4 Probleme natürlicher Sprache

was sind Formeln?

NATÜRLICHES SCHLIESSEN

NATÜRLICHES SCHLIESSEN

Bezeichnungen in Formeln

 $(\bigvee_{i=1}^n \varphi_i)$ statt ...

NATÜRLICHES SCHLIESSEN

NATÜRLICHES SCHLIESSEN

$$\left(\bigwedge_{i=1}^n \varphi_i\right)$$
 statt ...

 $(\varphi \leftrightarrow \psi)$ statt ...

NATÜRLICHES SCHLIESSEN

NATÜRLICHES SCHLIESSEN

Präzedenz der Operatoren

triviale Deduktion

NATÜRLICHES SCHLIESSEN

NATÜRLICHES SCHLIESSEN

Konjunktionseinführung

Konjunktionselimination

- 1. Alle atomaren Formeln und \perp sind Formeln.
- 2. Falls φ und ψ Formeln sind, sind auch $(\varphi \land \psi), (\varphi \land \psi)(\varphi \rightarrow \psi)$ und $\neg \varphi$ Formeln.
- 3. Nichts ist Formel, was sich nicht mittels der obigen Regeln erzeugen läßt.
- 1. Zuordnung von Wahrheitswerten zu Aussagen ist problematisch.
- 2. Natürliche Sprache ist oft schwer verständlich.
- 3. Natürliche Sprache ist mehrdeutig.
- 4. Natürliche Sprache hängt von Kontext ab.

$$(\bigvee_{i=1}^n \varphi_i \text{ statt } (...((\varphi_1 \vee \varphi_2) \vee \varphi_3) \vee ... \vee \varphi_n)$$

$$\bullet$$
 Falsum: \bot

$$\bullet$$
 Konjunktion: \wedge

$$\bullet$$
 Disjunktion: \vee

• Implikation:
$$\rightarrow$$

$$(\varphi \leftrightarrow \psi)$$
 statt $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$

$$(\bigwedge_{i=1}^n \varphi_i)$$
 statt $(...((\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge ... \wedge \varphi_n)$

Aus der Annahme der Aussage φ folgt φ unmittelbar. φ mit Hypothesen $\{\varphi\}$ und Konklusion φ .

- $\bullet \leftrightarrow \text{bindet am schwächsten}$
- →...
- V...
- ∧...
- ¬ bindet am stärksten

Ist D eine Deduktion von $\varphi \wedge \psi$ mit Hypothesen aus Γ , so ergeben sich die folgenden Deduktionen von φ bzw. von ψ mit Hypothesen aus Γ :

$$\frac{\varphi \wedge \psi}{\varphi} (\wedge E_1)$$

$$\frac{\varphi \wedge \psi}{\psi} (\wedge E_2)$$

Ist D eine Deduktion von φ mit Hypothesen aus Γ und ist E eine Deduktion von ψ mit Hypothesen aus Γ , so ergibt sich die folgende Deduktion von $\varphi \wedge \psi$ mit Hypothesen aus Γ :

$$\frac{\varphi \qquad \psi}{\varphi \wedge \psi} \; (\land I)$$

Implikationseinführung

Implikationselimination

NATÜRLICHES SCHLIESSEN

NATÜRLICHES SCHLIESSEN

Disjunktion selimination

Disjunktionseinführung

NATÜRLICHES SCHLIESSEN

NATÜRLICHES SCHLIESSEN

Negationseinführung

Negationselimination

NATÜRLICHES SCHLIESSEN

NATÜRLICHES SCHLIESSEN

Falsum

reductio ad absurdum

NATÜRLICHES SCHLIESSEN

NATÜRLICHES SCHLIESSEN

$$\Gamma \Vdash \varphi$$

$$\neg(\varphi \lor \psi)$$

oder modus ponens

Ist D eine Deduktion von φ mit Hypothesen aus Γ und ist E eine Deduktion von $\varphi \to \psi$ mit Hypothesen aus Γ , so ergibt sich die folgende Deduktion von ψ mit Hypothesen aus Γ :

$$\frac{\varphi \qquad \varphi \to \psi}{\psi} \ (\to E)$$

$$\frac{\varphi}{\varphi \vee \psi} (\vee I_1)$$

$$\frac{\psi}{\varphi\vee\psi}\ (\forall I_2)$$

Ist D eine Deduktion von $\neg \varphi$ mit Hypothesen aus Γ und ist E eine Deduktion von φ mit Hypothesen aus γ , so ergibt sich die folgende Deduktion von \bot mit Hypothesen aus Γ :

$$\frac{\neg \varphi \qquad \varphi}{\mid} (\neg E)$$

Ist D eine Deduktion von \bot mit Hypothesen aus $\Gamma \cup \{\neg \varphi\}$, so ergibt sich die folgende Deduktion von φ mit Hypothesen aus Γ :

$$\frac{\neg \varphi}{\varphi} (\bot)$$

Für alle Formeln φ und ψ gilt $\{\neg(\varphi \lor \psi)\} \vdash \neg \varphi \land \neg \psi$.

