LÓGICA EI Mestrado Integrado em Engenharia Informática Universidade do Minho

Departamento de Matemática

2020/2021

1.2 Semântica do Cálculo Proposicional

Definição:

Os valores lógicos do CP são o verdadeiro e o falso.

Estes valores serão denotados, respetivamente, por 1 e 0 ou por V e F.

Definição: Uma função $v: \mathcal{F}^{CP} \longrightarrow \{0,1\}$ é uma *valoração* quando satisfaz as seguintes condições:

- **a)** $v(\bot) = 0$,
- **b)** $v(\neg \varphi) = f_{\neg}(v(\varphi))$, para todo $\varphi \in \mathcal{F}^{CP}$,
- c) $v(\varphi \Box \psi) = f_{\Box}(v(\varphi), v(\psi))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$ e para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$,

onde $f_{\neg}, f_{\wedge}, f_{\vee}, f_{\rightarrow}, f_{\leftrightarrow}$ são as *funções boleanas* determinadas pelas *tabelas de verdade* dos respetivos conetivos; designadamente:

Definição (cont.):

$$\begin{array}{cccc}
f_{\neg}: & \{0,1\} & \longrightarrow & \{0,1\} \\
0 & \mapsto & 1 \\
1 & \mapsto & 0
\end{array}$$

Definição (cont.):

Proposição: Seja v uma valoração e sejam φ, ψ fórmulas do CP.

- a) (i) $v(\neg \varphi) = 1$ sse $v(\varphi) = 0$;
 - (ii) $v(\neg \varphi) = 1 v(\varphi)$.
- **b)** (i) $v(\varphi \wedge \psi) = 1$ sse $v(\varphi) = 1$ e $v(\psi) = 1$; (ii) $v(\varphi \wedge \psi) = minimo(v(\varphi), v(\psi))$.
- c) (i) $v(\varphi \lor \psi) = 1$ sse $v(\varphi) = 1$ ou $v(\psi) = 1$; (ii) $v(\varphi \lor \psi) = m\acute{a}ximo(v(\varphi), v(\psi))$.
- **d)** $v(\varphi \rightarrow \psi) = 1$ sse $v(\varphi) = 0$ ou $v(\psi) = 1$.
- **e)** $v(\varphi \leftrightarrow \psi) = 1$ sse $v(\varphi) = v(\psi)$.

Dem.: Exercício.

Proposição: Seja $f: \mathcal{V}^{CP} \longrightarrow \{0, 1\}$ uma função. Então, existe uma e uma só valoração v t.q. v(p) = f(p), para todo $p \in \mathcal{V}^{CP}$.

Dem.: Consequência imediata do Princípio de recursão estrutural para fórmulas do CP.

Exemplo:

- 1 Existe uma e uma só valoração v t.q. v(p) = 0, para todo $p \in \mathcal{V}^{CP}$. (No exemplo seguinte denotaremos tal valoração por v_1 .)
- Existe uma e uma só valoração v t.q.

$$v(p) = \left\{ egin{array}{ll} 1 & ext{se } p \in \{p_0, p_2\} \ 0 & ext{se } p \in \mathcal{V}^{CP} - \{p_0, p_2\} \end{array}
ight. .$$

(No exemplo seguinte denotaremos tal valoração por v_2 .)

Definição:

O valor lógico de uma fórmula φ para uma valoração v é $v(\varphi)$.

Exemplo: Sejam v_1 e v_2 as valorações do exemplo anterior, designadamente:

- (i) $v_1(p) = 0$, para todo $p \in \mathcal{V}^{CP}$;
- (ii) $v_2(p) = \begin{cases} 1 \text{ se } p \in \{p_0, p_2\} \\ 0 \text{ se } p \in \mathcal{V}^{CP} \{p_0, p_2\} \end{cases}$.
- **a)** Seja $\varphi = (p_1 \vee p_2) \rightarrow (p_1 \wedge p_2)$.

Como $v_1(p_1) = v_1(p_2) = 0$, $v_1(p_1 \vee p_2) = 0$, donde, de imediato, seque $v_1(\varphi) = 1$.

(Exercício: verifique que $v_2(\varphi) = 0$.)

- **b)** Seja $\psi = \neg p_1 \leftrightarrow (p_1 \rightarrow \bot)$.
 - Como $v_1(p_1) = 0$, por um lado, temos $v_1(\neg p_1) = 1$ e, por outro, temos $v_1(p_1 \rightarrow \perp) = 1$. Assim, $v_1(\psi) = 1$.

(Exercício: verifique que $v_2(\psi) = 1$.

Em particular, observe que v_2 e v_1 atribuem o mesmo valor lógico à única variável proposicional que ocorre em ψ .)

Proposição: Sejam v_1 e v_2 valorações e seja φ uma fórmula do CP.

Se, para todo $p \in var(\varphi)$, $v_1(p) = v_2(p)$, então $v_1(\varphi) = v_2(\varphi)$.

Dem.: Por indução estrutural em fórmulas do CP.

Seja $P(\varphi)$ a condição: para todo $p \in var(\varphi), v_1(p) = v_2(p) \Rightarrow v_1(\varphi) = v_2(\varphi).$

- a) $P(\perp)$ é verdadeira, pois $v_1(\perp) = 0 = v_2(\perp)$, por definição de valoração.
- **b)** Suponhamos que p' é uma variável proposicional e que, para todo $p \in var(p')$, $v_1(p) = v_2(p)$.

Assim, temos $v_1(p') = v_2(p')$, pois $p' \in var(p')$, uma vez que $var(p') = \{p'\}$.

Deste modo, para qualquer $p' \in \mathcal{V}^{CP}$, P(p') é verdadeira.

