William Stallings Komunikasi Data dan Komputer Edisi 7

Bab 22 Distributed Applications

Electronic Mail

- Paling banyak digunakan di aplikasi pada beberapa jaringan
- Simple Mail Transfer Protocol (SMTP)
 - —TCP/IP
 - Pengiriman pesan text yang sederhana
- Multi-purpose Internet Mail Extension (MIME)
 - —Pengiriman dari tipe-tipe data yang lain
 - —Suara, gambar/photo, video

SMTP

- RFC 821
- Tidak sesuai untuk format pesan/data
 - Covered in RFC 822 (see later)
- SMTP menggunakan info tertulis di envelope of mail
 - Message header
- Isinya tidak terlihat
 - Message body
- Kecuali:
 - Standard karakter message diset ke 7 bit ASCII
 - Menambah log info untuk memulai dari message
 - menampilkan path taken

Dasar Pengoperasian

- Mail diciptakan oleh user agen program (mail client)
 - —Pesan terdiri dari:
 - Header containing recipient's address and other info
 - Body containing user data
- Pesan diantrikan dan dikirimkan sebagai input ke SMTP sender program
 - —Typically a server process (daemon on UNIX)

Mail Message Contents

- Masing-masing pesan yang diantrikan memiliki:
 - —Text pesan
 - RFC 822 header with message envelope and list of recipients
 - Message body, composed by user
 - —Daftar tujuan pesan
 - Derived by user agent from header
 - Mungkin ditulis di header
 - May require expansion of mailing lists
 - May need replacement of mnemonic names with mailbox names
- jika BCCs diketahui, user agen perlu untuk menyiapkan format pesan yang benar

SMTP Sender

- Mengambil pesan dari antrian
- Dikirimkan ke tujuan host sendiri
 - Via SMTP transaction
 - Over one or more TCP connections to port 25
- Host memiliki bermacam-macam senders aktif
- Host should be able to create receivers on demand
- Ketika pengiriman selesai, sender menghapus tujuan dari daftar pesan
- Ketika semua tujuan telah diproses, pesan dihapus

Optimization

- Jika tujuan pesan untuk multiple users ditentukan host, pesan dikirim hanya sekali
 - Pengiriman ke users ditangani pada host tujuan
- Jika berbagai pesan siap diberikan host, sebuah koneksi TCP dapat digunakan
 - —Saves overhead of setting up and dropping connection

Possible Errors

- Host unreachable
- Host out of operation
- Koneksi TCP gagal selama proses transfer
- Sender can re-queue mail
 - —Menyerah setelah beberapa saat
- Faulty destination address
 - —Kesalahan pengguna
 - —Target/yang dituju merubah alamat
 - —Redirect if possible
 - —Inform user if not

SMTP Protocol - Reliability

- Digunakan untuk mengirimkan pesan dari sender to receiver melalui koneksi TCP
- Berusaha untuk memberikan layanan yang dapat dipercaya
- Tidak menjamin untuk mendapatkan kembali pesan yang hilang
- No end to end acknowledgement to originator
- Tidak menjamin adanya indikasi kesalahan dalam proses pengiriman
- Umumnya dapat dipercaya

SMTP Receiver

- Menerima pesan yang datang
- Places in user mailbox or copies to outgoing queue for forwarding
- Receiver harus:
 - Verify local mail destinations
 - Deal with errors
 - Transmission
 - Lack of disk space
- Pengirim bertanggung jawab pada pesan sampai receiver memberitahukan proses transfer selesai
 - Mengetahui surat yang sudah tiba di host, bukan pemakai

SMTP Forwarding

- Sering digunakan untuk transfer secara direct dari pengirim host ke receiver host
- May go through intermediate machine via forwarding capability
 - —Pengirim dapat menspesifikasi route
 - —Target user may have moved

Conversation

- SMTP membatasi pembicaraan antara pengirim dan receiver
- Fungsi utama adalah untuk mengirimkan atau transfer pesan
- Berhenti menangani mail diluar lingkup SMTP
 - —Mungkin berbeda antar sistem