Ist D eine Deduktion von ψ mit Hypothesen aus $\Gamma \cup \{\varphi\}$, so ergibt sich die folgende Deduktion von $\varphi \to \psi$ mit Hypothesen aus Γ :

$$\frac{[\varphi]}{-\frac{\psi}{\varphi \to \psi}} \ (\to I)$$

oder Fallunterscheidung

Ist D eine Deduktion von $\varphi \lor \psi$ mit Hypothesen aus Γ , ist E eine Deduktion von σ mit Hypothesen aus $\Gamma \cup \{\varphi\}$ und ist F eine Deduktion von σ mit Hypothesen aus $\Gamma \cup \{\psi\}$, so ergibt sich die folgende Deduktion von σ mit Hypothesen aus Γ :

$$\begin{array}{ccc} & [\varphi] & [\psi] \\ \hline \varphi \lor \psi & \delta & \delta \\ \hline \psi & & (\lor E) \end{array}$$

Ist D eine Deduktion von \bot mit Hypothesen aus $\Gamma \cup \{\varphi\}$, so ergibt sich die folgende Deduktion von $\neg \varphi$ mit Hypothesen aus Γ :

$$\begin{array}{c} [\varphi] \\ \underline{\hspace{1cm}} \\ \neg \varphi \end{array} (\neg I)$$

ex falso sequitur quodlibet ausführlich: Ist D eine Deduktion von \bot mit Hypothesen aus Γ , so ergibt sich die folgende Deduktion von φ mit Hypothesen aus Γ :

$$\frac{\perp}{\varphi}$$
 (\perp)

Für eine Formelmenge Γ und eine Formel φ schreiben wir $\Gamma \Vdash \varphi$ wenn es eine Deduktion gibt mit Hypothesen aus Γ und Konklusion φ . Wir sagen " φ ist eine syntaktische Folgerung von Γ ". Eine Formel φ ist ein Theorem, wenn $\varnothing \Vdash \varphi$ gilt. $\Gamma \Vdash \varphi$ sagt (zunächst) nichts über den Inhalt der Formeln in $\Gamma \cup \{\varphi\}$ aus, sondern nur über die Tatsache, dass φ mithilfe des natürlichen Schließens aus den Formeln aus Γ hergeleitet werden kann. Ebenso sagt " φ ist Theorem" nur, dass φ abgeleitet werden kann, über "Wahrheit" sagt dieser Begriff (zunächst) nichts aus.

 $\neg\neg\varphi$

Für jede Formel φ ist $\varphi \vee \neg \varphi$...

NATÜRLICHES SCHLIESSEN

Semantik

$$\{\neg(\varphi \wedge \psi)\} \Vdash \dots$$

Idee der Semantik

Semantik

Semantik

zweiwertige Logik

dreiwertige Logik

Semantik

Semantik

Fuzzy-Logik

unendliche Boolesche Algebra

Semantik

Semantik

Heyting-Algebra

offen vs. nicht offene Teilmengen

Für jede Formel φ ist $\varphi \vee \neg \varphi$ ein Theorem. Beweis: Wir geben eine Deduktion mit Konklusion $\varphi \vee \neg \varphi$ ohne Hypothesen an...

Für jede Formel φ ist $\neg\neg\varphi\to\varphi$ ein Theorem.

wenn man jeder atomaren Formel p_i einen Wahrheitswertzuordnet, so kann man den Wahrheitswert jeder Formel berechnen.

$$\{\neg(\varphi \land \psi)\} \Vdash \neg \varphi \lor \neg \psi$$

Kleene-Logik $K_3=\{0,\frac{1}{2},1\}$: zusätzlicher Wahrheitswert "unbekannt" = $\frac{1}{2}$

Boolesche Logik $B = \{0, 1\}$ Wahrheitswerte "wahr"=1 und "falsch"= 0

 $B_R=$ Menge der Teilmengen von \mathbb{R} ; $A\subseteq\mathbb{R}$ ist "Menge der Menschen, die Aussage für wahr halten"

F = [0, 1]: Wahrheitswerte sind "Grad der Überzeugtheit"

offen: $(0,1), \mathbb{R}_{>0}, \mathbb{R} \setminus \{0\}, \mathbb{R} \setminus \mathbb{N}$ nicht offen: $[1,2), \mathbb{R}_{\geq 0}, \mathbb{Q}, \mathbb{N}, \{\frac{1}{n}|n \in \mathbb{N}\}, \mathbb{R} \setminus \mathbb{Q}$

 $H_R=$ Menge der offenen Teilmengen von \mathbb{R} Erinnerung: $A\subseteq\mathbb{R}$ offen, wenn $\forall a\in A\exists \epsilon>0: (a-\epsilon,a+\epsilon)\subseteq A,$ d.h. wenn A abzählbare Vereinigung von offenen Intervallen (x,y) ist. W-Belegung

Definition: Sei W eine Menge und $R \subseteq W \times W$ eine binäre Relation.

Wahrheitswertebereiche

Wahrheitswertebereiche

reflexive Relation

antisymmetrische Relation

Wahrheitswertebereiche

Wahrheitswertebereiche

transitive Relation

Ordnungsrelation

Wahrheitswertebereiche

Wahrheits wertebereiche

Schranken

obere Schranke

Wahrheitswertebereiche

Wahrheitswertebereiche

kleinste obere Schranke

untere Schranke

Sei W eine Menge und $R \subseteq W \times W$ binäre Relation.

- R ist reflexiv
- R ist antisymmetrisch
- R ist transitive
- R ist eine Ordnungsrelation

Sei W eine Menge von Wahrheitswerten. Eine W-Belegung ist eine Abbildung $B:V\to W,$ wobei $V\subseteq\{p_0,p_1,...\}$ eine Menge atomarer Formeln ist.

