

dual space of a Boolean algebra

Canonical name DualSpaceOfABooleanAlgebra

Date of creation 2013-03-22 19:08:35 Last modified on 2013-03-22 19:08:35

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 06E05
Classification msc 03G05
Classification msc 06B20
Classification msc 03G10
Classification msc 06E20

Related topic StoneRepresentationTheorem
Related topic MHStonesRepresentationTheorem

Let B be a Boolean algebra, and B^* the set of all maximal ideals of B. In this entry, we will equip B^* with a topology so it is a Boolean space.

Definition. For any $a \in B$, define $M(a) := \{M \in B^* \mid a \notin M\}$, and $\mathcal{B} := \{M(a) \mid a \in B\}$.

It is know that in a Boolean algebra, maximal ideals and prime ideals coincide. From http://planetmath.org/RepresentingABooleanLatticeByFieldOfSetsthis entry, we have the three following properties concerning M(a):

$$M(a) \cap M(b) = M(a \wedge b), \qquad M(a) \cup M(b) = M(a \vee b), \qquad B^* - M(a) = M(a').$$

Furthermore, if M(a) = M(b), then a = b.

From these properties, we see that $M(0) = \emptyset$ and $M(1) = B^*$. As a result, we see that

Proposition 1. B^* is a topological space, whose topology \mathcal{T} is generated by the basis \mathcal{B} .

Proof. \varnothing and B^* are both open, as they are M(0) and M(1) respectively. Also, the intersection of open sets M(a) and M(b) is again open, since it is $M(a \wedge b)$.

We may in fact treat \mathcal{B} as a subbasis for \mathcal{T} , since finite intersections of elements of \mathcal{B} remain in \mathcal{B} .

Proposition 2. Each member of \mathcal{B} is closed, hence \mathcal{T} is generated by a basis of clopen sets. In other words, \mathcal{B}^* is zero-dimensional.

Proof. Each M(a) is open, by definition, and closed, since it is the complement of the open set M(a').

Proposition 3. B^* is Hausdorff.

Proof. If $M, N \in B^*$ such that $M \neq N$, then there is some $a \in B$ such that $a \in M$ and $a \notin N$. This means that $N \in M(a)$ and $M \notin M(a)$, which means that $M \in B^* - M(a) = M(a')$. Since M(a) and M(a') are open and disjoint, with $N \in M(a)$ and $M \in M(a')$, we see that B^* is Hausdorff. \square

Now, based on a topological fact, every zero-dimensional Hausdorff space is totally disconnected. Hence B^* is totally disconnected.

Proposition 4. B^* is compact.

Proof. Suppose $\{U_i \mid i \in I\}$ is a collection of open sets whose union is B^* . Since each U_i is a union of elements of \mathcal{B} , we might as well assume that B^* is covered by elements of \mathcal{B} . In other words, we may assume that each U_i is some $M(a_i) \in \mathcal{B}$.

Let J be the ideal generated by the set $\{a_i \mid i \in I\}$. If $J \neq B$, then J can be extended to a maximal ideal M. Since each $a_i \in M$, we see that $M \notin M(a_i)$, so that $M \notin \bigcup \{M(a_i) \mid i \in I\} = B^*$, which is a contradiction. Therefore, J = B. In particular, $1 \in J$, which means that 1 can be expressed as the join of a finite number of the a_i 's:

$$1 = \bigvee \{a_i \mid i \in K\},\$$

where K is a finite subset of J. As a result, we have

$$\bigcup \{ M(a_i) \mid i \in K \} = M(\bigvee \{ a_i \mid i \in K \}) = M(1) = B^*.$$

So B^* has a finite subcover, and hence is compact.

Collecting the last three results, we see that B^* is a Boolean space.

Remark. It can be shown that B is isomorphic to the Boolean algebra of clopen sets in B^* . This is the famous Stone representation theorem.