

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

doi: 10.18637/jss.v000.i00

ricu: R's Interface to Intensive Care Data

Nicolas Bennett*
ETH Zürich

Drago Plečko* ETH Zürich Ida-Fong Ukor
East Kent Hospitals

Nicolai Meinshausen ETH Zürich Peter Bühlmann ETH Zürich

Abstract

Providing computational infrastructure for handling diverse intensive care unit (ICU) datasets, the R package **ricu** enables writing dataset-agnostic analysis code, thereby facilitating multi-center training and validation of machine learning models. The package is designed with an emphasis on extensibility both to new datasets as well as clinical data concepts, and currently supports the loading of around 100 patient variables corresponding to a total of 319,402 ICU admissions from 4 data sources collected in Europe and the United States. By allowing for the addition of user-specified medical concepts and data sources the aim of **ricu** is to foster robust, data-based intensive care research, allowing the user to externally validate their method or conclusion with relative ease, and in turn facilitating reproducible and therefore transparent work in this field.

Keywords: electronic health records, computational physiology, critical care medicine.

Note: Examples in this vignette require that one or more of datasets 'mimic ', 'mimic_demo ', 'eicu ', 'eicu_demo ', 'hirid ', 'aumc 'are available. Chunks that depend on certain datasets will not be evaluated if the corresponding dataset is missing. In order to download and setup data, have a look at '?setup_src_data'.

1. Introduction

Collection of electronic health records has seen a significant rise in recent years (Evans 2016), opening up opportunities and providing the grounds for a large body of data-driven research

oriented towards helping clinicians in decision-making and therefore improving patient care and health outcomes (Jiang, Jiang, Zhi, Dong, Li, Ma, Wang, Dong, Shen, and Wang 2017). One example of a problem that has received much attention from the machine learning community is early prediction of sepsis in ICU (Desautels, Calvert, Hoffman, Jay, Kerem, Shieh, Shimabukuro, Chettipally, Feldman, Barton et al. 2016; Nemati, Holder, Razmi, Stanley, Clifford, and Buchman 2018; Futoma, Hariharan, Sendak, Brajer, Clement, Bedova, O'Brien, and Heller 2017; Kam and Kim 2017). Interestingly, there is evidence that a large proportion of the publications are based on the same dataset (Fleuren, Klausch, Zwager, Schoonmade, Guo, Roggeveen, Swart, Girbes, Thoral, Ercole, Hoogendoorn, and Elbers 2020), the Medical Information Mart for Intensive Care III (MIMIC-III; Johnson, Pollard, Shen, Li-wei, Feng, Ghassemi, Moody, Szolovits, Celi, and Mark 2016), which shows a systematic lack of external validation. Part of this problem might well be the need for computational infrastructure handling multiple datasets. The MIMIC-III dataset consists of 26 different tables containing about 20GB of data. While much work and care has gone into data preprocessing in order to provide a self-contained ready -to-use data resource with MIMIC-III, seemingly simple tasks such as computing a sepsis-related organ failure assessment (SOFA) score (Vincent, Moreno, Takala, Willatts, De Mendonça, Bruining, Reinhart, Suter, and Thijs 1996) remains a non-trivial effort¹. This is only exacerbated when aiming to co-integrate multiple different datasets of this form, spanning hospitals and even countries, in order to capture effects of differing practice and demographics.

The aim of the ricu package is to provide computational infrastructure allowing users to investigate complex research questions in the context of critical care medicine as easily as possible by providing a unified interface to a heterogeneous set of data sources. The package enables users to write dataset-agnostic code which can simplify implementation and shorten the time necessary for prototyping code querying different datasets. In its current form, the package handles four large-scale, publicly available intensive care databases out of the box: MIMIC-III from the Beth Israel Deaconess Medical Center in Boston, Massachusetts (Johnson et al. 2016), the eICU Collaborative Research Database (Pollard, Johnson, Raffa, Celi, Mark, and Badawi 2018), containing data collected from 208 hospitals across the United States, the High Time Resolution ICU Dataset (HiRID) from the Department of Intensive Care Medicine of the Bern University Hospital, Switzerland (Faltys, Zimmermann, Lyu, Hüser, Hyland, Rätsch, and Merz 2021) and Amsterdam UMCdb from the Amsterdam University Medical Center (Thoral, Peppink, Driessen, Sijbrands, Kompanje, Kaplan, Bailey, Kesecioglu, Cecconi, Churpek, Clermont, van der Schaar, Ercole, Girbes, Elbers, Force, and the SCCM/ESICM Joint Data Science Task 2021). Furthermore, ricu was designed with extensibility in mind such that adding further public and/or private user-provided datasets is possible. Being implemented in R, a programming language popular among statisticians and data analysts, it is our hope to contribute to accessible and reproducible research by using a familiar environment and requiring only few system dependencies, thereby simplifying setup

¹There is considerable heterogeneity in number of patients satisfying the Sepsis-3 criterion (of which SOFA provides a major component; Singer, Deutschman, Seymour, Shankar-Hari, Annane, Bauer, Bellomo, Bernard, Chiche, Coopersmith, Hotchkiss, Levy, Marshall, Martin, Opal, Rubenfeld, van der Poll, Vincent, and Angus 2016) among studies investigating MIMIC-III. Reported Sepsis-3 prevalence ranges from 11.3% (Desautels et al. 2016), over 23.9% (Nemati et al. 2018) and 25.4% (Wang, Sun, Schroeder, Ameko, Moore, and Barnes 2018), up to 49.1% (Johnson, Aboab, Raffa, Pollard, Deliberato, Celi, and Stone 2018). While some of this variation may be explained by differing patient inclusion criteria, diversity in label implementation must also contribute significantly.

considerably.

To our knowledge, infrastructure that provides a common interface to multiple such datasets is a novel contribution. While there have been efforts (Adibuzzaman, Musselman, Johnson, Brown, Pitluk, and Grama 2016; Wang, McDermott, Chauhan, Ghassemi, Hughes, and Naumann 2020) attempting to abstract away some specifics of a dataset, these have so far exclusively focused on MIMIC-III, the most popular of public ICU datsets and have not been designed with dataset interoperability in mind.

Given the somewhat narrow focus of the targeted datasets, combined with the fact that in some cases data is even extracted from identical patient care management systems, it may come as a surprise as to how heterogeneous the resulting datasets are. In MIMIC-III and HiRID, for example, time-stamps are reported as absolute times (albeit randomly shifted due to data privacy concerns), whereas eICU and AUMC use relative times (with origins being admission times). Another example, involves different types of patient identifiers and their use among datasets. Common to all is the notion of an ICU admission ID, but apart from that, the amount of available information varies: While ICU (and hospital) readmissions for a given patient can be identified in some, this is not possible in other datasets. Furthermore, use of identifier systems might not be consistent over tables. In MIMIC-III, for example, some tables refer to ICU stay IDs while others use hospital stay IDs, which slightly complicates data retrieval for a given ID system. Additionally, table layouts vary (long versus wide data arrangement) and data organization in general is far from consistent over datasets.

The following sections serve to introduce **ricu** by covering two central aspects that are key to both using and extending **ricu**, as well as understanding some architectural choices that went into the design of the package:

- Datasets (Section 2): Providing an interface to several public yet credentialed datasets is a core functionality of ricu. As a starting point for those unfamiliar with theses datasets, Section 2.1 provides an overview, outlining some strengths and weaknesses of each. Extensibility to new datasets has been a central consideration throughout the design process and Section 2.2 covers some implementation details, while Section 2.3 provides some brief pointers on how to integrate further datasets with ricu.
- Clinical concepts (Section 3): With data sources set up for efficient access, another key aspect to having a unified interface for heterogeneously organized datasets is providing a way to define data concepts. Clinically relevant data entities, such as heart rate measurements, or patient weight can be defined as a dictionary of concepts, each containing several data items, which in turn encode how to load the corresponding data subset from a given data source. Section 3.3 provides an overview of the roughly 100 concepts that are included with ricu for the default data sources, while Section 3.1 introduces the JSON-based format for encoding concepts and corresponding items. This again is intended for being extended to both new concepts and new data sources.

A final section (4) introduces two short examples, highlighting some further functionality provided by **ricu** that might be useful for data analysis tasks. For readers mainly interested in getting up and running as quickly as possible, a quick start guide is available as separate package vignette.

2. Data sources

In order to make data available from different data sources, **ricu** provides abstractions using JSON-formatted configuration files and a set of S3 classes with associated S3 generic functions. This system is designed with extensibility in mind, allowing for incorporation of a wide variety of datasets. Provisions for several large-scale publicly available datasets in terms of required configuration information alongside class-specific implementations of the needed S3 generic functions are part of **ricu**, opening up access to these datasets. Data itself, however, is not part of **ricu** but rather can be downloaded from the Internet using tools provided by **ricu**. While the datasets are publicly available, access has to be granted by the dataset creators individually. Three datasets, MIMIC-III, eICU and HiRID are hosted on PhysioNet (Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, and Stanley 2000), access to which requires an account, while the fourth, AmsterdamUMCdb is currently distributed via a separate platform, requiring a download link.

