

ES232(30000counts) DMM Analog front end/Peak

Features

• 30000 counts dual-slope SADC (3 cnvs/s.)

• Input signal full scale: 340mV (Max. 3399x count)

• Built-in 300 counts fast speed (x10) FADC

• Fast ADC conversion rate: 30 times/s

• 100L LQFP package

• 3V DC regulated power supply

• Support digital multi-meter function

*Voltage measurement (AC/DC)

*Current measurement (AC/DC)

*Support AC+DC RMS mode

*Dual mode for frequency with voltage or current

*Resistance measurement $(300.00\Omega - 300.00M\Omega)$

*Capacitance measurement (30.000nF – 300.00mF) (Taiwan patent no.: 323347, 453443)

(China patent no.: 200710106702.8)

*Diode or continuity mode measurement

*Frequency counter with duty cycle display: 30.000Hz – 300.00MHz

5.0% - 95.0%

- **ADP mode with two terminals** (AC or DC mode is available)
- 3dB BW selectable for low pass filter at AC mode (Taiwan patent no.: 362409) (China patent no.: 200920153001.X)
- Band-gap reference voltage output
- Peak-hold measurement (Taiwan patent no.:476418)
- 3-wire serial bus for MPU I/O port
- MPU I/O power level selectable by external pins
- On-chip buzzer driver and frequency selectable by MPU command
- High-crest-factor signal detection (Taiwan patent no.: 234661)
- Multi-level battery voltage detection
- Support sleep mode by external chip select pin

Application

Clamp-on meter

Digital multi-meter

Description

ES232 is an analog frond end chip of DMM built-in 30000(SADC)/300(FADC) counts dual ADCs. The SADC is operated at slower speed for higher resolution. The FADC is higher speed for lower operated at resolution. ES232 provides voltage & current (AC/DC) measurement, resistance measurement, capacitance measurement, diode/continuity measurement, frequency measurement, duty cycle measurement and voltage peak-hold function. The ES232 also supports multi-level battery detection, low-pass-filter feature for AC mode and dual mode measurement for V+F & A+F. A 3-wire serial bus for MPU I/O port will be used easily for firmware design. Flexible function design is supported for different of DMM or Clamp-on meter application.

DMM Analog front end/Peak

Pin Assignment

DMM Analog front end/Peak

Pin Description

Pin Description					
Pin No	Symbol	Type	Description		
1	BUFH	О	High-speed buffer output pin.		
2	CAZH	О	High-speed auto-zero capacitor connection.		
3	BUFOUT	О	Filter capacitor connection for AC+DC RMS mode.		
4	CL+	IO	Positive connection for reference capacitor of high-resolution A/D.		
5	CL-	IO	Negative connection for reference capacitor of high- resolution A/D.		
6	CIL	О	High-resolution integrator output. Connect to integral capacitor.		
7	CAZL	О	High-resolution auto-zero capacitor connection.		
8	BUFL	О	High-resolution Buffer output pin.		
9	RAZ	О	Buffer output pin in AZ and ZI phase.		
10	OHMC3	О	Filter capacitor connection for resistance mode.		
11	OHMC2	О	Filter capacitor connection for resistance mode.		
12	OHMC1	О	Filter capacitor connection for resistance mode.		
13	VRH	О	Output of band-gap voltage reference. Typically -1.23V		
14	VA+	I	De-integrating voltage positive input. The input should be higher than VA		
15	VA-	I	De-integrating voltage negative input. The input should be lower than VA+.		
16	EXTSRC	I	External source input available for Res/Diode/ADP mode		
17	NC NC	-	Not connected		
18	NC	_	Not connected		
19	OR1	0	Reference resistor connection for 300.00Ω range		
20	VR5	O	Voltage measurement ÷10000 attenuator(1000.0V)		
21	VR4	0	Voltage measurement ÷1000 attenuator(300.00V)		
22	VR3	O	Voltage measurement ÷100 attenuator(30.000V)		
23	VR2	0	Voltage measurement ÷10 attenuator(3.0000V)		
24	OVSG	O	Sense low voltage for resistance/voltage measurement		
25	VR1	I	Measurement Input. Connect to a precise $10M\Omega$ resistor.		
26	OVX	I	Sense input for resistance/capacitance measurement		
27	OVH	O	Output connection for resistance measurement		
28	OVH1	0	Output connection 1 for resistance measurement (optional)		
29	NC	-	Not connected		
30	NC	-	Not connected		
31	NC	-	Not connected		
32	NC	-	Not connected		
33	NC	-	Not connected		
34	NC	-	Not connected		
35	NC	-	Not connected		
36	SGND	G	Signal Ground.		
37	IVSH	I	Current measurement input for 3000.0µA, 300.00mA and 30.000A		
38	IVSL		modes.		
39	ADP	I	Current measurement input for 300.00µA, 30.000mA. Measurement input in ADP mode.		
40	OPIN-		Independent operational amplifier negative input		
40	OPIN- OPIN+		Independent operational amplifier negative input Independent operational amplifier positive input		
41	OPIN+ OPOUT		Independent operational amplifier positive input Independent operational amplifier output		
42	ACVL		DC signal low input in ACV/ACA mode. Connect to negative output		
			of external AC to DC converter.		
44	ACVH	0	DC signal high input in ACV/ACA mode. Connect to positive output of external AC to DC converter.		
45	ADI	I	Negative input of internal AC-to-DC OPAMP.		
46	ADO	О			
47	TEST5	0			
			•		
46	ADO	О	Output of internal AC-to-DC OPAMP. Buffer output of OVSG Negative auto-zero capacitor connection for capacitor measurement		

