Priv.-Doz. Dr. S.-J. Kimmerle

Thursday, 07.10.2021

Exercise 1 (live tutorial): sets and numbers

Exercise 1

Consider the sets $A_1 := \{1, 2, 3, 4, 5\}, B_1 := \{1, 2, 3\}, A_2 := \{3, 4, 5\}, B_2 := \{1, 2\}$ that are subsets of the basic set $M := \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

- a) Determine $A_1 \setminus B_1$ and $B_1 \setminus A_1$, or $A_2 \setminus B_2$ and $B_2 \setminus A_2$, resp. When is the statement $A \setminus B = B \setminus A$ true? Please characterize all cases where the last statement holds.
- b) Check the statements $A_1 \setminus B_1 = A_1 \cap \overline{B}_1$ or $A_2 \setminus B_2 = A_2 \cap \overline{B}_2$, resp. Does this statement hold in general?

Solution for exercise 1

a) i)

$$A_1 \setminus B_1 = \{1, 2, 3, 4, 5\} \setminus \{1, 2, 3\} = \{4, 5\}$$

$$B_1 \setminus A_1 = \{1, 2, 3\} \setminus \{1, 2, 3, 4, 5\} = \emptyset$$

$$A_1 \setminus B_1 \neq B_1 \setminus A_1$$

ii)

$$A_2 \setminus B_2 = \{3,4,5\} \setminus \{1,2\} = \{3,4,5\}$$

 $B_2 \setminus A_2 = \{1,2\} \setminus \{3,4,5\} = \{1,2\}$
 $A_2 \setminus B_2 \neq B_2 \setminus A_2$

The statement $A \setminus B = B \setminus A$ holds, if and only if A = B.

b) i)

$$A_1 \setminus B_1 = \{1, 2, 3, 4, 5\} \setminus \{1, 2, 3\} = \{4, 5\}$$

 $A_1 \cap \overline{B_1} = \{1, 2, 3, 4, 5\} \cap \{4, 5, 6, 7, 8, 9, 10\} = \{4, 5\}$
 $A_1 \setminus B_1 = A_1 \cap \overline{B_1}$

ii)

$$A_2 \setminus B_2 = \{3,4,5\} \setminus \{1,2\} = \{3,4,5\}$$

 $A_2 \cap \overline{B_2} = \{3,4,5\} \cap \{3,4,5,6,7,8,9,10\} = \{3,4,5\}$
 $A_2 \setminus B_2 = A_2 \cap \overline{B_2}$

The statement $A \setminus B = A \cap \overline{B}$ is true in general, as we may check by a diagram (a so-called Venn diagram).

Exercise 2

Let $\mathbb{Z}=\{\dots,-2,-1,0,1,2,\dots\}$ be the set of integers and consider its following subsets:

$$D := \{1, 2, 3, \dots, 10\},\$$

 $S := \{n \text{ is the sum of two squares of integers}\}$, for instance $1 \in S$, since $0^2 + 1^2 = 1$ and $2 \in S$, since $1^2 + 1^2 = 2$,

 $\mathbb{P} := \{2, 3, 5, 7, 11, 13, 17, 19\}$ and

 $U := \{n \text{ is odd}\}.$

Determine:

a) $\{2,3,5,7,11,13,17,19\} \cap \overline{U}$

d) $\overline{S} \cap D$

b) $U \cup \overline{U}$

e) $(\overline{S} \cap D) \setminus \overline{\mathbb{P}}$

c) $S \cap D$

f) $(\mathbb{P} \cap \overline{U}) \times (\overline{S} \cap D)$

Solution for exercise 2

We abbreviate $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, 19\}.$

We have the following table:

	0^2	12	2^2	32	42
0^2	0	1	4	9	16
12	1	2	5	10	17
2^2	4	5	8	13	20
32	9	10	13	18	25
42	16	17	20	25	32

Thus: $S = \{0, 1, 2, 4, 5, 8, 9, 10, 13, \ldots\}$

a)
$$\mathbb{P} \cap \overline{U} = \{2, 3, 5, 7, 11, 13, 17, 19\} \cap \overline{U} = \{2\}$$

b)
$$U \cup \overline{U} = \mathbb{Z}$$

c)
$$S \cap D = \{1, 2, 4, 5, 8, 9, 10\}$$

d)
$$\overline{S} \cap D = \{3, 6, 7\}$$

e)
$$(\overline{S} \cap D) \setminus \overline{\mathbb{P}} = \{3, 6, 7\} \setminus \overline{\mathbb{P}} = \{3, 7\}$$

$$\mathrm{f)}\ (\mathbb{P}\cap\overline{U})\times(\overline{S}\cap D)=\{2\}\times\{3,6,7\}=\Big\{(2,3),(2,6),(2,7)\Big\}$$

Exercise 3

Which of the following statements hold for the sets $A := \{1,2,3,4,5\}$, $B := \{1,2,3,...,100\}$ and $M := \{1,A\}$?

a) $1 \subset A$

d) $B \subset A$

g) $B \subset B$

 $A \in M$

b) $1 \in B$

e) $A \subset B$

h) $\emptyset \in M$

k) $M \in M$

c) $\{1\} \in A$

f) $A \in B$

i) $\{1\} \in M$

 ℓ) $M \subset B$

Solution for exercise 3

a) false, $1 \in A$ (1 is not set and is thus **never** a subset of anything)

b) true

c) false, $\{1\} \subset A \text{ or } 1 \in A$

d) false, for instance $100 \in B$, but $100 \notin A$

e) true, since all elements of A belong to B and B contains elements, that are not in A, e.g. 100; thus A is a proper subset of B

f) false, $A \subset B$.

g) false, $B \subseteq B$ holds, but B is no proper subset of itself, i.e. $B \subset B$ is always false

h) false, $\emptyset \subset M$

i) false, {1} is a set and no element

j) true

k) false, M is no element

 ℓ) false, A is no element of B