Zhou Yi, Signals and Systems Have Fun!	Properties	$\begin{split} \mathcal{F}\{x_{1}(t) * x_{2}(t)\} &= X_{1}(j\omega) X_{2}(j\omega), \\ \mathcal{F}\{x_{1}(t) x_{2}(t)\} &= \frac{1}{2\pi} X_{1}(j\omega) * X_{2}(j\omega) \end{split}$	2.5 Sampling
1 LTI	$\mathcal{FS}\{x(t)\} = c_k, \mathcal{FS}\{x(t-t_0)\} = c_k e^{-jk\omega_0 t_0}$ $\mathcal{FS}\{x(t)\} = c_k, \mathcal{FS}\{x^*(t)\} = c_{-k} e^{-jk\omega_0 t_0}$	2.3 DT FT $X(e^{j\omega}) = \sum_{n} x[n]e^{-j\omega n} = X(e^{j(\omega + 2\pi)}) \ (*)$	Impulse
CT DE $d^{k}_{n}(t) = d^{k}_{n}(t)$	$x(t) = \sum \frac{c_k + c_{-k} *}{2} e^{jk\omega_0 t} + j \sum \frac{c_k - c_{-k} *}{2j} e^{jk\omega_0 t}$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$	
$\sum_{k=0}^{N} a_k \frac{\mathrm{d}^k y(t)}{\mathrm{d}t^k} = \sum_{k=0}^{M} b_k \frac{\mathrm{d}^k x(t)}{\mathrm{d}t^k}$	$\mathcal{FS}\{x(t)y(t)\} = \sum_{i} c_{i} d_{k-i} = c_{k} * d_{k}$ $\mathcal{FS}\{x'(t)\} = jk\omega_{0}c_{k}$	$2\pi J 2\pi$	$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$
$\sum_{k=0}^{N} a_k x^k = a_N \prod_{i=1}^{p} (x - x_i)^{n_i}$	$\mathcal{F}\mathcal{S}\{y(t)\} = \int_{0}^{t} x(\tau) d\tau, (0 < t < T), y(t) = y(t + T)$	Examples	$P(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(\omega - k\omega_s), \omega_s = \frac{2\pi}{T}$
$y_h(t) = \sum_{i=1}^{p} (\sum_{j=0}^{n_i - 1} A_{i,j} t^j) e^{x_i t}$	$y(t) = \sum_{k \neq 0} \frac{c_k}{jk\omega_0} (e^{jk\omega_0 t} - 1) + c_0 t$	-	$x_p(t) = x(t)p(t), X_p(j\omega) = \frac{1}{T}\sum_k X(j(\omega - k\omega_s))$ (copy and paste)
If $x(t) = \sum_{k=0}^{m} C_k t^k e^{x_i t}$	2.1 DT FS	$\mathcal{F}\{[n \le N_1]\} = \frac{\sin \omega (N_1 + \frac{1}{2})}{\sin(\frac{\omega}{2})}$	If $X(j\omega) = 0(\omega > \omega_M)$, No overlap in freq domain if
$y_p(t) = (\sum_{k=0}^m B_k t^k) t^{n_i} e^{x_i t}, n_i \ge 0$	$x[n] = x[n+N]$ $i2\pi kn$	$\mathcal{F}\left\{\frac{\sin(Wn)}{\pi n}\right\} = \left[u(\omega + W) - u(\omega - W)\right] (\text{Periodic, } T = 2\pi)$	$\omega_s > 2\omega_M$ lowpass filter $\omega_c \in (\omega_M, \omega_s - \omega_M)$ to restore signal
Determine constants. DT DE	$x[n] = \sum_{k=0}^{N-1} c_k e^{\frac{j2\pi kn}{N}}, 0 \le n < N$, , , , , , , , , , , , , , , , , , , ,
$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$ $\sum_{k=0}^{N} a_{N-k} x^k = a_0 \prod_{i=1}^{p} (x-x_i)^{n_i}$	$c_k = \frac{1}{N} \sum_{l=0}^{N-1} x[l] e^{-\frac{j2\pi kl}{N}} = c_{k+N}$	$x[n] = \begin{cases} 1, n \ge 0 \\ -1, n < 0 \end{cases}$	
$\sum_{k=0}^{N} a_{N-k} x^k = a_0 \prod_{i=1}^{p} (x - x_i)^{n_i}$	11 1-0	$\mathcal{F}\{x[n]\} = \frac{2}{1 - e^{-j\omega}}$	
$y_h[n] = \sum_{i=1}^p (\sum_{j=0}^{n_i - 1} A_{i,j} n^j) x_i^n$	Examples	$\mathcal{F}\{u[n]\} = \frac{1}{1 - e^{-j\omega}} + \pi \sum_{k = -\infty}^{+\infty} \delta(\omega - 2k\pi)$	
if $x[n] = \sum_{i=0}^{m} C_i n^i s^n$	$(1, n \le N_1)$	$\mathcal{F}\{e^{j\omega_0 n}\} = \sum_{n=-\infty}^{+\infty} e^{-j(\omega-\omega_0)n} = 2\pi \sum \delta(\omega-\omega_0 - 2k\pi)$	Zero-Order Holding
$y_n[n] = (\sum_{k=0}^{m} B_k n^k) n^{n_i} x_i^n, n_i \ge 0$	$x[n] = \begin{cases} 1, n <= N_1 \\ 0, N_1 < n <= \frac{N}{2} \end{cases},$	$\mathcal{F}\{\binom{n+r-1}{n}a^nu[n]\} = (1 - ae^{-j\omega})^{-r}, a < 1$	
