

基于神经符号融合推理的可验证的线性时态逻辑可满足性近似检测

罗炜麟 中山大学 2024-7 贵阳、毕节

- 线性时态逻辑 (Linear Temporal Logic, LTL)
 - 时态算子: next (X) 、until (U) 、 always (G) 、 eventually (F) 等
 - 例如, $G(req \rightarrow F grant)$
 - 应用:形式化验证、规则学习

- LTL可满足性检测 (LTL Satisfiability Checking)
 - 检测给定的LTL公式是否是可满足的 (Satisfiable)
 - PSPACE-complete
- 可满足性检测繁重的下游任务
 - 例如,需求修复 (Specification Repair)和边界条件识别 (Boundary Condition Identification)

[1] Jianwen Li, Shufang Zhu, Geguang Pu, Lijun Zhang, Moshe Y. Vardi: SAT-based explicit LTL reasoning and its application to satisfiability checking. Formal Methods Syst. Des. 54(2): 164-190 (2019)

- 相关工作
 - 基于逻辑的方法:
 - 基于制表式 (Tableau) 的方法[1]
 - 基于布尔可满足性问题 (Boolean Satisfiability Problem, SAT) 的方法[2,3]
 -
 - 正确 (Sound) 且完备 (Complete)
 - 依赖于精心设计的启发式搜索规则
 - 设计良好的启发式搜索规则困难且耗时!

[1] Matteo Bertello, Nicola Gigante, Angelo Montanari, Mark Reynolds: Leviathan: A New LTL Satisfiability Checking Tool Based on a One-Pass Tree-Shaped Tableau. IJCAI 2016: 950-956 [2] Jianwen Li, Shufang Zhu, Geguang Pu, Lijun Zhang, Moshe Y. Vardi: SAT-based explicit LTL reasoning and its application to satisfiability checking. Formal Methods Syst. Des. 54(2): 164-190 (2019) [3] Jianwen Li, Geguang Pu, Yueling Zhang, Moshe Y. Vardi, Kristin Y. Rozier: SAT-based explicit LTLf satisfiability checking. Artif. Intell. 289: 103369 (2020)

- 相关工作
 - 缺乏一种**快速-精确**权衡的LTL可满足性**近似检测**方法
 - 多项式时间 (Polynomial Time)
 - 高精度地检测可满足性

- 总结
 - 针对特定领域的LTL公式存在高效的专用算法
 - 专用算法设计困难并且依然存在难以求解的公式
 - 面对可满足性检测繁重任务, 缺乏一种快速-精确权衡的方法
- 我们的工作
 - 小模型是否可以进行可满足性近似检测?
 - · **大模型**是否可以进行可满足性近似检测?
 - 可验证的线性时态逻辑可满足性近似检测
- •核心挑战
 - 构建LTL在离散域的推理和深度神经网络在连续域的推理的联系

基于逻辑属性启发的端到端方法[1,2,3]

——小模型是否可以进行可满足性近似检测?

[1] Weilin Luo, Hai Wan, Jianfeng Du, Xiaoda Li, Yuze Fu, Rongzhen Ye, Delong Zhang: Teaching LTLf Satisfiability Checking to Neural Networks. IJCAI 2022: 3292-3298

[2] Weilin Luo, Hai Wan, Delong Zhang, Jianfeng Du, Hengdi Su: Checking LTL Satisfiability via End-to-end Learning. ASE 2022: 21:1-21:13

[3] Weilin Luo, Yuhang Zheng, Rongzhen Ye, Hai Wan, Jianfeng Du, Pingjia Liang, Polong Chen: SAT-Verifiable LTL Satisfiability Checking via Graph Representation Learning. ASE 2023: 1761-1765

- 设计具有LTL逻辑属性的神经网络
 - 局部相关
 - 置换不变
 - 序列性
- 分析现有常见神经网络是否可以对齐LTL逻辑属性
 - Transformer
 - Recursive Neural Network (TreeNN)
 - Graph Neural Network (GNN)

