TP5 – Estructuras Algebraicas - Teoría de Grupos

Agustina Sol Rojas

Ejercicio 1.

Determinar cuáles de las siguientes operaciones están bien definidas sobre el conjunto A dado. Analizar las propiedades en los casos afirmativos

a)
$$A = N, a * b = 3ab$$

Dado que el producto es una operación cerrada en N, para todo $a,b\in N$, se cumple que $ab\in N$. Además, como $3\in N$, al multiplicarlo por otro número natural (nuevamente porque el producto es una operación cerrada) el resultado sigue siendo un número natural. Por lo tanto, la operación a*b=3ab está bien definida en N.

Conmutativa:

Como el producto es conmutativo en N se cumple para todo $a,b\in N$ que a*b=3ab=3ba=b*a

Asociativa:

Como el producto es asociativo y conmutativo en N se cumple para todo $a,b,c \in N$ que (a*b)*c = (3ab)*c = 3(3ab)c = 3a(3bc) = a*(3bc) = a*(b*c)

Elemento neutro:

Se debe probar que existe en N un elemento e tal que para todo a en N valga que a*e=e*a=a:

1. Teniendo en cuenta lo siguiente:

i.
$$a * e = 3ae$$

ii.
$$e * a = 3ea$$

2. Se debe encontrar un $e \in N$ tal que

i.
$$3ae = a$$

ii.
$$3ea = a$$

3. Despejando las ecuaciones queda:

i.
$$3e = 1$$

ii.
$$3e = 1$$

4. Como ningún número natural multiplicado por 3 da como resultado 1, no existe un $e \in N$ tal que a*e=e*a=a. Por lo tanto * no tiene un elemento neutro.

Elemento inverso:

Como * no tiene elemento neutro, no tiene elemento inverso.

b)
$$A = Z, a * b = \frac{a+b}{3+ab}$$

Contraejemplo:

1. Dados $a, b \in Z$ tal que a = -3 y b = 1:

$$-3*1 = \frac{-3+1}{3+(-3)\cdot 1} = -\frac{2}{3-3} = \frac{2}{0}$$

2. $\frac{2}{0} \notin Z$, por lo tanto la operación a * b no está bien definida en Z.

c)
$$A = R, x * y = x + y - xy$$

Dado que la suma y el producto son operaciones cerradas en N, para todo $x,y \in R$, se cumple que $x+y-xy \in N$. Por lo tanto, la operación x*y=x+y-xy está bien definida en R.

Conmutativa:

Como el producto es conmutativo en R se cumple para todo $x,y \in R$ que x*y = x + y - xy = y + x - yx = y*x

Asociativa:

Como la suma y producto son asociativos y conmutativos en R, y además se cumple la propiedad distributiva se cumple para todo $x, y, z \in R$ que

$$x * (y * z) = x * (y + z - yz) =$$

= $x + (y + z - yz) - x(y + z - yz) =$
= $x + y + z - yz - xy - xz + xyz =$

$$= x + y - xy + z - xz - yz + xyz = = (x + y - xy) + z - (xz + yz - xyz) =$$

$$= (x + y - xy) + z - (x + y - xy)z$$

$$= (x + y - xy) * z = (x * y) * z$$

Se debe probar que existe en R un elemento e tal que para todo x en R valga que

$$x * e = e * x = x$$
:

1. Teniendo en cuenta lo siguiente:

i.
$$x * e = x + e - xe$$

ii.
$$e * x = e + x - ex$$

2. Se debe encontrar un $e \in N$ tal que

i.
$$x + e - xe = x$$

ii.
$$e + x - ex = x$$

3. Despejando las ecuaciones queda:

i.
$$x + e - xe = x$$

$$e - ex = 0$$

$$e(1-x)=0$$

$$e = 0$$

ii.
$$e + x - ex = x$$

$$e - ex = 0$$

$$e(1-x)=0$$

$$e = 0$$

4. Reemplazando en la expresión de 2. por e verificamos que se cumple lo

siguiente para cualquier $x \in R$

i.
$$x + 0 - x$$
. $0 = x + 0 = x$

ii.
$$0 + x - 0 \cdot x = 0 + x = x$$

5. Por lo tanto existe en R un elemento e tal que para todo x en R vale que x * e = 0

$$e * x = x$$
 y ese $e = 0$

Elemento inverso:

Un elemento x de R se tiene inverso si existe x' en R tal que x*x'=x'*x=e

1. Teniendo en cuenta lo siguiente

i.
$$x * x' = x + x' - x \cdot x'$$

ii.
$$x' * x = x' + x - x'$$
. x

2. Se debe encontrar un $e \in N$ tal que

i.
$$x + x' - x \cdot x' = e$$

ii.
$$x' + x - x'$$
. $x = e$

3. Despejando las ecuaciones y teniendo en cuenta que e=0 queda:

i.
$$x + x' - x \cdot x' = 0$$

$$x'-x$$
. $x'=-x$

$$x'(1-x) = -x$$

$$x' = \frac{-x}{1 - x}$$

ii.
$$x' + x - x'$$
. $x = 0$

$$x' - x' \cdot x = -x$$

$$x'(1-x) = -x$$

$$x' = \frac{-x}{1 - x}$$

- 4. El inverso existe y es $\frac{-x}{1-x}$ para todo $x \neq 1 \in R$. Cuando x = 1 el denominador se hace cero y la expresión no puede resolverse, por lo que no existe inverso para x = 1.
 - i. Esto último es válido.
- d) $A = \{0, 1, 2, 3\}$

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	1	2	0	2
3	2	3	1	1

Se puede observar en el cuadro que para todo $a,b\in A$ se cumple que el resultado de $a*b\in A$.

Conmutativa:

La operación * sobre A es conmutativa si, para todo a y b en A, resulta a*b=b*a

Contraejemplo:

$$2 * 0 = 1$$

$$0 * 2 = 0$$

Se puede observar como $2 * 0 \neq 0 * 2$, por lo tanto, no es conmutativa.

Asociativa:

La operación * sobre A es asociativa si, cualesquiera sean a,b y c en A, resulta a * (b*c)=(a*b)*c

Contraejemplo:

$$(3*3)*1=1*1=1$$

$$3*(3*2) = 3*1 = 3$$

Se puede observar como $(3*3)*1 \neq 3*(3*2)$, por lo tanto, no es asociativa.

Elemento neutro:

Existe en A un elemento e tal que para todo x en R vale que x*e=e*x=x. Se puede observar en el grafico que ese elemento es 1, puesto que para todo $x \in A$ vale que x*1=1*x=x

Elemento inverso:

Un elemento x de R se tiene inverso si existe x' en R tal que x*x'=x'*x=e

1. x = 0

0 no tiene inverso puesto que nunca sucede que para cualquier $x'\in A$ vale que 0*x'=x'*0=1

2. x = 1

1 tiene inverso y ese es 1 dado que 1 * 1 = 1 * 1 = 1

3. x = 2

0 no tiene inverso puesto que nunca sucede que para cualquier $x' \in A$ vale

que
$$2 * x' = x' * 2 = 1$$

$$2 * 0 = 1$$
, pero $0 * 2 = 0$.

$$3 * 2 = 1$$
, pero $2 * 3 = 2$

4. x = 3

3 tiene inverso y ese es 3 dado que 3 * 3 = 3 * 3 = 1

Ejercicio 2.

Demostrar que:

a) Dado $M = \{m \in \mathbb{N} : m > 0\}, (M, +)$ es un semigrupo pero no es un monoide

Asociativa:

La operación + sobre M es asociativa si, cualesquiera sean a, b y c en A, resulta a+(b+c)=(a+b)+c.

Como la operación + es asociativa en N, (N, +) es un semigrupo. Debido a que $M \subset N$, por definición 2.7, (M, +) es un semigrupo (se puede pensar como que la asociatividad se "hereda" de N).

Elemento neutro

No existe en M un elemento e tal que para todo a en M vale que a*e=e*a=a. El elemento neutro de (N,+) es el 0 y este es único. Por definición del conjunto M, $0 \notin M$ por lo tanto no existe un elemento neutro para la operación + sobre el conjunto M.

Como no existe en M elemento neutro para +, (M, +) no es un monoide.

b) El conjunto de un solo elemento $M=\{e\}$ con la operación definida por e*e=e es un monoide

Asociativa

La operación * sobre M es asociativa si, cualesquiera sean a,b y c en M, resulta a*(b*c)=(a*b)*c

1. Sean $a, b y c \in M$

i.
$$a * (b * c) = a * e = e$$

ii.
$$(a * b) * c = e * c = e$$

2. Como a*(b*c)=(a*b)*c, la operación * sobre M es asociativa

Elemento neutro:

Se debe demostrar que existe en M un elemento e tal que para todo a en M valga que a*e=e*a=a.

