A Quick Overview

- 1. Collect relevant customer data.
- 2. Preprocess and clean the data.
- 3. Engineer meaningful features.
- 4. Analyze data for trends and predictors.
- 5. Select appropriate machine learning algorithm.
- 6. Split data into train and test sets.
- 7. Train the chosen model.
- 8. Evaluate model performance.
- 9. Make predictions and interpret results.
- 10. Deploy and monitor the churn prediction model

In [13]: import pandas as pd
Telecom_churn=pd.read_csv("/Users/asifsiraz/Desktop/telecom_custome

In [14]: Telecom_churn

Out[14]:

ity	Zip Code	Latitude	Longitude	Number of Referrals	 Payment Method	Monthly Charge	Total Charges	Total Refunds	Ch
ier ark	93225	34.827662	-118.999073	2	 Credit Card	65.60	593.30	0.00	
ale	91206	34.162515	-118.203869	0	 Credit Card	-4.00	542.40	38.33	
sta :sa	92627	33.645672	-117.922613	0	 Bank Withdrawal	73.90	280.85	0.00	
ıez	94553	38.014457	-122.115432	1	 Bank Withdrawal	98.00	1237.85	0.00	
illo	93010	34.227846	-119.079903	3	 Credit Card	83.90	267.40	0.00	
sa	91941	32.759327	-116.997260	0	 Credit Card	55.15	742.90	0.00	
ınk	95367	37.734971	-120.954271	1	 Bank Withdrawal	85.10	1873.70	0.00	
Elk	95432	39.108252	-123.645121	0	 Credit Card	50.30	92.75	0.00	
ına ıch	92075	33.001813	-117.263628	5	 Credit Card	67.85	4627.65	0.00	
rra ;ity	96125	39.600599	-120.636358	1	 Bank Withdrawal	59.00	3707.60	0.00	

In [15]: Telecom_churn.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 38 columns):

#	Column	Non-Null Count	Dtype
0	Customer ID	7043 non-null	object
1	Gender	7043 non-null	object
2	Age	7043 non-null	int64
3	Married	7043 non-null	object
4	Number of Dependents	7043 non-null	int64
5	City	7043 non-null	object
6	Zip Code	7043 non-null	int64
7	Latitude	7043 non-null	float64
8	Longitude	7043 non-null	float64
9	Number of Referrals	7043 non-null	int64
10	Tenure in Months	7043 non-null	int64
11	Offer	7043 non-null	object
12	Phone Service	7043 non-null	object
13	Avg Monthly Long Distance Charges	6361 non-null	float64
14	Multiple Lines	6361 non-null	object
15	Internet Service	7043 non-null	object
16	Internet Type	5517 non-null	object
17	Avg Monthly GB Download	5517 non-null	float64
18	Online Security	5517 non-null	object
19	Online Backup	5517 non-null	object
20	Device Protection Plan	5517 non-null	object
21	Premium Tech Support	5517 non-null	object
22	Streaming TV	5517 non-null	object
23	Streaming Movies	5517 non-null	object
24	Streaming Music	5517 non-null	object
25	Unlimited Data	5517 non-null	object
26	Contract	7043 non-null	object
27	Paperless Billing	7043 non-null	object
28	Payment Method	7043 non-null	object
29	Monthly Charge	7043 non-null	float64
30	Total Charges	7043 non-null	float64
31	Total Refunds	7043 non-null	float64
32	Total Extra Data Charges	7043 non-null	int64
33	Total Long Distance Charges	7043 non-null	float64
34	Total Revenue	7043 non-null	float64
35	Customer Status	7043 non-null	object
36	Churn Category	1869 non-null	object
37	Churn Reason	1869 non-null	object
dtype	es: float64(9), int64(6), object(23	3)	

dtypes: float64(9), int64(6), object(23)

memory usage: 2.0+ MB

In [16]:	Telecom_churn.isna().sum()							
Out[16]:	Customer ID	0						
	Gender	0						
	Age	0						
	Married	0						
	Number of Dependents	0						
	City	0						
	Zip Code	0						
	Latitude	0						
	Longitude	0						
	Number of Referrals	0						
	Tenure in Months	0						
	Offer	0						
	Phone Service	0						
	Avg Monthly Long Distance Charges	682						
	Multiple Lines	682						
	Internet Service	0						
	Internet Type	1526						
	Avg Monthly GB Download	1526						
	Online Security	1526						
	Online Backup	1526						
	Device Protection Plan	1526						
	Premium Tech Support	1526						
	Streaming TV	1526						
	Streaming Movies	1526						
	Streaming Music	1526						
	Unlimited Data	1526						
	Contract	0						
	Paperless Billing	0						
	Payment Method	0						
	Monthly Charge	0						
	Total Charges	0						
	Total Refunds	0						
	Total Extra Data Charges	0						
	Total Long Distance Charges	0						
	Total Revenue	0						
	Customer Status	0						
	Churn Category	5174						
	Churn Reason	5174						
	dtype: int64							

