Τρίτη εργασία στις "Αρχές Γλωσσών Προγραμματισμού" Δηλωτικός Προγραμματισμός

Γκόγκος Χρήστος Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστημίου Ιωαννίνων

Άρτα, Μάιος 2021

Εισαγωγή

Ο στόχος της εργασίας είναι να αποκτηθεί εξοικείωση με το δηλωτικό προγραμματισμό και ιδιαίτερα με την επίλυση προβλημάτων στα οποία ζητείται ο εντοπισμός λύσεων μέσα σε έναν πιθανά τεράστιο αλλά απαριθμήσιμο σύνολο πιθανών λύσεων. Για την επίλυση της εργασίας θα χρησιμοποιηθεί το λογισμικό Google OR-Tools και ειδικά ο επιλυτής του CP-SAT.

Περιγραφή προβλήματος

Sudoku

Το Sudoku είναι είναι ένα πολύ δημοφιλές παιχνίδι στο οποίο δίνεται ένα ταμπλό 9×9 που περιέχει σε κάποιες από τις θέσεις του συμπληρωμένα ψηφία από το 1 μέχρι και το 9. Στόχος είναι να συμπληρωθεί πλήρως το ταμπλό (επίσης επιλέγοντας ψηφία από το 1 μέχρι και το 9) έτσι ώστε σε κάθε γραμμή, σε κάθε στήλη και σε καθένα από τα 9 υποταμπλό 3×3 που σχηματίζονται από πάνω αριστερά μέχρι και κάτω δεξιά του αρχικού ταμπλό να περιέχονται όλα τα ψηφία από το 1 μέχρι και το 9. Στο Σχήμα 1 παρουσιάζεται ένα Sudoku και η λύση του.

5	3			7					5	3	4	6	7	8	9	1	2
6			1	9	5				6	7	2	1	9	5	3	4	8
	9	8					6		1	9	8	ന	4	2	5	6	7
8				6				3	8	5	9	7	6	1	4	2	3
4			8		3			1	4	2	6	8	5	3	7	9	1
7				2				6	7	1	3	9	2	4	8	5	6
	6					2	8		9	6	1	5	3	7	2	8	4
			4	1	9			5	2	8	7	4	1	9	6	3	5
				8			7	9	3	4	5	2	8	6	1	7	9

Σχήμα 1: Ένα ταμπλό Sudoku και η λύση του (από το How Sudoku could win you a million dollars)

Ζητούμενα

Ανάγνωση προβλημάτων

3	1				4		6	9
						2		
		8			5		4	
								5
		6					1	7
8		7		3				
5	9		7					6
6					3		5	
			1					2

Σχήμα 2: Ένα ταμπλό Sudoku στην αρχική του μορφή http://sudopedia.enjoysudoku.com/Diagrams_and_Notations.html

Το πρόγραμμα εφόσον διαβάσει ένα πρόβλημα θα πρέπει να είναι σε θέση να εμφανίσει το ταμπλό όπως στη συνέχεια.

Listing 1: Απεικόνιση του ταμπλό ως κείμενο

		. [.			
1.		. .	. 2		
1.		8 .	5 .	4	
:			 		
1.			5
1.		6 .	. [.	1	7
		7 .			
:			 		
5	9	. 7	. .		6
6		. .	3 .	5	
1.		. 1	. [.		2
,		,	,		

Εμφάνιση "Pencil Marks"

Ζητείται η εμφάνιση των πιθανών τιμών που μπορούν να τοποθετηθούν σε κάθε θέση εξετάζοντας "απλά" τους 3 περιορισμούς, δηλαδή ότι θα πρέπει σε κάθε γραμμή, στήλη και μπλοκ 3×3 να υπάρχουν όλα τα ψηφία από το 1 μέχρι και το 9. Για παράδειγμα για το ταμπλό του σχήματος 2 το ταμπλό που ζητείται είναι το ταμπλό του σχήματος 3.

