Note S1. Methods

Note S1 Methods

The schema of the proposed method is illustrated in Fig. S1. Smash++ takes a reference and a target file, as inputs, and produces a position file, as output, which is then fed to the Smash++ visualizer to produce an SVG image. This process has eight major stages: (1) compression of the original target file based on the model of original reference file, (2) filtering and segmentation of the compressed file, (3) reference-free compression of the segmented files that are obtained by the previous stage, (4) compression of the original reference file based on the model of segmented files obtained by stage 2, (5) filtering and segmentation of the compressed files, (6) reference-free compression of the segmented files which are obtained by the stage 5, (7) aggregating positions based on the results of stages 3 and 6, and (8) visualizing the positions. The following sections describe the process in detail.

Fig. S1. The schema of Smash++.

\$1.1 Data modeling

Smash++ works on the basis of cooperation between finite-context models (FCMs) and substitutional tolerant Markov models (STMMs), as illustrated in Fig. S2. Applying these models on various contexts, seen in the past, provides probability and weight values, which are then mixed to provide the final probability (P) of the next symbol, G in this case. The following subsections describe FCMs and STMMs in detail.

Fig. S2. model.

Finite-context model (FCM) A finite-context model considers Markov property to estimate the probability of the next symbol in an information source, based on the past k symbols (a context of size k) [1–3]. Denoting the context as $x_{i-k}^{i-1} = x_{i-k}x_{i-k+1} \cdots x_{i-2}x_{i-1}$, the probability of the next symbol s, which is posed at i, can be estimated as

$$P_m(s|x_{i-k}^{i-1}) = \frac{N(s|x_{i-k}^{i-1}) + \alpha}{N(x_{i-k}^{i-1}) + \alpha|\Theta|},$$
 (Eq. S1)

in which m stands for model (FCM in this case), $N(s|x_{i-k}^{i-1})$ shows the number of times that the information source has generated symbol s in the past, $|\Theta|$ denotes size of the alphabet Θ , $N(x_{i-k}^{i-1}) = \sum_{j \in \Theta} N(j|x_{i-k}^{i-1})$ represents the total number of events occurred for the context x_{i-k}^{i-1} and α allows to keep a balance between the maximum likelihood estimator and the uniform distribution. Eq. S1 turns to the Laplace estimator, for $\alpha = 1$, and also behaves as a maximum likelihood estimator, for large number of events i [4].

Substitutional tolerant Markov model (STMM) A substitutional tolerant Markov model [5] is a probabilistic-algorithmic model that assumes at each position, the next symbol in the information source is the symbol which has had the highest probability of occurrence in the past. This way, an STMM ignores the real next symbol in the source. Denoting the past k symbols as $x_{i-k}^{i-1} = x_{i-k}x_{i-k+1} \cdots x_{i-2}x_{i-1}$, the probability of the next symbol s, at position s, can be estimated as

$$P_m(s|x'_{i-k}^{i-1}) = \frac{N(s|x'_{i-k}^{i-1}) + \alpha}{N(x'_{i-k}^{i-1}) + \alpha|\Theta|},$$
 (Eq. S2)

S1.1. Data modeling

where N represents the number of occurrences of symbols, that is saved in memory, and x'_{i-k}^{i-1} is a copy of the context x_{i-k}^{i-1} which is modified as

$$x_i' = \operatorname*{argmax}_{\forall s \in \Theta} P_m(s|x_{i-k}^{\prime i-1}). \tag{Eq. S3}$$

STMMs can be used along with FCMs to modify the behavior of Smash++ in confronting with nucleotide substitutions in genomic sequences. These models have the potential to be disabled, to reduce the number of mathematical calculations and consequently, increase the performance of the proposed method. Such operation is automatically performed using an array of size k (the context size), named history, which preserves the past k hits/misses. Seeing a symbol in the information source, the memory is checked for the symbol with the highest number of occurrences. If they are equal, a hit is saved in the history array; otherwise, a miss is inserted into the array. Before getting to store a hit/miss in the array, it is checked for the number of misses and in the case they are more than a predefined threshold t, the STMM will be disabled and also the history array will be reset. This process is performed for each symbol in the sequence.

