Gradual Intersection Types

Pedro Ângelo, Mário Florido March 27, 2018

1 Language Definition

Syntax

Types
$$T ::= Int \mid Bool \mid T \to T \mid T \cap ... \cap T$$

Expressions $e ::= x \mid \lambda x : T \cdot e \mid e \mid n \mid true \mid false$

$$\begin{array}{c|c} \hline \Gamma \vdash_{\cap S} e : T \end{array} \text{ Typing} \\ \hline \frac{x : T \in \Gamma}{\Gamma \vdash_{\cap S} x : T} \text{ T-Var} & \frac{\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e : T}{\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T} \text{ T-Abs} \\ \hline \frac{\Gamma, x : T_i \vdash_{\cap S} e : T}{\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T} \text{ T-Abs} \\ \hline \frac{\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T}{\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T} \text{ T-App} \\ \hline \frac{\Gamma \vdash_{\cap S} e : T_1 \ldots \Gamma \vdash_{\cap S} e : T_n}{\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n} \text{ T-Inst} & \overline{\Gamma \vdash_{\cap S} n : Int} \end{array} \text{ T-Inst} \\ \hline \frac{\Gamma \vdash_{\cap S} true : Bool}{\Gamma \vdash_{\cap S} true : Bool} \text{ T-True} & \overline{\Gamma \vdash_{\cap S} false : Bool} \end{array} \text{ T-False}$$

Figure 1: Static Intersection Type System $(\vdash_{\cap S})$

Syntax

$$Types \ T ::= Int \mid Bool \mid Dyn \mid T \rightarrow T \mid T \cap \ldots \cap T$$

$$Expressions \ e ::= x \mid \lambda x : T \cdot e \mid e \mid e \mid n \mid true \mid false$$

$$\boxed{\Gamma \vdash_{\cap G} e : T} \ \text{Typing}$$

$$\frac{x : T \in \Gamma}{\Gamma \vdash_{\cap G} x : T} \ \text{T-Var}$$

$$\frac{\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T}{\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \rightarrow T} \ \text{T-Abs}$$

$$\frac{\Gamma, x : T_i \vdash_{\cap G} e : T}{\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \rightarrow T} \ \text{T-Abs}$$

$$\frac{\Gamma \vdash_{\cap G} e_1 : PM}{\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n \cdot e : T_i \rightarrow T} \ \text{T-App}$$

$$\frac{\Gamma \vdash_{\cap G} e_1 : PM}{\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n \cap T_n \cap T_n \cap T_n} \ \text{T-App}$$

$$\frac{\Gamma \vdash_{\cap G} e : T_1 \dots \Gamma \vdash_{\cap G} e : T_n}{\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n} \ \text{T-Gen}$$

$$\frac{\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n}{\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n} \ \text{T-Inst}$$

$$\frac{\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n}{\Gamma \vdash_{\cap G} true : Bool} \ \text{T-TRUE}$$

$$\frac{\Gamma \vdash_{\cap G} false : Bool}{\Gamma \vdash_{\cap G} false : Bool} \ \text{T-False}$$

$$\boxed{T \sim T} \ \text{Consistency}$$

$$\frac{T_1 \sim T_1}{T_1 \rightarrow T_2 \sim T_3 \rightarrow T_4} \qquad \frac{T_1 \sim T_1' \dots T_n \sim T_n'}{T_1 \cap \ldots \cap T_n \sim T_1' \cap \ldots \cap T_n'}$$

$$\boxed{T \rhd T} \ \text{Pattern Matching}$$

$$T_1 \rightarrow T_2 \rhd T_1 \rightarrow T_2 \qquad Dyn \rhd Dyn \rightarrow Dyn$$

Figure 2: Gradual Intersection Type System $(\vdash_{\cap G})$

$T \sqsubseteq T$ Type Precision

$$Dyn \sqsubseteq T \qquad \qquad \frac{T_1 \sqsubseteq T_3 \qquad T_2 \sqsubseteq T_4}{T_1 \to T_2 \sqsubseteq T_3 \to T_4} \qquad \frac{T_1 \sqsubseteq T_1' \dots T_n \sqsubseteq T_n'}{T_1 \cap \dots \cap T_n \sqsubseteq T_1' \cap \dots \cap T_n'}$$

$$\frac{T \sqsubseteq T_1 \dots T \sqsubseteq T_n}{T \sqsubseteq T_1 \cap \dots \cap T_n} \qquad \frac{T_1 \sqsubseteq T \dots T_n \sqsubseteq T}{T_1 \cap \dots \cap T_n \sqsubseteq T}$$

$c \sqsubseteq c$ Cast Precision

$$\frac{c \sqsubseteq c' \quad T_1 \sqsubseteq T_1' \quad T_2 \sqsubseteq T_2'}{c : T_1 \Rightarrow^l T_2 \stackrel{cl}{\sqsubseteq} c' : T_1' \Rightarrow^{l'} T_2' \stackrel{cl'}{=}'} \qquad \frac{c \sqsubseteq c' \quad \vdash_{\cap CI} c' : T \quad T_1 \sqsubseteq T \quad T_2 \sqsubseteq T}{c : T_1 \Rightarrow^l T_2 \stackrel{cl}{\sqsubseteq} c'}$$

$$\frac{c \sqsubseteq c' \quad \vdash_{\cap CI} c : T \quad T \sqsubseteq T_1 \quad T \sqsubseteq T_2}{c \sqsubseteq c' : T_1 \Rightarrow^l T_2 \stackrel{cl}{=} t} \qquad \frac{T_I \sqsubseteq T_I' \quad T_F \sqsubseteq T_F'}{blame \ T_I \ T_F \ l \stackrel{cl}{\sqsubseteq} blame \ T_I' \ T_F' \ l' \stackrel{cl'}{=} t}$$

$e \sqsubseteq e$ Expression Precision

$$x \sqsubseteq x \qquad \frac{T \sqsubseteq T' \quad e \sqsubseteq e'}{\lambda x : T \cdot e \sqsubseteq \lambda x : T' \cdot e'} \qquad \frac{e_1 \sqsubseteq e'_1 \quad e_2 \sqsubseteq e'_2}{e_1 e_2 \sqsubseteq e'_1 e'_2} \qquad n \sqsubseteq n \qquad true \sqsubseteq true$$

$$\frac{e \sqsubseteq e' \quad c_1 \sqsubseteq c'_1 \dots c_n \sqsubseteq c'_n}{e : c_1 \cap \dots \cap c_n \sqsubseteq e' : c'_1 \cap \dots \cap c'_n}$$

$$\frac{e \sqsubseteq e' \quad \Gamma \vdash_{\cap CC} e' : T \quad \vdash_{\cap CI} c_1 : T_1 \dots \vdash_{\cap CI} c_n : T_n \quad T_1 \cap \dots \cap T_n \sqsubseteq T}{e : c_1 \cap \dots \cap c_n \sqsubseteq e'}$$

$$\frac{e \sqsubseteq e' \quad \Gamma \vdash_{\cap CC} e : T \quad \vdash_{\cap CI} c_1 : T_1 \dots \vdash_{\cap CI} c_n : T_n \quad T \sqsubseteq T_1 \cap \dots \cap T_n}{e \sqsubseteq e' : c_1 \cap \dots \cap c_n}$$

$$\frac{\Gamma \vdash_{\cap CC} e : T \quad T \sqsubseteq T'}{e \sqsubseteq blame_{T'} l}$$

Figure 3: Precision (\sqsubseteq)

Syntax

$$Types \ T ::= Int \mid Bool \mid Dyn \mid T \rightarrow T$$

$$Casts \ c ::= c : T \Rightarrow^{l} T \ ^{cl} \mid blame \ T \ T \ ^{cl} \mid \varnothing \ T \ ^{cl}$$

$$\vdash_{\cap CI} c : T \quad Typing$$

$$\vdash_{\cap CI} c : T_{1} \quad T_{1} \sim T_{2} \quad T-SINGLECI \quad \vdash_{\cap CI} blame \ T_{I} \ T_{F} \ l \ ^{cl} : T_{F} \quad T-BLAMECI$$

$$\vdash_{\cap CI} \varnothing \ T \ ^{cl} : T \quad T-EMPTYCI$$

$$initial Type(c) = T \quad final Type(c) = T$$

$$initial Type(c : T_{1} \Rightarrow^{l} T_{2} \ ^{cl}) = initial Type(c) \quad final Type(c : T_{1} \Rightarrow^{l} T_{2} \ ^{cl}) = T_{2}$$

$$initial Type(\emptyset \ T \ ^{cl}) = T \quad final Type(\emptyset \ T \ ^{cl}) = T$$

$$initial Type(blame \ T_{I} \ T_{F} \ l \ ^{cl}) = T_{F}$$

Figure 4: Cast Intersection Type System $(\vdash_{\cap CI})$

Syntax

$$Expressions \ e \ ::= x \mid \lambda x : T \cdot e \mid e \ e \mid n \mid true \mid false \mid e : c \cap \ldots \cap c \mid blame_T \ l$$

$$\Gamma \vdash_{\cap CC} e : T \quad \text{Typing}$$

$$Static \ Intersection \ Type \ System \ (\vdash_{\cap S}) \ rules \ and$$

$$\frac{\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2} \qquad \Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}}{\Gamma \vdash_{\cap CC} e_1 : e_2 : T_{12} \cap \ldots \cap T_{n2}} \ T \cdot App'$$

$$\frac{\Gamma \vdash_{\cap CC} e : T_1' \cap \ldots \cap T_n' \qquad \vdash_{\cap CI} c_1 : T_1 \quad \ldots \vdash_{\cap CI} c_n : T_n}{T_1' \cap \ldots \cap T_n' = initial Type(c_1) \cap \ldots \cap initial Type(c_n)} \ T \cdot Cast Intersection}$$

$$\frac{\Gamma \vdash_{\cap CC} blame_T \ l : T}{\Gamma \vdash_{\cap CC} blame_T \ l : T} \ T \cdot Blame_T$$

 $Types \ T ::= \ Int \mid Bool \mid Dyn \mid T \rightarrow T \mid T \cap \ldots \cap T$

Figure 5: Intersection Cast Calculus $(\vdash_{\cap CC})$

$$\{T_{11}, \dots, T_{1n}\}, \{T_{21}, \dots, T_{2n}\}, e \hookrightarrow e : (\varnothing T_{11}^{0} : T_{11} \Rightarrow^{l_{1}} T_{21}^{0}) \cap \dots \cap (\varnothing T_{1n}^{0} : T_{1n} \Rightarrow^{l_{n}} T_{2n}^{0})$$

$$\{T_{11}, \dots, T_{1n}\}, \{T_{2}\}, e \hookrightarrow e : (\varnothing T_{11}^{0} : T_{11} \Rightarrow^{l_{1}} T_{2}^{0}) \cap \dots \cap (\varnothing T_{1n}^{0} : T_{1n} \Rightarrow^{l_{n}} T_{2}^{0})$$

$$\{T_{1}\}, \{T_{21}, \dots, T_{2n}\}, e \hookrightarrow e : (\varnothing T_{1}^{0} : T_{1} \Rightarrow^{l_{1}} T_{21}^{0}) \cap \dots \cap (\varnothing T_{1}^{0} : T_{1} \Rightarrow^{l_{n}} T_{2n}^{0})$$

 $\{T_1\}, \{T_2\}, e \hookrightarrow e : (\varnothing T_1^0 : T_1 \Rightarrow^l T_2^0)$

Figure 6: Compilation to the Intersection Cast Calculus

Syntax

$$Types \ T ::= Int \mid Bool \mid Dyn \mid T \rightarrow T$$

$$Ground \ Types \ G ::= Int \mid Bool \mid Dyn \rightarrow Dyn$$

$$Casts \ c ::= c : T \Rightarrow^{l} T^{cl} \mid blame \ T \ T^{cl} \mid \varnothing \ T^{cl}$$

$$Cast \ Values \quad cv ::= cv1 \mid cv2$$

$$cv1 ::= \varnothing \ T^{cl} : G \Rightarrow^{l} Dyn^{cl} \mid \varnothing \ T^{cl} : T_{1} \rightarrow T_{2} \Rightarrow^{l} T_{3} \rightarrow T_{4}^{cl}$$

$$\mid cv1 : G \Rightarrow^{l} Dyn^{cl} \mid cv1 : T_{1} \rightarrow T_{2} \Rightarrow^{l} T_{3} \rightarrow T_{4}^{cl}$$

$$cv2 ::= blame \ T \ T^{cl} \mid \varnothing \ T^{cl}$$

 $c \longrightarrow_{\cap CI} c$ Evaluation

Push blame to top level

$$\overline{blame~T_I~T_F~l_1~^{cl_1}:T_1\Rightarrow^{l_2}T_2~^{cl_2}\longrightarrow_{\cap CI}blame~T_I~T_2~l_1~^{cl_1}}$$
Е-Ризн
ВьамеСІ

Evaluate inside casts

$$\frac{\neg(is\; cast\; value\; c) \qquad c \longrightarrow_{\cap CI} c'}{c: T_1 \Rightarrow^l T_2 \stackrel{cl}{} \longrightarrow_{\cap CI} c': T_1 \Rightarrow^l T_2 \stackrel{cl}{}} \text{ E-evaluateCI}$$

Detect success or failure of casts

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: T \Rightarrow^l T \stackrel{cl}{\longrightarrow}_{\cap CI} c} \ \text{E-IdentityCI}$$

$$\frac{is\; cast\; value\; 1\; c \vee is\; empty\; cast\; c}{c:G\Rightarrow^{l_1}Dyn\stackrel{cl_1}{\Rightarrow^{l_2}}C pn\Rightarrow^{l_2}G\stackrel{cl_2}{\longrightarrow}_{\cap CI}c} \; \text{E-SucceedCI}$$

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: G_1 \Rightarrow^{l_1} Dyn^{\ cl_1}: Dyn \Rightarrow^{l_2} G_2 \xrightarrow{cl_2} \longrightarrow_{\cap CI} blame \ T_I \ G_2 \ l_2 \xrightarrow{cl_1}} \text{ E-FailCI}$$

Mediate the transition between the two disciplines

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: T \Rightarrow^l Dyn^{\ cl} \longrightarrow_{\cap CI} c: T \Rightarrow^l G^{\ cl}: G \Rightarrow^l Dyn^{\ cl}} \xrightarrow{} \text{E-GroundCI}$$

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: Dyn \Rightarrow^l T^{\ cl} \longrightarrow_{\cap CI} c: Dyn \Rightarrow^l G^{\ cl}: G \Rightarrow^l T^{\ cl}} \to_{\cap CI} E-EXPANDCI$$

Figure 7: Cast Intersection Operational Semantics $(\longrightarrow_{\cap CI})$

Syntax

Types
$$T ::= Int \mid Bool \mid Dyn \mid T \to T \mid T \cap \ldots \cap T$$

Expressions $e ::= x \mid \lambda x : T \cdot e \mid e \mid e \mid n \mid true \mid false \mid e : c \cap \ldots \cap c \mid blame_T \mid t$
Values $v ::= x \mid \lambda x : T \cdot e \mid n \mid true \mid false \mid blame_T \mid v : cv_1 \cap \ldots \cap cv_n \mid that$
 $\neg(\forall_{i \in 1...n} \cdot cv_i = blame \mid T \mid t \mid^{cl}) \land \neg(\forall_{i \in 1...n} \cdot cv_i = \varnothing \mid T \mid^{cl})$

 $e \longrightarrow_{\cap CC} e$ Evaluation

Push blame to top level

$$\frac{\Gamma \vdash_{\cap CC} (blame_{T_2}\ l)\ e_2 : T_1}{(blame_{T_2}\ l)\ e_2 \longrightarrow_{\cap CC} blame_{T_1}\ l} \ \text{E-PushBlame1}$$

$$\frac{\Gamma \vdash_{\cap CC} e_1\ (blame_{T_2}\ l) : T_1}{e_1\ (blame_{T_2}\ l) \longrightarrow_{\cap CC} blame_{T_1}\ l} \ \text{E-PushBlame2}$$

$$\frac{\vdash_{\cap CI} c_1 : T_1 \ldots \vdash_{\cap CI} c_n : T_n}{blame_{T}\ l : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} blame_{T_1 \cap \ldots \cap T_n}\ l} \ \text{E-PushBlameCast}$$

Evaluate expressions

$$\frac{e_1 \longrightarrow_{\cap CC} e'_1}{(\lambda x : T_1 \cap \ldots \cap T_n \cdot e) \ v \longrightarrow_{\cap CC} [x \mapsto v]e} \text{ E-AppAbs} \qquad \frac{e_1 \longrightarrow_{\cap CC} e'_1}{e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2} \text{ E-App1}$$

$$\frac{e_2 \longrightarrow_{\cap CC} e'_2}{v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e'_2} \text{ E-App2} \qquad \frac{e \longrightarrow_{\cap CC} e'}{e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} e' : c_1 \cap \ldots \cap c_n} \text{ E-Evaluate}$$

Simulate casts on data types

$$is \ value \ (v_1: cv_1 \cap \ldots \cap cv_n) \qquad \exists i \in 1..n \ . \ is Arrow Compatible (cv_i) \\ \frac{((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s)) = simulate Arrow (cv_1, \ldots, cv_n)}{(v_1: cv_1 \cap \ldots \cap cv_n) \ v_2 \longrightarrow_{\cap CC}} \\ (v_1: c_1^s \cap \ldots \cap c_m^s) \ (v_2: c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2}$$
 E-SIMULATE ARROW

 $Merge\ casts$

$$\frac{s \ value \ (v: cv_1 \cap \ldots \cap cv_n)}{v: c''_1 \cap \ldots \cap c''_j = mergeCasts(v: cv_1 \cap \ldots \cap cv_n: c'_1 \cap \ldots \cap c'_m)}{v: cv_1 \cap \ldots \cap cv_n: c'_1 \cap \ldots \cap c'_m \longrightarrow_{\cap CC} v: c''_1 \cap \ldots \cap c''_j} \text{ E-MergeCasts}$$

Evaluate casts

$$\frac{\neg(\forall i \in 1..n \ . \ is \ cast \ value \ c_i) \qquad c_1 \longrightarrow_{\cap CI} cv_1 \ \ldots \ c_n \longrightarrow_{\cap CI} cv_n}{v: c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v: cv_1 \cap \ldots \cap cv_n} \text{ E-Evaluate Casts}$$

Transition from cast values to values

$$\frac{1}{v: \mathit{blame}\ I_1\ F_1\ l_1\ ^{\mathit{cl}_1}\cap\ldots\cap\mathit{blame}\ I_n\ F_n\ l_n\ ^{\mathit{cl}_n}}{7} \xrightarrow{\cap\mathit{CC}\ \mathit{blame}_{(F_1\cap\ldots\cap F_n)}\ l_1} \text{E-PropagateBlame}_{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_1}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}} \xrightarrow{\cap\mathit{CC}\ v} \text{E-RemoveEmpty}_{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_1}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}} \xrightarrow{\cap\mathit{CC}\ v} \text{E-RemoveEmpty}_{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_1}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_1}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\o\backslash\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\o\backslash\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\o\backslash\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\o\backslash\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \xrightarrow{(F_1\cap\ldots\cap F_n)} \frac{1}{v: \varnothing\ T_1\ ^{\mathit{cl}_n}\cap\ldots\cap\o\backslash\ T_n\ ^{\mathit{cl}_n}}} \xrightarrow{(F_1\cap\ldots\cap F_n)} \xrightarrow{(F_1\cap\ldots\cap F$$

Figure 8: Intersection Cast Calculus Operational Semantics $(\longrightarrow_{\cap CC})$

$$\begin{split} \langle c \rangle^{cl} &= \mathbf{c} \end{split}$$

$$\langle c : T_1 \Rightarrow^l T_2 \ ^{cl} \rangle^{cl'} = \langle c \rangle^{cl'} : T_1 \Rightarrow^l T_2 \ ^{cl'} \end{split}$$

$$\langle blame \ T_I \ T_F \ l \ ^{cl'} \rangle^{cl} = blame \ T_I \ T_F \ l \ ^{cl}$$

$$\langle \varnothing \ T \ ^{cl'} \rangle^{cl} = \varnothing \ T \ ^{cl}$$

$$isArrowCompatible(c) = Bool$$

$$isArrowCompatible(c: T_{11} \rightarrow T_{12} \Rightarrow^{l} T_{21} \rightarrow T_{22} \stackrel{cl}{}) = isArrowCompatible(c)$$