1. Sea $a \in M$

i.
$$a * e = e$$

- ii. e * a = e
- 2. Como $a \in M$ y el unico elemento de M es e, necesariamente a = e
- 3. Por lo tanto existe en M un elemento neutro para *

Como * es asociativa y existe un elemento neutro, (M,*) es un monoide.

c) Dado un conjunto no vacío A, el conjunto de las partes de AP(A) con la operación intersección de conjuntos es un monoide conmutativo

Asociativa:

La operación \cap sobre P(A) es asociativa si, cualesquiera sean X,Y y Z en P(A), resulta $X \cap (Y \cap Z) = (X \cap Y) \cap Z$

1. Sean $X,Y,Z\in P(A)$, como la \cap entre conjuntos es asociativa se cumple que $X\cap (Y\cap Z)=(X\cap Y)\cap Z$

Elemento neutro:

Se debe demostrar que existe en P(A) un elemento E tal que para todo X en P(A) valga que $X \cap E = E \cap X = X$.

- 1. Sea X un elemento cualquiera de P(A). Para que se cumpla $X \cap E = E \cap X = X$, a E deben pertenecer los mismos elementos que pertenecen a X. Los únicos conjuntos que cumplen con esto son el propio X y A. Si se toma como elemento neutro a X siendo X cualquier elemento de P(A), este no va a ser único, puesto que va a haber un elemento neutro distinto para cada elemento de P(A) por lo que se toma como elemento neutro a A.
- 2. Para cualquier $X \in P(A)$, al ser $X \subseteq A$ se cumple que:
 - i. $X \cap A = X$
 - La intersección entre un conjunto y su subconjunto da el subconjunto.
 - ii. $A \cap X = X$
 - La intersección entre un conjunto y su subconjunto da el subconjunto.

Conmutativa

La operación \cap sobre P(A) es conmutativa si, cualesquiera sean X y Y en P(A), resulta $X \cap Y = Y \cap X$

1. Sean $X,Y\in P(A)$, como la \cap entre conjuntos es conmutativa se cumple que $X\cap Y=Y\cap X$

Como \cap es asociativa, existe un elemento neutro y es conmutativa $(P(A), \cap)$ es un monoide conmutativo.

Ejercicio 3.

Demostrar que si para una operación asociativa * en A existe un elemento neutro e un elemento del conjunto, a, tiene inverso entonces este es único.

1. Sean $a, b, c \in A$, suponiendo que $b \neq c$ y ambos son inversos de a se cumple:

i.
$$a * b = b * a = e$$

ii.
$$a * c = c * a = e$$
.

2. Como e es el elemento neutro del conjunto se cumple:

i.
$$b = b * e$$

3. Como por 1.i. e = a * c:

i.
$$b * e = b * (a * c)$$

4. Por asociatividad:

i.
$$b * (a * c) = (b * a) * c$$

5. Por hipótesis (b * a) = e

i.
$$(b*a)*c = e*c$$

6. Como e es el elemento neutro del conjunto se cumple:

i.
$$e * c = c$$

7. Se llego a que b=c, por lo tanto si para una operación asociativa * en A existe un elemento neutro e un elemento del conjunto y a tiene inverso entonces este es único.

Ejercicio 4.

Sea R una relación de congruencia sobre un semigrupo (S,*) demostrar que $(S/R,\circledast)$ (el conjunto cociente y la operación inducida por * sobre las clases de equivalencia) es un semigrupo llamado Semigrupo Cociente

- 1. Teniendo en cuenta que $S/R = \{\bar{s} \in S\}$ y siendo $a, b \in S$, $\bar{a} \in S/R$ y $\bar{b} \in S/R$
 - i. $\bar{a} \circledast \bar{b} = \overline{a * b}$
- 2. * es una operación bien definida puesto que al ser (S,*) un semigrupo, $a*b \in S$, y por lo tanto $\overline{a*b} \in S/R$.
- 3. (*) es asociativa. Sean $\bar{a}, \bar{b}, \bar{c} \in S/R$ y teniendo en cuenta que (S,*) es un semigrupo (asociatividad de *):

i.
$$\bar{a} \circledast (\bar{b} \circledast \bar{c}) = \bar{a} \circledast (\bar{b} * \bar{c}) = \bar{a} \circledast (\bar{b} * \bar{c}) = \bar{a} \circledast (\bar{b} * \bar{c}) = \overline{a * (b * \bar{c})} = \overline{(a * b) * \bar{c}} = (\bar{a} * \bar{b}) \circledast \bar{c} = (\bar{a} \circledast \bar{b}) \circledast \bar{c}$$

- ii. Como se llega a que $\bar{a} \circledast (\bar{b} \circledast \bar{c}) = (\bar{a} \circledast \bar{b}) \circledast \bar{c}, \circledast$ es asociativa.
- 4. Como \circledast es una operación bien definida y \circledast es asociativa, $(S/R,\circledast)$ es un semigrupo llamado Semigrupo Cociente.

