

Simplificação de expressões lógicas Álgebra de Boole

Identidades						
Complementação	Adição	Multiplicação				
	A+0=A	A.0=0				
$ar{ar{A}}$ = ${\cal A}$	A+1=1	A.1=A				
	A+A=A	A.A=A				
	A+Ā=1	A. $ar{A}$ =0				

Identidades						
Complementação	Adição	Multiplicação				
$ar{ar{A}}$ = $m{A}$	A+0=A	A.0=0				
	A+1=1	A.1=A				
	A+A=A	A.A=A				
	A+Ā=1	A.Ā=0				

Identidades					
Complementação	Adição	Multiplicação			
	A+0=A	A.0=0			
₹ .	A+1=1	A.1=A			
$ar{A}$ = ${\cal A}$	A+A=A	A.A=A			
	$A+\bar{A}=1$	A.Ā=0			

Identidades					
Complementação	Adição	Multiplicação			
	A+0=A	A.0=0			
₹ .	A+1=1	A.1=A			
$ar{A}$ = ${\cal A}$	A+A=A	A.A=A			
	$A+\bar{A}=1$	A.Ā=0			

Propriedades

Comutativa: A+B=B+A A.B=B.A Associativa: A+(B+C)=(A+B)+C=A+B+C A.(B.C)=(A.B).C=A.B.C

Distributiva: A(B+C)= AB + AC

Teoremas de De Morgan
$$\frac{\overline{A}.\overline{B} = \overline{A} + \overline{B}}{\overline{A} + \overline{B} = \overline{A}.\overline{B}}$$

Identidades auxiliares A+AB=A $A+\overline{A}B=A+B$ $\overline{A}+AB=\overline{A}+B$ (A+B).(A+C)=A+BC

DEMONSTRAÇÃO:

$$A+\overline{A}B = A + B$$

 $A+\overline{A}B = A(B+\overline{B})+\overline{A}B$
 $A+\overline{A}B = AB+A\overline{B}+\overline{A}B$
 $A+\overline{A}B = AB+AB+A\overline{B}+\overline{A}B$
 $A+\overline{A}B = A(B+\overline{B})+B(A+\overline{A})$
 $A+\overline{A}B = A+B$

DEMONSTRAÇÃO:

$$(A+B).(A+C)=A+BC$$
 $(A+B).(A+C)=AA+AC+AB+BC$
 $(A+B).(A+C)=A+AC+AB+BC$
 $(A+B).(A+C)=A(1+C+B)+BC$
 $(A+B).(A+C)=A(1)+BC$
 $(A+B).(A+C)=A(1)+BC$

2. Tabela Verdade

ENTRADAS		SAÍDAS			
Sp	S ₅	R _p	G _p	Rs	Gs
0	0				
0	1				
1	0				
1	1				

INSTITUTO FEDERAL Ceará

$$G_{P} = \overline{S}_{P} \overline{S}_{S} + S_{P} \overline{S}_{S} + S_{P} S_{S}$$

$$G_{P} = \overline{S}_{S} (\overline{S}_{P} + S_{P}) + S_{P} S_{S}$$

$$G_{P} = \overline{S}_{S} + S_{S} S_{P}$$

$$G_{P} = \overline{S}_{S} + S_{P}$$

$$G_{P} = S_{P}S_{S}$$

$$G_{P} = S_{P}S_{S}$$

$$G_{P} = S_{P} + S_{S}$$

$$G_{P} = S_{S} + S_{P}$$

INSTITUTO FEDERAL Ceará

$F = \overline{A} B \overline{C} + \overline{A} B C + A \overline{B} C + A B \overline{C}$

$$F = \overline{AB}(\overline{C} + C) + \overline{AB}C + \overline{AB}C$$

$$F = \overline{A}B + A\overline{B}C + AB\overline{C}$$

$$F = B(\overline{A} + A\overline{C}) + A\overline{B}C$$

$$F = B(\overline{A} + \overline{C}) + A\overline{B}C$$

$$F = \overline{A}B + B\overline{C} + A\overline{B}C$$

TAREFA

a) Projete o circuito de controle abaixo, simplifique por álgebra de Boole (manuscrito) e realize a simulação no software Proteus. Envie, se possível, o arquivo .pdf contendo o desenvolvimento do projeto e um vídeo evidenciando o aluno, a máquina e a simulação do funcionamento no Proteus.

A figura ao lado mostra de forma esquemática a conexão de 4 computadores de uma determinada empresa a uma única impressora. Esta conexão é feita através de um circuito de controle.

Devem ser obedecidas às seguintes prioridades:

- Computador do setor administrativo (ADM) 1º prioridade
- Computador do setor pessoal (PES) 2º prioridade
- Computador do setor de engenharia (ENG) 3º prioridade
- Computador do setor de vendas (VEN) 4º prioridade

TAREFA

b) Projete um comparador de dois números binários de dois bits cada(A,B) que acenda um LED quando A>B. Simplifique por álgebra de Boole (manuscrito) e realize a simulação no software Proteus. Envie, se possível, o arquivo .pdf contendo o desenvolvimento do projeto e um vídeo evidenciando o aluno, a máquina e a simulação do funcionamento no Proteus.

0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

A figura ao lado mostra de forma esquemática a conexão de 4 computadores de uma determinada empresa a uma única impressora. Esta conexão é feita através de um circuito de controle.

Devem ser obedecidas às seguintes prioridades:

- Computador do setor administrativo (ADM) 1º prioridade
- Computador do setor pessoal (PES) 2º prioridade
- Computador do setor de engenharia (ENG) 3º prioridade
- Computador do setor de vendas (VEN) 4º prioridade

0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

TAREFA

b) Projete um comparador de dois números binários de dois bits cada(A,B) que acenda um LED quando A>B. Simplifique por álgebra de Boole (manuscrito) e realize a simulação no software Proteus . Envie , se possível, o arquivo .pdf contendo o desenvolvimento do projeto e um vídeo evidenciando o aluno, a máquina e a simulação do funcionamento no Proteus.