Salute to 孙晶

目录

刖旨	5
第一章 质点力学	6
1.1 运动的描述	6
1.参考系与坐标系	6
2.运动学方程与轨道	7
3.位移、速度和加速度	7
1.2 速度、加速度的分量表示式	7
1.(空间)直角坐标系	7
(1).要想求 M 的 v、a,首先得知道它的坐标随时间的变化:x=b·sinθ,y=a·cosθ_	8
(2).对于这个有趣的规尺,我们还能推导出以下认识	9
2.极坐标系	10
3.自然坐标系	13
(1).新定义的弧微分	13
(2).自然坐标系下的 j	15
(2) ¹ .自然坐标系下的p0	
(3).速度空间下的自然坐标系	17
1.3 平动参考系	19
1.4 质点运动定律	20
1.牛顿运动定律	20
2.相对性原理	21
1.5 质点运动微分方程	21
1.运动微分方程的建立	21
2.运动微分方程的解	22
1.6 非惯性系动力学	23
1.加速平动参考系中的运动	23
2.惯性力	24
1.7 功与能	24
1.8 质点动力学的基本定理和基本守恒定律	25
1.动量定理&动量守恒定律	25
2.力矩&动量矩	25
3.动量矩定理&动量矩守恒定律	26

4.动能定理&机械能守恒定律	27
5.运动方程的第一积分	27
1.9 有心力	28
1.有心力的基本性质	
(1).有心力问题的基本方程	
(2).证明有心力是保守力	
2.轨道微分方程——比耐公式	30
3.平方反比引力——行星的运动	
(1).万有引力下的行星轨道 r(θ)	30
(2).用总能量 E 表示离心率 e	31
4.开普勒定律	31
5.宇宙速度	32
6.圆形轨道的稳定性	32
7.平方反比斥力——α 粒子散射	33
第二章 质点组力学	34
2.1 质点组	34
1.质点组的内力和外力	34
2.质心	35
2.2 动量定理与动量守恒定律	35
1.动量定理	35
2.质心运动定理	36
3.动量守恒定律	36
2.3 动量矩定理与动量矩守恒定律	37
1.对定点 O 的动量矩定理	37
2.动量矩守恒定律	38
3.对质心的动量矩定理	38
2.4 动能定理与机械能守恒定律	40
1.质点组的动能定理	40
2.机械能守恒定律	40
3.对质心的动能定理	41
4.柯尼希定理	42
2.5 两体问题	42
1.质点组的动能定理	42
(1).质心的运动	42
(2).P,S 分别绕着它们的质心 C 作什么运动	43
(3).行星对太阳的相对运动方程	43
(4).开普勒第三定律的修正	44

44
44
4
4
4
40
40
4
47
47
4
4
4
48
49
4
4
4
49
50
50
50
5
5:
52
52
53
5!
5
50 51
5 [.] 5 [.]
5
58
5! 60

(1).平行轴定理	60
(2).垂直轴定理	61
4.惯量张量与惯量椭球	61
5.惯量主轴的求法	62
(1).原理	63
(2).步骤	64
(3).结果	65
3.6 刚体的平动与定轴转动	69
1.平动	69
2.定轴转动	69
3.轴上附加压力	70
3.7 刚体的平面平行运动	71
1.平面平行运动——运动学	71
2.转动瞬心	72
3.平面平行运动——动力学	74
4.滚动摩擦	75
(1).先考虑地面不是绝对刚性的	75
(2).再考虑刚体不是绝对刚性的	75
3.8 刚体绕固定点的转动	75
1.定点转动——运动学	75
2.欧拉动力学方程	77
第五章 分析力学	79
5.1 约束与广义坐标	80
1.约束的概念和分类	80
2.广义坐标	81
5.2 虚功原理	83
1.实位移与虚位移	83
2.理想约束	83
3.虚功原理	84
4.广义力	85
5.3 拉格朗日方程	86
1.基本形式的拉格朗日方程	86
2.保守力系的拉格朗日方程	89
3.循环积分	89
4.能量积分	90
5.4 小振动	91

1.保守系在广义坐标下的平衡方程	91
2.多自由度力学体系的小振动	
5.5 哈密顿正则方程	93
1.勒让德变换	
2.正则方程	
3.能量积分	
5.6 泊松括号与泊松定理	
1.泊松括号	96
5.7 哈密顿原理	96
1.变分运算的几个法则	96
2.哈密顿原理	98
例 1:哈密顿原理→正则方程	
例 2:最速降线方程	99

前言

三观: 物质, 时空, 运动。

四性:简单性,统一性,因果性,真理性。

理论力学是用高数、线代建立起来的一套自洽的(理论)体系,它不依赖于实验(所以才有理论二字是么==)。

我们主要研究的是**有限自由度**的力学体系,如质点、质点组、刚体。而研究<mark>无限自由度</mark>的力学体系问题,已发展为另一学科:**连续介质力学**,它又分为**弹性力学**和流体力学两大分支(two big branches!)。

我们首先研究**运动学**,再研究**动力学**。至于**静力学**,它可归于动力学。——因为后二者都在研究机械运动所遵循的力学规律(or 力与运动的关系;平衡与静止也可归于运动),而运动学只关心机械运动(带 t 的运动情况完全描述,和不带 t 的轨迹方程)。

静力学在工程技术上十分重要,正因如此,它经常与动力学分开,自成一个体系 (比如**力的平衡、力的合成、力系的简化**等)。对于我们理科生而言,最好采用师范 类、电子类、理工类的偏理科的书,而非土木、机械系所用的偏工科的书。 我们所学的这部分内容已经有几百年的历史,目前也并不比以前的力学解决的问题多。——从这里便可看出:宏观低速是理论力学的事情,此时 $\mathbf{F}=\mathbf{ma}$ 才成立(当然即使是在经典理论下,我们也不常用 \mathbf{a} ,转而常用 \mathbf{r} 和 \mathbf{v} 对时间的导数);微观高速时,方程中更常出现的是 \mathbf{E} 、 \mathbf{p} (可用来表宏观低速以及微观高速下的 $\mathbf{F}=\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t}$,只不过对 \mathbf{p} 的定义需修正)。比如,哈密顿函数 \mathbf{H} 、拉格朗日函数 \mathbf{L} ,都是能量量纲。

第一章 质点力学

1.1 运动的描述

1.参考系与坐标系

参考系:为研究宏观物体的机械运动,首先应确定其在空间的位置,但物体的位置只能相对地确定,因此又得首先找出另外一个物体作为参考。这种作为参考的物体便是参考系。

广义坐标系:粗略理解为几个互相上的分量所构建的坐标系,如二维情形下的直角坐标系、(平面)极坐标系(r向、i向称为径向,上r向、θ向、j向称为横向)、自然坐标系(v向、t向称为切向,上v且指向轨道凹侧、n向称为(内)法向);以及三维的空间直角坐标系、柱(面)坐标系、球(面)坐标系、自然坐标系(v向、t向称为切向,上v且指向轨道凹侧且在密切平面内、n向称为主法线方向,b=t×n向为副法线方向)。

①.其中的**密切平面**,指的是:轨道的切线与曲线上邻近对应切点的某点,所确定的极限平面;也可看作两个无限接近的两切点,所对应的两条切线,所确定的平面。②.某点的**副法线**方向上该点对应的**密切平面**。③. $\mathbf{a}_b \equiv \mathbf{0}$, $\mathbf{F}_b \equiv \mathbf{0}$ (相当于已知结果反推原因:已知轨道反推约束轨道成这样的作用力),因此 \mathbf{a} 、 \mathbf{F} 恒位于**密切平面**内。④. **自然坐标系**下的方程称为**内禀方程**,它的形式只与轨道本身的形状——对应,与描绘它所取用的坐标系无关(--既然任何坐标系描述同一条轨道只是形式不同而已,则由于轨道与其在自然坐标系下的方程——对应,则同一条轨道在任何坐标系下的方程,转

换到自然坐标系后,取相同形式)。④.**自然坐标系**不同于其他坐标系,是个相对坐标系,相当于数控机床的线切割所采用的工件坐标系,以及对应的 G92 声明。

2.运动学方程与轨道

运动学方程:每一时刻 t 对应着质点在空间 or 平面上的某一位置(单向映射,而非——对应)。因此,每一个方程中的,坐标对时间的函数,都必须为单值+连续函数。

轨道方程: 消去时间 t 这个参数后,各坐标量之间的所满足的方程式。——轨道方程属于约束方程,它的引入可使得力学体系的自由度减少,求解所需列的方程数便越少。

3.位移、速度和加速度

速度:即瞬时速度 $\mathbf{v}(t)$,一个像 $\mathbf{r}(t)$ 一样关于时间的矢量函数。 $\mathbf{v}(t)$ =位矢 \mathbf{r} 的时间变化率 $\lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \dot{\mathbf{r}}$ 【矢量头上打一点,专用于简记该矢量对时间的导数;同理标量也是】。

1.2 速度、加速度的分量表示式

1.(空间)直角坐标系

仍以速度为例: $\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \frac{\mathrm{d}(\mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j} + \mathbf{z}\mathbf{k})}{\mathrm{d}t} = \dot{\mathbf{x}}\mathbf{i} + \dot{\mathbf{y}}\mathbf{j} + \dot{\mathbf{z}}\mathbf{k}$, 由于直角坐标系下的一组基 \mathbf{i} , \mathbf{j} , \mathbf{k} 均是常矢量(大小方向均不随位矢 \mathbf{r} 的改变而改变; 这一点与平面极坐标系不同), 因此 $\dot{\mathbf{x}}$, $\dot{\mathbf{y}}$, $\dot{\mathbf{z}}$ 的物理含义便是 \mathbf{v} 在 \mathbf{x} , \mathbf{y} , \mathbf{z} 轴上的分量 $\mathbf{v}_{\mathbf{x}} = \mathbf{v}_{\mathbf{x}}\mathbf{i}$, $\mathbf{v}_{\mathbf{y}} = \mathbf{v}_{\mathbf{y}}\mathbf{j}$, $\mathbf{v}_{\mathbf{z}} = \mathbf{v}_{\mathbf{z}}\mathbf{k}$ 的大小 $\mathbf{v}_{\mathbf{x}}$, $\mathbf{v}_{\mathbf{y}}$, $\mathbf{v}_{\mathbf{z}}$ 。 并且 $|\mathbf{v}| = \mathbf{v} = \sqrt{\mathbf{v}_{\mathbf{x}}^2 + \mathbf{v}_{\mathbf{y}}^2 + \mathbf{v}_{\mathbf{z}}^2} = \sqrt{\dot{\mathbf{x}}^2 + \dot{\mathbf{y}}^2 + \dot{\mathbf{z}}^2}$ 。

椭圆规尺:设一把规尺 AB 的端点 A与 B分别沿着 x轴和 y轴上的直线导槽滑动 (因而并不一定必须要处于第一象限),点 B在 y轴上以速度大小= v_b ,方向向下运动(y轴负向),求规尺上某一 M点的轨道方程、速度及加速度。【接下来将知道最终得到的 M点的 v、a 会与 v_b 、 θ 有关】

设 MA=a,MB=b,∠OBA= θ ——注:这个角度设置很讲究,∠OBA 而非∠ABO,即正如极坐标系的极径逆时针旋转记为正、始边为 x 轴一样,这里的 θ 以 y 轴为始边、

逆时针旋转记为正——不论该规尺处于四个象限中的哪个象限,只要这个规尺看上去在逆时针转动,θ就在正向增加——比如考虑 B 作为动力源在 y 轴作简谐振动:

——刚开始 B 在 y 轴正向,尺在第一象限; B 端先下降,而 a+b=L 长度不变(不缩短)的约束,导致尺顶着 A 点朝着 x 轴正向划去,尺子逆时针旋转; ——B 过 O 点后,由于惯性,速度方向仍然向下,但尺子由于长度不变(不拉伸),拉着 B 减速,同时带动已到达 x 正向最远端的 A 点停止右移,开始左移,此时尺子到了第二象限,并且仍然在逆时针旋转。——然后 A 点滞后 B 点 "90°",或者说落后半长轴、落后一个尺子,到达原点,之后 B 点被 A 点朝左的惯性拉着向 y 轴正向移动,尺子到达第三象限,仍在逆时针旋转。——然后 B 再超前 A "90°",到达原点,并朝着 y 轴正向滑去,尺子到第四象限,仍在逆时针旋转。

(1).要想求 M 的 \mathbf{v} 、a, 首先得知道它的坐标随时间的变化: $\mathbf{x} = \mathbf{b} \cdot \sin \theta$,

y=a•cosθ

【相当于分别以 B、M 点为原点,建立了两个 x'轴正半轴向着 y 轴负半轴(向下)、y'轴正半轴向着 x 轴正半轴(向右)的极坐标系,且 y'=x, x'=y。——这个 x'-o-y'坐标系可看作将 x-O-y 坐标系顺时针旋转 90°所得。】

- ①.我们用这俩个坐标分量关于 θ 的参数方程,消去 θ ,便得到 M 的轨道方程 $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ 。将两个坐标分量对时间求导,得到 $\dot{x} = b\dot{\theta}\cos\theta$, $\dot{y} = -a\dot{\theta}\sin\theta$ 。其中的 $\dot{\theta}$ 仍是未知量:设 $B = (x_2, y_2) = (0, (a+b)\cos\theta)$ 、 $A = (x_1, y_1) = ((a+b)\sin\theta, 0)$,则 $\mathbf{v}_B = \mathbf{v}_b = \mathbf{v}_b \cdot (-\mathbf{j})$,而 $\mathbf{v}_B \mathbf{\nabla} = \dot{\mathbf{y}}_2 \cdot \mathbf{j} = -(a+b)\dot{\theta}\sin\theta \cdot \mathbf{j}$,因此联立可得 $(a+b)\dot{\theta}\sin\theta = \mathbf{v}_b$,得到 $\dot{\theta} = \frac{\mathbf{v}_b}{(a+b)\sin\theta}$ 。
- ②.于是 M 点的速度分量便可全用已知量表示: $\dot{x}=\frac{b}{(a+b)}\cot\theta\cdot v_b$, $\dot{y}=-\frac{a}{(a+b)}\cdot v_b$ 。 于是 M 点的合速度大小 $v_M=\frac{1}{a+b}\sqrt{a^2+b^2\cot^2\theta}\cdot v_b$ 。 ——速度层面的这些关系不论 v_b 值如何随 t 变化,均是成立的。
- ③.而 M 点的加速度分量 $\ddot{\mathbf{x}} = -\frac{\mathbf{b}}{(\mathbf{a}+\mathbf{b})}\dot{\mathbf{b}}\csc^2{\theta}\cdot\mathbf{v}_b = -\frac{\mathbf{b}}{(\mathbf{a}+\mathbf{b})^2}\csc^3{\theta}\cdot\mathbf{v}_b^2 = -\frac{\mathbf{b}}{(\mathbf{a}+\mathbf{b})^2}(\frac{\mathbf{b}}{\mathbf{x}})^3\cdot\mathbf{v}_b^2 = -\frac{\mathbf{b}^4}{(\mathbf{a}+\mathbf{b})^2}\frac{1}{\mathbf{x}^3}\cdot\mathbf{v}_b^2, \quad \ddot{\mathbf{y}} = \mathbf{0}. \quad \mathbf{M}$ 点的合加速度大小 $\mathbf{a}_{\mathbf{M}} = \frac{\mathbf{b}^4}{(\mathbf{a}+\mathbf{b})^2}\frac{1}{\mathbf{x}^3}\cdot\mathbf{v}_b^2.$ 一加速度层面的这些关系成立条件为 \mathbf{v}_b 必须是常数,才有以上公式;否则过程中要考虑对 \mathbf{v}_b 求导。

(2).对于这个有趣的规尺,我们还能推导出以下认识

设初始时刻 a+b=L 线段所对应的直线方程为 y=kx+b(这里的 b 是截距,不是BM,它的值= y_2 ,且 $-\frac{b}{k}$ = x_1),则 dt 时间后的方程 y=(k+dk)x+b+db,由于必须继续被 $x_1^2+y_2^2$ = L^2 所限制,因此 dk 与 db 之间必须满足一层关系:根据($-\frac{b}{k}$) 2 +b 2 = L^2 ,我们有 $1+\frac{1}{k^2}=\frac{L^2}{b^2}$,两边求微分,得 $-2\frac{1}{k^3}$ dk= $-2\frac{L^2}{b^3}$ db。得到dk= $\frac{k^3}{b^3}$ L 2 db,也就是说,当截距 b 变化 db 时,k 必须相应地变化 $\frac{k^3}{b^3}$ L 2 db,才能保证 $x_1^2+y_2^2$ = L^2 。

将其代入 y=(k+dk)x+b+db,得到 y=(k+ $\frac{k^3}{b^3}$ L²db)x+b+db,与原式 y=kx+b 联立,以表示两直线相交,得到交点横坐标满足的方程 $\frac{k^3}{b^3}$ L²db·x+db=0,于是 x= $-\frac{b^3}{k^3L^2}$ 。 再将其代入 y=kx+b,得到交点纵坐标 y= $(1-\frac{b^2}{k^2L^2})$ b。于是交点为 $(-\frac{b^3}{k^3L^2},(1-\frac{b^2}{k^2L^2})$ b)。

其中 k=tanθ,黑色θ是 x-o-y 坐标系下的,与 x'-o-y'系下的θ不同,但它们满足 θ = θ -90°(因为 θ , θ 的均以逆时针为正向,且尺子 L 逆时针旋转时,对应的两个 θ , θ 均同 时逆时针旋转,所以方程中两个 θ 是同号的,A 增加则 B 增加,L 变成了方程两边成立的媒介物);则 $\frac{b}{kL} = \frac{b \cdot \sin \theta}{\tan \theta \cdot L \cdot \sin \theta} = \frac{y_2 \cdot \sin (\theta - 90^\circ)}{\tan \theta \cdot L \cdot \cos \theta} = \frac{y_2 \cdot \cos \theta}{L \cdot \sin \theta} = \frac{y_2 \cdot \cos \theta}{y_2} = \cos \theta \text{ (仍注意] 其中的 b 不再是那啥了,而是<math>y_2$),于是交点也可表示为($-\frac{b^3}{k^3 L^2}$, $(1 - \frac{b^2}{k^2 L^2})$ b)=($\cos^2 \theta \cdot -\frac{b}{k'}\sin^2 \theta \cdot b$),又因为 $b = y_2$, $-\frac{b}{k} = x_1$,于是有($\cos^2 \theta \cdot x_1$, $\sin^2 \theta \cdot y_2$),作 OM'上 AB,则 BM'= $b' = \cos \theta \cdot y_2 = \cos (\theta - 90^\circ) \cdot y_2 = \sin \theta \cdot y_2$ (不论 θ 取啥它都是正的,你可以试试),AM'= $a' = \sin \theta \cdot x_1 = \sin (\theta - 90^\circ) \cdot x_1 = -\cos \theta \cdot x_1$ (它也恒正)。

【关于 b'= $\cos\theta \cdot y_2$ 、a'= $\sin\theta \cdot x_1$ 如何得来的:正如之前的 $x=b\cdot\sin\theta$ 和 $y=a\cdot\cos\theta$ 一样,这里也有 $x_1=L\cdot\sin\theta$ 以及 $y_2=L\cdot\cos\theta$ (你可以看作将 " $x=x_1$ 时 b=L" 以及 " $y=y_2$ 时 a=L" 代入前式得到);根据射影定理: $y_2^2=L\cdot b'$,其中 L,b'均为正值,而 y_2 可取负数;——将 $y_2=L\cdot\cos\theta$ 两边分别乘以 y_2 ,可得 $y_2^2=L\cdot(\cos\theta \cdot y_2)$,对比射影定理结果 $y_2^2=L\cdot b'$,可得 $b'=\cos\theta \cdot y_2$;同样的道理, $x_1=L\cdot\sin\theta$ 分别乘以 x_1 ,得 $x_1^2=L\cdot(\sin\theta \cdot x_1)$,再对比 $x_1^2=L\cdot a'$,可得 $a'=\sin\theta \cdot x_1$ 】

【所以本质上它俩均来源于 x'-o-y'坐标系的建立,不过要注意 y_2 、 x_1 都是 x-o-y 坐标系下度量的值,x'-o-y'坐标系的建立只是为了方便 θ 的表述,并且将处于 y 轴负半轴的 y B 点转换为处于 y 本统 y 本

现将 b'= $\sin\theta \cdot y_2$ 和 a'= $-\cos\theta \cdot x_1$ 代入($\cos^2\theta \cdot x_1, \sin^2\theta \cdot y_2$), 于是交点的坐标的参数表示变为了($-\cos\theta \cdot a', \sin\theta \cdot b'$), 这一结果也有物理意义: 我们来算一算该点距离 B

点(0,y2)的距离,会得到出乎意料的结果:为了方便,我们使用交点坐标的前一个版本 $(\cos^2\theta \cdot x_1 \sin^2\theta \cdot y_2)$, 于是便有 $\sqrt{(\cos^2\theta \cdot x_1)^2 + (\sin^2\theta \cdot y_2 - y_2)^2} = \sqrt{x_1^2 + y_2^2} \cdot |\cos\theta|$ =L·cos∠OAB=a',即 AM';也就是说,交点与 B点的距离,总等于原点朝 L的投影点 M'点, 到 A 点的距离;或者说交点与 M',关于 L=AB 的中点,对称分布[在(每一时刻 的)尺上]。

(2)'.你还可以通过两点式
$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$
,代入 $B=(x_2,y_2)=(0,y_2)$ 、 $A=(x_1,y_1)=(x_1,0)$ 所得的: $\begin{vmatrix} x & y & 1 \\ x_1 & 0 & 1 \\ 0 & y_2 & 1 \end{vmatrix} = 0$,即平面直线的截距式 $\frac{x}{x_1} + \frac{y}{y_1} = 1$,而非斜截式来得到它。 这样或许节奏更快;但在处理 $\frac{b}{kL} = \cos\theta$ 这一环节/步骤时,或许碰到的阻力却更大,因

为由于没有截距式中先天存在的 $k=tan\theta$,而无法立马联想到运用 $\theta=\theta=90^{\circ}$ 这个的关 系式来解决这个问题。

2.极坐标系

先给出位矢 \mathbf{r} 的分量形式: $\mathbf{r} = \mathbf{r}(\mathbf{r}, \theta) = \mathbf{r}^{\mathbf{i}}$, ——这个式子很奇怪,第一个等号告诉 我们, r是r,θ的二元矢量函数; 然而第二个方程中, 如果将i仍理解为像直角坐标系下 一样的常矢量的话,则方程右边rif作为整体是个只关于一个变量r的一元矢量函数,它 怎么能表示方程左边这个用于确定二维平面的 $\mathbf{r}(\mathbf{r},\theta)$ 呢, 自由度不够呀。

问题出现了,解决办法也来了: $i=i(\theta)$ 不就行了?如果我们假定 r=|r|,则由于上 述等式($\mathbf{r}=\mathbf{r}_{\mathbf{i}}$)的一个必要条件是 $|\mathbf{r}|=|\mathbf{r}_{\mathbf{i}}|$,则 $|\mathbf{i}|=1$,即 $|\mathbf{i}(\theta)$ 虽然是 θ 的函数,但其大小 并不随着 θ 变化,并且其大小 $|\mathbf{i}(\theta)|=1$;但它又是个关于 θ 的变矢量(函数),因此它的方 向应随着θ的不同而不同:事实上,仍根据二矢量相等的充要条件为大小和方向分别相 等,利用 r=ri 成立所导致的第二个必要条件:方向相等,便可知道 i 的方向同向于 r 的方向(:'设定了 r>0),而 r 随 θ 变化,因此 i 是关于 θ 的变向恒模矢量,方向即为 θ 的方 向(r的方向)。

速度的分量表示: $\mathbf{v} = \frac{d\mathbf{r}}{dt} = \frac{d(\mathbf{r}^i)}{dt} = \dot{\mathbf{r}}^i + r^i$, 那么我们还需将 $\mathbf{i} = \mathbf{i}(\theta) = \frac{d\mathbf{i}(\theta)}{dt}$ 这一未知量用已知量表示: $\frac{d\mathbf{i}(\theta)}{dt} = \frac{d\mathbf{i}(\theta(t))}{dt} = \frac{d\mathbf{i}(\theta(t))}{d\theta} \cdot \frac{d\theta(t)}{d\theta} \cdot \dot{\theta}$, 那么我们还需将 $\frac{d\mathbf{i}(\theta)}{d\theta}$ 拓展为已知量: 利用 " $|\mathbf{i}|=1$, $|\mathbf{j}|=1$, 一个单位圆上,引入(设)另一平面内的单位矢量 $\mathbf{j}(d\theta,\theta) = \mathbf{k}(d\theta) \times \mathbf{i}(\theta)$ 【注:其中的 $\mathbf{k}(d\theta) = \delta(d\theta) \cdot \mathbf{k}$ 也是个单位矢量,只不过它不在平面内,是空间中的,在 z 轴上,其 方向与dθ的绕向符合右手定则;为保证右手定则,当dθ<0,即θ顺时针绕动时,其中 的 $\delta(d\theta)=-1$,反之 $\delta(d\theta)=+1$,在易语言中 $\delta()$ 相当于一个"取符号()"函数;这和线 代中的 Kronecker(克罗内克)符号类似; ——使用时要注意 $\mathbf{k}(d\theta)$ 与 $\mathbf{k}(\theta)$ 的区别: $\mathbf{k}(d\theta)$ 与 θ 无关,只与 $d\theta$ 有关,而 \mathbf{i} 只与 θ 有关,而 \mathbf{j} 与二者均有关!;同时也要区分 $\mathbf{k}(d\theta)$ 与 $d\theta$: $d\theta$ = $d\theta \cdot \mathbf{k}$,后者并不是个单位矢量,但二者的方向相同,前者是后者的单位化,因此 $\delta(d\theta)$ 也可写作 $\frac{d\theta}{|d\theta|}$,因此式子也可更准确地写作 $\mathbf{j}(\frac{d\theta}{|d\theta|},\theta)$ = $\mathbf{k}(\frac{d\theta}{|d\theta|})$ × $\mathbf{i}(\theta)$ 。】

①.则di(θ)= $\lim_{\Delta\theta\to 0}$ i(θ + Δ θ) - i(θ)= $\lim_{\Delta\theta\to 0}$ Δ i= $\lim_{\Delta\theta\to 0}$ $|\Delta$ i| · j= $\lim_{\Delta\theta\to 0}$ Δ s · j=ds · j=(1 · $|d\theta|$) · j= $|d\theta|$ · j(其中的 $^{\Delta}\theta$ 、 $d\theta$ 可负,对应j的另一个方向; $^{\Delta}$ S、dS 都是正值),于是 $\frac{di(\theta)}{d\theta} = \frac{|d\theta|}{d\theta} \cdot k(d\theta) \times i(\theta) = \frac{|d\theta|}{d\theta} \cdot \frac{d\theta}{|d\theta|} \cdot k \times i(\theta) = k \times i$ 。现在我们定义 j=k × i。【注意新 j 的颜色与之前的 j 不同;并且可得到以下关系式: $d\theta$ · j= $|d\theta|$ · j】

②.我们来尝试着只用 $\mathbf{j} = \mathbf{k} \times \mathbf{i}$ 试试看能否得到 $\frac{d\mathbf{i}}{d\theta} = \mathbf{j}$: 先变换成 $\mathbf{i} = \mathbf{j} \times \mathbf{k}$, 即我们想通过 \mathbf{j} 的属性来了解 \mathbf{i} 的 $\frac{d\mathbf{i}(\theta)}{d\theta}$ 这个属性,则 $\frac{d\mathbf{i}(\theta)}{d\theta} = \frac{d}{d\theta} (\mathbf{j} \times \mathbf{k}) = \frac{d\mathbf{j}}{d\theta} \times \mathbf{k} + \mathbf{j} \times \frac{d\mathbf{k}}{d\theta}$, 其中 $\mathbf{k} = \mathbf{k}$ 无关,(要知道之前的 \mathbf{k} ($\mathbf{d}\theta$)与 $\mathbf{d}\theta$ 的符号有关;其虽也与 $\mathbf{0}$ 无关,但在 $\mathbf{0}$ 连续变化时, $\mathbf{d}\theta$ 的符号可能会突变,导致它是个模长无限大的 \mathbf{z} 方向矢量),因此第二项=0,于是原式= $\frac{d\mathbf{j}}{d\theta} \times \mathbf{k}$,其中通过同样的操作, $\frac{d\mathbf{j}}{d\theta} = \frac{d}{d\theta} (\mathbf{k} \times \mathbf{i}) = \frac{d\mathbf{k}}{d\theta} \times \mathbf{i} + \mathbf{k} \times \frac{d\mathbf{i}}{d\theta} = \mathbf{k} \times \frac{d\mathbf{i}}{d\theta}$,——但通过这样,我们并没有了解 $\frac{d\mathbf{j}}{d\theta}$ 的本质:它 $\frac{d\mathbf{j}}{d\theta}$ 中有 $\frac{d\mathbf{i}}{d\theta}$, $\frac{d\mathbf{i}}{d\theta}$ 中有 $\frac{d\mathbf{j}}{d\theta}$,二者构成独立的自洽系统,因而无法通过了解 \mathbf{j} 和 $\frac{d\mathbf{j}}{d\theta}$ 来了解 $\frac{d\mathbf{i}}{d\theta}$ 。——失败的原因是所用到的已知信息太少, $\frac{d\mathbf{i}}{d\theta}$ 模糊 or 失去了原有的部分信息(长度、方向等),只保留了部分信息(还在 XoY 面上)。

但我们知道 $\frac{di}{d\theta} = \frac{dj}{d\theta} \times \mathbf{k}$ 和 $\frac{dj}{d\theta} = \mathbf{k} \times \frac{di}{d\theta}$ 暗示着,由 $\frac{di}{d\theta'}, \frac{dj}{d\theta'}, \mathbf{k}$ 所组成的自洽系统中,三矢量相互垂直($\because \frac{di}{d\theta} \bot \text{PTM}(\frac{dj}{d\theta'}, \mathbf{k})$ 、 $\frac{dj}{d\theta} \bot \text{PTM}(\mathbf{k}, \frac{di}{d\theta})$ 、 $\frac{di}{d\theta'}, \frac{dj}{d\theta}$ 都在 XoY 面,而 $\mathbf{k} \bot \text{PTM} \text{TMM}$ 及此 $\mathbf{k} \bot (\frac{di}{d\theta'}, \frac{dj}{d\theta})$),且由于 \mathbf{k} 是个单位矢量,则无论模长相等、且与 \mathbf{k} 两两垂直、且按照 $\frac{di}{d\theta'}, \frac{dj}{d\theta'}, \mathbf{k}$ 的顺序构成右手系的二矢量 $\frac{di}{d\theta'}, \frac{dj}{d\theta'}$ 在 XoY 面方向如何、具体模长如何,它们均满足此方程组。——所以这个方法,最终并没能帮我们解出 $\frac{di}{d\theta} = \mathbf{j}$ 。【即使再加上 $0 = \frac{d\mathbf{k}}{d\theta} = \frac{d(\mathbf{i} \times \mathbf{j})}{d\theta} = \frac{di}{d\theta} \times \mathbf{j} + \frac{dj}{d\theta} \times \mathbf{i}$ 这个对 $\frac{di}{d\theta'}, \frac{dj}{d\theta'}$ 的约束方程,也没法挽救】

【注:我们得到 $\frac{dj}{d\theta}$ = \mathbf{k} × $\frac{di}{d\theta}$ 后不能将其带进 $\frac{di(\theta)}{d\theta}$ = $\frac{dj}{d\theta}$ × \mathbf{k} 去,也不能将后者代入前者: $\frac{di(\theta)}{d\theta}$ =(\mathbf{k} × $\frac{di}{d\theta}$)× \mathbf{k} =(\mathbf{k} · \mathbf{k}) $\frac{di}{d\theta}$ -(\mathbf{k} · $\frac{di}{d\theta}$) \mathbf{k} ,可以确定的是, $\frac{di}{d\theta}$ 在 x-o-y 平面内,因此第二项=0,于是 $\frac{di}{d\theta}$ = $\frac{di}{d\theta}$ 。= =呵呵;这是因为得到 $\frac{dj}{d\theta}$ = \mathbf{k} × $\frac{di}{d\theta}$ 的过程中使用的是同样的东西: \mathbf{j} = \mathbf{k} × \mathbf{i} ; 但 $\frac{di}{d\theta}$ = $\frac{dj}{d\theta}$ × \mathbf{k} $\frac{dj}{d\theta}$ = \mathbf{k} × $\frac{di}{d\theta}$ $\frac{dj}{d\theta}$ = \mathbf{k} 0, 使得它们仨组成封闭右手系】

③.但我们可通过①.中的 $\frac{di}{d\theta}$ =j,以及②.中的 $\frac{dj}{d\theta}$ =k× $\frac{di}{d\theta}$,得到 $\frac{dj}{d\theta}$ =k×j=-i。【这也印证了我们在②.中所预言的:只要知道 $\frac{di}{d\theta}$, $\frac{dj}{d\theta}$ 中的一个,就能预测另一个:因为解出来它们的大小相同,且方向上与k共同构成右手系】

①'.推证 $\frac{di}{d\theta}$ =j的方法二:根据|i|=1的特性——i终点在单位圆上,且方向为 θ ,我们将i写为直角坐标系下的形式: $i=e_r=\cos\theta\cdot e_x+\sin\theta\cdot e_y$,其中 e_x,e_y 相当于原直角坐标系下的i,j,是常矢量(自然坐标系喜欢 e_t,e_n);则 $\frac{di}{d\theta}$ = $-\sin\theta\cdot e_x+\cos\theta\cdot e_y$,我们将其记为 e_θ ,现作 $e_r\times e_\theta=\begin{vmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{vmatrix}$ =1,这还不够,我们要空间上的结果: $e_r\times e_\theta=\begin{vmatrix} e_x & e_y & e_z \\ \cos\theta & \sin\theta & 0 \end{vmatrix}$ = e_z ,可见 e_z 就是我们之前所设的 e_z ,并且 e_z ,可见 e_z 就是我们之前所设的 e_z ,并且 e_z ,可见 e_z 。【之 e_z $e_$

同理,我们继续操作, $\frac{d\mathbf{i}}{d\theta} = \frac{d\mathbf{e}_{\theta}}{d\theta} = \frac{d}{d\theta}(-\sin\theta \cdot \mathbf{e}_{x} + \cos\theta \cdot \mathbf{e}_{y}) = -\cos\theta \cdot \mathbf{e}_{x} - \sin\theta \cdot \mathbf{e}_{y} = -\mathbf{e}_{r}$ 。

①".第三种方法:根据 \mathbf{v}_{θ} = \mathbf{w} × \mathbf{r} ,又因 \mathbf{v}_{θ} = $\mathbf{r}_{d\theta}^{\mathbf{i}}$ $\dot{\theta}$ 、 \mathbf{w} = $\dot{\theta}$ \mathbf{k} 、 \mathbf{r} = $\mathbf{r}_{i}^{\mathbf{i}}$,于是 $\mathbf{r}_{d\theta}^{\mathbf{i}}$ $\dot{\theta}$ = $\dot{\theta}$ \mathbf{k} × \mathbf{r}_{i} ,可得 $\mathbf{r}_{d\theta}^{\mathbf{i}}$ = \mathbf{k} × \mathbf{i} = \mathbf{j} 。这是不是有点有意思?用物理推数学==! 其实, \mathbf{v}_{θ} = \mathbf{w} × \mathbf{r} 就是根据 $\mathbf{r}_{d\theta}^{\mathbf{i}}$ = \mathbf{k} × \mathbf{i} 来的,因果关系搞反了。【注: \mathbf{v}_{θ} = \mathbf{r}_{i} 是通过 \mathbf{v} = $\mathbf{r}_{dt}^{\mathbf{i}}$ = $\mathbf{r}_{dt}^{\mathbf{i}}$ = $\mathbf{r}_{i}^{\mathbf{i}}$ + $\mathbf{r}_{i}^{\mathbf{i}}$ = $\mathbf{r}_{i}^{\mathbf{i}}$ = $\mathbf{r}_{i}^{\mathbf{i}}$ + $\mathbf{r}_{i}^{\mathbf{i}}$ + $\mathbf{r}_{i}^{\mathbf{i}}$ = $\mathbf{r}_{i}^{\mathbf{i}}$ + $\mathbf{r}_$

同样,根据 $\mathbf{a}_r = \mathbf{w} \times \mathbf{v}_\theta$,其中 $\mathbf{a}_r = \mathbf{v}_\theta \mathbf{j} = r\dot{\theta} \mathbf{j} = r\dot{\theta}^2 \frac{d\mathbf{j}}{d\theta}$ 、 $\mathbf{v}_\theta = r\mathbf{j}\dot{\theta}$ 、 $\mathbf{w} = \dot{\theta}\mathbf{k}$ 可得 $r\dot{\theta}^2 \frac{d\mathbf{j}}{d\theta} = \dot{\theta}\mathbf{k} \times r\mathbf{j}\dot{\theta} = r\dot{\theta}^2(-\mathbf{i})$ 。于是 $\frac{d\mathbf{j}}{d\theta} = -\mathbf{i}$ 。【注: $\mathbf{a}_r = \mathbf{v}_\theta \mathbf{j}$ 是通过圆周运动的 $\mathbf{a} = \frac{d\mathbf{v}_\theta}{dt} = \frac{d(\mathbf{v}_\theta \mathbf{j})}{dt} = \dot{\mathbf{v}}_\theta \mathbf{j} + \mathbf{v}_\theta \mathbf{j}$ 看出来的】当然,也应是先有后者,才有前者。

④.于是 $\mathbf{v}=\dot{\mathbf{r}}\mathbf{i}+\dot{\mathbf{r}}\dot{\mathbf{i}}=\dot{\mathbf{r}}\mathbf{i}+\dot{\mathbf{r}}\dot{\mathbf{j}}$, 又因应有 $\mathbf{v}=\mathbf{v}_r+\mathbf{v}_\theta=v_r\mathbf{i}+v_\theta\mathbf{j}$ (其中 \mathbf{i} , \mathbf{j} 可写为 $\mathbf{e}_r,\mathbf{e}_\theta$), 对比可得 $v_r=\dot{\mathbf{r}}$ 和 $v_\theta=r\dot{\theta}$; 其中 $v_r=v_r\mathbf{i}=\dot{\mathbf{r}}\mathbf{i}$, 称为**径向速度**, $v_\theta=v_\theta\mathbf{j}=r\dot{\theta}\mathbf{j}$, 称为**横向速 度**。并且 $|\mathbf{v}|=\sqrt{v_r^2+v_\theta^2}=\sqrt{\dot{r}^2+\left(r\dot{\theta}\right)^2}$ 。

加速度的分量形式: $\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \frac{\mathrm{d}(\dot{\mathbf{r}}^{\mathbf{i}} + r\dot{\mathbf{\theta}}^{\mathbf{j}})}{\mathrm{d}t}$,我们分开来看: $\frac{\mathrm{d}\mathbf{v}_r}{\mathrm{d}t} = \frac{\mathrm{d}(\dot{\mathbf{r}}^{\mathbf{i}})}{\mathrm{d}t} = \ddot{\mathbf{r}}^{\mathbf{i}} + \dot{r}^{\mathbf{i}} = \ddot{\mathbf{r}}^{\mathbf{i}} + \ddot{\mathbf{r}}^{\mathbf{i}} = \ddot{\mathbf{r}}$

同样, $\mathbf{a} = \mathbf{a}_r + \mathbf{a}_\theta = \mathbf{a}_r \mathbf{i} + \mathbf{a}_\theta \mathbf{j}$,于是对比可得 $\mathbf{a}_r = \ddot{\mathbf{r}} - r\dot{\theta}^2 \mathbf{n} \mathbf{a}_\theta = (r\ddot{\theta} + 2\dot{r}\dot{\theta})$;同样, $\mathbf{a}_r = (\ddot{r} - r\dot{\theta}^2)\mathbf{i}$,称为**径向加速度**, $\mathbf{a}_\theta = (r\ddot{\theta} + 2\dot{r}\dot{\theta})\mathbf{j}$,称为**横向加速度**。并且 $|\mathbf{a}| = \sqrt{\mathbf{a}_r^2 + \mathbf{a}_\theta^2} = \sqrt{(\ddot{r} - r\dot{\theta}^2)^2 + (r\ddot{\theta} + 2\dot{r}\dot{\theta})^2}$ 。

可见以下两点: ①. $\frac{d\mathbf{v}_r}{dt}$ 不仅有 $\frac{i}{n}$ 向分量,还有 $\frac{i}{n}$ 向分量;同样, $\frac{d\mathbf{v}_\theta}{dt}$ 不仅有 $\frac{i}{n}$ 向分量,还有 $\frac{i}{n}$ 向分量;这就导致了②. \mathbf{a}_r 不等价于 $\frac{d\mathbf{v}_r}{dt}$,它们只是有交集,且互不包含;并且 \mathbf{a}_r 中不

仅有 $\frac{d\mathbf{v}_r}{dt}$ 贡献的 $\ddot{\mathbf{r}}$ i部分,还有 $\frac{d\mathbf{v}_\theta}{dt}$ 所贡献的 $-r\dot{\theta}^2$ i部分;同样, \mathbf{a}_θ 也由 $\frac{d\mathbf{v}_r}{dt}$ 中的 $\dot{r}\dot{\theta}$ j+ $r\ddot{\theta}$ j,矢量合成而成。

若令 $\mathbf{a}=(\ddot{\mathbf{r}}-\mathbf{r}\dot{\mathbf{\theta}}^2)\mathbf{i}+(\mathbf{r}\ddot{\mathbf{\theta}}+2\dot{\mathbf{r}}\dot{\mathbf{\theta}})\mathbf{j}$ 中的r为常值,则 $\mathbf{a}=(-\mathbf{r}\dot{\mathbf{\theta}}^2)\mathbf{i}+(\mathbf{r}\ddot{\mathbf{\theta}})\mathbf{j}$; 将其与圆周运动的 $\mathbf{a}=\frac{d\mathbf{v}}{dt}=\frac{d(\mathbf{v}_{\theta}\mathbf{i})}{dt}=\dot{\mathbf{v}}_{\theta}\mathbf{j}+\mathbf{v}_{\theta}\mathbf{j}$ 对比,可得 $-\mathbf{v}_{\theta}\dot{\mathbf{\theta}}=-\mathbf{r}\dot{\mathbf{\theta}}^2$ 以及 $\dot{\mathbf{v}}_{\theta}=\mathbf{r}\ddot{\mathbf{\theta}}$; 这与之前速度分量部分的结论 $\mathbf{v}_{\theta}=\mathbf{r}\dot{\mathbf{\theta}}=\mathbf{r}\dot{\mathbf{\theta}}$, $\mathbf{v}_{\theta}=\mathbf{r}\dot{\mathbf{\theta}}$ 以及在 \mathbf{r} 恒定下的 $\dot{\mathbf{v}}_{\theta}=\mathbf{r}\ddot{\mathbf{\theta}}$ 。

例 1: 设有参数方程 $r=e^{ct}$, $\theta=bt$, 求速度与加速度。

直接将 r(t)、 θ (t)代入 v_r =r \dot{r} 和 v_θ =r $\dot{\theta}$ 、 a_r =r \ddot{r} - r $\dot{\theta}^2$ 和 a_θ =r $\ddot{\theta}$ + 2r $\dot{\theta}$,并注意途中用已知量 r、 θ 代换掉参数 t: v_r =r \dot{r} =cr, v_θ =r $\dot{\theta}$ =br、 a_r =c 2 r - b 2 r和 a_θ =2 · cr · b。便能得到 \mathbf{v} = \mathbf{v}_r + \mathbf{v}_θ =r(c \mathbf{i} +b \mathbf{j}), \mathbf{a} = a_r + a_θ =r(c 2 -b 2) \mathbf{i} +2bcr \mathbf{j} 。且有| \mathbf{a} |= $\sqrt{a_r^2+a_\theta^2}$ = $\sqrt{[r(c^2-b^2)]^2+(2bcr)^2}$ =(b 2 +c 2)r, $|\mathbf{v}|$ = $\sqrt{(cr)^2+(br)^2}$ = $\sqrt{b^2+c^2}$ r。

3.自然坐标系

这一节的介绍将从物理的数学本源谈起(我虽然无时无刻不在致力于此项工作), 因为本段内容无法更形象地给出,并且我需要大家跟着我一窥物理的数学全貌,以及 展示展示真正的物理是如何使用真正的数学手段来为自己服务的:就像爱因斯坦被黎 曼启发要创造就要创造书本上没有的东西一样。我先承前启后地回顾一下之前的知识:

(1).新定义的弧微分

在高等数学(微积分一)中,我们在一型曲线积分中,曾定义过**弧微分** $ds=|sec\alpha|\cdot dx=\sqrt{1+tan^2\alpha}\cdot dx=\sqrt{1+y'^2}\cdot dx$ [注:由于 θ 已用于表示 r 与 x 轴的夹角(不论是直角坐标系下还是极坐标系下),我们用 α 来表示曲线(上某点)的切线与 x 轴的夹角],在这样的规定下,ds 有正负之分,并且由于式子中 dx 与 ds 同号,于是当时规定了 dx>0 的方向,即 x 增加的方向,为曲线 s 的正方向,对应着 ds>0。

我们再来考虑 dɑ: 根据y"= $\frac{dy'}{dx}$ = $\frac{d(tan\alpha)}{d\alpha}$ - $\frac{d\alpha}{d\alpha}$ = $\sec^2\alpha \cdot \frac{d\alpha}{dx}$, 于是d α = $\cos^2\alpha \cdot y$ "·dx,于是在这样假设的**弧微分**ds下,定义了**曲率半径** ρ = $\frac{ds}{d\alpha}$ = $\frac{|sec\alpha|\cdot dx}{\cos^2\alpha \cdot y''\cdot dx}$ = $\frac{|sec\alpha|\cdot dx}{y''}$ = $\frac{|sec\alpha|^3}{y''}$ = $\frac{(1+y'^2)^{\frac{3}{2}}}{y''}$ 。于是 ρ 也是有正负的,它同号于y",而y"= $\sec^2\alpha \cdot \frac{d\alpha}{dx}$ 又同号于 $\frac{d\alpha}{dx}$,因此 ρ 的符号取决于(同号于) $\frac{d\alpha}{dx}$ 的符号。——而 $\frac{d\alpha}{dx}$ 什么时候为正呢?曲线凹时为正!并且不管 dx<0 还是 dx>0,即某个在凹弧 s 上沿着 s 运动的点,不论其横坐标 x 向左走一段 dx 还是向右走一段 dx,起点到终点的 $\frac{d\alpha}{dx}$ 均>0。——正因如此我们才认识到y">0 对应

着曲线是上凹的。【数学偏爱轨道方程,而不喜欢描绘运动状态的参数方程,这里也是一样:只要曲线是上凹(上凹=j(-1)=(-j)(+1)=下凸)的,不必关心x在s上往左走dx<0还是往右走dx>0,均有y"和p>0,多好,多简洁;但物理不一样,物理喜欢透视现实世界的每一个数学细节,为此即使要经过繁杂的数学计算和修正,也在所不辞(当然,过程中也需要删繁就简的技巧==,可不能让数学天才们认为我们是莽夫)——当然,我们也希望和相信上帝创造的世界,以及每一个自洽体系,本质上都是简单的,但归根结底这只是那根埋在我们心底的最强烈的信念之一:我们对美的追求不亚于任何人,即使是数学工作者们:我们可是亲笔审视过每一个丑陋的数学公式,为的却是得到最终的那份藏隙于不言之中的和谐。】

因此,在这样定义的**弧微分**ds下,当曲线 s 上凹时,ρ>0;曲线 s 下凹(上凸)时,ρ<0。但这样的ρ并未带给我们什么好处,因为物理所处理的曲线 s,时常是轨迹方程的一部分,而轨迹方程又由参数方程(含时 t)消参而得,这意味着质点在轨迹上的运动是有方向的(∵时间 t 的流逝是有方向的:总是朝着增大的方向)——那么我们就要考虑ρ是否得与 dx 有关,而与曲线的凹凸性无关了:显然,同一段弧,质点在其上从 A 端到 B 端,和其从 B 端到 A 端,所经历的曲线的凹凸性,对于平面直角坐标系而言,它只需要说"该曲线总是向上凹的";然而对于质点而言,前后两段过程是不同的,它会说"我从左边的点 A 到右边的点 B 时,曲线一直往左弯曲,它总是凹向我的右侧"。然而我从右点 B 到左点 A 时,曲线却一直朝右弯曲,它总是凹向我的右侧"。

为了解决这样的矛盾,我们需要重新定义自然坐标系下的弧微分ds——以改变曲率半径 $p=\frac{ds}{d\alpha}$ 的正负所对应的数学含义(我们不能改变 $\frac{ds}{d\alpha}$ 中的 $d\alpha$ 的定义,否则就要动了牛顿先生奠定下来的根基:微分学了;因而选择为了服务于物理而重新定义弧微分ds;也不能直接令 $p=|\frac{ds}{d\alpha}|=\frac{(1+y'^2)^{\frac{3}{2}}}{|y''|}$ 为一个恒>0的数,因为物理规律告诉我们,同一段弧线,在其上以不同方向运动的参考系所测量的p不同;等下我们会展示,这样定义标量恒正的结果,会迫使矢量**j**像之前的**k**一样,有两个方向**)。**

由于曲线 s 上凹时,曲率圆圆心在曲线上方;曲线 s 下凹时,曲率圆圆心在 s 下方。而上凹对应 $\rho>0$,下凹对应 $\rho<0$ 。——于是在**弧微分** ds的之前的定义下, $\rho>0$ 对应着曲率圆圆心在曲线上方, $\rho<0$ 对应曲率圆圆心在 s 下方。——这就启示我们, ρ 的正负,应该用于指向曲率圆圆心在曲线哪一侧。——而"在哪一侧",是所选取的坐标系说了算的:比如在平面直角坐标系下, $\rho>0$ 对应圆心在(当前)质点的+j 方向, $\rho<0$ 则对应(当前)圆心在质点的-j 方向。——而以上的+j,-j,均可用 $\frac{\rho}{|\rho|}$ j,来表示。因此直角坐标系在描述曲率圆圆心相对于质点的位移方向时,**可被总结为**:总与 $\frac{\rho}{|\rho|}$ j 成 锐角,即**质点到圆心的矢量**,与矢量 $\frac{\rho}{|\rho|}$ j 的点积>0。

(2).自然坐标系下的 j

这给了我们接下来建立自然坐标系的 \mathbf{j} 以很大的启发:自然坐标系的 \mathbf{j} 与其下的、新定义的 ρ 一起也必须相互配合地满足:**质点到曲率圆圆心的矢量**,与矢量 $\frac{\rho}{|\rho|}\mathbf{j}$ 的点积 $\mathbf{N}>\mathbf{0}$ (等下我们将看到,它们的点积不仅 $\mathbf{N}>\mathbf{0}$ 0)、还恒 $\mathbf{N}=|\rho|$ 0。

我们之前给出过,对于某一圆周运动,其总加速度 a 在极坐标系下的形式为: $\mathbf{a} = \frac{d\mathbf{v}_{\theta}}{dt} = \frac{d(\mathbf{v}_{\theta}\mathbf{j})}{dt} = \dot{\mathbf{v}}_{\theta}\mathbf{j} + \mathbf{v}_{\theta}\mathbf{j}; \ \, m \Delta 我们尝试着将自然坐标系的原点建立在圆周上的这个质点上,并规定一个同向于其速度<math>\mathbf{v}_{\theta}$ 的方向的矢量 \mathbf{j} ,其方向称为**切向**;并参照极坐标系,将 $\frac{d\mathbf{j}}{d\theta}$ 作为其另一个单位矢量。

由于我们在建立这样的自然坐标系时引用到了极坐标系的副(单位)矢量j,来作为自然坐标系的主矢量(j相对于极坐标系来说是副矢量,但相对于自然坐标系来说,是它的主矢量),那么自然坐标系的j也应当满足其在极坐标系下的规则,于是dj =-i,即自然坐标系的副矢量为-i,是极坐标系的主矢量的相反矢量。——可见,像极坐标系一样,这样定义的自然坐标系的副矢量-i也在其主矢量j的左手边。

我们另设一 ρ_0 与直角坐标系和极坐标系下的 ρ (极坐标系的 θ 与直角坐标系的通用,且其 ρ 是由变量代换代入直角坐标系得出的,因此 ρ 在极坐标系下的正负,在含义上应该与直角坐标系的相同;或许参数方程下的 ρ ,在正负号的对应含义上,也与之相同)区别开来。——在粗且定义好了自然坐标系的临时主副矢量后,我们接下里就要定义自然坐标系下的 ρ_0 ,以使得"**质点到曲率圆圆心的矢**量,在自然坐标系的表示下,与自然坐标系表示下的矢量 $\frac{\rho_0}{|\rho_0|}$ •其副矢量的点积>0"。

我们尝试着将 " $\rho>0$ 对应着曲率圆圆心在曲线上方(+ \mathbf{j}), $\rho<0$ 对应曲率圆圆心在 s 下方(- \mathbf{j})" 从直角坐标系中,圆心相对于宏观的曲线 s 的位置,更精确地描述为(转换为)圆心相对于某一小段弧 ds 的位置,以符合我们之前对 s 上的自然坐标系(就是那一质点)是如何从 A 到 B 和 B 到 A 认识这一曲线的,即: " $\rho_0>0$ 对应着曲率圆圆心总在 d**s**(即 \mathbf{v}_0 向、+ \mathbf{j} 向)的正左侧(- \mathbf{i}), $\rho_0<0$ 对应曲率圆圆心总在 ds 的正右侧(+ \mathbf{i})"。

【注:之前圆心在直角坐标系的 \pm 副矢量方向(即与 $\frac{\rho}{|\rho|}$ 成锐角);那么圆心也应在自然 坐标系的 \pm 副矢量方向(即同向于 $\frac{\rho_0}{|\rho_0|}$ (-i))】

要使得 ρ_0 能满足这样的关系,则必须使得当圆心在 d**s**, \mathbf{v}_{θ} ,+j向的正左侧(-i)时, ρ_0 >0;当圆心在 d**s**, \mathbf{v}_{θ} ,+j向的正右侧(+i)时, ρ_0 <0[把上面那句话反过来说,即求个逆命题]。那么可以发现:dx>0 的上凹弧(ρ >0)、dx<0 的上凸弧(ρ <0),由于都是在逆时针旋转,因此圆心在其左侧,此时应有 ρ_0 >0;dx<0 的上凹弧(ρ >0)、dx>0 的上凸弧(ρ <0),由于都是在顺时针旋转,因此圆心在其右侧,此时应有 ρ_0 <0。

可以发现: 四种情况下, ρ_0 , ρ 同号时,均有 dx>0;而 ρ_0 , ρ 反号时,均有 dx<0。 因此 $\rho_0 = \frac{dx}{|dx|} \cdot \rho$ 。该转换关系也可以从源头推起: 在自然坐标系中,**弧微分**ds应没有正负之分,于是应有ds= $\sqrt{1+y'^2} \cdot |dx|$,于是 $\rho_0 = \frac{ds}{d\alpha} = \frac{\sqrt{1+y'^2} \cdot dx \cdot \frac{|dx|}{d\alpha}}{d\alpha} = \frac{\sqrt{1+y'^2} \cdot dx}{d\alpha} \cdot \frac{|dx|}{d\alpha} = \rho \cdot \frac{dx}{|dx|}$ 。这就是直角坐标系转换到自然坐标系后,由于单位矢量从常矢量 e_x , e_y , e_z 转换为 e_t , e_n 后, ρ 也应相应地转换为 ρ_0 ,以使得自然坐标系下的 ρ_0 与其副矢量满足约束关系。

(2)'.自然坐标系下的ρ₀

根据直角坐标系下的 $\rho = \frac{ds}{d\alpha} = \frac{|\sec\alpha| \cdot dx}{\cos^2\alpha \cdot y'' \cdot dx} = \frac{|\sec\alpha|^3}{y''} = \frac{|\sec\alpha|^3}{y''} = \frac{(1+y'^2)^{\frac{3}{2}}}{y''}$,我们设参数方程 $x = x(t) \text{以及 } y = y(t), \quad \mathbb{N} \frac{dy}{dx} = \frac{dy(t)}{dt} \cdot \frac{dt}{dx} \vec{\mathbb{D}} = \frac{dy/dt}{dx/dt} = \frac{\dot{y}}{\dot{x}}, \quad \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d(\frac{\dot{y}}{\dot{x}})/dt}{dx/dt} = \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{\dot{x}^2} = \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{\dot{x}^3}, \quad \text{代入可得}$ $\rho = \frac{ds}{d\alpha} = \frac{(1+y'^2)^{\frac{3}{2}}}{y''} = \frac{(1+(\frac{\dot{y}}{\dot{x}})^2)^{\frac{3}{2}}}{\frac{\dot{y}\ddot{y} - \ddot{x}\dot{y}}{\dot{x}^3}} = \frac{(\dot{x}^2 + \dot{y}^2)^{\frac{3}{2}}}{\dot{x}\ddot{y} - \ddot{x}\dot{y}} \cdot \frac{\dot{x}}{\dot{x}}$

设 x=r(t)·cost, 且 y=r(t)·sint。于是 \dot{x} =rcost - rsint, \dot{y} =rsint + rcost; \ddot{x} =rcost - 2rsint - rcost, \ddot{y} =rsint + 2rcost - rsint; 可得 $\dot{x}^2 + \dot{y}^2$ =r $\dot{r}^2 + r^2$, 以及 $\dot{x}\ddot{y}$ =rsint(rcost - rsint) + 2rcost(rcost - rsint) - rsint(rcost - rsint), $\ddot{x}\ddot{y}$ =rcost(rsint + rcost) - 2rsint(rsint + rcost) - rcost(rsint + rcost), 相减后紫色部分抵消,于是 $\dot{x}\ddot{y}$ -rr+2r \dot{x} +r \dot{y} -rr+2r $\dot{y$

令 t=θ,则 x=r(θ)·cosθ,且 y=r(θ)·sinθ。于是原式变为了ρ= $\frac{(r'^2+r^2)^{\frac{3}{2}}}{-r''r+2r'^2+r^2}\cdot\frac{x'}{|x'|}$,其中r'= $\frac{dr}{d\theta}$ 、 $r''=\frac{d^2r}{d\theta^2}$ 、 $x'=\frac{dx}{d\theta}=r'cos\theta-rsin\theta$ 。 那么由于在直角坐标系下有ρ₀=ρ・ $\frac{dx}{|dx|}$,则在参数方程和极坐标系下,分别有ρ₀= $\frac{(x^2+y^2)^{\frac{3}{2}}}{xy-xy}\cdot\frac{x}{|x|}\cdot\frac{dx}{|dx|}=\frac{(x^2+y^2)^{\frac{3}{2}}}{xy-xy}\cdot\frac{|x|}{x}\cdot\frac{dx}{|dx|}=\frac{(x^2+y^2)^{\frac{3}{2}}}{xy-xy}\cdot\frac{|x|}{x}\cdot\frac{dx}{|dx|}=\frac{(x^2+y^2)^{\frac{3}{2}}}{xy-xy}\cdot\frac{|x|}{x}\cdot\frac{dx}{|dx|}=\frac{(r'^2+r^2)^{\frac{3}{2}}}{xy-xy}\cdot\frac{|x|}{x}\cdot\frac{dx}{|dx|}=\frac{(r'^2+r^2)^{\frac{3}{2}}}{xy-xy}\cdot\frac{dx}{|dx|}=\frac{(r'^2+r^2)^{\frac{3}{2}}}{xy-xy}\cdot\frac{dx}{|dx|}=\frac{(r'^2+r^2)^{\frac{3}{2}}}{xy-xy}\cdot\frac{d\theta}{|d\theta|}$ 。

于是,直角坐标系、极坐标系、参数方程下的**曲率半径** ρ ,转换为自然坐标系下的**曲率半径** ρ_0 的公式分别为: $\rho_0 = \frac{(1+y'^2)^{\frac{3}{2}}}{y''} \cdot \frac{dx}{|dx|}$ 、 $\rho_0 = \frac{(r'^2+r^2)^{\frac{3}{2}}}{-r''r+2r'^2+r^2} \cdot \frac{d\theta}{|d\theta|}$ 、 $\rho_0 = \frac{(\dot{x}^2+\dot{y}^2)^{\frac{3}{2}}}{\dot{x}\dot{y}-\ddot{x}\dot{y}} \cdot \frac{dt}{|dt|}$ 。

【在这里科普一下,平面极坐标系下任意一条曲线 $r_0(\theta_0)$ 上任意一点 (r_0,θ_0) 的切线方程:设切线与极轴夹角仍为 α ,则 $r(\theta_0,\theta) \cdot \sin(\alpha-\theta) = r_0(\theta_0) \cdot \sin(\alpha-\theta_0)$ 。于是根据切线和曲线在 (r_0,θ_0) 处的导数应该相等,即: $\frac{\partial r}{\partial \theta}|_{\theta=\theta_0} = \frac{\partial r_0}{\partial \theta}|_{\theta=\theta_0}$,方程左边 $\frac{\partial r(\theta_0,\theta)}{\partial \theta} = \frac{\partial r_0(\theta_0) \cdot \sin(\alpha-\theta_0)}{\sin(\alpha-\theta)} = [r_0(\theta_0) \cdot \sin(\alpha-\theta_0)](-\cot(\alpha-\theta) \cdot \csc(\alpha-\theta) \cdot -1) = r_0(\theta_0) \cdot \sin(\alpha-\theta_0) \cdot \frac{\cos(\alpha-\theta)}{\sin^2(\alpha-\theta)}$,代入 $\theta=\theta_0$,得到 $\frac{\partial r}{\partial \theta}|_{\theta=\theta_0} = r_0(\theta_0) \cdot \frac{\cos(\alpha-\theta_0)}{\sin(\alpha-\theta_0)} = \frac{r_0(\theta_0)}{\tan(\alpha-\theta_0)}$,因此

$$\begin{split} &\frac{r_0(\theta_0)}{\tan(\alpha-\theta_0)} = \frac{\partial r_0}{\partial \theta}|_{\theta=\theta_0} = r_0'(\theta_0), \ \ \text{得到} \\ &\tan(\alpha-\theta_0) = \frac{r_0(\theta_0)}{r_0'(\theta_0)}; \ \ \overline{m}(r_0,\theta_0) \text{处的切线, 与该极径} \\ &(r_0,\theta_0) \text{的夹角} \\ &\beta=\alpha-\theta_0, \ \ \text{代入上式可得} \\ &\tan\beta = \frac{r_0(\theta_0)}{r_0'(\theta_0)} \textbf{\textbf{\textbf{\textbf{\textbf{J}}}}} \end{split}$$

