Ch. 3 A Tour of Machine Learning Classifiers Using Scikit-learn

Choosing a classification algorithm

- 1. Selection of features.
- 2. Choosing a performance metric.
- 3. Choosing a classifier and optimization algorithm.
- 4. Evaluating the performance of the model.
- 5. Tuning the algorithm.

Training a perceptron via scikit-learn

scikit provides:

- datasets: iris
- cross-validatoion
- data preprocessing
- Why data standardization?

```
>>> from sklearn import datasets
>>> import numpy as np
>>> iris = datasets.loadiris()
>>> X = iris.data[:, [2, 3]]
>>> y = iris.target
>>> from sklearn.cross validation import train test split
>>> X train, X test, y train, y test = train test split(X, y, test size=0.3,
random_state=0)
>>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler()
>>> sc.fit(X train)
>>> X train std = sc.transform(X train)
>>> X test std = sc.transform(X test)
```

Modeling class probabilities via logistic regression

- Perceptron in practice, the weights are continuously being updated since there is always at least one misclassified sample present in each epoch
- the cost function is hard to converge.
- Perceptron is only linear seperatable

Logistic regression intuition and conditional probabilities

- p is the probability in favor of the event (y=1), $0 \le p \le 1$
- $z = w^T x = w_0 + w_1 x_1 + \dots + w_m x_m$ imply probability but the range is entire real number

$$=> z = \mathbf{w}^T \mathbf{x} = w_0 + w_1 x_1 + \dots + w_m x_m = \log \frac{p}{(1-p)}$$

• Sigmoid function:

$$=> p = \phi(z) = \frac{1}{1 + e^{-z}}$$

Logistic regression intuition and conditional probabilities

Use Quantizer

$$\hat{y} = \begin{cases} 1 & if \, \phi(z) \ge 0.5 \\ 0 & otherwise \end{cases}$$

Learning the weights of the logistic cost function

 In previous chapter, the cost function is originally sum-squared-error cost function

$$J(\mathbf{w}) = \sum_{i} \frac{1}{2} \left(\phi \left(z^{(i)} \right) - y^{(i)} \right)^{2}$$

• But this kind of cost function leads to non-convex, bad to optimize

Learning the weights of the logistic cost function

Use likelihood function

$$L(\mathbf{w}) = P(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \prod_{i=1}^{n} P(y^{(i)} \mid x^{(i)}; \mathbf{w}) = \prod_{i=1}^{n} (\phi(z^{(i)}))^{y^{(i)}} (1 - \phi(z^{(i)}))^{1 - y^{(i)}}$$

Log for easy to optimize

$$\log L(w) = \sum_{i=1}^{n} \left[y^{(i)} \log \left(\phi(z^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - \phi(z^{(i)}) \right) \right]$$

- what we need to do is maximize $\log L(w)$
- for easy to optimize (gradient descend), add negative sign

$$J(w) = \sum_{i=1}^{n} \left[-y^{(i)} \log \left(\phi(z^{(i)}) \right) - \left(1 - y^{(i)} \right) \log \left(1 - \phi(z^{(i)}) \right) \right]$$

• minimize J(w)

Learning the weights of the logistic cost function

update weights w

$$w := w + \Delta w$$

$$\Delta w_{j} = -\eta \frac{\partial J}{\partial w_{j}} = \eta \sum_{i=1}^{n} \left(y^{(i)} - \phi \left(z^{(i)} \right) \right) x_{j}^{(i)}$$

Tackling overfitting via regularization

Variance versus Bias

- Variance: 當用不同training datasets得出來的models來預測,所得預測結果的一致性,
- Bias:當用不同training datasets得出來的models來預測,所得預測結果與實際Label的差值,差值越高, bias越高
- 兩個極端的例子:
 - 記住訓練集合上所有data的label,這樣的系統是低bias、高variance。
 - •無論輸入什麼data,總是預測一個相同的label,這樣的系統是高bias、低 variance。

Variance versus Bias

Intuition

Suppose we penalize and make θ_3 , θ_4 really small.

Regularization.

