Počítačové sítě 1

síťová vrstva

Martin Trnečka

Katedra informatiky Univerzita Palackého v Olomouci

TCP/IP architektura

Síťová vrstva

- terminologie: síťová, IP, internetová vrstva
- lacktriangle jedinečná identifikace uzlů v síti ightarrow IP adresa
- směrování (routing) mezi nesousedními uzly (mimo lokální síť)
- napojení na linkovou vrstvu
- přenos dat ve formě (IP) paketu/datagramu
- balení dat do paketů
- spojová vs. nespojová služba na úrovni síťové vrstvy
- nezajišťuje
 - kontrolu chyb (pozn. může dojít k chybě při zpracování paketu) \to zodpovědnost vyšší vrstvy
 - řízení toku dat o zodpovědnost vyšší vrstvy
 - bezpečnost (dodatečné zabezpečení pomocí IPSec)

Struktura IP vrstvy

- Internet Protocol (IP)
 - klíčová část TCP/IP architektury
 - poskytuje nespolehlivou nespojovanou službu
 - umožňuje propojení více sítí
- další protokoly síťové vrstvy
 - ICMP služební protokol, diagnostika a signalizace
 - IGMP skupinové adresování (multicast)
 - ARP, RARP zjištění linkové adresy k IP adrese a opačně

Struktura IP paketu

- IPv4 (32 bitů)
- IPv6 (128 bitů)
- IPv6 má jinou strukturu paketu!
- příklad (phoenix.inf.upol.cz):
 - -158.194.80.13
 - 2001:718:1401:50:0:0:0d, zkrácený formát 2001:718:1401:50::0d

Odbočka: Omezení IPv4

- omezený (teoretický) maximální rozsah $(2^{32} = 4294967296)$
- pro lokální sítě dostatečný
- správa:
 - Internet Assigned Numbers Authority (IANA)
 - Regional Internet registry (RIR)
 - ISP
- IPv4 adresy již došli (na několika úrovních)
- proč stále není IPv6?
 - obtížně zapamatovatelné
 - IP adresy vnitřní a vnější sítě lze oddělit (NAT)
 - ISP neinvestují do infrastruktury

- classfull adresace
 - adresní prostor rozdělen do tříd: A, B, C, D, E
 - pevná část pro adresu sítě a adresu v síti

- dnes se již (moc) nepoužívá
- classless adresace
 - síť je určena síťovou maskou
 - hierarchická adresace (adresa sítě, adresa podsítě, adresa uzlu)

- maska sítě = rozdělení na adresu sítě a adresu v sítí (adresa síťového rozhraní)
- příklad:
 - adresa sítě 192.168.1.0
 - maska sítě: 255.255.25.0
 - adresy v sítí: 192.168.1.1-192.168.1.254
 - 192.168.1.255 vyhrazena pro broadcast
- používanější CIDR (Classless Inter-Domain Routing) formát 192.168.1.0/24

adresa sítě 192.168.1.0/24

				19	92							16	88							1	ı							C)			
Γ	1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

maska sítě

			25	55							25	55							25	55							()			
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0

0000

168

1 0 1 0 1

poslední adresa v síti 192.168.1.254/24

			19	92							16	88							1								25	54			
1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0

00000

0 0 0 0

broadcast v síti 192.168.1.255/24

192

1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

			19	92							16	68							1	1							2	55			
1	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1

IP adresa: Poznámky

- lacktriangle první a poslední adresa je vyhrazena z praktických důvodů, nedodržení ightarrow problémy
- adresa sítě nemusí končit nulou!
 - 192.168.1.192/26 je adresou sítě
- síť s maskou /32 je adresa uzlu

IP adresa: Matika

počet adres v sítí:

 2^{32-n}

kde n je délka masky

- adresa sítě: IP_adresa AND maska
- broadcast adresa: IP_adresa OR (NOT maska)

Příklad

167.199.170.82/27 má $2^{32-27}=2^5=32$ adres. $82_{10}=01010010_2$, posledních 5 bitů je adresa v síti, adresa sítě je tedy 167.199.170.64/27. $82_{10}=01010010_2$ OR $000111111_2=010111111_2=95_{10}$. Broadcast adresa je 167.199.170.95/27

