Groupoïdes de Garside et groupes de tresses complexes Colloque tournant du RT algèbre

Owen Garnier

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée Université de Picardie Jules Verne (Amiens)

6 mars 2025

V un \mathbb{C} -espace vectoriel de dimension $n < \infty$.

V un \mathbb{C} -espace vectoriel de dimension $n < \infty$.

Réflexion complexe: $s \in GL(V)$ d'ordre fini et dim Ker(s-1) = n-1.

V un \mathbb{C} -espace vectoriel de dimension $n < \infty$.

Réflexion complexe: $s \in GL(V)$ d'ordre fini et dim Ker(s-1) = n-1.

Définition

Un groupe fini $W \leq GL(V)$ est un **groupe de réflexions complexe** (GRC) s'il est engendré par des réflexions.

V un \mathbb{C} -espace vectoriel de dimension $n < \infty$.

Réflexion complexe: $s \in GL(V)$ d'ordre fini et dim Ker(s-1) = n-1.

Définition

Un groupe fini $W \leq GL(V)$ est un groupe de réflexions complexe (GRC) s'il est engendré par des réflexions.

Pour $W \leqslant GL(V)$ un GRC, on définit l'arrangement de réflexions par

$$\mathcal{A} := \{ \mathsf{Ker}(s-1) \mid s \in W \text{ est une réflexion} \}.$$

V un \mathbb{C} -espace vectoriel de dimension $n < \infty$.

Réflexion complexe: $s \in GL(V)$ d'ordre fini et dim Ker(s-1) = n-1.

Définition

Un groupe fini $W \leq GL(V)$ est un groupe de réflexions complexe (GRC) s'il est engendré par des réflexions.

Pour $W \leqslant GL(V)$ un GRC, on définit l'arrangement de réflexions par

$$\mathcal{A} := \{ \mathsf{Ker}(s-1) \mid s \in W \text{ est une réflexion} \}$$
.

L'ensemble des **vecteurs réguliers** est $X := V \setminus \bigcup A$.

L'espace des **orbites régulières** est X/W.

W irréductible : $W \hookrightarrow GL(V)$ est une représentation irréductible.

W irréductible : $W \hookrightarrow GL(V)$ est une représentation irréductible. Tout GRC est produit de GRCs irréductibles.

W irréductible : $W \hookrightarrow GL(V)$ est une représentation irréductible.

Tout GRC est produit de GRCs irréductibles.

Shephard et Todd '54: Classification des GRCs irréductibles.

W irréductible : $W \hookrightarrow GL(V)$ est une représentation irréductible.

Tout GRC est produit de GRCs irréductibles.

Shephard et Todd '54: Classification des GRCs irréductibles.

D'un côté, une série infinie de groupes G(de, e, n) formés de :

- matrices monomiales $n \times n$,
- avec coefficients non nuls dans μ_r , r = de,
- dont le produit appartient à μ_d .

W irréductible : $W \hookrightarrow GL(V)$ est une représentation irréductible.

Tout GRC est produit de GRCs irréductibles.

Shephard et Todd '54: Classification des GRCs irréductibles.

D'un côté, une série infinie de groupes G(de, e, n) formés de :

- matrices monomiales $n \times n$,
- avec coefficients non nuls dans μ_r , r = de,
- dont le produit appartient à μ_d .

On a $G(de, e, n) \subset G(r, 1, n)$ sous-groupe normal d'indice e.

W irréductible : $W \hookrightarrow GL(V)$ est une représentation irréductible.

Tout GRC est produit de GRCs irréductibles.

Shephard et Todd '54: Classification des GRCs irréductibles.

D'un côté, une série infinie de groupes G(de, e, n) formés de :

- matrices monomiales $n \times n$,
- avec coefficients non nuls dans μ_r , r = de,
- dont le produit appartient à μ_d .

On a $G(de, e, n) \subset G(r, 1, n)$ sous-groupe normal d'indice e.

D'un autre côté, 34 groupes exceptionnels G_4, \ldots, G_{37} . Parmi eux, 19 sont de rang 2.

W irréductible : $W \hookrightarrow GL(V)$ est une représentation irréductible.

Tout GRC est produit de GRCs irréductibles.

Shephard et Todd '54: Classification des GRCs irréductibles.

D'un côté, une série infinie de groupes G(de, e, n) formés de :

- matrices monomiales $n \times n$,
- avec coefficients non nuls dans μ_r , r = de,
- dont le produit appartient à μ_d .

On a $G(de,e,n)\subset G(r,1,n)$ sous-groupe normal d'indice e.

D'un autre côté, 34 groupes exceptionnels G_4, \ldots, G_{37} . Parmi eux, 19 sont de rang 2.

Il est possible d'utiliser des preuves au cas-par-cas.

W irréductible.

Corollaire

W peut être engendré par un ensemble de n+1 réflexions.

W irréductible.

Corollaire

W peut être engendré par un ensemble de n+1 réflexions.

Si W peut être engendré par n réflexions, alors W est bien-engendré.

W irréductible.

Corollaire

W peut être engendré par un ensemble de n+1 réflexions.

Si W peut être engendré par n réflexions, alors W est bien-engendré.

Corollaire

W admet au plus trois classes de conjugaison de réflexions (deux si W est bien-engendré).

- Groupe de tresses $B = B(W) := \pi_1(X/W)$.
- Groupe de tresses pur $P = P(W) := \pi_1(X)$.
- Notation : $B_i = B(G_i)$ et B(de, e, n) = B(G(de, e, n)).

- Groupe de tresses $B = B(W) := \pi_1(X/W)$.
- Groupe de tresses pur $P = P(W) := \pi_1(X)$.
- Notation : $B_i = B(G_i)$ et B(de, e, n) = B(G(de, e, n)).
- Suite exacte courte $1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$.

- Groupe de tresses $B = B(W) := \pi_1(X/W)$.
- Groupe de tresses pur $P = P(W) := \pi_1(X)$.
- Notation : $B_i = B(G_i)$ et B(de, e, n) = B(G(de, e, n)).
- Suite exacte courte $1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$.
- B est engendré par des **réflexions tressées** (distinguées).

- Groupe de tresses $B = B(W) := \pi_1(X/W)$.
- Groupe de tresses pur $P = P(W) := \pi_1(X)$.
- Notation : $B_i = B(G_i)$ et B(de, e, n) = B(G(de, e, n)).
- Suite exacte courte $1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$.
- B est engendré par des **réflexions tressées** (distinguées).
- Si W Coxeter, B est le groupe d'Artin de W.

- Groupe de tresses $B = B(W) := \pi_1(X/W)$.
- Groupe de tresses pur $P = P(W) := \pi_1(X)$.
- Notation : $B_i = B(G_i)$ et B(de, e, n) = B(G(de, e, n)).
- Suite exacte courte $1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$.
- B est engendré par des **réflexions tressées** (distinguées).
- Si W Coxeter, B est le groupe d'Artin de W.
- Diagrammes de BMR, donnant une présentation de W.

Groupes réels=groupes de Coxeter finis \rightarrow diagrammes de Coxeter :

Groupes réels=groupes de Coxeter finis \rightarrow diagrammes de Coxeter :

• Présentation de W.

Groupes réels=groupes de Coxeter finis \rightarrow diagrammes de Coxeter :

- Présentation de W.
- Présentation du groupe d'Artin associé à W.

Groupes réels=groupes de Coxeter finis \rightarrow diagrammes de Coxeter :

- Présentation de W.
- Présentation du groupe d'Artin associé à W.
- Présentation des sous-groupes "paraboliques" de W, et de B.

Groupes réels=groupes de Coxeter finis \rightarrow diagrammes de Coxeter :

- Présentation de W.
- Présentation du groupe d'Artin associé à W.
- ullet Présentation des sous-groupes "paraboliques" de W, et de B.

Groupes réels=groupes de Coxeter finis \rightarrow diagrammes de Coxeter :

- Présentation de W.
- Présentation du groupe d'Artin associé à W.
- Présentation des sous-groupes "paraboliques" de W, et de B.

Groupes de réflexions complexes \rightarrow diagrammes de BMR :

Présentation de W √

Groupes réels=groupes de Coxeter finis \rightarrow diagrammes de Coxeter :

- Présentation de W.
- Présentation du groupe d'Artin associé à W.
- Présentation des sous-groupes "paraboliques" de W, et de B.

- Présentation de W √
- Présentation de B ?

Groupes réels=groupes de Coxeter finis \rightarrow diagrammes de Coxeter :

- Présentation de W.
- Présentation du groupe d'Artin associé à W.
- Présentation des sous-groupes "paraboliques" de W, et de B.

- Présentation de W √
- Présentation de B ?
- Présentation des sous-groupes paraboliques de B?

Groupes réels=groupes de Coxeter finis \rightarrow diagrammes de Coxeter :

- Présentation de W.
- ullet Présentation du groupe d'Artin associé à W.
- Présentation des sous-groupes "paraboliques" de W, et de B.

- Présentation de W √
- Présentation de B ?
- Présentation des sous-groupes paraboliques de B?
- Sous-groupes paraboliques de B?

Groupes réels=groupes de Coxeter finis \rightarrow diagrammes de Coxeter :

- Présentation de W.
- Présentation du groupe d'Artin associé à W.
- Présentation des sous-groupes "paraboliques" de W, et de B.

- Présentation de W √
- Présentation de B ?
- Présentation des sous-groupes paraboliques de B?
- Sous-groupes paraboliques de B?

W irréductible.

• Détermination des centres de B et de P.

W irréductible.

• Détermination des centres de B et de P. Le chemin $t \mapsto e^{\frac{2i\pi}{|Z(W)|}t} *$ induit un lacet dans X/W. Son image dans B est notée z_B .

