

Real life problems are multi scale

Chemical Engineering Research and Design 184 (2022) 39-58

Neural networks

- Learn parameters w, b
- Loss: $L = (h(x) y)^2$
- Automatic differentiation

$$\frac{aL}{dw} = \dots$$

Extrapolation

Nature Reviews Physics 2021, 3, 422-440

Fedorov et al., Chem. Eng. J. 477 (2023) 146869

Physical knowledge

Data

$$L_{\rm data} = MSE$$

Kinetics

$$\frac{dc_i}{dt} = \sum_j v_{i,j} \cdot r_j$$

$$L_{\text{kinetics}} = \frac{dNN_i}{dt} - \sum_{j} v_{i,j} \cdot r_j$$

Atom balance

$$\sum_{i} N_i^{elem} \cdot \frac{dc_i}{dt} = 0$$

$$L_{\text{element}} = \sum_{i} N_i^{elem} \cdot \frac{dNN_i}{dt}$$

• ...

Physics-Informed Neural Network

Combustion and Flame 269 (2024) 113647

Extrapolation

Fedorov et al., Chem. Eng. J. 477 (2023) 146869

Kinetics vs Neural Networks

$$A \rightarrow B$$

$$r = \exp\left(\ln k_0 + \frac{E_A}{R} \cdot \frac{1}{T} + \sum_{i \in \text{react}} |\nu_i| \cdot \ln c_i\right)$$

$$\dot{s} = \sum_{j} v_{i,j} \cdot r_{j}$$

weight Aktivierungsfunktion

$$z = \sigma(b + wx)$$

$$NN = \sum_{j} w'_{j} \cdot z_{j}$$

Chemical Reaction Neural Network

W. Ji, S. Deng, J. Phys. Chem. A 2021, 125, 1082-109

Chemical Reaction Neural Network

W. Ji, S. Deng, J. Phys. Chem. A 2021, 125, 1082-109

Applications

- (Bio-)chemical engineering^[1]
- Biomass pyrolysis^[2]
- Decomposition of energetic materials^[3-5]
- Combustion^[6]
- HyChem models^[7]

[2] Combust. Flame 240 (2022) 111992

[3] J. Anal. Appl. Pyrolysis 169 (2023) 105860 [4] RSC Adv. 12 (37) (2022) 24163-24171

[1] J. Phys. Chem. A 125 (4) (2021) 1082–1092 [5] Chem. Eng. Sci. 282 (2023) 119234 [6] J. Comput. Phys. 448 (2022) 110743 [7] Ji et al., arXiv:2104.07875

12.11.2024 Felix Döppel 10

Chemical Reaction Neural Network

$\begin{array}{c|c} & & & \\ &$

Atom conservation?

$$0 = N \cdot \nu$$

$$\begin{aligned}
\nu &= B \cdot \nu_0 \\
&= B^* \cdot \nu_{\text{key}}
\end{aligned}$$

Atom Conservation

F. Döppel, M. Votsmeier, *Proc. Combust. Inst.* **2024**, *40*, 105507.

W. Ji, S. Deng, J. Phys. Chem. A 2021, 125, 1082-109

Atom conserving chemical reaction neural network

Chemical Reaction Neural Network

Atom Conservation

F. Döppel, M. Votsmeier, Proc. Combust. Inst. 2024, 40, 105507.

Neural Ordinary Differential Equations

Chen, Ricky TQ, et al. "Neural ordinary differential equations." *Advances in neural information processing systems* 31 (2018)

Atom conserving chemical reaction neural network

Reactor measurements

Chemical Reaction Neural Network

Atom Conservation

F. Döppel, M. Votsmeier, Proc. Combust. Inst. 2024, 40, 105507.

Full microkinetic mechanism

$$2 A \xrightarrow{k_1} B$$

$$B \xrightarrow{k_2} C$$

$$B + C \xrightarrow{k_3} D$$

$$\vdots$$

*key publication

Global Reaction Neural Network

Kircher, Döppel, and Votsmeier, Chem. Eng. J., 2024, 485, 149863

*key publication

Applications

- Preferential oxidation of CO on Pt
- Ostwald Process
- Fischer-Tropsch
- Three-way catalyst

Leander Biet, Master Thesis, TU Darmstadt, 2023

Applications

- Preferential oxidation of CO on Pt[1]
- Methane steam reforming on Rh^[1]
- Methanol synthesis on Cu/Zn^[2]
- Ammonia synthesis on Ru^[3]
- Methane non-oxidative coupling over single atom Fe/SiO2^[3]

^[2] Reaction Chemistry & Engineering, (2024), 9, 1047-1060

^[3] Reaction Chemistry & Engineering, (2024), 9, 119-131

Reactor Simulation Packed Bed Steam Reforming

Biermann, Uglietti, Döppel, Kircher, Votsmeier, Bracconi, Maestri, Manuscript in preparation

Catalytic Foam^[1] Interface Catalytic FOAM

3D simulation:

Summary SciML

Automatic differentiation allows for

- Efficient training
- Computing derivatives

Computing integrals

Hard- vs soft constraints

Physics improve extrapolation and data demand

Felix Döppel

20

Summary

- SciML boosts simulation efficiency and facilitates discovery
- Embedding physics leads to reliable results

Scan for slides!

Automated surrogates

automated training set design

goal-oriented kernel model

fast & accurate reactor simulations

Döppel et al., Chem. Ing. Tech. 2024, 96, 6, 759-768

Model discovery from integral data

- Methane steam reforming on Rh^[1]
- Preferential oxidation of CO on Pt^[2]
- CO₂ Fischer Tropsch^[3]

- Upcoming: non-ideal reactors
 - [1] Chemical Engineering Journal, (2024), 485, 149863
 - [2] Computer Aided Chemical Engineering, (2024), 53, 817-822

[3] Chemical Engineering Journal, (2023), 477, 146869

Summary

- SciML boosts efficiency and facilitates discovery
- Embedding physics leads to reliable results

Scan for slides!

