f_{k} - f| = \int_{E \setminus F} |f_{k} - f| + \int_{F} |f_{k} - f| \\ & \leq 2M \cdot \frac{\varepsilon}{4M} + \frac{\varepsilon}{2m(E)} \cdot m(F) < \varepsilon. \end{split}$$

If p > 0 and $\int_E |f - f_k|^p \to 0$ as $k \to \infty$, show that $f_k \xrightarrow{m} f$ on E (and thus that there is a subsequence $f_{k_i} \to f$ a.e. in E).

If p>0 and $\int_E |f-f_k|^p \to 0$ as $k\to\infty$, show that $f_k \stackrel{m}{\longrightarrow} f$ on E (and thus that there is a subsequence $f_{k_i}\to f$ a.e. in E).

Proof: Suppose f_k does not converge to f in measure. Then $\exists \varepsilon_0 > 0, \eta_0 > 0$, such that $\forall N \in \mathbb{N}^+, \exists k_N \geq N$ with

$$m\{|f_{k_N}(x)-f(x)|>\varepsilon_0\}\geq \eta_0.$$

Thus, for the subsequence $\{f_{k_N}\}$ of $\{f_k\}$, we have

$$\int_{E} |f_{k_N} - f|^p \ge \int_{\{|f_{k_N} - f| > \varepsilon_0\}} |f_{k_j} - f|^p \ge \varepsilon_0^p \eta_0.$$

This contradicts with $\int_{E} |f_k - f|^p \to 0$.

If
$$p > 0$$
, $\int_E |f - f_k|^p \to 0$, and $\int_E |f_k|^p \le M$ for all k , show that $\int_E |f|^p \le M$.

If
$$p>0$$
, $\int_E |f-f_k|^p\to 0$, and $\int_E |f_k|^p\le M$ for all k , show that $\int_E |f|^p\le M$.

Proof:

• It follows from Exercise 9, there exists a subsequence $f_{k_j} \to f$ a.e. in E. By Fatou's lemma,

$$\int_{E} |f|^{p} = \int_{E} \liminf_{j \to \infty} |f_{k_{j}}|^{p} \le \liminf_{j \to \infty} \int_{E} |f_{k_{j}}|^{p} \le M.$$

10 / 18

9周实变作业答案

- (a) Let $\{f_k\}$ be a sequence of measurable functions on E. Show that $\sum f_k$ converges absolutely a.e. in E if $\sum \int_E |f_k| < +\infty$. (Use Theorems 5.16 and 5.22.)
- (b) If $\{r_k\}$ denotes the rational numbers in [0,1] and $\{a_k\}$ satisfies $\sum |a_k| < +\infty$, show that $\sum a_k |x r_k|^{-1/2}$ converges absolutely a.e. in [0,1].

- (a) Let $\{f_k\}$ be a sequence of measurable functions on E. Show that $\sum f_k$ converges absolutely a.e. in E if $\sum \int_E |f_k| < +\infty$. (Use Theorems 5.16 and 5.22.)
- (b) If $\{r_k\}$ denotes the rational numbers in [0,1] and $\{a_k\}$ satisfies $\sum |a_k| < +\infty$, show that $\sum a_k |x r_k|^{-1/2}$ converges absolutely a.e. in [0,1].

Proof of (a)

Recall that $\sum f_k$ converges absolutely a.e. in E means that:

$$\sum_{k=1}^{\infty} |f_k(x)| < \infty, \quad \text{a.e.} \quad \text{in} \quad \mathsf{E}.$$

It follows from Theorem 5.16 that:

$$\int_{E} \left(\sum_{k=1}^{\infty} |f_k| \right) = \sum_{k=1}^{\infty} \int_{E} |f_k| < \infty.$$

4□ > 4Ē > 4Ē > 4Ē > 1Ē → 9Q@

Thus, by Theorem 5.22, we have $\sum_{k=1}^{\infty} |f_k| < \infty$ a.e. in E.

Proof of (b)

Thanks to (a), we only need to prove:

$$\int_0^1 \sum_{k=1}^{\infty} |a_k| |x - r_k|^{-1/2} < \infty.$$

For any k,

$$\int_{0}^{1} |a_{k}||x - r_{k}|^{-1/2} dx = |a_{k}| \int_{-r_{k}}^{1 - r_{k}} |t|^{-1/2} dt$$

$$\leq |a_{k}| \int_{-1}^{1} t^{-\frac{1}{2}} dt = 4|a_{k}|.$$

Thus,

$$\int_0^1 \sum_{k=1}^{\infty} |a_k| |x - r_k|^{-1/2} = \sum_{k=1}^{\infty} \int_0^1 |a_k| |x - r_k|^{-1/2} \le 4 \sum_{k=1}^{\infty} |a_k| < \infty.$$

Prove the following fact, sometimes referred to as the Sequential (or Generalized) Version of the Lebesgue Dominated Convergence Theorem. Let $\{f_k\}$ and $\{\phi_k\}$ be sequences of measurable functions on E satisfying $f_k \to f$ a.e. in E, $\phi_k \to \phi$ a.e. in E, and $|f_k| \le \phi_k$ a.e. in E. If $\phi \in L(E)$ and $\int_E \phi_k \to \int_E \phi$, then $\int_E |f_k - f| \to 0$. (In case f = 0 and all $f_k \ge 0$, apply Fatou's lemma to $\{\phi_k - f_k\}$.) An application is given in Exercise 12 of Chapter 8; for example, if $f_k \ge 0$, $f_k \to f$ a.e. in E, $f \in L(E)$, and $\int_E f_k \to \int_E f$, then $\int_E |f_k - f| \to 0$.

