Grupo de Ciencia Computacional HIMFG

Introducción a Algoritmos de Machine Learning I

Random Forest

CC Creative Commons

Un caso práctico

Wisconsin Breast Cancer Dataset

Wisconsin Breast Cancer Dataset

- Imágenes digitales de **569 Pacientes**: 357 benignas, 212 malignas.
- Promedio, desviación estandard y valor máximo de 10 características en la imagen (30 atributos):

- radio - textura

- perímetro - área

- suavidad - compactación

- concavidad - simetría

- dimensión fractal - puntos cóncavos

- 1 atributo "diagnóstico": benigno - maligno

Diagnóstico	<radio></radio>	<textura></textura>	<concavidad></concavidad>	<compactación></compactación>
Maligno	20.5	25.3	0.45	0.35
Maligno	18.7	20.1	0.40	0.32
Benigno	12.1	20.8	0.15	0.22
Benigno	14.3	19.6	0.18	0.24
Maligno	21.2	26.5	0.50	0.29
Benigno	13.0	18.5	0.12	0.27

Breast Cancer Wisconsin (Diagnostic)

Donated on 10/31/1995

Diagnostic Wisconsin Breast Cancer Database.

Dataset Characteristics Subject Area Associated Tasks

Multivariate Health and Medicine Classification

Feature Type # Instances # Features

Real 569 30

Dataset Information

Additional Information

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. A few of the images can be found at http://www.cs.wisc.edu/~street/images/

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

CITE

- 99 37 citations
- **397303 views**

Keywords

health (cancer

Creators

- William Wolberg
- Olvi Mangasarian
- Nick Street
- W. Street

DOI

10.24432/C5DW2B

https://archive.ics.uci.edu/

Árbol de Decisión

Nuestra Experta Oncóloga

- Mayor **radio** → Maligno
- Mayor **textura** → Maligno
- Mayor **compactación** → Maligno
- Se tienen que cumplir las 3 condiciones

Diagnóstico	<radio></radio>	<textura></textura>	<concavidad></concavidad>	<compactación></compactación>
Maligno	20.5	25.3	0.45	0.35
Maligno	18.7	20.1	0.40	0.32
Benigno	12.1	20.8	0.15	0.22
Benigno	14.3	19.6	0.18	0.24
Maligno	21.2	26.5	0.50	0.29
Benigno	13.0	18.5	0.12	0.27

Un árbol de decisión

¿Es el radio > 17?

Diagnóstico	<radio></radio>	<textura></textura>	<concavidad></concavidad>	<compactación></compactación>
?	20.5	25.3	0.45	0.35
?	18.7	19.8	0.40	0.32
?	12.1	20.2	0.15	0.22
?	14.3	19.6	0.18	0.24
?	21.2	26.5	0.50	0.29
?	13.0	17.5	0.12	0.27

Diagnóstico	<radio></radio>	<textura></textura>	<concavidad></concavidad>	<compactación></compactación>
Maligno	20.5	25.3	0.45	0.35
Maligno	18.7	19.8	0.40	0.32
Benigno	12.1	20.2	0.15	0.22
Benigno	14.3	19.6	0.18	0.24
Maligno	21.2	26.5	0.50	0.29
Benigno	13.0	17.5	0.12	0.27
•••	•••	•••	•••	•••

Un árbol de decisión

¿Es el radio > 17?

¿Es la textura > 20?

Diagnóstico	<radio></radio>	<textura></textura>	<concavidad></concavidad>	<compactación></compactación>
Maligno	20.5	25.3	0.45	0.35
Maligno	18.7	19.8	0.40	0.32
Benigno	12.1	20.2	0.15	0.22
Benigno	14.3	19.6	0.18	0.24
Maligno	21.2	26.5	0.50	0.29
Benigno	13.0	17.5	0.12	0.27
•••	•••	•••	•••	•••

Diagnóstico	<radio></radio>	<textura></textura>	<concavidad></concavidad>	<compactación></compactación>
Maligno	20.5	25.3	0.45	0.35
Benigno	18.7	19.8	0.40	0.32
Benigno	12.1	20.2	0.15	0.22
Benigno	14.3	19.6	0.18	0.24
Maligno	21.2	26.5	0.50	0.29
Benigno	13.0	17.5	0.12	0.27
•••	•••	•••	•••	•••

Un árbol de decisión

¿Es el radio > 17?

¿Es la textura > 20?

¿Es la compactación > 0.28?

