Data Structures Adjacency List Graph Implementation

COMP128 Data Structures

Quick Review

How do you describe the following graph?

- Vertices?
- Edges?
- Is there a path from 0 to 2?
- Is there a path from 2 to 0?
- Are there any cycles?

Graph Implementation

We have the following two different approaches to implement a graph data structure:

- Adjacency List
- Adjacency Matrix

In each representation, we maintain a collection to store the vertices of a graph. However, the representations differ greatly in the way they organize the edges.

Using Adjacency List

We maintain an unordered list of all edges, and for each vertex, a separate list containing those edges that are incident to the vertex.

This organization allows us to more efficiently find all edges incident to a given vertex.

Using Adjacency List: Directed Graph

An adjacency list uses an array of lists, on for each vertex

Using Adjacency List: Undirected Graph

Quick Practice

Draw on a piece of paper, the adjacency list structure for the following graphs. Then check with the person next to you.

Using Adjacency List: Symbol Graph

V = {JFK, ORD, MCO, LAX}
E = {{JFK, ORD}, {JFK, MCO},
{LAX, JFK}, {ORD, MCO},
{MCO, LAX}}

Using Adjacency List: Symbol Graph

V = {JFK, ORD, MCO, LAX}
E = {{JFK, ORD}, {JFK, MCO},
{LAX, JFK}, {ORD, MCO},
{MCO, LAX}}

Map <String, Integer>

JFK	0
ORD	1
LAX	2
MCO	3

In-class Activity **Adjacency List Graph Activity**