In [17]: Telecom_churn["Customer Status"].value_counts()

Out[17]: Stayed 4720 Churned 1869

Joined 454

Name: Customer Status, dtype: int64

```
In [18]: import matplotlib.pyplot as plt

status_counts = Telecom_churn["Customer Status"].value_counts()
plt.bar(status_counts.index, status_counts.values)

plt.title("Customer Status")
plt.xlabel("Status")
plt.ylabel("Count")
plt.xticks()
plt.show()
```


In [19]: Telecom_churn["Churn Category"].value_counts()

Out[19]: Competitor 841
Dissatisfaction 321
Attitude 314
Price 211
Other 182

Name: Churn Category, dtype: int64

In [20]: import matplotlib.pyplot as plt status_counts = Telecom_churn["Churn Category"].value_counts() plt.bar(status_counts.index, status_counts.values) plt.title("The reason for Customer Churned") plt.xlabel("category") plt.ylabel("Count") plt.xticks() plt.show()

05/07/2023, 5:19 pm

```
In [21]: Telecom_churn.hist(figsize=(22,10))
Out[21]: array([[<AxesSubplot:title={'center':'Age'}>,
                     <AxesSubplot:title={'center':'Number of Dependents'}>,
                     <AxesSubplot:title={'center':'Zip Code'}>,
                     <AxesSubplot:title={'center':'Latitude'}>],
                    [<AxesSubplot:title={'center':'Longitude'}>,
                     <AxesSubplot:title={'center':'Number of Referrals'}>,
                     <AxesSubplot:title={'center':'Tenure in Months'}>,
                     <AxesSubplot:title={'center':'Avg Monthly Long Distance Ch</pre>
           arges'}>],
                    [<AxesSubplot:title={'center':'Avg Monthly GB Download'}>,
                     <AxesSubplot:title={'center':'Monthly Charge'}>,
                     <AxesSubplot:title={'center':'Total Charges'}>,
                     <AxesSubplot:title={'center':'Total Refunds'}>j,
                    [<AxesSubplot:title={'center':'Total Extra Data Charges'}>,
                     <AxesSubplot:title={'center':'Total Long Distance Charges'</pre>
           }>,
                     <AxesSubplot:title={'center':'Total Revenue'}>, <AxesSubpl</pre>
           ot:>]],
                  dtype=object)
            600
                                       2 4 6
Number of Referrals
                                                                              34 36 38 40
Avg Monthly Long Distance Charges
                 –122 –120 –118 –116
Avg Monthly GB Download
                                                                                  20 30
Total Refunds
                                        4 6
Monthly Charge
                                1500
           1000
                                                             4000 6000
Total Revenue
                 20 40 60
Total Extra Data Charges
```

500 1000 1500 2000 2500 3000 350

In [22]: Telecom_churn=Telecom_churn.dropna(axis=1)
Telecom_churn

Out[22]:

City	Zip Code	Latitude	Longitude	Number of Referrals	 Contract	Paperless Billing	Payment Method	N
Frazier Park	93225	34.827662	-118.999073	2	 One Year	Yes	Credit Card	
Glendale	91206	34.162515	-118.203869	0	 Month- to-Month	No	Credit Card	
Costa Mesa	92627	33.645672	-117.922613	0	 Month- to-Month	Yes	Bank Withdrawal	
Martinez	94553	38.014457	-122.115432	1	 Month- to-Month	Yes	Bank Withdrawal	
Camarillo	93010	34.227846	-119.079903	3	 Month- to-Month	Yes	Credit Card	
La Mesa	91941	32.759327	-116.997260	0	 One Year	No	Credit Card	
Riverbank	95367	37.734971	-120.954271	1	 Month- to-Month	Yes	Bank Withdrawal	
Elk	95432	39.108252	-123.645121	0	 Month- to-Month	Yes	Credit Card	
Solana Beach	92075	33.001813	-117.263628	5	 Two Year	No	Credit Card	
Sierra City	96125	39.600599	-120.636358	1	 Two Year	No	Bank Withdrawal	

