拡大体上の楕円曲線暗号に対する index calculus について

情報セキュリティ大学院大学 山外一徳 小崎俊二 松尾和人

2008年 3月8日

対象とする離散対数問題

本研究では、拡大体上の楕円曲線暗号に対する攻撃法 generalized Weil descent について述べる

$$p$$
: 奇素数 , E/\mathbb{F}_{p^3} : $Y^2=f(X)$,

where
$$f(X) = X^3 + AX + B$$
 , $A \in \mathbb{F}_p$, $B \in \mathbb{F}_{p^3}$

$$E(\mathbb{F}_{p^3})$$
 の離散対数問題を対象とする

拡大次数3: Generalized Weil descent が効果がある最小の拡大次数

$$E(\mathbb{F}_{p^4})$$
 についても少し述べる

本発表で扱うアルゴリズム

- ♦ Index calculus
 - Plain version
 - Double-large-prime version
- ◇ Relation collection アルゴリズム
 - ∘ Gaudry のアルゴリズム
 - ∘ Nagaoのアルゴリズム

$E(\mathbb{F}_{p^n})$ に対するindex calculus

♦ Index calculus(1991:Adleman-DeMarrais-Huang, 1997:Gaudry)

超楕円曲線上の離散対数問題に対する解法アルゴリズム

♦ Weil descent(1998:Frey)

 $E(\mathbb{F}_{p^n})$ の離散対数問題を \mathbb{F}_p 上の<u>超楕円曲線</u>上の離散対数問題に置き換え、index calculusを用いる解法アルゴリズム

 \Rightarrow

♦ Generalized Weil descent(2004:Gaudry, 2007:Nagao)

 $E(\mathbb{F}_{p^n})$ の離散対数問題に対し、直接index calculus を用いる解法アルゴリズム

Generalized Weil descent

Step1: Relation collection part

Relation を集めるために Gröbner 基底計算を行う

Step2: Linear algebra part

集めたrelationから離散対数問題を解く

Relation collection part

因子基底
$$B_0 := \{P_i = (x_i, y_i) \in E(\overline{\mathbb{F}}_{p^3}) \mid x_i \in \mathbb{F}_p\}$$
 , $\#B_0 = O(p)$

For $Q \in E(\mathbb{F}_{p^3})$

Relation :
$$Q + P_1 + P_2 + P_3 = 0$$
 , $P_i \in B_0$

Step1: 代数方程式の生成

Step2: Gröbner基底計算

Gröbner基底計算の計算量評価が困難→ 実装実験

Relation collection アルゴリズム

- ♦ Gaudry のアルゴリズム
- Semaevのsummation polynomials を用いて代数方程式を得る
 - → Gröbner基底計算で代数方程式を解く
- ♦ Nagaoのアルゴリズム
- Gaudry と異なる方法で代数方程式を得る
 - → Gröbner基底計算で代数方程式を解く

∘ Semaev Ø summation polynomials

For
$$P_i=(x_i,y_i)\in E(\overline{\mathbb{F}}_{p^3})$$

$$f_m(x_1,x_2,x_3,\ldots,x_m)=0\ ,\ x_1,x_2,x_3,\ldots,x_m\in\overline{\mathbb{F}}_{p^3}$$

$$\Leftrightarrow\ P_1+P_2+P_3+\cdots+P_m=0\in E(\overline{\mathbb{F}}_{p^3})$$

For
$$Q = (x, y) \in E(\mathbb{F}_{p^3})$$

Relation :
$$Q + P_1 + P_2 + P_3 = 0$$
 , $P_i \in B_0$

Relation が得られる確率 $pprox rac{1}{6}$

For
$$P_i=(X_i,Y_i)\in E(\overline{\mathbb{F}}_{p^3})$$
,変数: X_i,Y_i

Step1: $f_3(X_1,X_2, ilde{X})$, $\overline{f}_3(X_3,x, ilde{X})$ を得る

Step2: $f_4(X_1, X_2, X_3, x) = Resultant(f_3, \overline{f}_3, \tilde{X})$ を得る

Step3: 代数方程式を得る

 \rightarrow 代数方程式を解き、 X_1, X_2, X_3 を得る

For
$$Q\in E(\mathbb{F}_{p^3})$$
 , $P_1,P_2,P_3\in E(\overline{\mathbb{F}}_{p^3})$, $f(X)=X^3+AX+B$

Step1:

Summation polynomial

$$f_3(X_1, X_2, \tilde{X}) = (X_1 - X_2)^2 \tilde{X}^2 - 2((X_1 + X_2)(X_1 X_2 + A) + 2B)$$

$$+((X_1 X_2 - A)^2 - 4B(X_1 + X_2))$$

$$\overline{f}_3(X_3, x, \tilde{X}) = (X_3 - x)^2 \tilde{X}^2 - 2((X_3 + x)(X_3 x + A) + 2B)$$

$$+((X_3 x - A)^2 - 4B(X_3 + x))$$

Step2:

$$f_4(X_1, X_2, X_3, x) = Resultant(f_3, \overline{f}_3, \overline{X})$$
を計算

Step3:

$$\mathbb{F}_{p^3}/\mathbb{F}_p$$
の基底を $1,t,t^2$ とする

$$f_4 = \phi_0(X_1, X_2, X_3) + \phi_1(X_1, X_2, X_3)t + \phi_2(X_1, X_2, X_3)t^2$$

where
$$\phi_i(X_1, X_2, X_3) \in \mathbb{F}_p[X_1, X_2, X_3]$$

$$f_4(X_1, X_2, X_3, x) = 0 \Leftrightarrow Q + P_1 + P_2 + P_3 = 0$$

$$\Rightarrow \phi_0 = 0, \phi_1 = 0, \phi_2 = 0$$

$$\Rightarrow \phi_0 = 0, \phi_1 = 0, \phi_2 = 0$$
を解き、 X_1, X_2, X_3 を得る

Gaudryのアルゴリズム まとめ

Relation を求める

Step1: 代数方程式 $\phi_0 = 0, \phi_1 = 0, \phi_2 = 0$ を得る

Step2: 代数方程式を Gröbner 基底計算で解く

Step3: $X_1, X_2, X_3 \in \mathbb{F}_p$ が得られる

$$\Rightarrow P_i = (X_i, Y_i) \in B_0$$

基本対称式を用いる

Gaudryのアルゴリズムで得た代数方程式: 次数,項数が大

→ 基本対称式で整理: 次数,項数を削減

Step1:
$$\phi_0 = 0, \phi_1 = 0, \phi_2 = 0$$
を基本対称式で整理

$$T_1 = X_1 + X_2 + X_3$$

 $T_2 = X_1X_2 + X_2X_3 + X_1X_3$
 $T_3 = X_1X_2X_3$

Step2: $\phi_0(T_1, T_2, T_3) = 0, \phi_1(T_1, T_2, T_3) = 0, \phi_2(T_1, T_2, T_3) = 0$ を Gröbner 基底計算で解く

Step3:
$$X^3 + T_1X^2 + T_2X + T_3$$
,変数: $X \rightarrow X_1, X_2, X_3$ を得る

For
$$Q = (x, y) \in E(\mathbb{F}_{p^3})$$

Relation :
$$Q + P_1 + P_2 + P_3 = 0, P_i \in B_0$$

 Q, P_1, P_2, P_3 でEと交わる多項式h(X, Y) = 0

$$h(X,Y) = (X-x)(X+u) + (Y-y)v$$
, **変数**: u,v

と書ける

$$h(X,Y) = 0$$
と $Y^2 = f(X)$ から Y を消去
 $S(X) := -v^2 f(X) + ((X-x)(u+X) - yv)^2$
 $= X^4 + (-v^2 + 2u - 2x)X^3$
 $+(-2yv + u^2 - 4xu + x^2)X^2$
 $+(-Av^2 - 2yuv + 2xyv - 2xu^2 + 2x^2u)X$
 $-Bv^2 + y^2v^2 + 2xyuv + x^2u^2$
 $= 0$

$$(X-x) \mid S(X)$$
 から $g(X) := \frac{S(X)}{X-x}$
$$g(X) := X^3 + C_2X^2 + C_1X + C_0 = 0, \text{ where } C_i \in \mathbb{F}_{p^3}[u,v]$$

$$g(X) = 0$$
の根は P_1, P_2, P_3 の X 座標

$$\mathbb{F}_{p^3}/\mathbb{F}_p$$
の基底を $1,t,t^2$ とする

$$u = u_0 + u_1 t + u_2 t^2$$

$$v = v_0 + v_1 t + v_2 t^2$$

变数: u_i, v_i

$$g(X) := X^3 + C_2X^2 + C_1X + C_0$$

 $C_{i,j} \in \mathbb{F}_p[u_0,\ldots,v_2]$ とする, i.e.

$$C_0 = C_{0,0} + C_{0,1}t + C_{0,2}t^2$$

 $C_1 = C_{1,0} + C_{1,1}t + C_{1,2}t^2$
 $C_2 = C_{2,0} + C_{2,1}t + C_{2,2}t^2$

$$P_1, P_2, P_3 \in B_0 \Rightarrow g(X) \in \mathbb{F}_p[X]$$

$$g(X) = X^3 + C_{2,0}X^2 + C_{1,0}X + C_{0,0}$$

すなわち
$$C_{0,1} = 0, \dots, C_{2,2} = 0$$

Nagaoのアルゴリズム まとめ

Relation を求める

Step1: 代数方程式
$$C_{0,1}=0, C_{0,2}=0, C_{1,1}=0, C_{1,2}=0,$$
 $C_{2,1}=0, C_{2,2}=0$ を得る

Step2: 代数方程式を Gröbner 基底計算で解く

$$\Rightarrow u_0, \dots, v_2 \in \mathbb{F}_p$$
$$\Rightarrow C_{0,0}, C_{1,0}, C_{2,0} \in \mathbb{F}_p$$

Step3:
$$g(X) = X^3 + C_{2,0}X^2 + C_{1,0}X + C_{0,0}$$

$$\circ g(X) = (X - x_1)(X - x_2)(X - x_3) = 0 \text{ s.t. } x_i \in \mathbb{F}_p$$