W irréductible.

• Détermination des centres de B et de P. Le chemin $t \mapsto e^{\frac{2i\pi}{|Z(W)|}t} *$ induit un lacet dans X/W. Son image dans B est notée z_B .

Conjecture (Broué, Malle, Rouquier '98)

$$Z(B) = \langle z_B \rangle$$
 et $Z(P) = \langle z_P \rangle$, avec $z_P := (z_B)^{|Z(W)|}$.

W irréductible.

• Détermination des centres de B et de P. Le chemin $t \mapsto e^{\frac{2i\pi}{|Z(W)|}t} *$ induit un lacet dans X/W. Son image dans B est notée z_B .

Conjecture (Broué, Malle, Rouquier '98)

$$Z(B) = \langle z_B \rangle$$
 et $Z(P) = \langle z_P \rangle$, avec $z_P := (z_B)^{|Z(W)|}$.

• Le diagramme de BMR fournit-il une présentation de B ?

Questions soulevées par BMR

W irréductible.

• Détermination des centres de B et de P. Le chemin $t \mapsto e^{\frac{2i\pi}{|Z(W)|}t} *$ induit un lacet dans X/W. Son image dans B est notée z_B .

Conjecture (Broué, Malle, Rouquier '98)

$$Z(B) = \langle z_B \rangle$$
 et $Z(P) = \langle z_P \rangle$, avec $z_P := (z_B)^{|Z(W)|}$.

- Le diagramme de BMR fournit-il une présentation de B?
- Le monoïde défini par la même présentation se plonge-t-il dans B ?

Questions soulevées par BMR

W irréductible.

• Détermination des centres de B et de P. Le chemin $t \mapsto e^{\frac{2i\pi}{|Z(W)|}t} *$ induit un lacet dans X/W. Son image dans B est notée z_B .

Conjecture (Broué, Malle, Rouquier '98)

$$Z(B) = \langle z_B \rangle$$
 et $Z(P) = \langle z_P \rangle$, avec $z_P := (z_B)^{|Z(W)|}$.

- Le diagramme de BMR fournit-il une présentation de B?
- Le monoïde défini par la même présentation se plonge-t-il dans B ?
- + Est-ce que X/W est un $K(\pi,1)$?

Questions soulevées par BMR

W irréductible.

• Détermination des centres de B et de P. Le chemin $t \mapsto e^{\frac{2i\pi}{|Z(W)|}t} *$ induit un lacet dans X/W. Son image dans B est notée z_B .

Conjecture (Broué, Malle, Rouquier '98)

$$Z(B) = \langle z_B \rangle$$
 et $Z(P) = \langle z_P \rangle$, avec $z_P := (z_B)^{|Z(W)|}$.

- Le diagramme de BMR fournit-il une présentation de B ?
- Le monoïde défini par la même présentation se plonge-t-il dans B ?
- + Est-ce que X/W est un $K(\pi,1)$?

À la publication de BMR, ces questions sont résolues pour la plupart des GRCs sauf

$$G_{24}, G_{27}, G_{29}, G_{31}, G_{33}, G_{34}.$$

W bien-engendré.

W bien-engendré.

Théorème (Bessis '15 + Ripoll '10 and Douvropoulos '17)

- Z(B) est monogène comme conjecturé par BMR.
- L'espace X/W est un $K(\pi, 1)$.
- Présentation de B, dite présentation d'Hurwitz.

W bien-engendré.

Théorème (Bessis '15 + Ripoll '10 and Douvropoulos '17)

- Z(B) est monogène comme conjecturé par BMR.
- L'espace X/W est un $K(\pi, 1)$.
- Présentation de B, dite présentation d'Hurwitz.

Cette approche s'applique en particulier à G_{24} , G_{27} , G_{29} , G_{33} , G_{34} .

W bien-engendré.

Théorème (Bessis '15 + Ripoll '10 and Douvropoulos '17)

- Z(B) est monogène comme conjecturé par BMR.
- L'espace X/W est un $K(\pi, 1)$.
- Présentation de B, dite présentation d'Hurwitz.

Cette approche s'applique en particulier à G_{24} , G_{27} , G_{29} , G_{33} , G_{34} .

Les questions de BMR sont toujours sans réponses à ce stade pour G_{31} .

Groupes de Garside

Soit *G* un groupe.

Groupes de Garside

Soit G un groupe.

Définition [Dehornoy, Paris '99]

Structure de Garside sur G: monoïde $M \subset G$ et $\Delta \in M$ tel que

- M engendre G en tant que groupe.
- M est un treillis pour la divisibilité à gauche et à droite.
- Pour $x \in M$, la longueur d'un produit $x = s_1 \cdots s_r$ avec $s_i \neq 1$ dans M est bornée.
- $Div(\Delta) = Div_D(\Delta)$ est fini et engendre M.

Groupes de Garside

Soit *G* un groupe.

Définition [Dehornoy, Paris '99]

Structure de Garside sur G: monoïde $M \subset G$ et $\Delta \in M$ tel que

- M engendre G en tant que groupe.
- M est un treillis pour la divisibilité à gauche et à droite.
- Pour $x \in M$, la longueur d'un produit $x = s_1 \cdots s_r$ avec $s_i \neq 1$ dans M est bornée.
- $\operatorname{Div}(\Delta) = \operatorname{Div}_D(\Delta)$ est fini et engendre M.

On note un groupe de Garside par un triplet (G, M, Δ) .

 Groupe de Coxeter : monoïde d'Artin-Tits (Deligne '72, Brieskorn-Saito '72, Dehornoy-Paris '99).

- Groupe de Coxeter : monoïde d'Artin-Tits (Deligne '72, Brieskorn-Saito '72, Dehornoy-Paris '99).
- "Groupes de Shephard": même monoïde qu'un groupe de Coxeter (Orlik-Solomon '88).

- Groupe de Coxeter : monoïde d'Artin-Tits (Deligne '72, Brieskorn-Saito '72, Dehornoy-Paris '99).
- "Groupes de Shephard": même monoïde qu'un groupe de Coxeter (Orlik-Solomon '88).
- Groupes exceptionnels de rang 2 : structures ad hoc (Dehornoy-Paris '99, Picantin '00).

- Groupe de Coxeter : monoïde d'Artin-Tits (Deligne '72, Brieskorn-Saito '72, Dehornoy-Paris '99).
- "Groupes de Shephard": même monoïde qu'un groupe de Coxeter (Orlik-Solomon '88).
- Groupes exceptionnels de rang 2 : structures ad hoc (Dehornoy-Paris '99, Picantin '00).
- Groupes bien-engendrés : **monoïde dual** (Birman-Ko-Lee '98, Bessis 03, Bessis-Corran 06, Bessis '15).

- Groupe de Coxeter : monoïde d'Artin-Tits (Deligne '72, Brieskorn-Saito '72, Dehornoy-Paris '99).
- "Groupes de Shephard": même monoïde qu'un groupe de Coxeter (Orlik-Solomon '88).
- Groupes exceptionnels de rang 2 : structures ad hoc (Dehornoy-Paris '99, Picantin '00).
- Groupes bien-engendrés : monoïde dual (Birman-Ko-Lee '98, Bessis 03, Bessis-Corran 06, Bessis '15).

Cela exclut B(de, e, n) pour $n \ge 3$ et $d \ge 2$ ou $e \ge 3$...

- Groupe de Coxeter : monoïde d'Artin-Tits (Deligne '72, Brieskorn-Saito '72, Dehornoy-Paris '99).
- "Groupes de Shephard": même monoïde qu'un groupe de Coxeter (Orlik-Solomon '88).
- Groupes exceptionnels de rang 2 : structures ad hoc (Dehornoy-Paris '99, Picantin '00).
- Groupes bien-engendrés : monoïde dual (Birman-Ko-Lee '98, Bessis 03, Bessis-Corran 06, Bessis '15).

Cela exclut B(de, e, n) pour $n \ge 3$ et $d \ge 2$ ou $e \ge 3$... et B_{31} .

Un groupe de Garside (G, M, Δ) donne les informations suivantes :

 Solution du problème du mot sur G (forme normale) (Dehornoy-Paris '99).

- Solution du problème du mot sur G (forme normale) (Dehornoy-Paris '99).
- Solution au problème de conjugaison dans $G \longrightarrow$ étude de Z(G) (Picantin '01, Gebhardt-González-Meneses '10).

- Solution du problème du mot sur G (forme normale) (Dehornoy-Paris '99).
- Solution au problème de conjugaison dans $G \longrightarrow$ étude de Z(G) (Picantin '01, Gebhardt-González-Meneses '10).
- Construction explicite d'un K(G,1) fini (nerf de Garside) (Charney-Meier-Whittlesey '04).

- Solution du problème du mot sur G (forme normale) (Dehornoy-Paris '99).
- Solution au problème de conjugaison dans $G \longrightarrow$ étude de Z(G) (Picantin '01, Gebhardt-González-Meneses '10).
- Construction explicite d'un K(G,1) fini (nerf de Garside) (Charney-Meier-Whittlesey '04).
- Calcul de l'homologie de M, qui coïncide avec celle de G (Dehornoy-Lafont '03).

- Solution du problème du mot sur G (forme normale) (Dehornoy-Paris '99).
- Solution au problème de conjugaison dans $G \longrightarrow$ étude de Z(G) (Picantin '01, Gebhardt-González-Meneses '10).
- Construction explicite d'un K(G,1) fini (nerf de Garside) (Charney-Meier-Whittlesey '04).
- Calcul de l'homologie de M, qui coïncide avec celle de G (Dehornoy-Lafont '03).
- Les atomes de M donnent une présentation de M, et donc de G (Dehornoy-Paris '99).

