УДК 62-50:519.49

В.М. Григорьев

УСТОЙЧИВОСТЬ ЛИНЕЙНЫХ СИСТЕМ В ОПЕРАТОРНОЙ ФОРМЕ

Для работы с линейными Актуальность темы. нестационарными системами, представленными в операторной форме, широко используется теория матриц над кольцом линейных нестационарных дифференциальных операторов. Для изучения устойчивости таких систем пространство устойчивых замкнуто относительно сигналов должно быть дифференциальных операторов. В работе предлагается пространство устойчивых сигналов, абелева группа которого имеет структуру левого модуля над кольцом операторов.

Постановка задачи. В работе предлагается модификация понятия устойчивости системы в терминах вход-выход, учитывающая собственные движения систем и базирующаяся на первом методе Ляпунова.

Обоснование полученных результатов. Характеристический показатель Ляпунова (в дальнейшем просто показатель) функции х из пространства X бесконечно дифференцируемых за исключением конечного числа точек функций определяется как верхний предел

$$\mathcal{X}(\mathsf{x}) = \lim_{t \to \infty} \frac{\ln |x(t)|}{t}, \ \mathcal{X}(0) = -\infty.$$

Функция х имеет строгий показатель, если существует

предел
$$\lim_{t \to \infty} \frac{\ln |x(t)|}{t}$$
.

Для числа lpha < 0 определим множество

$$M_{\alpha} = \{ \mathbf{x} \in \mathbf{X} | \mathcal{X}(\mathbf{x}^{(i)}) < \alpha, i = 0, 1,2 \dots \}$$
(1)

ISDN 1562-9945

Заметим, что $\forall m \in M_{\alpha} \lim_{t \to \infty} \mathsf{m}(\mathsf{t}) = 0$. Выделим в подмножество

$$\overline{M}_{\alpha} = \{ m \in M_{\alpha} | \exists C_i > 0 \forall t \in D(m^{(i)}) | m^{(i)}(t) | \le C_i, i = 0, 1, 2 ... \}$$
(2)

где D(.) - область определения функции.

Если, например,
$$lpha$$
 =-2, то ${
m e}^{-3t}/{
m t}\in M_lpha$, но ${
m e}^{-3t}/{
m t}
otin M_lpha$.

Любая функция из M_{lpha} , начиная с некоторого момента Т будет ограниченной. Имеем

$$\forall \varepsilon \exists C > 0, |m(t)| \le C e^{(\chi(m)+\varepsilon)t}, t > T, t \in D(m).$$
(3)

Рассмотрим произвольное поле Q функций со строгим показателем, замкнутое относительно нулевым дифференцирования. Примером такого поля является множество дробно рациональных функций. Рассмотрим кольцо линейных дифференциальных операторов с коэффициентами в поле Q. Выделим в поле Q подкольцо Q_т, состоящее из функций, не имеющих полюсов при $0 \le t < \infty$ (полюса в бесконечности допустимы). Выделим в R подкольцо R_T операторов с коэффициентами из Q_T.

Теорема 1. Множества M_{α} и M_{α} являются абелевыми группами, имеющими структуру левого R и R_{τ} модулей, соответственно.

Согласно [1, 2]

$$\mathcal{X}(x_1+x_2) \leq \max(\mathcal{X}(x_1), \mathcal{X}(x_2))$$
 , $\forall x_1, x_2 \in X$
(4)

Из соотношений (1), (4) и линейности дифференцирования следует, что M_{α} - абелева группа. Рассмотрим теперь m_1 , $m_2 \in \overline{M}_{\alpha}$. Согласно (2) $\exists C_{1,i}, \ \exists C_{2,i} \ \forall t \in D(m_1^{(i)}) \ |m_1^{(i)}(t)| \ \leq C_{1,i}, \ \forall t \in D(m_1^{(i)})$

 $\frac{1 \ (55) \ 2008 \ «Системные технологии»}{D(m_2{}^{(i)}) \ |m_2{}^{(i)}(t)| \ \leq C_{2,i}. \ Tогда \ \forall t \in \ D((m_1{}^{)}(t) + m_2{}^{)}(t)) \ {}^{(i)}) \ \supseteq \ D(m_1{}^{(i)}) \ \cap \ C_{2,i}.}$ $D(m_2^{(i)}) \mid (m_1)(t) + m_2)(t))^{(i)} \mid \leq C_{1,i} + C_{2,i}, \text{ т.е. } m_1 + m_2 \text{ лежит в } M_{\alpha}.$ Определим операции умножения

$$\forall$$
 m \in M_{α} \forall r \in R rm = $(\sum_{i} q_{i}p^{i})$ m = $\sum_{i} q_{i}m^{(i)}$), $q_{i} \in Q$.

$$\forall m \in \overline{M}_{\alpha} \ \forall r \in R \ rm = (\sum_{i} q_{i}p^{i})m = \sum_{i} q_{i}m^{(i)}), q_{i} \in Q_{T}.$$

Так как абелевы группы $M_{\scriptscriptstylelpha}$ и $\overline{M}_{\scriptscriptstylelpha}$ относительно дифференцирования, то для доказательства $\forall q_T \in Q_T$, $\forall m \in M_\alpha$ $q_T m \in M_\alpha$.