Dem. (cont.):

- c) Sejam $\varphi_1, \varphi_2 \in \mathcal{F}^{CP}$ e $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$. Suponhamos $P(\varphi_1)$ e $P(\varphi_2)$ (hipóteses de indução). Mostremos $P(\varphi_1 \square \varphi_2)$.
 - Suponhamos que, para todo $p \in var(\varphi_1 \Box \varphi_2)$, $v_1(p) = v_2(p)$.
 - Então, como $var(\varphi_1 \Box \varphi_2) = var(\varphi_1) \cup var(\varphi_2)$, para $i \in \{1, 2\}$, tem-se $v_1(p) = v_2(p)$, para todo $p \in var(\varphi_i)$.
 - Daqui, aplicando as hipóteses de indução $P(\varphi_1)$ e $P(\varphi_2)$, segue que $v_1(\varphi_1) = v_2(\varphi_1)$ e $v_1(\varphi_2) = v_2(\varphi_2)$.
 - Assim,

$$v_1(\varphi_1 \square \varphi_2) = f_{\square}(v_1(\varphi_1), v_1(\varphi_2)) = f_{\square}(v_2(\varphi_1), v_2(\varphi_2)) = v_2(\varphi_1 \square \varphi_2).$$

- Consequentemente, $P(\varphi_1 \Box \varphi_2)$ é verdadeira.
- **d)** Exercício: mostrar que $P(\varphi_1)$ implica $P(\neg \varphi_1)$, para todo $\varphi_1 \in \mathcal{F}^{CP}$.

Definição:

- 1 Uma fórmula φ é uma *tautologia* quando, para qualquer valoração v, $v(\varphi) = 1$.
- 2 Uma fórmula φ é uma *contradição* quando, para qualquer valoração v, $v(\varphi) = 0$.

Notação:

A notação $\models \varphi$ significará que φ é uma tautologia.

A notação $\not\models \varphi$ significará que φ não é uma tautologia.

Exemplo:

1 A fórmula $\psi = \neg p_1 \leftrightarrow (p_1 \rightarrow \bot)$ do exemplo anterior é uma tautologia.

De facto, dada uma valoração arbitrária v, sabemos que $v(p_1) = 0$ ou $v(p_1) = 1$.

- (a) Caso $v(p_1)=0$, então $v(\neg p_1)=1$ e $v(p_1\to \bot)=1$, donde $v(\psi)=1$.
- (b) Caso $v(p_1)=1$, então $v(\neg p_1)=0$ e $v(p_1\to \bot)=0$, donde $v(\psi)=1$.

Exemplo (cont.):

- **2** Para todo $\varphi \in \mathcal{F}^{CP}$, $\varphi \land \neg \varphi$ é uma contradição.
 - Seja φ uma fórmula proposicional (arbitrária). Dada uma valoração ν (arbitrária), sabemos que $\nu(\varphi)=0$ ou $\nu(\varphi)=1$.
 - (a) Caso $v(\varphi) = 0$, então, de imediato, sabemos $v(\varphi \land \neg \varphi) = 0$.
 - (b) Caso $v(\varphi) = 1$, então $v(\neg \varphi) = 0$, donde $v(\varphi \land \neg \varphi) = 0$.
- 3 As fórmulas $p_0, \neg p_0, p_0 \lor p_1, p_0 \land p_1, p_0 \rightarrow p_1, p_0 \leftrightarrow p_1$ não são tautologias nem contradições. (Porquê?)

Proposição: Para todo $\varphi \in \mathcal{F}^{CP}$,

1 φ é tautologia se e só se $\neg \varphi$ é contradição;

2 φ é contradição se e só se $\neg \varphi$ é tautologia.

Dem.: Exercício.

Observação:

Sabendo que φ não é uma tautologia, não podemos concluir que φ é uma contradição.

Analogamente, sabendo que φ não é uma contradição, não podemos concluir que φ é uma tautologia.

Tenha-se em atenção que existem fórmulas que não são tautologias, nem são contradições (como vimos no exemplo anterior).

Método de decisão para tautologias e contradições:

Considere-se uma fórmula φ do Cálculo Proposicional (arbitrária).

A proposição no slide 12, estabelece que para quaisquer valorações v_1 e v_2 :

para todo
$$p \in var(\varphi)$$
, $v_1(p) = v_2(p) \Rightarrow v_1(\varphi) = v_2(\varphi)$.

Assim, para decidir se φ é uma tautologia (respetivamente, uma contradição), basta calcular o valor lógico de φ para $2^{\#var(\varphi)}$ valorações (o número de atribuições, possíveis, às variáveis proposicionais de φ) e verificar se o valor lógico obtido é sempre 1 (respetivamente, sempre 0).

Tal pode ser descrito através de uma *tabela de verdade*, como se segue.

Método de decisão para tautologias e contradições (cont.):

Introduzimos: uma coluna para cada variável proposicional de φ ; uma coluna para φ ; e colunas (auxiliares) para cada uma das restantes subfórmulas de φ .

Introduzimos linhas para cada uma das atribuições, possíveis, de valores de verdade às variáveis proposicionais de φ (*i.e.*, sequências de 0's e 1's de comprimento igual ao número de variáveis proposicionais em φ).

Preenchemos as colunas respeitantes às variáveis proposicionais com essas atribuições.

Nas restantes posições (i,j) da tabela, escrevemos o valor lógico da fórmula respeitante à coluna j, para uma valoração que satisfaz as atribuições às variáveis proposicionais na linha i.

Exemplo: Seja φ a fórmula $(\neg p_1 \rightarrow \neg p_2) \leftrightarrow (p_2 \rightarrow p_1)$.

Da tabela de verdade de φ , apresentada de seguida, podemos concluir que φ é uma tautologia, uma vez que φ assume o valor lógico 1, para todas as possíveis atribuições de valores de verdade às variáveis proposicionais de φ .

p_1	p_2	$\neg p_1$	$\neg p_2$	$ \neg p_1 \rightarrow \neg p_2 $	$p_2 \rightarrow p_1$	$(\neg p_1 \rightarrow \neg p_2) \leftrightarrow (p_2 \rightarrow p_1)$
1	1	0	0	1	1	1
1	0	0	1	1	1	1
0	1	1	0	0	0	1
0	0	1	1	1	1	1

Tabela de verdade de $(\neg p_1 \rightarrow \neg p_2) \leftrightarrow (p_2 \rightarrow p_1)$

Teorema (Generalização): Sejam p uma variável proposicional e sejam φ e ψ fórmulas do CP.

