Optimal location for pop-up clinics: improving health care accessibility

```
!pip install geopandas==0.3.0
!pip install pyshp==1.2.10
# !pip install shapely==1.6.3
!pip install plotly==4.12.0
```

Healthcare Project

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.decomposition import PCA
```

Data

AQI


```
In [3]: # aqi for counties across the US in 2019
annual_aqi = pd.read_csv("annual_aqi_by_county_2019.csv")
annual_aqi["NAME"] = annual_aqi["County"] + " County, " + annual_aqi["State annual_aqi.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1052 entries, 0 to 1051
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	State	1052 non-null	object
1	County	1052 non-null	_
2	Year	1052 non-null	int64
3	Days with AQI	1052 non-null	int64
4	Good Days	1052 non-null	int64
5	Moderate Days	1052 non-null	int64
6	Unhealthy for Sensitive Groups Days	1052 non-null	int64
7	Unhealthy Days	1052 non-null	int64
8	Very Unhealthy Days	1052 non-null	int64
9	Hazardous Days	1052 non-null	int64
10	Max AQI	1052 non-null	int64
11	90th Percentile AQI	1052 non-null	int64
12	Median AQI	1052 non-null	int64
13	Days CO	1052 non-null	int64
14	Days NO2	1052 non-null	int64
15	Days Ozone	1052 non-null	int64
16	Days SO2	1052 non-null	int64
17	Days PM2.5	1052 non-null	int64
18	Days PM10	1052 non-null	int64
19	NAME	1052 non-null	object
7 .			

dtypes: int64(17), object(3)
memory usage: 164.5+ KB

In [4]: annual_aqi.head()

Out[4]:

	State	County	Year	Days with AQI	Good Days	Moderate Days	Unhealthy for Sensitive Groups Days	Unhealthy Days	Very Unhealthy Days		Ŋ
(O Alabama	Baldwin	2019	271	237	34	0	0	0	0	
	1 Alabama	Clay	2019	107	97	10	0	0	0	0	
:	2 Alabama	Colbert	2019	263	252	11	0	0	0	0	
;	3 Alabama	DeKalb	2019	361	324	37	0	0	0	0	
	4 Alabama	Elmore	2019	228	208	20	0	0	0	0	

Public health insurance

In [5]: # public health insurance coverage for counties across US in 2019
public_ins_national_2019 = pd.read_csv("public_national_ins_2019.csv")
public_ins_national_2019.head()

Out[5]:		GEO_ID	NAME	K202703_001E	K202703_001M	K202703_002E	K202703_002M
	0	id	Geographic Area Name	Estimate!!Total:	Margin of Error!!Total:	Estimate!!Total:!!With public coverage	Margin of Error!!Total:!!With public coverage
	1	0500000US01001	Autauga County, Alabama	55129	647	21307	2466
	2	0500000US01003	Baldwin County, Alabama	220911	1474	86564	6504
	3	0500000US01005	Barbour County, Alabama	21752	729	10528	1053
	4	0500000US01007	Bibb County, Alabama	21458	566	7244	1446

In [6]: public_ins_national_2019 = pd.read_csv("public_national_ins_2019.csv").iloc
 public_ins_national_2019 = public_ins_national_2019.rename(columns = {"K20
 public_ins_national_2019["coverage"] = public_ins_national_2019["Estimate_T
 public_ins_national_2019.head()

Out[6]:		GEO_ID	NAME	Estimate_Total	Margin_of_Error_Total	Estimate_Total_with_public_cov
	1	0500000US01001	Autauga County, Alabama	55129	647	21307
	2	0500000US01003	Baldwin County, Alabama	220911	1474	86564
	3	0500000US01005	Barbour County, Alabama	21752	729	10528
	4	0500000US01007	Bibb County, Alabama	21458	566	7244
	5	0500000US01009	Blount County, Alabama	57378	356	20169

Merging AQI, Health insurance

Out[7]:

