STK-IN4300 Statistical Learning Methods in Data Science

Riccardo De Bin

debin@math.uio.no

Outline of the lecture

- Kernel Smoothing Methods
 - One dimensional kernel smoothers
 - Selecting the width of a kernel
 - Local linear regression
 - Local polynomial regression
 - ullet Local regression in \mathbb{R}^p
 - ullet Structured local regression models in \mathbb{R}^p
 - Kernel density estimation
 - Mixture models for density estimation
- Nonparametric Density Estimation with a Parametric Start

STK-IN4300: lecture 6 2/ 41

One dimensional kernel smoothers: from kNN to kernel smoothers

When we introduced the *k*NN algorithm,

$$\hat{f}(x) = \mathsf{Ave}(y_i | x_i \in N_k(x))$$

• justified as an estimate of E[Y|X=x].

Drawbacks:

- ugly discontinuities;
- same weight to all points despite their distance to x.

STK-IN4300: lecture 6 3/ 41

One dimensional kernel smoothers: definition

Alternative: weight the effect of each point based on its distance.

$$\hat{f}(x_0) = \frac{\sum_{i=1}^{N} K(x_0, x_i) y_i}{\sum_{i=1}^{N} K(x_0, x_i)},$$

where

$$K_{\lambda}(x_0, x) = D\left(\frac{|x - x_0|}{\lambda}\right). \tag{1}$$

Here:

- $D(\cdot)$ is called kernel;
- λ is the bandwidth or smoothing parameter.

One dimensional kernel smoothers: comparison

STK-IN4300: lecture 6 5/ 41

One dimensional kernel smoothers: typical kernels

We need to choose $D(\cdot)$:

- symmetric around x_0 ;
- goes off smoothly with the distance.

Typical choices:

Nucleus	D(t)	Support
Normal	$\frac{1}{\sqrt{2\pi}}\exp\{-\frac{1}{2}t^2\}$	\mathbb{R}
Rectangular	$\frac{1}{2}$	(-1, 1)
Epanechnikov	$\frac{3}{4}(1-t^2)$	(-1, 1)
Biquadratic	$\frac{15}{16}(1-t^2)^2$	(-1, 1)
Tricubic	$\frac{70}{81}(1- t ^3)^3$	(-1, 1)

STK-IN4300: lecture 6 6/ 41

One dimensional kernel smoothers: comparison

STK-IN4300: lecture 6 7/ 41

One dimensional kernel smoothers: choice of the smoothing parameter

Choice of the bandwidth λ :

- controls how large is the interval around x_0 to consider,
 - for Epanechnikov, biquadratic or tricubic kernels → radius of the support;
 - for Gaussian kernel, standard deviation;
- large values implies lower variance but higher bias,
 - $\lambda \text{ small} \to \hat{f}(x_0)$ based on few points $\to y_i$'s closer to y_0 ;
 - λ large \to more points \to stronger effect of averaging;
- alternatively,
 - adapt to the local density (fix k as in kNN);
 - expressed by substituting λ with $h_{\lambda}(x_0)$ in (1);
 - keep bias constant, variance is inversely proportional to the local density.

STK-IN4300: lecture 6 8/ 41

One dimensional kernel smoothers: effect of the smoothing parameter

Selecting the width of a kernel: bias and variance

Assume $y_i = f(x_i) + \epsilon_i$, ϵ_i i.i.d. s.t. $E[\epsilon_i] = 0$ and $Var = \sigma^2$, then

$$E[\hat{f}(x)] \approx f(x) + \frac{\lambda^2}{2} \sigma_D^2 f''(x)$$

and

$$\operatorname{Var}[\hat{f}(x)] pprox rac{\sigma^2}{N\lambda} rac{R_D}{g(x)}$$

for N large and λ sufficiently close to 0 (Azzalini & Scarpa, 2012). Here:

- $\sigma_D^2 = \int t^2 D(t) dt$;
- $R_D = \int D(t)^2 dt$;
- g(x) is the density from which the x_i were sampled.

Selecting the width of a kernel: bias and variance

Note:

- the bias is a multiple of λ^2 ;
 - $\lambda \to 0$ reduce the bias;
- the variance is a multiple of $\frac{1}{N\lambda}$;
 - $\lambda \to \infty$ reduce the variance.

The quantities g(x) and f''(x) are unknown, otherwise

$$\lambda_{\text{opt}} = \left(\frac{\sigma^2 R_D}{\sigma_D^4 f''(x) g(x) N}\right)^{1/5};$$

note that λ must tend to 0 with rate $N^{-1/5}$ (i.e., very slowly).

STK-IN4300: lecture 6 11/ 41

Selecting the width of a kernel: AIC

Anyway, local smoothers are linear estimators,

$$\hat{f}(x) = S_{\lambda} y$$

as S_{λ} , the smoothing matrix, does not depend on y.

