DATE	19 November 2022
TEAM ID	PNT2022TMID39652
PROJECT NAME	WEB PHISHING DETECTION
MAXIMUM MARKS	10 MARK

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot		
1.	Metrics	Classification Model: Gradient Boosting Classification Accuray Score- 97.4%	In [U] Assembly the classification report of the soles principalities at Landflowton requiring lates, plant global processing and the soles are also as a sole as a so		
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method – KFOLD & Cross Validation Method	Wittens signed earlies a 20) miles of the services made for a clare described per significant a significant described per significant described per significant a significant described per significant described per significant a significant described per		

PERFORMANCE:

Out[83]:		ML Model	Accuracy	f1_score	Recall	Precision
	0	Gradient Boosting Classifier	0.974	0.977	0.994	0.986
	1	CatBoost Classifier	0.972	0.975	0.994	0.989
	2	Random Forest	0.969	0.972	0.992	0.991
	3	Support Vector Machine	0.964	0.968	0.980	0.965
	4	Decision Tree	0.958	0.962	0.991	0.993
	5	K-Nearest Neighbors	0.956	0.961	0.991	0.989
	6	Logistic Regression	0.934	0.941	0.943	0.927
	7	Naive Bayes Classifier	0.605	0.454	0.292	0.997
	8	XGBoost Classifier	0.548	0.548	0.993	0.984
	9	Multi-layer Perceptron	0.543	0.543	0.989	0.983

2. TUNE THE MODEL - HYPERPARAMETER TUNING

VALIDATION METHODS: KFOLD & Cross Folding

Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation Model
          from scipy.stats import wilcoxon
          from sklearn.datasets import load iris
          from sklearn.ensemble import GradientBoostingClassifier
          from xgboost import XGBClassifier
          from sklearn.model_selection import cross_val_score, KFold
          # Load the dataset
          X = load iris().data
          y = load_iris().target
          # Prepare models and select your CV method
          model1 = GradientBoostingClassifier(n estimators=100)
          model2 = XGBClassifier(n_estimators=100)
          kf = KFold(n_splits=20, random_state=None)
          # Extract results for each model on the same folds
          results_model1 = cross_val_score(model1, X, y, cv=kf)
results_model2 = cross_val_score(model2, X, y, cv=kf)
          stat, p = wilcoxon(results_model1, results_model2, zero_method='zsplit');
          stat
Out[78]: 95.0
```

5x2CV combined F test

```
In [89]: from mlxtend.evaluate import combined ftest 5x2cv
          from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
         from sklearn.ensemble import GradientBoostingClassifier
         from mlxtend.data import iris data
         # Prepare data and clfs
         X, y = iris_data()
clf1 = GradientBoostingClassifier()
         clf2 = DecisionTreeClassifier()
         # Calculate p-value
         f, p = combined_ftest_5x2cv(estimator1=clf1,
                                    estimator2=clf2.
                                    X=X, y=y,
                                     random_seed=1)
         print('f-value:', f)
         print('p-value:', p)
          f-value: 1.727272727272733
         p-value: 0.2840135734291782
```