Chapter 2 Section 4

Andrew Taylor

April 16 2022

Theorem 1. An $n \times n$ matrix A is invertible if and only if

$$rref(A) = I_n$$

or, equivalently, if

$$rank(A) = n$$

Theorem 2. To find the inverse of an $n \times n$ matrix A, form the $n \times (2n)$ matrix $\begin{bmatrix} A \mid I_n \end{bmatrix}$ and compute $rref[A \mid I_n]$.

- If $rref[A \mid I_n]$ is of the form $[I_n \mid B]$ then A is invertible and $A^{-1} = B$.
- If $rref[A \mid I_n]$ is of another form (i.e., its left half fails to be I_n) then A is not invertible.