A Soft Introduction to Deep Learning

Deep Ray

Institute of Mathematics, EPFL, Switzerland deep.ray@epfl.ch http://deepray.github.io

- You will NOT be able to train a gaming algorithm
- You will NOT be able to design a self-driving car
- You will NOT be able to solve PDEs using Al
- You will NOT be able to predict the stock-market

- You will NOT be able to train a gaming algorithm
- You will NOT be able to design a self-driving car
- You will NOT be able to solve PDEs using Al
- You will NOT be able to predict the stock-market
- You will see that Deep Learning is uncomplicated

- You will NOT be able to train a gaming algorithm
- You will NOT be able to design a self-driving car
- You will NOT be able to solve PDEs using Al
- You will NOT be able to predict the stock-market
- You will see that Deep Learning is uncomplicated
- You will understand the fundamentals of training networks

- You will NOT be able to train a gaming algorithm
- You will NOT be able to design a self-driving car
- You will NOT be able to solve PDEs using Al
- You will NOT be able to predict the stock-market
- You will see that Deep Learning is uncomplicated
- You will understand the fundamentals of training networks
- You will get the courage to experiment and explore

- You will NOT be able to train a gaming algorithm
- You will NOT be able to design a self-driving car
- You will NOT be able to solve PDEs using Al
- You will NOT be able to predict the stock-market
- You will see that Deep Learning is uncomplicated
- You will understand the fundamentals of training networks
- You will get the courage to experiment and explore
- You might get ideas to use Deep Learning solve your problems

How did we get here?

1940 1950 1960 1970 1980 1990 2000 2010

McCulloch and Pitts (1943)

1940	1950	1960	1970	1980	1990	2000	2010
McCulloch and Pitts (1943)							

Biological neuron

AND

AND

Intro to DL

 $\begin{array}{c}
x \\
\hline
 & w \\
\hline
 & w \\
\hline
 & w \\
\hline
 & w \\
\hline
 & v \\
 & v \\$

Weights are adjustable but not learned!

NOT

The Perceptron

The Perceptron

The Perceptron: Criticism

1940	1950	1960	1970	1980	1990	2000	2010
McCulloch and Pitts (1943)		enblatt 957)	Minsky and Papert (1969)				

Perceptron: An Introduction to Computational Geometry

- Detailed mathematical analysis of perceptrons
- Limitations of perceptrons for e.g. XOR problem
- Claimed issues exist for other variants

INP	TU	OUTPUT		
X_1	X_2	OUTFUT		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

The Perceptron: Criticism

1940	1950	1960	1970	1980	1990	2000	2010
McCulloch and Pitts (1943)		enblatt 957)	Minsky and Papert (1969)				

"The perceptron has shown itself worthy of study despite (and even because of!) its severe limitations. It has many features to attract attention: its linearity; its intriguing learning theorem; its clear paradigmatic simplicity as a kind of parallel computation. There is no reason to suppose that any of these virtues carry over to the many-layered version. Nevertheless, we consider it to be an important research problem to elucidate (or reject) our intuitive judgement that the extension to multilayer systems is sterile."

The Perceptron: Criticism

"The perceptron has shown itself worthy of study despite (and even because of!) its severe limitations. It has many features to attract attention: its linearity; its intriguing learning theorem; its clear paradigmatic simplicity as a kind of parallel computation. There is no reason to suppose that any of these virtues carry over to the many-layered version. Nevertheless, we consider it to be an important research problem to elucidate (or reject) our intuitive judgement that the extension to multilayer systems is sterile."

Revival with Backpropagation

- Learning representations by back-propagating errors by Rumelhart, Hinton and Williams (1986)
- Other advancements by Bengio, Lecun and others ...
- Efficient evaluation of gradients
- Universal Function Approximation theorem for MLPs by Cybenko (1989)
- Theoretical investigation by Barron, Pinkus, Mhaskar ...

