Formale Grundlagen der Informatik II 4. Übungsblatt

Fachbereich Mathematik
Prof. Dr. Ulrich Kohlenbach
Davorin Lešnik, Daniel Günzel, Daniel Körnlein

SoSe 2014 2. Juli 2014

Gruppenübung

Aufgabe G10

≤ sei ein 2-stelliges Relationssymbol in Infixnotation. Betrachten Sie den FO(≤)-Satz

$$\varphi = \forall x_1 \forall x_2 \exists x_3 \left((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \left((x_4 \preceq x_1 \land x_4 \preceq x_2) \rightarrow x_4 \preceq x_3 \right) \right).$$

Sei $\mathcal{A} = (A, \preceq^{\mathcal{A}})$ mit $A = \{0, 1, 2\}$ und $\preceq^{\mathcal{A}} = \{(0, 0), (0, 1), (0, 2), (1, 2)\}.$

(a) Zeigen Sie $\mathscr{A} \not\models \varphi$, indem Sie eine Gewinnstrategie für den Falsifizierer angeben.

Hinweis:

- i. Bringen Sie φ in Negationsnormalform φ' , und bestimmen Sie $\mathsf{SF}(\varphi')$.
- ii. Skizzieren Sie die Struktur \mathcal{A} , und überlegen Sie inhaltlich, was die Subformeln von φ' bedeuten.
- iii. Geben Sie für alle relevanten Spielpositionen an, wie der Falsifizierer ziehen soll, um sicher zu gewinnen.
- (b) Sei ψ eine zu

$$\exists x_3 \left((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \left((x_4 \preceq x_1 \land x_4 \preceq x_2) \rightarrow x_4 \preceq x_3 \right) \right)$$

äquivalente Formel in Negationsnormalform.

Für welche $(a_1', a_2') \in A \times A$ hat der Verifizierer in der Position

$$(\psi,(a_1',a_2',a_3,a_4))$$

eine Gewinnstrategie?

Lösung:

(a) Eine Menge mit einer zweistelligen Relation ist i.A. ein (gerichteter) Graph, also kann man $\mathcal A$ folgendermaßen darstellen

und $\varphi^{\mathcal{A}}$ bedeutet, dass es zu zwei Elementen x_1 und x_2 ein Element x_3 gibt, mit $x_3 \to x_1$ und $x_3 \to x_2$ und sodass es zu jedem x_4 mit $x_4 \to x_1$ und $x_4 \to x_2$ eine Kante $x_4 \to x_3$ gibt. Man überprüft leicht, dass für $x_1 \mapsto 2$ und $x_2 \mapsto 2$ kein x_3 mit der benötigten Eigenschaft existiert, also $\mathcal{A} \not\models \varphi$.

Als nächstes formen wir φ in Negationsnormalform um:

$$\begin{split} \varphi &\equiv \forall x_1 \forall x_2 \exists x_3 \left((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \left((x_4 \preceq x_1 \land x_4 \preceq x_2) \rightarrow x_4 \preceq x_3 \right) \right) \\ &\equiv \forall x_1 \forall x_2 \exists x_3 \left((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \left(\neg (x_4 \preceq x_1 \land x_4 \preceq x_2) \lor x_4 \preceq x_3 \right) \right) \\ &\equiv \underbrace{\forall x_1 \forall x_2 \exists x_3 \left((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \left((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3 \right) \right)}_{=:\varphi'} \end{split}$$

Wir zeigen nun, dass für beliebige $a_1, a_2, a_3, a_4 \in A$ der Falsifizierer in der Spielposition $(\varphi', (a_1, a_2, a_3, a_4))$ eine Gewinnstrategie hat: Angenommen der Falsifizierer zieht von der Position

$$\left(\forall x_1 \forall x_2 \exists x_3 \left((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \left((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3 \right) \right), (a_1, a_2, a_3, a_4) \right)$$

nach

$$\left(\forall x_{2} \exists x_{3} \left((x_{3} \preceq x_{1} \land x_{3} \preceq x_{2}) \land \forall x_{4} \left((\neg x_{4} \preceq x_{1} \lor \neg x_{4} \preceq x_{2}) \lor x_{4} \preceq x_{3} \right) \right), (2, a_{2}, a_{3}, a_{4}) \right)$$

und von dort nach

$$\left(\exists x_3 \left((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \left((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3 \right) \right), (2, 2, a_3, a_4) \right)$$

dann hat der Verifizierer drei Möglichkeiten zu ziehen:

 $a_3 \mapsto 2$:

$$((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 ((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3), (2, 2, 2, a_4))$$

dann kann der Falsifizierer nach

$$(x_3 \preceq x_1 \land x_3 \preceq x_2, (2, 2, 2, a_4))$$

und

$$(x_3 \leq x_1, (2, 2, 2, a_4))$$

ziehen und gewinnt wegen $\mathcal{A} \not\models 2 \leq 2$.

