Chapter I Introduction

KUROSE ROSS

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material

Thanks and enjoy! JFK/KWR

©All material copyright 1996-2012, J.F Kurose and K.W. Ross, All Rights Reserved

Nota: Conteúdo atualizado, Uminho, PMC, 2018.

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Introduction 1-1

Chapter 1: introduction

our goal:

- get "feel" and terminology
- more depth, detail later in course
- approach:
 - use Internet as example

overview:

- what's the Internet?
- what's a protocol?
- network edge; hosts, access net, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- security
- protocol layers, service models
- history

Chapter 1: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

What's the Internet: a service view

- Infrastructure that provides services to applications:
 - Web, VoIP, email, games, ecommerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet
 - provides service options, analogous to postal service

Introduction 1-7

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Q: other human protocols?

Introduction 1-9

Chapter I: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

A closer look at network structure:

- * network edge:
 - hosts: clients and servers
 - servers often in data centers
- access networks, physical media: wired, wireless communication links
- network core:
 - interconnected routers
 - network of networks

Introduction 1-11

Access networks and physical media

- Q: How to connect end systems to edge router?
- residential access nets
- institutional access networks (school, company)
- mobile access networks

keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Access net: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)</p>
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)</p>

Introduction 1-13

Access net: cable network

frequency division multiplexing: different channels transmitted in different frequency bands

Access net: cable network

- HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate (std. DOCSIS 1.0);
 - currently (DOCSIS 3.0): 400 Mbps / 100 Mbps
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend
 - unlike DSL, which has dedicated access to central office Introduction 1-15

Access net: home network wireless devices often combined in single box wireless access point (54 Mbps) Introduction 1-16

Enterprise access networks (Ethernet)

- * typically used in companies, universities, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- * today, end systems typically connect into Ethernet switch

Introduction 1-17

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft)
- 802.11b/g/n (WiFi): 11, 54, 54-600 Mbps transmission rate
- 802.11ac (5GHz): 400Mbps-2.5G

to Internet

wide-area wireless access

- provided by telco (cellular) operator, 10's km
- 3G between I and I0 Mbps;
- 4G LTE, 50 / 150 Mbps
- 5G, 10-200Mbps/up to 1.4Gbps

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

packet transmission delay time needed to transmit *L*-bit packet into link

L (bits) R (bits/sec)

1-19

Physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gpbs Ethernet
 - Category 6: I0Gbps

Physical media: coax, fiber

coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple channels on cable
 - HFC

fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10' s-100' s Gpbs transmission rate)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Introduction 1-21

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- * terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - e.g. I I Mbps, 54 Mbps, 600Mbps
- wide-area (e.g., cellular)
 - 3G cellular: ~ few Mbps
- ❖ Satellite
 - kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

Chapter I: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - forward packets from one router to the next, across links on path from source to destination
 - each packet transmitted at full link capacity

Introduction 1-25

Packet-switching: store-and-forward

- takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link
- end-end delay = 2L/R (assuming zero propagation delay)

one-hop numerical example:

- L = 7.5 Mbits
- R = 1.5 Mbps
- one-hop transmission delay = 5 sec

more on delay shortly ...

Packet Switching: queueing delay, loss

queuing and loss:

- If arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

Alternative core: circuit switching

end-end resources allocated to, reserved for "call" between source & dest:

- In diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- Commonly used in traditional telephone networks

Introduction 1-29

packet switching vs. circuit switching

Função	Rede de <u>Datagramas</u>	Rede de <u>Circuitos</u> <u>Virtuais</u> (VC)
Estabelecimento prévio da conexão (ou circuito)	Não é necessário	É necessário
Endereçamento	Endereço de origem e destino em cada PDU	PDUs contêm o identificador do circuito
Routing / Forwarding	PDUs são encaminhados de forma independente entre si	A rota é estabelecida inicialmente e todos os PDUs utilizam essa rota
Informação de estado	não é necessária	necessária por VC
Falha de um elemento de rede	não é normalmente problemática	todos os VC são terminados
Controlo de tráfego e Controlo de congestão	difícil	fácil, se os recursos atribuídos são suficientes

M.L. ...

Universidade do Minho 30

Packet switching versus circuit switching

packet switching allows more users to use network!

example:

- I Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time

circuit-switching:

10 users

packet switching:

 with 35 users, probability > 10 active at same time is less than .0004 *

Q: what happens if > 35 users?

* Check out the online interactive exercises for more examples

Introduction 1-32

Internet structure: network of networks

- End systems connect to Internet via access ISPs (Internet Service Providers)
 - Residential, company and university ISPs
- * Access ISPs in turn must be interconnected.
 - So that any two hosts can send packets to each other
- Resulting network of networks is very complex
 - Evolution was driven by economics and national policies
- Let's take a stepwise approach to describe current Internet structure

Chapter 1: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

Introduction 1-57

Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?

Organization of air travel

ticket (purchase) ticket (complain)

baggage (check) baggage (claim)

gates (load) gates (unload)

runway takeoff runway landing

airplane routing airplane routing

airplane routing

a series of steps

Introduction 1-59

Layering of airline functionality

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - change in gate procedure doesn't affect rest of system
 - allow a common context
- layering considered harmful?

Introduction 1-61

Protocol layers

- Cada camada permite:
 - cooperação entre entidades do mesmo nível protocolar que comunicam entre si... <u>criando um contexto comum</u>
- Comunicação por níveis ou camadas
 - conjunto de regras que regem a comunicação entre intervenientes,
 i.e. entre entidades ao mesmo nível funcional
 - uma entidade é uma abstração de um ou mais processos computacionais
 - as regras ou funções protocolares são implementadas pelas entidades de uma camada ou nível protocolar
 - as funções protocolares são variadas e têm âmbitos ou contextos distintos, e.g. endereçamento

MIEI-RO

Universidade do Minho

62

Protocolar functions: Examples

- geração de sinais
- definição interfaces
- sincronização
- formatação dados
- endereçamento
- detecção de erros
- correcção de erros
- controlo de fluxo

- formatação de msgs
- encaminhamento msgs
- transporte de msgs
- verificação de msgs
- recuperação de msgs
- independência dados
- privacidade/segurança
- gestão da comunicação

MIEI-RC Universidade do Minho 6

Grouping protocolar functions

- Noção de organização protocolar
 - agrupamento e estruturação de tarefas em níveis ou camadas funcionais, hierárquicas, com funções independentes e bem definidas -> constituição de uma pilha de protocolos
- Noção de serviço de comunicação
 - o resultado das tarefas executadas pela camada protocolar N para realização da função da camada superior (N+1), podendo envolver o recurso a serviços da camada N-1
 - cada camada protocolar oferece um serviço à camada superior e solicita um serviço à camada inferior através de primitivas específicas

IIEI-RC Universidade do Minho 64

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - needed?

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), PPP
- physical: bits "on the wire"

application
transport
network
link
physical

Introduction: summary

covered a "ton" of material!

- Internet overview
- what's a protocol?
- network edge, core, access network
 - packet-switching versus circuit-switching
 - Internet structure
- performance: loss, delay, throughput
- layering, service models
- security
- history

you now have:

- context, overview, "feel" of networking
- more depth, detail to follow!