	INAIVIE	Median AQI	coverage
67	San Bernardino County, California	80	0.417208
64	Riverside County, California	77	0.406822
53	Los Angeles County, California	71	0.389905
50	Kern County, California	67	0.493683
83	Tulare County, California	66	0.546076

```
In [8]: # association b/w Median AQI, public health insurance coverage
  median_aqi = aqi_ins_coverage["Median AQI"]
  ins_coverage = aqi_ins_coverage["coverage"]

ax = sns.regplot(x="coverage", y="Median AQI", data=aqi_ins_coverage)
```



```
In [9]: coverage_temp = np.asarray(ins_coverage)
    aqi_temp = np.asarray(median_aqi)
    x_std_units = (coverage_temp - np.mean(coverage_temp)) / np.std(coverage_te
    y_std_units = (aqi_temp - np.mean(aqi_temp)) / np.std(aqi_temp)
    r = np.corrcoef(x_std_units, y_std_units)[0][1]
    r
```

Out[9]: -0.13061378746888053

We observe a weakly negative linear association between median AQI and public health insurance coverage rates. This AQI represents a physical or environmental factor of health. In regions with poorer air quality, they are slightly less likely to be covered with public health insurance.

Economic characteristics

In [10]:

various economic characterstics. so many columns tho O.o
economic_characteristics = pd.read_csv("economic_characteristics.csv")
economic_characteristics.columns = economic_characteristics.iloc[0]
economic_characteristics = economic_characteristics.rename(columns={'Geograeconomic_characteristics.head()

/opt/venv/lib/python3.7/site-packages/IPython/core/interactiveshell.py:31 47: DtypeWarning: Columns (2,3,5,6,8,9,11,12,14,15,17,18,20,21,23,24,26,2 7,29,30,32,33,35,36,38,39,41,42,44,45,47,48,50,51,53,54,56,57,59,60,62,6 3,65,66,68,70,71,73,74,76,77,79,80,82,83,85,86,87,89,90,92,93,95,96,98,9 9,101,102,104,105,107,108,110,111,113,114,116,117,119,120,122,123,125,12 6,128,129,131,132,134,135,137,138,140,141,143,144,146,147,149,150,152,15 3,155,156,158,159,161,162,164,165,167,168,170,171,173,174,176,177,179,18 0,182,183,185,186,188,189,191,192,194,195,197,198,200,201,206,207,212,21 3,215,216,218,219,221,222,224,225,227,228,230,231,233,234,236,237,239,24 0,242,243,245,246,248,249,251,252,254,255,257,258,260,261,263,264,266,26 7,269,270,272,273,275,276,278,279,281,282,284,285,287,288,290,291,293,29 4,296,297,299,300,302,303,305,306,308,309,311,312,314,315,317,318,320,32 1,323,324,326,327,329,330,332,333,335,336,338,339,341,342,344,345,347,34 8,350,351,353,354,356,357,359,360,362,363,365,366,368,369,374,375,377,37 8,380,381,383,384,386,387,389,390,392,393,395,396,398,399,401,402,404,40 5,407,408,410,411) have mixed types. Specify dtype option on import or set low memory=False.

interactivity=interactivity, compiler=compiler, result=result)

Out[10]:

	id	NAME	2014-2018 Estimate!!EMPLOYMENT STATUS!!Population 16 years and over!!In labor force!!Civilian labor force!!Employed	2009-2013 Estimate!!EMPLOYMENT STATUS!!Population 16 years and over!!In labor force!!Civilian labor force!!Employed	Significance!!EMF STATUS!!Po years and ov force!!Ci force!
0	id	Geographic Area Name	2014-2018 Estimate!!EMPLOYMENT STATUS!!Populat	2009-2013 Estimate!!EMPLOYMENT STATUS!!Populat	Significance!!EMI
1	0500000US01001	Autauga County, Alabama	55.6	56.7	
2	0500000US01003	Baldwin County, Alabama	55.7	54.8	
3	0500000US01005	Barbour County, Alabama	41.6	42.4	
4	0500000US01007	Bibb County, Alabama	43.8	43.6	

