

Termodinâmica e Transferência de Calor

1° Semestre – Ano Lectivo 2022/23

1° Teste – 18/11/2023

Duração: 1h45min

Nota: Na página 4 aparece uma tabela com propriedades da água.

I (6 valores)

Uma massa m de água encontra-se dentro de uma câmara cilíndrica equipada com um êmbolo, conforme se mostra na figura. A água, inicialmente à pressão de 1.5 bar e com parâmetro de qualidade de 20%, sofre dois processos: i) a água é aquecida a pressão constante até que o pistão atinja os batentes; ii) o aquecimento continua até que toda a água passe a vapor saturado.

- a) Represente os processo sofridos pela água num diagrama v-T.
- b) Para cada processo, calcule o trabalho e a transferência de calor, em kJ/kg;

- c) No diagrama da alínea a), represente as linhas isobáricas que passam pelos pontos que representam os estados inicial e final. Indique os valores das pressões e das temperaturas iniciais e finais.
- d) Considere que antes de atingir os batentes a pressão da água iguala a pressão resultante da pressão atmosférica e do peso do êmbolo. Determina a razão m_e/m entre a massa do êmbolo (m_e) e a massa da água (m).

Resolução

- a) Os segmentos 1-2 e 2-3 na figura representam os dois processos sofridos pelo água.
- b) O processo 1-2 é uma expansão a pressão constante, e o trabalho é dado por

$$W_{1-2} = p(V_2 - V_1). (1)$$

O trabalho por unidade de massa é dado por

$$\frac{W_{1-2}}{m} = p(v_2 - v_1).$$

Numa mistura de fases líquida e vapor, o valor de uma propriedade específica y é dada por

$$y = y_{\rm f} + x(y_{\rm g} - y_{\rm f}), \tag{2}$$

onde x é o parâmetro de qualidade, e $y_{\rm f}$ e $y_{\rm g}$ representam os valores da propriedade específica para o líquido saturado e para o vapor saturado, respectivamente.

Lendo os valores de $v_{\rm f}$ e $v_{\rm g}$ na Tabela A-3 e substituindo na equação (2), obtém-se $v_1=0.2326\,{\rm m}^3/{\rm kg}$.

Dos dados da Figura no enunciado do problema, sabemos que

$$V_2 = \frac{0.03 + 0.05}{0.05} V_1 = 1.6 V_1.$$

Ora, como a massa de água se conserva, teremos $v_2 = 1.6v_1$.

Substituindo na equação (1), obtém-se $W_{1-2}/m = 20.94 \,\mathrm{kJ/kg}$.

Substituindo o valor do volume específico v_2 na equação (2), obtém-se $x_2 = 0.3205$. Recorrendo à Tabela A-3 e usando novamente equação (2), calcula-se a energia interna específica dos estados 1 e 2: $u_1 = 877.5 \,\mathrm{kJ/kg}$ e $u_2 = 1124.8 \,\mathrm{kJ/kg}$.

Pela primeira lei da termodinâmica

$$\frac{Q_{1-2}}{m} = u_2 - u_1 + \frac{W_{1-2}}{m} = 268.0 \,\text{kJ/kg}.$$

No processo 2-3, $\Delta V=0$. Assim, $W_{2-3}=0$, e $Q_{2-3}/m=u_3-u_2$.

No estado 3 só existe vapor, logo $v_g = v_3 = v_2$. Interpolando u_3 na Tabela A-3, obtém-se $u_3 = 2561.5 \, \text{kJ/kg}$. Assim, o calor por unidade de massa é dado por

$$\frac{Q_{2-3}}{m} = u_3 - u_2 = 12436.7 \,\text{kJ/kg}.$$

- c) Os valores de p e T são interpolados da Tabela A-3 e estão indicados na figura da alínea a).
- d) O trabalho realizado sobre o êmbolo é dado por

$$W_{\text{êmb}} = (p_{\text{água}} - p_{\text{atm}}) \Delta V \Rightarrow \frac{W_{\text{êmb}}}{m} = (p_{\text{água}} - p_{\text{atm}}) (\upsilon_2 - \upsilon_1) = \frac{1}{3} \frac{W_{1-2}}{m}.$$

