Indice du normalisateur du centralisateur d'un élément nilpotent dans une algèbre de Lie semi-simple.

Anne Moreau

Abstract

The index of a complex Lie algebra is the minimal codimension of its coadjoint orbits. Let us suppose $\mathfrak g$ semisimple, then its index, ind $\mathfrak g$, is equal to its rank, rk $\mathfrak g$. The goal of this paper is to establish a simple general formula for the index of $\mathfrak n(\mathfrak g^\xi)$, for ξ nilpotent, where $\mathfrak n(\mathfrak g^\xi)$ is the normaliser in $\mathfrak g$ of the centraliser $\mathfrak g^\xi$ of ξ . More precisely, we have to show the following result, conjectured by D. Panyushev [5]:

ind
$$\mathfrak{n}(\mathfrak{g}^{\xi}) = \operatorname{rk} \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^{\xi}),$$

where $\mathfrak{z}(\mathfrak{g}^{\xi})$ is the center of \mathfrak{g}^{ξ} . D. Panyushev obtained in [5] the inequality ind $\mathfrak{n}(\mathfrak{g}^{\xi}) \geq \operatorname{rg} \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^{\xi})$ and we show that the maximality of the rank of a certain matrix with entries in the symmetric algebra $\mathcal{S}(\mathfrak{g}^{\xi})$ implies the other inequality. The main part of this paper consists of the proof of the maximality of the rank of this matrix.

Introduction

L'indice d'une algèbre de Lie complexe est la codimension minimale de ses orbites coadjointes. Si \mathfrak{g} est une algèbre de Lie semi-simple complexe, son indice ind \mathfrak{g} est égal à son rang, rg \mathfrak{g} . Plus généralement, l'indice d'une représentation arbitraire V d'une algèbre de Lie complexe \mathfrak{q} est la codimension minimale de ses orbites sous l'action contragrédiente. On le note ind (\mathfrak{q}, V) .

Dans tout ce qui suit, \mathfrak{g} est une algèbre de Lie semi-simple complexe de groupe adjoint G. On identifie \mathfrak{g} à son image par la représentation adjointe. Pour x dans \mathfrak{g} , on note \mathfrak{g}^x son centralisateur, $\mathfrak{z}(\mathfrak{g}^x)$ le centre de \mathfrak{g}^x et $\mathfrak{n}(\mathfrak{g}^x)$ le normalisateur dans \mathfrak{g} du centralisateur \mathfrak{g}^x . Le but de cet article est de donner une expression simple de l'indice de $\mathfrak{n}(\mathfrak{g}^\xi)$, pour ξ élément nilpotent de \mathfrak{g} . L'algèbre $\mathfrak{n}(\mathfrak{g}^\xi)$ agit sur le sous-espace \mathfrak{g}^ξ par la représentation adjointe et on établit en outre une formule pour l'indice, $\operatorname{ind}(\mathfrak{n}(\mathfrak{g}^\xi), \mathfrak{g}^\xi)$, du $\mathfrak{n}(\mathfrak{g}^\xi)$ -module \mathfrak{g}^ξ . Plus précisément, on se propose de montrer les deux résultats suivants, conjecturés par D. Panyushev en [5], Conjectures 6.1 et 6.2 :

Théorème 1 Soit ξ un élément nilpotent de \mathfrak{g} . Alors

$$\operatorname{ind} \mathfrak{n}(\mathfrak{g}^{\xi}) = \operatorname{rg} \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^{\xi}).$$

Théorème 2 Soit ξ un élément nilpotent de \mathfrak{g} . Alors

$$\mathrm{ind}\; (\mathfrak{n}(\mathfrak{g}^\xi),\mathfrak{g}^\xi) = \mathrm{rg}\; \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^\xi) \cdot$$

Notons que les deux relations précédentes sont indépendantes du choix d'un représentant dans l'orbite de ξ sous l'action du groupe adjoint. Dans [5], D. Panyushev dresse une liste de cas où ces deux égalités sont satisfaites. Remarquons à ce propos qu'il obtient seulement les relations : ind $\mathfrak{n}(\mathfrak{g}^{\xi}) = \operatorname{ind} \mathfrak{g}^{\xi} - \operatorname{dim} \mathfrak{z}(\mathfrak{g}^{\xi})$ et ind $(\mathfrak{n}(\mathfrak{g}^{\xi}), \mathfrak{g}^{\xi}) = \operatorname{ind} \mathfrak{g}^{\xi} - \operatorname{dim} \mathfrak{z}(\mathfrak{g}^{\xi})$. La relation ind $\mathfrak{g}^{\xi} = \operatorname{rg} \mathfrak{g}$ n'est en effet énoncée dans [5] que sous forme de conjecture, [5], Conjecture 3.2 d'Elashvili. Cette égalité est démontrée en [1], Théorème 5.5. Dans tous ses exemples, il obtient ces relations en montrant que le groupe $N_{\mathfrak{g}}(\xi)$ a une orbite ouverte dans $\mathfrak{z}(\mathfrak{g}^{\xi})^*$, où $N_{\mathfrak{g}}(\xi)$ désigne le sous-groupe connexe de G d'algèbre de Lie $\mathfrak{n}(\mathfrak{g}^{\xi})$. Cette condition est, comme on aura l'occasion de le voir, suffisante mais ne permet pas de traiter tous les cas.

La première partie regroupe un certain nombre de résultats autour du normalisateur du centralisateur d'un élément nilpotent. On introduit en outre dans cette partie une propriété (P) qui interviendra dans la suite. On montre dans la deuxième partie que le théorème 1 est en fait une conséquence du théorème 2 et qu'obtenir l'identité du théorème 2 équivaut à montrer qu'une certaine matrice à coefficients dans $\mathcal{S}(\mathfrak{g}^{\xi})$ est de rang maximal. On consacre les deux parties qui suivent à la démonstration de ce dernier point dans deux cas particuliers : lorsque \mathfrak{g} est une algèbre de Lie simple classique (partie 3) et lorsque l'élément ξ vérifie la propriété (P) (partie 4). La troisième partie utilise des propriétes géométriques des algèbres de Lie classiques tandis que la quatrième partie repose pour une large part sur des résultats exposés dans [1] par J.Y. Charbonnel. On étudie dans la dernière partie la propriété (P) pour achever la démonstration des théorèmes 1 et 2 dans le cas exceptionnel. La fin de la démonstration consiste à vérifier certaines conditions sur un nombre fini de cas à l'aide du logiciel GAP4.

1 Résultats préliminaires.

Soit ξ un élément nilpotent de \mathfrak{g} . Puisque ξ est nilpotent, le théorème de Jacobson-Morosov assure l'existence de deux éléments ρ et η dans \mathfrak{g} pour lesquels ξ, ρ, η satisfont les relations de \mathfrak{sl}_2 -triplet :

$$[\rho, \xi] = 2\xi,$$
 $[\xi, \eta] = \rho,$ $[\rho, \eta] = -2\eta$

Le normalisateur $\mathfrak{n}(\mathfrak{g}^{\xi})$ du centralisateur \mathfrak{g}^{ξ} de ξ est, par définition, l'ensemble des y de \mathfrak{g} tels qu'on ait l'inclusion : $[y,\mathfrak{g}^{\xi}]\subset\mathfrak{g}^{\xi}$. C'est aussi le normalisateur du centre $\mathfrak{z}(\mathfrak{g}^{\xi})$ de \mathfrak{g}^{ξ} , comme on le vérifie facilement. La proposition suivante rassemble un certain nombre de propriétés du normalisateur. On en trouve une preuve dans [7], Chapitre XVII, Propositions 5.6 et 5.12.

Proposition 1 On a les relations suivantes :

- 1) $\mathfrak{n}(\mathfrak{g}^{\xi}) = \{ y \in \mathfrak{g} \mid [y, \xi] \in \mathfrak{z}(\mathfrak{g}^{\xi}) \}.$
- 2) $\mathfrak{n}(\mathfrak{g}^{\xi}) = \mathfrak{g}^{\xi} \oplus [\eta, \mathfrak{z}(\mathfrak{g}^{\xi})].$ En particulier, $\dim \mathfrak{n}(\mathfrak{g}^{\xi}) = \dim \mathfrak{g}^{\xi} + \dim \mathfrak{z}(\mathfrak{g}^{\xi})$ et on a l'égalité $[\mathfrak{n}(\mathfrak{g}^{\xi}), \xi] = \mathfrak{z}(\mathfrak{g}^{\xi}).$

Si $\mathfrak u$ est un sous-espace de $\mathfrak g$, on note $\mathfrak u^\perp$ l'orthogonal de $\mathfrak u$ pour la forme de Killing \langle , \rangle de $\mathfrak g$. On va décrire l'orthogonal de certains sous-espaces. On a la proposition bien connue dont la démonstration est rappelée en [1], Lemme 5.6 :

Proposition 2 L'orthogonal de \mathfrak{g}^{ξ} est le sous-espace $[\xi, \mathfrak{g}]$ et on a la décomposition $\mathfrak{g}^{\xi} \oplus [\eta, \mathfrak{g}] = \mathfrak{g}$.

Puisque $\mathfrak{g}^{\eta\perp}=[\eta,\mathfrak{g}]$, la deuxième relation permet d'identifier le dual de \mathfrak{g}^{ξ} à \mathfrak{g}^{η} via la forme de Killing.

Soit \mathfrak{g}' un sous-espace de \mathfrak{g}^{ξ} stable par $\mathrm{ad}\rho$. Les sous-espaces \mathfrak{g}^{ξ} et $[\eta,\mathfrak{g}']$ ont une intersection nulle d'après la proposition 2 et on s'intéresse au sous-espace $\mathfrak{g}^{\xi} \oplus [\eta,\mathfrak{g}']$ de \mathfrak{g} . Son orthogonal est décrit par la proposition suivante :

Proposition 3 Soit \mathfrak{g}' un sous-espace de \mathfrak{g}^{ξ} stable par $ad\rho$, alors on a :

$$(\mathfrak{g}^{\xi} \oplus [\eta, \mathfrak{g}'])^{\perp} = [\xi, \mathfrak{g}'^{\perp}] \cdot$$

Démonstration. Il est clair que \mathfrak{g}^{ξ} est contenu dans l'orthogonal de $[\xi, \mathfrak{g}'^{\perp}]$. Soit u dans \mathfrak{g}' , alors on a :

$$\langle [\eta, u], [\xi, \mathfrak{g'}^{\perp}] \rangle = \langle [[\eta, u], \xi], \mathfrak{g'}^{\perp} \rangle = \langle -[\rho, u], \mathfrak{g'}^{\perp} \rangle = \{0\},$$

car $[\rho, u]$ appartient à \mathfrak{g}' , puisque \mathfrak{g}' est stable par $\mathrm{ad}\rho$. On a ainsi montré que le sous-espace $\mathfrak{g}^{\xi} \oplus [\eta, \mathfrak{g}']$ est contenu dans l'orthogonal de $[\xi, \mathfrak{g}'^{\perp}]$. Calculons les dimensions des deux sous-espaces :

$$\dim (\mathfrak{g}^{\xi} \oplus [\eta, \mathfrak{g}'])^{\perp} = \dim \mathfrak{g} - (\dim \mathfrak{g}^{\xi} + \dim[\eta, \mathfrak{g}'])$$
$$= \dim \mathfrak{g} - (\dim \mathfrak{g}^{\xi} + (\dim \mathfrak{g}' - \dim(\mathfrak{g}' \cap \mathfrak{g}^{\eta})))$$
$$= \dim \mathfrak{g}'^{\perp} - (\dim \mathfrak{g}^{\xi} - \dim(\mathfrak{g}' \cap \mathfrak{g}^{\eta}))$$

et,

$$\dim([\xi, {\mathfrak{g}'}^{\perp}]) = \dim {\mathfrak{g}'}^{\perp} - \dim({\mathfrak{g}'}^{\perp} \cap {\mathfrak{g}}^{\xi}) \cdot$$

De la démonstration de la propostion 2, il résulte la décompositon $\mathfrak{g}' = \mathfrak{g}' \cap \mathfrak{g}^{\xi^{\perp}} \oplus \mathfrak{g}' \cap \mathfrak{g}^{\eta}$. De plus, on a :

$$\begin{aligned} \dim(\mathfrak{g}' \cap \mathfrak{g}^{\xi^{\perp}}) &= \dim \mathfrak{g} - \dim(\mathfrak{g}'^{\perp} + \mathfrak{g}^{\xi}) \\ &= \dim \mathfrak{g} - (\dim \mathfrak{g}'^{\perp} + \dim \mathfrak{g}^{\xi} - \dim(\mathfrak{g}'^{\perp} \cap \mathfrak{g}^{\xi}) \\ &= \dim \mathfrak{g}' - \dim \mathfrak{g}^{\xi} + \dim(\mathfrak{g}'^{\perp} \cap \mathfrak{g}^{\xi}) \cdot \end{aligned}$$

De cette égalité et de la décompostion précédente, on déduit la relation :

$$\dim \mathfrak{g}' = (\dim \mathfrak{g}' - \dim \mathfrak{g}^{\xi} + \dim(\mathfrak{g'}^{\perp} \cap \mathfrak{g}^{\xi})) + \dim(\mathfrak{g}' \cap \mathfrak{g}^{\eta}),$$

ce qui donne : $\dim(\mathfrak{g'}^{\perp} \cap \mathfrak{g}^{\xi}) = \dim \mathfrak{g}^{\xi} - \dim(\mathfrak{g'} \cap \mathfrak{g}^{\eta})$. Par suite les deux sous-espaces $\mathfrak{g}^{\xi} \oplus [\eta, \mathfrak{g'}]$ et $[\xi, \mathfrak{g'}^{\perp}]$ sont de même dimension et la proposition s'ensuit.

À l'aide de la proposition précédente, on retrouve l'orthogonal de sous-espaces connus. Lorsque le sous-espace \mathfrak{g}' est nul, on retrouve l'orthogonal de \mathfrak{g}^{ξ} . D'après [5], Théorème 2.4, on dispose de la décomposition $\mathfrak{z}(\mathfrak{g}^{\xi}) \oplus [\mathfrak{g}, \mathfrak{g}^{\eta}] = \mathfrak{g}$. On en déduit que l'orthogonal de $\mathfrak{z}(\mathfrak{g}^{\xi})$ est le sous-espace $[\mathfrak{g}, \mathfrak{g}^{\xi}]$. La proposition précédente appliquée à $\mathfrak{g}' = \mathfrak{z}(\mathfrak{g}^{\xi})$ permet alors de décrire l'orthogonal de $\mathfrak{n}(\mathfrak{g}^{\xi})$:

$$\mathfrak{n}(\mathfrak{g}^{\xi})^{\perp} = (\mathfrak{g}^{\xi} \oplus [\eta, \mathfrak{z}(\mathfrak{g}^{\xi})])^{\perp} = [\xi, [\mathfrak{g}^{\xi}, \mathfrak{g}]].$$

On a utilisé la proposition 1 pour la première égalité. Enfin, la proposition 2 et la proposition précédente, appliquées à $\mathfrak{g}'=\mathfrak{g}^{\xi}$, donnent l'orthogonal du sous-espace $\mathfrak{g}^{\xi}\oplus [\eta,\mathfrak{g}^{\xi}]$. Ce dernier sous-espace interviendra à plusieurs reprises dans la suite. On a :

$$(\mathfrak{g}^{\xi} \oplus [\eta, \mathfrak{g}^{\xi}])^{\perp} = [\xi, [\xi, \mathfrak{g}]] \cdot$$

On termine cette partie par l'introduction d'une propriété (P):

Définition 1 On note W le sous-espace propre de la restriction de $\mathrm{ad}\rho$ à $\mathfrak{z}(\mathfrak{g}^{\xi})$ relativement à la plus grande valeur propre. On dira que ξ vérifie la propriété (P) si, pour tout élément non nul v de $\mathfrak{z}(\mathfrak{g}^{\xi})$, le sous-espace W est contenu dans le sous-espace $[[\eta, \mathfrak{g}^{\xi}], v]$.

Il est clair que si ξ vérifie la propriété (P), il en est de même de tous les éléments de l'orbite de ξ sous l'action du groupe adjoint. On dira qu'une orbite nilpotente de $\mathfrak g$ vérifie la propriété (P) si l'un de ses représentants la vérifie. On dira enfin que $\mathfrak g$ vérifie la propriété (P) si toutes ses orbites nilpotentes distinguées non régulières vérifient la propriété (P).

2 Rappels sur l'indice d'une algèbre de Lie et premières réductions.

Soit \mathfrak{q} une algèbre de Lie complexe et φ une forme linéaire sur \mathfrak{q} . On désigne par \mathfrak{q}_{φ} l'ensemble des x de \mathfrak{q} tels que $\varphi([\mathfrak{q},x])=0$. Autrement dit $\mathfrak{q}_{\varphi}=\{x\in\mathfrak{q}\mid (\mathrm{ad}^*x)\cdot\varphi=0\}$, où $\mathrm{ad}^*:\mathfrak{q}\to\mathfrak{gl}(\mathfrak{q}^*)$ est la représentation coadjointe de \mathfrak{q} . On rappelle que l'indice de \mathfrak{q} , noté ind \mathfrak{q} , est défini par :

$$\operatorname{ind}\,\mathfrak{q}=\min_{\varphi\in\mathfrak{q}^*}\dim\mathfrak{q}_{\varphi}\;\cdot$$

L'indice d'une algèbre de Lie \mathfrak{q} ainsi défini est un entier lié à la représentation adjointe de \mathfrak{q} . Une méthode similaire, appliquée à une représentation de \mathfrak{q} arbitraire, permet de définir l'indice d'une représentation. Soit $\rho:\mathfrak{q}\to\mathfrak{gl}(V)$ une représentation de \mathfrak{q} . On note, de manière abusive, $s\cdot v$ à la place de $\rho(s)v$, pour s dans \mathfrak{q} et v dans V. De même, pour φ dans le dual V^* de V et pour s dans \mathfrak{q} , on note $s\cdot \varphi$ au lieu de $\rho^*(s)\varphi$ où ρ^* est la représentation contragrédiente à ρ . L'entier $\dim V - \max_{\varphi \in V^*} (\dim \mathfrak{q} \cdot \varphi)$ est appelé l'indice de V ou l'indice du \mathfrak{q} -module V. On le note $\inf(\rho,V)$ ou $\inf(\mathfrak{q},V)$ et il est clair que $\inf(\mathfrak{q},V) = \inf\mathfrak{q}$ au sens précédent.

On considère la forme bilinéaire à valeurs dans V:

$$\mathcal{K}(\mathfrak{q}, V) : \mathfrak{q} \times V \to V ; (s, v) \mapsto s \cdot v \cdot$$

En composant cette application avec un élément φ de V^* , on obtient une forme bilinéaire à valeurs dans $\mathbb C$:

$$\mathcal{K}(\mathfrak{q}, V)_{\omega} : \mathfrak{q} \times V \to V \stackrel{\varphi}{\to} \mathbb{C}$$
.

L'application $\mathcal{K}(\mathfrak{q},V)_{\varphi}$ peut être vue comme un élément de $\mathrm{Hom}(\mathfrak{q},V^*)$ et on vérifie facilement l'égalité :

$$\operatorname{ind} (\mathfrak{q}, V) = \dim V - \max_{\varphi \in V^*} (\operatorname{rang} \mathcal{K}(\mathfrak{q}, V)_{\varphi}) \cdot$$

Soit $n=\dim \mathfrak{q}$ et $m=\dim V$. En choisissant une base sur \mathfrak{q} et V, on peut considérer $\mathcal{K}(\mathfrak{q},V)$ comme une matrice de taille $m\times n$ à coefficients dans V, où V est identifié à la composante de degré 1 de l'algèbre symétrique $\mathcal{S}(V)$. Ainsi rang $\mathcal{K}(\mathfrak{q},V)=\max_{\varphi\in V^*}(\operatorname{rang}\mathcal{K}(\mathfrak{q},V)_{\varphi})$ et l'on obtient l'égalité :

$$\operatorname{ind}(\mathfrak{q}, V) = \dim V - \operatorname{rang} \mathcal{K}(\mathfrak{q}, V). \tag{1}$$

Pour $V = \mathfrak{q}$, on note $\mathcal{K}(\mathfrak{q})$ au lieu de $\mathcal{K}(\mathfrak{q},\mathfrak{q})$ et il vient :

$$\operatorname{ind}(\mathfrak{q}) = \dim \mathfrak{q} - \operatorname{rang} \mathcal{K}(\mathfrak{q}). \tag{2}$$

On s'intéresse maintenant à l'algèbre de Lie $\mathfrak{n}(\mathfrak{g}^{\xi})$ et on commence par examiner l'identité du théorème 1. On choisit une base e_1, \ldots, e_n de \mathfrak{g}^{ξ} telle que e_1, \ldots, e_m est une base de $\mathfrak{z}(\mathfrak{g}^{\xi})$, $m \leq n$. Alors la famille $\{e_1, \ldots, e_n, [\eta, e_1], \ldots, [\eta, e_m]\}$ est une base de $\mathfrak{n}(\mathfrak{g}^{\xi})$ d'après la proposition 1. Dans cette base, la matrice $\mathcal{K}(\mathfrak{n}(\mathfrak{g}^{\xi}))$ est de la forme

$$\left[\begin{array}{ccc} 0 & 0 & \mathfrak{D} \\ 0 & \mathfrak{C} & \mathfrak{E} \\ -\mathfrak{D}^t & -\mathfrak{E}^t & \mathfrak{F} \end{array}\right],$$

où les matrices carrées \mathfrak{D} et \mathfrak{C} sont respectivement d'ordre m et n-m. On reconnait certains blocs de cette matrice. Ainsi $\mathcal{K}(\mathfrak{n}(\mathfrak{g}^{\xi}),\mathfrak{g}^{\xi})=\begin{bmatrix}0&0&\mathfrak{D}\\0&\mathfrak{E}\end{bmatrix}$ et $\mathcal{K}(\mathfrak{g}^{\xi})=\begin{bmatrix}0&0\\0&\mathfrak{C}\end{bmatrix}$. D'après (2), on a la relation

$$\mathrm{ind}\; \mathfrak{n}(\mathfrak{g}^\xi) = \dim \mathfrak{n}(\mathfrak{g}^\xi) - \mathrm{rang}\; \mathcal{K}(\mathfrak{n}(\mathfrak{g}^\xi)) \cdot$$

Or la structure de la matrice $\mathcal{K}(\mathfrak{n}(\mathfrak{g}^{\xi}))$ montre que l'on a l'inégalité

rang
$$\mathcal{K}(\mathfrak{n}(\mathfrak{g}^{\xi})) \leq \operatorname{rang} \mathfrak{C} + 2\dim \mathfrak{z}(\mathfrak{g}^{\xi})$$

Par ailleurs, puisque $\mathcal{K}(\mathfrak{g}^{\xi}) = \begin{bmatrix} 0 & 0 \\ 0 & \mathfrak{C} \end{bmatrix}$, on a l'égalité :

$$\operatorname{rang}\,\mathfrak{C}=\operatorname{rang}\,\mathcal{K}(\mathfrak{g}^\xi)=\dim\mathfrak{g}^\xi-\operatorname{ind}\,\mathfrak{g}^\xi\cdot$$

Par suite, il vient:

ind
$$\mathfrak{n}(\mathfrak{g}^{\xi}) \ge \dim \mathfrak{n}(\mathfrak{g}^{\xi}) - \dim \mathfrak{g}^{\xi} + \operatorname{ind} \mathfrak{g}^{\xi} - 2 \dim \mathfrak{z}(\mathfrak{g}^{\xi})$$

D'après [1], Théorème 5.5, on a la relation ind $\mathfrak{g}^{\xi} = \operatorname{rg} \mathfrak{g}$. Par ailleurs, la proposition 1, 2) donne $\dim \mathfrak{n}(\mathfrak{g}^{\xi}) = \dim \mathfrak{g}^{\xi} + \dim \mathfrak{z}(\mathfrak{g}^{\xi})$. On obtient finalement l'inégalité :

ind
$$\mathfrak{n}(\mathfrak{g}^{\xi}) \geq \operatorname{rg} \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^{\xi})$$
.

