# アルゴリズム論2

第 3 回: 低次元線形計画問題 (2)

関川 浩

2016/09/28

### 概要

- 3 次元線形計画問題に対する縮小法
- 4 次元以上の場合の問題点 (解決策は次回)

- 1 3 次元の線形計画問題
  - 問題の変形
  - 最適解と直線の位置関係
  - 冗長な制約
  - アルゴリズムの概略
  - 計算量

- ② 4 次元以上の場合
  - 方針
  - 計算量

- ① 3 次元の線形計画問題
- ② 4 次元以上の場合

### 3次元の線形計画問題

2次元のときと同様、以下の形のみを考える

### n 不等式制約をもつ 3 次元の線形計画問題 (特殊形)

最小化: z

条件:  $z \ge a_i x + b_i y + c_i$  (i = 1, 2, ..., n)

これは以下と等価

#### 関数の最小値

以下の関数の最小値を求めよ

$$f(x,y) \stackrel{\text{def}}{=} \max\{a_i x + b_i y + c_i \mid i = 1, 2, \dots, n\}$$

### 凸関数

#### f(x,y) は凸関数

すなわち,  $\forall (x_1,y_1), \ (x_2,y_2) \in \mathbb{R}^2 \ ((x_1,y_1) \neq (x_2,y_2)), \ 0 < \forall \lambda < 1$  に対して

$$f(\lambda x_1 + (1 - \lambda)x_2, \lambda y_1 + (1 - \lambda)y_2) \le \lambda f(x_1, y_1) + (1 - \lambda)f(x_2, y_2)$$
(\*)

注: 凸関数  $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$  が<mark>狭義凸</mark>  $\stackrel{\text{def}}{\Longleftrightarrow}$  (\*) でつねに "<" が成立

#### 凸関数の性質

- 凸関数は連続
- 凸関数が極小値を持てばそれは最小値
- 狭義凸関数は高々一つの最小値を持つ

## 多次元縮小法

 $(x^*,y^*)$ : 最適解 (f(x,y)) の最小値を与える点)

#### 多次元縮小法の流れ

- $lackloaise \mathbb{R}^2$  内の直線 l に関し  $(x^*,y^*)$  が l のどちら側にあるかを判定 (O(n) で可能)
  - (2 次元の場合の,  $c \in \mathbb{R}$  と最適解の大小判定に相当)
- ② 以下のような二直線 l', l'' を求める (O(n) で可能) l', l'' から決まる四領域のどこに  $(x^*, y^*)$  があるかを判定することにより, 元の問題の, 少なくとも n/16 個の冗長な条件が判明

注意: ステップ1で2次元の結果を利用

## 最適解と直線の位置関係 (1/5)

テスト: xy 平面内の直線に対し, そのどちら側に最適解があるかを判定

- ② ステップ1の結果を利用

ステップ1には前回の結果が利用可能

#### 補題 1

xy 平面内の任意の直線上での f(x,y) の最適解  $(\tilde{x}^*, \tilde{y}^*)$  は O(n) 時間で求められる

## 最適解と直線の位置関係 (2/5)

 $l \subset \mathbb{R}^2$ : 任意の直線

 $(\tilde{x}^*, \tilde{y}^*)$ : 直線 l 上での f(x, y) の最適解

f は凸だから  $f(x,y) < f(\tilde{x}^*, \tilde{y}^*)$  となる (x,y) は

- まったく存在しないか  $((\tilde{x}^*, \tilde{y}^*)$  が  $\mathbb{R}^2$  全体の最適解のとき)
- *l* の片側にのみ存在

(下図) もし  $f(x_1,y_1) < f(\tilde{x}^*,\tilde{y}^*)$  かつ  $f(x_2,y_2) < f(\tilde{x}^*,\tilde{y}^*)$  ⇒  $f(x_3,y_3) \leq \max\{f(x_1,y_1),f(x_2,y_2)\} < f(\tilde{x}^*,\tilde{y}^*)$ : 矛盾



## 最適解と直線の位置関係 (3/5)

 $\tilde{z}^*$ : 直線 l 上での f(x,y) の最小値  $z^*$ :  $\mathbb{R}^2$  全体での f(x,y) の最小値

• 最適解  $(\tilde{x}^*, \tilde{y}^*)$  が一意で  $(\tilde{x}^*, \tilde{y}^*, \tilde{z}^*)$  が z = f(x, y) の辺 e 上 (ただし頂点以外) に存在するとき

$$\exists i, j \text{ s.t. } e \subset \pi_i \cap \pi_j,$$
ただし,

$$\pi_i : z = a_i x + b_i y + c_i, \qquad \pi_j : z = a_j x + b_j y + c_j$$

e の射影上, f(x,y) が減少する方向を求める

- f(x,y) が減少する方向に最適解が存在
- $\bullet$  f(x,y) が一定なら  $(\tilde{x}^*, \tilde{y}^*)$  は全体の最適解



## 最適解と直線の位置関係 (4/5)

• 最適解  $(\tilde{x}^*, \tilde{y}^*)$  が一意で  $(\tilde{x}^*, \tilde{y}^*, \tilde{z}^*)$  が z = f(x, y) の頂点 (三辺  $e_1$ ,  $e_2$ ,  $e_3$  の交点) のとき