Como $W_{\text{êmb}}$ é igual à variação da energia potencial do êmbolo

$$\frac{m_{\hat{e}mb} g \times 0.03}{m} = \frac{1}{3} \frac{W_{1-2}}{m} \Leftrightarrow \frac{m_{\hat{e}mb}}{m} = \frac{1}{3q \times 0.03} \frac{W_{1-2}}{m} = 2371.7$$

Uma massa de ar dentro de um cilindro com um pistão executa um ciclo de Carnot passando pelos estados $1 \to 2 \to 3 \to 4 \to 1$. O estado inicial da compressão adiabática tem pressão $p_1 = 1$ bar , volume $V_1 = 14$ litros e temperatura $T_1 = 300$ K. Estado 3 tem pressão $p_3 = 1.5p_1$ e volume $V_3 = 1.5V_1 = 21$ litros. Considere que o ar se comporta como um gás ideal com $\kappa = c_p/c_v = 7/5$ e R = 287 J·K⁻¹·kg⁻¹.

- a) Represente ciclo realizado pelo ar num diagrama v p.
- b) Calcule os valores do volume e da pressão em todos os quatro estados.
- c) O ciclo efectuado corresponde a um ciclo de potência ou a um ciclo de refrigeração? Qual é o rendimento ou a eficiência do ciclo?

Resolução

A equação de estado de um gás ideal é

$$pV = mRT. (3)$$

- a) A figura representa os processos no ciclo realizado pelo gás.
- b) Conhecemos os valores de p_1 , V_1 e T_1 , e de p_3 e V_3 . O valor de T_1 corresponde à linha isortémica T_C na Figura.

Pela equação (3)

$$mR = \frac{p_1 V_1}{T_1} = \frac{p_1 V_1}{T_C} \tag{4}$$

Logo, a temperatura $T_H = T_2 = T_3$ é dada por

$$T_H = \frac{p_3 V_3}{mR} = \frac{p_3 V_3}{p_1 V_1} T_C = 675 \,\mathrm{K}.$$
 (5)

(Nota: Com os resultados obtidos até aqui já se poderia responder à alínea c).)

No modelo de gás ideal, a energia interna é apenas função da temperatura (U = f(T)), e o calor específico (ou a capacidade térmica mássica) é dado por

$$c_{v} = \frac{1}{m} \left(\frac{\partial U}{\partial T} \right)_{v} = \frac{1}{m} \frac{\mathrm{d}U}{\mathrm{d}T} = \frac{\mathrm{d}u}{\mathrm{d}T}$$
 (6)

Portanto, num gás ideal a forma diferencial da primeira lei da termodinâmica é dada por

$$mc_v dT = \delta Q - p dV.$$
 (7)

Como os processos $1 \rightarrow 2$ e
 $3 \rightarrow 4$ são adiabáticos, $\delta Q = 0$ e

$$mc_{v}dT = -p\,dV. \tag{8}$$

Substituindo p pela expressão dada pela equação de estado, obtém-se

$$mc_v dT = -\frac{mRT}{V} dV \Leftrightarrow \frac{dV}{V} = -\frac{c_v}{R} \frac{dT}{T} \Leftrightarrow \ln \frac{V_f}{V_i} = \ln \left(\frac{T_i}{T_f}\right)^{c_v/R} \Leftrightarrow V_f = V_i \left(\frac{T_i}{T_f}\right)^{c_v/R}.$$
 (9)

$$\kappa = \frac{c_p}{c_v} = \frac{c_v + R}{c_v} = 1 + \frac{R}{c_v} \Leftrightarrow \frac{R}{c_v} = \kappa - 1 \Leftrightarrow \frac{c_v}{R} = \frac{1}{\kappa - 1}.$$
 (10)

Substituindo os dados do enunciado, obtém-se

$$V_f = V_i \left(\frac{T_i}{T_f}\right)^{2.5}. (11)$$

Pode-se, agora, calcular V_2 e V_4 :

$$V_2 = 1.8 \, \text{litro}$$
 $V_4 = 159.5 \, \text{litro}$.

c) O trabalho realizado durante um ciclo é positivo e representado pela área sombreada na figura acima. Portanto, trata-se de um ciclo de potência.