In [23]:	<pre>Telecom_churn.isna().sum()</pre>	
Out[23]:	Customer ID	0
	Gender	0
	Age	0
	Married	0
	Number of Dependents	0
	City	0
	Zip Code	0
	Latitude	0
	Longitude	0
	Number of Referrals	0
	Tenure in Months	0
	Offer Canada	0
	Phone Service	0
	Internet Service Contract	0
		0
	Paperless Billing Payment Method	0
	Monthly Charge	0
	Total Charges	0
	Total Refunds	0
	Total Extra Data Charges	0
	Total Long Distance Charges	0
	Total Revenue	0
	Customer Status	0
	dtype: int64	

In [24]: Telecom_churn.describe()

Out[24]:

	Age	Number of Dependents	Zip Code	Latitude	Longitude	Number of Referrals	
count	7043.000000	7043.000000	7043.000000	7043.000000	7043.000000	7043.000000	70 ₄
mean	46.509726	0.468692	93486.070567	36.197455	-119.756684	1.951867	:
std	16.750352	0.962802	1856.767505	2.468929	2.154425	3.001199	2
min	19.000000	0.000000	90001.000000	32.555828	-124.301372	0.000000	
25%	32.000000	0.000000	92101.000000	33.990646	-121.788090	0.000000	
50%	46.000000	0.000000	93518.000000	36.205465	-119.595293	0.000000	2
75%	60.000000	0.000000	95329.000000	38.161321	-117.969795	3.000000	Ę
max	80.000000	9.000000	96150.000000	41.962127	-114.192901	11.000000	7

In [25]: Telecom_churn.corr()

Out[25]:

	Age	Number of Dependents	Zip Code	Latitude	Longitude	Number of Referrals	Tenure in Months
Age	1.000000	-0.119000	-0.008183	-0.010305	0.007612	-0.025141	0.009927
Number of Dependents	-0.119000	1.000000	0.016493	0.029081	-0.024271	0.278003	0.108237
Zip Code	-0.008183	0.016493	1.000000	0.894769	-0.790564	0.001463	0.007146
Latitude	-0.010305	0.029081	0.894769	1.000000	-0.885979	0.018715	0.011963
Longitude	0.007612	-0.024271	-0.790564	-0.885979	1.000000	-0.009893	-0.009672
Number of Referrals	-0.025141	0.278003	0.001463	0.018715	-0.009893	1.000000	0.326975
Tenure in Months	0.009927	0.108237	0.007146	0.011963	-0.009672	0.326975	1.000000
Monthly Charge	0.134511	-0.125649	-0.002517	-0.021613	0.021052	0.026301	0.239065
Total Charges	0.059684	0.022535	0.001978	-0.002784	0.003811	0.250378	0.826074
Total Refunds	0.024168	0.014023	-0.003797	-0.009901	-0.000597	0.024756	0.059021
Total Extra Data Charges	0.025036	-0.014436	-0.014550	-0.013233	0.010461	0.000350	0.082266
Total Long Distance Charges	0.003065	0.068966	0.005063	0.008029	-0.006923	0.216190	0.674149
Total Revenue	0.048265	0.038038	0.002944	0.000082	0.001062	0.261853	0.853146

```
In [26]: Telecom_churn.corr().hist(figsize=(22,10))
Out[26]: array([[<AxesSubplot:title={'center':'Age'}>,
                     <AxesSubplot:title={'center':'Number of Dependents'}>,
                     <AxesSubplot:title={'center':'Zip Code'}>,
                     <AxesSubplot:title={'center':'Latitude'}>j,
                     [<AxesSubplot:title={'center':'Longitude'}>,
                     <AxesSubplot:title={'center':'Number of Referrals'}>,
                     <AxesSubplot:title={'center':'Tenure in Months'}>,
                     <AxesSubplot:title={'center':'Monthly Charge'}>],
[<AxesSubplot:title={'center':'Total Charges'}>,
                     <AxesSubplot:title={'center':'Total Refunds'}>,
                     <AxesSubplot:title={'center':'Total Extra Data Charges'}>,
                     <AxesSubplot:title={'center':'Total Long Distance Charges'</pre>
           }>],
                     [<AxesSubplot:title={'center':'Total Revenue'}>, <AxesSubpl</pre>
           ot:>,
                     <AxesSubplot:>, <AxesSubplot:>]], dtype=object)
                                                                             5.0
                                                                                   0.0 0.5
Monthly Charge
            10.0
                                         0.4 0.6
Total Refunds
                                                            0.2 0.4 0.6 0.8
Total Extra Data Charges
                                                                                0.0 0.2 0.4 0.6 0.8
Total Long Distance Charges
                   0.0
Total Charges
```

