Database Systems, Even 2020-21

ER Diagram

Keys

- A **super key** of an entity set is a set of one or more attributes whose values uniquely determine each entity
- A candidate key of an entity set is a minimal super key
 - customer-id is candidate key of customer
 - account-number is candidate key of account
- Although several candidate keys may exist, one of the candidate keys is selected to be the primary key
- Primary keys provide a way to specify how entities and relations are distinguished
- We will consider:
 - Entity sets
 - Relationship sets
 - Weak entity sets

Primary Key for Entity Sets

- By definition, individual entities are distinct
- From database perspective, the differences among them must be expressed in terms of their attributes
- The values of the attribute values of an entity must be such that they can uniquely identify the entity
 - No two entities in an entity set are allowed to have exactly the same value for all attributes
- A key for an entity is a set of attributes that suffice to distinguish entities from each other

Primary Key for Relationship Sets

- To distinguish among the various relationships of a relationship set we use the individual *primary keys* of the
 entities in the relationship set
 - Let R be a relationship set involving entity sets E1, E2, ..., En
 - The primary key for R is consists of the union of the primary keys of entity sets E1, E2, ..., En
 - If the relationship set R has attributes a1, a2, ..., am associated with it, then the primary key of R also includes the attributes a1, a2, ..., am
- Example: relationship set advisor
 - The primary key consists of instructor.ID and student.ID
- The choice of the *primary key* for a relationship set depends on the mapping cardinality of the relationship set

Choice of Primary Key for Binary Relationship

- Many-to-Many relationships: The preceding union of the primary keys is a minimal super key and is chosen as
 the primary key
- One-to-Many relationships: The primary key of the many side is a minimal super key and is used as the primary key
- Many-to-one relationships: The primary key of the many side is a minimal super key and is used as the primary key
- One-to-one relationships: The primary key of either one of the participating entity sets forms a minimal super
 key, and either one can be chosen as the primary key

Weak Entity Sets

- Consider a section entity, which is uniquely identified by a course_id, semester, year, and sec_id
- Clearly, section entities are related to course entities
- Suppose we create a relationship set sec_course between entity sets section and course
- Note that the information in sec_course is redundant, since section already has an attribute course_id, which
 identifies the course with which the section is related
- One option to deal with this redundancy is to get rid of the relationship sec_course
- However, by doing so the relationship between section and course becomes implicit in an attribute, which is not
 desirable

Weak Entity Sets

- An alternative way to deal with this redundancy is to not store the attribute course_id in the section entity and to
 only store the remaining attributes section_id, year, and semester
 - However, the entity set section then does not have enough attributes to identify a particular section entity uniquely
- To deal with this problem, we treat the relationship **sec_course** as a special relationship that provides extra information, in this case, the **course_id**, required to identify **section** entities uniquely
- A weak entity set is one whose existence is dependent on another entity, called its identifying entity
- Instead of associating a *primary key* with a *weak entity*, we use the *identifying entity*, along with extra attributes called *discriminator* to uniquely identify a *weak entity*
- An entity set that is not a weak entity set is termed a strong entity set
- Every **weak entity** must be associated with an identifying entity; that is, the **weak entity** set is said to be existence dependent on the **identifying entity** set
- The identifying entity set is said to own the weak entity set that it identifies
- The relationship associating the weak entity set with the identifying entity set is called the identifying relationship
- The relational schema we eventually create from the entity set section does have the attribute course_id, for
 reasons that will become clear later, even though we have dropped the attribute course_id from the entity set
 section

Expressing Weak Entity Sets

- In ER diagrams, a weak entity set is depicted via a double rectangle
- We underline the *discriminator* of a *weak entity* set with a dashed line
- The relationship set connecting the **weak entity** set to the **identifying strong entity** set is depicted by a double diamond
- The primary key for section is (course_id, sec_id, semester, year)

Redundant Attributes

- Suppose we have entity sets:
 - student (ID, name, tot_cred, dept_name)
 - department (dept_name, building, budget)
- We model the fact that each student has an associated department using a relationship set stud_dept
- The attribute dept_name in student below replicates information present in the relationship and is therefore redundant
 - And needs to be removed
- BUT: when converting back to tables, in some cases the attribute gets reintroduced

ER Diagram for a University Enterprise

ER Diagram to Relational Schemas

Thank you for your attention...

Any question?

Contact:

Department of Information Technology, NITK Surathkal, India

6th Floor, Room: 13

Phone: +91-9477678768

E-mail: shrutilipi@nitk.edu.in