Die W-Belegung $B:V\to W$ paßt zur Formel ϕ , falls alle atomaren Formeln aus ϕ zu V gehören.

R ist antisymmetrisch, wenn $(a, b), (b, a) \in R$ impliziert, dass a = b gilt (für alle $a, b \in W$).

R ist reflexiv, wenn $(a, a) \in R$ für alle $a \in W$ gilt.

R ist eine Ordnungsrelation, wenn R reflexiv, antisymmetrisch und transitiv ist. In diesem Fall heißt das Paar (W, R) eine partiell geordnete Menge.

R ist transitive, wenn $(a, b), (b, c) \in R$ impliziert, dass $(a, c) \in R$ gilt (für alle $a, b, c \in W$).

 (W,\leq) partiell geordnete Menge, $M\subseteq W$ und $a\in W$ a ist obere Schranke von M,wenn $m\leq a$ für alle $m\in M \text{ gilt}$

 (W, \leq) partiell geordnete Menge, $M \subseteq W$ und $a \in W$

- a ist obere Schranke von M, wenn $m \leq a...$
- a ist kleinste obere Schranke oder Supremum...
- a ist untere Schranke von M, wenn $a \leq m...$
- a ist größte untere Schranke oder Infimum...

Sei (W, \leq) partiell geordnete Menge, $M \subseteq W$ und $a \in W$.

a ist untere Schranke von M, wenn $a \leq m$ für alle $m \in M$ gilt.

 (W, \leq) partiell geordnete Menge, $M \subseteq W$ und $a \in W$ a ist kleinste obere Schranke/Supremum von M, wenn a obere Schranke von M ist und wenn $a \leq b$ für alle oberen Schranken b von M gilt. Wir schreiben in diesem Fall $a = \sup M$.

z.B. (W, \leq) mit W = R und \leq übliche Ordnung auf R

- dann gelten $\sup[0, 1] = \sup(0, 1) = 1$.
- sup W existiert nicht (W keine obere Schranke)

größte untere Schranke

(vollständiger) Verband

Wahrheitswertebereiche

Wahrheitswertebereiche

Wahrheitswertebereich (Tupel?)

Boolesche Wahrheitswertebereich B

Wahrheitswertebereiche

Wahrheitswertebereiche

Kleenesche Wahrheitswertebereich

Wahrheitswertebereiche Fuzzy-Logik

Wahrheitswertebereiche

Wahrheitswertebereiche

Boolesche Wahrheitswertebereich B_R

Heytingsche Wahrheitswertebereich \mathcal{H}_R

Wahrheitswertebereiche

Wahrheitswertebereiche

 $\hat{B}(\phi) \in W$ jeder zu B passenden Formel

W-Folgerung

Ein (vollständiger) Verband ist eine partiell geordnete Menge (W, \leq) , in der jede Menge $M \subseteq W$ ein Supremum $\sup M$ und ein Infimum $\inf M$ hat. In einem Verband (W, \leq) definieren wir:

- $0_W = inf W \text{ und } 1_W = sup W$
- $a \wedge_W b = \inf\{a, b\}$ und $a \vee_W b = \sup\{a, b\}$ für $a, b \in W$

In jedem Verband (W, \leq) gelten $0_W = \sup \emptyset$ und $1_W = \inf \emptyset$ (denn jedes Element von W ist obere und untere Schranke von \emptyset).

Der Boolesche Wahrheitswertebereich B ist definiert durch die Grundmenge $B = \{0, 1\}$, die natürliche Ordnung \leq und die Funktionen $\neg_B(a) = 1 - a$, $\rightarrow_B(a, b) = max(b, 1 - a)$. Hier gelten:

- $0_B = 0$, $1_B = 1$,
- $a \wedge_B b = min(a, b), a \vee_B b = max(a, b)$

Der Wahrheitswertebereich F der Fuzzy-Logik ist definiert durch die Grundmenge $F = [0,1] \subseteq \mathbb{R}$ mit der natürlichen Ordnung \leq und durch die Funktionen $\neg_F(a) = 1-a, \rightarrow_F(a,b) = \max(b,1-a)$. Hier gelten:

- $0_F = 0, 1_F = 1$
- $a \wedge_F b = min(a, b), a \vee_F b = max(a, b)$

Der Heytingsche Wahrheitswertebereich H_R ist definiert durch die Grundmenge $H_{\mathbb{R}} = \{A \subseteq \mathbb{R} | \text{A ist offen} \}$, die Ordnung \subseteq und durch die Funktionen $\neg_{H_R}(A) = Inneres(\mathbb{R} \backslash A)$, $\rightarrow_{H_R}(A,B) = Inneres(B \cup \mathbb{R} \backslash A)$. Hier gelten:

- $0_{H_R} = \emptyset$, $1_{H_R} = \mathbb{R}$
- $A \wedge_{H_R} B = A \cap B$, $A \vee_{H_R} B = A \cup B$
- $Inneres(A) = \{a \in A | \exists \epsilon > 0 : (a \epsilon, a + \epsilon) \subseteq A\}$

Sei W ein Wahrheitswertebereich. Eine Formel ϕ heißt eine W-Folgerung der Formelmenge Γ , falls für jede W-Belegung B, die zu allen Formeln aus $\Gamma \cup \{\phi\}$ paßt, gilt: $\inf\{B(\gamma)|\gamma\in\Gamma\} \leq B(\phi)$

Wir schreiben $\Gamma \Vdash W\phi$, falls ϕ eine W-Folgerung von Γ ist.

