Aufgabe 1. Es seien A, B, C Teilmengen einer Menge X. Man zeige:

- (i) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- (ii) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- (iii) $A (B \cup C) = (A B) \cap (A C)$
- (iv) $A (B \cap C) = (A B) \cup (A C)$

Aufgabe 2. Es sei $f: X \to Y$ eine Abbildung. Man zeige für Teilmengen $M_1, M_2 \subset X$ und $N_1, N_2 \subset Y$:

- (i) $f(M_1 \cup M_2) = f(M_1) \cup f(M_2)$
- (ii) $f(M_1 \cap M_2) \subset f(M_1) \cap f(M_2)$
- (iii) $f^{-1}(N_1 \cup N_2) = f^{-1}(N_1) \cup f^{-1}(N_2)$
- (iv) $f^{-1}(N_1 \cap N_2) = f^{-1}(N_1) \cap f^{-1}(N_2)$

Gilt in (ii) sogar Gleichheit?

Aufgabe 3. Es seien $f: A \to B$ eine injektive Abbildung und $f(A) \subset B$ das Bild von f. Es sei $g: A \to f(A)$ die durch $a \mapsto f(a)$ definierte Abbildung. Man zeige, dass g bijektiv ist.

Aufgabe 4. Es sei A eine Menge und $f: A \to \mathfrak{P}(A)$ eine Abbildung von A in die zugehörige Pentenzmenge. Man zeige, dass f nicht surjektiv sein kann. (Hinweis: siehe das Paradoxon von Russel in der Vorlesung).

- \star Aufgabe 5. (optional) Man schreibt $A\cong B,$ wenn eine bijektive Abbildung $A\to B$ existiert. Man zeige:
 - (i) $\mathbb{N} \cong \mathbb{Z}$
 - (ii) $\mathbb{N} \cong \mathbb{N} \times \mathbb{N}$