DOS AXIOMAS DE PEANO AOS CORTES DE DEDEKIND

UMA FORMALIZAÇÃO PARA OS CONJUNTOS NUMÉRICOS

Autor: Mateus Schroeder da Silva

Orientador: Me. Marnei Luis Mandler

Licenciatura em Matemática

Joinville, 20 de junho de 2023.

$\operatorname{RCZCQCR}$

Estrutura do trabalho

- Introdução;
- Álgebra básica;
- 3 Números naturais;
- 4 Números inteiros;
- 5 Números racionais;
- Múmeros reais;
- Sobre a enumerabilidade e unicidade dos números reais;
- Considerações finais.

Objetivos

- Mostrar que é possível formalizar os conjuntos numéricos sem tomar o zero como um número natural.
- Fazer extensões sucessivas do conceito de número, até chegarmos nos números reais.
- Provar a não enumerabilidade de \mathbb{R} , e sua unicidade.

Álgebra básica: operação

Definição:

Seja A um conjunto arbitrário. Uma operação * sobre A é uma função que a cada $a,b\in A$ associa um único elemento $a*b\in A$, ou seja, associa a cada dois elementos em A a sua imagem a*b, que também é um elemento de A.

Álgebra básica: relação binária

Definição:

Uma relação binária R num conjunto A é qualquer subconjunto do produto cartesiano $A \times A$, isto é, $R \subset A \times A$.

Números naturais: os axiomas de Peano

- **I** Existe um conjunto de exatamente todos os números naturais, que será denotado por \mathbb{N} , e existe uma função $s: \mathbb{N} \to \mathbb{N}$, que é a relação "sucessor".
- **2** Um é um número natural, isto é, $1 \in \mathbb{N}$.
- Im não é sucessor de nenhum número, isto é, $1 \notin Im(s)$ ou ainda, $\exists a \in \mathbb{N} : s(a) = 1$.
- 4 s é injetora, isto é, $s(a) = s(b) \implies a = b$.
- **5** Seja $\mathbb S$ um subconjunto de $\mathbb N$. Caso $1 \in \mathbb S$ e se, para todo kem \mathbb{S} , ocorrer que s(k) também esteja em \mathbb{S} , então $\mathbb{S} = \mathbb{N}$. Isso é o mesmo que colocar:

$$\mathbb{S} \subseteq \mathbb{N} \land 1 \in \mathbb{S} \land (k \in \mathbb{S} \Rightarrow s(k) \in \mathbb{S}) \implies \mathbb{S} = \mathbb{N}.$$

Números naturais: zero é um número natural?

- "É, não é, e talvez seja".
- Uma questão de preferência por parte da literatura.
- Só conveniência apenas? Não é necessário?

Números naturais: zero é um número natural?

Peano colocou o 1 como o primeiro número natural em sua obra, Arithmetices principia: nova methodo, de 1889.

No Tomo II do Formulaire de Mathématiques, de 1897, os axiomas são apresentados reformulados.

Números naturais: adição

Definição:

Sejam $a, b \in \mathbb{N}$. A adição entre a e b, denotada por a + b é definida com as seguintes condições:

1
$$a+1=s(a)$$
;

$$a + s(b) = s(a + b).$$

Números naturais: fechamento da adição

Demonstração:

Seja $\mathbb{S}=\{x\in\mathbb{N}:a+x\in\mathbb{N}\}$. Obviamente o 1 está em \mathbb{S} . Suponhamos então que $k\in\mathbb{S}$, queremos garantir que $s(k)\in\mathbb{S}$. Temos então que $a+k\in\mathbb{N}$ o que implica que $a+s(k)=s(a+k)\in\mathbb{N}$, pois pelo Axioma 1, a função s tem contradomínio \mathbb{N} . Como $s(k)\in\mathbb{S}$, pelo Axioma da indução finita, concluímos que $\mathbb{S}=\mathbb{N}$.

Números naturais: relação de ordem

Definição:

Sejam $a, b \in \mathbb{N}$. Definiremos a relação \leq entre a e b, denotado por $a \leq b$, e diremos que a se relaciona com b através de \leq quando uma das seguintes situações ocorre:

- \blacksquare a=b;
- a + n = b, para algum $n \in \mathbb{N}$.

Números inteiros: relação de equivalência

A maneira como expressamos um número inteiro, é por uma relação binária \sim sobre $\mathbb{N} \times \mathbb{N}$ definida desse modo: $(a,b) \sim (c,d) \iff a+d=b+c$, sendo a,b,c,d números naturais quaisquer.

Os pares ordenados (1,2) e (5,6) se relacionam através da relação \sim , pois 1+6=2+5. Intuitivamente, significa que 1-2=5-6=-1

Números inteiros: definição

Definição:

O conjunto quociente $\mathbb{N} \times \mathbb{N}/\sim = \{\overline{(a,b)} : (a,b) \in \mathbb{N} \times \mathbb{N}\}$ será chamado de conjunto dos números inteiros e será denotado por \mathbb{Z} .