5 rows × 413 columns

```
In [11]: def corr_coeff(x, y):
    x_su = (x - np.mean(x)) / np.std(x)
    y_su = (y - np.mean(y)) / np.std(y)
    r = np.corrcoef(x_std_units, y_std_units)[0][1]
    return r
```

In [12]: economic_characteristics = economic_characteristics.rename(columns={"2014-2" economic_characteristics["Employment"] = pd.to_numeric(economic_characteristics economic_characteristics = economic_characteristics[~economic_characteristit # ins_coverage_employment = ins_coverage_employment["NAME", "Employment"] economic_characteristics.head()

Out[12]:

	id	NAME	Employment	2009-2013 Estimate!!EMPLOYMENT STATUS!!Population 16 years and over!!In labor force!!Civilian labor force!!Employed	Statistical Significance!!EMPLOYMENT STATUS!!Population 16 years and over!!In labor force!!Civilian labor force!!Employed	Es)
1	0500000US01001	Autauga County, Alabama	55.6	56.7	NaN	
2	0500000US01003	Baldwin County, Alabama	55.7	54.8	NaN	
3	0500000US01005	Barbour County, Alabama	41.6	42.4	NaN	
4	0500000US01007	Bibb County, Alabama	43.8	43.6	NaN	
5	0500000US01009	Blount County, Alabama	46.5	50.6	*	

5 rows × 413 columns

Merging Employment, Health insurance

```
In [13]: ins_coverage_employment = public_ins_national_2019.merge(economic_character
ins_coverage_employment = ins_coverage_employment[['NAME', 'Employment', 'c
ins_coverage_employment.head()
```

Out[13]:

	NAME	Employment	coverage
0	Autauga County, Alabama	55.6	0.386493
1	Baldwin County, Alabama	55.7	0.391850
2	Barbour County, Alabama	41.6	0.484001
3	Bibb County, Alabama	43.8	0.337590
4	Blount County, Alabama	46.5	0.351511

```
In [68]: employment_estimate = ins_coverage_employment["Employment"]
    ins_coverage = ins_coverage_employment["coverage"]

ax = sns.regplot(x="coverage", y="Employment", data=ins_coverage_employment
    plt.title("Correlation between Coverage and Employment");
```



```
In [15]: ins_temp = np.asarray(ins_coverage)
    employment_temp = np.asarray(employment_estimate)
    x_std_units = (ins_temp - np.mean(ins_temp)) / np.std(ins_temp)
    y_std_units = (employment_temp - np.mean(employment_temp)) / np.std(employment_r = np.corrcoef(x_std_units, y_std_units)[0][1]
    r
```

Out[15]: -0.7612749660208625

We observe a strong negative correlation between employment rates and health insurance coverage rates per county. This fits our understanding of the data, however, because we focused on those covered by public health insurance programs, and areas with high employment rates are likely to be covered by private insurers.

C

```
In [16]: county_data = pd.read_csv("county_data_abridged.csv")
county_data.head()
```

Out[16]:

		countyFIPS	STATEFP	COUNTYFP	CountyName	StateName	State	lat	lon	P
-	0	01001	1.0	1.0	Autauga	AL	Alabama	32.540091	-86.645649	
	1	01003	1.0	3.0	Baldwin	AL	Alabama	30.738314	-87.726272	
	2	01005	1.0	5.0	Barbour	AL	Alabama	31.874030	-85.397327	
	3	01007	1.0	7.0	Bibb	AL	Alabama	32.999024	-87.125260	
	4	01009	1.0	9.0	Blount	AL	Alabama	33.990440	-86.562711	

5 rows × 87 columns

(3244, 8)

```
In [17]: county_subset = county_data[["countyFIPS", "CountyName", "$tateName", "#Hos
    print(county_subset.isna().sum())
    print(county_subset.shape)
    county_subset.head()
```

countyFIPS	0
CountyName	0
StateName	0
#Hospitals	103
DiabetesPercentage	26
Smokers_Percentage	103
HeartDiseaseMortality	42
TotalM.D.'s,TotNon-FedandFed2017	20
dtype: int64	