 $isArrowCompatible(\varnothing (T_{1} \rightarrow T_{2}) \stackrel{cl}{}) = True$

$$separateIntersectionCast(c) = (c, c)$$

$$separateIntersectionCast(c:T_1 \Rightarrow^l T_2 \stackrel{cl}{}) = (\varnothing \ T_1 \stackrel{cl}{}: T_1 \Rightarrow^l T_2 \stackrel{cl}{}, c)$$

$$separateIntersectionCast(\varnothing \ T \stackrel{cl}{}) = (\varnothing \ T \stackrel{cl}{}, \varnothing \ T \stackrel{cl}{})$$

$$breakdownArrowType(c) = (c, c)$$

$$breakdownArrowType(\varnothing\ T_{11}\rightarrow T_{12}\ ^{cl}:T_{11}\rightarrow T_{12}\Rightarrow ^{l}T_{21}\rightarrow T_{22}\ ^{cl})=\\ (\varnothing\ T_{21}\ ^{cl}:T_{21}\Rightarrow ^{l}T_{11}\ ^{cl},\varnothing\ T_{12}\ ^{cl}:T_{12}\Rightarrow ^{l}T_{22}\ ^{cl})$$

$$breakdownArrowType(\varnothing\ T_{1}\rightarrow T_{2}\ ^{cl})=(\varnothing\ T_{1}\ ^{cl},\varnothing\ T_{2}\ ^{cl})$$

simulateArrow
$$(c_1, \ldots, c_n) = ((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s))$$

$$(c_1', \ldots, c_m') = filter \ isArrowCompatible \ (c_1, \ldots, c_n)$$

$$((c_1^f, c_1^s), \ldots, (c_m^f, c_m^s)) = map \ separateIntersectionCast \ (\langle c_1' \rangle^0, \ldots, \langle c_m' \rangle^0)$$

$$\underline{((c_{11}, c_{12}), \ldots, (c_{m1}, c_{m2})) = map \ breakdownArrowType \ (\langle c_1^f \rangle^1, \ldots, \langle c_m^f \rangle^m)}$$

$$simulateArrow(c_1, \ldots, c_n) = ((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s))$$

Figure 9: Definitions for auxiliary semantic functions

$$\begin{split} \gcd \operatorname{CastLabel}(c) &= \operatorname{cl} \\ \gcd \operatorname{CastLabel}(c:T_1\Rightarrow^l T_2 \ ^{cl}) &= \operatorname{cl} \\ \gcd \operatorname{CastLabel}(blame \ T_l \ T_l \ ^{l}) &= \operatorname{cl} \\ \gcd \operatorname{CastLabel}(blame \ T_l \ T_l \ ^{l}) &= \operatorname{cl} \\ \gcd \operatorname{CastLabel}(c, c) &= \operatorname{Bool} \\ & \operatorname{sameCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1) &== 0 \\ \operatorname{sameCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_2) &== 0 \\ \operatorname{sameCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1) &== \operatorname{getCastLabel}(c_2) \\ & \operatorname{joinCasts}(c, c) &= \operatorname{c} \\ & \operatorname{joinCasts}(blame \ T_l \ T_l \ ^{cl}, c) &= \operatorname{blame} \ T_l \ T_l \ ^{l} \ ^{l} \\ \operatorname{joinCasts}(blame \ T_l \ T_l \ ^{l}, c) &= \operatorname{blame} \ T_l \ T_l \ ^{l} \ ^{l} \\ & \operatorname{joinCasts}(blame \ T_l \ ^{cl}, c) &= \operatorname{cl} \\ & \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1, c_2) \\ & \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_2) \\ & \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_2) \\ & \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_2) \\ & \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_2) \\ & \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_2) \\ & \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_2) \\ & \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1, c_2) \\ & \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1, c_2) \\ &= \operatorname{getCastLabel}(c_1, c_2) &= \operatorname{getCastLabel}(c_1, c_2) \\ &= \operatorname{getCastLabel}(c_1, c_2, c_2) \\ &= \operatorname{getCastLabel}(c_1, c_2, c_2) \\ &= \operatorname{getCastLabe$$

Figure 10: Definitions for auxiliary semantic functions

$$e =_{c} e$$
 Equality of Casts

Figure 11: Equality of Casts

2 Gradual Intersection Lambda Calculus as an extension of the GTLC

Theorem 2.1 (Instances of Intersection Types). If $T \subseteq \{T_1, \ldots, T_n\}$ then $\{T_1, \ldots, T_n\}$ is the set of all the instances of T and for each $i \in 1...n$, T_i is a simple type.

Proof. We proceed by structural induction on T. Base cases:

- T = Int. If $Int \leq \{Int\}$ then Int is the only instance of Int and Int is a simple type.
- T = Bool. If $Bool \leq \{Bool\}$ then Bool is the only instance of Bool and Bool is a simple type.
- T = Dyn. If $Dyn \leq \{Dyn\}$ then Dyn is the only instance of Dyn and Dyn is a simple type.

Induction step:

- $T = T_1 \to T_2$. If $T_1 \to T_2 \unlhd \{T_{11} \to T_2, \dots, T_{1n} \to T_2\}$ then, by the definition of \unlhd , $T_1 \unlhd \{T_{11}, \dots, T_{1n}\}$. By the induction hypothesis, $\{T_{11}, \dots, T_{1n}\}$ is the set of all the instances of T_1 and T_{11} and ... and T_{1n} are all simple types. As T_2 is a simple type, then T_2 is the only instance of T_2 . Therefore, $\{T_{11} \to T_2, \dots, T_{1n} \to T_2\}$ is the set of all the instances of $T_1 \to T_2$ and $T_1 \to T_2$ and ... and $T_1 \to T_2$ are all simple types.
- $T = T_1 \cap \ldots \cap T_n$. If $T_1 \cap \ldots \cap T_n \subseteq \{T_{11}, \ldots, T_{1m}, \ldots, T_{n1}, \ldots, T_{nj}\}$ then, by the definition of \subseteq , $T_1 \subseteq \{T_{11}, \ldots, T_{1m}\}$ and \ldots and $T_n \subseteq \{T_{n1}, \ldots, T_{nj}\}$. By the induction hypothesis, $\{T_{11}, \ldots, T_{1m}\}$ is the set of all the instances of T_1 and T_{11} and \ldots and T_{1m} are all simple types and \ldots and $\{T_{n1}, \ldots, T_{nj}\}$ is the set of all the instances of T_n and T_n and T_n and T_n are all simple types. Then, $\{T_{11}, \ldots, T_{1m}, \ldots, T_{n1}, \ldots, T_{nj}\}$ is the set of all the instance of $T_1 \cap \ldots \cap T_n$ and T_{11} and T_{12} and T_{13} and T_{14} and T_{15} and T_{16} and T_{17} and T_{18} an

Theorem 2.2 (Conservative Extension). *If* e *is annotated with only simple types and* T *is a simple type, then* $\Gamma \vdash_G e : T \iff \Gamma \vdash_{\cap G} e : T$.

Proof. We will first prove the right direction of the implication, that if $\Gamma \vdash_G e : T$ then $\Gamma \vdash_{\cap G} e : T$. We proceed by induction on the length of the derivation tree of \vdash_G . Base cases:

- Rule T-Var. If $\Gamma \vdash_G x : T$, then by rule T-Var, $x : T \in \Gamma$. Therefore, $\Gamma \vdash_{\cap G} x : T$.
- Rule T-Int. If $\Gamma \vdash_G n : Int$, then by rule T-Int, $\Gamma \vdash_{\cap G} n : Int$.
- Rule T-True. If $\Gamma \vdash_G true : Bool$, then by rule T-True, $\Gamma \vdash_{\cap G} true : Bool$.
- Rule T-False. If $\Gamma \vdash_G false : Bool$, then by rule T-False, $\Gamma \vdash_{\cap G} false : Bool$.

- Rule T-Abs. If $\Gamma \vdash_G \lambda x : T_1 \cdot e : T_1 \to T_2$, then by rule T-Abs, $\Gamma, x : T_1 \vdash_G e : T_2$. By the induction hypothesis, $\Gamma, x : T_1 \vdash_{\cap G} e : T_2$. Therefore, by rule T-Abs, $\Gamma \vdash_{\cap G} \lambda x : T_1 \cdot e : T_1 \to T_2$.
- Rule T-App. If $\Gamma \vdash_G e_1 e_2 : T_2$ then by rule T-App, $\Gamma \vdash_G e_1 : PM$, $PM \rhd T_1 \to T_2$, $\Gamma \vdash_G e_2 : T_1'$ and $T_1' \sim T_1$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e_1 : PM$ and $\Gamma \vdash_{\cap G} e_2 : T_1'$. Therefore, by rule T-App, $\Gamma \vdash_{\cap G} e_1 e_2 : T_2$.

We will now prove the left direction of the implication, that if $\Gamma \vdash_{\cap G} e : T$ then $\Gamma \vdash_{G} e : T$. We proceed by induction on the length of the derivation tree of $\vdash_{\cap G}$. Base cases:

- Rule T-Var. If $\Gamma \vdash_{\cap G} x : T$, then by rule T-Var, $x : T \in \Gamma$. Therefore, $\Gamma \vdash_G e : T$.
- Rule T-Int. If $\Gamma \vdash_{\cap G} n : Int$, then by rule T-Int, $\Gamma \vdash_{G} n : Int$.
- Rule T-True. If $\Gamma \vdash_{\cap G} true : Bool$, then by rule T-True, $\Gamma \vdash_{G} true : Bool$.
- Rule T-False. If $\Gamma \vdash_{\cap G} false : Bool$, then by rule T-False, $\Gamma \vdash_{G} false : Bool$.

Induction step:

- Rule T-Abs. If $\Gamma \vdash_{\cap G} \lambda x : T_1 : e : T_1 \to T_2$, then by rule T-Abs, $\Gamma, x : T_1 \vdash_{\cap G} e : T_2$. By the induction hypothesis, $\Gamma, x : T_1 \vdash_G e : T_2$. Therefore, by rule T-Abs, $\Gamma \vdash_G \lambda x : T_1 \cdot e : T_1 \to T_2$.
- Rule T-Abs'. If $\Gamma \vdash_{\cap G} \lambda x : T_1 : e : T_1 \to T_2$, then by rule T-Abs', $\Gamma, x : T_1 \vdash_{\cap G} e : T_2$. By the induction hypothesis, $\Gamma, x : T_1 \vdash_G e : T_2$. Therefore, by rule T-Abs, $\Gamma \vdash_G \lambda x : T_1 \cdot e : T_1 \to T_2$.
- Rule T-App. If $\Gamma \vdash_{\cap G} e_1 \ e_2 : T_2$ then by rule T-App, $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_1 \to T_2$, $\Gamma \vdash_{\cap G} e_2 : T'_1$ and $T'_1 \sim T_1$. By the induction hypothesis, $\Gamma \vdash_G e_1 : PM$ and $\Gamma \vdash_G e_2 : T'_1$. Therefore, by rule T-App, $\Gamma \vdash_G e_1 \ e_2 : T_2$.
- Rule T-Gen. If $\Gamma \vdash_{\cap G} e : T$, then by rule T-Gen, $\Gamma \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma \vdash_{G} e : T$.
- Rule T-Inst. If $\Gamma \vdash_{\cap G} e : T$, then by rule T-Inst, $\Gamma \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma \vdash_{G} e : T$.

Theorem 2.3 (Conservative Extension). *If* e *is annotated with only simple types and* T *is a simple type then* $\Gamma \vdash_{CC} e \leadsto e_1 : T \iff \Gamma \vdash_{\cap CC} e \leadsto e_2 : T$ *and* $e_1 =_c e_2$.

Proof. We will first prove the right direction of the implication, that if $\Gamma \vdash_{CC} e \leadsto e_1 : T$ then $\Gamma \vdash_{\cap CC} e \leadsto e_2 : T$ and $e_1 =_c e_2$. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{CC} e \leadsto e_1 : T$. Base cases:

- Rule C-Var. If $\Gamma \vdash_{CC} x \leadsto x : T$, then by rule C-Var, $x : T \in \Gamma$. Therefore, by rule C-Var, $\Gamma \vdash_{\cap CC} x \leadsto x : T$.
- Rule C-Int. If $\Gamma \vdash_{CC} n \leadsto n : Int$, then by rule C-Int, $\Gamma \vdash_{\cap CC} n \leadsto n : Int$.
- Rule C-True. If $\Gamma \vdash_{CC} true \leadsto true : Bool$, then by rule C-True, $\Gamma \vdash_{\cap CC} true \leadsto true : Bool$.
- Rule C-False. If $\Gamma \vdash_{CC} false \leadsto false : Bool$, then by rule C-False, $\Gamma \vdash_{\cap CC} false \leadsto false : Bool$.

Induction step:

• Rule C-Abs. If $\Gamma \vdash_{CC} \lambda x : T_1 \cdot e \leadsto \lambda x : T_1 \cdot e' : T_1 \to T_2$, then by rule C-Abs, $\Gamma, x : T_1 \vdash_{CC} e \leadsto e' : T_2$. By the induction hypothesis, $\Gamma, x : T_1 \vdash_{\cap CC} e \leadsto e' : T_2$. Therefore, by rule C-Abs, $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cdot e \leadsto \lambda x : T_1 \cdot e' : T_1 \to T_2$.

• Rule C-App. If $\Gamma \vdash_{CC} e_1 e_2 \leadsto (e'_1: PM \Rightarrow^l T_1 \to T_2) \ (e'_2: T'_1 \Rightarrow^l T_1): T_2$, then by rule C-App, $\Gamma \vdash_{CC} e_1 \leadsto e'_1: PM$, $PM \rhd T_1 \to T_2$, $\Gamma \vdash_{CC} e_2 \leadsto e'_2: T'_1$ and $T'_1 \sim T_1$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1: PM$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2: T'_1$. By definition of \trianglelefteq , $PM \trianglelefteq \{PM\}$, $T_1 \to T_2 \trianglelefteq \{T_1 \to T_2\}$, $T'_1 \trianglelefteq \{T'_1\}$ and $T_1 \trianglelefteq \{T_1\}$. By the definition of \hookrightarrow , $\{PM\}$, $\{T_1 \to T_2\}$, $e'_1 \hookrightarrow e'_1: \varnothing PM$ $^0: PM \Rightarrow^l T_1 \to T_2$ and $\{T'_1\}$, $\{T_1\}$, $e'_2 \hookrightarrow e'_2: \varnothing T'_1$ $^0: T'_1 \Rightarrow^l T_1$ 0 . Therefore, $\Gamma \vdash_{\cap CC} e_1 e_2 \leadsto (e'_1: \varnothing PM$ $^0: PM \Rightarrow^l T_1 \to T_2$ 0 $(e'_2: \varnothing T'_1 \circ : T'_1 \Rightarrow^l T_1 \circ : T_2$. By the definition of =, $(e'_1: PM \Rightarrow^l T_1 \to T_2) =$, $(e'_1: \varnothing PM$ $^0: PM \Rightarrow^l T_1 \to T_2$ 0 and $(e'_2: T'_1 \Rightarrow^l T_1) =$, $(e'_2: \varnothing T'_1 \circ : T'_1 \Rightarrow^l T_1 \circ : T'_1$

We will now prove the left direction of the implication, that if $\Gamma \vdash_{\cap CC} e \leadsto e_2 : T$ then $\Gamma \vdash_{CC} e \leadsto e_1 : T$ and $e_1 =_c e_2$. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e \leadsto e_2 : T$. Base cases:

- Rule C-Var. If $\Gamma \vdash_{\cap CC} x \leadsto x : T$, then by rule C-Var, $x : T \in \Gamma$. Therefore, by rule C-Var, $\Gamma \vdash_{CC} x \leadsto x : T$.
- Rule C-Int. If $\Gamma \vdash_{\cap CC} n \leadsto n : Int$, then by rule C-Int, $\Gamma \vdash_{CC} n \leadsto n : Int$.
- Rule C-True. If $\Gamma \vdash_{\cap CC} true \leadsto true : Bool$, then by rule C-True, $\Gamma \vdash_{CC} true \leadsto true : Bool$.
- Rule C-False. If $\Gamma \vdash_{\cap CC} false \leadsto false : Bool$, then by rule C-False, $\Gamma \vdash_{CC} false \leadsto false : Bool$.

Induction step:

- Rule C-Abs. If $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cdot e \leadsto \lambda x : T_1 \cdot e' : T_1 \to T_2$, then by rule C-Abs, $\Gamma, x : T_1 \vdash_{\cap CC} e \leadsto e' : T_2$. By the induction hypothesis, $\Gamma, x : T_1 \vdash_{CC} e \leadsto e' : T_2$. Therefore, by rule C-Abs, $\Gamma \vdash_{CC} \lambda x : T_1 \cdot e \leadsto \lambda x : T_1 \cdot e' : T_1 \to T_2$.
- Rule C-Abs' If $\Gamma \vdash_{\cap CC} \lambda x : T_1 . e \leadsto \lambda x : T_1 . e' : T_1 \to T_2$, then by rule C-Abs', $\Gamma, x : T_1 \vdash_{\cap CC} e \leadsto e' : T_2$. By the induction hypothesis, $\Gamma, x : T_1 \vdash_{CC} e \leadsto e' : T_2$. Therefore, by rule C-Abs, $\Gamma \vdash_{CC} \lambda x : T_1 . e \leadsto \lambda x : T_1 . e' : T_1 \to T_2$.
- Rule C-App. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 \leadsto e_1'' \ e_2'' : T_2$ then by rule C-App, $\Gamma \vdash_{\cap CC} e_1 \leadsto e_1' : PM$, $PM \rhd T_1 \to T_2$, $\Gamma \vdash_{\cap CC} e_2 \leadsto e_2' : T_1'$, $T_1' \sim T_1$, $PM \unlhd S_1$, $T_1 \to T_2 \unlhd S_2$, $T_1' \unlhd S_3$, $T_1 \unlhd S_4$, S_1 , S_2 , $e_1' \hookrightarrow e_1''$ and S_3 , S_4 , $e_2' \hookrightarrow e_2''$. Since $e_1 \ e_2$ is annotated with only simple types, then by the definition of \unlhd , $e_1'' = (e_1' : \varnothing PM^0 : PM \Rightarrow^l T_1 \to T_2^0)$ and $e_2'' = (e_2' : \varnothing T_1'^0 : T_1' \Rightarrow^l T_1^0)$. By the induction hypothesis, $\Gamma \vdash_{CC} e_1 \leadsto e_1' : PM$ and $\Gamma \vdash_{CC} e_2 \leadsto e_2' : T_1'$. Therefore, by rule C-App, $\Gamma \vdash_{CC} e_1 e_2 \leadsto (e_1' : PM \Rightarrow^l T_1 \to T_2) \ (e_2' : T_1' \Rightarrow^l T_1) : T_2$. By the definition of $=_c$, $(e_1' : PM \Rightarrow^l T_1 \to T_2) =_c \ (e_1' : \varnothing PM^0 : PM \Rightarrow^l T_1 \to T_2^0)$ and $(e_2' : T_1' \Rightarrow^l T_1) =_c \ (e_2' : \varnothing T_1'^0 : T_1' \Rightarrow^l T_1^0)$. Therefore, $(e_1' : PM \Rightarrow^l T_1 \to T_2) \ (e_2' : T_1' \Rightarrow^l T_1) =_c \ (e_1' : \varnothing PM^0 : PM \Rightarrow^l T_1 \to T_2^0) \ (e_2' : \varnothing T_1'^0 : T_1' \Rightarrow^l T_1^0)$.
- Rule C-Gen. If $\Gamma \vdash_{\cap CC} e \leadsto e' : T$ then by rule C-Gen, $\Gamma \vdash_{\cap CC} e \leadsto e' : T$. By the induction hypothesis, $\Gamma \vdash_{CC} e \leadsto e' : T$.
- Rule C-Inst. If $\Gamma \vdash_{\cap CC} e \leadsto e' : T$ then by rule C-Inst, $\Gamma \vdash_{\cap CC} e \leadsto e' : T$. By the induction hypothesis, $\Gamma \vdash_{CC} e \leadsto e' : T$.

Theorem 2.4 (Conservative Extension). Depends on Lemma 3.5. If e_2 are annotated with only simple types, T is a simple type, $\Gamma \vdash_{CC} e_1 : T$, $\Gamma \vdash_{\cap CC} e_2 : T$ and $e_1 =_c e_2$ then $e_1 \longrightarrow_{CC} e'_1 \iff e_2 \longrightarrow_{\cap CC} e'_2$, and $e'_1 =_c e'_2$.

