PHÉNOMÈNES DE TRANSPORT

Niveau: CPGE/L2

Pré-requis:

Premier et second principe de la thermodynamique
Mécanique des fluides / Navier Stokes
Libre parcours moyen, notion d'agitation thermique
Echelle mésoscopique / macroscopique / microscopique
Opérateurs vectoriels

Quantité transportée	Mode de transport
Particules	Diffusion Convection libre ou forcée
Energie thermique	Diffusion Convection Rayonnement
Quantité de mouvement	Diffusion Convection Rayonnement
Charge	Diffusion Convection

I) 3) CADRE D'ÉTUDE

Equilibre thermodynamique local:

Les échanges entre systèmes et sous-systèmes sont suffisamment lents pour qu'on puisses définir des échelles de temps et d'espace sur lesquelles les variables ont localement une valeur d'équilibre.

En pratique:

$$au_{\acute{e}q} \sim au_{coll} \ll \Delta t \ll au_{\acute{e}vol}$$

$$l \ll \Delta x \ll L$$

I) 3) CADRE D'ÉTUDE

Equilibre thermodynamique local:

Les échanges entre systèmes et sous-systèmes sont suffisamment lents pour qu'on puisses définir des échelles de temps et d'espace sur lesquelles les variables ont localement une valeur d'équilibre.

En pratique:

$$au_{\acute{e}q} \sim au_{coll} \ll \Delta t \ll au_{\acute{e}vol}$$
 $l \ll \Delta x \ll L$

Approximation linéaire :

Les écarts à l'équilibre sont suffisamment faibles pour pouvoir être traités au premier ordre.

II) 1) LOI DE CONSERVATION

- Particule de fluide diffusant (d)
- O Particule de fluide support (s)

II) 1) LOIS DE CONSERVATION

Flux de particules ϕ (s^{-1}): Nombre de particules qui traversent une surface Σ par unité de temps

<u>Vecteur densité de courant de particules $\overrightarrow{j_N}$ (m⁻²s⁻¹)</u>:

$$\phi = \iint_{\Sigma} \overrightarrow{j_N} \cdot \overrightarrow{dS}$$

Nombre de particules d^2N qui traversent une surface \overrightarrow{dS} pendant dt :

$$d^2N = \overrightarrow{j_N} \cdot \overrightarrow{dS} dt$$

II) 1) LOIS DE CONSERVATION

Quantité conservée	Flux/densité de flux	Equation de conservation
Particules n : densité locale de particule	$d^2N = \overrightarrow{j_N}.\overrightarrow{dS} dt$	$\frac{\partial n}{\partial t} + div(\overrightarrow{j_N}) = 0$
Energie thermique volumique	$d^2Q = \overrightarrow{j_Q}.\overrightarrow{dS} dt$	$\frac{\partial e}{\partial t} + div(\overrightarrow{j_Q}) = 0$
Quantité de mouvement p_x : densité volumique de quantité de mouvement	$d^2P_{\chi} = \overrightarrow{j_{P_{\chi}}}.\overrightarrow{dS} dt$	$\frac{\partial p_{x}}{\partial t} + div(\overrightarrow{j_{P_{x}}}) = 0$
Charge ρ : densité volumique de charge	$d^2q = \overrightarrow{j_e}.\overrightarrow{dS} dt$	$\frac{\partial \rho}{\partial t} + div(\overrightarrow{j_e}) = 0$

II) 2) LOIS PHÉNOMÉNOLOGIQUES

Quantité conservée	Loi phénoménologique	Coefficient cinétique
Particules	Loi de Fick : $\overrightarrow{j_N} = -D \ \overrightarrow{grad}(n)$	D diffusivité en m^2 . s^{-1}
Energie thermique	Loi de Fourier : $\overrightarrow{j_Q} = -\lambda \ \overrightarrow{grad}(T)$	λ conductivité thermique en $Wm^{-1}K^{-1}$
Quantité de mouvement	Loi de Newton : $j_{P_x}^z = -\eta \frac{\partial v_x}{\partial z}$	η viscosité dynamique en Pa.s
Charge	Loi d'Ohm : $\overrightarrow{j_e} = -\sigma \ \overrightarrow{grad}(V)$	σ conductivité électrique en Ω^{-1} . m^{-1}

