CRYPTOGRAPHY, NE	TWORK SEC	CURITY AND CYRE	RLAW	
		ystem (CBCS) scheme		
_ <u> </u>		ic year 2017 - 2018)		
	SEMESTER			
Subject Code	17CS61	IA Marks	40	
Number of Lecture Hours/Week	4	Exam Marks	60	
Total Number of Lecture Hours	50	Exam Hours	03	
	CREDITS -			
Module – 1				Teaching
				Hours
Introduction - Cyber Attacks, Defe	ence Strategi	es and Techniques,	Guiding	10 Hours
Principles, Mathematical Background	-	_	_	
The Greatest Comma Divisor, Usefu	l Algebraic S	structures, Chinese Re	mainder	
Theorem, Basics of Cryptography	- Prelimina	ries, Elementary Sub	stitution	
Ciphers, Elementary Transport Ciph		* ·	ret Key	
Cryptography – Product Ciphers, DES	S Construction	1.		
Module – 2				
Public Key Cryptography and RSA -		•		10 Hours
Performance, Applications, Practical				
(PKCS), Cryptographic Hash -				
Applications and Performance, The I	•			
Applications - Introduction, Diffie-H	ellman Key E	xchange, Other Applic	ations.	
Module – 3			1	
Key Management - Introduction, Di				10 Hours
Identity-based Encryption, Authentic				
Authentication, Dictionary Attacks				
Authentication, The Needham-Schroe Security at the Network Layer – Se				
IPSec in Action, Internet Key Exch				
IPSEC, Virtual Private Networks, Sec	•		•	
SSL Handshake Protocol, SSL Recor			duction,	
Module – 4	La Layer 11ote	eoi, opensse.		
IEEE 802.11 Wireless LAN Sec	curity -	Background, Authen	tication.	10 Hours
Confidentiality and Integrity, Viruses	•	_		10 110415
Basics, Practical Issues, Intrusion				
Prevention Versus Detection, Types of Instruction Detection Systems, DDoS				
Attacks Prevention/Detection, Web Service Security – Motivation, Technologies				
for Web Services, WS- Security, SAN	AI Othon Cto			
	<u>all, O</u> mer Sta	•		
Module – 5	/IL, Other Sta	•		
·		ndards.	nportant	10 Hours
Module – 5	of the act,	Major Concepts, In	_	10 Hours
Module – 5 IT act aim and objectives, Scope provisions, Attribution, acknowledge Secure electronic records and secure	of the act, ement, and d digital signat	Major Concepts, In ispatch of electronic tures, Regulation of ce	records, ertifying	10 Hours
Module – 5 IT act aim and objectives, Scope provisions, Attribution, acknowledge Secure electronic records and secure authorities: Appointment of Control	of the act, ement, and d digital signat ller and Othe	Major Concepts, In ispatch of electronic tures, Regulation of ceer officers, Digital S	records, ertifying ignature	10 Hours
Module – 5 IT act aim and objectives, Scope provisions, Attribution, acknowledge Secure electronic records and secure authorities: Appointment of Controcertificates, Duties of Subscribers,	of the act, ement, and d digital signat ller and Othe Penalties a	Major Concepts, In ispatch of electronic tures, Regulation of ceer officers, Digital Sund adjudication, The	records, ertifying ignature e cyber	10 Hours
Module – 5 IT act aim and objectives, Scope provisions, Attribution, acknowledge Secure electronic records and secure authorities: Appointment of Controcertificates, Duties of Subscribers, regulations appellate tribunal, Offen	of the act, ement, and d digital signal ller and Othe Penalties a aces, Network	Major Concepts, In ispatch of electronic tures, Regulation of ceer officers, Digital Sund adjudication, The	records, ertifying ignature e cyber	10 Hours
Module – 5 IT act aim and objectives, Scope provisions, Attribution, acknowledge Secure electronic records and secure authorities: Appointment of Controcertificates, Duties of Subscribers, regulations appellate tribunal, Offen liable in certain cases, Miscellaneous	of the act, ement, and d digital signat ller and Othe Penalties a aces, Network Provisions.	Major Concepts, In ispatch of electronic tures, Regulation of ceer officers, Digital Sund adjudication, The	records, ertifying ignature e cyber	10 Hours
Module – 5 IT act aim and objectives, Scope provisions, Attribution, acknowledge Secure electronic records and secure authorities: Appointment of Controcertificates, Duties of Subscribers, regulations appellate tribunal, Offen liable in certain cases, Miscellaneous Course outcomes: The students shou	of the act, ement, and d digital signar ller and Othe Penalties a aces, Network Provisions. Id be able to:	Major Concepts, In ispatch of electronic tures, Regulation of ceer officers, Digital S and adjudication, The service providers no	records, ertifying ignature e cyber	10 Hours
Module – 5 IT act aim and objectives, Scope provisions, Attribution, acknowledge Secure electronic records and secure authorities: Appointment of Controcertificates, Duties of Subscribers, regulations appellate tribunal, Offen liable in certain cases, Miscellaneous	of the act, ement, and d digital signal ller and Othe Penalties a aces, Network Provisions. Id be able to: its need to var	Major Concepts, In ispatch of electronic tures, Regulation of ceer officers, Digital S and adjudication, The service providers not rious applications	records, ertifying ignature e cyber	10 Hours

• Understand the cyber security and need cyber Law

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Cryptography, Network Security and Cyber Laws – Bernard Menezes, Cengage Learning, 2010 edition (Chapters-1,3,4,5,6,7,8,9,10,11,12,13,14,15,19(19.1-19.5),21(21.1-21.2),22(22.1-22.4),25

- 1. Cryptography and Network Security- Behrouz A Forouzan, DebdeepMukhopadhyay, Mc-GrawHill, 3rd Edition, 2015
- 2. Cryptography and Network Security- William Stallings, Pearson Education, 7th Edition
- 3. Cyber Law simplified- VivekSood, Mc-GrawHill, 11th reprint, 2013
- 4. Cyber security and Cyber Laws, Alfred Basta, Nadine Basta, Mary brown, ravindrakumar, Cengage learning

