

Claims

1. A compound having the formula

5 the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

$a^1-a^2=a^3-a^4$ represents a divalent radical selected from $\text{N}-\text{CH}=\text{CH}-\text{CH}$, $\text{N}-\text{CH}=\text{N}-\text{CH}$ or $\text{CH}-\text{CH}=\text{N}-\text{CH}$;

10 Z represents O, NH or S;

Y represents $-\text{C}_{3-9}\text{alkyl}$, $-\text{C}_{3-9}\text{alkenyl}$, $-\text{C}_{1-5}\text{alkyl-oxy-C}_{1-5}\text{alkyl}$,

$-\text{C}_{1-5}\text{alkyl-NR}^{13}-\text{C}_{1-5}\text{alkyl}$, $-\text{C}_{1-5}\text{alkyl-NR}^{14}-\text{CO-C}_{1-5}\text{alkyl}$,

$-\text{C}_{1-5}\text{alkyl-CO-NR}^{15}-\text{C}_{1-5}\text{alkyl}$, $-\text{C}_{1-6}\text{alkyl-CO-NH}$,

$-\text{C}_{1-6}\text{alkyl-NH-CO}$, $-\text{CO-NH-C}_{1-6}\text{alkyl}$, $-\text{NH-CO-C}_{1-6}\text{alkyl}$, $-\text{CO-C}_{1-7}\text{alkyl}$,

$-\text{C}_{1-7}\text{alkyl-CO}$, $\text{C}_{1-6}\text{alkyl-CO-C}_{1-6}\text{alkyl}$;

X^1 represents a direct bond, O, $-\text{O-C}_{1-2}\text{alkyl}$, CO, $-\text{CO-C}_{1-2}\text{alkyl}$, NR^{11} ,

$-\text{NR}^{11}-\text{C}_{1-2}\text{alkyl}$, $\text{NR}^{16}-\text{CO}$, $\text{NR}^{16}-\text{CO-C}_{1-2}\text{alkyl}$, $-\text{O-N=CH-}$ or $\text{C}_{1-2}\text{alkyl}$;

X^2 represents a direct bond, O, $-\text{O-C}_{1-2}\text{alkyl}$, CO, $-\text{CO-C}_{1-2}\text{alkyl}$, NR^{12} ,

$\text{NR}^{12}-\text{C}_{1-2}\text{alkyl}$, $\text{NR}^{17}-\text{CO}$, $\text{NR}^{17}-\text{CO-C}_{1-2}\text{alkyl}$, $\text{Het}^{20}-\text{C}_{1-2}\text{alkyl}$, $-\text{O-N=CH-}$ or

20 $\text{C}_{1-2}\text{alkyl}$;

R^1 represents hydrogen, cyano, halo, hydroxy, formyl, $\text{C}_{1-6}\text{alkoxy}$, $\text{C}_{1-6}\text{alkyl}$,

$\text{C}_{1-6}\text{alkoxy}$ substituted with halo,

$\text{C}_{1-4}\text{alkyl}$ substituted with one or where possible two or more substituents selected from hydroxy or halo;

25 R^2 represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl, Het^{16} -carbonyl,

$\text{C}_{1-4}\text{alkyloxycarbonyl}$, $\text{C}_{1-4}\text{alkylcarbonyl}$, aminocarbonyl, mono- or

di($\text{C}_{1-4}\text{alkyl}$)aminocarbonyl, Het^1 , formyl, $\text{C}_{1-4}\text{alkyl}$, $\text{C}_{2-6}\text{alkynyl}$, $\text{C}_{3-6}\text{cycloalkyl}$,

$\text{C}_{3-6}\text{cycloalkyloxy}$, $\text{C}_{1-6}\text{alkoxy}$, Ar^5 , Ar^1 -oxy-, dihydroxyborane,

$\text{C}_{1-6}\text{alkoxy}$ substituted with halo,

-50-

$C_{1-4}alkyl$ substituted with one or where possible two or more substituents selected from halo, hydroxy or NR^5R^6 ,

$C_{1-4}alkylcarbonyl$ - wherein said $C_{1-4}alkyl$ is optionally substituted with one or where possible two or more substituents selected from hydroxy or $C_{1-4}alkyl$ -oxy-;

