ÜBUNGSBLATT 1

Aufgabe 1. Sei $f: Y \to X$ eine stetige Abbildung von topologischen Räumen und \mathcal{F} eine Garbe auf Y. Der *Push Forward* $f_{\star}\mathcal{F}$ von \mathcal{F} bezüglich f ist für eine offene Menge $U \subset X$ definiert als

$$(f_{\star}\mathcal{F})(U) := \mathcal{F}(f^{-1}(U)).$$

Dies ist eine Garbe. Sei $p \in X$ ein Punkt, $\iota : \{p\} \hookrightarrow X$ die zugehörige Inklusion und bezeichne \mathcal{G} die konstante Garbe auf $\{p\}$ mit Werten in einer abelschen Gruppe G.

- (i) Man berechne $\iota_{\star}\mathcal{G}$.
- (ii) Man berechne die Halme von $\iota_{\star}\mathcal{G}$.

Aufgabe 2. Es sei $\mathcal{C} = \mathcal{C}_{\mathbb{S}^1}$ die Garbe der reellwertigen stetigen Funktionen auf dem Einheitskreis \mathbb{S}^1 und $\mathbb{R} = \mathbb{R}_{\mathbb{S}^1}$ die konstante Garbe, welche eine Untergarbe von \mathcal{C} ist. Man zeige, dass der Prägarbenquotient $\mathcal{F} := \mathcal{C}//\mathbb{R}$ keine Garbe ist.

Aufgabe 3. Sei $\varphi : \mathcal{F} \to \mathcal{G}$ ein Garbenmorphismus auf einem topologischen Raum X.

- (i) Man zeige beispielhaft anhand der Bildgarbe im φ , dass die Halmbildung kommutiert, d.h. für alle $p \in X$ gilt $(\operatorname{im} \varphi)_p = \operatorname{im} \varphi_p$. Gleiches gilt für die übrigen Objekte, wie Kern, Kokern und Quotientengarbe.
- (ii) Man folgere die Aussage der Vorlesung, dass eine Sequenz von Garben

$$\mathcal{F} \stackrel{\varphi}{\longrightarrow} \mathcal{G} \stackrel{\psi}{\longrightarrow} \mathcal{H}$$

genau dann exakt ist, wenn die induzierte Sequenz der Halme

$$\mathcal{F}_p \stackrel{arphi_p}{\longrightarrow} \mathcal{G}_p \stackrel{\psi_p}{\longrightarrow} \mathcal{H}_p$$

für alle $p \in X$ exakt ist.

Aufgabe 4. Auf dem toplogischen Raum $\mathbb C$ mit der analytischen Topologie betrachten wir die folgende Sequenz von Garben

$$0 \to \mathbb{Z} \xrightarrow{2\pi i} \mathcal{O} \xrightarrow{\exp} \mathcal{O}^* \longrightarrow 0$$
.

Hierbei bezeichnet \mathbb{Z} die konstante Garbe, \mathcal{O} die Garbe der holomorphen Funktionen und \mathcal{O}^* die Garbe der nirgends verschwindenen holomorphen Funktionen.

- (i) Man zeige, dass diese Sequenz exakt ist.
- (ii) Man gebe ein Beispiel für eine offene Menge $U \subset \mathbb{C}$ an, so dass die induzierte Sequenz der Schnitte nicht exakt ist.