STAT 422: Homework #4

Due: March 02, 2022 (midnight)

Problem 1

Statement

Assume $X_1, X_2 ... X_n$ are independent, normal random variables with $E(X_i) = \mu_i$ and $Var(X_i) = \sigma_i^2, i = 1, 2, ..., n$. Recall that the mgf of the $N(\mu, \sigma^2)$ distribution is $e^{\mu t + \frac{t^2 \sigma^2}{2}}$.

- a. Is $X_1, X_2 ... X_n$ a random sample, why or why not?
- b. Find the distribution (including parameters) of $Y = \sum_{i=1}^{n} X_i$ using mgfs. Explain, in words, what this result indicates and how you think it is useful.
- c. THM 6.3 in your book is a generalization of the result you found in part (b). Explain, in words, how this builds upon the result you found in (b).
- d. Give the distribution (including parameters) of each of the following random variables. Justify/explain each step in your path to determining each constructed RVs corresponding distribution. You may use the theorems you proved in parts a-c and THM 6.3.
 - $3X_1 + 5X_2$
 - $Z_1^2 + Z_2^2$, where $Z_i = \frac{X_i \mu_i}{\sigma_i}$ for i = 1, 2, ..., n
 - $\frac{Z_2 Z_1}{\sqrt{2}}$, where $Z_i = \frac{X_i^{\sigma_i} \mu_i}{\sigma_i}$ for i = 1, 2, ..., n
 - $\frac{(Z_1 + Z_2)^2}{(Z_3 Z_4)^2}$, where $Z_i = \frac{X_i \mu_i}{\sigma_i}$ for i = 1, 2, ..., n

Solution

a. Yes, they are sampled independently and are random variables (given in the statement)

b. Proof:

$$m_{Y} = \mathbb{E}\left[e^{tY}\right] = \mathbb{E}\left[e^{t\sum_{i=1}^{n} X_{i}}\right]$$

$$= \mathbb{E}\left[\prod_{i=1}^{n} e^{tX_{i}}\right] \stackrel{iid}{=} \prod_{i=1}^{n} \mathbb{E}\left[e^{tX_{i}}\right]$$

$$= \prod_{i=1}^{n} e^{\mu_{i}t + \frac{t^{2}\sigma_{i}^{2}}{2}} = \prod_{i=1}^{n} e^{\mu_{i}t} e^{\frac{t^{2}\sigma_{i}^{2}}{2}}$$

$$= e^{\sum_{i=1}^{n} \mu_{i}t} e^{\sum_{i=1}^{n} \frac{t^{2}\sigma_{i}^{2}}{2}}$$

$$= e^{\sum_{i=1}^{n} \mu_{i}t + \frac{t^{2}\sigma_{i}^{2}}{2}}$$

This is the mgf of another normal distribution, with $\mu = \sum_{i=1}^{n} \mu_i$, $sigma^2 = \sum_{i=1}^{n} \sigma_i^2$. So we observe that means and standard deviations add together when summing normal distributions.

- c. This result in THM 6.3 allows for scalar multiples of normal distributions to be added together. This allows us to multiply by a constant and show that the result is still normal. We can also subtract distributions if the constant < 0. Our proof is just the special case where all the constants = 1.
- d. $3X_1 + 5X_2 \sim N(3\mu_1 + 5\mu_2, 9\sigma_1^2 + 25\sigma_2^2$. This is by theorem 6.3 with $a_1 = 3$ and $a_2 = 5$.
 - $Z_1^2 + Z_2^2 \sim \chi_2^2$ We know that $Z_i \sim N(0,1)$ for i=1,2 so both Z_1,Z_2 are drawn from the same distribution N(0,1). Then we can apply theorem 7.2 with n=2.
 - $\frac{Z_2-Z_1}{\sqrt{2}} \sim N(0,1)$. This is a funny trick of math. We have $Z_i \sim N(0,1)$. So this is from Theorem 6.3 with $a_1 = \frac{-1}{\sqrt{2}}$ and $a_2 = \frac{1}{\sqrt{2}}$, thus $\mu = a_1 * 0 + a_2 * 0 = 0$ and $\sigma^2 = a_1^2 + a_2^2 = 1/2 + 1/2 = 1$ so we get back to the same distribution :-)
 - $\sigma^2 = a_1^2 + a_2^2 = 1/2 + 1/2 = 1 \text{ so we get back to the same distribution :-)}$ $\frac{(Z_1 + Z_2)^2}{(Z_3 Z_4)^2} \sim F_{1,1}$, so first we note that $Z_1 + Z_2 \sim N(0,2)$, and $Z_3 Z_4 \sim N(0,2)$ by theorem 6.3. So by theorem 7.2 $(Z_1 + Z_2)^2 = 2 * (A/\sqrt{2})^2 \sim \chi_1^2$ where $Z_1 + Z_2 = A \sim N(0,2)$, so $A/\sqrt{2} \sim N(0,1)$. Similarly $(Z_3 + Z_4)^2 = 2 * (B/\sqrt{2})^2 \sim \chi_1^2$ where $Z_3 Z_4 = B \sim N(0,2)$, so $B/\sqrt{2} \sim N(0,1)$. So we have $\frac{2(A/\sqrt{2})^2}{2(B/\sqrt{2})^2} = \frac{(A/\sqrt{2})^2}{(B/\sqrt{2})^2}$. Since $(A/\sqrt{2})^2 \sim \chi_1^2$ and $(B/\sqrt{2})^2 \sim \chi_1^2$ we can use Def 7.3 to get that $\frac{(A/\sqrt{2})^2}{(B/\sqrt{2})^2} \sim F_{1,1}$ (Snedecor's F distribution with u=v=1 degrees of freedom)