O rendimento do ciclo de Carnot é dado por

$$\eta = 1 - \frac{T_C}{T_H} = 0.56 (56\%). \tag{12}$$

III (6 valores)

a) Uma bomba de calor, a funcionar regime estacionário, transfere calor a uma taxa de 15 kW para o interior de uma residência que se encontra à temperatura de 22°C, enquanto que a temperatura exterior é de -22°C. O fabricante indica que a potência eléctrica necessária para o funcionamento da bomba é de 3,2 kW. Aplicando os balanços de energia e de entropia avalie se a indicação dada pelo fabricante é correcta.

b) Uma máquina térmica recebe energia por transferência de calor de um corpo incompressível de massa m e calor específico c, e inicialmente à temperatura T_H . Em cada ciclo, a máquina cede energia por transferência de calor para outro corpo incompressível com a mesma massa m e calor específico c, e inicialmente a uma temperatura mais baixa T_C . Não há outras transferências de calor. A máquina realiza trabalho até que a temperatura dos dois corpos seja a mesma. Derive

uma expressão para o valor máximo de trabalho W_{max} que pode ser realizado em função de m, c, T_H e T_C .

Resolução

a) Consideremos que a bomba de calor é o sistema termodinâmico em análise. Pela primeira lei da termodinâmica, o balanço de energia durante um ciclo é dado por

$$\Delta U_{\text{ciclo}} = -Q_H(\text{ciclo}) + Q_c(\text{ciclo}) + W(\text{ciclo}). \tag{13}$$

Note-se que, aqui, estamos a considerar os valores do calor e do trabalho positivos quando a transferência de energia ocorre no sentido indicado pelas setas. Num ciclo $\Delta U_{\text{ciclo}} = 0$, e dividindo a equação (13) pelo tempo que demora um ciclo a ser executado, obtém-se

$$\dot{Q}_c = \dot{Q}_H - \dot{W} = 11.8 \,\text{kW}.$$
 (14)

O balanço de entropia num ciclo é dado por

$$\Delta S_{\text{ciclo}} = \left(\oint \frac{\delta Q}{T} \right)_f + \sigma(\text{ciclo}) = -\frac{Q_H(\text{ciclo})}{T_{\text{inside}}} + \frac{Q_C(\text{ciclo})}{T_{\text{outside}}} + \sigma(\text{ciclo}).$$
 (15)

Num ciclo $\Delta S_{\text{ciclo}} = 0$, e dividindo a equação (15) pelo tempo que demora um ciclo a ser executado, obtém-se

$$0 = -\frac{\dot{Q}_H}{T_{\text{inside}}} + \frac{\dot{Q}_C}{T_{\text{outside}}} + \dot{\sigma}. \tag{16}$$

Substituindo os respectivos valores, obtém-se

$$\dot{\sigma} = \frac{15}{295.15} - \frac{11.8}{251.15} = 0.004 \,\mathrm{kW} \cdot \mathrm{K}^{-1} = 4 \,\mathrm{W} \cdot \mathrm{K}^{-1} > 0. \tag{17}$$

Logo, como $\dot{\sigma} > 0$, a indicação dada pelo fabricante deve estar correcta.

b)* Aplicando a primeira e a segunda lei da termodinâmica ao sistema delimitado pela linha a tracejado, obtém-se

$$\Delta U_H + \Delta U_C + \Delta U_{\text{ciclo}} \stackrel{0}{=} -W \Rightarrow$$

$$W = -\left(\Delta U_H + \Delta U_C\right). \tag{18}$$

$$\Delta S_H + \Delta S_C + \Delta S_{\text{ciclo}} \stackrel{0}{=} \left(\oint \frac{\delta Q}{T} \right)_f^0 + \sigma$$

O primeiro termo no membro da direita é nulo porque não há transferência de calor através da fronteira do sistema. Assim,

$$\sigma = \Delta S_H + \Delta S_C. \tag{19}$$

Os corpos são modelados como incompressíveis, sendo as variações infinitesimais de energia e de entropia dadas por $dU = \delta Q = mc dT$ e $dS = \frac{\delta Q}{T} = mc \frac{dT}{T}$.

