Assignment: Guassian Naive Bayes

• Diabetes Dataset

1. Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix
```

2. Importing Dataset

```
In [ ]: data = pd.read_csv('./Dataset/diabetes.csv')
In [ ]: data.head()
```

ut[]:		glucose	bloodpressure	diabetes
	0	40	85	0
	1	40	92	0
	2	45	63	1
	3	45	80	0
	4	40	73	1

```
In [ ]: X = data.iloc[:,:4].values
y = data['diabetes'].values
```

3 . Splitting Dataset into train and test

```
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
```

4. Feature Scaling

GaussianNB()

```
In [ ]: sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

5. Training the Naive Bayes Classification model on the Training Set

6 . Predicting the Test set results

7. Confusion Matrix and Accuracy

8. Comparing the Real Values with Predicted Values

```
In [ ]: df = pd.DataFrame({'Real Values':y_test, 'Predicted Values':y_pred})
    df.head(10)
```

Out[]:		Real Values	Predicted Values
	0	0	0
	1	1	1
	2	0	0
	3	1	1
	4	1	1
	5	0	0
	6	1	1
	7	0	0
	8	0	0
	9	1	1