Early Psychiatric Rehospitalization Prediction

Anh L Tran

Georgia Institute of Technology

April 2021

#### **Author Note**

Anh L Tran, Georgia Institute of Technology.

This study was my applied analytics practicum (CSE 6748) project. I would like to thank Amy E. Chadwick, Mark Metzger, Dr. Kate McDonald, Dr. Emily V. Trask, Dr. Gregory Aarons and other team members at Child and Adolescent Services Research Center (CASRC) and Health Services Research Center (HSRC) for their guidance, support and feedback to me during my master program and this project.

Correspondence should be addressed to: Anh L Tran. Email: alt041@health.ucsd.edu.

# Table of Contents

|                                                                 | Page |
|-----------------------------------------------------------------|------|
| Abstract                                                        | 3    |
| Background and Objective                                        | 4    |
| Methods                                                         | 5    |
| Key Elements                                                    | 5    |
| Data Source                                                     | 5    |
| Outcomes and Predictor Variables                                | 6    |
| Machine Learning Algorithms                                     | 7    |
| Predictive Model Pipeline                                       | 9    |
| Training and Test                                               | 9    |
| Missing Data Imputation                                         | 9    |
| Feature Engineering.                                            | 9    |
| Variable Selection                                              | 10   |
| Modelling                                                       | 11   |
| Performance Evaluation Metrics                                  |      |
| Results                                                         |      |
| Children, Youth, and Families System of Care (CYF SOC) Findings | 13   |
| Exploratory Data Analysis                                       |      |
| Machine Learning Model Results                                  |      |
| Adult and Older Adult System of Care (AOA) SOC Findings         | 22   |
| Exploratory Data Analysis                                       | 22   |
| Machine Learning Model Results                                  | 25   |
| Discussion                                                      | 30   |
| Summary of Findings                                             | 30   |
| Strengths and Limitations                                       | 32   |
| Conclusions                                                     |      |
| References                                                      | 34   |
| Appendices                                                      | 36   |

#### **ABSTRACT**

Objective: Early psychiatric rehospitalization is disruptive to the clients' lives and put a strain on the mental health care system. With a large sample size data and information, we explored state-of-art machine-learning (ML) algorithms to predict 7, 30, 60 and 90-day readmissions as well as identifying influencing factors for both the youth (CYF) and the adult (AOA) systems of care in San Diego County. Methods: Our 12-year dataset covered 118,893 psychiatric hospitalization records of 44,605 clients who were discharged from inpatient services. We analyzed each system of care separately. Seven ML algorithms (Naïve Bayes, K-Nearest Neighbors or KNN, Logistic Regression, Neuro Networks, Decision Tree, Random Forest, and Gradient Boosting) and three sets of variables (all predictors, predictors selected from the ML models, and predictors selected by the Boruta algorithm) were used to predict the readmission outcomes and evaluated.

*Results:* The CYF and AOA samples had similar results. Naïve Bayes and KNN had the lowest performances (accuracy and AUC < 0.65). Logistic Regression, Neuro Networks, and Decision Tree performed moderately (0.65-0.75 accuracy and 0.68 - 0.72 AUC). The best ML algorithms were Random Forest and Gradient Boosting (0.70-0.92 accuracy and 0.70 – 0.79 AUC). Among the set of predictor variables, Boruta-selected variables were preferred because there were much fewer variables (12-17 variables) used but the performances of the ML algorithms improved. We selected the Gradient Boosting with Boruta-selected variables as our final prediction model and tuned its parameters. We identified that length in the psychiatric hospital, history of psychiatric hospitalization, number of services before the index hospitalization, and some demographics variables were strong predictors for our model.

Conclusions: The Gradient Boosting model with Boruta-selected predictor variables yielded acceptable results. Although its performances was considered modest, there are many potentials to improve this model when combining with other information such as the outcome assessment data. The prediction model could contribute valuable information to help prevent and reduce psychiatric rehospitalization.

**Keywords:** Psychiatric Rehospitalization, Machine Learning, System of Care.

## 1. Background and Objective

Early psychiatric rehospitalization (EPR) occurs when a client is readmitted to a psychiatric inpatient service within 90 days from the previous inpatient psychiatric hospital discharge (Zhao et al. 2020). Because hospitalization is a preferred care modality for clients with severe mental illnesses or experiencing acute psychiatric crisis and costs more than outpatient services, being rehospitalized, specifically EPR, would cause many negative consequences such as being disruptive for clients and their families, increasing the risk of complication, and representing a strain on limited health care resources (Vigod et al., 2013). Hence, being able to identify influencing factors and predict the likelihood of EPR can help health care providers to provide early intervention and appropriate post-discharge cares for the high-risk clients in order to reduce rehospitalization rate.

Previous studies have identified some associations between psychiatric rehospitalization and predischarge client-level characteristics such as age, comorbidities, diagnostics, length of stay in the hospital, clinical history, type of service history and many other factors (Yu et al. 2015, Hung et al. 2017, Donisi et al. 2016, Zhao et al. 2020). Specifically, previous admissions and the amount of previous psychiatric service (Hamilton et al. 2016, Hung et al. 2017), diagnosis of schizophrenia, bipolar disorder, or depression (Hamilton et al. 2016, Hung et al. 2017), homeless at admission and discharge (Laliberté et al. 2019), living alone (Hung et al. 2017, Webber et al. 2004, Zhao et al. 2020), and having substance use disorders (Morel et al. 2020) are reliable predictors of readmission.

With the abundance of administrative records of inpatient clients and high dimensionality of psychiatric data, many recent studies have applied machine learning (ML) approach to detect complex patterns among risk factors and to develop hospitalization/rehospitalization prediction models. For example, Zhao et al. 2020 used random forest, a tree-based classification algorithm, to identify top risk factors for EPR. Blankers et al. 2020 applied ten machine learning algorithms, including the traditional statistical technique - generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization. Morel et al. 2020 used the ensemble model, a technique that combines individual models to boost the performance, such as extreme gradient boosting to predict psychiatric readmission.

Despite the considerable number of studies on readmission prediction, most EPR predictive models are designed for 90-day psychiatric rehospitalization and focus on the adult population. It is essential if we could predict much earlier than 90 days and identify the unique factors contributing to the likelihood of the readmission for both the children/ teenager and the adult populations.

In San Diego County, California, the Behavioral Health Services Department oversees mental health services via two main systems of care: the Children, Youth and Families System of Care (CYF SOC) and the Adults and Older Adults System of Care (AOA SOC). The CYF SOC serves about 15,000 clients annually and 3-4% of them received psychiatric inpatient services. The AOA SOC serves about 42,000 clients annually and 7-10% of them were hospitalized in a psychiatric hospital (County of San Diego Behavioral Health Services). By identifying risk/ protective factors and predicting the EPR likelihood, the County could provide better mental health services to the clients.

In this study, we build predictive models to predict 90, 60, 30 and 7-day psychiatric rehospitalization and identify influencing factors for both CYF and AOA systems.

## 2. Methods

## 2.1 Key Elements

#### 2.1.A. Client data source

The County of San Diego Behavioral Health Services uses the Cerner Community Behavioral Health (CCBH) platform to collect client data. CCBH is an electronic health record system that tracks demographics, diagnosis, and episodes in different levels of care including acute care hospitalization, emergency screening unit, outpatient and jail mental health services. CCBH data are routinely downloaded, imported and stored in our Microsoft SQL Server.

In our study, we extracted 12 years (07/01/2008 to 06/30/2020) of inpatient service data. The dataset is organized by the inpatient record level. Each row in the dataset includes a hospital stay, also known as the "index hospitalization", and the subsequent hospital stay called the "readmission." Each client can have one or multiple indexes of hospitalization. Furthermore, we wrote SQL queries to join multiple tables (i.e. client table, subunit table, level of care table, service table and assignment table) to construct a main dataset that includes client demographics, all services received before the index hospitalization, level of care, and the 7, 30, 60 and 90-day readmissions.

The whole original dataset consists of 118,907 distinct psychiatric hospitalization records of 44,611 unique clients. For the purpose of analysis, we only included cases that have date admitted to psychiatric hospital since 07/01/2008 and have an inpatient discharge. The final study population covered 118,893 psychiatric hospitalization records of 44,605 clients. The dataset was split into two subdatasets (i.e. CYF and AOA) and were analyzed separately.

## 2.1.B. Outcomes and predictor variables

The primary outcome of interest was a dichotomized measure of client psychiatric rehospitalization within 7, 30, 60 or 90 days after being discharged from an inpatient service (the index hospitalization). Each of these timeframe outcomes were analyzed separately. Candidate predictor variables include the client demographics (which are slightly different between CYF and AOA), length and history of psychiatric hospitalization, number of total services received, number of each group of services received 7/30/60/90 days before the index hospitalization, the first five level of care (LOC) services received before the index hospitalization and discharge status. The candidate predictors were selected based on the prior knowledge and availability of information, in which each variable should have less than 30% missing data. Table 1 lists all variables, and table 2 lists the service groups and their LOCs.

Table 1. Predictor variables by themes and population systems

|                                                               | Candidate predictor variables                                                                                                                                                                                                                                  |                                                                                                                     |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| Themes                                                        | CYF AOA                                                                                                                                                                                                                                                        |                                                                                                                     |  |  |
|                                                               | Age (num), Age group (cat), Gender (cat), Psychiatric diagnosis (cat), Living (cat), substance abuse (cat), co-occurrin                                                                                                                                        | situation (cat), Insurance status                                                                                   |  |  |
| Demographics                                                  | Receive Child Welfare Services/ CWS (cat), Receive Alcohol and Drug Services/ADS (cat), Probation or Juvenile Justice/JJ Involvement (cat), In Special Education (cat)                                                                                         | Employment status (cat),<br>Education status (cat), Sexual<br>orientation (cat) ,<br>Jail/Justice Involvement (cat) |  |  |
| Length and history of psychiatric hospitalization             | First time being hospitalized (cat) Days in the psychiatric hospital in last 12 months (num) Number of psychiatric hospitalizations in lifetime (num) Type of psychiatric hospitalization (cat)                                                                |                                                                                                                     |  |  |
| Number of total services                                      | Number of all services up to the index hospitalization (num) Number of services before the index hospitalization since previous hospitalization (num) Number of services before the index hospitalization since previous hospitalization at same subunit (num) |                                                                                                                     |  |  |
| Service group received up to 7/30/60/90 days before the index | Number of Outpatient (OP) Services (num) Number of Emergency/Crisis Services (num) Number of Inpatient (IP) Services (num)                                                                                                                                     |                                                                                                                     |  |  |
| hospitalization                                               | Days in Day (DT) Services (num)  1st LOC service received before the index hospitalization (cat)  2nd LOC service received before the index hospitalization (cat)                                                                                              |                                                                                                                     |  |  |
| Order of LOC services                                         | 4th LOC service received before the index hospitalization (cat)<br>5th LOC service received before the index hospitalization (cat)                                                                                                                             |                                                                                                                     |  |  |
| Discharge                                                     | Discharge Status (cat)                                                                                                                                                                                                                                         | 250                                                                                                                 |  |  |
| Total Variables                                               | 185                                                                                                                                                                                                                                                            | 258                                                                                                                 |  |  |

Table 2. Service groups and LOCs

| Population | Outpatient Services                                                                                                                                                                                                        | Emergency<br>Services                                                                                        | Inpatient<br>Services                                                                           | 24-hour<br>Services                                                                               | Day Services                                                                                                             |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| CYF        | Outpatient (OP), OP-Fee<br>for Service (OP-FFS),<br>OP-Residential (OP-R),<br>Juvenile Forensic Service<br>(JFS), Wraparound<br>(WRAP), Therapeutic<br>Behavioral Services<br>(TBS)                                        | Crisis Stabilization (CS), Urgent Outpatient (UO), Emergency Screening Unit (ESU), Crisis Outpatient (CO)    | Inpatient – CAPS (IP- CAPS), Inpatient – Fee for Service (IP- FFS), Psych Health Facility (PHF) | No services                                                                                       | Day Treatment-<br>Community<br>(DT-C), DT-<br>Residential<br>(DT-R), DT-<br>Closed<br>Treatment<br>Facility (DT-<br>CTF) |
| AOA        | ACT, Case Management (CM), CM-Institutional (CMI), CM-Strengths (CMS), CM-Transitional (CM-TRAN), Fee for Service (FFS), OP, OP-Low Income Health Program (OP-LIHP), Prevention (PREV), Eating Disorder Program (ED), Jail | Crisis Stabilization (CS), Urgent Outpatient (UO), PERT, Crisis Residential (CR), Early Psychosis Unit (EPU) | IP-County (IP-CNTY), IP-FFS,<br>State Hospital<br>(IP-SH), IP-<br>LIHP                          | Edgemoor, Long Term Care (LTC), LTC- Institutional (LTC-I), LTC- Residential (LTC-R), Residential | No services                                                                                                              |

## 2.1.C. Machine learning algorithms

The seven statistical/ML algorithms used in this project were Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Decision Tree, Random Forest, Gradient Boosting and Artificial Neural Network. These represent the most commonly used types of algorithms for classification problems, which are applicable to the outcomes of interest. All algorithms had implementations in Python 3.8 and the sklearn library.