Números inteiros: adição

Definição:

Dados
$$\overline{(a,b)}$$
 e $\overline{(c,d)}$ em \mathbb{Z} , definimos a adição $\overline{(a,b)}+\overline{(c,d)}$ como
$$\overline{(a+c,b+d)}.$$

Teorema:

A operação de adição está bem definida em \mathbb{Z} . Isto é, a adição em \mathbb{Z} não depende do representante das classes de equivalência envolvidas na adição.

Números inteiros: imersão

Teorema:

$$f: \mathbb{N} \to \mathbb{Z}$$

$$x \mapsto \overline{(x+1,1)}.$$

Essa função tem as propriedades a seguir:

- 1 f(a+b) = f(a) + f(b);
- $2 f(a \cdot b) = f(a) \cdot f(b);$
- $3 a \leq b \implies f(a) \leq f(b).$

Ou seja, preserva a adição, a multiplicação e a relação de ordem.

Números racionais

$$\mathbb{Z} \times \mathbb{Z}^* = \{ (a, b) : a \in \mathbb{Z} \land b \in \mathbb{Z}^* \}.$$

Sobre $\mathbb{Z} \times \mathbb{Z}^*$ vamos considerar a relação definida por $(a,b) \sim (c,d) \iff ad = bc$.

Números racionais: multiplicação

Definição:

Sejam $\frac{a}{b}$ e $\frac{c}{d}$ números racionais quaisquer. A multiplicação de $\frac{a}{b}$ por $\frac{c}{d}$ será denotada por $\frac{a}{b} \cdot \frac{c}{d}$ e é definida por $\frac{ac}{bd}$.

Números racionais: inverso multiplicativo

Demonstração:

Vamos obter o inverso de $\frac{a}{b}$. Por hipótese, temos $b \neq 0$. Suponhamos que a=0. Vejamos se algum $\frac{c}{d}$ pode ser simétrico de $\frac{a}{b}$. Temos $\frac{a}{b}\frac{c}{d}=\frac{ac}{bd}=\frac{0}{bd}\neq\frac{1}{1}$. Assim não podemos ter zero no numerador.

Suponhamos por outro lado, $a \neq 0$. Temos $\frac{ac}{bd} = \frac{1}{1} \implies ac = bd$, que é o mesmo que dizer que $\frac{a}{b} = \frac{d}{c}$. Para que a igualdade ocorra, basta tomar c = b e d = a, assim, o inverso de $\frac{a}{b}$, para $a \neq 0$, é $\frac{c}{d} = \frac{b}{a}$.

Números racionais: escolha do denominador

Teorema:

Qualquer que seja o número racional $\frac{a}{b}$, é sempre possível escolher uma representação $\frac{c}{d}$, de tal modo que $\frac{a}{b}=\frac{c}{d}$, com d>0.

Números racionais: relação de ordem

Definição:

Sejam $\frac{a}{b}$ e $\frac{c}{d}$ números racionais quaisquer, sendo b e d inteiros positivos. A relação de ordem \leq entre $\frac{a}{b}$ e $\frac{c}{d}$ será denotada por $\frac{a}{b} \leq \frac{c}{d}$ para indicar que $ad \leq bc$ e diremos que $\frac{a}{b}$ é menor do que ou igual a $\frac{c}{d}$.

Números racionais: relação de ordem

A principal diferença entre a construção de \mathbb{Z} e \mathbb{Q} foi a restrição nos denominadores, que devem ser apenas positivos. Isso não é análogo \mathbb{Z} , pois não foi preciso fazer nenhuma restrição na relação de ordem em \mathbb{Z} .

Números racionais: imersão

Teorema:

$$f: \mathbb{Z} \to \mathbb{Q}$$
$$x \mapsto \frac{x}{1}.$$

Essa função tem as propriedades a seguir:

1
$$f(a+b) = f(a) + f(b);$$

$$2 f(a \cdot b) = f(a) \cdot f(b);$$

$$3 a \leq b \implies f(a) \leq f(b).$$

Números reais: corte de Dedekind

Definição:

Um conjunto α de números racionais será chamado de corte caso ele atenda as condições a seguir:

- **2** se $r \in \alpha$ e s < r, sendo s um racional qualquer, então $s \in \alpha$;
- ${f 3}$ o conjunto α não tem máximo.

Números reais: exemplos de corte

- O conjunto $\alpha = \{x \in \mathbb{Q} : x < 5\}$ é um corte.
- O conjunto $\alpha = \mathbb{Q}_-^* \cup \{x \in \mathbb{Q}_+ : x \cdot x < 2\}$ é um corte.
- O conjunto $A = \{x \in \mathbb{Q} : x \le 5\}$ não é um corte, pois 5 é máximo de A.