Ejercicio 5.

Analizar si las siguientes son estructuras de grupo:

a) (Z, +), los enteros con la suma usual

Asociativa:

La operación + sobre Z es asociativa ya que para cualesquiera sean a,b y c en Z, se cumple que a+(b+c)=(a+b)+c.

Elemento neutro:

Existe en Z un elemento e tal que para todo a en Z vale que a+e=e+a=a y ese e=0.

Elemento inverso:

Para todo elemento a de Z existe a' en Z tal que a + a' = a' + a = e y ese a' = -a

Como + es asociativa, existe un elemento neutro y todos los elementos de Z tienen un inverso (Z, +) es un grupo.

b) (Z,\cdot) , los enteros con el producto usual

Asociativa:

La operación \cdot sobre Z es asociativa ya que para cualesquiera sean a,b y c en Z, se cumple que $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.

Elemento neutro:

Existe en Z un elemento e tal que para todo a en Z vale que $a \cdot e = e \cdot a = a$ y ese e=1.

Elemento inverso:

No se cumple que para todo elemento a de Z existe a' en Z tal que $a \cdot a' = a' \cdot a = 1$. Esto solamente se cumple para a = 1 y a = -1.

Contraejemplo:

Sea $a \in Z$ con a=2, no existe ningún $a' \in Z$ tal que $2 \cdot a' = a' \cdot 2 = 1$. Por lo tanto no se cumple que para todo elemento a de Z existe a' en Z tal que $a \cdot a' = a' \cdot a = 1$.

Como no todos los elementos de Z tienen un inverso (Z, \cdot) no es un grupo.

c) $(R^2, +)$, los pares ordenados de reales con la suma usual

Asociativa:

La operación + sobre R^2 es asociativa ya que para cualesquiera sean a,b y c en R^2 , se cumple que a+(b+c)=(a+b)+c. Esto sucede debido a que la operación + es asociativa en R.

Demostración:

1. Sean a, b y $c \in \mathbb{R}^2$, con $a = (a_1, a_2), b = (b_1, b_2), c = (c_1, c_2)$. Dado a que la operación + es asociativa en R se cumple que:

$$a + (b + c) = (a_1, a_2) + ((b_1, b_2) + (c_1, c_2)) = (a_1 + (b_1 + c_1), a_2 + (b_2 + c_2))$$

$$= ((a_1 + b_1) + c_1, (a_2 + b_2) + c_2) = ((a_1, a_2) + (b_1, b_2)) + (c_1, c_2)$$

$$= (a + b) + c$$

Existe en Z un elemento e tal que para todo a en Z vale que a+e=e+a=a y ese e=(0,0).

Demostración:

1. Sea $a \in \mathbb{R}^2$, con $a = (a_1, a_2)$. Dado a que el elemento neutro para la operación + en \mathbb{R} es 0 se cumple que:

i.
$$a + e = (a_1, a_2) + (0,0) = (a_1 + 0, a_2 + 0) = (a_1, a_2)$$

ii.
$$e + a = (0,0) + (a_1, a_2) = (0 + a_1, 0 + a_2) = (a_1, a_2)$$

Elemento inverso:

Para todo elemento a de Z existe a' en Z tal que a + a' = a' + a = e y ese a' = -a

Demostración:

1. Sea $a \in R^2$, con $a = (a_1, a_2)$ y $-a = (-a_1, -a_2)$. Dado a que para todo elemento $x \in R$ se verifica que x + (-x) = 0 se cumple que:

i.
$$a + (-a) = (a_1, a_2) + (-a_1, -a_2) = (a_1 + (-a_1), a_2 + (-a_2)) = (0,0)$$

ii.
$$-a + a = (-a_1, -a_2) + (a_1, a_2) = (-a_1 + a_1, -a_2 + a_2) = (0,0)$$

Como + es asociativa, existe un elemento neutro y todos los elementos de \mathbb{R}^2 tienen un inverso $(\mathbb{R}^2,+)$ es un grupo.

d) $(M_{2x2}, +)$, las matrices de 2x2 con la suma usual de matrices

Asociativa:

La operación + sobre M_{2x2} es asociativa ya que para cualesquiera sean a, b y c en M_{2x2} , se cumple que a+(b+c)=(a+b)+c. Esto sucede debido a que la operación + es asociativa en R.

