DATE : 25.03.2024

DT/NT : NT

LESSON: DEEP LEARNING

SUBJECT: Introduction to Deep

Learning

BATCH: B223

TECHPRO

EDUCATION

ANN

CNN

COMPUTER VISION

RNN+LSTM+GRU

- previous cell state
- forget gate output
- input gate output
- c candidate
- new cell state

NLP

TECHPROEDUCATION

1997

GPT 4 vs GPT 3

- 1. Machine Learning Engineer
- 2. Deep Learning Engineer
- 3. Computer Vision Engineer
- 4. Natural Language Processing

Engineer

- 5. Al Research Scientist
- 6.Al Software Developer
- 7.Al Consultant
- 8.Data Scientist AI/ML

Jobs with a Data Science Background

Average Salaries for Al Experts

DEEP LEARNING EVERYWHERE

INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery **AUTONOMOUS MACHINES**

Pedestrian Detection Lane Tracking Recognize Traffic Sign

10 FASCINATING APPLICATIONS OF DEEP LEARNING

SELF-DRIVEN CARS

AUTOMATIC HANDWRITING GENERATION

PIXEL RESTORATION

COLOURISATION OF BLACK & WHITE IMAGES

DEEP DREAMING

GROWTH DELAYS
IN CHILDREN

DEMOGRAPHIC PREDICTION

SOUND ADDITION TO SILENT FILMS

NEWS GENERATION

AUTOMATIC MACHINE TRANSLATION

20 Applications

- 6 Natural Language Processing
- News Aggregation and Fraud News Detection
- 8 Detecting Developmental Delay in Children
 - Colourisation of Black and White images
- 10 Adding sounds to silent movies

Healthcare 11

Personalisations 12

Automatic Machine Translation 13

Automatic Handwriting Generation 14

Demographic & Election Predictions 15

- 16 Automatic Game Playing
- 17 Language Translations
- 18 Pixel Restoration
- 19 Photo Descriptions
- 20 Deep Dreaming

AI/MACHINE LEARNING/DEEP LEARNING

WHY DEEP LEARNING IS SO POPULAR OF EDUCATION

Why Now?

Neural Networks date back decades, so why the resurgence?

I. Big Data

- Larger Datasets
- Easier Collection
 & Storage

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

RAPIDLY INCREASING DATA

How do data science techniques scale with amount of data?

2022

PEOPLE SEND 16M **TEXTS**

FACEBOOK USERS SHARE

1.7M pieces of content

ONLINE **EVENT GOERS PURCHASE** \$12.9K

~

GOOGLE **USERS CONDUCT**

5.9M searches

INSTAGRAM

66K photos

347.2K tweets

CRYPTO BUYERS PURCHASE

\$90.2M in cryptocurrency

4

OF I. **EVERY** MINUTE

SNAPCHAT

2.43M snaps

VENMO USERS SEND \$437.6K

VIEWERS SPEND 1M hours

STREAMING

USERS UPLOAD

500 hours of video

TINDER USERS SWIPE

1.1M times

DOORDASH DINERS PLACE

\$76.4K in orders

104.6K hours

SPENT IN ZOOM MEETINGS

TECHNOLOGICAL ADVANCEMENTS IN HARDWARE

Generations and Future Computers

THE BIG BANG IN DEEP LEARNING

"The GPU is the workhorse of modern A.I."

CPU

- Small models
- Small datasets
- Useful for design space exploration

GPU

- Medium-to-large models, datasets
- Image, video processing
- Application on CUDA or OpenCL

TPU

- Matrix computations
- · Dense vector processing
- No custom TensorFlow operations

CPU

GPU

TPU

Why GPU Matters in Deep Learning?

```
X train shape: (50000, 3, 32, 32)
50000 train samples
10000 test samples
Using real-time data augmentation.
Epoch 1/200
50000/50000 [==========]
                              734s
Epoch 2/200
                              733s
Epoch 3/200
                              733s
50000/50000 [===========]
Epoch 4/200
733s
```

Running time without GPU


```
X train shape: (50000, 3, 32, 32)
50000 train samples
10000 test samples
Using real-time data augmentation.
Epoch 1/200
27s
Epoch 2/200
50000/50000 [==========]
                               27s
Epoch 3/200
27s
Epoch 4/200
50000/50000 [=====================
```

Running time with GPU

With GPU, the running time is 733/27=27.1 times faster then the running time without GPU!!!

TECHNOLOGICAL ADVANCEMENTS IN SOFTWARE

Keras

Caffe

PROMINENT FIGURES OR GURUS IN THE FIELD OF DEEP LEARNING

Geoffrey Hinton "The Godfather of deep learning"

deeplearning.ai presents

Heroes of Deep Learning

lan Goodfellow

Research Scientist at Google Brain

Just as electricity transformed almost everything 100 years ago, today I actually have a hard time thinking of an industry that I don't think AI will transform in the next several years.

~ Andrew Ng

Carnegie Mellon University Machine Learning

· Weights are not Learned

DEEP LEARNING HISTORY

DEEP LEARNING HISTORY

Deep Learning Timeline

1969: Perceptrons can't do XOR! © TECHPRO

1969: Minsky and Papert proved that perceptrons cannot represent non-linearly separable target functions.

Minsky & Papert

http://www.i-programmer.info/images/stories/BabBag/Al/book.jpg