Se φ é tautologia, então $\varphi[\psi/p]$ é tautologia.

Dem.: Qualquer que seja a valoração v, demonstra-se, por indução estrutural na fórmula φ , que a valoração v' definida, a partir de v e de ψ , do seguinte modo

$$v'(p') = \left\{egin{array}{ll} v(\psi) & ext{se } p' = p \ \\ v(p') & ext{se } p' \in \mathcal{V}^{CP} - \{p\} \end{array}
ight.$$

é tal que $\mathbf{v}'(\varphi) = \mathbf{v}(\varphi[\psi/p])$.

Portanto, se φ é uma tautologia, $v'(\varphi) = 1$ e, pela igualdade anterior, $v(\varphi[\psi/p]) = 1$.

Assim, qualquer que seja a valoração v, $v(\varphi[\psi/p])=1$, i.e., $\varphi[\psi/p]$ é uma tautologia.

Exemplo:

A fórmula $p_0 \vee \neg p_0$ é uma tautologia.

Logo, para qualquer fórmula ψ , a fórmula $(p_0 \vee \neg p_0)[\psi/p_0] = \psi \vee \neg \psi$ é ainda uma tautologia.

Definição: Sejam φ e ψ fórmulas do CP.

Dizemos que φ é *logicamente equivalente* a ψ (notação: $\varphi \Leftrightarrow \psi$) quando a fórmula $\varphi \leftrightarrow \psi$ é uma tautologia, ou seja, quando para qualquer valoração v, $v(\varphi) = v(\psi)$.

Exemplo: Para toda a fórmula proposicional φ , $\neg \varphi \Leftrightarrow (\varphi \to \bot)$.

A demonstração deste facto pode ser sintetizada numa *tabela de verdade*, como se segue:

φ	$\neg \varphi$	$\varphi \to \perp$	$\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$
1	0	0	1
0	1	1	1

Tabela de verdade de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$.

A primeira linha da tabela mostra que o valor lógico de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$ é 1 para qualquer valoração para a qual φ assuma o valor lógico 1.

A segunda linha da tabela mostra que o valor lógico de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$ é 1 para qualquer valoração para a qual φ assuma o valor lógico 0.

Proposição: A relação de equivalência lógica satisfaz as seguintes propriedades:

- **1** para todo $\varphi \in \mathcal{F}^{CP}$, $\varphi \Leftrightarrow \varphi$ (*reflexividade*);
- **2** para todo $\varphi, \psi \in \mathcal{F}^{CP}$, se $\varphi \Leftrightarrow \psi$, então $\psi \Leftrightarrow \varphi$ (simetria);
- 3 para todo $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$, se $\varphi \Leftrightarrow \psi$ e $\psi \Leftrightarrow \sigma$, então $\varphi \Leftrightarrow \sigma$ (*transitividade*).

Dem.: Para mostrar 1, temos que mostar que, para todo $\varphi \in \mathcal{F}^{CP}$, a fórmula $\varphi \leftrightarrow \varphi$ é uma tautologia.

De facto, dado $\varphi \in \mathcal{F}^{CP}$, para qualquer valoração v, $v(\varphi) = v(\varphi)$, donde $v(\varphi \leftrightarrow \varphi) = 1$, e, consequentemente, $\varphi \leftrightarrow \varphi$ é uma tautologia.

(Exercício: mostrar 2 e 3.)

Corolário: A relação de equivalência lógica é uma relação de equivalência em \mathcal{F}^{CP} .

Dem.: Imediata, a partir da proposição anterior.

Proposição: As seguintes equivalências lógicas são válidas.

$$(\varphi \lor \psi) \lor \sigma \Leftrightarrow \varphi \lor (\psi \lor \sigma) \qquad (\varphi \land \psi) \land \sigma \Leftrightarrow \varphi \land (\psi \land \sigma)$$

$$(associatividade)$$

$$\varphi \lor \psi \Leftrightarrow \psi \lor \varphi \qquad \varphi \land \psi \Leftrightarrow \psi \land \varphi$$

$$(comutatitvidade)$$

$$\varphi \lor \varphi \Leftrightarrow \varphi \qquad \varphi \land \varphi \Leftrightarrow \varphi$$

$$(idempotência)$$

$$\varphi \lor \bot \Leftrightarrow \varphi \qquad \varphi \land \neg \bot \Leftrightarrow \varphi$$

$$(elemento neutro)$$

$$\varphi \lor \neg \bot \Leftrightarrow \neg \bot \qquad \varphi \land \bot \Leftrightarrow \bot$$

$$(elemento absorvente)$$

Proposição (cont.):

$$\varphi \lor (\psi \land \sigma) \Leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \sigma) \quad \varphi \land (\psi \lor \sigma) \Leftrightarrow (\varphi \land \psi) \lor (\varphi \land \sigma)$$
(distributividade)

$$\neg(\varphi \lor \psi) \Leftrightarrow \neg\varphi \land \neg\psi \qquad \neg(\varphi \land \psi) \Leftrightarrow \neg\varphi \lor \neg\psi$$
 (leis de De Morgan)

$$\neg\neg\varphi \Leftrightarrow \varphi \qquad \qquad \varphi \to \psi \Leftrightarrow \neg\psi \to \neg\varphi$$

(lei da dupla negação)

(contrarrecíproco)

$$\varphi \leftrightarrow \psi \Leftrightarrow (\varphi \to \psi) \land (\psi \to \varphi)$$
 $\varphi \to \psi \Leftrightarrow \neg \varphi \lor \psi$

$$\varphi \lor \psi \Leftrightarrow \neg \varphi \to \psi$$
 $\varphi \land \psi \Leftrightarrow \neg (\neg \varphi \lor \neg \psi)$

$$\neg \varphi \Leftrightarrow \varphi \to \bot$$
 $\bot \Leftrightarrow \varphi \land \neg \varphi$

(expressão de um conetivo em termos de outros conetivos)

Teorema (Substituição): Sejam $p \in \mathcal{V}^{CP}$ e $\varphi_1, \varphi_2 \in \mathcal{F}^{CP}$. Então: $\varphi_1 \Leftrightarrow \varphi_2$ sse para todo $\psi \in \mathcal{F}^{CP}$, $\psi[\varphi_1/p] \Leftrightarrow \psi[\varphi_2/p]$.