Элементы из Q и Q_T имеют строгий нулевой показатель, поэтому согласно [1, 2] для любого q из Q $\,$ и m из $\,$ $\,$ $\!\!M_{\,\,lpha}\,\,$ $\!\!$ $\!\!$ $\!\!$ (qm)= $\mathcal{X}(\mathsf{m}) < \alpha$. Дифференцируя qm произвольное число раз, убеждаемся, что $\mathcal{X}((qm)^{(i)}) < \alpha$. Отсюда следует, что qm лежит в M_{α} .

Пусть $\mathsf{q}_{\mathsf{T}} \in \mathsf{Q}_{\mathsf{T}}, \ \forall \mathsf{m} \in \overline{M}_{\alpha}$, тогда $\mathsf{q}_{\mathsf{T}} \mathsf{m} \in \overline{M}_{\alpha}$. $\mathsf{q}_{\mathsf{T}} \mathsf{u} \mathsf{m}$ ограничены вместе со всеми своими производными в своих областях определения. Следовательно q $_{\scriptscriptstyle\mathsf{T}}$ m $\in \ oldsymbol{M}_{\scriptscriptstylelpha}$.

Согласно неравенства (3), элементы множеств M_{lpha} и $M_{\scriptscriptstylelpha}$ экспоненциально убывают. Следовательно, эти множества можно назвать пространствами устойчивых сигналов.

Введём множества

$$S_0(M_{\alpha}^{n}) = \{S \in \mathbb{R}^{n \times n} | \forall x \in X^n (Sx = 0^n) \Rightarrow x \in M_{\alpha}^{n} \}$$
(5)

$$S(M_{\alpha}^{n}) = \{S \in \mathbb{R}^{n \times n} \mid \forall x \in X^{n} \ \forall u \in M_{\alpha}^{n} \ (Sx = u) \Rightarrow x \in M_{\alpha}^{n} \}$$
(6)

3 ISDN 1562-9945

1 (55) 2008 «Системные технологии»

$$S_{0}(\overline{M}_{\alpha}^{n}) = \{S \in \mathbb{R}^{n \times n} | \forall x \in X^{n} (Sx = 0^{n}) \Rightarrow x \in \overline{M}_{\alpha}^{n} \}$$
(7)

$$S(\overline{M}_{\alpha}^{n}) = \{S \in \mathbb{R}^{n \times n} \mid \forall x \in X^{n} \ \forall u \in \overline{M}_{\alpha}^{n} \ (Sx = u) \Rightarrow x \in \overline{M}_{\alpha}^{n} \}$$
(8)

Очевидно, что $S(M_\alpha^n)\subseteq S_0(M_\alpha^n)$, $S(\overline{M}_\alpha^n)\subseteq S_0(\overline{M}_\alpha^n)$. Изучим свойства множеств (5) – (8).

Утверждение 1. Пусть $S_1 \in S(M_\alpha^n)$, $S_2 \in S_0(M_\alpha^n)$, а матрицы U_1 , $U_2 \in R^{n \times n}$ обратимы над R. Обозначим $\overline{S}_1 = U_1 S_1 \ U_2$, $\overline{S}_2 = U_1 S_2 U_2$. Тогда , $\overline{S}_1 \in S(M_\alpha^n)$, $\overline{S}_2 \in S_0(M_\alpha^n)$.

Рассмотрим уравнения \overline{S}_1 х $_1$ =u, u $\in M_{\alpha}^{-n}$ и \overline{S}_2 х $_2$ =0 n . Произведём замену неизвестных: z_i = U $_2$ х $_i$, i=1,2 и умножим уравнения слева на U $_1^{-1}$. От последнего действия решения уравнений согласно Леммы из [3] не изменятся. Получим S_1z_1 =u $_1$, S_2z_2 =0 n , где u $_1$ = U $_1^{-1}$ u. В силу теоремы 1 u $_1$ $\in M_{\alpha}^{-n}$. Из определения множеств $S_0(M_{\alpha}^{-n})$ и $S(M_{\alpha}^{-n})$ следует, что в последних равенствах функции z_i , i=1,2 лежат в M_{α}^{-n} . Так как x_i = U $_2^{-1}$ z_i и U $_2^{-1}$ \in R $^{n\times n}$, то в силу теоремы 1 x_i $\in M_{\alpha}^{-n}$, i=1,2 . Согласно определениям (5) и (6) имеем \overline{S}_1 \in $S(M_{\alpha}^{-n})$, \overline{S}_2 \in $S_0(M_{\alpha}^{-n})$.