- 局部相关
 - 语法
 - 例如, (p U q)∧Xr
 - 语义
 - 例如, $\{a, \neg b\}, \{\neg a, \neg b\}, \{\neg a, \neg b\}^{\omega} \vDash a \cup Xb$
- 置换不变
 - 子公式置换不变性
 - 例如, $p \lor q \equiv q \lor p$
 - 原子命题置换不变性
 - 例如, $(p \mathbf{U} q) \wedge \mathbf{G} \neg (r \wedge q) \text{ vs. } (p \mathbf{U} \mathbf{a}) \wedge \mathbf{G} \neg (r \wedge \mathbf{a})$
- 序列性
 - 例如, $(p \mathbf{U} q) \wedge \mathbf{G} \neg r \text{ vs. } (q \mathbf{U} r) \wedge \mathbf{G} \neg r$

- 基于 Transformer 的嵌入模型
 - LTL公式可以视为词元 (token) 序列
 - 例如, $a \mathbf{U} \mathbf{X} b \rightarrow \mathbf{U} a \mathbf{X} b$
 - 通过训练 Transformer 模型预测可满足性
 - · 序列性: 位置编码
 - **局部相关**和**置换不变**:多头自注意力机制 (Multi-head Self-attention) 有潜力学习

- •基于 TreeNN 的嵌入模型
 - LTL公式的抽象语法树
 - 局部相关: 递归神经网络的结构

算法 6.2 COMBINE

Input :子公式嵌入的聚合 \mathbf{r} 和逻辑算子 op。

Output :嵌入 r_{out}。

$$\mathbf{1} \mathbf{r}' \leftarrow \sigma \left(\mathbf{W}_{0,op} \cdot \mathbf{r} \right)$$

$$\mathbf{r}_{out} \leftarrow \mathbf{W}_{1,op} \cdot \mathbf{r}' + \mathbf{W}_{2,op} \cdot \mathbf{r}$$

3 return $\mathbf{r}_{out}/\|\mathbf{r}_{out}\|_2$

- **置换不变性**和**序列性**:设计满足可交换 性或者序列性的聚合函数
 - 置换不变性: 平均汇聚 (Mean Pooling)
 - 序列性: 拼接 (Concatenate)

(north∨west) U Xdoor 表示

- •基于 GNN 的嵌入模型
 - LTL公式的图表示
 - 抽象语法树
 - 自动机
 - 基于relational graph convolutional network (RGCN) 的 嵌入方法^[1]
 - **局部相关**:消息传递机制 (Message Passing)
 - 序列性: W_r

$$\mathbf{x}_{v}^{(t+1)} = \sigma \left(\sum_{r \in R_{\phi}^{L}} \sum_{u \in \mathcal{N}(v,r)} \frac{1}{|\mathcal{N}(v,r)|} \mathbf{W}_{r} \mathbf{x}_{u}^{(t)} \right)$$

(north V west) U Xdoor 基于抽象语法树的图表示

[1] Pashootan Vaezipoor, Andrew C. Li, Rodrigo Toro Icarte, Sheila A. McIlraith: LTL2Action: Generalizing LTL Instructions for Multi-Task RL. ICML 2021: 10497-10508

- •基于 GNN 的嵌入模型
 - 一步展开图 (One-step Unfolded Graph, OSUG)

$$\mathbf{X}\phi_i \equiv \mathsf{T} \wedge \mathbf{X}\phi_i \qquad \phi_i \; \mathbf{U} \; \phi_j \equiv \phi_j \vee (\phi_i \wedge \mathbf{X}(\phi_i \; \mathbf{U} \; \phi_j))$$
now next now next

- ·局部相关:消息传递机制
- · 序列性和置换不变性: 节点类型

$$\mathbf{v}_i^{(t)} = \mathbf{W}_1 \mathbf{v}_i^{(t-1)} + \mathbf{W}_2 \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \mathbf{v}_j^{(t-1)}$$

• 更强的特征抽取能力

 $(p \land q)$ U Xr 或者 $(p \land q) \lor Xr$?

• 实验结果

approach	acc.	pre.	rec.	F1	time
Transformer	70.60	71.02	69.61	70.31	57.09
RGCN	65.42	71.06	52.01	60.06	3,642.99
TreeNN-MP	86.15	90.55	80.73	85.36	1,792.11
TreeNN-con	93.76	98.17	89.19	93.47	1,814.88
EQNET	90.73	94.87	86.13	90.29	485.08
TreeNN-inv	91.79	96.23	87.00	91.38	416.96

• TreeNN > Transformer > RGCN: 满足越多的

approach	satisfiability checking acc. pre. rec. F1 time						
random	50.00	50.00	50.00	50.00	-		
TreeNN-con TreeNN-inv	93.61 93.42	97.70 97.45	89.32 89.18	93.32 93.13	5,371.56 4,968.67		
Transformer	-	-	-	-	-		
OSUG-SAGE	98.48	99.58	98.89	99.23	68.11		

满足越多的逻辑属性越有利

• OSUG > TreeNN > Transformer: OSUG拥有更强的特征抽取能力

——大模型是否可以进行可满足性近似检测?

