TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2020

Rate-Distortion Autoencoders (RDAs)

Noisy Channel RDAs

Gaussian Noisy Channel RDAs

Rate-Distortion Autoencoders (Image Compression)

We compress a continuous signal y to a bit string $\tilde{z}_{\Phi}(y)$.

We decompress $\tilde{z}_{\Phi}(y)$ to $y_{\Phi}(\tilde{z}_{\Phi}(y))$.

We can then define a rate-distortion loss.

$$\mathcal{L}(\Phi) = E_{y \sim \text{Pop}} |\tilde{z}_{\Phi}(y)| + \lambda \text{Dist}(y, y_{\Phi}(\tilde{z}_{\Phi}(y)))$$

where $|\tilde{z}|$ is the number of bits in the bit string \tilde{z} .

Common Distortion Functions

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} |\tilde{z}_{\Phi}(y)| + \lambda \operatorname{Dist}(y, y_{\Phi}(\tilde{z}_{\Phi}(y)))$$

It is common to take

$$Dist(y, \hat{y}) = ||y - \hat{y}||^2$$
 (L₂)

or

$$Dist(y, \hat{y}) = ||y - \hat{y}||_1$$
 (L₁)

CNN-based Image Compression

These slides are loosely based on

End-to-End Optimized Image Compression, Balle, Laparra, Simoncelli, ICLR 2017.

Rounding a Tensor

Take $z_{\Phi}(y)$ can be a layer in a CNN applied to image y. $z_{\Phi}(y)$ can have with both spatial and feature dimensions.

Take $\tilde{z}_{\Phi}(y)$ to be the result of rounding each component of the continuous tensor $z_{\Phi}(y)$ to the nearest integer.

$$\tilde{z}_{\Phi}(y)[x,y,i] = \lfloor z_{\Phi}(y)[x,y,i] + 1/2 \rfloor$$

Increasing Spatial Dimension in Decoding

Increasing Spatial Dimension in Decoding (Deconvolution)

To increase spatial dimension we use 4 times the desired output the features.

$$L'_{\ell+1}[x,y,i] = \sigma\left(W[\Delta X, \Delta Y, J, i] L'_{\ell}[x + \Delta X, y + \Delta Y, J]\right)$$

We then reshape $L'_{\ell+1}[X, Y, I]$ to $L'_{\ell+1}[2X, 2Y, I/4]$.

Rounding is not Differentiable

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} |\tilde{z}_{\Phi}(y)| + \lambda \operatorname{Dist}(y, y_{\Phi}(\tilde{z}_{\Phi}(y)))$$

Because of rounding, $\tilde{z}_{\Phi}(y)$ is discrete and the gradients are zero.

We will train using a differentiable approximation.

Rate: Replacing Code Length with Differential Entropy

$$\mathcal{L}_{\text{rate}}(\Phi) = E_{y \sim \text{Pop}} |\tilde{z}_{\Phi}(y)|$$

Recall that $\tilde{z}_{\Phi}(y)$ is a rounding of a continuous encoding $z_{\Phi}(y)$.

By using a nontrivial code for integers — say Huffman coding integers — we can approximate the code length of the rounded integer with a continuous probability density.

$$|\tilde{z}_{\Phi}(y)| \approx \sum_{x,y,i} -\ln p_{\Phi}(z_{\Phi}(y)[x,y,i])$$

Distortion: Replacing Rounding with Noise

We can make distortion differentiable by modeling rounding as the addition of noise.

$$\mathcal{L}_{\text{dist}}(\Phi) = E_{y \sim \text{Pop}} \operatorname{Dist}(y, y_{\Phi}(\tilde{z}_{\Phi}(y)))$$

$$\approx E_{y,\epsilon} \operatorname{Dist}(y, y_{\Phi}(z_{\Phi}(y) + \epsilon))$$

Here ϵ is a noise vector each component of which is drawn uniformly from (-1/2, 1/2).