【我们现将 $r_0(\theta_0)$ 写作 $r(\theta)$,则 $sin\beta = \frac{r}{r^2 + r'^2}$ 以及 $cos\beta = \frac{r'}{r^2 + r'^2}$,于是根据极坐标系下的 $a_r = \ddot{r} - r\dot{\theta}^2 = \frac{d}{dt}(r'\dot{\theta}) - r\dot{\theta}^2 = (r''\dot{\theta}^2 + r'\ddot{\theta}) - r\dot{\theta}^2 = (r'' - r)\dot{\theta}^2 + r'\ddot{\theta}$ 和 $a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta} = r\ddot{\theta} + 2r'\dot{\theta}^2$,我们有 $a_n = a_\theta \cdot cos\beta - a_r \cdot sin\beta$ (以 **a** 左侧的n为正向)= $\frac{r\ddot{\theta} + 2r'\dot{\theta}^2}{r^2 + r'^2}$ r' — $\frac{(r'' - r)\dot{\theta}^2 + r'\ddot{\theta}}{r^2 + r'^2}r = \frac{(2r'^2 - r''r + r^2)\dot{\theta}^2}{r^2 + r'^2}, \quad \text{于是根据极坐标系下的}|\mathbf{v}| = \sqrt{\dot{r}^2 + (r\dot{\theta})^2} = \sqrt{(r'\dot{\theta})^2 + (r\dot{\theta})^2} = \sqrt{r'^2 + r^2\dot{\theta}^2}, \quad$ 将它们全代入: $\rho = \frac{|\mathbf{v}|^2}{a_n}$ 可得 $\rho = \frac{\sqrt{r'^2 + r^2\dot{\theta}^2}}{(2r'^2 - r''r + r^2)\dot{\theta}^2} = \frac{(r'^2 + r^2)\frac{\ddot{\theta}^2}{2}}{-r''r + 2r'^2 + r^2}, \quad$ 这样也可得到 ρ 的极坐标表示形式。 】

(3).速度空间下的自然坐标系

之前我们在(二).中,是将自然坐标系,建立在极坐标系所描绘的某个圆周上的。 因而其主矢量为j、副矢量为-i;且di 过渡到副矢量-i是通过极坐标系的规律得到的。 由于极坐标系的主矢量i对应的方向是(径向的)位矢方向,而位矢属于**坐标空间**中的基本量;现在由于自然坐标系的主矢量同向于速度方向,不再是位矢方向,基本量也不再是位矢,所以应摒弃极坐标系所属于的**坐标空间**来描绘自然坐标系,转而进入**速度空间**。【直角坐标系、极坐标系均属于二维的坐标空间;二维的速度空间也可表示为直角坐标系和极坐标系等】

速度空间,即相当于将坐标空间中,圆周上的v_θ、其他曲线上的v,这些切线方向的速度矢量,平行移动,使得其起点与坐标空间的原点重合,并修改坐标空间的坐标轴上刻度单位为速度单位。最终,让坐标空间所描绘的曲线上的每一点的速度矢量,均以速度空间的位矢来呈现。——这样一来,坐标空间的每一段位移,除以对应的时间间隔,便对应着速度空间中的一条位矢;而速度空间中的每一段位移,除以对应的时间间隔,便对应着加速度空间中的一条位矢,以此规律继续。【注:位矢是以原点为起点的,位移是两个位矢的矢量差,起点不一定在原点】

因此,**速度空间**中的自然坐标系,若用**速度空间**中的极坐标系来描述的话,其径向方向可直接用**i**表示;而不像**坐标空间**中的自然坐标系,得用**坐标空间**中的极坐标系的**j**表示。那么仍然参照极坐标系的规律,自然坐标系在**速度空间**中的副矢量为**j**,且仍有dian

那么**坐标空间**的 $\mathbf{v}_{\theta} = v_{\theta}$ **j**便拓展为**速度空间**的 $\mathbf{v} = v_{\mathbf{i}} = \frac{ds}{dt}$ **i**。其中 ds 为**恒正的弧微分** (修正后的),因此 $\mathbf{v} = \frac{ds}{dt}$ 会因时间的单向增加而恒正。——这其实也就对应了**坐标空间**中的极坐标系的 $\mathbf{r} = \mathbf{r} \mathbf{i}$,中的r被规定为恒正一样。

那么 $\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d(\mathbf{v})}{dt} = \dot{\mathbf{v}}\mathbf{i} + \mathbf{v}\mathbf{i} = \dot{\mathbf{v}}\mathbf{i} + \mathbf{v}\mathbf{j}\dot{\boldsymbol{\theta}}$,其中 $\dot{\boldsymbol{\theta}} = \frac{ds}{dt} \cdot \frac{d\theta}{ds} = \mathbf{v} \cdot \frac{1}{\frac{ds}{d\theta}}$,其中,速度空间中的d θ = **坐标空间**中的d α ,即速度空间中速度曲线上相邻位矢的极角变化量= **坐标空间**中坐标曲线上相邻切点的切线与 x 轴的夹角的变化量。而由于 $\frac{ds}{d\theta}$,中的ds为已修正来以适用于自然坐标系的**弧微分**、d θ 又= **坐标空间**中的d α ——那么自然坐标系在**速度空间**中的 $\frac{ds}{d\theta}$ = 自然坐标系在**坐标空间**中的 $\frac{ds}{d\alpha}$ (二者的ds均是修正后的)= $\rho_0 = \frac{(1+y'^2)^{\frac{3}{2}}}{y''} \cdot \frac{dx}{|dx|} = \frac{(r'^2+r^2)^{\frac{3}{2}}}{-r''r+2r'^2+r^2} \cdot \frac{d\theta}{|d\theta|} = \frac{(x^2+\dot{y}^2)^{\frac{3}{2}}}{\dot{x}\dot{y}-\dot{x}\dot{y}} \cdot \frac{dt}{|dt|}$ 。

因此自然坐标系在**速度空间**中的 $\mathbf{a}=\dot{\mathbf{v}}\mathbf{i}+v\mathbf{j}v\cdot\frac{1}{\frac{ds}{d\theta}}=\dot{\mathbf{v}}\mathbf{i}+\frac{v^2}{\rho_0}\mathbf{j}$ 。 其中的 \mathbf{i} , \mathbf{j} 为**速度空间**中的极坐标系的单位矢量, ρ_0 为**速度空间**或**坐标空间**中的自然坐标系的**曲率半径**,它的值可由**坐标空间**中的各种坐标系下的曲率半径表达式 $\frac{(1+y'^2)^{\frac{3}{2}}}{y''},\frac{(r'^2+r^2)^{\frac{3}{2}}}{(-r''r+2r'^2+r^2)},\frac{(\dot{\mathbf{x}}^2+\dot{\mathbf{y}}^2)^{\frac{3}{2}}}{\dot{\mathbf{x}}\dot{\mathbf{y}}-\dot{\mathbf{x}}\dot{\mathbf{y}}}$ 转化而来:分别乘以 $\frac{dx}{|dx|},\frac{d\theta}{|dx|},\frac{dt}{|dt|}$ 。 其中, $\mathbf{a}_t=\dot{\mathbf{v}}\mathbf{i}$,称为切向加速度; $\mathbf{a}_n=\frac{v^2}{\rho_0}\mathbf{j}$,称为法向加速度,它($\frac{v^2}{\rho_0}$ 与 \mathbf{j} 之积)总指向内法向(曲线凹侧),但 \mathbf{j} 却总指向 \mathbf{i} 的左侧。

【当然,一般的教科书上采用的是 $\mathbf{a} = \dot{\mathbf{v}} \mathbf{i} + \frac{\mathbf{v}^2}{|\rho|} \mathbf{j}$,其中 $|\rho| = \frac{(\mathbf{i} + \mathbf{y}'^2)^{\frac{3}{2}}}{|\mathbf{y}''|} = \frac{(\mathbf{r}'^2 + \mathbf{r}^2)^{\frac{3}{2}}}{|-\mathbf{r}''\mathbf{r} + 2\mathbf{r}'^2 + \mathbf{r}^2|} = \frac{(\dot{\mathbf{x}}^2 + \dot{\mathbf{y}}^2)^{\frac{3}{2}}}{|\dot{\mathbf{x}}\dot{\mathbf{y}} - \dot{\mathbf{x}}\dot{\mathbf{y}}|} [\mathbf{b} > 0$,且其中的 \mathbf{i} 保持"速度空间中的极坐标系的主矢量"含义不变,但 \mathbf{j} 必须与 \mathbf{b} 的调,因而在含义上为"内法向:指向曲线凹侧"——我们可以这么推导:二者的 \mathbf{a} 得相同,因此 $\dot{\mathbf{v}}\mathbf{i} + \frac{\mathbf{v}^2}{|\rho|} \mathbf{j} = \dot{\mathbf{v}}\mathbf{i} + \frac{\mathbf{v}^2}{\rho_0} \mathbf{j}$,因此 $\frac{\mathbf{v}^2}{|\rho|} \mathbf{j} = \frac{\mathbf{v}^2}{\rho_0} \mathbf{j}$,于是 $\mathbf{j} = \frac{|\rho|}{\rho_0} \mathbf{j}$;而 $\frac{|\rho|}{\rho_0} = \frac{(\mathbf{i} + \mathbf{y}'^2)^{\frac{3}{2}}}{(\mathbf{i} + \mathbf{y}'^2)^{\frac{3}{2}}} = \frac{\mathbf{y}''}{|\mathbf{y}''|} \frac{d\mathbf{x}}{|\mathbf{d}\mathbf{x}|} = \frac{-\mathbf{r}''\mathbf{r} + 2\mathbf{r}'^2 + \mathbf{r}^2}{|\mathbf{d}\theta|} \frac{d\theta}{|\mathbf{x}}\mathbf{y} - \dot{\mathbf{x}}\dot{\mathbf{y}}|} \frac{d\mathbf{t}}{|\mathbf{d}\mathbf{t}|}$,再根据 $\mathbf{y}'' = \frac{d\mathbf{y}'}{d\mathbf{x}} = \frac{d(\tan\alpha)}{d\alpha} \cdot \frac{d\alpha}{d\alpha} = \sec^2\alpha \cdot \frac{d\alpha}{d\alpha}$,可得 $\frac{|\rho|}{\rho_0} = \frac{\mathbf{y}''}{|\mathbf{y}''|} \frac{d\mathbf{x}}{|\mathbf{d}\mathbf{x}|} = \frac{d\alpha}{|\mathbf{d}\alpha|} \frac{d\alpha}{|\mathbf{d}\alpha|}$,于是 $\mathbf{j} = \frac{d\alpha}{|\mathbf{d}\alpha|} \mathbf{j}$ —即当 $\mathbf{d}\alpha > 0$,即曲线的切线往逆时针方向旋转时, $\mathbf{j} = -\mathbf{j}$,指向 \mathbf{i} 的左侧;当 $\mathbf{d}\alpha < 0$,即曲线的切线往顺时针方向旋转时, $\mathbf{j} = -\mathbf{j}$,指向 \mathbf{i} 的右侧——这样—来, \mathbf{j} 就总指向曲线凹侧了!

【注意 $\mathbf{j} = \frac{d\alpha}{|d\alpha|}$ **j**中的**j**是黑色的,这与之前的 $\mathbf{k}(d\theta) = \delta(d\theta) \cdot \mathbf{k} = \frac{d\theta}{|d\theta|} \cdot \mathbf{k}$ 和 $d\theta \cdot \mathbf{j} = |d\theta| \cdot \mathbf{j}$ 有异曲同工之妙;不得不说,这样的表示方式很"物理",它很形象;但若要落到纯粹的数学运算时, $\mathbf{a} = \dot{\mathbf{v}}\mathbf{i} + \frac{\mathbf{v}^2}{|\rho|}\mathbf{j}$ 不见得有 $\mathbf{a} = \dot{\mathbf{v}}\mathbf{i} + \frac{\mathbf{v}^2}{\rho_0}\mathbf{j}$ 好,因为其副矢量 $\mathbf{j} = \frac{d\alpha}{|d\alpha|}\mathbf{j}$ 有两个方向:具体是哪个方向,它又如何用数学表达式确定,连数学系的学生对此都会懵逼,何况物理系的学生。所以自然坐标系下的轨迹方程的列写,最好采用 $\mathbf{a} = \dot{\mathbf{v}}\mathbf{i} + \frac{\mathbf{v}^2}{\rho_0}\mathbf{j}$ 形式】

例 2: 一质点沿圆滚线 s=4asinθ的弧线运动,如θ为常数,则其加速度也为常数。 其中θ为圆滚线某点 P上的切线与 x 轴(极轴)所成的角度,s 为 P点与曲线最低点之间 的曲线弧长。

对 "s=4asinθ" 的微分,看上去像是"用平面极坐标系表示的弧微分",并且似 乎曲线最低点就是 s=0 的参考点。

但实际上并不是:因为θ是速度空间中,作为极径的速度矢量,对极轴 x 轴的成角;同时, s 也是(切向)速度对时间的积分。——当然,由于θ是速度空间的成分的同时, s 这个量并不属于纯粹的速度空间中的基本量,因此并不能将该式简单归纳于速度空间中的表达式;如果将 s 换成 s=v, v 与θ便构成了纯粹的速度空间的基本量之间的关系。

解: 题中的加速度表示总加速度 **a**,包括了 \mathbf{a}_t , \mathbf{a}_n 。首先, \mathbf{a}_t 很好求: $\mathbf{v}=\dot{\mathbf{s}}=4a\cos\theta\cdot\dot{\theta}=4aw\cdot\cos\theta$ (其中 $\dot{\theta}=\mathbf{w}$ 是个常数,它仍是速度空间的量), $\mathbf{a}_t=\dot{\mathbf{v}}=-4aw^2\cdot\sin\theta$ 。然后再是: $\mathbf{a}_n=\frac{\mathbf{v}^2}{|\rho|}=\frac{(4aw\cdot\cos\theta)^2}{ds/d\theta}=\frac{(4aw\cdot\cos\theta)^2}{4a\cos\theta}=4aw^2\cdot\cos\theta$ (现在我们知道它给 \mathbf{s} - $\mathbf{\theta}$ 的 用意所在了:这是最方便求曲率半径的表达式)。于是, $\mathbf{a}=\sqrt{a_t^2+a_n^2}=4aw^2$ 。

例 3: 质点 P 沿螺旋线 x=2sin4t,y=2cos4t,z=4t 运动,求速度、加速度及轨道的曲率半径。

$$\begin{aligned} & v = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} = \sqrt{(4y)^2 + (-4x)^2 + 4^2} = \sqrt{4^2 \cdot 4 + 4^2} = 4\sqrt{5}; \ a = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2} = \\ & \sqrt{(-16x)^2 + (-16y)^2 + 0^2} = 16\sqrt{4} = 32; \ \text{由于线速度是个常数,则切向加速度} \\ & a_t = \dot{v} = 4\dot{\sqrt{5}} = 0, \ \text{如此—来} \\ & a_n = \sqrt{a_t^2 + a_n^2} = a = 32, \ \text{于是} |\rho| = \frac{v^2}{a_n} = \frac{(4\sqrt{5})^2}{32} = 2.5. \end{aligned}$$

1.3 平动参考系

物体相对于"静止"参考系 S 的运动,叫**绝对运动**,对应的 P 对 S 的运动速度称为**绝对速度 v**;物体相对于运动参考系 S'的运动,叫**相对运动**,对应的 P 对 S'的运动速度称为**相对速度 v**';物体随 S'系运动而具有的,那部分相对于 S 系的运动,叫**牵连运动**,对应的 S'对 S 的运动速度称为**牵连速度v**₀。——对于平动、转动而言,速度 **v** 可矢量叠加: $\mathbf{v}=\mathbf{v}_0+\mathbf{v}'$;但在有限转动时,角速度 **w** 却不能: $\mathbf{w}\neq\mathbf{w}_0+\mathbf{w}'$ 。(因为 $\mathbf{w}_0+\mathbf{w}'\neq\mathbf{w}'+\mathbf{w}_0$)

这就与电动力学中的 $\mathbf{r}=\chi-\chi'$ 所对应的 $\chi=\chi'+\mathbf{r}$ 不同了(其中 χ' 为 $\mathbf{S'}$ 系对 \mathbf{S} \mathbf{S} \mathbf{F} 为 $\mathbf{S'}$ \mathbf{S} \mathbf{S} \mathbf{F} \mathbf{F} 为 $\mathbf{S'}$ \mathbf{S} \mathbf{S}

例 4:某人以 4km/h 的速率向东前进,感觉风从正北吹来;如将速率增加一倍,则感觉风从东北方向吹来。求风速及风向。

S 系是地面,S'系是人,P 是风;且 P 对地 S 的绝对速度 \mathbf{v} ,在 S'变速前后,大小方向均不改变;设 S 系的 \mathbf{x} 轴朝向东, \mathbf{y} 轴朝向北,则:S'系对 S 系的牵连速度 \mathbf{v}_0 ,从 4 i 变到 8 i,P 对 S'系的相对速度 \mathbf{v}' 对应着从 $\mathbf{v}-\mathbf{v}_0=\mathbf{v}-4\mathbf{i}=-m\mathbf{j}$ 的从正北向吹来,变为 $\mathbf{v}-\mathbf{v}_0'=\mathbf{v}-8\mathbf{i}=-4\mathbf{i}-m\mathbf{j}$ 的从东北方向吹来。

由于"东北"暗示着 45° 的 \checkmark 方向,因此m=4,于是 $\mathbf{v}=\mathbf{v}_0+(-m_{\mathbf{j}})=4\mathbf{i}-4\mathbf{j}$ 。可见风对地而言,是从 \backslash 方吹下来 \backslash 的。即风速为 $4\sqrt{2}$ 、风向为西北风。

例 5:小船 M 被水流冲走后,用一绳将它拉回岸边,设水流速度 v_1e_x 以及拉绳速度 $-v_2e_r$ 二者均恒定不变。求小船的轨迹。

我们将 $v_1 e_x$ 分解为 e_r 方向和 e_θ 方向:由于 $v_1 e_x$ 同向于 e_x ,因此流速 $v_1 e_x$ 与极坐标系下 e_r 的夹角,即为极角 θ ;利用即坐标系下的速度表示式 \mathbf{v}_r = $\dot{\mathbf{r}} e_r$ = $(-v_2 + v_1 \cos\theta) e_r$, \mathbf{v}_θ = $r\dot{\theta} e_\theta$ = $-v_1 \sin\theta \cdot e_\theta$ 。于是我们有 $\dot{\mathbf{r}}$ = $-v_2 + v_1 \cos\theta$ 以及 $r\dot{\theta}$ = $-v_1 \sin\theta$ 。

右式除以左式,得 $\frac{r}{dr}d\theta = \frac{-v_1 \sin \theta}{-v_2 + v_1 \cos \theta}$,于是 $\frac{dr}{r} = \frac{-v_2 + v_1 \cos \theta}{-v_1 \sin \theta} \cdot d\theta = (\frac{v_2}{v_1} \csc \theta - \cot \theta) \cdot d\theta$,两边积分,得 $\ln r = \frac{v_2}{v_1} \ln(\tan \frac{\theta}{2}) + \ln|\csc \theta - \cot \theta| + C = \ln(\tan \frac{v_2}{2} \frac{\theta}{2}) + \ln(\csc \theta - \cot \theta) + C$ 。其中 C 由初始条件确定: $C = \ln r_0 - \ln(\tan \frac{v_2}{v_1} \frac{\theta_0}{2}) - \ln(\csc \theta_0 - \cot \theta_0)$ 。

将 C 带回原式,得: $\ln \frac{r}{r_0} = \ln(\tan^{\frac{v_2}{v_1}} \frac{\theta}{2} \cdot \cot^{\frac{v_2}{v_1}} \frac{\theta_0}{2}) + \ln(\frac{\csc\theta - \cot\theta}{\csc\theta_0 - \cot\theta_0})$ 。 于是便得到了船的轨迹方程 $r = r_0 \cdot \tan^{\frac{v_2}{v_1}} \frac{\theta}{2} \cdot \cot^{\frac{v_2}{v_1}} \frac{\theta_0}{2} \cdot \frac{\csc\theta - \cot\theta}{\csc\theta_0 - \cot\theta_0}$ 。

1.4 质点运动定律

1.牛顿运动定律

牛顿第一定律(惯性定律): 质点(物体)如不受到其他物体作用,速度(运动状态)保持不变。这种性质(惯性)是物体的固有属性。

牛顿第二定律:适当选择单位后,F=ma。【实际上更通用的是 $F=\frac{dP}{dt}$ 】

牛顿第三定律: $\mathbf{F}_{BA} = -\mathbf{F}_{AB}$ — B 对 A 的反作用力 \mathbf{F}_{BA} ,与 A 对 B 的作用力 \mathbf{F}_{AB} 大 小相等、方向相反、在同一条直线上。它们互相以对方的存在为自己存在的前提,同时生灭,是一种普遍存在的矛盾。

2.相对性原理

(非)惯性参考系: 牛顿运动定律(不)能成立的参考系。

伽利略(/力学)相对性原理:不能借助任何力学实验来判断参考系是静止还是做匀速直线运动。

以上二者结合后所得结论:相对于惯性参考系作匀速直线运动的一切参考系都是惯性参考系,牛顿运动定律都成立。(::我们知道牛顿运动定律成立于相对于我们静止的参考系)

爱因斯坦相对性原理:一切惯性参考系对所有物理过程(电磁的、光学的)都是等价的。

1.5 质点运动微分方程

1.运动微分方程的建立

若质点被限制在某曲线 or 曲面上运动,称其为**非自由质点**。该线 or 该面,叫**约束**; 该线 or 该面的方程,叫**约束方程**。

解非自由质点的运动(约束运动),通常用约束反作用力 R 来替代约束,以将其视为自由质点。(2).约束反作用力一般未知,它不仅取决于约束本身,也与质点在约束上的其他力,and 质点的运动状态有关。(3).单靠约束反作用力本身,不能引起质点的任何运动,所以它常被称为被动力 or 约束力 R,而不是非约束力的那些主动力 F。

约束力通常作用于质点与曲线 or 曲面的接触点上,无摩擦力 f 的情况下,它(R)沿着曲线 or 曲面的法线(对于曲线而言,这里的法线不一定在其密切平面内:对于线约束而言, $R=R_n+R_b$; 对于面约束而言 $R=R_n$); 在有 f 时,它(R)和法线成一定角度的倾斜(此时,对于线约束而言, $R=R_n+R_b+R_t$; 对于面约束而言 $R=R_n+R_t$)。

①.(非自由)质点微分方程的一般形式为: $m\ddot{\mathbf{r}}=\mathbf{F}(\mathbf{r},\dot{\mathbf{r}},t)+\mathbf{R}$ 。(其中 \mathbf{F} 之所以不与 $\ddot{\mathbf{r}}$ 有关,是因为这部分可挪到左边去)——当 $\mathbf{R}=\mathbf{0}$ 时,方程退化为自由质点的运动微分方程: $m\ddot{\mathbf{r}}=\mathbf{F}(\mathbf{r},\dot{\mathbf{r}},t)$,它是可以完全求解的: 一种方法是利用直角坐标系,将其写为三个标量二阶常微分方程: $m\ddot{\mathbf{x}}=\mathbf{F}_{\mathbf{x}}(\mathbf{r},\dot{\mathbf{r}},t)=\mathbf{F}_{\mathbf{x}}(\mathbf{x},\mathbf{y},\mathbf{z},\dot{\mathbf{x}},\dot{\mathbf{y}},\dot{\mathbf{z}},t)$,其中的 \mathbf{x} 可替换为 \mathbf{y},\mathbf{z} ,二次积分后会出现共 $\mathbf{3}$ *2=6 个积分常数,它们可由质点的初始条件 $\mathbf{x}_0,\mathbf{y}_0,\mathbf{z}_0,\mathbf{u}_0,\mathbf{y}_0,\mathbf{w}_0$ 确定;

如果质点做平面曲线运动,总可取运动平面为 x-0-y 面,因此利用前两式即可(不过 \mathbf{F}_x , \mathbf{F}_y 中无 \mathbf{z} , $\dot{\mathbf{z}}$),但同时也可利用平面极坐标系解决(如行星运动问题): ma_r = $m(\ddot{\mathbf{r}} - r\dot{\theta}^2)$ = \mathbf{F}_r (\mathbf{r} , θ , $\dot{\mathbf{r}}$, $\dot{\theta}$, $\dot{\mathbf{t}}$),以及 ma_θ = $m(r\ddot{\theta} + 2\dot{r}\dot{\theta})$ = \mathbf{F}_θ (\mathbf{r} , θ , $\dot{\mathbf{r}}$, $\dot{\theta}$, $\dot{\mathbf{t}}$)。

当 **R**≠**0** 时,对任何坐标系而言,该矢量方程的标量方程式数目,均少于未知数数目,还需要额外加入约束方程作为条件,才能求解。下面以线约束问题为例:

②.对于线约束问题,采用自然坐标系,设立内禀方程更方便: 质点在主动力 F 的作用下,沿光滑(不是指数学方程上一阶导连续,而是物理情境下无摩擦: t 方向无 f) 的空间曲线 AB 运动,将非自由质点微分方程的两端,分别投影到e_t、e_n、e_b(切线、主法线、副法线)方向(其中e_n相当于平面自然坐标系下的黑色 j, 以凹侧为正),就有:

 $m\dot{v}=\mathbf{F_t};\ m\frac{v^2}{|\rho|}=\mathbf{F_n}+\mathbf{R_n};\ 0=\mathbf{F_b}+\mathbf{R_b};\ 光滑线约束在用自然坐标系\ or\ 内禀方程求解$ 时,v和 \mathbf{R} 可分开解算:一方面利用已知的 $\mathbf{F_t}$ 和初始条件 v_0 ,代入第一个切向方程,求出v(确定它的那个积分常数);再将v和利用约束方程所得的 $|\rho|$,代入第二个主法向方程($\mathbf{F_n}$ 已知),得到 $\mathbf{R_n}$;再利用已知的 $\mathbf{F_b}$ 得到 $\mathbf{R_b}$ 。

如果是不光滑的线约束,则第一式右端应加上摩擦力 $\mathbf{f} = \mathbf{R_t} = \mu \sqrt{R_n^2 + R_b^2} (-\frac{\mathbf{v}}{v}) = \mu \sqrt{R_n^2 + R_b^2} (-\mathbf{i})$ 的标量部分: $-\mu \sqrt{R_n^2 + R_b^2}$ 。

2.运动微分方程的解

明确哪些力是已知的(大小、方向),需求解哪些物理量。若干质点受约束而连在一起的运动问题,本是**质点组的动力学**问题。不过可以通过对每一质点做出单独的草图,即用**隔离物体法**,分别对每一质点进行**受力情况**和**运动情况**的分析。

一般而言, **F**(**r**,**r**,**t**)多是三个量的函数, 对应的微分方程求解起来很麻烦; 但在有些问题中, **F** 常常只是其中一个变量的函数:

a.**F**(t)只是时间 t 的函数:如自由电子在沿 x 轴的振荡电场中的运动。

b.**F**(r)只是坐标r的函数:如三维谐振动。

矢量方程在某一分方向上的标量方程: $m\ddot{\mathbf{x}} = \mathbf{F_x}(\mathbf{x}) = -k_\mathbf{x}\mathbf{x}$, 于是 $\ddot{\mathbf{x}} = -\frac{k_\mathbf{x}}{m}\mathbf{x} = -w_\mathbf{x}^2\mathbf{x}$ 。 两边分别乘以2 $\dot{\mathbf{x}}$ 后积分,得到 $\dot{\mathbf{x}}^2 = -w_\mathbf{x}^2\mathbf{x}^2 + C_\mathbf{x} = w_\mathbf{x}^2(\frac{C_\mathbf{x}}{w_\mathbf{x}^2} - \mathbf{x}^2)$,于是 $\dot{\mathbf{x}} = \pm w_\mathbf{x}\sqrt{\frac{C_\mathbf{x}}{w_\mathbf{x}^2} - \mathbf{x}^2}$,

$$\begin{split} &\frac{dx}{\sqrt{\frac{C_x}{w_x^2}-x^2}} = \pm w_x dt, \ \, \pm \frac{d(\frac{w_x}{\sqrt{C_x}}x)}{\sqrt{1-(\frac{w_x}{\sqrt{C_x}}x)^2}} = w_x dt, \ \, 得到 \ \, asin(\frac{w_x}{\sqrt{C_x}}x) = w_x t + C_{x1}, \ \, 以及 \ \, acos(\frac{w_x}{\sqrt{C_x}}x) \\ &= w_x t + C_{x2} 得到 \ \, x = \frac{\sqrt{C_x}}{w_x} sin(w_x t + C_{x1}), \ \, 以及 \ \, x = \frac{\sqrt{C_x}}{w_x} cos(w_x t + C_{x2})_{\circ} \end{split}$$

c.F(r)只是速度r的函数:如阻力介质中运动的抛射体。

阻力 $\mathbf{R}_{\mathbf{t}}(\mathbf{v})$ 方向沿着轨道切线,并与 \mathbf{v} 反向。采用内禀方程,设 θ 为 \mathbf{v} 与 \mathbf{x} 轴的夹角(即速度空间的 \mathbf{i} 与坐标空间中的 \mathbf{i} 的夹角)。那么其速度空间的 \mathbf{j} 即速度空间中 \mathbf{e}_{θ} 、自然坐标系中的 $\mathbf{e}_{\mathbf{n}}$ (它俩均指向轨迹凹侧)]方向与坐标空间中的 \mathbf{j} 的夹角,也是 θ ——即 $\mathbf{e}_{\mathbf{n}}$ 与 $\mathbf{m}\mathbf{g}$ 的夹角也是 θ 。【只考虑重力,不考虑水平的风力加速度==】

于是, $m\dot{v}=-\mathbf{R_t}(v)-mgsin\theta$; $m\frac{v^2}{|\rho|}=mgcos\theta$ 。由于 $d\theta<0$ (顺时针 shrink)、ds>0(s 向 x 轴正向延伸),因此 $\rho=\frac{ds}{d\theta}<0$,于是二式中的 $|\rho|=-\rho=-\frac{ds}{d\theta}$; 且一式中 $\dot{v}=\frac{dv}{dt}=\frac{dv}{ds}\frac{ds}{dt}=v\frac{dv}{ds}$ 。【注:后式很常用;它可以配合 $sin\theta=\pm\frac{dy}{ds}$ 、 $cos\theta=\pm\frac{dx}{ds}$ (这两式中如果认为 ds 并非恒正,则 ds 与 dx 同号;不过无论是否以为 ds 恒正,都需要做一下正负判断),代入 $\mathbf{R_t}(v)=0$ 的切向关系式m $\dot{v}=-\mathbf{R_t}(v)-mgsin\theta=-mgsin\theta$ 中,以将 dt 替换为 ds,并消去 ds 后,两边分别对 v 和 x(或 y)积分】

代入便有
$$mv\frac{dv}{ds}$$
= $-\mathbf{R_t}(v)$ - $mgsin\theta$; $m\frac{v^2}{-\frac{ds}{d\theta}}$ = $mgcos\theta$, 左式除以右式, $\frac{mvdv}{-mv^2d\theta}$ = $\frac{-\mathbf{R_t}(v)-mgsin\theta}{mgcos\theta}$, 即有 $\frac{dv}{v}$ = $\frac{\mathbf{R_t}(v)+mgsin\theta}{mgcos\theta}$ d θ 。若该式的解为 $v=f(\theta)$,则 $\frac{dx}{d\theta}$ = $\frac{dx}{ds}\frac{ds}{d\theta}$ = $cos\theta$ ·(-| ρ |),根据 $m\frac{v^2}{|\rho|}$ = $mgcos\theta$,得 $\frac{v^2}{g}$ = $|\rho|cos\theta$,于是 $\frac{dx}{d\theta}$ = $-\frac{v^2}{g}$ = $-\frac{f^2(\theta)}{g}$;同样, $\frac{dy}{d\theta}$ = $\frac{dy}{ds}\frac{ds}{d\theta}$ = $sin\theta$ ·(-| ρ |)=- $|\rho|cos\theta$ · $tan\theta$ = $-\frac{v^2}{g}$ · $tan\theta$ = $-\frac{f^2(\theta)}{g}$ · $tan\theta$; 同样, $\frac{dt}{d\theta}$ = $\frac{dt}{ds}\frac{ds}{d\theta}$ = $\frac{1}{v}$ (-| ρ |)= $-\frac{|\rho|cos\theta}{v}$ · $sec\theta$ = $-\frac{v^2}{g}$ · $sec\theta$ = $-\frac{f(\theta)}{g}$ · $sec\theta$.

三个方程分别对 θ 积分,便可得到 $(x(\theta),y(\theta))$ 轨道方程,以及运动规律 $x(t(\theta)),y(t(\theta))$ 。

1.6 非惯性系动力学

1.加速平动参考系中的运动

根据 1.3.,有 $\mathbf{a} = a_0 + \mathbf{a'}$;根据 1.4.牛二, $\mathbf{F} = \mathbf{ma}$ 只适用于惯性系。——那么 $\mathbf{ma} = \mathbf{ma}_0 + \mathbf{ma'}$,得到 $\mathbf{F} = \mathbf{ma}_0 + \mathbf{ma'}$,可见由于 $\mathbf{S'}$ 系中没有 $\mathbf{F} \neq \mathbf{ma'}$ 成立,因而牛顿运动 定律对非惯性参考系(相对于 \mathbf{S} 以 \mathbf{a}_0 运动的 $\mathbf{S'}$ \mathbf{S})不再成立。

2.惯性力

为了使得牛二在形式上对于非惯性系仍成立,将上式改写为 $\mathbf{F} - \mathbf{ma}_0 = \mathbf{ma'}$,此时 $-\mathbf{ma}_0$ 将也看作一种力,其是由参考系 S'相对于惯性系 S 做变速运动引起的,方向与 \mathbf{a}_0 相反,称作惯性力。

惯性力不是物体间的相互作用,它没有施力者,也就不存在与惯性力对应的反作 用力。

1.7 功与能

- (1).功和功率: $W = \int_{A}^{B} \mathbf{F} \cdot d\mathbf{r}$; $\dot{W} = \mathbf{F} \cdot \mathbf{v}$ 。
- (2).能:理论力学主要研究机械能,包括动能 T,和势能 V。
- (3).保守力、非保守力(涡旋力)、耗散力(总作负功,消耗能量)

若 $\oint_{\mathbf{F}} \mathbf{F} \cdot d\mathbf{L} = 0$ 对于任意l均成立,则 $\iint_{\mathbf{S}} \mathbf{\nabla} \times \mathbf{F} \cdot d\mathbf{S} = 0$ 对于任意 \mathbf{S} 均成立,则 $\mathbf{\nabla} \times \mathbf{F} = \mathbf{0}$,即 \mathbf{F} 是保守力。在这样的前提下,必定存在一个单值、有限、可微的函数 \mathbf{V} :

使得类似 $\mathbf{E} = -\nabla \mathbf{V}$ 也,有 $\mathbf{F} = -\nabla \mathbf{V}$ 这是因为($f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$) $\cdot (dx \mathbf{i} + dy \mathbf{j} + dz \mathbf{k}) = \mathbf{F} \cdot d\mathbf{L} = -d\mathbf{V} = -(\frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} dz) = -(\frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k}) \mathbf{V} \cdot (dx \mathbf{i} + dy \mathbf{j} + dz \mathbf{k}) = -\nabla \mathbf{V} \cdot d\mathbf{L}$ 。因此 $\mathbf{F} = -\nabla \mathbf{V}$ 。

否则,若 $\nabla \times \mathbf{F} \neq \mathbf{0}$,则 \mathbf{F} 为非保守力(包括耗散力);此时,同一点的势能,因与积分到此的路径有关,而谈不上有(一标量函数作为该点的)势能了。那么 \mathbf{F} 沿某一路径做的功,便与路径有关,因而得老老实实使用(三维的)第二型曲线积分来计算了。

(4).势能: $W = \int_A^B \mathbf{F} \cdot d\mathbf{r} = -(V_B - V_A)$ 。重力势能: 常令海平面上的势能为 0; 引力势能: 常令无穷远处的势能为 0; 弹性势能: 没发生形变时的势能为 0。

1.8 质点动力学的基本定理和基本守恒定律

1.动量定理&动量守恒定律

动量定理的微分形式: $\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \dot{\mathbf{p}}$ (同样适用于 m 修正后的相对论情形; p小写), 若进一步写成分量形式: $\mathbf{F}_x + \mathbf{F}_y + \mathbf{F}_z = \dot{\mathbf{p}}_x + \dot{\mathbf{p}}_y + \dot{\mathbf{p}}_z$, 即 $\mathbf{F}_x \dot{\mathbf{i}} + \mathbf{F}_y \dot{\mathbf{j}} + \mathbf{F}_z \dot{\mathbf{k}} = \dot{\mathbf{p}}_x \dot{\mathbf{i}} + \dot{\mathbf{p}}_y \dot{\mathbf{j}} + \dot{\mathbf{p}}_z \dot{\mathbf{k}}$, 则分别有: $\mathbf{F}_x = \dot{\mathbf{p}}_x$, $\mathbf{F}_y = \dot{\mathbf{p}}_y$, $\mathbf{F}_z = \dot{\mathbf{p}}_z$ 。

动量定理的积分形式: 冲量 $\mathbf{I} = ^{\Delta} \mathbf{p} = \mathbf{p}_2 - \mathbf{p}_1 = \int_{t_1}^{t_2} \mathbf{F} \cdot dt$

动量守恒定律:若**F=0**,则**p=0**,则**p=常**矢量**C**,即 p_x **i** + p_y **j** + p_z **k**= C_1 **i** + C_2 **j** + C_3 **k**,及其所对应的 p_x = C_1 , p_y = C_2 , p_z = C_3 。【此时也有v=常矢量】

若仅有**F**朝**i**的投影为 0,即**F**_x=**0**,则**F**_x= $\dot{\mathbf{p}}_x$ =0,则**p**到**i**轴的投影 \mathbf{p}_x 为常数,得到 \mathbf{p}_x =常矢量 \mathbf{C}_1 = \mathbf{C}_1 **i**。【更一般地,若力在某一有向轴l方向上的投影=0,即**F**_l=0,则将 **F**= $\dot{\mathbf{p}}$ 方程两边点乘该轴方向上的单位矢量l,即有 0= \mathbf{F}_l = $\mathbf{F} \cdot l$ = $\dot{\mathbf{p}} \cdot l$ = $\dot{\mathbf{p}}_l$ =0,得到 \mathbf{p}_l =常 矢量 \mathbf{C}_l 】

2.力矩&动量矩

动量矩 $L(或 J)=r \times$ 动量p,力矩 $M=r \times$ 力 F。 【J 一般指质点系中各质点的 L 之和】

我们来通过前者推导后者: $\dot{\mathbf{L}} = \frac{\mathrm{d} \mathbf{L}}{\mathrm{d} t} = \frac{\mathrm{d} \mathbf{r} \times \mathbf{p}}{\mathrm{d} t} \times \mathbf{p} + \mathbf{r} \times \frac{\mathrm{d} \mathbf{p}}{\mathrm{d} t} = \mathbf{v} \times \mathbf{p} + \mathbf{r} \times \mathbf{F} = \mathbf{r} \times \mathbf{F}$ F=M。这便是为什么我们要定义 M=r×F,为的是模仿F=p,使得设定的 M 也与L满足 M=L。

1.对于 $\mathbf{L} = \mathbf{r} \times \mathbf{p}$,其直角分量形式为 $\mathbf{L}_{\mathbf{x}} \mathbf{i} + \mathbf{L}_{\mathbf{y}} \mathbf{j} + \mathbf{L}_{\mathbf{z}} \mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \mathbf{m} \dot{\mathbf{x}} & \mathbf{m} \dot{\mathbf{y}} & \mathbf{m} \dot{\mathbf{z}} \end{vmatrix} = \mathbf{m} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \dot{\mathbf{x}} & \dot{\mathbf{y}} & \dot{\mathbf{z}} \end{vmatrix}$ 。可得" \mathbf{p} 对 O 点的动量矩在三个坐标轴上的分量": $\mathbf{L}_{\mathbf{x}} = \mathbf{m}(\mathbf{y} \dot{\mathbf{z}} - \dot{\mathbf{y}} \mathbf{z})$ 等。而又因 $\mathbf{L}_{\mathbf{x}} = \mathbf{L}_{\mathbf{x}} \mathbf{i} = \mathbf{y} \cdot \mathbf{m} \dot{\mathbf{z}} \mathbf{i} + \mathbf{z} \cdot \mathbf{m} \dot{\mathbf{y}} (-\mathbf{i}) = \mathbf{y} \cdot \mathbf{m} \dot{\mathbf{z}} (\mathbf{j} \times \mathbf{k}) + \mathbf{z} \cdot \mathbf{m} \dot{\mathbf{y}} (\mathbf{k} \times \mathbf{j}) = (\mathbf{y} \mathbf{j}) \times (\mathbf{m} \dot{\mathbf{z}} \mathbf{k}) + (\mathbf{z} \mathbf{k}) \times (\mathbf{m} \dot{\mathbf{y}} \mathbf{j}) = \mathbf{y} \times \mathbf{p}_{\mathbf{z}} + \mathbf{z} \times \mathbf{p}_{\mathbf{y}} = (\mathbf{y} + \mathbf{z}) \times (\mathbf{p}_{\mathbf{z}} + \mathbf{p}_{\mathbf{y}}) = (\mathbf{r} - \mathbf{x}) \times (\mathbf{p} - \mathbf{p}_{\mathbf{x}}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{1} \cdot \mathbf{z} - \mathbf{y}) = \mathbf{r}_{\perp} \times \mathbf{p}_{\perp} (\mathbf{z} - \mathbf{z}) = \mathbf{r}_{$

2.将
$$\mathbf{M} = \mathbf{r} \times \mathbf{F}$$
,写成分量形式: $\mathbf{M}_{x}\mathbf{i} + \mathbf{M}_{y}\mathbf{j} + \mathbf{M}_{z}\mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \mathbf{F}_{x} & \mathbf{F}_{y} & \mathbf{F}_{z} \end{vmatrix}$,也可得" \mathbf{F} 对 O

点的力矩在三个坐标轴上的分量": $M_x = yF_z - F_y z$ 等。同样,因 $M_x = M_x i = y \cdot F_z i + z \cdot F_y (-i) = y \cdot F_z (j \times k) + z \cdot F_y (k \times j) = (yj) \times (F_z k) + (zk) \times (F_y j) = y \times F_z + z \times F_y = (y + z) \times (F_z + F_y) = (r - x) \times (F - F_x) = r_\bot \times F_\bot (^\bot / 表示物理量在上i 轴的平面上的分量),因此它也可以被称为"F对各个轴的力矩"。$

——以上两点启示我们:要想求 \mathbf{F} 对某一(有向)轴线 \mathbf{I} 的力矩 \mathbf{M}_{l} ,只需要先求 \mathbf{F} 对 \mathbf{I} 上某(任意)一点的力矩(视其为 \mathbf{O} 点嘛) \mathbf{M} ,再投影至单位矢量 \mathbf{I} 即可: \mathbf{M}_{l} = \mathbf{M}_{l} · \mathbf{I} 。(而不必像 \mathbf{r}_{\perp} × \mathbf{F}_{\perp} 这样,利用 \mathbf{F} 在上轴线 \mathbf{I} 的平面上的分量 \mathbf{F}_{\perp} ,通过 \mathbf{r}_{\perp} × \mathbf{F}_{\perp} 来求 \mathbf{M}_{l})

同理,要想求"p对某轴的动量矩",先求"p对轴上某点的动量矩",再点乘<mark>单</mark>位矢量l即可得到 $L_l=p\cdot l$,再加载上单位向量l,即有 $L_l=L_l\cdot l$ 。

$$3.$$
对于 $\dot{\textbf{L}}=\textbf{M}$,即 $\frac{d(\mathbf{r} \times \mathbf{p})}{dt}=\mathbf{r} \times \mathbf{F}$,将其写为分量形式:
$$\frac{d}{dt} \begin{bmatrix} m \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \dot{\mathbf{x}} & \dot{\mathbf{y}} & \dot{\mathbf{z}} \end{bmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \mathbf{F}_{x} & \mathbf{F}_{y} & \mathbf{F}_{z} \end{bmatrix}$$
。 对应地有诸个分量式,比如 $\frac{dL_{x}}{dt}=\mathbf{M}_{x}$ 所对应的
$$\frac{d}{dt} [m(y\dot{\mathbf{z}}-\dot{\mathbf{y}}\mathbf{z})] = y\mathbf{F}_{z} - \mathbf{F}_{y}\mathbf{z}$$
。 【你可以用牛二证明之】

可见: 力和力矩是改变<mark>运动状态</mark>的原因, 力是改变<mark>平动</mark>的原因, 力矩是改变**转动**的原因。

3.动量矩定理&动量矩守恒定律

动量矩定理的微分形式: $\mathbf{M} = \frac{dL}{dt} = \dot{\mathbf{L}}$, 分量形式: $\mathbf{M}_{\mathbf{x}} = \dot{\mathbf{L}}_{\mathbf{x}}$, $\mathbf{M}_{\mathbf{y}} = \dot{\mathbf{L}}_{\mathbf{y}}$, $\mathbf{M}_{\mathbf{z}} = \dot{\mathbf{L}}_{\mathbf{z}}$.

动量矩定理的积分形式: 冲量矩= L = L_2 – t_1 = t_1 M·dt

动量矩守恒定律: 若 $\mathbf{M}=\mathbf{0}$, $\dot{\mathbf{L}}=\mathbf{0}$, 则 $\mathbf{L}=$ 常矢量 \mathbf{C}' ,即 $\mathbf{L}_{\mathbf{x}}=\mathbf{C}'_{\mathbf{1}}$, $\mathbf{L}_{\mathbf{y}}=\mathbf{C}'_{\mathbf{2}}$, $\mathbf{L}_{\mathbf{z}}=\mathbf{C}'_{\mathbf{3}}$ 。 【其中, \mathbf{M} 是针对某一固定点 O 而言的(之后我们会知道,该点可以匀速直线运动)】

若 \mathbf{F} 对 \mathbf{x} 轴的力矩,即 \mathbf{M} 在**有向轴**i上的分量 $\mathbf{M}_{\mathbf{x}}=\mathbf{0}$,则 $\mathbf{L}_{\mathbf{x}}=$ 常矢量 $\mathbf{C}_{\mathbf{1}}'=\mathbf{C}_{\mathbf{1}}'$,即 \mathbf{L} 到 \mathbf{i} 轴的投影 $\mathbf{L}_{\mathbf{x}}$ 为常数。 【其中 $\mathbf{M}_{\mathbf{x}}$ 可通过[\mathbf{y} $\mathbf{F}_{\mathbf{z}}-\mathbf{F}_{\mathbf{y}}\mathbf{z}$] \mathbf{i} 计算得到,一种特殊的情况是,若 $\mathbf{F}_{\mathbf{y}}=\mathbf{F}_{\mathbf{z}}=\mathbf{0}$,则 $\mathbf{M}_{\mathbf{x}}\equiv\mathbf{0}$ 】

【更一般地,若力矩 **M** 在某一有向轴l方向上的投影=0,即 M_l =0,则将M= \dot{L} 方程 两边点乘该轴方向上的单位矢量l,即有 0= M_l =M·l= \dot{L} ·l= \dot{L} ,=0,得到 L_l =常矢量 C_l

在有心力的作用下,质点始终在一平面内运动:由于 \mathbf{r} 与 \mathbf{F} 始终共线,则 $\mathbf{L} = \mathbf{M} = \mathbf{r}$ × $\mathbf{F} = \mathbf{0}$,于是 $\mathbf{L} = \mathbf{C}'$,大小方向不随时间改变(但运动轨迹还有可能辗转于各个互相平行的平面上?);若进一步将坐标系原点,取为力所通过的那个定点(力心),则由于 $\mathbf{L}_{\mathbf{x}} = \mathbf{C}_1'$, $\mathbf{L}_{\mathbf{y}} = \mathbf{C}_2'$, $\mathbf{L}_{\mathbf{z}} = \mathbf{C}_3'$,可得 $\mathbf{m}(\mathbf{y}\dot{\mathbf{z}} - \dot{\mathbf{y}}\mathbf{z}) = \mathbf{C}_1'$, $\mathbf{m}(\mathbf{z}\dot{\mathbf{x}} - \dot{\mathbf{z}}\mathbf{x}) = \mathbf{C}_2'$, $\mathbf{m}(\mathbf{x}\dot{\mathbf{y}} - \dot{\mathbf{x}}\mathbf{y}) = \mathbf{C}_3'$ 。

于是 $C_1'x + C_2'y + C_3'z = m(y\dot{z} - \dot{y}z)x + m(z\dot{x} - \dot{z}x)y + m(x\dot{y} - \dot{x}y)z = (y\dot{z} - \dot{y}z)x + (z\dot{x} - \dot{z}x)y + (x\dot{y} - \dot{x}y)z = 0$ 。该方程代表空间直角坐标系下的平面方程,因此质点只能在这个平面上运动;并且 $(x,y,z)\cdot(C_1',C_2',C_3')=(x,y,z)\cdot(L_x,L_y,L_z)=\mathbf{r}\cdot\mathbf{L}=0$,即轨道上各点的向径(x,y,z)都上**L**。

4.动能定理&机械能守恒定律

 $\mathbf{F} \cdot d\mathbf{r} = \frac{d\mathbf{p}}{dt} \cdot d\mathbf{r} = d\mathbf{p} \cdot \frac{d\mathbf{r}}{dt} = d(m\mathbf{v}) \cdot \mathbf{v} = m\mathbf{v}d\mathbf{v} = m\mathbf{v}d\mathbf{v} = d(\frac{1}{2}m\mathbf{v}^2)$ 。其中 $\mathbf{v}d\mathbf{v} = vd\mathbf{v}$,是因为利用速度空间下的极坐标系: $\mathbf{v}d\mathbf{v} = (v\mathbf{i})d(v\mathbf{i}) = (v\mathbf{i})(d\mathbf{v} \cdot \mathbf{i} + \mathbf{v} \cdot \mathbf{j}d\theta) = vd\mathbf{v}$ 。

左式是 $\mathbf F$ 对质点做的元功,而 $\frac{1}{2}$ mv^2 是与速度有关的能量,称为**动能**。记为 $\mathbf T=\frac{1}{2}mv^2$,它代表质点速度为 $\mathbf v$ 时,其所具有的动能。

动能定理的微分形式: $\mathbf{F} \cdot \mathbf{dr} = d(\frac{1}{2} m \mathbf{v}^2) = d\mathbf{T}$

动能定理的积分形式: $\int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r} = \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2 = \mathbf{T} - \mathbf{T}_0$ 【其中 $\int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r}$ 可写作 $\int_{\mathbf{x}_0,\mathbf{y}_0,\mathbf{z}_0}^{\mathbf{x},\mathbf{y},\mathbf{z}} \mathbf{F}_{\mathbf{x}} d\mathbf{x} + \mathbf{F}_{\mathbf{y}} d\mathbf{y} + \mathbf{F}_{\mathbf{z}} d\mathbf{z}$ 】

若 **F** 是保守力,则可将其写为**F**= $-\nabla V$;于是 $\int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}}^{\mathbf{r}_0} \nabla V \cdot d\mathbf{r} = \int_{\mathbf{r}}^{\mathbf{r}_0} dV = V_0 - V$ = $\mathbf{T} - T_0 = \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2$ (这结合了动能定理的积分形式以及**F**= $-\nabla V$),整理移项后即可得 $\frac{1}{2} m v_0^2 + V_0 = \frac{1}{2} m v^2 + V$,即有 $T_0 + V_0 = T + V$ 。

机械能守恒定律: $\frac{1}{2}$ mv² + V(x, y, z)=E, 即 T+V=E。

5.运动方程的第一积分

像非自由质点的微分方程一样,运动方程一般都含有坐标对时间的二阶导数。但本节的三个**守恒定律**(动量、角动量、机械能),都是一阶微分方程,它们的一般形式为: φ(x,y,z,ẋ,ý,ż,t)=C。

它们本质上都是由运动方程经过一次积分消去坐标对时间的二阶导数后所得的结果,故常称它们为运动方程的**第一积分** or **初积分**。

动量守恒定律、动量矩守恒定律、机械能守恒定律是三大常见的初积分。【其中,机械能守恒定律,是质点在保守力场下的运动方程,的第一积分;称为能量积分,其中的 E 就是积分常数,可由初始条件决定】

1.9 有心力

1.有心力的基本性质

对于运动的质点所受的力,若该力的作用线,始终通过一个定点,则称该力为**有心力**。该定点叫力心。【在这里我们会涉及到两个初积分:动量矩守恒、机械能守恒】

若选取坐标原点于**力心**,则 \mathbf{F} 始终与 \mathbf{r} 共线,则 $\mathbf{L} = \mathbf{M} = \mathbf{r} \times \mathbf{F} = \mathbf{0}$,于是 $\mathbf{L} = \mathbf{C}'$,此时 质点只能在 \mathbf{L} 的平面内运动。因此我们只需要用两个坐标 (\mathbf{x}, \mathbf{y}) 或 (\mathbf{r}, θ) 来研究它。

另外,F 一般只是r 的函数,即(F 的量值)F=F· \hat{r} (不是指F 的大小,它有正负),只是(r 的大小)r(恒>0)的函数:F=F(r),且F=F(r)· \hat{r} 。——若对于各r>0,F(r)<0,则称r 为引力;若恒有r(r)>0,则称r

【注: $|\mathbf{F}|=|\mathbf{F}|$, 前者代表模,后者代表绝对值: 这是因为 \mathbf{F} 可取负(为了数学形式上的统一,才这么定义的,否则若 $\mathbf{F}(\mathbf{r})$ 代表 \mathbf{F} 的大小,则对于引力, $\mathbf{F}=\mathbf{F}(\mathbf{r})\cdot(-\hat{\mathbf{r}})$;而对于斥力, $\mathbf{F}=\mathbf{F}(\mathbf{r})\cdot\hat{\mathbf{r}}$,形式不好看)。 量值: 以某种标准所度量的值,标准为: 在 $\hat{\mathbf{r}}$ 上的投影;其实,当 \mathbf{F} 作为 $\mathbf{F}(\mathbf{r})$ 中的一种映射时,它不能作为 \mathbf{F} 的大小,但若作为单独的一个字母来看,是可以的】

(1).有心力问题的基本方程

 $\begin{aligned} &\textbf{F} = \textbf{F}(\textbf{r}) \cdot \hat{\textbf{r}}, \ \, \text{而根据牛二,} \ \, \textbf{又有} \, \textbf{F} = \textbf{m} \ddot{\textbf{r}}, \ \, \textbf{那么m} \ddot{\textbf{r}} = \textbf{F}(\textbf{r}) \cdot \frac{\textbf{r}}{\textbf{r}}. \ \, \textbf{①}. \\ &\textbf{在平面直角坐标系下,} \\ &\textbf{有足两边分别点乘 i,j}, \ \, \textbf{即有} \\ & \textbf{m} \ddot{\textbf{y}} = \textbf{F}(\textbf{r}) \cdot \frac{\textbf{y}}{\textbf{r}}. \\ & \textbf{m} \ddot{\textbf{y}} = \textbf{F}(\textbf{r}) \cdot \frac{\textbf{y}}{\textbf{r}}. \end{aligned} \quad \textbf{②}. \\ &\textbf{在平面极坐标系下,} \, \textbf{a} = \frac{d\textbf{v}_r}{dt} + \frac{d\textbf{v}_\theta}{dt} = (\ddot{\textbf{r}} - \textbf{r}\dot{\theta}^2) \cdot \textbf{i} + (\textbf{r}\ddot{\theta} + 2\dot{\textbf{r}}\dot{\theta}) \cdot \textbf{j}. \end{aligned} \quad \textbf{代入m} \ddot{\textbf{r}} = \textbf{F}(\textbf{r}) \cdot \hat{\textbf{r}} = \textbf{F}(\textbf{r}) \cdot \hat{\textbf{i}}, \ \, \textbf{并两边分别点乘极坐标系下的 i,j}, \ \, \textbf{即有} \\ & \textbf{T}\ddot{\textbf{r}} - \textbf{T}\dot{\theta}^2 = \textbf{F}(\textbf{r}) \cdot \textbf{i}, \ \, \textbf{T} \\ & \textbf{T}\ddot{\theta} + 2\dot{\textbf{r}}\dot{\theta} = \textbf{F}(\textbf{r}) \cdot \textbf{i}, \ \, \textbf{T} \end{aligned} \quad \textbf{D} \end{aligned} \quad \textbf{E} \end{aligned}$

易求第二个式子的第一积分: $r\ddot{\theta} + 2\dot{r}\dot{\theta} = \frac{1}{r}\frac{d}{dt}(r^2\dot{\theta}) = 0$, 即有 $r^2\dot{\theta} = \text{const.}$, 将该常数记为 h,即 $r^2\dot{\theta} = h$ 。两边同时乘以 m,即得到 $mr^2\dot{\theta} = mr(r\dot{\theta}) = mrv_{\theta} = mh$ 。两边同时乘

以 **k**。即有: mrv_{θ} **k**= mrv_{θ} (**i** × **j**)=m(**ri**) × (v_{r} **i** + v_{θ} **j**)=mr × **v**=mh**k**。即有r × mv=L=mh**k**=C'。即又推证了L为一常矢量。

由于 $r^2\dot{\theta}$ =h 这个初积分比 $r\ddot{\theta}$ + $2\dot{r}\dot{\theta}$ = 0这第二个方程在形式上更简单,因此我们将基本方程 $\left\{ ar{r} - r\dot{\theta}^2 = F(r) \atop r\ddot{\theta} + 2\dot{r}\dot{\theta} = 0 \right\}$ 写作 $\left\{ ar{r} - r\dot{\theta}^2 = F(r) \atop r^2\dot{\theta} = h \right\}$ 。

(2).证明有心力是保守力

法一: 利用做功与路径无关, $W=\int_A^B \mathbf{F} \cdot d\mathbf{r} = \int_A^B [\mathbf{F}(\mathbf{r})\mathbf{i}] \cdot d(\mathbf{r}\mathbf{i}) = \int_A^B [\mathbf{F}(\mathbf{r})\mathbf{i}] \cdot (d\mathbf{r}\mathbf{i}) + rd\theta\mathbf{j}) = \int_{\Gamma_A}^{\Gamma_B} \mathbf{F}(\mathbf{r})d\mathbf{r}_{\bullet}$

法二: 直接利用判据 " $\nabla \times \mathbf{F}$ 是否= $\mathbf{0}$ " ,以及电动力学中的矢量分析公式之 " $\nabla \times (\phi \mathbf{f}) = (\nabla \phi) \times \mathbf{f} + \phi \nabla \times \mathbf{f}$ " ,即有 $\nabla \times \mathbf{F} = \nabla \times [\mathbf{F}(\mathbf{r})\hat{\mathbf{r}}] = \nabla \times [\frac{\mathbf{F}(\mathbf{r})}{\mathbf{r}}] = \nabla \times [\mathbf{F}(\mathbf{r})\hat{\mathbf{r}}] = \nabla \times [\mathbf{F$

 $(\nabla \frac{\mathbf{F}(\mathbf{r})}{\mathbf{r}}) \times \mathbf{r} + \frac{\mathbf{F}(\mathbf{r})}{\mathbf{r}} \nabla \times \mathbf{r}, \quad \\ | \mathbf{T} + \nabla \mathbf{r}| = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} \end{vmatrix} = \mathbf{0}, \quad \\ | \mathbf{Q} + \nabla \mathbf{F} - \nabla$

$$\begin{split} & \nabla(\varphi\phi) = \varphi \nabla \phi + \varphi \nabla \varphi, \ \ \ \, \bar{q} \nabla \frac{F(r)}{r} = \frac{1}{r} \nabla F(r) + F(r) \nabla \frac{1}{r}, \ \ \ \, \bar{q} \\ & \nabla F(r) = \frac{dF}{dr} \nabla r = \frac{dF}{dr} \hat{\mathbf{r}}, \ \ \nabla \frac{1}{r} = -\frac{1}{r^2} \hat{\mathbf{r}}, \ \ \, \text{代入即有} \nabla \frac{F(r)}{r} = \frac{1}{r} \frac{dF}{dr} \hat{\mathbf{r}} - \frac{F(r)}{r^2} \hat{\mathbf{r}} = \frac{1}{r} (\frac{dF}{dr} - \frac{F}{r}) \hat{\mathbf{r}}, \ \ \, \text{于是有} : \\ & \nabla \times \mathbf{F} = (\nabla \frac{F(r)}{r}) \times \mathbf{r} = \frac{1}{r} (\frac{dF}{dr} - \frac{F}{r}) \hat{\mathbf{r}} \times \mathbf{r} = \mathbf{0}. \end{split}$$

由于 **F** 是保守力,则可将其写为 **F** = $-\nabla V$;于是 $\int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}}^{\mathbf{r}_0} \nabla V \cdot d\mathbf{r} = \int_{\mathbf{r}}^{\mathbf{r}_0} dV = V_0 - V$,根据动能定理的积分形式: $\int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r} = \frac{1}{2} m v^2 - \frac{1}{2} m v_0^2$,于是仍有 $\frac{1}{2} m v^2 - \frac{1}{2} m v_0^2 = V_0 - V$ 。整理移项后仍有 $\frac{1}{2} m v_0^2 + V_0 = \frac{1}{2} m v^2 + V$ 。

由于 \mathbf{F} 只是 \mathbf{r} 的函数,因此 \mathbf{V} 也只是 \mathbf{r} 的函数 $\mathbf{V}(\mathbf{r})$; 更进一步,由于 \mathbf{F} 只是 \mathbf{r} 的函数 $\mathbf{V}(\mathbf{r})$; 更进一步,由于 \mathbf{F} 只是 \mathbf{v} 的函数 $\mathbf{V}(\mathbf{r})$; 更进一步,由于 \mathbf{F} 只是 \mathbf{v} 的函数 $\mathbf{V}(\mathbf{r})$; 更进一步,由于 \mathbf{F} 只是 \mathbf{v} 的函数 \mathbf{v} 是 \mathbf{v} 。 \mathbf{v} 是 \mathbf{v} 。 \mathbf{v} 是 \mathbf{v} 。 \mathbf{v} 是 \mathbf{v} 是 \mathbf{v} 是 \mathbf{v} 。 \mathbf{v} 是 \mathbf{v} 是 \mathbf{v} 是 \mathbf{v} 是 \mathbf{v} 。 \mathbf{v} 是 \mathbf{v} 是 \mathbf{v} 是 \mathbf{v} 。 \mathbf{v} 是 \mathbf{v} 是 \mathbf{v} 是 \mathbf{v} 是 \mathbf{v} 。 \mathbf{v} 是 \mathbf{v}

我们得到了第二个初积分: $\frac{1}{2}m[\dot{r}^2+(r\dot{\theta})^2]+V(r)=E$ 。它可以取代 $\begin{cases}\ddot{r}-r\dot{\theta}^2=F(r)\\r^2\dot{\theta}=h\end{cases}$ 中的第一式 【为什么是第一式而不是第二式呢: 你可以从得到该初积分的过程之一: $\int_{r_0}^r F(r)dr=V_0-V$ 中看出,其中的F(r)就是第一式中的 $\ddot{r}-r\dot{\theta}^2$ 】。因而基本方程可被写为 $\begin{cases}\frac{1}{2}m[\dot{r}^2+(r\dot{\theta})^2]+V(r)=E\\r^2\dot{\theta}=h\end{cases}$

