洁化:	大学本科生考	计计能卡	田纸
1 F -	N + A A T T 15	いいいかって	π

	考试课程 《形式语言与自动机》 A卷 2013年 6月 22日							
	学号: 姓名: 班级:							
	, , , , , , , , , , , , , , , , , , ,							
(注:	(注:解答可以写在答题纸上,也可以写在试卷上;交卷时二者都需要交回。)							
—. (16	分) 判别下列各命题的真假性, 回答 true 或者 false: (每小题 2 分)							
1.	若 $L_1 \cap L_2$ 是正规语言,则 L_1 和 L_2 一定都是正规语言。							
2.	$egin{array}{llllllllllllllllllllllllllllllllllll$							
2.	—————————————————————————————————————							
3.	若 $L_1 \cup L_2$ 不是正规语言,则 L_1 和 L_2 都不是正规语言。							
4.								
_								
5.	存在一个判定任意两个正规表达式是否拥有相同语言的算法。							
6.	一个递归可枚举语言和它的补语言不可能都是递归语言。							
7.								
8.	—————————————————————————————————————							
二. (12	分) 选择填空 (每小题 2 分)							
1.	语言 {0 ⁿ 21 ^m n≥m }。							
2.	语言 $\{0^n 21^m \mid n \ge 1, m \ge 1, n+m \le 100\}$ 。							
3.	语言 $\{0^n 1^m 2 \mid n \ge 1, m \ge 1, n+m \le 100\}$							
4.	语言 $\{ww^R \mid w \in \{0,1\}^*, w^R $							
5.	语言 { w2w w ∈ {0, 1}* }。							
6.	语言 $\{w2w^R \mid w \in \{0,1\}^*, w^R $							
供选择的答案:								
	A. 是某个有限自动机的语言,也是某个空栈接受方式的 DPDA 的语言.							
	B. 是某个有限自动机的语言,但不是任何空栈接受方式的 DPDA 的语言。							

- C. 既是某个终态接受方式的 DPDA 的语言,又是某个空栈接受方式的 DPDA 的语言,但不是任何有限自动机的语言。
- D. 是某个终态接受方式的 DPDA 的语言, 但不是任何空栈接受方式的 DPDA 的语言, 也不是任何有限自动机的语言。
- E. 是某个 PDA 的语言, 但不是任何 DPDA 的语言。
- F. 不是任何 PDA 的语言。

三.(32 分) 简答题:

1. (4 分) 设 CFG $G = (\{S, A, B, C\}, \{a, b\}, P, S)$, 其中 P 由下列产生式构成:

$$S \to ABC \mid \varepsilon$$

$$A \to BS \mid a$$

$$B \to b$$

$$C \to \varepsilon$$

- (1) 消去 P 中的 ε-产生式得到产生式集合 P_1 ,构成 CFG G, 使得 L(G') = L(G) {ε}. 给出 $P_1 = ?$ (2 分)
- (2) 消去 P_1 中的 Unit 产生式得到产生式集合 P_2 ,构成 CFG G",使得 L(G") = L(G"). 给出 P_2 = ? (1 分)
- (3) 消去 P_2 中的无用符号得到产生式集合 P_3 . 给出 P_3 = ? (1 分)
- **2.** (**4** 分) 文法 G(S)为开始符号)的产生式集合为:

$$S \to AB \mid BC$$

$$A \to BA \mid a$$

$$B \to CC \mid b$$

$$C \to AB \mid a$$

下图表示对于文法 G 和字符串 abba 应用 CYK 算法时所构造的表 (部分 X_{ij} 已给)。

- (1) 分别计算出 X_{14} 和 X_{22} ; (3分)
- (2) 是否有 $abba \in L(G)$? (1分)

3. (4分) 下图描述了图灵机 $M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_3\})$:

(1) 指出该图灵机的语言 *L(M)*

(2分)

(2) 指出对于任何 $w \in L(M)$, 该图灵机到达终态时带上的内容。

(2分)