- 5 R^3 represents hydrogen, $C_{1-4}alkyl$, cyano or $C_{1-4}alkyl$ substituted with one or more substituents selected from halo, $C_{1-4}alkyloxy$ -, amino-, mono- or di($C_{1-4}alkyl$)amino-, $C_{1-4}alkyl$ -sulfonyl- or phenyl;
- 10 R^4 represents hydrogen, hydroxy, Ar^3 -oxy, Ar^4 - $C_{1-4}alkyloxy$ -, $C_{1-4}alkyloxy$ -, $C_{2-4}alkenyloxy$ - optionally substituted with Het^{12} or R^4 represents $C_{1-4}alkyloxy$ substituted with one or where possible two or more substituents selected from $C_{1-4}alkyloxy$ -, hydroxy, halo, Het^2 -, - NR^7R^8 , -carbonyl- NR^9R^{10} or Het^3 -carbonyl-;
- 15 R^5 and R^6 are each independently selected from hydrogen or $C_{1-4}alkyl$;
- 20 R^7 and R^8 are each independently selected from hydrogen, $C_{1-4}alkyl$, Het^8 , aminosulfonyl-, mono- or di ($C_{1-4}alkyl$)-aminosulfonyl, hydroxy- $C_{1-4}alkyl$ -, $C_{1-4}alkyl$ -oxy- $C_{1-4}alkyl$ -, hydroxycarbonyl- $C_{1-4}alkyl$ -, $C_{3-6}cycloalkyl$, Het^9 - carbonyl- $C_{1-4}alkyl$ -, Het^{10} -carbonyl-, polyhydroxy- $C_{1-4}alkyl$ -, Het^{11} - $C_{1-4}alkyl$ - or Ar^2 - $C_{1-4}alkyl$;
- 25 R^9 and R^{10} are each independently selected from hydrogen, $C_{1-4}alkyl$, $C_{3-6}cycloalkyl$, Het^4 , hydroxy- $C_{1-4}alkyl$ -, $C_{1-4}alkyloxyC_{1-4}alkyl$ - or polyhydroxy- $C_{1-4}alkyl$ -;
- 30 R^{11} represents hydrogen, $C_{1-4}alkyl$, Het^5 , Het^6 - $C_{1-4}alkyl$ -, $C_{2-4}alkenylcarbonyl$ - optionally substituted with Het^7 - $C_{1-4}alkylaminocarbonyl$ -, $C_{2-4}alkenylsulfonyl$ -, $C_{1-4}alkyloxyC_{1-4}alkyl$ - or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or $C_{1-4}alkyloxy$ -;
- 35 R^{12} represents hydrogen, $C_{1-4}alkyl$, $C_{1-4}alkyl$ -oxy-carbonyl-, Het^{17} , Het^{18} - $C_{1-4}alkyl$ -, $C_{2-4}alkenylcarbonyl$ - optionally substituted with Het^{19} - $C_{1-4}alkylaminocarbonyl$ -, $C_{2-4}alkenylsulfonyl$ -, $C_{1-4}alkyloxyC_{1-4}alkyl$ - or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or $C_{1-4}alkyloxy$ -;
- 40 R^{13} represents hydrogen, $C_{1-4}alkyl$, Het^{13} , Het^{14} - $C_{1-4}alkyl$ - or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or $C_{1-4}alkyloxy$ -;
- 45 R^{14} and R^{15} are each independently selected from hydrogen, $C_{1-4}alkyl$, Het^{15} - $C_{1-4}alkyl$ - or $C_{1-4}alkyloxyC_{1-4}alkyl$ -;
- 50 R^{16} and R^{17} are each independently selected from hydrogen, $C_{1-4}alkyl$, Het^{21} - $C_{1-4}alkyl$ - or $C_{1-4}alkyloxyC_{1-4}alkyl$ -;

-51-

Het¹ represents a heterocycle selected from piperidinyl, morpholinyl, piperazinyl, furanyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het¹ is optionally substituted with one or where possible two or more substituents selected from amino,

5 C₁₋₄alkyl, hydroxy-C₁₋₄alkyl-, phenyl, phenyl-C₁₋₄alkyl-,

C₁₋₄alkyl-oxy-C₁₋₄alkyl- mono- or di(C₁₋₄alkyl)amino- or amino-carbonyl-;

Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, thiomorpholinyl or dithianyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, halo, amino, C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyl-oxy-C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-oxy-C₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino-, mono- or di(C₁₋₄alkyl)amino-C₁₋₄alkyl-, aminoC₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino-sulfonyl-, aminosulfonyl-, aminosulfonyl-;

Het³, Het⁴ and Het⁸ each independently represent a heterocycle selected from

15 morpholinyl, piperazinyl, piperidinyl, furanyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het³, Het⁴ or Het⁸ is optionally substituted with one or where possible two or more substituents selected from hydroxy-, amino-, C₁₋₄alkyl-, C₃₋₆cycloalkyl-C₁₋₄alkyl-, aminosulfonyl-, mono- or di(C₁₋₄alkyl)aminosulfonyl or

