p. 183

- 11: Calculate the homology groups of the following complexes:
- (a) three copies of the boundary of a triangle all joined together at a vertex;
- (b) two hollow tetrahedra glued together along an edge.

Solution: (a) Let K be the simplicial complex consisting of three copies of the boundary of a triangle all joined together at a vertex - so it has 9 1-simplexes constituting the edges and 7 0-simplexes constituting the vertices.

By theorem 8.2, we have that $H_0(K) \cong \mathbb{Z}$.

Now, since |K| is connected, we have that $H_1(K)$ is the abelianization of the fundamental group of |K|. By example 1 on page 136, we have that $\pi_1(|K|) \cong \mathbb{Z} * \mathbb{Z} * \mathbb{Z}$, which has abelianization \mathbb{Z} , so $H_1(K) \cong \mathbb{Z}$. Now, since K has no n-simplexes for $n \geq 2$, we have that $Z_n(K) = 0$ for $n \geq 2$, so $H_n(K) = 0$ for $n \geq 2$.

(b) Let K denote the simplicial complex for two hollow tetrahedra glued together along an edge. Since |K| is path-connected, the has only a single component, so $H_0(K) \cong \mathbb{Z}$ by theorem 8.2. Now, again, since |K| is connected, $H_1(K)$ is the abelianization of the fundamental group of |K|. Choosing any vertex v of the common edge, and letting J be one polyhedra and L the other polyhedra, we have that $\pi_1(|J|,v) = \pi_1(|L|,v) = 0$ since each $|J| = \left|\sum^2\right| = |L|$ and $\left|\sum^2\right| \cong S^2$ by example 5 on page 181, and $\pi_1(S^2) = 0$. Thus $\pi_1(|J \cup L|,v) = 0$ by van Kampen. But this naturally also has trivial abelinization, so $H_1(K) = 0$.

Now, choosing an orientation for any two vertices of an edge in our complex |K|, we find that this determines an orientation on all the remaining vertices. Thus our surface is orientable, so by the last comment on page 183, $H_2(K) \cong \mathbb{Z}$. Now, since K has no n-simplexes for $n \geq 3$, we find that $H_n(K) = 0$ for all $n \geq 3$.

13: Show that any graph has the homotopy type of a bouquet of circles, and suggest a formula for the first Betti number of the graph.

Solution: Following the definition on page 3, we shall consider a graph as any connected 1-complex. Let |K| be the graph with V the set of 0-simplexes and E the set of 1-simplexes. Take a maximal tree, E, of E which, by lemma 6.11, contains all the vertices of E. Then by the explanation of E any edge in E and E corresponds to a cycle. So E and E is a free group on E and E generators, and since E and E is a free group of E in E is a free group of E in E in E is a free group of E in E in E is a free group of E in E is a free group of

So $\beta_1 = |E| - |V| + 1$ is the first betti number.

To see the homotopy equivalence, we will prove weakened versions of propositions 0.16 and 0.17 in Hatcher which relate to CW-complexes, but work just as well for our simplicial complexes. We show the following two propositions:

Prop 1: If (K, e) is a graph K and an edge e between two distinct vertices v_0, v_1 then $K \times \{0\} \cup e \times I$ is a deformation retraction of $K \times I$.

Proof: Denote by K^0 the 0-skeleton of K. There is a retraction $r\colon I\times I\to I\times\{0\}\cup\partial I\times I$ by radial projection from $(0,2)\in I\times\mathbb{R}$. Setting $r_t=tr+(1-t)\mathbb{1}$ gives a deformation retraction of $I\times I$ onto $I\times\{0\}\cup\partial I\times I$, which gives rise to a deformation retraction of $K\times I$ onto $K\times\{0\}\cup (K^0\cup e)\times I$ since $K\times I$ is obtained from $K\times\{0\}\cup (K^0\cup e)\times I$ by attaching copies of $I\times I$.

