

Química **Nivel superior** Prueba 1

Lunes 14 de noviembre de 2016 (mañana)

1 hora

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

								<u>⊐</u>	bla pe	Tabla periódica	ä							
	-	7	က	4	ις	9	7	∞	တ	10	7	12	5	4	5	16	11	18
	1,01			Z	Número atómico		-											2 He 4,00
7	3 Li 6,94	4 Be 9,01		Masa	Masa atómica relativa	elativa							5 B 10,81	6 C 12,01	7 N 14,01	8 o 16,00	9 F 19,00	10 Ne 20,18
က	11 Na 22,99	12 Mg 24,31											13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,07	17 CI 35,45	18 Ar 39,95
4	19 K 39,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,90
ro	37 Rb 85,47	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,96	43 Tc (98)	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,41	49 In 114,82	50 Sn 118,71	51 Sb 121,76	52 Te 127,60	53 I 126,90	54 Xe 131,29
ဖ	55 Cs 132,91	56 Ba 137,33	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,84	75 Re 186,21	76 Os 190,23	77 Ir 192,22	78 Pt 195,08	79 Au 196,97	80 Hg 200,59	81 TI 204,38	82 Pb 207,2	83 Bi 208,98	84 Po (209)	85 At (210)	86 Rn (222)
	87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
			+	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm (145)	62 Sm 150,36	63 Eu 151,96	64 Gd 157,25	65 Tb 158,93	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,05	71 Lu 174,97	
			#	90 Th	91 Pa	92 U	63 6 83	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	96 Es	100 Fm	101 Md	102 No	103 Lr	
				232,04	231,04	238,03	(237)	(244)	(243)	(247)	(247)	(251)	(222)	(257)	(228)	(528)	(292)	

1. ¿Cuál volumen, en cm³, de NaOH (aq) $0.20 \, \text{mol dm}^{-3}$ se requiere para neutralizar $0.050 \, \text{mol de H}_2\text{S}(g)$?

$$H_2S(g) + 2NaOH(aq) \rightarrow Na_2S(aq) + 2H_2O(l)$$

- A. 0,25
- B. 0,50
- C. 250
- D. 500

2. La combustión completa de 15,0 cm³ de un hidrocarburo gaseoso **X** produce 60,0 cm³ de dióxido de carbono gaseoso y 75,0 cm³ de vapor de agua. ¿Cuál es la fórmula molecular de **X**? (Todos los volúmenes se miden a la misma temperatura y presión.)

- A. C₄H₆
- B. C₄H₈
- C. C₄H₁₀
- D. C₆H₁₀

3. $5,0 \text{ mol de Fe}_2O_3(s) \text{ y } 6,0 \text{ mol de CO (g) reaccionan de acuerdo con la ecuación de abajo. ¿Cuál es el reactivo limitante y cuántos moles del reactivo en exceso permanecen sin reaccionar?$

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

	Reactivo limitante	Moles del reactivo en exceso permanecen sin reaccionar
A.	CO	2,0
B.	СО	3,0
C.	Fe ₂ O ₃	1,0
D.	Fe ₂ O ₃	2,0

4. ¿Cuál es correcto para la línea de emisión del espectro del hidrógeno?

- A. La energía de la línea M es mayor que la de la línea N.
- B. La frecuencia de la línea N es menor que la de la línea M.
- C. La longitud de onda de la línea M es mayor que la de la línea N.
- D. Las líneas convergen a menor energía.
- **5.** ¿Cuál representación sería correcta para una especie, **Z**, que tiene 31 protones, 40 neutrones y 28 electrones?
 - A. ${}^{71}_{31}Z^{3+}$
 - B. 71 Z³⁻
 - C. $^{71}_{40}Z^{34}$
 - D. ${}^{71}_{28}Z^{3+}$
- 6. Un elemento del periodo 3, $\bf M$, forma un óxido del tipo $\bf M_2$ O. ¿Cuál opción representa las cuatro primeras energías de ionización sucesivas de $\bf M$?

