

CS229

## Syllabus and Course Schedule

**Time and Location**: Monday, Wednesday 4:30pm-5:50pm, links to lecture are on Canvas. **Class Videos**: Current quarter's class videos are available here for SCPD students and here for non-SCPD students.

**Note**: This is being updated for Spring 2020. The dates are subject to change as we figure out deadlines. Please check back soon.

| Week      | Event      | Date | Description                                         | Materials                                                                                                                                                                                                                                        |
|-----------|------------|------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Lecture 1  | 4/6  | Introduction and<br>Basic Concepts                  | <ul><li>Slides</li><li>Introduction slides [pptx]</li><li>Introduction slides [pdf]</li></ul>                                                                                                                                                    |
|           | Lecture 2  | 4/8  | Supervised Learning<br>Setup. Linear<br>Regression. | <ul> <li>Class Notes</li> <li>Supervised Learning,     Discriminative Algorithms     [pdf]</li> <li>Live lecture notes [pdf]</li> </ul>                                                                                                          |
| Week<br>1 | Assignment | 4/8  | <b>Problem Set 0.</b> Due 4/15 at 11:59pm.          |                                                                                                                                                                                                                                                  |
| 1         | Section 1  | 4/10 | Friday Lecture:<br>Linear Algebra.                  | <ul> <li>Notes</li> <li>Linear Algebra Review and Reference [pdf]</li> <li>Linear Algebra, Multivariable Calculus, and Modern Applications (Stanford Math 51 course text) [pdf]</li> <li>Linear Algebra Friday Section [pdf (slides)]</li> </ul> |

| Week      | Event      | Date | Description                                                                                                             | Materials                                                                                                                                                                                                    |
|-----------|------------|------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Lecture 3  | 4/13 | Weighted Least Squares. Logistic Regression. Netwon's Method Perceptron. Exponential Family. Generalized Linear Models. | Class Notes  • Live lecture notes [pdf]                                                                                                                                                                      |
|           | Lecture 4  | 4/15 |                                                                                                                         | Class Notes • Live lecture notes [pdf]                                                                                                                                                                       |
| Week<br>2 | Assignment | 4/15 | <b>Problem Set 1.</b> Due 4/29 at 11:59pm.                                                                              |                                                                                                                                                                                                              |
| 2         | Section 2  | 4/17 | Friday Lecture: Probability                                                                                             | <ul> <li>Notes</li> <li>Probability Theory Review [pdf]</li> <li>The Multivariate Gaussian Distribution [pdf]</li> <li>More on Gaussian Distribution [pdf]</li> <li>Section slides [pdf (slides)]</li> </ul> |
| Week<br>3 | Lecture 5  | 4/20 | Gaussian Discriminant Analysis. Naive Bayes. Laplace Smoothing.                                                         | Class Notes  • Generative Algorithms [pdf]  • Live lecture notes [pdf]                                                                                                                                       |
|           | Lecture 6  | 4/22 | Laplace Smoothing. Support Vector Machines.                                                                             | <ul><li>Class Notes</li><li>Support Vector Machines</li><li>[pdf]</li><li>Live lecture notes [pdf]</li></ul>                                                                                                 |
|           | Section 3  | 4/24 | Friday Lecture: Python and Numpy                                                                                        | Notes                                                                                                                                                                                                        |
|           | Project    | 4/24 | Project proposal due 4/24 at 11:59pm.                                                                                   |                                                                                                                                                                                                              |

| Week      | Event      | Date | Description                                                 | Materials                                                                                                                                                                        |
|-----------|------------|------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week<br>4 | Lecture 7  | 4/27 | Support Vector<br>Machines. Kernels.                        | Class Notes  • Live lecture notes [pdf]                                                                                                                                          |
|           | Lecture 8  | 4/29 | Neural Networks - 1                                         | Class Notes  • Deep Learning [pdf]  • Backpropagation                                                                                                                            |
|           | Assignment | 4/29 | <b>Problem Set 2.</b> Due 5/13 at 11:59pm.                  |                                                                                                                                                                                  |
|           | Section 4  | 5/1  | Friday Lecture:<br>Evaluation Metrics                       | Notes • Evaluation Metrics [pdf (slides)]                                                                                                                                        |
| Week<br>5 | Lecture 9  | 5/4  | Neural Networks - 2                                         | Class Notes  • See Neural Networks - 1  Notes                                                                                                                                    |
|           | Lecture 10 | 5/6  | Bias - Variance. Regularization. Feature / Model selection. | <ul> <li>Class Notes</li> <li>Regularization and Model Selection [pdf, addendum]</li> <li>Live lecture notes [draft]</li> <li>Double Descent [link, optional reading]</li> </ul> |
|           | Section 5  | 5/8  | Friday Lecture: Deep<br>Learning                            | Notes • Deep Learning [pptx]                                                                                                                                                     |

