

รายงาน

เรื่อง

ระบบควบคุมสภาพอากาศในเรือนกระจกโดยใช้ Fuzzy Logic : Mamdani

โดย

น.ส. ภัทรจาริน ผคุงกิจเจริญ รหัสนักศึกษา 650610851

เสนอ

รศ.คร. ศันสนีย์ เอื้อพันธ์วิริยะกุล

รายงานนี้เป็นส่วนหนึ่งของรายวิชา CPE 261456
Introduction to Computational Intelligence
สาขาวิชาวิศวกรรมหุ่นยนต์และปัญญาประคิษฐ์
ภาคเรียนที่ 1 ปีการศึกษา 2567

มหาวิทยาลัยเชียงใหม่

สารบัญ

ส่วนที่ 1

- 1.1 ลักษณะการทำงานของระบบ
- 1.2 Fuzzy Rules

ส่วนที่ 2

2.1 simulation ของระบบ ผลการทดลอง และวิเคราะห์

ส่วนที่ 3

3.1 โปรแกรม

ส่วนที่ 1

1.1 ลักษณะการทำงานของระบบ

ระบบควบคุมสภาพอากาศในเรือนกระจกนี้ถูกออกแบบมาเพื่อควบคุมอุณหภูมิ ความชื้น และแสงให้เหมาะสม สำหรับการเจริญเติบ โตของพืช โดยใช้หลักการของ Fuzzy Logic ในการควบคุม ซึ่งช่วยปรับพัคลม ระบบพ่นหมอก และ ไฟ LED ตามสภาพแวคล้อมที่เปลี่ยนแปลง ระบบมีอินพุต 3 ค่า ได้แก่ : อุณหภูมิ (°C), ความชื้น (%), แสง (%) และ เอาท์พุต 3 ค่า ได้แก่ : พัคลม: ปรับความแรงของพัคลม (0-100%), ระบบพ่นหมอก: ปรับความเข้มของระบบพ่นหมอก (0-100%), ไฟ LED: ปรับความเข้มของไฟ LED (0-100%) ระบบจะทำงานตามกฎที่ออกแบบไว้เพื่อตอบสนองต่อ สภาพแวคล้อมที่เปลี่ยนแปลง

1.2 Fuzzy Rules

ถ้า อุณหภูมิสูง และ ความชื้นสูง และ แสงมาก \rightarrow เพิ่ม พัคลม, ลด ระบบพ่นหมอก, ลด ไฟLED ถ้า อุณหภูมิสูง และ ความชื้นสูง และ แสงน้อย \rightarrow เพิ่ม พัคลม, ลด ระบบพ่นหมอก, เพิ่ม ไฟLED ถ้า อุณหภูมิสูง และ ความชื้นต่ำ และ แสงมาก \rightarrow เพิ่ม พัคลม, เพิ่ม ระบบพ่นหมอก, ลด ไฟLED ถ้า อุณหภูมิสูง และ ความชื้นต่ำ และ แสงน้อย \rightarrow เพิ่ม พัคลม, เพิ่ม ระบบพ่นหมอก, เพิ่ม ไฟLED ถ้า อุณหภูมิต่ำ และ ความชื้นสูง และ แสงมาก \rightarrow ลด พัคลม, ลด ระบบพ่นหมอก, ลด ไฟLED ถ้า อุณหภูมิต่ำ และ ความชื้นสูง และ แสงน้อย \rightarrow ลด พัคลม, ลด ระบบพ่นหมอก, เพิ่ม ไฟLED ถ้า อุณหภูมิต่ำ และ ความชื้นต่ำ และ แสงน้อย \rightarrow ลด พัคลม, เพิ่ม ระบบพ่นหมอก, ลด ไฟLED ถ้า อุณหภูมิต่ำ และ ความชื้นต่ำ และ แสงน้อย \rightarrow ลด พัคลม, เพิ่ม ระบบพ่นหมอก, เพิ่ม ไฟLED ถ้า อุณหภูมิต่ำ และ ความชื้นต่ำ และ แสงน้อย \rightarrow ลด พัคลม, เพิ่ม ระบบพ่นหมอก, เพิ่ม ไฟLED

