

Attorney Docket No. 9855-30U1 Cust # 570

Fig. 1B

Title: "Composition its and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al.

U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

5 / 80

M G S V S S L I S G H S F H S K H C R A S Q Y K L R K S S H 30 L K K L N R Y S D G L L R F G F S Q D S G H G K S S S K M G 60 K S E D F F Y | I K V S Q K A R G S H H P D Y T A L S S G D L 90 GGQAGVDFDPSTPPKLMPFSNQLEMGSEKG120 AVRPTAFKPVLPRSGAILHSSPESASHQLH150 PAPPDKPKEQELKPGLCSGALSDSGRNSMS180 SLPTHSTSSSYQLDPLVTPVGPTSRFGGSA210 HNITQGIVLQDSNMMSLKALSFSDGGSKLG240 H S N K A D K G P S C V R S P I S T D E C S I Q E L E Q K L 270 LEREGALQKLQRSFEEKELASSLAYEERPR 300 R C R D E L E G P E P K G G N K L K Q A S Q K S Q R A Q Q V 330 LHLQVLQLQQEKRQLRQELESLMKEQDLLE360 TKLRSYEREKTSFGPALEETQWEVCQKSGE 390 I S L L K Q Q L K E S Q T E V N A K A S E I L G L K A Q L K 420 DTRGKLEGLELRTQDLEGALRTKGLELEVC 450 ENELQRKKNEAELLREKVNLLEQELRA 480 QAALARDMGPPTFPEDVPALQRELERLRAE 510 LREERQGHDQMSSGFQHERLVWKEEKEKVI540 Q Y Q K Q L Q Q S Y V A M Y Q R N Q R L E K A L Q Q L A R G 570 D S A G E P L E V D L E G A D I P Y E D I I A T E I

FIG. 2A

Title: "Composition Kits and Methods Relating to the Human FEZI Gene, a Northward Suppressor Gene"
Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570

KIA0522	AWERELAELROGCSGKLOOVARRAORAOOGLOLO
Fez1	RCRDELEGPEPKGGNKLKQASQKSQRAQQVLHLQ
ATF-5	ISRRREKENPKERNKMAAAKCRNRRELTDTLQAE
KIA0522	<u>VL</u> RLQQDKKQLQEEAARLMRQREELEDKVAACQKE
Fez1	<u>VLQLQQEKRQLRQE</u> LES <u>LMKEQDLLETKL</u> RSYER <u>E</u>
ATF-5	TDQLEDEKSALQTEIANLLKEKEKLEFILAAH
	# # # =

Fig. 2B

FIG. 2C

FIG. 2D

Title: "Composition

ts and Methods Relating to the Human FEZI Gene, a Nov Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

mor Suppressor Gene"

T	9780 O V				Fig. 3B
GCGCAAGTCCCCCCACCTCAAGAA	DONN NOW NOW IN WIND	GGCTCCGAGGAGGGTGCAGTGAGGCCC	MENNINGERMAN	GCTCCAGCTCCCGCTACAGGGCAGGGA	Min
E	·		E _		(<u>T</u>)
TGCGCAAGTCCTCCCACCTCAAGAA	TGCGCAAGTCCTCCCACCTCAAGAA	GGCTCCGAGAAGGGTGCAGTGAGGCCC	Minowininghingin	GCTCCAGCTCCCGCTGCAGGGCAGGGA	N. M. W. W. M. W. W. W. W.
$\overline{\mathbf{S}}$	(B)		(B)		(B)
E44			E50		PC3

10 / 80

FIG. 3C

ts and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attomey Docket No. 9855-30U1 Cust # 570 Title: "Composition

田	д	
ഗ	ပ	
ഗ	Ж	
×	ы	
α	Σ	
П	Ø	
×	×	
\succ	Ŋ	
Ø	田	
ഗ	Ŋ	
¥	ഗ	
\simeq	Ω	
ن	Ø	
田	ഗ	
\bowtie	ഥ	~
വ	᠐	24
二	ഥ	24
ഥ	α	ద
ഗ	Ы	24
耳	Н	~
Ŋ	Ŋ	O
വ	Ω	0
Н	ഗ	S
ᆸ	\succ	ധ
വ	α	လ
വ	z	Σ
>	Н	လ
ഗ	X	വ
ഗ	X	A
Σ	Н	2

mor Suppressor Gene"

Title: "Composition as and Methods Relating to the Human FEZI Gene, a Nov Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

13 / 80

1020 0801 1140 1200 1260 1320 1380 1440 1500 099 720 80 840 900 960 480 540 009 120 180 240 300 360 420 SCCCAAGICG GCTGCTGAGG CTGGCAAGGG GGGTTCAGGG AATGGAAGAG CAACAGGCAA CAAGAGCGAA SCACTGAGAA GGCTTGTAA TTCGCAGTAC SCCGGCGGAA IGAAATCAAI CATGGGCAGC FFGATTTACT TATGTGAGC AGATTACAC STCCACACC TTGCCAAG FTGAATACA ATTIGGAGT CAGCCTGAT TCGCTCAGT SATGCAGGC TTCTCATTT TTATCACCT ATTCCGACGG CCAAAATGGG CCCATCACCC SCEEEGLCE SAGAGCCTGG AATTAGAGCA SATCCAGGCG AGATGAAGAG SGAGGCCCAG **ICAAATTAAG** AAGGATCGTG AAGATGGTAT TGCTTCAAAG CCCGAGTCAC ACTGCCGGGC ACTTTGACCC CGGCAGGGGT GCACAGGGGA GGGGCGGTC GGGGCATCT SAGTGGACAC ATCCCCGGCT CICCAGGCIT CAAGCICGGC AGAACAAAGT CIGGGGIGG GAAATGGTAA AATGGGGGTG AAAACCAGAG TTCACAAAGG TAAGCAAAGA GTCAACGTAG CTGGAAGCAC CTAGGGCAAA GGGGAAATGA AGTTTTAAAA CGTGTCCTTG AGAGGGACAG CAGGAGCCTC GCTATTTCAT CATCCTCAGC CACAGCAAGC CCCGGGGGCT TGCGTCCCAC GACATTCAGC CTCAACCGGT AAGTCCAGCT ${ t ICGTGGGGGT}$ AGCTGCGCCT ATTCAGCTTT CCTCAAGAAG AGGGGCCAG CAATCAGCTA GAGAAAGCAA TCCTTGTTCA TTACCAGAGA CAAGCCCTCG TGCATAGAGC GGAAAATTAC AGGCCAGGTC ATGGACCTAA AGACCTAGAG GTGGCAGGTT TAAGAGAGAT CCACAGCTTC CGGTCACGGC CAGCCAGAAA CAGACTCCTC GGTCAGGCCA CTGTTCTCAT CCCGGGAGAC CCCTTGCCCT CCCCICCCC GATCAAACGT TAGCTGGATT TCATCTCGG AGTCCTCCCA GGAAACGCAG AGAAGTCTTG CACTGAAATG CGCTTCTCTC GTGCATTAGC ACTCTACCAG CCCTGTAAGG GGAAGAAGGG CCCCACACAG GGCAAGCTG TTTCCCTCC GACCCTGCCC CCCAGGACTC TGCCCTTCTC ACACCGCAGA AGAGGGAGCC TGTCATCCAT CACACCAGCT AGTCCTCTGC ACATCAAGGT GCGGGGATTT CCTGAGCATT CTCTTATGTT GCCTGTGGCC TTTGGAGTCC CTCGGGAAGG GGGAGTTAAC ACTGTGAAGC AGCCTCCCAA GCAGTGAACA CCCTAACTTG GGGGGCTG GCCTTTCCAA GTCAGTAGCC AAGCTGCGCA SCACTGTCCA CCCAAGCICA TAAGTGGGTT GGAGTGGTGA CCCCTGAAGC CIGCCCIGGI GCTGGAGTTT ATCCAGCCCT TTTCCTATTC AGGAAAGAGC CCATTAGGGT ITIGGCTICI SACTICITCI

Fig. 5A-1

Title: "Composition ts and Methods Relating to the Human FEZI Gene, a Northead mor Suppressor Gene" Inventor: Carl M. Croce, et al.

U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570

GGTCTGCTGA	GACAATIGAC	CAAGAGGGGT	GCTGCGTGCG	CTCAGAGAGC	CCAGACTGGC	1560
TCAAGGTCGG	CACGCGTGCC	TGGGGAGGGA	GGGTGCAATG	CGCGCGCAGG	GGAGGCATGA	1620
GTCACCGCGG	TCCTTTTCCT	CTACAGGGCT	CCGAGAAGGG	TGCAGTGAGG	CCCACAGCCT	1680
TCAAGCCTGT	GCTGCCACGG	TCAGGAGCCA	TCCTGCACTC	CTCCCGGAG	AGIGCCAGCC	1740
ACCAGCTGCA	LOCCECCCT	CCAGACAAGC	CCAAGGAGCA	GGAGCTGAAG	CCIGGCCIGI	1800
GCTCTGGGGC	GCTGTCAGAC	TCCGGCCGGA	ACTCCATGTC	CAGCCTGCCC	ACACACAGCA	1860
CCAGCAGCAG	CTACCAGCTG	GACCCGCTGG	TCACACCCGT	GGGACCCACA	AGCCGTTTTG	1920
CEGECICCEC	CCACAACATC	ACCCAGGGCA	TCGTCCTCCA	GGACAGCAAC	ATGATGAGCC	1980
TGAAGGCTCT	GICCLICICC	GACGGAGGTA	GCAAGCTGGG	CCACTCGAAC	AAGGCAGACA	2040
AGGCCCCTC	GIGIGICCGC	TCCCCCATCT	CCACGGACGA	GTGCAGCATC	CAGGAGCTGG	2100
AACAGAAGCT	GTTGGAGAGG	GAGGCGCCC	TCCAGAAGCT	GCAGCGCAGC	TTTGAGGAGA	2160
AGGAGCTTGC	CICCAGCCIG	GCCTACGAGG	AGCGGCCGCG	GCGCTGCAGG	GACGAGCTGG	2220
AGGCCCGGA	GCCCAAAGGC	GGCAACAAGC	TCAAGCAGGC	CTCGCAGAAG	AGCCAGCGCG	2280
CGCAGCAGGT	CCTGCACCTG	CAGGTACTGC	AGCTTCAGCA	GGAGAAGCGG	CAGCICCGGC	2340
AGGAGCTCGA	GAGCCTCATG	AAGGAGCAGG	ACCTGCTGGA	GACCAAGCTC	AGGTCCTACG	2400
AGAGGGAGAA	GACCAGCTIC	ე၅ე၅ეეეე၅၅	TGGAGGAGAC	CCAGTGGGAG	GIGAGGCCAC	2460
ACAGGGCTCA	TGGGTTTGGG	TGGTCAGCGG	TITGGCGCCA	GTACCCCCCT	CICCIICIGG	2520
TGCTGGCCAA	TAGCGTGCAA	ACACAGACCG	CGCAGGCAAG	CGGGGCTAAT	GIGCIGGCII	2580
TATCACCCAA	AGAAGGGGCT	CCCTGCAAAC	CATGTTGGGG	GATCGACTTA	CATCTGAGCT	2640
ICCICCIGIC	CCCACCATCA	CCCTCATGGC	TCCTAGATTT	CAGITICCCA	AGTGAGCCAT	2700
TAAATCATGA	AGCCGGAAGC	CAGATGACCA	AGGCCCAGCC	AGGCTGTGGG	CIGACCICCC	2760
TTCCATCAGC	TCCCAGGAGG	CTCAGAAGAA	GAACAAGCCG	TGCCTGAGTT	CAGGCGGGGC	2820
CAGGGGCCCA	AGAGAGCACA	GAATGCATTT	GITGCITIGG	AGGGAGGGAC	TGCACCCACT	2880
AGTAAGAGGG	ACCCTATIGG	TGGCAGGTTT	CAGTGATGGA	AGTGGCCACT	CCTTGCTGAA	2940
GTGTAAGTGG	AACTTCTATT	TGGTGAGCTG	AGATGGAAAC	CTAGGAGAGG	AAGTAAAGAG	3000

Title: "Composition ts and Methods Relating to the Human FEZI Gene, a No

Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570

15/80

3240 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4320 1380 4440 4500 3300 3360 4200 4260 TGGGAGGCTG ITGAGGACTA TCTACTAAAA GAATCTTAAG AGCCTGGAAG AGGCATGGGC CATTAGCCAT TATACTTAT GICACTICAC GGCTTGGCAC CIGIGIGGCI GGCAGAGCAC TTAGTGGGAA ACCCATGTGT ACGTGGAAAT ACAAATTCA CCCATCGTT ACCCCCAGT ACAACCAGT GGTATTGGT CCTCACCCC CACATCTGT CCCCTATCC AACACTGCA ATTTCATTC GGAGTTCAAG CACAGGTTAG STCATGGCTG ACCCGGTCAC TCTGCATCTA TGCCTGCCTC GTGCAAGTCA TAACACCAAT CATCCTCTGA AGACTACCTC SAGCCCAATC CTATTCCCA CAGTCTGGCT TCTTGGAACT CCCTCAGTGA GGGACCAAGA ATTGTAAATA CCTCAGGCTG TTGATGTAAA **TAATATACTT GCAGAGGCA** AAACCCCGTC CCCAGCTACT TCTCTACTCT SCAAATGTAT CAACATGAGG ACACTCACTC CCCCATAACC TCTGTCCACG CCCTGGCTAT TTTATGCCCA ACTGGAGTAA CTTGGATGCA TCTTCTTCT AAACCGAAGC AGACCAAGGC TTTCCCCTTG GAGTGACACA GATCCAGGTG TGGGATCAAA ATATATAGC CTCAGTTTCA GAATAGATGA ATGTTTATAA CACTTTGGGA GATGACTCAT CACCCCCATT CAGAATGGAT ATGCGTGCTT TGTCTGTAAT TGGTGGCAGG GGGTCATGGG CCTACCCAGG GCCACGAAGG GGGTTGTAAG GCAATCCCAG TCAGCCTGGC ACACTCACAC TGCTGGAGAA CCCAGCTTGG ACACGCAAAC GCAGCTGTAT GTCATCGATG ATCATGCTGG CICCICIIGC GCAATGATGA TGTGGCTCTA ACAGTAGAAA GACCACTTAT ATTAAACTGT TAATATATAT CTCTCTGTGC TAGTGAAAGT TCTCCTGTCT TGGTGGTCT TACCTGACCG CATGCTCGCA CCCACTGCTG AGTGACTAGT TTGGCCAAGA TGGCCATCTG GTCCAGAGCA ATTICCTITC AAAATCCGAC CTGTATTCAT GGGTATAGTG TATATATA CTATCATAAC CTACTTCATC TACAAATTAT GAATTCGAGA CAGCCAGGCA ACACACTTAC CTCACCAGCC ATCTCAGTCT CCTGATTTCT AGCCCTCCTC TCATTTTCTT GCTCACGCCT ACCTCAGCTT ITGAGGTCAG SAGGCATCTG AGGCTCTTTA CAGAGTCCAA STTTAACTTG ITGGTGTCAG SCATGCACCC CCATCAAAAT AGTGAATGAA AGTCCTGGAG AAGGCCAACC CTGGCTTTGA GGTGGCAATG ATTTTATATA CAGCTGTTTG CTAATAGTAC TTAATAACAC AGGCGTGGTG ATACAAAAT TCCCCACTC AGCAGCITIT TGCTGTACCC AAACGAGGAA CTCTGGATCT CCACCTTCAC

Fig. 5A-3

Title: "Composition

AGGCAGGAGA	ATCAGAGGGG	AGGCGGAGGT	TGCAGTGAGC	CAAGATCACG	CCACTACACC	4560
CCAGCCTAGG	TGACAAAGCG	AGACTICICA	AATATTAACA	ATAATATAT	ACTATGTGTC	4620
ATTATACATG	ATGATTATTA	TITIAICAII	TTACTATATA	GCCTAGCTCG	ATAACCTGGG	4680
ARAAAGGTCA	CAGCAATGTT	CAGCTTACTT	TCAGATTGGA	CAAAGGCTGG	AATGCCTAAC	4740
ACCGGGCCAC	CGCATCCGGA	GIGGCIIGGI	TATTTAGGC	AGCTGAGCTG	TCACTICCCI	4800
GGGTAAGGAC	ACTCACCTCT	TGGCACTCTG	TCTCCACCCC	ACCCTCGGCA	GGTGTGCCAG	4860
AAGTCAGGCG	AGATCTCCCT	CCTGAAGCAG	CAGCTGAAGG	AGTCCCAGAC	GGAGGTGAAC	4920
GCCAAGGCTA	GCGAGATCCT	GGGTCTCAAG	GCACAGCTGA	AGGACACGCG	GGGCAAGCTG	4980
GAGGGCCTGG	AGCTGAGGAC	CCAGGACCTG	GAGGCGCCC	TGCGCACCAA	GGGCCTGGAG	5040
CTGGAGGTCT	GTGAGAATGA	GCTGCAGCGC	AAGAAGAACG	AGGCGGAGCT	GCTGCGGGAG	5100
AAGGTGAACC	TGCTGGAGCA	GGAGCTGCAG	GAGCTGCGGG	CCCAGGCCGC	CCIGGCCCGC	5160
GACATGGGGC	CGCCCACCTT	CCCCGAGGAC	GICCCIGCCC	TGCAGCGGGA	GCTGGAGCGG	5220
CIGCGGGCCG	AGCTGCGGGA	GGAGCGGCAA	GGCCATGACC	AGATGTCCTC	GGGCTTCCAG	5280
CATGAGCGGC	TCGTGTGGAA	GGAGGAGAAG	GAGAAGGTGA	TTCAGTACCA	GAAACAGCTG	5340
CAGCAGAGCT	ACGIGGCCAI	GTACCAGCGG	AACCAGCGCC	TGGAGAAGGC	CCTGCAGCAG	5400
CIGGCACGIG	GGGACAGCGC	CGGGGAGCCC	TIGGAGGITG	ACCTGGAAGG	GGCTGACATC	5460
CCCTACGAGG	ACATCATAGC	CACTGAGATC	TGAGGGGCTG	CCTGGGAAGG	CGAGICIGGG	5520
GACCTGGCAC	TGGGAGGCAG	GGCTCTCCCG	TGCATCCCCC	CTGCTCAGCA	ATTCAGACCC	5580
CTCTGAGAGA	CGCCACICCC	TGGGACACAG	ACCCAGGACC	CCCGAGGGGA	GGGCAGGATG	5640
GCCTTTCCTT	CCCTCTCTGA	TGTCCCAGTG	CICACCAGCC	CTGCAGCCCA	CCAGACGICA	5700
GGCCCTGACT	CCTCTGGCTT	TCCCAGGAGA	TGGGTCCAGG	GGTCTGTCTG	CITIGGTIAA	5760
GGGCTCCCTA	AACTTTGGCC	TTTGTTCGAA	ATAGATATCC	TCTCCCCCTC	CTCCAGGGAA	5820
GGTGGCCACA	GCAAGAACAG	CEGCICCCCI	CCGCTTCTCA	TCCCAACCTC	TITITCCICC	5880
TGGACACATT	GGAATGCCTT	GGAAATAGAA	AGAAGCCATA	TATGACCAGA	AGCCTTGGAA	5940
CCAGCCCCAT	CAGAACCTGA	GCTATTTTCC	TCTGGCCGCA	GAGGTGTAGG	GGTGGAATGA	0009

s and Methods Relating to the Human FEZI Gene, a Nov Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

