High-Dimension Human Value Representation in Large Language Models

Samuel Cahyawijaya* Delong Chen* Yejin Bang* Leila Khalatbari

Bryan Wilie* Ziwei Ji Etsuko Ishii Pascale Fung³

The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Introduction

- With various approaches of human value alignment, there is an urgent need to understand the scope and nature of human values injected into these LLMs before their deployment and adoption.
- In this work, we propose UniVar, a highdimensional neural representation of symbolic human value distributions in LLMs, orthogonal to model architecture and training data.
- Through UniVaR, we visualize and explore how 15 LLMs prioritize different values in 25 languages and cultures, shedding light on complex interplay between human values and language modeling.

What is UniVar?

UniVaR: A High-Dimension Embedding Representation of Human Values - continuous and scalable -

- Through UniVar, we aim to learn a cultural value embedding that represents the information in value-decisive aspects of LLMs.
- What makes a good human value embedding
- **1** Maximize correlation with value-decisive aspects embedded in LLMs
- 2 Minimize other superfluities such as model-specific architecture, typological variation, writing styles, other writing artifacts, etc.
- Formally, some factors in LLMs contribute towards aligning with certain human values and otherwise, value-agnostic, i.e., $\theta =$ $\phi(\vartheta_{\text{value}}, \vartheta_{\text{other}})$, we extract the ϑ_{value} through:

$$\max_{Z} \underbrace{I(\vartheta_{\text{value}}; Z)}_{\substack{\text{maximizing} \\ \text{correlation}}} - \underbrace{H(Z)}_{\substack{\text{minimizing} \\ \text{superfluity}}}$$

• How? Through a surrogate task to learn value of LLMs via value eliciting question.

Building UniVaR

• Value Eliciting Ques-We gather 87 tion. core values from literature in philosophy, social science, and psychology; and generate 4296 value eliciting questions. Using 25 LLM values, we end up with $\sim 1M$ QA pairs.

• Multi-view Value Embedding Learning - We adopt contrastive learning using the InfoNCE loss function to learn values across different models and languages.

Value Embedding with UniVaR

Sample random subsets from

 $X = \left\{ \left\langle Q_j, A_j \right\rangle \right\}_{i=1}^M$

(Top:) UniVaR captures meaningful representation in OOD value-eliciting QAs which (Bottom:) are value-relevant with minimal superfluity.

UMAP Visualization of UniVaR value embeddings.

UniVaR embedding distances demonstrate a strong correlation with those of human values. (Left:) Sharing the same value, the UniVaR representations of ChatGPT-French and Mixtral-German are closer. (Right:) Reflecting contrasting values, the UniVaR representations of ChatGPT-English and ChatGPT-Chinese are further apart.

- LLMs show diverse cultural values across languages, especially the one trained on natural data.
- Cultural values in LLMs tend to be more similar within the same language, although there are some variability from one LLM to the others.
- Translation-heavy LLMs tend to show more similar value across languages, indicating less cultural relevance on regions where the language are spoken.