DMM Analog front end/Peak

49	CA+	IO	Positive auto-zero capacitor connection for capacitor measurement	
50	OHMC4	0	Filter capacitor connection for resistance mode.	
51	ADP1	I	Measurement input in ADP mode.	
52	NC	_	Not connected	
53	NC	_	Not connected	
54	NC	_	Not connected	
55	R9K	0	Connect to a precise $9K\Omega$ resister for capacitor measurement.	
56	R1K	0	Connect to a precise $1K\Omega$ resister for capacitor measurement.	
57	LPC1	0	Capacitor C1 connection for internal low-pass filter	
58	LPC2	0	Capacitor C2 connection for internal low-pass filter	
59	LPC3	0	Capacitor C3 connection for internal low-pass filter	
60	LPFOUT	0	Capacitor C1 connection for internal low-pass filter	
61	PMIN	0	Minimum peak hold output	
62	PMAX	0	Maximum peak hold output.	
63	CPKIN	I	Bypass capacitor for peak mode	
64	STBEEP	0	Fast low-impedance sensed output for CONT./Diode mode Build-in a	
04	SIBLLI		internal comparator for OVX pin.	
65	FREQ	I	Frequency counter input, offset V-/2 internally by the chip.	
66-77	NC NC	_	Not connected	
78	OSC2	0	Crystal oscillator output connection	
79	OSC1	I	Crystal oscillator input connection	
80	CS	I	Set to high to enable ES232. Set to low to enter sleep mode	
81	IO_CTRL	I	MPU I/O level LOW setting. Connect to DGND or V	
82	BZOUT	I	Buzzer frequency output. Normal low state.	
83	NC	-	Not connected	
84	DATA_NEW	0	New ADC data ready	
85	SCLK	I	Serial clock input	
86	SDATA	IO	Serial data input/output	
87	C+	0	Positive capacitor connection for on-chip DC-DC converter.	
88	C-	0	Negative capacitor connection for on-chip DC-DC converter.	
89	LBAT	I	Low battery configuration input.	
90	V-	P	Negative supply voltage.	
91	V-	P	Negative supply voltage.	
92	uPVCC	P	MCU I/O power level connection.	
93	V+	0	Output of on-chip DC-DC converter.	
94	V+ V+	0	Output of on-chip DC-DC converter.	
95	DGND	G		
96	AGND	G	Digital ground. Analog ground.	
97	AGND	G	Analog ground. Analog ground.	
98	CH+	IO	Positive connection for reference capacitor of high-speed A/D.	
99	CH-	IO	Negative connection for reference capacitor of high-speed A/D.	
100	CIH	0	High-speed integrator output. Connect to integral capacitor.	
100	СП		ingh-spect integrator output. Connect to integral capacitor.	

DMM Analog front end/Peak

Absolute Maximum Ratings

Characteristic	Rating
Supply Voltage (V- to AGND)	-4V
Analog Input Voltage & EXTSRC pin	V0.6 to V + +0.6
V+	$V+ \ge (AGND/DGND+0.5V)$
AGND/DGND	$AGND/DGND \ge (V0.5V)$
Digital Input (IO_CTRL=V-)	V0.6 to uPVCC+0.6
Power Dissipation. Flat Package	500mW
Operating Temperature	-20°C to 70°C
Storage Temperature	-55°C to 125°C

Electrical Characteristics

 $TA=25^{\circ}C$, V=-3.0V

Parameter	Symbol	Test Condition	Min.	Тур.	Max	Units
Power supply	V-		-2.8	-3.0	-3.2	V
Operating supply current	I_{DD}	Normal operation	_	2.8	3.2	mA
In DCV mode	I_{SS}	In sleep mode	_	1	3	μΑ
SADC ² Voltage roll-over error		10MΩ input resistor	_	_	±0.02	%F.S ¹
FADC ³ Voltage roll-over error		10MΩ input resistor	_	_	±0.5	%F.S ¹
SADC ² voltage nonlinearity	NLV1	Best case straight line	_	_	±0.02	%F.S ¹
FADC ³ voltage nonlinearity	NLV2	Best case straight line	_	_	±1.0	%F.S ¹
Voltage full scale range of SADC ²		VA+-VA-=200mV	_	300	339	mV
Voltage full scale range of FADC ³		VA+-VA-=200mV	_	300	_	mV
Input Leakage for VR1 input			-10	1	10	pA
Zero input reading		$10M\Omega$ input resistor	-000	000	+000	Count
Band-gap reference voltage	V_{RH}	100KΩ resistor between VRH and AGND	-1.30	-1.22	-1.14	V
Open circuit voltage for 300Ω range measurement			_	V-	_	V
Open circuit voltage for other Ω measurement			_	V_{RH}	_	V
Open circuit voltage for 30.00nS range measurement			_	-0.68	_	V
Internal pull-high to 0V current		Between V- pin and CS	_	1.2	_	μΑ
AC frequency response at 3.000V		±1%	_	40-400	_	
range		±5%	_	400-2000	_	HZ
OP unity gain bandwidth	GB	C _L =10pF	_	200	_	kHz
OP slew rate at unity gain	SR	$R_L=10M\Omega$	_	3.5	_	V/us
OP input offset voltage	V_{IO}		_	0.1	_	mV
OP input bias current	I_{B}		_	10	_	pA
OP input common mode voltage range	V _{ICR}		_	<u>+</u> 2	_	V