Logistic Regression, also known as logit regression or logit model, is a statistical model used to estimate the probability of a binary (0-1) outcome. It uses the Sigmoid function, which is an S-shaped curve that takes input data and maps it into a value between 0 (event does not occur) and 1 (event occurs). This model is also considered a type of Generalized Linear Models (Nelder 1972). For our Logistic Regression model, "liblinear" solver was used to handle L1 penalty, which limits size of the coefficients.

Naïve Bayes is a technique used to classify cases into labels (in our case rehospitalization Yes or No). The model is based on Bayes' Theorem with an assumption of independence among predictors. For example, an animal may be considered to be a bird if it has two wings, two legs, a beak, feathers and

lays eggs. Although these features depend on each other, each of them independently contributes to the probability that the animal is a bird and that is why it is known as 'Naive' (Hand 2001). The default Naïve Bayes model was used.

K-nearest neighbors (KNN) is an algorithm that estimates how likely a new case is to be a member of one group or the other depending on the majority of k (k>1) closest matching neighbor data. KNN determines the closest matching neighbor by a similarity measure such as the Euclidean distance [formula =  $(\sqrt{((X1-X2)^2+(Y1-Y2)^2)}]$  between two data points (Altman 1992). We used k=3 in our KNN model.

Decision Tree, also known as Classification and Regression Tree, is a robust algorithm that repeatedly partitions the data into a number of smaller subgroups (called leaf nodes) with similar response values based on a set of decision rules (called decision nodes) like an upside-down tree. The model tries to minimize cross-entropy or Gini index, a measure of purity to ensure the subset is as pure or homogeneous as possible, which is also where the branches stop splitting (Song 2015). Because our outcome variable is categorical, the model predicts the class label (i.e. rehospitalization Yes of No) from the class that has majority presentation in the subgroup. We used the default Decision Tree model.

Random Forest is an ensemble learning method that produces many decision trees using the training data as an input. These tree are made by randomly selecting a number of predictors and a number of rows from the original dataset. Each individual tree in the random forest outputs a class prediction and the class with the most votes becomes the model's prediction. Random forest is considered more reliable and stable than just a decision tree (Biau 2016). We used the default 100 trees for the Random Forest model.

Gradient Boosting is a ML technique that produces a strong prediction model in the form of an ensemble of weak prediction models, often in the form of decision trees. Gradient Boosting trains many models in a gradual, additive and sequential manner in order to optimize a loss function, a measure indicating how good model's coefficients are at fitting the underlying data (Natekin 2013). In our case, the loss function is a measure of how good our predictive model is at classifying rehospitalization. We also used the default 100 trees for the Gradient Boosting model.

Artificial Neural Networks, or simply called Neural Networks, is a ML model inspired by the biological neural networks of the brain. It is modelled to learn tasks based on provided examples, without being explicitly programmed. A neural network can have any number of layers with any number of neurons in those layers. The inputs are fed forward through the neurons in the network to get the

output(s) at the end. During the transmission of the "signal" through the layers of neurons, there are weights and thresholds to moderate the strength of the signal at the connection to improve the prediction accuracy (van Gerven 2018). We used 100 neurons in 50 hidden layers with the hyperbolic tan function for our Neural Networks model.

#### 2.2. Predictive Model Pipeline

#### 2.2.A. Training and Test

For each population (CYF/AOA) x each outcome (7/30/60/90-day readmissions), we applied stratified sampling technique. The dataset was split at 80% as training dataset and the remaining 20% as test dataset with respect to the outcome variable. This technique ensures that the training and test sets have approximately the same percentage of samples of each outcome class as the complete set.

## 2.2.B. Missing Data Imputation

Missing data might cause some issues and affect many machine learning algorithms. Thus we had excluded predictors with 30% or more missing data at the beginning. For the candidate predictors, only a few demographics (i.e. primary language, insurance status, living situation, employment status, education and substance use) predictors have missing data less than 1%, except the diagnosis (about 2% for CYF and 5% for AOA) and sexual orientation (about 21%). For the CYF system, sexual orientation data are only collected for clients who are 13 years old or older; thus we did not include it in the CYF predictor set.

To impute the missing data, we applied the KNN algorithm on the training and test datasets. The number of k neighbors were determined by the formula: [take square root the number of predictors and then divided by 2]. Because the KNN only takes numerical values, each label in each categorical variable were encoded as a number based on the alphabetical order. After imputing, these numbers were converted back to their corresponding labels.

## 2.2.C. Feature Engineering

Categorical variables were one-hot encoded: each category in each categorical variable is represented by a dummy variable, where 1 indicates the category and 0 otherwise. Since one-hot-encoding directly induces multicollinearity, we dropped one of the columns from the encoded features.

Both numeric and categorical predictors were combined to create the input features. Because the ML models require data to be scaled and Gaussian distribution is preferred, we applied the Min-Max scaling technique to normalize the input data for both the training and test datasets. This technique shifts and rescale values so that they end up ranging between 0 and 1 (Patro 2015).

The Yes:No rehospitalization of each timeframe outcome is imbalanced; there are much fewer rehospitalized cases than the non-rehospitalized ones. Plus, the shorter the timeframe is, the wider the ratio gap is. This would impact the ML models because they would have poor performance on the minority class (i.e. Rehospitalization Yes), which is our outcome of interest. To resolve this problem, we applied a sampling technique called Synthetic Minority Oversampling Technique, or SMOTE. The algorithm is similar to the KNN. It selects samples in the minority class that are close to each other and then draws lines between them. New sample points are generated from the points on these lines (Chawla et al. 2002). Because we need to ensure the integrity of the test dataset for the evaluation purpose, only the training dataset was augmented.

#### 2.2.D. Variable Selection

There are three sets of predictor variables used for the ML models: 1) all variables, 2) variables selected from the Correlation and Boruta algorithm and 3) variables selected from the feature importance produced by ML models.

Pearson correlation coefficients for numerical variables and Cramer's V (strength of association) coefficients for categorical variables were computed. Any feature with coefficient > 0.9 was considered redundant and excluded. After that, the Boruta variable selection was applied. The Boruta algorithm is a wrapper built around the random forest classification algorithm. It tries to capture all the important features in the dataset with respect to an outcome variable. The idea behind this algorithm is that the features compete with a randomized version of themselves, which are called shadow features created by duplicating the dataset and shuffling the values in each column. The importance of each original features is compared with a threshold, which is defined as the highest feature importance recorded among the shadow features. After a number of defined iterations, a feature is selected only if it's capable of doing better than its best randomized version (Kursa 2010). The strongly and moderately predictive features were selected as the final second set for the ML models.

Feature importance refers to techniques that assign a score to input features based on how useful they are at predicting an outcome after fitting the training data into the model. The higher the value the more important the feature. For the tree-based models (i.e. Decision Tree, Random Forest and Gradient Boosting), feature importance score is calculated as the reduction in node impurity weighted by the probability of reaching that node. That is, features that tend to split nodes closer to the root of a tree will result in a larger importance value. The feature importance score can be retrieved easily from the feature\_importances\_ property of the trained tree-based models. The third set of variables were selected

from the top 15 of the average feature importance scores of the three tree-based models. This method follows a two-step Big Data analytic approach (Zhao and Castellanos, 2016).

## 2.2.E. Modelling

The ML algorithms were first applied to training data to parameterize and fit the model.

Predicted classifications were then calculated for the test set. Three sets of selected features were used to fit the models, and their results were compared. The best set of features and the best model were then selected as the final model and we tuned the parameters to improve its performance. The tuning process used 5-fold cross-validation run for each parameter list. A grid search was used to identify the best hyper-parameters (e.g. the learning rate, the depth and the number of trees).

Figure 1. Predictive Model Pipeline – Feature Engineering



Figure 2. Predictive Model Pipeline – Modelling



#### 2.2.F. Evaluation Metrics

There are seven main metrics to evaluate the performance of a ML model. They are: confusion matrix, accuracy, precision, recall, f1-score, precision-recall curve and AUC-ROC.

The confusion matrix is a straightforward table to view True and False Positive and Negative results.

The accuracy is the number of correct predictions over the total number of test dataset.

The precision is the ratio between the True Positives and all the Positives. It measures the model ability to not classify a case as positive, if it should be negative.

The recall is the measure of the model correctly identifying True Positives. It is the opposite of the precision.

The F1-score is the weighted harmonic mean of precision and recall (F1=1 is the best).

The precision-recall curve is a metric for demonstrating the tradeoff between precision and recall for imbalanced datasets. The area under the precision-recall curve is the average precision score (AP = 1 is the best).

The AUC-ROC (area under the ROC curve), or AUC for short, is a performance measurement for the classification problems at various threshold settings. ROC (Receiver Operating Characteristics) is a probability curve and AUC represents the degree or measure of separability. It tells how much the model is capable of distinguishing between classes. Generally speaking, an AUC of 0.5 indicates that the model is no better than chance; an AUC of 0.7 to 0.8 indicates modest or acceptable discriminative ability, and a threshold greater than 0.8 indicates good discriminative ability (Hanley 1982).

Figure 3. Evaluation metrics and formulas



Figure 4. AUC-ROC and Precision-Recall Curve Examples



## 3. Results

In this section, we present the exploratory data analysis summary and the machine learning model results for the CYF and AOA samples. Because the AUC is a standard measure of prediction accuracy that indicates discriminative ability, we used it along with the accuracy as the main metrics to evaluate the models. The full list of evaluation metric results are shown in the appendices.

## 3.1 Children, Youth and Family System of Care (CYF SOC) Results

## 3.1.A. Exploratory Data Analysis

The CYF sample includes 13,950 cases of 6,310 unique clients who have received at least one psychiatric IP service from FY 2008-2009 to FY 2019-2020 in San Diego County, California. The below figure 5 provides the distribution of the number of clients in psychiatric hospital by fiscal years.

Figure 5. Percent of clients received psychiatric IP services by fiscal years (N = 6,310)



The majority of CYF-sample clients receiving IP services are teenagers who have been diagnosed with depressive disorders. Most of the clients live with family, have English as their primary language and have Medi-Cal only. For reported gender and ethnicity, there are more female and Hispanic clients than other groups in the sample. About 1/6 of the sample used alcohol and drug or had substance abuse issues. A small portion of the sample received CWS, ADS and/or Probation/Juvenile Justice services. Almost 1/4 of the sample were in special education. About half of the sample were discharged with satisfactory outcome and achieved the discharge goals. Table 3 provides summary statistics of the study CYF sample.

Table 3. Summary statistics of the study CYF sample\*

| Variables (number of category) | Statistics                           |
|--------------------------------|--------------------------------------|
| Age                            | Mean: 14.7 (Std: 2.35)               |
| Age group (3)                  | 16-17 years old: 44.8%               |
| Gender (3)                     | Female: 12.8%                        |
| Race/Ethnicity (7)             | Hispanic: 12.2%                      |
| Primary language (5)           | English: 85.4%                       |
| Diagnosis (8)                  | Depressive disorders: 48.8%          |
| Insurance status (4)           | Medi-Cal only: 84.3%                 |
| Living situation (6)           | House or Apartment: 82.0%            |
| Substance abuse (2)            | Yes: 13.8%                           |
| Co-occurring substance use (2) | Yes: 17.8%                           |
| Receive CWS (2)                | Yes: 12.2%                           |
| Receive ADS (2)                | Yes: 3.0%                            |
| Probation/JJ Involvement (2)   | Yes: 4.7%                            |
| Receive Special Education (2)  | Yes: 23.8%                           |
| Discharge status (16)          | Satisfactorily achieved goals: 48.9% |

<sup>\*</sup>Full categories are displayed in the appendices.

