Suivi des objectifs – Projet Treuillage Sonar Remorqué 2025

Tableau de suivi

Objectif	État d'avancement	m Responsable(s)
2 Exploitation des depuées pequeillies	d'avancement	Dágnangabla
2. Exploitation des données recueillies	NT /	Résponsable
Comprendre le fonctionnement du sonar	Non commencé	
latéral et interpréter les images acquises	NT /	
Associer les images du sonar à une	Non commencé	
localisation géographique précise		
Identifier les sources d'erreurs dans les	Non commencé	
mesures et les données collectées		
3. Modélisation de la déformée du câble		Ewen + Lancelot
Modéliser la déformée du câble de	Non commencé	
remorquage (layback)		
Estimer la position réelle du sonar à partir	Non commencé	
des données de navigation du navire et du		
modèle de câble		
Modéliser les efforts hydrodynamiques	Commencé	Ewen
appliqués au câble et au sonar		
Valider la pertinence du modèle retenu	Non commencé	
(comparaison, sensibilité, simulations)		
4. Conception d'un support de treuil de mise à la mer		Stassen
Exprimer le besoin technique et les	Non commencé	
contraintes d'intégration sur le navire		
Concevoir une solution mécanique de	Non commencé	
treuillage à installer sur le navire (support		
motorisé)		
Concevoir un tambour permettant	Non commencé	
l'enroulement et le déroulement efficaces du		
câble		
Étudier et concevoir un système de	Non commencé	
trancannage si nécessaire pour préserver le		
câble		
Garantir la protection du câble lors de sa	Non commencé	
mise à la mer		
Assurer la compatibilité de l'ensemble du	Non commencé	
système avec le navire La Mélité		
<u> </u>	1	1

Légende

• Non commencé : aucune tâche engagée

 $\bullet~{\bf En~cours}$: des éléments en discussion ou conception

• Terminé : tâche finalisée et validée

Détail des objectifs

1. Comprendre le fonctionnement du sonar latéral et interpréter les images acquises

Cette tâche consiste à :

- Étudier le principe physique du sonar latéral (propagation, retour d'onde, angle d'émission, résolution).
- Se familiariser avec les types d'images produites (zones d'ombres, texture, intensité de retour).
- Identifier les objets caractéristiques sur les images (épaves, rochers, câbles, etc.).

2. Associer les images du sonar à une localisation géographique précise

Cette tâche comprend:

- L'analyse du format des données de navigation (GPS, cap, vitesse).
- Le calage spatial entre l'image acquise et la position du sonar.
- L'établissement d'une cartographie des images géolocalisées.

3. Modéliser la déformée du câble de remorquage (layback)

Il s'agit ici de :

- Étudier les modèles de catenaires et les lois de traction d'un câble dans l'eau.
- Prendre en compte les effets de traînée, de flottabilité et de vitesse du navire.
- Déduire la forme du câble et la position probable du sonar sous l'eau.

4. Estimer la position réelle du sonar à partir des données de navigation du navire

Objectifs:

- Intégrer les données de navigation avec le modèle du câble.
- Calculer le "layback" (décalage horizontal entre navire et sonar).
- Simuler ou valider cette estimation avec des cas tests.

5. Concevoir une solution mécanique de treuillage à installer sur le navire

Il faut ici:

- Identifier les contraintes mécaniques et spatiales sur le navire La Mélité.
- Concevoir une structure stable et résistante pour fixer le treuil.
- Choisir un moteur adapté au câble, à la tension, et aux efforts en jeu.

6. Concevoir un tambour permettant l'enroulement et le déroulement efficaces du câble

Cette tâche vise à :

- Définir le diamètre, la capacité, et la vitesse d'enroulement du tambour.
- Garantir un guidage régulier du câble.
- Prévoir la fixation au moteur ou à la transmission.

7. Étudier et concevoir un système de trancannage si nécessaire

Le trancannage permet :

- D'éviter l'accumulation désordonnée du câble sur le tambour.
- De guider le câble latéralement au fur et à mesure de son enroulement.
- Il peut être mécanique, motorisé ou synchronisé avec la rotation.

8. Garantir la protection du câble lors de sa mise à la mer

Objectifs:

- Étudier les risques d'usure ou d'arrachement du câble.
- Concevoir un guide-câble ou une rampe de lancement.
- Minimiser les chocs et les frictions sur le bateau.

9. Assurer la compatibilité du système avec le navire La Mélité

Il faudra:

- Relever les dimensions, emplacements disponibles et interfaces du navire.
- Vérifier la tenue mécanique du système.
- S'assurer que le fonctionnement n'interfère pas avec les manœuvres marines.