Chapitre 1

Base de Probablite

1.1 Espase Probabilisé

Soit Ω est Univers (est random ensemble).

Définition 1 (σ - algebra). La famille des ensembles \mathcal{A} s'appelle σ -ALGEBRA si :

- 1. $\Omega \in \mathcal{A}$
- 2. Pour tout $A \in \mathcal{A}$, $A^c \in \mathcal{A}$ $(A^C = \bar{A})$
- 3. Si $\{A_k\}_{k=1}^{\infty} \in \mathcal{A}: \cup_{k=1}^{\infty} A_k \in \mathcal{A}$

Définition 2 (Probabilité).

- 1. $\mathbb{P}(\Omega) = 1$
- 2. Si $\{A_k\}_k^{\infty}$ disjoint (pour tout $i \neq j$: $A_i \cup A_j = \emptyset$):

$$\mathbb{P}(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mathbb{P}(A_k)$$

Espasce probabilisable $(\underbrace{\Omega}_{\text{univers}}, \underbrace{\mathcal{A}}_{\text{tribu}})$.

Espase probabillisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Définition 3. Variable Aléatoire (random variable) est fonction measurable X :

$$X:\Omega\to\mathbb{R}$$

Soit Ω un ensemble. Soit \mathcal{F} un famille d'ensembles de Ω , qui n'est pas forcément une σ -algèbre.

Définition 4. On appelle σ -algèbre engendrée par \mathcal{F} , dénotée $\sigma(\mathcal{F})$ la plus petite σ -algèbre que contient \mathcal{F} .

Définition 5. Borel (\mathcal{B}) est la σ -algebre engendrée par les intervalles ouvertes de \mathbb{R} c'est-â-dire de la forme $(a, b), |a|, |b| < \infty$ (famile \mathcal{F}_0).

Remarque. On dit Borel (B) est aussi σ -algebre engendrée par des intervalles de la forme $(-\infty, |a|], |a| < \infty$ (famile \mathcal{F}_{FN}). $\sigma(\mathcal{F}_0) = \sigma(\mathcal{F}_{FN})$

Proposition 1. Pour verifier la measurable il suffit de la tester sur une famille qui engendrée la σ -algèbre de Borele.

Exercice. (simple mais important)

Soit Ω un ensemble. $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ est une partition finit de Ω , c'est-â-dire $\bigcup_{i=1}^k P_i = \Omega$ et $P_\alpha \cap P_\beta = \emptyset$.

- 1. Trouve $\sigma(\mathcal{P})$. Réponse :
 - $\sigma(\mathcal{P})$ contient tout reunion d'éléments \mathcal{P} .

(En partiqulier si $A \in \sigma(\mathcal{P})$: $A = \bigcup_{k=1}^{l} P_{i_k}$)

2. Trouve comment sont faites les v.a. par rapport â $\sigma(\mathcal{P})$. Réponse :

Consider $\Omega = \mathbb{R}$. $X(\omega) = \alpha$. α est l'image ω . Le point α est aussi un ensemble, qu'on denote $\{\alpha\}$: "singlitore" qui est un borelien. Car X est measurable par rapport \hat{a} $\sigma(\mathcal{P}), X^{-1}(\{\alpha\}) = \cup P_{i_k}$.

Une function measurable pour rapport à $\sigma(\mathcal{P})$ est constante par morceaux sr les éléments de la partition.

On replace X avec autre object qui "approxime" X est measurable par rapport â $\sigma(\mathcal{P})$.

Espace probabilisé (Ω , \mathcal{A} , \mathbb{P}). $X:\Omega\to \mathbb{R}$, X est v.a.

Loi de X on définir un mesure de probabilite sur $(\mathbb{R}, \mathcal{B})$ de la manière suivante si $B \in \mathcal{B} : P_X(B) = \mathbb{P}(X^{-1}(B))$.

On appelle P_X de LA LOI DE X.

 $X: \Omega \to \mathbb{R}$ On pourra écrite X de la maniere suivante : $X(\omega) = \sum_{k=1}^{\infty} x_k \mathbb{1}_{A_k}(\omega)$, $A_k = \{\omega \mid X(\omega) \in A_k\}$. Calculer P_X (la loi de X) :

Si $B \in \mathcal{F}$, $P_X(B) = \mathbb{P}(X^{-1}(B))$.

On appelle D l'ensemble valeur de $X: D = \{x_1, x_2, ... x_k ...\}$.

 $P_X(B) = P_X(B \cap D) = P_X(B \cap \bigcup_{k=1}^{\infty} \{x_k\}) = P_X(\bigcup_{k=1}^{\infty} (B \cap \{x_k\})) = \sum_{k=1}^{\infty} P_X(B \cap \{x_k\}) = \sum_{k=1}^{\infty} P(X = x_k) \delta_{\{x_k\}}(B) = \sum_{k=1}^{\infty} p_k \delta_{\{x_k\}}(B)$

$$\delta_a(B) = \begin{cases} 1 & \text{si } a \in B \\ 0 & \text{si } a \notin B \end{cases}$$

On introduit la measure de Dirrac:

$$\begin{array}{rcl} X & = & \sum\limits_{k=1}^{\infty} x_k \mathbbm{1}_{A_k} \\ P_x & = & \sum\limits_{k=1}^{\infty} p_k \delta_{\{x_k\}} \\ P_x & = & \mathbb{P}(A_k) \end{array} \right\} \text{ v.a. discrete}$$

Exemple. (v.a. discrete)

Valeurs : $X = \{0, 1, ... n\}$.

1. B(n, p) binomiale

$$P_k = \mathbb{P}(X = k) = C_n^k p^k (1 - p)^{n-k}, i \in \{0, \dots, n\}$$

2. Poisson $P(\lambda)$. Valeurs $X = \{0, 1, 2, ...\}$ - dénombrable.

$$P_X(\{k\}) = \mathbb{P}(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

Rappel. $X: \Omega \to \mathbb{R}$ est une variable aléatoire

 $\mathbb{E}(X) = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ — esperance, $\mathbb{V}(X) = \mathbb{E}[[X - \mathbb{E}(X)]^2]$ — variance.

Supposons
$$\mathbb{E}(X) = 0 \Rightarrow \mathbb{V}(X) = \mathbb{E}(X^2)$$
.

$$g(t) = t^2$$
, $g \circ X = X^2$. Si $g \circ X = X \circ g$, g — identité.

Rappel. Variable aléatoire à valeurs réelle : $X:\Omega\to\mathbb{R}$. Loi de X:une measure de probabilité sur \mathbb{R} $P_X(B) = \mathbb{P}(X^{-1}(B)), B \in \mathcal{B}$.

Théorème 1. Soit $X: \Omega \to \mathbb{R}$ une v.a. sur l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et soit $g: \mathbb{R} \to \mathbb{R}$ une fonction mesurable. si l'intégrale $\int_{\Omega} g \circ X d\mathbb{P}$ existe on a

$$\int_{\Omega} g(X(\omega)) d\mathbb{P}(\omega) = \int_{\mathbb{R}} g(t) dP_X(t)$$

Exemple 1.1.1. Supposons que X est discrète... P1/2

Définition 6. $X: \Omega \to \mathbb{R}$ v.a.

$$F(t) := \mathbb{P}(X \le t) = \mathbb{P}(\omega : X(\omega) \le t) = P_X((-\infty, t])$$

Proposition 2. Toute fonction de repartition F vérifie les propriétés suivantes :

- 1. F est non-negative et croissante.
- 2. F est continue à droite.
- 3. F est discontinue dans plus un nombre dénombrée de point.

4.
$$\begin{cases} \lim_{t \to +\infty} F(t) = 1\\ \lim_{t \to -\infty} F(t) = 0 \end{cases}$$

1.1.1 Rappel de Th. de la measure

Soit F une fonction croissante réelle positive (en particulier F est la fonction de repartition d'une v.a.).

Ou définit une fonction d'ensemble sur \mathbb{R} :

$$\tilde{F}((a,b]) = F(b) - F(a) \tag{*}$$

Il y a un théorème de théorie de la measure que dit que la fonction d'ensemble F défini sur la famille $\{[a,b]\}$ peut s'étendre à une measure sur la σ -algebra engendrée par cette famille $(\mathcal{B}$ — Borel) et la restriction de cette mesure sur la famille $\{[a,b]\}$ vérifie l'égalité (??).

Cette measure est appelle la mesure le LEBÉSGUE-STILTYES. $F(t) = \mathbb{P}(X \leq t)$.

1.2 Indépendances

A, B deux événements (c'est-à-dire $A, B \in \mathcal{A}$).

Définition 7. On dira que A et B sont INDÉPENDANTS si

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Définition 8. On appelle σ -algèbre engendrée par une variable aléatoire X, $\sigma(X)$ la plus petite σ -algèbre pour rapport à la quelle X est mesurable.

Proposition 3. $\sigma(X) = \{X^{-1}(B) \mid B \in \mathcal{B}\}\$

Définition 9. Deux v.a. X et Y définies sur le même espace $(\Omega, \mathcal{A}, \mathbb{P})$ sont l'indépendantes si $\sigma(X)$ et $\sigma(Y)$ sont indépendantes.

On appelle σ -algèbre engendrée par une variable aléatoire X, $\sigma(X)$ la plus petite σ -algèbre pour rapport à la quelle X est mesurable.

Si X et Y sont indépendantes si

$$P_{XY}(X \in A, Y \in B) = P_X(A)P_Y(B)$$

Produit direct de deux mesure? Considéré $S = S_1 \times S_2$. Di ou construit l'espace mesurable $(S_1 \times S_2, A_1 \times A_2)$. Il existe une seule mesure $\bar{\mu}$ telle que :

$$\bar{\mu}(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2 A_2$$

Cette mesure $\bar{\mu}$ est le produit direct de μ_1 et μ_1 , dénote $\bar{\mu} = \mu_1 \times \mu_1$.

Théorème 2. Deux variables aléatoire X et Y sont indépendantes ssi la loi conjointe coïncide avec le produit direct des lois marginales. C'est- \hat{a} -dire :

$$P_{XY} = P_X \times P_Y$$

Ex

$$\int_{\mathbb{D}} f(t, u) \, dP_{XY}(t, u) \mu$$

On a besoin d'une autre quantité; fonction de répartition de deux variables.

Définition 10. Si X et Y sont 2 v.a. ou définit

$$F_{xy}(u, v) = \mathbb{P}(X \le u, Y \le v)$$

Proposition 4. Si ou connaît la fonction de répartition du couple (X, Y) on peut calculer les fonctions de répartition marginales

$$F_X(u) = \lim_{v \to +\infty} F_{XY}(u, v)$$

$$F_Y(v) = \lim_{u \to +\infty} F_{XY}(u, v)$$

Démonstration. $F_X(u) = \mathbb{P}(X \leq u) = P_X((-\infty, u])$. Utilise $\mathbb{R} = \bigcup_{k=1}^{\infty} (-\infty, k] \ (-\infty, k)$ est croissant. $\mathbb{P}(X \leq u) = \mathbb{P}(X \leq u, Y \in \mathbb{R}) = \mathbb{P}(X \leq u, Y \in \bigcup_{k=1}^{\infty} (-\infty, k])$. $F_X(u) = \mathbb{P}(X \leq u) = P_X((-\infty, u])$.

Proposition 5. Si X est Y sont indépendant v.a. donc $F_{XY}(u,v) = F_x(U)F_Y(V)$

 $D\acute{e}monstration.$...

Proposition 6. Si on $a: F_{XY} = (u, v) = F_X(u)F_Y(v)$ cest-a que X et Y sont indépendante ? Oui.

Démonstration.

$$P_{XY}(X \le u, Y \le v) = P_X(X \le u)P_Y(Y \le u)$$

la borelien de la forme $\{(-\infty,u],|u|<\infty\}$ vérifier le propriété de l'intersection firme. \square

Définition 11. La mesure de lebegue dans \mathbb{R}^2 est la mesure produit direct des mesure des lebesgue dans \mathbb{R} .

Convention $\int f d\lambda(x) = \int f dx$.

Définition 12. Un couple de v.a (X,Y) a une loi conjointe P_{XY} a density si pour toute borelie $B \in \mathcal{B}^{(2)}$ (σ -algèbre produite), on a

$$P_{XY}(B) = \iint_{B} f_{XY}(u, v) \, d\lambda(u) \, d\lambda(v)$$

. En particulier s ou a $g(u, v) \in L^1(P_{XY})$ on a :

$$\iint\limits_{\mathbb{D}^2} g(u,v) \, dP_{XY}(u,v) = \iint g(u,v) f_{XY}(u,v) \, d\lambda(u) \, d\lambda(v)$$

Questions

- 1. Donner les proprettes de f_{XY} quand X et Y sont indépendants.
- 2. Si on connait $F_{XY}(u,v)$ est-ce qu'on peut calculer les marginales $f_X(u)$, f_Yv ?