Existe en M_{2x2} un elemento e tal que para todo a en M_{2x2} vale que a+e=e+a=a y ese $e=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Esto se cumple debido a que el elemento neutro para la operación + en R es 0.

Elemento inverso:

Para todo elemento $a=\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix}$ de M_{2x2} existe a' en M_{2x2} tal que a+a'=a'+a=e y ese a'=-a siendo $-a=\begin{pmatrix} -a_1 & -a_2 \\ -a_3 & -a_4 \end{pmatrix}$. Esto sucede dado que para todo elemento $x\in R$ se verifica que x+(-x)=0.

Como + es asociativa, existe un elemento neutro y todos los elementos de M_{2x2} tienen un inverso $(M_{2x2}, +)$ es un grupo.

e) $(P(A), \cup)$, A cualquier conjunto y P(A) indica el conjunto de partes de A

Asociativa:

La operación \cup sobre P(A) es asociativa ya que para cualesquiera sean X,Y y Z en Z, se cumple que $X \cup (Y \cup Z) = (X \cup Y) \cup Z$.

Elemento neutro:

Existe en P(A) un elemento E tal que para todo X en P(A) vale que $X \cup E = E \cup X = X$ y ese $E = \emptyset$.

Elemento inverso:

No se cumple que para todo elemento X de P(A) existe X' en P(A) tal que $X \cup X' = X \cup X' = \emptyset$. Nunca sucede que la unión de un conjunto con otro del vacío, salvo que ambos conjuntos sean el vacío.

Como no todos los elementos de P(A) tienen un inverso $(P(A), \cup)$ no es un grupo.

Ejercicio 6.

Probar que en todo Grupo el único elemento idempotente es el neutro

1. Existe un elemento $a \in G$, siendo (G,*) un grupo, tal que a es idempotente:

$$a * a = a$$
.

2. Como (G,*) es un grupo entonces existe un $a^{-1} \in G$ tal que:

$$a^{-1} * (a * a) = a^{-1} * a.$$

3. Como (G,*) es un grupo, * es asociativa:

$$(a^{-1} * a) * a = a^{-1} * a$$

4. Teniendo en cuenta que $a^{-1} * a = e$, remplazando queda:

$$e * a = e$$

5. Teniendo en cuenta que e * a = a

$$a = e$$

6. Esto nos deja que el a idempotente es e, por lo tanto el único elemento idempotente es el elemento neutro.

Ejercicio 7.

Mostrar que en todo grupo vale la propiedad cancelativa

1. Sea $a, b, c \in G$ y siendo (G, *) un grupo valiendo que:

$$a * b = a * c$$

2. Como (G,*) es un grupo, todo elemento de G tiene un inverso por la operación *, operando en ambos lados de la igualdad con el inverso de a nos queda:

$$a' * (a * b) = a' * (a * c)$$

3. Como * es asociativa:

$$(a' * a) * b = (a' * a) * c$$

4. Como a' * a = e

$$e * b = e * c$$

5. Como e * b = b y e * c = c:

$$h = a$$

- 6. Por lo tanto vale la propiedad cancelativa.
- 7. De modo similar se prueba para:

$$b*a=c*a$$

i.
$$(b*a)*a' = (c*a)*a'$$

ii.
$$b * (a * a') = c * (a * a')$$

iii.
$$b * e = c * e$$

iv.
$$b = c$$

Ejercicio 8.

Sea (G,*) un grupo tal que todo elemento es su propio inverso, probar que G es abeliano

- 1. Sea $a,b \in G$ y siendo (G,*) un grupo valiendo que para todo $x \in G$ se cumple que: $x = x^{-1}$
- 2. Teniendo en cuenta que $a*a^{-1}=a^{-1}*a=e$, $b*b^{-1}=b^{-1}*b=e$, $a=a^{-1}$, $b=b^{-1}$ y la asociatividad de *:

$$a * b = e * (a * b) * e = (b^{-1} * b) * (a * b) * (a * a^{-1}) = b * (b * a) * (b * a) * a$$

= $b * (b * a) * (b * a)^{-1} * a = b * e * a = b * a$

3. Por lo tanto a*b=b*a, valiendo la conmutatividad para * haciendo que G sea abeliano.

Ejercicio 9.

