Step-1

Consider the following four fundamental subspaces:

The row space is $C(A^T)$, a subspace of \mathbb{R}^n .

The column space C(A), a subspace of \mathbb{R}^m .

The nullspace is N(A), a subspace of \mathbb{R}^n .

The left nullspace is $N(A^T)$, a subspace of \mathbb{R}^m .

Find the system Ax = b has a solution if and only if b is orthogonal to which of the given four fundamental subspaces.

Step-2

Suppose the system Ax = b has a solution.

Then the vector **b** is lie in the column space C(A).

Thus, **b** is orthogonal to the left nullspace $N(A^T)$.

Hence, if the system $A\mathbf{x} = \mathbf{b}$ has a solution, then the vector \mathbf{b} is orthogonal to $N(A^T)$.

Step-3

Conversely,

Suppose the vector \mathbf{b} is orthogonal to the left nullspace $N(A^T)$.

Then the vector **b** is lie in the column space C(A).

Thus, the system $A\mathbf{x} = \mathbf{b}$ has a solution.

Hence, if the vector **b** is orthogonal to $N(A^T)$, then the system $A\mathbf{x} = \mathbf{b}$ has a solution.