2015	5 S2				TES	ST 2				\mathbf{v}	ERSION A	
• Tir	ne Allowe	ed: 4 5	5 min	utes								
ea Fo	or the much multipor the true aple ever	ole cho e/fals	oice qu e and	estion writte	n is wor en answe	th 1 m er quest	ark.					
1.		nterva	_						_		• corresponding ssage bba • could	
		(a)	0.60	(b)	0.64	(c)	0.69	(d) 0.7	(e) 0.80	
2.											pquilibrium	
	distribut (a)	ion p 0.93	$=\frac{1}{12}$	$\binom{7}{5}$.	The (b	inary)] WC (c) 0.9	Marko Ode 051	entro er.c (d)	ору <i>Н</i> С ОП 0.967	1 (e)	oroximately 0.980	
3.	Consider such tha	t a bir $P(d$	$\mathbf{A}^{\mathbf{r}\mathbf{y}} \mathbf{d}^{\mathbf{l}}_{1}$	P(b)		odice sy 7 and	$P(\mathbf{r}_2)$		2 Q (output can the	symbols $\{b_1, b_2\}$ function	
				H(s)	x) = -x	$\log_2 x$	- (1 -	$x)\log$	$_{2}(1)$	x)		
	and note	that	H(x)	=H(1-x).	The no	ise ent	tropy I	$H(B \mid$	A) can	be written as	
	$(a)\frac{1}{4}H(\frac{4}{7})$	$)+\frac{3}{4}E$	$I(\frac{5}{8})$ (b) $\frac{3}{8}H$	$\left(\frac{1}{4}\right) + \frac{4}{7}H$	$\left(\frac{3}{4}\right)$ (c)	$\frac{4}{7}H(\frac{1}{4})$	$+\frac{3}{8}H($	$\left(\frac{3}{4}\right)$ (d	$)\frac{3}{4}H(\frac{4}{7})$	$+\frac{1}{4}H(\frac{3}{8})$ (e) $\frac{3}{8}H(\frac{3}{4})$	$+\frac{4}{7}H(\frac{1}{4}$
4.	Using Eu The answ			em or	otherw	ise, cal	culate	2^{2015}	(mod	125).		
			(a)	2	(b) 6	(c)	9	(d)	18	(e) 3	6	
5.	For which	ch of t	he fol	lowing	g numbe	ers a is	n = 28	3 a pse	udopr	ime to b	pase a ?	
		(a)	2	(b)	3 (c) 7	(d)	9	(e)	none of	these	

Student ID:

Name:

6. [5 marks] For each of the following, say whether the statement is true or false, giving a brief reason or showing your working. You will get $\frac{1}{2}$ mark for a correct true/false answer, and if your true/false answer is correct, then you will get $\frac{1}{2}$ mark for a good reason.

Begin each answer with the word "True" or "False".

i) The LZ78 algorithm encodes the message aaaabaaaaabaaaa as

$$(0, a)(1, a)(1, b)(2, a)(2, b)(4, a)$$
.

- ii) For a 3-symbol source $S = \{s_1, s_2, s_3\}$ with probabilities $p_1 = 4/9$, $p_2 = 2/9$, $p_3 = 1/3$ it is possible to find a binary encoding of some extension S^n with average word length per original source symbol less than 1.5.
- iii) When using Fermat factorisation to factor n = 1891 as a product n = ab where $2 \le a < b$, the linear combination 2a b equals 1.
- iv) A source $S = \{s_1, s_2\}$ has probabilities $P(s_1) = \frac{4}{5}$, $P(s_2) = \frac{1}{5}$. The second longest codeword length in the binary Shannon-Fano code for the third extension S^3 is 5.

v) Assignment Project Exam Help

- 7. [5 marks] Let $\mathbb{F} = \mathbb{Z}_2(\alpha)$ where α is a root of the polynomial $x^3 + x + 1 \in \mathbb{Z}_2[x]$.
 - (i) Express attack elements we coders combinations over \mathbb{Z}_2 of 1, α , and α^2 .
 - (ii) Solve the set of linear equations at powcoder $\begin{pmatrix} \alpha^3 & \alpha^5 \\ \alpha^2 & \alpha^3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ \alpha^6 \end{pmatrix}$

in \mathbb{F} .

(iii) Find the minimal polynomial of α^5 . Show your working.