2.轨道微分方程——比耐公式

对于一式,
$$\dot{r}=\frac{dr}{d\theta}\frac{d\theta}{dt}=\frac{d(\frac{1}{u})}{d\theta}\dot{\theta}=-\frac{1}{u^2}\frac{du}{d\theta}\dot{\theta}=-h\frac{du}{d\theta}$$
。那么 $\ddot{r}=\frac{d\dot{r}}{d\theta}\frac{d\theta}{dt}=\frac{d(-h\frac{du}{d\theta})}{d\theta}\dot{\theta}=-h\frac{d^2u}{d\theta^2}hu^2=-h^2u^2\frac{d^2u}{d\theta^2}$ 。将 $\dot{\theta}=hu^2$ 、 $\ddot{r}=-h^2u^2\frac{d^2u}{d\theta^2}$ 、 $r=\frac{1}{u}$ =者代入一式,即有 $-h^2u^2\frac{d^2u}{d\theta^2}-\frac{1}{u}h^2u^4=$ F(r)。即有 $h^2u^2(\frac{d^2u}{d\theta^2}+u)=-\frac{F}{m}$ 。

这就是<mark>轨道微分方程</mark>,即比耐公式。我们为了得到它,用hu²和—h²u² $\frac{d^2u}{d\theta^2}$,消去了一式中的 $\dot{\theta}$ 和市,这样 t 就没有了,得到的公式便是<mark>轨道方程</mark>所满足的微分方程。接下来我们就使用这一组基本方程 $\begin{cases} h^2u^2(\frac{d^2u}{d\theta^2}+u)=-\frac{F}{m}, & \text{解算出一些 F(r)} \text{所对应的轨道} \\ \dot{\theta}=hu^2 \end{cases}$ 方程。

3.平方反比引力——行星的运动

(1).万有引力下的行星轨道 $r(\theta)$

由于 $\mathbf{F}=\mathbf{F}(\mathbf{r})\cdot\hat{\mathbf{r}}$ 是引力,则其中的 $\mathbf{F}(\mathbf{r})$ 是负值。那么 $\mathbf{F}=-\frac{Gm_sm}{r^2}=-\frac{k^2m}{r^2}=-mk^2u^2$ 。 其中 $k^2=Gm_s$ 是个只与太阳有关的量,叫做太阳的<mark>高斯常数</mark>。 【平面极坐标系的极点设在太阳质心处,暂不考虑太阳位置的波动】

将
$$F=-mk^2u^2$$
代入比耐公式,得 $h^2u^2(\frac{d^2u}{d\theta^2}+u)=k^2u^2$ 。于是, $\frac{d^2u}{d\theta^2}+u=\frac{k^2}{h^2}$ 。令 $u=v+\frac{k^2}{h^2}$,则 $\frac{d^2v}{d\theta^2}+v=0$, v 前面的系数 $1>0$, v 具有三角函数形式解, $v=Acos(\theta-\theta_0)$ 。那么 $u=Acos(\theta-\theta_0)+\frac{k^2}{h^2}$,则 $r=\frac{1}{Acos(\theta-\theta_0)+\frac{k^2}{h^2}}$ 。

我们只设定了极点,没说极轴。现将极轴转动一个角度,使得 θ_0 =0(也就是将极轴放在轨道那根唯一的对称轴上,并且方向朝着焦点到准线所作的垂线方向)。上式简化为 $\mathbf{r} = \frac{\frac{\mathbf{h}^2}{k^2}}{\mathbf{A}_{\mathbf{k}^2}^2\cos\theta+1}$ 。将其与极坐标系的标准圆锥曲线方程 $\mathbf{r} = \frac{l}{1+\mathbf{e}\cos\theta}$ 比较,可知半正焦弦 $l = \frac{\mathbf{h}^2}{\mathbf{k}^2}$,偏心率 $\mathbf{e} = \mathbf{A} \frac{\mathbf{h}^2}{\mathbf{k}^2} = \mathbf{A} l$ 。其中也l可写作 $l = \mathbf{e} p$,p表示焦点到准线的距离,则 $\mathbf{e} = \mathbf{A} l = \mathbf{A} \mathbf{e} p$,得到 $\mathbf{p} = \frac{1}{\mathbf{A}}$ 。

【注: 弦是指曲线上两点的连线,正焦弦即垂直于轴的、经过焦点的弦。半正焦弦 $l=\frac{b^2}{a}=\frac{(a^2-c^2)}{a}=a(1-e^2)$,且 $\frac{l}{b}=\frac{c}{a}=e$ 】

(2).用总能量 E 表示离心率 e

根据之前的
$$\int_{r_0}^r \mathbf{F}(r) dr = V_0 - V$$
,我们有 $V = -\int_{r_0}^r \mathbf{F}(r) dr + V_0 = \int_r^{r_0} \mathbf{F}(r) dr + V_0$,取 $V_{\infty} = 0$,则 $V = \int_r^{\infty} \mathbf{F}(r) dr + V_{\infty} = \int_r^{\infty} \mathbf{F}(r) dr$ 。代入 $\mathbf{F}(r) = -\frac{k^2 m}{r^2}$,即有 $V = \frac{k^2 m}{r} |_r^{\infty} = -\frac{k^2 m}{r}$ 。

于是机械能守恒定律变为: $\frac{1}{2}$ m[\dot{r}^2 + $(r\dot{\theta})^2$] $-\frac{k^2m}{r}$ =E。正如之前的一式使用了二式 $\dot{\theta}$ =hu²以消去 $\dot{\theta}$ 和 \dot{r} 一样。这里我们也使用二式 $r^2\dot{\theta}$ = h来消去 $\dot{\theta}$ 和 \dot{r} :

$$\begin{split} \dot{r} = & \frac{dr}{d\theta} \frac{d\theta}{dt} = \frac{dr}{d\theta} \dot{\theta} = \frac{h}{r^2} \frac{dr}{d\theta} \text{. } \quad \text{代入它俩, } \quad \text{即有} \frac{1}{2} m [\frac{h^2}{r^4} \left(\frac{dr}{d\theta}\right)^2 + \frac{h^2}{r^2}] - \frac{k^2 m}{r} = \text{E. } \quad \text{于是} \frac{h^2}{r^4} \left(\frac{dr}{d\theta}\right)^2 + \frac{h^2}{r^2} - \frac{2k^2}{r} = \frac{2E}{m}, \quad \text{得到} \frac{dr}{d\theta} = \sqrt{\left(\frac{2E}{m} + \frac{2k^2}{r} - \frac{h^2}{r^2}\right) \frac{r^4}{h^2}}, \quad \text{即} \frac{dr}{d\theta} = \frac{r}{h} \sqrt{\left(\frac{2E}{m} r^2 + 2k^2 r - h^2\right)}, \quad \text{分离变量,} \\ \frac{dr}{r\sqrt{\left(\frac{2E}{mh^2} r^2 + \frac{2k^2}{h^2} r - 1\right)}} = d\theta. \end{split}$$

利用积分公式
$$\int \frac{dx}{x\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{-c}} asin \frac{bx+2c}{x\sqrt{b^2-4ac}}, \ c<0.$$
 我们有 $asin \frac{\frac{2k^2}{h^2}r-2}{r\sqrt{\frac{4k^4}{h^4}}+4\frac{2E}{mh^2}} = \theta - \theta_0$,即有 $asin \frac{k^2r-h^2}{r\sqrt{k^4+\frac{2E}{m}h^2}} = \theta - \theta_0 - \frac{1}{2}\pi$,于是 $\frac{k^2r-h^2}{r\sqrt{k^4+\frac{2E}{m}h^2}} = -cos(\theta-\theta_0)$,得到
$$r = \frac{h^2}{k^2+\sqrt{k^4+\frac{2E}{m}h^2}\cdot cos(\theta-\theta_0)} = \frac{\frac{h^2}{k^2}}{1+\sqrt{1+\frac{2Eh^2}{mk^4}\cdot cos(\theta-\theta_0)}}.$$
 将其与 $r = \frac{\frac{h^2}{k^2}}{1+A\frac{h^2}{k^2}cos\theta}$ 以及 $r = \frac{l}{1+ecos\theta}$ 比较,便有 $e = \sqrt{1+\frac{2E}{m}\frac{h^2}{k^4}}.$ 以及 $e = \sqrt{1+\frac{2E}{m}\frac{1}{h^2}}$ 、焦点到准线的距离 $e = \sqrt{1+\frac{2E}{m}\frac{1}{k^2}}.$

这一方面又说明了,不用比耐公式,也能通过基本方程 $\left\{ \frac{1}{2} m [\dot{r}^2 + (r\dot{\theta})^2] - \frac{k^2 m}{r} = E \right\}$ 来得到<mark>轨道方程</mark>;并且由它所得的<mark>轨道方程</mark>,包含了更多的信息:E、以及 $e = \sqrt{1 + \frac{2E}{m} \frac{h^2}{k^4}}$ 。于是我们便可通过E来作为轨道类别的判据:

由于 $\frac{2}{m}\frac{h^2}{k^4}$ >0,当E<0时,e<1,轨道为椭圆;当E>0时,e>1,轨道为双曲线;当E=0时,e=1,轨道为抛物线。

4.开普勒定律

开普勒第一定律: 行星绕太阳作椭圆运动, 太阳位于椭圆的一个焦点上。

开普勒第二定律:行星和太阳之间的连线,在相等时间内扫过的面积相等,即 $\frac{\mathrm{d} A}{\mathrm{d} t}$ =const.。

证明:对此我们只需证明 $\frac{d\mathbf{A}}{dt}$ =const.,即 $\frac{\mathbf{r} \times d\mathbf{r}}{2dt}$ =const.。这很容易:据 \mathbf{L} = $\mathbf{0}$,有 \mathbf{L} = \mathbf{C} 。即 $\mathbf{r} \times \mathbf{p}$ = \mathbf{C} ,即 $\mathbf{r} \times \mathbf{m} \frac{d\mathbf{r}}{dt}$ = \mathbf{C} ,于是 $\frac{\mathbf{r} \times d\mathbf{r}}{2dt}$ = $\frac{\mathbf{C}}{2m}$ =const.。

开普勒第三定律: 行星公转周期的平方与轨道半长轴的立方成正比,即 $\frac{T^2}{a^3} = \frac{4\pi l}{h^2}$ 是个常数(它是 $\frac{1}{k^2}$)。【注:该常数与M有关, \therefore 只适用于围绕同一个恒星公转的行星们】

证明: 在 19.1.(1).,我们通过 $\mathbf{r}^2\dot{\boldsymbol{\theta}}$ =h,证明了 $\mathbf{L}=\mathbf{C}=\mathbf{mhk}$ 。现将 $\mathbf{C}=\mathbf{mhk}$ 代入 $\frac{d\mathbf{A}}{dt}=\frac{\mathbf{r}\times d\mathbf{r}}{2dt}=\frac{\mathbf{C}}{2m},\ \ \mathbf{\theta}\mathbf{M}\frac{d\mathbf{A}}{dt}=\frac{\mathbf{mhk}}{2m}=\frac{\mathbf{hk}}{2}$ 。即有 $\mathbf{d}\mathbf{A}=\frac{\mathbf{h}}{2}$ dt,两边对椭圆积分一周, $\mathbf{A}=\frac{\mathbf{h}}{2}$ T,而椭圆的面积为 $\mathbf{A}=\pi ab$ 。因此 $\pi ab=\frac{\mathbf{h}}{2}$ T,得到 $\mathbf{T}=\frac{2\pi ab}{\mathbf{h}}$,于是 $\frac{\mathbf{T}^2}{a^3}=\frac{4\pi^2b^2}{\mathbf{h}^2a}=\frac{4\pi^2}{\mathbf{h}^2}l$ 。

运用开普勒三定律,推导万有引力定律:

根据开普勒第一定律,是个椭圆,轨道方程暂记为 $r=\frac{l}{1+e\cos\theta}$,于是 $u=\frac{1+e\cos\theta}{l}$,代入比耐公式 $h^2u^2(\frac{d^2u}{d\theta^2}+u)=-\frac{F}{m}$,得到 $F=-mh^2u^2(\frac{d^2u}{d\theta^2}+u)=-mh^2u^2(\frac{-e\cos\theta}{l}+\frac{1+e\cos\theta}{l})=-m\frac{h^2}{l}u^2=-m\frac{h^2}{l}\frac{1}{r^2}$ 。根据开普勒第三定律, $\frac{T^2}{a^3}=\frac{4\pi l}{h^2}$ 是个常数,得到 $\frac{l}{h^2}$ 是个常数,记为 $\frac{1}{k^2}$ 。将 $\frac{h^2}{l}=k^2$ 代入 $F=-m\frac{h^2}{l}\frac{1}{r^2}$,得到 $F=-\frac{k^2m}{r^2}$,此即万有引力定律(k^2 可由测算 $\frac{h^2}{l}$ 或 $4\pi^2\frac{a^3}{r^2}$ 得到)。

5.宇宙速度

6.圆形轨道的稳定性

根据比耐公式, $h^2u^2(\frac{d^2u}{d\theta^2}+u)=-\frac{F(u)}{m}=P(u)$,有 $h^2(\frac{1}{u}\frac{d^2u}{d\theta^2}+1)=\frac{P(u)}{u^3}$ 。若恒有 $h^2=\frac{P(u)}{u^3}$,则 $\frac{1}{u}\frac{d^2u}{d\theta^2}+1=1$,则 $\frac{d^2u}{d\theta^2}=0$, $\frac{du}{d\theta}=C_1$, $u=C_1\theta+C_2$,即 $r=\frac{1}{C_1\theta+C_2}$ 。若再令初始时刻, $\frac{du}{d\theta}=-\frac{1}{r^2}\frac{dr}{d\theta}=C_1=0$,即 $v_r=\dot{r}=\frac{dr}{d\theta}\frac{d\theta}{dt}=0$,那么 $r=\frac{1}{C_2}$,为一常数。

也就是说,若一质点起始速度 $\mathbf{v} \perp \mathbf{r}(\mathbf{v} \ \mathsf{Q}, \mathbf{r})$ 是恒有 $\mathbf{h}^2 = \frac{\mathbf{P}(\mathbf{u})}{\mathbf{u}^3}$ (这意味着 $\frac{\mathbf{P}(\mathbf{u})}{\mathbf{u}^3} = \frac{\mathbf{P}(\mathbf{u}_0)}{\mathbf{u}^3_0} = \mathbf{h}^2$),则不论其半径如何(\mathbf{u} 值多少),将做圆形轨道运动。

取 u=u₀+v, 代入比耐公式h²(
$$\frac{1}{u}\frac{d^2u}{d\theta^2}$$
+1)= $\frac{P(u)}{u^3}$, 即 $\frac{d^2u}{d\theta^2}$ +u= $\frac{P(u)}{h^2u^2}$, 有 $\frac{d^2v}{d\theta^2}$ +u₀+v
= $\frac{P(u_0+v)}{h^2(u_0+v)^2}$ = $\frac{1}{h^2u_0^2}\frac{P(u_0+v)}{\left(1+\frac{v}{u_0}\right)^2}$ = $\frac{1}{h^2u_0^2}\frac{\sum_{i=0}^{\infty}\frac{P^{(i)}(u_0)}{i!}v^i}{\left(1+\frac{v}{u_0}\right)^2}$ ≈ $\frac{1}{h^2u_0^2}(1-2\frac{v}{u_0})[P(u_0)+vP'(u_0)]$ ≈

$$\frac{1}{h^2 u_0^2} [P(u_0)(1-2\frac{v}{u_0})+vP'(u_0)] = \frac{P(u_0)}{h^2 u_0^2} [1+v\frac{P'(u_0)}{P(u_0)}-2\frac{v}{u_0}] = \frac{P(u_0)}{h^2 u_0^2} [1+v(\frac{P'(u_0)}{P(u_0)}-2\frac{1}{u_0})].$$
 【注:其中 $P^{(i)}(u_0)$ 表示 diP(u) u_0 】

即有
$$\frac{d^2v}{d\theta^2} + u_0 + v = \frac{P(u_0)}{h^2u_0^2}[1 + v(\frac{P'(u_0)}{P(u_0)} - \frac{2}{u_0})]$$
,移项便有 $\frac{d^2v}{d\theta^2} + [1 - \frac{P(u_0)}{h^2u_0^2}(\frac{P'(u_0)}{P(u_0)} - \frac{2}{u_0})]v + [u_0 - \frac{P(u_0)}{h^2u_0^2}] = 0$ 。即 $\frac{d^2v}{d\theta^2} + C_1v + C_2 = 0$ 。由于 $h^2 = \frac{P(u)}{u^3}$ 恒成立,即有 $h^2 = \frac{P(u_0)}{u^3}$,那么 $C_1 = 1 - \frac{P(u_0)}{h^2u_0^2}(\frac{P'(u_0)}{P(u_0)} - \frac{2}{u_0}) = 1 - (\frac{P'(u_0)}{h^2u_0^2}) = 1 - (\frac{P'(u_0)}{u_0}) - 2) = 3 - u_0 \frac{P'(u_0)}{P(u_0)}$ 。

当 $C_1>0$ 时,解 $v(\theta)$ 为三角函数形式;当 $C_1<0$ 时,解 $v(\theta)$ 为指数函数形式;当 $C_1=0$ 时,解 $v(\theta)$ 为幂函数形式。因此只有当 $C_1=3-u_0\frac{P'(u_0)}{P(u_0)}>0$ 时,v才不会因圆周运动的 θ 的无限增大而趋于无限大(有点像《数学物理方法》中的自然的周期条件)。

于是只有当 $u_0 \frac{P'(u_0)}{P(u_0)} < 3$ 时,圆形轨道才是稳定的。仿照之前平方反比吸引力: $P(u) = -\frac{F}{m} = -\frac{-mk^2u^2}{m} = k^2u^2, \ \, \diamondsuit P(u) = k^2u^n, \ \, 则条件变为: <math>u_0 \frac{P'(u_0)}{P(u_0)} = n \cdot u_0 \frac{k^2u_0^{n-1}}{k^2u_0^n} = n < 3$ 。 也就是说,只有当吸引力 $F = -mk^2u^n = -\frac{k^2m}{r^n}$,中的n < 3 时,质点在吸引力下作的圆形轨道运动才是稳定的。 $I = -mk^2u^n = -\frac{k^2m}{r^n}$,中的 $I = -mk^2u^n = -\frac{k^2m}{r^n}$,中的I = -

7.平方反比斥力——α粒子散射

其中的 $F=-\frac{Gm_sm}{r^2}=-\frac{k^2m}{r^2}=-mk^2u^2$ 变为 $F=\frac{1}{4\pi\epsilon_0}\frac{Ze\cdot 2e}{r^2}=\frac{1}{4\pi\epsilon_0}\frac{2Ze^2}{r^2}=\frac{k'^2}{r^2}$ 。相当于我们把 $-k^2m$ 替换为了 k'^2 ,那么机械能守恒定律从 $\frac{1}{2}m[\dot{r}^2+(r\dot{\theta})^2]-\frac{k^2m}{r}=E$ 变为 $\frac{1}{2}m[\dot{r}^2+(r\dot{\theta})^2]+\frac{k'^2}{r}=E$,此时恒有 E>0,于是e>1,轨道为双曲线的一支。

更进一步,将
$$k^2=-\frac{k'^2}{m}$$
,代入 $r=\frac{\frac{h^2}{k^2}}{1+A\frac{h^2}{k^2}\cos\theta}$ 和 $r=\frac{h^2}{k^2+\sqrt{k^4+\frac{2E}{m}h^2}\cdot\cos(\theta-\theta_0)}$,可得
$$r=\frac{\frac{\frac{h^2}{k'^2}}{1+A\frac{h^2}{m}}=-\frac{m\frac{h^2}{k'^2}}{1-mA\frac{h^2}{k'^2}\cos\theta}=\frac{m\frac{h^2}{k'^2}}{mA\frac{h^2}{k'^2}\cos\theta-1}$$
和 $r=\frac{h^2}{-\frac{k'^2}{m}+\sqrt{\frac{k'^4}{m^2}+\frac{2E}{m}h^2}\cdot\cos(\theta-\theta_0)}=\frac{m\frac{h^2}{k'^2}}{1-\sqrt{1+2mE\frac{h^2}{k'^4}\cdot\cos(\theta-\theta_0)}}=\frac{m\frac{h^2}{k'^2}}{\sqrt{1+2mE\frac{h^2}{k'^4}\cdot\cos(\theta-\theta_0)-1}}$ 。【注:后者不能直接代到最终结果
$$\frac{h^2}{1+\sqrt{1+\frac{2Eh^2}{m}h^4}\cdot\cos(\theta-\theta_0)}$$
中去来得到。】

但其实,物理家所需要的不是<mark>巨细无遗</mark>的整个<mark>轨道方程</mark>,而只是需要:瞄准距离 d 与偏转角φ,之间的关系就够了(这两个参量 d,φ也足以确定双曲线的一支)。这里不加详细讨论了。

【r, θ 能描绘双曲线上每一点的位置,但d, ϕ 不能;如果说<mark>轨道方程</mark> $f(r,\theta)=0$ [或者说 $r=r(\theta)$]是运动方程 r=r(t), $\theta=\theta(t)$ 退化来的话,那么 $f(d,\phi)=0$ [或者说 $d=d(\phi)$]是 $f(r,\theta)=0$ [或者说 $r=r(\theta)$]的进一步退化。】

第二章 质点组力学

2.1 质点组

1.质点组的内力和外力

质点组: 互相联系着的质点所组成的力学体系。

【何为"联系":某个质点相对于其他质点的相对运动,会改变体系内其他质点的运动状态和受力状态。】

内力: 质点组中质点间的相互作用力。

内力是相互作用力,因此满足牛三。——设 \mathbf{F}_{ij} 表示第 j 个指点对第 i 个质点的作用力(这是因为若光写 \mathbf{F}_{i} ,则代表第 i 个质点所受到的合外力;因此若再加个角标变成 \mathbf{F}_{ij} ,则自然而然 j 应当是施力物体,并且有 $\mathbf{F}_{i}=\Sigma_{j}$ \mathbf{F}_{ij}),则牛三表述为 \mathbf{F}_{ij} + \mathbf{F}_{ji} =0(之前为了方便,就顺着大家所习惯的思路写的牛三)。

于是 $\sum_{i} \mathbf{F}_{ij} = \sum_{i} \sum_{j \neq i} \mathbf{F}_{ij} = \sum_{i} \sum_{j \neq i} \mathbf{F}_{jj} = \sum_{i} \sum_{j \neq i} \mathbf{F}_{ji} = \frac{\sum_{i} \sum_{j \neq i} \mathbf{F}_{ji}}{2} = \frac{\sum_{i} \sum_{j \neq i} \mathbf{F}_{ji}}{2} = \mathbf{0}$ 。 一翻译成文字便是: 第二个等号表示: "所有标号不是 i 的质点(j 们),对同一个 i 的力的总和,之和" 等于 "所有标号不是 j 的质点(i 们),所受到的来自同一个 j 的力的总和,之和" ,它之所以成立,来源于内外两层求和符号的顺序交换法则的成立; 第三个等号: 纯粹的 i,j 互换,以便得到的第四个 $\sum_{i} \sum_{j \neq i} \mathbf{F}_{ji}$ 与第二个 $\sum_{i} \sum_{j \neq i} \mathbf{F}_{ij}$ 的内外层求和角标相同,便于合并。 第四个等号:来源于第二号于第四号的相等。 【这一点是聪明的张建锋老师在大物课上教的】

外力: 质点组以外的物体, 对质点组内任意质点的作用力。

2.质心

质心:对于质点组,有一特殊点(但不一定存在于质点组所存在的区域内),若以该点为参考点,则许多问题会得到简化。——该特殊点,称为该质点组的质量中心,即质心。

其数学表达式: 任选一坐标系来描述质心: 设各质点相对于指定参考点 O 点的位矢分别为 \mathbf{r}_1 , \mathbf{r}_2 ... \mathbf{r}_n ,则 \mathbf{r}_C = $\sum_{i=1}^n \frac{m_i}{\sum_{i=1}^n m_i} \mathbf{r}_i$ = $\frac{\sum_{i=1}^n m_i \mathbf{r}_i}{\sum_{i=1}^n m_i}$ 即为该质点组的质心,在 O 系量度下的位矢(相对于 O 点的)。

若以质心为参考系原点,则根据 \mathbf{r}_{C} 的定义, $\sum_{i=1}^{n} m_{i} \mathbf{r}_{C} = \sum_{i=1}^{n} m_{i} \mathbf{r}_{i}$,移项得到 $\sum_{i=1}^{n} m_{i} (\mathbf{r}_{i} - \mathbf{r}_{C}) = \mathbf{0}$,即 $\sum_{i=1}^{n} m_{i} \mathbf{r}_{i}' = \mathbf{0}$ 。其中, $\mathbf{r}_{i}' = \mathbf{r}_{i} - \mathbf{r}_{C}$ 表示各质点相对质心的矢径。

若我们记质点系总质量 $\sum_{i=1}^n m_i = m$,则有 $\mathbf{r}_C = \sum_{i=1}^n \frac{m_i}{m} \mathbf{r}_i = \frac{\sum_{i=1}^n m_i \mathbf{r}_i}{m}$,且有 $m\mathbf{r}_C = \sum_{i=1}^n m_i \mathbf{r}_i$ 。

积分表达式: $\mathbf{r}_{\text{C}} = \frac{\int r dm}{\int dm} = \frac{\int r \rho \cdot dV}{\int \rho \cdot dV}$, 分别点乘 \mathbf{i} , \mathbf{j} , \mathbf{k} , 得到分量式 $\mathbf{x}_{\text{C}} = \frac{\int x \rho \cdot dV}{\int \rho \cdot dV}$...。

2.2 动量定理与动量守恒定律

1.动量定理

对于一个质点: 动量定理在其身上的体现为, $\frac{dp_i}{dt}$ = $\mathbf{F}_i^{(e)}$ + $\mathbf{F}_i^{(i)}$ (i=1,2,...,n)。【其中下角标 i 仍表示第 i 个质点(所受的力);而上角标表示 ex/in,即外力/内力,即质点组外物体对它施加的力之和、质点组内其他质点对其施加的力之和】

n 个质点,一共有 n 个微分方程。由于内力通常是未知量,因此无法单独求解这些方程。但若我们将这 n 个方程加起来,根据之前对内力(牛三)的认识, $\sum_{i=1}^{n} \mathbf{F}_{i}^{(i)}$ 将 = $\mathbf{0}$:

对于整个质点组: $\sum_{i=1}^{n} \frac{dp_i}{dt} = \sum_{i=1}^{n} \mathbf{F}_i^{(e)} + \sum_{i=1}^{n} \mathbf{F}_i^{(i)} = \sum_{i=1}^{n} \mathbf{F}_i^{(e)}$ 。 于是 $\sum_{i=1}^{n} \frac{dp_i}{dt} = \frac{d}{dt} \sum_{i=1}^{n} \mathbf{p}_i$ = $\frac{dp}{dt} = \sum_{i=1}^{n} \mathbf{F}_i^{(e)}$ 。 其中,我们定义了 $\sum_{i=1}^{n} \mathbf{p}_i = \mathbf{p}$,为质点组的总动量。

质点组的动量定理: $\dot{\mathbf{p}} = \sum_{i=1}^{n} \mathbf{F}_{i}^{(e)}$ 。 分量形式: $\dot{\mathbf{p}}_{x} = \sum_{i=1}^{n} \mathbf{F}_{ix}^{(e)}$, $\dot{\mathbf{p}}_{y} = \sum_{i=1}^{n} \mathbf{F}_{iy}^{(e)}$, $\dot{\mathbf{p}}_{z} = \sum_{i=1}^{n} \mathbf{F}_{iz}^{(e)}$ 。

2.质心运动定理

根据质心 \mathbf{r}_{C} 的定义,有m \mathbf{r}_{C} = $\sum_{i=1}^{n}m_{i}\mathbf{r}_{i}$,于是 $\frac{d}{dt}$ (m \mathbf{r}_{C})= $\frac{d}{dt}\sum_{i=1}^{n}m_{i}\mathbf{r}_{i}$ = $\sum_{i=1}^{n}m_{i}\mathbf{v}_{i}$ = $\sum_{i=1}^{n}\mathbf{p}_{i}$ = \mathbf{p} 。而 $\frac{d}{dt}$ (m \mathbf{r}_{C})=m \mathbf{v}_{C} = \mathbf{p}_{C} 。可见 \mathbf{p}_{C} = \mathbf{p} ,即质心的动量=我们所定义的质点组的总动量。

再将两边对时间 t 求导,运用质点组的动量定理,即有 $\dot{\mathbf{p}}_{C}=\dot{\mathbf{p}}=\sum_{i=1}^{n}\mathbf{F}_{i}^{(e)}$ 。写成牛二的形式即有 $\sum_{i=1}^{n}\mathbf{F}_{i}^{(e)}=m\ddot{\mathbf{r}}_{C}$ 。

后者便是质心运动定理: $\sum_{i=1}^{n} \mathbf{F}_{i}^{(e)} = m\ddot{\mathbf{r}}_{C}$.

3.动量守恒定律

质点组的动量守恒定律:若 $\sum_{i=1}^{n} \mathbf{F}_{i}^{(e)} = \mathbf{0}$,则 $\dot{\mathbf{p}}_{C} = \dot{\mathbf{p}} = \mathbf{0}$,则 $\mathbf{p}_{C} = \mathbf{p} = \ddot{\mathbf{r}}$ 矢量 \mathbf{C} ,分量形式为 $\mathbf{p}_{Cx} = \mathbf{p}_{x} = \mathbf{C}_{1}$, $\mathbf{p}_{Cv} = \mathbf{p}_{v} = \mathbf{C}_{2}$, $\mathbf{p}_{Cz} = \mathbf{p}_{z} = \mathbf{C}_{3}$ 。【此时也有 $\mathbf{v}_{C} = \ddot{\mathbf{r}}$ 矢量】

若 $\sum_{i=1}^{n} \mathbf{F}_{i}^{(e)}$ 仅朝i的投影为 0,即 $\sum_{i=1}^{n} \mathbf{F}_{ix}^{(e)} = \mathbf{0}$,则 $\sum_{i=1}^{n} \mathbf{F}_{ix}^{(e)} = \dot{\mathbf{p}}_{Cx} = \dot{\mathbf{p}}_{x} = \mathbf{0}$,得到 $\mathbf{p}_{C} = \mathbf{p}_{x} = \mathsf{常矢} \pm \mathbf{C}_{1} = \mathbf{C}_{1} \mathbf{i}$ 。 【更一般地,若力在某一有向轴l方向上的投影=0,即 $\mathbf{F}_{l} = \mathbf{0}$,则将 $\mathbf{F} = \dot{\mathbf{p}}$ 方程两边点乘该轴方向上的单位矢量l,即有 $\mathbf{0} = \mathbf{F}_{l} = \mathbf{F} \cdot l = \dot{\mathbf{p}} \cdot l = \dot{\mathbf{p}}_{l} = \mathbf{0}$,得到 $\mathbf{p}_{l} = \mathbf{n}$ 关量 \mathbf{C}_{l} 】

例:一门大炮停在铁轨上,炮弹质量为 m,炮身与跑车质量和为 M,炮车可在铁轨上自由地被反冲。炮身与地面成角 α ,炮弹对炮身的相对速度为 V,求炮弹离炮身时,对地面的速度 V以及跑车反冲的速度 V。

这里要注意, V 是炮弹相对于炮身的速度, 不是相对于地面的速度; 只有剩下的 v、U 二者是相对于地面的速度。动量守恒定律中各量都是相对于同一惯性系量度的, 若一个为绝对速度, 则其他也应用绝对速度(全都相对于地), 或者均选取另一惯性系作为参照系/量度标准。

设水平方向/导轨方向为 x 方向,根据 $\sum_{i=1}^{n} \mathbf{F}_{ix} = \sum_{i=1}^{n} \mathbf{F}_{ix}^{(i)}$,即 $\sum_{i=1}^{n} \mathbf{F}_{ix}^{(e)} = 0$ 。于是 $\dot{\mathbf{p}}_{Cx} = \dot{\mathbf{p}}_{x} = \mathbf{0}$ 。而在爆炸发生前, $\mathbf{p}_{Cx} = \mathbf{p} = \mathbf{0}$,于是 $\mathbf{p}_{Cx}' = \mathbf{p}_{C} = \mathbf{0}$ 。即有 $m\mathbf{v}_{x} + M\mathbf{U} = \sum_{i=1}^{n} m_{i} \mathbf{v}_{ix} = \mathbf{p}_{Cx}' = \mathbf{0}$ 。两边点乘**i**即有 $m\mathbf{v}_{x} - M\mathbf{U} = \mathbf{0}$ 。

其中,炮弹对地=炮弹对车+车对地, $\mathbf{v}=\mathbf{V}+\mathbf{U}$,同样两边点乘 i 即有 $v_x=V_x-U$,即 $v_x=V\cos\alpha-U$ 。代入即有, $m(V\cos\alpha-U)-MU=0$,解得 $U=\frac{mV\cos\alpha}{M+m}=\frac{m}{M+m}V\cos\alpha$,代入 $v_x=V\cos\alpha-U=(1-\frac{m}{M+m})V\cos\alpha=\frac{M}{M+m}V\cos\alpha$ 。

将
$$\mathbf{v} = \mathbf{V} - \mathbf{U}$$
两边点乘 \mathbf{j} 即有 $\mathbf{v}_y = \mathbf{V}\sin\alpha$; 于是 $\mathbf{v} = \sqrt{\mathbf{v}_x^2 + \mathbf{v}_y^2} = \sqrt{(\frac{M}{M+m}\mathbf{V}\cos\alpha)^2 + (\mathbf{V}\sin\alpha)^2}$ 。

2.3 动量矩定理与动量矩守恒定律

1.对定点 O 的动量矩定理

对于一个质点: 动量矩定理在其身上的体现为, $\frac{dL_i}{dt}$ = $\mathbf{M}_i^{(e)}$ + $\mathbf{M}_i^{(i)}$ (i=1,2,...,n)。【其中, \mathbf{L}_i = \mathbf{r}_i × \mathbf{p}_i , $\mathbf{M}_i^{(e)}$ = \mathbf{r}_i × $\mathbf{F}_i^{(e)}$, $\mathbf{M}_i^{(i)}$ = \mathbf{r}_i × $\mathbf{F}_i^{(i)}$; \mathbf{r}_i 为各质点相对指定点 O 的矢径。】

【有趣的是,似乎得出现了 \mathbf{r}_i ,我们才能意识到量度各量的参考系 O 系的存在:①.比如在 2.2.1.动量定理处,由于只出现了 $\frac{d\mathbf{p}_i}{dt} = \mathbf{F}_i^{(e)} + \mathbf{F}_i^{(i)}$ 这些 \mathbf{p}_i , \mathbf{F}_i 们,我们几乎忽略了 O 系的存在,以至于当时的标题并没有提及"对定点 O 的动量定理";但是,虽然除了作用点之外,滑移矢量 \mathbf{F}_i 确实不需要参考系的声明(加速度的伽利略变换不变性(在惯性系之间变换)),然而 \mathbf{p}_i 中其实含有 \mathbf{r}_i ,虽然是以 $\dot{\mathbf{r}}_i$ 的形式存在。——但即使这样,也说明了当时这些 \mathbf{p}_i , \mathbf{F}_i 量,也是由某参考系 O 系的坐标量给定的。

- ②.再比如到了 2.2.2.<mark>质心运动定理</mark>,那里我们就因出现了 2.1.2.的内容: \mathbf{r}_{c} 和各 \mathbf{r}_{i} ,才意识到了 \mathbf{p}_{c} 和p是在那个"隐形的" O 系中量度出来的。
- ③.再比如,即使在 1.8.2.力矩&动量矩处,出现了 M=r×F 和 L=r×p,我们也对 O 系的存在没有感觉: 因为出现的是 r 而不是r_i; 只有到了 "F 对某一(有向)轴线 l 的力矩 M_l"处,才有了点 O 点存在的样子。——甚至到了 1.8.3.动量矩定理&动量矩守恒定律,O 系的存在甚至进一步淡化了: 我们直接给出的是 M=L,甚至连 r 都没出现。——以上三点仅为强化 "参照系意识" : 要知道所有物理量都是在某一参考系下量度的,特别是矩,它必须针对某一点或轴,点即为参考系的原点。
- ④.因此,在<u>质点动力学以及质点组动力学中,三个基本定理,以及对应的三个守恒定律,其中的各量,都必须是在同一个惯性系O下量度的。</u>之后我们会提到,O点可以是静止不动的,也可以是匀速直线运动的,六个定理和守恒定律在这样的O系下都成立】

正如 $\sum_{i=1}^{n}\mathbf{F}_{i}^{(i)}$ =**0**一样,当我们对 $\mathbf{M}_{i}^{(i)}$ 求和后, $\sum_{i=1}^{n}\mathbf{M}_{i}^{(i)}$ = $\sum_{i=1}^{n}\mathbf{r}_{i}\times\mathbf{F}_{i}^{(i)}$ = $\sum_{i}\mathbf{r}_{i}\times\mathbf{F}_{i}^{(i)}$ = $\sum_{i}\mathbf{r}_{i}\times\mathbf{F}_{i}$ =

对于整个质点组: $\sum_{i=1}^{n} \frac{dL_{i}}{dt} = \sum_{i=1}^{n} \mathbf{M}_{i}^{(e)} + \sum_{i=1}^{n} \mathbf{M}_{i}^{(i)} = \sum_{i=1}^{n} \mathbf{M}_{i}^{(e)}$ 。 于是 $\sum_{i=1}^{n} \frac{dL_{i}}{dt} = \frac{d}{dt} \sum_{i=1}^{n} \mathbf{L}_{i} = \mathbf{J}_{i}$,为质点组的总角动量。

质点组的动量矩定理: $\mathbf{j} = \sum_{i=1}^{n} \mathbf{M}_{i}^{(e)}$ 。分量形式: $\mathbf{j}_{x} = \sum_{i=1}^{n} \mathbf{M}_{ix}^{(e)}$, $\mathbf{j}_{y} = \sum_{i=1}^{n} \mathbf{M}_{iy}^{(e)}$, $\mathbf{j}_{z} = \sum_{i=1}^{n} \mathbf{M}_{iz}^{(e)}$ 。

2.动量矩守恒定律

质点组的动量矩守恒定律: 若 $\sum_{i=1}^{n} \mathbf{M}_{i}^{(e)} = \mathbf{0}$, 则 $\mathbf{J} = \mathbf{0}$, 则 $\mathbf{J} = \mathbf{0}$, 则 $\mathbf{J} = \mathbf{0}$, 分量形式为 $\mathbf{J}_{x} = \mathbf{C}_{1}'$, $\mathbf{J}_{y} = \mathbf{C}_{2}'$, $\mathbf{J}_{z} = \mathbf{C}_{3}'$ 。 【其中,各 $\mathbf{M}_{i}^{(e)}$ 都是针对同一个固定点 O 而言的(之后我们会知道,该点可以匀速直线运动)】

若 $\sum_{i=1}^{n} \mathbf{M}_{i}^{(e)}$ 对 x 轴的力矩,即 $\sum_{i=1}^{n} \mathbf{M}_{i}^{(e)}$ 在**有向轴i**上的分量 $\sum_{i=1}^{n} \mathbf{M}_{ix}^{(e)} = \mathbf{0}$,则 \mathbf{J}_{x} =常矢量 $\mathbf{C}_{1}' = \mathbf{C}_{1}'$ **i**,即J到**i**轴的投影 \mathbf{J}_{x} 为常数。【其中 $\sum_{i=1}^{n} \mathbf{M}_{ix}^{(e)}$ 可通过 $\sum_{i=1}^{n} [y_{i} \mathbf{F}_{iz}^{(e)} - \mathbf{F}_{iy}^{(e)} \mathbf{z}_{i}]$ **i**计算得到】

【更一般地,若外力矩和 $\sum_{i=1}^{n} \mathbf{M}_{i}^{(e)}$ 在某一有向轴 \mathbf{l} 方向上的投影=0,即 $\sum_{i=1}^{n} \mathbf{M}_{il}^{(e)} = 0$,则将 $\mathbf{j} = \sum_{i=1}^{n} \mathbf{M}_{i}^{(e)}$ 方程两边点乘该轴方向上的单位矢量 \mathbf{l} ,即有 $\mathbf{j}_{l} = \sum_{i=1}^{n} \mathbf{M}_{il}^{(e)} = 0$,得到 $\mathbf{j}_{l} =$ 常矢量 \mathbf{C}_{l}' 】

3.对质心的动量矩定理

(1).之前我们已经得出 \mathbf{p}_{C} = \mathbf{p} ,于是 \mathbf{L}_{C} = \mathbf{r}_{C} × \mathbf{p}_{C} = \mathbf{r}_{C} × \mathbf{p} = $\frac{1}{m}\sum_{i=1}^{n}m_{i}\mathbf{r}_{i}$ × $\sum_{i=1}^{n}\mathbf{p}_{i}$ ≠ $\sum_{i=1}^{n}\mathbf{r}_{i}$ × \mathbf{p}_{i} = $\sum_{i=1}^{n}\mathbf{L}_{i}$ = \mathbf{J} ,与我们的想象不一致;事实上,要想像 \mathbf{p}_{C} = \mathbf{p} 一样地,有 \mathbf{L}_{C} = \mathbf{J} , \mathbf{L}_{C} 应该被定义为 \mathbf{L}_{C} = $\sum_{i=1}^{n}\mathbf{r}_{i}$ × \mathbf{p}_{i} =?。很遗憾,我们没有 \mathbf{L}_{C} = \mathbf{J} 这个概念。

【即使连 $\mathbf{L}_C = \sum_{i=1}^n \mathbf{r}_C \times \mathbf{p}_i = \sum_{i=1}^n \sum_{j=1}^n \frac{m_j}{m} \mathbf{r}_j \times \mathbf{p}_i$ 以及 $\mathbf{L}_C = \sum_{i=1}^n \mathbf{r}_i \times \mathbf{p}_C = \sum_{i=1}^n \mathbf{p}_i$ 的定义都没有价值——不过类似 $\mathbf{J} = \sum_{i=1}^n \mathbf{L}_i$ 地,或许利用 $\mathbf{r}_C = \sum_{i=1}^n \frac{m_i}{m} \mathbf{r}_i$ 中权重的思想,可以定义 $\mathbf{L}_C = \sum_{i=1}^n \frac{m_i}{m} \mathbf{L}_i = \sum_{i=1}^n \frac{m_i}{m} (\mathbf{r}_i \times \mathbf{p}_i) = \sum_{i=1}^n \frac{m_i}{m} (\mathbf{r}_i \times \mathbf{m}_i \mathbf{v}_i) = \sum_{i=1}^n \frac{m_i^2}{m} (\mathbf{r}_i \times \mathbf{v}_i)$,但这样的话, \mathbf{p}_C 也应被重新定义为 $\sum_{i=1}^n \frac{m_i}{m} \mathbf{p}_i$,而不是 $=\sum_{i=1}^n \mathbf{p}_i = \mathbf{p}_i$ 。所以我们不再瞎想了

这也是为什么我们将 3.这节放在 2.之后的原因。——之前我们得到它,主要是为了得到<mark>质心运动定理 $\dot{\mathbf{p}}_C=\dot{\mathbf{p}}=\sum_{i=1}^n\mathbf{F}_i^{(e)}$ 。现在我们不需要通过诸如 $\mathbf{L}_C=\mathbf{J}$ 作为桥梁,就能得到一个类似 $\dot{\mathbf{p}}_C=\sum_{i=1}^n\mathbf{F}_i^{(e)}$ 的定理: $\dot{\mathbf{J}}'=\sum_{i=1}^n\mathbf{M}_i'^{(e)}$ 。</mark>

(2).——我们得退回去从动力学方程 $\frac{dp_i}{dt} = \mathbf{F}_i^{(e)} + \mathbf{F}_i^{(i)} (i=1,2,...,n)$ 入手:在(1).中我们说了, \mathbf{p}_i 是对 O 点的;那么根据伽利略速度变换,有 $\mathbf{p}_i' = \mathbf{p}_i - m_i \mathbf{v}_C$ (注: $m_i \mathbf{v}_C$ 不是 $\mathbf{p}_C = \sum_{i=1}^n \mathbf{p}_i$),则上式变为 $\frac{d(\mathbf{p}_i' + m_i \mathbf{v}_C)}{dt} = \mathbf{F}_i^{(e)} + \mathbf{F}_i^{(i)}$,于是 $\frac{d\mathbf{p}_i'}{dt} = \mathbf{F}_i^{(e)} + \mathbf{F}_i^{(i)} - \frac{d(m_i \mathbf{v}_C)}{dt}$ (i=1,2,...,n)(这样写是为了将一 $\frac{d(m_i \mathbf{v}_C)}{dt}$ 作为惯性力来看待),用 \mathbf{r}_i' 叉乘上式并求和,仍有 $\sum_{i=1}^n \mathbf{M}_i^{(i)} = \mathbf{0}$,得到 $\frac{dJ'}{dt} = \sum_{i=1}^n \mathbf{M}_i'^{(e)} - \sum_{i=1}^n \mathbf{r}_i' \times \frac{d(m_i \mathbf{v}_C)}{dt} = \sum_{i=1}^n \mathbf{M}_i'^{(e)} + \frac{d\mathbf{v}_C}{dt} \times \sum_{i=1}^n m_i \mathbf{r}_i' = \sum_{i=1}^n \mathbf{M}_i'^{(e)} + \mathbf{0} = \sum_{i=1}^n \mathbf{M}_i'^{(e)}$ 。【其中, $\sum_{i=1}^n m_i \mathbf{r}_i' = \mathbf{0}$,在质心处有介绍】

质点组对质心的动量矩定理: $\mathbf{j}' = \sum_{i=1}^n \mathbf{M}_i'^{(e)}$ 。 【注:由于加速度的伽利略变换不变性(只在惯性系之间变换时成立), $\mathbf{F}_i^{(e)}$, $\mathbf{F}_i^{(i)}$ 不能写作 $\mathbf{F}_i'^{(e)}$, $\mathbf{F}_i'^{(i)}$,因为 $\frac{d\mathbf{v}_C}{dt}$ 不一定=0,即质心不一定作匀速直线运动,那么其中的 $\mathbf{M}_i'^{(e)} = \mathbf{r}_i' \times \mathbf{F}_i^{(e)}$, $\mathbf{M}_i'^{(i)} = \mathbf{r}_i' \times \mathbf{F}_i^{(i)}$ 只能这么写,不可写作 $\mathbf{M}_i'^{(e)} = \mathbf{r}_i' \times \mathbf{F}_i'^{(e)}$, $\mathbf{M}_i'^{(i)} = \mathbf{r}_i' \times \mathbf{F}_i'^{(i)}$ 。】

这个定理看上去与质点组的动量定理 $j=\sum_{i=1}^n \mathbf{M}_i^{(e)}$ 并无差异,只是将参考点从定点 O 选择到了质心 C——但正是这里产生了差异: 质心一定是定点吗? 所以,(1).中的结果 $j=\sum_{i=1}^n \mathbf{M}_i^{(e)}$,只对参考点为空间中的某定点(或匀速直线运动的点)O 时成立,而这里的质心,不仅不是定点,甚至对于参考点选在作变速运动的质心处($\frac{\mathrm{d}\mathbf{v}_c}{\mathrm{d}t} \neq \mathbf{0}$),也成立。

我们来证明一下上一段中的灰色字段,并加以拓展: 设 $\mathbf{r}_i' = \mathbf{r}_i - \mathbf{r}_C$ 变为 $\mathbf{r}_i' = \mathbf{r}_i - \mathbf{r}_C$ 。那么 $\mathbf{p}_i' = \mathbf{p}_i - \mathbf{m}_i \mathbf{v}_{O'}$,经过同样的步骤,得出 $\frac{d\mathbf{J}'}{dt} = \sum_{i=1}^n \mathbf{M}_i'^{(e)} + \frac{d\mathbf{v}_{O'}}{dt} \times \sum_{i=1}^n \mathbf{m}_i \mathbf{r}_i'$,其中的 $\sum_{i=1}^n \mathbf{m}_i \mathbf{r}_i' = \sum_{i=1}^n \mathbf{m}_i (\mathbf{r}_i - \mathbf{r}_{O'})$ 一般不为 $\mathbf{0}$ 。但若 $\frac{d\mathbf{v}_{O'}}{dt} = \mathbf{0}$,后一项仍为 $\mathbf{0}$,以至于仍有 $\mathbf{J}' = \sum_{i=1}^n \mathbf{M}_i'^{(e)}$,这就证明了 2.3.(1).中的结论 $\mathbf{j} = \sum_{i=1}^n \mathbf{M}_i^{(e)}$,对(相对于?系)作匀速直线运动的参考点 O(O'),也成立。

拓展:但当 $\frac{d\mathbf{v}_{o'}}{dt}$ ≠ $\mathbf{0}$,即一般的参考点 $\mathbf{O'}$ 作加速运动时,又因为此时的 $\sum_{i=1}^{n} \mathbf{m}_{i} \mathbf{r}_{i}'$ 大多仍 ≠ $\mathbf{0}$,那么此时必须始终有 $\frac{d\mathbf{v}_{o'}}{dt}$ // $\sum_{i=1}^{n} \mathbf{m}_{i} \mathbf{r}_{i}'$,才能有 $\frac{d\mathbf{v}_{o'}}{dt} \times \sum_{i=1}^{n} \mathbf{m}_{i} \mathbf{r}_{i}' \equiv \mathbf{0}$,以至于维持 $\mathbf{j'}$ = $\sum_{i=1}^{n} \mathbf{M}_{i}'^{(e)}$ 的成立。【其中 $\sum_{i=1}^{n} \mathbf{m}_{i} \mathbf{r}_{i}' = \sum_{i=1}^{n} \mathbf{m}_{i} (\mathbf{r}_{i} - \mathbf{r}_{O'}) = \sum_{i=1}^{n} \mathbf{m}_{i} (\mathbf{r}_{C} - \mathbf{r}_{O'}) = \mathbf{m}_{C}'$,因此式子还可被精炼为 $\frac{d\mathbf{j'}}{dt} = \sum_{i=1}^{n} \mathbf{M}_{i}'^{(e)} + \frac{d\mathbf{v}_{O'}}{dt} \times \mathbf{m}_{C}'$ 。它能退化的条件便是 $\frac{d\mathbf{v}_{O'}}{dt}$ // \mathbf{r}_{C}' 】

【同样,在质点组的动量定理和质心运动定理 $\dot{\mathbf{p}}_C=\dot{\mathbf{p}}=\sum_{i=1}^n\mathbf{F}_i^{(e)}$ 中, \mathbf{p}_C 和 $\mathbf{p}=\sum_{i=1}^n\mathbf{p}_i$,均也是对 O 点的;于是根据伽利略速度变换,对 $\mathbf{p}_i'=\mathbf{p}_i-m_i\mathbf{v}_C(i=1,2,...,n)$ 求和,即有 $\sum_{i=1}^n\mathbf{p}_i'=\sum_{i=1}^n\mathbf{p}_i-\sum_{i=1}^nm_i\mathbf{v}_C=\mathbf{p}_C-m\mathbf{v}_C=\mathbf{0}$ 。——它也可直接来源于 m_i 乘以 $\mathbf{r}_i'=\mathbf{r}_i-\mathbf{r}_C$ 并求和,所导致的 $\sum_{i=1}^nm_i\mathbf{r}_i'=\mathbf{0}$,再对时间 t 求导即得】

2.4 动能定理与机械能守恒定律

1.质点组的动能定理

对于一个质点: 动能定理的微分形式在其身上的体现为, $dT_i=d(\frac{1}{2}m_iv_i^2)=\mathbf{F}_i^{(e)}\cdot d\mathbf{r}_i+\mathbf{F}_i^{(i)}\cdot d\mathbf{r}_i (i=1,2,...,n)$ 。

对于整个质点组: $\sum_{i=1}^{n} dT_i = \sum_{i=1}^{n} \mathbf{F}_i^{(e)} \cdot d\mathbf{r}_i + \sum_{i=1}^{n} \mathbf{F}_i^{(i)} \cdot d\mathbf{r}_i$ 。 于是 $\sum_{i=1}^{n} dT_i = dT = \sum_{i=1}^{n} \mathbf{F}_i^{(e)} \cdot d\mathbf{r}_i + \sum_{i=1}^{n} \mathbf{F}_i^{(i)} \cdot d\mathbf{r}_i$ 。 其中,我们定义了 $T = \sum_{i=1}^{n} T_i$,为质点组的总动能。

质点组的动量定理微分形式: $dT = \sum_{i=1}^{n} \mathbf{F}_{i}^{(e)} \cdot d\mathbf{r}_{i} + \sum_{i=1}^{n} \mathbf{F}_{i}^{(i)} \cdot d\mathbf{r}_{i}$ 。

质点组的动量定理积分形式: $T - T_0 = \sum_{i=1}^n \int_{\mathbf{r}_{i0}}^{\mathbf{r}_i} \mathbf{F}_i^{(e)} \cdot d\mathbf{r}_i + \sum_{i=1}^n \int_{\mathbf{r}_{i0}}^{\mathbf{r}_i} \mathbf{F}_i^{(i)} \cdot d\mathbf{r}_i$ 。 【其中, $\int_{\mathbf{r}_{i0}}^{\mathbf{r}_i} \mathbf{F}_i^{(e)} \cdot d\mathbf{r}_i = \frac{1}{2} m_i v_i^{(e)^2} - \frac{1}{2} m_i v_{i0}^{(e)^2} = T_i^{(e)} - T_{i0}^{(e)}$, $\int_{\mathbf{r}_{i0}}^{\mathbf{r}_i} \mathbf{F}_i^{(i)} \cdot d\mathbf{r}_i = T_i^{(i)} - T_{i0}^{(i)}$,并且有: $\int_{\mathbf{r}_{i0}}^{\mathbf{r}_i} (\mathbf{F}_i^{(e)} + \mathbf{F}_i^{(i)}) \cdot d\mathbf{r}_i = \int_{\mathbf{r}_{i0}}^{\mathbf{r}_i} \mathbf{F}_i^{(e)} \cdot d\mathbf{r}_i + \int_{\mathbf{r}_{i0}}^{\mathbf{r}_i} \mathbf{F}_i^{(i)} \cdot d\mathbf{r}_i = [T_i^{(e)} - T_{i0}^{(e)}] + [T_i^{(i)} - T_{i0}^{(i)}] = T_i - T_{i0}$, 是 是 $T - T_0 = \sum_{i=1}^n T_i - T_{i0}$ 】

在质点组动力学中,动量定理和动量矩定理中,内力有关项均因成对+共线+反向而抵消。然而这第三个基本定理动能定理,如果功不是刚体内力所作的功,通常并不能相互抵消:以某一定点 O 为参考点,考虑两个质点间相互作用力所作的元功之和 $\mathbf{F}_{12}^{(i)} \cdot d\mathbf{r}_1 + \mathbf{F}_{21}^{(i)} \cdot d\mathbf{r}_2 = \mathbf{F}_{12}^{(i)} \cdot (d\mathbf{r}_1 - d\mathbf{r}_2) = \mathbf{F}_{12}^{(i)} \cdot d\mathbf{r}_{21} = \mathbf{F}_{21}^{(i)} \cdot d\mathbf{r}_{12}$ 。【注: $\mathbf{r}_{21} = \mathbf{r}_1 - \mathbf{r}_2$,表示由 2 号指向 1 号的矢径,即以 \mathbf{r}_2 为参考点, \mathbf{r}_1 的位矢。电动力学中常用 \mathbf{r}_1 来表示。】

对于刚体而言,各 | \mathbf{r} | = | \mathbf{r}_{ij} | = C,各 d \mathbf{r} =d \mathbf{r}_{ij} =d($\mathbf{r}_{ij}\hat{\mathbf{r}}_{ij}$)=d $\mathbf{r}_{ij}\hat{\mathbf{r}}_{ij}$ + \mathbf{r}_{ij} d $\hat{\mathbf{r}}_{ij}$ = \mathbf{r}_{ij} d $\hat{\mathbf{r}}_{ij}$ (相当于两质点的连线只剩转动)。根据 \mathbf{r}_{ij}^2 =const.,两边求微分有2 \mathbf{r}_{ij} ·d \mathbf{r}_{ij} =0,于是 $\hat{\mathbf{r}}_{ij}$ ·d \mathbf{r}_{ij} =0,于是 $\hat{\mathbf{r}}_{ij}$ ·d \mathbf{r}_{ij} =0,于是 $\hat{\mathbf{r}}_{ij}$ ·d \mathbf{r}_{ij} =0,于是 $\hat{\mathbf{r}}_{ij}$ ·d \mathbf{r}_{ij} =0,因此其 $\sum_{i=1}^{n}\mathbf{F}_{i}^{(i)}\cdot d\mathbf{r}_{i}=\sum_{i=1}^{n}\sum_{j\neq i}\mathbf{F}_{ij}\cdot d\mathbf{r}_{i}=\sum_{j=1}^{n}\sum_{i\neq j}\mathbf{F}_{ij}\cdot d\mathbf{r}_{i}=\sum_{i=1}^{n}\sum_{j\neq i}\mathbf{F}_{ji}\cdot d\mathbf{r}_{j}=\frac{\sum_{i=1}^{n}\sum_{j\neq i}\mathbf{F}_{ji}\cdot d\mathbf{r}_{j}+\mathbf{F}_{ij}\cdot d\mathbf{r}_{i}}{2}=\frac{\sum_{i=1}^{n}\sum_{j\neq i}\mathbf{F}_{ji}\cdot d\mathbf{r}_{j}-d\mathbf{r}_{i}}{2}=\frac{\sum_{i=1}^{n}\sum_{j\neq i}\mathbf{F}_{ji}\cdot d\mathbf{r}_{j}-d\mathbf{r}_{i}}{2}=\mathbf{0}$ 。于是这种特殊质点组——刚体动能定理为dT= $\sum_{i=1}^{n}\mathbf{F}_{i}^{(e)}\cdot d\mathbf{r}_{i}$ 。

2.机械能守恒定律

若 $\mathbf{F}_i^{(e)}$, $\mathbf{F}_i^{(i)}$ (i=1,2,...,n)均是保守力,则每一个力对应一个势函数,即有 $\mathbf{F}_i^{(e)}$ = $-\nabla V_i^{(e)}$, $\mathbf{F}_i^{(i)}$ = $-\nabla V_i^{(i)}$ (i=1,2,...,n);于是有如 $\int_{\mathbf{r}_{i0}}^{\mathbf{r}_{i}} \mathbf{F}_i^{(e)} \cdot d\mathbf{r}_i$ = $\int_{\mathbf{r}_i}^{\mathbf{r}_{i0}} \nabla V_i^{(e)} \cdot d\mathbf{r}_i$ = $\int_{\mathbf{r}_i}^{\mathbf{r}_{i0}} dV_i^{(e)}$

 $=V_{i0}^{(e)}-V_{i}^{(e)}=T_{i0}^{(e)}-T_{i0}^{(e)}=\frac{1}{2}m_{i}v_{i}^{(e)^{2}}-\frac{1}{2}m_{i}v_{i0}^{(e)^{2}}$ (这结合了动能定理的积分形式)。同样的道理, $\int_{\mathbf{r}_{i0}}^{\mathbf{r}_{i}}\mathbf{F}_{i}^{(i)}\cdot d\mathbf{r}_{i}=V_{i0}^{(i)}-V_{i}^{(i)}, \ \mathcal{F}是\int_{\mathbf{r}_{i0}}^{\mathbf{r}_{i}}(\mathbf{F}_{i}^{(e)}+\mathbf{F}_{i}^{(i)})\cdot d\mathbf{r}_{i}=\int_{\mathbf{r}_{i0}}^{\mathbf{r}_{i}}\mathbf{F}_{i}^{(e)}\cdot d\mathbf{r}_{i}+\int_{\mathbf{r}_{i0}}^{\mathbf{r}_{i}}\mathbf{F}_{i}^{(i)}\cdot d\mathbf{r}_{i}=V_{i0}^{(e)}-V_{i}^{(e)}]+V_{i0}^{(e)}-V_{i}^{(e)}=V_{i0}^{(e)}-V_{i}^{(e)}$

于是 $V_{i0}-V_i=T_i-T_{i0}$ 。两边求和, $\sum_{i=1}^n V_{i0}-V_i=\sum_{i=1}^n T_i-T_{i0}$,得到 $V_0-V=T-T_0$ 。移项即有 $V_0+T_0=V+T$ 。

机械能守恒定律: T+V=E。——它成立的条件为诸外力和内力,即 $\mathbf{F}_{i}^{(e)}$, $\mathbf{F}_{i}^{(i)}$ (i=1,2,...,n)均是保守力,或者其中的非保守力不做功(只有保守力做功)。然而一般内力并不是保守力,所以质点组的机械能一般不守恒。

3.对质心的动能定理

(仍安排在定理和对应定律之后的第三小节处)

而左端 $\sum_{i=1}^n \frac{d\mathbf{p}_i'}{dt} \cdot d\mathbf{r}_i' = \sum_{i=1}^n d\mathbf{p}_i' \cdot \frac{d\mathbf{r}_i'}{dt} = \sum_{i=1}^n m_i d\mathbf{v}_i' \cdot \mathbf{v}_i' = \sum_{i=1}^n m_i \mathbf{v}_i' \cdot d\mathbf{v}_i' = \sum_{i=1}^n \mathbf{p}_i' \cdot d\mathbf{v}_i' = \Delta_{i=1}^n \mathbf{p}_i' \cdot d\mathbf{r}_i' = \Delta_{i=1}^n \mathbf{p}_i' \cdot d\mathbf{r}_i' + \Delta_{i=1}^n \mathbf{p}_i' \cdot d\mathbf{r}_i' \cdot d\mathbf{r}_i' = \Delta_{i=1}^n \mathbf{p}_i' \cdot d\mathbf{r}_i' + \Delta_{i=1}^n \mathbf{p}_i' \cdot d\mathbf{r}_i' \cdot d\mathbf{r}_i' = \Delta_{i=1}^n \mathbf{p}_i' \cdot d\mathbf{r}_i' \cdot d\mathbf{r}_i' \cdot d\mathbf{r}_i' = \Delta_{i=1}^n \mathbf{p}_i' \cdot d\mathbf{r}_i' \cdot d\mathbf{r}_i' \cdot d\mathbf{r}_i' = \Delta_{i=1}^n \mathbf{p}_i' \cdot d\mathbf{r}_i' \cdot d\mathbf{r}_i' \cdot d\mathbf{r}_i' = \Delta_{i=1}^n \mathbf{p}_i' \cdot d\mathbf{r}_i' \cdot d\mathbf{r$

这个定理也与(1). 质点组的动能定理看上去并无差异,但差异仍出现在:质心 C 不像定点 or 匀速直线运动的 O 点,它可以作变加速运动,该式仍成立。然而(1). 式中的T只能是在某一惯性系 O 下量度的。

