Binomial Distribution

For Practical questions related to Binomial Distribution follow the steps:

Step-1

Apply the formula --> BINOM.DIST()

Step-2

Give the values for: num_successes, num_trials, prob_success and cumulative.

num_successes : Number of success i.e. x

num_trials: Number of Trials

prob_success : Probability of success

Note: Value of Cumulative will be true.

Example

Here, x is the number of success.

P(x) is the Binomial Distribution probability

Multinomial Distribution

For Practical questions related to Multinomial Distribution follow the steps:

• The multinomial distribution describes the probability of obtaining a specific number of counts for k different outcomes when each outcome has a fixed probability of occuring.

Step-1

Apply the formula --> MULTINOMIAL()

Step-2

Give the range of the outcome i.e. X

• If a Random variable x has a multinomial dstribution then the probability that the outcome 1 occurs exactly x1 times, outcome occurs exactly x2 times and so on ..., can be obtained by

For Example

Probability of the outcomes

Probability					
Probability A	0.1				
Probability B	0.4				
Probability C	0.5				

Product of Probability of the outcomes and occurrence of outcome, denote it by P

Probability A	٨	Outcome A	0.01	= P1
Probability B	٨	Outcome B	0.0256	= P2
Probability C	٨	Outcome C	0.0625	= P3

Now, the probability of Multinomial is given by:

MULTINOMIAL*PRODUCT of (P1*P2*P3)

Poisson Distribution

For Practical questions related to Poisson Distribution follow the steps:

Step-1

Apply the formula --> POISSON.DIST()

Step-2

Give the values for: x, mean and cumulative.

Example

Here, x is the number of success. P(x) is the Poisson Distribution probability

Geometric Distribution

For Practical questions related to Geometric Distribution follow the steps:

• In geometric distribution the probability of getting k failures before getting first success is P(X=k)= (1-p)^k*p

Step-1

Apply the formula : $P(X=k)=[(1-p)^k]*p$

p i.e. F9 in the above case is the Probability of success.

k i.e. D12 in the above case is the number of failure before first success

Example

Here, k is the number of failure.

P(x) is the Geometric Distribution probability

Uniform Distribution

For Practical questions related to Uniform Distribution follow the steps:

Step-1

Apply the formula: P=(X2-X1)/(b-a)

Example

• Value of a, b, X1 and X2 for above example

а	b	X1	X2
0	20	0	10
15	25	17	19
	J		J
Condition	onal Data	X1 < 2	X < X2

a : Minimum value of given conditional data

b: Maximum value of given conditional data

X1 : Minimum value of X. X2 : Maximum value of X.

Exponential Distribution

For Practical questions related to Exponential Distribution follow the steps:

Step-1

Apply the formula --> EXPON.DIST()

Step-2

Give the values for: x, mean and cumulative.

x : input to the exponential distribution mean : mean of exponential distribution function.

Note: Value of Cumulative will be true.

P(x) is the Exponential Distribution probability

In the above problem X is 1, and the mean is being calculated from the given data i.e. new customers enters the shop every 2 min (i.e. a) on average(or mean i.e. b=0.5).

Normal Distribution

For Practical questions related to Normal Distribution follow the steps:

Step-1

Apply the formula NORM.DIST()

Step-2

Give the values for: x, mean, s.d. (standard deviation) and cumulative.

x: input to the Normal distribution

mean: mean of Normal distribution function.

s.d.: Standard Deviation

Note: Value of Cumulative will be true.

Example

Here, P(x) is the Normal Distribution probability

Calculation of Covariance For bivariate data

For Practical questions related to calculation of Covariance follow the steps:

To calculate the Covariance the formula is:

Average of ({X - Mean(X)} {Y - Mean(Y)})

Example

				Q.1			
	X(Price)	Y(Supply)	Mean(X)	Mean(Y)	X - Mean(X)	Y - Mean(Y)	{X - Mean(X)} {Y - Mean(Y)}
	10	8	40	14	-30	-6	180
	20	6	40	14	-20	-8	160
	30	14	40	14	-10	0	C
	40	16	40	14	0	2	C
	50	10	40	14	10	-4	-40
	60	20	40	14	20	6	120
	70	24	40	14	30	10	300
Sum	280	98			0	0	720
		CoV(X,Y)	>	102.8571429			

Step-1

Calculate the mean of X and Y

Average of all these values will give the covariance of X and Y for the given example

Step-2

- Calculate {X mean(X)}
- Calculate {Y mean(Y)}

Step-3

Calculate the product of {X - mean(X)}and{Y - mean(Y)}

Step-4

Now, Covariance of X and Y is: CoV(X,Y) = Average of step3

Calculation of correlation coefficients for the bivariate frequency distribution

For Practical questions related to calculation of Karl Pearson's correlation coefficients follow the steps:

To calculate the Correlation Coefficient the formula is:

$$\frac{(\{X - Mean(X)\} \{Y - Mean(Y)\})}{\sum (\{X - Mean(X)\}^2) \sum \{Y - Mean(Y)\}^2)}$$