Prove the following fact, sometimes referred to as the Sequential (or Generalized) Version of the Lebesgue Dominated Convergence Theorem. Let $\{f_k\}$ and $\{\phi_k\}$ be sequences of measurable functions on E satisfying $f_k \to f$ a.e. in E, $\phi_k \to \phi$ a.e. in E, and $|f_k| \le \phi_k$ a.e. in E. If $\phi \in L(E)$ and $\int_E \phi_k \to \int_E \phi$, then $\int_E |f_k - f| \to 0$. (In case f = 0 and all $f_k \ge 0$, apply Fatou's lemma to $\{\phi_k - f_k\}$.) An application is given in Exercise 12 of Chapter 8; for example, if $f_k \ge 0$, $f_k \to f$ a.e. in E, $f \in L(E)$, and $\int_E f_k \to \int_E f$, then $\int_E |f_k - f| \to 0$.

Proof:

Let $g_k = |f_k - f|$, then we know from the assumption that,

- (1) $g_k \ge 0$ on E;
- (2) $g_k \rightarrow 0$ a.e. in E;
- (3) $g_k \le \phi_k + |f|$ a.e. in *E*.

First, applying Fatou's lemma to $|f_k|$, we have

$$\begin{split} \int_{E} |f| &= \int_{E} \liminf_{k \to \infty} |f_{k}| \leq \liminf_{k \to \infty} \int_{E} |f_{k}| \\ &\leq \liminf_{k \to \infty} \int_{E} \phi_{k} = \int_{E} \phi, \end{split}$$

Then we have $|f| \in L(E)$.

Apply Fatou's lemma to $\phi_k + |f| - g_k$:

$$\int_{E} \liminf_{k \to \infty} (\phi_k + |f| - g_k) \le \liminf_{k \to \infty} \int_{E} (\phi_k + |f| - g_k).$$

$$LHS = \int_{E} \phi + |f|, \qquad RHS = \int_{E} \phi + |f| - \limsup_{k \to \infty} \int_{E} g_k.$$

Thus, $\limsup_{k\to\infty}\int_E g_k=0$, i.e., $\int_E |f_k-f|\to 0$.

◆ロト ◆個ト ◆ 恵ト ◆恵ト ・恵 ・ かへで ·

第9周实变作业答案 14 / 18

Prove the following variant of Lebesgue's dominated convergence theorem: if $\{f_k\}$ satisfies $f_k \stackrel{m}{\longrightarrow} f$ on E and $|f_k| \leq \phi \in L(E)$, then $f \in L(E)$ and $\int_E f_k \to \int_E f$. (Show that every subsequence of $\{f_k\}$ has a subsequence $\{f_{k_j}\}$ such that $\int_E f_{k_j} \to \int_E f$.)

Proof:

Method 1

Suppose that $\int_E f_k \nrightarrow \int_E f$, then $\exists \varepsilon_0 < 0$, $\{f_{k_j}\}$ such that

$$|\int_{E} f_{k_{j}} - \int_{E} f| \geq \varepsilon_{0}.$$

Because $f_k \xrightarrow{m} f \Rightarrow f_{k_j} \xrightarrow{m} f \Rightarrow f_{k_{ji}} \longrightarrow f$ a.e. in E. Combing $|f_{k_{ji}}| \leq \phi$ a.e. in E, $\phi \in L(E)$. It follows from Lebesgue Dominated convergence theorem that:

$$\int_{E} f = \lim_{i \to \infty} \int_{E} f_{k_{ji}}.$$

Contradicts with the assumption.

Method 2

First , we prove that $f \in L(E)$ and $|f| \le \phi$ a.e. in E.

It follows from $f_k \xrightarrow{m} f$ on E that, there exists a subsequence $f_{k_j} \to f$ a.e. in E and then $|f_{k_j}| \to |f|$ a.e. in E.

Applying Fatou's lemma for $|f_{k_j}|$,

$$\int_{E} |f| = \int_{E} \liminf_{j \to \infty} |f_{k_{j}}| \le \liminf_{j \to \infty} \int_{E} |f_{k_{j}}| \le \int_{E} \phi < \infty,$$

and $|f| \le \phi$ a.e. in E follows from $|f_k| \le \phi$ a.e. in E.

Denote $g_k = |f_k - f|$ and we have $g_k \le 2\phi$.

It follows from absolutely continuity of integral that: $\forall \varepsilon > 0$, $\exists \delta_{\varepsilon} > 0$, such that if $A \subset E$ with $|A| \leq \delta_{\varepsilon}$, we have

$$\int_A g_k \le \int_A 2\phi \le \varepsilon.$$

59周实变作业答案 17 / 18

It follows from property of integral that, for the above ε , there exists a bounded set $F \subset E$ with such that

$$\int_{E\setminus F} g_k \le \int_{E\setminus F} 2\phi \le \varepsilon.$$

Take $\varepsilon' = \frac{\varepsilon}{|F|}$, $\delta = \delta_{\varepsilon}$, due to $f_k \xrightarrow{m} f$ on E, there exists $N_0 > 0$ such that,

$$|\{x: g_k(x) > \varepsilon'\}| \le \delta$$
, for all $k > N_0$.

Thus, we have

$$\begin{split} \int_{E} g_{k} &= \int_{E \setminus F} g_{k} + \int_{F \bigcap \{g_{k} > \varepsilon'\}} g_{k} + \int_{F \bigcap \{g_{k} \le \varepsilon'\}} g_{k} \\ &\leq \varepsilon + \varepsilon + \varepsilon' \cdot |F| = 3\varepsilon \quad \text{for } k > N_{0}. \end{split}$$

◆□▶◆□▶◆□▶◆□▶ □ り<00</p>

第9周实变作业答案 18 / 18