UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS, NATURAIS E DA SAÚDE GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FABRÍCIO MEDEIROS TOZO

CLASSIFICAÇÃO DE IMAGENS COM REDE NEURAL CONVOLUCIONAL

ALEGRE 2024

FABRÍCIO MEDEIROS TOZO

CLASSIFICAÇÃO DE IMAGENS COM REDE NEURAL CONVOLUCIONAL

Este documento tem o objetivo de relatar as etapas de desenvolvimento do primeiro trabalho da disciplina de Aprendizado de Máquina.

Professor: Jacson Rodrigues Correia da Silva

SUMÁRIO

Sumario.		2
1	INTRODUÇÃO	3
2 2.0.1	OBJETIVOS	
3	50 CLASSES DO DATASET FLOWERS102	5
4	PRÉ PROCESSAMENTO DOS DADOS E SELEÇÃO DE HYPER- PARAMETROS	6
5	SELEÇÃO DE HYPERPARAMETROS E DATA AUGMENTATIONS	7
6	FASE DE TREINO, TESTE E VALIDAÇÃO	8
7	ANALISE DA ACURÁCIA E CURVA DE APRENDIZADO	10
8	DESCRIÇÃO DO APRENDIZADO COM O TRABALHO	14
9	REFERENCIAS	15

1 INTRODUÇÃO

Este relatório tem como objetivo descrever as etapas e resultados obtidos durante o desenvolvimento de um classificador de imagens utilizando redes neurais convolucionais.

O trabalho foi realizado utilizando o dataset Flowers102, que contém 102 categorias diferentes de flores.

O foco foi selecionar um subconjunto de 50 classes e aplicar um modelo pré-treinado ResNet18 para realizar a classificação das imagens, utilizando técnicas de Cross-Validation e ajuste de hiperparâmetros.

Além disso, serão descritas as dificuldades encontradas, os resultados obtidos, e uma análise crítica sobre o aprendizado adquirido ao longo do processo.

Palavras-chave: Aprendizado supervisionado; Classificação; Aprendizado Profundo; Redes Neurais Artificiais;

2 OBJETIVOS

2.0.1 **OBJETIVOS ESPECÍFICOS**

- Selecionar, aleatoriamente, 50 classes do dataset Flowers102;
- Pré processamento dos dados;
- Seleção de hyperparametros;
- Fase de Treino, Teste e Validação;
- Analise da acurácia e curva de aprendizado;
- Descrição do aprendizado com o trabalho;
- Referencias;

3 50 CLASSES DO DATASET FLOWERS102

A etapa da separação dos dados consiste majoritariamente em escolher as imagens a serem usadas como entrada para o treinamento.

Usamos nessa pesquisa as seguintes 50 classes aleatórias.

4 PRÉ PROCESSAMENTO DOS DADOS E SELEÇÃO DE HYPERPARAMETROS

Com as Classes selecionadas adicionamos uma nova classe para remapear os indices.

```
class MappedDataset(Dataset):
2
       def __init__(self, subset, class_mapping):
           self.subset = subset
3
           self.class_mapping = class_mapping
       def __len__(self):
6
           return len(self.subset)
8
       def __getitem__(self, idx):
9
           img, label = self.subset[idx]
10
           label = self.class_mapping.get(label, -1)
11
           return img, label
12
```

```
def prepare_data(self, data_transform, train_dataset, val_dataset,
      test_dataset, selected_classes):
       # Mapear classes para [0, 49]
2
       self.class_mapping = {original: new for new, original in enumerate(
3
          selected_classes)}
       # Filtragem e mapeamento dos datasets
5
       train_subset = self.filter_classes(train_dataset, selected_classes)
6
       val_subset = self.filter_classes(val_dataset, selected_classes)
7
       test_subset = self.filter_classes(test_dataset, selected_classes)
8
9
       train_mapped = self.MappedDataset(train_subset, self.class_mapping)
10
       val_mapped = self.MappedDataset(val_subset, self.class_mapping)
11
       test_mapped = self.MappedDataset(test_subset, self.class_mapping)
12
13
       # DataLoaders
14
       self.train_loader = DataLoader(train_mapped, batch_size=self.
15
          batch_size, shuffle=True)
       self.val_loader = DataLoader(val_mapped, batch_size=self.batch_size,
16
           shuffle=False)
17
       self.test_loader = DataLoader(test_mapped, batch_size=self.
          batch_size, shuffle=False)
```

