Assignment-Regression Algorithm

1)Identify your problem statement.

To predict insurance charge based on given criteria.

2) Tell basic info about the dataset (Total number of rows, columns)

No of rows:1338

No of columns:6

Input values:5

Output value:1

3) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

Must change gender & smoker to nominal data.

- 4) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
- 5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

S.No	Algorithm	Parameter	R2
1	Multilinear		0.78
2	SVM	linear	0.111
3	SVM	Linear, C=100	0.54
4	SVM	Poly	0.064
5	SVM	Poly,C=100	0.0997
6	SVM	rbf	0.084
7	SVM	rbf,C=10	0.0819
8	SVM	rbf,C=100	-0.124
9	SVM	Sigmoid	0.08994
10	SVM	Sigmoid,C=10	-0.09
11	SVM	Sigmoid,C=100	0.118
	Decision		
12	Tree	Poisson,best	0.735
	Decision		
13	Tree	Poisson,random	0.784
	Decision		
14	Tree	friedman_mse,random	0.704
	Decision		
15	Tree	friedman_mse,best	0.688

	Decision		
16	Tree	absolute_error,random	0.738
	Decision		
17	Tree	absolute_error,best	0.651
	Decision		
18	Tree	squared_error,best	0.695
	Decision		
19	Tree	squared_error,random	0.674
	Random		
20	Forest	squared_error,n_estimator=50, random_state=0	0.854
	Random	squared_error,n_estimator=100,	
21	Forest	random_state=0	0.835
	Random	squared_error,n_estimator=100,	
22	Forest	random_state=1	0.854
	Random	squared_error,n_estimator=100,	
23	Forest	random_state=0	0.853
	Random		
24	Forest	absolute_error,n_estimator=100,random_state=0	0.852
	Random		
25	Forest	absolute_error,n_estimator=10,random_state=0	0.835
	Random		
26	Forest	absolute_error,n_estimator=100,random_state=1	0.852
	Random		
27	Forest	Poisson,n_estimator=100, random_state=0	0.852
	Random		
28	Forest	Poisson,n_estimator=100, random_state=1	0.852

6.) Mention your final model, justify why u have chosen the same.

Will go with Random Forest as that gives the maximum r2 value.

Saved Model: finalized_model_Random_Forest_insurance.sav