

Análisis de decisión

¿Qué marca la diferencia entre las buenas y las malas decisiones?

Una buena decisión es aquella que se basa en la lógica, considera todos los datos disponibles y las alternativas posibles, y aplica el enfoque cuantitativo que se vaya a describir. En ocasiones, una buena decisión tiene un resultado inesperado o desfavorable.

Los seis pasos en la toma de decisiones

- 1. Definir con claridad el problema que enfrenta.
- 2. Hacer una lista de las alternativas posibles.
- 3. Identificar los resultados posibles o los estados de naturaleza.
- **4.** Numerar los pagos (típicamente las ganancias) de cada combinación de alternativas y resultados.
- 5. Elegir uno de los modelos matemáticos de la teoría de las decisiones.
- 6. Aplicar el modelo y tomar la decisión.

Compañía Thompson Lumber

Paso 1 – Definir el problema.

- La compañía está considerando una expansión para fabricar y comercializar un nuevo producto: casetas de almacenamiento en patios.
- Paso 2 Listar las alternativas posibles.
 - Construir una planta nueva grande.
 - Construir una planta nueva pequeña.
 - No desarrollar la línea nueva del producto.
- Paso 3 Identificar los resultados posibles.
 - El mercado puede ser favorable o desfavorable.

Compañía Thompson Lumber (cont.)

Paso 4 – Listar los pagos.

Identificar los valores condicionales de las utilidades de una planta grande, de una planta pequeña, y de no hacer nada en las dos condiciones del mercado posibles.

Paso 5 – Elegir el modelo de decisión.

Esto depende del entorno, y del riesgo e incertidumbre que implica.

Paso 6 – Aplicar el modelo a los datos.

 Se usan la solución y el análisis como ayuda para tomar la decisión.

Compañía Thompson Lumber (cont.)

Tabla de decisiones con los valores condicionales de Thompson Lumber

	ESTADO DE NATURALEZA				
ALTERNATIVA	MERCADO FAVORABLE (\$)	MERCADO NO FAVORABLE (\$)			
Construir una planta grande	200,000	-180,000			
Construir una planta pequeña	100,000	-20,000			
No hacer nada	0	0			

Tipos de entorno para la toma de decisiones

Tipo 1: Toma de decisiones con certidumbre

 Quien toma las decisiones conoce con certeza las consecuencias de cada alternativa u opción de decisión.

Tipo 2: Toma de decisiones con incertidumbre

 El tomador de decisiones no conoce las probabilidades de los diferentes resultados.

Tipo 3: Toma de decisiones con riesgo

 Quien toma las decisiones conoce las probabilidades de los diferentes resultados.

Toma de decisiones con incertidumbre

Existen varios criterios para tomar decisiones con incertidumbre:

- 1. Optimista (maximax)
- 2. Pesimista (maximin)
- 3. Criterio de realismo (Hurwicz)
- 4. Probabilidades iguales (Laplace)
- 5. Arrepentimiento minimax

Maximax

Se usa para obtener la alternativa con el mejor pago (máximo).

- Identifique el pago máximo de cada alternativa.
- Elija la alternativa con el número máximo.

	ESTADO DE N		
ALTERNATIVA	MERCADO FAVORABLE (\$)	MERCADO NO FAVORABLE(\$)	MÁXIMO DE LA FILA (\$)
Construir una planta grande	200,000	-180,000	200,000
Construir una planta pequeña	100,000	-20,000	Maximax — 100,000
No hacer nada	0	0	0

Maximin

Sirve para obtener la alternativa que maximiza el pago mínimo.

- Identifique el pago mínimo de cada alternativa.
- Elija la alternativa con el número máximo.

	ESTADO DE N		
ALTERNATIVA	MERCADO FAVORABLE (\$)	MERCADO NO FAVORABLE (\$)	MÍNIMO DE LA FILA (\$)
Construir una planta grande	200,000	-180,000	-180,000
Construir una planta	100,000	-20,000	-20,000
No hacer nada	0	0	O +
			Maximin - 3-

Criterio de realismo (Hurwicz)

Este es un *promedio ponderado* del compromiso entre una decisión optimista y una pesimista.