In average, the clients in the CYF sample received 100.3 services up to the index hospitalization. 71.5 services were received before the index hospitalization since previous hospitalization but only 0.2 services at the same subunit. There are four main groups of services that serve the CYF clients:

Outpatient, Emergency, Inpatient and Day Services. Tables 4 and 5 summarize the group of services and the LOCs that CYF clients received before the index hospitalization.

Table 4. CYF group of services received within 90, 60, 30 and 7 days before the index hospitalization

| Group of     | Metrics        | Within 90 | Within 60 | Within 30 | Within 7 |
|--------------|----------------|-----------|-----------|-----------|----------|
| Services     | Menics         | days      | days      | days      | days     |
| Outpatient   | Total visits:  | 219,817   | 157,980   | 88,538    | 26,674   |
| Services     | Total clients: | 257       | 278       | 371       | 622      |
|              | Percent user:  | 4.1       | 4.4       | 5.9       | 9.9      |
| Emergency    | Total visits:  | 56,466    | 48,457    | 38,954    | 29,094   |
| Services     | Total clients: | 322       | 334       | 344       | 351      |
|              | Percent user:  | 5.1       | 5.3       | 5.5       | 5.6      |
| Inpatient    | Total visits:  | 4,108     | 2,966     | 1,672     | 387      |
| Services     | Total clients: | 766       | 738       | 676       | 288      |
|              | Percent user:  | 12.1      | 11.7      | 10.7      | 4.6      |
| Day Services | Total days:    | 67,343    | 45,527    | 22,445    | 4,988    |
|              | Total clients: | 8         | 7         | 11        | 21       |
|              | Percent user:  | 0.1       | 0.1       | 0.2       | 0.3      |

Table 5. Top 10 common LOCs of each of the five CYF LOC events before the index hospitalization

| 5 <sup>th</sup> LOC | 4 <sup>th</sup> LOC | 3 <sup>rd</sup> LOC | 2 <sup>nd</sup> LOC | 1 <sup>st</sup> LOC |
|---------------------|---------------------|---------------------|---------------------|---------------------|
| IPFFS               | OP                  | OP                  | OP                  | OP                  |
| DTR                 | <b>IPFFS</b>        | CS                  | CS                  | CS                  |
| OP                  | TBS                 | FFS                 | IP                  | FFS                 |
| WRAP                | CS                  | <b>IPFFS</b>        | <b>IPFFS</b>        | IP                  |
| TBS                 | DTR                 | DTR                 | FFS                 | WRAP                |
| PERT                | WRAP                | <b>IPCAPS</b>       | WRAP                | <b>IPFFS</b>        |
| DTC                 | FFS                 | TBS                 | TBS                 | TBS                 |
| CS                  | OPR                 | WRAP                | <b>IPCAPS</b>       | DTR                 |
| FFS                 | PERT                | IP                  | DTR                 | DTC                 |
| OPR                 | <b>IPCAPS</b>       | OPR                 | OPR                 | OPR                 |

The current CYF client sample has 1.3 psychiatric hospitalization (3.2 standard deviation) in average. The average length of stay in the psychiatric hospital is 6.6 days (18.4 days standard deviation). The gap between hospitalizations is 505.2 days or about 1.4 years. When we limited the gap to within a year, we found that the clients were readmitted to the psychiatric hospital in 60.8 days (86.4 days standard deviation) since a previous IP discharge. Figure 6 shows the distribution of readmission time in days; and figure 7 shows the percentages of 7, 30, 60 and 90-day readmission cases and clients.

Figure 6. Box plot of readmission time in days since IP discharge



Figure 7. Percent of CYF cases and clients being readmitted to psychiatric hospital 7, 30, 60 and 90-days after being discharged



#### 3.1.B. Machine Learning Model Results

### All predictor variables

Figure 8 presents the accuracy for the models using all 185 predictor variables. Six out of seven models predicted the readmission in the shorter timeframe with higher accuracy than the longer timeframe. The Neural Networks and the tree-based models (i.e. Decision Tree, Random Forest and Gradient Boosting) had better performance (> 0.7 accuracy overall) compared to the statistical model Logistic Regression. The Naïve Bayes model had the lowest accuracy while the Gradient Boosting model performed the best across all timeframes (0.75 to 0.92 accuracy).

1 0.9 Naïve Bayes 0.8 0.7 KNN 0.6 Logistic Regression 0.5 Neuro Networks 0.4 Decision Tree 0.3 Random Forest 0.2 0.1 Gradient Boosting 0 7-day readmission 30-day readmission 60-day readmission 90-day readmission

Figure 8. Model accuracy of ML algorithms by timeframes – all predictors - CYF

Figure 9 shows the AUC-ROC. The Random Forest and the Gradient Boosting models had acceptable discriminative ability scores (0.72-0.77) across four timeframes. The Logistic Regression model also performed moderately well (0.69-0.72).

Figure 9. Model AUC of ML algorithms by timeframes - all predictors - CYF



#### Variables selected from the ML models

The top 15 predictor variables were selected from the three tree-based models (i.e. Decision Tree, Random Forest and Gradient Boosting). They are OP services 7/30/60/90 days before the index hospitalization, IP services 30/60 days before the index hospitalization, ES services 90 days before the index hospitalization, number of services before the index hospitalization since previous hospitalization at same/ other subunit, number of all services up to the index hospitalization, IP-FFS, history of hospitalization, length of hospitalization, race and age. These predictor variables are common across the four timeframes.

Unexpectedly, the performance of all models got worse. The accuracy and AUC scores were lower than when using all predictors. Figures 10 and 11 present the accuracy and the AUC for the models.

1 0.9 Naïve Bayes 0.8 0.7 -KNN 0.6 Logistic Regression 0.5 Neuro Networks 0.4 Decision Tree 0.3 - Random Forest 0.2 - Gradient Boosting 0.1 0 7-day readmission 30-day readmission 60-day readmission 90-day readmission

Figure 10. Model accuracy of ML algorithms by timeframes – ML-selected predictors - CYF







\*knn: K-Nearest Neighbors, mlp-nn: Neuro Networks, gbm: Gradient Boosting

#### Predictor variables selected from the Boruta algorithm

The Boruta algorithm selected the following predictors across the four timeframes: IP services 60/90 days before the index hospitalization, number of all services up to the index hospitalization, IP-CAPS, history of hospitalization, length of hospitalization, race and age.

There were increases in accuracy and AUC in the Naïve Bayes, KNN and Logistic Regression models across four timeframes. The performances of the Neuro Networks and Decision Tree were slightly lower than its version of all predictors. The Random Forest and Gradient Boosting models had similar performances (0.70 - 0.89 accuracy and 0.71-0.75 AUC) compared to their versions of all predictors. Figures 12 and 13 present the accuracy and the AUC for the models using the predictor variables selected from the Boruta algorithm.

Figure 12. Model accuracy of ML algorithms by timeframes – Boruta-selected predictors - CYF





Figure 13. Model AUC of ML algorithms by timeframes – Boruta-selected predictors – CYF\*

\*knn: K-Nearest Neighbors, mlp-nn: Neuro Networks, gbm: Gradient Boosting

#### Final set of variables and model

Among the models, Gradient Boosting consistently performed better than the other ML models across all timeframes. Thus, we chose it as our final model. Although using all 185 predictor variables with the Gradient Boosting model yielded the best accuracy and AUC, it consumed lots of computational power and took a long time to run (about 20-30 minutes). On the other hands, there were only 10 or fewer variables selected from the Boruta algorithms and the results were similar. The final model that we decided to pick and tune its parameters was the Gradient Boosting with Boruta-selected predictors.

There were three parameters that we tuned for the Gradient Boosting model: learning rate (moderate the contribution of each tree), n\_estimators (the number of trees in the forest) and max\_dept (how deep the built tree can be). Table 6 lists the best parameters, accuracy and AUC for each timeframe model. There were moderate improvements in the accuracy and AUC of this tuned final model

compared to the previous models. The highest accuracy and AUC were 0.91 and 0.78, respectively, for 7-day readmission. The accuracy and AUC decreased as the readmission timeframe increased but the values were still larger than 0.72.

Table 6 Best parameters, accuracy and AUC of the final model - CYF

|               | 7-day<br>readmission | 30-day<br>readmission | 60-day<br>readmission | 90-day<br>readmission |
|---------------|----------------------|-----------------------|-----------------------|-----------------------|
| Learning rate | 0.1                  | 0.1                   | 0.1                   | 0.01                  |
| N_estimators  | 1500                 | 1000                  | 500                   | 1500                  |
| Max_depth     | 7                    | 7                     | 3                     | 3                     |
| Accuracy      | 0.9125               | 0.8401                | 0.7710                | 0.7441                |
| AUC           | 0.7816               | 0.7426                | 0.7244                | 0.7335                |

Regarding the important predictor variables, length in the psychiatric hospital, history of psychiatric hospitalization, number of services up to the index hospitalization, and number of services before the index hospitalization since previous hospitalization are the strongest predictors for the model. Having IP (60 and 90 days) and ES (30 days) services before the index moderately contribute to the final model. IP-CAPS, IP-FFS, discharge status and demographics variables (i.e. age and race) also influence the model prediction. Table 7 shows the average important feature scores and coefficients of the Boruta predictor variables for all four readmission timeframes. The details of individual timeframes are listed in the appendices.

Table 7. Average important feature scores and coefficient of Boruta predictors across four timeframes - CYF

| Boruta predictors                                | Important feature score | Coefficient |
|--------------------------------------------------|-------------------------|-------------|
| Length in hospital                               | 0.41852                 | 0.198852    |
| History of hospitalization                       | 0.205235                | 2.712986    |
| Number of services up to index hospitalization   | 0.114051                | 1.24282     |
| Number of services before index hospitalization  |                         |             |
| since previous hospitalization                   | 0.079563                | 1.749609    |
| IP services 60 days before index hospitalization | 0.032213                | 0.649447    |
| IP services 90 days before index hospitalization | 0.032076                | 0.211267    |
| ES services 30 days before index                 |                         |             |
| hospitalization                                  | 0.072166                | -0.98324    |
| IP CAPS                                          | 0.017635                | 0.645254    |
| IP FFS                                           | 0.023644                | 0.966863    |
| Discharge status: other reasons                  | 0.028372                | 0.821287    |
| Race: unknown                                    | 0.056583                | 1.492222    |
| Age                                              | 0.050025                | 1.102105    |

## 3.2 Adults and Older Adults System of Care (AOA SOC) Results

#### 3.2.A. Exploratory Data Analysis

The AOA sample includes 104,920 cases of 38,272 unique clients who have received at least one psychiatric IP service from FY 2008-2009 to FY 2019-2020 in San Diego County, California. The below figure 14 provides the distribution of the number of clients in psychiatric hospital by fiscal year. Figure 14. Percent of clients received psychiatric IP services by fiscal years (N = 38,272)



The majority of AOA clients receiving IP services are 26-59 years old, males, white, have English as the primary language and have been diagnosed with schizophrenia and other psychotic disorders. About 4% are identified as LGBTQ+. More than 1/4 of the sample completed high school diploma/GED. About 67% of the sample have Medi-Cal/ Medicare. 1/3 of the sample reported being not in labor force and more than half of the sample reported living independently. More than half of the sample used alcohol and drug and had substance abuse issues. Almost half of the sample were discharged to home or their shelters. Table 8 provides summary statistics of the study AOA sample.

Table 8. Summary statistics of the study AOA population\*

| Variables (number of category) | Statistics                                       |
|--------------------------------|--------------------------------------------------|
| Age                            | Mean: 38.3 (Std : 14.09)                         |
| Age group (3)                  | 26-59 years old: 63.9%                           |
| Gender (3)                     | Male: 55.1%                                      |
| Race/Ethnicity (7)             | White: 46.4%                                     |
| Primary language (5)           | English: 83.8%                                   |
| Education level (8)            | High School Diploma/GED: 26.4%                   |
| Diagnosis (6)                  | Schizophrenia & Other Psychotic Disorders: 45.0% |
| Insurance status (4)           | Medi-Cal and Medicare: 66.6%                     |
| Employment status (7)          | Not in labor force: 30.3%                        |
| Living situation (6)           | Living independently: 62.3%                      |
| Sexual orientation (3)         | LGBTQ+: 4.4%                                     |
| Substance abuse (2)            | Yes: 60.3%                                       |
| Co-occurring substance use (2) | Yes: 57.3%                                       |
| Discharge status (24)          | Discharged to Home/Shelter: 46.1%                |

<sup>\*</sup>Full categories are displayed in the appendices.

