University of British Columbia, Vancouver GEOS 300 - Microscale Weather and Climate Knox, updated January 10, 2023

Answers to Study Questions - Lecture 2

- 1. The term $\frac{\partial \rho_v}{\partial t}$ describes the change in absolute humidity $\partial \rho_v$ in time ∂t and as such is the change in storage within the 'volume'. Its unit is partial density of water vapour (g m⁻³) divided by time (in s), i.e. g m⁻³ s⁻¹
- 2. The term $u \frac{\partial \rho_v}{\partial x}$ describes <u>transport</u> of a humidity gradient along the x-axis by the wind. Its unit is wind speed (m s⁻¹) times partial density of water vapour (g m⁻³) divided by distance (in m), i.e. again g m⁻³ s⁻¹
- 3. Horizontally homogeneous conditions mean $\frac{\partial \rho_v}{\partial x} = 0$ and $\frac{\partial \rho_v}{\partial y} = 0$. So the conservation equation simplifies to:

$$0 = \frac{\partial \rho_v}{\partial t} + w \frac{\partial \rho_v}{\partial z} \tag{1}$$

or

$$\frac{\partial \rho_v}{\partial t} = -w \frac{\partial \rho_v}{\partial z} \tag{2}$$

Inserting $\frac{\partial \rho_v}{\partial z} = -1 \,\mathrm{g}\,\mathrm{m}^{-3}\,\mathrm{m}^{-1}$ and $w=0.1\,\mathrm{m}\,\mathrm{s}^{-1}$ results in:

$$\frac{\partial \rho_v}{\partial t} = 0.1 \,\mathrm{g \, m^{-3} \, s^{-1}}.\tag{3}$$

So the 'volume' becomes more humid over time.