

Lecture 3: Planar Linkage Kinematics

Topics: 9/3/25 Planar Mechanisms – Part 2 (Chap 2)

Announcements

- Campuswire signup https://campuswire.com/p/G3410F2ED Access code: 4362
- Gradescope submissions: PDF format, pages for each question properly tagged. Starting Lab 2 and HW 2, lose points for improperly formatted submissions
- Project 1 description posted on Canvas

Activities & Upcoming Deadlines

- Project Teams will be identified and used starting Lab 2
- Lab 1: post-lab due 1 week after lab section
- Lab 2 (Design Lab 1): Review lab manual. Submit Pre-lab assignment to <u>Gradescope</u>
- **HW** 1: Due 9/2-9/9 in <u>Gradescope</u>
- **HW 2**: Posted. Due 9/9 in <u>Gradescope</u>

Lecture 4: Monday 9/8/25 Planar Mechanisms – Part 3 (Chap 2)

Lecture 5: Wednesday 9/10/25 Module 2 (Graphical Linkage Synthesis – Part 1 (Chap 3))

Project 1: Overview and Deliverables

- University management is seeking efficient ways to deliver small packages in dormitories, laboratories, and at McKinley Health Center.
- They want to create a scaled prototype (approximately 1/10 scale) of a legged dispensing robot that can travel down hallways and deliver items on demand.
- Project 1 will focus on the manual dispensing and timing mechanisms.

ILLINOIS

Some key system requirements

- Design and prototype a Manual Dispensing Mechanism
 - Repeated cycle with two main tasks:
 - must release exactly one object from its storage bin, allow it to drop or be discharged
 - remain in a dwell position until the next release
- The dispenser should hold at least 5 objects to be dispensed weighing 25 g or less.
- The dispenser will be hand-cranked, with no other human input other than loading objects at the beginning of the sequence.
- When mounted on legged robot in Project 2, the dispensing mechanism must release a single object every 2 meters of travel.
- Payload dispensing should be stable (no bouncing) and result in consistent orientation.
- Each team has a tracked budget of \$50.00 for internal purchases from the Innovation Studio (here)
- Design must be creative, aesthetic, and human-centered.

Project 1: Deliverables

Week	Task	Grade
9/1 - 9/5	Deliverable 1 and 2: Individual brainstorming and	Lab 2 grade
	sketches (10%). Team brainstorming on user experience	
	and system requirements (15%)	
	Lab 2 (Design Lab 1): Ideate	
9/8 – 9/12	Deliverable 3: Initial prototyping and ideation activity	Lab 3 grade
	Lab 3 (Design Lab 2): Prototype	
9/15 – 9/19	Deliverable 4: Low-fidelity prototype(s) and	40%
	presentation due in lab	
	Lab 4: Conceptual Design Review	
10/6 - 10/10	Deliverable 5: Final Prototype and Presentation	60%
	Due in Lab 7: Project 1 Final	
	Peer Evaluation Multiplier – Individual final project	
	grade will be modified based on team member peer	
	evaluations	

Lectures 2-4 Topics: Planar mechanism kinematics

- Planar Kinematics
- Identifying links and joints
- Degrees of Freedom
- Mechanism mobility
 - Degrees of freedom in a mechanism
- Gruebler's Equation (Gruebler-Kutzbach Equation)
- Mechanisms, structures, and preloaded structures

- Four-bar linkage mechanisms
 - · Crank-rocker, double crank, double rocker, crank-slider
- Transformation Rules
- Isomers
- Gruebler's Paradoxes Inversions
- Grashof Condition
- Toggle Position
- Transmission angle (section 3.3)

Recall- Types of joints – classified by # DOF

(or friction gears, no slippage)

- Full joint: Allows 1 DOF at the joint and removes 2 DOF
- Examples:
 - pin (rotating) joint

Translating full slider (P) joint (form closed)

- slider (prismatic) joint
- pure rolling joint no slippage, e.g., gears
- Rotating full pin (R) joint (form closed) $\begin{array}{c}
 \Delta\theta \\
 \hline
 \lambda x \\
 \hline
 \lambda x \\
 \hline
 Rolling pair
 \end{array}$ Rotating full pin (R) joint (form closed)

- Half joint: Allows 2 DOF at the joint, and removes 1 DOF, in planar mechanisms
- Examples
 - pin in slot
 - rolling contact sliding

Recall: Gruebler's Equation

How to compute mobility or #DOF?