In average, the clients in the AOA sample received 55.6 services up to the index hospitalization. 32.6 services were received before the index hospitalization since previous hospitalization but only 0.3 services at the same subunit. There are four main groups of services that serve the AOA clients: Outpatient, Emergency, Inpatient and 24-hour Services. Tables 9 and 10 summarize the group of services and LOCs that AOA clients received before the index hospitalization.

Table 9. AOA group of services received within 90, 60, 30 and 7 days before the index hospitalization

| Group of Services | Metrics        | Within 90<br>days | Within 60<br>days | Within 30 days | Within 7<br>days |
|-------------------|----------------|-------------------|-------------------|----------------|------------------|
| Outpatient        | Total visits:  | 491,466           | 346,263           | 192,847        | 62,783           |
| Services          | Total clients: | 2,076             | 2,289             | 2,676          | 3,219            |
|                   | Percent user:  | 4.8               | 5.2               | 6.1            | 7.4              |
| Emergency         | Total visits:  | 312,409           | 258,965           | 193,694        | 123,911          |
| Services          | Total clients: | 1,462             | 1,466             | 1,494          | 1,687            |
|                   | Percent user:  | 3.3               | 3.4               | 3.4            | 3.9              |
| Inpatient         | Total visits:  | 62,068            | 45,394            | 24,902         | 4,125            |
| Services          | Total clients: | 5,726             | 5,651             | 5,359          | 2,363            |
|                   | Percent user:  | 13.1              | 12.9              | 12.3           | 5.4              |
| 24-hour           | Total days:    | 15,481            | 7,514             | 3,309          | 1,179            |
| Services          | Total clients: | 11                | 13                | 16             | 30               |
|                   | Percent user:  | < 0.1             | < 0.1             | < 0.1          | 0.1              |

Table 10. Top 10 common LOCs of each of the five LOC events before the index hospitalization

| 5 <sup>th</sup> LOC | 4 <sup>th</sup> LOC | 3 <sup>rd</sup> LOC | 2 <sup>nd</sup> LOC | 1st LOC |
|---------------------|---------------------|---------------------|---------------------|---------|
| IP-FFS              | IP-FFS              | IP-FFS              | IP-FFS              | IP-FFS  |
| CS                  | CS                  | CS                  | CS                  | CS      |
| CR                  | CR                  | JAIL                | OP                  | UO      |
| JAIL                | JAIL                | OP                  | UO                  | OP      |
| OP                  | OP                  | <b>IP-CNTY</b>      | CR                  | OP-FFS  |
| <b>IP-CNTY</b>      | IP-CNTY             | CR                  | OP-FFS              | ACT     |
| OP-FFS              | UO                  | UO                  | JAIL                | JAIL    |
| UO                  | OP-FFS              | OP-FFS              | IP-CNTY             | CR      |
| CM-TRAN             | CM-TRAN             | CM-TRAN             | CM-TRAN             | CM-TRAN |
| PERT                | PERT                | ACT                 | ACT                 | IPCNTY  |

The current AOA client sample has 1.8 psychiatric hospitalization (4.79 standard deviation) in average. The average length of stay in the psychiatric hospital is 11.3 days (38.8 days standard deviation). The gap between hospitalizations is 619.2 days or about 1.7 years. When we limited the gap to within a year, we found that the clients were readmitted to the psychiatric hospital in 71.1 days (88.0 days standard deviation) since a previous IP discharge. Figure 15 shows the distribution of readmission time in days; and figure 16 shows the percentages of 7, 30, 60 and 90-day readmission cases and clients.

Figure 15: Box plot of readmission time in days since IP discharge



Figure 16. Percent of AOA cases and clients being readmitted to psychiatric hospital 7, 30, 60 and 90-days after being discharged



### 3.2.B. Machine Learning Model Results

#### All predictor variables

Figure 17 presents the accuracy for the models using all 258 predictor variables. Except the Naïve Bayes model with the lowest performance, all other models had the prediction accuracy over 60% and two models (i.e. Random Forest and Gradient Boosting) had 70% or more accuracy. These performances were consistent across the four readmission timeframes.

Regarding the AUC, four out of six models (i.e. Logistic Regression, Neural Networks, Random Forest and Gradient Boosting) had the performance over 0.70 in overall. Gradient Boosting had the best AUC score (0.77-0.79) compared to the other models.

Figure 17. Model accuracy of ML algorithms by timeframes – all predictors – AOA



Figure 18. Model AUC of ML algorithms by timeframes – all predictors – AOA\*





\*knn: K-Nearest Neighbors, mlp-nn: Neuro Networks, gbm: Gradient Boosting

## Variables selected from the ML models

The top 15 predictor variables were selected from the three tree-based models (i.e. Decision Tree, Random Forest and Gradient Boosting). They are IP services 30/60/90 days before the index hospitalization, ES services 90 days before the index hospitalization, number of services before the index hospitalization since previous hospitalization at same/other subunit, number of all services up to the index hospitalization, history of hospitalization, length of hospitalization, sexual orientation, discharge status, living situation, gender and age. These predictor variables are common across the four timeframes.

Interestingly, the accuracy performances of the tree-based models decreased significantly (below 0.60) while the Naïve Bayes increased (0.67-0.70) compared to when using all predictors. The accuracy of the Logistic Regression, KNN and Neuro Networks were similar to the previous their corresponding all-predictors models (0.61-070). The AUC of the models were also lower than the previous all-predictor models.



Figure 19. Model accuracy of ML algorithms by timeframes – ML-selected predictors – AOA



Figure 20. Model AUC of ML algorithms by timeframes – ML-selected predictors – AOA\*

\*knn: K-Nearest Neighbors, mlp-nn: Neuro Networks, gbm: Gradient Boosting

## Predictor variables selected from the Boruta algorithm

The Boruta algorithm selected the following predictors across the four timeframes are: IP services 30/60/90 days before the index hospitalization, ES services 60/90 days before the index hospitalization, number of all services up to the index hospitalization, history of hospitalization, length of hospitalization, living situation, diagnosis, race, gender and age.

All models had the accuracy higher than 0.60. Among the models, Gradient Boosting consistently performed the best (0.71-0.74~accuracy) across all readmission timeframes. Regarding the AUC scores, all other models had the AUC over 0.70~except KNN and Decision Tree. Notably, the Gradient Boosting had AUC ranging from 0.75-0.78.

Figure 21. Model accuracy of ML algorithms by timeframes – Boruta predictors – AOA



Figure 22. Model AUC of ML algorithms by timeframes – Boruta predictors – AOA\*



\*knn: K-Nearest Neighbors, mlp-nn: Neuro Networks, gbm: Gradient Boosting

#### Final set of variables and model

Among the models, Gradient Boosting consistently performed better than the other ML models across all timeframes. Thus, we chose it as our final model. Although using all 258 predictor variables with the Gradient Boosting model yielded the best accuracy and AUC, it consumed lots of computational power and took a long time to run (about 20-30 minutes). On the other hands, there are only 10 or fewer variables selected from the Boruta algorithms and the results were similar. The final model that decided to pick and tune its parameters was the Gradient Boosting with Boruta-selected predictors.

There were three parameters that we tuned for the Gradient Boosting model: learning rate (moderate the contribution of each tree), n\_estimators (the number of trees in the forest) and max\_dept (how deep the built tree can be). Table 11 lists the best parameters, accuracy and AUC for each timeframe model. There were some improvements in the accuracy and AUC of this tuned final model compared to the other models. The highest accuracy and AUC were 0.87 and 0.78, respectively, for 7-day readmission. The accuracy and AUC decreased as the readmission timeframe increased but the values were still larger than 0.72. These results are similar to the final model of the AOA sample.

Table 11. Best parameters, accuracy and AUC of the final model - AOA

|               | 7-day       | 30-day      | 60-day      | 90-day      |
|---------------|-------------|-------------|-------------|-------------|
|               | readmission | readmission | readmission | readmission |
| Learning rate | 1           | 0.1         | 0.1         | 0.01        |
| N_estimators  | 1500        | 1500        | 1500        | 1000        |
| Max_depth     | 4           | 6           | 4           | 5           |
| Accuracy      | 0.8734      | 0.7712      | 0.7342      | 0.7218      |
| AUC           | 0.7789      | 0.7785      | 0.7639      | 0.7769      |

Regarding the important predictor variables, length in the psychiatric hospital, history of psychiatric hospitalization, number of services up to the index hospitalization, and number of services before the index hospitalization since previous hospitalization are the strongest predictors for the model. Having IP and ES services before the index hospitalization and discharge status moderately contribute to the final model. The demographics variables influencing the models include diagnosis, education level, living situation, sexual orientation, and co-occurring substance use. Table 12 shows the average important feature scores and coefficients of the Boruta predictor variables for all four readmission timeframes. The details of individual timeframes are listed in the appendices.

Table 12. Average important feature scores and coefficient of Boruta predictors across four timeframes - AOA

| Boruta predictors                                                              | Important feature score | Coefficient |
|--------------------------------------------------------------------------------|-------------------------|-------------|
| Length in hospital                                                             | 0.3906                  | -5.1703     |
| History of hospitalization                                                     | 0.2143                  | 5.3748      |
| Number of services up to index hospitalization                                 | 0.1077                  | -1.8395     |
| Number of services before index hospitalization since previous hospitalization | 0.0871                  | -3.2599     |
| Number of services before index hospitalization                                |                         |             |
| since previous hospitalization at the same                                     | 0.0577                  | -0.3956     |
| subunits                                                                       |                         |             |
| IP services 30 days before index hospitalization                               | 0.0486                  | 1.9231      |
| ES services 7 days before index hospitalization                                | 0.0470                  | -0.0244     |
| IP services 60 days before index hospitalization                               | 0.0378                  | 3.1198      |
| ES services 30 days before index                                               | 0.0300                  | 1.4333      |
| hospitalization                                                                | 0.0300                  | 1.4333      |
| ES services 60 days before index                                               | 0.0254                  | 0.4098      |
| hospitalization                                                                |                         |             |
| Diagnosed with Depressive disorders                                            | 0.0218                  | -0.2804     |
| Diagnosed with Schizophrenia/Psychotic disorders                               | 0.0171                  | 0.1644      |
| Unknown Education level                                                        | 0.0148                  | -0.3531     |
| Lives independently                                                            | 0.0143                  | -0.3210     |
| Missing sexual orientation                                                     | 0.0127                  | -0.3717     |
| Received IP-FFS                                                                | 0.0114                  | 0.1969      |
| Received - IP LIHP                                                             | 0.0098                  | -0.3392     |
| Discharge status: to IMD/MHRC                                                  | 0.0085                  | -3.1615     |
| Discharge status: to Medical Hospital                                          | 0.0080                  | 1.9624      |
| Discharge status: to Psychiatric Hospital                                      | 0.0077                  | 1.9732      |
| No first LOC before index hospitalization                                      | 0.0065                  | -0.1842     |
| Co-occurring substance use                                                     | 0.0059                  | 0.2581      |
| Discharge status: to lower LOC                                                 | 0.0051                  | 0.9226      |

# 4. Discussion

## 4.1 Summary of Findings

Psychiatric rehospitalization, especially when it occurs early after the discharge from a previous psychiatric inpatient service, can be costly and burdensome to the clients, their families and the healthcare system. Using the administrative data from the County of San Diego Behavioral Health Services via CCBH system, we analyzed and applied the machine learning approach to predict the inpatient readmission within 7, 30, 60 and 90 days after a discharge as well as to identify the influencing

predictor variables for both the CYF and AOA samples. To find the optimal solution, we used three different sets of variables to train the models: all variables, variables selected from the ML models and variables selected from the Boruta algorithm. By doing this process, we were able to find the "sweet point" to reduce a large number of predictors to the finest set while preserving the best performance of the models. This analytical procedure is widely applied in psychiatric research with high dimensional data (Zhao and Castellano, 2016).

