Problem 17: Determine all integer values of θ with $0^{\circ} \leq \theta \leq 90^{\circ}$ for which $(\cos \theta + i \sin \theta)^{75}$ is a real number. (Source: ARML)

Let $z = (\cos \theta + i \sin \theta)^{75}$. By de Moivre's theorem, we have

$$z = (\cos \theta + i \sin \theta)^{75} = \cos(75\theta) + i \sin(75\theta)$$

Now z is a real number when 75θ is an integer multiple of 180, that is, for all values

$$\theta = \frac{180n}{75} = \frac{12n}{5}$$
 where *n* is an integer and $0 \le \theta \le 90$

For θ to be an integer, n has to be an integer multiple of 5. Thus n = 0, 5, 10, ..., 35. This gives us

$$\theta = 0^{\circ}, 12^{\circ}, 24^{\circ}, 36^{\circ}, 48^{\circ}, 60^{\circ}, 72^{\circ}, 84^{\circ}$$