# CSE8803/CX4803 Machine Learning in Computational Biology

Lecture 3: Sequence Alignment II

Xiuwei Zhang

School of Computational Science and Engineering

Based on slides from Carl Kingsford

# Paper presentation teams

- 77 students in total, 33 presentation slots
- 22 groups of 2 students; 11 groups of 3 students
- Submit your team information to Canvas->Quizzes by 1/28 Friday (no grace period)
- We may adjust the teams (randomly)
- Teams can also slightly change after midterm withdraw

## Global alignment vs local alignment

Global alignment

Local alignment

# Today's outline

Local alignment

More details on scoring mismatches and gaps

Multiple sequence alignment

## Local alignment

- Local alignment is much more common than global alignment
  - Example: aligning two protein sequences that have a common domain but are otherwise different
  - Mapping short reads to the genome
- Compared to global alignment, the local alignment problem appears to be significantly more complex
- Naïve approach:
  - Given that we know how to compute the global alignment between two sequences in O(mn) time
  - We can take all possible combinations of substrings of x and substrings of y
  - How many all possible combinations of substrings?

The running time will be O(m<sup>3</sup>n<sup>3</sup>)

# Recall: Global Alignment Matrix

OPT(i,j) contains the score for the best alignment between: the first i characters of string x [prefix i of x] the first j character of string y [prefix j of y]



#### Maximization vs. Minimization

#### Global alignment:

$$OPT(i,j) = \min egin{cases} \cos t(a_i,b_j) + OPT(i-1,j-1) \ \operatorname{gap} + OPT(i-1,j) \ \operatorname{gap} + OPT(i,j-1) \end{cases}$$
 $OPT(i,0) = i \times \operatorname{gap} \text{ and } OPT(0,j) = j \times \operatorname{gap} .$ 

**Sequence Similarity:** replace *min* with a *max* and *negate* the parameters.

gap penalty → gap benefit (probably negative) cost → score
Minimization → maximization

# Local Alignment

New meaning of entry of matrix entry:

A[i, j] = best score between: some suffix of x[1...i]and some suffix of y[1...j]



## How do we fill in the local alignment matrix?

$$A[i, j] = \max \begin{cases} A[i, j-1] + \text{gap} & (1) \\ A[i-1, j] + \text{gap} & (2) \\ A[i-1, j-1] + \text{match}(i, j) & (3) \\ 0 & (4) \end{cases}$$

(1), (2), and (3): same cases as before: gap in x, gap in y, match x and y

New case: 0 allows you to say the best alignment between a suffix of x and a suffix of y is the empty alignment.

Lets us "start over"



# Local Alignment

- Initialize first row and first column to be 0.
- The score of the best local alignment is the largest value in the entire array.
- To find the actual local alignment:
  - o start at an entry with the maximum score
  - traceback as usual
  - o stop when we reach an entry with a score of 0

## Local Alignment Example #1

X = AGCGTAG

Y = CTCGTC

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

|   | * | A | G   | С  | G  | Т  | A  | G  |
|---|---|---|-----|----|----|----|----|----|
| * | 0 | 0 | 0   | 0  | 0  | 0  | 0  | 0  |
| С | 0 | 0 | 0   | 10 | 3  | 0  | 0  | 0  |
| Т | 0 | 0 | 0 _ | 3  | 5  | 13 | 6  | 0  |
| С | 0 | 0 | 0   | 10 | 3  | 6  | 8  | 1  |
| G | 0 | 0 | 10  | 3  | 20 | 13 | 6  | 18 |
| Т | 0 | 0 | 3   | 5  | 13 | 30 | 23 | 16 |
| С | 0 | 0 | 0   | 13 | 6  | 23 | 25 | 18 |