DMM Analog front end/Peak

		3dB=Full (ADP)	100			kHz
3dB frequency for LPF ⁴ active	$f_{ m 3dB}$	3dB=10k (ADP)	_	10		kHz
		3dB=1k (ADP)	_	1		kHz
	V_{t1}		_	2.15		V
Multi-level low battery detector	V_{t2}	LBAT vs. V-	_	2.03	_	V
	V_{t3}		_	1.83	_	V
Peak-hold mode pulse width		ACIN =40 ~ 400Hz	100^{6}	1000	_	us
STBEEP comparator in Diode mode		OVX to SGND	_	+9		mV
STBEEP comparator in Cont. mode		OVX to SGND	_	-7		mV
HCF detection voltage		VR2-VR5	_	1100	_	mV
Frequency input sensitivity (FREQ)	Fin	Square wave with Duty cycle 40-60%	500	_	_	mVp
Frequency input sensitivity (FREQ)	Fin	Sine wave	400	_	_	mVrms
Reference voltage temperature coefficient	TC_{RF}	100KΩ resister Between VRH -20°C <ta<70°c< td=""><td>_</td><td>_</td><td>50</td><td>ppm/°C</td></ta<70°c<>	_	_	50	ppm/°C
Capacitance measurement Accuracy		30nF – 300mF	-2.5	_	2.5	%F.S
Accuracy	30m - 300m		-30	_	30	counts

Note:

- 1. Full Scale (30000 counts for SADC and 300 counts for FADC)
- 2. SADC = High resolution ADC (slow speed)
- 3. FADC = High speed ADC (lower resolution)
- 4. ES232 built-in $3^{\rm rd}$ order low pass filter available for AC mode
- 5. Gain calibration is necessary for higher accuracy
- 6. Available for ADP input terminal.

DMM Analog front end/Peak

AC electrical characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
SCLK clock frequency	f_{SCLK}	-	-	100	kHz
SCLK clock time "L"	t_{LOW}	4.7	-	-	
SLCK clock time "H"	t _{HIGH}	4.0	-	-	us
SDATA output delay time	t_{AA}	0.1	-	3.5	
SDATA output hold time	t_{DH}	100	-	-	ns
Start condition setup time	$t_{SU.STA}$	4.7	-	-	110
Start condition hold time	$t_{\rm HD.STA}$	4.0	1	1	us
Data input setup time	$t_{SU.DAT}$	200	-	-	
Data input hold time	$t_{ m HD.DAT}$	0	-	-	ns
Stop condition setup time	$t_{ m SU.STO}$	4.7	-	-	
SCLK/SDATA rising time	t_{R}	-	-	1.0	110
SCLK/SDATA falling time	$t_{ m F}$	-	-	0.3	us
Bus release time	$t_{ m BUF}$	4.7	-	-	

MPU I/O timing diagram

DMM Analog front end/Peak

1. MPU serial I/O function overview

1.1 Introduction

ES232 configures a 3-wire serial I/O interface to external microprocessor unit (MPU). The SDATA pin is bi-directional and SCLK & DATA_NEW are unilateral. The SDATA pin is configured by open-drain circuit design. The DATA_NEW is used to check the data buffer of ADC ready or not. When the ADC conversion cycle is finished, the DATA_NEW pin will be pulled high until MPU send a valid read command to ES232. After the first ID byte is confirmed, the DATA_NEW will be driven to low until the next ADC conversion finished again.

The data communication protocol is shown below. The write protocol is configured by an ID byte with four command bytes. The read protocol is configured by an ID byte with ten data bytes.

Write command:

ID byte, Write control byte1, Write control byte2, Write control byte3, Write control byte4 start bit

Read command:

ID byte, Read data byte1, Read data byte2 ~ Read data byte9, Read data byte10

DMM Analog front end/Peak

The ID byte of ES232 is header of "110010" followed by a buzzer on/off control bit and R/W bit. The start/stop bit definition is shown on the diagram below.

Start and Stop bit

1.2 Read/Write command description

The write command includes one ID byte with four command bytes. If the valid write ID code is received by ES232 at any time, the write command operation will be enabled.

The next table shows the content of write command:

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ID	1	1	0	0	1	0	BUZ	R/W=0
W1	SHBP/DCSEL	F3	F2	F1	F0	Q2	Q1	Q0
W2	В0	B 1	B2	0	0	FQ2	FQ1	FQ0
W3	AC	BUFCAL	BUF_ACDC	EXT	FD	LPF1	LPF0	RP
W4	PEAK	PCAL	0	0	0	OP0	OP1	EXT_ADP

Auxiliary low-resistance detection control bit for Continuity and Diode modes: SHBP

AC+DC mode selection control bit for AC+DC mode: **DCSEL**

Measurement function control bit: F3/F2/F1/F0
Range control bit for V/A/R/C modes: Q2/Q1/Q0
Range control bit for Freq mode: FQ2/FQ1/FQ0

Buzzer frequency selection: **B2/B1/B0**Buzzer driver ON/OFF control bit: **BUZ**

AC mode control enable bit: AC

PEAK/Calibration mode enable bit: **PEAK/PCAL** 3dB BW for low-pass-filter selection: **LPF1/LPF0** External source for Diode mode control bit: **EXT**

OP configuration control bit: OP1/OP0

Frequency mode input resistance control bit or output resistance control bit for AC+DC mode: RP

Buffer control bits for AC+DC mode: BUFCAL/BUF ACDC

ADP mode control bit: EXT_ADP

F+ duty mode at 30kHz range auxiliary control bit: **FD**

The read command includes one ID byte with ten data bytes. When DATA_NEW is ready¹, MPU could send the read data command to get the result of ADC conversion ver. 2.0

9

23/06/06

DMM Analog front end/Peak

 $(D0/D1/D2/D3)^2$ or status flag from ES232.