Out[17]:

	countyFIPS	CountyName	StateName	#Hospitals	DiabetesPercentage	Smokers_Percentage	Неғ
0	01001	Autauga	AL	1.0	9.9	18.081557	
1	01003	Baldwin	AL	3.0	8.5	17.489033	
2	01005	Barbour	AL	1.0	15.7	21.999985	
3	01007	Bibb	AL	1.0	13.3	19.114200	
4	01009	Blount	AL	1.0	14.9	19.208672	

```
In [18]: us_state_abbrev = {
              'Alabama': 'AL',
              'Alaska': 'AK',
              'American Samoa': 'AS',
              'Arizona': 'AZ',
              'Arkansas': 'AR',
              'California': 'CA',
              'Colorado': 'CO',
              'Connecticut': 'CT',
              'Delaware': 'DE',
              'District of Columbia': 'DC',
              'Florida': 'FL',
              'Georgia': 'GA',
              'Guam': 'GU',
              'Hawaii': 'HI',
              'Idaho': 'ID',
              'Illinois': 'IL',
              'Indiana': 'IN',
              'Iowa': 'IA',
              'Kansas': 'KS',
              'Kentucky': 'KY',
              'Louisiana': 'LA',
              'Maine': 'ME',
              'Maryland': 'MD',
              'Massachusetts': 'MA',
              'Michigan': 'MI',
              'Minnesota': 'MN',
              'Mississippi': 'MS',
              'Missouri': 'MO',
              'Montana': 'MT',
              'Nebraska': 'NE',
              'Nevada': 'NV',
              'New Hampshire': 'NH',
              'New Jersey': 'NJ',
              'New Mexico': 'NM',
              'New York': 'NY',
              'North Carolina': 'NC',
              'North Dakota': 'ND',
              'Northern Mariana Islands': 'MP',
              'Ohio': 'OH',
              'Oklahoma': 'OK',
              'Oregon': 'OR',
              'Pennsylvania': 'PA',
              'Puerto Rico': 'PR',
              'Rhode Island': 'RI',
              'South Carolina': 'SC',
              'South Dakota': 'SD',
              'Tennessee': 'TN',
              'Texas': 'TX',
              'Utah': 'UT',
              'Vermont': 'VT',
              'Virgin Islands': 'VI',
              'Virginia': 'VA',
              'Washington': 'WA',
              'West Virginia': 'WV',
              'Wisconsin': 'WI',
```

```
'Wyoming': 'WY'
}
In [19]: inverted_abbrev = dict(map(reversed, us_state_abbrev.items()))
full_state_names = county_subset['StateName'].apply(lambda x: inverted_abbr
county_subset['StateNameFull'] = full_state_names
```

/opt/venv/lib/python3.7/site-packages/ipykernel_launcher.py:3: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

This is separate from the ipykernel package so we can avoid doing imports until

/opt/venv/lib/python3.7/site-packages/pandas/core/frame.py:4133: SettingW ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

errors=errors,

/opt/venv/lib/python3.7/site-packages/ipykernel_launcher.py:8: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

/opt/venv/lib/python3.7/site-packages/pandas/core/frame.py:3997: SettingW ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

errors=errors,

Out[20]:		countyFIPS	Hospitals	DiabetesPercentage	Smokers_Percentage	HeartDiseaseMortality	NumDoc
	0	01001	1.0	9.9	18.081557	204.5	
	1	01003	3.0	8.5	17.489033	183.2	5
	2	01005	1.0	15.7	21.999985	220.4	
	3	01007	1.0	13.3	19.114200	225.5	
	4	01009	1.0	14.9	19.208672	224.8	

Final dataset merge

In [21]: aqi_ins_coverage.head()

Out[21]:

	GEO_ID	NAME	Estimate_Total	Margin_of_Error_Total	Estimate_Total_with_public_co
67	0500000US06071	San Bernardino County, California	2135343	3512	89088
64	0500000US06065	Riverside County, California	2445952	2327	99506
53	0500000US06037	Los Angeles County, California	9964081	3335	388504
50	0500000US06029	Kern County, California	873613	2473	43128
83	0500000US06107	Tulare County, California	461513	852	25202

