Lecture19: CMOS amplifiers (6)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Review of previous lecture

Source degeneration

$$A_{v} = -\frac{g_{m}R_{D}}{1 + g_{m}R_{S}}$$

$$R_{out} = r_{O} + (g_{m}r_{O} + 1)R_{S}$$

$$i_{X} = \frac{v_{X}}{r_{O} + g_{m}R_{S}r_{O} + R_{S}}$$

$$v_{1}$$

$$V_{2}$$

$$R_{S}$$

Examples 17.23 and 17.24

- Compute the output resistance.
 - What is the difference?

CS stage with biasing

We need capacitive coupling at the input and output.

Low load impedance

- Example 17.27
 - With the load impedance, R_L , the gain becomes

Low load impedance drops the gain drastically!

Common-gate amplifier

- Why do we study other amplification topologies?
 - Different circuit properties
- Common-gate amplifier

Small-signal model

Let's draw the small-signal model together!

Gain and input impedance

- Neglect the output resistance, r_0 .
 - Voltage gain

$$A_v = +g_m R_D$$

Input impedance

Output impedance

Same with the CS stage

$$R_{out} = r_O ||R_D|$$

Generic form of CS and CG stages

Setting for calculating R_{out}

Source follower

- Also called the "common-drain" stage
 - The drain is ac ground.
- Wait a minute!
 - Is it a real amplifier?

Its core

Gain is less than 1??

$$A_v = +\frac{g_m R_S}{1 + g_m R_S}$$

You should be able to draw the small-signal model.

Useless?

- Calculate the input and output impedances.
 - Since the gate is the input terminal, the input impedance is very high at low frequencies.
 - How about the output impedance?

$$R_{out} = \frac{1}{g_m} ||r_O||R_S$$

- It is relatively low.
- High input imp., low output imp.
 - They can serve as good "buffers."

