Lec14 Note of Algebra

Xuxuayame

日期: 2024年10月28日

我们补充一下例 1.48 的内容.

 $\phi_T: V[x] \to V[x], vx^i \mapsto vx^{i+1} - T(v)x^i$, 我们验证正合性.

$$\pi \circ \phi_T(vx^i) = \pi(vx^{i+1} - T(v)x^i)$$
$$= T^{i+1}(v) - T^i(T(v)) = 0.$$

于是 $\pi \circ \phi_T = 0$, 从而 $\operatorname{Im} \phi_T \subset \operatorname{Ker} \pi$.

另一方面设 $\pi(\sum v_i x^i) = 0$,即 $\sum T^i(v_i) = 0$,于是

$$\sum v_i x^i = \sum (v_i x^i - T^i(v_i)) \in \operatorname{Im} \phi_T.$$

于是 $\text{Im}\phi_T = \text{Ker}\pi$. 至于 ϕ_T 单则略.

注意任何一个 k[x] — Mod 都可以视作 (V,T), 因此对所有 k[x] — Mod 都有如此正合列, 称为**自由分解**.

而若 T 的转移矩阵为 $A, T(e_i) = \sum a_{ji}e_j$, 那么 $\phi_T(e_i) = e_ix - T(e_i) = xe_i - \sum a_{ji}e_i$, 因此 ϕ_T 的方阵为 $xI_n - A \in M_n(k[x])$.

注意 $(V,T) \simeq \operatorname{Coker}(xI_n - A)$. 因此我们可以解决推论.

证明. ⇒: 成立.

 \Leftarrow : 若 $xI_n - A$ 与 $xI_n - B$ 相抵, 则 $\operatorname{Coker}(xI_n - A) \simeq \operatorname{Coker}(xI_n - B)$, 而 $(k^n, A) \simeq \operatorname{Coker}(xI_n - A)$, $(k^n, B) \simeq \operatorname{Coker}(xI_n - B)$. 故 $(k^n, A) \simeq (k^n, B) \Leftrightarrow A 与 B$ 相似.

推论. xI_n-A 相抵于 Smith 标准形 $\begin{pmatrix} c_1(x) & & \\ & \ddots & \\ & & c_n(x) \end{pmatrix}$, 满足首一 $c_1(x) \mid \cdots \mid c_n(x)$. 则

- (1) $\det(xI_n A) = c_1(x) \cdots c_n(x).$
- (2) $(k^n, A) \simeq k[x]/(c_1) \oplus \cdots \oplus k[x]/(c_n(x)).$
- (3) $c_n(x)$ 是 A 的最小多项式.

评论. 设 $c(x)=a_0+a_1x+\cdots+x^d$, 那么 k[x]/(c(x)) 的一组基为 $\overline{1},\overline{x},\cdots,\overline{x^{d-1}}$, 于是

 $k[x]/(c(x)) \stackrel{x*}{\to} k[x]/(c(x))$ 将基映为:

$$\overline{1} \mapsto \overline{x},$$

$$\overline{x} \mapsto \overline{x^2},$$

$$\cdots$$

$$\overline{x^{d-1}} \mapsto -a_0 \overline{1} - a_1 \overline{x} - \cdots - a_{d-1} \overline{x^{d-1}}.$$

于是转移矩阵为

$$\begin{pmatrix} 0 & & & 0 \\ 1 & 0 & & -a_1 \\ & 1 & 0 & & -a_2 \\ & & \ddots & \ddots & \vdots \\ & & 1 & -a_{d-1} \end{pmatrix}$$

称为 c(x) 的**友方阵 (Companion matrix)**.

证明. (3) 的证明.

d(x) 是 A 的最小多项式,即 d(A) = 0, d(x) 次数最小. 那么对 $d(A) = 0 \Leftrightarrow d(x) \cdot v = 0$, $\forall v \Leftrightarrow d(x) \in \text{Ann}((k^n, A))$. 而 $k[x]/(c_i(x))$ 的零化理想为 $(c_i(x))$. 故 $\text{Ann}((k^n, A)) = (c_n(x))$.

2 交换代数初步

2.1 Noether 环/模, Artin 环/模

设 R 为含幺交换环.

定义 2.1. 称 R 为 Noether 环 (Noetherian ring), 若 R 的所有理想均有限生成 ($\forall I \triangleleft R$, 存在有限 $x_1, \dots, x_n \in I$ s.t. $I = (x_1, \dots, x_n) = Rx_1 + \dots + Rx_n$).

例 2.1. PID⇒Noether.

命题 2.1. 以下等价.

- (1) R 满足 ACC(Ascending chain condition) 升链条件, 即 R 中的理想升链 $I_1 \subset I_2 \subset \cdots \subset I_n \subset \cdots$ 必稳定, 即存在 N 使得 $I_N = I_{N+1} = \cdots$.
- (2) R 满足极大性条件, 即 R 中由理想构成的非空集 \mathcal{F}_1 都有极大元 ($\exists I_0 \in \mathcal{F}_1$ 极大, $I \supset I_0 \Rightarrow I = I_0$).
- (3) R 是 Noether 的.