		Energía de ioniz	zación / kJ mol ⁻¹	
	Primera	Segunda	Tercera	Cuarta
A.	496	4563	6913	9544
B.	738	1451	7733	10541
C.	578	1817	2745	11578
D.	787	1577	3232	4356

- 7. ¿Cuál propiedad aumenta hacia abajo del grupo 17, los halógenos?
 - A. Afinidad electrónica
 - B. Punto de ebullición
 - C. Energía de primera ionización
 - D. Reactividad
- 8. ¿Cuál opción describe correctamente la reacción entre el potasio y exceso de agua?
 - A. La reacción es endotérmica.
 - B. Los productos finales de la reacción son óxido de potasio e hidrógeno.
 - C. Los productos finales de la reacción son hidróxido de potasio e hidrógeno.
 - D. El pH final de la solución es 7.
- **9.** El estado de oxidación del cobalto en el ion complejo $[Co(NH_3)_5Br]^x$ es +3. ¿Cuáles de los siguientes enunciados son correctos?
 - I. La carga total, x, del ion complejo es 2+.
 - II. El ion complejo es octaédrico.
 - III. El ion cobalto(III) tiene un subnivel d semiocupado.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **10.** ¿Cuál es la explicación correcta del color de [Cu(H₂O)₆]²⁺?
 - A. Cuando un electrón se desplaza a un orbital d de mayor energía se absorbe luz.
 - B. Cuando un electrón se desplaza a un orbital d de mayor energía se libera luz.
 - C. Cuando los electrones se desplazan desde los ligandos hacia el ion metálico central se absorbe luz.
 - D. Cuando los electrones se desplazan entre orbitales d y s se absorbe luz.

- 11. ¿Cuántos electrones forman el enlace carbono–oxígeno en el metanal, HCHO?
 - A. 2
 - B. 4
 - C. 8
 - D. 12
- 12. ¿Entre qué par de moléculas se puede producir enlace de hidrógeno?
 - A. CH₄ y H₂O
 - B. CH₃OCH₃ y CF₄
 - C. CH₄ y HF
 - D. CH₃OH y H₂O
- 13. ¿Cuál sustancia tiene estructura covalente gigante?

	Punto de fusión / °C	Solubilidad en agua	Conductividad eléctrica en estado fundido
A.	186	elevada	ninguna
B.	801	elevada	buena
C.	1083	baja	buena
D.	1710	baja	ninguna

- **14.** ¿Cuál especie tiene ángulos de enlace de 90°?
 - A. AlCl₄
 - B. ICl₄
 - C. NH_4^+
 - D. SiCl₄

15. ¿Cuál es la hibridación de los átomos numerados en el ácido etanoico?

	Átomo 1	Átomo 2	Átomo 3
A.	sp³	sp	sp ²
B.	sp³	sp²	sp
C.	sp²	sp³	sp ²
D.	sp³	sp²	sp³

16. La hidrazina reacciona con oxígeno.

$$N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(l)$$
 $\Delta H^{\ominus} = -623 \text{ kJ}$

¿Cuál es la entalpía estándar de formación de la $N_2H_4(l)$ en kJ? La entalpía estándar de formación del $H_2O(l)$ es -286 kJ.

A.
$$-623 - 286$$

B.
$$-623 + 572$$

C.
$$-572 + 623$$

D.
$$-286 + 623$$

17. Se añadieron 5,35 g de cloruro de amonio sólido, $NH_4Cl(s)$, al agua para formar 25,0 g de solución. La disminución máxima de temperatura fue de 14 K. ¿Cuál es la variación de entalpía para esta reacción, en kJ mol⁻¹? (Masa molar del $NH_4Cl = 53,5$ g mol⁻¹; la capacidad calorífica específica de la solución es de 4,18 J g⁻¹ K⁻¹)