There are not many differences in the overall model performance between the CYF and AOA samples. Among the models, we found that the Naïve Bayes and KNN models had poor performances (accuracy and AUC < 0.65) compared to other models. The Logistic Regression, which is a popular statistical model used predominately in psychiatric rehospitalization research (Grinshpoon et al., 2007), had a moderate performance (0.65-0.75 accuracy and 0.68-0.72 AUC). Its performance improved when using a smaller set of predictor variables. This shows that this model is more suitable for low dimensional data. The Neural Networks model had similar accuracy to the Logistic Regression but better AUC (0.70-0.74). Among the three tree-based models, Decision Tree had the lowest performance (accuracy 0.64-0.68 and AUC 0.62-0.66). The Random Forest and Gradient Boosting had the best performance (accuracy 0.70-0.92 and AUC 0.70-0.79). Because Gradient Boosting performed better than the random forest, we selected it as our final model and fine-tuned its parameters.

Regarding the predictor variables, we found that fitting all variables (185 for CYF and 258 for AOA) yielded the best performance, specifically with Gradient Boosting (accuracy 0.70-0.92). However, due to the high dimensionality, it took a long time to run all models (about 40 minutes). This duration decreased significantly (5-10 minutes) when reducing the number of variables to 15 or less. Thus, we selected the top 15 predictor variables based on the important feature scores from the three tree-based models for the second round. However, the results were unexpected. The performances of the Logistic Regression, Neuro Networks and the tree-based models got worse while the Naïve Bayes and KNN improved; yet their accuracy and AUC were still lower than 0.71. This pattern were more obvious for the CYF sample than the AOA sample. The third set of predictor variables were selected by the Boruta algorithm. The average number of selected variables were 12 for the CYF sample and 17 for the AOA sample. When fitting these variables, the performances of weak models (Naïve Bayes and KNN) improved by 0.1 or 0.2 points compared to all-variable versions. The performance of other models did not change much. Because the Boruta set of predictor variables are much smaller than all-variable set

and the performance of the models were similar and some even better, we selected this set to train the final Gradient Boosting model.

The influencing predictor variables that the Boruta algorithm chose include length in the psychiatric hospital, history of psychiatric hospitalization, number of services up to the index hospitalization, number of services before the index hospitalization since previous hospitalization, having IP and ES services before the index hospitalization, and discharge status. They are the same for both CYF and AOA samples. For demographics variables, the CYF sample had age and race while the AOA-selected predictors also include diagnosis, sexual orientation, education level, living situation, and co-occurring substance use.

After tuning the Gradient Boosting model with the Boruta predictors, the average accuracy scores across four timeframes were 0.82 for the CYF sample and 0.78 for the AOA sample; the average AUC scores were 0.75 for the CYF sample and 0.77 for the AOA sample. The model performed very well for the 7-day readmission (CYF: 0.92 accuracy and 0.78 AUC, AOA: 0.87 accuracy and 0.78 AUC). However, the model performance decreased in 30, 60 and 90 days. This makes sense because the further the timeframe in the future, the less accuracy the prediction could be. Although the AUC scores are not high like the accuracy scores, the 0.7 or higher AUC scores could be considered moderately high for hospital readmission. Most of the hospital readmission (medical and psychiatric) prediction models in previous studies usually had an AUC score below 0.75 (Kansagara et al. 2011, Artetxe et al. 2018).

#### 4.2 Strengths and limitations

The findings of our study should be considered in light of its strengths and limitations. A strength in this study is that we analyzed two relatively big datasets for both the CYF and AOA systems at four readmission timeframes (7, 30, 60 and 90 days). The datasets include 12 years of data and have more than 100 variables. This increased the complexity of the project but it also provided much helpful information. The second strength is the application of multiple ML models with different sets of number of variables. This method helped us to find the best combination to achieve the optimal solution.

Limitations of our study include the fact that we could not use all variables in the original dataset, especially demographics variables, due to a large portion of missing data. Because some of the variables (e.g. veteran status, history of trauma, domestic violence, sexual orientation for CYF, etc.) were not collected in the earlier years, these variables had more than 30% of missing data and was discarded by our selection threshold initially. For variables with a low percent of missing data, we had to

impute them because most of ML models are not capable of working with missing observations. The second limitation is that not all ML models were well equipped. We used the default version for each model and only fine-tuned the Gradient Boosting. Some models might perform better than the other if its parameters are modified. Third limitation is the class imbalance; there are much fewer rehospitalized cases than non-rehospitalized ones. Although we applied the SMOTE technique to generate synthetic "Yes" examples to balance the Yes-No readmission classes, this technique did not take into consideration neighboring examples can be from the "No" class. This can increase the overlapping of classes and introduce additional noise. The fourth limitation is that we only used administrative data to build the model. The initial plan was to use both the administrative data and the outcome assessment data, which measures the clients' emotional and behavioral symptoms at outpatient visits by clinicians. However, because there were some changes in the outcome assessment tools last four years and combining versions were difficult, we decided to use the administrative data only for this study project.

#### 4.3 Conclusion

Our study analyzed the administrative data of behavioral health services in San Diego County, CA and attempted to build multiple ML models to predict the EPR at four timeframes for both the CYF and AOA samples. Although we found that the Gradient Boosting model with Boruta-selected predictor variables yielded acceptable accuracy and AUC, we believed that there are more potentials to improve this model. Our next steps are to find a way to bring in the outcome assessment data and potentially apply some deep learning models in addition to upgrading the Gradient Boosting. This study adds to the current literature on predicting psychiatric rehospitalization and machine learning. Effectively predicting the EPR and understanding its contributors could help inform the County stakeholders, mental health providers and researchers to improve mental health services planning, policies and programs to reduce hospitalizations.

### References

- Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992;46(3):175–85.
- Artetxe A, Beristain A, Graña M. Predictive models for hospital readmission risk: a systematic review of methods. Comput Methods Programs Biomed. 2018;164:49–64.
- Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227.
- Blankers, M., van der Post, L. F., & Dekker, J. J. (2020). Predicting hospitalization following psychiatric crisis care using machine learning. BMC medical informatics and decision making, 20(1), 1-11.
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
- County of San Diego Behavioral Health Services. Technical Resource Library.
- https://www.sandiegocounty.gov/content/sdc/hhsa/programs/bhs/technical\_resource\_library.html
- Donisi, V., Tedeschi, F., Wahlbeck, K., et al., 2016. Pre-discharge factors predicting readmissions of psychiatric patients: a systematic review of the literature. BMC Psychiatry 16, 449. https://doi.org/10.1186/s12888-016-1114-0
- Grinshpoon, A., Abramowitz, M.Z., Lerner, Y., et al., 2007. Re-hospitalization of first-inlife admitted schizophrenic patients before and after rehabilitation legislation: a comparison of two national cohorts. Soc. Psychiatry Psychiatr. Epidemiol. 23, 355–359. <a href="https://doi.org/10.1007/s00127-007-0167-2">https://doi.org/10.1007/s00127-007-0167-2</a>.
- Hamilton JE, Passos IC, de Azevedo CT, et al. Predictors of psychiatric readmission among patients with bipolar disorder at an academic safety net hospital. Aust N Z J Psychiatry. 2016;50(6):584–93.
- Hand DJ, Yu K. Idiot's Bayes—not so stupid after all? Int Stat Rev. 2001;69(3):385–98.
- Hanley JA, Mcneil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiol. 1982;143(1):29–36.
- Hung YY, Chan HY, Pan YJ. Risk factors for readmission in schizophrenia patients following involuntary admission. PLoS ONE. 2017;12(10):e0186768.
- Kallert TW, Glöckner M, Schützwohl M. Involuntary vs. voluntary hospital admission. A systematic literature review on outcome diversity. Eur Arch Psychiatry Clin Neurosci. 2008;258(4):195–209.

- Kansagara D, Englander H, Salanitro A, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15):1688–1698
- Kursa, M. B., & Rudnicki, W. R. (2010). Feature selection with the Boruta package. J StatSoftw, 36(11), 1-13.
- Laliberté V, Stergiopoulos V, Jacob B, Kurdyak P. Homelessness at discharge and its impact on psychiatric readmission and physician follow-up: a population-based cohort study. Epidemiol Psychiatr Sci.2019;29:1–8.
- Morel, D., Kalvin, C. Y., Liu-Ferrara, A., Caceres-Suriel, A. J., Kurtz, S. G., & Tabak, Y. P. (2020). Predicting hospital readmission in patients with mental or substance use disorders: a machine learning approach. International journal of medical informatics, 139, 104136.
- Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21.
- Nelder J, Wedderburn R. Generalized linear models. J R Stat Soc Ser A (General). 1972;135(3):370–84.
- Patro, S., & Sahu, K. K. (2015). Normalization: A preprocessing stage. arXiv preprint arXiv:1503.06462.
- Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130.
- van Gerven M, Bohte S, editors. Artificial neural networks as models of neural information processing. Lausanne: Frontiers Media; 2018.
- Vigod, S.N., Kurdyak, P.A., Dennis, C.L., et al., 2013. Transitional interventions to reduce early psychiatric readmissions in adults: systematic review. BJPsych 202, 187–194.

#### https://doi.org/10.1192/bjp.bp.112.115030

- Webber M, Huxley P. Social exclusion and risk of emergency compulsory admission. A case-control study. Soc Psychiatry Psychiatr Epidemiol.2004;39(12):1000–9.
- Zhao, Y., Castellanos, F.X, 2016. Annual research review: discovery science strategies in studies of the pathophysiology of child and adolescent psychiatric disorders promises and limitations. J. Child Psychol. Psychiatry 57, 421–439. <a href="https://doi.org/10">https://doi.org/10</a>. 1111/jcpp.12503.
- Zhao, Y., Hoenig, J. M., Protacio, A., Lim, S., & Norman, C. C. (2020). Identification of risk factors for early psychiatric rehospitalization. Psychiatry research, 285, 112803.

# **Appendices**

## A. CYF demographics (Total unique clients: 6,310)

| Variables                         | %            |
|-----------------------------------|--------------|
| Age group                         |              |
| 0-5 years old                     |              |
| 6-11 years old                    |              |
| 12-15 years old                   |              |
| 16-17 years old                   |              |
| 18-25 years old                   |              |
| Gender                            |              |
| Female                            |              |
| Male                              |              |
| Other                             |              |
| Unknown                           |              |
| Race/Ethnicity                    |              |
| Asian/ Pacific Islander           |              |
| Black/African-American            |              |
| Hispanic                          |              |
| Native American                   |              |
| White                             |              |
| Other                             | These data   |
| Unknown                           | are for      |
| Primary spoken language           | internal use |
| English                           |              |
| Spanish                           | only.        |
| Asian languages                   |              |
| Middle Eastern languages          |              |
| Other/Unknown                     |              |
| Primary diagnosis                 |              |
| Depressive Disorders              |              |
| Bipolar Disorders                 |              |
| Oppositional/ Conduct Disorders   |              |
| Stressor and Adjustment Disorders |              |
| ADHD                              |              |
| Anxiety Disorders                 |              |
| Schizophrenic Disorders           |              |
| Other/Excluded                    |              |
| Insurance status                  |              |
| Medi-Cal only                     |              |
| Private                           |              |
| Other insurance                   |              |
| Uninsured/Unknown                 |              |

| Variables                                   | %          |
|---------------------------------------------|------------|
| Living situation                            |            |
| House or Apartment                          |            |
| Group Home                                  |            |
| Foster Home                                 |            |
| Correctional Facility                       |            |
| Children's Shelter                          |            |
| Homeless                                    |            |
| Lives Independently                         |            |
| Other                                       |            |
| Unknown                                     |            |
| Discharge status                            |            |
| Satisfactorily achieved discharge goals     |            |
| To home/ shelter                            |            |
| To Crisis Residence                         |            |
| To Correctional Facility                    |            |
| To Lower Level of Care                      |            |
| To Higher Level of Care                     |            |
| Left the crisis mental health treatment     |            |
| against medical recommendation              |            |
| Detained in a correctional facility         | These data |
| To residential treatment facility           | are for    |
| Homeless                                    |            |
| To medical facility                         | internal   |
| Released from 24-hour care by a court order | use only.  |
| Transfer to medical hospital                |            |
| Had substance abuse                         |            |
| Yes                                         |            |
| No                                          |            |
| Had co-occurring substance use              |            |
| Yes                                         |            |
| No                                          |            |
| Received CWS                                |            |
| Yes                                         |            |
| No                                          |            |
| Received ADS                                |            |
| Yes                                         |            |
| No                                          |            |
| Juvenile Justice Involvement                |            |
| Yes                                         |            |
| No                                          |            |
| Received Special Education                  |            |
| Yes                                         |            |
| No                                          |            |