Title: "Composition

GCCGCGGGGA	AGCTGGCTTT	GAAACCTCAG	GGCTGTCCCA	GCCCCGGCAA	GCCACAGGAA	0909
GGAGGGGAGA	GACAGGCAGC	CCAGCAGTGT	GGAGACCCTG	CCACAGCCAG	AGGAGGGCAG	6120
AGGGAGAATC	CAAGGGTTGA	GAGCCAGTGG	CGGGTGATGG	CCAGCCCCTG	GGGCCCAGCC	6180
CCTGTTTACT	GGTTCTTGCA	AATGGGAGCT	GAGCAGCCTC	TGGACAGCCA	GTGACCTTTG	6240
ACCTCGGTGA	CCACTCTTCT	TTAAGCCATA	GACCCTGAGG	CCCTGGGCTG	GGTGCTGGGA	6300
AGGGAGGGTT	GAAACCACCG	TGAACCAGAG	GGTGTGGCTT	TCCAGKCACC	CTCAGGGAGC	6360
CICCCCATCT	GTCCAGCTGG	GGCCAGAGGC	TGGGAGTCCC	TACCTGCTTC	ACGTIGGCCG	6420
GCGGCTACTC	TGGAATGTTT	TICCCICCC	AGAATCAAGC	TTTTGCTTGA	TCCAGAAGAG	6480
CCCATATCAC	TAAGATGGCA	TATATGTGAT	CTGGGCATTT	TCCTCCTCTG	CCTACAGCCA	6540
GGTTTAGCGG	CAAACCTTTC	CCCCTTAGCA	CCTTCAGGGC	TGAGTTCTGG	GTTTCTAGAG	0099
GTCAGGACGG	CTCCTCAGAG	CGCCAGGAAG	CCAGAGCCCC	AAGCAGGACG	AAAAAGAGGC	0999
ATACACACAG	CAGTGTGAAT	AGCCTGGCCA	CCAGCCATCC	TCCCTCCACC	TCAAGACCCC	6720
CATTTGTCCS	AGACTAAAGG	ATCCAGAGAG	CAGCTCCCTT	TCTCAGGAGC	TTGGGCAGTG	6780
CCCCAGGGAG	TCCAGGGTTT	CTCTGCAGAT	GTGCGGAGCG	GGAGGCGGTG	GTAGAGAGAG	6840
ATAAAAGGTG	GAGTTTCTCT	GITGITIGGI	TCAGGGATTT	TATTTTAAT	TTTATGAGAC	0069
AGGGTCTTGC	TCTGTCCCCC	AGGCTGGAGT	GCAGTGGCAT	GATCATAGCT	CACTGCAGCC	0969
TCATACTCCT	GGGCTCAAGC	AATCCTCCTG	CCTCAGCCTT	CCAACTAGCT	GGGACTACAG	7020
GTGCGCGCCA	CCGTGCCTGG	CTAACTTTTC	ATTTTTTG	TAGGGACGGG	GICICGIIII	7080
GTTGCCAAAG	CTGGTCTCAA	ACTIGIGGCC	TCAAGCAATC	CACCTGCCTT	GGCCTCCCAA	7140
AGTGCTGAGA	TIGCAGAIGT	GAGCCACCGT	GCCTGGCCAG	ATTTTTCTTT	TATTCTTCTT	7200
TCTTTTTCTT	TITIGCITIC	TIGICITITC	AGAAGCAAGC	CAGACCTAGC	AGGCTGTTCC	7260
ATGTTCTATT	TTTGACTGTA	GCCACAGCTG	CIGITCICAG	GACAGCATCC	CTTCCCACAT	7320
GCCIGCGCCI	GCIGCCIGCI	GAGATGAGGA	GGGGAGCGTC	TGGGAACTTG	CGAGTCCAAG	7380
GCCAGICCCC	ATTTCTGCCT	CGCTCACCGC	TGGCCCTTAG	AGACCCCGAG	GTAGGGGGTGG	7440
GGAGATGCTT	CICICCIIGC	LOCCCCCCC	CATGGGTCCT	AGCCCTTCCC	TGAGTGCGGG	7500

8820

IGGCCTT

SACCAGO

ATCTGGAAG

CAGAGGCTG TGTGCTGCG

GCTTGGGGA

GGGGCCATC

GCCATCTCT

TGAACTCCT

GGCAA

8760

SCCATGA

CTCCCAG

SGGATAT

SATCGGA

TGCCCT TGCTCT AGTCTGG

AGCAGCA

s and Methods Relating to the Human FEZI Gene, a Nov Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888

Title: "Compositions

CTTGCG

CTCCCA SGAGACC

GCCTGA

TAAACG

CTGAGGCCA

Attorney Docket No. 9855-30U1 Cust # 570

18/80

8040 7980

> CCTGTC AGATGTC

7920

SCCTGAG

CCCCCCAAC AAGAAGTGG GICCCGGTA CCAGGCCGG TTCCCTGGG TATCCTGCG CGCCCTCAC

GGCAGTAC CCTCAGCCC GTGAGACTG CCATGGT

8100 8160 8220 8280 8340 8400 8460 8520 8580 8640 8700

ATGCAAG CCAAAAG rggacag

	•				
Ŋ	AGTCACCTTT	TCTGTGGCTG	GCTCTACCTT	CCIGICCCIG	AGGI
Ŋ	TGCCATCCTC	AAACGACAGA	GGAGCTTTTC	TGGAATTTCA	AACC
K	AGCTAGGCTT	AAACCTGGAA	TCTACAAGCC	AAAAGTCCCT	CCCI
Ŋ	CTCCATTGGG	CACAGTCCAG	ACCCAAGTCA	AAGATGCCCC	ATTC
H	CAGITCCITC	ATTTCCACCA	GGCCGIGCCI	TGTTTGAGTT	TITC
Ų	CCCACGGAGA	CAGAGGAAAG	GGCTGGCTCC	CCCTCCCCAG	GCTG
H	CCAGGAAAGA	GCAGTCAGAG	TCCAGTGCTC	TGCCTCAGAC	GTTG
ပ္	TGCCACACCC	AGGGGAAGGC	CCTGAGGCGG	AGGCTGTGCT	ညညည
Ŋ	CTTCCATACA	CAGAGGAGTG	CAGCCTTCTC	CATATCTCCA	TGGC
ပ္	CCAGATGTGT	CCCCCCAGG	CCTTGTCCTA	CGTCCAAGGT	GGCA
ပ္ပ	TGCCACCAGC	CCCCCCCCA	GAGTGGCCCA	CCGTGGCACT	AGAA
Ä	CCTTGCAACC	TCACCTTCCT	GIGGGIGIIC	TTTCCTGCCC	TGTC
H	ATTCTTGGAC	CATGCCAGAT	TCTGCCTCTC	TGGAAAGAGG	CTCI
ပ္	CAAGCACAGA	CCTGGCCCC	AGGCCCCAGA	CAGGGTGGGC	TICC
Ω̈́	CACGCCTGCT	GGCCGACCCA	CTGACCCACT	CGGATGGACC	AACC
Ŋ	GACGCCTGCA	GGAGAGAGCA	GCACTCCGCA	TCACCTCACC	AAGG
Ħ	GGACCTGGGA	ACGACTGGAC	TGTCACGGGG	TTCCCTCCTA	GCTC
ົດ	CCAGGCACAC	ACAGCCCCTA	TAGCACTGAG	CTCACATGGG	ACTG
H	CTTCCCCAGA	GAGGCACTCA	GTGAGCCTCC	TGTGCCTGGC	CCCA
Ħ	AGGTGAGACA	GTTGCCCGAA	ACTAAGCCAG	GCCTGGCTGG	AGGA
Ŋ	AGGGATTTCC	CTGCAGACCT	CAAGCCATCA	TGCGGTGGGT	GCTG
Ö	ACCCCTGGGC	CAGCGGGGCT	GCTCACCCAC	CTCTTGTGCA	AGGI
Ö	CTGCAGGCAG	AGCTGGAGCC	CCCAGCAGAG	GCAGGCTGGG	ACGG
Ą	TGTACATAGT	TATTTTCTC	TITGIGGIII	CITGITIGGI	TIGG
Ħ	TCATTTTATT	TTTGACGICA	CTTTTTGGCC	ATGTAAACTA	TIIG
Ħ	TTATTTATGA	ATAAAGAATG	CCATTTCTCA	CCCCTCT	

TCCCTCTGG

GTCCCCAAA CICIGCCC

CAGAAGCCT

Title: "Composition

lits and Methods Relating to the Human FEZI Gene, a N Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

"umor Suppressor Gene"

CACA 60	CAGC 120	3TAC 180	3AGG 240	CGAA 300	CACG 360	ACCC 420	3AGG 480	3GAG 540	SAAG 600	3ccc 660	CACA 720	CAAC 780	SAAC 840	CAIC 900	CAGC 960	CAGG 1020	SAAG 1080	3CGG 1140	3CTC 1200	3GAG 1260	GACG 1320	3CGG 1380	CAAG 1440	3CTG 1500
TGCTGCCACA	CATGGGCAGC	TTCGCAGTAC	GCTGCTGAGG	CAAGAGCGAA	AGATTACACG	GTCCACACCC	TGCAGTGAGG	CTCCCGGGAG	GGAGCTGAAG	CAGCCTGCCC	GGGACCCACA	GGACAGCAAC	CCACTCGAAC	GIGCAGCAIC	GCAGCGCAGC	GCGCTGCAGG	CTCGCAGAAG	GGAGAAGCGG	GACCAAGCTC	CCAGTGGGAG	. GTCCCAGACG	. GGACACGCGG	GCGCACCAAG	GGCGGAGCTG
GACTGCCCCT	CCCGAGTCAC	ACTGCCGGGC	ATTCCGACGG	CCAAAATGGG	CCCATCACCC	ACTTTGACCC	CCGAGAAGGG	TCCTGCACTC	CCAAGGAGCA	ACTCCATGTC	TCACACCCGT	TCGTCCTCCA	GCAAGCTGGG	CCACGGACGA	TCCAGAAGCT	AGCGGCCGCG	TCAAGCAGGC	AGCTTCAGCA	ACCTGCTGGA	TGGAGGAGAC	AGCTGAAGGA	CACAGCTGAA	AGGGCGCCCT	AGAAGAACGA
ACGGAGCCAC	CATCCTCAGC	CACAGCAAGC	CICAACCGGI	AAGTCCAGCT	CCCCGGGGCT	GCTGGGGTGG	GAAATGGGCT	TCAGGAGCCA	CCAGACAAGC	TCCGGCCGGA	GACCCGCTGG	ACCCAGGGCA	GACGGAGGTA	TCCCCCATCT	GAGGGGGCCC	GCCTACGAGG	GGCAACAAGC	CAGGTACTGC	AAGGAGCAGG	2929222299	CTGAAGCAGC	GGTCTCAAGG	CAGGACCTGG	CTGCAGCGCA
CAGTCCCCTC	CCCCTGCCC	CCACAGCITC	CCTCAAGAAG	CGGTCACGGC	CAGCCAGAAA	AGGGGGCCAG	CAATCAGCTA	GCTGCCACGG	CCCCCCCCT	GCTGTCAGAC	CTACCAGCTG	CCACAACATC	GICCTICICC	GTGTGTCCGC	GTTGGAGAGG	CICCAGCCIG	GCCCAAAGGC	CCTGCACCTG	GAGCCTCATG	GACCAGCTTC	GATCTCCCTC	CGAGATCCTG	GCTGAGGACC	TGAGAATGAG
GCTATGACCT	GACCCTGCCC	TCATCTCCGG	AGTCCTCCCA	CCCAGGACTC	ACATCAAGGT	GCGGGGATTT	TGCCCTTCTC	TCAAGCCTGT	ACCAGCTGCA	GCTCTGGGGC	CCAGCAGCAG	CEGECTCCGC	TGAAGGCTCT	AGGCCCCTC	AGCAGAAGCT	AGGAGCTTGC	AGGCCCGGA	CGCAGCAGGT	AGGAGCTCGA	AGAGGGAGAA	AGICAGGCGA	CCAAGGCTAG	AGGCCTGGA	TGGAGGTCTG
TGAGGGCTTT	GCCTTTCCAA	GTCAGTAGCC	AAGCTGCGCA	TTTGGCTTCT	GACTTCTTCT	GCACTGTCCA	CCCAAGCTCA	CCCACAGCCT	AGTGCCAGCC	CCTGGCCTGT	ACACACAGCA	AGCCGTTTTG	ATGATGAGCC	AAGGCAGACA	CAGGAGCTGG	TTTGAGGAGA	GACGAGCTGG	AGCCAGCGCG	CAGCICCGGC	AGGTCCTACG	GTGTGCCAGA	GAGGTGAACG	GGCAAGCTGG	GGCCTGGAGC

Is and Methods Relating to the Human FEZI Gene, a November Suppressor Gene Inventor: Carl M. Croce, et al.

U.S. Patent Appl. No.: 09/513,888

Attorney Docket No. 9855-30U1 Cust # 570

Title: "Composition

CTGCGGGAGA	AGGTGAACCT	GCTGGAGCAG	GAGCTGCAGG	AGCTGCGGGC	CCAGGCCGCC	1560
CTGGCCCGCG	ACATGGGGCC	GCCCACCTTC	CCCGAGGACG	TCCCTGCCCT	GCAGCGGGAG	1620
CTGGAGCGGC	TGCGGGCCGA	GCTGCGGGAG	GAGCGGCAAG	GCCATGACCA	GATGTCCTCG	1680
GGCTTCCAGC	ATGAGCGGCT	CGTGTGGAAG	GAGGAGAAGG	AGAAGGTGAT	TCAGTACCAG	1740
AAACAGCTGC	AGCAGAGCTA	CGTGGCCATG	TACCAGCGGA	ACCAGCGCCT	GGAGAAGGCC	1800
CTGCAGCAGC	TGGCACGTGG	GGACAGCGCC	GGGGAGCCCT	TGGAGGTTGA	CCTGGAAGGG	1860
GCTGACATCC	CCTACGAGGA	CATCATAGCC	ACTGAGATCT	GAGGGGCTGC	CTGGGAAGGC	1920
GAGTCTGGGG	ACCIGGCACT	GGGAGGCAGG	GCTCTCCCGT	GCATCCCCCC	TGCTCAGCAA	1980
TTCAGACCCC	TCTGAGAGAC	GCCACTCCCT	GGGACACAGA	CCCAGGACCC	CCGAGGGGAG	2040
GGCAGGATGG	CCTTTCCTTC	CCTCTCTGAT	GICCCAGIGC	TCACCAGCCC	TGCAGCCCAC	2100
CAGACGTCAG	GCCCTGACTC	CICIGGCITI	CCCAGGAGAT	GGGTCCAGGG	GTCTGTCTGC	2160
TTTGGTTAAG	GGCTCCCTAA	ACTITGGCCT	TTGTTCGAAA	TAGATATCCT	CICCCCCICC	2220
TCCAGGGAAG	GTGGCCACAG	CAAGAACAGC	GGCICCCCIC	CGCTTCTCAT	CCCAACCICI	2280
TITICCICCI	GGACACATIG	GAATGCCTTG	GAAATAGAAA	GAAGCCATAT	ATGACCAGAA	2340
GCCTTGGAAC	CAGCCCCATC	AGAACCTGAG	CTATTTTCCT	CTGGCCGCAG	AGGTGTAGGG	2400
GTGGAATGAG	CCGCGGGGAA	GCIGGCITIG	AAACCTCAGG	GCTGTCCCAG	CCCCGGCAAG	2460
CCACAGGAAG	GAGGGGAGAG	ACAGGCAGCC	CAGCAGTGTG	GAGACCCTGC	CACAGCCAGA	2520
GGAGGGCAGA	GGGAGAATCC	AAGGGTTGAG	AGCCAGTGGC	GGGTGATGGC	CAGCCCCTGG	2580
GGCCCAGCCC	CIGITIACIG	GTTCTTGCAA	ATGGGAGCTG	AGCAGCCTCT	GGACAGCCAG	2640
TGACCTTTGA	CCTCGGTGAC	CACTCTTCTT	TAAGCCATAG	ACCCTGAGGC	CCTGGGCTGG	2700
GTGCTGGGAA	GGGAGGGTTG	AAACCACCGT	GAACCAGAGG	GIGIGGCITI	CCAGGCACCC	2760
TCAGGGAGCC	TCCCCATCTG	TCCAGCTGGG	GCCAGAGGCT	GGGAGICCCI	ACCIGCIICA	2820
CGTTGGCCGG	CGGCTACTCT	GGAATGTTTT	TCCCTCCCCA	GAATCAAGCT	TTTGCTTGAT	2880
CCAGAAGAGC	CCATATCACT	AAGATGGCAT	ATATGTGATC	TGGGCATTTT	CCICCICIGC	2940
CTACAGCCAG	GTTTAGCGGC	AAACCITICC	CCCTTAGCAC	CITCAGGGCI	GAGTTCTGGG	3000

FEZI Gene, a November Suppressor Gene'