证明. (1)⇒(2).

 $\forall \mathcal{F}_1$, 若 \mathcal{F}_1 无极大元, 取 $I_1 \in \mathcal{F}_1$, I_1 非极大, 故 $\exists I_2 \in \mathcal{F}_1$, $I_1 \subsetneq I_2$, 而 I_2 也非极大, 故 $\exists I_3 \in \mathcal{F}_1$, $I_2 \subsetneq I_3$. 与得到一串严格理想升链

$$I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots$$

矛盾.

 $(2) \Rightarrow (3).$

设 $I \triangleleft R$, I 不是有限生成的, 那么取 $0 \neq x_1 \in I$, $(x_1) \subsetneq I$, 再取 $x_2 \in I \setminus (x_1)$, 也有 $(x_1, x_2) \subsetneq I$, 于是又取 $x_3 \in I \setminus (x_1, x_2)$, 如此取出 $\mathcal{F} = \{(x_1), (x_1, x_2), (x_1, x_2, x_3), \cdots\}$ 无极大元, 矛盾.

 $(3) \Rightarrow (1).$

设有一理想升链 $I_1 \subset I_2 \subset I_3 \subset \cdots$,那么 $I = \bigcup_{i=1} I_i \triangleleft R$ 因而有限生成,记为 (x_1, \dots, x_n) ,那么 $\exists N > 0, x_1, \dots, x_n \in I_N \Rightarrow (x_1, \dots, x_n) \subset I_N$,故 $I = I_N \Rightarrow I_N = I_{N+1} = \cdots$.

我们有事实.

命题 2.2. RNoether \Rightarrow R/INoether. 注意 R/I 的理想形如 J/I, $I \subset J \subset R$.

定理 2.3. Hilbert basis theorem.

 $RNoether \Rightarrow R[x]Noether.$

推论. k 域, $k[x_1, \dots, x_n]/I$ 是 Noether 的, 称为仿射代数.

例 2.2. • **习题**: $k[x_1, x_2, \cdots]$ 不是 Noether 的.

• 习题: $R = k + xk[x,y] = \{\lambda + xf(x,y)\} \subset k[x,y]$, 但 R 不是 Noether 的.(Hint: $(x,xy,xy^2,\cdots) \triangleleft R$)

证明. 设 $I \triangleleft R[x]$, 若 I 不是有限生成的, 取 $0 \neq f_0(x) \in I$, $d_0 = \deg f_0(x)$ 最小, 取 $f_1(x) \in I \setminus (f_0(x))$, $d_1 = \deg f_1$ 最小, $d_0 \leq d_1$, 取 $f_2(x) \in I \setminus (f_0(x), f_1(x))$, $d_2 = \deg f_2(x)$ 最小, $d_1 \leq d_2$, 如此反复.

设 $f_n(x)$ 的首项系数为 $0 \neq a_n \in R$, 那么

$$(a_0) \subset (a_0, a_1) \subset (a_0, a_1, a_2) \subset \cdots$$

在 R 中. 由 RNoether, $\exists N, a_{N+1} \in (a_0, \dots, a_N)$, 即 $a_{N+1} = r_0 a_0 + r_1 a_1 + \dots + r_N a_N, r_j \in R$, 那么

$$f_{N+1}^*(x) = f_{N+1}(x) - \sum_{i=0}^{N} r_i f_i(x) \cdot x^{d_{N+1} - d_i}.$$

则 $\deg f_{N+1}^* < d_{N+1}$,但 $f_{N+1}^* \in I \setminus (f_0, \dots, f_N)$,与 f_{N+1} 的选取矛盾.

评论. 记 $I \triangleleft R[x]$, 定义 $J \supset I$ 中所有多项式的首项系数组成的集合, 它是 R 的理想 (**习 题**).

因此 J 是有限生成的, 记为 (a_1, \dots, a_m) , 那么例如 a_i 对应的元素为 f_i . 我们记 $N = \max\{\deg f_1, \dots, \deg f_m\}$, 那么 $\forall g(x) \in I$, g 的首项系数为 b.

若 deg $g \geq N$, $b = r_1 a_1 + \dots + r_m a_m$, $r_j \in R$, 那么 $g(x) - \sum_{i=1}^m r_i f_i(x) x^{\deg g - \deg f_i}$, 次 数 $\leq \deg g - 1$. $\forall \ 0 \leq d \leq N - 1$, $J_d = \{a \in R \mid ax^d + \dots \in I\} \triangleleft R$, $J_d = (a_{d1}, \dots, d_{dm_d})$, 设 a_{di} 对应多项式为 $g_{di}(x)$, 那么我们宣称 $(f_1, \dots, f_m, g_{di}) = I$.