

Contents

P	reface	5
1	Summarize Policy and Value 1.1 FF_SUMM_ND_ARRAY Examples	7 7
2	Distributional Analysis	13
	2.1 FF_SIMU_STATS Examples	13
	2.2 FF_DISC_RAND_VAR_STATS Examples	
	2.3 FF_DISC_RAND_VAR_MASS2OUTCOMES Examples	
	2.4 FF_DISC_RAND_VAR_MASS2COVCOR Examples	
3	Graphs	31
	3.1 FF_GRAPH_GRID Examples: X, Y and Color Line Plots	31
4	Support Tools	37
	4.1 FF_CONTAINER_MAP_DISPLAY Examples	37
\mathbf{A}	Index and Code Links	43
	A.1 Summarize Policy and Value links	43
	A.2 Distributional Analysis links	
	A.3 Graphs links	
	A.4 Support Tools links	

4 CONTENTS

Preface

This is a work-in-progress Matlab package consisting of functions that facilitate Dynamic Programming and Related Tasks. Materials gathered from various projects in which Matlab code is used. Files are the MEconTools repository. Matlab files are linked below by section with livescript files. Tested with Matlab 2019a (The MathWorks Inc, 2019).

This bookdown file is a collection of mlx based vignettes for functions that are available from MEconTools. Each Vignette file contains various examples for invoking each function. The goal of this repository is to make it easier to find/re-use codes produced for various projects.

From other repositories: For dynamic borrowing and savings problems, see Dynamic Asset Repository; For code examples, see also R Example Code, Matlab Example Code, and Stata Example Code; For intro stat with R, see Intro Statistics for Undergraduates, and intro Math with Matlab, see Intro Mathematics for Economists. See here for all of Fan's public repositories.

The site is built using Bookdown (Xie, 2020).

Please contact FanWangEcon for issues or problems.

6 CONTENTS

Chapter 1

Summarize Policy and Value

1.1 FF SUMM ND ARRAY Examples

Go back to fan's MEconTools Toolbox (bookdown), Matlab Code Examples Repository (bookdown), or Math for Econ with Matlab Repository (bookdown).

This is the example vignette for function: ff_summ_nd_array from the MEconTools Package. This function summarizes policy and value functions over states.

1.1.1 Test FF_SUMM_ND_ARRAY Defaults

Call the function with defaults.

ff_summ_nd_array();

XXX	Summ	over (a,z),	condi	age as cols, k	ids/marriage as	rows xxxxxxxxx	XXXXXXXXXXXXXXXX
	group	marry	kids	mean_age_18	mean_age_19	mean_age_20	mean_age_21
	1	0	1	0.52456	0.51689	0.48412	0.54526
	2	1	1	0.49355	0.52906	0.5583	0.47342
	3	0	2	0.49085	0.51315	0.45158	0.43201
	4	1	2	0.58096	0.50596	0.47985	0.58791
	5	0	3	0.57811	0.6068	0.55221	0.50677
	6	1	3	0.53023	0.49258	0.48728	0.43352
	7	0	4	0.50339	0.48449	0.53618	0.45993
	8	1	4	0.44418	0.5223	0.55657	0.48583

1.1.2 Test FF_SUMM_ND_ARRAY with Random 2 Dimensional Matrix

Summarize over 6 dimensional array, iteratively change how many dimensions to group over.

First, generate matrix:

```
      0.6965
      0.4231
      0.3432
      0.7380

      0.2861
      0.9808
      0.7290
      0.1825

      0.2269
      0.6848
      0.4386
      0.1755

      0.5513
      0.4809
      0.0597
      0.5316

      0.7195
      0.3921
      0.3980
      0.5318
```

Second, show the entire matrix (no labels):

```
it_aggd = 0;
bl_row = 1;
```

ff_summ_nd_array(st_title, mn_polval, bl_print_table, ar_st_stats, it_aggd, bl_row);

group	vardim2	mean_vardim1_1	mean_vardim1_2	mean_vardim1_3	${\tt mean_vardim1_4}$	mean
1	1	0.69647	0.28614	0.22685	0.55131	0
2	2	0.42311	0.98076	0.68483	0.48093	0
3	3	0.34318	0.72905	0.43857	0.059678	0
4	4	0.738	0.18249	0.17545	0.53155	0

Third, rotate row and column, and now with labels:

```
it_aggd = 0;
bl_row = 1;
ar_permute = [2,1];
ff_summ_nd_array(st_title, mn_polval, bl_print_table, ar_st_stats, it_aggd, bl_row, ...
    cl_mp_datasetdesc, ar_permute);
```

xxx	Random	2D dime	nsional Array	Testing Summarizing	xxxxxxxxxxxxxxxxxxxxxxxx		
	group	a mean_z1		mean_z0_33333	mean_z_0_33333	$mean_z_1$	
	1	0	0.69647	0.42311	0.34318	0.738	
	2	0.25	0.28614	0.98076	0.72905	0.18249	
	3	0.5	0.22685	0.68483	0.43857	0.17545	
	4	0.75	0.55131	0.48093	0.059678	0.53155	
	5	1	0.71947	0.39212	0.39804	0.53183	

Fourth, dimension one as columns, average over dim 2:

```
it_aggd = 1;
bl_row = 1;
```

1 1 0.49605 0.59235 0.3937 0.43186

Fifth, dimension one as rows, average over dim 2:

```
it_aggd = 1;
bl row = 0;
```

1	-1	2.4802	0.49605	0.22895	2.1666	0.22685	0.71947
2	-0.33333	2.9617	0.59235	0.24524	2.4154	0.39212	0.98076
3	0.33333	1.9685	0.3937	0.23907	1.6468	0.059678	0.72905
4	1	2.1593	0.43186	0.24575	1.7573	0.17545	0.738

Sixth, dimension two as rows, average over dim 1:

xxx	Random	2D dim	ensional A	Array Testing	Summarizing	XXXXXXXX	xxxxxxxxxxx	XXXXXX
	group	a	sum	mean	std	coefvari	min	max
	1	0	2.2007	0.55019	0.19636	2.8019	0.34318	0.738
	2	0.25	2.1784	0.54461	0.37514	1.4518	0.18249	0.98076
	3	0.5	1.5257	0.38143	0.23212	1.6432	0.17545	0.68483
	4	0.75	1.6235	0.40587	0.23269	1.7443	0.059678	0.55131
	5	1	2.0415	0.51036	0.15361	3.3226	0.39212	0.71947

1.1.3 Test FF_SUMM_ND_ARRAY with Random 6 Dimensional Matrix

Summarize over 6 dimensional array, iteratively change how many dimensions to group over.

First, generate matrix:

```
st_title = "Random ND dimensional Array Testing Summarizing";
rng(123)
mn_polval = rand(8,7,6,5,4,3);
bl_print_table = true;
ar_st_stats = ["mean"];
```

Second, summarize over the first four dimensions, row group others:

```
it_aggd = 4;
bl_row = 0;
ff_summ_nd_array(st_title, mn_polval, bl_print_table, ar_st_stats, it_aggd, bl_row);
```

xxx	Random	ND dimensi	onal Array	Testing Su	mmarizing	xxxxxxxxxx	xxxxxxxxxxx	XXXX	
	group	vardim5	vardim6	sum	mean	std	coefvari	min	max
	1	1	1	836.78	0.49808	0.29255	1.7026	8.1888e-05	0.99964
	2	2	1	842.15	0.50128	0.28968	1.7305	6.7838e-05	0.99936
	3	3	1	831.45	0.49491	0.28851	1.7154	0.00091373	0.99989
	4	4	1	843.9	0.50232	0.28154	1.7842	0.00012471	0.99731
	5	1	2	838.99	0.4994	0.2911	1.7156	0.00029749	0.99938
	6	2	2	830.81	0.49453	0.28634	1.7271	0.00027113	0.9992
	7	3	2	832.59	0.49559	0.28682	1.7279	0.00035994	0.99936
	8	4	2	820.42	0.48835	0.29032	1.6821	0.00096259	0.99896
	9	1	3	870.56	0.51819	0.29111	1.7801	0.0010616	0.99951
	10	2	3	854.68	0.50874	0.28458	1.7877	0.001884	0.99965
	11	3	3	838.29	0.49898	0.2891	1.726	0.0019192	0.99945
	12	4	3	842.83	0.50169	0.2877	1.7438	0.00016871	0.99963

Third, summarize over the first four dimensions, column group 5th, and row group others:

