In-Database Analytics for NoSQL Key-Value Stores

Dylan Hutchison, 5 December 2016

Advisors: Bill Howe, Dan Suciu

Tons of NoSQL Key-Value Stores!

Who uses a K-V DB? How?

Basho Riak Use Cases

→ Find a "natural key" for your application

DATA TYPE	KEY	VALUE
Session	User/Session ID	Session Data
Content	ID	Documents, Images, Posts, Videos, Texts, JSON/HTML, etc.
Advertising	Campaign ID	Ad Content
Logs	Date	Log File
Sensor	Date/Time	Sensor Updates
User Data	Login, Email, UUID	User Attributes

Who uses a K-V DB? How?

Timely – Time Series Event Monitoring

Row	ColumnFamily	ColumnQualifier	Value
sys.cpu.user\1447879348291	host=r001n01	instance=0,rack=r001	2.0
sys.cpu.user\1447879348291	instance=0	host=r001n01,rack=r001	2.0
sys.cpu.user\1447879348291	rack=r001	host=r001n01,instance=0	2.0

- Compound key
- Intentional order

- Multiple values per key
- Repeated values

Many tricks to encode information into K-Vs

Who uses a K-V DB? How?

GeoMesa – Spatiotemporal Store

K-V encoding tricks can be arbitrarily complex

Hierarchical Storage

Hash Functions

+ Secondary or Full Indexes on Values

Why use K-V stores?

- > Scale out large commodity clusters
- > Transparent partitioning, layout, performance
 - Friendly to developers & applications that want control
- > Some have "special features"
 - entry-level access control
- > Simple solution, *if* all your application requires is to <u>read & write entries by key</u>

Why use K-V stores?

- > Scale out large commodity clusters
- > Transparent partitioning, layout, performance
 - Friendly to developers & applications that want control
- > Some have "special features"
 - entry-level access control
- > Simple solution, *if* all your application requires is to <u>read & write entries by key</u>

What if you want to do more?

Computing beyond read-writes

Computing @application client can have drawbacks...

Example from Riak Use Case: Browser Sessions (e.g. Wikipedia)

DATA TYPE	KEY	VALUE		
Session	User/Session ID	Session Data (pages visited, shopping cart,)		

- > Fast read-writes perfect for low-latency web server
- > What if the website managers want to run analytics?

Simple filters, aggs
Requires re-shuffle
Requires iteration
ML, matrix, graph alg.

Example from Riak Use Case: Browser Sessions (e.g. Wikipedia)

DATA TYPE	KEY	VALUE		
Session	User/Session ID	Session Data (pages visited, shopping cart,)		

- > Fast read-writes perfect for low-latency web server
- > What if the website managers want to run analytics?

Simple filters, aggs
Requires re-shuffle
Requires iteration
ML, matrix,

graph alg.

Query: find average session length.

Supported by most key-value databases

Example from Riak Use Case: Browser Sessions (e.g. Wikipedia)

DATA TYPE	KEY	VALUE	
Session	User/Session ID	Session Data (pages visited, shopping cart,)	

- > Fast read-writes perfect for low-latency web server
- > What if the website managers want to run analytics?

Simple ∠ filters, aggs

Requires re-shuffle

Requires

iteration

ML, matrix, graph alg.

Query: find average session length.

Query: for each page, find average time spent viewing it.

Unsupported by most, unless you build an index Need an external system

Example from Riak Use Case: Browser Sessions (e.g. Wikipedia)

DATA TYPE	KEY	VALUE	
Session	User/Session ID	Session Data (pages visited, shopping cart,)	

- > Fast read-writes perfect for low-latency web server
- > What if the website managers want to run analytics?

Simple A filters, aggs

Requires re-shuffle

Requires iteration

ML, matrix, graph alg.

Query: find average session length.

Query: for each page, find average time spent viewing it.

Query: build a histogram of users browsing certain pages, grouped by session age, over various time periods.

Query: group users into clusters based on pages browsed. Recommend users to browse popular pages browsed in their cluster.

State of the Art

This Talk

- > How to implement analytics in K-V DBs?
- > When is it good to do so?
 - Consider: # of re-shuffles, access path, selectivity, ...