Voyons maintenant pourquoi le théorème 2 implique le théorème 1. Il s'agit de prouver la proposition suivante :

Proposition 4 Si l'égalité ind $(\mathfrak{n}(\mathfrak{g}^{\xi}), \mathfrak{g}^{\xi}) = \operatorname{rg} \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^{\xi})$ est satisfaite, alors l'égalité ind $\mathfrak{n}(\mathfrak{g}^{\xi}) = \operatorname{rg} \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^{\xi})$ est satisfaite.

 $D\acute{e}monstration.$ On suppose le théorème 2 démontré. D'après ce qui précède, il suffit d'obtenir l'inégalité :

$$\mathrm{ind}\; \mathfrak{n}(\mathfrak{g}^\xi) \leq \mathrm{rg}\; \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^\xi) \cdot$$

Rappelons le résultat suivant, démontré dans [5], Théorème 1.4:

Lemme 1 Soit \mathfrak{q} un idéal d'une algèbre de Lie $\widetilde{\mathfrak{q}}$. Alors

ind
$$\mathfrak{q} + \operatorname{ind} \widetilde{\mathfrak{q}} \leq \dim(\widetilde{\mathfrak{q}}/\mathfrak{q}) + 2 \operatorname{ind}(\widetilde{\mathfrak{q}}, \mathfrak{q})$$
.

En appliquant ce lemme à l'idéal \mathfrak{g}^ξ de $\mathfrak{n}(\mathfrak{g}^\xi),$ on obtient :

ind
$$\mathfrak{g}^{\xi}$$
 + ind $\mathfrak{n}(\mathfrak{g}^{\xi}) \leq \dim(\mathfrak{n}(\mathfrak{g}^{\xi})/\mathfrak{g}^{\xi}) + 2$ ind $(\mathfrak{n}(\mathfrak{g}^{\xi}), \mathfrak{g}^{\xi})$,

ce qui donne, en utilisant de nouveau les égalités $\dim \mathfrak{n}(\mathfrak{g}^{\xi}) = \dim \mathfrak{g}^{\xi} + \dim \mathfrak{z}(\mathfrak{g}^{\xi})$ et ind $\mathfrak{g}^{\xi} = \operatorname{rg} \mathfrak{g}$,

ind
$$\mathfrak{n}(\mathfrak{g}^{\xi}) \leq 2$$
 ind $(\mathfrak{n}(\mathfrak{g}^{\xi}), \mathfrak{g}^{\xi}) - (\operatorname{rg} \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^{\xi}))$.

Le théorème 2 entraine alors l'inégalité souhaitée.

On s'intéresse désormais à l'identité du théorème 2. On montre la proposition suivante :

Proposition 5 Le théorème 2 est équivalent à l'assertion suivante : la matrice

$$\begin{bmatrix} \mathfrak{D} \\ \mathfrak{E} \end{bmatrix} = \begin{bmatrix} [[\eta, e_1], e_1] & \cdots & [[\eta, e_m], e_1] \\ \vdots & & \vdots \\ [[\eta, e_1], e_m] & \cdots & [[\eta, e_m], e_m] \\ \vdots & & \vdots \\ [[\eta, e_1], e_n] & \cdots & [[\eta, e_m], e_n] \end{bmatrix}$$

de taille $n \times m$, à coefficients dans $\mathcal{S}(\mathfrak{g}^{\xi})$, est de rang maximal égal à $m = \dim \mathfrak{z}(\mathfrak{g}^{\xi})$.

Avant de démontrer la proposition, on étend encore un peu la définition de l'indice. Ceci permettra d'interpréter géométriquement la matrice $\begin{bmatrix} \mathfrak{D} \\ \mathfrak{E} \end{bmatrix}$. Soit \mathfrak{q} une algèbre de Lie complexe, V et V' deux espaces vectoriels de dimension finie sur \mathbb{C} et soit $\rho:\mathfrak{q}\to \mathrm{L}(V,V')$ une application linéaire de \mathfrak{q} dans l'espace des applications linéaires de V dans V'. Pour φ dans V', on note $\mathfrak{q}_{\varphi} = \{s \in \mathfrak{q} \mid \varphi(\rho(s)v) = 0, \ \forall v \in V\}$ le «stabilisateur de φ » et on note $\mathfrak{q} \cdot_{\rho} \varphi$ l'image dans V^* de l'application qui à s dans \mathfrak{q} associe la forme linéaire $v \mapsto -\varphi(\rho(s)v)$ définie sur V. Lorsqu'il n'y a pas d'ambiguité on omet l'indice ρ . On pose, par analogie avec l'indice,

$$r(\mathfrak{q}, V, V') = \dim V - \max_{\varphi \in (V')^*} (\dim \mathfrak{q} \cdot_{\rho} \varphi) \cdot$$

Notons que ρ n'est pas un morphisme d'algèbres de Lie en général ; l'espace L(V,V') n'est même pas une algèbre de Lie! En revanche, si V=V' et si ρ est une représentation de \mathfrak{q} dans V, on retrouve l'indice ind (\mathfrak{q},V) du \mathfrak{q} -module V. On considère, toujours par analogie avec l'indice, la forme bilinéaire à valeurs dans V':

$$\mathcal{K}(\mathfrak{q}, V, V') : \mathfrak{q} \times V \to V' ; (s, v) \mapsto -\rho(s)v \cdot$$

En composant cette application avec un élément φ de $(V')^*$, on obtient une forme bilinéaire à valeurs dans \mathbb{C} :

$$\mathcal{K}(\mathfrak{q}, V, V')_{\varphi} : \mathfrak{q} \times V \to V' \stackrel{\varphi}{\to} \mathbb{C} \cdot$$

On vérifie facilement l'égalité:

$$r(\mathfrak{q}, V, V') = \dim V - \max_{\varphi \in (V')^*} (\operatorname{rang} \mathcal{K}(\mathfrak{q}, V, V')_{\varphi})$$

Cette écriture permet de voir que l'ensemble des formes linéaires φ de $(V')^*$ telles que dim $\mathfrak{q} \cdot_{\rho} \varphi = \dim V - r(\mathfrak{q}, V, V')$ est un ouvert dense de $(V')^*$. En choisissant des bases sur \mathfrak{q} et V, on peut considérer $\mathcal{K}(\mathfrak{q}, V, V')$ comme une matrice de taille dim $V \times \dim \mathfrak{q}$ à coefficients dans V', où V' est identifié à la composante de degré 1 de l'algèbre symétrique $\mathcal{S}(V')$. Ainsi, on obtient l'égalité :

$$r(\mathfrak{q}, V, V') = \dim V - \operatorname{rang} \mathcal{K}(\mathfrak{q}, V, V')$$

Prouvons maintenant la proposition 5:

Démonstration. D'après la relation (1), on a :

$$\mathrm{ind}\; (\mathfrak{n}(\mathfrak{g}^\xi),\mathfrak{g}^\xi) = \dim \mathfrak{g}^\xi - \mathrm{rang}\; \mathcal{K}(\mathfrak{n}(\mathfrak{g}^\xi),\mathfrak{g}^\xi) \cdot$$

Or la structure de la matrice $\mathcal{K}(\mathfrak{n}(\mathfrak{g}^\xi),\mathfrak{g}^\xi)$ montre que l'on a l'inégalité :

rang
$$\mathcal{K}(\mathfrak{n}(\mathfrak{g}^{\xi}), \mathfrak{g}^{\xi}) \leq \operatorname{rang} \mathfrak{C} + \dim \mathfrak{z}(\mathfrak{g}^{\xi})$$

En utilisant la relation, déjà vue, rang $\mathfrak{C} = \dim \mathfrak{g}^{\xi} - \operatorname{ind} \mathfrak{g}^{\xi} = \dim \mathfrak{g}^{\xi} - \operatorname{rg} \mathfrak{g}$, on obtient l'inégalité :

$$\mathrm{ind}\; (\mathfrak{n}(\mathfrak{g}^\xi),\mathfrak{g}^\xi) \geq \mathrm{rg}\; \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^\xi) \cdot$$

Il y a égalité dans la relation précédente si, et seulement si, la condition rang $\mathcal{K}(\mathfrak{n}(\mathfrak{g}^\xi),\mathfrak{g}^\xi) = \operatorname{rang} \mathfrak{C} + \dim \mathfrak{z}(\mathfrak{g}^\xi)$ est satisfaite, autrement dit si, et seulement si, le rang de la matrice $\begin{bmatrix} 0 & \mathfrak{D} \\ \mathfrak{C} & \mathfrak{E} \end{bmatrix}$, à coefficients dans $\mathcal{S}(\mathfrak{g}^\xi)$, est égal à rang $\mathfrak{C} + \dim \mathfrak{z}(\mathfrak{g}^\xi)$. Par

suite, si l'égalité du théorème 2 est satisfaite, nécessairement la matrice $\left[egin{array}{c} \mathfrak{D} \\ \mathfrak{E} \end{array} \right]$ est de rang

maximal égal à $m = \dim \mathfrak{z}(\mathfrak{g}^{\xi}).$

Réciproquement, supposons que le rang de la matrice $\begin{bmatrix} \mathfrak{D} \\ \mathfrak{E} \end{bmatrix}$ soit maximal, égal à $m = \dim \mathfrak{z}(\mathfrak{g}^{\xi})$, et montrons la relation du théorème 2. Soit ρ l'application linéaire de $\mathfrak{z}(\mathfrak{g}^{\xi})$ dans $L([\eta, \mathfrak{g}^{\xi}], \mathfrak{g}^{\xi})$ donnée par la relation :

$$\rho(s)v = [s, v] \in \mathfrak{g}^{\xi},$$

pour s dans $\mathfrak{z}(\mathfrak{g}^{\xi})$ et v dans $[\eta, \mathfrak{g}^{\xi}]$. Puisque $\mathfrak{z}(\mathfrak{g}^{\xi})$ et \mathfrak{g}^{η} ont une intersection nulle, il existe un supplémentaire \mathfrak{r} de $\mathfrak{g}^{\eta} \cap \mathfrak{g}^{\xi}$ dans \mathfrak{g}^{ξ} contenant $\mathfrak{z}(\mathfrak{g}^{\xi})$. Posons $r = \dim \mathfrak{r}$. Alors on a $m \leq r \leq n$. On peut supposer que les éléments e_1, \ldots, e_r forment une base de \mathfrak{r} et que les éléments e_{r+1}, \ldots, e_n forment une base de $\mathfrak{g}^{\eta} \cap \mathfrak{g}^{\xi}$. La famille $\{[\eta, e_1], \ldots, [\eta, e_r]\}$ est libre dans $[\eta, \mathfrak{g}^{\xi}]$ et de cardinal $r = \dim \mathfrak{g}^{\xi} - \dim \mathfrak{g}^{\eta} \cap \mathfrak{g}^{\xi} = \dim([\eta, \mathfrak{g}^{\xi}])$; c'est donc une base de $[\eta, \mathfrak{g}^{\xi}]$. Dans les bases $\{e_1, \ldots, e_m\}$ de $\mathfrak{z}(\mathfrak{g}^{\xi})$ et $\{[\eta, e_1], \ldots, [\eta, e_r]\}$ de $[\eta, \mathfrak{g}^{\xi}]$, la matrice $\mathcal{K}(\mathfrak{z}(\mathfrak{g}^{\xi}), [\eta, \mathfrak{g}^{\xi}], \mathfrak{g}^{\xi})$ à coefficients dans $\mathcal{S}(\mathfrak{g}^{\xi})$ est donnée par

$$\mathcal{K}(\mathfrak{z}(\mathfrak{g}^{\xi}), [\eta, \mathfrak{g}^{\xi}], \mathfrak{g}^{\xi}) = \begin{bmatrix} [e_{1}, [\eta, e_{1}]] & \cdots & [e_{m}, [\eta, e_{1}]] \\ \vdots & & \vdots \\ [e_{1}, [\eta, e_{m}]] & \cdots & [e_{m}, [\eta, e_{m}]] \\ [e_{1}, [\eta, e_{m+1}]] & \cdots & [e_{m}, [\eta, e_{m+1}]] \\ \vdots & & \vdots \\ [e_{1}, [\eta, e_{r}]] & \cdots & [e_{m}, [\eta, e_{r}]] \end{bmatrix}.$$

On dispose des relations:

$$[[\eta, e_j], e_i] = [[\eta, e_i], e_j] = -[e_j, [\eta, e_i]],$$

pour $i=1,\ldots,n$ et $j=1,\ldots,m$. Puisque les vecteurs e_{r+1},\ldots,e_n sont dans le centralisateur \mathfrak{g}^{η} de η , les crochets $[[\eta,e_j],e_i]$ sont nuls, pour $i=r+1,\ldots,n$ et $j=1,\ldots,m$, et la matrice $\begin{bmatrix}\mathfrak{D}\\\mathfrak{E}\end{bmatrix}$ de la proposition est donnée par :

$$\begin{bmatrix} \mathfrak{D} \\ \mathfrak{E} \end{bmatrix} = \begin{bmatrix} [[\eta, e_1], e_1] & \cdots & [[\eta, e_m], e_1] \\ \vdots & & \vdots \\ [[\eta, e_1], e_m] & \cdots & [[\eta, e_1], e_m] \\ [[\eta, e_1], e_{m+1}] & \cdots & [[\eta, e_m], e_{m+1}] \\ \vdots & & \vdots \\ [[\eta, e_1], e_r] & \cdots & [[\eta, e_m], e_r] \\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{bmatrix} .$$

Par suite les deux matrices $\mathcal{K}(\mathfrak{z}(\mathfrak{g}^{\xi}), [\eta, \mathfrak{g}^{\xi}], \mathfrak{g}^{\xi})$ et $\begin{bmatrix} \mathfrak{D} \\ \mathfrak{E} \end{bmatrix}$ ont le même rang. D'après l'hypothèse sur le rang de la matrice $\begin{bmatrix} \mathfrak{D} \\ \mathfrak{E} \end{bmatrix}$, on en déduit que l'entier $\max_{\varphi \in (\mathfrak{g}^{\xi})^*} \dim \mathfrak{z}(\mathfrak{g}^{\xi}) \cdot_{\rho} \varphi$ est égal à $\dim \mathfrak{z}(\mathfrak{g}^{\xi})$. L'ensemble

$$\Omega' = \{ \varphi \in (\mathfrak{g}^{\xi})^* \mid \dim \mathfrak{z}(\mathfrak{g}^{\xi}) \cdot_{\rho} \varphi = \dim \mathfrak{z}(\mathfrak{g}^{\xi}) \}$$

est donc un ouvert dense de $(\mathfrak{g}^{\xi})^*$. Par ailleurs, de l'égalité ind $\mathfrak{g}^{\xi}=\operatorname{rg}\,\mathfrak{g},$ il résulte que l'ensemble

$$\Omega = \{ \varphi \in (\mathfrak{g}^{\xi})^* \mid \dim \mathfrak{g}^{\xi} \cdot \varphi = \dim \mathfrak{g}^{\xi} - \operatorname{rg} \mathfrak{g} \}$$

est un ouvert dense de $(\mathfrak{g}^{\xi})^*$, où $\mathfrak{g}^{\xi} \cdot \varphi$ désigne l'orbite coadjointe de φ . L'intersection $\Omega \cap \Omega'$ est donc un ouvert non vide de $(\mathfrak{g}^{\xi})^*$. Soit alors λ une forme linéaire sur \mathfrak{g}^{ξ} appartenant à cette intersection. On considère l'orbite $\mathfrak{n}(\mathfrak{g}^{\xi}) \cdot \lambda$ de λ sous l'action naturelle de $\mathfrak{n}(\mathfrak{g}^{\xi})$ dans $(\mathfrak{g}^{\xi})^*$. Autrement dit,

$$\mathfrak{n}(\mathfrak{g}^\xi) \cdot \lambda = \{v \in \mathfrak{g}^\xi \mapsto -\lambda([s,v]) \mid s \in \mathfrak{n}(\mathfrak{g}^\xi)\} \cdot$$

Les sous-espaces \mathfrak{g}^{ξ} et $[\eta, \mathfrak{g}^{\xi}]$ ont une intersection nulle d'après la proposition 2 et on pose $E = \mathfrak{g}^{\xi} \oplus [\eta, \mathfrak{g}^{\xi}]$. En identifiant $(\mathfrak{g}^{\xi})^*$, respectivement $([\eta, \mathfrak{g}^{\xi}])^*$, au sous-espace de E^* formé des formes linéaires nulles sur $[\eta, \mathfrak{g}^{\xi}]$, respectivement \mathfrak{g}^{ξ} , on obtient la décomposition suivante :

$$E^* = (\mathfrak{g}^{\xi})^* \oplus ([\eta, \mathfrak{g}^{\xi}])^* \cdot$$

Par suite, les ensembles $\mathfrak{g}^{\xi} \cdot \lambda$ et $\mathfrak{z}(\mathfrak{g}^{\xi}) \cdot_{\rho} \lambda$ peuvent être vus comme deux sous-espaces de E^* dont l'intersection est nulle. En effet le premier est contenu dans $(\mathfrak{g}^{\xi})^*$ et le deuxième dans $([\eta, \mathfrak{g}^{\xi}])^*$. On va montrer qu'il existe un isomorphisme d'espaces vectoriels entre $\mathfrak{n}(\mathfrak{g}^{\xi}) \cdot \lambda$ et $\mathfrak{g}^{\xi} \cdot \lambda \oplus \mathfrak{z}(\mathfrak{g}^{\xi}) \cdot_{\rho} \lambda$. Soit s dans $\mathfrak{n}(\mathfrak{g}^{\xi})$. Selon la décomposition 2) de la proposition 1, il s'écrit de manière unique $s = s_1 + [\eta, s_2]$, avec s_1 dans \mathfrak{g}^{ξ} et s_2 dans $\mathfrak{z}(\mathfrak{g}^{\xi})$. On pose

$$\Phi(s \cdot \lambda) = s_1 \cdot \lambda + s_2 \cdot_o \lambda$$

L'application Φ définit ainsi une application linéaire de $\mathfrak{n}(\mathfrak{g}^{\xi}) \cdot \lambda$ dans $\mathfrak{g}^{\xi} \cdot \lambda \oplus \mathfrak{z}(\mathfrak{g}^{\xi}) \cdot_{\rho} \lambda$. C'est clairement un isomorphisme d'espaces vectoriels, dont l'inverse est donné par :

$$s_1 \cdot \lambda + s_2 \cdot_{\rho} \lambda \longmapsto (s_1 + [\eta, s_2]) \cdot \lambda$$

De cet isomorphisme, on déduit une égalité sur les dimensions.

$$\dim \mathfrak{n}(\mathfrak{g}^{\xi}) \cdot \lambda = \dim \mathfrak{g}^{\xi} \cdot \lambda + \dim \mathfrak{z}(\mathfrak{g}^{\xi}) \cdot_{\rho} \lambda,$$

car les deux sous-espaces $\mathfrak{g}^{\xi} \cdot \lambda$ et $\mathfrak{z}(\mathfrak{g}^{\xi}) \cdot_{\rho} \lambda$ ont une intersection nulle. D'où, puisque λ appartient à l'intersection $\Omega \cap \Omega'$,

$$\dim \mathfrak{n}(\mathfrak{g}^{\xi}) \cdot \lambda = (\dim \mathfrak{g}^{\xi} - \operatorname{rg} \mathfrak{g}) + \dim \mathfrak{z}(\mathfrak{g}^{\xi}) \cdot$$

Par suite, on obtient

$$\max_{\varphi \in (\mathfrak{g}^{\xi})^{*}} (\dim \mathfrak{n}(\mathfrak{g}^{\xi}) \cdot \varphi) \geq \dim \mathfrak{g}^{\xi} - \operatorname{rg} \, \mathfrak{g} + \dim \mathfrak{z}(\mathfrak{g}^{\xi}),$$

ce qui donne encore

$$\mathrm{ind}\; (\mathfrak{n}(\mathfrak{g}^\xi),\mathfrak{g}^\xi) \leq \mathrm{rg}\; \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^\xi) \cdot$$

L'inégalité opposée étant déjà connue, on en déduit le théorème 2. L'équivalence de la proposition est ainsi démontrée.

Notons tout d'abord que la condition de la proposition précédente est en particulier vérifiée si la matrice \mathfrak{D} est non singulière. Dire que la matrice \mathfrak{D} est non singulière signifie que l'indice ind $(\mathfrak{n}(\mathfrak{g}^{\xi}), \mathfrak{z}(\mathfrak{g}^{\xi}))$ du $\mathfrak{n}(\mathfrak{g}^{\xi})$ -module $\mathfrak{z}(\mathfrak{g}^{\xi})$ est nul, ce qui se traduit encore en disant que le groupe $N_{\mathfrak{g}}(\xi)$ a une orbite ouverte dans $\mathfrak{z}(\mathfrak{g}^{\xi})^*$. On retrouve ainsi la condition de D. Panyushev vue en introduction qui lui permet de conclure dans un certain nombre de cas. Précisément, il prouve en [5] que la matrice \mathfrak{D} est non singulière dans les cas suivants :

- 1) si \mathfrak{g} est isomorphe à l'une des algèbres de Lie \mathfrak{sl}_n , \mathfrak{so}_{2n+1} ou \mathfrak{sp}_n , (Théorème 4.7 (i)),
- 2) pour certains éléments nilpotents de \mathfrak{g} , si \mathfrak{g} est isomorphe à \mathfrak{so}_{2n} , (Théorème 4.7 (ii)),
- 3) si dim $\mathfrak{z}(\mathfrak{g}^{\xi}) \leq 2$, (Théorème 4.7 (iii)),
- 4) si ξ est un élément nilpotent régulier de \mathfrak{g} , (Corollaire 5.6).

Notons que dans les trois premiers cas, D. Panyushev montre une propriété plus forte que celle de l'orbite ouverte, à savoir : le groupe $N_{\mathfrak{g}}(\xi)$ a un nombre fini d'orbites dans $\mathfrak{z}(\mathfrak{g}^{\xi})$. Remarquons enfin qu'il existe des cas où la matrice \mathfrak{D} est singulière; par exemple, si ξ est un élément nilpotent sous-régulier de \mathfrak{so}_8 , on peut montrer ([5], partie 4) que le groupe $N_{\mathfrak{g}}(\xi)$ n'a pas d'orbite ouverte dans $\mathfrak{z}(\mathfrak{g}^{\xi})^*$.

Soit ξ un élément nilpotent non distingué de \mathfrak{g} . En raisonnant comme dans [7], Chapitre XVII, preuve de la proposition 5.10, on montre qu'il existe une sous-algèbre de Lie semi-simple \mathfrak{t} de \mathfrak{g} , contenant ξ , et telle que les trois conditions suivantes soient vérifiées :

- 1) \mathfrak{t} est l'algèbre dérivée du centralisateur d'un élément semi-simple de \mathfrak{g} ,
- 2) $\mathfrak{z}(\mathfrak{g}^{\xi}) \subset \mathfrak{z}(\mathfrak{t}^{\xi}) \subset \mathfrak{t}^{\xi} \subset \mathfrak{g}^{\xi}$,
- 3) ξ est distingué dans \mathfrak{t} .

Proposition 6 On suppose que la relation

$$\operatorname{ind}(\mathfrak{n}(\mathfrak{t}^{\xi}), \mathfrak{t}^{\xi}) = \operatorname{rg} \mathfrak{t} - \dim \mathfrak{z}(\mathfrak{t}^{\xi})$$

est satisfaite. Alors la relation

$$\operatorname{ind}(\mathfrak{n}(\mathfrak{g}^{\xi}), \mathfrak{g}^{\xi}) = \operatorname{rg} \, \mathfrak{g} - \dim \mathfrak{z}(\mathfrak{g}^{\xi})$$

est satisfaite.

