ARTIFICAL INTELLIGENCE

PHASE-3 SUBMISSION

EARTHQUAKE PREDICTION USING PYTHON

For machine learning algorithms to work, it's necessary to convert **raw data** into a **clean data** set, which means we must convert the data set to **numeric data**. We do this by encoding all the **categorical labels** to column vectors with binary values. **Missing values**, or NaNs (not a number) in the data set is an annoying problem. You have to either drop the missing rows or fill them up with a mean or interpolated values.

Preprocess data in Python – Step by step:

- 1. Load data in Pandas.
- 2. Drop columns that aren't useful.
- 3. Drop rows with missing values.
- 4. Create dummy variables.
- 5. Take care of missing data.
- 6. Convert the data frame to NumPy.
- 7. Divide the data set into training data and test data.

1.Load data in Pandas:

To work on the data, you can either load the CSV in Excel or in <u>Pandas</u>. For the purposes of this tutorial, we'll load the CSV data in Pandas.

```
[ ] import pandas as pd
    df = pd.read_csv("database.csv")
```

Let's take a look at the data format below:

```
[ ] df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 23412 entries, 0 to 23411
    Data columns (total 21 columns):
                                     Non-Null Count Dtype
                                     23412 non-null object
         Time
                                     23412 non-null
         Latitude
                                     23412 non-null
                                                     float64
         Longitude
                                     23412 non-null
                                     23412 non-null
                                                     object
         Depth
                                     23412 non-null
                                                     float64
         Depth Error
                                     4461 non-null
                                                     float64
         Depth Seismic Stations
                                   7097 non-null
                                                     float64
                                     23412 non-null
        Magnitude
                                                     float64
        Magnitude Type
                                     23409 non-null
                                                     object
     10 Magnitude Error
                                     327 non-null
                                                     float64
     11 Magnitude Seismic Stations 2564 non-null
                                                     float64
     12 Azimuthal Gap 7299 non-null
13 Horizontal Distance 1604 non-null
                                                     float64
     14 Horizontal Error
                                     1156 non-null
                                   17352 non-null
     15 Root Mean Square
                                                     float64
     16 ID
                                     23412 non-null
     19 Magnitude Source
                                     23412 non-null object
                                     23412 non-null object
    dtypes: float64(12), object(9)
    memory usage: 3.8+ MB
```

2. Drop Columns That Aren't Useful:Let's try to drop some of the columns which won't contribute much to our machine learning model. We'll start with Date and Time.

```
[ ] cols=['Date','Time']
    df=df.drop(cols, axis=1)
df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 23412 entries, 0 to 23411
    Data columns (total 19 columns):
     # Column
                                       Non-Null Count Dtype
         Latitude
                                       23412 non-null
                                                        float64
         Longitude
                                                        float64
          Type
                                       23412 non-null
                                                        object
         Depth
                                       23412 non-null
         Depth Error
                                       4461 non-null
         Depth Seismic Stations 7097 non-null
         Magnitude
                                       23412 non-null
                                                        float64
                                       23409 non-null object
         Magnitude Type
         Magnitude Error
                                       327 non-null
                                                        float64
         Magnitude Seismic Stations 2564 non-null
                                                         float64
     11 Horizontal Distance 1604 non-null
12 Horizontal From
                                     1604 non-null float64
1156 non-null float64
17352 non-null float64
23412 non-null object
                                                        float64
     13 Root Mean Square
                                                        float64
     14 TD
     15 Source
                                       23412 non-null
                                                        object
                                                        object
     17 Magnitude Source
                                       23412 non-null
                                                        object
                                       23412 non-null object
    dtypes: float64(12), object(7)
    memory usage: 3.4+ MB
```

