UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DISCIPLINA: REDES NEURAIS - POS 3 ª LISTA DE EXERCÍCIO - 2021.2

1-) Considere as funções apresentadas nos itens abaixo. Utilizando uma rede de funções de base radial (RBF) aproxime as referidas funções. Para tanto defina inicialmente o conjunto de treinamento, selecione um algoritmos de treinamento, treine para cada função a rede neural que aproxime a mesma, valide a redes treinada. Apresente nos resultados a curva da função aproximada pela RBF e pela rede neural perceptron de múltiplas camadas utilizada na lista 1 e a curva exata. Apresente também a curva do erro em função do número de iterações.

a)
$$f(\mathbf{x}) = \left[\frac{sen(\pi \|\mathbf{x}\|)}{\pi \|\mathbf{x}\|}\right]$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $|x_1| \le 10$ e $|x_2| \le 10$

c)
$$f(\mathbf{x}) = x_1^2 + x_2^2 - 2x_1x_2 + x_1 + x_2 - 1$$
, $|x_1| \le 10$, $|x_2| \le 10$

2-) Considere o problema das espirais. Sendo a espiral 1 uma classe e a espiral 2 outra classe. Gere os dados usando as seguintes equações:

para espiral 1
$$x = \frac{\theta}{4} \cos \theta$$
 $y = \frac{\theta}{4} \sin \theta$ $\theta \ge 0$

para espiral 2
$$x = (\frac{\theta}{4} + 0.8) \cos \theta$$
 $y = (\frac{\theta}{4} + 0.8) \sin \theta$ $\theta \ge 0$

fazendo θ assumir 1000 valores igualmente espaçados entre 0 e 20 radianos. Solucione este problema considerando:

- a-) Uma SVM
- b-) Um comitê de máquina formado por uma rede perceptron de múltiplas uma camada oculta, uma rede perceptron de múltiplas duas camada ocultas e uma máquina de vetor de suporte (SVM)

Obs. para solução deste item utilize duas estratégias (duas soluções).

- a-) A filtragem por reforço
- b-) O método Adaboost. Verifique o desempenho das duas soluções usando o conjunto de validação e calculando a matriz de confusão.
- 3-) Considere os dados apresentados na tabela abaixo. Determine os centroides dos aglomerados "clusters" presentes nos dados, fazendo uso do algoritmo da rede competitiva que corresponde ao algoritmo K-means. Para tanto considere os itens (a) (c) referentes ao processo de inicialização.

Amostra	\mathbf{x}_1	X 2	X 3
1	-7.82	-4.58	-3.97
2	-6.68	3.16	2.71
3	4.36	-2.19	2.09
4	6.72	0.88	2.80
5	-8.64	3.06	3.50
6	-6.87	0.57	-5.45
7	4.47	-2.62	5.76
8	6.73	-2.01	4.18
9	-7.71	2.34	-6.33
10	-6.91	-0.49	-5.68
11	6.18	2.81	5.82
12	6.72	-0.93	-4.04
13	-6.25	-0.26	0.56
14	-6.94	-1.22	1.13
15	8.09	0.20	2.25
16	6.81	0.17	-4.15
17	-5.19	4.24	4.04
18	-6.38	-1.74	1.43
19	4.08	1.30	5.33
20	6.27	0.93	-2.78

- a-) Considere que existam três clusters e a inicialização dos centros seja aleatória
- b-) Considere que existam três clusters e a inicialização dos centros seja dada por $\mathbf{m_1} = (0,0,0)^t$, $\mathbf{m_2} = (1,1,1)^t$, $\mathbf{m_3} = (-1,0,2)^t$.
- c-) Repita o item a considerando que os centros iniciais sejam $\mathbf{m_1}$ = $(-0.1,0,0.1)^t$, $\mathbf{m_2}$ = $(0,-0.1,0.1)^t$, $\mathbf{m_3}$ = $(-0.1,-0.1,0.1)^t$. Compare o resultado obtido com o item (a) e explique a razão da diferenças, incluindo o número de interações para alcançar a convergência.
- 4-)Um problema para testar a capacidade de uma rede neural atuar como classificador de padrões é o problema das duas espirais intercaladas. Neste problema o classificador será auto supervisionado. Gere os exemplos de treinamento usando as seguintes equações:

para espiral 1
$$x = \frac{\theta}{4}\cos\theta$$
 $y = \frac{\theta}{4}\sin\theta$ $\theta \ge 0$
para espiral 2 $x = (\frac{\theta}{4} + 0.8)\cos\theta$ $y = (\frac{\theta}{4} + 0.8)\sin\theta$ $\theta \ge 0$

Utilize uma rede de Kohonen isto é a rede SOM para atuar como classificador autosupervisionado. Verifique as regiões de decisões formadas pelo SOM, considerando uma grade uniforme em um quadrado [-5,5].