Bemerkung: Im Gegensatz zur Beziehung $\Gamma \vdash \phi$, d.h. zur syntaktischen Folgerung, ist $\Gamma \Vdash W\phi$ eine semantische Beziehung.

Sei (W, \leq) partiell geordnete Menge, $M \subseteq W$ und $a \in W$.

a ist größte untere Schranke oder Infimum von M, wenn a untere Schranke von M ist und wenn $b \le a$ für alle unteren Schranken b von M gilt. Wir schreiben in diesem Fall a = inf M.

Ein Wahrheitswertebereich ist ein Tupel $(W, \leq, \to W, \neg W)$, wobei (W, \leq) ein Verband und $\to W: W^2 \to W$ und $\neg W: W \to W$ Funktionen sind.

Der Kleenesche Wahrheitswertebereich K_3 ist definiert durch die Grundmenge $K_3 = \{0, \frac{1}{2}, 1\}$ mit der natürlichen Ordnung \leq und durch die Funktionen $\neg_{K_3}(a) = 1 - a, \rightarrow_{K_3}(a,b) = \max(b,1-a)$. Hier gelten:

- $\neg_{K_3} = 0, 1_{K_3} = 1$
- $a \wedge_{K_3} b = min(a, b), a \vee_{K_3} b = max(a, b)$

Der Boolesche Wahrheitswertebereich B_R ist definiert durch die Grundmenge $B_R = \{A | A \subseteq \mathbb{R}\}$ mit der Ordnung \subseteq und durch die Funktionen $\neg_{B_R}(A) = \mathbb{R} \backslash A, \rightarrow_{B_R}(A, B) = B \cup \mathbb{R} \backslash A$. Hier gelten:

- $0_{B_R} = \emptyset$, $1_{B_R} = \mathbb{R}$
- $A \wedge_{B_R} B = A \cap B$, $A \vee_{B_R} B = A \cup B$

W Wahrheitswertebereich und B W-Belegung. Über Formelaufbau definieren wir Wahrheitswert $\hat{B}(\phi) \in W$ jeder zu B passenden Formel ϕ :

- $\bullet \ \hat{B}(\bot) = 0_W$
- $\hat{B}(p) = B(p)$ falls p eine atomare Formel ist
- $\hat{B}((\phi \wedge \psi)) = \hat{B}(\phi) \wedge_W \hat{B}(\psi)$
- $\hat{B}((\phi \lor \psi)) = \hat{B}(\phi) \lor_W \hat{B}(\psi)$
- $\hat{B}((\phi \to \psi)) = \to W(\hat{B}(\phi), \hat{B}(\psi))$
- $\hat{B}(\neg \phi) = \neg W(\hat{B}(\phi))$

W-Tautologie

 $\varnothing \Vdash_W \neg \neg \phi \rightarrow \phi$ gilt für Wahrheitsbereiche...

Wahrheitswertebereiche

Wahrheitswertebereiche

 $\varnothing \Vdash_W \phi \lor \neg \phi$

Wahrheitswertebereiche

Wahrheitswertebereiche

 $\{\phi\} \Vdash_W \neg \phi \rightarrow \bot \text{ gilt für }$ Wahrheitsbereiche...

syntaktische Folgerung

Wahrheitswertebereiche

Wahrheitswertebereiche

Theorem

W-Tautologie

Wahrheitswertebereiche

Korrekheit

(semantische) W-Folgerung

Frage der Korrektheit

 $B, B_{\mathbb{R}}$

Eine W-Tautologie ist eine Formel ϕ mit $\varnothing \vdash W\phi$, d.h. $B(\phi) = 1_W$ für alle passenden W-Belegungen B (denn $\inf\{\hat{B}(\gamma)|\gamma\in\varnothing\} = \inf\varnothing = 1_W$).

 $B, B_{\mathbb{R}}, K_3, F$

 $B, B_{\mathbb{R}}$

 $\Gamma \vdash \phi$ syntaktische Folgerung

 $B, B_{\mathbb{R}}, K_3, F, H_{\mathbb{R}}$

W-Tautologie = "wird immer zu 1_W ausgewertet"

Theorem = ,,hypothesenlos ableitbar"

Können wir durch mathematische Beweise zu falschen Aussagenkommen? Können wir durch das natürliche Schließen zu falschen Aussagen kommen? Existiert eine Menge Γ von Formeln und eine Formel φ mit $\Gamma \vdash \varphi$ und $\Gamma \not\Vdash_W \varphi$? Für welche Wahrheitswertebereiche W? Für welche Wahrheitswertebereiche W gilt

 $\Gamma \vdash \varphi \Rightarrow \Gamma \vdash_W \varphi$

bzw. φ ist Theorem $\Rightarrow \varphi$ ist W-Tautologie?

 $\Gamma \Vdash_W \phi$ (semantische) W-Folgerung

Korrekheit Korrekheit

Korrektheitslemma für nat. Schließen & Wahrheitswertebereich B

Korrektheitssatz für natürliches Schließen & Wahrheitswertebereich B

Korrekheit Korrekheit

Jedes Theorem ist eine B-Tautologie?

