by evaluating $\sum_{n=1}^{\infty} \frac{2n}{3^n}$.

For all questions, answer choice (E) NOTA means that none of the given answers is correct. Good Luck!

1. Shreyas the summation-master is struggling to solve this strenuous stumper. Surpass Shreyas is summation solving

	$(A)\frac{1}{2}$	(B)1	$(C)\frac{3}{2}$	(D)2	(E) NOTA			
2.	Given regular octagon ABCDEFGH has side length 4, what is the perimeter of triangle BEH?							
	(A) $8 + 12\sqrt{2}$ (D) $8 + 8\sqrt{2} + 4\sqrt{2 + \sqrt{2}}$		B) $12 + 8\sqrt{2}$	(C) $8 + 8\sqrt{2} + 4\sqrt{1 + \sqrt{2}}$				
	(D) $8 + 8\sqrt{2} + 4\sqrt{2} + \sqrt{2}$	(2	E) NOTA					
3.	If $x + \frac{1}{x} = 2$, what is $x^5 + \frac{1}{x^5}$?							
	(A) 2	(B) 4	(C) 32	(D) 8	(E) NOTA			
4.	Find the smallest value of $\frac{z^2+2z+2}{z+1}$ for real values of z greater than -1.							
	(A) -1	(B) 1	(C) 2	(D) 0	(E) NOTA			
5.	If you have a right triangle with legs of length a and b, hypotenuse of length 24, and an area of 12, what is $(a+b)^2$?							
	(A) 624	(B) 144	(C) 576	(D) 720	(E) NOTA			
6.	Rohan is a radical surfer, but he cannot reduce this rambunctious radical. Rectify this situation and relieve Rohan from this radical root by evaluating this radical for him.							
	$\sqrt{(45)(47)(51)(53) + 36}$							
	(A) 2500	(B) 2401	(C) 2391	(D) 2304	(E) NOTA			
7.	Vishnav needs to pick up Chanda from her spaceship. Chanda's spaceship lands between 2 am and 3 am. Chanda will only wait 10 minutes before taking an tUber and Vishnav will only wait 20 minutes before going home. Given that they both arrive at some point between 2 am and 3 am, what's the probability they will meet each other?							
	(A) $\frac{19}{36}$	(B) $\frac{1}{2}$	(C) $\frac{41}{72}$	(D) $\frac{31}{72}$	(E) NOTA			
8.	Given polynomial $x^3 + 9x^2 + 7x + 1$ has roots r_1, r_2 , and r_3 , what is $(r_1 + 1)(r_2 + 1)(r_3 + 1)$?							
	(A) -1	(B) -2	(C) 18	(D) 1	(E) NOTA			
9.	If $x^5 = 1$ and $x \neq 1$, what is $x^4 + x^3 + x^2 + x + 1$?							
	(A) 0	(B) 1	(C) 2	(D) 3	(E) NOTA			
10.	A cow is attached to the outside corner of a 4 ft by 12 ft rectangular barn with 16 ft rope. What is the total area it can roam?							
	(A) 128π	(B) 301π	(C) 262π	(D) 232π	(E) NOTA			
11.	How many 3-digit positive integers are there such that the sum of its digits is 9?							
	(A) 90	(B) 55	(C) 165	(D) 45	(E) NOTA			
12.	What is the sum of the	non-real roots of th	ne polynomial $x^5 + x^4 +$	$x^3 + x^2 + x + 1 = 0?$				
	(A) 0	(B) -1	(C) -2	(D) 3	(E) NOTA			

