Outline of Tutorial video

- 1. Basics of machine learning
- 2. Basics of decision tree

What is Machine Learning?

Machine learning (ML) is defined as a discipline of artificial intelligence (AI) that provides machines the ability to automatically learn from data and past experiences to identify patterns and make predictions with minimal human intervention.

https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-ml/

Basics of machine learning

Machine learning as an experimental science

Posted by u/apple_tau 5 months ago

[D] Why is ML research so experimental?

Discussion

I'm still a bit of an ML noob, so this might be my inexperience talking, but why is so much research in ML experimental? My understanding is that areas such as physics have a strong experimental branch because they study already existing systems, but this doesn't seem to be the case with ML. I mean, we study mathematical objects, so it seems to me that we should be trying to understand them as such.

Like, if someone wants to propose a shortest path algorithm, they report its time complexity, not that it took 1min on average to run it, right?

 \bigcirc 131 Comments \bigcirc Share \bigcirc Save \bigcirc Hide \bigcirc Report

86% Upvoted

https://www.reddit.com/r/MachineLearning/comments/wgbmsr/d_why_is_ml_research_so_experimental/

Decision tree as a machine learning algorithm

- Nodes
- Leaf nodes

Pruning

- Pruning is a data compression technique in machine learning and search algorithms that reduces the size of decision trees by removing sections of the tree that are non-critical and redundant to classify instances.
- Pruning reduces the complexity of the final classifier and hence improves predictive accuracy by the reduction of overfitting.

Summary

- 1. Basics of machine learning
- 2. Basics of decision tree