This example shows the distinction between a finite-context model and a substitutional tolerant Markov model. Assume, the current context at position i, is $c_0 = \text{GGCTAACGTAC}$, and the number of occurrences of symbols saved in memory is A = 10, C = 12, G = 13 and C = 11. Also, the symbol to appear in the sequence is T. An FCM would consider the next context as $c_1 = \text{GCTAACGTACT}$, while an STMM would consider it as $c_1' = \text{GCTAACGTACG}$, since the base G is the most probable symbol, based on the number of occurrences stored in memory.

Cooperation of FCMs and STMMs When FCMs and STMMs are in cooperation, the probability of the next symbol s, at position i, can be estimated as

$$P(s_i) = \sum_{m \in \mathcal{F}} P_m(s|x_{i-k}^{i-1}) \ w_{m,i} + \sum_{m \in \mathcal{S}} P_m(s|x_{i-k}^{\prime i-1}) \ w_{m,i}^{\prime},$$
 (Eq. S4)

in which \mathcal{F} and \mathcal{S} denote sets of FCMs and STMMs, respectively, $P_m(s|x_{i-k}^{i-1})$ shows the probability of the next symbol estimated by the FCM, $P_m(s|x_{i-k}^{i-1})$ represents this probability estimated by the STMM, and $w_{m,i}$ and $w_{m,i}'$ are weights assigned to each model based on its performance. We have

$$\forall m \in \mathcal{F}: \quad w_{m,i} \propto (w_{m,i-1})^{\gamma_m} P_m(s|x_{i-k-1}^{i-2})$$

$$\forall m \in \mathcal{S}: \quad w'_{m,i} \propto (w'_{m,i-1})^{\gamma'_m} P_m(s|x'_{i-k-1}^{i-2}), \tag{Eq. S5}$$

where γ_m and $\gamma'_m \in [0,1)$ are forgetting factors predefined for each model. Also,

$$\sum_{m \in \mathcal{F}} w_{m,i} + \sum_{m \in \mathcal{S}} w'_{m,i} = 1.$$
 (Eq. S6)

By experimenting different forgetting factors for models, we have found that higher factors should be assigned to models that have higher context-order sizes (less complexity) and vice versa. As an example, when the context size k=6, γ_m or $\gamma_m'\simeq 0.9$ and when k=18, γ_m or $\gamma_m'\simeq 0.95$ would be appropriate choices. These values show that forgetting factor and complexity of a model are inversely related.

Storing models in memory The FCMs and STMMs include, in fact, count values which need to be saved in memory. For this purpose, four different data structures have been employed considering the context-order size k, as follows:

$$\text{data structure} = \begin{cases} \text{table of 64 bit counters,} & 1 \leq k \leq 11 \\ \text{table of 32 bit counters,} & k = 12, 13 \\ \text{table of 8 bit approximate counters,} & k = 14 \\ \text{Count-Min-Log sketch of 4 bit counters,} & k \geq 15 \end{cases}$$

S1.1. Data modeling

Fig. S3. data structure.

Algorithm 1 Approximate counting UPDATE and QUERY

```
1: function IncreaseDecision(x)
       return True with probability \frac{1}{2^x}, else False
 3: end function
 4:
 5: function UPDATE(x)
 6:
        c \leftarrow \text{table}[x]
        if IncreaseDecision(c) = True then
            \mathsf{table}[x] \leftarrow c + 1
        end if
 9:
10: end function
11:
12: function QUERY(x)
       c \leftarrow \text{table}[x]

return 2^x - 1
13:
14:
15: end function
```

Algorithm 2 Count-Min-Log Sketch UPDATE and QUERY

```
Require: sketch width w, sketch depth d, randomly chosen
    integers a_{1..d} and b_{1..d}, m bins, prime p \ge m
    function HASH(k, x)

    □ Universal hash family

        return ((a_k x + b_k) \mod p) \mod m
 3:
    end function
 5: function MINCOUNT(x)
        \mathrm{minimum} \leftarrow 15
                                           \triangleright Biggest 4 bit number
        for k \leftarrow 1 to d do
 7:
            h \leftarrow \text{Hash}(k, x)
 8:
            if \operatorname{sketch}[k][h] < \min  then
 9:
10:
                minimum \leftarrow sketch[k][h]
11:
            end if
12:
        end for
        return minimum
13:
14: end function
15:
16: function IncreaseDecision(x)
        return True with probability \frac{1}{2^x}, else False
17:
18: end function
19:
20: function UPDATE(x)
21:
        c \leftarrow \text{MinCount}(x)
22:
        if IncreaseDecision(c) = True then
23:
            for k \leftarrow 1 to d do
                h \leftarrow \text{Hash}(k, x)
24:
                if \operatorname{sketch}[k][h] = c then
25:
                    \operatorname{sketch}[k][h] \leftarrow c + 1
26:
27:
                end if
28:
            end for
29:
        end if
30: end function
31:
32: function QUERY(x)
        c \leftarrow \text{MinCount}(x)
33:
        return 2^c - 1
34:
35: end function
```