3	1	2 5	2 8 3 6	7 8 1 6	4	5 7 8	6
7 9 2 7 9	7 2 6 7	8	8 9 2 3 6 9	7 8 9 1 2 6 7 9	789	2 1 3 7	7 8 4
1 2 4 9 2 4 9	2 3 4 2 3 4 5	1 2 3 4 9	2 4 6 8 9 2 4 5 8 9	1 2 4 6 7 8 9 2 4 5 8 9	8 9	3 4 6 8 9 3 4 8 9	2 3 8 9 1
8	2 4 5	7	2 4 5 6 9	3	12 6 9	4 6 9	2 9
5	9	123	7	2 4 8	2 8	1 3 4 8	8
6	2 4 7 8	1 2	2 4 8 9	2 4 8 9	3	1 4 7 8 9	5
4 7	3 4 7 8	3 4	1	4 5 6 8 9	6 8 9	3 4 7 8 9	7 8 9

Σχήμα 3: Το ταμπλό Sudoku με τις πιθανές τιμές σε κάθε θέση http://sudopedia.enjoysudoku.com/Diagrams_and_Notations.html

Το πρόγραμμα θα πρέπει να είναι σε θέση να εμφανίσει το ταμπλό με τις πιθανές τιμές για κάθε θέση όπως στη συνέχεια.

Listing 2: Το ταμπλό με pencil-marks

3 479 279	1 4567 267	25 459 8	28 3689 2369	278 16789 12679	4 16789 5	578 2 137	6 378 4	9 138 13	
1249 249 8	234 2345 245	12349 6 7	24689 24589 24569	1246789 24589 3	126789 289 1269	34689 3489 469	2389 1 29	5 7 4	
5 6 47	9 2478 3478	1234 124 34	7 2489 1	248 2489 45689	28 3 689	1348 14789 34789	38 5 3789	6 148 2	:

Επίλυση προβλημάτων με το OR-Tools

Ζητείται η επίλυση του ταμπλό Sudoku που θα έχει φορτωθεί με τη χρήση του CP-SAT επιλυτή του Google OR-Tools. Επιλύστε τα ακόλουθα 20 προβλήματα Sudoku.

Listing 3: 20 προβλήματα Sudoku

301086504046521070500000001400800002080347900009050038004090200008734090007208103 048301560360008090910670003020000935509010200670020010004002107090100008150834029 040890630000136820800740519000467052450020700267010000520003400010280970004050063 56109273002078009090000504660000042701007000307300081903590067070010308000000050 310450900072986143906010508639178020150090806004003700005731009701829350000645010 800134902041096080005070010008605000406310009023040860500709000010080040000401006 165293004000001632023060090009175000500900018002030049098000006000000950000429381 405001068073628500009003070240790030006102005950000021507064213080217050612300007 960405100020060504001703006100004000490130050002007601209006038070218905600079000 00730005424508090000304007007096000000002076000080100200829401660910802000007003 32009040070502180000106037221803700950048070000005000670000280000873900804000107 00003000748096050106357082000961020335009700600000509400000005804706910001040070

Παράδοση εργασίας

Η εργασία μπορεί να γίνει σε ομάδες των 3 ατόμων και θα πρέπει να παραδοθεί το αργότερο μέχρι τις 11/6/2021 μέσω του ecourse. Στο ecourse θα ανέβει μόνο το URL του GitHub αποθετηρίου και το commit hash code που θα έχει δημιουργηθεί πριν την ημερομηνία παράδοσης της εργασίας.

Η εργασία θα "ανέβει" σε ένα ιδιωτικό αποθετήριο στο GitHub με όνομα DITUOI_AGP_SUD ΟΚU_XXXX όπου XXXX θα είναι ο αριθμός μητρώου του εκπροσώπου της ομάδας, και θα πρέπει να περιέχει:

- 1. Αρχείο README.md με τα ονόματα των μελών της ομάδας, οδηγίες για την εκτέλεση του κώδικα και παρουσίαση των αποτελεσμάτων των ερωτημάτων.
- 2. Κώδικα σε Python που υλοποιεί τις απαντήσεις στα ερωτήματα.

Στο ιδιωτικό αποθετήριο που θα δημιουργήσετε, προσθέστε ως συνεργάτες (collaborators) τους chgogos, vasnastos και pint00082.

Σχετικές ιστοσελίδες

- https://hackmd.io/@cgogos/Byie_58_d
- https://developers.google.com/optimization
- https://www.kaggle.com/pintowar/modeling-a-sudoku-solver-with-or-tools
- http://sudopedia.enjoysudoku.com/Diagrams_and_Notations.html