```
In [172]: import pandas as pd
    data=pd.read_csv("/home/placement/Downloads/fiat500.csv")
    print(data)
```

0	ID	model	engine_		age_in_days	km	previous_owners	\
0	1	lounge		51	882	25000	1	
1	2	pop		51	1186	32500	1	
2 3	3	sport		74	4658	142228	1 1	
	4	lounge		51	2739	160000	1	
4	5	pop		73	3074	106880	1	
1522	1524			 E1	2712	115200		
1533	1534	sport		51	3712	115280	1	
1534	1535	lounge		74	3835	112000	1	
1535	1536	pop		51	2223	60457	1 1 1	
1536	1537	lounge		51	2557	80750	1	
1537	1538	pop		51	1766	54276	1	
			-					
_		lat	lon	price				
0	44.90		.611560	8900				
1	45.66		.241890	8800				
2	45.50	3300 11	.417840	4200				
3	40.63	3171 17	.634609	6000				
4	41.90	3221 12	.495650	5700				
1533	45.06		.704920	5200				
1534	45.84		.666870	4600				
1535	45.48	1541 9	.413480	7500				
1536	45.00	0702 7	.682270	5990				
1537	40.32	3410 17	.568270	7900				

[1538 rows x 9 columns]

```
In [173]: data.head(10)
```

Out[173]:		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
	0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
	1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
	2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
	3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
	4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
	5	6	pop	74	3623	70225	1	45.000702	7.682270	7900
	6	7	lounge	51	731	11600	1	44.907242	8.611560	10750
	7	8	lounge	51	1521	49076	1	41.903221	12.495650	9190
	8	9	sport	73	4049	76000	1	45.548000	11.549470	5600
	9	10	sport	51	3653	89000	1	45.438301	10.991700	6000

In [176]: data.describe()

Out[176]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

Removing unwanted columns

```
In [177]: data1=data.drop(columns=["ID","lat","lon"])
```

In [178]: data1

Out[178]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [179]: data1=pd.get_dummies(data1)

In [180]:	datal			
-----------	-------	--	--	--

Out[180]:		engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
•	0	51	882	25000	1	8900	1	0	0
	1	51	1186	32500	1	8800	0	1	0
	2	74	4658	142228	1	4200	0	0	1
	3	51	2739	160000	1	6000	1	0	0
	4	73	3074	106880	1	5700	0	1	0
	1533	51	3712	115280	1	5200	0	0	1
	1534	74	3835	112000	1	4600	1	0	0
	1535	51	2223	60457	1	7500	0	1	0
	1536	51	2557	80750	1	5990	1	0	0

1538 rows × 8 columns

51

```
In [181]: data1.shape
```

1 7900

Out[181]: (1538, 8)

1537

remove the predicted value from the dataframe

1766 54276

```
In [182]: y=datal['price']
x=datal.drop(columns='price')
```

In [183]: x

\sim			-		\neg	-
- ()	1117	_		ıv	' - 2	
w	u	_		LO		

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
0	51	882	25000	1	1	0	0
1	51	1186	32500	1	0	1	0
2	74	4658	142228	1	0	0	1
3	51	2739	160000	1	1	0	0
4	73	3074	106880	1	0	1	0
1533	51	3712	115280	1	0	0	1
1534	74	3835	112000	1	1	0	0
1535	51	2223	60457	1	0	1	0
1536	51	2557	80750	1	1	0	0
1537	51	1766	54276	1	0	1	0

1538 rows × 7 columns

```
In [184]: y
Out[184]: 0
                  8900
                  8800
          2
                  4200
          3
                  6000
                  5700
          4
                  5200
          1533
          1534
                  4600
          1535
                  7500
          1536
                  5990
          1537
                  7900
          Name: price, Length: 1538, dtype: int64
```

```
In [185]: #!pip install scikit-learn
```

split the data into training set and testing set

In [186]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)# 66% and 33%

In [187]: x_test

Out[187]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
481	51	3197	120000	2	0	1	0
76	62	2101	103000	1	0	1	0
1502	51	670	32473	1	1	0	0
669	51	913	29000	1	1	0	0
1409	51	762	18800	1	1	0	0
291	51	701	22000	1	1	0	0
596	51	3347	85500	1	0	1	0
1489	51	366	22148	1	0	1	0
1436	51	1797	61000	1	1	0	0
575	51	366	19112	1	1	0	0