Revival with Backpropagation

8 / 29 D. Ray Intro to DL

Second freeze and resurgence

Issues with back-propagation

- Not enough labelled data
- Learning time scales badly (exponentially) with multiple layers
- Deep networks can have several local minima

Second freeze and resurgence

Issues with back-propagation

- Not enough labelled data
- Learning time scales badly (exponentially) with multiple layers
- Deep networks can have several local minima

Resurgence

- Availability of large data sets
- GPUs and other computational advancements
- Better training algorithms

Components of MLPs

Components of MLPs

- Depth Vs width
- Data sets
- Activation functions
- Loss/cost functions
- Initialization
- Stochasticity and mini-batches
- Overfitting and underfitting
- Optimizers and learning-rate
- Hyper-parameter tuning

Depth Vs Width

- Several partial results exist about the width and depth
- Need $O(N_{inp} + N_{out} + M)$ parameters to represent a dataset of size M
- There is a gap between theory and training
- Going "deeper and narrow" gives better results than staying "shallow but wider"
- Need to find optimal structure based on application

Components of MLPs

- Depth Vs width
- Data sets
- Activation functions
- Loss/cost functions
- Initialization
- Stochasticity and mini-batches
- Overfitting and underfitting
- Optimizers and learning-rate
- Hyper-parameter tuning

Training, validation and testing

Three types of data sets:

• **Training data:** Used to optimize the weights and biases.

Training, validation and testing

Three types of data sets:

- **Training data:** Used to optimize the weights and biases.
- Validation data: Used while training the network for cross-validation – helps to detect *overfitting*.

Training, validation and testing

Three types of data sets:

- **Training data:** Used to optimize the weights and biases.
- Validation data: Used while training the network for cross-validation – helps to detect overfitting.

 Test data: Used to test final trained model – DO NOT TOUCH DURING TRAINING PHASE!

Training, validation and testing

Three types of data sets:

- **Training data:** Used to optimize the weights and biases.
- Validation data: Used while training the network for cross-validation – helps to detect overfitting.

 Test data: Used to test final trained model – DO NOT TOUCH DURING TRAINING PHASE!

Scaling and pre-processing the input data – important for generalization.

Components of MLPs

- Depth Vs width
- Data sets
- Activation functions
- Loss/cost functions
- Initialization
- Stochasticity and mini-batches
- Overfitting and underfitting
- Optimizers and learning-rate
- Hyper-parameter tuning

- McCullock-Pitts neuron
- Zero gradient bad for backpropagation
- Not used anymore

- McCullock-Pitts neuron
- Zero gradient bad for backpropagation
- Not used anymore

- McCullock-Pitts neuron
- Zero gradient bad for backpropagation
- Not used anymore

- Smooth approximation to Heaviside func.
- Sigmoidal function used in most proofs
- Good for binary classification
- Not symmetric

- McCullock-Pitts neuron
- Zero gradient bad for backpropagation
- Not used anymore

- Smooth approximation to Heaviside func.
- Sigmoidal function used in most proofs
- Good for binary classification
- Not symmetric

- McCullock-Pitts neuron
- Zero gradient bad for backpropagation
- Not used anymore

- Smooth approximation to Heaviside func.
- Sigmoidal function used in most proofs
- Good for binary classification
- Not symmetric

- Symmetric unlike Logisitic func.
- Smooth
- Vanishing gradients away from 0.

Components of MLPs

- Depth Vs width
- Data sets
- Activation functions
- Loss/cost functions
- Initialization
- Stochasticity and mini-batches
- Overfitting and underfitting
- Optimizers and learning-rate
- Hyper-parameter tuning

Loss/cost function

Regression problem

- Mean squared error
- Mean L1 error
- Mean absolute error
- ...

