Name

Use logarithmic differentiation to find the derivative of y with respect to the independent variable.

$1) y = (\cos x)^X$

Evaluate the integral.

$$2) \int \frac{\mathrm{d}x}{2\sqrt{x}(1+x)}$$

3)
$$\int \frac{8-3x}{\sqrt{25-64x^2}} dx$$

4)
$$\int \frac{dx}{(x+7)\sqrt{x^2+14x+48}}$$

5)
$$\int \frac{dx}{\sqrt{-x^2 - 14x - 40}}$$

Evaluate exactly.

6)
$$\sec\left(\tan^{-1}\left(\frac{3}{4}\right)\right)$$

Evaluate the expression.

7)
$$\sin(\tan^{-1} x)$$

8)
$$\tan \left[\sec^{-1} \frac{\sqrt{x^2 + 9}}{x} \right]$$

Find the limit.

9)
$$\lim_{x \to 1^{-}} \cos^{-1} x$$

Find the derivative of y with respect to x.

10)
$$y = \tan^{-1} \sqrt{11x}$$

11)
$$y = \sin^{-1}(e^{6t})$$

Provide an appropriate response.

12) Which of the following items is undefined and

$$csc^{-1}\frac{1}{2}$$
 or $cos^{-1}\frac{1}{2}$

Evaluate the integral.

13)
$$\int_{2}^{3} \frac{x^5 + 1}{x^6 + 6x} \, dx$$

14)
$$\int_{0}^{\pi/24} \frac{\sec^2 6x}{4 + \tan 6x} \, dx$$

$$15) \int \frac{\mathrm{d}x}{x \left(5 + 6 \ln x\right)}$$

16)
$$\int_{\pi/8}^{\pi/4} 2 \cot(2\theta) d\theta$$

17)
$$\int_{0}^{\pi/8} 12 \tan 2x \, dx$$

$$18) \int \frac{8e(8\sin 2x)}{\sec 2x} dx$$

$$19) \int \frac{25e\sqrt{5x}}{2\sqrt{x}} dx$$

$$20) \int \frac{e^{1/x}}{5x^2} dx$$

21)
$$\int_{0}^{\pi/16} (1 + e^{\tan 4x}) \sec^2 4x \, dx$$

$$22) \int_0^{\sqrt{\ln \pi}} 2x e^{x^2} \sin(e^{x^2}) dx$$

23)
$$\int_{1}^{2} 6x^{2}4x^{3} dx$$

$$24) \int_{1}^{2} \frac{6 \ln x}{x} \, dx$$

$$25) \int \frac{\log_{10} x}{x} \, \mathrm{d}x$$

Solve the initial value problem.

26)
$$\frac{dy}{dt} = e^t \sin(e^t - 1), \ y(\ln 1) = 0$$

27)
$$\frac{d^2y}{dt^2} = 4 - e^{-t}$$
, $y(1) = \frac{-1}{e}$, $y'(0) = -7$

Evaluate the integral.

$$28) \int \frac{\mathrm{d}x}{x \ln 10}$$

29)
$$\int_{0}^{20} \frac{\log_5(x+5)}{x+5} dx$$

Provide an appropriate response.

- 30) How do you know that $f(x) = -5e^x$ is concave down over every interval of x-values?
- 31) Show that the equation for converting base 10 logarithms to base 9 logarithms is $\log_9 x = \frac{\ln 10}{\ln 9} \log_{10} x$.

Solve the problem.

32) The amount of alcohol in the bloodstream, A, declines at a rate proportional to the amount, that is, $\frac{dA}{dt} = -kA$. If k = 0.6 for a particular person, how long will it take for his alcohol concentration to decrease from 0.10% to 0.05%? Give your answer to the nearest tenth of an hour.

Find the slowest growing and the fastest growing functions as $x \rightarrow \infty$.

33)
$$y = 2x^2 + 10x$$

 $y = e^x$
 $y = e^x/5$
 $y = \log_3 x$

A value of $\sinh x$ or $\cosh x$ is given. Use the definitions and the identity $\cosh^2 x - \sinh^2 x = 1$ to find the value of the other indicated hyperbolic function.