0.99989

6.7838e-05

```
it_aggd = 4;
bl_row = 1;
ff_summ_nd_array(st_title, mn_polval, bl_print_table, ["sum"], it_aggd, bl_row);
```

xxx	Random	ND dimensi	onal Array Testing	Summarizing x	xxxxxxxxxxxxx	XXXXXXX
	group	vardim6	$sum_vardim5_1$	$sum_vardim5_2$	sum_vardim5_3	$sum_vardim5_4$
	1	1	836.78	842.15	831.45	843.9
	2	2	838.99	830.81	832.59	820.42
	3	3	870.56	854.68	838.29	842.83

Fourth, summarize over the first five dimensions, column group 6th, no row groups:

```
it_aggd = 5;
bl_row = 1;
ff_summ_nd_array(st_title, mn_polval, bl_print_table, ["mean", "std"], it_aggd, bl_row);
mean_vardim6_1
                        mean_vardim6_2 mean_vardim6_3 std_vardim6_1
  group
                                                            std_vardim6
  ----
            -----
                        -----
                                    -----
                                                -----
                                                            -----
              0.49915
                          0.49447
        1
                                       0.5069
                                                   0.28805
                                                              0.28862
```

1.7349

Fifth, summarize over all six dimensions, summary statistics over the entire dataframe:

0.50017

1

1

10083

0.28831

1.1.4 Test FF_SUMM_ND_ARRAY with Random 7 Dimensional Matrix with All Parameters

Given a random seven dimensional matrix, average over the 2nd, 4th and 5th dimensionals. Show as row groups the 3, 6 and 7th dimensions, and row groups the 1st dimension. Show Coefficient of Variation only.

```
st_title = "avg VALUE 2+4+5th dims. groups 3+6+7th dims, and row groups the 1st dim.";
rng(123)
mn_polval = rand(3,10,2,10,10,2,3);
ar_permute = [2,4,5,1,3,6,7];
bl_print_table = true;
ar_st_stats = ["coefvari"];
it_aggd = 3; % mean over 3 dims
bl_row = 1; % one var for row group
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, ...
    {'age', [18, 19, 20]});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, ...
    {'savings', linspace(0,1,10)});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, ...
    {'borrsave', [-1,+1]});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, ...
    {'shocka', linspace(-5,5,10)});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, ...
```

 ${\tt ff_summ_nd_array(st_title, mn_polval, bl_print_table, ar_st_stats, it_aggd, bl_row, cl_mp_datasetdes} \\$

group	borrsave	marry	region	cv_age_18	cv_age_19	cv_age_20
1	-1	0	1	1.7607	1.7534	1.7065
2	1	0	1	1.6566	1.7501	1.7042
3	-1	1	1	1.6608	1.7658	1.7291
4	1	1	1	1.756	1.7479	1.7606
5	-1	0	2	1.7314	1.7506	1.786
6	1	0	2	1.7347	1.728	1.738
7	-1	1	2	1.7811	1.755	1.7568
8	1	1	2	1.7445	1.7398	1.7746
9	-1	0	3	1.7025	1.7286	1.69
10	1	0	3	1.74	1.7549	1.7356
11	-1	1	3	1.7147	1.7287	1.7341
12	1	1	3	1.7919	1.7313	1.7452

Chapter 2

Distributional Analysis

FF_SIMU_STATS Examples

Go back to fan's MEconTools Toolbox (bookdown), Matlab Code Examples Repository (bookdown), or Math for Econ with Matlab Repository (bookdown).

This is the example vignette for function: ff_simu_stats from the MEconTools Package. This is a gate-way function that computes mean, percentiles, covariance etc between several variables.

2.1.1 Test FF_SIMU_STATS Defaults

Call the function with defaults.

ff_simu_stats();

xxx	tb_outcomes: all OriginalVariable		xxx cl_mt_pol_a cl_mt_pol		
	{'mean'	}	-0.11081	8.8423	
	{'sd'	}	4.1239	6.5845	
	{'coefofvar'	}	-37.215	0.74466	
	{'min'		- 7	-6.3772	
	{'max'	} }	9	21.786	
	{'pYis0'	}	0.064259	0	
	{'pYls0'	}	0.54867	0.027329	
	{'pYgr0'	}	0.38707	0.97267	
	{'pYisMINY'	}	0.051764	0.015232	
	{'pYisMAXY'	}	0.027329	0.046484	
	{'p1'	} } }	-7	-6.3772	
	{'p10'	}	-6	0.27238	
	{'p25'	} }	-3	5.2138	
	{'p50'	}	-1	6.5321	
	{'p75'	}	3	13.799	
	{'p90'	}	5	16.887	
	{'p99'	}	9	21.786	
	{'fl_cov_cl_mt_	pol_a'}	17.007	-22.084	
	{'fl_cor_cl_mt_	pol_a'}	1	-0.81327	
	{'fl_cov_cl_mt_	pol_c'}	-22.084	43.356	
	{'fl_cor_cl_mt_	pol_c'}	-0.81327	1	
	{'fracByP1'	}	3.2699	-0.010985	
	{'fracByP10'	}	5.9889	-0.013362	
	{'fracByP25'	}	14.165	0.041007	
	{'fracByP50'	}	16.208	0.1893	

```
{'fracByP75' } 12.702 0.59539 
{'fracByP90' } 6.6611 0.8307 
{'fracByP99' } 1 1
```

2.1.2 Test FF SIMU STATS Four States-Points Matrix

Over some (a,z) states that is 3 by 3, c matrix, generate all stats

```
% Set Parameters
mt_x_of_s = [1, 2, 3.0;...
            3, 1, 1.5;...
             4, 3, 2.0];
mt_y_of_s = [2, -10, 9.0;...
             5, 1.1,3.0;...
             1, 3, -1.5];
mt_z_{of_s} = [1.1, 2, 3.3; ...
             2.3, 1,1.5;...
             4, 2.5,2.0];
mp_cl_mt_xyz_of_s = containers.Map('KeyType','char', 'ValueType','any');
mp_cl_mt_xyz_of_s('cl_mt_x_of_s') = {mt_x_of_s, zeros(1)};
mp_cl_mt_xyz_of_s('cl_mt_y_of_s') = {mt_y_of_s, zeros(1)};
mp_cl_mt_xyz_of_s('cl_mt_z_of_s') = {mt_z_of_s, zeros(1)};
mp_cl_mt_xyz_of_s('ar_st_y_name') = ["cl_mt_x_of_s", "cl_mt_y_of_s", "cl_mt_z_of_s"];
% Mass
rng(123);
mt_f_of_s = rand(size(mt_x_of_s));
mt_f_of_s = mt_f_of_s/sum(mt_f_of_s, 'all');
% Call Function
mp_cl_mt_xyz_of_s_out = ff_simu_stats(mt_f_of_s, mp_cl_mt_xyz_of_s);
xxx tb_outcomes: all stats xxx
     {\tt Original Variable Names} \qquad {\tt cl\_mt\_x\_of\_s} \qquad {\tt cl\_mt\_y\_of\_s} \qquad {\tt cl\_mt\_z\_of\_s}
    -----
                                                 -----
                                                                  _____
                         }
    {'mean'
                                   2.0763
                                                    1.9323
                                                                     2.0668
                    } 2.0763
} 0.9071
} 0.43688
} 1
} 4
} 0
} 0
} 1
} 0.28039
} 0.044922
} 1
    {'sd'
{'coefofvar'
                                                                     0.9042
                                                   5.2239
                                                                   0.43749
                                                    2.7034
    {'min'
                                                     -10
                                                                           1
                                                    9
0
    {'max'
                                                 0
0.20441
    {'pYis0'
                                                                           0
                                                                           0
    {'pYls0'
    {'pYgr0'
                                                   0.79559
    {'pYisMINY'
                                                   0.10917
                                                                    0.14247
    {'pYisMAXY'
                                                   0.19422
                                                                    0.044922
    {'p1'
                           }
                                       1
                                                     -10
                                                                          1
    {'p10'
                                          1
                                                        -10
                                                                            1
                                                         1.1
    {'p25'
                                          1
                                                                         1.1
    {'p50'
                          }
                                                         2
                                          2
                                                                          2
    {'p75'
                                          3
                                                          5
                                                                         2.5
    {'p90'
                                          3
                                                          9
                                                                          3.3
    {'p99'
                                         4
                                                          9
                                                                           4
                                4
0.82282
                                                     1.589
                                                                    0.78646
    {'fl_cov_cl_mt_x_of_s'}
    {'fl_cor_cl_mt_x_of_s'}
                                   1
                                                   0.33534
                                                                    0.95887
                                                   27.289
    {'fl_cov_cl_mt_y_of_s'}
                                     1.589
                                                                      1.8353
    {'fl_cov_cl_mt_y_of_s'} 1.589 27.289

{'fl_cor_cl_mt_y_of_s'} 0.33534 1

{'fl_cov_cl_mt_z_of_s'} 0.78646 1.8353

{'fl_cor_cl_mt_z_of_s'} 0.95887 0.38856

{'fracByP1' } 0.13504 -0.56498

{'fracByP10' } 0.13504 -0.56498
                                                                     0.38856
                                                                    0.81758
                                                                      1
                                                                    0.068934
                                                                    0.068934
```