Proposition 7 (générale). Si on connait $f_{XY}(u,v)$ on a: $\begin{cases} f_X(u) = \int_{\mathbb{R}} F_{XY}(u,v) dv \\ f_X(v) = \int_{\mathbb{R}} F_{XY}(u,v) du \end{cases}$

Démonstration.
$$F_X(t) = \lim_{r \to \infty} F_{XY}(t,r) = |$$

$$F_{XY}(t,r) = \mathbb{P}(X \le t, Y \le r) = P_{XY}((-\infty, t] \times (-\infty, r]) = \int_{-\infty}^{t} \int_{-\infty}^{r} d\lambda(u) \, d\lambda(v) = F_{XY}(t,r)$$

$$|=|\lim_{r\to\infty}\iint_{-\infty-\infty}^t f_{XY}(u,v)\,d\lambda(u)\,d\lambda(v)=\lim_{r\to\infty}\iint_{-\infty-\infty}^t f_{XY}(u,v)\mathbb{1}(u)\mathbb{1}(v)\,d\lambda(u)\,d\lambda(v)=$$
 | Par Fubini ou sont étirer les intégrales : |

 $= \lim_{r \to \infty} \int_{\mathbb{R}} du \int_{\mathbb{R}} dv \mathbb{1}(u) \mathbb{1}(v) f_{XY}(u,v) = \lim_{r \to \infty} \int_{-\infty}^{t} du \int_{-\infty}^{r} dv f_{XY}(u,v) = |\text{B. Levi}| == \int_{\mathbb{R}} du \lim_{r \to \infty} \int_{\mathbb{R}} dv \mathbb{1}(u) \mathbb{1} f_{XY}(u,v) F_{X}(t) = \int_{\mathbb{R}} du \int_{\mathbb{R}} dv \mathbb{1}(u) \mathbb{1} f_{XY}(u,v).$

Si
$$X$$
 est à densité $F_X(T) = \int_{-\infty}^t f_X(u) du$.

Question (Indépendantes et densités)

Proposition 8. Ou a deux parties.

- 1. Si 2 v.a. X et Y admettait, des densités f_X et f_Y admettent des densités f_X et f_y et X et Y sont indépendantes, alors le couple (X, Y) admet une loi conjointe a densité et $f_{XY} = f_X f_Y$.
- 2. Si le couple (X, Y) admet une densité f_{XY} produit de deux fonctions intégrable f_1 et f_2 alors f_1 et f_2 sont les dentistes (à une constant pvit) de X et Y et X et Y sont indépendantes.

Exercice On a un couple de v.a. (X,Y) à valeurs dans \mathbb{R}^2 de loi conjointe :

$$P_{(XY)}(B) = \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{2^{k+l}} \delta_{\{k,l\}}(B)$$

Determiner la loi de $Z = \sup\{X, Y\}$.

1. question. Déterminer P_X , P_Y oui $P_X(X=k)$. Si X et Y sont discrète $\mathbb{P}(X=k)=\sum_{i=1}^n \mathbb{P}(X=k,\ Y=j)$.

$$P_X(\{x\} = \sum_{i} P_{XY}(\{k, j\}))$$

$$\mathbb{P}(X = k) = P_X(\{k\}) = \sum_{i=1}^{\infty} \frac{1}{2^{k+j}}$$

$$\mathbb{P}(Z \le k) = \mathbb{P}(X \le k, Y \le k) = \int \mathbb{1}_{[0,k]^2}(X,Y) \, d\mathbb{P} = \iint \mathbb{1}_{[0,k]^2} \, dP_{XY}(u,v) = \sum_{i=1}^{\infty} \frac{1}{2^{i+l}} \mathbb{1}_{[1,k]^2}(i,l) = \sum_{i=1}^{k} \sum_{l=1}^{k} \frac{1}{2^{i+l}}$$

1.3 Leçon 4

Il fallait montrer que si les variables aléatoires (X_1,X_2) ont une densité $f_{X_1X_2}$ produit direct de deux fonctions f_1 et f_2 , alors à une constante près, f_1 et f_2 sont le densité de X_1 et X_2 et ces deux variables sont indépendantes.

L'autre partie (exercice). Si X_1 et X_2 sont indépendantes de densité respectives f_{X_1} et f_{X_2} , alors le vecteur (X_1, X_2) a densité : $f_{X_1X_2} = f_{X_1}f_{X_2}$.

Démonstration. Par hypothèse, $f_{X_1X_2}(u,v)=f_{X_1}(u)f_{X_2}(v)$. D'autre coté on sait que en général :

$$f_{X_1}(u) = \int_{\mathbb{R}} f_{X_1 X_2}(u, v) \, \mathrm{d}\lambda v$$

$$f_{X_2}(v) = \int_{\mathbb{R}} f_{X_1 X_2}(u, v) \, \mathrm{d}\lambda u$$

Objectif : Montrer que, a une constante près $f_1=f_{X_1},\, f_2=f_{X_2}.$ On observe que :

$$f_{X_1}(u) = \int_{\mathbb{R}} f_{X_1 X_2}(u, v) dv = f_1(u) \int_{\mathbb{R}} f_2(v) dv$$

$$f_{X_2}(v) = \int_{\mathbb{R}} f_{X_1 X_2}(u, v) du = f_1(v) \int_{\mathbb{R}} f_1(u) du$$

On multiple les deux expressions :

$$f_{X_1}(u)f_{X_2}(v) = f_1(u)f_2(v) \int_{\mathbb{R}} f_2(v) \, dv \int_{\mathbb{R}} f_1(u) \, du = f_1(u)f_2(v) \iint_{\mathbb{R} \times \mathbb{R}} f_2(v)f_1(u) \, du \, dv$$

Or

$$\int_{\mathbb{R}} f_2(v) \, \mathrm{d}v \int_{\mathbb{R}} f_1(u) \, \mathrm{d}u = \iint_{\mathbb{R} \times \mathbb{R}} f_2(v) f_1(u) \, \mathrm{d}u \, \mathrm{d}v = \iint_{\mathbb{R} \times \mathbb{R}} f_{X_1, X_2}(u, v) \, \mathrm{d}u \, \mathrm{d}v = 1,$$

car f_{X_1,X_2} est une densité de probabilité. Donc on a montré que $f_1(u)f_2(v)=f_{X_1}(u)f_{X_2}(v)$.

Remarque. À des constants prés on pourra identifier f_{X_1} avec f_1 et f_{X_2} avec f_2 . Pour terminer : La loi du couple (X_1, X_2) $P_{X_1 X_2}$ on sait que on peut l'écrire.

Notations 1. Si on a une mesure P avec densité f on l'écrira comme ça : P = f dx, $P(A) = \int_A f dx$. $\int g df = \int g f dx$.

$$P_{X_1X_2} = f_{X_1X_2}(u,v) \,\mathrm{d}\lambda(u) \,\mathrm{d}\lambda(v) = f_1(u)f_2(v) \,\mathrm{d}\lambda(u) \,\mathrm{d}\lambda(v) = f_{X_1}(u)f_{X_2}(v) \,\mathrm{d}\lambda(u) \,\mathrm{d}\lambda(v) = P_{X_1X_2}(u,v) \,\mathrm{d}\lambda(u) \,\mathrm{d}\lambda(v) = f_1(u)f_2(v) \,\mathrm{d}\lambda(u) \,\mathrm{d}\lambda(u)$$

(product direct des lois marginales).

 $P_{X_1X_2}=P_{X_1}\otimes P_{X_2}$ produit directe de lois marginales. Et on sait que C.N.S...!? what pour l'independence est que $P_{X_1X_2}=P_{X_1}\otimes P_{X_2}$.

Proposition 9. Si X_1 et X_2 sont deux v.a., le trois assertions suivantes sont équivalentes :

- 1. X_1 et X_2 sont indépendantes
- 2. \forall fonctions g_1 et g_2 réels et positive on a:

$$\int g_1 \circ X_1 \cdot g_2 \circ X_2 \, d\mathbb{P} = \int g_1 \circ X_1 \, d\mathbb{P} \cdot \int g_2 \circ X_2 \, d\mathbb{P}$$

3. Pur tout fonctions réels bornées, g_1 et g_2 on a:

$$\int g_1 \circ X_1 \cdot g_2 \circ X_2 \, \mathrm{d}\mathbb{P} = \int g_1 \circ X_1 \, \mathrm{d}\mathbb{P} \cdot \int g_2 \circ X_2 \, \mathrm{d}\mathbb{P}$$

Applications. Supposons que g_1 et g_2 sont l'identité et que X_1 et X_2 sont indépendantes :

$$\mathbb{E}(X_1 \cdot X_2) = \mathbb{E}(X_1) \cdot \mathbb{E}(X_2)$$

$$\int 1 \circ X_1 \cdot 1 \circ X_2 d\mathbb{P} = \int 1 \circ X_1 d\mathbb{P} \cdot \int 1 \circ X_2 d\mathbb{P}.$$

Exemple 1.3.1.
$$X_1$$
 et X_2 indépendant $\int X_1^2 \sin X_2 d\mathbb{P} = \int X_1^2 d\mathbb{P} \int \sin X_2 d\mathbb{P}$.

Remarque. Si X_1 et X_2 sont indépendants : $\mathbb{V}(X_1 + X_2) = \mathbb{V}(X_1) + \mathbb{V}(X_2)$. $\mathbb{E}([(X_1 = X_2) - (X_1 + X_2)]^2)$. On développe le carré on découvera des termes de type $\mathbb{E}(X_1X_2)$, on utilisera l'égalité $\mathbb{E}(X_1 \cdot X_2) = \mathbb{E}(X_1) \cdot \mathbb{E}(X_2)$...!? pour définis le fait que 2

Exemple 1.3.2. Sur l'espace probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ on considère le couple (X, Y) ave loi conjomte- P_{XY} à densité

$$f_{XY}(u,v) = \alpha(1-u^2) \mathbb{1}_{[0,1)}(u) v e^{-3v} \mathbb{1}_{(0,+\infty)}$$

1. déterminer le valeur de α

variables sont de corrélées

2. déterminer la lois marginales.

Exemple 1.3.3. Sur l'espace $(\Omega, \mathcal{A}, \mathbb{P})$ on a à nouveau le vecteur aléatoire (X, Y) de loi

$$P_{XY} = \alpha(\mu_1 + \mu_2 + \mu_3)$$

où α est un paramètre et

 μ est une mesure à densité avec densité : $f_1(u,v) = \frac{1}{u^2}e^{-v}\mathbb{1}_{[1,+\infty)}(u)\mathbb{1}_{[0,+\infty)}(v)$

 μ_2 : mesure uniformément distribuée sur $[0,1] \times [0,1]$.

 $\mu_3 = \delta_{\{1,1\}} + \delta_{\{-1,2\}}.$

Déterminer α et le lois marginales de X et de Y. Est que X et Y sont indépendantes ?

Exercice 1. Soit (X,Y) un vecteur aléatoire à valeurs dans \mathbb{R}^2 .

(i) suppose que le loi du couple (X,Y) est connue :

$$d_{XY}(u,v) = \lambda \rho e^{-\lambda u - \rho v} \mathbf{1}_{\mathbb{R}^2_{\perp}}(u,v) \, \mathrm{d}u \, \mathrm{d}v$$

Déterminer la loi de la v.a. $W = \min\{X, Y\}$

Deux méthodes (équivalentes).

1ère méthode : $F_W(t) = \mathbb{P}(W \le t) = 1 - \mathbb{P}(W > t) = 1 - \mathbb{P}(X > t, Y > t) = 1 - \int_{\Omega} \mathbb{1}_{(t, +\infty)} X$

$$\mathbb{1}_{(t,+\infty)}Y d\mathbb{P} = \iint_{\mathbb{R}} \mathbb{1}_{(t,+\infty)\times(t,+\infty)} dP_{XY}(u,v) = \iint_{\mathbb{R}} \mathbb{1}_{(t,+\infty)\times(t,+\infty)} \lambda \rho e^{-\lambda u} e^{-\frac{\lambda u}{\rho v}} du dv, t \ge 0$$

$$0 = 1 - \int_t^\infty \mathrm{d}u \int_t^\infty \mathrm{d}v \,\lambda \rho e^{-\lambda u} e^{-\rho v} = 1 - \lambda \int_t^\infty e^{-\lambda} \mathrm{d}u \,\rho \int_t^\infty e^{-\rho v} \,\mathrm{d}v = [1 - e^{-(\lambda - \rho)t}] \mathbb{1}_{[0,\infty]}(t).$$

On sait que:

$$F_W(t) = \int_{-\infty}^t f_W(s) \, \mathrm{d}s.$$

Si on connait f_X , ou peut calculer F_W ?

F—distribution function (fonction de repartition).

f—probability density function (fonction de densité).

$$F'_W(t) = (\lambda + \rho)e^{-(\lambda + \rho)t}$$
 Mais $F'_W = (\lambda + \rho)$ from +, but 0 from -0.

Il v a 2 cas:

(i)
$$t \in (-\infty, 0)$$
 $F_W(t) = 0 \Rightarrow f_W(t) = 0$

(ii)
$$t \ge 0 \ [1 - e^{(\lambda + \rho)t}] = \int_{\infty}^{t} f_W(s) \, ds$$

Est-ce que X et Y sont indépendantes? Yes. $f_X \cdot f_Y$.

Méthode tris générale pour construire des variables aléatoires.

On construit une nouvelle v.a. $g \circ X = Y$. Question Si on connaît la loi de X, peut on calculer la loi de Y? Ex X a nue loi exp : $f_X(u) = \lambda e^{-\lambda u}$; calcules la loi de $\sqrt[2]{X} = Y$.