Therefore, an Akaike Information Criterion can be implemented,

$$AIC = \log \hat{\sigma} + 2 \operatorname{trace}\{S_{\lambda}\}\$$

where trace $\{S_{\lambda}\}$ are the effective degrees of freedom.

Otherwise it is always possible to implement a cross-validation procedure.

One dimensional Kernel Smoothers: other issues

Other points to consider:

- boundary issues:
 - estimates are less accurate close to the boundaries;
 - less observations:
 - asymmetry in the kernel;
- ties in the x_i 's:
 - possibly more weight on a single x_i ;
 - there can be different y_i for the same x_i .

STK-IN4300: lecture 6 13/ 41

Local linear regression: problems at the boundaries

STK-IN4300: lecture 6 14/ 41

Local linear regression: problems at the boundaries

By fitting a straight line, we solve the problem to the first order.

Local linear regression

Locally weighted linear regression solve, at each target point x_0 ,

$$\min_{\alpha(x_0),\beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_0, x_i) [y_i - \alpha(x_0) - \beta(x_0) x_i]^2.$$

The estimate is $\hat{f}(x_0) = \hat{\alpha}(x_0) + \hat{\beta}(x_0)x_0$:

- the model is fit on all data belonging to the support of K_{λ} ;
- it is only evaluated in x_0 .

STK-IN4300: lecture 6 15/ 41

Local linear regression: estimation

Estimation

$$\hat{f}(x_0) = b(x_0)^T (B^T W(x_0) B)^{-1} B^T W(x_0) y$$
$$= \sum_{i=1}^N l_i(x_0) y_i,$$

where:

- $b(x_0)^T = (1, x_0)$
- $B = (\vec{1}, X);$
- $W(x_0)$ is a $N \times N$ diagonal matrix with *i*-th term $K_{\lambda}(x_0, x_i)$;
- $\hat{f}(x_0)$ is linear in $y(l_i(x_0))$ does not depend on y_i);
- the weights $l_i(x_0)$ are sometimes called equivalent kernels,
 - combine the weighting kernel $K_{\lambda}(x_0,\cdot)$ and the LS operator.

Local linear regression: bias correction due asymmetry

STK-IN4300: lecture 6 17/ 41

Local linear regression: bias

Using a Taylor expansion of $f(x_i)$ around x_0 ,

$$E[\hat{f}(x_0)] = \sum_{i=1}^{N} l_i(x_0) f(x_i)$$

$$= f(x_0) \sum_{i=1}^{N} l_i(x_0) + f'(x_0) \sum_{i=1}^{N} (x_i - x_0) l_i(x_0) + \frac{f''(x_0)}{2} \sum_{i=1}^{N} (x_i - x_0)^2 l_i(x_0) + \dots$$
(2)

For local linear regression,

- $\sum_{i=1} l_i(x_0) = 1;$
- $\sum_{i=1}^{N} (x_i x_0) l_i(x_0) = 0.$

Therefore,

•
$$E[\hat{f}(x_0)] - f(x_0) = \frac{f''(x_0)}{2} \sum_{i=1}^{N} (x_i - x_0)^2 l_i(x_0) + \dots$$

Local polynomial regression: bias

Why limiting to a linear fit?

$$\min_{\alpha(x_0),\beta_1(x_0),...,\beta_d(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_0,x_i) \left[y_i - \alpha(x_0) - \sum_{j=1}^{d} \beta_j(x_0) x_i^j \right]^2,$$

with solution
$$\hat{f(x_0)} = \hat{\alpha}(x_0) + \sum_{j=1}^d \hat{\beta}(x_0)x_0^j$$
.

- it can be shown that the bias, using (2), only involves components of degree d+1;
- in contrast to local linear regression, it tends to be closer to the true function in regions with high curvature,
 - no trimming the hills and filling the gaps effect.

STK-IN4300: lecture 6 19/ 41

Local polynomial regression: regions with high curvature

STK-IN4300: lecture 6 20/ 41

Local polynomial regression: bias-variance trade-off

Not surprisingly, there is a price for having less bias.

Assuming a model $y_i=f(x_i)+\epsilon_i$, where ϵ_i are i.i.d. with mean 0 and variance σ^2 ,

$$\mathsf{Var}(\hat{f}(x_i)) = \sigma^2 ||l(x_0)||$$

It can be shown that $||l(x_0)||$ increase with $d \Rightarrow$ bias-variance trade-off in the choice of d.

Local polynomial regression: variance

STK-IN4300: lecture 6 22/ 41

Local polynomial regression: final remarks

Some final remarks:

- local linear fits help dramatically in alleviating boundary issues;
- quadratic fits do a little better, but increase variance;
- quadratic fits solve issues in high curvature regions;
- asymptotic analyses suggest that polynomials of odd degrees should be preferred to those of even degrees,
 - the MSE is asymptotically dominated by boundary effects;
- anyway, the choice of d is problem specific.