将其加以推广:同样将 $\mathbf{r}_i'=\mathbf{r}_i-\mathbf{r}_C$ 变为 $\mathbf{r}_i'=\mathbf{r}_i-\mathbf{r}_{O'}$,那么 $\mathbf{p}_i'=\mathbf{p}_i-\mathbf{m}_i\mathbf{v}_{O'}$,经过同样的步骤,得出 dT' = $\sum_{i=1}^n\mathbf{F}_i^{(e)}\cdot\mathrm{d}\mathbf{r}_i'+\sum_{i=1}^n\mathbf{F}_i^{(i)}\cdot\mathrm{d}\mathbf{r}_i'-\frac{\mathrm{d}\mathbf{v}_{O'}}{\mathrm{d}t}\cdot\sum_{i=1}^n\mathbf{m}_i\mathbf{r}_i'$,其中的 $\sum_{i=1}^n\mathbf{m}_i\mathbf{r}_i'=\sum_{i=1}^n\mathbf{m}_i(\mathbf{r}_i-\mathbf{r}_{O'})=\mathbf{m}\mathbf{r}_C'-$ 般不为 $\mathbf{0}$ 。但若" $\frac{\mathrm{d}\mathbf{v}_{O'}}{\mathrm{d}t}=\mathbf{0}$,即 $\mathbf{v}_{O'}=\mathbf{C}$ ",或者" $\frac{\mathrm{d}\mathbf{v}_{O'}}{\mathrm{d}t}=\mathbf{0}$,即 $\mathbf{v}_{O'}=\mathbf{C}$ ",或者" $\frac{\mathrm{d}\mathbf{v}_{O'}}{\mathrm{d}t}=\mathbf{0}$,如不为 $\mathbf{0}$,以至于仍有dT'= $\sum_{i=1}^n\mathbf{F}_i^{(e)}\cdot\mathrm{d}\mathbf{r}_i'+\sum_{i=1}^n\mathbf{F}_i^{(i)}\cdot\mathrm{d}\mathbf{r}_i'$ 。【根据 $\sum_{i=1}^n\mathbf{m}_i\mathbf{r}_i'=\mathbf{m}\mathbf{r}_C'$,可写为dT'= $\sum_{i=1}^n\mathbf{F}_i^{(e)}\cdot\mathrm{d}\mathbf{r}_i'+\sum_{i=1}^n\mathbf{F}_i^{(i)}\cdot\mathrm{d}\mathbf{r}_i'-\frac{\mathrm{d}\mathbf{v}_{O'}}{\mathrm{d}t}\cdot\mathbf{m}\mathbf{r}_C'$ 】

4.柯尼希定理

将 $\mathbf{r}_i'=\mathbf{r}_i-\mathbf{r}_C$ 两边对时间 t 求导,有 $\mathbf{v}_i=\mathbf{v}_C+\mathbf{v}_i'$,于是 $T=\sum_{i=1}^nT_i=\sum_{i=1}^n\frac{1}{2}m_i\mathbf{v}_i^2=\sum_{i=1}^n\frac{1}{2}m_i(\mathbf{v}_C+\mathbf{v}_i')^2=\sum_{i=1}^n\frac{1}{2}m_i\mathbf{v}_C^2+\sum_{i=1}^n\frac{1}{2}m_i\mathbf{v}_i'^2+\sum_{i=1}^nm_i\mathbf{v}_i'\cdot\mathbf{v}_C=\frac{1}{2}m\mathbf{v}_C^2+\sum_{i=1}^n\frac{1}{2}m_i\mathbf{v}_i'^2+\mathbf{v}_C\cdot\sum_{i=1}^n\mathbf{p}_i'=\frac{1}{2}m\mathbf{v}_C^2+\sum_{i=1}^n\frac{1}{2}m_i\mathbf{v}_i'^2$,其中的 $\mathbf{v}_C\cdot\sum_{i=1}^n\mathbf{p}_i'=0$,我们在 2.3.(3).最末小字部分已经阐明了其原因。若设质心动能 $T_C=\frac{1}{2}m\mathbf{v}_C^2$,则有:

柯尼希定理: $T=T_C+\sum_{i=1}^n\frac{1}{2}m_i\mathbf{v}_i'^2$,即:质点组对定点 O 的动能,为质心对定点 O 的动能+各质点对质心的动能之和。

例: 质量 m_1, m_2 的两个自由质点靠引力相互吸引,开始时刻二者皆静止,距离为a,试求两质点间距 $\frac{1}{2}a$ 时,两质点的速度。

将二者看做一个质点组,各个质点所受外力 $\mathbf{F}_{i}^{(e)}$ 均为 $\mathbf{0}$ 。于是动量守恒定律,有 $m_1\mathbf{v}_1+m_2\mathbf{v}_2=\mathbf{0}$ 。两端点乘 $\hat{\mathbf{v}}_1$,即有 $m_1\mathbf{v}_1-m_2\mathbf{v}_2=\mathbf{0}$ 。

引力 $F=-\frac{Gm_1m_2}{r^2}$ 属于保守力,可引入势能 $V=-\frac{Gm_1m_2}{r}$,于是利用机械能守恒定律,有 $V_0+T_0=V+T$,即 $-\frac{Gm_1m_2}{a}+0=-\frac{Gm_1m_2}{a/2}+\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2$ 。

结合以上二者便可求得 v_1,v_2 。机械能守恒定律也可替换为动能定理,毕竟前者是后者+保守力,所衍生出来的。而若这里的F不是保守力,则我们只能采用动能定理。

2.5 两体问题

1.质点组的动能定理

设对于同一惯性系 $O: r_p$ 为行星对O点的矢径, r_s 为太阳对O点的矢径。

(1).质心的运动

对于 O 点而言,太阳的动力学方程为M $\frac{d^2\mathbf{r}_S}{dt^2} = \frac{GMm}{r^2} \cdot \hat{\mathbf{r}}$ 。其中 SP= $\mathbf{r}_P - \mathbf{r}_S$,为行星相对于太阳的矢径。行星对 O 点的运动方程为m $\frac{d^2\mathbf{r}_P}{dt^2} = -\frac{GMm}{r^2} \cdot \hat{\mathbf{r}}$ 。二者相加,得到 $\frac{d^2}{dt^2} (M\mathbf{r}_S + m\mathbf{r}_P) = \mathbf{0}$ 。

但根据 \mathbf{r}_{C} 的定义, $m\mathbf{r}_{C}=\sum_{i=1}^{n}m_{i}\mathbf{r}_{i}$,具体来说即有 $(\mathbf{M}+\mathbf{m})\mathbf{r}_{C}=\mathbf{M}\mathbf{r}_{S}+\mathbf{m}\mathbf{r}_{P}$,代入便有 $(\mathbf{M}+\mathbf{m})\frac{d^{2}\mathbf{r}_{C}}{dt^{2}}=\mathbf{0}$ 。这意味着(太阳,行星)组成的体系(S,P)的质心,在 O 系中将按照惯

性运动。——该结论也可通过质点组的动量守恒定律得到:因为对于体系(S,P)而言,引力是内力, $\sum_{i=1}^{n} \mathbf{F}_{i}^{(e)} = \mathbf{0}$,得到 $\dot{\mathbf{p}}_{C} = \mathbf{0}$,则 $\mathbf{p}_{C} = \mathbf{0}$ 是

(2).P,S 分别绕着它们的质心 C 作什么运动

根据 $\mathbf{r}_{C} = \frac{M}{M+m} \mathbf{r}_{S} + \frac{m}{M+m} \mathbf{r}_{P}$, 令 $\mathsf{CP} = \mathbf{r}_{P} - \mathbf{r}_{C} = \mathbf{r}_{1}$, $\mathsf{CS} = \mathbf{r}_{S} - \mathbf{r}_{C} = \mathbf{r}_{2}$, 将得到 $\mathbf{r}_{C} = \frac{M}{M+m} (\mathbf{r}_{C} + \mathbf{r}_{2}) + \frac{m}{M+m} (\mathbf{r}_{C} + \mathbf{r}_{1})$, 于是 $\frac{M}{M+m} \mathbf{r}_{2} + \frac{m}{M+m} \mathbf{r}_{1} = \mathbf{0}$, 得到 $\mathsf{Mr}_{2} + \mathsf{mr}_{1} = \mathbf{0}$ 。这一方面说明了质心在 SP 的连线上,另一方面说明了质心的准确位置:两端点乘 \mathbf{r} (从 SP 与 CP 可见, \mathbf{r}_{1} 同向于 \mathbf{r} ; 或者从都是 \mathbf{r}_{P} 打头看出),得到 $-\mathsf{Mr}_{2} + \mathsf{mr}_{1} = \mathbf{0}$,即 $\mathsf{Mr}_{2} = \mathsf{mr}_{1}$ 。

另外, $\mathbf{r}=\mathbf{r}_P-\mathbf{r}_S=(\mathbf{r}_C+\mathbf{r}_1)-(\mathbf{r}_C+\mathbf{r}_2)=\mathbf{r}_1-\mathbf{r}_2$,两端点乘 $\hat{\mathbf{r}}$,得到 $\mathbf{r}=\mathbf{r}_1+\mathbf{r}_2$ 。结合两式,将 $\mathbf{r}_2=\frac{m}{M}\mathbf{r}_1$ 代入后者(要将 \mathbf{r}_1 用 \mathbf{r} 表达,因为我们关心的是行星相对于 C 点的运动方程),即有 $\mathbf{r}=\mathbf{r}_1+\frac{m}{M}\mathbf{r}_1$,得到 $\mathbf{r}=\frac{M+m}{M}\mathbf{r}_1$ 。

将
$$\mathbf{r}_P = \mathbf{r}_1 + \mathbf{r}_C$$
,以及 $\mathbf{r} = \frac{\mathsf{M} + \mathsf{m}}{\mathsf{M}} \mathbf{r}_1$,代入行星对 O 点的运动方程 $\mathbf{m} \frac{\mathsf{d}^2 \mathbf{r}_P}{\mathsf{d} t^2} = -\frac{k^2 \mathsf{m}}{\mathsf{d} t^2} \cdot \hat{\mathbf{r}}_{\circ}$ 。有 $\mathbf{m} \frac{\mathsf{d}^2 (\mathbf{r}_1 + \mathbf{r}_C)}{\mathsf{d} t^2} = -\frac{k^2 \mathsf{m}}{(\frac{\mathsf{M} + \mathsf{m}}{\mathsf{m}} \mathbf{r}_1)^2} \cdot \hat{\mathbf{r}}_1$,其中 $\frac{\mathsf{d}^2 \mathbf{r}_C}{\mathsf{d} t^2} = \mathbf{0}$,得到 $\mathbf{m} \frac{\mathsf{d}^2 \mathbf{r}_1}{\mathsf{d} t^2} = -\frac{\mathsf{M}^2}{(\mathsf{M} + \mathsf{m})^2} \frac{k^2 \mathsf{m}}{\mathbf{r}_1^2} \cdot \hat{\mathbf{r}}_1 = -\frac{k^2 \mathsf{m} \mathsf{M}^2}{(\mathsf{M} + \mathsf{m})^2} \frac{1}{\mathbf{r}_1^2} \hat{\mathbf{r}}_1$,即有, $\mathbf{m} \frac{\mathsf{d}^2 \mathbf{r}_1}{\mathsf{d} t^2} = -\frac{k^2 \mathsf{m} \mathsf{M}^2}{(\mathsf{M} + \mathsf{m})^2} \frac{1}{\mathbf{r}_1^2} \hat{\mathbf{r}}_1$ 。【 $\mathbf{k}^2 = \mathsf{GM}$ 】

力仍与距离的平方成反比,由 1.9 有心力的结果可知,行星绕(S,P)系统的质心作圆锥曲线运动。同样可证,太阳对 C 的方程也是圆锥曲线。 【为何是对 C 点的方程:加速度 $\frac{d^2 \mathbf{r}_1}{dt^2}$ 与力 $-\frac{k^2 m M^2}{(M+m)^2}\frac{1}{\mathbf{r}_1^2}\hat{\mathbf{r}_1}$ 都是在 C 系下量度的】

(3).行星对太阳的相对运动方程

行星对 O 点的运动方程 $m \frac{d^2 \mathbf{r}_P}{dt^2} = -\frac{GMm}{r^2} \cdot \hat{\mathbf{r}}$ 乘以 M,减去太阳对 O 点的运动方程 $m \frac{d^2 \mathbf{r}_S}{dt^2} = \frac{GMm}{r^2} \cdot \hat{\mathbf{r}}$ 乘以 m,得到 $m \frac{d^2 (\mathbf{r}_P - \mathbf{r}_S)}{dt^2} = -\frac{GMm}{r^2} (M+m) \cdot \hat{\mathbf{r}}$ 。代入 $\mathbf{r} = \mathbf{r}_P - \mathbf{r}_S$,并除以 M,得到 $m \frac{d^2 \mathbf{r}}{dt^2} = -\frac{G(M+m)m}{r^2} \cdot \hat{\mathbf{r}}$,令 $k'^2 = G(M+m)$,得到 $m \frac{d^2 \mathbf{r}}{dt^2} = -\frac{k'^2 m}{r^2} \cdot \hat{\mathbf{r}}$ 。【为何是对 O 点的方程:加速度 $\frac{d^2 \mathbf{r}}{dt^2}$ 与力 $-\frac{k'^2 m}{r^2} \cdot \hat{\mathbf{r}}$ 都是在 S 系下量度的】

在用该方程时,可认为太阳是不动的,但它的质量却增大为了 M+m,相对于"行星对 O 点的运动方程 $m\frac{d^2r_p}{dt^2}=-\frac{GMm}{r^2}\cdot\hat{\mathbf{r}}$ "中的 M;但二者左边是相同的,意味着该等效模型中行星质量不变。(可见该对 O 点的运动方程,左边的加速度是在 O 系下量度的,而右边的力却是在 S 系下量度的)。

从另一个角度,在上上一段代入 $\mathbf{r}=\mathbf{r}_P-\mathbf{r}_S$ 后,不除以 M,而是除以 M+m,便有 $\frac{Mm}{M+m}\frac{d^2\mathbf{r}}{dt^2}=-\frac{GMm}{r^2}\cdot\hat{\mathbf{r}}$ 。此时方程右边与"行星对 O 点的运动方程 $m\frac{d^2\mathbf{r}_P}{dt^2}=-\frac{GMm}{r^2}\cdot\hat{\mathbf{r}}$ "右边相同。此时太阳质量不变,行星质量减小为折合质量 $\mu=\frac{Mm}{M+m}$ 。【该式也是行星 P 对太阳 S 的动力学方程,仍可认为太阳不动。】

(4).开普勒第三定律的修正

根据 1.9.(4).开普勒定律,我们给出过 $4\pi^2\frac{a^3}{T^2}=\frac{h^2}{l}=k^2$ 。根据开普勒第三定律,对于同一个恒星,各行星的 $\frac{a^3}{T^2}$ 应该是个定值,即 $\frac{a_1^3}{T_1^2}:\frac{a_2^3}{T_2^2}$ 应该恒=1。于是各行星的 $k_1'^2:k_2'^2=0$ 应恒=1。但 $k_1'^2:k_2'^2=\frac{G(M+m_1)}{G(M+m_2)}=\frac{M+m_1}{M+m_2}\neq 1$ 。不过相差不大。

开普勒第三定律应修正为: $\frac{a_1^3}{T_1^2}:\frac{a_2^3}{T_2^2}=\frac{1+\frac{m_1}{M}}{1+\frac{m_2}{M}}$ 。 【M 为俩行星共同围绕的恒星质量】

2.6 质心坐标系与实验室坐标系

实验室坐标系:相当于之前的 O 系,在定点 O 系下观测二者的散射过程。散射角为被散射质点(如 α 粒子)在散射前后的速度的偏转角 θ_r 。

质心坐标系:即C系。散射角为两质点间相对位矢 \mathbf{r} 的偏转角 θ_{c} 。

只有当散射主(如原子核)在散射过程中始终静止不动时,二者才相等。

2.7 变质量物体的运动

1.变质量物体的动力学方程

(1).这可看做一个两体问题: 物体 1 质量为 m, 物体 2 质量为△m

- ①.t 时刻,m 的速度为 \mathbf{v} ; \triangle m 的速度为 \mathbf{u} 。体系动量和为 $\mathbf{m}\mathbf{v} + \Delta \mathbf{m}\mathbf{u}$ 。
- ②.t+ $^{\Delta}$ t 时刻,m 的速度为 $\mathbf{v}+^{\Delta}\mathbf{v}$; $^{\Delta}$ m 的速度(也)为 $\mathbf{v}+^{\Delta}\mathbf{v}$ 。体系动量和为 $\mathbf{m}(\mathbf{v}+\Delta\mathbf{v})+\Delta\mathbf{m}(\mathbf{v}+\Delta\mathbf{v})=(\mathbf{m}+\Delta\mathbf{m})(\mathbf{v}+\Delta\mathbf{v})$ 。

【此时物体 2 相当于粘附在了物体 1 上,因而速度相同,一同运动。此时物体 2 的质量可看做从 $^{\Delta}$ m \rightarrow 0,物体 1 的质量从 m \rightarrow m+ $^{\Delta}$ m;但这种思想对于数学表达式是致命的。所以在 t+ $^{\Delta}$ t 时刻,最好仍将其看做两个物体!】

根据质点组的动量定理: $\dot{\mathbf{p}} = \sum_{i=1}^{n} \mathbf{F}_{i}^{(e)}$, 其中 $\dot{\mathbf{p}} = \frac{d}{dt} \sum_{i=1}^{n} \mathbf{p}_{i} = \frac{1}{dt} d \sum_{i=1}^{2} \mathbf{p}_{i} = \frac{1}{dt} \left[\sum_{i=1}^{2} \mathbf{p}_{i} \right] |_{t}^{t+\Delta t} = \frac{1}{dt} \left[(m+dm)(\mathbf{v}+d\mathbf{v}) - (m\mathbf{v}+dm\mathbf{u}) \right] = \frac{1}{dt} \left[(md\mathbf{v}+\mathbf{v}dm+dmd\mathbf{v}) - dm\mathbf{u} \right] = \frac{1}{dt} \left[d(m\mathbf{v}) - dm\mathbf{u} \right]_{\bullet}$

记 "作用在 m 上的外力和",与 "作用在 $^{\Delta}$ m 上的外力和",之和为 $\Sigma_{i=1}^{n} \mathbf{F}_{i}^{(e)} = \Sigma_{i=1}^{2} \mathbf{F}_{i}^{(e)} = \mathbf{F}$ 。于是便有 $\frac{d}{dt}$ (m \mathbf{v}) $-\frac{dm}{dt}\mathbf{u} = \mathbf{F}$ 。由于质点组的动量定理中各量都是在同一惯性系下量度的,其中 \mathbf{v} , \mathbf{u} 也是相对同一惯性系而言的。

如果其中的 Δm 或者说 dm 只取正号的话,变质量物体的动力学方程 $\frac{d}{dt}$ (m \mathbf{v}) — $\frac{dm}{dt}$ \mathbf{u} = \mathbf{F} , 似乎只能描绘一个追及问题: Δm 与 m 从分离状态到黏在一起,一起运动。 当 Δm <0 时,方程&方程的得来过程,似乎没有物理意义。但其实 Δm <0 时,方程描绘的是 Δm 与 m 从合并在一起,到分离的过程,二者互为逆过程,下面我们对此进行解释:

2.仍设物体 1 质量为 m, 物体 2 质量为△m

(两个设推导过程中的 Δ **v**=d**v**, 且 Δ m均>0, 但 1.中的 dm>0, Δ m=dm>0; 2.中的 dm<0, Δ m=-dm>0)

- ①.t 时刻, m 的速度为 \mathbf{v} ; Δm 的速度(也)为 \mathbf{v} 。体系动量和为 $m\mathbf{v} + \Delta m\mathbf{v}$ 。
- ②.t+ $^{\Delta}$ t 时刻,m 的速度为 v+ $^{\Delta}$ v; $^{\Delta}$ m 的速度为 u。体系动量和为m(v + $^{\Delta}$ v) + $^{\Delta}$ mu。

根据质点组的动量定理: $\dot{\mathbf{p}} = \sum_{i=1}^{n} \mathbf{F}_{i}^{(e)}$, 其中 $\dot{\mathbf{p}} = \frac{d}{dt} \sum_{i=1}^{n} \mathbf{p}_{i} = \frac{1}{dt} d \sum_{i=1}^{2} \mathbf{p}_{i} = \frac{1}{dt} \left[\sum_{i=1}^{2} \mathbf{p}_{i} \right] |_{t}^{t+\Delta t} = \frac{1}{dt} \left[m(\mathbf{v} + \Delta \mathbf{v}) + \Delta m\mathbf{u} - (m\mathbf{v} + \Delta m\mathbf{v}) \right] = \frac{1}{dt} \left[m\Delta\mathbf{v} + \Delta m\mathbf{u} - \Delta m\mathbf{v} \right] = \frac{1}{dt} \left[(m\Delta\mathbf{v} - \Delta m\mathbf{v}) + \Delta m\mathbf{u} \right] = \frac{1}{dt} \left[(md\mathbf{v} + dm\mathbf{v}) - dm\mathbf{u} \right] = \frac{1}{dt} \left[d(m\mathbf{v}) - dm\mathbf{u} \right]_{\bullet}$

若仍记 $\sum_{i=1}^{n} \mathbf{F}_{i}^{(e)} = \mathbf{F}$,仍得到同样形式的变质量物体的动力学方程 $\frac{d}{dt}$ $(m\mathbf{v})$ — $\frac{dm}{dt}\mathbf{u} = \mathbf{F}$ 。因此其中的 \mathbf{u} 表示, $\Delta m = |\mathbf{dm}|$ 未与 m 合并之前(t 时刻),或从 m 分出后($t + \Delta t$),这两种物理情景下的, $\Delta m = |\mathbf{dm}|$ 相对于地面的速度。

2.火箭

稍加移项,变质量物体的动力学方程变为m $\frac{dv}{dt}$ =F + $\frac{dm}{dt}$ (u - v)。其中,u - v=v_r表示放出的物质 Δ m=|dm|,相对于运动物体 m 的(相对)速度。 $\frac{dm}{dt}$ 表示单位时间放出物质的质量($\frac{dm}{dt}$ <0)。而 $\frac{dm}{dt}$ v_r在右侧与F在一块,因此我们记其为F_r,表示因放出物质所引起的附加力或反作用力。于是方程变为了m $\frac{dv}{dt}$ =F + $\frac{dm}{dt}$ v_r=F + F_r。

而 \mathbf{v}_r 方向反向于物体运动速度 \mathbf{v} (总与轨道切向相反),而在速度空间中, $\mathbf{v}=v_i$,因此 $\mathbf{v}_r=-v_r$ i。于是 $m\frac{d\mathbf{v}}{dt}=\mathbf{F}+\frac{dm}{dt}\mathbf{v}_r=\mathbf{F}-\frac{dm}{dt}v_r$ i。即变质量物体的动力学方程还可写作 $m\frac{d\mathbf{v}}{dt}=\mathbf{F}-\frac{dm}{dt}v_r$ i。

进一步地,设 $\mathbf{v}=\mathbf{v}\cdot\mathbf{i}$,即 $\mathbf{v}\mathbf{i}=\mathbf{v}$ 。尝试着将方程变为标量式/分量式: $\mathbf{m}\frac{\mathbf{d}(\mathbf{v}\mathbf{i})}{\mathbf{d}t}=\mathbf{F}-\frac{\mathbf{d}\mathbf{m}}{\mathbf{d}t}\mathbf{v}_{\mathbf{r}}\mathbf{i}$,得到 $\mathbf{m}[\frac{\mathbf{d}\mathbf{v}}{\mathbf{d}t}\mathbf{i}+\mathbf{v}\frac{\mathbf{d}\mathbf{i}}{\mathbf{d}t}]=\mathbf{m}[\frac{\mathbf{d}\mathbf{v}}{\mathbf{d}t}\mathbf{i}+\mathbf{v}\mathbf{j}\dot{\boldsymbol{\theta}}]=\mathbf{F}-\frac{\mathbf{d}\mathbf{m}}{\mathbf{d}t}\mathbf{v}_{\mathbf{r}}\mathbf{i}$,即 $\mathbf{m}[\dot{\mathbf{v}}\mathbf{i}+\mathbf{v}\dot{\boldsymbol{\theta}}\mathbf{j}]=\mathbf{F}-\frac{\mathbf{d}\mathbf{m}}{\mathbf{d}t}\mathbf{v}_{\mathbf{r}}\mathbf{i}$ 。两边点乘 \mathbf{i} ,得到 $\mathbf{m}\dot{\mathbf{v}}=\mathbf{F}\cdot\dot{\mathbf{i}}-\frac{\mathbf{d}\mathbf{m}}{\mathbf{d}t}\mathbf{v}_{\mathbf{r}}$;两边点乘 \mathbf{j} ,得到 $\mathbf{m}[\mathbf{v}\dot{\boldsymbol{\theta}}]=\mathbf{F}\cdot\dot{\mathbf{j}}-\frac{\mathbf{d}\mathbf{m}}{\mathbf{d}t}\mathbf{v}_{\mathbf{r}}$ 。

于是,变质量物体的动力学方程还可写作m[vi+ $\dot{\theta}$ vj]= $\mathbf{F}-\frac{dm}{dt}v_r$ i,或分量式 $\begin{cases} m\dot{v}=\mathbf{F}_t-\frac{dm}{dt}v_r\\ mv\dot{\theta}=\mathbf{F}_n-\frac{dm}{dt}v_r \end{cases}$,其中 \mathbf{F}_t = $\mathbf{F}\cdot\mathbf{i}$ 、 \mathbf{F}_n = $\mathbf{F}\cdot\mathbf{i}$ 分别为 \mathbf{F} 的切向分量和主法向分量。

2.8 位力定理

1.变质量物体的动力学方程

大数目质点组的一般定理: 位力定理。它具有统计性质, 其中力学量都以对时间的平均值出现。

定义标量 $G=\sum_{i=1}^{n}\mathbf{p}_{i}\cdot\mathbf{r}_{i}$,于是 $\frac{dG}{dt}=\sum_{i=1}^{n}\dot{\mathbf{p}}_{i}\cdot\mathbf{r}_{i}+\sum_{i=1}^{n}\mathbf{p}_{i}\cdot\dot{\mathbf{r}}_{i}$,其中,根据动量定理 $\mathbf{F}=\dot{\mathbf{p}}$,前一项 $\sum_{i=1}^{n}\dot{\mathbf{p}}_{i}\cdot\mathbf{r}_{i}=\sum_{i=1}^{n}\mathbf{F}_{i}\cdot\mathbf{r}_{i}$;而后一项 $\sum_{i=1}^{n}\mathbf{p}_{i}\cdot\dot{\mathbf{r}}_{i}=\sum_{i=1}^{n}m_{i}\mathbf{v}_{i}\cdot\mathbf{v}_{i}$: $\mathbf{v}_{i}=\sum_{i=1}^{n}m_{i}\mathbf{v}_{i}^{2}=2\mathsf{T}$ 。于是, $\frac{dG}{dt}=\sum_{i=1}^{n}\mathbf{F}_{i}\cdot\mathbf{r}_{i}+2\mathsf{T}$ 。【 \mathbf{F}_{i} 应理解为第 i 个质点所受到的内力之和与外力之和之和】

两边对时间取平均 $\frac{1}{\tau}\int_0^{\tau}\cdot d\tau$,即有 $\frac{1}{\tau}\int_0^{\tau}\frac{dG}{dt}\cdot d\tau = \frac{1}{\tau}\int_0^{\tau}\sum_{i=1}^n \mathbf{F}_i\cdot \mathbf{r}_i\cdot d\tau + 2\frac{1}{\tau}\int_0^{\tau} \mathbf{T}\cdot d\tau$,于是 $\frac{1}{\tau}\int_0^{\tau}dG = \overline{\sum_{l=1}^n \mathbf{F}_l\cdot \mathbf{r}_l} + 2\overline{T}$ 。即有 $\overline{\sum_{l=1}^n \mathbf{F}_l\cdot \mathbf{r}_l} + 2\overline{T} = \frac{1}{\tau}[G(\tau) - G(0)]$ 。

如果每个质点都以 τ 为周期作周期运动,则右边变为 $\frac{1}{\tau}[\sum_{i=1}^n \mathbf{p}_i \cdot \mathbf{r}_i |_{\tau=0} - \sum_{i=1}^n \mathbf{p}_i \cdot \mathbf{r}_i |_{t=0}] = \frac{1}{\tau} \sum_{i=1}^n (\mathbf{p}_i \cdot \mathbf{r}_i |_0^\tau) = \mathbf{0}$ 。即使各个质点的运动并非周期性,或周期不一致

(没有公共周期,即不同是某个周期的整数分之 1),但只要各质点的 \mathbf{p}_i , \mathbf{r}_i 都保持为有限值(max{lim \mathbf{p}_i ,lim \mathbf{r}_i } \leq N),那么 G 有一上限(lim $\sum_{i=1}^n \mathbf{p}_i \cdot \mathbf{r}_i \leq$ M)。此时若将 τ 取得很大,那么右端仍趋向于 0: $\lim_{\tau \to \infty} \frac{1}{\tau} G(\tau) |_0^\tau = 0$ 。

因此, $\overline{T} = -\frac{1}{2}\overline{\sum_{i=1}^{n}F_{i}\cdot r_{i}}$ 。其中的 $-\overline{T} = \frac{1}{2}\overline{\sum_{i=1}^{n}F_{i}\cdot r_{i}}$ 叫做均位力积,简称位力。该方程叫做位力定理。表述为:在很长的时间间隔内,质点组的动能对时间的平均值取负号,等于作用在此质点组上的均位力积(位力)。

如果是体系是保守力系,则 $\mathbf{r}_i = -\nabla V_i$,于是 $\overline{T} = -\frac{1}{2} \overline{\sum_{i=1}^n -\nabla V_i \cdot r_i \hat{\mathbf{r}}_i} = \frac{1}{2} \overline{\sum_{i=1}^n \nabla V_i \cdot r_i \hat{\mathbf{r}}_i}$,而 $\nabla V_i \cdot \hat{\mathbf{r}}_i = \frac{\partial V_i}{\partial r}$,得到 $\overline{T} = \frac{1}{2} \overline{\sum_{i=1}^n r_i \frac{\partial V_i}{\partial r}}$ 。

特例:在之前,(有心力)万有引力 $\mathbf{F}=-\frac{\mathbf{k}^2\mathbf{m}}{\mathbf{r}^2}=(-2+1)\mathbf{k}^2\mathbf{m}\mathbf{r}^{-2}=a(l+1)\mathbf{r}^l|_{\substack{l=2\\a=\mathbf{k}^2\mathbf{m}}}$,那么我们若设 \mathbf{F} 为 \mathbf{r} 的幂函数(有心力),即 $\mathbf{F}(\mathbf{r})=a(l+1)\mathbf{r}^l$,得到 $\mathbf{V}=-\int \mathbf{F}\cdot d\mathbf{r}=-\int \mathbf{F}\cdot d\mathbf{r}=-\mathbf{F}\cdot d\mathbf{r}=-a\mathbf{r}^{l+1}$ 。设当前每个质点所受的内力外力之和 \mathbf{F}_i ,均以 $=a_i(l+1)\mathbf{r}_i^l$ 的形式呈现,则各个 $V_i=-a_i\mathbf{r}^{l+1}$ 。

于是, $r_i \frac{\partial V_i}{\partial r} = -a_i(l+1)r_i^{l+1} = (l+1)V_i$,代入保守力系的位力定理 $T = \frac{1}{2} \overline{\sum_{i=1}^n r_i \frac{\partial V_i}{\partial r}}$,即有 $T = \frac{1}{2} \overline{\sum_{i=1}^n (l+1)V_i} = \frac{1}{2} (l+1) \overline{\sum_{i=1}^n V_i}$ 。

第三章 刚体力学

3.1 刚体运动分析

1.描述刚体位置的独立变量

特殊的质点组——刚体:任何两个质点间的距离,不因力的作用而发生改变。即各个 $|\mathbf{r}_{ij}|$ =C。

确定刚体在空间的位置: 即要确定这个特殊的质点组中,每个质点的空间坐标。

(1).坐标→独立坐标, 3n→9→6

- ①.n 个质点,每个质点三个坐标,理应需要 3n 个坐标变量。但这 3n 个变量不是独立的:因为任意两点间,距离不变,即 $|\mathbf{r}_{ii}|=|\mathbf{r}_i-\mathbf{r}_i|=C$ 。
- ②.如果我们确定了刚体中的两点,则刚体还能绕两点构成的轴转;而如果确定了刚体中不共线的三点,则刚体的空间位置就确定了。于是我们将完全描述刚体所需的独立(坐标)变量数,减少到了3*3=9。
- ③.但因刚体内不共线的三点间,两两之间的距离,共三个,是不变的。三个方程即三个约束,将坐标空间中刚体的自由度(以及广义坐标),再减少3,剩下6个自由度(以及6个广义坐标)。所以只需6个独立的变量。

(2).这6个独立变量(坐标)是哪6个

- ①.7-1,即 3+(3-1)+1:转动轴上任意一点 O 的坐标(x,y,z),轴l的空间取向 ($\cos\alpha$, $\cos\beta$, $\cos\gamma$),刚体整体绕轴l转的角度 ψ 。但其中 3 个方向余弦平方和为 1。
 - ②.3+3: O 的坐标(x,y,z),以及三个互相独立的欧拉角(φ , θ , ψ)。

后者是欧拉在 1776 年提出来的,他的贡献在于,将三个方向角 (α,β,γ) ,归为了两个欧拉角 (ϕ,θ) 。而 ψ 保留原样。

2.刚体运动的分类

- 1.平动[3.6.(1).]:在运动过程中,刚体中任意指定的两点的连线,始终平行。①. 所有质点的速度、加速度与均质心 C 相同,只需研究 C。②.独立变量有 3 个: (x,y,z)。【始终:不随时间 t 变化】
- 2.定轴转动[3.6.(2).]:在运动过程中,刚体中<mark>存在</mark>某两点的连线,始终不动。①. 转动轴上的所有质点都固定不动。②.独立变量只有1个:ψ。
- 3.平面平行运动[3.7]:在运动过程中,刚体中任意一点,始终在平行于某一固定平面 Z_0 的某一固定平面Z内运动。①.垂直于固定平面Z的直线上,各质点的(x,y)、速度、加速度均相同,只需研究某一个Z平面。②.独立变量有 Z+1=3 个:(x,y)以及 ψ 。
- 4.定点转动[3.8]:在运动过程中,刚体中只有一点,固定不动。①.转动瞬轴恒过某一点。②.独立变量有 2+1=3 个: (φ,θ)以及ψ。

5.一般运动:在运动过程中,刚体不受约束。①.运动可分解为:质心 C 的平动+定点转动(点为质心 C)。②.独立变量有=6 个: C(x,y,z)以及 (φ,θ,ψ) 。

3.2 角速度矢量

矢量: 满足对易律 A+B=B+A的, 有大小有方向的量。

1.有限小转动与无限小转动

(1).平面平行运动、定轴转动,与定点转动的角速度方向区别

平面平行运动,定轴转动:角速度 ω 方向只有共线的两个取向;定点转动:角速度 ω 方向会改变。

(2).有限转动不是一个矢量

定点转动: 一个长宽高 abc 两两不等的长方体,共顶点的三条棱与 x,y,z 轴分别平行地放好。设第一次对其进行有限转动 $\mathbf{w}_1 = -\frac{\pi}{2}\mathbf{k}$; 第二次有限转动操作 $\mathbf{w}_2 = -\frac{\pi}{2}\mathbf{j}$ 。 【这里的蓝色字体所示物理量,其蓝色表示"定义与之前的不同"】

考虑六面体中,初始时刻的外法线方向朝向 j 的一面,则 j+w₁+w₂=j $-\frac{\pi}{2}$ k $-\frac{\pi}{2}$ j=i $-\frac{\pi}{2}$ j=k。而 j+w₂+w₁=j $-\frac{\pi}{2}$ j $-\frac{\pi}{2}$ k=j $-\frac{\pi}{2}$ k=i。其中第二种操作次序的第一次操作 j+w₂=j $-\frac{\pi}{2}$ j=j是无效的。

两个过程操作完毕后,对于朝向**j**的外法线而言, $\mathbf{w}_2 + \mathbf{w}_1$ 比 $\mathbf{w}_1 + \mathbf{w}_2$,相当于慢了一个操作。

(3).无限小转动是一个矢量

(用线位移的对易性,证明角位移的对易性)

定轴转动:设刚体绕固定轴转动一 $^{\triangle}\theta$,将固定参考点 0 设定在转动轴上,刚体上某一质点 P 相对于 Q 的位矢 \mathbf{r} 对应着改变 \mathbf{r} 个 在转动轴上任设一单位矢量 \mathbf{k} 。

【标量△θ有正负,它可由上 k 的平面极坐标系量度,平面极坐标系坐标轴的具体朝向我们不用规定。 它们所量度出来的△θ虽符号可能不同,但大小一样,且对应的物理情景是同一个】

定义角位移(尚未证明是矢量,只是有大小和方向) $^{\triangle}\theta = \frac{[\mathbf{r} - (\mathbf{r} \cdot \mathbf{k})\mathbf{k}]}{|\mathbf{r} - (\mathbf{r} \cdot \mathbf{k})\mathbf{k}|} \times \frac{\Delta \mathbf{r}}{|\Delta \mathbf{r}|} \cdot |\Delta \theta| = \hat{\boldsymbol{\rho}} \times \hat{\Delta \mathbf{r}} \cdot |\Delta \theta|$ 。其大小 $|^{\triangle}\theta| = |\Delta \theta|$ 。方向与 **k** 同向或反向,与刚体的 $^{\triangle}\theta$ 的绕向(即真实转动方向)成右手螺旋关系。

于是有: $\triangle \theta \times \mathbf{r} = (\hat{\rho} \times \widehat{\Delta \mathbf{r}}) \times \mathbf{r} \cdot |\Delta \theta| = [(\mathbf{r} \cdot \widehat{\rho})\widehat{\Delta \mathbf{r}} - (\mathbf{r} \cdot \widehat{\Delta \mathbf{r}})\widehat{\rho}] \cdot |\Delta \theta|$, 其中 $\mathbf{r} \cdot \widehat{\rho} = |\rho|$, $\mathbf{r} \cdot \widehat{\Delta \mathbf{r}} = 0$, 于是 $\triangle \theta \times \mathbf{r} = |\rho| |\Delta \theta| \widehat{\Delta \mathbf{r}}$, 而 $|\rho| |\Delta \theta| = |\Delta \mathbf{r}|$, 因此 $\triangle \theta \times \mathbf{r} = |\Delta \mathbf{r}| \widehat{\Delta \mathbf{r}} = \Delta \mathbf{r}$ 。利用该关系 $\triangle \theta \times \mathbf{r} = \Delta \mathbf{r}$,将问题转化为线位移的对易性:

考虑连续两次微小转动,对应着质点 P 的两次微小线位移,终末状态/过程为 $\mathbf{r}+\Delta\mathbf{r}_1+\Delta\mathbf{r}_2=\mathbf{r}+\Delta\boldsymbol{\theta}_1\times\mathbf{r}+\Delta\boldsymbol{\theta}_2\times\mathbf{r}_1$ 。其中 $\mathbf{r}_1=\mathbf{r}+\Delta\mathbf{r}_1=\mathbf{r}+\Delta\boldsymbol{\theta}_1\times\mathbf{r}$,则 $\Delta\mathbf{r}_2=\Delta\boldsymbol{\theta}_2\times(\mathbf{r}+\Delta\boldsymbol{\theta}_1\times\mathbf{r})=\Delta\boldsymbol{\theta}_2\times\mathbf{r}+\Delta\boldsymbol{\theta}_2\times(\Delta\boldsymbol{\theta}_1\times\mathbf{r})$,其中 $\Delta\boldsymbol{\theta}_2\times(\Delta\boldsymbol{\theta}_1\times\mathbf{r})\approx\mathbf{0}$,则 $\Delta\mathbf{r}_2\approx\Delta\boldsymbol{\theta}_2\times\mathbf{r}$, $\Delta\mathbf{r}_1+\Delta\mathbf{r}_2\approx\Delta\boldsymbol{\theta}_1\times\mathbf{r}+\Delta\boldsymbol{\theta}_2\times\mathbf{r}=(\Delta\boldsymbol{\theta}_1+\Delta\boldsymbol{\theta}_2)\times\mathbf{r}$ 。

同样,对易转动次序,线位移次序也交换, $\Delta \mathbf{r}_2 + \Delta \mathbf{r}_1 \approx (\Delta \theta_2 + \Delta \theta_1) \times \mathbf{r}_e$ 由于线位移是矢量,可以对易,即 $\Delta \mathbf{r}_1 + \Delta \mathbf{r}_2 = \Delta \mathbf{r}_2 + \Delta \mathbf{r}_1$ 。那么 $(\Delta \theta_1 + \Delta \theta_2) \times \mathbf{r} = (\Delta \theta_2 + \Delta \theta_1) \times \mathbf{r}$,即有 $\Delta \theta_1 + \Delta \theta_2 = \Delta \theta_2 + \Delta \theta_1$ 。即证明了微小转动可以对易,则角位移 $\Delta \theta_2 + \Delta \theta_3 = \Delta \theta_2 + \Delta \theta_3$ 。

2.角速度矢量

1.角速度 $ω = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t}$ 。它与上文用定轴转动推导的 $\Delta \theta$,并非局限于转动轴是一根定直线。上文中的转动轴 k,只是 t 时刻通过 O 点的,一根转动瞬轴。

根据(1).中的
$$\triangle \theta \times \mathbf{r} = \Delta \mathbf{r}$$
, 我们有 $\omega \times \mathbf{r} = \lim_{\Delta t \to 0} \frac{\Delta \theta \times \mathbf{r}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \mathbf{v}$.

3.3 欧拉角

1.欧拉角

刚体作定点转动时:选该定点为坐标系原点 O,用三个独立的角度(φ , θ , ψ)来确定转动瞬轴的空间取向(φ , θ),以及刚体绕转动瞬轴所转过的角度(ψ)。

固定坐标系: $0 - \xi \eta \zeta$, 0点以及三个坐标轴固定在空间不动(若 0点在变速运动,则三个坐标轴参照平动的标准,始终平行于之前时刻的自身)。

本体坐标系: 0 - xyz, 原点也在 0 点,其三个坐标轴固定在刚体上,随之一同定点转动。(保证刚体上任意一点,在0 - xyz系下的三个坐标分量(x,y,z)均是常量)

(1).z'轴的位置,或者说 x'-0-y"面的位置,由 (ϕ,θ) 两个角度确定

从三轴两两对应重合开始(φ =0, θ =0, ψ =0):

- 1).从x轴与ξ轴、y轴与η轴分别对应重合开始(φ =0): φ 0 xyz绕ζ轴(\mathbf{k}_0),以 \mathbf{k}_0 × \mathbf{i}_0 方向为正方向,旋转 φ 角后停止。此时,x轴(\mathbf{i})相对于ξ轴(\mathbf{i}_0)、y轴(\mathbf{j})相对于η轴(\mathbf{j}_0),均旋转了 φ 角(以"在ζ>0 方向,逆着 \mathbf{k}_0 俯视,的逆时针"为正),记此时的 x,y,z 轴为 x′,y′,z 轴;而 z 轴仍与ζ轴重合。【 φ \in [0,2 π]】

【按照我的描述,理应是 $\theta \in [-\pi,\pi]$,或 $\theta \in [0,2\pi]$,但公认的是 $\theta \in [0,\pi]$ ——这是因为:虽然看上去 $\theta = -\theta_0 \in [-\pi,0]$ 与 $\theta = \theta_0 \in [0,\pi]$ 所对应的物理情景绝对不一样,事实上也确实不一样。——但($\phi_0,-\theta_0,\psi_0$)可以用($\phi_0+\pi,\theta_0,\psi_0+\pi$)来代替,而 $\phi = \phi_0+\pi$ 与 $\psi = \psi_0+\pi$,仍 $\in [0,2\pi]$,因此 $\theta \in [-\pi,\pi]$ 多余了一半(要知道我们一直在"精炼"出各种独立变量);另一个理由,其实 θ 本身就是球坐标系的极角,极角的取值范围就是它】

(2).x"轴和 y""轴的位置,由 $(\varphi,\theta)+\psi$ 三个角度确定

3).从x'轴与节线 ON 重合开始(ψ =0):令0 – xyz绕z'轴(k),以 $k \times n$ 的方向为正方向,旋转 ψ 角后停止。此时,x'轴(i)相对于 ON、y''轴(j)相对于原y''轴,均旋转了 ψ 角(以"在z > 0 方向,逆着k俯视,的逆时针"为正),记此时的 x',y'',z'轴为 x'',y''',z'轴;而 z'轴不动。【 $\psi \in [0,2\pi]$ 】

【从 z',x",y"'可看出, z 轴只(在第二次 move 中)动了一下; x 轴(在一、三次 move 中)共动了两下; y 轴(在一、二、三次 move 中)均动了, 一共三下。】

【另外, $\phi \to \theta \to \psi$,相当于以 SAS 的顺序创造了两个"分别有一条边对应相等 $\phi = y'O\eta$,一个的角与另一个的边相等 $\theta = y''Oy'$ 的" 球面三角形: $0 - \xi Nx''$ 和 $0 - \eta y'y''$:可以此得 ξ ,x''轴之间的方向余弦(α , α' 分别已经用来表示转动瞬轴对 ξ ,x''轴的方向角) $\cos < \xi$, $x'' > = \cos \phi \cos \psi + \sin \phi \sin \psi \cos (\pi - \theta)$;而 ξ ,z'间的方向角= θ ,方向余弦 $\cos < \zeta$, $z' > = \cos \theta$ 不用算; η ,y'''间的方向余弦比较难算:相当于平行四边形的两个对顶角。首先利用球面三角形先算出 $\cos < \eta$, $y'' > = \cos \phi \cos \theta + \sin \phi \sin \theta \cos \theta \cos \phi \cos \phi$,或 $\cos < y'$, $y''' > = \cos < y'$, $y''' > + \sin < y'$, $y''' > \sin < y''$, $y''' > \cos \theta \cos \phi \cos \phi \cos \phi$ 。

然后,利用"边的五元素公式",有 $sin < \eta, y'' > \cdot cos < \eta y'' y' > = sin\theta \cdot cos \phi$ - $cos\theta \cdot sin\phi \cdot cos90^\circ$,于是 $cos < \eta y'' y' > = \frac{sin\theta \cdot cos\phi}{sin < \eta, y'' >} = \frac{sin\theta \cdot cos\phi}{\sqrt{1 - (cos\phi \cos\theta)^2}}$,你也可以用正弦定理得到它: $\frac{sin\phi}{sin < \eta y'' y' >} = \frac{sin\phi}{sin < \eta, y'' >} = \frac{sin\phi}{sin < \eta, y'' >} = \frac{sin\phi}{\sqrt{1 - (cos\phi \cos\theta)^2}}$ 。

第三步为 $\cos<\eta,y'''>=\cos<\eta,y'''>\cos< y'',y''''>+\sin<\eta,y''>\sin< y'',y'''>\cos<\eta y''y''>$ $=\cos\phi\cos\theta\cos\theta\cos\psi+\sin<\eta,y''>\sin< y'',y'''>\cos<\eta y''y'+90^\circ>=\cos\phi\cos\theta\cos\psi-\sin<\eta,y''>\sin\eta,y'''>\sin\eta,y'''>\sin\eta,y'''>\sin\eta,y'''>\sin\eta,y'''>\sin\eta,y'''>\sin\eta,y'''>\sin\eta,y'''>\sin\eta,y'''>\sin\eta,y'''>\cos\eta,y'''>\sin\eta,y'''>\sin\eta,y''>\lambq,y''>\lambq,y''>\lambq,y''>\lambq,y''>\lambq,y''>\lambq,y''>\lambq,y''>\lambq,y''>\lambq,y''>\lambq,y''>\lambq,y''>\lambq,y$

2.欧拉运动学方程

(1).Confusions

在上文中,我们假定了本体坐标系固定在刚体上,随它一同转动,使得刚体上各点在本体坐标系中的坐标保持不变。——这样的话,无论刚体是定轴转动还是定点转动,刚体在本体坐标系下的ω=0,根本就没有转动,更别说转动瞬轴的存在。

一方面,我们可以将本体坐标系与固定坐标系一样,也固定下来,三个坐标轴 x'',y''',z'轴固定不动。用以量度:独立于本体坐标系,自身定轴转动或定点转动刚体的 ω ,并将 ω 在本体坐标系下的三分量($\omega_{\xi},\omega_{\eta},\omega_{\zeta}$),与 ω 在固定坐标系中的分量 ($\omega_{x},\omega_{y},\omega_{z}$)之间相互转化/过渡/线性组合。

但这样的话,我们的过渡矩阵将用到的,不是三个欧拉角(φ , θ , ψ),而是 3*3=9 个方向余弦(x",y"",z'轴分别与 ξ , η , ζ 轴的三个方向余弦)。这就不是物理学家关心的事情,而是数学家擅长和熟悉的坐标变换(基基过渡等)。而且光是三个方向余弦cos < ζ , z' >,cos < ξ , x" >,cos < η , y"' >,关于(φ , θ , ψ)表达式就很复杂了。——何况我们还更改了本体坐标系的定义。

(2). The way out

现在我们保留本体坐标系的定义,利用"角速度是矢量",将随着刚体一同转动的本体坐标系,的三个角速度分量($\dot{\phi}$, $\dot{\theta}$, $\dot{\psi}$)进行矢量合成,合成后将得到的 $\dot{\omega}$ 投影到本体坐标系的三个轴 x,y,z,或固定坐标系的三个轴 ξ , η , ζ 上去(先考虑前者)。

有同学可能会说,根据 1.的认识,ω到 x,y,z 上的投影不也全为 0 吗?额,这里我创造了一个误会:在本体坐标系看来,刚体确实没有转动。但刚体的角速度矢量ω是不因参考系的选择,客观存在的,且任何坐标系所量度的ω的大小和方向都归结于同一个物理状况。所以:虽然在本体坐标系看来,刚体确实没有在转动,但ω在本体坐标系三轴上,仍有分量。

【下下一段,可知 $|\omega| \neq \psi$,且 ω 不一定在 ψ k的方向上;这说明转动瞬轴多数情况都不在本体坐标系的 z 轴上!也就是说,转动瞬轴像 ω 一样,是"用分量""合成"出来的!是本体坐标系为固定坐标系造成的假象!,之后会知道,它跟转动瞬心一样,只对固定坐标系有物理含义。】

不仅如此, ω 在(\mathbf{k}_0 , \mathbf{n} , \mathbf{k})上也有分量: $\dot{\varphi}$, $\dot{\theta}$, $\dot{\psi} \neq 0$ 分别意味着 ON, \mathbf{z} 轴, \mathbf{x} 轴(\mathbf{n} , \mathbf{k} , \mathbf{i})(后两个属于本体坐标系,第一个是本体坐标系与固定坐标系的 x-O-y 面的交线; 所以有点"混合"的意味)、或者说刚体本身,分别绕着 $\mathbf{\xi}$ 轴,ON, \mathbf{z} 轴(\mathbf{k}_0 , \mathbf{n} , \mathbf{k})转动的角速度(分别属于固定坐标系,二者的交线,本体坐标系)——是三个轴(ON, \mathbf{z} , \mathbf{x})自身的角速度。

现在我们来查看一下,用($\dot{\phi}$, $\dot{\theta}$, $\dot{\psi}$)表示的 $\mathbf{\omega}$ = $\dot{\phi}$ \mathbf{k}_0 + $\dot{\theta}$ \mathbf{n} + $\dot{\psi}$ \mathbf{k} 分别到的 x,y,z 轴(\mathbf{i} , \mathbf{j} , \mathbf{k}) 的三个分量:即如何从它过渡到 $\mathbf{\omega}$ = ω_x \mathbf{i} , ω_y \mathbf{j} , ω_z \mathbf{k} ,其中的(ω_x , ω_y , ω_z)分别是多少:我们的做法不是先合成为 1($\mathbf{\omega}$)再分解为 3(ω_x , ω_y , ω_z),而是先将 3 分量($\dot{\phi}$, $\dot{\theta}$, $\dot{\psi}$)分别分解为 3(如($\dot{\phi}_x$, $\dot{\phi}_y$, $\dot{\phi}_z$)等,共 9 个分量),再合成为 1[$\mathbf{\omega}$ =($\dot{\phi}_x$ + $\dot{\theta}_x$ + $\dot{\psi}_x$, $\dot{\phi}_y$ + $\dot{\theta}_y$ + $\dot{\psi}_y$, $\dot{\phi}_z$ + $\dot{\theta}_z$ + $\dot{\psi}_z$)]:

根据球面三角学, $\cos<\mathbf{k}_0$, $\mathbf{j}>=\cos<\mathbf{k}_0$, $\mathbf{y}''>=\cos<\mathbf{k}_0$, $\mathbf{y}''>\cos<\mathbf{y}''$, $\mathbf{y}'''>$ + $\sin<\mathbf{k}_0$, $\mathbf{y}''>\sin<\mathbf{y}''$, $\mathbf{y}'''>\cos90°=\cos(90°-\theta)\cos\psi=\sin\theta\cos\psi$; $\cos<\mathbf{k}_0$, $\mathbf{i}>=\cos<\mathbf{k}_0$, $\mathbf{x}''>=\cos<\mathbf{k}_0$, $\mathbf{y}''>\sin<\mathbf{y}''$, $\mathbf{y}'''>=\sin\theta\sin\psi$; $\cos<\mathbf{k}_0$, $\mathbf{k}>=\cos\theta$.

- 1).即k₀与(**i,j,k**)的方向余弦分别为: sinθsinψ, sinθcosψ, cosθ。
- 2).同理, **n** 与(**i,j,k**)的方向余弦分别为: cosψ, –sinψ, 0。
- 3).k与(i,j,k)的方向余弦分别为: 0, 0, 1。
- ①.由于, $\omega_{\mathbf{x}}\mathbf{i} + \omega_{\mathbf{v}}\mathbf{j} + \omega_{\mathbf{z}}\mathbf{k} = \boldsymbol{\omega} = \dot{\boldsymbol{\varphi}}\mathbf{k}_{0} + \dot{\boldsymbol{\theta}}\mathbf{n} + \dot{\boldsymbol{\psi}}\mathbf{k}$,则两边分别点乘 $\mathbf{i},\mathbf{j},\mathbf{k}$,即有:

②.同理,将 ω_x **i**+ ω_y **j**+ ω_z **k**= ω = $\dot{\phi}$ **k**₀+ $\dot{\theta}$ **n**+ $\dot{\psi}$ **k**,则两边分别点乘**k**₀,**n**,**k**,即有: $\begin{cases} \omega_x = \dot{\phi} \mathbf{k}_0 \cdot \mathbf{i} + \dot{\theta} \mathbf{k}_0 \cdot \mathbf{j} + \dot{\psi} \mathbf{k}_0 \cdot \mathbf{k} \\ \omega_y = \dot{\phi} \mathbf{n} \cdot \mathbf{i} + \dot{\theta} \mathbf{n} \cdot \mathbf{j} + \dot{\psi} \mathbf{n} \cdot \mathbf{k} \end{cases} = \begin{cases} \omega_x = \dot{\phi} \sin\theta \sin\psi + \dot{\theta} \cos\psi + 0 \\ \omega_y = \dot{\phi} \sin\theta \cos\psi - \dot{\theta} \sin\psi + 0 \text{。 将其写成矩阵形} \\ \omega_z = \dot{\phi} \mathbf{k} \cdot \mathbf{i} + \dot{\theta} \mathbf{k} \cdot \mathbf{j} + \dot{\psi} \mathbf{k} \cdot \mathbf{k} \end{cases}$ 式,即

$$\begin{pmatrix} \dot{\phi} + \mathbf{k}_0 \cdot \mathbf{k} \dot{\psi} \\ \dot{\theta} \\ \mathbf{k}_0 \cdot \mathbf{k} \dot{\phi} + \dot{\psi} \end{pmatrix} = \begin{pmatrix} \mathbf{k}_0 \cdot \mathbf{i} & \mathbf{k}_0 \cdot \mathbf{j} & \mathbf{k}_0 \cdot \mathbf{k} \\ \mathbf{n} \cdot \mathbf{i} & \mathbf{n} \cdot \mathbf{j} & \mathbf{n} \cdot \mathbf{k} \\ \mathbf{k} \cdot \mathbf{i} & \mathbf{k} \cdot \mathbf{j} & \mathbf{k} \cdot \mathbf{k} \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} = \begin{pmatrix} \sin\theta \sin\psi & \sin\theta \cos\psi & \cos\theta \\ \cos\psi & -\sin\psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} .$$

于是,
$$\begin{pmatrix} \dot{\phi} + \cos\theta \dot{\psi} \\ \dot{\theta} \\ \cos\theta \dot{\phi} + \dot{\psi} \end{pmatrix} = \begin{pmatrix} \sin\theta \sin\psi & \sin\theta \cos\psi & \cos\theta \\ \cos\psi & -\sin\psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$
, 第一行加上第三行,

 $\begin{array}{l} (1+\cos\theta)(\dot{\phi}+\dot{\psi}){=}{\sin\theta}{\sin\psi}\omega_x+\sin\theta{\cos\psi}\omega_y+(1+\cos\theta)\omega_z, \ \ \ \, \\ \frac{\sin\theta\sin\psi}{1+\cos\theta}\omega_x+\frac{\sin\theta\cos\psi}{1+\cos\theta}\omega_y+\omega_z, \ \ \ \, \\ \Pi它减去第一行,并除以1-\cos\theta, \ \ \, \\ (\frac{1}{1+\cos\theta}-1)\frac{\sin\theta\sin\psi}{1-\cos\theta}\omega_x+(\frac{1}{1+\cos\theta}-1)\frac{\sin\theta\cos\psi}{1-\cos\theta}\omega_y+\omega_z=\frac{-\cos\theta\sin\theta\sin\psi}{\sin^2\theta}\omega_x+\frac{-\cos\theta\sin\theta\cos\psi}{\sin^2\theta}\omega_y+\omega_z. \end{array}$

得到 $\dot{\phi} = \frac{\sin\psi}{\tan\theta}\omega_x - \frac{\cos\psi}{\tan\theta}\omega_y + \omega_z$,同理,用它减去第一行,并除以 $1 - \cos\theta$,得到 $\dot{\phi} = \frac{\sin\theta\sin\psi}{\sin^2\theta}\omega_x + \frac{\sin\theta\cos\psi}{\sin^2\theta}\omega_y$,得到 $\dot{\phi} = \frac{\sin\psi}{\sin\theta}\omega_x + \frac{\cos\psi}{\sin\theta}\omega_y$ 。

因此
$$\begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} = \begin{pmatrix} \frac{\sin\psi}{\sin\theta} & \frac{\cos\psi}{\sin\theta} & 0 \\ \cos\psi & -\sin\psi & 0 \\ -\frac{\sin\psi}{\tan\theta} & -\frac{\cos\psi}{\tan\theta} & 1 \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$

(3).也可以将**ω**投影到<mark>固定坐标系</mark>的三个轴 ξ , η , ζ 上去,使得 ω_{ξ} \mathbf{i}_{0} + ω_{η} \mathbf{j}_{0} + ω_{ζ} \mathbf{k}_{0} $= \boldsymbol{\omega} = \dot{\phi} \mathbf{k}_{0} + \dot{\theta} \mathbf{n} + \dot{\psi} \mathbf{k}_{o} \quad \text{得到类似的} \begin{pmatrix} \omega_{\xi} \\ \omega_{\eta} \\ \omega_{\zeta} \end{pmatrix} = \mathbf{A} \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix}, \quad \mathbf{U} \mathbf{D} \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} = \mathbf{B} \begin{pmatrix} \omega_{\xi} \\ \omega_{\eta} \\ \omega_{\zeta} \end{pmatrix}. \quad \text{同样,} \mathbf{A}, \mathbf{B} \mathbf{D} \mathbf{D}$ 也不是简单的转置关系。

(4).由于本体坐标系随着刚体转动,因此 φ , θ , ψ 都是时间的函数,因而 $\dot{\varphi}$, $\dot{\theta}$, $\dot{\psi}$,也都是随时间的函数。于是 ω_x , ω_y , ω_z 和 ω_ξ , ω_η , ω_ζ ,也都是时间的函数——并且更"将是时间的函数"!——即随时间变化非常快:因为从 $\begin{pmatrix} \dot{\varphi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix}$ 到 $\begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$ 的过渡矩阵中,还含有 φ , θ , ψ 。

3.4 刚体的运动方程与平衡方程

1.力系的简化

力所产生的力学效果,与力的作用点,在作用线上的位置,无关。——也就是说,力的作用点,可沿着它的作用线,向前或后平移,力的作用效果不变。

这种关系叫**力的可传性原理**。刚体力学中,力被称为**滑移矢**量。

利用**力的可传性原理**,可求两个共面非平行力的合力:将两个力 \mathbf{F}_1 , \mathbf{F}_2 的作用点,平移到两个力的作用线的交点上,再用平行四边形定律求和,得到 $\mathbf{F}_{1,2}$ 。——再用同样的方法,可求出 $\mathbf{F}_{1,2}$ 与 \mathbf{F}_3 的合力 $\mathbf{F}_{1,2,3}$,以至于可求任意数目的共面力(不能两两平行:至少有一力与其余任意一个都不平行)的合力。

两个平行力(肯定共面)的合力,由于两个力的作用线没有公共交点,因此不能用**力的可传性原理**+平行四边形定则求力的作用效果。为解决这个问题,得出此时两平行力的作用效果(合力、合力矩),我们定义:

两个平行力 $\mathbf{F}_2 = -\mathbf{F}_1 = \mathbf{F}$, 作用线不共线,称之(\mathbf{F}_1 , \mathbf{F}_2)为**力偶。**此时 $\mathbf{F}_1 + \mathbf{F}_2 = \mathbf{0}$ 。但 二者对空间中任意一点 O 的合力矩 $\mathbf{r}_1 \times \mathbf{F}_1 + \mathbf{r}_2 \times \mathbf{F}_2 = (\mathbf{r}_2 - \mathbf{r}_1) \times \mathbf{F}_2 = \mathbf{r} \times \mathbf{F} \neq \mathbf{0}$,将 $\mathbf{M} = \mathbf{r} \times \mathbf{F}$ 称为**力偶矩**。【注:设 \mathbf{F}_1 的作用点为 A, \mathbf{F}_1 的作用点为 B, $\mathbf{r}_1 = \mathsf{OA}$, $\mathbf{r}_2 = \mathsf{OB}$, $\mathbf{r}_2 - \mathbf{r}_1 = \mathbf{r} = \mathsf{AB}$ 】

力偶矩 $\mathbf{r} \times \mathbf{r}$ 是力偶唯一的力学效果,该矢量上力偶面,方向由" \mathbf{r}_1 的作用点,指向 \mathbf{r}_2 的作用点的 \mathbf{r} ,叉乘上 \mathbf{r}_2 "得到。由于力偶对空间中任意一点 O 的合力矩均= $\mathbf{r} \times \mathbf{r}$,因此力偶矩 $\mathbf{r} \times \mathbf{r}$ 是一个自由矢量,可作用于力偶面甚至力偶面以外空间中任意一点(作用点以及作用线均可平移)。与作用点只能在作用线上平移(作用线不能动)的滑移矢量不同。

如此一来,我们不仅解决了两个平行力对某点 O 的合力和合力矩,还一并解决了空间中任意多个作用线既不平行,又不交汇于一点的空间力系对某点 O 的合力和合力矩——这就涉及到力的作用线的迁移了:

为将空间力系中所有的力,都迁移到指定点 O 上——设作用在刚体上的力 \mathbf{F} ,其作用线不通过所选取/想考察的 O 点:在 O 点处添加一对共点力 \mathbf{F}_1 , \mathbf{F}_2 ,它们等大反向,作用线// \mathbf{F} ,即有 $\mathbf{F}=-\mathbf{F}_1=\mathbf{F}_2$ 。此时,力 \mathbf{F} 的作用效果,转化为了 \mathbf{F} , \mathbf{F}_1 , \mathbf{F}_2 三个力的共同作用效果:其中, \mathbf{F} 与 \mathbf{F}_1 组成一个力偶,其对 O 点的力偶矩为 $\mathbf{r} \times \mathbf{F}_2 = \mathbf{r} \times \mathbf{F}$ (该力偶矩

对空间任意一点的作用效果都一样,因此对 O 点也是该矢量;而且F与F₁组成的力偶,只有力偶矩这一唯一的力学效果),而剩下的F₂=F单独作用于 O 点。

因此,对于每一个作用于刚体的力 \mathbf{F}_i 而言,其对于空间中某一点 O 的力学效果,都分为三个力的共同作用效果: \mathbf{F}_i , \mathbf{F}_{i1} , \mathbf{F}_{i2} 。其中 \mathbf{F}_i , \mathbf{F}_{i1} 组成一个力偶,只对 O 点产生力偶矩 \mathbf{M}_i = $\mathbf{r} \times \mathbf{F}_i$ 的效果;而 \mathbf{F}_{i2} 独立地作用于 O 点。——我们将 O 点称为**简化中心**,把共点力之和 $\mathbf{F} = \sum_{i=1}^n \mathbf{F}_{i2}$ 称为(对 O 的)**主矢**,把力偶矩之和 $\mathbf{M} = \sum_{i=1}^n \mathbf{M}_i$,称作对 O 的**主矩**。于是,对 O 点而言: $\sum_{i=1}^n \mathbf{F}_i = \sum_{i=1}^n \mathbf{F}_i + \mathbf{F}_{i1} + \mathbf{F}_{i2} = \sum_{i=1}^n (\mathbf{F}_i + \mathbf{F}_{i1}) + \sum_{i=1}^n \mathbf{F}_{i2} = = = = =$ $\sum_{i=1}^n \mathbf{M}_i + \sum_{i=1}^n \mathbf{F}_{i2} = \mathbf{M} + \mathbf{F}$ 。【蓝色的等号表示"作用效果为",而不是"等价于"】

时常取质心 C 为简化中心 O,此时外力的主矢 **F** 使得质心 C 的<mark>平动状态</mark>发生变化 【质点组的动量定理,即有 $\dot{\mathbf{p}}_{C}=\dot{\mathbf{p}}=\sum_{i=1}^{n}\mathbf{F}_{i}^{(e)}$;质心运动定理: $\sum_{i=1}^{n}\mathbf{F}_{i}^{(e)}=m\ddot{\mathbf{r}}_{C}$ 。】;外力的主矩**M**使得刚体绕"通过 C 的轴线"的转动状态发生变化【质点组的动量矩定理: $\dot{\mathbf{j}}=\sum_{i=1}^{n}\mathbf{M}_{i}^{(e)}$ 】。

2.刚体运动微分方程

固体具有**刚性**,或**可变形性**(=弹性+塑性)。刚体力学中,认为固体是刚性的。此时描绘质点组空间坐标的独立变量从 3n 个变为 6 个。且内力元功之和=0、力的可传性原理生效。

对静止的 O 点而言,我们有质点组的动量定理 $\dot{\mathbf{p}}=\sum_{i=1}^n\mathbf{F}_i^{(e)}$ 以及质点组的动量矩定理: $\dot{\mathbf{j}}=\sum_{i=1}^n\mathbf{M}_i^{(e)}$ 。对质心 C 而言,我们有质心运动定理 $\sum_{i=1}^n\mathbf{F}_i^{(e)}=m\ddot{\mathbf{r}}_C$ 以及质点组对质心的动量矩定理: $\dot{\mathbf{J}}'=\sum_{i=1}^n\mathbf{M}_i'^{(e)}$ 。

由于 $\sum_{i=1}^{n} \mathbf{F}_{i}^{(e)} = \sum_{i=1}^{n} \mathbf{F}_{i2}^{(e)} = \mathbf{对} C(\mathbf{g} O)$ 点的主矢 \mathbf{F} , $\sum_{i=1}^{n} \mathbf{M}_{i}^{(e)} = \mathbf{\eta} O$ 点的主矩 \mathbf{M} , $\sum_{i=1}^{n} \mathbf{M}_{i}^{\prime(e)} = \mathbf{\eta} C$ 点的主矩 \mathbf{M}^{\prime} 。因此若以 O点为参考点,对刚体而言,有 $\mathbf{p} = \mathbf{F}$, $\mathbf{j} = \mathbf{M}$;以 C点为参考点,对刚体而言,有 $\mathbf{m} \mathbf{r}_{C} = \mathbf{F}$, $\mathbf{j}^{\prime} = \mathbf{M}^{\prime}$ 。

之前我们也推得过刚体动能定理: $dT = \sum_{i=1}^{n} \mathbf{F}_{i}^{(e)} \cdot d\mathbf{r}_{i}$ 。

若 $\mathbf{F}_i^{(e)}$ (i=1,2,...,n)均是保守力($\mathbf{F}_i^{(i)}$ 虽不是保守力,但刚体中内力做功之和为 0,即 $\sum_{i=1}^n \mathbf{F}_i^{(i)} \cdot \mathrm{d}\mathbf{r}_i$ =**0**), 因此:

机械能守恒定律: T+V=E 成立。——它成立的条件为<mark>诸外力和内力</mark>,即 $\mathbf{F}_{i}^{(e)}$, $\mathbf{F}_{i}^{(i)}$ (i=1,2,...,n)均是保守力,或者其中的非保守力不做功(只有保守力做功)。对例 体而言,内力也不是保守力,但内力不做功。

3.刚体平衡方程

(1).空间力系的平衡条件

由于 \mathbf{F} 决定刚体质心 \mathbf{C} 如何平动, \mathbf{M}' 决定刚体相对于质心如何转动。因此刚体平衡条件为: $\mathbf{F}=\mathbf{0}$, $\mathbf{M}=\mathbf{0}$ 。也就是 $\mathbf{F}_x\mathbf{i}+\mathbf{F}_y\mathbf{j}+\mathbf{F}_z\mathbf{k}=\mathbf{0}$, $\mathbf{M}_x\mathbf{i}+\mathbf{M}_y\mathbf{j}+\mathbf{M}_z\mathbf{k}=\mathbf{0}$ 。两方程两边分别点乘 $\mathbf{i},\mathbf{j},\mathbf{k}$,即有 $\begin{cases} \mathbf{F}_x=0 \\ \mathbf{F}_y=0 \\ \mathbf{F}_y=0 \end{cases}$,以及 $\begin{cases} \mathbf{M}_x=0 \\ \mathbf{M}_y=0 \\ \mathbf{M}_z=0 \end{cases}$ 使可将 $\mathbf{0}$ 点设在 \mathbf{C} 上,此时对 \mathbf{C} 的主矩,相当于对 $\mathbf{0}$ 的主矩,因此我们用 \mathbf{M} 而非 \mathbf{M}' 了;而且 $\mathbf{0}$ 也不一定要与 \mathbf{C} 重合($\mathbf{0}$ 静止在另一地点,或相对于 \mathbf{C} 系匀速直线运动),若对 $\mathbf{0}$ 满足以上方程,则对 \mathbf{C} 也满足 \mathbf{C} 下的平衡方程;下同】

(2).共面力系的平衡条件

若考虑 $\mathbf{F}_{iz}^{(e)}$ (i=1,2,...,n)均在质心 C 或参考点 O 所在的平面内(设为 x-o-y 面),即 $\mathbf{F}_{iz}^{(e)}$ (i=1,2,...,n)=0(作用线在 x-o-y 面内),且 $\mathbf{F}_{iz}^{(e)}$ 的作用点在 x-o-y 面内(z=0)。——则 $\mathbf{F}_{z}=0$,且有 \mathbf{M}_{x} =y \mathbf{F}_{z} - \mathbf{F}_{y} z=0、 \mathbf{M}_{y} =z \mathbf{F}_{x} - \mathbf{F}_{z} x=0。【O 点可处在异于 C 点,但仍然与 C 点共面于 x-o-y 面的位置。若对 O 点满足以上平衡条件,则对 C 点也满足 C 的平衡 方程】

例:一均匀二维棍子,所受重力为 P,长为 2l,将其一端置于粗糙地面上,另一端靠在一点 C 上,点离地高度 h。棍子与地面成角 ϕ 的最小值为 ϕ_0 ,否则($\phi < \phi_0$)棍子将滑倒,求棍子与地面的摩擦因数 μ 。【注:题并没有给多余的条件,看上去 $\frac{h}{\sin\phi_0} = 2l$,其实不然。棍子并不是恰好是左上端位于支撑点上】

选择棒子右下方与地面的接触点,为参考点 O,对 O 点列平衡条件(方程),若共面力系对 O 点平衡,则共面力系对 C 点平衡。【之所以要对 O 点而不是 C 点列,是因为在求 $M_z=0$ 时,若对 O 点列,则 f_1N_2 都过 O 点而力矩为 $\mathbf{0}$,只剩两个力 \mathbf{N}_1 , \mathbf{P} 对 O 的力矩;而若对 C 点列平衡方程,则算至 $M_z=0$ 时,有三个力 f_1N_1 , N_2 需要计算力矩。】

设棒子所靠的点在左上方 $^{\text{N}}$, 对棒子的支持力为 $^{\text{N}}$, 它的方向上接触面(即棒子下表面)的方向,指向被支持物(棒子),即指向右上方 $^{\text{N}}$; 设棒子另一端,收到地面对其的支持力 $^{\text{N}}$ 2(竖直向上),以及地面对其的摩擦力 $^{\text{f}}$ (水平向左)。

3.5 转动惯量

1.刚体的动量矩

之前,我们在质点组的动量矩定理: $\mathbf{j}=\sum_{i=1}^{n}\mathbf{M}_{i}^{(e)}$ 处,定义了 $\sum_{i=1}^{n}\mathbf{L}_{i}=\mathbf{J}$,为质点组的总角动量。现在我们来看看,对于刚体这个特殊的质点组, \mathbf{J} 应该具有什么样的特殊的形式:

假设刚体定点转动,将参考点 O 设定在转动定点上。由于每个时刻,刚体都有个转动瞬轴,因此每一时刻,刚体中各个质点都有一个共同的角速度 ω_i (i=1,2...3)= ω ,方向沿着转动瞬轴。

因此对于每一时刻,有 $\mathbf{J} = \sum_{i=1}^n \mathbf{L}_i = \sum_{i=1}^n \mathbf{r}_i \times \mathbf{p}_i = \sum_{i=1}^n \mathbf{r}_i \times \mathbf{m}_i \mathbf{v}_i = \sum_{i=1}^n \mathbf{m}_i \mathbf{r}_i \times (\boldsymbol{\omega}_i \times \mathbf{r}_i)$ $= \sum_{i=1}^n \mathbf{m}_i \mathbf{r}_i \times (\boldsymbol{\omega} \times \mathbf{r}_i) = \sum_{i=1}^n \mathbf{m}_i \mathbf{r}_i \times (\boldsymbol{\omega} \times \boldsymbol{\rho}_i) = \sum_{i=1}^n \mathbf{m}_i [(\mathbf{r}_i \cdot \boldsymbol{\rho}_i) \boldsymbol{\omega} - (\mathbf{r}_i \cdot \boldsymbol{\omega}) \boldsymbol{\rho}_i] =$ $\sum_{i=1}^n \mathbf{m}_i [\rho_i^2 \boldsymbol{\omega} - ((\mathbf{r}_i - \boldsymbol{\rho}_i) \cdot \boldsymbol{\omega}) \boldsymbol{\rho}_i] = \boldsymbol{\omega} \sum_{i=1}^n \mathbf{m}_i \rho_i^2 - \sum_{i=1}^n \mathbf{m}_i (\boldsymbol{l}_i \cdot \boldsymbol{\omega}) \boldsymbol{\rho}_i = \boldsymbol{\omega} \mathbf{I} - \boldsymbol{\omega} \sum_{i=1}^n \mathbf{m}_i l_i \boldsymbol{\rho}_i$ 。

其中,定义了 \mathbf{r}_i 到转动瞬轴l的垂径 $\mathbf{\rho}_i = \mathbf{r}_i - l_i$ (指向轴外空间),而 l_i 代表"O点指向, \mathbf{r}_i 处的质点,向轴线l的投影点"这个向径; $l_i = |l_i|\cos \langle l_i, \omega \rangle$,有正负。【可以证明, $\omega \times \mathbf{\rho}_i = \omega \times (\mathbf{r}_i - l_i) = \omega \times \mathbf{r}_i$,且 $(\mathbf{r}_i - \mathbf{\rho}_i) \cdot \omega = \mathbf{r}_i \cdot \omega$ 】

在其中, ω 的方向和大小均可以随时间改变。可见,a 表达式 $J = \omega I - \omega \sum_{i=1}^n m_i l_i \rho_i$,并不一定与 ω 共线。之后我们会知道,当 ω 或 J 指向惯量主轴方向时, $\omega \sum_{i=1}^n m_i l_i \rho_i = \mathbf{0}$,此时 J 与 ω 才共线,且有 $J = \omega I$ 。这里的 $J = \sum_{i=1}^n m_i \rho_i^2$ 叫做 (刚体绕转动瞬轴 J 的特动惯量,它与平动时的质量 m 相当。【其实 $\sum_{i=1}^n m_i l_i \rho_i = \mathbf{0}$ 的物理含义非常明显:使之成立的一个必要条件为:每一一样动瞬轴 J 的,J 的质点组成的层面,要么质量分布是关于轴线中心对称的,要么是层与层之间可以抵消的——对于一个刚体(不管他转不转),总能找到这样的一个 J :比如一个密度均匀且有对称轴(旋转<360°后能与原位形重合)的刚体,此旋转对称轴,就是我们所求的 J 。之后我们会知道,这样的

↓叫惯量主轴。对于任何形状的刚体,且对于任何一个○点,总有不多不少三个互相垂直的惯量主轴(三个为一组,至少有一组),它们的具体求法在之后介绍】

若设 \mathbf{r}_i , $\mathbf{\rho}_i$, $\mathbf{\omega}$ 均由一个原点在 O 点的<mark>固定坐标系</mark>所量度,但为了简化,其坐标轴分别称为 x,y,z 轴(位置固定)。由于 $\mathbf{\rho}_i$ = \mathbf{r}_i - \mathbf{l}_i 比较难用分量形式表达,我们将 \mathbf{J} = $\mathbf{\omega}$ I - $\sum_{i=1}^n m_i \omega l_i \mathbf{\rho}_i$ 退化为公认的形式:将 $\mathbf{\omega} \times \mathbf{r}_i$ = $\mathbf{\omega} \times \mathbf{\rho}_i$ 这一步所引入的 $\mathbf{\rho}_i$ 退还到 \mathbf{r}_i ,于是后一个方程变为 $\sum_{i=1}^n m_i [(\mathbf{r}_i \cdot \mathbf{r}_i) \mathbf{\omega} - (\mathbf{r}_i \cdot \mathbf{\omega}) \mathbf{r}_i]$ = $\mathbf{\omega} \sum_{i=1}^n m_i \mathbf{r}_i^2 - \mathbf{\omega} \sum_{i=1}^n m_i l_i \mathbf{r}_i$ 。其中, $\mathbf{\omega} l_i$ = $\mathbf{l}_i \cdot \mathbf{\omega}$ = $\mathbf{r}_i \cdot \mathbf{\omega}$ 。

现在我们便能尝试着将其写成分量式:由于 $\mathbf{r}_i = \mathbf{x}_i \cdot \mathbf{i} + \mathbf{y}_i \mathbf{j} + \mathbf{z}_i \mathbf{k}$, $\mathbf{\omega} = \mathbf{\omega}_{\mathbf{x}} \cdot \mathbf{i} + \mathbf{\omega}_{\mathbf{y}} \mathbf{j} + \mathbf{\omega}_{\mathbf{z}} \mathbf{k}$ 。则 $\mathbf{\omega} l_i = \mathbf{r}_i \cdot \mathbf{\omega} = \mathbf{x}_i \mathbf{\omega}_{\mathbf{x}} + \mathbf{y}_i \mathbf{\omega}_{\mathbf{y}} + \mathbf{z}_i \mathbf{\omega}_{\mathbf{z}}$ 。将 \mathbf{b} 表达式 $\mathbf{j} = \mathbf{\omega} \sum_{i=1}^n \mathbf{m}_i \mathbf{r}_i^2 - \mathbf{\omega} \sum_{i=1}^n \mathbf{m}_i l_i \mathbf{r}_i$ 两边点乘上 \mathbf{i} ,得到 $\mathbf{j}_{\mathbf{x}} = \mathbf{\omega}_{\mathbf{x}} \sum_{i=1}^n \mathbf{m}_i \mathbf{r}_i^2 - \mathbf{\omega} \sum_{i=1}^n \mathbf{m}_i l_i \mathbf{x}_i = \mathbf{\omega}_{\mathbf{x}} \sum_{i=1}^n \mathbf{m}_i (\mathbf{x}_i^2 + \mathbf{y}_i^2 + \mathbf{z}_i^2) - \sum_{i=1}^n \mathbf{m}_i (\mathbf{x}_i \mathbf{\omega}_{\mathbf{x}} + \mathbf{y}_i \mathbf{\omega}_{\mathbf{y}} + \mathbf{z}_i \mathbf{\omega}_{\mathbf{z}}) \mathbf{x}_i = \mathbf{\omega}_{\mathbf{x}} \sum_{i=1}^n \mathbf{m}_i (\mathbf{y}_i^2 + \mathbf{z}_i^2) - \mathbf{\omega}_{\mathbf{y}} \sum_{i=1}^n \mathbf{m}_i \mathbf{x}_i \mathbf{y}_i - \mathbf{\omega}_{\mathbf{z}} \sum_{i=1}^n \mathbf{m}_i \mathbf{x}_i \mathbf{z}_i$ 。

同样的道理,有 $J_y = -\omega_x \sum_{i=1}^n m_i y_i x_i + \omega_y \sum_{i=1}^n m_i (x_i^2 + z_i^2) - \omega_z \sum_{i=1}^n m_i y_i z_i$ 。以及 $J_z = -\omega_x \sum_{i=1}^n m_i z_i x_i - \omega_y \sum_{i=1}^n m_i z_i y_i + \omega_z \sum_{i=1}^n m_i (x_i^2 + y_i^2)$ 。

因此,
$$\begin{pmatrix} J_x \\ J_y \\ J_z \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n m_i (y_i^2 + z_i^2) & -\sum_{i=1}^n m_i x_i y_i & -\sum_{i=1}^n m_i x_i z_i \\ -\sum_{i=1}^n m_i y_i x_i & \sum_{i=1}^n m_i (x_i^2 + z_i^2) & -\sum_{i=1}^n m_i y_i z_i \\ -\sum_{i=1}^n m_i z_i x_i & -\sum_{i=1}^n m_i z_i y_i & \sum_{i=1}^n m_i (x_i^2 + y_i^2) \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} = \begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} \text{. ixpir} \begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{pmatrix}, \text{ ixpir} \begin{pmatrix} B \\ A \end{pmatrix} \text{. ix$$

根据转动惯量的定义 $I=\sum_{i=1}^n m_i \rho_i^2$,我们自然而然称组元 $I_{xx}=\sum_{i=1}^n m_i (y_i^2+z_i^2)$, I_{yy} , I_{zz} 分别为刚体对 x 轴、对 y 轴、对 z 轴的转动惯量(注:是对固定坐标系的三个轴的)。而 6 个剩下的组元 $I_{xy}=\sum_{i=1}^n m_i x_i y_i = I_{yx}$, $I_{xz}=I_{zx}$, $I_{yz}=I_{zy}$,称为惯量积。

2.刚体的转动动能

对定点 O(或过 O 点的轴线)的转动动能(动能会因参考系的改变而改变,得说明是对哪点的;刚体对转动瞬轴上各点的动能大小相同):

$$\begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \begin{array}{ll} & \\ & \end{array} \end{array} \end{array} \end{array} \end{array} : \quad \textbf{T} = \sum_{i=1}^n \textbf{T}_i = \sum_{i=1}^n \frac{1}{2} \textbf{m}_i \textbf{v}_i^2 = \frac{1}{2} \sum_{i=1}^n \textbf{m}_i \textbf{v}_i \cdot \textbf{v}_i = \frac{1}{2} \sum_{i=1}^n \textbf{m}_i \textbf{v}_i \cdot (\boldsymbol{\omega} \times \textbf{r}_i) = \frac{1}{2} \sum_{i=1}^n \textbf{m}_i \boldsymbol{\omega} \cdot (\textbf{r}_i \times \textbf{v}_i) = \frac{1}{2} \boldsymbol{\omega} \cdot \sum_{i=1}^n \textbf{r}_i \times \textbf{m}_i \textbf{v}_i = \frac{1}{2} \boldsymbol{\omega} \cdot \sum_{i=1}^n \textbf{L}_i = \frac{1}{2} \boldsymbol{\omega} \cdot \textbf{J}_o \end{array}$$

一方面,若代入
$$a$$
 表达式 $J=\omega I-\omega\sum_{i=1}^n m_i l_i \rho_i$,则 $J=\frac{1}{2}\omega\cdot\omega I=\frac{1}{2}I\omega^2$ 。 【其中, $\omega\cdot\rho_i=0$ 】

另一方面,若将其写成分量式, $T=\frac{1}{2}(\omega_xJ_x+\omega_yJ_y+\omega_zJ_z)$,若再代入 J_x , J_y , J_z 的表达式= $\frac{1}{2}[\omega_x(I_{xx}\omega_x-I_{xy}\omega_y-I_{xz}\omega_z)+\omega_y(-I_{yx}\omega_x+I_{yy}\omega_y-I_{yz}\omega_z)+\omega_z(-I_{zx}\omega_x-I_{yz}\omega_y+I_{zz}\omega_z)]=\frac{1}{2}[I_{xx}\omega_x^2+I_{yy}\omega_y^2+I_{zz}\omega_z^2-2I_{xy}\omega_x\omega_y-2I_{xz}\omega_x\omega_z-2I_{yz}\omega_y\omega_z]$ 。

对比两个结果 $\frac{1}{2}$ I $\omega^2 = \frac{1}{2}$ [I $_{xx}\omega_x^2 + I_{yy}\omega_y^2 + I_{zz}\omega_z^2 - 2I_{xy}\omega_x\omega_y - 2I_{xz}\omega_x\omega_z - 2I_{yz}\omega_y\omega_z$], 得到I=I $_{xx}(\frac{\omega_x}{\omega})^2 + I_{yy}(\frac{\omega_y}{\omega})^2 + I_{zz}(\frac{\omega_z}{\omega})^2 - 2I_{xy}(\frac{\omega_x}{\omega})(\frac{\omega_y}{\omega}) - 2I_{xz}(\frac{\omega_x}{\omega})(\frac{\omega_z}{\omega}) - 2I_{yz}(\frac{\omega_z}{\omega})(\frac{\omega_z}{\omega})$ 。即有I=I $_{xx}\alpha^2 + I_{yy}\beta^2 + I_{zz}\gamma^2 - 2I_{xy}\alpha\beta - 2I_{xz}\alpha\gamma - 2I_{yz}\beta\gamma$ 。

其中的 (α,β,γ) 本身应写作 $(\cos\alpha,\cos\beta,\cos\gamma)$,以表 $\frac{\omega\cdot i}{|\omega|}\frac{\omega\cdot i}{|\omega|}=\frac{\omega_x}{\omega},\frac{\omega_y}{\omega},\frac{\omega_z}{\omega}$,这三个 ω 分别与固定坐标系的三个坐标轴的,方向余弦。这里是为了方便。

法三:根据刚体动能定理: $dT = \sum_{i=1}^{n} \mathbf{F}_{i}^{(e)} \cdot d\mathbf{r}_{i} = \sum_{i=1}^{n} \mathbf{F}_{i}^{(e)} \cdot \mathbf{v}_{i} dt = \sum_{i=1}^{n} \mathbf{F}_{i}^{(e)} \cdot \mathbf{v}_{i} dt = \mathbf{v}_{i} = \mathbf{v}_{$

【注:根据质点组的动量矩定理: $\mathbf{j}=\sum_{i=1}^{n}\mathbf{M}_{i}^{(e)}$ (或者说根据(2).刚体运动微分方程 $\mathbf{j}=\mathbf{M}$);而 ω 或J指向惯量主轴方向时,有 $\mathbf{J}=\omega$ I,因此 $\sum_{i=1}^{n}\mathbf{M}_{i}^{(e)}=\mathbf{j}=\frac{d}{dt}(\omega I)=\frac{d\omega}{dt}I+$ $\omega\frac{dI}{dt}=\frac{d\omega}{dt}I=\alpha I$,它在后面被称为定轴转动的动力学方程;其中 $d\theta\cdot \beta=d\theta\cdot \frac{d\omega}{dt}=\frac{d\theta}{dt}\cdot d\omega=$ $\omega\cdot d\omega$ 】

根据<mark>柯尼希定理</mark>,若刚体在平动之余还在转动,且转动瞬轴始终通过质心,则对 定点 O,有 $T=T_C+\sum_{i=1}^n\frac{1}{2}m_i\mathbf{v_i'}^2=T_C+\frac{1}{2}I\omega^2$ 。

3.平行轴定理&垂直轴定理

对于 $I=\sum_{i=1}^n m_i \rho_i^2$,设 $I=\sum_{i=1}^n m_i \, k^2=m k^2$,则 $k=\sqrt{\frac{I}{m}}$ 叫做**回转半径**。【I 或 ρ_i 针对哪个轴,k 就针对哪个轴】

(1).平行轴定理

物体的转动惯量,一方面取决于物体的质量分布,一方面取决于转动轴的位置。 因此,对于同一物体,转动轴不同,转动惯量也不同。 但对于两条平行轴而言,如果其中有一条通过物体的质心,则物体对另一轴线的转动惯量,等于对通过质心的平行轴的转动惯量 I_C ,加上物体质量 m 与两轴间垂直距离 d 的平方之积。即平行轴定理: $I=I_C+md^2$ 。

证明:设轴l过点参考点 O,轴 l_C 过质心 C, $l//l_C$ 。设 ρ_i = \mathbf{r}_i - l_i 保持原来的定义(相对于 O点)不变,则 ρ_C = \mathbf{r}_C - l_C 。设 \mathbf{r}_i' 为各质点对 C 的矢径, ρ_i' = \mathbf{r}_i' - l_i' ,其中 \mathbf{r}_i' = \mathbf{r}_i - \mathbf{r}_C 、 l_i' = l_i - l_C ,——则有 ρ_i' + ρ_C = $(\mathbf{r}_i'$ - l_i') + $(\mathbf{r}_C$ - l_C)= $(\mathbf{r}_C$ + \mathbf{r}_i') - $(l_C$ + l_i')= \mathbf{r}_i - l_i = ρ_i 。则I= $\sum_{i=1}^n m_i \rho_i^2 = \sum_{i=1}^n m_i (\rho_i' + \rho_C)^2 = \sum_{i=1}^n m_i (\rho_i'^2 + \rho_C^2 + 2\rho_i' \cdot \rho_C)^2$,

其中 $\sum_{i=1}^{n} m_{i} \rho'_{i} \cdot \rho_{C} = \rho_{C} \cdot \sum_{i=1}^{n} m_{i} \rho'_{i} = \rho_{C} \cdot \sum_{i=1}^{n} m_{i} (\mathbf{r}'_{i} - \mathbf{l}'_{i})$,根据质心的定义, $\sum_{i=1}^{n} m_{i} \mathbf{r}'_{i} = \mathbf{0}$,将其两边点乘单位向量 \mathbf{l} 得到 $\sum_{i=1}^{n} m_{i} \mathbf{l}'_{i} = \mathbf{0}$,所以 $\sum_{i=1}^{n} m_{i} \mathbf{l}'_{i} = \sum_{i=1}^{n} m_{i} \mathbf{l}'_{i} \mathbf{l} = \mathbf{0}$ 。于是 $\sum_{i=1}^{n} m_{i} (\mathbf{r}'_{i} - \mathbf{l}'_{i}) = \mathbf{0}$,即 $\sum_{i=1}^{n} m_{i} \rho'_{i} = \mathbf{0}$,得到 $\sum_{i=1}^{n} m_{i} \rho'_{i} \cdot \rho_{C} = 0$ 。

于是
$$I = \sum_{i=1}^{n} m_i ({\rho'_i}^2 + {\rho_C}^2) = \sum_{i=1}^{n} m_i {\rho'_i}^2 + {\rho_C}^2 \sum_{i=1}^{n} m_i = I_C + m {\rho_C}^2$$
。

(2).垂直轴定理

若刚体是个薄片,各处厚度一致(或 $\max\{|z|\}\to 0$),密度均匀($\dim = \rho_0 dV$,或 $\max\{|\rho|\}=$ 有限值)。设它的某个截面处在 x-0-y 面上,由于其它截面的 $z\approx 0$,于是 $I_{zz}=\int (x^2+y^2)dm\approx \int (x^2+z^2)dm+\int (y^2+z^2)dm=I_{vv}+I_{xx}$ 。

4.惯量张量与惯量椭球

对 O 的惯量张量的组元的积分形式: $\begin{cases} I_{xx} = \int (y^2 + z^2) dm \\ I_{yy} = \int (x^2 + z^2) dm, \\ I_{zz} = \int (x^2 + y^2) dm \end{cases}$

 $\begin{cases} I_{xy} = I_{yx} = \int xydm \\ I_{xz} = I_{zx} = \int xzdm \,, \,\, dm = \rho dV \text{。在(2). 网体的转动动能一节,我们推得了<math>I = I_{xx}\alpha^2 + I_{yz} = I_{zy} = \int yzdm \end{cases}$

 $I_{yy}\beta^2+I_{zz}\gamma^2-2I_{xy}\alpha\beta-2I_{xz}\alpha\gamma-2I_{yz}\beta\gamma$,其中的 α , β , γ 为 ω 分别与<mark>固定坐标系</mark>的三个坐标轴的,方向余弦。

又因 ω 的方向在转动瞬轴上,因此 α , β , γ 又可表为转动瞬轴对<mark>固定坐标系</mark>的三个坐标轴的方向余弦。

根据 $\mathbf{J} = \boldsymbol{\omega} \sum_{i=1}^{n} m_i r_i^2 - \boldsymbol{\omega} \sum_{i=1}^{n} m_i l_i \mathbf{r}_i$ 的分量形式:

$$\begin{pmatrix}
J_{x} \\
J_{y} \\
J_{z}
\end{pmatrix} = \begin{pmatrix}
I_{xx} & -I_{xy} & -I_{xz} \\
-I_{yx} & I_{yy} & -I_{yz} \\
-I_{zx} & -I_{zy} & I_{zz}
\end{pmatrix}
\begin{pmatrix}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{pmatrix}, 于是J=J(\alpha^{2}+\beta^{2}+\gamma^{2})=J_{x}\alpha+J_{y}\beta+$$

$$\begin{split} &J_{z}\gamma = (\alpha \quad \beta \quad \gamma) \begin{pmatrix} J_{x} \\ J_{y} \\ J_{z} \end{pmatrix} = \\ &(\alpha \quad \beta \quad \gamma) \begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{pmatrix} \begin{pmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{pmatrix} = (\alpha \quad \beta \quad \gamma) \begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \omega_{o} \quad \leq \omega$$

$$J = I \omega, \quad \Delta U = I \omega, \quad \Delta$$

只能推出:该矩阵表达式只在I=Iω所满足的条件下

它的展开式即为 $I=I_{xx}\alpha^2+I_{yy}\beta^2+I_{zz}\gamma^2-2I_{xy}\alpha\beta-2I_{xz}\alpha\gamma-2I_{yz}\beta\gamma$ 。可见无论从 $J = \omega \sum_{i=1}^{n} m_i r_i^2 - \omega \sum_{i=1}^{n} m_i l_i r_i$ 的角度,还是从(2).<mark>刚体的转动动能</mark>那里的展开式的角 度,均有上述 I 的表达式(展开式和矩阵形式),根据它,将反推得恒有量值上的关系: $I=I\omega$, 但方向上不一定有 $I=I\omega$ 。

【注:事实上,只有展开式能得到该矩阵表达式的值=I,因此J=Iω其实只能由 (2).<mark>刚体的转动动能</mark>处的展开式得到; $\mathbf{J}=\mathbf{\omega}\sum_{i=1}^n m_i r_i^2 - \mathbf{\omega}\sum_{i=1}^n m_i l_i \mathbf{r}_i$ 的分量形式,只能 得到 $J = (\alpha \quad \beta \quad \gamma) \begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{xy} & -I_{xy} & I_{xz} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \omega$,它无法推得该矩阵表达式=I】

惯量椭球: 设
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = R\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$
, 则IR²= $\begin{pmatrix} x & y & z \end{pmatrix}\begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{pmatrix}\begin{pmatrix} x \\ y \\ z \end{pmatrix}$, 令其中

 $R = \frac{1}{6}$, 则 $I_{xx}x^2 + I_{yy}y^2 + I_{zz}z^2 - 2I_{xy}xy - 2I_{xz}xz - 2I_{yz}yz = 1$, 这是中心在 O 点的二次 曲面方程。若 I≠0,则它是个闭合曲面。若转动定点 O 为质心 C,则该椭球叫中心惯 量椭球。

5.惯量主轴的求法

这部分的内容其实归结于,线性代数中"线性方程组"一章的"向量空间"一 节、或"矩阵相似对角化"一章的"实对称矩阵正交相似对角化"一节、或"线性空 间与线性变换"一章的"基变换与坐标变换"一节的内容。——第三者为我们提供了 鲜明的物理图像,而第二者为我们提供了坚实的数学基础。

我们说了, $I=(\alpha\quad \beta\quad \gamma)\begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{---} & -I_{---} & I_{---} \end{pmatrix}\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$ 中的 α , β , γ 即转动瞬轴(上的 ω)对 固定坐标系的三个坐标轴的方向余弦。 ·但有趣的是,本身I是个标量,它的值只与

矢量 ω 的朝向有关,而与 ω 的大小 ω 无关。所以事实上即使当 ω =0 时,虽然 ω =0 的方

向任意,但只要规定该时刻的 ω 方向,即转动瞬轴的方向,为你所设的过0点的转动 轴的方向,你还是可以考察刚体对该轴下的I。

也就是说,刚体对过 O 点且方向余弦为 (α,β,γ) 的轴线的转动惯量 I,不因刚体是 否实际在绕着该轴转动而改变(即 I 只与 ω 的方向有关,而与 ω 的大小无关,即使 $\omega = 0$).

(1).原理

那么对于一个相对于 O 系固定不动的刚体,我们是否能旋转固定坐标系 O-xyz,

至另一固定坐标系
$$O-x'y'z'$$
,以使得矩阵 $\begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{pmatrix}$ 中的六个惯量积组元,在

新坐标系下有 $I_{x'y'}=I_{y'x'}=I_{x'z'}=I_{z'x'}=I_{y'z'}=I_{z'y'}=0$,即I在旧有固定坐标系 O-xyz 下的

$$I = (\alpha \quad \beta \quad \gamma) \begin{pmatrix} I_{xx} & -I_{xy} & -I_{x'z'} - I_{z'x'} - I_{z'y'} - I_{$$

$$I=(lpha' eta' \gamma') egin{pmatrix} I_{x'x'} & 0 & 0 \\ 0 & I_{y'y'} & 0 \\ 0 & 0 & I_{z'z'} \end{pmatrix} egin{pmatrix} lpha' \\ eta' \end{pmatrix}$$
,以使得刚体对相同的一根轴的转动惯量 I ,

在不同坐标系下的形式,被化简为 $I=I_{x'x'}\alpha'^2+I_{v'v'}\beta'^2+I_{z'z'}\gamma'^2$ 。

这样,我们就能用所找到的,使得 $I_{xx}\alpha^2 + I_{yy}\beta^2 + I_{zz}\gamma^2 - 2I_{xy}\alpha\beta - 2I_{xz}\alpha\gamma 2I_{yz}\beta\gamma=I_{x'x'}{\alpha'}^2+I_{y'y'}{\beta'}^2+I_{z'z'}{\gamma'}^2$ 成立的,那个基基过渡矩阵,用其逆矩阵 \mathbf{C}^{-1} ,左乘列向量 $\binom{\alpha}{\beta}$ (题目一般即给出的是,所要求的转动惯量所对应的轴,在 O 系下的方向余 \mathbf{K} ,即 α,β,γ),过渡到(求出)同一根轴 \mathbf{I} ,相对于新<mark>固定坐标系</mark>的三个坐标轴 $\mathbf{X}',\mathbf{Y}',\mathbf{Z}'$ 的方 向余弦, 所构成的列向量 $\left(\beta'\right)$ 。

这样,在化简为 $I=I_{x'x'}{\alpha'}^2+I_{y'y'}{\beta'}^2+I_{z'z'}{\gamma'}^2$ 后, $\begin{pmatrix} \alpha' \\ \beta' \\ \nu' \end{pmatrix}$ 也是已知的了。就只剩下 求刚体在新固定坐标系下,对满足(i' j' k')=(i j k)C的三个坐标轴 x',y',z'(C已 知,则它们的方向也已知),分别求刚体对 x 轴、对 y 轴、对 z 轴的转动惯量 I'_{xx} , I'_{yy} , I'_{zz} 了。

【注:基到基的过渡,写为过渡矩阵右乘一个原始基(因为三个基在线代中以列向 量的方式呈现),左等于一个将过渡到的基,(i' j' k')=(i j k)C;那么

否则如果我们不求 C,那么就要额外多求 3 个互相独立的惯量积 $I_{xy}=I_{yx},I_{xz}=I_{zx},I_{yz}=I_{zy}$ 。其他工作量是相等的,也就是说,一个基基过渡矩阵 C=3 个惯量积,显然前者工作量更小。

(2).步骤

根据线性代数 "实对称矩阵正交相似对角化" 一节,有如下定理:由于惯量张量 $\mathbf{I} = \begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{pmatrix}$ 为实对称矩阵,则必有存在一个正交矩阵C,使得 $\mathbf{C}^T\mathbf{I}\mathbf{C} = \mathbf{C}^{-1}\mathbf{I}\mathbf{C}$ 为对角矩阵 $\mathbf{I'} = \begin{pmatrix} I_{x'x'} & 0 & 0 \\ 0 & I_{y'y'} & 0 \\ 0 & 0 & I_{z'z'} \end{pmatrix}$

C的求法: ①.解特征方程 $|\lambda E-I|=0$,求出I的互异特征值 λ_i 们。【矩阵 I 的每一个特征值 λ_i ,应使得 $(\lambda_i E-I)X=0$ 有非零解 X,这样才满足特征值的定义: $IX=\lambda_i X$ 】②.对于 k 重特征值 λ ,代入求出 $(\lambda E-I)X=0$ 的一个基础解系 $X_1,...,X_k$,它们是属于特征值 λ 的 k 个线性无关的特征向量。③.将向量组 $X_1,...,X_k$ 规范正交化为 $Y_1,...,Y_k$,它们是属于特征值 λ 的 k 个两两正交的单位特征向量。④.正交矩阵 $C=(Y_1,...,Y_k,...)$,对应的 C^TIC $A \in \mathbb{R}$

【一般来说,我们处理的是三维的情形,因此最多有 1 个 2 重特征值 λ 。那么在对该 λ 下的 $\mathbf{X}_1,\mathbf{X}_2$ 进行规范正交化时,先施密特正交化: $\mathbf{X}_1'=\mathbf{X}_1$, $\mathbf{X}_2'=\mathbf{X}_2-\frac{[\mathbf{X}_2,\mathbf{X}_1']}{[\mathbf{X}_1',\mathbf{X}_1']}\mathbf{X}_1'=\mathbf{X}_2-\frac{[\mathbf{X}_2,\mathbf{X}_1]}{[\mathbf{X}_1,\mathbf{X}_1]}\mathbf{X}_1$; 再单位化: $\mathbf{Y}_1=\frac{\mathbf{X}_1'}{|\mathbf{X}_1'|}$, $\mathbf{Y}_2=\frac{\mathbf{X}_2'}{|\mathbf{X}_2'|}$;正交矩阵 \mathbf{C} 从物理意义上,相当于保证了旋转变换的间隔不变性,即 $\frac{\boldsymbol{\omega}}{|\boldsymbol{\omega}|}$ 对的 $\mathbf{i}',\mathbf{j}',\mathbf{k}'$ 方向余弦的平方和也=1,或者说在 $\mathbf{i}',\mathbf{j}',\mathbf{k}'$ 的量度下, $\boldsymbol{\omega}$ 的大小保持 $\mathbf{i},\mathbf{j},\mathbf{k}$ 下所量度的 $|\boldsymbol{\omega}|$ 不变】

(3).结果

当我们求出了 $\mathbf{C}^{\mathsf{T}}\mathbf{I}\mathbf{C}=\begin{pmatrix}\lambda \mathbf{E}_{\mathbf{k}}\\ \ddots\\ \lambda_{s}\mathbf{E}_{\mathbf{k}_{s}}\end{pmatrix}=\begin{pmatrix}\mathbf{I}_{\mathbf{x}'\mathbf{x}'}&0&0\\ 0&\mathbf{I}_{\mathbf{y}'\mathbf{y}'}&0\\ 0&0&\mathbf{I}_{\mathbf{z}'\mathbf{z}'}\end{pmatrix}$ 后,便可通过 $\mathbf{I}=\mathbf{I}_{\mathbf{x}'\mathbf{x}'}\alpha'^{2}+\mathbf{I}_{\mathbf{y}'\mathbf{y}'}\beta'^{2}+\mathbf{I}_{\mathbf{z}'\mathbf{z}'}\gamma'^{2}$ 来求 \mathbf{I} 了。此时的(\mathbf{i}' \mathbf{j}' \mathbf{k}')=(\mathbf{i} \mathbf{j} \mathbf{k}) \mathbf{C} ,即新固定坐标 \mathbf{S} O-x'y'z'的 x',y',z'三轴,叫做惯量主轴。刚体分别对三个惯量主轴的转动惯量 $\mathbf{I}_{\mathbf{x}'\mathbf{x}'},\mathbf{I}_{\mathbf{y}'\mathbf{y}'},\mathbf{I}_{\mathbf{z}'\mathbf{z}'}$,叫做主转动惯量。——此时刚体对 $\frac{\boldsymbol{\omega}}{|\boldsymbol{\omega}|}$ 的转动惯量,转化为了对 \mathbf{i}' , \mathbf{j}' , \mathbf{k}' 的转动惯量 $\mathbf{I}_{\mathbf{x}'\mathbf{x}'},\mathbf{I}_{\mathbf{y}'\mathbf{y}'},\mathbf{I}_{\mathbf{z}'\mathbf{z}'}$,分别乘上 $\frac{\boldsymbol{\omega}}{|\boldsymbol{\omega}|}$ 对 \mathbf{i}' , \mathbf{j}' , \mathbf{k}' 的方向余弦 α' , β' , γ' 的平方,后求和。

①.若是规则刚体,我们非常容易找到它的三个惯量主轴的方向,即新<mark>固定坐标系</mark> O-x'y'z'的三个坐标轴 x',y',z'的方向。并且所要求的 I 所对应的转动瞬轴 $\frac{\omega}{|\omega|}$, 与i',j',k' 的方向余弦 α ', β ', γ ',不需要通过 $\begin{pmatrix} \alpha' \\ \beta' \\ \gamma' \end{pmatrix}$ = $\mathbf{C}^{-1}\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ 来计算,直接肉眼就能观察到值为多少。【由于不用算 \mathbf{C} , $\mathbf{(i'\ j'\ k')}=(\mathbf{i\ j\ k)}\mathbf{C}$ 也是用不着的,一眼就看出 $\mathbf{i'}$, $\mathbf{j'}$, $\mathbf{k'}$ 应在刚体的什么位置】。

惯量主轴找到后,若求刚体对三个主轴中的某一个,的转动惯量 I,则 $I=I_{x'x'}\alpha'^2+I_{y'y'}\beta'^2+I_{z'z'}\gamma'^2$ 中有两个方向余弦=0,剩下一个为 1,比如 $I=I_{x'x'}$ 。其实这就退化到了转动惯量的定义 $I=\sum_{i=1}^n m_i \rho_i^2=\int (y^2+z^2)dm$ 。

②.其实,从求惯量主轴($\mathbf{i'}$ $\mathbf{j'}$ $\mathbf{k'}$)=(\mathbf{i} \mathbf{j} \mathbf{k})C,即求 \mathbf{C} 的过程中,我们发现,则开始还不是得求 \mathbf{I} = $\begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{pmatrix}$ 中的 9 个元素(6 个独立)。所以,若单纯要求I的话,其实 \mathbf{I} = $\mathbf{I}_{xx}\alpha^2 + \mathbf{I}_{yy}\beta^2 + \mathbf{I}_{zz}\gamma^2 - 2\mathbf{I}_{xy}\alpha\beta - 2\mathbf{I}_{xz}\alpha\gamma - 2\mathbf{I}_{yz}\beta\gamma$ 已经足够简单了。求惯量主轴后再求 \mathbf{I} ,反而更复杂。——但是,如果题目要求求惯量主轴,以及物体绕某个惯量主轴的 \mathbf{I} ,则不得不算 \mathbf{C} 。

③.另外,由于刚体对任意一个 O 点做定点转动,均有 $I = (\alpha \quad \beta \quad \gamma) \begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \text{.} 而实对称阵 } \mathbf{I} = \begin{pmatrix} I_{x'x'} & 0 & 0 \\ 0 & I_{y'y'} & 0 \\ 0 & 0 & I_{z'z'} \end{pmatrix}$ 又恒可化

为对角阵 $\mathbf{I'}=\begin{pmatrix} I_{\mathbf{x'x'}} & 0 & 0 \\ 0 & I_{\mathbf{y'y'}} & 0 \\ 0 & 0 & I_{\mathbf{z'z'}} \end{pmatrix}$,因此对于任意一点 O 作为参考点,过 O 点的所有轴

线中,总存在三个互相垂直的 x',y',z'惯量主轴,使得刚体对它们的六个惯量积 $I_{x'y'}=I_{y'x'}=I_{x'z'}=I_{z'x'}=I_{y'z'}=I_{z'v'}=0$ 。

$$\begin{cases} I_{xy} = I_{yx} = \int xydm \\ I_{xz} = I_{zx} = \int xzdm \,, \ \ \, \mbox{当 O 点在刚体之外时,新固定坐标系 O-} \\ I_{yz} = I_{zy} = \int yzdm \end{cases}$$

x'y'z'的八个挂限中,不存在一个跨挂限的地方,使得在刚体对 O 点所张的立体角内,**r** 以不同的方式跨挂限后xy,xz,yz均可分别异号(无需同时异号)。——是不是xy,xz,yz这 三者最多有两个能在该立体角内不同区域是异号的(如果刚体对 O 点所张立体角在一个 挂限内的话)?

我们想想: 若 x-o-y 面截于(穿过)刚体,则 z 有正有负,同理,若 y-o-z 面穿过刚体,则 x 有正有负——但最多只能两个面穿过刚体,即比如最多保证 z 有正有负, x 有正有负,此时 y 轴作为 x-o-y 面与 y-o-z 面的交线,穿过了刚体,若 O 点在刚体之外,则 y 要么恒正,要么恒负。——看来,刚体区域中的xy,xz,yz均能在适当选择的新固定坐标系 O-x'y'z'下,有正有负的:xz跨过 x-o-z 面的四个象限,一三象限为正,二四象限为负;xy,yz中,y恒负或恒正,而x,z均有正有负,因此xy,yz也有正有负。

因此若 O 点被选在刚体之外,则仍然一定存在这么一个使得六个惯量积=0 的新<mark>固定坐标系</mark> O-x'y'z',也就能找出一组以这样的 O 点为原点的三个互相垂直的惯量主轴;——那么既然数学推导,如此符合物理图景,则数学过程中所得的三个特征值 $I_{x'x'}, I_{y'y'}, I_{z'z'}$ 就不该出现负值】

结论: 至少有一条惯量主轴穿过刚体所在区域 V, 并配合其余两轴的旋转,以保证三个惯量积=0。

④.既然总存在,那么存在多少组?——对任意刚体,对任意 O 点,总有无穷多组?

利用 a 表达式 $\mathbf{I} = \boldsymbol{\omega} \mathbf{I} - \boldsymbol{\omega} \sum_{i=1}^n m_i l_i \boldsymbol{\rho}_i$,我们说了,当 $\boldsymbol{\omega}$ 或 \mathbf{J} 指向惯量主轴方向时, $\boldsymbol{\omega} \sum_{i=1}^n m_i l_i \boldsymbol{\rho}_i = \mathbf{0}$,即 $\sum_{i=1}^n m_i l_i \boldsymbol{\rho}_i = \mathbf{0}$,设其中 $l_i = y_i$,即有 $\sum_{i=1}^n m_i y_i \boldsymbol{\rho}_i = \mathbf{0}$;将其两边分别点乘 \mathbf{i} , \mathbf{k} ,即有 $\sum_{i=1}^n m_i y_i x_i = \mathbf{0}$, $\sum_{i=1}^n m_i y_i z_i = \mathbf{0}$ 。——此即 $\mathbf{I}_{\mathbf{x}\mathbf{y}} = \mathbf{I}_{\mathbf{y}\mathbf{x}} = \int \mathbf{x}\mathbf{y}\mathbf{d}\mathbf{m} = \mathbf{0}$, $\mathbf{I}_{\mathbf{y}\mathbf{z}} = \mathbf{I}_{\mathbf{z}\mathbf{y}} = \int \mathbf{y}\mathbf{z}\mathbf{d}\mathbf{m} = \mathbf{0}$ 。——看样子只要转动瞬轴l即 $\frac{\boldsymbol{\omega}}{|\boldsymbol{\omega}|}$ 指向其中一个惯量主轴,六个惯量积就都=0了。

特殊的情况,每一上转动瞬轴 $l(\mathbb{P}^{\omega}_{|\omega|})$ 的, $l_i=l(y_i=y)$ 的质点组成的层面,质量分布是关于轴线中心对称的,比如刚体是个圆柱体,且 O 点选取在中(心)轴线上。则过 O

点的三个惯量主轴,其中一个(设为 y 轴)的方向必然是在中心轴线上,方向可指向圆柱或背离圆柱(若 O 点在圆柱外的话)。——并且,当 y 轴与圆柱中轴线共线后,无论 x,z 轴如何绕 y 轴旋转,六个惯量积均=0,即此时有无穷组 x,y,z 惯量主轴交于 O 点。 【但若 y,z 轴绕 x 轴旋转、或 x,y 轴绕 z 轴旋转后,则新的 x,y,z 轴不再是惯量主轴,因为六个惯量积有些 \neq 0,或六个惯量积全 \neq 0】

——这可能归结于不仅有 $\sum_{i=1}^{n} m_{i} l_{i} \rho_{i}$ =**0**,而且对于每一层 l_{i} =y_i=y,都有 y $\sum_{i=1}^{n} m_{i} \rho_{i}$ =**0**,即 $\sum_{i=1}^{n} m_{i} \rho_{i}$ =**0**;因此 x,z 轴绕 y 轴转动时,每一层仍恒有 $\sum_{i=1}^{n} m_{i} \rho_{i}$ =**0**,于是总的仍有 $\sum_{i=1}^{n} m_{i} l_{i} \rho_{i}$ =**0**,以至于 I_{xy} = I_{yx} =0, I_{yz} = I_{zy} =0 等六个惯量积均=0。

而更特殊的情况,若将 O 点设于均匀圆柱体质心,则当 y 轴与圆柱中轴线共线后,不仅无论 x,z 轴如何绕 y 轴旋转,而且无论 y,z 轴如何绕 x 轴旋转、x,y 轴如何绕 z 轴旋转,且不论旋转的先后顺序,均有旋转后的 x,y,z 仍然是三条惯量主轴(中的一组)【这仍因为六个惯量积均=0】。——这就启示我们,如果说,O 点设立在刚体的旋转对称轴上,且 O 点在刚体之外时,惯量主轴的可旋自由度为 1 的话——则 O 点设立在旋转对称的刚体的质心时,惯量主轴的可旋自由度为 3。(旋转对称已经在一定程度上均匀了,即使在沿轴方向上不均匀,在质心处的自由度也应为 3[待证明])

一一或许能用我们之前在平行轴定理处利用 $\sum_{i=1}^n m_i \mathbf{r}_i' = \mathbf{0}$,所得到的 $\sum_{i=1}^n m_i \mathbf{l}_i' = \mathbf{0}$,以及 $\sum_{i=1}^n m_i \rho_i' = \mathbf{0}$,来证明。【由于对于质心而言 $\sum_{i=1}^n m_i \rho_i' = \mathbf{0}$,而旋转对称轴一定过质心 C,而 O 又在对称轴上,因此对 O 点而言的旋转对称轴,即为过 C 点而言的众多轴中的一个,不妨设 ρ_i' 为 CO 连线轴,则 $\rho_i' = \rho_i$,于是有 $\sum_{i=1}^n m_i \rho_i = \mathbf{0}$,这便可以证明上一个破折号的结论】

以上是对具有至少一条旋转对称轴的刚体的论断(类似的还有具有三条旋转对称轴的,三主轴互不相等的椭球,和长宽高互不相等的长方体;以及有无数个旋转对称轴的旋转椭球体——惯量主轴在它们的质心处都有3个旋转自由度):若O不在质心但在任何一条对称轴上,则自由度为1,若O在质心,则自由度(至少)为3。

最特殊的情况,若刚体像均匀的正方体或球体一样,质量分布完全关于质心中心对称的话,则惯量主轴的可旋自由度为∞,即坐标系可以绕任意轴旋转,所得的新x,y,z 轴仍是惯量主轴(即六个惯量积均=0)。

对于一般的情况(即没有旋转对称轴;或是有旋转对称轴,但 O 点不位于其上),由于③.已证明,存在一种朝向的 y 轴,(配合 x,z 轴的旋转)使得六个惯量积均=0(即使 O 在刚体外)。我猜想对于这根 y 轴而言, x,z 轴没法绕它共同转动,同时保证六个惯量积保持=0 不变,即自由度为 0。

【因为我们在③.中是好不容易才证明了:存在这样的轴;而这种存在来源于:先 找到合适的 y 轴,再配合 x,z 轴的旋转,使得三个惯量积=0;之后的例题会举例证 明,对于有旋转对称轴的物体,但当 O 不位于轴上时,一般过 O 点只有一组惯量主 轴】。

——可能归结于"层与层之间可以抵消"所导致的 $\sum_{i=1}^{n} m_i l_i \rho_i = \mathbf{0}$,在每层的质量分布改变后,层与层间没法相互抵消了,以至于 $\sum_{i=1}^{n} m_i l_i \rho_i \neq \mathbf{0}$ 。

例:均匀长方形薄片,长宽为 a,b(a>b),质量为 m,求此长方形薄片绕其对角线转动的转动惯量。

利用①.的认识,我们非常容易找到该"形状规则+密度均匀=质量分布对称"的 刚体的三个惯量主轴 $\mathbf{i}',\mathbf{j}',\mathbf{k}'$ 的方向,以及 I 所对应的转动瞬轴 $\frac{\omega}{|\omega|}$ 与 $\mathbf{i}',\mathbf{j}',\mathbf{k}'$ 的方向余弦 α',β',γ' 的大小,不需要设立一个固定坐标系 O-xyz,来计算新固定坐标系 O-x'y'z'。

但是,通过④.的认识,我们知道"我们只知道当 O 点处于薄片质心时,三个惯量主轴的方向",其他 O 点处的惯量主轴方向我们不知道(我们需计算,才能保证在那些 O 点处的 x'y'z',处于何种方向时,才有六个惯量积均=0)。——比如,当 O 点设立在长方形的左下角时,贴着 b 边的 y 轴,与贴着 a 边的 x 轴,以及 $i \times j$ 的 z 轴,绝对不是惯量主轴,因为此时连 $I_{xv} = I_{vx} = \int xydm \neq 0$,它因 x,y 均>0 而恒>0。

——事实上,过长方形左下角的 O 点的惯量主轴中的一条,甚至也不为沿着对角线的 x 轴,因为它也不能保证 $I_{xy}=I_{yx}=\int xydm=0$,虽然薄片的 y 向质量分布,在 x 轴两侧的质量之和确实是相等的,即 $\int ydm=0$;但以 x 加权后, $\int xydm就\neq 0$ 了:这是因为 y>0 的部分集中分布于 $x=\frac{b^2}{\sqrt{a^2+b^2}}<\frac{\sqrt{a^2+b^2}}{2}$ 的区间,很快就达到最大值;而 y<0 的部分集中分布于 $x=\sqrt{a^2+b^2}-\frac{b^2}{\sqrt{a^2+b^2}}$ 的区间,之后才达到最大值,于是在这种 x-o-y 坐标系下, $\int xydm<0$ 。

其 x 轴应该从对角线开始,顺时针方向旋转一定角度(不超出薄片边界:要知道我们推证了,至少有一条惯量主轴是穿过刚体所在区域 V),才可能是三条惯量主轴中的 x 轴;当 x 轴的选择,使得 $I_{xy} = I_{yx} = \int xydm = 0$ 后,y 轴和 z 轴不能绕着 x 轴旋转: y 轴必须与 x 轴共面于薄片所在的平面,此时的 $I_{xz} = I_{zx} = \int xzdm和I_{yz} = I_{zy} = \int yzdm$,才因各质点的 z=0,而恒=0。——否则虽 $I_{xz} = I_{zx} = \int xzdm=\int x(ytan\theta)dm=tan\theta \int xydm=0$,但 $I_{yz} = I_{zy} = \int yzdm=\int y(ytan\theta)dm=tan\theta \int y^2dm>0$ 。

这就印证了我们的结论:虽然该长方形薄片有3条旋转对称轴,但只要0点不位于其上,就属于一般情况。此时惯量主轴在0点的旋转自由度为0,只存在唯一的一组惯量主轴。

法一(最简): 取 O 点在质心 C。由于薄片等价于一个有厚度的长方体,而长方体 关于其几何中心,成中心对称。因此其质量分布,也关于 O 点中心对称。根据结论: 惯量主轴的可旋自由度为∞,即坐标系可以绕任意轴旋转,所得的新 x,y,z 轴仍是惯量 主轴(即六个惯量积均=0)。

不妨设 y 轴//b 边,x 轴//a 边。此时 $\alpha' = \frac{a}{\sqrt{a^2 + b^2}}$, $\beta' = \frac{b}{\sqrt{a^2 + b^2}}$, $\gamma' = \cos 90^\circ = 0$ 。而对于 $I_{x'x'}$:先求一均匀细棒对过其中点的任意轴的转动惯量 $I = \int_{-\frac{d}{2}}^{\frac{d}{2}} x^2 \, dm = \int_{-\frac{d}{2}}^{\frac{d}{2}} x^2 \, \frac{m}{d} \, dx = \frac{m\frac{d^3}{4}}{3d}$ $= \frac{md^2}{12}$,先将其沿着过其中点的任意轴伸展,设伸展过程中,其总质量 m 保持不变,密度均匀减小。根据伸展定则,伸展所得的平面,对同样一根轴的转动惯量仍然是 $\frac{md^2}{12}$ 。由于长方形薄片对 x 轴的转动惯量可看做 d=b 的线段沿着过其中点的 x 轴伸展得来,因此这里的 $I_{x'x'} = \frac{mb^2}{12}$,同理 $I_{y'y'} = \frac{ma^2}{12}$ 。

于是
$$I=I_{x'x'}{\alpha'}^2+I_{y'y'}{\beta'}^2+I_{z'z'}{\gamma'}^2=\frac{mb^2}{12}\frac{a^2}{a^2+b^2}+\frac{ma^2}{12}\frac{b^2}{a^2+b^2}=\frac{1}{6}m\frac{a^2b^2}{a^2+b^2}$$
。

法二(稍麻烦): 既然惯量主轴的可旋自由度为 ∞ , 不妨设过 C 点的 x 轴就在对角线方向,它仍是惯量主轴中的一条。那么此时 $I=I_{x'x'}\alpha'^2+I_{y'y'}\beta'^2+I_{z'z'}\gamma'^2=I_{x'x'}$ 。这实际上就退化为了转动惯量的定义 $I=\sum_{i=1}^n m_i \rho_i^2$ 。

法三(稍麻烦): 仍取 O 点在左下角,y 轴贴着 b 边,x 轴贴着 a 边。但不去找惯量主轴。 $I=I_{xx}\alpha^2+I_{yy}\beta^2+I_{zz}\gamma^2-2I_{xy}\alpha\beta-2I_{xz}\alpha\gamma-2I_{yz}\beta\gamma=I_{xx}\alpha^2+I_{yy}\beta^2-2I_{xy}\alpha\beta$ 。

法四(复杂): 垂直轴定理(分 O 点在 C 点的情况, 和在左下角的情况)。

3.6 刚体的平动与定轴转动

1.平动

根据 3.4.(2).(2).<mark>刚体运动微分方程</mark>中的动力学方程: $m\ddot{r}_C = \mathbf{F}$, $\dot{\mathbf{J}}' = \mathbf{M}' = \mathbf{0}$ 。前者可求出运动方程,后者相当于力矩平衡方程,可求出约束反作用力【比如汽车刹车,车轮上的约束反作用力对汽车质心(比车轮高)有力矩】。

2.定轴转动

设 O 点在转动轴上,转动轴为 z 轴,只需考虑任意一与 z 轴垂直的平面: $\mathbf{v}_i = \boldsymbol{\omega} \times \mathbf{r}_i = \boldsymbol{\omega} \times \boldsymbol{\rho}_i$ 。 $\mathbf{a}_i = \frac{d}{dt} (\boldsymbol{\omega} \times \boldsymbol{\rho}_i) = \frac{d\boldsymbol{\omega}}{dt} \times \boldsymbol{\rho}_i + \boldsymbol{\omega} \times \frac{d\boldsymbol{\rho}_i}{dt}$,其中 $\frac{d\boldsymbol{\rho}_i}{dt} = \frac{d(\boldsymbol{\rho}_i \cdot - \boldsymbol{e}_n)}{dt} = -v_{in}\boldsymbol{e}_n + \boldsymbol{\rho}_i\dot{\boldsymbol{\theta}}\boldsymbol{e}_t =$

 $-v_{in}\mathbf{e}_{n} + \rho_{i}\omega\mathbf{e}_{t} = \rho_{i}\omega\mathbf{e}_{t}$ 。 而 $\frac{d\omega}{dt} = \alpha$,于是, $\mathbf{a}_{i} = \alpha \times (\rho_{i} \cdot -\mathbf{e}_{n}) + \omega \times (\rho_{i}\omega\mathbf{e}_{t}) = \rho_{i}\alpha\mathbf{e}_{t} - \rho_{i}\omega^{2}\mathbf{e}_{n}$ 。于是, $\mathbf{a}_{it} = \rho_{i}\alpha$, $\mathbf{a}_{it} = -\rho_{i}\omega^{2} = -\omega v_{i} = -\frac{v_{i}^{2}}{\rho_{i}}$ 。