Korrektheitssatz für natürliches Schließen & Wahrheitswertebereich $B_{\mathbb{R}}$

KORREKHEIT KORREKHEIT

Jedes Theorem ist eine $B_{\mathbb{R}}$ -Tautologie?

Korrektheitslemma für nat. Schließen & Wahrheitswertebereich $H_{\mathbb{R}}$

Korrekheit Korrekheit

Korrektheitssatz für nat. Schließen & Wahrheitswertebereich $H_{\mathbb{R}}$

Jedes (raa)-frei herleitbare Theorem ist eine $H_{\mathbb{R}}$ -Tautologie?

Korrekheit Vollständigkeit

Deduktion von Thermen ohne Hypothesen mit (raa)

Frage der Vollständigkeit

 Γ und Konklusion φ . Dann gilt $\Gamma \vdash_B \varphi$, d.h. Beweis: Wegen $\Gamma \vdash \varphi$ existiert eine Deduktion D mit $\inf\{B(\gamma)|\gamma\in\Gamma\}\leq B(\varphi)$ für alle passenden Hypothesen in Γ und Konklusion φ . Nach dem B-Belegungen B. Korrektheitslemma folgt $\Gamma \vdash_B \varphi$. Für jede Menge von Formel
n Γ und jede Formel φ wahr gilt $\Gamma \vdash \varphi \Rightarrow \Gamma \vdash_{B_{\mathbb{R}}} \varphi$. Definition Sei D eine Deduktion mit Hypothesen in der Menge Γ und Konklusion φ , die die Regel (raa) nicht wahr verwendet. Dann gilt $\Gamma \vdash_{H_{\mathbb{R}}} \varphi$. Für jede Menge von Formel
n Γ und jede Formel φ wahr gilt $\Gamma \vdash \varphi$ ohne $(raa) \Rightarrow \Gamma \vdash_{H_{\mathbb{R}}} \varphi$ Können wir durch mathematische Beweise zu allen korrekten Aussagen kommen? Können wir durch das natürliche Schließen zu allen korrekten Aussagen kommen? Jede Deduktion der Theoreme $\neg\neg\varphi\to\varphi$ und $\varphi\vee\neg\varphi$

Sei D eine Deduktion mit Hypothesen in der Menge

ohne Hypothesen verwendet (raa).

Für jede Menge von Formel
n Γ und jede Formel φ

gilt $\Gamma \vdash \varphi \Rightarrow \Gamma \vdash_B \varphi$.

Existiert eine Menge Γ von Formel
n und eine Formel

 φ mit $\Gamma \vdash_W \varphi$ und $\Gamma \not\vdash \varphi$? Für welche Wahrheitswertebereiche W? Für welche Wahrheitswertebereiche W gilt $\Gamma \vdash_W \varphi \Rightarrow \Gamma \vdash \varphi$ bzw. φ ist W-Tautologie $\Rightarrow \varphi$ ist Theorem?

Konsistente Mengen

Lemma konsistente Menge

Vollständigkeit

Vollständigkeit

Maximal konsistente Mengen

Satz maximal konsistene Menge

Vollständigkeit

Vollständigkeit

Sei Δ maximal konsistent und gelte $\Delta \vdash \varphi$

Sei Δ maximal konsistent und φ Formel

ERFÜLLBARE MENGEN

ERFÜLLBARE MENGEN

 Γ heißt erfüllbar, wenn

Delta maximal konsistente Menge

Erfüllbare Mengen

ERFÜLLBARE MENGEN

$$\Gamma \not\Vdash_B \varphi \Leftrightarrow \dots$$

$$\Gamma \Vdash W\varphi \Rightarrow \dots$$

Sei Γ eine Menge von Formeln und φ eine Formel. Dann gilt $\Gamma \not\vdash \varphi \Leftrightarrow \Gamma \cup \{\neg \varphi\}$ konsistent.

Sei Γ eine Menge von Formeln. Γ heißt inkonsistent, wenn $\Gamma \vdash \bot$ gilt. Sonst heißt Γ konsistent.

Jede konsistente Formelmenge Γ ist in einer maximal konsistenten Formelmenge Δ enthalten.

Eine Formelmenge Δ ist maximal konsistent, wenn sie konsistent ist und wenn gilt " $\sum \supseteq \Delta$ konsistent $\Rightarrow \sum = \Delta$ ".

Sei Δ maximal konsistent und φ Formel. Dann gilt $\varphi \not\in \Delta \Leftrightarrow \neg \varphi \in \Delta.$

Sei Δ maximal konsistent und gelte $\Delta \vdash \varphi$. Dann gilt $\varphi \in \Delta$.

Sei Δ eine maximal konsistente Menge von Formeln. Dann ist Δ erfüllbar.

Sei Γ eine Menge von Formeln. Γ heißt erfüllbar, wenn es eine passende B-Belegung B gibt mit $B(\gamma) = 1_B$ für alle $\gamma \in \Gamma$. Die Erfüllbarkeit einer endlichen Menge Γ ist entscheidbar (NP-vollständig)

Sei W einer der Wahrheitswertebereiche B, K_3, F, H_R und B_R, Γ eine Menge von Formeln und φ eine Formel. Dann gilt $\Gamma \Vdash W\varphi \Rightarrow \Gamma \Vdash B\varphi$.

Sei Γ eine Menge von Formel
n und φ eine Formel. Dann gilt $\Gamma \not\Vdash_B \varphi \Leftrightarrow \Gamma \cup \{\neg \varphi\}$ erfüllbar.