Proof. We will first prove the right direction of the implication, that if $e_1 \longrightarrow_{CC} e'_1$ then $e_2 \longrightarrow_{\cap CC}^* e'_2$ and $e_1 =_c e_2$. We proceed by induction on the length of the derivation tree of $e_1 =_c e_2$. Base cases:

- $x =_c x$. As x doesn't reduce by \longrightarrow_{CC} , this case is not considered.
- $n =_c n$. As n doesn't reduce by \longrightarrow_{CC} , this case is not considered.
- $true =_c true$. As true doesn't reduce by \longrightarrow_{CC} , this case is not considered.
- $false =_c false$. As false doesn't reduce by \longrightarrow_{CC} , this case is not considered.
- $blame_T \ l =_c blame_T \ l$. As $blame_T \ l$ doesn't reduce by \longrightarrow_{CC} , this case is not considered.
- $blame_T \ l =_c e : (blame \ T' \ T \ l^{cl})$. As $blame_T \ l$ doesn't reduce by \longrightarrow_{CC} , this case is not considered.

- $\lambda x: T \cdot e =_c \lambda x: T \cdot e'$. As $\lambda x: T \cdot e$ doesn't reduce by \longrightarrow_{CC} , this case is not considered.
- $e_1 \ e_2 =_c e_3 \ e_4$. There are six possibilities:
 - Rule E-PushBlame1. If $blame_{T'\to T}$ l $e_2=e_3$ e_4 and $blame_{T'\to T}$ l $e_2\longrightarrow_{CC}$ $blame_T$ l then by the definition of $=_c$, $blame_{T'\to T}$ l $=_c$ e_3 . There are two possibilities. By the definition of $=_c$ and by applying rule E-RemoveEmpty zero or more times, either
 - * $e_3 \longrightarrow_{\cap CC}^* blame_{T' \to T} l$. By rule E-App1, $e_3 \ e_4 \longrightarrow_{\cap CC}^* blame_{T' \to T} l \ e_4$. By rule E-PushBlame1, $blame_{T' \to T} l \ e_4 \longrightarrow_{\cap CC}^* blame_T l$ and $blame_T l =_c blame_T l$.
 - * $e_3 \longrightarrow_{\cap CC}^* e: (blame\ T''\ (T' \to T)\ l\ ^{cl})$. By repeated application of rule E-Evaluate and by Lemma 3.5, $e: blame\ T''\ (T' \to T)\ l\ ^{cl}) \longrightarrow_{\cap CC}^* v: blame\ T''\ (T' \to T)\ l\ ^{cl})$. By rule E-PropagateBlame, $v: blame\ T''\ (T' \to T)\ l\ ^{cl}) \longrightarrow_{\cap CC}^* blame\ T' \to T$. By rule E-App1, $e_3\ e_4 \longrightarrow_{\cap CC}^* blame\ T' \to T$ $l\ e_4$. By rule E-PushBlame1, $blame\ T' \to T$ $l\ e_4 \longrightarrow_{\cap CC}^* blame\ T$ $l\ e_4 \to_{\cap CC}^* blame\ T$.
 - Rule E-PushBlame2. If e_1 blame_{T'} $l = e_3$ e_4 and e_1 blame_{T'} $l \longrightarrow_{CC}$ blame_T l then by the definition of $=_c$, blame_{T'} $l =_c e_4$. There are two possibilities. By the definition of $=_c$ and by applying rule E-RemoveEmpty zero or more times, either
 - * $e_4 \longrightarrow_{\cap CC}^* blame_{T'} l$. By rule E-App2, e_3 $e_4 \longrightarrow_{\cap CC}^* e_3$ $blame_{T'} l$. By rule E-PushBlame2, e_3 $blame_{T'}$ $l \longrightarrow_{\cap CC}^* blame_T$ l and $blame_T$ $l =_c$ $blame_T$ l.
 - * $e_4 \longrightarrow_{\cap CC}^* e$: blame T'' T' l cl . By repeated application of rule E-Evaluate and by Lemma 3.5, e : blame T'' T' l cl $\longrightarrow_{\cap CC}^* v$: blame T'' T' l cl . By rule E-PropagateBlame, v : blame T'' T' l cl $\longrightarrow_{\cap CC}^* blame_{T'}$ l. By rule E-App2, e_3 e_4 $\longrightarrow_{\cap CC}^* e_3$ $blame_{T'}$ l. By rule E-PushBlame2, e_3 $blame_{T'}$ l $\longrightarrow_{\cap CC}^* blame_{T}$ l and $blame_{T}$ l $=_c$ $blame_{T}$ l.
 - Rule E-App1. If e_1 $e_2 =_c e_3$ e_4 and e_1 $e_2 \longrightarrow_{CC} e'_1$ e_2 then by the definition of $=_c$, $e_1 =_c e_3$ and $e_2 =_c e_4$, and by rule E-App1, $e_1 \longrightarrow_{CC} e'_1$. By the induction hypothesis, $e_3 \longrightarrow_{CC} e'_3$ and $e'_1 =_c e'_3$. Then, by rule E-App1, e_3 $e_4 \longrightarrow_{CC} e'_3$ e_4 . By definition of $=_c$, e'_1 $e_2 =_c e'_3$ e_4 .

- Rule E-App2. If v_1 $e_2 =_c e_3$ e_4 and v_1 $e_2 \longrightarrow_{CC} v_1$ e_2' then by the definition of $=_c$, $v_1 =_c e_3$ and $e_2 =_c e_4$, and by rule E-App2, $e_2 \longrightarrow_{CC} e_2'$. By the induction hypothesis, $e_4 \longrightarrow_{\cap CC} e_4'$ and $e_2' =_c e_4'$. By definition of $=_c$, and by applying rule E-RemoveEmpty zero or more times, $e_3 \longrightarrow_{\cap CC}^* v_1$. If $e_3 \longrightarrow_{\cap CC}^* v_1'$ such that $v_1 =_c v_1'$, by rule E-App1, e_3 $e_4 \longrightarrow_{\cap CC} v_1'$ e_4 , and by rule E-App2, v_1' $e_4 \longrightarrow_{\cap CC} v_1'$ e_4' . By definition of $=_c$, v_1 $e_2' =_c v_1'$ e_4' .
- Rule E-AppAbs. If $(\lambda x:T'\cdot e)\ v=_c\ e_3\ e_4$ and $(\lambda x:T'\cdot e)\ v\longrightarrow_{CC}\ [x\mapsto v]e$ then by the definition of $=_c$, $(\lambda x:T'\cdot e)=_c\ e_3$ and $v=_c\ e_4$. By the definition of $=_c$ and by applying rule E-RemoveEmpty zero or more times, $e_3\longrightarrow_{\cap CC}^*\lambda x:T'\cdot e'$ and $e_4\longrightarrow_{\cap CC}^*v'$, such that, by definition of $=_c$, $(\lambda x:T'\cdot e)=_c\ (\lambda x:T'\cdot e')$ and $v=_c\ v'$ and $e=_c\ e'$. By rule E-AppAbs, $(\lambda x:T'\cdot e')\ v'\longrightarrow_{\cap CC}\ [x\mapsto v']e'$ and by definition of $=_c$, $[x\mapsto v]e=_c\ [x\mapsto v']e'$.
- Rule C-BETA. If $(v_1: T_1 \to T_2 \Rightarrow^l T_3 \to T_4)$ $v_2 =_c e_3 e_4$ and $(v_1: T_1 \to T_2 \Rightarrow^l T_3 \to T_4)$ $v_2 \to_{CC} (v_1 (v_2: T_3 \Rightarrow^l T_1)): T_2 \Rightarrow^l T_4$ then by the definition of $=_c$, $v_1: T_1 \to T_2 \Rightarrow^l T_3 \to T_4 =_c e_3$ and $v_2 =_c e_4$. By definition of $=_c$ and by applying rule E-RemoveEmpty zero or more times, $e_3 \to_{\cap CC}^* v_1': (\varnothing T_1 \to T_2 \stackrel{cl}{:} T_1 \to T_2 \Rightarrow^l T_3 \to T_4)$ such that $v_1 =_c v_1'$, and $e_4 \to_{\cap CC}^* v_2'$ such that $v_2 =_c v_2'$. By rule E-SimulateArrow, $(v_1': (\varnothing T_1 \to T_2 \stackrel{cl}{:} T_1 \to T_2 \Rightarrow^l T_3 \to T_4))$ $v_2' \to_{\cap CC} ((v_1': \varnothing T_1 \to T_2 \stackrel{cl}{:} (v_2': (\varnothing T_3 \stackrel{0}{:} T_3 \Rightarrow^l T_1 \stackrel{0}{:} (v_2': T_3 \Rightarrow^l T_1))): (\varnothing T_2 \stackrel{ol}{:} T_2 \Rightarrow^l T_4 \stackrel{ol}{:} (v_2': (\varnothing T_3 \stackrel{ol}{:} T_3 \Rightarrow^l T_1 \stackrel{0}{:} (v_1': \varnothing T_1 \to T_2 \stackrel{cl}{:} T_1 \to T_2 \stackrel{cl}{:} (v_2': (\varnothing T_3 \stackrel{ol}{:} T_1 \to T_2 \stackrel{cl}{:} (v_1': \varnothing T_1 \to T_2 \stackrel{cl}{:} (v_2': (\varnothing T_3 \stackrel{ol}{:} T_1 \to T_2 \stackrel{cl}{:} (v_1': \varnothing T_1 \to T_2 \stackrel{cl}{:} T_1 \to T_2 \stackrel{cl}{:} (v_2': (\varnothing T_3 \stackrel{ol}{:} T_1 \to T_1 \stackrel{ol}{:} (v_1': \varnothing T_1 \to T_2 \stackrel{cl}{:} T_1 \to T_2 \stackrel{cl}{:} (v_2': (\varnothing T_3 \stackrel{ol}{:} T_1 \to T_1 \stackrel{ol}{:} (v_1': \varnothing T_1 \to T_2 \stackrel{cl}{:} T_1 \to T_2 \stackrel{cl}{:} (v_2': (\varnothing T_3 \stackrel{ol}{:} T_1 \to T_1 \stackrel{ol}{:} (v_1': \varnothing T_1 \to T_2 \stackrel{cl}{:} T_1 \to T_2 \stackrel{cl}{:} (v_2': (\varnothing T_3 \stackrel{ol}{:} T_1 \to T_1 \stackrel{ol}{:} (v_1': \varnothing T_1 \to T_2 \stackrel{cl}{:} T_1 \to T_2 \stackrel{cl}{:} (v_2': (\varnothing T_3 \stackrel{ol}{:} T_1 \to T_1 \stackrel{ol}{:} (v_1': \varnothing T_1 \to T_2 \stackrel{cl}{:} T_1 \to T_2 \stackrel{cl}{:} (v_2': (\varnothing T_3 \stackrel{ol}{:} T_1 \to T_1 \stackrel{ol}{:} T_1 \to T_2 \stackrel{ol}{:} T_2 \to T_$
- $e_1 =_c e_2 : (\varnothing T^{cl})$. If $e_1 =_c e_2 : \varnothing T^{cl}$ and $e_1 \longrightarrow_{CC} e'_1$ then by the definition of $=_c$, $e_1 =_c e_2$. By the induction hypothesis, $e_2 \longrightarrow_{\cap CC} e'_2$ and $e'_1 =_c e'_2$. By rule E-Evaluate, $e_2 : \varnothing T^{cl} \longrightarrow_{\cap CC} e'_2 : \varnothing T^{cl}$. As $e'_1 =_c e'_2$ then by definition of $=_c$, $e'_1 =_c e'_2 : \varnothing T^{cl}$.
- $e: T_1 \Rightarrow^l T_2 =_c e': (c: T_1 \Rightarrow^l T_2 \stackrel{cl}{})$. There are seven possibilities:
 - Rule E-Evaluate. If $e_1: T_1 \Rightarrow^l T_2 =_c e$ and $e_1: T_1 \Rightarrow^l T_2 \longrightarrow_{CC} e'_1: T_1 \Rightarrow^l T_2$, then by the definition of $=_c$ and by applying rule E-Evaluate zero or more times, $e \longrightarrow_{\cap CC}^* e_2: (c: T_1 \Rightarrow^l T_2^{cl})$ such that $e_1 =_c e_2: c$, and by rule E-Evaluate, $e_1 \longrightarrow_{CC} e'_1$. By the induction hypothesis, $e_2: c \longrightarrow_{\cap CC}^* e'_2: c$ and $e'_1 =_c e'_2: c$. If $e_2: c \longrightarrow_{\cap CC}^* e'_2: c$ then by rule E-Evaluate, $e_2 \longrightarrow_{\cap CC}^* e'_2: c$ then by rule E-Evaluate, $e_2: (c: T_1 \Rightarrow^l T_2^{cl}) \longrightarrow_{\cap CC} e'_2: (c: T_1 \Rightarrow^l T_2^{cl})$. As $e'_1 =_c e'_2: c$ then by the definition of $=_c, e'_1: T_1 \Rightarrow^l T_2 =_c e'_2: (c: T_1 \Rightarrow^l T_2^{cl})$.
 - Rule CTX-BLAME. If $blame_{T_1}$ $l: T_1 \Rightarrow^l T_2 =_c e$ and $blame_{T_1}$ $l: T_1 \Rightarrow^l T_2 \longrightarrow_{CC} blame_{T_2}$ l then there are three possibilities. By the definition of $=_c$ and by applying rule E-RemoveEmpty zero or more times, either
 - * $e \longrightarrow_{\cap CC}^* blame_{T_1} l : (\varnothing T_1 \stackrel{cl}{:} T_1 \Rightarrow^l T_2 \stackrel{cl}{:})$. By rule E-PushBlameCast, $blame_{T_1} l : (\varnothing T_1 \stackrel{cl}{:} T_1 \Rightarrow^l T_2 \stackrel{cl}{:}) \longrightarrow_{\cap CC} blame_{T_2} l$ and $blame_{T_2} l =_c blame_{T_2} l$.
 - * $e \longrightarrow_{\cap CC}^* e': (blame\ T'\ T_1\ l\ ^{cl}: T_1 \Rightarrow^l T_2\ ^{cl})$. By repeated application of rule E-Evaluate and by Lemma 3.5, $e': (blame\ T'\ T_1\ l\ ^{cl}: T_1 \Rightarrow^l T_2\ ^{cl}) \longrightarrow_{\cap CC}^* v: (blame\ T'\ T_1\ l\ ^{cl}: T_1 \Rightarrow^l T_2\ ^{cl})$. By rule E-Evaluate Casts and by rule E-PushBlame CI, $v: (blame\ T'\ T_1\ l\ ^{cl}: T_1 \Rightarrow^l T_2\ ^{cl}) \longrightarrow_{\cap CC}^* v: (blame\ T'\ T_2\ l\ ^{cl})$. By rule E-Propagate Blame, $v: (blame\ T'\ T_2\ l\ ^{cl}) \longrightarrow_{\cap CC}^* blame_{T_2}\ l)$ and $blame_{T_2}\ l\ =_c\ blame_{T_2}\ l$.
 - * $e \longrightarrow_{\cap CC}^* e': (blame\ T'\ T_1\ l^{cl}): (\varnothing\ T_1^{cl}: T_1 \Rightarrow^l T_2^{cl}).$ By repeated application of rule E-Evaluate and by Lemma 3.5, $e': (blame\ T'\ T_1\ l^{cl}: T_1 \Rightarrow^l T_2^{cl}) \longrightarrow_{\cap CC}^* v: (blame\ T'\ T_1\ l^{cl}): (\varnothing\ T_1^{cl}: T_1 \Rightarrow^l T_2^{cl}).$ By rule E-MergeCasts, $v: (blame\ T'\ T_1\ l^{cl}): (\varnothing\ T_1^{cl}: T_1 \Rightarrow^l T_2^{cl}) \longrightarrow_{\cap CC} v: (blame\ T'\ T_1\ l^{cl}: T_1 \Rightarrow^l T_2^{cl})$

- T_2 $^{cl}).$ By rule E-Evaluate Casts and by rule E-PushBlameCI, $v:(blame\ T'\ T_1\ l\ ^{cl}:T_1\Rightarrow^l\ T_2\ ^{cl})$ $\longrightarrow_{\cap CC}^*v:(blame\ T'\ T_2\ l\ ^{cl}).$ By rule E-Propagate Blame, $v:(blame\ T'\ T_2\ l\ ^{cl})$ $\longrightarrow_{\cap CC}^*blame_{T_2}\ l)$ and $blame_{T_2}\ l=_c\ blame_{T_2}\ l.$
- Rule ID-BASE and Rule ID-STAR. If $v: T \Rightarrow^l T =_c e$ and $v: T \Rightarrow^l T \longrightarrow_{CC} v$, then by the definition of $=_c$ and by applying rule E-RemoveEmpty zero or more times, $e \longrightarrow_{\cap CC}^* v': (cv: T \Rightarrow^l T^{cl})$, such that $v =_c v': cv$. By rule E-EvaluateCasts and by rule E-IdentityCI, $v': (cv: T \Rightarrow^l T^{cl}) \longrightarrow_{\cap CC} v': cv$ and $v =_c v': cv$.
- Rule SUCCEED. If $v: G \Rightarrow^{l_1} Dyn: Dyn \Rightarrow^{l_2} G =_c e$ and $v: G \Rightarrow^{l_1} Dyn: Dyn \Rightarrow^{l_2} G \longrightarrow_{CC} v$ then there are two possibilities. By definition of $=_c$ and by applying rule E-RemoveEmpty zero or more times, either
 - $* e \longrightarrow_{\cap CC}^* v' : (cv : G \Rightarrow^{l_1} Dyn^{cl} : Dyn \Rightarrow^{l_2} G^{cl})$ or
 - $* e \longrightarrow_{\cap CC}^{\cap CC} v' : (cv : G \Rightarrow^{l_1} Dyn^{cl}) : (\varnothing Dyn^{cl} : Dyn \Rightarrow^{l_2} G^{cl})$

such that $v =_c v' : cv$. As, by rule E-MergeCasts, $v' : (cv : G \Rightarrow^{l_1} Dyn^{cl}) : (\varnothing Dyn^{cl} : Dyn \Rightarrow^{l_2} G^{cl}) \longrightarrow_{\cap CC} v' : (cv : G \Rightarrow^{l_1} Dyn^{cl} : Dyn \Rightarrow^{l_2} G^{cl})$, we only need to address the first case. By rule E-EvaluateCasts and by rule E-SucceedCI, $v' : (cv : G \Rightarrow^{l_1} Dyn^{cl} : Dyn \Rightarrow^{l_2} G^{cl}) \longrightarrow_{\cap CC} v' : cv$ and $v =_c v' : cv$.

- Rule FAIL. If $v: G_1 \Rightarrow^{l_1} Dyn: Dyn \Rightarrow^{l_2} G_2 =_c e$ and $v: G_1 \Rightarrow^{l_1} Dyn: Dyn \Rightarrow^{l_2} G_2 \longrightarrow_{CC} blame_{G_2} l_2$ then there are two possibilities. By definition of $=_c$ and by applying rule E-RemoveEmpty zero or more times, either
 - * $e \longrightarrow_{CCC}^{*} v' : (cv : G_1 \Rightarrow^{l_1} Dyn^{cl} : Dyn \Rightarrow^{l_2} G_2^{cl})$ or
 - * $e \longrightarrow_{\cap CC}^{*} v' : (cv : G_1 \Rightarrow^{l_1} Dyn^{cl}) : (\varnothing Dyn^{cl} : Dyn \Rightarrow^{l_2} G_2^{cl})$

such that $v=_c v':cv$. As, by rule E-MergeCasts, $v':(cv:G_1\Rightarrow^{l_1}Dyn^{cl}):(\varnothing Dyn^{cl}:Dyn\Rightarrow^{l_2}G_2^{cl})\longrightarrow_{\cap CC}v':(cv:G_1\Rightarrow^{l_1}Dyn^{cl}:Dyn\Rightarrow^{l_2}G_2^{cl})$, we only need to address the first case. By rule E-EvaluateCasts and by rule E-FailCI, $v':(cv:G_1\Rightarrow^{l_1}Dyn^{cl}:Dyn\Rightarrow^{l_2}G_2^{cl})\longrightarrow_{\cap CC}v':blame\ T_I\ G_2\ l_2^{cl}$. By rule E-PropagateBlame, $v':blame\ T_I\ G_2\ l_2^{cl}\longrightarrow_{\cap CC}blame_{G_2}\ l_2$ and $blame_{G_2}\ l_2=_cblame_{G_2}\ l_2$.

