Class 09: Halloween Mini-Project

Rahul Nedunuri (PID: A16297840)

Here we analyze a candy dataset from the 538 website. This is a csv file from their GitHub repository.

Importing candy data

```
#install.packages("skimr")
candy_file <- "candy-data.csv"

candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choc	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedr	icewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	0)	0.732	0	.860	66.97173	
3 Musketeers	0	1	0)	0.604	0	.511	67.60294	
One dime	0	0	0)	0.011	0	.116	32.26109	
One quarter	0	0	0)	0.011	0	.511	46.11650	
Air Heads	0	0	0)	0.906	0	.511	52.34146	

Q1. How many different candy types are in this dataset?

```
length(unique(rownames(candy)))
```

Almond Joy

0.465

0.767

50.34755

```
[1] 85
```

There are 85 different candy types in this dataset.

Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity)
```

[1] 38

There are 38 fruity candy types in the dataset.

What is your favorate candy?

Q3. What is your favorite candy in the dataset and what is its winpercent value?

```
candy["Haribo Gold Bears", ]$winpercent
```

[1] 57.11974

My favorite candy is Haribo Gold Bears and its win percent value is 57.12%.

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
```

[1] 76.7686

Kit Kat's win percent is 76.77%.

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

Tootsie Roll's win percent is 49.65%.

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

library("skimr")
skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcom	plete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Win percent appears to be on a different scale compared to the rest of the columns. Win percent is in the format ___._% while the rest of the columns are proportions aka 0._

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

The 1 likely means that that row (type) of candy contains chocolate. The 0 likely means that the type of candy doesn't contain chocolate.

```
inds_sorted <- order(candy$winpercent)
head(candy[inds_sorted, ])</pre>
```

	chocolate	fruity	carar	nel j	peanutyalm	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
Root Beer Barrels	0	0		0		0	0	
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
Root Beer Barrels		0	1	0	1		0.732	0.069
	winpercent	5						
Nik L Nip	22.44534	1						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499	9						
Super Bubble	27.30386	3						
Jawbusters	28.12744	1						
Root Beer Barrels	29.70369	9						

Candy with lowest win percent is Nik L Nip with 22.45%.

Q8. Plot a histogram of winpercent values

```
library(ggplot2)

ggplot(candy) + aes(winpercent) +
  geom_histogram(bins = 5)
```


Q9. Is the distribution of winpercent values symmetrical?

The distribution looks to be asymmetrical and skewed to the lower win percent values. This could be due to outliers with very low winpercent values.

Q10. Is the center of the distribution above or below 50%?

The center is below 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
choc <- candy[candy$chocolate == 1, ]
fruity <- candy[candy$fruity == 1, ]

choc_mean_win <- mean(choc$winpercent)
fruity_mean_win <- mean(fruity$winpercent)
paste("chocolate avg win ranking", choc_mean_win)</pre>
```

[1] "chocolate avg win ranking 60.9215294054054"

```
paste("fruity avg win ranking", fruity_mean_win)
```

[1] "fruity avg win ranking 44.1197414210526"

On average, chocolate candy is higher ranked than fruity candy.

Q12. Is this difference statistically significant?

```
t.test(choc$winpercent, fruity$winpercent)
```

```
Welch Two Sample t-test
```

```
data: choc$winpercent and fruity$winpercent
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974
```

From a two sample t-test, the p-value is smaller than 0.05 so the difference between chocolate and fruity candy winpercent ratings is statistically different at the 95% confidence level.

Overall Candy Ratings

Q13. What are the five least liked candy types in this set?

```
head(candy[order(candy$winpercent),])
```

	${\tt chocolate}$	fruity	caran	nel	peanutyalr	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
Root Beer Barrels	0	0		0		0	0	
	crispedrio	cewafer	hard	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325

Super Bubble		0	0	0	0	0.162	0.116
Jawbusters		0	1	0	1	0.093	0.511
Root Beer Barrels		0	1	0	1	0.732	0.069
	winpercent						
Nik L Nip	22.44534						
Boston Baked Beans	23.41782						
Chiclets	24.52499						
Super Bubble	27.30386						
Jawbusters	28.12744						
Root Beer Barrels	29.70369						

The 5 least liked can dy types are Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, and Jaw busters $\,$

Q14. What are the top 5 all time favorite candy types out of this set?

head(candy[order(candy\$winpercent, decreasing=T),])

	chocolate	fruity	caram	el j	peanutyaln	nondy	nougat
Reese's Peanut Butter cu	p 1	. 0		0		1	0
Reese's Miniatures	1	. 0		0		1	0
Twix	1	. 0		1		0	0
Kit Kat	1	. 0		0		0	0
Snickers	1	. 0		1		1	1
Reese's pieces	1	. 0		0		1	0
	crispedri	cewafer	hard	bar	pluribus	sugai	percent
Reese's Peanut Butter cu	р	0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
Reese's pieces		0	0	0	1		0.406
	pricepero	ent win	percen	t			
Reese's Peanut Butter cu	р 0.	651 84	4.1802	9			
Reese's Miniatures	0.	279 8:	1.8662	26			
Twix	0.	906 8:	1.6429	1			
Kit Kat	0.	511 70	6.7686	0			
Snickers	0.	651 76	6.6737	'8			
Reese's pieces	0.	651 73	3.4349	9			

The top 5 candies are Reese's Peanut Butter cups, Reese's Miniatures, Twix, Kit Kat, and Snickers

Q15. Make a first barplot of candy ranking based on winpercent values.

```
#Start with all black with the same number of rows as the candy df.
my_cols=rep("black", nrow(candy))

my_cols[as.logical(candy$chocolate)] = "brown"
#my_cols[as.logical(candy$bar)] = "navy"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, rownames(candy)) +
   geom_col(width=1,fill=my_cols) +
   theme(axis.text.y=element_text(size=3)) +
   labs(y= "Candy Type", x = "Win percentage")
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col(width=1,fill=my_cols) +
  #theme(axis.text.y=element_text(size=3)) +
```


You can insert any image using this markdown syntax ![caption](filename or url)

Q17. What is the worst ranked chocolate candy?

