MAT320 Practice Problems Answer Key

10/9/2023

Problem. A rectangle is a subset $(a,b) \times (c,d) \subset \mathbb{R}^2$ where b>a and d>c. We write

$$l((a,b) \times (c,d)) = (b-a)(d-c).$$

For a subset $S \subset \mathbb{R}^2$, define

$$\mu^*(S) = \left\{ \sum_{i=1}^{\infty} \ell(R_i) \mid R_i \text{ a rectangle for } i = 1, \dots; S \subset \bigcup_{i=1}^{\infty} R_i \right\}.$$

For $a = (a_1, a_2) \in \mathbb{R}^2$ and r > 0, write

$$B(a,r) = \{(x_1, x_2) \in \mathbb{R}^2 | \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2} \}.$$

Prove that $\mu^*(B(a,r)) = r^2 \mu^*(B((0,0),1)).$

Proof. Given a set $S \subset \mathbb{R}^2$, write

$$bS = \{bs : s \in S\}$$
 for $b \in \mathbb{R}$, and

$$S + v = \{s + v : s \in S\}$$
 for $v \in \mathbb{R}^2$.

The map

$$R \mapsto rR + a$$

(where r and a are as in the problem statement) defines a bijection $\phi: \mathcal{S} \to \mathcal{S}$, where \mathcal{S} is the set of rectangles. If $T \subset S$ then $bT + v \subset bS + v$; and if $T_i \subset \mathbb{R}^2$ for $i = 1, 2, \ldots$, then

$$\bigcup_{i=1}^{\infty} (bT_i + v) = b \left(\bigcup_{i=1}^{\infty} T_i \right) + v;$$

as such, the bijection ϕ induces a bijection

$$\left\{ \{R_i\}_{i=1}^{\infty} | R_i \text{ a rectangle }, S \subset \bigcup_{i=1}^{\infty} R_i \right\} \mapsto \left\{ \{rR_i + a\}_{i=1}^{\infty} | R_i \text{ a rectangle }, S \subset \bigcup_{i=1}^{\infty} R_i \right\} \\
= \left\{ \{R_i'\}_{i=1}^{\infty} | R_i' \text{ a rectangle }, rS + a \subset \bigcup_{i=1}^{\infty} R_i' \right\}.$$

Setting S = B((0,0),1), we see that rS + a = B(a,r). Moreover $\ell(rR + a) = r^2\ell(R)$ for any rectangle R. As such, we see that

$$\left\{\sum_{i=1}^{\infty} r^2 \ell(R_i) | R_i \text{ a rectangle }, B((0,0),1) \subset \bigcup_{i=1}^{\infty} R_i \right\} = \left\{\sum_{i=1}^{\infty} \ell(R_i') | R_i' \text{ a rectangle }, B(a,r) \subset \bigcup_{i=1}^{\infty} R_i' \right\}$$

as sets. So the infima of the left hand side and the right hand side are equal; but this is what we were trying to show. \Box

Problem.

Find the measure of the set of all numbers $x \in [0,1]$ for which there are no 4s in any decimal expansion of x.

Proof. We describe the set in a way analogous to the Cantor set. The set of numbers $x \in [0,1]$ which have a 4 in the first digit of some decimal expansion is [4/10, 5/10]. The set of numbers which have a 4 in the second digit of some decimal expansion is

$$[0.04, 0.05] \cup [0.14, 0.15] \cup \ldots \cup [0.94, 0.95].$$

In general, the set of numbers which have a 4 in the k-th digit of some decimal expansion is of the form

$$[0.0...04, 0.0...05] \cup [0.0...14, 0.0...15] \cup ... \cup [0.9...94, 0.9...95]$$

where there are 10^{k-1} separate intervals in the above disjoint union.

Write $F_{10}^k \subset [0,1]$ to be the set of numbers which do *not* have a 4 in the first k digits of any of their decimal expansions. Then $F_{10}^0 = [0,1]$ since the condition is vacuous, and F_{10}^k comes from removing a finite collection of closed intervals from F_{10}^{k-1} , each of measure $1/(10)^k$. In particular, the set of numbers F described in the problem is a countable intersection of measurable sets, and is thus measurable.