Dem.:

- \Leftarrow) Suponhamos que para todo $\psi \in \mathcal{F}^{CP}$, $\psi[\varphi_1/p] \Leftrightarrow \psi[\varphi_2/p]$. Então, em particular, teremos que $p[\varphi_1/p] \Leftrightarrow p[\varphi_2/p]$. Logo, por definição de substituição, $\varphi_1 \Leftrightarrow \varphi_2$.
- \Rightarrow) Suponhamos agora que $\varphi_1 \Leftrightarrow \varphi_2$. Demonstra-se, por indução estrutural em fórmulas do CP, que, para todo $\psi \in \mathcal{F}^{CP}$, $P(\psi)$, onde $P(\psi)$ é a condição: $\psi[\varphi_1/p] \Leftrightarrow \psi[\varphi_2/p]$.

Exemplo: Sejam φ e ψ fórmulas. Então,

$$\neg(\neg\varphi\wedge\psi) \Leftrightarrow \neg\neg\varphi\vee\neg\psi \Leftrightarrow \varphi\vee\neg\psi.$$

Justificações

- (1) Lei de De Morgan.
- (2) Dada uma variável proposicional $p \notin var(\psi)$ (que existe sempre, pois o número de variáveis proposicionais que ocorrem em φ é finito), pelo Teorema da Substituição, como $\neg\neg\varphi \Leftrightarrow \varphi$, $(p \lor \psi)[\neg\neg\varphi/p] \Leftrightarrow (p \lor \psi)[\varphi/p]$ e assim, uma vez que $(p \lor \psi)[\neg\neg\varphi/p] = \neg\neg\varphi \lor \psi$ e $(p \lor \psi)[\varphi/p] = \varphi \lor \psi$, segue-se que $\neg\neg\varphi \lor \psi \Leftrightarrow \varphi \lor \psi$.

Donde, como \Leftrightarrow é transitiva, podemos concluir a equivalência lógica entre a primeira fórmula e a última fórmula, ou seja,

$$\neg(\neg\varphi\wedge\psi)\Leftrightarrow\varphi\vee\neg\psi.$$

Definição:

Seja $X \subseteq \{\bot, \neg, \land, \lor, \rightarrow, \leftrightarrow\}$ um conjunto de conetivos.

X diz-se *completo* quando, para todo $\varphi \in \mathcal{F}^{CP}$, existe $\psi \in \mathcal{F}^{CP}$ tal que $\varphi \Leftrightarrow \psi$ e todos os conetivos de ψ pertencem a *X*.

Proposição: Os conjuntos de conetivos $\{\rightarrow, \neg\}$, $\{\rightarrow, \bot\}$, $\{\land, \neg\}$ e $\{\lor, \neg\}$ são completos.

Dem.: Mostremos o resultado para o caso $\{\rightarrow, \neg\}$. (Os outros casos podem mostrar-se seguindo ideias semelhantes.)

Comecemos por definir, por recursão estrutural em fórmulas, a função $f: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}$ t.q.:

- **a)** $f(\bot) = \neg(p_0 \to p_0);$
- **b)** f(p) = p, para todo $p \in \mathcal{V}^{CP}$;
- **c)** $f(\neg \varphi) = \neg f(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- **d)** $f(\varphi \to \psi) = f(\varphi) \to f(\psi)$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- **e)** $f(\varphi \lor \psi) = \neg f(\varphi) \to f(\psi)$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- **f)** $f(\varphi \wedge \psi) = \neg (f(\varphi) \rightarrow \neg f(\psi))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- **g)** $f(\varphi \leftrightarrow \psi) = \neg((f(\varphi) \to f(\psi)) \to \neg(f(\psi) \to f(\varphi)))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$.

Dem. (cont.):

Lema: Para todo $\varphi \in \mathcal{F}^{CP}$, $\varphi \Leftrightarrow f(\varphi)$ e os conetivos de $f(\varphi)$ pertencem ao conjunto $\{\rightarrow, \neg\}$.

Dem.: Por indução estrutural em φ . (Exercício).

Do lema anterior concluimos de imediato que $\{\to, \neg\}$ é completo, pois: para toda a fórmula φ , existe uma fórmula ψ —a fórmula $f(\varphi)$ — tal que $\varphi \Leftrightarrow \psi$ e os conetivos de ψ pertencem ao conjunto $\{\to, \neg\}$.

Exemplo: Da demonstração da proposição anterior, podemos concluir que a fórmula

$$f((\neg p_1 \land p_2) \rightarrow \bot) = \neg(\neg p_1 \rightarrow \neg p_2) \rightarrow \neg(p_0 \rightarrow p_0)$$

é logicamente equivalente a $(\neg p_1 \land p_2) \rightarrow \bot$ e os seus conetivos pertencem ao conjunto $\{\rightarrow, \neg\}$.

Notação:

Uma vez que a conjunção é uma operação associativa, utilizaremos a notação $\varphi_1 \wedge ... \wedge \varphi_n$ (com $n \in \mathbb{N}$) para representar qualquer associação, através da conjunção, das fórmulas $\varphi_1,...,\varphi_n$ duas a duas.

Analogamente, como a disjunção é tambem associativa, utilizaremos a notação $\varphi_1 \lor ... \lor \varphi_n$ para representar qualquer associação, através da disjunção, das fórmulas $\varphi_1, ..., \varphi_n$ duas a duas.

Em ambos os casos, quando n = 1, as notações anteriores representam simplesmente a fórmula φ_1 .

Definição: Uma fórmula proposicional diz-se um *literal* se for uma variável proposicional ou se for a negação de uma de variável proposicional.

