

Data Analysis 2 Project

Duration: 1st Semester

Task 1 (Naive Bayes Classifier)

Reem Ghazi Alosaimi 444001268 Remas Majed Almalki 444002871

Introduction:

Naive Bayes classifiers are a collection of classification algorithms based on <u>Bayes' Theorem</u>. It is not a single algorithm but a family of algorithms where all of them share a common principle, i.e. every pair of features being classified is independent of each other. To start with, let us consider a dataset.

One of the most simple and effective classification algorithms, the Naïve Bayes classifier aids in the rapid development of machine learning models with rapid prediction capabilities.

Naïve Bayes algorithm is used for classification problems. It is highly used in text classification. In text classification tasks, data contains high dimension (as each word represent one feature in the data). It is used in spam filtering, sentiment detection, rating classification etc. The advantage of using naïve Bayes is its speed. It is fast and making prediction is easy with high dimension of data.

This model predicts the probability of an instance belongs to a class with a given set of feature value. It is a probabilistic classifier. It is because it assumes that one feature in the model is independent of existence of another feature. In other words, each feature contributes to the predictions with no relation between each other. In real world, this condition satisfies rarely. It uses Bayes theorem in the algorithm for training and prediction

Data Features:

Variable Name	Role	Туре	Variable Name	Role	Туре
ID	ID	Categorical	symmetry1	Feature	Continuous
Diagnosis	Target	Categorical	fractal_dimension1	Feature	Continuous
radius1	Feature	Continuous	radius2	Feature	Continuous
texture1	Feature	Continuous	texture2	Feature	Continuous
perimeter1	Feature	Continuous	perimeter2	Feature	Continuous
area1	Feature	Continuous	area2	Feature	Continuous
smoothness1	Feature	Continuous	smoothness2	Feature	Continuous
compactness1	Feature	Continuous	compactness2	Feature	Continuous
concavity1	Feature	Continuous	concavity2	Feature	Continuous
concave_points1	Feature	Continuous	concave_points2	Feature	Continuous

Explore the Dataset:

Loading the Dataset, View 25 Rows"df.head(25)" + "df.info()" for understanding the structure (Column Count, Column Name, Data types, And the number of non-null entries in each column) there is no Missing value! Also, we use "df.shape()" for check the size.


```
## Columns (total 32 columns):

## Columns (total 32 columns):

## Column | Non-Null Count |

## Column | Int64 |

## Column | Int6
```


Modification:

We used pd.get_dummies() function to convert categorical variables on Diagnosis column into a Binary column, True for B "Benign tumor" and False for M "malignant".

Also, we used the function "apply() with lambda" to create a new column called "Diagnosis_Encoded" the lambda check if x = true it returns 1 And if x = false it returns 0.

Before And After Converting from Categorical to Continuous Variable:

842302	М	-
		17.9
842517	М	20.5
84300903	М	19.6
84348301	М	11.4
84358402	М	20.2
843786	М	12.4
844359	М	18.2
84458202	М	13.7
844981	М	13.0
	844359 84458202	84348301 M 84358402 M 843786 M 844359 M 84458202 M

splitting the dataset into training set and test set

We evaluate the performance of a trained classification model (Naive bayes) using "accuracy_score" and "classification_report" for precision, recall and f-score.

The results show that the accuracy 97.37% Which is a good performance!

Accuracy: 97.		recall	f1-score	support	
	0.96	1.00	0.98	71	
	1.00	0.93	0.96	43	
accuracy			0.97	114	
macro avg	0.98	0.97	0.97	114	
weighted avg	0.97	0.97	0.97	114	

here we Calculate the minimum and maximum values of 'radius_mean' in the dataset that we use it on the next steps.

based on the "radius_mean" using logistic regression to predict whether a tumor is cancerous or benign based on the "radius_mean" and "Diagnosis Encoded" features.

```
** Calculate the minimum and maximum values of 'radius_mean' in the dataset
min_radius = df['radius_mean'].min()
max_radius = df['radius_mean'].max()

print(f"Minimum radius_mean: (min_radius)")
print(f"Maximum radius_mean: (max_radius)")

**Minimum radius_mean: 6.981
Maximum radius_mean: 28.11
```


visualize the performance of a classification model through a confusion matrix.which is can quickly assess how well the model is performing in distinguishing between benign and malignant tumors.

generates a pair plot to visualize key features in our Dataset, enabling easy examination of potential relationships and trends between features, which is essential for understanding the data and guiding further analysis or model development.