2019	James S. Rickards	Fall Invitational			Theta Open				
13.	Tanvi is running late and needs to find a way to get from car pick-up to her first period class without getting caught by a teacher. How many ways are there for her to get from car pick-up, located at $(0,0)$, to her first period, located at $(3,3)$, if she cannot go through the teacher check points, which are found at $(1,1)$ and $(2,2)$, and given she can only move up or to the right 1 unit at a time?								
	(A) 10	(B) 4	(C) 6	(D) 8	(E) NOTA				
14.	Triangle ABC has coordinates A $(0,1)$ and B $(-4,-5)$. Given triangle ABC has a right angle at C, find the equation of the possible coordinates for C.								
	(A) $(x+2)^2 + (y+2)^2 = 52$ (C) $(x+2)^2 + (y+2)^2 = 13$		(B) $(x-2)^2 + (y-2)^2 = 52$ (D) $(x-2)^2 + (y-2)^2 = 13$		(E) NOTA				
15.	What is the area of the circle inscribed in a triangle with side lengths of 13,14,15?								
	(A) 4π	(B) 16π	(C) 84π	(D) $\frac{65}{8}\pi$	(E) NOTA				
16.	What is the area of a rectangle with perimeter $4\sqrt{13}$ inscribed in a circle with radius $\frac{7}{2}$?								
	(A) 10	(B) 13	(C) $\frac{49}{4}$	(D) $\frac{3}{2}$	(E) NOTA				
17.	Tanusri often gets triggered by trigonometry. Teach Tanusri how to terrify trigonometry by simplifying $\sin^2 x + \cos^2 x$?								
	(A) 0	(B) 2	(C) $\frac{1}{2}$	(D) 1	(E) NOTA				
18.	_	an \overline{AD} with point D on angle ABC to the area o	_	is 14 and the length of \overline{BD}	is 2. What is the				
	(A) $\frac{1}{6}$	(B) 3	(C) $\frac{3}{2}$	(D) $\frac{7}{6}$	(E) NOTA				
19.	The value $\sqrt{8-4\sqrt{3}}$ can be expressed in the form of $\sqrt{a}-\sqrt{b}$, where a and b are integers. What is a+b?								
	(A) 3	(B) 7	(C) 56	(D) 8	(E) NOTA				
20.	Triangle ABC has coordinates A $(0,0)$, B $(2,3)$ and C $(3,2)$. What is the slope of the angle bisector going through point A?								
	(A) 1	(B) $\frac{13}{12}$	(C) $\frac{1}{2}$	(D) -1	(E) NOTA				
21.	How many of the roots of $x^3 - x^2 - x + 1$ are complex?								
	(A) 0	(B) 3	(C) 1	(D) 2	(E) NOTA				
22.	Shubham aspires to be a smart summation-master as well. Shreyas is showing him a sample sum, but this time, Shubham is the one who is stumped. Help Shubham and become a summation-master by computing the following.								
			$\sum_{x=3}^{\infty} \frac{-1}{x^2 - 3x + 2}$						
	(A) 1	(B) 0	(C) -1	(D) $\frac{1}{2}$	(E) NOTA				
23.	Whats the sum of the digits of $2^{2018} \cdot 5^{2020}$?								
	(A) 7	(B) 2500	(C) 5	(D) 4	(E) NOTA				

- 24. Calculate $(\log_2 9)(\log_3 8)(10^{\log 4})$.
 - (A) 60
- (B) 24

(C) 6

- (D) 12
- (E) NOTA
- 25. The triangle ABC is partitioned into 6 non-overlapping triangles by drawing all of its medians. What is the ratio of the area of one of the 6 triangles to the area of triangle ABC?
 - (A) Cannot be Determined
- (B) $\frac{1}{3}$

(C) $\frac{1}{4}$

(D) $\frac{1}{6}$

- (E) NOTA
- 26. Completely factor $x^6 64^2$ over \mathbb{R} .
 - (A) $(x^3 + 64)(x^3 64)$
 - (C)(x+4)(x-4)(x+2)(x-2)(x+2)

- (B) (x+4)(x-4)(x+2)(x-2)(x+2)(x-2)(D) $(x+4)(x^2-4x+16)(x-4)(x^2+4x+16)$

- (E) NOTA
- 27. Given that a and b are positive real numbers, $a^2 + b^2 = 9$, and ab = 8, what is $a^3 + b^3$?
 - (A) 5

- (B) 85
- (C) 125
- (D) 729
- (E) NOTA
- 28. What is the sum of the product of the roots of $3x^4 + 3x^3 + 4x^2 7x 1$ taken 3 at a time?
 - (A) $\frac{7}{3}$

- (B) $-\frac{7}{3}$
- (C) $\frac{4}{3}$

- (D) $-\frac{4}{3}$
- (E) NOTA

- 29. How many distinct ways can you arrange the letters in THETA?
 - (A) 120
- (B) 20
- (C) 60
- (D) 40
- (E) NOTA

- 30. What is $12 \div 2(2+1)$?
 - (A) 2

- (B) $\frac{12}{5}$
- (C) 1

(D) 4

(E) NOTA