{'fracByP25'	}	0.13504	-0.53456	0.14234
{'fracByP50'	}	0.42991	-0.39181	0.43856
{'fracByP75'	}	0.91346	0.095425	0.60296
{'fracByP90'	}	0.91346	1	0.91306
{'fracByP99'	}	1	1	1

2.1.3 Test FF_SIMU_STATS Four States-Points Matrix Single Column Inputs

Same as before, but now inputs are single column, should have identical results:

```
% Array Inputs
mp_cl_ar_xyz_of_s = containers.Map('KeyType','char', 'ValueType','any');
mp_cl_mt_xyz_of_s('cl_mt_x_of_s') = {mt_x_of_s(:), zeros(1)};
mp_cl_mt_xyz_of_s('cl_mt_y_of_s') = {mt_y_of_s(:), zeros(1)};
mp_cl_mt_xyz_of_s('cl_mt_z_of_s') = {mt_z_of_s(:), zeros(1)};
mp_cl_mt_xyz_of_s('ar_st_y_name') = ["cl_mt_x_of_s", "cl_mt_y_of_s", "cl_mt_z_of_s"];
% Call Function
mp_cl_mt_xyz_of_s_out = ff_simu_stats(mt_f_of_s(:), mp_cl_mt_xyz_of_s);
xxx tb_outcomes: all stats xxx
     OriginalVariableNames cl_mt_x_of_s
                                                cl_mt_y_of_s cl_mt_z_of_s
                         }
    {'mean'
                                  2.0763
                                                  1.9323
                                                                  2.0668
                      ) 0.9071
) 0.43688
) 1
    {'sd'
                                  0.9071
                                                  5.2239
                                                                  0.9042
    {'coefofvar'
                                                  2.7034
                                                                 0.43749
    {'min'
                                                   -10
                                                       9
    {'max'
                      }
                                        4
                                                                         4
    {'pYis0'
                                                       0
                                                                         0
                                                0.20441
    {'pYls0'
                                                                         0
    {'pYgr0'
                                                 0.79559
    {'pYisMINY'
                                                 0.10917
                                                                  0.14247
                                                 0.19422
    {'pYisMAXY'
                                                                  0.044922
    {'p1'
                                      1
                                                   -10
                                                                        1
                                                      -10
    {'p10'
                                        1
                                                                         1
    {'p25'
                                        1
                                                       1.1
                                                                       1.1
                                        2
    {'p50'
                                                       2
                                                                       2
    {'p75'
                                        3
                                                        5
                                                                       2.5
                            3
4
0.82282
    {'p90'
                                                        9
                                                                       3.3
    {'p99'
                                                        9
                                                   1.589
                                                                  0.78646
    {'fl_cov_cl_mt_x_of_s'}
    {'fl_cor_cl_mt_x_of_s'}
                                                 0.33534
                                                                  0.95887
                                                  27.289
    {'fl_cov_cl_mt_y_of_s'}
                                    1.589
                                                                   1.8353
                        1.589

[s'] 0.33534

[s'] 0.78646

[s'] 0.95887

} 0.13504

} 0.13504

} 0.13504

} 0.42991

} 0.91346

} 0.91346
   __cor_cr_mt_y_of_s'}
{'fl_cov_cl_mt_z_of_s'}
{'fl_cor_cl_mt_z_of_s'}
{'fracByP1' }
{'fracBvP10'
                                                       1
                                                                   0.38856
                                                                   0.81758
                                                  1.8353
                                                 0.38856
                                                -0.56498
                                                                  0.068934
                                                -0.56498
    {'fracByP10'
                                                                  0.068934
                                                -0.53456
    {'fracByP25'
                                                                  0.14234
    {'fracByP50'
                                                 -0.39181
                                                                  0.43856
                                                                  0.60296
    {'fracByP75'
                                               0.095425
                                                       1
    {'fracByP90'
                                 0.91346
                                                                  0.91306
    {'fracByP99'
                                        1
                                                         1
                                                                         1
```

2.1.4 Test FF_SIMU_STATS Print Many Details

The Same As before, but now control which percentiles and other details to display.

```
% Array Inputs
mp_cl_ar_xyz_of_s = containers.Map('KeyType','char', 'ValueType','any');
mp_cl_ar_xyz_of_s('cl_ar_x_of_s') = {mt_x_of_s(:), zeros(1)};
mp_cl_ar_xyz_of_s('cl_ar_z_of_s') = {mt_z_of_s(:), zeros(1)};
mp_cl_ar_xyz_of_s('ar_st_y_name') = ["cl_ar_x_of_s", "cl_ar_z_of_s"];
% controls
mp_support = containers.Map('KeyType','char', 'ValueType','any');
mp_support('bl_display_detail') = false;
mp_support('bl_display_final') = true;
mp_support('bl_display_drvm2outcomes') = false;
mp_support('ar_fl_percentiles') = [25 50 75];
mp_support('bl_display_drvstats') = true;
mp_support('bl_display_drvm2covcor') = false;
% Call Function
mp_cl_mt_xyz_of_s_out = ff_simu_stats(mt_f_of_s(:), mp_cl_ar_xyz_of_s, mp_support);
Summary Statistics for: cl_ar_x_of_s
fl_choice_mean
   2.0763
fl choice sd
   0.9071
fl_choice_coefofvar
   0.4369
fl_choice_prob_zero
fl_choice_prob_below_zero
fl_choice_prob_above_zero
fl_choice_prob_max
   0.0449
tb_disc_cumu
   cl_ar_x_of_sDiscreteVal cl_ar_x_of_sDiscreteValProbMass
                                                          CDF
                                                                 cumsumFrac
                          _____
                                                         ----
   _____
                                                                  -----
                                     0.28039
                                                        28.039 0.13504
             1
            1.5
                                     0.13561
                                                          41.6 0.23301
                                                        62.041 0.42991
              2
                                     0.20441
                                                         95.508
              3
                                     0.33466
                                                                   0.91346
                                    0.044922
                                                          100
                                                                        1
   cl_ar_x_of_sDiscreteVal cl_ar_x_of_sDiscreteValProbMass
                                                         CDF cumsumFrac
                                                                  -----
                                     0.28039
                                                         28.039
                                                                 0.13504
```

1.5 2 3 4		0.13561 0.20441 0.33466 0.044922	41.6 62.041 95.508 100	0.23301 0.42991 0.91346 1
tb_prob_drv percentiles	cl_ar_x_of_s	DiscreteValPercentileValues	fracOfSumHe	ldBelowThisPercentile
25 50 75		1 2 3		0.13504 0.42991 0.91346
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	for: cl_ar_z	c_of_s xxxxxxxxxx		
fl_choice_mean 2.0668				
fl_choice_sd 0.9042				
fl_choice_coefofvar 0.4375	r			
fl_choice_prob_zero	0			
fl_choice_prob_belo	ow_zero			
fl_choice_prob_abov	ve_zero			
fl_choice_prob_max 0.0449				
tb_disc_cumu cl_ar_z_of_sDis	screteVal	cl_ar_z_of_sDiscreteValProbMa	ss CDF	cumsumFrac
1		0.14247	14.247	0.068934
1.1		0.13792	28.039	0.14234
1.5		0.13561	41.6	0.24076
2		0.20441	62.041	0.43856
2.3		0.056663	67.708	0.50162
2.5		0.083786	76.086	0.60296
3.3		0.19422	95.508	0.91306
4		0.044922	100	1
cl_ar_z_of_sDis	screteVal	cl_ar_z_of_sDiscreteValProbMa	ss CDF	cumsumFrac
	_			
1		0.14247 0.13792	14.247 28.039	0.068934 0.14234
1.1 1.5		0.13792 0.13561	28.039	0.14234 0.24076
1.5		0.13301	41.0	0.24010

