

Análise e Síntese de Algoritmos Complexidade Computacional (Reduções)

Prof. Pedro T. Monteiro

IST - Universidade de Lisboa

2024/2025

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica [CLRS, Cap.15]
 - Algoritmos greedy [CLRS, Cap.16]
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos [CLRS, Cap.22,24-25]
 - Árvores abrangentes [CLRS, Cap.23]
 - Fluxos máximos [CLRS, Cap.26]
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Tópicos Adicionais
 - Complexidade Computacional [CLRS, Cap.34]

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Resumo

Reduções

 $\mathsf{CNFSAT} \leq_p \mathsf{3CNFSAT}$

 $CNFSAT \leq_{p} CLIQUE$

 $3CNFSAT \leq_p ISET$

 $ISET \leq_p CLIQUE$

 $ISET \leq_{p} VCOVER$

 $VCOVER \leq_p SETCOVER$

 $3CNFSAT \leq_p 3COL$

Provar que ProblemaX é NP-completo

- Passo 1: Provar que ProblemaX ∈ NP
- Passo 2: Provar que ProblemaX ∈ NP-difícil

ProblemaY \leq_p ProblemaX

(por redução a partir de um ProblemaY já conhecido como sendo NP-difícil)

P.T. Monteiro ASA @ LEIC-T 2024/2025 3/40 P.T. Monteiro ASA @ LEIC-T 2024/2025 4/4

Reduções

$CNFSAT \leq_p 3CNFSAT$

Problema 3CNFSAT

Dado um conjunto de n variáveis booleanas x_1, x_2, \ldots, x_n e uma fórmula φ na forma normal conjuntiva (CNF) com exactamente 3 literais em cada uma das m cláusulas, existe uma atribuição de valores para as variáveis de φ , tal que φ é verdadeira?

Vemos que é um problema combinatório dado que:

• teríamos de testar todas as 2ⁿ combinações de variáveis

Teorema: 3CNFSAT é NP-completo

D.T. M. . .

ASA @ LEIC-T 2024/2025

$\mathsf{CNFSAT} \leq_{p} \mathsf{3CNFSAT}$

$CNFSAT \leq_p 3CNFSAT$

Provar que $3CNFSAT \in NP$

1. Identificar:

P.T. Monteiro

- Instância do problema 3CNFSAT: $\langle \varphi \rangle$
- Certificado: $C = \{(x_1, v_1), (x_2, v_2), \dots, (x_n, v_n)\}$ (atribuição de valores às n variáveis)
- 2. Dada uma instância $\langle \varphi \rangle$ e certificado C, o algoritmo de verificação tem de:
 - Verificar que o certificado tem tamanho polinomial |C| = n, logo O(n)
 - Verificar o certificado na instância em tempo polinomial Para cada uma das m cláusulas de φ verificar que: pelo menos um dos 3 literais é verdadeiro em C, logo $O(|\varphi|) = O(m)$

∴ 3CNFSAT ∈ NP

(dado que o certificado tem tamanho polinomial e pode ser verificado em tempo polinomial)

Provar que 3CNFSAT \in NP-difícil: CNFSAT \leq_p 3CNFSAT

Dada uma instância de CNFSAT $\langle \varphi \rangle$, derivar instância de 3CNFSAT $\langle \varphi_3 \rangle$

A redução é definida como $f(\varphi) = \langle \varphi_3 \rangle$:

- Por cada cláusula unitária $w = (I_1)$:
 - Criar cláusulas: $(I_1 \lor y_1 \lor y_2) \land (I_1 \lor \neg y_1 \lor y_2) \land (I_1 \lor y_1 \lor \neg y_2) \land (I_1 \lor \neg y_1 \lor \neg y_2)$, com variáveis adicionais y_1 e y_2
- Por cada cláusula binária $w = (I_1 \vee I_2)$:
 - Criar cláusulas: $(I_1 \lor I_2 \lor y_1) \land (I_1 \lor I_2 \lor \neg y_1)$, com variável adicional y_1
- Por cada cláusula com mais que 3 literais $w = (l_1 \lor l_2 \lor l_3 \lor ... \lor l_k)$:
 - Criar cláusulas: $(l_1 \lor l_2 \lor y_1) \land (\neg y_1 \lor l_3 \lor y_2) \land \dots \land (\neg y_{k-4} \lor l_{k-2} \lor y_{k-3}) \land (\neg y_{k-3} \lor l_{k-1} \lor l_k)$, com variáveis adicionais y_1, y_2, \dots, y_{k-3}

Complexidade do algoritmo de redução: $O(|\varphi|)$ (# variáveis/cláusulas adicionais é $O(|\varphi|)$)

P.T. Monteiro ASA @ LEIC-T 2024/2025 7/40 P.T. Monteiro ASA @ LEIC-T 2024/2025 8/40

Reduções

Provar que 3CNFSAT \in NP-difícil: CNFSAT \leq_p 3CNFSAT

 $\langle \varphi \rangle$ é satisfazível $\iff \langle \varphi_3 \rangle$ é satisfazível

- Cláusulas unitárias e binárias: prova é simples
- Cláusulas com mais que 3 literais:
 - Se φ é satisfazível, então φ_3 é satisfazível
 - ▶ Para cada cláusula w, existe $l_r = 1, 1 \le r \le k$
 - Atribuir valor 1 às variáveis y_s , $1 \le s \le \min(r-1, k-3)$
 - Atribuir valor 0 às variáveis y_t , $min(r-1, k-3) + 1 \le t \le k-3$
 - ▶ Todas as cláusulas satisfeitas, pelo que φ_3 é satisfazível
 - Se φ_3 é satisfazível, então φ é satisfazível
 - ▶ Um dos literais de $(I_1 \lor I_2 \lor I_3 \lor ... \lor I_k)$ tem de ter valor 1
 - ▶ Caso contrário $(y_1) \land (\neg y_1 \lor y_2) \land \ldots \land (\neg y_{k-4} \lor y_{k-3}) \land (\neg y_{k-3})$ teria que ser satisfeita
 - ightharpoonup Impossível. Logo, φ é satisfazível

∴ 3CNFSAT ∈ NP-difícil

P.T. Monteir

ASA @ LEIC-T 2024/2025

$CNFSAT \leq_{p} CLIQUE$

$CNFSAT \leq_{p} CLIQUE$

Problema CLIQUE

Dado um grafo não-dirigido G = (V, E) e um inteiro k, existe um subconjunto de vértices $V' \subseteq V$ de tamanho |V'| = k, tal que todos os vértices em V' formam uma clique?

Vemos que é um problema combinatório dado que:

ullet teríamos de testar todas as $C_k^{|V|}$ combinações de vértices

Provar que CLIQUE ∈ NP

- 1. Identificar:
 - Instância do problema CLIQUE: $\langle G = (V, E), k \rangle$
 - Certificado: subconjunto de vértices $V' \subseteq V$, |V'| = k
- 2. Dada uma instância $\langle G = (V, E), k \rangle$ e um certificado V', descrever um algoritmo de verificação:
 - Verificar que o certificado tem tamanho polinomial |V'| = k < |V|, logo O(|V|)
 - Verificar o certificado na instância em tempo polinomial Para todo $u, v \in V'$, verificar se $(u, v) \in E$, logo $O(|V'|^2)$

· CLIQUE ∈ NP

(dado que o certificado tem tamanho polinomial e pode ser verificado em tempo polinomial)

$CNFSAT \leq_p CLIQUE$

$CNFSAT \leq_{p} CLIQUE$

Provar que CLIQUE \in NP-difícil: CNFSAT \leq_p CLIQUE

Dada uma instância de CNFSAT $\langle \varphi \rangle$, derivar instância de CLIQUE $\langle G = (V, E), k \rangle$