Nam	e:				Stude	ent ID	:								
UNS	W Scho	OOL O	F MA	ATHEN	ATICS	AND	STA	TISTI	CS						
MA	TH341	1 In	FOR	MATI	ON C	CODES	S AN	ND (СІРНІ	ERS					
2015 S2				TEST 2							VERSION B				
• Tir	ne Allowe	d: 45	min	utes											
ea Fo	or the multipor the true aple every	le cho e/false	oice que and	uestio writte	n is wo	orth 1 wer qu	mar	rk.			,				
1.	If arithm to the in as		_							_			-	-	•
	(a)) <i>aa</i>	•	(b)	$aab \bullet$	(c	e) a	$ab \bullet$	(d)) ba	•	(e)	baa ullet		
2.	A 2	Siy	Zikol	ne :	elas	Parion .	je:	m tri	i.Eyx				p equ	ilibrium	1
	distribut (a)	$ \begin{array}{c} \mathbf{b} \\ 0.80 \end{array} $	= 1 1 tt 1	$\binom{5}{2}$.	The (b	oinary) OW(c)	Ma CO 0.	rkov de 863	entroj CT.C	py H_{Λ} O10 0.8	₁ is ap 1 87	oprox (e)	0.921	ly -	
3.	Consider such that	a bin $P(a)$		pannon, pann		$ \begin{array}{c} \text{olive} \\ = \frac{3}{5} \text{ an} \end{array} $	ayen na P			e C	doutp ecan t	ut sy he fu	mbols nction	$\{b_1, b_2\}$	
				H(x) = -	$-x\log_2$	x -	(1 -	$x)\log$	$s_2(1 -$	x)				
	and note	that	H(x)	=H((1-x)	. The	nois	e ent	ropy .	$H(B \mid$	A) ca	n be	writte	en as	
	$(a)\frac{2}{7}H(\frac{5}{6})$	$+\frac{3}{5}H$	$\left(\frac{1}{6}\right)$ ($(b)\frac{1}{6}H$	$(\frac{3}{5}) + \frac{5}{6}$	$H(\frac{2}{7})$	$(c)\frac{5}{6}$	$H(\frac{3}{5})$	$+\frac{1}{6}H$	$\left(\frac{5}{7}\right)$ (c)	$\frac{3}{5}H($	$(\frac{5}{6}) + \frac{2}{7}$	$H(\frac{1}{6})$	$(e)^{\frac{2}{7}}H$	$\left(\frac{1}{6}\right) + \frac{3}{5}H\left(\frac{5}{6}\right)$
4.	Using Eu	ıler's	Theor	rem oi	r other	wise, c	calcu	late	3^{2015}		125).	Th	e ansv	ver is	
			(a)	1	(b)	3 ((c)	5	(d)	25	(e)	32			
5.	For whic	h of t	he fol	lowing	g numl	pers a	is n	= 24	a pse	eudopi	rime to	o bas	e <i>a</i> ?		
		(a)	2	(b)	3	(c) 5	ō	(d)	7	(e)	none	of th	iese		

6. [5 marks] For each of the following, say whether the statement is true or false, giving a brief reason or showing your working. You will get $\frac{1}{2}$ mark for a correct true/false answer, and if your true/false answer is correct, then you will get $\frac{1}{2}$ mark for a good reason.

Begin each answer with the word "True" or "False".

i) The LZ78 algorithm encodes the message aaabaaaaabba as

$$(0, a)(1, a)(0, b)(2, a)(2, b)(3, a)$$
.

- ii) For a 3-symbol source $S = \{s_1, s_2, s_3\}$ with probabilities $p_1 = 1/2, p_2 = 1/6,$ $p_3 = 1/3$, it is possible to find a binary encoding of some extension S^n with average word length per original source symbol less than 1.5.
- iii) When using Fermat factorisation to factor n = 2257 as a product n = ab where $2 \le a \le b$, the linear combination 2a - b equals 1.
- iv) A source $S = \{s_1, s_2\}$ has probabilities $P(s_1) = \frac{1}{5}$, $P(s_2) = \frac{4}{5}$. The second shortest codeword length in the binary Shannon-Fano code for the third extension S^3 is 3.
- ${\rm v)} A is single introduction of the content of$
- 7. [5 marks] Let $\mathbb{F} = \mathbb{Z}_2(\alpha)$ where α is a root of the polynomial $x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$. (i) Express all nonzero elements of \mathbb{F} as powers of α and as linear combinations
 - over \mathbb{Z}_2 of 1, α , and α^2 .
 - (ii) Solve the Act din West ideat powcoder

$$\begin{pmatrix} \alpha^2 & \alpha^5 \\ \alpha^4 & \alpha^6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha^3 \\ 1 \end{pmatrix}$$

in \mathbb{F} .

(iii) Find the minimal polynomial of α^3 . Show your working.