Multiscale modeling of diffusion processes in dendrites and dendritic spines

Fredrik Eksaa Pettersen¹

¹Faculty of Mathematics and Natural Sciences University of Oslo

June 26th, 2014

Outline

- Motivation
- Theory
- Details of the coupling
- Verification
- Application
- Results
- Concluding remarks

Motivation

Motivation

- Theory
- Details of the coupling
- Verification
- Application
- Results
- Concluding remarks

Results

Figure: Illustration of physical models on different length scales, from Markus J. Buehler, MIT

Physical models on different length scales

 Systems on different length scales are characterized by different effects.

Figure: Illustration of physical models on different length scales, from Markus J. Buehler, MIT

Physical models on different length scales

- Systems on different length scales are characterized by different effects
- Quantum Mechanics is the "typical" example in physics, but there are many more.

Physical models on different

length scales

Figure: Illustration of physical models on different length scales, from Markus J. Buehler, MIT

Physical models on different length scales

- Systems on different length scales are characterized by different effects.
- Quantum Mechanics is the "typical" example in physics, but there are many more.
- Problems might arise between these length scales

Figure: Illustration of physical models on different length scales, from Markus J. Buehler, MIT

Physical models on different length scales Existing meso scale models

Some meso scale models exist already, but mostly these are aimed at specific problems and/or closed source.

- Dissipative Particle Dynamics
- Dendritc solidification modeling by
- Hybrid fluid flow models by

• Develop and implement a hybrid diffusion solver using Random Walk as a lower scale model.

Verification Application

- Develop and implement a hybrid diffusion solver using Random Walk as a lower scale model.
- Make sure all parts of the theory are transparent.

- Develop and implement a hybrid diffusion solver using Random Walk as a lower scale model.
- Make sure all parts of the theory are transparent.
- Test and verify implementation thoroughly.

- Develop and implement a hybrid diffusion solver using Random Walk as a lower scale model.
- Make sure all parts of the theory are transparent.
- Test and verify implementation thoroughly.
- Apply developed software to physical problem in order to verify functionality.

Outline

- Motivation
- Theory
- Details of the coupling
- Verification
- Application
- Results
- Concluding remarks

Widely used in many applications.

- Widely used in many applications.
- Can be shown to fulfill the diffusion equation.

- Widely used in many applications.
- Can be shown to fulfill the diffusion equation.
- Used as lower scale model for this purpose

- For partial differential equations

Figures/FDM_stencils-

- For partial differential equations
 - Approximate derivatives by finite differences using the definition of the derivative and omitting the limit:

$$egin{aligned} rac{du}{dt} &= \lim_{\Delta t o 0} rac{u(t) - u(t + \Delta t)}{\Delta t} \ &pprox rac{u(t) - u(t + \Delta t)}{\Delta t} \end{aligned}$$

Figures/FDM_stencils

- For partial differential equations
 - Approximate derivatives by finite differences using the definition of the derivative and omitting the limit:

$$egin{aligned} rac{du}{dt} &= \lim_{\Delta t o 0} rac{u(t) - u(t + \Delta t)}{\Delta t} \ &pprox rac{u(t) - u(t + \Delta t)}{\Delta t} \end{aligned}$$

 Repeat for all derivatives in the PDE. Figures/FDM_stencils

- For partial differential equations
 - Approximate derivatives by finite differences using the definition of the derivative and omitting the limit:

$$egin{aligned} rac{du}{dt} &= \lim_{\Delta t o 0} rac{u(t) - u(t + \Delta t)}{\Delta t} \ &pprox rac{u(t) - u(t + \Delta t)}{\Delta t} \end{aligned}$$

- Repeat for all derivatives in the PDE.
- Solve equation on discrete mesh points.

