ערכי אמת בתחשיב היחסים

הצבות בנוסחאות

דוגמה: יחסי משפחה

נחזור לדוגמה האחרונה

$$\mathcal{F} = \left\{c^{(0)}, m^{(1)}\right\} \quad \mathcal{P} = \left\{D^{(2)}, M^{(2)}, S^{(2)}\right\} \quad M = \left(\mathcal{P}, \mathcal{F}\right)$$

בת של א קבוע המייצג את הדובר
$$c$$
 y בת של א $D(x,y)$

y אחות של x
$$S(x, y)$$

$$\phi := \forall x (D(x, m(c)) \land \neg (x = c) \rightarrow S(x, c))$$

ב"עולם" המתואר כאן הנוסחה φ היא אמת <u>תרגיל:</u> לתת משמעות ליחסים והפונקציות ב M כך ש φ לא תהיה אמת.

הסימון =:

- כפי שראינו, הסימן = הוא חלק מהא"ב של תחשיב
 היחסים. לכן, הוא עשוי להופיע בתוך נוסחה.
 - אם נרצה לכתוב ש ϕ היא הנוסחה •

$$\forall x (D(x, m(c)) \land \neg (x = c) \rightarrow S(x, c))$$

אז הכתיבה

$$\phi \Longrightarrow \forall x (D(x, m(c)) \land \neg (x \Longrightarrow c) \rightarrow S(x, c))$$

עלולה להיות מבלבלת, כי לשני הַ = יש משמעויות שונות

- לכן, נשתמש בסימן =: במקום = מחוץ לנוסחאות.
- הסימן =: משמש במתמטיקה במובן של "מוגדר כְּ". $\forall x(D(x,m(c)) \land \neg(x=c) \rightarrow S(x,c))$ מוגדר כַּנוֹסחה ϕ

ערך האמת של נוסחה

ערך האמת של נוסחה עשוי להיות תלוי במשמעות
 שנייחס ליחסים והפונקציות במילון.

$$\phi := \forall x (D(x, m(c)) \land \neg (x = c) \rightarrow S(x, c))$$
 בוגמה:

לפעמים הוא גם תלוי בערך של המשתנים:

$$\phi := D(x, y) \rightarrow S(x, y)$$
 דוגמה:

לפעמים ערך האמת הוא תכונה של הנוסחה ולא תלוי
 במשמעות שניתן ליחסים והפונקציות במילון

$$c^{(0)} \in \mathcal{F}$$
 י $P^{(1)}, Q^{(1)} \in \mathcal{P}$ שבו $M = \left(\mathcal{P}, \mathcal{F}\right)$ ין במילון

$$P(x) \to (Q(x) \to P(x))$$
$$\forall x P(x) \to \exists x P(x)$$

$$P(c) \land \forall y (P(y) \rightarrow Q(y)) \rightarrow Q(c)$$

קביעת ערך האמת של נוסחה

- כאשר ערך האמת של נוסחה אינו תלוי במשמעות שמייחסים לאברים במילון, אז קל יחסית לקבוע מהו (נראה בהמשך)
- כאשר ערך האמת של נוסחה תלוי במשמעות שמייחסים לאברים במילון, אז קביעת ערך האמת עשויה להיות מאוד קשה

דוגמה מתורת המספרים

$$f^{(2)}, g^{(2)} \in \mathcal{F}$$
 וְ $P^{(2)} \in \mathcal{P}$ שבו $M = \left(\mathcal{P}, \mathcal{F}\right)$ וניח שה"עולם" שלנו הוא המספרים השלמים החיוביים.

נתונה הנוסחה:

$$\forall x \forall y \forall z \forall t \Big(\big(f(g(x,t), g(y,t)) = g(z,t) \big) \to P(t,c) \Big)$$

מהו ערך האמת שלה בעולם שלנו?

הנוסחה מבטאת את ההשערה של פֶּרמָה מ 1637, שכדי להוכיח אותה נדרשו 358 שנים (ההוכחה עייי אנדרו ווילְס ב 1995).

מופעים של משתנים

$$\forall x \Big(\Big(P(x) \to R(y) \Big) \Big) \land \Big(S(c, y) \lor \exists y \neg Q(y, x) \Big)$$

בעץ מבנה של נוסחה יש משתנים בשני מקומות:

- 1) צמוד לכמת
- 2) בעלים של העץ

<u>הגדרה:</u>

מופע של משתנה x בנוסחה φ היא כל הופעה של x בעלֶה של y בעלֶה של y בעלֶה של עץ המבנה של φ

משתנים חופשיים ומשתנים קשורים, טווחים של כמתים

הגדרה:

- מופע של משתנה x בנוסחה ϕ נקרא חופשי אם במסלול מהעלה שלו עד למעלה לא מופיע x או ∀ או ∀
 - מופע שאינו חופשי נקרא קשור •
- הטווח של כמת x∀ או x∃ הוא כל תת-העץ שמתחתיו ללא תת-העצים של כמתים x∀ או x∃ חדשים.

