### Problema:

Abbiamo alcune immagini che contengono oggetti simili e vogliamo contarli. In generale: calcolo e individuazione delle componenti connesse (per esempio nel senso della 8-connessione).

### Occorre considerare:

- Tipo di immagini
- Rumore presente
- Binarizzazione (che strategia adottare)
- Operatore morfologico per le componenti connesse
- Rappresentazione risultati





#### Nel nostro caso:

- Immagine a livelli di grigio
- Rumore Gaussiano additivo
- Procederemo trovando i bordi:
  - 1. utilizzare proprio codice con operatori discreti per derivate parziali con *immagine regolarizzata*, norma-1 per il gradiente, sogliatura sulla norma (sperimentare diversi valori di soglia)
  - 2. utilizzare il metodo di Canny implementato in Matlab (Image processing toolbox): funzione edge
- Utilizzare metodo per il conteggio delle componenti connesse.
- Rappresentare con colori differenti (funzione Matlab pcolor)

Utilizzare help edge e help pcolor per i parametri e l'utilizzo delle due funzioni.

Nel seguito si utilizzano alcune slide del Prof. Raffaele Cappelli – Ingegneria e scienze informatiche – Università di Bologna

# Canny edge detector

- Il metodo di Canny produce edge connessi che possono essere efficacemente utilizzati per le successive fasi di elaborazione.
- L'approccio prevede le seguenti fasi:
  - □ 1) Smoothing gaussiano dell'immagine
  - □ 2) Calcolo del gradiente
  - □ 3) Soppressione dei non-massimi in direzione ortogonale all'edge
  - □ 4) Selezione degli edge significativi mediante isteresi
- I risultati dipendono da alcuni parametri:
  - $\Box$   $\sigma$  ampiezza della gaussiana nella prima fase
  - □ Dimensione del filtro nella prima fase
  - □ T1 e T2 soglie per l'isteresi nell'ultima fase

# Canny - 1) Smoothing Gaussiano

- Gli elementi sono pesati secondo una funzione gaussiana.
  - Il parametro σ controlla l'ampiezza della gaussiana e quindi l'entità della regolarizzazione.
  - □ Il filtro è separabile: conviene effettuare la convoluzione con due filtri 1D (identici fra loro)
- Approssimazione con valori interi (per maggiore efficienza)
  - Il termine (1/sqrt(...)) può essere trascurato, in quanto dopo il calcolo è comunque necessario normalizzare gli elementi rispetto alla somma dei pesi
  - □ Esempio ( $\sigma$ =1) di una possibile soluzione:

$$G_{2D}(x,y,\sigma) = \frac{1}{2\pi\sigma^2} \cdot \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$



$$G_{1D}(t, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \cdot \exp^{-\frac{t^2}{2\sigma^2}}$$

$$G_{2D}(\mathbf{x}, \mathbf{y}, \mathbf{\sigma}) = G_{1D}(\mathbf{x}, \mathbf{\sigma}) \cdot G_{1D}(\mathbf{y}, \mathbf{\sigma})$$



Filtro 1D (ignorando termine moltiplicativo)



Approssimazione intera e normalizzazione

# Canny - 2) Calcolo del gradiente

- Operatori da utilizzare
  - □ Dato che lo smoothing dovrebbe aver rimosso la maggior parte del rumore, l'implementazione più efficiente si avvale degli operatori di Roberts
  - □ Risultano tuttavia di più semplice applicazione gli operatori di Prewitt, in quanto non ci si deve preoccupare della rotazione degli assi di 45°
- Esempio del risultato della fase 2 utilizzando gli operatori di Prewitt:



# Calcolo del gradiente – Operatori di Roberts

- Convoluzione con una coppia di filtri 2x2
  - □ Misurano il gradiente lungo assi ruotati di 45° rispetto agli assi dell'immagine (con origine in alto a sinistra)
    - Questo consente di calcolare le due componenti del gradiente nel medesimo punto (esattamente al centro di quattro pixel adiacenti)
- Caratteristiche
  - Pro: possono essere calcolati in modo rapido ed efficiente
  - □ Contro: sono molto sensibili al rumore
- Calcolo del gradiente
  - Per maggiore efficienza il modulo è spesso approssimato come somma dei moduli delle due componenti
  - □ L'orientazione va riportata alle coordinate canoniche (ruotando di 45°)









$$\|\nabla\| = \sqrt{\nabla x^2 + \nabla y^2} \cong |\nabla x| + |\nabla y|$$

$$\theta = \arctan_q (\nabla y, \nabla x) + \frac{\pi}{4}$$

# Operatori di Prewitt e di Sobel

- Prewitt: due filtri 3x3
  - Meno sensibili a variazioni di luce e rumore
  - Calcolo del gradiente lungo una direzione e media locale (smooth) lungo la direzione ortogonale
  - Simmetrici rispetto al punto di applicazione
  - □ Assi x e y orientati in modo tradizionale
    - Origine in alto a sinistra (se si lavora con l'origine in basso è sufficiente invertire il filtro y)
- Sobel: due filtri 3x3
  - □ Peso maggiore al pixel centrale









