MASSACHUSETTS MATHEMATICS LEAGUE JANUARY 2005 BRIEF SOLUTIONS

Round One:

- A. Given points A, B, C consider ABC?, ACB? and CAB? Thus covering all of the six permutations
- B. Expanding #2 and subtracting #1 gives 10x+10y=60. Substituting into #1 for y gives a quadratic in x, x=2 or 4. Note #2 requires first quad solutions.
- C. Factoring the first three terms gets us to (3x+2y+?)(2x-3y+?) whereas factoring the terms $6x^2 29x + 28$ gives (3x-4)(2x-7) so we see the complete factoring is (3x+2y-4)(2x-3y-7)so the intersection is (2,-1)

Round Two:

- A. (32-2x)(40-2x)=560 becomes $x^2 36x + 180=0$. x=30 or 6. Nearest edge is 6. Playground is 20 X 28 so perimeter is 96 ft.
- B. $2x = \frac{2 x x^2}{2 + x}$ becomes $2x = \frac{(2 + x)(1 x)}{2 + x}$ Since $x \ne -2$, 2x = 1 x so x = 1/3
- C. Factoring each side: $(x+1)(x^2-x+1)=(x+1)(x+3)$ so x=-1 or $(x^2-x+1)=(x+3)$ which by quad formula gives $x=1\pm\sqrt{3}$

Round Three:

- A. Only first two factors have zeroes so $x = \pi/6$, $\pi/3$, $2\pi/3$, $5\pi/6$
- B. Factors to $(\cot z 1)(\cot^2 z 3) = 0$ so z = 45, 225 or z = 30, 150, 210, 330 sum is 990, average 165.
- C. $(\sin \theta = 0.35)$ has solutions that are supplementary so sum to π ; $(\tan \theta = 0.80)$ means $(\cot \theta = 1.25)$ and with $(\tan \theta = 1.25)$ gives complementary first quadrant solutions and third quad solutions for sum of $\pi/2 + (2\pi + \pi/2)$ and $(\sec \theta = 1.70)$ gives solutions summing to 2π so final sum is 6π .

Round Four:

- A. Use the quadratic formula or factor as $(\sqrt{6}x + 2)(x \sqrt{6}) = 0$ so $x = \frac{-2}{\sqrt{6}} = \frac{-\sqrt{6}}{3}$ or $x = \sqrt{6}$
- B. For integer coefficients use $(2x+1)(cx-3) = 2cx^2 + (c-6)x 3 = ax^2 2x b$ so b=3 and c-6 = -2 so c=4 and a=2c so a=8.
- C. View the expression as 1 x and notice $x = \frac{1}{4 x}$ so $x^2 4x + 1 = 0$ and $x = 2 + \sqrt{3}$ so $1 x = -1 + \sqrt{3}$ and the answer is 2

Round Five:

- A. The larger triangle is 9-12-15 so its area is 54. The smaller triangle is scaled by 2/3 so it's area is 4/9 the larger triangle; thus the trapezoid is 5/9 of 54 or 30
- B. By AA, \triangle ADE \sim \triangle ACB. Note carefully the order of the vertices. Thus, $5/(12+6) = 12/(x+5) \rightarrow x = 38.2$
- C. If the smaller hexagon has area A the larger has area 16/9 A. so sum is 25/9A. In the smaller hexagon the altitude of one of the 6 equilateral triangles is $2\sqrt{3}$ so the triangle's area is $4\sqrt{3}$ and the hexagon's area = $24\sqrt{3}$ so sum is $\frac{200\sqrt{3}}{3}$