Benefits of Server-Side Computation

- 1. Data Locality
 - Save communication
- 2. Reuse infrastructure
 - One less system to adopt and maintain
- 3. Database features for free
 - Indexed access
 - Distributed execution

Graphulo: Linear Algebra for Apache Accumulo

or, conceptually, any **Google BigTable**-based K-V DB

GraphBLAS: Working Spec for LA

for Sparse Matrices

Matrix as K-Vs

Key					
Pow		Column		Timestamp	<u>Value</u>
Row Family	Qualifier	Visibility			

- > Adjacency list view of Matrix
- (Row, Column Qualifier, Value)
 = (v₁, v₂, weight)
 [Transpose: (v₂, v₁, weight)]

Other schemas supported:

- Edge List / Incidence Matrix
- Single Table with transpose & degrees

Example K-Vs

```
row :colq ->val

1 :1 [] -> 141
1 :10 [] -> 12
1 :101 [] -> 9
1 :105 [] -> 3
1 :11 [] -> 9
1 :110 [] -> 3
10 :1 [] -> 18
10 :109 [] -> 2
15 :1 [] -> 18
15 :109 [] -> 2
```


Matrix as K-Vs

Key					
Pow		Column		Timostomo	<u>Value</u>
Row Family	Qualifier	Visibility	Timestamp		

- > Adjacency list view of Matrix
- (Row, Column Qualifier, Value)
 = (v₁, v₂, weight)
 [Transpose: (v₂, v₁, weight)]

Other schemas supported:

- Edge List / Incidence Matrix
- Single Table with transpose & degrees

Accumulo Scan Iterator Pipeline

Goal: Understand Accumulo's support for in-database computation in order to re-purpose it for analytics

In-Memory Map

Client

Accumulo Scan Iterator Pipeline

Client

Accumulo Scan Iterator Pipeline

Accumulo BatchScan Iterator Pipeline

Graphulo addition to Iterator Pipeline

Graphulo addition to Iterator Pipeline

Distributes with Accumulo's Tablet Servers

Standing tablet server thread pools service queries interactively

Use client-side Scanners and BatchWriters inside server-side iterators

Graphulo MxM: $A^{T}(\oplus . \otimes)$ B (distributed)

Graphulo Client Functions

long TableMult(String ATtable, String Btable, String Ctable)

```
long SpEWiseX(String Atable, String Btable, String Ctable)
long SpEWiseSum(String Atable, String Btable, String Ctable)
...
```

Simple API abstracts the iterator pipeline

Graphulo Client Functions

```
long TwoTable(
    String ATtable, String Btable, String Ctable, String CTtable,
    int BScanIteratorPriority, TwoTableIterator.DOTMODE dotmode,
    Map<String, String> optsTT, IteratorSetting plusOp,
    String rowFilter, String colFilterAT, String colFilterB,
    boolean emitNoMatchA, boolean emitNoMatchB,
    List<IteratorSetting> iteratorsBeforeA,
    List<IteratorSetting> iteratorsBeforeB,
    List<IteratorSetting> iteratorsAfterTwoTable,
    Reducer reducer, Map<String, String> reducerOpts,
    int numEntriesCheckpoint, Authorizations ATauthorizations,
    Authorizations Bauthorizations, int batchWriterThreads
)
```

Full control when you need it

Graphulo's TwoTable Pipeline

Evaluating Graphulo

When is it better to use Graphulo vs. an external system?

Past Experiments

Compare Graphulo to

- > Single-node in-memory matrix libraries
 - D4M Sparse matrix library (MATLAB)
 - MTJ Dense matrix library (Java)
- > Itself
 - Benchmark of Graphulo scalability with cluster size

Graphulo Implementation of Server-Side Sparse Matrix Multiply in the Accumulo Database

Dylan Hutchison,†§* Jeremy Kepner,†‡\(\display\) Vijay Gadepally,†‡* Adam Fuchs+

†MIT Lincoln Laboratory, §University of Washington, [‡]MIT Computer Science & AI Laboratory, ⁵MIT Mathematics Department, ⁺Sgrrl, Inc.

tributed sto graph data and persist calculations

side implementation of >

that leverages Accumi

outer product impleme implementation achieve

peak write rate. We of

Graphulo library that

Graphulo faster than single-node in-memory external systems on I/O-bound, single-pass computation

latics

This

LAS

2015

The GraphBLAS standard provides a compact and efficient basis

in this paper we locus on Sparse Generalized Matrix Multiply (SpGEMM), the core kernel at the heart of GraphBLAS.

for a wide range of graph applications through a small number of sparse matrix opera

Graphulo vs. D4M, Single-node We compare the matl >

Task: Matrix Multiply (MxM)

Result: Graphulo universally faster

Why? graph analytics within >

- I/O costs dominate (locality is good)
- > MxM can be formulated as a singlepass algorithm (use outer product)

sed in terms of l addition funcwide range of s [5] and many

I in Accumulo ccumulo tables. sparse matrices.

