Information Retrieval

Probabilistic Retrieval Model: Statistical Language Model

Dr. Iqra Safder

Probabilistic Retrieval Model: Basic Idea

Overview

- What is a Language Model?
- Unigram Language Model
- Uses of a Language Model

What is a Statistical Language Model (LM)?

- A probability distribution over word sequences
 - p("Today is Wednesday") ≈ 0.001
 - $-p("Today Wednesday is") \approx 0.000000000001$
 - p("The eigenvalue is positive") \approx 0.00001
- Context-dependent!

This may be a reasonable language model for describing general conversations, but it may be inaccurate for describing conversations happening at a mathematics conference, where the sequence *The eigenvalue is positive* may occur more frequently than *Today is Wednesday.*

What is a Statistical Language Model (LM)?

- A probability distribution over word sequences
 - -p("Today is Wednesday") ≈ 0.001
 - $-p("Today Wednesday is") \approx 0.000000000001$
 - p("The eigenvalue is positive") \approx 0.00001
- Context-dependent!

Given a language model, we can sample word sequences according to the distribution to obtain a text sample. In this sense, we may use such a model to "generate" text. Thus, a language model is also often called a generative model for text.

Quantify the uncertainties in natural language

- Quantify the uncertainties in natural language
- Allows us to answer questions like:
 - Given that we see "John" and "feels", how likely will we see
 "happy" as opposed to "habit" as the next word? (speech recognition)

- Quantify the uncertainties in natural language
- Allows us to answer questions like:
 - Given that we see "John" and "feels", how likely will we see
 "happy" as opposed to "habit" as the next word? (speech recognition)
 - Given that we observe "baseball" three times and "game" once in a news article, how likely is it about "sports"? (text categorization, information retrieval)

- Quantify the uncertainties in natural language
- Allows us to answer questions like:
 - Given that we see "John" and "feels", how likely will we see
 "happy" as opposed to "habit" as the next word? (speech recognition)
 - Given that we observe "baseball" three times and "game" once in a news article, how likely is it about "sports"? (text categorization, information retrieval)
 - Given that a user is interested in sports news, how likely would the user use "baseball" in a query? (information retrieval)

Generate text by generating each word INDEPENDENTLY

- Generate text by generating each word INDEPENDENTLY
- Thus, $p(w_1 w_2 ... w_n) = p(w_1)p(w_2)...p(w_n)$

- Generate text by generating each word INDEPENDENTLY
- Thus, $p(w_1 w_2 ... w_n) = p(w_1)p(w_2)...p(w_n)$
- Parameters: $\{p(w_i)\}\ p(w_1)+...+p(w_N)=1\ (N is voc. size)$

- Generate text by generating each word INDEPENDENTLY
- Thus, $p(w_1 w_2 ... w_n) = p(w_1)p(w_2)...p(w_n)$
- Parameters: $\{p(w_i)\}\ p(w_1)+...+p(w_N)=1\ (N is voc. size)$

Given probabilities of each word, the sum of all is = 1

- Generate text by generating each word INDEPENDENTLY
- Thus, $p(w_1 w_2 ... w_n) = p(w_1)p(w_2)...p(w_n)$
- Parameters: $\{p(w_i)\}\ p(w_1)+...+p(w_N)=1\ (N is voc. size)$
- Text = sample drawn according to this word distribution

- Generate text by generating each word INDEPENDENTLY
- Thus, $p(w_1 w_2 ... w_n) = p(w_1)p(w_2)...p(w_n)$
- Parameters: $\{p(w_i)\}\ p(w_1)+...+p(w_N)=1\ (N is voc. size)$
- Text = sample drawn according to this word distribution

- Generate text by generating each word INDEPENDENTLY
- Thus, $p(w_1 w_2 ... w_n) = p(w_1)p(w_2)...p(w_n)$
- Parameters: $\{p(w_i)\}\ p(w_1)+...+p(w_N)=1\ (N is voc. size)$
- Text = sample drawn according to this word distribution


```
p("today is Wed")
= p("today")p("is")p("Wed")
= 0.0002 × 0.001 × 0.000015
```

Text Generation with Unigram LM

Unigram LM $p(w|\theta)$

Sampling Document =?

Topic 1:

text 0.2 mining 0.1 association 0.01 clustering 0.02

Text mining in food 0.00001

•••

Topic 2: **Health**

food 0.25 nutrition 0.1 healthy 0.05 diet 0.02

...

Text Generation with Unigram LM

Sampling Unigram LM $p(w|\theta)$ Document =? text 0.2mining 0.1 association 0.01 Text mining Topic 1: clustering 0.02 paper Text mining ind 0.00001 Food nutrition food 0.25 Topic 2: nutrition 0.1 paper healthy 0.05 Health diet 0.02

Estimation of Unigram LM

Unigram LM $p(w|\theta)=?$

Estimation

Text Mining Paper d

Total #words=100

text? mining? association? database? query?

text 10 mining 5 association 3 database 3 algorithm 2 query 1 efficient 1

Estimation of Unigram LM

Unigram LM $p(w|\theta)=?$

Estimation

Text Mining Paper d

Total #words=100

text 10 mining 5 association 3 database 3 algorithm 2

Estimation of Unigram LM

Unigram LM $p(w|\theta)=?$

Text Mining Paper d

Total #words=100

$$p(w \mid \theta) = p(w \mid d) = \frac{c(w, d)}{|d|}$$

LMs for Topic Representation

LMs for Topic Representation

LMs for Topic Representation

LMs for Association Analysis What words are semantically related to "computer"?

LMs for Association Analysis What words are semantically related to "computer"?

LMs for Association Analysis

computer 0.00001

What words are semantically related to "computer"?

Normalized Topic LM:

p(w|"computer")/p(w|B)

LMs for Association Analysis

What words are semantically related to "computer"?

Summary

- Language Model = probability distribution over text
- Unigram Language Model = word distribution
- Uses of a Language Model
 - Representing topics
 - Discovering word associations

Additional Readings

- Chris Manning and Hinrich Schütze, Foundations of Statistical Natural Language Processing, MIT Press.
 Cambridge, MA: May 1999.
- Rosenfeld, R., "Two decades of statistical language modeling: where do we go from here?," *Proceedings of the IEEE*, vol.88, no.8, pp.1270,1278, Aug. 2000