Homework 2 Solutions

Proof of Riemann-Lebesgue

We first consider step functions $f = \sum_{k=1}^{m} c_k 1_{I_k}$, where the $I_k = [a_k, b_k)$ are pairwise-disjoint subintervals of $[-\pi, \pi]$, the c_k are some real numbers, and 1_A denotes the indicator function of the set A (which means $1_A(x) = 0$ for $x \notin A$ and $1_A(x) = 1$ for $x \in A$). In this case we compute

Noting that $|e^{ina_k}-e^{inb_k}| \leq |e^{ina_k}|+|e^{inb_k}|=2$ and using the triangle inequality in the triangle sum, which clearly tends to 0 as $|n| \mapsto \infty$. Note here that m is not related to n in any way.

Next, we use the given fact to extend the convergence to all f which are integrable. Let f be integrable and take some f be the recurrence function $g_{\epsilon} \leq f$ such that $\frac{1}{2\pi} \int_{-\pi}^{\pi} (f - g_{\epsilon}) \leq \epsilon$. Consequently, we find that

$$|\widehat{f}(n)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x) - g_{\epsilon}(x)) e^{-inx} dx + \frac{1}{2\pi} \int_{-\pi}^{\pi} g_{\epsilon}(x) dx \right|$$

$$\leq \frac{1}{2\pi} \int |f(x) - g_{\epsilon}(x)| dx + |\widehat{g}_{\epsilon}(n)|$$

$$\leq \epsilon + |\widehat{g}_{\epsilon}(n)|.$$

Letting $|n| \to \infty$ on both sides and noting that g_{ϵ} is a step function, we notice that $\limsup_{|n| \to \infty} |\hat{f}(n)| \le \epsilon$. Since ϵ is arbitrary, this gives the desired result.

The proof extends to complex-valued f by considering real and imaginary parts separately.

Chapter 2, Problem 2

Noting that $|\sin(x/2)| \leq |x/2|$ and making the substitution $u = (N + \frac{1}{2})\pi$,

$$\int_{-\pi}^{\pi} |D_N(x)| dx = 2 \int_0^{\pi} |D_N(x)| dx$$

$$= 2 \int_0^{\pi} \frac{|\sin((N + \frac{1}{2})x)|}{|\sin(x/2)|} dx$$

$$\ge 2 \int_0^{\pi} \frac{|\sin((N + \frac{1}{2})x)|}{|x/2|} dx$$

$$= 4 \int_0^{(N + \frac{1}{2})\pi} \frac{|\sin(u)|}{u} du$$

Assignment Project $E^{\frac{1}{2}\sum_{k=1}^{N-1}\int_{k}^{(k+1)\pi}\frac{|\sin u|}{k}du}$. Now noting that $\frac{1}{u}\leq\frac{1}{(k+1)\pi}$ for $u\in[k\pi,(k+1)\pi]$ and then noting that

$$\int_{k\pi}^{(k+1)\pi} |\sin u| du = 2, \text{ we see that the last expression is bounded below by } 1 + \sum_{k=0}^{(k+1)\pi} |\cos u| du = \frac{8}{\pi} \sum_{k=0}^{\infty} \frac{1}{k+1}.$$

Now we take for galted that the partial time of h which coefficies are asymptotic to $\log N$, finishing the proof. If we multiply by $\frac{1}{2\pi}$ then we get the constant $c=\frac{4}{\pi^2}$ mentioned in the problem.

Chapter 3, Exercise 12

We have that

$$2\pi = \int_{-\pi}^{\pi} D_N(t)dt = \int_{-\pi}^{\pi} \sin((N+1/2)t) \left(\frac{1}{\sin(t/2)} - \frac{1}{t/2}\right) dt + \int_{-\pi}^{\pi} \frac{\sin((N+\frac{1}{2})t)}{t/2} dt.$$

Let us call these two terms on the right hand side as A_N and B_N , respectively. Then letting $f(t) = \frac{1}{\sin(t/2)} - \frac{1}{t/2}$, which is an odd function that extends continuously to 0, we have

$$A_N = \int_{-\pi}^{\pi} \sin((N+1/2)t)f(t)dt$$
$$= -i \int_{-\pi}^{\pi} e^{i(N+\frac{1}{2})t} f(t)dt$$

Assignment Project Exam Help

which tends to 0 as $n \to \infty$ by the Riemann-Lebesgue lemma (applied to the function $t \mapsto e^{\frac{1}{2}it} f(t)$).