Sendo os calores específicos constantes, as variações da energia interna e da entropia dos corpos serão dadas

$$\Delta U = mc \left(T_f - T_i \right) \qquad \Delta S = mc \int_{T_i}^{T_f} \frac{dT}{T} = mc \ln \frac{T_f}{T_i}. \tag{20}$$

Substituindo nas equações (18) e (19), obtém-se

$$W = -[mc(T_f - T_H) + mc(T_f - T_C)] = mc(T_H + T_C - 2T_f)$$
(21)

$$\sigma = mc \left(\ln \frac{T_f}{T_H} + \ln \frac{T_f}{T_C} \right) = mc \ln \left(\frac{T_f^2}{T_h T_C} \right) \Leftrightarrow T_f = \left[T_h T_C \exp \left(\frac{\sigma}{mc} \right) \right]^{1/2}.$$
 (22)

Finalmente, substituindo a expressão de T_f na equação (21), obtém-se

$$W = mc \left(T_H + T_C - 2 \left[T_h T_C \exp\left(\frac{\sigma}{mc}\right) \right]^{1/2} \right)$$
 (23)

Como $\sigma \geq 0,$ o valor máximo da trabalho é dado por

$$W = mc \left[T_H + T_C - 2 \left(T_h T_C \right)^{1/2} \right]. \tag{24}$$

A função de Helmholtz é definida por $\Psi = U - TS$ ou, em valores específicos, $\psi = u - Ts$.

a) Usando as equações T ds mostre que $d\psi = -p dv - s dT$.

b) Como d ψ é uma diferencial exacta, mostre

$$\left(\frac{\partial s}{\partial v}\right)_T = \left(\frac{\partial p}{\partial T}\right)_v.$$

c) Utilizando a igualdade anterior, é possível obter a equação de Clapeyron que determina o declive das curvas de equilíbrio de fases num diagrama T-p. Para a curva de equilíbrio líquido-vapor, a equação de Clapeyron toma a seguinte forma

$$\left(\frac{\mathrm{d}p}{\mathrm{d}T}\right)_{\mathrm{sat}} = \frac{h_{\mathrm{g}} - h_{\mathrm{f}}}{T\left(v_{\mathrm{g}} - v_{\mathrm{f}}\right)}.$$

Admitindo que a entalpia de vaporização se pode representar por $\Delta h = \Delta h_0 + A(T - T_0)$ e que $v_g >> v_f$, e satisfazendo v_g à equação de estado dos gases ideais, obtenha uma expressão para a pressão de saturação em função da temperatura, $p_{\text{sat}}(T)$.

Resolução

a) O diferencial de $\psi = u - Ts$ é dado por

$$d\psi = du - Tds - sdT. (25)$$

Pela primeira lei da termodinâmica du = Tds - pdv, onde $Tds = \delta Q/m$. Note que se indica explicitamente que se deve considerar o calor por unidade de massa $\delta Q/m$. Substituindo na equação (25), obtém-se

$$d\psi = -pdv - sdT. (26)$$

b) Como a função de Helmholtz é uma função de estado, num sistema simples compressível ela depende apenas de duas variáveis, por exemplo v e T: $\psi = \psi(v, T)$. Assim o diferencial de ψ é

$$d\psi = \left(\frac{\partial \psi}{\partial v}\right)_T dv + \left(\frac{\partial \psi}{\partial T}\right)_v dT. \tag{27}$$

E as segundas variáveis cruzadas são calculadas por

$$\frac{\partial^2 \psi}{\partial T \partial v} = \left(\frac{\partial}{\partial T} \left(\frac{\partial \psi}{\partial v}\right)_T\right)_v \qquad \frac{\partial^2 \psi}{\partial v \partial T} = \left(\frac{\partial}{\partial v} \left(\frac{\partial \psi}{\partial T}\right)_v\right)_T. \tag{28}$$

Comparando as equações (26) e (27), conclui-se que

$$p = -\left(\frac{\partial \psi}{\partial v}\right)_T \qquad s = -\left(\frac{\partial \psi}{\partial T}\right)_v. \tag{29}$$