Démonstration. Soit $\{\xi, \rho', \eta'\}$ un \mathfrak{sl}_2 -triplet dans \mathfrak{t} contenant ξ . On construit une base e_1, \ldots, e_n de \mathfrak{g}^{ξ} telle que e_1, \ldots, e_m soit une base de $\mathfrak{z}(\mathfrak{g}^{\xi})$, $e_1, \ldots, e_{m'}$ une base de $\mathfrak{z}(\mathfrak{t}^{\xi})$ et $e_1, \ldots, e_{n'}$ une base de \mathfrak{t}^{ξ} , avec $m \leq m' \leq n$. Comme la relation $\operatorname{ind}(\mathfrak{n}(\mathfrak{t}^{\xi}), \mathfrak{t}^{\xi}) = \operatorname{rg} \mathfrak{t} - \dim \mathfrak{z}(\mathfrak{t}^{\xi})$ est satisfaite, la proposition 5 assure qu'il existe un vecteur v de \mathfrak{t}^{η} tel que la matrice $(\langle v, [[\eta', e_i], e_j] \rangle)_{1 \leq i \leq n' \atop 1 \leq j \leq m'}$ est de rang maximal, car \mathfrak{t}^{η} s'identifie au dual de \mathfrak{t}^{ξ} via la forme de Killing. On suppose par l'absurde que la matrice $(\langle v, [[\eta', e_i], e_j] \rangle)_{1 \leq i \leq n \atop 1 \leq j \leq m}$ n'est pas de rang maximal. Alors il existe des complexes a_1, \ldots, a_m non tous nuls qui satisfont l'égalité :

$$\langle v, [[\eta', e_i], \sum_{j=1}^m a_j e_j] \rangle = 0,$$

pour i = 1, ..., n. On a donc aussi la relation :

$$\langle v, [[\eta', e_i], \sum_{j=1}^m a_j e_j] \rangle = 0,$$

pour $i=1,\ldots,n'$, car $n'\leq n$. En posant $a_j=0$ pour $j=m+1,\ldots,m'$, on obtient encore :

$$\langle v, [[\eta', e_i], \sum_{j=1}^{m'} a_j e_j] \rangle = 0,$$

pour $i=1,\ldots,n'$. Ceci contredit le fait que la matrice $(\langle v,[[\eta',e_i],e_j]\rangle)_{\substack{1\leq i\leq n'\\1\leq j\leq m'}}$ est de rang maximal. Par suite, la proposition 5 donne la relation $\operatorname{ind}(\mathfrak{n}(\mathfrak{g}^{\xi}),\mathfrak{g}^{\xi})=\operatorname{rg}\mathfrak{g}-\dim\mathfrak{z}(\mathfrak{g}^{\xi}),$ car cette dernière ne dépend pas du choix d'un \mathfrak{sl}_2 -triplet $\{\xi,\rho,\eta\}$ dans \mathfrak{g} contenant ξ .

Effectuons enfin une dernière réduction. Une algèbre de Lie complexe semi-simple est somme directe d'idéaux simples et il est clair qu'il suffit de démontrer les théorèmes 1 et 2 pour chaque composante simple de $\mathfrak g$. On peut supposer désormais que $\mathfrak g$ est une algèbre de Lie complexe simple.

3 Démonstration des théorèmes 1 et 2 dans le cas classique.

On suppose que \mathfrak{g} est une algèbre de Lie simple classique, c'est-à-dire on suppose que $\mathfrak{g} = \mathfrak{sl}_n$, \mathfrak{so}_{2n+1} , \mathfrak{sp}_{2n} ou \mathfrak{so}_{2n} . Soit ξ un élément nilpotent de \mathfrak{g} et soit $\{\xi, \rho, \eta\}$ un \mathfrak{sl}_2 -triplet contenant ξ . On considère le sous-espace \mathfrak{z}' de \mathfrak{g} engendré par les puissances de ξ . Autrement dit, on a :

$$\mathfrak{z}' = \{\text{polynômes en } \xi\} \cap \mathfrak{g}.$$

Alors clairement \mathfrak{z}' est une sous-algèbre de $\mathfrak{z}(\mathfrak{g}^{\xi})$ stable par $\mathrm{ad}\rho$ et on dispose, d'après [4], preuve de la proposition 3.2 et proposition 3.3, des résultats suivants :

Lemme 2 $Si \mathfrak{g} = \mathfrak{sl}_n$, le sous-espace \mathfrak{z}' est engendré par les puissances de ξ . $Si \mathfrak{g} = \mathfrak{so}_n$ ou \mathfrak{sp}_{2n} , le sous-espace \mathfrak{z}' est engendré par les puissances impaires de ξ . De plus, on a $\mathfrak{z}' = \mathfrak{z}(\mathfrak{g}^{\xi})$ sauf dans le cas où $\mathfrak{g} = \mathfrak{so}_{2n}$ et où la partition de 2n associée à ξ ne contient que deux parties. Dans ce cas, le sous-espace \mathfrak{z}' est de codimension 1 dans $\mathfrak{z}(\mathfrak{g}^{\xi})$.

On reprend les notations de la partie précédente. On va montrer «directement», à l'aide de calculs explicites, que la matrice $\begin{bmatrix} \mathfrak{D} \\ \mathfrak{E} \end{bmatrix}$ est de rang maximal. Dans le cas où $\mathfrak{z}' = \mathfrak{z}(\mathfrak{g}^\xi)$, la proposition 7 donne un résultat plus fort. Commençons par quelques calculs préliminaires. On dispose des relations suivantes :

$$[\xi^k, \eta] = \xi^k \eta - \eta \xi^k = \sum_{\alpha + \beta = k - 1} \xi^\alpha \rho \xi^\beta \text{ et } \left[\rho, \xi^i\right] = 2i \cdot \xi^i, \tag{3}$$

$$\left[\left[\xi^{k},\eta\right],\xi^{i}\right] = \sum_{\alpha+\beta=k-1} \xi^{\alpha}\rho\xi^{\beta+i} - \sum_{\alpha+\beta=k-1} \xi^{\alpha+i}\rho\xi^{\beta} = \sum_{\alpha+\beta=k-1} \xi^{\alpha}[\rho,\xi^{i}]\xi^{\beta} = 2ki \cdot \xi^{k+i-1}. \quad (4)$$

L'algèbre $\mathfrak{n}(\mathfrak{g}^{\xi})$ agit sur le sous-espace $\mathfrak{z}(\mathfrak{g}^{\xi})$ par la représentation adjointe et l'on dispose de la proposition suivante :

Proposition 7 On suppose $\mathfrak{z}' = \mathfrak{z}(\mathfrak{g}^{\xi})$. Alors l'indice ind $(\mathfrak{n}(\mathfrak{g}^{\xi}), \mathfrak{z}(\mathfrak{g}^{\xi}))$ est nul. En particulier, la relation

$$\mathrm{ind}\ (\mathfrak{n}(\mathfrak{g}^\xi),\mathfrak{g}^\xi)=\mathrm{rg}\ \mathfrak{g}-\dim\mathfrak{z}(\mathfrak{g}^\xi)$$

est satisfaite.

Démonstration. Notons d le degré du polynôme minimal de ξ . On suppose tout d'abord $\mathfrak{g} = \mathfrak{sl}_n$. Posons $e_i = \xi^i$, pour $i = 1, \ldots, d-1$, alors les éléments e_1, \ldots, e_{d-1} forment une base de \mathfrak{z}' . Notons $\mathfrak{D} = (\mathfrak{D}_{ij})_{1 \leq i,j \leq d-1}$ la matrice carrée d'ordre d-1 donnée par :

$$\mathfrak{D}_{ij} = [[\eta, e_j], e_i],$$

pour i et j dans $\{1, \ldots, d-1\}$. D'après la relation (4), on a

$$\mathfrak{D}_{ij} = \begin{cases} 0 & \text{si } i+j > d, \\ -2ij\xi^{i+j-1} & \text{sinon.} \end{cases}$$

En particulier on connait \mathfrak{D} sur l'anti-diagonale. On a $\mathfrak{D}_{ij} = -2ij\xi^{d-1}$ si i+j=d. Soit φ une forme linéaire sur $\mathfrak{z}(\mathfrak{g}^{\xi})$. De ce qui précède, il résulte que le déterminant de la matrice \mathfrak{D} évalué en φ vaut, au signe près :

$$2^{d-1} \times (d-1)!^2 \times (\langle \varphi, \xi^{d-1} \rangle)^{d-1}$$
.

C'est donc un élément non nul de $\mathcal{S}(\mathfrak{z}(\mathfrak{g}^{\xi}))$; il suffit en effet de l'évaluer en une forme linéaire qui ne s'annule pas en ξ^{d-1} . Par suite, la matrice \mathfrak{D} est non singulière.

On suppose maintenant $\mathfrak{g}=\mathfrak{sp}_{2n}$, \mathfrak{so}_{2n+1} ou \mathfrak{so}_{2n} . Posons $r=\left[\frac{d}{2}\right]$. On procède de la même façon; on pose $e_i=\xi^{2i-1}$, pour $i=1,\ldots,r$. D'après le lemme 2, les éléments e_1,\ldots,e_r forment une base de \mathfrak{z}' . Notons $\mathfrak{D}=(\mathfrak{D}_{ij})_{1\leq i,j\leq r}$ la matrice carrée d'ordre r donnée par :

$$\mathfrak{D}_{ij} = [[\eta, e_j], e_i],$$

pour i et j dans $\{1, \ldots, r\}$. D'après la relation (4), on a

$$\mathfrak{D}_{ij} = \begin{cases} 0 & \text{si } i+j > r+1, \\ -2(2i-1)(2j-1)\xi^{2i+2j-3} & \text{sinon.} \end{cases}$$

En particulier, on connait \mathfrak{D} sur l'anti-diagonale. On a $\mathfrak{D}_{ij} = -2(2i-1)(2j-1)\xi^{2r-1}$ si i+j=r+1. Soit φ une forme linéaire sur $\mathfrak{z}(\mathfrak{g}^{\xi})$. De ce qui précède, il résulte que le déterminant de la matrice \mathfrak{D} évalué en φ vaut, au signe près :

$$2^r \times ((2s-1) \times (2s-3) \times \cdots \times 1)^2 \times (\langle \varphi, \xi^{2r-1} \rangle)^r$$

C'est donc un élément non nul de $S(\mathfrak{z}(\mathfrak{g}^{\xi}))$; il suffit en effet de l'évaluer en une forme linéaire qui ne s'annule pas en ξ^{2r-1} . Par suite, la matrice \mathfrak{D} est non singulière.

Dans tous les cas, on obtient que la matrice \mathfrak{D} est non singulière. Notons que l'on n'a pas encore utilisé l'hypothèse $\mathfrak{z}' = \mathfrak{z}(\mathfrak{g}^{\xi})$. On pose maintenant $m = \dim \mathfrak{z}' = \dim \mathfrak{z}(\mathfrak{g}^{\xi})$, d'où m = d - 1 dans le cas \mathfrak{sl}_n , et m = r sinon. On complète la base $\{e_1, \ldots, e_m\}$ de $\mathfrak{z}(\mathfrak{g}^{\xi})$ en une base $\{e_1, \ldots, e_n\}$ de \mathfrak{g}^{ξ} . Alors, dans les bases $\{e_1, \ldots, e_n, [\eta, e_1], \ldots, [\eta, e_m]\}$ de $\mathfrak{z}(\mathfrak{g}^{\xi})$ et $\{e_1, \ldots, e_m\}$ de $\mathfrak{z}(\mathfrak{g}^{\xi})$, on a :

$$\mathcal{K}(\mathfrak{n}(\mathfrak{g}^{\xi}),\mathfrak{z}(\mathfrak{g}^{\xi})) = \left[\begin{array}{ccc} 0 & 0 & \mathfrak{D} \end{array} \right] \cdot$$

Puisque \mathfrak{D} est non singulière, la rang de la matrice précédente est égal à $\dim \mathfrak{z}(\mathfrak{g}^{\xi})$ et l'indice ind $(\mathfrak{n}(\mathfrak{g}^{\xi}),\mathfrak{z}(\mathfrak{g}^{\xi}))$ est nul. L'autre assertion résulte des remarques qui suivent la proposition 5.

Remarque - La preuve précédente permet en outre de voir que les formes linéaires régulières de $\mathfrak{z}(\mathfrak{g}^{\xi})^*$ pour l'action naturelle de $\mathfrak{n}(\mathfrak{g}^{\xi})$ dans $\mathfrak{z}(\mathfrak{g}^{\xi})$ sont exactement celles qui ne s'annulent pas sur le vecteur de plus haut poids pour l'action de $\mathrm{ad}\rho$.

On déduit de cette proposition le théorème 2 pour tous les éléments nilpotents de $\mathfrak{sl}_n, \mathfrak{sp}_{2n}$ et \mathfrak{so}_{2n+1} et pour les éléments nilpotents de \mathfrak{so}_{2n} dont la partition associée possède au moins trois parties. En effet dans chacune de ces situations les sous-espaces \mathfrak{z}' et $\mathfrak{z}(\mathfrak{g}^{\xi})$ coïncident d'après le lemme 2. Remarquons que jusqu'ici, on a rien obtenu de nouveau par rapport à ce qui a déjà été fait par D. Panyushev dans [5], si ce n'est que l'on a utilisé la relation ind $\mathfrak{g}^{\xi} = \operatorname{rg} \mathfrak{g}$. D'ailleurs, la preuve précédente est, à quelques modifications près, celle de D. Panyushev; elle m'a été suggérée par M. Raïs.

On consacre la fin de cette partie à la preuve du théorème 2 pour $\mathfrak{g} = \mathfrak{so}_{2n}$.

Proposition 8 . On suppose que $\mathfrak{g} = \mathfrak{so}_{2n}$. Alors on a la relation :

$$\mathrm{ind}\ (\mathfrak{n}(\mathfrak{g}^\xi),\mathfrak{g}^\xi)=\mathrm{rg}\ \mathfrak{g}-\dim\mathfrak{z}(\mathfrak{g}^\xi)\cdot$$

Démonstration. On raisonne par récurrence sur le rang n de \mathfrak{g} . Pour n=1, \mathfrak{g} est isomorphe à \mathfrak{sl}_2 et le résultat est connu. Soit $n \geq 2$. On suppose la proposition démontrée pour $\mathfrak{g} = \mathfrak{so}_{2k}$, avec k dans $\{1, \ldots, n-1\}$. Il résulte de l'hypothèse de récurrence et de ce qui précède que la relation ind $(\mathfrak{n}(\mathfrak{t}^{\xi}), \mathfrak{t}^{\xi}) = \operatorname{rg} \mathfrak{t} - \dim \mathfrak{z}(\mathfrak{t}^{\xi})$ est satisfaite pour \mathfrak{t} et ξ satisfaisant

les conditions 1), 2) et 3) qui précèdent la proposition 6 et pour \mathfrak{t} strictement contenue dans \mathfrak{g} , car alors \mathfrak{t} est produit direct d'algèbres de Lie simples classiques de rang strictement inférieur à celui de \mathfrak{g} . D'après la proposition 6, il suffit donc de prouver le résultat pour les éléments nilpotents distingués de \mathfrak{g} . On peut supposer en outre que ξ n'est pas un élément nilpotent régulier de \mathfrak{g} , d'après les remarques qui précèdent la proposition 6. On suppose désormais que ξ est un élément nilpotent distingué non régulier de \mathfrak{g} .

D'après [3], Théorème 8.2.14, les orbites nilpotentes distinguées de \mathfrak{so}_{2n} sous l'action du groupe adjoint sont les orbites nilpotentes dont la partition associée n'a que des parties impaires n'apparaissant qu'une seule fois. D'autre part, toujours d'après [3] (Proposition 5.4.1, (iv)), l'orbite nilpotente régulière de \mathfrak{so}_{2n} est donnée par la partition [2n-1,1]. Or, d'après la proposition 7 et le lemme 2, il reste seulement à traiter le cas où la partition associée à ξ ne possède que deux parties. En résumé, il suffit de prouver la proposition pour les orbites nilpotentes associées aux partitions de la forme [2s+1,2t+1], avec 1 < t < s < n-2.

On fixe un élément nilpotent ξ dans \mathfrak{so}_{2n} associé à une partition de 2n de la forme [2s+1, 2t+1], avec $1 \le t < s \le n-2$. Le polynôme minimal de ξ est de degré 2s+1. La dimension de \mathfrak{z}' est donc égale à $\left[\frac{2s+1}{2}\right]=s$ et la dimension de $\mathfrak{z}(\mathfrak{g}^{\xi})$ est s+1, d'après le lemme 2. Soit b une forme bilinéaire symétrique non dégénérée sur \mathbb{C} . On réalise \mathfrak{g} comme l'ensemble des endomorphismes anti-symétriques de $V = \mathbb{C}^{2n}$ relativement à la forme b. Comme 2s + 1 est différent de 2t + 1, il résulte de la preuve du lemme 5.1.17 de [3] qu'il existe deux sous-espaces orthogonaux V_1 et V_2 , stables par ξ , et de dimensions respectives 2s+1 et 2t+1. La restriction ξ_1 de ξ à V_1 est un élément nilpotent régulier dans \mathfrak{so}_{2s+1} . De même, la restriction ξ_2 de ξ à V_2 est un élément nilpotent régulier dans \mathfrak{so}_{2t+1} . Il existe alors deux \mathfrak{sl}_2 -triplets $\{\xi_1, \rho_1, \eta_1\}$ et $\{\xi_2, \rho_2, \eta_2\}$ dans \mathfrak{so}_{2s+1} et \mathfrak{so}_{2t+1} contenant ξ_1 et ξ_2 respectivement. On note encore, de manière abusive, ξ_1 l'élément de \mathfrak{g} qui coïncide avec ξ_1 sur V_1 et qui est nul sur V_2 . On adopte la même convention pour ρ_1 , η_1 , ξ_2 , ρ_2 et η_2 . On pose $\rho = \rho_1 \oplus \rho_2$ et $\eta = \eta_1 \oplus \eta_2$. Le triplet $\{\xi, \rho, \eta\}$ forme ainsi un \mathfrak{sl}_2 -triplet dans \mathfrak{g} . Soit \mathcal{B}_1 et \mathcal{B}_2 des bases orthonormées de V_1 et V_2 et soit \mathcal{B} la base orthonormée de V obtenue en concaténant les bases \mathcal{B}_1 et \mathcal{B}_2 . On note X (respectivement X_1, H_1, Y_1 et X_2, H_2, Y_2) la matrice de ξ (respectivement ξ_1 , ρ_1 , η_1 et ξ_2 , ρ_2 , η_2) dans la base \mathcal{B} (respectivement \mathcal{B}_1 et \mathcal{B}_2). Ainsi,

$$X = \begin{bmatrix} X_1 & 0 \\ 0 & X_2 \end{bmatrix}, \qquad H = \begin{bmatrix} H_1 & 0 \\ 0 & H_2 \end{bmatrix}, \qquad Y = \begin{bmatrix} Y_1 & 0 \\ 0 & Y_2 \end{bmatrix}.$$

Soit A une matrice non nulle de taille $(2s+1)\times(2t+1)$ vérifiant les relations $X_1A=0$ et $AX_2=0$. On vérifie aisément qu'une telle matrice existe. C'est necéssairment une matrice de rang 1. En effet, commme X_1 et X_2 sont des matrices nilpotentes régulières, leur noyau est de dimension 1. On note w l'élément de \mathfrak{g} dont la matrice dans la base \mathcal{B} est

$$W = \left[\begin{array}{cc} 0 & A \\ -A^t & 0 \end{array} \right].$$

On a le lemme suivant :

Lemme 3 L'élément w appartient au centre $\mathfrak{z}(\mathfrak{g}^{\xi})$ et c'est un vecteur propre pour $\mathrm{ad}\rho$.

 $D\acute{e}monstration$. Prouvons d'abord la première assertion. On montre sans difficulté que les éléments de $\mathfrak g$ qui commutent avec ξ sont les endomorphismes de $\mathfrak g$ dont la matrice dans la base $\mathcal B$ est de la forme :

$$\begin{bmatrix} X_1^{2k+1} & R \\ -R^t & X_2^{2l+1} \end{bmatrix},$$

avec k et l deux entiers et R une matrice de taille $(2s+1) \times (2t+1)$ vérifiant la relation $X_1R - RX_2 = 0$. Il est immédiat que la matrice W commute avec les puissances de X_1 et X_2 . Il reste à montrer que W commute avec les matrices de la forme :

$$\left[\begin{array}{cc} 0 & R \\ -R^t & 0 \end{array}\right],$$

où R est une matrice de taille $(2s+1) \times (2t+1)$ vérifiant la relation $X_1R - RX_2 = 0$. Soit Z une telle matrice. Prouvons que le crochet [W, Z] = WZ - ZW est nul. Il s'agit de montrer que les deux relations suivantes sont satisfaites :

$$\begin{cases}
AR^t = RA^t \\
A^t R = R^t A
\end{cases}$$

Montrons d'abord la première égalité. Ceci revient à montrer que la matrice carrée AR^t d'ordre 2s+1 est symétrique. Si cette matrice est nulle, le résultat est clair. On suppose que la matrice AR^t n'est pas nulle, alors il en est de même de sa transposée RA^t . De la relation $AX_1 = 0$, on tire la relation : $X_1(AR^t) = 0$ et des relations $X_1R = RX_2$ et $X_2A^t=0$, on tire la relation: $X_1(RA^t)=RX_2A^t=0$. Les images des deux matrices AR^t et RA^t sont donc contenues dans le noyau de la matrice X_1 , qui est de dimension 1. Par suite, les deux matrices AR^t et RA^t sont de rang 1 et ont la même image. On note u l'endomorphisme de \mathfrak{gl}_{2s+1} dont la matrice dans la base \mathcal{B}_1 est AR^t . Comme RA^t est la transposée de AR^t , la matrice RA^t représente l'endomorphisme adjoint u^* de u dans la base \mathcal{B}_1 . De ce qui précède, il resulte que les endomorphismes u et u^* s'écrivent sous la forme $u = \varphi v$ et $u^* = \psi v$, avec v un vecteur non nul de V_1 et φ et ψ deux formes linéaires non nulles sur V_1 . Pour tout x dans V_1 , on a l'égalité : $b(u(x), x) = b(\varphi(x)v, x) = \varphi(x)b(v, x)$. Or, par définition de l'adjoint, on a la relation : $b(u(x), x) = b(x, u^*(x)) = \psi(x)b(v, x)$. Ainsi, pour tout x non orthogonal à v, on a $\varphi(x) = \psi(x)$. Comme l'ensemble des vecteurs x de V_1 vérifiant la relation $b(x,v) \neq 0$ est un ouvert non vide de V_1 , les formes linéaires φ et ψ sont égales. On a obtenu l'égalité souhaitée : $AR^t = RA^t$. Un raisonnement similaire permet d'obtenir la deuxième relation.

On en déduit la deuxième assertion. L'élément w appartient au centre $\mathfrak{z}(\mathfrak{g}^{\xi})$ de \mathfrak{g}^{ξ} d'après ce qui précède et il est clair que ce n'est pas un polynôme en ξ . Par suite, il résulte du lemme 2 que les éléments $\xi, \xi^3, \dots, \xi^{2s-1}, w$ forment une base de $\mathfrak{z}(\mathfrak{g}^{\xi})$. Montrons que le crochet [H, W] est colinéaire à W. On a :

$$[H,W] = \left[\begin{array}{cc} 0 & H_1A - AH_2 \\ -H_2A^t + A^tH_1 \end{array} \right].$$

Le crochet [H, W] est un élément du centre et ses coordonnées en les puissances de X sont nulles. Il est donc colinéaire à W et le lemme s'ensuit.

On note λ la valeur propre associée à w.

Lemme 4 (i) On a:

$$[[\eta, w], \xi^{2i-1}] = \begin{cases} -\lambda w & \text{si } i = 1, \\ 0 & \text{si } i = 2, \dots, s. \end{cases}$$

- (ii) L'élément $[[\eta, w], \xi_2]$ est non nul dans \mathfrak{g}^{ξ} . On note x cet élément. (iii) Le crochet $[[\eta, \xi^{2s-1}], \xi_2]$ est nul.