Speciální IP Adresy

IP adresa	popis
127.0.0.1/8	zpětná smyčka (loopback)
10.0.0.0/8	adresa lokální sítě (24 bitů na adresu v síti)
172.16.0.0/12	adresa lokální sítě (20 bitů na adresu v síti)
192.168.0.0/16	adresa lokální sítě (16 bitů na adresu v síti)
192.168.x.0/24	adresa lokální sítě (8 bitů na adresu v síti),
	x je 0–255
0.0.0.0/32	host, komunikace při které odesílatel
	nezná svoji IP adresu
255.255.255.255/32	omezený broadcast (pouze v lokální síti)

Tvorba podsítí

- sítě lze dále dělit na podsítě → organizace
- sítě lze spojovat do větších sítí
- manipulace (prodlužování, zkracování) s maskou sítě

znehodnocení adresního prostoru

Tvorba podsítí

- způsoby:
 - konstantní maska → stejně velké podsítě
 - variabilní maska → různě velké podsítě
 - separátní IP adres ightarrow reálně nemáme k dispozici

postup:

- počet adres N v každé podsíti musí být mocninou 2 (kvůli masce, $N=2^{32-n}\to n=\log_2(2^{32}/N)=32-\log_2(N)$)
- adresa sítě musí být dělitelná $N \to lze$ zajisti postupným přiřazováním adres dle velikosti podsítě (od největší po nejmenší)
- délka masky = $n + log_2(N/N_{sub})$

Příklad

Pro tři počítačové učebny se 7, 10 a 40 počítači chceme vytvořit samostatné podsítě. Máme k dispozici síť 192.168.1.0/24. V síti je $2^{32-24}=256$ adres.

Tvorba podsítí: Konstantní maska

- síť rozdělíme na stejně velké podsítě
- lacktriangle vybereme největší podsíť o rovnoměrně rozdělíme adresní prostor dle její velikosti

Příklad (řešení – konstantní maska)

Největší podsíť má 40 uzlů, potřebujeme alespoň 6 bitů pro adresaci v síti ($2^5=32$, $2^6=64$) \to maska /26.

podsíť	adresy v podsíti	broadcast
192.168.1.0/26	192.168.1.1/26 192.168.1.62/26	192.168.1.63/26
192.168.1.64/26	192.168.1.65/26192.168.1.126/26	192.168.1.127/26
192.168.1.128/26	192.168.1.129/26192.168.1.190/26	192.168.1.191/26
192.168.1.192/26	192.168.1.193/26192.168.1.254/26	192.168.1.255/26

- nevyužité rozsahy
- zbytečně velké podsítě pokud je velký rozdíl mezi největší a nejmenší sítí

Tvorba podsítí: Variabilní maska

- lacktriangle pro každou podsíť určíme vhodný adresní prostor ightarrow menší plýtvání
- seřadíme podsítě dle jejich velikosti a postupně jim přidělujeme adresy

Příklad (řešení, začátek – variabilní maska)

Největší podsíť má 40 uzlů.

podsíť	adresy v podsíti	broadcast
192.168.1.0/26	192.168.1.1/26 192.168.1.62/26	192.168.1.63/26

Další podsíť má 10 uzlů. Potřebujeme alespoň 4 bity pro adresaci ($2^4 = 16$).

podsíť	adresy v podsíti	broadcast
192.168.1.64/28	192.168.1.65/28192.168.1.78/28	192.168.1.79/28

Poslední podsíť má 7 uzlů. Potřebujeme opět alespoň 4 bity pro adresaci. Pozor 3 bity nestačí! ($2^3=8$, není místo pro broadcast).

podsíť	adresy v podsíti	broadcast
192.168.1.80/28	192.168.1.81/28192.168.1.94/28	192.168.1.95/28

Tvorba podsítí: Ilustrace

rozdělení konstantní maskou

rozdělení variabilní maskou

Variabilní maska: Použití zbylého prostoru

■ 192.168.1.96/28 má adresní prostor 2⁴, zbývá ale 160 adres

		pos	sledi	ní ol	ktet			poslední oktet dekadick	У
0	0	0	0	0	0	0	0	0	
0	0	1	1	1	1	1	1	63	
0	1	0	0	0	0	0	0	64	
0	1	0	0	1	1	1	1	79	
0	1	0	1	0	0	0	0	80	
0	1	0	1	1	1	1	1	95	
0	1	1	0	0	0	0	0	96	

chceme přidat síť obsahující 50 uzlů (alespoň 6 bitů pro adresaci)

Variabilní maska: Použití zbylého prostoru

■ (nebo) chceme přidat síť obsahující 100 uzlů (alespoň 7 bitů pro adresaci)

		pos	sledi	ní ol	ktet			poslední oktet dekadicky	
1	0	0	0	0	0	0	0	128	
1	1	1	1	1	1	1	1	255	