[1] Weilin Luo, Weiyuan Fang, Junming Qiu, Hai Wan, Yanan Liu, Rongzhen Ye: ITG: Trace Generation via Iterative Interaction between LLM Query and Trace Checking. NIER@ICSE 2024: 11-15

- LTL<u>迹</u>生成
 - 例如,输入a U Xb,输出 $\{a, \neg b\}, \{\neg a, \neg b\}, \{\neg a, \neg b\}^{\omega}$
 - 验证LTL可满足性检测
- •神经网络是否可以进行端到端的生成?
 - · 以多项式时间进行可验证的LTL可满足性识别

- 相关工作:基于Transformer的迹生成模型[1]
 - 神经网络有能力进行迹生成
 - 有限原子命题
 - 公式规模受限
 - 训练代价巨大
- 大模型是否可以进行可满足性近似检测?
 - 有能力进行逻辑推理
 - 有能力通过交互修复结果
 - 有限原子命题 -> 理解组合符号的能力
 - 巨大的训练代价 -> 少量样本提示学习

[1] Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus Norman Rabe, Bernd Finkbeiner: Teaching Temporal Logics to Neural Networks. ICLR 2021

- ITG: 迭代交互方法
 - 期望大模型能够利用丰富的 LTL 专业知识启发式地生成可 满足迹
 - 大模型可以定位在特定领域, 并通过提示引出该领域的专业 知识
 - 大模型推理+逻辑推理

- 如何高效反馈生成迹的正确性?
 - 迹和LTL公式的**可满足性证明**
 - 多项式时间
 - 例如, $\{a\}\{$ $\}(\{a,b\})^{\omega} \models a \mathbf{U} \mathbf{X}b \ \text{和} \ \{a\}(\{a\})^{\omega} \not\models a \mathbf{U} \mathbf{X}b$

- 初始提示
 - 输入(公式)+输出(迹)+迹生成任务描述+约束
 - 1 Generate a satisfiable trace from input LTL formula. The possible atomic propositions
 - will be given. The possible operators are &, |, !, X, F, G, U. Trace should be less than
 - 3 10 states. Each state should not contain dublicated atomic propositions. The output trace
 - should be a list of states. Do not use ... in output. For example: LTL: a U (X b) Trace:
 - 5 [[a],[],[b]] FINISH LTL: F(a & X b) Trace: [[a],[b]] FINISH LTL: G(a | ! b) Trace:
 - 6 [[],[a]] FINISH LTL: a U (X b) Trace: [[a],[a]] FINISH
- 修复提示
 - 输入(公式,迹,证明)+输出(修复迹)+实例
 - The trace you give does not satisfy the LTL formula. There is a proof to guide you to
 - 2 regenerate a satisfiable trace. For example: LTL: a U (X b) Trace: [[a],[a]] Proof: {[[a]]
 - anot satisfies b; [[a]] not satisfies X b; [[a]] not satisfies a U (X b); [[a],[a]] not satisfies
 - 4 X b} Repaired Trace: [[a], [a], [b]] FINISH

- •实验结果
 - SOTA 神经网络的方法无法拟合大规模公式
 - ITG可以进行有效的迹生成
 - ITG具有跨公式长度的泛化能力
 - 可满足性证明对于提高迹生成性能是有效的
 - ITG优于其他常见的基于提示的方法

	[5, 20)	[20, 40)	[40, 60)	[60, 80)	[80, 100)
CoT-node	77.00	74.50	69.30	64.70	59.80
CoT-tree	80.20	74.20	69.50	65.40	62.30
CoT-SC	88.00	80.40	76.50	73.60	72.60
ITG	91.20	81.00	70.30	75.50	75.00