Note: this table written top-to-bottom instead of bottom-to-top

## Local Alignment Example #2

Score(match) = 10
Score(mismatch) = -5
Score(gap) = -7

|   | * | b | е  | S  | t            | 0  | f   | t  | i  | m  | е  | S  |
|---|---|---|----|----|--------------|----|-----|----|----|----|----|----|
| * | 0 | 0 | 0  | 0  | 0            | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| S | 0 | 0 | 0  | 10 | <b>—</b> 3 🔻 | 0  | 0   | 0  | 0  | 0  | 0  | 10 |
| 0 | 0 | 0 | 0  | 3  | 5            | 13 | 6   | 0  | 0  | 0  | 0  | 3  |
| f | 0 | 0 | 0  | 0  | 0            | 6  | 23_ | 16 | 9  | 2  | 0  | 0  |
| t | 0 | 0 | 0  | 0  | 10           | 3  | 16  | 33 | 26 | 19 | 12 | 5  |
| е | 0 | 0 | 10 | 3  | 3            | 5  | 9   | 26 | 28 | 21 | 29 | 22 |
| n | 0 | 0 | 3  | 5  | 0            | 0  | 2   | 19 | 21 | 23 | 22 | 24 |

Note: this table written top-to-bottom instead of bottom-to-top

## Multiple optimal aligntments

When there are ties in the max{}, we have a choice about which arrow to follow.

This gives us multiple optimal alignments which have the same cost/score.





### Local / Global Recap

- Alignment cost sometimes called the "edit distance" between two strings.
- Algorithm for global alignment is sometimes called "Needleman-Wunsch"
- Algorithm for local alignment is sometimes called "Smith-Waterman"
- Same basic algorithm, however.

## Scoring mismatches

BLOSUM (BLOcks SUbstitution Matrix) matrix

PAM (Point accepted mutation) matrix

| С   | 12 | 1  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|
| S   | 0  | 2  |    | _  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |
| T   | -2 | 1  | 3  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |
| Р   | -3 | 1  | 0  | 6  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |
| Α   | -2 | 1  | 1  | 1  | 2  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |
| G   | -3 | 1  | 0  | -1 | 1  | 5  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |
| N   | -4 | 1  | 0  | -1 | 0  | 0  | 2  |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |
| D   | -5 | 0  | 0  | -1 | 1  | 2  | 2  | 4  |    |    |    |    |    |    |    |    |    |    |    |    |   |   |
| E   | -5 | 0  | 0  | -1 | 0  | 0  | 1  | 3  | 4  |    |    |    |    |    |    |    |    |    |    |    |   |   |
| Q   | -5 | -1 | -1 | 0  | 0  | -1 | 1  | 2  | 2  | 4  |    |    |    |    |    |    |    |    |    |    |   |   |
| Н   | -3 | -1 | -1 | 0  | -1 | -2 | 2  | 1  | 1  | 3  | 6  |    |    |    |    |    |    |    |    |    |   |   |
| R   | -4 | 0  | -1 | 0  | -2 | -3 | 0  | -1 | -1 | 1  | 2  | 6  |    |    |    |    |    |    |    |    |   |   |
| K   | -5 | 0  | 0  | -1 | -1 | -2 | 1  | 0  | 0  | 1  | 0  | 3  | 5  |    |    |    |    |    |    |    |   |   |
| М   | -5 | -2 | -1 | -2 | -1 | -3 | -2 | -3 | -2 | -1 | -2 | 0  | 0  | 6  |    |    |    |    |    |    |   |   |
| - 1 | -2 | -1 | 0  | -2 | -1 | -3 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | 2  | 5  |    |    |    |    |    |   |   |
| L   | -6 | -3 | -2 | -3 | -2 | -4 | -3 | -4 | -3 | -2 | -2 | -3 | -3 | 4  | 2  | 6  |    |    |    |    |   |   |
| V   | -2 | -1 | 0  | -1 | 0  | -1 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | 2  | 4  | 2  | 4  |    |    |    |   |   |
| F   | -4 | -3 | -3 | -5 | -4 | -5 | -4 | -6 | -5 | -5 | -2 | -4 | -5 | 0  | 1  | 2  | -1 | 9  |    |    |   |   |
| Υ   | 0  | -3 | -3 | -5 | -3 | -5 | -2 | -4 | -4 | -4 | 0  | -4 | -4 | -2 | -1 | -1 | -2 | 7  | 10 |    |   |   |
| W   | -8 | -2 | -5 | -6 | -6 | -7 | -4 | -7 | -7 | -5 | -3 | 2  | -3 | -4 | -5 | -2 | -6 | 0  | 0  | 17 |   |   |
| В   | -4 | 0  | 0  | -1 | 0  | 0  | 2  | 3  | 2  | 1  | 1  | -1 | 1  | -2 | -2 | -3 | -2 | -5 | -3 | -5 | 2 |   |
| Z   | -5 | 0  | -1 | 0  | 0  | -1 | 1  | 3  | 3  | 3  | 2  | 0  | 0  | -2 | -2 | -3 | -2 | -5 | -4 | -6 | 2 | 3 |
|     | С  | S  | T  | Р  | Α  | G  | N  | D  | Е  | Q  | Η  | R  | K  | М  | Ī  | L  | ٧  | F  | Υ  | W  | В | Z |
|     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |   |

