Data Mining Project #1 & #2

Contents of this project

- Know your data
 - Feature understanding (attribute types)
 - Mean (median), percentile
 - Biasness, Distribution
- Data pre-processing
- Problem definition
 - Task
 - Input, Output
 - Evaluation metric
- Method
- Result

Project Requirements

- Template
 - 3+ pages report
 - Introduction (1-2+ paragraphs)
 - Problem definition (1-2+ paragraphs)
 - Data understanding (3-5+ paragraphs)
 - Data preprocessing (3+ paragraphs)
 - Method (3+ paragraphs)
 - Experimental Result (3+ paragraphs)
 - Conclusion (1 paragraphs)
 - MS word format
 - Language: English or Korean
- Tasks:
 - Step 1: Know your data
 - Step 2: Data preprocessing
 - Step 3: Machine learning analysis
- WRITE YOUR REPORT WITH FULL SENTENCES

Part #1: ~ 6/3(Mon)

Part #2: ~ 6/17(Mon)

Task for Project #1

- You can choose one of the following tasks
 - Item recommendation
 - Classification (e.g. news category classification)
 - Regression (e.g. rating prediction)

Method for Project #1

- You can choose any method for your task
 - Item recommendation → e.g. matrix factorization
 - Classification → e.g. Decision tree, Naive Bayes
 - Regression → e.g. linear regression, logistic regression

Dataset

Amazon dataset

News dataset

Movie dataset

Any dataset you want (e.g. music dataset, sports dataset)

BASIC WRITING INFORMATION

•1 PARAGRAPH = 1 IDEA

•1 PARAGRAPH = 5-9 SENTENCES

•ALWAYS START YOUR PARAGRAPH WITH TOPIC SENTENCE

- News category classification
 - Input: News article
 - Output: News category

News article

- Introduction (1-2+ paragraphs) which contains
 - why this problem is important
 - why do you want to solve this task
 - what is the application scenario of the task

•

- Problem definition (1-2+ paragraphs) which contains
 - formal definition of the task with notations
 - Input / output format (train / test)
 - News document $d = \{w_1, w_2, ..., w_m\}$, which is combined with headline and short description.
 - A set of category $C = \{c_1, c_2, ..., c_n\}$
 - Type of attributes
 - Intuitive figure for the toy example
 - description of each attribute

```
"headline":"There Were 2 Mass Shootings
In Texas Last Week, But Only 1 On TV",
"authors":"Melissa Jeltsen",
"link":"https://www.huffing....",
"short_description":"She left her husband.
He killed their children.
Just another day in America.",
"date":"2018-05-26"
```

CRIME SPORTS POLITICS CULTURE

Figure 1. example of news classification

- Data understanding (3-5+ paragraphs)
 - 3-5 data (statistical) analysis
 - Including 2-3 figures for the analysis
 - Statistical observation
 - Distribution analysis

- Data preprocessing (3+ paragraphs) that contains
 - Why do we need this processing
 - Distribution analysis
 - How to handle it, how to solve it
 - Effectiveness of the preprocessing

• Data imbalance problem

Semantic clustering for data imbalance

- Data preprocessing
 - Convert Unicode into its equivalent character.
 - Before: Joe Biden Urges National Unity In Speech On Renewed \u2018Cancer Moonshot\u2019
 - After: Joe Biden Urges National Unity In Speech On Renewed 'Cancer Moonshot'
- Frequency handling with threshold
- Capitalization (lower case handling)

- Method (3+ paragraphs) that contains
 - Basic explanation of the method
 - Including framework or method figure (optional)
 - 1 or 2 more baselines for the method validation

- e.g., Naive Bayes Algorithm for classification.
- The Naive Bayes algorithm is a probabilistic classifier based on Bayes' Theorem.
- It calculates the probability that a given document d belongs to a certain category c based on the features (words) it contains.
- Bayes' theorem: $P(c|d) = \frac{P(d|c) \times P(c)}{P(d)} \propto P(d|c) \times P(c)$
- It assumes that attributes are conditionally independent: $P(d|c) \times P(c) = \prod_{j=1}^{n} P(w_j|c) \times P(c)$

- Experimental results (3+ paragraphs) that contains
 - Experimental setting
 - Evaluation metrics
 - Overall performance with tables or figures
 - Quantitative analysis
 - Qualitative analysis
 - Error case analysis
 - How to solve the error case

category	Accuracy	F1	Recall	Precision
Total	0.49	0.30	0.23	0.45
Politics	0.974	0.73	0.67	0.80
:	:	:	:	:
Sports	0.39	0.40	0.43	0.38

- Conclusion (1 paragraph) that contains
 - Brief summary of the report
 - Observation and result