Data Structures & Algorithms

Adil M. Khan

Professor of Computer Science

Innopolis University a.khan@innopolis.ru

Recap

- Binary Search Trees
- AVL Trees
- Red-black Trees

Today's Objectives

- Priority Queues
- Binary Heap
- Heap-Sort

- Many applications require algorithms to process items in a specific order (e.g. relative importance)
 - Standby fliers
 - Patients waiting at a clinic
 - Operating system scheduling
- Priority can be based on anything relevant to the scenario (treated as the key)

- Main operations
- add(priority, value)
- peek()
- remove ()

- Possible implementations
- Unsorted List
- Sorted List

Unsorted List

- Insertion O(1)
- Removal O(n)

Sorted List

- Insertion O(n)
- Removal O(1)

There is one more way to implement priority queues

Heap or sometimes min/max heap

Heap Based Priority Queues

Main operations

insert(k, v) - inserts an item with key k (priority) and value v to the priority queue - the same as add

Heap Based Priority Queues

Main operations

insert(k, v) - inserts an item with key k (priority) and value v to the priority queue - the same as add

min() or max() - returns the items with smallest or the largest key (highest priority) than any other key in the priority queue – the same as peek

Heap Based Priority Queues

Main operations

insert(k, v) - inserts an item with key k (priority) and value v to the priority queue - the same as add

min() or max() - returns the items with smallest or the largest key (highest priority) than any other key in the priority queue – the same as peek

removeMin() or **removeMax()** - removes the item from the priority queue whose key is the minimum or maximum (highest priority) – the same as remove

Heap Based PQs

- fast insertions O(log n)
- fast removals O(log n)

But first we must understand what is a Complete Binary Tree!

Complete Binary Tree

- A complete binary tree is
 - > Filled out on every level, expect perhaps on the last one
 - All nodes on the last level, should be as far to left as possible

Complete Binary Tree

- A complete binary tree is
 - > Filled out on every level, expect perhaps on the last one
 - All nodes on the last level, should be as far to left as possible

Complete Binary Tree

- 1. Is a Complete Binary Tree
- 2. Maintains flexible order on the set of elements
 - Weaker than sorted order (& so it is efficient)
 - Stronger than random order (& so highest priority element can be quickly identified)

- "Binary" as in binary tree
- "Heap" refers to being "top of the heap", i.e. what's on the top dominates what is underneath
 - greater than or less than (or equal to) everything under it

Min-heap — less than (or equal to) its children

Max-heap — greater than (or equal to) its children

Max-heap Min-heap

- Thus four properties of Binary heap are
- 1. All levels of the tree, except possibly the last one are completely filled (2^i nodes at the **ith-level**)
- 2. If the last level is not complete, the nodes of that level are filled from left to right
- Each node is ">=" or "<=" each of its children according to some comparison predicate which is fixed for the entire data structure

4. Two children can be freely interchanged

As long as it doesn't violate the shape and heap properties

A binary heap T storing n entries has height $h = \lfloor \log n \rfloor$

Insertion

Algorithm: upheap / heapify-up / shift-up — O(log n)

Insert an item T with key 2 into the following heap

Insertion

- Algorithm: upheap / heapify-up / shift-up O(log n)
 - 1. Add element to the bottom level
- 2. Compare the added element with its parent; if they are in correct order, stop
- 3. If not, swap the element with its parent and return to previous step

Removal

- Always delete the root node (removing either the min or max)
- Algorithm: downheap / heapify-down / sift-down
 — O(log n)

Deletion in a binary heap

Deletion in a binary heap

- Algorithm: downheap / heapify-down / shift-down O(log n)
 - Replace root with the last element on the bottom level
 - 2. Compare the swapped element with
 - The larger child (max-heap)
 - The smaller child (min-heap)
 - 3. If they are in correct order, stop
 - If not, swap the element with the child and return to previous step

Implementation as an array

Represent a binary tree without any pointers by using an array of keys and a mapping function

Mapping functions helps find parents and children of a node

- Node at index i has children at indices 2i + 1 and 2i +
 2
- ❖ Node at index i has **parent** at index (i 1)/2

- Node at index i has children at indices 2i + 1 and 2i + 2
- ❖ Node at index i has **parent** at index (i 1)/2

Data Structures and Algorithms in Java

Different Books, Different Representation

Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle at each node in the tree is the value stored at that node. The number above a node is the corresponding index in the array. Above and below the array are lines showing parent-child relationships; parents are always to the left of their children. The tree has height three; the node at index 4 (with value 8) has height one.

PARENT(i)

1 return $\lfloor i/2 \rfloor$

Left(i)

1 return 2i

RIGHT(i)

1 return 2i + 1

Introduction to Algorithms

Inserting in an array based heap, represented as H

Algorithm InsertInHeap(k, v)

Input: priority k, value v; Output: none

```
1. H[size] = new entry (k, v)
  // insert entry (k, v) at rank = size of array
```

2. size = size + 1 // increase heap size

```
// Now perform upheap, starting at the last node
3. i = size - 1
4. while i > 0 and H[(i-1)/2].key() > k
5. swap(H[i], H[i/2]) // swap entry (k, v) with the entry at parent node
6. i = (i-1)/2 // after this statement, index i holds entry (k, v)
```

Deleting in an array based heap H

Algorithm RemoveMin()