Spojování podsítí

- při tvorbě podsítí zůstává původní adresace nedotčena
- sítě lze opět spojovat = zkrátit masku sítě

Odbočka: Podsítě a Internet

- Internet = síť sítí
- supersíť = síťová maska nepokrývá celou adresu sítě (síť obsahuje podsítě), například 158.194.92.0/24 je součástí supersítě 158.194.0.0/16.
- Internet se dělí na autonomní systémy (AS) = supersítě
- komunikace uvnitř AS a mezi AS
- informace o AS či adrese v rozsahu AS pomocí whois

Odbočka: Přidělení IP adresy

- statické
 - manuální konfigurace
- dynamické
 - DHCP protokol
 - klient-server služba
 - server zašle uzlu nastavení síťového rozhraní

Komunikace v lokální síti

- doručení mezi uzly v lokální síti
- na úrovni IP vrstvy máme pouze IP adresu
- komunikace v lokální síti \rightarrow záležitost linkové (L2) vrstvy!
 - komunikaci v lokální síti lze snadno rozpoznat \rightarrow zjistíme adresy sítí
- pro komunikaci je třeba adresa fyzického rozhraní (MAC adresa)
 - MAC adresa příjemce musí být vložena do linkového rámce
 - MAC adresu odesílatele známe
- $lue{}$ je třeba zajistit překlad IP adresy na MAC adresu ightarrow protokol ARP
 - ARP se vkládá do linkového rámce
- poznámka: L2 zařízení se během výměny ARP zpráv "naučí" MAC adresy na daných portech

Protokol ARP (Address Resolution Protocol)

- předpokládejme, že 192.168.1.1/24 (A) zná IP adresu se kterou chce komunikovat 192.168.1.2/24 (B)
- A nejprve pošle ARP paket (request) pomocí broadcastu
 - ptá se: "Kdo má v lokální síti IP adresu 192.168.1.2/24 pošli svoji MAC adresu."
 - broadcast zpráva je rozeslána na úrovni L2 (switch)
 - A přiloží svoji IP adresu a MAC adresu
- pokud B obdrží request od A, odpoví mu pomocí ARP paketu (response)
 - odpověď je posílána jako unicast
- pokud A obdrží response od B, získá MAC adresu PC a může zahájit komunikaci

Protokol ARP: Ilustrace struktury

1 B	1 B	2 B										
I												
typ linkovéh	no protokolu	typ síťového protokolu										
délka linkové adresy	délka síťové adresy	operace (request/response)										
	zdrojová linková adresa (pro Ethernet 2 je délka 6 B)											
	zdrojová sít (pro IPv4 je	ľová adresa e délka 4 B)										
	cílová linko (pro Ethernet	ová adresa 2 je délka 6 B)										
	cílová síťo (pro IPv4 je	vá adresa e délka 4 B)										

pro Ethernet II a IPv4 je obrázek nepřesný!

ARP cache

- posílání ARP zpráv při odesílání každého linkového rámce je velmi neefektivní
- ARP cache = tabulka s dočasně uloženými MAC adresami (a jejich mapování na IP adresy)
- po čase dochází k zneplatnění informace v ARP cache
 - na klientech záležitost OS
- s ARP tabulkou je možné pracovat (vypsat, vymazat, změnit)
- nové ARP response přepisují staré hodnoty

ARP: Poznámky

- ARP proxy
 - možnost propojení dvou nesousedních sítí
 - proxy zajistí přeposlání ARP paketu do jiné sítě
 - je třeba si uvědomit, že ARP samotný nemůže odejít do jiné sítě (je na úrovni L2)
- RARP (Reverse ARP)
 - dnes se již nepoužívá → DHCP
- útoky pomocí ARP
- statické ARP
 - zabránění automatické výměně zpráv
 - ARP cache je statická a neměnná ightarrow zvýšení bezpečnosti, ale snížení flexibility

Směrování mimo lokální síť

- paket je směrován mimo lokální síť
- záležitost L3 vrstvy!
 - komunikaci mimo lokální síť lze snadno rozpoznat ightarrow zjistíme adresy sítí
- řešeno pomocí forwardingu (předávání) paketů na síťových rozhraních jednoho zařízení
 - router (L3)
 - Ize povolit v OS
- rozhodování o cestě paketu na základě *směrovací tabulky*

