Four One

October 28, 2024

Contents

1	Objectives Vector Space			1
2				1
	2.1	Exam	ples	2
		2.1.1	The zero vector space	2
		2.1.2	R ⁿ with componentwise addition and scalar multipli-	
			cation	2
		2.1.3	$M_{m\times n}$ with matrix addition and scalar multiplication .	2
		2.1.4	P _n the set of all polynomials of degree n or less with	
			regular polynomial addition and scalar multiplication.	2
		2.1.5	C(-inf,inf): all functions continuous on R	2
	2.2	Deter	mine if this is a Vector Space	2
3	Theorem		3	

1 Objectives

• Vector space and subspace

2 Vector Space

A vector space is a set V of objects called vectors with a field of scalars, we will use the field of real numbers, and operation denoted by + that combines vectors, and an operation denoted * that combines a scalar and a vector, such that for u,v,w, objects in V and k,l, and m scalars in R

1. $u+v \in V$

- 2. u+v = v+u
- 3. u+(v+w) = (u+v) + w
- 4. There exists a zero 0, vector such that 0+u=u+0=u
- 5. For each u in V, there exists -u such that u + -u = 0
- 6. $ku \in V$
- 7. k(u+v) = ku + kv
- 8. (k+m)u = ku + mu
- 9. (km)u = k(mu)
- 10. 1 * u = u

2.1 Examples

2.1.1 The zero vector space

Nothing $R = \{0\}$ $R^2 = \{(0,0)\}$

2.1.2 Rⁿ with componentwise addition and scalar multiplication

$$v + u = (v_1 + u_1 + ... + v_n + u_n) ku = (kv_1, kv_2, ..., kv_n)$$

2.1.3 $M_{m\times n}$ with matrix addition and scalar multiplication

Any polynomial of degree n or less

2.1.5 C(-inf,inf): all functions continuous on R

2.2 Determine if this is a Vector Space

- 1. The set V of all 2 \times 2 matricies, and the vector operation to be matrix multiplication
 - Vector operation in this case A + B = AB
 - Not a vector space

- 2. Determine if the set of positive Real numbers: R^+ with the operations of u+v=uv real number multiplication and $ku=u^k$ is a vector space
 - $\bullet \ A + B = AB$
 - $\bullet \ kA = A^k$
 - Not a vector space

3 Theorem

Let V be a vector space, u a vector in V and k a scalar;

- $0\mathbf{u} = 0$
- $\overrightarrow{0} = 0(-1)u = -u$
- If ku = 0 then k = 0 or u = 0