Chourinevousm- une fonction test non-négative $h: \mathbb{R} \to \mathbb{R}_+$ et ou eousitere- :

$$\mathbb{E}(h \circ Y) = \int_{\Omega} h \circ Y \, d\mathbb{P} = \int_{\Omega} h \circ g \circ X \, dP$$
$$\int_{\Omega} h \circ Y \, d\mathbb{P} = \int_{\mathbb{R}} h(v) f_Y(v) \, dv$$
$$== \int_{\mathbb{R}} h(g(u)) \, dP_X(u) = \int_{\mathbb{R}} h(g(u)) f_X(u) \, du$$

On a : $\int_{\mathbb{R}} h(g(u)) f_X(u) d(u) = (\text{Particular case}) = \lambda \int_{\mathbb{R}} h(\sqrt{u}) e^{-\lambda u} du$ On pose $\sqrt{u} = v dv = \frac{1}{2v} du$

$$==2\lambda \int_0^\infty h(v)e^{-\lambda v^2}v\,\mathrm{d}v.$$

Loi de $Y = \sqrt{X}$ est : $f_Y(v) = 2\lambda v e^{-\lambda v^2} \mathbb{1}_{[0,+\infty)}(v)$. Deux méthode

 $\mathbb{E}(h(W)) \stackrel{\text{si on l'est, comme ca}}{=} \int_{\mathbb{R}} h(y) f_W(y) \, \mathrm{d}y, \, f_W$ la densité de W.~h -fonction test.

$$\mathbb{E}(h(W)) = \int_{\Omega} h \circ W \, \mathrm{d}\mathbb{P} = \int_{\Omega} h \circ \min(X, Y) \, \mathrm{d}\mathbb{P} = \iint_{\mathbb{R} \times \mathbb{R}} h(\min(u, v)) \lambda e^{-\lambda u} \rho e^{-\rho v} \, \mathrm{d}u \, \mathrm{d}v = \iint_{\{(u, v), u < v\}} h(u) \lambda e^{-\lambda u} \rho e^{-\rho v} \, \mathrm{d}u \, \mathrm{d}v + \iint_{\{(u, v), u > v\}} h(u) \lambda e^{-\lambda u} \rho e^{-\rho v} \, \mathrm{d}u \, \mathrm{d}v = \int_{0}^{+\infty} h(u) e^{-(\lambda + \rho)u} (\lambda + \rho) \, \mathrm{d}u$$

On a un vecteur aléatoire (X,Y) a valeurs dans \mathbb{R}^2 , avec loi :

$$f_{XY}(u,v) = \frac{1}{4\pi} e^{-\frac{u}{2}} \mathbf{1}_{\{u \ge 0\}} \mathbf{1}_{[0,2\pi]}$$

Déterminer loi du vecteur aléatoire $(\sqrt{X}\cos Y, \sqrt{X}\sin Y)$.

$$\omega \to (X(\omega), Y(\omega))$$

$$g: \left\{ \begin{array}{rcl} u & = & g_1(x,y) \\ v & = & g_2(x,y) \end{array} \right.$$

$$g = (g_1, g_2)$$

(ii)

$$v(\omega) = g_1(X(\omega), Y(\omega))$$

$$u(\omega) = g_2(X(\omega), Y(\omega))$$

U vecteur : $(g_1 \circ (X, Y), g_2 \circ (X, Y))$. Test function $h, h : \mathbb{R}^2 \to \mathbb{R}$.

$$\mathbb{E}(h \circ (X, Y)) = \int h \circ (X, Y) \, d\mathbb{P} = \iint h(g(u, v)) f_{XY}(u, v) \, du \, dv$$
$$= \iint h(g_1(u, v), g_2(u, v)) f_{XY}(u, v) \, du \, dv \stackrel{?}{=} \int h(\alpha, \beta) f(\alpha, \beta) \, d\alpha \, d\beta \quad (1.1)$$

(X,Y) 2 v.a. et exulte ou avait une fonction vectorielle $g=(g_1,g_2)$ $g:\mathbb{R}^2\to\mathbb{R}^2$ et on définit 2 nouvelle v.a. U et V de cette façon : $U = g_1 \circ (X, Y), V = g_2 \circ (X, Y)$ et

$$\left\{ \begin{array}{ll} U(\omega) &= g_1(X(\omega),Y(\omega)) \\ V(\omega) &= g_2(X(\omega),Y(\omega)) \end{array} \right., \ \omega \in \Omega \ \text{(espace des éléments)}$$

Cas particulier (Exercice) (X,Y) une couple de v.a. de loi cougointe-

$$f_{XY} = \frac{1}{4\pi} e^{-\frac{u}{2}} \mathbf{1}_{u \ge 0}(u) \mathbf{1}_{[0,2\pi]}(v) du dv$$

Question. Trouvons la loi du couple :

$$(\sqrt{X}\cos Y, \sqrt{X}\sin Y) = (U, V)$$

Soit $h: \mathbb{R}^2 \to \mathbb{R}$ une fonction test non-négative. $\mathbb{E}(h \circ g(X,Y)) = \int_{\Omega} h \circ g(X,Y) d\mathbb{P} = \int_{\Omega} h \circ g(X,Y) d\mathbb{P}$ $\iint\limits_{\mathbb{D}^2} h(g_1(x,y), g_2(x,y)) f_{XY}(x,y) \, \mathrm{d}x \, \mathrm{d}y \stackrel{?}{=} \iint\limits_{\mathbb{D}^2} h(u,v) f_{UV}(u,v) \, \mathrm{d}u \, \mathrm{d}v$

$$\begin{cases} u = \sqrt{x} \cos y \\ v = \sqrt{x} \sin y \end{cases}$$
$$g: \begin{cases} u = g_1(x, y) \\ v = g_2(x, y) \end{cases}$$

 $g = (g_1, g_2)$. Pour pouvoir effectuer un changement de variable, il faut que g soit un difféomorphisme entre 2 ouverts.

 $g:\mathcal{O}_1\to\mathcal{O}_2$ difféomorphisme entre deux ouverts. Condition équivalents pour avoir un difféomorphisme :

- (i) g est injective sur \mathcal{O}_1 à valeurs dans \mathcal{O}_2 .
- (ii) g est de classe $b^{(1)}(\mathcal{O}_1)$, c'est-à dire les dérivés partielles de g existe et sont continuous.
- (iii) Le déterminant de $\det(g^{-1})' \neq 0$ sur \mathcal{O}_2

Nous avons défini

$$g: \left\{ \begin{array}{ll} u &=& g_1(x,y) & \text{il faut inverser} \\ v &=& g_2(x,y) \end{array} \right.$$

$$g^{-1}: \left\{ \begin{array}{ll} x &=& \Phi_1(u,v) \\ y &=& \Phi_2(u,v) \end{array} \right.$$

$$\Phi = (\Phi_1, \Phi_2)$$

On construit la invariante Jacobienne (dérives) de $g^{-1} = \Phi$:

$$J_{\Phi}(u,v) = \begin{pmatrix} \frac{\partial \Phi_1}{\partial u} & \frac{\partial \Phi_1}{\partial v} \\ \frac{\partial \Phi_2}{\partial u} & \frac{\partial \Phi_2}{\partial v} \end{pmatrix}$$
$$|\det J_{\Phi}(u,v)|$$

$$= \iint_{q(O_1)=O_2} h(u,v) f_{XY}(\Phi_1(u,v), \Phi_2(u,v)) |\det J_{\Phi}(u,v)| \, \mathrm{d}u \, \mathrm{d}v$$

Trouve le nouvelle domaine d'intégration. $\iint\limits_{O_1} h(g_1(x,y),g_2(x,y)) f_{XY}(x,y) \, \mathrm{d}x \, \mathrm{d}y =$

$$\iint_{g(O_1)=O_2} h(u,v) f_{XY}(\Phi_1(u,v), \Phi_2(u,v)) |\det J_{\Phi}(u,v)| \, \mathrm{d} u \, \mathrm{d} v$$

La densité de (U, V) est donc :

$$f_{UV}(u,v) = f_{XY}(\Phi_1(u,v), \Phi_2(u,v)) \cdot |\det J_{\Phi}(u,v)| \cdot \mathbb{1}_{g(\mathcal{O}_1)}(u,v)$$

Continuer avec l'exercice. :

$$\iint_{0}^{\infty} {}^{2\pi} h(\sqrt{x}\cos y, \sqrt{x}\sin y) \frac{1}{4\pi} e^{-\frac{x}{2}} dx dy =$$

$$g: \left\{ \begin{array}{l} u = \sqrt{x}\cos y \\ v = \sqrt{x}\sin y \end{array} \right.$$

$$\Rightarrow \Phi : \left\{ \begin{array}{rcl} x & = & u^2 + v^2 \\ y & = & \arctan\left(\frac{v}{u}\right) \end{array} \right.$$

$$= \iint_{\mathbb{R} \times \mathbb{R}} du \, dv \, h(u, v) \frac{1}{4\pi} e^{\frac{-(u^2 + v^2)}{2}} \cdot |\det J_{\Phi}(u, v)|$$

$$J_{\Phi}(u, v) = \begin{pmatrix} 2u & 2v \\ \frac{-v}{u^2 + v^2} & \frac{u}{u^2 + v^2} \end{pmatrix}$$

— U et V sont indépendant? Oui car $f = f_1 \cdot f_2$ — Lui de U et $V: \frac{1}{\sqrt{2}\pi}e^{\frac{-(u^2+v^2)}{2}}$ et $\frac{1}{\sqrt{2}\pi}e^{\frac{-(u^2+v^2)}{2}}$

 $\det J_{\Phi}(u,v) = \frac{2u^2}{u^2 + v^2} + \frac{2v^2}{u^2 + v^2} = 2$

 $\iint_{\mathbb{R}^2} h(x+y,y) \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}} dx dy$ $g:\left\{\begin{array}{cccc} u&=&g_1(x,y)&=&x+y\\ v&=&g_2(x,y)&=&y \end{array}\right.$

(X+Y,Y). Objectif calcul la lui de la somme.

 $f_U(u) = \int_{-\infty}^{\infty} f_{UV}(u, v) dv = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(u^2 - 2uv + 2v^2)} dv$

Densité de (X+Y,Y) est $\frac{1}{2\pi}e^{-\frac{u^2-2uv+2v^2}{2}}$. Densité de (X+Y) :

—produit de convolution.

 $f_{UV}(u,v) = \begin{cases} \gamma(2u^2v+1), (v,v) \in D \\ 0, \text{ ailleurs} \end{cases}$

où $D = \{(u, v) \in \mathbb{R}^2 \mid |u| < 1, |u - 1| < 1\}.$ Exercice 2. Questions.

- 1. déterminer la valeur de γ
- 2. déterminer si (U, V) sont indépendantes

- 3. déterminer si (U, V) sont corrélées 4. déterminer la loi du couple (A, B): où $A = U \cdot V$, B = V

Exercice Soit (X,Y) une vecteur aléatoire de loi $f_{XY}(x,y)=\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}$. Calculer la loi de

 $\Phi: \left\{ \begin{array}{ccc} x & = & u-v \\ y & = & v \end{array} \right.$ $|\det J_{\Phi}(u,v)|=1$ $= \iint_{\mathbb{R} \times \mathbb{R}} h(u, v) \frac{1}{2\pi} e^{-\frac{(u-v)^2 + v^2}{2}} du dv$

Théorème 3. Si X et Y sont indépendant de loi marginal f_X et f_Y alors la v.a. X + Yest à densité est $f_{X+Y}(u) = \int_{\mathbb{R}} f_Y(u) \cdot f_X(u-v) dv \stackrel{\text{def}}{=} f_Y * f_X$ —produit de convolution.

Soit (U,V) un couple de variables aléatoires de densité conjointe :

h: fonction test : $\int h(A,B) d\mathbb{P} = \int h(U\cdot V,V) d\mathbb{P} = \iint_D h(uv,v) f_{UV}(u,v) du dv = \iint_{D'} h(a,b) f(...) dv$

 $g: \left\{ \begin{array}{ll} a = uv \\ b = v \end{array} \right. \quad g^{-1}: \left\{ \begin{array}{ll} u = \frac{a}{b} \\ v = b \end{array} \right.$

 $J_{g^{-1}}(a,b) = \begin{pmatrix} \frac{1}{b} & -\frac{a}{b^2} \\ 0 & 1 \end{pmatrix}$

 $|\det J_{g^{-1}}| = \frac{1}{b} = \frac{3}{20} \iint_{D'=g(D)} h(a,b) (2\frac{a^2}{b} + 1) \frac{1}{b} dadb \Rightarrow f_{AB}(a,b) = \frac{3}{20} (2\frac{a^2}{b} + 1) \frac{1}{b} {1\!\!1}_{D'}(a,b) \text{ Draw } D' = g(D) = \{(a,b),b \in [0,2] \ -b < a < b\} \text{ Is it difféomorphisme? Yes, car ...}$

Définition 13. Si X et Y sont 2 v.a. on définit la COVARIANCE entre X et Y comme $Cov(X,Y) \stackrel{\text{def}}{=} \mathbb{E}\left[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$.

Exercice 3. Soit X une v.a. de loi N(0,1) et Y une v.a. discrète de loi $\frac{1}{2}\{\delta_{(-1)}+\delta_1\}$ indépendante de X.

