Modeling phonological processes with recursive program schemes

Chris Oakden, Adam Jardine, and Jane Chandlee

NECPhon November 16, 2019

Overview

- ► Recursive program schemes (RSs) study structure and complexity of algorithms (Moschovakis, 2019)
- ► We present **boolean monadic RS (BMRS)** phonological grammars that
 - define a *hierarchy* of local licensing and blocking structures;
 - ▶ directly capture *do X unless Y*-type behavior;
 - intensionally express phonologically significant generalizations;
 - are connected to results on computational complexity and learnability (Heinz, 2018);
 - capture both input and output-based mappings, including opacity

Overview

- ▶ BMRS provide a glimpse into
 - ► The *combined map* as a function (available to OT, not to SPE)
 - ► Individual functions which interact (available to SPE, not to OT)
- ▶ BMRS offer a framework for describing **operations** (like composition) over individual functions
 - ► More intuitive than finite-state and logical formalisms

- An input string is a set of elements $\{1, 2, ..., n\}$
 - ordered by predecessor function p, successor function s
 - **having some (input) boolean functions** P(x)

	#	σ 2	<i>ό</i> 3	σ 4		σ 6	# 7
p(x)		1	2	3	4	5	6
s(x)	2	3	4	5	6	7	
#(x)	Т	\perp	\perp	\perp	\perp	\perp	Т
$\sigma(x)$	\perp	Т	Т	Т	Т	Т	\perp
$\Box(x)$	\perp	\perp	Т	\perp	\perp	\perp	\perp

ightharpoonup Output string defined by **output boolean functions** O(x)

(This follows Courcelle 1994; Engelfriet and Hoogeboom 2001)

ightharpoonup Output string defined by **output boolean functions** O(x)

(This follows Courcelle 1994; Engelfriet and Hoogeboom 2001)

Logical syntax

▶ terms

$$T \rightarrow x \mid p(T) \mid s(T)$$

$$x, p(x), s(s(x)), p(p(p(x))), \dots$$

boolean expressions

$$E o op |\perp| P(T) | ext{if } E ext{ then } E ext{ else } E$$

$$T \to x \mid p(T) \mid s(T)$$

$$E \to \top \mid \bot \mid P(T) \mid \text{if E then E else E}$$

$$\mathrm{final}(x) = \mathrm{if} \ \#(s(x)) \ \mathrm{then} \ \top \ \mathrm{else} \ \bot$$

$$T \rightarrow x \mid p(T) \mid s(T)$$

$$E \rightarrow \top \mid \bot \mid P(T) \mid \text{if E then E else E}$$

$$final(x) = \text{if } \#(s(x)) \text{ then \top else \bot}$$

$$\frac{\# \sigma \quad \acute{\sigma} \quad \sigma \quad \sigma \quad \#}{1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7}$$

$$\frac{\#(x) \quad \top \quad \bot \quad \bot \quad \bot \quad \bot \quad \bot}{\sigma(x) \quad \bot \quad \top \quad \top \quad \top \quad \top \quad \bot}$$

$$\stackrel{\dot{\Box}(x) \quad \bot \quad \bot \quad \top \quad \bot \quad \bot}{L} \quad \bot \quad \bot \quad \bot}$$

$$\frac{\dot{\Box}(x) \quad \bot \quad \bot \quad \bot \quad \bot \quad \bot}{\#(s(x))} \quad \bot \quad \bot \quad \bot \quad \bot \quad \bot}$$

$$T \rightarrow x \mid p(T) \mid s(T)$$

$$E \rightarrow \top \mid \bot \mid P(T) \mid \text{if E then E else E}$$

$$final(x) = \text{if } \#(s(x)) \text{ then \top else \bot}$$

$$\frac{\# \ \sigma \ \ \sigma \ \ \sigma \ \ \sigma \ \ \pi}{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7}$$

$$\frac{\#(x) \ \top \ \bot \ \bot \ \bot \ \bot \ \bot}{\sigma(x) \ \bot \ \top \ \top \ \top \ \top \ \top}$$

$$\frac{\Box(x) \ \bot \ \bot \ \top \ \bot \ \bot \ \bot}{\Box(x) \ \bot \ \bot \ \bot \ \bot \ \bot \ \bot}$$

$$\frac{\Box(x) \ \bot \ \bot \ \bot \ \bot \ \bot \ \bot}{\pi(s(x)) \ \bot \ \bot \ \bot \ \bot \ \bot}$$

$$\frac{\#(s(x)) \ \bot \ \bot \ \bot \ \bot \ \bot \ \bot}{\pi(s(x)) \ \bot \ \bot \ \bot \ \bot \ \bot}$$