Утверждение 2. Пусть $S_1 \in S_0(\overline{M}_\alpha^n)$, $S_2 \in S(\overline{M}_\alpha^n)$, а матрица $U \in R^{n \times n}$ обратима над R. Тогда $US_1 \in S_0(\overline{M}_\alpha^n)$. Однако в общем случае $S_1U \notin S_0(\overline{M}_\alpha^n)$, и S_2U , $US_2 \notin S(\overline{M}_\alpha^n)$.

Рассмотрим уравнение $S_1x=0^n$. Так как $x\in M_\alpha^{-n}$, то в силу Леммы из [3] $US_1\in S_0(\overline{M}_\alpha^{-n})$. Для уравнения $S_2Ux=u$, $u\in \overline{M}_\alpha^{-n}$ сделаем замену z=Ux. Так как $S_2\in S(\overline{M}_\alpha^{-n})$ и $S_2z=u$, то $z\in \overline{M}_\alpha^{-n}$ в общем случае $U^1\not\in R_T^{n\times n}$ и $x=U^1z$ не лежит в \overline{M}_α^{-n} , т.е. $S_2U\not\in S(\overline{M}_\alpha^{-n})$. Взяв уравнение $S_1Ux=0^n$ аналогично доказываем, что $S_1U\not\in S_0(\overline{M}_\alpha^{-n})$. Перейдём к уравнению $US_2x=u$, $u\in \overline{M}_\alpha^{-n}$. В $Q^{n\times n}$ найдётся такая матрица V, что $VS_2\in R_T^{n\times n}$. Тогда \overline{S}_2 $x=u_1$, где $\overline{S}_2=VS_2$ и $u_1=VU^1u$. В общем случае $U^1\not\in R_T^{n\times n}$ и $u_1\not\in \overline{M}_\alpha^{-n}$. Пусть $x\in \overline{M}_\alpha^{-n}$. Согласно теореме 1 \overline{S}_2 $x\in \overline{M}_\alpha^{-n}$. Противоречие.

Утверждение 3. Пусть $A \in R^{n \times n}$, rkA = n. Приведём A к верхней правой треугольной матрице B. Если диагональные элементы $b_{1,1}$, $b_{1,2}$... $b_{n,n}$ матрицы B лежат в $S(M_{\alpha})$, то $A \in S(M_{\alpha})$. При $b_{n,n} \in S_0(M_{\alpha})$ и $b_{1,1}$, $b_{1,2}$... $b_{n-1,n-1} \in S(M_{\alpha})$ имеем $A \in S_0(M_{\alpha})$. Из того, что матрица A лежит в $S(M_{\alpha})$ или в $S(M_{\alpha})$, следует, что диагональные элементы матрицы B лежат в $S_0(M_{\alpha})$ ($S_0(M_{\alpha})$).

Рассмотрим систему уравнений $Ax=u, u\in M_{\alpha}^n$. Умножим её слева на обратимую в R^{nxn} матрицу U, приводящую A к B: Bx=v, v=Bu. Распишем последнее уравнение построчно

$$b_{1,1}x_1 = -(b_{1,2}x_2 + ... + b_{1,n}x_n) + v_1$$
.....
$$b_{n-1,n-1}x_{n-1} = -b_{n-1,n}x_n + v_{n-1}$$

$$b_{n,n}x_n = v_n,$$
(9)

 $\overline{\Gamma}$ де $X=(X_1 X_2 ... X_{n-1})^T$, $V=(V_1 V_2 ... V_{n-1})^T$.

Так как по условию $b_{i,i} \in S(M_{\alpha})$, i=1, 2 ... n, то решая (9) снизу вверх, на основании теоремы 1 и определения множества $S(M_{\alpha})$ имеем, что $x \in M_{\alpha}^{-n}$. Следовательно, $B \in S(M_{\alpha}^{-n})$. Используя утверждение 1, получаем $A \in S(M_{\alpha}^{-n})$. Пусть $b_{n,n} \in S_0(M_{\alpha}^{-n})$ и $b_{1,1}$, $b_{1,2}$... $b_{n-1,n-1} \in S(M_{\alpha})$. Аналогично имеем $A \in S_0(M_{\alpha}^{-n})$. Положим $u=0^n$. Согласно определению $S(M_{\alpha}^{-n})$ ($S(\overline{M_{\alpha}})$ 0) все решения x_i , i=1, 2 ... n лежат в $M_{\alpha}(\overline{M_{\alpha}})$ 0. Система (9) допускает решения m0 виде (m1 х2 ... m2 хm3 (5) (соответственно (7)) следует, что m4 услово m5 (m6) (m6) (m7).

