Основы проектирования ЭКБ

Занятие N+1

Конечные автоматы (finite state machine, FSM)

Цифровые схемы

Комбинационная схема

Цифровые автоматы с памятью

Описание автоматов

Входной набор: $X = \{x_1, x_2, x_3, ..., x_n\}$

Выходной набор: $Y = \{y_1, y_2, y_3, ..., y_m\}$

Множество конечных состояний: $Q = \{q_1, q_2, q_3, ..., q_k\}$

Функция состояний: $q(t+1) = \delta[q(t), x(t)]$

Функция выходов: $y(t+1) = \phi[q(t)]$

Описание {X, Y, Q, δ , ϕ , q_1 }

Автомат Хаффмана

Автоматы Мили и Мура

Автомат первого рода (автомат Мили)

Автомат второго рода (автомат Мура)

 $y(t) = \varphi[q(t)]$

Описание автоматов

Пусть есть

- $X = \{X_1, X_2, X_3\}$
- $Q = \{q_1, q_2, q_3, q_4\}$
- $Y = \{y_1, y_2, y_3\}$

Описать автомат Мили и Мура

Таблица переходов

	$q_{_1}$	$q_{_2}$	$q_{_3}$	$\boldsymbol{q}_{\scriptscriptstyle 4}$
X ₁	q_2	$q_{_4}$	$q_{_4}$	$q_{_2}$
X_2	$q_{_1}$	q_3	$q_{_1}$	$q_{_1}$
X ₃	$q_{_3}$	q_2	$q_{_1}$	$q_{_3}$

	$q_{_1}$	q_{2}	$q_{_3}$	$q_{_4}$
X ₁	<i>y</i> ₁	y ₂	<i>y</i> ₃	y_4
X_2	y ₄	y_4	y_3	$\boldsymbol{y}_{\scriptscriptstyle 1}$
X ₃	<i>y</i> ₁	$\boldsymbol{y}_{\scriptscriptstyle 1}$	y ₂	y ₄

Таблица переходов

	$\boldsymbol{q}_{_{1}}$	$q_{_2}$	$q_{_3}$	$q_{_4}$
X ₁	$q_{_2}$	$q_{_4}$	$q_{_4}$	q_2
X ₂	$q_{_1}$	q_3	$q_{_1}$	$q_{_1}$
X ₃	$q_{_3}$	q_2	$q_{_1}$	q_3

	$q_{_1}$	$q_{_2}$	$q_{_3}$	$q_{_4}$
X ₁	<i>y</i> ₁	y_2	<i>y</i> ₃	Y ₄
X_2	y ₄	y_4	y_3	$\boldsymbol{y}_{\scriptscriptstyle 1}$
X ₃	<i>y</i> ₁	$y_{_1}$	<i>y</i> ₂	Y ₄

Таблица переходов

	$q_{_1}$	$q_{_2}$	$q_{_3}$	$q_{_4}$
X ₁	q_2	$q_{_4}$	$q_{_4}$	q_2
X ₂	$q_{_1}$	q_3	$q_{_1}$	$q_{_1}$
X ₃	$q_{_3}$	$q_{_2}$	$q_{_1}$	$q_{_3}$

	$q_{_1}$	$q_{_2}$	$q_{_3}$	$q_{_4}$
X ₁	$\boldsymbol{y}_{\scriptscriptstyle 1}$	\boldsymbol{y}_{2}	<i>y</i> ₃	\mathcal{Y}_4
X_2	y_4	y_4	<i>y</i> ₃	$\boldsymbol{\mathcal{Y}}_1$
X ₃	$\boldsymbol{y}_{\scriptscriptstyle 1}$	$y_{_1}$	y ₂	y ₄

Таблица переходов

	$q_{_1}$	q_{2}	$q_{_3}$	$q_{_4}$
X ₁	q_2	$q_{_4}$	$q_{_4}$	$q_{_2}$
X_2	$q_{_1}$	$q_{_3}$	$q_{_1}$	$q_{_1}$
X ₃	q_3	q_{2}	$q_{_1}$	q_3