- Rule GROUND. If $v: T \Rightarrow^l Dyn =_c e$ and $v: T \Rightarrow^l Dyn \longrightarrow_{CC} v: T \Rightarrow^l G: G \Rightarrow^l Dyn$ then by definition of $=_c$ and by applying rule E-RemoveEmpty zero or more times, $e \longrightarrow_{\cap CC}^* v': (cv: T \Rightarrow^l Dyn^{cl})$ such that $v =_c v': cv$. By rule E-EvaluateCasts and by rule E-GroundCI, $v': (cv: T \Rightarrow^l Dyn^{cl}) \longrightarrow_{\cap CC} v': (cv: T \Rightarrow^l G^{cl}: G \Rightarrow^l Dyn^{cl})$. As $v =_c v': cv$, then by definition of $=_c$, $v: T \Rightarrow^l G: G \Rightarrow^l Dyn =_c v': (cv: T \Rightarrow^l G^{cl}: G \Rightarrow^l Dyn^{cl})$.
- Rule EXPAND. If $v: Dyn \Rightarrow^l T =_c e$ and $v: Dyn \Rightarrow^l T \longrightarrow_{CC} v: Dyn \Rightarrow^l G: G \Rightarrow^l T$ then by definition of $=_c$ and by applying rule E-RemoveEmpty zero or more times, $e \longrightarrow_{\cap CC}^* v': (cv: Dyn \Rightarrow^l T^{cl})$ such that $v =_c v': cv$. By rule E-EvaluateCasts and by rule E-ExpandCI, $v': (cv: Dyn \Rightarrow^l T^{cl}) \longrightarrow_{\cap CC} v': (cv: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl})$. As $v =_c v': cv$, then by definition of $=_c$, $v: Dyn \Rightarrow^l G: G \Rightarrow^l T =_c v': (cv: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl})$.

We will now prove the left direction of the implication, that if $e_2 \longrightarrow_{\cap CC} e'_2$ then $e_1 \longrightarrow_{CC} e'_1$ and $e_1 =_c e_2$. We proceed by induction on the length of the derivation tree of $e_1 =_c e_2$. Base cases:

- $x =_c x$. As x doesn't reduce by $\longrightarrow_{\cap CC}$, this case is not considered.
- $n =_c n$. As n doesn't reduce by $\longrightarrow_{\cap CC}$, this case is not considered.
- $true =_c true$. As true doesn't reduce by $\longrightarrow_{\cap CC}$, this case is not considered.

- $false =_c false$. As false doesn't reduce by $\longrightarrow_{\cap CC}$, this case is not considered.
- $blame_T \ l =_c blame_T \ l$. As $blame_T \ l$ doesn't reduce by $\longrightarrow_{\cap CC}$, this case is not considered.
- $blame_T l =_c e : (blame T' T l^{cl})$. There are two possibilities:
 - Rule E-Evaluate. If $e:(blame\ T'\ T\ l\ ^{cl})\longrightarrow_{\cap CC} e':(blame\ T'\ T\ l\ ^{cl})$ and as $blame_T\ l$ is already a value, then $blame_T\ l='_c\ e:(blame\ T'\ T\ l\ ^{cl})$.
 - Rule E-PropagateBlame. If $v:(blame\ T'\ T\ l^{cl})\longrightarrow_{\cap CC}blame_T\ l$ and as $blame_T\ l$ is already a value, then $blame_T\ l=_cblame_T\ l$.

- $\lambda x: T \cdot e =_c \lambda x: T \cdot e'$. As $\lambda x: T \cdot e'$ doesn't reduce by \longrightarrow_{CC} , this case is not considered.
- e_1 $e_2 =_c e_3$ e_4 . There are 6 possibilities:
 - Rule E-PushBlame1. If $blame_{T'\to T}$ l $e_2 = blame_{T'\to T}$ l e_4 and $blame_{T'\to T}$ l $e_4 \longrightarrow_{\cap CC}$ $blame_T$ l then by rule E-PushBlame1, $blame_{T'\to T}$ l $e_2 \longrightarrow_{CC} blame_T$ l and $blame_T$ l = $blame_T$ l.
 - Rule E-PushBlame2. If e_1 blame $_{T'}$ $l=e_3$ blame $_{T'}$ l and e_3 blame $_{T'}$ $l\longrightarrow_{\cap CC}$ blame $_T$ l then by rule E-PushBlame2, e_1 blame $_T$ $l\longrightarrow_{CC}$ blame $_T$ l and blame $_T$ $l=_c$ blame $_T$ l.
 - Rule E-App1. If e_1 $e_2 =_c e_3$ e_4 and e_3 $e_4 \longrightarrow_{\cap CC} e_3'$ e_4 then by the definition of $=_c$, $e_1 =_c e_3$ and $e_2 =_c e_4$, and by rule E-App1, $e_3 \longrightarrow_{\cap CC} e_3'$. By the induction hypothesis, $e_1 \longrightarrow_{CC} e_1'$ and $e_1' =_c e_3'$. Then, by rule E-App1, e_1 $e_2 \longrightarrow_{CC} e_1'$ e_2 . By definition of $=_c$, e_1' $e_2 =_c e_3'$ e_4 .
 - Rule E-App2. If $v_1 \ e_2 =_c v_3 \ e_4$ and $v_3 \ e_4 \longrightarrow_{\cap CC} v_3 \ e_4'$ then by the definition of $=_c$, $v_1 =_c v_3$ and $e_2 =_c e_4$, and by rule E-App2, $e_4 \longrightarrow_{\cap CC} e_4'$. By the induction hypothesis, $e_2 \longrightarrow_{CC} e_2'$ and $e_2' =_c e_4'$. Then, by rule E-App2, $v_1 \ e_2 \longrightarrow_{CC} v_1 \ e_2'$. By definition of $=_c, v_1 \ e_2' =_c v_3 \ e_4'$.
 - Rule E-AppAbs. If $(\lambda x:T':e)$ $v_2 =_c (\lambda x:T':e')$ v_4 and $(\lambda x:T':e')$ $v_4 \longrightarrow_{\cap CC} [x \mapsto v_4]e'$ then by the definition of $=_c$, $(\lambda x:T':e) =_c (\lambda x:T':e')$ and $v_2 =_c v_4$ and $e =_c e'$. By rule E-AppAbs, $(\lambda x:T':e)$ $v_2 \longrightarrow_{CC} [x \mapsto v_2]e$. As $v_2 =_c v_4$ and $e =_c e'$, then by definition of $=_c$, $[x \mapsto v_2]e =_c [x \mapsto v_4]e'$.
 - Rule E-SimulateArrow. There are two possibilities:
 - * If $v_1 \ v_2 =_c (v_3 : \varnothing \ T' \to T^{cl}) \ v_4$ and $(v_3 : \varnothing \ T' \to T^{cl}) \ v_4 \longrightarrow_{\cap CC} ((v_3 : \varnothing \ T' \to T^{cl}) \ (v_4 : \varnothing \ T'^{cl})) : \varnothing \ T^{cl}$ then by definition of $=_c, \ v_1 =_c (v_3 : \varnothing \ T' \to T^{cl})$ and $v_2 =_c v_4$ and $v_1 =_c v_3$. By the definition of $=_c, \ v_2 =_c v_4 : \varnothing \ T'^{cl}$. By the definition of $=_c, \ v_1 \ v_2 =_c ((v_3 : \varnothing \ T' \to T^{cl}) \ (v_4 : \varnothing \ T'^{cl}))$. By the definition of $=_c, \ v_1 \ v_2 =_c ((v_3 : \varnothing \ T' \to T^{cl}) \ (v_4 : \varnothing \ T'^{cl})) : \varnothing \ T^{cl}$.
 - * If $(v_1:T_1 \to T_2 \Rightarrow^l T_3 \to T_4)$ $v_2 =_c (v_3:(cv:T_1 \to T_2 \Rightarrow^l T_3 \to T_4 \ ^{cl}))$ v_4 and $(v_3:(cv:T_1 \to T_2 \Rightarrow^l T_3 \to T_4 \ ^{cl}))$ $v_4 \to_{\cap CC} ((v_3:cv) (v_4:(\varnothing T_3 \ ^{cl}:T_3 \Rightarrow^l T_1 \ ^{cl}))):(\varnothing T \ ^{cl}:T_2 \Rightarrow^l T_4 \ ^{cl})$ then by definition of $=_c, v_1 =_c v_3:cv$ and $v_2 =_c v_4$. By rule C-BETA, $(v_1:T_1 \to T_2 \Rightarrow^l T_3 \to T_4)$ $v_2 \to_{CC} (v_1 (v_2:T_3 \Rightarrow^l T_1)):T_2 \Rightarrow^l T_4$. As $v_2 =_c v_4$, then by definition of $=_c, v_2:T_3 \Rightarrow^l T_1 =_c v_4:(\varnothing T_3 \ ^{cl}:T_3 \Rightarrow^l T_1 \ ^{cl})$. As $v_1 =_c v_3:cv$ and $v_2:T_3 \Rightarrow^l T_1 =_c v_4:(\varnothing T_3 \ ^{cl}:T_3 \Rightarrow^l T_1 \ ^{cl})$, then by the definition of $=_c, (v_1 (v_2:T_3 \Rightarrow^l T_1)) =_c ((v_3:cv) (v_4:(\varnothing T_3 \ ^{cl}:T_3 \Rightarrow^l T_1 \ ^{cl})))$. As $(v_1 (v_2:T_3 \Rightarrow^l T_1)) =_c ((v_3:cv) (v_4:(\varnothing T_3 \ ^{cl}:T_3 \Rightarrow^l T_1 \ ^{cl})))$, then by the definition of $=_c, (v_1 (v_2:T_3 \Rightarrow^l T_1)):T_2 \Rightarrow^l T_4 =_c ((v_3:cv) (v_4:(\varnothing T_3 \ ^{cl}:T_3 \Rightarrow^l T_1 \ ^{cl}))):(\varnothing T \ ^{cl}:T_2 \Rightarrow^l T_4 \ ^{cl})$.

- $e_1 =_c e_2 : (\varnothing T^{cl})$. There are two possibilities:
 - Rule E-Evaluate. If $e_1 =_c e_2 : (\varnothing T^{cl})$ and $e_2 : (\varnothing T^{cl}) \longrightarrow_{\cap CC} e'_2 : (\varnothing T^{cl})$ then by the definition of $=_c$, $e_1 =_c e_2$, and by rule E-Evaluate, $e_2 \longrightarrow_{\cap CC} e'_2$. By the induction hypothesis, $e_1 \longrightarrow_{CC} e'_1$ and $e'_1 =_c e'_2$. As $e'_1 =_c e'_2$ then by definition of $=_c$, $e'_1 =_c e'_2 : (\varnothing T^{cl})$.
 - Rule E-Remove Empty. If $v_1 =_c v_2 : (\varnothing T^{cl})$ and $v_2 : (\varnothing T^{cl}) \longrightarrow_{\cap CC} v_2$ then by the definition of $=_c, v_1 =_c v_2$.
- $e: T_1 \Rightarrow^l T_2 =_c e': (c: T_1 \Rightarrow^l T_2 \stackrel{cl}{})$. There are four possibilities:
 - Rule E-PushBlameCast. If $blame_{T_1}$ $l: T_1 \Rightarrow^l T_2 =_c blame_{T_1}$ $l: (c: T_1 \Rightarrow^l T_2 \stackrel{cl}{}^{cl})$ and $blame_{T_1}$ $l: (c: T_1 \Rightarrow^l T_2 \stackrel{cl}{}^{cl}) \longrightarrow_{\cap CC} blame_{T_2}$ l then by rule CTX-BLAME, $blame_{T_1}$ $l: T_1 \Rightarrow^l T_2 \longrightarrow_{CC} blame_{T_2}$ l and $blame_{T_2}$ $l=_c blame_{T_2}$ l.
 - Rule E-Evaluate. If $e_1: T_1 \Rightarrow^l T_2 =_c e_2: (c: T_1 \Rightarrow^l T_2 \stackrel{cl}{})$ and $e_2: (c: T_1 \Rightarrow^l T_2 \stackrel{cl}{})$ and $e_2: (c: T_1 \Rightarrow^l T_2 \stackrel{cl}{})$ then by definition of e_1 , e_2 , e_3 , e_4 , and by rule E-Evaluate, $e_2 \xrightarrow{}_{\cap CC} e_2$. By rule E-Evaluate, $e_2: c \xrightarrow{}_{\cap CC} e_2$: e_3 : e_4 the induction hypothesis, $e_1 \xrightarrow{}_{CC} e_1$ and $e_1 =_c e_2 : c$. By rule E-Evaluate, $e_1: T_1 \Rightarrow^l T_2 \xrightarrow{}_{CC} e_1 : T_1 \Rightarrow^l T_2 \xrightarrow{}_{CC} e_1 : T_1 \Rightarrow^l T_2 \xrightarrow{}_{CC} e_2 : c$, then by the definition of $e_1 =_c e_2 : c =_c e_2 : c : c : T_1 \Rightarrow^l T_2 =_c e_2 :$
 - Rule E-MergeCasts. If $v: T_1 \Rightarrow^l T_2 =_c (v': cv) : (\varnothing T_1 \stackrel{cl}{=} l T_1 \Rightarrow^l T_2 \stackrel{cl}{=} l)$ and $(v': cv) : (\varnothing T_1 \stackrel{cl}{=} l T_1 \Rightarrow^l T_2 \stackrel{cl}{=} l) \longrightarrow_{\cap CC} v' : (cv: T_1 \Rightarrow^l T_2 \stackrel{cl}{=} l)$ then by the definition of $=_c$, $v =_c v' : cv$. As $v =_c v' : cv$, then by the definition of $=_c$, $v: T_1 \Rightarrow^l T_2 =_c v' : (cv: T_1 \Rightarrow^l T_2 \stackrel{cl}{=} l)$.
 - Rule E-EvaluateCasts. There are seven possibilities:
 - * Rule E-PushBlameCI. If $blame_{T_1}\ l_1:T_1\Rightarrow^{l_2}T_2=_cv:(blame\ T'\ T_1\ l_1\ ^{cl}:T_1\Rightarrow^{l_2}T_2\ ^{cl})$ and $v:(blame\ T'\ T_1\ l_1\ ^{cl}:T_1\Rightarrow^{l_2}T_2\ ^{cl})\longrightarrow_{\cap CC}v:blame\ T'\ T_2\ l_1\ ^{cl}$ then by rule CTX-BLAME $blame_{T_1}\ l_1:T_1\Rightarrow^{l_2}T_2\longrightarrow_{CC}blame_{T_2}\ l_1$ and $blame_{T_2}\ l_1=_cv:blame\ T'\ T_2\ l_1\ ^{cl}$.
 - * Rule E-EvaluateCI. If $v_1: T_1 \Rightarrow^l T_2 =_c v_2: (c: T_1 \Rightarrow^l T_2)$ and $v_2: (c: T_1 \Rightarrow^l T_2) \xrightarrow{}_{\cap CC} v_2: (c': T_1 \Rightarrow^l T_2)$ then $v_1 =_c v_2: c$ and by rule E-EvaluateCasts, $v_2: c \xrightarrow{}_{\cap CC} v_2: c'$. By the induction hypothesis, $v_1 \xrightarrow{}_{CC} v_1'$ and $v_1' =_c v_2: c'$. By rule E-Evaluate, $v_1: T_1 \Rightarrow^l T_2 \xrightarrow{}_{CC} v_1': T_1 \Rightarrow^l T_2$. As $v_1' =_c v_2: c'$, then by definition of $v_1': T_1 \Rightarrow^l T_2 =_c v_2: (c': T_1 \Rightarrow^l T_2)$.
 - * E-IdentityCI. If $v_1: T \Rightarrow^l T =_c v_2: (c: T \Rightarrow^l T)$ and $v_2: (c: T \Rightarrow^l T) \longrightarrow_{\cap CC} v_2: c$ and $v_1 =_c v_2: c$. By rule ID-BASE or ID-STAR, $v_1: T \to^l T \longrightarrow_{CC} v_1$ and $v_1 =_c v_2: c$.
 - * E-SucceedCI. If $v_1: G \Rightarrow^{l_1} Dyn: Dyn \Rightarrow^{l_2} G =_c v_2: (c: G \Rightarrow^{l_1} Dyn \stackrel{cl_1}{:} Dyn \Rightarrow^{l_2} G \stackrel{cl_2}{:})$ and $v_2: (c: G \Rightarrow^{l_1} Dyn \stackrel{cl_1}{:} Dyn \Rightarrow^{l_2} G \stackrel{cl_2}{:}) \longrightarrow_{\cap CC} v_2: c$ and $v_1 =_c v_2: c$. By rule SUCCEED, $v_1: G \Rightarrow^{l_1} Dyn: Dyn \Rightarrow^{l_2} G \longrightarrow_{CC} v_1$ and $v_1 =_c v_2: c$.
 - * E-FailCI. If $v_1: G_1 \Rightarrow^{l_1} Dyn: Dyn \Rightarrow^{l_2} G_2 =_c v_2: (c: G_1 \Rightarrow^{l_1} Dyn \stackrel{cl_1}{:} Dyn \Rightarrow^{l_2} G_2 \stackrel{cl_2}{:})$ and $v_2: (c: G_1 \Rightarrow^{l_1} Dyn \stackrel{cl_1}{:} Dyn \Rightarrow^{l_2} G_2 \stackrel{cl_2}{:}) \longrightarrow_{\cap CC} v_2: blame T' G_2 l_2 \stackrel{cl_1}{:}$ and $v_1 =_c v_2: c$. By rule FAIL, $v_1: G_1 \Rightarrow^{l_1} Dyn: Dyn \Rightarrow^{l_2} G_2 \longrightarrow_{CC} blame_{G_2} l_2$ and by the definition of $=_c$, $blame_{G_2} l_2 =_c v_2: blame T' G_2 l_2 \stackrel{cl_1}{:}$.
 - * E-GroundCI. If $v_1: T \Rightarrow^l Dyn =_c v_2: (c: T \Rightarrow^l Dyn^{cl})$ and $v_2: (c: T \Rightarrow^l Dyn^{cl}) \longrightarrow_{\cap CC} v_2: (c: T \Rightarrow^l G^{cl}: G \Rightarrow^l Dyn^{cl})$ then by the definition of $=_c$, $v_1 =_c v_2: c$. By rule GROUND, $v_1: T \Rightarrow^l Dyn \longrightarrow_{CC} v_1: T \Rightarrow^l G: G \Rightarrow^l Dyn$. As

- $v_1 =_c v_2 : c$, then by the definition of $=_c$, $v_1 : T \Rightarrow^l G =_c v_2 : (c : T \Rightarrow^l G \stackrel{cl}{})$. As $v_1 : T \Rightarrow^l G =_c v_2 : (c : T \Rightarrow^l G \stackrel{cl}{})$, then by the definition of $=_c$, $v_1 : T \Rightarrow^l G : G \Rightarrow^l Dyn =_c v_2 : (c : T \Rightarrow^l G \stackrel{cl}{}) : G \Rightarrow^l Dyn \stackrel{cl}{})$.
- * E-ExpandCI. If $v_1: Dyn \Rightarrow^l T =_c v_2: (c: Dyn \Rightarrow^l T^{cl})$ and $v_2: (c: Dyn \Rightarrow^l T^{cl}) \longrightarrow_{\cap CC} v_2: (c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl})$ then by the definition of $=_c$, $v_1 =_c v_2: c$. By rule EXPAND, $v_1: Dyn \Rightarrow^l T \longrightarrow_{CC} v_1: Dyn \Rightarrow^l G: G \Rightarrow^l T$. As $v_1 =_c v_2: c$, then by the definition of $=_c$, $v_1: Dyn \Rightarrow^l G =_c v_2: (c: Dyn \Rightarrow^l G^{cl})$. As $v_1: Dyn \Rightarrow^l G =_c v_2: (c: Dyn \Rightarrow^l G^{cl})$, then by the definition of $=_c$, $v_1: Dyn \Rightarrow^l G: G \Rightarrow^l T =_c v_2: (c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl})$.

3 Correctness Criteria

Lemma 3.1 (Consistency reduces to equality when comparing static types). If T_1 and T_2 are static types then $T_1 = T_2 \iff T_1 \sim T_2$.

Proof. We proceed by structural induction on T_1 .

Base cases:

- $T_1 = Int$.
 - If Int = Int then, by the definition of \sim , $Int \sim Int$.
 - If $Int \sim Int$, then Int = Int.
- $T_1 = Bool$.
 - If Bool = Bool then, by the definition of \sim , $Bool \sim Bool$.
 - If $Bool \sim Bool$, then Bool = Bool.

