Sprawozdanie 2 - Algorytmy Optymalizacji Dyskretnej

Michał Kallas

12 listopada 2024

1 Zadanie 1

1.1 Opis problemu

Rozważmy problem zakupu paliwa od dostawców i jego dystrybucji na lotniska, aby zminimalizować łączny koszt dostaw przy uwzględnieniu ograniczeń dostępności oraz zapotrzebowania na paliwo.

1.2 Opis modelu

1.2.1 Parametry

- \bullet n liczba dostawców paliwa
- \bullet m liczba lotnisk
- f_i maksymalna ilość paliwa, jaką może dostarczyć dostawca i
- d_j wymagana ilość paliwa na lotnisku j
- c_{ij} koszt dostarczenia jednego galonu paliwa przez dostawcę i na lotnisko j (w \$).

1.2.2 Zmienne decyzyjne

• $x_{ij} \ge 0$ - ilość paliwa (w galonach) dostarczonego przez dostawcę i na lotnisko j.

1.2.3 Ograniczenia

• Każdy dostawca i nie może dostarczyć więcej paliwa, niż posiada:

$$\sum_{j=1}^{m} x_{ij} \leqslant f_i$$

 \bullet Każde lotnisko jmusi otrzymać dokładnie tyle paliwa, ile wynosi jego zapotrzebowanie:

$$\sum_{i=1}^{n} x_{ij} = d_j$$

1.2.4 Funkcja celu

Celem jest zminimalizowanie całkowitego kosztu dostaw paliwa. Funkcja celu ma postać:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij}$$

1.3 Egzemplarz z zadania

- n = 3 (trzech dostawców),
- m = 4 (cztery lotniska),
- Dostępne ilości paliwa od dostawców:

$$f = [275000, 550000, 660000]$$

• Wymagane ilości paliwa na lotniskach:

$$d = [110000, 220000, 330000, 440000]$$

 \bullet Koszty dostarczenia jednego galonu paliwa (c_{ij}) przez dostawców na lotniska:

	Firma 1	Firma 2	Firma 3
Lotnisko 1	10	7	8
Lotnisko 2	10	11	14
Lotnisko 3	9	12	4
Lotnisko 4	11	13	9

1.4 Rozwiązanie

Suma dostaw paliwa przez poszczególne firmy:

• Firma 1: 275 000 galonów,

• Firma 2: 165 000 galonów,

• Firma 3: 660 000 galonów.

Tabela 1: Ilość paliwa dostarczanego przez firmy na lotniska (w galonach)

	Lotnisko 1	Lotnisko 2	Lotnisko 3	Lotnisko 4
Firma 1	0	$165\ 000$	0	110 000
Firma 2	110 000	55 000	0	0
Firma 3	0	0	330 000	330 000

- (a) Jaki jest minimalny łączny koszt dostaw wymaganych ilości paliwa na wszystkie lotniska? - \$8 525 000.
- (b) Czy wszystkie firmy dostarczają paliwo? Tak.
- (c) Czy możliwości dostaw paliwa przez firmy są wyczerpane? **Są wyczerpane** dla firm 1 i 3.

2 Zadanie 2

2.1 Opis problemu

Zakład produkcyjny może produkować n różne wyroby P_i . Każdy z wyrobów wymaga pewnego czasu obróbki na m maszynach. Każda z maszyn jest dostępna przez pewną ilość godzin w tygodniu. Produkty mają określoną cenę sprzedaży oraz koszty zmienne związane z ich produkcją. Należy wyznaczyć optymalny tygodniowy plan produkcji, maksymalizując zysk.

2.2 Opis modelu

2.2.1 Parametry

- n liczba produktów,
- m liczba maszyn,
- p_i cena sprzedaży kilogramu produktu P_i ,
- c_i koszt materiałowy na kilogram produktu P_i ,
- d_i maksymalny tygodniowy popyt na produkt P_i (w kilogramach),
- $\bullet \ t_{ij}$ czas obróbki produktu P_i na maszynie M_j (w minutach na kilogram wyrobu),
- $\bullet \ a_j$ dostępny czas pracy maszyny M_j w godzinach na tydzień,
- k_j koszt pracy maszyny M_j na godzinę.

2.2.2 Zmienne decyzyjne

• $x_i \ge 0$ - ilość wyprodukowanego produktu P_i (w kilogramach).