Figures/FDM_stencils

 The two discretizations used are summarized in the theta-rule description

$$\frac{u^{k+1} - u^k}{\Delta t} = \theta D \frac{\partial^2 u^{k+1}}{\partial x^2} + (1 - \theta) D \frac{\partial^2 u^k}{\partial x^2}.$$
 (1)

 The two discretizations used are summarized in the theta-rule description

$$\frac{u^{k+1} - u^k}{\Delta t} = \theta D \frac{\partial^2 u^{k+1}}{\partial x^2} + (1 - \theta) D \frac{\partial^2 u^k}{\partial x^2}.$$
 (1)

• In order to accommodate a larger time step, the Backward Euler discretization ($\theta = 1$) must be implemented:

$$u_i^{k+1} = \frac{D\Delta t}{\Delta x^2} \left((u_{i+1}^{k+1} - u_i^{k+1}) - (u_i^{k+1} - u_{i-1}^{k+1}) \right) + u_i^k.$$

 The two discretizations used are summarized in the theta-rule description

$$\frac{u^{k+1} - u^k}{\Delta t} = \theta D \frac{\partial^2 u^{k+1}}{\partial x^2} + (1 - \theta) D \frac{\partial^2 u^k}{\partial x^2}.$$
 (1)

• In order to accommodate a larger time step, the Backward Euler discretization ($\theta = 1$) must be implemented:

$$u_i^{k+1} = \frac{D\Delta t}{\Delta x^2} \left((u_{i+1}^{k+1} - u_i^{k+1}) - (u_i^{k+1} - u_{i-1}^{k+1}) \right) + u_i^k.$$

 By insertion the BE scheme results in a tridiagonal linear system in 1D.

Tridiagonal linear systems

Tridiagonal linear systems are efficiently solved by a specialized Gaussian elimination algorithm.

```
_{1}|g[0] = up[0]/b[0];
 H[0] = c[0]/b[0]:
| for(int i=1; i< n; i++) |
     //forward substitution
     H[i] = -c[i]/(b[i] + a[i]*H[i-1]);
     g[i] = (up[i] - a[i]*g[i-1])/(b[i] + a[i]*H[i]
         -1]);
 u[n-1] = g[n-1];
9 for (int i=(n-2); i>=0; i---){
     //Backward substitution
     u[i] = g[i] - H[i] * u[i+1];
```

Code 1: The tridiag algoritm

Finite difference methods Backward Euler in 2D

Finite difference methods Backward Euler in 2D

 In 2D the solution to the discrete diffusion equation is a matrix.

Finite difference methods Backward Euler in 2D

- In 2D the solution to the discrete diffusion equation is a matrix.
- Rewriting the matrix as a vector results in a banded linear system:

$$\begin{pmatrix} \gamma & -2\beta & 0 & -2\alpha & 0 & 0 & 0 & 0 & 0 \\ -\beta & \gamma & -\beta & 0 & -2\alpha & 0 & 0 & 0 & 0 & 0 \\ 0 & -2\beta & \gamma & 0 & 0 & 0 & -2\alpha & 0 & 0 & 0 & 0 \\ -\alpha & 0 & 0 & -\alpha & 0 & -2\beta & 0 & -\alpha & 0 & 0 \\ 0 & -\alpha & 0 & -\beta & \gamma & -\beta & 0 & -\alpha & 0 \\ 0 & 0 & -\alpha & 0 & -\beta & \gamma & -\beta & 0 & -\alpha & 0 \\ 0 & 0 & 0 & -2\alpha & 0 & -\beta & \gamma & -\beta \\ 0 & 0 & 0 & 0 & 0 & -2\alpha & 0 & -\beta & \gamma & -\beta \\ 0 & 0 & 0 & 0 & 0 & -2\alpha & 0 & -2\beta & \gamma \end{pmatrix} \mathbf{u} = \mathbf{u}_{p}$$

Tridiagonal linear systems

Block tridiagonal solver

The tridiag algorithm can be rewritten to solve block tridiagonal systems by replacing divisions with matrix inverses:

$$H_0 = -B_0^{-1} C_0$$

$$\mathbf{g}_0 = B_0^{-1} \mathbf{u}_{p0}$$

$$H_i = -(B_i + A_i H_{i-1})^{-1} C_i$$

$$\mathbf{g}_i = (B_i + A_i H_{i-1})^{-1} (\mathbf{u}_{pi} - A_i \mathbf{g}_{i-1})$$

$$\mathbf{u}_{n-1} = \mathbf{g}_{n-1}$$
$$\mathbf{u}_i = \mathbf{g}_i + H_i \mathbf{u}_{i+1}$$

• The 1D tridiagonal solver requires $\mathcal{O}(n)$ operations, comparable to the Forward Euler scheme.

- The 1D tridiagonal solver requires $\mathcal{O}(n)$ operations, comparable to the Forward Euler scheme.
- The Block tridiagonal solver requires inversion of 2n matrices, but only once.

