Deeltentamen I Kansrekening en Statistiek EE1M31 9 maart 2016, 9.00 – 11.00u

Bij dit tentamen is het gebruik van een niet-grafische rekenmachine toegestaan. Ook toegestaan is een formuleblad, dat wordt uitgedeeld.

Dit tentamen bestaat uit negen meerkeuze- en drie open vragen. De drie open vragen dient u op het tentamenvel te maken.

Cijferbepaling: Iedere meerkeuzevraag telt voor 1 punt, bij de open vragen is het aantal punten per onderdeel aangegeven. Er geldt:

$$Cijfer = \frac{MC + OV}{2} + 1,$$

waarbij MC het aantal punten voor meerkeuze-deel en OV het aantal punten voor open-vragendeel is.

Toelichting meerkeuze-vragen: Maak op het bijgeleverde meerkeuze-antwoordformulier het hokje behorende bij het door u gekozen alternatief zwart of blauw. Doorstrepen van een fout antwoord heeft geen zin: u moet het òf uitgummen, òf verwijderen met correctievloeistof òf een nieuw formulier invullen. Tenslotte, vergeet niet de versie, de vakcode, uw naam en uw studienummer in te vullen. De laatste dient u ook aan te strepen. Uw tentamen wordt anders niet gecorrigeerd.

Meerkeuze vragen Versie A

1. Van de onafhankelijke gebeurtenissen (independent events) A en B is gegeven dat P(A|B) =0.2, P(B|A) = 0.5.

Bereken de kans $P(A \cup B)$.

- **a.** 0.7
- **b.** 0.2
- **c.** 0.4
- **d.** 0.6
- **e.** 0.5
- **f.** 0.1

2. Van een stochast X is gegeven dat $E[X] = \ln 2$.

Wat kun je zeggen over $E[e^{-X}]$?

- **a.** $E[e^{-X}] \le 2$ **d.** $E[e^{-X}] = 2$
- **b.** $E[e^{-X}] \le \frac{1}{2}$ **c.** $E[e^{-X}] \ge \frac{1}{2}$ **e.** $E[e^{-X}] = \frac{1}{2}$ **f.** $E[e^{-X}] \ge 2$

- 3. In Monaco besluit je een gokje te wagen aan de roulettetafel. Je houdt het simpel en zet alleen maar geld in op rood: je wint als een rood vakje gedraaid wordt, dit gebeurt met kans $\frac{18}{37}$. Je stopt met roulette spelen wanneer je voor de vijfde keer hebt verloren.

Wat is de kans dat je 10 of meer spelletjes speelt?

- **a.** $\sum_{k=10}^{\infty} {k \choose 10} (\frac{19}{37})^5 (\frac{18}{37})^{k-5}$
- **b.** $\sum_{k=0}^{4} {9 \choose k} (\frac{19}{37})^k (\frac{18}{37})^{9-k}$ **d.** $\sum_{k=5}^{\infty} (\frac{18}{37})^5 (\frac{19}{37})^{k-5}$
- c. $\sum_{k=0}^{4} {9 \choose k} (\frac{18}{37})^k (\frac{19}{37})^{9-k}$
- e. $\sum_{k=10}^{\infty} {k \choose 10} (\frac{18}{37})^5 (\frac{19}{37})^{k-5}$
- **f.** $\sum_{k=5}^{\infty} (\frac{19}{37})^5 (\frac{18}{37})^{k-5}$
- 4. Bekijk de volgende drie functievoorschriften:

$$f(x) = \left\{ \begin{array}{ll} \cos x, & x \in [-\frac{\pi}{2}, \frac{\pi}{2}], \\ 0, & \text{anders}, \end{array} \right. \quad g(x) = \left\{ \begin{array}{ll} \cos x, & x \in [-\frac{\pi}{2}, \pi], \\ 0, & \text{anders}, \end{array} \right. \quad h(x) = \left\{ \begin{array}{ll} \cos x, & x \in [0, \frac{\pi}{2}], \\ 0, & \text{anders}. \end{array} \right.$$

Welke van deze drie functies is/zijn een kansdichtheid (probability density function)?

- **a.** Alleen h **b.** Alleen q **c.** f en h **d.** f en q **e.** q en h

- **f.** Alleen f

5. Laat $X \sim N(1,9)$ en $Y \sim N(2,16)$ verdeeld zijn. Verder zijn X en Y onafhankelijk (independent).

Voor welke a (afgerond op 2 decimalen) geldt dat $P(X + Y \ge a) = 0.975$?

- **b.** -6.80
- $\mathbf{c.} -0.208$
- **d.** 0.208
- **e.** 46.00
- $\mathbf{f.} -46.00$
- 6. Een continue stochast (continuous random variable) heeft de volgende verdelingsfunctie (distribution function):

$$F_X(x) = \begin{cases} \sqrt{x}, & 0 < x \le 1, \\ 0, & \text{anders.} \end{cases}$$

Bepaal de verwachting (expectation) van $Y = 3 - 5X^2$

- **a.** $E[Y] = \frac{13}{5}$
- **b.** E[Y] = 1
- **c.** E[Y] = -2

- **d.** E[Y] = 2
- **e.** $E[Y] = \frac{11}{7}$ **f.** E[Y] = -1
- 7. Laat de stochast U een U(0,1)-verdeling hebben. Je wilt getallen simuleren uit een Par(3)verdeling m.b.v. U.

Welke stochast, als functie van U, is hiervoor geschikt?

- **a.** $1 + \frac{1}{\sqrt[3]{1-U}}$ **b.** $1 + \frac{1}{U^3}$ **c.** $1 + \frac{1}{1-U^3}$ **d.** $\frac{1}{1-U^3}$ **e.** $\frac{1}{U^3}$

- 8. Laat X en Y twee Bernoulli verdeelde discrete stochasten zijn, en laat verder gegeven zijn dat P(X = 0, Y = 0) = 0.3, P(X = 0, Y = 1) = 0.2, en P(X = 1, Y = 0) = 0.2. Welke van de volgende uitspraken is juist?
 - \mathbf{a} . X en Y zijn ongecorreleerd, en onafhankelijk.
 - **b.** X en Y zijn positief gecorreleerd en afhankelijk.
 - $\mathbf{c} \cdot X$ en Y zijn negatief gecorreleerd en afhankelijk.
 - **d.** X en Y zijn niet ongecorreleerd, maar wel onafhankelijk.
 - **e.** X en Y zijn ongecorreleerd, maar afhankelijk.
 - f. er zijn niet genoeg gegevens om deze opgave op te kunnen oplossen.
- 9. De aankomsten van wielrenners bovenop de gevreesde Col de la Probabilité modelleren we met een Poisson proces met intensiteit $\lambda = 8$ (fietsers per uur).

Gegeven dat er in afgelopen halfuur niemand bovenkwam, bereken de kans dat er in het komende halfuur 3 fietsers aankomen op de top.

- **b.** $e^{-8}\frac{4^3}{3!}$ **c.** $e^{-8}\frac{8^3}{3!}$ **d.** $e^{-4}\frac{4^3}{3!}$ **e.** $e^{-4}\frac{3^4}{4!}$ **f.** $e^{-8}\frac{3^4}{4!}$

Deeltentamen I Kansrekening en Statistiek EE1M31 9 maart 2016, $9.00-11.00\mathrm{u}$

Naam:					Groep:		Cijfer:		
Studenti	nummer:								
				Open	vragen				
	_			niet voldoende aar en in goed	er dient een b Nederlands.	perekening, t	oelichting en/o	of motivatie	
schie X h	Pia en Joris gaan schieten op de schietbaan. Met kans $\frac{2}{3}$ schiet Pia raak en met kans $\frac{1}{3}$ schiet Joris raak. Ieder schot is onafhankelijk (<i>independent</i>) van het vorige. Joris begint met schieten totdat hij raak geschoten heeft. Laat de stochast (<i>random variable</i>) X het nummer van de poging zijn waarin hij voor het eerst raak schiet. (a) (1 punt) Bepaal de kans $P(X > n + k \mid X > n)$.								
schie	eten. Geg	even is n) Wat	dat van d	de 3 schoten	ag zij 3 keer s er precies 2 ra e kans (<i>conda</i>	aak waren.			

			$f(x,y) = \left\{ \right.$	$ \begin{array}{ll} 2, & 0 \le y \le x \le \\ 0, & \text{anders.} \end{array} $	1	
(a)	(2 punten)	Bepaal de m			al densities) van X en Y	7.
(b)	(2 punten)	Bereken de d	covariantie (a	ovariance) tusse	en X en Y .	

3.	(2 punten) Laat T_1 de wachttijd zijn tot het eerste telefoontje in een callcenter en laat T_2 de wachttijd zijn vanaf het eerste telefoontje tot het tweede telefoontje. Neem aan dat T_1 en T_2 beide een exponentiële verdeling hebben met verwachting (expectation) 0.1 minuten en onafhankelijk zijn.								
	Bepaal de kansdichtheid (probability density function) van $T_1 + T_2$.								

Extra ruimte

Formuleblad bij Deeltentamen 1 EE1M31

N.B.: DIT BLAD IS NIET EEN SAMENVATTING OF OVERZICHT, EN DIENT SLECHTS ALS HULPMIDDEL.

Kansverdelingen

1. Bernoulli verdeling: Ber(p).

$$P(X = 1) = p \text{ en } P(X = 0) = 1 - p.$$
 $E[X] = p; Var(X) = p(1 - p).$

2. Binomiale verdeling: Bin(n, p).

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ voor } k = 0, 1, ..., n. \quad E[X] = np; \quad Var(X) = np(1-p).$$

3. Geometrische verdeling : Geo(p).

$$P(X = k) = p(1-p)^{k-1} \text{ voor } k = 1, 2, \dots$$
 $E[X] = 1/p; Var(X) = (1-p)/p^2.$

4. Negatief binomiale verdeling: NB(r, p).

$$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r} \text{ voor } k \ge r. \ \mathrm{E}[X] = \frac{r}{p}; \ \mathrm{Var}(X) = \frac{r(1-p)}{p^2}.$$

5. Poisson-verdeling: $Pois(\mu)$.

$$P(X = k) = \frac{\mu^k}{k!} e^{-\mu} \text{ voor } k = 0, 1, \dots E[X] = \mu; Var(X) = \mu.$$

6. Exponentiële verdeling: $Exp(\lambda)$.

$$f(x) = \lambda e^{-\lambda x}$$
 en $F(x) = 1 - e^{-\lambda x}$ voor $x > 0$. $E[X] = 1/\lambda$; $Var(X) = 1/\lambda^2$.

7. Uniforme verdeling op [a, b]: U(a, b).

$$f(x) = \frac{1}{b-a}$$
 en $F(x) = \frac{x-a}{b-a}$ voor $a \le x \le b$. $E[X] = \frac{1}{2}(a+b)$; $Var(X) = \frac{1}{12}(b-a)^2$.

8. Normale verdeling: $N(\mu, \sigma^2)$.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \text{ en } F(x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^2}dt. \quad \mathbf{E}[X] = \mu; \quad \mathbf{Var}(X) = \sigma^2.$$

9. Pareto verdeling: $Par(\alpha)$:

$$f(x) = \frac{\alpha}{x^{\alpha+1}}$$
 en $F(x) = 1 - x^{-\alpha}$ voor $x \ge 1$. $E[X] = \infty$ voor $0 < \alpha \le 1$.

