Business Analytics Using Computational Statistics

Generating Predictions

We **predict** outcomes for **new data** using a model **trained** on original data

Our new data usually only contains predictors We want to know the future outcomes!

MSE and Prediction

Formulas -> Models

```
cars full
                   <- mpg ~ cylinders + displacement + horsepower + weight + acceleration + model year + factor(origin)</pre>
cars reduced
                   <- mpg ~ weight + acceleration + model year + factor(origin)</pre>
cars_full_poly2
                   <- mpg ~ poly(cylinders, 2) + poly(displacement, 2) + poly(horsepower, 2) + poly(weight, 2) +</pre>
                             poly(acceleration, 2) + model year + factor(origin)
cars reduced poly2 <- mpg ~ poly(weight, 2) + poly(acceleration,2) + model year + factor(origin)
cars reduced poly6 <- mpg ~ poly(weight, 6) + poly(acceleration,6) + model year + factor(origin)
models = list(
  "lm full"
                      = lm(cars full, data=cars),
  "lm reduced"
                      = lm(cars reduced, data=cars),
  "lm poly2 full"
                      = lm(cars full poly2, data=cars),
  "lm poly2 reduced" = lm(cars reduced poly2, data=cars),
  "lm poly6 reduced" = lm(cars reduced poly6, data=cars),
  "rt full"
                      = rpart(cars full, data=cars),
  "rt_reduced"
                      = rpart(cars reduced, data=cars)
```

Using a named list allows us to iterate over over all our models using sapply / lapply / etc.

MSE and Prediction

We have seen MSE-type metrics before...

Regression Sum of Squares

MSE describes dispersion of fitting/prediction error

models_mse_in <- sapply(models, mse_in)</pre>

	All Terms	Reduced Terms Lm_reduced 10.971643		
Linear Terms Regression	lm_full 10.682122			
Polynomial Terms Regression	lm_poly2_full 7.919030	lm_poly2_reduced lm_poly6_reduce 8.364546 8.25437		
Regression Trees	rt_full 9.155146	rt_reduced 9.501344		

MSE has units²

$$MSE_{in} = \frac{\sum (y - \hat{y}_{in})^2}{n}$$

$$MSE_{out} = \frac{\sum (y_{out} - \hat{y}_{out})^2}{n}$$

Removing collinear terms (multicollinearity)

does not improve model fit!

(then why do we care about multicollinearity??)

Using more complex models improves model fit (then why didn't we study these before??)

Split-sample Testing Revisited

Split

```
set.seed(27935752)
train indices <- sample(1:nrow(cars), size=0.70*nrow(cars))</pre>
train set <- cars[train indices,]</pre>
test set <- cars[-train indices,]</pre>
```

Train

mse in(trained model) $MSE_{in} = \frac{\sum (y - \hat{y}_{in})^2}{n}$ [1] **10.93126**

Predict

mpg predicted <- predict(trained model, test set)</pre>

Test

100

```
mpg actual out <- test set$mpg</pre>
pred err <- mpg actual out - mpg predicted</pre>
head(data.frame(mpg actual out, mpg predicted, pred err))
    mpg actual out mpg predicted pred err
248
               39.4
                         31.59557 7.804433
37
               19.0
                         16.75076 2.249241
                         19.35238 -1.352376
201
               18.0
103
               26.0
                         28.13508 -2.135077
389
               26.0
                         29.28920 -3.289201
               18.0
                         20.39581 -2.395813
```


Out-of-sample MSE
$$MSE_{out} = \frac{\sum (y_{out} - \hat{y}_{out})^2}{n}$$

mse out(mpg actual_out, mpg_predicted)

Our MSE_{in} was **10.971643** [1] 11.37791

Out-of-sample prediction error is worse than in-sample fitting error

Implementing k-Fold

```
folds <- cut(1:nrow(dataset), breaks=k, labels=FALSE)</pre>
 test indices <- which(folds==i)</pre>
 test set <- dataset[test indices, ]</pre>
 train set <- dataset[-test indices, ]</pre>
 trained model <- update(model, data = train set)</pre>
  predictions <- predict(trained model, test set)</pre>
 dataset[test indices, outcome] - predictions
k fold mse <- function(model, dataset, outcome, k=nrow(dataset)) {</pre>
  shuffled indicies <- sample(1:nrow(dataset))</pre>
 dataset <- dataset[shuffled indicies,]</pre>
 fold pred errors <- sapply(1:k, \(kth) {</pre>
    fold i pe(kth, k, model, dataset, outcome)
  })
 pred errors <- unlist(fold pred errors)</pre>
 mse(pred errors)
 10-fold vs 392-fold:
models 10fold <-
  sapply(models, \(m) k_fold_mse(m, cars, "mpg", k=10))
models loocv <-
  sapply(models, \(m) k fold mse(m, cars, "mpg", k=392))
in out errs <- data.frame(</pre>
  "mse in" = models mse in,
  "10fold cv" = models 10fold,
  "Loocy" = models loocy)
print(in out errs, digits = 3)
```

