SEMINAR 10

We will begin by stating and proving the characterization theorem for subspaces,

- 1) Which of the following subsets is a subspace in the space mentioned nearby:
 - a) $A = \{(x, y) \in \mathbb{R}^2 \mid ax + by = 0\}, (a, b \in \mathbb{R} \text{ are given}) \text{ in } \mathbb{R}^2;$
 - b) D = [-1, 1] in $\mathbb{R}\mathbb{R}$;
 - b') $D' = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ in $\mathbb{R}\mathbb{R}^2$;
 - b") $D'' = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 \le 1\}$ in \mathbb{R}^n ;
 - c) $P_n(\mathbb{R}) = \{ f \in \mathbb{R}[X] \mid \operatorname{grad} f \leq n \}$ in $\mathbb{R}[X]$ $(n \in \mathbb{N} \text{ is given});$
 - d) $B = \{ f \in \mathbb{R}[X] \mid \operatorname{grad} f = n \}$ in $\mathbb{R}[X]$ $(n \in \mathbb{N} \text{ is given})?$
- 2) Let V be a $K\text{-vector space},\,A\leq_K V$ and $C_VA=V\setminus A.$
 - i) Is $C_V A$ a subspace in $_K V$?
 - ii) What about $C_V A \cup \{0\}$?
- 3) Let V, V' be K-vector spaces, $f: V \to V'$ a linear map, $A \leq_K V$ and $A' \leq_K V'$. Show that:
 - a) $f(A) = \{ f(a) \in V' \mid a \in A \} \le_K V';$
 - b) $f^{-1}(A') = \{x \in V \mid f(x) \in A'\} \le_K V.$