Rate: Differential Entropy vs. Discrete Entropy

Each point is a rate for an image measured in both differential entropy and discrete entropy. The size of the rate changes as we change the weight λ .

Distortion: Noise vs. Rounding

Each point is a distortion for an image measured in both a rounding model and a noise model. The size of the distortion changes as we change the weight λ .

JPEG at 4283 bytes or .121 bits per pixel

JPEG, 4283 bytes (0.121 bit/px), PSNR: 24.85 dB/29.23 dB, MS-SSIM: 0.8079

JPEG 2000 at 4004 bytes or .113 bits per pixel

JPEG 2000, 4004 bytes (0.113 bit/px), PSNR: 26.61 dB/33.88 dB, MS-SSIM: 0.8860

Deep Autoencoder at 3986 bytes or .113 bits per pixel

Proposed method, 3986 bytes (0.113 bit/px), PSNR: 27.01 dB/34.16 dB, MS-SSIM: 0.9039

Noisy-Channel RDAs

The image compression case study training was based on a differentiable loss

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \left(E_y - \ln p_{\Phi}(z_{\Phi}(y)) \right) + \lambda E_{y,\epsilon} \operatorname{Dist}(y, y_{\Phi}(z_{\Phi}(y) + \epsilon))$$

In a rate-distortion auto-encoder we will replace the rate term with a channel capacity (rate) for a noisy channel on continuous variables.

Mutual Information as a Channel Rate

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \left(E_y - \ln p_{\Phi}(z_{\Phi}(y)) \right) + \lambda E_{y,\epsilon} \operatorname{Dist}(y, y_{\Phi}(z_{\Phi}(y) + \epsilon))$$
 is replaced by

$$\tilde{z} = z_{\Phi}(y) + f_{\Phi}(y, \epsilon)$$
 ϵ is fixed (parameter independent) noise

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} I_{\Phi}(y, \tilde{z}) + \lambda E_{y,\epsilon} \operatorname{Dist}(y, y_{\Phi}(\tilde{z}))$$

By the channel capacity theorem $I(y, \tilde{z})$ is the **rate** of information transfer from y to \tilde{z} . Differential mutual infomation is more meaningful than differential cross entropy.

Mutual Information as a Channel Rate

 $\tilde{z} = z_{\Phi}(y) + f_{\Phi}(y, \epsilon)$ ϵ is fixed (parameter independent) noise

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} I_{\Phi}(y, \tilde{z}) + \lambda E_{y, \epsilon} \operatorname{Dist}(y, y_{\Phi}(\tilde{z}))$$

Taking the distribution on ϵ to be parameter independent is called the "reparameterization trick" and allows SGD.

$$\nabla_{\Phi} E_{y,\epsilon} \operatorname{Dist}(y, y_{\Phi}(z_{\Phi}(y) + f_{\Phi}(\epsilon)))$$

$$= E_{y,\epsilon} \nabla_{\Phi} \operatorname{Dist}(y, y_{\Phi}(z_{\Phi}(y) + f_{\Phi}(\epsilon)))$$

Mutual Information as a Channel Rate

$$\tilde{z} = z_{\Phi}(y) + f_{\Phi}(y, \epsilon)$$
 ϵ is fixed (parameter independent) noise

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} I_{\Phi}(y, \tilde{z}) + \lambda E_{y, \epsilon} \operatorname{Dist}(y, y_{\Phi}(\tilde{z}))$$

Typically $f_{\Phi}(y, \epsilon)$ is simple, such as $\sigma_{\Phi}(y) \odot \epsilon$, so that $p_{\Phi}(\tilde{z}|y)$ is easily computed.