For both MIMIC-III and eICU, small subsets of data are available as demo datasets that do not require credentialed access to PhysioNet. As the terms for distribution of these demo datasets are less restrictive, they can be made available as data packages **mimic.demo** and **eicu.demo**. Due to size constraints, however they are not available via CRAN, but can be installed from Github as

```
R> install.packages(
+ c("mimic.demo", "eicu.demo"),
+ repos = "https://eth-mds.github.io/physionet-demo"
+ )
```

Provisions for datasets configured to be attached during package loading are made irrespectively of whether data is actually available. Upon first access of a dataset with some data missing, the user is asked for permission to download in interactive sessions and an error is thrown otherwise. Credentials can either be provided as environment variables (RICU_PHYSIONET_USER and RICU_PHYSIONET_PASS for access to PhysioNet data, as well as RICU_AUMC_TOKEN for AmsterdamUMCdb) and if the corresponding variables are unset, user input is again required in interactive sessions. For non-interactive sessions, functionality is exported such that data can be downloaded and set up ahead of first access (see ?setup_src_data), which requires the environment variables to be set or credentials to be passed as function arguments.

2.1. Ready to use datasets

Contingent on being granted access by the data owners, several large-scale ICU datasets collected from multiple hospitals in the US and Europe can be set up for access using **ricu** with minimal user effort. Download requires a stable Internet connection as the amount of downloaded data ranges from 5 to 10 GB per dataset, as well as 50 to 100 GB of temporary disk storage for unpacking and preparing the data for efficient access. In terms of permanent storage, again 5 to 10 GB per dataset are required. Despite uncompressed sizes of up to 100 GB for some of the larger tables, memory requirements easily permit importing (and working with) all available tables using Laptop class hardware as only subsets of rows are read at once.

The following paragraphs serve to give quick introductions to the included datasets to offer some guidance, outlining some strengths and weaknesses of each of the datasets. Especially the PhysioNet datasets MIMIC-III and eICU offer good documentation on the respective websites. This section is concluded with a table summarizing similarities and differences among the datasets, outlined in the following paragraphs (see table ??).

MIMIC-III

The Medical Information Mart for Intensive Care III (MIMIC-III) represents the third iteration of the arguably most influential initiative for collecting and providing to the public large-scale ICU data². The dataset comprises de-identified health related data of roughly 46,000 patients admitted to critical care units of BIDMC during the years 2001-2012. Amounting to just over 61,000 individual ICU admission, data is available on demographics, routine vital sign measurements (at approximately 1 hour resolution), laboratory tests, medication, as well as critical care procedures, organized as a 26-table relational structure.

R> mimic

One thing of note from a data-organizational perspective is that a change in electronic health care systems occurred in 2008. Owing to this, roughly 48,000 ICU admissions spanning the years 2001 though 2008 are documented using the CareVue system, while for 2008 and onwards, data was extracted from the MetaVision system. Item identifiers differ between the two systems, requiring queries to consider both ID mappings (heart rate for example being available both as itemid number 211 for CareVue and 220045 for MetaVision) as does documentation of infusions and other procedures that are considered as input events (c.f. inputevents_cv and inputevents_mv tables). Especially with respect to such input event data, MetaVision data generally is of superior quality.

In terms of patient identifiers, MIMIC-III allows for identifying both individual patients (subject_id) across hospital admissions (hadm_id) and for connecting ICU (re-)admissions (icustay_id) to hospital admissions. Using the respective one-to-many relationships, ricu can retrieve patient data using any of the above IDs, irrespective of how the raw data is organized.

eICU

Unlike the single-center focus of other datasets, the eICU Collaborative Research Database constitutes an amalgamation of data from critical care units of over 200 hospitals throughout the continental United States. Large-scale data collected via the Philips eICU program which provides telehealth infrastructure for intensive care units, is available from the Philips eICU Research Institute (eRI), albeit neither publicly nor freely. Only data corresponding

²The initial MIMIC (at the time short for Multi-parameter Intelligent Monitoring for Intensive Care) data release dates back 20 years and contained data on roughly 100 patients recorded from patient monitors in the medical, surgical, and cardiac intensive care units of Boston's Beth Israel Hospital during the years 1992-1999 (Moody and Mark 1996). Significantly broadened in scope, MIMIC-II was released 10 years after, now including data on almost 27,000 adult hospital admissions collected from ICUs of Beth Israel Deaconess Medical Center (BIDMC) from 2001 to 2008 (Lee, Scott, Villarroel, Clifford, Saeed, and Mark 2011). Following MIMIC-III, release of MIMIC-IV is imminent with a first development version having been released in summer 2020. This iteration of MIMIC too is planned to be included with **ricu** as soon a first stable version is released.

to roughly 200,000 ICU admissions, sampled from a larger population of over 3 million ICU admissions and stratified by hospital, is being made available via PhysioNet. Patients with discharge dates in 2014 or 2015 were considered, with stays in low acuity units being removed.

R> eicu

The data is organized into 31 tables and includes patient demographics, routine vital signs, laboratory measurements, medication administrations, admission diagnoses, as well as treatment information. Owing to the wide range of hospitals participating in this data collection initiative, spanning small, rural, non-teaching health centers with fewer than 100 beds to large teaching hospitals with an excess of 500 beds, data availability varies. Even if data was being recorded at the bedside it might end up missing from the eICU dataset due to technical limitations of the collection process. As for patient identifiers, while it is possible to link ICU admissions corresponding to the same hospital stay, it is not possible to identify patients across hospital stays.

Data resolution again varies considerably over included variables. The vitalperiodic table stands out as one of the few examples of a wide table organization (laying out variables as columns), as opposed to the long presentation (following an entity-attribute-value) of most other tables containing patient measurement data. The average time step in vitalperiodic is around 5 minutes, but data missingness ranges from around 1% for heart rate and pulse oximetry to around 80-90% for blood pressure measurements, therefore giving approximately hourly resolution for such variables.

HiRID

Developed for early prediction of circulatory failure (Hyland, Faltys, Hüser, Lyu, Gumbsch, Esteban, Bock, Horn, Moor, Rieck, Zimmermann, Bodenham, Borgwardt, Rätsch, and Merz 2020), the High Time Resolution ICU Dataset (HiRID) contains data on almost 34,000 admissions to the Department of Intensive Care Medicine of the Bern University Hospital, Switzerland, an interdisciplinary 60-bed unit. Given the clear focus on a concrete application during data collection, this dataset is the most limited in terms of breadth of available information, which is also reflected in a comparatively simple data layout comprising only 5 tables³.

R> hirid

Collected during the period of January 2008 through June 2016, roughly 700 distinct variables covering routine vital signs, diagnostic test results and treatment parameters are available with variables monitored at the bedside being recorded with two minute time resolution. In terms of demographic information and patient identifier systems however, the data is

³The data is available in three states: as raw data and in preprocessed form, with preprocessed data being represented by two intermediary pipeline stages from (Hyland *et al.* 2020). While **ricu** focuses exclusively on raw data, the *merged* stage represents a selection of variables that were deemed most predictive for determining circulatory failure, which are then merged into 18 meta-variables, representing different clinical concepts. Time stamps in *merged* data are left unchanged, yielding irregular time series, whereas for the *imputed* stage, data is down-sampled to a 5 minute grid and missing values are imputed using a scheme discussed in (Hyland *et al.* 2020).

limited. It is not possible to identify ICU admissions corresponding to individual patients and apart from patient age, sex, weight and height, very little information is available to characterize patients. There is no medical history, no admission diagnoses, only in-ICU mortality information, no unstructured patient data and no information on patient discharge. Furthermore, data on body fluid sampling has been omitted, complicating for example the construction of a Sepsis-3 label (Singer et al. 2016).

Amsterdam UMCdb

As a second European dataset, also focusing on increased time-resolution over the US datasets, AmsterdamUMCdb has been made available in late 2019, containing data on over 23,000 intensive care unit and high dependency unit admissions of adult patients during the years 2003 through 2016. The department of Intensive Care at Amsterdam University Medical Center is a mixed medical-surgical ICU with up to 32 bed ICU and 12 bed high dependency units with an average of 1000-2000 yearly admissions. Covering middle ground between the US datasets and HiRID in terms of breadth of included data, while providing a maximal time-resolution of 1 minute, AmsterdamUMCdb constitutes a well organized high quality ICU data resource organized succinctly as a 7-table relational structure.

R> aumc

A slightly different approach to data anonymization was chosen for this dataset, yielding demographic information such as patient weight, height and age only available as binned variables instead of raw numeric values. Apart from this, there is information on patient origin, mortality, admission diagnoses, as well as numerical measurements including vital parameters, lab results, outputs from drains and catheters, information on administered medication, and other medical procedures. In terms of patient identifiers, it is possible to link ICU admissions corresponding to the same individual, but it is not possible to identify separate hospital admissions.