- Elija un coeficiente de realismo α , con $0 \le \alpha \le 1$.
- Un valor de 1 es totalmente optimista, mientras que un valor de 0 es completamente pesimista.
- Calcule los promedios ponderados de cada alternativa.
- Elija la alternativa con el valor más alto.

Promedio ponderado = α (máximo en la fila) + $(1 - \alpha)$ (mínimo en la fila)

Criterio de realismo (Hurwicz)

- En la opción de planta grande con α = 0.8: (0.8)(200,000) + (1 − 0.8)(−180,000) = 124,000
- En la opción de planta pequeña con α = 0.8: (0.8)(100,000) + (1 0.8)(–20,000) = 76,000

	ESTADO DE	ESTADO DE NATURALEZA				
ALTERNATIVA	MERCADO FAVORABLE(\$)	MERCADO NO FAVORABLE (\$)	CRITERIO DE REALISMO $(\alpha = 0.8)$ \$			
Construir una planta grande	200,00	_ 180,000	0 Realismo			
Construir una planta pequeña	100,00 0	-20,000	76,00 0			
No hacer nada	0	0	0			

Probabilidades iguales (Laplace)

Consideran todos los pagos de cada alternativa.

- Calcule el pago promedio de cada alternativa.
 - Elija la alternativa con el promedio más alto.

	ESTADO DE N			
ALTERNATIVA	MERCADO FAVORABLE (\$)	MERCADO NO FAVORABLE (\$)	PROMEDIO DE LA FILA (\$)	
Construir una planta grande	200,000	-180,000	10,000	
Construir una planta pequeña	100,000	-20,000	40,000	\neg
No hacer nada	0	o Proba	ıbilidades ₀ iguales —	3-13

Se basa en la *pérdida de oportunidad* o *arrepentimiento*, y es la diferencia entre la ganancia óptima y el pago real recibido por una decisión específica.

- Cree una tabla de la pérdida de oportunidad determinando las pérdidas por no elegir la mejor alternativa.
- La pérdida de oportunidad se calcula restando cada pago de la columna, del mejor pago de la misma columna.
- Obtenga la máxima pérdida de oportunidad de cada alternativa y elija la alternativa con el número mínimo.

Determinación de las pérdidas de oportunidad para Thompson Lumber

ESTADO DE NATURALEZA						
MERCADO FAVORABLE (\$)	MERCADO NO FAVORABLE (\$)					
200,000 - 200,000	0 - (-180,000)					
200,000 - 100,000	0 - (-20,000)					
200,000 - 0	0 – 0					

Tabla de la pérdida de oportunidad para Thompson Lumber

	ESTADO DE NATURALEZA				
ALTERNATIVA	MERCADO FAVORABLE (\$)	MERCADO NO FAVORABLE (\$)			
Construir una planta grande	0	180,000			
Construir una planta pequeña	100,000	20,000			
No hacer nada	200,000	0			

Decisión minimax de Thompson usando la pérdida de oportunidad

	ESTADO DE I		
ALTERNATIVA	MERCADO FAVORABLE (\$)	MERCADO NO FAVORABLE (\$)	MÁXIMO DE LA FILA (\$)
Construir una planta grande	0	180,000	180,000
Construir una planta pequeña	100,000	20,000	100,000
No hacer nada	200,000	0	Minimax - 200,000

Toma de decisiones con riesgo

- Esta es una situación de toma de decisiones donde existen varios estados de naturaleza, y se conocen las probabilidades de que sucedan.
- El método más popular es elegir la alternativa con el mayor *valor monetario* esperado (VME).
 - > Es muy parecido al *valor esperado* calculado en el capítulo anterior.

