

Art work by Matteo Farinella

http://www.opensourcebrain.org

wellcometrust

OSB meeting Organization and funding

Organising committee: **Padraig Gleeson**, Boris Marin, Eugenio Piasini, Sharon Crook, Angus Silver

Local organisers: Sergio Solinas, Irene Solinas

Symposium: Oscillation and resonance in CNS network loops

Funding:

OPEN SOURCE BRAIN

Making models more transparent and accessible with NeuroML2/LEMS

Angus Silver

OSB2014 - Sardinia

http://www.opensourcebrain.org

How to make computational neuroscience a more accepted scientific approach?

Reproducibility: easy to rerun and validate simulation result reported in a scientific paper.

Accessibility: available to theoretical and experimental neuroscientists in an understandable format

Portability: cross-simulator validation and exchange of models and components enabling reuse

Transparency: exposure of internal properties and automated validation

Neuroinformatics infrastructure

NeuroML

A simulator-independent language for describing and exchanging detailed neuronal and network models

LEMS

Compact and flexible model description language that underlies NeuroML 2

The Open Source Brain Initiative

Accessible repository of standardized models and infrastructure for collaborative, open source model development

The Open Source Brain repository

About

Explore Open Source Brain

Sian ir

Sign up

Modelling the brain, together

Open Source Brain is a resource for sharing and collaboratively developing computational models of neural systems.

About Guides Research Themes

Open Source Brain © 2013. All rights reserved. Website powered by Redmine

Supported by wellcometrust

Current model development life-cycle

Current model development life-cycle

OSB collaborative development scenario

Channel density distribution on Purkinje cell

OSB iterative development through critical evaluation

http://www.opensourcebrain.org

254 Members 42 Research groups 79 Projects

How to make computational neuroscience more scientific?

Reproducibility: easy to rerun and validate simulation result reported in a scientific paper.

Accessibility: available to theoretical and experimental neuroscientists in an understandable format

Portability: cross-simulator validation and exchange of models and components enabling reuse

Transparency: exposure of internal properties and automated validation

