Programming and Data Structures - II (CS3201) Lecture 3

Kripabandhu Ghosh

CDS, IISER Kolkata

HUFFMAN CODING

Storage of a character file

	a	b	С	d	е	f
Frequency in '000s	45	13	12	16	9	5

Storage of a character file: coding schemes

	а	b	С	d	е	f
Frequency in '000s	45	13	12	16	9	5
Fixed length	000	001	010	011	100	101
Variable length	0	101	100	111	1101	1100

- ullet Fixed length code: For 100,000 characters, $3 \times 100,000 = 300,000$ bits are needed
- Variable length code: (45x1 + 13x3 + 12x3 + 16x3 + 9x4 + 5x4)x1000 = 224,000 bits are needed ($\approx 25\%$ savings!!)

Encoding

Definition

In a character-coding scheme, given a code (with an alphabet Γ) and a *codeword* and a message, produce the *encoded* message

Alphabet Γ

$$\Gamma = \{a,\,b,\,c,\,d\}$$

Code

Character	а	b	С	d
Codeword C_1	00	01	10	11
Codeword C_2	1	110	10	111

Encoding

- Input message: bad
- Encoded message using C₁: 010011
- Encoded message using C₂: 1101111

Decoding

Definition

In a character-coding scheme, given a code (with an alphabet Γ) and a *codeword* and an encoded message, produce the *original* message

Code

Character	а	b	С	d
Codeword C ₁	00	01	10	11
Codeword C ₂	1	110	10	111

Decoding using C_1

- Encoded message: $010011 \Rightarrow 010011$
- Decoded message : bad

Decoding (contd.)

Code

Character	а	b	С	d
Codeword C ₁	00	01	10	11
Codeword C ₂	1	110	10	111

Decoding using C_2

- Encoded message: 1101111
- Interpretation 1: 1101111, decoded message: bad
 - 2 Interpretation 2: 1101111, decoded message: acda
 - 1011111, decoded message: acad

Decoding (contd.)

Code

Character	а	b	С	d
Codeword C ₁	00	01	10	11
Codeword C ₂	1	110	10	111

Decoding using C_2

- Encoded message: 1101111
- Interpretation 1: 1101111, decoded message: bad
 - 2 Interpretation 2: 1101111, decoded message: acda
 - Interpretation 3: 1101111, decoded message: acad

C_2 is NOT uniquely decodable !!!

Decoding (contd.)

Code

Character	а	b	С	d
Codeword C ₁	00	01	10	11
Codeword C ₂	1	110	10	111

Decoding using C_2

- Encoded message: 1101111
- Interpretation 1: 11011111, decoded message: bad
 - 2 Interpretation 2: 1101111, decoded message: acda
 - Interpretation 3: 1101111, decoded message: acad

C_2 is NOT uniquely decodable !!!

C_1 is uniquely decodable

Prefix codes

Definition

A code where no codeword is a prefix of another

Prefix codes

Definition

A code where no codeword is a prefix of another

Misnomer!!

Prefix-free code (instead of *prefix code*) would have been a better nomenclature, but the latter is standard in literature

Prefix codes

Definition

A code where no codeword is a prefix of another

Misnomer!!

Prefix-free code (instead of *prefix code*) would have been a better nomenclature, but the latter is standard in literature

Example

 $\{a=0,\,b=110,\,c=10,\,d=111\}$ is a prefix code

Advantages

- Uniquely decodable/decipherable
- Achieves optimal data compression

Cost of a coding

- C: set of characters in the input message
- \mathbf{c} : $c \in C$ is a character
- c.freq: frequency of character c in the input message
- **T**: Tree corresponding to the optimal prefix code (full binary tree: every non-leaf node has two children)
- $d_T(c)$: The depth of c's leaf in T

Number of bits required to encode a message with characters in C

$$B(T) = \sum_{c \in C} c.freq d_T(c)$$

Optimal coding problem

Find a (binary) prefix tree T (equivalently an optimal prefix code) such that B(T) is minimized

Huffman coding

Developed by David A. Huffman

Intuition

- Tree T is build (Min-Heap) from C in a bottom-up manner
- Min-priority-queue is used to identify and merge the two least frequency nodes
- The merged node has frequency as the sum of the two nodes merged
- The final tree T is is the optimal prefix code
- The codeword is the sequence of edge labels (0 for the left, 1 for the right subtree) on a simple path from the root to the node

Characteristics

Greedy method \Rightarrow finds locally optimal solutions (which looks best at the moment) in the hope it will achieve globally optimal solution

Huffman coding

Algorithm

- **1** n = |C|
- **3** for i = 1 to n 1
- allocate a new node z
- z.left = x = EXTRACT-MIN(Q)
- $oldsymbol{o}$ z.right = y = EXTRACT-MIN(Q)
- \bigcirc INSERT(Q, z)