A.
$$\Delta H = +\frac{25,0 \times 4,18 \times (14 + 273)}{0,1 \times 1000}$$

B.
$$\Delta H = -\frac{25,0 \times 4,18 \times 14}{0,1 \times 1000}$$

C.
$$\Delta H = +\frac{25,0 \times 4,18 \times 14}{0,1 \times 1000}$$

D.
$$\Delta H = +\frac{25,0 \times 4,18 \times 14}{1000}$$

-8-

- A. $Cl^{-}(g) \xrightarrow{H_2O} Cl^{-}(aq)$
- B. $Cl(g) \xrightarrow{H_2O} Cl^-(aq)$
- C. $\frac{1}{2} \operatorname{Cl}_2(g) \xrightarrow{H_2O} \operatorname{Cl}^-(aq)$
- D. $\frac{1}{2} \text{Cl}_2(\text{aq}) \xrightarrow{\text{H}_2\text{O}} \text{Cl}^-(\text{aq})$

19. ¿Cuál compuesto iónico tiene mayor valor de entalpía de red?

- A. MgS
- B. MgO
- C. CaBr₂
- D. NaF

20. ¿Cuáles métodos experimentales se podrían usar para observar el progreso de la siguiente reacción?

$$\text{Cr}_2\text{O}_7^{\ 2^-}(\text{aq}) + 6\text{I}^-(\text{aq}) + 14\text{H}^+(\text{aq}) \rightarrow 2\text{Cr}^{3^+}(\text{aq}) + 3\text{I}_2(\text{aq}) + 7\text{H}_2\text{O}(\text{l})$$

- Variación de color
- II. Variación de masa
- III. Variación de la conductividad eléctrica
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

21. ¿Cuál enunciado describe las características de un estado de transición con respecto a la energía potencial de los reactivos y productos?

- A. Es una especie inestable con menor energía potencial.
- B. Es una especie inestable con mayor energía potencial.
- C. Es una especie estable con menor energía potencial.
- D. Es una especie estable con mayor energía potencial.

22. La descomposición del peróxido de hidrógeno en solución acuosa se produce como sigue.

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

-9-

Se encontró que la expresión de velocidad para la reacción es: velocidad = $k [H_2O_2]$.

¿Cuál gráfica es coherente con la expresión de velocidad dada?

A.

B.

C.

D.

 $[H_2O_2] /$

moldm⁻³

23. La constante de velocidad, k, se describe habitualmente por medio de la ecuación de

Arrhenius: $k = Ae^{\frac{-E_a}{RT}}$.

 $[H_2O_2]/$

moldm⁻³

¿Cuáles de los siguientes enunciados son correctos?

- I. Cuanto mayor es el valor de la E_a , menor es el valor de k.
- II. Las reacciones de moléculas menos complejas habitualmente tienen mayor valor de A.
- III. La pendiente (gradiente) de ln k en función de $\frac{1}{T}$, es igual a E_a .
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

24. ¿Qué sucede cuando se aumenta la temperatura del siguiente sistema en equilibrio?

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H^{\ominus} = -91 \text{ kJ}$

	Posición de equilibrio	Velocidades de las reacciones directa e inversa
A.	se desplaza a la izquierda	aumentan
B.	se desplaza a la izquierda	disminuyen
C.	se desplaza a la derecha	disminuyen
D.	se desplaza a la derecha	aumentan

25. Una mezcla de 0,40 mol de CO(g) y 0,40 mol de H_2 (g) se introdujo en un recipiente de 1,00 dm³. Se estableció el siguiente equilibrio.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

En el equilibrio, la mezcla contenía $0.25 \, \text{mol}$ de CO(g). ¿Cuántos moles de $H_2(g)$ y $CH_3OH(g)$ estaban presentes en el equilibrio?