Утверждение 4. Пусть диагональные элементы $b_{i,i}$, i=1, 2 ... n-1 матрицы B лежат B $S(\overline{M}_{\alpha})$ и $b_{n,n} \in S_0(\overline{M}_{\alpha})$, а наддиагональные элементы расположены B R_T . Тогда $A \in S_0(\overline{M}_{\alpha})$.

Рассмотрим уравнение (9) при $v_i=0$, i=1, 2 ... n. Так как $b_{n,n}\in S_0(\overline{M}_\alpha)$, то $x_n\in \overline{M}_\alpha$. Решая уравнение снизу вверх и учитывая, что $b_{i,i}\in S(\overline{M}_\alpha)$, i=1, 2 ... n-1, $b_{i,j}\in R_T$, i=1, 2 ... n-1, j=i+1, i+2 ... n в силу теоремы 1 имеем $x_i\in \overline{M}_\alpha$, i=1, 2 ... n-1. Следовательно $B\in S_0(\overline{M}_\alpha{}^n)$. Поскольку $A=U^{-1}B$, то воспользовавшись утверждением 2, получим $A\in S_0(\overline{M}_\alpha{}^n)$.

Определим следующую разновидность устойчивости в терминах вход-выход [4], которая учитывает собственные движения системы.

Назовём линейную нестационарную многосвязную систему

Ax = Bu

(10)

где A \in R_T^{n×n}, B \in R_T^{n×m} \overline{M}_{α} -инвариантной, если при любом входе , u \in \overline{M}_{α} ^m её выходы х лежат в \overline{M}_{α} ⁿ.

Утверждение 5. Если система (10) \overline{M}_{α} -инвариантна, то $A \in S_0(\overline{M}_{\alpha}^n)$. Обратно, если $A \in S(\overline{M}_{\alpha}^n)$, то эта система \overline{M}_{α} -инвариантна.

Пусть система (10) \overline{M}_{α} - инвариантна. Положим $u=0^n$. Все решения уравнения $Ax=0^n$ лежат в \overline{M}_{α}^n , что в соответствии с (7) означает $A\in S_0(\overline{M}_{\alpha}^n)$.

Обратно. Пусть A \in S($\overline{M}_{\alpha}^{-n}$). Из теоремы 1 получим Ви \in $\overline{M}_{\alpha}^{-n}$. Из определения множества S($\overline{M}_{\alpha}^{-n}$) в (8) следует, что х \in $\overline{M}_{\alpha}^{-n}$, т.е. система (10) $\overline{M}_{\alpha}^{-n}$ - инвариантна.

Выводы. Первый метод Ляпунова позволил определить пространство устойчивых сигналов, замкнутое относительно действия линейных нестационарных дифференциальных операторов. Изучены условия устойчивости линейных систем.

ЛИТЕРАТУРА

- 1. Демидович Б.П. Лекции по математической теории устойчивости. М.: Наука, 1967. 472 с.
- 2. Теория показателей Ляпунова и её приложение к вопросам устойчивости. / Былов Б.Ф., Виноград Р.Э., Гробман Д.М., Немыцкий В.В. М.: Наука, 1966. 576 с.
- 3. Григорьев В.М. Совместность и эквивалентность линейных нестационарных систем управления // Системные технологии.

1 (55) 2008 «Системные технологии»

Региональный межвузовский сборник научных трудов. - Выпуск 2 (10). - Дніпропетровськ, 2003. - С. 104–112.

4. Дезоер Ч., Видъясагар М. Синтез систем с обратной связью: вход-выходные соотношения. М.: Наука, 1983. 280 с.

УДК 62-50:519.49

Григорьев В.М. **Устойчивость линейных систем в операторной форме**// Системные технологии. Региональный межвузовский сборник научных трудов. - Выпуск 1 (55). - Дніпропетровськ, 2008. - С..

В работе предлагается модификация понятия устойчивости системы в терминах вход-выход, учитывающая собственные движения систем и базирующаяся на первом методе Ляпунова.

Библ. 4.

УДК 62-50:519.49

Григор'єв В.М. **Стійкість лінійних систем в операторній** формі // Системні технології. Регіональний міжвузівський збірник наукових праць. - Випуск 1 (55). - Дніпропетровськ, 2008. - с..

У роботі пропонується модифікація поняття стійкості системи в термінах вхід-вихід, що враховує власні рухи систем і базується на першому методі Ляпунова.

Бібл. 4.

UDC 62-50:519.49

Grigor'yev V. M. Stability of systems in operator form // System technologies. N 1(55). – Dnepropoetrovsk. 2008. - P.

In work the updating of concept of stability of system in the terms an input - output taking into account own movement of systems and basing on the first method Lyapunov is offered.