Intro to DFAs

Readings: Sipser 1.1 (pages 31-44)
With basic background from
Sipser 0

Intuition: finite automata

Don't hit anyone!

Intuition: finite automata

both none back Don't hit anyone! back none Back Front pad pad

State diagram

- What is accepted?
- · 001? 000? 010?

 Can we come up with a description of the language accepted by this machine?

More formally...

- A (deterministic) finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_o, F)$, where
 - Q is a finite set called the states
 - $-\Sigma$ is a finite set called the **alphabet**
 - $-\delta: Q \times \Sigma \rightarrow Q$ is the **transition function**
 - $-q_0 \in Q$ is the **start state**
 - $-F\subseteq Q$ is a set of **accept states**
- In-class exercise:

Languages

- The set of all strings accepted by a DFA M is called the language of M and is denoted L(M)
- We say that

"M recognizes the language L(M)"

What language is accepted here?

Automata computation

- More formally:
- Let $M=(Q, \Sigma, \delta, q_0, F)$ be a DFA and let $w=w_1w_2w_3...w_n$ be a string over the alphabet Σ
- Then M accepts w if a sequence of states $s_0, s_1, s_2, ..., s_n$ exists in Q with the following conditions:
 - 1. $s_0 = q_0$ 2. $\delta(s_i, w_{i+1}) = s_{i+1}$ for i = 0, ..., n-13. $s_i \in F$

Automata computation

More formally:

• Let $M=(Q, \Sigma, \delta, q_0, F)$ be a DFA and let

$$w = w_1 w_2 w_3 \dots w_n$$

be a string over the alphabet Σ

- Then M accepts w if a sequence of states $s_0, s_1, s_2, ..., s_n$ exists in Q with the following conditions:
 - 1. $s_0 = q_0$
 - 2. $\delta(s_i, w_{i+1}) = s_{i+1}$ for i = 0, ..., n-1
 - 3. $s_n \in F$

Automata computation

More formally:

• Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and $w = w_1 w_2 w_3 ... w_n$

be a string over the alphabet Σ

- Then M accepts w if a sequence of states $s_0, s_1, s_2, ..., s_n$ exists in Q with the following conditions:
 - 1. $s_0 = q_0$
 - 2. $\delta(s_i, w_{i+1}) = s_{i+1}$ for i = 0, ..., n-1
 - 3. $s_n \in F$

Regular languages

- A language is a regular language if some DFA recognizes it
- Examples:
 - $-L(M_I)=\{w\mid w \text{ contains at least one 1 and an even number of 0s follow the last 1}\}$
 - $-L(M_2)=\{w\mid w \text{ is a string over } \{a,b\} \text{ that starts and ends with the same symbol}\}$

Designing your own

- Is $\{w \mid w \text{ is a string of 0s and 1s containing an even number of 1s} a regular language?$
- Is $\{w \mid w \text{ is a string of } as \text{ and } bs \text{ containing the substring } aba\}$ a regular language?

How could we prove a "yes" answer?