Diagnóstico	<radio></radio>	<textura></textura>	<concavidad></concavidad>	<compactación></compactación>
Maligno	20.5	25.3	0.45	0.35
Benigno	18.7	19.8	0.40	0.32
Benigno	12.1	20.2	0.15	0.22
Benigno	14.3	19.6	0.18	0.24
Maligno	21.2	26.5	0.50	0.29
Benigno	13.0	17.5	0.12	0.27
•••	•••	•••	•••	•••

¿Cómo caracterizo su acierto?

Diagnóstico	<radio></radio>	<textura></textura>	<concavidad></concavidad>	<compactación></compactación>
Maligno	20.5	25.3	0.45	0.35
Maligno	18.7	20.1	0.40	0.32
Benigno	12.1	20.8	0.15	0.22
Benigno	14.3	19.6	0.18	0.24
Maligno	21.2	26.5	0.50	0.29
Benigno	13.0	18.5	0.12	0.27

Diagnóstico	<radio></radio>	<textura></textura>	<concavidad></concavidad>	<compactación></compactación>
Maligno	20.5	25.3	0.45	0.35
Benigno	18.7	19.8	0.40	0.32
Benigno	12.1	20.2	0.15	0.22
Benigno	14.3	19.6	0.18	0.24
Maligno	21.2	26.5	0.50	0.29
Benigno	13.0	17.5	0.12	0.27
•••	•••	•••	•••	•••

Matriz de confusión

Diagnóstico

- Maligno
- Benigno
- Benigno
- Benigno
- Maligno
- Benigno

Maligno real

Maligno

predicción

Benigno

predicción

Verdaderos **Positivos Positivos**

Falsos Negativos **Falsos**

Benigno real

Verdaderos Negativos

Matriz de confusión

Diagnóstico

- Maligno
- Benigno
- Benigno
- Benigno
- Maligno
- Benigno

	Maligno real	Benigno real
Maligno predicción	2	0
Benigno predicción	1	3

• • •

Radio > 17

Textura > 20

Compact. > 0.28

Diagnóstico	<radio></radio>	<textura></textura>	<concavidad> <</concavidad>	<compactación></compactación>
Maligno	20.5	25.3	0.45	0.35
Maligno	18.7	19.8	0.40	0.32
Benigno	12.1	20.2	0.15	0.22
Benigno	14.3	19.6	0.18	0.24
Maligno	21.2	26.5	0.50	0.29
Benigno	13.0	17.5	0.12	0.27
•••	•••	•••	•••	•••

Matriz de confusión

Diagnóstico

- Maligno
- Maligno
- Benigno
- Benigno
- Maligno
- Benigno

	Maligno real	Benigno real
Maligno predicción	3	0
Benigno predicción	0	3

• • •

¿Cómo elegimos o entrenamos al experto más acertado?

¡Necesitamos un bosque!

Si consultamos a un sólo investigador, puede equivocarse. Pero si consultamos a 100

investigadores, nuestra

decisión es más confiable

Random Forest

Algoritmo de aprendizaje automático

Entrenamiento + Evaluación

Wisconsin Breast Cancer Dataset

569 Pacientes 212 Malignas + 357 Benignas

75% Entrenamiento

25% Evaluación

Tomemos un conjunto de árboles plural e independiente (muestro variado -> robusto)

Muestreo Bootstrap

100 árboles distintos

100 muestras distintas (muestra aleatoria con reemplazo)

+

7 características aleatorias distintas por árbol

Bootstrapping

"Pulling oneself up by one's bootstraps"

Cada árbol se entrena independientemente

Evaluación de:

- todas las características observadas.
 - todos los posibles puntos de corte.

Diagnóstico	<radio></radio>	
Maligno	20.5	
Maligno	18.7	
Benigno	12.1	
Benigno	14.3	n
Maligno	21.2	$S = -\sum \left(p_i \cdot \log \left(p_i \right) \right)$
Benigno	13.0	i=1 Entropía final − Entropía inicial
•••	•••	

Diagnóstico	<radio></radio>	Situación inicial
Maligno	20.5	$p_{M} = 0.5$ $p_{B} = 0.5$
Maligno	18.7	
Benigno	12.1	
Benigno	14.3	Situación final (corte en 14)
Maligno	21.2	$p_{M} = 0.75$ $p_{B} = 0.25$
Benigno	13.0	
•••	•••	\sim No $p_M = 0$ $p_B = 1$