Směrování: Směrovací tabulka

cílová síť	gateway (next hop)	interface	metrika
192.168.1.0/24	0.0.0.0	p1	0
192.168.2.0/24	0.0.0.0	p2	0
0.0.0.0/0	10.10.0.101	p4	0

Směrování: Rozhodování

- postupný průchod směrovací tabulkou shora dolů
 - vynásobení cílové adresy paketu s maskou sítě
 - pokud je výsledek roven adrese sítě, paket se odešle skrze dané rozhraní na následující router nebo cílový uzel
 - odeslání do lokální sítě, next hop 0.0.0.0 o přímé směrování
 - cílová síť 0.0.0.0/0 výchozí (implicitní) směr pro paket nevyhovující žádnému z předchozích záznamů (typicky směr do sítě Internet)
 - běžné označení: default gateway (výchozí brána)
- pokud router nedokáže rozhodnou kam má paket poslat, je zahozen (je odeslána informativní zpráva, protokol ICMP)
- záznamy v tabulce uloženy dle délky masky (od největší po nejmenší)
- agregace podsítí
- lacktriangle metrika = cena cesty, pokud existují dva záznamy pro daný cíl ightarrow menší hodnota metriky

Směrování: Naplnění směrovací tabulky

- tabulky jsou udržovány na každém uzlu v síti (včetně koncových)
- statické plnění
 - pracné/nemožné pro velké sítě
- dynamické plnění → pokryto v kurzu KMI/POS2
 - pomocí aplikačních protokolů
 - dělení podle použití
 - IGP uvnitř AS, např. RIP, OSFP
 - EGP mezi AS, např. BGP
 - dělení podle použitého algoritmu
 - lik-state, globální informace, např. Dijkskrův algoritmus hledání nejkratší cesty v grafu (OSPF)
 - distance-vektor, lokální informace, distribuovaný Bellman-Fordův algoritmus, (RIP)
 - path-vector, jako distance-vektor, ale využívá informace o cestě (BGP)

Doba životnosti paketu (TTL)

- zamezení nekonečného oběhu paketu
- každý směrovač snižuje o alespoň 1 onutné přepočítat kontrolní součet záhlaví IP paketu
- dosažení hodnoty 0 je signalizováno služebním protokolem

Odbočka: Virtuální okruhy

- TCP/IP → nespojová služba
- \blacksquare síťová vrstva (obecně) může být řešena jako spojová (výhody vs nevýhody) \to virtuální okruhy
- obvykle využito na úrovni velkých ISP
- směrování na základě popisku (labelu) paketu určující okruh
- MPLS (MultiProtocol Label Switching)
 - obaluje IP pakety
 - transparentnost \rightarrow nižší a vyšší vrstvy nic netuší

Odbočka: Nástroje ping a traceroute

Překlad síťových adres

- NAT (Network Address Translation)
- oddělení IP adres v intranetové (lokální) síti od internetové (venkovní) sítě
- praktické důvody
- na úrovni L3
- překlad:
 - odchozímu (do venkovní sítě) IP paketu je změněna IP adresa odesílatele (adresa v lokální sítí) na venkovní adresu routeru
 - analogicky je měněna adresa příjemce v příchozím (do lokální sítě) IP paketu
 - řešeno pomocí překladové tabulky

Překlad síťových adres

- při odchozí komunikaci je vytvořen v překladové tabulce záznam (odkud, kam)
- při příchozí komunikaci je na základě tohoto záznamu změněna hlavička paketu
- lacktriangle komunikace musí být zahájena ve vnitřní síti! o má své výhody i nevýhody
 - NAT traversal techniky
- lacktriangle problém: více hostů nemůže komunikovat současně s jedním příjemcem ightarrow lze omezeně řešit použitím více tabulek
- plnohodnotné řešení vyžaduje informace z L4 (port)
- poznámka: dnes nutnost, ale má řadu negativ
 - narušuje nezávislost L4 a L3 vrstev
 - narušuje end-to-end komunikaci

Překlad síťových adres: Praktické poznámky

- běžná funkce
- Dynamic NAT více veřejných IP adres rozděleny uzlům v intranetu → omezené řešení → lépe porty (L4)
- Static NAT mapování veřejné (internetové) IP adresy na adresu ve vnitřní síti → lze přistoupit z internetu do intranetu
- source NAT překlad adresy odesílatele
- destination NAT překlad adresy příjemce
- maškaráda = automatický source NAT (není třeba uvádět veřejnou adresu, problémy při reinicializaci)