- The 1D tridiagonal solver requires $\mathcal{O}(n)$ operations, comparable to the Forward Euler scheme.
- The Block tridiagonal solver requires inversion of 2n matrices, but only once.
- In total $\mathcal{O}(n^{2d-1})$ operations are required for a general system, one order less than e.g. LU decomposition.

- The 1D tridiagonal solver requires $\mathcal{O}(n)$ operations, comparable to the Forward Euler scheme.
- The Block tridiagonal solver requires inversion of 2n matrices, but only once.
- In total $\mathcal{O}(n^{2d-1})$ operations are required for a general system, one order less than e.g. LU decomposition.
- Memory impact can also be reduced to $8 \cdot n^{2d-1}$ bytes, as opposed to $8 \cdot n^{2d}$ bytes.

Outline

Details of the coupling

Motivation

Theory

- Theory
- Details of the coupling
- Verification
- Application
- Results
- Concluding remarks

After the initial setup, the algorithm is as follows:

 The result from previous PDE time step, u_p, is converted to a distribution of random walkers and sent to the RW solver.

- The result from previous PDE time step, u_p, is converted to a distribution of random walkers and sent to the RW solver.
- The RW solver does a predefined number of micro scale time steps which correspond to one PDE time step.

- The result from previous PDE time step, u_p, is converted to a distribution of random walkers and sent to the RW solver.
- The RW solver does a predefined number of micro scale time steps which correspond to one PDE time step.
- The result from the RW solver is converted back to a concentration and this replaces the PDE solution, up.

- The result from previous PDE time step, u_p, is converted to a distribution of random walkers and sent to the RW solver.
- The RW solver does a predefined number of micro scale time steps which correspond to one PDE time step.
- The result from the RW solver is converted back to a concentration and this replaces the PDE solution, up.
- \mathbf{u}_p is then used as input to calculate the next time step.

 A single, real integer converts the concentration in one mesh point to a number of random walkers.

 A single, real integer converts the concentration in one mesh point to a number of random walkers.

0

$$C_{ij} = Hc \cdot u_{ij}$$

 A single, real integer converts the concentration in one mesh point to a number of random walkers.

•

$$C_{ij} = Hc \cdot u_{ij}$$

 The conversion must be done at each time step because the concentration over an area of the mesh might change.

Coupling the models through the step length

 The RW solver needs a constraint in order to make sure it models diffusion on the same time scale as the PDE model. Motivation

Coupling the models through the step length

- The RW solver needs a constraint in order to make sure it models diffusion on the same time scale as the PDE model.
- From an Einstein relation we find

$$\langle \tilde{\Delta x}^2 \rangle = 2Dd\tilde{\Delta t}$$

Motivation

Coupling the models through the step length

- The RW solver needs a constraint in order to make sure it models diffusion on the same time scale as the PDE model.
- From an Einstein relation we find

$$\langle \tilde{\Delta x}^2 \rangle = 2Dd\tilde{\Delta t}$$

Coupling the models through the step length

- The RW solver needs a constraint in order to make sure it models diffusion on the same time scale as the PDE model.
- From an Einstein relation we find

$$\langle \tilde{\Delta x}^2 \rangle = 2Dd\tilde{\Delta t}$$

 Rewriting this results in the desired restriction which is placed on the step length:

$$I = \sqrt{2dD\frac{\Delta t}{\tau}}$$

Details of the coupling

Boundary conditions on the random walk

Perfectly reflecting boundaries, equivalent to zero flux

$$\frac{\partial C}{\partial n} = 0$$

Boundary conditions on the random walk

Perfectly reflecting boundaries, equivalent to zero flux

$$\frac{\partial C}{\partial n} = 0$$

 Updating concentration at each time step must also be considered a boundary condition.

Boundary conditions on the random walk

Perfectly reflecting boundaries, equivalent to zero flux

$$\frac{\partial C}{\partial n} = 0$$

- Updating concentration at each time step must also be considered a boundary condition.
- Other boundary conditions might have been better, say perfect flux exchange:

$$\frac{\partial u}{\partial n} = \frac{\partial C}{\partial n}$$

Boundary conditions on the random walk

Perfectly reflecting boundaries, equivalent to zero flux

$$\frac{\partial C}{\partial n} = 0$$

- Updating concentration at each time step must also be considered a boundary condition.
- Other boundary conditions might have been better, say perfect flux exchange:

$$\frac{\partial u}{\partial n} = \frac{\partial C}{\partial n}$$

Requires some work on the PDE boundary conditions etc.