2.2.3 Ograniczenia

 $\bullet\,$ Ilość wyprodukowanych produktów P_i nie może przekroczyć maksymalnego popytu na ten produkt:

$$x_i \leqslant d_i$$

• Czas pracy maszyn nie może przekroczyć dostępnego tygodniowego czasu:

$$\sum_{i=1}^{m} t_{ij} x_i \leqslant a_j \cdot 60$$

2.2.4 Funkcja celu

Celem jest maksymalizacja zysku, który jest różnicą między przychodem ze sprzedaży produktów a kosztami materiałowymi i kosztami pracy maszyn. Funkcja celu ma postać:

$$\max \sum_{i=1}^{n} (p_i - c_i) x_i - \sum_{j=1}^{m} \frac{k_j}{60} \left(\sum_{i=1}^{n} t_{ij} \cdot x_i \right)$$

2.3 Egzemplarz z zadania

- Cena sprzedaży produktów za kilogram: p = [9, 7, 6, 5],
- Koszty materiałowe za kilogram: c = [4, 1, 1, 1],
- Maksymalny tygodniowy popyt w kilogramach: d = [400, 100, 150, 500],
- Czas obróbki na maszynach (w minutach na kilogram produktu):

	Maszyna M1	Maszyna M2	Maszyna M3
Produkt P1	5	10	6
Produkt P2	3	6	4
Produkt P3	4	5	3
Produkt P4	4	2	1

- \bullet Czas pracy dostępny dla każdej maszyny w godzinach na tydzień: a=[60,60,60],
- Koszty pracy maszyn za godzinę: k = [2, 2, 3].

2.4 Rozwiązanie

• Optymalna liczba wyprodukowanych produktów:

$$x = [125, 100, 150, 500]$$

Oznacza to, że należy wyprodukować:

- **125kg** produktu P_1 ,
- **100kg** produktu P_2 ,
- **150kg** produktu P_3 ,
- **500kg** produktu P_4 .

Widzimy, że dla pierwszego produktu nie został osiągnięty cały popyt.

• Maksymalny zysk wynosi: \$3632.5

3 Zadanie 3

3.1 Opis problemu

W zadaniu przedstawiono problem produkcji i magazynowania towaru w różnych okresach. Celem jest minimalizacja łącznego kosztu produkcji oraz magazynowania towaru przy spełnieniu zapotrzebowania na towar w każdym z okresów.

3.2 Opis modelu

3.2.1 Parametry

- \bullet K liczba okresów,
- c_i koszt produkcji jednej jednostki towaru w okresie j,
- o_i koszt produkcji jednej ponadwymiarowej jednostki w okresie j,
- d_j zapotrzebowanie na towar w okresie j,
- n_j maksymalna liczba jednostek produkowanych w trybie normalnej produkcji w okresie $j,\,$
- a_j maksymalna liczba jednostek produkowanych w trybie ponadwymiarowym w okresie j,
- m_0 początkowa liczba jednostek w magazynie,
- $\bullet \ m_{\rm max}$ maksymalna liczba jednostek, które mogą być przechowywane w magazynie,
- $\bullet\,$ s koszt przechowywania jednej jednostki w magazynie przez jeden okres.

3.2.2 Zmienne decyzyjne

- $x_j \ge 0$ liczba jednostek wyprodukowanych w trybie normalnej produkcji w okresie j,
- $y_j \ge 0$ liczba jednostek wyprodukowanych w trybie ponadwymiarowej produkcji w okresie j,
- $m_j \geqslant 0$ liczba jednostek przechowywanych w magazynie na koniec okresu j-1.

3.2.3 Ograniczenia

 \bullet Liczba jednostek wyprodukowanych w trybie normalnym nie może przekroczyć dozwolonej maksymalnej liczby jednostek w okresie j:

$$x_j \leqslant n_j$$

• Liczba jednostek wyprodukowanych w trybie ponadwymiarowym nie może przekroczyć dozwolonej maksymalnej liczby jednostek w okresie j:

$$y_j \leqslant a_j$$

Liczba jednostek w magazynie nie może przekroczyć maksymalnej pojemności magazynu:

$$m_i \leqslant m_{\text{max}}$$

• Liczba wyprodukowanych jednostek i jednostek przechowywanych w magazynie musi zaspokoić zapotrzebowanie w każdym okresie:

$$x_j + y_j + m_j - m_{j+1} = d_j$$

Magazyn na początku pierwszego okresu przechowuje początkową ilość jednostek:

$$m_1 = m_0$$

3.2.4 Funkcja celu

Celem jest minimalizacja całkowitego kosztu produkcji i magazynowania, który można zapisać jako:

$$\min \sum_{j=1}^{K} (c_j x_j + o_j y_j + s m_j)$$

gdzie:

- $c_i \cdot x_j$ koszt produkcji jednostek w trybie normalnym,
- $o_i \cdot y_i$ koszt produkcji jednostek ponadwymiarowych,
- $s \cdot m_j$ koszt przechowywania jednostek w magazynie.

