DSA 8070 R Session 2: Matrix Algebra

Whitney

September 05, 2022

Contents

Motor Trend Car Road Tests Data
Mean Vector and Covariance Matrix
Inverse Matrix
Orthogonal Matrix Example
Eigenvalues and Eigenvectors
Spectral Decomposition
Determinant and Trace
Square-Root Matrices
Partitioning Random vectors

Motor Trend Car Road Tests Data

```
data(mtcars)
vars <- which(names(mtcars) %in% c("mpg", "disp", "hp", "drat", "wt"))
cars <- mtcars[, vars]</pre>
```

Mean Vector and Covariance Matrix

```
(mean <- apply(cars, 2, mean))

## mpg disp hp drat wt
## 20.090625 230.721875 146.687500 3.596563 3.217250

n <- dim(cars)[1]; p <- dim(cars)[2]
X <- as.matrix(cars)
ones <- rep(1, n)
(meanCal <- (1 / n) * t(X) %*% ones)</pre>
```

```
##
              [,1]
## mpg
       20.090625
## disp 230.721875
## hp
       146.687500
## drat
         3.596563
## wt
          3.217250
(S <- cov(cars))
##
                           disp
                                        hp
                                                  drat
                                                                wt
                mpg
                    -633.09721 -320.73206
          36.324103
                                             2.1950635 -5.1166847
## disp -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
        -320.732056
                    6721.15867 4700.86694 -16.4511089 44.1926613
                     -47.06402 -16.45111
## drat
          2.195064
                                             0.2858814 -0.3727207
## wt
         -5.116685
                     107.68420
                                  44.19266 -0.3727207
(Scal \leftarrow (1 / (n - 1)) * t(X) %*% (diag(n) - (1 / n) * ones %*% t(ones)) %*% X)
##
                           disp
                                        hp
                                                  drat
                mpg
## mpg
         36.324103 -633.09721 -320.73206
                                            2.1950635 -5.1166847
## disp -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
       -320.732056 6721.15867 4700.86694 -16.4511089 44.1926613
## drat
          2.195064
                     -47.06402 -16.45111
                                            0.2858814 -0.3727207
## wt
         -5.116685
                     107.68420
                                  44.19266 -0.3727207
```

Inverse Matrix

Orthogonal Matrix Example

```
Q <- matrix(c(2, 1, 2, -2, 2, 1, 1, 2, -2), ncol = 3) / 3
#check
(Q %*% t(Q))

## [1,] [,2] [,3]
## [2,] 0 1 0
## [2,] 0 0 1</pre>
```

Eigenvalues and Eigenvectors

```
eigen <- eigen(S)
(S %*% eigen$vectors[, 1] / eigen$vectors[, 1])
##
            [,1]
## mpg 18636.79
## disp 18636.79
## hp
        18636.79
## drat 18636.79
## wt
        18636.79
eigen$values[1]
## [1] 18636.79
t(eigen$vectors[, 1]) %*% eigen$vectors[, 1]
        [,1]
##
## [1,]
```

Spectral Decomposition

wt

```
temp \leftarrow array(dim = c(5, 5, 5))
for (i in 1:5){
  temp[i,,] <- eigen$values[i] * eigen$vectors[, i] %*% t(eigen$vectors[, i])</pre>
# Check the spectral decomposition
(out <- apply(temp, 2:3, sum))</pre>
##
                           [,2]
                                      [,3]
                                                   [,4]
               [,1]
                                                               [,5]
## [1,]
          36.324103 -633.09721 -320.73206
                                             2.1950635 -5.1166847
## [2,] -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
## [3,] -320.732056 6721.15867 4700.86694 -16.4511089 44.1926613
## [4,]
           2.195064
                      -47.06402 -16.45111
                                             0.2858814 -0.3727207
## [5,]
          -5.116685
                      107.68420
                                  44.19266 -0.3727207
                                                          0.9573790
S
                           disp
##
                                        hp
                                                  drat
                mpg
          36.324103
                    -633.09721 -320.73206
                                             2.1950635 -5.1166847
## mpg
## disp -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
        -320.732056 6721.15867 4700.86694 -16.4511089 44.1926613
## hp
## drat
           2.195064
                     -47.06402 -16.45111
                                             0.2858814 -0.3727207
          -5.116685
                     107.68420
                                  44.19266 -0.3727207
                                                          0.9573790
```