	Moles de H ₂ en el equilibrio	Moles de CH₃OH en el equilibrio
A.	0,25	0,15
B.	0,50	0,25
C.	0,30	0,25
D.	0,10	0,15

26. ¿Cuáles especies se comportan como bases de Brønsted–Lowry en la siguiente reacción?

$$H_2SO_4 + HNO_3 \rightleftharpoons H_2NO_3^+ + HSO_4^-$$

- A. HNO₃ y HSO₄
- B. HNO₃ y H₂NO₃⁺
- C. H₂SO₄ y HSO₄
- D. $H_2NO_3^+$ y HSO_4^-

- 27. ¿Qué ocurre cuando el hidrógeno carbonato de sodio sólido reacciona con ácido sulfúrico acuoso?
 - A. Se forman burbujas de dióxido de azufre.
 - B. Se forman burbujas de hidrógeno y de dióxido de carbono.
 - C. Se forman burbujas de hidrógeno.
 - D. Se forman burbujas de dióxido de carbono.
- 28. ¿Cuál mezcla es una solución tampón (buffer)?
 - A. $25 \,\mathrm{cm^3} \,\mathrm{de} \,0.10 \,\mathrm{mol} \,\mathrm{dm^{-3}} \,\mathrm{NH_3} (\mathrm{aq}) \,\mathrm{y} \,50 \,\mathrm{cm^3} \,\mathrm{de} \,0.10 \,\mathrm{mol} \,\mathrm{dm^{-3}} \,\mathrm{HCl} (\mathrm{aq})$
 - B. $50 \,\mathrm{cm^3} \,\mathrm{de} \,0.10 \,\mathrm{mol} \,\mathrm{dm^{-3}} \,\mathrm{NH_3} (\mathrm{aq}) \,\mathrm{y} \,25 \,\mathrm{cm^3} \,\mathrm{de} \,0.10 \,\mathrm{mol} \,\mathrm{dm^{-3}} \,\mathrm{HCl} (\mathrm{aq})$
 - C. 25 cm³ de 0,10 mol dm⁻³ NaOH (aq) y 25 cm³ de 0,10 mol dm⁻³ HCl (aq)
 - D. $50 \,\mathrm{cm^3} \,\mathrm{de} \,0.10 \,\mathrm{mol} \,\mathrm{dm^{-3}} \,\mathrm{NaOH} \,\mathrm{(aq)} \,\mathrm{y} \,25 \,\mathrm{cm^3} \,\mathrm{de} \,0.10 \,\mathrm{mol} \,\mathrm{dm^{-3}} \,\mathrm{HCl} \,\mathrm{(aq)}$
- 29. ¿Cuál solución salina tiene mayor pH?
 - A. NH₄Cl
 - B. $Ca(NO_3)_2$
 - C. Na₂CO₃
 - D. K₂SO₄
- **30.** ¿Cuál afirmación es correcta sobre la reacción de abajo?

$$2MnO_4^-(aq) + 6H^+(aq) + 5NO_2^-(aq) \rightarrow 2Mn^{2+}(aq) + 5NO_3^-(aq) + 3H_2O(l)$$

- A. El MnO₄ es el agente reductor y el número de oxidación del Mn aumenta.
- B. El MnO₄ es el agente oxidante y el número de oxidación del Mn disminuye.
- C. El NO₂ es el agente reductor y el número de oxidación del N disminuye.
- D. El NO₂ es el agente oxidante y el número de oxidación del N aumenta.

31. Se construyó una pila voltaica a partir de semiceldas de cinc y cobre. El cinc es más reactivo que el cobre. ¿Cuál afirmación es correcta cuando la pila genera electricidad?

- A. Los electrones circulan desde la semicelda de cobre hacia la semicelda de cinc.
- B. La concentración de Cu²⁺ (aq) aumenta.
- C. Los electrones circulan a través del puente salino.
- D. Los iones negativos circulan a través del puente salino desde la semicelda de cobre hacia la semicelda de cinc.
- **32.** ¿Cuáles signos de $E^{\ominus}_{\text{pila}}$ y ΔG^{\ominus} conducen a una reacción rédox espontánea en condiciones estándar?

