5^a LISTA DE EXERCÍCIOS - MTM 1020-

1. Determine uma equação do plano tangente à superfície no ponto especificado.

a)
$$z = 4x^2 - y^2 + 2y$$
, $P = (-1, 2, 4)$ b) $z = \sqrt{xy}$, $P = (1, 1, 1)$

b)
$$z = \sqrt{xy}, P = (1, 1, 1)$$

c)
$$z = ycos(x - y)$$
, $P = (2, 2, 2)$

d)
$$z = e^{xy}, P = (1, 0, 1).$$

 ${\bf 2}.$ Encontre todos os pontos do elipsó
ide $2x^2+3y^2+4z^2=9$ nos quais o plano tangente é paralelo ao plano x - 2y + 3z = 5.

3. Use a Regra da Cadeia para determinar $\frac{dz}{dt}$ ou $\frac{dw}{dt}$.

a)
$$z = x^2y + xy^2$$
, $x = 2 + t^4$, $y = 1 - t^3$.

b)
$$z = sen(x)cos(y), x = \pi t, y = \sqrt{t}.$$

c)
$$w = xe^{\frac{y}{z}}, x = t^2, y = 1 - t, z = 1 + 2t.$$

d)
$$z = e^{1-xy}, x = \sqrt[3]{t}, y = t^3.$$

e)
$$w = 5cos(yx) - sen(xz), x = t^{-1}, y = t, z = t^{3}.$$

4. Use uma forma apropriada da Regra da Cadeia para determinar $\frac{\partial z}{\partial s}$ e $\frac{\partial z}{\partial t}$.

a)
$$z = x^2y^3$$
, $x = scos(t)$, $y = ssen(t)$.

b)
$$z = sen(\theta)cos(\varphi), \ \theta = st^2, \ \varphi = s^2t.$$

c)
$$w = e^r cos(\theta), r = st, \theta = \sqrt{s^2 + t^2}.$$

d)
$$w = e^{x^2y}, x = \sqrt{st}, y = \frac{1}{4}$$
.

e)
$$z = \frac{x}{y}$$
, $x = s^2 - t^2$, $y = 4st^3$.

f)
$$z = ln(x^2 + 1), x = scos(t).$$

5. Suponha que

$$w = x^3y^2z^4$$
, $x = t^2$, $y = t + 2$, $z = 2t^4$.

Encontre a taxa de variação de w em relação a t em t=1 usando a regra da cadeia e então confira sua resposta expressando w como uma função de t e depois derivando.

- **6**. Suponha que z = f(x, y) seja diferenciável no ponto (4, 8) com $f_x(4, 8) = 3$ e $f_y(4, 8) = -1$. Se $x = t^2$ e $y = t^3$, encontre $\frac{dz}{dt}$ para t = 2.
- 7. Se z = f(x, y), onde f é diferenciável, e x = g(t), y = h(t), g(3) = 2, h(3) = 7, g'(3) = 5, h'(3) = -4, $f_x(2, 7) = 6$ e $f_y(2, 7) = -8$, determine $\frac{dz}{dt}$ para t = 3.
- 8. Utilize a Regra da Cadeia para determinar as derivadas parciais indicadas.
- a) $z = x^2 + xy^3$, $x = uv^2 + w^3$, $y = u + ve^w$; $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$, $\frac{\partial z}{\partial w}$, quando (u, v, w) = (2, 1, 0).
- **b)** $R = ln(u^2 + v^2 + w^2), u = x + 2y, v = 2x y, w = 2xy;$ $\frac{\partial R}{\partial x}, \frac{\partial R}{\partial y}, \text{ quando } (x, y) = (1, 1).$
- c) $u = x^2 + zy$, $x = prcos(\theta)$, $y = prsen(\theta)$, z = p + r; $\frac{\partial u}{\partial p}$, $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial \theta}$, quando $(p, r, \theta) = (2, 3, 0)$.
- 9. Suponha que F(x,y,z)=k, para alguma constante $k\in\mathbb{R}$ qualquer, defina z implicitamente como uma função de x e y. Mostre que se $\frac{\partial F}{\partial z}\neq 0$, então

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \quad e \quad \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}.$$

- 10. Sendo $ye^x 5sen(3z) = 3z$, determine $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ através da derivação implícita e confirme que o resultado obtido é consistente através do exercício anterior.
- 11. A temperatura em um ponto (x,y) é T(x,y), medida em graus Celsius. Um inseto rasteja de modo que sua posição depois de t segundos seja dada por $x = \sqrt{1+t}$, $y = 2 + \frac{1}{3}t$, onde x e y são medidas em centímetros. A função

temperatura satisfaz $T_x(2,3) = 4$ e $T_y(2,3) = 3$. Quão rápido a temperatura aumenta no caminho do inseto depois de três segundos?