The next table shows the content of read command.

Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
ID	1	1	0	0	1	0	BUZ	R/W=1
R1	ASIGN	BSIGN	PMAX	PMIN	BTS0	BTS1	STA0	ALARM
R2	HF	LF	LDUTY	STA1	F_FIN	D0:0	D0:1	D0:2
R3	D0:3	D0:4	D0:5	D0:6	D0:7	D0:8	D0:9	D0:10
R4	D0:11	D0:12	D0:13	D0:14	D0:15	D0:16	D0:17	D0:18
R5	D1:0	D1:1	D1:2	D1:3	D1:4	D1:5	D1:6	D1:7
R6	D1:8	D1:9	D2:0	D2:1	D2:2	D2:3	D2:4	D2:5
R7	D2:6	D2:7	D2:8	D2:9	D2:10	D2:11	D2:12	D2:13
R8	D2:14	D2:15	D2:16	D2:17	D2:18	D3:0	D3:1	D3:2
R9	D3:3	D3:4	D3:5	D3:6	D3:7	D3:8	D3:9	D3:10
R10	D3:11	D3:12	D3:13	D3:14	D3:15	D3:16	D3:17	D3:18

¹Note: DATA_NEW will be active with D1 data updated when one fast ADC (FADC) conversion finished. If MCU access slow ADC output only, ten FADC conversion cycle delay is necessary. DATA_NEW for frequency or capacitance mode will be active when D0 or D3 data ready.

²Note: D0/D1/D2/D3 all are binary code format. D0 is SADC output and D1 is FADC output. The maximum data is 339xx counts for SADC and 33x counts for FADC. The maximum counts for PEAK mode is ~54000, so D0 bit 17-18 could be ignored..

The ADC data output for measurement mode: F3/F2/F1/F0

F3	F2	F1	F0	Measurement mode	Read data bytes
0	0	0	0	V mode	D0(0:18), D1(0:9)
0	0	0	1	ACV + Hz(%) mode	D0(0:18), D1(0:9), D2(0:18), D3(0:18)
0	0	1	0	A mode	D0(0:18), D1(0:9)
0	0	1	1	ACA + Hz(%) mode	D0(0:18), D1(0:9), D2(0:18), D3(0:18)
0	1	0	0	Resistance mode	D0(0:18), D1(0:9)
0	1	0	1	Continuity mode	D0(0:18), D1(0:9)
0	1	1	0	Diode mode	D0(0:18), D1(0:9)
0	1	1	1	F + duty mode	D0(0:18), D2(0:18), D3(0:18)
1	0	0	0	Capacitance Mode	D0(0:18)
1	0	0	1	ADP mode	D0(0:18), D1(0:9)
1	0	1	0	ADP + Hz(%) mode	D0(0:18), D1(0:9), D2(0:18), D3(0:18)

Buzzer frequency selection: B2/B1/B0

DMM Analog front end/Peak

B2	B1	B0	Buzzer frequency
0	0	0	1.00kHz
0	0	1	1.33kHz
0	1	0	2.00kHz
0	1	1	2.22kHz
1	0	0	2.67kHz
1	0	1	3.08kHz
1	1	0	3.33kHz
1	1	1	4.00kHz

Set B2-B0 properly to get the target frequency. Use **BUZ** control bit to enable/disable the *BUZOUT* (pin82) driver output. If MPU control BUZ only, it is available to set ID byte with ending of stop bit.

23/06/06

DMM Analog front end/Peak

Measurement mode	ASIGN	BSIGN	PMAX	PMIN	BTS0	BTS1	ALARM
V mode	•	•	•	•	•	•	•
ACV + Hz mode			•	•	•	•	•
A mode	•	•	•	•	•	•	•
ACA + Hz mode			•	•	•	•	•
Res. mode					•	•	
Cont. mode							
Diode mode	•	•			•	•	
F + duty mode					•	•	
Cap. Mode					•	•	•
ADP mode	•	•	•	•	•	•	
ADP + Hz mode			•	•	•	•	
Measurement mode	HF	LF	LDUTY	STA0	STA1	F_FIN	
V mode							
V + Hz mode				•			
A mode							
A + Hz mode				•			
Res. mode							
Cont. mode							
Diode mode							
F + duty mode	•		•	•	•		
Cap. Mode				•			
ADP mode					_	_	
ADP + Hz mode							

Description of status flags:

ASIGN: Sign bit of SADC output (-1 * D0 if ASIGN=1) BSIGN: Sign bit of FADC output (-1 * D1 if BSIGN=1)

PMAX: Indicates D0 output is the voltage of the peak maximum capacitor (pin62) PMIN: Indicates D0 output is the voltage of the peak minimum capacitor (pin61)

BTS0/BTS1: Multi-level battery voltage indication

ALARM: Large capacitor indication/High crest factor signal detection in ACV mode

HF: Higher frequency indication for Hz mode

LF: Lower frequency indication for Hz mode

LDUTY: Low duty indication for Hz + duty mode

STA0/STA1: divider indication for Hz mode

STA0: Status flag for capacitor discharging mode F_FIN: Measurement cycle finished for Hz mode

1.3 Power & I/O level selection

The ES232 provide a flexible I/O level setting for different MPU system configuration. The

DMM Analog front end/Peak

uP_VCC should be connected to the same potential of external Vcc of MCU. The uP_VCC is allowed to be set between DGND ~ V+. The IO_CTRL pin selects the Vss level of MCU. If IO_CTRL is set to DGND, the Vss level of MCU is the same as DGND. If IO_CTRL is set to V-, the Vss level of MCU is the same as V-.