SMTP Mail Flow

SMTP System Overview

- Perintah and respon antara sender dan receiver
- Permulaan dengan sender
 - —melakukan koneksi TCP
- Sender mengirimkan perintah untuk receiver
- HELO<SP><domain><CRLF>
- Masing-masing perintah mengaktifkan satu balasan
- 250 requested mail action ok; completed

SMTP Replies

- Digit terdepan menandai kategori
 - —Positive completion reply (2xx)
 - —Positive intermediate reply (3xx)
 - —Transient negative completion reply (4xx)
 - —Permanent negative completion reply (5xx)

Operation Phases

- Setup koneksi
- Sentral command-response pairs
- Pembatasan koneksi

Connection Setup

- Pengrim membuka jalur koneksi TCP dengan receiver
- Sekali dikoneksikan, receiver mengidentifikasi dirinya sendiri
 - 220 <domain> service ready
- Sender mengidentifikasi dirinya sendiri
 - HELO
- Receiver menerima identidikasi dari sender's
 - 250 OK
- Jika servis mail tidak tersedia, langkah 2 diatas menjadi:
 - 421 service tidak tersedia

Mail Transfer

- Sender boleh mengirim satu pesan atau lebih ke receiver
- Perintah MAIL mengidentifikasi originator
 - Memberi alur kebalikan digunakan untuk error reporting
 - Receiver returns 250 OK or appropriate fail/error message
- Satu atau lebih perintah RCPT diidentifikasi penerima dari pesan
 - Memisahkan pesan untuk masing-masing penerima
- DATA command mentransfer text pesan
 - Akhir dari pesan ditandai oleh line yang hanya berisi period (.)

Closing Connection

- Dua langkah
- Sender mengirim QUIT dan menunggu jawaban
- Kemudian memerintahkan TCP menutup koneksi
- Receiver memerintahkan TCP menutup koneksi setelah mengirimkan balasan ke QUIT

Format for Text Messages RFC 882

- Message ditampilkan mempunyai amplop dan isi
- Amplop berisi informasi yang diperlukan untuk transmisi dan pengiriman message
- Message is sequence of lines of text
 - —Uses general memo framework
 - Header biasanya kata kunci yang diikuti oleh tanda titik dua yang diikuti oleh argumentasi

Example Message

Date:Tue, 16 Jan 1996 10:37:17 (EST)

From: "William Stallings" <ws@host.com>

Subject: The syntax of RFC 822

To: Smith@otherhost.com

Cc: Jones@Yet-another_host.com

This is the main text, delimited from the header by a blank line.

Multipurpose Internet Mail Extension (MIME)

- Extension to RFC822
- SMTP tidak dapat transmit executables
 - Uuencode and other schemes are available
 - Not standardized
- Tidak dapat mengirimkan text termasuk karakter internasional (e.g. â, å, ä, è, é, ê, ë)
 - butuh 8 bit ASCII
- Servers bisa menolak mail jika melebihi ukuran standar/asli
- Terjemah dari ASCII dan EBCDIC tidak standar
- SMTP gateways ke X.400 tidak dapat menangani sama sekali data teks di X.400 messages
- Beberapa implemantasi SMTP tidak memenuhi standart
 - CRLF, truncate or wrap long lines, removal of white space, etc.

Overview of MIME

- Lima bentuk header pesan baru
 - —MIME version
 - —Content type
 - —Content transfer encoding
 - —Content Id
 - —Content Description
- Jumlah format dibatasi
- Transfer encoding dibatasi

Content Types

- Text body
- Multipart
 - Mixed, Parallel, Alternative, Digest
- Message
 - RFC 822, Partial, External-body
- Image
 - jpeg, gif
- Video
 - mpeg
- Audio
 - Basic
- Application
 - Postscript
 - octet stream

MIME Transfer Encodings

- Reliable delivery across wide largest range of environments
- Isi transfer encoding field
 - Six values
 - Three (7bit, 8bit, binary) no encoding done
 - Provide info about nature of data
- Quoted-printable
 - Data largely printable ASCII characters
 - Non-printing characters represented by hex code
- Base64
 - Maps arbitrary binary input onto printable output
- X-token
 - Named nonstandard encoding