 $a_3 \mapsto 1$:

$$((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 ((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3), (2, 2, 1, a_4))$$

dann kann der Falsifizierer nach

$$(\forall x_4 ((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3), (2, 2, 1, a_4))$$

und

$$(\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3, (2, 2, 1, 1)$$

ziehen und gewinnt wegen $\mathscr{A} \not\models 1 \preceq 1$ und $\mathscr{A} \models 1 \preceq 2$.

 $a_3 \mapsto 0$:

$$\Big((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \, \big((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3\big), (2, 2, 0, a_4)\Big)$$

dann kann der Falsifizierer nach

$$(\forall x_4 ((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3), (2, 2, 0, a_4))$$

und

$$\Big((\neg x_4 \preceq x_1 \vee \neg x_4 \preceq x_2) \vee x_4 \preceq x_3, (2,2,0,1)\Big)$$

ziehen und gewinnt wegen $\mathcal{A} \not\models 1 \leq 0$ und $\mathcal{A} \models 1 \leq 2$.

Also hat der Falsifizierer eine Gewinnstrategie, und es gilt $\mathscr{A} \not\models \varphi$.

(b) Wir zeigen, dass der Verifizierer für alle $(a_1', a_2') \in A \times A \setminus \{(2, 2)\}$ eine Gewinnstrategie hat: Der Verifizierer zieht von $(\psi, (a_1', a_2', a_3, a_4))$ nach

$$\left((x_3 \preceq x_1 \land x_3 \preceq x_2) \land \forall x_4 \left((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3 \right), (a'_1, a'_2, 0, a_4) \right)$$

Der Falsifizierer hat nun zwei Zugmöglichkeiten:

i. Er zieht nach

$$(x_3 \leq x_1 \land x_3 \leq x_2, (a'_1, a'_2, 0, a_4))$$

dann gewinnt der Verifizierer im nächsten Zug, da $\mathscr{A} \models 0 \preceq x$ für alle $x \in A$.

ii. Er zieht nach

$$(\forall x_4 ((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3), (a'_1, a'_2, 0, a_4))$$

dann hat der Falsifizierer im nächsten Zug drei Möglichkeiten:

i. Er zieht nach

$$((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3, (a'_1, a'_2, 0, 0))$$

dann gewinnt der Verifizierer im nächsten Zug, da $\mathcal{A} \models 0 \leq 0$

ii. Er zieht nach

$$((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3, (a'_1, a'_2, 0, 1))$$

oder

$$((\neg x_4 \preceq x_1 \lor \neg x_4 \preceq x_2) \lor x_4 \preceq x_3, (a'_1, a'_2, 0, 2))$$

dann gewinnt der Verifizierer in zwei Zügen, da a_1' oder a_2' ungleich 2 ist und $\mathscr{A} \not\models 1 \preceq 1$ und $\mathscr{A} \not\models 1 \preceq 0$ bzw. $\mathscr{A} \not\models 2 \preceq 1$ und $\mathscr{A} \not\models 2 \preceq 0$ gelten.

Aufgabe G11

Sei Φ die Menge der folgenden Formeln:

$$\forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z)$$

$$\forall x \neg (x < x)$$

$$\forall x \forall y (Exy \rightarrow x < y)$$

$$\forall x \exists y Exy$$

- (a) Zeigen Sie, dass
 - i. in jedem Modell (A, E, <) von Φ die Relation E keinen Kreis enthält;
 - ii. Φ kein endliches Modell hat.
- (b) Konstruieren Sie ein Herbrandmodell von Φ .
- (c) Sei

$$\psi := \forall x \forall y \left((x < y \land \neg \exists z (x < z \land z < y)) \to Exy \right).$$

Gilt ψ in dem Modell aus (b)?

Beweisen Sie, dass $\Phi \models \psi$, oder geben Sie ein Gegenbeispiel an.

Lösung:

(a) Würde E einen Kreis enthalten, so würde auch < einen Kreis enthalten (dritte Formel), was der Transitiviät von < widerspräche (erste Formel). Da E keine Kreise enthält, folgt aus der vierten Formel, dass E unendlich beliebig lange Ketten enthält. Somit kann Φ kein endliches Modell haben.

(b) Skolemnormalform:

$$\forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z)$$

$$\forall x \neg (x < x)$$

$$\forall x \forall y (Exy \rightarrow x < y)$$

$$\forall x Exf x$$

Herbrandmodell: $\mathcal{H} := (T, E, <, f)$ mit

$$T := f^n c, \quad n \in \mathbb{N},$$

$$E := (f^n c, f^{n+1} c), \quad n \in \mathbb{N},$$

$$< := (f^m c, f^k c), \quad m < k.$$

(c) Diese Formel gilt in \mathcal{H} , allerdings gilt $\Phi \not\models \psi$. Ein Gegenbeispiel ist die Struktur $\mathcal{A} = (\mathbb{N}, E, <)$ mit

$$E := \{(0,2)\} \cup \{(n,n+1), \quad n \ge 1\},$$

< := \{(m,k), \quad m < k\}.

