

Vorlesung Forschungsmethoden

15.12.2022

Walter Bierbauer

Lernziele der heutigen Veranstaltung

Am Ende der Veranstaltung ...

- ... sind Sie in der Lage, mögliche Störeffekte bei within-subjects designs zu definieren und entsprechende Kontroll- bzw. Umgangsmöglichkeiten zu erklären.
- ... können Sie non-experimentelle, quasiexperimentelle und experimentelle Designs voneinander unterscheiden und Beispiele für verschiedene Arten dieser Designs herleiten.
- ... haben Sie einen umfassenden Überblick über die verschiedenen Forschungsdesigns und können entscheiden, welches Design Sie bei welcher Fragestellung anwenden.

Between-subject vs. within-subject Design

Zwischensubjekt- / between-subjects designs

Intraindividuell

Innersubjekt- / within-subjects / Messwiederholungs- / repeated measures designs

Vor- und Nachteile von within- und between-subject designs angelehnt an Martin, 2008

Within-Subjects	Between-Subjects		
 kein Problem mit personenspezifischer Konfundierung von Störvariablen Weniger Teilnehmende notwendig 	 die Teilnahme an einer experimentellen Bedingung hat keinen Einfluss auf die Teilnahme an einer anderen experimentellen Bedingung 		
Effekte der UV werden eher entdeckt als in between-subjects designs (grössere «Power»)	Innerhalb einer Bedingung können mehr Daten gesammelt werden, als wenn jemand an mehreren Bedingungen teilnimmt		
 Dropout bei mehreren Messzeitpunkten Gefährdung der internen Validität durch zeitliche Veränderung Positionseffekte 	Immer potentielle Konfundierung von Personenvariablen mit experimenteller Bedingung		
	 kein Problem mit personenspezifischer Konfundierung von Störvariablen Weniger Teilnehmende notwendig Effekte der UV werden eher entdeckt als in between-subjects designs (grössere «Power») Dropout bei mehreren Messzeitpunkten Gefährdung der internen Validität durch zeitliche Veränderung 		

Spezielle Störeffekte bei wiederholter Messung

(Huber, 2013)

Spezielle Störeffekte

- Zeitliche Veränderung ausserhalb der Untersuchungssituation (s. auch Gefährdungen der internen Validität, Termin 9)
- Positionseffekte (Position der experimentellen Bedingung)
- Übertragungseffekte (»carry over effects«)

Kontrolle der Störeffekte in within-subjects designs

Positionseffekt:

"Ein Positionseffekt (Stellungseffekt) ist eine Störvariable, die von der Position einer experimentellen Bedingung in der Reihenfolge her bestimmt ist." (Huber, 2013, S. 171)

Beispiele: Ermüdung, Übungseffekte

Kontrolle von Positionseffekten:

Ausbalancieren (vollständiges / unvollständiges)

Martin, 2008, S. 157

Vollständiges Ausbalancieren (Huber, 2013, S. 175)

	,
Stich probe	
randomisiert	
11 000	

	Pos	Position		Reaktionszeit für Bedingung		
	1	2	3	В	L	Т
Reihenfolge 1	В	L	Т	RZ + PE(1)	RZ + PE(2)	RZ + PE(3)
Reihenfolge 2	В	T	L	RZ + PE(1)	RZ + PE(3)	RZ + PE(2)
Reihenfolge 3	L	В	Т	RZ + PE(2	RZ + PE(1)	RZ + PE(3)
Reihenfolge 4	L	Т	В	RZ + PE(3)	RZ + PE(1)	RZ + PE(2)
Reihenfolge 5	Т	В	L	RZ + PE(2)	RZ + PE(3)	RZ + PE(1)
Reihenfolge 6	T	L	В	RZ + PE(3)	RZ + PE(2)	RZ + PE(1)
Summe der Positio	onseffek	cte:		2 PE(1) 2 PE(2)	2 PE(1) 2 PE(2)	2 PE(1) 2 PE(2)

Abbildung 10: Summe der Positionseffekte für jede von drei experimentellen Bedingungen bei der Methode des vollständigen Ausbalancierens.

2 PE(3)

RZ = Reaktionszeit; PE(i) = Positionseffekt; L = Lichtsignal, T = Tonsignal, B = Berührungssignal, Gemessene Reaktionszeit = RZ + PE(i)

2 PE(3)

2 PE(3)

Problem des vollständigen Ausbalancierens

Zahl der möglichen Reihenfolgen bei *n* experimentellen Bedingungen = n!

