9. Differential Analysis of Fluid Flow

8.1. General Procedure

1. a

8.2. Variable Definitions

- ∇ : The gradient operator, $\nabla=\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial u}+\hat{k}\frac{\partial}{\partial z}$
- $\frac{D}{Dt}$: The material derivative, $\frac{D}{Dt} = \frac{\partial}{\partial t} + \vec{V} \cdot \nabla$
- \vec{V} : Velocity vector, $\vec{V} = u\hat{i} + v\hat{j} + w\hat{k}$
- ∇^2 : The Laplacian operator
- P: Pressure

8.3. Formulas

Continuity Equation: $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0$

Cartesian: $\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial y}(\rho v) + \frac{\partial}{\partial z}(\rho w) = 0$

Cylindrical: $\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial (r \rho u)}{\partial r} + \frac{\partial (\rho v)}{\partial \theta} + \frac{\partial (\rho w)}{\partial z} = 0$

Special Case 1: Steady Compressible Flow: $\nabla \cdot (\rho \vec{V}) = 0$

Special Case 2: Incompressible Flow: $\nabla \cdot \vec{V} = 0$

Incompressible flow, constant μ , Navier-Stokes Equation:

$$\rho \frac{D\vec{V}}{Dt} = -\nabla P + \rho \vec{g} + \mu \nabla^2 \vec{V}$$

Constant \dot{q} :

$$T_e = T_i + \frac{q}{\dot{m}c_p}$$

$$\dot{q} = h(T_s - T_b)$$

Constant
$$T_s$$
:
$$T_e = T_s - (T_s - T_i) \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)$$

$$T_s = \frac{T_e - T_i \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)}{1 - \exp\left(-\frac{\dot{m}C_p}{hA_s}\right)}$$

$$\dot{Q} = hA_s\Delta T_{\rm Im}$$

$$T_{\rm Im} = \frac{T_i - T_e}{\ln[(T_s - T_s)/(T_s - T_i)]}$$

For fully developed laminar flow, use Table ??.

For entry region in a circular tube where $T_s = \text{constant}$, use:

(Edwards et al., 1979) Nu =
$$3.66 + \frac{0.0658(D/L) \text{RePr}}{1 + 0.04 [(D/L) \text{RePr}]^{2/3}}$$

For entry region in a circular tube where the difference between T_s and T_b is large, use:

(Sieder and Tate, 1936) Nu =
$$1.86 \left(\frac{\text{RePr}D}{L}\right)^{1/3} \left(\frac{\mu_b}{\mu_s}\right)^{0.14}$$
 $0.6 < \text{Pr} < 5, \quad 0.0044 < \frac{\mu_b}{\mu_s} < 9.75$

All properties for Sieder and Tate should be evaluated at T_b except μ_s which should be evaluated at T_s .

For entry region between two isothermal parallel plates, use:

(Edwards et al., 1979) Nu =
$$7.54 + \frac{0.03(D_h/L) \text{RePr}}{1 + 0.016[(D_h/L) \text{RePr}]^{2/3}}$$
 Re ≤ 2800

For turbulent flow in a circular tube, use:

(Dittus-Boelter, 1930) Nu =
$$0.023 \text{Re}^{0.8} \text{Pr}^n$$

 $n = 0.4$ (Heating), $n = 0.3$ (Cooling)

8.4 General Terms

- Control volume analysis: A method of analysis in which a volume in space is selected and the conservation of mass, momentum, and energy are applied to the volume
- Differential analysis: involves application of differential equations of fluid motion to any and every point in the flow field over a region called the flow domain.