20 amino-C₁₋₄alkyl-;

Het⁵ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;

25 Het⁶ and Het⁷ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het⁶ and Het⁷ are optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;

30 Het⁹ and Het¹⁰ each independently represent a heterocycle selected from furanyl, piperidinyl, morpholinyl, piperazinyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het⁹ or Het¹⁰ is optionally substituted C₁₋₄alkyl, C₃₋₆cycloalkyl-C₁₋₄alkyl- or amino-C₁₋₄alkyl-;

35 Het¹¹ represents a heterocycle selected from indolyl or ;

-52-

- Het¹² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, thiomorpholinyl or dithianyl wherein said Het¹² is optionally substituted with one or where possible two or more substituents selected from hydroxy, halo, amino, C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyl-oxy-C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-oxy-C₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino- or mono- or di(C₁₋₄alkyl)amino-C₁₋₄alkyl-;
- 5 Het¹³ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- 10 Het¹⁴ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- 15 Het¹⁵ and Het²¹ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het¹⁵ or Het²¹ are optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- 20 Het¹⁶ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl, 1,3,2-dioxaborolane or piperidinyl wherein said heterocycle is optionally substituted with one or more substituents selected from C₁₋₄alkyl;
- Het¹⁷ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- 25 Het¹⁸ and Het¹⁹ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het¹⁸ and Het¹⁹ are optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- 30 Het²⁰ represents a heterocycle selected from pyrrolidinyl, 2-pyrrolidinyl, piperidinyl, piperazinyl or pyrazolidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-; and

-53-

$\text{Ar}^1, \text{Ar}^2, \text{Ar}^3, \text{Ar}^4$ and Ar^5 each independently represent phenyl optionally substituted with cyano, C_{1-4} alkylsulfonyl-, C_{1-4} alkylsulfonylamino-, aminosulfonylamino-, hydroxy- C_{1-4} alkyl, aminosulfonyl-, hydroxy-, C_{1-4} alkyloxy- or C_{1-4} alkyl.

5 2. A compound according to claim 1 wherein;

Z represents NH;

Y represents $-\text{C}_{3-9}\text{alkyl}-, -\text{C}_{2-9}\text{alkenyl}-, -\text{C}_{1-5}\text{alkyl-oxy-C}_{1-5}\text{alkyl}-,$
 $-\text{C}_{1-5}\text{alkyl-NR}^{13}-\text{C}_{1-5}\text{alkyl}-, -\text{C}_{1-5}\text{alkyl-NR}^{14}-\text{CO-C}_{1-5}\text{alkyl}-, -\text{C}_{1-6}\text{alkyl-NH-CO-}, -$
 $\text{CO-C}_{1-7}\text{alkyl}-, -\text{C}_{1-7}\text{alkyl-CO-}$ or $\text{C}_{1-6}\text{alkyl-CO-C}_{1-6}\text{alkyl};$

10 X^1 represents O, $-\text{O-C}_{1-2}\text{alkyl}-, -\text{O-N=CH-}, \text{NR}^{11}$ or $-\text{NR}^{11}-\text{C}_{1-2}\text{alkyl}-$; in a particular embodiment X^1 represents a direct bond, $\text{C}_{1-2}\text{alkyl}-, -\text{O-C}_{1-2}\text{alkyl}-, \text{NR}^{11}-, -\text{O-}$ or
 $-\text{O-CH}_2-;$

X^2 represents a direct bond, O, $-\text{O-C}_{1-2}\text{alkyl}-, -\text{O-N=CH-}, \text{NR}^{17}-\text{CO-},$
 $\text{NR}^{17}-\text{CO-C}_{1-2}\text{alkyl}-, \text{C}_{1-2}\text{alkyl}, \text{Het}^{20}-\text{C}_{1-2}\text{alkyl}-, \text{NR}^{12}$ or $\text{NR}^{12}-\text{C}_{1-2}\text{alkyl}-$; in a particular embodiment X^2 represents a direct bond, $\text{C}_{1-2}\text{alkyl}-, -\text{O-C}_{1-2}\text{alkyl},$
 $\text{NR}^{17}-\text{CO-}, \text{NR}^{17}-\text{CO-C}_{1-2}\text{alkyl}-, \text{Het}^{20}-\text{C}_{1-2}\text{alkyl}-, -\text{O-}$ or $-\text{O-CH}_2-;$

R^1 represents hydrogen, cyano, halo or hydroxy, preferably halo;