根据
$$\begin{pmatrix} J_x \\ J_y \\ J_z \end{pmatrix} = \begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$
,有 $J_z = -I_{zx}\omega_x + -I_{zy}\omega_y + I_{zz}\omega_z$ 。而其

中, $\omega_x=\omega_y=0$ 。因此 $J_z=I_{zz}\omega_z$ 。在(2).刚体运动微分方程中,对 O 点有: $\mathbf{j}=\mathbf{M}$ 。将其点乘 \mathbf{k} 。有 $\mathbf{M}_z=\dot{J}_z=\frac{d}{dt}(I_{zz}\omega_z)=\frac{dI_{zz}}{dt}\dot{\omega}=I_{zz}\alpha$ 。

根据 3.4.(2).<mark>刚体运动微分方程</mark>,若 $\mathbf{F}_{i}^{(e)}$ (i=1,2,...,n)均是保守力,则对于刚体,机械能守恒定律:T+V=E 成立。

对于定轴转动的刚体,根据 3.5.(2).,刚体对定点 0 以及过 0 点的轴的转动动能 为 $\frac{1}{2}$ $I\omega^2$,有 $\frac{1}{2}$ $I_{zz}\omega^2$ + V = E。

3.轴上附加压力

刚体定轴转动时,对轴的附加压力是由于刚体转动($\omega \neq 0$ 或 $\dot{\omega} \neq 0$)时,相对于刚体没有转动($\omega = 0$ 且 $\dot{\omega} = 0$),多产生的惯性力所引起的。对轴的压力,可视为对轴承 A、B 两处的约束反力。

主动力 $\sum_{i=1}^{n} \mathbf{F}_{i}^{(e)}$ (即对 A 点的主矢和主矩 \mathbf{F}_{i} M)相同时, $\omega \neq 0$ 或 $\dot{\omega} \neq 0$,算出的 \mathbf{N}_{A} , \mathbf{N}_{B} (即 5 个分量 \mathbf{N}_{Ax} , \mathbf{N}_{Ay} , \mathbf{N}_{Az} , \mathbf{N}_{Bx} , \mathbf{N}_{By}),叫**动反作用力**; $\omega = 0$ 且 $\dot{\omega} = 0$ 时算出来的 \mathbf{N}_{A} , \mathbf{N}_{B} ,叫静反作用力。

刚体转动时,不在轴上产生附加压力的充要条件为: $\begin{pmatrix} \omega^2 & \dot{\omega} \\ \dot{\omega} & -\omega^2 \end{pmatrix}\begin{pmatrix} x_C \\ y_C \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 以及 $\begin{pmatrix} -\omega^2 & \dot{\omega} \\ \dot{\omega} & \omega^2 \end{pmatrix}\begin{pmatrix} I_{yz} \\ I_{zx} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 两个方程成立。由于刚体在转动 $(\omega \neq 0 \ \vec{\omega} \vec{\omega} \neq 0)$ 时,两个系数行列式均为 $-(\omega^4 + \dot{\omega}^2)$ 且均恒小于 0,即恒 \neq 0,因此两个方程只有零解: $\begin{pmatrix} x_C \\ y_C \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 、 $\begin{pmatrix} I_{yz} \\ I_{zx} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 。即充要条件为 x_C,y_C,I_{yz},I_{zx} 均(恒)为 0【"恒"字主要针对 I_{yz},I_{zx} 】。——也就是说,刚体的质心在转动轴上,且转动轴恒为惯量主轴之一。

【但按照我们之前的认识,若O点在刚体外,不论刚体有没有旋转对称轴,若O点不在其旋转对称轴上,则过O点穿过刚体的那条惯量主轴,不一定过质心(见长方形薄片例题),且在O点的三个惯量主轴的旋转自由度为O,即剩余两惯量主轴不能绕着穿过刚体的那条惯量主轴旋转,否则三条轴将不再是刚体对O点的三个惯量主轴了。——因此一般的刚体,即使质心在转动轴上,且转动轴为惯量主轴之一,等它转起来后,将因不满足第二个条件,而对轴上有附加压力(这压力是一阵一阵的,只有一个特殊方位才没有压力)】

此时刚体达到**动平衡**, 转动轴 z 轴叫做**自由转动轴**。

3.7 刚体的平面平行运动

1.平面平行运动——运动学

在运动过程中,刚体中任意一点,始终在平行于某一固定平面z₀的某一固定平面z 内运动。垂直于固定平面z的直线上,各质点的(x,y)、速度、加速度均相同,只需研究 某一个z平面。

薄片从 L 位置处运动到 L'位置处,该运动过程总可分解为纯平动+纯转动两个步骤:对于处于 L 位置上的薄片,在其上任取一点 O',记下该点在薄片上的相对位置[比如以薄片某棱角的转折点为参考点(一个起眼的特征点),以其棱角的两条边作为二维仿射坐标系,确定 O'相对于之的位置],再在位形为 L'的薄片上取同一点(什么叫"同一点"?——这时就要用到你所记录的相对位置信息了:它对薄片上任何一点的相对位置不变,即薄片上任何一点对它的相对位置也不变),即相对于薄片或特征点的同一坐标处。

那么,薄片从 L 位形处,移动到 L'位形处,这一过程总可以被等效为:在薄片 L 上任取的一点 O',先平移到 L'中同一相对位置 O'处。该过程中,薄片 L 跟着 O'作纯平动,平动到位形 L"处;然后薄片再以 L"为初始位形,以 O'为**基点**(实际上是以上纸面且过 O'的轴为转动轴作定轴转动),作纯转动,转动θ至位形 L'。

对于同样两个初始和末了位形 L和 L',不论 O'如何选取(对 L 的相对位置如何),在第二步作纯转动时, θ 都是完全相等的(大小相等,方向均朝纸内/k 或纸外/-k)。但是,L 上的 O' \to L'上的 O'的矢径 $\mathbf{r}_{O'}$,却因**基点** O'在 L 上(的相对位置)的选取的不同而互不相同。【与 θ 有关,当 θ = $\mathbf{0}$ 时,各 $\mathbf{r}_{O'}$ 是相等的】

【更进一步,两个0'的 $\mathbf{r}_{0'}$ 之间的关系,与 $\mathbf{\theta}$ 和两个0'在同一 L 上的相对位置有关: $\mathbf{r}_{0'_2} = \mathbf{r}_{0'_2} + \mathbf{\theta} \times \widehat{\mathbf{r}}_{0'_2 0'_1}$,其中 $\mathbf{r}_{0'_2 0'_1}$ 表示同一 L 下,0'₂相对于0'₁的坐标;且 $\mathbf{\theta} \times \widehat{\mathbf{r}}_{0'_2 0'_1}$ 是个以 $|\mathbf{\theta}|$ 为张角,以 $|\mathbf{r}_{0'_2 0'_1}|$ 为半径,以 $\mathbf{\theta} \times \mathbf{r}_{0'_2 0'_1}$ 的方向为"起点到终点的方向",的**弧矢量**,不是个直向量】

我们在 L 上任选一个**基点** O',并以之为原点建立一个 O'-x'y'z'系,其 x',y'两轴连同 O',均在 L 所在的平面上,并均相对于 L 的位置固定;其 z'轴恒上纸面并穿出纸面向外。——固定坐标系 O-xyz 的 x,y 轴和 O 点也在 L 的平面上,但只相对于空间固定;z 轴//z'轴,也穿出纸面向外。

设**基点** O'相对于固定坐标系 O-xyz 的矢径为 $\mathbf{r}_{0'}$ 。而薄片上任意一点 P 对 O'的矢径

为
$$\mathbf{r}'$$
,则 $\mathbf{r} = \mathbf{r}_{0'} + \mathbf{r}'$ 。于是 $\mathbf{v} = \mathbf{v}_{0'} + \mathbf{v}' = \mathbf{v}_{0'} + \mathbf{\omega} \times \mathbf{r}' = \mathbf{v}_{0'} \mathbf{v}^{\mathbf{i}} + \mathbf{v}_{0'} \mathbf{v}^{\mathbf{j}} + \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \omega_{\mathbf{x}} & \omega_{\mathbf{y}} & \omega_{\mathbf{z}} \\ \mathbf{x}' & \mathbf{y}' & \mathbf{z}' \end{vmatrix} = \mathbf{v}_{0'} \mathbf{v}^{\mathbf{i}} + \mathbf{v}_{0'} \mathbf{v}^{\mathbf{i}$

$$\mathbf{v_{0'}}_{x}\mathbf{i} + \mathbf{v_{0'}}_{y}\mathbf{j} + \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0 & \omega_{z} \\ \mathbf{x'} & \mathbf{y'} & \mathbf{z'} \end{vmatrix} = \mathbf{v_{0'}}_{x}\mathbf{i} + \mathbf{v_{0'}}_{y}\mathbf{j} - \mathbf{y'}\omega_{z}\mathbf{i} + \mathbf{x'}\omega_{z}\mathbf{j} = \mathbf{v_{0'}}_{x}\mathbf{i} + \mathbf{v_{0'}}_{y}\mathbf{j} - (\mathbf{y} - \mathbf{v_{0'}}_{y}\mathbf{j} - \mathbf{v_{0'}}_{y}\mathbf{j} - (\mathbf{v_{0'}}_{y}\mathbf{j} - \mathbf{v_{0'}}_{y}\mathbf{j} - \mathbf{v_{0'}}_{y}\mathbf{j} - (\mathbf{v_{0'}}_{y}\mathbf{j} - (\mathbf$$

 $y_0)\omega_0^i + (x - x_0)\omega_0^i$ 。【最后一步是为了将所有量都表示为 O 系下的量,包括y',x'; x_0,y_0 为 $\mathbf{r}_{0'}$ 在 O 系下的坐标分量】这便是 P 点对 O 点的速度。

在 O'系下,可换一种方法,利用 $\boldsymbol{\omega} = \boldsymbol{\omega}_z \mathbf{k} = \boldsymbol{\omega}_{z'} \mathbf{k}'$,推导 $\boldsymbol{\omega} \times \mathbf{r}' = \boldsymbol{\omega}_{z'} \mathbf{k}' \times (\mathbf{x'i'} + \mathbf{y'j'})$ = $-\mathbf{y'}\boldsymbol{\omega}\mathbf{i'} + \mathbf{x'}\boldsymbol{\omega}\mathbf{j'}$ 。这便是 P 点对 O'点的速度 $\mathbf{v'} = -\mathbf{y'}\boldsymbol{\omega}\mathbf{i'} + \mathbf{x'}\boldsymbol{\omega}\mathbf{j'}$ 。【其实以上过程的 $\boldsymbol{\omega}$ 都是针对 O'系的,或写作 $\boldsymbol{\omega}$ '更合适】

对 P 对 O 的速度 $\mathbf{v} = \mathbf{v_{0'}}_x \mathbf{i} + \mathbf{v_{0'}}_y \mathbf{j} - (\mathbf{y} - \mathbf{y_0}) \boldsymbol{\omega} \mathbf{i} + (\mathbf{x} - \mathbf{x_0}) \boldsymbol{\omega} \mathbf{j}$,两边点乘 \mathbf{i} ,即有 $\mathbf{v_x} = \mathbf{v_{0'}}_x - (\mathbf{y} - \mathbf{y_0}) \boldsymbol{\omega}$;两边点乘 \mathbf{j} ,即有 $\mathbf{v_y} = \mathbf{v_{0'}}_y + (\mathbf{x} - \mathbf{x_0}) \boldsymbol{\omega}$;

对 P 点对 O'点的速度 $\mathbf{v}'=-\mathbf{y}'\omega\mathbf{i}'+\mathbf{x}'\omega\mathbf{j}'$,两边点乘 \mathbf{i} ,即有 $\mathbf{v}_{\mathbf{x}'}=-\mathbf{y}'\omega$;两边点乘 \mathbf{j} ,即有 $\mathbf{v}_{\mathbf{y}'}=\mathbf{x}'\omega$ 。

P 点对 O 点的加速度
$$\mathbf{a} = \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{v} = \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{v}_{0'} + \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{v}' = \mathbf{a}_{0'} + \frac{\mathrm{d}}{\mathrm{d}t} (\boldsymbol{\omega} \times \mathbf{r}') = \mathbf{a}_{0'} + (\frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \mathbf{r}' + \boldsymbol{\omega} \times \mathbf{v}') = \mathbf{a}_{0'} + \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \mathbf{r}' + (\boldsymbol{\omega} \cdot \mathbf{r}') = \mathbf{a}_{0'} + \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \mathbf{r}' + [(\boldsymbol{\omega} \cdot \mathbf{r}') \boldsymbol{\omega} - (\boldsymbol{\omega} \cdot \boldsymbol{\omega}) \mathbf{r}'] = \mathbf{a}_{0'} + \frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \mathbf{r}' - \boldsymbol{\omega}^2 \mathbf{r}'$$
。【注:其中 $\frac{\mathrm{d}\mathbf{r}'}{\mathrm{d}t} = \mathbf{v}' = \boldsymbol{\omega} \times \mathbf{r}'$ 】

它也可用纯粹的 O 系的坐标量表示: $\mathbf{a}=\mathbf{a}_{O'}+\frac{d\omega}{dt}\times(\mathbf{r}-\mathbf{r}_0)-\omega^2(\mathbf{r}-\mathbf{r}_0)$ 。 【 \mathbf{r}_0 即为 $\mathbf{r}_{O'}$ 】

2.转动瞬心

作平面平行运动的刚体,其角速度 ω 不为零时(ω 绕着0'点),在上 ω 的薄片上,任意时刻都恒能找到一点,其对 O点的速度v=0,该点叫做**转动瞬心**,为了与质心 C 区别开来,我们记它为蓝色的 C(也是 center-心的一类)。【该概念只是针对 O点而言,它相对于0'点的v',在 $\omega \neq 0$ 时,恒 $\neq 0$ 。因此只能说可以用x'和y'来表示转动瞬心,它对0'系没有物理上的意义】

令 P 对 O 的速度 $\mathbf{v} = \mathbf{0}$,即有两个分量式分别为 $0: v_x = v_{0'_x} - (y - y_0)\omega = 0$, $v_y = v_{0'_y} + (x - x_0)\omega = 0$ 。解得 $y_C = \frac{v_{0'_x}}{\omega} + y_0$, $x_C = -\frac{v_{0'_y}}{\omega} + x_0$ 。当然我们也可用 O'系的 坐标量来量度它(但速度 $v_{0'_x}, v_{0'_y}$ 还是用的是 O 系的): $y_C' = \frac{v_{0'_x}}{\omega}$, $x_C' = -\frac{v_{0'_y}}{\omega}$ 。

C的特性在: C在此时刻对 O点的速度为零,因此此时刻的薄片上其余所有的点 P,对 O点而言,正绕着 C转动(但对 O'点而言,此时刻它仍正绕着 O'转动)。——于是此时所有的点 P,其速度v便可写为 $\mathbf{v}=\mathbf{\omega}_{C}\times\mathbf{r}_{CP}(\mathbf{r}_{CP}=\mathbf{r}_{P}-\mathbf{r}_{C}$ 为C到P的矢量;或许从一开始, \mathbf{v} 就最好写为 \mathbf{v}_{P} ?),其大小即为 $\mathbf{v}=\mathbf{\omega}_{C}\cdot CP$ 。【要注意, $\mathbf{\omega}_{C}\neq\mathbf{\omega}$,它与薄片 L 绕基点 O'的角速度不是一回事】

利用 C 的特性,可通过已知薄片 L 上任意两点 A,B 的速度方向(注意,它们是对 O 点的速度!),就能过 A,B 点,分别作两条上 \mathbf{v}_A , \mathbf{v}_B 的垂线,它们的交点即为**转动瞬心** C(A,B 位置已知,C 的位置也确定下来了);并且根据 $\mathbf{v} = \omega_C \cdot CP$,我们可立马求出 $|\mathbf{v}_A|:|\mathbf{v}_B|=CA:CB(A,C$ 坐标均求出,则CA已知)。——若进一步已知 \mathbf{v}_A , \mathbf{v}_B 中某一个的大小,比如 $|\mathbf{v}_A|$,便可通过 $|\mathbf{v}_A|=\omega_C \cdot CA$,得到 $\omega_C = \frac{|\mathbf{v}_A|}{CA}$ 。并且进而得到 $|\mathbf{v}_B|=\frac{|\mathbf{v}_A|}{CA}$ CB,以及 L 上其余点的速度 \mathbf{v}_A

转动瞬心 C 对于 O 系和 O'系是平权的:薄片作 $\omega \neq \mathbf{0}$ 的平面平行运动时,**转动瞬心** C 在空间中,即 O-xy 上描绘的轨迹 $(x_C,y_C)=(-\frac{v_{O'y}}{\omega}+x_0,\frac{v_{O'x}}{\omega}+y_0)$ 称作空间极迹; C 在薄片 L 上,即 O-x'y'上描绘的轨迹 $(x'_C,y'_C)=(-\frac{v_{O'y}}{\omega},\frac{v_{O'x}}{\omega})$,叫本体极迹。 【 $v_{O'x},v_{O'y},\omega$,一般都是时间的函数,因此两个坐标 $(x_C,y_C),(x'_C,y'_C)$ 因发展变化而变成了极迹】

薄片 L 在空间中的运动,伴随着本体极迹在空间极迹上,无滑动地滚动。它们在某一时刻的公切点,即为此时刻的转动顺心。【这里的两个极迹是已经求出来的,C 在两系下的曲线方程,而不是运动方程;并且本体极迹是固定在 O'系即薄片 L 上的一条曲线,当 L 即 O'系在空间即 O 系中运动时,本体极迹这条"完整"的曲线,也相对 L 静止地,跟着 L 一起相对于空间即 O 系运动。】

注:①.两个极迹并不"完整",转动瞬心的运动曲线始末,即为两条极迹相切点的变化区间端点,因此有些情况下,两个极迹不是闭合曲线,比如椭圆规尺在 O-xy 系上只作一个象限的往复运动,此时,一个以尺规为直径的半圆,作为本体极迹,在一个以尺规为半径的4圆(空间极迹)内,无滑动地滚动。

不过有的情况是一条闭合,一条不闭合: 比如车轮在直轨上的滚动,轮缘是本体极迹,直轨是空间极迹; 【你可以想想为什么转动瞬心在切点? ——一方面你可以利用: 无滑动的滚动,车轮顶点对切点的速度=质心 C 速度+顶点对 C(即0′)的线速度 = $2*v_{0'x}$; 而 $\frac{1}{4}$ 圆处的切线方向,斜下或斜上 45°,量值为 $\sqrt{2}v_{0'x}$,作它们的垂线,相交即可。】

而有的是两条都闭合: 比如椭圆规尺在 O-xy 系上作四个象限的完整的周期运动, 此时,一个以尺规为直径的圆,作为本体极迹,同向于尺规的象限游行方向地,在一个以尺规为半径的大圆(空间极迹)内,无滑动地滚动。

- ②.正因开篇所提到的6与基点 O'的选取无关,对于同样的 L,在空间 O-xy 中所作的同样的运动方程和径迹,各基点 O'下的w,在相同时刻相同地点处,也是相同的。——但是,不同的基点 O'下的坐标系 O'-x'y'便不同,因此它们在量度同样一个本体极迹时,给出的方程就不同(但本体极迹相对于薄片 L 的位置是固定的,不因基点 O'的选取而改变)。
- ③.转动瞬心又叫速度瞬心, L上的该点, 在该时刻的(对 O 的)速度, 虽然等于 0, 但它对 O 的加速度, 并不等于零(否则它就一直在这里不动了, 成为固定转动中心; 接下来的一瞬间, 它就会因加速度 a 不为 0 而有速度, 从而变得不再是转动瞬心; 转而下一个在 O 或 O′系上邻近它的点, 因 a 不为 0 而速度变成了 0, 从而变成了新的转动瞬心)。

3.平面平行运动——动力学

运动学中,**基点** O'可以任取。但动力学中,**基点** O'通常取在质心 C 处。 $\mathbf{r}_{\mathrm{O}'}$ 变为 \mathbf{r}_{C} 。

根据 3.4.(2).<mark>刚体运动微分方程</mark>,我们有m $\ddot{\mathbf{r}}_{C}$ =**F**, $\dot{\mathbf{J}}'$ =**M**'(像 3.6 刚体的平动处)。那么便有二者的分量形式: $\begin{cases} m\ddot{\mathbf{x}}_{C} = \mathbf{F}_{\mathbf{x}} \\ m\ddot{\mathbf{y}}_{C} = \mathbf{F}_{\mathbf{y}} \end{cases}$, $\mathbf{M}_{\mathbf{z}} = \dot{\mathbf{J}}_{\mathbf{z}} = \frac{d}{dt} (\mathbf{I}_{\mathbf{z}\mathbf{z}}\omega_{\mathbf{z}}) = \frac{d\mathbf{I}_{\mathbf{z}\mathbf{z}}}{dt} \dot{\omega} = \mathbf{I}_{\mathbf{z}\mathbf{z}}\alpha$ 。这是三个独立变量 $\mathbf{x}_{C,t}\mathbf{y}_{C,t}\alpha$ 的问题。【 $\mathbf{M}_{\mathbf{z}}$ 是 $\mathbf{M}'_{\mathbf{z}}$ 的简写】

其中, F_x , F_y ,F 即诸外力及诸外力在 x、y 方向的代数和,均包括了约束反力; $M_z = M' \cdot k$,由于M'即诸外力(包括了约束反力)对 C 点的主矩,因此 M_z 也包括了约束反力对 z 轴的力矩的代数和。

刚体既然能做平面平行运动,那么刚体多是收到了约束反力的。但约束反力多是 未知的,因此需要加入限制(平面)运动的**约束方程**。

根据<mark>柯尼希定理</mark>,若刚体在平动之余还在转动,且转动瞬轴始终通过质心,则对定点 O,有 $T=T_C+\sum_{i=1}^n\frac{1}{2}m_i\mathbf{v}_i'^2=T_C+\frac{1}{2}I_{zz}\omega^2$ 。

若 $\mathbf{F}_{i}^{(e)}$ (i=1,2,...,n)均是保守力,则对于刚体,机械能守恒定律:T+V=E 成立。即有 $T_{C}+\frac{1}{2}I_{zz}\omega^{2}+V=E$ 。【像定轴转动的刚体一样,只不过多了一项 T_{C} 】

4.滚动摩擦

圆柱体作纯滚动时(无滑动;这相当于一个几何约束: $x_C=a\theta$),即使放在粗糙的水平面上,按理说它应以初速度 v_0 永远滚动下去。

(1).先考虑地面不是绝对刚性的

但由于圆柱体和地面都不是绝对刚性的,则圆柱总会稍陷入地面一点,此时从侧面看,圆柱与地面的接触线并非在中轴线正下方,而是位于圆柱的质心的前方,即圆柱的前进方向的斜下方,即 0 点对接触点的矢径 $\mathbf{r} \cdot \mathbf{v}_0 > 0$ 。

由于支持力的方向上接触面(即柱子下前表面/设地面与柱子紧贴的话,也可说为上地面)的方向,指向被支持物(柱子),则由于近质心正下方的圆边缘,其曲率变化不大,仍可视为支持力 N//g,并指向-g 方向,即 $v_0 \times \omega$ 的方向。

这样一来,利用"N指向 $\mathbf{v}_0 \times \mathbf{\omega}$ "以及" $\mathbf{r} \cdot \mathbf{v}_0 > 0$ ",力矩 $\mathbf{r} \times \mathbf{N}$ 的方向,即为 $\mathbf{v}_0 \times (\mathbf{v}_0 \times \mathbf{\omega})$ 的方向,即 $-\mathbf{\omega}$ 的方向。那么这个力矩对于 $\mathbf{\omega}$ 来说,就是阻力矩,使得圆柱体滚动减缓。——我们将 $\mathbf{r} \cdot \frac{\mathbf{v}_0}{|\mathbf{v}_0|}$ =叫做**滚动摩擦因数** k,这样阻力矩的量值即为 M=Nk。

(2).再考虑刚体不是绝对刚性的

刚体会偏向于椭圆柱,长轴在水平方向,短轴在竖直方向。这将导致接触线偏离 质心更远,更靠向前进的方向,使得 k 增大, M 更大。

3.8 刚体绕固定点的转动

1.定点转动——运动学

3.3 中提到过,需要(φ , θ)以及 ψ ,共三个独立坐标,来共同描述刚体的运动:用 (φ , θ)描述刚体(本体坐标系)的位形(转动轴的取向),用 ψ 描述刚体绕轴旋转情况,用 (φ , $\dot{\theta}$, $\dot{\psi}$)以描述 ω_x **i**+ ω_y **j**+ ω_z **k**= ω = $\dot{\varphi}$ **k** $_0$ + $\dot{\theta}$ **n**+ $\dot{\psi}$ **k**的方向和大小。【可见 ω 不一定在 $\dot{\psi}$ **k**的方向上】

只需要一个 O 点,和一个矢量函数 ω (t),便能描述刚体绕固定点转动。【因为我们似乎不怎么关心刚体的位形,及其所涉及的 ϕ , θ , ψ ; 并且可见 ϕ , θ , ψ 、 ϕ , $\dot{\theta}$, $\dot{\psi}$ 都是时间的函数】

刚体作定点转动时,转动瞬轴与转动瞬心相仿(转动瞬心其实就是转动瞬轴在 x-o-y 面的投影点?),也在空间中即固定坐标系下,和刚体上即本体坐标系内,分别描绘出一个顶点均为 O 点的锥面,前者叫空间极面,后者叫本体极面。

【本体坐标系的 z 轴,就是**基点** O'这一概念所对应的**基轴**,并且这里也有**基点**,**基点**就是本体坐标系和固定坐标系共享的原点;由于ω基本上不在ψk的方向上,也就是说转动瞬轴基本上不沿着本体坐标系的 z 轴,那么它除了要在固定坐标系中划出锥面,也要在本体坐标系中画出锥面。】

①.定点转动的刚体,其上任意一质点,在同一个瞬间/时刻,都在绕着同一根转动瞬轴 $\frac{\omega}{|\omega|}$ 转动,因此刚体上任意质点对 O 的(线)速度 $\mathbf{v} = \mathbf{\omega} \times \mathbf{r} = \mathbf{\omega} \times \mathbf{\rho}$ 。对 O 的加速度为 $\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d(\mathbf{\omega} \times \mathbf{\rho})}{dt} = \frac{d\mathbf{\omega}}{dt} \times \mathbf{\rho} + \mathbf{\omega} \times \frac{d\mathbf{\rho}}{dt} = \frac{d\mathbf{\omega}}{dt} \times \mathbf{\rho} + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{\rho}) = \frac{d\mathbf{\omega}}{dt} \times \mathbf{\rho} + (\mathbf{\omega} \cdot \mathbf{\rho}) \mathbf{\omega} - \mathbf{\omega}^2 \mathbf{\rho} = \frac{d\mathbf{\omega}}{dt} \times \mathbf{\rho} - \mathbf{\omega}^2 \mathbf{\rho}$ 。

其中 $\omega \times \frac{d\rho}{dt} = \omega \times v = \omega \times (\omega \times \rho) = -\omega^2 \rho$,称作向轴加速度。 $\frac{d\omega}{dt} \times \rho$ 称为转动加速度。这与平面平行运动的结论相符,只差个 $a_{0'}$ 。

②.一般运动:加上本体坐标系的原点 O'这个**基点**的平动即可,表达式类似<mark>平面平行运动: $\mathbf{v}=\mathbf{v}_{0'}+\mathbf{\omega}\times\mathbf{r}=\mathbf{v}_{0'}+\mathbf{\omega}\times\mathbf{\rho}$, $\mathbf{a}=\mathbf{a}_{0'}+\frac{\mathrm{d}\mathbf{\omega}}{\mathrm{d}t}\times\mathbf{\rho}-\omega^2\mathbf{\rho}$ 。</mark>

注:与定点转动不同,这里的 ω 的瞬时值,还包含了**基点** O'在该瞬间 $t=t_0$,在 O'的曲线轨迹的 $\mathbf{r}_{O'}|_{t=t_0}$ 处,对该处的曲率圆的曲率中心的角速度值 ω_K ,它满足 $\omega_K \times \rho_K = \mathbf{v}_{O'}$,其中因 $\mathbf{a}_n = \frac{\mathbf{v}^2}{\rho_K} \mathbf{e}_n$,因此 $\mathbf{p}_K = -\frac{\mathbf{v}_{O'}^2}{\mathbf{a}_{O'_n}} \mathbf{e}_n$,其中 \mathbf{e}_n 指向轨道凹侧;对 $\mathbf{\omega}_K \times \rho_K = \mathbf{v}_{O'}$ 两边取模,可得它的大小为 $\mathbf{\omega}_K = \frac{\mathbf{v}_{O'}}{\rho_K} = \frac{\mathbf{v}_{O'}}{\frac{\mathbf{v}_{O'}^2}{\mathbf{a}_{O'_n}}} \mathbf{e}_n$,方向为 $\mathbf{p}_K \times \mathbf{v}_{O'}$ 的方向,即 $-\mathbf{e}_n \times \mathbf{e}_t = \mathbf{e}_t \times \mathbf{e}_n = \mathbf{e}_b$ 的方向,即副法线方向,于是 $\mathbf{\omega}_K = \frac{\mathbf{a}_{O'_n}}{\mathbf{v}_{O'}} \mathbf{e}_b$ 。

那么 $\omega = \dot{\phi}_0 \mathbf{k}_0 + \dot{\theta}_0 \mathbf{n} + \dot{\psi}_k \mathbf{k} + \omega_K = \dot{\phi}_0 \mathbf{k}_0 + \dot{\theta}_0 \mathbf{n} + \dot{\psi}_k \mathbf{k} + \frac{\mathbf{a}_{o'_n}}{\mathbf{v}_{o'}} \mathbf{e}_b$ 。它也可以被本体坐标系量度为 $\omega = \omega_x \mathbf{i} + \omega_y \mathbf{j} + \omega_z \mathbf{k} + \frac{\mathbf{a}_{o'_n}}{\mathbf{v}_{o'}} \mathbf{e}_b$ 。或被固定坐标系量度为。

这样做的理由,仍然在于:对固定坐标系即 O 点而言,"转动瞬轴即 $\frac{\omega}{|\omega|}$ "是"合成"出来的——它是相对于固定坐标系而言,刚体上 P 点,其所有可能的角速度分量,在固定坐标系下的合成,正如之前的合成结果 $\omega = \dot{\varphi} \mathbf{k}_0 + \dot{\theta} \mathbf{n} + \dot{\psi} \mathbf{k} - \dot{\mathbf{k}}$ 。

2.欧拉动力学方程

在 3.4.(2) 刚体运动微分方程,我们的得到过对于静止的 O 点而言,j=M。其中,J 和M都是对定点 O 而言的。O 点在 3.4 不一定是刚体所绕的定点,它甚至可在刚体外。现在我们将其设为刚体所绕的定点,那么角速度 ω 便通过 O 点,而可以用 O 系的坐标来量度。

在 3.5.(1).,我们得出了,在 O 点作为刚体所绕的定点时,有 a 表达式 $I = \omega I - \omega \sum_{i=1}^{n} m_i l_i \rho_i$; 其中的 $I = \omega I$ O 点的。但我们并没有规定这样的 O 系,是固定坐标系 $I = \omega I$ O 一 $I = \omega I$ O 点,是固定坐标系 $I = \omega I$ O 点,是固定坐 $I = \omega I$ O 点,是固定 $I = \omega I$ O 点,是国定 $I = \omega I$ 的,是一个 我们定 $I = \omega I$ 的,是一个 $I = \omega I$ 的,是

体,可以将<mark>固定坐标系</mark>三个坐标轴旋转一下,成为一个<mark>新固定坐标系</mark>,使得在该系下,静止不动的刚体对假想轴线 $\frac{\omega}{|\omega|}$ 的 $I=I_{x'x'}{\alpha'}^2+I_{y'y'}{\beta'}^2+I_{z'z'}{\gamma'}^2$ 。

但其实,3.5.(1).中的刚体是运动的(在定点转动),那么为了使得 $I=I_{x'x'}\alpha'^2+I_{y'y'}\beta'^2+I_{z'z'}\gamma'^2$ 中三个 $I_{x'x'},I_{y'y'},I_{z'z'}$ 是常数,我们的<mark>新固定坐标系</mark>的三根坐标轴,不仅在初始时刻要指向刚体对 O 点的三个惯量主轴的方向,而且<mark>新固定坐标系</mark>必须对刚体的相对位置不变,即<mark>新固定坐标系</mark>必须固定在刚体上,与之一同转动。这样一来,新固定坐标系就成为了我们的新本体坐标系。

总结该过程:"刚体不动:<mark>固定坐标系→新固定坐标系</mark>,以消除惯量积 $I_{x'y'}, I_{y'z'}, I_{x'z'}$ " \to "刚体运动:新固定坐标系→新本体坐标系,以保证 $I_{x'x'}, I_{y'y'}, I_{z'z'}$ 是 常数";该过程还可以写作:"刚体运动:固定坐标系→本体坐标系,以使得 6 个 $I_{xx}, I_{yy}, I_{zz}, I_{xy}, I_{xz}, I_{yz}$ 是常数" \to "相对刚体不动:本体坐标系→新本体坐标系,消除惯量积 $I_{x'y'}, I_{y'z'}, I_{x'z'}$,且剩下的 $I_{x'x'}, I_{y'y'}, I_{z'z'}$ 是常数"

①.但虽然 $I_{x'x'}$, $I_{y'y'}$, $I_{z'z'}$ 变成了常数,但 ω (t)在新本体坐标系的三坐标轴上的分量,仍与时间有关。——我们说了,新本体坐标系相对于刚体静止,刚体对他来说没有转动,它与刚体的角速度相同,均为 ω ;但 ω 在新本体坐标系下,也是关于时间的函数 $\omega = \omega_x \mathbf{i} + \omega_y \mathbf{j} + \omega_z \mathbf{k}$ 。——那么由于 $I = I_{x'x'}\alpha'^2 + I_{y'y'}\beta'^2 + I_{z'z'}\gamma'^2$ 中的 $\alpha' = \frac{\omega_x}{\omega}$ 等,也将是时间的函数,则I在新本体坐标系下,也将是时间的函数,不像 $I_{x'x'}$, $I_{y'y'}$, $I_{z'z'}$ 是常量。

【在之前<mark>固定坐标系→本体坐标系</mark>时,我们从ξηζ→xyz;在之前<mark>固定坐标系→新</mark> 固定坐标系时,我们从xyz→x′y′z′。现在我们沿用后者x′y′z′所对应的 $J_{z'}$, $\omega_{z'}$,i',j',k'等,来表示新本体坐标系下的量(而不是 x,y,z);且仍用ξηζ, i_0 , j_0 , k_0 来表示固定坐标系的量(而不是 x,y,z),以示两个跨度的较大区分度】

因此虽然 $I_{x'x'}$, $I_{y'y'}$, $I_{z'z'}$ 变成了常数,但因 $\omega_{x'}$, $\omega_{y'}$, $\omega_{z'}$ 都是时间的函数, $J_{x'}$, $J_{y'}$, $J_{z'}$ 却也都是时间的函数。

②.由于 b 表达式 $J = \omega \sum_{i=1}^{n} m_{i} r_{i}^{2} - \omega \sum_{i=1}^{n} m_{i} l_{i} r_{i}$ 对于原点在转动定点的参考系都成立,即对固定坐标系,本体坐标系,新本体坐标系均成立,那么取它在下新本体坐标系的表达式,其中的 ω 、 ρ_{i} 、I 等都以新本体坐标系的三轴来量度。于是,一方面 $\frac{dJ}{dt} = \frac{d(\omega \sum_{i=1}^{n} m_{i} r_{i}^{2})}{dt} - \omega \sum_{i=1}^{n} m_{i} l_{i} \frac{d\mathbf{r}_{i}}{dt}$,其中 $\frac{d\mathbf{r}_{i}}{dt} = \mathbf{v}_{i} = \boldsymbol{\omega} \times \mathbf{r}_{i}$,且 $\frac{d(\omega \sum_{i=1}^{n} m_{i} r_{i}^{2})}{dt} = \frac{d(\omega \sum_{i=1}^{n} m_{i} r_{i}^{2})}{dt}$,由于 $I_{x'x'}$, $I_{y'y'}$, $I_{z'z'}$ 是常量,则 $I_{x'x'}$ + $I_{y'y'}$ + $I_{z'z'}$ =2 $\sum_{i=1}^{n} m_{i} (x_{i}^{'2} + y_{i}^{'2} + z_{i}^{'2})$ 是常量,即 $\sum_{i=1}^{n} m_{i} r_{i}^{2}$ 是常量,且 $\sum_{i=1}^{n} m_{i} r_{i}^{2} - I_{x'x'}$, $\sum_{i=1}^{n} m_{i} r_{i}^{2} - I_{y'y'}$, $\sum_{i=1}^{n} m_{i} r_{i}^{2} - I_{z'z'}$,即 $\sum_{i=1}^{n} m_{i} x_{i}^{'2}$, $\sum_{i=1}^{n} m_{i} y_{i}^{'2}$, $\sum_{i=1}^{n} m_{i} z_{i}^{'2}$

于是 $\frac{d(\omega \sum_{i=1}^{n}m_{i}r_{i}^{2})}{dt}$ = $\frac{d\omega}{dt}\sum_{i=1}^{n}m_{i}r_{i}^{2}$ = $\frac{d(\omega_{x'}i'+\omega_{y'}j'+\omega_{z'}k')}{dt}\sum_{i=1}^{n}m_{i}r_{i}^{2}$ = $(I_{x'x'}+\Sigma_{i=1}^{n}m_{i}x_{i}'^{2})\frac{d\omega_{x'}}{dt}i'+(I_{y'y'}+\Sigma_{i=1}^{n}m_{i}y_{i}'^{2})\frac{d\omega_{y'}}{dt}j'+(I_{z'z'}+\Sigma_{i=1}^{n}m_{i}z_{i}'^{2})\frac{d\omega_{z'}}{dt}k'=$ $\frac{d(I_{x'x'}\omega_{x'})}{dt}i'+\frac{d(I_{y'y'}\omega_{y'})}{dt}j'+\frac{d(I_{z'z'}\omega_{z'})}{dt}k'-[\sum_{i=1}^{n}m_{i}x_{i}'^{2}\frac{d\omega_{x'}}{dt}i'+\sum_{i=1}^{n}m_{i}y_{i}'^{2}\frac{d\omega_{y'}}{dt}j'+\sum_{i=1}^{n}m_{i}y_{i}'^{2}\frac{d\omega_{y'}}{dt}j'+\sum_{i=1}^{n}m_{i}y_{i}'^{2}\frac{d\omega_{y'}}{dt}j'+\sum_{i=1}^{n}m_{i}y_{i}'^{2}\frac{d\omega_{y'}}{dt}j'$ + $\sum_{i=1}^{n}m_{i}z_{i}'^{2}\frac{d\omega_{z'}}{dt}k']. \quad \textbf{[新本体坐标系的 i',j',k'}方向虽然相对于固定坐标系在改变,但其相对于自身没有改变,因此有诸如<math>\frac{di'}{dt}$ =0]

虽然 $\omega_{x'}$, $\omega_{y'}$, $\omega_{z'}$ 都是时间的函数,但 $\frac{d\omega_{x'}}{dt}$, $\frac{d\omega_{y'}}{dt}$, $\frac{d\omega_{z'}}{dt}$ 等或许满足 $\sum_{i=1}^n m_i x_i'^2 \frac{d\omega_{x'}}{dt}$ $i'+\sum_{i=1}^n m_i y_i'^2 \frac{d\omega_{y'}}{dt}$ $j'+\sum_{i=1}^n m_i z_i'^2 \frac{d\omega_{z'}}{dt}$ k'=0,即 $\omega_{x'} \sum_{i=1}^n m_i x_i'^2$ $i'+\omega_{y'} \sum_{i=1}^n m_i y_i'^2$ $j'+\sum_{i=1}^n m_i y_i'^2$

$$\begin{split} & \omega_{\mathbf{z}'} \sum_{i=1}^{n} m_{i} {z_{i}'}^{2} \mathbf{k}' = \textbf{常矢量} \text{。 于是}^{\frac{d(\boldsymbol{\omega} \sum_{i=1}^{n} m_{i} r_{i}^{2})}{dt}} = \frac{dJ_{\mathbf{z}'}}{dt} \mathbf{i}' + \frac{dJ_{\mathbf{z}'}}{dt} \mathbf{j}' + \frac{dJ_{\mathbf{z}'}}{dt} \mathbf{k}' \text{。 于是,原方程变为} \\ & \frac{dJ}{dt} = \frac{d(I_{\mathbf{x}'\mathbf{x}'}\omega_{\mathbf{x}'})}{dt} \mathbf{i}' + \frac{d(I_{\mathbf{y}'\mathbf{y}'}\omega_{\mathbf{y}'})}{dt} \mathbf{j}' + \frac{d(I_{\mathbf{z}'\mathbf{z}'}\omega_{\mathbf{z}'})}{dt} \mathbf{k}' - \omega \sum_{i=1}^{n} m_{i} l_{i} \boldsymbol{\omega} \times \mathbf{r}_{i} = \frac{dJ_{\mathbf{x}'}}{dt} \mathbf{i}' + \frac{dJ_{\mathbf{y}'}}{dt} \mathbf{j}' + \frac{dJ_{\mathbf{z}'}}{dt} \mathbf{k}' - \omega \boldsymbol{\omega} \times \sum_{i=1}^{n} m_{i} l_{i} \mathbf{r}_{i} \text{o}. \end{split}$$

另一方面, $\mathbf{\omega} \times \mathbf{J} = \mathbf{\omega} \times \mathbf{\omega} \sum_{i=1}^{n} m_{i} r_{i}^{2} - \omega \mathbf{\omega} \times \sum_{i=1}^{n} m_{i} l_{i} \mathbf{r}_{i} = -\omega \mathbf{\omega} \times \sum_{i=1}^{n} m_{i} l_{i} \mathbf{r}_{i}$ 。因此将后者代入前者,即有 $\frac{d\mathbf{J}}{dt} = \frac{d\mathbf{J}_{x'}}{dt}\mathbf{i}' + \frac{d\mathbf{J}_{y'}}{dt}\mathbf{j}' + \frac{d\mathbf{J}_{z'}}{dt}\mathbf{k}' + \mathbf{\omega} \times \mathbf{J}$ 。其中各量仍然都是在新本体坐标系的三轴下量度的。

虽然刚体上任意一点 P 对<mark>固定坐标系</mark>的J与 P 对新本体坐标系下的J不同,但由于 <mark>固定坐标系与新本体坐标系</mark>均选定的是定点 O 为原点,而 $\frac{dJ}{dt}$ =**M**对同一静止的点 O 的值 相等。因此,固定坐标系所量度出的 $\frac{dJ}{dt}$,也= $\frac{dJ_{x'}}{dt}$ **i**' + $\frac{dJ_{y'}}{dt}$ **i**' + $\frac{dJ_{z'}}{dt}$ **k**' + ω × J。但是该方程左边的J是固定坐标系下的,右边的所有量都是新本体坐标系下的。(?)

③.现在,我们将两边所有量都是新本体坐标系下的方程 $\frac{dJ}{dt} = \frac{dJ_{x'}}{dt}\mathbf{i}' + \frac{dJ_{y'}}{dt}\mathbf{j}' + \frac{dJ_{z'}}{dt}\mathbf{k}' + \mathbf{\omega} \times \mathbf{J}$ 。代入对 O 点的 $\frac{dJ}{dt} = \mathbf{M}$,即有 $\frac{dJ_{x'}}{dt}\mathbf{i}' + \frac{dJ_{y'}}{dt}\mathbf{j}' + \frac{dJ_{z'}}{dt}\mathbf{k}' + \mathbf{\omega} \times \mathbf{J} = \mathbf{M}$ 。

于是
$$\frac{dJ_{x'}}{dt}i' + \frac{dJ_{y'}}{dt}j' + \frac{dJ_{z'}}{dt}k' + \begin{pmatrix} i' & j' & k' \\ \omega_{x'} & \omega_{y'} & \omega_{z'} \\ J_{x'} & J_{y'} & J_{z'} \end{pmatrix} = \mathbf{M}_x i' + \mathbf{M}_y j' + \mathbf{M}_z k',$$
 于是
$$\begin{cases} \dot{J}_{x'} + (\omega_{y'}J_{z'} - \omega_{z'}J_{y'}) = \mathbf{M}_x \\ \dot{J}_{y'} + (\omega_{z'}J_{x'} - \omega_{x'}J_{z'}) = \mathbf{M}_y, \\ \dot{J}_{z'} + (\omega_{x'}J_{y'} - \omega_{y'}J_{x'}) = \mathbf{M}_y, \end{cases}$$
 即
$$\begin{cases} I_{x'x'}\dot{\omega}_{x'} + (I_{z'z'} - I_{y'y'})\omega_{y'}\omega_{z'} = \mathbf{M}_x \\ I_{y'y'}\omega_{y'} + (I_{x'x'} - I_{z'z'})\omega_{z'}\omega_{x'} = \mathbf{M}_y, \end{cases}$$
 这叫做欧拉动 $I_{z'z'}\omega_{z'} + (I_{y'y'} - I_{x'x'})\omega_{x'}\omega_{y'} = \mathbf{M}_y$

若 $\mathbf{F}_{i}^{(e)}$ (i=1,2,...,n)均是保守力,则对于刚体,机械能守恒定律: T+V=E 成立。根据 $T=\frac{1}{2}\mathbf{\omega}\cdot\mathbf{J}=\frac{1}{2}[I_{xx}\omega_{x}^{2}+I_{yy}\omega_{y}^{2}+I_{zz}\omega_{z}^{2}-2I_{xy}\omega_{x}\omega_{y}-2I_{xz}\omega_{x}\omega_{z}-2I_{yz}\omega_{y}\omega_{z}]$,在新本体坐标系下,即有 $\frac{1}{2}I_{x'x'}\omega_{x'}^{2}+\frac{1}{2}I_{y'y'}\omega_{y'}^{2}+\frac{1}{2}I_{z'z'}\omega_{z'}^{2}+V=E$ 。

一般运动:若新本体坐标系的 O'点在质心,则机械能守恒定律: $T_C+\frac{1}{2}I_{x'x'}\omega_{x'}^2+\frac{1}{2}I_{y'y'}\omega_{y'}^2+\frac{1}{2}I_{z'z'}\omega_{z'}^2+V=E$ 。

第五章 分析力学

牛顿运动方程:几何空间,3n个相互不独立的坐标(k个约束),二阶微分方程。

拉格朗日方程: 位形空间, 3n-k=s个独立坐标, s个二阶微分方程。

哈密顿正则方程:相空间,2s个独立坐标(坐标+动量),2s个一阶微分方程。

利用变分法:哈密顿原理⇒哈密顿正则方程⇒拉格朗日方程⇒牛顿定律。

分析力学不注重力和加速度,而是能量和广义坐标,因此也可运用到物理学其他 领域。

5.1 约束与广义坐标

1.约束的概念和分类

- (1).(力学)体系:大量质点,其中每一质点的运动,均与其他质点的位置和运动有关,即质点组。
- (2).要知道(力学)体系的位形,即要知道体系中所有(n 个)质点的位置坐标,即一共 3n 个坐标;要知道某一时刻的(力学)体系的位形,即要知道该时间坐标 t 以及该 t 下的 n 个位置坐标,一共 3n+1 个坐标。
- (3).限制各质点自由运动的条件,叫**约束**。通常以约束方程 $f(\mathbf{r}_1,...,\mathbf{r}_n;\dot{\mathbf{r}}_1,...,\dot{\mathbf{r}}_n;t)=0$ 的形式存在。
 - 1°.稳定约束: f(r₁,...,r_n)=0; 不稳定约束: f(r₁,...,r_n;t)=0。
- 2°.可解约束: $f(\mathbf{r}_1,...,\mathbf{r}_n) \le 0$, $f(\mathbf{r}_1,...,\mathbf{r}_n) < 0$; 不可解约束: $f(\mathbf{r}_1,...,\mathbf{r}_n) = 0$, $f(\mathbf{r}_1,...,\mathbf{r}_n) = 0$.
- 【注: $f(\cdot)$ ≤0 已经代表了所有情况: f 可整体取负,这样不定方程形式变为 $f(\cdot)$ ≥ 0; f 可加上一个常数,这样不定方程变为 $f(\cdot)$ ≤C】
 - ——【不可解约束:包括稳定约束和不稳定约束。】
- 3°.几何约束: $f(\mathbf{r}_1,...,\mathbf{r}_n)=0$, $f(\mathbf{r}_1,...,\mathbf{r}_n;t)=0$; 运动/微分约束: $f(\mathbf{r}_1,...,\mathbf{r}_n;\dot{\mathbf{r}}_1,...,\dot{\mathbf{r}}_n;t)=0$.
 - ——【几何约束:=不可解约束。】
- 4°.完整约束: $f(\mathbf{r}_1,...,\mathbf{r}_n)=0$, $f(\mathbf{r}_1,...,\mathbf{r}_n;t)=0$, $f(\mathbf{r}_1,...,\mathbf{r}_n)\leq 0$; 不完整约束: $f(\mathbf{r}_1,...,\mathbf{r}_n)<0$,不能*dt 后积分为几何约束的 $f(\mathbf{r}_1,...,\mathbf{r}_n;\dot{\mathbf{r}}_1,...,\dot{\mathbf{r}}_n;t)=0$ 。

——【完整约束:包括几何约束、积分后可变为几何约束的运动约束、能取等的可解约束。;不完整约束:积分后不可变为几何约束的微分约束、不能取等的可解约束。事实上,除了两类不完整约束,其他都是完整约束,因此我们只需要取约束全集对不完整约束的补集。】

只受完整约束的力学体系,叫<mark>完整系</mark>;否则(哪怕受一个不完整约束),叫<mark>不完整系。</mark>

- (4).设坐标全集为 3n 个位置坐标+1 个时间坐标,则:
- 1°.若存在 k 个稳定约束 $f_{\alpha}(\mathbf{r}_1,...,\mathbf{r}_n)$ =0,(α=1,2,...,k),则体系的独立的位置坐标数变成 3n-k 个;体系的独立的坐标数变成 3n+1-k 个。
- 2° .若存在 k 个不稳定约束 $f_{\alpha}(\mathbf{r}_{1},...,\mathbf{r}_{n};t)=0$, $(\alpha=1,2,...,k)$,则只能说体系的独立的<mark>坐</mark>标数变成 3n+1-k 个;按理说,不能预言体系的独立的位置坐标数为多少个。

但若将各位置坐标,看做时间坐标的函数,则在每个时间断面下,t 是常量,约束变为 k 个稳定约束 $f(\mathbf{r}_1,...,\mathbf{r}_n;t)=f(\mathbf{r}_1(t),...,\mathbf{r}_n(t))=0$,则每一瞬间,体系的独立的位置坐标数为 3n-k 个。则在时间长河中,体系的独立的位置坐标数为 3n-k 个。

结论: ①.对于几何约束而言, k个几何约束就将使得独立位置坐标数减少 k 个。

又因 k 个几何约束,同时又将体系的独立的<mark>坐标数</mark>减少 k 个,即"减少的独立<u>坐</u>标数" = "减少的独立<u>位置坐标数"</u>。而"减少的独立<u>坐标数"</u> = "减少的独立<u>位置坐标数"</u>,则"减少的独立<u>时间坐标数"</u> = 0。

②.无论添加多少个几何约束,时间坐标 t,都属于独立坐标数之一。因此之后它将与广义坐标q₁,q₂,...,q_s一同出现在体系的 s+1 个独立坐标之中。

同理,利用"时间断面"也可推得:时间坐标t不仅独立于"相互独立的(位形)空间变量——广义坐标q₁,q₂,...,q_s",也独立于"在相空间中相互独立的广义动量p₁,p₂,...,p_s,以及相互独立的广义速度q̇₁,q̇₂,...,q̇_t(相空间中也有广义坐标)"。因此,时间坐标t,无论是在(位形)空间中,还是在相空间中,均独立于其他已经相互独立的变量,总是独立变量的一员、总是个独立变量、独立变量群中总有时间坐标t。

2.广义坐标

1.任何约束(完整或不完整)都将减少体系的**自由度**。但只有完整约束,才减少独立的位置坐标数(即广义坐标数)。

2.k 个完整约束(包括几何约束和能取等的可解约束),将体系的独立位置坐标数减少 k 个。——此时 3n-k=s 个独立位置坐标,叫做拉格朗日广义坐标,记为 q₁,q₂,...,q_s。它们是一种理解下的,几何空间的一组基。该组基构成(生成)一个 s 维的空间,该空间叫位形空间。

【注: 1).或许有些人会将广义速度或广义动量也认为是一种"广义坐标"(准确地说,是指"广义的坐标"),因此我们在"广义坐标"的定义前,加了一个"拉格朗日"——这样一来,以后我们看到的"广义坐标",都指的是"拉格朗日广义坐标",其中并未包含广义速度或广义动量;2).之后我们会看到,在另一种理解方式下,几何空间的一组基可被扩充为:广义坐标q₁,q₂,...,q_s以及广义动量p₁,p₂,...,p_s,这样的基所构成的空间叫相空间(你可以认为广义速度也在相空间中;但相空间是由广义坐标和广义动量生成的)】

3.r 个不完整约束中的积分后不可变为几何约束的微分约束(不包括不完整约束中的不能取等的可解约束!),将体系的独立速度(坐标)数减少 k 个。——此时 3n-k=t 个独立速度(坐标),叫做广义速度,记为q1,q2,...,qt。【因此,微分约束中的不完整约束,又可被描述为:只对广义速度的约束,或者说,不可化为只对广义坐标的约束的约束】

【注: 1).根据 f(r₁,...,r_n;ṙ₁,...,ṙ_n;t)可看出,几何空间有 3n 个不独立的坐标之外,也有 3n 个不独立的速度; 2).由于不一定有 r=k,所以不一定有 t=s;广义速度的数目,与广义坐标的数目,是无关的——这是由于广义坐标与广义速度二者本身的无关性】

4.**自由度**:确定力学体系(中每个质点)所需的独立参数数目(包括独立的广义坐标数、独立的广义速度数)。

比如: n 个质点+k 个几何(完整)约束+r 个微分约束(中的不完整约束)=3n-k 个广义生标数+3n-r 个广义速度数+3n-k-r 个自由度(按照定义是 6n-k-r?)。

5.用位形空间的基: 广义坐标 $q_1,q_2,...,q_s$,加上时间坐标 t,去描绘(这种"描绘"只是"表达"、"函数映射",不一定非要是线性组合!)几何空间中的 3n 个不独立 (位置)坐标: 比如 $x_i=x_i(q_1,q_2,...,q_s,t)$; 它还可描绘 $\mathbf{r}_i=\mathbf{r}_i(q_1,q_2,...,q_s,t)$,因为 \mathbf{r}_i 是 (x_i,y_i,z_i) 的矢量函数: $\mathbf{r}_i=\mathbf{r}_i(x_i,y_i,z_i)=x_i\mathbf{i}+y_i\mathbf{i}+z_i\mathbf{i}$,而 x_i,y_i,z_i 都是 $q_1,q_2,...,q_s,t$ 的函数。

【若要讲究对称的话,几何空间中的 3n 个不独立位置坐标,理应只用位形空间中的 s 个独立的广义坐标来映射;时间坐标 t ,应是要么二者都有,即几何空间和位形空间均升 1 维(即均变成 s+1 维),要么二者都没有,即几何空间和位形空间均为 s 维:比如 $\mathbf{r}_i = \mathbf{r}_i(\mathbf{x}_i, \mathbf{y}_i, \mathbf{z}_i)$,(i=1,2...n)和 $\mathbf{r}_i = \mathbf{r}_i(q_1, q_2, ..., q_s)$ 】

例.一个处于二维空间的质点,受到一个约束,约束方程为 $f(x,y)=x^2+y^2-R=0$ 。

令 $x=x(\theta)=R\cos\theta$, $y=y(\theta)=R\sin\theta$ 。于是, θ 就是该问题的广义坐标,这里广义坐标的个数= $2n-k=2\cdot1-1=1$ 个。

5.2 虚功原理

1.实位移与虚位移

实位移 dr: 质点实际运动所发生的无限小位移,记作 dr=r·dt。

可见实位移 \neq **0** 的充要条件为 $\dot{\mathbf{r}}\neq$ **0** 且 $d\mathbf{t}\neq$ 0 — 我们关心后者: $d\mathbf{r}\neq$ **0** 的一个必要条件就是: $d\mathbf{t}\neq$ 0! 这也体现出了实位移的"实际"之处: 要想 $d\mathbf{r}\neq$ 0, 真实时间必须要流逝 $d\mathbf{t}>$ 0。 所以从因果关系上, $d\mathbf{r}$ 的存在完全是因时间 \mathbf{t} 的正向不间断流逝所驱动的。 ——这也是 $d\mathbf{r}$ 与 $\delta\mathbf{r}$ 最大的区别之处: 时间的改变 $d\mathbf{t}$ 引起 $d\mathbf{r}$,而后者 $\delta\mathbf{r}$ 所对应的 $\delta\mathbf{t}=$ 0,所以它不是由于时间改变所引起的,并且正因如此,没有时间即因果律的限制,它的方向只受限于约束(如果没有约束,那它完全不受限,或者说只受限于想象~)。

虚位移 $\delta \mathbf{r}$: 在某一 $\mathbf{t}=\mathbf{t}_0$ 时刻,几何约束 $\mathbf{f}(\mathbf{r}_1,...,\mathbf{r}_n;\mathbf{t})=0$ 退化为稳定约束: $\mathbf{f}(\mathbf{r}_1,...,\mathbf{r}_n;\mathbf{t}_0)=0$,即 $\mathbf{g}(\mathbf{r}_1,...,\mathbf{r}_n)=0$ 。此时,质点 P 在约束所允许的方向上(比如线约束 $\mathbf{f}(\mathbf{x}_1,\mathbf{y}_1;\mathbf{t}_0)=0$ 的切线方向或面约束 $\mathbf{f}(\mathbf{r}_1;\mathbf{t}_0)=0$ 的切平面方向),可能发生的多个无限小位移之一,记作 $\delta \mathbf{r}$ 。并且,由于该 $\delta \mathbf{r}$ 对应的是一个时间断面,而不是一小段时间 dt,因此对应地记作 $\delta \mathbf{t}=0$ 。

在稳定约束下,实位移 $d\mathbf{r}$ 是众多虚位移 $\delta\mathbf{r}$ 中的一个;对不稳定约束而言,实位移 $d\mathbf{r}$ 通常不属于虚位移 $\delta\mathbf{r}$ 的集合:此时 $d\mathbf{r}$ (所处空间)的维度,一般要比 $\delta\mathbf{r}$ 的维度高 1。

2.理想约束

虚功:作用在某质点 (\mathbf{r}_i) 上的所有力的合力 \mathbf{r}_i (包括对它的各约束反力之和 \mathbf{r}_i),在它的任意一个虚位移 $\delta \mathbf{r}_i$ 上所作的功 $\mathbf{r}_i \cdot \delta \mathbf{r}_i$ 。(虚功不是个虚数,它是个实数,跟功一样,有负有正)

理想约束:如果作用在一个力学体系上的诸约束反力 \mathbf{R}_i (对某个质点而言, \mathbf{R}_i 也是各约束反力之和),对每个位于约束的 \mathbf{r}_i 位置上质点,在它的任意一个虚位移 $\delta \mathbf{r}_i$ 上所作的功 $\mathbf{R}_i \cdot \delta \mathbf{r}_i$,之和(恒)=0,即 $\sum_{i=1}^n \mathbf{R}_i \cdot \delta \mathbf{r}_i$ =0,则这种约束叫理想约束。【其中的每个 $\delta \mathbf{r}_i$,都是自由选取的】

如:光滑面、光滑曲线、光滑铰链、刚性杆、不可伸长的绳。

【看上去"理想约束"的定义有点奇怪:满足其定义的约束,必然首先满足一对于每个在约束的 \mathbf{r}_i 位置上的质点,对任意自由选取的 $\delta \mathbf{r}_i$, $\mathbf{R}_i \cdot \delta \mathbf{r}_i$ 都为 $\mathbf{0}$ (否则总可以调整 \mathbf{n} 个质点的 $\delta \mathbf{r}_i$ ($\mathbf{i}=1,2,...n$)的组合,使得 $\sum_{i=1}^n \mathbf{R}_i \cdot \delta \mathbf{r}_i$ 不为 $\mathbf{0}$),而不需要求和。一那么按理说应该用后一个充分条件更好呀,又形式简单又充分又容易理解;事实上,后者与前者互为充分必要条件,而之所以选择前者,是因为: \mathbf{a} .为了引出广义力的定义 \mathbf{b} .从现在开始,开始尝试着以体系的观点来看待事物,而不是隔离法】

3.虚功原理

我们只讨论几何约束,即不可解约束的情况:

设受 k 个几何约束的某力学体系处于平衡状态——则言下之意每一点都处在平衡状态,即 \mathbf{F}_i + \mathbf{R}_i = $\mathbf{0}$ (i=1,2,...n)(此时 \mathbf{F}_i 不再是作用在 \mathbf{r}_i 上的所有力的合力 \mathbf{F}_i ,而仅仅是主动力的合力)。于是,当位于 \mathbf{r}_i 的质点作其的任意一虚位移 $\delta \mathbf{r}_i$ 时, $\mathbf{F}_i \cdot \delta \mathbf{r}_i$ + $\mathbf{R}_i \cdot \delta \mathbf{r}_i$ = $\mathbf{0}$ (i=1,2,...n)。求和得到 $\sum_{i=1}^n \mathbf{F}_i \cdot \delta \mathbf{r}_i$ + $\sum_{i=1}^n \mathbf{R}_i \cdot \delta \mathbf{r}_i$ = $\mathbf{0}$.

