	<pre>import matplotlib.pyplot as plt import sympy as sp import nbconvert import pandoc</pre>
In []:	<pre>from IPython.display import display, Math, Latex A = np.array([[1,-2], [-3,4]]</pre>
	<pre>norm1 = np.linalg.norm(A, ord = 1) norm2 = np.linalg.norm(A, ord = 2) norm_inf = np.linalg.norm(A, ord = np.inf) print(norm1, norm2, norm_inf)</pre>
In []:	6.0 5.464985704219043 7.0 def tril(A,index = 0): """ 得到A矩阵第index行以下的矩阵 Args: A (_Matrix_): 输入矩阵
	<pre>n=len(A) L = np.zeros_like(A) for i in range(index,n): for j in range(0,i+1-index): L[i,j] = A[i,j]</pre>
	<pre>return L def diag(A): D = np.zeros_like(A) for i in range(len(A)):</pre>
	D[i,i] = A[i,i] return D def triu(A,index = 0): """ 得到A矩阵第index行以上的矩阵
	Args: A (_Matrix_): 输入矩阵 """ n=len(A) U = np.zeros_like(A)
	<pre>for j in range(index,n): for i in range(0,j+1-index): U[i,j] = A[i,j] return U def Jacobi_interation(A,b,x0,tol = 1e-6,max_iter = 50):</pre>
	采用Jacobi迭代法求解线性方程组Ax=b Args: A (_type_): _description_ b (_type_): _description_ x0 (_type_): _description_ tol (type): _description
	<pre>max_iter (_type_): _description_ """ dA = diag(A) r0 = np.linalg.norm(b - np.dot(A,x0)) L = tril(A,1) U = triu(A,1) B = L + U</pre>
	for k in range(max_iter): x1 = np.dot(np.linalg.inv(dA),b - np.dot(B,x0)) r1 = np.linalg.norm(b - np.dot(A,x1)) if r1/r0 < tol: print(f"迭代次数:{k+1},结果为:{x1}") break else:
	x0 = x1 if k == max_iter-1: print("选代次数已达到最大值") return x1
In []:	def Gauss_Seidel_interation(A,b,x0,tol = 1e-6,max_iter = 50): """采用Gauss_seidel法求解线性方程组Ax=b Args: A (_type_): _description_ b (_type_): _description_ x0 (_type_): _description_ tol (_type_): _description_
	<pre>max_iters (_type_): _description_ """ dA = diag(A) r0 = np.linalg.norm(b - np.dot(A,x0)) L = tril(A,1) U = triu(A,1) B = L + U</pre>
	for k in range(max_iter): x1 = np.dot(np.linalg.inv(dA - L),b + np.dot(U,x0)) r1 = np.linalg.norm(b - np.dot(A,x1)) if r1/r0 < tol: print(f"迭代次数:{k+1},结果为:{x1}") break else:
In []:	x0 = x1
111 [].	#####################################
	<pre>Returns: _type_: _description_ """ dA = diag(A) r0 = np.linalg.norm(b - np.dot(A,x0)) L = tril(A,1)</pre>
	<pre>U = A - L for k in range(max_iter): C = np.linalg.inv(dA - w*L) x1 = np.dot(np.dot(np.linalg.inv(dA - w * L),((1-w) * dA + w * U)),x0) + w * np.dot(np.linalg.inv(dA - w*L),b) r1 = np.linalg.norm(b - np.dot(A,x1)) if r1/r0 < tol:</pre>
	print(f"迭代次数:{k+1},结果为:{x1}")
In []:	return x1 def grad_descent(A,b,x0,tol = 1e-6,max_iter = 150): """ 采用梯度下降法计算Ax = b的解 Args:
	A (_Matrix_): 系数矩阵 b (_Vector_): 偏置 x0 (_Vector_): 初始向量 """ A = A.copy() b = b.copy() x0 = x0.copy()
	r0 = b - np.dot(A,x0) ## 初始残差 i = 0 ## 迭代次数 while np.linalg.norm(r0) > tol and i < max_iter: P = r0
	<pre>A_P = np.dot(A,P) alpha = np.dot(P,r0)/np.dot(P,A_P) x0 = x0 + alpha * P r0 -= alpha * A_P i += 1</pre>
	<pre>if i < max_iter: x = x0 print(f"Iterator:{i+1}时收敛到目标精度,求解出的解为:{x}")</pre>
	else: residual = np.linalg.norm(r0) x = x0 print(f"Iterator:{i+1},但是未达到目标精度, 残差为{residual}") return x
In []:	A = np.array([[10,0], [0,1]]
	<pre>).astype(np.float64) b = np.array([8,5]).astype(np.float64) x0 = np.array([1,1]).astype(np.float64) x = grad_descent(A,b,x0) print(x)</pre>
	Iterator:55时收敛到目标精度,求解出的解为: $[0.80000004\ 4.999999921]$ $[0.80000004\ 4.99999921]$ 我们很容易能够发现,梯度下降法每次前进后,下一次的方向与上一次的方向必定正交,即: $P_{k+1} \perp P_k$ 这就意味着,我们在每次前进后必须沿着垂直的方向前进,尽管我们在当前时间步内取得了局部的最小值,但这并不意味着在全局内我们是最优策略,转化为Code方面的来看,也就是grad_descent采用的是 greedy (贪心)策略,但是实际上,我们面临的问题并不都是贪心的、\在这种意义上,我们或许需
In []:	要寻找一个相对来说收敛更快的的算法\\ 这也就引出了我们下面定义的共轭梯度法 def AspaceDot(A, u, v): """ A-内积定义 Args:
	Args: A (_Matrix_): A矩阵(要求对称正定) u (_Vector_): 内积向量 v (_Vector_): 内积向量
	v (_Vector_): 内积向量 Returns: _float/integer_: 返回u,v在A矩阵意义下的内积 """
	Returns: float/integer_: 返回u,v在A矩阵意义下的内积 return np.dot(u,A@v) def conjugate_gradient(A,b,x0,tol=le-6,max_iter=150): """采用共轭梯度法来求解Ax=b的解 Args:
	Returns:
	Returns: float/integer_: 返回u,v在A矩阵意义下的内积 """ return np.dot(u,A@v) def conjugate gradient(A,b,x0,tol=le-6,max_iter=150): """采用共轭梯度法来求解Ax=b的解 Args: A (_type_): _description_ b (_type_): _description x0 (_type_): _description_ tol (_type_): _description_ tol (_type_): _description Defaults to le-6. maxiter (int, optional): _description Defaults to 150. """
	Relures:
	### Total (Findings of 1901)
	#####################################
	### STORY OF THE PROPERTY OF
In []:	The content of the
In []:	### 1997 (1997年) 1997年
In []:	Parameter
In []:	### 1995 1995 1995 1995 1995 1995 1995 1
In []:	### 100 Part
In []:	Section Comparison Compar
	Marie Mari
	Section Companies Compan
	The content of the
	The content of the
	The content of the
	The state of the s
In []:	The state of the s
In []:	The control of the co
In []:	The second of the properties of the second o
In []:	The control of the co
In []:	The control of the co