0.4 0.6 Total Revenue

In [27]: import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(15,8))
sns.heatmap(Telecom_churn.corr(),annot=True,cmap="seismic")
plt.show()

In [29]: plt.figure(figsize=(15,8))
 sns.scatterplot(x="Latitude",y="Longitude",data=Telecom_churn,hue="

Out[29]: <AxesSubplot:xlabel='Latitude', ylabel='Longitude'>

In [30]: from sklearn.model_selection import train_test_split

In [31]: Telecom_churn=pd.get_dummies(Telecom_churn)
Telecom_churn

Out[31]:

	Age	Number of Dependents	Zip Code	Latitude	Longitude	Number of Referrals	Tenure in Months	Monthly Charge	To Charg
0	37	0	93225	34.827662	-118.999073	2	9	65.60	593.
1	46	0	91206	34.162515	-118.203869	0	9	-4.00	542.
2	50	0	92627	33.645672	-117.922613	0	4	73.90	280.
3	78	0	94553	38.014457	-122.115432	1	13	98.00	1237.
4	75	0	93010	34.227846	-119.079903	3	3	83.90	267.
7038	20	0	91941	32.759327	-116.997260	0	13	55.15	742.
7039	40	0	95367	37.734971	-120.954271	1	22	85.10	1873.
7040	22	0	95432	39.108252	-123.645121	0	2	50.30	92.
7041	21	0	92075	33.001813	-117.263628	5	67	67.85	4627.
7042	36	0	96125	39.600599	-120.636358	1	63	59.00	3707.

7043 rows × 8187 columns

```
In [32]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import train test split
         # Split the features and target variables
         x=Telecom_churn.drop(["Customer Status_Stayed"],axis=1)
         y=Telecom churn["Customer Status Stayed"]
         # Split the data into training and test sets
         x_train, x_test, y_train, y_test = train_test_split(x, y, test_size
         # Create a Random Forest Classifier
         rf = RandomForestClassifier(n_estimators=150, max_depth=None, max_f
         # Train the classifier on the training data
         rf.fit(x_train, y_train)
         # Evaluate the accuracy on the entire dataset
         accuracy = rf.score(x, y)
         print("Accuracy on the entire dataset:", accuracy)
         # Evaluate the accuracy on the test set
         test_accuracy = rf.score(x_test, y_test)
         print("Accuracy on the test set:", test_accuracy)
         # Evaluate the accuracy on the training set
         train_accuracy = rf.score(x_train, y_train)
         print("Accuracy on the training set:", train_accuracy)
         Accuracy on the entire dataset: 0.9929007525202329
```

In [33]: y_pred=rf.predict(x_train)

Accuracy on the test set: 0.964513839602555

Accuracy on the training set: 1.0

```
In [34]: from sklearn import metrics
import numpy as np
print('R^2:',metrics.r2_score(y_train,y_pred))
print('MAE:',metrics.mean_absolute_error(y_train, y_pred))
print('MSE:',metrics.mean_squared_error(y_train, y_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_train, y_pred)))
```

R^2: 1.0 MAE: 0.0 MSE: 0.0 RMSE: 0.0

```
In [35]: # Split the features and target variables
         x = Telecom_churn.drop(["Customer Status_Stayed"], axis=1)
         y = Telecom churn["Customer Status Stayed"]
         # Split the data into training and test sets
         x_train, x_test, y_train, y_test = train_test_split(x, y, test_size
         # Create a Random Forest Classifier
         rf = RandomForestClassifier(n_estimators=150, max_depth=None, max_f
         # Train the classifier on the training data
         rf.fit(x_train, y_train)
         # Calculate feature importances
         importances = rf.feature_importances_
         # Get the feature names
         feature_names = x.columns
         # Create a DataFrame to store feature importance scores
         feature_importance_df = pd.DataFrame({'Feature': feature_names, 'Im
         # Sort the features by importance in descending order
         feature_importance_df = feature_importance_df.sort_values(by='Impor
         # Display the feature importance scores
         feature_importance_df.head(10)
```

Out [35]:

	Feature	Importance
8184	Customer Status_Churned	0.154526
6	Tenure in Months	0.071887
12	Total Revenue	0.058611
8	Total Charges	0.052277
11	Total Long Distance Charges	0.048051
8176	Contract_Month-to-Month	0.040976
8185	Customer Status_Joined	0.024122
5	Number of Referrals	0.023147
7	Monthly Charge	0.022592
8178	Contract_Two Year	0.022006