因此,受理想约束的体系,其所满足的平衡条件为(这句话确实是虚功原理的表述,但下面这个单向的逻辑,以及大前提不是理想约束的,就不是:在大前提为体系处于平衡状态下,若体系受理想约束,则有下式成立): $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} = \mathbf{0}$ 。 【因为理想约束已经导致 $\sum_{i=1}^{n} \mathbf{R}_{i} \cdot \delta \mathbf{r}_{i} = \mathbf{0}$ 】

反之,若体系在平衡位置(处于平衡状态),则:如果一个体系满足 $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} = 0$,则该体系受理想约束,即 $\sum_{i=1}^{n} \mathbf{R}_{i} \cdot \delta \mathbf{r}_{i} = 0$ 。

*****但是,虚功原理的表述却是另一番话: 大前提是体系受理想约束,之后才是"体系处于平衡位置"与" $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i}$ =0"互为充要条件。

我们来看看是否能用 " $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} = 0$ " 加上 " $\sum_{i=1}^{n} \mathbf{R}_{i} \cdot \delta \mathbf{r}_{i} = 0$ (即理想约束大前提)" 推导出 "体系处于平衡状态"。——反证法:假设有一对 \mathbf{F}_{j} , \mathbf{R}_{j} 不满足 \mathbf{F}_{j} + \mathbf{R}_{j} = $\mathbf{0}$,则对于同一组 $\delta \mathbf{r}_{i}$ (i=1,2,...n)【对每个质点的 $\delta \mathbf{r}_{i}$ 也是可任意假定的,但要保证对于同一个质点 \mathbf{r}_{i} , $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i}$ 与 $\sum_{i=1}^{n} \mathbf{R}_{i} \cdot \delta \mathbf{r}_{i}$ 中的 $\delta \mathbf{r}_{i}$ 相同,这样才能写到同一个求和符号中去】,总可以找到一个 $\delta \mathbf{r}_{i}$ 或调整 n 个质点的 $\delta \mathbf{r}_{i}$ (i=1,2,...n)的组合,使得 $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i}$ +

 $\sum_{i=1}^{n} \mathbf{R}_{i} \cdot \delta \mathbf{r}_{i} = \sum_{i=1}^{n} (\mathbf{F}_{i} + \mathbf{R}_{i}) \cdot \delta \mathbf{r}_{i} \neq \mathbf{0}$ 。 然而 $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} + \sum_{i=1}^{n} \mathbf{R}_{i} \cdot \delta \mathbf{r}_{i}$ 一定=0,因此所有的 \mathbf{F}_{i} , \mathbf{R}_{i} 都满足 \mathbf{F}_{i} + \mathbf{R}_{i} =**0**(i=1,2,...n)。

因此,双向逻辑: "受理想约束的体系,其所满足的平衡条件(平衡的充要条件)/平衡方程为主动力所作虚功和 $\delta W = \sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} = 0$ " 即为虚功原理,即虚位移原理。

4.广义力

其中,根据之前所提到过的 $\mathbf{r}_i = \mathbf{r}_i(\mathbf{x}_i, \mathbf{y}_i, \mathbf{z}_i, \mathbf{t}), (i=1,2...n)$ 以及 $\mathbf{r}_i = \mathbf{r}_i(\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_s, \mathbf{t}),$ $\delta W = \sum_{i=1}^n \mathbf{F}_i \cdot \delta \mathbf{r}_i$ 中的 $\delta \mathbf{r}_i$,有两种表达方式:

①. $\delta \mathbf{r_i} = \frac{\partial \mathbf{r_i}}{\partial x_i} \delta \mathbf{x} + \frac{\partial \mathbf{r_i}}{\partial y_i} \delta \mathbf{y} + \frac{\partial \mathbf{r_i}}{\partial z_i} \delta \mathbf{z} + \frac{\partial \mathbf{r_i}}{\partial t} \delta t = \delta x_i \mathbf{i} + \delta y_i \mathbf{j} + \delta z_i \mathbf{k}$, 其中 $\delta t = \mathbf{0}$, 因此末一项为 0; 且 $\frac{\partial \mathbf{r_i}}{\partial x} = \frac{\partial (x_i \mathbf{i} + y_i \mathbf{j} + z_i \mathbf{k})}{\partial x_i} = \mathbf{i}$ 。

如果我们将这里用 δx_i , δy_i , δz_i 表示的 δr_i 代入平衡方程: $\sum_{i=1}^n \mathbf{F}_i \cdot \delta r_i = \sum_{i=1}^n (\mathbf{F}_{ix}\mathbf{i} + \mathbf{F}_{iy}\mathbf{j} + \mathbf{F}_{iz}\mathbf{k}) \cdot (\delta x_i\mathbf{i} + \delta y_i\mathbf{j} + \delta z_i\mathbf{k}) = \sum_{i=1}^n \mathbf{F}_{ix}\delta x_i + \mathbf{F}_{iy}\delta y_i + \mathbf{F}_{iz}\delta z_i$, 该式一共有 3n 项,显然由于 x_i , y_i , z_i (i= 1,2...n)并不独立,即 δx_i , δy_i , δz_i (i=1,2...n)不独立,我们不能令 \mathbf{F}_{ix} , \mathbf{F}_{iy} , \mathbf{F}_{iz} =0,来解算出此时的各个力 \mathbf{F}_i 所满足的平衡条件(力所满足的平衡条件)——因为这样甚至都解算出来了各个力了,且他们(\mathbf{F}_i)都= $\mathbf{0}$ 。质点竟然是自由质点了,哪来的理想约束!。

②. $\delta \mathbf{r}_i = \sum_{\alpha=1}^s \frac{\partial \mathbf{r}_i}{\partial q_\alpha} \delta q_\alpha + \frac{\partial \mathbf{r}_i}{\partial t} \delta t = \sum_{\alpha=1}^s \frac{\partial \mathbf{r}_i}{\partial q_\alpha} \delta q_\alpha$ 。 【可见 $\frac{\partial \mathbf{r}_i}{\partial q_\alpha} \mathbb{E} q_\alpha$ 以及 δq_α 的所对应的基矢量!!!——因为 $\frac{\partial \mathbf{r}_i}{\partial x'} \frac{\partial \mathbf{r}_i}{\partial y'} \frac{\partial \mathbf{r}_i}{\partial z}$ 即 \mathbf{i} , \mathbf{j} , \mathbf{k} , 分别是 $\delta \mathbf{x}_i$, $\delta \mathbf{y}_i$, $\delta \mathbf{z}_i$ 以及 \mathbf{x}_i , \mathbf{y}_i , \mathbf{z}_i 的基矢量】

将用 $\delta q_{\alpha}(\alpha=1,2...s)$ 表示的 $\delta \mathbf{r}_{i}$,代入平衡方程: $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} = \sum_{i=1}^{n} \mathbf{F}_{i} \cdot \sum_{\alpha=1}^{s} \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \delta q_{\alpha}$ $= \sum_{i=1}^{n} \sum_{\alpha=1}^{s} \mathbf{F}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \delta q_{\alpha} = \sum_{\alpha=1}^{s} \sum_{i=1}^{n} \mathbf{F}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \delta q_{\alpha} = \sum_{\alpha=1}^{s} (\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}) \delta q_{\alpha} = \sum_{\alpha=1}^{s} \mathbf{Q}_{\alpha} \delta q_{\alpha} = 0$ 。于是我们就得到了力所满足的平衡条件: $\sum_{\alpha=1}^{s} \mathbf{Q}_{\alpha} \delta q_{\alpha} = 0$ 。由于 δq_{α} 都是彼此独立的,则各个 $\mathbf{Q}_{\alpha} = 0$ 。这就是:受理想完整约束的力学体系,在广义坐标系中的平衡方程: $\mathbf{Q}_{\alpha} = 0$ ($\alpha=1,2...s$)。【关键词:理想约束;完整约束(主要是指几何约束)】——该平衡方程的项数为 s 个,与力学体系的自由度数目相同!

其中的 $Q_{\alpha} = \sum_{i=1}^{n} \mathbf{F}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}$ 叫做**广义力**。由于其表达式中的 \mathbf{F}_{i} 不包含 \mathbf{R}_{i} ,因此 Q_{α} 也不包含约束(反)力。——如果将基矢量 $\frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}$ (α =1,2...s)设为 \mathbf{e}_{1} ,... \mathbf{e}_{s} ,则 $\mathbf{F}_{i} = \sum_{\alpha=1}^{s} \mathbf{F}_{i\alpha} \mathbf{e}_{\alpha}$,于是 $Q_{\alpha} = \sum_{i=1}^{n} \sum_{\alpha=1}^{s} \mathbf{F}_{i\alpha} \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\alpha} = \sum_{i=1}^{n} \sum_{\alpha=1}^{s} \mathbf{F}_{i\alpha}$? ——不,虽然这个想法是由启发意义的,但由于基矢量 $\frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}$ (α =1,2...s)即 $\mathbf{e}_{\alpha} = \frac{\partial (\mathbf{x}_{i}\mathbf{i} + \mathbf{y}_{i}\mathbf{j} + \mathbf{z}_{i}\mathbf{k})}{\partial q_{\alpha}} = \frac{\partial \mathbf{x}_{i}}{\partial q_{\alpha}}\mathbf{i} + \frac{\partial \mathbf{y}_{i}}{\partial q_{\alpha}}\mathbf{j} + \frac{\partial \mathbf{z}_{i}}{\partial q_{\alpha}}\mathbf{k}$ (α =1,2...s),并不两两重直,构成的是个仿射坐标系,因此并非有 $\mathbf{F}_{i} = \sum_{\alpha=1}^{s} \mathbf{F}_{i\alpha}\mathbf{e}_{\alpha}$ 。

所以我们只能老老实实地还是将 \mathbf{F}_i 分解为($\mathbf{F}_{ix}\mathbf{i}+\mathbf{F}_{iy}\mathbf{j}+\mathbf{F}_{iz}\mathbf{k}$),并将基矢量 $\mathbf{e}_{\alpha}=\frac{\partial \mathbf{r}_i}{\partial q_{\alpha}}$ 分解到原来的两两垂直的轴上去: $\frac{\partial \mathbf{x}_i}{\partial q_{\alpha}}\mathbf{i}+\frac{\partial \mathbf{y}_i}{\partial q_{\alpha}}\mathbf{j}+\frac{\partial \mathbf{z}_i}{\partial q_{\alpha}}\mathbf{k}$,那么 $\mathbf{Q}_{\alpha}=\sum_{i=1}^n\mathbf{F}_i\cdot\frac{\partial \mathbf{r}_i}{\partial q_{\alpha}}=\sum_{i=1}^n\mathbf{F}_i\cdot\frac{\partial \mathbf{r}_i}{\partial q_{\alpha}}=\sum_{i=1}^n\mathbf{F}_{ix}\frac{\partial \mathbf{x}_i}{\partial q_{\alpha}}+\mathbf{F}_{iy}\mathbf{j}+\mathbf{F}_{iz}\mathbf{k}$): $(\frac{\partial \mathbf{x}_i}{\partial q_{\alpha}}\mathbf{i}+\frac{\partial \mathbf{y}_i}{\partial q_{\alpha}}\mathbf{j}+\frac{\partial \mathbf{z}_i}{\partial q_{\alpha}}\mathbf{k})=\sum_{i=1}^n\mathbf{F}_{ix}\frac{\partial \mathbf{x}_i}{\partial q_{\alpha}}+\mathbf{F}_{iy}\frac{\partial \mathbf{y}_i}{\partial q_{\alpha}}+\mathbf{F}_{iz}\frac{\partial \mathbf{z}_i}{\partial q_{\alpha}}$ ($\alpha=1,2...s$)。 这就是 \mathbf{Q}_{α} 的详细表达式。

 $\sum_{\alpha=1}^{s} \mathbf{Q}_{\alpha} \delta q_{\alpha} = 0$ 和 \mathbf{Q}_{α} 的详细表达式也可以用之前"被抛弃的" $\sum_{i=1}^{n} \mathbf{F}_{ix} \delta x_{i} + \mathbf{F}_{iy} \delta y_{i} + \mathbf{F}_{iz} \delta z_{i}$ 得来:根据 $x_{i} = x_{i} (q_{1}, q_{2}, ..., q_{s}, t)$,将 δx_{i} 等,像 $\delta \mathbf{r}_{i}$ 一样,展开为 $\delta x_{i} = \sum_{\alpha=1}^{s} \frac{\partial x_{i}}{\partial q_{\alpha}} \delta q_{\alpha}$,再代入,并交换求和号。

例: 均匀杆 OA, 重 P_1 , 长 l_1 , 能在竖直平面内绕着固定铰链 O 转动; 杆的 A 段连着另一重 P_2 , 长 l_2 的均匀杆 AB。在 AB 的 B 端加一水平力 \mathbf{F} 。求平衡时,二杆与水平线所成夹角 α , β 。

问题等价于确定 A、B 的位置。而 A、B 位于二维平面上,共需确定 2n=4 个坐标。但 $OA=l_1$ 、 $AB=l_2$ 是两个约束方程,所以 k=2。广义坐标只有 2n-k=4-2=2 个。因此 α , β 即为两个所需求的广义坐标。【所以我们一般步骤是先考虑有多少个广义坐标,3n-k 还是 2n-k。在该过程中,自然而然会找到取哪些广义坐标合适】

根据<mark>虚功原理</mark>或者平衡方程 $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i}$ =0,暂且将其写作 $\sum_{i=1}^{3} \mathbf{F}_{ix} \delta \mathbf{x}_{i} + \mathbf{F}_{iy} \delta \mathbf{y}_{i} + \mathbf{F}_{iz} \delta \mathbf{z}_{i}$ =0,即 $\sum_{i=1}^{3} \mathbf{F}_{ix} \delta \mathbf{x}_{i} + \mathbf{F}_{iy} \delta \mathbf{y}_{i}$ =0,进一步有 $\mathbf{F}_{3x} \delta \mathbf{x}_{3} + \mathbf{P}_{1y} \delta \mathbf{y}_{1} + \mathbf{P}_{2y} \delta \mathbf{y}_{2}$ =0。【注:作用在体系上的力一共有三个: \mathbf{F}_{1} = \mathbf{P}_{1} , \mathbf{F}_{2} = \mathbf{P}_{2} , \mathbf{F}_{3} = \mathbf{F} ,对应的作用点一共有三个:OA 中点 $(\mathbf{x}_{1},\mathbf{y}_{1})$,AB 中点 $(\mathbf{x}_{2},\mathbf{y}_{2})$,B点 $(\mathbf{x}_{3},\mathbf{y}_{3})$;其中 \mathbf{P}_{1} 只有 \mathbf{P}_{1y} 分量不为 0, \mathbf{P}_{2} 只有 \mathbf{P}_{2y} 分量不为 0, \mathbf{F}_{3x} 分量不为 0】

再将 x_3 , y_1 , y_2 分别关于 l_1 , l_2 , α ,β的表达式代入 $F_{3x}\delta x_3 + P_{1y}\delta y_1 + P_{2y}\delta y_2 = 0$,然后由于 $\delta \alpha$, $\delta \beta$ 的独立性,得到它们前面的系数分别为 0。

5.3 拉格朗日方程

1.基本形式的拉格朗日方程

我们从牛顿运动定律(牛二)出发,求出<mark>用广义坐标表示的完整系的动力学方程</mark> 【完整约束(主要是指几何约束);过程中其实也用到了理想约束】,即拉格朗日方程 (实际上是个方程组)。

一个由 n 个质点组成的力学体系,其动力学方程用牛二表达为: $m_i\ddot{r}_i = F_i + R_i$ (i=1,2...n)。移项得 $-m_i\ddot{r}_i + F_i + R_i = 0$ (i=1,2...n),此时主动力 F_i ,约束反力 R_i ,质点加

速度所产生的惯性力 $-m_i \mathbf{i}_i$,三者平衡。即将动力学问题化为了静力学问题,这叫<mark>达朗</mark>贝尔原理。

用虚位移 $\delta \mathbf{r}_i$ 点乘方程组 $-\mathbf{m}_i\ddot{\mathbf{r}}_i + \mathbf{F}_i + \mathbf{R}_i = \mathbf{0}(i=1,2...n)$,并求和,并在理想约束的条件 $\sum_{i=1}^n \mathbf{R}_i \cdot \delta \mathbf{r}_i = 0$ 下,将其化为 $\sum_{i=1}^n (\mathbf{F}_i - \mathbf{m}_i\ddot{\mathbf{r}}_i) \cdot \delta \mathbf{r}_i = 0$ 。

同样,我们不能令 $\mathbf{F}_i - m_i \ddot{\mathbf{r}}_i$ 全为 0,或者将 $\delta \mathbf{r}_i$ 展成 $\delta x_i \mathbf{i} + \delta y_i \mathbf{j} + \delta z_i \mathbf{k}$ 后,令各个分量系数为 0。因为这样仍旧变成了自由质点组的运动微分方程。对此,同样采用 5.2.(4).的方法,将 $\delta \mathbf{r}_i$ 以广义坐标 $\delta \mathbf{q}_\alpha$ ($\alpha = 1, 2...s$)来表示。——并且同时,式子中的其他物理量,也应用广义坐标表示,而 \mathbf{r}_i 的表示我们已经会了, $\ddot{\mathbf{r}}_i$ 我们还不会。但我们并不打算将 $\ddot{\mathbf{r}}_i$ 展开,接下来我们会对其导数进行降阶,以至于只需会d \mathbf{r}_i 和 $\ddot{\mathbf{r}}_i$ 的展开即可,它们的求法与 $\delta \mathbf{r}_i$ 类似,但略有不同(对 t 的处理)。

于是 $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} - \sum_{i=1}^{n} m_{i} \ddot{\mathbf{r}}_{i} \cdot \delta \mathbf{r}_{i} = 0$,而我们已经推导出了 $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} = \sum_{\alpha=1}^{s} \mathbf{Q}_{\alpha} \delta q_{\alpha}$,现在只需关心 $\sum_{i=1}^{n} m_{i} \ddot{\mathbf{r}}_{i} \cdot \delta \mathbf{r}_{i}$:将 $\delta \mathbf{r}_{i} = \sum_{\alpha=1}^{s} \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \delta q_{\alpha}$ 代入其中,得到 $\sum_{i=1}^{n} m_{i} \ddot{\mathbf{r}}_{i} \cdot \sum_{\alpha=1}^{s} \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \delta q_{\alpha} = \sum_{i=1}^{n} \sum_{\alpha=1}^{s} m_{i} \ddot{\mathbf{r}}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \delta q_{\alpha} = \sum_{\alpha=1}^{s} \sum_{\alpha=1}^{n} m_{i} \ddot{\mathbf{r}}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \delta q_{\alpha} = \sum_{\alpha=1}^{s} \sum_{\alpha=1}^{n} m_{i} \ddot{\mathbf{r}}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \delta q_{\alpha} = \sum_{\alpha=1}^{s} \mathbf{P}_{\alpha} \delta q_{\alpha}$ 。【此时方程已经变为 $\sum_{\alpha=1}^{s} \mathbf{Q}_{\alpha} \delta q_{\alpha} - \sum_{\alpha=1}^{s} \mathbf{P}_{\alpha} \delta q_{\alpha} = 0$,即 $\sum_{\alpha=1}^{s} (\mathbf{Q}_{\alpha} - \mathbf{P}_{\alpha}) \delta q_{\alpha} = 0$,由于 δq_{α} 互相独立,所以 $\mathbf{P}_{\alpha} = \mathbf{Q}_{\alpha} (\alpha = 1, 2...s)$ 】

现在我们来进一步求 $P_{\alpha} = \sum_{i=1}^{n} m_{i}\ddot{\mathbf{r}_{i}} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}$: 根据 $\frac{d}{dt}(\dot{\mathbf{r}_{i}} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}) = \ddot{\mathbf{r}_{i}} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} + \dot{\mathbf{r}_{i}} \cdot \frac{d}{dt} \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}$, 得到 $\ddot{\mathbf{r}_{i}} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} = \frac{d}{dt} \left(\dot{\mathbf{r}_{i}} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \right) - \dot{\mathbf{r}_{i}} \cdot \frac{d}{dt} \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}, \quad \mathrm{類}(\mathbf{r}_{i}) + \mathbf{r}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} = \sum_{i=1}^{n} m_{i} \frac{d}{dt} \left(\dot{\mathbf{r}_{i}} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \right) - \sum_{i=1}^{n} m_{i} \left(\dot{\mathbf{r}_{i}} \cdot \frac{d}{dt} \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \right)$ 。

①.现在是时候来考察 $\dot{\mathbf{r}}_i$ 了(但最终得出的 $\dot{\mathbf{r}}_i$ 的表达式只辗转服务于前一项中的 $\frac{\partial \mathbf{r}_i}{\partial q_\alpha}$, 醉翁之意不在酒,它甚至不去代入两项均含有的 $\dot{\mathbf{r}}_i$):由于 \mathbf{r}_i = \mathbf{r}_i ($q_1,q_2,...,q_s$,t),因此类似 $\delta \mathbf{r}_i$ = $\sum_{\alpha=1}^s \frac{\partial \mathbf{r}_i}{\partial q_\alpha} \delta q_\alpha + \frac{\partial \mathbf{r}_i}{\partial t} \delta t$ = $\sum_{\alpha=1}^s \frac{\partial \mathbf{r}_i}{\partial q_\alpha} \delta q_\alpha$ 地,我们有d \mathbf{r}_i = $\sum_{\alpha=1}^s \frac{\partial \mathbf{r}_i}{\partial q_\alpha} dq_\alpha + \frac{\partial \mathbf{r}_i}{\partial t} dt$,但注意其中dt \neq 0,后一项仍存在。——那么 $\dot{\mathbf{r}}_i$ = $\frac{d\mathbf{r}_i}{dt}$ = $\sum_{\alpha=1}^s \frac{\partial \mathbf{r}_i}{\partial q_\alpha} \dot{q}_\alpha + \frac{\partial \mathbf{r}_i}{\partial t}$ 。

由于 $\mathbf{r}_i = \mathbf{r}_i(q_1,q_2,...,q_s,t)$,则基矢量 $\frac{\partial \mathbf{r}_i}{\partial q_\alpha}$ 也是 $\mathbf{q}_1,\mathbf{q}_2,...,\mathbf{q}_s,t$ 的函数,那么 $\dot{\mathbf{r}}_i$ 的表达式中的 $\frac{\partial \mathbf{r}_i}{\partial q_\alpha}\dot{\mathbf{q}}_\alpha$,将是 $\mathbf{q}_1,\mathbf{q}_2,...,\mathbf{q}_s,t,\dot{\mathbf{q}}_\alpha$ 的函数。那么 $\dot{\mathbf{r}}_i$ 将是 $\mathbf{q}_1,\mathbf{q}_2,...,\mathbf{q}_s,\dot{\mathbf{q}}_1,\dot{\mathbf{q}}_2,...,\dot{\mathbf{q}}_s,t$ 的函数。

另外,正如 $\frac{\partial \mathbf{r}_i}{\partial q_\alpha}$ 是 \mathbf{q}_1 , \mathbf{q}_2 ,..., \mathbf{q}_s , \mathbf{t} 的函数, $\frac{\partial \mathbf{r}_i}{\partial t}$ 也是 \mathbf{q}_1 , \mathbf{q}_2 ,..., \mathbf{q}_s , \mathbf{t} 的函数。但之前说过,广义坐标 \mathbf{q}_1 , \mathbf{q}_2 ,..., \mathbf{q}_s 与广义速度 $\dot{\mathbf{q}}_1$, $\dot{\mathbf{q}}_2$,..., $\dot{\mathbf{q}}_s$ 相互独立(即其中一个集合中的任何一个,都不能表示为另一个集合的某个或某些的函数/映射),因此 $\frac{\partial \mathbf{r}_i}{\partial q_\alpha}$, $\frac{\partial \mathbf{r}_i}{\partial t}$ 都不是 $\dot{\mathbf{q}}_1$, $\dot{\mathbf{q}}_2$,..., $\dot{\mathbf{q}}_s$ 的函数。——这样,我们就摸清了 $\dot{\mathbf{r}}_i$ = $\sum_{\alpha=1}^s \frac{\partial \mathbf{r}_i}{\partial q_\alpha} \dot{\mathbf{q}}_\alpha$ + $\frac{\partial \mathbf{r}_i}{\partial t}$ 右侧表达式中三个物理量,它们分别关于 \mathbf{q}_α , $\dot{\mathbf{q}}_\alpha$, $\dot{\mathbf$

现在我们分别对 $\dot{\mathbf{r}}_i = \sum_{\alpha=1}^s \frac{\partial \mathbf{r}_i}{\partial q_\alpha} \dot{\mathbf{q}}_\alpha + \frac{\partial \mathbf{r}_i}{\partial t}$ 两侧求对<u>指定下标</u> α 的广义速度 $\dot{\mathbf{q}}_\alpha$ 的偏导 $\frac{\partial}{\partial \dot{\mathbf{q}}_\alpha}$, 由于上一段说过, $\frac{\partial \mathbf{r}_i}{\partial q_\alpha}$, $\frac{\partial \mathbf{r}_i}{\partial t}$ 均不是 $\dot{\mathbf{q}}_\alpha$ 的函数,它们在对 $\dot{\mathbf{q}}_\alpha$ 求导时视为常量或是 $\dot{\mathbf{q}}_\alpha$ 前面的常系数。于是得到 $\frac{\partial \dot{\mathbf{r}}_i}{\partial \dot{\mathbf{q}}_\alpha} = \frac{\partial \mathbf{r}_i}{\partial q_\alpha}$ 。

②.再求 $\frac{d}{dt}\frac{\partial r_i}{\partial q_\alpha}$:由于 $\frac{\partial r_i}{\partial q_\alpha}$ 像 r_i 一样,都是关于 $q_1,q_2,...,q_s$,t的函数,因此也对 $\frac{d}{dt}\frac{\partial r_i}{\partial q_\alpha}$ 进行像 $\frac{dr_i}{dt}$ = \dot{r}_i = $\sum_{\alpha=1}^s \frac{\partial r_i}{\partial q_\alpha} \dot{q}_\alpha + \frac{\partial r_i}{\partial t}$ 一样的操作:或者直接用 $\frac{\partial r_i}{\partial q_\alpha}$ 代换掉 $\frac{dr_i}{dt}$ = $\sum_{\beta=1}^s \frac{\partial r_i}{\partial q_\beta} \dot{q}_\beta + \frac{\partial r_i}{\partial t}$ 中的 r_i ,即有 $\frac{d}{dt}\frac{\partial r_i}{\partial q_\alpha}$ = $\sum_{\beta=1}^s \frac{\partial r_i}{\partial q_\beta} \dot{q}_\alpha + \frac{\partial}{\partial t}\frac{\partial r_i}{\partial q_\alpha} = \frac{\partial}{\partial q_\alpha} (\sum_{\beta=1}^s \frac{\partial r_i}{\partial q_\beta} \dot{q}_\alpha + \frac{\partial r_i}{\partial t}) = \frac{\partial}{\partial q_\alpha} \frac{dr_i}{dt} = \frac{\partial \dot{r}_i}{\partial q_\alpha}$,也就是说,对 r_i 而言, $\frac{d}{dt}$ 与 $\frac{\partial}{\partial q_\alpha}$ 对其操作的先后顺序可以交换/对易。【该结果也可通过时间变量 t 与空间变量 q_α 无关/相互独立,而直接得到算符可交换位置,如电动力学中的 $\frac{\partial}{\partial t}$ 与 v(但其实后者对时间和空间都是偏微分,这里对空间是全微分,并不能这么类比一接下来的 r_α 中的偏和全微分算符,似乎就不能对易,即使t与 \dot{q}_α 也独立)】

根于①.②.两点, $P_{\alpha} = \sum_{i=1}^{n} m_{i} \frac{d}{dt} (\dot{\mathbf{r}}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}) - \sum_{i=1}^{n} m_{i} (\dot{\mathbf{r}}_{i} \cdot \frac{d}{dt} \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}) = \sum_{i=1}^{n} m_{i} \frac{d}{dt} (\dot{\mathbf{r}}_{i} \cdot \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}}) - \sum_{i=1}^{n} m_{i} (\dot{\mathbf{r}}_{i} \cdot \frac{\partial \dot{\mathbf{r}}_{i}}{\partial q_{\alpha}}) = \sum_{i=1}^{n} m_{i} \frac{d}{dt} (\dot{\mathbf{r}}_{i} \cdot \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}}) - \sum_{i=1}^{n} m_{i} (\dot{\mathbf{r}}_{i} \cdot \frac{\partial \dot{\mathbf{r}}_{i}}{\partial q_{\alpha}})$ 。我们查看一下,体系动能 $T = \sum_{i=1}^{n} T_{i} = \frac{1}{2} \sum_{i=1}^{n} T_{i} = \frac{1}{2} \sum_{i=1}^{n} m_{i} \dot{\mathbf{r}}_{i}^{2}, \quad \overline{\mathbf{m}} \underline{\mathbf{m}} \underline{\mathbf{$

因此,将其代入其中,有 $P_{\alpha}=\frac{d}{dt}\frac{\partial T}{\partial q_{\alpha}}-\frac{\partial T}{\partial q_{\alpha}}$ 。将它代入 $P_{\alpha}=Q_{\alpha}(\alpha=1,2...s)$ 中,即有 $\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_{\alpha}}-\frac{\partial T}{\partial q_{\alpha}}=Q_{\alpha}(\alpha=1,2...s)$ 。这就是基本形式的拉格朗日方程(组)——它由 s 个二阶微分方程组成。其中, $Q_{\alpha}=\sum_{i=1}^{n}\mathbf{F}_{i}\cdot\frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}=\sum_{i=1}^{n}\mathbf{F}_{ix}\frac{\partial x_{i}}{\partial q_{\alpha}}+\mathbf{F}_{iy}\frac{\partial y_{i}}{\partial q_{\alpha}}+\mathbf{F}_{iz}\frac{\partial z_{i}}{\partial q_{\alpha}}$ ($\alpha=1,2...s$)。

其中, $T=\frac{1}{2}\sum_{i=1}^n m_i\dot{\mathbf{r}}_i^2$ 中含有 $\dot{\mathbf{r}}_i$,而我们说了 $\dot{\mathbf{r}}_i$ 是 $q_1,q_2,...,q_s,\dot{q}_1,\dot{q}_2,...,\dot{q}_s$,t 的函数。因此,T也是 $q_1,q_2,...,q_s,\dot{q}_1,\dot{q}_2,...,\dot{q}_s$,t 的函数;而 Q_α 含有 \mathbf{r}_i ,它仅是 $q_1,q_2,...,q_s$,t 的函数。——另外,仿照 $\frac{\partial (\frac{1}{2}mv^2)}{\partial v}=mv=p$,我们也定义 $\frac{\partial T}{\partial q_\alpha}$ 为广义动量 p_α 、 \dot{q}_α 为广义速度。而方程左边的量纲,为 $\frac{d}{dt}\frac{\partial T}{\partial q_\alpha}=\frac{dp_\alpha}{dt}$ 动量对时间的导数,即力的单位。因此方程右边的 Q_α 叫广义力。

但是要注意,广义速度 $\dot{\mathbf{q}}_{\alpha}$ 可以为线速度、角速度或其他(等物理量和单位); 广义动量 $\mathbf{p}_{\alpha} = \frac{\partial T}{\partial \dot{\mathbf{q}}_{\alpha}}$ 也可为线动量或角动量等。并且, \mathbf{Q}_{α} 的量纲将随 \mathbf{q}_{α} 的量纲而定: 因为从 $\sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} - \sum_{i=1}^{n} m_{i} \dot{\mathbf{r}}_{i} \cdot \delta \mathbf{r}_{i} = \sum_{\alpha=1}^{s} \mathbf{Q}_{\alpha} \delta \mathbf{q}_{\alpha} - \sum_{\alpha=1}^{s} \mathbf{P}_{\alpha} \delta \mathbf{q}_{\alpha}$ 可见,方程左边是能量量纲,因此 $\mathbf{Q}_{\alpha} \delta \mathbf{q}_{\alpha}$, $\mathbf{P}_{\alpha} \delta \mathbf{q}_{\alpha}$ 也将是能量量纲——因此 \mathbf{Q}_{α} 以及 $\mathbf{P}_{\alpha} = \frac{d}{dt} \frac{\partial T}{\partial \dot{\mathbf{q}}_{\alpha}} - \frac{\partial T}{\partial \dot{\mathbf{q}}_{\alpha}}$ 的单位, $\mathbf{q}_{\alpha} = \frac{J}{\delta \mathbf{q}_{\alpha} \delta \mathbf{q}_{\alpha}}$

同样,由于 Q_{α} = $\sum_{i=1}^{n}\mathbf{F}_{i}\cdot\frac{\partial\mathbf{r}_{i}}{\partial q_{\alpha}}$ 中的 \mathbf{F}_{i} 不包含 \mathbf{R}_{i} ,因此 Q_{α} 也不包含约束(反)力。所以 $\frac{d}{dt}\frac{\partial T}{\partial q_{\alpha}}-\frac{\partial T}{\partial q_{\alpha}}$ = Q_{α} (α =1,2...s)不能求出约束反力。当体系不处于平衡状态时, $\sum_{i=1}^{n}\mathbf{F}_{i}\cdot\delta\mathbf{r}_{i}$ 并不为 $\mathbf{0}$ 。此时如果要求 Q_{i} ,则可以先令其余质点(α \neq i)的虚位移 δq_{α} = $\mathbf{0}$,此时

$$\begin{split} \delta \mathbf{r}_{i} = & \sum_{\alpha=1}^{s} \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}} \delta q_{\alpha} = \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} \,, \quad \text{然后算出} \sum_{i=1}^{n} \mathbf{F}_{i} \cdot \delta \mathbf{r}_{i} = \sum_{i=1}^{n} \mathbf{F}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} = \delta q_{j} \sum_{i=1}^{n} \mathbf{F}_{i} \cdot \frac{\partial \mathbf{r}_{i}}{\partial q_{j}}, \quad \mathbf{E} \mathbf{E} \mathbf{F}_{i} \cdot \mathbf{F}_{i} = \mathbf{F}_{i} \cdot \mathbf{F}_{i} = \mathbf{F}_{i} \cdot \mathbf{F}_{i} \cdot \mathbf{F}_{i} = \mathbf{F}_{i$$

2.保守力系的拉格朗日方程

若诸若 $\mathbf{F}_i(i=1,2,...,n)$ 均是保守力,则每一个力对应一个势函数,即有 $\mathbf{F}_i=-\nabla V_i=$ 。 $-(\frac{\partial V_i}{\partial x_i}\mathbf{i}+\frac{\partial V_i}{\partial y_i}\mathbf{j}+\frac{\partial V_i}{\partial z_i}\mathbf{k})$ 于是 $\mathbf{Q}_{\alpha}=\sum_{i=1}^n\mathbf{F}_i\cdot\frac{\partial \mathbf{r}_i}{\partial q_{\alpha}}=\sum_{i=1}^n-(\frac{\partial V_i}{\partial x_i}\mathbf{i}+\frac{\partial V_i}{\partial y_i}\mathbf{j}+\frac{\partial V_i}{\partial z_i}\mathbf{k})\cdot(\frac{\partial x_i}{\partial q_{\alpha}}\mathbf{i}+\frac{\partial y_i}{\partial q_{\alpha}}\mathbf{j}+\frac{\partial y_i}{\partial q_{\alpha}}\mathbf{j})$, $\frac{\partial z_i}{\partial q_{\alpha}}\mathbf{k}=-\sum_{i=1}^n\frac{\partial V_i}{\partial x_i}\frac{\partial x_i}{\partial q_{\alpha}}+\frac{\partial V_i}{\partial y_i}\frac{\partial y_i}{\partial q_{\alpha}}+\frac{\partial V_i}{\partial z_i}\frac{\partial z_i}{\partial q_{\alpha}}=-\sum_{i=1}^n\frac{\partial V_i}{\partial q_{\alpha}}=-\frac{\partial \sum_{i=1}^n V_i}{\partial q_{\alpha}}=-\frac{\partial V}{\partial q_{\alpha}}$ 。

【当然你也可以通过对比 F_{ix} **i** + F_{iy} **j** + F_{iz} **k**以及 $-(\frac{\partial V_i}{\partial x_i}$ **i** + $\frac{\partial V_i}{\partial y_i}$ **j** + $\frac{\partial V_i}{\partial z_i}$ **k**),得到 F_{ix} , F_{iy} , F_{iz} ,再代入 $\sum_{i=1}^n F_{ix} \frac{\partial x_i}{\partial q_\alpha} + F_{iy} \frac{\partial y_i}{\partial q_\alpha} + F_{iz} \frac{\partial z_i}{\partial q_\alpha}$ 】

于是,基本形式的拉格朗日方程 $\frac{d}{dt}\frac{\partial T}{\partial q_{\alpha}} - \frac{\partial T}{\partial q_{\alpha}} = Q_{\alpha}(\alpha = 1,2...s)$ 变为(中间表达式) $\frac{d}{dt}\frac{\partial T}{\partial q_{\alpha}} - \frac{\partial T}{\partial q_{\alpha}} = -\frac{\partial V}{\partial q_{\alpha}}(\alpha = 1,2...s). \quad$ 移项,得到 $\frac{d}{dt}\frac{\partial T}{\partial q_{\alpha}} - \frac{\partial (T-V)}{\partial q_{\alpha}} = 0(\alpha = 1,2...s). \quad$ 由于一般的势能V只是(广义)坐标 q_{α} 的函数,不是(广义)速度 \dot{q}_{α} 的函数,因此 $\frac{\partial V}{\partial \dot{q}_{\alpha}} = 0$,且 $\frac{d}{dt}\frac{\partial V}{\partial \dot{q}_{\alpha}} = 0$ 。将方程两边减去 $\frac{d}{dt}\frac{\partial V}{\partial \dot{q}_{\alpha}}$,则有 $\frac{d}{dt}\frac{\partial (T-V)}{\partial \dot{q}_{\alpha}} - \frac{\partial (T-V)}{\partial q_{\alpha}} = 0(\alpha = 1,2...s).$

令T - V = L(拉格朗日函数),得到保守力系的拉格朗日方程: $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{\alpha}} - \frac{\partial L}{\partial q_{\alpha}} = 0$ ($\alpha = 1,2...s$)。 【也叫拉格朗日方程,可见它也由 s 个二阶微分方程组成】——由于L中包含T,因此L是 $q_1,q_2,...,q_s,\dot{q}_1,\dot{q}_2,...,\dot{q}_s,t$ 的函数。

3.循环积分

有心力对应质点在二维平面上运动,是两个自由度的问题,那么 r 和 θ 就应是有心力问题,在极坐标系中的,两个广义坐标。并且,由于L是 $q_1,q_2,...,q_s,\dot{q}_1,\dot{q}_2,...,\dot{q}_s$,t 的函数,那么L一般应显含 q_1,q_2 以及 \dot{q}_1,\dot{q}_2 ,即 r,θ 以及 $\dot{r},\dot{\theta}$ 。

但是,我们算一算此时一个质点在有心力场下的L=T $- V = \frac{1}{2} m [\dot{r}^2 + (r\dot{\theta})^2] - (-\frac{k^2m}{r}) = \frac{1}{2} m [\dot{r}^2 + (r\dot{\theta})^2] + \frac{k^2m}{r}$,发现该体系的L中不显含 $q_2 = \theta$ 。那么根据 $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_\alpha} - \frac{\partial L}{\partial q_\alpha} = 0$,取 $\alpha = 2$,则其中的 $\frac{\partial L}{\partial q_2} = 0$,得到 $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_2} = 0$,也就是说 $\frac{\partial L}{\partial \dot{\theta}} =$ 常数。——我们来看看是不是呢: $\frac{\partial L}{\partial \dot{\theta}} = mr^2\dot{\theta} =$ 常数,确实!质点相对于力心的动量矩 $mr^2\dot{\theta} = mr\dot{s}_\perp$ 为一常数!

这样在L中不出现的坐标(如q2), 叫循环坐标/可遗坐标。

4.能量积分

(即机械能守恒定律T+V=E)

假设有一个完整的(主要是指几何约束?甚至其中的稳定约束?),保守的力学体系。 将 $\dot{\mathbf{r}}_i = \sum_{\alpha=1}^s \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\alpha} \dot{\mathbf{q}}_\alpha + \frac{\partial \mathbf{r}_i}{\partial \mathbf{t}} (\mathsf{t}) \lambda T = \frac{1}{2} \sum_{i=1}^n m_i \dot{\mathbf{r}}_i^2$,得到 $T = \frac{1}{2} \sum_{i=1}^n m_i \dot{\mathbf{r}}_i^2 = \frac{1}{2} \sum_{i=1}^n m_i (\sum_{\alpha=1}^s \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\alpha} \dot{\mathbf{q}}_\alpha + \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\beta})^2 = \frac{1}{2} \sum_{i=1}^n m_i [\sum_{\alpha=1}^s \sum_{\beta=1}^s \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\alpha} \cdot \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\beta} \dot{\mathbf{q}}_\alpha \dot{\mathbf{q}}_\beta + \sum_{\alpha=1}^s \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\alpha} \cdot \frac{\partial \mathbf{r}_i}{\partial \mathbf{t}} \dot{\mathbf{q}}_\alpha + (\frac{\partial \mathbf{r}_i}{\partial \mathbf{t}})^2] = \frac{1}{2} \sum_{i=1}^n \sum_{\alpha=1}^s \sum_{\beta=1}^s m_i \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\alpha} \cdot \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\beta} \dot{\mathbf{q}}_\alpha \dot{\mathbf{q}}_\beta + \frac{1}{2} \sum_{i=1}^n \sum_{\alpha=1}^s m_i \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\alpha} \cdot \frac{\partial \mathbf{r}_i}{\partial \mathbf{t}} \dot{\mathbf{q}}_\alpha + \frac{1}{2} \sum_{i=1}^n m_i (\frac{\partial \mathbf{r}_i}{\partial \mathbf{t}})^2 = \frac{1}{2} \sum_{\alpha=1}^s \sum_{\beta=1}^n \sum_{i=1}^n m_i \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\alpha} \cdot \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\beta} \dot{\mathbf{q}}_\alpha \dot{\mathbf{q}}_\beta + \frac{1}{2} \sum_{\alpha=1}^s \sum_{i=1}^n m_i \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_\alpha} \cdot \frac{\partial \mathbf{r}_i}{\partial \mathbf{t}} \dot{\mathbf{q}}_\alpha + \frac{1}{2} \sum_{i=1}^n m_i (\frac{\partial \mathbf{r}_i}{\partial \mathbf{t}})^2.$

我们将 $\sum_{i=1}^{n}m_{i}\frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}\cdot\frac{\partial \mathbf{r}_{i}}{\partial q_{\beta}}$ 记作 $\mathbf{a}_{\alpha\beta}$,将 $\sum_{i=1}^{n}m_{i}\frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}\cdot\frac{\partial \mathbf{r}_{i}}{\partial t}$ 记作 \mathbf{a}_{α} , $\sum_{i=1}^{n}m_{i}(\frac{\partial \mathbf{r}_{i}}{\partial t})^{2}$ 记作 \mathbf{a}_{α} ,由于它们都含有 \mathbf{r}_{i} ,因此分别都是 \mathbf{q}_{1} , \mathbf{q}_{2} ,..., \mathbf{q}_{s} , \mathbf{t} 的函数。则 $\mathbf{T}=\frac{1}{2}\sum_{\alpha=1}^{s}\sum_{\beta=1}^{s}a_{\alpha\beta}\dot{\mathbf{q}}_{\alpha}\dot{\mathbf{q}}_{\beta}+\frac{1}{2}\sum_{\alpha=1}^{s}a_{\alpha}\dot{\mathbf{q}}_{\alpha}+\frac{1}{2}a=T_{2}+T_{1}+T_{0}$ 。其中, $T_{2}=\frac{1}{2}\sum_{\alpha=1}^{s}\sum_{\beta=1}^{s}a_{\alpha\beta}\dot{\mathbf{q}}_{\alpha}\dot{\mathbf{q}}_{\beta}$ 、 $T_{1}=\frac{1}{2}\sum_{\alpha=1}^{s}a_{\alpha}\dot{\mathbf{q}}_{\alpha}$ 、 $T_{0}=\frac{1}{2}a$ 分别是广义速度的二次、一次和 0 次函数。那么 T_{2} , T_{1} , T_{0} ,分别是 \mathbf{q}_{α} , $\dot{\mathbf{q}}_{\alpha}$, \mathbf{t} 、 \mathbf{q}_{α} , \mathbf{t} 的函数。

[1].如果力学体系是稳定的(稳定约束 $f(\mathbf{r}_1,...,\mathbf{r}_n)=0$)(平衡了?),即 $\frac{\partial \mathbf{r}_i}{\partial t}=0$,则 $\mathbf{a}_{\alpha t}$ a=0,于是 $\mathbf{T}=\mathbf{T}_2$,仅为广义速度的二次齐次函数(即只有二次)。并且根据 $\mathbf{T}=\frac{1}{2}\sum_{i=1}^n m_i \dot{\mathbf{r}}_i^2$,可知 \mathbf{T} 不是时间 \mathbf{t} 的函数($\frac{\partial \mathbf{T}}{\partial t}=0$)。并且仍假设势能 \mathbf{V} 只是(广义)坐标 \mathbf{q}_{α} 的函数[不是(广义)速度 $\dot{\mathbf{q}}_{\alpha}$ 的函数],且也是稳定的,即不含时间 \mathbf{t} ,不是时间 \mathbf{t} 的函数($\frac{\partial \mathbf{V}}{\partial t}=0$):

于是,对(中间表达式) $\frac{d}{dt} \frac{\partial T}{\partial \dot{q}_{\alpha}} - \frac{\partial T}{\partial q_{\alpha}} = -\frac{\partial V}{\partial q_{\alpha}} (\alpha = 1, 2...s)$,两边乘以 \dot{q}_{α} 并求和,即有 $\sum_{\alpha=1}^{s} \frac{d}{dt} (\frac{\partial T}{\partial \dot{q}_{\alpha}}) \dot{q}_{\alpha} - \sum_{\alpha=1}^{s} \frac{\partial T}{\partial q_{\alpha}} \dot{q}_{\alpha} = -\sum_{\alpha=1}^{s} \frac{\partial V}{\partial q_{\alpha}} \dot{q}_{\alpha}$ 。其中,因 $\frac{d}{dt} (\frac{\partial T}{\partial \dot{q}_{\alpha}} \dot{q}_{\alpha}) = \frac{d}{dt} (\frac{\partial T}{\partial \dot{q}_{\alpha}}) \dot{q}_{\alpha} + \frac{\partial T}{\partial \dot{q}_{\alpha}} \ddot{q}_{\alpha}$,有 $\frac{d}{dt} (\frac{\partial T}{\partial \dot{q}_{\alpha}}) \dot{q}_{\alpha} = \frac{d}{dt} (\frac{\partial T}{\partial \dot{q}_{\alpha}} \dot{q}_{\alpha}) - \frac{\partial T}{\partial \dot{q}_{\alpha}} \ddot{q}_{\alpha}$ 。得到 $\sum_{\alpha=1}^{s} \frac{d}{dt} (\frac{\partial T}{\partial \dot{q}_{\alpha}}) \dot{q}_{\alpha} = \sum_{\alpha=1}^{s} \frac{d}{dt} (\frac{\partial T}{\partial \dot{q}_{\alpha}} \dot{q}_{\alpha}) - \sum_{\alpha=1}^{s} \frac{d}{dt} (\frac{\partial T}{\partial \dot{q}_{\alpha}} \dot{q}_{\alpha}) - \sum_{\alpha=1}^{s} \frac{\partial T}{\partial q_{\alpha}} \dot{q}_{\alpha} + \frac{\partial T}{\partial \dot{q}_{\alpha}} \ddot{q}_{\alpha} = -\sum_{\alpha=1}^{s} \frac{\partial V}{\partial q_{\alpha}} \dot{q}_{\alpha}$ 。

根据之前的认识, $\frac{\partial}{\partial \dot{q}_{\alpha}} T = \frac{\partial}{\partial \dot{q}_{\alpha}} \frac{1}{2} \sum_{i=1}^{n} m_{i} \dot{\mathbf{r}}_{i}^{2} = \sum_{i=1}^{n} m_{i} (\dot{\mathbf{r}}_{i} \cdot \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}})$,现在我们对 $\frac{\partial T}{\partial q_{\alpha}}$,乘以 $\dot{\mathbf{q}}_{\alpha}$ 并求和,即 $\sum_{\alpha=1}^{s} \frac{\partial T}{\partial \dot{q}_{\alpha}} \dot{\mathbf{q}}_{\alpha} = \sum_{\alpha=1}^{s} \sum_{i=1}^{n} m_{i} (\dot{\mathbf{r}}_{i} \cdot \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}}) \dot{\mathbf{q}}_{\alpha} = \sum_{i=1}^{s} \sum_{\alpha=1}^{s} m_{i} \dot{\mathbf{r}}_{i} \cdot \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}} \dot{\mathbf{q}}_{\alpha} = \sum_{i=1}^{n} (m_{i} \dot{\mathbf{r}}_{i} \cdot \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}}) \dot{\mathbf{q}}_{\alpha} = \sum_{i=1}^{n} (m_{i} \dot{\mathbf{r}}_{i} \cdot \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}}) \dot{\mathbf{q}}_{\alpha} = \sum_{i=1}^{n} (m_{i} \dot{\mathbf{r}}_{i} \cdot \sum_{\alpha=1}^{n} \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}} \dot{\mathbf{q}}_{\alpha} + \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}}) = 0$ 。 二者相加,即有 $\sum_{\alpha=1}^{s} \frac{\partial T}{\partial \dot{q}_{\alpha}} \dot{\mathbf{q}}_{\alpha} = \sum_{i=1}^{n} (m_{i} \dot{\mathbf{r}}_{i} \cdot [\sum_{\alpha=1}^{s} \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}} \dot{\mathbf{q}}_{\alpha} + \frac{\partial \mathbf{r}_{i}}{\partial \dot{q}_{\alpha}}]) , \quad \mathbf{p}$ 括号里的 $\frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}} = \frac{\partial \mathbf{r}_{i}}{\partial q_{\alpha}}, \quad \mathbf{D此} \sum_{\alpha=1}^{s} \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{\alpha}} \dot{\mathbf{q}}_{\alpha} + \frac{\partial \mathbf{r}_{i}}{\partial \dot{q}_{\alpha}} \dot{\mathbf{q}}_{\alpha} = \sum_{i=1}^{n} m_{i} \dot{\mathbf{r}}_{i}^{2} = 2T$ 。

于是, $\sum_{\alpha=1}^{s} \frac{d}{dt} (\frac{\partial T}{\partial \dot{q}_{\alpha}} \dot{q}_{\alpha}) = \frac{d}{dt} \sum_{\alpha=1}^{s} (\frac{\partial T}{\partial \dot{q}_{\alpha}} \dot{q}_{\alpha}) = \frac{d}{dt} 2T = 2 \frac{dT}{dt};$ 而 T 不是时间 t 的函数,因此 $dT = \sum_{\alpha=1}^{s} [\frac{\partial T}{\partial q_{\alpha}} dq_{\alpha} + \frac{\partial T}{\partial \dot{q}_{\alpha}} d\dot{q}_{\alpha}] + \frac{\partial T}{\partial t} dt = \sum_{\alpha=1}^{s} [\frac{\partial T}{\partial q_{\alpha}} dq_{\alpha} + \frac{\partial T}{\partial \dot{q}_{\alpha}} d\dot{q}_{\alpha}],$ 得到 $\sum_{\alpha=1}^{s} [\frac{\partial T}{\partial q_{\alpha}} \dot{q}_{\alpha} + \frac{\partial V}{\partial t} dt = \sum_{\alpha=1}^{s} \frac{\partial V}{\partial q_{\alpha}} \dot{q}_{\alpha} = \frac{dV}{dt}.$

将上一段中的三者代入 $\sum_{\alpha=1}^{s} \frac{d}{dt} (\frac{\partial T}{\partial \dot{q}_{\alpha}} \dot{q}_{\alpha}) - \sum_{\alpha=1}^{s} [\frac{\partial T}{\partial q_{\alpha}} \dot{q}_{\alpha} + \frac{\partial T}{\partial \dot{q}_{\alpha}} \ddot{q}_{\alpha}] = -\sum_{\alpha=1}^{s} \frac{\partial V}{\partial q_{\alpha}} \dot{q}_{\alpha}$,得到 $2\frac{dT}{dt} - \frac{dT}{dt} = -\frac{dV}{dt}$ 。即 $\frac{dT}{dt} + \frac{dV}{dt} = 0$,积分得到T + V = E。

[2].如果没有 $\frac{\partial r_i}{\partial t}$ =0(但仍有 $\frac{\partial T}{\partial t}$ =0),则由于 $\frac{\partial r_i}{\partial t}$ ≠0,此时T不单单只包含 T_2 ,即T为广义速度的二次非齐次函数,那么也将不会有 $\sum_{\alpha=1}^s \frac{\partial T}{\partial \dot{q}_\alpha} \dot{q}_\alpha$ =2T=2 T_2 。此时,欧拉推得 $\sum_{\alpha=1}^s \frac{\partial T}{\partial \dot{q}_\alpha} \dot{q}_\alpha = \sum_{\alpha=1}^s \frac{\partial (T_2 + T_1 + T_0)}{\partial \dot{q}_\alpha} \dot{q}_\alpha = \sum_{\alpha=1}^s (\frac{\partial T_2}{\partial \dot{q}_\alpha} \dot{q}_\alpha + \frac{\partial T_1}{\partial \dot{q}_\alpha} \dot{q}_\alpha + \frac{\partial T_0}{\partial \dot{q}_\alpha} \dot{q}_\alpha)$ =2 T_2 + T_1 。也就是说,T= T_2 + T_1 + T_0 也就比T= T_2 多了一个 T_1 。——此时 $\sum_{\alpha=1}^s \frac{d}{dt} (\frac{\partial T}{\partial \dot{q}_\alpha} \dot{q}_\alpha) = \frac{d}{dt} \sum_{\alpha=1}^s (\frac{\partial T}{\partial \dot{q}_\alpha} \dot{q}_\alpha) = \frac{d}{dt} (2T_2 + T_1) = 2 \frac{dT_2}{dt} + \frac{dT_1}{dt}$ 。

仍假设 $\frac{\partial T}{\partial t}$ =0、 $\frac{\partial V}{\partial t}$ =0,于是仍有 $\sum_{\alpha=1}^{s} [\frac{\partial T}{\partial q_{\alpha}}\dot{q}_{\alpha} + \frac{\partial T}{\partial \dot{q}_{\alpha}}\ddot{q}_{\alpha}] = \frac{dT}{dt}$, $\sum_{\alpha=1}^{s} \frac{\partial V}{\partial q_{\alpha}}\dot{q}_{\alpha} + \frac{\partial V}{\partial q_{\alpha}}\dot{q}_{\alpha} = \frac{dV}{dt}$ 。代入即有 $2\frac{dT_{2}}{dt} + \frac{dT_{1}}{dt} - \frac{dT}{dt} = -\frac{dV}{dt}$ 。即 $\frac{dT_{2}}{dt} - \frac{dT_{0}}{dt} + \frac{dV}{dt} = 0$ 。积分得到 $T_{2} - T_{0} + V = h$ 。其中的 h 不代表总能量 E,所以它不是能量积分。但由于类似,称之为广义能量积分。

可见,仅满足主动力都是保守力时,<mark>拉格朗日方程</mark>不一定能给出<mark>能量积分</mark>。除非约束是稳定约束。【这是因为,不稳定约束下,约束反力可以做功,而<mark>拉格朗日方程</mark>中并不包含约束反力】

5.4 小振动

1.保守系在广义坐标下的平衡方程

我们已经给出,在一般的力系(比如非保守系)下,广义坐标下的平衡方程为 $Q_{\alpha} = 0(\alpha = 1,2...s)。如果若\mathbf{F}_{i}(i=1,2,...,n)均是保守力,则Q_{\alpha} = -\frac{\partial V}{\partial q_{\alpha}},平衡方程可进一步 写为 <math display="block">\frac{\partial V}{\partial q_{\alpha}} = 0(\alpha = 1,2...s)。 ——若此时各质点的平衡位置 \\ q_{\alpha} = q_{\alpha 0}(\alpha = 1,2...s),则它可 写为 <math display="block">\frac{\partial V}{\partial q_{\alpha}}|_{q_{\alpha} = q_{\alpha 0}(\alpha = 1,2...s)} = 0,之后我们也简写为 <math display="block">(\frac{\partial V}{\partial q_{\alpha}})_{0} = 0.$

但接下里我们要研究的,不是体系的<mark>平衡</mark>,而是体系在<mark>平衡位置</mark>附近的动平衡。 因此,体系的 V 并不时时刻刻满足<mark>平衡方程 $\frac{\partial V}{\partial q_{\alpha}}$ = 0(α =1,2...s),只有当 q_{α} (α =1,2...s)处于各自的平衡位置 $q_{\alpha 0}$ 时(一般我们均将 $q_{\alpha 0}$ 设为 0),才有各个 $\frac{\partial V}{\partial q_{\alpha}}$ = 0。——因此我们选择将V在各 q_{α} 的平衡位置 $q_{\alpha 0}$ 处展开。</mark>

2.多自由度力学体系的小振动

设一个完整、稳定、保守力学体系(说白了就是完整约束中的稳定约束 $f(\mathbf{r}_1,...,\mathbf{r}_n)$ = 0,这教材废话真多==,该详细讲的又不讲),在平衡位置时,广义坐标 \mathbf{q}_{α} =0 (α =1,2...s)【我们总可以通过线性变换做到这一点】。那么体系从平衡位置发生微小位移,力学体系的运动情况如何?

