# Poisson Resolution via Weighted Blowups

Boris Zupancic

McGill University

August, 2025

 $(X,\pi)$  - smooth Poisson variety.  $Y\subset X$  - singular Poisson subvariety.  $(X,\pi)$  - smooth Poisson variety.  $Y\subset X$  - singular Poisson subvariety.

A **Poisson resolution** is a Poisson map  $b\colon (Y'\subset X',\pi')\to (Y\subset X,\pi)$  such that

 $(X,\pi)$  - smooth Poisson variety.  $Y\subset X$  - singular Poisson subvariety.

A **Poisson resolution** is a Poisson map  $b\colon (Y'\subset X',\pi')\to (Y\subset X,\pi)$  such that

 $(X,\pi)$  - smooth Poisson variety.  $Y\subset X$  - singular Poisson subvariety.

A **Poisson resolution** is a Poisson map  $b \colon (Y' \subset X', \pi') \to (Y \subset X, \pi)$  such that

- **1**  $b: Y' \subset X' \to Y \subset X$  is a proper morphism of pairs,
- $Y' \subset X'$  are smooth,

 $(X,\pi)$  - smooth Poisson variety.  $Y\subset X$  - singular Poisson subvariety.

A **Poisson resolution** is a Poisson map  $b\colon (Y'\subset X',\pi')\to (Y\subset X,\pi)$  such that

- **1**  $b: Y' \subset X' \to Y \subset X$  is a proper morphism of pairs,
- $Y' \subset X'$  are smooth,
- $\bullet$  is an isomorphism away from  $Y_{\text{sing}}$ .

 $(X,\pi)$  - smooth Poisson variety.  $Y\subset X$  - singular Poisson subvariety.

A **Poisson resolution** is a Poisson map  $b \colon (Y' \subset X', \pi') \to (Y \subset X, \pi)$  such that

- **1**  $b: Y' \subset X' \to Y \subset X$  is a proper morphism of pairs,
- $Y' \subset X'$  are smooth,
- **3** b is an isomorphism away from  $Y_{\text{sing}}$ .

(When) does Poisson resolution of singularities exist?

**Dream:** Use an existing resolution algorithm.

• Hironaka [Hir64]: resolution via blowups,

- Hironaka [Hir64]: resolution via blowups,
- Abramovich, Temkin, Włodarczyk [ATW24]: functorial embedded resolution via weighted blowups.

- Hironaka [Hir64]: resolution via blowups,
- Abramovich, Temkin, Włodarczyk [ATW24]: functorial embedded resolution via weighted blowups.

- Hironaka [Hir64]: resolution via blowups,
- Abramovich, Temkin, Włodarczyk [ATW24]: functorial embedded resolution via weighted blowups.

$$(Y^{(n)} \subset X^{(n)}) \xrightarrow{\phi^{(n)}} \cdots \xrightarrow{\phi^{(2)}} (Y^{(1)} \subset X^{(1)}) \xrightarrow{\phi^{(1)}} (Y \subset X)$$

- Hironaka [Hir64]: resolution via blowups,
- Abramovich, Temkin, Włodarczyk [ATW24]: functorial embedded resolution via weighted blowups.

$$(Y^{(n)} \subset X^{(n)}) \xrightarrow{\phi^{(n)}} \cdots \xrightarrow{\phi^{(2)}} (Y^{(1)} \subset X^{(1)}) \xrightarrow{\phi^{(1)}} (Y \subset X)$$

Reality: Multivectors (e.g. Poisson structures) don't always pullback.

- Hironaka [Hir64]: resolution via blowups,
- Abramovich, Temkin, Włodarczyk [ATW24]: functorial embedded resolution via weighted blowups.

$$(Y^{(n)} \subset X^{(n)}) \xrightarrow{\phi^{(n)}} \cdots \xrightarrow{\phi^{(2)}} (Y^{(1)} \subset X^{(1)}) \xrightarrow{\phi^{(1)}} (Y \subset X)$$

Reality: Multivectors (e.g. Poisson structures) don't always pullback.

My thesis problem: How close can you get to Poisson resolution using (weighted) blowups?