COMPLETE	ND A DILLOG A N			
		D VISUALIZATION stem (CBCS) scheme]		
		e year 2017 - 2018)		
(Effective II)	SEMESTER -			
Subject Code	17CS62	IA Marks	40	
Number of Lecture Hours/Week	4	Exam Marks	60	
Total Number of Lecture Hours	50	Exam Hours	03	
Total Number of Beetale Hours	CREDITS -			
Module – 1	0112118	<u> </u>		Teaching
Overview Computer Crephics	and OnonCL .	Computer Crephical Dec	ios of	Hours 10 Hours
Overview: Computer Graphics a computer graphics, Application of	-			10 Hours
Random Scan and Raster Scan disp		¥ •		
Raster-scan systems: video control	•	_		
workstations and viewing systems,				
the internet, graphics software. O				
reference frames, specifying two-di	-	-		
in OpenGL, OpenGL point function				
line attributes, curve attributes, Op				
attribute functions, Line drawing				
generation algorithms(Bresenham's		,,		
Text-1:Chapter -1: 1-1 to 1-9,2-1		g 2-5),3-1 to 3-5,3-9,3-	20	
Module – 2	`	, , ,		
Fill area Primitives, 2D Geomet	ric Transforma	tions and 2D viewing	g: Fill	10 Hours
area Primitives: Polygon fill-areas,	OpenGL polygo	n fill area functions, fil	l area	
attributes, general scan line polyg	on fill algorithn	n, OpenGL fill-area att	ribute	
functions. 2DGeometric Transform	nations: Basic 2D	Geometric Transforma	ations,	
matrix representations and homog	eneous coordina	tes. Inverse transforma	ations,	
2DComposite transformations, oth		-		
geometric transformations, OpenG				
transformations function, 2D viewing	ng: 2D viewing p	oipeline, OpenGL 2D vi	ewing	
functions.				
Text-1:Chapter 3-14 to 3-16,4-9,4	-10,4-14,5-1 to 5	5-7,5-17,6-1,6-4		
Module – 3				
Clipping,3D Geometric Transfor	,			10 Hours
Clipping: clipping window, normal	·			
algorithms,2D point clipping, 2D li	11 0 0			
clipping only -polygon fill area clip				
algorithm only.3DGeometric Trans		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
composite 3D transformations, other		-		
OpenGL geometric transformations		-	_	
color models, RGB and CMY color		_		
basic illumination models-Ambient model, Corresponding openGL fund		snection, specular and	PHOLIG	
Text-1:Chapter :6-2 to 6-08 (Exc		to 5-17(Evoluding 5-1	5) 12-	
1,12-2,12-4,12-6,10-1,10-3	iuuiiig 0-4),5-7	to 5-17(Excluding 5-1	J),14-	
Module – 4				
TITUUUIL — T				

3D Viewing and Visible Surface Detection: 3DViewing:3D viewing concepts, 3D viewing pipeline, 3D viewing coordinate parameters , Transformation from world to viewing coordinates, Projection transformation, orthogonal projections, perspective projections, The viewport transformation and 3D screen coordinates. OpenGL 3D viewing functions. Visible Surface Detection Methods: Classification of visible surface Detection algorithms, back face detection, depth buffer method and OpenGL visibility detection functions.

10 Hours

Text-1: Chapter: 7-1 to 7-10(Excluding 7-7), 9-1 to 9-3, 9-14

Module – 5

Input& interaction, Curves and Computer Animation: Input and Interaction: Input devices, clients and servers, Display Lists, Display Lists and Modelling, Programming Event Driven Input, Menus Picking, Building Interactive Models, Animating Interactive programs, Design of Interactive programs, Logic operations. Curved surfaces, quadric surfaces, OpenGL Quadric-Surface and Cubic-Surface Functions, Bezier Spline Curves, Bezier surfaces, OpenGL curve functions. Corresponding openGL functions.

10 Hours

Text-1:Chapter :8-3 to 8-6 (Excluding 8-5),8-9,8-10,8-11,3-8,8-18,13-11,3-2,13-3,13-4,13-10

Text-2: Chapter 3: 3-1 to 3.11: Input& interaction

Course outcomes: The students should be able to:

- Design and implement algorithms for 2D graphics primitives and attributes.
- Illustrate Geometric transformations on both 2D and 3D objects.
- Understand the concepts of clipping and visible surface detection in 2D and 3D viewing, and Illumination Models.
- Discussabout suitable hardware and software for developing graphics packages using OpenGL.

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Donald Hearn & Pauline Baker: Computer Graphics with OpenGL Version,3rd/4thEdition, Pearson Education,2011
- 2. Edward Angel: Interactive Computer Graphics- A Top Down approach with OpenGL, 5th edition. Pearson Education, 2008

- 1. James D Foley, Andries Van Dam, Steven K Feiner, John F Huges Computer graphics with OpenGL: pearson education
- 2. Xiang, Plastock: Computer Graphics, sham's outline series, 2nd edition, TMG.
- 3. Kelvin Sung, Peter Shirley, steven Baer: Interactive Computer Graphics, concepts and applications, Cengage Learning
- 4. M MRaiker, Computer Graphics using OpenGL, Filip learning/Elsevier

SYSTEM SOFTWARE AND COMPILER DESIGN [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 - 2018) SEMESTER – VI Subject Code IA Marks 40 17CS63 Number of Lecture Hours/Week 4 Exam Marks 60 Total Number of Lecture Hours 50 **Exam Hours** 03 **CREDITS – 04** Module – 1 **Teaching** Hours 10 Hours Introduction to System Software, Machine Architecture of SIC and SIC/XE. Assemblers: Basic assembler functions, machine dependent assembler features, machine independent assembler features. assembler design Macroprocessors: Basicmacro processor functions, Text book 1: Chapter 1: 1.1,1.2,1.3.1,1.3.2, Chapter2: 2.1-2.4, Chapter4: 4.1.1.4.1.2 Module – 2 **Loaders and Linkers:** Basic Loader Functions, Machine Dependent Loader 10 Hours Features, Machine Independent Loader Features, Loader Design Options, Implementation Examples. Text book 1 : Chapter 3 ,3.1 -3.5 Module – 3 **Introduction:** Language Processors, The structure of a compiler, The evaluation 10 Hours of programming languages, The science of building compiler, Applications of compiler technology, Programming language basics Lexical Analysis: The role of lexical analyzer, Input buffering, Specifications of token, recognition of tokens, lexical analyzer generator, Finite automate. Text book 2:Chapter 1 1.1-1.6 Chapter 3 3.1 - 3.6Module – 4 Syntax Analysis: Introduction, Role Of Parsers, Context Free Grammars, Writing 10 Hours a grammar, Top Down Parsers, Bottom-Up Parsers, Operator-Precedence Parsing Text book 2: Chapter 4 4.1 4.2 4.3 4.4 4.5 4.6 **Text book 1:5.1.3** Module – 5 10 Hours Syntax Directed Translation, Intermediate code generation, Code generation Text book 2: Chapter 5.1, 5.2, 5.3, 6.1, 6.2, 8.1, 8.2 **Course outcomes:** The students should be able to: Illustrate system software such as assemblers, loaders, linkers and macroprocessors

- Design and develop lexical analyzers, parsers and code generators
- Discuss about lex and yacc tools for implementing different concepts of system software

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. System Software by Leland. L. Beck, D Manjula, 3rd edition, 2012
- 2. Compilers-Principles, Techniques and Tools by Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. Pearson, 2nd edition, 2007

- 1. Systems programming Srimanta Pal, Oxford university press, 2016
- 2. System programming and Compiler Design, K C Louden, Cengage Learning
- 3. System software and operating system by D. M. Dhamdhere TMG
- 4. Compiler Design, K Muneeswaran, Oxford University Press 2013.

