

trouver une relation entre Vet vi utiliter la continuation de P (car Efect = Fir Rm 1=0 d'ou V'- mi vitelle de recul du canon 332) Explosion et choc * explosion: durle courte; & Fest = 0 > Pronsourée x choc divide courte; & Fed = 0 => Pionience types de choc: mon : Le n'est pas conservée ? P'conservée. elattique E conserve 4) Choc élatique avec vitelles colinéaires want le pour trouver une relation entre Visto visto muet ma que projection sur l'are du mi choc: V. choc: Pconterue. choc élatique : Consoruée. après le d'après (D: ma (VI - VI) = m2 (V5 - V3) (Acc: dapres 0) - m, (V1-V1) (V1+V1) = m, (V1-V2) D 1 V1 = V9 (V2+V1) (3 3 dams Q: V2 = 2m, V1+ (m2-m1) V2 , V1 = 2m, V2+ (m, -m2) V4 m1+m2 m1+m2 cas particuliers: cas $V_1=0$; $V_1-2m_2V_2$ $V_2=(m_2-m_1)V_2$ 2 emecas sim, m2; V1 = V2 et V2 = V1 Si les masses des solides sont égales, les solides échangent Cours vilenes repléen: replée fixe par rapport à la Terre,
MRO, on peut appliquer les lois de Newton

N.B. Si la reariation de Pf (t) est une ligne droite

dP = pente de la droite.

FABER-CASTELL

Solide	Axe		Moment d'iner
cerceau	axe du cer	ceau	I=MR2
cerceau	diametre		I= MR2
cylindre	axe du cyli	ndre	I=MR2
dique	axe du dis	jue_	I = MR ²
cylindre	axe du cy		I- MR2
tige de longue	La la tige of	M	I= ML2 12
tige	halatige e	n son	I = ML ²
sphere pleine	diametre		I=21/R2
my tf	m (clouder i et voir li la bouger le con	in sens	endante de fair
m= -0			
m = pui remembre e	are O		
MEqui rementre le travail d'un	e force en	rotation) ,

Page 9 of 23