Loss/cost function

Regression problem

- Mean squared error
- Mean L1 error
- Mean absolute error
- •

Classification problem

• Use softmax output function

$$\hat{Y}^{(k)} = \frac{e^{\hat{Y}^{(k)}}}{\sum_{j} e^{\hat{Y}^{(j)}}} \quad \in \quad [0,1] \quad \longrightarrow \quad \text{probabilities/classification}$$

Cross-entropy loss function

$$C = -\sum_{i=1}^{\mathsf{M}} \sum_{j} Y_i^{(j)} \log \left(\hat{Y}_i^{(j)} \right)$$

Components of MLPs

- Depth Vs width
- Data sets
- Activation functions
- Loss/cost functions
- Initialization
- Stochasticity and mini-batches
- Overfitting and underfitting
- Optimizers and learning-rate
- Hyper-parameter tuning

Initialization

Before starting the training algorithm, the weights \boldsymbol{w} and biases \boldsymbol{b} need to be initialized

Initialization

Before starting the training algorithm, the weights \boldsymbol{w} and biases \boldsymbol{b} need to be initialized

ullet Do not initialize w to be zero – leads to linear model

Initialization

Before starting the training algorithm, the weights \boldsymbol{w} and biases \boldsymbol{b} need to be initialized

- Do not initialize w to be zero leads to linear model
- · Initialize randomly using normal distribution etc
- Exploding gradients avoided using heuristic scaling depending on activation function – minimize variance of the weights
 - For ReLU

$$w^l = \operatorname{nrand}(N_l \ , \ N_{l-1}).\sqrt{\frac{2}{N_{l-1}}}$$

For tanh (Xavier initialization)

$$w^l = \operatorname{nrand}(N_l \ , \ N_{l-1}).\sqrt{\frac{1}{N_{l-1}}}$$

Components of MLPs

- Depth Vs width
- Data sets
- Activation functions
- Loss/cost functions
- Initialization
- Stochasticity and mini-batches
- Overfitting and underfitting
- Optimizers and learning-rate
- Hyper-parameter tuning

Training $\longrightarrow M$ samples

Randomly shuffle data \longrightarrow introduces stochasticity – speeds-up convergence

Choose m samples at a time to take one optimization step

Training $\longrightarrow M$ samples

Randomly shuffle data \longrightarrow introduces stochasticity – speeds-up convergence

Choose m samples at a time to take one optimization step

 $m=M\longrightarrow {\sf Batch\ optimization}$ $m=1\longrightarrow {\sf Stochastic\ optimization}$

Training $\longrightarrow M$ samples

Randomly shuffle data \longrightarrow introduces stochasticity – speeds-up convergence

Choose m samples at a time to take one optimization step

 $m=M\longrightarrow {\sf Batch}$ optimization too long per iteration $m=1\longrightarrow {\sf Stochastic}$ optimization lose speed-up via vectorization

Training $\longrightarrow M$ samples

Randomly shuffle data \longrightarrow introduces stochasticity – speeds-up convergence

Choose m samples at a time to take one optimization step

 $m=M\longrightarrow {\sf Batch}$ optimization too long per iteration $m=1\longrightarrow {\sf Stochastic}$ optimization lose speed-up via vectorization $1< m < M \longrightarrow {\sf Mini-batch}$ optimization a good comprimise

Training $\longrightarrow M$ samples

Randomly shuffle data \longrightarrow introduces stochasticity – speeds-up convergence

Choose m samples at a time to take one optimization step

 $m=M \longrightarrow {\sf Batch}$ optimization too long per iteration $m=1 \longrightarrow {\sf Stochastic}$ optimization lose speed-up via vectorization $1 < m < M \longrightarrow {\sf Mini-batch}$ optimization a good comprimise

Typically choose $m\sim 32$ for large data sets.

Training $\longrightarrow M$ samples

Randomly shuffle data \longrightarrow introduces stochasticity – speeds-up convergence

Choose m samples at a time to take one optimization step

 $m=M \longrightarrow {\sf Batch}$ optimization too long per iteration $m=1 \longrightarrow {\sf Stochastic}$ optimization lose speed-up via vectorization $1 < m < M \longrightarrow {\sf Mini-batch}$ optimization a good comprimise

Typically choose $m\sim32$ for large data sets.

We complete **1 epoch** when we have finished striding over the whole dataset – approx. M/m optimizations steps.