We can define the output boolean functions with a BMRS system of equations

$$O_1(x) = E_1$$

$$O_2(x) = E_2$$
...
$$O_n(x) = E_n$$

```
\begin{array}{rcl} \#_{o}(x) & = & \#(x) \\ \sigma_{o}(x) & = & \sigma(x) \\ \dot{\square}_{o}(x) & = & \inf \ \mathrm{final}(x) \ \ \mathrm{then} \ \bot \ \mathrm{else} \\ & & \dot{\square}(x) \end{array}
```

```
\begin{array}{rcl} \#_o(x) & = & \#(x) \\ \sigma_o(x) & = & \sigma(x) \\ \dot{\square}_o(x) & = & \inf \ \text{final}(x) \ \text{then } \bot \ \text{else} \\ & & \inf \ \dot{\square}_o(p(x)) \ \text{then } \top \ \text{else} \\ & & \dot{\square}(x) \\ \hline \\ \hline \# & \sigma & \dot{\sigma} & \sigma & \sigma & \# \\ & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \\ \dot{\square}_o(x) & \bot & \bot \end{array}
```

```
\begin{array}{rcl} \#_o(x) & = & \#(x) \\ \sigma_o(x) & = & \sigma(x) \\ \dot{\square}_o(x) & = & \inf \ \text{final}(x) \ \text{then } \bot \ \text{else} \\ & & \inf \ \dot{\square}_o(p(x)) \ \text{then } \top \ \text{else} \\ & & \dot{\square}(x) \\ \hline \\ \hline \# & \sigma & \dot{\sigma} & \sigma & \sigma & \# \\ & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \dot{\square}_o(x) & \bot & \bot & \top & \top \end{array}
```

```
\begin{array}{rcl} \#_o(x) & = & \#(x) \\ \sigma_o(x) & = & \sigma(x) \\ \dot{\square}_o(x) & = & \inf \ \text{final}(x) \ \text{then } \bot \ \text{else} \\ & & \inf \ \dot{\square}_o(p(x)) \ \text{then } \top \ \text{else} \\ & & \dot{\square}(x) \\ \hline \\ \hline \# & \sigma & \dot{\sigma} & \sigma & \sigma & \# \\ & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \\ \dot{\square}_o(x) & \bot & \bot & \top & \top & \top \end{array}
```

```
\begin{array}{rcl} \#_o(x) & = & \#(x) \\ \sigma_o(x) & = & \sigma(x) \\ \dot{\square}_o(x) & = & \inf \ \text{final}(x) \ \text{then } \bot \ \text{else} \\ & & \inf \ \dot{\square}_o(p(x)) \ \text{then } \top \ \text{else} \\ & & \dot{\square}(x) \\ \hline \\ \hline \# & \sigma & \dot{\sigma} & \sigma & \sigma & \# \\ & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \\ \dot{\square}_o(x) & \bot & \bot & \top & \top & \top & \bot \\ \end{array}
```

```
\begin{array}{rcl} \#_o(x) & = & \#(x) \\ \sigma_o(x) & = & \sigma(x) \\ \dot{\square}_o(x) & = & \inf \ \text{final}(x) \ \text{then } \bot \ \text{else} \\ & & \inf \ \dot{\square}_o(p(x)) \ \text{then } \top \ \text{else} \\ & & \dot{\square}(x) \\ \hline \\ \hline \# & \sigma & \dot{\sigma} & \sigma & \sigma & \# \\ & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \dot{\square}_o(x) & \bot & \bot & \top & \top & \top & \bot & \bot \end{array}
```

```
\#_{o}(x) = \#(x)
\sigma_{\rm o}(x) = \sigma(x)
\dot{\square}_{0}(x) = \text{if } \text{final}(x) \text{ then } \bot \text{ else}
                   if \dot{\square}_{0}(p(x)) then \top else
                   \Box(x)
       \#_{\mathbf{o}}(x)
                         2' 3' 4' 5' 6'
                    \# \sigma \dot{\sigma} \dot{\sigma} \dot{\sigma} \#
```