2.2. Implementation details

Every dataset is represented by an environment with class attributes and associated metadata objects stored as object attributes to that environment. Dataset environments all inherit from src_env and from any number of class names constructed from data source name(s) with a suffix _env attached. The environment representing MIMIC-III, for example inherits from src_env and mimic_env, while the corresponding demo dataset inherits from src_env, mimic_env and mimic_demo_env. These sub-classes are later used for adapting the process of data loading to particularities of individual datasets.

A src_env contains an active binding per contained table, which returns a src_tbl object representing the requested table after having checked that the required data is locally available (and querying the user for download if not). As is the case for src_env objects, src_tbl objects inherit from additional classes such that certain per-dataset behavior can be customized. The admissions table of the MIMIC-III demo dataset for example inherits from mimic_demo_tbl and mimic_tbl (alongside classes src_tbl and prt).

R> mimic_demo\$admissions

```
# <mimic tbl>: [129 x 19]
# ID options:
              subject_id (patient) < hadm_id (hadm) < icustay_id (icustay)</pre>
# Defaults:
               'admission_type' (val)
# Time vars:
               'admittime', 'dischtime', 'deathtime', 'edregtime', 'edouttime'
                                                  dischtime
   row id subject id hadm id admittime
    <int>
               <int>
                       <int> <dttm>
                                                  <dttm>
               10006 142345 2164-10-23 21:09:00 2164-11-01 17:15:00
    12258
 1
 2 12263
               10011 105331 2126-08-14 22:32:00 2126-08-28 18:59:00
 3 12265
               10013 165520 2125-10-04 23:36:00 2125-10-07 15:13:00
 4 12269
               10017 199207 2149-05-26 17:19:00 2149-06-03 18:42:00
               10019 177759 2163-05-14 20:43:00 2163-05-15 12:00:00
 5 12270
               44083 198330 2112-05-28 15:45:00 2112-06-07 16:50:00
125 41055
126 41070
               44154 174245 2178-05-14 20:29:00 2178-05-15 09:45:00
               44212 163189 2123-11-24 14:14:00 2123-12-30 14:31:00
127
    41087
               44222 192189 2180-07-19 06:55:00 2180-07-20 13:00:00
128
    41090
129 41092
               44228 103379 2170-12-15 03:14:00 2170-12-24 18:00:00
# ... with 119 more rows, and 14 more variables: deathtime <dttm>,
   admission_type <chr>, admission_location <chr>, discharge_location <chr>,
   insurance <chr>, language <chr>, religion <chr>, marital_status <chr>,
#
   ethnicity <chr>, edregtime <dttm>, edouttime <dttm>, diagnosis <chr>,
   hospital_expire_flag <int>, has_chartevents_data <int>
```

Powered by the **prt** (Bennett 2021) package, **src_tbl** objects represent tabular data and are stored as a singleton or row-partitioned tables into multiple binary files created by the **fst** (Klik 2020) package. In addition to standard subsetting, **prt** objects can be subsetted via the base R S3 generic function **subset()** and using non-standard evaluation:

R> subset(mimic_demo\$admissions, subject_id > 44000, language:ethnicity)

	language	religion	marital_status	•	ethnicity
1:	ENGL	CATHOLIC	SINGLE		WHITE
2:	ENGL	CATHOLIC	SINGLE		WHITE
3:	ENGL	CATHOLIC	SINGLE		WHITE
4:	ENGL	PROTESTANT QUAKER	MARRIED		WHITE
5:	ENGL	UNOBTAINABLE	SINGLE	BLACK/AFRICAN	AMERICAN
6:	ENGL	CATHOLIC	SINGLE		WHITE
7:	ENGL	NOT SPECIFIED	SINGLE		WHITE

This syntax makes it possible to read row-subsets of *long* tables into memory with little memory overhead. While terseness of such an API does introduce potential ambiguity, this is mostly overcome by using the tidy eval framework provided by **rlang** (Henry and Wickham 2020):

```
subject_id hadm_id
                                admittime
                                                     dischtime
1:
        44083
              125157 2112-05-04 08:00:00 2112-05-11 14:15:00
              131048 2112-05-22 15:37:00 2112-05-25 13:30:00
2:
        44083
3:
        44083
               198330 2112-05-28 15:45:00 2112-06-07 16:50:00
              174245 2178-05-14 20:29:00 2178-05-15 09:45:00
4:
        44154
               163189 2123-11-24 14:14:00 2123-12-30 14:31:00
5.
        44212
               192189 2180-07-19 06:55:00 2180-07-20 13:00:00
6:
        44222
7:
        44228
               103379 2170-12-15 03:14:00 2170-12-24 18:00:00
```

By using so-called pronouns (.data and .env), the distinction can readily be made between a name referring to an object within the context of the data and an object within the context of the calling environment.

Data source set-up

In order to make a dataset accessible to **ricu**, three steps are necessary, each handled by an exported S3 generic function: download_scr(), import_src() and attach_src(). While the first two steps, download and import are one-time procedures, attaching is carried out every time the package namespace is loaded. By default, all data sources known to **ricu** are configured to be attached and in case some data is missing for a given data source, the missing data is downloaded and imported on first access (and contingent on user consent). For downloads to run through without user interaction, several environment variables can be configured:

- RICU_PHYSIONET_USER/RICU_PHYSIONET_PASS: PhysioNet user name and password with access to the requested dataset.
- RICU_AUMC_TOKEN: Download token, extracted from the download URL received when requesting data access.

If any of the required access credentials are not available as environment variables, the user is queried in interactive sessions. Each of the datasets requires 5-10 GB disk space for permanent storage. In addition to that, 50-100 GB of temporary disk storage is required during download and import of any of the datasets, roughly corresponding to the respective maximum table sizes (uncompressed). Memory requirements are kept low by performing all set-up operations only on subsets of rows at the time, such that Laptop-class hardware is sufficient for handling such datasets. Initial data source set up (depending on available download speeds and CPU/disk type) may take upwards of an hour per dataset.

Further environment variables can be set to customize certain aspects of **ricu** data handling:

- RICU_DATA_PATH: Data storage location (can be queried by calling data_dir()).
- RICU_CONFIG_PATH: Comma-separated paths to directories containing configuration files (in addition to the default location; retrievable using config_paths()).
- RICU_SRC_LOAD: Comma-separated data source names that are set up for being automatically attached on namespace loading (the current set of data sources is available as auto_attach_srcs()).

After successful data download, importing prepares tables for efficient random row-access, for which the raw data format (.csv) is not well suited. Tables are read in using **readr** (Wickham

and Hester 2020), potentially partitioned row-wise, and re-saved using **fst**. Finally, attaching a dataset creates a corresponding **src_env** object which together with associated meta-data is used by **ricu** to run queries against the data.

Data loading

The lowest level of data access is direct subsetting of src_tbl objects as shown at the start of this section (2.2). Building on that, several S3 generic functions successively homogenize data representations, starting with load_src(), which provides a string-based interface to subset() for all but the row-subsetting expression.

```
R> load_src("admissions", "mimic_demo", subject_id > 44000,

+ cols = c("hadm_id", "admittime", "dischtime"))

hadm_id admittime dischtime

1: 125157 2112-05-04 08:00:00 2112-05-11 14:15:00

2: 131048 2112-05-22 15:37:00 2112-05-25 13:30:00

3: 198330 2112-05-28 15:45:00 2112-06-07 16:50:00

4: 174245 2178-05-14 20:29:00 2178-05-15 09:45:00

5: 163189 2123-11-24 14:14:00 2123-12-30 14:31:00

6: 192189 2180-07-19 06:55:00 2180-07-20 13:00:00

7: 103379 2170-12-15 03:14:00 2170-12-24 18:00:00
```

As data sources differ in their representation of time-stamps, a next step in data homogenization is to converge to a common format: the time difference to the origin time-point of a given ID system.

```
R> load_difftime("admissions", "mimic_demo", subject_id > 44000,
                cols = c("hadm_id", "admittime", "dischtime"))
# An 'id tbl': 7 x 3
# Id var:
               'hadm id'
  hadm_id admittime dischtime
    <int> <drtn>
                    <drtn>
1 103379 0 mins
                    13846 mins
2
 125157 0 mins
                    10455 mins
3 131048 0 mins
                    4193 mins
4 163189 0 mins
                    51857 mins
5 174245 0 mins
                      796 mins
                     1805 mins
  192189 0 mins
   198330 0 mins
                    14465 mins
```

The function load_difftime() is expected to return timestamps as base R difftime vectors (using mins as time unit). The argument id_hint can be used to specify a preferred ID system but if not available in raw data, load_difftime() will return data using the ID system with highest cardinality. In the above example, if icustay_id were requested, data would be

returned using hadm_id, whereas the a subject_id request would be honored, as these two ID columns are available for the admissions table.