\$1.2 Finding similar regions

In order to smooth the profile information, we use Hann window [6], which is a discrete window function given by

$$w[n] = 0.5 - 0.5 \cos\left(\frac{2\pi n}{N}\right) = \sin^2\left(\frac{\pi n}{N}\right),$$
 (Eq. S7)

in which, $0 \le n \le N$ and length of the window is N+1 (Fig. S4).

Fig. S4. Hann window for 101 samples.

\$1.3 Computing complexities

S1.4 The software

Besides Hann window, that is used as default to filter the profile information obtained by the reference-based compression, we have implemented several other window functions (Fig. S5), includ-

S1.4. The software

ing Blackman [6], Hamming [7], Nuttall [8], rectangular [9], sine [10], triangular [11] and Welch [12] windows. These functions are given by

$$\begin{split} w[n] &= 1, & \text{(rectangular)} \\ w[n] &= 1 - \left| \frac{n - N/2}{L/2} \right|, \quad L = N, & \text{(triangular/Bartlett)} \\ w[n] &= 1 - \left(\frac{n - N/2}{N/2} \right)^2, & \text{(Welch)} \\ w[n] &= \sin\left(\frac{\pi n}{N}\right), & \text{(sine)} \\ w[n] &= 0.54348 - 0.45652 \, \cos\left(\frac{2\pi n}{N}\right), & \text{(Hamming)} \\ w[n] &= 0.42659 - 0.49656 \, \cos\left(\frac{2\pi n}{N}\right) + 0.07685 \, \cos\left(\frac{4\pi n}{N}\right), & \text{(Blackman)} \\ w[n] &= 0.35577 - 0.48740 \, \cos\left(\frac{2\pi n}{N}\right) + 0.14423 \, \cos\left(\frac{4\pi n}{N}\right) - 0.01260 \, \cos\left(\frac{6\pi n}{N}\right). & \text{(Nuttall)} \\ &\text{(Eq. S8)} \end{split}$$

Fig. S5. Window functions.

References 6

References

- [1] K. Sayood, Introduction to data compression. Morgan Kaufmann, 2017.
- [2] M. Hosseini, D. Pratas, and A. J. Pinho, "AC: A compression tool for amino acid sequences," Interdisciplinary Sciences: Computational Life Sciences, vol. 11, no. 1, pp. 68–76, 2019.
- [3] A. J. Pinho and D. Pratas, "MFCompress: a compression tool for FASTA and multi-FASTA data," *Bioinformatics*, vol. 30, no. 1, pp. 117–118, 2013.
- [4] D. Pratas, R. M. Silva, A. J. Pinho, and P. J. Ferreira, "An alignment-free method to find and visualise rearrangements between pairs of DNA sequences," *Scientific reports*, vol. 5, p. 10203, 2015.
- [5] D. Pratas, M. Hosseini, and A. J. Pinho, "Substitutional tolerant Markov models for relative compression of DNA sequences," in *International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB)*. Springer, 2017, pp. 265–272.
- [6] R. Blackman and J. Tukey, "Particular pairs of windows," The measurement of power spectra, from the point of view of communications engineering, pp. 95–101, 1959.
- [7] J. W. Tukey and R. W. Hamming, Measuring noise color. Bell Telephone Laboratories, 1949.
- [8] A. Nuttall, "Some windows with very good sidelobe behavior," *IEEE Transactions on Acoustics, Speech, and Signal Processing*, vol. 29, no. 1, pp. 84–91, 1981.
- [9] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice Hall, 1999.
- [10] F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform," Proceedings of the IEEE, vol. 66, no. 1, pp. 51–83, 1978.
- [11] M. S. Bartlett, "Periodogram analysis and continuous spectra," *Biometrika*, vol. 37, no. 1/2, pp. 1–16, 1950.
- [12] P. Welch, "The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms," *IEEE Transactions on audio and electroacoustics*, vol. 15, no. 2, pp. 70–73, 1967.