Dado un grupo (G,*), probar que G es abeliano si y sólo si para cualquier x,y en G vale que: $(x*y)^2 = x^2*y^2$

Se quiere demostrar que G es abeliano \leftrightarrow para cualquier x, y en G vale que: $(x*y)^2 = x^2*y^2$

- $(x * y)^2 = (x * y) * (x * y)$
- $x^2 * y^2 = (x * x) * (y * y)$
- 1. Se quiere demostrar que G es abeliano \rightarrow para cualquier x, y en G vale que:

$$(x*y)^2 = x^2*y^2$$

i. Suponiendo que G es abeliano, por asociatividad vale que:

$$(x * y)^2 = (x * y) * (x * y) = x * (y * x) * y$$

ii. Por conmutatividad vale que:

$$x * (y * x) * y = x * (x * y) * y$$

iii. Por asociatividad vale que:

$$x * (x * y) * y = (x * x) * (y * y)$$

iv. Teniendo en cuenta que $(x*x)*(y*y) = x^2*y^2$ se cumple que $(x*y)^2 = x^2*y^2$

2. Se quiere demostrar que G es abeliano \leftarrow para cualquier x, y en G vale que:

$$(x * y)^2 = x^2 * y^2$$

i. Si se tiene (a * b) * (a * b) se cumple por definición e hipótesis que:

$$(a * b) * (a * b) = (a * b)^2 = a^2 * b^2 = (a * a) * (b * b)$$

ii. Entonces se tiene la siguiente igualdad:

$$(a * b) * (a * b) = (a * a) * (b * b)$$

iii. Como G es un grupo, cada elemento tiene su inverso para la operación *,

multiplicando por el inverso de
$$\boldsymbol{a}$$
 en ambos lados de la igualdad queda:

$$a^{-1} * ((a * b) * (a * b)) = a^{-1} * ((a * a) * (b * b))$$

iv. Por asociatividad vale que:

$$(a^{-1} * a) * b * (a * b) = (a^{-1} * a) * a * (b * b)$$

v. Teniendo en cuenta que $a * a^{-1} = e$ nos queda:

$$e * b * (a * b) = e * a * (b * b)$$

vi. Como G es un grupo, para cualquier x en G vale que x*e=e*x=x, esto nos deja:

$$b*(a*b) = a*(b*b)$$

vii. Por asociatividad:

$$(b*a)*b = (a*b)*b$$

viii. Multiplicando en ambos lados de la igualdad por el inverso de b nos queda:

$$(b*a)*b*b^{-1} = (a*b)*b*b^{-1}$$

ix. Teniendo en cuenta que $b * b^{-1} = e$ nos queda:

$$(b*a)*e = (a*b)*e$$

x. Como G es un grupo, para cualquier X en G vale que X*e=e*x=x, esto nos deja:

$$b * a = a * b$$

xi. Como b * a = a * b, al ser G un grupo y conmutativo, G es abeliano.

Ejercicio 10.

Dados los Grupos (G,*) y (F,\diamondsuit) se define en el conjunto $G\times F$ la ley • tal que (x,y) • $(z,t)=(x*z,y\diamondsuit t)$. Probar que $(G\times F,\bullet)$ es Grupo (Grupo Producto):

Sean $x, z \in G$ y $y, t \in F$, la operación • esta bien definida ya que al estar * bien definido en $G, x * z \in G$ y al estar \Diamond bien definido en $F, y \Diamond t \in F$, por lo tanto $(x * z, y \Diamond t) \in G \times F$.

Asociativa:

La operación • sobre $G \times F$ es asociativa ya que para cualesquiera sean a, b y c en $G \times F$, se cumple que $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.

Demostración:

1. Sean $a,b,c \in G \times F$, con $a=(a_1,a_2)$, $b=(b_1,b_2)$, $c=(c_1,c_2)$. Por asociatividad de $*y \diamondsuit$ se cumple que:

$$a \bullet (b \bullet c) = (a_1, a_2) \bullet ((b_1, b_2) \bullet (c_1, c_2)) = (a_1 * (b_1 * b_2), a_2 \lozenge (b_2 \lozenge c_2))$$
$$= ((a_1 * b_1) * c_1, (a_2 \lozenge b_2) \lozenge c_2) = ((a_1, a_2) \bullet (b_1, b_2)) \bullet (c_1, c_2)$$
$$= (a \bullet b) \bullet c$$

Elemento neutro:

Existe en $G \times F$ un elemento e tal que para todo a en $G \times F$ vale que $a \cdot e = e \cdot a = a$ y ese $e = (e_G, e_F)$, siendo e_G y e_F los elementos neutros de G y F respectivamente.