- Solution du problème du mot sur G (forme normale) (Dehornoy-Paris '99).
- Solution au problème de conjugaison dans $G \longrightarrow$ étude de Z(G) (Picantin '01, Gebhardt-González-Meneses '10).
- Construction explicite d'un K(G,1) fini (nerf de Garside) (Charney-Meier-Whittlesey '04).
- Calcul de l'homologie de M, qui coïncide avec celle de G (Dehornoy-Lafont '03).
- Les atomes de M donnent une présentation de M, et donc de G (Dehornoy-Paris '99).
- Notion de sous-groupe parabolique de G (Godelle '07).

 (G, M, Δ) groupe de Garside.

 (G, M, Δ) groupe de Garside.

Pour $\delta \in M$, on pose $M_{\delta} := \langle \mathsf{Div}(\delta) \rangle^+$ et $G_{\delta} := \langle \mathsf{Div}(\delta) \rangle$.

 (G, M, Δ) groupe de Garside. Pour $\delta \in M$, on pose $M_{\delta} := \langle \mathsf{Div}(\delta) \rangle^+$ et $G_{\delta} := \langle \mathsf{Div}(\delta) \rangle$.

Proposition (Godelle '07)

Si δ est un **élément de Garside parabolique**, alors $(G_{\delta}, M_{\delta}, \delta)$ est de Garside, et appelé **sous-groupe parabolique standard** de (G, M, Δ) .

 (G, M, Δ) groupe de Garside.

Pour $\delta \in M$, on pose $M_{\delta} := \langle \mathsf{Div}(\delta) \rangle^+$ et $G_{\delta} := \langle \mathsf{Div}(\delta) \rangle$.

Proposition (Godelle '07)

Si δ est un **élément de Garside parabolique**, alors $(G_{\delta}, M_{\delta}, \delta)$ est de Garside, et appelé **sous-groupe parabolique standard** de (G, M, Δ) .

Definition (Godelle '07)

Un groupe de la forme $gG_{\delta}g^{-1}$ est un **sous-groupe parabolique**.

 (G, M, Δ) groupe de Garside.

Pour $\delta \in M$, on pose $M_{\delta} := \langle \mathsf{Div}(\delta) \rangle^+$ et $G_{\delta} := \langle \mathsf{Div}(\delta) \rangle$.

Proposition (Godelle '07)

Si δ est un **élément de Garside parabolique**, alors $(G_{\delta}, M_{\delta}, \delta)$ est de Garside, et appelé **sous-groupe parabolique standard** de (G, M, Δ) .

Definition (Godelle '07)

Un groupe de la forme $gG_{\delta}g^{-1}$ est un sous-groupe parabolique.

Notons que "être parabolique" dépend de (G, M, Δ) et pas que de G.

Exemple: $\langle a, b \mid aba = bab \rangle^+$ et $\langle x, y \mid x^2 = y^3 \rangle^+$.

 (G, M, Δ) groupe de Garside.

Pour $\delta \in M$, on pose $M_{\delta} := \langle \mathsf{Div}(\delta) \rangle^+$ et $G_{\delta} := \langle \mathsf{Div}(\delta) \rangle$.

Proposition (Godelle '07)

Si δ est un **élément de Garside parabolique**, alors $(G_{\delta}, M_{\delta}, \delta)$ est de Garside, et appelé **sous-groupe parabolique standard** de (G, M, Δ) .

Definition (Godelle '07)

Un groupe de la forme $gG_{\delta}g^{-1}$ est un **sous-groupe parabolique**.

Notons que "être parabolique" dépend de (G, M, Δ) et pas que de G. Exemple: $\langle a, b \mid aba = bab \rangle^+$ et $\langle x, y \mid x^2 = y^3 \rangle^+$.

Les sous-groupes paraboliques sont-ils stables par intersection ?

 (G, M, Δ) groupe de Garside avec $x \in G$.

 (G, M, Δ) groupe de Garside avec $x \in G$. Si les paraboliques sont stables par intersection, alors x est contenu dans un unique parabolique minimal PC(x), sa *clôture parabolique*.

 (G, M, Δ) groupe de Garside avec $x \in G$.

Si les paraboliques sont stables par intersection, alors x est contenu dans un unique parabolique minimal PC(x), sa *clôture parabolique*.

Lemme (Godelle '07)

Les sous-groupes parabolique standards sont stables par intersection.

 (G, M, Δ) groupe de Garside avec $x \in G$.

Si les paraboliques sont stables par intersection, alors x est contenu dans un unique parabolique minimal PC(x), sa *clôture parabolique*.

Lemme (Godelle '07)

Les sous-groupes parabolique standards sont stables par intersection.

On peut donc définir SPC(x) la clôture parabolique standard de x.

 (G, M, Δ) groupe de Garside avec $x \in G$.

Si les paraboliques sont stables par intersection, alors x est contenu dans un unique parabolique minimal PC(x), sa *clôture parabolique*.

Lemme (Godelle '07)

Les sous-groupes parabolique standards sont stables par intersection.

On peut donc définir SPC(x) la *clôture parabolique standard* de x. On espère que SPC(x) = PC(x) dans les bons cas, au moins si $x \in M$.

 (G, M, Δ) groupe de Garside avec $x \in G$.

Si les paraboliques sont stables par intersection, alors x est contenu dans un unique parabolique minimal PC(x), sa *clôture parabolique*.

Lemme (Godelle '07)

Les sous-groupes parabolique standards sont stables par intersection.

On peut donc définir SPC(x) la *clôture parabolique standard* de x. On espère que SPC(x) = PC(x) dans les bons cas, au moins si $x \in M$.

Définition (González-Meneses, Marin '22, G. '24)

 (G, M, Δ) préserve le support si pour tous $x, y \in M$, $\alpha \in G$, on a

$$x^{\alpha} = y \Rightarrow SPC(x)^{\alpha} = SPC(y).$$

 (G, M, Δ) groupe de Garside.

 (G, M, Δ) groupe de Garside.

Théorème (González-Meneses, Marin '22)

Si (G, M, Δ) préserve le support, alors toutes les clôtures paraboliques existent dans G et SPC(x) = PC(x) pour $x \in M$.

De plus, si G est homogène, alors les sous-groupes paraboliques de G sont stables par intersection.

 (G, M, Δ) groupe de Garside.

Théorème (González-Meneses, Marin '22)

Si (G, M, Δ) préserve le support, alors toutes les clôtures paraboliques existent dans G et SPC(x) = PC(x) pour $x \in M$.

De plus, si G est homogène, alors les sous-groupes paraboliques de G sont stables par intersection.

Remarque: En pratique, la préservation du support est très difficile à vérifier.

 (G, M, Δ) groupe de Garside.

Théorème (González-Meneses, Marin '22)

Si (G, M, Δ) préserve le support, alors toutes les clôtures paraboliques existent dans G et SPC(x) = PC(x) pour $x \in M$.

De plus, si G est homogène, alors les sous-groupes paraboliques de G sont stables par intersection.

Remarque: En pratique, la préservation du support est très difficile à vérifier.

Existe-t-il des groupes de Garside qui ne préservent pas le support ?

 ${\mathcal G}$ un groupoïde avec ${\mathcal C}\subset {\mathcal G}$ une categorie.

 ${\mathcal G}$ un groupoïde avec ${\mathcal C}\subset {\mathcal G}$ une categorie.

 \preccurlyeq désigne la divisibilité à gauche : pour $u\in \mathsf{Ob}(\mathcal{C})$, $f,g\in \mathcal{C}(u,-)$, on a

$$f \preccurlyeq g \Leftrightarrow \exists h \in \mathcal{C} \mid fh = g.$$

 ${\mathcal G}$ un groupoïde avec ${\mathcal C}\subset {\mathcal G}$ une categorie.

 \preccurlyeq désigne la divisibilité à gauche : pour $u\in\mathsf{Ob}(\mathcal{C})$, $f,g\in\mathcal{C}(u,-)$, on a

$$f \preccurlyeq g \Leftrightarrow \exists h \in \mathcal{C} \mid fh = g.$$

 \succcurlyeq désigne la divisibilité à droite : pour $u \in \mathsf{Ob}(\mathcal{C})$, $f,g \in \mathcal{C}(-,u)$, on a

$$g \succcurlyeq f \Leftrightarrow \exists h' \in \mathcal{C} \mid g = h'f.$$

 ${\mathcal G}$ un groupoïde avec ${\mathcal C}\subset {\mathcal G}$ une categorie.

 \preccurlyeq désigne la divisibilité à gauche : pour $u\in\mathsf{Ob}(\mathcal{C})$, $f,g\in\mathcal{C}(u,-)$, on a

$$f \preccurlyeq g \Leftrightarrow \exists h \in \mathcal{C} \mid fh = g.$$

 \succcurlyeq désigne la divisibilité à droite : pour $u \in \mathsf{Ob}(\mathcal{C})$, $f,g \in \mathcal{C}(-,u)$, on a

$$g \succcurlyeq f \Leftrightarrow \exists h' \in \mathcal{C} \mid g = h'f.$$

Pour $\Delta : \mathsf{Ob}(\mathcal{C}) \to \mathcal{C}$, on pose

$$\mathsf{Div}(\Delta) = \{ s \in \mathcal{C} \mid \exists u \in \mathsf{Ob}(\mathcal{C}), s \preccurlyeq \Delta(u) \},$$

$$\mathsf{Div}_R(\Delta) = \{ s \in \mathcal{C} \mid \exists u \in \mathsf{Ob}(\mathcal{C}), \Delta(u) \succcurlyeq s \}.$$

Définition

Définition

Structure de Garside sur \mathcal{G} : catégorie $\mathcal{C} \subset \mathcal{G}$ et $\Delta : \mathsf{Ob}(\mathcal{C}) \to \mathcal{C}$

• Pour $u \in Ob(\mathcal{C})$, $\Delta(u) \in \mathcal{C}(u, -)$.

