EXERCÍCIOS 2.1

- 1. Solução ótima: $x_1 = 3$; $x_2 = 0$; Z = 12
- **2. Solução ótima:** $x_1 = 2,581$; $x_2 = 1,452$; Z = 5,484
- 3. Solução ótima: $x_1 = 0$; $x_2 = 5$; Z = 40
- **4. Solução ótima:** $x_1 = 2$; $x_2 = 4$; Z = 56
- 5. Problema inviável
- 6. Variáveis de decisão
 - x_1 n^o de dias de operação da fábrica de SP
 - x, nº de dias de operação da fábrica do RJ
 - **Solução ótima:** $x_1 = 2.8$; $x_2 = 3.2$; Z = 920
- 7. a) Variáveis de decisão
 - x_1 quantidade de horas que serão utilizadas no preparo de pizzas
 - x₂ quantidade de horas que serão utilizadas no preparo de calzones
 - **Solução ótima:** $x_1 = 7.8125$; $x_2 = 0$; Z = 2.250
 - b) Variáveis de decisão
 - x₁ quantidade de pizzas produzidas
 - x, quantidade de calzones produzidos
 - **Solução ótima:** $x_1 = 125$; $x_2 = 0$; Z = 2.250

8. Variáveis de decisão

- x, quantidade de pára-quedas produzidos/vendidos
- x, quantidade de asa-deltas produzidas/vendidas
- **Solução ótima:** $x_1 = 10$; $x_2 = 0$; Z = 600

9. Variáveis de decisão

- x, quantidade de doses de solução Red por lata
- x₂ quantidade de doses de solução Blue por lata
- **Solução ótima:** $x_1 = 2.4$; $x_2 = 4.8$; Z = 0.528

10. Variáveis de decisão

- x, quantidade em quilos de semente transportada
- x_2 quantidade em quilos de grãos transportada
- **Solução ótima:** $x_1 = 0$; $x_2 = 70.000$; Z = 24.500

EXERCÍCIOS 2.2

- 1. Solução ótima: $x_1 = 3$; $x_2 = 0$; Z = 12
- **2.** Solução ótima: $x_1 = 0$; $x_2 = 5$; Z = 40
- 3. Solução ótima: $x_1 = 0$; $x_2 = 4$; Z = 24
- **4. Solução ótima:** $x_1 = 15$; $x_2 = 5$; $x_3 = 0$; Z = 25

OL

Solução ótima: $x_1 = 15$; $x_2 = 10$; $x_3 = 5$; Z = 25

- **5. Solução ótima**: $x_1 = 13$; $x_2 = 0$; $x_3 = 0$; $x_4 = 0$; Z = 104
- 6. Variáveis de decisão
 - x, quantidade de km² de área plantada de trigo
 - x, quantidade de km² de área plantada de arroz
 - x_3 quantidade de km² de área plantada de milho
 - **Solução ótima:** $x_1 = 200$; $x_2 = 0$; $x_3 = 0$; Z = 432.000

7. Variáveis de decisão

- x, quantidade de jangadas alugadas por dia
- x, quantidade de supercanoas alugadas por dia
- x_3 quantidade de arcas com cabine alugadas por dia
- **Solução ótima:** $x_1 = 4$; $x_2 = 4$; $x_3 = 2$; Z = 680

8. Variáveis de decisão

- x, nº de malas a serem produzidas por dia
- x₂ n° de mochilas a serem produzidas por dia
- Item (a
- **Solução ótima:** $x_1 = 150$; $x_2 = 70$; Z = 10.300
- Item (b)
- Para uma produção de 120 malas e 30 mochilas teríamos um lucro de 50(120) + 40(30) = 7.200
- Logo, o lucro adicional seria de 10.300 7.200 = 3.100

9. Variáveis de decisão

- $x_1 n^{\alpha}$ de picolés de morango prod./vendidos por dia
- $x_2 n^{\circ}$ de picolés de uva prod./vendidos por dia
- x₃ nº de picolés de limão prod./vendidos por dia
- **Solução ótima**: $x_1 = 0$; $x_2 = 300$; $x_3 = 75$; Z = 341,25

10. Variáveis de decisão

- x, nº de placas do tipo A prod./vendidas no período
- $x_2 n^{\circ}$ de placas do tipo B prod./vendidas no período
- $x_3 n^0$ de placas do tipo C prod./vendidas no período
- **Solução ótima:** $x_1 = 137,5$; $x_2 = 25$; $x_3 = 0$; Z = 6.250