STK-IN4300: lecture 6 23/ 41

Local regression in \mathbb{R}^p : extension

Kernel smoothing and local regression can be easily generalized to more dimensions:

- average weighted by a kernel with support in \mathbb{R}^p ;
- for local regression, fit locally an hyperplane.

With
$$d = 1$$
 and $p = 2$,

With
$$d=2$$
 and $p=2$,

•
$$b(X) = (1, X_1, X_2)$$

•
$$b(X) = (1, X_1, X_2, X_1^2, X_2^2, X_1 X_2)$$

At each x_0 , solve

$$\min_{\beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_0, x_i) [y_i - b(x_i)^T \beta(x_0) x_i]^2.$$

where $K_{\lambda}(x_0, x_i)$ is a radial function,

$$K_{\lambda}(x_0, x_i) = D\left(\frac{||x - x_0||}{\lambda}\right).$$

Since $||\cdot||$ is the Euclidean norm, standardize each x_i .

Local regression in \mathbb{R}^p : example

STK-IN4300: lecture 6 25/ 41

Local regression in \mathbb{R}^p : remarks

Some remarks:

- boundary issues are even more dramatic than in one dimension;
 - the fraction of points at the boundary increases to 1 by increasing the dimensions;
 - curse of dimensionality;
- local polynomials still perform boundary corrections up to the desired order:
- local regression does not make really sense for d > 3,
 - it is impossible to maintain localness (small bias) and sizeable sample in the neighbourhood (small variance);
 - again, curse of dimensionality.

STK-IN4300: lecture 6 26/ 41

Structured local regression models in \mathbb{R}^p : structured kernels

When the ratio sampe size/dimensions is too large:

Structured kernels

$$K_{\lambda,A}(x_0,x) = D\left(\frac{(x-x_0)^T A(x-x_0)}{\lambda}\right)$$

- A is a matrix semidefinite positive;
- we can add structures through A:
 - A diagonal, increase or decrease the importance of the predictor X_i by increasing/decreasing a_{ij} ;
 - low rank versions of $A \rightarrow$ projection pursuit;

STK-IN4300: lecture 6 27/ 41

Structured local regression models in \mathbb{R}^p : structured regression functions

Structured regression functions

$$f(X_1, \dots, X_p) = \alpha + \sum_{j=1}^p g_j(X_j) + \sum_{k < \ell} g_{k\ell}(X_k, X_\ell) + \dots$$

- we can simplify the structure;
- examples:
 - remove all interaction terms, $f(X_1, ..., X_p) = \alpha + \sum_{i=1}^p g_i(X_i);$
 - keep only the first order interactions, $f(X_1, ..., X_p) = \alpha + \sum_{i=1}^p g_i(X_i) + \sum_{k < \ell} g_{k\ell}(X_k, X_\ell);$

•

STK-IN4300: lecture 6 28/ 41

Structured local regression models in \mathbb{R}^p : varying coefficient models

Varying coefficient models

The varying coefficient models:

- are a special case of structured regression functions;
- consider only q < p predictors, all the remaining are in Z;
- assume the conditionally linear model,

$$f(X) = \alpha(Z) + \beta_1(Z)X_1 + \dots + \beta_q(Z)X_q;$$

- given Z, it is a linear model,
 - solution via least squares estimator;
- the coefficients can vary with Z.

STK-IN4300: lecture 6 29/ 41

Structured local regression models in \mathbb{R}^p : structured regression functions

STK-IN4300: lecture 6 30/ 41

Kernel density estimation: density estimation

Suppose to have a random sample, $x_i \in \mathbb{R}$, i = 1, ..., N, and want to estimate its density $f_X(x)$. An estimation at each point x_0 is

$$\hat{f}_X(x_0) = \frac{\#x_i \in \mathcal{N}(x_0)}{N\lambda}.$$

where $\mathcal{N}(x_0)$ is a small metric neighborhood around x_0 of width λ .

Bumpy estimate \rightarrow the **smooth Parzen estimate** is preferred,

$$\hat{f}_X(x_0) = \frac{1}{N\lambda} \sum_{i=1}^N K_\lambda(x_0, x_i),$$

in which closer observations contributes more.

STK-IN4300: lecture 6 31/ 41

Kernel density estimation: choice of $K_{\lambda}(x_0, x)$

For the smooth Parzen estimate, the Gaussian kernel is often used,

$$K_{\lambda}(x_0, x) = \phi\left(\frac{|x - x_0|}{\lambda}\right)$$

where ϕ is the density of a standard normal.