Números reais: relação de ordem

Definição:

Sejam α e β cortes. Diremos que α é menor do que β e denotaremos $\alpha < \beta$ quando $\beta \setminus \alpha \neq \emptyset$.

Números reais: relação de ordem e operações

A relação de ordem para os cortes (que são os números reais), é introduzida cedo, se comparada aos conjuntos \mathbb{N}, \mathbb{Z} e \mathbb{Q} . Isso porque para definir a multiplicação de números reais foi necessário utilizar a relação de ordem, ao passo que nos outros capítulos as definições de multiplicação e da relação de ordem eram independentes.

Números reais: por que um corte não tem máximo?

Caso pudesse ocorrer máximo em um corte, consideremos $\alpha = \{ x \in \mathbb{Q} : x < 5 \}$ e $\beta = \{ x \in \mathbb{Q} : x \le 5 \}$, teríamos

$$\beta \setminus \alpha = \{5\},\$$

e portanto $\alpha < \beta$. Seja γ tal que $\alpha < \gamma < \beta$, então

- de $\alpha < \gamma$ temos que $x < 5 \implies x \in \gamma$.
- $lacktriangleq \alpha$ tem uma cota superior mínima, que é o 5. Assim, $5 \in \gamma$.
- \blacksquare como 5 é máximo de β , é também a menor cota superior. Logo, qualquer q > 5 não está em β , e portanto $\beta < \gamma$, o que é uma contradição.

Outra situação seria permitir que conjuntos distintos, nesse exemplo, α e β , fossem números reais iguais. Nesse caso, α e β seriam dois representantes de um mesmo número real, e teríamos que verificar se estavam bem definidas as operações que faríamos. UDESC

Números reais: adição

Definição:

Sejam α e β números reais. A adição de α e β , denotada por $\alpha+\beta$, é definida por $\gamma=\{x+y:x\in\alpha\wedge y\in\beta\}.$

Números reais: multiplicação

Definição:

A multiplicação de dois números reais α e β , denotada por $\alpha \cdot \beta$, é definida por:

$$\alpha \cdot \beta = \begin{cases} \mathbb{Q}_{-}^* \cup \{rs : r \in \alpha \text{ e } s \in \beta, 0 \le r, 0 \le s\}, \text{ se} & \alpha \ge 0^*, \beta \ge 0^* \\ -\left(|\alpha||\beta|\right) & \text{, se} & \alpha < 0^*, \beta \ge 0^* \\ -\left(|\alpha||\beta|\right) & \text{, se} & \alpha \ge 0^*, \beta < 0^* \\ \left(|\alpha||\beta|\right) & \text{, se} & \alpha < 0^*, \beta < 0^* \end{cases}$$

Números reais: imersão

Teorema:

*:
$$\mathbb{Q} \to \mathbb{R}$$

 $x \mapsto x^*$.

Essa função tem as propriedades a seguir:

$$(p \cdot q)^* = p^* \cdot q^*;$$

Números reais: completude

Teorema:

Sejam $A, B \subset \mathbb{R}$ tais que:

- 1 $\mathbb{R} = A \cup B$;
- $2 A \cap B = \emptyset;$
- \blacksquare $A \neq \emptyset \neq B$;

Nestas condições existe um único γ , tal que $\alpha \leq \gamma \leq \beta$, para quaisquer $\alpha \in A$ e $\beta \in B$.

Números reais: supremo

O Teorema da Completude do corpo dos números reais foi usado para provar o Teorema do Supremo, que diz que todo subconjunto limitado superiormente de números reais, admite um supremo em \mathbb{R} .

É o teorema da completude de $\mathbb R$ e suas consequências, que diferenciam $\mathbb R$ de $\mathbb Q.$

Números reais: conclusão

Até agora provamos que é possível estender o conceito de número até chegar no conjunto dos números reais, isto é, um corpo ordenado completo.

Sobre a enumerabilidade \mathbb{R} : $\mathbb{N} \times \mathbb{N}$ é enumerável

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N},$$

 $(a,b) \mapsto \phi(a+b-2) + a,$

em que $\phi(k)=1+2+...+k=\frac{k(k+1)}{2}..$ A função f é uma bijeção entre \mathbb{N} e $\mathbb{N}\times\mathbb{N}$, portanto $\mathbb{N}\times\mathbb{N}$ é enumerável.

Sobre a enumerabilidade \mathbb{R} : consequências

Teoremas:

Os conjuntos $\mathbb Z$ e $\mathbb Q$ são enumeráveis.

Sobre a enumerabilidade \mathbb{R} : Teorema dos Intervalos Encaixados

Seja $I_1 \supset I_2 \supset I_3 \cdots \supset I_n \supset \ldots$ uma sequência de intervalos limitados e fechados $I_n = [a_n, b_n]$. A interseção

$$\bigcap_{n=1}^{\infty} I_n$$

tem ao menos um elemento.

