CURSUL 2: FUNCȚII

G. MINCU

1. Funcții

Definiția 1. (provizorie!) Numim funcție orice triplet format din două mulțimi și o "lege de corespondență" care asociază *fiecărui* element din prima mulțime un *unic* element din cea de-a doua.

Definiția 2. Prima dintre cele două mulțimi care intră în componența unei funcții se numește **domeniul** (**de definiție** al) funcției, iar cea de a doua se numește **codomeniul** (sau **domeniul de valori** al) funcției.

Observația 3. Două funcții sunt egale dacă și numai dacă au același domeniu, același codomeniu și aceeași lege de corespondență.

Notația uzuală pentru o funcție f care are domeniul A și codomeniul B este $f:A\to B$ (citim "f este definită pe A și ia valori în B"). Faptul că elementului $a\in A$ îi corespunde prin f elementul $b\in B$ se notează f(a)=b.

Definiția 4. Prin **graficul** unei funcții $f: A \to B$ înțelegem mulțimea $\Gamma_f = \{(a, b) \in A \times B : b = f(a)\}.$

Observația 5. Dacă $f: A \to B$, atunci $\Gamma_f \subset A \times B$.

Observația 6. Cunoscând graficul unei funcții, putem identifica domeniul de definiție al funcției, precum și legea de corespondență a acesteia¹. Din acest motiv, se preferă reformularea definiției 1 astfel încât să se evite termenul "lege", care nu are în situația respectivă un înțeles foarte bine precizat:

Definiția 7. Numim **funcție** orice triplet format din trei mulțimi $A, B, G, G \subset A \times B$, cu proprietatea: $\forall a \in A \exists ! b \in B \ (a, b) \in G$.

Observația 8. O consecință a axiomelor din teoria mulțimilor este faptul că, date fiind două mulțimi A și B, funcțiile definite pe A cu valori în B constituie o mulțime.

¹Nu însă si codomeniul; putem însă "vedea" imaginea funcției.

G. MINCU

Observația 9. Dacă mulțimile finite A și B au a, respectiv b elemente, se arată ușor (temă!) că numărul funcțiilor definite pe A cu valori în B este b^a . Această observație ne sugerează utilizarea pentru mulțimea tuturor funcțiilor definite pe A cu valori în B a notației B^A .

2. Clase importante de funcții

Definiția 10. Funcția $f: A \to B$ se numește **injectivă** dacă $\forall a_1, a_2 \in A \quad a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2).$

Observația 11. În cuvinte, o funcție este injectivă dacă duce orice două elemente diferite în elemente diferite.

O caracterizare des utilizată a funcțiilor injective este dată de:

Propoziția 12. Funcția $f: A \to B$ este injectivă dacă și numai dacă $\forall a_1, a_2 \in A \ f(a_1) = f(a_2) \Rightarrow a_1 = a_2.$

Exemplul 13. Dacă $A \subset B$, atunci $i : A \to B$, i(a) = a este o funcție injectivă. Ea se numește **injecția canonică** a lui A în B.

Definiția 14. Funcția $f: A \to B$ se numește **surjectivă** dacă $\forall b \in B$ $\exists a \in A \ f(a) = b$.

Observația 15. În cuvinte, o funcție este surjectivă dacă "își umple codomeniul".

Exemplul 16. $\pi_A: A \times B \to A$, $\pi_A(a,b) = a$ și $\pi_B: A \times B \to A$, $\pi_B(a,b) = b$ sunt funcții surjective (ele se numesc **proiecțiile canonice** ale produsului cartezian $A \times B$).

Definiția 17. O funcție injectivă și surjectivă se numește bijectivă.

Exemplul 18. Dată fiind o mulţime A, funcţia $\mathrm{id}_A:A\to A$, $\mathrm{id}_A(a)=a$ este o funcţie bijectivă. Ea se numeşte **funcţia identică a mulţimii** A.

Definiția 19. O mulțime A se numește **infinită** dacă există $f \in A^A$ injectivă, dar nesurjectivă. Mulțimea A se numește **finită** dacă nu este infinită.

Propoziția 20. Fie A o mulțime nevidă. Următoarele afirmații sunt echivalente:

- a) A este finită.
- b) Există un număr $n \in \mathbb{N}^*$ și o funcție bijectivă $f: \{1, 2, \dots, n\} \to A$.

3. Funcția caracteristică a unei submulțimi

Definiția 21. Fie E o mulțime și $A \subset E$. Funcția

$$\chi_{\scriptscriptstyle A}: E \to \{0,1\}, \quad \chi_{\scriptscriptstyle A}(x) = \left\{ \begin{array}{ll} 1 & \operatorname{dacă} \ x \in A \\ 0 & \operatorname{dacă} \ x \not \in A \end{array} \right.$$

se numeste functia caracteristică² a lui A în E.

