AES

Длина блока и ключа 128 бит (16 байт)

Количество раундов – 10 (Для 128-битного ключа)

Шифруемое слово – AESTESTWORDCRYPT = 41 45 53 54 45 53 54 57 4F 52 44 43 52 59 50 54

Ключ – THISKEYFORAESALG = 54 48 49 53 4B 45 59 46 4F 52 41 45 53 41 4C 47

Nb = 128/32 = 4 (Количество колонок)

Nb = 128/32 = 4 (Количество слов)

Начальный блок состояния (S):

41	45	53	54
45	53	54	57
4F	52	44	43
52	59	50	54

Начальный ключ состояния, разделённый на слова (К):

54	48	49	53
4B	45	50	46
4F	52	41	45
53	41	4C	47

Генерация первого раундового ключа:

Sbox (16 X 16):

63, 7c, 77, 7b, f2, 6b, 6f, c5, 30, 01, 67, 2b, fe, d7, ab, 76, ca, 82, c9, 7d, fa, 59, 47, f0, ad, d4, a2, af, 9c, a4, 72, c0, b7, fd, 93, 26, 36, 3f, f7, cc, 34, a5, e5, f1, 71, d8, 31, 15, 04, c7, 23, c3, 18, 96, 05, 9a, 07, 12, 80, e2, eb, 27, b2, 75, 09, 83, 2c, 1a, 1b, 6e, 5a, a0, 52, 3b, d6, b3, 29, e3, 2f, 84, 53, d1, 00, ed, 20, fc, b1, 5b, 6a, cb, be, 39, 4a, 4c, 58, cf, d0, ef, aa, fb, 43, 4d, 33, 85, 45, f9, 02, 7f, 50, 3c, 9f, a8, 51, a3, 40, 8f, 92, 9d, 38, f5, bc, b6, da, 21, 10, ff, f3, d2, cd, 0c, 13, ec, 5f, 97, 44, 17, c4, a7, 7e, 3d, 64, 5d, 19, 73, 60, 81, 4f, dc, 22, 2a, 90, 88, 46, ee, b8, 14, de, 5e, 0b, db, e0, 32, 3a, 0a, 49, 06, 24, 5c, c2, d3, ac, 62, 91, 95, e4, 79, e7, c8, 37, 6d, 8d, d5, 4e, a9, 6c, 56, f4, ea, 65, 7a, ae, 08, ba, 78, 25, 2e, 1c, a6, b4, c6, e8, dd, 74, 1f, 4b, bd, 8b, 8a, 70, 3e, b5, 66, 48, 03, f6, 0e, 61, 35, 57, b9, 86, c1, 1d, 9e, e1, f8, 98, 11, 69, d9, 8e, 94, 9b, 1e, 87, e9, ce, 55, 28, df, 8c, a1, 89, 0d, bf, e6, 42, 68, 41, 99, 2d, 0f, b0, 54, bb, 16

Rcon (Массив раундовых констант):

0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000

Пример для байта 54

54 = 0101 0100 — Два полубайта 0101 — строка 0100 — столбец Sbox(0101, 0100) = Sbox(5, 3) = 20

Полная подстановка:

 $54\ 48\ 49\ 53 \rightarrow 20\ 52\ 3B\ ED$

4B 45 50 46 \rightarrow B3 6E 53 5A

 $4F 52 41 45 \rightarrow 84 00 83 6E$

53 41 4C 47 \rightarrow ED 83 29 A0

Побитовый цикличный сдвиг влево <<

20 52 3B ED \rightarrow 52 3B ED 20

B3 6E 53 5A \rightarrow 6E 53 5A B3

 $84\ 00\ 83\ 6E \rightarrow 00\ 83\ 6E\ 84$

ED 83 29 A0 → 83 29 A0 ED

Снова пропускаем матрицу через Sbox:

52 3B ED 20 \rightarrow 00 E2 55 B7

6E 53 5A B3 \rightarrow 9F ED BE 6D

00 83 6E 84 \rightarrow 63 EC 9F 5F

83 29 A0 ED \rightarrow EC A5 E0 55

Первоначальный ключ XOR матрица, полученная в прошлом шаге:

54 48 49 53		00 E2 55 B7		54 DA 1C E4
4B 45 50 46		9F ED BE 6D		D4 68 1C 7B
4F 52 41 45	XOR	63 EC 9F 5F	=	2C BE 9E 7A
53 41 4C 47		EC A5 E0 55		BF F6 9C 12