5 SELEÇÃO DE HYPERPARAMETROS E DATA AUGMENTATIONS

Data Augmentations utilizados

```
data_transform = transforms.Compose([
       transforms.Resize((224, 224)),
2
       transforms.RandomHorizontalFlip(),
3
       transforms.RandomRotation(10),
4
       transforms.ColorJitter(brightness=0.3, contrast=0.3),
5
       transforms.RandomAffine(degrees=30, shear=20),
6
       transforms.ToTensor(),
       transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,
8
          0.225])
  ])
9
10
  train_dataset = datasets.Flowers102(root=r'E:\Dataset_torchvision',
11
      split='test', download=True, transform=data_transform)
   val_dataset = datasets.Flowers102(root=r'E:\Dataset_torchvision', split=
12
      'val', download=True, transform=data_transform)
  test_dataset = datasets.Flowers102(root=r'E:\Dataset_torchvision', split
13
      ='train', download=True, transform=data_transform)
```

Melhores Hyperparametros encontrados

```
criterion = nn.CrossEntropyLoss()

ptimizer = optim.Adam()

num_classes=50

batch_size=32

1r= 0.001 ~~ lr= 0.0001

epochs=21
```

Insights: Learning Rate = 0.001 apresentou melhor resultado nos primeiros 2 treinos, entrando na terceira fase de treino temos melhor resultados usando Learning Rate scheduler entre 0.001 e 0.00001.

6 FASE DE TREINO, TESTE E VALIDAÇÃO

Nesta fase já com todas as imagens selecionadas, mascaras criadas e organizadas podemos entrar na fase de treino e teste.

```
def train(self):
2
       print("Starting utraining...")
3
       train_losses = []
       val_accuracies = []
4
       val_f1_scores = []
5
6
       for epoch in range(self.epochs):
           self.model.train()
           running_loss = 0.0
9
           for inputs, labels in self.train_loader:
10
                inputs, labels = inputs.to(device), labels.to(device)
11
                self.optimizer.zero_grad()
12
                outputs = self.model(inputs)
13
                loss = self.criterion(outputs, labels)
14
                loss.backward()
15
                self.optimizer.step()
16
                running_loss += loss.item() * inputs.size(0)
17
18
           epoch_loss = running_loss / len(self.train_loader.dataset)
           train_losses.append(epoch_loss)
20
           print(f'Epoch{epoch_+1}/{self.epochs},_Loss:_{epoch_loss:.4f}')
21
22
           #Validacao apos cada epoca
23
           val_accuracy, val_f1 = self.validate(self.val_loader)
2.4
           val_accuracies.append(val_accuracy)
25
           val_f1_scores.append(val_f1)
26
27
       print("Training_complete.")
28
       return train_losses, val_accuracies, val_f1_scores
```

```
def validate(self, loader):
       self.model.eval()
2
       correct = 0
3
       total = 0
4
       all_labels = []
5
       all_predictions = []
6
       with torch.no_grad():
8
            for inputs, labels in loader:
9
                inputs, labels = inputs.to(device), labels.to(device)
10
                outputs = self.model(inputs)
11
                _, predicted = torch.max(outputs, 1)
12
                total += labels.size(0)
13
                correct += (predicted == labels).sum().item()
14
                all_labels.extend(labels.cpu().numpy())
15
                all_predictions.extend(predicted.cpu().numpy())
16
17
       accuracy = accuracy_score(all_labels, all_predictions) * 100
18
       f1 = f1_score(all_labels, all_predictions, average='macro')
19
       print(f'Validation \_Accuracy: \_\{accuracy: .2f\}\%, \_Macro \_F1-Score: \_\{f1: .4f\}\}
20
           f } ')
       return accuracy, f1
21
22
23
   # Funcao para testar o modelo com o conjunto de teste
24
   def test(self):
       print("Testingumodeluonutestudataset...")
25
       return self.validate(self.test_loader)
26
```