3. Drop Rows With Missing Values: Next we can drop all rows in the data that have missing values (NaNs). Here's how:

```
[ ] df=df.dropna()
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 14 entries, 565 to 22238
Data columns (total 19 columns):
                                                   Non-Null Count Dtype
            Longitude
                                                                          float64
           Type
Depth
Depth Error
                                                                          object
                                                    14 non-null
                                                                          float64
                                                   14 non-null
            Depth Seismic Stations
Magnitude
                                                   14 non-null
14 non-null
                                                                          float64
float64
            Magnitude Type
Magnitude Error
                                                                          object
float64
                                                   14 non-null

    Magnitude Seismic Stations 14 non-null
    Azimuthal Gap 14 non-null

                                                                          float64
float64
        11 Horizontal Distance
       12 Horizontal Error
                                                    14 non-null
                                                                          float64
       14 ID
                                                   14 non-null
                                                                          object
       15 Source
16 Location Source
                                                    14 non-null
                                                                          object
       17 Magnitude Source
18 Status
                                                    14 non-null
      dtypes: float64(12), object(7) memory usage: 2.2+ KB
```

4. Creating Dummy Variables

Instead of wasting our data, let's convert the Latitude and Longitude to columns in Pandas and drop them after conversion.

```
[ ] dummies=[]
  cols=['Latitude', 'Longitude']
  for col in cols:
    dummies.append(pd.get_dummies(df[col]))
```

Then..

```
database_dummies=pd.concat(dummies, axis=1)
```

Finally we **concatenate** to the original data frame, column-wise:

```
df=pd.concat((df,database_dummies), axis=1)
```

Now that we converted Latitude and Longitude values into columns, we drop the redundant columns

from the data frame.

```
df=df.drop(['Latitude', 'Longitude'], axis=1)
```

Let's take a look at the new data frame:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 14 entries, 565 to 22238
Data columns (total 45 columns):
    Column
                                 Non-Null Count Dtype
    Type
                                 14 non-null
    Depth
                                 14 non-null
    Depth Error
                                 14 non-null
                                                 float64
    Depth Seismic Stations
                                                 float64
    Magnitude
    Magnitude Type
   Magnitude Error
                                 14 non-null
                                                 float64
    Magnitude Seismic Stations 14 non-null
                                                 float64
   Azimuthal Gap
                                 14 non-null
                                                 float64
    Horizontal Distance
                                 14 non-null
                                                 float64
10 Horizontal Error
                                14 non-null
                                                 float64
    Root Mean Square
                                 14 non-null
                                                 float64
                                14 non-null
                                                 object
 13 Source
                                 14 non-null
                                                 object
 14 Location Source
                                14 non-null
                                                 object
 15 Magnitude Source
                                14 non-null
                                                 object
 16 Status
                                 14 non-null
                                                 object
    18.045
                                 14 non-null
                                                 uint8
 18 30.25
                                 14 non-null
                                                 uint8
                                 14 non-null
                                                 uint8
                                 14 non-null
                                                 uint8
 21 37.2788333
                                 14 non-null
                                                 uint8
                                 14 non-null
23 37.2953333
24 37.2965
                                 14 non-null
                                                 uint8
 25 37.3005
                                 14 non-null
                                 14 non-null
                                                 uint8
    38.1383333
                                 14 non-null
                                                 uint8
                                 14 non-null
                                                 uint8
   46.2073333
                                 14 non-null
```

```
31
    -122.188
                                  14 non-null
                                                  uint8
 32
    -118.3913333
                                  14 non-null
                                                  uint8
 33
    -116.5341667
                                  14 non-null
                                                  uint8
 34
   -116.4736667
                                  14 non-null
                                                  uint8
 35
    -116.4606667
                                  14 non-null
                                                  uint8
    -116.4556667
                                  14 non-null
 36
                                                  uint8
                                  14 non-null
                                                  uint8
 37
    -116.4115
                                  14 non-null
 38
     -116.4083333
                                                  uint8
                                 14 non-null
 39
    -116.3686667
                                                  uint8
40
    -116.346
                                  14 non-null
                                                  uint8
    -116.3331667
                                  14 non-null
                                                  uint8
 41
42
    -114.8721
                                  14 non-null
                                                  uint8
43
    -114.8
                                  14 non-null
                                                  uint8
44
    -68.3509
                                  14 non-null
                                                  uint8
dtypes: float64(10), object(7), uint8(28)
memory usage: 2.4+ KB
```

Let's compute a median or interpolate() all the ages and fill those missing age values.

Pandas has an interpolate() function that will replace all the missing NaNs to values.

4. Take Care of Missing Data

