## Résumé

- Schéma conceptuel des données (SCD) à l'aide du modèle
   E/A
- Passage au modèle relationnel ⇒ premier schéma logique des données (SLD)
- **Problème**: les deux étapes précédentes ne nous garantissent pas l'obtention d'un SLD "optimal" ⇒ un processus de *normalisation* des relations est nécessaire

## Pourquoi normaliser: exemple

#### Relation Produit

| prod_id | libellé | pu   | qte | dep_id | adr   | volume |
|---------|---------|------|-----|--------|-------|--------|
| p1      | K7      | 23.5 | 300 | 1      | Nancy | 9000   |
| p1      | K7      | 23.5 | 500 | 2      | Laxou | 6000   |
| p3      | Vis     | 10   | 900 | 4      | Nancy | 2000   |

- Redondance : libellé et pu apparaissent pour chaque instance d'un produit
- Risque d'introduction d'incohérence lors de l'insertion d'une nouvelle instance de p1
- Risque de perte d'information : suppression du produit p3 ⇒ on perd son libellé, son pu et les information relatives au dépôt 4

## Les dépendances fonctionnelles

■ Un attribut ou une liste d'attributs Y dépend fonctionnellement d'un attribut ou d'une liste d'attributs X dans une relation R, si étant donnée une valeur de X, il ne lui est associé qu'une seule valeur de Y dans toute instance de R. On note  $X \xrightarrow{R} Y$  une telle dépendance.

#### **Exemples**:

```
prod_id \rightarrow libell\acute{e}
prod_id \rightarrow pu
dep_id \rightarrow adr, volume
prod_id, dep_id \rightarrow qte
```



# Propriétés des dépendances fonctionnelles

Soit *U* la liste des attributs de *R*, on a alors les propriétés :

(F1) Réflexivité: 
$$Y \subseteq X \land X \subseteq U \Rightarrow X \xrightarrow{R} Y$$

(F2) Augmentation: 
$$X \xrightarrow{R} Y \Rightarrow X \cup Z \xrightarrow{R} Y \cup Z$$

(F3) Transitivité: 
$$X \xrightarrow{R} Y \wedge Y \xrightarrow{R} Z \Rightarrow X \xrightarrow{R} Z$$

(F4) Union: 
$$X \xrightarrow{R} Y \land X \xrightarrow{R} Z \Rightarrow X \xrightarrow{R} Y \cup Z$$

(F5) Pseudo-transitivité: 
$$X \xrightarrow{R} Y \land Y \cup W \xrightarrow{R} Z \Rightarrow X \cup W \xrightarrow{R} Z$$

(F6) Décomposition : 
$$X \xrightarrow{R} Y \land Z \subseteq Y \Rightarrow X \xrightarrow{R} Z$$



# Typologie des dépendances fonctionnelles

- Une dépendance  $X \xrightarrow{R} Y$  est :
  - triviale si Y ⊆ X
  - élémentaire si pour tout  $X' \subset X$ , la dépendance fonctionnelle  $X' \xrightarrow{R} Y$  n'est pas vraie (Y ne dépend pas fonctionnellement d'une partie de X)
  - canonique si sa partie droite ne comporte qu'un seul attribut
  - directe si (i) elle est élémentaire et si (ii) Y ne dépend pas transitivement de X

#### Exemples :

- prod id, libelle → libelle??
- prod id, libelle  $\rightarrow$  pu ??
- prod\_id, dep\_id → qte??



## Clé d'une relation

- Un attribut ou une liste d'attributs X est une  $cl\acute{e}$  pour la relation R(X,Y) si Y dépend fonctionnellement de X dans R
- X est une *clé minimale* si  $X \xrightarrow{R} Y$  est élémentaire
- Si une relation possède plusieurs clés, nous on choisissons une qui sera appelée *clé primaire* (soulignée dans les schémas de relation). Les autres clés seront appelées *clés secondaires*

Ex : Voiture(immat#, chassis#, type, marque, puissance) admet immat# et chassis# comme clés



## Première forme normale

**1NF** Une relation est dite en *première forme normale* si chacun de ses attributs a un domaine atomique mono-valué

#### Exemple :

Personne(<u>id</u>, nom, les\_diplômes) où les\_diplômes est l'ensemble des diplômes obtenus par une personne n'est pas en 1NF

Personne(id, nom) est en 1NF

Diplôme(id, unDiplome) est en 1NF

## Deuxième forme normale

**2NF** Une relation *R* est dite en *deuxième forme normale* si (*i*) elle est en 1NF et (*ii*) tout attribut n'appartenant pas à une clé ne dépend pas d'une partie de la clé de *R* 

#### Exemple :

Stock(prod\_id, dep\_id, libellé, qte) n'est pas en 2NF car  $prod_id$ ,  $dep_id \rightarrow qte$   $prod_id \rightarrow libellé$ Stock(prod\_id, dep\_id, qte) est en 2NF
Produit(prod\_id, libellé) est en 2NF



## Troisième forme normale

**3NF** Une relation est dite en *troisième forme normale* si (i) elle est en 2NF et (ii) tout attribut n'appartenant pas à une clé ne dépend pas d'un attribut non clé

#### ■ Exemple :

#### **Relation Avion**

| no_avion | constructeur | type | capacité | propriétaire    |
|----------|--------------|------|----------|-----------------|
| AH32     | Boeing       | B747 | C1       | Air France      |
| FM34     | Airbus       | A320 | C2       | British Airways |
| BA45     | Boeing       | B747 | C1       | Egypt Air       |

n'est pas en 3NF car  $type \rightarrow capacité$ , constructeur et type n'est pas une clé Avion(no\_avion, type, propriétaire) est en 3NF Modèle(type, constructeur, capacité) est en 3NF



# Algorithme de normalisation par synthèse *simplifié*

- O Ecrire les dépendances fonctionnelles (df)
- 1 Rendre canoniques et élémentaires les df qui ne le sont pas
- 2 Représenter les nouvelles df sous forme d'un graphe dont les nœuds sont les attributs impliqués dans les df et les arcs les df elles-mêmes
- 3 Eliminer les df non directes
- 4 Partitionner les df en  $G_1$ , ...,  $G_n$  de façon à ce que toutes les df d'une partition aient la même partie gauche
- 5 Constituer une relation  $R_i$  par  $G_i$ , la partie gauche de  $G_i$  étant clé de  $R_i$ : chaque  $R_i$  est alors en 3NF

## Exemple



# Passage du modèle E/A au modèle relationnel

- Si règle de construction et de validation du modèle E/A sont respectés alors modèle E/A en troisième forme normale:
  - Les propriétés sont sous forme élémentaire
  - A toute valeur prise par l'identifiant ne correspond qu'une valeur de chaque propriété
  - Chaque propriété d'une relation dépend de la totalité des entités qu'elle relie
  - Toutes les propriétés dépendent directement de l'identifiant