AIRCRAFT PERFORMANCE

Czech technical university in Prague Faculty of electrical engineering Department of control engineering

FLIGHT CONTROL SYSTEM

Principle of flight

pressure lay out on foil

$$L' = \int_{\substack{\text{Leading} \\ \text{Edge}}}^{\text{Trailing}} \left(p_{\text{lower side}} - p_{\text{upper side}} \right) dx$$

angle of attack α air speed V non-dimensional lift coefficient c_{L}

NACA 2412 12 deg of angle of attack

Horizontal flight (logitudinal plane)

engine thrust **T**aerodynamic lift **L**aerodynamic drag **D**aerodynamic pitch moment **M**weight of aircraft **W**air speed **V**

Aerodynamic forces

Lift equation $L = \overline{q} \cdot S \cdot c_L$ Drag equation $D = \overline{q} \cdot S \cdot c_D$

Pitch moment equation $M = \overline{q} \cdot S \cdot \overline{c} \cdot c_m$

Where

 \overline{q} dynamic pressure $\overline{q} = \frac{1}{2} \cdot \rho \cdot V^2$

 ρ air density

b wing span

 \overline{c} mean aerodynamic chord $\overline{c} = \int_{1/2}^{7} c$

S wing area $\overline{c} \times b$

Logitudial static stability

initial tendency of a body to return to its equilibrium state after being disturbed

equilibrium point - moment about centre of gravity to be zero $c_m = 0$

If perturb α up, need a moment that pushes nose back down (negative)

$$\frac{\partial c_m}{\partial \alpha} < 0; \quad \frac{\partial c_m}{\partial c_L} < 0$$

$$0.4 \quad \frac{\delta_e = 0}{0.3} \quad \frac{\delta_e = 0}{0.2} \quad \frac{\delta_e = 20}{0.2} \quad \frac{$$

Steady flight - trim

thrust of engine = drag force

$$T = D = \frac{1}{2} \rho \cdot v^2 \cdot S \cdot c_D$$

lift = weight of aircraft W = L

$$m.g = \frac{1}{2} \rho.v^2.S.c_L$$

zero pitch momet $\frac{1}{2} \rho . v^2 . S . c_m \overline{c} = 0$

Steady flight - trim

thrust of engine = drag force

$$T = D = \frac{1}{2} \rho \cdot v^2 \cdot S \cdot c_D$$

lift = weight of aircraft W = L

$$m.g = \frac{1}{2} \rho.v^2.S.c_L$$

zero pitch momet $\frac{1}{2} \rho . v^2 . S . c_m \overline{c} = 0$

can use elevators to provide incremental lift and moments

lift coefficient $c_{L_{Trim}} = c_{L_0} + c_{L_{\alpha}} \cdot \alpha + c_{L_{\delta e}} \cdot \delta e$

$$c_{L_{Trim}} = \frac{m.g}{\frac{1}{2}\rho.v^2.S}$$

pitch moment coefficient

$$c_m = c_{m_0} + c_{m_\alpha} \cdot \alpha + c_{m_{\delta e}} \cdot \delta e = 0$$

two equation with two unknown

$$\begin{aligned} &-c_{m_0} = c_{m_\alpha}.\alpha_{\mathit{Trim}} + c_{m_{\delta e}}.\delta e_{\mathit{Trim}} \\ &c_{\mathit{L}_{\mathit{Trim}}} - c_{\mathit{L}_0} = c_{\mathit{L}_\alpha}.\alpha_{\mathit{Trim}} + c_{\mathit{L}_{\delta e}}.\delta e_{\mathit{Trim}} \end{aligned}$$

elevator angle needed to trim

$$\delta e_{Trim} = \frac{c_{m_0} \left(c_{L_0} - c_{L_{Trim}} \right) - c_{L_{\alpha}} c_{m_0}}{c_{m_{\delta}} c_{L_{\alpha}} - c_{m_{\alpha}} c_{L_{\delta e}}}$$

Aircraft coordinate system

body-fixed (aircraft system)

flight-path (wind, aerodynamic)

Transformation

Aerodynamic to body-fixed

$$\overline{\chi}_{B} = T^{Ba} \overline{\chi}_{a} = \left[T^{aB} \right]^{T} \overline{\chi}_{a}$$

$$T^{Ba} = \begin{bmatrix} \cos \alpha \cos \beta & -\cos \alpha \sin \beta & -\sin \alpha \\ \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & -\sin \alpha \sin \beta & \cos \alpha \end{bmatrix}$$