**Blowup**: replace  $Z \subset X$  with its bundle of transverse lines

**Blowup**: replace  $Z \subset X$  with its bundle of transverse lines



**Blowup**: replace  $Z \subset X$  with its bundle of transverse lines



$$Z = \{x_1 = \dots = x_k = 0\}$$

$$E = T_{X/Z} / \sim$$

$$(v_1, \dots, v_k, x_{k+1}, \dots, x_n) \sim (\lambda v_1, \dots, \lambda v_k, x_{k+1}, \dots, x_n)$$

**Weighted blowup:**\* replace  $Z \subset X$  with a bundle of transverse curves:



$$Z = \{x_1 = \dots = x_k = 0\}$$

$$E = T_{X/Z} / \sim$$

$$(v_1, \dots, v_k, x_{k+1}, \dots, x_n) \sim (\lambda^{w_1} v_1, \dots, \lambda^{w_k} v_k, x_{k+1}, \dots, x_n)$$

<sup>\*</sup>For precise definition see e.g: [Loizides-Meinrenken-2023], [Quek-Rydh].

**Lifting Criterion:** A Poisson structure  $\pi$  on X lifts to a weighted blowup  $Bl_{\mathcal{W}}(X,Z) \to X$  (with lift tangent to the exceptional divisor) if and only if  $\mathrm{ord}_{\mathcal{W}} \pi > 0$ .

**Lifting Criterion:** A Poisson structure  $\pi$  on X lifts to a weighted blowup  $Bl_{\mathcal{W}}(X,Z) \to X$  (with lift tangent to the exceptional divisor) if and only if  $\mathrm{ord}_{\mathcal{W}} \pi \geq 0$ .

**Example:** a Jacobian structure on  $X = \mathbb{C}^3$ 

**Lifting Criterion:** A Poisson structure  $\pi$  on X lifts to a weighted blowup  $Bl_{\mathcal{W}}(X,Z) \to X$  (with lift tangent to the exceptional divisor) if and only if  $\operatorname{ord}_{\mathcal{W}} \pi > 0$ .

**Example:** a Jacobian structure on  $X = \mathbb{C}^3$ 

$$\begin{split} Y &= \{x_1^2 + x_2^3 + x_3^a = 0\}, \ a \geq 3 \\ Z &= Y_{\mathsf{sing}} = \{0\}, \\ \pi &= [\partial_1 \wedge \partial_2 \wedge \partial_3, x_1^2 + x_2^3 + x_3^a] \\ &= 2x_1 \partial_2 \wedge \partial_3 + 3x_2^2 \partial_3 \wedge \partial_1 + ax_3^{a-1} \partial_1 \wedge \partial_2 \end{split}$$



**Lifting Criterion:** A Poisson structure  $\pi$  on X lifts to a weighted blowup  $Bl_{\mathcal{W}}(X,Z) \to X$  (with lift tangent to the exceptional divisor) if and only if  $\operatorname{ord}_{\mathcal{W}} \pi > 0$ .

**Example:** a Jacobian structure on  $X = \mathbb{C}^3$ 

$$\begin{split} Y &= \{x_1^2 + x_2^3 + x_3^a = 0\}, \ a \geq 3 \\ Z &= Y_{\mathsf{sing}} = \{0\}, \\ \pi &= [\partial_1 \wedge \partial_2 \wedge \partial_3, x_1^2 + x_2^3 + x_3^a] \\ &= 2x_1 \partial_2 \wedge \partial_3 + 3x_2^2 \partial_3 \wedge \partial_1 + ax_3^{a-1} \partial_1 \wedge \partial_2 A \partial_3 + 3x_2^a \partial_3 A \partial_3 + ax_3^{a-1} \partial_3 A \partial_$$



 $\operatorname{ord}_{\mathcal{W}}\pi = \min\{w_1 - w_2 - w_3, 2w_2 - w_3 - w_1, (a-1)w_3 - w_1 - w_2\}$ 

**Lifting Criterion:** A Poisson structure  $\pi$  on X lifts to a weighted blowup  $Bl_{\mathcal{W}}(X,Z) \to X$  (with lift tangent to the exceptional divisor) if and only if  $\mathrm{ord}_{\mathcal{W}} \pi \geq 0$ .

