## Implementation: transform\_homography()

- 1. Convert Euclidean coordinate to homogeneous representation.
- 2. Apply homography to homogeneous coordinates.
- 3. Convert transformed homogeneous coordinates to Euclidean coordinates.
- 4. Return list of transformed euclidean coordinates

#### Implementation: warp\_image()

- 1. Create coordinate matrix (H<sub>dst</sub>W<sub>dst</sub>\*2) with the shape of the destination image.
- 2. Use inverted homography to transform each destination coordinate to its corresponding source coordinate using **transform\_homography()**
- 3. Map the pixel values of the destination image at every coordinate to the corresponding source coordinate of the source image computed in step 3.

#### Implementation: compute\_affine\_rectification() (Fig 1)

- 1. Find intersection of two pairs of parallel lines  $x_0$  and  $x_1$  in the distorted image using inbuilt intersection\_point() function
- 2. Construct parameters of  $I_{\infty}$  in distorted image by taking cross product of  $x_0$  and  $x_1$
- 3. With parameters of  $I_{\infty}$ , we find  $H_p^T$  and thus  $H_p^{-1}$ .
- 4. We apply H<sub>p</sub>-1 to the image using warp\_image() to complete the affinity rectification

#### Implementation: compute\_metric\_rectification\_step2() (Fig 2)

- 1. Create 2x3 constraint matrix M using the parameters of the 2 pairs of orthogonal lines.
- 2. Perform SVD on M to get U,  $\sum$  and V<sup>T</sup>.
- 3. Extract the last row of  $V^T$  to get the solution (up to scale) ( $s_{11}$ ,  $s_{12}$ ,  $s_{22}$ ) to the right null space of M
- 4. Construct symmetrical positive-definite S (= KK<sup>T</sup>) matrix using parameters computed from step 3.
- 5. Perform Cholesky decomposition on S to get K.
- 6. Use computed K to define H<sub>A</sub> and thus H<sub>A</sub><sup>-1</sup>
- 7. Apply H<sub>A</sub><sup>-1</sup> to image that has been affinely rectified image to complete metric rectification.

## Implementation: compute\_metric\_rectification\_step1() (Fig 3)

- 1. Create 5x6 constraint matrix M using the parameters of the 5 pairs of orthogonal lines.
- 2. Perform SVD on M to get U,  $\sum$  and V<sup>T</sup>.
- 3. Extract the last row of  $V^T$  to get the solution (up to scale) (a, b, c, d, e, f) to the right null space of M.
- 4. Using parameters compute from step 3, construct the parameterizing matrix C of  $C_{\infty}^*$  on the perspective image.
- 5. Perform SVD on C to get  $U_C$ ,  $\sum_C$  and  $V_C^T$ .
- 6. Replace last diagonal element of  $\sum_{C}$  with 1
- 7. Take the inverse of  $U_C \bullet \sum_C$  to get the inverse homography  $H^{-1}$
- 8. Apply H<sup>-1</sup> to the image using **warp\_image()** to complete metric rectification.

# Implementation: compute\_homography\_error() (Omitted as trivial to implement)

# Implementation: compute\_homography\_ransac()

- 1. Randomly select sample of 4 correspondences
- 2. Using selected sample, estimate the homography
- 3. Using **compute\_homography\_error()** and given threshold value, compute number of inliers for dataset under estimated homography
- 4. Choose the homography estimated from the sample with highest number of inliers.
- 5. Return the homography from step 4 and the mask computed using the homography.



Fig 1. Result from affine rectification (Scaled to fit)



Fig 2. Result from metric rectification on image from Fig 1 (Scaled to fit)



Fig 3. One-step metric rectification result (Scaled, Rotated & Translated to fit)