1. (8 punti) Considera il linguaggio

$$L = \{0^m 1^n \mid m/n \ \dot{e} \ un \ numero \ intero\}.$$

Dimostra che L non è regolare.

Usiamo il Pumping Lemma per dimostrare che il linguaggio non è regolare.

Supponiamo per assurdo che L sia regolare:

- sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola $w = 0^{k+1}1^{k+1}$, che è di lunghezza maggiore di k ed appartiene ad L perché (k+1)/(k+1) = 1;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq k$;
- poiché $|xy| \le k$, allora x e y sono entrambe contenute nella sequenza di 0. Inoltre, siccome $y \ne \varepsilon$, abbiamo che $x = 0^q$ e $y = 0^p$ per qualche $q \ge 0$ e p > 0. z contiene la parte rimanente della stringa: $z = 0^{k+1-q-p}1^{k+1}$. Consideriamo l'esponente i = 0: la parola xy^0z ha la forma

$$xy^0z = xz = 0^q0^{k+1-q-p}1^{k+1} = 0^{k+1-p}1^{k+1}.$$

Si può notare che (k+1-p)/(k+1) è un numero strettamente compreso tra 0 e 1, e quindi non può essere un numero intero. Di conseguenza, la parola non appartiene al linguaggio L, in contraddizione con l'enunciato del Pumping Lemma.

2. (8 punti) Per ogni linguaggio L, sia $prefix(L) = \{u \mid uv \in L \text{ per qualche stringa } v\}$. Dimostra che se L è un linguaggio context-free, allora anche prefix(L) è un linguaggio context-free.

Se L è un linguaggio context-free, allora esiste una grammatica G in forma normale di Chomski che lo genera. Possiamo costruire una grammatica G' che genera il linguaggio prefix(L) in questo modo:

- per ogni variabile V di G, G' contiene sia la variabile V che una nuova variabile V'. La variabile V' viene usata per generare i prefissi delle parole che sono generate da V;
- tutte le regole di G sono anche regole di G';
- per ogni variabile V di G, le regole $V' \to V$ e $V' \to \varepsilon$ appartengono a G;
- per ogni regola $V \to AB$ di G, le regole $V' \to AB'$ e $V' \to A'$ appartengono a G';
- se S è la variabile iniziale di G, allora S' è la variabile iniziale di G'.
- 3. (8 punti) Una Turing machine con alfabeto binario è una macchina di Turing deterministica a singolo nastro dove l'alfabeto di input è Σ = {0,1} e l'alfabeto del nastro è Γ = {0,1, ...}. Questo significa che la macchina può scrivere sul nastro solo i simboli 0,1 e blank: non può usare altri simboli né marcare i simboli sul nastro.

Dimostra che che le Turing machine con alfabeto binario machine riconoscono tutti e soli i linguaggi Turing-riconoscibili sull'alfabeto $\{0,1\}$.

Per risolvere l'esercizio dobbiamo dimostrare che (a) ogni linguaggio riconosciuto da una Turing machine con alfabeto binario è Turing-riconoscibile e (b) ogni linguaggio Turing-riconoscibile sull'alfabeto $\{0,1\}$ è riconosciuto da una Turing machine con alfabeto binario.

- (a) Questo caso è semplice: una Turing machine con alfabeto binario è un caso speciale di Turing machine deterministica a nastro singolo. Quindi ogni linguaggio riconosciuto da una Turing machine con alfabeto binario è anche Turing-riconoscibile.
- (b) Per dimostrare questo caso, consideriamo un linguaggio L Turing-riconoscibile, e sia M una Turing machine deterministica a nastro singolo che lo riconosce. Questa TM potrebbe avere un alfabeto del nastro Γ che contiene altri simboli oltre a 0,1 e blank. Per esempio potrebbe contenere simboli marcati o separatori.

Per costruire una TM con alfabeto binario B che simula il comportamento di M dobbiamo come prima cosa stabilire una codifica binaria dei simboli nell'alfabeto del nastro Γ di M. Questa codifica è una funzione C che assegna ad ogni simbolo $a \in \Gamma$ una sequenza di k cifre binarie, dove k è un valore scelto in modo tale che ad ogni simbolo corrisponda una codifica diversa. Per esempio, se Γ contiene 4 simboli, allora k=2, perché con 2 bit si rappresentano 4 valori diversi. Se Γ contiene 8 simboli, allora k=3, e così via.