For DNA sequences, A-G and C-T mismatches have less penalty than other mismatches

# Varying gap cost models

- Linear gap penalty: w(k)=k\*δ
- Affine gap penalty
  - Big initial cost for starting (or ending) a gap
  - Incremental penalty for each additional gap
  - $\circ$  w(k)=h+k\* $\delta$  if k>=1; w(k)=0 if k=0.
- General gap penalty
  - Any cost function
  - May not be computable with the same DP model

# Dynamic programming for affine gaps?

#### Possible cases:



- We can use the same approach we used for the linear gap, but...
- Running time increases from O(mn) to O(mn(m+n))
- For m=n, the increase is from  $O(n^2)$  to  $O(n^3)$

# DP for affine gap

 We can reduce the time to O(mn), but we need 3 matrices instead of 1

$$M(i,j)$$
 = score of the best alignment of  $x[1...i]$  with  $y[1...j]$  given that  $x[i]$  is aligned to  $y[j]$ 

$$x_i$$
  $y_j$ 

$$I_x(i,j)$$
 = score of the best alignment of  $x[1...i]$  with  $y[1...j]$  given that  $x[i]$  is aligned to a gap

$$x_i$$

$$I_y(i,j)$$
 = score of the best alignment of  $x[1...i]$  with  $y[1...j]$  given that  $y[j]$  is aligned to a gap

$$y_j$$

# DP for affine gap



(i,j)

$$\begin{bmatrix} x_i \\ y_j \end{bmatrix}$$

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \end{cases}$$

$$I_{x}(i,j) = \max \begin{cases} M(i-1,j) + h + g \\ I_{x}(i-1,j) + g \\ I_{y}(i-1,j) + h + g \end{cases}$$



$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + h + g \\ I_{x}(i,j-1) + h + g \\ I_{y}(i,j-1) + g \end{cases}$$

#### Multiple Sequence Alignment (MSA)



Multiple sequence alignment: find more subtle patterns & find common patterns between all sequence.

## From 2 sequences to multiple - Dynamic Programming?

Suppose you had just 3 sequences.

Apply the same DP idea as sequence alignment for 2 sequences, but now with a 3-dimensional matrix



#### DP Recurrence for 3 sequences

$$A[i, j, k] = \min \begin{cases} \cos(x_i, y_j, z_k) + A[i-1, j-1, k-1] \\ \cos(x_i, y_j, -) + A[i-1, j, k] \\ \cos(x_i, y_j, -) + A[i-1, j-1, k] \\ \cos(x_i, y_j, -) + A[i, j-1, k-1] \\ \cos(x_i, -, z_k) + A[i-1, j, k-1] \\ \cos(x_i, -, z_k) + A[i, j, k-1] \end{cases}$$
Every possible pattern for the gaps. 
$$2^3 - 1 \text{ cases}.$$
 (i. j. k-1)

(i, j-1, k-1)

#### Running time

- $n^3$  subproblems, each takes  $2^3$  time  $\Rightarrow O(n^3)$  time.
- For *p* sequences:  $n^p$  subproblems, each takes  $2^p$  time for the min  $\Rightarrow O(n^p 2^p)$
- Even  $O(n^3)$  is often too slow for the length of sequences encountered in practice.
- One solution: approximation algorithm.



