Escola de Engenharia Mauá

ECM511 – Teoria dos Grafos, Pesquisa Operacional e ~Métodos de Otimização Prof. Joyce M Zampirolli joyce.zampirolli@maua.br

Otimização em Rede

Introdução: grafos

Um grafo é um conjunto de nós e arcos:

Se existem pesos (ou custos) associados aos arcos, o grafo se torna uma rede.

Por fim, os arcos podem ser orientados.

Determinação de um circuito de custo mínimo sobre um grafo (orientado ou não), tal que:

- O circuito inicia e termina em um nó específico.
- O circuito passa uma vez em cada nó do grafo.

1) Resolução por **busca exaustiva**: determinação de todos os circuitos <u>viáveis</u> possíveis

Circuito	Início	1	2	3	4	Final	Custo total
1	А	В	С	D	Е	Α	462,00
2	Α	В	С	Ε	D	Α	530,00
3	Α	В	D	С	Ε	Α	484,00
4	Α	В	D	Ε	С	Α	606,00
5	Α	В	Ε	С	D	Α	461,00
6	Α	В	Ε	D	С	Α	515,00
7	Α	С	В	D	Ε	Α	602,00
8	Α	С	В	Ε	D	Α	579,00
•••	•••					•••	•••

1) Resolução por **busca exaustiva**: determinação de todos os circuitos <u>viáveis</u> possíveis

Circuito	Início	1	2	3	4	Final	Custo total
9	А	С	D	В	Ε	Α	533,00
10	А	С	D	Ε	В	Α	515,00
11	А	С	Ε	В	D	Α	601,00
12	А	С	Е	D	В	Α	606,00
13	А	D	В	С	Е	Α	548,00
14	Α	D	В	Е	С	Α	601,00
15	А	D	С	В	Ε	Α	457,00
16	А	D	С	Ε	В	Α	461,00
•••	•••					•••	•••

1) Resolução por **busca exaustiva**: determinação de todos os circuitos <u>viáveis</u> possíveis

Circuito	Início	1	2	3	4	Final	Custo total
17	Α	D	Ε	В	С	Α	579,00
18	Α	D	Е	С	В	Α	530,00
19	Α	Е	В	С	D	Α	457,00
20	Α	Е	В	D	С	Α	533,00
21	А	Е	С	В	D	A	548,00
22	А	Е	С	D	В	Α	484,00
23	А	Е	D	В	С	Α	602,00
24	А	Ε	D	С	В	А	462,00

4) Total de circuitos:

$$R = (n-1)!$$

Grafo simétrico:

$$RU = \frac{(n-1)!}{2}$$

- 1) Resolução por **busca exaustiva**: determinação de todos os circuitos <u>viáveis</u> possíveis
 - 5) 27 capitais brasileiras.

$$RU = 2.10^{26}$$
 circuitos

6) Se for possível gerar e avaliar 1 bilhão (10⁹) circuitos por segundo, o tempo gasto na aplicação da busca exaustiva será de 64 milhões de séculos!

4) Total de circuitos:

$$R = (n-1)!$$

Grafo simétrico:

$$RU = \frac{(n-1)!}{2}$$

7) Resolução por heurísticas (técnicas de resolução que não garantem a obtenção de soluções ótimas): heurística do vizinho mais próximo. Exemplo (iniciando pelo nó A):

7) Resolução por heurísticas (técnicas de resolução que não garantem a obtenção de soluções ótimas): heurística do vizinho mais próximo. Exemplo (iniciando pelo nó B):

8) Resolução por **heurísticas** (técnicas de resolução que não garantem a obtenção de soluções ótimas): heurística do **vizinho mais próximo**. Exemplo (7 nós):

9) Resolução por heurísticas (técnicas de resolução que não garantem a obtenção de soluções ótimas): heurística de inserção. Partindo da solução <u>ótima</u> para o problema com 5 nós:

1) A Junior Wells Eletric Co. possui três plantas de geração de energia que devem atender a quatro cidades. A capacidade de geração de energia em cada planta, em milhões de kwh, é dada na Tabela 8.1. As demandas mínimas exigidas em cada cidade estão representadas na Tabela 8.2.

Tabela 8.1 - Capacidade de geração

Planta	Capacidade (mi kwh)
1	35
2	50
3	40

Tabela 8.2 - Consumo de energia

Cidade	Consumo (mi kwh)
1	45
2	20
3	30
4	30

Os custos de fornecimento de cada milhão de kwh dependem da distância que a energia deve percorrer (Tabela 8.3). Formule um PPL que permita à Junior Wells minimizar o custo de atendimento da demanda por energia das quatro cidades.