From NoSQL Accumulo to NewSQL Graphulo: Design and Utility of Graph Algorithms inside a BigTable Database

Dylan Hutchison[†] Jeremy Kepner^{‡§} Vijay Gadepally^{‡§} Bill Howe[†]

†University of Washington ‡MIT Lincoln Laboratory §MIT Computer Science & AI Laboratory †MIT Mathematics Department Best Student Paper

store) and Abstract-Results hold for more complex graph algorithms kev-value sto ore sending Recently the compaction) workloads that demand distributed computation local to data or Tasks: Find Jaccard coefficients (vertex similarity), ed a tre k-Truss subgraph (community detection) set (ch. artic nd kerr Graphulo vs. D4M vs. MTJ n. phu ck Acc Result: Graphulo universally faster at Jaccard; ent two perf ìW D4M/MTJ universally faster at k-Truss resu ers exec es Why? > Jaccard can be expressed as a fused MxM > k-Truss iterations require one pass each > Accumulo writes intermediary tables to disk

Benchmarking the Graphulo Processing Framework

Timothy Weale[†], Vijay Gadepally^{‡§*}, Dylan Hutchison° and Jeremy Kepner^{‡§+} [†]Department of Defense, [‡]MIT Lincoln Laboratory, [§]MIT Computer Science & AI Laboratory +MIT Mathematics Department, °University of Washington

2016

Abstract—Graph algorithms have wide applicability to a variety of domains and are often used on massive datasets. Recent standardization efforts such as the GraphBLAS specify a set of key computational kernels that hardware and software developers can adhere to. Graphulo is a processing framework that enables GraphBLAS kernels in the Apache Accumulo is provided in [12]. It is natural that a processing framework designed for databases makes use of the GraphBLAS kernels.

Graphulo [13] is a specialized graph processing framework built to work with Apache Accumulo and to conform to the GraphBLAS standard. Apache Accumulo is a NoSQL database

databas Graphu multipli

Graphulo scales with Accumulo as cluster size increases

present the results of scaling the Graphulo engine to larger problems and scalablity when a greater number of resources is used. Specifically, we present two experiments that demonstrate Graphulo scaling performance is linear with the number of

wide adoption in a variety or government and non-government settings.

available res processing ra large graphs

Tasks: MxM, Subgraph Extraction

experiment 1 > a large grap These bench >

who wish to

Graphulo Scalability Benchmark

Results: Linear weak & strong scaling on MxM. Subgraph extraction scales in interactive range

> Why?

(1-2k edge extraction)

Graphulo designed to scale with Accumulo

As shown in Figure 1, Accumulo's data model has a key nn qualifier, ulo provides tex), column number of isibility and aper.

], [15].

Past experiments compare Graphulo to itself & to in-memory single-node external systems.

Where's the experiment comparing Graphulo to *distributed* external systems?

(answer: this talk)

- > MapReduce well supported by Accumulo
 - "Use Accumulo for low-latency queries on subgraphs"
 - "Use MapReduce for high-throughput analytics"
 - Are these assumptions true?
- > MapReduce C = A^TB (see next slide)
 - Map phase: BatchScan & Join A^T, B on their common key
 - Reduce phase: Multiply, BatchWrite partial products
 - > # of reducers not a major factor
 - > Disable speculative execution for correctness
 - Sum partial products via iterator on C
 - Very similar to Graphulo code, except more room to optimize (earlier projection, loop fusion, fewer copies)

MapReduce $C = A^T (\oplus . \otimes) B$

Illustrated: $C = A^T (\oplus . \otimes)$ B each with two tablets, two Reducers

Graphulo C = $A^{T}(\oplus . \otimes)$ B (reminder)

Hardware & Setup

- > 12 x m3.large nodes on Amazon EC2, \$38/day
 - 7.5 GB memory, 2 vCPUs, 30 GB SSD per node
 - 8 worker tablet servers
 - > 3 GB memory for Accumulo, 3 GB for YARN
 - > One tablet per node (low intra-node parallelism)
 - 3 coordinator nodes (YARN ResourceManager, Accumulo Master, HDFS NameNode, Zookeeper)
 - 1 metric-monitoring node (Grafana with InfluxDB)
- > Graph500 Power law matrix generator
 - From 2¹⁰ to 2¹⁹ rows, 16 non-zeros/row, in each input
 - Skew!

