Galois representations of abelian surfaces ICERM Project Summary

¹Barinder Singh Banwait, ²Armand Brumer, ³Hyun Jong Kim, Zev Klagsbrun, Jacob Mayle, Padmavathi Srinivasan, Isabel Vogt

¹University of Warwick, ²Fordham University, ³University of Wisconsin-Madison,

June 4, 2020

A - a principally polarized abelian surface over $\mathbb Q$ with $\operatorname{End}(A)=\mathbb Z.$

A - a principally polarized abelian surface over $\mathbb Q$ with $\operatorname{End}(A)=\mathbb Z.$

 $A = \operatorname{Jac}(C)$, where C/\mathbb{Q} is a genus 2 curve.

A - a principally polarized abelian surface over $\mathbb Q$ with $\operatorname{End}(A)=\mathbb Z.$

 $A = \operatorname{Jac}(C)$, where C/\mathbb{Q} is a genus 2 curve.

 $G_{\mathbb{Q}}$ - the absolute Galois group $Gal(\overline{\mathbb{Q}}, \mathbb{Q})$.

A - a principally polarized abelian surface over $\mathbb Q$ with $\operatorname{End}(A)=\mathbb Z.$

 $A = \operatorname{Jac}(C)$, where C/\mathbb{Q} is a genus 2 curve.

 $G_{\mathbb{Q}}$ - the absolute Galois group $Gal(\overline{\mathbb{Q}}, \mathbb{Q})$.

 $ho_{\mathcal{A}, I^{\infty}}$ - the Galois representation

 $G_{\mathbb{Q}} \to \operatorname{Aut}(T_I(A)) = \operatorname{\mathsf{GSp}}(4, \mathbb{Z}_I).$

A - a principally polarized abelian surface over $\mathbb Q$ with $\operatorname{End}(A)=\mathbb Z.$

 $A = \operatorname{Jac}(C)$, where C/\mathbb{Q} is a genus 2 curve.

 $G_{\mathbb{Q}}$ - the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}},\mathbb{Q})$.

 $ho_{A,I^{\infty}}$ - the Galois representation

 $G_{\mathbb{Q}} \to \operatorname{Aut}(T_I(A)) = \operatorname{\mathsf{GSp}}(4, \mathbb{Z}_I).$

 $ho_{A,I}$ - the Galois representation $G_{\mathbb{Q}} o \operatorname{\mathsf{Aut}}(A[I]) = \operatorname{\mathsf{GSp}}(4,\mathbb{F}_I)$.

Goal

Theorem (Serre, cf. [3])

 $\rho_{A,I^{\infty}}$ is surjective for almost every prime I.

Goal

Theorem (Serre, cf. [3])

 $\rho_{A,I^{\infty}}$ is surjective for almost every prime I.

Corollary

 $\rho_{A,I}$ is surjective for almost every prime I

Goal

Theorem (Serre, cf. [3])

 $\rho_{A,I^{\infty}}$ is surjective for almost every prime 1.

Corollary

 $\rho_{A,I}$ is surjective for almost every prime I

Goal

Compute the finite list of primes $\{l_1, \ldots, l_n\}$ such that ρ_{A,l_i} is not surjective.

Step 1: Produce a finite list containing the primes I such that $\rho_{A,I}$ is non-surjective.

Step 1: Produce a finite list containing the primes I such that $\rho_{A,I}$ is non-surjective.

Step 2: Given a prime I, determine if $\rho_{A,I}$ is non-surjective.

Dieulefait [1] describes how to compute a list containing all the primes I for which $\rho_{A,I}$ is non-surjective.

Dieulefait [1] describes how to compute a list containing all the primes I for which $\rho_{A,I}$ is non-surjective.

Mitchell [2] classifies the maximal proper subgroups of $PGSp(4, \mathbb{F}_I)$

Dieulefait [1] describes how to compute a list containing all the primes I for which $\rho_{A,I}$ is non-surjective.

Mitchell [2] classifies the maximal proper subgroups of $PGSp(4, \mathbb{F}_I)$

Use Frob $p \in G_{\mathbb{O}}$ (for various primes p).

Dieulefait [1] describes how to compute a list containing all the primes I for which $\rho_{A,I}$ is non-surjective.

Mitchell [2] classifies the maximal proper subgroups of $PGSp(4, \mathbb{F}_I)$

Use Frob $p \in G_{\mathbb{Q}}$ (for various primes p).

If the image of $\rho_{A,I}$ is contained in a maximal proper subgroup, then the characteristic polynomial of $\rho_{A,I}(\operatorname{Frob} p)$ must satisfy certain conditions.

Bibliography

- Dieulefait, Luis V. Explicit determination of the images of the Galois representations attached to abelian surfaces with $End(A) = \mathbb{Z}$. Experimental Mathematics, 11(4):503-512, 2002.
- Mitchell, Howard H. The subgrousp of the quaternary abelian linear group, *Transactions of the American Mathematical Society*, 15(4):379-396, 1914.
- Serre, Jean-Pierre. Oeuvres. Springer-Verlag, 4:1-55, 2000.

Special Thanks

Noam Elkies, Andrew Sutherland

Special Thanks

Noam Elkies, Andrew Sutherland Céline Maistret, Vladimir Dokchitser, Alex Best, Raymond van Bommel

Special Thanks

Noam Elkies, Andrew Sutherland

Céline Maistret, Vladimir Dokchitser, Alex Best, Raymond van Bommel

ICERM, the organizing committee, and the Simons Foundation