Vollständigkeitssatz

Satz $\Gamma \vdash \varphi \Leftrightarrow \Gamma \Vdash_B \varphi$

Entscheidbarkeit

Vollständigkeit und Korrektheit

Satz Menge der Theoreme

Äquivalenzen und Theoreme

Vollständigkeit und Korrektheit

Vollständigkeit und Korrektheit

Liste der Äquivalenzen 1/2

Liste der Äquivalenzen 2/2

Vollständigkeit und Korrektheit

Vollständigkeit und Korrektheit

Zusammenhang zw. Theoremen und Äquivalenzen

 α ist Theorem $\Leftrightarrow \alpha \equiv \neg \bot$

Kompaktheitsatzes

Kompaktheitsatzes

Kompaktheit

Kompaktheits- oder Endlichkeitssatz

Seien Γ eine Menge von Formel
n und φ eine Formel. Dann gilt

$$\Gamma \vdash \varphi \Leftrightarrow \Gamma \Vdash_B \varphi$$

Insbesondere ist eine Formel genau dann eine B-Tautologie, wenn sie ein Theorem ist.

- \bullet gilt für jede "Boolesche Algebra", z.B. B_R
- $\Gamma \vdash \varphi$ ohne $(raa) \Leftrightarrow \Gamma \Vdash_{H_R} \varphi$ (Tarksi 1938)

Sei Γ eine Menge von Formeln, φ eine Formel und W einer der Wahrheitswertebereiche B, K_3, F, B_R und H_R . Dann gilt $\Gamma \Vdash_W \varphi \Rightarrow \Gamma \vdash \varphi$. Insbesondere ist jede W-Tautologie ein Theorem.

Zwei Formeln α und β heißen äquivalent ($\alpha \equiv \beta$), wenn für alle passenden B-Belegungen B gilt: $B(\alpha) = B(\beta)$.

Satz: die Menge der Theoreme ist entscheidbar.

Es gelten die folgenden Äquivalenzen:

- 1. $(p_1 \wedge \neg p_1) \vee p_2 \equiv p_2$
- 2. $\neg \neg p_1 \equiv p_1$
- 3. $p_1 \wedge \neg p_1 \equiv \bot$
- 4. $p_1 \vee \neg p_1 \equiv \neg \bot$
- 5. $p_1 \rightarrow p_2 \equiv \neg p_1 \lor p_2$

Bemerkung: Mit den üblichen Rechenregeln für Gleichungen können aus dieser Liste alle gültigen Äquivalenzen hergeleitet werden.

Es gelten die folgenden Äquivalenzen:

- 1. $p_1 \vee p_2 \equiv p_2 \vee p_1$
- 2. $(p_1 \lor p_2) \lor p_3 \equiv p_1 \lor (p_2 \lor p_3)$
- 3. $p_1 \vee (p_2 \wedge p_3) \equiv (p_1 \vee p_2) \wedge (p_1 \vee p_3)$
- 4. $\neg (p_1 \lor p_2) \equiv \neg p_1 \land \neg p_2$
- 5. $p_1 \vee p_1 \equiv p_1$

Bemerkung: Mit den üblichen Rechenregeln für Gleichungen können aus dieser Liste alle gültigen Äquivalenzen hergeleitet werden.

Sei α eine Formel. Dann gilt α ist Theorem $\Leftrightarrow \alpha \equiv \neg \bot$.

Seien α und β zwei Formeln. Dann gilt $\alpha \equiv \beta \Leftrightarrow (\alpha \leftrightarrow \beta)$ ist Theorem.

Sei Γ eine u.U. unendliche Menge von Formeln. Dann gilt Γ unerfüllbar $\Leftrightarrow \exists \Gamma' \subseteq \Gamma$ endlich: Γ' unerfüllbar

Sei Γ eine u.U. unendliche Menge von Formeln und φ eine Formel mit $\Gamma \Vdash_B \varphi$. Dann existiert $\Gamma' \subseteq \Gamma$ endlich mit $\Gamma' \Vdash_B \varphi$.

Färbbarkeit

Sei G = (N, E) ein Graph

Kompaktheitsatzes

Kompaktheitsatzes

Parkettierungen Idee

Kachelsystem Definition

Kompaktheitsatzes

Erfüllbarkeit

Kachelsystem Satz

 ${\bf Erf\"ull barke its problem}$

Erfüllbarkeit

Erfüllbarkeit

Hornklausel

Hornformel

Erfüllbarkeit

Erfüllbarkeit

 ${\bf Markier ung salgorithmus}$

Terminierung endlicher Menge von Hornklauseln

Sei G = (N, E) ein Graph. Dann sind äquivalent

1. G ist 3-färbbar.

2. Für jede endliche Menge $W\subseteq N$ ist $G\upharpoonright_W$ 3-färbbar

Ein Graph ist ein Paar G=(V,E) mit einer Menge V und $E\subseteq \binom{V}{2}=\{X\subseteq V:|V\Vdash 2\}$. Für $W\subseteq V$ sei $G\upharpoonright_W=(W,E\cap\binom{W}{2})$ der von W induzierte Teilgraph. Der Graph G ist 3-färbbar, wenn es eine Abbildung $f:V\to\{1,2,3\}$ mit $f(v)\neq f(w)$ für alle $\{v,w\}\in E$. Bemerkung: Die 3-Färbbarkeit eines endlichen Graphen ist NP-vollständig

Ein Kachelsystem besteht aus einer endlichen Menge C von "Farben" und einer Menge K von Abbildungen $\{N,O,S,W\} \to C$ von "Kacheln".