- ▶ BMRS systems of equations always have a *least-fixed point* solution (Moschovakis, 2019)
- ▶ If restricted to recursing on only p(x) or s(x) (but not both), BMRSs describe *subsequential functions* (Bhaskar et al., ms)
- ► The syntax expresses a **hierarchy** of **blocking structures** and **licensing structures**

- ► Input-based: output boolean functions defined without recursion
 - ► Compute output by reference to input structure only
 - ► **ISL** class of functions

- ► Input-based: output boolean functions defined without recursion
 - ► Compute output by reference to input structure only
 - ► ISL class of functions
- ► Tianjin tone sandhi 'RR' rule (Chen, 1986; Chandlee, 2019)
 - ► Inventory: H(igh), R(ising), L(ow), F(alling)
 - $\blacktriangleright \ RR \to HR \ (simultaneous, ISL); RRR \to HHR$

- ► Input-based: output boolean functions defined without recursion
 - ► Compute output by reference to input structure only
 - ► **ISL** class of functions
- ► Tianjin tone sandhi 'RR' rule (Chen, 1986; Chandlee, 2019)
 - ► Inventory: H(igh), R(ising), L(ow), F(alling)
 - ▶ RR \rightarrow HR (simultaneous, ISL); RRR \rightarrow HHR

```
H_{\mathrm{o}}(x) = \inf \underline{R}R(x) \text{ then } \top \text{ else } H(x)
R_{\mathrm{o}}(x) = \inf \underline{R}R(x) \text{ then } \bot \text{ else } R(x)
L_{\mathrm{o}}(x) = L(x)
F_{\mathrm{o}}(x) = F(x)
```

```
H_0(x) = \inf RR(x) \text{ then } \top \text{ else } H(x)
R_0(x) = \inf RR(x) \text{ then } \perp \text{ else } R(x)
L_0(x) = L(x)
F_0(x) = F(x)
                \# R R R \#
                1 2 3 4 5 6
       H_0(x) \perp \top \top \top \perp \perp
       R_{\rm o}(x) \perp \perp \perp \perp \perp \perp
                1' 2' 3' 4' 5' 6'
               \# H H H R \#
```

- Output-based: output boolean functions require recursion
 - ▶ Refer to **current** input, otherwise to output structure only
 - ► OSL class of functions

- ► Output-based: output boolean functions **require recursion**
 - ▶ Refer to **current** input, otherwise to output structure only
 - ▶ **OSL** class of functions
- ► Tianjin tone sandhi 'LL' rule (Chen, 1986; Chandlee, 2019)
 - ightharpoonup LL ightharpoonup RL (iterative, ROSL)
 - $\blacktriangleright LLL \to LRL, LLLL \to RLRL$

- Output-based: output boolean functions require recursion
 - ▶ Refer to **current** input, otherwise to output structure only
 - ► **OSL** class of functions
- ► Tianjin tone sandhi 'LL' rule (Chen, 1986; Chandlee, 2019)
 - ightharpoonup LL ightharpoonup RL (iterative, ROSL)
 - ▶ LLL \rightarrow LRL, LLLL \rightarrow RLRL

```
R_{\mathrm{o}}(x) = \inf_{\substack{L \subset L_{\mathrm{o}} R_{\mathrm{o}}(x) \text{ then T else} \\ \text{if } \underline{L}L_{\mathrm{o}}(x) \text{ then T else}}} R(x)
L_{\mathrm{o}}(x) = \inf_{\substack{R \subset L(x) \\ H_{\mathrm{o}}(x) = H(x)}} L(x)
H_{\mathrm{o}}(x) = F(x)
```

- ▶ BMRS offers intuitive framework for **function composition**
- ▶ Given two BMRS systems of equations a and b, $b \circ a$ is defined:
 - ► In system *b*, all non-recursively-defined boolean function names refer to *corresponding* definitions in system *a*