- Montrer que la loi de $Z = X \cdot Y$ est N(0,1)
- Montrer que (X, Z) ne sont pas corrélées
- Calculer $\mathbb{E}(X^2Z^2)$
- Déterminer si (X, Z) sont indépendantes

Loi de \mathbb{Z} .

$$F(t) = \mathbb{P}(Z \le t) = \int_{\mathbb{R}} \mathbb{1}_{\{x \cdot y \le t\}}(x \cdot y) \, dP_{XY}(x, y) \stackrel{indpendantes}{=} \int \int \mathbb{1}_{\{x \cdot y \le t\}}(x \cdot y) \, dP_Y \, dP_X = \int dP_X \left(\frac{1}{2} \mathbb{1}_{-x \le t}(-x) + \frac{1}{2} \mathbb{1}_{+x \le t}(x)\right) = \frac{1}{\sqrt{2\pi}} \int dx \, e^{-\frac{x^2}{2}} \left(\frac{1}{2} \mathbb{1}_{-x \le t}(-x) + \frac{1}{2} \mathbb{1}_{+x \le t}(x)\right) + \frac{1}{\sqrt{2\pi}} \frac{1}{2} \int_{-\infty}^{t} dx \, e^{-x^2/2} dx = \frac{1}{\sqrt{2\pi}} \int_{-t}^{t} dx \, e^{-x^2/2} = \frac{1}{2} \int_{\infty}^{t} e^{-\frac{x^2}{2}} dx \simeq N(0, 1)$$

Exercice 4. Soient X et Y deux va indépendantes dont X est un variable de Bernoulli B(1/2) et Y suivra deux lois i Y est une variable normale N(0,1) ii Y a fonction de répartition $F_y(t) = tt \in [0,1]$. Dans les deux cas calculer la fonction de répartition $Z = X \cdot Y$.

1.4 Fonction génératrice

X set une v.a. discrète a valeurs dans $\mathbb{N} \cup \{0\}$

Ex Bernoulli (0,1) B(p) $P_X=(1-p)\delta_0+p\delta_1$ Binomiale B(n,l) valeurs 1,...,N $\mathbb{P}(x=k)=C_n^kp^k(1-p)^{N-k}$ Géométrique Valeurs de $G=\{0,1,2,...\}$ $\mathbb{P}(G=k)(1-p)^{k-1}p$ Poisson valeurs 0,1,2,... $\mathbb{P}(p=k)=\frac{e^{-\lambda}\lambda^k}{k!}$

Résultat très intéressant Binomiale N très grand p très petite $N \cdot p = O(1)$ $\mathbb{P}(X = k) = C_n^k p^k (1-p)^{N-k} G(N \cdot p)$

Définition 14. Fonction Génératrice de X:

$$g_x(s) = \sum_{i=0}^{+\infty} p_i s^i$$

(série entière, "power" séries), où la loi de X est $P_X = \sum_{i=0}^{\infty} p_i \delta_{\{i\}}$.

Proposition 10. Si on connaît $g_X(s)$ on connaît la loi, c-a-d les $\{p_i\}_{i=0}^{\infty}$. D'abord la série converge pour $s \in [-1,1]$ et uniformément pour $s \in [-1,1]$.

Démonstration. La série peut être dérivée terme-à-terme pour $s \in (-1,1)$.

$$g_X'(s) = \sum_{i=1}^{\infty} p_i i s^{t-1}$$

$$g_X''(s) = \sum_{i=2}^{\infty} p_i i (i-1) s^{t-1}$$

$$\cdots g_X^{(k)}(s) = \sum_{i=k}^{\infty} p_i i (i-1) \dots (i-k+1) s^{i-k}$$

On calcul $g^{(k)}(0)$.

$$p_k = \frac{g^{(k)}(0)}{k!}$$

Attention. $g_X(s) - \sum_{i=0}^{\infty} p_i s^i$. On dérive $g_X'(s) = \sum_{i=1}^{\infty} p_i i s^{i-1}$. Supposons qu'on puisse étendre la dérivée dans s=1 $g_X'(1)=\sum_{i=0}^{\infty} p_i i=\mathbb{E}(X)$

Application.

 $\begin{array}{l} - \ \, X \sim B(N,p) \ \text{v.a.} \\ \mathbb{E}(x) = \sum_{k=0}^{N} k C_N^k p^k (1-p)^{N-k} = ?Np \ \text{On utilise la fonction génératrice} : g_X(s) = \\ \sum_{k=0}^{N} C_N^k p^k (1-p)^{N-k} s^k = \sum_{k=0}^{N} C_n^k (ps)^k (1-p)^{N-k} = [ps+(1-p)]^N \ g_X'(s)|_{s=1} = \\ N[p+(1-p)]^{N-1} \cdot p|_{s=1} = Np \\ - \ \, X \ \text{v.a. Poisson} \ \mathbb{E}(P) = \lambda \ \mathbb{E}(P) = \sum_{k=0}^{\infty} k \frac{\lambda^k e^{-\lambda}}{k!} \ g_P = \sum_{k=0}^{\infty} \ldots = e^{-\lambda} e^{\lambda} s \end{array}$

Lemme 1. (Abel)

- 1. Si la série $\sum_{i=0}^{\infty} \alpha_i = \alpha$ alors $\lim_{s \to 1^-} \sum_{i=0}^{\infty} \alpha_i s^i = \alpha$
- 2. Si les α_i sont positifs et si $\lim_{s\to 1^-} \sum_{i=0}^{\infty} \alpha_i s^i = \alpha < +\infty$, alors $\sum_{i=0}^{\infty} \alpha_i = \alpha$.

Démonstration. $g_X(s) = \sum_{i=0}^{\infty} p_i s^i$ (1) Supposons que $\mathbb{E}(X) < +\infty \Leftrightarrow \sum_{i=0}^{\infty} i p_i = \mathbb{E}(X)$ donc on est dans la partie 1 du Lemme Donc

$$\lim_{s \to 1^{-}} \underbrace{\sum_{i=0}^{\infty} i p_{i} s^{i}}_{g'_{X}(s)} = \mathbb{E}(X)$$

Proposition 11. On a $\mathbb{E}(X(X-1)...(X-r+1)) = \lim_{s\to 1^-} g_X^{(r)}(s) := g_X^{(r)}(1)$. Cas particulier $\mathbb{V}(X) = g_X''(1) + g'(1) - [g_X'(1)]^2$

1.4.1 Fonction génératrice des moments

une v.a. quelconque $u \in \mathbb{R}$; $G_X(u) = \mathbb{E}(e^{uX}) = \int_{\Omega} e^{uX} \, d\mathbb{P} = \int_{\mathbb{R}} e^{uX} \, dP_X x$ Fonction génératrice pour de v.a. à valeurs dans $\mathbb{N} \cup \{0\}$. Si X est une telle v.q. sa loi $P_X = \sum_i p_i \delta_{\{i\}}$ avec fonction génératrice

$$G_X(s) = \sum_{i=0}^{+\infty} p_i s^i,$$

 $|s| \le 1$ avec convergence uniforme pour |s| < 1.

Exercice 5. Soit X et Y deux v.a. à valeurs dans $\mathbb{N} \cup \{0\}$ et indépendantes. Calculer la fonction génératrice de la v.a. Z = X + Y.

Définition 15. Si X est une v.a. quelconque, on définit, pour $v \in \mathbb{R}$ $g_X(u) = \mathbb{E}(e^{uX})$ la fonction génératrice des moments.

Remarque. Si X est à valeurs dans $\mathbb{N} \cup \{0\}$ et si on pose $e^u = s$, on retrouve la fonction génératrice.

Propriétés de $g_X(u) = \mathbb{E}(e^{uX})$

- 1. $g_x(u)$ est toujours défini pour u=0
- 2. Si X est borne alors g_X est bien défini et continue pour $u \in \mathbb{R}$ (borne est limite)

$$g_X(u) = \int_{\Omega} e^{uX(\omega)} d\mathbb{P}(\omega)$$

 $\lim_{u \to u_0} g_X(u) = \lim_{u \to u_0} \int_{\Omega} e^{uX(\omega)} d\mathbb{P}(\omega)$

Rappel. $\lim_{\rho \to \bar{\rho}} \int f(x,\rho) d\mu(x) \Longrightarrow$

Si:

- (i) $\lim_{\rho \to \bar{\rho}} f(x, \rho)$ existe
- (ii) $|f(x,\rho)| \le h(x)$ $h \ge 0$ indépendante de ρ et $\int h(x) < \infty$ alors $\iff \int \lim_{\rho \to \bar{\rho}} f(x,\rho) d\mu(x)$.
- 3. Si $a, b \in \mathbb{R}$, $g_{aX+b}(u) = e^{ub}g_X(au)$
- 4. $g_X(-u)$ est la fonction génératrice des moments de la v.a. Y=-X
- 5. g_X est convexe.
- 6. Si X et Y sont indépendantes et chacune admet une fonction génératrice, alors $g_{X+Y}(u)=g_X(u)g_Y(u)$

Exercice 6. Soit Y = N(0,1) montrons que $X = e^Y$ a une fonction génératrice des moments qui ne pas définie pour u > 0.

Remarque (important). La fonction génératrice des moments est importante et utile si elle existe pour u dans un voisinage de 0.

Théorème 4. Soit X une v.a. et $g_X(u)$ sa fonction génératrice des moments en définie pour $-u_0 < u < +u_0$ (intervalle ouvert), alors :

- 1. $\mathbb{E}(|X|^k) < \infty, \forall k \ge 0$
- 2. $\forall u \in]-u_0, u_0[:$

$$g(u) = 1 + \mathbb{E}(X)u + \frac{u^2}{2!}\mathbb{E}(X^2) + \dots + \frac{u^n}{n!}\mathbb{E}(X^n) + \dots$$

(série convergente)

3. $\forall k \geq 1$ $g_X^{(k)}(u=0) = \mathbb{E}(X^k)$ —moment d'ordre k de X.

Exercise 7. X = N(0,1) $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$. $\mathbb{E}(X) = 0$ $\mathbb{V}(X) = 1 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2}} dx$. $g_X(u) = \mathbb{E}(e^{uX}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ux} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}u^2} \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy = e^{\frac{1}{2}u^2}$. $g''_X(u) = e^{\frac{1}{2}u^2} + e^{\frac{1}{2}u^2}$ $u^2 e^{\frac{1}{2}u^2}|_{u=0} = 1 = \mathbb{V}(X).$

Exercice 8. Trouver $q_X(u)$ pour $X = \mathcal{E}(\lambda)$, où \mathcal{E} est la v.a. exponentielle de paramètre λ .

Exercice 9. Loi de Cauchy : $f_X(x) = \frac{1}{\pi \gamma [1 + (\frac{x - x_0}{\gamma})^2]}$ Pour $x_0 = 0$, $\gamma = 1$ $f_X(x) = \frac{1}{\pi [1 + x^2]}$.

$$\mathbb{E}(X) = \infty. \ g_X(u) = \int_{-\infty}^{\infty} \frac{e^{ux}}{\pi[1+x^2]} \, \mathrm{d}x = \underbrace{\int_{-\infty}^{0} \frac{e^{ux}}{\pi[1+x^2]} \, \mathrm{d}x}_{<+\infty} + \underbrace{\int_{0}^{\infty} \frac{e^{ux}}{\pi[1+x^2]} \, \mathrm{d}x}_{+\infty}.$$

u=0 bon, toujours u < 0

Démonstration. Le preuve sera faite pour des v.a. à densité. On appelle
$$f_X(x)$$
 la densité. Donc: $\mathbb{E}(|X^k|) = \int_{\mathbb{R}^n} |x^k| f_Y(x) dx$ On sait que : $e^{s|x|} = \sum_{k=0}^{\infty} e^{\frac{s^k|x|^k}{k!}} (\Rightarrow |x|^k < \frac{e^{s|x|}|k!}{k!})$.

Donc: $\mathbb{E}(|X^k|) = \int_{\mathbb{R}} |x^k| f_X(x) \, \mathrm{d}x$ On sait que: $e^{s|x|} = \sum_{k=0}^{\infty} \frac{s^k |x|^k}{k!} \ (\Rightarrow |x|^k \le \frac{e^{s|x|} k!}{s^k}).$

On sait par hypothèse que $\mathbb{E}(e^{uX}) = \int_{-\infty}^{\infty} e^{ux} f_X(x) dx < \infty$ pour tout $u : -u_0 < u < u_0$. $\mathbb{E}(|X^k|) = \int_{\mathbb{R}} |x^k| f_X(x) \, \mathrm{d}x \le \frac{k!}{s^k} \int_{\mathbb{R}} e^{-s|x|} f_X(x) \, \mathrm{d}x$ Si on choisit $-u_0 < s < u_0$ l'intégrale $\int_{-\infty}^{\infty} e^{sx} f_X(x) \, \mathrm{d}x < \infty \text{ car et de la même manière } \int_{-\infty}^{\infty} e^{sx} f_X(x) \, \mathrm{d}x = g_{-x}(s) < +\infty$

$$\leq \frac{k!}{s^k} \left[\int_{-\infty}^{\infty} e^{-sx} f_X(x) \, \mathrm{d}x + \int_{-\infty}^{\infty} e^{sx} f_X(x) \, \mathrm{d}x \right] \text{ (voir une des proposition affichée)}$$

$$\mathbb{E}(g(x)) = \int g(x) f_X(x) \, \mathrm{d}x, \ \mathbb{E}(-x) = \int -x f_X(x) \, \mathrm{d}x.$$

Preuve de (2). On sait que $-u_0 < u < u'_0 < u_0$ $g_X(u) = \int_{\mathbb{R}} e^{ux} f_X(x) dx = \int_{\mathbb{R}} \sum_{k=0}^{\infty} \frac{(ux)^k}{k!} f_X(x) dx$ $(justifier!) = \sum_{k=0}^{\infty} \frac{u^k}{k!} \int_{\mathbb{R}} x^k f_X(x) \, \mathrm{d}x = \sum_{k=0}^{\infty} \frac{u^k}{k!} \mathbb{E}(x^k).$

Question interchangeable la limite avec l'intégrale. $\int_{\mathbb{R}} \lim_{n \to \infty} \sum_{k=0}^{n} \frac{(ux)^{k}}{k!} f_{X}(x) dx$ (1) cette limite doit exister mais ça c'est vrai : $f_{X}(x) e^{ux}$. (2) $\left|\sum_{k=0}^{n} \frac{(ux)^{k}}{k!} f_{X}(x)\right| \leq f_{X}(x) \sum_{k=0}^{n} n^{\frac{1}{2}}$

 $f_X(x) \sum_{k=0} \infty \frac{u_0^k |x|^k}{k!} \le f_X(x) e^{u_0'(x)}$ Nous reste à montrer que $\int_{\mathbb{R}} e^{u_0'|x|} f_X(x) < \infty$.