O teorema dos intervalos encaixados é usado para mostrar que *o* conjunto dos números reais não é enumerável.

Sobre a unicidade de $\mathbb R$

A meneira como provamos a unicidade de $\mathbb R$ foi mostrar que quaisquer dois corpos ordenados completos quaisquer X e Y admitem um isomorfismo que preserva a ordem entre eles, isto é, admite uma função

$$f: X \to Y,$$

 $x \mapsto y.$

que é bijetiva, aditiva, multiplicativa e preserva a relação de ordem, quaisquer que sejam os corpos ordenados completos X e Y.

Sobre a unicidade de $\mathbb R$

A ideia dessa demonstração é mostrar que em cada conjunto X e Y, tem os números naturais, inteiros e racionais, e que é possível fazer isomorfismos que preservam a relação de ordem entre eles. Por fim, construímos um isomorfismo que preserva a relação de ordem, entre X e Y.

Conclusão

- Foi possível estender o conceito de número até obtermos os números reais.
- Foi justificada as inclusões $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.
- Provamos que \mathbb{R} é o único corpo ordenado completo, a menos de isormofismos.
- Mostramos que os conjuntos \mathbb{Z} e \mathbb{Q} são enumeráveis, e que o conjunto \mathbb{R} não é enumerável.

Disponibilidade

O trabalho está disponível nos formatos .tex e .pdf no github (https://github.com/mateus-70/TGR), cujo acesso é livre.

Referências I

- ALFELD, Peter. Why is the square root of 2 irrational? 1996. Disponível em:
- <https://www.math.utah.edu/~pa/math/q1.html>. Acesso em: 5 jun. 2023.
- BARBOSA, João Lucas Marques. **Geometria euclidiana plana**. 11. ed. Rio de Janeiro: SBM, 2012. ISBN 978-85-8337-106-9.
- BARTLE, Robert Gardner; SHERBERT, Donald R. **Introduction to real analysis**. 3. ed. [S.I.]: John Wiley e Sons, 1927. ISBN 0-471-32148-6.
- BOYER, Carl B. **História da matemática**. 2. ed. São Paulo: Edgard Blucher, 1996. ISBN 978-85-212-0023-9.
 - DOMINGUES, Hygino Hugueros. **Fundamentos de Aritmética**. Florianópolis: Ed. da UFSC, 2009. ISBN 978-85-328-0466-2.

Referências II

- DOMINGUES, Hygino Hugueros; IEZZI, Gelson. Álgebra Moderna. 5. ed. São Paulo: Saraiva, 2018.
- FERREIRA, Jamil. A construção dos números. Rio de Janeiro: SBM, 2013. (Coleção Textos universitários; 09). ISBN 978-85-85818-91-3.
- GUIDORIZZI, Hamilton Luiz. Um curso de cálculo. 6. ed. Rio de Janeiro: LTC, 2018. v. 1. ISBN 978-85-216-3543-7.
- HEFEZ, Abramo. **Aritmética**. Rio de Janeiro: SBM, 2014. (Coleção PROFMAT; 08). ISBN 978-85-85818-92-0.
 - . Curso de álgebra. 5. ed. Rio de Janeiro: IMPA, 2014. (Coleção matemática universitária). ISBN 978-85-244-0079-7.

Referências III

- LIMA, Elon Lages. **Conceitos e controvérsias**. Disponível em: https://www.rpm.org.br/cdrpm/1/2.htm. Acesso em: 3 fev. 2023.
- Curso de análise. 14. ed. Rio de Janeiro: IMPA, 2016. v. 1. ISBN 978-85-244-0118-3.
- MORTARI, Cezar A. **Introdução à lógica**. 2. ed. São Paulo: Unesp, 2016.
 - PEANO, loseph. **Arithmetices principia**: nova methodo exposita. Turim: Fratres Bocca, 1889. Disponível em: https://ia903400. us.archive.org/12/items/arithmeticespri00peangoog/arithmeticespri00peangoog.pdf>. Acesso em: 5 jun. 2023.

Referências IV

- ROQUE, Tatiana. **História da matemática**: uma visão crítica, desfazendo mitos e lendas. Rio de Janeiro: Zahar, 2012. ISBN 978-85-378-0888-7.
- SANTOS, José Plínio de Oliveira. **Introdução à teoria dos números**. 3. ed. Rio de Janeiro: IMPA, 2015.
- SUPPES, Patrick. **Axiomatic set theory**. 2. ed. Nova lorque: Dover, 1972.
- UNIQUENESS of the Real Numbers. Disponível em: https://math.ucr.edu/~res/math205A/uniqreals.pdf>. Acesso em: 29 mai. 2023.

