МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Компьютерные науки и прикладная математика» Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа
по курсу «Фундаментальная
информатика»
І семестр
Задание 4
«Процедуры и функции в качестве параметров»

Группа	М8О-109Б-22
Студент	Юсуфов Р.Г.
Преподаватель	Сысоев М. А.
Оценка	
Дата	29 декабря 2022 г.

Москва, 2022

Задание

Составить программу на Си с процедурами решения трансцендентных алгебраических уравнений резличными численными методами (итераций, Ньютона и половинного деления — дихотомии). Нелинейные уравнения оформить как параметры-функции, разрешив относительно неизвестной

величины в случае необходимости. Применить каждую процедуру к решению двух уравнений, заданных двумя строками таблицы, начиная с варианта с заданным номером. Если метод неприменим, дать математическое обоснование и графическую иллюстрацию, например, с использованием gnuplot.

Варианты 4,5:

4	$3x - 14 + e^x - e^{-x} = 0$	[1, 3]	Ньютона	2.0692
5	$\sqrt{1-x} - tgx = 0$	[0, 1]	дихотомии	0.5768

Теоретическая часть

1. Метод итераций

Идея заключается в замене исходного уравнения f(x) = 0 на уравнение x = f(x). Перед началом итерационного процесса необходимо проверить условие сходимости: |f'(x)| < 1, $x \in [a, b]$. Изначально x равен (a + b)/2. Итерационный процесс: $x_{i+1} = f(x_i)$.

2. Метод Ньютона

Является частным случаем метода итераций, отличается условие выхода из цикла: $|f(x) * f''(x)| < (f'(x))^2$ и итерационным процессом: $x_{i+1} = x_i - (f(x_i)/f'(x_i))$

Алгоритм программы и план работы

В функции main для метода Ньютона производится проверка на сходимость. Для обоих методов нахождение значения корня рассчитывается согласно информации из условия работы.

Программа выведет значение корня.

В программе используется библиотека math.h. Для корректной работы на компиляторе дсс необходимо написать команду -lm.

В программе использовал переменные, представленные в таблице

Название	Тип переменной	Смысл переменной
переменной		

a	long double	Начало отрезка	
b	long double	Конец отрезка	
X	long double	Значения в промежутке [a;b],	
		для которого вычисляются	
		значения	
LDBL_EPSILON long double		Машинный эпсилон.	
		Для long double $\varepsilon = 1.08 * 10^{-19}$	

Распечатка кода программы:

Для дихотомии:

```
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <float.h>
long double f(long double x) {
    return sqrtl(1 - x) - tanl(x);
}
int main() {
    long double a, b;
    a = 0.01;
    b = 1.01;
    int f = 1;
    while (llabs(a-b) > LDBL_EPSILON) {
    if (f(a) * f((a + b) / 2) == 0) {
            if (f(a) == 0){
            printf(" %.20Lf \n", a);
            f = 0;
            break;
            } else {
            printf(" \%.20Lf \n", (a + b) / 2);
            f = 0;
            break;
    ext{less if } (f(a) * f((a+b)/2) > 0) 
            a = (a + b) / 2;
    } else {
            b = (a + b) / 2;
```

```
if (f) {
     printf(" \%.20Lf \n", (a + b) / 2);
Для метода Ньютона:
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <stdlib.h>
long double f(long double x) {
     return 3*x - 14 + expl(x) - expl(-x);
}
long double fproiz(long double x) {
     return 3 + \exp(x) - \exp(-x);
}
long double fprpr(long double x) {
  return expl(x) - expl(-x);
int main(void) {
     long double a = 1.0, b = 3.0, n;
     long double x = (a+b)/2;
  if (llabs(f(x)*fprpr(x)) < powl((fproiz(x)),2)) {
     while (1) {
     n = x - f(x) / fproiz(x);
              if (fabs(n - x) \le LDBL\_EPSILON) {
                      break;
              x = n;
  else {
     printf("Проверка на сходимость провалена\n");
     printf("%Lf\n", x);
     return 0;
}
```

Тестирование программы

Тест №1

0.57676980757075159922

2.069218

Корни совпали. Программа работает корректно

Заключение

Были написаны функции проверки использования определенных методов

решения уравнений, определены и инициализированы сами функции различных методов поиска корня уравнения.

Данная работа полезна в увеличении познаний о способах решений уравнений и методах их программной реализации.