O	PERATING SY	CTEMO		
		stem (CBCS) scheme]		
- -	•	c year 2017 - 2018)		
(======================================	SEMESTER -	_		
Subject Code	17CS64	IA Marks	40	
Number of Lecture Hours/Week	4	Exam Marks	60	
Total Number of Lecture Hours	50	Exam Hours	03	
10001 (011001 01 200000 110010	CREDITS -			
Module – 1	0112212	<u> </u>		Teaching
1.2000010				Hours
Introduction to operating systems	S, System structi	ures: What operating s	ystems	10 Hours
do; Computer System organization				
System structure; Operating System				
management; Storage management;				
Special-purpose systems; Computing	ng environments	. Operating System Se	rvices;	
User - Operating System interface;				
programs; Operating system desi	•	1	•	
structure; Virtual machines; Operati				
Management Process concept; Pr	rocess schedulin	g; Operations on pro-	cesses;	
Inter process communication				
Module – 2				
Multi-threaded Programming:		_		10 Hours
Libraries; Threading issues. Proce			_	
Criteria; Scheduling Algorithms			Thread	
scheduling. Process Synchroniza				
problem; Peterson's solution; Sync		lware; Semaphores; Cl	assical	
problems of synchronization; Monit	tors.			
Module – 3	115 11 1	1	1 6	10.77
Deadlocks : Deadlocks; System m				10 Hours
handling deadlocks; Deadlock p				
detection and recovery from de		•	•	
management strategies: Background Paging; Structure of page table; Seg		miliguous memory ano	cation,	
Module – 4	,memanon,			
Virtual Memory Management: E	Rackground: Dar	nand naging: Cony on	_write.	10 Hours
Page replacement; Allocation			ystem,	10 110018
Implementation of File System:	•		,	
	em mounting;		ection:	
Implementing File system: File sy				
Directory implementation; Allocation			tution,	
Module – 5				<u> </u>
Secondary Storage Structures,	Protection: Ma	ass storage structures:	Disk	10 Hours
structure; Disk attachment; Disk		_		10 IIUuIb
management. Protection: Goals of p	•		-	
protection, Access matrix, Implem				
Revocation of access rights, Capabi				
Operating System: Linux history;	•	•		

management; Scheduling; Memory Management; File systems, Input and output; Inter-process communication.

Course outcomes: The students should be able to:

- Demonstrate need for OS and different types of OS
- Discuss suitable techniques for management of different resources
- Illustrate processor, memory, storage and file system commands
- Explain the different concepts of OS in platform of usage through case studies

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles 7th edition, Wiley-India, 2006.

- 1. Ann McHoes Ida M Fylnn, Understanding Operating System, Cengage Learning, 6th Edition
- 2. D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw-Hill, 2013.
- 3. P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition, PHI(EEE), 2014.
- 4. William Stallings Operating Systems: Internals and Design Principles, 6th Edition, Pearson.

DATA MINING	G AND DATA V	WAREHOUSING	
	•	tem (CBCS) scheme]	
		year 2017 - 2018)	
	SEMESTER – 17CS651		40
Subject Code			40
Number of Lecture Hours/Week	3	Exam Marks	60
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS – 0	3	
Module – 1			Teaching
	<i>p</i>		Hours
		s: Data Warehousing:	A 8 Hours
multitier Architecture, Data warehous			
and virtual warehouse, Extraction, T		•	
multidimensional data model, Star			
Schemas for multidimensional Data			_
Hierarchies, Measures: Their Catego	orization and co	omputation, Typical OLA	AP
Operations.			
Module – 2			
Data warehouse implementation		_	
computation: An overview, Indexing		1 0	
Efficient processing of OLAP Queries			
MOLAP Versus HOLAP.: Introducti			
Mining Tasks, Data: Types of Data, I	Data Quality, Da	ata Preprocessing, Measur	res
of Similarity and Dissimilarity,			
Module – 3			
Association Analysis: Association A			
set Generation, Rule generation. Alt			ent
Item sets, FP-Growth Algorithm, Eval	luation of Assoc	iation Patterns.	
Module – 4			
Classification: Decision Trees Indu	action,Method	for Comparing Classifie	rs, 8 Hours
Rule Based Classifiers, Nearest Neigh	bor Classifiers,l	Bayesian Classifiers.	
Module – 5			
Clustering Analysis: Overview,	K-Means, A	gglomerative Hierarchic	cal 8 Hours
Clustering, DBSCAN, Cluster Eval	uation, Density	-Based Clustering, Grap	oh-
Based Clustering, Scalable Clustering			
Course outcomes: The students should			<u> </u>
Understands data mining problem		nent the data warehouse	
Demonstrate the association rule.	•		
Discuss between classification	•	-	
Question paper pattern:	and dissidining t	,0100111	_
Ancount baher barrerin.	.•		

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining,

- Pearson, First impression, 2014.
- 2. Jiawei Han, MichelineKamber, Jian Pei: Data Mining -Concepts and Techniques, 3rd Edition,Morgan Kaufmann Publisher, 2012.