5 rows × 28 columns

In [22]: ins_coverage_employment.head()

Out[22]:

	NAME	Employment	coverage
0	Autauga County, Alabama	55.6	0.386493
1	Baldwin County, Alabama	55.7	0.391850
2	Barbour County, Alabama	41.6	0.484001
3	Bibb County, Alabama	43.8	0.337590
4	Blount County, Alabama	46.5	0.351511

In [23]: merge1 = pd.merge(aqi_ins_coverage, ins_coverage_employment, how='inner', c
 print(merge1.shape)
 merge1.head()

(838, 29)

Out[23]:

	GEO_ID	NAME	Estimate_Total	Margin_of_Error_Total	Estimate_Total_with_public_cov
0	0500000US06071	San Bernardino County, California	2135343	3512	890882
1	0500000US06065	Riverside County, California	2445952	2327	995066
2	0500000US06037	Los Angeles County, California	9964081	3335	3885047
3	0500000US06029	Kern County, California	873613	2473	431288
4	0500000US06107	Tulare County, California	461513	852	252021

5 rows × 29 columns

In [24]: merge2 = pd.merge(merge1, county_subset, how='inner', on=['NAME'])
 print(merge2.shape)
 merge2.head()

(827, 35)

Out[24]:

	GEO_ID	NAME	Estimate_Total	Margin_of_Error_Total	Estimate_Total_with_public_cov
0	0500000US06071	San Bernardino County, California	2135343	3512	890882
1	0500000US06065	Riverside County, California	2445952	2327	995066
2	0500000US06037	Los Angeles County, California	9964081	3335	3885047
3	0500000US06029	Kern County, California	873613	2473	431288
4	0500000US06107	Tulare County, California	461513	852	252021

5 rows × 35 columns

Out[58]:

	coverage	Median AQI	Employment	Hospitals	DiabetesPercentage	Smokers_Percentage	F
NAME							
San Bernardino County, California	0.417208	80	54.8	18.0	9.4	12.628277	
Riverside County, California	0.406822	77	54.7	16.0	8.7	12.499944	
Los Angeles County, California	0.389905	71	60.0	76.0	8.1	10.847678	
Kern County, California	0.493683	67	52.0	10.0	9.5	15.314177	
Tulare County, California	0.546076	66	53.3	4.0	9.3	13.799712	
Botetourt County, Virginia	0.287744	0	57.6	0.0	9.7	14.067544	
Robertson County, Texas	0.406360	0	56.0	0.0	13.8	14.721785	
Oneida County, Wisconsin	0.370370	0	55.7	1.0	6.5	14.620806	
Seneca County, New York	0.462007	0	54.5	0.0	11.0	15.834345	
Garfield County, Oklahoma	0.303072	0	59.0	2.0	8.7	17.391719	

827 rows × 8 columns

```
In [26]: data.to_csv('merged_data.csv')
```

Exploratory Data Analysis

```
In [27]: plt.figure(figsize = (10, 5))
    plt.hist(data['Median AQI'], alpha=0.5, label="Median AQI")
    plt.hist(data['Employment'], alpha=0.5, label="Employment")
    plt.hist(data['HeartDiseaseMortality'], alpha=0.5, label="Heart Disease Mor plt.legend()
    plt.title("Histogram of sampled features")
    plt.xlabel("Value")
    plt.ylabel("Frequency");
```


