RANS AERO 1.0 32

STEP1

*

CLOSE

Edge Width

SET DEFAULT

Axis Color

CoordSystem Axis Size

OpenGL Lighting Model Two Side Model

Feature Edge Color

Step2 -Let start

Step3 – Read Geometry (STL (ascii) and Nastrain file, STL is preferred)

1. Multiply files can be selected

Select Part Name, Right Click . Change Part Name

Step4 – Set correct unit system (OPENFOAM – meter, kg, Newton system)

Step5 - Create Windtunnel

Step6 – BlockMesh (Base Mesh for Octree based snappyhexmesh)

Step7 – Domain decomposition (Distribute Mesh for parallel meshing)

Step8 – Surface RefinementSet

Step9 – SnappyHexmeh (Volume Mesh)

ImplicitFeature Edge should be on

ControlDict Submit Job

Move

Point must be inside of Windtunnel and outside from object (external aerodynamics)

Step10 - Write Snappyfile out

Step11 – Run HexaMesher (it takes from minutes to days) (1.5 million elements 1 GB RAM)

Step12 – Recombine the mesh

Step13 – Check Mesh – Open Paraview

Step13 – Set Turbulence Model

Step14 – ControlDict Settings

SHM WM RHM

BCS ADJ ∇

ControlDict Submit Job

Move ///

Step14 - Run Simulation

Step15 – Check Convergence