2 2.3 2.5 3.3 4		0.0 0.0 0.	20441 56663 83786 19422 44922	62.041 67.708 76.086 95.508 100	
tb_prob_drv percentiles	cl_ar_z_of_			fracOfSumHeld	BelowThisPercentile
25 50 75		1.1 2 2.5		0	. 14234 . 43856 . 60296
xxx tb_outcomes: a OriginalVaria		cl_ar_x_of_s	cl_ar_z_of_s		
{'mean' {'sd'	}	2.0763 0.9071	2.0668 0.9042		
{'coefofvar' {'min'	} }	0.43688 1	0.43749 1		
{'max' {'pYis0' {'pYls0'	} } }	4 0 0	4 0 0		
{'pYgr0' {'pYisMINY'	} }	1 0.28039	1 0.14247		
{'pYisMAXY' {'p25' {'p50'	} } }	0.044922 1 2	0.044922 1.1 2		
{'p75' {'fl_cov_cl_ar	} _x_of_s'}	3 0.82282	2.5 0.78646		
{'fl_cor_cl_ar {'fl_cov_cl_ar {'fl_cor_cl_ar	_z_of_s'}	1 0.78646 0.95887	0.95887 0.81758 1		
{'fracByP25' {'fracByP50'	}	0.13504 0.42991	0.14234 0.43856		

2.2 FF DISC RAND VAR STATS Examples

0.91346

}

Go back to fan's MEconTools Toolbox (bookdown), Matlab Code Examples Repository (bookdown), or Math for Econ with Matlab Repository (bookdown).

0.60296

This is the example vignette for function: **ff_disc_rand_var_stats** from the **MEconTools Package**. This function summarizes statistics of matrixes stored in a container map, as well as scalar, string, function and other values stored in container maps.

2.2.1 Test FF_DISC_RAND_VAR_STATS Defaults

Call the function with defaults.

{'fracByP75'

ff_disc_rand_var_stats();

- fl_choice_mean -1.0000
- fl_choice_sd 2.5100
- fl_choice_coefofvar
 -2.5100
- fl_choice_prob_zero
 0.1416
- fl_choice_prob_below_zero
 0.5888
- fl_choice_prob_above_zero
 0.2696
- fl_choice_prob_max
 2.0589e-16

t.h	disc	CIIMII

binomDiscreteVal	binomDiscreteValProbMass	CDF	cumsumFrac
-10	2.2539e-05	0.0022539	0.00022539
-9	0.00028979	0.031233	0.0028335
-8	0.0018008	0.21132	0.01724
-7	0.0072034	0.93166	0.067664
-6	0.020838	3.0155	0.19269
-5	0.04644	7.6595	0.42489
-4	0.082928	15.952	0.75661
-3	0.12185	28.138	1.1222
-2	0.15014	43.152	1.4224
-1	0.15729	58.881	1.5797
binomDiscreteVal	binomDiscreteValProbMass	CDF cums	umFrac

DIHOHDISCIECEVAL	DIHOMDISCIECEVALFIODMASS	CDF	Cumsumriac
11	6.0392e-06	100	1
12	1.0588e-06	100	1
13	1.5784e-07	100	1
14	1.973e-08	100	1
15	2.0293e-09	100	1
16	1.6725e-10	100	1
17	1.0619e-11	100	1
18	4.8762e-13	100	1
19	1.4412e-14	100	1
20	2.0589e-16	100	1

 ${\tt tb_prob_drv}$

percentiles	binomDiscreteValPercentileValues	fracOfSumHeldBelowThisPercentile
0.1	-8	0.01724
1	-6	0.19269
5	-5	0.42489
10	-4	0.75661

15	-4	0.75661
20	-3	1.1222
25	-3	1.1222
35	-2	1.4224
50	-1	1.5797
65	0	1.5797
75	1	1.4694
80	1	1.4694
85	2	1.3197
90	2	1.3197
95	3	1.1865
99	5	1.0412
99.9	7	1.0052

2.2.2 Test FF_DISC_RAND_VAR_STATS 0 and 1 Random Variable

The simplest discrete random variable has two values, zero or one. The probability of zero is 30 percent, and 70 percent is the probability of one.

```
% Parameters
% 1. specify the random variable
st_var_name = 'bernoulli';
ar_choice_unique_sorted = [0, 1];
ar_choice_prob = [0.3, 0.7];
% 2. percentiles of interest
ar_fl_percentiles = [0.1 5 25 50 75 95 99.9];
% 3. print resutls
bl_display_drvstats = true;
% Call Function
[ds_stats_map] = ff_disc_rand_var_stats(st_var_name, ...
   ar_choice_unique_sorted, ar_choice_prob, ...
   ar_fl_percentiles, bl_display_drvstats);
Summary Statistics for: bernoulli
_____
fl_choice_mean
   0.7000
fl_choice_sd
   0.4583
fl_choice_coefofvar
   0.6547
fl_choice_prob_zero
   0.3000
fl_choice_prob_below_zero
fl_choice_prob_above_zero
   0.7000
fl_choice_prob_max
   0.7000
```

tb_disc_cumu					
bernoulliDisc	reteVal	bernoulliDiscreteValProbMass	CDF	$\operatorname{cumsumFrac}$	
0		0.3	30	0	
1		0.7	100	1	
bernoulliDisc	reteVal	bernoulliDiscreteValProbMass	CDF	cumsumFrac	
0		0.3	30	0	
1		0.7	100	1	
tb_prob_drv					
percentiles	bernoul	liDiscreteValPercentileValues	fracOf	SumHeldBelowTh	nisPercentile
0.1		0		0	
5	0				
25		0	0		
50		1	1		
75		1		1	
95		1		1	
99.9		1		1	

2.2.3 Test FF_DISC_RAND_VAR_STATS with Poisson

Poisson random variable, with mean equals to ten, summarize over umsymmetric percentiles. Note that the poisson random variable has no upper bound.

```
% Parameters
% 1. specify the random variable
st_var_name = 'poisson';
mu = 10;
ar_choice_unique_sorted = 0:1:50;
ar_choice_prob = poisspdf(ar_choice_unique_sorted, mu);
% 2. percentiles of interest, unsymmetric
ar_fl_percentiles = [0.1 5 10 25 50 90 95 99 99.9 99.99 99.999 99.9999];
% 3. print resutls
bl_display_drvstats = true;
% Call Function
[ds_stats_map] = ff_disc_rand_var_stats(st_var_name, ...
   ar_choice_unique_sorted, ar_choice_prob, ...
   ar_fl_percentiles, bl_display_drvstats);
Summary Statistics for: poisson
fl_choice_mean
   10
fl choice sd
   3.1623
fl_choice_coefofvar
   0.3162
```

- fl_choice_prob_zero 4.5400e-05
- fl_choice_prob_below_zero
- fl_choice_prob_above_zero 1.0000
- fl_choice_prob_max 1.4927e-19

tb.	_disc_	cumu
	pois	ssonDi

poissonDiscreteVal	${\tt poissonDiscreteValProbMass}$	CDF	cumsumFrac
0	4.54e-05	0.0045	54 0
1	0.000454	0.0499	94 4.54e-05
2	0.00227	0.2769	0.0004994
3	0.0075667	1.033	36 0.0027694
4	0.018917	2.925	0.010336
5	0.037833	6.708	0.029253
6	0.063055	13.01	0.067086
7	0.090079	22.02	0.13014
8	0.1126	33.28	32 0.22022
9	0.12511	45.79	0.33282
${\tt poissonDiscreteVal}$	poissonDiscreteValProbMass	CDF	cumsumFrac
41	1.3571e-13	100	1
42	3.2313e-14	100	1
43	7.5146e-15	100	1
44	1.7079e-15	100	1
45	3.7953e-16	100	1
46	8.2506e-17	100	1
47	1.7554e-17	100	1
48	3.6572e-18	100	1
49	7.4636e-19	100	1
50	1.4927e-19	100	1

tb	prob	drv

poissonDiscreteValPercentileValues	fracOfSumHeldBelowThisPercentile
2	0.0004994
5	0.029253
6	0.067086
8	0.22022
10	0.45793
14	0.86446
15	0.91654
18	0.98572
21	0.99841
24	0.99988
26	0.99998
28	1
	2 5 6 8 10 14 15 18 21 24 26

coe

0.5 0.6

% Print out full Stored Matrix

 $\mbox{\%}$ Note that the outputs are single row arrays.

ff_container_map_display(ds_stats_map, 100, 100)