We compare the distributions of our sampled features e.g., Median AQI (physical/environmental), Employment (economic), and Heart Disease Mortality (medical).

```
In [28]:
         def coverage(x):
             if x < 0.4:
                 return 'low coverage'
             return 'high coverage'
         from sklearn.preprocessing import StandardScaler
         ss = StandardScaler()
         subset_df = data.drop(columns = ['NAME', 'coverage'])
         scaled_df = ss.fit_transform(subset_df)
         scaled_df = pd.DataFrame(scaled_df, columns = subset_df.columns)
         scaled_df['relative coverage'] = data['coverage'].apply(coverage).reset_ind
         # plot parallel coordinates
         from pandas.plotting import parallel_coordinates
         plt.figure(figsize = (15,10))
         pc = parallel_coordinates(scaled_df, 'relative coverage', color = ('#FFE888
         plt.title("Parallel coordinates of features by relative public health insur
         plt.ylabel("Scaled values");
```



```
In [29]: FIPS_data = pd.merge(data, county_subset[['countyFIPS', 'NAME']], on = 'NAM
FIPS_data = FIPS_data.rename(columns = {'countyFIPS' : 'FIPS'})
FIPS_data
```

Out[29]:

	NAME	coverage	Median AQI	Employment	Hospitals	DiabetesPercentage	Smokers_Percentaç
0	San Bernardino County, California	0.417208	80	54.8	18.0	9.4	12.6282
1	Riverside County, California	0.406822	77	54.7	16.0	8.7	12.49994
2	Los Angeles County, California	0.389905	71	60.0	76.0	8.1	10.8476
3	Kern County, California	0.493683	67	52.0	10.0	9.5	15.3141
4	Tulare County, California	0.546076	66	53.3	4.0	9.3	13.7997 [.]
822	Botetourt County, Virginia	0.287744	0	57.6	0.0	9.7	14.0675
823	Robertson County, Texas	0.406360	0	56.0	0.0	13.8	14.7217
824	Oneida County, Wisconsin	0.370370	0	55.7	1.0	6.5	14.6208(
825	Seneca County, New York	0.462007	0	54.5	0.0	11.0	15.8343 ₄
826	Garfield County, Oklahoma	0.303072	0	59.0	2.0	8.7	17.3917 ⁻

827 rows × 10 columns

Model building


```
In [31]: data.head()
```

Out[31]:

	NAME	coverage	Median AQI	Employment	Hospitals	DiabetesPercentage	Smokers_Percentage
0	San Bernardino County, California	0.417208	80	54.8	18.0	9.4	12.628277
1	Riverside County, California	0.406822	77	54.7	16.0	8.7	12.499944
2	Los Angeles County, California	0.389905	71	60.0	76.0	8.1	10.847678
3	Kern County, California	0.493683	67	52.0	10.0	9.5	15.314177
4	Tulare County, California	0.546076	66	53.3	4.0	9.3	13.799712

We first conduct principal component analysis (PCA) dataset in order to reduce the dimensionality. This will tell us the most relevant features of our dataset, and it is useful for K-means clustering which will indicate to us the common features of counties that require more public health coverage. We assume that counties which have lower rates of public coverage are in greater need of pop-up clinics for the uninsured.at

```
In [33]: def normalize_features(feature):
    return (feature - np.mean(feature)) / np.std(feature)
```

```
In [34]:
         # normalize features
          X = data[['coverage', 'Employment','Hospitals', 'DiabetesPercentage','Media
          for feature in X.columns:
              X[feature] = normalize_features(X[feature])
          X.head()
          /opt/venv/lib/python3.7/site-packages/ipykernel_launcher.py:5: SettingWit
          hCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
          Try using .loc[row_indexer,col_indexer] = value instead
          See the caveats in the documentation: https://pandas.pydata.org/pandas-do
          cs/stable/user guide/indexing.html#returning-a-view-versus-a-copy (http
          s://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returni
          ng-a-view-versus-a-copy)
Out[34]:
             coverage Employment Hospitals DiabetesPercentage Median AQI
                                                           4.184764
          0 0.489561
                       -0.422446
                                 3.349046
                                                 -0.105355
          1 0.373001
                       -0.436980
                                 2.903225
                                                 -0.362480
                                                           3.901216
          2 0.183159
                        0.333342 16.277846
                                                 -0.582873
                                                           3.334119
          3 1.347796
                       -0.829408
                                 1.565763
                                                 -0.068623
                                                           2.956055
            1.935765
                       -0.640462
                                 0.228301
                                                 -0.142087
                                                           2.861539
         # PCA to reduce dimensionality to two principle components
In [35]:
          pca = PCA(n components=2)
          pca.fit(X)
          X pca = pca.transform(X)
                                    ", X.shape)
          print("original shape:
          print("transformed shape:", X pca.shape)
          X pca
          original shape:
                              (827, 5)
          transformed shape: (827, 2)
Out[35]: array([[-1.32410876, 5.17364942],
```

K-means clustering

. . . .