7 ANALISE DA ACURÁCIA E CURVA DE APRENDIZADO

```
Using device: cuda
  Starting training...
2
  Epoch 1/21, Loss: 3.0818
3
  Validation Accuracy: 17.80%, Macro F1-Score: 0.1153
5 | Epoch 2/21, Loss: 2.2746
   Validation Accuracy: 32.60%, Macro F1-Score: 0.2693
6
   Epoch 3/21, Loss: 1.9799
   Validation Accuracy: 40.80%, Macro F1-Score: 0.3722
8
  Epoch 4/21, Loss: 1.7698
9
  Validation Accuracy: 43.00%, Macro F1-Score: 0.3906
10
11 | Epoch 5/21, Loss: 1.5682
12
   Validation Accuracy: 45.40%, Macro F1-Score: 0.4136
  Epoch 6/21, Loss: 1.4402
13
  Validation Accuracy: 52.00%, Macro F1-Score: 0.4902
14
  Epoch 7/21, Loss: 1.3238
  Validation Accuracy: 56.00%, Macro F1-Score: 0.5307
16
  Epoch 8/21, Loss: 1.1942
17
  Validation Accuracy: 52.00%, Macro F1-Score: 0.5013
  Epoch 9/21, Loss: 1.1342
19
   Validation Accuracy: 58.80%, Macro F1-Score: 0.5625
20
  Epoch 10/21, Loss: 1.0470
   Validation Accuracy: 57.80%, Macro F1-Score: 0.5557
  Epoch 11/21, Loss: 0.9732
23
  Validation Accuracy: 56.80%, Macro F1-Score: 0.5420
24
  Epoch 12/21, Loss: 0.9217
   Validation Accuracy: 62.60%, Macro F1-Score: 0.6070
26
  Epoch 13/21, Loss: 0.8037
   Validation Accuracy: 64.60%, Macro F1-Score: 0.6167
28
   Epoch 14/21, Loss: 0.7640
  Validation Accuracy: 65.80%, Macro F1-Score: 0.6385
30
  Epoch 15/21, Loss: 0.7526
31
   Validation Accuracy: 68.80%, Macro F1-Score: 0.6688
  Epoch 16/21, Loss: 0.6704
33
   Validation Accuracy: 71.20%, Macro F1-Score: 0.6988
34
   Epoch 17/21, Loss: 0.6542
  Validation Accuracy: 69.80%, Macro F1-Score: 0.6790
   Epoch 18/21, Loss: 0.5910
37
   Validation Accuracy: 70.40%, Macro F1-Score: 0.6884
38
  Epoch 19/21, Loss: 0.5793
   Validation Accuracy: 71.60%, Macro F1-Score: 0.7095
40
   Epoch 20/21, Loss: 0.5633
41
  Validation Accuracy: 66.60%, Macro F1-Score: 0.6591
42
  Epoch 21/21, Loss: 0.4815
  | Validation Accuracy: 76.80%, Macro F1-Score: 0.7602
44
  Training complete.
45
```

```
Using device: cuda
2
  Starting training...
  Epoch 1/21, Loss: 0.5201
  Validation Accuracy: 75.00%, Macro F1-Score: 0.7482
4
  Epoch 2/21, Loss: 0.4587
5
  Validation Accuracy: 72.00%, Macro F1-Score: 0.7213
6
  Epoch 3/21, Loss: 0.4303
7
   Validation Accuracy: 71.60%, Macro F1-Score: 0.7126
8
  Epoch 4/21, Loss: 0.4071
9
  Validation Accuracy: 76.60%, Macro F1-Score: 0.7547
   Epoch 5/21, Loss: 0.4069
11
  Validation Accuracy: 71.60%, Macro F1-Score: 0.7076
12
  Epoch 6/21, Loss: 0.3806
13
   Validation Accuracy: 77.60%, Macro F1-Score: 0.7739
  Epoch 7/21, Loss: 0.3589
15
  Validation Accuracy: 78.60%, Macro F1-Score: 0.7788
16
   Epoch 8/21, Loss: 0.3313
  Validation Accuracy: 75.00%, Macro F1-Score: 0.7384
18
  Epoch 9/21, Loss: 0.3125
19
   Validation Accuracy: 79.00%, Macro F1-Score: 0.7858
20
  Epoch 10/21, Loss: 0.2959
   Validation Accuracy: 73.20%, Macro F1-Score: 0.7296
22
23
  Epoch 11/21, Loss: 0.2763
  Validation Accuracy: 79.40%, Macro F1-Score: 0.7942
  Epoch 12/21, Loss: 0.2714
  Validation Accuracy: 78.00%, Macro F1-Score: 0.7770
26
  Epoch 13/21, Loss: 0.2592
27
   Validation Accuracy: 77.20%, Macro F1-Score: 0.7721
   Epoch 14/21, Loss: 0.2767
29
  Validation Accuracy: 79.80%, Macro F1-Score: 0.7898
   Epoch 15/21, Loss: 0.2232
   Validation Accuracy: 81.60%, Macro F1-Score: 0.8159