Teorema 22. Fie E o multime. Funcția $\chi: \mathcal{P}(E) \to \{0,1\}^E$, $\chi(A) = \chi_A$ este bijectivă.

Funcțiile caracteristice ale submulțimilor au proprietăți calculatorii interesante care, laolaltă cu teorema 22, le conferă o largă aplicabilitate:

Propoziția 23. Fie E o mulțime și A, B submulțimi ale sale. Au loc relațiile:

- a) $\chi_E = 1$; $\chi_{\emptyset} = 0$.
- b) $\chi_{A \cap B} = \min\{\chi_A, \chi_B\} = \chi_A \chi_B$. c) $\chi_{A \cup B} = \max\{\chi_A, \chi_B\} = \chi_A + \chi_B \chi_A \chi_B$.
- d) $\chi_{c_{EA}} = 1 \chi_A$.

4. "Transportul" submulțimilor prin funcții

Definiția 24. Dacă $f: A \to B$ și $C \subset A$, notăm f(C) și numim imaginea submulțimii C prin funcția f mulțimea

$$\{b \in B : \exists c \in C \ f(c) = b\}.$$

Definiția 25. Prin **imaginea** funcției $f: A \to B$ înțelegem mulțimea f(A).

Notația folosită în mod uzual pentru imaginea funcției f este Im f.

Definiția 26. Dacă $f: A \to B$ și $D \subset B$, notăm $f^{-1}(D)$ și numim $f(a) \in D$.

Observația 27. Notația din definiția 26 se utilizează și în situația în care funcția f nu este inversabilă!

Propoziția 28. Considerăm funcția $f: A \to B$. Atunci:

- a) Dacă $M \subset N \subset A$, atunci $f(M) \subset f(N)$.
- b) Dacă $M, N \subset A$, atunci $f(M \cup N) = f(M) \cup f(N)$.
- c) Dacă $M, N \subset A$, atunci $f(M \cap N) \subset f(M) \cap f(N)$.
- d) Dacă $P \subset Q \subset B$, atunci $f^{-1}(P) \subset f^{-1}(Q)$.

²Uneori, cu precădere în teoria probabilităților, se mai folosește pentru funcția prezentată denumirea de funcția indicator a submulțimii A a lui E

³sau **imaginea inversă**, sau încă **imaginea reciprocă**

e) Dacă $P, Q \subset B$, atunci $f^{-1}(P \cup Q) = f^{-1}(P) \cup f^{-1}(Q)$.

f) Dacă
$$P, Q \subset B$$
, atunci $f^{-1}(P \cap Q) = f^{-1}(P) \cap f^{-1}(Q)$.

Temă: Demonstrați propoziția 28!

4

Temă: Generalizați afirmațiile din propoziția 28 la situația unei familii arbitrare de submulțimi!

Observația 29. Observăm că în cazul relațiilor din propoziția 28 imagi-nea inversă "se poartă mai bine" decât imaginea directă. Aparenta "anomalie" de la punctul c) dispare pentru funcțiile injective:

Propoziția 30. Funcția $f: A \to B$ este injectivă dacă și numai dacă

$$\forall M, N \subset A \quad f(M \cap N) = f(M) \cap f(N).$$

5. Compunerea functiilor

Definiția 31. Date fiind funcțiile $f: A \to B$ și $g: C \to D$ cu⁴ $B \subset C$, definim funcția $g \circ f: A \to D$, $g \circ f(x) = g(f(x))$. Funcția $g \circ f$ se numește **compusa lui** g **cu** f.

O situație importantă din punctul de vedere al compunerii funcțiilor este prezentată în

Exemplul 32. Dată fiind o funcție arbitrară $f: A \to B$, $id_B \circ f = f$ și $f \circ id_A = f$.

Propoziția 33. Fie funcțiile $f:A\to B,\ g:C\to D$ și $h:E\to F,$ unde $B\subset C$ și $D\subset E.$ Atunci⁵ $h\circ (g\circ f)=(h\circ g)\circ f.$

Propoziția 34. Fie funcțiile $f:A\to B$ și $g:C\to D,$ unde $B\subset C.$ Atunci:

- a) Dacă f și g sunt injective, atunci $g \circ f$ este injectivă.
- b) Dacă $g \circ f$ este injectivă, atunci f este injectivă.
- c) Dacă f și g sunt surjective, atunci $g \circ f$ este surjectivă.
- b) Dacă $g \circ f$ este surjectivă, atunci g este surjectivă.
- e) Dacă f și q sunt bijective, atunci $q \circ f$ este bijectivă.
- b) Dacă $g \circ f$ este bijectivă, atunci f este injectivă, iar g este surjectivă.

