CS 726: Practice Questions on Learning Potentials

1. Consider an undirected graphical model G used to model $\Pr(x_1,\ldots,x_n)$ with only a single potential over each edge $(i,j) \in G$ as $\psi(x_i,x_j) = \sigma$ if $x_i = x_j$, $\psi(x_i,x_j) = 1$ otherwise. Thus, $\Pr(x_1,\ldots,x_n|\sigma) = \frac{1}{Z} \prod_{(i,j)\in G} \psi(x_i,x_j)$

Assume each x_j takes values from $1 \dots m$. Let the training data consist of a single fully labeled graph, that is, $D = \{\mathbf{x}^1\}$.

(a) Assume, $\mathbf{x}^1 = [0 \ 0 \ 1 \ 0]$ and G a chain graph $x_1 - x_2 - x_3 - x_4$, and m = 2. Write the value of $\Pr(\mathbf{x}^1 | \sigma)$ purely in terms of σ , that is, even Z should be written in terms of σ .

..2

(b) Write the gradient of the training objective wrt σ in as simplified a form as possible. [The gradient should be for general graphs, and not just for the example graph in part (a) above.]

..2

(c) Solve for σ in closed form in terms of properties of D for the case when G is a tree?

- (d) Now assume that we have a training dataset D with partially observed set of variables with n=3, m=2, and G a complete graph (a triangle since n=3.). Let $D=\{(x_1^1, x_2^1)=(1, 1), (x_2^2, x_3^2)=(0, 1)\}$, that is, the first instance has variable x_3 hidden and second instance has x_1 hidden. We will use the EM algorithm to solve for σ . Assume at some time t, $\sigma_t=2$. For the next iteration, work out the E and M steps. Solve for the optimal value of σ in the M step.
 - i. E-step.

..3

ii. M-step.

..3

2. Consider a $n \times n$ grid graph G = (V, E) where V are vertices and E are edges of G. Each node $k \in V$ is a binary random variable y_k which takes value 1 or 0 depending on whether it is part of foreground or background. Each node is attached with a x_k that is a real-value denoting its propensity to be foreground. There are only three features in this UGM

$$f_1((y_k), (k), \mathbf{x}) = x_k y_k$$

$$f_2((y_k), (k), \mathbf{x}) = y_k$$

$$f_3((y_k, y_j), (k, j), \mathbf{x}) = y_k y_j + (1 - y_k)(1 - y_j) \text{ if } (k, j) \in E, 0 \text{ otherwise.}$$
(1)

Let $\theta = [\theta_1, \theta_2, \theta_3]$ denote the corresponding weights of these three features $\mathbf{f} = [f_1, f_2, f_3]$.

Also, consider an instance $(\mathbf{x}^i, \mathbf{y}^i)$ for a 3×3 grid for which the value of features x_k^i and correct

(a) Write the expression for $\Pr(\mathbf{y}|\mathbf{x})$ in terms of $\theta_1, \theta_2, \theta_3, x_k, y_k$ for $k \in V$ [Do not use f_k ()s but their defined values above. E.g. use $x_k y_k$ in place of f_1 () etc.]

(b) Compute the value of the normalizer $Z(\mathbf{x}^i)$ at $[\theta_1^t, \theta_2^t, \theta_3^t] = [0, 0, 0]$

..2

..1

(c) Compute the gradient of $\log \Pr(\mathbf{y}^i|\mathbf{x}^i, \theta^t)$ wrt θ_1 at $[\theta_1^t, \theta_2^t, \theta_3^t] = [0, 0, 0]$

- ..2
- 3. Consider the problem of training the parameters of a simple HMM of length two where the state and observation variables are binary. Thus, we have two state variables y_1 and y_2 and two observation variables x_1 and x_2 and all four variables can take one of two possible values. The parameters of the HMM are $\Pr(y_1) \Pr(y_2|y_1)$ and $\Pr(x_1|y_1)$ and $\Pr(x_2|y_2)$. Assume $\Pr(x_1|y_1) = \Pr(x_2|y_2) = \Pr(x_t|y_t)$ We use the EM algorithm for training the parameters.

Let the initial values at t = 0 be

$$\begin{aligned} \Pr^t(y_1 = 0) &= \theta_0^t = 0.5 \\ \Pr^t(y_2 = 0 | y_1 = 0) &= \theta_1^t = 0.7, \quad \Pr^t(y_2 = 0 | y_1 = 1) = \theta_2^t = 0.2 \\ \Pr^t(x_t = 0 | y_t = 0) &= \theta_3^t = 0.1, \quad \Pr^t(x_t = 0 | y_t = 1) = \theta_4^t = 0.8. \end{aligned}$$

For a dataset D consisting of these two sequences $\mathbf{x}^1 = [0, 1]$, $\mathbf{x}^2 = [1, 1]$.

(a) E-step: Estimate the values of $\Pr(y_1|\mathbf{x}^1, \theta^t)$

..3

(b) M-step: In the M-step write the formula for the maximum likelihood estimate of θ_0 in terms of $\Pr(y_1|\mathbf{x}^1,\theta^t)$ and $\Pr(y_1|\mathbf{x}^2,\theta^t)$.

..1