Definição: Fórmulas do CP das formas

i)
$$(I_{11} \vee ... \vee I_{1m_1}) \wedge ... \wedge (I_{n1} \vee ... \vee I_{nm_n})$$

ii)
$$(I_{11} \wedge ... \wedge I_{1m_1}) \vee ... \vee (I_{n1} \wedge ... \wedge I_{nm_n})$$

em que os l_{ij} são literais e n, bem como os m_i , pertencem a \mathbb{N} , serão designadas por *formas normais conjuntivas* (FNC) e *formas normais disjuntivas* (FND), respetivamente.

Exemplo:

- a) A fórmula $(p_1 \lor p_0) \land (p_0 \lor \neg p_1)$ é uma FNC: na definição de FNC, tome-se n=2, $m_1=2$, $m_2=2$ e tomem-se os literais $l_{11}=p_1$, $l_{12}=p_0$, $l_{21}=p_0$ e $l_{22}=\neg p_1$.
 - Esta fórmula não é uma FND: numa FND as conjunções apenas podem operar com literais e nesta fórmula a conjunção opera em disjunções.
- **b)** A fórmula $(p_1 \lor p_0) \land \neg p_1$ é uma FNC: na definição de FNC, tome-se n = 2, $m_1 = 2$, $m_2 = 1$ e tomem-se os literais $l_{11} = p_1$, $l_{12} = p_0$, $l_{21} = \neg p_1$.
 - Esta fórmula não é uma FND: a conjunção está a operar numa disjunção (no caso do primeiro argumento).

Exemplo (cont.):

- c) A fórmula $p_1 \land \neg p_2 \land \neg p_0$ é uma FNC (na definição de FNC, faça-se $n=3, m_1=1, m_2=1, m_3=1, l_{11}=p_1, l_{21}=\neg p_2$ e $l_{31}=\neg p_0$) e é também uma FND (na definição de FND, faça-se $n=1, m_1=3, l_{11}=p_1, l_{12}=\neg p_2$ e $l_{13}=\neg p_0$).
 - Também a fórmula $p_1 \vee p_2$ é, em simultâneo, uma FND e uma FNC.
 - Mais geralmente, conjunções de literais e disjunções de literais são, em simultâneo, formas normais conjuntivas e disjuntivas.
- d) Todo o literal l é simultaneamente uma FNC e uma FND (nas definições de FNC e de FND, basta tomar n = 1, $m_1 = 1$ e $l_{11} = l$).
- e) A fórmula $\neg(p_1 \lor p_0)$ não é FNC nem é FND: em formas normais (conjuntivas ou disjuntivas) as negações apenas podem operar em variáveis proposicionais.

Proposição: Para todo $\varphi \in \mathcal{F}^{CP}$:

- (i) existem FNC's logicamente equivalentes a φ ; e
- (ii) existem FND's logicamente equivalentes a φ .

Dem.: Dada uma fórmula φ , uma forma normal conjuntiva e uma formal normal disjuntiva logicamente equivalentes a φ podem ser obtidas através das seguintes transformações:

1. Eliminar equivalências, implicações e ocorrências do absurdo, utilizando as equivalências lógicas

$$\varphi_1 \leftrightarrow \varphi_2 \Leftrightarrow (\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1), \varphi_1 \to \varphi_2 \Leftrightarrow \neg \varphi_1 \lor \varphi_2 \in \bot \Leftrightarrow \varphi_1 \land \neg \varphi_1.$$

- 2. Mover negações que se encontrem fora de conjunções ou disjunções para dentro delas, utilizando as leis de De Morgan.
- 3. Eliminar duplas negações.
- 4. Aplicar distributividade entre a conjunção e a disjunção.

Exemplo: Seja
$$\varphi = ((\neg p_1 \lor p_2) \to p_3) \land p_0$$
. Então:

e a última fórmula é uma FNC;

ii)
$$\varphi \\ \Leftrightarrow ((p_1 \land \neg p_2) \lor p_3) \land p_0 \quad \text{(por i)}) \\ \Leftrightarrow (p_1 \land \neg p_2 \land p_0) \lor (p_3 \land p_0),$$

sendo a última fórmula uma FND.

Observação:

Um método alternativo para obter uma FND e uma FNC logicamente equivalentes a uma dada fórmula φ recorre à tabela de verdade de φ .

Em particular, vejamos como obter uma FND φ^d , logicamente equivalente a φ , a partir da tabela de verdade de φ .

 Se φ é uma contradição ou uma tautologia, basta tomar, respetivamente, uma FND que seja uma contradição e uma FND que seja uma tautologia; por exemplo, tome-se, respetivamente, φ^d = p₀ ∧ ¬p₀ e φ^d = p₀ ∨ ¬p₀. Doutro modo, sem perda de generalidade, suponhamos, que p₁,..., p_n são as variáveis proposicionais que ocorrem em φ¹. A tabela de verdade de φ terá 2ⁿ linhas e pode ser representada da seguinte forma:

p_1		p_{j}		p _n	φ	
1		1		1	<i>b</i> ₁	
:	:	:	:	:	:	
<i>a</i> _{i,1}		$a_{i,j}$		a _{i,n}	bi	
:	:	:	:	:	:	
0		0		0	b_{2^n}	

onde, para cada $i \in \{1, ..., 2^n\}$, $b_i = v_i(\varphi)$ para toda a valoração v_i tal que $v_i(p_j) = a_{i,j}$ para todo $j \in \{1, ..., n\}$.

¹Note-se que uma fórmula que não é tautologia nem é contradição terá que ter pelo menos uma variável proposicional. (Exercício)

Para cada $i \in \{1, ..., 2^n\}$ tal que $b_i = 1$ seja

$$lpha_{i,j} = \left\{ egin{array}{ll} oldsymbol{
ho}_j & ext{se } a_{i,j} = 1 \ \neg oldsymbol{
ho}_j & ext{se } a_{i,j} = 0 \end{array}
ight. \quad ext{(para todo } j \in \{1, \dots, n\})$$

e seja

$$\beta_i = \alpha_{i,1} \wedge \alpha_{i,2} \wedge \cdots \wedge \alpha_{i,n}^2$$

Finalmente, suponhamos que i_1, i_2, \dots, i_k são as linhas para as quais $b_{i_k} = 1$, e tome-se

$$\varphi^{\mathbf{d}} = \beta_{\mathbf{i_1}} \vee \beta_{\mathbf{i_2}} \vee \cdots \vee \beta_{\mathbf{i_k}}.$$

Prova-se que φ^d assim definida, de facto, é uma FND e é logicamente equivalente a φ .