Building on load_difftime() functionality, load_id() (and analogously load_ts()) returns an id_tbl (or ts_tbl) object with the requested ID system (passed as id_var argument). This uses raw data IDs if available or calls change_id() in order to convert to the desired ID system. Similarly, where load_difftime() returns data with fixed time interval of one minute, load_id() allows for arbitrary time intervals (using change_interval()).

```
R> load_id("admissions", "mimic_demo", subject_id > 44000,
          cols = c("admittime", "dischtime"), id_var = "hadm_id")
# An 'id_tbl': 7 x 3
# Id var:
               'hadm_id'
 hadm_id admittime dischtime
   <int> <drtn>
                   <drtn>
1 103379 0 hours
                   230 hours
2 125157 0 hours
                   174 hours
3 131048 0 hours
                    69 hours
4 163189 0 hours
                   864 hours
5 174245 0 hours
                   13 hours
6 192189 0 hours
                    30 hours
7 198330 0 hours
                   241 hours
```

Data source configuration

Data source environments (and corresponding src_tbl objects) are constructed using source configuration objects: list-based structures, inheriting from src_cfg and from any number of data source-specific class names with suffix _cfg appended (as discussed at the beginning of Section 2.2). The exported function load_src_cfg() reads a JSON formatted file using json-lite (Ooms 2014), and creates a src_cfg object per datasource and further therein contained objects.

```
R> cfg <- load_src_cfg("mimic_demo")
R> str(cfg, max.level = 2L, width = 70L)

List of 1
$ mimic_demo:List of 6
...$ name : chr "mimic_demo"
...$ prefix : chr [1:2] "mimic_demo" "mimic"
...$ id_cfg : id_cfg [1:3] 'subject_id', 'hadm_id', 'icustay_id'
...$ col_cfg: col_cfg [1:25] [0, 0, 5, 0, 1], [0, 1, 6, 0, 1], [1, 0, 0...
...$ tbl_cfg: tbl_cfg [1:25] [?? x 19; 1], [?? x 24; 1], [?? x 4; 1], [...
...$ extra :List of 1
... attr(*, "class") = chr [1:3] "mimic_demo_cfg" "mimic_cfg" "src_cfg"
R> mi_cfg <- cfg[["mimic_demo"]]
```

In addition to required fields name and prefix (used as class prefix), as well as further arbitrary fields (url in this case), several additional configuration objects are part of src_cfg: id_cfg, col_cfg and tbl_cfg.

ID configuration An id_cfg object contains an ordered set of key-value pairs representing patient ID systems in a dataset. An implicit assumption currently is that a given patient ID system is used consistently throughout a dataset, meaning that for example an ICU stay ID is always referred to by the same name throughout all tables containing a corresponding column. Owing to the relational origins of these datasets this has been fulfilled in all instances encountered so far. In MIMIC-III, ID systems

are available, allowing for identification of individual patients, their (potentially multiple) hospital admissions over the course of the years and their corresponding ICU admissions (as well as potential re-admissions). Ordering corresponds to cardinality: moving to larger values implies moving along a one-to-many relationship. This information is used in data-loading, whenever the target ID system is not contained in the raw data.

Default column configuration Again used in data loading, this per-table set of key-value pairs specifies column defaults as col_cfg object. Each key describes a type of column with special meaning and the corresponding value specifies said column for a given table.

```
R> as_col_cfg(mi_cfg)
```

```
<col_cfg<mimic_demo[id_var, index_var, time_vars, unit_var, val_var]>[25]>
        admissions
                               callout
                                                caregivers
                                                                    chartevents
   [0, 0, 5, 0, 1]
                       [0, 1, 6, 0, 1]
                                           [1, 0, 0, 0, 1]
                                                                [0, 1, 2, 1, 1]
         cptevents
                                  d_cpt
                                           d_icd_diagnoses
                                                              d_icd_procedures
   [0, 1, 1, 0, 1]
                       [1, 0, 0, 0, 1]
                                                                [1, 0, 0, 0, 1]
                                           [1, 0, 0, 0, 1]
           d_{items}
                            d_labitems
                                            datetimeevents
                                                                  diagnoses_icd
                       [1, 0, 0, 0, 1]
                                                                [0, 0, 0, 0, 1]
   [1, 0, 0, 0, 1]
                                            [0, 1, 3, 0, 1]
          drgcodes
                              icustays
                                            inputevents_cv
                                                                 inputevents_mv
   [0, 0, 0, 0, 1]
                       [0, 1, 2, 0, 1]
                                            [0, 1, 2, 1, 1]
                                                                [0, 1, 4, 1, 1]
         labevents microbiologyevents
                                               outputevents
                                                                       patients
   [0, 1, 1, 1, 1]
                       [0, 1, 2, 0, 1]
                                            [0, 1, 2, 1, 1]
                                                                [0, 0, 4, 0, 1]
     prescriptions procedureevents_mv
                                            procedures_icd
                                                                       services
   [0, 1, 2, 1, 1]
                       [0, 1, 4, 1, 1]
                                            [0, 0, 0, 0, 1]
                                                                [0, 1, 1, 0, 1]
         transfers
   [0, 1, 2, 0, 1]
```

The following column defaults are currently in use throughout **ricu** but the set of keys can be extended to arbitrary new values:

- id_var: In case a table does not contain at least one ID column corresponding to one of the ID systems specified as id_cfg, the default ID column can be set on a per-table basis as id_var⁴.
- index_var: A column that is used to define an ordering in time over rows, thereby providing a time-series index⁵.
- time_vars: Columns which will be treated as time variables (important for converting between ID systems for example), but not as time-series indices⁶.
- unit_var: Used in concept loading (more specifically for num_cncpt concepts, see Section 3.1) to identify columns that represent unit of measurement information.
- val_var: Again used when loading data concepts, this identified a default value variable in a table, representing the column of interest to be used as returned data column.

While id_var, index_var and time_vars are used to provide sensible defaults to functions used for general data loading (Section 2.2.2), unit_var, val_var, as well as potential user-defined defaults are only used in concept loading (see Section 3.3) and therefore need not be prioritized when integrating new data sources until data concepts have been mapped.

Table configuration Finally, tbl_cfg objects are used during the initial set-up of a data source. In order to create a representation of a table that is accessible from ricu from raw data, several key pieces of information are required:

- File name(s): In the simplest case, a single file corresponds to a single table. Other scenarios that have been encountered (and are therefore handled) include tables partitioned into multiple files and .tar archives containing multiple tables.
- Column specification: For each column, the expected data type has to be known, as well as a pair of names, one corresponding to the raw data column name and one corresponding to the column name to be used within **ricu**.
- (Optional) number of rows: Used as sanity check whenever available.
- (Optional) partitioning information: For very *long* tables it can be useful to specify a row-partitioning. This currently is only possible by applying a vector of breakpoints to a single numeric column, thereby defining a grouping.

R> as_tbl_cfg(mi_cfg)

<tbl_cfg<mimic_demo[rows x cols; partitions]>[25]>

admissions	callout	caregivers	chartevents
[?? x 19; 1]	[?? x 24; 1]	[?? x 4; 1]	[?? x 15; 2]

⁴This for example is the case for the <code>d_items</code> table in MIMIC-III, which does not contain any patient related data, but holds information on items encoding types of measurements, procedures, etc., used throughout other tables holding actual patient data for identifying the type data point, in line with the relational structure of the data source.

⁵For the MIMIC-III table <code>inputevents_mv</code>, one of the four available time variables lends itself to be used as index variable more than the other candidates and therefore is set as default.

⁶In case of the admissions table in MIMIC-III for example, a total of five columns are considered to be time variables, none of which stands out as potential index_var.

cptevents	d_cpt	d_icd_diagnoses	d_icd_procedures
[?? x 12; 1]	[?? x 9; 1]	[?? x 4; 1]	[?? x 4; 1]
$d_{\tt litems}$	$d_{\mathtt{labitems}}$	datetimeevents	diagnoses_icd
[?? x 10; 1]	[?? x 6; 1]	[?? x 14; 1]	[?? x 5; 1]
drgcodes	icustays	inputevents_cv	inputevents_mv
[?? x 8; 1]	[?? x 12; 1]	[?? x 22; 1]	[?? x 31; 1]
labevents	microbiologyevents	outputevents	patients
[?? x 9; 1]	[?? x 16; 1]	[?? x 13; 1]	[?? x 8; 1]
prescriptions	procedureevents_mv	<pre>procedures_icd</pre>	services
[?? x 19; 1]	[?? x 25; 1]	[?? x 5; 1]	[?? x 6; 1]
transfers			
[?? x 13; 1]			

For the chartevents table of the MIMIC-III demo dataset, for example, rows are partitioned into two groups, while all other tables are represented by a single partition. Furthermore, the expected number of rows is unknown (??) as this is missing from the corresponding tbl_cfg object.