Diese Struktur erfüllt Φ , aber nicht ψ .

Aufgabe G12

Betrachten Sie folgende offene Theorie \mathcal{T} in der Sprache mit =, einem Konstantensymbol 0, zwei 1-stelligen Funktionssymbolen S und f und dem Axiom $\forall x (S(x) \neq 0)$.

- (a) Zeigen Sie (informell) $\mathcal{T} \models \exists x (f(S(f(x))) \neq x).$
- (b) Wenden Sie Herbrands Theorem für offene Theorien an, um endlich viele geschlossene Terme der obigen Sprache zu bestimmen t_1, \ldots, t_n mit

$$\mathscr{T} \models \bigvee_{j=1}^{n} (f(S(f(t_j))) \neq t_j).$$

Lösung:

(a) Wir beweisen die Aussage durch Widerspruch. Angenommen

$$\forall x (f(S(f(x))) = x). \tag{1}$$

Dann ist f injektiv, da $f(x_1) = f(x_2) \to x_1 = f(S(f(x_1))) = f(S(f(x_2))) = x_2$ aus (1) folgt. Somit hat f ein Linksinverses, d. h. eine Funktion g sodass g(f(x)) = x. Folglich gilt

$$S(f(x)) = g(f(S(f(x)))) = g(x).$$

Dies ist ein Widerspruch, da die Linksinverse einer Injektion surjektiv ist, wohingegen *S* nicht surjektiv sein kann, da 0 nach Voraussetzung nicht im Bild von *S* liegt.

(b) Wir nehmen wieder an, folgende Formeln würden gelten:

$$\forall x (f(S(f(x))) = x), \tag{2}$$

$$\forall x (S(x) \neq 0). \tag{3}$$

Formel (2) angewandt auf x = f(0) ergibt dann

$$f(S(f(f(0)))) = f(0).$$
 (4)

Auf der anderen Seite ergibt Formel (2) angewandt auf den Term S(f(f(0)))

$$f(S(f(S(f(f(0)))))) = S(f(f(0))).$$

Somit folgt

$$S(f(f(0))) = f(S(f(0))) \stackrel{(2)}{=} 0,$$

was (3) angewandt auf x = f(f(0)) widerspricht. Folglich können wir $t_1 = 0$, $t_2 = f(0)$ und $t_3 = S(f(f(0)))$ setzen.

Hausübung

Aufgabe H10

In der folgenden Aufgabe sind f, g Funktionssymbole und R, S Relationssymbole mit jeweils der passenden Stelligkeit. Geben Sie zu den folgenden Formeln jeweils eine äquivalente Formel in

- (i) pränexer Normalform,
- (ii) Skolemnormalform der in (i) gewählten Pränexnormalform und
- (iii) Herbrandnormalform der in (i) gewählten Pränexnormalform

an:

- (a) $(\forall xRx) \lor (\exists x \neg Rx)$
- (b) $(\neg \forall x R x g z) \rightarrow \forall y (Sf y \lor y = z)$

Lösung:

- (a) (i) $\forall x \exists y (Rx \lor \neg Ry)$
 - (ii) $\forall x (Rx \vee \neg Rf x)$
 - (iii) $\exists y(Rc \lor \neg Ry)$, wobei c ein nullstelliges Funktionssymbol ist, d. h. ein Konstantensymbol.
- (b) (i)

$$(\neg \forall x R x g z) \rightarrow \forall y (S f y \lor y = z) \equiv \neg \neg \forall x R x g z \lor \forall y (S f y \lor y = z)$$
$$\equiv \forall x R x g z \lor \forall y (S f y \lor y = z)$$
$$\equiv \forall x \forall y (R x g z \lor S f y \lor y = z)$$

- (ii) $\forall x \forall y (Rxgz \lor Sf y \lor y = z)$
- (iii) $(Rc_1gz \lor Sfc_2 \lor c_2 = z)$. Hierbei sind c_1, c_2 nullstellige Funktionssymbole, d. h. Konstantensymbole.

Aufgabe H11

- (a) Geben Sie für folgende FO-Formeln jeweils eine Skolemnormalform an:
 - i. $\forall x \exists y R x y$
 - ii. $\forall x (\forall y R y y \rightarrow \exists y R y f(x))$
- (b) Geben Sie Herbrandmodelle für die Skolemnormalformen aus (a) an.

