Entrega Ejercicios Microcredencial. Parte 3

Arturo Olivares Martos

29 de mayo de 2025

Resumen

En el presente documento, resolveremos ejercicios de la tercera parte de la Microcredencial de Lógica y Teoría Descriptiva de Conjuntos.

Ejercicio 1. Sea Γ una clase de la Jerarquía Boreliana, y X un conjunto. Si $A \subset X$ es Γ -completo, y $B \subset X$ es otro conjunto de la clase Γ tal que $A \leq_W B$, entonces B es Γ -completo.

Hemos de comprobar que:

- $\underline{B} \in \underline{\Gamma}$: Se tiene por hipótesis.
- Para todo espacio polaco X', si $C \in \Gamma(X')$ entonces $C \leq_W B$: Sea $C \in \Gamma(X')$, y buscamos $f: X' \to X$ tal que f es una función continua y $C = f^{-1}(B)$.

Como A es Γ -completo, existe $g: X' \to X$ tal que g es continua y $C = g^{-1}(A)$. Por otro lado, como $A \leq_W B$, existe una función continua $h: X \to X$ tal que $A = h^{-1}(B)$. Entonces, la composición $f = h \circ g$ es continua y cumple que:

$$f^{-1}(B) = g^{-1}(h^{-1}(B)) = g^{-1}(A) = C$$

Por tanto, $C \leq_W B$.

Ejercicio 2. Demostrar que $f:[0,1]\to\mathbb{R}$ es continuamente derivable si y solo si

$$\forall \varepsilon \in \mathbb{R}^+ \ \exists \delta \in \mathbb{R}^+ \ f \in A_{\varepsilon,\delta}$$

donde:

$$A_{\varepsilon,\delta} = \left\{ f \in C^1([0,1]) \mid \forall x, y, a, b \in [0,1] : a, b, x, y \text{ a distancia } \leqslant \delta \Longrightarrow \left| \frac{f(a) - f(b)}{a - b} - \frac{f(x) - f(y)}{x - y} \right| < \varepsilon \right\}$$