Special: $x_i = 1$ Unit Impulse Resp	$\mathcal{L}S(x[u]) = \begin{cases} \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin(2\pi k/2N)}, k \neq tN \end{cases}$		$x_0(t) = \sum_{k=-\infty}^{+\infty} x(kT) p_0(t - kT) = x(t) p(t) * p_0(t)$
$h_p(t) = 0$	$\mathcal{FS}\{x[n]\} = \begin{cases} \frac{\sin[(2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin(2\pi k/2N)}, k \neq tN \\ \frac{2N_1 + 1}{N}, k = tN \end{cases}$	Periodic Signals	$p_0(t) = u(t) - u(t-T)$
Matching $\delta^{(k)}(t)$, $\delta^{(k-1)}(t)$, $\delta^{(k-2)}(t)$ (Only singularity part)	$\mathcal{FS}\{e^{j\omega_0 n}\} = \begin{cases} 1, k = m + tN \\ 0, otherwise \end{cases}, \omega_0 = \frac{2\pi m}{N}$	$x[n] = x[n+N]$, Fourier Series $x[n] = \sum_{k=0}^{N-1} c_k e^{\frac{j2\pi kn}{N}}$	$P(i\omega) = Te^{-\frac{i\omega T}{2}} Sa(\frac{\omega T}{2})$
\int_{0-}^{0+} to determine coefficient	2.2 CT FT	$c_k = \frac{1}{N} \sum x[l] e^{\frac{-j2\pi kl}{N}} = c_{k+N}$	$X_0(j\omega) = \sum_{k=-\infty}^{+\infty} e^{-\frac{j}{2}} Sa(\frac{\omega T}{2}) X(j(\omega - k\omega_s))$
$y(t) = \int_{\tau} x(\tau)h(t-\tau)$	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$	$\mathcal{F}\{x(t)\} = \sum_{k=0}^{N-1} c_k \mathcal{F}\{e^{\frac{j2\pi kn}{N}}\} = \sum_{k=-\infty}^{+\infty} 2\pi c_k \delta(\omega - \frac{2k\pi}{N})$	$X_{0}(j\omega) = \sum_{k=-\infty}^{+\infty} e^{-\frac{j\omega T}{2}} Sa(\frac{\omega T}{2}) X(j(\omega - k\omega_{s}))$ $H_{r}(j\omega) = \frac{e^{-\frac{j\omega T}{2}}}{Sa(\frac{\omega T}{2})}, \omega < \omega_{c} $
2 Fourier Analysis	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$	$\mathcal{F}\{x(t)\} = \sum_{k=0}^{\infty} c_k \mathcal{F}\{e^{-tN}\} = \sum_{k=-\infty}^{\infty} 2\pi c_k o(\omega - \frac{2\pi c_k}{N})$	$Sa(\frac{\omega_1}{2})^{\gamma_1}$
CT FS	Examples	CT FS and DT FT	
$x(t) = x(t+T), \omega_0 = \frac{2\pi}{T}$ $c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$			
	$\mathcal{F}\{x(t) = a\left[u(t + \frac{\tau}{2}) - u(t - \frac{\tau}{2})\right]\} = a\tau Sa\left(\frac{\omega\tau}{2}\right)$ $\mathcal{F}(x(t) = a^{-\alpha t}u(t), (\alpha > 0) = -1$	$X(e^{j\omega}) = \sum_{n} x[n]e^{-j\omega n} = X(e^{j(\omega+2\pi)})$	
$\tilde{x}(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t} = \begin{cases} x(t) \\ \frac{x(t+)+x(t-)}{2} \end{cases}$	$\mathcal{F}\{x(t) = e^{-\alpha t} u(t), (\alpha > 0)\} = \frac{1}{\alpha + j\omega}$ $\mathcal{F}\{\delta(t)\} = 1, \mathcal{F}\{1\} = 2\pi\delta(\omega)$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$ $c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$	
2	$\mathcal{F}\{e^{j\omega_0 t}\} = 2\pi\delta(\omega - \omega_0)$	$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t}$	Linear Interpolation
Real Signals	$\mathcal{F}\{\operatorname{sgn}(t)\} = \frac{2}{i\omega}$	$x[n] = c_{-n} \to x(t) = X(e^{j\omega_0 t})$	
	Ju	M[n] = -n + M(n) + M(n)	$x_1(t) = \sum_{n=-\infty}^{+\infty} x(kT)p_1(t-kT), p_1(t) = (1-\frac{ t }{T})[u(t+T) - \frac{ t }{T}]$
When $c_k *= c_{-k}$	Periodic Signals	Properties	u(t-T)
