CS 188 Discussion 2:

Informed Search

Kenny Wang (kwkw@berkeley.edu) Wed Sep 6, 2023

Slides inspired by Sashrika Pandey and Regina Wang

Administrivia

- Project 1 due this Friday, Sep 8
- Homework 1 due next Tuesday, Sep 12
- We have office hours pretty much all day every weekday (12-7),
 come to Soda 341B!
- Reminder: Need extensions? We will give you extensions!

Today's Topics

- Heuristics
 - Admissible Heuristics
 - Consistent Heuristics
- A* Search

Heuristics

- **Heuristic:** Quick estimate of cost to get from node n to goal state h(n)
 - o Common example you might use: Manhattan distance from node n to goal in a maze
- Admissible: heuristic always underestimates (≤) true cost
 - \forall n, $0 \le h(n) \le h^*(n)$
 - h*(n) is the true best cost to get from n to goal
- Consistent: heuristic always underestimates all arc costs

 - Consistency is stronger than admissibility
 - Consistency implies admissibility, but not the other way around
 - Most admissible heuristics are consistent, especially if they come from relaxed problems

NOT consistent

Heuristics: Practice Question

- Is h(n) admissible?
- Is h(n) consistent?

- Admissible: heuristic always underestimates
 (≤) true cost
 - \circ \forall n, $0 \le h(n) \le h^*(n)$
- Consistent: heuristic always underestimates all arc costs
 - \circ \forall a, c, h(a) h(c) \leq cost(a, c)

A* Search

- A* Search: A (good!) search algorithm
 - Uniform Cost Search is good. It uses a priority queue for the fringe where p(n) = g(n)
 where g(n) is the backwards cost or path cost (total cost to get to node n)
 - A* Search is similar to Uniform Cost Search, but adds a heuristic term to the priorities.
 p(n) = g(n) + h(n)
 - A* tree search is optimal with any admissible heuristic
 - A* graph search (won't visit the same node twice) is only optimal with a consistent heuristic

Worksheet

Summary

- Heuristic: Estimate of cost to get from node n to goal state h(n)
- Admissible: heuristic always underestimates (≤) true cost
 - \circ \forall n, $0 \le h(n) \le h^*(n)$
 - h*(n) is the true best cost to get from n to goal
- Consistent: heuristic always underestimates all arc costs
 - \circ \forall a, c, h(a) h(c) \leq cost(a, c)
 - Consistency is stronger than admissibility
 - Consistency implies admissibility, but not the other way around

NOT consistent

- A* Search: A (good!) search algorithm
 - A* Search is similar to Uniform Cost
 Search, but adds a heuristic term to the priorities.

$$p(n) = g(n) + h(n)$$

- A* tree search is optimal with any admissible heuristic
- A* graph search (won't visit the same node twice) is only optimal with a consistent heuristic

Thank you for attending!

Attendance link:

https://tinyurl.com/cs188fa23

Week No: 2

Remember my name is Kenny

My email: kwkw@berkeley.edu

