XVII – Endomorphismes d'une espace vectoriel euclidien

I. Endomorphismes préservant l'othogonalité

- 1) $(u+v \mid u-v) = ||u||^2 ||v||^2 = 0$ pour u et v unitaires.
- 2) Soient u et v des vecteurs unitaires de E. u+v et u-v sont orthogonaux donc f(u+v) et f(u-v) le sont aussi. Or par linéarité

$$f(u+v) = f(u) + f(v)$$
 et $f(u-v) = f(u) - f(v)$

de sorte que l'orthogonalité de ces deux vecteurs entraîne

$$||f(u)|| = ||f(v)||$$

Ainsi les vecteurs unitaires de E sont envoyés par f sur des vecteurs ayant tous la même norme $\alpha \in \mathbb{R}^+$. Montrons qu'alors

$$\forall x \in E, \|f(x)\| = \alpha \|x\|$$

Soit $x \in E$.

Si x = 0 alors on a f(x) = 0 puis $||f(x)|| = \alpha ||x||$.

Si $x \neq 0$ alors en introduisant le vecteur unitaire $u = x/\|x\|$, on a $\|f(u)\| = \alpha$ puis $\|f(x)\| = \alpha \|x\|$

3) Si $\alpha = 0$ alors $f = \tilde{0}$ et n'importe quel $g \in O(E)$ convient. Si $\alpha \neq 0$ alors introduisons l'endomorphisme

$$g = \frac{1}{\alpha}f$$

La relation obtenue en **2**) assure que g conserve la norme et donc $g \in \mathcal{O}(E)$ ce qui permet de conclure.

II. Matrices orthogonales et inégalités

- 1) Avec $\mathscr{B}=(e_1,\ldots,e_n)$ une base orthonormée de \mathbb{R}^n et u l'endomorphisme canonique associé à A, si $e=e_1+\cdots+e_n$ alors $\sum_{i,j}a_{i,j}=\langle u(e),e\rangle$, pour le produit scalaire canonique de \mathbb{R}^n . Puis on conclut en utilisant l'inégalité de Cauchy-Schwarz.
- 2) Pour tout j, $\sum_{i} a_{i,j}^2 = 1$ donc pour tout i $a_{i,j}^2 \leqslant 1$, donc $|a_{i,j}| \leqslant 1$ donc $\sum_{i,j} |a_{i,j}| \geqslant \sum_{i,j} a_{i,j}^2 = n$.
- 3) $\sum_{i,j} |a_{i,j}| = \sum_{i,j} |a_{i,j}| \times 1 = \langle |A|, J \rangle$ pour le produit scalaire canonique de $\mathscr{M}_n(\mathbb{R})$, où J est la matrice dont tous les coefficients valent 1, et $|A| = (|a_{ij}|)$. Alors, toujours avec l'inégalité de Cauchy-Schwarz, $\sum_{i,j} |a_{i,j}| \leq 1$

$$\sqrt{\sum_{i,j} |a_{i,j}|^2} \sqrt{\sum_{i,j} 1^2} \leqslant n \sqrt{n}.$$

4) On peut avoir l'égalité si n=1 mais aussi si n=4 avec

$$A = \frac{1}{2} \left(\begin{array}{cccc} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{array} \right)$$

En fait, un approfondissement du problème donne $\sqrt{n} \in 2\mathbb{Z}$ comme condition nécessaire à l'obtention de l'égalité.

Pour avoir égalité dans l'inégalité de Cauchy-Schwarz de la questionn 1), il faut que tous les coefficients de A soient de même valeur absolue λ . Et donc en faisant la somme des $|a_{ij}|$ on obtient $n^2\lambda = n\sqrt{n}$ donc $\lambda = 1/\sqrt{n}$.

Pour l'inégalité de Cauchy-Schwarz de la questionn 3), il faut que la somme de tous les coefficients d'une ligne vaille une constante. Cette constante doit valoir 1 pour que la somme de tous les coefficients vaille n. Si on appelle a le nombre de + sur une ligne, on doit donc avoir $(a-(n-a))\sqrt{n}=1$, donc $2a=n+\sqrt{n}$. Donc n doit être un carré parfait.

Enfin les colonnes doivent être deux à deux orthogonales, donc le nombre de +, a, doit avoir la même parité que n (je ne sais pas trop le montrer rigoureusement :)) donc n doit être pair.

III. Matrices symétriques positives

On introduit, sur $\mathcal{M}_{n,1}(\mathbb{R})$, la norme euclidienne, notée ||.||, associée au produit scalaire canonique, définie par : $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), ||X|| = \sqrt{X^T X}$.

