3.2 H EΞΙΣΩΣΗ $x^{v} = \alpha$

• Έστω η εξίσωση $x^3=8$. Όπως αναφέραμε στον ορισμό της ν-οστής ρίζας μη αρνητικού αριθμού, η εξίσωση $x^3=8$ έχει ακριβώς μια θετική λύση, την $\sqrt[3]{8}=2$. Η εξίσωση αυτή δεν έχει μη αρνητικές λύσεις, γιατί για κάθε $x\leq 0$ ισχύει $x^3\leq 0$.

Επομένως η εξίσωση $x^3 = 8$ έχει ακριβώς μια λύση, την $\sqrt[3]{8}$.

Γενικότερα:

Η εξίσωση $x^v = \alpha$, με $\alpha > 0$ και v περιττό φυσικό αριθμό, έχει ακριβώς μια λύση, την $\sqrt[v]{\alpha}$.

• Έστω η εξίσωση $x^4=16$. Όπως και προηγουμένως η εξίσωση αυτή έχει ακριβώς μια θετική λύση, την $\sqrt[4]{16}=2$. Η εξίσωση αυτή όμως έχει ως λύση και την $-\sqrt[4]{16}=-2$, αφού $(-\sqrt[4]{16})^4=(\sqrt[4]{16})^4=16$.

Επομένως η εξίσωση $x^4=16$ έχει ακριβώς δύο λύσεις, την $\sqrt[4]{16}=2$ και την $-\sqrt[4]{16}=-2$. Γενικότερα:

Η εξίσωση $x^v = \alpha$, με $\alpha > 0$ και \mathbf{v} άρτιο φυσικό αριθμό, έχει ακριβώς δύο λύσεις, τις $\sqrt[v]{\alpha}$ και $-\sqrt[v]{\alpha}$.

• Έστω η εξίσωση $x^3 = -8$. Έγουμε διαδοχικά:

$$x^3 = -8 \Leftrightarrow -x^3 = 8 \Leftrightarrow (-x)^3 = 8 \Leftrightarrow -x = \sqrt[3]{8} \Leftrightarrow x = -\sqrt[3]{8} = -2.$$

Επομένως η εξίσωση αυτή έχει ακριβώς μια λύση, την $-\sqrt[3]{8} = -2$.

Γενικότερα:

Η εξίσωση $x^v = \alpha$, με $\alpha < 0$ και v περιττό φυσικό αριθμό, έχει ακριβώς μια λύση, την $-\sqrt[n]{|\alpha|}$.

• Έστω η εξίσωση $x^4=-4$. Επειδή για κάθε x ισχύει $x^4\geq 0$, η εξίσωση είναι αδύνατη. Γενικότερα:

Η εξίσωση $x^{v} = \alpha$, με $\alpha < 0$ και v άρτιο φυσικό αριθμό, είναι αδύνατη.

3.2 H EEI $\Sigma\Omega\Sigma$ H $x^v=a$ 87

Από τα παραπάνω συμπεράσματα και από το γεγονός ότι η εξίσωση $x^{v} = \alpha^{v}$, με $v \in \mathbb{N}^{*}$, έχει προφανή λύση τη $x = \alpha$, προκύπτει ότι:

- Αν ο ν <u>περιττός,</u> τότε η εξίσωση $x^v = \alpha^v$ έχει μοναδική λύση, τη $x = \alpha$.
- An oin $\underline{\alpha\rho\tau\iota o\varsigma}$, tote η exispos $\mathbf{x}^{\mathsf{v}}=\alpha^{\mathsf{v}}$ exelds dustes, tis $\mathbf{x}_{_{1}}=\alpha$ kal $\mathbf{x}_{_{2}}=-\alpha$.

ЕФАРМОГН

Nα λυθεί η εξίσωση $x^4 + 8x = 0$.

ΛΥΣΗ

$$x^{4} + 8x = 0 \Leftrightarrow x(x^{3} + 8) = 0$$
$$\Leftrightarrow x = 0 \text{ } \acute{\eta} \text{ } x^{3} = -8$$
$$\Leftrightarrow x = 0 \text{ } \acute{\eta} \text{ } x = -\sqrt[3]{8} = -2.$$

ΑΣΚΗΣΕΙΣ Α΄ ΟΜΑΔΑΣ

1. Να λύσετε τις εξισώσεις

i)
$$x^3 - 125 = 0$$

ii)
$$x^5 - 243 = 0$$

iii)
$$x^7 - 1 = 0$$
.

2. Να λύσετε τις εξισώσεις

i)
$$x^3 + 125 = 0$$

ii)
$$x^5 + 243 = 0$$

iii)
$$x^7 + 1 = 0$$
.

3. Να λύσετε τις εξισώσεις

i)
$$x^2 - 64 = 0$$

ii)
$$x^4 - 81 = 0$$

iii)
$$x^6 - 64 = 0$$
.

4. Να λύσετε τις εξισώσεις

i)
$$x^5 - 8x^2 = 0$$

ii)
$$x^4 + x = 0$$

iii)
$$x^5 + 16x = 0$$
.

- 5. Ένα ορθογώνιο παραλληλεπίπεδο έχει όγκο 81m³ και διαστάσεις x, x και 3x. Να βρείτε τις διαστάσεις του παραλληλεπιπέδου.
- 6. Να λύσετε τις εξισώσεις

i)
$$(x + 1)^3 = 64$$

ii)
$$1 + 125x^3 = 0$$

ii)
$$1 + 125x^3 = 0$$
 iii) $(x - 1)^4 - 27(x - 1) = 0$.