ส่วนที่ 2

2.1 simulation ของระบบ ผลการทดลอง และวิเคราะห์

<u>ตัวอย่าง</u> [ถ้า อุณหภูมิสูง และ ความชื้นสูง และ แสงมาก → เพิ่ม พัดลม, ลด ระบบพ่นหมอก, ลด ไฟLED]
 <u>ใช้ค่าอินพุตตัวอย่างเพื่อทดสอบการทำงานของระบบ</u> : อุณหภูมิ: 30°C "high", ความชื้น: 70% "high", แสง: 90% "high"
 <u>ผลลัพธ์ที่ได้รับคือ</u> : ความเร็วพัดลม 78.37% "high", ระบบพ่นหมอก 21.63% "low", ไฟ LED 21.63% "low"

<u>การวิเคราะห์ผลลัพธ์</u>

ความเร็วพัดลม: การตั้งค่าความเร็วพัดลมที่สูง 78.37% เป็นไปตามการควบคุมที่ตอบสนองต่ออุณหภูมิที่สูง ในกรณีนี้ พัดลม ต้องทำงานมากขึ้นเพื่อช่วยระบายความร้อนออกจากเรือนกระจก

ระบบพ่นหมอก: การตั้งค่าระบบพ่นหมอกที่ 21.63% แสดงถึงความต้องการลดความชื้นในสภาพที่มีความชื้นสูง ไฟ LED: การตั้งค่าไฟ LED ที่ 21.63% แสดงถึงการลดแสงสว่าง ในกรณีที่แสงในเรือนกระจกสูง <u>ตัวอย่าง</u> [ถ้า อุณหภูมิสูง และ ความชื้นสูง และ แสงน้อย → เพิ่ม พัดลม, ลด ระบบพ่นหมอก, เพิ่ม ไฟLED]
 <u>ใช้ค่าอินพุตตัวอย่างเพื่อทดสอบการทำงานของระบบ</u> : อุณหภูมิ: 35°C "high", ความชื้น: 70% "high", แสง: 30% "low"
 ผลลัพธ์ที่ได้รับคือ : ความเร็วพัดลม 79.12% "high", ระบบพ่นหมอก 20.88% "low", ไฟ LED 79.12% "high"

การวิเคราะห์ผลลัพธ์

ความเร็วพัดลม: การทำงานของพัดลมที่เพิ่มขึ้นถึง 79.12% มีเป้าหมายเพื่อช่วยระบายความร้อน เนื่องจากอุณหภูมิในเรือน กระจกสูง

ระบบพ่นหมอก: ระบบพ่นหมอกลดลงเหลือ 20.88% เนื่องจากความชื้นในเรือนกระจกอยู่ในระดับสูงและไม่จำเป็นต้องเพิ่ม ความชื้นมากขึ้น

ไฟ LED: ไฟ LED ทำงานถึง 79.12% เพื่อเพิ่มแสง เนื่องจากระดับแสงที่มียังไม่เพียงพอต่อการเจริญเติบโตของพืช

<u>ตัวอย่าง</u> [ถ้า อุณหภูมิต่ำ และ ความชื้นต่ำ และ แสงมาก → ลด พัดลม, เพิ่ม ระบบพ่นหมอก, ลด ไฟLED]
 <u>ใช้ค่าอินพุตตัวอย่างเพื่อทดสอบการทำงานของระบบ</u> : อุณหภูมิ: 17°C "low", ความชื้น: 35% "low", แสง: 90% "high"
 ผลลัพธ์ที่ได้รับคือ : ความเร็วพัดลม 17.20% "low", ระบบพ่นหมอก 82.80% "high", ไฟ LED 17.20% "low"

<u>การวิเคราะห์ผลลัพธ์</u>

ความเร็วพัดลม: เนื่องจากอุณหภูมิอยู่ที่ระดับต่ำ ระบบจึงลดการทำงานของพัดลมลงมาเพียง 17.20% ระบบพ่นหมอก: ระบบพ่นหมอกถูกเพิ่มขึ้นถึง 82.80% เพื่อเพิ่มความชื้นในอากาศ เนื่องจากความชื้นในปัจจุบันต่ำ ไฟ LED: การทำงานของไฟ LED ถูกลดลงถึง 17.20% เนื่องจากแสงจากธรรมชาติมีมากเพียงพอแล้ว