Now, suppose X is a simplicial complex or a CW-complex such that A is an edge and hence closed in |X|. If we are given a map $f_0: X \to Y$ and on the subspace $A \subset X$ a homotopy $f_t: A \to Y$ of $f_0|_A$, we say a pair (X, A) has the homotopy extension property if we can always extend this given homotopy f_t to a homotopy $f_t: X \to Y$ of the given f_0 .

Claim: A pair (X, A) has the homotopy extension property if and only if $X \times \{0\} \cup A \times I$ is a retract of $X \times I$.

Proof: The homotopy extension property for (X,A) implies that the identity $X \times \{0\} \cup A \times I \to X \times \{0\} \cup A \times I$ extends to a map $X \times I \to X \times \{0\} \cup A \times I$.

For the other direction, since A is closed in our cases in X, any two maps $X \times \{0\} \to Y$ and $A \times I \to Y$ that agree on $A \times \{0\}$ combined to a map $X \times \{0\} \cup A \times I \to Y$ whose continuity is guaranteed by the

gluing lemma. By composing $X \times \{0\} \cup A \times I \to Y$ with the retraction $X \times I \to X \times \{0\} \cup A \times I$, we get an extesion $X \times I \to Y$, so (X, A) has the homotopy extension property.

With the claim and the proposition, we thus see that for any graph K and any edge e considered as a simplicial complex of the graph, (K, e) has the homotopy extension property.

Now, the following proposition finishes the argument:

Prop 2: For any pair (K, e) for a graph K and edge e of K such that e is contractible, the quotient map $q: K \to K/e$ is a homotopy equivalence.

Proof: Let $f_t \colon K \to K$ be a homotopy extending a contraction of e with $f_0 = 1$. Since $f_t(e) \subset e$ for all t, the composition $qf_t \colon K \to K/e$ sends e to a point and hence factors as a composition $K \stackrel{q}{\to} K/e \to K/e$. Let the latter map be $\overline{f_t} \colon K/e \to K/e$. We have $qf_t = \overline{f_t}q$. When t = 1, we have $f_1(e)$ being the point e contracts to, so f_1 induces a map $g \colon K/e \to K$ with $gq = f_1$. It follows that $qg = \overline{f_1}$ since $qg(\overline{x}) = qgq(x) = qf_1(x) = \overline{f_1}q(x) = \overline{f_1}(\overline{x})$. The maps g and g are inverse homotopy equivalences since $gq = f_1 \simeq f_0 = 1$ via f_t and $gg = \overline{f_1} \simeq \overline{f_0} = 1$ via $\overline{f_t}$.

Now, we have that we can take any graph K and contract all edges with non-equal vertices. Continuing this, we eventually arrive at a wedge sum of circles. By proposition 2, we then have that any graph is homotopy equivalent to a wedge sum of circles.

From this it also follows that the fundamental group of |K| is free, and looking at how we contract the edges above, we see that any loop will eventually contract to a loop, so the number of circles in the wedge sum will be precisely |E| - |V| + 1 as explained at first.

p. 188

20: Prove the following lemma:

If $\varphi \colon C(K) \to C(L)$ is a chain map, and $\psi \colon C(L) \to C(M)$ is a second chain map then $\psi \circ \varphi \colon C(K) \to C(M)$ is a chain map and $(\psi \circ \varphi)_* = \psi_* \circ \varphi_* \colon H_q(K) \to H_q(M)$.

Solution: By definition, $\varphi \colon C(K) \to C(L)$ being a chain map means that for each $q \geq 0$, we have $\partial \varphi_q = \varphi_{q-1} \partial$.