Based on the graph, Sixlets is the worst ranked chocolate candy.

Q18. What is the best ranked fruity candy?

Based on the graph, Starburst is the best ranked fruity candy.

Figure 1: A plot with better aspect ratio

Taking a look at pricepercent

```
candy$pricepercent
```

```
[1] 0.860 0.511 0.116 0.511 0.511 0.767 0.767 0.511 0.325 0.325 0.511 0.511 [13] 0.325 0.511 0.034 0.034 0.325 0.453 0.465 0.465 0.465 0.465 0.465 0.093 0.918 [25] 0.918 0.918 0.511 0.511 0.511 0.116 0.104 0.279 0.651 0.651 0.325 0.511 [37] 0.651 0.441 0.860 0.860 0.918 0.325 0.767 0.767 0.976 0.325 0.767 0.651 [49] 0.023 0.837 0.116 0.279 0.651 0.651 0.651 0.965 0.860 0.069 0.279 0.081 [61] 0.220 0.220 0.976 0.116 0.651 0.651 0.116 0.116 0.220 0.058 0.767 0.325 [73] 0.116 0.755 0.325 0.511 0.011 0.325 0.255 0.906 0.116 0.116 0.313 0.267 [85] 0.848
```

If we want to see good candies to buy in terms of high winpercent and lowest pricepercent, we can plot these two variables and then see the best candy for the least amount of money.

```
ggplot(candy) +
  aes(x=winpercent, y=pricepercent, label=(rownames(candy))) +
  geom_point(col=my_cols) +
  geom_text()
```


To avoid the labels from colliding and overlapping (overplotting), we can use an add-on package called ggrepel

```
library(ggrepel)

ggplot(candy) +
  aes(x=winpercent, y=pricepercent, label=(rownames(candy))) +
  geom_point(col=my_cols) +
  geom_text_repel()
```

Warning: ggrepel: 50 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Let's adjust the max.overlaps argument for geom_text_repel()

```
# Too hard to see pink labels
my_cols[as.logical(candy$fruity)] = "red"

ggplot(candy) +
   aes(x=winpercent, y=pricepercent, label=(rownames(candy))) +
```

```
geom_point(col=my_cols) +
geom_text_repel(max.overlaps = 10, col=my_cols)
```

Warning: ggrepel: 50 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's miniatures have a very high winpercent and low price percent.

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

head(candy[order(candy\$pricepercent, decreasing=T),])

	chocolate	fruity	caramel	peanutyalmondy	nougat
Nik L Nip	0	1	0	0	0
Nestle Smarties	1	0	0	0	0
Ring pop	0	1	0	0	0
Hershey's Krackel	1	0	0	0	0

Hershey's Milk Chocolate	1	0		0		0	0
Hershey's Special Dark	1	0		0		0	0
	crispedricewa	afer	hard	bar	pluribus	sugar	percent
Nik L Nip		0	0	0	1		0.197
Nestle Smarties		0	0	0	1		0.267
Ring pop		0	1	0	0		0.732
Hershey's Krackel		1	0	1	0		0.430
Hershey's Milk Chocolate		0	0	1	0		0.430
Hershey's Special Dark		0	0	1	0		0.430
	${\tt pricepercent}$	winp	percer	nt			
Nik L Nip	0.976	22	2.4453	34			
Nestle Smarties	0.976	37	7.8871	L9			
Ring pop	0.965	35	5.2907	76			
Hershey's Krackel	0.918	62	2.2844	18			
Hershey's Milk Chocolate	0.918	56	5.4905	50			
Hershey's Special Dark	0.918	59	9.2361	12			

The most expensive types are Nik L Nip, Ring pop, Nestle Smarties, Hershey's Krackel, Hershey's Milk Chocolate.

The least popular of these is Nik L Nip.

Exploring the correlation structure

```
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Anti correlated variables include: Fruity and chocolate fruity and bar chocolate and hard bar and pluribus fruity and pricepercent fruity and winpercent

Q23. Similarly, what two variables are most positively correlated?

Most positively correlated are chocolate and winpercent

Principal Component Analysis

```
pca <- prcomp(candy, scale=T)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                 PC4
                                                        PC5
                                                                PC6
                                                                        PC7
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Standard deviation
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion
                       0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                   PC11
                                                           PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
```

Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

Plot my main PCA score plot with ggplot.

```
plot(pca$x[,1:2], col=my_cols, pch=16)
```


Warning: ggrepel: 54 unlabeled data points (too many overlaps). Consider

PCA Space Map


```
#library(ggrepel)

p +
  theme(legend.position = "none") +
  labs(title="Halloween Candy PCA Space",
       subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown caption="Data from 538")
```

Warning: ggrepel: 59 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

Loadings plot

```
loadings <- as.data.frame(pca$rotation)
ggplot(loadings) +
  aes(PC1, reorder(rownames(loadings), PC1)) +
  geom_col()</pre>
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Positive direction includes fruity, pluribus, and hard candy. This makes sense since these were positively correlated with one another in the correlation matrix earlier!