21 / 80

4440 3540 3600 3660 3720 3780 3840 4320 4500 3240 3300 3360 3420 3480 3900 3960 4020 4080 4140 4200 4260 4380 3120 3180 CCTCCCAGG GACCCCGAGG CTGTCCCTGA AAAGTCCCTC AGATGCCCCA CCTGTGCTC ATATCTCCAT GGGAACTTGC GGAATTTCAA GTTTGAGTTT AGCAGGACGA CCCTCCACCI CTCAGGAGCT ATTTTTAATT TTTTTTT CCCTTCCCT GAGGCGGTG **AGGGACGGG** ACCIGCCIT AGACCTAGC ACAGCATCC GCCTCAGAC GTCCAAGGT ATCATAGCT CAACTAGCT CAGTGGCATG TGTTCTCAGG CCCAAGTCAA AGCCTTCTCC CAGAGCCCCA TGCGGAGCGG CTCAGCCTTC CAAGCAATCC CCTGGCCAGA SAAGCAAGCC GGCCCTTAGA ATGGGTCCTA CTCTACCTTC CTACAAGCCA CIGGCICCC CTGAGGCGGA CTIGICCIAC GGGAGCGTCT CCAGTGCTCT CAGGGATTTT TTTTTTGT GAGCTTTTCT CCGTGCCTT CAGCCATCCT AGCICCCITI TCTGCAGATG AACGACAGAG AGATGAGGAG CCCCCCCTC CIGIGGCIGG ACAGICCAGA TTTCCACCAG AGAGGAAAGG GCCAGGAAGC GCCTGGCCAC TCCAGAGAGC ATCCTCCTGC TAACTTTTCA TGTCTTTCA CCACAGCIGC GCTCACCGCT AACCIGGAAI GGGGAAGGCC AGAGGAGTGC CCCCCCAGGC CITGIGGCCI CAGTCAGAGT TIGITIGGL GGCTGGAGT AGCCACCGI CAGGAAAGAG TTCCATACAC GCTAGGCTTA CCACGGAGAC GCCACACCCA CAGATGTGTC AGTGTGAATA AGTITCICIG CIGICCCCCA GGCTCAAGCA TGGTCTCAAA TITGCITICI TTGACTGTAG CIGCCIGCIG GCCATCCTCA TCCATTGGGC AGTICCTICA TCCTCAGAGC GACTAAAGGA CCAGGGTTTC CGTGCCTGGC TITCIECCIC TCTCCTTGCC GICACCITIT TGCAGATGT CCTGCGCCTG CCCCCAACTC TCCCGGTACC CAGGCCGGCC ATTIGICCCA TAAAAGGTGG CATACTCCTG TGCGCGCCAC GTGCTGAGAT CCAGTCCCCA TGAGGCCAGA TTAGTCCCAA GGCAGTACCC CICAGCCCIC TGAGACTGCC AGAAGTGGCT TACACACAGC GGGTCTTGCT TIGCCAAAGC CTTTTTTT TGTTCTATTT GAGATGCTTC TCAGGACGGC TGCCCATCCT CCCAGGGAGT TTCCTCCCAG CGCCATGGTG TTCCCACATG GAGTCCAAGG TAGGGGTGGG GGTTAAACGG ACCATIGCIC CCTGCCTGAG TICCTIGCGC CTGGAGACCC TTGCCTGAGA SGCCCTGTCC **LTTCTAGAGG** GGACTACAGG TCTCGTTTTG GCCTCCCAAA GGCTGTTCCA TAGAGAGAGA TTATGAGACA ATTCTTCTT SAGTGCGGGC AAAAGAGGCA CAAGACCCCC TGGGCAGTGC ACTGCAGCCT

Fig. 5B-3

Title: "Composition wits and Methods Relating to the Human FEZI Gene, a No umor Suppressor Gene"

Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

22 / 80

4920 4980 5040 5100 5160 5220 5280 5340 5460 4620 4680 4740 4800 4860 5400 TCCCTCCTAG GGATGGACCA CACCTCACCA CAGGCTGGGA TGTAAACTAT GCCCTCTAAA GGAAAGAGGC TCACATGGGA CCTGGCTGGA TCTTGTGCAA TIGITIGGIT CGTGGCACTA AGGGTGGGCT STGCCTGGCC TICCIGCCCI GCGGTGGGT CTAAGCCAGG CICACCCACC CCAGCAGAGG TIGIGGITIC TTTTGGCCA AGTGGCCCAC GGCCCCAGAC TGACCCACTC AGCACTGAGC AAGCCATCAT CATTTCTCAC IGGGIGITCI CACTCCGCAT TGAGCCTCCT CIGCCICICI STCACGGGGT AGGCACTCAG CCCGCCCCAG CACCITCCIG CCTGGCCCCA SAGAGAGCAG AGCGGGGCTG GCTGGAGCCC TTGACGTCAC GCCGACCCAC CGACTGGACT CAGCCCCTAT TTGCCCGAAA TGCAGACCTC TAAAGAATGC ATGCCAGATT ATTTTTCTCT TATTTATGAA AAAAAAAAA ACGCCTGCAG GACCTGGGAA TTCCCCAGAG GGTGAGACAG GCCACCAGCC TTCTTGGACC AAGCACAGAG ACGCCTGCTG CAGGCACACA GGGATTTCCC TGCAGGCAGA GTACATAGTT CATTTTATT CCCTGGGCC CTTGCAACCT AAAAAAAAA TCCCCAAAGG TCTGCCCCTG CCATCTCTA CTTGGGGAGA AGAGGCTGCA GCCCTCACTA AGAAGCCTCC GAACTCCTGC GGGCATCTC GIGCIGCGCC TCTGGAAGAT TTTATGTTTT ATCCTGCGAC CCCTCTGGGC TIGACAGCIT TCCCTGGGCT ACCIGCICIG CTGGGATATG CCAGTCTGGG GGAGCAGCAG AAAAAAAA AGGATCGGAC CGGACCAGCA TGGTTTGCTT TTGTGGCAAT TCTGGACAGC CTGCCATGAC GCAGATGTCT GAATGCAAGT GTCCAAAAGC TCCTGCCCTT CTCTCCCAGT GEGCCLLL

Fig. 5B-4

amor Suppressor Gene" Title: "Composition

its and Methods Relating to the Human FEZI Gene, a Nov Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

09	; 120	180	240	300	360	404	
CTGCCGGGCI	TTCCGACGGG	CAGATGTCCT	ATTCAGTACC	CTGGAGAAGG	GACCTGGAAG		
ACAGCAAGCA	TCAACCGGTA	AGGCCATGAC	GGAGAAGGTG	GAACCAGCGC	CTTGGAGGTT	CTGA	
CACAGCTTCC	CTCAAGAAGC	GGTCACGGCA	AGGAGGAGAA	TGTACCAGCG	CCGGGGGAGCC	CCACTGAGAT	
CATCTCCGGC	GICCICCCAC	CCAGGACTCC	CTCGTGTGGA	TACGIGGCCA	GGGGACAGCG	GACATCATAG	
TCAGTAGCCT CATCTCCGGC CACAGCTTCC ACAGCAAGCA CTGCCGGGCT	AGCTGCGCAA GTCCTCCCAC CTCAAGAAGC TCAACCGGTA TTCCGACGGG 120	ITGGCTTCTC CCAGGACTCC GGTCACGGCA AGGCCATGAC CAGATGTCCT 180	GCATGAGCGG CTCGTGTGGA AGGAGGAGAA GGAGAAGGTG ATTCAGTACC 240	GCAGCAGAGC TACGTGGCCA TGTACCAGCG GAACCAGCGC CTGGAGAAGG	GCTGGCACGT GGGGACAGCG CCGGGGAGCC CTTGGAGGTT GACCTGGAAG 360	CCCCTACGAG GACATCATAG CCACTGAGAT CTGA	
ATGGGCAGCG	TCGCAGTACA	CTGCTGAGGT	CGGGCTTCCA	AGAAACAGCT	CCCTGCAGCA	GGGCTGACAT	

	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	~
9	120	180	240	300	360	420	480	54(009	633
CIGCCGGGCI	TTCCGACGGG	CAAAATGGGC	CCATCACCCA	CTTTGACCCG	CGAGAAGGGT	CCTGCACTCC	CAAGGAGCAG	CTCCATGTCC	GGCTGACATC	
ACAGCAAGCA	TCAACCGGTA	AGTCCAGCTC	CCCGGGGCTC	CTGGGGTGGA	AAATGGGCTC	CAGGAGCCAT	CAGACAAGCC	CCGGCCGGAA	ACCTGGAAGG	
CACAGCTTCC	CTCAAGAAGC	GGTCACGGCA	AGCCAGAAAG	GGGGCCAGG	AATCAGCTAG	CTGCCACGGT	CCCCCCCTC	CTGTCAGACT	TIGGAGGIIG	TGA
CATCTCCGGC	GICCICCCAC	CCAGGACTCC	CATCAAGGTC	CGGGGATTTA	GCCCTTCTCC	CAAGCCTGTG	CCAGCTGCAC	CTCTGGGGCG	CGGGGAGCCC	CACTGAGATC
AIGGGCAGCG TCAGIAGCCI CAICICCGGC CACAGCIICC ACAGCAAGCA CIGCCGGGCI	TCGCAGTACA AGCTGCGCAA GTCCTCCCAC CTCAAGAAGC TCAACCGGTA TTCCGACGGG 120	CIGCIGAGGI TIGGCITCIC CCAGGACICC GGICACGGCA AGICCAGCIC CAAAAIGGGC 180	AAGAGCGAAG ACTICITCIA CATCAAGGIC AGCCAGAAAG CCCGGGGCIC CCATCACCCA	GATTACACGG CACTGTCCAG CGGGGATTTA GGGGGCCAGG CTGGGGTGGA CTTTGACCCG 300	TCCACACCCC CCAAGCTCAT GCCCTTCTCC AATCAGCTAG AAATGGGCTC CGAGAAGGGT	GCAGTGAGGC CCACAGCCTT CAAGCCTGTG CTGCCACGGT CAGGAGCCAT CCTGCACTCC 420	TCCCCGGAGA GIGCCAGCCA CCAGCIGCAC CCCGCCCTC CAGACAAGCC CAAGGAGCAG 480	GAGCTGAAGC CTGGCCTGTG CTCTGGGGCG CTGTCAGACT CCGGCCGGAA CTCCATGTCC 540	AGCCTGCCCA CACACAGCGC CGGGGAGCCC TTGGAGGTTG ACCTGGAAGG GGCTGACATC	CCCTACGAGG ACATCATAGC CACTGAGATC TGA
ATGGGCAGCG	TCGCAGTACA	CTGCTGAGGT	AAGAGCGAAG	GATTACACGG	TCCACACCCC	GCAGTGAGGC	TCCCGGAGA	GAGCTGAAGC	AGCCIGCCA	CCCTACGAGG

Lits and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570 Title: "Composition rumor Suppressor Gene"

09	120	180	240	300	360	420	480	540	009	099	720	780	840	006	096	1020	1080	1140	1200	1260	1320	1380	1440
CIGCCGGGCI	TTCCGACGGG	CAAAATGGGC	CCATCACCCA	CTTTGACCCG	CGAGAAGGGT	CCTGCACTCC	CAAGGAGCAG	CICCAIGICC	CACACCCGTG	CGTCCTCCAG	CAAGCTGGGC	CACGGACGAG	CCAGAAGCTG	9909009909	CAAGCAGGCC	GCTTCAGCAG	CCTGCTGGAG	GGAGGAGACC	GCTGAAGGAG	ACAGCTGAAG	GGGCGCCCIG	GAAGAACGAG	GGAGAAGGTG
ACAGCAAGCA	TCAACCGGTA	AGTCCAGCTC	CCCGGGGCTC	CTGGGGTGGA	AAATGGGCTC	CAGGAGCCAT	CAGACAAGCC	CCGGCCGGAA	ACCCGCTGGT	CCCAGGGCAT	ACGGAGGTAG	CCCCCATCTC	AGGCCCCCT	CCTACGAGGA	GCAACAAGCT	AGGTACTGCA	AGGAGCAGGA	LOSOSOCO	TGAAGCAGCA	GTCTCAAGGC	AGGACCTGGA	TGCAGCGCAA	AGGAGGAGAA
CACAGCIICC	CTCAAGAAGC	GGTCACGGCA	AGCCAGAAAG	GGGGCCAGG	AATCAGCTAG	CTGCCACGGT	CCCCCCCTC	CTGTCAGACT	TACCAGCTGG	CACAACATCA	TCCTTCTCG	TGTGTCCGCT	TTGGAGAGGG	TCCAGCCTGG	CCCAAAGGCG	CTGCACCTGC	AGCCTCATGA	ACCAGCTTCG	ATCTCCCTCC	GAGATCCTGG	CTGAGGACCC	GAGAATGAGC	CTCGTGTGGA
CATCTCCGGC	GTCCTCCCAC	CCAGGACTCC	CATCAAGGTC	CGGGGATTTA	GCCCTTCTCC	CAAGCCTGTG	CCAGCTGCAC	CICIGGGGGG	CAGCAGCAGC	CCCCCCC	GAAGGCTCTG	GGGCCCTCG	GCAGAAGCTG	GGAGCTTGCC	GGGCCCGGAG	GCAGCAGGTC	GGAGCTCGAG	GAGGGAGAAG	GTCAGGCGAG	CAAGGCTAGC	GGGCCTGGAG	GGAGGTCTGT	GCATGAGCGG
TCAGTAGCCT	AGCTGCGCAA	TIGGCTICIC	ACTTCTTCTA	CACTGTCCAG	CCAAGCTCAT	CCACAGCCTT	GTGCCAGCCA	CTGGCCTGTG	CACACAGCAC	GCCGTTTTGG	TGATGAGCCT	AGGCAGACAA	AGGAGCTGGA	TTGAGGAGAA	ACGAGCTGGA	GCCAGCGCGC	AGCTCCGGCA	GGTCCTACGA	TGTGCCAGAA	AGGTGAACGC	GCAAGCTGGA	GCCTGGAGCT	TGCGGGAGAA
ATGGGCAGCG	TCGCAGTACA	CTGCTGAGGT	AAGAGCGAAG	GATTACACGG	TCCACACCCC	GCAGTGAGGC	TCCCCGGAGA	GAGCTGAAGC	AGCCIGCCCA	GGACCCACAA	GACAGCAACA	CACTCGAACA	TGCAGCATCC	CAGCGCAGCT	CGCTGCAGGG	TCGCAGAAGA	GAGAAGCGGC	ACCAAGCTCA	CAGTGGGAGG	TCCCAGACGG	GACACGCGGG	CGCACCAAGG	GCGGAGCTGC

Title: "Composition as and Methods Relating to the Human FEZI Gene, a November Suppressor Gene"

Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30UI Cust # 570

25 / 80

Fig. 5E-2

GAACCAGGGC 1500 CTTGGAGGTT 1560

TGTACCAGCG CCGGGGAGCC CCACTGAGAT

TACGTGGCCA GGGGACAGCG

GCAGCAGAGC GCTGGCACGT

AGAAACAGCT CCCTGCAGCA GGGCTGACAT

ATTCAGTACC

CTGGAGAAGG

CCCCTACGAG GACATCATAG

1020	GCTTCAGCAG	AGGTACTGCA	CTGCACCTGC	GCAGCAGGTC	TCGCAGAAGA GCCAGCGCGC	TCGCAGAAGA
096	CAAGCAGGCC	GCAACAAGCT	CCCAAAGGCG	GGGCCCGGAG	CGCTGCAGGG ACGAGCTGGA	CGCTGCAGGG
006	9909009909	CCTACGAGGA	TCCAGCCTGG	GGAGCTTGCC	CAGCGCAGCT TIGAGGAGAA	CAGCGCAGCT
840	CCAGAAGCTG	AGGGCGCCCT	TTGGAGAGGG	GCAGAAGCTG	TGCAGCATCC AGGAGCTGGA	TGCAGCATCC
780	CACGGACGAG	CCCCCATCTC	TGTGTCCGCT	GGGCCCCICG	CACTCGAACA AGGCAGACAA	CACTCGAACA
720	CAAGCTGGGC	ACGGAGGTAG	TCCTTCTCCG	GAAGGCTCTG	GACAGCAACA TGATGAGCCT	GACAGCAACA
099	CGTCCTCCAG	CCCAGGGCAT	CACAACATCA	GGGCTCCGCC	GGACCCACAA GCCGTTTTGG	GGACCCACAA
009	CACACCCGIG	ACCCGCTGGT	TACCAGCTGG	CAGCAGCAGC	AGCCTGCCCA CACACAGCAC	AGCCIGCCCA
540	CICCAIGICC	CCGGCCGGAA	CTGTCAGACT	CICIGGGGCG	CTGGCCTGTG	GAGCTGAAGC
480	CAAGGAGCAG	CAGACAAGCC	CCCGCCCTC	CCAGCTGCAC	TCCCCGGAGA GTGCCAGCCA	TCCCCGGAGA
420	CCTGCACTCC	CAGGAGCCAT	CTGCCACGGT	CAAGCCTGTG	GCAGTGAGGC CCACAGCCTT	GCAGTGAGGC
360	CGAGAAGGGT	AAATGGGCTC	AATCAGCTAG	GCCCTTCTCC	TCCACACCCC CCAAGCTCAT	TCCACACCCC
300	CTTTGACCCG	CIGGGGTGGA	GGGGCCAGG	CGGGGATTTA	GATTACACGG CACTGTCCAG	GATTACACGG
240	CCATCACCCA	CCCGGGGCTC	AGCCAGAAAG	CATCAAGGTC	AAGAGCGAAG ACTICITCIA	AAGAGCGAAG
180	CAAAATGGGC	AGTCCAGCTC	GGTCACGGCA	CCAGGACTCC	CIGCIGAGGI TIGGCITCIC	CTGCTGAGGT
120	TTCCGACGGG	TCAACCGGTA	CTCAAGAAGC	GICCICCCAC	TCGCAGTACA AGCTGCGCAA	TCGCAGTACA
09	CIGCCGGGCI	CACAGCTTCC ACAGCAAGCA		CATCTCCGGC	ATGGGCAGCG TCAGTAGCCT	ATGGGCAGCG

Tumor Suppressor Gene"