Lose 3 DOF by grounding one link $\#DOF = 3(n-1) - 2J_1 - J_2$ Lose 1 DOF by connecting with half joint

Lose 2 DOF by connecting with full joint

where
$$n = \#$$
 links $J_1 = \#$ full joints $J_2 = \#$ half joints

Four-bar linkage – basic building block mechanism

Tour-bar illikage – basic bullullig block illechallishi

Four-bar linkage (crank-rocker)

Crank-rocker example: Windshield wiper

Four-bar linkage: Identify links, joints and # DOF

$$do_f : 3(m-1) - 2J_1 - J_2$$

$$= 3(4-1) - 2(2) - D$$

$$= 9 - 8 = 1$$

Accounting Method for determining DOF:

Draw symbols on a mechanism and count up links and joints

$$(4)$$
 = full joint (J_1)

Other 4-bars - Vise Grips - Rocker-rocker

Other 4-bars: Corkscrew - Rocker-slider

Example: Scotch yoke mechanism

Video of Scotch yoke mechanism http://youtu.be/ K4PSV4MO70

Practice: Scotch yoke

= 1

Identify links, joints and calculate # DOF by using Gruebler's equation

Video of Scotch yoke mechanism http://youtu.be/ K4PSV4MO70

Class exercise #1: For backhoe, (a) Label links and joints (b) Determine mechanism DOF

How many DOF does this mechanism have?

- = link
- 7) = full joint (J_1)
- = half joint (J_2)

DOF = 3(6-1) - 2*7 - 1 = 0

Case 1: assume slipping (rolling + sliding)

Case 2: assume no slipping (pure rolling)

How many DOF does this mechanism have?

- 6 = link
- (8) = full joint (J_1)
- \bigcirc = half joint (J₂)

DOF = 3(6-1) - 2*8 - 0 = -1

ILLINOIS

Four Transformation rules & their effect on DOF

Rule 1: replace a <u>pin joint</u> with a <u>sliding joint</u> \rightarrow no change in DOF

Rule 2: remove a link & full-joint \rightarrow *DOF* is decreased 1

Rule 3: replace a full-joint with half-joint \rightarrow *DOF increased by 1*

Rule 4: nodes can be combined to create higher order multi-joints \rightarrow *no change in DOF*

Four Transformation rules & their effect on DOF

Rule 1: replace a *pin joint* with a *sliding joint* → *no change in DOF*

Rule 2: remove a link & full-joint→ *DOF* is decreased 1

Rule 3: replace a full-joint with half-joint \rightarrow *DOF increased by 1*

Rule 4: nodes can be combined to create higher order multi-joints \rightarrow *no change in DOF*

Isomers of 1-DOF mechanisms

Number of Valid Isomers

Links	Valid Isomers
4	1
6	2
8	16
10	230
12	6856

The only fourbar isomer

Stephenson's sixbar isomer

Watt's sixbar isomer

Practice: Identify Sixbar Isomer

can be both (rule 9)

Planar mechanisms in Nature

http://www.youtube.com/watch?v=pDU4CQWXaNY

Sling Jaw Wrasse: A Unique Feeding Mechanism

- The *Epibulus insidiator* possesses the most extreme jaw protrusion ever measured in fishes
- This motion may be understood through kinematic model, combining <u>fourbar</u> and <u>sixbar</u> linkages

ILLINOIS

Exercise: Linkage Biomechanics

Can you find the 4 and 6 bar linkages? The sixbar is which isomer?

Linkage Biomechanics

The sixbar is which isomer?

Westneat, J. exp. Biol. 159, 165-184 (1991))

