MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #14

Part I: Cauchy Sequence

Definition (Cauchy Sequence):

A sequence of real number $\{x_n\}$ is Cauchy if and only if for any $\varepsilon>0$, there is positive integer K such that $m,n>K\to |x_m-x_n|<\varepsilon$

Theorem: (Cauchy Theorem)

The sequence is Cauchy if and only if $\{x_n\}$ converges to some real number L.

In last semester, we have seen some examples about it (See Tutorial Note #13). Try to have a look on that. Here we try to show more technique.

One useful technique is using **mean value theorem**, we state the theorem here (where the proof will be discussed in Chapter 8-Differentation)

Theorem (Mean Value Theorem)

Let $f: [a, b] \to \mathbf{R}$ be continuous on [a, b] and differentiable on (a, b). Then

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

For some $c \in (a, b)$

Example 1

If $a_n \geq 0$ for n=1,2,3,... and $\{a_n\}$ is Cauchy Sequence. Show that the sequence $\{b_n\}$ defined by $b_n = \ln \mathbb{Z} 1 + a_n$ Cauchy by checking the definition.

IDEA: Let
$$f(x) = \ln|1 + x| \rightarrow f'(x) = 1/(1 + x)$$

$$|b_m - b_n| = \left| \ln(1 + a_m) - \ln(1 + a_n) \right| = \frac{1}{1 + c} |a_m - a_n|$$

$$\leq \frac{1}{1}|a_m - a_n| < \varepsilon$$

So we require $|a_m-a_n|<\varepsilon$ (this can be done as $\{a_n\}$ is Cauchy Sequence)

Solution:

For any $\,\epsilon>0$, since $\,a_n\,$ is Cauchy, then there exists $\,K_1\,$ such that for $\,m,n>K_1$, we have $\,|a_m-a_n|<\varepsilon\,$

Pick $~K=K_1$, then for $~m,n>K_1$, from the previous work, we get $|b_m-b_n|<\varepsilon$

So $\{b_n\}$ is Cauchy

Example 2 (Practice Exercise #47)

Let $a_n \ge 0$ for n=1,2,3,... and $\{a_n\}$ is Cauchy. Show that $\{\sqrt{a_n}\}$ is Cauchy by checking the definition.

IDEA: If $\{a_n\}$ is Cauchy, then a_n converges by Cauchy Theorem

Case i) If $\lim_{n\to\infty} a_n > 0$, then say $\lim_{n\to\infty} a_n = a$. Consider $f(x) = \sqrt{x}$,

$$\left| \sqrt{a_{m}} - \sqrt{a_{n}} \right| = \frac{1}{2\sqrt{c}} |a_{m} - a_{n}| < \frac{1}{2\sqrt{\frac{a}{2}}} |a_{m} - a_{n}| = \frac{1}{\sqrt{2a}} |a_{m} - a_{n}| < \varepsilon$$

We require $|a_n-a|<\frac{a}{2}$ and $|a_m-a_n|<\sqrt{2a}\epsilon$

Case ii) If $\lim_{n\to\infty} a_n = 0$, then

$$\left|\sqrt{a_{\rm m}} - \sqrt{a_{\rm n}}\right| \le \left|\sqrt{a_{\rm m}}\right| + \left|\sqrt{a_{\rm n}}\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

We require $|a_n - 0| < \frac{\epsilon^2}{4}$

Solution:

Case i) If $\lim_{n \to \infty} a_n > 0$, then say $\lim_{n \to \infty} a_n = a$,

There exists K_1 such that for $n > K_1$, $|a_n - a| < \frac{a}{2}$

There exists $\;K_{2}\;$ such that $\;m,n>K_{2},\,|a_{m}-a_{n}|<\sqrt{2a}\epsilon$

Pick $K = \max\{K_1, K_2\}$, then for m, n > K, from the arguments above, we get $|\sqrt{a_m} - \sqrt{a_n}| < \varepsilon$

Case ii) If $\lim_{n\to\infty} a_n = 0$

There exists K such that for n > K, $|a_n - 0| < \frac{\varepsilon^2}{4}$

Then for any m, n > K, we get

$$\left|\sqrt{a_{m}}-\sqrt{a_{n}}\right| \leq \left|\sqrt{a_{m}}\right| + \left|\sqrt{a_{n}}\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Combining two cases, we complete the proof.