VME (alternativa i)

- = (pago del primer estado de naturaleza)
- x (probabilidad del primer estado de naturaleza)
- + (pago del segundo estado de naturaleza)
- x (probabilidad del segundo estado de naturaleza)
- + ... + (pago del último estado de naturaleza)
- x (probabilidad del último estado de naturaleza)

VME para Thompson Lumber

- Se supone que cada resultado tiene una probabilidad de ocurrencia de 0.50.
- ¿Qué alternativa proporcionaría el VME más alto?
- Los cálculos son:

```
VME (planta grande) = (\$200,000)(0.5) + (-\$180,000)(0.5)
= \$10,000
VME (planta pequeña) = (\$100,000)(0.5) + (-\$20,000)(0.5)
= \$40,000
VME (no hacer nada) = (\$0)(0.5) + (\$0)(0.5)
= \$0
```


VME para Thompson Lumber

	ESTADO DE I		
ALTERNATIVA	MERCADO FAVORABLE (\$)	MERCADO NO FAVORABLE (\$)	VME (\$)
Construir una planta grande	200,000	180,000	10, 000
Construir una planta pequeña	100,000	-20,000	40,
No hacer nada	0	0	0
Probabilidades	0.50	0.50	
		VME m	ás grande

 El VEIP establece una cota superior sobre cuánto hay que pagar por información adicional.

• El VEcIP es el rendimiento promedio a largo plazo si tenemos información perfecta antes de tomar una decisión.

VEcIP

- = (mejor pago del primer estado de naturaleza)
- x (probabilidad del primer estado de naturaleza)
- + (mejor pago del segundo estado de naturaleza)
- x (probabilidad del segundo estado de naturaleza)
- + ... + (mejor pago del último estado de naturaleza)
- x (probabilidad del último estado de naturaleza)

- Suponga que Scientific Marketing, Inc. ofrece un análisis que proporcionará certidumbre acerca de las condiciones de mercado (favorable).
- ➤ La información adicional costará \$65,000.
- > ¿Debería Thompson Lumber comprar tal información?

Tabla de decisiones con información perfecta

	ESTADO DE N		
ALTERNATIVA	MERCADO FAVORABLE (\$)	MERCADO NO FAVORABLE (\$)	VME (\$)
Construir una planta grande	200,000	-180,000	10,000
Construir una planta pequeña	100,000	-20,000	40,000
No hacer nada	0	0	0
Con información perfecta	200,000	0	100,000
Probabilidades	0.5	0.5	VEcIP -

El VME máximo sin información adicional es

VEIP = VEcIP - VME máximo

= \$100,000 - \$40,000

= \$60,000 Tope a pagar por estudio

De modo que lo máximo que Thompson debería pagar por la información adicional son \$60,000.

El VME máximo sin información adicional es de \$40,000.

VEIP = VEcIP - VME máximo

= \$100,000 - \$40,000

= \$60,000

De modo que lo máximo que Thompson debería pagar por la información adicional son \$60,000.

Por lo tanto, Thompson no tiene que pagar \$65,000 por esta información.

Pérdida de oportunidad esperada

- □La *pérdida de oportunidad esperada (*POE) es el costo de no elegir la mejor solución.
- □Primero se construye una tabla de pérdida de oportunidad.
- □Para cada alternativa, multiplique la pérdida de oportunidad por la probabilidad de esa pérdida para resultado posible y sume los resultados.
- □La POE mínima siempre dará como resultado la misma decisión que el VME máximo.
- □La POE mínima siempre será igual al VEIP.

Pérdida de oportunidad esperada

	ESTADO DE NATURALEZA				
ALTERNATIVA		MERCADO FAVORABLE (\$)	MERCADO NO FAVORABLE (\$)	POE	
Construir una pl	anta grande	0	180,000	90,000	
Construir una pl	anta	100,000	20,000	60,000	
No hacer nada		200,000	0	100,000	
Probabilidades		0.50	0.50	POE mínima	
	Tabla 3.11				
	POI	E (planta grande) = (0.50)(9 = \$90,000	\$0) + (0.50)(\$180,000) 0		
+	POI	E (planta pequeña) = (0.50)(\$1	100,000) + (0.50)(\$20,000)		
		= \$60,000	0		
	POI	E (no hacer nada) = $(0.50)(9$	\$200,000) + (0.50)(\$0)		
		= \$100.00	00	3-27	

- El análisis de sensibilidad determina cómo cambia la decisión con diferentes datos de entrada.
- Para el ejemplo de Thompson Lumber:

P = probabilidad de un mercado favorable

(1 - P) = probabilidad de un mercado no favorable


```
VME (planta grande) = $200,000P - $180,000)(1 - P)

= $200,000P - $180,000 + $180,000P

= $380,000P - $180,000

VME (planta pequeña) = $100,000P - $20,000)(1 - P)

= $100,000P - $20,000 + $20,000P

= $120,000P - $20,000

VME (no hacer nada) = $0P + 0(1 - P)

= $0
```