Radix-64 Encoding

Hypertext Transfer Protocol HTTP

- Underlying protocol of the World Wide Web
- Bukan protocol untuk pengiriman hypertext
 - For transmitting information with efficiency necessary for hypertext jumps
- Dapat mentransfer plain text, hypertext, audio, images, dan Informasi Akses Internet

HTTP Overview

- Transaction oriented client/server protocol
- Biasanya antara Web browser (clinet) dan Web server
- Menggunakan koneksi TCP
- Stateless
 - —Each transaction treated independently
 - —Each new TCP connection for each transaction
 - Terminate connection when transaction complete

Key Terms

- Cache
- Client
- Connection
- Entity
- Gateway
- Message
- Origin server
- Proxy
- Resource
- Server
- Tunnel
- User agent

Examples of HTTP Operation

Intermediate HTTP Systems

HTTP Messages

- Requests
 - Client to server
- Responses
 - Server to client
- Request line
- Response line
- General header
- Request header
- Response header
- Entity header
- Entity body

HTTP Message Structure

Request Line

General Header

Request Header or Response Header

Entity Header

Entity Body

General Header Fields

- Cache control
- Connection
- Data
- Forwarded
- Keep alive
- MIME version
- Pragma
- Upgrade

Request Methods

- Request-Line = Method <SP> Request_URL <SP> HTTP-Version <CRLF>
- Methods:
 - Options
 - Get
 - Head
 - Post
 - Put
 - Patch
 - Copy
 - Move
 - Delete
 - Link
 - Unlink
 - Trace
 - Wrapped
 - Extension-method

Request Header Field

- Accept
- Accept charset
- Accept encoding
- Accept language
- Authorization
- From
- Host
- If modified since
- Proxy authentication
- Range
- Referrer
- Unless
- User agent

Response Messages

- Status line followed by one or more general, response and entity headers, followed by optional entity body
- Status-Line = HTTP-Version <SP> Status-Code
 <SP> Reason-Phrase <CRLF>

Status Codes

- Informational
- Successful
- Redirection
- Kesalahan client
- Kesalahan server

Response Header Fields

- Location
- Proxy authentication
- Public
- Retry after
- Server
- WWW-Authenticate

Entity Header Fields

- Allow
- Content encoding
- Content language
- Content length
- Content MD5
- Content range
- Content type
- Content version
- Derived from

- Expires
- Last modified
- Link
- Title
- Transfer encoding
- URL header
- Extension header

Entity Body

- Arbitrary sequence of octets
- HTTP mengirimkan bermacam-macam tipe data seperti:
 - -text
 - —binary data
 - -audio
 - -images
 - —video
- Interpretation of data determined by header fields
 - —Content encoding, content type, transfer encoding

Network Management - SNMP

- Simple Network Management Protocol
- Networks menjadi sangat dibutuhkan
- Lebih komplek membuat kegagalan lebih mungkin
- Require automatic network management tools
- Standards required to allow multi-vendor networks
- Covering:
 - —Services
 - —Protocols
 - —Management information base (MIB)

Network Management Systems

- Collection of tools for network management
- Single operator interface
- Kuat, mudah dalam pengesetan perintah
- Performing most or all management tasks
- Minimal amount of separate equipment
 - —i.e. use existing equipment
- View entire network as unified architecture
- Active elements provide regular feedback

Key Elements

- Management station or manager
- Agent
- Management information base
- Network management protocol

Management Station

- System yang berdiri sendiri atau merupakan bagian dari shared system
- Interface for human network manager
- Set of management applications
 - Data analysis
 - Fault recovery
- Interface to monitor and control network
- Translate manager's requirements into monitoring and control of remote elements
- Data base of network management information extracted from managed entities

Management Agent

- Hosts, bridges, hubs, routers dilengkapi dengan agent software
- Allow them to be managed from management station
- Respond to requests for information
- Respond to requests for action
- Asynchronously supply unsolicited information

Management Information Base

- MIB
- Representation of network resources as objects
- Each object a variable representing one aspect of managed object
- MIB is collection of access points at agent for management of station
- Objects standardized across class of system
 - —Bridge, router etc.