ส่วนที่ 3

GITHUB: https://github.com/Pattharajrin/261456 CI HW2 Y3-1.git

การนำเข้าใลบรารี : numpy: ใช้สำหรับจัดการอาร์เรย์และการคำนวณทางคณิตศาสตร์

skfuzzy: ใดบรารีสำหรับทำงานกับฟัชซี่ลอจิก

control as ctrl: สำหรับสร้างระบบควบคุมฟัชซี่ลอจิก

matplotlib.pyplot: ใช้สำหรับการแสดงผลกราฟ

```
    # กำหนดด้วนปร Fuzzy
    temperature = ctrl.Antecedent(np.arange(15, 41, 1), 'temperature') # ด้วนปร fuzzy สำหรับอุณหภูมิ (°C)
    humidity = ctrl.Antecedent(np.arange(30, 91, 1), 'humidity') # ด้วนปร fuzzy สำหรับความขึ้น (%)
    light = ctrl.Antecedent(np.arange(0, 101, 1), 'light') # ด้วนปร fuzzy สำหรับแสง (%)

# ด้วนปรผลลัพธ์ fuzzy
fan = ctrl.Consequent(np.arange(0, 101, 1), 'fan') # ด้วนปร fuzzy สำหรับความเร็วพัดลม (%)
misting = ctrl.Consequent(np.arange(0, 101, 1), 'misting') # ด้วนปร fuzzy สำหรับ ประบบพ่นหมอก (%)
led = ctrl.Consequent(np.arange(0, 101, 1), 'led') # ด้วนปร fuzzy สำหรับไฟ LED (%)
```

การกำหนดตัวแปร Fuzzy (Antecedents และ Consequents):

กำหนดตัวแปร Antecedents (อินพุต): temperature (อุณหภูมิ), humidity (ความชื้น), light (แสง)

กำหนดตัวแปร Consequents (ผลลัพธ์): fan (พัดลม), misting (ระบบพ่นหมอก), led (ไฟ LED)

```
# ฟังก์ชันสมาชิก (Membership Functions) สำหรับแดละดัวแปร
temperature['low'] = fuzz.trimf(temperature.universe, [15, 15, 28]) # ฟังก์ชันสมาชิก "low" ของอุณหภูมิ
temperature['high'] = fuzz.trimf(temperature.universe, [26, 40, 40]) # ฟังก์ชันสมาชิก "high" ของอุณหภูมิ
humidity['low'] = fuzz.trimf(humidity.universe, [30, 30, 61]) # ฟังก์ชันสมาชิก "low" ของความชิ้น
humidity['high'] = fuzz.trimf(humidity.universe, [59, 90, 90]) # ฟังก์ชันสมาชิก "low" ของความชิ้น
light['low'] = fuzz.trimf(light.universe, [49, 100, 100]) # ฟังก์ชันสมาชิก "low" ของแสง
fan['low'] = fuzz.trimf(fan.universe, [6, 0, 50]) # ฟังก์ชันสมาชิก "low" ของความเร็วพัดลม
fan['high'] = fuzz.trimf(fan.universe, [50, 100, 100]) # ฟังก์ชันสมาชิก "low" ของความเร็วพัดลม
misting['low'] = fuzz.trimf(misting.universe, [6, 0, 50]) # ฟังก์ชันสมาชิก "low" ของระบบพ่นหมอก
led['low'] = fuzz.trimf(led.universe, [6, 0, 50]) # ฟังก์ชันสมาชิก "low" ของระบบพ่นหมอก
led['low'] = fuzz.trimf(led.universe, [6, 0, 50]) # ฟังก์ชันสมาชิก "low" ของระบบพ่นหมอก
led['high'] = fuzz.trimf(led.universe, [50, 100, 100]) # ฟังก์ชันสมาชิก "low" ของไฟ LED
led['high'] = fuzz.trimf(led.universe, [50, 100, 100]) # ฟังก์ชันสมาชิก "low" ของไฟ LED
```