Définition

- Pour $u \in \mathsf{Ob}(\mathcal{C})$, $\Delta(u) \in \mathcal{C}(u, -)$.
- ullet C engendre ${\cal G}$ en tant que groupoïde.

Définition

- Pour $u \in \mathsf{Ob}(\mathcal{C})$, $\Delta(u) \in \mathcal{C}(u, -)$.
- ullet C engendre $\mathcal G$ en tant que groupoïde.
- Pour $u \in \mathsf{Ob}(\mathcal{C})$, $(\mathcal{C}(u, -), \preccurlyeq)$ et $(\mathcal{C}(-, u), \succcurlyeq)$ sont des treillis.

Définition

- Pour $u \in \mathsf{Ob}(\mathcal{C})$, $\Delta(u) \in \mathcal{C}(u, -)$.
- ullet C engendre ${\cal G}$ en tant que groupoïde.
- Pour $u \in \mathsf{Ob}(\mathcal{C})$, $(\mathcal{C}(u, -), \preccurlyeq)$ et $(\mathcal{C}(-, u), \succcurlyeq)$ sont des treillis.
- Pour $f \in \mathcal{C}$, la longueur d'une composition $f = s_1 \cdots s_r$ avec $s_i \neq 1$ dans \mathcal{C} est bornée.

Définition

- Pour $u \in \mathsf{Ob}(\mathcal{C})$, $\Delta(u) \in \mathcal{C}(u, -)$.
- ullet C engendre ${\cal G}$ en tant que groupoïde.
- Pour $u \in \mathsf{Ob}(\mathcal{C})$, $(\mathcal{C}(u, -), \preccurlyeq)$ et $(\mathcal{C}(-, u), \succcurlyeq)$ sont des treillis.
- Pour $f \in C$, la longueur d'une composition $f = s_1 \cdots s_r$ avec $s_i \neq 1$ dans C est bornée.
- $Div(\Delta) = Div_R(\Delta)$ est fini et engendre C.

Définition

Structure de Garside sur \mathcal{G} : catégorie $\mathcal{C} \subset \mathcal{G}$ et $\Delta : \mathsf{Ob}(\mathcal{C}) \to \mathcal{C}$

- Pour $u \in \mathsf{Ob}(\mathcal{C})$, $\Delta(u) \in \mathcal{C}(u, -)$.
- ullet C engendre ${\cal G}$ en tant que groupoïde.
- Pour $u \in \mathsf{Ob}(\mathcal{C})$, $(\mathcal{C}(u, -), \preccurlyeq)$ et $(\mathcal{C}(-, u), \succcurlyeq)$ sont des treillis.
- Pour $f \in \mathcal{C}$, la longueur d'une composition $f = s_1 \cdots s_r$ avec $s_i \neq 1$ dans \mathcal{C} est bornée.
- $Div(\Delta) = Div_R(\Delta)$ est fini et engendre C.

 Δ est une application de Garside. $(\mathcal{G}, \mathcal{C}, \Delta)$ est un groupoïde de Garside.

Définition

Structure de Garside sur \mathcal{G} : catégorie $\mathcal{C} \subset \mathcal{G}$ et $\Delta : \mathsf{Ob}(\mathcal{C}) \to \mathcal{C}$

- Pour $u \in \mathsf{Ob}(\mathcal{C})$, $\Delta(u) \in \mathcal{C}(u, -)$.
- ullet C engendre ${\cal G}$ en tant que groupoïde.
- Pour $u \in \mathsf{Ob}(\mathcal{C})$, $(\mathcal{C}(u, -), \preccurlyeq)$ et $(\mathcal{C}(-, u), \succcurlyeq)$ sont des treillis.
- Pour $f \in \mathcal{C}$, la longueur d'une composition $f = s_1 \cdots s_r$ avec $s_i \neq 1$ dans \mathcal{C} est bornée.
- $Div(\Delta) = Div_R(\Delta)$ est fini et engendre C.

 Δ est une application de Garside. $(\mathcal{G}, \mathcal{C}, \Delta)$ est un groupoïde de Garside.

Pour $u \in Ob(\mathcal{G})$, $\mathcal{G}(u, u)$ est un **groupe de Garside faible**.

Un groupe de Garside (G, M, Δ) donne les informations suivantes :

- Solution du problème du mot sur G (forme normale) (Dehornoy-Paris '99).
- Solution au problème de conjugaison dans $G \longrightarrow$ étude de Z(G) (Picantin '01, Gebhardt-González-Meneses '10).
- Construction explicite d'un K(G,1) fini (nerf de Garside) (Charney-Meier-Whittlesey '04) (Bessis '07).
- Calcul de l'homologie de M, qui coïncide avec celle de G (Dehornoy-Lafont '03).
- Les atomes de M donnent une présentation de M, et donc de G (Dehornoy-Paris '99).
- Notion de sous-groupe parabolique de G (Godelle '07).

- Solution du problème du mot sur G (forme normale) (Dehornoy-Paris '99).
- Solution au problème de conjugaison dans $G \longrightarrow$ étude de Z(G) (Picantin '01, Gebhardt-González-Meneses '10).
- Construction explicite d'un K(G,1) fini (nerf de Garside) (Charney-Meier-Whittlesey '04) (Bessis '07).
- Calcul de l'homologie de M, qui coïncide avec celle de G (Dehornoy-Lafont '03).
- Les atomes de M donnent une présentation de M, et donc de G (Dehornoy-Paris '99).
- Notion de sous-groupe parabolique de G (Godelle '07).

- Solution du problème du mot sur \mathcal{G} (forme normale) (Digne-Michel '06).
- Solution au problème de conjugaison dans $G \longrightarrow$ étude de Z(G) (Picantin '01, Gebhardt-González-Meneses '10).
- Construction explicite d'un K(G,1) fini (nerf de Garside) (Charney-Meier-Whittlesey '04) (Bessis '07).
- Calcul de l'homologie de M, qui coïncide avec celle de G (Dehornoy-Lafont '03).
- Les atomes de M donnent une présentation de M, et donc de G (Dehornoy-Paris '99).
- Notion de sous-groupe parabolique de G (Godelle '07).

- Solution du problème du mot sur \mathcal{G} (forme normale) (Digne-Michel '06).
- Solution au problème de conjugaison dans G.
 (Dehornoy, Digne, Godelle, Krammer, Michel '15).
- Construction explicite d'un K(G,1) fini (nerf de Garside) (Charney-Meier-Whittlesey '04) (Bessis '07).
- Calcul de l'homologie de M, qui coïncide avec celle de G (Dehornoy-Lafont '03).
- Les atomes de M donnent une présentation de M, et donc de G (Dehornoy-Paris '99).
- Notion de sous-groupe parabolique de G (Godelle '07).

- Solution du problème du mot sur \mathcal{G} (forme normale) (Digne-Michel '06).
- Solution au problème de conjugaison dans G.
 (Dehornoy, Digne, Godelle, Krammer, Michel '15).
- Construction explicite d'un $K(\mathcal{G}, 1)$ fini (nerf de Garside) (Bessis '07).
- Calcul de l'homologie de M, qui coïncide avec celle de G (Dehornoy-Lafont '03).
- Les atomes de M donnent une présentation de M, et donc de G (Dehornoy-Paris '99).
- Notion de sous-groupe parabolique de G (Godelle '07).

- Solution du problème du mot sur \mathcal{G} (forme normale) (Digne-Michel '06).
- Solution au problème de conjugaison dans G.
 (Dehornoy, Digne, Godelle, Krammer, Michel '15).
- Construction explicite d'un $K(\mathcal{G}, 1)$ fini (nerf de Garside) (Bessis '07).
- Calcul de l'homologie de C, qui coïncide avec celle de G
 (Dehornoy, Digne, Godelle, Krammer, Michel '15) (G. '24).
- Les atomes de M donnent une présentation de M, et donc de G (Dehornoy-Paris '99).
- Notion de sous-groupe parabolique de G (Godelle '07).

- Solution du problème du mot sur \mathcal{G} (forme normale) (Digne-Michel '06).
- Solution au problème de conjugaison dans G.
 (Dehornoy, Digne, Godelle, Krammer, Michel '15).
- Construction explicite d'un $K(\mathcal{G}, 1)$ fini (nerf de Garside) (Bessis '07).
- Calcul de l'homologie de C, qui coïncide avec celle de G
 (Dehornoy, Digne, Godelle, Krammer, Michel '15) (G. '24).
- Les atomes de C donnent une présentation de C, et donc de G (Dehornoy, Digne, Godelle, Krammer, Michel '15).
- Notion de sous-groupe parabolique de G (Godelle '07).

- Solution du problème du mot sur \mathcal{G} (forme normale) (Digne-Michel '06).
- Solution au problème de conjugaison dans G.
 (Dehornoy, Digne, Godelle, Krammer, Michel '15).
- Construction explicite d'un $K(\mathcal{G}, 1)$ fini (nerf de Garside) (Bessis '07).
- Calcul de l'homologie de C, qui coïncide avec celle de G
 (Dehornoy, Digne, Godelle, Krammer, Michel '15) (G. '24).
- Les atomes de $\mathcal C$ donnent une présentation de $\mathcal C$, et donc de $\mathcal G$ (Dehornoy, Digne, Godelle, Krammer, Michel '15).
- Notion de sous-groupoïde parabolique de G (Godelle '10) (G. '24).

