Laborator 3

Logică matematică și computațională

Laboratorul 3

Cuprins

- Alte exerciții cu liste
- Sortări

Alte exerciții cu liste

Practică

Exercițiul 1

Definiți un predicat palindrome/1 care este adevărat dacă lista primită ca argument este palindrom (lista citită de la stânga la dreapta este identică cu lista citită de la dreapta la stânga).

De exemplu, la întrebarea

?- palindrome([
$$r,e,d,i,v,i,d,e,r$$
]).

ar trebui să obțineți true.

Nu folosiți predicatul predefinit reverse, ci propria implementare a acestui predicat.

Practică

Exercitiul 2

Definiți un predicat remove_duplicates/2 care șterge toate duplicatele din lista dată ca prim argument și întoarce rezultatul în al doilea argument.

De exemplu, la întrebarea

```
?- remove_duplicates([a, b, a, c, d, d], List).
ar trebui să obțineți List = [b, a, c, d].
```

Practică

Exercițiul 3

Definiți un predicat atimes/3 care să fie adevărat exact atunci când elementul din primul argument apare în lista din al doilea argument de numărul de ori precizat în al treilea argument.

Interogați:

- ?- atimes(3,[3,1,2,1],X).
- ?- atimes(1,[3,1,2,1],X).
- ?- atimes(N,[3,1,2,1],2).
- ?- atimes(N,[3,1,2,1],1).

Sortări

Sortarea prin inserție (insertion sort)

Predicatul insertsort/2 sortează lista de pe primul argument folosind algoritmul insertion sort.

```
insertsort([],[]).
insertsort([H|T],L) :- insertsort(T,L1), insert(H,L1,L).
```

Exercițiul 4: scrieți regulile care definesc comportamentul predicatului ajutător insert/3.

Quicksort

Predicatul quicksort/2 sortează lista de pe primul argument folosind algoritmul quicksort.

```
quicksort([],[]).
quicksort([H|T],L) :-
split(H,T,A,B), quicksort(A,M), quicksort(B,N),
append(M,[H|N],L).
```

Exercițiul 5: scrieți regulile care definesc comportamentul predicatului ajutător split/4.