■ TABLE 8-4

Completely Counterbalanced Design for Two-, Three-, and Four-Level Independent Variables

Two levels of	independent variable	Three levels of independent variable		
Number	Order of levels	Number	Order of levels	
1	AB*	1	ABC	
2	BA	2	ACB	
		3	BCA	
		4	BAC	
		5	CAB	
		6	CBA	

Four levels of independent variable

Number	Order of levels	Number	Order of levels
1	ABCD	13	CABD
2	ABDC	14	CADB
3	ACBD	15	CBAD
4	ACDB	16	CBDA
5	ADCB	17	CDAB
6	ADBC	18	CDBA
7	BACD	19	DABC
8	BADC	20	DACB
9	BCAD	21	DBAC
10	BCDA	22	DBCA
11	BDAC	23	DCAB
12	BDCA	24	DCBA

^{*}The letters A, B, C, and D represent the levels.

Unvollständiges Ausbalancieren (Huber, 2013)

- Zufallsauswahl
- Spiegelbildmethode
- Lateinisches Quadrat (s. Huber, 2013, S. 177; Martin, 2008, S. 163)

Zufallsauswahl:

- randomisierte Auswahl aus allen möglichen Reihenfolgen
- jede VP erhält andere Reihenfolge
- bei grossen Stichproben
- Kontrolle über alle VPn hinweg

Unvollständiges Ausbalancieren (Huber, 2013)

Spiegelbildmethode (ABBA counterbalancing):

- Wahl einer Reihenfolge, die gespiegelt wird
- AB BA, ABC CBA, etc.
- alle VPn bekommen gleiche Sequenz
- dadurch Kontrolle des Positionseffekts pro Person

Zwei Voraussetzungen:

- a) jede experimentelle Bedingung muss pro Person zweimal durchführbar sein
- b) der Positionseffekt muss linear sein
 - (→ muss vorher bekannt sein, bzw. geprüft werden)
 - (→ sehr gute Herleitung dieser Problemstellung bei Martin, 2008, S. 156 ff)

Huber, 2013, S. 176

Kontrolle von Carry-Over-Effekten (Huber, 2013)

Carry-over Effekt:

«Ein carry-over Effekt (Übertragungseffekt) ist eine Störvariable, die davon herrührt, dass eine frühere experimentelle Bedingung eine spätere inhaltlich beeinflusst.» (Huber, 2013, S. 171)

Kontrolle von Positionseffekten ≠ Kontrolle von Carry-over-Effekten

Alternativen:

- Ursachen des carry-over-Effekts bekannt → Versuch der Beseitigung der Ursache
- Between-subjects Design wählen
- Notfalls Zeit zwischen den Bedingungen einsetzen («wash-out period»)

Fazit experimentelle Within-Subjects Designs

- Etliche Vorteile gegenüber between-subjects designs
- Aber: Problem der spezifischen Störvariablen (v.a. Positions- / Carry-over Effekte)
- → Kontrolle dieser Störvariablen oder, wenn nicht möglich, doch between-subjects design

Gravetter & Forzano, 2018, S. 213

Forschungsdesign wählen (Gravetter & Forzano, 2018)

Forschungsdesigns - Arten:

- Deskriptiv → reine Beschreibung einzelner Merkmale
- Korrelativ → Zusammenhang / Zusammenhänge zwischen Variablen, keine Erklärung
- Experimentell → Ursache-Wirkungs-Zusammenhänge (Erklärung) zwischen Variablen
- Quasi-experimentell → Versuch einer Annäherung an Ursache-Wirkungs-Zusammenhänge (Versuch der Erklärung); Problem der natürlichen Gruppen und Konfundierung von Alternativerklärungen mit dem Design
- Nicht-experimentell → Gruppenunterschiede, keine Erklärung

Non-experimentelle, quasiexperimentelle und experimentelle Designs

(Gravetter & Forzano, 2018)

Nonexperimentell	Nonexperimentell Quasiexperimentell	
Randomisierung Natürliche Gruppen (n	Randomisierte Zuteilung zu Bedingungen	
Keine Kontrolle von Störvariablen	Versuch Störvariablen zu kontrollieren	Kontrolle von Störvariablen

Natürliche Gruppen?