Diagnóstico	<radio></radio>	Situación inicial
Maligno	20.5	$p_{M} = 0.5$ $p_{B} = 0.5$
Maligno	18.7	
Benigno	12.1	Cituración for al la cuta an 17
Benigno	14.3	Situación final (corte en 16)
Maligno	21.2	\int Si $p_M = 1$ $p_B = 0$
Benigno	13.0	
•••	•••	No $p_M = 0$ $p_B = 1$

Diagnóstico	<radio></radio>	Situación inicial
Maligno	20.5	$p_{M} = 0.5$ $p_{B} = 0.5$
Maligno	18.7	F M F B
Benigno	12.1	
Benigno	14.3	Situación final (corte en 19)
Maligno	21.2	$\int Si p_M = 1 p_B = 0$
Benigno	13.0	
•••	•••	No $p_M = 0.25$ $p_B = 0.75$

¡Ya tenemos cada árbol entrenado!

La decisión será tomada por mayoría (o expresando probabilidad de malignidad)

Matriz de confusión

Diagnóstico

- Maligno
- Benigno
- Benigno
- Benigno
- Maligno
- Benigno

Maligno real

Maligno

predicción

Benigno

predicción

Verdaderos **Positivos Positivos**

Falsos Negativos **Falsos**

Benigno real

Verdaderos Negativos

Wisconsin Breast Cancer Dataset

569 Pacientes 212 Malignas + 357 Benignas

Jugamos a predecir sabiendo el resultado

Diagnóstico< Radio > < Textura > < Concavidad > < Compactación >Maligno20.525.30.450.35

Bootstrapping

Diagnóstico Maligno

20.5

<Radio> <Textura> <Concavidad> <Compactación> 25.3

0.45

0.35

Maligno predicción

Benigno predicción Maligno real

Verdaderos Positivos

Falsos Negativos Benigno real

Falsos Positivos

Verdaderos Negativos

Ya tenemos nuestro clasificador/predictor entrenado y evaluado

Ventajas del Random Forest

- Funciona con mezclas de datos importantes/irrelevantes
- Resistente al sobreajuste
- Funciona con datos ruidosos
- Funciona con datos faltantes
- No requiere normalización de datos

Desventajas del Random Forest

- Lento en datasets grandes
- Require trabajo para ser interpretado, no tan sencillo como un árbol de decisión
- Puede ser problemático si el número de características irrelevantes es muy alto

¿Podemos quitar características irrelevantes antes de entrenar?

- Métodos de reducción de dimensionalidad: PCA
- Métodos estadísticos: filtramos variables con baja correlación con las etiquetas (ANOVA, **mutual information**, test de chi-cuadrado,...)

Últimos comentarios breves...

¿Por qué decimos que esto es IA?

- Inteligencia Artificial es cualquier sistema capaz de aprender de datos y tomar decisiones sin ser programado explícitamente.
- **Machine Learning** es una rama de la IA que entrena modelos para **detectar patrones** en los datos.

¿Qué es aprendizaje profundo o aprendizaje superficial?

- -Aprendizaje profundo: Redes neuronales con muchas capas, características complejas y alto número de parámetros. (Redes neuronales "complejas", Transformers, etc... Large Language Models)
- **Aprendizaje superficial**: Modelos con pocas capas o reglas de decisión. (Random Forests... algoritmos de ML)

¿Qué es aprendizaje supervisado, no supervisado y reforzado?

- -Aprendizaje supervisado: Se entrena con etiquetas. Por ejemplo, nuestro Random Forest con imágenes de tejidos marcados como malignos o benignos.
- **Aprendizaje no supervisado**: Se entrena sin etiquetas. Por ejemplo algoritmos de clústering como K-means.
- **Aprendizaje no reforzado**: Se entrena por ensayo-error con recompensa. Por ejemplo robots que aprenden a realizar tareas.

¿Qué sirven los algoritmos de Machine Learning?

- -**Agrupamiento**: Algoritmos de aprendizaje no supervisado como algoritmos de clustering
- Clasificador/Predictor: Distingue/Predice categorías como el Random Forest.
- **Regresión**: Predice valores continuos como una serie temporal.

¿Qué otros tipos de algoritmos de Machine Learning hay?

-SVM

-XGBoost

- LightGBM

- KNN

- Regresión lineal - Redes neuronales

¿Podemos saber qué características son relevantes para el clasificador?

- **Random Forest** nos dice qué características son más importantes por construcción. Otros algoritmos no lo hacen...
- SHAP (SHappely Additive Explanations) mide el impacto de cada característica en la predicción final de cualquier modelo de Machine Learning.

¿Te vas a atrever?

MUCHAS GRACIAS...