#### Generalizing Alignment to > 2 Sequences

Input: Sequences S<sub>1</sub>, S<sub>2</sub>, ..., S<sub>p</sub>

Let  $cost(x_1, x_2, ... x_p)$  be a user-supplied function that computes the quality of a column: an alignment between characters  $x_1, x_2, ... x_p$ .

• Goal: find alignment M to minimize  $\Sigma$  cost of the columns:

How do we define cost function for multiple sequence alignment?

A particular cost() function, the SP-Score (sum-of-pairs), is commonly used and allows us to design an approximation algorithm for the MSA problem.

 $d_{M}(S_{i}, S_{j})$  = the cost of the alignment between  $S_{i}$  and  $S_{j}$  as implied by MSA M.

SP-Score(M) = 
$$\sum_{i < j} d_M(S_i, S_j)$$
  
= sum of all the scores of the

pairwise alignments implied by M.



#### Multiple Sequence Alignment

- A multiple sequence alignment (MSA) implies a pairwise alignment between every pair of sequences.
- This implied/induced alignment need not be optimal, however:

Calculating the SP-score for column 1: (A,A), (A,-), (A,A), (A,A)

$$-1 + 2 - 1 - 1 + 2 - 1 - 1 + 2 + 2 - 1 = +2$$

## **Star Alignment Approximation**





Star-Score =  $\sum_{i} d_{M}(S_{i}, S_{c})$ 

#### Star Alignment Algorithm

**Input**: sequences  $S_1, S_2, ..., S_p$ 

- Build all  $O(p^2)$  pairwise alignments.
- Let  $S_c =$  the sequence in  $S_1, S_2, ..., S_p$  that is closest to the others. That is, choose  $S_c$  to minimize:

$$\sum_{i\neq c} a(S_c, S_i)$$

Progressively align all other sequences to S<sub>c</sub>.





#### **Progressive Alignment**

Idea: Build a multiple sequence alignment up from pairwise alignments. Start with an alignment between S<sub>c</sub> and some other sequence:

```
SC YFPHFDLSHGSAQVKAHGKKVGDALTLAVGHLDDLPGAL S1 YFPHFDLSHG-AQVKG--KKVADALTNAVAHVDDMPNAL
```

Add 3rd sequence, say S2, and use the SC - S2 alignment as a guide, adding spaces into the MSA as needed.

#### SC - S2 alignment:

```
SC YFPHF-DLS----HGSAQVKAHGKKVGDALTLAVGHL----DDLPGAL S2 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS
```

#### New {SC, S1, S2} alignment (carry all gaps from pairwise alignments):

```
SC YFPHF-DLS----HGSAQVKAHGKKVGDALTLAVGHL----DDLPGAL
S1 YFPHF-DLS----HG-AQVKG--KKVADALTNAVAHV----DDMPNAL
S2 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS
```

Continue with \$3, \$4, ...

#### Performance of "star" progressive alignment

Assume the cost function satisfies the triangle inequality:

$$cost(x,y) \le cost(x,z) + cost(z,y)$$

STAR = cost of result of star algorithm under SP-score

OPT = cost of optimal multiple sequence alignment (under SP-score)

**Theorem**. If cost satisfies the triangle inequality, then STAR  $\leq 2 \times OPT$ .

Example: if optimal alignment has cost 10, the star alignment will have  $cost \le 20$ .

