ČAO – Doplňující materiál

Návrh logických hradel CMOS pro zelenáče Jiří Buček

Doporučuje 1001 z 1010 studentů (večer) před písemkou

(c) 2010 Jiří Buček, jiri.bucek@fit.cvut.cz, FIT ČVUT v Praze.

ČAO – Hradla CMOS – Checklist

- Je v zadání funkce ve tvaru $Y = \overline{(A \cdot B + C) \cdot D \cdot E + F \cdots}$ tj. výraz složený ze součtů a součinů proměnných, celý v negaci?
 - > ANO → OK, to půjde jedním hradlem CMOS.
 - NE → chybí jenom ta negace?
 - ANO \rightarrow uděláme to s negací, pak ji "smažeme" dodatečným invertorem, např. $Y = A \cdot B + C = \overline{A \cdot B} + \overline{C}$
 - NE → budeme si muset funkci upravit nebo ji postavit z více hradel

Hradla CMOS – Stavební prvky

- PMOS rozPínač ten s kolečkem
 - Kreslíme třeba tak

- Když přivedeme na G jedničku, tak rozepne
- Když přivedeme na G nulu, tak sepne
 - Proto má kolečko. Kolečko je jako nula, tedy PMOS spíná při nule

V logických hradlech kreslíme nahoru

Hradla CMOS – Stavební prvky

- NMOS spíNač ten bez kolečka
 - Kreslíme třeba tak

- Když přivedeme na G jedničku, tak sepne
 - Proto nemá kolečko, zůstala mu jen čárka. Čárka je jako jednička, tedy NMOS sepne při jedničce.
- Když přivedeme na G nulu, tak rozepne
- V logických hradlech kreslíme dolů

Nejjednodušší hradlo – invertor

- Znáte z přednášek
- $Y = \overline{A}$

Nejjednodušší hradlo – invertor

- Nejlépe je vidět, jak funguje "spodní" část: přivedením 1 se na výstup dostane 0
- Protože NMOS spíná v 1

Nahoře je PMOS, je rozepnutý.

Nejjednodušší hradlo – invertor

- Přivedením 0 se dostane na výstup 1
- Protože PMOS spíná v 0 (má ve značce kolečko!)

Dole je NMOS, je rozepnutý.

Složitější hradla

Chci, aby byl výstup v 0, když A = 1...

Složitější hradla

- Chci, aby byl výstup v 0, když A = 1
- NEBO B = 1
- a mám NOR... teda skoro.

Složitější hradla

- Když A = B = 0, na výstupu má být 1.
- NOR je hotov
- $Y = \overline{A+B}$

- Nahoře je to vždycky obráceně než dole.
 - Co bylo paralelně, je sériově.

NAND

Výstup je 0, když A = 1 a zároveň B = 1.

•
$$Y = \overline{AB}$$

 Zase je to lépe vidět na spodní části – musí sepnout oba tranzistory, aby výstup byl 0. Dole sériově, takže nahoře...

To bylo jednoduché...

Navrhneme hradlo (A+B)C+DE

Neděste se, začneme postupně...

A+B

- Spodní část je hotová!
- Horní je zas obráceně co je dole sériově, je nahoře paralelně, a naopak.

$\overline{(A+B)C+DE}$

$\overline{(A+B)C+DE}$

$\overline{(A+B)C+DE}$

(A+B)C+DE

• Hotovo.

 Ještě bychom mohli zadrátovat vstupy.

(A+B)C+DE

Vaše čipy vám děkují

Dobrou noc!