We claim that the measure of F is

$$1 - \left(\frac{1}{10} + \frac{9}{100} + \frac{9*9}{1000} + \frac{9*9*9}{10000} + \dots\right). \tag{1}$$

In other words, we first remove all the numbers with a 4 in its first decimal digit. The remaining numbers all have some digit other than 4 in their first digit (for any decimal expansion); so there are 9 remaining possible first digits, and we remove all numbers with a 4 in the second digit and any one of these first digits. The remaining numbers have, for their first two digits in their decimal expansions, some two digit number with no 4s; there are 9*9 of these. So we remove all the numbers with any of these choices for their first two digits of their decimal expansions, and a 4 in the third digit. This process goes on: there are 9^{k-1} strings of k-1 digits containing no 4s, and to get F_{10}^k from F_{10}^{k-1} we remove 9^{k-1} intervals each of length 10^k from F_{10}^{k-1} .

It remains to sum (1). To do this we write this as

$$1 - \frac{1}{10} \sum_{k=0}^{\infty} \left(\frac{9}{10}\right)^k = 1 - \frac{1}{10} \left(\frac{1}{1 - \frac{9}{10}}\right) = 1 - \frac{1}{10}(10) = 0.$$

This may seem surprising, but heuristically, the probability that the k-th digit is a 4 has probability 1/10, and these events are independent, so the probability that none of the digits is a 4 should be $\prod_{k=1}^{\infty} (9/10)^k = 0$. The above computation is simply a more careful version of this argument.

Problem. Let A_i be subsets of a metric space X for $i=1,2,\ldots,$. Prove that if $B=\bigcup_{i=1}^{\infty}A_i$ then $\overline{B}\supset\bigcup_{i=1}^{\infty}A_i$. Show that the latter inclusion does not have to be an equality.

Proof. Let $x \in X$. If for every $\epsilon > 0$, $B(x, \epsilon)$ contains a point of A_j for some fixed j independent of ϵ , then $B(x, \epsilon)$ clearly contains a point of B as well. So if x is a point of closure of A_j then it is a point of closure of B. This proves the first claim in the problem.

For the second part of the problem, let $A_j = \{1/j\} \cup \{1/j + 1/k : k = 1, 2, ...\}$. Then each A_j is closed so $\overline{A_j} = A_j$. Set $B = \bigcup_{i=1}^{\infty} A_i$. Then B is not closed. Indeed, $0 \notin B$ since every element of A_j is strictly positive for any j. But $1/j \in B$ for j = 1, 2, ... So 0 is a point of closure of B that is not in B.

Problem. An F_{δ} set is a set that is a countable union of closed sets. Show that continuous functions $f: \mathbb{R} \to \mathbb{R}$ map F_{δ} sets to F_{δ} sets.

(Hint: show first that the image of a compact set under a continuous function is compact.)

Proof. Let $f: X \to Y$ be continuous. Given a countable collection of closed sets $F_i \subset X$, $i = 1, 2, \ldots$, we first note that if F_i is bounded, then it is compact; and then $f(F_i)$ is also compact and thus closed. Indeed, given any cover of $f(F_i)$, if there is an open cover $\{U_\alpha\}_{\alpha \in I}$ of $f(F_i)$, then $\{f^{-1}(U_\alpha)\}_{\alpha \in I}$ is an open cover of $f(F_i)$ by the continuity of f. As such the latter has a finite subcover, say $\{f^{-1}(U_1), \ldots, f^{-1}(U_r)\}$. But $f(f^{-1}(T)) = T$ for any $T \subset \mathbb{R}$; so if

$$F_i \subset f^{-1}(U_1) \cup \ldots \cup f^{-1}(U_r)$$
 then $f(F_i) \subset U_1 \cup \ldots \cup U_r$.

In other words, there was a finite subcover of the cover $\{U_{\alpha}\}_{{\alpha}\in I}$ of $f(F_i)$. So we have show that continuous functions take compact sets to compact sets.