When to use Graphulo?

- > Use Graphulo for I/O-bound single-pass analytics
 - Big speedup for smaller problem sizes
 - Equivalent at larger problem sizes
 - Holds against external in-memory processing (D4M, MTJ matrix libraries) & distributed (MapReduce)
- > Use an in-memory system for CPU-bound or multi-pass analytics
 - k-Truss task: expressed as a graph algorithm that loops over GraphBLAS kernels
 - Horrible to write each intermediary table to disk
 - > Yet, even HPC systems write *checkpoints*

RACO: Relational Algebra for Apache Accumulo

πσωγυ

How to model a relation in Accumulo?

Key					
Dow	Column			Timootomp	Value
Row	Family	Qualifier	Visibility	Timestamp	

More details: public:adhoc:netflow

Name	Туре
StartTime	STRING_TYPE
Dur	DOUBLE_TYPE
Proto	STRING_TYPE
SrcAddr	STRING_TYPE
Sport	STRING_TYPE
Dir	STRING_TYPE
DstAddr	STRING_TYPE
Dport	STRING_TYPE
State	STRING_TYPE
sTos	LONG_TYPE
dTos	LONG_TYPE
TotPkts	LONG_TYPE
TotBytes	DOUBLE_TYPE
SrcBytes	LONG_TYPE
Label 47	STRING_TYPE

- > Relations have lots of attributes
- > More choices than with matrices
 - Graphulo: adjacency, incidence, single-table schemas
- > Choice affects partitioning
- > Should work for any Accumulo data

Accumulo Access Paths "in the wild"

Accumulo Access Path "Physical Schema"

For each family, divide attributes into three parts: DAP | LAP | VAP

DAP: Distributed Access Path

How data is partitioned across servers; null disallowed

LAP: Local Access Path

How data is sorted within a server; null disallowed

VAP: Value Access Path

Other attributes, unsorted; null allowed

Row	Column			Timostomo	Value
	Family	Qualifier	Visibility	Timestamp	
DAP	FAMILY	LAP	VAPVIS	VAPTS	VAP

Access Path Netflow Example

DAP | LAP | VAP TotBytes, StartTime | | SrcAddr, DstAddr, Dur

Each tuple is a set of Key-Values

Facilitates projection, filtering, missing values

Compiling RA onto Accumulo

Accumulo Tasks

Compiling RA onto Accumulo

Accumulo Tasks

CreateTableTask
Table B

Takeaways from RA on Accumulo

Polystore Demo

- > RA Compilation used in an October sponsor demo
 - Federated plan executed part Accumulo, part Spark or C
 - Accumulo query stored results in a CSV file for Spark/C
 - "Prototype works!"Much more to do...

Takeaways from RA on Accumulo

Access Paths hint at a general physical schema

> Primitives

- Block[n](...): Store contiguous range of n entries together
- Group(...): Each entry stored separately; Block[1]
- Range(...): All entries stored together; Block[N]

> Examples

- Accumulo: Block(row) Group(family)
 Range(row, family, qualifier, visibility, timestamp) value
- Myria hash partitioning: Group(a_1 , ..., a_k) a_1 , ..., a_k
- TileDB matrix: Block(j, i) Range(i, j) v
- More access paths for indices
- Applications pick both a logical & physical schema

In-Database Analytics for K-V DBs

- > Graphulo: LA on K-V DBs
 - Graphulo vs. MapReduce experiment
 - > Comparable at scale; in-DB dominates "scale down"
 - Use in-DB approach for I/O-bound single-pass analytics
- > RACO: RA on K-V DBs
 - Access Paths helpful as a "physical schema"
 - Compiles into Accumulo iterators

Simple filters, aggs
Requires re-shuffle
Requires iteration
ML, matrix, graph alg.