Punto 1:

VME (no hacer nada) = VME (planta pequeña)

$$0 = \$120,000P - \$20,000 \qquad P = \frac{20,000}{120,000} = 0.167$$

Punto 2:

VME (planta pequeña) = VME (planta grande)

$$$120,000P - $20,000 = $380,000P - $180,000$$

$$P = \frac{160,000}{260,000} = 0.615$$

Uso de Excel

Datos de entrada para el problema de Thompson Lumber usando Excel QM

Uso de Excel

Resultados para el problema de Thompson Lumber usando Excel QM

	А	В	С	D	Е	F	G	Н	1	J	k <u>⊤</u>
1	Thomps	on Lumb	er								_
2											
3	Decision Ta	bles									
4	Enter th	ne profits o	r costs in th	e main bo	dy of the	data table.	Enter pro	babilities	in the		
5			nt to comput								
6	Data				Results						
		Favorable	Unfavorable								
7	Profit	Market	Market		EMV	Minimum	Maximum		Hurwicz		
8	Probability	0.5	0.5					coefficient	0.8		
9	Large Plant	200000	-180000		10000	-180000	200000		124000		
10	Small plant	100000	-20000		40000	-20000	100000		76000		
11	Do nothing	0	0		0	0	0				
12				Maximum	40000	0	200000		124000		
13											
14	Expected V	alue of Per	fect Informa	tion							
15	Column best	200000	0		100000	<-Expected	d value und	der certaint	У		
16							ected valu				
17					60000	<-Expected	d value of p	perfect info	rmation		
18											
19	Regret										
20		Favorable N	Unfavorable	Market	Expected	Maximum					
21	Probability	0.5	0.5								
22	Large Plant	0	180000		90000	180000					
23	Small plant	100000	20000		60000	100000					
24	Do nothing	200000	0		100000	200000					
25				Minimum	60000	100000					-

Árboles de decisiones

- Cualquier problema presentado en una tabla de decisiones se puede representar gráficamente con un árbol de decisiones.
- Los árboles de decisiones son más adecuados cuando se deben tomar decisiones una tras otra.
- Todos los árboles de decisiones tienen puntos de decisión o nodos, donde se debe elegir una entre varias alternativas.
- Todos los árboles de decisiones tienen *puntos* o *nodos de estados de naturaleza*, entre los cuales ocurrirá un estado de naturaleza.

Cinco pasos para el análisis con un árbol de decisiones

- 1. Definir el problema.
- 2. Estructurar o dibujar un árbol de decisiones.
- 3. Asignar probabilidades a cada estado de naturaleza.
- Estimar pagos para cada combinación posible de alternativas y estados de naturaleza.
- Resolver el problema calculando los valores monetarios esperados (VEM) para cada nodo de estado de naturaleza.

Estructura de los árboles de decisión

- El árbol inicia de izquierda a derecha.
- El árbol presenta las decisiones y los resultados en orden secuencial.
 - > Los cuadros representan nodos de decisión.
 - > Los círculos representan nodos de estados de naturaleza.
 - ➤ Las líneas o ramas conectan los nodos de decisión con los estados de naturaleza.

Sus componentes

Nodo terminal

Indica un resultado definitivo

Árbol de decisiones de Thompson

Árbol de decisiones de Thompson

Árbol de decisiones con pagos y probabilidades de Thompson

Árbol de decisiones complejo de Thompson

- 1. Dado un resultado favorable en el estudio de mercado,

 VME (nodo 2) = VME(planta grande | estudio positivo)

 = (0.78)(\$190,000) + (0.22)(-\$190,000) = \$106,400

 VME (nodo 3) = VME(planta pequeña | estudio positivo)

 = (0.78)(\$90,000) + (0.22)(-\$30,000) = \$63,600

 VME sin planta = -\$10,000
 - 2. Dado un resultado negativo del estudio,

 VME (nodo 4) = VME(planta grande | estudio negativo)

 = (0.27)(\$190,000) + (0.73)(-\$190,000) = -\$87,400

 VME (nodo 5) = VME(planta pequeña | estudio negativo)

