

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS YEAR TWO SEMESTER ONE EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE COMPUTER SCIENCE

COURSE CODE : CSC 216

COURSE TITLE

DIGITAL AND ANALOGUE

COMMUNICATION SYSTEM

DATE: 16/06/2021 TIME:

09.00 A.M - 11.00 A.M

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTIONS ONE AND ANY OTHER TWO

QUESTION ONE [COMPULSORY] [30 MARKS]

Communication channels can be classified as either line communication or radio communication.		
and distinguish between the two classifications.		
[4 marks]		
e and internal noise. State how each one can be minimized.		
[4 marks]		
king and demultiplexing. [4 marks]		
Determine the average conversion time of a 12-bit ADC of the counter type for an input clock frequency of 1MHz		
[5 marks]		
ss the following digital modulation techniques.		
[2 marks]		
[2 marks]		
[2 marks]		
uency range from $650 \mathrm{kHz}$ to $660 \mathrm{kHz}$ has a $75 \mathrm{k}\Omega$ input resistance		
. Taking Boltzmann's constant=1.33x10 ⁻²³ joule/Kelvin,		
input [3 marks]		
[2 marks]		
[2 marks]		
QUESTION TWO [20 MARKS]		
3-FC modulation in AM (3 marks)		
niques from each other		
carrier (DSB-SC) [2 marks]		
[3 marks]		
[3 marks]		
be the following modulation techniques:		
on (PAM) [3 marks]		
PWM) [3 marks]		
(PPM). [3 marks]		

QUESTION THREE [20 MARKS]

- a) State two merits of digital modulation techniques: [2 marks]
- b) Highlight the following digital modulation techniques:
 - i. Synchronous Time Division Multiplexing [2 marks]
 - ii. Asynchronous Time Division Multiplexing [2 marks]
- c) With the help of block diagrams, explain Pulse Code Modulation [6 marks]
- d) A certain radio station uses an FM carrier frequency of 100.5MHz that is modulated by 4kHz sine wave with a resulting frequency deviation of 35kHz. Determine:

i.	the carrier swing of the FM signal	[2 marks]
ii.	the highest frequency reached by the FM signal	[2 marks]
iii.	the lowest frequency reached by the FM signal	[2 marks]
137	the modulated index	[2 marks]

QUESTION FOUR [20 MARKS]

a) Outline five reasons for signal modulation

[5 marks]

- b) A radio station antenna transmits AM waves at 75kW of carrier power. Determine the total radiated power at 80% modulation? [4 marks]
- c) Highlight effects of aliasing and name three ways aliasing can be eliminated. [4 marks]
- d) Figure 1 shows a block diagram of a digital communication system. Highlight the function of each block. [7 marks]

Figure 1

QUESTION FIVE [20 MARKS]

a) A certain digital signal is represented by the binary pulses 111001011000. Draw the resulting digital waveforms when the following line coding schemes are used:

i.	On-off (RZ)	[2 marks]
ii.	Polar (RZ)	[1 mark]
iii.	Bipolar (RZ)	[1 mark]
iv.	On-off (NRZ)	[2 marks]
V.	Polar (NRZ)	[1 mark]

b) Describe the working principle of a Digital-to-Analogue Convertor (DAC) shown in figure 2 below.

[10 marks]

Figure 2

c) A certain communication device uses a transmitting antenna that is 5cm in length. Determine the frequency at with the device is able to transmit. Take the speed of light to be 2.998 x 10⁸ ms⁻¹.

[3 marks]