2. Operating Modes

DMM Analog front end/Peak

2.1. Voltage Measurement

MPU send write command to select the voltage measurement function. The Hz mode measurement is available to be enabled with the ACV function (set **AC** bit to 1) simultaneously. The measured signal is applied to VRI terminal (pin25) through $10M\Omega$.

See the next table of function command:

F3	F2	F1	F0	AC Measurement mode		Read data bytes
0	0	0	0	0	DCV mode	D0(0:18), D1(0:9)
0	0	0	0	1	ACV mode	D0(0:18), D1(0:9)
0	0	0	1	1	ACV + Hz(%) mode	D0(0:18), D1(0:9), D2(0:18), D3(0:18)

Note1: D0/D1/D2/D3 all are binary format. ASIGN/BSIGN are the sign bit of D0/D1, respectively.

Note2: See PEAK mode (section 2.10) also.

Range control for voltage mode (ACV/DCV)

Q2	Q1	Q0	Full Scale Range	Divider Ratio	Resister Connection
0	0	0	300.00mV	1	VR1 (10MΩ)
0	0	1	3.0000V	1/10	VR2 (1.111MΩ)
0	1	0	30.000V	1/100	VR3 (101kΩ)
0	1	1	300.00V	1/1000	VR4 (10.01kΩ)
1	0	0	1000.0V	1/10000	VR5 (1kΩ)

Frequency range control for ACV+Hz(%) mode

FQ2	FQ1	FQ0	Full Scale Range
0	0	0	30.00Hz
0	0	1	300.0Hz
0	1	0	3.000kHz
0	1	1	30.00kHz
Dι	ıty Cy	cle	20% ~ 80%

Note: See frequency/duty mode (section 2.9) also

ALARM bit at voltage mode is used for high crest factor (HCF) signal detection. If MPU check the ALARM status flag active when data and range are stable, it should consider the making the existing range up to avoid the signal clamping saturation caused by HCF signal. There is higher peak voltage with lower RMS value for HCF signal. So if the range is up according to the ALARM bit, MCU should set the lower under-limit counts temporarily to avoid the ranging unstable for this case.

DMM Analog front end/Peak

2.2 Current measurement

MPU send write command to select the current measurement function. The Hz mode measurement is available to be enabled with the ACA function (set **AC** bit to 1) simultaneously. The measured signal is applied to *IVSL/IVSH* terminals (pin37-38).

See the next table of function command:

F3	F2	F1	F0	AC	Measurement mode	Read data bytes
0	0	1	0	0	DCA mode	D0(0:18), D1(0:9)
0	0	1	0	1	ACA mode	D0(0:18), D1(0:9)
0	0	1	1	1	ACA + Hz(%) mode	D0(0:18), D1(0:9), D2(0:18), D3(0:18)

Note1: D0/D1/D3 all are binary format. ASIGN/BSIGN are the sign bit of D0/D1, respectively.

Note2: See PEAK mode (section 2.10) also.

Range control for current mode (ACA/DCA)

	Q2	Q1	$\mathbf{Q0}$	Full Scale Range	Input terminal
ĺ	0	0	0	$300 \text{mV} \rightarrow 30000 \text{counts}$	IVSL
	0	0	1	$300 \text{mV} \rightarrow 30000 \text{counts}$	IVSH

Current measurement mode configuration examples: (max. voltage drop 300mV)

DMM Analog front end/Peak

Frequency range control for ACA+Hz(%) mode

FQ2	FQ1	FQ0	Full Scale Range
0	0	0	30.00Hz
0	0	1	300.0Hz
0	1	0	3.000kHz
0	1	1	30.00kHz
Dı	ıty Cyo	cle	20% ~ 80%

Note: See frequency mode (section 2.9) also.

2.3 Low pass filter (LPF) mode for ACA/ACV mode

A 3rd order low pass filter with is built in ES232. The 3dB bandwidth of the low pass filter could be selectable by MPU. The LPF mode is active when the LPF control bit is set to be active. When PEAK mode is active, the LPF mode will be disabled temporarily until the PEAK mode is cancelled.

The LPF mode is allowed to be enabled in F + duty mode to reject high-frequency noise for sine wave input, but the 3dB will be fixed at 10kHz only.