Démonstration. i) Si i=1, on a $[[\eta,w],\xi^{2i-1}]=[[\eta,\xi],w]=-[\rho,w]=-\lambda w$. On suppose i > 1. En utilisant la relation (3), on montre sans peine que le crochet $[[\eta, w], \xi^{2i-1}]$ est donné par la matrice:

$$\left[\begin{array}{cc} 0 & U \\ -U^t & 0 \end{array}\right],$$

où U est la matrice $-\sum_{\alpha+\beta=2i-2} X_1^{\alpha} H_1 X_1^{\beta} A + A \sum_{\alpha+\beta=2i-2} X_2^{\alpha} H_2 X_2^{\beta}$. Dans la somme $\sum_{\alpha+\beta=2i-2} X_1^{\alpha} H_1 X_1^{\beta} A$, les termes pour lesquel β est strictement positif sont nuls, puisqu'on

a la relation $X_1A=0$. Il reste le terme $X_1^{2i-2}H_1A$. Comme w est un vecteur propre de $\mathrm{ad}\rho$ relativement à la valeur propre λ , on a la relation $H_1A = AH_2 + \lambda A$. D'où :

$$X_1^{2i-2}H_1A = X_1^{2i-2}AH_2 + \lambda X_1^{2i-2}A = 0,$$

car $X_1A=0$ et car i>1. Par suite, on a : $\sum_{\alpha+\beta=2i-2}X_1^\alpha H_1X_1^\beta A=0$. De même, la relation $AX_2=0$ entraine la relation $A\sum_{\alpha+\beta=2i-2}X_2^\alpha H_2X_2^\beta=0$. Par suite la matrice U est nulle et le crochet $[\eta, w], \xi^{2i-1}]$ est nul pour i > 1, d'où (i).

- ii) On a la relation $x = [[\eta, w], \xi_2] = [[\eta, \xi_2], w] = -[\rho_2, w]$. On suppose par l'absurde que $[\rho_2, w]$ est nul. Il s'agit d'aboutir à une contradiction. De la relation $AX_2 = 0$, on tire la relation $[\xi_2, w] = 0$. Comme le triplet $\{\xi_2, \rho_2, \eta_2\}$ forme un \mathfrak{sl}_2 -triplet dans \mathfrak{g} , on déduit des égalités $[\rho_2, w] = 0$ et $[\xi_2, w] = 0$ la relation $[\eta_2, w] = 0$, d'où il vient $AY_2 = 0$. Ainsi, on a: $X_2A^t=0$ et $Y_2A^t=0$, donc l'image de la matrice A^t est contenue dans l'intersection des noyaux de X_2 et Y_2 . Comme X_2 est une matrice nilpotente réguliere, cette intersection est nulle d'après la théorie des représentations de \mathfrak{sl}_2 . D'où la contradiction car A n'est pas nulle.
 - iii) Comme ξ_2^{2s-1} est nul, le crochet $[\eta,\xi^{2s-1}]$ est donné par la matrice

$$\begin{bmatrix} -\sum_{\alpha+\beta=2s-2} X_1^{\alpha} H_1 X_1^{\beta} & 0\\ 0 & 0 \end{bmatrix}.$$

Par suite le crochet $[[\eta, \xi^{2s-1}], \xi_2]$ est nul.

On pose $e_i=\xi^{2i-1}$, pour $i=1,\ldots,s,\ e_{s+1}=w$ et $e_{s+2}=\xi_2$. Comme ξ_2 n'appartient pas au centre $\mathfrak{z}(\mathfrak{g}^{\xi})$, la famille $\{e_1,\ldots,e_{s+2}\}$ est libre dans \mathfrak{g}^{ξ} . On la complète en une base $\{e_1,\ldots,e_n\}$ de \mathfrak{g}^{ξ} et on note $\mathfrak{M}=(\mathfrak{M}_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq s+1}}$ la matrice de taille $n\times(s+1)$, à coefficients dans $\mathcal{S}(\mathfrak{g}^{\xi})$, donnée par :

$$\mathfrak{M}_{ij} = [[\eta, e_j], e_i],$$

pour $i=1,\ldots,n$ et $j=1,\ldots,s+1.$ On considère la sous-matrice carrée \mathfrak{M}' de \mathfrak{M} d'ordre s+1 dont les lignes correspondent aux éléments e_1,\ldots,e_s et e_{s+2} et dont les colonnes correspondent aux éléments e_1, \ldots, e_{s+1} de $\mathfrak{z}(\mathfrak{g}^{\xi})$.

Grâce au lemme 4 et aux calculs effectués dans la preuve de la proposition 7, on obtient la structure de la matrice \mathfrak{M}' :

$$\mathfrak{M}' = \begin{bmatrix} * & \cdots & * & \mu_1 \xi^{2s-1} & -\lambda w \\ * & \cdots & \mu_2 \xi^{2s-1} & 0 & 0 \\ \vdots & \ddots & & \vdots & \vdots \\ \mu_s \xi^{2s-1} & 0 & \cdots & 0 & 0 \\ * & \cdots & * & 0 & x \end{bmatrix},$$

où $\mu_i = -2 \times (2s - (2i - 1)) \times (2i - 1)$, pour i = 1, ..., s. Soit φ une forme linéaire sur \mathfrak{g}^{ξ} . D'après la structure de la matrice \mathfrak{M}' , l'évaluation en φ du déterminant de \mathfrak{M}' vaut, au signe près :

$$2^s \times ((2s-1) \times (2s-3) \times \cdots \times 1)^2 \times \langle \varphi, x \rangle \times (\langle \varphi, \xi^{2s-1} \rangle)^s$$

Si φ ne s'annule ni en x, ni en ξ^{2s-1} , ce déterminant est non nul. Donc, la matrice \mathfrak{M}' est non singulière. Avec les notations de la proposition 5, la matrice \mathfrak{M} est la matrice $\begin{bmatrix} \mathfrak{D} \\ \mathfrak{E} \end{bmatrix}$. Cette dernière est donc de rang maximal égal à $s+1=\dim \mathfrak{z}(\mathfrak{g}^{\xi})$, car la sous-matrice carrée \mathfrak{M}' d'ordre s+1 est non singulière. La proposition résulte alors de la proposition 5.

Remarque - Les calculs de la preuve précédente permettent de donner la structure de la matrice $\mathfrak D$ dans le cas où ξ est associé à une partition de la forme [2s+1,2t+1], avec $1 \le t < s \le n-2$. On a :

$$\mathfrak{D} = \begin{bmatrix} * & \cdots & * & \mu_1 \xi^{2s-1} & -\lambda w \\ * & \cdots & \mu_2 \xi^{2s-1} & 0 & 0 \\ \vdots & \ddots & & \vdots & \vdots \\ \mu_s \xi^{2s-1} & 0 & \cdots & 0 & 0 \\ -\lambda w & 0 & \cdots & 0 & 0 \end{bmatrix}.$$

La matrice \mathfrak{D} est donc singulière dans ce cas et la relation $\operatorname{ind}(\mathfrak{n}(\mathfrak{g}^{\xi}),\mathfrak{z}(\mathfrak{g}^{\xi}))=0$ n'a pas lieu.

4 Démonstration du théorème 2 sous l'hypothèse que ξ vérifie la propriété (P).

On suppose que \mathfrak{g} est une algèbre de Lie complexe simple et que ξ est un élément nilpotent non régulier de \mathfrak{g} . On fixe un \mathfrak{sl}_2 -triplet $\{\xi, \rho, \eta\}$ dans \mathfrak{g} contenant ξ . On note W le sous-espace propre de la restriction de $\mathrm{ad}\rho$ à $\mathfrak{z}(\mathfrak{g}^{\xi})$ associé à la plus grande valeur propre et on suppose que ξ vérifie la propriété (P) de la définition 1. Le but de cette partie est d'obtenir le corollaire 1 qui servira au cas exceptionnel dans la partie suivante.

On va utiliser un certain nombre de notations et de résultats de [1]. On note π_{ξ} l'application $(g, x) \mapsto g(x)$ de $G \times (\xi + \mathfrak{g}^{\eta})$ dans \mathfrak{g} . D'après [1], corollaire 5.7, il existe un voisinage ouvert W de ξ dans $\xi + \mathfrak{g}^{\eta}$ tel que la restriction de π_{ξ} à $G \times W$ soit un morphisme lisse de $G \times W$ sur un ouvert G-invariant de \mathfrak{g} qui contient ξ . On note X l'éclatement en ξ de W et σ le morphisme d'éclatement. Ce qui précède montre que l'ouvert non vide $\pi_{\xi}(G \times W)$ rencontre l'ouvert dense de \mathfrak{g} des éléments réguliers de \mathfrak{g} . Par suite, le sousensemble de X des points x de X pour lesquels $\sigma(x)$ est un élément régulier de \mathfrak{g} est un ouvert non vide de X. On note X_r cet ouvert. En particulier, $\sigma^{-1}(\{\xi\})$ est une hypersurface de X, contenue dans $X \setminus X_r$, car l'élément ξ n'est pas un élément régulier de \mathfrak{g} . On note enfin X_* le plus grand ouvert de X auquel l'application $x \mapsto \mathfrak{g}^{\sigma(x)}$ de X_r dans $\operatorname{Gr}_{\operatorname{rg}\mathfrak{g}}(\mathfrak{g})$ a un prolongement régulier noté α . D'après [1], Lemme 2.3, il existe un ouvert affine Y de X qui rencontre $\sigma^{-1}(\{\xi\})$ et qui satisfait les conditions suivantes :

- 1) Y est contenu dans X_* ,
- 2) $Y \setminus X_r$ est une hypersurface lisse, irréductible, contenue dans $\sigma^{-1}(\{\xi\})$ et dont l'idéal de définition dans $\mathbb{C}[Y]$ est engendré par un élément q,

3) il existe un sous-espace \mathfrak{m} de \mathfrak{g} qui est un supplémentaire de $\alpha(x)$ dans \mathfrak{g} pour tout x dans Y et qui contient un supplémentaire \mathfrak{p} de \mathfrak{g}^{ξ} dans \mathfrak{g} .

Par définition de α , on a l'inclusion $\alpha(x) \subset \mathfrak{g}^{\sigma(x)}$, pour tout x dans Y. En particulier, on a l'inclusion $\alpha(x) \subset \mathfrak{g}^{\xi}$, pour tout x dans $Y \setminus X_r$, car $Y \setminus X_r$ est contenu dans $\sigma^{-1}(\{\xi\})$. On dispose alors du lemme suivant :

Lemme 5 Soit x_0 un point de $Y \setminus X_r$ et soit $\{v_1, \ldots, v_s\}$ une base d'un supplémentaire \mathfrak{n} de $\alpha(x_0)$ dans \mathfrak{g}^{ξ} . Alors l'élément $\det([v_i, v_j])_{1 \leq i,j \leq s}$ est un élément non nul de $\mathcal{S}(\mathfrak{g}^{\xi})$.

Démonstration. D'après la proposition 2, $[\eta, \mathfrak{g}]$ est un supplémentaire de \mathfrak{g}^{ξ} dans \mathfrak{g} . Par suite, on a les décompositions suivantes :

$$\alpha(x_0) \oplus \mathfrak{n} = \mathfrak{g}^{\xi} \text{ et } \alpha(x_0) \oplus \mathfrak{n} \oplus [\eta, \mathfrak{g}] = \mathfrak{g}.$$

On en déduit qu'il existe un ouvert non vide Y' de Y contenant x_0 tel que, pour tout x' dans Y', on ait la décomposition :

$$\alpha(x') \oplus \mathfrak{n} \oplus [\eta, \mathfrak{g}] = \mathfrak{g}$$

Puisque $\alpha(x')$ est contenu dans \mathfrak{g}^{ξ} pour tout x' dans $Y' \setminus X_r$, on obtient de plus

$$\alpha(x') \oplus \mathfrak{n} = \mathfrak{g}^{\xi},$$

pour tout x' dans $Y' \setminus X_r$.

Soit f_1, \ldots, f_t une base de $[\eta, \mathfrak{g}]$. Il suffit de montrer que l'élément

$$\Delta = \det \begin{bmatrix} [v_1, v_1] & \cdots & [v_1, v_s] \\ \vdots & & \vdots & & 0 \\ [v_s, v_1] & \cdots & [v_s, v_s] \\ [f_1, v_1] & \cdots & [f_1, v_s] & [f_1, f_1] & \cdots & [f_1, f_t] \\ \vdots & & \vdots & & \vdots \\ [f_t, v_1] & \cdots & [f_t, v_s] & [f_t, f_1] & \cdots & [f_t, f_t] \end{bmatrix}$$

de $S(\mathfrak{g})$ est non nul pour obtenir le lemme.

Soit i dans $\{1, \ldots, s\}$. L'application qui à x dans Y associe $[\sigma(x), v_i]$ est nulle en tout point de $Y \setminus X_r$ car $Y \setminus X_r$ est inclus dans $\sigma^{-1}(\{\xi\})$ et \mathfrak{g}^{ξ} contient v_i . Puisque q engendre l'idéal de définition de $Y \setminus X_r$, on en déduit qu'il existe une application régulière μ_i de Y dans \mathfrak{g} non identiquement nulle sur $Y \setminus X_r$ et un entier $m_i \geq 1$ qui satisfont l'égalité $[\sigma(x), v_i] = q(x)^{m_i} \mu_i(x)$, pour tout x de Y.

Montrons que l'entier m_i est égal à 1 pour tout i dans $\{1, \ldots, s\}$. On suppose par l'absurde que $m_i > 1$ pour un certain i dans $\{1, \ldots, s\}$. Il s'agit d'aboutir à une contradiction.

Soit T une indéterminée, τ et τ_0 les images respectives de T par les applications canoniques de l'anneau de polynômes $\mathbb{C}[T]$ dans les quotients de $\mathbb{C}[T]$ par les idéaux $T^{m_i+1}\mathbb{C}[T]$ et $T^2\mathbb{C}[T]$. Pour ν un $\mathbb{C}[\tau]$ -point de X, on note γ_{ν} l'évaluation en ν de l'anneau $\mathcal{O}_{X,x}$ où x est l'image de ν par la projection canonique de l'ensemble des $\mathbb{C}[\tau]$ -points de X sur l'ensemble des \mathbb{C} -points de X. Alors γ_{ν} est un morphisme de l'anneau $\mathcal{O}_{X,x}$ dans l'anneau $\mathbb{C}[\tau]$. Soit γ'_{ν} le morphisme

$$\mathcal{O}_{X,x} \otimes_{\mathbb{C}} \mathfrak{g} \to \mathbb{C}[\tau] \otimes_{\mathbb{C}} \mathfrak{g} , \varphi \otimes u \mapsto \gamma_{\nu}(\varphi) \otimes u ,$$

où φ est dans $\mathcal{O}_{X,x}$ et où u est dans \mathfrak{g} . Puisque σ est le morphisme d'éclatement de W centré en ξ , les fibres de σ sont irréductibles et l'espace tangent à W en un point z de W

est la réunion des images des applications linéaires tangentes à σ en les points de la fibre de σ en z. En particulier, puisque $Y \setminus X_r$ est un ouvert de la fibre $\sigma^{-1}(\xi)$ de σ en ξ , la réunion des images des applications linéaires tangentes à σ en les points de $Y \setminus X_r$ contient un ouvert non vide de \mathfrak{g}^{η} .

Soit v un vecteur de \mathfrak{g}^{η} appartenant à cet ouvert. Soit alors x dans $Y \setminus X_r$ et v' un vecteur tangent à Y en x tels que l'image de v' par l'application linéaire tangente $\sigma'(x)$ à σ en x soit égale à v. Soit enfin v un $\mathbb{C}[\tau]$ -point de Y au dessus du $\mathbb{C}[\tau_0]$ -point de X défini par v'. On note q'(x) la différentielle de q en x. Puisque l'image de $q^{m_i}\mu_i$ par γ'_{ν} est égale à $\tau^{m_i}q'(x)(v')\mu_i(x)$, de l'égalité :

$$[\sigma(x), v_i] = q(x)^{m_i} \mu_i(x) ,$$

on tire l'égalité:

$$\tau[v, v_i] + \cdots = \tau^{m_i} q'(x)(v') \mu_i(x) ,$$

car le terme de degré 1 en τ de $\gamma'_{\nu}(\sigma)$ est τv . Puisque $m_i > 1$, on obtient que $[v, v_i]$ est nul. Il en résulte que pour tout v dans un ouvert non vide de \mathfrak{g}^{η} , $[v, v_i]$ est nul. Par suite, $[v, v_i]$ est nul pour tout v dans \mathfrak{g}^{η} . On en déduit que v_i appartient au centre $\mathfrak{z}(\mathfrak{g}^{\eta})$ de \mathfrak{g}^{η} . Ceci est impossible car $\mathfrak{z}(\mathfrak{g}^{\eta})$ et \mathfrak{g}^{ξ} ont une intersection nulle. On a finalement obtenu la relation $[\sigma(x), v_i] = q(x)\mu_i(x)$, pour tout x dans Y.

Pour x dans Y, la valeur de Δ en la forme linéaire $v \mapsto \langle \sigma(x), v \rangle$ est :

$$\det \begin{bmatrix} \langle \sigma(x), [v_1, v_1] \rangle & \cdots & \langle \sigma(x), [v_1, v_s] \rangle \\ \vdots & \vdots & \vdots & 0 \\ \langle \sigma(x), [v_s, v_1] \rangle & \cdots & \langle \sigma(x), [v_s, v_s] \rangle \\ \langle \sigma(x), [f_1, v_1] \rangle & \cdots & \langle \sigma(x), [f_1, v_s] \rangle & \langle \sigma(x), [f_1, f_1] \rangle & \cdots & \langle \sigma(x), [f_1, f_t] \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle \sigma(x), [f_t, v_1] \rangle & \cdots & \langle \sigma(x), [f_t, v_s] \rangle & \langle \sigma(x), [f_t, f_1] \rangle & \cdots & \langle \sigma(x), [f_t, f_t] \rangle \end{bmatrix}$$

$$= (-q(x))^s \det \begin{bmatrix} \langle \mu_1(x), v_1 \rangle & \cdots & \langle \mu_s(x), v_1 \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle \mu_1(x), v_s \rangle & \cdots & \langle \mu_s(x), v_s \rangle \\ \langle \mu_1(x), f_1 \rangle & \cdots & \langle \mu_s(x), f_1 \rangle & \langle \sigma(x), [f_1, f_1] \rangle & \cdots & \langle \sigma(x), [f_1, f_t] \rangle \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \langle \mu_1(x), f_t \rangle & \cdots & \langle \mu_s(x), f_t \rangle & \langle \sigma(x), [f_t, f_1] \rangle & \cdots & \langle \sigma(x), [f_t, f_t] \rangle \end{bmatrix}$$

Soit ζ la fonction régulière définie sur Y qui à x dans Y associe $(-q(x))^{-s}\Delta(\langle \sigma(x), \cdot \rangle)$. On suppose par l'absurde que ζ est identiquement nulle sur $Y \setminus X_r$. Alors il existe des fonctions régulières non toutes identiquement nulles, $a_1, \ldots, a_s, b_1, \ldots, b_t$ sur $Y \setminus X_r$, qui satisfont aux égalités :

$$\begin{cases} \left\langle \sum_{j=i}^{s} a_j(x) \mu_j(x), v_i \right\rangle = 0, \ \forall i = 1, \dots, s \\ \left\langle \sum_{j=1}^{s} a_j(x) \mu_j(x) + \sum_{k=1}^{t} b_k(x) [\sigma(x), f_k], f_i \right\rangle = 0, \ \forall i = 1, \dots, t \end{cases}$$

pour tout $x \in Y \setminus X_r$. En utilisant les inclusions $Y \setminus X_r \subset \sigma^{-1}(\{\xi\})$ et $\mathfrak{n} \subset \mathfrak{g}^{\xi}$, on trouve la relation $\langle [\sigma(x), f_k], w \rangle = 0$, pour tout w, x et k dans $\mathfrak{n}, Y \setminus X_r$ et $\{1, \ldots, t\}$ respectivement, d'où l'égalité :

$$\langle \sum_{j=1}^{s} a_j(x) \mu_j(x) + \sum_{k=1}^{t} b_k(x) [\sigma(x), f_k], w \rangle = 0,$$
 (5)

pour tout w dans $\mathfrak{n} \oplus [\eta, \mathfrak{g}]$ et tout x dans $Y \setminus X_r$.

On fixe une base u_1, \ldots, u_n de \mathfrak{g}^n et on note x_1, \ldots, x_n la base duale. Pour $i = 1, \ldots, n$, on désigne aussi par x_i la forme affine sur $\xi + \mathfrak{g}^n$ dont la valeur au point $\xi + x$ de $\xi + \mathfrak{g}^n$ est la valeur de x_i en x. Soit x un point de $Y \setminus X_r$. Quitte à changer de base u_1, \ldots, u_n , on peut supposer que l'ensemble des fonctions

$$y_1 = x_1, \ y_2 = \frac{x_2}{x_1}, \dots, y_n = \frac{x_n}{x_1}$$

est un système de coordonnées de l'anneau local $\mathcal{O}_{X,x}$ de X en x. Puisque x_1 engendre l'idéal de définition de $\sigma^{-1}(\{\xi\})$ dans $\mathcal{O}_{X,x}$, la fonction q/x_1 est un élément inversible de $\mathcal{O}_{X,x}$. L'égalité (5) revient à dire qu'il existe des polynômes $p_1, \ldots, p_s, q_1, \ldots, q_t$ en n-1 indéterminées, non tous nuls, qui satisfont l'égalité :

$$\langle \sum_{j=1}^{s} p_{j}(y_{2}, \dots, y_{n})[\xi + u_{1} + y_{2}u_{2} + \dots + y_{n}u_{n}, v_{j}]$$

+
$$\sum_{k=1}^{t} q_{k}(y_{2}, \dots, y_{n})[\xi + u_{1} + y_{2}u_{2} + \dots + y_{n}u_{n}, f_{k}], w \rangle = 0,$$

pour tout w dans $\mathfrak{n} \oplus [\eta, \mathfrak{g}]$. L'égalité précédente reste valable pour tout w qui centralise $\xi+u_1+y_2u_2+\cdots+y_nu_n$. Or pour tout v dans un ouvert non vide de \mathfrak{g}^{η} , on a la décomposition $\mathfrak{g} = \mathfrak{g}^{\xi+v} \oplus \mathfrak{n} \oplus [\eta, \mathfrak{g}]$, car $\alpha(x) = \mathfrak{g}^{\sigma(x)}$, pour tout x dans l'intersection $Y' \cap X_r$. On en déduit que l'élément

$$\sum_{j=1}^{s} p_{j}(y_{2}, \dots, y_{n})[\xi + u_{1} + y_{2}u_{2} + \dots + y_{n}u_{n}, v_{j}]$$

$$+ \sum_{k=1}^{t} q_{k}(y_{2}, \dots, y_{n})[\xi + u_{1} + y_{2}u_{2} + \dots + y_{n}u_{n}, f_{k}]$$

est orthogonal à \mathfrak{g} , donc est nul. Désignons par d le plus grand des degrés des polynômes $p_1, \ldots, p_s, q_1, \ldots, q_t$ et par χ la fonction polynomiale sur \mathfrak{g}^{η} :

$$x_1^d \sum_{j=1}^s p_j \left(\frac{x_2}{x_1}, \dots, \frac{x_n}{x_1}\right) v_j + x_1^d \sum_{k=1}^t q_k \left(\frac{x_2}{x_1}, \dots, \frac{x_n}{x_1}\right) f_k$$

Alors $\chi(z)$ centralise $\xi + x_1^{-1}z$ pour tout $z = x_1u_1 + \cdots + x_nu_n$ dans \mathfrak{g}^{η} , avec x_1 non nul. Or pour tout v dans un ouvert non vide de \mathfrak{g}^{η} , les sous-espaces $\mathfrak{g}^{\xi+v}$ et $\mathfrak{n} \oplus [\eta, \mathfrak{g}]$ de \mathfrak{g} ont une intersection nulle. Par suite χ est nulle. Ceci est absurde car les polynômes $p_1, \ldots, p_s, q_1, \ldots, q_t$ ne sont pas tous nuls.

L'application ζ n'est donc pas identiquement nulle sur $Y \setminus X_r$ et par conséquent Δ n'est pas un élément nul de $\mathcal{S}(\mathfrak{g})$. Ceci termine la preuve du lemme.

On en déduit le résultat suivant :

Proposition 9 On a les inclusions :

$$\mathfrak{z}(\mathfrak{g}^{\xi}) \subset \alpha(x) \subset \mathfrak{g}^{\xi}$$
, pour tout x dans $Y \setminus X_r$.

