Assignment-IV

1 For these "permutation matrices" find P^{-1} by trial and error (with 1's and 0's):

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

- Find an upper triangular U (not diagonal) with $U^2 = I$ which gives $U = U^{-1}$.
- ³ (Important) If A has row 1 + row 2 = row 3, show that A is not invertible:
 - (a) Explain why Ax = (0, 0, 1) cannot have a solution. Add eqn 1 + eqn 2.
 - (b) Which right sides (b_1, b_2, b_3) might allow a solution to Ax = b?
 - (c) In elimination, what happens to equation 3?

Find the numbers a and b that give the inverse of 5 * eye (4) - ones (4, 4):

$$\begin{bmatrix} 4 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{bmatrix}.$$

What are a and b in the inverse of 6 * eye (5) - ones (5, 5)?

- 5 True or false (with a counterexample if false and a reason if true):
 - (a) A 4 by 4 matrix with a row of zeros is not invertible.
 - (b) Every matrix with 1's down the main diagonal is invertible.
 - (c) If A is invertible then A^{-1} and A^2 are invertible.

6 (Recommended) Prove that A is invertible if $a \neq 0$ and $a \neq b$ (find the pivots or A^{-1}). Then find three numbers c so that C is not invertible:

$$A = \begin{bmatrix} a & b & b \\ a & a & b \\ a & a & a \end{bmatrix} \qquad C = \begin{bmatrix} 2 & c & c \\ c & c & c \\ 8 & 7 & c \end{bmatrix}.$$

7 (Recommended) A is a 4 by 4 matrix with 1's on the diagonal and -a, -b, -c on the diagonal above. Find A^{-1} for this bidiagonal matrix.