FH Bielefeld, Campus Minden Prof. Dr.-Ing. Kerstin Müller Sommerssemester 2018 Computergrafik

Aufgabensammlung III

Name: ——	 	
Gruppe : -	 	

Aufgabe 1 (Window-Viewport Transformation)

Geben Sie die Punktkoordinaten $(x_s, y_s)^T$ auf dem Bildschirm an für die Punktkoordinaten $(x_w, y_w)^T = (1050, 400)^T$ im Window mit $W_{xl} = 300, W_{xr} = 1300, W_{yb} = 200, W_{yt} = 800$ und im Viewport mit $V_{xl} = 200, V_{xr} = 600, V_{yb} = 100, V_{yt} = 850$

Aufgabe 2 (Zentralprojektion)

Geben Sie die (4×4) Matrix M_Z zur Zentralprojektion für folgende Konstellation an: Projektionszentrum Z liegt auf der positiven z-Achse mit Abstand d > 0 zum Ursprung, also Z=(0,0,d). Blickrichtung ist die negative z-Achse. Projektionsebene ist die Ebene z = 0.

 $M_Z =$

Es sei d=5. Stellen Sie die zugehörige Matrix M_Z zur Zentralprojektion auf. Führen Sie mit Hilfe dieser Projektionsmatrix M_Z eine Projektion des Punktes $P=(16,8,-15,1)^T$ in die Projektionsebene durch und geben Sie den resultierenden Punkt P' nach der Homogenisierung an.

Aufgabe 3 (Parallelprojektion)

Geben Sie die (4×4) Matrix M_P zur Parallelprojektion für folgende Konstellation an: Das Projektionszentrum Z liegt im Unendlichen, die Projektionsstrahlen der rechtwinkeligen Parallelprojektion laufen in Richtung (0,0,1) und die Projektionsebene ist die xy-Ebene.

 $M_P =$

Führen Sie mit Hilfe dieser Projektionsmatrix M_P eine Projektion des Punktes $P = (4, 2, -2, 1)^T$ in die Projektionsebene durch und geben Sie den resultierenden Punkt P' an.