- $T_1 = T_{11} \to T_{12}$.
 - If $T_{11} \to T_{12} = T_{21} \to T_{22}$, for some T_{21} and T_{22} , then $T_{11} = T_{21}$ and $T_{12} = T_{22}$. By the induction hypothesis, $T_{11} \sim T_{21}$ and $T_{12} \sim T_{22}$. Therefore, by the definition of \sim , $T_{11} \to T_{12} \sim T_{21} \to T_{22}$.
 - If $T_{11} \to T_{12} \sim T_2$, then by the definition of \sim , $T_2 = T_{21} \to T_{22}$ and $T_{11} \sim T_{21}$ and $T_{12} \sim T_{22}$. By the induction hypothesis, $T_{11} = T_{21}$ and $T_{12} = T_{22}$. Therefore, $T_{11} \to T_{12} = T_{21} \to T_{22}$.
- $T_1 = T_{11} \cap \ldots \cap T_{1n}$.
 - If $T_{11} \cap \ldots \cap T_{1n} = T_2$, then $\exists T_{21} \ldots T_{2n}$. $T_2 = T_{21} \cap \ldots \cap T_{2n}$ and $T_{11} = T_{21}$ and ... and $T_{1n} = T_{2n}$. By the induction hypothesis, $T_{11} \sim T_{21}$ and ... and $T_{1n} \sim T_{2n}$. Therefore, by the definition of \sim , $T_{11} \cap \ldots \cap T_{1n} \sim T_{21} \cap \ldots \cap T_{2n}$.
 - If $T_{11} \cap \ldots \cap T_{1n} \sim T_2$, then either:
 - * $\exists T_{21} ... T_{2n} ... T_2 = T_{21} \cap ... \cap T_{2n}$ and $T_{11} \sim T_{21}$ and ... and $T_{1n} \sim T_{2n}$. By the induction hypothesis, $T_{11} = T_{21}$ and ... and $T_{1n} = T_{2n}$. Therefore, $T_{11} \cap ... \cap T_{1n} = T_{21} \cap ... \cap T_{2n}$.

* $T_{11} \sim T_2$ and ... and $T_{1n} \sim T_2$. By the induction hypothesis, $T_{11} = T_2$ and ... and $T_{1n} = T_2$. As $T_2 \cap \ldots \cap T_2 = T_2$, then $T_{11} \cap \ldots \cap T_{1n} = T_2$.

Theorem 3.1 (Conservative Extension). Depends on Lemma 3.1. If e is fully static and T is a static type, then $\Gamma \vdash_{\cap S} e : T \iff \Gamma \vdash_{\cap G} e : T$.

Proof. We proceed by induction on the length of the derivation tree of $\vdash_{\cap S}$ and $\vdash_{\cap G}$ for the right and left direction of the implication, respectively.

Base cases:

- Rule T-Var.
 - If $\Gamma \vdash_{\cap S} x : T$, then $x : T \in \Gamma$. Therefore, $\Gamma \vdash_{\cap G} x : T$.
 - If $\Gamma \vdash_{\cap G} x : T$, then $x : T \in \Gamma$. Therefore, $\Gamma \vdash_{\cap S} e : T$.
- Rule T-Int.
 - If $\Gamma \vdash_{\cap S} n : Int$, then $\Gamma \vdash_{\cap G} n : Int$.
 - If $\Gamma \vdash_{\cap G} n : Int$, then $\Gamma \vdash_{\cap S} n : Int$.
- Rule T-True.
 - If $\Gamma \vdash_{\cap S} true : Bool$, then $\Gamma \vdash_{\cap G} true : Bool$.
 - If $\Gamma \vdash_{\cap G} true : Bool$, then $\Gamma \vdash_{\cap S} true : Bool$.
- Rule T-False.
 - If $\Gamma \vdash_{\cap S} false : Bool$, then $\Gamma \vdash_{\cap G} false : Bool$.
 - If $\Gamma \vdash_{\cap G} false : Bool$, then $\Gamma \vdash_{\cap S} false : Bool$.

- Rule T-Abs.
 - If $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \rightarrow T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$. Therefore, $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \rightarrow T$.
 - If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \rightarrow T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e : T$. Therefore, $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \rightarrow T$.
- Rule T-Abs'.
 - If $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap S} e : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap G} e : T$. Therefore, $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$.
 - If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n$. $e : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap S} e : T$. Therefore, $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n$. $e : T_i \to T$.
- Rule T-App.

- If $\Gamma \vdash_{\cap S} e_1 e_2 : T$ then $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the definition of \triangleright , $T_1 \cap \ldots \cap T_n \to T \triangleright T_1 \cap \ldots \cap T_n \to T$. By the definition of \sim , $T_1 \cap \ldots \cap T_n \sim T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap G} e_1 e_2 : T$.
- If $\Gamma \vdash_{\cap G} e_1 e_2 : T$ then $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_1 \cap \ldots \cap T_n \to T$, $\Gamma \vdash_{\cap G} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$. By the definition of \rhd , $PM = T_1 \cap \ldots \cap T_n \to T$, therefore $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$. By Lemma 3.1, $T'_1 \cap \ldots \cap T'_n = T_1 \cap \ldots \cap T_n$, and therefore $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap S} e_1 e_2 : T$.

• Rule T-Gen.

- If $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. Therefore, $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$.
- If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. Therefore $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$.

• Rule T-Inst.

- If $\Gamma \vdash_{\cap S} e : T_i$ then $\Gamma \vdash_{\cap S} e : T_1 \cap ... \cap T_n$, such that $T_i \in \{T_1, ..., T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e : T_1 \cap ... \cap T_n$. As $T_i \in \{T_1, ..., T_n\}$, then $\Gamma \vdash_{\cap G} e : T_i$.
- If $\Gamma \vdash_{\cap G} e : T_i$ then $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, ..., T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$. As $T_i \in \{T_1, ..., T_n\}$, then $\Gamma \vdash_{\cap S} e : T_i$.

Theorem 3.2 (Monotonicity w.r.t. precision). If $\Gamma \vdash_{\cap G} e : T$ and $e' \sqsubseteq e$ then $\Gamma \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap G} e : T$.

Base cases:

- Rule T-Var. If $\Gamma \vdash_{\cap G} x : T$ and $x \sqsubseteq x$, then $\Gamma \vdash_{\cap G} x : T$ and $T \sqsubseteq T$.
- Rule T-Int. If $\Gamma \vdash_{\cap G} n : Int$ and $n \sqsubseteq n$, then $\Gamma \vdash_{\cap G} n : Int$ and $Int \sqsubseteq Int$.
- Rule T-True. If $\Gamma \vdash_{\cap G} true : Bool$ and $true \sqsubseteq true$, then $\Gamma \vdash_{\cap G} true : Bool$ and $Bool \sqsubseteq Bool$.
- Rule T-False. If $\Gamma \vdash_{\cap G} false : Bool$ and $false \sqsubseteq false$, then $\Gamma \vdash_{\cap G} false : Bool$ and $Bool \sqsubseteq Bool$.

Induction step:

• Rule T-Abs. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ and $\lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' \sqsubseteq \lambda x : T_1 \cap \ldots \cap T_n \cdot e$, then by rule T-Abs, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$, and by the definition of \sqsubseteq , $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$. By the induction hypothesis, $\Gamma, x : T'_1 \cap \ldots \cap T'_n \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$. By rule T-Abs, $\Gamma \vdash_{\cap G} \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' : T'_1 \cap \ldots \cap T'_n \to T'$, and by the definition of \sqsubseteq , $T'_1 \cap \ldots \cap T'_n \to T' \sqsubseteq T_1 \cap \ldots \cap T_n \to T$.

- Rule T-Abs'. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T \text{ and } \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' \sqsubseteq \lambda x : T_1 \cap \ldots \cap T_n \cdot e$, then by rule T-Abs', $\Gamma, x : T_i \vdash_{\cap G} e : T$, and by the definition of \sqsubseteq , $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$. By the induction hypothesis, $\Gamma, x : T'_i \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$. By rule T-Abs', $\Gamma \vdash_{\cap G} \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' : T'_i \to T'$, and by the definition of \sqsubseteq , $T'_i \to T' \sqsubseteq T_i \to T$.
- Rule T-App. If $\Gamma \vdash_{\cap G} e_1 e_2 : T$ and $e'_1 e'_2 \sqsubseteq e_1 e_2$ then by rule T-App, $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_{11} \cap \ldots \cap T_{1n} \to T$, $\Gamma \vdash_{\cap G} e_2 : T_{21} \cap \ldots \cap T_{2n}$, and $T_{21} \cap \ldots \cap T_{2n} \sim T_{11} \cap \ldots \cap T_{1n}$, and by the definition of \sqsubseteq , $e'_1 \sqsubseteq e_1$ and $e'_2 \sqsubseteq e_2$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e'_1 : PM'$ and $PM' \sqsubseteq PM$ and $PM' \rhd T'_{11} \cap \ldots \cap T'_{1n} \to T'$ and $\Gamma \vdash_{\cap G} e'_2 : T'_{21} \cap \ldots \cap T'_{2n}$ and $T'_{21} \cap \ldots \cap T'_{2n} \sqsubseteq T_{21} \cap \ldots \cap T_{2n}$ and $T'_{21} \cap \ldots \cap T'_{2n} \sim T'_{11} \cap \ldots \cap T'_{1n}$. By the definition of \sqsubseteq and \rhd , $T'_{11} \cap \ldots \cap T'_{1n} \to T' \sqsubseteq T_{11} \cap \ldots \cap T_{1n} \to T$, and therefore, $T' \sqsubseteq T$. As $\Gamma \vdash_{\cap G} e'_1 e'_2 : T'$, it is proved.
- Rule T-Gen. If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$, then by rule T-Gen, $\Gamma \vdash_{\cap G} e : T_1$ and \ldots and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e' : T'_1$ and $T'_1 \sqsubseteq T_1$ and \ldots and $\Gamma \vdash_{\cap G} e' : T'_n$ and $T'_n \sqsubseteq T_n$. Then by rule T-Gen, $\Gamma \vdash_{\cap G} e' : T'_1 \cap \ldots \cap T'_n$ and by the definition of \sqsubseteq , $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$.
- Rule T-Inst. If $\Gamma \vdash_{\cap G} e : T_i$ and $e' \sqsubseteq e$, then by rule T-Inst, $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e' : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$. Therefore, by rule T-Inst, $\Gamma \vdash_{\cap G} e' : T'_i$ and by the definition of \sqsubseteq , $T'_i \sqsubseteq T_i$.

Theorem 3.3 (Type preservation of cast insertion). If $\Gamma \vdash_{\cap G} e : T$ then $\Gamma \vdash_{\cap CC} e \leadsto e' : T$ and $\Gamma \vdash_{\cap CC} e' : T$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap G} e : T$.

Base cases:

- Rule T-Var. If $\Gamma \vdash_{\cap G} x : T$, then by rule T-Var, $x : T \in \Gamma$. By rule C-Var, $\Gamma \vdash_{\cap CC} x \leadsto x : T$ and by rule T-Var, $\Gamma \vdash_{\cap CC} x : T$.
- Rule T-Int. As $\Gamma \vdash_{\cap G} n : Int$, then by rule C-Int, $\Gamma \vdash_{\cap CC} n \leadsto n : Int$ and by rule T-Int, $\Gamma \vdash_{\cap CC} n : Int$.
- Rule T-True. As $\Gamma \vdash_{\cap G} true : Bool$, then by rule C-True, $\Gamma \vdash_{\cap CC} true \leadsto true : Bool$ and by rule T-True, $\Gamma \vdash_{\cap CC} true : Bool$.
- Rule T-False. As $\Gamma \vdash_{\cap G} false : Bool$, then by rule C-False, $\Gamma \vdash_{\cap CC} false \leadsto false : Bool$ and by rule T-False, $\Gamma \vdash_{\cap CC} false : Bool$, it is proved.

Induction step:

• Rule T-Abs. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ then by rule T-Abs, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e \leadsto e' : T$ and $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e' : T$. By rule C-Abs, $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e \leadsto \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$ and by rule T-Abs, $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$.

- Rule T-Abs'. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T$ then by rule T-Abs', $\Gamma, x : T_i \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap CC} e \leadsto e' : T$ and $\Gamma, x : T_i \vdash_{\cap CC} e' : T$. By rule C-Abs', $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e \leadsto \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_i \to T$ and by rule T-Abs', $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_i \to T$.
- Rule T-App. If $\Gamma \vdash_{\cap G} e_1 \ e_2 : T$ then by rule T-App, $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_1 \cap \ldots \cap T_n \to T$, $\Gamma \vdash_{\cap G} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : PM$ and $\Gamma \vdash_{\cap CC} e'_1 : PM$, and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T'_1 \cap \ldots \cap T'_n$ and $\Gamma \vdash_{\cap CC} e'_2 : T'_1 \cap \ldots \cap T'_n$. Therefore, by rule C-App, $\Gamma \vdash_{\cap CC} e_1 e_2 \leadsto e''_1 e''_2 : T$. By the definition of \unlhd and S, S, $e \hookrightarrow e$, by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} e''_1 : T_1 \to T \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e''_2 : T_1 \cap \ldots \cap T_n$. By rule T-App', $\Gamma \vdash_{\cap CC} e''_1 e''_2 : T \cap \ldots \cap T$ and then by the properties of intersection types (modulo repetitions), $\Gamma \vdash_{\cap CC} e''_1 e''_2 : T$.
- Rule T-Gen. If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ then by rule T-Gen, $\Gamma \vdash_{\cap G} e : T_1$ and \ldots and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} e \leadsto e' : T_1$ and \ldots and $\Gamma \vdash_{\cap CC} e \leadsto e' : T_n$, and $\Gamma \vdash_{\cap CC} e' : T_1$ and \ldots and $\Gamma \vdash_{\cap CC} e' : T_n$. By rule C-Gen, $\Gamma \vdash_{\cap CC} e \leadsto e' : T_1 \cap \ldots \cap T_n$ and by rule T-Gen, $\Gamma \vdash_{\cap CC} e' : T_1 \cap \ldots \cap T_n$.
- Rule T-Inst. If $\Gamma \vdash_{\cap G} e : T_i$ then by rule T-Inst, $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} e \leadsto e' : T_1 \cap \ldots \cap T_n$ and $\Gamma \vdash_{\cap CC} e' : T_1 \cap \ldots \cap T_n$. By rule C-Inst, $\Gamma \vdash_{\cap CC} e \leadsto e' : T_i$ and by rule T-Inst, $\Gamma \vdash_{\cap CC} e' : T_i$.

Theorem 3.4 (Monotonicity w.r.t precision of cast insertion). If $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_1$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_2$ and $e_1 \sqsubseteq e_2$ then $e'_1 \sqsubseteq e'_2$ and $T_1 \sqsubseteq T_2$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T$. Base cases:

- Rule C-Var. If $\Gamma \vdash_{\cap CC} x \leadsto x : T$ and $\Gamma \vdash_{\cap CC} x \leadsto x : T$, and $x \sqsubseteq x$, then $x \sqsubseteq x$ and $T \sqsubseteq T$.
- Rule C-Int. If $\Gamma \vdash_{\cap CC} n \leadsto n : Int$, $\Gamma \vdash_{\cap CC} n \leadsto n : Int$ and $n \sqsubseteq n$, then $n \sqsubseteq n$ and $Int \sqsubseteq Int$.
- Rule C-True. If $\Gamma \vdash_{\cap CC} true \leadsto true : Bool$, $\Gamma \vdash_{\cap CC} true \leadsto true : Bool$ and $true \sqsubseteq true$, then $true \sqsubseteq true$ and $Bool \sqsubseteq Bool$.
- Rule C-False. If $\Gamma \vdash_{\cap CC} false \leadsto false : Bool$, $\Gamma \vdash_{\cap CC} false \leadsto false : Bool$ and $false \sqsubseteq false$, then $false \sqsubseteq false$ and $Bool \sqsubseteq Bool$.

- Rule C-Abs. If $\Gamma \vdash_{\cap CC} \lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1 \leadsto \lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1' : T_{11} \cap \ldots \cap T_{1n} \to T_1$ and $\Gamma \vdash_{\cap CC} \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2 \leadsto \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2' : T_{21} \cap \ldots \cap T_{2n} \to T_2$ and $\lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1 \sqsubseteq \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2$ then by rule C-Abs, $\Gamma, x : T_{11} \cap \ldots \cap T_{1n} \vdash_{\cap CC} e_1 \leadsto e_1' : T_1$ and $\Gamma, x : T_{21} \cap \ldots \cap T_{2n} \vdash_{\cap CC} e_2 \leadsto e_2' : T_2$ and by the definition of \sqsubseteq , $T_{11} \cap \ldots \cap T_{1n} \sqsubseteq T_{21} \cap \ldots \cap T_{2n}$ and $e_1 \sqsubseteq e_2$. By the induction hypothesis, $e_1' \sqsubseteq e_2'$ and $T_1 \sqsubseteq T_2$. Therefore, by the definition of \sqsubseteq , $\lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1' \sqsubseteq \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2'$ and $T_{11} \cap \ldots \cap T_{1n} \to T_1 \sqsubseteq T_{21} \cap \ldots \cap T_{2n} \to T_2$.
- Rule C-Abs'. If $\Gamma \vdash_{\cap CC} \lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1 \rightsquigarrow \lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1' : T_{1i} \to T_1$, such that $T_{1i} \in \{T_{11}, \ldots, T_{1n}\}$, and $\Gamma \vdash_{\cap CC} \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2 \rightsquigarrow \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2' : T_{2i} \to T_2$, such that $T_{2i} \in \{T_{21}, \ldots, T_{2n}\}$, and $\lambda x : T_{11} \cap \ldots \cap T_{1n} \cdot e_1 \sqsubseteq \lambda x : T_{21} \cap \ldots \cap T_{2n} \cdot e_2$ then

by the definition of C-Abs', $\Gamma, x: T_{1i} \vdash_{\cap CC} e_1 \leadsto e'_1: T_1$ and $\Gamma, x: T_{2i} \vdash_{\cap CC} e_2 \leadsto e'_2: T_2$ and by the definition of \sqsubseteq , $T_{11} \cap \ldots \cap T_{1n} \sqsubseteq T_{21} \cap \ldots \cap T_{2n}$ and $e_1 \sqsubseteq e_2$ and therefore $T_{1i} \sqsubseteq T_{2i}$. By the induction hypothesis, $e'_1 \sqsubseteq e'_2$ and $T_1 \sqsubseteq T_2$. Therefore, by the definition of $\sqsubseteq, \lambda x: T_{11} \cap \ldots \cap T_{1n} \cdot e'_1 \sqsubseteq \lambda x: T_{21} \cap \ldots \cap T_{2n} \cdot e'_2$ and $T_{1i} \to T_1 \sqsubseteq T_{2i} \to T_2$.