A redução é definida como $f(\langle \varphi \rangle = \omega_1 \wedge \ldots \wedge \omega_m) = \langle G = (V, E), k \rangle$:

- Criar coluna por cada cláusula ω_i , com vértices correspondentes aos literais de ω_i (|V| = O(n.m))
- Criar arco (v_a, v_b) entre todos os pares de vértices, excepto se:
 - $-v_a$ e v_b pertencem à mesma coluna w_i
 - $-v_a$ e v_b correspondem à variável x e a sua negação $\neg x$

(cada vértice pode ter O(n.m) arcos)

Complexidade do algoritmo de redução: $O(n.m \times n.m)$

P.T. Montein

ASA @ LFIC-T 2024/2029

Provar que CLIQUE \in NP-difícil: CNFSAT \leq_p CLIQUE

 $\langle \varphi = \omega_1 \wedge \ldots \wedge \omega_m \rangle$ é satisfazível $\iff \langle G = (V, E), k \rangle$ é satisfazível

- G tem sub-grafo completo de dimensão k=m se e só se fórmula φ é satisfeita
- Se φ é satisfeita:
 - Seleccionar vértice, de cada coluna i, cujo literal respectivo tem atribuído o valor 1
 - Para este vértice u existe arco para vértice v em qualquer outra coluna, tal que v associado com literal com valor 1 atribuído
 - Logo, existe sub-grafo completo com dimensão k = m
- Se G tem sub-grafo completo de dimensão k = m:
 - Seleccionar um vértice de cada coluna
 - Atribuir valor 1 a cada vértice seleccionado (tal que x e $\neg x$ não seleccionados simultaneamente)
 - Cada cláusula tem 1 literal atribuído valor 1. Logo, satisfaz φ

 \therefore CLIQUE \in NP-difícil

Reduções

P.T. Monteiro

$3CNFSAT \leq_{p} ISET$

Provar Problemas NP-Completos

Problema ISET (Independent Set)

Dado um grafo não-dirigido G = (V, E) e um inteiro k, existe um subconjunto de vértices $I \subseteq V$ de tamanho |I| = k, tal que todos os vértices em / são independentes?

Vemos que é um problema combinatório dado que:

• teríamos de testar todas as $C_k^{|V|}$ combinações de vértices

ASA @ LFIC-T 2024/2025

 $3CNFSAT \leq_{p} ISET$

Provar que ISET ∈ NP

- 1. Identificar:
 - Instância do problema ISET: $\langle G = (V, E), k \rangle$
 - Certificado: $I \subseteq V$, |I| = k
- 2. Dada uma instância $\langle G, k \rangle$ e certificado I, descrever um algoritmo de verificação:
 - Verificar que o certificado tem tamanho polinomial |I| = k < |V|, logo O(|V|)
 - Verificar o certificado na instância em tempo polinomial Para todo $u, v \in I$, verificar se $(u, v) \notin E$, logo $O(|I|^2)$

\therefore ISET \in NP

(dado que o certificado tem tamanho polinomial e pode ser verificado em tempo polinomial)

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Provar que ISET \in NP-difícil: 3CNFSAT \leq_p ISET

Dada uma instância de 3CNFSAT $\langle \varphi \rangle$, construir uma instância de ISET $\langle G, k \rangle$:

ASA @ LEIC-T 2024/2025

- Criar um vértice para cada literal de φ $(|V| = 3 \times k, \text{ onde } k = |\varphi| \text{ \'e o } \# \text{ cláusulas})$
- Criar arestas entre literais que aparecem na mesma cláusula (impede soluções com literais da mesma cláusula)
- Criar arestas entre cada literal e sua negação (impede soluções com literais e suas negações)

Complexidade do algoritmo de redução: $O(|\varphi|)$

A redução é definida como $f(\varphi) = \langle G = (V, E), |\varphi| \rangle$ $\langle \varphi \rangle$ é satisfazível $\iff \langle G, k \rangle$ possui um ISET de tamanho $k = |\varphi|$