Mutual Information Replaces Cross Entropy

$$I_{\Phi}(y,\tilde{z}) = E_{y,\epsilon} \ln \frac{\operatorname{pop}(y)p_{\Phi}(\tilde{z}|y)}{\operatorname{pop}(y)p_{\operatorname{pop},\Phi}(\tilde{z})}$$

$$= E_{y,\epsilon} \ln \frac{p_{\Phi}(\tilde{z}|y)}{p_{\text{pop},\Phi}(\tilde{z})}$$

where
$$p_{\text{pop},\Phi}(\tilde{z}) = E_{y \sim \text{pop}} p_{\Phi}(\tilde{z}|y)$$

A Variational Bound

$$p_{\text{pop},\Phi}(\tilde{z}) = E_{y \sim \text{pop}} \ p_{\Phi}(\tilde{z}|y)$$

We cannot compute $p_{\text{pop},\Phi}(\tilde{z})$.

Instead we will use a variational bound involving a computable model $q_{\Phi}(\tilde{z})$

A Variational Bound

$$I(y, \tilde{z}) = E_{y,\epsilon} \ln \frac{p_{\Phi}(\tilde{z}|y)}{p_{\text{pop},\Phi}(\tilde{z})}$$

$$= E_{y,\epsilon} \ln \frac{p_{\Phi}(\tilde{z}|y)}{q_{\Phi}(\tilde{z})} + E_{y,\epsilon} \ln \frac{q_{\Phi}(\tilde{z})}{p_{\text{pop},\Phi}(\tilde{z})}$$

$$= E_{y,\epsilon} \ln \frac{p_{\Phi}(\tilde{z}|y)}{q_{\Phi}(\tilde{z})} - KL(p_{\text{pop},\Phi}(\tilde{z}), q_{\Phi}(\tilde{z}))$$

$$\leq E_{y,\epsilon} \ln \frac{p_{\Phi}(\tilde{z}|y)}{q_{\Phi}(\tilde{z})}$$

A Fundamental Equation for the Continuous Case

$$\tilde{z} = z_{\Phi}(y) + f_{\Phi}(y, \epsilon)$$

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y,\epsilon} \ln \frac{p_{\Phi}(\tilde{z}|y)}{q_{\Phi}(\tilde{z})} + \lambda \operatorname{Dist}(y, y_{\Phi}(\tilde{z}))$$

Gaussian Noisy-Channel RDA

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y,\epsilon} \ln \frac{p_{\Phi}(\tilde{z}|y)}{q_{\Phi}(\tilde{z})} + \lambda \operatorname{Dist}(y, y_{\Phi}(\tilde{z}))$$

$$\tilde{z}[i] = z_{\Phi}(y)[i] + \sigma_{\Phi}(y)\epsilon[i] \quad \epsilon[i] \sim \mathcal{N}(0, 1)$$

$$p_{\Phi}(\tilde{z}[i]|y) = \mathcal{N}(z_{\Phi}(y)[i], \sigma_{\Phi}(y)[i])$$

$$q_{\Phi}(\tilde{z}[i]) = \mathcal{N}(\mu_q[i], \sigma_q[i])$$

$$\operatorname{Dist}(y, \hat{y}) = ||y - \hat{y}||^2$$

Gaussian Noisy-Channel RDA

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y,\epsilon} \ln \frac{p_{\Phi}(\tilde{z}|y)}{q_{\Phi}(\tilde{z})} + \lambda \operatorname{Dist}(y, y_{\Phi}(\tilde{z}))$$

We will show that in the Gaussian case can fix q_{Φ}

$$p_{\Phi}(\tilde{z}[i]|y) = \mathcal{N}(z_{\Phi}(y)[i], \sigma_{\Phi}(y)[i])$$

$$q_{\Phi}(\tilde{z}[i]) = \mathcal{N}(0,1)$$

$$Dist(y, \hat{y}) = ||y - \hat{y}||^2$$

Gaussian Noisy-Channel RDA

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y,\epsilon} \ln \frac{p_{\Phi}(\tilde{z}|y)}{q_{\Phi}(\tilde{z})} + \lambda \operatorname{Dist}(y, y_{\Phi}(\tilde{z}))$$

$$= \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} \begin{pmatrix} KL(p_{\Phi}(\tilde{z}|y), q_{\Phi}(\tilde{z})) \\ +\lambda E_{\epsilon} \operatorname{Dist}(y, y_{\Phi}(\tilde{z})) \end{pmatrix}$$