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting <

Housing:

- Features: $x_1, x_2, \ldots, x_{100}$
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \right]$$

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

L2-regularization

$$\frac{\lambda}{2} \|\mathbf{w}\|^2 = \frac{\lambda}{2} \sum_{j=1}^m w_j^2$$

$$C = \frac{1}{\lambda}$$

$$J(\mathbf{w}) = \sum_{i=1}^n \left[-y^{(i)} \log \left(\phi\left(z^{(i)}\right) \right) - \left(1 - y^{(i)}\right) \log \left(1 - \phi\left(z^{(i)}\right) \right) \right] + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

$$J(\mathbf{w}) = C \left[\sum_{i=1}^n \left(-y^{(i)} \log \left(\phi\left(z^{(i)}\right) \right) - \left(1 - y^{(i)}\right) \right) \log \left(1 - \phi\left(z^{(i)}\right) \right) \right] + \frac{1}{2} \|\mathbf{w}\|^2$$

regularization strength ←

SVM: Maximum margin classification with support vector machines

- The margin is defined as the distance between the separating hyperplane (decision boundary) and the training samples that are closest to this hyperplane, which are the so-called support vectors
- optimization objective is to maximize the margin
- Support Vector是指在Training data set中,用於分類上給予最多資訊的點

- decision boundaries with large margins is that they tend to have a lower generalization error
- whereas models with small margins are more prone to overfitting

Linear classifiers

 Find linear function to separate positive and negative examples

Hyperplanes H1, H2, and H3 are candidate classifiers. Which one is preferred? Why?

objective function:

$$w_0 + \mathbf{w}^T \mathbf{x}^{(i)} \ge 1 \text{ if } y^{(i)} = 1$$

$$w_0 + \mathbf{w}^T \mathbf{x}^{(i)} < -1 \text{ if } y^{(i)} = -1$$

- cost function & optimization:
 - quadratic programming

Dealing with the nonlinearly separable case using slack variables

$$\mathbf{w}^T \mathbf{x}^{(i)} \ge 1 - \xi^{(i)} i f \ y^{(i)} = 1$$

$$\mathbf{w}^T \mathbf{x}^{(i)} \le -1 + \xi^{(i)} \text{ if } \mathbf{y}^{(i)} = -1$$

$$\frac{1}{2} \|\mathbf{w}\|^2 + C \left(\sum_{i} \xi^{(i)} \right)$$

Solving nonlinear problems using a kernel SVM

Solving nonlinear problems using a kernel SVM

• original features to project them onto a higher dimensional space via a mapping function $\phi(\cdot)$

$$\phi(x_1, x_2) = (z_1, z_2, z_3) = (x_1, x_2, x_1^2 + x_2^2)$$

Using the kernel trick to find separating hyperplanes in higher dimensional space

Decision tree learning

• Information gain(IG): 代表從這個if-else question中獲得的有效資訊

$$IG(D_p, f) = I(D_p) - \sum_{j=1}^{m} \frac{N_j}{N_p} I(D_j)$$

• I(D), impurity measures: 代表在datasets D 中, 資料的亂度

Decision tree learning: Impurity Measures

- I(D), impurity measures 有三種:
 - Entropy: $I_H(t) = -\sum_{i=1}^c p(i|t) \log_2 p(i|t)$
 - Gini impurity: $I_G(t) = \sum_{i=1}^{c} p(i|t)(1-p(i|t)) = 1-\sum_{i=1}^{c} p(i|t)^2$
 - Classification error: $I_E = 1 \max\{p(i|t)\}$
 - p(i|t) : class i 在 data subset t分布的程度

Decision tree learning: Impurity Measures

- In a binary class setting,
 - the entropy is 0 if
 - If the classes are dip(i=1|t)=1 or p(i=0|t)=0 p(i=1|t)=0.5 and p(i=0|t)=0.5 the entropy is 1.

$$I_E = 1 - \max \left\{ p(i \mid t) \right\}$$

Decision tree learning example (Classification error)

$$I_{E}(D_{p}) = 1 - 0.5 = 0.5$$

$$A: I_{E}(D_{left}) = 1 - \frac{3}{4} = 0.25$$

$$B: I_{E}(D_{left}) = 1 - \frac{4}{6} = \frac{1}{3}$$

$$A: I_E(D_{right}) = 1 - \frac{3}{4} = 0.25$$

$$B: I_E(D_{right}) = 1 - 1 = 0$$

A is as good as B

$$A: IG_E = 0.5 - \frac{4}{8}0.25 - \frac{4}{8}0.25 = 0.25$$

$$B: IG_E = 0.5 - \frac{6}{8} \times \frac{1}{3} - 0 = 0.25$$

$$I_G(t) = \sum_{i=1}^{c} p(i|t)(1-p(i|t)) = 1 - \sum_{i=1}^{c} p(i|t)^2$$

$I_{G}(t) = \sum_{i=1}^{c} p(i|t) (1-p(i|t)) = 1 - \sum_{i=1}^{c} p(i|t)^{2}$ Decision tree learning example (Gini impurity)

$$I_G(D_p) = 1 - (0.5^2 + 0.5^2) = 0.5$$

$$A: I_{G}\left(D_{left}\right) = 1 - \left(\left(\frac{3}{4}\right)^{2} + \left(\frac{1}{4}\right)^{2}\right) = \frac{3}{8} = 0.375$$

$$B: I_{G}\left(D_{left}\right) = 1 - \left(\left(\frac{2}{6}\right)^{2} + \left(\frac{4}{6}\right)^{2}\right) = \frac{4}{9} = 0.\overline{4}$$

$$A: I_G(D_{right}) = 1 - \left(\left(\frac{1}{4} \right)^2 + \left(\frac{3}{4} \right)^2 \right) = \frac{3}{8} = 0.375$$

$$B: I_G(D_{right}) = 1 - (1^2 + 0^2) = 0$$

B is better

$$A: IG_G = 0.5 - \frac{4}{8}0.375 - \frac{4}{8}0.375 = 0.125$$

$$B: IG_G = 0.5 - \frac{6}{8}0.\overline{4} - 0 = 0.\overline{16}$$

Building a decision tree via scikit

Building a decision tree via scikit

Random Forest

Create random subsets

$$S_{1} = \begin{bmatrix} f_{A12} & f_{B12} & f_{C12} & C_{12} \\ f_{A15} & f_{B15} & f_{C15} & C_{15} \\ \vdots & & \vdots & & \vdots \\ f_{A35} & f_{B35} & f_{C35} & C_{35} \end{bmatrix} S_{2} = \begin{bmatrix} f_{A2} & f_{B2} & f_{C2} & C_{2} \\ f_{A6} & f_{B6} & f_{C6} & C_{6} \\ \vdots & & \vdots & & \vdots \\ f_{A20} & f_{B20} & f_{C20} & C_{20} \end{bmatrix}$$

$$S_M = \begin{bmatrix} f_{A4} & f_{B4} & f_{C4} & C_4 \\ f_{A9} & f_{B9} & f_{C9} & C_9 \\ \vdots & & \vdots & \\ f_{A12} & f_{B12} & f_{C12} & C_{12} \end{bmatrix}$$

Create random subsets

$$S_{1} = \begin{bmatrix} f_{A12} & f_{B12} & f_{C12} & C_{12} \\ f_{A15} & f_{B15} & f_{C15} & C_{15} \\ \vdots & & \vdots & & \\ f_{A35} & f_{B35} & f_{C35} & C_{35} \end{bmatrix} S_{2} = \begin{bmatrix} f_{A2} & f_{B2} & f_{C2} & C_{2} \\ f_{A6} & f_{B6} & f_{C6} & C_{6} \\ \vdots & & \vdots & & \\ f_{A20} & f_{B20} & f_{C20} & C_{20} \end{bmatrix}$$

$$S_{M} = \begin{bmatrix} f_{A4} & f_{B4} & f_{C4} & C_{4} \\ f_{A9} & f_{B9} & f_{C9} & C_{9} \\ \vdots & & \vdots & \\ f_{A12} & f_{B12} & f_{C12} & C_{12} \end{bmatrix}$$

Create random subsets

$$S_{1} = \begin{bmatrix} f_{A12} & f_{B12} & f_{C12} & C_{12} \\ f_{A15} & f_{B15} & f_{C15} & C_{15} \\ \vdots & & \vdots & & \vdots \\ f_{A35} & f_{B35} & f_{C35} & C_{35} \end{bmatrix} S_{2} = \begin{bmatrix} f_{A2} & f_{B2} & f_{C2} & C_{2} \\ f_{A6} & f_{B6} & f_{C6} & C_{6} \\ \vdots & & \vdots & & \vdots \\ f_{A20} & f_{B20} & f_{C20} & C_{20} \end{bmatrix}$$

Decision tree 1
$$S_M = \begin{bmatrix} f_{A4} & f_{B4} & f_{C4} & C_4 \\ f_{A9} & f_{B9} & f_{C9} & C_9 \\ \vdots & & & \vdots \\ f_{A12} & f_{B12} & f_{C12} & C_{12} \end{bmatrix}$$
 Decision tree 2

A chapter covers too many things