ATTORNEY DOCKET NO. 19308.0021U1
APPLICATION NO. 10/712,136
00CXT0262W
Page 3 of 7

In the Claims:

The following listing of claims replaces all prior versions and listings of claims in the application:

1	 (Previously presented) A power control system for a power amplifier, 		
2	comprising:		
3	a first power control loop configured to provide a control signal comprising:		
4	a variable attenuator for adjusting a gain applied to a signal in the first power		
5	control loop;		
6	a detector for providing a direct current (DC) baseband signal representing at		
7	output of the power amplifier;		
8	a first comparator for comparing the DC baseband signal to a first reference		
9	signal and generating an error signal;		
10	a second power control loop comprising:		
11	a second comparator for comparing the error signal to a second reference		
12	signal and generating a secondary control signal capable of controlling the variable		
13	attenuator.		
1	2. (Original) The power control system of claim 1, wherein the secondary		
2	control signal is used to control the variable attenuator to reduce attenuation in the first		
3 power control loop.			
1	3. (Original) The power control system of claim 2, wherein the variable		
2	attenuator is a variable gain amplifier (VGA) having a maximum gain of zero dB.		
1	4. (Original) The power control system of claim 1, further comprising an		
2	adjustable buck voltage converter responsive to the secondary control signal, the adjustable		
3	buck voltage converter configured to reduce a power supplied to the power amplifier is		
4	response to the secondary control signal.		

3

ATTORNEY DOCKET NO. 19308.0021U1
APPLICATION NO. 10/712,136
00CXT0262W
Page 4 of 7

1	5. (Original) The power control system of claim 4, wherein the adjustable		
2	buck voltage converter reduces supply current to the power amplifier until saturation of the		
3	power amplifier is detected.		
1	6. (Original) The power control system of claim 1, wherein the secondary		
2	control signal is used to control the variable attenuator to reduce attenuation in the first		
3	power control loop, and further comprising:		
4	an adjustable buck voltage converter responsive to the secondary control signal, the		
5	adjustable buck voltage converter configured to reduce the power supplied to the power		
6	amplifier in response to the secondary control signal until saturation of the power amplifier		
7	is detected.		
1	7. (Currently amended) A method for operating a power control loop for a		
2	power amplifier, comprising:		
3	measuring a power level of a signal output from the power amplifier;		
4	- · · · · · · · · · · · · · · · · · · ·		
5	generating an error signal by comparing the power level of the signal output from the		
	power amplifier to a first reference signal;		
6	generating a primary control signal responsive to the error signal in a primary control		
7	loop;		
8	deriving a secondary control signal responsive to the error signal and a second		
9	reference signal; and		
10	using the secondary control signal to control a gain applied to the signal output from		
11	the <u>power</u> amplifier.		
1 .	8. (Canceled)		
1	9. (Previously presented) The method of claim 7, wherein the gain applied to		
2	the signal output from the power amplifier is controlled by a variable attenuator, the variable		

attenuator configured to receive the signal output from the power amplifier.

ATTORNEY DOCKET NO. 19308.0021U1

APPLICATION NO. 10/712,136

00CXT0262W

Page 5 of 7

1	(Original) The method of claim 7, further comprising:		
2	using the secondary control signal to control an adjustable buck voltage converter,		
3	the adjustable buck voltage converter configured to provide a supply current to the power		
4	amplifier.		
1	11. (Original) The method of claim 10, wherein the adjustable buck voltage		
2	converter reduces supply current to the power amplifier until saturation of the power		
3	amplifier is detected.		
1	12. (Original) The method of claim 7, further comprising:		
2	using the secondary control signal to control a gain applied to the signal output from		
3	the power amplifier; and		
4	using the secondary control signal to control an adjustable buck voltage converter,		
5	the adjustable buck voltage converter configured to provide a supply current to the power		
6	amplifier, wherein the adjustable buck voltage converter reduces supply current to the power		
7	amplifier until saturation of the power amplifier is detected.		
1	13. (Previously presented) A system for operating a power control loop for a		
2	power amplifier, comprising:		
3	means for measuring a power level of a signal output from the power amplifier;		
4	means for generating an error signal by comparing the power level of the signa		
5	output from the power amplifier to a first reference signal;		
6	means for generating a primary control signal responsive to the error signal in a		
7	primary control loop;		
8	means for deriving a secondary control signal responsive to the error signal and a		
9	second reference signal; and		
10	means for using the secondary control signal to control a gain applied to the signal		
11	output from the power amplifier.		

1

1

3

1

2

3

4

1

2

3

1

2

3

5

6

ATTORNEY DOCKET NO. 19308.0021U1
APPLICATION NO. 10/712,136
00CXT0262W
Page 6 of 7

	/A 1 1\
14.	(Canceled)
17.	(Caucoicu)

- 15. (Previously presented) The system of claim 13, wherein the gain applied to the signal output from the power amplifier is controlled by a variable attenuator means, the variable attenuator means for receiving the signal output from the power amplifier.
- 16. (Original) The system of claim 13, further comprising: means for using the secondary control signal to control an adjustable buck voltage converter means, the adjustable buck voltage converter means for providing a supply current to the power amplifier.
 - 17. (Original) The system of claim 16, wherein the adjustable buck voltage converter means reduces supply current to the power amplifier until saturation of the power amplifier is detected.
 - 18. (Original) The system of claim 13, further comprising:

means for using the secondary control signal to control a gain applied to the signal output from the power amplifier; and

means for using the secondary control signal to control an adjustable buck voltage converter means, the adjustable buck voltage converter means for providing a supply current to the power amplifier, wherein the adjustable buck voltage converter means reduces supply current to the power amplifier until saturation of the power amplifier is detected.