 $D\acute{e}monstration$. La deuxième inclusion est connue. On s'intéresse à la première. On fixe un point x_0 dans $Y \setminus X_r$ et il s'agit de montrer l'inclusion :

$$\mathfrak{z}(\mathfrak{g}^{\xi}) \subset \alpha(x_0).$$

On suppose par l'absurde que $\mathfrak{z}(\mathfrak{g}^{\xi})$ n'est pas contenu dans $\alpha(x_0)$. Il existe alors un vecteur v' de $\mathfrak{z}(\mathfrak{g}^{\xi})$ qui n'appartient par à $\alpha(x_0)$ et on construit un supplémentaire \mathfrak{n}' de $\alpha(x_0)$ dans \mathfrak{g}^{ξ} admettant une base $\{v'_1,\ldots,v'_s\}$ telle que $v'_1=v'$. La matrice $([v'_i,v'_j])_{1\leq i,j\leq s}$ a une première colonne nulle car $v'_1=v'$ appartient au centre $\mathfrak{z}(\mathfrak{g}^{\xi})$ de \mathfrak{g}^{ξ} . Ceci contredit le lemme 5 appliqué au supplémentaire $\mathfrak{n}=\mathfrak{n}'$ de $\alpha(x_0)$ dans \mathfrak{g}^{ξ} .

Soit e_1, \ldots, e_m une base de $\mathfrak{z}(\mathfrak{g}^{\xi})$. D'après la proposition précédente, on a l'inclusion $\mathfrak{z}(\mathfrak{g}^{\xi}) \subset \alpha(x)$, pour tout x dans $Y \setminus X_r$. Ceci permet de construire une base $\varepsilon_1(x), \ldots, \varepsilon_{rg \mathfrak{g}}(x)$ de $\alpha(x)$ pour x dans Y qui vérifie

$$\varepsilon_i(x) = e_i$$
, pour tout x dans $Y \setminus X_r$ et $i = 1, \ldots, m$.

Il existe donc des applications régulières $\widetilde{\varepsilon_1}, \ldots, \widetilde{\varepsilon_m}$ sur Y, non identiquement nulles sur $Y \setminus X_r$, qui vérifient les relations :

$$\varepsilon_i(x) = e_i + q(x)^{m_i} \widetilde{\varepsilon}_i(x)$$
, pour tout x dans Y et $i = 1, \ldots, m$,

où m_i est un entier strictement positif.

Lemme 6 Pour tout i de $\{1, \ldots, m\}$, l'entier m_i est égal à 1.

Démonstration. On suppose par l'absurde $m_i > 1$ pour un i dans $\{1, \ldots, m\}$. Il s'agit d'aboutir à une contradiction. On raisonne comme dans la démonstration du lemme 5 et on reprend les mêmes notations. Puisque l'image de $\varepsilon_i = e_i + q^{m_i} \widetilde{\varepsilon}_i$ par γ'_{ν} est égale à $e_i + \tau^{m_i} q'(x)(v') \widetilde{\varepsilon}_i(x)$, de l'égalité

$$[\sigma(x), \varepsilon_i(x)] = 0,$$

on tire l'égalité

$$[\xi + \tau v + \cdots, e_i + \tau^{m_i} q'(x)(v') \widetilde{\varepsilon}_i(x)] = 0,$$

car l'image de σ par γ'_{ν} est égale à $\xi + \tau v \mod \tau^2$. Puisque $m_i > 1$, le terme de degré 1 en τ du membre de gauche de cette égalité est nul; donc $[v, e_i]$ est nul. Il en résulte que pour tout v dans un ouvert non vide de \mathfrak{g}^{η} , $[v, e_i]$ est nul. Par suite, $[v, e_i]$ est nul pour tout v dans \mathfrak{g}^{η} . Ceci est absurde car e_i est un élément de $\mathfrak{z}(\mathfrak{g}^{\xi})$ et $\mathfrak{z}(\mathfrak{g}^{\eta})$ et $\mathfrak{z}(\mathfrak{g}^{\xi})$ ont une intersection nulle.

Du lemme précédent, on déduit la relation $\varepsilon_i(x) = e_i + q(x)\widetilde{\varepsilon}_i(x)$, pour tout x dans Y et tout i dans $\{1,\ldots,m\}$. D'après la proposition 2, on a la décomposition : $\mathfrak{g} = \mathfrak{g}^{\xi^{\perp}} \oplus \mathfrak{g}^{\eta}$. On note, pour x dans Y et i dans $\{1,\ldots,m\}$, $\widetilde{\varepsilon}_{i,1}(x)$ et $\widetilde{\varepsilon}_{i,2}(x)$ les composantes de $\widetilde{\varepsilon}_i(x)$ sur $\mathfrak{g}^{\xi^{\perp}}$ et \mathfrak{g}^{η} respectivement.

Proposition 10 Pour tout x dans un ouvert non vide de $Y \setminus X_r$, l'ensemble des éléments $\widetilde{\varepsilon_{1,2}}(x), \ldots, \widetilde{\varepsilon_{m,2}}(x)$ est une partie libre de \mathfrak{g} .

Démonstration. Supposons l'assertion fausse. Il s'agit d'aboutir à une contradiction. Il existe des fonctions régulières a_1, \ldots, a_m sur Y, non toutes identiquement nulles sur $Y \setminus X_r$, qui satisfont l'égalité :

$$a_1(x)\widetilde{\varepsilon_{1,2}}(x) + \cdots + a_m(x)\widetilde{\varepsilon_{m,2}}(x) = 0$$

pour tout x dans $Y \setminus X_r$. Soit μ l'application régulière sur Y à valeurs dans $\mathfrak{z}(\mathfrak{g}^{\xi})$ qui à x dans Y associe $a_1(x)e_1 + \cdots + a_m(x)e_m$.

On reprend les notations de la démonstration du lemme 9 avec $m_i = 1$, autrement dit $\tau = \tau_0$. Pour v dans \mathfrak{g}^{η} non nul, on note [v] l'image de v dans $\mathbb{P}(\mathfrak{g}^{\eta})$. L'ensemble des points

v de \mathfrak{g}^{η} pour lesquels le point $\xi \times [v]$ de $(\xi + \mathfrak{g}^{\eta}) \times \mathbb{P}(\mathfrak{g}^{\eta})$ appartient à $Y \setminus X_r$ est un ouvert non vide de \mathfrak{g}^{η} . Soit v dans \mathfrak{g}^{η} appartenant à cet ouvert et posons $x = \xi \times [v] \in Y \setminus X_r$. Alors il existe un vecteur v' tangent à Y en x tel que l'image de v' par l'application linéaire tangente à σ en x soit égale à v. En effet, on considère la courbe γ qui au complexe t associe le point $(\xi + tv) \times [v]$ de $(\xi + \mathfrak{g}^{\eta}) \times \mathbb{P}(\mathfrak{g}^{\eta})$. Pour t dans un voisinage ouvert de 0, la courbe γ est à valeurs dans Y et l'on a $\gamma(0) = x$; par suite la dérivée $\gamma'(0)$ de γ en 0 est un vecteur de l'espace tangent à Y en x. Or on vérifie aisément que $\sigma'(x)(\gamma'(0)) = v$, d'où l'existence du vecteur v'.

Puisque l'image de $\sum_{j=1}^{m} a_j \varepsilon_j = \sum_{j=1}^{m} a_j e_j + q \sum_{j=1}^{m} a_j \widetilde{\varepsilon}_j$ par γ'_{ν} est égale à $\sum_{j=1}^{m} a_j(x) e_j + \tau \sum_{j=1}^{m} a'_j(x) (v') e_j + \tau q'(x) (v') \sum_{j=1}^{m} a_j(x) \widetilde{\varepsilon}_j(x)$, de l'égalité

$$[\sigma(x), \sum_{j=1}^{m} a_j(x)\varepsilon_j(x)] = 0,$$

on tire l'égalité

$$[\xi + \tau v, \sum_{j=1}^{m} a_j(x)e_j + \tau \sum_{j=1}^{m} a'_j(x)(v')e_j + \tau q'(x)(v') \sum_{j=1}^{m} a_j(x)\widetilde{\varepsilon_{j,1}}(x)] = 0.$$

Cela provient des deux égalités suivantes : $\gamma'_{\nu}(\sigma) = \xi + \tau v$ et $\sum_{j=1}^{p} a_{j}(x)\widetilde{\varepsilon_{j,2}}(x) = 0$. Le terme de degré 1 en τ du membre de gauche de l'égalité précédente est nul, d'où l'égalité

$$[\xi, q'(x)(v') \sum_{j=1}^{m} a_j(x) \widetilde{\varepsilon_{i,1}}(x)] = -[v, \sum_{j=1}^{m} a_j(x) e_j] \cdot$$

Les applications $\widetilde{\varepsilon_{i,1}}$ sont à valeurs dans $\mathfrak{g}^{\xi^{\perp}} = [\xi, \mathfrak{g}]$ et ce qui précède donne la relation :

$$[v, \sum_{j=1}^{m} a_j(x)e_j] \in [\xi, [\xi, \mathfrak{g}]] = (\mathfrak{g}^{\xi} \oplus [\eta, \mathfrak{g}^{\xi}])^{\perp},$$

d'après la proposition 3, ce qui signifie encore, par définition de l'application μ ,

$$\langle v, [[\eta, \mathfrak{g}^{\xi}], \mu(x)] \rangle = \{0\}.$$

En résumé, on a montré : pour tout $\xi \times [v]$ dans $Y \setminus X_r$, on a la relation

$$v \in [[\eta, \mathfrak{g}^{\xi}], \mu(\xi \times [v])]^{\perp}. \tag{6}$$

On note

$$Y' = \{ x \in Y \setminus X_r \mid \mu(x) \neq 0 \} \cdot$$

L'ensemble Y' est un ouvert non vide de $Y \setminus X_r$ et comme ξ vérifie la propriété (P), on a l'inclusion :

$$[[\eta, \mathfrak{g}^{\xi}], \mu(x)]^{\perp} \subset W^{\perp},$$

pour tout x dans Y'. Comme le sous-espace W est contenu dans \mathfrak{g}^{ξ} , son orthogonal W^{\perp} ne contient pas \mathfrak{g}^{η} ; sinon, ce dernier contiendrait la somme $\mathfrak{g}^{\eta} \oplus \mathfrak{g}^{\xi^{\perp}} = \mathfrak{g}$ et W serait nul. L'ensemble

$$X^{\circ} = \{ \xi \times [v] \in X \setminus X_r \mid v \not\in W^{\perp} \}$$

est donc un ouvert non vide de $X \setminus X_r$ et l'intersection $Y' \cap X^\circ$ est non vide. Il en résulte que pour tout $x = \xi \times [v]$ dans l'intersection $Y' \cap X^\circ$, le sous-espace $[[\eta, \mathfrak{g}^{\xi}], \mu(x)]^{\perp}$ n'est pas contenu dans W^{\perp} , d'après la relation (6). Ceci contredit le fait que x appartient à Y'.

On en déduit le corollaire suivant :

Corollaire 1 On note e_1, \ldots, e_n une base de \mathfrak{g}^{ξ} telle que e_1, \ldots, e_m est une base de $\mathfrak{z}(\mathfrak{g}^{\xi})$. On suppose que ξ vérifie la propriété (P). Alors la matrice $([[\eta, e_i], e_j])_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$ à coefficients dans $\mathcal{S}(\mathfrak{g}^{\xi})$ est de rang maximal égal à dim $\mathfrak{z}(\mathfrak{g}^{\xi})$.

Démonstration. On évalue la matrice $([[\eta,e_i],e_j])_{1 \leq i \leq n \atop 1 \leq j \leq m}$ en la forme linéaire $\langle \sigma(x),\cdot \rangle$ sur \mathfrak{g}^{ξ} , pour x dans Y:

$$(\langle \sigma(x), [[\eta, e_i], e_j] \rangle)_{\substack{1 \le i \le n \\ 1 \le j \le m}} = (\langle [\sigma(x), e_j], [\eta, e_i] \rangle)_{\substack{1 \le i \le n \\ 1 \le j \le m}}$$

$$= -q(x) (\langle [\sigma(x), \widetilde{\varepsilon_j}(x)], [\eta, e_i] \rangle)_{\substack{1 \le i \le n \\ 1 \le j \le m}}.$$

On suppose par l'absurde que, pour tout x dans $Y\setminus X_r$, la matrice $(\langle [\sigma(x),\widetilde{\varepsilon_j}(x)], [\eta,e_i]\rangle)_{1\leq i\leq n\atop 1\leq j\leq m}$ n'est pas de rang maximal; autrement dit on suppose que, pour tout x dans $Y\setminus X_r$, les vecteurs à coefficients complexes

$$\begin{bmatrix} \langle [\sigma(x), \widetilde{\varepsilon}_1(x)], [\eta, e_1] \rangle \\ \vdots \\ \langle [\sigma(x), \widetilde{\varepsilon}_1(x)], [\eta, e_n] \rangle \end{bmatrix}, \dots, \begin{bmatrix} \langle [\sigma(x), \widetilde{\varepsilon}_m(x)], [\eta, e_1] \rangle \\ \vdots \\ \langle [\sigma(x), \widetilde{\varepsilon}_m(x)], [\eta, e_n] \rangle \end{bmatrix},$$

sont liés. Il existe donc des fonctions régulières a_1, \ldots, a_m sur $Y \setminus X_r$, non toutes identiquement nulles, qui satisfont l'égalité :

$$\langle [\sigma(x), \sum_{j=1}^{m} a_j(x)\widetilde{\varepsilon}_j(x)], [\eta, e_i] \rangle = 0,$$

pour i = 1, ..., n et x dans $Y \setminus X_r$. Notons χ l'application $\chi(x) = \sum_{j=1}^m a_j(x) \widetilde{\varepsilon_j}(x)$. L'inclusion $Y \setminus X_r \subset \sigma^{-1}(\{\xi\})$ donne la relation

$$\langle \chi(x), [\xi, [\eta, \mathfrak{g}^{\xi}]] \rangle = \{0\},\$$

pour tout x dans $Y \setminus X_r$. Puisque $[\xi, [\eta, \mathfrak{g}^{\xi}]] = \mathfrak{g}^{\xi}$, on en déduit que $\chi(x)$ appartient à $\mathfrak{g}^{\xi^{\perp}}$, pour tout x dans $Y \setminus X_r$. Comme $\chi(x)$ s'écrit $\chi(x) = \sum_{i=1}^m a_i(x)\widetilde{\varepsilon_{i,1}}(x) + \sum_{i=1}^m a_i(x)\widetilde{\varepsilon_{i,2}}(x)$, avec $\sum_{i=1}^m a_i(x)\widetilde{\varepsilon_{i,1}}(x)$ dans $\mathfrak{g}^{\xi^{\perp}}$, l'élément $\sum_{i=1}^n a_i(x)\widetilde{\varepsilon_{i,2}}(x)$ appartient à l'intersection $\mathfrak{g}^{\xi^{\perp}} \cap \mathfrak{g}^{\eta}$, donc est nul. D'après la proposition 10, les éléments $\widetilde{\varepsilon_{i,2}}(x)$ sont linéairement indépendants pour tout x dans un ouvert non vide de $Y \setminus X_r$. On en déduit que les fonctions a_i sont toutes identiquement nulles sur $Y \setminus X_r$, ce qui contredit les hypothèses.

Par conséquent la matrice $(\langle [\sigma(x), \widetilde{\varepsilon_j}], [\eta, e_i] \rangle)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$ à coefficients dans $\mathcal{S}(\mathfrak{g}^{\xi})$ est de rang maximal, pour tout x dans un ouvert non vide de $Y \setminus X_r$.

On en déduit le théorème 2 lorsque ξ vérifie la propriété (P) de la définition 1. En effet, avec les notations de la proposition 5, la matrice du corollaire précédent est la matrice

 $\begin{bmatrix} \mathfrak{D} \\ \mathfrak{E} \end{bmatrix}$. Cela résulte des relations, déjà vues, $[[\eta,e_j],e_i]=[[\eta,e_i],e_j]$, pour $i=1,\ldots,n$ et $j=1,\ldots,m$. En outre le théorème 2 est connu pour les éléments nilpotents réguliers de \mathfrak{g} .

Remarque - Sous les hypothèses et avec les notations de la partie 3, il n'est pas difficile de montrer que les éléments nilpotents de \mathfrak{g} vérifient la propriété (P) lorsque $\mathfrak{z}' = \mathfrak{z}(\mathfrak{g}^{\xi})$. En revanche, les éléments nilpotents de \mathfrak{so}_{2n} ne vérifient pas la propriété (P) en général.

5 Étude de la propriété (P) et démonstration des théorèmes 1 et 2 dans le cas exceptionnel.

Pour terminer la preuve des théorèmes 1 et 2, il reste essentiellement à étudier la propriété (P) pour les algèbres de Lie simples exceptionnelles. On suppose que \mathfrak{g} est une algèbre de Lie simple exceptionnelle et que ξ est un élément nilpotent distingué non régulier de \mathfrak{g} . Il s'agit de montrer que l'élément ξ vérifie la propriété (P). On note m_1, \ldots, m_r les valeurs propres de la restriction de $\mathrm{ad}\rho$ au sous-espace $\mathfrak{z}(\mathfrak{g}^\xi)$. Les entiers m_1, \ldots, m_r sont pairs et on a

$$2 = m_1 < m_2 < \cdots < m_r$$

On note $V(m_l)$ le sous-espace propre correspondant à la valeur propre m_l , pour l = 1, ..., r. Avec les notations de la définition 1, on a :

$$W = V(m_r)$$
.

On choisit une base

$$\mathcal{B} = \xi_{m_1}^1, \dots, \xi_{m_1}^{d_1}, \xi_{m_2}^1, \dots, \xi_{m_2}^{d_2}, \dots, \xi_{m_r}^1, \dots, \xi_{m_r}^{d_r}, \dots$$

de \mathfrak{g}^{ξ} de vecteurs propres telle que $\xi_{m_l}^1, \ldots, \xi_{m_l}^{d_l}$ forme une base de $V(m_l)$, pour $l=1,\ldots,r$ et telle qu'il existe une base de $\mathfrak{z}(\mathfrak{g}^{\xi})$ formée de vecteurs de \mathcal{B} . On peut supposer que $\xi_{m_1}^1 = \xi_2^1 = \xi$. On fixe un élément non nul v de $\mathfrak{z}(\mathfrak{g}^{\xi})$ et on souhaite montrer que le sous-epsace $V(m_r)$ est contenu dans le sous-espace $[[\eta, \mathfrak{g}^{\xi}], v]$. Commençons par prouver la proposition suivante :

Lemme 7 Si la coordonnée de v en $\xi_{m_1}^1 = \xi$ est non nulle, alors le sous-epsace $V(m_r)$ est contenu dans le sous-espace $[[\eta, \mathfrak{g}^{\xi}], v]$.

Démonstration. Soit v un élément non nul de $\mathfrak{z}(\mathfrak{g}^{\xi})$ dont la coordonnée λ de v en $\xi_{m_1}^1 = \xi$ est non nulle. Soit p dans $\{1, \ldots, d_r\}$. L'élément $\xi_{m_r}^p$ de $V(m_r)$ s'écrit

$$\xi_{m_r}^p = [[\eta, -\frac{1}{m_r} \xi_{m_r}^p], \xi] \cdot$$

D'après [5], (Théorème 2.3), ξ est le seul élément de $\mathfrak{z}(\mathfrak{g}^{\xi})$ de poids 2. Comme m_r est le plus haut poids, on en déduit que l'élément $\xi_{m_r}^p$ s'écrit sous la forme :

$$\xi_{m_r}^p = [[\eta, -\frac{1}{m_r \times \lambda} \xi_{m_r}^p], v] \cdot$$

Par suite, on a l'inclusion:

$$V(m_r) \subseteq [[\eta, \mathfrak{g}^{\xi}], v],$$

d'où le lemme.

Soit $i_1 < \cdots < i_p$ dans $\{1, \ldots, r\}$ et $k_{(1,1)}, \ldots, k_{(1,\delta_1)}, \ldots, k_{(p,1)}, \ldots, k_{(p,\delta_p)}$ des indices tels que les éléments

$$\xi_{m_{i_1}}^{k_{(1,1)}}, \dots, \xi_{m_{i_1}}^{k_{(1,\delta_1)}}, \dots, \xi_{m_{i_p}}^{k_{(p,1)}}, \dots, \xi_{m_{i_p}}^{k_{(p,\delta_p)}}$$

appartiennent à $\mathfrak{z}(\mathfrak{g}^{\xi})$ et tels que v s'écrive sous la forme

$$v = \alpha_1^1 \xi_{m_{i_1}}^{k_{(1,1)}} + \dots + \alpha_1^{\delta_1} \xi_{m_{i_1}}^{k_{(1,\delta_1)}} + \dots + \alpha_p^1 \xi_{m_{i_p}}^{k_{(p,1)}} + \dots + \alpha_p^{\delta_p} \xi_{m_{i_p}}^{k_{(p,\delta_p)}},$$

avec $(\alpha_1^1, \ldots, \alpha_1^{\delta_1}, \ldots, \alpha_p^1, \ldots, \alpha_p^{\delta_p})$ dans $(\mathbb{C}^*)^K$ où $K = \delta_1 + \cdots + \delta_p$. D'après la proposition précédente, on peut supposer que i_1 est strictement plus grand que 1.

Pour i, j et k dans $\{1, \ldots, r\}$ et s, p et q dans $\{1, \ldots, d_i\}$, $\{1, \ldots, d_j\}$ et $\{1, \ldots, d_k\}$ respectivement, on note $\lambda_{(m_k,q),(m_i,s),(m_j,p)}$ la coordonnée de l'élément $[[\eta, \xi_{m_k}^q], \xi_{m_i}^s]$ en $\xi_{m_j}^p$. Notons que si $\lambda_{(m_k,q),(m_i,s),(m_j,p)}$ est non nul, on a la relation $m_k = m_j - m_i + 2$.

On suppose qu'il existe k_1 dans $\{1,\ldots,r\}$ tel que $m_{k_1}=m_r-m_{i_1}+2$. Soit $w=\sum_{p=1}^{d_r}b_p\xi_{m_r}^p$

un élément de $V(m_r)$. On cherche u dans \mathfrak{g}^ξ sous la forme $u=\sum_{q=1}^{d_{k_1}}a_q\xi_{m_{k_1}}^q$ tel que

$$[[\eta, u], v] = w \cdot$$

Ce problème revient à résoudre un système linéaire d'inconnue le vecteur $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_{dr} \end{bmatrix}$, de

second membre $\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_d \end{bmatrix}$ et de matrice associée la matrice M(v) de taille $d_r \times d_{k_1}$ dont les

coefficients $M(v)_{p,q}$ sont donnés par :

$$M(v)_{p,q} = \sum_{s=1}^{\delta_{i_1}} \alpha_1^s \lambda_{(m_{k_1},q),(m_{i_1},s),(m_r,p)},$$

pour p dans $\{1, \ldots, d_r\}$ et q dans $\{1, \ldots, d_{k_1}\}$. La matrice M(v) s'écrit aussi de manière plus agréable comme une somme de matrices :

$$M(v) = \sum_{s=1}^{\delta_{i_1}} \alpha_1^s M(\xi_{m_{i_1}}^{k_{(1,s)}}) \cdot$$

Il est clair que si la matrice M(v) est surjective, le sous-espace $V(m_r)$ est contenu dans le sous-epsace $[\eta, \mathfrak{g}^{\xi}], v]$. On s'intéresse désormais à cette condition. Remarquons que cette condition ne dépend que des termes de plus bas poids m_{i_1} intervenant dans l'écriture de v.