Input: none; Output: entry with the smallest key

- 1. if size == 0 then ReportError("Empty Heap")
- 2. itemToReturn = H[0] // minimum is at rank 0
- 3. H[0] = H[size-1] // put the entry at last rank at root
 location
 - 4. size = size 1 // decrease heap size

```
// Now perform downheap to restore heap order
5. i = 0
6. childIndex = findSmallerChild(i)
7. while (childIndex != 0 && H[childIndex].key < H[i].key)</pre>
  8. swap(H[childIndex], H[i])
  9. i = childIndex
  10. childIndex = findSmallerChild(i)
11. return itemToReturn
```

```
Algorithm findSmallerChild(i)
                                             Input: index i of a node
                                             Output: index of the child of node i with smaller key, 0 if node is a leaf
childIndex = findSmallerChild(i)
                                             if (2*i + 1) < size // Node has two children
while (childIndex != 0 && H[child
                                               if (H[2*i + 1].key < H[2*i + 2].key) // Left child is smaller
                                                 return (2*i + 1)
    swap(H[childIndex], H[i])
                                               else return (2*i + 2) // Right child is smaller
                                             else if (2^*i + 1) == \text{size} // \text{Node has one child}
    i = childIndex
                                                return (2*i + 1)
    childIndex = findSmallerChild
                                             else
                                                return (0) // Node is a leaf
return itemToReturn
```

 Heap based priority queue can be used to create a very efficient sorting algorithm: heap-sort

- Heap based priority queue can be used to create a very efficient sorting algorithm: heap-sort
 - 1. Construct the priority queue: O(n log n)

- Heap based priority queue can be used to create a very efficient sorting algorithm: heap-sort
 - 1. Construct the priority queue: **O(n log n)**
 - 2. Repeatedly extract the minimum: O(n log n)

- Heap based priority queue can be used to create a very efficient sorting algorithm: heap-sort
 - 1. Construct the priority queue: O(n log n)
 - 2. Repeatedly extract the minimum: O(n log n)
 - Overall complexity is O(n log n)

This is the best that can be expected from any comparison based sorting algorithm

A heap T storing n entries has height $h = \lfloor \log n \rfloor$

We know that a binary heap is a complete binary tree

We know that a binary heap is a complete binary tree

 What is the number (sum) of nodes from level 0 through level h-1?

 What is the number (sum) of nodes from level 0 through level h-1?

$$1 + 2 + 4 + \dots + 2^{h-1}$$

 What is the number (sum) of nodes from level 0 through level h-1?

$$1 + 2 + 4 + \dots + 2^{h-1} = 2^h - 1$$

How many nodes do we have at level h?

How many nodes do we have at level h?

- Minimum 1
- ❖ Maximum 2^h

 Thus, if n is the total number of nodes in a complete binary tree having height h, then

$$n \leq 2^h - 1 + 2^h$$

 Thus, if n is the total number of nodes in a complete binary tree having height h, then

$$n \leq 2^h - 1 + 2^h$$

and

$$n \ge 2^h - 1 + 1$$

 Thus, if n is the total number of nodes in a complete binary tree having height h, then

$$n \le 2^h - 1 + 2^h$$
 and $n \ge 2^h - 1 + 1$

$$n \ge 2^n - 1 + 1$$

$$n+1 \le 2^{h+1}$$

 Thus, if n is the total number of nodes in a complete binary tree having height h, then

$$n < 2^h - 1 + 2^h$$

and
$$n \ge 2^h - 1 + 1$$

$$n+1 \le 2^{h+1}$$

and

$$n \geq 2^h$$

 Thus, if n is the total number of nodes in a complete binary tree having height h, then

$$n \le 2^h - 1 + 2^h$$
 and $n \ge 2^h - 1 + 1$
$$n + 1 \le 2^{h+1}$$
 and $n \ge 2^h$

Take log on both sides

 Thus, if n is the total number of nodes in a complete binary tree having height h, then

$$n \le 2^h - 1 + 2^h$$

and
$$n \ge 2^h - 1 + 1$$

$$n+1 \le 2^{h+1}$$

and
$$n \ge 2^h$$

$$\log(n+1) - 1 \le h$$

 Thus, if n is the total number of nodes in a complete binary tree having height h, then

$$n \le 2^h - 1 + 2^h$$

and
$$n \ge 2^h - 1 + 1$$

$$n+1 \le 2^{h+1}$$

and
$$n \ge 2^h$$

$$\log(n+1) - 1 \le h$$

and

$$\log(n) \ge h$$

 Thus, if n is the total number of nodes in a complete binary tree having height h, then

$$n \le 2^h - 1 + 2^h$$
 and $n \ge 2^h - 1 + 1$
$$n + 1 \le 2^{h+1}$$
 and $n \ge 2^h$
$$\log(n+1) - 1 \le h$$
 and $\log(n) \ge h$

$$\log(n+1) - 1 \le h \le \log(n)$$

 Thus, if n is the total number of nodes in a complete binary tree having height h, then

$$n \le 2^h - 1 + 2^h$$
 and $n \ge 2^h - 1 + 1$
$$n + 1 \le 2^{h+1}$$
 and $n \ge 2^h$
$$\log(n+1) - 1 \le h$$
 and $\log(n) \ge h$

$$\log(n+1) - 1 \le h \le \log(n)$$

 Thus, if n is the total number of nodes in a complete binary tree having height h, then

$$\log(n+1) - 1 \le h \le \log(n)$$

Also, we know that h is an integer

 Thus, if n is the total number of nodes in a complete binary tree having height h, then

$$\log(n+1) - 1 \le h \le \log(n)$$

- Also, we know that h is an integer
- Thus the two inequalities imply that $h = \lfloor \log n \rfloor$

Did we achieve todays objectives?

- Priority Queues
- Binary Heap
- Heap-Sort