- Motivation
- Theory
- Details of the coupling
- Verification
- Application
- Results
- Concluding remarks

Computation of the error

 Solving PDEs by FDMs results in errors which can tell a lot about the implementation.

Computation of the error

- Solving PDEs by FDMs results in errors which can tell a lot about the implementation.
- From the residuals, we know how the error should behave.

Concluding remarks

- Solving PDEs by FDMs results in errors which can tell a lot about the implementation.
- From the residuals, we know how the error should behave.
- For a given exact solution, u_e , the error is defined by:

$$\begin{split} \varepsilon(t^k) &= ||u(t^k) - u_e(t^k)||_2 \\ &\approx \sqrt{\Delta x \Delta y \sum_{i=0}^k \sum_{i=0}^k \left(u(t^k, x_i, y_j) - u_e(t^k, x_i, y_j)\right)^2}. \end{split}$$

Verification techniques Method of manufactured solutions

• Make a solution by adapting the source term.

Results

- Make a solution by adapting the source term.
- For example:

$$u(x,t) = \frac{1}{x+1}$$

$$\implies s(x,t) = \frac{2D}{(x+1)^3}$$

Verification techniques Method of manufactured solutions

- Make a solution by adapting the source term.
- For example:

$$u(x,t) = \frac{1}{x+1}$$

$$\implies s(x,t) = \frac{2D}{(x+1)^3}$$

Many useful variations of this method.

- Make a solution by adapting the source term.
- For example:

$$u(x,t) = \frac{1}{x+1}$$

$$\implies s(x,t) = \frac{2D}{(x+1)^3}$$

- Many useful variations of this method.
- Tests are done using

$$u(x, y, t) = e^{-\pi^2 t} \cos(\pi x) \cos(\pi y) + 1,$$

which fulfills boundary conditions and has s(x, t) = 0.

Results Concluding remarks

Verification techniques Convergence tests

Error term is on the form

$$\varepsilon = C_{x} \Delta x^{2} + C_{t} \Delta t^{1},$$

for the schemes that are implemented.

Concluding remarks

Verification techniques Convergence tests

Error term is on the form

$$\varepsilon = C_{\mathsf{x}} \Delta \mathsf{x}^2 + C_{\mathsf{t}} \Delta \mathsf{t}^1,$$

for the schemes that are implemented.

 Measuring the exponents gives the convergence of the scheme.

Concluding remarks

Verification techniques Convergence tests

Error term is on the form

$$\varepsilon = C_{x} \Delta x^{2} + C_{t} \Delta t^{1},$$

for the schemes that are implemented.

- Measuring the exponents gives the convergence of the scheme.
- Do several simulations and calculate

$$r \simeq \frac{\log(\varepsilon_1/\varepsilon_2)}{\log(\Delta t_1/\Delta t_2)}.$$

Verification techniques Convergence tests

Error term is on the form

$$\varepsilon = C_{x} \Delta x^{2} + C_{t} \Delta t^{1},$$

for the schemes that are implemented.

Verification

Concluding remarks

- Measuring the exponents gives the convergence of the scheme.
- Do several simulations and calculate

$$r \simeq rac{\log\left(arepsilon_1/arepsilon_2
ight)}{\log\left(\Delta t_1/\Delta t_2
ight)}.$$

Often difficult tests

Verification techniques

Numerical exact solutions

• Discretization is a reformulation of a PDE as a difference equation.

Verification techniques

Numerical exact solutions

 Discretization is a reformulation of a PDE as a difference equation.

Verification

Results Concluding remarks

New exact solution can be found - theoretically zero error!

