	$\sigma_{1}^{\#1}$	$\sigma_{1}^{\#2}_{+}$ $\alpha_{1}^{\#1}_{+}$	$\tau_{1}^{\#1}_{\alpha\beta}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}$	$t_{1}^{\#1}$	${\mathfrak l}_{1}^{\#2}$
$\sigma_{1}^{\#1} + \alpha \beta$	$\frac{1}{k^2(2r_3+r_5)}$	0	0	0	0	0	0
$\sigma_1^{#2} + \alpha \beta$	0	0	0	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\sigma_1^{\#2} +^{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$ au_{1}^{\#2} +^{lpha}$	0	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}ikt_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}\bar{I}\sqrt{2}kt_3$
$\omega_1^{\#1}{}_{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_{1}^{\#1}_{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_1^{\#_2^2}$	0	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + ^{\alpha\beta}$	$f_1^{\#1} + ^{\alpha\beta}$	$\omega_{1}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} +^{\alpha}$

Lagrangian density $ \frac{2}{3}t_3 \; \omega_{,\alpha}^{\; \alpha \prime} \; \omega_{\kappa\alpha}^{\; \; \kappa} + f^{\alpha\beta} \; \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \; \sigma_{\alpha\beta\chi}^{\; -\frac{1}{2}} r_3 \partial_{\nu}^{\; \kappa\lambda}^{\; \; \lambda} \partial^{\prime}\omega_{,\alpha}^{\; \; \alpha} - \\ r_5 \partial_{\nu}\omega_{,\alpha}^{\; \; \kappa} \partial^{\prime}\omega_{,\alpha}^{\; \; \alpha} + \frac{1}{2} r_3 \partial_{\alpha}\omega_{,\alpha}^{\; \; \alpha} \partial_{\kappa}\omega^{\theta\kappa\lambda}^{\; \; -\frac{1}{2}} r_3 \partial_{\alpha}\omega_{,\alpha}^{\; \; \alpha} \partial_{\kappa}\omega^{\theta\kappa\lambda}^{\; \; -\frac{1}{2}} \\ \frac{1}{2} r_3 \partial_{\theta}\omega_{,\alpha}^{\; \; \alpha} \partial_{\kappa}\omega^{\theta\kappa\lambda}^{\; \; + r_5} \partial_{\theta}\omega_{,\alpha}^{\; \; \alpha} \partial_{\kappa}\omega^{\theta\kappa\lambda}^{\; \; -\frac{1}{2}} r_3 \partial_{\alpha}\omega_{,\alpha}^{\; \; \alpha} \partial_{\kappa}\omega^{\kappa\lambda\theta}^{\; \; -\frac{1}{2}} \\ r_5 \partial_{\alpha}\omega_{,\alpha}^{\; \; \alpha} \partial_{\kappa}f^{\prime}_{, $	$rac{1}{2} r_3 \partial_{lpha} \omega, ^{lpha} {}_{lpha} \partial_{lpha} \omega^{eta \kappa}, ^{lpha} {}_{lpha} \partial_{lpha} \omega^{eta \kappa}, ^{lpha} + rac{1}{2} r_3 \partial_{eta} \omega, ^{lpha} {}_{lpha} \partial_{lpha} \omega^{eta \kappa}, ^{lpha} {}_{lpha} \partial_{lpha} \omega^{eta \kappa}, ^{lpha} \partial_{$
---	---

$\omega_{2^{+}}^{\#1} \uparrow^{\alpha\beta} - \frac{3 k^{2} r_{3}}{2} 0 0$ $f_{2^{+}}^{\#1} \uparrow^{\alpha\beta} 0 0 0$ $\omega_{2^{-}}^{\#1} \uparrow^{\alpha\beta\chi} 0 0 0$		$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
	$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{3k^2r_3}{2}$	0	0
$\omega_2^{\#1} \uparrow^{\alpha\beta\chi} 0 0 0$	$f_{2+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
	$\omega_2^{\#1}$ † $^{\alpha\beta\chi}$	0	0	0

0.		٠ , -	• 3		., ,								
$f_{0}^{#2}$	†	()		0		0		0				
$\omega_0^{\#1}$	†[()		0		0		0				
:	#	1		1	m	۳	,	m	1	C		2	2
Source constraints	SO(3) irreps	$\sigma_{0}^{\#1} == 0$	$\tau_{0}^{#2} == 0$	$\tau_{0}^{\#1} - 2 i k \sigma_{0}^{\#1} = 0$	$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha == 0$	₇ #1 ^α 0	ί ₁ ο	$t_{\star}^{\#1}\alpha\beta == 0$	٦, ١	$\sigma^{*2}\alpha^{\beta} = 0$	-1+	$\sigma_{2^{-}}^{\#1}\alpha\beta\chi==0$	$\tau_{2}^{\#1}\alpha\beta=0$

 $-i\sqrt{2} kt_3$

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	0
$\tau_0^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

?	Quadratic pole	2
$\stackrel{k^{\mu}}{\longrightarrow}$?	Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} >$

(No massive particles)

	Quadratic pole	
?	Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$
?	Polarisations:	2

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$