	$q_{_1}$	q_{2}	$q_{_3}$	$q_{_4}$
X ₁	<i>y</i> ₁	y_2	<i>y</i> ₃	\mathcal{Y}_4
X ₂	y ₄	y_4	y_3	\boldsymbol{y}_1
X ₃	<i>y</i> ₁	$y_{_1}$	y_2	Y ₄

Таблица переходов

	$q_{_1}$	q_{2}	$q_{_3}$	$q_{_4}$
X ₁	q_2	$q_{_4}$	$q_{_4}$	q_2
X ₂	$q_{_1}$	q_3	$q_{_1}$	$q_{_1}$
X ₃	$q_{_3}$	q_2	$q_{_1}$	q_3

	$q_{_1}$	q_{2}	$q_{_3}$	$q_{_4}$
X ₁	$\boldsymbol{y}_{\scriptscriptstyle 1}$	y ₂	<i>y</i> ₃	y ₄
X_2	y ₄	y ₄	y ₃	$\boldsymbol{y}_{\scriptscriptstyle 1}$
X ₃	$\boldsymbol{y}_{\scriptscriptstyle 1}$	$\boldsymbol{\mathcal{Y}}_1$	y ₂	y ₄

Таблица переходов

	$q_{_1}$	$q_{_2}$	$q_{_3}$	$q_{_4}$
X ₁	q_2	$q_{_4}$	$q_{_4}$	$q_{_2}$
X_2	$q_{_1}$	q_3	$q_{_1}$	$q_{_1}$
X ₃	q_3	q_2	$q_{_1}$	q_3

	$q_{_1}$	$q_{_2}$	$q_{_3}$	$q_{_4}$
X ₁	<i>y</i> ₁	y_2	<i>y</i> ₃	\mathcal{Y}_4
X_2	y ₄	y_4	y_3	\boldsymbol{y}_1
X ₃	$\boldsymbol{y}_{\scriptscriptstyle 1}$	$y_{_1}$	<i>y</i> ₂	Y ₄

Начальное состояние

	$q_{_1}$	q_{2}	$q_{_3}$	$q_{_4}$
X ₁	$q_{_2}$	$q_{_4}$	-	q_2
X ₂	$q_{_1}$	q_3	$q_{_1}$	-
X ₃	$q_{_3}$	-	-	$q_{_3}$

Что действует

Куда попадаем

Начальное состояние

	$q_1 I y_2$	$q_2 I y_1$	$q_3 I y_1$	$q_4 I y_3$
X ₁	q_2	$q_{_4}$	-	q_2
<i>X</i> ₂	$q_{_1}$	q_3	$q_{_1}$	-
X ₃	$q_{_3}$	-	-	q_3

Что действует

Куда попадаем

Начальное состояние

	$q_1 I y_2$	$q_2 I y_1$	$q_3 I y_1$	$q_4 I y_3$
X ₁	q_2	$q_{_4}$	-	q_2
<i>X</i> ₂	$q_{_1}$	q_3	$q_{_1}$	-
X ₃	$q_{_3}$	-	-	q_3

Что действует

Куда попадаем

Начальное состояние

	$q_1 I y_2$	$q_2 I y_1$	$q_3 I y_1$	$q_4 I y_3$
X ₁	q_2	$q_{_4}$	-	q_2
X ₂	$q_{_1}$	q_3	$q_{_1}$	-
X ₃	q_3	-	-	q_3

Что действует

Куда попадаем

Начальное состояние

	$q_1 I y_2$	$q_2 I y_1$	$q_3 I y_1$	$q_4 I y_3$
X ₁	q_2	$q_{_4}$	-	q_2
X ₂	$q_{_1}$	q_3	$q_{_1}$	-
X ₃	q_3	-	-	q_3

Что действует

Куда попадаем

Начальное состояние

	$q_1 I y_2$	$q_2 I y_1$	$q_3 I y_1$	$q_4 I y_3$
X ₁	q_2	$q_{_4}$	-	q_2
X ₂	$q_{_1}$	q_3	$q_{_1}$	-
X ₃	q_3	-	-	q_3

Что действует

Куда попадаем

16.11.2022

18

Начальное состояние

	$q_1 I y_2$	$q_2 I y_1$	$q_3 I y_1$	$q_4 I y_3$
X ₁	q_2	$q_{_4}$	-	q_2
X ₂	$q_{_1}$	q_3	$q_{_1}$	-
X ₃	q_3	-	-	q_3