²Note-se que o valor lógico na linha *i* da tabela de verdade de β_i é 1 enquanto que em todas as outras linhas é 0.

Exemplo: Consideremos $\varphi = ((p_3 \to p_1) \lor (\neg p_1 \leftrightarrow \bot)) \land p_2$.

Denotemos por ψ a subfórmula $(p_3 \to p_1) \lor (\neg p_1 \leftrightarrow \bot)$ de φ .

A tabela de verdade de φ é:

<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	上	$\neg p_1$	$p_3 \rightarrow p_1$	$\neg p_1 \leftrightarrow \bot$	ψ	φ
1	1	1	0	0	1	1	1	1
1	1	0	0	0	1	1	1	1
1	0	1	0	0	1	1	1	0
1	0	0	0	0	1	1	1	0
0	1	1	0	1	0	0	0	0
0	1	0	0	1	1	0	1	1
0	0	1	0	1	0	0	0	0
0	0	0	0	1	1	0	1	0

As linhas para as quais φ tem valor lógico 1 são a 1^a, a 2^a e a 6^a. Portanto, uma FND logicamente equivalente a φ é: $(p_1 \wedge p_2 \wedge p_3) \vee (p_1 \wedge p_2 \wedge \neg p_3) \vee (\neg p_1 \wedge p_2 \wedge \neg p_3).$

Definição: Seja *v* uma valoração.

- 1 Dada uma fórmula do CP φ , dizemos que v satisfaz φ (ou que v $\not\in$ modelo de φ), e escrevemos $v \models \varphi$, quando $v(\varphi) = 1$.
 - Quando v não satisfaz φ (i.e., quando $v(\varphi) = 0$), escrevemos $v \not\models \varphi$.
- 2 Dado um conjunto de fórmulas do CP Γ, dizemos que v satisfaz Γ (ou que v é modelo de Γ), e escrevemos v ⊨ Γ, quando v satisfaz todas as fórmulas de Γ.
 - Quando v $n\~{a}o$ satisfaz Γ (i.e., quando existe $\varphi \in \Gamma$ t.q. $v \not\models \varphi$ ou, equivalentemente, quando existe $\varphi \in \Gamma$ t.q. $v(\varphi) = 0$) escrevemos $v \not\models \Gamma$.

Exemplo: Seja v_0 a valoração que atribui o valor lógico 0 a todas as variáveis proposicionais.

- 1 $v_0 \models p_1 \leftrightarrow p_2 \text{ e } v_0 \models \neg p_1 \land \neg p_2;$
- 2 $v_0 \not\models p_1 \lor p_2 e v_0 \not\models p_1 \leftrightarrow \neg p_2$;
- $\mathbf{4} \quad \mathbf{v}_0 \not\models \{\mathbf{p}_1 \leftrightarrow \mathbf{p}_2, \mathbf{p}_1 \lor \mathbf{p}_2\} \ (\mathbf{v}_0 \text{ não satisfaz a } 2^a \text{ fórmula});$
- 5 $v_0 \not\models \{\neg p_1 \land \neg p_2, p_1 \leftrightarrow \neg p_2\}$ (v_0 não satisfaz a 2^a fórmula).

Observação: Dado que no conjunto vazio não há qualquer fórmula, tem-se, trivialmente, que:

para toda a valoração $v, v \models \emptyset$.

Definição: Seja Γ um conjunto de fórmulas do CP.

- 1 Γ diz-se um conjunto (semanticamente) consistente ou satisfazível quando alguma valoração satisfaz Γ.
- Σ diz-se um conjunto (semanticamente) inconsistente ou insatisfazível quando não há valorações que satisfaçam Γ.

Exemplo:

- a) Como vimos no exemplo anterior, o conjunto de fórmulas $\Delta_1 = \{ p_1 \leftrightarrow p_2, \neg p_1 \land \neg p_2 \} \text{ \'e satisfeito pela valoração } v_0, \text{ que atribui valor lógico 0 a qualquer variável proposicional.}$
 - Portanto, Δ_1 é consistente.
- **b)** O conjunto $\Delta_2 = \{ p_1 \leftrightarrow p_2, p_1 \lor p_2 \}$, considerado no exemplo anterior, não é satisfeito pela valoração v_0 .
 - Mas, Δ_2 é satisfeito, por exemplo, pela valoração que atribui valor lógico 1 a qualquer variável proposicional.
 - Logo, Δ_2 é também consistente.

Exemplo (cont.):

c) O conjunto $\Delta_3 = \{ \neg p_1 \land \neg p_2, p_1 \leftrightarrow \neg p_2 \}$, considerado no exemplo anterior, é inconsistente.

Dem.:

Suponhamos que existe uma valoração v que satisfaz Δ_3 .

Então,
$$v(\neg p_1 \land \neg p_2) = 1$$
, e portanto $v(p_1) = 0$ e $v(p_2) = 0$, e $v(p_1 \leftrightarrow \neg p_2) = 1$.

Ora, de $v(p_2)=0$, segue $v(\neg p_2)=1$ e daqui e de $v(p_1)=0$, segue $v(p_1\leftrightarrow \neg p_2)=0$, o que contradiz $v(p_1\leftrightarrow \neg p_2)=1$.

Logo, não podem existir valorações que satisfaçam Δ_3 e, assim, Δ_3 é inconsistente.

53/71

Proposição: Sejam Γ e Δ conjuntos de fórmulas do CP tais que $\Gamma \subset \Delta$. Então:

- i) se Δ é consistente, então Γ é consistente;
- ii) se Γ é inconsistente, então Δ é inconsistente.

Dem.: Exercício.

O *Problema da satisfazibilidade*, denotado por **SAT**, é o problema: dada uma fórmula proposicional φ , φ é satisfazível?

SAT é equivalente ao problema de decidir se uma fórmula é uma contradição (φ é satisfazível sse φ não é contradição), podendo ser decidido com recurso a tabelas de verdade.