## **B1.** CYF Performance Metrics – All predictors

| Models      | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|-------------|-----------|-------------|-------------|-------------|-------------|
|             |           | readmission | readmission | readmission | readmission |
| Naïve Bayes | Accuracy  | 0.1057      | 0.2247      | 0.3624      | 0.3839      |
|             | Precision | 0.0747      | 0.1604      | 0.2392      | 0.2873      |
|             | Recall    | 0.9663      | 0.9271      | 0.8639      | 0.8958      |
|             | F1 score  | 0.1388      | 0.2734      | 0.3747      | 0.4351      |
|             | AUC score | 0.5038      | 0.5166      | 0.6598      | 0.6705      |
|             | AP score  | 0.0751      | 0.1622      | 0.3571      | 0.4066      |
| KNN         | Accuracy  | 0.7616      | 0.6645      | 0.6480      | 0.6455      |
|             | Precision | 0.1435      | 0.2492      | 0.3389      | 0.3957      |
|             | Recall    | 0.4423      | 0.5626      | 0.6224      | 0.6414      |
|             | F1 score  | 0.2167      | 0.3455      | 0.4389      | 0.4894      |
|             | AUC score | 0.6544      | 0.6576      | 0.6673      | 0.6779      |
|             | AP score  | 0.1272      | 0.2370      | 0.3238      | 0.3872      |
| Logistic    | Accuracy  | 0.6943      | 0.6900      | 0.6889      | 0.6857      |
| Regression  | Precision | 0.1364      | 0.2822      | 0.3739      | 0.4340      |
|             | Recall    | 0.5817      | 0.6287      | 0.6029      | 0.6143      |
|             | F1 score  | 0.2210      | 0.3896      | 0.4615      | 0.5087      |
|             | AUC score | 0.6933      | 0.7235      | 0.7163      | 0.7199      |
|             | AP score  | 0.1572      | 0.3545      | 0.4346      | 0.4958      |
| Neural      | Accuracy  | 0.8570      | 0.7677      | 0.7072      | 0.7022      |
| Networks    | Precision | 0.1625      | 0.2994      | 0.3551      | 0.4442      |
|             | Recall    | 0.2212      | 0.3554      | 0.3971      | 0.4953      |
|             | F1 score  | 0.1874      | 0.3250      | 0.3749      | 0.4683      |
|             | AUC score | 0.6235      | 0.6300      | 0.6366      | 0.6810      |
|             | AP score  | 0.1467      | 0.2913      | 0.3508      | 0.4421      |

| Models        | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|---------------|-----------|-------------|-------------|-------------|-------------|
|               |           | readmission | readmission | readmission | readmission |
| Decision tree | Accuracy  | 0.8685      | 0.7534      | 0.7122      | 0.6796      |
|               | Precision | 0.1807      | 0.2707      | 0.3556      | 0.4028      |
|               | Recall    | 0.2163      | 0.3349      | 0.3712      | 0.4344      |
|               | F1 score  | 0.1969      | 0.2994      | 0.3632      | 0.4180      |
|               | AUC score | 0.5675      | 0.5809      | 0.5880      | 0.5981      |
|               | AP score  | 0.0975      | 0.1953      | 0.2713      | 0.3248      |
| Random forest | Accuracy  | 0.9287      | 0.8452      | 0.7896      | 0.7556      |
|               | Precision | 0.6552      | 0.5181      | 0.5377      | 0.5510      |
|               | Recall    | 0.0913      | 0.2278      | 0.3468      | 0.4168      |
|               | F1 score  | 0.1603      | 0.3165      | 0.4217      | 0.4746      |
|               | AUC score | 0.7724      | 0.7650      | 0.7592      | 0.7662      |
|               | AP score  | 0.2819      | 0.3974      | 0.4712      | 0.5266      |
| Gradient      | Accuracy  | 0.9247      | 0.8330      | 0.7713      | 0.7516      |
| Boosting      | Precision | 0.4853      | 0.4483      | 0.4776      | 0.5420      |
|               | Recall    | 0.1587      | 0.2665      | 0.3630      | 0.4019      |
|               | F1 score  | 0.2391      | 0.3343      | 0.4125      | 0.4615      |
|               | AUC score | 0.7209      | 0.7442      | 0.7357      | 0.7424      |
|               | AP score  | 0.2689      | 0.4056      | 0.4644      | 0.5164      |

**B2.** CYF Performance Metrics – Predictors selected from ML models

| Models      | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|-------------|-----------|-------------|-------------|-------------|-------------|
|             |           | readmission | readmission | readmission | readmission |
| Naïve Bayes | Accuracy  | 0.6771      | 0.6706      | 0.6713      | 0.6692      |
|             | Precision | 0.1310      | 0.2556      | 0.3509      | 0.4100      |
|             | Recall    | 0.5913      | 0.5718      | 0.5721      | 0.5670      |
|             | F1 score  | 0.2145      | 0.3533      | 0.4350      | 0.4759      |
|             | AUC score | 0.6694      | 0.6734      | 0.6736      | 0.6866      |
|             | AP score  | 0.1654      | 0.2947      | 0.3793      | 0.4408      |
| KNN         | Accuracy  | 0.6728      | 0.6448      | 0.6258      | 0.6183      |
|             | Precision | 0.0944      | 0.2137      | 0.3014      | 0.3558      |
|             | Recall    | 0.3942      | 0.4692      | 0.5251      | 0.5440      |
|             | F1 score  | 0.1523      | 0.2937      | 0.3830      | 0.4302      |
|             | AUC score | 0.5515      | 0.5997      | 0.6216      | 0.6281      |
|             | AP score  | 0.0817      | 0.1978      | 0.2904      | 0.3428      |
| Logistic    | Accuracy  | 0.6573      | 0.6495      | 0.6158      | 0.6577      |
| Regression  | Precision | 0.1326      | 0.2557      | 0.3296      | 0.4107      |
|             | Recall    | 0.6490      | 0.6424      | 0.7131      | 0.6725      |
|             | F1 score  | 0.2202      | 0.3658      | 0.4508      | 0.5100      |
|             | AUC score | 0.7189      | 0.6993      | 0.7072      | 0.7094      |
|             | AP score  | 0.1756      | 0.3288      | 0.4243      | 0.4753      |
| Neural      | Accuracy  | 0.7018      | 0.611       | 0.6319      | 0.6283      |
| Networks    | Precision | 0.1250      | 0.2445      | 0.3381      | 0.3904      |
|             | Recall    | 0.5000      | 0.7039      | 0.6937      | 0.7158      |
|             | F1 score  | 0.2000      | 0.3629      | 0.4546      | 0.5060      |
|             | AUC score | 0.6287      | 0.7079      | 0.7176      | 0.7158      |
|             | AP score  | 0.1360      | 0.3391      | 0.4332      | 0.4818      |

| Models        | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|---------------|-----------|-------------|-------------|-------------|-------------|
|               |           | readmission | readmission | readmission | readmission |
| Decision tree | Accuracy  | 0.1810      | 0.2609      | 0.2964      | 0.3789      |
|               | Precision | 0.0714      | 0.1385      | 0.2092      | 0.2647      |
|               | Recall    | 0.8317      | 0.7084      | 0.7844      | 0.7564      |
|               | F1 score  | 0.1315      | 0.2317      | 0.3303      | 0.3921      |
|               | AUC score | 0.4802      | 0.4431      | 0.4708      | 0.4995      |
|               | AP score  | 0.0719      | 0.1440      | 0.2117      | 0.2647      |
| Random forest | Accuracy  | 0.5928      | 0.505       | 0.5427      | 0.5326      |
|               | Precision | 0.1027      | 0.1877      | 0.2802      | 0.3272      |
|               | Recall    | 0.5769      | 0.6446      | 0.6807      | 0.7240      |
|               | F1 score  | 0.1744      | 0.2907      | 0.3970      | 0.4507      |
|               | AUC score | 0.6030      | 0.5757      | 0.6085      | 0.6290      |
|               | AP score  | 0.0929      | 0.1769      | 0.2737      | 0.3395      |
| Gradient      | Accuracy  | 0.1151      | 0.2018      | 0.2760      | 0.3211      |
| Boosting      | Precision | 0.0764      | 0.1580      | 0.2257      | 0.2736      |
|               | Recall    | 0.9808      | 0.9408      | 0.9352      | 0.9445      |
|               | F1 score  | 0.1418      | 0.2706      | 0.3636      | 0.4243      |
|               | AUC score | 0.5994      | 0.5336      | 0.5745      | 0.5978      |
|               | AP score  | 0.1184      | 0.1721      | 0.2742      | 0.3377      |

**B3.** CYF Performance Metrics – Predictors selected from Boruta algorithm

| Models      | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|-------------|-----------|-------------|-------------|-------------|-------------|
|             |           | readmission | readmission | readmission | readmission |
| Naïve Bayes | Accuracy  | 0.8043      | 0.7573      | 0.7362      | 0.7208      |
|             | Precision | 0.1762      | 0.3180      | 0.4086      | 0.4715      |
|             | Recall    | 0.4423      | 0.4738      | 0.4311      | 0.4479      |
|             | F1 score  | 0.2521      | 0.3806      | 0.4196      | 0.4594      |
|             | AUC score | 0.7166      | 0.7090      | 0.6920      | 0.6955      |
|             | AP score  | 0.2041      | 0.3312      | 0.4132      | 0.4637      |
| KNN         | Accuracy  | 0.7828      | 0.7061      | 0.6896      | 0.6699      |
|             | Precision | 0.1434      | 0.2610      | 0.3612      | 0.4046      |
|             | Recall    | 0.3846      | 0.4738      | 0.5251      | 0.5223      |
|             | F1 score  | 0.2089      | 0.3366      | 0.4280      | 0.4560      |
|             | AUC score | 0.6348      | 0.6495      | 0.6585      | 0.6655      |
|             | AP score  | 0.1234      | 0.2286      | 0.3239      | 0.3844      |
| Logistic    | Accuracy  | 0.7312      | 0.6581      | 0.6659      | 0.6839      |
| Regression  | Precision | 0.1543      | 0.2596      | 0.3546      | 0.4304      |
|             | Recall    | 0.5817      | 0.6333      | 0.6224      | 0.5981      |
|             | F1 score  | 0.2440      | 0.3682      | 0.4518      | 0.5006      |
|             | AUC score | 0.7154      | 0.7131      | 0.7025      | 0.7080      |
|             | AP score  | 0.2017      | 0.3382      | 0.4256      | 0.4798      |
| Neural      | Accuracy  | 0.6828      | 0.6416      | 0.6975      | 0.6724      |
| Networks    | Precision | 0.1372      | 0.2672      | 0.3762      | 0.4210      |
|             | Recall    | 0.6154      | 0.7335      | 0.5592      | 0.6306      |
|             | F1 score  | 0.2244      | 0.3917      | 0.4498      | 0.5049      |
|             | AUC score | 0.7169      | 0.7318      | 0.7038      | 0.7138      |
|             | AP score  | 0.2000      | 0.3427      | 0.4257      | 0.4859      |

| Models        | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|---------------|-----------|-------------|-------------|-------------|-------------|
|               |           | readmission | readmission | readmission | readmission |
| Decision tree | Accuracy  | 0.8749      | 0.7620      | 0.7036      | 0.6749      |
|               | Precision | 0.1948      | 0.2790      | 0.3465      | 0.3937      |
|               | Recall    | 0.2163      | 0.3235      | 0.3841      | 0.4208      |
|               | F1 score  | 0.2050      | 0.2996      | 0.3643      | 0.4068      |
|               | AUC score | 0.5338      | 0.5569      | 0.5679      | 0.5729      |
|               | AP score  | 0.1032      | 0.2005      | 0.2710      | 0.3222      |
| Random forest | Accuracy  | 0.8885      | 0.7914      | 0.7441      | 0.7211      |
|               | Precision | 0.2512      | 0.333       | 0.4120      | 0.4714      |
|               | Recall    | 0.2500      | 0.3257      | 0.3679      | 0.4344      |
|               | F1 score  | 0.2506      | 0.3295      | 0.3887      | 0.4521      |
|               | AUC score | 0.7084      | 0.7094      | 0.7089      | 0.7174      |
|               | AP score  | 0.2057      | 0.2966      | 0.3815      | 0.4605      |
| Gradient      | Accuracy  | 0.8925      | 0.8047      | 0.7541      | 0.7319      |
| Boosting      | Precision | 0.2604      | 0.3695      | 0.4353      | 0.4932      |
|               | Recall    | 0.2404      | 0.3417      | 0.3760      | 0.4438      |
|               | F1 score  | 0.2500      | 0.3550      | 0.4035      | 0.4672      |
|               | AUC score | 0.7291      | 0.7452      | 0.7234      | 0.7332      |
|               | AP score  | 0.2909      | 0.3954      | 0.4349      | 0.4939      |