Kits and Methods Relating to the Human FEZI Gene, a N Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

26 / 80

GAGAAGCGGC	AGCTCCGGCA	GAGAAGCGGC AGCTCCGGCA GGAGCTCGAG AGCCTCATGA AGGAGCAGGA CCTGCTGGAG 1080	AGCCTCATGA	AGGAGCAGGA	CCTGCTGGAG	1080
ACCAAGCTCA	GGTCCTACGA	ACCAAGCICA GGICCIACGA GAGGGAGAAG ACCAGCIICG GCCCCGCGCT GGAGGAGACC 1140	ACCAGCTTCG	CCCCCCCCCT	GGAGGAGACC	1140
CAGTGGGAGG	TGTGCCAGAA	TGTGCCAGAA GTCAGGCGAG ATCTCCCTCC TGAAGCAGCA GCTGAAGGAG 1200	ATCTCCCTCC	TGAAGCAGCA	GCTGAAGGAG	1200
TCCCAGACGG	AGGTGAACGC	AGGIGAACGC CAAGGCIAGC GAGAICCIGG GICTCAAGGC ACAGCIGAAG 1260	GAGATCCTGG	GTCTCAAGGC	ACAGCTGAAG	1260
GACACGCGGG	GCAAGCTGGA	GCAAGCTGGA GGGCCTGGAG CTGAGGACCC AGGACCTGGA GGGCGCCCTG 1320	CTGAGGACCC	AGGACCTGGA	GGGCGCCCIG	1320
CGCACCAAGG	GCCTGGAGCT	GCCTGGAGCT GGAGGTCTGT GAGAATGAGC TGCAGCAGAG CTACGTGGCC 1380	GAGAATGAGC	TGCAGCAGAG	CTACGTGGCC	1380
ATGTACCAGC		GGAACCAGCG CCTGGAGAAG GCCCTGCAGC AGCTGGCACG TGGGGACAGC 1440	GCCCTGCAGC	AGCTGGCACG	TGGGGACAGC	1440
GCCGGGGAGC	CCTTGGAGGT	CCTTGGAGGT TGACCTGGAA GGGGCTGACA TCCCCTACGA GGACATCATA 1500	GGGGCTGACA	TCCCCTACGA	GGACATCATA	1500
GCCACTGAGA TC	TC					1512

Title: "Composit

09	120	180	240	300	360	420	480	540	009	099
CIGCCGGGCT	TTCCGACGGG	CAAAATGGGC	CCATCACCCA	CTTTGACCCG	CGAGAAGGGT	ACAGCCTT CAAGCCTGTG CTGCCACGGT CAGGAGCCAT CCTGCACTCC 420	CAAGGAGCAG	CTCCATGICC	CACACCCGTG	CGTCCTCCAG
ACAGCAAGCA	TCAACCGGTA	AGTCCAGCTC	CCCGGGGCTC	CIGGGGTGGA	AAATGGGCTC	CAGGAGCCAT	CAGACAAGCC	CCGGCCGGAA	ACCCGCTGGT	CCCAGGGCAT
CACAGCTTCC	CTCAAGAAGC	GGTCACGGCA	AGCCAGAAAG	GGGGCCAGG	AATCAGCTAG	CTGCCACGGT	CCCCCCCTC	CTGTCAGACT	TACCAGCIGG ACCCGCIGGT CACACCCGIG	CACAACATCA
CATCTCCGGC	GICCICCCAC	CCAGGACTCC	CATCAAGGTC	CGGGGATTTA	GCCCTTCTCC	CAAGCCTGTG	CCAGCTGCAC	CTCTGGGGCG		GGGCTCCGCC
TCAGTAGCCT CATCTCCGGC CACAGCTTCC ACAGCAAGCA CTGCCGGGCT	TCGCAGTACA AGCTGCGCAA GTCCTCCCAC CTCAAGAAGC TCAACCGGTA TTCCGACGGG	TIGGCTICIC CCAGGACTCC GGICACGGCA AGTCCAGCTC CAAAAIGGGC	AAGAGCGAAG ACTICTICIA CATCAAGGIC AGCCAGAAAG CCCGGGGCIC CCATCACCCA	CACTGICCAG CGGGGATITA GGGGGCCAGG CIGGGGIGGA CITIGACCCG 300	CCAAGCICAT GCCCTICICC AATCAGCIAG AAAIGGGCIC CGAGAAGGGT 360	CCACAGCCTT	TCCCCGGAGA GIGCCAGCCA CCAGCIGCAC CCCGCCCTC CAGACAAGCC CAAGGAGCAG 480	GAGCTGAAGC CTGGCCTGTG CTCTGGGGCG CTGTCAGACT CCGGCCGGAA CTCCATGTCC 540	AGCCTGCCCA CACACAGCAC CAGCAGCAGC	GGACCCACAA GCCGTTTTGG GGGCTCCGCC CACAACATCA CCCAGGGCAT CGTCCTCCAG 660
ATGGGCAGCG	TCGCAGTACA	CIGCIGAGGI	AAGAGCGAAG	GATTACACGG	TCCACACCCC	GCAGTGAGGC	TCCCCGGAGA	GAGCTGAAGC	AGCCTGCCCA	GGACCCACAA

Title: "Composition and Methods Relating to the Human FEZI Gene, a November Suppressor Gene"

Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

27 / 80

1020 0807 140 .320 1440 500 1560 1680 200 .260 .380 1620 1692 840 900 960 780 CCAGAAGCTG 9909009909 GCTTCAGCAG CCTGCTGGAG GGAGGAGACC GCTGAAGGAG ACAGCTGAAG GAAGAACGAG GCTGCGGGAG CGTGTGGAAG GGACAGCGCC CATCATAGCC CACGGACGAG CAAGCTGGGC CAAGCAGGC CCCCCT CGTGGCCAT ACGGAGGTAG AGGAGCAGGA TGAAGCAGCA STCTCAAGGC AGGACCTGGA TGCAGCGCAA IGCGGGCCGA AGCAGAGCTA TGGCACGTGG CCTACGAGGA CCCCATCTC CCTACGAGGA AGGTACTGCA CCCCCCCCCT ATGAGCGGCT GCAACAAGCT AGGCGCCCT TCCTTCTCG TTGGAGAGGG AGCCTCATGA ACCAGCITCG GAGATCCTGG CTGCAGCAGC TGTGTCCGCT TCCAGCCTGG CCCAAAGGCG ATCTCCCTCC CTGAGGACCC GAGAATGAGC CIGGAGCGGC GGCTTCCAGC AAACAGCTGC GCTGACATCC CIGCACCIGC CCTGGAAGGG GGAGCTCGAG GAGGGAGAAG GTCAGGCGAG GGGCCTGGAG GGTGAACCTG GATGTCCTCG TCAGTACCAG GGAGAAGGCC GGCCCGGAG GAAGGCTCTG GGGCCCTCG GCAGAAGCTG GCAGCAGGTC CAAGGCTAGC GGAGGTCTGT GGAGCTTGCC ACGAGCTGGA AGCTCCGGCA GGTCCTACGA TGTGCCAGAA GCAAGCTGGA TGCGGGAGAA GCCATGACCA ACCAGCGCCT TGGAGGTTGA AGGAGCTGGA TTGAGGAGAA GCCAGCGCGC AGGTGAACGC AGAAGGTGAT AGGCAGACAA GCCTGGAGCT TGATGAGCCT TCCCAGACGG GACACGCGGG CGCACCAAGG SAGCGGCAAG SAGGAGAAGG TACCAGCGGA GGGGAGCCCT CGCTGCAGGG CAGTGGGAGG GCGGAGCTGC GACAGCAACA CACTCGAACA TGCAGCATCC TCGCAGAAGA GAGAAGCGGC ACCAAGCICA ACTGAGATCT CAGCGCAGCT

Fig. 5G-2

180 TTCCGACGGG CAAAATGGGC CIGCCGGGCT ATGGGCAGCG TCAGTAGCCT CATCTCCGGC CACAGCTTCC ACAGCAAGCA TCAACCGGTA AGTCCAGCTC CTCAAGAAGC GGTCACGGCA GTCCTCCCAC CCAGGACTCC AGCTGCGCAA TIGGCTICIC TCGCAGTACA CIGCIGAGGI

Fig. 5H-1

mor Suppressor Gene"

Title: "Composition and Methods Relating to the Human FEZI Gene, a Nor Inventor: Carl M. Croce, et al.

U.S. Patent Appl. No.: 09/513,888

Attorney Docket No. 9855-30U1 Cust # 570

28 / 80

AAGAGCGAAG	ACTTCTTCTA	CATCAAGGTC	AGCCAGAAAG	CCCGGGGCTC	CCATCACCCA	240
GATTACACGG	CACTGTCCAG	CGGGGATTTA	GGGGCCAGG	CTGGGGTGGA	CTTTGACCCG	300
TCCACACCCC	CCAAGCTCAT	GCCCTICICC	AATCAGCTAG	AAATGGGCTC	CGAGAAGGGT	360
GCAGTGAGGC	CCACAGCCTT	CAAGCCTGTG	CTGCCACGGT	CAGGAGCCAT	CCTGCACTCC	420
TCCCCGGAGA	GIGCCAGCCA	CCAGCTGCAC	CCCCCCCTC	CAGACAAGCC	CAAGGAGCAG	480
GAGCTGAAGC	CIGGCCIGIG	CICIGGGGCG	CTGTCAGACT	CCGGCCGGAA	CTCCATGICC	540
AGCCTGCCCA	CACACAGCAC	CAGCAGCAGC	TACCAGCTGG	ACCCGCTGGT	CACACCCGTG	009
GGACCCACAA	GCCGTTTTGG	GGGCTCCGCC	CACAACATCA	CCCAGGGCAT	CGICCICCAG	099
GACAGCAACA	TGATGAGCCT	GAAGGCTCTG	TCCTTCTCG	ACGGAGGTAG	CAAGCTGGGC	720
CACTCGAACA	AGGCAGACAA	GGGCCCCICG	TGTGTCCGCT	CCCCCATCTC	CACGGACGAG	780
TGCAGCATCC	AGGAGCTGGA	GCAGAAGCTG	TTGGAGAGGG	AGGCCCCCT	CCAGAAGCTG	840
CAGCGCAGCT	TTGAGGAGAA	GGAGCTTGCC	TCCAGCCTGG	CCTACGAGGA	9909009909	006
CGCTGCAGGG	ACGAGCTGGA	GGGCCCGGAG	CCCAAAGGCG	GCAACAAGCT	CAAGCAGGCC	096
TCGCAGAAGA	GCCAGCGCGC	GCAGCAGGTC	CIGCACCIGC	AGGTACTGCA	GCTTCAGCAG	1020
GAGAAGCGGC	AGCICCGGCA	GGAGCTCGAG	AGCCTCATGA	AGGAGCAGGA	CCTGCTGGAG	1080
ACCAAGCTCA	GGTCCTACGA	GAGGGAGAAG	ACCAGCTTCG	GCCCGCCGCT	GGAGGAGACC	1140
CAGTGGGAGG	TGTGCCAGAA	GTCAGGCGAG	ATCTCCCTCC	TGAAGCAGCA	GCTGAAGGAG	1200
TCCCAGACGG	AGGTGAACGC	CAAGGCTAGC	GAGATCCTGG	GTCTCAAGGC	ACAGCTGAAG	1260
GACACGCGGG	GCAAGCTGGA	GGGCCTGGAG	CTGAGGACCC	AGGACCTGGA	GGGCGCCCIG	1320
CGCACCAAGG	GCCTGGAGCT	GGAGGTCTGT	GAGAATGAGC	TGCAGCGCAA	GAAGAACGAG	1380
GCGGAGCTGC	TGCGGGAGAA	GGTGAACCTG	CTGGAGCAGG	AGCTGCAGGA	GCIGCGGGCC	1440
CAGGCCGCCC	TGGCCCGCGA	CATGGGGCCG	CCCACCTTCC	CCGAGGACGT	CCCIGCCCIG	1500
CAGCGGGAGC	TGGAGCGGCT	CGTGTGGAAG	GAGGAGAAGG	AGAAGGTGAT	TCAGTACCAG	1560
AAACAGCTGC	AGCAGAGCTA	CGTGGCCATG	TACCAGCGGA	ACCAGCGCCT	GGAGAAGGCC	1620
CTGCAGCAGC	TGGCACGTGG	GGACAGCGCC	GGGGAGCCCT	TGGAGGTTGA	CCTGGAAGGG	1680
GCTGACATCC	CCTACGAGGA	CATCATAGCC	ACTGAGATCT	GA		1722

Fig. 5H-2

Title: "Composition

ts and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

ATGGGCAGCG TCAG	AGTAGCCT	CATCTCCGGC	CACAGCTTCC	ACAGCAAGCA	CTGCCGGGCT	120
ט כ		CCAGGACTCC	GGTCACGGCA	AGTCCAGCTC	CAAAATGGGC	
⊣	ACTICTICTA	CATCAAGGTC	AGCCAGAAAG	CCCGGGGCTC	CCATCACCCA	240
\mathcal{O}	CACTGTCCAG	CGGGGATTTA	GGGGCCCAGG	CTGGGGTGGA	CTTTGACCCG	300
~	CCAAGCTCAT	GCCCTTCTCC	AATCAGCTAG	AAATGGGCTC	CGAGAAGGGT	360
. ~	CCACAGCCTT	CAAGCCTGTG	CTGCCACGGT	CAGGAGCCAT	CCTGCACTCC	420
\sim	GTGCCAGCCA	CCAGCTGCAC	CCCCCCCTC	CAGACAAGCC	CAAGGAGCAG	480
\sim	CTGGCCTGTG	CICIGGGGCG	CTGTCAGACT	CCGGCCGGAA	CTCCATGTCC	540
Ų.	CACACAGCAC	CAGCAGCAGC	TACCAGCTGG	ACCCGCTGGT	CACACCCGTG	009
Ų	GCCGTTTTGG	GGGCTCCGCC	CACAACATCA	CCCAGGGCAT	CGTCCTCCAG	099
FL,	TGATGAGCCT	GAAGGCTCTG	TCCTTCTCG	ACGGAGGTAG	CAAGCTGGGC	720
\mathcal{L}	AGGCAGACAA	GGGCCCCICG	TGTGTCCGCT	CCCCCATCTC	CACGGACGAG	780
\mathcal{L}	AGGAGCTGGA	GCAGAAGCTG	TTGGAGAGGG	AGGCCCCCT	CCAGAAGCTG	840
$\overline{}$	TTGAGGAGAA	GGAGCTTGCC	TCCAGCCTGG	CCTACGAGGA	9909009909	006
$\mathbf{\mathcal{Q}}$	ACGAGCTGGA	GGGCCCGGAG	CCCAAAGGCG	GCAACAAGCT	CAAGCAGGCC	096
ب	GCCAGCGCGC	GCAGCAGGTC	CIGCACCIGC	AGGTACTGCA	GCTTCAGCAG	1020
\sim	AGCTCCGGCA	GGAGCTCGAG	AGCCTCATGA	AGGAGCAGGA	CCTGCTGGAG	1080
F.,	GGTCCTACGA	GAGGGAGAAG	ACCAGCIICG	LOSOSOCO	GGAGGAGACC	1140
	TGTGCCAGAA	GTCAGGCGAG	ATCTCCCTCC	TGAAGCAGCA	GCTGAAGGAG	1200
\sim	AGGTGAACGC	CAAGGCTAGC	GAGATCCTGG	GTCTCAAGGC	ACAGCTGAAG	1260
7	GCAAGCTGGA	GGGCCTGGAG	CTGAGGACCC	AGGACCTGGA	GGGCGCCCTG	1320
\simeq	GCCTGGAGCT	GGAGGTCTGT	GAGAATGAGC	TGCAGCGCAA	GAAGAACGAG	1380
\mathcal{L}	TGCGGGAGAA	GGTGAACCTG	CTGGAGCAGG	AGCTGCAGGA	GCTGCGGGCC	1440
9	TGGCCCGCGA	CATGGGGCCG	CCCACCTTCC	CCGAGGACGT	CCCTGCCCTG	1500

Title: "Composition and Methods Relating to the Human FEZI Gene, a Not Inventor Suppressor Gene" Inventor: Carl M. Croce, et al.

