Problems set - 2

- (1) Show the following implications;
 - (a) $(P \wedge Q) \implies (P \rightarrow Q)$
 - (b) $P \implies (Q \rightarrow P)$
 - (c) $(P \to (Q \to R)) \implies (P \to Q) \to (Q \to R)$
- (2) Show the following implications (without constructing the truth tables);
 - (a) $P \to Q \implies P \to (P \land Q)$
 - (b) $(P \to Q) \to Q \implies P \lor Q$
 - (c) $((P \lor \neg P) \to Q) \to ((P \lor \neg P) \to R) \implies (Q \to R)$
 - $(d) (Q \to (P \lor \neg P)) \to (R \to (P \lor \neg P)) \implies (R \to Q)$
- (3) Show the following equivalences;
 - (a) $\neg (P \land Q) \iff \neg P \lor \neg Q$
 - (b) $\neg (P \lor Q) \iff \neg P \land \neg Q$
 - (c) $\neg (P \to Q) \iff P \land \neg Q$
 - (d) $\neg (P \leftrightarrow Q) \iff (P \land \neg Q) \lor (\neg P \land Q)$
- (4) Write the formulas which are equivalent to the formulas given below and which contain connectives ∧ and ∨ only.
 - (a) $\neg (P \leftrightarrow (Q \rightarrow (R \lor P)))$
 - (b) $((P \vee Q) \wedge R) \rightarrow (P \vee R)$
- (5) Prove that the followings sets are not functionally complete:

$$\{\vee,\wedge\}, \{\vee\}, \{\neg\}$$

- (6) If A(P,Q,R) is given by $P \uparrow (Q \land \neg(R \downarrow P))$, then find its dual A^* . Also find the formulas which are equivalent to A and A^* involving the connectives \land, \lor , and \neg only.
- (7) Express the formula $P \to (\neg P \to Q)$ in terms of \uparrow only and also in terms of \downarrow only.
- (8) Express $P \uparrow Q$ in terms of \downarrow only.
- (9) For the formula $(P \land Q) \lor (\neg R \land \neg P)$, draw a corresponding circuit diagram using (a) NOT, AND, and OF gates (b) NAND gates only.