For Bob's algorithm, he used the divide-n-conquer strategy, and this algorithm has time efficiency $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n)$. And for convenience, we'll omit the floors, ceilings, and boundary conditions, and hence,

$$T(n) = T(n/2) + T(n/2) + \Theta(n) = 2T(n/2) + \Theta(n).$$

By using the master method, for this recurrence, we have a = 2, b = 2, f(n) = n, and $n^{\log_b a} = n^{\log_2 2} = n^1 = n$. Case 2 applies, since $f(n) = \Theta(n^{\log_b a}) = \Theta(n)$, and thus the solution to the recurrence is $T(n) = \Theta(n^{\log_b a} \log_a n) = \Theta(n \log_b n)$.

While for Alice's algorithm, she used the incremental strategy, and this algorithm has time efficiency $T(n) = \begin{cases} \Theta(1) & \text{if } i = 1, \\ T(n-1) + \Theta(c) & \text{otherwise} \end{cases}$, where c is some constant, and i is the number the algorithm takes in as parameter. So, we adopt c in place of $\Theta(c)$, and 1 for $\Theta(1)$.

$$T(n) \Rightarrow T(n-1) + c$$

$$\Rightarrow T((n-1)-1) + c + c$$

$$\Rightarrow T(1) + c + \dots + c$$

$$\Rightarrow 1 + (n-1)c$$

$$= \Theta(n)$$

Hence, in $\Theta(\cdot)$ notation, Alice's algorithm takes linear time in the worst case, and her algorithm is more time-efficient than Bob's.