U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

30 / 80

ig. 5I-2

CTACGAGGAC ATCATAGCCA

CIGACAICCC

CTGGAAGGGG

CAGTACCAGA

ATGTCCTCGG

GAGAAGGCCC

GACAGCGCCG

GGCACGTGGG

1620 1680 1740 1791

GAAGGTGATT CCAGCGCCTG GGAGGTTGAC

CCATGACCAG

AGCGGCAAGG AGGAGAAGGA ACCAGCGGAA GGGAGCCCTT

CTGCGGGAGG

GCGGGCCGAG TGAGCGGCTC GCAGAGCTAC

TGGAGCGGCT GCTTCCAGCA AACAGCTGCA TGCAGCAGCT

CAGCGGGAGC

GTGTGGAAGG

Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570

Title: "Composition

LYS	LYS	GLN	ASP	PRO 80	VAL	GLN	LYS	SER
SER 15	LEU	SE R	GLU	HIS	GLY 95	ASN	PHE	GTO
HIS	HIS 30	PHE	SER	HIS	ALA	SER 110	ALA	PRO
PHE	SER	GLY 45	LYS	SER		PHE	THR 125	SER
SER	SER	PHE	GLY 60	GLY	GLY GLN	PRO	PRO	SER 140
HIS	LYS	ARG	MET	ARG 75	GLY	MET	ARG	HIS
. GLY 10	ARG	LEU	LYS	ALA	LEU 90	LEU	VAL	TEU
SER	LEU 25	LEU	SER	LYS	ASP	LYS 105	ALA	ILE
ILE	LYS	GLY 40	SER	GLN	GLY	PRO	GLY 120	ALA
LEU	TYR	ASP	SER 55	SER	SER	PRO	LYS	GLY 135
SER	GLN	SER	LYS	VAL 70	SER	THR	GLU	SER
SER 5	SER	TYR	GLY	LYS	LEU 85	SER	SER	
. VAL	ALA 20	ARG	HIS	ILE	ALA	PRO 100	GLY	PRO ARG
SER	ARG	ASN 35	GLY	TYR	THR	ASP	MET 115	LEU
' GLY	CYS	LEU ASN 35	SER 50	PHE	TYR	PHE	GIU	VAL 130
MET 1	HIS	LYS	ASP	РНЕ 65	ASP	ASP	LEU	PRO

'umor Suppressor Gene"

lits and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570 Title: "Composition

GLN 160	ARG	GLN	GLY	MET	GLY 240	ILE	GLU
GTO	GLY 175	TYR	GLY	ASN	reu	PRO 255	LEU
LYS	SER	SER 190	PHE	SER	LYS	SER	LEU 270
PRO	ASP	SER	ARG 205	ASP	SER	ARG	LYS
LYS	SER	SER	SER	GLN 220	GLY	VAL	GLN
ASP 155	LEU	THR	THR	LEU	GLY 235	CYS	GLU
PRO	ALA 170	SER	PRO	VAL	ASP	SER 250	LEU
PRO	GLY	HIS 185	GLY	ILE	SER	PRO	GLU 265
ALA	SER	THR	VAL 200	GLY	PHE	GLY	GLN
PRO	CYS	PRO	PRO	GLN 215	SER R	LYS	ILE
HIS 150	LEU	LEU	THR	THR	LEU 230	ASP	SER.
nen	GLY 165	SER.	VAL	ILE	ALA	ALA 245	CYS
GEN	PRO	SER 180	LEU	ASN	LYS	LYS	GLU 260
HIS	LYS	MET	PRO 195	HIS	LEU	ASN	ASP
SER	LEU	SER	ASP	ALA 210	SER	SER	THR
ALA 145	GLU	ASN	LEU	SER	MET 225	HIS	SER

umor Suppressor Gene" Title: "Compositio

its and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

VAL GLU 400	STI	TRP	GEN	THR 380 GLN	GLU LYS 395	GLU	nai nai	ALA	PRO 375 ILE	GLY GLU 390	РНЕ	S	THR	LYS 370 GLN	GLU CYS 385
VAL	GLU	TRP	GLN	THR 380	GLU	GLU	LEU	ALA	PRO 375	GLY	PHE	SER		LYS 370	GLU
ARG	GLU	TYR	SER 365	ARG	LEU	LYS	THR	GLU 360	LEU	LEU	ASP	GLN	GLU 355	LYS	MET
LEU	SE R	GLU 350	LEU	GIU	GLN	ARG	LEU 345	GLN	ARG	LYS	GLU	GLN 340	LEU GLN	LEU	GLN
LEU	VAL 335	GLN	LEU	HIS	LEU	VAL 330	GLN	GLN	ALA	ARG	GLN 325	SER	LYS	GLN	SER
ALA 320	GLN	LYS	LEU	LYS	ASN 315	GLY	GLY	LYS	PRO	GLU 310	PRO	GLY	GIU	LEU	GLU 305
ASP	ARG	CYS	ARG	ARG 300	PRO	ARG	GLU	GLU	TYR 295	ALA	LEU	SER R	SER R	ALA 290	LEU
GLU	LYS	GLU	GLU 285	PHE	SER	ARG	GLN	LEU 280	LYS	GLN	LEU	ALA	GLY 275	GLU	ARG

rumor Suppressor Gene" Title: "Composition

Lits and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

							Fig. 5J-4	Fig.							
GLU	HIS	GLN	PHE 525	GLY	SER	SER	MET	GLN 520	ASP	HIS	GLY	GLN	515	GLU	GLU
ARG	LEU	GLU 510	ALA	ARG	LEU	ARG	GLU 505	LEU	GLU	ARG	GLN	LEU 500	ALA	PRO	VAL
ASP	GLU 495	PRO	PHE	THR	PRO	PRO 490	GLY	MET	ASP	ARG	ALA 485	LEU	ALA ALA		GLN
ALA 480	ARG	LEU	GIU	GLN	LEU 475	GLU	GEN	GIU	LEU	LEU 470	ASN	VAL	LYS	GLU	ARG 465
LEU	LEU	GTO	ALA	GLU 460	ASN	LYS	LYS	ARG	GLN 455	LEU	GLU	ASN	GLU	CYS 450	VAL
GLU	nen	GLU	LEU 445	GLY	LYS	THR	ARG	LEU 440	ALA	GLY	GIU	LEU	ASP 435	GLN ASI	THR
ARG	nen	GLU 430	LEU	GLY	GLU	LEU.	LYS 425	GLY	ARG	THR	ASP	LYS 420	TEU	GLN	ALA
LYS	LEU 415	GLY	LEU	ILE	GTO	SER 410	ALA	LYS	ALA	ASN	VAL 405	GLU	THR	GLN	SER

its and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570 Title: "Compositio umor Suppressor Gene"

LYS	LEU 560	PRO	ILE		
VAL TRP LYS GLU GLU LYS GLU LYS VAL ILE GLN TYR GLN LYS 535	ARG	SER ALA GLY GLU PRO 575	ILE		
TYR	GLN	GLY	ASP 590		
GLN	GLN ARG ASN 555	ALA	TYR GLU		
ILE 540	ARG	SER	TYR		
VAL	GLN 555	LYS ALA LEU GLN GLN LEU ALA ARG GLY ASP 570	PRO		
LYS	TYR	GLY 570	ASP ILE 585		
GLU	MET	ARG	ASP 585		
LYS	VAL ALA MET	ALA	GLU GLY ALA		<u> </u>
GLU 535	VAL	LEU	GLY		
GLU	TYR 550	GLN	GLU		
LYS	SER	GLN 565	LEU		
TRP	GLN GLN SER	LEU	VAL ASP LEU 580	ILE	
VAL	GEN	ALA	VAL	GLU 595	
LEU 530	GLN LEU 545	LYS	GTO	THR	
ARG	GLN 545	GLU	reu (ALA	

Title: "Compositio umor Suppressor Gene"

its and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

LYS	LYS	GLN	SER	
SER LYS 15	LEU	SER GLN	SER	
HIS	HIS 30	PHE	ALA	
PHE	SER	GLY 45	ARG	•
SER GLY HIS SER PHE HIS 10	LYS SER SER HIS 30	PHE	CYS PRO ARG 60	ARG
HIS	LYS	ARG		ARG 75
GLY 10	GLN TYR LYS LEU ARG 25	TEO	ARG	ARG
SER	LEU 25	LEU	THR A	GLY ARG ARG ARG ARG 70
SER LEU ILE	LYS	GLY 40	LYS ALA MET 55	ARG
LEU	TYR	ASP	ALA 55	ARG
SER	GLN	SER		GLY 70
SER 5	SER	TYR	GLY	CYS
ER VAL SER 5	ARG ALA SER 20	ARG	GLY HIS GLY	GLY SER CYS
SER	ARG	ASN 35	GLY	GLY
MET GLY S	CYS A	LYS LEU ASN ARG TYR SER ASP GLY LEU LEU ARG PHE GLY PHE 35 45	SER 50	SER
MET 1	HIS	LYS	ASP	MET 65

Title: "Composition

ts and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

LYS	LYS	GLN	ASP	PRO 80	VAL	GLN	LYS	SER
SER 15	LEU	SER	GLU	HIS	GLY 95	ASN	PHE	GLU
HIS	HIS 30	PHE	SER	HIS	ALA	SER 110	ALA	PRO
PHE	SER	GLY 45	LYS	SER	GLN	PHE	THR 125	SER
SER	SER	PHE	GLY 60	GLY	GLY	PRO	PRO	SER 140
HIS	LYS	ARG	MET	ARG 75	GLY	MET	ARG	HIS
GLY 10	ARG	LEU	LYS	ALA	LEU 90	LEU	VAL	LEU
SER	LEU 25	LEU	SER	LYS	ASP	LYS 105	ALA	ILE
I I I	LYS	GLY 40	SER	GLN	GLY	PRO	GLY 120	ALA
LEU	TYR	ASP	SER 55	SER	SER	PRO	LYS	GLY 135
S E R	GLN	SER	LYS	VAL 70	SER	THR	GLU	SER
SER 5	SER	TYR	GLY	LYS	LEU 85	SER	SER	ARG
VAL	ALA 20	ARG	HIS	ILE	ALA	PRO 100	GLY	PRO
SER	ARG	LEU ASN 35	GLY	TYR	THR	ASP	MET 115	LEU
GLY	CYS	LEU	SER 50	PHE	TYR	PHE	GTO	VAL LEU 130
MET 1	HIS	LYS	ASP	PHE 65	ASP	ASP	LEU	PRO

Title: "Composition rumor Suppressor Gene"

Rits and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

38/80

GLN 160	ARG	GLU	THR
	GLY 175	LEU	ALA
LYS	S E R	PRO 190	ILE
LYS PRO LYS GLU	ASP	GLU	ILE 205
LYS	SER	GLY (ASP
ASP 155	LEU	ALA	TYR GLU
PRO PRO	ALA 170	SER	
PRO	GLY	HIS 185	PRO
HIS PRO ALA 150	SER	THR	ILE 200
PRO	CYS	PRO	ASP
HIS 150	LEU	LEU	ALA
LEU	GLY 165	SER	GLY
HIS GEN	PRO	SER 180	LEU GLU 195
HIS	LYS	MET	
SER	LEU	SER	ASP
ALA 145	GLU	ASN	VAL

GLU ILE 210

Title: "Composition umor Suppressor Gene"

its and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

	•							
LYS	LYS	GLN	ASP	PRO 80	VAL	GLN	LYS	SER
SER 15	LEU	SER	GIU	HIS	GLY 95	ASN	PHE	GLU
HIS	HIS 30	PHE	SER	HIS	ALA	SER 110	ALA	PRO
PHE	SER	GLY 45	LYS	SER	GLN	PHE	THR 125	SER
SER	SER	PHE	09 KTS	GLY	GLY	PRO	PRO	SER 140
HIS	LYS	ARG	MET	ARG 75	GLY	MET	ARG	HIS
GLY	ARG	LEU	LYS	ALA	LEU 90	TEU	VAL	reu
SER	LEU 25	LEU	S E R	LYS	ASP	LYS 105	ALA VAL	ILE
ILE	LYS	GLY 40	SER	GLN	GLY	PRO	GLY 120	ALA
LEU	TYR	ASP	SER 55	SER	SER	PRO	LYS	GLY 135
SER	GLN	SER	LYS	VAL 70	SER	THR	GLU	SER
SER 5	SER	TYR	GLY	LYS	LEU 85	SER	SER	ARG
VAL	ALA 20	ARG	HIS	ILE	ALA	PRO 100	GLY	PRO
SER	ARG	ASN 35	GLY	TYR	THR	ASP	MET 115	LEU
GLY	CYS	LEU	SER 50	PHE	TYR	PHE	GLU	VAL 130
MET 1	HIS	LYS	ASP	PHE 65	ASP	ASP	LEU	PRO

Title: "Composition Tumor Suppressor Gene"

Rits and Methods Relating to the Human FEZI Gene, a N Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

GLN 160	ARG	GLN	GLY	MET	GLY 240	ILE	GLU
GTO	GLY 175	TYR	GLY	ASN	LEU	PRO 255	LEU
LYS	SER	SER 190	PHE	SER	LYS	SER	LEU 270
PRO	ASP	SER	ARG 205	ASP	SER	ARG	LYS
LYS	SER	SER	SER	GLN 220	GLY	VAL	GLN
ASP 155	LEU	THR	THR	LEU	GLY 235	CYS	GLU
PRO	ALA 170	SER	PRO	VAL	ASP	SER 250	LEU
PRO	GLY	HIS 185	GLY	ILE	SER	PRO	GLU 265
ALA	SER	THR	VAL 200	GLY	PHE	GLY	GLN
PRO	CYS	PRO	PRO	GLN 215	SER	LYS	ILE
HIS 150	LEU	LEU	THR	THR	LEU 230	ASP	SER
LEU	GLY 165	SER	VAL	ILE	ALA	ALA 245	CYS
GLN	PRO .	SER 180	LEU	ASN	LYS	LYS	GLU 260
HIS	LYS	MET	PRO 195	HIS	LEU	ASN	ASP
SER	LEU	SER	ASP	ALA 210	SER	SER	THR
ALA 145	GLU	ASN	LEU	SER	MET 225	HIS	SER

Tumor Suppressor Gene"

Title: "Composit Kits and Methods Relating to the Human FEZI Gene, a linventor: Carl M. Croce, et al.

U.S. Patent Appl. No.: 09/513,888

Attorney Docket No. 9855-30U1 Cust # 570

GLU	ASP	ALA 320	LEU	LEU	ARG	VAL	GLU 400
LYS	ARG	GLN	VAL 335	SE 因	GLU	CLU	LYS
GTN	CYS	LYS	GLN	GLU 350	TYR	TRP	LEU
GLU 285	ARG	LEU	LEU	LEU	SER 365	GLN	GLN
PHE	ARG 300	LYS	HIS	GLU	ARG	THR 380	GLN
SER	PRO	ASN 315	LEU	GLN	LEU	GTO	LYS 395
ARG	ARG	GLY	VAL 330	ARG	LYS	GLU	LEU
GLN	GIU	GLY	GLN	LEU 345	THR	LEU	LEU
LEU 280	GIO	LYS	GLN	GLN	GLU 360	ALA	SER
LYS	TYR 295	PRO	ALA GLN	ARG	LEU	PRO 375	ILE
GLN	ALA	GLU 310	ARG	LYS	LEU	GLY	GLU 390
LEU	LEU	PRO	GLN 325	GLU	ASP	PHE	GLY
ALA	SER R	GLY	SER	GLN 340	GLN	SER	SER
GLY 275	SER	GLU	LYS	GLN	GLU 355	THR	LYS
ARG GLU	ALA 290	LEU	GLN	LEU	LYS	LYS 370	GLN
ARG	LEU	GLU 305	SER	GLN	MET	GLU	CYS 385

Fig. 5M-3

a Tumor Suppressor Gene"

, Kits and Methods Relating to the Human FEZI Gene, a	l Tumo
Inventor: Carl M. Croce, et al.	,
U.S. Patent Appl. No.: 09/513,888	
Attorney Docket No. 9855-30U1 Cust # 570	

Title: "Compos

LYS	ARG	GLU	LEU	VAL 480	GLN	ASP	PRO	
LEU 415	LEU	LEU	LEU	LYS	TYR 495	GLY	ILE	
GLY	GLU 430	GIU	GIU	GIU	MET	ARG 510	ASP	
LEU	LEU	LEU 445	ALA	LYS	ALA	ALA	ALA 525	
E I I	GLY	GLY	GLU 460	GLU	VAL	LEU	GLY	
GIN	GLU	LYS	ASN	GLU 475	TYR	GLN	GLU	
SER 410	TEU	THR	LYS	LYS	SER 490	GLN	LEU	
ALA	LYS 425	ARG	LYS	TRP	GLN	LEU 505	ASP	ILE
LYS	GLY	LEU 440	ARG	VAL	GLN	ALA	VAL 520	GLU
ALA	ARG	ALA	GLN 455	LEU	LEU	LYS	GLU	THR
ASN	THR	GLY	LEU	ARG 470	GLN	GLU	LEU	ALA
VAL 405	ASP	GLU	GLU	GLU	LYS 485	LEU	PRO	ILE
GLU	LYS 420	LEU	ASN	HIS	GLN	ARG 500	GLU	ILE
THR	LEÜ	ASP 435	GLU	LYS	TYR	GLN	GLY 515	ASP
GLN	GLN	GLN	CYS 450	GLU	GLN	ASN	ALA	GLU
SER	ALA	THR	VAL	ARG 465	ILE	ARG	SER	TYR

Fig. 5M-4

Suppressor Gene"

Title: "Compositions, K and Methods Relating to the Human FEZI Gene, a Novel T Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

LYS	LYS	GLN	ASP	PRO 80	VAL	GLN	LYS	SER
SER 15	LEU	SER	GLU	HIS	GLY 95	ASN	PHE	GLU
HIS	HIS 30	PHE	S E R	HIS	ALA	SER 110	ALA	PRO
PHE	SER	GLY 45	LYS	SER	GLN	PHE	THR 125	SER
SER	SER	PHE	09 60	GLY	GLY	PRO	PRO	SER 140
HIS	LYS	ARG	MET	ARG 75	GLY	MET	ARG	HIS
GLY 10	ARG	LEU	LYS	ALA	LEU 90	LEU	VAL	LEU
SER	LEU 25	LEU	SER.	LYS	ASP	LYS 105	ALA	HI
I E	LYS	GLY 40	SER	GEN	GLY	PRO	GLY 120	ALA
LEU	TYR	ASP	SER 55	SER	SER	PRO	LYS	GLY 135
S 足 兄	GLN	SER	LYS	VAL 70	SER	THR	GIU	SER
SER 5	SER	TYR	GLY	LYS	LEU 85	SER	SER	ARG
VAL	ALA 20	ARG	HIS	ILE	ALA	PRO 100	GLY	PRO
SER	ARG	ASN 35	GLY	TYR	THR	ASP	MET 115	LEU
\mathtt{GLY}	CYS	LEU	SER 50	PHE	TYR	PHE	GLU	VAL 130
MET 1	HIS	LYS	ASP	PHE 65	ASP	ASP	LEU	PRO

Fig. 5N-1

Title: "Compos el Tumor Suppressor Gene"

k, Kits and Methods Relating to the Human FEZI Gene, a Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