## 2-approximation of STAR: Proof (1)

**Theorem**. If cost satisfies the triangle inequality, then STAR  $\leq$  2OPT.

$$\frac{\text{STAR}}{\text{OPT}} \le 2$$

For some *B* we will prove the 2 statements:

This will imply:

$$STAR \le 2B$$
$$OPT \ge B$$

$$\implies \frac{\text{STAR}}{\text{OPT}} \le \frac{2B}{B} = 2$$

## 2-approximation of STAR: Proof (2)

**Theorem**. If cost satisfies the triangle inequality, then STAR  $\leq$  2OPT.

$$\begin{aligned} 2 \cdot \text{STAR} &= \sum_{ij} d_{\text{STAR}}(S_i, S_j) \text{ defn of SP-score} \\ & \text{by triangle inequality} &\leq \sum_{ij} (d_{\text{STAR}}(S_i, S_c) + d_{\text{STAR}}(S_c, S_j)) \\ & \text{because STAR alignment is optimal for pairs involving Sc} &= \sum_{ij} (\mathbf{a}(S_i, S_c) + \mathbf{a}(S_c, S_j)) \\ & \text{distribute } \Sigma &= \sum_{ij} \mathbf{a}(S_i, S_c) + \sum_{ij} \mathbf{a}(S_c, S_j) \\ &\leq 2 p \sum_{i} \mathbf{a}(S_i, S_c) \\ &\leq 2 p \sum_{i} \mathbf{a}(S_i, S_c) \\ &\text{sums are the same and each term appears} \\ &\leq \mathbf{p} \text{ (# of sequences) times.} \end{aligned}$$

## 2-approximation of STAR: Proof (3)

**Theorem**. If cost satisfies the triangle inequality, then STAR  $\leq$  2OPT.

$$2 \cdot \mathrm{OPT} = \sum_{ij} d_{\mathrm{OPT}}(S_i, S_j)$$
 defin of SP-score

optimal pairwise alignment is  $\leq$  pairwise alignment induced by any MSA  $\geq \sum_{ij} \mathbf{a}(S_i, S_j)$ 

$$\geq \sum_{ij} \mathtt{a}(S_i,S_j)$$

sum of cost of all pairwise alignments is = the sum of p different stars.

We chose S<sub>c</sub> because it was the lowest-cost star.



## 2-approximation of STAR: End of Proof

For some *B* we will prove the 2 statements:

 $\begin{array}{c|c} STAR \leq 2B \\ OPT \geq B \end{array}$ 

This will imply:

$$\implies \frac{\text{STAR}}{\text{OPT}} \le \frac{2B}{B} = 2$$

$$2 \cdot STAR \leq 2p \sum_{i} \mathbf{a}(S_{i}, S_{c})$$
 $2 \cdot OPT \geq p \sum_{i} \mathbf{a}(S_{i}, S_{c})$ 

$$\implies \frac{\text{STAR}}{\text{OPT}} \le \frac{2p\sum_{i} \mathsf{a}(S_i, S_c)}{p\sum_{i} \mathsf{a}(S_i, S_c)} = 2$$

#### Consensus Sequence

```
For every column j, choose c \in A_j that minimizes \sum_i cost(c, S_i[j]) most common letter)

S1 YFPHF-DLS----HGSAQVKAHGKKVG----DALTLAVAHLDDLPGAL

S2 YFPHF-DLS----HG-AQVKG-GKKVA----DALTNAVAHVDDMPNAL

S3 FFPKFKGLTTADQLKKSADVRWHAERII----NAVNDAVASMDDTEKMS

S4 LFSFLKGTSEVP-QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATL

CO YFPHFKDLS----HGSAQVKAHGKKVG----DALTLAVAHVDDTPGAL
```

- Consensus is a summarization of the whole alignment.
- Consensus sequence is sometimes used as an estimate for the ancestral sequence.
- Sometimes the MSA problem is formulated as: find MSA M that minimizes:  $\sum_{i} d_{M}(CO, S_{i})$

## Other progressive alignment strategy

First align the most similar sequences

How do we represent an alignment such that we can align a sequence to an alignment, or align two alignments?