CONTAINER NAME: ds_stats_map ND Array (Matrix etc)

xxxxxxxxxxxxxxx	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
<u> </u>	

XXX.	XXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	X									
					i	idx	n	dim	numel	rowl	N	colN	mean	st	d	C
					-						-					-
	ar_ch	oice_]	perc_f	rachel	d 1	1	:	2	12	1		12	0.62833	0.	435	C
	ar ch	oice 1	percen	tiles	2	2		2	12	1		12	14.75	8.7	399	C
		_	entile		3	3	:	2	12	1		12	64.499		887	C
xxx	TABLE	:ar cl	hoice	perc f	rachelo	d xxxxx	xxxxx	xxxxx	xxx							
		c:			c2		:3		c4	с5		с6	с7		c8	,
	r1	0.000	04994	0.0	29253	0.06	7086	0.2	22022	0.4579	93	0.86446	0.91	654	0.98	572
xxx	TABLE	:ar_cl	hoice_	percen	tiles :	xxxxxx	xxxxx	xxxxx	X							
		c1	c2	c3	c4	с5	c6	c7	c8	с9	c10	c11	c12			
	r1	2	5	6	8	10	14	15	18	21	24	26	28			
xxx	TABLE	:ar_f	l_perc	entile	s xxxx	xxxxxx	xxxxx	xx								
		c1	c2	с3	c4	c5	с6	с7	c8	с9		c10	c11	c12		
	r1	0.1	5	10	25	50	90	95	99	99.9	,	99.99	99.999	100		

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx CONTAINER NAME: ds_stats_map Scalars

		i	idx	value
fl	_choice_coefofvar	1	4	0.31623
fl	_choice_max	2	5	50
fl	_choice_mean	3	6	10
fl	_choice_min	4	7	0
fl	_choice_prob_above_zero	5	8	0.99995
fl	_choice_prob_below_zero	6	9	0
fl	_choice_prob_max	7	10	1.4927e-19
fl	_choice_prob_min	8	11	4.54e-05
fl	_choice_prob_zero	9	12	4.54e-05
fl	_choice_sd	10	13	3.1623

FF_DISC_RAND_VAR_MASS2OUTCOMES Examples

Go back to fan's MEconTools Toolbox (bookdown), Matlab Code Examples Repository (bookdown), or Math for Econ with Matlab Repository (bookdown).

This is the example vignette for function: ff_disc_rand_var_mass2outcomes from the MEcon-Tools Package. This function generates sorted discrete random variable from state-space joint distri-

0

0

0

0

0

0

bution.

2.3.1Test FF_DISC_RAND_VAR_MASS2OUTCOMES Defaults

Call the function with defaults.

0

0

0

0

0.2109

0.0717

0

0

0

0

```
ff_disc_rand_var_mass2outcomes();
```

```
INPUT f(a,z): mt_dist_bystates
                                         0.0001
   0.0289 0.0465 0.0228
                                0.0036
   0.0241
            0.0930
                      0.0857
                                0.0241
                                         0.0015
   0.0080
          0.0744
                      0.1285
                                0.0643
                                         0.0074
   0.0013
          0.0297
                      0.0964
                               0.0857
                                         0.0186
             0.0059
   0.0001
                      0.0361
                                0.0571
                                         0.0232
   0.0000
             0.0005
                      0.0054
                               0.0152
                                         0.0116
INPUT y(a,z): mt_choice_bystates
                  -4
   -5
        -4
              -5
   -3
         -2
               -3
                    -2
                          -3
   -1
         -1
              -1
                     0
                           0
    1
                     3
          1
               2
                           1
                           3
    4
          3
               3
                     4
    5
          6
               5
                     6
                           6
OUTPUT f(y): ar_choice_prob_byY
   0.0518
   0.0502
   0.1113
   0.1171
   0.2109
   0.0717
   0.0497
   0.0964
   0.1510
   0.0572
   0.0054
   0.0273
OUTPUT f(y,z): mt_choice_prob_byYZ
   0.0289
              0 0.0228
                                    0
                                              0
             0.0465
                               0.0036
                                         0.0001
        0
                      0
                                         0.0015
   0.0241
                 0
                      0.0857
                                    0
             0.0930
                                0.0241
                                              0
        0
                      0
   0.0080
             0.0744
                                              0
                      0.1285
                                    0
                 0
                          0
                                0.0643
                                         0.0074
   0.0013
             0.0297
                           0
                                    0
                                         0.0186
                 0
                      0.0964
        0
                                     0
                                              0
        0
             0.0059
                      0.0361
                                0.0857
                                         0.0232
                                0.0571
   0.0001
                0
                          0
                                              0
   0.0000
                 0
                      0.0054
                                              0
             0.0005
                           0
                                0.0152
                                         0.0116
        0
OUTPUT f(y,a): mt_choice_prob_byYA
   0.0518
                 0
                      0
                                     0
                                              0
   0.0502
                 0
                           0
                                    0
                                              0
        0
             0.1113
                           0
                                    0
                                              0
             0.1171
                                              0
        0
                           0
                                    0
```

0	0	0	0.0497	0	0
0	0	0	0.0964	0	0
0	0	0	0.0857	0.0653	0
0	0	0	0	0.0572	0
0	0	0	0	0	0.0054
0	0	0	0	0	0.0273

OUTPUT f(y) and y in table: tb_choice_drv_cur_byY binomtestOutcomes probMassFunction

-5	0.051764
-4	0.050217
-3	0.11126
-2	0.11706
-1	0.21092
0	0.071696
1	0.049682
2	0.096388
3	0.15102
4	0.057231
5	0.0054256
6	0.027329

0.2990

3.0000

2.3.2 Test FF_DISC_RAND_VAR_MASS2OUTCOMES Four States-Points

Over some (a,z) states that is 2 by 2, matrix or vectorized inputs identical results.

```
% Set Parameters
st_y_name = 'consumption';
% consumption matrix: c(a,z)
mt_c_of_s = [1,2;3,1];
% stationary mass over assets adn shocks: f(a,z)
mt_f_of_s = rand(size(mt_c_of_s));
mt_f_of_s = mt_f_of_s/sum(mt_f_of_s, 'all');
% Call Function
[ar_f_of_y, ar_y_unique_sorted] = ...
    ff_disc_rand_var_mass2outcomes(st_y_name, mt_c_of_s, mt_f_of_s);
% print
disp([ar_f_of_y ar_y_unique_sorted]);
    0.4039
              1.0000
              2.0000
    0.2971
    0.2990
              3.0000
Same as before, but now inputs are single column:
% Call Function
[ar_f_of_y, ar_y_unique_sorted] = ...
    ff_disc_rand_var_mass2outcomes(st_y_name, mt_c_of_s(:), mt_f_of_s);
disp([ar_f_of_y ar_y_unique_sorted]);
    0.4039
            1.0000
    0.2971
            2.0000
```

2.3.3 Test FF_DISC_RAND_VAR_MASS2OUTCOMES Conditional Mass Outputs

Same inputs as before, but now, also output additional conditional statistis, f(y, a), where a is the row state variable for f(a,z). For conditional statistics, must provide matrix based inputs.

```
% Set Parameters
st_y_name = 'consumption';
% consumption matrix: c(a,z)
mt_c_of_s = [1,2,0.5;
             3,1,2.0];
% stationary mass over assets adn shocks: f(a,z)
mt_f_of_s = rand(size(mt_c_of_s));
mt_f_of_s = mt_f_of_s/sum(mt_f_of_s, 'all');
% Call Function
[ar_f_of_y, ar_y_unique_sorted, mt_f_of_y_srow, mt_f_of_y_scol] = ...
    ff_disc_rand_var_mass2outcomes(st_y_name, mt_c_of_s, mt_f_of_s);
% print
disp([ar_f_of_y ar_y_unique_sorted]);
    0.2695
              0.5000
    0.3765
              1.0000
              2.0000
    0.2649
    0.0891
              3.0000
disp(mt_f_of_y_srow);
    0.2695
                   0
              0.2550
    0.1215
    0.1217
              0.1432
         0
              0.0891
disp(mt_f_of_y_scol);
         0
                   0
                        0.2695
    0.1215
              0.2550
                             0
         0
              0.1217
                        0.1432
    0.0891
                   0
                             0
```

2.4 FF_DISC_RAND_VAR_MASS2COVCOR Examples

Go back to fan's MEconTools Toolbox (bookdown), Matlab Code Examples Repository (bookdown), or Math for Econ with Matlab Repository (bookdown).

This is the example vignette for function: **ff_disc_rand_var_mass2covcor** from the **MEconTools Package.** This function calculates covariance and correlation based for two discrete random variables.

