Search for Contact Interactions @ 8 TeV Status Report

Greg Myers¹, <u>Harrison B. Prosper</u>¹, Suman Beri²

¹Florida State University, ²Panjab University, Exotica Multijets Working Group Meeting 20 March 2014

Contact Interaction (CI) Search @ 7 TeV

PHYSICAL REVIEW D 87, 052017 (2013)

Search for contact interactions using the inclusive jet p_T spectrum in pp collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan *et al.**

(CMS Collaboration)

(Received 21 January 2013; published 26 March 2013)

Outline

- 1. Overview
- 2. Analysis Overview
- 3. Status
- 4. Plans

Overview

Goal

• Compare the inclusive jet p_T spectrum at 8 TeV of |y| < 0.5 jets to QCD+CI models computed at NLO accuracy, and draw conclusions about possible new QCD-like interactions, modeled as contact interactions.

Experimental Input

- Measured inclusive jet p_T spectrum above 500 GeV where trigger efficiency is <u>flat</u>
- Jet response function (JRF)
- Jet energy scale (JES) uncertainty
- Jet energy resolution (JER) uncertainty

Overview

Theoretical Input

- Program to calculate QCD @ NLO fastNLO (v2.1.0-1360 + fnl3323y0.tab)
- Program to calculate CI @ NLO CIJET (v1.0, Gao, arXiv:1301.7263v1)

Overview: Models

At next-to-leading order, the effective Lagrangian describing QCD-like interactions may be written as

$$L = L_{QCD} + 2\pi\lambda \sum_{i=1}^{6} \kappa_i O_i$$

where $\lambda = 1/\Lambda^2$ and κ_i are free parameters and each O_i is a sum over dim-6 operators:

$$\begin{split} &O_{1,2} \sim \bar{\mathbf{u}}_{\mathrm{L}} \gamma_{\mu} \mathbf{u}_{\mathrm{L}} \; \bar{\mathbf{u}}_{\mathrm{L}} \gamma^{\mu} \mathbf{u}_{\mathrm{L}} \\ &O_{3,4} \sim \bar{\mathbf{u}}_{\mathrm{L}} \gamma_{\mu} \mathbf{u}_{\mathrm{L}} \; \bar{\mathbf{u}}_{\mathrm{R}} \gamma^{\mu} \mathbf{u}_{\mathrm{R}} \\ &O_{5,6} \sim \bar{\mathbf{u}}_{\mathrm{R}} \gamma_{\mu} \mathbf{u}_{\mathrm{R}} \; \bar{\mathbf{u}}_{\mathrm{R}} \gamma^{\mu} \mathbf{u}_{\mathrm{R}} \end{split}$$

Overview: Models

Following CMS paper arXiv:1202.5535v1, we consider CI models defined by specific values of $\kappa_1 \dots \kappa_6$, namely,

Model	η_{LL}	η_{RL}	η_{RR}
LL	±1	0	0
RR	0	0	±1
VV	±1	±1	±1
AA	±1	∓1	±1
V-A	0	±1	0

where $\eta_{LL} = \kappa_1$, $\eta_{RL} = \kappa_3/2$, $\eta_{RR} = \kappa_5$, and $\kappa_2 = \kappa_4 = \kappa_6 = 0$.

Overview: Models

At NLO, the cross section per jet p_T bin is of the form

$$\sigma = \sigma_{\text{QCD}} + \left[b + b' \ln \Lambda - b' \ln \mu_0\right] \frac{1}{\Lambda^2} + \left[a + a' \ln \Lambda - a' \ln \mu_0\right] \frac{1}{\Lambda^4}$$

where $\sigma_{\rm OCD}$ is the SM QCD cross section @ NLO.

At LO, the primed terms vanish.

(In the 7 TeV analysis, we considered the *ad hoc* model $\sigma = \sigma_{QCD} + b/\Lambda^2 + a/\Lambda^4$, with σ_{QCD} at NLO.)

Left-Left (LL) Model

Left-Left (LL) Model

Vector (VV) Model

Vector (VV) Model

Analysis Overview

Analysis Steps

- 1. For a given CI model, *randomly* sampled PDF set, renormalization (μ_R) scale, and factorization (μ_F) scale, calculate σ_{QCD} and all CI coefficients bin-by-bin. Interpolate into smooth differential densities $f(p_T) = dF/dp_T$.
- 2. Convolve the differential densities $f(p_T)$ with the jet response function for *randomly* sampled pairs (x, z) of scale factors that account for uncertainty in the jet energy scale (JES) and jet energy resolution (JER),

$$f_{obs}(p_T \mid x, z) = \int_0^\infty \text{Gaussian}(p_T \mid xp_T', z\sigma(p_T')) f(p_T') dp_T'$$

Analysis Overview

Jet Response Function (JRF)/JES

Use the jet response function (SMP-12-012, Sanmay Ganguly)

$$\sigma_{p_T} / p_T = C_{Data} \sqrt{\frac{N^2}{p_T^2} + \frac{S^2}{p_T} + C^2},$$

$$C_{Data} = 1.12, N = 6.130 \text{GeV}, S = 0.949 \text{GeV}^{1/2}, C = 0.031$$

https://indico.cern.ch/event/271240/material/slides/0?contribId=7

and the (33!) jet energy scale (JES) uncertainty components documented at

https://twiki.cern.ch/twiki/bin/viewauth/CMS/JECUncertaintySources? topic=JECUncertaintySources

Status

We have:

- 1. For the LL model, with destructive interference and using NNPDF21, calculated an ensemble of 100 QCD and CI coefficient spectra, smeared each with the jet response function using randomly sampled JES and JER scale factors.
- 2. Built a RooFit/RooStats model of the CI likelihood (a multinomial distribution over 20 bins).
- 3. Built a RooFit/RooStats model of likelihood averaged over PDF, $\mu_{\rm F}$, $\mu_{\rm R}$, JES, and JER variations.
- 4. Calculated the posterior density without and with the inclusion of systematic uncertainties.

Data vs QCD

LL Model Coefficients – 1

LL Model Coefficients – 2

LL Model Coefficients – 3

First Attempt at 8 TeV Likelihood

Warning: Here, we are comparing red apples with green ones!

$$L = 5 \text{fb}^{-1} @ 7 \text{ TeV}$$

$$L = 19.34 \, \text{fb}^{-1} \ \text{@} \ 8 \, \text{TeV}$$

Plans

- Add MSTW2008
- 2. Include non-perturbative corrections
- 3. Repeat using all 10 CI models
- 4. Compute limits (using a Bayesian method)
- 5. Document analysis
- 6. Ask for an ARC etc.

Wish 1: Results presented at *some* conference this summer.

Wish 2: Publish results within 6 months.