การกำหนดฟังก์ชันสมาชิก (Membership Functions) : กำหนด ฟังก์ชันสมาชิก สำหรับตัวแปรแต่ละตัวในรูปแบบของฟังก์ชัน แบบสามเหลี่ยม (Triangular Membership Function: trimf) โดยระบุค่าเริ่มต้น, ค่ากลาง, และค่าสูงสุด

```
# กำหนดกฎควบคุม (Rules)
# ด้วอย่างกฎการควบคุมระบบ Fuzzy สำหรับสภาพอากาศในเรือนกระจก
rule1 = ctrl.Rule(temperature['high'] & humidity['high'] & light['high'], (fan['high'], misting['low'], led['low']))
rule2 = ctrl.Rule(temperature['high'] & humidity['high'] & light['low'], (fan['high'], misting['low'], led['high']))
rule3 = ctrl.Rule(temperature['high'] & humidity['low'] & light['high'], (fan['high'], misting['high'], led['low']))
rule4 = ctrl.Rule(temperature['high'] & humidity['low'] & light['low'], (fan['high'], misting['high'], led['high']))
rule5 = ctrl.Rule(temperature['low'] & humidity['high'] & light['high'], (fan['low'], misting['low'], led['high']))
rule6 = ctrl.Rule(temperature['low'] & humidity['low'] & light['high'], (fan['low'], misting['high'], led['high']))
rule8 = ctrl.Rule(temperature['low'] & humidity['low'] & light['low'], (fan['low'], misting['high'], led['high']))
```

การสร้างกฎควบคุม (Fuzzy Rules) : สร้างกฎควบคุมฟัชซี่เพื่อกำหนดการทำงานของพัดลม, ระบบพ่นหมอก, และ ไฟ LED โดยอ้างอิงจากสภาวะของอุณหภูมิ, ความชื้น, และแสง

```
    # สร้างระบบควบคุมและการจำลอง
    control_system = ctrl.ControlSystem([rule1, rule2, rule3, rule4, rule5, rule6, rule7, rule8])
    simulation = ctrl.ControlSystemSimulation(control_system)
```

การสร้างระบบควบคุมและการจำลอง : สร้างระบบควบคุมพืชซี่ (ControlSystem) จากกฎที่กำหนดและสร้างการจำลอง (ControlSystemSimulation) เพื่อตรวจสอบผลลัพธ์

```
    # ทดสอบระบบควบคุมด้วยค่าอินพุด
    simulation.input['temperature'] = 30 # ตั้งค่าอุณหภูมิ (°C) เพื่อทดสอบ (15-40 °C)
    simulation.input['humidity'] = 70 # ตั้งค่าความชื้น (%) เพื่อทดสอบ (30-90 %)
    simulation.input['light'] = 90 # ตั้งค่าแสง (%) เพื่อทดสอบ (0-100 %)
```

การทดสอบระบบควบคุมด้วยค่าอินพุต : ตั้งค่าค่าของอุณหภูมิ, ความชื้น, และแสงเพื่อตรวจสอบการทำงานของระบบ

```
# ดำนวณผลลัพธ์จากการทดสอบ
simulation.compute()
# แสดงผลลัพธ์
print(f"Fan Speed: {simulation.output['fan']:.2f}%") # แสดงผลความเร็วพัดลม
print(f"Misting System: {simulation.output['misting']:.2f}%") # แสดงผลระบบฟนหมอก
print(f"LED Lights: {simulation.output['led']:.2f}%") # แสดงผลไฟ LED
```

การคำนวณผลลัพธ์และแสดงผล : คำนวณผลลัพธ์ตามอินพุตที่ตั้งไว้ และแสดงผลความเร็วพัดลม, ระบบพ่นหมอก, และไฟ LED

```
# แสดงกราฟฟังก์ชันสมาชิก
fan.view(simulation) # แสดงกราฟฟังก์ชันสมาชิกของพัดลม
misting.view(simulation) # แสดงกราฟฟังก์ชันสมาชิกของระบบพ่นหมอก
led.view(simulation) # แสดงกราฟฟังก์ชันสมาชิกของไฟ LED

# แสดงผลลัพธ์กราฟฟังก์ชันสมาชิก
plt.show()
```

การแสดงกราฟฟังก์ชันสมาชิก : แสดงกราฟฟังก์ชันสมาชิกของตัวแปรผลลัพธ์ (พัคลม, ระบบพ่นหมอก, ไฟ LED) และ แสดงผลด้วย plt.show()