2.3. Adding external datasets

In order to add a new dataset to **ricu**, several aspects outlined in the previous subsections require consideration. For illustration purposes, code for integrating AmsterdamUMCdb as external dataset is available from **Github**. While this is no longer needed for using the aumc data source, the repository will remain as it might serve as template to integration of new datasets.

Using a configuration file as described in Section 2.2.3 and pointing the RICU_CONFIG_PATH environment variable at its location, data can be prepared for use with **ricu** using **import_src()** and made available to **ricu** using **attach_src()**. In addition to providing a configuration file, dataset-specific implementations of some of the S3 generic functions involved in data-loading might be required. In the case of AmsterdamUMCdb, a class-specific implementation of load_difftime() is required, as raw time-stamps are recoded in milliseconds (instead of minutes), as well as a class-specific implementation of the S3 generic function **id_win_helper()**⁷.

3. Data concepts

One of the key components of **ricu** is a scheme for specifying how to retrieve data corresponding to pre-defined clinical concepts from a given data source, in turn enabling dataset agnostic code for analysis. Heart rate, for example can be loaded using the **hr** concept as

```
R> load_concepts("hr", c("mimic_demo", "eicu_demo"), verbose = FALSE)
```

⁷This method is used as part of change_id() which is called whenever the requested ID system is not available in raw data. A component central to conversion between patient ID systems is a table which contains patient IDs as columns alongside columns with start and end-points for each, thereby specifying a mapping between ID systems. Dataset-specific construction of such a table is handled by the S3 generic function id_win_helper(). As construction of such tables can be expensive (involving several merge operations of tables with 10⁴-10⁵ rows) and used frequently (potentially with every single data request), the resulting table is cached in memory with session persistence.

```
# A 'ts_tbl': 152,197 x 4
               'source', 'icustay_id'
# Id vars:
               'hr' [bpm]
# Units:
# Index var:
               'charttime' (1 hours)
        source
                    icustay id charttime
                                             hr
        <chr>
                         <int> <drtn>
                                          <dbl>
      1 eicu_demo
                        141764
                                  0 hours
                                             119
      2 eicu_demo
                        141764
                                  1 hours
                                             105
      3 eicu_demo
                        141764
                                  2 hours
                                             95
      4 eicu_demo
                        141764
                                             106
                                  3 hours
      5 eicu_demo
                        141764
                                  4 hours
                                             102
152,193 mimic_demo
                        298685 314 hours
                                              60
152,194 mimic_demo
                        298685 315 hours
                                              56
152,195 mimic_demo
                        298685 316 hours
                                              50
152,196 mimic_demo
                                              48
                        298685 317 hours
152,197 mimic_demo
                        298685 318 hours
                                               0
# ... with 152,187 more rows
```

This requires some form of infrastructure for concisely specifying how to retrieve data subsets (Section 3.1), which is both extensible (to new concepts and new datasets) and flexible enough to handle concept-specific pre-processing. Additionally, **ricu** has included a dictionary with over 100 concepts implemented for all four supported datasets (where possible; see also Section 3.3). A quick remark on terminology before diving into more details on how to specify data concepts: A *concept* corresponds to a clinical variable such as a bilirubin measurement or the ventilation status of a patient, and an *item* encodes how to retrieve data corresponding to a given concept from a data source. A *concept* therefore contains several *items* (zero, one or several are possible per data source).

3.1. Concept specification

Similarly to data source configuration (discussed in Section 2.2.3), concept specification relies on JSON-formatted text files. A default dictionary of concepts is included with **ricu** containing a selection of commonly used clinical concepts. Several types of concepts exist within **ricu** and with extensibility in mind, new types can easily be added.

All concepts consist of minimal meta-data including a name, target class (defaults to ts_tbl; see Section 3.2), an aggregation specification⁸ and class information (defaults to num_concept), as well as optional description and category information. Adding to that, depending on concept class, further fields can be added. In the case of the most widespread concept type (num_cncpt; used to represent numeric data) this is unit which encodes one (or several

⁸Every concept needs a default aggregation method which can be used during data loading to return data that is unique per key (either per id_vars group or per combination of id_vars and index_var) otherwise down-stream merging of multiple concepts is ill-defined. The aggregation default can be overridden during loading or as specification of a rec_cncpt object. If no aggregation method is explicitly indicated the global default is first() for character, median() for numeric and sum() for logical vectors. For logical data, if a concept of type lgl_cncpt is used, the count of TRUE values is converted back to logical, thereby providing any() type functionality.

synonymous) unit(s) of measurement, as well as a minimal and maximal plausible values (specified as min and max). The concept for heart rate data (hr) for example can be specified as

```
{
    "hr": {
        "unit": ["bpm", "/min"],
        "min": 0,
        "max": 300,
        "description": "heart rate",
        "category": "routine vital signs",
        "sources": {
            ...
        }
    }
}
```

Meta-data is used during concept loading for data-preprocessing. For numeric concepts, the specified measurement unit is compared to that of the data (if available), with messages being displayed in case of mismatches, while the range of plausible values is used to filter out measurements that fall outside the specified interval. Other types of concepts include categorical concepts (fct_cncpt), concept representing binary data (lgl_cncpt), as well as recursive concepts (rec_cncpt), which build on other atomic concepts⁹.

Specification of how data can be retrieved from a data source is encoded by data *items*. Lists of data items (associated with data source names) are provided as **sources** element (instead of . . . in the above code block). For the demo datasets corresponding eICU and MIMIC-III, heart rate data retrieval is specified as

```
{
    "eicu_demo": [
        {
            "table": "vitalperiodic",
            "val_var": "heartrate",
            "class": "col_itm"
        }
    ],
    "mimic_demo": [
        {
            "ids": [211, 220045],
            "table": "chartevents",
```

 $^{^9}$ An example for a recursive concept is the PaO_2/FiO_2 ratio, used for instance to assess patients with acute respiratory distress syndrome (ARDS) or for sepsis-related organ failure assessment (SOFA) (Villar, Pérez-Méndez, Blanco, Añón, Blanch, Belda, Santos-Bouza, Fernández, Kacmarek, and Spanish Initiative for Epidemiology and Therapies for ARDS (SIESTA) Network 2013; Vincent *et al.* 1996). Given both PaO_2 and FiO_2 as individual concepts, the PaO_2/FiO_2 ratio is provided by **ricu** as a recursive concept (**pafi**), requesting the two atomic concepts **pao2** and **fio2** and performing some form of imputation for when at a given time step one or both values are missing.

```
"sub_var": "itemid"
}
]
```

Analogously to how different types of concepts are used to represent different types of data, different types of items handle different types of data loading. The most common scenario is selecting a subset of rows from a table by matching a set of ID values (sub_itm). In the above example, heart rate data in MIMIC-III can be located by searching for ID values 211 and 220045 in column itemid of table chartevents (heart rate data is stored in long format). Conversely, heart rate data in eICU is stored in wide format, requiring no row-subsetting. Column heartrate of table vitalperiodic contains all corresponding data and such data situations are handled by the col_itm class. Other item classes include rgx_itm where a regular expression is used for selecting rows and fun_itm where an arbitrary function can be used for data loading. If a data loading scenario is not covered by these classes, adding further itm subclasses is encouraged.

In order to extend the current concept library both to new datasets and new concepts, further JSON files can be incorporated by adding their paths to RICU_CONFIG_PATH. Concepts with names that already exist are only used for their sources entries, such that hr for new_dataset can be specified as

whereas concepts with non-existing names are treated as new concepts.

Central to providing the required flexibility for loading of certain data concepts that require some specific pre-processing are callback functions that can be specified for several *item* types. Functions (with appropriate signatures), designated as callback functions, are invoked on individual data items, before concept-related preprocessing is applied. A common scenario for this is unit of measurement conversion: In MIMIC-III data for example, several <code>itemid</code> values correspond to temperature measurements, some of which refer to temperatures measured in degrees Celsius whereas others are used for measurements in degrees Fahrenheit. As the information encoding which measurement corresponds to which <code>itemid</code> values is no longer available during concept-related preprocessing, this is best resolved at the level of individual data items. Several function factories are available for generating callback functions and <code>convert_unit()</code> is intended for covering unit conversions. Data <code>items</code> corresponding to the temp concept for MIMIC-III are specified as

```
{
    "mimic_demo": [
        {
             "ids": [676, 677, 223762],
             "table": "chartevents",
             "sub_var": "itemid"
        },
        {
             "ids": [678, 679, 223761, 224027],
             "table": "chartevents",
             "sub_var": "itemid",
             "callback": "convert_unit(fahr_to_cels, 'C', 'f')"
        }
    ]
}
```

indicating that for ID values 676, 677 and 223762 no pre-processing is required and for the remaining ID values the function fahr_to_cels() is applied to entries of the val_var column where the regular expression "f" is TRUE for the unit_var column (the values of which being ultimately replaced with "C").