| Week      | Event      | Date | Description                                         | Materials                                                                                                                                                                                         |
|-----------|------------|------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week<br>6 | Lecture 11 | 5/11 | K-Means. GMM (non EM). Expectation Maximization.    | <ul> <li>Class Notes</li> <li>Unsupervised Learning, k-means clustering. [pdf]</li> <li>Mixture of Gaussians [pdf]</li> <li>The EM Algorithm [pdf]</li> <li>Live lecture notes [draft]</li> </ul> |
|           | Lecture 12 | 5/13 | Expectation Maximization (continued)                | Class Notes  • Lagrange Multipliers Review [pdf]  • Live lecture notes [draft, in lecture]                                                                                                        |
|           | Assignment | 5/13 | <b>Problem Set 3.</b> Due 5/27 at 11:59pm.          |                                                                                                                                                                                                   |
|           | Section 6  | 5/15 | Friday Lecture:<br>Midterm Review                   | Class Notes  • Midterm review [pdf (slides)]                                                                                                                                                      |
|           | Project    | 5/15 | Project milestones due 5/15 at 11:59pm.             |                                                                                                                                                                                                   |
| Week<br>7 | Lecture 13 | 5/18 | Factor Analysis.                                    | Class Notes  • Factor Analysis [pdf]  • Live lecture notes [draft, in lecture]                                                                                                                    |
|           | Midterm    | 5/20 | See details at Piazza post                          |                                                                                                                                                                                                   |
|           | Lecture 14 | 5/20 | Principal and<br>Independent<br>Component Analysis. | <ul> <li>Class Notes</li> <li>Principal Components     Analysis [pdf]</li> <li>Independent Component     Analysis [pdf]</li> <li>Live lecture notes [draft, in lecture]</li> </ul>                |

| Week      | Event      | Date | Description                                                                                              | Materials                                                                                                                                                                                                                                                                                                        |
|-----------|------------|------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Lecture 15 | 5/25 | Memorial Day, no lecture.                                                                                |                                                                                                                                                                                                                                                                                                                  |
| Week<br>8 | Lecture 16 | 5/27 | Weak Supervision                                                                                         | <ul> <li>Class Notes</li> <li>Weak Supervision [pdf (slides)]</li> <li>Weak Supervision [draft, in lecture]</li> <li>Additional Material</li> <li>ML Advice [draft, Canvas video from Fall 2019]</li> <li>Relevant video from Fall 2018 [Youtube (Stanford Online Recording), pdf (Fall 2018 slides)]</li> </ul> |
|           | Assignment | 5/27 | Problem Set 4. Due 6/10 at 11:59pm (no late days).                                                       |                                                                                                                                                                                                                                                                                                                  |
| Week<br>9 | Lecture 17 | 6/1  | Markov Decision Process. Value Iteration and Policy Iteration. Q-Learning. Value function approximation. | Class Notes  • Reinforcement Learning and Control [pdf]                                                                                                                                                                                                                                                          |
|           | Lecture 18 | 6/3  | Reinforcement<br>Learning continued                                                                      |                                                                                                                                                                                                                                                                                                                  |

| Week                | Event      | Date | Description                                                            | Materials                                       |
|---------------------|------------|------|------------------------------------------------------------------------|-------------------------------------------------|
| Week                | Lecture 19 | 6/8  | Policy search. Reinforce. POMDPs.                                      | Class Notes • Policy Gradient (REINFORCE) [pdf] |
| 10<br>(Last<br>Week | Lecture 20 | 6/10 | Recap, Fairness,<br>Adversarial                                        | Class Notes                                     |
| of<br>class)        | Project    | 6/10 | Poster PDF and video presentation. Due 6/10 at 11:59pm (no late days). |                                                 |
|                     | Project    | 6/10 | Project final report. Due 6/10 at 11:59pm (no late days).              |                                                 |

## **Supplementary Notes**

- 1. Online Learning and the Perceptron Algorithm [pdf]
- 2. Binary classification with +/-1 labels [pdf]
- 3. The representer theorem [pdf]
- 4. Hoeffding's inequality [pdf]

## **Optional Topics**

- 1. Decision trees [pdf]
- 2. Decision tree ipython demo [ipynb]
- 3. Boosting algorithms and weak learning [pdf]
- 4. On critiques of ML [slides]

## **Other Resources**

- 1. Advice on applying machine learning: Slides from Andrew's lecture on getting machine learning algorithms to work in practice can be found here.
- 2. Previous projects: A list of last quarter's final projects can be found here.
- 3. Data: Here is the UCI Machine learning repository, which contains a large collection of standard datasets for testing learning algorithms. If you want to see examples of recent work in machine learning, start by taking a look at the conferences NIPS(all old NIPS papers are online) and ICML. Some other related conferences include UAI, AAAI, IJCAI.
- 4. Viewing PostScript and PDF files: Depending on the computer you are using, you may be able to download a PostScript viewer or PDF viewer for it if you don't already have one.
- 5. Machine learning study guides tailored to CS 229 by Afshine Amidi and Shervine Amidi.