	[5, 20)	[20, 40)	[40, 60)	[60, 80)	[80, 100)
Transformer	93.30	76.21	58.66	58.32	56.35
			-		
	[5, 20)	[20, 40)	[40, 60)	[60, 80)	[80, 100)
random Transformer	54.20 93.30	52.10 71.30	53.10 60.30	53.10 54.20	54.00 51.60
ITG-init	69.90	61.50 81.00	59.60 70.30	57.60 75.50	57.20 75.00

基于可微迹检测的可满足性检测[1]

——可验证的线性时态逻辑可满足性近似检测

[1] Weilin Luo, Pingjia Liang, Junming Qiu, Polong Chen, Hai Wan, Jianfeng Du, Weiyuan Fang: Learning to SAT-verifiably Check LTL Satisfiability via Differentiable Trace Checking. ISSTA 2024

- 研究现状
 - 迹生成方法无法扩展到具有大规模原子命题的公式
 - 逐字符输出的生成模型效率低下
- •核心挑战
 - 连续域和离散域之间的差距
 - 多解问题
- 我们的方法
 - LTL 编码 -> 神经迹检测
 - 联合学习

- LTL 编码
 - 语法树的先序遍历序列 $\langle v_1, ..., v_{|\phi|} \rangle$, v_i 对应一个子公式
 - v_{i+1} 对应的子公式是 v_i 对应的子公式的**左子公式**
 - 6元组 $\eta = (\eta_{right}, \eta_{atom}, \eta_{\neg}, \eta_{\wedge}, \eta_{X}, \eta_{U})$
 - $(\eta_{right})_{ij}$: v_i 对应的子公式的**右子公式**是否是 v_j 对应的子公式
 - $(\eta_{atom})_{i,j}$: v_i 对应的子公式是否是**原子命题** p_j
 - $(\eta_{op})_i$: v_i 对应的子公式是否是op-公式, 其中 $op \in \{\neg, \land, X, U\}$
 - 例如, $\langle \mathbf{U}p_1\mathbf{X}p_2\rangle$ 对应LTL编码是
 - $(\eta_{U})_{1} = 1$, $(\eta_{right})_{1,3} = 1$, $(\eta_{atom})_{2,1} = 1$, $(\eta_{X})_{3} = 1$, $(\eta_{atom})_{3,2} = 1$
 - 其它为0

• 张量化迹

• 2元组(*s*, *l*)

• $(s)_{i,j}$: i时刻 p_j 是否为真

• $(l)_i$: i时刻是否是环开始

• 例如, $(\{p_1, p_2\}, \{p_1\})^{\omega}$ 的张量化迹是

$$s = \begin{bmatrix} 1.0 & 1.0 \\ 1.0 & 0.0 \end{bmatrix}, \quad \boldsymbol{l} = \begin{bmatrix} 1.0 \\ 0.0 \end{bmatrix}$$

• NTCNet: LTL 编码参数化神经网络

• $(\theta_{right}, \theta_{atom}, \theta_{\neg}, \theta_{\wedge}, \theta_{X}, \theta_{U}) = (\eta_{right}, \eta_{atom}, \eta_{\neg}, \eta_{\wedge}, \eta_{X}, \eta_{U})$

基于可微迹检测的可满足性检测

- NTCNet的推理:可微迹检测
 - 输入: 张量化迹, LTL编码
 - 推理过程 (NTCNet(*))

• 推理过程(NTCNet(*))
$$(x_{i})_{j} = \sigma((p_{i})_{j} + (\theta_{\neg j})_{j}\sigma(1-(x_{i})_{j+1}) + (\theta_{\neg j})_{j}\sigma((x_{i})_{j+1} + (r_{i})_{j} - 1) + (\theta_{\bigcirc j}(x_{i+1})_{j+1} + (\theta_{\bigcirc j}(x_{i+1})_{j+1} + (\theta_{\bigcirc j}(x_{i})_{j}),$$

$$(x_{|\pi|+1})_{j+1} = \sum_{k=1}^{|\pi|} (l)_{k}(x_{k})_{j+1},$$

$$(1) \qquad (x_{|\pi|+1})_{j}^{(t)} = \begin{cases} (r_{i})_{j}, & t = 1, \\ \sigma(\sigma((x_{i})_{j+1} + (u_{i+1})_{j}^{(t-1)} - 1) + \text{ otherwise, (5)} \\ (u_{i})_{j}^{(1)}, & (u_{i})_{i}^{(1)}, & (u_{i})_$$

 $(\mathbf{p}_i)_j = \sum_{l=1}^{|\mathbb{P}|} (\theta_{atom})_{j,k}(s)_{i,k}.$

•**定理 1**. 令 ϕ 是LTL公式, η 是 ϕ 的LTL编码。对于任意的迹 π ,其张 量化迹为(s, l), $NTCNet((s, l), \eta) = 1$ 当且仅当 $\pi \models \phi$ 。

基于可微迹检测的可满足性检测

• SAT可验证的可满足性检测

推理

Algorithm 2: SAT-verifiable LTL satisfiability checking

Input: An LTL formula ϕ .