	E [⊕] _{pila}	$\Delta oldsymbol{G}^{oldsymbol{\Theta}}$
A.	+	+
B.	_	+
C.	_	-
D.	+	_

- **33.** Se deposita electrolíticamente plata sobre una varilla de hierro. ¿Cuál condición es correcta para este proceso?
 - A. El electrodo de plata es el electrodo positivo.
 - B. La varilla de hierro es el electrodo positivo.
 - C. El electrolito es sulfato de hierro(II).
 - D. La oxidación se produce en el electrodo negativo.
- **34.** A continuación se muestra la estructura de una droga que se usa para el tratamiento de los síntomas del Alzheimer. ¿Cuáles grupos funcionales están presentes en esta molécula?

- A. Hidroxilo y éster
- B. Hidróxido y éter
- C. Hidroxilo y éter
- D. Hidróxido y éster
- 35. ¿Cuál monómero se usa para formar el polímero en el que se repite la siguiente unidad?

- A. CH₃CH=CHCH₃
- B. CH₃CH₂CH=CH₂
- C. CH₃CH₂CH₂CH₃
- D. $(CH_3)_2C=CH_2$

36. ¿Cuál es la opción correcta para la conversión de propanal en metanoato de propilo?

Etapa 1 Etapa 2
$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CHO} & \xrightarrow{\hspace*{1cm}} \text{CH}_3\text{CH}_2\text{CH}_2\text{OH} & \xrightarrow{\hspace*{1cm}} \text{HCO}_2\text{CH}_2\text{CH}_2\text{CH}_3 \\ \text{Reactivo 1} & \text{H}_2\text{SO}_4 \text{ concentrado} \\ & \text{y ácido metanoico} \end{array}$$

	Reactivo para la etapa 1	Tipo de reacción de la etapa 1	Tipo de reacción de la etapa 2
A.	H ₂ O	hidratación	adición
B.	K ₂ Cr ₂ O ₇ , H ₂ SO ₄ diluido	oxidación	sustitución nucleófila (condensación)
C.	NaBH ₄	reducción	oxidación
D.	NaBH₄	reducción	sustitución nucleófila (condensación)

- 37. ¿Cuál afirmación es correcta para un par de enantiómeros en las mismas condiciones?
 - A. Una mezcla racémica de enantiómeros es ópticamente activa.
 - B. Tienen las mismas propiedades químicas en todas sus reacciones.
 - C. Tienen los mismos puntos de fusión y ebullición.
 - D. Hacen rotar el plano de la luz polarizada en diferentes ángulos.
- **38.** Un estudiante llevó a cabo una titulación para determinar la concentración de un ácido y halló que su valor tenía buena precisión pero mala exactitud. ¿Cuál proceso explica este resultado?
 - A. Repetidamente midió en exceso el volumen de solución desde la bureta al matraz.
 - B. Obtuvo insuficientes datos de la titulación.
 - C. Leyó el menisco de la bureta desde diferentes ángulos cada vez.
 - D. Olvidó lavar el matraz después de una de las titulaciones.

- **39.** ¿Cuál es siempre correcto sobre el ion molecular, M⁺, en un espectro de masas de un compuesto?
 - A. La menor relación *m*/*z* del espectro de masas corresponde al pico del ion M⁺.
 - B. La relación m/z del pico del ion M^+ da la masa molecular relativa de la molécula.
 - C. El ion M⁺ es el fragmento más estable que se forma durante el bombardeo con electrones.
 - D. El pico del ion M⁺ es el que tiene mayor intensidad en el espectro de masas.
- **40.** ¿Cuál propiedad explica por qué el tetrametilsilano, Si(CH₃)₄, se pueda usar como patrón de referencia en la espectroscopía de RMN de ¹H?
 - A. Tiene elevado punto de ebullición.
 - B. Es un compuesto reactivo.
 - C. Todos sus protones tienen el mismo ambiente químico.
 - D. Origina múltiples señales.