#### **Profiles**

Another way to summarize an MSA:

S1 ACG-TT-GA

S2 ATC-GTCGA

S3 ACGCGA-CC

S4 ACGCGT-TA

Column in the alignment

|   |   | 2    | 3    | 4   | 5    | 6    | 7    | 8    | 9    |
|---|---|------|------|-----|------|------|------|------|------|
| A | I | 0    | 0    | 0   | 0    | 0.25 | 0    | 0    | 0.75 |
| 0 | 0 | 0.75 | 0.25 | 0.5 | 0    | 0    | 0.25 | 0.25 | 0.25 |
| G | 0 | 0    | 0.75 | 0   | 0.75 | 0    | 0    | 0.5  | 0    |
| T | 0 | 0.25 | 0    | 0   | 0.25 | 0.75 | 0    | 0.25 | 0    |
| - | 0 | 0    | 0    | 0.5 | 0    | 0    | 0.75 | 0    | 0    |

Call this profile matrix R

Fraction of time given column had the given character

Character

#### **CLUSTLW**

- CLUSTLW is a widely used, "classical" heuristic multiple aligner.
- Not the fastest, not the most accurate, but pretty good.

Large # of heuristic tricks included in the software, but basic idea is

(1): Build pairwise distance matrix

 $S_1$ 

 $S_3$   $S_4$   $S_5$   $S_6$ 

 $S_7$ 

(2): Build guide tree



(3): Align sequences / sets of sequences from the most similar to least similar

#### Profile-based Alignment

gap in profile introduced to better fit sequence \,\,\,

|          |   |   | 2    | 3    | 4   |
|----------|---|---|------|------|-----|
| <b>D</b> | Α | _ | 0    | 0    | 0   |
|          | С | 0 | 0.75 | 0.25 | 0.5 |
| R =      | G | 0 | 0    | 0.75 | 0   |
|          | F | 0 | 0.25 | 0    | 0   |
|          |   | 0 | 0    | 0    | 0.5 |

| 5    | 6    | 7    | 8    | 9    |
|------|------|------|------|------|
| 0    | 0.25 | 0    | 0    | 0.75 |
| 0    | 0    | 0.25 | 0.25 | 0.25 |
| 0.75 | 0    | 0    | 0.5  | 0    |
| 0.25 | 0.75 | 0    | 0.25 | 0    |
| 0    | 0    | 0.75 | 0    | 0    |

ACG-AGACGA

Score of matching character x with column j of the profile:

$$P(x,j) = \sum_{c \in \Sigma} sim(x,c) \times R[c,j]$$

sim(x,c) = how similar character x isto character c.

$$A[i,j] = \max \begin{cases} A[i-1,j-1] + P(x_i,j) & \text{align } x_i \text{ to column } j \\ A[i-1,j] + \text{gap} & \text{introduce gap into profile} \\ A[i,j-1] + P(\text{``\_''},j) & \text{introduce gap into } x \end{cases}$$

#### MSA Recap

- Multiple sequence alignments (MSAs) are a fundamental tool. They help reveal subtle patterns, compute consistent distances between sequences, etc.
- Quality of MSAs often measured using the SP-score: sum of the scores of the pairwise alignments implied by the MSA.
- Same DP idea as pairwise alignment leads to exponentially slow algorithm for MSA for general p.
- 2-approximation obtainable via star alignments.
- MSAs often used to create profiles summarizing a family of sequences.

#### Further reading

- Durbin, R., Eddy, S. R., Krogh, A. & Mitchison, G. Biological Sequence Analysis:
   Probabilistic Models of Proteins and Nucleic Acids. (Cambridge University Press, 1998),
   Chapter 6.
- Feng, D.-F. & Doolittle, R. F. Progressive sequence alignment as a prerequisitetto correct phylogenetic trees. *J. Mol. Evol.* **25**, 351–360 (1987)
- Higgins, D. G., Thompson, J. D. & Gibson, T. J. [22] Using CLUSTAL for multiple sequence alignments. in *Methods in Enzymology* vol. 266 383–402 (Academic Press, 1996).
- Thompson, J. D., Linard, B., Lecompte, O. & Poch, O. A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. *PLoS One* 6, e18093 (2011)
- Notredame, C. Recent progress in multiple sequence alignment: a survey. *Pharmacogenomics* **3**, 131–144 (2002)