∴ ISET ∈ NP-difícil

$3CNFSAT \leq_{p} ISET$

Exemplo de redução:

Instância de 3CNFSAT:

$$\varphi = (x_1 \vee \bar{x_3} \vee \bar{x_4}) \wedge (\bar{x_2} \vee x_3 \vee \bar{x_4}) \wedge (\bar{x_1} \vee x_2 \vee x_3)$$

Instância de ISET:

P.T. Monteiro

ASA @ LEIC-T 2024/2025

Reduções

$ISET \leq_{p} CLIQUE$

$ISET \leq_{p} CLIQUE$

Problema CLIQUE

Dado um grafo não-dirigido G = (V, E) e um inteiro k, existe um subconjunto de vértices $I \subseteq V$ de tamanho |I| = k, tal que todos os vértices em / formam uma clique?

Vemos que é um problema combinatório dado que:

• teríamos de testar todas as $C_k^{|V|}$ combinações de vértices

Provar que CLIQUE ∈ NP

- 1. Identificar:
 - Instância do problema CLIQUE: $\langle G = (V, E), k \rangle$
 - Certificado: subconjunto de vértices $I \subseteq V$, |I| = k
- 2. Dada uma instância $\langle G = (V, E), k \rangle$ e um certificado I, descrever um algoritmo de verificação:
 - Verificar que o certificado tem tamanho polinomial |I| = k < |V|, logo O(|V|)
 - Verificar o certificado na instância em tempo polinomial Para todo $u, v \in I$, verificar se $(u, v) \in E$, logo $O(|I|^2)$

∴ CLIQUE ∈ NP

(dado que o certificado tem tamanho polinomial e pode ser verificado em tempo polinomial)

$ISET \leq_{p} CLIQUE$

ISET \leq_{p} CLIQUE

Provar que CLIQUE \in NP-difícil: *ISET* \leq_p *CLIQUE*

Dada uma instância de ISET $\langle G = (V, E), k \rangle$, construir uma instância de CLIQUE $\langle G' = (V', E'), k \rangle$:

- Criar um vértice v' para cada $v \in V$ (|V'| = |V|)
- Para todo $u, v \in V$, adicionar uma aresta $(u', v') \in E'$, se $(u, v) \notin E$ (G' complementa as arestas de G)

Complexidade do algoritmo de redução: $O(|V|^2)$

A redução é definida como $f(\langle G = (V, E), k \rangle) = \langle G' = (V', E'), k \rangle$ $\langle G = (V, E), k \rangle \in \mathsf{ISET} \iff \langle G' = (V', E'), k \rangle \in \mathsf{CLIQUE}$

∴ CLIQUE ∈ NP-difícil

Exemplo de redução: Instância de ISET $\langle G = (V, E), k \rangle$:

Instância de CLIQUE $\langle G' = (V', E'), k \rangle$:

Reduções

$ISET \leq_p VCOVER$

Problema VCOVER (Vertex Cover)

Dado um grafo não-dirigido G = (V, E) e um inteiro k, existe um subconjunto de vértices $C \subseteq V$ de tamanho |C| = k, tal que qualquer arco em E é incidente em pelo menos um dos vértices de C?

Vemos que é um problema combinatório dado que:

• teríamos de testar todas as $C_k^{|V|}$ combinações de vértices

P.T. Montoiro

ASA @ LEIC-T 2024/20:

$ISET \leq_p VCOVER$

$\mathsf{ISET} \leq_p \mathsf{VCOVER}$

Provar que $VCOVER \in NP$

- 1. Identificar:
 - Instância do problema VCOVER: $\langle G = (V, E), k \rangle$
 - Certificado: subconjunto de vértices $C \subseteq V$, |C| = k
- 2. Dada uma instância $\langle G = (V, E), k \rangle$ e um certificado C, descrever um algoritmo de verificação:
 - Verificar que o certificado tem tamanho polinomial $|C|=k \leq |V|$, logo O(V)
 - Verificar o certificado na instância em tempo polinomial Para cada (u,v) ∈ E, verificar se u ∈ C ou v ∈ C, logo O(E.V)