Determinant and Trace

wt

```
# Trace
(trace <- sum(diag(S)))</pre>
## [1] 20099.23
sum(eigen$values)
## [1] 20099.23
# Determinant
det(S)
## [1] 3951786
prod(eigen$values)
## [1] 3951786
Square-Root Matrices
temp1 \leftarrow array(dim = c(5, 5, 5))
for (i in 1:5){
 temp1[i,,] <- (1 / eigen$values[i]) * eigen$vectors[, i] %*% t(eigen$vectors[, i])
# Check the spectral decomposition
(out1 <- apply(temp1, 2:3, sum))
##
              [,1]
                         [,2]
                                     [,3]
                                              [,4]
## [1,] 0.1695494031 -0.0006468718 0.0058975274 -0.29977161 0.58997555
## [3,] 0.0058975274 -0.0003801427 0.0008208474 -0.02678451 0.02595898
## [5,] 0.5899755523 -0.0375108878 0.0259589804 0.40558365 7.37641228
S_{inv}
##
                         disp
                                      hp
                                              drat
                                                          wt
              mpg
## mpg
       0.1695494031 \ -0.0006468718 \ \ 0.0058975274 \ -0.29977161 \ \ 0.58997555
## hp
       0.0058975274 \ -0.0003801427 \ \ 0.0008208474 \ -0.02678451 \ \ 0.02595898
```

drat -0.2997716134 0.0225759526 -0.0267845083 8.50376340 0.40558365

 $0.5899755523 \ -0.0375108878 \ \ 0.0259589804 \ \ 0.40558365 \ \ 7.37641228$

```
temp2 \leftarrow array(dim = c(5, 5, 5))
for (i in 1:5){
  temp2[i,,] <- sqrt(eigen$values[i]) * eigen$vectors[, i] %*% t(eigen$vectors[, i])
}
out2 <- apply(temp2, 2:3, sum)</pre>
(out2 %*% out2)
                            [,2]
                                        [,3]
##
               [,1]
                                                    [,4]
                                                                 [,5]
## [1,]
          36.324103 -633.09721 -320.73206
                                              2.1950635
                                                         -5.1166847
## [2,] -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
## [3,] -320.732056 6721.15867 4700.86694 -16.4511089 44.1926613
## [4,]
           2.195064
                      -47.06402 -16.45111
                                              0.2858814 -0.3727207
## [5,]
                      107.68420
                                   44.19266 -0.3727207
        -5.116685
                                                           0.9573790
S
##
                            disp
                                         hp
                                                    drat
                                                                  wt
                mpg
                    -633.09721 -320.73206
                                              2.1950635
## mpg
          36.324103
                                                         -5.1166847
## disp -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
## hp
        -320.732056 6721.15867 4700.86694 -16.4511089 44.1926613
## drat
           2.195064
                      -47.06402 -16.45111
                                              0.2858814 -0.3727207
          -5.116685
                      107.68420
                                   44.19266 -0.3727207
## wt
                                                           0.9573790
Partitioning Random vectors
Let's partitioning the variables into two groups
  1. disp, hp, wt
  2. mpg, drat
vars1 <- which(names(mtcars) %in% c("disp", "hp", "wt"))</pre>
vars2 <- which(names(mtcars) %in% c("mpg", "drat"))</pre>
carPar <- mtcars[, c(vars1, vars2)]</pre>
(Sigma11 <- cov(carPar[1:3, 1:3]))
##
            disp
                         hp
## disp 901.3333 294.66667 7.410000
## hp
        294.6667
                  96.33333 2.422500
## wt
          7.4100
                   2.42250 0.077175
(Sigma22 <- cov(carPar[4:5, 4:5]))
##
                    drat
            mpg
```

mpg

3.6450 -0.09450

drat -0.0945 0.00245

(Sigma12 <- cov(carPar)[1:3, 4:5])

```
## disp -633.097208 -47.0640192
## hp -320.732056 -16.4511089
## wt -5.116685 -0.3727207
```