The problems are to be presented on May 11, 2021. They should be ticked and solution paths uploaded by 23:59 on May 10, 2021.

(1) Uniform distribution

Let X_1, \ldots, X_n be a random sample from uniform $(\theta, 1)$ distribution, where $\theta < 1$ is an unknown parameter.

- (a) Find the MLE $\hat{\theta}$ of θ .
- (b) Is $\hat{\theta}$ asymptotically normal? If yes, find the asymptotic mean and variance. Otherwise, find a sequence r_n and a_n such that $r_n(\hat{\theta} a_n)$ converges in distribution to a non-degenerate (not pointmass) distribution.

(2) Cramér-Rao lower bound

Let X_1, \ldots, X_n be a random sample with the pdf $f(x|\theta) = \theta x^{\theta-1}$, where 0 < x < 1 and $\theta > 0$ is unknown. Is there a function of θ , say $g(\theta)$, for which there exists an unibiased estimator whose variance attains the Cramér-Rao lower bound? If there is, find it. If not, show why not.

(3) Minimum variance estimator

Let W_1, \ldots, W_k be unbiased estimators of a parameter θ with $\mathbb{V}ar = \sigma_i^2$ and $\mathbb{C}ov(W_i, W_j) = 0$ if $i \neq j$. Show that, of all estimators of the form $\sum a_i W_i$ where a_i s are constant and $\mathbb{E}_{\theta}(\sum a_i W_i) = \theta$, the estimator

$$W^* = \frac{\sum W_i / \sigma_i^2}{\sum (1/\sigma_i^2)}$$

has minimum variance. Show that

$$\mathbb{V}ar W^* = \frac{1}{\sum (1/\sigma_i^2)}.$$

(4) Normal unbiased esimator of μ^2

Let $X_1 \dots X_n$ be i.i.d. $\mathcal{N}(\mu, 1)$.

- (a) Show that $\bar{X}^2 \frac{1}{n}$ is unbiased esimator of μ^2 .
- (b) By using Stein's Lemma, calculate its variance and show that it is greater than the Cramér-Rao lower bound.

Hint: Recall, Stein's Lemma states that for $X \sim \mathcal{N}(\mu, \sigma^2)$ and a differentiable function g satisfying $E|g'(X)| < \infty$ it holds $\mathbb{E}\left(g(X)(X-\mu)\right) = \sigma^2 \mathbb{E}g'(X)$.

(5) Exponential family

Show that a Poisson family of distributions $\mathcal{P}oi(\lambda)$, with unknown $\lambda > 0$ belongs to the exponential family.