 = (0.27)(\$90,000) + (0.73)(-\$30,000) = \$2,400

 VME sin planta = -\$10,000

Árbol de decisiones con pagos y probabilidades de Thompson

3. Calcule el valor esperado del estudio de mercado,

4. Si no se realiza el estudio de mercado,

 $VME \sin planta = 0

```
VME (nodo 6) = VME (planta grande)

= (0.50)(\$200,000) + (0.50)(-\$180,000) =

$10,000

VME (nodo 7) = VME (planta pequeña)

= (0.50)(\$100,000) + (0.50)(-\$20,000) =

$40,000
```


Árbol de decisiones de Thompson que muestra los VME

Valor esperado de la información muestral

 A Thompson le gustaría saber cuál es el valor real de hacer un estudio.

= (VE con información muestral + costo)- (VE sin información muestral)

$$VEIM = (\$49,200 + \$10,000) - \$40,000 = \$19,200$$

Análisis de sensibilidad

- ¿Qué tan sensibles son las decisiones a los cambios en las probabilidades?
 - ¿Qué tan sensible es nuestra decisión ante la probabilidad de obtener resultados favorables en el estudio de mercado?
 - Es decir, si la probabilidad de un resultado favorable (p = .45) cambiara, ¿tomaríamos la misma decisión?
 - ¿Cuánto podría cambiar antes de que tomáramos una decisión diferente?

Análisis de sensibilidad

```
p = \text{probabilidad de un resultado favorable}
(1-p) = \text{probabilidad de un resultado}
VME^{\text{negative}} = (\$106,400)p
+(\$2,400)(1-p)
```

Existe indiference 200 and 240 ME de realizar un estudio de mercado, nodo 1, es el mismo VME de no realizar el estudio, \$40,000

$$$104,000p + $2,400$$

= $$40,000$
 $$104,000p = $37,600$

Si p < 0.36, no se realiză el estudio. \$10.36,000 sí se realiza el estudio. = 0.36

Análisis bayesiano

- Existen muchas maneras de obtener datos de probabilidades. Pueden tener como base:
 - La experiencia e intuición del gerente.
 - Datos históricos.
 - Calcularlos a partir de otros datos usando el teorema de Bayes.
- El teorema de Bayes incorpora las estimaciones iniciales y la información acerca de la exactitud de las fuentes.
 - Permite la revisión de la estimación inicial, a la luz de nueva información.

Cálculo de las probabilidades posteriores

En el caso de Thompson Lumber supusimos estas cuatro probabilidades condicionales:

```
P (mercado favorable (MF) | resultado positivo del estudio) = 0.78 P (mercado desfavorable (MD) | resultado positivo del estudio) = 0.22 P (mercado favorable (MF) | resultado negativo del estudio) = 0.27 P (mercado desfavorable (MD) | resultado negativo del estudio) = 0.73
```

- Pero, ¿cómo se calcularon estas probabilidades?
- Las probabilidades previas de estos mercados son:

$$P ext{ (MF)} = 0.50$$

 $P ext{ (MD)} = 0.50$

Cálculo de las probabilidades posteriores

- Por el análisis de los expertos, Thompson ha conocido la información de la tabla de abajo.
- Usa esta información y el teorema de Bayes para calcular las probabilidades posteriores.

	ESTADO DE NATURALEZA				
RESULTADO DEL ESTUDIO	MERCADO FAVORABLE (MF)		MERCAI	DO DESFAVORBLE (MD)	
Positivo (predice mercado favorable para el producto)	MF)	P (estudio positivo	MD)	P (estudio positivo	
	1411)	= 0.70	MD)	= 0.20	
Negativo (predice mercado desfavorable para el producto)	negativo	<pre>P (estudio MF) = 0.30</pre>	negativo	<pre>P (estudio MD) = 0.80</pre>	

Recuerde el teorema de Bayes:

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B \mid A) \times P(A) + P(B \mid A') \times P(A')}$$

donde

$$A, B =$$
 dos eventos cualesquiera $A' =$ complemento de A

En este ejemplo, A representa un mercado favorable y B representa un estudio de mercado positivo.

