Динамическое выравнивание многомерных временных рядов

Моргачев Г., Смирнов В., Липницкая Т., Руководитель: Гончаров А.

9 декабря 2018 г.

Сравнения рядов

Проблемы

- Растяжение
- Сдвиги

DTW

DTW

- Выравнивание рядов друг относительно друга
- Позволяет задать функцию расстояния

Многомерное DTW

Особенность

Необходимость выбора функции расстояния между соответственными точками ряда

Постановка задачи

Зависимость качества кластеризации временных рядов от выбора функции расстояния между ними

Задача

Множество временных рядов $\mathbb{S} \subset \mathbb{R}^{I \times n}$, где I - количество каналов, n - длина ряда.

 $orall s_i \in \mathbb{S}$ задано $y_i \in \mathbb{Y}$ - множество меток классов.

Функции расстояния между векторами R:

$$\mathbf{R} = \{ \rho : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+ \}$$

Соответствующие DTW

$$g_{\rho}: \mathbb{S} \times \mathbb{S} \to \mathbb{R}^+$$

Задача

Пусть $S \subset \mathbb{S}, \ |S| = N$ - выборка Матрица попарных расстояний:

$$D(g_{\rho}(S)) = ||D_{ij}||, \ D_{ij} = g_{\rho}(s_i, s_j), \ s_i, s_j \in S$$

Кластеризатор:

 $f:D o Z^N,\;\mathsf{Z}$ - множество меток кластеров

Задача

Функции качества

$$Q_1(f(D), S) = \frac{1}{|Z|} \sum_{z \in Z} \max_{y} \frac{N_z^y}{N_z}$$

$$Q_2(f(D), S) = \frac{1}{|Z|} \sum_{z \in Z} \max_{y} \frac{(N_z^y)^2}{N_z N_y}$$

Постановка задачи

$$Q_i(D(g_{
ho}(S),S)
ightarrow \max_{
ho}$$

Эксперимент

Кластеризация

Иерархическая с функциями расстояния между кластерами:

- $ext{@ weighted: } d(A,B) = rac{(ext{dist}(S,B) + ext{dist}(T,B))}{2},$ где кластер $A = S \cup T$
- weighted: $d(u, v) = \sum_{a \in A, b \in B} \frac{d(a, b)}{(|A| * |B|)}$

Эксперимент

Данные

Размеченные данные ускорений акселерометра телефона

- 6 состояния человека
- 3 канала
- Разбиты на ряды по 50 точек
- Размер выборки 2048
- Производится нормализация данных

Результаты

			Q_1			Q_2	
ρ	n	compl	aver	weigh	compl	aver	weight
L_1	24	0.5059	0.5854	0.6384	0.2732	0.3761	0.4488
	36	0.5325	0.6196	0.6163	0.2988	0.4246	0.4140
	48	0.5563	0.6388	0.6308	0.3303	0.4432	0.4306
L_2	24	0.4876	0.6216	0.6258	0.2701	0.4173	0.4246
	36	0.4982	0.6459	0.6433	0.2701	0.4545	0.4489
	48	0.5336	0.6486	0.6530	0.2701	0.4546	0.4615

Результаты

Выводы

Лучшие результаты в случае выбора функции расстояния, порожденной L_2 нормой. Требуется продолжение исследования.

Спасибо за внимание!