Problem 2

Statement

Let X_i , i = 1, 2, 3 be independent with $N(i, i^2)$ distributions. That is, $X_1 \sim N(1, 1^2)$, $X_2 \sim N(2, 2^2)$, and $X_3 \sim N(3, 3^2)$. For each of the following situations, use any subset of the X_i s to construct a random variable with the stated distribution. Justify why each constructed random variable follows the corresponding distribution of interest.

- a. Standard normal distribution
- b. Chi-squared distribution with 3 degrees of freedom.
- c. t distribution with 2 degrees of freedom
- d. F distribution with 1 numerator and 2 denominator degrees of freedom

Solution

- a. $\frac{1}{\sqrt{8}}X_2 \frac{2}{\sqrt{8}}X_1 \sim N(0,1)$ we have $\mu = \frac{2}{\sqrt{8}} \frac{2}{\sqrt{8}} = 0$, and $\sigma^2 = \frac{4}{8} + \frac{4}{8} = 1$. b. $\sum_{i=1}^{3} \left(\frac{1}{\sqrt{8}}X_2 \frac{2}{\sqrt{8}}X_1\right)^2 = 3 * \left(\frac{1}{\sqrt{8}}X_2 \frac{2}{\sqrt{8}}X_1\right)^2 \sim \chi_3^2$. From a we have that $\frac{1}{\sqrt{8}}X_2 \frac{2}{\sqrt{8}}X_1 \sim N(0,1)$. Then we have a sum of 3 squared standard normal distributions, which by theorem 7.2 is χ_3^2
- c. From b we can easily get $2*\left(\frac{1}{\sqrt{8}}X_2-\frac{2}{\sqrt{8}}X_1\right)^2\sim\chi_2^2$. Now it would be nice to reuse our solution from for our N(0,1), but we can't do that because we would have just $\frac{1}{\frac{1}{\sqrt{8}}X_2 - \frac{2}{\sqrt{8}}X_1}$, so we have to make a new one. $\frac{1}{\sqrt{18}}X_3 - \frac{3}{\sqrt{18}}X_1 \sim N(0,1)$, we have $\mu = \frac{3}{\sqrt{18}} - \frac{3}{\sqrt{18}} = 0$ and $\sigma^2 = \frac{9}{18} + \frac{9}{18} = 1$. So now we can put this together to get: (note that $\sqrt{8} * \sqrt{2} = \sqrt{16} = 4$ for dividing by degrees of freedom)

$$\frac{\frac{1}{\sqrt{18}}X_3 - \frac{3}{\sqrt{18}}X_1}{2 * \sqrt{2} * \left(\frac{1}{4}X_2 - \frac{2}{4}X_1\right)^2} \sim t_2$$

d. Thankfully, this one is pretty easy to construct. We can build a χ^2_2 distribution pretty easily from the new N(0,1) we just defined above the same way as we did in b. So we have: $1*\left(\frac{1}{\sqrt{18}}X_3 - \frac{3}{\sqrt{18}}\right)^2 \sim \chi_1^2$ and from c: $2*\left(\frac{1}{\sqrt{8}}X_2 - \frac{2}{\sqrt{8}}X_1\right)^2 \sim \chi_2^2$. Thus putting it together

$$\frac{\left(\frac{1}{\sqrt{18}}X_3 - \frac{3}{\sqrt{18}}X_1\right)^2}{2 * \sqrt{2} * \left(\frac{1}{4}X_2 - \frac{2}{4}X_1\right)^2} \sim F_{1,2}$$