מופעים וטווחים

$$\forall x \Big(\Big(P(x) \to R(y) \Big) \Big) \land \Big(S(c, y) \lor \exists y \neg Q(y, x) \Big)$$

תרגילים

עבור הנוסחאות הבאות בנו את העץ שלהן וסמנו את הטווחים של כל הכמתים. לכל מופע של משתנה קבעו אם הוא חופשי או קשור.

$$\forall x (P(x) \to \exists x Q(x))$$
$$(\forall x (P(x) \land Q(x))) \to (\neg P(x) \lor Q(y))$$

הצבות

- משתנים הם מקום בו אנו יכולים להציב ערכים:
 - ערכים מתוך התחום שבו מדובר
 - עצמים אחרים.
- כלומר, בעלה שיש בו משתנה אנו יכולים להציב את עץ המבנה של עצם.
 - הצבות נעשות רק במופעים חופשיים
 - כדי שנוסחה תישאר חוקית, במשתנה חופשי ניתן להציב רק עצמים.

הצבה של עצם במשתנה חופשי

הגדרה:

בהינתן מילון M, נניח ש ϕ נוסחה, x משתנה ון t עצם. נגדיר את ההצבה $\phi[t/x]$ בתור הנוסחה המתקבלת מהחלפת כל מופע חופשי של x ב

$$f^{(2)} \in \mathcal{F}$$
 $P^{(2)}, R^{(2)} \in \mathcal{P}$ $M = (\mathcal{P}, \mathcal{F})$ בוגמה: $\phi \coloneqq P(x, y) \to \exists x R(y, x)$ $\phi[f(x, y) \mid x] \coloneqq P(f(x, y), y) \to \exists x R(y, x)$

דוגמאות נוספות

$$g^{(1)} \in \mathcal{F} \qquad P^{(1)}, Q^{(1)} \in \mathcal{P} \qquad M = (\mathcal{P}, \mathcal{F})$$

$$\phi := (\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$$

$$\phi[g(z) / x] := (\forall x (P(x) \land Q(x))) \rightarrow (\neg P(g(z)) \lor Q(y))$$

$$\phi[g(z) / y] := (\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(g(z)))$$

$$f^{(2)} \in \mathcal{F}$$
 $P^{(1)}, Q^{(1)}, S^{(2)} \in \mathcal{P}$ $M = (\mathcal{P}, \mathcal{F})$

$$\phi := \forall x ((P(x) \to Q(x)) \land (S(x, y))$$

: $\phi[f(x,y)/y]$ צין המבנה של

?וואם בכל הצבה יש היגיון

$$f^{(1)} \in \mathcal{F} \quad R^{(2)} \in \mathcal{P} \quad M = (\mathcal{P}, \mathcal{F})$$
$$\phi \coloneqq \exists y R(x, y)$$
$$\phi[f(y) / x] \coloneqq \exists y R(f(y), y)$$

נניח שמדובר במספרים הטבעיים. המשמעות של (R(x,y) היא "x קטן או שווה ל y" ו f(y)=y+1

- (לכל x שנבחר) האם הפסוק ϕ הוא פסוק אמת (לכל x
 - ?הוא פסוק $\phi[f(y)/x]$ הוא פסוק $\phi[f(y)/x]$

<u>הבעיה</u>: האובייקט שהצבנו מכיל משתנה קשור, לכן משמעות הנוסחה השתנתה כתוצאה מההצבה.

אובייקט חופשי

הגדרה:

בהינתן מילון M, נניח ש ϕ נוסחה, x משתנה ן t עצם. נאמר ש t חופשי עבור x ב ϕ אם אם t לא מכיל משתנים שהם קשורים במקום שבו x חופשי.

$$f^{(2)} \in \mathcal{F}$$
 $P^{(1)}, Q^{(1)}, S^{(2)} \in \mathcal{P}$ $M = \left(\mathcal{P}, \mathcal{F}\right)$ בוגמה: $\phi \coloneqq S(x,y) \wedge \forall y (P(x) \to Q(y))$ $\phi = x$ חופשי עבור $\phi = x$ לא חופשי עבור $\phi = x$ לא חופשי עבור $\phi = x$

הצבה מותרת

הגדרה:

 $\phi[t/x]$ אם האובייקט t חופשי עבור $\phi[t/x]$ היא הצבה מותרת.

כדי שנוסחאות לא ישנו את ערך האמת שלהם כתוצאה מהצבה, נבצע רק הצבות מותרות.

$$f^{(2)} \in \mathcal{F}$$
 $P^{(1)}, Q^{(1)}, S^{(2)} \in \mathcal{P}$ $M = \left(\mathcal{P}, \mathcal{F}\right)$ בוגמה: $\phi \coloneqq S(x,y) \land \forall y (P(x) \rightarrow Q(y))$ היא הצבה מותרת $\phi[f(x,x)/x]$

אינה הצבה מותרת $\phi[f(x,y)/x]$