Добавление константы Rcon[0] к каждому байту:

54 DA 1C E4		01 00 00 00		55 DA 1C E4
D4 68 1C 7B		01 00 00 00		D5 68 1C 7B
2C BE 9E 7A	XOR	01 00 00 00	=	2D BE 9E 7A
BF F6 9C 12		01 00 00 00		BE F6 9C 12

Ключ для 1 раунда шифрования:

55 DA 1C E4

D5 68 1C 7B

2D BE 9E 7A

BE F6 9C 12

Шифрование

1. AddRoundKey

S XOR K, где S это шифруемые данные, а K – ключ шифрования для раунда

41 45 53 54		55 DA 1C E4		14 9F 4F B0
45 53 54 57		D5 68 1C 7B		90 3B 48 2C
4F 52 44 43	XOR	2D BE 9E 7A	=	62 EC DA 39
52 59 50 54		BE F6 9C 12		EC 36 F3 46

2. SubBytes

Замена байтов на значения из Sbox

14 9F 4F BO FA D8 84 E7

90 3B 48 2C 60 E2 52 71

62 EC DA 39 -> AA CE 57 12

EC 36 F3 46 CE 05 0D 5A

3. ShiftRows

Побайтовый сдвиг.

Строка 1 остаётся без изменений

Строка 2 сдвигается на 1 байт

Строка 3 сдвигается на 2 байта

Строка 4 сдвигается на 3 байта

FA D8 84 E7 FA D8 84 E7
60 E2 52 71 E2 52 71 60
AA CE 57 12 << 57 12 AA CE
CE 05 0D 5A 5A CE 05 0D

4. MixCoulmns

Fixed matrix = 02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

Columns: FA D8 84 E7
E2 52 71 60
57 12 AA CE

5A CE 05 0D

 $NewColumn[i] = FixedMatrix[i,0] \cdot Column[0] \\ \oplus FixedMatrix[i,1] \cdot Column[1] \\ \oplus FixedMatrix[i,2] \cdot Column[2] \\ \oplus FixedMatrix[i,3] \cdot Column[3]$

 $[1] = (0x01 \cdot 0xFA) \oplus (0x02 \cdot 0xE2) \oplus (0x03 \cdot 0x57) \oplus (0x01 \cdot 0x5A) = 86$

[2] = $(0x01 \cdot 0xFA) \oplus (0x01 \cdot 0xE2) \oplus (0x02 \cdot 0x57) \oplus (0x03 \cdot 0x5A) = 58$

[3] = $(0x03 \cdot 0xFA) \oplus (0x01 \cdot 0xE2) \oplus (0x01 \cdot 0x57) \oplus (0x02 \cdot 0x5A) = 14$

DF 81 2F B6

86 84 86 63

58 E7 B5 17

14 B4 46 86

Merkle

Генерация ключей

Пусть n=4, то есть дерево имеет 4 листа (максимум 4 подписи).

- Закрытые ключи
 - o sk0="privatekey0"
 - sk1="privatekey1"
 - sk2="privatekey2"
 - o sk3="privatekey3"
- Открытые ключи

Хэшируем каждый закрытый ключ для получения открытого ключа через алгоритм хеширования Н

```
pk0=H(sk0) = "d2b6..."
pk1=H(sk1) = "f3a1..."
pk2=H(sk2) = "a4f9..."
```

pk3=H(sk3) = "e1c3..."

Построение дерева

Каждый публичный ключ является одним начальным узлом дерева

Вычисление промежуточных узлов происходит путём хеширования пары соседних узлов, например

$$L01 = H(pk0 | | pk1)$$

Посредством хеширования двух промежуточных узлов получаем корневой узел root

Root = $H(H01 \parallel H23)$

Формирование подписи

Делаем подпись на основе одного из ключей skn

Находим соседний узел pkn+-1 для хеша ключа skn

Находим соседний родительский узел А

Формируем путь Proof = [pkn+-1, A]

Формируем подпись Signature = (skn, proof, n)

Проверка подписи

Хешируем skn и получаем публичный ключ pkn

Получаем родительский узел Hnn+-1 хешируя H(pkn || pkn+-1)

Хешируем полученный узел вместе с узлом A root' = H(A || Hnn+-1)

Сравниваем root' с публичным root