Pour chaque algèbre de Lie exceptionnelle, on trouve dans [2] une liste de \mathfrak{sl}_2 -triplets correspondant aux orbites nilpotentes. Le logiciel GAP4 permet en outre d'effectuer des calculs dans les algèbres de Lie. Il permet notamment de calculer le centralisateur d'un élément, le centre d'une sous-algèbre, etc. L'étude précédente donne les conditions à vérifier

pour que tout élément non nul de $\mathfrak{z}(\mathfrak{g}^{\xi})$ vérifie (P). Grâce aux données de [2] et au logiciel GAP4, on exhibe une base \mathcal{B} vérifiant les conditions précédentes. Si i_1 est un entier de $\{1,\ldots,r\}$ tel que $V(m_{i_1})$ et $\mathfrak{z}(\mathfrak{g}^{\xi})$ ont une intersection non nulle et si les éléments $\xi_{m_{i_1}}^{l_1},\ldots,\xi_{m_{i_1}}^{l_{\delta}}$ forment une base de l'intersection $V(m_{i_1})\cap\mathfrak{z}(\mathfrak{g}^{\xi})$, on vérifie qu'il existe un entier k_1 tel que $m_{k_1}=m_{j_1}-m_{i_1}+2$, on calcule à l'aide de GAP4 les matrices $M(\xi_{m_{i_1}}^{l_1}),\ldots,M(\xi_{m_{i_1}}^{l_{\delta}})$ et on vérifie la surjectivité de la matrice

$$M(v) = \sum_{s=1}^{\delta} \alpha_{l_s} M(\xi_{m_i}^{l_s}),$$

pour tout δ -uplet $(\alpha_{l_1}, \ldots, \alpha_{l_{\delta}})$ non nul. Le lemme 7 permet de ne traiter que le cas où m_{i_1} est strictement plus grand que 2. De plus, si $m_{i_1} = m_r$ et $\delta = 1$, alors on a : $1 = \delta = \dim V(m_{i_1}) \cap \mathfrak{z}(\mathfrak{g}^{\xi}) = \dim V(m_r)$ et on a clairement l'inclusion $V(m_r) \subseteq [[\eta, \mathfrak{g}^{\xi}], v]$, pour $v = \sum_{s=1}^{\delta} \alpha_{l_s} \xi_{m_{i_1}}^{l_s}$.

On donne en annexe les calculs permettant de vérifier ces conditions et par suite la propriété (P). On s'aperçoit que dans la plupart des cas la somme précédente n'a qu'un seul terme. L'étude de la surjectivité ne dépend alors d'aucun paramètre, ce qui facilite le travail.

Ces calculs montrent que les algèbres E_6 , E_7 , E_8 et F_4 vérifient la propriété (P). Reste le cas de G_2 ; dans G_2 , il n'y a qu'une seule orbite nilpotente distinguée non régulière et pour cette orbite le centre est de dimension 2. Le lemme 7 assure que cette orbite vérifie (P). Par suite G_2 vérifie (P) aussi. Des propositions 5 et 6 et du corollaire 1, il résulte que la relation du théorème 2 est satisfaite pour ces cinq algèbres de Lie. Notons ici l'importance d'avoir démontré le théorème 2 dans le cas classique avant le cas exceptionnel pour appliquer la proposition 6. En effet, les sous-algèbres de Lie semi-simples d'une algèbre de Lie exceptionnelle sont isomorphes à des produits finis d'idéaux simples et ces composantes simples peuvent être isomorphes à des algèbres de Lie de type A, B, C ou D. La démonstration des théorèmes 1 et 2 est ainsi achevée.

Annexe

On présente dans cette annexe les calculs faits à l'aide du logiciel GAP4 permettant de vérifier la propriété (P) pour E_6 , E_7 , E_8 et F_4 . On reprend les notations de la partie précédente et la démarche générale est la suivante : on définit l'algèbre de Lie L dans laquelle on veut travailler grâce à la commande SimpleLieAlgebra, on définit un système de racines (RootSystem), un système de racines positives correspondant (PositiveRoots) puis des systèmes de vecteurs «positifs» et «négatifs» associés (PositiveRootVectors et NegatitiveRootVectors). La commande CanonicalGenerators donne une base de la sous-algèbre de Cartan. On peut désormais faire des calculs dans l'algèbre de Lie L. Il s'agit ensuite d'étudier les orbites nilpotentes distinguées non régulières. Pour chacune d'entre elles, on définit un \mathfrak{sl}_2 -triplet $\{e,h,f\}$ grâce aux données de [2]. On calcule ensuite le centralisateur g de l'élément positif e avec la commande LieCentralizer puis le centre z du centralisateur avec LieCentre. Pour chaque cas, on précise la valeur du plus haut poids m_r et on donne le nombre de matrices à étudier. Ensuite, pour chacune d'entre elles on donne les valeurs de m_{i_1} et m_{k_1} et on fait les calculs necéssaires. Les calculs de la première orbite de la première algèbre (il s'agit de l'orbite sous-régulière de E_6) sont détaillés; les autres le sont un peu moins.

Cas de E_6 .

```
On commence par définir L et les générateurs de L :
> L:=SimpleLieAlgebra("E",6,Rationals);
<Lie algebra of dimension 78 over Rationals>
> R:=RootSystem(L);
<root system of rank 6>
> P:=PositiveRoots(R);;
> x:=PositiveRootVectors(R);
[ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14,
 v.15, v.16, v.17, v.18, v.19, v.20, v.21, v.22, v.23, v.24, v.25, v.26,
  v.27, v.28, v.29, v.30, v.31, v.32, v.33, v.34, v.35, v.36]
> y:=NegativetiveRootVectors(R);
[v.37, v.38, v.39, v.40, v.41, v.42, v.43, v.44, v.45, v.46, v.47, v.48,
  v.49, v.50, v.51, v.52, v.53, v.54, v.55, v.56, v.57, v.58, v.59, v.60,
  v.61, v.62, v.63, v.64, v.65, v.66, v.67, v.68, v.69, v.70, v.71, v.72]
> CanonicalGenerators(R)[3]
[ v.73, v.74, v.75, v.76, v.77, v.78 ]
```

Dans E_6 , il y a deux orbites nilpotentes distinguées non régulières :

1. Caractéristique :


```
On définit les éléments e et f du sl<sub>2</sub>-triplet correspondant dans les données de [2] :
> e:=x[1]+x[2]+x[5]+x[6]+x[8]+x[9];
v.1+v.2+v.5+v.6+v.8+v.9
 > f:=(12)*y[1]+(8)*y[2]+(-8)*y[3]+(22)*y[5]+(12)*y[6]+(8)*y[8]+ 
(22)*y[9]+(8)*y[10];;
On vérifie que le crochet e*f est égal à l'élément neutre de la caractéristique et on
pose h := e * f :
> e*f:
(12)*v.73+(16)*v.74+(22)*v.75+(30)*v.76+(22)*v.77+(12)*v.78
> h:=e*f;;
On calcule le centralisateur g de e et on en donne une base Bg. On calcule ensuite le
centre z et on donne une base Bz de z :
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 8 over Rationals>
Le centralisateur est de dimension 8 (ce que l'on savait déjà).
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 8 over Rationals>,
(dimension 5)>
Le centre est un idéal de dimension 5 dans g.
> Bz:=BasisVectors(Basis(z));
[v.1+v.2+v.5+v.6+v.8+v.9, v.23+(-1)*v.25+v.26,
  v.27+(-1)*v.29+(-1)*v.30+(-1)*v.31, v.34+v.35, v.36
```

On calcule les «poids» de z en évaluant h*Bz[i] pour i = 1, ..., 5. On sait déjà que h*Bz[1]=(2)*Bz[1] car Bz[1]=e.

```
> h*Bz[2];
(8)*v.23+(-8)*v.25+(8)*v.26
> h*Bz[3];
(10)*v.27+(-10)*v.29+(-10)*v.30+(-10)*v.31
> h*Bz[4];
(14)*v.34+(14)*v.35
> h*Bz[5];
(16)*v.36
```

On obtient que les poids sont 2, 8, 10, 14, 16, d'où $m_r = 16$. Il y a donc trois matrices à étudier.

(a) $m_{i_1} = 8$, $m_{k_1} = 10$. On cherche les éléments de V(10) parmi Bg en calculant h*Bg[i], pour i = 1, ..., 8 et on effectue le calcul correspondant :

```
> h*Bg[5];
(10)*v.27+(-10)*v.29
> h*Bg[6];
(10)*v.30+(10)*v.31
Le sous-espace V(10) est engendré par les vecteurs Bg[5] et Bg[6].
> ((f*Bg[5])*Bz[2]);
(-20)*v.36
> ((f*Bg[6])*Bz[2]);
```

Notons que v.36 est bien l'élément Bz[5] correspondant au plus haut poids 16. La matrice qu'il faut considérer est M(Bz[2]); elle est donnée par $\begin{bmatrix} -20 & 20 \end{bmatrix}$. C'est une matrice de rang 1.

Remarque - Lorsque $d_r = 1$, il suffit de trouver <u>un</u> élément de $V(m_{k_1})$ qui donne un crochet non nul; dans la suite on donnera seulement le calcul correspondant à cet élément.

```
(b) m_{i_1} = 10, m_{k_1} = 8.

> ((f*Bz[2])*Bz[3]);

(-40)*v.36

(c) m_{i_1} = 14, m_{k_1} = 4.

> h*Bg[2];

(4)*v.7+(2)*v.11+(2)*v.12+(2)*v.13+(-2)*v.14+(2)*v.15+(-4)*v.16

> ((f*Bg[2])*Bz[4]);

(14)*v.36
```

Ces trois calculs montrent que les conditions de la partie 5 sont vérifiées pour tout élément non nul de z. Ainsi cette orbite vérifie (P).

2. Caractéristique:

(20)*v.36


```
Définition du \mathfrak{sl}_2-triplet :
>e:=x[7]+x[8]+x[9]+x[10]=x[11]+x[19];
v.7+v.8+v.9+v.10+v.11+v.19
 > f:=(8)*y[7]+(9)*y[8]+(5)*y[9]+(5)*y[10]+(8)*y[11]+y[19]; 
(8)*v.43+(9)*v.44+(5)*v.45+(5)*v.46+(8)*v.47+v.55
> e*f;
(8)*v.73+(10)*v.74+(14)*v.75+(20)*v.76+(14)*v.77+(8)*v.78
> h:=e*f;;
Calcul de g, Bg, z et Bz:
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 12 over Rationals>
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 12 over Rationals>,
  (dimension 4)>
> Bg:=BasisVectors(Basis(g));;
> Bz:=BasisVectors(Basis(z));
[ v.7+v.8+v.9+v.10+v.11+v.19, v.32+(-1)*v.33, v.35, v.36 ]
> h*Bz[2];
(8)*v.32+(-8)*v.33
> h*Bz[3];
(10)*v.35
> h*Bz[4];
(10)*v.36
Les poids de z sont 2,8,10,10; d'où m_r = 10. Il y a deux matrices à étudier.
(a) m_{i_1} = 8, m_{k_1} = 4
   > h*Bg[4];
    (4)*v.17+(-4)*v.18+(4)*v.20+(-4)*v.21
   > h*Bg[5];
    (4)*v.12+(4)*v.16+(-8)*v.22+(4)*v.24
   > h*Bg[6];
    (4)*v.22+(-4)*v.24+(-4)*v.25
   > ((f*Bg[4])*Bz[2]);
    (-16)*v.35
(b) m_{i_1} = 10, m_{k_1} = 2
   > h*Bg[2];
    (2)*v.1+(2)*v.4+(2)*v.6+(2)*v.13+(2)*v.14+(-6)*v.15
   > h*Bg[3];
    (2)*v.19
   > ((f*Bg[1])*Bz[3]); ((f*Bg[2])*Bz[3]); ((f*Bg[3])*Bz[3]);
    (-10)*v.35
    (10)*v.36
   0*v.1
   > ((f*Bg[1])*Bz[4]); ((f*Bg[2])*Bz[4]); ((f*Bg[3])*Bz[4]);
    (-9)*v.36
    (6)*v.35
    (-1)*v.36
```

La matrice à étudier est

$$\alpha \left[\begin{array}{ccc} -10 & 0 & 0 \\ 0 & 10 & 0 \end{array} \right] + \beta \left[\begin{array}{ccc} 0 & 6 & 0 \\ -9 & 0 & -1 \end{array} \right] = \left[\begin{array}{ccc} -10\alpha & -\beta & 0 \\ -9\beta & 10\alpha & -\beta \end{array} \right].$$

On vérifie que c'est une matrice de rang 2 pour tout couple (α, β) non nul.

La propriété (P) est vérifiée pour cette orbite.

Conclusion : E_6 vérifie (P).

```
Cas de E_7.
```

```
Définition de L:
```

```
> L:=SimpleLieAlgebra("E",7,Rationals);
```

<Lie algebra of dimension 133 over Rationals>

> R:=RootSystem(L);

<root system of rank 7>

> P:=PositiveRoots(R);;

> x:=PositiveRootVectors(R);

```
[ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17, v.18, v.19, v.20, v.21, v.22, v.23, v.24, v.25, v.26, v.27, v.28, v.29, v.30, v.31, v.32, v.33, v.34, v.35, v.36, v.37, v.38, v.39, v.40, v.41, v.42, v.43, v.44, v.45, v.46, v.47, v.48, v.49, v.50, v.51, v.52, v.53, v.54, v.55, v.56, v.57, v.58, v.59, v.60, v.61, v.62, v.63 ]
```

> y:=NegativeRootVectors(R);

```
[ v.64, v.65, v.66, v.67, v.68, v.69, v.70, v.71, v.72, v.73, v.74, v.75, v.76, v.77, v.78, v.79, v.80, v.81, v.82, v.83, v.84, v.85, v.86, v.87, v.88, v.89, v.90, v.91, v.92, v.93, v.94, v.95, v.96, v.97, v.98, v.99, v.100, v.101, v.102, v.103, v.104, v.105, v.106, v.107, v.108, v.109, v.110, v.111, v.112, v.113, v.114, v.115, v.116, v.117, v.118, v.119, v.120, v.121, v.122, v.123, v.124, v.125, v.126 ]
```

> CanonicalGenerators(R)[3];

Dans E_7 , il y a cinq orbites nilpotentes distinguées non régulières :

1. Caractéristique :

Définition du \mathfrak{sl}_2 -triplet :

```
> e:=x[1]+x[2]+x[3]+x[6]+x[7]+x[9]+x[11];

v.1+v.2+v.3+v.6+v.7+v.9+v.11

>f:=(26)*y[1]+(22)*y[2]+(50)*y[3]+(22)*y[5]+(40)*y[6]

(21)*y[7]+(15)*y[9]+(-15)*y[10]+(57)*y[11];

(26)*v.64+(22)*v.65+(50)*v.66+(22)*v.68+(40)*v.69

+(21)*v.70+(15)*v.72+(-15)*v.73+(57)*v.74

> e*f;
```

```
(26) *v.127 + (37) *v.128 + (50) *v.129 + (72) *v.130 + (57) *v.131 + (40) *v.132 + (21) *v.133
> h:=e*f;;
Calcul de g, Bg, z et Bz:
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 9 over Rationals>
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 9 over Rationals>,
(dimension 6)>
> Bg:=BasisVectors(Basis(g));;
> Bz:=BasisVectors(Basis(z));
[v.1+v.2+v.3+v.6+v.7+v.9+v.11, v.33+(2)*v.34+(-1)*v.36+(-1)*v.37]
+(-1)*v.38+v.40+(-3)*v.41, v.46+v.47+v.48+v.49+v.50, v.56+(-1)*v.57, v.60,
  v.63]
> h*Bz[2];
(10)*v.33+(20)*v.34+(-10)*v.36+(-10)*v.37+(-10)*v.38+(10)*v.40+(-30)*v.41
> h*Bz[3];
(14)*v.46+(14)*v.47+(14)*v.48+(14)*v.49+(14)*v.50
> h*Bz[4]:
(18)*v.56+(-18)*v.57
> h*Bz[5]:
(22)*v.60
> h*Bz[6];
(26)*v.63
Les poids de z sont 2,10,14,18,22,26; d'où m_r = 26. Il y a quatre matrices à étudier.
(a) m_{i_1} = 10, m_{k_1} = 18
    > ((f*Bz[4])*Bz[2]);
    (90)*v.63
(b) m_{i_1} = 14, m_{k_1} = 14
    > ((f*Bz[3])*Bz[3]);
    (-98)*v.63
(c) m_{i_1} = 10, m_{k_1} = 18
    > ((f*Bz[4])*Bz[2]);
    (90)*v.63
(d) m_{i_1} = 18, m_{k_1} = 10
    > h*Bg[3];
    (10)*v.33+(20)*v.34+(-10)*v.36+(20)*v.37+(20)*v.38+(10)*v.40
    > h*Bg[4];
    (10)*v.37+(10)*v.38+(10)*v.41
    > ((f*Bg[4])*Bz[4]);
    (-30)*v.63
    4) m_{i_1} = 22, m_{k_1} = 6
    > h*Bg[2];
    (6)*v.19+(4)*v.20+(-2)*v.21+(2)*v.22+(4)*v.23+(-2)*v.24+(-2)*v.25+(-2)*v.28
    > ((f*Bg[2])*Bz[5]);
    (-22)*v.63
```

2. Caractéristique :

> h*Bg[5];

Définition du sl₂-triplet : > e:=x[1]+x[2]+x[3]+x[5]+x[7]+x[9]+x[18];v.1+v.2+v.3+v.5+v.7+v.9+v.18 f:=(22)*y[1]+(3)*y[2]+(42)*y[3]+(15)*y[5]+(17)*y[7]+(28)*y[9]+(-28)*y[10]+(3)*y[12]+(3)*y[13]+(32)*y[18];(22)*v.64+(3)*v.65+(42)*v.66+(15)*v.68+(17)*v.70+(28)*v.72+(-28)*v.73+(3)*v.75+(3)*v.76+(32)*v.81> e*f; (22)*v.127+(31)*v.128+(42)*v.129+(60)*v.130+(47)*v.131+(32)*v.132+(17)*v.133> h:=e*f;; Calcul de g, Bg, z et Bz : > g:=LieCentralizer(L,Subspace(L,[e])); <Lie algebra of dimension 11 over Rationals> > z:=LieCentre(g); <two-sided ideal in <Lie algebra of dimension 11 over Rationals>, (dimension 5)> > Bg:=BasisVectors(Basis(g));; > Bz:=BasisVectors(Basis(z)); [v.1+v.2+v.3+v.5+v.7+v.9+v.18, v.39+(-1)*v.42+(-1)*v.43+(-1)*v.44+(-1)*v.4+(-2)*v.45+v.49, v.51+v.53+v.55+v.57, v.60, v.63> h*Bz[2]:(10)*v.39+(-10)*v.42+(-10)*v.43+(-10)*v.44+(-20)*v.45+(10)*v.49> h*Bz[3]; (14)*v.51+(14)*v.53+(14)*v.55+(14)*v.57> h*Bz[4];(18)*v.60> h*Bz[5]; (22)*v.63Les poids de z sont 2,10,14,18,22; d'où $m_r = 22$. Il y a trois matrices à étudier. (a) $m_{i_1} = 10, m_{k_1} = 14$ > h*Bg[7];(14)*v.53+(-14)*v.54> h*Bg[8]; (14)*v.51+(14)*v.54+(14)*v.55+(14)*v.57> ((f*Bg[7])*Bz[2]); (-70)*v.63(b) $m_{i_1} = 14$, $m_{k_1} = 10$

(10)*v.42+(10)*v.43+(10)*v.44+(20)*v.45

```
> h*Bg[6];

(10)*v.39+(10)*v.49

> ((f*Bg[5])*Bz[3]);

(70)*v.63

(c) m_{i_1} = 18, m_{k_1} = 4

> h*Bg[3];

(6)*v.20+(9)*v.21+(-3)*v.22+(-3)*v.27+(-9)*v.28+

(3)*v.29+(6)*v.30+(-3)*v.31+(-3)*v.35

> ((f*Bg[3])*Bz[4]);

(18)*v.63
```

3. Caractéristique :

Définition du \mathfrak{sl}_2 -triplet :

(a) $m_{i_1} = 10, m_{k_1} = 10$

```
> e:=x[7]+x[8]+x[9]+x[10]+x[11]+x[12]+x[22];
v.7+v.8+v.9+v.10+v.11+v.12+v.22
(28)*y[12]+y[22];
(15)*v.70+(18)*v.71+(24)*v.72+(15)*v.73+(10)*v.74+(28)*v.75+v.85
> e*f;
(18)*v.127+(25)*v.128+(34)*v.129+(50)*v.130+(39)*v.131+(28)*v.132+(15)*v.133
> h:=e*f;;
Calcul de g, Bg, z et Bz:
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 13 over Rationals>
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 13 over Rationals>,
  (dimension 5)>
> Bz:=BasisVectors(Basis(z));
[v.7+v.8+v.9+v.10+v.11+v.12+v.22, v.47+(-3)*v.48+(-1)*v.49+(-2)*v.50,
  v.58+v.59, v.62, v.63]
> h*Bz[2];
(10)*v.47+(-30)*v.48+(-10)*v.49+(-20)*v.50
> h*Bz[3];
(14)*v.58+(14)*v.59
> h*Bz[4];
(16)*v.62
> h*Bz[5];
(18)*v.63
Les poids de z sont 2,10,14,16,18; d'où m_r = 18. Il y a trois matrices à étudier.
```

```
> ((f*Bz[2])*Bz[2]);

(-150)*v.63

(b) m_{i_1} = 14, m_{k_1} = 6

> h*Bg[4];

(6)*v.30+(-12)*v.31+(6)*v.32+(6)*v.33+(-6)*v.35

> h*Bg[5];

(6)*v.36+(-6)*v.37+(-6)*v.40

> ((f*Bg[4])*Bz[3]);

(42)*v.63

(c) m_{i_1} = 16, m_{k_1} = 4

> h*Bg[3];

(4)*v.13+(4)*v.14+(4)*v.18+(-12)*v.26+(8)*v.28+(4)*v.29

> ((f*Bg[3])*Bz[4]);

(12)*v.63
```

4. Caractéristique :

Définition du \mathfrak{sl}_2 -triplet :

```
> e := x[8] + x[9] + x[13] + x[16] + x[17] + x[18] + x[29];
v.8+v.9+v.13+v.16+v.17+v.18+v.29
 > f:=(14)*y[8]+(9)*y[9]+(-9)*y[10]+(11)*y[13]+(9)*y[16] 
+(11)*y[17]+(8)*y[18]+(9)*y[19]+y[29];
(14)*v.71+(9)*v.72+(-9)*v.73+(11)*v.76+(9)*v.79
+(11)*v.80+(8)*v.81+(9)*v.82+v.92
> e*f;
(14)*v.127+(19)*v.128+(26)*v.129+(38)*v.130+(29)*v.131+(20)*v.132+(11)*v.133
> h:=e*f;;
Calcul de g, Bg, z et Bz :
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 17 over Rationals>
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 17 over Rationals>,
  (dimension 3)>
> Bz:=BasisVectors(Basis(z));
[ v.8+v.9+v.13+v.16+v.17+v.18+v.29, v.56+(3)*v.57+(2)*v.59, v.63 ]
> h*Bz[2];
(10)*v.56+(30)*v.57+(20)*v.59
> h*Bz[3];
(14)*v.63
```

32

Les poids de z sont 2,10,14; d'où $m_r = 14$. Il n'y a qu'une matrice à étudier.

```
(a) m_{i_1} = 10, m_{k_1} = 6
   > h*Bg[7];
   (6)*v.37+(-6)*v.38+(-6)*v.41
   > h*Bg[8];
   (6)*v.39+(6)*v.43+(-6)*v.45
   > h*Bg[9];
   (6)*v.42+(6)*v.46+(6)*v.49
   > ((f*Bg[7])*Bz[2]);
   (30)*v.63
```

5. Caractéristique:

Définition du \mathfrak{sl}_2 -triplet :

```
> e := x[13] + x[14] + x[15] + x[16] + x[17] + x[18] + x[33];
v.13+v.14+v.15+v.16+v.17+v.18+v.33
f:=(9)*y[13]+(5)*y[14]+(2)*y[15]+(8)*y[16]+(8)*y[17]
+(2)*y[18]+(5)*y[33];
(9)*v.76+(5)*v.77+(2)*v.78+(8)*v.79+(8)*v.80+(2)*v.81+(5)*v.96
> e*f;
(10)*v.127+(15)*v.128+(20)*v.129+(30)*v.130+(23)*v.131+(16)*v.132+(9)*v.133
> h:=e*f;;
Calcul de g, Bg, z et Bz:
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 21 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 21 over Rationals>,
  (dimension 4)>
> Bz:=BasisVectors(Basis(z));
[ v.13+v.14+v.15+v.16+v.17+v.18+v.33, v.61, v.62, v.63 ]
> h*Bz[2];
(10)*v.61
> h*Bz[3];
(10)*v.62
> h*Bz[4];
(10)*v.63
Les poids de z sont 2,10,10,10; d'où m_r = 10. Il n'y a qu'une matrice à étudier.
(a) m_{i_1} = 10, m_{k_1} = 2
   > h*Bg[1];
    (2)*v.15+(2)*v.18
   > h*Bg[2];
    (2)*v.4+(2/3)*v.19+(-4/3)*v.20+(2/3)*v.21+(2/3)*v.22+(-2/3)*v.23
```

```
> h*Bg[3];
(2)*v.19+(-4)*v.20+(2)*v.21+(2)*v.22+(4)*v.23+(-6)*v.24
> h*Bg[4];
(2)*v.7+(-6)*v.9+(4)*v.10+(2)*v.11+(2)*v.26+(-4)*v.27
> h*Bg[5];
(2)*v.9+(-2)*v.10+(2)*v.29
> h*Bg[6];
(2)*v.13+(2)*v.14+(2)*v.16+(2)*v.17+(2)*v.33
> ((f*Bg[1])*Bz[2]);((f*Bg[2])*Bz[2]);((f*Bg[3])*Bz[2]);
((f*Bg[4])*Bz[2]);((f*Bg[5])*Bz[2]);((f*Bg[6])*Bz[2]);
(-2)*v.61
(8/3)*v.62
(2)*v.62
(-4)*v.63
0*v.1
(-8)*v.61
> ((f*Bg[1])*Bz[3]); ((f*Bg[2])*Bz[3]); ((f*Bg[3])*Bz[3]);
((f*Bg[4])*Bz[3]);((f*Bg[5])*Bz[3]);((f*Bg[6])*Bz[3]);
(-2)*v.62
(4/3)*v.63
(4)*v.63
(2)*v.61
(2)*v.61
(-8)*v.62
> ((f*Bg[1])*Bz[4]); ((f*Bg[2])*Bz[4]); ((f*Bg[3])*Bz[4]);
((f*Bg[4])*Bz[4]);((f*Bg[5])*Bz[4]);((f*Bg[6])*Bz[4]);
0*v.1
(-10/3)*v.61
(-10)*v.61
(10)*v.62
0*v.1
(-10)*v.63
La matrice à étudier est
```

$$\begin{bmatrix} -2\alpha & -10/3\gamma & -10\gamma & 2\beta & 2\beta & -8\alpha \\ -2\beta & -8/3\alpha & 2\alpha & 10\gamma & 0 & -8\beta \\ 0 & 4/3\beta & 4\beta & -4\alpha & 0 & -10\gamma \end{bmatrix}.$$

Une étude élémentaire montre que cette matrice est de rang 3 pour tout 3-uplet (α, β, γ) non nul.