Similarly, for each $q \ge 0$, we have $\partial \psi_q = \psi_{q-1} \partial$. We claim that $\partial (\psi_q \circ \varphi_q) = (\psi_{q-1} \circ \varphi_{q-1}) \partial$. By commutativity of each square below, we get commutativity of the outer rectangle:

$$C_{q}(K) \xrightarrow{\varphi_{q}} C_{q}(L) \xrightarrow{\psi_{q}} C_{q}(M)$$

$$\downarrow \partial \qquad \qquad \downarrow \partial \qquad \qquad \downarrow \partial$$

$$C_{q-1}(K) \xrightarrow{\varphi_{q-1}} C_{q-1}(L) \xrightarrow{\psi_{q-1}} C_{q-1}(M)$$

Explicitly written, we have

$$\psi_{q-1}\circ\varphi_{q-1}\circ\partial\stackrel{\text{first square}}{=}\psi_{q-1}\circ\partial\circ\varphi_q\stackrel{\text{second square}}{=}\partial\circ\psi_q\circ\varphi_q$$

So $\psi \circ \varphi \colon C(K) \to C(M)$ is a chain map.

For the induced homomorphisms, we first write down explicitly the induced homomorphism: For a chain map $\varphi \colon C(K) \to C(L)$, we have that for a q-cycle $z \in C_q(K)$, we have $\varphi_*([z]) = [\varphi_q(z)]$ is a homomorphism.

Well-definedness: We first show that φ takes q-cycles of K to q-cycles of L and boundary q-cycles of K to boundary q-cycles of L:

if z is a q-cycle of K, so $\partial z = 0$, then by φ being a chain map,

$$\partial \varphi_q(z) = \varphi_{q-1} \partial z = 0$$

so $\varphi_q(z)$ is a q-cycle of L.

Similarly, if $b \in B_q(K)$, then $b = \partial c$ for some $c \in C_{q+1}(K)$, so

$$\partial \varphi_{q+1}(c) = \varphi_q \partial c = \varphi_q(b)$$

giving $\varphi_q(b) \in B_q(K)$.

Now, suppose [z] = [w] in $H_q(K)$. Then $z - w \in B_q(K)$ and so since φ_q is a homomorphism by assumption of φ being a chain map, $\varphi_q(z) - \varphi_q(w) = \varphi_q(z - w) \in B_q(L)$ as φ_q carries boundary q-cycles to boundary q-cycles by the above; so $\varphi_*([z]) = [\varphi_q(z)] = [\varphi_q(w)] = \varphi_*([w])$. Furthermore, it is a homomorphism, since if we let * denote the group operation of $H_q(K)$ and + the group operation of $C_q(K)$, we have $\varphi_*([z] * [w]) = \varphi_*([z + w]) = [\varphi(z + w)] = [\varphi(z) + \varphi(w)] = [\varphi(z)] * [\varphi(w)] = \varphi_*([z]) * \varphi_*([w])$. So φ_* is indeed a group homomorphism.

Now, we find directly, that for any element $[z] \in H_q(K)$, we have

$$(\psi \circ \varphi)_*([z]) = [(\psi \circ \varphi)(z)] = [\psi(\varphi(z))] = \psi_*([\varphi(z)]) = \psi_* \circ \varphi_*([z])$$

giving $(\psi \circ \varphi)_* = \psi_* \circ \varphi_* \colon H_q(K) \to H_q(M)$.

p. 192

25: Suppose $s, t: |K| \to |L|$ are simplicial, and assume we have a homomorphism $d_q: C_q(K) \to C_{q+1}(L)$, for each q, such that

$$d_{q-1}\partial + \partial d_q = t - s \colon C_q(K) \to C_q(L).$$

Show that s and t induce the same homomorphisms of homology groups. The collection of homomorphisms $\{d_q\}$ is called a *chain homotopy* between s and t.

Solution: For any q-cycle z of K, we have $\partial z = 0$, so in particular, $t(z) - s(z) = (d_{q-1}\partial + \partial d_q)(z) = \partial d_q(z) \in B_q(L)$, and hence $t_*([z]) = [t(z)] = [s(z)] = s_*([z])$ in $H_q(L)$, so t(z) and s(z) are homologous for all q-cycles of K, and hence t and s induce the same homomorphisms of homology groups: $H_q(K) \to H_q(L)$ for all q.