Output: Whether ϕ is satisfiable or not and a satisfiable trace π of ϕ if it is satisfiable.

- $_1(p_{SC}, \phi) \leftarrow SCNet(\phi)$
- $_2(s, l) \leftarrow \mathsf{TGNet}(\phi)$
- $\pi \leftarrow \text{ROUND}((s, l))$
- 4 $st \leftarrow \text{TraceCheck}(\pi, \phi)$
- 5 **if** st is SAT or $p_{SC} > \beta_{SAT}$ **then**
- 6 return SAT, π
- 7 else
- return UNSAT

基于可微迹检测的可满足性检测

(8)

• SCNet: 端到端的可满足性检测

 $\mathbf{s}_{i,j} = (\mathsf{softmax}(\mathsf{ReLU}(\boldsymbol{W}_{9}\mathsf{ReLU}(\boldsymbol{W}_{8}\boldsymbol{v}_{i}^{(T,i)} + \boldsymbol{b}_{8}) + \boldsymbol{b}_{9})))_{2}$ (7)

• OSUGlayer: 基于OSUG图的表示学习

 $l = \operatorname{softmax}([x_1, \dots, x_{N_t}]),$

• TGNet: 端到端的迹生成

 $x_i = \mathbf{W}_{11} \text{ReLU}(\mathbf{W}_{10} \mathbf{v}_g^{(T,i)} + \mathbf{b}_{10}) + \mathbf{b}_{11},$

Encoder: 多层OSUGlayer

• Decoder: 一层OSUGlayer解码一个时刻

- 实验结果
 - VSCNet拟合分布内数据的能力最强
 - VSCNet具有一定跨公式长度泛化的能力
 - 运行时间具有显著优势

approach	acc.	pre.	rec.	F1	sacc.	time
random	50.01	50.01	49.28	49.64	51.88	0
Aalta	100.00	100.00	100.00	100.00	100.00	12,784,302
nuXmv	100.00	100.00	100.00	100.00	100.00	6,848
TreeNN-inv	93.27	97.75	88.58	92.94	-	434
TreeNN-MP	86.54	90.74	81.40	85.82	-	455
TreeNN-con	89.38	95.96	82.22	88.56	-	459
Transformer-SC	72.56	74.24	69.10	71.58	1-1	104
Transformer-TG	-	-	-	Tu-	47.67	5,484
Transformer	59.30	62.79	45.64	52.86	45.09	10,601
OSUG	98.47	99.15	97.79	98.46	55.22	2,816
VSCNet-T (our)	93.45	97.47	89.22	93.16	71.86	364
VSCNet-G (our)	99.15	99.47	98.83	99.15	91.01	156

总结

- 1. 提出了一种可验证的LTL可满足性近似检测方法
- 2. 探究了大模型在LTL推理任务上的潜力
- 3. 两种神经符号融合推理机制
 - 神经网络属性对齐逻辑属性
 - 研究神经网络在逻辑推理任务上的表达能力

Thank You

Backup

- Semantics of LTL
 - $\pi_t \models p \text{ iff } p \in s_t, p \in \mathbb{P}$
 - $\pi_t \vDash \neg \varphi$ iff $\pi_t \not\vDash \varphi$
 - $\pi_t \vDash \varphi_1 \lor \varphi_2$ iff $\pi_t \vDash \varphi_1$ or $\pi_t \vDash \varphi_2$
 - $\pi_t \vDash F\varphi$ iff $\pi_{t+1} \vDash \varphi$
 - $\pi_t \vDash \varphi_1 U \varphi_2$ iff $\exists k \geq t, \pi_k \vDash \varphi_2$ and $\forall t \leq j < k, \pi_j \vDash \varphi_1$