4. (4 分) 设有空栈接受方式的 $PDAP = (Q, S, \Gamma, \delta, q_0, Z_0)$ 。可以定义一个等价于P的终态接受方式的 $PDAP' = (Q \cup \{p_0, p_f\}, S, \Gamma \cup \{X_0\}, \delta', p_0, X_0, \{p_f\})$,即定义满足L(P') = N(P)的PDAP'。其中,

$$\delta'(p_0, \ \epsilon, \ X_0) =$$
 ① ,

以及对任何 $q \in Q$,

$$\delta'(q, \epsilon, X_0) =$$
 \bigcirc \bigcirc

5. (4 分) 以下 2 组产生式分别对应 2 个文法 G 和 G_1 的定义 (开始符号均为 S):

G:
$$S \rightarrow aAA \mid \varepsilon$$

 $A \rightarrow aS \mid bS \mid a$

$$G_1: S \rightarrow 0S1 \mid \varepsilon$$

并设有 $\{0,1\}$ 上的语言 $M = \{01, ε\}$

设替换映射 $s: \{a, b\} \rightarrow \{0, 1\}$ 定义为: $s(a) = L(G_1)$, s(b) = M。试给出语言 s(L(G)) 的一个上下文无关文法。

6. (4 分) 下面左图描述一个 PDA P, 右图描述一个 DFA A:

试构造一个 $\{a,b\}$ 上的 PDA P', 使得 L(P') = L(P) - L(A)。

7. (**4** 分) 对于 $\{a, b\}$ 上的语言 $L = \{w \mid w \in \{a, b\}^*, w \text{ 的任何后缀中 } a \text{ 的个数不超过 } b \text{ 的个数 } \}$, 以下是利用 Pumping 引理证明 L 不是正规语言的一个证明概要:

考虑任意的 $n \ge 1$ 。取 w = ① $\in L$ 。

对任意满足条件 $w=xyz \land y\neq\epsilon \land |xy|\leq n$ 的 x, y, z,

若取 k= ② ,则有 $xy^kz \notin L$ 。

试在其中 ① 和 ② 处填写适当的内容。

8. (4 分) 对于语言 $L = \{ w \mid w \in \{a, b, c, d\}^*, w 中 a$ 的个数等于 b 的个数且 c 的个数等于 d 的个数 $\}$,可以利用 Pumping 引理证明 L 不是上下文无关语言,以下是一个证明概要:

考虑任意的 $n \ge 1$ 。取 z = ① $\in L$ 。

对任意满足条件 $z = uvwxy \wedge vx \neq \varepsilon \wedge |vwx| \leq n$ 的 $u, v, w, x, y, y \neq \varepsilon$

取 k = 2 ,则有 $uv^k w x^k y \notin L$ 。

试在其中①和②处填写适当的内容。

四.(25 分)设计题: (要求适当解释设计思路)

1.(5 分) 试构造接受下列语言的一个确定有限自动机(DFA),且该有限自动机的状态数 不超过 5:

 $L = \{ w \mid w \in \{a, b\}^*, w \mid a \text{ 的个数是偶数,且 } w \text{ 的长度也为偶数 } \}$

注:要求状态数不超过 5,并不意味着状态数一定会达到 5。后面的题目也类似。

2. (5 分) 下图中的 ε-NFA 描述了字母表{ 0, 1, .}上的正规语言,用于表示某种合法的二进制小数集合。试给出该语言的一个正规表达式,且该表达式中运算符的总数不超过20 (只能使用 '+','*' 以及 '连接'3 种运算符和括号,不计括号数)。

3.(5 分) 试给出下列语言的一个上下文无关文法,且该文法的非终结符数目不超过 8:

$$L = \{ a^{n}b^{i}c^{j}d^{m} \mid n, m, i, j \ge 0 \land n + m = i + j \}$$

4. (**5** 分**)** 试构造接受下列语言的一个 PDA (空栈接受或终态接受均可),要求该 PDA 的状态数和堆栈符号数均不超过 5,并且每一步转移中栈顶符号最多可替换为两个符号:

$$L = \{ w \mid w \in \{a, b, c\}^*, w \ \text{中} \ a \ \text{和} \ b \ \text{的个数相同且不含连续的} \ c \}$$

