# **DYNAMIC PROGRAMMING!**

# **What is Dynamic Programming (DP)?**

**Dynamic Programming (DP)** is a method used in mathematics and computer science to solve *complex problems* by breaking them down into *simpler subproblems*. By solving each subproblem *only once* and *storing the results*, it avoids redundant computations, leading to more efficient solutions for a wide range of problems.

## **How Does Dynamic Programming (DP) Work?**

- Identify Subproblems: Divide the main problem into smaller, independent subproblems.
- Store Solutions: Solve each subproblem and store the solution in a table or array.
- Build Up Solutions: Use the stored solutions to build up the solution to the main problem.
- **Avoid Redundancy:** By storing solutions, DP ensures that each subproblem is solved only once, reducing computation time.

## When to Use Dynamic Programming (DP)?

Dynamic programming is an **optimization technique** used when solving problems that consists of the following characteristics:

## 1. Optimal Substructure:

Optimal substructure means that we <u>combine</u> the optimal results of <u>subproblems</u> to achieve the optimal result of the bigger problem.

#### Example:

Consider the problem of finding the **minimum cost** path in a weighted graph from a **source** node to a **destination** node. We can break this problem down into smaller subproblems:

- Find the **minimum cost** path from the **source** node to each **intermediate** node.
- Find the **minimum cost** path from each **intermediate** node to the **destination** node.

The solution to the larger problem (finding the minimum cost path from the source node to the destination node) can be constructed from the solutions to these smaller subproblems.

## 2. Overlapping Subproblems:

The same <u>subproblems are solved</u> <u>repeatedly</u> in different parts of the problem.

#### **Example:**

Consider the problem of computing the **Fibonacci series**. To compute the Fibonacci number at index **n**, we need to compute the Fibonacci numbers at indices **n-1** and **n-2**. This means that the subproblem of computing the Fibonacci number at index **n-1** is used twice in the solution to the larger problem of computing the Fibonacci number at index **n**.

## KINDA QUESTIONS FROM DIFFERENT APPROACH:

## 1. Optimal Substructure Problems

"These problems can be broken down into smaller, independent subproblems, and the solution to the original problem can be derived from the solutions of these subproblems."

## • Longest Common Subsequence (LCS)

o Problem: Find the length of the longest subsequence common to two sequences.

## • Knapsack Problem

 Problem: Determine the maximum value that can be obtained by selecting a subset of items with a given weight capacity.

## • Rod Cutting Problem

 Problem: Maximize the profit by cutting a rod into pieces with given prices for different lengths.

#### • Matrix Chain Multiplication

o Problem: Find the most efficient way to multiply a sequence of matrices.

### • Longest Increasing Subsequence (LIS)

o Problem: Find the length of the longest subsequence that is strictly increasing.

## • Palindrome Partitioning

o Problem: Partition a string into the minimum number of palindromic substrings.

#### • Coin Change Problem

o Problem: Find the minimum number of coins needed to make a given amount.

## • Subset Sum Problem

o Problem: Determine if a subset with a given sum exists within a set of integers.

## • House Robber Problem

 Problem: Maximize the amount of money that can be robbed from a list of houses without robbing adjacent houses.

## 2. Overlapping Subproblems

"These problems involve solving the same subproblems multiple times. DP optimizes this by storing the results of these subproblems and reusing them."

#### • Fibonacci Sequence

o Problem: Find the nth Fibonacci number.

## • Edit Distance (Levenshtein Distance)

 Problem: Find the minimum number of operations required to transform one string into another.

## • Longest Common Subsequence (LCS)

 Problem: Find the length of the longest subsequence common to two sequences (also overlaps with optimal substructure).

### • Rod Cutting Problem

 Problem: Maximize the profit by cutting a rod into pieces with given prices for different lengths (also overlaps with optimal substructure).

## • Coin Change Problem

 Problem: Find the minimum number of coins needed to make a given amount (also overlaps with optimal substructure).

#### • Minimum Path Sum in a Grid

• Problem: Find the path from the top-left corner to the bottom-right corner of a grid that minimizes the sum of the numbers along the path.

### • Maximum Subarray Sum (Kadane's Algorithm)

o Problem: Find the contiguous subarray with the maximum sum.

#### • Palindromic Subsequence

o Problem: Find the length of the longest palindromic subsequence in a given string (also overlaps with optimal substructure).

#### • Word Break Problem

 Problem: Determine if a string can be segmented into a sequence of valid dictionary words.

## • Jump Game

 Problem: Determine if you can reach the last index in an array given a maximum number of steps that can be jumped from each position.

## 3. Problems Exhibiting Both Optimal Substructure and Overlapping Subproblems

Most dynamic programming problems actually exhibit both properties. Below are examples that strongly show both:

- Longest Common Subsequence (LCS)
- Knapsack Problem
- Edit Distance
- Rod Cutting Problem
- Coin Change Problem
- Matrix Chain Multiplication

- Longest Increasing Subsequence (LIS)
- Subset Sum Problem
- Palindrome Partitioning
- Minimum Path Sum in a Grid
- House Robber Problem
- Jump Game

## Approaches of Dynamic Programming (DP)!!

Dynamic programming can be achieved using two approaches:

# 1. Top-Down Approach (Memoization):

In the top-down approach, also known as **memoization**, we <u>start with the final solution</u> and recursively <u>break it down</u> into smaller subproblems. To avoid redundant calculations, we store the results of solved subproblems in a **memoization table**.

Let's breakdown Top down approach:

- Starts with the final solution and recursively breaks it down into smaller subproblems.
- Stores the solutions to subproblems in a table to avoid redundant calculations.
- Suitable when the number of subproblems is large and many of them are reused.

# 2. Bottom-up Approach (Tabulation):

In the bottom-up approach, also known as **tabulation**, we start with the <u>smallest subproblems</u> and gradually <u>build up</u> to the final solution. We store the results of solved subproblems in a table to avoid redundant calculations.

Let's breakdown Bottom-up approach:

- Starts with the smallest subproblems and gradually builds up to the final solution.
- Fills a table with solutions to subproblems in a bottom-up manner.
- Suitable when the number of *subproblems* is **small and the optimal solution can be directly computed from the solutions to smaller subproblems.**

# **Dynamic Programming (DP) Algorithm!**

Dynamic programming is a algorithmic technique that solves complex problems by breaking them down into smaller subproblems and storing their solutions for future use. It is particularly effective for problems that contains **overlapping subproblems** and **optimal substructure**.

https://www.geeksforgeeks.org/dynamic-programming/

