Radioactivity

1 Rutherford Scattering

1.1 The plum pudding model

The plum pudding model was the initial model of the atom, stating a sphere of positive charge with electrons embedded into it.

1.2 Rutherford's experiment

Rutherford's experiment involved firing a beam of alpha particles at gold foil and measuring the paths of particles from the foil.

- Gold was used as it was expected to have a large nucleus
- The screen fluoresces when collided with
- This showed the atom was mostly empty space with a positive nucleus

1.2.1 Results

Observation	Explanation
Most electrons pass all	Atoms are mostly
the way through	empty space
Some are deflected	The atom has a positive
	centre
Some are deflected by	The positive charge is
significant angles	condensed in a small
	area

1.3 Estimating the size of the nucleus

1.3.1 Closest approach method

KE=EPE

$$8.0 \times 10^{-13} = \frac{1}{4\pi\epsilon_0} \times \frac{Q_{Au}}{r} \times Q_{\alpha}$$
$$r = 4.55 \times 10^{-14}$$

1.3.2 Estimate from scattering data

- \bullet About $\frac{1}{10,000}$ deflected through more than 90°
- Foil had n layers of atoms

 $n = 10^4$ layers

$$\frac{\frac{1}{4}\pi d^2}{\frac{1}{4}\pi D^2} = \frac{d^2}{D^2} = \frac{1}{10,000n}$$

$$\frac{d^2}{D^2} = \frac{1}{10,000 \times 1 \times 10^4}$$
$$d = \frac{D}{10,000}$$