Substituindo as igualdades (29) nas equações (28) e atendendo a que

$$\frac{\partial^2 \psi}{\partial T \partial v} = \frac{\partial^2 \psi}{\partial v \partial T},\tag{30}$$

obtém-se

$$\left(\frac{\partial s}{\partial v}\right)_T = \left(\frac{\partial p}{\partial T}\right)_v$$

c) A pressão e a temperatura no equilíbrio de fases equilíbrio líquido-vapor satisfazem a equação de Clapeyron

$$\left(\frac{\mathrm{d}p}{\mathrm{d}T}\right)_{\mathrm{sat}} = \frac{h_{\mathrm{g}} - h_{\mathrm{f}}}{T\left(v_{\mathrm{g}} - v_{\mathrm{f}}\right)}.$$
(31)

Se $v_g >> v_f$, poderemos desprezar v_f no denominador de (31). Substituindo $h_v - h_f$ por $\Delta h = \Delta h_0 + A(T - T_0)$, e utilizando a equação de estado de uma gás ideal obtém-se

$$\frac{1}{p} \left(\frac{\mathrm{d}p}{\mathrm{d}T} \right)_{\mathrm{sat}} = \frac{\Delta h_0 + A(T - T_0)}{R T^2} \Leftrightarrow \left(\frac{\mathrm{d}\ln p}{\mathrm{d}T} \right)_{\mathrm{sat}} = \frac{\Delta h_0 + A(T - T_0)}{R T^2} \tag{32}$$

Fazendo $B = (\Delta h_0 - AT_0)$, a equação (32) toma a forma

$$\left(\frac{\mathrm{d}\ln p}{\mathrm{d}T}\right)_{\mathrm{cut}} = \frac{B}{RT^2} + \frac{A}{RT}.$$
(33)

Integrando, obtém-se

$$\ln \frac{p}{p_0} = \frac{B}{R} \frac{1}{T_0 - T} + \frac{A}{R} \ln \frac{T}{T_0} \Leftrightarrow p = p_0 \left(\frac{T}{T_0}\right)^{\frac{A}{R}} e^{\left[\frac{B(T - T_0)}{RT_0 T}\right]}.$$
 (34)

