

6. DNN Recap & ML Metrics

Prof. Marcelo José Rovai rovai@unifei.edu.br

DNN Dense Neural Network

Recap

Supervised Machine Learning with DNN

$$y = f(\sum_{i=1}^n x_i w_i + b)$$

Activation Functions

Parameters to be found during training, to reach minimum error

$$y=f(\sum_{i=1}^n x_i \hspace{-.1cm} w_i \hspace{-.1cm} +\hspace{-.1cm} b)$$

- Error Measurement (Loss)
- Optimization

Parameters to be found during training, to reach minimum error

$$y = f(\sum_{i=1}^n x_i w_i + b)$$

Binary Classification

Loss -> Binary Crossentropy
Optimizer -> SGD or Adam

Mult-class Classification

^{*} or "Sparse Categorical Crossentropy" if label is 1, 2, 3, ...

Going Further

The Datasets to training and test

Steps to take

- Get as many examples of shoes as possible
- 2. Train using these examples
- 3. Profit!

Steps to take

- Get as many examples of shoes as possible
- 2. Train using these examples
- 3. Profit!

```
Training accuracy: .920
Training accuracy: .935
Training accuracy: .947
Training accuracy: .961
Training accuracy: .977
Training accuracy: .995
Training accuracy: .995
```

Steps to take

- Get as many examples of shoes as possible
- 2. Train using these examples
- 3. Profit?

The network 'sees' everything. Has no context for measuring how well it does with data it has never previously been exposed to.

The network 'sees' everything. Has no context for measuring how well it does with data it has never previously been exposed to.

Validation Data

The network 'sees' a subset of your data. You can use the rest to measure its performance against previously unseen data.

Data Validation Data Test Data e network 'sees' a subset of your data. You

The network 'sees' a subset of your data. You can use an unseen subset to measure its accuracy while training (validation), and then another subset to measure its accuracy after it's finished training (test).

Is used to evaluate the current training epoch

Is used to evaluate the final model after training

Data Validation Data Test Data

Accuracy: 0.999 Accuracy: 0.920 Accuracy: 0.800

Validation Data

Test Data

Accuracy: 0.999

Accuracy: 0.920

Accuracy: 0.800

Validation Data

Test Data

Accuracy: 0.942

Accuracy: 0.930

Accuracy: 0.925

Digits Classification: validation and test dataset Code Time!

TF_MNIST_Classification_v2.ipynb


```
1 data = tf.keras.datasets.mnist
 3 (tt images, tt labels), (test images, test labels) = data.load data()
 1 print(tt images.shape)
 2 print(tt labels.shape)
(60000, 28, 28)
(60000,)
 1 print(test images.shape
 2 print(test labels.shape)
(10000, 28, 28)
(10000,)
```

```
1 val_images = tt_images[:10000]
 2 val labels = tt labels[:10000]
                                                   Split tt data in:

    train (50,000) and,

 1 train images = tt images[10000:]
 2 train labels = tt labels[10000:]
                                                     validation (10,000)
 1 print(train images.shape)
 2 print(train labels.shape)
(50000, 28, 28)
(50000,)
 1 print(val images.shape)
 2 print(val labels.shape)
(10000, 28, 28)
(10000,)
```

```
1 history = model.fit(
2    train_images,
3    train_labels,
4    epochs=20,
5    validation_data=(val_images, val_labels)
6   )
```

You could leave the training data with all samples, and alternatively use:

• validation_split=0.1 instead of validation_data=(val_images, val_labels).

In this case, TF will split the validation data by itself.

```
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.title('Model Accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(loc='upper left')
plt.show()
```


If validation accuracy seems "unstable", could be that Learning Rate is high (try to reduce it).

```
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.title('Model Accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(loc='upper left')
plt.show()
```


If validation accuracy goes down (or became stable), even if train accuracy goes up, means that probably the model is overfitting. In this case the training (epochs) should terminate.

model.evaluate(test_images, test_labels)

Validation Data

Test Data

Accuracy: 0.976

Accuracy: 0.963

Accuracy: 0.957

In summary

Training Data -> Used to train model parameters

Validation Data -> Used to determine what model hyperparameters to adjust (and re-training)

Test Data -> Used to get model final performance metric

Going Further

Classification Model Performance Metrics

Model Performance (Confusion Matrix)

			predicted condition	
		12 pictures, 8 of cats and 4 of dogs	Cat [1]	Dog [0]
true	true condition	Cat [1]	6	2
condi		Dog [0]	1	3

Model Performance (Confusion Matrix)

		predicted condition	
	12 pictures, 8 of cats and 4 of dogs	Cat [1]	Dog [0]
true	Cat [1]	True Positive (TP)	False Negative (FN) (type II error)
condition	Dog [0]	False Positive (FP) (Type I error)	True Negative (TN)

Model Performance (Confusion Matrix)

			predicted condition	
		total population (P + N)	prediction positive (PP)	prediction negative (PN)
C	true	condition positive (P)	True Positive (TP)	False Negative (FN) (type II error)
	condition	condition negative (N)	False Positive (FP) (Type I error)	True Negative (TN)

Type I error (false positive) Type II error (false negative)

Precision vs.

High Precision, High Accuracy

Low Precision, High Accuracy

In a set of measurements:

Accuracy

- Accuracy is closeness of the measurements to a specific value
- **Precision** is the closeness of the measurements to each other.

High Precision, Low Accuracy

Low Precision, Low Accuracy

Accuracy, Precision and Recall

Accuracy =
$$\frac{TP + TN}{(P + N)} = \frac{TP + TN}{(TP + TN + FP + FN)} = \frac{6 + 3}{(6 + 3 + 1 + 2)} = \frac{9}{12} = 0.75$$

Precision =
$$\frac{TP}{(TP + FP)} = \frac{6}{(6+1)} = \frac{6}{7} = 0.86$$

Total Positive

Total Predict Positive

Recall =
$$\frac{TP}{(or Sensitivity)} = \frac{6}{(TP + FN)} = \frac{6}{(6 + 2)} = \frac{6}{8} = 0.75$$

Total Positive
Total Actual Positive

F1-Score

$$F1 = 2 \times (0.86 * 0.75) = 2 \times 0.65 = 0.80$$
$$(0.86 + 0.75) = 1.61$$

The F1-score is a way of combining the precision and recall of the model

Classification Report Code Time!

Classification Report.ipynb


```
1 from sklearn.metrics import classification_report
 1 actual = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
 2 \text{ prediction} = [0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1]
 1 target_names = ['Dogs', 'Cats']
 1 print(classification_report(actual, prediction, target_names=target_names))
              precision
                          recall f1-score
                                               support
        Dogs
                   0.60
                             0.75
                                       0.67
                   0.86
                             0.75
        Cats
                                       0.80
                                       0.75
                                                    12
    accuracy
                                                    12
                   0.73
                             0.75
                                        0.73
  macro avg
weighted avg
                                                    12
                   0.77
                             0.75
                                       0.76
```

Thanks