Now for every F_i , writing $F_i^j = F_i \cap [j, j+1]$ for $j \in \mathbb{Z}$, we see that $F_i = \bigcup_{j \in \mathbb{Z}} F_i^j$. Thus

$$F = \bigcup_{i=1}^{\infty} F_i = \bigcup_{i=1}^{\infty} \bigcup_{j=-\infty}^{\infty} F_{ij};$$

so

$$f(F) = \bigcup_{i=1}^{\infty} f(F_i) = \bigcup_{i=1}^{\infty} \bigcup_{j=-\infty}^{\infty} f(F_{ij}).$$

The quantity on the right above is a countable union of closed sets.

Problem. Royden Problem 2.4.19.

Proof. By theorem 2.4.11 of the textbook (also proven in class), a set E is measurable if and only if for any $\epsilon > 0$, there is an open set $O \supset E$ such that $m^*(O \setminus E) < \epsilon$ (here m^* is the outer measure as defined in the textbook, which we denoted by μ^* in the lectures). Thus, if E is not measurable then there is an $\epsilon > 0$ such that for any open set $O \supset E$, we have $m^*(O \setminus E) \ge \epsilon$. However, if E has finite outer measure $m^*(E)$, then for any $\epsilon_2 > 0$ then there is an open set $V \supset E$ such that $m^*(V) < m^*(E) + \epsilon_2$. In particular, letting ϵ_2 range over 1/n, $n = 1, 2, \ldots$, and taking the intersection of the corresponding open sets, we see that there is a Borel set $\widetilde{V} \supset E$ such that $m^*(V) = m^*(E)$. Choose an open set $U \supset \widetilde{V}$ such that $m^*(U) < m^*(\widetilde{V}) + \epsilon = m^*(E) + \epsilon$. Then

$$m^*(U \setminus E) \ge m^*(U \setminus \widetilde{V}) = m^*(U) - m^*(\widetilde{V}) < \epsilon$$

where the first inequality is by monotonicity of the outer measure. But $U \supset \widetilde{V} \supset E$; so this contradicts the non-measurability of E.

Problem. Show that a function $f: \mathbb{R} \to \mathbb{R}$ that is continuous except at a finite number of points is measurable. (On the quiz, I would remind you of the definition of a measurable function.)

Proof. A function is measurable if the preimage of any open set is measurable. Write the set of points of continuity of f as

$$(-\infty, a_0) \cup (a_0, a_1) \cup \ldots \cup (a_{r-1}, a_r) \cup (a_r, \infty),$$

and for shorthand write $I_0 = (-\infty, a_0)$, $I_\ell = (a_{\ell-1}, a_\ell)$ for $\ell = 1, 2, \dots, r$, and $I_{r+1} = (a_r, \infty)$. Write f_ℓ for the restriction of f to I_ℓ . Then for any open set $U \subset \mathbb{R}$,

$$f^{-1}(U) = \left(\bigcup_{\ell=0}^{r+1} f^{-1}(U) \cap I_{\ell} \right) \cup (U \cap \{a_0, \dots, a_r\}).$$

Now $(U \cap \{a_0, \ldots, a_r\})$ is finite and so is measurable. Thus, if we show that $f^{-1}(U) \cap I_\ell$ is measurable for each $\ell = 0, \ldots, r+1$, we are done since finite unions of measurable sets are measurable. But $f^{-1}(U) \cap I_\ell = f_\ell^{-1}(U)$. Each f_ℓ is a continuous function, and the preimage of an open set under a continuous function is continuous. So indeed $f^{-1}(U) \cap I_\ell$ is open for each $\ell = 1, \ldots, r+1$.

Problem. Is the subset

$$\bigcup_{n=2}^{\infty} [1/n, 1-1/n] \times \{1/n\} \subset \mathbb{R}^2$$

compact? Here we use the standard distance metric on \mathbb{R}^2 given by

$$d((v_1, v_2), (w_1, w_2)) = \sqrt{(v_1 - w_1)^2 + (v_2 - w_2)^2}.$$

Proof. No because it is not closed:

$$\lim_{n \to \infty} (1/2, 1/n) = (1/2, 0),$$

and the right hand side is not in the set while the terms in the limit in the left hand side are all in the set. Thus (1/2,0) is a point of closure of the set which is not in the set.