2.4.1 Test FF DISC RAND VAR MASS2COVCOR Defaults

Call the function with defaults.

```
ff_disc_rand_var_mass2covcor();
CONTAINER NAME: covvar_input_map ND Array (Matrix etc)
i
              idx
                   ndim
                                    colN
                                                   std
                                                          coefvari
                        numel
                               rowN
                                           mean
              ---
                   ----
                         ----
                               ----
                                    ----
                                          -----
                                                  -----
                                                          -----
```

	$\mathtt{mt}_{\mathtt{f}}$	of_s	1	5	2	;	30 6	5	5	0.033333	0.035743	1.0723	3.
	mt_x_	of_s	2	6	2	;	30 6	3	5	0.83333		6.3661	
	mt_y_	of_s	3	7	2	;	30 6	3	5	8.3259	7.1913	0.86373	
xxx	TABLE	:mt_f_	of_s	xxxxxx	xxxxx	xxxxxx							
		С	1		c2		c3		c4	с5			
								-					
	r1	0.0	28917	. (0.0464	:84	0.022848	0	.0036146	0.000119			
		0.0			0.0929		0.085679		0.02100.	0.0014875			
		0.00			0.0743		0.12852		0.064259				
		0.00					0.096388			0.018593			
		0.000							0.057119				
	r6	3.718	7e-06	0.0	000475	99 (0.0054218		0.015232	0.011621			
xxx	TABLE	:mt_x_	of_s	xxxxxx	xxxxxx	xxxxxx							
		c1	c2	c3	c4	c5							
	r1	-7	-6	-7	-6	-6							
				- 5									
		-2			0								
		2			4								
		6			6								
	r6	8	9	7	9	9							
xxx	TABLE	:mt_y_	of_s	xxxxxx	xxxxx	xxxxxx							
		c1		c2		сЗ	c4		c5				
			_										
	r1	13.23	1	21.78	36	18.136	19.3	35	13.901				
	r2	9.94	6	16.88	37	9.6914	15.7	71	8.6906				
	r3	16.25	5	6.216	66	13.799	5.213	38	11.641				
	r4	12.62	8	2.752	25	6.5321	0.2723	38	13.357				
	r5	5.884	4	4.03	52	6.05	0.1410)2	0.50318				
	r6	3.561	7	-0.7209	91	5.1855	-6.377	72	-4.4805				
				xxxxxx									
				ar_inpu	_								
717171	nnnnn	MANAAN.	i	idx		lue	1111						
			_										
	fl v	mean	1	1	-0	11081							
	fl_x_	sd	2	1 2 3	Δ.	.1239							
		mean	3	3	2	8.8423							
	fl_y_	sd	4	4	6	5.5845							
	y_	~ ~	-	r	C								

-----xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

CONTAINER NAME: covvar_output_map ND Array (Matrix etc)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

	i	idx	ndim	numel	rowN	colN	mean	std
	-							
mt_cov_component_weighted	1	1	2	30	6	5	-0.73612	1.0404

0.94415

-31.321

-0.51644

5.3051

36.564

7.1913

		.evi_from_me	ean	2 3	2 3	2 2	30 30	6 6	5 5
		evi_from_me	ean	4	4	2	30	6	5
xxx	TABLE:	mt_cov_comp	onent wei	ghted 3	xxxxxx	cxxxxxx	xxxx		
		c1	c2	_	c3		c4		с5
	1	0.07424		E430	4	1600	0 00060	0	0025451
	r1 r2	-0.87434 -0.13003		5432 1607	-1.4 -0.3		-0.22368 -0.47814		.0035451
	r3	-0.11248		7365	-0.56		-0.025838		0.018507
	r4	0.010697		8241	-0.69		-3.0184		0.17717
		-0.0020165			-0.53		-3.0371		-0.99056
		-0.00015927			-0.14		-2.1121		-1.4106
vvv	TARI F.	mt_x_devi_f	rom mean	VVVVV V	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,			
AAA	TADLL.	c1	c2		:3	c4	c	5	
		-6.8892	-5.8892		8892	-5.88		8892	
		-4.8892	-2.8892		8892	-2.88		8892	
		-1.8892	-0.88919		38919	0.110			
		2.1108	2.1108		1108	4.11		1108	
	r5 r6	6.1108	5.1108 9.1108		1108	6.11 9.11		1108	
	10	8.1108	9.1100	7.	1108	9.11	00 9.	1108	
xxx	TABLE:	mt_x_y_mult	ciply xxxx	xxxxxx	xxxxx	ζX			
		c1	c2	с3		c4	с5		
	r1	-30.237	-76.225	-64.0)23	-61.88	2 -29.7	92	
	r2	-5.396	-23.242	-4.1	151	-19.84	2 0.590	04	
	r3	-14.003	2.3348	-4.40	73	-0.4020	9 -2.48	84	
		7.9905	-12.854	-7.18	368	-35.2	3 9.52	87	
	r5	-18.075	-24.568	-14.2	271	-53.17	2 -42.	62	
	r6	-42.83	-87.129	-26.0	003	-138.6	6 -121.	38	
xxx	TABLE:	mt_y_devi_f	rom mean	xxxxxx	xxxxx	(XXXXX			
		c1	c2	с3		c4	с5		
	r1	4.389	12.943	9.29	933	10.508	5.05	87	
	r2	1.1037	8.0444	0.849	902	6.8677	-0.151	71	
	r3	7.4123	-2.6258	4.95	566	-3.6286	2.79	85	
	r4	3.7855	-6.0898	-2.31	103	-8.57			
		-2.9579	-4.8071	-2.79		-8.7013			
	r6	-5.2806	-9.5633	-3.65	568	-15.22	-13.3	23	

fl_cov

-22.0835

fl_cor -0.8133

${\bf 2.4.2} \quad {\bf Test} \ {\bf FF_DISC_RAND_VAR_MASS2COVCOR} \ {\bf Four} \ {\bf States-Points}$

Over some (a,z) states that is 2 by 2, c matrix, and y matrix, find correlation. Positively related.

% Set Parameters

```
mt_c_of_s = [1,2;3,1];
mt_y_of_s = [2,10;5,1.1];
rng(123);
mt_f_of_s = rand(size(mt_c_of_s));
mt_f_of_s = mt_f_of_s/sum(mt_f_of_s, 'all');
bl_display_drvm2covcor = false;
% Call Function
[fl_cov_xy, fl_cor_xy] = ff_disc_rand_var_mass2covcor(...
    mt_c_of_s, mt_y_of_s, mt_f_of_s, bl_display_drvm2covcor);
display(['cov=' num2str(fl_cov_xy) ',cor=', num2str(fl_cor_xy)]);
cov=1.4446,cor=0.65723
Same as before, but now inputs are single column:
% Call Function
[fl_cov_xy, fl_cor_xy] = ff_disc_rand_var_mass2covcor(...
    mt_c_of_s(:), mt_y_of_s(:), mt_f_of_s(:), bl_display_drvm2covcor);
display(['cov=' num2str(fl_cov_xy) ',cor=', num2str(fl_cor_xy)]);
cov=1.4446,cor=0.65723
```

2.4.3 Test FF_DISC_RAND_VAR_MASS2COVCOR Two Random Vectors

Generate two random vectors, with random or even mass, correlation should be zero:

2.4.4 Test FF_DISC_RAND_VAR_MASS2COVCOR Provide Mean and SD

Same as above, but now provide means and sd for x andy directly. The results are the same as when mean and sd are calculated inside the function.

```
% Set Parameters
rng(4567);
mt_c_of_s = rand([20,1])*100;
mt_y_of_s = rand([20,1])*100;
mt_f_of_s = rand(size(mt_c_of_s));
mt_f_of_s = mt_f_of_s/sum(mt_f_of_s, 'all');
fl_c_mean = sum(mt_f_of_s.*mt_c_of_s);
fl_c_sd = sqrt(sum(mt_f_of_s.*(mt_c_of_s-fl_c_mean).^2));
fl_y_mean = sum(mt_f_of_s.*(mt_y_of_s);
fl_y_sd = sqrt(sum(mt_f_of_s.*(mt_y_of_s-fl_y_mean).^2));
bl_display_drvm2covcor = false;
% Call Function
[fl_cov_xy, fl_cor_xy] = ff_disc_rand_var_mass2covcor(...
```

```
mt_c_of_s, mt_y_of_s, mt_f_of_s, ...
fl_c_mean, fl_c_sd, ...
fl_y_mean, fl_y_sd, bl_display_drvm2covcor);
display(['cov=' num2str(fl_cov_xy) ',cor=', num2str(fl_cor_xy)]);
cov=-57.6533,cor=-0.062023
```

Chapter 3

Graphs

3.1 FF_GRAPH_GRID Examples: X, Y and Color Line Plots

Go back to fan's MEconTools Toolbox (bookdown), Matlab Code Examples Repository (bookdown), or Math for Econ with Matlab Repository (bookdown).