```
df['Type']=df['Type'].interpolate()
```

Now let's observe the data columns. Notice 'Close' is now interpolated with imputed new values.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 14 entries, 565 to 22238
Data columns (total 45 columns):
     Column
                                     Non-Null Count Dtype
     Type
                                     14 non-null
                                                        object
                                    14 non-null
                                                       float64
     Depth
    Depth Error 14 non-null
Depth Seismic Stations 14 non-null
                                                        float64
                                                       float64
4 Magnitude
                                                       float64
                         14 non-null
14 non-null
5 Magnitude Type
                                                       object
    Magnitude Error
                                     14 non-null
                                                        float64
    Magnitude Seismic Stations 14 non-null
                                                        float64
8 Azimuthal Gap 14 non-null
9 Horizontal Distance 14 non-null
10 Horizontal Error 14 non-null
11 Root Mean Square 14 non-null
12 ID 14 non-null
                                                       float64
                                                       float64
                                                        float64
                                                       float64
                                                       object
                                   14 non-null
13 Source
                                                       object
14 Location Source 14 non-null
15 Magnitude Source 14 non-null
16 Status 14 non-null
                                                       object
                                                       object
                                   14 non-null
                                                       object
17 18.045
                                   14 non-null
                                                       uint8
18 30.25
19 37.2315
                                    14 non-null
14 non-null
                                                       uint8
                                                       uint8
                                   14 non-null
20 37.245
                                                       uint8
21 37.2788333
                                   14 non-null
                                                       uint8
22 37.2901667
23 37.2953333
                                   14 non-null
14 non-null
                                                       uint8
                                                       uint8
24 37.2965
                                    14 non-null
                                                       uint8
25 37.3005
                                    14 non-null
                                                       uint8
                                     14 non-null
                                                       uint8
     37.3141667
                                     14 non-null
                                                       uint8
28 38.1383333
                                     14 non-null
                                                       uint8
 29 41.1444
                                     14 non-null
                                                       uint8
30 46.2073333
                                    14 non-null
                                                       uint8
```

```
31 -122.188
                                14 non-null
                                               uint8
 32 -118.3913333
                                14 non-null
                                               uint8
 33 -116.5341667
                                14 non-null
                                               uint8
 34 -116.4736667
                                14 non-null
                                               uint8
 35 -116.4606667
                                14 non-null
                                               uint8
 36 -116.4556667
                                14 non-null
                                               uint8
 37 -116.4115
                                14 non-null
                                               uint8
 38 -116.4083333
                                14 non-null
                                               uint8
 39
    -116.3686667
                                14 non-null
                                               uint8
 40 -116.346
                                14 non-null
                                               uint8
 41 -116.3331667
                                14 non-null
                                               uint8
 42 -114.8721
                                14 non-null
                                               uint8
 43 -114.8
                                14 non-null
                                               uint8
 44 -68.3509
                                14 non-null
                                               uint8
dtypes: float64(10), object(7), uint8(28)
memory usage: 2.4+ KB
```

6. Convert the Data Frame to NumPy: Now that we've converted all the data to integers, it's time to prepare the data for machine learning models. This is where scikit-learn and NumPy come into play: X= Input set with 14 attributes y = Small y output, in this case Survived

Now we convert our data frame from Pandas to NumPy and we assign input and output:

```
X=df.values
y=df['Root Mean Square'].values
```

still has Root Mean values in it, which should not be there. So we drop in the NumPy Square

column, which is the first column.

Χ

```
import numpy as np
X=np.delete(x, 1, axis=1)
```

7. Divide the Data Set Into Training Data and Test Data

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)