C1 - Assignment 1 Report: Sparse Matrices.

Student Number: 1894945

November 3, 2018

C.	1 - Assignment 1 Report Student Number: 189494	19
C	Contents	
1	Introduction1.1 Well-posed, direct problems1.2 Numerical Methods	
2	Problem setup 2.1 Performed tests	9
3	Conclusive remarks	•

Abstract

1 Introduction

1.1 Well-posed, direct problems

The problems that will be addressed in the following are assumed to be always representable in the form:

$$F(x,d) = 0 (1)$$

where x represents the unknown, d the set of data from which the solution depends on and F the functional relation between x and d. Such types of problem are called $direct\ problems\ ([1])$.

If the problem admits a unique solution x that depends continuously on the data d, then the problem is said to be well-posed or stable. Whenever the aforementioned properties are not satisfied, the problem is said to be ill-posed.

1.2 Numerical Methods

In the following, it will always be assumed that problem 1 is well-posed. A numerical method for the approximate solution of the aforementioned equation consists in a sequence of approximate problems:

$$F_n(x_n, d_n) = 0 \quad n \ge 1 \tag{2}$$

with the underlying expectation that $x_n \to x$ as $n \to \infty$, i.e. the approximate solution converges to the exact one.

Definition 1. The numerical method 2 is convergent iff

$$\forall \epsilon > 0, \ \exists n_{\epsilon}, \ \exists \delta(n_{\epsilon}) \ | \ \forall n > n_{\epsilon}, \ \forall \delta d_n : ||x(d) - x_n(d + \delta d_n)|| < \epsilon$$

where d_n is an admissible datum for the n^{th} approximate problem, δd_n a perturbation of d_n , $x_n(d + \delta d_n)$ the corresponding solution of it and x(d) the solution for corresponding exact problem.

2 Problem setup

2.1 Performed tests

3 Conclusive remarks

¹In this case d is said to be admissible for 1.

References

[1] A. Quateroni, R. Sacco, F. Saleri; Numerical Mathematics, Vol.37, Springer Verlag, (2007).