La TM con alfabeto binario B che simula M è definita in questo modo:

B = "su input w:

- 1. Sostituisce $w = w_1 w_2 \dots w_n$ con la codifica binaria $C(w_1)C(w_2)\dots C(w_n)$, e riporta la testina sul primo simbolo di $C(w_1)$.
- 2. Scorre il nastro verso destra per leggere k cifre binarie: in questo modo la macchina stabilisce qual è il simbolo a presente sul nastro di M. Va a sinistra di k celle.
- 3. Aggiorna il nastro in accordo con la funzione di transizione di M:
 - Se $\delta(r,a) = (s,b,R)$, scrive la codifica binaria di b sul nastro.
 - Se $\delta(r,a) = (s,b,L)$, scrive la codifica binaria di b sul nastro e sposta la testina a sinistra di 2k celle.
- 4. Se in qualsiasi momento la simulazione raggiunge lo stato di accettazione di M, allora accetta; se la simulazione raggiunge lo stato di rifiuto di M allora rifiuta; altrimenti prosegue con la simulazione dal punto 2."
- 4. (8 punti) Supponiamo che un impianto industriale costituito da m linee di produzione identiche debba eseguire n lavori distinti. Ognuno dei lavori può essere svolto da una qualsiasi delle linee di produzione, e richiede un certo tempo per essere completato. Il problema del bilanciamento del carico (LOADBALANCE) chiede di trovare un assegnamento dei lavori alle linee di produzione che permetta di completare tutti i lavori entro un tempo limite k.

Più precisamente, possiamo rappresentare l'input del problema con una tripla $\langle m, T, k \rangle$ dove:

- m è il numero di linee di produzione;
- T[1...n] è un array di numeri interi positivi dove T[j] è il tempo di esecuzione del lavoro j;
- ullet k è un limite superiore al tempo di completamento di tutti i lavori.

Per risolvere il problema vi si chiede di trovare un array A[1...n] con gli assegnamenti, dove A[j] = i significa che il lavoro j è assegnato alla linea di produzione i. Il tempo di completamento (o makespan) di A è il tempo massimo di occupazione di una qualsiasi linea di produzione:

$$\operatorname{makespan}(A) = \max_{1 \leq i \leq m} \sum_{A[j] = i} T[j]$$

Load Balance è il problema di trovare un assegnamento con makespan minore o uguale al limite superiore k:

LOADBALANCE = $\{\langle m, T, k \rangle \mid esiste \ un \ assegnamento \ A \ degli \ n \ lavori$ su $m \ linee \ di \ produzione \ tale \ che \ makespan(A) \leq k \}$

Figura 1: Esempio di assegnamento dei lavori $T = \{1, 1, 2, 2, 2, 3, 3, 4\}$ su 3 linee con makespan 7.

- (a) Dimostra che LoadBalance è un problema NP.
- (b) Dimostra che Loadbalance è NP-hard, usando SetPartitioning come problema NP-hard di riferimento.
- (a) LOADBALANCE è in NP. L'array A con gli assegnamenti è il certificato. Il seguente algoritmo è un verificatore per LOADBALANCE:

V = "Su input $\langle \langle m, T, k \rangle, A \rangle$:

- 1. Controlla che A sia un vettore di n elementi dove ogni elemento ha un valore compreso tra 1 e m. Se non lo è, rifiuta.
- 2. Calcola makespan(A): se è minore o uguale a k accetta, altrimenti rifiuta."

Per analizzare questo algoritmo e dimostrare che viene eseguito in tempo polinomiale, esaminiamo ogni sua fase. La prima fase è un controllo sugli n elementi del vettore A, e quindi richiede un tempo polinomiale rispetto alla dimensione dell'input. Per calcolare il makespan, la seconda fase deve calcolare il tempo di occupazione di ognuna delle m linee e poi trovare il massimo tra i tempi di occupazione, operazioni che si possono fare in tempo polinomiale rispetto alla dimensione dell'input.

(b) Dimostriamo che LOADBALANCE è NP-Hard per riduzione polinomiale da SETPARTITIONING a LOADBALANCE. La funzione di riduzione polinomiale f prende in input un insieme di numeri interi positivi $\langle T \rangle$ e produce come output la tripla $\langle 2, T, k \rangle$ dove k è uguale alla metà della somma dei valori in T:

$$k = \frac{1}{2} \sum_{1 \le i \le n} T[i]$$

Dimostriamo che la riduzione polinomiale è corretta:

- Se $\langle T \rangle \in \text{SetPartitioning}$, allora esiste un modo per suddividere T in due sottoinsiemi T_1 e T_2 in modo tale che la somma dei valori contenuti in T_1 è uguale alla somma dei valori contenuti in T_2 . Nota che questa somma deve essere uguale alla metà della somma dei valori in T, cioè uguale a k. Quindi assegnando i lavori contenuti in T_1 alla prima linea di produzione e quelli contenuti in T_2 alla seconda linea di produzione otteniamo una soluzione per LOADBALANCE con makespan uguale a k, come richiesto dal problema.
- Se $\langle 2, T, k \rangle \in \text{LOADBALANCE}$, allora esiste un assegnamento dei lavori alle 2 linee di produzione con makespan minore o uguale a k. Siccome ci sono solo 2 linee, il makespan di questa soluzione non può essere minore della metà della somma dei valori in T, cioè di k. Quindi l'assegnamento ha makespan esattamente uguale a k, ed entrambe le linee di produzione hanno tempo di occupazione uguale a k. Quindi, inserendo i lavori assegnati alla prima linea in T_1 e quelli assegnati alla seconda linea in T_2 otteniamo una soluzione per SETPARTITIONING.

La funzione di riduzione deve sommare i valori in T e dividere per due, operazioni che si possono fare in tempo polinomiale.