508 rows × 7 columns

In [188]: x_train

Out[188]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
527	51	425	13111	1	1	0	0
129	51	1127	21400	1	1	0	0
602	51	2039	57039	1	0	1	0
331	51	1155	40700	1	1	0	0
323	51	425	16783	1	1	0	0
1130	51	1127	24000	1	1	0	0
1294	51	852	30000	1	1	0	0
860	51	3409	118000	1	0	1	0
1459	51	762	16700	1	1	0	0
1126	51	701	39207	1	1	0	0

1030 rows × 7 columns

In [189]: y_test.head(5)

Out[189]: 481

481 7900 76 7900 1502 9400 669 8500 1409 9700

Name: price, dtype: int64

```
In [190]: y train.head(5)
Out[190]: 527
                   9990
           129
                  9500
           602
                  7590
           331
                  8750
           323
                  9100
           Name: price, dtype: int64
In [191]: from sklearn.linear model import LinearRegression
           reg=LinearRegression()#creating object of LinearRegression
           reg.fit(x train,y train)#training and fitting
Out[191]: LinearRegression()
           In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
           On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [192]: y_pred=reg.predict(x_test)
```

```
In [193]: y pred
Out[193]: array([ 5867.6503378 ,
                                  7133.70142341.
                                                   9866.35776216.
                                                                   9723.28874535.
                                  9654.07582608,
                                                   9673.14563045, 10118.70728123,
                 10039.59101162,
                  9903.85952664,
                                  9351.55828437, 10434.34963575, 7732.26255693,
                                  6565.95240435,
                                                   9662.90103518, 10373.20344286,
                  7698.67240131,
                                                   4941.33017994, 10455.2719478 ,
                  9599.94844451,
                                  7699.34400418,
                 10370.51555682, 10391.60424404,
                                                   7529.06622456,
                                                                   9952.37340054,
                  7006.13845729,
                                  9000.1780961 ,
                                                   4798.36770637,
                                                                   6953.10376491,
                  7810.39767825,
                                  9623.80497535,
                                                   7333.52158317,
                                                                   5229.18705519,
                  5398.21541073,
                                  5157.65652129,
                                                   8948.63632836,
                                                                   5666.62365159,
                  9822.1231461 ,
                                                                   8457.38443276,
                                  8258.46551788,
                                                   6279.2040404 ,
                  9773.86444066,
                                  6767.04074749,
                                                   9182.99904787, 10210.05195479,
                  8694.90545226, 10328.43369248,
                                                                   8866.7826029 ,
                                                   9069.05761443,
                  7058.39787506,
                                  9073.33877162,
                                                   9412.68162121, 10293.69451263,
                 10072.49011135,
                                  6748.5794244 ,
                                                   9785.95841801,
                                                                   9354.09969973,
                  9507.9444386 , 10443.01608254,
                                                   9795.31884316,
                                                                   7197.84932877,
                 10108.31707235, 7009.6597206,
                                                   9853.90699412,
                                                                   7146.87414965,
                                                                   8515.83255277,
                  6417.69133992,
                                  9996.97382441,
                                                   9781.18795953,
                  8456.30006203,
                                  6499.76668237,
                                                   7768.57829985,
                                                                   6832.86406122,
                  8347.96113362, 10439.02404036,
                                                   7356.43463051,
                                                                   8562.56562053,
In [194]: from sklearn.metrics import r2 score #to know the efficiency bw the predicted price
          r2 score(v test, v pred)
Out[194]: 0.8415526986865394
In [195]: from sklearn.metrics import mean squared_error#calaculating mse
          mean squared error(y test,y pred)
Out[195]: 581887.727391353
In [196]: import math
          a=581887.727391353
          print(math.sqrt(a))
```