- 1. Sam Anahory, Dennis Murray: Data Warehousing in the Real World, Pearson, Tenth Impression, 2012.
- 2. Michael.J.Berry,Gordon.S.Linoff: Mastering Data Mining, Wiley Edition, second edition, 2012.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 - 2018) SEMESTER - VI Subject Code 17CS652 IA Marks 40 60 Number of Lecture Hours/Week 3 Exam Marks Total Number of Lecture Hours 40 **Exam Hours** 03 CREDITS - 03 Module – 1 **Teaching** Hours **Introduction**: what is a design pattern? describing design patterns, the catalog of 8 Hours design pattern, organizing the catalog, how design patterns solve design problems, how to select a design pattern, how to use a design pattern. What is object-oriented development?, key concepts of object oriented design other related concepts, benefits and drawbacks of the paradigm Module – 2 **Analysis a System**: overview of the analysis phase, stage 1: gathering the 8 Hours requirements functional requirements specification, defining conceptual classes and relationships, using the knowledge of the domain. Design and Implementation, discussions and further reading. Module – 3 Design Pattern Catalog: Structural patterns, Adapter, bridge, composite, 8 Hours decorator, facade, flyweight, proxy. Module – 4 Interactive systems and the MVC architecture:Introduction, The MVC 8 Hours architectural pattern, analyzing a simple drawing program, designing the system, designing of the subsystems, getting into implementation, implementing undo operation, drawing incomplete items, adding a new feature, pattern based solutions. Module – 5 **Designing with Distributed Objects:** Client server system, java remote method 8 Hours invocation, implementing an object oriented system on the web (discussions and further reading) a note on input and output, selection statements, loops arrays. **Course outcomes:** The students should be able to:

- Design and implement codes with higher performance and lower complexity
- Demonstrate code qualities needed to keep code flexible
- Illustrate design principles and be able to assess the quality of a design with respect to these principles.
- Explain principles in the design of object oriented systems.
- Understand a range of design patterns.
- Discuss suitable patterns in specific contexts

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Object-oriented analysis, design and implementation, brahma dathan, sarnathrammath, universities press,2013
- 2. Design patterns, erich gamma, Richard helan, Ralph johman, john vlissides "PEARSON Publication, 2013.

- 1. Frank Bachmann, RegineMeunier, Hans Rohnert "Pattern Oriented Software Architecture" Volume 1, 1996.
- 2. William J Brown et al., "Anti-Patterns: Refactoring Software, Architectures and Projects in Crisis", John Wiley, 1998.

C C C C C C C C C C C C C C C C C C C	A TIONG DE		
	RATIONS RE	SEARCH stem (CBCS) scheme]	
_	_	e year 2017 - 2018)	
*	SEMESTER -	•	
Subject Code	17CS653	IA Marks	40
Number of Lecture Hours/Week	3	Exam Marks	60
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS -	03	
Module – 1			Teaching
			Hours
Introduction, Linear Programming	: Introduction:	The origin, natureand imp	act 8 Hours
of OR; Defining the problem and g			
model; Deriving solutions from the m	nodel; Testing	the model;Preparing to ap	ply
the model; Implementation .			
Introduction to Linear Programm			
Assumptions of LPP, Formulation	of LPP and	Graphical method various	ous
examples.			
Module – 2	41	ath a d. Cattin a year than airean	1 o TT
Simplex Method – 1: The essence of			
method; Types of variables, Algebrae in tabular form; Tie breaking inthe si			
method.	impiex memoc	i, big wi memou, i wo pii	ase
Module – 3			
Simplex Method – 2: Duality T	heory - The	essence of duality theo	ory, 8 Hours
Primaldual relationship, conversion			
The dual simplex method.		I	
Module – 4			
Transportation and Assignment Pr	oblems: The t	ransportation problem, Ini	tial 8 Hours
Basic Feasible Solution (IBFS) by		*	
Minima Method, Vogel's Approxima	tion Method.	Optimal solution by Modif	ied
Distribution Method (MODI). The A	ssignment pro	blem; A Hungarian algorit	hm
for the assignment problem. Mini	mization and	Maximization varieties	in
transportation and assignment problem	ns.		
Module – 5			·
Game Theory: Game Theory: The fo			
saddle point, maximin and minimax p	•		/pe
example;Games with mixed strategies	-	-	
Metaheuristics: The nature		euristics, Tabu Sear	ch,
SimulatedAnnealing, Genetic Algorith			
Course outcomes: The students shou			
Explain optimization technique Lindardand the given graphers		•	od o.e.1
Understand the given problem Ullystrate game the arm for dear	_		n and solve.
Illustrate game theory for dec. Ouestion paper patterns.	ision support s	ystem.	

Question paper pattern:
The question paper will have TEN questions.
There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. D.S. Hira and P.K. Gupta, Operations Research, (Revised Edition), Published by S. Chand & Company Ltd, 2014

- 1. S Kalavathy, Operation Research, Vikas Publishing House Pvt Limited, 01-Aug-2002
- 2. S D Sharma, Operation Research, Kedar Nath Ram Nath Publishers.

DISTRIBUT	TED COMPUTING	G SYSTEM	
[As per Choice Ba			
	n the academic yea		
	SEMESTER – VI	•	
Subject Code	17CS654	IA Marks	40
Number of Lecture Hours/Week	3	Exam Marks	60
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS – 03		
Module – 1			Teaching Hours
Characterization of Distributed S	Systems: Introduc	tion, Examples of I	OS, 8 Hours
Resource sharing and the Web, Challe	enges	•	
System Models: Architectural Model	s, Fundamental Mo	dels	
Module – 2			
Inter Process Communication: Intro			8 Hours
External Data Representation and Ma	arshalling, Client –	Server Communicatio	on,
Group Communication			
Distributed Objects and RMI: Intro		cation between	
Distributed Objects, RPC, Events and	Notifications		
Module – 3			
Operating System Support: Introduc			s 8 Hours
and Threads, Communication and Inv		•	_
Distributed File Systems: Introduction	on, File Service arc	hitecture, Sun Networ	·k
File System			
Module – 4			
Time and Global States: Introduc		•	tus, 8 Hours
Synchronizing physical clocks, Logic			
Coordination and Agreement: In	troduction, Distrib	outed mutual exclusi	on,
Elections			
Module – 5		1. 12 . 21	0.77
Distributed Transactions: Introducti	*		*
Atomic commit protocols, Concurr	rency control in	distributed transactio	ons,
distributed deadlocks	ld be able to:		
Course outcomes: The students shou	id be able to:	1 1.1 1.	

- Explain the characteristics of a distributed system along with its and design challenges
- Illustrate the mechanism of IPC between distributed objects
- Describe the distributed file service architecture and the important characteristics of SUN NFS.
- Discuss concurrency control algorithms applied in distributed transactions

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. George Coulouris, Jean Dollimore and Tim Kindberg: Distributed Systems – Concepts and

Design, 5thEdition, Pearson Publications, 2009

- 1. Andrew S Tanenbaum: Distributed Operating Systems, 3rd edition, Pearson publication, 2007
- 2. Ajay D. Kshemkalyani and MukeshSinghal, Distributed Computing: Principles, Algorithms and Systems, Cambridge University Press, 2008
- 3. SunitaMahajan, Seema Shan, "Distributed Computing", Oxford University Press,2015

MOBILE APPLICATION DEVELOPMENT [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 -2018) SEMESTER - VI Subject Code 17CS661 IA Marks 40 60 Number of Lecture Hours/Week 3 Exam Marks Total Number of Lecture Hours 40 **Exam Hours** 03 CREDITS - 03 Module – 1 **Teaching** Hours Get started, Build your first app, Activities, Testing, debugging and using support 8 Hours libraries Module – 2 User Interaction, Delightful user experience, Testing your UI 8 Hours Module – 3 Background Tasks, Triggering, scheduling and optimizing background tasks 8 Hours Module – 4 All about data, Preferences and Settings, Storing data using SQLite, Sharing data 8 Hours with content providers, Loading data using Loaders Module – 5 Permissions, Performance and Security, Firebase and AdMob, Publish 8 Hours **Course outcomes:** The students should be able to:

- Design and Develop Android application by setting up Android development environment
- Implement adaptive, responsive user interfaces that work across a wide range of devices.
- Explainlong running tasks and background work in Android applications
- Demonstrate methods in storing, sharing and retrieving data in Android applications
- Discuss the performance of android applications and understand the role of permissions and security
- Describe the steps involved in publishing Android application to share with the world

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Google Developer Training, "Android Developer Fundamentals Course – Concept Reference", Google Developer Training Team, 2017. https://www.gitbook.com/book/google-developer-training/android-developer-fundamentals-course-concepts/details (Download pdf file from the above link)

- 1. Erik Hellman, "Android Programming Pushing the Limits", 1st Edition, Wiley India Pvt Ltd. 2014.
- 2. Dawn Griffiths and David Griffiths, "Head First Android Development", 1st Edition,

- O'Reilly SPD Publishers, 2015.
- 3. J F DiMarzio, "Beginning Android Programming with Android Studio", 4th Edition, Wiley India Pvt Ltd, 2016. ISBN-13: 978-8126565580
- 4. AnubhavPradhan, Anil V Deshpande, "Composing Mobile Apps" using Android, Wiley 2014, ISBN: 978-81-265-4660-2

BIC	G DATA ANALY	YTICS		
[As per Choice B	ased Credit Sys	tem (CBCS) scheme]		
(Effective fro	m the academic	year 2017 -2018)		
	SEMESTER -	VI		
Subject Code	17CS662	IA Marks	40	
Number of Lecture Hours/Week	4	Exam Marks	60	
Total Number of Lecture Hours	40	Exam Hours	03	
Total I (differ of Ecotate Hours	CREDITS - 0		100	
Module – 1	CREDITO	<u> </u>		Teaching
ivioune 1				Hours
Introduction to Data Analytics and	d Decision Maki	ing: Introduction Over	rview	08 Hours
of the Book, The Methods, The S		_		00 11041
Models, Algebraic Models,				
	e Distributi		Single	
Variable:Introduction,Basic Conc			Data	
Sets, Variables, and Observations, 7				
Categorical Variables, Descriptive M		-		
Summary Measures, Numerical Summary Measures, Numerical Summary Measures				
	•			
,	Series Data,		ssing	
	Excel Tables	for Filtering,Sortin	g,and	
Summarizing.		D.1 1.		
Finding Relationships among Va			_	
Categorical Variables, Relationshi		•		
Numerical Variable, Stacked and		-	_	
Numerical Variables, Scatterplots, C	orrelation and Co	ovariance, Pivot Tables	•	
Module – 2				
Probability and Probability Distr		•		08 Hours
Rule of Complements, Addition				
Multiplication Rule, Probabilistic				
Subjective Versus Objective Probab				
Random Variable, Summary Measur		ity Distribution, Condi	tional	
Mean and Variance, Introduction to S				
Normal, Binormal, Poisson, and E	_			
Normal Distribution, Continuous		•		
Normal Density, Standardizing: Z-Va				
Calculations in Excel, Empirical R				
Random Variables, Applications of				
Binomial Distribution, Mean and				
Distribution, The Binomial Distribut	tion in the Contex	xt of Sampling, The No	ormal	
Approximation to the Binomial, Ap	plications of the	Binomial Distribution	, The	
Poisson and Exponential Distrib	butions, The F	Poisson Distribution,	The	
Exponential Distribution.				
Exponential Distribution.				
Module – 3				
Module – 3	rtainty:Introducti	ion,Elements of Dec	cision	08 Hours
Module – 3 Decision Making under Uncer	-			08 Hours
Module – 3	e Decision Cri	teria, Expected Mor	etary	08 Hours

Information, The Value of Information, Risk Aversion and Expected Utility, Utility Functions, Exponential Utility, Certainty Equivalents, Is Expected Utility Maximization Used?

Sampling and Sampling Distributions: Introduction, Sampling Terminology, Methods for Selecting Random Samples, Simple Random Sampling, Systematic Sampling, Stratified Sampling, Cluster Sampling, Multistage Sampling Schemes, Introduction to Estimation, Sources of Estimation Error, Key Terms in Sampling, Sampling Distribution of the Sample Mean, The Central Limit Theorem, Sample Size Selection, Summary of Key Ideas for Simple Random Sampling.

Module – 4

Confidence Interval Estimation: Introduction, Sampling Distributions, The t Distribution, Other Sampling Distributions, Confidence Interval for a Mean, Confidence Interval for a Total, Confidence Interval for a Proportion, Confidence Interval for a Standard Deviation, Confidence Interval for the Difference between Means, Independent Samples, Paired Samples, Confidence Interval for the Difference between Proportions, Sample Size Selection, Sample Size Selection for Estimation of the Mean, Sample Size Selection for Estimation of Other Parameters.

Hypothesis Testing:Introduction,Concepts in Hypothesis Testing, Null and Alternative Hypothesis, One-Tailed Versus Two-Tailed Tests, Types of Errors, Significance Level and Rejection Region, Significance from p-values, Type II Errors and Power, Hypothesis Tests and Confidence Intervals, Practical versus Statistical Significance, Hypothesis Tests for a Population Mean, Hypothesis Tests for Other Parameters, Hypothesis Tests for a Population Proportion, Hypothesis Tests for Differences between Population Means, Hypothesis Test for Equal Population Variances, Hypothesis Tests for Difference between Population Proportions, Tests for Normality, Chi-Square Test for Independence.

Module – 5

Regression Analysis: Estimating Relationships: Introduction, Scatterplots: Graphing Relationships, Linear versus Nonlinear Relationships, Outliers, Unequal Variance, No Relationship, Correlations: Indications of Linear Relationships, Simple Linear Regression, Least Squares Estimation, Standard Error of Estimate, The Percentage of Variation Explained: R-Square, Multiple Regression, Interpretation of Regression Coefficients, Interpretation of Standard Error of Estimate and R-Square, Modeling Possibilities, Dummy Variables, Interaction Variables, Nonlinear Transformations, Validation of the Fit.

Regression Analysis: Statistical Inference:Introduction,The Statistical Model, Inferences About the Regression Coefficients, Sampling Distribution of the Regression Coefficients, Hypothesis Tests for the Regression Coefficients and p-Values, Overall Fit: The **ANOVA** Test for the Table.Multicollinearity.Include/Exclude Decisions. Stepwise Regression, Outliers, Violations of Regression Assumptions, Nonconstant Error Variance, Nonnormality of Residuals, Autocorrelated Residuals, Prediction.

Course outcomes: The students should be able to:

- Explain the importance of data and data analysis
- Interpret the probabilistic models for data
- Illustrate hypothesis, uncertainty principle
- Demonstrate the regression analysis

Ouestion paper pattern:

08 Hours

08 Hours

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. S C Albright and W L Winston, Business analytics: data analysis and decision making, 5/e Cenage Learning

1		IOBILE COMPUTING	. –	
		stem (CBCS) scheme] c year 2017 -2018)		
(Effective II o	SEMESTER -			
Subject Code	17CS663	IA Marks	40	
Number of Lecture Hours/Week	3	Exam Marks	60	
Total Number of Lecture Hours	40	Exam Hours	03	
Total Number of Lecture Hours	CREDITS -		03	
Module – 1	CREDITS -	03		Teaching
Wiodule – 1				Hours
Mobile Communication, Mobile C	omputing Moh	ile Computing Archit	ecture	8 Hours
Mobile Devices Mobile System				o mouns
Management, Security Cellular			•	
Smartphone, Smart Mobiles, and		•		
Handheld Devices, Smart Systems, I			,	
Automotive Systems				
Module – 2				
GSM-Services and System Architec	ture, Radio Inte	erfaces of GSM, Proto	cols of	8 Hours
GSM Localization, Call Handling	Handover, See	curity, New Data Se	rvices,	
General Packet Radio Service High-	speed Circuit Sv	vitched Data, DECT,		
Modulation, Multiplexing, Control	ling the Mediur	n Access Spread Spe	ectrum,	
Frequency Hopping Spread Spectru	ım (FHSS),Codi	ing Methods, Code D	ivision	
Multiple Access, IMT-2000 3G Wi				
3G Communications Standards ,CD			ards, I-	
mode, OFDM, High Speed Packet Access (HSPA) 3G Network				
Long-term Evolution, WiMaxRel			'ireless	
Access,4G Networks, Mobile Satelli	te Communicati	on Networks		
Module – 3		177 1 37	. 1	
IP and Mobile IP Network Layers, P	•	•		8 Hours
Location Management, Registration			Route	
Optimization Dynamic Host Configu			CD	
Conventional TCP/IP Transport Lay Mobile TCP, Other Methods of M				
2.5G/3G Mobile Networks	viodile TCP-lay	ei fransinission ,ici	r over	
Module – 4				
Data Organization, Database Trai	assetional Mod	ale ACID Dulas	Onery	8 Hours
Processing Data Recovery Process		·		o mours
			, Data	
Caching, Client-Server Computing for Mobile Computing and Adaptation Adaptation Software for Mobile Computing, Power-Aware Mobile Computing,				
Context-aware Mobile Computing	inputing, 10WC	i i i i i i i i i i i i i i i i i i i	raums,	
Module – 5				
Communication Asymmetry, Classi	fication of Data	-delivery Mechanisms	s. Data	8 Hours
Dissemination Broadcast Models,				JAJUAN
Digital Audio Broadcasting (DAB),			1,	
Synchronization, Synchronization Se			ization	
Software for Mobile Devices		• •		

Synchronized Multimedia Markup Language (SMIL)

Course outcomes: The students should be able to:

- Understand the various mobile communication systems.
- Describe various multiplexing systems used in mobile computing.
- Explain the use and importance of data synchronization in mobile computing

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Raj kamal: Mobile Computing, 2ND EDITION, Oxford University Press, 2007/2012
- 2. MartynMallik: Mobile and Wireless Design Essentials, Wiley India, 2003

- 1. Ashok Talukder, RoopaYavagal, Hasan Ahmed: Mobile Computing, Technology, Applications and Service Creation, 2nd Edition, Tata McGraw Hill, 2010.
- 2. ItiSahaMisra: Wireless Communications and Networks, 3G and Beyond, Tata McGraw Hill, 2009.

PYTHON APPLICATION PROGRAMMING [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 -2018) SEMESTER - VI Subject Code 17CS664 IA Marks 40 60 Number of Lecture Hours/Week 3 Exam Marks Total Number of Lecture Hours 40 **Exam Hours** 03 CREDITS - 03 Module – 1 **Teaching** Hours Why should you learn to write programs, Variables, expressions and statements, 8 Hours Conditional execution, Functions Module – 2 Iteration, Strings, Files 8 Hours Module – 3 8 Hours Lists, Dictionaries, Tuples, Regular Expressions Module - 4 Classes and objects, Classes and functions, Classes and methods 8 Hours Module – 5 Networked programs, Using Web Services, Using databases and SQL 8 Hours **Course outcomes:** The students should be able to:

- Understand Python syntax and semantics and be fluent in the use of Python flow control and functions.
- Demonstrate proficiency in handling Strings and File Systems.
- Implement Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
- Interpret the concepts of Object-Oriented Programming as used in Python.
- Implement exemplary applications related to Network Programming, Web Services and Databases in Python.

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Charles R. Severance, "Python for Everybody: Exploring Data Using Python 3", 1st Edition, CreateSpace Independent Publishing Platform, 2016. (http://do1.dr-chuck.com/pythonlearn/EN_us/pythonlearn.pdf) (Chapters 1 13, 15)
- 2. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2ndEdition, Green Tea Press, 2015. (http://greenteapress.com/thinkpython2/thinkpython2.pdf) (Chapters 15, 16, 17)(Download pdf files from the above links)

Reference Books:

1. Charles Dierbach, "Introduction to Computer Science Using Python", 1st Edition, Wiley India Pvt Ltd. ISBN-13: 978-8126556014

- 2. Mark Lutz, "Programming Python", 4th Edition, O'Reilly Media, 2011.ISBN-13: 978-9350232873
- 3. Wesley J Chun, "Core Python Applications Programming", 3rdEdition,Pearson Education India, 2015. ISBN-13: 978-9332555365
- 4. Roberto Tamassia, Michael H Goldwasser, Michael T Goodrich, "Data Structures and Algorithms in Python",1stEdition, Wiley India Pvt Ltd, 2016. ISBN-13: 978-8126562176
- 5. ReemaThareja, "Python Programming using problem solving approach", Oxford university press, 2017

		RCHITECTURE stem (CBCS) scheme	- 1	
- -	•	c year 2017 -2018)	J	
`	SEMESTER -			
Subject Code	17CS665	IA Marks	40	
Number of Lecture Hours/Week	3	Exam Marks	60	
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS -	03	•	
Module – 1				Teaching Hours
SOA BASICS:Software Archi				8 Hours
Objectives of Software Architecture Patterns and Styles, Service orient				
Life, Evolution of SOA, Drives for		•	•	
perspective of SOA, Enterprise-wi				
SOA, Strawman Architecture F				
Layers, Application Development P				
Text 1: Ch2: 2.1 – 2.4; Ch3:3.1-3.		•		
Module – 2	,			
Applications; Package Application Service-oriented-Enterprise Appl Enterprise Applications, Patterns Service-Oriented Enterprise Applications, SOA programming m Text 1: Ch5:5.1, 5.2, 6.1, 6.2 (Pagel	ications; Consid for SOA, Patt cation(java referencedels.	erations for Service-O tern-Based Architectu ence model only).Con	riented ire for	
Module – 3				
SOA ANALYSIS AND DESIGN Design, Design of Activity Service services and Design of busin SOA; Technologies For Service Integration, Technologies for Service Text 1: Ch 8: 8.1 – 8.6, 9.1 – 9.3	res, Design of D ness process s Enablement,	patasevices, Design of services, Technologi Technologies For S	Client es of	8 Hours
Module – 4				
Business case for SOA; Stakeho Savings, Return on Investme implementation; SOA Governance SOA implementation, Trends in Advances in SOA.	ent, SOA Goe, SOA Security, SOA; Technolo	overnance, Security approach for enterprise ogies in Relation to	and se wide	8 Hours
Text 1: Ch 10: 10.1 -10.4, Ch 11: 1	11.1 to 11.3, Ch1	12:12.2, 12.3		
Module – 5		(7.7.50) = 5		
SOA Technologies-PoC; Loan Ma Architectures of LMS SOA based	•			8 Hours

Text 2: Ch 3, Ch4

Course outcomes: The students should be able to:

- Understand the different IT architectures
- Explain SOA based applications
- Illustrate web service and realization of SOA
- DiscussRESTful services

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Shankar Kambhampaly, "Service–Oriented Architecture for Enterprise Applications", Wiley Second Edition, 2014.
- 2. Mark D. Hansen, "SOA using Java Web Services", Practice Hall, 2007.

Reference Books:

1. WaseemRoshen, "SOA-Based Enterprise Integration", Tata McGraw-HILL, 2009.

MULTI-CORE ARC	CHITECTURE	AND PROGRAMMI	NG	
		stem (CBCS) scheme]		
- -	•	e year 2017 -2018)	•	
	SEMESTER -	- VI		
Subject Code	17CS666	IA Marks	40	
Number of Lecture Hours/Week	3	Exam Marks	60	
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS -	03	<u>'</u>	
Module – 1				Teaching
				Hours
Introduction to Multi-core Arc	hitecture Moti	vation for Concurren	ncy in	8 Hours
software, Parallel Computing Platfor		1 0 1		
Differentiating Multi-core Architecture		-		
Multi-threading on Single-Core v				
Performance, Amdahl's Law, Gro			•	
Overview of Threading : Defin	-	•		
Threading above the Operating Sys				
the Hardware, What Happens V				
Programming Models and Threading Runtime Virtualization, System Virt	-	omment. Vivis and Fra	norms,	
Module – 2	uanzanon.			
Fundamental Concepts of Parall	lal Dragrammi	ng Designing for T	pronds	8 Hours
Task Decomposition, Data Dec				0 110u18
Implications of Different Decomp				
Programming Patterns, A Motivatin				
Error Diffusion Algorithm, An Al	•			
Other Alternatives. Threading a	* *			
Synchronization, Critical Sections				
Semaphores, Locks, Condition V				
Concepts, Fence, Barrier, Implement	tation-dependent	Threading Features		
Module – 3				
Threading APIs: Threading APIs for				8 Hours
APIs, Threading APIs for Micro		_		
Managing Threads, Thread Pools,				
Creating Threads, Managing Thr	reads, Thread	Synchronization, Sig	naling,	
Compilation and Linking.				
Module – 4		OI 11	••	0.77
OpenMP: A Portable Solution for				8 Hours
Loop, Loop-carried Dependence, D				
Private Data, Loop Scheduling and	•			
Minimizing Threading Overhead, V		-		
Programming, Using Barrier and No		0 0		
thread Execution, Data Copy-in ar Variables, Intel Task queuing I	A •	• 1		
Functions, OpenMP Environment		_	-	
performance	iii vaiiauics,	Comphanon, Deut	·65·11g,	
nerrormance				

Solutions to Common Parallel Programming Problems: Too Many Threads, Data Races, Deadlocks, and Live Locks, Deadlock, Heavily Contended Locks, Priority Inversion, Solutions for Heavily Contended Locks, Non-blocking Algorithms, ABA Problem, Cache Line Ping-ponging, Memory Reclamation Problem, Recommendations, Thread-safe Functions and Libraries, Memory Issues, Bandwidth, Working in the Cache, Memory Contention, Cache-related Issues, False Sharing, Memory Consistency, Current IA-32 Architecture, Itanium Architecture, High-level Languages, Avoiding Pipeline Stalls on IA-32,Data Organization for High Performance.