3.2. Data classes

In order to represent tabular ICU data, **ricu** provides several classes, all inheriting from data.table. The most basic of which, id_tbl, marks one (or several) columns as id_vars which serve to define a grouping (i.e. identify patients or unit stays). Inheriting from id_tbl, ts_tbl is capable of representing grouped time-series data. In addition to id_var column(s), a single column is marked as index_var and is required to hold a base R difftime vector. Furthermore, ts_tbl contains a scalar-valued difftime object as interval attribute, specifying the time-series step size¹⁰.

Meta data is transiently added to data.table objects by classes inheriting from id_tbl and S3 generic functions which allow for object modifications, down-casting is implicit:

```
R > (dat \leftarrow ts_tbl(a = 1:5, b = hours(1:5), c = rnorm(5)))
# A 'ts_tbl': 5 x 3
               'a'
# Id var:
               'b' (1 hours)
# Index var:
      a b
                       С
  <int> <drtn>
                   <dbl>
1
      1 1 hours -1.89
2
      2 2 hours
                  1.67
3
      3 3 hours
                  0.905
```

¹⁰As further extension, a win_tbl object is being considered for inclusion, capable of representing time intervals. Such an object could prove convenient for example when dealing with infusions as infusion parameters such as medication rate frequently are specified with explicit begin and end times (see Section 3.3.3).

```
4
      4 4 hours 1.71
5
      5 5 hours -0.328
R> dat[["b"]] <- dat[["b"]] + mins(30)</pre>
R> dat
# An 'id_tbl': 5 x 3
# Id var:
      a b
                         С
  <int> <drtn>
                     <dbl>
1
      1 5400 secs -1.89
2
        9000 secs
3
                    0.905
      3 12600 secs
                    1.71
      4 16200 secs
      5 19800 secs -0.328
```

Due to time-series step size of dat being specified as 1 hour, an internal inconsistency is encountered when shifting time stamps by 30 minutes, as time-steps are no longer multiples of the time-series interval, in turn causing down-casting to id_tbl. If column a were to be removed, direct down-casting to data.table would be required in order to resolve inconsistencies¹¹.

Utilizing the attached meta-data, several utility functions can be called with concise semantics. This includes functions for sorting, checking for duplicates, aggregating data per combination of id_vars (and time-step), checking time series data for gaps, verifying whether the time-series is regular and converting between irregular and regular time-series, as well as functions for several types of moving window operations. Adding to those class-specific implementations, id_tbl objects inherit from data.table (and therefore from data.frame), ensuring compatibility with a wide range of functionality targeted at these base-classes.

3.3. Clinical concepts

The current selection of clinical concepts that is included with **ricu** covers many physiological variables that are available throughout the included datasets. Treatment-related information on the other hand, being more heterogeneous in nature and therefore harder to harmonize across datasets, has been added on an as-needed basis and therefore is more limited in breadth.

Available concepts can be enumerated using load_dictionary() and the utility function explain_dictionary() can be used to display some concept meta-data.

¹¹Updating an object inheriting from id_tbl using data.table::set() bypasses consistency checks as this is not an S3 generic function and therefore its behavior cannot be tailored to requirements of id_tbl objects. It therefore is up to the user to avoid vitiating id_tbl objects in such a way.

```
antibiotics <lgl_cncpt[4]> vasopressin rate <num_cncpt[3]>
adm age
patient admission type <fct_cncpt[2]> patient age <num_cncpt[2]>
alb albumin <num_cncpt[2]> alkaline phosphatase <num_cncpt[2]>
```

R> explain_dictionary(head(dict))

```
name
                category
                                     description
1
       abx
            medications
                                     antibiotics
2 adh_rate
            medications
                               vasopressin rate
3
       adm demographics patient admission type
4
       age demographics
                                     patient age
5
              chemistry
       alb
                                         albumin
6
       alp
               chemistry
                           alkaline phosphatase
```

The following sub-sections serve to introduce some of the included concepts as well as highlight limitations that come with current implementations. Grouping the available concepts by category yields the following counts

```
R> table(vapply(dict, '[[', character(1L), "category"))
```

microbiology	medications	hematology	demographics	chemistry	blood gas
1	16	20	6	21	10
	vitals	respiratory	output	outcome	neurological
	6	10	2	19	8

Physiological data

The largest and most well established group of concepts (covering more than half of all currently included concepts) includes physiological patient measurements such as routine vital signs, respiratory variables, fluid discharge amounts, as well as many kinds of laboratory tests including blood gas measurements, chemical analysis of body fluids and hematology assays.

```
R> load_concepts(c("alb", "glu"), "mimic_demo", interval = mins(15L),
+
                 verbose = FALSE)
# A 'ts_tbl': 1,965 x 4
               'icustay_id'
# Id var:
              'alb' [g/dL], 'glu' [mg/dL]
# Units:
# Index var: 'charttime' (15 mins)
      icustay_id charttime
                               alb
                                      glu
           <int> <drtn>
                             <dbl> <dbl>
          201006 - 3495 \text{ mins} NA
    1
                                      116
```

```
2
           201006 -2745 mins
                                NA
                                         83
    3
           201006 - 1275 \text{ mins}
                                NΑ
                                         91
    4
           201006
                      15 mins
                                 2.4
                                        175
    5
           201006
                     675 mins
                                NA
                                        129
1,961
           298685 15600 mins
                                NA
                                        159
1,962
           298685 16365 mins
                                 2.2
                                        153
1,963
           298685 17400 mins
                                        182
                                NA
1,964
           298685 17595 mins
                                NA
                                        122
1,965
           298685 17955 mins
                                 2.5
                                        121
# ... with 1,955 more rows
```

Most concepts of this kind are represented by num_cncpt objects with an associated unit of measurement and a range of permissible values. Data is mainly returned as ts_tbl objects, representing time-dependent observations. Apart from conversion to a common unit (possibly using the convert_unit() callback function), little has to be done in terms of pre-processing: values are simply reported at time-points rounded to the requested interval.

Patient demographics

Moving on from dynamic, time-varying patient data, this group of concepts focuses on static patient information. While the assumption of remaining constant throughout a stay is likely to hold for variables such as patient sex or height this is only approximately true for others including age or weight. Nevertheless such effects are ignored and concepts of this group will be mainly returned as id_tbl objects with no corresponding time-stamps included.

Whenever requesting concepts which are returned with associated time-stamps (e.g. glucose) alongside time-constant data (e.g. age), merging will duplicate static data over all time-points.

```
R> load_concepts(c("age", "glu"), "mimic_demo", verbose = FALSE)
```

```
# A 'ts tbl': 1,914 x 4
# Id var:
               'icustay_id'
               'age' [years], 'glu'
# Units:
                                     [mg/dL]
# Index var:
              'charttime' (1 hours)
      icustay_id charttime
                               age
                                     glu
                             <dbl> <dbl>
           <int> <drtn>
    1
          201006 -58 hours
                             68.9
                                     116
    2
          201006 -45 hours
                             68.9
                                      83
    3
          201006 -21 hours
                             68.9
                                      91
    4
          201006
                    0 hours
                              68.9
                                     175
    5
                              68.9
          201006
                  11 hours
                                     129
1,910
          298685 260 hours
                             80.1
                                     159
1,911
          298685 272 hours
                             80.1
                                     153
1,912
          298685 290 hours
                             80.1
                                     182
1,913
          298685 293 hours
                             80.1
                                     122
1,914
          298685 299 hours
                             80.1
                                     121
# ... with 1,904 more rows
```

Despite a best-effort approach, data availability can be a limiting factor. While for physiological variables, there is good agreement even across continents, data-privacy considerations, as well as lack of a common standard for data encoding, may cause issues that are hard to resolve. In some cases, this can be somewhat mitigated while in others, this is a limitation to be kept in mind. In AmsterdamUMCdb, for example, patient age, height and weight are not available as continuous variables, but as factor with patients binned into groups. Such variables are then approximated by returning the respective mid-points of groups for aumc data¹². Other concepts, such as adm (categorizing admission types) or a prospective icd concept (diagnoses as ICD-9 codes) can only return data if available from the data source in question. Unfortunately, neither aumc nor hirid contain ICD-9 encoded diagnoses, and in the case of hirid, no diagnosis information is available at all.

$Treatment\mbox{-}related\ information$

The largest group of concepts dealing with treatment-related information is described by the medications category. In addition to drug administrations, only basic ventilation information is currently provided as ready to use concept. Just like availability of common ICU procedures, patient medication is also underdeveloped, covering mainly vasopressor administrations, as well as corticosteroids and antibiotics. The current concepts retrieving treatment-related information are mostly focused on providing data required for constructing clinical scores described in Section 3.3.4.

Ventilation is represented by several concepts: a ventilation indicator variable (vent_ind), as well as ventilation durations (vent_dur) are constructed from start and events (vent_start and vent_end). This includes any kind of mechanical ventilation (invasive via an endotracheal or tracheostomy tube), as well as non-invasive ventilation via face or nasal masks. In line with other concepts belonging to this group, the current state is far from being comprehensive and expansion to further ventilation parameters is desirable.

