Learning phase-transition kinetics from in situ STEM videos

Ning Wang

Department of Computational Materials Design Düsseldorf, Germany

Experimental data provided by Wenjun Lu and Christian Liebscher. Fruitful discussion with Jaber Rezaei Mianroodi is acknowledged.

In situ STEM

Recording phase-transition kinetics

Learning phase-transition kinetics from in situ STEM videos

Quantitative description of phase-transition kinetics

Domain knowledge: Phase-field models

Model A: Allen-Cahn equation

$$\frac{1}{M}\frac{\partial \phi}{\partial t} = \kappa \Delta \phi - g(\phi)$$

Model B: Cahn-Hillard equation

$$\frac{1}{M}\frac{\partial c}{\partial t} = \Delta(g(c) - \gamma \Delta c)$$

 $\phi(t, x, y)$: phase field

c(t, x, y): concentration field

Bulk free-energy density
$$g(\phi) = \frac{\partial f}{\partial \phi}$$

$$g(c) = \frac{\partial f}{\partial c}$$

Using domain knowledge

Learning phase-transition kinetics from in situ STEM videos

To parametrize phase-field model based on in situ STEM videos

- For experimentalists:
 - Quantitative description of experiments.
 - Quantitative relationship between processing paras and kinetics.
- For simulation community:
 - Realistic models directly obtained from experiments.

Challenge

Phase field models are partial differential equations

Noise accumulation and amplification make it hard to use explicit methods

E.g., Finite difference -> high noise

First smoothing -> highly biased by smoothing parameters

Method

An elegant solution

Data:
$$I^{n}(t^{n}, x^{n}, y^{n}), \quad n = 1 ... N$$

Physics-informed neural networks

$$Loss = \sum_{n=1}^{N} |I(t^n, x^n, y^n) - I^n|^2 + \sum_{n=1}^{N} |Residual(I(t^n, x^n, y^n))|^2$$

$$data-fidelity term \qquad Penalizing inequality of equation$$

Traning parameters: weights in NNs and paras in Eqns.

Raissi et al., Science (2020).

J. Comput. Phys. (2019).

To summarize the pathway

Preprocessing

How to interpret intensity?

Allen-Cahn equation

$$\frac{1}{M}\frac{\partial \phi}{\partial t} = \kappa \Delta \phi - g(\phi)$$

Cahn-Hillard equation

$$\frac{1}{M}\frac{\partial c}{\partial t} = \Delta(g(c) - \gamma \Delta c)$$

First try

number of data points: 220,400,000 • Interpreting intensity I(t, x, y) as phase field

$$I(t, x, y)$$
: 0 – 255 $\phi(t, x, y)$: 0 – 1

To parametrize Allen-Cahn equation:

$$\frac{1}{M}\frac{\partial \phi}{\partial t} = \kappa \Delta \phi - g(\phi)$$

• Use Redlich-Kister polynomial to approximate $g(\phi)$

$$g(\phi) = \sum_{n=0}^{\infty} \alpha_n \cdot \phi (1 - \phi) (1 - 2\phi)^n$$

• Training parameters: weights in NNs + κ , α_0 , α_1 , α_2

First try

Phase field

First try

Why negative?

Phase-transition mechanism in Allen-Cahn: only interface migration but no diffusion

It looks that we have to interpret the intensity as concentration field, use Cahn-Hillard equation to fit the video.

Second try - toy Cahn-Hillard

number of data points: 220,400,000

- Interpreting intensity I(t, x, y) as concentration field I(t, x, y): 0 255 c(t, x, y): 0 1
- to parametrize Cahn-Hillard equation:

$$\frac{1}{M}\frac{\partial c}{\partial t} = \Delta(g(c) - \gamma \Delta c)$$

• $g(c) = \alpha \cdot c(1-c)(1-2c)$, the derivative of double-well potential

Second try – toy Cahn-Hillard

γ converges to ~10 pixel, which looks a reasonable value

Summary

- Developing machine-learning method to learn phase-transition kinetics from in situ STEM
- Got unphysical parameter from Allen-Cahn equation
- Results from Cahn-Hillard equation reasonable

Thanks for your attention!