3.3 Egzemplarz z zadania

- Liczba okresów: K=4,
- Początkowa liczba produktów w magazynie: $m_0 = 15$,
- Maksymalna liczba produktów w magazynie: $m_{max} = 70$,
- Koszty, popyt i maksymalna produkcja w kolejnych okresach:

j	$c_j(\$)$	$o_j(\$)$	$d_j(\text{jednostki})$	$n_j(\text{jednostki})$	$a_j(\text{jednostki})$
1	6000	8000	130	100	60
2	4000	6000	80	100	65
3	8000	10000	125	100	70
4	9000	11000	195	100	60

3.4 Rozwiązanie

Po rozwiązaniu problemu, uzyskujemy następujące wyniki:

j	x_j	y_j	m_j
1	100	15	15
2	100	50	0
3	100	0	70
4	100	50	45

Tabela 2: Wyniki dla zmiennych decyzyjnych w kolejnych okresach

- (a) Jaki jest minimalny łączny koszt produkcji i magazynowania towaru? \$3 842 500.
- (b) W których okresach firma musi zaplanować produkcję ponadwymiarową?
 w okresach 1, 2 i 4.
- (c) W których okresach możliwości magazynowania towaru są wyczerpane? na koniec 2 okresu.

4 Zadanie 4

4.1 Opis problemu

Dla sieci miast reprezentowanej przez skierowany graf G=(N,A), w której N oznacza zbiór miast, a A zbiór połączeń między miastami, należy znaleźć najtańszą ścieżkę między wybranymi miastami i° i j° . Każde połączenie $(i,j) \in A$ ma przypisany koszt przejazdu c_{ij} oraz czas przejazdu t_{ij} . Celem jest zminimalizowanie kosztu podróży z miasta i° do j° , przy czym całkowity czas podróży nie może przekroczyć określonej wartości T.

4.2 Opis modelu

4.2.1 Parametry

- N zbiór miast,
- A zbiór połączeń (łuków) między miastami,
- c_{ij} koszt przejazdu dla połączenia $(i, j) \in A$,
- t_{ij} czas przejazdu dla połączenia $(i, j) \in A$,
- \bullet T maksymalny dopuszczalny czas przejazdu,
- i°, j° miasto początkowe i końcowe.

4.2.2 Zmienne decyzyjne

• $x_{ij} \in \{0,1\}$ - zmienna decyzyjna, przyjmująca wartość 1, jeśli połączenie $(i,j) \in A$ jest wykorzystywane w ścieżce, oraz 0 w przeciwnym razie.

4.2.3 Ograniczenia

ullet Całkowity czas przejazdu nie może przekraczać maksymalnego czasu T:

$$\sum_{(i,j)\in A} t_{ij} \cdot x_{ij} \leqslant T$$

• Nie można korzystać z nieistniejących połączeń:

$$x_{ij} = 0, \quad \forall (i,j) \notin A$$

• Miasto początkowe musi mieć dokładnie jedno połączenie wychodzące:

$$\sum_{i \in N} x_{i^{\circ}j} = 1$$

• Miasto końcowe musi mieć dokładnie jedno połączenie wchodzące:

$$\sum_{i \in N} x_{ij^{\circ}} = 1$$

• Dla każdego miasta, z wyjątkiem początkowego i końcowego, liczba połączeń wchodzących musi być równa liczbie połączeń wychodzących:

$$\sum_{j \in N} x_{ij} = \sum_{j \in N} x_{ji}, \quad \forall i \in N \setminus \{i^{\circ}, j^{\circ}\}$$

4.2.4 Funkcja celu

Minimalizacja całkowitego kosztu przejazdu:

$$\min \sum_{(i,j)\in A} c_{ij} \cdot x_{ij}$$

4.3 Egzemplarze

4.3.1 Egzemplarz z zadania

Egzemplarz przedstawiony w poleceniu dla $N=\{1,\dots,10\},\,i^\circ=1,\,j^\circ=10,\,T=15,$ z krawędziami:

(i, j)	c_{ij}	t_{ij}
(1, 2)	3	4
(1, 3)	4	9
(1, 4)	$\frac{4}{7}$	10
(1, 5)	8	12
(2, 3)	2	3
(3, 4)	4	6
(3, 5)	2	2
(3, 10)	6	11
(4, 5)	1	1
(4, 7)	3	5
(5, 6)	5	6
(5, 7)	3	3
(5, 10)	5	8
(6, 1)	5	8
(6, 7)	2	2
(6, 10)	7	11
(7, 3)	4	6
(7, 8)	3	5
(7, 9)	1	1
(8, 9)	1	2
(9, 10)	2	2

Tabela 3: Koszt i czas przejazdu między miastami dla egzemplarza z zadania

4.3.2 Mój egzemplarz

Egzemplarz wymyślony przez mnie dla $N=\{1,\dots,10\},\,i^\circ=1,\,j^\circ=10,\,T=15,$ z krawędziami:

(i,j)	c_{ij}	t_{ij}
(1, 2)	1	3
(2, 3)	2	2
(3, 10)	3	5
(1, 4)	1	10
(4, 10)	1	6

Tabela 4: Koszt i czas przejazdu między miastami dla mojego egzemplarza

4.4 Rozwiązanie

4.5 Rozwiązanie egzemplarza z zadania (a)

• Całkowity koszt przejazdu: 13

• Całkowity czas przejazdu: 15

• Wykorzystane połączenia: (1,2), (2,3), (3,5), (5,7), (7,9), (9,10)

4.6 Rozwiązanie mojego egzemplarza (b)

• Całkowity koszt przejazdu: 6

• Całkowity czas przejazdu: 10

• Wykorzystane połączenia: (1,2), (2,3), (3,10)

4.7 Odpowiedzi na pytania

(c) Czy ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest potrzebne? Jeżeli nie, to uzasadnij dlaczego. Jeżeli tak, to zaproponuj kontrprzykład, w którym po usunięciu ograniczenia na całkowitoliczbowość (tj. mamy przypadek, w którym model jest modelem programowania liniowego) zmienne decyzyjne w rozwiązaniu optymalnym nie mają wartości całkowitych.

Tak, ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest konieczne, ponieważ zmienne x[i,j] reprezentują obecność krawędzi w ścieżce i muszą przyjmować wartości 0 lub 1. Usunięcie tego ograniczenia mogłoby prowadzić do wartości ułamkowych zmiennych, co nie ma sensu w kontekście problemu. Chociażby dla mojego grafu, po zdjęciu tego ograniczenia x[i,j] zaczyna przyjmować wartości ułamkowe.

(d) Czy po usunięciu ograniczenia na czasy przejazdu w modelu bez ograniczeń na całkowitoliczbowość zmiennych decyzyjnych i rozwiązaniu problemu otrzymane połączenie zawsze jest akceptowalnym rozwiązaniem? Uzasadnij odpowiedź.

W tym wypadku ograniczenie na całkowitoliczbowość nie jest potrzebne. Przykłady wciąż dają akceptowalne rozwiązania.

5 Zadanie 5

5.1 Opis problemu

Mamy pewną ilość dzielnic, do których potrzebujemy przypisać radiowozy na konkretne zmiany. Musimy wziąć pod uwagę minimalne wymagania dla dzielnic i zmian, a także minimalną i maksymalną liczbę radiowozów dla danej dzielnicy i zmiany.

5.2 Opis modelu

5.2.1 Parametry

- n ilość dzielnic,
- m ilość zmian,
- $rMIN_{ij}$ minimalna liczba radiowozów dla dzielnicy p_i na zmianie s_j ,
- $rMAX_{ij}$ maksymalna liczba radiowozów dla dzielnicy p_i na zmianie s_j ,
- $dMIN_i$ minimalna liczba radiowozów dostępnych dla dzielnicy p_i ,
- $zMIN_j$ minimalna liczba radiowozów dostępnych na zmianie s_j .

5.2.2 Zmienne decyzyjne

• x_{ij} - liczba radiowozów przydzielonych do dzielnicy p_i w zmianie s_j .

