מבוא ללוגיקה, הרצאה 7 קומפקטיות וגדירות

שרון מלטר, אתגר 17 13 בנובמבר 2024

תוכן עניינים

3													 																										ī	מר	Tī	הכ	1		1
3													 																	ת	יו	קנ	עי	7	ות	יכ	זפ	ן ל	בי	יר	וֹשׂ	הכ	1	i	2
3		 			 										 																						v	שפ	מ			2.1			
3		 			 										 															١	שון	אנ	7	ון	כיוו	;;	וה	וכו	ה			2.2			
3													 				5	לוו	ור	X.	הנ	1	ת	מו	'לו	וש	ה	v	פו	וש	٥	אל	y	0	ושכ	ה	ון	כיו	ה	זת	כר	הוי	1		3
3	•																																					ות	טי	29	מפ	קונ	,	4	1
3		 			 										 																ī	עוי	בי	צ	:ה:	צי	יק	פל	X			4.1			
3		 			 										 																		ה	ענ	זטי	1	ורנ	וכו	n		4	4.2			
4													 															. (C.	P_{\cdot}	L	ל	IJ	ח'	בל	הג	\supset	ות	טי	29	מפ	קונ	,	!	5
4		 	 •	•	 										 											ī	קו	"	ì	ī	צר	בו	קו	n	אל) :	ות	־יר	גז			5.1	Ļ		
4		 			 										 						ה	ייך	גד	ī	נר	יינ	N	ī	צו	בו	'ק	ש	ה	בח	הוכ	1 -	ה	וגמ	T			5.2			

1 הקדמה

היום נלמד על שני מושגים חדשים ויפים, קומפקטיות וגדירות. הישארו איתנו.

2 הקשר בין ספיקות לעקביות

2.1 משפט

קבוצת הנוסחאות Γ הינה עקבית אם"ם קיים לה מודל (כלומר, אם"ם היא ספיקה)

2.2 הוכחה; כיוון ראשון

- 1. יהי סט נוסחאות Γ ספיק. נסמן ב־ v מודל שלו. נניח בשלילה ש־ Γ איננו עקבי, כך שלפי הגדרה Γ של עקביות, קיימת נוסחא ψ כך ש־ Γ איננו עקבי, כך שלפי הגדרה Γ של עקביות, קיימת נוסחא τ כך ש־ τ איי, לפי משפט הנאותות, מתקיים τ וגם τ וגם τ איי, לפי משפט הנאותות, מתקיים τ וגם τ וגם של עקבית וגם ספיקה.
 - 2. הכיוון השני של המשפט מסובך יותר. נחזור אליו בהמשך, לאחר שנלמד מספר טענות שימושיות אחרות.

3 הוכחת הכיוון השלם של משפט השלמות והנאותות

 $\Gamma \vdash_{CPL} A \Rightarrow \Gamma \vdash_{HPC} A$ כלומר, נוכיח כי $\Gamma \vdash_{CPL} A \Rightarrow \Gamma \vdash_{HPC} A$ כלומר, נוכיח כי $\Gamma \vdash_{CPL} A$, כך שלסט הנוסחאות $\Gamma \cup \{\neg A\}$ לא קיים מודל. לפי הכיוון שהוכחנו מקודם (על הקשר בין עקביות לספיקות) הסט $\Gamma \cup \{A\}$ איננו עקבי, כך ש־ $\Gamma \vdash_{HPC} A$ (כזכור מההרצאה הקודמת, $\Gamma \cup \{\neg A\}$ אם"ם לא מתקיים $\Gamma \vdash_{HPC} \neg A$)

4 קומפקטיות

ישנם שני משפטי קומפקטיות, שהינם שקולים;

- . לסט נוסחאות $T \subseteq T$ קיים מודל אם"ם לכל קבוצה סופית $T \subseteq T$ קיים מודל.
 - $\Gamma \vdash_{CPL} \psi$ אם"ם קיימת קבוצה סופית ר $\Gamma \subseteq T$ כך שי $T \vdash_{CPL} \psi ullet$

4.1 אפליקציה: צביעה

גרף אוג פרול ולבן כך שאף אוג שכנים אדום, ירוק, כחול ולבן כך שאף אוג שכנים G=(V,E) אינו באותו צבע.

טענה: גרף הינו 4־צביע אם"ם כל אחד מתתי־הגרפים הסופיים שלו הינו 4־צביע.

. הוא G הוא G היים מודל אם"ם G היים הגרף היינו G היינו G היינו G הוא G הוא G הוא G

4.2 הוכחת הטענה

יהי גרף (0,E) ונסמן $V=\{1,...\}$ ונסמן $V=\{1,...\}$ ונסמן G=(V,E) ונסמן G=(V,E) יהי גרף נשתמש במשתנים האטומיים $V=\{1,...\}$ וואר אמר אכל לכל $i\neq j$ לכל $i\neq j$ לכל $i\neq j$ לכל $i\neq j$ לכל אחד מהם הוא אמת או שקר. הצבע הינו אמת אם צומת i צבוע בצבע זה ור i הינו אמת אם הצמתים i הינם שכנים) במו כן נגדיר i אואר אומרת i באבע i ואת הטענה i ואת הטענה i האומרת "כל צומת צבוע בצבע כלשהו".