Demostración:

- 1. Sea $a \in G \times F$, con $a = (a_1, a_2)$. Dado a que e_G y e_F son los elementos neutros para las operaciones * en G y \diamondsuit en F se cumple que:
 - i. $a \cdot e = (a_1, a_2) \cdot (e_G, e_F) = (a_1 \cdot e_G, a_2 \cdot e_F) = (a_1, a_2)$

ii.
$$e \cdot a = (e_G, e_F) \cdot (a_1, a_2) = (e_G \cdot a_1, e_F \cdot a_2) = (a_1, a_2)$$

Elemento inverso:

Para todo elemento $a=(a_1,a_2)$ de $G\times F$ existe a' en $G\times F$ tal que $a\bullet a'=a'\bullet a=e$ y ese a'=-a, con $-a=(-a_1,-a_2)$ y $e=(e_G,e_F)$.

Demostración:

- 1. Sea $a \in G \times F$, con $a = (a_1, a_2)$ y $-a = (-a_1, -a_2)$. Dado a que para todo elemento $x \in G$ se verifica que $x * (-x) = e_G$ y para todo elemento $x \in F$ se verifica que $x \diamondsuit (-x) = e_F$ se cumple que:
 - i. $a \cdot (-a) = (a_1, a_2) \cdot (-a_1, -a_2) = (a_1 \cdot (-a_1), a_2 \circ (-a_2)) = (e_G, e_F)$

ii.
$$-a \cdot a = (-a_1, -a_2) \cdot (a_1, a_2) = (-a_1 \cdot a_1, -a_2 \diamond a_2) = (e_G, e_F)$$

Como • es asociativa, existe un elemento neutro y todos los elementos de $G \times F$ tienen un inverso $(G \times F$, •) es un grupo.

Ejercicio 11.

Estudiar si son Subgrupos de los grupos indicados:

a. Los enteros pares de (Z, +)

$$P = \{x \in Z : x = 2 . k, k \in Z\}$$

Asociativa:

La operación + sobre P es asociativa ya que para cualesquiera sean a,b y c en Z, se cumple que a+(b+c)=(a+b)+c. Esto lo "hereda" de Z.

Elemento neutro:

Existe en P un elemento e tal que para todo a en P vale que a+e=e+a=a y ese e=0. El neutro + en Z, es 0, como 0=2. 0, este $\in P$.

Operación bien definida y elemento inverso:

Sean $a,b \in los\ enteros\ pares\ de\ Z$, como a,b son pares se puede escribir como a=2.m y b=2.n. Se puede observar que se cumple que $b^{-1}\in P$ ya que este se puede escribir como 2.(-n)

Por propiedad distributiva y asociativa de Z se cumple:

$$a+b^{-1}=(2.m)+(2.-n)=2.$$
 $(m-n)=2$. k con $k\in Z$ ya que la resta es cerrada en Z .

Como $a + b^{-1} = 2$. $k, a + b^{-1} \in P$, por lo tanto (P, +) es un subgrupo de Z.

b. Las matrices simétricas de 2x2

Ejercicio 12.

Demostrar que si H y K son subgrupos de (G,*) entonces $H \cap K$ es un subgrupo de (G,*)

Se debe demostrar que existe en $H \cap K$ un elemento e tal que para todo a en $H \cap K$ valga que a*e=e*a=a.

- 1. Se sabe que al ser H y K subgrupos de (G,*).
 - i. Existe un $e \in H$ tal que para todo a en H vale a * e = e * a = a
 - ii. Existe un $e \in K$ tal que para todo a en K vale a * e = e * a = a
- 2. Como $e \in K$ y $e \in H$, por definición de intersección $e \in H \cap K$
- 3. Por lo tanto existe en H \cap K un elemento e tal que para todo a en H \cap K valga que a*e=e*a=a

Operación bien definida y elemento inverso:

Sea desea demostrar que para si $a, b \in H \cap K$ entonces $a * b^{-1} \in H \cap K$:

- 1. Por hipótesis se sabe que $a, b \in H \cap K$, entonces, por definición de intersección:
 - i. $a \in H \lor a \in K$
 - ii. $b \in H \lor b \in K$
- 2. Como H y K son subgrupos de (G,*) se cumple que.
 - i. Existe un $b^{-1} \in H$ tal que para todo b en H vale $b * b^{-1} = b^{-1} * b = e$
 - ii. Existe un $b^{-1} \in K$ tal que para todo b en K vale $b * b^{-1} = b^{-1} * b = e$
- 3. Como $b^{-1} \in K$ y $b^{-1} \in H$, por definición de intersección $b^{-1} \in H \cap K$
- 4. Como H y K son subgrupos de (G,*), la operación * está bien definida en H y en K, por hipótesis 1. se sabe que tanto a como b pertenecen a H y a K y que también sucede que b^{-1} pertenece a H y a K por lo tanto:
 - i. $a * b^{-1} \in H \lor a * b^{-1} \in K$
- 5. Como $a*b^{-1} \in H$ y $A*b^{-1} \in K$ por definición de intersección $a*b^{-1} \in H \cap K$

Ejercicio 13.