The singular concept addressing antibiotics (abx) returns an indicator signaling whenever an antibiotic was administered. This includes any route of administration (intravenous, oral, topical, etc.) and does neither report dosage, nor active ingredient. Finally, vasopressor administration is reported by several concepts representing different vasoactive drugs (including dopamine, dobutamine, epinephrine, noreponephrine and vasopressin), as well as different administration aspects such as rate, duration (and for use in SOFA scoring, rate administered for at least 60 minutes).

 $^{^{12}}$ Prioritizing consistency over accuracy, one could apply the same binning to datasets which report numeric values, but the concepts included with **ricu** attempt to strike a balance between consistency and amount of applied pre-processing. With the extensible architecture of data concepts, however, such categorical variants of patient demographic concepts could easily be added.

	<int></int>	<drtn></drtn>	<lgl></lgl>	<lg1></lg1>	<dbl></dbl>	<drtn></drtn>
1	201006	-40 hours	s TRUE	NA	NA	NA hours
2	201006	-16 hours	s TRUE	NA	NA	NA hours
3	201006	7 hours	s TRUE	NA	NA	NA hours
4	201006	8 hours	s NA	TRUE	NA	60 hours
5	201006	9 hours	s NA	TRUE	0.0460	NA hours
12,543	298685	612 hours	s NA	TRUE	NA	NA hours
12,544	298685	613 hours	s NA	TRUE	NA	NA hours
12,545	298685	614 hours	s NA	TRUE	NA	NA hours
12,546	298685	615 hours	s NA	TRUE	NA	NA hours
12,547	298685	616 hours	s NA	TRUE	NA	NA hours
# with	12,537	more row	3			

As cautioned in Section 3.3.2, variability in data reporting across datasets can lead to issues: the prescriptions table included with MIMIC-III, for example, reports time-stamps as dates only, yielding a discrepancy of up to 24 hours when merged with data where time-accuracy is on the order of minutes. This effect is somewhat mitigated by shifting time-stamps from midnight to mid-day, but the underlying accuracy issue of course remains. Another problem exists with concepts that attempt to report administration windows, as some datasets do not describe infusions with clear cut start/endpoints but rather report infusion parameters at (somewhat) regular time intervals. This can cause artifacts when the requested time step-size deviates from the dataset inherent time grid.

Outcomes

A group of more loosely associated concepts can be used to describe patient state. This includes common clinical endpoints, such as death or length of ICU stay, as well as scoring systems such as SOFA, the systemic inflammatory response syndrome (SIRS; Bone, Sibbald, and Sprung 1992) criterion, the National Early Warning Score (NEWS; Jones 2012) and the Modified Early Warning Score (MEWS; Subbe, Kruger, Rutherford, and Gemmel 2001).

While the more straightforward outcomes can be retrieved directly from data, clinical scores often incorporate multiple variables, based upon which a numeric score is constructed. This can typically be achieved by using concepts of type <code>rec_cncpt</code>, specifying the needed components and supplying a callback function that applies rules for score construction.

```
R> load_concepts(c("sirs", "death"), "mimic_demo", verbose = FALSE,
                keep_components = TRUE)
# A 'ts_tbl': 14,295 x 8
# Id var:
              'icustay_id'
# Index var: 'charttime' (1 hours)
       icustay_id charttime sirs death temp_comp hr_comp resp_comp wbc_comp
            <int> <drtn>
                             <dbl> <lgl>
                                              <int>
                                                      <int>
                                                                 <int>
                                                                          <int>
     1
           201006 -58 hours
                                 1 NA
                                                 NA
                                                         NA
                                                                    NA
                                                                              1
     2
           201006 -45 hours
                                 1 NA
                                                 NA
                                                         NA
                                                                    NA
                                                                              1
     3
           201006 -21 hours
                                 1 NA
                                                 NΑ
                                                         NA
                                                                    NA
                                                                              1
```

4	201006	-10	hours	2	NA	NA	NA	1	1
5	201006	0	hours	3	NA	0	1	1	1
14,291	298685	314	hours	2	NA	0	0	1	1
14,292	298685	315	hours	2	NA	0	0	1	1
14,293	298685	316	hours	2	NA	0	0	1	1
14,294	298685	317	hours	1	NA	0	0	0	1
14,295	298685	318	hours	1	TRUE	0	0	NA	1
# with	14.285	more	e rows						

Callback functions can become rather involved (especially for more complex concepts such as SOFA) and may include arbitrary arguments to tune their behavior. As callback functions to rec_cncpt objects are typically called internally from load_concepts(), arguments not used by load_concepts(), such as keep_components in the above example (causing not only the score column, but also individual score components to be retained) are forwarded¹³.

4. Examples

In order to briefly illustrate how **ricu** could be applied to real-world clinical questions, two toy examples are provided in the following sections. While the first example fully relies on data concepts that are included with **ricu**, the second one explores both how some data preprocessing can be added to an existing concept by creating a new **rec_cncpt** and how to create an new data concept altogether.

4.1. Lactate and mortality

First, we investigate the association of lactate levels and mortality. This problem has been studied before and it is widely accepted that both static and dynamic lactate indices are associated with increased mortality (Haas, Lange, Saugel, Petzoldt, Fuhrmann, Metschke, and Kluge 2016; Nichol, Bailey, Egi, Pettila, French, Stachowski, Reade, Cooper, and Bellomo 2011; Van Beest, Brander, Jansen, Rommes, Kuiper, and Spronk 2013). In order to model this relationship, we fit a time-varying proportional hazards Cox model (Therneau and Grambsch 2000; Therneau and Lumley 2015), which includes the SOFA score as a general predictor of illness severity, using MIMIC-III data. Furthermore, for the sake of this example, we are only interested in patients admitted from 2008 onwards of ages 25 to 65 years old.

¹³Some care has to be taken as when requesting multiple concepts within the same call to <code>load_concepts()</code> all involved callback functions will be called with the same forwarded arguments. When for example requesting multiple scores, it is currently not possible to enable <code>keep_components</code> for only a subset thereof. Furthermore this set-up implies that

```
+
                         patient_ids = cohort[age > 25 & age < 65],</pre>
+
                         verbose = FALSE)
R>
R> dat <- dat[, head(.SD, n = match(TRUE, death, .N)), by = c(id_vars(dat))]
R> dat <- fill gaps(dat)</pre>
R>
\mathbb{R}> dat <- replace_na(dat, c(NA, FALSE), type = c("locf", "const"),
                     by_ref = TRUE, vars = c("lact", "death"),
                     by = id_vars(dat))
R>
R> cox_mod <- coxph(
    Surv(charttime - 1L, charttime, death) ~ lact + sofa,
    data = dat
+ )
```

After loading the data, some minor pre-processing is still required before modeling: first, we want to make sure we only use data up to (and including) the hour in which the death flag switches to TRUE. After that we impute missing values for lact using a last observation carry forward (locf) scheme (observing the patient grouping) and we simply replace missing death values with the value FALSE. The resulting model fit can be visualized as:

A simple exploration already shows that the increased values of lactate are associated with mortality, even after adjusting for the SOFA score.

4.2. Diabetes and insulin treatment

For the next example, again using MIMIC-III data, we turn to the usage of co-morbidities and treatment related information. We look at the amount of insulin administered to patients in the first 24 hours from their ICU admission. In particular, we investigate if diabetic patients receive more insulin in the first day of their stay compared to non-diabetic patients. For this we create two concepts: ins24, a binned variable representing the cumulative amount of insulin administered within the first 24 hours of an ICU admission, and diab, a logical variable encoding diabetes co-morbidity.

As there already is an insulin concept available, ins24 can be implemented as rec_cncpt, loading ins with aggregation set to sum() (instead of median()) and inserting the callback function ins_cb() into the loading process. The callback function takes care of the preprocessing steps outlined above: first data is subsetted to fall into the first 24 hours of ICU admissions, followed by binning of summed values.

```
+ ins <- ins[
+ day_one(get(idx_var)), list(ins24 = sum(ins)), by = c(ids_var)
+ ]
+ ins <- ins[,
+ ins24 := list(cut(ins24, breaks = ins_breaks, right = FALSE))
+ ]
+ ins
+ }
R> ins24 <- load_dictionary("mimic", "ins")
R> ins24 <- concept("ins24", ins24, "insulin in first 24h", aggregate = "sum",
+ callback = ins_cb, target = "id_tbl", class = "rec_cncpt")</pre>
```

The binary diabetes concept can be implemented as lgl_cncpt, for which ICD-9 codes are matched using a regular expression. As we're not only interested in retrieving diabetic patients, a col_itm is more suited for data retrieval over an rgx_itm and for creating the required callback function that produces a logical vector we can use transform_fun() coupled with a function like grep_diab(). The two concepts are then combined using c() and loaded via load_concepts().

