- 1. Prove that regression coefficients are independent of origin but NOT independent of scale.
- 2. Prove that co-efficient of correlation is independent of **BOTH** origin and scale.

Given Data		Data after Cha	anging the Origin	Data after Changing the Scale		
X	Y	U=X-70	V = Y - 120	$A = \frac{X}{4}$	$B=\frac{Y}{5}$	
78	125	8	5	19.5	25	
89	137	19	17	22.25	27.4	
97	156	27	36	24.25	31.2	
69	112	-1	-8	17.25	22.4	
59	107	-11	-13	14.75	21.4	
79	136	9	16	19.75	27.2	
68	123	-2	3	17	24.6	
61	104	-9	-16	15.25	20.8	
600	1000	40	40	150	200	

Data		First Method			Deviation Method		
U	V	UV	U^2	V^2	$(U-\overline{U})(V-\overline{V})$	$(U-\overline{U})^2$	$(V-\overline{V})^2$
8	5	40	64	25	0	9	0
19	17	323	361	289	168	196	144
27	36	972	729	1296	682	484	961
-1	-8	8	1	64	78	36	169
-11	-13	143	121	169	288	256	324
9	16	144	81	256	44	16	121
-2	3	-6	4	9	14	49	4
-9	-16	144	81	256	294	196	441
40	40	1768	1442	2364	1568	1242	2164

Changing of Origin

Regression Coefficient for V on U

$$b_{VU} = \frac{n\sum UV - \sum U\sum V}{n\sum U^2 - (\sum U)^2}$$

$$b_{VU} = \frac{\sum (U - \overline{U})(V - \overline{V})}{\sum (U - \overline{U})^2}$$

Regression Coefficient for U on V

$$b_{UV} = \frac{n\sum UV - \sum U\sum V}{n\sum V^2 - (\sum V)^2}$$

$$b_{UV} = \frac{\sum (U - \overline{U})(V - \overline{V})}{\sum (V - \overline{V})^2}$$

Co-efficient of correlation

$$r_{UV} = \frac{n \sum UV - \sum U \sum V}{\sqrt{[n \sum U^2 - (\sum U)^2][n \sum V^2 - (\sum V)^2]}}$$

$$r_{UV} = \frac{\sum (U - \overline{U})(V - \overline{V})}{\sqrt{\left[\sum (U - \overline{U})^2\right]\left[\sum (V - \overline{V})^2\right]}}$$

$$r_{UV} = \pm \sqrt{b_{UV} \times b_{VU}}$$

Data		First Method			Deviation Method		
A	В	AB	A^2	B^2	$(A-\overline{A})(B-\overline{B})$	$(A-\overline{A})^2$	$(B-\overline{B})^2$
19.5	25	487.5	380.25	625	0	0.5625	0
22.25	27.4	609.65	495.0625	751	8.4	12.25	5.76
24.25	31.2	756.6	588.0625	973	34.1	30.25	38.44
17.25	22.4	386.4	297.5625	502	3.9	2.25	6.76
14.75	21.4	315.65	217.5625	458	14.4	16	12.96
19.75	27.2	537.2	390.0625	740	2.2	1	4.84
17	24.6	418.2	289	605	0.7	3.0625	0.16
15.25	20.8	317.2	232.5625	433	14.7	12.25	17.64
150	200	3828.4	2890.125	5086.56	78.4	77.625	86.56

Changing of Scale

Regression Coefficient for B on A

$$b_{BA} = \frac{n\sum AB - \sum A\sum B}{n\sum A^2 - (\sum A)^2}$$

$$b_{BA} = \frac{\sum (A - \bar{A})(B - \bar{B})}{\sum (A - \bar{A})^2}$$

Regression Coefficient for A on B

$$b_{AB} = \frac{n\sum AB - \sum A\sum B}{n\sum B^2 - (\sum B)^2}$$

$$b_{AB} = \frac{\sum (A - \bar{A})(B - \bar{B})}{\sum (B - \bar{B})^2}$$

Co-efficient of correlation

$$r_{AB} = \frac{n\sum AB - \sum A\sum B}{\sqrt{[n\sum A^2 - (\sum A)^2][n\sum B^2 - (\sum B)^2]}}$$

$$r_{AB} = \frac{\sum (A - \bar{A})(B - \bar{B})}{\sqrt{[\sum (A - \bar{A})^2][\sum (B - \bar{B})^2]}}$$

$$r_{AB} = \pm \sqrt{b_{AB} \times b_{BA}}$$