Nous reste à montrer que
$$\int_{\mathbb{R}} e^{u_0|x|} f_X(x) < \infty$$
.

— Fonction génératrices des moments.

Fonction génératrices

- Fonction caractéristique (on pourra démontrer Hiremeieme centrale limite)
- (caractérisation la convergence en distribution en loi)

Définition 16. Soit X une v.a. (vectorielle); on pose :

$$\varphi_X(t) = \mathbb{E}(e^{itX}), \ i = \sqrt{-1}$$

On appelle $\varphi_X(t)$ LA FONCTION CARACTÉRISTIQUE de X.

Remarque. Si X est vectorielle $tX = \sum_{i=1}^{d} t_i x_i$, $t = (t_1, ..., t_d)$. Pour un moment on $consid\`{e}re~X:\Omega\to\mathbb{R}~(salaire,~pas~vectorielle).$

Remarque. Si $X:\Omega\to\mathbb{R}$ a densité $f_X(x)$ alors $\varphi_X(t)=\int_{\mathbb{R}}e^{itx}f_X(x)\,\mathrm{d}x$ transformée de Fourrier de f_X .

loi P_X est la mesure de Lebeque-Stilties engendres par la fonction de répartition F_X de $X. P_X((a,b]) = F_X(b) - F(a).$ Proposition 12.

Remarque. En général si X a loi P_X , on a $\varphi_X(t) = \int_{\mathbb{R}} e^{itx} dP_X(x)$. On avait dit que la

 $\varphi(t) = e^{\frac{1}{\sqrt{2\pi}} \frac{t^2}{2}}$

1. $\varphi_X(t)$ est définie et continue pour $t \in \mathbb{R}$ est aussi bornée. 2. $\varphi_{aX+b}(t) = e^{ibt}\varphi_X(at)$

3. (Importante!) Soit $X_1, X_2, ..., X_n$ une suite de v.a. toutes définies sur la même espace $(\Omega, \mathcal{A}, \mathbb{P})$ et indépendantes.

On définit $S_n=X_1+X_2+\ldots+X_n:\Omega\to\mathbb{R}.\ \varphi_{S_n}(t)=\mathbb{E}(e^{itS_n})=\mathbb{E}(e^{it(X_1+\ldots+X_n)})=\mathbb{E}(e^{itX_1}\ldots e^{itX_n})=\prod_{i=1}\mathbb{E}(e^{itX_j})$

Exemple 1.
$$X = N(0,1)$$
. On a : $\varphi_X(t) = e^{-\frac{t^2}{2}}$ (très important pour le Th. central limite) $e^{itx} = \cos tx + i \sin tx \ \varphi_X(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{itx} e^{-\frac{x^2}{2}} \ dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos tx e^{-\frac{x^2}{2}} \ dx + \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sin tx e^{-\frac{x^2}{2}} \ dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos tx e^{-\frac{x^2}{2}} \ dx$ On sait que : $\varphi(\tau) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos tx e^{-\frac{x^2}{2}} \ dx$

 $\underbrace{\frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sin tx e^{-\frac{x^2}{2}} dx}_{0} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos tx e^{-\frac{x^2}{2}} dx \text{ On sait que} : \varphi(\tau) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos tx e^{-\frac{x^2}{2}} dx.$ On dérive par rapport à t. $\varphi'(\tau) = \frac{1}{\sqrt{2\pi}} d/dt \int_{-\infty}^{\infty} \cos tx e^{-\frac{x^2}{2}} dx = = \exists d/dt \cos tx e^{-\frac{x^2}{2}} =$ $-\sin tx e^{-\frac{x^2}{2}}x = = \frac{t}{\sqrt{2\pi}}\varphi_X(t) \text{ Donc } \frac{t}{\sqrt{2\pi}}\varphi_X(t) = \varphi'(\tau)\varphi(0) = 1: \int_{\varphi(0)} \frac{1}{\varphi} d\varphi = \int_0^t \frac{t}{\zeta}\sqrt{2\pi} dx dt$

1. binomiale
$$B(N,p)$$
 $q=1-p$ $\varphi_X(t)=(q+pe^{it})^N$ $\varphi_X(t)=\sum_{k=0}^N e^{itk}C_n^kp^kq^{N-k}$ $\varphi_X(t)=\sum_{k=0}^N C_n^k(e^{it}p)^kq^{N-k}$
2. Exponentielle $\mathcal{E}(\lambda): f_X(x)=\lambda e^{-\lambda x}\mathbb{1}_{[0,+\infty)}(x)$ $\varphi_X(t)=\frac{\lambda}{\lambda-it}$

- 3. Poisson (discrète) loi $\mathbb{P}(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$ Exercice : Calculer loi fonction caractéris-
- tique pour Exponentielle et Poisson

Théorème 5. Soit $X: \Omega \to \mathbb{R}et\varphi_X(t)$ sa fonction caractéristique. On a :

 $(a+b)^N = \sum_{k=0}^{N} C_n^k a^k b^{N-k}$

- 1. φ_X est uniformément continue sur \mathbb{R} 2. $Si \mathbb{E}(|X|^2) < \infty$, $\forall n \geq 1 \ alors \varphi_X^{(r)}(t) \ existe \ pour \ r \leq n \ et \varphi^{(r)}(t) = \int_{\mathbb{R}} (ix)^2 e^{itx} \ dF_X(t)$ $et \ \mathbb{E}(X^r) = \frac{\varphi^{(r)}(0)}{i^r} \ \Phi_X(t) = \sum_{i=0} n \frac{(it)^2}{r!} \mathbb{E}(X^2) + \frac{(it)^r}{n!} E_n(t) \ avec \ |E_n| \le 3\mathbb{E}(|X|^n) \to 0$
 - 3. $Si \Phi_X^{(n)}(0) < +\infty \ alors \mathbb{E}(X^{2n}) < \infty$
- 4. $Si \mathbb{E}(|X|^n) < \infty$, $\forall n \geq 0$ $et \lim_{n \to \infty} \frac{\mathbb{E}(|X|^n)^{\frac{1}{r}}}{n} = \frac{1}{eR} < +\infty$ $alors \varphi(t) = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} \mathbb{E}(X^n)$, |t| < R

Rappel. Critère de Cauchy, $\sum_{n=0}^{\infty} a_n X^n$ le rayon de convergence R est donne par

 $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = \frac{1}{R}.$

Démonstration. (ii) on sait que pour un certain n $\mathbb{E}(|X|^n) < \infty$, alors $\forall r \leq n, \mathbb{E}(|X|^2) < \infty$ ∞ car $L^n(\mathbb{P}) \subset L^r(\mathbb{P})$ si \mathbb{P} est une mesure de probababilité. On va montrer la formule pour r = 1, pour r1 la preuve est singulière. On applique la définition de déri-

vée. $\frac{\varphi(t+h)-\varphi(t)}{h}=\int_{\mathbb{R}}\frac{e^{i(t-h)-e^{it}}h}{\mathrm{d}}F(x)=\int_{\mathbb{R}}\frac{e^{itx}(e^{ihx}-1)}h\mathrm{d}F(x)$. Considérons cette partie

fonction sommable et indépendante de h $\varphi_X^{(r)}(t) = \int_{\mathbb{R}} (ix)^2 e^{itx} \, \mathrm{d}F_X(t) \,.$ $\lim_{h \to 0} \frac{e^{i(t-h)} - e^{it}}{h} = ixe^{itx}$ **Théorème 6.** Soit F et G deux fonctions de répartition (on deux lois) avec la même

fonction caractéristique $\int e^{itx} dF(x) = \int e^{itx} dG(x), \forall t \in \mathbb{R}$

On a besoin d'une résultat technique. Toute fonction réelle continue sur l'intervalle [-n, n]avec les mêmes valeurs sur les bords, peut être uniformément approximée par des poly-

2. Montrer que U et W sont indépendantes. (Idée estimer d'abord $\mathbb{P}(U \le u, W > w)$ en

 $\frac{e^{ihx}-1}{h}=\frac{1+ihx+O(|x|^2)-1}{h}.$ On développe e^{ixh} en X autour de $0:e^{ihx}=1+ihx+O(|x|^2)$ $\frac{|e^{ihx}-1|}{h}=\frac{|e^{ihx}-e^{ih0}|}{h}=\frac{|e^{ih\eta}hx|}{h}=|x|$

— la valeur absolue de (Fonction à l'intérieur de l'intégrale) doit être borne par une

$$\int e^{-tt} \, \mathrm{d}F(x) = \int e^{-tt} \, \mathrm{d}G(x) \, , orall t \in \mathbb{R}$$
 for $F = G$.

 $\lim_{h \to 0} \frac{\varphi(t+h) - \varphi(t)}{h} \stackrel{?}{=} \lim_{h \to 0} \int \frac{e^{i(t-h) - e^{it}}}{h} \, \mathrm{d}F(x)$ Peut-on ramener la limite dans l'intégrale?

— la limite dans l'intégrale doit exister

alors F = G.

nômes trigonométriques. $f_{\varepsilon,\eta}(x) = \sum_{k=1}^{N < \infty} a_k \exp\left(i\pi x \frac{k}{\eta}\right), \ a_k \in \mathbb{R}$

$$f_{\varepsilon,\eta}(x) = \sum_{k=1}^{N} a_k \exp\left(i\pi x \frac{n}{n}\right), \ a_k \in \mathbb{R}$$

$$\sup_{-n \leq X < n} |f_{\varepsilon,\eta} - f_{\varepsilon}(x)| < \delta_n \to 0$$

$$\text{Exercice 10. Soient } X \text{ et } Y \text{ deux v.a. indépendantes ses lois exponentielles respectivement} \lambda e^{-\lambda x},$$

$$\mu e^{-\mu x}$$
. Posons: $U = \min(X, Y)$

$$V = \max(X, Y) \ W = V - U$$

- 1. Calculer $\mathbb{P}(U=X)$
- décomposant l'élément $(U \le u, W > w)$ sur le système complet d'éléments $\{X \le Y, X > w\}$

 - 3. Calculer la loi de V.

Théorème 7. $Si \int e^{itx} dF(x) = \int e^{itx} dG(x)$ alors F(x) = G(x).

Tout caractéristique égale \Rightarrow Lois égale.

$$D\acute{e}monstration.$$
 On a besoin de considérer la fonction suivante.

$$\frac{N}{k}$$
 (k)

$$f_{\varepsilon,n}(x) = \sum_{k=1}^{N} a_k \exp\left(i\pi x \frac{k}{n}\right)$$

 $\sup_{-n \le x \le n} |f_{\varepsilon,n}(x) - f_{\varepsilon}(x)| \le \delta \to 0$ $n \to +\infty$ On fait la preuve (pour la simplicité) avec des densité f(x), g(x). $\sup_{x \in \mathbb{R}} |f_{\varepsilon,n}(x)| = \sup_{x \in (-n,n)} |f_{\varepsilon,n}(x)| = \sup_{x \in (-n,n)} |f_{e,\nu}|$ $|\varphi_e(\chi)| + \sup_{x \in (-n,n)} |f_{\varepsilon}(x)| \le \delta_n + 1 \le 2.$

$$\int_{\mathbb{R}} f_{\varepsilon,n}(x)h(x) dx = \sum_{k=1}^{N} a_k \int \exp\left(i\pi x \frac{k}{n}\right)h(x) dx = \sum_{k=1}^{N} a_k \int \exp\left(i\pi x \frac{k}{n}\right)g(x) dx = \int_{\mathbb{R}} f_{\varepsilon,n}g(x)$$

$$\int_{\mathbb{R}} f_{\varepsilon,n}(x)h(x) \, \mathrm{d}x = \int_{\mathbb{R}} f_{\varepsilon,n}(x)g(x) \, \mathrm{d}x$$

$$\left| \int_{\mathbb{R}} f_{\varepsilon}(x)h(x) \, \mathrm{d}x - \int_{\mathbb{R}} f_{\varepsilon}(x)g(x) \, \mathrm{d}x \right| = \left| \int_{\mathbb{R}} f_{\varepsilon}h \, \mathrm{d}x - \int_{\mathbb{R}} f_{\varepsilon}g \, \mathrm{d}x + \int_{\mathbb{R}} f_{\varepsilon n}h \, \mathrm{d}x - \int_{\mathbb{R}} f_{\varepsilon n}h \, \mathrm{d}x + \int f_{\varepsilon n}g \, \mathrm{d}x \right|$$

$$\left| \int_{\mathbb{R}} (f_{\varepsilon} - f_{\varepsilon n})h \, \mathrm{d}x \right| + \left| \int (f_{\varepsilon} - f_{\varepsilon n})g \, \mathrm{d}x \right| + \left| \int f_{\varepsilon n}g \, \mathrm{d}x \right| + \left| \int f_{\varepsilon n}h \, \mathrm{d}x \right| \le \delta_n + 2F_h(-n) + 2(1 - F_h(n)) + \delta_n + 2F_g(-n) + 2(1 - F_g(n)) \to 0$$

$$\int_{\mathbb{D}} f_{\varepsilon}(x)h(x) \, \mathrm{d}x = \int_{\mathbb{D}} f_{\varepsilon}(x)g(x) \, \mathrm{d}x$$

$$\lim_{\varepsilon \to 0} \int_{\mathbb{R}} f \varepsilon(x) h(x) \, \mathrm{d}x = \lim_{\varepsilon \to 0} \int_{\mathbb{R}} f_{\varepsilon}(x) g(x) \, \mathrm{d}x \Rightarrow a, barbitraire \int_{a}^{b} h(x) \, \mathrm{d}x = \int) a^{b} g(x) \, \mathrm{d}x.$$

Objectif. Si on connaît $\varphi_X(t)$, peut-on calculer la loi $P_X(x)$? Ou la densité? Si $\varphi_X(t)$

SSi deux v.a. ont la même fonction caractéristique, elles ont la même loi.