5. (**5** 分**)** 试设计一个图灵机 $M = (Q, \{0,1\}, \{0,1,B\}, \delta, q_0,B, \{q_f\})$ 可以将二进制形式的非负整数 n 作为输入,并作如下计算: 若 n 为偶数,则输出结果为 n+1; 若 n 为奇数,则输出结果为 2n 。开始时 M 处于状态 q_0 ,带中包含着二进制数 n,其它单元格均为 B,带头正扫描 n 的最左一位。所设计的图灵机 M 应当停机。停机时, M 处于状态 q_f ,带上即为上述计算结果的二进制形式,而其它单元格均为 B。到达状态 q_f 时,带头处于何处不作要求。用状态转移图描述你所设计的图灵机。

五.(15 分) 证明题:

1. (**5** 分**)** 已知语言 $L_{01} = \{0^k 1^k \mid k \ge 0\}$ 不是正规语言,试利用该结论以及正规语言封闭运算,证明如下语言 L 不是正规语言:

 $L = \{ w \mid w \in \{a, b, c\}^*, \, \exists w \neq a \text{ 的个数比 } b \text{ 的个数多 } 2 \}$

2. (5 分) 设 Σ 和 T 为字母表,以及映射 $h: \Sigma \to T^*$ 。对 $w=a_1a_2...a_n \in \Sigma^*$,定义

 $h(w) = h(a_1) h(a_2) ... h(a_n)$, 称为串 w 的一个同态;

对语言 $L \subseteq \Sigma^*$, 定义 L 的同态 $h(L) = \{h(w) | w \in L\}$ 。

我们有结论: 若 S 为正规语言, 则 h(S) 也是正规语言。

以下是该结论的一个证明过程:

证明 设 S 对应的正规表达式为 E , 使得 L(E)=S. 归纳于 E 的结构,可以证明: 存在正规表达式 h(E) ,满足 L(h(E))=h(S).

基础: 若 E 为 ε , ϕ , 取 h(E) = E, 显然 L(h(E)) = h(L(E));

若 E 为a,取 h(E) = h(a),有 $L(h(E)) = h(L(E)) = \{h(a)\}$;

归纳: 若 $E=E_1E_2$, 取 $h(E)=h(E_1)h(E_2)$, 有

$$0) L(h(E)) = L(h(E_1)) L(h(E_2))$$

$$= h(L(E_1)) h(L(E_2))$$

$$= h(\{w_1 \mid w_1 \in L(E_1)\}) \ h(\{w_2 \mid w_2 \in L(E_2)\})$$

3)
$$= \{h(w_1) \mid w_1 \in L(E_1)\} \{h(w_2) \mid w_2 \in L(E_2)\}$$

$$= \{h(w_1)h(w_2) \mid w_1 \in L(E_1) \land w_2 \in L(E_2)\}\$$

$$= \{h(w_1w_2) \mid w_1w_2 \in L(E_1)L(E_2)\}\$$

$$= h(L(E_1)L(E_2))$$

$$= h(L(E_1E_2))$$

$$= h(L(E))$$

 $E=E_1+E_2$ 和 $E=E_1*$ 的情形类似, 略。

试解释上述归纳步骤中,从 0) 到 1)、从 2) 到3)、从 3) 到4)、从 4) 到5) 和从 6) 到7) 的理由。要求从以下可供选择的理由中找出最恰当的选择:

- ① 正规表达式语言的定义(即正规表达式连接运算的语义)
- ② 语言连接运算的定义
- ③ 语言同态的定义
- ④ 字符串同态映射的性质(即运算保持性)
- ⑤ 归纳假设
- 3. (5 分) 考虑由下列产生式定义的上下文无关文法 G:

$$S \rightarrow a S b \mid S S \mid \varepsilon$$
.

试证明 $L(G) = \{ w \mid w \in \{a, b\}^* , w \ \text{中} \ a \ \text{和} \ b \ \text{的数目相同,} \ \text{且} \ w \ \text{的任意前缀中} \ a \ \text{的数目不少于} \ b \ \text{的数目} \}$