A decisão de **SAT** através de tabelas de verdade, no pior caso, poderá requerer a construção de toda a tabela, tornando-se ineficiente (quando a fórmula envolve muitas variáveis proposicionais).

Há métodos mais eficientes que as tabelas de verdade para decidir **SAT**, tipicamente baseados em FNC's e no *princípio da resolução* (se v satisfaz $\varphi \lor \psi$ e v satisfaz $\neg \varphi \lor \sigma$, então v satisfaz $\psi \lor \sigma$), mas, no pior caso, ainda assim, poderão também requerer *tempo exponencial*.

SAT é um problema na *classe* **NP** (i.e., pode ser decidido em *tempo polinomial* em *modelos de computação não-deterministas*), sendo o exemplo paradigmático de um *problema* **NP**-*completo*.

Definição: Seja φ uma fórmula do CP e seja Γ um conjunto de fórmulas do CP.

- 1 Dizemos que φ é consequência semântica de Γ, e escrevemos Γ $\models \varphi$, quando, para toda a valoração v, se $v \models \Gamma$, então $v \models \varphi$.
- Escrevemos Γ ⊭ φ quando φ não é consequência semântica de Γ, i.e., quando para alguma valoração ν se tem ν ⊨ Γ e, no entanto, ν ⊭ φ.

Observação: Da definição anterior, aplicando as definições de satisfação de uma fórmula e de satisfação de um conjunto de fórmulas, segue de imediato que:

- 1 Γ $\models \varphi$ sse para toda a valoração v, se para todo $\psi \in \Gamma$, $v(\psi) = 1$, então $v(\varphi) = 1$.
- 2 $\Gamma \not\models \varphi$ sse para alguma valoração ν se tem, para todo $\psi \in \Gamma$, $\nu(\psi) = 1$, bem como $\nu(\varphi) = 0$.

Exemplo:

- 1 Seja $\Gamma = \{p_1, \neg p_1 \lor p_2\}$. Então:
 - (a) $\Gamma \models p_1$.

(Se tomarmos uma valoração v tal que $v \models \Gamma$, *i.e.*, uma valoração tal que $v(p_1) = 1$ e $v(\neg p_1 \lor p_2) = 1$, em particular, temos $v(p_1) = 1$.)

(b) $\Gamma \models p_2$.

(Tomando uma valoração v tal que $v(p_1)=1$ e $v(\neg p_1 \lor p_2)=1$, temos $v(\neg p_1)=0$. Daqui e de $v(\neg p_1 \lor p_2)=1$, segue $v(p_2)=1$.)

(c) $\Gamma \models p_1 \wedge p_2$.

(Tomando uma valoração v tal que $v(p_1)=1$ e $v(\neg p_1 \lor p_2)=1$, temos necessariamente $v(p_1)=1$ e $v(p_2)=1$ (como vimos nos exemplos anteriores) e, por isso, temos $v(p_1 \land p_2)=1$.)

Exemplo (cont.):

- 1 Recorde que $\Gamma = \{p_1, \neg p_1 \lor p_2\}$.
 - (d) $\Gamma \not\models p_3$.

(Existem valorações v tais que $v \models \Gamma$ e $v(p_3) = 0$. Por exemplo, a valoração que atribui valor lógico 1 a p_1 e p_2 e valor lógico 0 às restantes variáveis proposicionais é uma tal valoração.)

(e) $\Gamma \not\models \neg p_1 \lor \neg p_2$.

(Por exemplo, para a valoração v_1 tal que $v_1(p_i) = 1$, para todo $i \in \mathbb{N}_0$, temos $v_1 \models \Gamma$ e, no entanto, $v_1(\neg p_1 \lor \neg p_2) = 0$.)

(f) $\Gamma \models p_3 \vee \neg p_3$.

(Se tomarmos uma valoração v tal que $v \models \Gamma$, temos $v(p_3 \lor \neg p_3) = 1$. De facto, $p_3 \lor \neg p_3$ é uma tautologia e, como tal, o seu valor lógico é 1 para qualquer valoração (em particular, para aquelas valorações que satisfazem Γ).)

Exemplo (cont.):

- 2 Para todo $\varphi, \psi \in \mathcal{F}^{CP}$, $\{\varphi, \varphi \to \psi\} \models \psi$.
 - De facto, para qualquer valoração v, se $v(\varphi) = 1$ e $v(\varphi \to \psi) = 1$, então $v(\psi) = 1$.
- **3** Já a afirmação "para todo $\varphi, \psi \in \mathcal{F}^{CP}, \{\varphi \to \psi\} \models \psi$ " é falsa.

Por exemplo, $\{p_1 \to p_2\} \not\models p_2$ (uma valoração v tal que $v(p_1) = v(p_2) = 0$ satisfaz $\{p_1 \to p_2\}$ e não satisfaz p_2). **Proposição**: Para todo $\varphi \in \mathcal{F}^{CP}$, $\models \varphi$ se e só se $\emptyset \models \varphi$.

Dem.:

Suponhamos que φ é uma tautologia.

Então, para toda a valoração v, $v \models \varphi$.

Assim, a implicação " $v \models \emptyset \Rightarrow v \models \varphi$ " é verdadeira (o seu consequente é verdadeiro), pelo que, $\emptyset \models \varphi$.

Reciprocamente, suponhamos agora que $\emptyset \models \varphi$, *i.e.*, suponhamos que para toda a valoração v,

$$\mathbf{v} \models \emptyset \Rightarrow \mathbf{v} \models \varphi.$$

Seja v uma valoração arbitrária.

Pretendemos mostrar que $v \models \varphi$.

Ora, trivialmente, $v \models \emptyset$ (conforme a observação do slide 50).

Assim, da suposição, segue imediatamente $v \models \varphi$.

Observação:

Se Γ é um conjunto de fórmulas inconsistente, então $\Gamma \models \varphi$, para todo $\varphi \in \mathcal{F}^{CP}$. (Porquê?)

Como tal, é possível ter-se $\Gamma \models \varphi$ sem que existam valorações que satisfaçam Γ .