R^2 represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl-,
 $\text{C}_{1-4}\text{alkyloxycarbonyl-}, \text{Het}^{16}-\text{carbonyl-}, \text{C}_{1-4}\text{alkyl-}, \text{C}_{2-6}\text{alkynyl-}, \text{Ar}^5$ or Het^1 ;

20 in a further embodiment R^2 represents hydrogen, cyano, halo, hydroxy,
or Ar^5 ; in a more particular embodiment R^2 represents hydrogen or halo;

R^3 represents hydrogen;

R^4 represents hydrogen, hydroxy, $\text{C}_{1-4}\text{alkyloxy-}$, $\text{Ar}^4-\text{C}_{1-4}\text{alkyloxy}$ or R^4 represents
 $\text{C}_{1-4}\text{alkyloxy}$ substituted with one or where possible two or more substituents
selected from

$\text{C}_{1-4}\text{alkyloxy-}$ or $\text{Het}^2-;$

R^{11} represents hydrogen, $\text{C}_{1-4}\text{alkyl-}$ or $\text{C}_{1-4}\text{alkyl-oxy-carbonyl-};$

R^{12} represents hydrogen, $\text{C}_{1-4}\text{alkyl-}$ or $\text{C}_{1-4}\text{alkyl-oxy-carbonyl-};$

R^{13} represents hydrogen or $\text{Het}^{14}-\text{C}_{1-4}\text{alkyl}$, in particular morpholinyl- $\text{C}_{1-4}\text{alkyl};$

30 R^{14} represents hydrogen or $\text{C}_{1-4}\text{alkyl};$

R^{17} represents hydrogen, $\text{C}_{1-4}\text{alkyl-}$, $\text{Het}^{21}-\text{C}_{1-4}\text{alkyl}$ or $\text{C}_{1-4}\text{alkyl-oxy-C}_{1-4}\text{alkyl}$; in particular R^{17} represents hydrogen or $\text{C}_{1-4}\text{alkyl};$

Het^1 represents thiazolyl optionally substituted with amino, $\text{C}_{1-4}\text{alkyl}$, hydroxy- $\text{C}_{1-4}\text{alkyl-}$, phenyl, phenyl- $\text{C}_{1-4}\text{alkyl-}$, $\text{C}_{1-4}\text{alkyl-oxy-C}_{1-4}\text{alkyl-}$, mono- or di($\text{C}_{1-4}\text{alkyl})\text{amino-}$ or $\text{amino-carbonyl-};$

35

Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;

In a further embodiment Het² represents a heterocycle selected from morpholinyl or piperidinyl optionally substituted with C₁₋₄alkyl-, preferably methyl;

5 Het¹⁴ represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het¹⁴ is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;

Het¹⁶ represents a heterocycle selected from piperidinyl, morpholinyl or pyrrolidinyl;

10 Het²⁰ represents a heterocycle selected from pyrrolidinyl, 2-pyrrolidinyl or piperidinyl; Het²¹ represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het²¹ is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;

15 Ar⁴ represents phenyl optionally substituted with cyano, hydroxy-, C₁₋₄alkyloxy or C₁₋₄alkyl;

Ar⁵ represents phenyl optionally substituted with cyano, hydroxy, C₁₋₄alkyloxy or C₁₋₄alkyl.

3. A compound according to claim 1 wherein;

20 Z represents NH;

Y represents -C₃₋₉alkyl-, -C₁₋₅alkyl-NR¹³-C₁₋₅alkyl-, -C₁₋₅alkyl-NR¹⁴-CO-C₁₋₅alkyl-, -C₁₋₆alkyl-NH-CO- or -CO-NH-C₁₋₆alkyl-;

X¹ represents -O-, -NR¹¹-, -NR¹⁶-CO-, or -NR¹⁶-CO-C₁₋₂alkyl-;

25 X² represents a direct bond, -C₁₋₂alkyl-, -O-C₁₋₂alkyl, -O-, -O-CH₂- or Het²⁰-C₁₋₂alkyl-;

R¹ represents hydrogen or halo;

R² represents hydrogen, cyano, halo, hydroxycarbonyl-, C₁₋₄alkyloxycarbonyl-, Het¹⁶-carbonyl- or Ar⁵; in particular R² represents hydrogen or halo;

R³ represents hydrogen;

30 R⁴ represents hydrogen, hydroxy, C₁₋₄alkyloxy-, Ar⁴-C₁₋₄alkyloxy or R⁴ represents C₁₋₄alkyloxy substituted with one or where possible two or more substituents selected from

C₁₋₄alkyloxy- or Het²-;

