CS 228 : Logic in Computer Science

Krishna. S

Nondeterministic Finite Automata(NFA)

- \triangleright $N = (Q, \Sigma, \delta, Q_0, F)$
 - Q is a finite set of states
 - ▶ $Q_0 \subseteq Q$ is the set of initial states
 - $\delta: Q \times \Sigma \to 2^Q$ is the transition function
 - ▶ $F \subseteq Q$ is the set of final states
- Acceptance condition: A word w is accepted iff it has atleast one accepting path

The Single Run

▶ Any DFA is also an NFA

- ► Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA

- ► Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
 - Combine all the runs of w in the NFA into a single run in the DFA

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
 - ► Combine all the runs of w in the NFA into a single run in the DFA
 - Combine states occurring in various runs to obtain a set of states

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
 - Combine all the runs of w in the NFA into a single run in the DFA
 - Combine states occurring in various runs to obtain a set of states
 - A set of states evolves into another set of states

- Any DFA is also an NFA
- ► Any NFA can be converted into a language equivalent DFA
 - ► Combine all the runs of w in the NFA into a single run in the DFA
 - Combine states occurring in various runs to obtain a set of states
 - ► A set of states evolves into another set of states
 - Use $\delta: Q \times \Sigma \to 2^Q$, obtain $\Delta: 2^Q \times \Sigma \to 2^Q$

- Any DFA is also an NFA
- ► Any NFA can be converted into a language equivalent DFA
 - ► Combine all the runs of w in the NFA into a single run in the DFA
 - Combine states occurring in various runs to obtain a set of states
 - ► A set of states evolves into another set of states
 - ▶ Use $\delta: Q \times \Sigma \to 2^Q$, obtain $\Delta: 2^Q \times \Sigma \to 2^Q$
 - Δ is an extension of δ

- Any DFA is also an NFA
- Any NFA can be converted into a language equivalent DFA
 - Combine all the runs of w in the NFA into a single run in the DFA
 - Combine states occurring in various runs to obtain a set of states
 - A set of states evolves into another set of states
 - ▶ Use $\delta: Q \times \Sigma \to 2^Q$, obtain $\Delta: 2^Q \times \Sigma \to 2^Q$
 - Δ is an extension of δ
 - Accept if the obtained set of states contains a final state

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

▶ $\Delta: 2^Q \times \Sigma \to 2^Q$ is defined by $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

- ▶ $\Delta : 2^Q \times \Sigma \rightarrow 2^Q$ is defined by $\Delta(A, a) = \bigcup_{a \in A} \delta(q, a)$
- $\blacktriangleright F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

- ▶ $\Delta: 2^Q \times \Sigma \rightarrow 2^Q$ is defined by $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that $\hat{\delta}(A, a) = \bigcup_{a \in A} \delta(q, a) = \Delta(A, a)$

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

- ▶ $\Delta: 2^Q \times \Sigma \rightarrow 2^Q$ is defined by $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $\blacktriangleright F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that $\hat{\delta}(A, a) = \bigcup_{q \in A} \delta(q, a) = \Delta(A, a)$ Show that

• $\hat{\Delta}: \mathbf{2}^Q \times \Sigma^* \to \mathbf{2}^Q$ is same as $\hat{\delta}: \mathbf{2}^Q \times \Sigma^* \to \mathbf{2}^Q$ (recall $\delta: Q \times \Sigma \to \mathbf{2}^Q$)

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

- ▶ $\Delta : 2^Q \times \Sigma \rightarrow 2^Q$ is defined by $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that $\hat{\delta}(A, a) = \bigcup_{q \in A} \delta(q, a) = \Delta(A, a)$ Show that

- $\hat{\Delta}: \mathbf{2}^Q \times \Sigma^* \to \mathbf{2}^Q$ is same as $\hat{\delta}: \mathbf{2}^Q \times \Sigma^* \to \mathbf{2}^Q$ (recall $\delta: Q \times \Sigma \to \mathbf{2}^Q$)
- $\hat{\Delta}(A, xa) = \Delta(\hat{\Delta}(A, x), a) = \bigcup_{q \in \hat{\Delta}(A, x)} \delta(q, a)$

Given NFA $N = (Q, \Sigma, Q_0, \delta, F)$, obtain the DFA $D = (2^Q, \Sigma, Q_0, \Delta, F')$

- ▶ $\Delta : 2^Q \times \Sigma \rightarrow 2^Q$ is defined by $\Delta(A, a) = \bigcup_{q \in A} \delta(q, a)$
- $\blacktriangleright F' = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}$

Note that $\hat{\delta}(A, a) = \bigcup_{q \in A} \delta(q, a) = \Delta(A, a)$ Show that

- $\begin{array}{l} \blacktriangleright \ \hat{\Delta}: \mathbf{2}^Q \times \Sigma^* \to \mathbf{2}^Q \ \text{is same as} \ \hat{\delta}: \mathbf{2}^Q \times \Sigma^* \to \mathbf{2}^Q \ \text{(recall} \\ \delta: Q \times \Sigma \to \mathbf{2}^Q \text{)} \end{array}$
- $\hat{\Delta}(A, xa) = \Delta(\hat{\Delta}(A, x), a) = \bigcup_{q \in \hat{\Delta}(A, x)} \delta(q, a)$
- $\hat{\delta}(A, xa) = \bigcup_{q \in \hat{\delta}(A, x)} \delta(q, a)$

NFA = DFA

$$x \in L(D) \leftrightarrow \hat{\Delta}(Q_0, x) \in F'$$

$$\leftrightarrow$$

$$\hat{\delta}(Q_0, x) \in F'$$

$$\leftrightarrow$$

$$\hat{\delta}(Q_0, x) \cap F \neq \emptyset$$

$$\leftrightarrow$$

$$x \in L(N)$$

Regularity

A language L is regular iff there exists an NFA A such that L = L(A)

$\epsilon ext{-NFA}$

ϵ -NFA

$\epsilon ext{-NFA}$

ϵ -NFA

ϵ -NFA

ϵ -NFA and DFA

- \blacktriangleright ϵ -close the initial states of the ϵ -NFA to obtain initial state of DFA
- ▶ From a state S, compute $\Delta(S, a)$ and ϵ -close it
- All states in the DFA are ε-closed
- ▶ Final states are those which contain a final state of the ϵ -NFA

Closure under Concatenation

▶ Given regular languages L_1, L_2 , is $L_1.L_2$ regular

Closure under Concatenation

▶ Given regular languages L_1, L_2 , is $L_1.L_2$ regular?

