

Moore-Penrose Pseudoinverse: Classical least squares problem

J. Antonio Ortega UNAM

Lemma: Let x be a vector and \mathcal{L} is a linear manifold in \mathbb{R}^n (i.e., if $x, y \in \mathcal{L}$, then $\alpha x + \beta y \in \mathcal{L}$ for any scalars α, β). Then if

$$x = \hat{x} + \tilde{x}$$

where $\hat{x} \in \mathcal{L}$ and $\tilde{x} \perp \mathcal{L}$, then \tilde{x} is "nearest" to x, or, in other words, it is the projection of x to the manifold \mathcal{L} .

Proof.: For any $y \in \mathcal{L}$ we have

$$||x - y||^{2} = ||\hat{x} + \tilde{x} + y||^{2} = ||(\hat{x} - y) + \tilde{x}||^{2}$$

$$= ||(\hat{x} - y)||^{2} + 2(\hat{x} - y, \tilde{x}) + ||\tilde{x}||^{2} = ||(\hat{x} - y)||^{2} + ||\tilde{x}||^{2}$$

$$\geq ||\tilde{x}||^{2} = ||x - \hat{x}||^{2}$$

Theorem: Let z be an n-dimensional real vector and $H \in \mathbb{R}^{n \times m}$.

• 1. There is always a vector, in fact a unique vector \hat{x} of minimal (Euclidian norm), which minimizes

$$||z - Hx||^2$$
.

• 2. The vector \hat{x} is the unique vector in the range

$$\mathcal{R}(H^T) := \{x : x = H^T z, z \in \mathbb{R}^n\}$$

which satisfies the equation

$$H\hat{x} = \hat{z}$$

where \hat{z} is the projection of z on $\mathcal{R}(H)$.

Proof: We can write

$$z = \hat{z} + \tilde{z}$$

where \hat{z} is the projection of z on the kernel (null space)

$$\mathcal{N}(H^T) := \{ z \in \mathbb{R}^n | H^T z = 0 \}.$$

Since $Hx \in \mathcal{R}(H)$ for any $x \in \mathbb{R}^m$, it follows that

$$\hat{z} - Hx \in \mathcal{R}(H)$$

and, since $\tilde{z} \in \mathcal{R}^{\perp}(H)$,

$$\tilde{z} \perp \hat{z} - Hx$$
, :.

$$||z - Hx||^2 = ||(\hat{z} - Hx) + \tilde{z}||^2$$

= $||\hat{z} - Hx||^2 + ||\tilde{z}||^2 > ||\tilde{z}||^2 = ||z - \hat{z}||^2$

 $||z - Hx||^2 \ge ||z - \hat{z}||^2$ This low bound is attainable since \hat{z} , being the range of H, is the afterimage of some x^* , that is, $\hat{z} = Hx^*$.

1. Let us show that x^* has a minimal norm.

$$x^* = \hat{x}^* + \tilde{x}^*$$

where $\hat{x}^* \in \mathcal{R}(H^{\perp})$ and $\tilde{x}^* \in \mathcal{N}(H)$.

Thus, $Hx^* = H\hat{x}$ we have $||z - Hx^*||^2 = ||z - H\hat{x}||^2$ and $||x^*||^2 \ge ||\hat{x}^*||^2$.

So, x^* may be selected equal to \hat{x}^* .

2. Show that $x^* = \hat{x}^*$ is unique. Suppose that $Hx^* = Hx^{**} = \hat{z}$. Then

$$(x^* - x^{**}) \in \mathcal{R}(H)$$

But, $H(x^* - x^{**}) = 0$, therefore $(x^* - x^{**}) \in \mathcal{N}(H) = \mathcal{R}^{\perp}(H^{\perp})$ Thus, $(x^* - x^{**})$ is orthogonal to itself! i.e., $||x^* - x^{**}||^2 = 0 \implies x^* = x^{**}$. Corollary: $||z - Hx||^2$ is minimized by x_0 if and only if $Hx_0 = \hat{z}$ where \hat{z} is the projection of z on $\mathcal{R}(H)$.

Corollary: There is always an n-dimensional vector y such that

$$||z - HH^Ty||^2 = \inf_{x} ||z - Hx||^2,$$

and if

$$||z - Hx_0||^2 = \inf_{x} ||z - Hx||^2,$$

then

$$||x_0||^2 \ge ||H^T y||^2$$

with strict inequality unless $x_0 = H^T y$. The vector y satisfies the equation $HH^T y = \hat{z}$

Theorem: Among those vectors x, which minimize $||z - Hx||^2$, \hat{x} , the one having minimal norm, is the unique vector of the form:

$$\hat{x} = H^T y$$

satisfying

$$H^T H \hat{x} = H^T z$$
.