Time Complexity

- Step 2 invokes BUILD-MIN-HEAP which takes $\mathcal{O}(nlogn)$
- In the for loop EXTRACT-MIN $(\mathcal{O}(logn))$ is called n-1 times $\Rightarrow \mathcal{O}(nlogn)$
- INSERT takes O(logn)

Huffman coding

Algorithm

- **1** n = |C|
- **3** for i = 1 to n 1
- allocate a new node z
- z.left = x = EXTRACT-MIN(Q)
- $oldsymbol{o}$ z.freq = x.freq + y.freq
- \bigcirc INSERT(Q, z)

Time Complexity

- Step 2 invokes BUILD-MIN-HEAP which takes $\mathcal{O}(nlogn)$
- ullet In the for loop EXTRACT-MIN $(\mathcal{O}(logn))$ is called n-1 times $\Rightarrow \mathcal{O}(nlogn)$
- INSERT takes O(logn)
- Huffman coding on a character C set of n elements has a running time of O(nlogn)

Huffman coding: example

f:5 e:9 c:12 b:13 d:16 a:45

a:45

Huffman coding: codeword generation

	а	b	С	d	е	f
Frequency in '000s	45	13	12	16	9	5
Huffman coding	0	101	100	111	1101	1100

Huffman coding: proof of correctness

Lemma 1

- Let C be an alphabet and x and y be the two characters in C with the *lowest* frequencies
- **To prove**: There exists an optimal prefix code for C in which the codewords for x and y have the same length that differ only in the last bit

Proof idea

- ullet Take a tree ${\cal T}$ representing an arbitrary optimal prefix code
- Modify T into another tree representing another optimal prefix code such that x and y appear as sibling leaves of maximum depth in the new tree

Proof

- ullet Let a and b be two characters that are sibling leaves of the maximum depth in ${\cal T}$
- We assume a.freq $\leq b$.freq and x.freq $\leq y$.freq
- Since x.freq and y.freq are the lowest, we have $x.freq \le a.freq$ and $y.freq \le b.freq$

Proof

- ullet Let a and b be two characters that are sibling leaves of the maximum depth in T
- We assume a.freq $\leq b$.freq and x.freq $\leq y$.freq
- Since x.freq and y.freq are the lowest, we have $x.freq \le a.freq$ and $y.freq \le b.freq$
- We exchange the positions of a and x in T to produce a tree T'

Huffman coding: proof of correctness (Lemma 1): tree T (before exchange)

$$B(T) - B(T') = \sum_{c \in C} c.freq \ d_T(c) - \sum_{c \in C} c.freq \ d_{T'}(c)$$

$$= x.freq \ d_T(x) + a.freq \ d_T(a) - x.freq \ d_{T'}(x) - a.freq \ d_{T'}(a)$$

$$= x.freq \ d_T(x) + a.freq \ d_T(a) - x.freq \ d_T(a) - a.freq \ d_T(x)$$

$$= (a.freq - x.freq) \ (d_T(a) - d_T(x)) \ge 0$$

(since $x.freq \le a.freq$ and a is a leaf of the maximum depth in T)

Since T is optimal we have $B(T) \leq B(T')$

 $\Rightarrow B(T) \geq B(T')$

$$\begin{split} B(T) - B(T') &= \sum_{c \in \mathcal{C}} c. \textit{freq } d_T(c) - \sum_{c \in \mathcal{C}} c. \textit{freq } d_{T'}(c) \\ &= x. \textit{freq } d_T(x) + \textit{a.freq } d_T(a) - x. \textit{freq } d_{T'}(x) - \textit{a.freq } d_{T'}(a) \\ &= x. \textit{freq } d_T(x) + \textit{a.freq } d_T(a) - x. \textit{freq } d_T(a) - \textit{a.freq } d_T(x) \\ &= (\textit{a.freq - x.freq}) \left(d_T(a) - d_T(x) \right) \geq 0 \end{split}$$

$$\Rightarrow B(T) \geq B(T')$$

(since x.freq \leq a.freq and a is a leaf of the maximum depth in T)

Since T is optimal we have $B(T) \leq B(T')$

Therefore, B(T) = B(T') (that is, T' is also optimal)

Proof

- ullet Let a and b be two characters that are sibling leaves of the maximum depth in ${\cal T}$
- We assume a.freq $\leq b$.freq and x.freq $\leq y$.freq
- Since x.freq and y.freq are the lowest, we have $x.freq \le a.freq$ and $y.freq \le b.freq$
- We exchange the positions of a and x in T to produce a tree T'
- We exchange the positions of b and y in T' to produce a tree T''

Huffman coding: proof of correctness (Lemma 1): tree T' (before exchange)