 $(\mathcal{G},\mathcal{C},\Delta)$ groupoïde de Garside.

 $(\mathcal{G},\mathcal{C},\Delta)$ groupoïde de Garside.

Les éléments de Garside paraboliques sont remplacés par des applications.

 $(\mathcal{G}, \mathcal{C}, \Delta)$ groupoïde de Garside.

Les éléments de Garside paraboliques sont remplacés par des applications.

Pour $\delta: E \subset \mathsf{Ob}(\mathcal{C}) \to \mathcal{C}$, on pose $\mathcal{C}_{\delta} := \langle \mathsf{Div}(\delta) \rangle^+$ et $\mathcal{G}_{\delta} := \langle \mathsf{Div}(\delta) \rangle$.

 $(\mathcal{G}, \mathcal{C}, \Delta)$ groupoïde de Garside.

Les éléments de Garside paraboliques sont remplacés par des applications. Pour $\delta: E \subset \mathsf{Ob}(\mathcal{C}) \to \mathcal{C}$, on pose $\mathcal{C}_{\delta} := \langle \mathsf{Div}(\delta) \rangle^+$ et $\mathcal{G}_{\delta} := \langle \mathsf{Div}(\delta) \rangle$.

Proposition (Godelle '10)

Si δ est une application de Garside parabolique, alors $(\mathcal{G}_{\delta}, \mathcal{C}_{\delta}, \delta)$ est de Garside, et appelé sous-groupoïde parabolique standard de $(\mathcal{G}, \mathcal{C}, \Delta)$.

 $(\mathcal{G}, \mathcal{C}, \Delta)$ groupoïde de Garside.

Les éléments de Garside paraboliques sont remplacés par des applications. Pour $\delta: E \subset \mathsf{Ob}(\mathcal{C}) \to \mathcal{C}$, on pose $\mathcal{C}_{\delta} := \langle \mathsf{Div}(\delta) \rangle^+$ et $\mathcal{G}_{\delta} := \langle \mathsf{Div}(\delta) \rangle$.

Proposition (Godelle '10)

Si δ est une application de Garside parabolique, alors $(\mathcal{G}_{\delta}, \mathcal{C}_{\delta}, \delta)$ est de Garside, et appelé sous-groupoïde parabolique standard de $(\mathcal{G}, \mathcal{C}, \Delta)$.

Définition (Godelle '10)

Un groupe de la forme $G_{\delta}(u,u)$ est appelé **sous-groupe parabolique standard** de $\mathcal{G}(u,u)$. Pour $g \in \mathcal{G}(v,u)$, un groupe de la forme $gG_{\delta}(u,u)g^{-1}$ est appelé un **sous-groupe parabolique** de $\mathcal{G}(v,v)$.

 $(\mathcal{G}, \mathcal{C}, \Delta)$ groupoïde de Garside.

Les éléments de Garside paraboliques sont remplacés par des applications. Pour $\delta: E \subset \mathsf{Ob}(\mathcal{C}) \to \mathcal{C}$, on pose $\mathcal{C}_{\delta} := \langle \mathsf{Div}(\delta) \rangle^+$ et $\mathcal{G}_{\delta} := \langle \mathsf{Div}(\delta) \rangle$.

Proposition (Godelle '10)

Si δ est une application de Garside parabolique, alors $(\mathcal{G}_{\delta}, \mathcal{C}_{\delta}, \delta)$ est de Garside, et appelé sous-groupoïde parabolique standard de $(\mathcal{G}, \mathcal{C}, \Delta)$.

Définition (Godelle '10)

Un groupe de la forme $G_{\delta}(u,u)$ est appelé **sous-groupe parabolique standard** de $\mathcal{G}(u,u)$. Pour $g\in\mathcal{G}(v,u)$, un groupe de la forme $gG_{\delta}(u,u)g^{-1}$ est appelé un **sous-groupe parabolique** de $\mathcal{G}(v,v)$.

On peut poser la question de l'intersection et des clôtures paraboliques dans les groupoïdes de Garside.

Bancs

Problème : Les sous-groupoïdes paraboliques standards ne sont pas toujours stables par intersection !

Bancs

Problème : Les sous-groupoïdes paraboliques standards ne sont pas toujours stables par intersection !

Définition (G. '24)

 ${f Banc}$: famille ${\cal T}$ de sous-groupoïdes paraboliques standards telle que

- $\mathcal{G} \in \mathcal{T}$ et $\{1_u\}_{u \in \mathsf{Ob}(\mathcal{G})} \in \mathcal{T}$.
- \mathcal{T} est stable par l'automorphisme de Garside (conjugaison par Δ).
- ullet L'intersection de deux éléments de \mathcal{T} , si non vide, appartient à \mathcal{T} .

Bancs

Problème : Les sous-groupoïdes paraboliques standards ne sont pas toujours stables par intersection !

Définition (G. '24)

 ${f Banc}$: famille ${\cal T}$ de sous-groupoïdes paraboliques standards telle que

- $\mathcal{G} \in \mathcal{T}$ et $\{1_u\}_{u \in \mathsf{Ob}(\mathcal{G})} \in \mathcal{T}$.
- \mathcal{T} est stable par l'automorphisme de Garside (conjugaison par Δ).
- ullet L'intersection de deux éléments de \mathcal{T} , si non vide, appartient à \mathcal{T} .

Définition (G. '24)

Pour $\mathcal{G}_{\delta} \in \mathcal{T}$, $u \in \mathsf{Ob}(\mathcal{G}_{\delta})$, le groupe $\mathcal{G}_{\delta}(u,u) \subset \mathcal{G}(u,u)$ est appelé un sous-groupe parabolique \mathcal{T} -standard. Les sous-groupes \mathcal{T} -paraboliques de $\mathcal{G}(u,u)$ sont les conjugués des sous-groupes paraboliques \mathcal{T} -standards.

Clôture \mathcal{T} -parabolique

 $(\mathcal{G}, \mathcal{C}, \Delta)$ groupoïde de Garside et $u \in \mathsf{Ob}(\mathcal{G})$.

Clôture \mathcal{T} -parabolique

 $(\mathcal{G}, \mathcal{C}, \Delta)$ groupoïde de Garside et $u \in \mathsf{Ob}(\mathcal{G})$. Par définition, tout $x \in \mathcal{G}(u, u)$ admet une clôture parabolique \mathcal{T} -standard notée $\mathsf{SPC}_{\mathcal{T}}(x)$.

Clôture \mathcal{T} -parabolique

 $(\mathcal{G}, \mathcal{C}, \Delta)$ groupoïde de Garside et $u \in \mathsf{Ob}(\mathcal{G})$. Par définition, tout $x \in \mathcal{G}(u, u)$ admet une clôture parabolique \mathcal{T} -standard notée $\mathsf{SPC}_{\mathcal{T}}(x)$.

Définition (G. '24)

 \mathcal{T} préserve le support si pour tous $x, y \in \mathcal{C}$ et $\alpha \in \mathcal{G}$, on a

$$x^{\alpha} = y \Rightarrow \mathsf{SPC}_{\mathcal{T}}(x)^{\alpha} = \mathsf{SPC}_{\mathcal{T}}(y)$$

Clôture \mathcal{T} -parabolique

 $(\mathcal{G}, \mathcal{C}, \Delta)$ groupoïde de Garside et $u \in \mathsf{Ob}(\mathcal{G})$. Par définition, tout $x \in \mathcal{G}(u, u)$ admet une clôture parabolique \mathcal{T} -standard notée $\mathsf{SPC}_{\mathcal{T}}(x)$.

Définition (G. '24)

 \mathcal{T} préserve le support si pour tous $x,y\in\mathcal{C}$ et $\alpha\in\mathcal{G}$, on a

$$x^{\alpha} = y \Rightarrow \mathsf{SPC}_{\mathcal{T}}(x)^{\alpha} = \mathsf{SPC}_{\mathcal{T}}(y)$$

Théorème (G. '24)

Si $\mathcal T$ préserve le support, alors les clôtures $\mathcal T$ -paraboliques existent dans $\mathcal G$, et $\mathsf{SPC}_{\mathcal T}(x) = \mathsf{PC}_{\mathcal T}(x)$ pour $x \in \mathcal C$ endomorphisme.

Clôture \mathcal{T} -parabolique

 $(\mathcal{G}, \mathcal{C}, \Delta)$ groupoïde de Garside et $u \in \mathsf{Ob}(\mathcal{G})$. Par définition, tout $x \in \mathcal{G}(u, u)$ admet une clôture parabolique \mathcal{T} -standard notée $\mathsf{SPC}_{\mathcal{T}}(x)$.

Définition (G. '24)

 \mathcal{T} préserve le support si pour tous $x,y\in\mathcal{C}$ et $\alpha\in\mathcal{G}$, on a

$$x^{\alpha} = y \Rightarrow \mathsf{SPC}_{\mathcal{T}}(x)^{\alpha} = \mathsf{SPC}_{\mathcal{T}}(y)$$

Théorème (G. '24)

Si $\mathcal T$ préserve le support, alors les clôtures $\mathcal T$ -paraboliques existent dans $\mathcal G$, et $\mathsf{SPC}_{\mathcal T}(x) = \mathsf{PC}_{\mathcal T}(x)$ pour $x \in \mathcal C$ endomorphisme.

• Pas encore d'argument général pour l'intersection des sous-groupes \mathcal{T} -paraboliques.