$$E[X] = \frac{\alpha}{\alpha - 1} \text{ voor } \alpha > 1. \text{ Var}(X) = \frac{\alpha}{(\alpha - 1)^2(\alpha - 2)} \text{ voor } \alpha > 2.$$

a	0	1	2	3	4	5	6	7	8	9
0.0	5000	4960	4920	4880	4840	4801	4761	4721	4681	4641
0.1	4602	4562	4522	4483	4443	4404	4364	4325	4286	4247
0.2	4207	4168	4129	4090	4052	4013	3974	3936	3897	3859
0.3	3821	3783	3745	3707	3669	3632	3594	3557	3520	3483
0.4	3446	3409	3372	3336	3300	3264	3228	3192	3156	3121
0.5	3085	3050	3015	2981	2946	2912	2877	2843	2810	2776
0.6	2743	2709	2676	2643	2611	2578	2546	2514	2483	2451
0.7	2420	2389	2358	2327	2296	2266	2236	2206	2177	2148
0.8	2119	2090	2061	2033	2005	1977	1949	1922	1894	1867
0.9	1841	1814	1788	1762	1736	1711	1685	1660	1635	1611
1.0	1587	1562	1539	1515	1492	1469	1446	1423	1401	1379
1.1	1357	1335	1314	1292	1271	1251	1230	1210	1190	1170
1.2	1151	1131	1112	1093	1075	1056	1038	1020	1003	0985
1.3	0968	0951	0934	0918	0901	0885	0869	0853	0838	0823
1.4	0808	0793	0778	0764	0749	0735	0721	0708	0694	0681
1.5	0668	0655	0643	0630	0618	0606	0594	0582	0571	0559
1.6	0548	0537	0526	0516	0505	0495	0485	0475	0465	0455
1.7	0446	0436	0427	0418	0409	0401	0392	0384	0375	0367
1.8	0359	0351	0344	0336	0329	0322	0314	0307	0301	0294
1.9	0287	0281	0274	0268	0262	0256	0250	0244	0239	0233
2.0	0228	0222	0217	0212	0207	0202	0197	0192	0188	0183
2.1	0179	0174	0170	0166	0162	0158	0154	0150	0146	0143
2.2	0139	0136	0132	0129	0125	0122	0119	0116	0113	0110
2.3	0107	0104	0102	0099	0096	0094	0091	0089	0087	0084
2.4	0082	0080	0078	0075	0073	0071	0069	0068	0066	0064
2.5	0062	0060	0059	0057	0055	0054	0052	0051	0049	0048
2.6	0047	0045	0044	0043	0041	0040	0039	0038	0037	0036
2.7	0035	0034	0033	0032	0031	0030	0029	0028	0027	0026
2.8	0026	0025	0024	0023	0023	0022	0021	0021	0020	0019
2.9	0019	0018	0018	0017	0016	0016	0015	0015	0014	0014
3.0	0013	0013	0013	0012	0012	0011	0011	0011	0010	0010
3.1	0010	0009	0009	0009	0008	0008	0008	0008	0007	0007
3.2	0007	0007	0006	0006	0006	0006	0006	0005	0005	0005
3.3	0005	0005	0005	0004	0004	0004	0004	0004	0004	0003
3.4	0003	0003	0003	0003	0003	0003	0003	0003	0003	0002

Tabel 1: Rechteroverschrijdingskans $1-\Phi(a)=P(Z\geq a)$ van de N(0,1)-variabele Z.

Antwoorden multiple choice:

- d.
- c.
- b.
- a.
- b.
- d.
- a.
- b.
- d.

Antwoorden open vragen:

- **a** $(\frac{2}{3})^k$.
- **b** $\frac{1}{3}$.
- **a** $f_X(x) = 2x, x \in [0, 1] f_X(x) = 0$, anders. $f_Y(y) = 2(1 y), y \in [0, 1]; f_Y(y) = 0$, anders.
- **b** $\frac{1}{36}$.
- $f_{T_1+T_2}(z) = 100ze^{-10z}$.