1) Soit $A \in \mathscr{S}_n(\mathbb{R})$. Prouvons que $A \in \mathscr{S}_n^+(\mathbb{R}) \iff \operatorname{Sp}(A) \subset [0, +\infty[$. Raisonnons par double implication.

Supposons que $A \in \mathscr{S}_n^+(\mathbb{R})$.

Prouvons que $Sp(A) \subset [0, +\infty[$.

Soit $\lambda \in \operatorname{Sp}(A)$.

 $\exists X \in \mathscr{M}_{n,1}(\mathbb{R}) \setminus \{0\} / AX = \lambda X.$

Alors $X^T A X = X^T \lambda X = \lambda ||X||^2$.

Or, $A \in \mathscr{S}_n^+(\mathbb{R})$ donc $X^T A X \geqslant 0$.

Donc $\lambda ||X||^2 \geqslant 0$.

Or, $X \neq 0$ donc $||X||^2 > 0$.

Donc $\lambda \geqslant 0$.

Supposons que $Sp(A) \subset [0, +\infty[$.

Prouvons que $A \in \mathscr{S}_n^+(\mathbb{R})$.

 $A \in \mathscr{S}_n(\mathbb{R})$ donc, d'après le théorème spectral, $\exists P \in \mathcal{O}(n) / A = PDP^T$ où $D = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$.

Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$.

$$X^T A X = X^T P D P^T X = (P^T X)^T D (P^T X).$$

Notons $y_1, y_2, ..., y_n$ les composantes de la matrice colonne $Y = P^T X$.

Ainsi
$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
 et donc $X^T A X = Y^T D Y = \sum_{i=1}^n \lambda_i y_i^2$. (1)

Or, $\lambda_1, \lambda_2, ..., \lambda_n$ sont les valeurs propres de A donc, par hypothèse, $\forall i \in$ $[1, n], \lambda_i \geqslant 0.$

Donc $\forall i \in [1, n], \lambda_i y_i^2 \ge 0.$

Donc, d'après (1), $X^T A X \ge 0$.

2) Soit $A \in \mathscr{S}_n(\mathbb{R})$.

Prouvons que $A^2 \in \mathscr{S}_n^+(\mathbb{R})$.

$$(A^2)^T = A^T A^T.$$

Or, $A \in \mathscr{S}_n(\mathbb{R})$ donc $A^T = A$. Donc $(A^2)^T = A^2$. Donc $A^2 \in \mathscr{S}_n(\mathbb{R})$. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$.

$$X^{T}A^{2}X = X^{T}A^{T}AX = (AX)^{T}(AX) = ||AX||^{2} \ge 0.$$

Donc $A^2 \in \mathscr{S}_n^+(\mathbb{R})$.

3) soit $A \in \mathscr{S}_n(\mathbb{R})$ et soit $B \in \mathscr{S}_n^+(\mathbb{R})$.

On suppose que AB = BA.

Prouvons que $A^2B \in \mathscr{S}_n^+(\mathbb{R})$.

Remarque : par hypothèse, A et B commutent donc A^2 et B commutent.

En effet : $A^2B = A(AB) = A(BA) = (AB)A = (BA)A = BA^2$.

$$(A^2B)^T = B^T (A^2)^T = B^2 (A^T)^2.$$

 $(A^2B)^T = B^T (A^2)^T = B^2 (A^T)^2.$ Or, $A \in \mathscr{S}_n(\mathbb{R})$ et $B \in \mathscr{S}_n^+(\mathbb{R})$ donc $A^T = A$ et $B^T = B$.

Donc $(A^2B)^T = BA^2$.

Or, d'après la remarque, A^2 et B commutent.

Donc $(A^2B)^T = A^2B$.

Donc $A^2B \in \mathscr{S}_n(\mathbb{R})$.

Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$.

A et B commutent donc $X^T(A^2B)X = X^TABAX$.

Or, A est symétrique donc $X^T ABAX = (AX)^T B(AX)$.

On pose Y = AX.

 $Y \in \mathcal{M}_{n,1}(\mathbb{R}) \text{ et } B \in \mathscr{S}_n^+(\mathbb{R}) \text{ donc } (AX)^T B(AX) = Y^T BY \geqslant 0$.

Donc $X^T A^2 B X \geqslant 0$.