$$P(\text{MF}|\text{estudio positivo}|\text{MF})P(\text{MF})$$

$$= \frac{P(\text{estudio positivo}|\text{MF})P(\text{MF}) + P(\text{estudio positivo}|\text{MD})P(\text{MD})}{P(\text{estudio positivo}|0.50) + (0.20)(0.50)} = \frac{0.35}{0.45} = 0.78$$

$$P(\text{MD}|\text{estudio positivo}) = \frac{P(\text{estudio positivo}|\text{MD})P(\text{MD})}{P(\text{estudio positivo}|\text{MD})P(\text{MD}) + P(\text{estudio positivo}|\text{MF})P(\text{MF})}$$

$$= \frac{(0.20)(0.50)}{(0.20)(0.50) + (0.70)(0.50)} = \frac{0.10}{0.45} = 0.22$$

Probabilidades revisadas dado un estudio positivo

					OBABILIDADES POSTERIORES			
ESTADO DE NATURALEZA	PROBABILIDAD CONDICIONAL P (ESTUDIO POSITIVO ESTADO DE NAT.)	PROBABILIDAD PREVIA		OBABILIDAD ONJUNTA	P (ESTAD NATURAL ESTUD POSITIN	EZA IO		
MF	0.70	X 0.50	=	0.35	0.35/0.45 =	0.78		
MD	0.20	X 0.50	=	0.10	0.10/0.45 =	0.22		
	P (estudio positivo) = 0.45					1.00		

$$P(\text{MF}|\text{estudio negativo}|\text{MF})P(\text{MF})$$

$$= \frac{P(\text{estudio negativo}|\text{MF})P(\text{MF}) + P(\text{estudio negativo}|\text{MD})P(\text{MD})}{P(\text{estudio negativo}|0.50)} = \frac{(0.30)(0.50)}{(0.30)(0.50) + (0.80)(0.50)} = \frac{0.15}{0.55} = 0.27$$

$$P(\text{MD}|\text{estudio negativo}|\text{MD})P(\text{MD})$$

$$= \frac{P(\text{estudio negativo}|\text{MD})P(\text{MD})}{P(\text{estudio negativo}|\text{MD})P(\text{MD}) + P(\text{estudio negativo}|\text{MF})P(\text{MF})}$$

$$= \frac{(0.80)(0.50)}{(0.80)(0.50) + (0.30)(0.50)} = \frac{0.40}{0.55} = 0.73$$

Probabilidades revisadas dado un estudio negativo

		PROBABILIDADE			S POSTERIORES		
ESTADO DE NATURALEZA	PROBABILIDAD CONDICIONAL P(ESTUDIO NEGATIVO ESTADO DE NATURALEZA)	PROBABILIDAD PREVIA	PROBABILIDAD CONJUNTA		P(ESTADO DE NATURALEZA ESTUDIO NEGATIVO)		
MF	0.30	X 0.50	=	0.15	0.15/0.55 =	0.27	
MD	0.80	X 0.50	=	0.40	0.40/0.55 =	0.73	
		P(estudio positivo	o) =	0.55		1.00	

Uso de Excel

Fórmulas usadas en los cálculos de Bayes con Excel

Uso de Excel

Resultados de los cálculos de Bayes con Excel

	A1 ▼	= Bayes Theorem for Tho	mpson Lumb	er Example					
	Α	В	С	D	Е	F	G	Н	
1	Bayes Theorem for Thompson Lumber Example								
2									
3	Fill in cells B7, B8,	and C7.							
4									
5	Probability Revisions Given a Positive Survey								
	State of				Posterior				
6	Nature	P(Sur.Pos. state of nature)	Prior Prob.	Joint Prob.	Probability				
7	FM	0.70	0.50	0.35	0.78				
8	UM	0.20	0.50	0.10	0.22				
9			P(Sur.pos.)=	0.45					
10									
11	Probability Revisions Given a Negative Survey								
	State of				Posterior				
12	Nature	P(Sur.Pos. state of nature)	Prior Prob.	Joint Prob.	Probability				
13	FM	0.30		0.15	0.27				
14	UM	0.80	0.50	0.40	0.73				
15			P(Sur.neg.)=	0.55					
16									

Problemas potenciales en el uso de los resultados de un estudio

- No siempre se pueden obtener los datos necesarios para el análisis.
- Los resultados del estudio pueden estar basados en casos donde ya se tomó una acción.
- La información de la probabilidad condicional quizá no sea tan precisa como quisiéramos.