**Example:** a Jacobian structure on  $X = \mathbb{C}^3$ 

$$Y = \{x_1^2 + x_2^3 + x_3^a = 0\}, \ a \ge 3$$

$$Z = Y_{\text{sing}} = \{0\},$$

$$\pi = [\partial_1 \wedge \partial_2 \wedge \partial_3, x_1^2 + x_2^3 + x_3^a]$$

$$= 2x_1\partial_2 \wedge \partial_3 + 3x_2^2\partial_3 \wedge \partial_1 + ax_3^{a-1}\partial_1 \wedge \partial_2$$



$$\operatorname{ord}_{\mathcal{W}}\pi = \min\{w_1 - w_2 - w_3, 2w_2 - w_3 - w_1, (a-1)w_3 - w_1 - w_2\}$$

A Poisson pair  $(Y\subset X,\pi)$  is **inflatable** if there exists a weighted blowup  $Bl_{\mathcal{W}}(X,Z)\to X$  such that  $\mathrm{ord}_{\mathcal{W}}\pi\geq 0$  and the singularities of  $Bl_{\mathcal{W}}(Y,Z)$  are strictly **better**<sup> $\dagger$ </sup> than the singularities of Y.

<sup>†</sup>In the sense that the singularity invariant of [ATW24] decreases.

**Recall my thesis problem:** How close can you get to Poisson resolution using (weighted) blowups?

**Recall my thesis problem:** How close can you get to Poisson resolution using (weighted) blowups?

**Observation:** One can always sequentially apply weighted blowups until arriving at a **non-inflatable** Poisson structure:

$$(Y^{(n)} \subset X^{(n)}, \pi^{(n)}) \xrightarrow{\phi^{(n)}} \cdots \xrightarrow{\phi^{(2)}} (Y^{(1)} \subset X^{(1)}, \pi^{(1)}) \xrightarrow{\phi^{(1)}} (Y \subset X, \pi)$$

**Recall my thesis problem:** How close can you get to Poisson resolution using (weighted) blowups?

**Observation:** One can always sequentially apply weighted blowups until arriving at a **non-inflatable** Poisson structure:

$$(Y^{(n)} \subset X^{(n)}, \pi^{(n)}) \xrightarrow{\phi^{(n)}} \cdots \xrightarrow{\phi^{(2)}} (Y^{(1)} \subset X^{(1)}, \pi^{(1)}) \xrightarrow{\phi^{(1)}} (Y \subset X, \pi)$$

Can we classify the non-inflatables?

Complete classification of non-inflatables for  $1 \le \dim Y < \dim X \le 3$ :

Complete classification of non-inflatables for  $1 \leq \dim Y < \dim X \leq 3$ :

## Theorem (Lapointe-Matviichuk-Pym-Z.)

Let  $(X,\pi)$  be a smooth Poisson variety. Let  $Y\subset X$  be a singular Poisson subvariety.

**1** If dim Y = 1, dim X = 2, then  $\pi$  is inflatable.

Complete classification of non-inflatables for  $1 \leq \dim Y < \dim X \leq 3$ :

## Theorem (Lapointe-Matviichuk-Pym-Z.)

Let  $(X,\pi)$  be a smooth Poisson variety. Let  $Y\subset X$  be a singular Poisson subvariety.

- **1** If dim Y = 1, dim X = 2, then  $\pi$  is inflatable.
- ② If dim Y=1, dim X=3, then  $\pi$  is non-inflatable iff near any singular point, Y is planar, say  $Y \subset \{x_1=0\}$ , and  $\pi=x_1\partial_1 \wedge \partial_2$ .

Complete classification of non-inflatables for  $1 \leq \dim Y < \dim X \leq 3$ :

## Theorem (Lapointe-Matviichuk-Pym-Z.)

Let  $(X,\pi)$  be a smooth Poisson variety. Let  $Y\subset X$  be a singular Poisson subvariety.

- **1** If dim Y = 1, dim X = 2, then  $\pi$  is inflatable.
- ② If dim Y=1, dim X=3, then  $\pi$  is non-inflatable iff near any singular point, Y is planar, say  $Y \subset \{x_1=0\}$ , and  $\pi=x_1\partial_1 \wedge \partial_2$ .
- If dim Y = 2, dim X = 3, then  $\pi$  is non-inflatable iff Y has only ADE singularities, where  $\pi$  is locally Jacobian.