Si C est une v.a. $\varphi_X(t) = \int_{\Omega} e^{itX} d\mathbb{P} = \int_{\mathbb{R}} e^{itX} dP_X(x) densit \int_{-\infty}^{\infty} e^{itx} f_X(x) dx$

$$\int_{-\infty}^{\infty} f_X(x) dx$$
—transformée de Fourier. Comment peut-on calculer $f_X(x)$?

Rappel. $Si \varphi_X \in L^1(\mathbb{R}, Lebesgue) \Rightarrow f_X(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-itx} \varphi_X(t) dt$.

Théorème 8 (formule d'inversion). Soit $\varphi(t)$ la fonction caractéristique de la fonction de répartition F(x). C'est-à-dire $\varphi(t) = \int_{\mathbb{R}} e^{itx} dF(x)$. On a :

- Pour deux points a < b où F est continue

$$F(b) - F(a) = \lim_{c \to +\infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt$$

 $Si \int_{-\infty}^{\infty} |\varphi(t)| \mathrm{d}t < \infty$, et F à une densité f alors $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \varphi(t) \, \mathrm{d}t$ (transformée de Fourier inverse)

$$F(b) - F(a) = \int_a^b f(x) \, \mathrm{d}x = \frac{1}{2\pi} \int_a^b \left(\int_{-\infty}^\infty e^{-itx} \varphi(t) \, \mathrm{d}t \right) \, \mathrm{d}x = -\frac{1}{2\pi} \int_{-\infty}^\infty \varphi(t) \left(\frac{e^{-itb} - e^{-ita}}{it} \right) \, \mathrm{d}t$$

Démonstration. Introduisons la quantité $\Phi_c = \frac{1}{2\pi} \int_{-c}^{c} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt = \frac{1}{2\pi} \int_{-c}^{c} \frac{e^{-ita} - e^{-itb}}{it} [\int_{-c}^{\infty} \frac{e^{-ita} - e^{-itb}}{it}] = \frac{1}{2\pi} \int_{-c}^{c} \frac{e^{-ita} - e^{-itb}}{it} dt]$ Supposons de pouvoir interchanger les intégrales $= \frac{1}{2\pi} \int_{-c}^{c} dF(x) [\int_{-c}^{c} e^{itx} \frac{e^{-ita} - e^{-itb}}{it} dt],$ $[] - \Phi_c(x) \text{ Si } \Phi_c(x) \text{ vérifie } \int_{-c}^{c} |\Phi_c(x)| dF(x) < \infty \text{ on peut interchanger les intégrales.}$ $\Phi_c(x) = \int_{-c}^{c} e^{itx} \frac{e^{-ita} - e^{-itb}}{it} dt, \text{ -inside int Montrer que } (t) \text{ est sommable par rapport}$ $\hat{a} t C \text{ est vai } |e^{-ita}| = 1 - ita + o(t^2)e^{-itb} = 1 - itb + o(t^2) \text{ Si on fait le calcul explicite on}$

à t. C'est vrai! $e^{-ita} = 1 - ita + o(t^2)e^{-itb} = 1 - itb + o(t^2)$ Si on fait le calcul explicite on trouve. $\Phi_c(x) = \frac{1}{2\pi} \int_{-c}^{c} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt = \frac{1}{2\pi} \int_{-c(x-a)}^{c(x-a)} \frac{\sin v}{v} dv - \frac{1}{2\pi} \int_{-c(x-b)}^{c(x-b)} \frac{\sin v}{u} du = \frac{1}{2\pi} \int dF(x) \left[\int_{-c}^{c} e^{itx} \frac{e^{-ita} - e^{-itb}}{it} \right]$ La fonction $f(s,t) = \int_{s}^{t} \frac{\sin v}{v} dv$ On peut montrer que $g(s,t) \to \pi$ quand $t \to +\infty, s \to -\infty$. Passons à la limite $c \to +\infty$ dans $\Phi_c(x)$ (C > 0) La fonction $\Phi_c(x)$ converge vers $\Phi(x)$ donnée par : $\Phi(x) = 0$ si $x \notin (a,b)$, 1/2 si x = a ou x = b, 1 si $x \in (a,b)$ et donc Φ est bornée.

La mesure de Lebesgue-Stiltjes dF engendre par F vérifie dF([a,b]) = F(b) - F(a) $\frac{1}{2\pi} \int_{-\infty}^{a} \varphi(x) \, dF(x) = 0 \, \frac{1}{2\pi} \int_{\{a\}} \varphi(x) \, dF(x) = 0$ $\frac{1}{2\pi} \int_{\{a\}} \varphi(x) \, dF(x) = \frac{1}{2\pi} \varphi(a) [F(a) - F(a-0)]$ $dF(\lbrace a \rbrace) = F(a) - F(a-0)$

 $= \frac{1}{2\pi} \int dF(x) \, \Phi_c(x) \, dx \, c \to \infty \to \frac{1}{2\pi} \int dF(x) \, \Phi(x) \cdot \lim_{c \to \infty} \Phi_c = \lim_{c \to \infty} \frac{1}{2\pi} \int_{-c}^{c} \frac{e^{-ita} - e^{-itb}}{it} \varphi(x) \, dx$

 $==\frac{1}{2\pi}\varphi(a)[F(a)-F(a-0)]+F(b-0)-F(a)+\frac{1}{2\pi}\varphi(b)[F(b)-F(b-0)]=F(b)-F(a).$ Dernière partie On suppose $\mathrm{d}F(x)=f(x)\,\mathrm{d}x$ et $\int_{-\infty}^{\infty}|\varphi(t)|\,\mathrm{d}t<+\infty$. On applique le th président : $F(b) - F(a) = \int_a^b f(x) dx = \int_a^b \frac{1}{2\pi}$

1.5 Espérances conditionnelles 1 (as discret) On a 2 v.a. discrètes : $X=\sum_i x_i \mathbbm{1}_{A_i}, Y=\sum_j y_h \mathbbm{1}_{B_j} P_X=\sum_i p_i \delta_{\{x_i\}}$

 $\frac{1}{2\pi} \int \varphi(x) \, \mathrm{d}F(x)$

 $P_Y = \sum_j q_j \delta_{\{y_j\}}$

Définition 17. On appelle loi de probabilité de Y conditionnelle à $X=x_j$ la quantité suivante : $\sum_j b_i(j) \delta_{\{y_j\}}, ob_i(j) = \frac{\mathbb{P}(Y=Y_j,X=X_i)}{\mathbb{P}(X=X_i)} = \frac{Y=Y_j|X=X_1}{p} \frac{p_{ij}}{p_i}$?

C'est quoi $\frac{1}{2\pi} \int \varphi(x) dF(x)$ avec F une fonction de répartition?

Supposons que Y a une espérance finie, c-a-d $\mathbb{E}(|Y|) = \sum_{i} |y_{i}|q_{i} < +\infty$. Si cette Hypothèse est vraie on a aussi que:

$$\sum_{j} Y_{j} b_{ij} = \sum_{j} y_{j} \mathbb{P}(Y = Y_{j} | X = X_{i}) < \infty$$

$$\mathbb{E}(Y) = \sum_{j} y_h q_j = \sum_{j} y_j \mathbb{P}(Y = Y_j)$$

Notations 2.
$$\mathbb{E}(Y)(Y|X=x_0) = \sum_j y_j \mathbb{P}(Y|X=x_i)$$
 Cette quantité dépend de $\{x_i\}$.

Donc cela nous suggère d'introduire une nouvelle v.a. à valeurs $\mathbb{E}(Y|X=x_i)$ et poids $p_i = \mathbb{P}(X = x_i)$

Définition 18. Cette v.a. qu'on vient de construire et dénotée $\mathbb{E}(Y|X)$ et on l'appelle L'ESPÉRANCE.

 $\mathbb{E}_X(\mathbb{E}(Y|X)) = \sum_i \mathbb{E}(Y|X=x_i)p_i = \sum_i \sum_j y_j p_{ij} p_i = \sum_i Y_j (\sum_i p_{ij} p_i) = \sum_i y_j q_j = \mathbb{E}(Y)$

 $Cas\ contenu\ X\ \mapsto\ f_x(x)$ densité, $Y\ \mapsto\ f_Y(y)$ aussi densité. Rappels : $f_X(x)$ $\int f_{XY}(x,y) \,\mathrm{d}y.$

Définition 19. On définit LA DENSITÉ conditionnel de Y et sachant la valeur $\{X=x\}$ la fonction de y: L'espérance conditionnelle de X en sachant $\{Y=y\}$

Si $f_X(x) \neq 0$ on a : $f_{XY}(x,y) = f_{Y|X}(y|x)f_X(x)$ Cet égalité vraie aussi si $f_X(x) = 0$!

Pourquoi? Supposons que $f_X(x) = 0$. donc $f_{XY}(x,y) = 0 \ \forall$ presque toute y.

Définition 20. On appelle L'ESPÉRANCE conditionnelle de Y en sachant X, dénotée $\mathbb{E}(Y|X)$ la variable aléatoire à valeurs $\mathbb{E}(Y|X=x)$ et densité $f_X(x)$ et $\mathbb{E}(Y|X=x) = \int y$ dy.

espérance conditionnelle de Y en sachant X=x

Proposition 13. $\mathbb{E}(\mathbb{E}(Y|X)) \stackrel{?}{=} \mathbb{E}(Y)$. Ce vraie.

 $\begin{array}{ll} \textit{D\'{e}monstration.} \ \ \mathbb{E}(\mathbb{E}(Y|X)) = \int_{\mathbb{R}} \mathbb{E}(Y|X=x) f_X(x) \, \mathrm{d}x = \int_{\mathbb{R}} (\int y f_{Y|X}(y|x) \, \mathrm{d}y) f_X(x) \, \mathrm{d}x \stackrel{\mathrm{change ?}}{=} \\ \int_{\mathbb{R}} \mathrm{d}y \, y (\int f_{Y|X}(y|x) f_X(x) \, \mathrm{d}x) = \int_{\mathbb{R}} \mathrm{d}y \, y f_Y(y) = \mathbb{E}(y) \int |y| f_{Y|X}(y) \, \mathrm{d}y < +\infty \ \mathrm{Suffit} \ \mathrm{de} \ \mathrm{d\'{e}couvrir} \ \mathrm{que} \int |y| f_Y(y) < \infty \ \mathrm{?} \ \mathrm{Fubini} : \int \int_{\mathbb{R} \times \mathbb{R}} f(x,y) \, \mathrm{d}x \, \mathrm{d}y \ * \ \mathrm{si} \int \int |f(x,y)| \, \mathrm{d}x \, \mathrm{d}y < \infty \ * \ \mathrm{on} \ \mathrm{peut} \ \mathrm{iterer} \ \mathrm{les} \ \mathrm{int\'{e}grales} \ * \ si \int |f(x,y)| \, \mathrm{d}x < \infty \ \mathrm{et} \int \mathrm{d}y \int |f(x,y)| \, \mathrm{d}x < \infty \ \mathrm{alors} \ \mathrm{on} \ \mathrm{peut} \ \mathrm{inter-changer} \ \mathrm{les} \ \mathrm{int\'{e}grales}. \ \int \int_{\mathbb{R}} \mathrm{d}x \, \mathrm{d}y \, |y f_{Y|X}(y|x) f_X(x)| = \int \int_{\mathbb{R} \times \mathbb{R}} \mathrm{d}x \, \mathrm{d}y \, |y| f_{XY}(x,y) = \int_{\mathbb{R}} |y| \, \mathrm{d}y \int \mathrm{d}x \, f_{XY} f_{XY}(x,y) Y \in L^1(\mathbb{P}). \end{array}$

Définition 21 (Règle de calcul). Soient X et Y a densité. Soit $g: \mathbb{R}^2 \to \mathbb{R}$ mesurable et on définit g(X,Y). On définît : $\mathbb{E}(g(X,Y)|X)$ de cette manière : $\mathbb{E}(g(X,Y)|X=x)$ def = $\int g(x,y)f_{X|Y}(x,y)\,\mathrm{d}y$.