Now for by the stitute powicoder com

Add
$$We^{C_0} h_{\underbrace{a_1^{t/2} powcoder}_{u}du}^{B_N = 2} \underbrace{\int_0^{\pi} \frac{\sin((N + \frac{1}{2})t)}{h_{\underbrace{a_1^{t/2} powcoder}_{u}du}}_{iu} dt}_{du}$$

Combining the results of the past several paragraphs, we find that

$$\lim_{N \to \infty} \int_0^{(N + \frac{1}{2})\pi} \frac{\sin u}{u} du = \lim_{N \to \infty} \frac{1}{4} B_N = \lim_{N \to \infty} \frac{1}{4} (2\pi - A_N) = \frac{\pi}{2}.$$

The proof is finished by noting that if $|x - (N + \frac{1}{2})\pi| \le \frac{\pi}{2}$, then $x \ge N\pi$, so

$$\left| \int_x^{(N+\frac{1}{2})\pi} \frac{\sin u}{u} du \right| \le \frac{1}{2N}.$$

Chapter 3, Exercise 13

Let $f \in C^k(\mathbb{T})$, and let $g := f^{(k)}$. From Homework 1 (or directly by repeated integration-by-parts), we know that $\hat{g}(n) = i^k n^k \hat{f}(n)$. Since g is integrable (in fact continuous) by assumption, we also know from Riemann-Lebesgue that $\hat{g}(n) \to 0$, hence $|n^k \hat{f}(n)| = |i^{-k} \hat{g}(n)| \to 0$ as $|n| \to \infty$ (since $|i^{-k}| = 1$).

Chapter 3, Exercise 15

Part a: Fixing $n \neq 0$ and making the substitution $\theta = x + \frac{\pi}{n}$, we find that

$$2\pi \hat{f}(n) = \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta = \int_{-\pi - \pi/n}^{\pi + \pi/n} f(x + \pi/n) e^{-in(x + \frac{\pi}{n})} dx.$$

Now using the result of (the pond part of) Exercise 1 of Chapter 2 with a Singland the Country of the country o

$$\mathbf{Add} = \mathbf{\mathbf{y}}_{-\pi} f(n) + 2\pi \hat{f}(n)$$

$$\mathbf{Add} = \mathbf{\mathbf{y}}_{-\pi} f(n) + 2\pi \hat{f}(n)$$

$$= \int_{-\pi}^{\pi} \left[f(x) - f(x + \pi/n) \right] e^{-inx} dx.$$

Part b: If $|f(x)-f(y)| \le C|x-y|^{\alpha}$, then clearly $|f(x)-f(x+\pi/n)| \le C(\pi/n)^{\alpha} = C'n^{-\alpha}$, and therefore

$$2\pi |\hat{f}(n)| \le \int_{-\pi}^{\pi} |[f(x) - f(x + \pi/n)]e^{-inx}| dx \le 2\pi C' n^{-\alpha}.$$

Part c: We write

$$f(x) - f(y) = \sum_{2^k < |x-y|^{-1}} 2^{-k\alpha} (e^{i2^k x} - e^{i2^k y}) + \sum_{2^k \ge |x-y|^{-1}} 2^{-k\alpha} (e^{i2^k x} - e^{i2^k y}).$$

Let's call the terms on the right-hand side as A and B respectively. Note that these are functions of x and y. We define the integer quantity

$$K:=\min\{k\in\mathbb{N}: 2^k\geq |x-y|^{-1}\}=\lceil -\log_2|x-y|\rceil,$$

which is also a function of x and y. To solve the problem, the first observation we make is that if $|z|, |w| \le 1$ then $|e^{2^k z} - e^{2^k w}| \le 2^k |z - w|$, which is given as a hint. In particular, applying this to A and applying a geometric sum identity gives

$$A \le \sum_{2^k < |x-y|^{-1}} 2^{-k\alpha} |e^{i2^k x} - e^{i2^k y}|$$

$$\le \sum_{2^k < |x-y|^{-1}} 2^{(1-\alpha)k} |x-y|$$

$$= \frac{2^{(1-\alpha)K} - 1}{2^{1-\alpha} - 1} |x-y|.$$

Using the fact that $2^K=2\cdot 2^{K-1}\leq 2|x-y|^{-1}$, we see that $2^{(1-\alpha)K}-1\leq 2^{(1-\alpha)K}\leq 2^{1-\alpha}|x-y|^{\alpha-1}$. So the last expression is bounded above by

Assignment Project Exam Help which proves the desired bound for A. Now for B, we use that $|e^{i2^kx} - e^{i2^ky}| \le 2$ and $2^{-K} \le |x - y|$ so that

https://powcoder.com

Add We
$$\sum_{1-2^{-\alpha}}^{2^{-\alpha K}} powcoder$$

which proves the claim.