- ▶ BMRS offers intuitive framework for **function composition**
- ▶ Given two BMRS systems of equations a and b, $b \circ a$ is defined:
 - ► In system *b*, all non-recursively-defined boolean function names refer to *corresponding* definitions in system *a*
- Applications in phonological process interactions
 - ► Tianjin LL (LL \rightarrow RL) rule **feeds** RR (RR \rightarrow HR) rule
 - ightharpoonup R<u>LL</u> ightharpoonup R<u>R</u>L ightharpoonup HRL
 - 'Combined map' (Chandlee, 2019)
 - Compose two BMRS systems
 - System a: LL rule
 - ▶ System *b*: RR rule
 - Can do both easily in BMRS formalism

```
a
R_a(x) = \text{if } \underline{L}L_aR_a(x) \text{ then } \top \text{ else }
\text{if } \underline{L}L_a(x) \text{ then } \top \text{ else }
R(x)
L_a(x) = \text{if } R_a(x) \text{ then } \bot \text{ else } L(x)
H_a(x) = H(x)
F_a(x) = F(x)
```

```
a b R_a(x) = \text{if } \underline{L}L_aR_a(x) \text{ then } \top \text{ else } H_b(x) = \text{if } \underline{R}R(x), \text{ then } \top \text{ else } H(x) \vdots \underline{L}L_a(x) \text{ then } \top \text{ else } H(x) \vdots \underline{R}R(x) = \text{if } \underline{R}R(x), \text{ then } \bot \text{ else } R(x) \vdots \underline{R}R(x) = \underline{L}R(x) \vdots \underline{R}R(x) \vdots \underline{R}R(x) = \underline{L}R(x) \vdots \underline{R}R(x) \vdots
```

BMRSs: Function Composition

```
\begin{array}{c} a & b \\ R_a(x) = \text{if } \underline{L}L_aR_a(x) \text{ then } \top \text{ else} & H_b(x) = \text{if } \underline{R}R(x), \text{ then } \top \text{ else } H(x) \\ \text{if } \underline{L}L_a(x) \text{ then } \top \text{ else} & R_b(x) = \text{if } \underline{R}R(x), \text{ then } \bot \text{ else } R(x) \\ R(x) & L_b(x) = L(x) \\ L_a(x) = \text{if } R_a(x) \text{ then } \bot \text{ else } L(x) & F_b(x) = F(x) \\ H_a(x) = H(x) & F_a(x) = F(x) \end{array}
```

$$b \circ a$$
 $H_b(x) = \text{ if } \underline{R_a}R_a(x) \text{ then } \top \text{ else } H_a(x)$
 $R_b(x) = \text{ if } \underline{R_a}R_a(x) \text{ then } \bot \text{ else } R_a(x)$
 $L_b(x) = L_a(x)$
 $F_b(x) = F_a(x)$

BMRSs: Function Composition

$$b \circ a$$
 $H_b(x) = \text{ if } \underline{R_a}R_a(x) \text{ then } \top \text{ else } H_a(x)$
 $R_b(x) = \text{ if } \underline{R_a}R_a(x) \text{ then } \bot \text{ else } R_a(x)$
 $L_b(x) = L_a(x)$
 $F_b(x) = F_a(x)$

	#	R	L	L	#
$R_b(x)$		\perp	Т	\perp	
$R_a(x)$		Т	Т	\perp	
$H_b(x)$		Т	\perp	\perp	
	#	Н	R	L	#

- ▶ BMRS provide a glimpse into
 - ► The *combined map* as a function (available to OT, not to SPE)
 - ► *Individual* functions which interact (available to SPE, not to OT)
 - Operations over individual functions (less intuitive in finite-state and logical formalisms)

- ▶ BMRS provide a glimpse into
 - ► The *combined map* as a function (available to OT, not to SPE)
 - ► *Individual* functions which interact (available to SPE, not to OT)
 - Operations over individual functions (less intuitive in finite-state and logical formalisms)
 - ► Further refine definitions
 - ► Identify *new* operations beside composition

- BMRS provide a glimpse into
 - ► The *combined map* as a function (available to OT, not to SPE)
 - ► *Individual* functions which interact (available to SPE, not to OT)
 - Operations over individual functions (less intuitive in finite-state and logical formalisms)
 - ► Further refine definitions
 - ▶ Identify *new* operations beside composition
- ► The linchpin: if-then-else syntax
 - ► Capture *do X unless Y*-type behavior (as in OT)
 - ► Input- and output-orientedness

- BMRS provide a glimpse into
 - ► The *combined map* as a function (available to OT, not to SPE)
 - ► *Individual* functions which interact (available to SPE, not to OT)
 - Operations over individual functions (less intuitive in finite-state and logical formalisms)
 - ► Further refine definitions
 - ▶ Identify *new* operations beside composition
- ► The linchpin: if-then-else syntax
 - ► Capture *do X unless Y*-type behavior (as in OT)
 - ► Input- *and* output-orientedness
 - ► Hierarchy of licensing and blocking structures
 - Elsewhere condition

Conclusion

- Express phonologically significant generalizations with BMRS
- ► Equivalent to subsequential class of functions
- Unique syntax defines hierarchy of local licensing and blocking structures
- ► Capture input and output-based mappings
- Intuitive framework for examining phonological process interaction

Thank You

We also thank Siddharth Bhaskar (University of Copenhagen) and the members of the Rutgers mathematical linguistics reading group.