La propriété (P) est vérifiée pour cette orbite.

Conclusion : E_7 vérifie (P).

Cas de E_8 .

Définition de L:

> L:=SimpleLieAlgebra("E",8,Rationals);
<Lie algebra of dimension 248 over Rationals>

```
> R:=RootSystem(L);
<root system of rank 7>
> P:=PositiveRoots(R);;
> x:=PositiveRootVectors(R);
[ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14,
 v.15, v.16, v.17, v.18, v.19, v.20, v.21, v.22, v.23, v.24, v.25, v.26,
 v.27, v.28, v.29, v.30, v.31, v.32, v.33, v.34, v.35, v.36, v.37, v.38,
 v.39, v.40, v.41, v.42, v.43, v.44, v.45, v.46, v.47, v.48, v.49, v.50,
 v.51, v.52, v.53, v.54, v.55, v.56, v.57, v.58, v.59, v.60, v.61, v.62,
 v.63, v.64, v.65, v.66, v.67, v.68, v.69, v.70, v.71, v.72, v.73, v.74,
 v.75, v.76, v.77, v.78, v.79, v.80, v.81, v.82, v.83, v.84, v.85, v.86,
 v.87, v.88, v.89, v.90, v.91, v.92, v.93, v.94, v.95, v.96, v.97, v.98,
 v.99, v.100, v.101, v.102, v.103, v.104, v.105, v.106, v.107, v.108,
 v.109, v.110, v.111, v.112, v.113, v.114, v.115, v.116, v.117, v.118,
 v.119, v.120 ]
> y:=NegativeRootVectors(R);
[ v.121, v.122, v.123, v.124, v.125, v.126, v.127, v.128, v.129, v.130,
 v.131, v.132, v.133, v.134, v.135, v.136, v.137, v.138, v.139, v.140,
 v.141, v.142, v.143, v.144, v.145, v.146, v.147, v.148, v.149, v.150,
 v.151, v.152, v.153, v.154, v.155, v.156, v.157, v.158, v.159, v.160,
 v.161, v.162, v.163, v.164, v.165, v.166, v.167, v.168, v.169, v.170,
 v.171, v.172, v.173, v.174, v.175, v.176, v.177, v.178, v.179, v.180,
 v.181, v.182, v.183, v.184, v.185, v.186, v.187, v.188, v.189, v.190,
 v.191, v.192, v.193, v.194, v.195, v.196, v.197, v.198, v.199, v.200,
 v.201, v.202, v.203, v.204, v.205, v.206, v.207, v.208, v.209, v.210,
 v.211, v.212, v.213, v.214, v.215, v.216, v.217, v.218, v.219, v.220,
 v.221, v.222, v.223, v.224, v.225, v.226, v.227, v.228, v.229, v.230,
 v.231, v.232, v.233, v.234, v.235, v.236, v.237, v.238, v.239, v.240 ]
> CanonicalGenerators(R)[3];
[ v.241, v.242, v.243, v.244, v.245, v.246, v.247, v.248 ]
```

[V.241, V.242, V.243, V.244, V.245, V.246, V.247, V.248

Dans E_8 , il y a dix orbites nilpotentes distinguées non régulières :

1. Caractéristique :

Définition du \mathfrak{sl}_2 -triplet :

```
> e:=x[1]+x[2]+x[3]+x[6]+x[7]+x[8]+x[10]+x[12];

v.1+v.2+v.3+v.6+v.7+v.8+v.10+v.12

> f:=(72)*y[1]+(60)*y[2]+(142)*y[3]+(68)*y[5]+(132)*y[6]

+(90)*y[7]+(46)*y[8]+(38)*y[10]+(-38)*y[11]+(172)*y[12];

(72)*v.121+(68)*v.122+(142)*v.123+(68)*v.125+(132)*v.126

+(90)*v.127+(46)*v.128+(38)*v.130+(-38)*v.131+(172)*v.132

> e*f;

(72)*v.241+(106)*v.242+(142)*v.243+(210)*v.244+(172)*v.245+(132)*v.246

+(90)*v.247+(46)*v.248

> h:=e*f;;

Calcul de g, Bg, z et Bz :
```

```
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 10 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 10 over Rationals>,
  (dimension 7)>
> Bz:=BasisVectors(Basis(z));
[v.1+v.2+v.3+v.6+v.7+v.8+v.10+v.12, v.54+(-1/2)*v.57+(-1/2)*v.58]
+(-1/2)*v.59+(-1/2)*v.60+(-1/2)*v.61+(1/2)*v.62+(-1/2)*v.63
  v.84+v.85+(-1)*v.86+(-1)*v.87+(2)*v.88, v.95+(-1)*v.96+v.97+(-1)*v.98+v.99,
  v.109+(-1)*v.112, v.116, v.120
> h*Bz[2];
(14)*v.54+(-7)*v.57+(-7)*v.58+(-7)*v.59+(-7)*v.60+(-7)*v.61
+(7)*v.62+(-7)*v.63
> h*Bz[3];
(22)*v.84+(22)*v.85+(-22)*v.86+(-22)*v.87+(44)*v.88
> h*Bz[4];
(26)*v.95+(-26)*v.96+(26)*v.97+(-26)*v.98+(26)*v.99
> h*Bz[5];
(34)*v.109+(-34)*v.112
> h*Bz[6];
(38)*v.116
> h*Bz[7];
(46)*v.120
Les poids de z sont 2,14,22,26,34,38,46; d'où m_r = 46. Il y a cinq matrices à étudier.
(a) m_{i_1} = 14, m_{k_1} = 34
   > ((f*Bz[5])*Bz[2]);
    (-119)*v.120
(b) m_{i_1} = 22, m_{k_1} = 26
   > ((f*Bz[4])*Bz[3]);
    (286)*v.120
(c) m_{i_1} = 26, m_{k_1} = 22
   > ((f*Bz[3])*Bz[4]);
    (286)*v.120
(d) m_{i_1} = 34, m_{k_1} = 14
   > ((f*Bz[2])*Bz[5]);
    (-119)*v.120
(e) m_{i_1} = 38, m_{k_1} = 10
   > h*Bg[2];
    (10)*v.38+(20)*v.39+(-10)*v.41+(-30)*v.42+(20)*v.43+(40)*v.44+(40)*v.45
   +(10)*v.48+(20)*v.49
   > ((f*Bg[2])*Bz[6]);
    (190)*v.120
```

2. Caractéristique:


```
Définition du \mathfrak{sl}_2-triplet :
> e := x[1] + x[2] + x[3] + x[5] + x[7] + x[8] + x[10] + x[20];
v.1+v.2+v.3+v.5+v.7+v.8+v.10+v.20
f:=(61)*y[1]+(22)*y[2]+(118)*y[3]+(34)*y[5]+(74)*y[7]+(38)*y[8]
+(66)*y[10]+(-66)*y[11]+(22)*y[13]+(22)*y[14]+(108)*y[20];
(60)*v.121+(22)*v.122+(118)*v.123+(34)*v.125+(74)*v.127+
(38)*v.128+(66)*v.130+(-66)*v.131+(22)*v.133+(22)*v.134+(108)*v.140
> e*f;
(60)*v.241+(88)*v.242+(118)*v.243+(174)*v.244+(142)*v.245+(108)*v.246
+(74)*v.247+(38)*v.248
> h:=e*f;;
Calcul de g, Bg, z et Bz:
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 12 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 12 over Rationals>,
  (dimension 6)>
> Bz:=BasisVectors(Basis(z));
[v.1+v.2+v.3+v.5+v.7+v.8+v.10+v.20]
  v.64+v.65+(2)*v.67+v.69+v.71+v.73+v.74+v.76, v.97+(-1)*v.98+v.99+v.100,
  v.104+v.107+(-1)*v.108+(-1)*v.110, v.117, v.120
> h*Bz[2];
(14)*v.64+(14)*v.65+(28)*v.67+(14)*v.69+(14)*v.71+
(14)*v.73+(14)*v.74+(14)*v.76
> h*Bz[3];
(22)*v.97+(-22)*v.98+(22)*v.99+(22)*v.100
> h*Bz[4];
(26)*v.104+(26)*v.107+(-26)*v.108+(-26)*v.110
> h*Bz[5];
(34)*v.117
> h*Bz[6]:
(38)*v.120
Les poids de z sont 2,14,22,26,34,38; d'où m_r = 38. Il y a quatre matrices à étudier.
(a) m_{i_1} = 14, m_{k_1} = 26
   > ((f*Bz[4])*Bz[2]);
    (-182)*v.120
(b) m_{i_1} = 22, m_{k_1} = 18
   > h*Bg[6];
    (18)*v.81+(36)*v.85+(-18)*v.86+(-18)*v.87+(18)*v.88
```

> ((f*Bg[6])*Bz[3]);

(-198)*v.120

```
(c) m_{i_1} = 26, m_{k_1} = 14

> ((f*Bz[2])*Bz[4]);

(-182)*v.120

(d) m_{i_1} = 34, m_{k_1} = 6

> h*Bg[2];

(6)*v.23+(9)*v.24+(-3)*v.25+(9)*v.29+(-3)*v.31+(-9)*v.32+(3)*v.33+(6)*v.34

+(-3)*v.35+(-3)*v.36+(-3)*v.40

> ((f*Bg[2])*Bz[5]);

(51)*v.120
```

La propriété (P) est vérifiée pour cette orbite.

3. Caractéristique :


```
> e:=x[7]+x[8]+x[9]+x[10]+x[11]+x[12]+x[13]+x[25];
v.7+v.8+v.9+v.10+v.11+v.12+v.13+v.25
 > f:=(66)*y[7]+(34)*y[8]+(52)*y[9]+(75)*y[10]+(49)*y[11]+(27)*y[12] 
+(96)*y[13]+y[25];
(66)*v.127+(34)*v.128+(52)*v.129+(75)*v.130+(49)*v.131+(27)*v.132
+(96)*v.133+v.145
> e*f;
(52)*v.241+(76)*v.242+(102)*v.243+(152)*v.244+(124)*v.245+(96)*v.246
+(66)*v.247+(34)*v.248
> h:=e*f;;
Calcul de g, Bg, z et Bz :
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 14 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 14 over Rationals>,
  (dimension 6)>
> Bz:=BasisVectors(Basis(z));
[v.7+v.8+v.9+v.10+v.11+v.12+v.13+v.25,
v.74+(-2)*v.77+(-1)*v.78+(-1)*v.80
+(-1)*v.82, v.104+(-1)*v.105+(-1)*v.106, v.113+v.114, v.117, v.120]
> h*Bz[2]:
(14)*v.74+(-28)*v.77+(-14)*v.78+(-14)*v.80+(-14)*v.82
> h*Bz[3];
(22)*v.104+(-22)*v.105+(-22)*v.106
> h*Bz[4];
(26)*v.113+(26)*v.114
> h*Bz[5];
(28)*v.117
```

```
> h*Bz[6];
(34)*v.120
```

Les poids de z sont 2,14,22,26,28,34; d'où $m_r = 34$. Il y a quatre matrices à étudier.

```
(a) m_{i_1} = 14, m_{k_1} = 22
   > ((f*Bz[3])*Bz[2]);
   (-154)*v.120
(b) m_{i_1} = 22, m_{k_1} = 14
   > ((f*Bz[2])*Bz[3]);
    (-154)*v.120
(c) m_{i_1} = 26, m_{k_1} = 10
   > h*Bg[4];
    (10)*v.54+(-5)*v.56+(-5)*v.58+(-10)*v.59+(5)*v.61+(-15)*v.63
   > h*Bg[5];
   (10)*v.62+(-10)*v.64+(-10)*v.69
   > ((f*Bg[4])*Bz[4]);
   (-65)*v.120
(d) m_{i_1} = 28, m_{k_1} = 8
   > h*Bg[3];
    (8)*v.36+(8)*v.39+(8)*v.45+(-24)*v.50+(16)*v.55+(-8)*v.57
   > ((f*Bg[3])*Bz[5]);
```

La propriété (P) est vérifiée pour cette orbite.

4. Caractéristique :

(24)*v.120


```
> e:=x[9]+x[10]+x[11]+x[12]+x[13]+x[14]+x[15]+x[25];
v.9+v.10+v.11+v.12+v.13+v.14+v.15+v.25
 > f:=(44)*y[9]+(50)*y[10]+(28)*y[11]+(36)*y[12]+(54)*y[13]+(26)*y[14] 
+(28)*y[15]+(14)*y[25];
(44)*v.129+(50)*v.130+(28)*v.131+(36)*v.132+(54)*v.133+(26)*v.134
+(28)*v.135+(14)*v.145
> e*f:
(44)*v.241+(64)*v.242+(86)*v.243+(128)*v.244+(104)*v.245+(80)*v.246
+(54)*v.247+(28)*v.248
> h:=e*f;;
Calcul de g, Bg, z et Bz :
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 16 over Rationals>
> Bg:=BasisVectors(Basis(g));;
```

```
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 16 over Rationals>,
  (dimension 5)>
> Bz:=BasisVectors(Basis(z));
[v.9+v.10+v.11+v.12+v.13+v.14+v.15+v.25, v.86+v.87+v.88+(4)*v.93+(-3)*v.95,
  v.111+v.115, v.119, v.120 ]
> h*Bz[2];
(14)*v.86+(14)*v.87+(14)*v.88+(56)*v.93+(-42)*v.95
> h*Bz[3];
(22)*v.111+(22)*v.115
> h*Bz[4];
(26)*v.119
> h*Bz[5];
(28)*v.120
Les poids de z sont 2,14,22,26,28; d'où m_r = 28. Il y a trois matrices à étudier.
(a) m_{i_1} = 14, m_{k_1} = 16
   > h*Bg[10];
    (16)*v.97+(16)*v.98+(-16)*v.99+(-16)*v.100
   > ((f*Bg[10])*Bz[2]);
    (-112)*v.120
(b) m_{i_1} = 22, m_{k_1} = 8
   > h*Bg[4];
    (8)*v.45+(8)*v.47+(-8)*v.57+(-24)*v.58+(24)*v.59+(16)*v.61+(16)*v.62
   > h*Bg[5];
   > ((f*Bg[4])*Bz[3]);
    (88)*v.120
(c) m_{i_1} = 26, m_{k_1} = 4
   > h*Bg[2];
    (4)*v.16+(4)*v.20+(4)*v.22+(-12)*v.30+(8)*v.32+(4)*v.33+(-12)*v.34+(20)*v.35
   > ((f*Bg[2])*Bz[4]);
    (26)*v.120
```

La propriété (P) est vérifiée pour cette orbite.

5. Caractéristique:


```
> e:=x[8]+x[9]+x[10]+x[14]+x[18]+x[19]+x[20]+x[33];

v.8+v.9+v.10+v.14+v.18+v.19+v.20+v.33

> f:=(8)*y[8]+(40)*y[9]+(22)*y[10]+(-22)*y[11]+(50)*y[14]+(35)*y[18]

+(37)*y[19]+(21)*y[20]+(35)*y[21]+y[33];
```

```
(26) \times v.128 + (40) \times v.129 + (22) \times v.130 + (-22) \times v.131 + (50) \times v.134 + (37) \times v.138
+(37)*v.139+(21)*v.140+(35)*v.141+v.153
> e*f;
(40)*v.241+(58)*v.242+(78)*v.243+(116)*v.244+(94)*v.245+(72)*v.246
+(50)*v.247+(26)*v.248
> h:=e*f;;
Calcul de g, Bg, z et Bz:
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 18 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 18 over Rationals>,
  (dimension 4)>
> Bz:=BasisVectors(Basis(z));
[v.8+v.9+v.10+v.14+v.18+v.19+v.20+v.33, v.94+v.95+v.96+v.97, v.116, v.120]
> h*Bz[2];
(14)*v.94+(14)*v.95+(14)*v.96+(14)*v.97
> h*Bz[3]:
(22)*v.116
> h*Bz[4];
(26)*v.120
Les poids de z sont 2,14,22,26; d'où m_r = 26. Il y a deux matrices à étudier.
(a) m_{i_1} = 14, m_{k_1} = 14
   > ((f*Bz[2])*Bz[2]);
    (-98)*v.120
(b) m_{i_1} = 22, m_{k_1} = 6
    > h*Bg[4];
    (6)*v.42+(-12)*v.43+(12)*v.44+(-12)*v.45+(6)*v.46+(-12)*v.49+(6)*v.52
    +(-6)*v.55
    > h*Bg[5];
    (6)*v.50+(-6)*v.51+(-6)*v.57+(-6)*v.61
    > ((f*Bg[4])*Bz[3]);
    (-66)*v.120
```

La propriété (P) est vérifiée pour cette orbite.

6. Caractéristique:


```
> e:=x[9]+x[10]+x[14]+x[15]+x[18]+x[19]+x[20]+x[33];
v.9+v.10+v.14+v.15+v.18+v.19+v.20+v.33
> f:=(36)*y[9]+(20)*y[10]+(-20)*y[11]+(22)*y[14]+(22)*y[15]+(20)*y[18]+(22)*y[19]+(30)*y[20]+(20)*y[21]+(12)*y[33];
```

```
(36) \times v.129 + (20) \times v.130 + (-20) \times v.131 + (22) \times v.134 + (22) \times v.135 + (20) \times v.138
+(22)*v.139+(30)*v.140+(20)*v.141+(12)*v.153
> e*f;
(36)*v.241+(52)*v.242+(70)*v.243+(104)*v.244+(84)*v.245+(64)*v.246
+(44)*v.247+(22)*v.248
> h:=e*f;;
Calcul de g, Bg, z et Bz:
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 20 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 20 over Rationals>,
  (dimension 4)>
> Bz:=BasisVectors(Basis(z));
[v.9+v.10+v.14+v.15+v.18+v.19+v.20+v.33, v.97+(-1)*v.99+(3)*v.105+(4)*v.108,
  v.119, v.120 ]
> h*Bz[2];
(14)*v.97+(-14)*v.99+(42)*v.105+(56)*v.108
> h*Bz[3];
(22)*v.119
> h*Bz[4];
(22)*v.120
Les poids de z sont 2,14,22,22; d'où m_r = 22. Il y a deux matrices à étudier.
(a) m_{i_1} = 14, m_{k_1} = 10
    > h*Bg[7];
    (10)*v.70+(10)*v.80+(10)*v.81+(10)*v.83
    > h*Bg[8];
    (10)*v.75+(10)*v.76+(10)*v.77+(10)*v.86
    > h*Bg[9];
    (10)*v.81+(20)*v.83+(10)*v.84+(-10)*v.85+(10)*v.87
    > h*Bg[10];
    (10)*v.76+(10)*v.77+(-10)*v.79+(10)*v.82+(10)*v.86+(-10)*v.90
    > ((f*Bg[7])*Bz[2]);
    0*v.1
    > ((f*Bg[8])*Bz[2]);
    0*v.1
    > ((f*Bg[9])*Bz[2]);
    (-70)*v.119
    > ((f*Bg[10])*Bz[2]);
    (70)*v.120
    La matrice correspondante est
                                \left[\begin{array}{cccc} 0 & 0 & -70 & 0 \\ 0 & 0 & 0 & 70 \end{array}\right].
    C'est clairement une matrice de rang 2.
```

(b)
$$m_{i_1} = 22$$
, $m_{k_1} = 2$
> h*Bg[3];

```
(2)*v.9+(2)*v.10+(2)*v.14+(2)*v.15+(2)*v.18+(2)*v.19+(2)*v.20+(2)*v.33

> ((f*Bg[1])*Bz[3]); ((f*Bg[2])*Bz[3]);((f*Bg[3])*Bz[3]);
(-2)*v.119
(14)*v.120
(-22)*v.119
> ((f*Bg[1])*Bz[4]); ((f*Bg[2])*Bz[4]); ((f*Bg[3])*Bz[4]);
0*v.1
(22)*v.119
(-22)*v.120
La matrice à étudier est
```

$$\begin{bmatrix} -2\alpha & 22\beta & -22\alpha \\ 0 & 14\alpha & -22\beta \end{bmatrix}.$$

Cette matrice est de rang 2 pour tout couple (α, β) non nul.

La propriété (P) est vérifiée pour cette orbite.