∴ VCOVER ∈ NP

(dado que o certificado tem tamanho polinomial e pode ser verificado em tempo polinomial)

Provar que VCOVER \in NP-difícil: ISET \leq_p VCOVER

Dada uma instância de ISET $\langle G = (V, E), k \rangle$, construir uma instância de VCOVER $\langle G' = (V', E'), k' \rangle$:

- Mantemos o grafo G' = G
- Mas k' = |V| k(dado um certificado I, C = V - I é um certificado para VCOVER)

Complexidade do algoritmo de redução: O(V)

A redução é definida como f($\langle G = (V, E), k \rangle$) = $\langle G = (V, E), |V| - k \rangle$ $\langle G = (V, E), k \rangle \in \mathsf{ISET} \iff \langle G = (V, E), |V| - k \rangle \in \mathsf{VCOVER}$

∴ VCOVER ∈ NP-difícil

$ISET \leq_{p} VCOVER$

Reduções

Exemplo de redução:

Provar Problemas NP-Completos CNFSAT CLIQUE ISET 3CNFSAT **PACKINST** VCOVER 3COL SETCOVER ASA @ LEIC-T 2024/2025

$VCOVER \leq_p SETCOVER$

$VCOVER \leq_p SETCOVER$

Problema SETCOVER (Set Cover)

Dado um conjunto $E = \{e_1, e_2, \dots, e_n\}$ com n elementos, e uma colecção $C = \{C_1, C_2, \dots, C_m\}$ de m subconjuntos de E, existe uma subcolecção $\mathcal{C}' \subseteq \mathcal{C}$ de tamanho $|\mathcal{C}'| = k$, tal que $\bigcup_{C \in \mathcal{C}'} C_i = E$? (ou seja, em que C' cobre todo o conjunto E)

Vemos que é um problema combinatório dado que:

• teríamos de testar todas as C_{ν}^{m} combinações de subconjuntos

Provar que SETCOVER \in NP

- 1. Identificar:
 - Instância do problema SETCOVER: $\langle E, C, k \rangle$
 - Certificado: $C' \subseteq C$, |C'| = k
- 2. Dada uma instância $\langle E, C, k \rangle$ e certificado C', o algoritmo de verificação tem de:
 - Verificar que o certificado tem tamanho polinomial $|\mathcal{C}'| = k \le |\mathcal{C}| = m$, logo O(m)
 - Verificar o certificado na instância em tempo polinomial Verificar que os k subconjuntos com O(n) elementos cobrem todo o conjunto E $\bigcup_{C_i \in \mathcal{C}'} C_i = E \in O(m.n)$

∴ ISET ∈ NP

(dado que o certificado tem tamanho polinomial e pode ser verificado em tempo polinomial)

$VCOVER \leq_p SETCOVER$

$VCOVER \leq_{p} SETCOVER$

Provar que SETCOVER \in NP-difícil: VCOVER \leq_p SETCOVER

Dada instância de VCOVER $\langle G = (V, E), k \rangle$, construir instância de SETCOVER $\langle E, C, k \rangle$:

- Cada vértice $v_i \in V$ corresponde a um subconjunto $C_i \in C$ O(V)
- Cada aresta $(v_i, v_i) \in E$ corresponde a um elemento $e_{ii} \in E$, que está presente nos subconjuntos C_i e C_i O(E)

Complexidade do algoritmo de redução: O(V+E)

A redução é definida como $f(\langle G = (V, E), k \rangle) = \langle E, C, k \rangle$ $\langle G = (V, E), k \rangle \in VCOVER \iff \langle E, C, k \rangle \in SETCOVER$