Components of MLPs

- Depth Vs width
- Data sets
- Activation functions
- Loss/cost functions
- Initialization
- Stochasticity and mini-batches
- Overfitting and underfitting
- Optimizers and learning-rate
- Hyper-parameter tuning

Training Accuracy	99 %	90 %	89 %
Validation Accuracy	89 %	89 %	78 %
	High Variance	High Bias	High Bias
	or	or	and
	Overfitting	Underfitting	High Variance

Training Accuracy	99 %	90 %	89 %
Validation Accuracy	89 %	89 %	78 %
	High Variance	High Bias	High Bias
	or	or	and
	Overfitting	Underfitting	High Variance

Aim: Have small bias and variance

Training Accuracy	99 %	90 %	89 %
Validation Accuracy	89 %	89 %	78 %
	High Variance	High Bias	High Bias
	or	or	and
	Overfitting	Underfitting	High Variance

Aim: Have small bias and variance

High Bias: (depends on training accuracy)

- Try a bigger network
- Train longer
- Change architecture
- Taking more data won't help!

Training Accuracy	99 %	90 %	89 %
Validation Accuracy	89 %	89 %	78 %
	High Variance	High Bias	High Bias
	or	or	and
	Overfitting	Underfitting	High Variance

Aim: Have small bias and variance

High Bias: (depends on training accuracy)

 $\begin{array}{c} {\sf High\ Variance:} \\ {\sf (depends\ on\ validation\ accuracy)} \end{array}$

- Try a bigger network
- Train longer
- Change architecture
- Taking more data won't help!
- Take a bigger training set
- Regularization
- Change architecture

Training Accuracy	99 %	90 %	89 %
Validation Accuracy	89 %	89 %	78 %
	High Variance	High Bias	High Bias
	or	or	and
	Overfitting	Underfitting	High Variance

Aim: Have small bias and variance

High Bias: (depends on training accuracy)

 $\begin{array}{c} {\sf High\ Variance:} \\ {\sf (depends\ on\ validation\ accuracy)} \end{array}$

- Try a bigger network
- Train longer
- Change architecture
- Taking more data won't help!
- Take a bigger training set
- Regularization
- Change architecture

Regularization

Improves generalization error

Regularization

Improves generalization error

 \bullet Early stopping of training after M succesive increases in validation error

Improves generalization error

ullet Early stopping of training after M succesive increases in validation error

$$\overline{E_n} = \frac{1}{n} \sum_{i=1}^n E_i$$

Improves generalization error

ullet Early stopping of training after M succesive increases in validation error – not recommended

- ullet Early stopping of training after M succesive increases in validation error not recommended
- Penalizing the cost function

$$\widetilde{C}(Y, \hat{Y}; W, b) = C(Y, \hat{Y}; W, b) + \alpha\Omega(W)$$

Improves generalization error

- ullet Early stopping of training after M succesive increases in validation error not recommended
- Penalizing the cost function

$$\widetilde{C}(Y, \hat{Y}; W, b) = C(Y, \hat{Y}; W, b) + \alpha\Omega(W)$$

b not regularized as

- ▶ b easier to fit
- W model variable interactions
- regularizing b can cause severe underfitting

- ullet Early stopping of training after M succesive increases in validation error not recommended
- Penalizing the cost function

$$\widetilde{C}(Y, \hat{Y}; W, b) = C(Y, \hat{Y}; W, b) + \alpha \Omega(W)$$

- $lackbox{ }\Omega(W)=\|W\|_2^2 \ \longrightarrow {\sf drives} {\sf weights} {\sf closer} {\sf to} {\sf zero}$
- $\Omega(W) = ||W||_1 \longrightarrow \text{induces sparsity}$

- ullet Early stopping of training after M succesive increases in validation error not recommended
- Penalizing the cost function

$$\widetilde{C}(Y, \hat{Y}; W, b) = C(Y, \hat{Y}; W, b) + \alpha \Omega(W)$$

- $lackbox{ }\Omega(W)=\|W\|_2^2 \longrightarrow {\sf drives} {\sf weights} {\sf closer} {\sf to} {\sf zero}$
- Data augmentation when meaningful geometric information is available