ARG	GLN	GLY	MET	GLY 240	ILE	GLU	
GLY 175	TYR	GLY	ASN	LEU	PRO 255	LEU	
SER R	SER 190	PHE	SER	LYS	SER R	LEU 270	
ASP	SER	ARG 205	ASP	SER	ARG	LYS	
SER	SER	SE 因	GLN 220	GLY	VAL	GLN	
LEU	THR	THR	LEU	GLY 235	CYS	GLU	
ALA 170	SER	PRO	VAL	ASP	SER 250	LEU	Fig 5N-2
GLY	HIS 185	GLY	ILE	SER	PRO	GLU 265	Į.
SER	THR	VAL 200	GLY	PHE	GLY	GLN	
CYS	PRO	PRO	GLN 215	SER	LYS	ILE	
LEU	LEU	THR	THR	LEU 230	ASP	SER	
GLY 165	SER	VAL	III	ALA	ALA 245	CYS	
PRO	SER 180	LEU	ASN	LYS	LYS	GLU 260	
LYS	MET	PRO 195	HIS	LEU	ASN	ASP	
LEU	SER	ASP	ALA 210	SER	SER	THR	
GLU	ASN	LEU	SER	MET 225	HIS	SER	
	LEU LYS PRO GLY LEU CYS SER GLY ALA LEU SER ASP SER GLY 170	LEU LYS PRO GLY LEU CYS SER GLY ALA LEU SER ASP SER GLY 170 SER MET SER SER LEU PRO THR HIS SER THR SER SER TYR 180 180	LEU LYS PRO GLY LEU CYS SER GLY ALA LEU SER ASP SER GLY 170 SER MET SER SER LEU PRO THR HIS SER THR SER SER TYR 180 ASP PRO LEU VAL THR PRO VAL GLY PRO THR SER ARG PHE GLY 200	LEU LYS PRO GLY LEU CYS SER GLY ALA LEU SER ASP SER GLY ASP 175 SER MET SER SER LEU PRO THR HIS SER THR SER SER SER TYR 185 190 190 ASP PRO LEU VAL THR PRO VAL 200 200 205 205 ALA HIS ASN ILE THR GLN GLY ILE VAL LEU GLN ASP SER ASN 210 220	LEU LYS PRO GLY LEU CYS SER GLY ALA LEU SER ASP SER GLY SER MET SER SER LEU PRO THR HIS SER THR SER SER TYR ASP PRO LEU VAL THR GLY PRO THR SER THR GLY SER ASP GLY SER LEU GLY SER LEU GLY SER HIS SER LEU GLY SER HIS SER	LEU LYS PRO GLY LEU CYS SER GLY ALA LEU SER CAP THR HIS SER THR SER THR THR THR HIS SER THR SER THR THR HIS SER THR SER THR SER THR GLY THR SER THR GLY THR SER ASN SER ASP SER LEU SER CYS VAL LEU SER PRO 245	LEU LYS PRO GLY LEU CYS SER GLY ALA LEU SER THR HIS SER THR SER SER THR SER CYS SER THR SER CYS SER CYS CYS SER THR SER CYS CYS

Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570 Title: "Compositions

GTO	ASP	ALA 320	LEU	LEU	ARG	VAL	GLU 400	
LYS	ARG	GLN	VAL 335	SER	GLU	GLU	LYS	
GLU	CYS	LYS	GLN	GLU 350	TYR	TRP	LEU	
GLU 285	ARG	LEU	LEU	LEU	SER 365	GLN	GLN	
PHE	ARG 300	LYS	HIS	GLU	ARG	THR 380	GLN	
SER	PRO	ASN 315	LEU	GLN	LEU	GLU	LYS 395	
ARG	ARG	GLY	VAL 330	ARG	LYS	GIU	LEU	
GLN	GLU	GLY	GLN	LEU 345	THR	LEU	LEU	į
LEU 280	GLU	LYS	GLN	GLN	GLU 360	ALA	SER	
LYS	TYR 295	PRO	ALA	ARG	LEU	PRO 375	ILE	
GLN	ALA	GLU 310	ARG	LYS	LEU	GLY	GLU 390	
LEU	LEU	PRO	GLN 325	GLU	ASP	PHE	GLY	
ALA	SER	GLY	SER	GLN 340	GLN	SER	SER	
GLY 275	SER	GLU	LYS	GLN	GLU 355	THR	LYS	
GLU	ALA 290	LEU	GLN	LEU	LYS	1.YS 370	GLN	
ARG	LEU	GLU 305	SER	GLN	MET	GLU	CYS 385	

Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570 Title: "Compositions, R

46 / 80

LYS	ARG	GLU	ARG	SER 480	TYR	
LEU 415	LEU	LEU	GLN	ASP	PRO 495	
GLY	GLU 430	GLU	TYR	GLY	ILE	
LEU	LEU	LEU 445	MET	ARG	ASP	
ILE	GLU GLY	GLY	ALA 460	LEU ALA ARG 475	GLY ALA	
GLU	GLU	LYS	VAL		GLY	
SER 410	LEU	THR	TYR	GLN	GLU 490	
ALA	LYS 425	ARG	SER	LEU GLN	LEU	
LYS	GLY	LEU 440	GLN	LEU	ASP	ILE
ALA	ARG	ALA	GLN 455	ALA	VAL	GLU
ASN	THR	GLY	LEU	LYS 470	GLU	THR
VAL 405	ASP	GLU	GLU	GLU	LEU 485	ALA
GLU	LYS 420	LEU	ASN	LEU	PRO	ILE 500
THR	LEU	ASP 435	CLU	ARG	GLU	ILE
GLN	ALA GLN	GLN AS 43	CYS 450	GLN	ALA GLY	GLU ASP
SER	ALA	THR	VAL	ASN 465	ALA	GLU

ζ,

and Methods Relating to the Human FEZI Gene, a Novel Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570 Title: "Compositions,

LYS	GLN	ASP	PRO 80	VAL	GLN	LYS	SER
nen	SER	GIU	HIS	GLY 95	ASN	PHE	GLU
HIS 30	PHE	SER	HIS	ALA	SER 110	ALA	PRO
SER	GLY 45	LYS	SER	GLN	PHE	THR 125	SER
SER	PHE	GLY 60	GLY	GLY	PRO	PRO	SER 140
LYS	ARG	MET	ARG 75	GLY	MET	ARG	HIS
ARG	LEU	LYS	ALA	LEU 90	TEU	VAL	LEU
LEU 25	LEU	SER	LYS	ASP	LYS 105		ILE
LYS	GLY 40	SER	GLN	GLY	PRO	GLY 120	ALA
TYR	ASP	SER 55	SER	SER	PRO	LYS	GLY 135
	SER	LYS	VAL 70	SER	THR	GLU	SER
SER	TYR	GLY	LYS	LEU 85	SER	SER	ARG
ALA 20	ARG	HIS	II	ALA	PRO 100	GLY	PRO
ARG	ASN 35	GLY	TYR	THR	ASP	MET 115	LEU
CYS	LEU	SER 50	PHE	TYR	PHE	GLU	VAL 130
HIS	LYS	ASP	РНЕ 65	ASP	ASP	LEU	PRO
	CYS ARG ALA SER GLN TYR LYS LEU ARG LYS SER SER HIS LEU 20 30	CYS ARG ALA SER GLN TYR LYS LEU ARG LYS SER SER HIS LEU 35 LEU ASN ARG TYR SER ASP GLY LEU LEU ARG PHE GLY PHE SER 45	CYS ARG ALA SER GLN TYR LYS LEU ARG LYS SER HIS HIS GLN LEU ARG PHE GLY PHE GLY PHE GLY PHE SER SER GLY HIS GLY LYS SER SER SER LYS SER GLY 50 GLY HIS GLY LYS SER GLY GLY LYS SER GLY	CYS ARG ALA SER GLN TYR LYS LEU ARG LYS SER AFF AFF <td>CYS ARG ALA SER GLN TYR LYS LEU ARG LYS SER SER HIS LEU LEU ASN ARG TYR SER ASP GLY LEU LEU ARG PHE GLY PHE SER SER GLY HIS GLY LYS SER SER SER LYS MET GLY LYS SER GLU PHE TYR ILE LYS VAL SER GLN LYS ALA ARG GLY SER HIS HIS TYR THR ALA LEU SER SER GLY ASP LEU GLY GLY GLN ALA GLY 90 GLY GLY GLY GLY GLY SER GLY SER GLY GLY GLY GLY GLY 75 76 77 78 78 79 78 78 78 78 78 78</td> <td>CYS ARG ALA SER GLN TYR LYS LEU ARG LYS SER SER HIS LEU LEU ASN ARG TYR SER ASP GLY LEU ARG PHE GLY PHE SER SER GLY HIS GLY LYS SER SER SER LYS MET GLY LYS SER GLU PHE TYR THR ALA LEU SER SER GLY ASP LEU GLY GLY GLY GLY GLY SHE ASP PRO SER THR PRO PRO LYS LEU MET PRO PHE SER ASN 1100</td> <td>CYS ARG LLS ARG LYS LEU ARG LYS SER GLY LEU ARG LYS SER ARG LYS RR GLY RYS RR GLY RYS RR GLY RYS RYS RYS RYS LEU GLY RYS <th< td=""></th<></td>	CYS ARG ALA SER GLN TYR LYS LEU ARG LYS SER SER HIS LEU LEU ASN ARG TYR SER ASP GLY LEU LEU ARG PHE GLY PHE SER SER GLY HIS GLY LYS SER SER SER LYS MET GLY LYS SER GLU PHE TYR ILE LYS VAL SER GLN LYS ALA ARG GLY SER HIS HIS TYR THR ALA LEU SER SER GLY ASP LEU GLY GLY GLN ALA GLY 90 GLY GLY GLY GLY GLY SER GLY SER GLY GLY GLY GLY GLY 75 76 77 78 78 79 78 78 78 78 78 78	CYS ARG ALA SER GLN TYR LYS LEU ARG LYS SER SER HIS LEU LEU ASN ARG TYR SER ASP GLY LEU ARG PHE GLY PHE SER SER GLY HIS GLY LYS SER SER SER LYS MET GLY LYS SER GLU PHE TYR THR ALA LEU SER SER GLY ASP LEU GLY GLY GLY GLY GLY SHE ASP PRO SER THR PRO PRO LYS LEU MET PRO PHE SER ASN 1100	CYS ARG LLS ARG LYS LEU ARG LYS SER GLY LEU ARG LYS SER ARG LYS RR GLY RYS RR GLY RYS RR GLY RYS RYS RYS RYS LEU GLY RYS RYS <th< td=""></th<>

Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570 Title: "Compositio

GLN 160	ARG	GLN	GLY	MET	GLY 240	ILE	CIU
GIU	GLY 175	TYR	GLY	ASN	LEU	PRO 255	LEU
LYS	SER R	SER 190	PHE	SER	LYS	SER	LEU 270
PRO	ASP	SER	ARG 205	ASP	SER	ARG	LYS
LYS	SER	SER	SER	GLN 220	GLY	VAL	GLN
ASP 155	LEU	THR	THR	LEU	GLY 235	CYS	GLU
PRO	ALA 170	SER	PRO	VAL	ASP	SER 250	LEU
PRO	GLY	HIS 185	GLY	ILE	SER	PRO	GLU 265
ALA	SER	THR	VAL 200	GLY	PHE	GLY	GLN
PRO	CYS	PRO	PRO	GLN 215	SER	LYS	ILE
HIS 150	LEU	LEU	THR	THR	LEU 230	ASP	SER
LEU	GLY 165	SER	VAL	ILE	ALA	ALA 245	CYS
GLN	PRO	SER 180	LEU	ASN	LYS	LYS	GLU 260
HIS	LYS	MET	PRO 195	HIS	LEU	ASN	ASP
SER	LEU	SER	ASP	ALA 210	SER	SER	THR
ALA 145	GLU	ASN	LEU	SER R	MET 225	HIS	SER

Title: "Composition Fumor Suppressor Gene"

Cits and Methods Relating to the Human FEZI Gene, a N Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

GLU	ASP	ALA 320	LEU	LEU	ARG	VAL	GLU 400
LYS	ARG	GLN	VAL 335	SER	GLU	GIU	LYS
GLU	CYS	LYS	GLN	GLU 350	TYR	TRP	LEU
GLU 285	ARG	LEU	LEU	LEU	SER 365	GLN	GLN
PHE	ARG 300	LYS	HIS	GIU	ARG	THR 380	GLN
SER	PRO	ASN 315	LEU	GLN	LEU	GTN	11 13 13 13 13 13
ARG	ARG	GLY	VAL 330	ARG	LYS	GLU	LEU
GLN	GTO	GLY	GLN	LEU 345	THR	LEU	LEU
LEU 280	GLU	LYS	GLN	GLN	GLU 360	ALA	SER
LYS	TYR 295	PRO	ALA	ARG	LEU	PRO 375	ILE
GLN	ALA	GLU 310	ARG	LYS	LEU	GLY	GLU 390
LEU	LEU	PRO	GLN 325	GLU	ASP	PHE	GLY
ALA	SER	GLY	SER	GLN 340	GLN	SER	SER
GLY 275	SER	GLU	LYS	GLN	GLU 355	THR	LYS
GLU	ALA 290	LEU	GLN	LEU	LYS	1.YS 370	GLN
ARG	LEU	GLU 305	SER	GLN	MET	GLU	CYS 385

Kits and Methods Relating to the Human FEZI Gene, a N Inventor: Carl M. Croce, et al.

U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570 Title: "Composition

LYS	ARG	GLU	LEU	GLU 480	ARG	GLN	GLU
LEU 415	LEU	LEU	LEU	ARG	GLU 495	LYS	LEU
GLY	GLU 430	GLU	ALA GLU	GLU . LEU	HIS	GLN 510	ARG
LEU	LEU	LEU 445	ALA		GLN	TYR	GLN 525
III	GLY	GLY	GLU 460	ALA	PHE	GLN	ASN
GLU	GLU	LYS	ASN	ARG 475	GLY	ILE	ARG
SER 410	LEU	THR	LYS	LEU	SER 490	VAL	GLN
ALA	LYS 425	ARG	LYS	ARG	SER	LYS 505	TYR
ALA LYS	GLY	LEU 440	ARG	CLU	MET	GLU	MET 520
	ARG	ALA	GLN 455	LEU	GLN	LYS	ALA
ASN	THR	GLY	LEU	LEU 470	ASP	GLU	VAL
VAL 405	ASP	GLU	GLU	ASN	HIS 485	GLU	TYR
GLU	LYS 420	LEU	ASN	VAL	GLY	LYS 500	S E R
THR	LEU	ASP 435	GLU	LYS	GLN	TRP	GLN 515
SER GLN	ALA GLN	THR GLN	CYS 450	ARG GLU 465	ARG	LEU ·VAL	LEU GLN
SER	ALA	THR	VAL	ARG 465	GLU	LEU	LEU

LEU	ALA 560			LYS	LYS	GLN	ASP	
PRO	ILE			SER 15	LEU	SER	GTO	
GLU	ILE			HIS	HIS 30	PHE	SER	
GLY	ASP			PHE	SER	GLY 45	LYS	
ALA GLY 540	GLU	•		SER	SER	PHE	GLY 60	
S 크 저	TYR 555			HIS	LYS	ARG	MET	
ASP	PRO		Fig. 50-5	SER GLY 10	ARG	LEU	LYS	Fig. 5P-1
GLY	ILE		Fig.	SER	LEU 25	LEU	SER	Fig
ALA ARG 535	ALA ASP			ILE	LYS	GLY 40	SER	
ALA 535				LEU	TYR	ASP	SER 55	
LEU	GLY 550			SER	GLN	SER	LYS	
GLN GLN	GLU			VAL SER 5	SER	TYR	GLY	
GLN	LEU			VAL	ALA 20	ARG	HIS	
LEU	ASP	ILE		SER	ARG	ASN 35	GLY	
LYS ALA LEU 530	VAL ASP	GLU		GLY	CYS	LEU	SER GLY 50	
LYS	GLU 545	THR		MET 1	HIS	LYS	ASP	

Title: "Compo. el Tumor Suppressor Gene"

s, Kits and Methods Relating to the Human FEZI Gene, a Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

80	VAL	GLN	LYS	SER	GLN 160	ARG	GLN	
2	GLY 95	ASN	PHE	CLU	GLU	GLY 175	TYR	
H S I	ALA	SER 110	ALA	PRO	LYS	SER	SER 190	
SER	GLN	PHE	THR 125	SER	PRO	ASP	SER	,
GLY	GLY	PRO	PRO	SER 140	LYS	SER	SER	
ARG 75	GLY	MET	ARG	HIS	ASP 155	LEU	THR	
ALA	LEU 90	LEU	VAL	LEU	PRO	ALA 170	SE R	5P-2
LYS	ASP	LYS 105	ALA	ILE	PRO	GLY	HIS 185	Fig.
GLN	GLY	PRO	GLY 120	ALA	ALA	SER	THR	
SER	SER	PRO	LYS	GLY 135	PRO	CYS	PRO	
VAL 70	SER	THR	CTO	SER	HIS 150	LEU	LEU	
LYS	LEU 85	SER	SER	ARG	LEU	GLY 165	SER	
ILE	ALA	PRO 100	GLY	PRO	GLN	PRO	SER 180	
TYR	THR	ASP	MET 115	LEU	HIS	LYS	MET	
PHE	TYR	PHE	GIU	VAL 130	SER	LEU	SER	
РНЕ 65	ASP	ASP	LEU	PRO	ALA 145	GLU	ASN	

and Methods Relating to the Human FEZI Gene, a Nove nor Suppressor Gene" Inventor: Carl M. Croce, et al.

