Theorem 1. let $A \in \Sigma$ so $P(A) + P(A^c) = 1$, $\forall A \in \Sigma$ where A^c is the logical negation of A

Proof. Since ω is our sample space A^c is defined as ω/A we have:

$$P(A) + P(A^c) = P(A) + P(\omega/A) = P(\omega)$$

By the definition of probability $P(\omega) = 1$, so we have $P(A) + P(A^c) = 1$

Theorem 2. The probability of the empty set is 0, $P(\emptyset) = 0$

Proof. Let $A \in \Sigma$, since $A \cup \emptyset = A$ we have:

$$P(A \cup \emptyset) = P(A) + P(\emptyset) = P(A)$$

$$P(\emptyset) = P(A) - P(A) = 0$$

Theorem 3. Let $A_1, A_2 ... A_N \in \Sigma$, if $A_i \cap A_j = \emptyset \ \forall i, j \ 1 \le i, j \le N$ so we have $P(\bigcup_{i=1}^N A_i) = \sum_{i=1}^N P(A_i)$

Proof. The equation is true for N=2, since this reduce to the case in the definition of probability.

Assume that $P(\bigcup_{i=1}^{N} A_i) = \sum_{i=1}^{N} P(A_i)$ is true for N. Since $A_{N+1} \cap \bigcup_{i=1}^{N} A_i = \emptyset$ we have:

$$P(\bigcup_{i=1}^{N} A_i) + P(A_{N+1}) = \sum_{i=1}^{N} P(A_i) + P(A_{N+1}) = \sum_{i=1}^{N+1} P(A_i)$$

$$P(\bigcup_{i=1}^{N} A_i) + P(A_{N+1}) = P(\bigcup_{i=1}^{N} A_i] \cup A_{N+1}) = P(\bigcup_{i=1}^{N+1} A_i) \text{ hence:}$$

$$P(\bigcup_{i=1}^{N+1} A_i) = \sum_{i=1}^{N+1} P(A_i) \ \forall N \in \mathbb{N}$$