## C. CYF Important feature scores (Imp) and coefficients (Coef) of the final model by timeframes

| Timeframe                                                                                  | 7-c<br>readm | lay<br>iission |        | day<br>nission |        | day<br>nission |        | -day<br>nission |
|--------------------------------------------------------------------------------------------|--------------|----------------|--------|----------------|--------|----------------|--------|-----------------|
| Selected predictors                                                                        | Imp          | Coef           | Imp    | Coef           | Imp    | Coef           | Imp    | Coef            |
| Length in hospital                                                                         | 0.4495       | 0.6835         | 0.4718 | 1.9172         | 0.4269 | -0.7968        | 0.3259 | -1.0085         |
| History of hospitalization                                                                 | 0.2104       | 4.2345         | 0.1993 | 2.9647         | 0.2134 | 2.1867         | 0.1979 | 1.4661          |
| Number of services<br>up to index<br>hospitalization                                       | 0.1882       | 1.1732         | 0.1033 | 0.8195         | 0.0519 | 0.6727         | 0.1128 | 2.3060          |
| Number of services<br>before index<br>hospitalization since<br>previous<br>hospitalization | -            | -              | -      | -              | 0.0688 | 1.9419         | 0.0903 | 1.5573          |
| IP services 60 days<br>before index<br>hospitalization                                     | 0.0297       | 0.9954         | 0.0337 | 0.8710         | 0.0265 | -0.8541        | 0.0390 | 1.5854          |
| IP services 90 days<br>before index<br>hospitalization                                     | 0.0400       | 0.8623         | 0.0269 | -0.6620        | 0.0265 | 1.4798         | 0.0348 | -0.8351         |
| ES services 30 days<br>before index<br>hospitalization                                     | -            | -              | 0.0846 | 0.4864         | 0.0637 | -1.7551        | 0.0683 | -1.6810         |
| IP CAPS                                                                                    | 0.0240       | 0.8571         | 0.0179 | 0.8485         | 0.0093 | 0.3789         | 0.0194 | 0.4965          |
| IP FFS                                                                                     | 0.0298       | 1.3453         | 0.0175 | 0.5884         | -      | -              | -      | -               |
| Discharge status: other reasons                                                            | 0.0284       | 0.8213         | -      | -              | -      | -              | -      | -               |
| Race: unknown                                                                              | -            | -              | 0.0451 | 1.4426         | 0.0688 | 1.4180         | 0.0558 | 1.6161          |
| Age                                                                                        | -            | -              | -      | -              | 0.0441 | 1.5176         | 0.0559 | 0.6866          |

## **D.** AOA demographics (Total unique clients: 38,272)

| Variables                                   | %          |
|---------------------------------------------|------------|
| Age group                                   |            |
| <18-25 years old                            |            |
| 26-59 years old                             |            |
| 60+ years old                               |            |
| Gender                                      |            |
| Female                                      |            |
| Male                                        |            |
| Other/ Unknown                              |            |
| Sexual orientation                          |            |
| Heterosexual                                |            |
| LGBTQ+                                      |            |
| Unknown/Not reported                        |            |
| Race/Ethnicity                              |            |
| Asian/ Pacific Islander                     |            |
| Black/African-American                      |            |
| Hispanic                                    |            |
| Native American                             |            |
| White                                       |            |
| Other                                       |            |
| Unknown                                     |            |
| Primary spoken language                     | These data |
| English                                     | are for    |
| Spanish                                     | internal   |
| Asian languages                             |            |
| Middle Eastern languages                    | use only.  |
| Other/Unknown                               |            |
| Primary diagnosis                           |            |
| Schizophrenia and other psychotic disorders |            |
| Depressive disorders                        |            |
| Bipolar disorders                           |            |
| Stressor and Adjustment disorders           |            |
| Anxiety disorders                           |            |
| Other/ Excluded                             |            |
| Insurance status                            |            |
| Medi-Cal + Medicare                         |            |
| Private                                     |            |
| Uninsured/Unknown                           |            |
| Employment status                           |            |
| Not in labor force                          |            |
| Not seeking work                            |            |
| Seeking work                                |            |
| Competitive job                             |            |
| Resident/ Inmate of institution             |            |
| Other                                       |            |
| Unknown                                     |            |

| Variables                                       | %          |
|-------------------------------------------------|------------|
| Education level                                 |            |
| High school not completed                       |            |
| High school diploma/ GED                        |            |
| Some college/ vocational training               |            |
| Associate's Degree                              |            |
| Bachelor's Degree                               |            |
| Master's Degree                                 |            |
| Doctoral Degree                                 |            |
| Unknown/ Not reported                           |            |
| Living situation                                |            |
| Lives independently                             |            |
| Homeless                                        |            |
| Board and Care                                  |            |
| Institutional                                   |            |
| Justice Related                                 |            |
| Other/Unknown                                   |            |
| Discharge status                                |            |
| Satisfactorily achieved discharge goals         |            |
| To home/ shelter                                |            |
| Unplanned discharge                             |            |
| To Crisis Residence                             |            |
| To Psychiatric Hospital                         | These data |
| To Medical Hospital                             | are for    |
| Homeless                                        |            |
| To Nursing Home                                 | internal   |
| To Institute for the Mentally Disordered        | use only.  |
| To residential treatment facility               |            |
| Left the crisis mental health treatment against |            |
| medical recommendation                          |            |
| Detained in a correctional facility             |            |
| To State Hospital                               |            |
| Transfer to medical hospital                    |            |
| To Higher Level of Care                         |            |
| To Same Level of Care                           |            |
| To Lower Level of Care                          |            |
| Death                                           |            |
| Incarcerated                                    |            |
| Moved                                           |            |
| Released from 24-hour care by a court order     |            |
| Dropped out the treatment                       |            |
| Other/ Unknown                                  |            |
| Had substance abuse                             |            |
| Yes                                             |            |
| No                                              |            |
| Had co-occurring substance use                  |            |
| Yes                                             |            |
| No                                              |            |

**E1. AOA Performance Metrics – All predictors** 

| Models      | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|-------------|-----------|-------------|-------------|-------------|-------------|
|             |           | readmission | readmission | readmission | readmission |
| Naïve Bayes | Accuracy  | 0.4298      | 0.3028      | 0.3763      | 0.4157      |
|             | Precision | 0.3997      | 0.2734      | 0.3508      | 0.3948      |
|             | Recall    | 0.9539      | 0.9601      | 0.9637      | 0.9671      |
|             | F1 score  | 0.5634      | 0.4257      | 0.5144      | 0.5607      |
|             | AUC score | 0.5472      | 0.5118      | 0.5182      | 0.5281      |
|             | AP score  | 0.4105      | 0.2739      | 0.3513      | 0.3997      |
| KNN         | Accuracy  | 0.6160      | 0.5945      | 0.6014      | 0.6124      |
|             | Precision | 0.5016      | 0.3526      | 0.4442      | 0.4979      |
|             | Recall    | 0.6658      | 0.6066      | 0.6476      | 0.6518      |
|             | F1 score  | 0.5722      | 0.4460      | 0.5269      | 0.5646      |
|             | AUC score | 0.6607      | 0.6252      | 0.6433      | 0.6535      |
|             | AP score  | 0.5036      | 0.3460      | 0.4426      | 0.4974      |
| Logistic    | Accuracy  | 0.6954      | 0.6923      | 0.6946      | 0.6957      |
| Regression  | Precision | 0.5984      | 0.4471      | 0.5474      | 0.5981      |
|             | Recall    | 0.6393      | 0.6075      | 0.6298      | 0.6419      |
|             | F1 score  | 0.6182      | 0.5151      | 0.5857      | 0.6192      |
|             | AUC score | 0.7521      | 0.7227      | 0.7421      | 0.7509      |
|             | AP score  | 0.6610      | 0.5092      | 0.6128      | 0.6596      |
| Neural      | Accuracy  | 0.6876      | 0.6857      | 0.6769      | 0.6839      |
| Networks    | Precision | 0.5928      | 0.4257      | 0.5255      | 0.5806      |
|             | Recall    | 0.6071      | 0.4816      | 0.5929      | 0.6483      |
|             | F1 score  | 0.5999      | 0.4519      | 0.5572      | 0.6126      |
|             | AUC score | 0.7381      | 0.666       | 0.7100      | 0.7447      |
|             | AP score  | 0.6499      | 0.4361      | 0.5764      | 0.6572      |

| Models        | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|---------------|-----------|-------------|-------------|-------------|-------------|
|               |           | readmission | readmission | readmission | readmission |
| Decision tree | Accuracy  | 0.6394      | 0.6793      | 0.6541      | 0.6416      |
|               | Precision | 0.5311      | 0.4100      | 0.4956      | 0.5341      |
|               | Recall    | 0.5561      | 0.4369      | 0.5134      | 0.5515      |
|               | F1 score  | 0.5433      | 0.4230      | 0.5044      | 0.5427      |
|               | AUC score | 0.6240      | 0.6027      | 0.6204      | 0.6247      |
|               | AP score  | 0.4665      | 0.3306      | 0.4213      | 0.4675      |
| Random forest | Accuracy  | 0.7243      | 0.7685      | 0.7355      | 0.7212      |
|               | Precision | 0.6651      | 0.6135      | 0.6462      | 0.6613      |
|               | Recall    | 0.5744      | 0.3776      | 0.5044      | 0.5674      |
|               | F1 score  | 0.6164      | 0.4675      | 0.5666      | 0.6107      |
|               | AUC score | 0.7792      | 0.7587      | 0.7689      | 0.7738      |
|               | AP score  | 0.6882      | 0.5634      | 0.6427      | 0.6809      |
| Gradient      | Accuracy  | 0.7271      | 0.7703      | 0.7359      | 0.7222      |
| Boosting      | Precision | 0.6674      | 0.6058      | 0.6432      | 0.6594      |
|               | Recall    | 0.5829      | 0.4194      | 0.5159      | 0.5781      |
|               | F1 score  | 0.6223      | 0.4957      | 0.5726      | 0.6161      |
|               | AUC score | 0.7865      | 0.7663      | 0.7765      | 0.7814      |
|               | AP score  | 0.7145      | 0.5950      | 0.6717      | 0.7088      |