Clôture \mathcal{T} -parabolique

 $(\mathcal{G}, \mathcal{C}, \Delta)$ groupoïde de Garside et $u \in \mathsf{Ob}(\mathcal{G})$. Par définition, tout $x \in \mathcal{G}(u, u)$ admet une clôture parabolique \mathcal{T} -standard notée $\mathsf{SPC}_{\mathcal{T}}(x)$.

Définition (G. '24)

 \mathcal{T} préserve le support si pour tous $x,y\in\mathcal{C}$ et $\alpha\in\mathcal{G}$, on a

$$x^{\alpha} = y \Rightarrow \mathsf{SPC}_{\mathcal{T}}(x)^{\alpha} = \mathsf{SPC}_{\mathcal{T}}(y)$$

Théorème (G. '24)

Si \mathcal{T} préserve le support, alors les clôtures \mathcal{T} -paraboliques existent dans \mathcal{G} , et $\mathsf{SPC}_{\mathcal{T}}(x) = \mathsf{PC}_{\mathcal{T}}(x)$ pour $x \in \mathcal{C}$ endomorphisme.

- Pas encore d'argument général pour l'intersection des sous-groupes \mathcal{T} -paraboliques.
- Comment construire des bancs avec des bonnes propriétés ?

S un graphe orienté. R un ensemble de couples de chemins dans S.

S un graphe orienté. R un ensemble de couples de chemins dans S.

 $\mathcal{G} := \langle S \mid R \rangle$ groupoïde présenté.

Pour $u \in \mathsf{Ob}(\mathcal{G})$, $\mathcal{G}(u, u)$ est un groupe.

S un graphe orienté. R un ensemble de couples de chemins dans S. $\mathcal{G} := \langle S \mid R \rangle$ groupoïde présenté. Pour $u \in \mathsf{Ob}(\mathcal{G}), \, \mathcal{G}(u,u)$ est un groupe.

Définition

Une transversale de Schreier est une famille $T = \{t_v\}_{v \in Ob(S)}$ stable par préfixe et telle que pour tout $v \in Ob(S)$, $t_v : u \to v$.

S un graphe orienté. R un ensemble de couples de chemins dans S. $\mathcal{G} := \langle S \mid R \rangle$ groupoïde présenté.

Pour $u \in \mathsf{Ob}(\mathcal{G})$, $\mathcal{G}(u,u)$ est un groupe.

$1 \text{ out } u \in Ob(9), \ g(u,u) \text{ est an group}$

Définition

Une **transversale de Schreier** est une famille $T = \{t_v\}_{v \in Ob(S)}$ stable par préfixe et telle que pour tout $v \in Ob(S)$, $t_v : u \to v$.

Pour une telle transversale, et $s \in S(v, v')$, $\gamma(s) := t_v s(t_{v'})^{-1} \in \mathcal{G}(u, u)$.

S un graphe orienté. R un ensemble de couples de chemins dans S. $\mathcal{G} := \langle S \mid R \rangle$ groupoïde présenté.

Pour $u \in \mathsf{Ob}(\mathcal{G})$, $\mathcal{G}(u, u)$ est un groupe.

Définition

Une **transversale de Schreier** est une famille $T = \{t_v\}_{v \in Ob(S)}$ stable par préfixe et telle que pour tout $v \in Ob(S)$, $t_v : u \to v$.

Pour une telle transversale, et $s \in S(v, v')$, $\gamma(s) := t_v s(t_{v'})^{-1} \in \mathcal{G}(u, u)$.

Proposition (G. '21)

Le groupe $\mathcal{G}(u,u)$ est engendré par $\gamma(s)$ pour $s \in S$, avec les relations

$$\gamma(s_1)\cdots\gamma(s_p)=\gamma(t_1)\cdots\gamma(t_q)$$

pour $s_1 \cdots s_p = t_1 \cdots t_a \in R$.

•
$$\gamma(a) = \gamma(d) = \gamma(e) = \gamma(g) = 1_u$$
.

- $\gamma(a) = \gamma(d) = \gamma(e) = \gamma(g) = 1_u$.
- $\gamma(b) = abe^{-1}d^{-1}$,

- $\gamma(a) = \gamma(d) = \gamma(e) = \gamma(g) = 1_u$.
- $\gamma(b) = abe^{-1}d^{-1}$,
- $\gamma(c) = ce^{-1}d^{-1}$,

- $\gamma(a) = \gamma(d) = \gamma(e) = \gamma(g) = 1_u$.
- $\gamma(b) = abe^{-1}d^{-1}$,
- $\gamma(c) = ce^{-1}d^{-1}$,
- $\gamma(f) = dgfe^{-1}d^{-1}$.

avec ab = c

- $\gamma(a) = \gamma(d) = \gamma(e) = \gamma(g) = 1_u$.
- $\gamma(b) = abe^{-1}d^{-1}$,
- $\gamma(c) = ce^{-1}d^{-1}$,
- $\gamma(f) = dgfe^{-1}d^{-1}$.

ab = c induit $\gamma(b) = \gamma(c)$ (qui se vérifie aussi directement).

avec ab = c

- $\gamma(a) = \gamma(d) = \gamma(e) = \gamma(g) = 1_u$.
- $\gamma(b) = abe^{-1}d^{-1}$,
- $\gamma(c) = ce^{-1}d^{-1}$,
- $\gamma(f) = dgfe^{-1}d^{-1}$.

ab = c induit $\gamma(b) = \gamma(c)$ (qui se vérifie aussi directement).

$$\mathcal{G}(u,u) = \langle \gamma(b), \gamma(c), \gamma(f) \rangle \simeq \langle X, Y, Z \mid X = Y \rangle = \langle X, Z \mid \varnothing \rangle.$$

avec ab = c

- $\gamma(a) = \gamma(d) = \gamma(e) = \gamma(g) = 1_u$.
- $\gamma(b) = abe^{-1}d^{-1}$,
- $\gamma(c) = ce^{-1}d^{-1}$,
- $\gamma(f) = dgfe^{-1}d^{-1}$.

ab = c induit $\gamma(b) = \gamma(c)$ (qui se vérifie aussi directement).

$$\mathcal{G}(u,u) = \langle \gamma(b), \gamma(c), \gamma(f) \rangle \simeq \langle X, Y, Z \mid X = Y \rangle = \langle X, Z \mid \varnothing \rangle.$$

Theorem (Bessis '15)

 \mathcal{B}_{31} est un groupe de Garside faible pour un groupoïde $(\mathcal{B}_{31},\mathcal{C}_{31},\Delta)$, le Groupoïde de Springer.

Theorem (Bessis '15)

 \mathcal{B}_{31} est un groupe de Garside faible pour un groupoïde $(\mathcal{B}_{31},\mathcal{C}_{31},\Delta)$, le Groupoïde de Springer.

Le groupoïde \mathcal{B}_{31} est construit en général pour les centralisateurs d'éléments réguliers de Springer dans les groupes bien-engendrés.

Theorem (Bessis '15)

 \mathcal{B}_{31} est un groupe de Garside faible pour un groupoïde $(\mathcal{B}_{31},\mathcal{C}_{31},\Delta)$, le Groupoïde de Springer.

Le groupoïde \mathcal{B}_{31} est construit en général pour les centralisateurs d'éléments réguliers de Springer dans les groupes bien-engendrés. Ici, on utilise $G_{31} \hookrightarrow G_{37} \simeq E_8$ comme centralisateur d'un élément 4-régulier.

Theorem (Bessis '15)

 \mathcal{B}_{31} est un groupe de Garside faible pour un groupoïde $(\mathcal{B}_{31},\mathcal{C}_{31},\Delta)$, le Groupoïde de Springer.

Le groupoïde \mathcal{B}_{31} est construit en général pour les centralisateurs d'éléments réguliers de Springer dans les groupes bien-engendrés. Ici, on utilise $G_{31} \hookrightarrow G_{37} \simeq E_8$ comme centralisateur d'un élément 4-régulier. Beaucoup des résultats présentés plus bas sont des cas particuliers de résultats généraux sur les groupoïdes de Springer.

Theorem (Bessis '15)

 \mathcal{B}_{31} est un groupe de Garside faible pour un groupoïde $(\mathcal{B}_{31},\mathcal{C}_{31},\Delta)$, le Groupoïde de Springer.

Le groupoïde \mathcal{B}_{31} est construit en général pour les centralisateurs d'éléments réguliers de Springer dans les groupes bien-engendrés. Ici, on utilise $G_{31} \hookrightarrow G_{37} \simeq E_8$ comme centralisateur d'un élément 4-régulier. Beaucoup des résultats présentés plus bas sont des cas particuliers de résultats généraux sur les groupoïdes de Springer.

Corollary (Bessis '15)

L'espace des orbites régulières pour G₃₁ est un classifiant pour B₃₁.

Theorem (Bessis '15)

 \mathcal{B}_{31} est un groupe de Garside faible pour un groupoïde $(\mathcal{B}_{31}, \mathcal{C}_{31}, \Delta)$, le Groupoïde de Springer.

Le groupoïde \mathcal{B}_{31} est construit en général pour les centralisateurs d'éléments réguliers de Springer dans les groupes bien-engendrés. Ici, on utilise $G_{31} \hookrightarrow G_{37} \simeq E_8$ comme centralisateur d'un élément 4-régulier. Beaucoup des résultats présentés plus bas sont des cas particuliers de résultats généraux sur les groupoïdes de Springer.

Corollary (Bessis '15)

L'espace des orbites régulières pour G_{31} est un classifiant pour B_{31} .

Corollary (Bessis '15)

Le centre de B_{31} est monogène et engendré par $z_{B_{31}}$.