Closed Form KL-Divergence

$$KL(p_{\Phi}(\tilde{z}|y), q_{\Phi}(\tilde{z}))$$

$$= \sum_{i} \frac{\sigma_{\Phi}(y)[i]^{2} + (z_{\Phi}(y)[i] - \mu_{q}[i])^{2}}{2\sigma_{q}[i]^{2}} + \ln \frac{\sigma_{q}[i]}{\sigma_{\Phi}(y)[i]} - \frac{1}{2}$$

Standardizing $p_{\Phi}(z)$

$$KL(p_{\Phi}(\tilde{z}|y), p_{\Phi}(\tilde{z}))$$

$$= \sum_{i} \frac{\sigma_{\Phi}(y)[i]^{2} + (z_{\Phi}(y)[i] - \mu_{q}[i])^{2}}{2\sigma_{q}[i]^{2}} + \ln \frac{\sigma_{q}[i]}{\sigma_{\Phi}(y)[i]} - \frac{1}{2}$$

$$KL(p_{\Phi'}(\tilde{z}|y), \mathcal{N}(0,I))$$

$$= \sum_{i} \frac{\sigma_{\Phi'}^{\epsilon}(y)[i]^{2} + z_{\Phi'}(y)[i]^{2}}{2} + \ln \frac{1}{\sigma_{\Phi'}^{\epsilon}(y)[i]} - \frac{1}{2}$$

Standardizing $p_{\Phi}(z)$

$$KL_{\Phi} = \sum_{i} \frac{\sigma_{\Phi}(y)[i]^{2} + (z_{\Phi}(y)[i] - \mu_{q}[i])^{2}}{2\sigma_{q}[i]^{2}} + \ln \frac{\sigma_{q}[i]}{\sigma_{\Phi}(y)[i]} - \frac{1}{2}$$

$$KL_{\Phi'} = \sum_{i} \frac{\sigma_{\Phi'}^{\epsilon}(y)[i]^{2} + z_{\Phi'}(y)[i]^{2}}{2} + \ln \frac{1}{\sigma_{\Phi'}^{\epsilon}(y)[i]} - \frac{1}{2}$$

Setting Φ' so that

$$z_{\Phi'}(y)[i] = (z_{\Phi}(y)[i] - \mu_q[i])/\sigma_q[i]$$

$$\sigma_{\Phi'}^{\epsilon}(y)[i] = \sigma_{\Phi}(y)[i]/\sigma_q[i]$$

gives $KL(p_{\Phi}(\tilde{z}|y), p_{\Phi}(\tilde{z})) = KL(p_{\Phi'}(\tilde{z}|y), \mathcal{N}(0, I)).$

Sampling

Sample $\tilde{z} \sim \mathcal{N}(0, I)$ and compute $y_{\Phi}(\tilde{z})$

[Alec Radford]

Summary: Rate-Distortion

RDA: y continuous, \tilde{z} a bit string,

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} |\tilde{z}_{\Phi}(y)| + \lambda \operatorname{Dist}(y, y_{\Phi}(\tilde{z}_{\Phi}(y)))$$

Gaussian RDA:
$$\tilde{z} = z_{\Phi}(y) + \sigma_{\Phi}(y) \odot \epsilon$$
, $\epsilon \sim \mathcal{N}(0, I)$

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} \begin{pmatrix} KL(p_{\Phi}(\tilde{z}|y), \mathcal{N}(0, I)) \\ + \lambda E_{\epsilon} \operatorname{Dist}(y, y_{\Phi}(\tilde{z})) \end{pmatrix}$$

\mathbf{END}