Research and Model to understand the US aviation market

US FLIGHT ROUTES

RESEARCH QUESTION

- There are more than 10 million flights within US per year, which makes it a massive industry.
- > 6.5M jobs are directly supported by the air transport sector.
- Accounts for around 5% of the GDP of the US.

Are there any business opportunities for an Airline company to open a brand new route within two unconnected US cities? If so, can we predict how many flights per month should we run the route with?

CONSIDERATIONS & HYPOTHESES

- Restricted information availability.
 - We have routes, amount of flights per route, per month, per airline.
 - Merge with economic and demographic data to find out if we can explain the amount of flights between a pair of cities given the information we have.

ΔGDPShare -> ΔFlights

ΔGDPpc -> ΔFlights

ΔPopulation -> ΔFlights

Touristic areas -> △Flights

Summer months-> \(\Delta \) Flights

Positive synergy between tourism and summer months.

MODEL SETUP

- **Dummy variables:**
 - Hub == 1 if the airport is a hub.
 - Away == 1 if in Alaska or Hawaii.
 - Within == 1 within the same state.
 - **Summer == 1 in June, July or August.**
 - Coast == 1 if the state has coast.
 - > SumCoa == Summer * Coast, to control for the potential synergy.
- > State GDP per capita and % of the US GDP Share.
- City population and distance between cities.
- Airport clusters (e.g. [LAX, SAN, SNA, ONT], [SFO, SMF, SJC, OAK], [JFK, EWR, LGA]...)

MODEL RESULTS + PREDICTION

OLS Regression Results										
Dan Wasish	1.0.			==== 1	:=====: :					0.700
Dep. Variable:							uared (uncent		0.729	
Model:							R-squared (u		0.729	
Method:		_	Least	_			atistic:		1	.515e+04
Date:		T	ľue, 15				(F-statistic	:):		0.00
Time:				18:11:11			Likelihood:		-3.9964e+05	
No. Observations:				67613					7.993e+05	
Df Residuals:			67601		BIC:			7	.994e+05	
Df Model:					12					
Covariance	Type:		n	onro	obust					
		coef	std	err		 t	P> t	[0.025	0.975]	
Carrier	63.	.4309	0.	298	212	.526	0.000	62.846	64.016	
Dist	-38.	4432	0.	662	-58	.028	0.000	-39.742	-37.145	
Hub	37.	0673	0.	748	49	.538	0.000	35.601	38.534	
Away	44.	4714	2.	178	20	.419	0.000	40.203	48.740	
Within	12.	3053	1.	612	7	.633	0.000	9.146	15.465	
Coast	21.	9261	1.	054	20	.812	0.000	19.861	23.991	
Summer		8082		193		.707	0.000	4.470	9.146	
GDP		5405		129		.793	0.000	4.327	8.754	
Pop		7450		182		.163	0.000	12.389	13.101	
Share		5908		248		.517	0.000	-5.077	-4.105	
Share2		2125		008		.180	0.000	0.196	0.229	
SumCoa		0352		578		.923	0.054	-6.128	0.058	
========				====	======					
Omnibus:			2		1.045		in-Watson:		0.257	
Prob(Omnibus):			0.000			ue-Bera (JB):		229735.339		
Skew:					1.799		(JB):		0.00	
Kurtosis:				11	1.282	Cond	. No.		1.23e+03	

RESEARCH QUESTION

Are there any business opportunities for an Airline company to open a brand new route within two unconnected US cities? If so, can we predict how many flights per month should we run the route with?

ΔGDPShare -> ΔFlights

ΔGDPpc -> ΔFlights

ΔPopulation -> ΔFlights

Touristic areas -> \(\Delta \text{Flights} \)

Summer months-> \(\Delta \text{Flights} \)

Positive synergy between tourism and summer months.

MODEL RESULTS + PREDICTION

We have taken 3 of the routes which are not connected yet.

	Route	Carrier	Dist	Hub	Away	Within	Coast	Summer	GDP	Pop	Share	Share2	SumCoa
0	MIA-PDX	1	2.70	1	0	0	1	0	1.047	1.51	6.27	39.31	0
1	MIA-PDX	1	2.70	1	0	0	1	1	1.047	1.51	6.27	39.31	1
2	BOS-SAT	1	1.76	1	0	0	1	0	1.442	1.05	11.43	130.64	0
3	BOS-SAT	1	1.76	1	0	0	1	1	1.442	1.05	11.43	130.64	1
4	PIT-MCI	1	0.77	0	0	0	0	0	1.151	2.64	5.43	29.49	0
5	PIT-MCI	1	0.77	0	0	0	0	1	1.151	2.64	5.43	29.49	0

model.predict(xp)						
0	24.289652					
1	28.062687					
2	52.866719					
3	56.639753					
4	56.343079					
5	63.151320					

FUTURE IMPROVEMENTS + LEARNING

- Improvement of the model:
 - More reliable information.
 - > Passengers per route to interpret demand; we know #flights but what is the size?
 - Pricing will definitely influence the demand for flights. Not enough data.
 - > We could create various models instead of a model with several dummies.
 - Carriers and Flights can be correlated both ways, we should control for that.
- **Learning:**
 - Tableau Dashboards, Python. Machine Learning and Feature Engineering.
 - Time management and focusing on establishing an idea and providing an MVP.