- Rule C-App. If $\Gamma \vdash_{\cap CC} e_{11} \ e_{12} \leadsto e_{11}'' \ e_{12}'' : T_1 \ \text{and} \ \Gamma \vdash_{\cap CC} e_{21} \ e_{22} \leadsto e_{21}'' \ e_{22}'' : T_2 \ \text{and} \ e_{11} \ e_{12} \sqsubseteq e_{21} \ e_{22} \ \text{then} \ \text{by rule C-App}, \ \Gamma \vdash_{\cap CC} e_{11} \leadsto e_{11}' : PM_1 \ \text{and} \ PM_1 \rhd T_{11} \cap \ldots \cap T_{1n} \to T_1 \ \text{and} \ \Gamma \vdash_{\cap CC} e_{12} \leadsto e_{12}' : T_{11}' \cap \ldots \cap T_{1n}' \ \text{and} \ T_{11}' \cap \ldots \cap T_{1n}' \sim T_{11} \cap \ldots \cap T_{1n} \ \text{and} \ PM_1 \trianglelefteq S_{11} \ \text{and} \ T_{11} \cap \ldots \cap T_{1n} \to T_1 \ \text{and} \ T_{11} \cap \ldots \cap T_{1n} \to T_1 \ \text{and} \ T_{11} \cap \ldots \cap T_{1n} \to T_1 \ \text{and} \ T_{11} \cap \ldots \cap T_{1n} \to T_1 \ \text{and} \ T_{11} \cap \ldots \cap T_{1n} \to T_1 \ \text{and} \ T_{11} \cap \ldots \cap T_{1n} \to T_1 \ \text{and} \ T_{11} \cap \ldots \cap T_{1n} \to T_1 \ \text{and} \ S_{11}, \ S_{12}, \ e_{11}' \hookrightarrow e_{11}'' \ \text{and} \ T_{11} \cap \ldots \cap T_{1n} \to T_1 \ \text{and} \ F_{11} \cap \ldots \cap F_{1n} \to F_1 \ \text{and} \ F_{11} \cap \ldots \cap F_{1n} \to F_1 \ \text{and} \ F_{11} \cap \ldots \cap F_{1n} \to F_1 \ \text{and} \ F_{11} \cap \ldots \cap F_{1n} \to F_1 \ \text{and} \ F_{11} \cap \ldots \cap F_{1n} \to F_1 \ \text{and} \ F_{11} \cap \ldots \cap F_{1n} \to F_1 \ \text{and} \ F_{11} \cap \ldots \cap F_{1n} \to F_1 \ \text{and} \ F_{11} \cap \ldots \cap F_{1n} \to F_1 \ \text{and} \ F_{11} \cap \ldots \cap F_{1n} \to F_1 \ \text{and} \ F_{11} \cap \ldots \cap F_{1n} \to F_1 \ \text{and} \ F_{11} \cap \ldots \cap F_1 \cap F_1 \ \text{and} \ F_1 \cap \ldots \cap F_1 \cap F_1 \cap F_1 \ \text{and} \ F_1 \cap \ldots \cap F_1 \cap F_1 \ \text{and} \ F_1$
- Rule C-Gen. If $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_{11} \cap \ldots \cap T_{1n}$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_{21} \cap \ldots \cap T_{2n}$ and $e_1 \sqsubseteq e_2$ then by rule C-Gen, $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_{11}$ and ... and $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_{1n}$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_{21}$ and ... and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_{2n}$. By the induction hypothesis, $e'_1 \sqsubseteq e'_2$ and $T_{11} \sqsubseteq T_{21}$ and ... and $T_{1n} \sqsubseteq T_{2n}$, and therefore by the definition of \sqsubseteq , $T_{11} \cap \ldots \cap T_{1n} \sqsubseteq T_{21} \cap \ldots \cap T_{2n}$.
- Rule C-Inst. If $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_{1i}$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_{2i}$ and $e_1 \sqsubseteq e_2$ then by rule C-Inst, $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_{11} \cap \ldots \cap T_{1n}$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_{21} \cap \ldots \cap T_{2n}$. By the induction hypothesis, $e'_1 \sqsubseteq e'_2$ and $T_{11} \cap \ldots \cap T_{1n} \sqsubseteq T_{21} \cap \ldots \cap T_{2n}$, and therefore, by the definition of \sqsubseteq , $T_{1i} \sqsubseteq T_{2i}$.

Corollary 3.4.1 (Monotonicity of cast insertion). Corollary of Theorem 3.4. If $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T_1$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T_2$ and $e_1 \sqsubseteq e_2$ then $e'_1 \sqsubseteq e'_2$.

Theorem 3.5 (Conservative Extension). If e is fully static, then $e \longrightarrow_{\cap S} e' \iff e \longrightarrow_{\cap CC} e'$.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap S}$ and $\longrightarrow_{\cap CC}$ for the right and left direction of the implication, respectively. Base cases:

• Rule E-AppAbs. If $(\lambda x: T_1 \cap ... \cap T_n \cdot e) \ v \longrightarrow_{\cap S} [x \mapsto v]e$ and $(\lambda x: T_1 \cap ... \cap T_n \cdot e) \ v \longrightarrow_{\cap CC} [x \mapsto v]e$, then it is proved.

- Rule E-App1.
 - If $e_1 \ e_2 \longrightarrow_{\cap S} e'_1 \ e_2$ then by rule E-App1, $e_1 \longrightarrow_{\cap S} e'_1$. By the induction hypothesis, $e_1 \longrightarrow_{\cap CC} e'_1$. Therefore, by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2$
 - If $e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2$ then by rule E-App1, $e_1 \longrightarrow_{\cap CC} e'_1$. By the induction hypothesis, $e_1 \longrightarrow_{\cap S} e'_1$. Therefore, by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap S} e'_1 \ e_2$

- Rule E-App2.
 - If $v_1 \ e_2 \longrightarrow_{\cap S} v_1 \ e_2'$ then by rule E-App2, $e_2 \longrightarrow_{\cap S} e_2'$. By the induction hypothesis, $e_2 \longrightarrow_{\cap CC} e_2'$. Therefore, by rule E-App2, $v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e_2'$
 - If $v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e_2'$ then by rule E-App2, $e_2 \longrightarrow_{\cap CC} e_2'$. By the induction hypothesis, $e_2 \longrightarrow_{\cap S} e_2'$. Therefore, by rule E-App2, $v_1 \ e_2 \longrightarrow_{\cap S} v_1 \ e_2'$

Lemma 3.2 (Type preservation of $\longrightarrow_{\cap CI}$). If $c \longrightarrow_{\cap CI} c$ and

- $\vdash_{\cap CI} c : T \text{ then } \vdash_{\cap CI} c' : T.$
- initialType(c) = T then initialType(c') = T.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap CI}$.

Base cases:

- Rule E-PushBlameCI.
 - If $\vdash_{\cap CI}$ blame $T_I T_F l_1^{cl_1} : T_1 \Rightarrow^{l_2} T_2^{cl_2} : T_2$ and by rule E-PushBlameCI, blame $T_I T_F l_1^{cl_1} : T_1 \Rightarrow^{l_2} T_2^{cl_2} \longrightarrow_{\cap CI}$ blame $T_I T_2 l_1^{cl_1}$, then by rule T-BlameCI, $\vdash_{\cap CI}$ blame $T_I T_2 l_1^{cl_1} : T_2$, then it is proved.
 - By the definition of initial Type, $initial Type (blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2}) = T_I$. By rule E-PushBlameCI, $blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2} \longrightarrow_{\cap CI} blame\ T_I\ T_2\ l_1\ ^{cl_1}$. Since $initial Type (blame\ T_I\ T_2\ l_1\ ^{cl_1}) = T_I$, it is proved.
- Rule E-IdentityCI.
 - If $\vdash_{\cap CI} c: T \Rightarrow^l T^{cl}: T$, then by rule T-SingleCI, $\vdash_{\cap CI} c: T$. By rule E-IdentityCI, $c: T \Rightarrow^l T^{cl} \longrightarrow_{\cap CI} c$.
 - By the definitions of initial Type, $initial Type(c:T\Rightarrow^l T^{cl})=initial Type(c)$. By rule E-Identity CI, $c:T\Rightarrow^l T^{cl}\longrightarrow_{\cap CI} c$.
- Rule E-SucceedCI.
 - If $\vdash_{\cap CI} c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2}: G$, then by rule T-SingleCI, $\vdash_{\cap CI} c: G$. By rule E-SucceedCI, $c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2} \longrightarrow_{\cap CI} c$.
 - Rule E-SucceedCI. By the definition of initialType, $initialType(c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2}) = initialType(c)$. By rule E-SucceedCI, $c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2} \longrightarrow_{\cap CI} c$. Therefore it is proved.
- Rule E-FailCI.
 - If $\vdash_{\cap CI} c: G_1 \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G_2^{cl_2}: G_2$, and by rule E-FailCI, $c: G_1 \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G_2^{cl_2} \longrightarrow_{\cap CI} blame T_I G_2 l_2^{cl_1}$ then by rule T-BlameCI, $\vdash_{\cap CI} blame T_I G_2 l_2^{cl_1}: G_2$.
 - By the definition of initialType, $initialType(c:G_1\Rightarrow^{l_1}Dyn^{cl_1}:Dyn\Rightarrow^{l_2}G_2^{cl_2})=T_I$. By rule E-FailCI, $c:G_1\Rightarrow^{l_1}Dyn^{cl_1}:Dyn\Rightarrow^{l_2}G_2^{cl_2}\longrightarrow_{\cap CI}blame\ T_I\ G_2\ l_2^{cl_1}$, then $initialType(blame\ T_I\ G_2\ l_2^{cl_1})=T_I$.

- Rule E-GroundCI.
 - If $\vdash_{\cap CI} c: T \Rightarrow^l Dyn^{cl}: Dyn$ then by rule T-SingleCI, $\vdash_{\cap CI} c: T$. By rule E-GroundCI, $c: T \Rightarrow^l Dyn^{cl} \longrightarrow_{\cap CI} c: T \Rightarrow^l G^{cl}: G \Rightarrow^l Dyn^{cl}$, then by rule T-SingleCI, $\vdash_{\cap CI} c: T \Rightarrow^l G^{cl}: G \Rightarrow^l Dyn^{cl}: Dyn$.
 - By the definition of initialType, $initialType(c:T\Rightarrow^l Dyn^{cl})=initialType(c)$. By rule E-GroundCI, $c:T\Rightarrow^l Dyn^{cl}\longrightarrow_{\cap CI}c:T\Rightarrow^l G^{cl}:G\Rightarrow^l Dyn^{cl}$, then $initialType(c:T\Rightarrow^l G^{cl}:G\Rightarrow^l Dyn^{cl})=initialType(c)$.
- Rule E-ExpandCI.
 - If $\vdash_{\cap CI} c: Dyn \Rightarrow^l T^{cl}: T$ then by rule T-SingleCI, $\vdash_{\cap CI} c: Dyn$. By rule E-ExpandCI, $c: Dyn \Rightarrow^l T^{cl} \longrightarrow_{\cap CI} c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl}$, then by rule T-SingleCI, $\vdash_{\cap CI} c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl}: T$.
 - By the definition of initialType, $initialType(c:Dyn\Rightarrow^l T^{cl})=initialType(c)$. By rule E-ExpandCI, $c:Dyn\Rightarrow^l T^{cl}\longrightarrow_{\cap CI} c:Dyn\Rightarrow^l G^{cl}:G\Rightarrow^l T^{cl}$. Since $initialType(c:Dyn\Rightarrow^l G^{cl}:G\Rightarrow^l T^{cl})=initialType(c)$, it is proved.

Induction step:

- Rule E-EvaluateCI.
 - If $\vdash_{\cap CI} c: T_1 \Rightarrow^l T_2 \stackrel{cl}{:} T_2$ then by rule T-SingleCI, $\vdash_{\cap CI} c: T_1$. By rule E-EvaluateCI, $c \xrightarrow{}_{\cap CI} c'$. By the induction hypothesis, $\vdash_{\cap CI} c': T_1$. By rule E-EvaluateCI, $c: T_1 \Rightarrow^l T_2 \stackrel{cl}{:} \longrightarrow_{\cap CI} c': T_1 \Rightarrow^l T_2 \stackrel{cl}{:} T_2$.
 - By the definition of initialType, $initialType(c: T_1 \Rightarrow^l T_2^{cl}) = initialType(c)$. By rule E-EvaluateCI, $c \longrightarrow_{\cap CI} c'$. By the induction hypothesis, initialType(c') = initialType(c). By rule E-EvaluateCI, $c: T_1 \Rightarrow^l T_2^{cl} \longrightarrow_{\cap CI} c': T_1 \Rightarrow^l T_2^{cl}$. Since $initialType(c': T_1 \Rightarrow^l T_2^{cl}) = initialType(c')$, it is proved.

П

Lemma 3.3 (Progress of $\longrightarrow_{\cap CI}$). If $\Gamma \vdash_{\cap CI} c : T$ and initial $Type(c) = T_I$ then either c is a cast value or there exists a c' such that $c \xrightarrow[]{\cap CI} c'$.

Proof. We proceed by induction on the length of the derivation tree of $\vdash_{\cap CI} c: T$.

Base cases:

- Rule T-BlameCI. As $\vdash_{\cap CI} blame\ T_I\ T_F\ l^{cl}: T_F,\ initial Type(blame\ T_I\ T_F\ l^{cl}) = T_I$ and blame $T_I\ T_F\ l^{cl}$ is a cast value, it is proved.
- Rule T-EmptyCI. As $\vdash_{\cap CI} \varnothing T^{cl} : T$, $initialType(\varnothing T^{cl}) = T$ and $\varnothing T^{cl}$ is a cast value, it is proved.

Induction step:

• Rule T-SingleCI. If $\vdash_{\cap CI} c: T_1 \Rightarrow^l T_2 \ ^c l: T_2$ and $initialType(c: T_1 \Rightarrow^l T_2 \ ^c l) = T_I$ then by rule T-SingleCI, $\vdash_{\cap CI} c: T_1$ and $initialType(c) = T_I$. By the induction hypothesis, either c is a cast value or there is a c' such that $c \longrightarrow_{\cap CI} c'$. If c is a cast value, then c can either be of the form $blame\ T_I\ T_F\ l\ ^{cl}$, in which case by rule E-PushBlameCI, $blame\ T_I\ T_F\ l\ ^{cl}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2} \longrightarrow_{\cap CI} blame\ T_I\ T_2\ l\ ^{cl_1}$ or c is a cast value 1 or is an empty cast. If c is a cast value 1 or is an empty cast then $c: T_1 \Rightarrow^l T_2\ ^{cl}$ can be of one of the following forms:

- $-c:T\Rightarrow^l T^{cl}$. Then by rule E-IdentityCI, $c:T\Rightarrow^l T^{cl}\longrightarrow_{\cap CI} c$.
- $-c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2}$. Then by rule E-SucceedCI, $c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2} \longrightarrow_{\cap CI} c$.
- $-c:G_1\Rightarrow^{l_1} Dyn^{cl_1}:Dyn\Rightarrow^{l_2} G_2^{cl_2}.$ Then by rule E-FailCI, $c:G_1\Rightarrow^{l_1} Dyn^{cl_1}:Dyn\Rightarrow^{l_2} G_2^{cl_2}\longrightarrow_{\cap CI} blame\ T_I\ G_2\ l_2^{cl_1}.$
- $-c:T\Rightarrow^l Dyn^{cl}$. Then by rule E-GroundCI, $c:T\Rightarrow^l Dyn^{cl}$ → $_{\cap CI}$ $c:T\Rightarrow^l G^{cl}:G\Rightarrow^l Dyn^{cl}$.
- $c: Dyn \Rightarrow^l T^{cl}$. Then by rule E-ExpandCI, $c: Dyn \Rightarrow^l T^{cl}$ → $_{\cap CI} c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl}$.

If there is a c' such that $c \longrightarrow_{\cap CI} c'$, then by rule E-EvaluateCI, $c: T_1 \Rightarrow^l T_2 \ ^c l \longrightarrow_{\cap CI} c': T_1 \Rightarrow^l T_2 \ ^c l$.

Lemma 3.4 (Type preservation of $\longrightarrow_{\cap CC}$). Depends on Lemmas 3.2 and 3.3. If $\Gamma \vdash_{\cap CC} e : T_1 \cap \ldots \cap T_n$ and $e \longrightarrow_{\cap CC} e'$ then $\Gamma \vdash_{\cap CC} e' : T_1 \cap \ldots \cap T_m$ such that $m \leq n$.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap CC}$.

Base cases:

- Rule E-PushBlame1. If $\Gamma \vdash_{\cap CC} blame_{T_2} l \ e_2 : T_1 \text{ and } blame_{T_2} \ l \ e_2 \longrightarrow_{\cap CC} blame_{T_1} \ l \text{ then by rule T-Blame, } \Gamma \vdash_{\cap CC} blame_{T_1} \ l : T_1.$
- Rule E-PushBlame2. If $\Gamma \vdash_{\cap CC} e_1 \ blame_{T_2} \ l : T_1 \ and \ e_1 \ blame_{T_2} \ l \longrightarrow_{\cap CC} blame_{T_1} \ l \ then by rule T-Blame, <math>\Gamma \vdash_{\cap CC} blame_{T_1} \ l : T_1$.
- Rule E-PushBlameCast. If $\Gamma \vdash_{\cap CC} blame_T \ l : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ and $blame_T \ l : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} blame_{T_1 \cap \ldots \cap T_n} \ l$ then by rule T-Blame, $\Gamma \vdash_{\cap CC} blame_{T_1 \cap \ldots \cap T_n} \ l : T_1 \cap \ldots \cap T_n$.
- Rule E-AppAbs. There exists a type $T_1 \cap \ldots \cap T_n$ such that we can deduce $\Gamma \vdash_{\cap CC} (\lambda x : T_1 \cap \ldots \cap T_n \cdot e) v : T$ from $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_n$ (x does not occur in Γ). Moreover, $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ only if $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e : T$. By rule E-AppAbs, $(\lambda x : T_1 \cap \ldots \cap T_n \cdot e) v \longrightarrow_{\cap CC} [x \mapsto v]e$. To obtain $\Gamma \vdash_{\cap CC} [x \mapsto v]e : T$, it is sufficient to replace, in the proof of $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e : T$, the statements $x : T_i$ (introduzed by the rules T-Var and T-Inst) by the deductions of $\Gamma \vdash_{\cap CC} v : T_i$ for $1 \le i \le n$. (Proof adapted from [1])
- Rule E-SimulateArrow. If $\Gamma \vdash_{\cap CC} (v_1 : cv_1 \cap \ldots \cap cv_n) \ v_2 : T_{12} \cap \ldots \cap T_{n2}$, then by rule T-App', $\Gamma \vdash_{\cap CC} v_1 : cv_1 \cap \ldots \cap cv_n : T_1 \cap \ldots \cap T_n$ such that $\exists i \in 1...n \ ... T_i = T_{i1} \rightarrow T_{i2}$ and $\Gamma \vdash_{\cap CC} v_2 : T_{11} \cap \ldots \cap T_{n1}$. As $\Gamma \vdash_{\cap CC} v_1 : cv_1 \cap \ldots \cap cv_n : T_1 \cap \ldots \cap T_n$, then by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} v_1 : T_1'' \cap \ldots \cap T_l''$ and $\vdash_{\cap CI} cv_1 : T_1$ and \ldots and $\vdash_{\cap CI} cv_n : T_n$ and $\vdash_{\cap CI} cv_n : T_n$ and $\vdash_{\cap CI} cv_n : T_n \cap \ldots \cap T_n''$ and $\vdash_{\cap CI} c$

by rule T-Gen and T-Inst $\Gamma \vdash_{\cap CC} v_1 : T_1'' \cap \ldots \cap T_m''$ and $I_1 \cap \ldots \cap I_m = T_1'' \cap \ldots \cap T_m''$, then by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} v_1 : c_1^s \cap \ldots \cap c_m^s : T_{11}' \to T_{12}' \cap \ldots \cap T_{m1}' \to T_{m2}'$. As by rule T-Gen and T-Inst $\Gamma \vdash_{\cap CC} v_2 : T_{11} \cap \ldots \cap T_{m1}$ and $\vdash_{\cap CI} c_{11} : T_{11}'$ and \ldots and $\vdash_{\cap CI} c_{m1} : T_{m1}'$ and $initialType(c_{11}) = T_{11}$ and \ldots and $initialType(c_{m1}) = T_{m1}$, then by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} v_2 : c_{11} \cap \ldots \cap c_{m1} : T_{11}' \cap \ldots \cap T_{m1}'$. Therefore, by rule T-App', $\Gamma \vdash_{\cap CC} (v_1 : c_1^s \cap \ldots \cap c_m^s) (v_2 : c_{11} \cap \ldots \cap c_{m1}) : T_{12}' \cap \ldots \cap T_{m2}'$. As $\vdash_{\cap CI} c_{12} : T_{12}$ and \ldots and $\vdash_{\cap CI} c_{m2} : T_{m2}$ and $initialType(c_{12}) = T_{12}'$ and \ldots and $initialType(c_{m2}) = T_{m2}'$, then by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} (v_1 : c_1^s \cap \ldots \cap c_m^s) (v_2 : c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2} : T_{12} \cap \ldots \cap T_{m2}$. By rule E-SimulateArrow, $(v_1 : cv_1 \cap \ldots \cap cv_n) v_2 \longrightarrow_{\cap CC} (v_1 : c_1^s \cap \ldots \cap c_m^s) (v_2 : c_{11} \cap \ldots \cap c_{m2}, \text{ therefore it is proved.}$

