EVML3

ML PERFORMANCE

JEROEN VEEN

QUIZ TIME

- Individual, multiple-choice questions
- Online: http://www.socrative.com room 1PTGB6PY
- Open book quiz, so books and slides can be consulted
- HAN student number, so NOT your name, nickname or anything else.
- Quiz starts exactly at class hour and takes 10 minutes.
- Be on time and have your equipment prepared.

CONTENTS

- Confusion matrix
- Evaluating classifiers
- Learning curves

THE BOY WHO CRIED WOLF

"Wolf" is a **positive class**.

"No wolf" is a negative class

An Aesop's Fable ~620 BCE

Source: Sam Taplin

CONFUSION MATRIX

ACTUAL

(Type I error)

True Positive (TP)

Reality: A wolf threatened. Shepherd said: "Wolf."

Outcome: Shepherd is a hero.

False Positive (FP)

Reality: No wolf threatened. Shepherd said: "Wolf."

Outcome: Villagers are angry at shepherd for waking them up.

False Negative (FN)

Reality: A wolf threatened. Shepherd said: "No wolf."

Outcome: The wolf ate all the sheep.

Type II error)

True Negative (TN)

Reality: No wolf threatened. Shepherd said: "No wolf." Outcome: Everyone is fine.

ACCURACY

Fraction of predictions the model got right

$$\label{eq:accuracy} Accuracy = \frac{Number\ of\ correct\ predictions}{Total\ number\ of\ predictions}$$

For binary classification

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

ACCURACY VS PRECISION

accuracy is closeness of the measurements to a specific value, while **precision** is the closeness of the measurements to each other.

PRECISION AND RECALL

- Precision, fraction of correct positive predictions
 - Σ True positive / Σ Predicted condition positive

$$precision = \frac{TP}{TP + FP}$$

Recall, probability of detection

 Σ True positive / Σ Condition positive

$$recall = \frac{TP}{TP + FN}$$

True Positive (TP)

Reality: A wolf threatened. Shepherd said: "Wolf." Outcome: Shepherd is a hero.

False Negative (FN)

ecall

Reality: A wolf threatened. Shepherd said: "No wolf." Outcome: The wolf ate all the sheep.

False Positive (FP)

Reality: No wolf threatened. Shepherd said: "Wolf." Outcome: Villagers are angry at shepherd for waking them up.

True Negative (TN)

Reality: No wolf threatened. Shepherd said: "No wolf." Outcome: Everyone is fine.

HAN_UNIVERSITY
OF APPLIED SCIENCES

PRECISION AND RECALL

.

Recall = sensitivity = true positive rate (TPR)

HAN_UNIVERSITY
OF APPLIED SCIENCES

SKLEARN CLASSIFICATION REPORT

```
>>> from sklearn.metrics import classification report
>>> y true = [0, 1, 2, 2, 2]
>>> y pred = [0, 0, 2, 2, 1]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification report(y true, y pred, target names=target names))
             precision
                          recall f1-score support
    class 0
                  0.50
                            1.00
                                      0.67
                                                   1
    class 1
                  0.00
                            0.00
                                      0.00
                                                   1
    class 2
             1.00
                            0.67
                                      0.80
                                      0.60
    accuracy
  macro avg
                                                   5
                  0.50
                            0.56
                                      0.49
weighted avg
                  0.70
                            0.60
                                      0.61
>>> y pred = [1, 1, 0]
>>> y true = [1, 1, 1]
>>> print(classification report(y true, y pred, labels=[1, 2, 3]))
             precision
                          recall f1-score support
          1
                  1.00
                            0.67
                                      0.80
                                                   3
          2
                  0.00
                            0.00
                                      0.00
          3
                  0.00
                            0.00
                                      0.00
                                                   0
   micro avg
                  1.00
                                      0.80
                            0.67
                                                   3
   macro avg
                  0.33
                            0.22
                                      0.27
                                                   3
weighted avg
                  1.00
                            0.67
                                      0.80
                                                   3
```

F1 SCORE

- To fully evaluate the effectiveness of a model, you must examine
 both precision and recall
- F1 score is the harmonic mean of precision and recall

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

MANY METRICS

	voron Allo tosts von de de l		Source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic		
Predic	pen, is de test goed", zegt Reusken.	n tigative "	$= \frac{\text{Prevalence}}{\sum \text{Total population}}$	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
		g Zitive, F _{ror}	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
		s rttive	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Predicted condition negative}}$	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		e rate -out, se alarm <u>ositive</u> negative	Positive likelihood ratio (LR+) = TPR FPR	= <u>LR-</u>	F ₁ score = 2 · Precision · Recall Precision + Recall
		True (TNR) gative hegative	Negative likelihood ratio (LR-) = FNR TNR		

PRECISION/RECALL TRADE-OFF

Decision threshold

$$precision = \frac{TP}{TP + FP} \qquad recall = \frac{TP}{TP + FN}$$

Source: https://en.wikipedia.org/wiki/Tug_of_war#/media/File:Touwtrekken.jpg

ROC CURVE

• probability of detection vs probability of false alarm at different decision thresholds.

