PREDICTING BANK CUSTOMER CHURN

CHETANA VYAS

Why does it matter?

Involuntary Churn

- Closing the business
- Outdated Equipments

Avoidable Churn

- Poor Customer Service
- Rigid Pricing
 - Security Threats
- Complicated Interface

Baseline Model -Logistic Regression

F_Beta Score=0.80

Beta = 2.5
(prefer recall)

Recall = 0.21

FEATURE IMPORTANCE

Classification Model Comparisons (ROC AUC)

- Random Forest
- XGBoost (Extreme Gradient Boosting)

Classification Model Comparisons (F Beta Score)

Extreme Gradient Boosting

F_Beta Score=0.89 (Beta = 2.5)

Recall = 0.54

ELITE CUSTOMERS

PRECISION = 14%

RECALL = **62**%

Scoring the Random Forest Model on customers having

- Bank balance > 100K
- > Credit Score > 750

PRECISION = 38% RECALL = 10%

NON - ELITE

CUSTOMERS

Scoring the Random Forest Model on customers having

- Bank balance < 10K</p>
- Credit Score < 600</p>

SO WHAT DO WE DO WITH OUR BINARY CLASSIFICATION MODEL?

RECOMMENDATIONS

DAILY CHURN DETECTION

Build powerful
Machine Learning
Models to analyze
customer behaviour

CHURN PREVENTION

Loyalty & Retention Programs

CONTINUOUS OPTIMIZATION

On-demand access to predicted customers at risk of churning

APPENDIX - Precision & Recall Curve

Random Forest Classifier

APPENDIX - Row data

Exited	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Germany	Spain	Male
1	619	42	2	0.00	1	1	1	101348.88	0	0	0
0	608	41	1	83807.86	1	0	1	112542.58	0	1	0
1	502	42	8	159660.80	3	1	0	113931.57	0	0	0
0	699	39	1	0.00	2	0	0	93826.63	0	0	0
0	850	43	2	125510.82	1	1	1	79084.10	0	1	0
				•••							
0	771	39	5	0.00	2	1	0	96270.64	0	0	1
0	516	35	10	57369.61	1	1	1	101699.77	0	0	1
1	709	36	7	0.00	1	0	1	42085.58	0	0	0
1	772	42	3	75075.31	2	1	0	92888.52	1	0	1
0	792	28	4	130142.79	1	1	0	38190.78	0	0	0

TOOLS

Seaborn

CLASSIFICATION ALGORITHMS

