Tutorial 1 Linear equations

1. For the following matrices $A \in \mathbb{R}^{m \times n}$ and vectors $b \in \mathbb{R}^m$, find whether there will be unique, multiple or no solutions.

(a)
$$A = \begin{bmatrix} 2 & 3 \\ -10 & -15 \\ 1 & -2 \end{bmatrix}$$
, $b = \begin{bmatrix} 3 \\ -15 \\ -2 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} 2 & -10 & 1 \\ 3 & -15 & -2 \end{bmatrix}$$
, $b = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

(c)
$$A = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$

(d)
$$A = \begin{bmatrix} 2 & 3 \\ -1 & -1 \end{bmatrix}$$
, $b = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$

- 2. Let $A \in \mathbb{R}^{m \times n}$ be a matrix, and let $b \in \mathbb{R}^m$ be a given vector. Let $y, z \in \mathbb{R}^n$ be two distinct solutions to the equations Ax = b. Is it possible that the system of equations $Ax = b_1$, where $b_1 \in \mathbb{R}^m$, $b_1 \neq b$ has a solution? When it does, is the solution unique?
- 3. Let $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$, $v_i \in \mathbb{R}, i = 1, \dots, n$ be any arbitrary non-zero column vector. Let

 $A = vv^T$, where $v^T = [v_1 \ v_2 \ \dots \ v_n]$ is called the transpose of v. What can you conclude about the solutions to the system of equations Ax = b for any $b \in \mathbb{R}^n$.

- 4. Let $w = (w_x, w_y, w_z)$ be a fixed but non-zero given vector in \mathbb{R}^3 .
 - (a) For any $v \in \mathbb{R}^3$, let $u = w \times v$ be the *vector cross product*¹ of the vectors w and v. Find the matrix A such that u = Av.
 - (b) What can you conclude about the solutions to the system of equations Ax = b for any $b \in \mathbb{R}^3$.

¹Hope you remember this from the Electromagnetic Theory course.