Filtrace

- pakety mohou být v průběhu směrování filtrovány
 - směrování je složeno z více částí (různá zařízení, různé postupy zpracování paketů, tzv. packet flow)
 - např. přijetí, odeslání, forwardování, ...
- lacktriangle významný bezpečností prvek ightarrow firewall
- podrobněji popíšeme v kontextu L4 vrstvy

Směrování na L3: Shrnutí

- komunikace v lokální síti 192.168.1.101 (A) → 192.168.1.103 (C), přes R
 - A zjistí, že je adresována lokální síť (z masky)
 - A použije směrovací tabulku pro zjištění cesty (přes R) k lokální síti
 - výměna ARP zpráv mezi A a C (R zařízení se naučí MAC adresy na p1 a p3)
 - A pošle data (linkový rámec + IP paket + další)
 - R zařízení zná MAC příjemce ightarrow nepotřebuje data z IP a data doručí

Směrování na L3: Shrnutí

- komunikace mimo lokální síti 192.168.1.101 (A) \rightarrow 10.10.0.104 (D), přes R
 - A zjistí, že je adresována adresa mimo lokální síť (z masky)
 - A použije směrovací tabulku pro zjištění cesty (přes R) k této síti
 - výměna ARP zpráv mezi A a R zařízením (R se naučí MAC adresu na p1)
 - A pošle data (linkový rámec + IP paket + další)
 - R identifikuje, že je příjemcem → potřebuje data z IP pro doručení dat

- ..

Směrování na L3: Shrnutí

- komunikace mimo lokální síti 192.168.1.101 (A) ightarrow 10.10.0.104 (D), přes R
 - ... pokračování
 - R použije směrovací tabulku pro zjištění cesty k síti příjemce (v našem případě triviální přímé směrování, obecně může být další router)
 - R vytvoří nový linkový rámec (potřebuje MAC adresu, buď zná nebo zjistí pomocí ARP)
 - pokud je použit NAT je vytvořen nový IP paket
 - R předá data (skrze p4) ...

Fragmentace paketu

- paket může cestovat přes různé sítě, vždy dochází k vybalení z linkového rámce a následnému zabalení do nového
- lacktriangleright různé (fyzické) technologie ightarrow různé linkové rámce (zejména velikost)
- MTU (Maximum Transfer Unit) maximální velikost dat, které lze přenést v jednom linkovém rámci
- IP paket je omezen na 65535 B
- ideálně velikost IP paketu = MTU
- $lue{}$ pokud se IP paket nevejde do linkového rámce ightarrow fragmentace
 - data jsou rozdělena do několika paketů (fragmentů), každý je posílán samostatným rámcem
 - každý fragment obsahuje část dat (část IP paketu) + data z původní hlavičky + režijní informaci
 - sestavení fragmentů je na příjemci
 - o fragmentaci může požádat odesílatel nebo jakýkoliv router na cestě

Fragmentace paketu

- režijní informace je uložena v hlavičce IP
- identifikátor (16 b)
 - identifikátor + IP odesílatele = jedinečný identifikátor paketu
 - při fragmentaci je identifikátor kopírován do každého fragmentu
- příznaky (3 b)
 - první bit je nepoužit
 - druhý indikuje "do not fragment" (pokud je nastaven na 1, je zakázána fragmentace \rightarrow paket nemusí být možné doručit)
 - třetí bit indikuje "more fragment" (pokud je nastaven na 1, nejedná se o poslední fragment), pokud paket není fragmentován \rightarrow poslední fragment
- fragmentační odsazení (13 b)
 - data dělena do 8 B bloků dat
 - relativní pozice bloku vzhledem k původním datům

Fragmentace paketu: Ilustrace

Volitelné položky v záhlaví IP paketu

- až 40 B
- **z** zapisovány ve tvaru typ (8 b), délka hodnoty (8 b), hodnota (proměnlivá) \rightarrow type-length-value (TLV)
 - typ má strukturu

- copy určuje zda kopírovat volitelné položky při fragmentaci
- class obecné určení paketu (00 řízení paketu, 10 správa a ladění), ostatní jsou nedefinované)
- number určení konkrétní typu položky (používá se pouze 6)