This is the example vignette for function: **ff_graph_grid** from the **MEconTools Package.** This function can graph out value and policy functions given one state vector (x-axis), conditional on other states (line groups). Can handle a few lines (scatter + lines), or many groups (jet spectrum).

3.1.1 Test FF_GRAPH_GRID Defaults

Call the function with defaults.

ff_graph_grid();

32 CHAPTER 3. GRAPHS

3.1.2 Test FF_GRAPH_GRID Two Random Normal Lines and Labels

There are two autoregressive time series, plot out the time two time series.

```
% Generate the two time series
rng(456);
mt_value = normrnd(100,10,[2, 50]);
ar_row_grid = ["individual 1", "individual 2"];
ar_col_grid = 1:50;
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_graph_title') = {'Time Series Two Individuals'};
mp_support_graph('cl_st_ytitle') = {'Values'};
mp_support_graph('cl_st_xtitle') = {'Periods'};
mp_support_graph('bl_graph_logy') = false; % do not log
ff_graph_grid(mt_value, ar_row_grid, ar_col_grid, mp_support_graph);
```


3.1.3 Test FF_GRAPH_GRID 6 Lines Pick Marker and Colors

Plot many lines, with auto legend.

```
% Generate some Data
rng(456);
ar_row_grid = linspace(-4, 11, 5);
ar_col_grid = linspace(-1, 1, 20);
rng(123);
mt_value = 0.2*ar_row_grid' + exp(ar_col_grid) + rand([length(ar_row_grid), length(ar_col_grid)]);
% container map settings
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_graph_title') = {'5 lines, specify marker and color, value(a,z), a=x, z=colo
mp_support_graph('cl_st_ytitle') = {'value(a,z)'};
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'southeast';
mp_support_graph('bl_graph_logy') = false; % do not log
mp_support_graph('st_rowvar_name') = 'z=';
mp_support_graph('it_legend_select') = 3; % how many shock legends to show
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'s', 's', '*', '*', 'p'};
mp_support_graph('cl_colors') = {'green', 'black', 'green', 'black', 'orange'};
% Call function
ff_graph_grid(mt_value, ar_row_grid, ar_col_grid, mp_support_graph);
```

34 CHAPTER 3. GRAPHS

3.1.4 Test FF_GRAPH_GRID Many Lines

Plot many lines, with auto legend.

```
% Generate some Data
rng(456);
ar_row_grid = linspace(-4, 11, 100);
ar_col_grid = linspace(-1, 1, 1000);
rng(123);
mt_value = 0.2*ar_row_grid' + exp(ar_col_grid) + rand([length(ar_row_grid), length(ar_col_grid)]);
% container map settings
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_graph_title') = {'value(a,z), a=x, z=color'};
\label{eq:mp_support_graph('cl_st_ytitle') = {'value(a,z)'};} \\
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'southeast';
mp_support_graph('bl_graph_logy') = false; % do not log
mp_support_graph('st_rowvar_name') = 'z=';
mp_support_graph('it_legend_select') = 3; % how many shock legends to show
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
% Call function
ff_graph_grid(mt_value, ar_row_grid, ar_col_grid, mp_support_graph);
```


3.1.5 Test FF_GRAPH_GRID Many Lines Legend Exogenous

Plot many lines, exogenously set legend

```
\% Generate the two time series
rng(456);
ar_row_grid = linspace(-4, 11, 15);
ar_col_grid = linspace(-1, 1, 100000);
rng(123);
mt_value = 0.2*ar_row_grid' - exp(ar_col_grid) + rand([length(ar_row_grid), length(ar_col_grid)]);
% setting shock vector name exogenously here
ar_row_grid = string(num2str(ar_row_grid', "shock=%6.2f"));
% container map settings
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_graph_title') = {'value(a,z), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'value(a,z)'};
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = false; % do not log
mp_support_graph('it_legend_select') = 15;
% Call function
ff_graph_grid(mt_value, ar_row_grid, ar_col_grid, mp_support_graph);
```

36 CHAPTER 3. GRAPHS

Chapter 4

Support Tools

4.1 FF_CONTAINER_MAP_DISPLAY Examples

Go back to fan's MEconTools Toolbox (bookdown), Matlab Code Examples Repository (bookdown), or Math for Econ with Matlab Repository (bookdown).

This is the example vignette for function: **ff_container_map_display** from the **MEconTools Package.** This function summarizes statistics of matrixes stored in a container map, as well as scalar, string, function and other values stored in container maps.

4.1.1 Test FF_CONTAINER_MAP_DISPLAY Defaults

Call the function with defaults.

ff_container_map_display();

xxxxxxxx	************
ND Array	y (Matrix etc)

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	CXXXXXX	XXXXXXX	XXXXXXX						
	i	idx	ndim	numel	rowN	colN	sum	mean	std
mat_1	1	7	2	12	3	4	6.5142	0.54285	0.2232
mat_2	2	8	2	2650	50	53	1313.3	0.49559	0.29232
mat_2_boolean	3	9	2	2650	50	53	1361	0.51358	0.49991
mat_3	4	10	2	4	2	2	1.8111	0.45277	0.45111
tensor_1	5	15	3	16	2	8	7.3043	0.45652	0.27787
tensor_2	6	16	3	75	3	25	40.195	0.53593	0.29044
tensor_3	7	17	2	4	1	4	1.6926	0.42315	0.37389
tesseract_1	8	18	4	72	3	24	34.321	0.47669	0.26374
tesseract_2	9	19	4	20	2	10	8.4191	0.42096	0.28981
tesseract bl 3	10	20	4	10	1	10	3	0.3	0.48305

xxx TABL	E:mat 1 xxx	xxxxxxxxxx	xxxx	
	c1	c2	c3	c4
r1	0.69647	0.55131	0.98076	0.39212
r2	0.28614	0.71947	0.68483	0.34318
r3	0.22685	0.42311	0.48093	0.72905
xxx TABL	.E:mat 2 xxx	xxxxxxxxxx	xxxx	

c2

с1

c4

c50

c51

c52

c53

сЗ

r1	0.43857	0.62	49	0.17108	0.56564	0.072	152 0	.67855	0.616	667 0.540
r2	0.059678			0.82911	0.084904		289 0	.27236	0.325	
r3	0.39804			0.33867	0.58267			.44513	0.0750	
r4	0.738			0.55237	0.81484			.11117	0.595	
r5	0.18249			0.57855	0.33707			028681	0.74	
r46	0.6813			0.88786	0.69983			.16382	0.741	
r47	0.87546			0.69631	0.66117			.79092	0.424	
r48	0.51042			0.44033	0.049097			.33302	0.244	
r49	0.66931		79	0.43821	0.7923	0.12	979 0	.75311	0.794	
r50	0.58594	0.354	26	0.7651	0.51872	0.86	415 0	.58281	0.847	795 0.45
xxx TABL	E:mat_2_boo	lean xxxxx	xxxxxx	xxxxxxx						
	c1	c2	с3	c4	c50	c51	c52	c53		
r1	true	false	false	true	true	false	true	true		
r2	true		true	true	false	false	true	true		
r3	false		false	true	false	true	false	true		
r4	false		false	false		true	true	true		
r5				false		false	false			
	true		true					true		
r46	false		true	false		true	true	true		
r47	true		true	true	true	true	false	false		
r48	true		false	false		true	false	true		
r49	true	true	false	true	true	true	false	false		
r50	false	false	false	false	e false	false	false	false		
xxx TABLE	E:mat_3 xxx	xxxxxxxx	xxxxx							
	c1	c2								
r1	0.0001247									
r2	0.8861	5 0.792	26							
xxx TABLI	E:tensor_1	xxxxxxxxx	xxxxx	xx						
	c1	c2		c3	c4	с5	с6	С	7	c8
r1	0 019363	0 3/1971	0	52167	0.53703	0 75756	0 6883	a	3/15 (26597
ri r2					0.53703					
12	0.018091	0.33355	0.	11738	0.77857	0.81933	0.2004	4 0.6	157	0.368
xxx TABLE	E:tensor_2									
	c1	c2		c3	c4	c22	c23		c24	c25
r1	0.51866	0.40495	0.	48278	0.99731	0.46584	0.6297	6 0.	035924	0.10505
					0.35201					
					0.15315					
10	0.07333	0.13401	0.	.00212	0.10010	0.11003	0.3000	J	0.2001	0.0000
xxx TABLE	E:tensor_3									
	c1	c2	с3		c4					
r1	0.1219	0.5119	0.915	553 0.	. 14329					
	.									
xxx TABLI	E:tesseract	_			4	6.4	2.5		00	0.4
	c1	c2	C	:3	c4	c21	c22	С	23	c24