Что действует

Куда попадаем

Начальное состояние

	$q_1 I y_2$	$q_2 I y_1$	$q_3 I y_1$	$q_4 I y_3$
X ₁	q_2	$q_{_4}$	-	q_2
X ₂	$q_{_1}$	q_3	$q_{_1}$	-
X ₃	q_3	-	-	q_3

Что действует

Куда попадаем

RS-триггер

Входное множество $X = \{(SR)_i\} = \{00, 01, 10\}$

Состояния автомата $Q = \{0, 1\}$

Выходное множество $Y = Q = \{0, 1\}$

RS-триггер (автомат Мура)

Входное множество X = $\{(SR)_i\}$ = $\{00, 01, 10\}$ = $\{x_1, x_2, x_3\}$

Состояния автомата Q = $\{0, 1\} = \{q_1, q_2\}$

Выходное множество $Y = Q = \{0, 1\} = \{y_1, y_2\}$

	$q_{_1}$ (0)	q ₂ (1)
<i>x</i> ₁ (00)	$q_{_1}$ (0)	$q_{_{2}}$ (1)
x ₂ (01)	$q_{_{1}}(0)$	$q_{_{1}}(0)$
<i>x</i> ₃ (10)	$q_{_{2}}$ (1)	$q_{_{2}}$ (1)

RS-триггер (автомат Мура)

Входное множество X = $\{(SR)_i\}$ = $\{00, 01, 10\}$ = $\{x_1, x_2, x_3\}$

Состояния автомата Q = $\{0, 1\} = \{q_1, q_2\}$

Выходное множество $Y = Q = \{0, 1\} = \{y_1, y_2\}$

<u>S</u>
<u>R</u>

	$q_{_1}$ (0)	q_2 (1)
<i>x</i> ₁ (00)	$q_{_{1}}(0)$	$q_{2}(1)$
x ₂ (01)	$q_{_{1}}(0)$	$q_{_{1}}(0)$
<i>x</i> ₃ (10)	$q_{2}(1)$	$q_{2}(1)$

Кодирование состояний

- Двоичное {000, 001, 010, 011, 100, 101, 110, 111}
- **Унарное** (**«one-hot»**) {0000001, 0000010, 0000100, 0001000, 0001000, 0100000, 1000000, 0000000)}
- **Код Грэя** {000, 001, 011, 010, 110, 111, 101, 100}
- **Код Джонсона** {0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000, 0000}
- и так далее

Safe и Unsafe FSM

```
// unsafe FSM
case( state )
  S0 : ... ;
  S1 : ... ;
  S2 : ... ;
  S3 : ... ;
endcase
```


Safe и Unsafe FSM

```
// safe FSM
case( state )
                                                                  S2
                                                   S1
  S0 : ... ;
  S1 : ... ;
                                                    S3
  S2 : ... ;
  S3 : ... ;
  default : nextstate <= S0;</pre>
                                       Выход
                                                 S4
endcase
```

Счётчик (не FSM)

Счётчик (FSM)

```
module cnt2 (clk, rstn, qo);
localparam NULL = 0,
          S1 = 1
          S2 = 2
          S3 = 3;
input clk, rstn;
output reg [1:0] qo;
reg [1:0] state, nextstate;
//функция переходов
always @ ( posedge clk, negedge rstn )
 if (!rstn)
   state <= NULL;
  else
   state <= nextstate;
```

```
//функция состояний

always @ (*)

case ( state )

NULL : nextstate = S1;

S1 : nextstate = S2;

S2 : nextstate = S3;

S3 : nextstate = NULL;

default : nextstate = NULL;

endcase
```

```
//функция выходов

always @ (*)

case ( state )

NULL : qo = 0;

S1 : qo = 1;

S2 : qo = 2;

S3 : qo = 3;

default : qo = 0;

endcase
```


endmodule

Примеры FSM

Moct SPI-I2C

Улитка улыбается

Улитка ползёт по последовательности нулей и единиц и улыбается, когда проползает две подряд идущие единицы. Реализовать автоматы Мура и Мили, реализующие определение радости улитки. Провести моделирование и сравнить два автомата.

СПАСИБО ЗА ВНИМАНИЕ!