References

- Bhaskar, S., Chandlee, J., Jardine, A., and Oakden, C. (ms). Boolean monadic recursive schemes as a logical characterization of the subsequential functions. Ms. submitted to LATA 2020.
- Chandlee, J. (2019). A computational account of tone sandhi interaction. In Hout, K., Mai, A., McCollum, A., Rose, S., and Zalansky, M., editors, Proceedings of the 2018 Annual Meeting on Phonology. LSA.
- Chen, M. Y. (1986). The paradox of Tianjin tone sandhi. In Proceedings of Chicago Linguistics Society 22, pages 98-114.
- Chen, M. Y. (2004). Changting Hakka tone sandhi: Analytical challenges. Language and Linguistics, 5(4):799-820.
- Courcelle, B. (1994). Monadic second-order definable graph transductions: a survey. Theoretical Computer Science, 126:53-75.
- Engelfriet, J. and Hoogeboom, H. J. (2001). MSO definable string transductions and two-way finite-state transducers. ACM Transations on Computational Logic, 2:216–254.
- Heinz, J. (2018). The computational nature of phonological generalizations. In Hyman, L. and Plank, F., editors, *Phonological Typology*, Phonetics and Phonology, chapter 5, pages 126–195. De Gruyter Mouton.
- Kaplan, R. M. (1987). Three seductions of computational psycholinguistics. In Whitelock, P., Wood, M. M., Somers, H. L., Johnson, R., and Bennett, P., editors, Linguistic Theory and Computer Applications, pages 149–188. Academic Press.
- Karttunen, L. (1998). The proper treatment of optimality in computational phonology: plenary talk. In Proceedings of the International Workshop on Finite State Methods in Natural Language Processing, pages 1–12. Association for Computational Linguistics.
- Moschovakis, Y. N. (2019). Abstract recursion and intrinsic complexity, volume 48 of Lecture Notes in Logic. Cambridge University Press.
- Oakden, C. and Chandlee, J. (2019). A computational analysis of tone sandhi ordering paradoxes. Poster presented at NELS 50, MIT.

- ▶ Identify other operations besides composition
- ► Interactions for which composition (rule-ordering) yields incorrect mapping

- ▶ Identify other operations besides composition
- ► Interactions for which composition (rule-ordering) yields incorrect mapping
- ► Changting sandhi ordering paradoxes (Chen, 2004)
 - ► Inventory: H(igh), M(id), L(ow), R(ising), F(alling)
 - ► MR rule (MR \rightarrow LR), RM rule (RM \rightarrow HM)
 - ► Mutual counterbleeding: $/MRM/ \rightarrow LHM$, $/RMR/ \rightarrow [HLR]$

- ▶ Identify other operations besides composition
- ► Interactions for which composition (rule-ordering) yields incorrect mapping
- ► Changing sandhi ordering paradoxes (Chen, 2004)
 - ► Inventory: H(igh), M(id), L(ow), R(ising), F(alling)
 - ► MR rule (MR \rightarrow LR), RM rule (RM \rightarrow HM)
 - ► Mutual counterbleeding: $/MRM/ \rightarrow LHM$, $/RMR/ \rightarrow [HLR]$

MR<	<rm< th=""><th colspan="3">RM<mr< th=""></mr<></th></rm<>	RM <mr< th=""></mr<>		
<u>MR</u> M	R <u>MR</u>	M <u>RM</u>	<u>RM</u> R	
L <u>RM</u>	RLR	MHM	H <u>MR</u>	
LHM	*RLR	*MHM	HLR	

► Interaction is **ISL** (Oakden and Chandlee, 2019)

```
L_{\rm o}(x) = \inf \underline{M}R(x) \ {\rm then} \ {\rm T} \ {\rm else} \ L(x) M_{\rm o}(x) = \inf \underline{M}R(x) \ {\rm then} \ {\rm \bot} \ {\rm else} \ M(x) H_{\rm o}(x) = \inf \underline{R}M(x) \ {\rm then} \ {\rm T} \ {\rm else} \ H(x) R_{\rm o}(x) = \inf \underline{R}M(x) \ {\rm then} \ {\rm \bot} \ {\rm else} \ R(x) F_{\rm o}(x) = F(x)
```