Example 3 (Modified from Rudin P.82 #23)

Suppose $\{p_n\}$, $\{q_n\}$ are Cauchy Sequences in \mathbf{R} , show that the distance $d_n=|p_n-q_n|$ is a Cauchy Sequence.

IDEA:

Applying triangle inequality and assume $d_m \ge d_n$ we get

$$|d_m - d_n| = |p_m - q_m| - |p_n - q_n|$$

$$\begin{split} &= |(p_m - p_n) + (p_n - q_n) + (q_n - q_m)| - |p_n - q_n| \\ &\le |p_m - p_n| + |p_n - q_n| + |q_n - q_m| - |p_n - q_n| \\ &= |p_m - p_n| + |q_m - q_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

We require $|p_m - p_n| < \varepsilon/2$ and $|q_m - q_n| < \varepsilon/2$

Solution:

For any $\epsilon > 0$, since $\{p_n\}, \{q_n\}$ are both Cauchy Sequence,

There exist K_1 , such that $m,n>K_1$, $|p_m-p_n|<\frac{\epsilon}{2}$

There exist $\,K_2$, such that $\,m,n>K_2$, $\,|q_m-q_n|<\frac{\epsilon}{2}\,$

Pick $\ K=\max\{K_1,K_2\}$, then for $\ m,n>K$, from the steps above, we get $|d_m-d_n|<\varepsilon$

Hence $\{d_n\}$ is Cauchy.

Example 4

Let $\{x_n\}$ be the Cauchy such that $x_n \in \mathbf{N}$ for n=1,2,3,.. (i.e. x_n is positive integers for every n). Show that there exists K such that for n>K, x_n is constant (i.e. x_n will become constant when n is large)

IDEA: Since x_n is positive integer and two different integers must have distance at least 1 (For example: 1,2). Now x_n is Cauchy, for large n, the distance between x_m , x_n will be very close (distance less than one). It will force all x_n need to be same.

Solution:

Since x_n is Cauchy, pick $\epsilon=0.5$ (it can be any number less than 1), there exists K such that for m,n>K, $|x_m-x_n|<0.5....$ (*)

Next we claim x_n is constant for n>K, we prove by contradiction, suppose there are x_m, x_n (m, n>K) such that $x_m \neq x_n$. From (*), we get $|x_m-x_n|<0.5$, but since both x_m , x_n are both positive integers, then $|x_m-x_n|\geq 1$. Contradiction

Hence x_n must be constant for n > K.

Part 2: Limit of Function

Definition: (Limit of Function)

Given a function f(x), we say $\lim_{x\to x_0} f(x) = L$ if and only if for any $\varepsilon > 0$, there exists $\delta > 0$ such that for $|x-x_0| < \delta$, we have $|f(x)-L| < \varepsilon$

Roughly speaking, the definition means if x is sufficiently close to $x_0(|x-x_0|<\delta)$, Then f(x) should be very close to L. Technically, when we apply the definition to show $\lim_{x\to x_0} f(x) = L$, similar as the one in sequence, we need to find the δ so that $|f(x)-L|<\varepsilon$

Example 5

Using the definition of limit, show that

$$\lim_{x\to 2} \frac{1}{x} = \frac{1}{2}$$

IDEA: From the definition, we need to find the δ such that $\left|\frac{1}{x} - \frac{1}{2}\right| < \varepsilon$

$$\left| \frac{1}{x} - \frac{1}{2} \right| = \left| \frac{2 - x}{2x} \right| < \frac{|2 - x|}{2(1.5)}$$
 (We hope $|2 - x| < 0.5 \to 1.5 < x < 2.5$)

$$= \frac{|2-x|}{3} < \varepsilon \quad (We \ hope \ |2-x| < 3\varepsilon)$$

Overall, we need $|2 - x| < min \{0.5, 3\varepsilon\}$

Solution:

For any $\varepsilon > 0$, pick $\delta = \min\{0.5, 3\varepsilon\}$, then for $|x - 2| < \delta$, we get

$$\left|\frac{1}{x} - \frac{1}{2}\right| < \varepsilon$$

Example 6

Using the definition of limit, show that

$$\lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x} = \frac{1}{4}$$

IDEA: From the definition, we need to find the δ such that $\left|\frac{\sqrt{x+4}-2}{x}-\frac{1}{4}\right|<\varepsilon$

Note that

$$\left| \frac{\sqrt{x+4} - 2}{x} - \frac{1}{4} \right| = \left| \frac{4\sqrt{x+4} - 8 - x}{4x} \right| = \left| \frac{4\sqrt{x+4} - (8+x)}{4x} \right|$$

$$= \left| \frac{\left(4\sqrt{x+4} - (8+x)\right)\left(4\sqrt{x+4} + (8+x)\right)}{4x\left(4\sqrt{x+4} + (8+x)\right)} \right| = \left| \frac{16(x+4) - (8+x)^2}{4x\left(4\sqrt{x+4} + (8+x)\right)} \right|$$

$$= \left| \frac{-x^2}{4x \left(4\sqrt{x+4} + (8+x) \right)} \right| = \left| \frac{x}{\left(16\sqrt{x+4} + 4(8+x) \right)} \right|$$

$$< \frac{|x|}{16\sqrt{(4-3)} + 4(8-3)} = \left| \frac{x}{36} \right| < \varepsilon$$

We require |x - 0| < 3 (so that -3 < x < 3) and $|x - 0| < 36\varepsilon$

Solution:

For any $\varepsilon>0$, pick our $\delta=\min\{\beta,36\epsilon\}$, then for $|x-0|<\delta$, from the above steps, we get $\left|\frac{\sqrt{x+4}-2}{x}-\frac{1}{4}\right|<\varepsilon$. We completes the proof.

Example 7

Show by definition that if $\lim_{x\to 0}\frac{f(x)}{x}=L\in \mathbf{R}$ and $a\neq 0$, then $\lim_{x\to 0}\frac{f(ax)}{x}=aL$

What is the case when a = 0?

IDEA: Note that when $x \to 0$, then $ax \to 0$

$$\left| \frac{f(ax)}{x} - aL \right| = \left| a \frac{f(ax)}{ax} - aL \right| = |a| \left| \frac{f(ax)}{ax} - L \right| < \varepsilon$$

So we need $\left| \frac{f(ax)}{ax} - L \right| < \frac{\varepsilon}{|a|}$

Solution:

For any $\ \epsilon>0$, since $\lim_{y\to 0}\frac{f(y)}{v}=L$, then there exists $\ \delta'>0$ such that for

$$|y-0|<\delta'$$
, we get $\left|\frac{f(y)}{y}-L\right|<\frac{\epsilon}{|a|}$

Pick
$$\delta = \frac{\delta'}{|a|}$$
, then for $|x - 0| < \delta = \frac{\delta'}{|a|} \rightarrow |ax - 0| < a\delta = \delta'$

$$\left| \frac{f(ax)}{x} - aL \right| = \left| a \frac{f(ax)}{ax} - aL \right| = |a| \left| \frac{f(ax)}{ax} - L \right| = \frac{|a|\epsilon}{|a|} < \epsilon$$

We complete the proof.

Besides the definition, there is one useful theorem in limit.

Theorem: (Sequential Limit Theorem)

 $\lim_{x\to x_0}f(x)=L$ if and only if for every sequence $x_n\to x_0$ and $x_n\ne x_0$, we have $\lim_{n\to\infty}f(x_n)=L$

One application of this theorem is to show the limit of some functions DO NOT exist

Example 8

Show that $\lim_{x\to 1} x - [x]$ does not exist

(where [x] denotes the greatest integer less than or equal to x)

Solution:

Consider two sequences which

$$x_n = 1 - \frac{1}{n+1}$$
 and $y_n = 1 + \frac{1}{n+1}$

Then

$$\lim_{n \to \infty} x_n - [x_n] = \lim_{n \to \infty} 1 - \frac{1}{n+1} - 0 = 1$$

$$\lim_{n \to \infty} y_n - [y_n] = \lim_{n \to \infty} 1 + \frac{1}{n+1} - 1 = 0$$

Hence $\lim_{n\to\infty} x_n \neq \lim_{n\to\infty} y_n$, by sequential limit theorem, the limit does not exist

Example 9

Define $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$ show that $\lim_{x \to x_0} f(x)$ does not exist.