HAN_UNIVERSITY
OF APPLIED SCIENCES

COST OF CLASSIFICATION

- Sometimes false negatives don't hurt as much as false positives Think of a poisonous mushroom detector....
- Use the ROC curve (receiver operating characteristics) to help balance the cost of classification

ROC AREA UNDER THE CURVE (AUC)

MULTICLASS CONFUSION MATRIX

Source: https://miro.medium.com/max/1400/1*jtoE1zEJaG0JvGIX3jOTFQ.png

SPLITTING DATA

Slice data into three subsets: Training, validation and test data

- Make sure that your subsets meet the following conditions:
 - Large enough to yield statistically meaningful results.
 - Representative of the data set as a whole.
 E.g. don't pick a test set with different characteristics than the training set.

CROSS-VALIDATION

- Estimate of a model's generalization performance
- Break the data into folds

 For small datasets, where extra computational burden isn't a big deal, you should run cross-validation.

LEARNING CURVES

A powerful diagnostic tool!

```
from sklearn.model_selection import learning_co
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from matplotlib import pyplot as plt
import numpy as np

X, y = load_digits(return_X_y=True)
estimator = SVC(gamma=0.001)
```

```
1.000
     0.975
     0.950
e 0.925
     0.900
     0.875
     0.850
                                                                      train
                                                                      test
                     400
                            600
                                           1000
                                                  1200
              200
                                    800
                                                          1400
                                                                 1600
                                       data size
```

```
train_sizes, train_scores, test_scores, fit_times, _ = learning_curve(estimator, X, y, cv=30,return_times=True)
```

plt.plot(train_sizes,np.mean(train_scores,axis=1))

LEARNING CURVES

- Cost as a function of the training set size (or the training iteration)
- Examine evolution of train and validation learning curves

LEARNING CURVES

Convergence of curves

BIAS PROBLEM

- High validation error indicates a prediction bias problem
- Underfitting usually gives high bias

VARIANCE PROBLEM

- Low gap indicates low prediction variance
- Overfitting usually gives high variance

PREDICTION BIAS-VARIANCE TRADEOFF

Central problem in supervised learning

IRREDUCIBLE ERROR

- Noise
- Cannot be predicted
- · Loss cannot be reduced
- Outliers

MORE ON PREDICTION BIAS

- Average of predictions ≈ average of labels in test set
- A significant difference shows there is bias
- Possible causes:
 - Underfitting, e.g. incomplete feature set, overly strong regularization
 - Biased training samples
 - (Noisy data set)

QUESTION

- We know that on average, 1% of all emails are spam.
- My spam filter predicts that 20% of my incoming mail is spam.

What can we say about my spam filter?

COMPUTING CROSS-VALIDATED METRICS

Predefined scoring parameters

Scoring	Function	Comment
Classification		
'accuracy'	metrics.accuracy_score	
'balanced_accuracy'	metrics.balanced_accuracy_score	
'average_precision'	metrics.average_precision_score	
'neg_brier_score'	metrics.brier_score_loss	
'f1'	metrics.f1_score	for binary targets
'f1_micro'	metrics.f1_score	micro-averaged
'f1_macro'	metrics.f1_score	macro-averaged
'f1_weighted'	metrics.f1_score	weighted average
'f1_samples'	metrics.f1_score	by multilabel sample
'neg_log_loss'	metrics.log_loss	requires predict_proba support
'precision' etc.	metrics.precision_score	suffixes apply as with 'f1'
'recall' etc.	metrics.recall_score	suffixes apply as with 'f1'
'jaccard' etc.	metrics.jaccard_score	suffixes apply as with 'f1'
'roc_auc'	metrics.roc_auc_score	
'roc auc ovr'	metrics.roc auc score	

See: https://scikit-learn.org/stable/modules/model_evaluation.html

