WEBSITE TRAFFIC FORECASTING

ABOUT

Website Traffic Forecasting means forecasting traffic on a website during a particular period. It is one of the best use cases of Time Series Forecasting. If you want to learn how to forecast traffic on a website, I will take you through the task of Website Traffic Forecasting using Python. The dataset I am using for Website Traffic Forecasting is collected from the daily traffic data of thecleverprogrammer.com. It contains data about daily traffic data from June 2021 to June 2022.

ML MODEL ARIMA

ARIMA stands for autoregressive integrated moving average model and is specified by three order parameters: (p, d, q).

- AR(p) Autoregression a regression model that utilizes the dependent relationship between a current observation and observations over a previous period. An auto regressive (AR(p)) component refers to the use of past values in the regression equation for the time series.
- **I**(*d*) **Integration** uses differencing of observations (subtracting an observation from observation at the previous time step) in order to make the time series stationary. Differencing involves the subtraction of the current values of a series with its previous values d number of times.
- MA(q) Moving Average a model that uses the dependency between an observation and a residual error from a moving average model applied to lagged observations. A moving average component depicts the error of the model as a combination of previous error terms. The order q represents the number of terms to be included in the model.

Types of ARIMA Model

- ARIMA: Non-seasonal Autoregressive Integrated Moving Averages
- **SARIMA:** Seasonal ARIMA
- **SARIMAX:** Seasonal ARIMA with exogenous variables

IMPLEMENTATION

Steps:

1. Data Pre-processing

```
Cclass 'pandas.core.frame.DataFrame')
RangeIndex: 991 entries, 0 to 390
Data columes (total I columns):

Golum Non-Wall Count Otype

Onte 391 non-rull datetime6[ns]
1 Views 391 non-rull int64
dtypes: datetime6[ns](1), int64(1)
memory usage: 6.2 KB
Nane

The Date time column was an object initially, so I converted it into a Datetime column. Now let's have a look at the daily traffic of the website:
```


2. Daily Traffic of the Website

3. Seasonal or Stationary? How to decide?

4. Fitting the Model

5. Prediction of traffic for next 50 days

391	9876.249960			
392	10784.402565			
393	10741.832667			
394	9865.688905			
395	8781.939635			
396	8230.529838			
397	8931.974265			
398	9696.989182			
399	10283.824837			
400	10614.788376			
401	9881.974191			
402	9352.863745			
403	9019.906543			
404	9071.109798			
405	10512.177739			
406	11003.050671			
407	10920.348709			
408	10093.767698			
409	9432.806063			
410	8618.436924			
411	9178.692824			
412	10364.140537			
413	10621.282266			
414	10812.063211			
415	10269.353856 9424.469604			
416				
417	8992.843537			
418	9155.052259			
419	9902.925685			
428 421	10246.994097 10739.876122			
421	9908.288767			
423	9519.429744			
424	9014.893218			
424 425	8839.941769			
426	10165.034082			
427	10876.260491			
428	10925.804208			
429	10397.342367			
430	9430.235448			
431	8688.542830			
432	8725.235150			
433	10082.548679			
434	10546.733531			
435	10879.087860			
436	18466.283380			
437	9322.827613			
438	9160.891132			
439	9361.186546			
440	10313.171166			
441	11180.724145			
Name:	predicted_mean,	dtype:	float64	

6. Result

CONCLUSION

To summarize, a model has been created to predict web traffic for the next 50 days. The original data needed some clean up and some feature engineering as well. Deciding which method to use for solving this problem was a difficult and critical one because there are many techniques available which are popular for e.g. ARIMA, SARIMA, XGBoost, LightGBM, LSTM and libraries such as Facebook's prophet. In the end, it was a good decision to go with ARIMA as it provides a good groundwork for understanding other time series analysis techniques and is easier to implement than some other techniques.

The other challenge was to be able to visualize these results in concise manner to get a good overview how the models are performing. The plots for actual predictions and the errors painted a good picture of how the models perform.