Eine Kachelung von $G \subseteq Z \times Z$ ist eine Abbildung $f: G \to K$ mit

- f(i,j)(N) = f(i,j+1)(S) für alle $(i,j), (i,j+1) \in G$
- f(i,j)(O) = f(i+1,j)(W) für alle $(i,j), (i+1,j) \in G$

Gegeben ist eine Menge von quadratischen Kacheln mit gefärbten Kanten. Ist es möglich, mit diesen Kacheln die gesamte Ebene zu füllen, so dass aneinanderstoßende Kanten gleichfarbig sind?

Eingabe: Formel Γ Frage: existiert eine B-Belegung B mit $B(\Gamma)=1_B.$ Sei K ein Kachelsystem. Es existiert genau dann eine Kachelung von $Z \times Z$, wenn für jedes $n \in N$ eine Kachelung von $\{(i,j): |i|, |j| \leq n\}$ existiert.

Eine Hornformel ist eine Konjunktion von Hornklauseln.

Eine Hornklausel hat die Form $(\neg \bot \land p_1 \land p_2 \land ... \land p_n) \rightarrow q$ für $n \ge 0$, atomare Formeln $p_1, p_2, ..., p_n$ und q atomare Formel oder $q = \bot$. In der Literatur auch:

- $\{\neg p_1, \neg p_2, ..., \neg p_n, q\}$ für $\{p_1, ..., p_n\} \rightarrow q$ mit q atomare Formel
- $\{\neg p_1, \neg p_2, ..., \neg p_n\}$ für $\{p_1, ..., p_n\} \to \bot$
- \square für $\varnothing \to \bot$, die "leere Hornklausel"

Sei Γ endliche Menge von Hornklauseln. Dann terminiert der Markierungsalgorithmus mit dem korrekten Ergebnis.

Eingabe: eine endliche Menge Γ von Hornklauseln.

- 1. **while** es gibt in Γ eine Hornklausel $M \to q$, so daß alle $p \in M$ markiert sind und q unmarkierte atomare Formel ist \Rightarrow **do** markiere q (in allen Hornklauseln in Γ)
- 2. if Γ enthält eine Hornklausel der Form $M \to \bot$, in der alle $p \in M$ markiert sind **then** return "unerfüllbar" **else** return "erfüllbar"

SLD-Resolution Definition

SLD-Resolution Beispiel $\Gamma = \{\{BH\} \rightarrow AK, \{AK, BH\} \rightarrow \bot, \{RL, AK\} \rightarrow BH, \varnothing \rightarrow RL, \varnothing \rightarrow AK\}$

Erfüllbarkeit

Erfüllbarkeit

Lemma A: Γ nicht erfüllbar

Lemma B: SLD Resolution existiert

Erfüllbarkeit

Erfüllbarkeit

Satz Äquivalenz bei Hornklauseln

SLD-Resolution mit Breitensuche

Erfüllbarkeit

Prädikatenlogik

SLD-Resolution mit Tiefensuche

aussagenlogische Formel daß der Graph eine Kante enthält

Prädikatenlogik

Prädikatenlogik

aussagenlogische Formel daß jeder Knoten einen Nachbarn hat aussagenlogische Formel daß der Graph ein Dreieck enthält • $M_0 = \{AK, BH\}$

• $M_1 = M_0 \setminus \{BH\} \cup \{RL, AK\} = \{RL, AK\}$

• $M_2 = M_1 \setminus \{RL\} \cup \varnothing = \{AK\}$

• $M_3 = M_2 \setminus \{AK\} \cup \varnothing = \varnothing$

Sei Γ eine Menge von Hornklauseln. Eine SLD-Resolution aus Γ ist eine Folge $(M_0 \to \bot, M_1 \to \bot, ..., M_m \to \bot)$ von Hornklauseln mit

• $(M_0 \to \bot) \in \Gamma$

• für alle $0 \le n < m$ existiert $(N \to q) \in \Gamma$ mit $q \in M_n$ und $M_{n+1} = M_n \setminus \{q\} \cup N$

Sei Γ eine (u.U. unendliche) unerfüllbare Menge von Hornklauseln. Dann existiert eine SLD-Resolution $(M_0 \to \bot, ..., M_m \to \bot)$ aus Γ mit $M_m = \varnothing$.

Sei Γ eine (u.U. unendliche) Menge von Hornklauseln und $(M_0 \to \bot, M_1 \to \bot, ..., M_m \to \bot)$ eine SLD-Resolution aus Γ mit $M_m = \varnothing$. Dann ist Γ nicht erfüllbar.

- findet SLD-Resolution mit $M_m = \emptyset$ (falls sie existiert), da Baum endlich verzweigend ist (d.h. die Niveaus sind endlich)
- hoher Platzbedarf, da ganze Niveaus abgespeichert werden müssen (in einem Binärbaum der Tiefe n kann es Niveaus der Größe 2^n geben)

Sei Γ eine (u.U. unendliche) Menge von Hornklauseln. Dann sind äquivalent:

- 1. Γ ist nicht erfüllbar.
- 2. Es gibt eine SLD-Resolution $(M_0 \to \bot, M_1 \to \bot, ..., M_m \to \bot)$ aus Γ mit $M_m = \varnothing$.