U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570 Title: "Compositions

GLY	MET	GLY 240	표 기 기	GLU	GLU	ASP	ALA 320
GLY	ASN	LEU	PRO 255	LEU	LYS	ARG	GLN
PHE	SER	LYS	SER	LEU 270	GLU	CYS	LYS
ARG 205	ASP	SER	ARG	LYS	GLU 285	ARG	LEU
SER	GLN 220	GLY	VAL	GLN	PHE	ARG 300	LYS
THR	LEU	GLY 235	CYS	GLU	SER	PRO	ASN 315
PRO	VAL	ASP	SER 250	LEU	ARG	ARG	GLY
GLY	ILE	SER	PRO	GLU 265	GLN	GLU	GLY
VAL 200	GLY	PHE	GLY	GLN	LEU 280	GLU	LYS
PRO	GLN 215	SER	LYS	ILE	LYS	TYR 295	PRO
THR	THR	LEU 230	ASP	SER	GLN	ALA	GLU 310
VAL	ILE	ALA	ALA 245	CYS	LEU	LEU	PRO
LEU	ASN	LYS	LYS	GLU 260	ALA	SER	GLY
PRO 195	HIS	LEU	ASN	ASP	GLY 275	SER	GLU
ASP	SER ALA HI 210	SER	SER	SER THR ASP	GLU	ALA 290	LEU
LEU	SER	MET 225	HIS	SER	ARG	LEU	GLU 305

Title: "Composition

s and Methods Relating to the Human FEZI Gene, a November Suppressor Gene"
Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570

R LEU		J ARG	J VAL	S GLU 400	U LYS 5	J ARG	U GLU	
335	J SER J	S GLU	P GLU	J LYS	LE 41	U LEU O	J LEU	
	350	TYR	ITRP	I LEU	GLY	GLU 430	GLU	
	LEU	SER 365	GLN	GLN	LEU	LEU	LEU 445	
	GLU	ARG	THR 380	GEN	ILE	GLY	GLY	
	GLN	LEU	GLU	LYS 395	GLU	GFU	LYS	•
330	ARG	LYS	GLU	LEU	SER 410	LEU	THR	
	LEU 345	THR	LEU	LEU	ALA	LYS 425	ARG	j
	GLN	GLU 360	ALA	SER	LYS	GLY	LEU 440	
	ARG	LEU	PRO 375	ILE	ALA	ARG	ALA	
	LYS ARG	LEU	GLY	GLU 390	ASN	THR	GLY	
325	GIU	ASP	PHE	GLY	VAL 405	ASP	GLU	
	GLN 340	GLN	SER	SER	GLU	LYS 420	TEU	
	GLN	GLU 355	THR	LYS	THR	LEU	ASP 435	
	LEU	LYS	LYS 370	GLN	GLN THR	GLN	GLN	
	GLN	MET	GLU	CYS 385	SER	ALA	THR	

Title: "Compo el Tumor Suppressor Gene"

s, Kits and Methods Relating to the Human FEZI Gene, Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

						5P-5	Fig.								
			I I	CTO	THR	ALA 570	ILE	ILE	ASP	GLU	TYR 565	PRO	ILE	ASP	ALA
GLY 560	GLU	LEU	ASP	VAL	GLU 555	LEU	PRO	GLU	GLY	ALA 550	SER	ASP	GLY	ARG	ALA 545
TEU	GLN	GLN	LEU	ALÀ 540	LYS	GLU	LEU	ARG	GLN 535	ASN	ARG	GLN	TYR	MET 530	ALA
VAL	TYR	SER	GLN 525	GLN	LEU	GLN	LYS	GLN 520	TYR	GLN	ILE	VAL	LYS 515	GLU	LYS
GLU	GLU	LYS 510	TRP	VAL	LEU	ARG	GLU 505	LEU	GTO	ARG	GLN	LEU 500	ALA	PRO AI	VAL
ASP	GLU 495	PRO	PHE	THR	PRO	PRO 490	GLY	MET	ASP	ARG	ALA 485	LEU	ALA ALA		GLN
ALA 480	ARG	LEU	GTO	GLN	LEU 475	GLU	GLN	GLU	LEU	LEU 470	ASN	VAL	LYS	GLU	ARG 465
LEU	LEU	GLU	ALA	GLU 460	ASN	LYS	LYS	ARG	GLN 455	LEU	GLU	ASN	GLU	CYS 450	VAL

Tumor Suppressor Gene

591

56 / 80

CTATTTGTGG GGGACTGGGA GGCCCCAGTC TGGAGGAGCA GGTGCTGCCA GGGACGGACC GGTTTGGTTT CTAGCTCTCC SCAAGGTGGC SAGCTCACAT TCATGCGGTG SAGGCAGGCT TTTCTTGTTT SCCATGTAAA CGGTTCCCTC TCCTGTGCCT CAGGCCTGGC CACCTCTTGT TCACGCCCTC CTCTTTGTGG TCACTTTTTG GACTGTCACG GAAACTAAGC CCTCAAGCCA GCTGCTCACC GCCCCAGCA TCAGTGAGCC ATGCCATTTC CTATAGCACT ATTTTGACG GGAACGACTG TCCCTGCAGA GGCCAGCGGG CAGAGCTGGA AGTTATTTT TGAATAAAGA AGAGAGGCAC ACAGITGCCC CACACAGCCC CCTGGACCTG CTGCCAGGCA TCTCTTCCCC CTTAGGTGAG GAGAGGGATT TGCACCCCTG CGCCTGCAGG AGATGTACAT GCTTCATTT TTTTTATTA AGCATCTGGA GCTTTTGACA CAATTTATG GGACTCTGCC TATGGGGGCA GCAGCTTGGG TGACAGAGGC CTTTGTGCTG CAGTGAACTC TGGGCCATCT

360 420 480 540

180 240 300

Fig. 50

Kits and Methods Relating to the Human FEZI Gene, a Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570

Fig. 7A

Fig. 7B

Fig. 7C

Fig. 7D

U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570

Fig. 9A

Fig. 9B

Tumor Suppressor Gene"

Title: "Composite Kits and Methods Relating to the Human FEZI Gene, a North Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570

, - 1	GAATTCGGCC	GGCCATCATC	AATAATATAC	CTTATTTGG	ATTGAAGCCA	ATATGATAAT
61	GAGGGGGTGG	AGTTTGTGAC	GTGGCGCGGG	GCGTGGGAAC	GGGCGGGTG	ACGTAGTAGT
121	GTGGCGGAAG	TGTGATGTTG	CAAGTGTGGC	GGAACACATG	TAAGCGACGG	ATGTGGCAAA
181	AGTGACGTTT	TTGGTGTGCG	CCGGTGTACA	CAGGAAGTGA	CAATTTTCGC	GCGGTTTTAG
	GCGGATGTTG	TAGTAAATTT	GGGCGTAACC	GAGTAAGATT	TGGCCATTTT	CGCGGGAAAA
0	CTGAATAAGA	GGAAGTGAAA	TCTGAATAAT	TTTGTGTTAC	TCATAGCGCG	TAATATTTGT.
	CTAGGGCCGC	CAGATCGATC	TCCGAGGGAT	CTCGACCAAA	TGATTTGCCC	TCCCATATGT
421	CCTTCCGAGT	GAGAGACACA	AAAAATTCCA	ACACACTATT	GCAATGAAAA	TAAATTTCCT
481	TTATTAGCCA	GAGGTCGAGG	TCGGGGGATC	CTCAGTTGTA	CAGTTCATCC	ATGCCATGTG
541	TAATCCCAGC	AGCTGTTACA	AACTCAAGAA	GGACCATGTG	GICICICITI	TCGTTGGGAT
601	CTTTCGAAAG	GGCAGATTGT	GTGGACAGGT	AATGGTTGTC	TGGTAAAAGG	ACAGGGCCAT
661	CGCCAATTGG	AGTATTTTGT	TGATAATGGT	CTGCTAGTTG	AACGCTTCCA	TCTTCAATGT
721	TGTGGCGGGT	CTTGAAGTTC	ACTITGATIC	CATTCTTTG	TTTGTCTGCC	ATGATGTATA
781	CATTGTGTGA	GTTATAGTTG	TATTCCAATT	TGTGTCCCAG	AATGTTGCCA	TCTTCCTTGA
841	AGTCAATACC	TTTTAACTCG	ATTCTATTAA	CAAGGGTATC	ACCTTCAAAC	TTGACTTCAG
901	CACGIGICIT	GTAGTTGCCG	TCATCTTTGA	AGAAGATGGT	CCTTTCCTGT	ACATAACCTT
961	CGGGCATGGC	ACTCTTGAAA	AAGTCATGCC	GTTTCATATG	ATCCGGGTAT	CTTGAAAAGC
1021	ATTGAACACC	ATAGCACAGA	GTAGTGACTA	GTGTTGGCCA	TGGAACAGGC	AGTTTGCCAG
1081	TAGTGCAGAT	GAACTTCAGG	GTAAGTTTTC	CGTATGTTGC	ATCACCTTCA	CCCTCTCCAC
1141	TGACAGAGAA	CITGIGGCCG	TTAACATCAC	CATCTAATTC	AACAAGAATT	GGGACAACTC
1201	CAGTGAAGAG	TICTICICCI	TTGCTAGCCA	TGGCGGATCC	GGCTGAACGG	TCTGGTTATA
1261	GGTACATTGA	GCAACTGACT	GAAATGCCTC	AAAATGTTCT	TTACGATGCC	ATTGGGATAT
1321	ATCAACGGTG	GTATATCCAG	TGATTTTTT	CICCAIGGII	GTGGCAAGCT	TATCATCGTG
1381	TTTTCAAAG	GAAAACCACG	TCCCCGTGGT	TCGGGGGGCC	TAGACGTTTT	TTAACCTCGA
1441	CTAAACACAT	GTAAAGCATG	TGCACCGAGG	CCCCAGATCA	GATCCCATAC	AATGGGGTAC

Title: "Compositions,

Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570

	CTTCTGGGCA	TCCTTCAGCC	CCTTGTTGAA	TACGCTTGAG	GAGAGCCATT	TGACTCTTTC
10	CACAACITAILC	CAACICACAA	CGTGGCACTG	COLLETTOR	GCCTTTGCAG	GIGIAICIIA
621	TACACGIGGC	TTTTGGCCGC	AGAGGCACCT	GTCGCCAGGT	GGGGGGTTCC	GCTGCCTGCA
681	AAGGGTCGCT	ACAGACGTTG	TTTGTCTTCA	AGAAGCTTCC	AGAGGAACTG	CTTCCTTCAC
741	GACATTCAAC	AGACCTTGCA	TICCITIGGC	GAGAGGGGAA	AGACCCCTAG	GAATGCTCGT
801	CAAGAAGACA	GGGCCAGGTT	TCCGGGCCCT	CACATIGCCA	AAAGACGGCA	ATATGGTGGA
861	AAATAACATA	TAGACAAACG	CACACCGGCC	TTATTCCAAG	CGGCTTCGGC	CAGTAACGTT
921	AGGGGGGGG	GAGGGAGAGG	GCGGAATTCG	GAGAGGGCGG	AATTCGGGGC	CGCGGAGATC
981	TTCCAAACTT	GGACCTGGGA	GTGGACACCT	GTGGAGAGAA	AGGCAAAGTG	GATGTCATTG
2041	TCACTCAAGT	GTATGGCCAG	ATCGGGCCAG	GTGAATATCA	AATCCTCCTC	GTTTTGGAA
2101	ACTGACAATC	TTAGCGCAGA	AGTCATGCCC	GCTTTTGAGA	GGGAGTACTC	ACCCCAACAG
161	CTGGATCTCA	AGCCTGCCAC	ACCTCACCTC	GACCATCCGC	CGGCTCAAGA	CCGCCTACTT
2221	TAATTACATC	ATCAGCAGCA	CCTCCGCCAG	AAACAACCCC	GACCGCCACC	CECTECCECC
281	CGCCACGGTG	CTCAGCCTAC	CTTGCGACTG	TGACTGGTTA	GACGCCTTTC	TCGAGAGGTT
341	TICCGAICCG	GTCGATGCGG	ACTGGCTCAG	GICCCICGGI	GGCGGAGTAC	CGTTCGGAGG
2401	CCGACGGGTT	TCCGATCCAA	GAGTACTGGA	AAGACCGCGA	AGAGTTTGTC	CTCAACCGCG
2461	AGCCCAACAG	CIGGCCCICG	CAGACAGCGA	TGCGGAAGAG	AGTGAGGATC	TGACGGTTCA
521	CTAAACGAGC	TCTGCTTATA	TAGACCTCCC	ACCGTACACG	CCTACCGCCC	ATTTGCGTCA
581	ACGGGGCGGG	GTTATTACGA	CATTTTGGAA	AGTCCCGTTG	ATTTTGGTGC	CAAAACAAAC
2641	TCCCATTGAC	GTCAATGGGG	TGGAGACTTG	GAAATCCCCG	TGAGTCAAAC	CGCTATCCAC
7.01	GCCCATIGGT	GTACTGCCAA	AACCGCATCA	CCATGGTAAT	AGCGATGACT	AATACGTAGA
2761	TGTACTGCCA	AGTAGGAAAG	TCCCGTAAGG	TCATGTACTG	GGCATAATGC	CAGGGGGCC
821	ATTTACCGTC	ATTGACGTCA	ATAGGGGGCG	GACTIGGCAT	ATGATACACT	TGATGTACTG
881	CCAAGTGGGC	AGTTTACCGT	AAATACTCCA	CCCATIGACG	TCAATGGAAA	GICCCIAIIG
941	GCGTTACTAT	GGGAACATAC	GTCATTATTG	ACGTCAATGG	GCGGGGGTCG	TIGGGCGGIC