Example

	Х	Υ	E(X)	E(Y)	X - E(X)	Y - E(Y)	(X - E(X))^2	(Y - E(Y))^2	(X - E(X))(Y - E(Y))
	12	6	24	15	-12	-9	144	81	108
	16	9	24	15	-8	-6	64	36	48
	20	12	24	15	-4	-3	16	9	12
	24	15	24	15	0	0	0	0	0
	28	18	24	15	4	3	16	9	12
	32	21	24	15	8	6	64	36	48
	36	24	24	15	12	9	144	81	108
Sum>	168	105					448	252	336
					r	>	1		

Step-1

Calculate the mean of X and Y

Step-2

- Calculate {X mean(X)} = E(X)
- Calculate {Y mean(Y)} = E(Y)

Step-3

- Calculate the square of {X mean(X)}
- Calculate the square of {Y mean(Y)}

Step-4

Calculate the product of {X - mean(X)}and{Y - mean(Y)}

Step-5

Now, Correlation Coefficient of X and Y is: $\mathbf{r}(X,Y) = \text{apply above mentioned formula}$

Calculation of Karl Pearson's correlation coefficients.

For Practical questions related to Random Number Generation follow the steps:

Step-1

Go to File > Options > Add-ins > Excel Add-ins

Step-2

• Check the Analysis Toolpak box

Step-3

• Click Data Analysis option on the Data Menu

Step-4

- Select Correlation
- Click OK

After we click OK, a Pop Up Box for correlation appears as shown below:

*Input Range

- In the Input range, enter the range of the X and Y.
- Select the Output range
- Click OK.

*Output of the Correlation Coefficient

	X	Υ	
Χ	1		
Υ	1	1	

Random Number Generation

For Practical questions related to Random Number Generation follow the steps:

Step-1

Go to File > Options > Add-ins > Excel Add-ins

Step-2

Check the Analysis Toolpak box

Step-3

• Click Data Analysis option on the Data Menu

Step-4

- Select Random Number Generation
- Click OK

Note that, for any type of Distribution the above steps would be common **Add On Steps for different types of distribution**:

Random Number Generation for Binomial Distribution

After Above 4 steps follow these steps

On Clicking Ok this Box will be displayed, Follow the below steps to generate random numbers for binomial Distribution:

- Set the Distribution to Binomial.
- Enter the number of Variables (in our case it will be 1)
- Enter the Number of random numbers to be generated (as per the question)
- Set the parameters for the binomial distribution as given in the question
- Set the output range
- Click OK.

Random Number Generation	
Number of Variables: 1	
Number of Random Numbers: 50	
Distribution: Binomial 🕶	
Parameters p Value = 0.5	
Number of Trials = 10	
Random Seed:	
Output Range: \$B\$2	
Output Kange. \$6\$2	

Random Number Generation for Bernoulli Distribution

After Above 4 steps follow these steps

On Clicking Ok this Box will be displayed, Follow the below steps to generate random numbers for Bernoulli Distribution:

- Set the Distribution to Bernoulli.
- Enter the number of Variables (in our case it will be 1)
- Enter the Number of random numbers to be generated (as per the question)
- Set the parameters for the bernoulli distribution as given in the question
- Set the output range
- Click OK.

Random Number Generation for Poisson Distribution

After Above 4 steps follow these steps

On Clicking Ok this Box will be displayed, Follow the below steps to generate random numbers for Poisson Distribution:

- Set the Distribution to Poisson.
- Enter the number of Variables (in our case it will be 1)
- Enter the Number of random numbers to be generated (as per the question)
- Set the parameters for the poisson distribution as given in the question
- Set the output range
- Click OK.

Note: Lambda is Mean.

Random Number Generation
Number of Variables: 1 Number of Random Numbers: 50 Distribution: Poisson Parameters Lambda = 0
Random Seed: Output Range: \$B\$2 OK

Random Number Generation for Uniform Distribution

After Above 4 steps follow these steps

On Clicking Ok this Box will be displayed, Follow the below steps to generate random numbers for Uniform Distribution:

- Set the Distribution to Uniform.
- Enter the number of Variables (in our case it will be 1)
- Enter the Number of random numbers to be generated (as per the question)
- Set the parameters for the Uniform distribution as given in the question
- Set the output range
- Click OK.

Random Number Generation for Normal Distribution

After Above 4 steps follow these steps

On Clicking Ok this Box will be displayed, Follow the below steps to generate random numbers for Normal Distribution:

- Set the Distribution to Normal.
- Enter the number of Variables (in our case it will be 1)
- Enter the Number of random numbers to be generated (as per the question)
- Set the parameters for the normal distribution as given in the question
- Set the output range
- Click OK.

Random Number Generation
Number of Variables: 1
Number of Random Numbers: 50
Distribution: Normal ~
Parameters
Mean = 0
Standard Deviation = 1
Random Seed:
Output Range: \$B\$2
OK