∴ SETCOVER ∈ NP-difícil

ASA @ LEIC-T 2024/2025

Exemplo de redução:

$$E = \{e_1, e_2, e_3, e_4, e_5\}$$

$$S_1 = \{e_1, e_2, e_6\}$$

$$S_2 = \{e_3, e_4\}$$

$$S_3 = \{e_4, e_5, e_6\}$$

$$S_4 = \{e_1, e_3\}$$

$$S_5 = \{e_2, e_5\}$$

$$\mathcal{C}'=\{S_3,S_4,S_5\}$$

Reduções

P.T. Monteiro

$3CNFSAT \leq_p 3COL$

Provar Problemas NP-Completos

Problema 3COL (3-Coloring)

Dado um grafo G = (V, E), existe uma coloração dos vértices V com 3 cores, tal que todos os vértices adjacentes têm cores diferentes?

Vemos que é um problema combinatório dado que:

• teríamos de testar todas as $3^{|V|}$ combinações de cores

Teorema: 3COL é NP-completo

ASA @ LEIC-T 2024/2025

$3CNFSAT \leq_{p} 3COL$

$3CNFSAT \leq_{n} 3COL$

Provar que 3COL ∈ NP

- 1. Identificar:
 - Instância do problema 3COL: $\langle G = (V, E) \rangle$
 - Certificado: vector cor[] com a coloração dos vértices V com 3 cores
- 2. Dada uma instância $\langle G = (V, E) \rangle$ e um certificado, descrever um algoritmo de verificação:
 - Verificar que o certificado tem tamanho polinomial |cor[]| = |V|, logo O(V)
 - Verificar o certificado na instância em tempo polinomial Para cada $(u, v) \in E$, verificar que $cor[u] \neq cor[v]$, logo O(E)

Provar que 3COL \in NP-difícil: 3CNFSAT \leq_p 3COL

Dada uma instância de 3CNFSAT φ , derivar instância de 3COL $\langle G = (V, E) \rangle$:

A redução é definida como $f(\varphi) = \langle G = (V, E) \rangle$

- Criar um primeiro triângulo com vértices: T (True), F (False), B (Base)
- Para variável x_i em φ , criar um triângulo com vértices: v_i , \bar{v}_i , B O(n)(cada variável é obrigatoriamente verdadeira ou falsa)
- Para cada cláusula $\omega_i \in \varphi$, criar grafo com 4 vértices: $O(|\varphi|)$
 - um triângulo com nós internos: l₁, l₂, l₃
 - nó interno l_1 liga ao 1° vértice da cláusula
 - nó interno l_2 liga ao 2° vértice da cláusula
 - nó interno I_3 liga a nó externo X
 - nó externo X liga com T e ao 3° vértice da cláusula

Complexidade do algoritmo de redução: $O(n + |\varphi|)$

P.T. Monteiro

$3CNFSAT \leq_p 3COL$

Questões?

Provar que 3COL \in NP-difícil: 3CNFSAT \leq_p 3COL

A redução é definida como $f(\varphi) = \langle G = (V, E) \rangle$

 $\langle \varphi \rangle$ é satisfazível $\iff \langle G = (V, E) \rangle$ é satisfazível

- φ é satisfazível, então G = (V, E) é 3-colorível
 - Para cada cláusula ω_i existe um literal I com valor T
 - Atribuir a vértice O associado a I o valor F
 - Aos restantes vértices O atribuir cor B
 - Triangulo interno pode ser colorido com 3 cores
 - − *G* é 3-colorível
- G é 3-colorível, então φ é satisfazível
 - Admitir φ não satisfeita
 - Existe ω_i em que todos os literais são False
 - Vértices em G com cor F
 - Vértices O todos com cor B
 - Triângulo interno não pode ser colorido com 3 cores ⇒ Contradição

∴ 3COL ∈ NP-difícil

Dúvidas?