Course Title	Design and Analysis of Algorithms	Semester	IV		
Course Code	23CS252	CIE	50		
Total No. of Contact Hours	50	SEE	50		
No. of Contact Hours/week	3:2:0:2	Total	100		
Credits	43	Exam. Duration	3 Hours		
Teaching Dept	CSE/ISE				

Course objective is to:

- Enable students to learn the methods for analysing algorithms and evaluating their 1. performance.
- Enable students to demonstrate the efficiency of algorithms.
- Prepare students to solve problems using various algorithm design methods 3.
- Appreciate the concepts of P and NP complexity classes.

PREREQUISITES: This course requires that the students are familiar with programming language and Data Structures and Applications. Graph Theory is desirable

Module-1: Introduction and Overview

RBT Levels: L1,L2,L3

10 Hours

Introduction and Examples: What is an Algorithm? Algorithm Specification, Examples from real life: Air Travel, Xerox Shop, Document Similarity and types of algorithms.

Motivation for Performance Analysis using Examples: Bubble Sort, Selection Sort, Insertion Sort, String Pattern Matching. Contrast performance analysis versus actual runs.

Performance Analysis Framework: Space complexity, Time complexity. Asymptotic Notations: Big-Oh notation (O), Omega notation (Ω), Theta notation (θ) ation (), Mathematical analysis of non recursive and recursive Algorithms with Examples.

Text Book 1: Chapter 1.1,2.1-2.4,3.1,3.2 Digital Resource: D1

Module-2: Decrease and Conquer, Divide and Conquer, **Greedy Method**

RBT Levels: L1,L2,L3 10 Hours

Decrease and Conquer Approach: Insertion sort, Topological Sort.

Divide and Conquer: General method, Recurrence equation for divide and conquer, Finding the maximum and minimum. Merge sort, Quick sort

Greedy Method: General method, Knapsack Problem, Job sequencing with deadlines,

Text book 1: Chapter 4.1,4.2,5.1,5.2,6.4 Text book 2:4.1,4.3,4.5

Module-3: Greedy Method, Transform and Conquer, Dynamic Programming

RBT Levels:L1,L2,L3 10 Hours

Minimum cost spanning trees: Prim"s Algorithm, Kruskal"s Algorithm, union find method

Single source shortest paths: Dijkstra's Algorithm. Optimal Tree problem: Huffman Trees and Codes. Transform and Conquer Approach: Heaps and Heap Sort.

Dynamic Programming: General method with Examples, Transitive Closure: Warshall"s Algorithm, All Pairs Shortest Paths: Floyd's Algorithm

Text book 1: 9.1,9.2,9.3,9.4,8.1,8.4	8_								
Module-4: Dynamic Programming, Backtracking	RBT Levels:L1,L2,L3 10 Hours								
Dynamic Programming (cont): Multistage Graphs, Travelling problem, Bellman-Ford Algorithm, Backtracking : General meth subsets problem, Hamiltonian cycles.	g Sales Person problem, Knapsack nod, N-Queens problem, Sum of								
Text book 1: 8.2,12.1 text book 2: 5.2, 5.4, 5.9	9								
Module-5: Space and Time Trade-offs, Branch and Bound and Case Studies	RBT Levels:L1,L2,L3 10 Hours								
Counting Sort Branch and Bound: Assignment Problem, Knapsack	Travelling Salesperson problem, 6,1								
NP-Complete and NP-Hard Problems concept.									
Case Studies: Efficient Route calculation application in GPS system calculates the optimal route from the user's curre calculation considers factors such as distance, estimated trav									
Summarization of all modules.									
Text book 1: 7.1, 12.2, 12.3									
Follow on Courses: Advanced Algorithms, Machine Learnin	g								
Resources for Advanced Learners:									
Data Structures and Algorithms Made Easy – Data Structures Narasimha Karumanchi (M.Tech IIT Bombay, Founder-	Carcerivionic com, c								
2. Algorithms - Sanjoy Dasgupta, Christos H. Papadimitriou by Mc Graw Hill	Algorithms - Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani published								
Suggested Learning Resources:									
Textbooks:									
1. Introduction to the Design and Analysis of Algorithm Pearson.									
Computer Algorithms/C++, Ellis Horowitz, Satraj Sahr Universities Press	ni and Rajasekaran, 2nd Edition, 2014,								
Reference Books:									
Introduction to Algorithms, Thomas H. Cormen, Ch Clifford Stein, 3rd Edition, PHI.	arles E. Leiserson, Ronal L. Rivest,								
2. Design and Analysis of Algorithms, S. Sridhar, Oxford	(Higher Education).								
Web links and Video Lectures (e-Resources):									
Design and Analysis of Algorithms course by Madhava	n Mukund								

X

Activity-Based Learning (Suggested Activities in Class)/ Practical Based learning Real world problem solving and puzzles using group discussion. E.g., Fake coin identification, Peasant, wolf, goat, cabbage puzzle, Konigsberg bridge puzzle etc.,

Demonstration of solution to a problem through programming. 2.

Course	outcomes:
001	Apply asymptotic notational method to analyse the performance of the algorithms in terms of
CO1	time complexity
CO2	Demonstrate divide & conquer approaches and decrease & conquer approaches to solve
	computational problems
CO3	Use transform & conquer and dynamic programming methodologies to solve the given real
	world computational problems
CO4	Explain various classes (P, NP and NP Complete) of problems and demonstrate backtracking,
	branch & bound and approximation methods.
CO5	Apply appropriate algorithm design strategies to a given case study/use case.

CO-PO Mapping															
CO-PO	Mapp	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO/FO	3	3	3	3	-	-	-	-	1	1	-	-	3	-	-
CO2	3	3	3	3	-	-	-	-	1	1	-	-	3	-	-
CO3	3	3	3	3	-	-	-	-	1	1	-	-	3	-	-
CO4	3	3	3	3	-	-	-	-	1	1	-	-	3	-	-
CO5	3	3	3	3	-	-	-	-	1	1	-	-	3	-	-

High-3, Medium-2, Low-1

Question Paper Pattern:

- **CIE Assessment Pattern:** 1.
- **SEE Assessment Pattern:** 2.