- a) definiert über Charakteristika der Teilnehmenden
 - → between-subjects designs
- b) definiert über Zeit (prä-post)
 - → within-subjects designs

Quasi-experimentelles Design: Pretest-posttest nonequivalent control group design

Durch Prätest → Vergleich der Gruppen vor der Massnahme möglich

aktive Manipulation mind. 1 UV

 Einfluss zeitlicher Veränderungen als Bedrohung der internen Validität minimiert, aber nicht ganz ausgeschaltet

→ quasiexperimentell

EG = Experimentalgruppe
KG = Kontrollgruppe
M = Massnahme

M = Massnahme

PT = Prätest

NT = Nachtest

Quasi-experimentelles Design:

Pretest-posttest nonequivalent control group design

Non-experimentelles Längsschnittsdesign: Posttest-only nonequivalent control group design (Gravetter & Forzano, 2018)

- Vergleich zweier natürlicher Gruppen nach einer Massnahme
- Keinerlei Kontrolle möglicher Störvariablen
- → nonexperimentell

Non-experimentelles Längsschnittsdesign: One-group pretest-posttest design (Gravetter & Forzano, 2018)

- Mittelwertunterschiede innerhalb einer Stichprobe / innerhalb einer (natürlichen) Gruppe über zwei Messzeitpunkte mit zwischengeschaltetem Treatment
- Keinerlei Kontrolle möglicher Störvariablen
- → nonexperimentell

Non-experimentelles Querschnittsdesign: Differential research design / Ex-post-facto design

- Vergleich zweier natürlicher Gruppen zu einem Zeitpunkt
- Keinerlei Kontrolle möglicher Störvariablen
- → nonexperimentell

Zusammenfassende Abgrenzung zwischen den verschiedenen Forschungsdesigns (Gravetter & Forzano, 2018)

Kausalzusammenhängen

Psych	(Gravetter & Forzano, 2018)			
Was	ja	nein		
Deskriptiv	reine Beschreibung einzelner Merkmale (z.B. Häufigkeiten)	keine Zusammenhänge, keine Gruppenunterschiede, keine experimentelle Manipulation, keine Kausalitätsüberprüfung		
Korrelativ	Zusammenhang / Zusammenhänge zwischen Variablen	keine Gruppenunterschiede, keine experimentelle Manipulation, keine Kausalitätsüberprüfung		
Nicht- experimentell	Unterschiede auf AV bei natürlichen Gruppen; im within-subjects-Kontext: Unterschiede einer Gruppe über die Zeit	keine Randomisierung (sondern natürliche Gruppe/n); keinerlei Kontrolle von Störvariablen;		
Quasi- experimentell	Versuch einer Annäherung an Kausalitätsüberprüfung durch experimentelle Manipulation mind. 1 UV und Versuch der Kontrolle von Störvariablen → mehr als reine Beschreibung von Mittelwertsunterschieden	keine Randomisierung (sondern natürliche Gruppen); keine <i>vollständige</i> Kontrolle von Störvariablen; deshalb Kausalaussagen nie abschliessend möglich		
Experimentell	Kausalitätsüberprüfung (= Ursache-Wirkungs- Zusammenhänge) zwischen UVs und AVs durch randomisierte Zuteilung zu den Bedingungen	Achtung, auch hier gewisse Gefährdungen der interner Validität durch entsprechende Störvariablen möglich; a grundsätzlich das einzige Design zur Testung von		

(between oder within) und aktive Manipulation

mind. 1 UV

ja

Was

Zusammenfassende Abgrenzung zwischen den verschiedenen Forschungsdesigns

(Gravetter & Forzano, 2018)

nein

Deskripti	V	reine Beschreibung einzelner Merkmale (z.B. Häufigkeiten)	keine Zusammenhänge, keine Gruppenunterschiede, keine experimentelle Manipulation, keine	
17 1 1	Unter	schiedliche Einteilung in den Lehrbüchern:		
Korrelati				telle
	Im Le	hrbuch von Hussy et al. (2013) werden unter de	em Begriff nicht-experimentelle	
Nicht- experime	Forschung deskriptive und korrelative Ansätze zusammengefasst.			uppen);
	Der no Ansät	on-experimentelle Ansatz (z.B. ex post facto de zen.	sign) findet sich bei den experimentellen	
Quasi-				uppen);
experime		e Differenzierung bei Gravetter & Forzano (2018	,	;
	günsti	ı, ist für das Lernen der Unterschiede zwischen iger	den Forschungsstrategien und –designs	nöglich
	ganot	.90		
Experim				r internen
		Zusammenhänge) zwischen UVs und AVs durch randomisierte Zuteilung zu den Bedingungen	Validität durch entsprechende Störvariablen r	nöglich
		(between oder within) und aktive Manipulation		
		mind. 1 UV		