Title: "Composi

64 / 80

3001 AGCCAGGCGG GCCATTTACC GTAACTTATG TAACGCGGAA CTCCATATAT GGCCTATGAA 3061 CTAATCACCC COTAATTACT TACTATTATA AACTACTAT GATCATTGT 3181 ATGCCCAATA GCCAATATGT TATTACCTA TATAACCAAT GACTAATAGC 3181 AAGATATTGATT CAATGATTG ATTTATCCTA TATAACCAAT GACTAATAG GCTAATTGC 3241 AATATTGATT CAATGATTG ATTTATCCTA TATAACCAAT GACTAATAG GCCACCACC 3301 AGGTGCAGAC CCTGCGAGGC CAATCATTGGA ACCTGCATGA GCTCACTGGA 3310 AGGTGCAGAC CCTGCGAGGC CGATCATTGGA ACCTGCCCC 3481 AAGATATTGATT CAATGATTG ATTTATGTA CATTTTGGA GCTCACCTGGA 3481 AAGAATATAT AAGGTGGGG TCTTATGTAG TTTTGTATCT GATTTTGGC 3541 CCCCCATGGG CCGGGGGG TCTTATGTAC GTATTTGAGC ACCCGCCC 3541 CCCCATGGG CCGGGGGG TCTTATGTAC GTATTTGAGC ACCCGCCC 3541 CCCCATGGG CCGGGGGG TCTTATGTAC GTATTTGAGC ACCCGCCC 3551 CCCCCATGGG CCGGGGGGG TCTAATGTAG TTTTGTATCT GTTTGGAGGT 3601 CCCCCATGGG CCGGGGGGG TCTAATGTAG TTTTGTATCT GTTTGCAGGT 361 CCCCCATGGG CCGGGGGGG TCTAATGTAG TTTTGTATCT GTTTGCAGCT 361 CCCCCATGGG CCGGGGGGG TCAGAATGTG GCGGGGGGGGGG																									
01 AGCCAGGGG GCCATTTACC GTAAGTTATG TAACGCGGAA 61 CTAATGACCC GGTAATTGAT TACTATTAAT AACTAGTCAA 21 GTCATATTGG ACATGAGCCA ATTATAAATG ACTAGTCCAAT 41 AATATTGATT CAATGATTG ATTATGCTA TATAACCAAT 41 AATATTGATT CAATGAATTG ATTATGCTA TATAACCAAT 61 AATATTGATT CAATGAATTG ATTATGCTA TATAACCAAT 61 GTGACCAAGA CCTGCGAGTG TGGCGGTAAA CATATTAGGA 61 GTGACCGAGG AGCTGAGGC CGATCACTTG GTGCTGGCCT 62 TCTAGCGATG AAGATACAGA TTGAGGTACT GAAATGTGTG 63 AGGATGAGGC CCACCGCTC GACCCCCCC 64 GCCCCCCCAA ACTCTACTAC TTGACGCTC 65 CCCCCCATGG CCGCGGTGC AGCCGCTGC 66 CTTCCCCGAA ACTCTACTAC TTGACCCGC 67 GCACCTCCG CCGCGCTTC AGCCGCTGCA GCACCCGCG 68 GCTTTCCTGA GCCCCCTTC AGCCGCTGCA 69 GCTTTTAATT TAGGGGTTTT CCAGGACTTT GCCCCGGG 60 TTTAAAAAAAA ACCAGACTCT GTTTGGATTT 61 TGACGGCTC TTTTGCCCA GTGACCTGCA 61 GTTTAAAACA TAAATAAAAAA ACCAGACTTC GTTTGGATTT 62 TGTTTTATTT TAGGGGTTTT CCAGGACGTGC 63 TGTTTGTAGC CGTCTCTGG GTGGAGCTGC 64 GCCTTTTATT TAGGGGTTTT CCAGGACGTGC 65 TGTTTGTAGA TGATTTTTTC CAGGACGTGG TAAAGGTGAC 66 TGTTTAAAACA TAAATAAAAA ACCAGACTCT GTTTGGATTT 67 TGCCTTTATT TAGGGGTTTT CCAGGACGTGC 68 TGTTTGTAGA TGATTTTTTC CAGGACGTGG TAAAGGTGAC 68 TGTTTGTAGA TGATTCCTGG GTGGAGGTAG CCTGGGCGTAC 68 TGTTTGTAGA TGATTTTTTC CAGGACGTGG TAAAGGTGAC 69 TGGCTCCAGG GCCAGGGC TAGGAGGCA 61 GTGTTGTAGA TGATTCCTGG GTGGAGGTAG CCTGCGCGC 61 CTGTTTAAACCC CTCCTCTGG GTGGAGGTAG CCTGCGCGC 61 CTGTTTAAACCC CGTCTCTGG GTGGAGGTAG CCTGCGCGC 61 CTGTTTAAACCC CGTCTCTGG GTGGAGGTAG CCTGCGCGC 61 CTGTTTAAACCC CGTCTCTGG GTGGAGGTAG CCTGCGCGC 61 CTGTTTAATT TAGGGGTTTT CCCCGCGCG 61 CTGTTTAATT TTGCCCCCCCCCCCCCCCCCCCCCCCCC	GGGCTATGAA	CAACATGGCG	AACGTATGCA	GCTAATTGCC	GACCCGCACC	GATGCTGGAT	TGAGTTTGGC	AAGGGTGGGA	AGCCGCCGCC	AACGCGCATG	TCGCCCCGTC	GTTGGAGACT	GACTGACTTT	CGATGACAAG	CGTTTCTCAG	TCCCAATGCG	AGTGTCTTGC	TCGGTCGTTG	CAGATACATG	CIGCGGGGTG	AATGTCTTTC	GCGGTTAAGC	TAGGTTGGCT	CACAGIGIAI	GAACTTGGAG
01 AGCCAGGCG GCCATTTACC GTAAGTTATG 61 CTAATGACC CGTAATTGAT TACTATTAAT 21 GTCATATTGG ACATGAGCCA ATATAAATGT 81 ATGGCCAATA GCCAATATG ATTTATGCTA 41 AATATTGATT CAATGTATTG ATTTATGCTA 61 AGGTCCAGAC ACCGCGGTAAA 61 AGGTCCAGAC CCTGCGAGTG TGGCGGTAAA 61 GTGACCGAG AGCTGAGGC CGATCACTTG 71 TCTAGCGATG AAGATACAG TTGAGGTACT 81 AAGAATATT AAGGTGGGG TCTTATGTAG 61 CTGCCCGCAA ACTTACTAC 61 CTGCCCGCAA ACTTACTAC 62 CCCCCTTGC CCCGCTGCA 63 ACTTCCTGA ACTTACTAC 64 TTGACGCTC TTTTGGCACT 65 CTTTCCTGA ACTTGCCCTC 66 TTTAAAACA TAAATAAAAA ACCAGACTCT 67 TTGACGGCTC TTTTGCCCCA GCAGGTTCT 68 TGTTTATT TAGGGGTTTT GCGCGCGCG 68 TGTTTAAAACA TAAATAAAAA ACCAGACTCT 61 GTTTTAAAACC CGTTTTTTTC CAGGACGTG 61 AGTAGCAAGC TGATTTTTTC CAGGACGTG 61 AGTAGCAAGC TGATTTTTC 61 AGTAGCAAGC TGATTTTTC 61 AGTAGCAAGC TGATTTTTC 62 TGGATGGGT 63 ATGTTCCCAG GCGCGGGCC 64 AGTAGCAAGC TGATTTTTTC 65 ATTTTTTTTC 66 ACTTTTTTTTT 67 CTTTTTTTTT 68 ATGTTGCAGG 69 ATTTTTTTT 60 CTTTTTTTT 61 GCCATAAGC 61 AGTAGCAAGC 61 AGTACCCAG 61 AGTAGCAAGC 61	CTCCATATAT	TAATCAATGT	ATATAGATAC	GACTAATATG	GGTACGATGA	ACCAGCCTGT	GCACCCGCGC	GGCGTGGCTT	GTTTTGCAGC	CATATTTGAC	GCATTGATGG	CTGGAACGCC	GCGGGATTGT	CATCCGCCCG	AACTTAATGT	CIICCICCC	GGATCAAGCA	ACCAGCGGTC	TCTGGATGTT	GAGCTTCATG	GGTGCCTAAA	TGTTTACAAA	ACTGTATTTT	GAACCACCAG	ATGCGTGGAA
01 AGCCAGGCGG GCCATTTACC 61 CTAATGACC CGTAATTGAT 21 GTCATATTGG ACATGAGCCA 81 AATATTGATT CAATGTATAG 61 AATATTGATT CAATGTATAG 61 AATATTGATT CAATGTATAG 61 GTGACCGAGG AGCTGAGGC 61 GTGACCGAGG AGCTGGGGG 61 CCCCCATGG AAGATACAGA 61 CTCCCCATGG CCGGGGTGC 62 CCCCCATGG CCGCGCTC 63 AAGATATAT AAGGTGGGG 64 GCATCACGAG 65 CTGCCGCAT 66 CTGCCCGCA 66 CTGCCGCC 70 CAGCTTCC 70 CAGCTTC 71 TGACGGCT 71 TGACGGCT 72 TTTAAAAA 71 TGACGGCT 72 TAAATTAAAA 71 TGACGGCT 74 TGACGGCT 75 AAATTAAAA 71 TGACGGCT 76 ATTTTTTT 76 GTTTTTAAAA 71 GGCATTAGT 76 GTTTTTTT 77 TAGGGGTTTT 77 TAGGGGTTTT 77 TAGGGGTTTT 77 TGACGCCC 77 TGGGGTTTT 77 TAGGGGTTTT 77 TAGGGGTTT 77 TAGGGGTTT 77 TAGGGGTT 77 TAGGGGTT 77 TAGGGGTT 77 TAGGGGTT 77 TAGGGGTT 77 TAGGGGTT 77 TAGGGGT 77 TAGGGT 77 TAGGGT 77 TAGGGGT 77 TAGGGT 77 TAGGT 77 TAGGGT 77 TAGGT 77 TAGGGT 77 TA	TAACGCGGAA	AACTAGTCAA	ACATATTATG	TATAACCAAT	AAGGTGCTGA	CATATTAGGA	GIGCIGGCCI	GAAATGTGTG	TTTTGTATCT	ATTGTGAGCT	ATGGGCTCCA	GAGACCGIGT	GCCACCGCCC	GCTTCCCGTT	TIGACCCGGG	GCCCTGAAGG	GTTTGGATTT	TAGGCCCGGG	TAAAGGTGAC	CACCACTGCA	CGCTGGGCGT	TTGGTGTAAG	TGCATCTTGG	ATGTTGTGCA	TTAGAAGGAA
01 AGCCAGGCGG G 61 CTAATGACCC C 21 GTCATATTGG A 81 ATGGCCAATA G 41 AATATTGATT C 01 AGGTGCAGG A 21 TCTAGCGATG A 81 AAGAATATT A 81 AAGAATATT A 61 CTGCCCGAA A C01 CCCCATGGG C 61 CTGCCCGCAA A C1 CCCCATGGG C 61 CTGCCCGAA A C1 CCCCATGGG C C1 CTGCCCTCG C C1 CTGCCCTCG C C1 CTGCCTCTG G C1 CTGCCTTGT G C1 CTGCTTTATT T C1 GTGTTGTAGG T C1 CCGCTAGGG C C1 CCCCCAGG C C1 CTGCCTCTTG G C1 CTGCTTTATT T C1 CTGTTTGTAGG T C1 CTGCTTTGTAGG T C1 CTGCTTTCCCAG C C1 CTGCTTCCCAG C C1 CTGCTCCCAG C C1 CTGCTTCCCAG C C1 CTGCCCCCAG C C1 CTGCTTCCCAG C C1 CTGCTTCCCAG C C1 CTGCTCCCCAG C C1 CTGCCCCCAG C C1 CTGCCCCAG C C1 CTGCCCCCAG C C1 CTGCCCCAG C C1 CTGCCCCCAG C C1 CTGCCCCAG C C1 CTGCCCCAG C C1 CTGCCCCCAG C C1 CTGCCCCAG C C1 CTGCCCCAG C C1 CTGCC	GTAAGTTATG	TACTATTAAT	ATATAAATGT	ATTTATGCTA	ATCGATCTGG	TGGCGGTAAA	CGATCACTTG	TIGAGGIACI	TCTTATGTAG	TGATGGAAGC	TCAGAATGTG	CTTGACCTAC	AGCCGCTGCA	AAGCAGTGCA	ATTGGATTCT	GCAGGTTTCT	ACCAGACTCT	9909090909	CAGGACGIGG	GTGGAGGTAG	GTAGCAGGAG	GGGCAGGCCC	GGATATGAGA	CCGGGGATTC	GTCATGTAGC
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			ACATGAGCCA	GCCAATATTG			AGCTGAGGCC	AAGATACAGA	AAGGTGGGGG	CCAACTCGTT	CCGGGGTGCG	ACTCTACTAC	CCCCCCTIC	GCCCGCIIGC	TTTTGGCACA	ATCTGCGCCA	TAAATAAAA	TAGGGGTTTT	GTATTTTTC			TGATTGCCAG	GCATACGTGG	CCATATCCCT	TGGGAAATTT
0 9 7 8 4 0 9 7 8 4 0 9 7 8 4 0 9 7 8 4 0 9 7 8 4	AGCCAGGCGG	CTAATGACCC	GTCATATTGG	ATGGCCAATA	AATATTGATT	AGGTGCAGAC	GTGACCGAGG	TCTAGCGATG	AAGAATATAT	GCCATGAGCA	CCCCCATGGG	CTGCCCGCAA	GCAGCCTCCG	GCTTTCCTGA	TTGACGGCTC	CAGCTGTTGG	GTTTAAAACA	TGTCTTTATT	AGGGTCCTGT	GGCATAAGCC	GTGTTGTAGA	AGTAGCAAGC	TGGGATGGGT	ATGTTCCCAG	CCGGTGCACT
	0	90	\leftarrow	18	24	30	36	42	48	54	9	99	72	∞	4	90	96	\sim	∞	4	20	26	32	38	4

Fig. 10C

Lits and Methods Relating to the Human FEZI Gene, a Number of Suppressor Gene Inventor: Carl M. Croce, et al.
U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570 Title: "Composition

01 <i>1</i> 61 (ACGCCCTTGT	GACCTCCAAG CCTGGGCGAA	ATTTTCCATG GATATTTCTG	CATTCGTCCA GGATCACTAA	TAATGATGGC CGTCATAGTT	AATGGGCCCA GTGTTCCAGG
- 1 - 1	ATGAGATCGT ATGGTTCCAT	CATAGGCCAT	TTTTACAAAG GGCGTAGTTA	CGCGGGCGGA	GGGTGCCAGA TTTGCATTTC	CTGCGGTATA CCACGCTTTG
. 7	AGTTCAGATG	GGGGGATCAT	GTCTACCTGC	GGGGCGATGA	AGAAAACGGT	TTCCGGGGTA
_	GGGGAGATCA	GCTGGGAAGA	AAGCAGGTTC	CIGAGCAGCI	GCGACTTACC	GCAGCCGGTG
_	GGCCCGTAAA	TCACACCIAT	TACCGGGTGC	AACTGGTAGT	TAAGAGAGCT	GCAGCTGCCG
- '	TCATCCCTGA	GCAGGGGGGC	CACTTCGTTA	AGCATGTCCC	TGACTCGCAT	GITIICCCIG
. 7	ACCAAATCCG	CCAGAAGGCG	CICECCECC	AGCGATAGCA	GTTCTTGCAA	GGAAGCAAAG
	TTTTCAACG	GITIGAGACC	GICCGCCGIA	GGCATGCTTT	TGAGCGTTTG	ACCAAGCAGT
- '	TCCAGGCGGT	CCCACAGCTC	GGTCACCIGC	TCTACGGCAT	CTCGATCCAG	CATATCTCCT
_	CGITICGCGG	GIIGGGGCGG	CTITCGCTGT	ACGGCAGTAG	TCGGTGCTCG	TCCAGACGGG
_	CCAGGGTCAT	GICTITCCAC	GGGCGCAGGG	TCCTCGTCAG	CGTAGICIGG	GTCACGGTGA
. 7	AGGGGTGCGC	TCCGGGCTGC	GCGCTGGCCA	GGGTGCGCTT	GAGGCTGGTC	CIGCIGGIGC
- '	TGAAGCGCTG	CCGGICIICG	CCCIGCGCGI	CGGCCAGGTA	GCATTTGACC	ATGGTGTCAT
	AGTCCAGCCC	CICCGCGGCG	TGGCCCTTGG	CGCGCAGCII	GCCCTTGGAG	GAGGCGCCGC
. ¬	ACGAGGGCA	GIGCAGACTI	TIGAGGGCGT	AGAGCTTGGG	CGCGAGAAAT	ACCGATTCCG
_	GGGAGTAGGC	ATCCGCGCCG	CAGGCCCCGC	AGACGGICIC	GCATTCCACG	AGCCAGGTGA
_	GCTCTGGCCG	TTCGGGGGTCA	AAAACCAGGT	TICCCCCAIG	CTTTTTGATG	CGTTTCTTAC
_	CICIGGIIIC	CATGAGCCGG	TGTCCACGCT	CGGTGACGAA	AAGGCTGTCC	GIGICCCCGI
	ATACAGACTT	GAGAGGCCTG	TCCTCGACCG	ATGCCCTTGA	GAGCCTTCAA	CCCAGTCAGC
-	TCCTTCCGGT	9999292999	CATGACTATC	GICGCCGCAC	TTATGACTGT	CITCITIAIC
	ATGCAACTCG	TAGGACAGGT	GCCGGCAGCG	CTCTGGGTCA	TTTCGGCGA	GGACCGCTTT
_	CGCTGGAGCG	CGACGATGAT	CGGCCTGTCG	CTTGCGGTAT	TCGGAATCTT	GCACGCCCTC
_	GCTCAAGCCT	TCGTCACTGG	TCCCGCCACC	AAACGTTTCG	GCGAGAAGCA	GGCCATTATC

6, Kits and Methods Relating to the Human FEZI Gene, a Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570 Title: "Compos l Tumor Suppressor Gene"

6001	GCCGGCATGG	CGGCCGACGC	GCTGGGCTAC	GTCTTGCTGG	CGTTCGCGAC	GCGAGGCTGG
6061	ATGGCCTTCC	CCATTATGAT	TCTTCTCGCT	TCCGGCGGCA	TCGGGATGCC	CGCGTTGCAG
6121	GCCATGCTGT	CCAGGCAGGT	AGATGACGAC	CATCAGGGAC	AGCTTCAAGG	ATCGCTCGCG
6181	GCTCTTACCA	GCTGAGCAAA	AGGCCAGCAA	AAGGCCAGGA	ACCGTAAAAA	GGCCGCGTTG
6241	CTGGCGTTTT	TCCATAGGCT	CCCCCCCT	GACGAGCATC	ACAAAAATCG	ACGCTCAAGT
6301	CAGAGGTGGC	GAAACCCGAC	AGGACTATAA	AGATACCAGG	CGTTTCCCCC	TGGAAGCTCC
6361	CICGIGCGCI	CICCIGIICC	GACCCIGCCG	CITACCGGAT	ACCIGICCGC	CITICICCCI
6421	TCGGGAAGCG	IGGCGCTITC	TCAATGCTCA	CGCTGTAGGT	ATCTCAGTTC	GGTGTAGGTC
6481	GTTCGCTCCA	AGCTGGGCTG	TGTGCACGAA	CCCCCGTIC	AGCCCGACCG	CIGCGCCTIA
6541	TCCGGTAACT	ATCGTCTTGA	GTCCAACCCG	GTAAGACACG	ACTIAICGCC	ACTGGCAGCA
6601	GCCACTGGTA	ACAGGATTAG	CAGAGCGAGG	TATGTAGGCG	GTGCTACAGA	GTTCTTGAAG
6661	TGGTGGCCTA	ACTACGGCTA	CACTAGAAGG	ACAGTATTTG	GIAICIGCGC	TCTGCTGAAG
6721	CCAGITACCI	TCGGAAAAAG	AGTTGGTAGC	TCTTGATCCG	GCAAACAAAC	CACCGCTGGT
6781	AGCGGTGGTT	TTTTTGTTTG	CAAGCAGCAG	ATTACGCGCA	GAAAAAAGG	ATCTCAAGAA
6841	GATCCTTTGA	TCTTTTCTAC	GGGGTCTGAC	GCTCAGTGGA	ACGAAAACTC	ACGTTAAGGG
6901	ATTTTGGTCA	TGAGATTATC	AAAAAGGATC	TTCACCTAGA	TCCTTTTAAA	TTAAAAATGA
6961	AGTTTTAAAT	CAATCTAAAG	TATATATGAG	TAAACTTGGT	CTGACAGTTA	CCAATGCTTA
7021	ATCAGTGAGG	CACCTATCTC	AGCGATCTGT	CTATTTCGTT	CATCCATAGT	TGCCTGACTC
7081	CCCGTCGTGT	AGATAACTAC	GATACGGGAG	GGCTTACCAT	CIGGCCCCAG	TGCTGCAATG
7141	ATACCGCGAG	ACCCACGCIC	ACCGGCTCCA	GATTTATCAG	CAATAAACCA	GCCAGCCGGA
0	AGGCCGAGC	GCAGAAGTGG	TCCTGCAACT	TTATCCGCCT	CCATCCAGTC	TATTAATTGT
9	TGCCGGGAAG	CTAGAGTAAG	TAGTTCGCCA	GTTAATAGTT	TGCGCAACGT	TGTTGCCATT
7321	GCTGCAGGCA	TCGTGGTGTC	ACGCTCGTCG	TTTGGTATGG	CTTCATTCAG	CICCGGIICC
7381	CAACGATCAA	GGCGAGITAC	ATGATCCCCC	ATGTTGTGCA	AAAAAGCGGT	TAGCTCCTTC
7441	GGTCCTCCGA	TCGTTGTCAG	AAGTAAGTTG	GCCGCAGTGT	TATCACTCAT	GGTTATGGCA

Attorney Docket No. 9855-30U1 Cust # 570

67/80

GACTGGTGAG TTGCCCGGCG CATTGGAAAA TTCGATGTAA TTCTGGGTGA GAAATGTTGA TTGTCTCATG AACCTATAAA GCGCACATTT GCTTTTCTGT TGAGATCCAG TCACCAGCGT GGGGACACG ATCAGGGTTA CGAGTIGCTC AAGTGCTCAT TAGGGGTTCC TCATGACATT TCCGTAAGAT ATGCGGCGAC AGAACTITAA TTACCGCTGT TCTTTTACTT AAGGGAATAA AATAAACAAA ACCATTATTA TGAAGCATTT CGTCTAAGAA ATCTTCAGCA TGCCGCAAAA TCAATATTAT TATTAGAAA CTTTCGTCTT TGTCATGCCA GCCACATAGC CTCAAGGATC AGAATAGTGT CACCCAACTG TATTGAATG TGCCACCTGA ATTCTCTTAC AGTCATTCTG ATAATACCGC GAAGGCAAAA TCACGAGGCC GGCGAAAACT TCTTCCTTTT GCAAAAACAG CCCCGAAAAG GCACTGCATA TCAACACGGG CGTTCTTCGG CCCACTCGTG ATACTCATAC AGCGGATACA AATAGGCGTA TACTCAACCA 7741 7861 7921 7621 7681 7801 7981

Title: "Composi

1T-Fez1-TTVI

LS97-TTVI

FIG. 13

Tumor Suppressor Gene"

Kits and Methods Relating to the Human FEZI Gene, a Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888
Attorney Docket No. 9855-30U1 Cust # 570

FIG. 16A

FIG. 16B

FIG. 17

FIG. 18

s, Kits and Methods Relating to the Human FEZI Gene, a Inventor: Carl M. Croce, et al. U.S. Patent Appl. No.: 09/513,888 Attorney Docket No. 9855-30U1 Cust # 570 Title: "Compo el Tumor Suppressor Gene"

76 / 80

FIG. 19

*ALP *Prolycerophosphate
Control

Title: "Composition ts and Methods Relating to the Human FEZI Gene, a No Inventor: Carl M. Croce, et al.

U.S. Patent Appl. No.: 09/513,888

Attorney Docket No. 9855-30U1 Cust # 570

77 / 80

FIG. 20

FIG. 22

Fig. 23