ECE 532: Homework 1

Due on Tuesday, Sept. 9

Robert Nowak 11:00 am

Elijah Bernstein-Cooper

September 16, 2014

Problem 1

1a

Given $X = [x_1 x_2 \dots x_n] \in \mathbb{R}^p$, we can express the matrix C where

$$\boldsymbol{C} = \boldsymbol{X} \boldsymbol{X}^T \tag{1}$$

as the following sum of rank-1 matrices

$$C = \sum_{i=1}^{\infty} \frac{\boldsymbol{x}_i \boldsymbol{x}_i^T}{n} \tag{2}$$

1b

The rank of C will be n.

Problem 2

2a

To determine if $\Phi(x)$ is a norm where

$$\Phi(\boldsymbol{x}) = \sum_{j=1}^{m} \left(\sum_{i \in G_j} x_i^2 \right)^{1/2} \tag{3}$$

we first recognize that $\Phi(x)$ is simply a sum over an instance of the *p*-norm where p=2 because $i \in G_j$ will include all elements in the sent $\{1, 2, \ldots, n\}$. The sum over the *p*-norm is also a 1-norm. The norm of a norm, is in fact a norm, thus $\Phi(x)$ is a norm.

2b

When m = 1, $\Phi(\mathbf{x})$ is the Euclidean norm. When m = n, $\Phi(\mathbf{x})$ is the 1-norm.

Problem 3

Given

$$\cos(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}^T \boldsymbol{y}}{\|\boldsymbol{x}\|_2 \|\boldsymbol{y}\|_2} \tag{4}$$

and that $|\cos(x, y)| \le 1$, the absolute value of the numerator cannot be larger than the denominator, thus $|x^Ty| \le ||x||_2 ||y||_2$.

Problem 4

4a

Given y = Ax we can write x as

$$x = A^{-1}y \tag{5}$$

4b

To bound the 2-norm of \boldsymbol{x} with a function of \boldsymbol{A} and \boldsymbol{y} we first take $\|\boldsymbol{x}\| = \|\boldsymbol{A}^{-1}\boldsymbol{y}\|$ which can be expressed as

$$\frac{\|\boldsymbol{A}^{-1}\boldsymbol{y}\|}{\|\boldsymbol{y}\|}\|\boldsymbol{y}\|\tag{6}$$

where

$$\frac{\|\boldsymbol{A}^{-1}\boldsymbol{y}\|}{\|\boldsymbol{y}\|}\tag{7}$$

is the matrix norm. Eq. 8 will always be less than $\|\boldsymbol{A}^{-1}\|,$ thus

$$||x|| \le ||A^{-1}|| ||y|| \tag{8}$$

Problem 5

5a

The rank of \boldsymbol{A} is 3.

5b

 \boldsymbol{x} can be expressed as

$$\mathbf{x} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix} \mathbf{y} \tag{9}$$

Problem 6

6a

The rank of \boldsymbol{X} is 3.

6b

The rank of $\frac{XX^T}{n}$ is 3.

6c

A set of linearly independent columns of \boldsymbol{X} are

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$