r1	0.64531	0.59	299	0.32115	0.67653	0.90328	0.5691	1 0.52562	0.12014
	0.74558				0.21384				
r3	0.91137							2 0.75348	
TADI I	7. +	. 0							
XXX TABLE	E:tesserac				2.1	c7	.0	20	a10
	c1	C	Z	c3	c4	C1	с8	с9	c10
r1	0.28898	0.4	8211	0.44359	0.97146	0.61782	0.6512	0.8071	5 0.11605
	0.094493							7 0.04311	
man.	7 .								
XXX TABLE	E:tesseract	t_b1_3 : c2	xxxxxxxx c3		cx c7	c8	c9	c10	
r1	false	false	true	true	false	true	false	false	
xxxxxxxx	xxxxxxxxx	xxxxxxx	xxxxxx	xxxxxxx					
Scalars									
XXXXXXXX	xxxxxxxxx	xxxxxxx	xxxxxx						
		i	idx	value					
		-							
hoole	ean_1	1	1	1					
empty		1 2	2	NaN					
mat_4	, 1	3	11	0.74898					
	1 ng_float_1	4	13	1021.1					
	ng_int_1			1021.1					
	-6								
String	xxxxxxxx	XXXXXXX.	XXXXXXX	XXXXXXX					
0	xxxxxxxxx	xxxxxx	xxxxxx	xxxxxxx					
		i	idx		string				
lie+	_string_1	"1"	"5"	"col1:	;col2;col3;c	.014"			
	_string_1 _string_2	"2"	"6"		;co12,co13,c; ;row2;row3;r				
stri		"3"	"12"		e Name"	OWI			
55111	-0	· ·		1001					
Function	XXXXXXXXXX ne	xxxxxx	xxxxxx	XXXXXXX					
	xxxxxxxxxx	XXXXXX.	XXXXXX	XXXXXXX					
	i	idx		ctionStri	ıg				

$4.1.2 \quad Test \ FF_CONTAINER_MAP_DISPLAY \ summarize \ Matrix \ Only$

Three large matrixes, show summaries $\,$

func1 "1" "3"

"2"

% Create Container

func2

mp_container_map = containers.Map('KeyType','char', 'ValueType','any');

"@(x,y)x*1+sqrt(y)"

"@(x)1+2+x"

СО

0.

0.

1

СО

0.

0.

0.

```
rng(123);
mp_container_map('mat_1') = rand(100,100);
mp_container_map('mat_2') = rand(100,100)*2 + 1;
mp_container_map('mat_2_boolean') = (rand(100,100) > 0.5);
% Will only print
ff_container_map_display(mp_container_map);
_____
CONTAINER NAME: mp_container_map ND Array (Matrix etc)
i
                       idx
                             ndim
                                    numel
                                            rowN
                                                   colN
                                                           sum
                                                                    mean
                                                                               std
                       ___
                             ____
                                    ----
                                            ----
                                                   ----
                                                           ----
                                                                   -----
                                                                             -----
                              2
   mat_1
                  1
                        1
                                    10000
                                            100
                                                   100
                                                           4982.3
                                                                   0.49823
                                                                             0.28829
   mat_2
                  2
                        2
                              2
                                    10000
                                            100
                                                   100
                                                           20029
                                                                    2.0029
                                                                             0.57632
                  3
                        3
                              2
                                    10000
                                            100
                                                   100
                                                            4995
                                                                    0.4995
                                                                             0.50002
   mat_2_boolean
     Test FF_CONTAINER_MAP_DISPLAY Show Matrix Subset
A container map with three small matrixes, print only only 2 rows and 3 columns.
% Create Container
mp_container_map = containers.Map('KeyType','char', 'ValueType','any');
rng(789);
mp_container_map('mat_1') = rand(3,4);
mp_container_map('mat_2') = rand(50,53);
mp_container_map('mat_2_boolean') = (rand(50,53) > 0.5);
% Will only print
ff_container_map_display(mp_container_map, 2, 3);
CONTAINER NAME: mp_container_map ND Array (Matrix etc)
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
                  i
                       idx
                             ndim
                                                                               std
                                    numel
                                            rowN
                                                   colN
                                                           SIIM
                                                                    mean
                                                    ----
                                                           ----
                                                                    -----
                                                                              ----
   mat_1
                  1
                        1
                              2
                                      12
                                              3
                                                     4
                                                          4.9876
                                                                   0.41564
                                                                             0.33586
   mat_2
                  2
                        2
                              2
                                    2650
                                             50
                                                    53
                                                          1324.3
                                                                   0.49973
                                                                             0.28834
                  3
                        3
                              2
                                    2650
                                             50
                                                    53
                                                            1350
                                                                   0.50943
                                                                             0.50001
   mat_2_boolean
xxx TABLE:mat 1 xxxxxxxxxxxxxxxxx
          c1
                    c2
                              сЗ
                                        c4
                            0.01062
   r1
        0.32333
                  0.62442
                                      0.53815
   r3
        0.79378
                  0.75889
                            0.11104
                                      0.55157
xxx TABLE:mat_2 xxxxxxxxxxxxxxxxxx
                               c52
                                         c53
           c1
                     c2
          _____
                   _____
                             -----
                                       _____
   r1
         0.72837
                   0.20976
                             0.74583
                                       0.22321
   r50
         0.52812
                    0.545
                             0.49521
                                       0.29826
xxx TABLE:mat_2_boolean xxxxxxxxxxxxxxxxx
          c1
                 c2
                          c52
                                  c53
```

r1 false true true true r50 true false false true

Appendix A

Index and Code Links

A.1 Summarize Policy and Value links

- 1. Summarize ND Array Policy and Value Functions: mlx | m | pdf | html
 - Given an NDarray matrix with N1, N2, ..., ND dimensions. Generate average and standard deviation for the 3rd dimension, grouping by the other dimensions.
 - For example, show the 5th dimension as the column groups, and the other variables generate combinations shown as rows.
 - The resulting summary statistics table contains mean and standard deviation among other statistics over the policy or value contained in the ND array.
 - MEconTools: ff_summ_nd_array()

A.2 Distributional Analysis links

- 1. Gateway Joint Probability Mass Statistics: $\mathbf{mlx} \mid \mathbf{m} \mid \mathbf{pdf} \mid \mathbf{html}$
 - Given probability mass function f(s), and information y(s), x(s), z(s) at each element of the state-space, compute statistics for each variable, y, x, z, which are all discrete random variables.
 - Compute their correlation and covariance.
 - MEconTools: ff_simu_stats()
- 2. Discrete Random Variable Distributional Statistics: mlx | m | pdf | html
 - Model simulation generates discrete random variables, calculate mean, standard deviation, min, max, percentiles, and proportion of outcomes held by x percentiles, etc.
 - MEconTools: ff_disc_rand_var_stats()
- 3. Generate Discrete Random Variable: mlx | m | pdf | html
 - Given mass at state space points, and y, c, a, z and other outcomes or other information at each corresponding state space points, generate discrete random variable, with unique sorted values, and mass for each unique sorted values.
 - Generate additional joint distributions: if initial distribution is over f(a,z), generate joint distribution of f(y,a) or f(y,z).
 - MEconTools: ff_disc_rand_var_mass2outcomes()
- 4. Discrete Random Variable Correlation and Covariance: mlx | m | pdf | html
 - Given probability mass function f(s), X(s), and Y(s), compute the covariance and correlation betwee X and Y.
 - MEconTools: ff_disc_rand_var_mass2covcor()

A.3 Graphs links

- 1. Multiple Line Graph Function: mlx | m | pdf | html
 - Grid based Graph, x-axis one param, color another param, over outcomes.
 - MEconTools: ff_graph_grid()

A.4 Support Tools links

- 1. Organizes and Prints Container Map Key and Values: $\mathbf{mlx} \mid \mathbf{m} \mid \mathbf{pdf} \mid \mathbf{html}$
 - Summarizes the contents of a map container by data types. Includes, scalar, array, matrix, string, functions, tensors (3-tuples), tesseracts (4-tuples).
 - **MEconTools**: *ff_container_map_display()*

Bibliography

The Math Works Inc (2019). MATLAB. Matlab package version 2019b.

Xie, Y. (2020). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.18.