- ullet Early stopping of training after M succesive increases in validation error not recommended
- Penalizing the cost function

$$\widetilde{C}(Y,\hat{Y};W,b) = C(Y,\hat{Y};W,b) + \alpha\Omega(W)$$

- $lackbox{ }\Omega(W)=\|W\|_2^2 \longrightarrow {\sf drives} {\sf weights} {\sf closer} {\sf to} {\sf zero}$
- Data augmentation when meaningful geometric information is available
- Dropout randomly kill hidden neuron outputs while training (only)

Components of MLPs

- Depth Vs width
- Data sets
- Activation functions
- Loss/cost functions
- Initialization
- Stochasticity and mini-batches
- Overfitting and underfitting
- Optimizers and learning-rate
- Hyper-parameter tuning

Several optimizers are available (a nice summary available here)

Adam optimizer: Adaptive moment estimation

Several optimizers are available (a nice summary available here)

Adam optimizer: Adaptive moment estimation

Estimate the first and second moments of gradient $\ensuremath{g_t}$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \qquad v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Several optimizers are available (a nice summary available here)

Adam optimizer: Adaptive moment estimation

Estimate the first and second moments of gradient $\ensuremath{g_t}$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \qquad v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Apply bias-correction

$$\hat{m}_t = \frac{m_t}{1 - \beta_1}, \qquad \hat{v}_t = \frac{v_t}{1 - \beta_2}$$

Several optimizers are available (a nice summary available here)

Adam optimizer: Adaptive moment estimation

Estimate the first and second moments of gradient g_t

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \qquad v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Apply bias-correction

$$\hat{m}_t = \frac{m_t}{1 - \beta_1}, \qquad \hat{v}_t = \frac{v_t}{1 - \beta_2}$$

Update the trainable parameter θ

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

Several optimizers are available (a nice summary available here)

Adam optimizer: Adaptive moment estimation

Estimate the first and second moments of gradient g_t

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \qquad v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Apply bias-correction

$$\hat{m}_t = \frac{m_t}{1 - \beta_1}, \qquad \hat{v}_t = \frac{v_t}{1 - \beta_2}$$

Update the trainable parameter θ

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

Recommended values:

$$\beta_1 = 0.9, \quad \beta_2 = 0.999, \quad \epsilon = 10^{-8}$$

Several optimizers are available (a nice summary available here)

Adam optimizer: Adaptive moment estimation

Estimate the first and second moments of gradient g_t

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \qquad v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Apply bias-correction

$$\hat{m}_t = \frac{m_t}{1 - \beta_1}, \qquad \hat{v}_t = \frac{v_t}{1 - \beta_2}$$

Update the trainable parameter θ

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

Recommended values:

$$\beta_1 = 0.9, \quad \beta_2 = 0.999, \quad \epsilon = 10^{-8}$$

Learning-rate η needs to be chosen. Can be adapted if needed

$$\eta_t = \frac{\eta_0}{1 + \gamma t}, \quad \text{or} \quad \eta_t = 0.9^t \eta_0, \quad \text{or} \quad \dots$$

◆ロト ◆部 ト ◆ き ト ◆ き ・ か へ ご

Components of MLPs

- Depth Vs width
- Data sets
- Activation functions
- Loss/cost functions
- Initialization
- Stochasticity and mini-batches
- Overfitting and underfitting
- Optimizers and learning-rate
- Hyper-parameter tuning

Hyper-parameter tuning: where the most time is spent!

- Width and depth
- Learning-rate
- Choice of regularization and associated parameter
- Activation function and associated parameters
- Mini-batch size
- Number of training epochs
- Number of retrains (with different initialiations)

Hyper-parameter tuning: where the most time is spent!

- Width and depth
- Learning-rate
- Choice of regularization and associated parameter
- Activation function and associated parameters
- Mini-batch size
- Number of training epochs
- Number of retrains (with different initialiations)

Several strategies proposed. For instance random coarse to fine search