 $Y_{\text{sing}}$  is isolated and

$$\pi = \phi_1 \cdot \sigma_1 + \dots + \phi_r \cdot \sigma_r$$

where 
$$Y = \{\phi_1 = \dots = \phi_r = 0\}$$
 and  $\sigma_1, \dots, \sigma_r \in \mathfrak{X}^2_X$ .

 $Y_{\rm sing}$  is isolated and

$$\pi = \phi_1 \cdot \sigma_1 + \dots + \phi_r \cdot \sigma_r$$

where  $Y = \{\phi_1 = \dots = \phi_r = 0\}$  and  $\sigma_1, \dots, \sigma_r \in \mathfrak{X}^2_X$ .

Space Curve



#### Plane Curve



 $\mathbf{0}$   $\phi_1, \dots, \phi_r$  must be at least quadratic.



Space Curve



 $\phi_1, \ldots, \phi_r$  must be at least quadratic.

A straightforward computation shows that

$$\operatorname{ord}_{\mathcal{W}}\pi \geq 0$$

when  ${\cal W}$  is the weighting of [ATW24].

Space Curve



 $\phi_1, \ldots, \phi_r$  must be at least quadratic.

A straightforward computation shows that

$$\operatorname{ord}_{\mathcal{W}} \pi \geq 0$$

when  ${\cal W}$  is the weighting of [ATW24].

The weighted blowup of [ATW24] always improves the singularities.

Space Curve



 $\mathbf{0}$   $\phi_1, \ldots, \phi_r$  must be at least quadratic.

A straightforward computation shows that

$$\operatorname{ord}_{\mathcal{W}}\pi\geq 0$$

when  ${\cal W}$  is the weighting of [ATW24].

The weighted blowup of [ATW24] always improves the singularities.

 $\implies \pi$  is inflatable.

 $Y = \{\phi_1 = \cdots = \phi_r = 0\}$  is (locally) trapped in a coordinate hypersurface  $\{x_1 = 0\}$  where  $x_1 = \phi_1$ .

#### Plane Curve



 $Y = {\phi_1 = \cdots = \phi_r = 0}$  is (locally) trapped in a coordinate hypersurface  ${x_1 = 0}$  where  $x_1 = \phi_1$ .

Plane Curve



**Case 1:** If  $\pi$  is at least quadratic, then  $\pi$  is inflatable under the ordinary blowup.<sup>a</sup>

Plane Curve



 $Y = \{\phi_1 = \cdots = \phi_r = 0\}$  is (locally) trapped in a coordinate hypersurface  $\{x_1 = 0\}$  where  $x_1 = \phi_1$ .

**Case 1:** If  $\pi$  is at least quadratic, then  $\pi$  is inflatable under the ordinary blowup.<sup>a</sup>

Case 2: If  $\pi$  has a linear term  $\pi_{\text{lin}}$ , then either

$$\pi_{\mathsf{lin}} = x_1 \partial_1 \wedge \partial_2 \quad \mathsf{or} \quad \pi_{\mathsf{lin}} = x_1 \partial_2 \wedge \partial_3.$$

Plane Curve



 $Y = \{\phi_1 = \cdots = \phi_r = 0\}$  is (locally) trapped in a coordinate hypersurface  $\{x_1 = 0\}$  where  $x_1 = \phi_1$ .

**Case 1:** If  $\pi$  is at least quadratic, then  $\pi$  is inflatable under the ordinary blowup.<sup>a</sup>

Case 2: If  $\pi$  has a linear term  $\pi_{\text{lin}}$ , then either  $\pi_{\text{lin}} = x_1 \partial_1 \wedge \partial_2 \quad \text{or} \quad \pi_{\text{lin}} = x_1 \partial_2 \wedge \partial_3.$ 

By deformation theory:

$$\pi = x_1 \partial_1 \wedge \partial_2$$
 or  $\pi = x_1 \partial_2 \wedge \partial_3 + (\text{h.w.t})$   
 $\text{ord}_{\mathcal{W}} \pi = -w_2$  ord $_{\mathcal{W}} \pi = w_1 - w_2 - w_3$   
 $\text{non-inflatable}$  inflatable by [ATW24]

<sup>&</sup>lt;sup>a</sup>A result of [Abhyankar-1983] guarantees that the singularity invariant decreases.