762.8156575420782

```
y test.head(10)
In [197]:
Out[197]:
          481
                    7900
           76
                    7900
          1502
                    9400
          669
                    8500
          1409
                    9700
          1414
                    9900
          1089
                    9900
          1507
                    9950
          970
                   10700
          1198
                    8999
          Name: price, dtype: int64
In [198]:
          y pred
Out[198]: array([ 5867.6503378 ,
                                    7133.70142341,
                                                     9866.35776216,
                                                                     9723.28874535,
                                    9654.07582608,
                                                     9673.14563045, 10118.70728123,
                  10039.59101162,
                                    9351.55828437, 10434.34963575,
                   9903.85952664,
                                                                     7732.26255693,
                                                     9662.90103518, 10373.20344286,
                   7698.67240131,
                                    6565.95240435,
                   9599.94844451,
                                    7699.34400418,
                                                     4941.33017994, 10455.2719478 ,
                  10370.51555682, 10391.60424404,
                                                     7529.06622456,
                                                                      9952.37340054,
                   7006.13845729,
                                    9000.1780961 ,
                                                     4798.36770637,
                                                                      6953.10376491,
                                                                     5229.18705519,
                   7810.39767825,
                                    9623.80497535,
                                                     7333.52158317,
                   5398.21541073,
                                                                      5666.62365159,
                                    5157.65652129,
                                                     8948.63632836,
                   9822.1231461 ,
                                    8258.46551788,
                                                     6279.2040404 ,
                                                                      8457.38443276,
                   9773.86444066,
                                    6767.04074749,
                                                     9182.99904787, 10210.05195479,
                   8694.90545226, 10328.43369248,
                                                     9069.05761443,
                                                                      8866.7826029 ,
                   7058.39787506,
                                    9073.33877162,
                                                     9412.68162121, 10293.69451263,
                  10072.49011135,
                                    6748.5794244 ,
                                                     9785.95841801,
                                                                      9354.09969973,
                   9507.9444386 , 10443.01608254,
                                                     9795.31884316,
                                                                     7197.84932877,
                  10108.31707235,
                                   7009.6597206 ,
                                                     9853.90699412,
                                                                     7146.87414965,
                   6417.69133992,
                                    9996.97382441,
                                                     9781.18795953,
                                                                      8515.83255277,
                   8456.30006203,
                                    6499.76668237,
                                                     7768.57829985,
                                                                      6832.86406122,
                   8347.96113362, 10439.02404036,
                                                     7356.43463051,
                                                                      8562.56562053,
                                                     7270 77100022
                                                                      0411 45004006
```

```
In [199]: results=pd.DataFrame(columns=['Price','Predicted'])
    results['Price']=y_test
    results['Predicted']=y_pred
```

In [200]: results

\sim		$r \sim $	\sim	\sim 1	
- () (111	. ,			
	ut	[2	U	U	
_		_	_	~ ,	

	Price	Predicted
481	7900	5867.650338
76	7900	7133.701423
1502	9400	9866.357762
669	8500	9723.288745
1409	9700	10039.591012
291	10900	10032.665135
596	5699	6281.536277
1489	9500	9986.327508
1436	6990	8381.517020
575	10900	10371.142553

508 rows × 2 columns

```
In [201]: results["Difference"]=results.apply(lambda x:x.Price-x.Predicted,axis=1)
```

In [202]: results.head(10)

Out[202]:

	Price	Predicted	Difference
481	7900	5867.650338	2032.349662
76	7900	7133.701423	766.298577
1502	9400	9866.357762	-466.357762
669	8500	9723.288745	-1223.288745
1409	9700	10039.591012	-339.591012
1414	9900	9654.075826	245.924174
1089	9900	9673.145630	226.854370
1507	9950	10118.707281	-168.707281
970	10700	9903.859527	796.140473
1198	8999	9351.558284	-352.558284

In []: