Maskowanie

JĘZYK C dla mikrokontrolerów

Maskowanie bitów

Maskowanie ma wiele wspólnego z

wyborem i manipulacją bitami

Maskowanie bitów

W zasadzie to, co omawialiśmy w poprzedniej lekcji było maskowaniem

Słowo o długości odpowiadającej maskowanemu słowu służące do operacji na wybranych bitach

Wikipedia

To, co tworzyliśmy poprzez "wybór" bitów to była właśnie maska bitowa!

Maska wraz z odpowiednią operacją bitową pozwalały na ustawianie, kasowanie, lub negację maskowanych bitów

Gdy odczytujemy jakiś rejestr to odczytujemy całość

Często zależy nam na wartości 1, 2, 3 bitów

Jak "pozbyć się" reszty?

Zamaskować je!


```
// 0b01011011
uint8_t Value = 0x5B;
Value &= ~(BIT0 | BIT1 | BIT2 | BIT6 | BIT7);
                              // ((1<<0) | (1<<1) | (1<<2) | (1<<7) | (1<<6))
Value &= ~(0b11000111);
                                       // 0xC7
Value &= (0b00111000);
                                       // 0x38
Value == 0x18;
                                          0b00011000
```

A co gdyby wskazać (podać maskę) od razu tych bitów,

które nas interesują?


```
uint8_t Value = 0x5B;
                                            0b01011011
Value α (RITO | BIT1 | BIT2 | BIT6 | BIT7);
                                       (1<<1) | (1<<2) | (1<<7) | (1<<6))
V_{a} = \alpha = \alpha (0b11000111);
                                         // 0xC7
Value &= (0b00111000);
                                         // 0x38
Value == 0x18;
                                            0b00011000
```

Wyciągnięcie wartości

...z zamaskowanych bitów

Często takie kilka bitów w środku potrzebujemy, aby

miały wartość 0-X

Table 22: Register 0xF4 "ctrl_meas"

Register 0xF4 "ctrl_meas"	Name	Description		
Bit 7, 6, 5	osrs_t[2:0]	Controls oversampling of temperature data. See Table 24 for settings and chapter 3.4.3 for details.		
Bit 4, 3, 2	osrs_p[2:0]	Controls oversampling of pressure data. See Table 23 for settings and chapter 3.4.2 for details.		
Bit 1, 0	mode[1:0]	Controls the sensor mode of the device. See Table 25 for settings and chapter 3.3 for details.		

Table 23: register settings osrs_p

osrs_p[2:0]	Pressure oversampling
000	Skipped (output set to 0x80000)
001	oversampling ×1
010	oversampling ×2
011	oversampling ×4
100	oversampling ×8
101, others	oversampling ×16

Trzeba ją przesunąć o odpowiednią ilość miejsc

Table 22: R Register 0xF4 Name "ctrl meas" uint8_t ctrl_meas = 0x4B; // 0b01001011Bit 7, 6, 5 osrs t[2:0] Bit 4, 3, 2 osrs p[2:0] Bit 1, 0 mode[1:0] ctrl meas &= 0x1C; // 0b00011100 Table 23: I osrs p[2:0] 000 ctrl meas == 0x08; // 0b00001000 001 010 011 100 uint8_t osrs_p = crtl_meas >> 2; // 0b00000010 101, others

Table 22: Register 0xF4 "ctrl_meas"

Register 0xF4 "ctrl_meas"	Name	Description		
Bit 7, 6, 5	osrs_t[2:0]	Controls oversampling of temperature data. See Table 24 for settings and chapter 3.4.3 for details.		
Bit 4, 3, 2	osrs_p[2:0]	Controls oversampling of pressure data. See Table 23 for settings and chapter 3.4.2 for details.		
Bit 1, 0	mode[1:0]	Controls the sensor mode of the device. See Table 25 for settings and chapter 3.3 for details.		

Table 23: register settings osrs_p

osrs_p[2:0]	Pressure oversampling
000	Skipped (output set to 0x80000)
001	oversampling ×1
010	oversampling ×2
011	oversampling ×4
100	oversampling ×8
101, others	oversampling ×16

W drugą stronę

Ustawiać bity w "środku" zmiennej/rejestru też

czasem będziemy potrzebowali robić w zakresie 0-X

Table 22: Register 0xF4 "ctrl_meas"

Register 0xF4 "ctrl_meas"	Name	Description		
Bit 7, 6, 5	osrs_t[2:0]	Controls oversampling of temperature data. See Table 24 for settings and chapter 3.4.3 for details.		
Bit 4, 3, 2	osrs_p[2:0]	Controls oversampling of pressure data. See Table 23 for settings and chapter 3.4.2 for details.		
Bit 1, 0	mode[1:0]	Controls the sensor mode of the device. See Table 25 for settings and chapter 3.3 for details.		

Table 23: register settings osrs_p

	osrs_p[2:0]	Pressure oversampling		
	000	Skipped (output set to 0x80000)		
	001	oversampling ×1		
	010	oversampling ×2		
	011	oversampling ×4		
	100	oversampling ×8		
	101, others	oversampling ×16		

Musimy tak traktować całość, aby nie zmienić pozostałych bitów

Table 22: R

Name

osrs_t[2:0]

			881
uint8_t osrs_p = 2;	//	0b00000010	9
<pre>uint8_t ctrl_meas = <odczyt>;</odczyt></pre>	//	0b????????	?
ctrl_meas &= 0xE3; ~(BIT2 BIT3 BIT4)	//	0b???000?3	?
ctrl_meas = (osrs_p<<2);	//	0b???010??	?

Bit 4, 3, 2 osrs_p[2:0]

Bit 1, 0 mode[1:0]

Table 23:

osrs_p[2:0]

000

001

010

011

100

101, others

Register 0xF4

"ctrl_meas"
Bit 7, 6, 5

Podsumowanie

- Maskowanie pozwala nam na traktowanie wybranych bitów w całej wartości
- Musimy tak działać, aby nie ruszyć pozostałych bitów
- Do wszystkiego wykorzystujemy maski i operacje bitowe

Dzięki!

JĘZYK C dla mikrokontrolerów