LPF1	LPF0	Low pass filter effect
0	0	Disable
0	1	3dB = 1kHz
1	0	3dB = 10kHz
1	1	3dB > 100kHz

2.4 AC+DC mode measurement

Set control bit **BUF_ACDC**=1 to enter AC+DC RMS measurement mode. The additional DC low-pass filter buffer will be enabled. The DC phase output of AC+DC mode will be sent to ADC when **DCSEL**=1. The AC phase output of AC+DC mode will be sent to ADC when **DCSEL**=0. The zero offset of DC low pass filter buffer should be calibrated by setting **BUFCAL**=1. The AC+DC RMS mode is supported as follow:

F3	F2	F1	F0	AC	BUF_ACDC	Measurement mode	Read data bytes
0	0	0	0	1	1	DCV+ACV mode	D0(0:18), D1(0:9)
0	0	1	0	1	1	DCA+ACA mode	D0(0:18), D1(0:9)
1	0	0	1	1	1	ADP DC+AC mode	D0(0:18)

DMM Analog front end/Peak

The auto range scheme for AC+DC RMS mode is recommended as below:

Set AC=1 & BUF ACDC=1

- Note1: When data is not overflow (larger than 30000 counts), always keep to set **RP**=0.
- Note2: Set **BUF_CAL** = 1 to enter CAL mode to read D0_offset & D1_offset
- Note3: If Range is increasing, set **RP**=1 to reduce settling time for BUFOUT (D0_dc) when range is modified. If **RP**=1, wait 20ms then set **RP**=0 again.

The D0_dc & D0_ac is the original data from SADC of ES232. The D1_dc & D1_ac is the original data from FADC of ES232. D0x & D1x is real dc value deducted by dc buffer offset. The final AC+DC RMS result is square root of sum of D0x² and D0_ac².

DMM Analog front end/Peak

2.5 Resistance Measurement

MPU send write command to select the resistance measurement function.

F3	F2	F1	F0	Measurement mode	Read data bytes
0	1	0	0	Resistance mode	D0(0:18), D1(0:9)

Note1: D0/D1 both are binary format. ASIGN/BSIGN bits are ignored. When RP=1, the D1 data should be ignored.

Range control for resistance mode

Q2	Q1	Q0	Full Scale Range	Relative Resistor	Equivalent value
0	0	0	300.00Ω	OR1	¹ 100Ω
0	0	1	$3.0000 \mathrm{K}\Omega$	VR5	1ΚΩ
0	1	0	30.000ΚΩ	VR4 VR1	10ΚΩ
0	1	1	300.00ΚΩ	VR3 VR1	100ΚΩ
1	0	0	$3.0000 \mathrm{M}\Omega$	VR2 VR1	$1 \mathrm{M}\Omega$
1	0	1	$30.000 \mathrm{M}\Omega$	VR1	$10 \mathrm{M}\Omega$
1	1	0	$300.00 \mathrm{M}\Omega$	VR1	$10 \mathrm{M}\Omega$

¹Note: OR1 resistor is 200Ω .

DMM Analog front end/Peak

2.6 Capacitance Measurement

MPU send write command to select the capacitance measurement function.

	F3	F2	F1	F0	Measurement mode	Read data bytes
Ī	1	0	0	0	Capacitance mode	D0(0:18)

Note1: D0 is binary format. ASIGN bit is ignored.

Range control for capacitance mode

Q2	Q1	Q0	Full Scale Range	Relative Resistor	Measurement Period
0	0	0	30.000nF*	-	0.3 sec
0	0	1	300.00nF*	OVX pin VR	0.75 sec
0	1	0	3.0000uF*	-	0.75 sec
0	1	1	30.000uF*	R9K / R1K	2.4 sec max.
1	0	0	300.00uF*	R9K / R1K	3.0 sec max.
1	0	1	3.0000mF*	R9K / R1K	6.0 sec max.
1	1	0	30.000mF*	R9K / R1K	6.0 sec max.
1	1	1	300.00mF*	R9K / R1K	30 sec max.

• The displayed counts in ES232 capacitance mode is recommended to be divided by 10. (3000 counts displayed is recommended)

ALARM bit at capacitance mode is used for increasing the ranging speed. If MPU check the ALARM=1, it can directly set range to the next range, as shown in the following table, and the ADC output should be ignored.

	Current Range	Next Range
AT ADM 1:4 1	<30.000uF	30.000uF
ALARM bit = 1	30.000uF	3.0000mF
	$3.0000 \text{mF}^{(1)}$	300.00mF

Note 1: ALARM bit is not guaranteed work in range of 3.0000mF.

• STA0 status bit is used for detection of DUT capacitor voltage. If STA0=1, the internal capacitor discharging mode is active and the capacitance measurement is inhibited. It is recommended to discharge the DUT capacitor externally.

2.7 Continuity Check measurement

MPU send write command to select the continuity measurement function.

F3	F2	F1	F0	Measurement mode	Read data bytes
0	1	0	1	Continuity mode	D0(0:18), D1(0:9)

Note1: D0/D1 both are binary format. ASIGN/BSIGN bits both are ignored.

Continuity mode shares the same configuration with 300.00Ω resistance measurement circuit and support the low-resistance detection. If the *STBEEP* output (pin64) is low, it means the low-resistance status is detected (It means the *OVX* terminal voltage less than -7mV). It could be faster than the FADC result, so MPU could monitor the *STBEEP* output and FADC (D1) data output make the high-speed detection for short circuit detection. Set

DMM Analog front end/Peak

SHBP=1 to enable the built-in buzzer driving automatically when *STBEEP* is active.

DMM Analog front end/Peak

2.8 Diode Measurement

MPU send write command to select the diode measurement function.

F3	F2	F1	F0	Measurement mode	Read data bytes
0	1	1	0	Diode mode	D0(0:18), D1(0:9)

Note1: D0/D1 both are binary format. ASIGN/BSIGN are the sign bit of D0/D1, respectively.