Punto su cui si calcola il gradiente

$$\nabla = \sqrt{\nabla x^2 + \nabla y^2}$$

$$\theta = \arctan_q (\nabla y, \nabla x)$$



# Canny – 3) Soppressione dei non-massimi

- Obiettivo
  - □ Eliminare dall'immagine modulo-gradiente i pixel che non sono massimi locali rispetto all'orientazione del gradiente
- Diversi approcci possibili
  - □ Il più semplice consiste nell'analizzare l'intorno 3x3 di ogni pixel, eliminando i pixel che non rispettano la condizione di massimo locale lungo la direzione del gradiente (ortogonale all'edge)



## Canny – 3) Soppressione dei non-massimi (2)

- Verifica della condizione di massimo locale nell'intorno 3x3
  - □ Si stima il modulo del gradiente nei punti p₁ e p₂ mediante interpolazione lineare
    - La figura mostra l'interpolazione nel caso l'orientazione del gradiente appartenga al primo ottante; gli altri casi sono analoghi
  - □ Il pixel p viene conservato solo se  $\|\nabla [\mathbf{p}]\| \ge \|\nabla [\mathbf{p}_1]\| \wedge \|\nabla [\mathbf{p}]\| \ge \|\nabla [\mathbf{p}_2]\|$
  - Questo approccio non garantisce edge di spessore unitario (benché in genere lo siano)
    - A tale fine può essere utilizzata una procedura di thinning al termine dell'intero algoritmo



$$\|\nabla[\mathbf{p}_1]\| \cong d \cdot \|\nabla[\mathbf{p}_{\mathbf{B}}]\| + (1 - d)\|\nabla[\mathbf{p}_{\mathbf{A}}]\|$$

$$\|\nabla[\mathbf{p}_2]\| \cong d \cdot \|\nabla[\mathbf{p}_{\mathbf{F}}]\| + (1-d)\|\nabla[\mathbf{p}_{\mathbf{E}}]\|$$

$$d = \frac{\nabla y[\mathbf{p}]}{\nabla x[\mathbf{p}]}$$

# Canny – 4) Selezione finale degli edge

## Isteresi

- □ Al fine di selezionare solo gli edge significativi (tralasciando edge "spuri"), ma evitando allo stesso tempo la frammentazione, si utilizza il concetto di isteresi: vengono impiegate due soglie T₁ e T₂, con T₁>T₂ per scremare ulteriormente i massimi locali ottenuti nella fase precedente:
  - Sono inizialmente considerati validi solo i pixel in cui il modulo del gradiente è superiore a T<sub>1</sub>.
  - I pixel il cui modulo è inferiore a T<sub>1</sub> ma superiore a T<sub>2</sub> sono considerati validi solo se adiacenti a pixel validi.
- □ T₁ e T₂ sono tipicamente espresse come valori fra 0 e 1 (il modulo del gradiente va normalizzato nello stesso intervallo per permettere il confronto con le due soglie).
- Una corretta scelta di T<sub>1</sub> e T<sub>2</sub>, così come un'adeguata scelta di σ nella prima fase, sono molto importanti per ottenere gli effetti desiderati.
  - La scelta dipende solitamente dall'applicazione e sono tipicamente necessari vari esperimenti per giungere ai valori ottimali dei parametri.

### Semplice algoritmo per estrarre componenti connesse

Consideriamo un semplice algoritmo per il calcolo delle componenti connesse all'interno di un'immagine binaria (oggetti pixel=1, sfondo pixel=0). Se si hanno N pixel non nulli si inizializza una matrice con le stesse dimensioni dell'immagine originale ed etichettando tutti i pixel progressivamente con interi da 1 fino ad N. Di seguito si alternano due passaggi per tutti i pixel:



il primo dall'alto al basso e da sinistra verso destra, il secondo dal basso verso lalto e da destra verso sinistra. Per ogni pixel in ogni passaggio si sostituisce all'attuale etichetta del pixel la più piccola presente in un opportuno intorno. Se per tutti i pixel nei due passaggi i valori rimangono inalterati ci si ferma.

In figura si mostra un esempio semplice: (a) immagine iniziale (attenzione 1 significa presenza di un oggetto); (b) inizializzazione; (c) dopo passata dall'alto verso il basso, da sinistra verso destra; (d) dopo passata dal basso verso l'alto, da destra verso sinistra.

