Problem Description - Module 1

 $V = C \cup \{0\}$ is the set of nodes and $A = \{(i,j)|i,j \in V, i \neq V\}$ is the This project involves designing an efficient last-mile delivery system vehicles. For each arc $(i,j) \in A$, let us define the time t_{ij} required to $w_c, c \in C$ is known. The delivery time for each customer is equal to travel over the arc. Travel times satisfy the triangle inequality. The same capacity W, and must return to the depot withing t_{max} . Each available that all start from the same depot 0 at time 0, have the for a city. A company has a set of customers $C = \{1, \ldots, \overline{c}\}$, each $s_c, c \in C$. The company has a set $K = \{1, \dots, k\}$ of delivery vans requiring the delivery of a package. The weight of each package set of arcs. Each arc can be traveled at most once by any of the complete the service for all customers. Provide a mathematical goal of the company is to minimize the total time required to vehicle can exit the depot at most once. The problem can be formulated on a complete directed graph G = (V, A), where formulation of the problem and its optimal solution.