Using the density of a normal with mean 0 and sd λ , denoted ϕ_{λ} ,

$$f_X(x) = \frac{1}{N} \sum_{i=1}^{N} \phi_{\lambda}(x - x_i)$$
$$= (\hat{F} \star \phi_{\lambda})(x)$$

the convolution of the sample empirical distribution \hat{F} with ϕ_{λ} :

• smooth \hat{F} by adding independent Gaussian noise to each x_i .

Kernel density estimation: example

STK-IN4300: lecture 6 33/ 41

Mixture models for density estimation: density estimation

The density f(X) can be considered a mixture of distributions,

$$f(X) = \sum_{m=1}^{M} \alpha_m g(x; \mu_m, \Sigma_m)$$

where

- α_M are the mixing proportions, $\sum_{m=1}^M \alpha_M = 1$;
- each density $g(\cdot)$ has mean μ_m ad covariance Σ_m ;
- almost always $g(x;\mu_m,\Sigma_m)=\phi(g(x;\mu_m,\Sigma_m));$
- Gaussian mixture model.

50

35/41

Age

90.0

0.04

0.02

0.00

20

30

Mixture models for density estimation: example

Mixture Estimate

Semiparametric density estimation: Hjort & Glad (1995)

Hjort & Glad (1995) proposed a different option:

- start with a parametric density estimate $f_0(x, \hat{\theta})$;
- multiply it to a correction term $r(x) = f(x)/f_0(x, \hat{\theta})$;
- estimate the correction term with a kernel smoother,

$$\hat{r}(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{K_{\lambda}(x, x_i)}{f_0(x_i, \hat{\theta})};$$

• the resulting density estimate is

$$\hat{f}_{HG}(x) = f_0(x, \hat{\theta})\hat{r}(x) = \frac{1}{N} \sum_{i=1}^{N} K_{\lambda}(x, x_i) \frac{f_0(x, \hat{\theta})}{f_0(x_i, \hat{\theta})}.$$

STK-IN4300: lecture 6 36/ 41

Semiparametric density estimation: Hjort & Glad (1995)

Note that:

- the initial parametric estimate is not necessarily a good approximation to the true density:
 - the method often works well with "bad" parametric starts;
 - the better the approximation, the better the result, though;
- $f_0(x, \hat{\theta}) = \text{constant} \rightarrow f_0(x) \sim \text{Unif}$,
 - back to the classic kernel estimator.

STK-IN4300: lecture 6 37/ 41

Semiparametric density estimation: properties

Consider $f_{HG}(x)$'s variance,

$$\mathsf{Var}(\hat{f}_{HG}(x)) = \mathsf{Var}(\hat{f}_{\mathsf{kernel}}(x)) + O\left(\frac{\lambda}{N} + \frac{1}{N^2}\right),$$

• $\hat{f}_{HG}(x)$ and $\hat{f}_{\text{kernel}}(x)$ have approximatively the same variance;

and bias,

$$E[\hat{f}_{HG}(x)] \approx f(x) + \frac{\lambda^2}{2} \sigma_D^2 f_0(x) r''(x),$$

- same order as the bias of $\hat{f}_{kernel}(x)$, i.e., $O(\lambda^2)$;
- it is proportional to $f_0(x)r''(x)$ rather than f''(x);
- smaller when $f''(x) = f_0''(x)r(x) + 2f_0'(x)r'(x) + f_0(x)r''(x)$,
 - when $f_0(x)$ is a good guess, better performance!

Semiparametric density estimation: derivation example

Example with a Gaussian start,

$$\hat{f}_{HG}(x) = f_0(x, \hat{\theta})\hat{r}(x) = \frac{1}{N} \sum_{i=1}^{N} K_{\lambda}(x, x_i) \frac{f_0(x, \hat{\theta})}{f_0(x_i, \hat{\theta})}$$

$$= \frac{1}{\hat{\sigma}} \phi \left(\frac{x - \hat{\mu}}{\hat{\sigma}}\right) \frac{\frac{1}{N} \sum_{i=1}^{N} K_{\lambda}(x, x_i)}{\phi \left(\frac{x_i - \hat{\mu}}{\hat{\sigma}}\right)}$$

$$= \frac{1}{N} \sum_{i=1}^{N} K_{\lambda}(x, x_i) \frac{\exp\left\{-\frac{1}{2} \frac{x - \hat{\mu}}{\hat{\sigma}}\right\}}{\exp\left\{-\frac{1}{2} \frac{x - \hat{\mu}}{\hat{\sigma}}\right\}}.$$

STK-IN4300: lecture 6 39/ 41

Semiparametric density estimation: data example

References I

AZZALINI, A. & SCARPA, B. (2012). Data Analysis and Data Mining: An introduction. Oxford University Press, New York.

HJORT, N. L. & GLAD, I. K. (1995). Nonparametric density estimation with a parametric start. *The Annals of Statistics* **23**, 882–904.

STK-IN4300: lecture 6 41/ 41