**E2. AOA Performance Metrics – Predictors selected from ML models** 

| Models      | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|-------------|-----------|-------------|-------------|-------------|-------------|
|             |           | readmission | readmission | readmission | readmission |
| Naïve Bayes | Accuracy  | 0.6789      | 0.7002      | 0.6862      | 0.6796      |
|             | Precision | 0.5999      | 0.4475      | 0.5456      | 0.5991      |
|             | Recall    | 0.5027      | 0.4857      | 0.5056      | 0.5105      |
|             | F1 score  | 0.5470      | 0.4658      | 0.5249      | 0.5513      |
|             | AUC score | 0.7058      | 0.6790      | 0.7010      | 0.7123      |
|             | AP score  | 0.6089      | 0.4541      | 0.5523      | 0.6050      |
| KNN         | Accuracy  | 0.6254      | 0.6108      | 0.6148      | 0.6169      |
|             | Precision | 0.5127      | 0.3468      | 0.4491      | 0.5028      |
|             | Recall    | 0.5782      | 0.5055      | 0.5447      | 0.5794      |
|             | F1 score  | 0.5435      | 0.4114      | 0.4923      | 0.5384      |
|             | AUC score | 0.6481      | 0.5995      | 0.6310      | 0.6389      |
|             | AP score  | 0.4967      | 0.3301      | 0.4344      | 0.4889      |
| Logistic    | Accuracy  | 0.6840      | 0.6872      | 0.6889      | 0.6840      |
| Regression  | Precision | 0.5916      | 0.4346      | 0.5456      | 0.5920      |
|             | Recall    | 0.5837      | 0.5399      | 0.5519      | 0.5805      |
|             | F1 score  | 0.5876      | 0.4816      | 0.5488      | 0.5862      |
|             | AUC score | 0.7269      | 0.6960      | 0.7187      | 0.7281      |
|             | AP score  | 0.6381      | 0.4767      | 0.5865      | 0.6359      |
| Neural      | Accuracy  | 0.7071      | 0.6718      | 0.6848      | 0.6891      |
| Networks    | Precision | 0.6181      | 0.4225      | 0.5361      | 0.5942      |
|             | Recall    | 0.6294      | 0.5983      | 0.5984      | 0.6105      |
|             | F1 score  | 0.6237      | 0.4952      | 0.5655      | 0.6022      |
|             | AUC score | 0.7667      | 0.7050      | 0.7267      | 0.7400      |
|             | AP score  | 0.6917      | 0.4873      | 0.5967      | 0.6504      |

| Models        | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|---------------|-----------|-------------|-------------|-------------|-------------|
|               |           | readmission | readmission | readmission | readmission |
| Decision tree | Accuracy  | 0.4609      | 0.3110      | 0.3907      | 0.4475      |
|               | Precision | 0.4061      | 0.2720      | 0.3501      | 0.4015      |
|               | Recall    | 0.8600      | 0.9311      | 0.9075      | 0.8827      |
|               | F1 score  | 0.5517      | 0.4210      | 0.5052      | 0.5520      |
|               | AUC score | 0.5345      | 0.5068      | 0.5144      | 0.5286      |
|               | AP score  | 0.4032      | 0.2718      | 0.3494      | 0.3997      |
| Random forest | Accuracy  | 0.5543      | 0.4400      | 0.5125      | 0.5584      |
|               | Precision | 0.4578      | 0.3085      | 0.4009      | 0.4605      |
|               | Recall    | 0.8453      | 0.8712      | 0.8536      | 0.8478      |
|               | F1 score  | 0.5939      | 0.4557      | 0.5456      | 0.5968      |
|               | AUC score | 0.6910      | 0.6577      | 0.6804      | 0.7006      |
|               | AP score  | 0.5909      | 0.4196      | 0.5358      | 0.6033      |
| Gradient      | Accuracy  | 0.5327      | 0.3932      | 0.5105      | 0.5448      |
| Boosting      | Precision | 0.4475      | 0.2946      | 0.4017      | 0.4535      |
|               | Recall    | 0.9017      | 0.9005      | 0.8745      | 0.8813      |
|               | F1 score  | 0.5981      | 0.4440      | 0.5505      | 0.5989      |
|               | AUC score | 0.7106      | 0.6664      | 0.7000      | 0.7093      |
|               | AP score  | 0.6237      | 0.4536      | 0.5668      | 0.6241      |

E3. AOA Performance Metrics – Predictors selected from Boruta algorithm

| Models      | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|-------------|-----------|-------------|-------------|-------------|-------------|
|             |           | readmission | readmission | readmission | readmission |
| Naïve Bayes | Accuracy  | 0.5996      | 0.6033      | 0.6107      | 0.6051      |
|             | Precision | 0.4882      | 0.3716      | 0.4577      | 0.4923      |
|             | Recall    | 0.7903      | 0.6865      | 0.7356      | 0.7782      |
|             | F1 score  | 0.6035      | 0.4822      | 0.5643      | 0.6031      |
|             | AUC score | 0.7097      | 0.6874      | 0.7059      | 0.7134      |
|             | AP score  | 0.6146      | 0.4543      | 0.5579      | 0.6064      |
| KNN         | Accuracy  | 0.6459      | 0.6575      | 0.6460      | 0.6429      |
|             | Precision | 0.5367      | 0.3971      | 0.4861      | 0.5328      |
|             | Recall    | 0.5976      | 0.5267      | 0.5728      | 0.5984      |
|             | F1 score  | 0.5655      | 0.4528      | 0.5259      | 0.5637      |
|             | AUC score | 0.6741      | 0.6452      | 0.6621      | 0.6696      |
|             | AP score  | 0.5210      | 0.3723      | 0.4666      | 0.5168      |
| Logistic    | Accuracy  | 0.6833      | 0.6775      | 0.6754      | 0.6801      |
| Regression  | Precision | 0.5858      | 0.4273      | 0.5224      | 0.5782      |
|             | Recall    | 0.6097      | 0.5841      | 0.6199      | 0.6295      |
|             | F1 score  | 0.5976      | 0.4936      | 0.5670      | 0.6028      |
|             | AUC score | 0.7342      | 0.7043      | 0.7269      | 0.7362      |
|             | AP score  | 0.6404      | 0.4855      | 0.5927      | 0.6419      |
| Neural      | Accuracy  | 0.6830      | 0.6720      | 0.6513      | 0.6745      |
| Networks    | Precision | 0.5777      | 0.4236      | 0.4939      | 0.5637      |
|             | Recall    | 0.6618      | 0.6073      | 0.6939      | 0.6885      |
|             | F1 score  | 0.6169      | 0.4991      | 0.5770      | 0.6199      |
|             | AUC score | 0.7438      | 0.7110      | 0.7286      | 0.7445      |
|             | AP score  | 0.6512      | 0.4979      | 0.5946      | 0.6558      |

| Models        | Metrics   | 7-day       | 30-day      | 60-day      | 90-day      |
|---------------|-----------|-------------|-------------|-------------|-------------|
|               |           | readmission | readmission | readmission | readmission |
| Decision tree | Accuracy  | 0.6457      | 0.6879      | 0.6555      | 0.6454      |
|               | Precision | 0.5411      | 0.4210      | 0.4975      | 0.5410      |
|               | Recall    | 0.5347      | 0.4269      | 0.4984      | 0.5295      |
|               | F1 score  | 0.5379      | 0.4239      | 0.4980      | 0.5332      |
|               | AUC score | 0.5985      | 0.5775      | 0.5935      | 0.6005      |
|               | AP score  | 0.4778      | 0.3435      | 0.4285      | 0.4777      |
| Random forest | Accuracy  | 0.6933      | 0.7258      | 0.6983      | 0.6859      |
|               | Precision | 0.6020      | 0.4897      | 0.5610      | 0.5932      |
|               | Recall    | 0.6042      | 0.4559      | 0.5508      | 0.5897      |
|               | F1 score  | 0.6031      | 0.4722      | 0.5559      | 0.5915      |
|               | AUC score | 0.7477      | 0.7166      | 0.7328      | 0.7371      |
|               | AP score  | 0.6591      | 0.5269      | 0.6083      | 0.6491      |
| Gradient      | Accuracy  | 0.7134      | 0.7423      | 0.7165      | 0.7082      |
| Boosting      | Precision | 0.6265      | 0.5228      | 0.5868      | 0.6203      |
|               | Recall    | 0.6362      | 0.4834      | 0.5852      | 0.6265      |
|               | F1 score  | 0.6313      | 0.5023      | 0.5860      | 0.6234      |
|               | AUC score | 0.7781      | 0.7479      | 0.7639      | 0.7716      |
|               | AP score  | 0.7034      | 0.5707      | 0.6558      | 0.6977      |

## F. AOA Important feature scores (Imp) and coefficients (Coef) of the final model by timeframes

| Timeframe                                                                                                          | 7-day<br>readmission |         | 30-day readmission |         | 60-day<br>readmission |         | 90-day<br>readmission |         |
|--------------------------------------------------------------------------------------------------------------------|----------------------|---------|--------------------|---------|-----------------------|---------|-----------------------|---------|
| Selected predictors                                                                                                | Imp                  | Coef    | Imp                | Coef    | Imp                   | Coef    | Imp                   | Coef    |
| Length in hospital                                                                                                 | 0.4741               | -9.3431 | 0.4182             | -3.2049 | 0.3580                | -4.2073 | 0.3121                | -3.9259 |
| History of hospitalization                                                                                         | 0.2007               | 3.5219  | 0.1828             | 4.7507  | 0.2413                | 6.0961  | 0.2321                | 7.1304  |
| Number of services<br>up to index<br>hospitalization<br>Number of services                                         | 0.0770               | -2.7077 | 0.1419             | -1.9454 | 0.1046                | -1.4649 | 0.1074                | -1.2399 |
| before index hospitalization since previous hospitalization                                                        | -                    | -       | 0.0794             | -3.5652 | 0.0844                | -3.2682 | 0.0974                | -2.9465 |
| Number of services<br>before index<br>hospitalization since<br>previous<br>hospitalization at the<br>same subunits | 0.0577               | -0.3956 | -                  | -       | -                     | -       | -                     | -       |
| IP services 30 days before index hospitalization                                                                   | 0.0229               | 2.8407  | 0.0509             | 1.6389  | 0.0720                | 1.2896  | -                     | -       |
| IP services 60 days<br>before index<br>hospitalization                                                             | 0.0180               | 1.7616  | 0.0246             | 3.0897  | 0.0229                | 3.3327  | 0.0859                | 4.2952  |
| ES services 7 days<br>before index<br>hospitalization                                                              | 0.0470               | -0.0244 | -                  | -       | -                     | -       | -                     | -       |
| ES services 30 days<br>before index<br>hospitalization                                                             | 0.0300               | 1.4333  | -                  | -       | -                     | -       | -                     | -       |
| ES services 60 days<br>before index<br>hospitalization                                                             | 0.0254               | 0.4098  | -                  | -       | -                     | -       | -                     | -       |
| Received IP-FFS                                                                                                    | 0.0114               | 0.1535  | 0.0105             | 0.1466  | 0.0094                | 0.2186  | 0.0144                | 0.2690  |
| Received - IP LIHP                                                                                                 | 0.0100               | -0.2312 | 0.0097             | -0.3836 | 0.0085                | -0.3403 | 0.0110                | -0.4017 |
| No first LOC before index hospitalization                                                                          | 0.0049               | -0.1436 | 0.0071             | -0.1349 | 0.0061                | -0.2185 | 0.0080                | -0.2397 |

| Timeframe                                               | 7-day<br>readmission |        | 30-day<br>readmission |         | 60-day<br>readmission |         | 90-day<br>readmission |         |
|---------------------------------------------------------|----------------------|--------|-----------------------|---------|-----------------------|---------|-----------------------|---------|
| Selected predictors                                     | Imp                  | Coef   | Imp                   | Coef    | Imp                   | Coef    | Imp                   | Coef    |
| Discharge status: to IMD/MHRC                           | -                    | -      | 0.0079                | -2.9706 | 0.0078                | -3.2424 | 0.0099                | -3.2714 |
| Discharge status: to<br>Psychiatric Hospital            | 0.0075               | 2.7332 | 0.0071                | 1.9394  | 0.0075                | 1.6636  | 0.0088                | 1.5566  |
| Discharge status: to lower LOC                          | 0.0054               | 1.1293 | 0.0048                | 0.7159  | -                     | -       | -                     | -       |
| Discharge status: to<br>Medical Hospital                | 0.0080               | 1.9624 | -                     | -       | -                     | -       | -                     | -       |
| Diagnosed with<br>Depressive disorders                  | -                    | -      | 0.0146                | -0.2635 | 0.0217                | -0.2740 | 0.0292                | -0.3036 |
| Diagnosed with<br>Schizophrenia/Psycho<br>tic disorders | -                    | -      | 0.0122                | 0.1582  | 0.0135                | 0.1618  | 0.0257                | 0.1733  |
| Unknown Education level                                 | -                    | -      | 0.0115                | -0.2998 | 0.0131                | -0.3793 | 0.0198                | -0.3801 |
| Lives independently                                     | -                    | -      | -                     | -       | 0.0120                | -0.3183 | 0.0167                | -0.3236 |
| Unknown sexual orientation                              | -                    | -      | 0.0112                | -0.3463 | 0.0119                | -0.3702 | 0.0152                | -0.3986 |
| Co-occurring substance use                              | -                    | -      | 0.0057                | 0.2721  | 0.0054                | 0.2509  | 0.0065                | 0.2514  |