II) 3) ÉQUATION DE DIFFUSION

Quantité conservée	Loi phénoménologique
Particules	$\frac{\partial n}{\partial t} = D \Delta n$
Energie thermique	$\frac{\partial T}{\partial t} = D_{th} \Delta T \operatorname{avec} D_{th} = \frac{\lambda}{\rho c}$
Quantité de mouvement	$\frac{\partial \vec{v}}{\partial t} = \nu \Delta \vec{v}$
Charge	$\frac{\partial \vec{E}}{\partial t} = \sigma \mu_0 \Delta \vec{E}$

- Particule de fluide diffusant (d)
- O Particule de fluide support (s)

- Particule de fluide diffusant (d)
- O Particule de fluide support (s)

 δN : Nombre de particules traversant la section d'abscisse x entre t et t+dt

 l^* : libre parcours moyen

 v^* : vitesse quadratique moyenne

Hypothèses:

- $\forall i \| \overrightarrow{v_i} \| = v^*$ la vitesse quadratique moyenne

 l^* : libre parcours moyen

 v^* : vitesse quadratique moyenne

Hypothèses:

- $\forall i \| \overrightarrow{v_i} \| = v^*$ la vitesse quadratique moyenne
- Isotropie de la distribution des vitesse : équiprobabilité des directions $\pm \overrightarrow{u_x}$, $\pm \overrightarrow{u_y}$, $\pm \overrightarrow{u_z}$

 l^* : libre parcours moyen

 v^* : vitesse quadratique moyenne

 l^* : libre parcours moyen

 v^* : vitesse quadratique moyenne

Hypothèses:

- $\forall i \| \overrightarrow{v_i} \| = v^*$ la vitesse quadratique moyenne
- Isotropie de la distribution des vitesse : équiprobabilité des directions $\pm \overrightarrow{u_x}$, $\pm \overrightarrow{u_y}$, $\pm \overrightarrow{u_z}$
- Aucune interaction entre deux chocs des molécules diffusantes sur les molécules support → mouvement rectiligne uniforme

 l^* : libre parcours moyen

 v^* : vitesse quadratique moyenne

Hypothèses:

- $\forall i \| \overrightarrow{v_i} \| = v^*$ la vitesse quadratique moyenne
- Isotropie de la distribution des vitesse : équiprobabilité des directions $\pm \overrightarrow{u_x}$, $\pm \overrightarrow{u_y}$, $\pm \overrightarrow{u_z}$
- Aucune interaction entre deux chocs des molécules diffusantes sur les molécules support → mouvement rectiligne uniforme
- Les chocs ont lieu tous les $t^* = \frac{v^*}{l^*}$ au même instant pour toutes les molécules

 l^* : libre parcours moyen

 v^* : vitesse quadratique moyenne

Hypothèses:

- $\forall i \| \overrightarrow{v_i} \| = v^*$ la vitesse quadratique moyenne
- Isotropie de la distribution des vitesse : équiprobabilité des directions $\pm \overrightarrow{u_x}$, $\pm \overrightarrow{u_y}$, $\pm \overrightarrow{u_z}$
- Aucune interaction entre deux chocs des molécules diffusantes sur les molécules support → mouvement rectiligne uniforme
- Les chocs ont lieu tous les $t^* = \frac{v^*}{l^*}$ au même instant pour toutes les molécules
- ETL: $t^* \ll dt \ll \tau$

Ox

Ox

Ox

ORDRES DE GRANDEUR POUR LA DIFFUSION DE PARTICULES

Phase	Gaz		Liquide		Solide
Support	air	air	eau	eau	cuivre
Particules	H_2	O_2	H_2O	sucre	Al
D (m ² /s)	7.10^{-5}	2.10^{-5}	3.10^{-4}	6.10^{-10}	$1,3.10^{-30}$
Distance caractéristique de diffusion en 1 seconde	1 mm à	1 cm	1 μm à 0,1 cr	n	1 fm à 10 nm

III) 1) DIFFUSION D'UN PIC DE CONCENTRATION

III) 1) DIFFUSION D'UN PIC DE CONCENTRATION

III)2) DIFFUSION À TRAVERS UNE MEMBRANE POREUSE

Paroi poreuse : n pores cylindriques de rayon r