Tabela 8.3 - Custos unitários de transporte de energia (em \$)

	Cidade 1	Cidade 2	Cidade 3	Cidade 4
Planta 1	8,00	6,00	10,00	9,00
Planta 2	9,00	12,00	13,00	7,00
Planta 3	14,00	9,00	16,00	5,00

Modelo matemático:

1. Variáveis de decisão

$$x_{ij}$$
 = energia (em milhões de kwh) transportada da planta i (i = 1,2,3) para a cidade j (j = 1,2,3,4)

2. Função objetivo

Minimizar o custo de atendimento da demanda por energia

$$\min z = \underbrace{\sum_{i=1}^{3} \sum_{j=1}^{4} + c_{ij}^{4} x_{ij2}}_{\text{da planta } i \text{ (i = 1,2,3) para a cidade } j \text{ (j = 1,2,3,4)}}_{\text{gansporte de 1 milhão de kwh}}$$

Modelo matemático:

3. Restrições

3.1. Oferta

Planta 1:
$$x_{11} + x_{12} + x_{13} + x_{14} \le 35$$

Planta 2:
$$x_{21} + x_{22} + x_{23} + x_{24} \le 50$$

Planta 3:
$$x_{31} + x_{32} + x_{33} + x_{34} \le 40$$

3.2. Demanda

Cidade 1:
$$x_{11} + x_{21} + x_{31} \ge 45$$

Cidade 2:
$$x_{12} + x_{22} + x_{32} \ge 20$$

Cidade 3:
$$x_{13} + x_{23} + x_{33} \ge 30$$

Cidade 4:
$$x_{14} + x_{24} + x_{34} \ge 30$$

3.3. Não negatividade:
$$x_{ij} \ge 0$$
, para $i = 1,2,3$ e para $j = 1,2,3,4$

Modelo matemático RESUMIDO:

$$\min \quad z = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} \text{ , sendo } c_{ij} = \text{custo do transporte de 1 milhão de kwh}$$

$$\text{entre a planta } i \text{ (} i = 1,2,3\text{) e a cidade } j \text{ (} j = 1,2,3,4\text{)}$$

suj. a:
$$x_{11} + x_{12} + x_{13} + x_{14} \le 35$$

$$x_{21} + x_{22} + x_{23} + x_{24} \le 50$$

$$x_{31} + x_{32} + x_{33} + x_{34} \le 40$$

Restrições de oferta

$$x_{11} + x_{21} + x_{31} \ge 45$$

$$x_{12} + x_{22} + x_{32} \ge 20$$

$$x_{13} + x_{23} + x_{33} \ge 30$$

$$x_{14} + x_{24} + x_{34} \ge 30$$

Restrições de demanda

$$x_{ij} \ge 0$$
, para $i = 1,2,3$ e para $j = 1,2,3,4$

Problema de transporte desbalanceado

2) (Oferta > demanda) Remodele o problema anterior como um problema balanceado, supondo que a demanda da cidade 1 passou a ser de 40 milhões de kwh.

Problema balanceado

Modelo matemático (RESUMIDO e REFORMULADO):

min
$$z = \sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij}$$
, sendo c_{ij} = custo do transporte de 1 milhão de kwh entre a planta i (i = 1,2,3) e a cidade j (j = 1,2,3,4)

suj. a:
$$x_{11} + x_{12} + x_{13} + x_{14} = 35$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 50$$

$$x_{31} + x_{32} + x_{33} + x_{34}$$

$$x_{11} + x_{21} + x_{31} = 40$$

$$x_{12} + x_{22} + x_{32} = 20$$

$$x_{13} + x_{23} + x_{33} = 30$$

$$x_{14} + x_{24} + x_{34} = 30$$

Restrições de oferta

Proposta - inserir "cliente fictício":

$$x_{15} + x_{25} + x_{35} = 5$$

 $c_{15} = c_{25} = c_{35} = 0$

Além disso, inserir as novas variáveis nas restrições de oferta e de não negatividade.

Prob. desbalanceado

3) (Oferta < demanda) Três cidades devem ser abastecidas por dois reservatórios de água. Cada reservatório pode fornecer 50 milhões de m³ de água por dia e cada cidade precisa receber 40 milhões de m³ de água por dia. Para cada milhão de m³ de água não entregue, existe uma penalidade. Na cidade 1, a penalidade é de \$ 20,00, na cidade 2, a penalidade é de \$ 22,00 e na cidade 3 a penalidade é de \$ 23,00. O custo do transporte de 1 milhão de m³ de água entre cada reservatório e cada cidade é apresentado na Tabela 8.4. Formule um problema de transporte balanceado que possa ser utilizado para minimizar os custos de atendimento da demanda por água.

Tabela 8.4 - Custos unitários de transporte de água (em \$)

	Cidade 1	Cidade 2	Cidade 3
Reservatório 1	7,00	8,00	10,00
Reservatório 2	9,00	7,00	8,00

Prob. desbalanceado

Ofertas

Caracterização do modelo:

Tabela 8.4 - Custos unitários de transporte de água (em \$)

	Cidade 1	Cidade 2	Cidade 3
Reservatório 1	7,00	8,00	10,00
Reservatório 2	9,00	7,00	8,00
Reservatório 3	20,00	22,00	23,00
Demandas	⇒ 40	40	40

Tabela do problema de transporte

Forma preferida de modelagem

Tabela do problema de transporte

Forma preferida de modelagem

Balanceamento

Oferta > Demanda - cria-se um centro fictício de demanda. O custo de transporte associado a este centro é **nulo**.

Oferta < Demanda - cria-se um centro fictício de oferta. Os custos de transporte associados correspondem a **multas** ou **penalidades**.

Na prática, cada caso é um caso...

Fatos:

- Modelos de transporte podem ser usados em vários tipos de problemas, incluindo alguns que não envolvem transportes!
- Existe uma versão (bastante eficiente) do algoritmo simplex, específica para problemas de transporte balanceados.
- Um problema de transporte em que as todas as ofertas e demandas tenham valores inteiros, sempre terá solução ótima inteira, mesmo que não existam restrições à respeito.