Sea (G,*) un grupo, sea $a \in G$ y sea H un subgrupo de G. Demostrar que el conjunto $aHa^{+1} = \{a*h*a^{-1}: h \in H\}$ es un subgrupo de G.

Elemento neutro:

Se debe demostrar que existe en aHa^{+1} un elemento e tal que para todo x en aHa^{+1} valga que x*e=e*x=x.

- 1. Se sabe que al ser H un subgrupos de (G,*).
 - i. Existe un $e \in H$ tal que para todo a en H vale a * e = e * a = a
- 2. Como $e \in H$, podemos considerar que h = e. Reemplazando nos queda:

i.
$$a * e * a^{-1} = a * a^{-1} = e$$

4. Por lo tanto existe en aHa^{+1} un elemento e tal que para todo a en aHa^{+1} valga que a*e=e*a=a

Operación bien definida y elemento inverso:

Sea desea demostrar que para si $x, y \in aHa^{+1}$ entonces $x * y^{-1} \in aHa^{+1}$:

1. Por hipótesis se sabe que $x,y\in aHa^{+1}$, entonces, por definición nos existe un h_1 y un h_2 tal que:

i.
$$x = a * h_1 * a^{-1}$$

ii.
$$y = a * h_2 * a^{-1}$$

2. Se quiere encontrar un $y^{-1} = (a * h_2 * a^{-1})^{-1}$. Desarrollando nos queda:

i.
$$y^{-1} = (a^{-1})^{-1} * h_2^{-1} * a^{-1} = a * h_2^{-1} * a^{-1}$$

- 3. Como al ser H un subgrupos de (G,*). Si $h_2 \in H$ entonces también $h_2^{-1} \in H$, por lo tanto $y^{-1} \in aHa^{+1}$ (se cumple bien $a*h_2^{-1}*a^{-1}$).
- 4. Esto nos deja que

i.
$$x * y^{-1} = (a * h_1 * a^{-1}) * (a * h_2^{-1} * a^{-1})$$

5. Por asociatividad de * en G nos queda que:

i.
$$x * y^{-1} = a * h_1 * (a^{-1} * a) * h_2^{-1} * a^{-1}$$

6. Como $a^{-1} * a = e$ (neutro de G)

i.
$$a * h_1 * e * h_2^{-1} * a^{-1} = a * h_1 * h_2^{-1} * a^{-1}$$

7. Nuevamente asociatividad de * en G

i.
$$a * (h_1 * h_2^{-1}) * a^{-1}$$

8. Como H es un subgrupos de (G,*) y tanto $h_1\in H$ como $h_2^{-1}\in H$, sucede que $h_1*h_2^{-1}\in H$. $h_1*h_2^{-1}=h$ esto nos deja:

i.
$$a * h * a^{-1}$$

9. Entonces $x * y^{-1} = a * h * a^{-1} \in H$.

Ejercicio 14.

Probar que todo grupo cíclico es abeliano

- 1. Sea (G,*) un grupo cíclico, por definición existe un $g \in G$ tal que para todo elemento $t \in G$ existe un entero k tal que $t = g^k$
- 2. Se desea demostrar que para todo $a, b \in G$ se cumple que a * b = b * a
- 3. Sea $a, b \in G$ por definición:

i.
$$a = g^k \operatorname{con} k \in Z$$

ii.
$$b = g^h \operatorname{con} h \in Z$$

4. Entonces si partimos de a*b y vamos desarrollando podemos ver cómo se llega a la igualdad. Para ello se utilizará una de las leyes de los exponentes y la suma usual de los naturales, junto con su propiedad conmutativa.

$$a * b = g^k * g^h = g^{k+h} = g^{h+k} = g^h * g^k = b * a$$

5. Como a*b=b*a para todos los $a,b\in G$ siendo G un grupo, todo grupo cíclico es abeliano.

Ejercicio 15.

Sea G un grupo cíclico de orden n, Si m es divisor de n entonces el elemento a^m y sus potencias generan un subgrupo

Ejercicio 16.

Sea (G,*) un grupo, sea $a \in G$ y sea H un subgrupo de G. Si $a,b \in G$, probar que la relación dada por $a \equiv b \mod(H)$ si $a * b^{-1} \in H$ es una relación de equivalencia.