EXERCÍCIOS 2.3

- 1. $Max Z = 4x_1 + 3x_2$
 - ponto (0, 0), Z = 0
 - ponto (0, 2), Z = 6
 - ponto (1, 2), Z = 10
 - ponto (3, 0), Z = 12
 - **Solução ótima:** $x_1 = 3$; $x_2 = 0$; Z = 12
- **2.** $Min Z = x_1 + 2x_2$
 - ponto (2,581, 1,452), Z = 5,484
 - ponto (0, 3), Z = 6
 - **Solução ótima:** $x_1 = 2,581$; $x_2 = 1,452$; Z = 5,484
- 3. $Max Z = 4x_1 + 8x_2$
 - ponto (0, 0), Z = 0
 - ponto (0, 5), Z = 40

ponto (4, 1), Z = 24

ponto (4, 0), Z = 16

Solução ótima: $x_1 = 0$; $x_2 = 5$; Z = 40

4. Max Z = 80x, + 75x,

ponto (0, 0), Z = 0

ponto (0, 1,333), Z = 100

ponto (4, 0), Z = 320

Solução ótima: $x_1 = 4$; $x_2 = 0$; Z = 320

5. $Min Z = 4x_1 + 8x_2$

ponto (0, 5), Z = 40

ponto (0, 9), Z = 72

ponto (4, 3), Z = 40

ponto (4, 1), Z = 24

Solução ótima: $x_1 = 4$; $x_2 = 1$; Z = 24

6. Variáveis de decisão

x, — qtde. de ton. de analgésico prod./vendidas

x, — qtde. de toneladas de antibiótico prod./vendidas

Max Z = 5x, + 8x,

ponto (0, 0), Z = 0

ponto (0, 2), Z = 16

ponto (4, 1), Z = 28

ponto (5, 0), Z = 25

Solução ótima: $x_1 = 4$; $x_2 = 1$; Z = 28

Variáveis de decisão

x, — qtde. de manga curta prod./vendida

x, — qtde. de manga comprida prod./vendida

 $Max Z = 2x_1 + 3x_2$

ponto (0, 0), Z = 0

ponto (66, 0), Z = 132

ponto (60, 10), Z = 150

ponto (20, 50), Z = 190

ponto (0, 60), Z = 180

Solução ótima: $x_1 = 20$; $x_2 = 50$; Z = 190

8. Variáveis de decisão

x. — qtde. de Vampirescas produzidas por dia

x, — qtde. de Lobimulher produzidas por dia

 $Max Z = 2x_1 + 1x_2$

ponto (26,6667, 106,6667), Z = 160

ponto (31,6667,96,6667), Z = 160

ponto (25, 100), Z = 150

ponto (20, 110), Z = 150

Como dois pontos extremos levam ao mesmo valor máximo, então todos os pontos do segmento de reta que une esses dois extremos também são soluções ótimas, isto é, temos infinitas soluções ótimas

9. Variáveis de decisão

x, — nº de saídas com a Sheila por mês

x, — nº de saídas com a Ana Paula por mês

 $Max Z = x_1 + x_2$

ponto (0, 0), Z = 0

ponto (0, 4), Z = 4

ponto (3, 2), Z = 5

ponto (4, 0), Z = 4

Solução ótima: $x_1 = 3$; $x_2 = 2$; Z = 5

10. Variáveis de decisão

 x_{i} — % de mistura de frango em um quilo do produto

x, — % de mistura de peixe em um quilo do produto

Item (a)

 $Min Z = 3x_1 + 5x_2$

 $0.25x_1 + 0.1x_2 \le 15$

 $x_1 + x_2 \le 100$

 $x_1, x_2 \ge 0$

Item (b)

ponto (0, 100), Z = 500

ponto (100/3, 200/3), Z = 1.300/3

Solução ótima: $x_1 = 100/3$; $x_2 = 200/3$; Z = 1.300/3

EXERCÍCIOS 2.4

1. Solução ótima: $x_1 = 3$; $x_2 = 0$; Z = 12

2. Solução ótima: $x_1 = 0$; $x_2 = 5$; Z = 40

3. Solução ótima: $x_1 = 15$; $x_2 = 5$; $x_3 = 0$; Z = -25

4. Solução ótima: $x_1 = 50$; $x_2 = 0$; $x_3 = 350$; Z = 6.050

5. Solução ótima: $x_1 = 2$; $x_2 = 0$; $x_3 = 1$; Z = 13

6. Item (a)

 $x_1 = 7,6923, x_2 = 6,8376, x_3 = 11,1111, x_4 = 0, x_6 = 0, x_6 = 0$ Z = 135.8974

Item (b)

Nenhuma das máquinas tem horas de sobra (as variáveis de folga x_a , x_s e x_s têm valores iguais a zero)

7. Variáveis de decisão

x, — qtde. de quilos de carne a serem transportados

x, — qtde. de quilos de grãos a serem transportados

Solução ótima: $x_1 = 85.000$; $x_2 = 75.000$; $x_3 = 0$;

 $x_4 = 23.000; x_5 = 0; x_6 = 25.000; Z = 38.750$

8. Variáveis de decisão

 x_1 — qtde. de litros de combustível A prod./vendido x_2 — qtde. de litros de combustível B prod./vendido x_3 — qtde. de litros de combustível C prod./vendido