Solution:

For each x_0 , we pick

If
$$x_0$$
 is rational, pick $x_n = x_0 \left(1 - \frac{1}{n}\right)$ and $y_n = x_0 \left(1 - \frac{1}{\sqrt{2}n}\right)$

We get
$$\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} 1 = 1$$
 and $\lim_{n\to\infty} f(y_n) = \lim_{n\to\infty} 0 = 0$

If
$$x_0$$
 is irrational, pick $x_n=\frac{[10^nx_0]}{10^n}$ and $y_n=x_0\left(1-\frac{1}{n}\right)$

We get $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} 1 = 1$ and $\lim_{n\to\infty} f(y_n) = \lim_{n\to\infty} 0 = 0$ Hence the limit does not exists for every x_0

Try to do the following exercises, you may submit your work to me so that I can give some comments to your work.

©Exercise 1 (Practice Exercise #156, #170)

Given $\{x_n\}$ is a Cauchy Sequence, show that both $\{e^{-x_n}\}$ and $\{\sin 5x_n\}$ are Cauchy Sequence by checking the definition.

©Exercise 2

Suppose $\{y_n\}$ is Cauchy Sequence. Show $\{\sqrt[3]{y_n}\}$ is also Cauchy (Hint: The method is similar to Example 2)

©Exercise 3 (Practice Exercise #167)

Let
$$f:(0,\infty)\to \mathbf{R}$$
 satisfy $|f(x)-f(y)|\leq |\sin(x^2)-\sin(y^2)|$ for all $x,y>0$,

show that the sequence $x_1, x_2, x_3, ...$ defined by $x_n = f\left(\frac{1}{n}\right)$ is a Cauchy Sequence.

(Hint: From the mean value theorem, we get $|\sin a - \sinh| \le |\cos c||a - b|$. Apply this result to R.H.S. of the inequality)

©Exercise 4

Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy Sequence in ${\bf R}$. Show that the product $\{x_ny_n\}$ is also Cauchy.

(Hint: Apply the similar trick from Example 3 on $|x_m y_m - x_n y_n|$) and use the fact that if $\{x_n\}$ is Cauchy $\rightarrow \{x_n\}$ converges $\rightarrow \{x_n\}$ is bounded (i.e. $|x_n| \leq M$))

©Exercise 5

Show by definition of limit that

a)
$$\lim_{x\to 1} \frac{x}{x+1} = \frac{1}{2}$$
 (Practice Exercise #57)

b)
$$\lim_{x\to 2} |x^2 - 9| = 5$$
 (Practice Exercise #109c)

c)
$$\lim_{x\to 6} \frac{\sqrt{x-2}-2}{x-6} = \frac{1}{4}$$

d)
$$\lim_{x\to a} \tan^{-1}\frac{1}{x} = \tan^{-1}\frac{1}{a}$$
 for $a \neq 0$ (@Difficult!!)

©Exercise 6

Consider
$$f(x) = \begin{cases} x-1 \text{ if } x \leq 1 \\ x^3 \text{ if } x > 1 \end{cases}$$
, show that $\lim_{x \to 1} f(x)$ does not exist.

(Hint: Try to plot the graph and get the idea, then prove it property)

©Exercise 7

Consider
$$f(x) = \begin{cases} 2x & \text{if } x \text{ is rational} \\ 1 - 2x \text{ if } x \text{ is irrational} \end{cases}$$
. Determine with proof whether

$$\lim_{x \to \frac{1}{2}} f(x)$$
 and $\lim_{x \to \frac{1}{4}} f(x)$ exist or not.

©Exercise 8

Suppose $\lim_{x\to a} f(x) = A > 0$, show that there exists $\delta > 0$ such that for $0 < |x-a| < \delta$, we have f(x) > 0.

(Hint: If f(x) has a positive limit at a, then it implies that if x is close enough to a, f(x) will be very close to a, then f(x) will be eventually positive.)