习题四:隐藏马可夫模型和粒子滤波器(共50分)

1、隐藏马可夫模型(20分)

考虑下面的隐藏马可夫模型:

W_1	$P(W_1)$
0	0.3
1	0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	a	0.9
0	b	0.1
1	a	0.5
1	b	0.5

假设我们观察到 $O_1=a$ 和 $O_2=b$ 。使用前向算法(forward algorithm)一步一步地计算概率 $P(W_2|O_1=a,O_2=b)$ 。

(a) 计算 $P(W_1, O_1 = a)$ 。(5 分)

(b) 根据前面的结果,计算 $P(W_2, O_1 = a)$ 。(5 分)

(c) 根据前面的结果,计算 $P(W_2, O_1 = a, O_2 = b)$ 。(5 分)

(d) 最后,计算 $P(W_2|O_1 = a, O_2 = b)$ 。(5 分)

2、粒子滤波器(30分)

我们用粒子滤波器来估算概率分布 $P(W_2|O_1=a,O_2=b)$ 。这里是和前题同样的 HMM。

W_1	$P(W_1)$
0	0.3
1	0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	a	0.9
0	b	0.1
1	a	0.5
1	b	0.5

从下面两个代表 W_1 分布的粒子开始:

 $P_1:W_1=0$

 $P_2: W_1 = 1$

用下面的随机数来运行我们的粒子滤波器

[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]

(a) 观测:观察到证据 $O_1 = a$ 后,计算两个粒子的权重。(5分)

(b) 重采样:使用上面提供的随机数,基于权重,重新对 P_1 和 P_2 采样。(5分)

(c) 预测: 使用上面的随机数,对 P_1 和 P_2 作时间更新(time update)。(5 分)

(d) 更新:观察到证据 $O_2 = b$ 后,计算两颗粒子新的权重。(5分)

(e) 重采样:使用上面提供的随机数,基于权重,重新对 P_1 和 P_2 采样。(5分)

(f) 根据以上结果,估算的概率分布 $P(W_2|O_1 = a, O_2 = b)$ 。(5 分)