武汉大学 2020-2021 学年第一学期期末考试

微积分 1 · A 卷 · 答题卡 (1)

	学号填涂区											
0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9

姓名:_____

学院: ______

注意: 本试卷共 2 张答题卡, 14 道题.

- 1. 两张答题卡都务必填涂学号信息.
- 2. 超出指定区域的答案无效. 请使用黑色笔,在指定区域内答题.
- 3. 严禁在答卷上另外粘贴纸张. 在草稿纸上答题无效.

1. (6 分) 计算 $\lim_{n\to\infty} \left(\frac{1}{n} + \sqrt[n]{3}\right)^n$.

2. (6 分) 求常数 a, b, 使得 $f(x) = \begin{cases} e^{2x} + b, & (x \le 0), \\ \sin ax, & (x > 0) \end{cases}$ 在点 x = 0 可导.

3. (6 分) 找出函数 $f(x) = \frac{1}{1 - e^{\frac{x}{1-x}}}$ 的所有间断点, 并判断其类型.

4. (6 分) 已知当 $x \to 0$ 时, $3x - 4\sin x + \sin x \cos x$ 与 x^n 为同阶无穷小, 求正整数 n.

请在各题对应答题区域内作答,超出矩形边框限定区域的答案无效

$5. (6 分) 求极限 \lim_{n \to \infty} \left(\right.$	$\frac{n}{n^2+1^2}$ +	$\frac{n}{n^2+2^2}+\cdots$	$\cdot + \frac{n}{n^2 + n^2}$.
---	-----------------------	----------------------------	---------------------------------

7. (6 分) 已知
$$\lim_{x \to +\infty} \left(\frac{x-a}{x+a}\right)^x = \int_a^{+\infty} x e^{-2x} dx$$
, 求常数 a .

6.
$$(6 分)$$
 设 $f(x) = \begin{cases} \frac{1}{2} \sin x, & 0 \leqslant x \leqslant \pi, \\ 0, &$ 其他. 求 $\Phi(x) = \int_0^x f(t) dt. \end{cases}$

8. (6 分) 确定常数
$$a, b, c$$
 的值, 使 $\lim_{x\to 0} \frac{ax - \sin x}{\int_b^x \ln(1+t^2) dt} = c$, 这里 $c \neq 0$.

武汉大学 2020-2021 学年第一学期期末考试

微积分 1 · A 卷 · 答题卡 (2)

	学号填涂区											
0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9	9

姓名:_____

学院: _____

注意: 本试卷共 2 张答题卡, 14 道题.

- 1. 两张答题卡都务必填涂学号信息.
- 2. 超出指定区域的答案无效. 请使用黑色笔,在指定区域内答题.
- 3. 严禁在答卷上另外粘贴纸张. 在草稿纸上答题无效.

9.	(10分)	设函数	f(x)	有二阶连续导数	女,且	$\lim_{x \to 0} \frac{1}{x}$	$\frac{f(x)}{x} = 0,$	$\frac{\mathrm{d}^2 f}{\mathrm{d}x^2}\Big _{x}$	$=4, \bar{\mathbb{X}}$	$\lim_{x\to 0}$	[1 +	$\frac{f(x)}{x} \bigg]$	$\frac{1}{x}$
----	-------	-----	------	---------	-----	------------------------------	-----------------------	---	-------------------------	-----------------	------	-------------------------	---------------

10. (8 分) 如图, 设有半径为 10 米的半球形水池, 池内装满水, 试求将池内水从池顶全部抽出池外所耗费的功. (水的密度 $\rho=1000\,\mathrm{kg/m^3}$) γ_{\uparrow}

11. (8 分) 设函数 f(x) 在 $[-\pi, \pi]$ 上连续,且 $f(x) = \frac{x}{1 + \cos^2 x} + \int_{-\pi}^{\pi} f(x) \sin x \, dx$,求 f(x).

12. (8 分) 已知参数方程 $\begin{cases} x = 2(1 - \cos \theta), \\ y = 4\sin \theta. \end{cases}$ 求 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$.

13. (8 分) 设函数 f(x) 在区间 [0,1] 上三阶可导,且 f(0)=f(1)=0. 设 $F(x)=x^2f(x)$,求证: 存 在 $\xi\in(0,1)$,使得 $F'''(\xi)=0$.

- 14. (10 分) 设直线 y = tx (0 < t < 1) 与抛物线 $y = x^2$ 所围成的图形面积为 S_1 , 它们与直线 x = 1 所围成的图形面积为 S_2 .
- (1) 试确定 t 的值, 使 S_1+S_2 达到最小, 并求出最小值;
- (2) 求该最小值所对应的平面图形阴影部分围绕 x 轴旋转一周所得旋转体的体积.