Huffman coding: proof of correctness (Lemma 1) (proof complete)

$$B(T') - B(T'') = \sum_{c \in C} c.freq \ d_{T'}(c) - \sum_{c \in C} c.freq \ d_{T''}(c)$$

$$= b.freq \ d_{T'}(b) + y.freq \ d_{T'}(y) - b.freq \ d_{T''}(b) - y.freq \ d_{T''}(y)$$

$$= b.freq \ d_{T}(b) + y.freq \ d_{T}(y) - b.freq \ d_{T}(y) - y.freq \ d_{T}(b)$$

$$= (b.freq - y.freq) \ (d_{T}(b) - d_{T}(y)) \ge 0$$

$$\Rightarrow B(T') \ge B(T'')$$

(since $y.freq \leq b.freq$ and b is leaf of the maximum depth in T)

Since T' is optimal we have $B(T') \leq B(T'')$

Huffman coding: proof of correctness (Lemma 1) (proof complete)

$$\begin{split} B(T') - B(T'') &= \sum_{c \in C} c. \text{freq } d_{T'}(c) - \sum_{c \in C} c. \text{freq } d_{T''}(c) \\ &= b. \text{freq } d_{T'}(b) + y. \text{freq } d_{T'}(y) - b. \text{freq } d_{T''}(b) - y. \text{freq } d_{T''}(y) \\ &= b. \text{freq } d_{T}(b) + y. \text{freq } d_{T}(y) - b. \text{freq } d_{T}(y) - y. \text{freq } d_{T}(b) \\ &= (b. \text{freq - y.freq}) \; (d_{T}(b) - d_{T}(y)) \geq 0 \end{split}$$

$$\Rightarrow B(T') \geq B(T'')$$

(since $y.freq \leq b.freq$ and b is leaf of the maximum depth in T)

Since T' is optimal we have $B(T') \leq B(T'')$

Therefore, B(T') = B(T'') = B(T) (that is, T'' is also optimal)

Lemma 2

- Let C be an alphabet and x and y be the two characters in C with the *lowest* frequencies
- Let C' be the alphabet C with the characters x and y removed and a new character z added, so that $C' = C \{x, y\} \cup \{z\}$
- Define

$$z.freq = x.freq + y.freq$$
 (1)

- Let T' be a tree representing the optimal prefix code for C'
- **To prove**: The tree T, obtained from T' by replacing the leaf node for z with an internal node having x and y as children, represents an optimal prefix code for C

Huffman coding: proof of correctness (Lemma 2) (proof)

Proof

- For each character $c \in C$ $\{x, y\}$, we have $d_T(c) = d_{T'}(c)$ Therefore, $c.freq\ d_T(c) = c.freq\ d_{T'}(c)$
- Also,

$$d_{T}(x) = d_{T}(y) = d_{T'}(z) + 1$$
 (2)

- Therefore, $x.freq \ d_T(x) + y.freq \ d_T(y)$ = $(x.freq + y.freq) \ (d_{T'}(z) + 1) \ (Using equation (2))$ = $(x.freq + y.freq) \ d_{T'}(z) + (x.freq + y.freq)$ = $z.freq \ d_{T'}(z) + (x.freq + y.freq) \ (Using equation (1))$
- We conclude B(T) = B(T') + x.freq + y.freq, equivalently

$$B(T') = B(T) - x.freq - y.freq$$
 (3)

Huffman coding: proof of correctness (Lemma 2) (proof complete)

Proof (contd.)

- We prove by contradiction.
- Suppose T does not represent an optimal prefix code for C
- Then there exists an optimal tree T'' such that

$$B(T'') < B(T) \tag{4}$$

- Without any loss of generality, by lemma 1, T'' has x and y as siblings
- Let T''' be the tree T'' with the common parent of x and y replaced by a leaf z with frequency z.freq = x.freq + y.freq
- Then B(T''') = B(T'') x.freq y.freq (Using equation (3)) < B(T) - x.freq - y.freq (Using equation (4)) = B(T') (Using equation (3))

contradiction, since T^\prime is assumed to represent an optimal prefix code for C^\prime

T must represent an optimal prefix code for C

Huffman coding: proof of correctness (proof complete)

Lemma 1

- Let C be an alphabet and x and y be the two characters in C with the *lowest* frequencies
- To prove: There exists an optimal prefix code for C in which the codewords for x and y have the same length that differ only in the last bit

Lemma 2

- Let C be an alphabet and x and y be the two characters in C with the *lowest* frequencies
- Let C' be the alphabet C with the characters x and y removed and a new character z added, so that $C' = C \{x, y\} \cup \{z\}$
- Define

$$z.freq = x.freq + y.freq (5)$$

- ullet Let T' be a tree representing the optimal prefix code for C'
- To prove: The tree T, obtained from T' by replacing the leaf node for z with an internal node having x and y as children, represents an optimal prefix code for C

The correctness of Huffman coding follows from Lemmas 1 and 2

THANK YOU!!!