  Epoch 16/21, Loss: 0.2143
33
   Validation Accuracy: 78.00%, Macro F1-Score: 0.7734
  Epoch 17/21, Loss: 0.2322
   Validation Accuracy: 77.80%, Macro F1-Score: 0.7756
36
  Epoch 18/21, Loss: 0.2362
   Validation Accuracy: 79.00%, Macro F1-Score: 0.7810
   Epoch 19/21, Loss: 0.1946
39
  Validation Accuracy: 80.40%, Macro F1-Score: 0.7954
40
  Epoch 20/21, Loss: 0.1688
41
   Validation Accuracy: 79.80%, Macro F1-Score: 0.7922
  Epoch 21/21, Loss: 0.1570
43
  Validation Accuracy: 81.00%, Macro F1-Score: 0.8042
44
   Training complete.
```

```
Using device: cuda
2
  Starting training...
  Epoch 1/21, Loss: 0.2017
  Validation Accuracy: 78.80%, Macro F1-Score: 0.7786
4
  Epoch 2/21, Loss: 0.1699
5
  Validation Accuracy: 80.60%, Macro F1-Score: 0.7987
6
  Epoch 3/21, Loss: 0.1950
7
   Validation Accuracy: 80.80%, Macro F1-Score: 0.8042
8
  Epoch 4/21, Loss: 0.1722
9
  Validation Accuracy: 78.00%, Macro F1-Score: 0.7662
   Epoch 5/21, Loss: 0.1961
11
  Validation Accuracy: 82.00%, Macro F1-Score: 0.8184
12
  Epoch 6/21, Loss: 0.1617
13
   Validation Accuracy: 83.40%, Macro F1-Score: 0.8291
  Epoch 7/21, Loss: 0.1470
15
  Validation Accuracy: 84.20%, Macro F1-Score: 0.8369
16
   Epoch 8/21, Loss: 0.1448
  Validation Accuracy: 82.80%, Macro F1-Score: 0.8249
18
  Epoch 9/21, Loss: 0.1584
19
   Validation Accuracy: 79.80%, Macro F1-Score: 0.7892
20
  Epoch 10/21, Loss: 0.1263
   Validation Accuracy: 84.20%, Macro F1-Score: 0.8386
22
23
  Epoch 11/21, Loss: 0.1052
  Validation Accuracy: 81.60%, Macro F1-Score: 0.8123
  Epoch 12/21, Loss: 0.1116
  Validation Accuracy: 82.20%, Macro F1-Score: 0.8149
26
  Epoch 13/21, Loss: 0.1565
27
   Validation Accuracy: 83.20%, Macro F1-Score: 0.8224
   Epoch 14/21, Loss: 0.0906
29
  Validation Accuracy: 83.00%, Macro F1-Score: 0.8179
30
  Epoch 15/21, Loss: 0.0931
   Validation Accuracy: 81.40%, Macro F1-Score: 0.8092
  Epoch 16/21, Loss: 0.1244
33
   Validation Accuracy: 82.60%, Macro F1-Score: 0.8233
  Epoch 17/21, Loss: 0.1068
   Validation Accuracy: 83.60%, Macro F1-Score: 0.8311
36
  Epoch 18/21, Loss: 0.0935
37
   Validation Accuracy: 80.60%, Macro F1-Score: 0.8021
   Epoch 19/21, Loss: 0.1039
39
  Validation Accuracy: 82.60%, Macro F1-Score: 0.8237
40
  Epoch 20/21, Loss: 0.1604
41
   Validation Accuracy: 80.20%, Macro F1-Score: 0.7973
  Epoch 21/21, Loss: 0.1296
43
  Validation Accuracy: 83.40%, Macro F1-Score: 0.8221
44
   Training complete.
```


Figura 1 – Primeira fase de treino

Figura 2 – Segunda Fase de Treino

Figura 3 – Terceira Fase de Treino

8 DESCRIÇÃO DO APRENDIZADO COM O TRABALHO

Foi realizado treino de 2 modelos, o primeiro com Dropout(0.5) e o segundo que apresentou melhor resultado sem o uso de Dropout.

Outro ponto que foi observado com uma grande melhora na na avaliação foi o uso de dos data transform informados, onde tivemos uma grande melhora a avaliação do modelo.

Descrição das dificuldades: Grande parte do desafio foi a separação dos dados de treino e a filtragem das classes para o treino, ea adaptação dos dados e camadas de saiada do modelo para as 50 classes selecionadas.

9 REFERENCIAS

https://github.com/FabricioMT/Trabalho-CNN

https://pytorch.org/vision/0.18/generated/torchvision.datasets. Flowers 102. html

 $\rm https://pytorch.org$

https://scikit-learn.org