After this, we can visualize the difference between the two groups with a histogram:

The plot suggests that during the first day of ICU stay, perhaps unsurprisingly, diabetic patients receive more insulin compared to non-diabetic patients, especially as insulin dose increases.

5. Acknowledgments

This work was supported by grant #2017-110 of the Strategic Focal Area "Personalized Health and Related Technologies (PHRT)" of the ETH Domain for the SPHN/PHRT Driver Project "Personalized Swiss Sepsis Study".

References

- Adibuzzaman M, Musselman K, Johnson A, Brown P, Pitluk Z, Grama A (2016). "Closing the data loop: An integrated open access analysis platform for the mimic database." In 2016 Computing in Cardiology Conference (CinC), pp. 137–140. IEEE.
- Bennett N (2021). prt: Tabular Data Backed by Partitioned 'fst' Files. R package version 0.1.3, URL https://CRAN.R-project.org/package=prt.
- Bone RC, Sibbald WJ, Sprung CL (1992). "The ACCP-SCCM Consensus Conference on Sepsis and Organ Failure." *Chest*, **101**(6), 1481 1483. ISSN 0012-3692.
- Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y, Shieh L, Shimabukuro D, Chettipally U, Feldman MD, Barton C, et al. (2016). "Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach." JMIR medical informatics, 4(3), e28.
- Evans R (2016). "Electronic health records: then, now, and in the future." Yearbook of medical informatics, 25(S 01), S48–S61.
- Faltys M, Zimmermann M, Lyu X, Hüser M, Hyland SL, Rätsch G, Merz TM (2021). "HiRID, a high time-resolution ICU dataset (version 1.1.1)." PhysioNet.
- Fleuren LM, Klausch TLT, Zwager CL, Schoonmade LJ, Guo T, Roggeveen LF, Swart EL, Girbes ARJ, Thoral P, Ercole A, Hoogendoorn M, Elbers PWG (2020). "Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy." *Intensive Care Medicine*, **46**(3), 383–400.
- Futoma J, Hariharan S, Sendak M, Brajer N, Clement M, Bedoya A, O'Brien C, Heller K (2017). "An improved multi-output gaussian process rnn with real-time validation for early sepsis detection." arXiv preprint arXiv:1708.05894.
- Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000). "PhysioBank, PhysioToolkit, and PhysioNet." Circulation, 101(23), e215–e220.
- Haas SA, Lange T, Saugel B, Petzoldt M, Fuhrmann V, Metschke M, Kluge S (2016). "Severe hyperlactatemia, lactate clearance and mortality in unselected critically ill patients." *Intensive care medicine*, **42**(2), 202–210.
- Henry L, Wickham H (2020). rlang: Functions for Base Types and Core R and 'Tidyverse' Features. R package version 0.4.9, URL https://CRAN.R-project.org/package=rlang.
- Hyland SL, Faltys M, Hüser M, Lyu X, Gumbsch T, Esteban C, Bock C, Horn M, Moor M, Rieck B, Zimmermann M, Bodenham D, Borgwardt K, Rätsch G, Merz TM (2020). "Early prediction of circulatory failure in the intensive care unit using machine learning." *Nature Medicine*, **26**(3), 364–373.
- Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y (2017). "Artificial intelligence in healthcare: past, present and future." *Stroke and vascular neurology*, **2**(4), 230–243.

- Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG (2016). "MIMIC-III, a freely accessible critical care database." *Scientific data*, **3**, 160035.
- Johnson AEW, Aboab J, Raffa JD, Pollard TJ, Deliberato RO, Celi LA, Stone DJ (2018). "A Comparative Analysis of Sepsis Identification Methods in an Electronic Database." *Critical care medicine*, **46**(4), 494–499.
- Jones M (2012). "NEWSDIG: The National Early Warning Score Development and Implementation Group." Clinical Medicine, 12(6), 501–503. doi:10.7861/clinmedicine.12-6-501.
- Kam HJ, Kim HY (2017). "Learning representations for the early detection of sepsis with deep neural networks." Computers in biology and medicine, 89, 248–255.
- Klik M (2020). fst: Lightning Fast Serialization of Data Frames. R package version 0.9.4, URL https://CRAN.R-project.org/package=fst.
- Lee J, Scott D, Villarroel M, Clifford G, Saeed M, Mark R (2011). "Open-access MIMIC-II database for intensive care research." In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, volume 2011, pp. 8315–8.
- Moody GB, Mark RG (1996). "A database to support development and evaluation of intelligent intensive care monitoring." In *Computers in Cardiology*, pp. 657–660.
- Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG (2018). "An interpretable machine learning model for accurate prediction of sepsis in the ICU." *Critical care medicine*, **46**(4), 547–553.
- Nichol A, Bailey M, Egi M, Pettila V, French C, Stachowski E, Reade MC, Cooper DJ, Bellomo R (2011). "Dynamic lactate indices as predictors of outcome in critically ill patients." Critical Care, 15(5), R242.
- Ooms J (2014). "The jsonlite Package: A Practical and Consistent Mapping Between JSON Data and R Objects." arXiv preprint arXiv:1403.2805.
- Pollard TJ, Johnson AE, Raffa JD, Celi LA, Mark RG, Badawi O (2018). "The eICU Collaborative Research Database, a freely available multi-center database for critical care research." Scientific data, 5, 180178.
- Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016). "The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)." *JAMA*, **315**(8), 801–810.
- Subbe C, Kruger M, Rutherford P, Gemmel L (2001). "Validation of a modified Early Warning Score in medical admissions." QJM: An International Journal of Medicine, 94(10), 521–526.
- Therneau TM, Grambsch PM (2000). Modeling survival data: extending the Cox model. Springer, New York.

- Therneau TM, Lumley T (2015). "Package 'survival'." R Top Doc, 128, 112.
- Thoral PJ, Peppink JM, Driessen RH, Sijbrands EJG, Kompanje EJO, Kaplan L, Bailey H, Kesecioglu J, Cecconi M, Churpek M, Clermont G, van der Schaar M, Ercole A, Girbes ARJ, Elbers PWG, Force obotAUMCDAC, the SCCM/ESICM Joint Data Science Task (2021). "Sharing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database (AmsterdamUMCdb) Example." Critical Care Medicine, Latest Articles.
- Van Beest PA, Brander L, Jansen SP, Rommes JH, Kuiper MA, Spronk PE (2013). "Cumulative lactate and hospital mortality in ICU patients." *Annals of intensive care*, **3**(1), 6.
- Villar J, Pérez-Méndez L, Blanco J, Añón JM, Blanch L, Belda J, Santos-Bouza A, Fernández RL, Kacmarek RM, Spanish Initiative for Epidemiology and Therapies for ARDS (SIESTA) Network S (2013). "A universal definition of ARDS: the PaO2/FiO2 ratio under a standard ventilatory setting—a prospective, multicenter validation study." *Intensive Care Medicine*, **39**(4), 583–592.
- Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart C, Suter P, Thijs LG (1996). "The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure."
- Wang RZ, Sun CH, Schroeder PH, Ameko MK, Moore CC, Barnes LE (2018). "Predictive Models of Sepsis in Adult ICU Patients." In 2018 IEEE International Conference on Healthcare Informatics (ICHI), pp. 390–391.
- Wang S, McDermott MB, Chauhan G, Ghassemi M, Hughes MC, Naumann T (2020). "Mimic-extract: A data extraction, preprocessing, and representation pipeline for mimic-iii." In Proceedings of the ACM Conference on Health, Inference, and Learning, pp. 222–235.
- Wickham H, Hester J (2020). readr: Read Rectangular Text Data. R package version 1.4.0, URL https://CRAN.R-project.org/package=readr.

Affiliation:

Nicolas Bennett¹ ETH Zürich Seminar for Statistics Rämistrasse 101 CH-8092 Zurich

E-mail: nicolas.bennett@stat.math.ethz.ch

Drago Plečko¹ ETH Zürich Seminar for Statistics Rämistrasse 101 CH-8092 Zürich

E-mail: drago.plecko@stat.math.ethz.ch

Ida-Fong Ukor East Kent Hospitals NHS University Foundation Trust William Harvey Hospital Kennington Road, Willesborough Ashford TN24 0LZ

E-mail: idafong.ukor@nhs.net

Nicolai Meinshausen ETH Zürich Seminar for Statistics Rämistrasse 101 CH-8092 Zürich

E-mail: meinshausen@stat.math.ethz.ch

Peter Bühlmann ETH Zürich Seminar for Statistics Rämistrasse 101 CH-8092 Zürich

E-mail: peter.buehlmann@stat.math.ethz.ch

Journal of Statistical Software published by the Foundation for Open Access Statistics MMMMMM YYYY, Volume VV, Issue II doi:10.18637/jss.v000.i00

http://www.jstatsoft.org/

http://www.foastat.org/

Submitted: yyyy-mm-dd

Accepted: yyyy-mm-dd

¹These authors contributed equally.