Item (a) - Modelo

$$Max 20x_1 + 22x_2 + 18x_3$$

SI

$$\frac{8}{13}x_1 + \frac{5}{9}x_2 + \frac{4}{6}x_3 \le 120$$

$$\frac{5}{13}x_1 + \frac{4}{9}x_2 + \frac{2}{6}x_3 \le 200$$

$$x_1, x_2, x_3 \ge 0$$

Solução ótima:
$$x_1 = 0$$
; $x_2 = 216$; $x_3 = 0$; $x_4 = 0$; $x_5 = 104$; $Z = 4.752$

Item (b) — A solução ótima sugere apenas a produção do combustível B na quantidade de 216 litros, produzindo um lucro de R\$ 4.752,00

Item (c) — Na solução ótima existe apenas sobra de 104 litros de extrato mineral

9. Variáveis de decisão

 x_1 — qtde. de fardos de madeira transp. p/ viagem x_2 — qtde. de sacos de frutas transp. p/ viagem

Item (a) - Modelo

 $Max 20x_1 + 35x_2$

5.r.

$$x_1 + x_2 \le 12$$

$$2x_1 + 3x_2 \le 10$$

$$X_1, X_2 \ge 0$$

Item (b

Solução ótima:
$$x_1 = 0$$
; $x_2 = 3,33$; $x_3 = 8,67$; $x_4 = 0$; $Z = 116,67$

Item (c) — Sobrará capacidade de peso, já que a variável de folga x₃ apresenta o valor de 8,67 kg

10. Variáveis de decisão

x, — qtde. de toneladas de P1 que será fabricada

x, — qtde. de toneladas de P2 que será fabricada

Item (a)

O faturamento máximo é de R\$150,00

Item (b

Deve ser fabricado apenas o produto P2 na quantidade de 2,5 toneladas

Item (c)

O recurso R1 será todo consumido, já que $x_3=0$ O recurso R2 não será todo consumido, já que $x_4=3$,5, que indica que sobrarão 3,5 unidades desse recurso

EXERCÍCIOS 2.5

1. Solução inviável

2. Solução ótima: $x_1 = 2,581$; $x_2 = 1,452$; Z = 5,484

3. Solução inviável

4. Solução ótima: $x_1 = 2$; $x_2 = 4$; $x_3 = 0$; $x_4 = 8$; $x_5 = 4$; $x_6 = 0$; z = 56

5. Problema inviável

6. Solução ótima: $x_1 = 7,692$; $x_2 = 6,837$; $x_3 = 11,111$; $x_4 = 0$; $x_5 = 0$; $x_6 = 0$; $x_7 = 40$; $x_8 = 40$; $x_9 = 40$; x

7. Variáveis de decisão

 x_{ij} — qtde. de quilos de arroz transp. no c. dianteiro

 x_{12} — qtde. de quilos de arroz transp. no c. traseiro

 x_{21} — qtde. de quilos de feijão transp. no c. dianteiro

x₂₂ — qtde. de quilos de feijão transp. no c. traseiro

Solução ótima: $x_{11} = 66.666,67$; $x_{12} = 18.333,33$;

 $x_{21} = 0; x_{22} = 61.666,67; Z = 37.150$

ou

Solução ótima: $x_{11} = 5.000$; $x_{12} = 80.000$;

 $x_{21} = 61.666,67; x_{22} = 0; Z = 3.7150$

8. Variáveis de decisão

x, — qtde. de litros de A a ser produzido/vendido

x, — qtde. de litros de B a ser produzido/vendido

 x_3^2 — qtde. de litros de C a ser produzido/vendido

Problema com solução ótima inviável

9. Variáveis de decisão

x. — qtde. de fardos de madeira a serem transportados

 x_{3} — qtde. de sacos de frutas a serem transportados

Solução ótima: $x_1 = 20$; $x_2 = 3.320$; Z = 116.600

10. Variáveis de decisão

x, — quantidade de ervilha produzida por dia

x, — quantidade de milho produzido por dia

Solução ótima: $x_1 = 0.9411$; $x_2 = 2.8235$; Z = 235,2941

EXERCÍCIOS 3.1

1. Solução ótima: $x_1 = 3$; $x_2 = 0$; Z = 12

2. Solução ótima: $x_1 = 2,581$; $x_2 = 1,452$; Z = 5,484

3. Solução ótima: $x_1 = 0$; $x_2 = 5$; Z = 40

4. Variáveis de decisão

x, — qtde. de produto P1 a ser fabricado/vendido

x - qtde. de produto P2 a ser fabricado/vendido

 x_3 — qtde. de produto P3 a ser fabricado/vendido

Solução ótima: $x_1 = 0$; $x_2 = 15$; $x_3 = 15$; Z = 105