 $\Rightarrow P_i = (x_i, y_i) \in B_0$

代数方程式の比較

代数方程式	Gaudry	Gaudry + 基本対	Nagao
		称式	
変数の数	3	3	6
代数方程式の数	3	3	6
最高次数	12	4	2
項数	125,124,124	35,33,33	21,21,15,15,5,5

Gröbner基底計算の時間が異なることが考えられる

Relation collection アルゴリズム 実装実験

□目的

Relation collection アルゴリズムの計算量評価

□環境

OS:Linux version 2.6.13

CPU:AMD Athlon 64 X2, 2.4GHz

メモリ:4GB搭載

代数計算システム: MAGMA V2.14-5

□ 内容

Gaudry のアルゴリズム + 基本対称式 , Nagao のアルゴリズム

 p^3 のサイズ42-160bit それぞれに対し、relation を 1000 個集める時間を測定

実験結果

Relation を1個得るために要する計算時間

Gaudry + 基本対称式

$\log p^3$	代数方程式生成	Gröbner 基底計算	合計
64 (bit)	0.751 (sec)	0.101 (sec)	0.856 (sec)
96 (bit)	1.339 (sec)	0.355 (sec)	1.714 (sec)
128 (bit)	1.299 (sec)	0.365 (sec)	1.690 (sec)
160 (bit)	1.279 (sec)	0.407 (sec)	1.703 (sec)

Nagao

$\log p^3$	代数方程式生成	Gröbner 基底計算	合計
64 (bit)	0.011 (sec)	0.188 (sec)	0.201 (sec)
96 (bit)	0.015 (sec)	0.972 (sec)	0.994 (sec)
128 (bit)	0.014 (sec)	1.036 (sec)	1.058 (sec)
160 (bit)	0.013 (sec)	1.106 (sec)	1.128 (sec)

推定

Index calculus(plain version)
Relation collection part: p 個程度のrelationを集める

- ◇ Gaudry のアルゴリズム + 基本対称式 , Nagao のアルゴリズム
 - \circ 実験データから relation を p 個集める計算時間を推定
- ♦ Gaudryのアルゴリズム
 - $\circ p^3$ のサイズ 20-50 bit それぞれに対し、relation を 100 個集める時間を測定
 - \circ 実験データから relation をp 個集める計算時間を推定

最小二乗法を用いて推定

Relation collection アルゴリズム 推定計算時間

Index calculus

 \Diamond Gaudry 法 (Gaudry): Plain version 計算量 $O(p^2)$

Plain version の改良アルゴリズム

- $\rightarrow \Diamond$ Gaudry-Harley法 (Gaudry-Harley) 計算量 $O(p^{\frac{3}{2}})$
- → ♦ Single-large-prime version (Thériault)

Index calculus (plain version)

因子基底 B_0 s.t. $\#B_0 \approx p$

- \square Relation collection part \rightarrow 計算量O(p)
- □ Linear algebra part \rightarrow 計算量 $O(p^2)$
 - ⇒ 因子基底のサイズ程度の素行列演算

全体の計算量 $O(p^2)$: Rho法より漸近計算量 大

Index calculus (plain version) 実装実験

□ 目的

Index calculusの計算量評価

□内容

 p^3 のサイズ20-53bit に対し離散対数問題を解く (Relation collection by Nagaoのアルゴリズム)

□ 計算時間を推定

測定結果から53bit以降の計算時間を推定

最小二乗法を用いて推定

Index calculus (plain version) 推定計算時間

Index calculus (double-large-prime version)

- \diamondsuit 因子基底 : $B \subsetneq B_0$ s.t. $\#B \approx p^{\frac{2}{3}}$
- □ Relation collection part \rightarrow 計算量 $O(p^{\frac{4}{3}})$
- □ Linear algebra part \rightarrow 計算量 $O(p^{\frac{4}{3}})$

全体の計算量 $O(p^{\frac{4}{3}})$ < Rho法 計算量 $O(p^{\frac{3}{2}})$

Double-large-prime version 実装実験

□目的

Double-large-prime version の現実的な計算量評価

□ 内容

 p^3 のサイズ20-35bit に対する離散対数問題を解く (Relation collection by Nagaoのアルゴリズム)

□ 計算時間を推定

測定結果から double-large-prime version の計算時間を推定

最小二乗法を用いて推定

Double-large-prime-version 推定計算時間

拡大次数4に対するRelation collection アルゴリズム

Relation を1個得るために要する計算時間

64(bit): 59808 (sec) 96(bit): 194352 (sec)

 $p^3:p^{rac{4}{3}}$, $p^4:p^{rac{3}{2}}$ 個の relation を集めるのに必要な時間

まとめ

次の実装を行った

- ◇ Relation collection アルゴリズム
 - o Gaudryのアルゴリズム
 - o Nagaoのアルゴリズム
- ♦ Index calculus
 - Plain version
 - o Double-large-prime version
 - ♦ Generalized Weil descent
- 3次拡大に対し攻撃法として効果を持ち得る