[-1.31017083, 4.62072261], [-5.26893882, 12.6609232],

[0.5618987 , -2.75541368], [2.00684115, -2.32638337], [0.11292216, -2.70774018]])

```
# elbow method
In [36]:
         kmeans kwargs = {
              "init": "random",
              "random_state": 42,
         }
         \# A list holds the SSE values for each k
         sse = []
         for k in range(1, 11):
             kmeans = KMeans(n_clusters=k, **kmeans_kwargs)
             kmeans.fit(X_pca)
             sse.append(kmeans.inertia_)
         plt.style.use("fivethirtyeight")
         plt.plot(range(1, 11), sse)
         plt.xticks(range(1, 11))
         plt.xlabel("Number of Clusters")
         plt.ylabel("SSE")
         plt.show();
```


Out[37]: 4

According to our elbow test, the optimal number of clusters is 4.

C


```
In [39]: | k=4 # try optimal num clusters
         kmeans = KMeans(n clusters=k, random state=42)
         kmeans.fit(X_pca)
         s1 = silhouette_score(X_pca, kmeans.labels_)
         def myplot(score,coeff,labels=None):
             xs = score[:,0]
             ys = score[:,1]
             n = coeff.shape[0]
             scalex = 1.0/(xs.max() - xs.min())
             scaley = 1.0/(ys.max() - ys.min())
             plt.scatter(xs * scalex,ys*scaley, c=ys, alpha=0.7)
             for i in range(n):
                 plt.arrow(0, 0, coeff[i,0], coeff[i,1], color = 'r', alpha = 0.5)
                 if labels is None:
                     plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, "Var"+str(i+1), c
                 else:
                     plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, labels[i], color
         plt.xlim(-1,1)
         plt.ylim(-1,1)
         plt.xlabel("PC{}".format(1))
         plt.ylabel("PC{}".format(2))
         plt.grid()
         myplot(X pca[:, 0:2], np.transpose(pca.components [0:2, :]))
         plt.show()
         pca.components
```

```
1.00

0.75

0.50

0.25

Var4 Var1

0.00

-0.25 Var2

-0.50

-0.75

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

PC1
```

```
In [40]: pca.explained_variance_ratio_
Out[40]: array([0.42817203, 0.24538214])
```

The most important features are 1, 2, and 4, according to the PCA analysis. These correspond to the variables Coverage, Employment, and DiabetesPercentage.

```
In [41]: # features 1, 2, 4 = coverage, employment, DiabetesPercentage are most important (abs( pca.components_ ))

[[0.57553275 0.61356086 0.25539896 0.41690883 0.23078892]
       [0.21281132 0.19327562 0.64728407 0.19405008 0.67876636]]

In [42]: cluster_dict = dict(zip(X.index, kmeans.labels_))
```

```
In [43]: # Cluster analysis
X['Cluster'] = kmeans.labels_
X.groupby('Cluster').agg(np.median)

# Based on aggregate feature values for each cluster, cluster 0 should be g
# priority for setting up pop-up check ups because it has the lowest employ
# lowest number of hospitals, highest DiabetesPercentage, and worst AQI.
```

/opt/venv/lib/python3.7/site-packages/ipykernel_launcher.py:2: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out [43]: coverage Employment Hospitals DiabetesPercentage Median AQI

Clust	er					
	0	1.124220	-1.221837	-0.440430	0.776217	-0.068458
	1	-0.427511	0.347876	3.571956	-0.197185	1.680089
	2	-0.972447	0.929251	-0.217520	-0.656337	0.215090
	3	0.115920	-0.015483	-0.217520	0.041574	0.215090