Présentation de B₃₁

Le groupoïde \mathcal{B}_{31} admet une présentation

 $\mathcal{B}_{31} = \langle \text{atomes} \mid \text{carr\'es commutatifs d'atomes} \rangle.$

Présentation de B_{31}

Le groupoïde \mathcal{B}_{31} admet une présentation

 $\mathcal{B}_{31} = \langle \text{atomes (660)} \mid \text{carr\'es commutatifs d'atomes (4230)} \rangle$.

Présentation de B_{31}

Le groupoïde \mathcal{B}_{31} admet une présentation

$$\mathcal{B}_{31} = \langle \text{atomes (660)} \mid \text{carr\'es commutatifs d'atomes (4230)} \rangle$$
.

En appliquant la méthode de Reidemeister-Schreier, on obtient

Théorème (G. '21)

Le groupe B_{31} admet (entre autres) la présentation suivante

$$\left\langle s,t,u,v,w \right| \left. \begin{array}{l} st=ts,\ vt=tv,\ wv=vw,\\ suw=uws=wsu,\\ svs=vsv,\ vuv=uvu,\ utu=tut,\ twt=wtw \end{array} \right\rangle.$$

Présentation de B_{31}

Le groupoïde \mathcal{B}_{31} admet une présentation

$$\mathcal{B}_{31} = \langle \text{atomes (660)} \mid \text{carr\'es commutatifs d'atomes (4230)} \rangle$$
.

En appliquant la méthode de Reidemeister-Schreier, on obtient

Théorème (G. '21)

Le groupe B_{31} admet (entre autres) la présentation suivante

$$\left\langle s,t,u,v,w \left| \begin{array}{l} st=ts,\ vt=tv,\ wv=vw,\\ suw=uws=wsu,\\ svs=vsv,\ vuv=uvu,\ utu=tut,\ twt=wtw \end{array} \right. \right\rangle.$$

Théorème (Digne, Marin, Michel '11)

Soit W un GRC irréductible, et soit $U \subset B$ d'indice fini. Alors $Z(U) \subset Z(B)$. Cela s'applique en particulier pour U = P.

Théorème (Digne, Marin, Michel '11)

Soit W un GRC irréductible, et soit $U \subset B$ d'indice fini. Alors $Z(U) \subset Z(B)$. Cela s'applique en particulier pour U = P.

La preuve repose sur la théorie de Garside **sauf pour** G_{31} .

Théorème (Digne, Marin, Michel '11)

Soit W un GRC irréductible, et soit $U \subset B$ d'indice fini. Alors $Z(U) \subset Z(B)$. Cela s'applique en particulier pour U = P.

La preuve repose sur la théorie de Garside **sauf pour** G_{31} . Argument principal :

Théorème (Digne, Marin, Michel '11)

Soit W un GRC irréductible, et soit $U \subset B$ d'indice fini. Alors $Z(U) \subset Z(B)$. Cela s'applique en particulier pour U = P.

La preuve repose sur la théorie de Garside **sauf pour** G_{31} . Argument principal :

• B a une structure de Garside (G, M, Δ) .

Théorème (Digne, Marin, Michel '11)

Soit W un GRC irréductible, et soit $U \subset B$ d'indice fini. Alors $Z(U) \subset Z(B)$. Cela s'applique en particulier pour U = P.

La preuve repose sur la théorie de Garside **sauf pour** G_{31} . Argument principal :

- B a une structure de Garside (G, M, Δ) .
- Les atomes de M représentent toutes les réflexions tressées à conjugaison près.

Théorème (Digne, Marin, Michel '11)

Soit W un GRC irréductible, et soit $U \subset B$ d'indice fini. Alors $Z(U) \subset Z(B)$. Cela s'applique en particulier pour U = P.

La preuve repose sur la théorie de Garside **sauf pour** G_{31} . Argument principal :

- B a une structure de Garside (G, M, Δ) .
- Les atomes de *M* représentent toutes les réflexions tressées à conjugaison près.
- Montrer que pour s atome et $x \in G$, alors $xs^n = s^n x$ entraı̂ne xs = sx.

Théorème (Digne, Marin, Michel '11)

Soit W un GRC irréductible, et soit $U \subset B$ d'indice fini. Alors $Z(U) \subset Z(B)$. Cela s'applique en particulier pour U = P.

La preuve repose sur la théorie de Garside **sauf pour** G_{31} . Argument principal :

- B a une structure de Garside (G, M, Δ) .
- Les atomes de *M* représentent toutes les réflexions tressées à conjugaison près.
- Montrer que pour s atome et $x \in G$, alors $xs^n = s^n x$ entraı̂ne xs = sx.

Problème : comment retrouver les réflexions tressées dans le groupoïde de Springer ?

Soit $u \in Ob(\mathcal{B}_{31})$.

Soit $u \in \text{Ob}(\mathcal{B}_{31})$. Le monoïde $\mathcal{C}_{31}(u,u)$ contient un ensemble fini bien défini de **boucles atomiques**.

Soit $u \in \text{Ob}(\mathcal{B}_{31})$. Le monoïde $\mathcal{C}_{31}(u,u)$ contient un ensemble fini bien défini de **boucles atomiques**.

Proposition (G. '23)

Les réflexions tressées de $B_{31} \simeq \mathcal{B}_{31}(u,u)$ sont exactement les conjugués dans \mathcal{B}_{31} des boucles atomiques. Si s est une boucle atomique dans \mathcal{C}_{31} , et $x \in \mathcal{B}_{31}$ est tel que $xs^n = s^n x$, alors on a xs = sx.

Soit $u \in \text{Ob}(\mathcal{B}_{31})$. Le monoïde $\mathcal{C}_{31}(u,u)$ contient un ensemble fini bien défini de **boucles atomiques**.

Proposition (G. '23)

Les réflexions tressées de $B_{31} \simeq \mathcal{B}_{31}(u,u)$ sont exactement les conjugués dans \mathcal{B}_{31} des boucles atomiques. Si s est une boucle atomique dans \mathcal{C}_{31} , et $x \in \mathcal{B}_{31}$ est tel que $xs^n = s^n x$, alors on a xs = sx.

Corollaire

Soit $\sigma \in B_{31}$ une réflexion tressées. Si $x\sigma^n = \sigma^n x$, alors $x\sigma = \sigma x$.

Soit $u \in \text{Ob}(\mathcal{B}_{31})$. Le monoïde $\mathcal{C}_{31}(u,u)$ contient un ensemble fini bien défini de **boucles atomiques**.

Proposition (G. '23)

Les réflexions tressées de $B_{31} \simeq \mathcal{B}_{31}(u,u)$ sont exactement les conjugués dans \mathcal{B}_{31} des boucles atomiques. Si s est une boucle atomique dans \mathcal{C}_{31} , et $x \in \mathcal{B}_{31}$ est tel que $xs^n = s^n x$, alors on a xs = sx.

Corollaire

Soit $\sigma \in B_{31}$ une réflexion tressées. Si $x\sigma^n = \sigma^n x$, alors $x\sigma = \sigma x$.

Remarque : Pour tout $u \in \mathsf{Ob}(\mathcal{B}_{31})$, les boucles atomiques de $\mathcal{C}_{31}(u,u)$ engendrent $\mathcal{B}_{31}(u,u)$.

Il existe un morphisme $\ell: B_{31} \to \mathbb{Z}$ qui envoie réflexions tressées sur 1. On en déduit deux B_{31} -modules :

Il existe un morphisme $\ell: B_{31} \to \mathbb{Z}$ qui envoie réflexions tressées sur 1. On en déduit deux B_{31} -modules :

• $\mathbb{Z}_{\varepsilon} := \mathbb{Z}$ où $b \in B_{31}$ agit par multiplication par $(-1)^{\ell(b)}$.

Il existe un morphisme $\ell: B_{31} \to \mathbb{Z}$ qui envoie réflexions tressées sur 1. On en déduit deux B_{31} -modules :

- $\mathbb{Z}_{\varepsilon} := \mathbb{Z}$ où $b \in B_{31}$ agit par multiplication par $(-1)^{\ell(b)}$.
- $\mathbb{Q}[t, t^{-1}]$ où $b \in B_{31}$ agit par multiplication par $t^{\ell(b)}$.

Il existe un morphisme $\ell: B_{31} \to \mathbb{Z}$ qui envoie réflexions tressées sur 1. On en déduit deux B_{31} -modules :

- $\mathbb{Z}_{\varepsilon} := \mathbb{Z}$ où $b \in B_{31}$ agit par multiplication par $(-1)^{\ell(b)}$.
- $\mathbb{Q}[t,t^{-1}]$ où $b\in B_{31}$ agit par multiplication par $t^{\ell(b)}$.

En utilisant \mathcal{B}_{31} , on peut calculer l'homologie de \mathcal{B}_{31} à coefficients dans ces modules.

Il existe un morphisme $\ell: B_{31} \to \mathbb{Z}$ qui envoie réflexions tressées sur 1. On en déduit deux B_{31} -modules :

- $\mathbb{Z}_{\varepsilon} := \mathbb{Z}$ où $b \in B_{31}$ agit par multiplication par $(-1)^{\ell(b)}$.
- $\mathbb{Q}[t, t^{-1}]$ où $b \in B_{31}$ agit par multiplication par $t^{\ell(b)}$.

En utilisant \mathcal{B}_{31} , on peut calculer l'homologie de \mathcal{B}_{31} à coefficients dans ces modules.

Proposition (G. '24)

$B(G_{31})$	H_0	H_1	H_2	H_3	H_4
\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_6	\mathbb{Z}	\mathbb{Z}
$\mathbb{Z}_{arepsilon}$	\mathbb{Z}_2	0	\mathbb{Z}_6	\mathbb{Z}_{20}	0
$\mathbb{Q}[t,t^{-1}]$	\mathbb{Q}	0	Φ_6	$\frac{t^{10}-1}{t+1}\Phi_{15}$	0

Où \mathbb{Z}_n désigne $\mathbb{Z}/n\mathbb{Z}$ et P(t) désigne $\mathbb{Q}[t, t^{-1}]/(P(t))$.