Teoría de la utilidad

- El valor monetario no siempre es un indicador válido del valor integral del resultado de una decisión.
- El valor integral de una decisión se llama utilidad.
- Los economistas suponen que las personas racionales toman decisiones para maximizar su utilidad.

Teoría de la utilidad

Árbol de decisiones para un billete de lotería

Teoría de la utilidad

- La evaluación de la utilidad asigna al peor resultado una utilidad de 0; y al mejor resultado, una utilidad de 1.
- Se usa un juego estándar para determinar los valores de la utilidad.
- Cuando se es indiferente, las utilidades esperadas son iguales.

Utilidad esperada de la alternativa 2 = Utilidad esperada de la alternativa 1 Utilidad de otro resultado = (p)(utilidad del mejor resultado, que es 1) + (1 - p)(utilidad del peor resultado, que es 0)

Juego estándar para la evaluación de la utilidad

Ejemplo de inversión

- □ Jane Dickson desea construir una curva de utilidad que revele su preferencia por el dinero entre \$0 and \$10,000.
- ■Una curva de utilidad grafica los valores de la utilidad contra el valor monetario.
- ■Una inversión bancaria producirá \$5,000.
- ■Una inversión en bienes raíces producirá \$0, o bien, \$10,000.
- □ A menos que tenga un 80% de probabilidad de obtener \$10,000 en la compra de bienes raíces, Jane preferiría tener su dinero en el banco.
- \square Entonces, si p = 0.80, Jane es indiferente entre la inversión en el banco o en bienes raíces.

Ejemplo de inversión

Utilidad para
$$5,000 = U(5,000) = pU(10,000) + (1-p)U(0)$$

= $(0.8)(1) + (0.2)(0) = 0.8$

Ejemplo de inversión

- Otros valores de la utilidad se evalúan del mismo modo.
- Para Jane son:

Utilidad para \$7,000 = 0.90Utilidad para \$3,000 = 0.50

 Usando las tres utilidades de las diferentes cantidades en dólares, se puede construir la curva de utilidad.

Curva de utilidad

Curva de utilidad

- La curva de utilidad de Jane es típica de alguien adverso al riesgo.
 - Ella obtiene menos utilidad de un riesgo mayor.
 - Evita situaciones que implican pérdidas significativas.
 - Conforme el valor monetario se incrementa, su curva de utilidad aumenta a una tasa más lenta.
- Un buscador de riesgo obtiene más utilidad de un riesgo mayor.
 - Conforme el valor monetario se incrementa, la curva de utilidad aumenta a una tasa más rápida.

Alguien con indiferencia al riesgo tiene una curva de utilidad en línea recta.

Preferencias respecto al riesgo

- Una vez que se haya desarrollado la curva de utilidad, se puede usar para tomar decisiones.
- Esta sustituye los valores monetarios con los valores de la utilidad.
 - Se calcula la utilidad esperada en vez del VME.

- A Mark Simkin le encanta jugar.
- Practica un juego lanzando tachuelas (chinchetas) al aire.
- Si la tachuela apunta hacia arriba cuando cae, Mark gana \$10,000.
- Si la tachuela apunta hacia abajo cuando cae, Mark pierde \$10,000.
- Mark cree que hay un 45% de probabilidades de ganar.
- ¿Debería Mark jugar (alternativa 1)?

Decisión que enfrenta Mark Simkin

Paso 1: Definir las utilidades de Mark.

$$U$$
 (-\$10,000) = 0.05
 U (\$0) = 0.15
 U (\$10,000) = 0.30

Paso 2: Sustituir los valores monetarios con los valores de utilidad.

$$E(alternativa 1: jugar) = (0.45)(0.30) + (0.55)(0.05)$$

= 0.135 + 0.027 = 0.162
 $E(alternativa 2: no jugar) = 0.15$

Curva de utilidad de Mark Simkin

Uso de las utilidades esperadas en la toma de decisiones

Preguntas

Análisis de decisión