5-) A propriedade de ordenação topológica do algoritmo SOM pode ser usada para formar uma representação bidimensional abstrata para fins de visualização de um espaço de entrada de alta dimensionalidade. O objetivo é visualizar os dados de dimensão 8 em um espaço de dimensão 2, constituído pela grade de neurônios. Para investigar esta forma de represen-

tação, considere uma grade bidimensional de neurônios que é treinada tendo como entrada os dados oriundos de quatro distribuições gaussianas, C_1 , C_2 , C_3 , e C_4 , em um espaço de entrada de dimensionalidade igual a oito, isto é $\mathbf{x} = (x_1, x_2, \dots x_8)^t$. Todas as nuvens têm variâncias unitária, mas centros ou vetores média diferentes dados por $\mathbf{m}_1 = (0.0, 0.0, 0.0, 0.0, 0.0)^t$, $\mathbf{m}_2 = (4.0, 0.0, 0.0, 0.0, 0.0)^t$ $\mathbf{m}_3 = (0.0, 0.4, 0.0, 0.0)^t$, $\mathbf{m}_4 = (0.0, 0.0, 0.0, 0.0, 0.0)^t$. Calcule o mapa produzido pelo algoritmo SOM, e verifique como as distribuições dos dados estão representadas.

6-) Considere a tabela de índices de desenvolvimento de países (Fonte ONU- 2002, Livro – Análise de dados através de métodos de estatística multivariada – Sueli A. Mingoti) abaixo. Gere o mapa SOM e com isto identifique os clusters existentes, i.e., o países com características mais similares.

Países	Expectativa de	Educação	PIB	Estabilidade
	Vida	3		Política
Reino Unido	0.88	0.99	0.91	1.10
Austrália	0.90	0.99	0.93	1.26
Canadá	0.90	0.98	0.94	1.24
Estados Unidos	0.87	0.98	0.97	1.18
Japão	0.93	0.93	0.93	1.20
França	0.89	0.97	0.92	1.04
Cingapura	0.88	0.87	0.91	1.41
Argentina	0.81	0.92	0.80	0.55
Uruguai	0.82	0.92	0.75	1.05
Cuba	0.85	0.90	0.64	0.07
Colômbia	0.77	0.85	0.69	-1.36
Brasil	0.71	0.83	0.72	0.47
Paraguai	0.75	0.83	0.63	-0.87
Egito	0.70	0.62	0.60	0.21
Nigéria	0.44	0.58	0.37	-1.36
Senegal	0.47	0.37	0.45	-0.68
Serra Leoa	0.23	0.33	0.27	-1.26
Angola	0.34	0.36	0.51	-1.98
Etiópia	0.31	0.35	0.32	-0.55
Moçambique	0.24	0.37	0.36	0.20
China	0.76	0.80	0.61	0.39
Média	0.69	0.75	0.68	0.16
Desvio Padrão	0.24	0.249	0.229	1.056

Escolha um dos trabalhos abaixo:

1-) Pesquise e apresente um trabalho sobre a reconstrução de imagem tridimensional fazen-

do uso da rede SOM ou da Growing Neuro Gas.

2-) Pesquise e apresente um estudo sobre redes neurais/deep learning autosupervisionadas

aplicadas nos problemas de clusterização.

3-) Pesquise e apresente um trabalho sobre redes neurais/deep learning com aprendizagem

semi-supervisionada.

4-) Pesquise e apresente um trabalho sobre a Rede ART (Adaptive Resonant Theory)

Data de entrega: 14/12/2021

A entrega e apresentação dos trabalhos correspondem a um processo de avaliação. Portanto

a presença é obrigatória.

O trabalho e a lista podem ser feitos em grupo de até três componentes.

Na apresentação os componentes serão submetidos a questionamentos sobre a solução da

lista e o desenvolvimento dos trabalhos.

Calendário das Atividades do Final do Curso:

Apresentação da Lista 3: 14/12/2021

Apresentação do Trabalho Final: 21/12/2021