New support inside K-V DBs

Future: A Polystore Cross-Platform Optimizer

or: Pull data into an external system (MapReduce, Spark, Presto, application client, ...)

Why does LA, RA work on K-V DBs?

Backup Slides

Background on Accumulo

Key					
Row	Column			Timostoma	<u>Value</u>
	Family	Qualifier	Visibility	Timestamp	

Best for:

- > Large, de-normalized tables; no schema necessary
 - Unlimited columns; un-interpreted values; everything is a byte[]
- > TBs to PBs of data; robust horizontal scaling
- > Hadoop HDFS / Java ecosystem
- > Cell-level access control

- > Row store by default
 - Scan over rows for O(log n) lookup & sorted order
 - Maintain "Transpose Table" for column-major access path
- > Iterator processing framework

Table of Results

NE	Entries in Table C		Graphulo		MapReduce 10 Reducers	
SCALE	PartialProducts	AfterSum	Time (s)	Rate (pp/s)	Time (s)	Rate (pp/s)
10	8.16×10^{5}	2.69×10^{5}	8.98×10^{-1}	9.09×10^{5}	4.95×10^{1}	1.65×10^{4}
11	2.34×10^{6}	7.90×10^{5}	1.36	1.72×10^{6}	4.45×10^{1}	5.26×10^{4}
12	6.77×10^{6}	2.41×10^{6}	2.45	2.77×10^{6}	4.47×10^{1}	1.52×10^{5}
13	1.89×10^{7}	7.04×10^{6}	6.74	2.80×10^{6}	5.15×10^{1}	3.66×10^{5}
14	5.32×10^{7}	2.34×10^{7}	2.97×10^{1}	1.79×10^{6}	6.57×10^{1}	8.10×10^{5}
15	1.47×10^{8}	6.38×10^{7}	8.21×10^{1}	1.79×10^{6}	1.26×10^{2}	1.17×10^{6}
16	4.00×10^{8}	2.30×10^{8}	2.89×10^{2}	1.38×10^{6}	3.44×10^{2}	1.16×10^{6}
17	1.09×10^{9}	9.19×10^{8}	1.09×10^{3}	1.00×10^{6}	9.80×10^{2}	1.11×10^{6}
18	2.94×10^{9}	2.55×10^{9}	3.67×10^{3}	7.99×10^{5}	3.68×10^{3}	7.97×10^{5}
19	7.84×10^{9}	6.58×10^{9}	1.56×10^{4}	5.02×10^{5}	2.23×10^{4}	3.52×10^{5}

Past Experiments

Compare Graphulo to

- > Single-node in-memory matrix libraries
 - D4M Sparse matrix library (MATLAB)
 - MTJ Dense matrix library (Java)
- > Itself
 - Benchmark of Graphulo scalability with cluster size

Tasks:

- > Matrix Multiply (MxM), the backbone of LA
- > Subgraph Extraction, via MxM with a cue table
- > Jaccard Coefficients, a vertex similarity metric
- > k-Truss Subgraph, used to detect communities

- > 2015 HPEC: MxM, single-node
 - Graphulo vs. D4M (MATLAB sparse matrix library)
 - Result: Graphulo universally better
- > 2016 HPEC: Jaccard, k-Truss, single-node
 - Graphulo vs. D4M vs. MTJ (Java dense matrix library)
 - Result: Graphulo universally better at Jaccard;
 D4M/MTJ universally better at k-Truss
- > 2016 HPEC: MxM, subgraph extraction, cluster
 - Graphulo vs. itself on increasing cluster size
 - Result: Linear weak & strong scaling on MxM
 Subgraph extraction scales, in interactive range

MxM Single-Node Experiment

Jaccard Experiment Graphs

3-Truss Experiment Graph

Some points may need re-evaluating

Past Exp: Benchmarking Graphulo

Benchmarking the Graphulo Processing Framework

Timothy Weale[†], Vijay Gadepally^{‡§*}, Dylan Hutchison° and Jeremy Kepner^{‡§+}
[†]Department of Defense, [‡]MIT Lincoln Laboratory, [§]MIT Computer Science & AI Laboratory

+MIT Mathematics Department, °University of Washington

Alg 1: Jaccard Coefficients

Alg 2: k-Truss Subgraph

Iterations of Graphulo TwoTables