- Rule E-MergeCasts. If $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : c'_1 \cap \ldots \cap c'_m : F'_1 \cap \ldots \cap F'_m$ then by rule T-CastIntersections, $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : F_1 \cap \ldots \cap F_n$ and $\vdash_{\cap CI} c'_1 : F'_1$ and \ldots and $\vdash_{\cap CI} c'_m : F'_m$ and $initialType(c'_1) = I'_1$ and $initialType(c'_m) = I'_m$ such that $\{I'_1, \ldots, I'_m\} \subseteq \{F_1, \ldots, F_n\}$ and $I'_1 \cap \ldots \cap I'_m = F_1 \cap \ldots \cap F_m$ and $m \leq n$. As $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : F_1 \cap \ldots \cap F_n$ then by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_l$ and $\vdash_{\cap CI} cv_1 : F_1$ and \ldots and $\vdash_{\cap CI} cv_n : F_n$ and $initialType(cv_1) : I_1$ and \ldots and $initialType(cv_n) : I_n$ such that $\{I_1, \ldots, I_n\} \subseteq \{T_1, \ldots, T_l\}$ and $I_1 \cap \ldots \cap I_n = T_1 \cap \ldots \cap T_n$ and $n \leq l$. By the definition of mergeCasts, $\vdash_{\cap CI} c''_1 : F''_1$ and \ldots and $\vdash_{\cap CI} c''_1 : F''_2$ and $initialType(c''_1) = I''_1$ and \ldots and $initialType(c''_1) = I''_1$ and \ldots and $initialType(c''_1) = I''_1$ and $m \in I$ a
- Rule E-EvaluateCasts. If $\Gamma \vdash_{\cap CC} v : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ then by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} v : T'_1 \cap \ldots \cap T'_n$ and $\vdash_{\cap CI} c_1 : T_1$ and \ldots and $\vdash_{\cap CI} c_n : T_n$ and $I_1 = initialType(c_1)$ and \ldots and $I_n = initialType(c_n)$ and $I_1 \cap \ldots \cap I_n = T'_1 \cap \ldots \cap T'_n$. By rule E-EvaluateCasts, $c_1 \longrightarrow_{\cap CI} cv_1$ and \ldots and $c_n \longrightarrow_{\cap CI} cv_n$. By Lemmas 3.2 and 3.3, $\vdash_{\cap CI} cv_1 : T_1$ and $initialType(cv_1) = I_1$ and \ldots and $\vdash_{\cap CI} cv_n : T_n$ and $initialType(cv_n) = I_n$. Therefore by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : T_1 \cap \ldots \cap T_n$. By rule E-EvaluateCasts, $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$.
- Rule E-PropagateBlame. If $\Gamma \vdash_{\cap CC} v : blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n} : T_1 \cap \ldots \cap T_n$ and by rule E-PropagateBlame $v : blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n} \longrightarrow_{\cap CC} blame_{(T_1 \cap \ldots \cap T_n)} \ l_1 : T_1 \cap \ldots \cap T_n$.
- Rule E-RemoveEmpty. If $\Gamma \vdash_{\cap CC} v : \varnothing \ T_1 \stackrel{m_1}{\longrightarrow} \cap \ldots \cap \varnothing \ T_n \stackrel{m_n}{\longrightarrow} : T_1 \cap \ldots \cap T_n$, then by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_n$ and $\vdash_{\cap CI} \varnothing \ T_1 \stackrel{m_1}{\longrightarrow} : T_1$ and \ldots and $\vdash_{\cap CI} \varnothing \ T_n \stackrel{m_n}{\longrightarrow} : T_n$ and $initialType(\varnothing \ T_1 \stackrel{m_1}{\longrightarrow}) = T_n$. Therefore, by rule E-RemoveEmpty, $v : \varnothing \ T_1 \stackrel{m_1}{\longrightarrow} \cap \ldots \cap \varnothing \ T_n \stackrel{m_n}{\longrightarrow} \cap CC \ v$.

- Rule E-App1. There are two possibilities:
 - If $\Gamma \vdash_{\cap CC} e_1 e_2 : T$, then by rule T-App, $\Gamma \vdash_{\cap CC} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$. By rule E-App1, $e_1 \longrightarrow_{\cap CI} e'_1$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e'_1 : T_1 \cap \ldots \cap T_n \to T$. As by rule E-App1, $e_1 e_2 \longrightarrow_{\cap CI} e'_1 e_2$, then by rule T-App, $\Gamma \vdash_{\cap CC} e'_1 e_2 : T$.

- If $\Gamma \vdash_{\cap CC} e_1 e_2 : T_{12} \cap \ldots \cap T_{n2}$, then by rule T-App', $\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$. By rule E-App1, $e_1 \longrightarrow_{\cap CI} e'_1$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e'_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$. As by rule E-App1, $e_1 e_2 \longrightarrow_{\cap CI} e'_1 e_2$, then by rule T-App', $\Gamma \vdash_{\cap CC} e'_1 e_2 : T_{12} \cap \cdots \cap T_{n2}$.
- Rule E-App2. There are two possibilities:
 - If $\Gamma \vdash_{\cap CC} v_1 \ e_2 : T$, then by rule T-App, $\Gamma \vdash_{\cap CC} v_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$. By rule E-App2, $e_2 \longrightarrow_{\cap CI} e_2'$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e_2' : T_1 \cap \ldots \cap T_n$. As by rule E-App2, $v_1 \ e_2 \longrightarrow_{\cap CI} v_1 \ e_2'$, then by rule T-App, $\Gamma \vdash_{\cap CC} v_1 \ e_2' : T$.
 - If $\Gamma \vdash_{\cap CC} v_1 \ e_2 : T_{12} \cap \ldots \cap T_{n2}$, then by rule T-App', $\Gamma \vdash_{\cap CC} v_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$. By rule E-App2, $e_2 \longrightarrow_{\cap CI} e_2'$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e_2' : T_{11} \cap \ldots \cap T_{n1}$. As by rule E-App1, $v_1 \ e_2 \longrightarrow_{\cap CI} v_1 \ e_2'$, then by rule T-App', $\Gamma \vdash_{\cap CC} v_1 \ e_2' : T_{12} \cap \cdots \cap T_{n2}$.
- Rule E-Evaluate. If $\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$, then by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} e : T'_1 \cap \ldots \cap T'_n$, $\vdash_{\cap CI} c_1 : T_1$ and \ldots and $\vdash_{\cap CI} c_n : T_n$ and $initialType(c_1) \cap \ldots \cap initialType(c_n) = T'_1 \cap \ldots \cap T'_n$. By rule E-Evaluate, $e \longrightarrow_{\cap CI} e'$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e' : T$. As by rule E-Evaluate, $e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CI} e' : c_1 \cap \ldots \cap c_n$, then by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} e' : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$.

Lemma 3.5 (Progress of $\longrightarrow_{\cap CC}$). If $\Gamma \vdash_{\cap CC} e : T$ then either e is a value or there exists an e' such that $e \longrightarrow_{\cap CC} e'$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap CC} e : T$.

Base cases:

- Rule T-Var. If $\Gamma \vdash_{\cap CC} x : T$, then x is a value.
- Rule T-Int. If $\Gamma \vdash_{\cap CC} n : Int$ then n is a value.
- Rule T-True. If $\Gamma \vdash_{\cap CC} true : Bool$ then true is a value.
- Rule T-False. If $\Gamma \vdash_{\cap CC} false : Bool$ then false is a value.

- Rule T-Abs. If $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ then $\lambda x : T_1 \cap \ldots \cap T_n \cdot e$ is a value.
- Rule T-Abs'. If $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T$ then $\lambda x : T_1 \cap \ldots \cap T_n \cdot e$ is a value.
- Rule T-App. If $\Gamma \vdash_{\cap CC} e_1 e_2 : T$ then by rule T-App, $\Gamma \vdash_{\cap CC} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, e_1 is either a value or there is a e_1' such that $e_1 \longrightarrow_{\cap CC} e_1'$ and e_2 is either a value or there is a e_2' such that $e_2 \longrightarrow_{\cap CC} e_2'$. If e_1 is a value, then by rule E-PushBlame1, $(blame_{T_2} \ l) \ e_2 \longrightarrow_{\cap CC} blame_{T_1} \ l$. If e_2 is a value, then by rule E-PushBlame2, $e_1 \ (blame_{T_2} \ l) \longrightarrow_{\cap CC} blame_{T_1} \ l$. If e_1 is not a value, then by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap CC} e_1' \ e_2$. If e_1 is a value and e_2 is not a value, then by rule E-App2, $v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e_2'$. If both e_1 and e_2 are values then e_1 must be an abstraction $(\lambda x : T_1 \cap \ldots \cap T_n \ . \ e)$, and by rule E-AppAbs $(\lambda x : T_1 \cap \ldots \cap T_n \ . \ e) \ v_2 \longrightarrow_{\cap CC} [x \mapsto v_2]e$.

- Rule T-Gen. If $\Gamma \vdash_{\cap CC} e : T_1 \cap ... \cap T_n$ then by rule T-Gen, $\Gamma \vdash_{\cap CC} e : T_1$ and ... and $\Gamma \vdash_{\cap CC} e : T_n$. By the induction hypothesis, either e is a value or there exists an e' such that $e \longrightarrow_{\cap CC} e'$.
- Rule T-Inst. If $\Gamma \vdash_{\cap CC} e : T_i$ then by rule T-Inst, $\Gamma \vdash_{\cap CC} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, either e is a value or there exists an e' such that $e \longrightarrow_{\cap CC} e'$.
- Rule T-App'. If $\Gamma \vdash_{\cap CC} e_1 e_2 : T_{12} \cap \ldots \cap T_{n2}$ then by rule T-App', $\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$. By the induction hypothesis, e_1 is either a value or there is a e'_1 such that $e_1 \longrightarrow_{\cap CC} e'_1$ and e_2 is either a value or there is a e'_2 such that $e_2 \longrightarrow_{\cap CC} e'_2$. If e_1 is a value, then by rule E-PushBlame1, $(blame_{T_2} \ l) \ e_2 \longrightarrow_{\cap CC} blame_{T_1} \ l$. If e_2 is a value, then by rule E-PushBlame2, $e_1 \ (blame_{T_2} \ l) \longrightarrow_{\cap CC} blame_{T_1} \ l$. If e_1 is not a value, then by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2$. If e_1 is a value and e_2 is not a value, then by rule E-App2, $v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e'_2$. If both e_1 and e_2 are values then e_1 must be an abstraction $(\lambda x : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2} . e)$, and by rule E-AppAbs $(\lambda x : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2} . e) \ v_2 \longrightarrow_{\cap CC} [x \mapsto v_2]e$.
- Rule T-CastIntersection. If $\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ then by rule T-CastIntersection, $\Gamma \vdash_{\cap CC} e : T'_1 \cap \ldots \cap T'_n$. By the induction hypothesis, e is either a value, or there is an e' such that $e \longrightarrow_{\cap CC} e'$. If e is a value, then either by rule E-EvaluateCasts, $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$, or by rule E-PushBlameCast, $blame_{T'_1 \cap \ldots \cap T'_n} l : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} blame_{T_1 \cap \ldots \cap T_n} l$. If there is an e' such that $e \longrightarrow_{\cap CC} e'$, then by rule E-Evaluate, $e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} e' : c_1 \cap \ldots \cap c_n$.
- Rule T-Blame. If $\Gamma \vdash_{\cap CC} blame_T \ l : T$ then $blame_T \ l$ is a value.

Theorem 3.6 (Type Safety of $\longrightarrow_{\cap CC}$). Depends on Lemmas 3.4 and 3.5. Both Type Preservation and Progress hold for $\longrightarrow_{\cap CC}$.

Proof. We have Type Preservation (by Lemma 3.4) and Progress (by Lemma 3.5) for $\longrightarrow_{\cap CC}$.

Theorem 3.7 (Blame Theorem). If $\Gamma \vdash_{\cap CC} e : T$ and $e \longrightarrow_{\cap CC}^* blame_T l$ then l is not a safe cast of e.

Lemma 3.6 (Gradual Guarantee for $\longrightarrow_{\cap CI}$). If $\vdash_{\cap CI} c_1 : T_1$ and $\vdash_{\cap CI} c_2 : T_2$ and $c_1 \sqsubseteq c_2$ then:

1. if $c_2 \longrightarrow_{\cap CI} c'_2$ then $c_1 \longrightarrow_{\cap CI}^* c'_1$ and $c'_1 \sqsubseteq c'_2$.

Lemma 3.7 (Extra Cast on the Left). If $\Gamma \vdash_{\cap CC} v : T$, $\Gamma \vdash_{\cap CC} v' : T'$, $\vdash_{\cap CI} c_1 : T_1$ and ... and $\vdash_{\cap CI} c_n : T_n$, $T_1 \cap \ldots \cap T_n \sqsubseteq T'$, initial $Type(c_1) \cap \ldots \cap initial Type(c_n) = T$ and $v \sqsubseteq v'$ then $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC}^* v''$ and $v'' \sqsubseteq v'$.

Lemma 3.8 (Catchup to Value on the Right). If $\Gamma \vdash_{\cap CC} e : T$, $\Gamma \vdash_{\cap CC} v : T'$, $e \sqsubseteq v$, then $e \longrightarrow_{\cap CC}^* e'$ and $e' \sqsubseteq v$.

Lemma 3.9 (Simulation of Function Application). Depends on Lemma 3.4. Suppose $\Gamma \vdash_{\cap CC} \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' : T'_1 \cap \ldots \cap T'_n \to T'$, $\Gamma \vdash_{\cap CC} v' : T'_1 \cap \ldots \cap T'_n$, either $\Gamma \vdash_{\cap CC} v_1 : T_1 \cap \ldots \cap T_n \to T$ or $\Gamma \vdash_{\cap CC} v_1 : T_1 \to T \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} v_2 : T_1 \cap \ldots \cap T_n, T_1 \cap \ldots \cap T_n \to T \sqsubseteq T'_1 \cap \ldots \cap T'_n \to T'$. If $v_1 \sqsubseteq \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e'$ and $v_2 \sqsubseteq v'$, then $v_1 v_2 \longrightarrow_{\cap CC}^* e$ such that $e \sqsubseteq [x \mapsto v']e'$ and $\Gamma \vdash_{\cap CC} e : T$.

Proof. We proceed by induction on the length of the derivation tree of $v_1 \sqsubseteq \lambda x : T_1' \cap \ldots \cap T_n'$. e'.

Base cases:

• $\lambda x: T_1 \cap \ldots \cap T_n \cdot e \sqsubseteq \lambda x: T'_1 \cap \ldots \cap T'_n \cdot e'$. As $\Gamma \vdash_{\cap CC} \lambda x: T_1 \cap \ldots \cap T_n \cdot e: T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} v_2: T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap CC} (\lambda x: T_1 \cap \ldots \cap T_n \cdot e) v_2: T$. As $\lambda x: T_1 \cap \ldots \cap T_n \cdot e \sqsubseteq \lambda x: T'_1 \cap \ldots \cap T'_n \cdot e'$, then $e \sqsubseteq e'$. By Rule E-AppAbs, $(\lambda x: T_1 \cap \ldots \cap T_n \cdot e) v_2 \longrightarrow_{\cap CC} [x \mapsto v_2]e$. By the definition of \sqsubseteq , $[x \mapsto v_2]e \sqsubseteq [x \mapsto v']e'$ and by Lemma 3.4, $\Gamma \vdash_{\cap CC} [x \mapsto v_2]e: T$.

Induction step:

- $v: cv_1 \cap \ldots \cap cv_n \sqsubseteq \lambda x: T'_1 \cap \ldots \cap T'_n$. e'. As $\Gamma \vdash_{\cap CC} v: cv_1 \cap \ldots \cap cv_n: T_1 \to T \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} v_2: T_1 \cap \ldots \cap T_n$ and $T_1 \to T \cap \ldots \cap T_n \to T \sqsubseteq T'_1 \cap \ldots \cap T'_n \to T'$ then $T \sqsubseteq T'$. As $v: cv_1 \cap \ldots \cap cv_n \sqsubseteq \lambda x: T'_1 \cap \ldots \cap T'_n$. e', then $v \sqsubseteq \lambda x: T'_1 \cap \ldots \cap T'_n$. e'. By rule E-SimulateArrow, $(v: cv_1 \cap \ldots \cap cv_n) v_2 \longrightarrow_{\cap CC} (v: c_1^s \cap \ldots \cap c_m^s) (v_2: c_{11} \cap \ldots \cap c_{m1}): c_{12} \cap \ldots \cap c_{m2}$, with $((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s)) = simulateArrow(cv_1, \ldots, cv_n)$. There are 3 possibilities, where $(v: c_1^s \cap \ldots \cap c_m^s)$ is of the form:
 - $(\lambda x : T_1'' \cap \ldots \cap T_n'' \cdot e'') : \varnothing T_1'' \to T'' \stackrel{cl_1}{}\cap \ldots \cap \varnothing T_m'' \to T'' \stackrel{cl_m}{} \text{ such that } T_1'' \cap \ldots \cap T_n'' \sqsubseteq T_1' \cap \ldots \cap T_n' \text{ and } e'' \sqsubseteq e'. \text{ Then by rule E-RemoveEmpty and E-AppAbs, } (\lambda x : T_1'' \cap \ldots \cap T_n'' \cdot e'' : \varnothing T_1'' \stackrel{cl_1}{}\cap \ldots \cap \varnothing T_m'' \stackrel{cl_m}{}) (v_2 : c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2} \longrightarrow_{\cap CC} ([x \mapsto v_2 : c_{11} \cap \ldots \cap c_{m1}]e'') : c_{12} \cap \ldots \cap c_{m2}. \text{ As } v_2 \sqsubseteq v' \text{ and } \vdash_{\cap CI} c_{11} : T_1'' \text{ and } \ldots \text{ and } \vdash_{\cap CI} c_{m1} : T_m'' \text{ and } T_1'' \cap \ldots \cap T_m' \sqsubseteq T_1' \cap \ldots \cap T_m' \text{ then } v_2 : c_{11} \cap \ldots \cap c_{m1} \sqsubseteq v'. \text{ As } (\lambda x : T_1' \cap \ldots \cap T_n' \cdot e') v' : T' \text{ and } (\lambda x : T_1' \cap \ldots \cap T_n' \cdot e') v' \longrightarrow_{\cap CC} [x \mapsto v_2]e', \text{ then by Lemma } 3.4, \Gamma \vdash_{\cap CC} [x \mapsto v_2]e' : T'. \text{ As } \vdash_{\cap CI} c_{12} : T \text{ and } \ldots \text{ and } \vdash_{\cap CI} c_{m2} : T \text{ and } T \sqsubseteq T' \text{ and } e'' \sqsubseteq e' \text{ then } ([x \mapsto v_2 : c_{11} \cap \ldots \cap c_{m1}]e'') : c_{12} \cap \ldots \cap c_{m2} \sqsubseteq [x \mapsto v_2]e'.$

Lemma 3.10 (Simulation of Unwrapping). Suppose $\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$ and $\Gamma \vdash_{\cap CC} v_1 : cv_1 \cap \ldots \cap cv_n : T'_{11} \to T'_{12} \cap \ldots \cap T'_{n1} \to T'_{n2}$ and $\Gamma \vdash_{\cap CC} v_2 : T'_{11} \cap \ldots \cap T'_{n1}$ and $T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2} \sqsubseteq T'_{11} \to T'_{12} \cap \ldots \cap T'_{n1} \to T'_{n2}$. If $e_1 \sqsubseteq v_1 : cv_1 \cap \ldots \cap cv_n$ and $e_2 \sqsubseteq v_2$, then $e_1 e_2 \longrightarrow_{\cap CC}^* e$ and $e \sqsubseteq (v_1 : c_1^s \cap \ldots \cap c_m^s) (v_2 : c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2}$, with $((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s)) = simulateArrow(cv_1, \ldots, cv_n)$.

Theorem 3.8 (Gradual Guarantee). Depends on Theorem 3.6 and Lemmas 3.2, 3.3, 3.4, 3.6, 3.9 and 3.10. If $\Gamma \vdash_{\cap CC} e_1 : T_1$ and $\Gamma \vdash_{\cap CC} e_2 : T_2$ and $e_1 \sqsubseteq e_2$ then:

- 1. if $e_2 \longrightarrow_{\cap CC} e_2'$ then $e_1 \longrightarrow_{\cap CC}^* e_1'$ and $e_1' \sqsubseteq e_2'$.
- 2. if $e_1 \longrightarrow_{\cap CC} e'_1$ then either $e_2 \longrightarrow_{\cap CC}^* e'_2$ and $e'_1 \sqsubseteq e'_2$ or $e_2 \longrightarrow_{\cap CC}^* blame_{T_2} l$.

Proof. (1) We proceed by induction on the length of the derivation tree of $e \sqsubseteq e$.