Diode measurement mode shares the same configuration with 3.0000V voltage measurement circuit and support the low-resistance detection. If the *STBEEP* output (pin64) is low, it means the low-resistance status is detected (It means the *OVX* terminal voltage less than 9mV). It could be faster than the FADC result, so MPU could monitor the *STBEEP* output and FADC (D1) data output make the high speed detection for short circuit detection. Set **SHBP**=1 to enable the built-in buzzer driving automatically when *STBEEP* is active.

The default source voltage at diode mode is the same as V+ potential. MPU could set the control bit **EXT**=1 to change the source voltage to external source. The external voltage source (positive or negative) input applied from *EXTSRC* (pin16). The available external source range should be from V+ to V-.

DIODE mode configuration

DMM Analog front end/Peak

2.9 Frequency/duty cycle mode measurement

The default typical input impedance of frequency with duty cycle mode is $1M\Omega$. The MPU could set control bit **RP**=1 to change the input impedance down to $100k\Omega$. MPU send write command to select the frequency/duty cycle measurement function.

F3	F2	F1	F0	Measurement mode	Read data bytes
0	1	1	1	Hz + Duty mode	D0(0:18), D2(0:18), D3(0:18)

Note1: D0/D2/D3 all are binary format. ASIGN bit is ignored.

Note2: Set LPF1 = 1 to enable the smooth function for sine wave input automatically

Range control for frequency mode

FQ2	FQ1	FQ0	Full Scale	Conversion period
0	0	0	30.000Hz	700ms (fixed)
0	0	1	300.00Hz	700ms (fixed)
0	1	0	3.0000KHz	700ms (fixed)
0	1	1	30.000KHz	700ms (fixed)
1	0	0	300.00KHz	700ms (fixed)
1	0	1	3.0000MHz	700ms (fixed)
1	1	0	30.000MHz	700ms (fixed)
1	1	1	300.00MHz	700ms (fixed)

Available minimum frequency input $F_{MIN} = 4.000Hz$

Frequency & duty cycle mode computed by D0/D2/D3 (If F_FIN=1)

Flag	STA0=1	STA0=0					
Range*	S1A0=1	STA1=1	STA1=0				
30.000Hz	FREQ=1000000000/D3	FREQ=400000000/D3	FREQ=800000000/D3				
300.00Hz	FREQ=100000000/D3	FREQ=40000000/D3	FREQ=1600000000/D3**				
3.0000KHz	FREQ=2000000/D3	FREQ=320000000/D3	FREQ=2560000000/D3***				
¹ 30.000KHz	FREQ=2000000/D3	FREQ=256000000/D3	FREQ=2048000000/D3				
300.00KHz							
3.0000MHz		EDEO - DO 1					
30.000MHz	FREQ = D0-1						
300.00MHz							

^{*}Note: The Hz measurement of AC+Hz mode is recommended to support 3000 counts displayed

^{**}Note: If D3 < 40000, simple arithmetic mean is necessary to get the 0.01Hz resolution

^{***}Note: If D3 < 50000, simple arithmetic mean is necessary to get the 0.0001 KHz resolution

¹Note: Set FD=1 to change the frequency calculation at 30kHz range to FREQ = D0 - 1.

DMM Analog front end/Peak

Status Flag	LDUTY=1	LDUTY=0
Duty cycle (<30kHz)	10000-D2*10000/D3	D2*10000/D3

The status flag F_FIN indicate the frequency input signal available (> F_{MIN}) or not. If the computed result less than F_{MIN} , the frequency/duty cycle readings should be set to zero.

The status flags HF & LF are used for fast judgment of proper range. If frequency input is larger than 7 kHz, HF will be active. If frequency input is floating or frequency detected too low, LF will be active.

Auto range consideration for MPU by using Status Flags of frequency mode

Flag	F_FIN=0	F_FIN=1	F_F	IN=1
Range	LF=0	LF=1*	HF=LF=0	HF=1**
30.000Hz		Hz/Duty=0		Set range to
300.00Hz				30.000kHz
3.0000KHz			Changa ranga	range
30.000KHz	Data and Range	Sat ranga to	Change range depends on data	
300.00KHz	is not necessary	Set range to 30.000Hz range	computed	Change range
3.0000MHz	to be updated	30.000112 Tallige	Computed	depends on data
30.000MHz				computed
300.00MHz				

^{*}Note: LF=1 @ 30Hz range implies the frequency is not available to be measured. The Hz/Duty readings should be set to zero.

Duty cycle mode range (Input sensitivity > 2Vpp @ duty cycle = 5.0% & 95.0%)

Freq. range	Duty range*
30.000Hz 300.00Hz	5.0% - 95.0%
3.0000KHz	10.0 % - 90.0%
**30.000KHz	20.0% - 80.0%

*Note: Duty range for AC+Hz(%) is 20% ~ 80%.

^{**}Note: When ACV+Hz/ACA+Hz/ADP+Hz mode is selected, the HF status should be ignored. Change range depends on data calculation result.

^{**}Note: Set FD=1 to improve the duty cycle resolution at 30kHz range.

DMM Analog front end/Peak

2.10 ADP mode

MPU send write command to select the ADP mode measurement function. The Hz mode measurement is available to be enabled with the ADP AC function (set AC bit to 1) simultaneously. The measured signal is applied to *ADP* terminal (pin39 and pin51). The signal full scale is 300mV for DC mode and 300mVrms for AC mode.

See the next table of function command:

F3	F2	F1	F0	AC	Measurement mode	Read data bytes
1	0	0	1	0	ADP DC mode	D0(0:18), D1(0:9)
1	0	0	1	1	ADP AC mode	D0(0:18), D1(0:9)
1	0	1	0	1	ADP + Hz(%) mode	D0(0:18), D1(0:9), D2(0:18), D3(0:18)

Note1: D0/D1/D3 all are binary format. ASIGN/BSIGN are the sign bit of D0/D1, respectively.

Note2: See PEAK mode (section 2.10) also.

Range control for ADP mode (AC/DC)

Q	2	Q1	Q0	Full Scale Range	Input terminal
0)	0	0	$300 \text{mV} \rightarrow 30000 \text{counts}$	ADP
1		1	1	300mV→ 30000counts	ADP1

Frequency range control for ADP+Hz(%) mode

FQ2	FQ1	FQ0	Full Scale Range
0	0	0	30.00Hz
0	0	1	300.0Hz
0	1	0	3.000kHz
0	1	1	30.00kHz
Dι	ıty Cyo	cle	20% ~ 80%

Note: See frequency mode (section 2.9) also

If MPU set the control bit **EXT_ADP**=1, the voltage on *EXTSRC* pin could be switched to *ADP* terminal internally. It is helpful for a voltage pulled application of ADP mode.

DMM Analog front end/Peak

2.11 Peak-hold measurement mode

ES232 provides a peak hold function to capture the real peak value for voltage or current measurement mode. In a case of a 1V sine wave input voltage, the peak hold function gets a maximum peak value of 1.414V and minimum peak value of -1.414V ideally. Set the control bit **PEAK**=1 to force the ES232 entering PEAK measurement mode. Peak Hold function is divided into two parts of peak maximum and peak minimum conversion. High resolution SADC performs peak maximum and peak minimum conversion in turn, not at the same time. The status flag PMAX or PMIN shows which type the peak value is. If PMAX=1(PMIN=1), the SADC output D0 is the conversion data on *PMAX* (*PMIN*) terminals (pin 61/62). The MPU should make the comparison procedure to get the maximum value of *PMAX* data and minimum value of *PMIN* data. The max counts for D0 is 54000.

Peak calibration mode

At PEAK-Hold measurement mode, the offset voltage of internal operation amplifier will cause an error. To obtain a more accurate value, the offset error must be canceled. ES232 provides the peak calibration feature to remove the influence on accuracy by internal offset voltage. Set the control bit **PCAL**=1 to enter peak calibration mode. When PCAL mode is active, the SADC of ES232 will output the calibration value of peak maximum and minimum conversion in turn. The offset values should be memorized respectively and deducted from the data of *PMAX/PMIN* at the normal peak measurement mode.

Set PCAL=1 or PEAK=1					
Status indication PMAX=1, PMIN=0 PMAX=0, PM					
ADC data	$V_{\mathrm{PMAX.C}}$	$V_{\mathrm{PMIN.C}}$			

 $V_{PMAX.C}$ and $V_{PMIN.C}$ are not the real-time value of peak-hold voltage. They are the voltage stored on terminal capacitor (pin61-62). Because the capacitor will be self-discharging, so MCU need to compare the $V_{PMAX.C}$ & $V_{PMIN.C}$ respectively and memorize the maximum and minimum peak values in turn.

DMM Analog front end/Peak

2.12 Sleep

Set *CS* pin (pin 80) to logic low to make the ES232 entering the sleep mode. The current consumption will be less than 3uA typically. Set *CS* pin to logic high or kept floating, the ES232 will return to normal operation.

2.13 Multi-level battery voltage indication

The ES232 is built-in a comparator for batter voltage indication. The voltage is applied to *LBAT* pin (pin 89) vs. *V*- terminal. MPU could check the status bit BTS1/BTS0 and monitor the *LBAT* voltage status.

Battery voltage	BTS1	BST0
$V_{LBT} > V_{t1}$	1	1
$V_{t2} < V_{LBT} < V_{t1}$	1	0
$V_{t3} < V_{LBT} < V_{t2}$	0	1
V _{LBT} < V _{t3}	0	0

Low battery configuration for 9V/1.5V*4/1.5V*3 battery

Low battery test circuit (a)

Low battery test circuit (b)

Low battery test circuit (c)

DMM Analog front end/Peak

2.14 Independent OPAMP

ES232 is built-in an independent OPAMP with low drift offset using for general purpose.

MPU could control the OP1/OP0 to change the OPAMP configuration:

OP1	OP0	OPAMP configuration	
0	0	Normal	
0	1	OP disable	
1	0	Unity gain buffer	
1	1	Zero calibration	

Note: If AC=1, it is recommended to set FD=1 simultaneously.

Independent OPAMP configuration

DMM Analog front end/Peak

3. Application Circuit

3.1 AVG circuit

DMM Analog front end/Peak

3.2 RMS circuit (ES5)

DMM Analog front end/Peak

4. Package Information

4.1 100L LQFP Outline drawing

4.2 Dimension parameters

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

SYMBOLS	MIN.	NOM.	MAX.	
Α		-	1.60	
A1	0.05	-	0.15	
A2	1.35	1.40	1.45	
Ь	0.17	0.20	0.27	
C	0.09	0.127	0.20	
D	16.00 BSC			
D1	14.00 BSC			
Е	16.00 BSC			
E1	14.00 BSC			
e	0.50 BSC			
┙	0.45	0.60	0.75	
L1	1.00 REF			