Définition 22. Soit $A \subset \Omega$ une ensemble mesurable dans l'univers Ω , et soit X: $\Omega \to \mathbb{R}$ une v.a. à densité $\P(A|X=x) \stackrel{\text{def}}{=} \mathbb{E}(\mathbbm{1}_A|X=x) = \int \mathbbm{1}_A(x,y) f_{X|Y} f_{Y|X}(x|y) \, \mathrm{d}y$.

Exemple 1. Calculer la probabilité que $\mathbb{P}(X < Y)$ $A = \{X < Y\}$ $\mathbb{P}(X < Y) = \mathbb{P}(A)$.

Proposition 14. On a:

- 1. $\mathbb{E}(\mathbb{E}(g(X,Y)|X)) = \mathbb{E}(g(X,Y))$ $\mathbb{1}_A(X,Y) = g(X,Y) = g \circ (X,Y) \ g(x,y) = \mathbb{1}_{\{x < y\}}(x,y) \ \mathbb{P}(A) = \mathbb{E}(\mathbb{1}_A) = \mathbb{E}(\mathbb{1}_A|X)$
- 2. Si X et Y sont indépendantes $\mathbb{E}(g \circ Y|X) = \mathbb{E}(g \circ Y)$
- 3. $\mathbb{E}(g \circ X|X) = g \circ X$
- 4. $\mathbb{E}[(g_1 \circ X)(g_2 \circ Y)|X] = g_1 \circ X \mathbb{E}(g_2 \circ Y|Y)$

Démonstration. $\int (\mathbb{E}(g(X,Y)|X=x))f_X(x)\,\mathrm{d}x = \int (\int g(x,y)f_{Y|X})\,\mathrm{d}y)f_X(x)\,\mathrm{d}x = \int \mathrm{d}y\,(\int g(x,y)f_{X|X})\,\mathrm{d}y = \int \mathrm{d}y\,(\int g(x,y)f_{X|X})\,\mathrm{d}y$

1.6 Convergence de variables aléatoires

Idée On a une suite de v.a. $\{X_n\}_{n\geq 1}$ définie sur $(\Omega, \mathcal{A}, \mathbb{P})$. Est-ce que X_n converge pour $n \to +\infty$? Il y a plusieurs façon de converger.

1.6.1 Convergence en probabilité

Définition 23. On dira que la suite X_n Converge en Probabilité vers la v.a. X aussi définie sur (Ω, \mathcal{A}) et on écrit $X_n \stackrel{\mathbb{P}}{\to} X$, si $\forall \varepsilon > 0$

$$\mathbb{P}(|X_n - X| > \varepsilon) \to 0 \ n \to \infty.$$

Remarque. $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - (\omega)| > \varepsilon)$

1.6.2 Convergence en norme L^p

Définition 24. On dira que X_n Converge en Norme L^p vers X et on écrira $X_n \to^{L^p} X$ si $\|X - X_n\|_n \to 0, \ n \to \infty.$

Remarque.
$$||X||_p = (\int |x|^p d\mathbb{P})^{\frac{1}{p}}$$
.

Proposition 15. Si X_n converge en norme L^p vers X pour un certain p alors X_n converge en probabilité vers X.

Démonstration. Est base sur l'inégalité de Chebyshev.
$$\mathbb{P}(X > \varepsilon) \leq \frac{1}{\varepsilon}\mathbb{E}(X)$$
 $\mathbb{E}(X) = \int_{\Omega} \mathbb{P} = \int_{\{X > \varepsilon\}} X \, d\mathbb{P} + \int_{\{X \leq \varepsilon\}} X \, d\mathbb{P} \geq \varepsilon \mathbb{P}(X > \varepsilon)$ On a : $\|X_n - X\|_p \to 0$ $\mathbb{P}(|X_n - X|^p > \varepsilon^p) \leq \frac{1}{\varepsilon^p} \int |X_n - X|^p \, d\mathbb{P} = \frac{1}{\varepsilon^p} \|X_n - X\|_p^p \to 0$.

1.6.3 Convergence presque partout

Définition 25. On dira que la suite $\{X_n\}_{n\geq 1}$ converge PRESQUE PARTOUT vers X et on écrira : $X_n \stackrel{\mathrm{PP}}{\to} X$ s'il existe un ensemble $N \in \mathcal{A}$, N—négligeable $(\mathbb{P}(N) = 0)$ tel que, $\forall \omega \in N \setminus C$ on a $\lim_{n \to \infty} X_n(\omega) = X(\omega)$.

Théorème 9. Si $X_n \stackrel{PP}{\to} X$, $\forall \varepsilon > 0 \ \exists \tilde{\Omega}_{\varepsilon}$ mesurable et tel que $\mathbb{P}(\Omega | \tilde{\Omega}_{\varepsilon}) < \varepsilon$ et $\forall \omega \in \Omega_{\varepsilon}$ $\lim_{n \to \infty} X_n(\omega) = X(\omega)$ uniformément.

1.6.4 subsection name

Remarque. Pour signifier des notations on supposera que la v.a. limite X = 0.

Introduisons la quantité,
$$\forall \varepsilon > 0$$
, $E_n(\varepsilon) = \{|X_n| > \varepsilon\} = \{\omega \in \Omega, |X_n(\omega)| > \varepsilon\}$, $E_n(\varepsilon) = \{|X_n - X| > \varepsilon\}$. $E_n(\varepsilon) = \{|X_n| > \varepsilon\}$.

Définition 26 (lim sup d'une suite d'ensembles). $\limsup_{n\to\infty} E_n(\varepsilon) \cup_{k\geq n} E_k(\varepsilon)$

Si
$$X \in \limsup_{n \to \infty} E_n(\varepsilon) <=> x \in \cup E_k(\varepsilon), \forall n <=> x \in E_j j \geq n \mid x \in \text{une infinité d'ensembles } E_n.$$

A l'aide du $\limsup_{n\to\infty} E_n(\varepsilon)$ nous allons caractériser l'ensemble de divergence D de la suite $\{N_n\}_{n\geq 1}$ vers. 0, c-a-d. la suite où X_n ne converge pas vers X=0.

$$D = \bigcup_{\varepsilon>0} \bigcap_{n\geq 1} \bigcup_{k\geq n} E_k(\varepsilon)$$
. Si $\omega \in D \subset \Omega$ la suite $X_n(\omega) \not\to 0$. Si $\omega \in D <=> \omega \in \bigcap_{n\geq 1} \bigcup_{k\geq n} E_n(\varepsilon)$ pour un $\varepsilon>0$.

Remarque. L'ensemble des points (ω) de convergence C ver X=0, et donc le complémentaire de D.

$$C = D^C = \bigcap_{\varepsilon > 0} \cup_{n \ge 1} \bigcap_{k \ge n} \{|X_n| \le \varepsilon\}.$$

Il faut montrer que D est mesurable (c-s-d il est dans la σ -algèbre). Grace à la monotonie (dans le sens de l'inclusion) des ensembles $E(\varepsilon)$, on a :

$$D = \bigcup_{l=1}^{\infty} E(\frac{1}{l}).$$

Donc D est mesurable.

Définition 27 (équivalente de convergence PP). On dira que la suite $\{X_n\}_{n\geq 1}$ converge ver X=0 PRESQUE PARTOUT si $\forall \varepsilon>0$ $\mathbb{P}(E(\varepsilon))=0$.

Cette définition s'appuie sur ce résultat.

Proposition 16. On a équivalence entre

- (i) $\mathbb{P}(D) = 0$ et
- (ii) $\forall \varepsilon > 0 \mathbb{P}(E(\varepsilon)) = 0$.

 $D\acute{e}monstration.$ (i) => (ii) et après (ii) => (i).

$$0 = \mathbb{P}(D) = \mathbb{P}(\bigcup_{l=1}^{\infty} E(\frac{1}{l})) = \mathbb{P}(E(\frac{1}{l})) = > D \supset E(\frac{1}{l}), \forall l \geq 1 = > \mathbb{P}(E(\frac{1}{l})) = 0 \forall l.$$

$$\forall \varepsilon > 0 \ \mathbb{P}(E(s)) = 0 \ \text{Hypothèse} \ \mathbb{P}(D) = \mathbb{P}(\bigcup_{l=1}^{\infty} E(\frac{1}{l})) \leq \sum_{l=1}^{\infty} \mathbb{P}(E(\frac{1}{l})) = 0.$$

$$E(\varepsilon) = \limsup_{n \to \infty} E_n(\varepsilon) = \bigcup_{n \ge 1} \cap_{k \ge n} E_k(\varepsilon).$$

Lemme 2 (Borel-Cantelle). Soit $\{A_n\}_{n\geq 1}$ une suite qq d'événements. $\limsup_{n\to\infty} \cap_{n>1} \cup_{k\geq n}$ $A_k = \hat{A}$

 \hat{A} , ensemble des points qui sont dans une infinité de $\{A_n\}$ supposons que $\mathbb{P}(\hat{A}) = 0$ <=> presque tous les points seront dans un nombrable $\lim_{n \to \infty} ds \{A_n\}$.

$$Si \sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \ alors \ \mathbb{P}(\hat{A}) = 0.$$

Démonstration. $\mathbb{P}(\hat{A}) = \mathbb{P}(\cap_{n\geq 1} \cup_{k\geq m} A_k) \leq \mathbb{P}(\cup_{k\geq n} A_k) \leq \sum_{k=n}^{\infty} \mathbb{P}(A_k)$ Reste d'une série convergente. = 0

Théorème 10. La convergence PP-entière la convergence en probabilité. En effet nous allons montrer que si $\{X_n\}_{n\geq 1}$ est une suite des v.a. qui converge ver 0 PP alors on a: la suite $Y_n = \sup_{k\geq n} |X_k|$ converge vers 0 en probabilité.

Démonstration. $\bigcup_{k\geq m} E_n(\varepsilon) \stackrel{?}{=} \{\sup_{k\geq n} |X_k| > \varepsilon\}$. Pourquoi $? \bigcup_{k\geq n} E_k(\varepsilon) = \bigcup_{k\geq n} \{|X_k| > \varepsilon\}$.

— ere partie. $\bigcup_{k\geq n} E_k(\varepsilon) \subset \{\sup_{k\geq n} |X_k| > \varepsilon\}$? Car $\bigcup_{k\geq n} E_k(\varepsilon) \supset \{|X_k| > \varepsilon\} \forall k$ donc pour le sup d'où le resutate.

— ere partie. $\bigcup_{k\geq n} E_n(\varepsilon)\supset \{\sup|X_k|>\varepsilon\} => \text{ si } \omega\in \bigcup_{k\geq n} E_k(\varepsilon)<=> |X_l(\varepsilon)|> \varepsilon \forall l\geq n \text{ aussi } \sup_{l\geq m}|X_l(\omega)|>\varepsilon. \ \mathbb{P}(\cap_{n\geq 1} \bigcup_{k\geq n} E_k(\varepsilon)).$ D'un coté cette probabilité est zéro. Car $\mathbb{P}(E(\varepsilon))=0$. D'autre coté cette quantité est égale à $\lim_{n\to\infty}\mathbb{P}(\bigcup_{k\geq n} E_k(\varepsilon))=\lim_{n\to\infty}\mathbb{P}(\sup_{k>n}|X_k|>\varepsilon).$ Donc $\lim_{n\to\infty}\mathbb{P}(\sup_{k>n}|X_k|>1)=0.$

Proposition 17. Soit $X_n \stackrel{\mathbb{P}}{\to} X$; alors il existe une sous suite $\{n_k\}_{k\geq 1}$ telle que $X_{n_k} \stackrel{PP}{\to} X$.

Démonstration. Fixons s>0 et $\{\eta_k\}_{k=1}^{\infty}$ une suite de nombres positifs tq:

- $1. \ \sum_{k=1}^{\infty} \eta_k < \infty$
- 2. $\mathbb{P}(|X_{\eta_k}| > \varepsilon) < \eta_k$

$$\sup_{k\geq n}\{|X_{n_k}|>\varepsilon\} < \eta_k$$

$$\sup_{k\geq n}\{|X_k|>\varepsilon\} = \bigcup_{k\geq n}E_k(\varepsilon) \ \mathbb{P}(\sup|X_{n_k}|>\varepsilon) = \mathbb{P}(\bigcup_{k\geq l}\{|X_{n_k}|>\varepsilon\} \xrightarrow{?} 0, \ k\to\infty.$$
Oui. $\mathbb{P}(\sup|X_{n_k}|>\varepsilon) = \mathbb{P}(\bigcup_{k\geq l}\{|X_{n_k}|>\varepsilon\} \le \sum_{k\geq l}\mathbb{P}(\{|X_{n_k}|>\varepsilon\}) \le \sum_{k\geq l}\eta_k\to0.$

Chapitre 2

Loi des grands nombres

Problème 1. On a une suite de v.a. $\{X_n\}_{n\geq 1}$ définir sur $(\Omega, \mathcal{A}, \mathbb{P})$ On construit la moyenne arythmique:

$$\frac{1}{n}\sum_{n=1}^{n}X_{n}$$

et on se pose la question de la convergence. Elle converge vers quoi? Cas particulier.

