Design and Analysis of Data Structures and Algorithms

Coursework Overview

This assignment assesses the following module learning outcomes:

- ✓ Analyze requirements and select appropriate solutions
- ✓ Design programmes that use appropriate data structures.
- ✓ Implement data structures and the algorithms that maintain them, allowing for secure processing of the data.

This is an individual assignment.

Working on this assignment will help you to develop the ability to relate organizational requirements into design choices for the storage and management of data. It will also help you practice your programming skills

Coursework Specification

An online subscription service company allows members (users) to borrow and use the following types of items for up to a week each time.

- Movies
- Music
- EBooks
- Licenced Software
- Games
- Courses

The conditions of usage are as follows:

- Each Item can be booked by up to 10 different users concurrently. The company might
 offer multiple instances of popular items, so more than 10 users can actually borrow /use
 the same title by accessing different items.
- Each user will be able to book up to 5 items at any one time

- Each user will be able to queue for up to 5 requested items at any one time –depending
 on how many items the user is already using at the time. The total number of items
 (borrowed and requested) cannot exceed five per user at any one time.
- Each item can be booked for use for a week and then it is automatically retrieved
- A user cannot place a request on an item that they are currently using.

Tasks:

- 1. Select appropriate data structure(s) to accommodate effective storage of data for the above subscription service.
- 2. Identify suitable algorithms that would allow the company to run the service as per the above conditions.
- 3. Produce Pseudo Code or any other form of software design for the software that you are going to implement.
- 4. Build the software to manage item bookings and user usage as per the above conditions.
 - ✓ The software must allow the user to borrow an item that is available
 - ✓ The user may place a request for an item that is currently unavailable.
 - ✓ The software must automatically remove an item from a user's access upon the seven-day period expiring
 - ✓ The software must enforce all conditions of usage specified above.
 - ✓ The system should allow the user to create new users
 - ✓ The system should allow the user to enter data as manual input or to read them
 from a CSV / text file.
 - ✓ The system should be able to search for an item based on the title or the Item Number.
- 5. Justify your choice of data structures and algorithms utilized and evaluate the outcome of your work in the format of a short report of about 800 words.

NOTES: Please note the following key instructions

Sample data will be provided, but you may feel that you want to use your own or supplement the given data. This is acceptable as long as the structure of the data is kept as shown below.

Structure of data to be used

Item – Item No, Title, Number availableMember – Member ID, Member Name

Deliverables

One folder in zip format (only) must be uploaded via the relevant link on the Moodle page. The link will be available two weeks before the due date and will be communicated to students via an announcement.

You can reuse code and design that you have produced for one of the tasks here to fulfil the requirements of another task.

The folder must contain:

- ✓ The software modules that you have produced.
- ✓ A word / text file that provides clear instructions as to how to run the program This is particularly important where more than one program files have been submitted.
- ✓ All the data files packaged in a way that the software will run and access them without any problems.
- ✓ A short video demonstrating your software running and fulfilling each of the tasks in the correct order.
- ✓ A word / PDF file with your justification of the design choices.
- ✓ A word /PDF file with your pseudocode

Marking Criteria

The following table gives details of the marking criteria for this coursework.

Marks will be awarded for clear rationale justifying design choices.

Clarity in the pseudo code submitted allowing to map the full logic of the solution implemented is expected.

Code must be well structured, appropriately commented, neat and efficient. Clear use of functions and reduced repetitions of blocks of code are expected.

The use of GUI or other user interface will not attract any specific marks, but simplicity and efficiency of its design will be considered when awarding for an overall efficient system developed.

NOTE – No hard coded data will be allowed. Hard coded data in the submitted work will result in the work marked at 0 (zero).

Rubric

Aspect of	No Work	Incomplete	Acceptable	Good	Very Good	Excellent
assessment	0%	0%-50%	50%-60%	60%-70%	70%-80%	80-100%
and						
proportion						
1 Structure		Data	Data	Data	Well,	The
& Algorithm		structure or	structure	structure and	described but	proposed
(30%)		algorithms is	and	algorithms	either the	Data
		not	algorithms	are well	proposed	structure
		appropriate	are	described	data structure	and
		and some of	described	but the	or the	algorithm is
		the important	but some	proposed	proposed	well
		aspects	aspects are	solution is	algorithm is	explained
		ignored (eg:	not very	not very	not the most	and can be
		space and	clear.	appropriate.	appropriate	considered
		time			solution.	as very
		complexity).				appropriate
						and an
						excellent
						solution.
2 Pseudo	No	Code is not	In general	In general	The code is	Exact
code	pseudo	matching to	code reflects	code reflects	well	reflection of
(10%)	code	the proposed	the	the proposed	structured,	proposed
		data	proposed	data	the	data
		structure and	data	structure and	functionality is	structure
		algorithm.	structure	algorithm	full and there	and
			and	and easy to	is no difficulty	algorithm.
			algorithm but	understand.	in	Code is
			difficult to		understandin	well written
			understand.		g. But there is	and has a
					so room for	professiona
					improvement	I look.
3	Not	Most of the	Most	Software is	Software is	Software is
Functionalit	functionin	functionalitie	functionalitie	functioning	functioning as	perfectly
у	g	s are lacking.	s are	and as per	per the	functioning
(30%)			working but	the	requirement	as per the

			requirement	requirement,	but not	requirement
			not fully met.	but an	perfect.	
				alternative		
				approach		
				could have		
				been better		
				function		
4 Java Code	No Code	There are	The code	The code	The code is	The code is
(20%)		some codes	works but	works but	well	adorned
		that	possibly	the efficiency	structured,	with useful
		demonstrate	without	is not the	and the	comments,
		s	observing all	expected	functionality is	is efficient
		understandin	constraints.	one.	full.	and
		g of the				intelligent.
		problem but				
		not				
		functioning.				
5 Evidence	No	Some testing	Testing is	Testing well	Either test	Tested all
of testing	Evidence	done not but	well	documented	data used is	required
(10%)	of testing	little	documented	but has 2 of	not relevant,	functions
		evidence of	, but test	the following	not sufficient	with
		testing.	data used	shortcoming	or some	relevant
			are not very	s:	aspects not	and
			appropriate	-irrelevant	tested.	sufficient
			or testing not	test data		test data.
			sufficient	- testing not		
			and some	sufficient		
			aspects of	- some		
			testing not	aspects not		
			considered.	tested		