5.2.3 Ograniczenia

• Minimalna i maksymalna liczba radiowozów dla każdej dzielnicy i zmiany:

$$rMIN_{ij} \leqslant x_{ij} \leqslant rMAX_{ij}$$

• Minimalna liczba radiowozów dla każdej dzielnicy:

$$\sum_{i=1}^{m} x_{ij} \geqslant dMIN_i$$

• Minimalna liczba radiowozów w każdej zmianie:

$$\sum_{i=1}^{n} x_{ij} \geqslant zMIN_{j}$$

5.2.4 Funkcja celu

Minimalizujemy całkowitą liczbę radiowozów:

$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij}.$$

5.3 Egzemplarz

• Liczba dzielnic: n = 3,

• Liczba zmian: m = 3,

• Minimalne i maksymalne liczby radiowozów dla każdej zmiany i dzielnicy:

	Zmiana 1	Zmiana 2	Zmiana 3
Dzielnica p_1 (min)	2	4	3
Dzielnica p_2 (min)	3	6	5
Dzielnica p_3 (min)	5	7	6
Dzielnica p_1 (max)	3	7	5
Dzielnica p_2 (max)	5	7	10
Dzielnica p_3 (max)	8	12	10

- Minimalna liczba radiowozów na zmianę: 10, 20, 18 dla zmiany 1, 2 i 3.
- Minimalna liczba radiowozów na dzielnicę: 10, 14, 13 dla dzielnic $p_1,\,p_2,\,p_3.$

5.4 Rozwiązanie

Po rozwiązaniu problemu, uzyskujemy następujące liczby radiowozów:

	Zmiana 1	Zmiana 2	Zmiana 3
Dzielnica p_1	2	7	5
Dzielnica p_2	3	6	7
Dzielnica p_3	5	7	6

Minimalna łączna liczba radiowozów: 48.

6 Zadanie 6

6.1 Opis zadania

Firma przeładunkowa składuje kontenery na terenie podzielonym na siatkę kwadratów, z których każdy może być zajęty przez co najwyżej jeden kontener. W celu monitorowania kontenerów firma musi rozmieszczać kamery, które mogą

obserwować kwadraty w określonym zasięgu poziomym i pionowym, przy czym kamera nie może stać na kwadracie zajętym przez kontener. Celem jest rozmieszczenie minimalnej liczby kamer tak, aby każdy kontener był monitorowany przez co najmniej jedną kamerę.

6.2 Opis modelu

6.2.1 Parametry

- m liczba wierszy terenu składowiska,
- n liczba kolumn terenu składowiska,
- k zasięg obserwacji kamery (w liczbie kwadratów) w każdym kierunku,
- C_{ij} macierz (o wymiarach $m \times n$) reprezentująca pozycje kontenerów. $C_{ij}=1$, jeśli na kwadracie (i,j) znajduje się kontener, a $C_{ij}=0$ w przeciwnym wypadku.

6.2.2 Zmienne decyzyjne

• x_{ij} - zmienna, która przyjmuje wartość 1, jeśli w kwadracie (i,j) umieszczona jest kamera, i 0 w przeciwnym wypadku.

6.2.3 Ograniczenia

• Kamery mogą być umieszczane jedynie na pustych kwadratach:

$$x_{ij} = 0$$
, dla wszystkich (i, j) , dla których $C_{ij} = 1$.

 Każdy kwadrat z kontenerem musi być monitorowany przez co najmniej jedną kamerę w jego zasięgu:

$$\sum_{a=\max(i-k,1)}^{\min(i+k,m)} x_{aj} + \sum_{b=\max(j-k,1)}^{\min(j+k,n)} x_{ib} \geqslant 1, \quad \text{dla wszystkich } (i,j), \, \text{dla których } C_{ij} = 1.$$

6.2.4 Funkcja celu

Minimalizujemy liczbę kamer umieszczonych na terenie składowiska:

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}.$$

6.3 Egzemplarz

Jako egzemplarz zadania przyjęto parametry m=5i n=5z następującą macierzą $C_{ij}\colon$

1	0	1	0	1
0	0	0	0	0
0	1	0	1	0
0	0	1	0	0
1	0	0	0	1

Tabela 5: Macierz kontenerów $C_{ij},$ kontenery zaznaczone na niebiesko

6.4 Rozwiązanie

Poniżej przedstawiam rozmieszczenie kamer x_{ij} wraz z macierzą kontenerów C_{ij} dla kolejnych wartości k. Kontenery zostały zaznaczone na niebiesko, a kamery na czerwono:

 $\mathbf{k}=1,$ Minimalna liczba kamer: 5

1	1	1	1	1
0	0	0	0	0
0	1	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0
1	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	1	0	0
1	0	0	1	1

 $\mathbf{k}=\mathbf{2},$ Minimalna liczba kamer: 3

1	0	1	0	1
0	0	0	0	0
1	1	1	1	1
$\begin{array}{ c c }\hline 1\\0 \end{array}$	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0
1	0	0	0	1