FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO

ÚLОНА 3.10.1

VLASTNOSTI KREMÍKOVEJ A ZENEROVEJ DIÓDY

Abstrakt

The aim of this paper was to measure and visualize the VA characteristic of a silicon diode and a Zener diode. Our results correspond to the expected values.

1 Teoretická analýza

Dióda je jednoduchá polovodičová súčiastka, ktorej hlavnou súčasťou je PN prechod. PN prechod je oblasť prechodu medzi polovodičom typu N a polovodičom typu P.¹ Táto súčiastka sa teda vyznačuje veľmi užitočnou vlastnosťou a to, že prúd prepúšťa iba v jednom, takzvanom priepustnom smere. Smer, v ktorom prúd diódou neprechádza, nazývame záverný. Tento jav nazývame diódový efekt.

Zenerova dióda je špeciálny druh polovodičovej diódy. Vyznačuje sa tým, že vplyvom dostatočne vysokého napätia (nazývaného aj Zenerove napätie $U_{\rm ZEN}$) v závernom (nepriepustnom) smere stúpa v oblasti PN prechodu elektrické pole (veľmi silné), ktoré má za následok vytrhávanie valenčných elektrónov z väzieb a ich prechod do vodivostného pásma, čím sa prudko zvyšuje počet nosičov náboja vo vodivostnom pásme, to má za následok, že odpor PN prechodu klesá a prúd prechádzajúci diódou stúpa (stúpa dokonca pri prakticky nemeniacom sa napätí). Tento jav nazývame $Zenerov\ efekt$.

Typická VA charakteristika usmerňovacej diódy (a) a Zenerovej diódy (b) vyzerá nasledovne:

 U_{T0} je prahové napätie diódy², I_{R0} je nasýtený prúd menšinových nosičov, U_{BR} je kritické záverné napätie alebo prierazné napätie³. Zmeny teploty spôsobujú viac-menej výrazné zmeny všetkých vlastností diódy.

¹Polovodiče typu N a P vznikajú vďaka prímesiam. Konkrétne, v polovodičoch typu N sa vyskytujú atómy, ktorých 1 valenčný elektrón nemá podiel na kovalentných väzbách so susednými atómmi, čo má za následok prítomnosť voľných elektrónov. Polovodiče typu P zas atómy, ktoré sú schopné zo svojho okolia elektrón prijať a tým pádom sa vyznačujú svojou dierovou vodivosťou.

²priepustné napätie, ktoré celkom zruší vplyv potenciálovej bariéry

³napätie, pri ktorom dôjde k prerazeniu diódy, čo spôsobí po prvé, že prúd prechádzajúci touto diódou prudko vzrastá a po druhé nenávratné poškodenie siódy

2 Meranie

Úloha: Zmerať a porovnať VA charakteristiku kremíkovej a Zenerovej diódy.

Pomôcky: Zenerova dióda, kremíková dióda, voltmeter (trieda presnosti 0,5), miliampérmeter (trieda presnosti 0,5), rezistor, odporová dekáda, zdroj jednosmerného napätia, vodiče, AD prevodník, počítač

Postup:

Odmeriame VA charakteristiku Zenerovej a kremíkovej diódy pri zapojení podľa obrázka 1 pre priepustný a obrázka 2 pre záverný smer.

• VA charakteristiku kremíkovej diódy odmeriame aj s použitím počítačového programu *meraj.exe*. Na to však potrebujeme nové zapojenie:

3 Výsledky

Maximálnu dovolenú odchýlku meracích zariadení $z_{\rm max}$ pri rozsahu prístroja R sme vypočítali z triedy presnosti p ako

$$z_{\text{max}} = \frac{p}{100\%} R. \tag{1}$$

Pomocou príslušných zapojení (obr.1, obr. 2) sme odmerali VA charakteristiku kremíkovej a Zenerovej diódy pre priepustný aj záverný smer.⁴:

I/mA	U/V
0	0,4
0,2	0,44
0,26	0,48
0,4	0,5
2,74	0,6

Tabuľka 1: Kremíková dióda, priepustný smer

I/mA	U/V
0	0,6
0,87	0,65
4,1	0,7
23,4	0,75
74,5	0,8

Tabuľka 2: Zenerova dióda, priepustný smer

I/mA	U/V
0	7
7	7,5
24	7,7
30	7,8

Tabuľka 3: Zenerova dióda, záverný smer

Namerané hodnoty uvádzame taktiež v grafickej podobe:

 $^{^4\}mathrm{Nakoľko}$ cez kremíkovú diódu v závernom smere tiekol nemeratelne malý prúd, tabuľku týchto hodnôt neuvádzam.

Graf 1: VA charakteristika kremíkovej diódy

Graf 2: VA charakteristika Zenerovej diódy

Pomocou zapojenia na obrázku 3 využívajúceho AD prevodník sme odmerali VA charakteristiku kremíkovej diódy, ktorú úvadzame v grafickej podobe:

Graf 3: VA charakteristika kremíkovej diódy

4 Diskusia a záver

Určili sme VA charakteristiku kremíkovej a Zenerovej diódy. Obe vyšli podľa očakávania. V meraní sa mohli objaviť chyby (napr. z dôsledku nepresnosti meracích prístrojov), ktoré však naše meranie výrazne neovplyvnili.

Literatúra

[1] Pavlík, J.: Fyzikálne praktikum II. Univerzita Komenského Bratislava, 2002.