

1/4/891

تکلیف ۶ - انتقال ثبات ها و دستورات کامپیوتر پایه

معماري كامپيوتر

معماری کامپیوتر تکلیف شماره ۶

- ۱) کامپیوتر پایه دارای ۶۴ ثبات و یک واحد حافظه اصلی با 512K کلمه ۳۲ بیتی است. بیتهای انتخاب گذرگاه، ثباتهای DR ، AR،PC و AC را بنویسید.
- ۲) بو سیله یک شمارنده باینری سه بیتی با بازنشانی همگام و با استفاده از اجزای زیر یک شمارنده طراحیکنید که دنباله ی زیر را بشمارد :

$$3 \rightarrow 5 \rightarrow 7 \rightarrow 9 \rightarrow 11 \rightarrow 13 \rightarrow 3 \rightarrow 5$$

۳) رجیستر R مقدار اولیهی ۱۰۰۱۱۰۰۰ را دارد.

الف) این رجیستر پس از یک شیفت محاسباتی از راست و یک شیفت چرخشی از چپ، سپس یک شیفت منطقی از راست، چه مقداری به خود می گیرد؟(مرحله به مرحله بیان کنید)

ب) اگر بر روی رجیستر با همان مقدار اولیه خود یک شیفت محاسباتی از چپ اعمال شود، چه مقداری به خود می گیرد؟ آیا سرریز رخ می دهد ؟

۴) ثبات در ابتدا مقادیر اولیه زیر را دارند:

AR	BR	CR	DR
11110010	11111111	10111001	11101010

بررسی کنید بعد از انجام هر یک از ریزعملگرهای متوالی زیر چه مقداری در هر کدام از این ثباتها قرار می گیرد.

$$AR \leftarrow AR + BR \qquad ---> add BR to AR$$

$$CR \leftarrow CR \land DR \qquad ---> and CR to DR$$

$$BR \leftarrow BR + 1 \qquad ---> increment BR$$

$$AR \leftarrow AR - CR \qquad ---> subtract CR from AR$$

معماری کامپیوتر تکلیف شماره ۶

۵) سیکل برداشت و آدرس دهی غیرمستقیم (Indirect) و اجرای دستورات SNA، ISZ، BSA، BUN و اجرای دستورات بالا در حد یک جمله توضیح دهید که چه کاری انجام می دهد و چه کاربردی دارد.

۶) محتوای تعدادی از خانههای حافظه کامپیوتر مبنا مطابق زیر میباشد. تعیین نمایید که پس از توقف:

حافظه
4004F
F881H
777FH
FFFEH
2001H
0002H
3003H
3008H
6003H
4004H
7001H

الف) چند دستورالعمل اجرا میشود؟

ب) چند مراجعه به حافظه انجام می شود (مجموع خواندن و نوشتن)

ج) محتوای IR ، PC،AR ،DR ،AC و E را پس از توقف تعیین نمایید.

۷) مجموعه دستورات روبرو را که در خانههای M[0] تا M[16] قرار دارد در نظر بگیرید.

0	BUN 6	
0 1		
2		
3		
4		
5		

6	LDA 1
7	CMA
8	STA 3
9	ISZ 3
10	BUN 12
11	BUN 15

12	LDA 2
13	ADD 4
14	BUN 9
15	STA 6
16	HLT

ب) برای خانههای حافظه [1] M تا [5] M به دلخواه خود مقادیر اولیهای انتخاب نمایید. در پایان الگوریتم، مقدار این خانهها را تعیین کنید.

ج) چند بار به حافظه رجوع کردهایم؟

د) مقدار AC در پایان الگوریتم چیست؟

معماری کامپیوتر تکلیف شماره ۶

۸) دیاگرام باس زیر را در نظر بگیرید.

الگوریتمی بر حسب RTL بنویسید که در پایان، دو عدد OxBEEB و OxBEEB را با هم جمع کرده در رجیستر PC ذخیره کند. سپس در صورتی که حاصل جمع دارای رقم نقلی carry بود، رجیستر مقدار Ox000 را بگیرد. تعداد تایمینگها کمینه باشد.

مقدار اولیه رجیسترها به صورت زیر میباشد:

- در پاســخ خود به محدودیتهای باس داده شــده و نیز
 مسیرهای قابل استفاده توجه نمایید.
- همه رجیسترها توانایی inc ،clr ،Load و clr ،load را دارند
 و تأخیر full-adder قابل صرف نظر کردن است.
- حافظه قابلیت read و write آسنکرون را دارا میباشد.
 مقدار نهایی DR ،AC و AR هر چیزی میتواند باشد.

۹) در کامپیوتر پایه میخواهیم دستورات ارجاع به حافظه را با مجموعه دستورات جدول روبرو جایگزین نماییم.
 ALU به بعد مشخص نمایید. توجه کنید که قابلیت XOR به XOR به RTL اجرای هر یک از این دستورات را از T4 به بعد مشخص نمایید. توجه کنید که قابلیت XOR به XOR به کامپیوتر پایه اضافه شده است، ولی عملیات تفریق ندارد. برای انجام عملیات تفریق از مکمل ۲ استفاده کنید.

سمبل	کد عمل	نشان سمبلیک	
XOR	000	$AC \leftarrow AC \oplus M[EA]$	
ADM	001	$M[EA] \leftarrow AC + M[EA]$	
SUB	010	$AC \leftarrow AC - M[EA]$	
XCH	011	$AC \leftarrow M[EA], M[EA] \leftarrow AC$	
SEQ	100	$If(M[EA] == AC) then$ $PC \leftarrow PC + 1$	
BPA	101	$If(AC > 0) then (PC \leftarrow M[EA])$	

معماری کامپیوتر تکلیف شماره ۶

جدول دستورات كامپيوتر پايه

Hexadecimal code		imal code	
Symbol	I = 0	I = 1	Description
AND	0xxx	8xxx	AND memory word to AC
ADD	1xxx	9xxx	Add memory word to AC
LDA	2xxx	Axxx	Load memory word to AC
STA	3xxx	Bxxx	Store content of AC in memory
BUN	4xxx	Cxxx	Branch unconditionally
BSA	5xxx	Dxxx	Branch and save return address
ISZ	6xxx	Exxx	Increment and skip if zero
CLA	78	00	Clear AC
CLE	74	00	Clear E
CMA	72	.00	Complement AC
CME	71	00	Complement E
CIR	70	80	Circulate right AC and E
CIL	70	40	Circulate left AC and E
INC	70	20	Increment AC
SPA	70	10	Skip next instruction if AC positive
SNA	70	08	Skip next instruction if AC negative
SZA	70	04	Skip next instruction if AC zero
SZE	7002		Skip next instruction if E is 0
HLT	70	01	Halt computer
INP	F8	300	Input character to AC
OUT	F4	100	Output character from AC
SKI	F2	200	Skip on input flag
SKO	F1	100	Skip on output flag
ION	F080		Interrupt on
IOF	F040		Interrupt off

- ۹۸/ π /۱۰ مهلت ارسال تمرین جمعه \bigcirc
- سوالات خود را میتوانید از طریق ایمیل از تدریسیارن بپرسید.
- . فايل پاسخ به صورت تايپ شده يا دستنويس خوانا با رعايت قالب $HW6-9631^{***}$ -Name.pdf ارسال كنيد \bigcirc
 - درصورت عدم رعایت قالب با کسر نمره مواجه می گردید.
 - ا فایل زیپ ارسال نکنید.
 - تهرین انفرادی است!
 - به ازاي هر روز تأخیر ، ۱۰ درصد از نمره تمرین کسر می گردد.