34)
$$\sinh x = -\frac{4}{3}$$
, $\tanh x =$

Rewrite the expression in terms of exponentials and simplify the results.

35)
$$(\sinh x + \cosh x)^6$$

Find the derivative of y.

36)
$$y = \ln(\text{sech} (7x + 10))$$

$$37) y = \operatorname{csch} \frac{14x}{3}$$

Find the derivative of y with respect to the appropriate variable.

38)
$$y = (8 - 8\theta) \tanh^{-1} \theta$$

Determine whether the integration formula is correct.

39)
$$\int x \operatorname{csch}^{-1} x \, dx = \frac{x^2}{2} \operatorname{csch}^{-1} x + \frac{1}{2} \sqrt{1 + x^2} + C$$

Evaluate the integral.

40)
$$\int \operatorname{sech}^2 (7x - 1) \, dx$$

41)
$$\int_{0}^{\ln 5} \cosh x \, dx$$

Express the value of the inverse hyperbolic function in terms of natural logarithms.

42)
$$\sinh^{-1}\left(\frac{-3}{4}\right)$$

Answer Key

Testname: MA2414X1REV

- 1) $(\cos x)^X$ ($\ln \cos x x \tan x$)
- 2) $\tan^{-1} \sqrt{x} + C$
- 3) $\sin^{-1}\left(\frac{8}{5}x\right) + \frac{3}{64}\sqrt{25 64x^2} + C$
- 4) $\sec^{-1}(x+7) + C$ 5) $\sin^{-1}\left(\frac{x+7}{3}\right) + C$
- 7) $\frac{x\sqrt{x^2+1}}{x^2+1}$
- 8) $\frac{3}{x}$
- 9) 0
- $10) \, \frac{11}{2(1+11x)\sqrt{11x}}$
- 11) $\frac{6 e^{6t}}{\sqrt{1 e^{12t}}}$
- 12) $\csc^{-1}\frac{1}{2}$, There is no angle whose cosecant is $\frac{1}{2}$.
- 13) $\frac{1}{6} \ln \left| \frac{747}{76} \right|$
- $14) \frac{1}{6} \ln \left| \frac{5}{4} \right|$
- 15) $\frac{1}{6} \ln |5 + 6 \ln x| + C$
- 16) $\frac{\ln 2}{2}$
- 17) 3 ln 2
- 18) $\frac{1}{2}$ e(8 sin 2x) + C
- 19) $5\sqrt{5} e^{\sqrt{5x}} + C$
- 20) $-\frac{e^{1/x}}{5} + C$
- 21) $\frac{e}{4}$
- 22) $1 + \cos 1$
- 23) $\frac{131,064}{\ln 4}$
- 24) $\frac{6 \ln 2 1}{\ln 6}$
- 25) $\frac{(\ln x)^2}{2 \ln 10}$ + C

Answer Key

Testname: MA2414X1REV

26)
$$y = -\cos(e^t - 1) + 1$$

27)
$$y = 2t^2 - e^{-t} - 8t + 6$$

28)
$$\frac{\ln|x|}{\ln 10}$$
 + C

29)
$$\frac{3 \ln 5}{2}$$

30) $f''(x) = -5e^{x}$. This is always negative so f(x) is always concave down.

31)
$$\frac{\ln 10}{\ln 9} \log_{10} x = \frac{\ln 10}{\ln 9} \cdot \frac{\ln x}{\ln 10} = \frac{\ln x}{\ln 9} = \log_9 x$$

33) Slowest:
$$y = log_3x$$

Fastest: $y = e^{x}$ and $y = e^{x}/5$ grow at the same rate

34)
$$-\frac{4}{5}$$

36)
$$-7 \tanh (7x + 10)$$

37)
$$-\frac{14}{3} \operatorname{csch} \frac{14x}{3} \operatorname{coth} \frac{14x}{3}$$

38)
$$\frac{8}{1+\theta}$$
 - 8 tanh-1 θ

40)
$$\frac{1}{7}$$
 tanh $(7x - 1) + C$

41)
$$\frac{12}{5}$$

42)
$$\ln \frac{1}{2}$$