Lösung:

- (a) Wir geben jeweils eine mögliche Lösung an:
 - i. Skolemnormalform: $\forall xRxs(x)$
 - ii. Skolemnormalform: $\forall x (\neg Rs(x)s(x) \lor Rs'(x)f(x))$:

$$\forall x (\forall y R y y \to \exists y R y f(x)) \equiv \forall x (\neg \forall y R y y \lor \exists y R y f(x))$$

$$\equiv \forall x (\exists y \neg R y y \lor \exists y R y f(x))$$

$$\equiv \forall x (\exists z \neg R z z \lor \exists y R y f(x))$$

$$\equiv \forall x \exists z \exists y (\neg R z z \lor R y f(x)).$$

(b) In beiden Fällen geben wir noch ein Konstantensymbol c zur Signatur hinzu. Dann er halten wir für (i) die Trägermenge $T=\{s^i(c):i\in\mathbb{N}\}$, wobei s^i für das i-malige Anwenden von s steht (d. h. T ist isomorph zu den natürlichen Zahlen). Die Relation R kann z. B. durch $\{(s^i(c),s^{i+1}(c)):i\in\mathbb{N}\}$ bzw. jeder Obermenge davon interpretiert werden. In Fall (ii) er halten wir die Termstruktur $T=\bigcup_{i\in\mathbb{N}}T_i$, wobei $T_0=\{c\}$ und $T_{i+1}=\{s(t),s'(t),f(t):t\in T_i\}$ für alle $i\in\mathbb{N}$ (d. h. einen Baum, wobei jeder Knoten genau drei Nachfolger hat). Die Relation R kann z. B. durch \emptyset oder $T\times T$ interpretiert werden.

Aufgabe H12

Wir betrachten die folgenden Formeln:

$$\varphi_{1} := \forall x [\exists y (Rxy \land \neg \exists x Ryx) \lor \forall y \exists z (Rxz \land Rzy)]$$

$$\varphi_{2} := \exists x [\forall y \neg Rxy \to \exists y \forall z (Rxy \land Rzy)]$$

$$\varphi_{3} := \forall x \forall y [Rxy \to \exists z (Rxz \land Rzy \land \neg \exists x (Rzx \land Rxz))]$$

- (a) Geben Sie äquivalente Formeln in Pränex-Normalform an.
- (b) Wandeln Sie ihre Ergebnisse aus (a) in Skolem-Normalform um.
- (c) Betrachten Sie die Formel $\varphi := \forall x \exists y Rx y$ und die Skolem-Normalform $\psi := \forall x Rx s x$.
 - i. Beweisen Sie, dass $\psi \models \varphi$ gilt.
 - ii. Geben Sie ein Gegenbeispiel an, welches zeigt, dass $\varphi \not\models \psi$.

Lösung:

(a)

$$\varphi_1 \equiv \forall x \exists y \forall u \forall v \exists z [(Rxy \land \neg Ryu) \lor (Rxz \land Rzv)]$$

$$\varphi_2 \equiv \exists x \exists y \exists u \forall z [\neg Rxy \to (Rxu \land Rzu)]$$

$$\varphi_3 \equiv \forall x \forall y \exists z \forall u [Rxy \to (Rxz \land Rzy \land \neg (Rzu \land Ruz))]$$

(b)

$$\begin{split} \varphi_1 \colon \forall x \forall u \forall v [(Rxfx \land \neg Rfxu) \lor (Rxgxuv \land Rgxuvv)] \\ \varphi_2 \colon \forall z [\neg Rcd \to (Rce \land Rze)] \\ \varphi_3 \colon \forall x \forall y \forall u [Rxy \to (Rxfxy \land Rfxyy \land \neg (Rfxyu \land Rufxy))] \end{split}$$

- (c) i. Angenommen $(\mathscr{A},\beta) \models \psi$. Um zu zeigen, dass $(\mathscr{A},\beta) \models \varphi$ betrachten wir ein beliebiges Element $a \in A$. Nach Annahme gilt $(a,s^{\mathscr{A}}(a)) \in R^{\mathscr{A}}$. Insbesondere gibt es also ein Element b (nämlich $b=s^{\mathscr{A}}(a)$) mit $(a,b) \in R^{\mathscr{A}}$. Wir haben gezeigt, dass $(\mathscr{A},\beta) \models \forall x \exists y Rxy$.
 - ii. Sei $\mathcal{A} = (A, s^{\mathcal{A}}, R^{\mathcal{A}})$ die Struktur mit

$$A = \{0, 1\}, \quad s^{\mathcal{A}}(a) := 0, \quad R^{\mathcal{A}} := \{(0, 1), (1, 1)\}.$$

Dann gilt $\mathscr{A} \models \varphi$ aber $\mathscr{A} \not\models \psi$.