Euler angel from angular rates

$$\dot{\phi} = p + \tan\theta \cdot (q \cdot \sin\phi + r \cdot \cos\phi)$$

$$\dot{\theta} = q \cdot \cos\phi - r \cdot \sin\phi$$

$$\dot{\psi} = \frac{q \cdot \sin\phi + r \cdot \cos\phi}{\cos\theta}$$

Transformation body-fixed from inertial

body-fixed and flight-path coordinate system

Equation of motion 6-DOF (Degree of freedom)

Newton's second law of motion:

force equation $\vec{F} = m \left(\frac{\partial \vec{v}}{\partial t} + \vec{\Omega} \times \vec{v} \right)$

moment equation $\vec{M} = \frac{\partial (\vec{I} \cdot \vec{\Omega})}{\partial t} + \vec{\Omega} \times \vec{I} \cdot \vec{\Omega}$

 \vec{F} = force vector [N]

 $m = \max[kg]$

 \vec{v} = linear velocity vector [m.s⁻¹]

 \vec{O} = angular velocity vector [rad.s⁻¹]

t = time

 $\partial/\partial t =$ derivative by time

 \vec{M} = moment vector [N.m]

 $\frac{1}{I}$ = moment of inertia[kg.s⁻²]

body-fixed coordiante system

Component form for linear velocities

 $\vec{v} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = V_a \cdot \begin{bmatrix} \cos \alpha \cdot \cos \beta \\ \sin \beta \\ \sin \alpha \cdot \cos \beta \end{bmatrix}$

Vector product

$$\vec{\Omega} = p.\mathbf{i} + q.\mathbf{j} + r.\mathbf{k}$$

$$[\vec{\Omega} \times \vec{v}] = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ p & q & r \\ u & v & w \end{vmatrix} = \mathbf{i}(q \cdot w - r \cdot v) + \mathbf{j}(r \cdot u - p \cdot w) + \mathbf{k}(p \cdot v - q \cdot u)$$

Aerodynamic values

$$V_a = \sqrt{\left(u^2 + v^2 + w^2\right)}$$

$$V_a = \text{total airspeed}$$

$$\alpha = \tan^{-1} \left(\frac{w}{V_a} \right)$$

$$\alpha$$
 = angle of attack

$$\beta = \sin^{-1} \left(\frac{v}{V_a} \right)$$

$$\beta$$
 = sideslipe angle

Equation of motion – force equation

right side

$$\vec{F} = m\vec{v} + m\left[\vec{\Omega} \times \vec{v}\right] = m\begin{bmatrix} \dot{u} + q \cdot w - r \cdot v \\ \dot{v} + r \cdot u - p \cdot w \\ \dot{w} + p \cdot v - q \cdot u \end{bmatrix}$$

left side

$$\vec{F} = \vec{A} + \vec{G} + \vec{T}$$

 $\vec{A} = \begin{bmatrix} X & Y & Z \end{bmatrix}^T$

aerodynamic force

drag force, side force, lift force*

 $\vec{G} = \begin{bmatrix} G_X & G_Y & G_Z \end{bmatrix}^T$

gravity force

 $\vec{T} = \begin{bmatrix} F_T & 0 & 0 \end{bmatrix}^T$

thrust force

gravity force

$$G_{r} = -mg \cdot \sin \theta$$

$$G_y = mg \cdot \cos\theta \cdot \sin\phi$$

$$G_z = mg \cdot \cos \theta \cdot \cos \phi$$

total force equation

$$\vec{F} = \begin{bmatrix} X - mg \cdot \sin \theta + T_x \\ Y + mg \cdot \cos \theta \cdot \sin \phi \\ Z + mg \cdot \cos \theta \cdot \cos \phi \end{bmatrix} = m \begin{bmatrix} \dot{u} + q \cdot w - r \cdot v \\ \dot{v} + r \cdot u - p \cdot w \\ \dot{w} + p \cdot v - q \cdot u \end{bmatrix}$$

$$\vec{M} = \frac{d\vec{H}}{dt} + \left[\vec{\Omega} \times \vec{H}\right] = \vec{I} \cdot \dot{\vec{\Omega}} + \dot{\vec{I}} \cdot \vec{\Omega} + \left[\vec{\Omega} \times \vec{I} \cdot \vec{\Omega}\right]$$

inertia moment

$$\bar{I} = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix}$$

right side

$$\vec{M} = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} +$$

$$+\det \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ p & q & r \\ p \cdot I_{xx} - q \cdot I_{xy} - r \cdot I_{xz} & q \cdot I_{yy} - p \cdot I_{xy} - r \cdot I_{yz} & r \cdot I_{zz} - p \cdot I_{xz} - q \cdot I_{yz} \end{vmatrix}$$