将体系的势能 V,在平衡位形邻域展开(对于各 $q_{\alpha 0}$ =0 来说,是在位形空间原点附近展开;若各 $q_{\alpha 0}$ ≠0,则是指在各 q_{α} = $q_{\alpha 0}$ 处展开): V=V $|_{q_{\alpha}=q_{\alpha 0}+dq_{\alpha}(\alpha=1,2...s)}$ = V $|_{q_{\alpha}=q_{\alpha 0}(\alpha=1,2...s)}+\sum_{\alpha=1}^{s}\frac{\partial V}{\partial q_{\alpha}}|_{q_{\alpha}=q_{\alpha 0}(\alpha=1,2...s)}dq_{\alpha}+\frac{1}{2}\sum_{\alpha=1}^{s}\sum_{\beta=1}^{s}\frac{\partial^{2}V}{\partial q_{\alpha}\partial q_{\beta}}|_{q_{\alpha}=q_{\alpha 0}(\alpha=1,2...s)}dq_{\alpha}dq_{\beta}+...,由于我们已经假定<math>q_{\alpha 0}$ =0(α =1,2...s),因此我们将 $|_{q_{\alpha}=q_{\alpha 0}(\alpha=1,2...s)}$,简记为 $|_{q_{\alpha}=0(\alpha=1,2...s)}$ = $|_{0}$ = 0,且d $_{q_{\alpha}}$ = $|_{q_{\alpha}}$ 0 【注:多维空间的泰勒展开,可结合参考电动力学中的三元函数的泰勒级数展开】

于是 $V=V_0+\sum_{\alpha=1}^s(\frac{\partial V}{\partial q_\alpha})_0q_\alpha+\frac{1}{2}\sum_{\alpha=1}^s\sum_{\beta=1}^s(\frac{\partial^2 V}{\partial q_\alpha\partial q_\beta})_0q_\alpha q_\beta+\dots$ 。设对于一切时间 t, $q_i(t)$ 都很小,则可略去 $q_\alpha q_\beta$ 之后的高级项。而现在设 $q_\alpha=q_{\alpha 0}$ ($\alpha=1,2\dots s$)处,即 $q_\alpha=0$ ($\alpha=1,2\dots s$)处的V,即 V_0 为参考点/势能零点。再由于平衡位置处,有平衡方程($\frac{\partial V}{\partial q_\alpha}$) $_0=0$,因此只剩下二次项,即 $V=\frac{1}{2}\sum_{\alpha=1}^s\sum_{\beta=1}^s(\frac{\partial^2 V}{\partial q_\alpha\partial q_\beta})_0q_\alpha q_\beta$ 。我们将 $(\frac{\partial^2 V}{\partial q_\alpha\partial q_\beta})_0$ 记为 $c_{\alpha\beta}$,于是 $V=\frac{1}{2}\sum_{\alpha=1}^s\sum_{\beta=1}^sc_{\alpha\beta}q_\alpha q_\beta$ 。

由于已处在稳定约束下,之前说过, $\frac{\partial \mathbf{r}_i}{\partial t}$ =0 将导致 $\mathbf{a}_{\alpha,r}$ a=0,于是 $\mathbf{T}=\mathbf{T}_2$ = $\frac{1}{2}\sum_{\alpha=1}^{s}\sum_{\beta=1}^{s}a_{\alpha\beta}\dot{\mathbf{q}}_{\alpha}\dot{\mathbf{q}}_{\beta}$,仅为广义速度的二次齐次函数。其中, $\mathbf{a}_{\alpha\beta}=\sum_{i=1}^{n}m_i\frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_{\alpha}}\cdot\frac{\partial \mathbf{r}_i}{\partial \mathbf{q}_{\beta}}$,我们说过,它因含有 \mathbf{r}_i ,因此是 $\mathbf{q}_1,\mathbf{q}_2,...,\mathbf{q}_s$, \mathbf{t} 的函数。也就是 \mathbf{q}_i (t)的函数,那么仍需要将其在力学体系的平衡位形附近展开: $\mathbf{a}_{\alpha\beta}=(\mathbf{a}_{\alpha\beta})_0+\sum_{i=1}^{s}(\frac{\partial a_{\alpha\beta}}{\partial q_i})_0\mathbf{q}_i+\cdots$ 。对此我们只取第一项 $(\mathbf{a}_{\alpha\beta})_0$,于是力学体系在平衡位形附近的动能 $\mathbf{T}=\frac{1}{2}\sum_{\alpha=1}^{s}\sum_{\beta=1}^{s}(\mathbf{a}_{\alpha\beta})_0\dot{\mathbf{q}}_{\alpha}\dot{\mathbf{q}}_{\beta}$ 。

但以后我们直接简记 $(a_{\alpha\beta})_0$ 为 $a_{\alpha\beta}$,认为这里的 $a_{\alpha\beta}=(a_{\alpha\beta})_0$ 是不变的(这仅仅是为了和 $c_{\alpha\beta}=(\frac{\partial^2 V}{\partial q_\alpha \partial q_\beta})_0$ 的形式对应)。我们称 $a_{\alpha\beta}$ 为惯性系数, $(\frac{\partial V}{\partial q_\alpha})_0$ 为恢复系数或准弹性系数。

①.对方程 $T=\frac{1}{2}\sum_{\alpha=1}^{s}\sum_{\beta=1}^{s}a_{\alpha\beta}\dot{q}_{\alpha}\dot{q}_{\beta}$ 两边,分别求对 \dot{q}_{α} 的偏导 $\frac{\partial}{\partial \dot{q}_{\alpha}}$,得到 $\frac{\partial T}{\partial \dot{q}_{\alpha}}=\sum_{\beta=1}^{s}a_{\alpha\beta}\dot{q}_{\beta}\text{。 【应该这么理解:} \ H\frac{\partial}{\partial \dot{q}_{i}}\text{作用于方程两端,} 则在 s*s 项<math>\dot{q}_{\alpha}\dot{q}_{\beta}$ 中,一共有 2s-1 项含有 \dot{q}_{i} ,但其中有一项为两个 \dot{q}_{i} 之积,即 \dot{q}_{i}^{2} ,求导出来= $2\dot{q}_{i}$;因此总的来说, $\frac{\partial}{\partial \dot{q}_{i}}\sum_{\alpha=1}^{s}\sum_{\beta=1}^{s}\dot{q}_{\alpha}\dot{q}_{\beta}=2\sum_{i=1}^{s}\dot{q}_{i}$ 。——嘿嘿,这里的 $\frac{\partial T}{\partial \dot{q}_{\alpha}}$ 表达式,可启发并服务于广义能量积分中的 $\sum_{\alpha=1}^{s}(\frac{\partial T_{2}}{\partial \dot{q}_{\alpha}}\dot{q}_{\alpha}+\frac{\partial T_{1}}{\partial \dot{q}_{\alpha}}\dot{q}_{\alpha})=2T_{2}+T_{1}$ 的推导】②.由于 $a_{\alpha\beta}$ 是常数,

$$\frac{\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_{\alpha}}}{\frac{\partial T}{\partial q_{\alpha}}} = \sum_{\beta=1}^{s} a_{\alpha\beta} \ddot{q}_{\beta} \text{. } \text{③.又因} T = T_{2} = \frac{1}{2} \sum_{\alpha=1}^{s} \sum_{\beta=1}^{s} a_{\alpha\beta} \dot{q}_{\alpha} \dot{q}_{\beta} \text{, } \text{用} \frac{\partial}{\partial q_{\alpha}} \text{作用于两边, } \text{得} \frac{\partial T}{\partial q_{\alpha}} = 0 \text{.}$$

④.又因
$$V=\frac{1}{2}\sum_{\alpha=1}^{s}\sum_{\beta=1}^{s}c_{\alpha\beta}q_{\alpha}q_{\beta}$$
,两边也对 q_{α} 求偏导 $\frac{\partial}{\partial q_{\alpha}}$,类似 $\frac{\partial}{\partial \dot{q}_{\alpha}}$ 作用于 $T=\frac{1}{2}\sum_{\alpha=1}^{s}\sum_{\beta=1}^{s}a_{\alpha\beta}\dot{q}_{\alpha}\dot{q}_{\beta}$ 两边一样,也将得到类似 $\frac{\partial T}{\partial \dot{q}_{\alpha}}=\sum_{\beta=1}^{s}a_{\alpha\beta}\dot{q}_{\beta}$ 一样的: $\frac{\partial V}{\partial q_{\alpha}}=\sum_{\beta=1}^{s}c_{\alpha\beta}q_{\beta}$ 。

将后三点一并代入(中间表达式)
$$\frac{d}{dt} \frac{\partial T}{\partial q_{\alpha}} - \frac{\partial T}{\partial q_{\alpha}} = -\frac{\partial V}{\partial q_{\alpha}} (\alpha = 1, 2...s)$$
,得到 $\sum_{\beta=1}^{s} a_{\alpha\beta}\ddot{q}_{\beta} - 0 = -\sum_{\beta=1}^{s} c_{\alpha\beta}q_{\beta}$,即有 $\sum_{\beta=1}^{s} a_{\alpha\beta}\ddot{q}_{\beta} + c_{\alpha\beta}q_{\beta} = 0 = 1, 2...s$)。将这个 $2s$ 元 s 阶方程组写为矩阵的形式,即有:
$$\begin{pmatrix} a_{11}\ddot{q}_{1} + c_{11}q_{1} & \cdots & a_{1s}\ddot{q}_{s} + c_{1s}q_{s} \\ \vdots & \ddots & \vdots \\ a_{s1}\ddot{q}_{1} + c_{s1}q_{1} & \cdots & a_{ss}\ddot{q}_{s} + c_{ss}q_{s} \end{pmatrix} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
。该矩阵方程有证的,因此
$$\begin{vmatrix} a_{11}\ddot{q}_{1} + c_{11}q_{1} & \cdots & a_{1s}\ddot{q}_{s} + c_{1s}q_{s} \\ \vdots & \ddots & \vdots \\ a_{s1}\ddot{q}_{1} + c_{s1}q_{1} & \cdots & a_{ss}\ddot{q}_{s} + c_{ss}q_{s} \end{vmatrix} = 0$$
。

由于 $c_{\alpha\beta}$ >0,则设解 $q_{\beta}(\alpha=1,2...s)$ 的形式为三角函数形式: $q_{\beta}=\sum_{i=1}^{s}C_{\beta i}cos(\omega_{i}t)+D_{\beta i}sin(\omega_{i}t)(\alpha=1,2...s)$,则 $\ddot{q}_{\beta}=-\sum_{i=1}^{s}\omega_{i}^{2}[C_{\beta i}cos(\omega_{i}t)+D_{\beta i}sin(\omega_{i}t)](\alpha=1,2...s)$ 。

(×这一段有问题并且没有更改×)代入其中,即有

5.5 哈密顿正则方程

1.勒让德变换

[1].之前我们在 5.3.(1).的基本形式的拉格朗日方程 $\frac{d}{dt} \frac{\partial T}{\partial q_{\alpha}} - \frac{\partial T}{\partial q_{\alpha}} = Q_{\alpha}(\alpha = 1, 2...s)$ 中定义了 $\frac{\partial T}{\partial q_{\alpha}}$ 为广义动量 p_{α} 。 现因一般的势能V只是(广义)坐标 q_{α} 的函数,不是(广义)速度 \dot{q}_{α} 的函数,因此 $\frac{\partial V}{\partial q_{\alpha}} = 0$,则 $\frac{\partial L}{\partial q_{\alpha}} = \frac{\partial (T - V)}{\partial \dot{q}_{\alpha}} = \frac{\partial T}{\partial \dot{q}_{\alpha}} = p_{\alpha}$ 。 代入保守力系的拉格朗日方程: $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_{\alpha}} - \frac{\partial L}{\partial \dot{q}_{\alpha}} = 0$ ($\alpha = 1, 2...s$)。 【这 $\begin{cases} p_{\alpha} = \frac{\partial L}{\partial \dot{q}_{\alpha}} = \frac{\partial L}{\partial \dot{q}_{\alpha}} \\ \dot{p}_{\alpha} = \frac{\partial L}{\partial \dot{q}_{\alpha}} = \frac{\partial L}{\partial \dot{q}_{\alpha}} \end{cases}$ 很 $\dot{p}_{\alpha} = -\frac{\partial H}{\partial \dot{q}_{\alpha}}$ 很

像;且二式可用(3).节处,稳定约束时的<mark>能量积分 H=T + V证</mark>得: $\dot{p}_{\alpha} = \frac{\partial L}{\partial q_{\alpha}} = \frac{\partial (T-V)}{\partial q_{\alpha}} = \frac{\partial (T-V)}{\partial q_{\alpha}} = \frac{\partial (H-V)-V}{\partial q_{\alpha}} = \frac{\partial (H-V)-V}{$

由于L中包含T,因此L是 $q_1,q_2,...,q_s,\dot{q}_1,\dot{q}_2,...,\dot{q}_s,t$ 的函数。因此 $\dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}}$ 以及 $p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}}$,也是 $q_1,q_2,...,q_s,\dot{q}_1,\dot{q}_2,...,\dot{q}_s,t$ 的函数。——根据后者 $p_{\alpha}=\frac{\partial L}{\partial \dot{q}_{\alpha}}$,两边对 \dot{q}_{α} 偏积分,并除以 p_{α} ,可得到 \dot{q}_{α} 是 p_{α} 的函数【同理,可将 $\dot{p}_{\alpha}=\frac{\partial L}{\partial q_{\alpha}}$ 对 q_{α} 偏积分,并除以 \dot{p}_{α} ,得到 q_{α} 是 \dot{p}_{α} 的函数(注意下标相同的俩 $\dot{q}_{\alpha},p_{\alpha}$ 和 $q_{\alpha},\dot{p}_{\alpha}$ 才有互相不独立,才与对方相关)】

因此,既然L是 $q_1,q_2,...,q_s,\dot{q}_1,\dot{q}_2,...,\dot{q}_s,t$ 的函数,而 $\dot{q}_1,\dot{q}_2,...,\dot{q}_s$ 又分别是 $p_1,p_2,...,p_s$ 的函数,因此L也是 $q_1,q_2,...,q_s,p_1,p_2,...,p_s,t$ 的函数。但因对同一个物理状况下的L而言,其对 $q_\alpha,\dot{q}_\alpha,t$ 的函数关系式,与其对 q_α,p_α,t 的函数关系式不同;我们分别记作 $L=L(q_1,q_2,...,q_s;\dot{q}_1,\dot{q}_2,...,\dot{q}_s;t)=\bar{L}(q_1,q_2,...,q_s;\dot{q}_1,\dot{q}_2,...,\dot{q}_s;t)$ 。

(2) 两个变量的勒让德变换:

设 f=f(x,y),设 $\frac{\partial f}{\partial x}=u$, $\frac{\partial f}{\partial y}=v$,由于 $\frac{\partial f}{\partial x'}\frac{\partial f}{\partial y}$ 一般都是 x,y 的函数,则 u,v 像 f 一样,都是 x,y 的函数:u=u(x,y),v=v(x,y)。

既然如此,那么我们就可用(x,u)来表示 f(x,y),因为 u 中含有 y,以至于总可找到一个函数 g,使得 g(x,u(x,y))=f(x,y)【这里的 g 就相当于f】。同样,由于 x,y,u,v 四者,两两配对,共六种组合,每一对都因包含有 x,y,不漏掉其中任何一个,而总可以用来表示 f=f(x,y)。

现在我们以 u,y 表示同一个 f 为例: $f=f(x,y)=\overline{f}(u,y)$ 。 那么若我们将自变量关系理解为 $f(x,y)=\overline{f}(u(x,y),y)$,将 $\frac{\partial}{\partial y}$ 作用于两端,便有 $\frac{\partial f}{\partial y}=\frac{\partial \overline{f}}{\partial y}=\frac{\partial \overline{f}}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial \overline{f}}{\partial y}$;将 $\frac{\partial}{\partial x}$ 作用于两端,便有 $\frac{\partial f}{\partial x}=\frac{\partial \overline{f}}{\partial x}=\frac{\partial \overline{f}}{\partial u}\frac{\partial u}{\partial x}$ 。 ——同样的道理,对于同样的方程 $f(x,y)=\overline{f}(u,y)$ 而言,若我们将其理解为 $f(x(u,y),y)=\overline{f}(u,y)$,则事情将变为:将 $\frac{\partial}{\partial y}$ 作用于两端,便有 $\frac{\partial f}{\partial x}\frac{\partial x}{\partial y}+\frac{\partial f}{\partial y}=\frac{\partial \overline{f}}{\partial y}=\frac{\partial \overline{f}}{\partial y}$;将 $\frac{\partial}{\partial u}$ 作用于两端,便有 $\frac{\partial f}{\partial x}\frac{\partial x}{\partial u}=\frac{\partial f}{\partial u}=\frac{\partial \overline{f}}{\partial u}$ 。

现在我们将 $\frac{\partial f}{\partial x}$ =u, $\frac{\partial f}{\partial y}$ =v代入,得到u $\frac{\partial x}{\partial y}$ +v= $\frac{\partial \overline{f}}{\partial y}$, u $\frac{\partial x}{\partial u}$ = $\frac{\partial \overline{f}}{\partial u}$ 。设 g(u,y)=ux $-\overline{f}$,则 v= $\frac{\partial \overline{f}}{\partial y}$ - u $\frac{\partial x}{\partial y}$ = $\frac{\partial}{\partial y}$ (\overline{f} - ux)= $-\frac{\partial g}{\partial y}$, x= $\frac{\partial}{\partial x}$ (ux $-\overline{f}$)= $\frac{\partial g}{\partial x}$ 。【注:其中 \overline{f} = \overline{f} (u,y),对 g和 \overline{f} 来说,u,y都是底层变量】

注意,我们之所以要用 g(u,y),就是因为 $\overline{f}(u,y)$ 表示不出那么简单的形式。其中, g(u,y)=ux $-\overline{f}$ 是精华所在: "新的函数(g,H 等)=不作为底层变量的变量(如 x)乘以原来的函数(f)对该变量(x)的偏导数($u=\frac{\partial f}{\partial x}$)减去原来的函数(的 \overline{f})(f,L 等)"。 【注意:本来是减去 \overline{f} , \overline{f} ,它们的量值,与 f,L 相同,因此可以这么说。】

2.正则方程

正如 g(u,y)= $\frac{\partial f(x,y)}{\partial x}x-\bar{f}(u,y)$, 我们有 H(p,q,t)= $\sum_{\alpha=1}^s \frac{\partial L(q_\alpha,\dot{q}_\alpha,t)}{\partial \dot{q}_\alpha}\dot{q}_\alpha-\bar{L}(p,q,t)$, 即 H= $\sum_{\alpha=1}^s \frac{\partial L}{\partial \dot{q}_\alpha}\dot{q}_\alpha-L$, 根据 " $\dot{p}_\alpha=\frac{\partial L}{\partial q_\alpha}$ 以及 $p_\alpha=\frac{\partial L}{\partial \dot{q}_\alpha}$ ",即有 H= $\sum_{\alpha=1}^s p_\alpha\dot{q}_\alpha-L$ 。那么 dH= $\sum_{\alpha=1}^s d(p_\alpha\dot{q}_\alpha)-dL=\sum_{\alpha=1}^s (p_\alpha d\dot{q}_\alpha+\dot{q}_\alpha dp_\alpha)-dL$ 。

而我们之前提到过dT= $\sum_{\alpha=1}^{s} [\frac{\partial T}{\partial q_{\alpha}} dq_{\alpha} + \frac{\partial T}{\partial \dot{q}_{\alpha}} d\dot{q}_{\alpha}] + \frac{\partial T}{\partial t} dt$, 而L里有T, 且L也是 $q_{1},q_{2},...,q_{s},p_{1},p_{2},...,p_{s},t$ 的函数。则我们将L也展开为dL= $\sum_{\alpha=1}^{s} [\frac{\partial L}{\partial q_{\alpha}} dq_{\alpha} + \frac{\partial L}{\partial \dot{q}_{\alpha}} d\dot{q}_{\alpha}] + \frac{\partial L}{\partial t} dt$, 又由于 " $\dot{p}_{\alpha} = \frac{\partial L}{\partial q_{\alpha}}$ 以及 $p_{\alpha} = \frac{\partial L}{\partial \dot{q}_{\alpha}}$ " ,则 $dL = \sum_{\alpha=1}^{s} [\dot{p}_{\alpha} dq_{\alpha} + p_{\alpha} d\dot{q}_{\alpha}] + \frac{\partial L}{\partial t} dt$ 。

于是,代入即有 $dH = \sum_{\alpha=1}^{s} (p_{\alpha} d\dot{q}_{\alpha} + \dot{q}_{\alpha} dp_{\alpha}) - \sum_{\alpha=1}^{s} [\dot{p}_{\alpha} dq_{\alpha} + p_{\alpha} d\dot{q}_{\alpha}] - \frac{\partial L}{\partial t} dt = \sum_{\alpha=1}^{s} (\dot{q}_{\alpha} dp_{\alpha} - \dot{p}_{\alpha} dq_{\alpha}) - \frac{\partial L}{\partial t} dt$ 。又因 H 像 $\bar{L}(p,q,t)$ 一样,是 q_{α} , p_{α} ,t 的函数。于是像dT 和dL的展开式一样,我们对 dH 作类似的展开: $dH = \sum_{\alpha=1}^{s} [\frac{\partial H}{\partial q_{\alpha}} dq_{\alpha} + \frac{\partial H}{\partial p_{\alpha}} dp_{\alpha}] + \frac{\partial H}{\partial t} dt$ 。

对比两个式子, $\sum_{\alpha=1}^{s}(\dot{q}_{\alpha}dp_{\alpha}-\dot{p}_{\alpha}dq_{\alpha})-\frac{\partial L}{\partial t}dt=\sum_{\alpha=1}^{s}[\frac{\partial H}{\partial q_{\alpha}}dq_{\alpha}+\frac{\partial H}{\partial p_{\alpha}}dp_{\alpha}]+\frac{\partial H}{\partial t}dt,$ 由于 $dq_{\alpha},dp_{\alpha},dt$ 是独立的。得到 $\frac{\partial H}{\partial q_{\alpha}}=-\dot{p}_{\alpha}(\alpha=1,2...s),\ \frac{\partial H}{\partial p_{\alpha}}=\dot{q}_{\alpha}(\alpha=1,2...s),\ \frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}.$

这叫做哈密顿正则方程,简称正则方程(有 2s 个一阶常微分方程)。H 为哈密顿函数。 $q_{\alpha\prime}p_{\alpha}$ 叫正则变量,一组/一对 $(q_{\alpha\prime}p_{\alpha})$ 是 2s 维空间中的一个**相点**。

3.能量积分

由于dH= $\sum_{\alpha=1}^{s} \left[\frac{\partial H}{\partial q_{\alpha}} dq_{\alpha} + \frac{\partial H}{\partial p_{\alpha}} dp_{\alpha}\right] + \frac{\partial H}{\partial t} dt$, 我们有 \dot{H} = $\sum_{\alpha=1}^{s} \left[\frac{\partial H}{\partial q_{\alpha}} \dot{q}_{\alpha} + \frac{\partial H}{\partial p_{\alpha}} \dot{p}_{\alpha}\right] + \frac{\partial H}{\partial t}$ 。 \dot{H} $\frac{\partial H}{\partial q_{\alpha}}$ = $-\dot{p}_{\alpha}(\alpha=1,2...s)$, $\frac{\partial H}{\partial p_{\alpha}}$ = $\dot{q}_{\alpha}(\alpha=1,2...s)$ 代入其中,即有 \dot{H} = $\sum_{\alpha=1}^{s} \left[-\dot{p}_{\alpha}\dot{q}_{\alpha} + \dot{q}_{\alpha}\dot{p}_{\alpha}\right] + \frac{\partial H}{\partial t}$ 也就是说 $\frac{dH}{dt}$ = $\frac{\partial H}{\partial t}$, 这意味着 H 不含 t,即 $\frac{\partial H}{\partial t}$ =0,则也有 $\frac{dH}{dt}$ =0,即dH=0。

因此正则方程有一初积分: H=h。在稳定约束时,之前得到过 $\sum_{\alpha=1}^s \frac{\partial T}{\partial \dot{q}_\alpha} \dot{q}_\alpha = \sum_{i=1}^n m_i \dot{\mathbf{r}}_i^2 = 2T, \ \text{根据 H 的定义 H} = \sum_{\alpha=1}^s \frac{\partial L}{\partial \dot{q}_\alpha} \dot{q}_\alpha - L = 2T - (T-V) = T + V.$

可见当稳定约束时,H=h=E; 而当不稳定约束时,T不再是广义速度的二次齐次函数, $T \neq T_2$,但若仍有 $\frac{\partial T}{\partial t}=0$ 、 $\frac{\partial V}{\partial t}=0$,则 $H=h=T_2-T_0+V$ 。【这也是为什么我们要设 H=h】

5.6 泊松括号与泊松定理

1.泊松括号

正如对 $\dot{\mathbf{H}}=\sum_{\alpha=1}^{s}[\frac{\partial \mathbf{H}}{\partial q_{\alpha}}\dot{\mathbf{q}}_{\alpha}+\frac{\partial \mathbf{H}}{\partial p_{\alpha}}\dot{\mathbf{p}}_{\alpha}]+\frac{\partial \mathbf{H}}{\partial t},$ 将 $\frac{\partial \mathbf{H}}{\partial q_{\alpha}}=-\dot{\mathbf{p}}_{\alpha}(\alpha=1,2...s),$ $\frac{\partial \mathbf{H}}{\partial p_{\alpha}}=\dot{\mathbf{q}}_{\alpha}(\alpha=1,2...s)$ 代入其中得到 $\frac{d\mathbf{H}}{dt}=\frac{\partial \mathbf{H}}{\partial t}$ 一样。——我们假设三个像H的同样关于 \mathbf{q}_{α} , \mathbf{p}_{α} , \mathbf{d} t 的函数 ϕ , θ , ψ 。将 $\frac{\partial \mathbf{H}}{\partial q_{\alpha}}=-\dot{\mathbf{p}}_{\alpha}$, $\frac{\partial \mathbf{H}}{\partial p_{\alpha}}=\dot{\mathbf{q}}_{\alpha}$ 代入 $\dot{\phi}=\sum_{\alpha=1}^{s}[\frac{\partial \phi}{\partial q_{\alpha}}\dot{\mathbf{q}}_{\alpha}+\frac{\partial \phi}{\partial p_{\alpha}}\dot{\mathbf{p}}_{\alpha}]+\frac{\partial \phi}{\partial t}$, 得到 $\dot{\phi}=\sum_{\alpha=1}^{s}[\frac{\partial \phi}{\partial q_{\alpha}}\frac{\partial \mathbf{H}}{\partial p_{\alpha}}-\frac{\partial \mathbf{H}}{\partial q_{\alpha}}]+\frac{\partial \phi}{\partial t}$.

我们将 $\sum_{\alpha=1}^{s} \left[\frac{\partial \varphi}{\partial q_{\alpha}} \frac{\partial H}{\partial p_{\alpha}} - \frac{\partial \varphi}{\partial p_{\alpha}} \frac{\partial H}{\partial q_{\alpha}}\right]$ 记作 φ 的泊松括号[φ ,H],于是 $\dot{\varphi}$ =[φ ,H]+ $\frac{\partial \varphi}{\partial t}$ 。由于 $q_1,q_2,...,q_s,p_1,p_2,...,p_s$ 相互独立,于是 \dot{p}_{α} =[p_{α} ,H](α =1,2...s), \dot{q}_{α} =[q_{α} ,H](α =1,2...s)。

如果我们已知一个正则方程的两个初积分,即 ϕ = C_1 , ψ = C_2 (就像 H=h)。则我们可以得到第三个初积分:由于它们是正则方程的俩积分,则 $[\phi,H]+\frac{\partial \phi}{\partial t}$ =0,以及 $[\psi,H]+\frac{\partial \psi}{\partial t}$ =0。

那么根据雅可比恒等式,有[H,[ϕ , ψ]]= $-[\phi$,[ψ ,H]] $-[\psi$,[H, ϕ]]。将[H, ϕ]= $-[\phi$,H]= $\frac{\partial \phi}{\partial t}$,和[ψ ,H]= $-\frac{\partial \psi}{\partial t}$ 代入,即有[H,[ϕ , ψ]]= $-[\phi$, $-\frac{\partial \psi}{\partial t}$] $-[\psi$, $\frac{\partial \phi}{\partial t}$]=[ϕ , $\frac{\partial \psi}{\partial t}$]+[ψ , $\frac{\partial \phi}{\partial t}$]= $\frac{\partial}{\partial t}[\phi$, ψ]。于是有[[ϕ , ψ],H]+ $\frac{\partial}{\partial t}[\phi$, ψ]=0。即有 $\frac{d}{dt}[\phi$, ψ]=0,得到[ϕ , ψ]=C₃。

5.7 哈密顿原理

1.变分运算的几个法则

用到变分运算(变分问题:泛函的极值问题)的力学原理,叫力学变分原理;虚功原理:力学变分原理的微分形式;哈密顿原理:力学变分原理的积分形式。

哈密顿原理需要用到变分运算,因此先介绍该运算的几个法则:设俩因变量 A,B,都是 p,q,t 的函数,则有 δ (A+B)= δ A+ δ B、 δ (AB)= δ A·B+A δ B、 δ ($\frac{A}{B}$)= $\frac{B\delta A-\delta BA}{B^2}$,等类似微分运算/算符 d 的规则成立。【但虽然变分与微分相仿,微分与微商相仿,但等会会看到,变分与微商略有区别】

设 $C(q_1,q_2,...,q_s,t)$ 为 s 维空间的一条曲线,且为真实轨道、动力轨道(即质点遵循运动定律的那条),另有一空间上相邻的曲线 $C'(q_1,q_2,...,q_s,t)$,其与 C 有俩共同端点

 P_1, P_2 ,它们在 C'及 C 中的时空坐标都分别是($q_{11}, q_{21}, ..., q_{s1}, t_1$)和($q_{12}, q_{22}, ..., q_{s2}, t_2$)。 【也就是说,当 $t=t_1$ 时, $q_1, q_2, ..., q_s$ 与 $q_1', q_2', ..., q_s'$ 均分别取值 $q_{11}, q_{21}, ..., q_{s1}$ 】

这意味着,对应的物理情景为,一个质点 M 沿着 C 运动($q_1(t)$, $q_2(t)$,..., $q_s(t)$),另一个质点 M'与 M 同时从 P_1 出发,却沿着 C'运动($q_1'(t)$, $q_2'(t)$,..., $q_s'(t)$),并与 M 同时到达点 P_2 。——在这段旅行中,每一个时间断面 t 下,均对应着一对质点 M,M',它们的时间坐标相同,而空间坐标(这里均是指广义坐标)不同($q_\alpha'(t+\delta t)=q_\alpha(t)+\delta q_\alpha$, $\delta t=0$)。

若我们考察的是分别处于不同的两个时空断面($\delta t \neq 0$)下的 M 与 M'之间的时空坐标的差异,则这种差异叫**不等时变分**;若我们考察的是处于同一个时空断面($\delta t = 0$)下的 M 与 M'之间的空间坐标的差异,则这种差异叫**等时变分**。——总的来说,相邻两曲线 C 与 C'之间差异,叫**变分**。用符号 δ 表示,与 表示 "先后在同一曲线轨道上,单独因自变量的微小变化而引起的函数差异"的微分算符 d 相区分。

考虑在 C 上, $\mathbf{t}=\mathbf{t}_1$ 时刻的一点 M,它在 P_1 处。现在考虑 $\delta \mathbf{t}=0$ 时,在 C'上, $\mathbf{t}=\mathbf{t}_1+\delta \mathbf{t}$ = \mathbf{t}_1 时刻的一对应点 M'的空间坐标,它也在 P_1 处。因此,当以 $\delta \mathbf{t}=0$ 为标准(对应关系),来考察 C'曲线上, $\mathbf{t}=\mathbf{t}_1$ 时的 M 点所对应 M'点的空间坐标时, $\delta \mathbf{q}_{\alpha}|_{P_1}=\delta \mathbf{q}_{\alpha}|_{P_2}=0$ 。

考虑以下四个点: P,Q 点在 C 上,空间坐标分别为 $q_{\alpha}(\alpha=1,2...s)$ 、 $q_{\alpha}+dq_{\alpha}(\alpha=1,2...s)$; P',Q'点在 C'上,P'的空间坐标为 $q_{\alpha}+\delta q_{\alpha}(\alpha=1,2...s)$ 。那么 Q'点的空间坐标可由以下两个途径得到: $P\to Q\to Q'$: $q_{\alpha}+dq_{\alpha}+\delta(q_{\alpha}+dq_{\alpha})$, $P\to P'\to Q'$: $q_{\alpha}+\delta q_{\alpha}+dq_{\alpha}$,是一个坐标,因此 $\delta(dq_{\alpha})=d(\delta q_{\alpha})$,即算符 δ 与 d 可以对易。 【未涉及到t,更不用说 δ t是否=0的标准问题;可以体会到,所有的(作用于时/空变量的) δ 都是 C 与 C'的某对应量之间的改变量;而所有的 d 都是 C 或 C'各自的某个量前后的改变量】

但对于 δ 与 $\frac{d}{dt}$,事情就不是这样的了: $\delta(\frac{d}{dt}q_{\alpha}) = \frac{dt \cdot \delta(dq_{\alpha}) - \delta(dt) \cdot dq_{\alpha}}{dt^2} = \frac{\delta(dq_{\alpha})}{dt} - \frac{\delta(dt) \cdot dq_{\alpha}}{dt^2} = \frac{d(\delta q_{\alpha})}{dt} - \frac{d(\delta t) \cdot dq_{\alpha}}{dt^2} = \frac{d}{dt}(\delta q_{\alpha}) - \frac{dq_{\alpha}}{dt} \cdot \frac{d}{dt}(\delta t)$ 。——可见, δ 与 $\frac{d}{dt}$ 一般不能对易,除非 $\delta t = 0$,此时才可能有 $\delta(\frac{d}{dt}q_{\alpha}) = \frac{d}{dt}(\delta q_{\alpha})$ 。【注意:没有 $\frac{\delta}{\delta t}$,一方面是因为,许多时候 $\delta t = 0$;另一方面是由于 d 与 dt 具有因果关系,而 δ 与 δt 不具有因果关系:分子中,对 被作用量的变分 δ ,不是因 δt 而存在的】

δ与 $\frac{d}{dt}$ 的先后次序可对易,对应的变分 $\delta(\frac{d}{dt}q_{\alpha})$ 叫**等时变分**(此时 $\delta t=0$ 或 $\frac{dq_{\alpha}}{dt}=0$);而 δ与 $\frac{d}{dt}$ 的先后次序不可对易的变分,叫**不等时变分**(或**全变分**),有时用 Δ 表示: $\Delta(\frac{d}{dt}q_{\alpha})=\frac{d}{dt}(\Delta q_{\alpha})-\frac{dq_{\alpha}}{dt}\cdot\frac{d}{dt}(\Delta t)$ 。

2.哈密顿原理

首先,拉格朗日方程是 s 个二阶微分方程,有 2s 个积分常数 $c_1, c_2, ..., c_{2s}$,于是若我们确定了这 2s 个常数,以及每个时间断面 t 下的 s 个广义坐标值 $q_1, q_2, ..., q_s$,我们就确定了体系随时间的演化。——因此 $q_\alpha = q_\alpha(t, c_1, c_2, ..., c_{2s})$ ($\alpha = 1, 2...s$)。

每个t下s个qα确定了s维空间的一个点,随着时间t的推移,它们在s维空间中描出一条曲线。哈密顿提出,可以从具有相同端点、并为3n-s=k个几何约束所许可的许多条可能的运动轨道(即s维空间的曲线)中,挑选出一条真实轨道,这样就确定了力学体系(沿着这条真实轨道运动时)的运动规律。

用保守力系下的拉格朗日方程,推导保守力系下的哈密顿原理: 将 $\frac{d}{dt}\frac{\partial L}{\partial q_{\alpha}}-\frac{\partial L}{\partial q_{\alpha}}=0$ (α =1,2...s)方程两边乘以 δq_{α} ,并求和,得到 $\sum_{\alpha=1}^{s}(\frac{d}{dt}\frac{\partial L}{\partial q_{\alpha}}-\frac{\partial L}{\partial q_{\alpha}})\delta q_{\alpha}=0$ 。两边沿着一条可能的运动轨道(s 维空间的一条曲线),从这些曲线共同的端点之一 $P_{1}(t=t_{1})$,到共同端点之二 $P_{2}(t=t_{2})$,对时间 t 积分,即有: $\int_{t_{1}}^{t_{2}}[\sum_{\alpha=1}^{s}(\frac{d}{dt}\frac{\partial L}{\partial q_{\alpha}}-\frac{\partial L}{\partial q_{\alpha}})\delta q_{\alpha}]\cdot dt=0$ 。

由于 $\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_{\alpha}}\delta q_{\alpha}) = \frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_{\alpha}})\delta q_{\alpha} + \frac{\partial L}{\partial \dot{q}_{\alpha}}\frac{d}{dt}(\delta q_{\alpha})$,再加上等时变分 $\delta(\frac{d}{dt}q_{\alpha}) = \frac{d}{dt}(\delta q_{\alpha})$,因 此 $\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_{\alpha}})\delta q_{\alpha} = \frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_{\alpha}}\delta q_{\alpha}) - \frac{\partial L}{\partial \dot{q}_{\alpha}}\delta(\frac{d}{dt}q_{\alpha}) = \frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_{\alpha}}\delta q_{\alpha}) - \frac{\partial L}{\partial \dot{q}_{\alpha}}\delta \dot{q}_{\alpha}$ 。将其代入式中,即有 $\int_{t_{1}}^{t_{2}} \{\sum_{\alpha=1}^{s} [\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_{\alpha}}\delta q_{\alpha}) - (\frac{\partial L}{\partial \dot{q}_{\alpha}}\delta \dot{q}_{\alpha} + \frac{\partial L}{\partial q_{\alpha}}\delta q_{\alpha})]\} \cdot dt = 0 , 于是 \int_{t_{1}}^{t_{2}} \sum_{\alpha=1}^{s} d(\frac{\partial L}{\partial \dot{q}_{\alpha}}\delta q_{\alpha}) - \int_{t_{1}}^{t_{2}} \{\sum_{\alpha=1}^{s} (\frac{\partial L}{\partial \dot{q}_{\alpha}}\delta \dot{q}_{\alpha} + \frac{\partial L}{\partial q_{\alpha}}\delta q_{\alpha})\} \cdot dt = \sum_{\alpha=1}^{s} \frac{\partial L}{\partial \dot{q}_{\alpha}}\delta q_{\alpha}|_{t_{1}}^{t_{2}} - \int_{t_{1}}^{t_{2}} \delta L \cdot dt = 0$ 。【注:L是 $q_{1},q_{2},...,q_{s},\dot{q}_{1},\dot{q}_{2},...,\dot{q}_{s},t \, \textbf{的函数}; \, \frac{\partial L}{\partial t}\delta t = 0$ 】

由于 $\delta t=0$ 标准下, $\delta q_{\alpha}|_{P_1}=\delta q_{\alpha}|_{P_2}=0$,即 $\delta q_{\alpha}|_{t=t_1}=\delta q_{\alpha}|_{t=t_2}=0$ 。于是 $\sum_{\alpha=1}^{S}\frac{\partial L}{\partial q_{\alpha}}\delta q_{\alpha}|_{t_1}^{t_2}=0$ 。得到 $\int_{t_1}^{t_2}\delta L\cdot dt=\delta\int_{t_1}^{t_2}L\cdot dt=0$ 。【之所以能把 δ 从积分号中提出来,也是因为 $\delta t=0$: $\delta\int_{t_1}^{t_2}L\cdot dt=\delta\sum L\cdot dt=\sum \delta(L\cdot dt)=\sum[\delta L\cdot dt+L\cdot\delta(dt)]$,其中 $\delta(dt)=d(\delta t)=0$,因此 $\delta\int_{t_1}^{t_2}L\cdot dt=\sum \delta L\cdot dt=\int_{t_1}^{t_2}\delta L\cdot dt$ 】

" $\delta \int_{t_1}^{t_2} L \cdot dt = 0$ "即在保守力系作用下的哈密顿原理的数学形式。其中, $\int_{t_1}^{t_2} L \cdot dt$ 为作用函数,当它表示为端点时间和位置,即 $(q_{11},q_{21},...,q_{s1},t_1)$ 和 $(q_{12},q_{22},...,q_{s2},t_2)$ 的函数时, $S = \int_{t_1}^{t_2} L(q_1,q_2,...,q_s,\dot{q}_1,\dot{q}_2,...,\dot{q}_s,t) \cdot dt$ 也叫做**主函数**。【为什么 S 能表为它们的函数呢:若你理解为 $L = L(q_1,q_2,...,q_s,\dot{q}_1,\dot{q}_2,...,\dot{q}_s,t)$,则积分后会出现 t_2 和 t_1 ;若你理解为 $L = L(q_1(t,c_1,c_2,...,c_{2s}),...)$,则积分后会出现 $q_{11},q_{21},...,q_{s1}$ 和

保守力系作用下的哈密顿原理的文字表述: 保守的、完整的力学体系, 在相同的时间段内, 由某一初位形转移到另一已知位形的一切可能运动中, 真实运动的主函数 S 具有稳定值——即对于真实运动来讲, &S=0。

哈密顿原理可以反过来推导出拉格朗日方程、正则方程、牛顿运动定律【推导拉格朗日方程的过程,本身就是以上过程的逆过程】。任意力系下的哈密顿原理,用的不多;最小作用量原理,用的是不等时变分,计算繁琐,现用的也不多。

例 1: 哈密顿原理→正则方程

根据 5.5.(2).H= $\sum_{\alpha=1}^{s} \frac{\partial L}{\partial \dot{q}_{\alpha}} \dot{q}_{\alpha} - L = \sum_{\alpha=1}^{s} p_{\alpha} \dot{q}_{\alpha} - L$, 我们有 $L = \sum_{\alpha=1}^{s} p_{\alpha} \dot{q}_{\alpha} - H$, 将其代入 $\delta \int_{t_{1}}^{t_{2}} L \cdot dt = 0$, 有 $\delta \int_{t_{1}}^{t_{2}} (\sum_{\alpha=1}^{s} p_{\alpha} \dot{q}_{\alpha} - H) \cdot dt = \int_{t_{1}}^{t_{2}} \delta (\sum_{\alpha=1}^{s} p_{\alpha} \dot{q}_{\alpha} - H) \cdot dt = \int_{t_{1}}^{t_{2}} [\sum_{\alpha=1}^{s} (\delta p_{\alpha} \dot{q}_{\alpha} + p_{\alpha} \delta \dot{q}_{\alpha}) - \delta H] \cdot dt$, 其中 $\delta H \otimes \delta L - H$, $\delta H = \sum_{\alpha=1}^{s} (\frac{\partial H}{\partial \dot{q}_{\alpha}} \delta \dot{q}_{\alpha} + \frac{\partial H}{\partial \dot{q}_{\alpha}} \delta q_{\alpha})$, 但这里认为H是 $q_{1},q_{2},...,q_{s},p_{1},p_{2},...,p_{s},t$ 的函数,因此 $\delta H = \sum_{\alpha=1}^{s} (\frac{\partial H}{\partial p_{\alpha}} \delta p_{\alpha} + \frac{\partial H}{\partial \dot{q}_{\alpha}} \delta q_{\alpha})$ 。合并求和符号,得到 $\int_{t_{1}}^{t_{2}} \sum_{\alpha=1}^{s} (\delta p_{\alpha} \dot{q}_{\alpha} + p_{\alpha} \delta \dot{q}_{\alpha} - \frac{\partial H}{\partial p_{\alpha}} \delta p_{\alpha} - \frac{\partial H}{\partial q_{\alpha}} \delta q_{\alpha}) \cdot dt = 0$ 。

此前我们得到过
$$\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_{\alpha}})\delta q_{\alpha} = \frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_{\alpha}}\delta q_{\alpha}) - \frac{\partial L}{\partial \dot{q}_{\alpha}}\delta \dot{q}_{\alpha}$$
,即 $\dot{p}_{\alpha}\delta q_{\alpha} = \frac{d}{dt}(p_{\alpha}\delta q_{\alpha}) - p_{\alpha}\delta \dot{q}_{\alpha}$,因此 $p_{\alpha}\delta \dot{q}_{\alpha} = \frac{d}{dt}(p_{\alpha}\delta q_{\alpha}) - p_{\alpha}\delta \dot{q}_{\alpha}$,代入即有 $\int_{t_{1}}^{t_{2}}\sum_{\alpha=1}^{s}(\delta p_{\alpha}\dot{q}_{\alpha} + \frac{d}{dt}(p_{\alpha}\delta q_{\alpha}) - p_{\alpha}\delta \dot{q}_{\alpha} - \frac{\partial H}{\partial p_{\alpha}}\delta p_{\alpha} - \frac{\partial H}{\partial q_{\alpha}}\delta q_{\alpha}) \cdot dt = p_{\alpha}\delta q_{\alpha}|_{t_{1}}^{t_{2}} + \int_{t_{1}}^{t_{2}}\sum_{\alpha=1}^{s}(\delta p_{\alpha}\dot{q}_{\alpha} - \frac{\partial H}{\partial p_{\alpha}}\delta p_{\alpha} - \dot{p}_{\alpha}\delta q_{\alpha} - \frac{\partial H}{\partial q_{\alpha}}\delta q_{\alpha}) \cdot dt = p_{\alpha}\delta q_{\alpha}|_{t_{1}}^{t_{2}} + \int_{t_{1}}^{t_{2}}\sum_{\alpha=1}^{s}[(\dot{q}_{\alpha} - \frac{\partial H}{\partial p_{\alpha}})\delta p_{\alpha} - (\dot{p}_{\alpha} + \frac{\partial H}{\partial q_{\alpha}})\delta q_{\alpha}] \cdot dt = 0$ 。

同样因 $\delta t=0$ 标准下,两端点相同,即 $\delta q_{\alpha}|_{t=t_1}=\delta q_{\alpha}|_{t=t_2}=0$,于是第一项=0。得到 $\int_{t_1}^{t_2} \sum_{\alpha=1}^s [(\dot{q}_{\alpha}-\frac{\partial H}{\partial p_{\alpha}})\delta p_{\alpha}-(\dot{p}_{\alpha}+\frac{\partial H}{\partial q_{\alpha}})\delta q_{\alpha}]\cdot dt=0$ 。因 δp_{α} , δq_{α} 在积分区间内是任意的,

且相互独立,因此上式对于各任取的 δp_{α} , δq_{α} 恒成立的充要条件为 $\begin{cases} \dot{q}_{\alpha} - \frac{\partial H}{\partial p_{\alpha}} = 0 \\ \dot{p}_{\alpha} + \frac{\partial H}{\partial q_{\alpha}} = 0 \end{cases}$ 即

$$\begin{cases} \dot{q}_{\alpha} = \frac{\partial H}{\partial p_{\alpha}} \\ \dot{p}_{\alpha} = -\frac{\partial H}{\partial q_{\alpha}} \end{cases} (\alpha = 1, 2...s).$$

例 2: 最速降线方程

设一竖直平面内两点 P_1 , P_2 , 重力势能较大(距离水平面较高)的一点为 P_1 。不计与空气和导轨的摩擦。一质点 M 仅在重力和支持力的作用下,从 P_1 点 $\rightarrow P_2$ 点,可以沿不同的光滑曲线到达。问曲线呈何种形状时,质点从 P_1 到 P_2 用时最短。

①.由于体系(质点)所受重力 P 是保守力,除此之外的外力中虽还包含支持力 N(非保守力),但支持力不做功。因此由于外力 $\mathbf{F}_{i}^{(e)}$ 中只有保守力做功(没有内力参与),则体系机械能守恒: $\mathbf{T}_{0} + \mathbf{V}_{0} = \mathbf{T} + \mathbf{V}_{0}$.

将平面直角坐标系设在 P_1P_2 连线与P共同确定的平面上,原点O设在 P_1 处,y轴竖直向上(与P反向), P_2 在该坐标系下坐标为(x_2,y_2)。以x轴为重力势能零线(参考线),

即 $V|_{y=0}=V_0=0$ 。而 $T_0=T|_{t=0}=T|_{y=0}=0$,因此 $\frac{1}{2}$ m $v^2=T=T-T_0=V_0-V=-V=-mgy$,得到 $\frac{ds}{dt}=v(y)=\sqrt{-2gy}$ 。根据弧微分 $ds=|sec\alpha|\cdot dx=\sqrt{1+tan^2\alpha}\cdot dx=\sqrt{1+y'^2}\cdot dx$,代入即有 $\sqrt{1+y'^2}\frac{dx}{dt}=\sqrt{-2gy}$ 。

于是 $dt = \frac{\sqrt{1+y'^2}}{\sqrt{-2gy}} dx$,两边在对应的时间区间和空间区间上积分 $\int_{t_1}^{t_2} dt = \int_{P_1}^{P_2} \frac{\sqrt{1+y'^2}}{\sqrt{-2gy}} dx$,其左端 $\int_{t_1}^{t_2} dt = t_2 - t_1 = \Delta t = J(y) = J[y(x)]$,可见 Δt 是y(x)的函数。——现在,最速降线问题被翻译为这样一个数学问题:满足边界条件 $\begin{cases} y(0) = 0 \\ y(x_2) = y_2 \end{cases}$ 的所有连续函数 y(x)中,求出一个这样的 y(x),使得对应的 $\Delta t = J(y)$ 取极值(最小值)。——所以 y 必然是 $J(y) = \int_0^{x_2} \frac{\sqrt{1+y'^2}}{\sqrt{-2gy}} dx$ 的极值点(之一),也就是 $\delta J(y) = 0$ 。

这与之前的 $\delta S=0$ 类似:主函数S就像这里的J,即 $\int_{t_1}^{t_2} L \cdot dt$ 正如这里的 $\int_0^{x_2} \frac{\sqrt{1+y'^2}}{\sqrt{-2gy}} \, dx$,其中的 t 就像这里的x,L就像这里的 $\frac{\sqrt{1+y'^2}}{\sqrt{-2gy}} \cdot$ —于是 $\delta J(y) = \delta \int_0^{x_2} \frac{\sqrt{1+y'^2}}{\sqrt{-2gy}} \, dx = \int_0^{x_2} \delta (\frac{\sqrt{1+y'^2}}{\sqrt{-2gy}} \, dx) = \int_0^{x_2} [\delta (\frac{\sqrt{1+y'^2}}{\sqrt{-2gy}}) \, dx + \frac{\sqrt{1+y'^2}}{\sqrt{-2gy}} \delta (dx)] = 0$,其中 $\int_0^{x_2} \frac{\sqrt{1+y'^2}}{\sqrt{-2gy}} \, \delta (dx) = \int_0^{x_2} \frac{\sqrt{1+y'^2}}{\sqrt{-2gy}} \, d(\delta x)$,而 $\delta x \equiv 0$,因此只剩下 $\int_0^{x_2} \delta (\frac{\sqrt{1+y'^2}}{\sqrt{-2gy}}) \, dx = 0$ 。

其中 $\delta(\frac{\sqrt{1+y'^2}}{\sqrt{-2gy}}) = \frac{\sqrt{-2gy} \cdot \delta\sqrt{1+y'^2} - \delta\sqrt{-2gy} \cdot \sqrt{1+y'^2}}{-2gy} = \frac{1}{-2gy} \left[\sqrt{-2gy} \frac{y' \delta y'}{\sqrt{1+y'^2}} - \sqrt{1+y'^2} \frac{-g\delta y}{\sqrt{-2gy}} \right],$ 于是 $-\frac{1}{2gy} \int_0^{x_2} [\sqrt{-2gy} \frac{y'}{\sqrt{1+y'^2}} \delta y' + \sqrt{1+y'^2} \frac{g}{\sqrt{-2gy}} \delta y] dx = 0$ 。由于 $\delta y'$, δy 在积分区间内是任意的,因此要想上式恒成立,必有 $\begin{cases} \sqrt{-2gy} \frac{y'}{\sqrt{1+y'^2}} = 0 \\ \sqrt{1+y'^2} \frac{g}{\sqrt{-2gy}} = 0 \end{cases}$ 。但这样的操作似乎并不能帮助我们进一步限制y的长相,问题出在哪?——虽然 $\delta y'$, δy 是任意的,但它们并不相互独立?

②.类似 $S=\int_{t_1}^{t_2} L \cdot dt$ 地,考虑泛函 $[y(x)]=\int_{x_1}^{x_2} F(x,y,y') \cdot dx$ 。 【注:'代表的是求导】【F是x,y,y'的函数来源于 $\frac{\sqrt{1+y'^2}}{\sqrt{-2gy}}$,但这里的F不仅表示 $\frac{\sqrt{1+y'^2}}{\sqrt{-2gy}}$,当然针对这道题, $F=\frac{\sqrt{1+y'^2}}{\sqrt{-2gy}}$ 】

之前我们提到过,一般地有 $q'_{\alpha}(t+\delta t)=q_{\alpha}(t)+\delta q_{\alpha}$,其中的 $\delta q_{\alpha}=q'_{\alpha}(t+\delta t)-q_{\alpha}(t)$ 是在 $\delta t\neq 0$ 的意义下的。如果 $\delta t=0$,则此时的 $\delta q_{\alpha}=q'_{\alpha}(t)-q_{\alpha}(t)$,于是曲线 $C'(q'_{1},q'_{2},...,q'_{s},t)$ 中 t 时刻时间断面下,在其上运动的一点 M'的第 α 个坐标值 $q'_{\alpha}(t)=q_{\alpha}(t)+\delta q_{\alpha}$ 。——类似地,本来在这里也应有曲线 C=C(x,y,t)、C'=C'(x',y',t) 的,其中有 $\delta t=0$ 标准下的 $x'(t)=x(t)+\delta x$ 、 $y'(t)=y(t)+\delta y$ 。——但如果这么想的话,质点在 $C\perp P_{1}\rightarrow P_{2}$ 的用时 Δt ,与其在 $C'\perp b$ 的 Δt 相等,何来极值一说?【注:这一段中的'代表的不是求导】

因此,我们的 y、x 不再是 t 的函数,而是 x 本身作为底层变量(像之前的 t 一样),y 是 x 的函数,并且主函数J[y(x)]具有物理意义 Δ t【相对而言,我想不出之前的主函数 $S=\int_{t_1}^{t_2} L \cdot dt$ 有什么物理意义:L 的量纲是 J,S 的量纲为 J·s,这是个啥?然而此处的J的单位为 s,这就有意义多了】。此时,C'不再用 C'(x',y',t)表示,而是用 δ x=0 标准下的 y'(x')=y'(x+ δ x)=y'(x),即 y'(x)=y(x)+ δ y表示;并且我们不再是用 δ S=0 来找稳定的 S,即真实的 S、S 的极值;而是用 δ J=0 来找 Δ t=J(y)的极值点(达到极值时的横坐标 y)。【注:这一段中的'代表的不是求导】

现在我们临时用[~]而不是'来表示与 C'、M'等有关的各量,即有 $\tilde{x}=x+\delta x=x$ 、 $\tilde{y}(x)=y(x)+\delta y$ 、 $\tilde{y}'(x)=y'(x)+\delta y'$ 、 \tilde{C} 、 \tilde{M} ,于是 $J[\tilde{y}(x)]=\int_{x_1}^{x_2}F(x,\tilde{y},\tilde{y}')\cdot dx$,即 $J[y+\delta y]=\int_{x_1}^{x_2}F(x,y+\delta y,y'+\delta y')\cdot dx$ 。而 $\delta J=J[\tilde{y}(x)]-J[y(x)]=\int_{x_1}^{x_2}F(x,\tilde{y},\tilde{y}')\cdot dx$ — $\int_{x_1}^{x_2}F(x,y,y')\cdot dx=\int_{x_1}^{x_2}[F(x,\tilde{y},\tilde{y}')-F(x,y,y')]\cdot dx$ 。即 $\delta J=J[y+\delta y]-J[y]=\int_{x_1}^{x_2}[F(x,y+\delta y,y'+\delta y')-F(x,y,y')]\cdot dx$ 。【其实, $F(x,\tilde{y},\tilde{y}')-F(x,y,y')$ 就是 δF ,下面也不需要泰勒展开而直接 "全微分"展开即可:可见全微分仅仅是(某点邻域上的)一阶泰勒展开减去同点处的原函数。】

其中, $F(x,\tilde{y},\tilde{y'})=F(x,y+\delta y,y'+\delta y')$ 可在(x,y,y')的邻域展成泰勒级数,仿照之前的 $V|_{q_{\alpha}=q_{\alpha 0}+dq_{\alpha}(\alpha=1,2...s)}=V|_{q_{\alpha}=q_{\alpha 0}(\alpha=1,2...s)}+\sum_{\alpha=1}^{s}\frac{\partial V}{\partial q_{\alpha}}|_{q_{\alpha}=q_{\alpha 0}(\alpha=1,2...s)}dq_{\alpha}+\frac{1}{2}\sum_{\alpha=1}^{s}\sum_{\beta=1}^{s}\frac{\partial^{2}V}{\partial q_{\alpha}\partial q_{\beta}}|_{q_{\alpha}=q_{\alpha 0}(\alpha=1,2...s)}dq_{\alpha}dq_{\beta}+...,我们有<math>F(x,y+\delta y,y'+\delta y')=F(x,y,y')+[\frac{\partial F}{\partial x}0+\frac{\partial F}{\partial y}\delta y+\frac{\partial F}{\partial y'}\delta y']+[...+...]+...,忽略掉二阶及以上小量,<math>F(x,y+\delta y,y'+\delta y')-F(x,y,y')\approx\frac{\partial F}{\partial y}\delta y+\frac{\partial F}{\partial y'}\delta y',$ 因此 $\delta J=\int_{x_{1}}^{x_{2}}[\frac{\partial F}{\partial y}\delta y+\frac{\partial F}{\partial y'}\delta y']\cdot dx$ 。

其中,正如 $\delta(\frac{d}{dt}q_{\alpha}) = \frac{d}{dt}(\delta q_{\alpha}) - \frac{dq_{\alpha}}{dt} \cdot \frac{d}{dt}(\delta t)$, $\delta y' = \delta(\frac{d}{dx}y) = \frac{d}{dx}(\delta y) - \frac{dy}{dx} \cdot \frac{d}{dx}(\delta x)$,由于 $\delta x = 0$,因此 $\delta(\frac{d}{dx}y) = \frac{d}{dx}(\delta y)$,于是其中的 $\int_{x_1}^{x_2} \frac{\partial F}{\partial y'} \delta y' \cdot dx = \int_{x_1}^{x_2} \frac{\partial F}{\partial y'} \frac{d}{dx}(\delta y) \cdot dx = \int_{x_1}^{x_2} \frac{\partial F}{\partial y'} \delta y|_{x_1}^{x_2} - \int_{x_1}^{x_2} \delta y \cdot d(\frac{\partial F}{\partial y'}) = -\int_{x_1}^{x_2} \delta y \cdot \frac{d}{dx}(\frac{\partial F}{\partial y'}) dx$,其中的 $\delta y|_{x_1}^{x_2} = 0$ 仍是因 $\delta y|_{x_1} = \delta y|_{x_2} = 0$,则 $\delta J = \int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} \delta y - \delta y \cdot \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \right] \cdot dx = \int_{x_1}^{x_2} \left[\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \right] \delta y \cdot dx$ 。

因此(对于任意的 δy),要使得 y 满足 $\delta J = \int_{x_1}^{x_2} [\frac{\partial F}{\partial y} - \frac{d}{dx}(\frac{\partial F}{\partial y'})] \delta y \cdot dx = 0$,一个必要条件便是: $\frac{\partial F}{\partial y} - \frac{d}{dx}(\frac{\partial F}{\partial y'}) = 0$ 。这也被称为 E-L 方程,即欧拉-拉格朗日方程,也就是拉格朗日方程。它与之前保守力系下的拉格朗日方程极其相似: $\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{\alpha}} - \frac{\partial L}{\partial q_{\alpha}} = 0$ ($\alpha = 1,2...s$)。二者左侧只差了个负号,但因方程右侧为 0,所以是等价的。

③.仿照之前②.中的 $\delta F = \frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} \delta y'$,我们有 $dF = \frac{\partial F}{\partial y} dy + \frac{\partial F}{\partial y'} dy'$,那么 $d[F - y' \frac{\partial F}{\partial y'}] = \frac{\partial F}{\partial y} dy + \frac{\partial F}{\partial y'} dy' - [\frac{\partial}{\partial y} (y' \frac{\partial F}{\partial y'}) dy + \frac{\partial}{\partial y'} (y' \frac{\partial F}{\partial y'}) dy']$,其中 $\frac{\partial F}{\partial y'}$ 也是x, y, y'的函数,因此 $\frac{\partial}{\partial y} (y' \frac{\partial F}{\partial y'}) = y' \frac{\partial^2 F}{\partial y' \partial y}, \quad \frac{\partial}{\partial y'} (y' \frac{\partial F}{\partial y'}) = \frac{\partial F}{\partial y'} + y' \frac{\partial^2 F}{\partial y'^2}. \quad \text{不不不,但我们并不打算这么做:我们$

不将 $d(y'\frac{\partial F}{\partial y'})$ 这么展开,而是将其展开为 $y'd\frac{\partial F}{\partial y'}+\frac{\partial F}{\partial y'}dy'$,这样其中的 $\frac{\partial F}{\partial y'}dy'$ 可以和dF中的相同项约掉,得到 $d[F-y'\frac{\partial F}{\partial y'}]=\frac{\partial F}{\partial y}dy-y'd\frac{\partial F}{\partial y'}$ 。

因此 $\frac{d}{dx}[F-y'\frac{\partial F}{\partial y'}]=\frac{\partial F}{\partial y}y'-y'\frac{d}{dx}\frac{\partial F}{\partial y'}=y'(\frac{\partial F}{\partial y}-\frac{d}{dx}\frac{\partial F}{\partial y'})$ 。它含有因子 $\frac{\partial F}{\partial y}-\frac{d}{dx}(\frac{\partial F}{\partial y'})=0$,于是 $\frac{d}{dx}[F-y'\frac{\partial F}{\partial y'}]=0$, $F-y'\frac{\partial F}{\partial y'}=C$ 。将 $F=\frac{\sqrt{1+y'^2}}{\sqrt{-2gy}}$ 代入其中,得到 $\frac{\sqrt{1+y'^2}}{\sqrt{-2gy}}-y'\frac{y'}{\sqrt{-2gy}}-y'\frac{y'}{\sqrt{-2gy}\sqrt{1+y'^2}}=\frac{1}{\sqrt{-2gy}\sqrt{1+y'^2}}=C$,即 $y(1+y'^2)=\frac{1}{-2gC^2}=-2r$ 。【要解一个微分方程,我们用参数方程的思想来解决:假设一个方程的形式,推另一个方程的形式。其实数学上对此已经很熟悉了,连第一个的形式,都不是凭空想象出来的。】

设 $y'=\frac{dy}{dx}(\theta)=\cot(\frac{\theta}{2})$,代入得到 $y[1+\cot^2(\frac{\theta}{2})]=y\cdot\frac{1}{\sin^2(\frac{\theta}{2})}=-2r$,得到 $y(\theta)=\frac{1-\cos\theta}{2}(-2r)=-r(1-\cos\theta)$,下面我们来看看 $x=x(\theta)$ 长啥样:将 $y(\theta)=-r(1-\cos\theta)$ 两边对 θ 求导,则 $\frac{dy}{dx}\frac{dx}{d\theta}=-r\sin\theta$,而 $\frac{dy}{dx}=\cot(\frac{\theta}{2})$,得到 $\frac{dx}{d\theta}=-r\cdot\sin\theta\cdot\tan\frac{\theta}{2}=-r\cdot2\sin\theta\cdot\tan\theta\cdot\tan\frac{\theta}{2}=-r\cdot2\sin\theta\cdot\tan\theta\cdot\tan\theta$

便可得到 r 与x₀: 【打红色旦打问号的两个字段,暗示曲线的参数方程是极坐标方程。——但事实上这里的r和θ根本就不是极坐标参量,它俩实际上是"无滑动地滚动的圆"的半径、角位移】

先代入(0,0)的后一个数字 0,则对于 y=-r(1 - $\cos\theta_1$)=0,要么1 - $\cos\theta_1$ =0,要么 r=0,但待定参数 r 不可能为 0(否则轨迹将变成一个点),所以在原点处 θ_1 不可任取,即必须满足1 - $\cos\theta_1$ =0,则 θ_1 =2kπ。取 θ_1 =0 代入一式,x=0 + x $_0$ =0,得到 x_0 =0。

再代入 (x_2,y_2) ,即 $\begin{cases} x_2 = -r(\theta_2 - \sin\theta_2) \\ y_2 = -r(1 - \cos\theta_2) \end{cases}$,【由于 $\tan\theta_2 \neq \frac{y_2}{x_2}$,所以用下式除以上式,并换用 \tan 所得的 $\tan\theta_2 = \frac{1-\cos\theta_2}{\theta_2-\sin\theta_2}$,没有意义,这样解出的 θ_2 是谬误的】,然后通过 $\frac{x_2}{-\theta_2+\sin\theta_2} = r = \frac{y_2}{-1+\cos\theta_2}$ 解出 θ_2 (或用下/上,并且不换用 \tan : $\frac{y_2}{x_2} = \frac{1-\cos\theta_2}{\theta_2-\sin\theta_2}$,毕竟 $\frac{y_2}{x_2}$ 已知),再代入得到 r。

这样我们就有了
$$\begin{cases} x = -r(\theta - \sin\theta) \\ y = -r(1 - \cos\theta) \end{cases}$$

③.如何"物理地"理解这一数学结果呢?

(1).我们先给出数学上,旋轮线的标准形式 $\begin{cases} x = r(\theta - \sin\theta) \\ y = r(1 - \cos\theta) \end{cases}$ 的物理图像:设 A 点相对于 M 点的坐标为 $r \cdot (\cos\alpha, \sin\alpha) = r \cdot (\cos(\frac{3}{2}\pi - \theta), \sin(\frac{3}{2}\pi - \theta)) = r \cdot (\cos(-\frac{\pi}{2} - \theta), \sin(-\frac{\pi}{2} - \theta)) = r \cdot (\cos(\frac{\pi}{2} + \theta), -\sin(\frac{\pi}{2} + \theta)) = r \cdot (-\sin\theta, -\cos\theta) = (-r \cdot \sin\theta, -r \cdot \cos\theta)$ 。可以看出,对 A 点而言,A 点在以 M 点为圆心、r 为半径的圆上。

若圆(从一开始)顺时针滚动(对 A 点而言,A 对 M 只有转动),则 θ (从 0 开始;原因见下段)正向增加、 α 从 270°开始反向减小(θ + α =270°),可见我们用的是建立在圆心 M 点的 "y 轴向1、x 轴向→"的右手坐标系,并且 " α 从 x 轴正半轴算起、逆时针为正;而 θ 从 y 轴负半轴算起、顺时针为正", α 和 θ 均量度的是 A 点对 M 点的角度,不论 A 点处于 M 点的哪个方向上。【你可能会问,为什么要在 α 之外设定一个 θ 呢?一方面,这是旋轮线方程的一部分;另一方面,这将与"A 点的初始坐标位于圆心正下方"联合,使得 θ 从 0 开始计。二者的由来见下一段】

设 M 点相对于 O 点的坐标为($r\theta$,r), 这意味着圆心的运动是:在恒定高度(y=r) 上,沿//x 轴方向平移;并且,A 点相对于 M 点顺时针转过了多少弧长(此时弧度 θ >0), 弧长 $r\theta$ >0), M 点就相对于 O 点沿着 x 正方向走了多少距离(横坐标 $r\theta$ >0 意味着圆心在朝着 x 正方向走)——这个场景我们很熟悉,此即无滑动滚动。

由于 A 点对 O 点的(x,y)=($r(\theta-\sin\theta)$, $r(1-\cos\theta)$)=($r\theta$,r)+($-r\cdot\sin\theta$, $-r\cdot\cos\theta$)=M 对 O+A 对 M,以及"圆顺时针旋转, θ 正向增大"(所以为了鲜明的物理图像,我们的数学描述不能采用 α ;虽然仍然能用 α ,即不同的参数方程,来描绘摆线)对应"圆心沿×轴正向滚动"这个无矛盾的逻辑,我们便可将 $\begin{cases} x=r(\theta-\sin\theta)\\ y=r(1-\cos\theta) \end{cases}$ 翻译成极其具有物理实感的场景和动画:在 x 轴上方压着 x 轴无滑动滚动的一个半径为 r 的圆,其上一固定点 A 的参数方程。

另外,我们从 $\begin{cases} 0 = r(\theta_1 - \sin\theta_1) + x_0 \\ 0 = r(1 - \cos\theta_1) \end{cases}$ 中也能解出,原点(0,0)处的 $\theta_1 = 2k\pi$,我们选取了 $\theta_1 = A$ 点位于 O 点时的 $\theta = 0$,也就意味着 A 点的"初始坐标"位于圆心正下方的原点(0,0)处【注:轨迹的起点,即位于 P_1 的 A 点】。这样一来,参数方程所控制的 A 点的轨迹和运动情况便更清晰了:当 θ 从 $\theta = 0$ 开始正向增大时,A 点位于圆与 x 轴的切点 O(原点)处,并随着圆圈向 x 轴正向的无滑动滚动、圆心向 x 轴正向的平移,而划出一条摆线,直到 θ 增加到 2π 为一个周期,之后周而复始地画出一条又一条摆线。—— θ 也可以从 $\theta = 0$ 开始减小,此时 A 点所对应的轨迹和运动情况,与之前的 A 点的,关于 y 轴成轴对称,二者互为镜像。

如果参数方程以 α 来呈现,则数学表达式中的 θ 替换为 $\frac{3}{2}\pi-\alpha$,并且此时的 α 从 $\frac{3}{2}\pi$ 开始算起;另外,圆顺时针滚动时, α 从 $\frac{3}{2}\pi$ 开始减小。