CSN 102: DATA STRUCTURES

Searching Algorithms: Linear and Binary Search

Why we need to search?

- Searching through records for a specific record or set of records
- Locating the index through searching and later retrieve data stored
- There are multiple algorithms to perform search, lets take a look to common ones:
 - Linear (Sequential) Search
 - Binary Search

Linear Search(1)

- Compare every element in list with key element
- If list[i] is equal to key, return i
- If end of list is reached and key is not found, return -1

```
    LinearSearch(list, n, key)
        for i: 1 to n
            if (element i in list = key)
                 return(i)
        return(-1)
```

Linear Search(2)

- For successful search:
 - Best case: 1 comparison (first element in list is key)
 - Worst case: n comparison (last element in list is key)
 - Average case: (n+1)/2
- For unsuccessful search:
 - n comparison required
 - What if list is sorted? Can we improve number of comparisons if we know list is sorted?

```
LinearSearchSorted(list, n, key)
       for i: 1 to n
               if (element i in list < key)
                      continue
               else
                      break
       if (element i in list = key)
               return(i)
       else
               return(-1)
```

Linear Search(2)

- For successful search:
 - Best case: 1 comparison (first element in list is key)
 - Worst case: n comparison (last element in list is key)
 - Average case: (n+1)/2
- For unsuccessful search:
 - n comparison required
 - What if list is sorted? Can we improve number of comparisons if we know list is sorted?
 - Comparison required if list is sorted using LinearSearchSorted
 - Best case: 1 comparison (first element is greater than key)
 - Worst case: n comparison (compare till last element)
 - Average case: (n+1)/2

Linear Search(3)

- Can we devise a better searching technique for unordered list?
 - Linear search has the best performance
- Can we devise a better searching technique for ordered list?
 - Yes, Binary Search.

Binary Search(1)

- Compare middle element with key,
 - If middle element < key, reduce search to right half of list
 - If middle element > key, reduce search to left half of list
- Keep repeating the above process till key is found or size of list becomes empty
- Any constraints?
 - What if list is unordered?
 - Can't perform binary Search
 - What if number of elements are not known?
 - Can't find the middle element

Binary Search(2)

```
BinarySearch(list, start, end, key)
       if (start > end)
               return(-1)
       middle \leftarrow (start + end)/2
       if (middle element in list = key)
               return middle
       else if (middle element in list < key)
              return(BinarySearch(list, middle+1, end, key))
       else
              return(BinarySearch(list, start, middle-1, key))
```

Binary Search(2)

- Search for 16 in a; sequence of function call
 - BinarySearch(a, 0, 15, 16)

$$(0+15)/2 = 7$$
; a[7]=19; $(19 \neq 16)$ and $(19 > 16) \rightarrow$ search left half

BinarySearch(a, 0, 6, 16)

$$(0+6)/2 = 3$$
; a[3] = 13;
 $(13 \neq 16)$ and $(13 < 16) \rightarrow$ search right half

BinarySearch(a, 4, 6,19)

$$(4+6)/2 = 5$$
; a[5]=16;
 $(16==16) \rightarrow \text{return}(5)$

Binary Search(3)

a

- Search for 17 in a; sequence of function call
 - BinarySearch(a, 0, 15, 17)
 (0+15)/2 = 7; a[7]=19;
 (19 ≠ 17) and (19 > 17) → search left half
 - BinarySearch(a, 0, 6, 17)
 (0+6)/2 = 3; a[3] = 13;
 (13 ≠ 17) and (13 < 17) → search right half
 - BinarySearch(a, 4, 6,17)
 (4+6)/2 = 5; a[5] = 16;
 (16 ≠ 17) and (16 < 17) → search right half
 - BinarySearch(a, 6, 6, 17)
 (6+6)/2 = 6; a[6] = 18;
 (18 ≠ 17) and (18 > 17) → search left half
 - BinarySearch(a, 6, 5, 17);
 start > end → return(-1)

Binary Search Analysis

- For 16 elements, in worst case (unsuccessful) = 4 tries
- For 32 (2⁵) elements = $\frac{5}{5}$ tries = $\frac{100}{2}$ 2⁵
- For 64 (26) elements = $\frac{6}{5}$ tries = $\frac{100}{2}$ 26
- For 120 $(2^6 < 120 < 2^7)$ elements = 7 tries
- For 50000 elements $(50000 < 2^{16}) = 16$ tries $\approx \log_2 50000$
- Really Fast!!
- log₂ n comparison required for list with n elements

Better than Binary Search?

- No algorithm exist which runs faster than binary search
- What about searching in telephone diary?
 - Indexing is another practical approach for frequent searches in a very large amount of data