En 2022, González-Meneses et Marin introduisent pour W quelconque une notion topologique de sous-groupe parabolique de B, qui dépend uniquement de la paire topologique (V/W, X/W).

En 2022, González-Meneses et Marin introduisent pour W quelconque une notion topologique de sous-groupe parabolique de B, qui dépend uniquement de la paire topologique (V/W,X/W).

Les sous-groupes paraboliques irréductibles de B forment les sommets d'un graphe Γ dans lequel B_1, B_2 sont adjacents si $B_1 \neq B_2$ et soit $B_1 \subset B_2, B_2 \subset B_1$, ou $B_1 \cap B_2 = [B_1, B_2] = \{1\}$.

En 2022, González-Meneses et Marin introduisent pour W quelconque une notion topologique de sous-groupe parabolique de B, qui dépend uniquement de la paire topologique (V/W,X/W).

Les sous-groupes paraboliques irréductibles de B forment les sommets d'un graphe Γ dans lequel B_1, B_2 sont adjacents si $B_1 \neq B_2$ et soit $B_1 \subset B_2, B_2 \subset B_1$, ou $B_1 \cap B_2 = [B_1, B_2] = \{1\}$.

Theorem (González-Meneses, Marin '22)

On suppose W irréductible et différent de G₃₁.

En 2022, González-Meneses et Marin introduisent pour W quelconque une notion topologique de sous-groupe parabolique de B, qui dépend uniquement de la paire topologique (V/W,X/W).

Les sous-groupes paraboliques irréductibles de B forment les sommets d'un graphe Γ dans lequel B_1, B_2 sont adjacents si $B_1 \neq B_2$ et soit $B_1 \subset B_2, B_2 \subset B_1$, ou $B_1 \cap B_2 = [B_1, B_2] = \{1\}$.

Theorem (González-Meneses, Marin '22)

On suppose W irréductible et différent de G₃₁.

1 Tout $x \in B$ est contenu dans un sous-groupe parabolique minimal PC(x). On a $PC(x^m) = PC(x)$ pour tout $m \neq 0$.

En 2022, González-Meneses et Marin introduisent pour W quelconque une notion topologique de sous-groupe parabolique de B, qui dépend uniquement de la paire topologique (V/W,X/W).

Les sous-groupes paraboliques irréductibles de B forment les sommets d'un graphe Γ dans lequel B_1, B_2 sont adjacents si $B_1 \neq B_2$ et soit $B_1 \subset B_2, B_2 \subset B_1$, ou $B_1 \cap B_2 = [B_1, B_2] = \{1\}$.

Theorem (González-Meneses, Marin '22)

On suppose W irréductible et différent de G₃₁.

- Tout $x \in B$ est contenu dans un sous-groupe parabolique minimal PC(x). On a $PC(x^m) = PC(x)$ pour tout $m \neq 0$.
- 2 Les sous-groupes paraboliques de B sont stables par intersection.

En 2022, González-Meneses et Marin introduisent pour W quelconque une notion topologique de sous-groupe parabolique de B, qui dépend uniquement de la paire topologique (V/W,X/W).

Les sous-groupes paraboliques irréductibles de B forment les sommets d'un graphe Γ dans lequel B_1, B_2 sont adjacents si $B_1 \neq B_2$ et soit $B_1 \subset B_2, B_2 \subset B_1$, ou $B_1 \cap B_2 = [B_1, B_2] = \{1\}$.

Theorem (González-Meneses, Marin '22)

On suppose W irréductible et différent de G₃₁.

- **1** Tout $x \in B$ est contenu dans un sous-groupe parabolique minimal PC(x). On a $PC(x^m) = PC(x)$ pour tout $m \neq 0$.
- Les sous-groupes paraboliques de B sont stables par intersection.
- **3** B_1 , B_2 sont adjacents dans Γ si et seulement si $z_{B_1}z_{B_2}=z_{B_2}z_{B_1}$, où $\langle z_{B_i}\rangle=Z(B_i)$.

Stratégie de preuve pour les deux premiers points :

Stratégie de preuve pour les deux premiers points :

• Avoir une structure de Garside homogène (G, M, Δ) sur B.

Stratégie de preuve pour les deux premiers points :

- Avoir une structure de Garside homogène (G, M, Δ) sur B.
- Montrer que les sous-groupes paraboliques algébriques et topologiques coïncident.

Stratégie de preuve pour les deux premiers points :

- Avoir une structure de Garside homogène (G, M, Δ) sur B.
- Montrer que les sous-groupes paraboliques algébriques et topologiques coïncident.
- Montrer que la structure de Garside préserve le support.

Stratégie de preuve pour les deux premiers points :

- Avoir une structure de Garside homogène (G, M, Δ) sur B.
- Montrer que les sous-groupes paraboliques algébriques et topologiques coïncident.
- Montrer que la structure de Garside préserve le support.

Dans leur article, González-Meneses et Marin montrent la préservation du support pour

Stratégie de preuve pour les deux premiers points :

- Avoir une structure de Garside homogène (G, M, Δ) sur B.
- Montrer que les sous-groupes paraboliques algébriques et topologiques coïncident.
- Montrer que la structure de Garside préserve le support.

Dans leur article, González-Meneses et Marin montrent la préservation du support pour

• Le "monoïde parachute" pour G(e, e, n).

Stratégie de preuve pour les deux premiers points :

- Avoir une structure de Garside homogène (G, M, Δ) sur B.
- Montrer que les sous-groupes paraboliques algébriques et topologiques coïncident.
- Montrer que la structure de Garside préserve le support.

Dans leur article, González-Meneses et Marin montrent la préservation du support pour

- Le "monoïde parachute" pour G(e, e, n).
- Les monoïdes duaux de type G_{24} , G_{27} , G_{29} , G_{33} , G_{34} .

Stratégie de preuve pour les deux premiers points :

- Avoir une structure de Garside homogène (G, M, Δ) sur B.
- Montrer que les sous-groupes paraboliques algébriques et topologiques coïncident.
- Montrer que la structure de Garside préserve le support.

Dans leur article, González-Meneses et Marin montrent la préservation du support pour

- Le "monoïde parachute" pour G(e, e, n).
- Les monoïdes duaux de type G_{24} , G_{27} , G_{29} , G_{33} , G_{34} .

Théorème (G. '24)

Soit W un CRG irréductible et bien-engendré. La structure duale $(G(W), M(W), \Delta)$ préserve le support.

On veut généraliser l'approche précédente au groupoïde de Springer

On veut généraliser l'approche précédente au groupoïde de Springer

Théorème (G. '24)

Il y a un banc \mathcal{T} sur \mathcal{B}_{31} qui préserve le support et tel que les sous-groupes \mathcal{T} -paraboliques de $\mathcal{B}_{31}(u,u)$ coïncident avec les sous-groupes paraboliques topologiques de $\mathcal{B}_{31} \simeq \mathcal{B}_{31}(u,u)$.

On veut généraliser l'approche précédente au groupoïde de Springer

Théorème (G. '24)

Il y a un banc \mathcal{T} sur \mathcal{B}_{31} qui préserve le support et tel que les sous-groupes \mathcal{T} -paraboliques de $\mathcal{B}_{31}(u,u)$ coïncident avec les sous-groupes paraboliques topologiques de $\mathcal{B}_{31} \simeq \mathcal{B}_{31}(u,u)$.

Corollaire

Les clôtures paraboliques existent dans B_{31} .

On veut généraliser l'approche précédente au groupoïde de Springer

Théorème (G. '24)

Il y a un banc \mathcal{T} sur \mathcal{B}_{31} qui préserve le support et tel que les sous-groupes \mathcal{T} -paraboliques de $\mathcal{B}_{31}(u,u)$ coïncident avec les sous-groupes paraboliques topologiques de $\mathcal{B}_{31} \simeq \mathcal{B}_{31}(u,u)$.

Corollaire

Les clôtures paraboliques existent dans B_{31} .

En imitant la preuve du 2ème point donnée en général par González-Meneses et Marin, on obtient aussi

On veut généraliser l'approche précédente au groupoïde de Springer

Théorème (G. '24)

Il y a un banc \mathcal{T} sur \mathcal{B}_{31} qui préserve le support et tel que les sous-groupes \mathcal{T} -paraboliques de $\mathcal{B}_{31}(u,u)$ coïncident avec les sous-groupes paraboliques topologiques de $\mathcal{B}_{31} \simeq \mathcal{B}_{31}(u,u)$.

Corollaire

Les clôtures paraboliques existent dans B_{31} .

En imitant la preuve du 2ème point donnée en général par González-Meneses et Marin, on obtient aussi

Corollary

Les sous-groupes paraboliques de B_{31} sont stables par intersection.

Théorème (G. '24)

Le treillis des sous-groupes paraboliques de B_{31} à conjugaison près est donné par

Théorème (G. '24)

Le treillis des sous-groupes paraboliques de B_{31} à conjugaison près est donné par

Théorème (G. '24)

Le treillis des sous-groupes paraboliques de B_{31} à conjugaison près est donné par

Corollaire (G. '24)

Le point C du théorème de González-Meneses, Marin est vrai pour G_{31} .

Corollaire

Le diagramme de BMR de G_{31} fournit des présentations des sous-groupes paraboliques.

Groupes de tresses complexes Structures de Garside Étude Garside de B₃₁

Merci à vous !