Notação: Muitas vezes, no contexto da relação de consequência semântica, usaremos a vírgula para denotar a união de conjuntos e escrevemos uma fórmula para denotar o conjunto singular composto por essa fórmula.

Assim, por exemplo, dadas fórmulas $\varphi, \psi, \varphi_1, ..., \varphi_n$ e conjuntos de fórmulas Γ, Δ , escrevemos:

- a) $\Gamma, \Delta \models \varphi$ como abreviatura para $\Gamma \cup \Delta \models \varphi$;
- **b)** $\Gamma, \varphi \models \psi$ como abreviatura para $\Gamma \cup \{\varphi\} \models \psi$;
- **c)** $\varphi_1, ..., \varphi_n \models \varphi$ como abreviatura para $\{\varphi_1, ..., \varphi_n\} \models \varphi$.

Proposição: Sejam φ e ψ fórmulas e sejam Γ e Δ conjuntos de fórmulas.

- a) Se $\varphi \in \Gamma$, então $\Gamma \models \varphi$.
- **b)** Se $\Gamma \models \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \models \varphi$.
- c) Se $\Gamma \models \varphi$ e $\Delta, \varphi \models \psi$, então $\Delta, \Gamma \models \psi$.
- d) $\Gamma \models \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \models \psi$.
- e) Se $\Gamma \models \varphi \rightarrow \psi$ e $\Gamma \models \varphi$, então $\Gamma \models \psi$.

Demonstração:

a) Se $\varphi \in \Gamma$, então $\Gamma \models \varphi$

Dem.:

Suponhamos que $\varphi \in \Gamma$.

Seja *v* uma valoração e suponhamos que *v* satisfaz Γ.

(Queremos mostrar que v satisfaz φ , *i.e.*, $v(\varphi) = 1$.)

Então, da definição de satisfação de conjuntos de fórmulas, sabemos que ν atribui valor lógico 1 a todas as fórmulas de Γ .

Assim, dado que por hipótese $\varphi \in \Gamma$, temos $v(\varphi) = 1$.

b) Se $\Gamma \models \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \models \varphi$

Dem.:

Seja v uma valoração.

Suponhamos que v satisfaz Δ .

Assim, em particular, v satisfaz Γ , pois (por hipótese) $\Gamma \subseteq \Delta$.

Donde, pela hipótese de que φ é uma consequência semântica de Γ , segue que $v(\varphi)=1$.

- c) Exercício.
- d) $\Gamma \models \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \models \psi$

Dem.:

⇒) Seja v uma valoração.

Suponhamos que ν satisfaz $\Gamma \cup \{\varphi\}$.

Então, por definição de satisfação de conjuntos de fórmulas, v satisfaz Γ e $v(\varphi)=1$ (*) .

Assim, como v satisfaz Γ , da hipótese $\Gamma \models \varphi \rightarrow \psi$ segue que $v(\varphi \rightarrow \psi) = 1$.

Daqui e de (*) segue $v(\psi) = 1$.

⇐) Exercício.

e) Se $\Gamma \models \varphi \rightarrow \psi$ e $\Gamma \models \varphi$, então $\Gamma \models \psi$

Dem.:

Seja v uma valoração.

Suponhamos que v satisfaz Γ .

Então, da hipótese $\Gamma \models \varphi \rightarrow \psi$, podemos concluir que $\nu(\varphi \rightarrow \psi) = 1$ e, da hipótese $\Gamma \models \varphi$, podemos concluir que $\nu(\varphi) = 1$.

De $v(\varphi \to \psi) = 1$ e de $v(\varphi) = 1$ segue $v(\psi) = 1$.

68/71

Proposição: Sejam $\varphi, \varphi_1, ..., \varphi_n$ fórmulas, onde $n \in \mathbb{N}$.

As seguintes proposições são equivalentes:

- i) $\varphi_1,...,\varphi_n \models \varphi$;
- ii) $\varphi_1 \wedge ... \wedge \varphi_n \models \varphi$;
- iii) $\models (\varphi_1 \wedge ... \wedge \varphi_n) \rightarrow \varphi$.

Dem.: A equivalência entre ii) e iii) é um caso particular de d) da proposição anterior.

A equivalência entre i) e ii) pode ser demonstrada a partir da seguinte equivalência mais geral

"para todo $\Gamma \subseteq \mathcal{F}^{CP}$, $\Gamma, \varphi_1, ..., \varphi_n \models \varphi$ sse $\Gamma, \varphi_1 \land ... \land \varphi_n \models \varphi$ ", a qual pode ser demonstrada por inducão em n.

A equivalência entre i) e iii) segue, então, por transitividade.

П

Proposição: Seja φ uma fórmula do CP e seja Γ um conjunto de fórmulas do CP. Então:

 $\Gamma \models \varphi \text{ se e s\'o se } \Gamma \cup \{\neg \varphi\} \text{ \'e semanticamente inconsistente}.$

Dem.:

 \Rightarrow) Tendo em vista uma contradição, suponhamos que $\Gamma \cup \{\neg \varphi\}$ é semanticamente consistente, *i.e.*, suponhamos que existe uma valoração v que satisfaz $\Gamma \cup \{\neg \varphi\}$.

Então, v satisfaz Γ e $v(\neg \varphi) = 1$, *i.e.*, $v(\varphi) = 0$ (*) . Contudo, da hipótese, uma vez que v satisfaz Γ , podemos concluir que $v(\varphi) = 1$, o que é contraditório com (*).

Logo, $\Gamma \cup \{\neg \varphi\}$ é semanticamente inconsistente.

 \Leftarrow) Suponhamos que v satisfaz Γ.

Então, $v(\neg \varphi) = 0$, de outra forma teríamos $v(\neg \varphi) = 1$, donde, como v satisfaz Γ , $\Gamma \cup \{\neg \varphi\}$ seria semanticamente consistente, contrariando a hipótese.

Logo,
$$v(\varphi) = 1$$
.

Mostrámos, assim, que toda a valoração que satisfaz Γ também satisfaz φ e, portanto, $\Gamma \models \varphi$.