- 12. O comprimento l, a largura w e a altura h de uma caixa variam com o tempo. Em certo instante, as dimensões da caixa são l = 1m e w = h = 2m, com l e w aumentando a uma taxa de 2m/s e h diminuindo a uma taxa de 3m/s. Nesse instante deteermine as taxas nas quais as seguintes quantidades estão variando:
- a) O volume.
- b) A área da superfície.
- c) o comprimento da diagonal.
- 13. Um lado de um triângulo está aumentando a uma taxa de 3cm/s e um segundo lado está decrescendo a uma taxa de 2cm/s. Se a área do triângulo permanece constante, a que taxa varia o ângulo entre os lados quando o primeiro lado possui 20cm de comprimento, o segundo tem 30cm de comprimento e o ângulo é $\frac{\pi}{6}$?
- 14. Se z = f(x, y), onde $x = rcos(\theta)$ e $y = rsen(\theta)$, determine $\frac{\partial z}{\partial r}$ e $\frac{\partial z}{\partial \theta}$. Mostre que

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2.$$

- **15**. Caso z = f(x + cy), onde $c \in \mathbb{R}$ é uma constante, mostre que $c\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} = 0$.
- 16. Seja f uma função diferenciável de uma variável e seja w=f(u), onde u=x+2y+3z. Mostre que

$$\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 6\frac{dw}{du}.$$

- 17. Uma função f é dita homogênea de grau n se satisfaz a equação $f(tx,ty)=t^nf(x,y)$ para todo valor de t, onde $n\in\mathbb{N}$ e f possui as deridadas de segunda ordem contínuas.
- a) Verifique que $f(x,y) = x^2y + 2xy^2 + 5y^3$ é homogênea de grau 3.

b) Mostre que, se f é homogênea de grau n, então

$$xf_x(x,y) + yf_y(x,y) = nf(x,y).$$

(Sugestão: Use a Regra da Cadeia para derivar f(tx, ty) com relação a t).

18. Encontre a derivada direcional de f em P na direção do vetor \overrightarrow{u} .

a)
$$f(x,y) = (1+xy)^{\frac{3}{2}}, P = (3,1), \overrightarrow{u} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}).$$

b)
$$f(x,y,z) = 4x^5y^2z^3$$
, $P = (2,-1,1)$, $\overrightarrow{u} = (\frac{1}{3}, \frac{2}{3}, -\frac{2}{3})$.

c)
$$f(x,y) = y^2 ln(x)$$
, $P = (1,4)$, $\vec{u} = -3i + 3j$.

d)
$$f(x,y,z) = \frac{z-x}{z+y}$$
, $P = (1,0,-3)$, $\overrightarrow{u} = (-6,3,-2)$.

19. Encontre a derivada direcional de f em P na direção e sentido de um vetor que faça um ângulo θ com o eixo x.

a)
$$f(x,y) = \sqrt{xy}$$
, $P = (1,4)$, $\theta = \frac{\pi}{3}$.

b)
$$f(x,y) = \frac{x-y}{x+y}$$
, $P = (-1, -2)$, $\theta = \frac{\pi}{2}$.

- **20**. Determine a derivada direcional de $f(x,y) = e^{xy} \sqrt{xy}$ em P(1,1) na direção e sentido do eixo y negativo.
- **21**. Suponha que $D_u f(1,2) = -5$ e $D_v f(1,2) = 10$,onde $\overrightarrow{u} = \frac{3}{5} \overrightarrow{i} \frac{4}{5} \overrightarrow{j}$ e $\overrightarrow{v} = \frac{4}{5} \overrightarrow{i} + \frac{3}{5} \overrightarrow{j}$. Determine $f_x(1,2)$, $f_y(1,2)$ e a derivada direcional de f em (1,2) na direção e sentido da origem.
- **22**. Encontre o gradiente de f no ponto indicado.

a)
$$f(x,y) = (x^2 + xy)^3$$
, $(-1,-1)$.

b)
$$f(x, y, z) = y \ln(z + x + y), (-3, 4, 0).$$

23. Encontre um vetor unitário na direção do qual f cresce mais rapidamente em P e obtenha a derivada direcional de f nesta direção.

a)
$$f(x,y) = \sqrt{x^2 + y^2}$$
, $P = (4, -3)$.

- **b)** $f(x, y, z) = x^3 z^2 + y^3 z + z 1$, P = (1, 1, -1).
- **24**. Dado que $\nabla f(4,-5)=2\overrightarrow{i}-\overrightarrow{j}$, determine a derivada direcional da função f no ponto (4,-5) na direção de $\overrightarrow{u}=5\overrightarrow{i}+2\overrightarrow{j}$.