Temă: Demonstrați propoziția 34!

⁴în caz de necesitate, se poate impune doar condiția mai slabă $\operatorname{Im} f \subset C$

⁵Anticipând discuţia referitoare la legi de compoziţie, această relaţie arată că, dată fiind o multime M, compunerea functiilor este o operatie asociativă pe M^M .

6. INVERSAREA FUNCȚIILOR

Definiția 35. (provizorie!) Prin inversă a funcției $f: A \to B$ înțelegem orice funcție $g: B \to A$ cu proprietățile $g \circ f = \mathrm{id}_A$ și $f \circ g = \mathrm{id}_B$.

Definiția 36. Funcția $f:A\to B$ se numește **inversabilă** dacă ea admite (cel puțin o) inversă.

Propoziția 37. Dacă funcția $f:A\to B$ este inversabilă, atunci ea admite o unică inversă

Demonstrație: Presupunem că f este inversabilă și că g și h sunt inverse ale sale. Atunci,

$$g = g \circ id_B = g \circ (f \circ h) = (g \circ f) \circ h = id_A \circ h = h.$$

Definiția 38. Dacă funcția $f:A\to B$ este inversabilă, atunci prin **inversa** lui f înțelegem unica (conform propoziției 37) funcție $g:B\to A$ cu proprietățile $g\circ f=\mathrm{id}_A$ și $f\circ g=\mathrm{id}_B$.

Notația pe care o vom folosi pentru a desemna inversa funcției inversabile f este f^{-1} .

Observația 39. Dacă $f: A \to B$ este inversabilă, iar $D \subset B$, atunci, în acord cu definiția 26, notația $f^{-1}(D)$ ar desemna atât preimaginea lui D prin f, cât și imaginea lui D prin f^{-1} . Întrucât aceste două mulțimi coincid, utilizarea aceleiași notații nu prezintă inadvertențe.

Teorema 40. O funcție este inversabilă dacă și numai dacă ea este bijectivă.

7. Produsul cartezian al unei familii de multimi

Observația 41. Perechea ordonată $(a_1, a_2) \in A_1 \times A_2$ poate fi interpretată ca fiind o reprezentare a funcției $a : \{1, 2\} \to A_1 \cup A_2$, $a(1) = a_1$, $a(2) = a_2$. Evident, $a(1) \in A_1$ și $a(2) \in A_2$. Aceste considerații ne sugerează:

Definiția 42. Dată fiind familia de mulțimi $(A_i)_{i \in I}$, definim produsul său cartezian ca fiind mulțimea $\{a: I \to \bigcup_{i \in I} A_i: \forall i \in I \ a(i) \in A_i\}^{6,7}$

 $^{^6\}mathrm{Axiomele}$ teoriei mulțimilor au drept consecință faptul că aceasta este întradevăr o mulțime.

⁷Una dintre axiomele teoriei mulţimilor (aşa-numita "axiomă a alegerii") afirmă că dacă toate mulţimile familiei date sunt nevide, atunci produsul cartezian al familiei este nevid.

G. MINCU

Vom nota produsul cartezian al familiei de mulţimi $(A_i)_{i\in I}$ cu $\prod_{i\in I} A_i$, iar elementul $a\in\prod_{i\in I} A_i$ cu $(a(i))_{i\in I}$ sau, mai frecvent, cu $(a_i)_{i\in I}$.

Definiția 43. Pentru $j \in I$, funcția $\pi_j : \prod_{i \in I} A_i \to A_j$, $\pi_j((a_i)_{i \in I}) = a_j$ se numește **proiecția canonică** a produsului $\prod_{i \in I} A_i$ pe componenta j.

Observația 44. Proiecțiile canonice ale produsului cartezian sunt surjective.

Observația 45. Dacă avem familia de mulțimi $(A_i)_{i\in I}$ cu proprietatea $A_i = A$ pentru orice $i \in I$, atunci, conform definiției 42, produsul cartezian $\prod_{i\in I} A_i$ constă exact în funcțiile definite pe I și care iau valori în A. Deci, în acest caz avem $\prod_{i\in I} A_i = A^I$. Dacă în situația prezentată avem $I = \{1, 2, \ldots, n\}, n \in \mathbb{N}^*$, vom folosi în loc de A^I notația A^n .

Observația 46. Conform observației anterioare,

$$A^n = \{(a_1, a_2, \dots, a_n) : a_1, a_2, \dots, a_n \in A\}.$$

BIBLIOGRAFIE

^[1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.

^[2] C. Năstăsescu, C. Niţă, C. Vraciu, Bazele algebrei, Ed. Academiei, Bucureşti, 1986.