R¹¹ represents hydrogen;

35 R¹² represents hydrogen, C₁₋₄alkyl- or C₁₋₄alkyl-oxy-carbonyl-;

R¹³ represents hydrogen or Het¹⁴-C₁₋₄alkyl, in particular hydrogen or morpholinyl-C₁₋₄alkyl;

-55-

Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;

In a further embodiment Het² represents a heterocycle selected from morpholinyl or piperidinyl optionally substituted with C₁₋₄alkyl-, preferably methyl;

Het¹⁴ represents morpholinyl;

Het¹⁶ represents a heterocycle selected from morpholinyl or pyrrolidinyl;

Het²⁰ represents pyrrolidinyl or piperidinyl;

Ar⁴ represents phenyl;

Ar⁵ represents phenyl optionally substituted with cyano.

4. A compound according to claim 1 or 2 wherein the R¹ substituent is at position 4', the R² substituent is at position 5', the R³ substituent is at position 3 and the R⁴ substituent at position 7 of the structure of formula (I).

15

5. A compound according to any one of claims 1 to 4 wherein a¹-a²=a³-a⁴ represents N-CH=CH-CH.

20

6. A compound according to any one of claims 1 to 4 wherein a¹-a²=a³-a⁴ represents N-CH=N-CH.

7. A compound according to any one of claims 1 to 4 wherein a¹-a²=a³-a⁴ represents CH-CH=N-CH.

25

8. An intermediate of formula

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

a¹-a²=a³-a⁴ represents a divalent radical selected from N-CH=CH-CH or N-CH=N-CH;

30

Y represents -C₃₋₉alkyl-, -C₁₋₅alkyl-NR¹³-C₁₋₅alkyl-, -C₁₋₆alkyl-NH-CO- or -CO-NH-C₁₋₆alkyl-;

R¹ represents hydrogen or halo;

-56-

R² represents hydrogen, cyano, halo, hydroxycarbonyl-, C₁₋₄alkyloxycarbonyl-, Het¹⁶-carbonyl- or Ar⁵;

R⁴ represents hydroxy, C₁₋₄alkyloxy-, Ar⁴-C₁₋₄alkyloxy or R⁴ represents C₁₋₄alkyloxy substituted with one or where possible two or more substituents selected from C₁₋₄alkyloxy- or Het²-;

R¹¹ represents hydrogen;

R¹³ represents Het¹⁴-C₁₋₄alkyl;

Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;

Het¹⁴ represents morpholinyl;

Het¹⁶ represents a heterocycle selected from morpholinyl or pyrrolidinyl;

Ar⁴ represents phenyl;

Ar⁵ represents phenyl optionally substituted with cyano.

15

9. A kinase inhibitor of formula (I) or formula (XXXI).

10. A compound as claimed in any one of claims 1 to 7 for use as a medicine.

20

11. Use of a compound as claimed in any one of claims 1 to 7 in the manufacture of a medicament for treating cell proliferative disorders such as atherosclerosis, restenosis and cancer.

25

12. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and, as active ingredient, an effective kinase inhibitory amount of a compound as described in any one of the claims 1 to 7.

13. An intermediate as claimed in claim 8 for use as a medicine.

30

14. Use of an intermediate as claimed in claim 8 in the manufacture of a medicament for treating cell proliferative disorders such as atherosclerosis, restenosis and cancer.

35

15. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and, as active ingredient, an effective kinase inhibitory amount of an intermediate as claimed in claim 6.

16. A process for preparing a compound as claimed in claims 1 to 7, comprising;

-57-

a) coupling 2-acetoxy-8-chloropyrimido[5,4-d]pyrimidine derivatives (II) with suitable substituted anilines (III), to furnish the intermediates of formula (IV), and deprotecting the intermediates of formula (IV) followed by ring closure under suitable conditions.

5

; or

b) coupling the known 8-chloro-2(methylthio)-pyrimido[5,4-d]pyrimidine with 2-aminophenol derivatives of formula (XXI), yielding the intermediate compounds of formula (XXII). Next, the pyrido[3,2-d]pyrimidine of formula (XXII) is aminated using an aminated alcohol (XXIII) under art known conditions, followed by ring closure under Mitsunobu conditions to give the target compounds of formula (I'')

-58-

17. A method of treating a cell proliferative disorder, the method comprising administering to an animal in need of such treatment a therapeutically effective amount of a compound as claimed in any one of claims 1 to 7.
- 5 18. A method of treating a cell proliferative disorder, the method comprising administering to an animal in need of such treatment a therapeutically effective amount of an intermediate as claimed in claim 8.