Interpret Model Results

```
In [44]: X_copy = X.copy()
X_copy['NAME'] = data['NAME']
X_copy.reset_index(inplace=True)
```

```
In [60]:
         import plotly.figure_factory as ff
         df sample = pd.read csv('https://raw.githubusercontent.com/plotly/datasets/
         df_sample['State FIPS Code'] = df_sample['State FIPS Code'].apply(lambda x:
         df_sample['County FIPS Code'] = df_sample['County FIPS Code'].apply(lambda
         df sample['FIPS'] = df sample['State FIPS Code'] + df sample['County FIPS Code']
         FIPS data = pd.merge(data, county subset[['countyFIPS', 'NAME']], on = 'NAM
         FIPS_data = FIPS_data.rename(columns = {'countyFIPS' : 'FIPS'})
         FIPS_data = pd.merge(FIPS_data, df_sample[['FIPS']], on = 'FIPS')
         FIPS data = pd.merge(FIPS data, X copy, on='NAME')
         # colorscale = ["#f7fbff", "#0e4d64", "#deebf7", "#d2e3f3", "#c6dbef", "#b3d2e9"
         #
                          "#85bcdb", "#6baed6", "#57a0ce", "#4292c6", "#3082be", "#2171b5
                          "#08519c", "#0b4083", "#08306b"]
         #
         colorscale = ["#0A2F51", "#d1768F", '#CC5500', "#137177", '#6A0DAD', "#1D9A
                        "#56B870", "#74C67A", '#99D492', '#BFE1B0','#DEEDCF']
         endpts = list(np.linspace(1, 12, len(colorscale) - 1))
         fips = FIPS data['FIPS'].tolist()
         values = FIPS_data['Cluster'].tolist()
         fig = ff.create_choropleth(
             fips=fips, values=values,
             binning endpoints=endpts,
             colorscale=colorscale,
             show state data=False,
             show hover=True, centroid marker={'opacity': 0},
             asp=2.9, title='USA by Cluster',
             legend title='Cluster number'
         )
         fig.layout.template = None
         fig.show();
```

linear regression model

We also use the data collected to make predictions about the public insurance coverage for each county.

```
In [46]: # linear regression to predict uncovered public insurance population
    from sklearn import linear_model as lm
    y = 1-data['coverage']
    X = data[['Employment', 'Hospitals', 'DiabetesPercentage', 'Smokers_Percenta
    nrows = data.shape[0]
    print(nrows)
    shuffled = np.random.choice(range(nrows), size=nrows, replace=False)

# 0.8, 0.2 split
    train_end = int(len(shuffled)*0.8)
    test_start = train_end+1
    test_end = nrows

train_ii = shuffled[:train_end]
    test_ii = shuffled[test_start:]

train_X, train_y = X.iloc[train_ii], y.iloc[train_ii]
    test_X, test_y = X.iloc[test_ii], y.iloc[test_ii]
```

827

```
In [47]: from sklearn import linear model as lm
         from sklearn import metrics
         model = lm.LinearRegression()
         model.fit(train_X,train_y)
         train_preds = model.predict(train_X)
         # evaluation metrics
         y pred = train preds
         y_true = train_y
         print('TRAINING')
         print('mean absolute error: ' + str(metrics.mean absolute error(y true, y p
         print('root mean squared error: ' + str(np.sqrt(metrics.mean_squared_error(
         test_preds = model.predict(test_X)
         y_pred = test_preds
         y_true = test_y
         print('TESTING')
         print('mean absolute error: ' + str(metrics.mean absolute error(y true, y p
         print('root mean squared error: ' + str(np.sqrt(metrics.mean_squared_error(
```

TRAINING

mean absolute error: 0.04401366971681687 root mean squared error: 0.05612276793709166 TESTING mean absolute error: 0.04296872340468815 root mean squared error: 0.05549178762335231

Testing RMSE is 0.0572 and MAE is 0.0445. Also, Training and testing metrics are not highly disparate, indicating the model is not overfitting and has performed to its best ability.