$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t))$	$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t}$		$P_1(j\omega) = TSa^2(\frac{\omega T}{2})$
∞	$\mathcal{F}\{x(t)\} = \int_{-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t} e^{-j\omega t} dt$	$x_k[n] = \begin{cases} x[n/k], n/k \in \mathbb{Z} \\ 0, otherwise \end{cases}$	$X_1(j\omega) = \sum_{k=-\infty}^{+\infty} Sa^2(\frac{\omega T}{2})X(j(\omega - k\omega_s))$
$= A_0 + \sum_{k=1} A_k \cos(k\omega_0 t + \phi_k)$	$= 2\pi \sum_{k=-\infty}^{+\infty} c_k \delta(\omega - k\omega_0)$	$\mathcal{F}\{x_k[n]\} = X(e^{jk\omega})$ $\mathcal{F}\{x[n] - x[n-1]\} = (1 - e^{-j\omega})X(e^{jk\omega})$	$H_r(j\omega) = Sa^{-2}(\frac{\omega T}{2}), \omega < \omega_c $
$ c_k ^2 = c_{-k} ^2 = \frac{a_k^2 + b_k^2}{4}$	Parseval Theorem	$\mathcal{F}\{n\mathbf{x}[n]\} = j\frac{\mathrm{d}\mathbf{x}(e^{j\omega})}{\mathrm{d}\omega}$	
•	$\int_{-\infty}^{+\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 d\omega$	$\mathcal{F}\{\sum_{k\leq n} x[k]\} = \frac{X(e^{j\omega})}{(1-e^{-j\omega})} + \pi X(e^{j0}) \sum \delta(\omega - 2k\pi)$	
Examples	$J_{-\infty}$ $ x(t) $ $dt = 2\pi J_{-\infty}$ $ x(t) $ dw	$\int (\sum_{k \le n} x_k[\kappa]) = \frac{1}{(1 - e^{-j\omega})} + iK(e^{-j\omega}) \sum_{k \ge n} (\omega - 2\kappa R)$	
$x(t) = a\left[u(t + \frac{\tau}{2}) - u(t - \frac{\tau}{2})\right]$	Properties	$\mathcal{F}\{x[n]y[n]\} = \frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$ 2.4 DFT	Processing
$c_0 = a \frac{\tau}{T}$	$\mathcal{F}\{x(t)\} = X(j\omega), \mathcal{F}\{X(jt)\} = 2\pi x(j^2\omega)$	$X[k] = X(e^{\frac{j2\pi k}{N}})$ (sampling DT FT)	
$c_k = \frac{a\tau}{T} Sa(\frac{k\omega_0\tau}{2})$	$\mathcal{F}\{x(t-\tau)\} = X(j\omega)e^{-j\omega\tau}$	Distortionless	$y(t) = x(t) * h(t), y_d[n] = x_d[n] * h_d[n], x_d[n] = x(nT), y_d[n] =$
$Sa(t) = \begin{cases} \frac{\sin(t)}{t}, t \neq 0\\ 1, t = 0 \end{cases}$	$\mathcal{F}\{x(\alpha t)\} = \frac{1}{ \alpha } X(\frac{j\omega}{\alpha})$	$Y(j\omega) = X(j\omega)H(j\omega) = AX(j\omega)e^{-j\omega\tau}$	y(nT) $Y_d(e^{j\Omega}) = X_d(e^{j\Omega})H_d(e^{j\Omega})$ (also band limited)
$3u(t) - \left(1, t = 0\right)$	$\mathcal{F}\{x^*(t)\} = X^*(-j\omega)$	$Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}) = AX(e^{j\omega})e^{-j\omega n_0}$	
	$\mathcal{F}\{x'(t)\} = j\omega X(j\omega), \mathcal{F}\{tx(t)\} = j\frac{\mathrm{d}X(j\omega)}{\mathrm{d}\omega}$	0 7.1	$\begin{split} X_d(e^{j\Omega}) &= X_p(\frac{j\Omega}{T}) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j\frac{j(\Omega - 2k\pi)}{T}) \\ H_d(e^{j\Omega}) &= H(\frac{j\Omega}{T}), -\pi \leq \Omega < \pi \end{split}$
Parseval Theorem	$\mathcal{F}\left\{\int_{-\infty}^{t} x(\tau) d\tau\right\} = \frac{X(j\omega)}{j\omega} + \pi X(0)\delta(\omega)$	Group Delay	$\Pi_d(e^{r-r}) = \Pi(\frac{r}{T}), -\pi \leq \Omega < \pi$
$\frac{1}{T} \int_{T} x(t) ^{2} dt = \sum_{k} c_{k} ^{2} = A_{0}^{2} + \frac{1}{2} \sum_{k \ge 1} A_{k}^{2}$	$\mathcal{F}\left\{-\frac{x(t)}{it} + \pi x(0)\delta(t)\right\} = \int_{-\infty}^{\omega} X(j\eta) d\eta$	$\tau(\omega) = -\frac{\mathrm{d}}{\mathrm{d}\omega}\phi(H(j\omega))$	If $H(j\omega)$ also band limited (for $ \omega > \frac{\omega_s}{2}$), $h_d[n] = Th(nT)$