Volitelné položky v záhlaví IP paketu

značně zjednodušeno (uloženi režijní informace je nad rámec kurzu)

kód	název	popis
00001	no-operation	žádná operace, slouží pro zarovnání, má pouze 1 B
00000	end-of-option	konec položky, slouží pro zarovnání, má pouze 1 B
00111	record-route	zaznamenávání IP adres routerů, například ping -r
01001	strict-route	seznam IP adres routerů přes které paket musí jít
		(pokud jde přes jiné, je zahozen)
00011	loose-source-route	seznam IP adres routerů přes které paket musí jít
		(může jít i přes jiné, pokud nenavštíví všechny, je
		zahozen)
00100	timestamp	zaznamenávání času zpracování paketu routerem

Příklad: record-route

Kontrolní součet hlavičky IP paketu

- pouze hlavička IP paketu (integritu dat řeší L4 vrstva)
- idea výpočtu
 - hlavička se rozdělí na části po 16 bitech
 - provede se logický součet položek
 - v položkách je i položka pro samotný kontrolní součet ightarrow nastavena na 0
 - do položky kontrolní součet se uloží (bitová) negace výsledku
- příjemce provede stejný součet, pokud je nenulový paket je zahozen
- obecně považováno za nespolehlivé

ICMP protokol

Internet Control Message Protocol, RFC 777, vkládá se do IP protokolu

_	•	•			
1 B	1 B	2 B			
typ	kód	kontrolní součet			
volitelná část hlavičky					
data					

- služební protokol pro diagnostiku a signalizaci (chybových) stavů
 - echo ping
 - time exceeded vypršel TTL
 - destination unreacheble nedoručitelný paket
 - mnoho další
- v datové části je hlavička IP paketu + prvních 8 bajtů datové části IP paketu (důležitá data)
- kontrolní součet jako u IP, ale z celých dat
- některých situacích není generována ICMP zpráva: ztráta ICMP zprávy, ztráta fragmentu, který není prvním fragmentem, ztráta IP paketu v rámci multicast komunikace

Odbočka: Multicast

- výrazné snížení zátěže odesílatele
- router může předat paket na více rozhraní
- rozdělení do (multicast) skupin (uzly se hlásí do skupiny, mohou být členy více skupin)
- vyhrazeny adresy třídy D (různé účely)
- např. 224.0.0.0/24 lokální multicast (TTL=1)
- protokol IGMP (Internet Group Membership Protocol), různé verze
- problém: ARP neřeší mapování multicast adres na MAC

Odbočka: Multicast

řešení:

- pro multicast MAC adresy vyhrazena polovina rozsahu daného prefixem 01:00:5e
- v nejvyšším bitu 4. bajtu MAC adresy musí být 0 \rightarrow pro mapování zbývá 23 bitů MAC adresy
- multicast IP adresy (třída D) vždy začínají 1110 ightarrow musí se mapovat 28 bitů
- posledních 23 bitů multicast IP adresy se přímo zkopíruje do posledních 23 bitů
 MAC adresy (5 bitů je tedy nevyužito)
- 32 IP multicast skupin se vždy mapuje na jednu multicast MAC adresu (mapování není jednoznačné) → filtrace na úrovni IP vrstvy
- lacktriangle multicast mimo lokální sít ightarrow poměrně složitá záležitost

Bezpečnost protokolu IP

- bezpečnostní problémy
 - odposlouchávání paketů \to nelze zabránit \to data musí být šifrována (obvykle ponecháno na vyšší vrstvě)
 - úprava obsahu (dat) paketu ightarrow integritu dat (obvykle ponecháno na vyšší vrstvě)
 - podvržení IP adresy → data musí být ověřena (autentifikace, obvykle ponecháno na vyšší vrstvě)
- IPSec (IP Security) řeší bezpečnost na úrovni IP vrstvy
 - (transparentní) šifrování dat, integrita a autentifikace
 - transportní režim (chráněna pouze data z L4 vrstvy)
 - tunelový režim (chráněn celý IP paket) ightarrow je vytvořen nový paket
 - dva bezpečnostní protokoly: protokol AH pouze integrita a autentifikace (data nejsou šifrována), nebo protokol ESP integrita, autentifikace, šifrování

Virtuální privátní sítě (VPN)

- přístup do privátní (bezpečné) sítě skrze veřejnou (nebezpečnou) síť
- vzdálený počítat se chová jako počítač připojený do lokální sítě
- služba klient-server
- klient vytváří zabezpečený tunel s VPN serverem (například pomocí IPSec \rightarrow překonáno)
- VPN server je zodpovědný za dešifrování dat → bezpečnostní důsledky