TABLE A-3 Properties of Saturated Water (Liquid-Vapor): Pressure Table

Pressure Conversions: 1 bar = 0.1 MPa = 10 ² kPa		Specific Volume m ³ /kg		Internal Energy kJ/kg		Enthalpy kJ/kg			Entropy kJ/kg · K		
Press.	Temp.	Sat. Liquid	Sat. Vapor	Sat. Liquid	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Sat. Vapor	Press.
bar	°C	$v_{\rm f} \times 10^3$	v_{g}	$u_{\rm f}$	ug	h_{f}	h_{fg}	h_{g}	s _f	s _g	bar
0.04	28.96	1.0040	34.800	121.45	2415.2	121.46	2432.9	2554.4	0.4226	8.4746	0.04
0.06	36.16	1.0064	23.739	151.53	2425.0	151.53	2415.9	2567.4	0.5210	8.3304	0.06
0.08	41.51	1.0084	18.103	173.87	2432.2	173.88	2403.1	2577.0	0.5926	8.2287	0.08
0.10	45.81	1.0102	14.674	191.82	2437.9	191.83	2392.8	2584.7	0.6493	8.1502	0.10
0.20	60.06	1.0172	7.649	251.38	2456.7	251.40	2358.3	2609.7	0.8320	7.9085	0.20
0.30	69.10	1.0223	5.229	289.20	2468.4	289.23	2336.1	2625.3	0.9439	7.7686	0.30
0.40	75.87	1.0265	3.993	317.53	2477.0	317.58	2319.2	2636.8	1.0259	7.6700	0.40
0.50	81.33	1.0300	3.240	340.44	2483.9	340.49	2305.4	2645.9	1.0910	7.5939	0.50
0.60	85.94	1.0331	2.732	359.79	2489.6	359.86	2293.6	2653.5	1.1453	7.5320	0.60
0.70	89.95	1.0360	2.365	376.63	2494.5	376.70	2283.3	2660.0	1.1919	7.4797	0.70
0.80	93.50	1.0380	2.087	391.58	2498.8	391.66	2274.1	2665.8	1.2329	7.4346	0.80
0.90	96.71	1.0410	1.869	405.06	2502.6	405.15	2265.7	2670.9	1.2695	7.3949	0.90
1.00	99.63	1.0432	1.694	417.36	2506.1	417.46	2258.0	2675.5	1.3026	7.3594	1.00
1.50	111.4	1.0528	1.159	466.94	2519.7	467.11	2226.5	2693.6	1.4336	7.2233	1.50
2.00	120.2	1.0605	0.8857	504.49	2529.5	504.70	2201.9	2706.7	1.5301	7.1271	2.00
2.50	127.4	1.0672	0.7187	535.10	2537.2	535.37	2181.5	2716.9	1.6072	7.0527	2.50
3.00	133.6	1.0732	0.6058	561.15	2543.6	561.47	2163.8	2725.3	1.6718	6.9919	3.00
3.50	138.9	1.0786	0.5243	583.95	2546.9	584.33	2148.1	2732.4	1.7275	6.9405	3.50
4.00	143.6	1.0836	0.4625	604.31	2553.6	604.74	2133.8	2738.6	1.7766	6.8959	4.00
4.50	147.9	1.0882	0.4140	622.25	2557.6	623.25	2120.7	2743.9	1.8207	6.8565	4.50
5.00	151.9	1.0926	0.3749	639.68	2561.2	640.23	2108.5	2748.7	1.8607	6.8212	5.00
6.00	158.9	1.1006	0.3157	669.90	2567.4	670.56	2086.3	2756.8	1.9312	6.7600	6.00
7.00	165.0	1.1080	0.2729	696.44	2572.5	697.22	2066.3	2763.5	1.9922	6.7080	7.00
8.00	170.4	1.1148	0.2404	720.22	2576.8	721.11	2048.0	2769.1	2,0462	6.6628	8.00
9.00	175.4	1.1212	0.2150	741.83	2580.5	742.83	2031.1	2773.9	2.0946	6.6226	9.00
10.0	179.9	1.1273	0.1944	761.68	2583.6	762.81	2015.3	2778.1	2.1387	6.5863	10.0
15.0	198.3	1.1539	0.1318	843.16	2594.5	844.84	1947.3	2792.2	2.3150	6,4448	15.0
20.0	212.4	1.1767	0.09963	906.44	2600.3	908.79	1890.7	2799.5	2.4474	6.3409	20.0
25.0	224.0	1.1973	0.07998	959.11	2603.1	962.11	1841.0	2803.1	2.5547	6.2575	25.0
30.0	233.9	1.2165	0.06668	1004.8	2604.1	1008.4	1795.7	2804.2	2.6457	6.1869	30.0
35.0	242.6	1.2347	0.05707	1045.4	2603.7	1049.8	1753.7	2803.4	2,7253	6.1253	35.0
40.0	250.4	1.2522	0.03707	1045.4	2602.3	1049.8	1714.1	2801.4	2.7964	6.0701	40.0
45.0	257.5	1.2692	0.04406	1116.2	2600.1	1121.9	1676.4	2798.3	2.8610	6.0199	45.0
50.0	264.0	1.2859	0.03944	1147.8	2597.1	1154.2	1640.1	2794.3	2.9202	5.9734	50.0
60.0	275.6	1.3187	0.03244	1205.4	2589.7	1213.4	1571.0	2784.3	3.0267	5.8892	60.0
70.0	285.9	1.3513	0.02737	1257.6	2580.5	1267.0	1505.1	2772.1	3.1211	5.8133	70.0
80.0	295.1	1.3842	0.02757	1305.6	2569.8	1316.6	1441.3	2758.0	3.2068	5.7432	80.0
90.0	303.4	1.4178	0.02332	1350.5	2557.8	1363.3	1378.9	2742.1	3.2858	5.6772	90.0
100.	311.1	1.4524	0.02048	1393.0	2544.4	1407.6	1317.1	2724.7	3.3596	5.6141	100.
110.	318.2	1.4886	0.01503	1433.7	2529.8	1450.1	1255.5	2705.6	3.4295	5.5527	110.

 $v_{\rm f}$ = (table value)/1000

Prof. José M. Castanheira