Concluding remarks

Verification techniques

Numerical exact solutions

- Discretization is a reformulation of a PDE as a difference equation.
- New exact solution can be found theoretically zero error!
- Forward Euler solution (1D):

$$u^{k+1} = \sum_{i=0}^{k} {k \choose i} \left(D\Delta t\right)^{i} \frac{2^{i}}{\Delta x^{2i}} \left(\cos(\pi \Delta x) - 1\right)^{i} \cos(\pi x).$$

Backward Euler solution:

$$\vec{u}^k = \left(\mathbf{M}^{-1}\right)^k \vec{u}^0.$$

Outline

- Motivation
- Theory
- Details of the coupling
- Verification
- Application
- Results
- Concluding remarks

The problem

The problem

• Pyramidal neuron

The problem

- Pyramidal neuron
- Protein Kinase C γ

The problem

- Pyramidal neuron
- Protein Kinase $C\gamma$
- Dendritic spines

Computational model

Default setup

Parameters and other details

blablabla

Verification Application

Results

- Motivation
- Details of the coupling
- Verification
- Application
- Results
- Concluding remarks

What we are looking for

- Successful tests of PDE solvers.
- Successful tests of RW solver.
- Successful test of hybrid solver given sufficient number of walkers.

RW solver

Motivation Theory Details of the coupling

Results of verification

Hybrid solver

Outline

- Motivation
- Theory
- Details of the coupling
- Verification
- Application
- Results
- Concluding remarks

• Difficult to establish parameter values.

Details of the coupling

- Difficult to establish parameter values.
- Scaling parameter values affects displacement magnitudes.

Details of the coupling

Motivation

- Difficult to establish parameter values.
- Scaling parameter values affects displacement magnitudes.
- Changing η effect on magnitude and behaviour.

Details of the coupling

Motivation

- Difficult to establish parameter values.
- Scaling parameter values affects displacement magnitudes.
- Changing η effect on magnitude and behaviour.
- Compressibility important.

- Difficult to establish parameter values.
- Scaling parameter values affects displacement magnitudes.
- Changing η effect on magnitude and behaviour.
- Compressibility important.
- Small but clear viscoelastic effect:

- Difficult to establish parameter values.
- Scaling parameter values affects displacement magnitudes.
- Changing η effect on magnitude and behaviour.
- Compressibility important.
- Small but clear viscoelastic effect:
 - · Lag, approx 10ms.

- Difficult to establish parameter values.
- Scaling parameter values affects displacement magnitudes.
- Changing η effect on magnitude and behaviour.
- Compressibility important.
- Small but clear viscoelastic effect:
 - Lag, approx 10ms.
 - Varying peak displacement over several cycles, $\approx 10^{-7} 10^{-8} \text{m}$.

• Viscoelastic behaviour similar to linear elastic behaviour.

Details of the coupling

- Viscoelastic behaviour similar to linear elastic behaviour.
- Linear viscoelastic model has little or no effect in context of syringomyelia.

Details of the coupling

Motivation

- Viscoelastic behaviour similar to linear elastic behaviour.
- Linear viscoelastic model has little or no effect in context of syringomyelia.
- Elastic/viscoelastic models assume solid spinal cord.

- Viscoelastic behaviour similar to linear elastic behaviour.
- Linear viscoelastic model has little or no effect in context of syringomyelia.
- Elastic/viscoelastic models assume solid spinal cord.
- Poroelastic model fluid flow within spinal cord.

- Develop standard procedures for obtaining parameter data.
 - Standardized parameter values.

- Develop standard procedures for obtaining parameter data.
 - Standardized parameter values.
- Obtain patient-specific spinal cord geometry, parameter data and pressure data.

- Develop standard procedures for obtaining parameter data.
 - Standardized parameter values.
- Obtain patient-specific spinal cord geometry, parameter data and pressure data.
- Test effect of non-linear model.

- Develop standard procedures for obtaining parameter data.
 - Standardized parameter values.
- Obtain patient-specific spinal cord geometry, parameter data and pressure data.
- Test effect of non-linear model.
- Couple with CFD simulations of CSF flow.

Thank you for your attention!

References I

Diane M. Mueller, ND RN and John J. Oro', MD.

Verification

Concluding remarks

Prospective Analysis of Presenting Symptoms Among 265 Patients With Radiographic Evidence of Chiari Malformation Type I With or Without Syringomyelia.

Journal of the American Academy of Nurse Practitioners, 16(3), 2004.

References II

Støverud, Karen H. and Alnæs, Martin and Langtangen, Hans Petter and Haughton, Victor and Mardal, Kent-André.

Effect of pia mater, central canal, and geometry on wave propagation and fluid movement in the cervical spinal cord.

Manuscript submitted for publication, 2014.