Donc $A^2B \in \mathscr{S}_n^+(\mathbb{R})$

IV. Racine carrée d'une matrice symétrique positive

Existence : il existe $P \in \mathcal{O}_n(\mathbb{R})$ telle que $A = P^T D P$, où $D = \operatorname{diag}(d_1, \dots, d_n)$ et les $d_i \in \mathbb{R}_+$. Posons $B = P^T D' P$ avec $D' = \operatorname{diag}(\sqrt{d_1}, \dots, \sqrt{d_n})$. Alors $B^2 = A$.

Unicité:

1ère méthode : Notons f l'endomorphisme canoniquement associé à A. A est diagonalisable, donc $E = \mathbb{R}^n$ est la somme directe des espaces propres de A. Soit F un espace propre associé à une valeur propre d, et soit B telle que $B^2 = A$, représentant l'endomorphisme g.

Alors A et B commutent, donc F est stable par B. Notons $h = f|_F$ alors h est aussi symétrique positive réelle et donc elle diagonalisable. Ses valeurs propres sont positives, mais puisque $h^2 = d\mathrm{Id}$, alors ces valeurs propres valent toutes \sqrt{d} . Donc $h = \sqrt{d}\mathrm{Id}$. f est donc définie de manière unique sur chaque sousespace prope. Ces derniers étant supplémentaires, f est définie de manière unique.

2ème méthode :

Soient R et S deux racines, on note $V = \operatorname{Sp}(R) \cup \operatorname{Sp}(S)$, et on appelle v_1, \dots, v_p ses éléments, nommés injectivement. Comme elles sont positives, alors les v_1^2, \dots, v_p^2 sont deux à deux distinctes. On note L le polynôme d'interpolation qui envoie les v_i^2 sur les v_i .

Si on note $R = Q^T \Delta Q$ avec Q inversible et Δ diagonale, les coefficients diagonales de Δ sont dans V. Alors $L(A) = L(R^2) = Q^T L(\Delta^2) Q = Q^T L(\Delta) Q = R$. Et de même L(A) = S, donc R = S.

3ème méthode :

Si $B_1 = P_1^\top D_1 P_1$ et $B_2 = P_2^\top D_2 P_2$ sont deux racines carrées (convenablement diagonalisées), alors l'égalité $B_1^2 = B_2^2$ entraine $D_1^2 Q - Q D_2^2 = 0$ avec $Q = P_1 P_2^\top$. En termes de coefficients, cela donne

$$0 = [D_1^2 Q - Q D_2^2]_{i,j} = [D_1]_{i,i}^2 [Q]_{i,j} - [D_2]_{j,j}^2 [Q]_{i,j}$$
$$= [Q]_{i,j} ([D_1]_{i,i} - [D_2]_{j,j}) ([D_1]_{i,i} + [D_2]_{j,j})$$

Or on a $[D_1]_{i,i}>0$ et $[D_2]_{j,j}>0$. Ce qui fournit $[Q]_{i,j}\left([D_1]_{i,i}-[D_2]_{j,j}\right)=0$, c'est-à-dire $[D_1Q-QD_2]_{i,j}=0$ ou encore $D_1Q-QD_2=0$ et enfin $B_1-B_2=0$. Autrement dit, les endomorphismes matriciels $Q\mapsto D_1^2Q-QD_2^2$ et $Q\mapsto D_1Q-QD_2$ ont le même noyau dès lors que D_1 et D_2 sont deux matrices diagonales à valeurs propres strictement positives !

V. Décomposition polaire

Soit $A \in \mathrm{GL}_n(\mathbb{R})$.

- 1) $(A^{\top}A)^{\top} = A^{\top}A$ dont $A^{\top}A$ est symétrique. Soit $X \in \mathcal{M}_{n1}(\mathbb{R})$ non nul. Alors $X^{\top}(A^{\top}A)X = (AX)^{\top}(AX) = ||AX||^2$. Mais $X \neq 0$ et A est inversible donc $||AX||^2 > 0$, donc $A^{\top}A \in \mathcal{S}_n^{++}$.
- 2) On nous rappelle qu'l existe $S \in \mathscr{S}_n^{++}$ telle que $A^{\top}A = S^2$. Notons $\Omega = AS^{-1}$. On a alors $A = \Omega S$, et :

$$\Omega^{\top}\Omega = (AS^{-1})^{\top} AS^{-1} = (S^{-1})^{\top} (A^{\top}A) S^{-1} = S^{-1}S^{2}S^{-1} = I_{n}$$

donc $\Omega \in \mathcal{O}_n(\mathbb{R})$. Ceci montre l'existence d'un couple (Ω, S) convenant.