8 Hours

Course outcomes: The students should be able to:

- Identify the issues involved in multicore architectures
- Explain fundamental concepts of parallel programming and its design issues
- Solve the issues related to multiprocessing and suggest solutions
- Discuss salient features of different multicore architectures and how they exploit parallelism
- Illustrate OpenMP and programming concept

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Multicore Programming, Increased Performance through Software Multi-threading by ShameemAkhter and Jason Roberts, Intel Press, 2006

Reference Books:

NIL

SYSTEM SOFTWARE AND OPERATING SYSTEM LABORATORY

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 - 2018)

SEMESTER - VI

Subject Code	17CSL67	IA Marks	40	
Number of Lecture Hours/Week	01I + 02P	Exam Marks	60	
Total Number of Lecture Hours	40	Exam Hours	03	

CREDITS - 02

Description (If any):

Exercises to be prepared with minimum three files (Where ever necessary):

- i. Header file.
- ii. Implementation file.
- iii. Application file where main function will be present.

The idea behind using three files is to differentiate between the developer and user sides. In the developer side, all the three files could be made visible. For the user side only header file and application files could be made visible, which means that the object code of the implementation file could be given to the user along with the interface given in the header file, hiding the source file, if required. Avoid I/O operations (printf/scanf) and use *data input file* where ever it is possible

Lab Experiments:

1.

- a) Write a LEX program to recognize valid *arithmetic expression*. Identifiers in the expression could be only integers and operators could be + and *. Count the identifiers & operators present and print them separately.
- b) Write YACC program to evaluate *arithmetic expression* involving operators: +, -, *, and /
- 2. Develop, Implement and Execute a program using YACC tool to recognize all strings ending with b preceded by na's using the grammar $a^n b$ (note: input n value)
- 3. Design, develop and implement YACC/C program to construct *Predictive / LL(1)*Parsing Table for the grammar rules: $A \rightarrow aBa$, $B \rightarrow bB / \varepsilon$. Use this table to parse the sentence: abba\$
- 4. Design, develop and implement YACC/C program to demonstrate *Shift Reduce Parsing* technique for the grammar rules: $E \rightarrow E+T/T$, $T \rightarrow T*F/F$, $F \rightarrow (E)/id$ and parse the sentence: id + id * id.
- 5. Design, develop and implement a C/Java program to generate the machine code using **Triples** for the statement A = -B * (C +D) whose intermediate code in three-address form:

$$T1 = -B$$

$$T2 = C + D$$

$$T3 = T1 + T2$$

$$A = T3$$

- 6. a) Write a LEX program to eliminate *comment lines* in a *C* program and copy the resulting program into a separate file.
 - b) Write YACC program to recognize valid *identifier*, *operators and keywords* in the given text (*C program*) file.
- 7. Design, develop and implement a C/C++/Java program to simulate the working of Shortest remaining time and Round Robin (RR) scheduling algorithms. Experiment with different quantum sizes for RR algorithm.
- 8. Design, develop and implement a C/C++/Java program to implement Banker's algorithm. Assume suitable input required to demonstrate the results.
- 9. Design, develop and implement a C/C++/Java program to implement page replacement algorithms LRU and FIFO. Assume suitable input required to demonstrate the results.

Study Experiment / Project:

NIL

Course outcomes: The students should be able to:

- Implement and demonstrate Lexer's and Parser's
- Implement different algorithms required for management, scheduling, allocation and communication used in operating system.

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script
- Marks distribution: Procedure + Conduction + Viva: 15 + 70 + 15 (100)
- Change of experiment is allowed only once and marks allotted to the procedure part to be made zero

COMPUTER GRAPHICS LABORATORY WITH MINI PROJECT

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 - 2018)

SEMESTER - VI

Subject Code	17CSL68	IA Marks	40	
Number of Lecture Hours/Week	01I + 02P	Exam Marks	60	
Total Number of Lecture Hours	40	Exam Hours	03	

CREDITS – 02

Description (If any):

--

Lab Experiments:

PART A

Design, develop, and implement the following programs using OpenGL API

1. Implement Brenham's line drawing algorithm for all types of slope.

Refer:Text-1: Chapter 3.5 Refer:Text-2: Chapter 8

2. Create and rotate a triangle about the origin and a fixed point.

Refer:Text-1: Chapter 5-4

3. Draw a colour cube and spin it using OpenGL transformation matrices.

Refer:Text-2: Modelling a Coloured Cube

4. Draw a color cube and allow the user to move the camera suitably to experiment with perspective viewing.

Refer:Text-2: Topic: Positioning of Camera

5. Clip a lines using Cohen-Sutherland algorithm

Refer:Text-1: Chapter 6.7

Refer:Text-2: Chapter 8

6. To draw a simple shaded scene consisting of a tea pot on a table. Define suitably the position and properties of the light source along with the properties of the surfaces of the solid object used in the scene.

Refer:Text-2: Topic: Lighting and Shading

7. Design, develop and implement recursively subdivide a tetrahedron to form 3D sierpinski gasket. The number of recursive steps is to be specified by the user.

Refer: Text-2: Topic:sierpinski gasket.

8. Develop a menu driven program to animate a flag using Bezier Curve algorithm

Refer: Text-1: Chapter 8-10

9. Develop a menu driven program to fill the polygon using scan line algorithm

Project:

PART -B (MINI-PROJECT):

Student should develop mini project on the topics mentioned below or similar applications

using Open GL API. Consider all types of attributes like color, thickness, styles, font, background, speed etc., while doing mini project.

(During the practical exam: the students should demonstrate and answer Viva-Voce) Sample Topics:

Simulation of concepts of OS, Data structures, algorithms etc.

Course outcomes: The students should be able to:

- Apply the concepts of computer graphics
- Implement computer graphics applications using OpenGL
- Implement real world problems using OpenGL

Conduction of Practical Examination:

- 1. All laboratory experiments from part A are to be included for practical examination.
- 2. Mini project has to be evaluated for 40 Marks.
- 3. Report should be prepared in a standard format prescribed for project work.
- 4. Students are allowed to pick one experiment from the lot.
- 5. Strictly follow the instructions as printed on the cover page of answer script.
- 6. Marks distribution:
 - a) Part A: Procedure + Conduction + Viva: **09 + 42 + 09 = 60 Marks**
 - b) Part B: Demonstration + Report + Viva voce = 20+14+06 = 40 Marks
- 7. Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.

- 1. Donald Hearn & Pauline Baker: Computer Graphics-OpenGL Version,3rd Edition, Pearson Education,2011
- 2. Edward Angel: Interactive computer graphics- A Top Down approach with OpenGL, 5th edition. Pearson Education, 2011
- 3. M MRaikar, Computer Graphics using OpenGL, Fillip Learning / Elsevier, Bangalore / New Delhi (2013)