4. Übungsblatt

Theoretische Informatik SS 2021, TU Wien Stefan Hetzl

1. Eine Klausel ist eine Menge von Literalen. Ein Literal ist ein Atom oder ein negiertes Atom. Seien C und D Klauseln und p ein Atom so dass $p \in C$ und $\neg p \in D$. Dann wird $E = (C \setminus \{p\}) \cup (D \setminus \{\neg p\})$ als Resolvente von C und D bezeichnet. Die Resolutionsregel erlaubt die Ableitung von E aus C und D. Die leere Klausel \emptyset entspricht, als leere Disjunktion, der Aussage "falsch". Eine Klauselmenge C ist unerfüllbar genau dann wenn sich aus C mittels Resolution die leere Klausel ableiten lässt. Wir betrachten das folgende Entscheidungsproblem:

2SAT

Eingabe: Klauselmenge \mathcal{C} in der jede Klausel höchstens 2 Literale enthält

Frage: Ist C erfüllbar?

Zeigen Sie dass $2SAT \in \mathbf{P}$ ist.

2. Sei C eine Klauselmenge, sei $C \in C$ eine Klausel und $L_1, L_2 \in C$. Sei $C_0 = C \setminus \{L_1, L_2\}$. Finden Sie, unter Zuhilfenahme eines neuen Atoms p, Klauseln C_1, \ldots, C_n die jeweils höchstens drei Literale enthalten so dass C erfüllbar ist genau dann wenn

$$(\mathcal{C}\setminus\{C\})\cup\{C_0\cup\{p\},C_1,\ldots,C_n\}$$

erfüllbar ist. Wir betrachten das folgende Entscheidungsproblem:

3SAT

Eingabe: Klauselmenge \mathcal{C} in der jede Klausel höchstens 3 Literale enthält

Frage: Ist C erfüllbar?

Zeigen Sie dass 3SAT NP-vollständig ist.

3. Sei G=(V,E) ein ungerichteter Graph. Eine Knotenüberdeckung von G ist eine Menge $V'\subseteq V$ so dass

$$\{u, v\} \in E \implies u \in V' \text{ oder } v \in V'.$$

Das Knotenüberdeckungsproblem ist:

Knotenüberdeckung

Eingabe: ein endlicher ungerichteter Graph G, ein $k \in \mathbb{N}$

Frage: existiert eine Knotenüberdeckung V' von G mit $|V'| \leq k$?

Zeigen Sie dass Knotenüberdeckung NP-vollständig ist.

Hinweis: Reduzieren Sie 3SAT auf Knotenüberdeckung indem Sie zur Darstellung eines Atoms p den Baustein

verwenden und zur Darstellung einer Klausel $l_1 \vee l_2 \vee l_3$ den Baustein