∃
$$i, j, k$$
 s.t.  $e_1 \subset \pi_i \cap \pi_j, e_2 \subset \pi_i \cap \pi_k, e_3 \subset \pi_j \cap \pi_k$ , ただし, 
$$\pi_i : z = a_i x + b_i y + c_i,$$
 
$$\pi_j : z = a_j x + b_j y + c_j$$
 
$$\pi_k : z = a_k x + b_k y + c_k$$

 $e_1$ ,  $e_2$ ,  $e_3$  の射影上, f(x,y) が減少する方向を求める

- f(x,y) が減少する方向があれば、そちら側 に最適解が存在
- そうでなければ  $(\tilde{x}^*, \tilde{y}^*)$  は全体の最適解



## 最適解と直線の位置関係 (5/5)

#### 注意

- 1上の最適解が区間をなすときは、区間の端点で上記を実行
- ullet 直線上の最小値が  $-\infty$  のときは全体の最小値も  $-\infty$
- 退化している場合 (3 平面以上が直線を共有, 4 平面以上が点を共有) も対処可能 (詳細略)

以上をまとめて

#### 補題 2

任意の直線  $l \subset (x,y)$  に対し, f(x,y) の  $\mathbb{R}^2$  での最小解が l のどちら側にあるか, あるいは l 上にあるか

は O(n) 時間で決定可能

## 冗長な制約 (1/2)

### 二つの異なる制約 $z \ge a_i x + b_i y + c_i$ , $z \ge a_j x + b_j y + c_j$ を考察

$$(a_i,b_i)=(a_j,b_j)$$
 の場合 (二平面が平行な場合)

- $c_i < c_j \Longrightarrow$  任意の (x,y) に対し  $a_i x + b_i y + c_i < a_j x + b_j y + c_j$   $\Longrightarrow a_i x + b_i y + c_i$  が冗長
- $c_i \ge c_j \Longrightarrow$  任意の (x,y) に対し  $a_i x + b_i y + c_i \ge a_j x + b_j y + c_j$   $\Longrightarrow a_j x + b_j y + c_j$ が冗長

## 冗長な制約 (2/2)

二つの異なる制約  $z \ge a_i x + b_i y + c_i$ ,  $z \ge a_j x + b_j y + c_j$  を考察 (続)

 $(a_i,b_i) \neq (a_j,b_j)$  の場合 (二平面が交線を持つ場合)

- 交線上で二制約の値は等しい
- 最適解が交線のどちら側か判定できれば一つの制約を削除可能 (最適解のある側で下側にくる制約が冗長)

**←** さきほどのテストを利用

## アルゴリズムの概略 (1/3)

n 個の制約を n/2 個の対  $\{(i,j)\}$  に分ける

- $(a_i,b_i)=(a_j,b_j)$  (二制約が平行) なら一方は削除可能
- $(a_i,b_i)\neq (a_j,b_j)$  の場合 (二制約が交線を持つ場合)
  - 交線を (x,y) 平面に射影した直線を  $l_{ij}$  とし,  $l_{ij}$  の傾きの中央値  $a_m$  を求める
  - ullet  $l_{ij}$  に対し、傾きが  $a_m$  より大きいものと、 $a_m$  以下のものの対を作り、各直線対の交点を計算
  - 交点を半分ずつに分ける傾き  $a_m$  の直線 l' を求める (交点を通る傾き  $a_m$  の直線の y 切片の中央値を求めればよいので O(n) で可能)

## アルゴリズムの概略 (2/3)

 $(a_i,b_i)\neq (a_j,b_j)$  の場合 (二制約が交線を持つ場合) (続)

- l' に関して  $(x^*, y^*)$  がどちら側にあるか判定
  - (x\*,y\*) が l' 上なら終了
  - そうでなければ, l' に関して  $(x^*, y^*)$  と反対側にある交点を考え, それを半分ずつに分ける y 軸に平行な直線 l'' を求める
  - l'' に関して  $(x^*, y^*)$  がどちら側か判定

## アルゴリズムの概略 (3/3)

 $(a_i,b_i)\neq (a_j,b_j)$  の場合 (二制約が交線を持つ場合) (続)

- l', l'' により (x,y) 平面は四領域に分割 四領域のうち  $(x^*,y^*)$  を含むものを R とし, R とは辺を共有しない 領域を R' とする
- R' に交点を持つ直線対を考えると,対の一方は R と共有点なし そのような直線を交線とする二制約の一方は冗長 (R でつねにもう一方の制約より小だから)

以上は O(n) で実行可能

 $\implies$  少なくとも制約の 1/16 は O(n) 時間で削除可能

### 注意

制約 2 個で交線 1 本, 交線 2 本で交点 1 個 ⇒ 制約 4 個で交点 1 個

### 計算量

### 定理 1

線形不等式制約がn個の3次元線形計画問題は、縮小法を用いてO(n)時間で解ける

- 1 3 次元の線形計画問題
- ② 4 次元以上の場合

### 4次元以上の場合

d 次元  $(d \ge 4)$  の場合

#### 方針

- ① 定義域  $\mathbb{R}^{d-1}$  の中で<mark>超平面</mark>を考え、そのどちら側に最適解があるかを 判定 (O(n) で可能)
- ② (1) を利用し, O(n) 時間で一定割合の冗長な制約条件を発見

#### 注意

- $\mathbb{R}^m$  内の<mark>超平面:  $a_1x_1 + \cdots + a_mx_m + b = 0$  で定義される図形本質的に  $\mathbb{R}^{m-1}$ </mark>
- (1) で (d-1) 次元の結果を利用

## 計算量

#### 多次元縮小法の計算量

- $O(2^{2^d}n)$ : n に関しては 1 次だが d に関しては二重指数 ⇒ 実用上は d が小さいときしか使えない
- $\bullet$   $O(3^{d^2}n)$  にできるが、状況は大して変わらない

⇒ ランダム化アルゴリズムを使って解決 (次回)