Supposons que
$$\forall n \geq 1\mathbb{E}(X_n) = 0$$
 $\frac{1}{n} \sum_{k=1}^n X_k \overset{n \to \infty}{\to}$. Si n est fini $\frac{1}{n} \sum_{k=1}^n X_k = 0$.

2.1 Théorèmes Limites

Il y a un certain nombre de résultats.

Proposition 18. Soit $\{x_n\}_{n\geq 1}$ une suite de v.a. de lasse $L^2(\mathbb{P})$, 2-à-2 non corrélés et centrées $(X_n \text{ signifie plutôt } X_n - \mathbb{E}(X_n))$ et telle que $\mathbb{V}(X_n) = \sigma_n^2 < \infty$ et : $\lim_{n\to\infty} \frac{1}{n^2} \sum_{k=1}^n \sigma_k^2 \to 0, n \to +\infty. \text{ Alors } \tilde{X}_n = X_n - \mathbb{E}(X_n). \frac{1}{n} \sum_{k=1}^n \tilde{X}_n \overset{\mathbb{P}}{\to} 0. \text{ En réalité on étudie } \frac{1}{n} \sum_{k=1}^n [X_n - \mathbb{E}(X_n)].$

Démonstration. Pour
$$n$$
 fixée : $\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$, $\mathbb{V}(cX) = c^2 \mathbb{V}(X)$. $\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$, $\mathbb{V}(cX) = c^2 \mathbb{V}(X)$

$$\begin{aligned} X_3)^2) \\ &= \frac{1}{n^2} \mathbb{V}(\sum_{k=1}^n \tilde{X}_k) = \frac{1}{n^2} \sum_{k=1}^n \mathbb{V}(\tilde{X}_k) = \frac{1}{n^2} \sum_{k=1}^n \mathbb{V}(X_k) = \frac{1}{n^2} \sum_{k=1}^n \sigma_k^2. \end{aligned}$$

On écrit ce qu'on veut : $\forall \varepsilon > 0$

$$\mathbb{P}(|\frac{1}{n}\sum_{k=1}^{n}\tilde{X}_{k}|\geq\varepsilon)\longrightarrow$$

$$\frac{1}{\varepsilon^2}\mathbb{E}(|\frac{1}{n}\sum_{k=1}^n \tilde{X}_k|^2) = \frac{1}{\varepsilon^2}\frac{1}{n^2}\sum_{k=1}^n \sigma_k^2 \to 0$$
, par hypothèse

$$\frac{1}{\varepsilon^2}\mathbb{E}(|\frac{1}{n}\sum_{k=1}^n X_k|^2) = \frac{1}{\varepsilon^2}\frac{1}{n^2}\sum_{k=1}^n \sigma_k^2 \to 0, \text{ par nypotness}$$

$$0, n \to \infty.$$

 $\begin{array}{l} \textbf{Proposition 19. } Soit \left\{ X_n \right\} \ une \ suite \ de \ v.a. \ de \ classe \ L^p(\mathbb{P}), \ 2\hbox{-}\grave{a}\hbox{-}2 \ non \ corr\'el\'ees} \ ; \ posons \\ \mu_n = \mathbb{E}(X_n) \ \ et \ supposons \ que \ \frac{1}{n} \sum_{k=1}^n \mu_k \to \mu \ ; \ en \ plus \ supposons \ que \ \frac{1}{n^2} \sum_{k=1}^n \sigma_k^2 \to 0, \\ o\grave{u} \ \sigma_k^2 = \mathbb{V}(X_k) \ : \ Alors \ : \mathbb{P}(|\frac{1}{n} \sum_{k=1}^n X_k - \mu| \geq \varepsilon) \to 0, n \to \infty. \end{array}$

Démonstration. On observe que :
$$\frac{1}{n}\sum_{k=1}^{n}(X_k-\mu_k)=\frac{1}{n}\sum_{k=1}^{n}X_k-\frac{1}{n}\sum_{k=1}^{n}\mu_k\underbrace{\frac{1}{n}\sum_{k=1}^{n}\tilde{X}_k}_{==1}=0$$

$$\frac{1}{n} \sum_{k=1}^{n} X_k - \underbrace{\frac{1}{n} \sum_{k=1}^{n} \mu_k}_{=1}.$$

Corollaire 1. Dans le cas précédant, prenons les variables 2-à-2 non corrélées mais avec la même loi.

Considérons la quantité $\frac{1}{n^2} \sum_{k=1}^n \mathbb{V}(X_k) = \frac{1}{n^2} \sum_{k=1}^n \sigma_k^2 = \frac{1}{n^2} \sigma^2 n \to 0$ Si on appelle $\sigma^2 = \mathbb{V}(X_k)$, $\forall k \ge 1$. $\sigma^2 < \infty$ par hypothèse $(L^{(\mathbb{P})})$. Et aussi $\frac{1}{n} \sum_{k=1}^n \mu_k = \mu$, $\mathring{u} \mu = \mathbb{E}(X_k)$, $\forall k \ge 1$.

Théorème 11 (Loi des grands nombre en norme L^2 (loi faible des grand numbers)). Soit $\{X_n\}_{n\geq 1}$ une suite de v.a. indépendantes et de même loi de classe $L^2(\mathbb{P})$. Alors $\forall \varepsilon > 0$, et en ayant notée avec μ l'espérance comm, on $a: \mathbb{P}(|\frac{1}{n}\sum_{k=1}^n X_n - \mu| \geq \varepsilon) \to 0, n \to 0$.

Démonstration. Déjà faite.

Objectif 1. Obtenir la convergence presque partout (ou presque sûre) pour la suite $\{X_n\}_{k\geq 1}$ de classe $L^1(\mathbb{P})$ avec v.a. indépendantes et de même loi.

Il y a 2 parties La première partie le Th. précédent.

Théorème 12 (LF1). (Foata-Fuchs) Même énoncé sauf que on remplace L^2 avec L^1 .

On utilise le théorème précédent pour montrer :

Théorème 13 (Loi forte des grandes nombres). Si $\{X_n\}_{n\geq 1}$ est une suite de v.a. $L^1(\mathbb{P})$ indépendantes et de même loi alors : $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k(\omega)=\mu$, ω - \mathbb{P} -presque partout, avec $\mu=\mathbb{E}(X_k)$, $\forall k\geq 1$.

Démonstration. On s'appui sur le résultat suivant : On avait montrer que la suite $\{X_n\}_{n\geq 1}$ converge presque partout vers 0 ssi $\forall \varepsilon > 0$ $\mathbb{P}(\sup_{k\geq n}|X_k|>\varepsilon) \to 0$, $n\to\infty$. On suppose $\mu=0$ et on écrire $\frac{1}{n}\sum_{k=1}^n X_k(\omega) = Y_n(\omega)$; donc on veut montrer que $\forall \varepsilon > 0$: $\mathbb{P}(\sup_{k\geq n}|Y_k|\geq \varepsilon)\to 0$. $n\to+\infty$. Supposons que $\forall \varepsilon > 0$ $\varepsilon \mathbb{P}(\sup_{k\geq m}|Y_k|>\varepsilon)\leq \|Y_k\|_{L^1}$ —la propriété équivalente Alors le théorème est vrai : pourquoi ? $\mathbb{P}(\sup_{k>m}|Y_k|>\varepsilon)\leq \frac{1}{\varepsilon}\|Y_m\|_1$

On utilise le théorème (LF1) et on aura que $||Y_m||_{L^1} \to 0, m \to \infty$.

On va montrer la propriété équivalente. $\forall \varepsilon > 0$ $\varepsilon \mathbb{P}(\sup_{m \leq k \leq n} |Y_k| > \varepsilon) \leq \|Y_m\|_{L^1}$.

$$A = \{\omega : \sup_{m \le k \le n} |Y_k(\omega)| > \varepsilon\} = \bigcup_{m \le k \le n} \{\omega : \sup_{m \le l \le n} (|Y_l(\omega)|) > \varepsilon\} = k\}$$

$$\varepsilon \mathbb{P}(A) = \varepsilon \sum_{k=m}^{n} \mathbb{P}(A_k)$$

On a une espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ sur Ω on définit des v.a. à valeurs dans $\mathbb{R}^d, d \geq 1$. Ex $d = 2, X : \Omega - > \mathbb{R}^2$ $X = (X_1, X_2), X(\omega) = (X_1(\omega), X_2(\omega))$ la loi est définit sur \mathbb{R}^d .

- Sur \mathbb{R}^d on introduit l'ensemble M des mesure positives bornées.
- On appelle M_b l'ensemble des mesures telles que $\mu(\mathbb{R}^d) \leq b$.
- en particulier les mesure de probabilité sont un sous-ensemble de M_1 .
- Dans la suite on dénotera avec M_1 les mesures de probabilité.

On va caractériser les fonctions continues définies sur \mathbb{R}^d en trois classes.

- 1. $C_k(\mathbb{R}^d)$ fonctions réelles (à valeurs dans \mathbb{R}). Continues à support compact.
- 2. $C_0(\mathbb{R}^d)$ fonctions réelles qui s'annulent à l'infini.
- 3. $C_b(\mathbb{R}^d)$ fonctions réelles bornées.
- support de f supp $f = \{x \in \mathbb{R}^d, f(x) \neq 0\}$
- qui s'annulent à l'infini. $\forall \varepsilon>0$ \exists compact K_{ε} tel que $|f(x)|<\varepsilon X\in K_{\varepsilon}^c$

Remarque. $C_k(\mathbb{R}^d) \subset C_0(\mathbb{R}^d) \subset C_b(\mathbb{R}^d)$.

Prochaine étape : mettre une topologie sur $M,\ M_b,\ M_1$ à l'aide de cas classes de fonctions.

Sur M (mesure positives bornées) On introduit trois topologies, comme les topologies les moins fixes rendant continues les applications $\mu|->\int_{\mathbb{R}}^d f \,\mathrm{d}\mu$ avec f dans $C_k(\mathbb{R}^d)$, $C_0(\mathbb{R}^d)$, $C_b(\mathbb{R}^d)$

Remarque. On peut associer une métrique à cette topologie.

...!? Soit $\{\mu_n\}_{n\geq 1}$ une suite de mesures dans M. Il faut définir ce que signifie convergence de la suite vers une mesure $\nu\in M$. Il y aura 3 façons différentes de définit la convergence.

Proposition 20. Selon les topologies introduites comparant, on a :

- 1. la suite μ_n converge vaugement vers $\mu \in M$ si $\lim_{n\to\infty} = \int f \, \mathrm{d}\mu_1, \ \forall f \in C_k(\mathbb{R}^d)$.
- 2. μ_n converge faiblement vers $\mu \in M$ si $\lim_{n \to \infty} \int f \, \mathrm{d}\mu_n = \int f \, \mathrm{d}\mu_1$, $f \in C_0(\mathbb{R}^d)$
- 3. μ_n converge étroitement vers $\mu \in M$ si $\lim_{n \to \infty} \int f \, \mathrm{d}\mu_n = \int f \, \mathrm{d}\mu_1$, $f \in C_b(\mathbb{R}^d)$

Remarque. Si μ_n converge étroitement => faiblement => vaguement

Exercice 11. Prenons les mesures de probabilité M_1 , montrons que on peut avoir une suite qui converge faiblement mais pas étroitement.

Exercice 12. $X \in \mathbb{R}^d$, $X \neq 0$ La suite $\mu_n = \delta_{\{nx\}}$ Montrer que $\mu_n \stackrel{\text{faible}}{\to} \mu = 0$. Montrer que μ_n ne converge pas vers $0 = \mu_0$ étroitement. **Solution.** $\forall f \in C_0(\mathbb{R}^d) \int f \, \mathrm{d}\delta_{\{nx\}} = f(nx) \lim_{n \to \infty} \int f \, \mathrm{d}\delta_{\{nx\}} = \lim_{n \to \infty} f(nx) = 0 = \int f \, \mathrm{d}\mu_0$ Il suffit de trouver une fonction test g telle que $\int g \, \mathrm{d}\delta_{\{nx\}} \not\to 0$, g bornée $g(nx) \not\to 0$.

Remarque. M^1 n'est pas faiblement fermé : c'est-à dire une limite faible de mesures des probabilité n'est pas forcement une probabilité.

Les topologies ont été introduits sur M. Mois nous avons autres espaces. M_b , M_1 , qui sont eux mêmes des espaces topologique.

2.2 Ensemble total

Soit E un espace vectoriel normé, on dira que H est un sous-ensemble total de E si l'ensemble des combinaison linéaire fini d'élément de H est dense dans E.

Topologies sur M_b et M_1 . Il s'agit des topologies moins fixes qui rendent continues les applications.

Vague : $\mu|->\int f\,\mathrm{d}\mu_1$, $f\in$ ensemble total dans $C_k(\mathbb{R}^d)$ Faible : $\mu|->\int f\,\mathrm{d}\mu_1$, $f\in$ ensemble total dans $C_0(\mathbb{R}^d)$

 ${\bf Th\'{e}or\`{e}me~14.}~~(i)~Sur~{\it M}^{1}~les~trois~topologies~co\"{i}ncident.$

(ii) L'espace M_b est compact pour la topologie faible. $M_b, \ \mu(\mathbb{R}^d) \leq b.$