Die aussagenlogische Formel $\bigvee_{1 \leq i,j \leq 9} \varphi_{i,j}$ sagt aus, daß der Graph eine Kante enthält.

- geringerer Platzbedarf (in einem Binärbaum der Tiefe n hat jeder Ast die Länge $\leq n$)
- findet existierende SLD-Resolution mit $M_m = \emptyset$ nicht immer

Die aussagenlogische Formel $\bigvee_{1 \leq i,j,k \leq 9} \underset{\text{der Graph ein Dreieck enthält.}}{\text{Die aussagenlogische Formel}}$

Die aussagenlogische Formel $\bigwedge_{1\leq i\leq 9}\bigvee_{1\leq j\leq 9}\varphi_{i,j}$ sagt aus, daß jeder Knoten einen Nachbarn hat

Kodierung in einer "Struktur" aus

Definition Signatur

Prädikatenlogik

Prädikatenlogik

Menge der Variablen

Menge der \sum -Terme

Prädikatenlogik

Prädikatenlogik

Definition atomarer \sum -Formeln

Definition \sum -Formeln

Prädikatenlogik

Prädikatenlogik

Definition der freien Variablen

Definition \sum -Struktur

Prädikatenlogik

Prädikatenlogik

 $\sum\text{-Struktur mit }U_A^0=\{()\}$

Aist Modell von φ

Eine Signatur ist ein Tripel $\sum = (\Omega, Rel, ar)$, wobei Ω und Rel disjunkte Mengen von Funktions- und Relationsnamen sind und $ar: \Omega \cup Rel \to \mathbb{N}$ eine Abbildung ist.

Grundmenge Teilmengen Relationen Funktion Konstante

Sei \sum eine Signatur. Die Menge T_{\sum} der \sum -Terme ist induktiv definiert:

- 1. Jede Variable ist ein Term, d.h. $Var \subseteq T_{\sum}$
- 2. ist $f \in \Omega$ mit ar(f) = k und sind $t_1, ..., t_k \in T_{\sum}$, so gilt $f(t_1,...,t_k) \in T_{\sum}$
- 3. Nichts ist Σ -Term, was sich nicht mittels der obigen Regeln erzeugen läßt.

Die Menge der Variablen ist $Var = \{x_0, x_1, ...\}.$

- 1. Alle atomaren Σ -Formeln sind Σ -Formeln.
- 2. Falls φ , Ψ Σ -Formel, auch $(\varphi \wedge \overline{\Psi}), (\varphi \vee \Psi)$ und $(\varphi \to \Psi)$ Σ -Formeln. 3. Falls φ Σ -Formel, auch $\neg \varphi$ Σ -Formel.
- 4. Falls φ Σ -Formel und $x \in Var$, so sind auch $\forall x \varphi \text{ und } \exists x \varphi \sum \text{-Formeln.}$
- 5. Nichts Σ -Formel, außer mittels obigen Regeln

Sei \sum Signatur. Die atomaren \sum -Formeln sind die Zeichenketten der Form

- $R(t_1, t_2, ..., t_k)$ falls $t_1, t_2, ..., t_k \in T_{\sum}$ und $R \in$ Rel mit ar(R) = k oder
- $t_1 = t_2$ falls $t_1, t_2 \in T_{\sum}$ oder
- ⊥.

Sei \sum eine Signatur. Eine \sum -Struktur ist ein Tupel $A = (U_A, (f^A)_{f \in \Omega}, (\overline{R}^A)_{R \in Rel}),$ wobei

- \bullet U_A eine nichtleere Menge, das Universum,
- $R^A \supseteq U_A^{ar(R)}$ eine Relation der Stelligkeit ar(R)für $R \in Rel$ und
- $f^A: U_A^{ar(f)} \to U_A$ eine Funktion der Stelligkeit ar(f) für $f \in \Omega$ ist.

Menge $FV(\varphi)$ der freien Variablen einer Σ -Formel φ :

- Ist φ atomare Σ -Formel, so ist $FV(\varphi)$ die Menge der in φ vorkommenden Variablen.
- $FV(\varphi \Box \Psi) = FV(\varphi) \cup FV(\Psi)$ für $\Box \in \{\land, \lor, \rightarrow\}$
- $FV(\neg \varphi) = FV(\varphi)$
- $FV(\exists x\varphi) = FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}.$

 Σ -Formel φ geschlossen oder Σ -Satz falls $FV(\varphi) = \emptyset$

Sei Σ eine Signatur, φ eine Σ -Formel, Δ eine Menge von Σ -Formeln und A eine Σ -Struktur.

- $A \Vdash \varphi$ (A ist Modell von φ) falls $A \Vdash_p \varphi$ für alle Variableninterpretationen ρ gilt.
- $A \Vdash \Delta$ falls $A \Vdash \Psi$ für alle $\Psi \in \Delta$.

Bemerkung: $U_A^0 = \{()\}.$

- Also ist $a^A: U^0_A \to U_A$ für $a \in \Omega$ mit ar(a) = 0vollständig gegeben durch $a^A(()) \in U_A$. Wir behandeln 0-stellige Funktionen daher als Konstan-
- Weiterhin gilt $R^A = \emptyset$ oder $R^A = \{()\}$ für $R \in$ Rel mit ar(R) = 0.