Содержание

Вве	дение
1	Подходы, используемые при исследовании контактного
	взаимодействия твердых тел
1.1	Основные закономерности механики контактного взаимодействия
1.2	Современные подходы к моделированию процессов трения
1.3	Метод подвижных клеточных автоматов и его совместное
	использование с методами континуальной механики
2	Особенности генерации упругих волн при трении скольжения
2.1	Особенности анализа упругих волн при численном моделировании
2.2	Изучение частотного спектра упругих волн, генерируемых в пятне
	контакта при трении
2.3	Частотно-временной анализ упругих колебаний в модельной паре
	трения
2.4	Влияние профиля взаимодействующих поверхностей на особенности
	частотного спектра колебаний в паре трения
2.5	Возможности частотно-временного анализа данных акустической
	эмиссии в изучении процесса изнашивания
3	Анализ дефектности поверхностного слоя материала на основе
	триботехнических испытаний. 3D-моделирование
3.1	Особенности взаимодействия подвижных автоматов при 3D-
	моделировании
3.2	Роль вращения в методе подвижных клеточных автоматов
3.3	Изучение возможности идентификации наноскопических пор на
	основе трения скольжения
Зак	лючение
Спи	исок использованных источников