Network Management Protocol

- Menghubungkan antar management station dan agent
- TCP/IP menggunakan SNMP
- OSI menggunakan Common Management Information Protocol (CMIP)
- SNMPv2 (enhanced SNMP) untuk OSI and TCP/IP

Protocol Capabilities

- Get
- Set
- Notify

Management Layout

- Mungkin di pusatkan di simple network
- Mungkin didistribusikan di jaringan besar yang kompleks
 - —Multiple management servers
 - —Each manages pool of agents
 - Management may be delegated to intermediate manager

Example of Distributed Network Management Configuration

Figure 22.6 Example Distributed Network Management Configuration

Network Management Protocol Architecture

- Application-level protocol
- Part of TCP/IP protocol suite
- Runs over UDP
- Dari management station, tiga tipe SNMP messages issued
 - GetRequest, GetNextRequest, and SetRequest
 - Port 161
- Agent replies with GetResponse
- Agent may issue trap message in response to event that affects MIB and underlying managed
 - Port 162

SNMPv1 Configuration

Role of SNMP v1

SNMP v1

- Spesifikasi SNMP dikeluarkan agustus 1988
- Stand alone management stations and bridges, routers workstations etc supplied with agents
- Defines limited, easily implemented MIB of scalar variables and two dimensional tables
- Protocol yang diefektifkan
- Kemampuan yang terbatas
- Ketiadaan keamanan
- SNMP v2 1993, ditinjau kembali 1996
 - -RFC 1901-1908

SNMP v2 (1)

- Framework on which network management applications can be built
 - —e.g fault management, performance monitoring, accounting
- Protocol digunakan untuk menukar management information
- Each player maintains local MIB
 - —Structure defined in standard
- Sedikitnya satu sistem yang bertanggung jawab untuk management
 - Houses management applications

SNPM v2 (2)

- Support central atau distributed management
- Didalam sistem ditribusi, beberapa elements beroperasi seperti manager dan agent
- Pertukaran menggunakan SNMP v2 protocol
 - —Simple request/response protocol
 - —Typically uses UDP
 - Ongoing reliable connection not required
 - Reduces management overhead

Structure of Management Information

- SMI
- Defines general framework with which MIB defined and constructed
- Mengidentifikasi tipe data
- How resources are represented and named
- Encourages simplicity and extensibility
- Scalars and two dimensional arrays of scalars (tables) only

Protocol Operation

- Pertukaran pesan
- Outer message header deals with security
- Tujuh jenis dari PDU

SNMP v2 PDU Formats

PDU type	request-id	0	0		variable-bindings		
(a) GetRequest-PDU, GetNextRequest-PDU, SetRequest-PDU, SNMPv2-Trap-PDU, InformRequest-PDU							
PDU type	request-id	error-status	error-index	variable-bindings			
(b) Response-PDU							
PDU type	request-id	non-repeaters	max-repetitions	variable-bindings			
(c) GetBulkRequest-PDU							
name1	value1	name2	value2		name <i>n</i>	value <i>n</i>	

(d) variable-bindings

SNMP v3

- Addresses security issues of SNMP v1/2
- RFC 2570-2575
- Proposed standard January 1998
- Menggambarkan keseluruhan kemampuan keamanan dan arsitektur
- Untuk digunakan dengan SNMP v2

SNMP v3 Services

- Authentication
 - Part of User-Based Security (UBS)
 - Assures that message:
 - Datang dari identified source
 - belum diubah
 - belum delayed atau replayed
- Privacy
 - Encrypted messages using DES
- Access control
 - Dapat mengatur agen untuk menyediakan sejumlah tingkatan akses ke MIB
 - Access to information
 - Membatsi operations

Required Reading

- Stallings chapter 22
- WWW Consortium
- Loads of web sites on SNMP