Base cases:

- Rule for $x \sqsubseteq x$. As $x \longrightarrow_{\bigcap CC} x$ and $x \sqsubseteq x$, it is proved.
- Rule for $n \sqsubseteq n$. As $n \longrightarrow_{\cap CC} n$ and $n \sqsubseteq n$, it is proved.
- Rule for $true \sqsubseteq true$. As $true \longrightarrow_{\cap CC} true$ and $true \sqsubseteq true$, it is proved.
- Rule for $false \sqsubseteq false$. As $false \longrightarrow_{\cap CC} false$ and $false \sqsubseteq false$, it is proved.

• Rule for $e \sqsubseteq blame_{T'} \ l$. If $e \sqsubseteq blame_{T'} \ l$ then $\Gamma \vdash_{\cap CC} e : T$ and $T \sqsubseteq T'$. If $blame_{T'} \ l \longrightarrow_{\cap CC} blame_{T'} \ l$ then $e \longrightarrow_{\cap CC}^* e'$. By Theorem 3.6, $\Gamma \vdash_{\cap CC} e' : T$, therefore $e' \sqsubseteq blame_{T'} \ l$.

- Rule for $\lambda x: T$. $e \sqsubseteq \lambda x: T'$. e'. If $\lambda x: T$. $e \sqsubseteq \lambda x: T'$. e', then $T \sqsubseteq T'$ and $e \sqsubseteq e'$. As $\lambda x: T$. $e \longrightarrow_{\cap CC} \lambda x: T$. e and $\lambda x: T'$. $e' \longrightarrow_{\cap CC} \lambda x: T'$. e' and $\lambda x: T$. $e \sqsubseteq \lambda x: T'$. e', it is proved.
- Rule for $e_1 \ e_2 \sqsubseteq e_1' \ e_2'$. There are 6 possibilities:
 - Rule E-PushBlame 1. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T$ and $\Gamma \vdash_{\cap CC} (blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l) \ e'_2 : T'$ and $e_1 \ e_2 \sqsubseteq (blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l) \ e'_2$ then $\Gamma \vdash_{\cap CC} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$ and $\Gamma \vdash_{\cap CC} blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l : T'_1 \cap \ldots \cap T'_n \to T'$ and $\Gamma \vdash_{\cap CC} e'_2 : T'_1 \cap \ldots \cap T'_n \to T'$ and $e_1 \sqsubseteq blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l$ and $e_2 \sqsubseteq e'_2$. Therefore, $T_1 \cap \ldots \cap T_n \to T \sqsubseteq T'_1 \cap \ldots \cap T'_n \to T'$ and $T \sqsubseteq T'$. If $(blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l) \ e'_2 \longrightarrow_{\cap CC} blame_{T'} \ l$ then $e_1 \ e_2 \longrightarrow_{\cap CC}^* e$. By Theorem 3.6, $\Gamma \vdash_{\cap CC} e : T$. Therefore, $e \sqsubseteq blame_{T'} \ l$.
 - Rule E-PushBlame2. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T \ \text{and} \ \Gamma \vdash_{\cap CC} e'_1 \ (blame_{T'_1 \cap \ldots \cap T'_n} \ l) : T' \ \text{and} \ e_1 \ e_2 \sqsubseteq e'_1 \ (blame_{T'_1 \cap \ldots \cap T'_n \to T'} \ l) \ \text{then} \ \Gamma \vdash_{\cap CC} e_1 : T_1 \cap \ldots \cap T_n \to T \ \text{and} \ \Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n \ \text{and} \ \Gamma \vdash_{\cap CC} e'_1 : T'_1 \cap \ldots \cap T'_n \to T' \ \text{and} \ \Gamma \vdash_{\cap CC} blame_{T'_1 \cap \ldots \cap T'_n} \ l : T'_1 \cap \ldots \cap T'_n \ \text{and} \ e_1 \sqsubseteq e'_1 \ \text{and} \ e_2 \sqsubseteq blame_{T'_1 \cap \ldots \cap T'_n} \ l . \ \text{By Theorem Monotonicity w.r.t.} \ \text{precision} \ \text{of} \ \vdash_{\cap CC}, \ \text{as} \ e_1 \sqsubseteq e'_1 \ \text{then} \ T_1 \cap \ldots \cap T_n \to T \sqsubseteq T'_1 \cap \ldots \cap T'_n \to T' \ \text{and} \ \text{therefore} \ T \sqsubseteq T'. \ \text{If} \ e'_1 \ (blame_{T'_1 \cap \ldots \cap T'_n} \ l) \longrightarrow_{\cap CC} blame_{T'} \ l \ \text{then} \ e_1 \ e_2 \longrightarrow_{\cap CC}^* e. \ \text{By Theorem} \ 3.6, \ \Gamma \vdash_{\cap CC} e : T. \ \text{Therefore}, \ e \sqsubseteq blame_{T'} \ l.$
 - Rule E-App1. If $e_{11} e_{12} \sqsubseteq e_{21} e_{22}$ and $e_{21} e_{22} \longrightarrow_{\cap CC} e'_{21} e_{22}$ then $e_{11} \sqsubseteq e_{21}$ and $e_{12} \sqsubseteq e_{22}$ and $e_{21} \longrightarrow_{\cap CC} e'_{21}$. By the induction hypothesis, $e_{11} \longrightarrow_{\cap CC} e'_{11}$ and $e'_{11} \sqsubseteq e'_{21}$. Therefore $e_{11} e_{12} \longrightarrow_{\cap CC} e'_{11} e_{12}$. As $e'_{11} e_{12} \sqsubseteq e'_{21} e_{22}$, it is proved.
 - Rule E-App2. If $v_{11} e_{12} \sqsubseteq v_{21} e_{22}$ and $v_{21} e_{22} \longrightarrow_{\cap CC} v_{21} e'_{22}$ then $v_{11} \sqsubseteq v_{21}$ and $e_{12} \sqsubseteq e_{22}$ and $e_{22} \longrightarrow_{\cap CC} e'_{22}$. By the induction hypothesis, $e_{12} \longrightarrow_{\cap CC} e'_{12}$ and $e'_{12} \sqsubseteq e'_{22}$. Therefore $v_{11} e_{12} \longrightarrow_{\cap CC} v_{11} e'_{12}$. As $v_{11} e'_{12} \sqsubseteq v_{21} e'_{22}$, it is proved.
 - Rule E-AppAbs. If v_{11} $v_{12} \sqsubseteq (\lambda x : T_1 \cap \ldots \cap T_n ... e_2)$ v_2 and $(\lambda x : T_1 \cap \ldots \cap T_n ... e_2)$ $v_2 \longrightarrow_{\cap CC} [x \mapsto v_2]e_2$ then $v_{11} \sqsubseteq (\lambda x : T_1 \cap \ldots \cap T_n ... e_2)$ and $v_{12} \sqsubseteq v_2$. By Lemma 3.9, v_{11} $v_{12} \longrightarrow_{\cap CC}^* e$, such that $e \sqsubseteq [x \mapsto v_2]e_2$.
 - Rule E-SimulateArrow. If $\Gamma \vdash_{\cap CC} e_1 e_2 : T_{12} \cap \ldots \cap T_{n2}$ and $\Gamma \vdash_{\cap CC} (v_1 : c_1 \cap \ldots \cap c_n) v_2 : T'_{12} \cap \ldots \cap T'_{n2}$ and $e_1 e_2 \sqsubseteq (v_1 : c_1 \cap \ldots \cap c_n) v_2$ then $\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$ and $\Gamma \vdash_{\cap CC} v_1 : c_1 \cap \ldots \cap c_n : T'_{11} \to T'_{12} \cap \ldots \cap T'_{n1} \to T'_{n2}$ and $\Gamma \vdash_{\cap CC} v_2 : T'_{11} \cap \ldots \cap T'_{n1}$ and $e_1 \sqsubseteq v_1 : c_1 \cap \ldots \cap c_n$ and $e_2 \sqsubseteq v_2$. Therefore, $\vdash_{\cap CI} c_1 : T'_{11} \to T'_{12}$ and \ldots and $\vdash_{\cap CI} c_n : T'_{n1} \to T'_{n2}$ and as $e_1 \sqsubseteq v_1 : c_1 \cap \ldots \cap c_n$, then $T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2} \sqsubseteq T'_{11} \to T'_{12} \cap \ldots \cap T'_{n1} \to T'_{n2}$. By Lemma 3.10, $e_1 e_2 \to_{\cap CC}^* e$ and $e \sqsubseteq (v_1 : c_1^s \cap \ldots \cap c_m^s) (v_2 : c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2}$. As $(v_1 : c_1 \cap \ldots \cap c_n) v_2 \to_{\cap CC} (v_1 : c_1^s \cap \ldots \cap c_m^s) (v_2 : c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2}$, it is proved.
- Rule for $e: c_1 \cap \ldots \cap c_n \sqsubseteq e': c'_1 \cap \ldots \cap c'_n$. There are 5 possibilities:
 - Rule E-PushBlameCast. If $\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ and $\Gamma \vdash_{\cap CC} blame_{T'} l : c'_1 \cap \ldots \cap c'_n : T'_1 \cap \ldots \cap T'_n$ and $e : c_1 \cap \ldots \cap c_n \sqsubseteq blame_{T'} l : c'_1 \cap \ldots \cap c'_n$ then $e \sqsubseteq blame_{T'} l$ and $\vdash_{\cap CI} c_1 : T_1$ and \ldots and $\vdash_{\cap CI} c_n : T_n$ and $\vdash_{\cap CI} c'_1 : T'_1$ and \ldots and $\vdash_{\cap CI} c'_n : T'_n$ and $c_1 \sqsubseteq c'_1$ and \ldots and $c_n \sqsubseteq c'_n$. By Lemma Monotonicity w.r.t precision

- of IC, $T_1 \sqsubseteq T_1'$ and ... and $T_n \sqsubseteq T_n'$. If $blame_{T_1'} l : c_1' \cap \ldots \cap c_n' \longrightarrow_{\cap CC} blame_{T_1' \cap \ldots \cap T_n'} l$ then $e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC}^* e'$ By Theorem 3.6, $\Gamma \vdash_{\cap CC} e' : T_1 \cap \ldots \cap T_n$. As $\Gamma \vdash_{\cap CC} blame_{T_1' \cap \ldots \cap T_n'} l : T_1' \cap \ldots \cap T_n'$ then $e' \sqsubseteq blame_{T_1' \cap \ldots \cap T_n'} l$.
- Rule E-Evaluate. If $e: c_1 \cap \ldots \cap c_n \sqsubseteq e': c'_1 \cap \ldots \cap c'_n$ then $e \sqsubseteq e'$ and $c_1 \sqsubseteq c'_1$ and \ldots and $c_n \sqsubseteq c'_n$. If $e': c'_1 \cap \ldots \cap c'_n \longrightarrow_{\cap CC} e'_1: c'_1 \cap \ldots \cap c'_n$, then $e' \longrightarrow_{\cap CC} e'_1$. By the induction hypothesis, $e \longrightarrow_{\cap CC} e_1$ and $e_1 \sqsubseteq e'_1$. Therefore, by rule E-Evaluate, $e: c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} e_1: c_1 \cap \ldots \cap c_n$. Then $e_1: c_1 \cap \ldots \cap c_n \sqsubseteq e'_1: c'_1 \cap \ldots \cap c'_n$.
- Rule E-Evaluate Casts. If $v: c_1 \cap \ldots \cap c_n \sqsubseteq v': c'_1 \cap \ldots \cap c'_n$, then $v \sqsubseteq v'$ and $c_1 \sqsubseteq c'_1$ and \ldots and $c_n \sqsubseteq c'_n$. If $v': c'_1 \cap \ldots \cap c'_n \longrightarrow_{\cap CC} v': cv'_1 \cap \ldots \cap cv'_n$ then $c'_1 \longrightarrow_{\cap CI} cv'_1$ and \ldots and $c'_n \longrightarrow_{\cap CI} cv'_n$. By Lemma 3.6, $c_1 \longrightarrow_{\cap CI} cv_1$ and $cv_1 \sqsubseteq cv'_1$ and \ldots and $c_n \longrightarrow_{\cap CI} cv_n$ and $cv_n \sqsubseteq cv'_n$. Therefore, $v: c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v: cv_1 \cap \ldots \cap cv_n$. As $v \sqsubseteq v'$ and $cv_1 \sqsubseteq cv'_1$ and \ldots and $cv_n \sqsubseteq cv'_n$, then $v: cv_1 \cap \ldots \cap cv_n \sqsubseteq v': cv'_1 \cap \ldots \cap cv'_n$.
- Rule E-PropagateBlame. If $v: blame\ I_1\ F_1\ l_1\ ^{cl_1}\cap\ldots\cap blame\ I_n\ F_n\ l_n\ ^{cl_n}\sqsubseteq v': blame\ I'_1\ F'_1\ l'_1\ ^{cl'_1}\cap\ldots\cap blame\ I'_n\ F'_n\ l'_n\ ^{cl'_n}\ then\ v\sqsubseteq v'\ and\ blame\ I_1\ F_1\ l_1\ ^{cl_1}\sqsubseteq blame\ I'_1\ F'_1\ l'_1\ ^{cl'_1}\ and\ \ldots\ and\ blame\ I_n\ F_n\ l_n\ ^{cl_n}\sqsubseteq blame\ I'_n\ F'_n\ l'_n\ ^{cl'_n}.$ Therefore, $F_1\sqsubseteq F'_1\ and\ \ldots\ and\ F_n\sqsubseteq F'_n.\ if\ v': blame\ I'_1\ F'_1\ l'_1\ ^{cl'_1}\cap\ldots\cap blame\ I'_n\ F'_n\ l'_n\ ^{cl'_n}\longrightarrow_{\cap CC} blame\ F'_1\cap\ldots\cap F'_n\ l'_1,\ then\ v: blame\ I_1\ F_1\ l_1\ ^{cl_1}\cap\ldots\cap blame\ I_n\ F_n\ l_n\ ^{cl_n}\longrightarrow_{\cap CC}\ blame\ F_1\cap\ldots\cap F'_n\ l'_1.$ As $F_1\cap\ldots\cap F_n\sqsubseteq F'_1\cap\ldots\cap F'_n,\ then\ blame\ F_1\cap\ldots\cap F_n\ l_1\sqsubseteq blame\ F'_1\cap\ldots\cap F'_n\ l'_1.$
- Rule E-Remove Empty. If $v: \varnothing \ T_1^{\ cl_1} \cap \ldots \cap \varnothing \ T_n^{\ cl_n} \sqsubseteq v': \varnothing \ T_1'^{\ cl_1'} \cap \ldots \cap \varnothing \ T_n'^{\ cl_n'}$ then $v \sqsubseteq v'$. If $v': \varnothing \ T_1'^{\ cl_1'} \cap \ldots \cap \varnothing \ T_n'^{\ cl_n'} \longrightarrow_{\cap CC} v'$ then $v: \varnothing \ T_1^{\ cl_1} \cap \ldots \cap \varnothing \ T_n^{\ cl_n} \longrightarrow_{\cap CC} v$. As $v \sqsubseteq v'$, it is proved.
- Rule for $e: c_1 \cap \ldots \cap c_n \sqsubseteq e'$.
- Rule for $e \sqsubseteq e' : c'_1 \cap \ldots \cap c'_n$. There are 5 possibilities:
 - Rule E-PushBlameCast. If $\Gamma \vdash_{\cap CC} e : T$, $\Gamma \vdash_{\cap CC} blame_{T'} l : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ and $e \sqsubseteq blame_{T'} l : c_1 \cap \ldots \cap c_n$ then $e \sqsubseteq blame_{T'} l$ and $T \sqsubseteq T_1 \cap \ldots \cap T_n$. If $blame_{T'} l : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} blame_{T_1 \cap \ldots \cap T_n} l_1$ then $e \longrightarrow_{\cap CC}^* e'$. By Theorem 3.6, $\Gamma \vdash_{\cap CC} e' : T$. As $\Gamma \vdash_{\cap CC} blame_{T_1 \cap \ldots \cap T_n} l_1 : T_1 \cap \ldots \cap T_n$, then $e' \sqsubseteq blame_{T_1 \cap \ldots \cap T_n} l_1$.
 - Rule E-Evaluate. If $e \sqsubseteq e' : c'_1 \cap \ldots \cap c'_n$ then $e \sqsubseteq e'$, $\Gamma \vdash_{\cap CC} e : T$, $\vdash_{\cap CI} c'_1 : T_1$ and \ldots and $\vdash_{\cap CI} c'_n : T_n$ and $T \sqsubseteq T_1 \cap \ldots \cap T_n$. By rule E-Evaluate, $e' \longrightarrow_{\cap CC} e'_1$, therefore, by the induction hypothesis, $e \longrightarrow_{\cap CC} e_1$ and $e_1 \sqsubseteq e'_1$. By rule E-Evaluate, $e' : c'_1 \cap \ldots \cap c'_n \longrightarrow_{\cap CC} e'_1 : c'_1 \cap \ldots \cap c'_n$. By Lemma 3.4, $\Gamma \vdash_{\cap CC} e_1 : T$, therefore $e_1 \sqsubseteq e'_1 : c'_1 \cap \ldots \cap c'_n$.
 - Rule E-EvaluateCasts. If $e \sqsubseteq v : c_1 \cap \ldots \cap c_n$, then $e \sqsubseteq v$, $\Gamma \vdash_{\cap CC} e : T$, $\vdash_{\cap CI} c_1 : T_1$ and \ldots and $\vdash_{\cap CI} c_n : T_n$ and $T \sqsubseteq T_1 \cap \ldots \cap T_n$. If $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$ then, by rule E-EvaluateCasts, $c_1 \longrightarrow_{\cap CI} cv_1$ and \ldots and $c_n \longrightarrow_{\cap CI} cv_n$, and by Lemmas 3.2 and 3.3, $\vdash_{\cap CI} cv_1 : T_1$ and \ldots and $\vdash_{\cap CI} cv_n : T_n$. If $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$ then $e \longrightarrow_{\cap CC}^* e_1$. By Theorem 3.6, $\Gamma \vdash_{\cap CC} e_1 : T$, therefore $e_1 \sqsubseteq v : cv_1 \cap \ldots \cap cv_n$.
 - Rule E-PropagateBlame. If $\Gamma \vdash_{\cap CC} e : T$, $\Gamma \vdash_{\cap CC} v : blame I_1 F_1 l_1 \stackrel{cl_1}{\cap} \cap \dots \cap blame I_n F_n l_n \stackrel{cl_n}{\cap} : F_1 \cap \dots \cap F_n \text{ and } e \sqsubseteq v : blame I_1 F_1 l_1 \stackrel{cl_1}{\cap} \cap \dots \cap blame I_n F_n l_n \stackrel{cl_n}{\cap} \text{ then } e \sqsubseteq v \text{ and } T \sqsubseteq F_1 \cap \dots \cap F_n. \text{ If } v : blame I_1 F_1 l_1 \stackrel{cl_1}{\cap} \cap \dots \cap blame I_n F_n l_n \stackrel{cl_n}{\cap} \longrightarrow_{\cap CC} blame_{F_1 \cap \dots \cap F_n} l_1 \text{ then } e \longrightarrow_{\cap CC}^* e'. \text{ By Theorem 3.6, } \Gamma \vdash_{\cap CC} e' : T. \text{ As } \Gamma \vdash_{\cap CC} blame_{F_1 \cap \dots \cap F_n} l_1 : F_1 \cap \dots \cap F_n, \text{ then } e' \sqsubseteq blame_{F_1 \cap \dots \cap F_n} l_1.$
 - Rule E-Remove Empty. If $e \sqsubseteq v : \varnothing \ T_1 \ ^{cl_1} \cap \ldots \cap \varnothing \ T_n \ ^{cl_n}$ then $e \sqsubseteq v$. By Lemma 3.8, $e \longrightarrow_{\cap CC}^* e'$ and $e' \sqsubseteq v$. If $v : \varnothing \ T_1 \ ^{cl_1} \cap \ldots \cap \varnothing \ T_n \ ^{cl_n} \longrightarrow_{\cap CC} v$, then it is proved.

(2) Let's assume that $e_1 \longrightarrow_{\cap CC} e'_1$. Because e_2 is well typed, then either $e_2 \longrightarrow_{\cap CC}^* e'_2$ or $e_2 \longrightarrow_{\cap CC}^* blame_{T_2} l$. If $e_2 \longrightarrow_{\cap CC}^* e'_2$ then, by part 1, $e'_1 \sqsubseteq e'_2$. If $e_2 \longrightarrow_{\cap CC}^* blame_{T_2} l$, we are done.

References

[1] Mario Coppo, Mariangiola Dezani-Ciancaglini, et al. An extension of the basic functionality theory for the λ -calculus. Notre Dame journal of formal logic, 21(4):685–693, 1980.