Themenblock III: Quantitative Forschungsmethoden (Gravetter & Forzano, 2018)

- 5. Forschungsdesign wählen
 - deskriptives Design → reine Beschreibung einzelner Merkmale
 - korrelatives Design → Zusammenhang / Zusammenhänge zwischen Variablen, keine Erklärung
 - Experimente → Ursache-Wirkungs-Zusammenhänge (Erklärung) zwischen Variablen
 - Quasiexperimente → Versuch einer Annäherung an Ursache-Wirkungs-Zusammenhänge (Versuch der Erklärung); Problem: natürlichen Gruppen und Konfundierung von Alternativerklärungen mit Design
 - nicht-experimentelle Forschungsdesigns → Gruppenunterschiede, keine Erklärung
 - Meta-Analyse (nächstes Mal)

Übung zu Forschungsdesigns:

Welches Forschungsdesign für welche Forschungsfrage? (bei mehreren Möglichkeiten, wählen Sie bitte das Design mit der höchsten internen Validität)

- 1. Gibt es Unterschiede in der Rechtschreibfähigkeit zwischen Jungen und Mädchen der 3. Klasse?
- 2. Wie hoch ist der Anteil an Schülerinnen und Schülern mit Migrationshintergrund im Kanton Zürich?
- 3. Fördert die Einnahme von Nikotinersatzpräparaten den Erfolg im Rauchstopp?
- 4. Ist die Teilnahme an einem Programm zur Förderung sozialer Kompetenzen effektiver für Nicht-Muttersprachler*innen als für Muttersprachler*innen?
- 5. Wie stark ist der Zusammenhang zwischen sozialer Unterstützung und Wohlbefinden?

Universität

Yetley et al., 2016

Ausblick auf nächste Stunde: Systematic Review und Meta-Analyse

FIGURE 1 Hierarchy of evidence pyramid. The pyramidal shape qualitatively integrates the amount of evidence generally available from each type of study design and the strength of evidence expected from indicated designs. In each ascending level, the amount of available evidence generally declines. Study designs in ascending levels of the pyramid generally exhibit increased quality of evidence and reduced risk of bias. Confidence in causal relations increases at the upper levels. *Meta-analyses and systematic reviews of observational studies and mechanistic studies are also possible. RCT, randomized controlled trial.

Lernziele erreicht?

Am Ende der Veranstaltung ...

- ... sind Sie in der Lage, mögliche Störeffekte bei within-subjects designs zu definieren und entsprechende Kontroll- bzw. Umgangsmöglichkeiten zu erklären.
- ... können Sie non-experimentelle, quasiexperimentelle und experimentelle Designs voneinander unterscheiden und Beispiele für verschiedene Arten dieser Designs herleiten.
- ... haben Sie einen umfassenden Überblick über die verschiedenen Forschungsdesigns und können entscheiden, welches Design Sie bei welcher Fragestellung anwenden.

Prüfungsrelevante Literatur von heute

Hussy, W., Schreier, M. & Echterhoff, G. (2013). Forschungsmethoden in Psychologie und Sozialwissenschaften für Bachelor (2. Auflage). Berlin: Springer.

Kapitel 3

Huber, O. (2019). Das psychologische Experiment. Eine Einführung (7. Auflage). Bern: Hogrefe.

Unterkapitel 4.3

Kapitel 5

Kapitel 6

Kapitel 7

Zusätzliche Literatur

Gravetter, F. J. & Forzano, L.-A., B. (2018). Research methods for the behavioral sciences (6th edition). Belmont: Wadsworth, Cengage Learning.

Martin, D.W. (2008). Doing psychology experiments (7th edition). Belmont: Wadsworth, Cengage Learning

Yetley, E. A., MacFarlane, A. J., Greene-Finestone, L. S., Garza, C., Ard, J. D., Atkinson, S. A., Bier, D. M., Carriquiry, A. L., Harlan, W. R., Hattis, D., King, J. C., Krewski, D., O'Connor, D. L., Prentice, R. L., Rodricks, J. V., & Wells, G. A. (2017). Options for basing Dietary Reference Intakes (DRIs) on chronic disease endpoints: Report from a joint US-/Canadian-sponsored working group. *The American Journal of Clinical Nutrition*, 105(1), 249S-285S. https://doi.org/10.3945/ajcn.116.139097