计算机组成原理

第五讲

刘松波

哈工大计算学部 模式识别与智能系统研究中心

2. 链式查询方式

3. 计数器定时查询方式

3.5

4. 独立请求方式

3.5

第4章存储器

4.1 概述

4.2 主存储器

4.3 高速缓冲存储器

4.4 辅助存储器

- 4.1 概 述
- 一、存储器分类
 - 1. 按存储介质分类
 - (1) 半导体存储器

TTL, MOS

易失

(2) 磁表面存储器

磁头、载磁体

(3) 磁芯存储器

硬磁材料、环状元件

(4) 光盘存储器

激光、磁光材料

非易出

4.1

2. 按存取方式分类

- (1) 存取时间与物理地址无关(随机访问)
 - 随机存储器 在程序的执行过程中 可 读 可 写
 - 只读存储器 在程序的执行过程中 只 读
- (2) 存取时间与物理地址有关(串行访问)
 - 顺序存取存储器 磁带
 - 直接存取存储器 磁盘

3. 按在计算机中的作用分类

4.1

二、存储器的层次结构

4.1

1. 存储器三个主要特性的关系

2022/8/24 9

2. 缓存一主存层次和主存一辅存层次

4.2 主存储器

一、概述

2022/8/24

1. 主存的基本组成

2. 主存和 CPU 的联系

2022/8/24 12

3. 主存中存储单元地址的分配

高位字节 地址为字地址

低位字节 地址为字地址

字地址		字节地址			
0	0	1	2	3	
4	4	5	6	7	
8	8	9	10	11	

字地址	字节地址		
0	1	0	
2	3	2	
4	5	4	

设地址线 24 根 若字长为16位 若字长为32位

按字节寻址 2²⁴ = 16 MB

按 字 寻址

8 MW

按 字 寻址

4 MW

4. 主存的技术指标

4.2

- (1) 存储容量 主存 存放二进制代码的总位数
- (2) 存储速度
 - 存取时间 存储器的 访问时间 读出时间 写入时间
 - 存取周期 连续两次独立的存储器操作 (读或写)所需的最小间隔时间 读周期 写周期
- (3) 存储器的带宽 位/秒

二、半导体存储芯片简介

1. 半导体存储芯片的基本结构

芯片容量	数据线 (双向)	地址线(单向)
1K×4位	4	10
16K×1位	1	14
8K×8位	8	2022/8/24 13

4.2

二、半导体存储芯片简介

1. 半导体存储芯片的基本结构

片选线 CS CE

读/写控制线 WE (低电平写 高电平读)

 \overline{OE} (允许读) \overline{WE} (允许写)

存储芯片片选线的作用

用 16K×1位的存储芯片组成64K×8位的存储器

8片 8片 8片 32片 16K×1位 16K×1位 16K×1位 16K×1位

当地址为65535时,此8片的片选有效

2022/8/24 17

2. 半导体存储芯片的译码驱动方式

(1) 线选法

三、随机存取存储器(RAM)

4.2

1. 静态 RAM (SRAM)

(1) 静态 RAM 基本电路

① 静态 RAM 基本电路的 读 操作

4.2

② 静态 RAM 基本电路的 写 操作

4.2

(2) 静态 RAM 芯片举例

① Intel 2114 外特性

曾经讲到过的重合法,怎么实现选一次四列?

4.2

(2) 静态 RAM 芯片举例

① Intel 2114 外特性

(3) 静态 RAM 读 时序

t_{DH} WE 失效后的数据维持时间

2022/

2. 动态 RAM (DRAM)

(1) 动态 RAM 基本单元电路 数据线 读选择线 预充电信号 字线 写选择线

读数据线

读出与原存信息相反写入与输入信息相同

读出时数据线有电流 为 "1" 写入时 C_S 充电为 "1" 放电为 "0"

2022/8/24

写数据线

(2) 动态 RAM 芯片举例

4.2

① 三管动态 RAM 芯片 (Intel 1103) 读

③ 单管动态 RAM 4116 (16K × 1位) 外特性 4.2

(3) 动态 RAM 时序

DOUT 有效

4.2

行、列地址分开传送

 读时序
 写时序

 行地址 RAS 有效
 行地址 RAS 有效

 写允许 WE 有效(高)
 写允许 WE 有效(低)

 列地址 CAS 有效
 数据 D_{IN} 有效

列地址 CAS 有效

(4) 动态 RAM 刷新

4.2

刷新与行地址有关

① 集中刷新 (存取周期为0.5 µs)以128×128矩阵为例

"死区"为

 $0.5 \mu s \times 128 = 64 \mu s$

"死时间率"为 128/4 000 × 100% = 3.2%

②分散刷新(存取周期为1µs)

4.2

以 128×128 矩阵为例

W/R	REF	W/R		W/R	REF	W/R	REF	W/R		W/R	REF	
	0				126		127					
$t_{\rm M}$	$\stackrel{t_{\mathrm{R}}}{\longleftrightarrow}$											
\leftarrow t_{C} 刷新间隔 128 个存取周期 \longrightarrow												

$$t_{\rm C} = t_{\rm M} + t_{\rm R}$$

$$\downarrow \qquad \downarrow$$
读写 刷新

无 "死区"

(存取周期为 $0.5 \mu s + 0.5 \mu s$)

③分散刷新与集中刷新相结合(异步刷新)4

对于 128×128 的存储芯片 (存取周期为 0.5 μs) 若每隔 15.6 μs 刷新一行

每行每隔 2 ms 刷新一次

"死区"为 0.5 μs

将刷新安排在指令译码阶段,不会出现"死区"

2022/8/24

3. 动态 RAM 和静态 RAM 的比较

主存	DRAM	SRAM	
存储原理	电容	触发器	缓存
集成度	高	低	
芯片引脚	少	多	
功耗	小	大	
价格	低	高	
速度	慢	快	
刷新	有	无	

2022/8/24