fold i pe <- function(i, k, model, dataset, outcome) {</pre>

Updating a model

Re-estimates (retrains) a model with given changes

```
update(model, data = train_set)
update(model, formula = mpg ~ displacement)
```

```
k_fold_mse(models[["lm_full"]], cars, "mpg", k=10)
[1] 11.48231
k_fold_mse(models[["lm_full"]], cars, "mpg", k=392)
[1] 11.29344
```


More **complex models** can sometimes give us worse predictions!

	mse_in	X10fold_cv	loocv	
lm_full	10.68	11.19	11.29	
<pre>lm_reduced</pre>	10.97	11.40	11.38	
<pre>lm_poly2_full</pre>	7.92	8.62	8.61	
<pre>lm_poly2_reduced</pre>	8.36	8.72	8.79	2 nd order to
<pre>lm_poly6_reduced</pre>	8.25	9.19	9.18	← 6 th order
rt_full	9.16	12.72	12.77	
rt_reduced	9.50	11.60	13.15	

Leave-One-Out Cross-Validation (LOOCV)

Bias-Variance Tradeoff

https://towardsdatascience.com/overfitting-underfitting-and-the-bias-variance-tradeoff-83b42fb11efb

Better in-sample fit

does not give us

Better out-of-sample predictions

Prediction Error MSE_{out}: total error in predicting outcome (y) of test set, given model (f) trained on training set (D)

Bias: error from missing relevant features in model (f)

$$\mathrm{E}_{D,arepsilon}\left[\left(y-\hat{f}\left(x;D
ight)
ight)^{2}
ight]=\left(\mathrm{Bias}_{D}\left[\hat{f}\left(x;D
ight)
ight]
ight)^{2}+\mathrm{Var}_{D}\left[\hat{f}\left(x;D
ight)
ight]+\sigma^{2}$$

Variance: error from overfitting to noise in the training data (D)

Irreducible error: noise in relationship between DV and IVs that cannot be modeled

Ensemble Methods

Group of separate things that contribute to a whole

When we have an important decision to make, we often consult many different people: friends, family, coworkers

"wisdom of the crowd"

Collective opinion of a diverse independent group of individuals rather than that of a single expert

Bagging: Bootstrapped Aggregation

Stable Algorithms: OLS Regression

```
old cars <- subset(cars, model year <= 81)</pre>
new cars <- subset(cars, model year == 82)</pre>
mse oos <- function(actuals, preds) {</pre>
                                                       MSE_{out} = \frac{\sum (y_{out} - \hat{y}_{out})^2}{n}
  mean( (actuals - preds)^2 )
```

```
cars lm <- lm(mpg ~ weight + acceleration + model year + factor(origin), data=cars)
```

Ordinary Regression Prediction Error

```
lm mse out <- update(cars lm, data = old cars) |>
  predict(object = , new cars) |>
 mse oos(new cars$mpg, preds = )
# [1] 15.47389
```

Bagged Regression Prediction Error

```
bagged_learn(cars_lm, old_cars, b=100) |>
  bagged_predict(bagged_models = _, new_data = new_cars) |>
 mse oos(new cars$mpg, preds = )
```

[1] **15.51973**

Stable Algorithms with Bagging

Regression models are quite stable: Slight changes in data produces similar models

Unstable Algorithms: Decision Tree

Decision Tree Prediction Error

Bagged Tree Prediction

```
bagged_learn(old_tree, old_cars, b=100) |>
  bagged_predict(new_cars) |>
  mse_oos(new_cars$mpg, preds = _)

[1] 20.88632
```

Unstable Algorithms with Bagging

Let's use different number of bootstraps...

```
boots <- seq(100, 1200, by = 100)

learning <- sapply(boots, \(b) {
  bagged_learn(cars_lm, old_cars, b=b) |>
  bagged_predict(new_cars) |>
  mse_oos(new_cars$mpg, preds = _)
})

plot(boots, learning, type="l")
abline(h=old_learning, lty="dashed")
```


Decision trees are **unstable**: Slight changes in data produces very **different models**

Boosting

Boosted Learning

$\boldsymbol{\varepsilon}_{i} = X \widehat{\boldsymbol{\beta}}_{2} \longrightarrow \widehat{\boldsymbol{y}}_{i}$

Algorithm:

Given old data with predictors and outcome: *X*, *y*

1. Start by setting the "residuals" variable $\varepsilon = y$

- $arepsilon_0 = y$
- 2. Iterate through n rounds (i = 1..n) training a new model f each time:
 - a. Fit $f_i(X, \varepsilon)$
 - b. Get fitted values \hat{y} from f_i
 - c. Update the residuals with *learning rate* α : $\varepsilon = \varepsilon \alpha \hat{y}$
 - d. Store each trained model f_i for predicting later

Result: collection of n stored models f_i

Code Skeleton:

```
boost_learn <- function(model, dataset, outcome, n=100, rate=0.1) {
   predictors <- dataset[, ...] # get data frame of only predictor variables

# Initialize residuals and models
   res <- dataset[, ...] # set res to vector of actuals (y) to start
   models <- list()

for (i in 1:n) {
    this_model <- update(model, data = cbind(mpg=res, predictors))

   res <- ... # update residuals with learning rate

   models[[i]] <- this_model # Store model
   }

list(models=models, rate=rate)
}</pre>
```


For Loops

I generally discourage using For loops because they are lengthier version of apply functions.

However, for-loops are needed when we must **look back at earlier results** while iterating:

```
result <- c(1)
for (i in 2:5) {
  result <- c(result, result[i-1] * 2)
}
[1] 1 2 4 8 16</pre>
```

Boosted Predictions

Algorithm:

Given new out-of-sample data with predictors: X_{oos}

- 1. Iterate through the n stored models f_i :
 - a. Predict outcome for model: $\hat{y}_i = f_i(X_{oos})$
 - b. Store predictions \hat{y}_i
- 2. Sum predictions together with learning rate
 - a. Multiply prediction by learning rate α : $\alpha f_i(X_{oos})$
 - b. Sum the weighted prediction of all rounds: $E(X_{oos}) = \sum_{i=1}^{\nu} \alpha f_i(X_{oos})$

Result: vector of predictions \hat{y}_{oos}

Code Skeleton:

```
boost_predict <- function(boosted_learning, new_data) {
  boosted_models <- ...
  rate <- ...
  n <- nrow(new_data)

predictions <- lapply( ... ) # get predictions of new_data from each model

pred_frame <- as.data.frame(predictions) |> unname()

apply( ... ) # apply a sum over the columns of predictions, weighted by learning rate
}
```

Strong Learners: *OLS Regression*

$$mpg = \beta_0 + \beta_1 cyl + \beta_2 disp + \beta_3 hp + \beta_4 wt + \beta_5 acc + \beta_6 year + \beta_7 origin + \varepsilon$$

Ordinary Regression Prediction

"strong learner"

Tries to come close to an accurate answer

```
boost_learn(cars_lm, old_cars, outcome="mpg", n=1000) |>
  boost_predict(new_cars) |>
  mse_oos(new_cars$mpg, preds = _)

[1] 15.47389
```


Strong learners are not good for boosting
They are too greedy to learn from noise (overfitting)

Strong learners are too similar to each other

Strong Learner: *Decision Tree*


```
full tree <- rpart(mpg ~ cylinders + displacement + horsepower + weight +</pre>
                           acceleration + model year + factor(origin),
                   data=old_cars, cp=0)
                                          Grow the tree down more fully
rpart.plot(full tree)
plot(old_cars$displacement, old_cars$mpg, pch=19, col="lightgray")
points(old cars$displacement, predict(full tree, old cars), ...)
```

Ordinary Tree Prediction

```
mse_oos(new_cars$mpg, predict(full_tree, new_cars))
```

[1] 22.62033

Boosted Tree Prediction

```
boost_learn(old_tree_stump, old_cars, outcome="mpg", n=1000, rate=0.01) |>
  boost predict(new cars) |>
  mse_oos(new_cars$mpg, preds = _)
```

[1] 20.35556

Moderate drop in predictive error

We do not see a huge improvement from boosting a full grown regression tree

A full grown tree can mimic nearly each data point

Weak Learner: Decision Stump

➤ A decision tree with only a root and two leaves

A stump can only bin observations into two groups, based on one criteria

Ordinary Tree Stump Prediction

```
mse_oos(new_cars$mpg, predict(tree_stump, new_cars))
```

[1] 53.30506

Boosted Tree Stump Prediction

boost_learn(tree_stump, old_cars, outcome="mpg", n=1000, rate=0.01) |>
boost_predict(boosted_learning = _, new_data = new_cars) |>
mse_oos(new_cars\$mpg, preds = _)

[1] 16.68617

Big drop in predictive error!

"weak learner"

A stump is only slightly better than random guessing

Weak learners improve a lot from boosting! Each weak learner is different from the others