 $B_i^{white},~B_i^{green},~B_i^{blue}$ את האופן דומה את ונגדיר באופן $B_i^{red}=red_i o (\neg green_i \wedge \neg blue_i \wedge \neg white_i)$ כמו כן, לכל ז, נגדיר; "כל צומת צבוע לכל היותר בצבע אחד". $T_B = \{B_i^c | c \in \{white, green, red, blue\}\}$ הטענה

הטענה . $C^{white}_{ij},~C^{green}_{ij},~C^{blue}_{ij}$ את דירר את באופן דומה ובאופן $C^{red}_{ij}=red_i \wedge e_{ij} o \neg red_j$ הטענה ובסוף, לכסוף, לכל לכ אזי הם לא באותו $i,\ j$ הצמתים קשת קיימת אומרת "אם אומרת $T_C=\{C_{ij}^c|\ c\in\{white,\ green,\ red,\ blue\}\}$

 $T_G = T_A \cup T_B \cup T_C$ נשים לב ששלושת הטענות T_A , הינן הכרחיות ומספקות לכך ש־ 4 G נשים לב הינן הכרחיות הינן הכרחיות הטענות אינן הכרחיות ומספקות לכך ש־ זוהי כל הבנייה. הרבה מילים בשביל רעיון פשוט :)

.כעת נוכל להוכיח שאם קיים ל־ T_G מודל, אזי G הינו G הינו G

נניח כי קיים מודל ל־ $T_A,\ T_B,\ T_C$ כך שנוכל לצבוע את צמתי G לפי הצבעים אשר שנוכל ל $T_A,\ T_B,\ T_C$ נניח כי קיים מודל ל־ לפי והמספקים והמספקים והמספקים והמספקים $.red_i,\ green_i,\ blue_i,\ white_i$ התנאים האטומיים לפי לצביעה חוקית.

בעזרת משפט הקומפקטיות, נקבל ששלושת הטענות הבאות שקולות;

- . הינו 4־צביע G •
- ל־ T_G קיים מודל.
- . לכל תת־קבוצה (סופית) של T_G קיים מודל ullet

קומפקטיות כהגבלה של CPL

 ${f T}$ של מודלים שהינן שהינן מודלים את סט האיווליואציות בר ${f M}(T)$ סימון: תהי תאוריה ${f T}$

M(T) = V כך ש־ T קיימת תאוריה V קבוצת איווליואציות לכל קבוצת איווליואציות לכל קבוצת איווליואציות א התשובה היא לא :)

קבוצת איווליואציות שאכן קיימת עבורה תאוריה כזו, מכונה **גדירה** (definable).

5.1 גדירות של הקבוצה הריקה

ראם ∅ היא גדירה! ־

 $T = \{p, \neg p\}$ עבור

האם קבוצת כל האיווליואציות גדירה!

 $T = \{p \vee \neg p\}$ עבור

5.2 דוגמה־ הוכחה שקבוצה איננה גדירה

.נגדיר V_{fin} כקבוצת האיווליואציות אשר נותנות ערך אמת למספר סופי אטומיים עגדיר V_{fin}

 $T \cup \{p_1, p_2..., \}$ וובנה את הקבוצה $M(T) = V_{fin}$ עבורה דעוריה עניח בשלילה שקיימת תאוריה עודה

יהי v מודל כלשהו של T אזי v חייב להעניק ערך אמת למספר סופי של אטומים, ולכן לא יכול להיות שהוא מודל $T \cup \{p_1, p_2, ...\}$ אזי, לפי משפט הקומפקטיות, לא קיים מודל ל־ $\{p_1, p_2, ...\}$ של

 Γ אשר מעניקה ערך אמת לכל האטומים שבי $T \cup \{p_1,p_2,...\}$ ותהי איווליואציה ערך אשר תת־קבוצה סופית של $v \in v_{fin}$ טופית, מתקיים Γ מאחר שי מאחר האטומים.

v אזי, $T\subseteq T\cup\{p_1,p_2,...\}$ אזי, לפי ההנחה שלנו, v הינו מודל של T ולכן גם של $T\cap T$, כך שמאחר ש $\Gamma \cap \{p_1, p_2, ...\}$ מודל של

אנחנו יודעים שלכל תת־קבוצה סופית של $\{p_1,p_2,...\}$ קיים מודל ולכן לפי משפט הקומפקטיות גם ל־ קיים. $T \cup \{p_1, p_2, ...\}$

, קיבלנו סתירה, ולכן v_{fin} אכן לא גדירה