7. Caractéristique:


```
> e := x[8] + x[14] + x[16] + x[17] + x[18] + x[19] + x[20] + x[38];
v.8+v.14+v.16+v.17+v.18+v.19+v.20+v.38
 > f:=(22)*y[8]+(42)*y[14]+(16)*y[16]+(2)*y[17]+(30)*y[18]+(30)*y[19] 
+(2)*y[20]+(16)*y[38];
(22)*v.128+(42)*v.134+(16)*v.136+(2)*v.137+(30)*v.138+(30)*v.139
+(2)*v.140+(16)*v.158
> e*f;
(32)*v.241+(48)*v.242+(64)*v.243+(96)*v.244+(78)*v.245+(60)*v.246
+(42)*v.247+(22)*v.248
> h:=e*f;;
Calcul de g, Bg, z et Bz:
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 22 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 22 over Rationals>,
  (dimension 5)>
> Bz:=BasisVectors(Basis(z));
[v.8+v.14+v.16+v.17+v.18+v.19+v.20+v.38, v.99+(-1)*v.107+(-1)*v.108, v.116,
  v.118, v.120 ]
> h*Bz[2];
(14)*v.99+(-14)*v.107+(-14)*v.108
> h*Bz[3];
(18)*v.116
> h*Bz[4];
```

```
(18)*v.118
> h*Bz[5];
(22)*v.120
```

Les poids de z sont 2,14,18,18,22; d'où $m_r = 22$. Il y a deux matrices à étudier.

```
(a) m_{i_1} = 14, m_{k_1} = 10
   > h*Bg[11];
    (10)*v.83+(10)*v.89
   > h*Bg[12];
    (10)*v.86+(-10)*v.93
   > h*Bg[13];
    (10)*v.74+(-10)*v.77+(-10)*v.90+(20)*v.97
   > ((f*Bg[13])*Bz[2]);
    (-70)*v.120
(b) m_{i_1} = 18, m_{k_1} = 6
   > h*Bg[6];
    (6)*v.47+(-12)*v.50+(-6)*v.58+(6)*v.59+(12)*v.61+(18)*v.63
    (6)*v.36+(-6)*v.49+(-3)*v.54+(3)*v.64+(-3)*v.66+(-9)*v.69
   > ((f*Bg[6])*Bz[3]); ((f*Bg[7])*Bz[3]);
    (-12)*v.120
   0*v.1
   > ((f*Bg[6])*Bz[4]); ((f*Bg[7])*Bz[4]);
   0*v.1
    (6)*v.120
   La matrice à étudier est \begin{bmatrix} -12\alpha & 6\beta \end{bmatrix}; elle est de rang 1 si le couple (\alpha, \beta) est
```

La propriété (P) est vérifiée pour cette orbite.

8. Caractéristique:


```
> e:=x[14]+x[15]+x[16]+x[17]+x[18]+x[19]+x[20]+x[38];
v.14+v.15+v.16+v.17+v.18+v.19+v.20+v.38
> f:=(18)*y[14]+(18)*y[15]+(8)*y[16]+(8)*y[17]+(14)*y[18]+(20)*y[19]
+(14)*y[20]+(20)*y[38];
(18)*v.134+(18)*v.135+(8)*v.136+(8)*v.137+(14)*v.138+(20)*v.139+(14)*v.140
+(20)*v.158
> e*f;
(28)*v.241+(42)*v.242+(56)*v.243+(84)*v.244+(68)*v.245+(52)*v.246
+(36)*v.247+(18)*v.248
> h:=e*f;;
```

```
Calcul de g, Bg, z et Bz:
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 24 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 24 over Rationals>,
  (dimension 4)>
> Bz:=BasisVectors(Basis(z));
[ v.14+v.15+v.16+v.17+v.18+v.19+v.20+v.38, v.111+v.112, v.119, v.120 ]
> h*Bz[2];
(14)*v.111+(14)*v.112
> h*Bz[3];
(18)*v.119
> h*Bz[4];
(18)*v.120
Les poids de z sont 2,14,18,18; d'où m_r = 18. Il y a deux matrices à étudier.
(a) m_{i_1} = 14, m_{k_1} = 6
    > h*Bg[5];
    (6)*v.58+(-6)*v.59+(6)*v.60+(-6)*v.63
    > h*Bg[6];
    (6)*v.49+(6)*v.64+(6)*v.65+(-6)*v.66+(-6)*v.67+(6)*v.68
    > h*Bg[7];
    (6)*v.64+(12)*v.65+(-6)*v.66+(-6)*v.67+(12)*v.68+(-6)*v.69
    > h*Bg[8];
    (6)*v.53+(-6)*v.55+(-6)*v.56+(-6)*v.71+(-6)*v.72+(6)*v.73
    > h*Bg[9];
    (6)*v.60+(-3)*v.61+(-3)*v.62+(-3)*v.63+(-3)*v.78
    > ((f*Bg[5])*Bz[2]);
    (14)*v.119
    > ((f*Bg[6])*Bz[2]);
    0*v.1
    > ((f*Bg[7])*Bz[2]);
    (14)*v.120
    > ((f*Bg[8])*Bz[2]);
    0*v.1
    > ((f*Bg[9])*Bz[2]);
    (7)*v.119
    matrice à étudier est
                                \left[\begin{array}{ccccc} 14 & 0 & 0 & 0 & 7 \\ 0 & 0 & 14 & 0 \end{array}\right].
    C'est clairement une matrice de rang 2.
(b) m_{i_1} = 18, m_{k_1} = 2
    > h*Bg[2];
    (2)*v.7+(-10)*v.10+(8)*v.11+(2)*v.12+(-4)*v.29+(2)*v.30+(-4)*v.31+(-4)*v.33
    > h*Bg[3];
    (2)*v.14+(2)*v.15+(2)*v.16+(2)*v.17+(2)*v.18+(2)*v.19+(2)*v.20+(2)*v.38
    > ((f*Bg[1])*Bz[3]); ((f*Bg[2])*Bz[3]);((f*Bg[3])*bz[3]);
```

```
(-18/5)*v.120

0*v.1

(-18)*v.119

> ((f*Bg[1])*Bz[4]) ;((f*Bg[2])*Bz[4]); ((f*Bg[3])*Bz[4]);

0*v.1

(18)*v.119

(-18)*v.120
```

La matrice à étudier est

$$\left[\begin{array}{ccc} 0 & 18\beta & -18\alpha \\ -18/5\alpha & 0 & -18\beta \end{array}\right].$$

C'est une matrice de rang 2 pour tout couple (α, β) non nul.

La propriété (P) est vérifiée pour cette orbite.

9. Caractéristique:

Définition du \mathfrak{sl}_2 -triplet :

```
> e:=x[15]+x[16]+x[17]+x[18]+x[19]+x[20]+x[38]+x[46];  
v.15+v.16+v.17+v.18+v.19+v.20+v.38+v.46  
> f:=(8)*y[8]+(16)*y[15]+(2)*y[16]+(12)*y[17]+(2)*y[18]+(12)*y[19]  
+(22)*y[20]+(-14)*y[28]+(8)*y[38]+(14)*y[46];  
(8)*v.128+(16)*v.135+(2)*v.136+(12)*v.137+(2)*v.138+(12)*v.139  
+(22)*v.140+(-14)*v.148+(8)*v.158+(14)*v.166  
> e*f;  
(24)*v.241+(36)*v.242+(48)*v.243+(72)*v.244+(58)*v.245+(44)*v.246  
+(30)*v.247+(16)*v.248  
>h:=e*f;;
```

Remarque - Il faut préciser pour cette orbite qu'avec les conventions de [2], l'élément X_{47} correspond à l'élément x [46] = v . 46 du logiciel, c'est pourquoi la définition du \mathfrak{sl}_{2} -triplet est bien en accord avec [2].

Calcul de g, Bg, z et Bz :
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 28 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 28 over Rationals>,
 (dimension 3)>
> Bz:=BasisVectors(Basis(z));
[v.15+v.16+v.17+v.18+v.19+v.20+v.38+v.46, v.119, v.120]
> h*Bz[2];
(14)*v.119
> h*Bz[3];
(16)*v.120

Les poids de z sont 2,14,16 ; d'où $m_r=16$. Il n'y a qu'une matrice à étudier.

```
(a) m_{i_1} = 14, m_{k_1} = 4

> h*Bg[3];

(4)*v.37

> h*Bg[6];

(4)*v.42+(-8)*v.44+(4)*v.45+(4)*v.48+(-4)*v.53+(4)*v.55

> h*Bg[7];

(4)*v.32+(2)*v.47+(2)*v.51+(2)*v.52+(4)*v.59

> h*Bg[8];

(4)*v.36+(-4)*v.40+(-8)*v.49+(-4)*v.54+(4)*v.57+(-4)*v.64+(4)*v.66

> ((f*Bg[8])*Bz[2]);

(-28)*v.120
```

La propriété (P) est vérifiée pour cette orbite.

10. Caractéristique:

Définition du \mathfrak{sl}_2 -triplet :

```
 > e:=x[12]+x[21]+x[30]+x[31]+x[33]+x[42]+x[43]+x[53]; \\ v.12+v.21+v.30+v.31+v.33+v.42+v.43+v.53 \\ > f:=(5)*y[12]+y[21]+(5)*y[30]+(2)*y[31]+(8)*y[33]+(2)*y[42]+(8)*y[43] \\ +(9)*y[53]; \\ (5)*v.132+v.141+(5)*v.150+(2)*v.151+(8)*v.153+(2)*v.162+(8)*v.163+(9)*v.173 \\ > e*f; \\ (16)*v.241+(24)*v.242+(32)*v.243+(48)*v.244+(40)*v.245+(30)*v.246 \\ +(20)*v.247+(10)*v.248 \\ > h:=e*f;; \end{aligned}
```

Remarque - Ici encore, il faut préciser que l'élément X_{32} correspond à l'élément x[31]=v.31 du logiciel et la définition du \mathfrak{sl}_2 -triplet est bien en accord avec [2].

Calcul de g, Bg, z et Bz :

```
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 40 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 40 over Rationals>,
    (dimension 5)>
> Bz:=BasisVectors(Basis(z));;
```

Les poids de z sont 2,10,10,10,10; d'où $m_r = 10$. Il n'y a qu'une matrice à étudier.

```
(a) m_{i_1} = 10, m_{k_1} = 2

> ((f*Bg[1])*Bz[2]); ((f*Bg[2])*Bz[2]); ((f*Bg[3])*Bz[2]); ((f*Bg[4])*Bz[2]);

((f*Bg[5])*Bz[2]); ((f*Bg[6])*Bz[2]); ((f*Bg[7])*Bz[2]);

((f*Bg[8])*Bz[2]); ((f*Bg[9])*Bz[2]); ((f*Bg[10])*Bz[2]);
```

```
0*v.1
0*v.1
0*v.1
(-5)*v.120
(-10)*v.117
0*v.1
0*v.1
(-5)*v.118
0*v.1
(-10/3)*v.119
> ((f*Bg[1])*Bz[3]); ((f*Bg[2])*Bz[3]); ((f*Bg[3])*Bz[3]); ((f*Bg[4])*Bz[3]);
((f*Bg[5])*Bz[3]); ((f*Bg[6])*Bz[3]); ((f*Bg[7])*Bz[3]);
((f*Bg[8])*Bz[3]); ((f*Bg[9])*Bz[3]); ((f*Bg[10])*Bz[3]);
0*v.1
(-2)*v.118
(-2)*v.120
(-2)*v.117
(-8)*v.118
0*v.1
0*v.1
v.120
(4/3)*v.119
0*v.1
> ((f*Bg[1])*Bz[4]); ((f*Bg[2])*Bz[4]); ((f*Bg[3])*Bz[4]); ((f*Bg[4])*Bz[4]);
((f*Bg[5])*Bz[4]); ((f*Bg[6])*Bz[4]); ((f*Bg[7])*Bz[4]);
((f*Bg[8])*Bz[4]); ((f*Bg[9])*Bz[4]); ((f*Bg[10])*Bz[4]);
(-1)*v.119
0*v.1
0*v.1
0*v.1
(-9)*v.119
0*v.1
(-2)*v.118
0*v.1
(-2)*v.120
(2)*v.117
> ((f*Bg[1])*Bz[5]); ((f*Bg[2])*Bz[5]); ((f*Bg[3])*Bz[5); ((f*Bg[4])*Bz[5]);
((f*Bg[5])*Bz[5]); ((f*Bg[6])*Bz[5]); ((f*Bg[7])*Bz[5]);
((f*Bg[8])*Bz[5]); ((f*Bg[9])*Bz[5]); ((f*Bg[10])*Bz[5]);
0*v.1
(-2)*v.120
0*v.1
v.118
(-8)*v.120
(-2)*v.118
(4/3)*v.119
(-2)*v.117
0*v.1
0*v.1
```

La matrice à étudier est de taille 4×10 :

$$\begin{bmatrix} 0 & 0 & 0 & -2\beta & -10\alpha & 0 & 0 & -2\delta & 0 & 2\gamma \\ 0 & -2\beta & 0 & \delta & -8\beta & -2\delta & -2\gamma & -5\alpha & 0 & 0 \\ -\gamma & 0 & 0 & 0 & -9\gamma & 0 & 4/3\delta & 0 & 4/3\beta & -10/3\alpha \\ 0 & -2\delta & -2\beta & -5\alpha & -8\delta & 0 & 0 & \beta & -2\gamma & 0 \end{bmatrix}.$$

Une étude élémentaire permet de voir que cette matrice est de rang 4, pour tout 4-uplet $(\alpha, \beta, \gamma, \delta)$ non nul.

La propriété (P) est vérifiée pour cette orbite.

Conclusion : E_8 vérifie (P).

5.1 Cas de F_4 .

```
Définition de L :
> L:=SimpleLieAlgebra("F",4,Rationals);
<Lie algebra of dimension 52 over Rationals>
> R:=RootSystem(L);
<root system of rank 4>
> P:=PositiveRoots(R);;
> x:=PositiveRootVectors(R);
[ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10, v.11, v.12, v.13, v.14, v.15, v.16, v.17, v.18, v.19, v.20, v.21, v.22, v.23, v.24 ]
> y:=NegativeRootVectors(R);
[ v.25, v.26, v.27, v.28, v.29, v.30, v.31, v.32, v.33, v.34, v.35, v.36, v.37, v.38, v.39, v.40, v.41, v.42, v.43, v.44, v.45, v.46, v.47, v.48 ]
> CanonicalGenerators(R)[3];
[ v.49, v.50, v.51, v.52 ]
```

Dans F_4 , il y a trois orbites nilpotentes distinguées non régulières. Pour F_4 , les conventions du logiciel GAP4 sont très différentes de celles adoptées dans [2]; dans [2], le diagramme de Dynkin est :

$$\alpha_1$$
 α_2 α_3 α_4

Il semble que dans GAP4 le diagramme de Dynkin soit plutôt le suivant :

$$\alpha_1$$
 α_3 α_4 α_2

Par conséquent, il est difficile d'utiliser directement les données de [2] dans GAP4. On utilise les correspondances suivantes : $\mathbf{x}[1] = X_4$, $\mathbf{x}[2] = X_1$, $\mathbf{x}[3] = X_3$, $\mathbf{x}[4] = X_1$, $\mathbf{x}[5] = X_7$, $\mathbf{x}[6] = X_5$, $\mathbf{x}[6] = X_5$, $\mathbf{x}[7] = X_6$, $\mathbf{x}[8] = X_{10}$, $\mathbf{x}[9] = X_8$, $\mathbf{x}[10] = X_9$, $\mathbf{x}[18] = X_{18}$. Cependant, même avec ces relations, les \mathfrak{sl}_2 -triplets de [2] ne conviennent pas. On utilise la commande FindS12 qui permet de chercher une sous-algèbre \mathfrak{s} isomorphe à \mathfrak{sl}_2 et contenant e. On s'assure auparavant que l'élémént e est bien nilpotent à l'aide de la commande IsNilpotentElement et on vérifie aussi que le \mathfrak{sl}_2 -triplet obtenu correspond bien à la caractéristique voulue.

1. Caractéristique:

```
Définition du \mathfrak{sl}_2-triplet :
> e:=x[2]+x[4]+x[5]+x[7];
v.2+v.4+v.5+v.7
> IsNilpotentElement(L,e);
true
> s:=FindS12(L,a);
<Lie algebra of dimension 3 over Rationals>
> Bs:=BasisVectors(Basis(s));
[v.2+v.4+v.5+v.7, v.49+(7/5)*v.50+(9/5)*v.51+(13/5)*v.52,
  v.25+(7/5)*v.26+v.28+v.29+(4/5)*v.31+(-4/5)*v.34
```

L'élément central de cette base est égal au dixième de l'élement neutre correspondant à la caractéristique; par suite en prenant pour f dix fois le troisième élément de cette base, on obtient un \mathfrak{sl}_2 -triplet pour cette caractéristique.

```
> h:=(14)*H[2]+(26)*H[4]+(18)*H[3]+(10)*H[1];
(10)*v.49+(14)*v.50+(18)*v.51+(26)*v.52
(10)*v.25+(14)*v.26+(10)*v.28+(10)*v.29+(8)*v.31+(-8)*v.34
> e*f;
(10)*v.49+(14)*v.50+(18)*v.51+(26)*v.52
Calcul de g, Bg, z et Bz:
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 6 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 6 over Rationals>,
(dimension 3)>
> Bz:=BasisVectors(Basis(z));
[v.2+v.4+v.5+v.7, v.20+v.21+(2)*v.22, v.24]
> h*Bz[2];
(10)*v.20+(10)*v.21+(20)*v.22
> h*Bz[3];
(14)*v.2
Les poids de z sont 2,10,14; d'où m_r = 14. Il n'y a qu'une matrice à étudier.
```

(a)
$$m_{i_1} = 10$$
, $m_{k_1} = 6$
> h*Bg[3];
(6)*v.11+(6)*v.14+(-12)*v.15+(6)*v.16
> ((f*Bg[3])*Bz[2]);
(30)*v.24

La propriété (P) est vérifiée pour cette orbite.

2. Caractéristique:


```
> e:=x[1]+x[6]+x[5]+x[10];
v.1+v.5+v.6+v.10
> IsNilpotentElement(L,e);
true
> s:=FindS12(L,e);
<Lie algebra of dimension 3 over Rationals>
> Bs:=BasisVectors(Basis(s));
[v.1+v.5+v.6+v.10, v.49+(5/4)*v.50+(7/4)*v.51+(5/2)*v.52,
  v.25+v.29+(5/2)*v.30+v.31+v.33+(5/2)*v.34
L'élément central de cette base est égal au huitième de l'élément neutre de la
caratéristique. Ici Bs[1]*Bs[3]=2*Bs[2]; on prend alors pour f quatre fois le
troisième élément de cette base.
> h:=(10)*H[2]+(20)*H[4]+(14)*H[3]+(8)*H[1];
(8)*v.49+(10)*v.50+(14)*v.51+(20)*v.52
f:=(4)*y[1]+(4)*y[5]+(10)*y[6]+(4)*y[7]+(4)*y[9]+(10)*y[10];
(4)*v.25+(4)*v.29+(10)*v.30+(4)*v.31+(4)*v.33+(10)*v.34
> e*f:
(8)*v.49+(10)*v.50+(14)*v.51+(20)*v.52
Calcul de g, Bg, z et Bz:
> g:=LieCentralizer(L,Subspace(L,[e]));
<Lie algebra of dimension 8 over Rationals>
> Bg:=BasisVectors(Basis(g));;
> z:=LieCentre(g);
<two-sided ideal in <Lie algebra of dimension 8 over Rationals>,
(dimension 3)>
> Bz:=BasisVectors(Basis(z));
[v.1+v.5+v.6+v.10, v.23, v.24]
> h*Bz[2];
(10)*v.23
> h*Bz[3];
(10)*v.24
Les poids de z sont 2,10,10; d'où m_r = 10. Il n'y a qu'une matrice à étudier.
(a) m_{i_1} = 10, m_{k_1} = 2
   > h*Bg[2];
    (2)*v.4+(2)*v.5+(2)*v.6+(-2)*v.7+(2)*v.10
   > h*Bg[3];
    (2)*v.5+(2)*v.9+(-2)*v.13
   > h*Bg[4];
    (4)*v.8+(4)*v.11+(-4)*v.12+(-4)*v.14+(-4)*v.16
   > ((f*Bg[1])*Bz[2]); ((f*Bg[2])*Bz[2]); ((f*Bg[3])*Bz[2]);
    (-8)*v.23
    (-2)*v.23
    (-2)*v.24
   > ((f*Bg[1])*Bz[3]); ((f*Bg[2])*Bz[3]); ((f*Bg[3])*Bz[3]);
    (-2)*v.23
    (2)*v.23+(-10)*v.24
    (-8)*v.24
```

La matrice à étudier est

$$\begin{bmatrix} -8\alpha - 2\beta & -2\alpha + 2\beta & 0 \\ 0 & -10\beta & -2\alpha - 8\beta \end{bmatrix}.$$

Une brève étude de cette matrice montre qu'elle est de rang 2 pour tout couple (α, β) non nul.

La propriété (P) est vérifiée pour cette orbite.

3. Caractéristique:

$$0 \quad 2 \quad 0 \quad 0$$

Définition du \mathfrak{sl}_2 -triplet :

```
> e:=x[9]+x[10]+x[8]+x[18];
```

v.8+v.9+v.10+v.18

> f := 2*y[9] + 2*y[10] + 2*y[8] + 2*y[18];

$$(2)*v.32+(2)*v.33+(2)*v.34+(2)*v.42$$

> e*f;

$$(4)*v.49+(6)*v.50+(8)*v.51+(12)*v.52$$

> h:=e*f;;

Pour cette orbite, les données de [2] conviennent, pour des raisons qui m'échappent.

Calcul de g, Bg, z et Bz :

```
> g:=LieCentralizer(L,Subspace(L,[e]));
```

<Lie algebra of dimension 12 over Rationals>

> Bg:=BasisVectors(Basis(g));;

> z:=LieCentre(g);

<two-sided ideal in <Lie algebra of dimension 12 over Rationals>,

(dimension 3)>

> Bz:=BasisVectors(Basis(z));

[v.8+v.9+v.10+v.18, v.23, v.24]

> h*Bz[2];

(6)*v.23

> h*Bz[3];

(6)*v.24

Les poids de z sont 2,6,6; d'où $m_r = 6$. Il n'y a qu'une matrice à étudier.

(a)
$$m_{i_1} = 16$$
, $m_{k_1} = 2$

```
> h*Bg[1]; h*Bg[2]; h*Bg[3]; h*Bg[4]; h*Bg[5];
```

- (2)*v.8+(2)*v.9
- (2)*v.4+(-1)*v.11+v.12
- (2)*v.12+(-2)*v.13
- (2)*v.6+(-1)*v.7+v.14
- (2)*v.14+(-2)*v.15
- > h*Bg[7];
- (2)*v.10+(2)*v.18

```
(-2)*v.24
(-2)*v.24
0*v.1
0*v.1
(-2)*v.23
> ((f*Bg[1])*Bz[3]); ((f*Bg[2])*Bz[3]); ((f*Bg[3])*Bz[3]);
((f*Bg[4])*Bz[3]); ((f*Bg[5])*Bz[3]); ((f*Bg[7])*Bz[3])
(-4)*v.24
0*v.1
0*v.1
(-2)*v.23
(-2)*v.23
(-2)*v.24
```

La matrice à étudier est

$$\begin{bmatrix} -4\alpha & 0 & 0 & -2\beta & -2\beta & -2\alpha \\ -4\beta & -2\alpha & -2\alpha & 0 & 0 & -2\beta \end{bmatrix}.$$

C'est une matrice de rang 2 pour tout couple (α, β) non nul.

La propriété (P) est vérifiée pour cette orbite.

Conclusion : F_4 vérifie (P).

(-4)*v.23

Références

- [1] J. Y. CHARBONNEL. Propriétés (Q) et (C). Variété commutante. À paraître dans Bulletin de la Société Mathématique de France.
- [2] G. GRÉLAUD, C. QUITTÉ et P. TAUVEL. Bases de Chevalley et \mathfrak{sl}_2 -triplets des Algèbres de Lie Simples Exceptionnelles. Université de Poitiers, 1980.
- [3] D. H. COLLINWOOD et W. M. MACGOVERN. Nilpotent Orbits in Semisimple Lie Algebra. Van Nostrand Reinhold Mathematics Series, 1992.
- [4] J. F. Kurtzke. Centralizer of Irregular Elements in Reductive Algebraic Groups. Pacific Journal of Mathematics, 1983.
- [5] D. I. Panyushev. The Index of a Lie Algrebra, the Centralizer of a Nilpotent Element, and the Normaliser of the Centraliser. arXiv:math.AG/0107031, 2001.
- [6] M. Raïs. Notes sur l'Indice des Algèbres de Lie. Preprint 2004.
- [7] P. TAUVEL. Introduction à la Théorie des Algèbres de Lie. Diderot, 1998.

Anne Moreau

Université Paris 7 - Denis Diderot, Institut de Mathématiques de Jussieu, Théorie des groupes, Case 7012 2, Place Jussieu 75251 Paris Cedex 05, France.

 $E ext{-}mail$: moreaua@math.jussieu.fr