► Interaction is **ISL** (Oakden and Chandlee, 2019)

```
L_{\rm o}(x) = \inf \underline{M}R(x) \ {\rm then} \ {\rm T} \ {\rm else} \ L(x) M_{\rm o}(x) = \inf \underline{M}R(x) \ {\rm then} \ {\rm \bot} \ {\rm else} \ M(x) H_{\rm o}(x) = \inf \underline{R}M(x) \ {\rm then} \ {\rm T} \ {\rm else} \ H(x) R_{\rm o}(x) = \inf \underline{R}M(x) \ {\rm then} \ {\rm \bot} \ {\rm else} \ R(x) F_{\rm o}(x) = F(x)
```

- ▶ Not a result of *composing* two systems MR and RM
- Composition recreates ordering paradox

- ► New operation '⊝'
- ▶ Given two BMRS systems of equations a and b, $b \ominus a$ is defined:
 - ► Identity-map definitions in *b* are replaced with corresponding *non-identity* definitions in *a*
 - ▶ Otherwise, leave the definition the same

► Is ⊝ just *priority union*? (Kaplan, 1987; Karttunen, 1998)

- ► New operation '⊝'
- ▶ Given two BMRS systems of equations a and b, $b \ominus a$ is defined:
 - ► Identity-map definitions in *b* are replaced with corresponding *non-identity* definitions in *a*
 - ▶ Otherwise, leave the definition the same
- ► Changting mutual counterbleeding
 - System *a*: RM rule
 - ► System *b*: MR rule
 - ► Is ⊝ just *priority union*? (Kaplan, 1987; Karttunen, 1998)

- ▶ New operation '⊝'
- ▶ Given two BMRS systems of equations a and b, $b \ominus a$ is defined:
 - ▶ Identity-map definitions in *b* are replaced with corresponding *non-identity* definitions in *a*
 - ▶ Otherwise, leave the definition the same
- ► Changting mutual counterbleeding
 - System a: RM rule
 - ▶ System *b*: MR rule
- ► Corresponds to simultaneous application
 - ► Is ⊝ just *priority union*? (Kaplan, 1987; Karttunen, 1998)

```
a
L_a(x) = L(x)
M_a(x) = M(x)
H_a(x) = \text{if } \underline{R}M(x) \text{ then } \top \text{ else } H(x)
R_a(x) = \text{if } \underline{R}M(x) \text{ then } \bot \text{ else } R(x)
F_a(x) = F(x)
```

```
\begin{array}{lll} a & & b \\ L_a(x) = L(x) & L_b(x) = \text{if } \underline{MR}(x) \text{ then } \top \text{ else } L(x) \\ M_a(x) = M(x) & M_b(x) = \text{if } \underline{MR}(x) \text{ then } \bot \text{ else } M(x) \\ H_a(x) = \text{if } \underline{RM}(x) \text{ then } \top \text{ else } H(x) & H_b(x) = H(x) \\ R_a(x) = \text{if } \underline{RM}(x) \text{ then } \bot \text{ else } R(x) & R_b(x) = R(x) \\ F_a(x) = F(x) & F_b(x) = F(x) \end{array}
```

```
\begin{array}{lll} a & b \\ L_a(x) = L(x) & L_b(x) = \text{if } \underline{MR}(x) \text{ then } \top \text{ else } L(x) \\ M_a(x) = M(x) & M_b(x) = \text{if } \underline{MR}(x) \text{ then } \bot \text{ else } M(x) \\ H_a(x) = \text{if } \underline{RM}(x) \text{ then } \top \text{ else } H(x) & H_b(x) = H(x) \\ R_a(x) = \text{if } \underline{RM}(x) \text{ then } \bot \text{ else } R(x) & R_b(x) = R(x) \\ F_a(x) = F(x) & F_b(x) = F(x) \end{array}
```

$$b \ominus a$$
 $L_b(x) = \text{ if } \underline{M}R(x) \text{ then } \top \text{ else } L(x)$
 $M_b(x) = \text{ if } \underline{M}R(x) \text{ then } \bot \text{ else } M(x)$
 $H_b(x) = H_a(x)$
 $R_b(x) = R_a(x)$
 $F_b(x) = F(x)$