left side $\vec{M} = [L \ M \ N]^T$

roll moment, pitch moment, yaw moment

total moment equation $(I_{yz} = I_{xy} = 0)$

$$\vec{M} = \begin{bmatrix} L \\ M \\ N \end{bmatrix} = \begin{bmatrix} \dot{p} \cdot I_{xx} + q \cdot r \cdot (I_{zz} - I_{yy}) - (p \cdot q + \dot{r}) \cdot I_{xz} \\ \dot{q} \cdot I_{yy} + p \cdot r \cdot (I_{xx} - I_{zz}) + (p^2 - r^2) \cdot I_{xz} \\ \dot{r} \cdot I_{zz} + p \cdot q \cdot (I_{yy} - I_{xx}) + (q \cdot r - \dot{p}) \cdot I_{xz} \end{bmatrix}$$

Moment equation

^{*} body-fixed system

Aerodynamic model

force equation

 $X = \overline{q} \cdot S \cdot c_Y$ drag force

 $Y = \overline{q} \cdot S \cdot c_Y$ side force

 $Z = \overline{q} \cdot S \cdot c_Z$ lift force

 c_X, c_Y, c_Z non-dimensional force coefficient

moment equation

 $L = \overline{q} \cdot S \cdot b \cdot c_1$ roll moment

 $M = \overline{q} \cdot S \cdot \overline{c} \cdot c_m$ pitch moment

 $N = \overline{q} \cdot S \cdot b \cdot c_n$ yaw moment

 c_1, c_m, c_n non-dimensional moment coefficient

 b,\bar{c} wing span, mean aerodynamic chord

definition of control deflection

longitudinal coefficient

 $c_Z = c_Z(\alpha, \beta, \delta, M, \text{Re}, \vec{\Omega})$ control coef.

 $c_Z = c_{Z_0} + c_{Z_{\alpha}} \cdot \alpha - c_{Z_{\hat{\alpha}}} \cdot \delta + c_{Z_q} \cdot \frac{q \cdot \overline{c}}{2 \cdot V}$ Static coef.

 $c_m = c_{m_0} + c_{m_\alpha} \cdot \alpha + c_{m_{\bar{\alpha}}} \cdot \delta \alpha + c_{m_q} \cdot \frac{q\bar{c}}{2V}$ dynamic coef.

 $c_X = c_{X_0} + c_{X_{\alpha}} \cdot \alpha + c_{X_{\alpha^2}} \cdot \alpha^2 + c_{X_{\delta}} \cdot \delta e + c_{X_q} \cdot \frac{q \cdot \bar{c}}{2 \cdot V}$

lateral coefficient

$$\begin{split} c_Y &= c_{Y_0} + c_{Y_\beta}.\beta + c_{Y_{\delta i}}.\delta a + c_{Y_{\delta}}.\delta r + c_{Y_r}.\frac{rb}{2V} + c_{Y_p}.\frac{pb}{2V} \\ c_l &= c_{l_0} + c_{l_\beta}.\beta + c_{l_{\delta i}}.\delta a + c_{l_{\delta}}.\delta r + c_{l_r}.\frac{rb}{2V} + c_{l_p}.\frac{pb}{2V} \\ c_n &= c_{n_0} + c_{n_\beta}.\beta + c_{n_{\delta i}}.\delta a + c_{n_{\delta}}.\delta r + c_{n_r}.\frac{rb}{2V} + c_{n_p}.\frac{pb}{2V} \end{split}$$

Aerodynamic coefficient

Wind tunnel

model of the aircraft in aerodynmical wind tunnel (six-component balance)

Computational methods

CFD (Computational fluid dynamics)

3D computer software for numerical calculations aerodynamic characteristics of aircraft

Panel methods potential flow (without viscosity)

Flight test Aircraft parameter idetification

Aircraft parameter identification Parameter s(Th) |to| 1.97e-004 1.73e-011 C_xbeta 6.41e-002 1.12e-007 572594.7 -9.53e-002 5.36e-006 -1 15e-001 6 17e-007 185744.4 21684.0 -6.25e-002 2.41e-007 259252.9 2.94e-004

Least squares method Output error method Filter error method Frequency method

Summary

force equation (final form)

$$\dot{u} = r \cdot v - q \cdot w - g \cdot \sin \theta + \frac{1}{m} (X + F_T)$$

$$\dot{v} = p \cdot w - r \cdot u + g \cdot \sin \phi \cdot \cos \theta + \frac{1}{m} Y$$

$$\dot{w} = q \cdot u - p \cdot v + g \cdot \cos \phi \cdot \cos \theta + \frac{1}{m} Z$$

moment equation

$$\begin{split} \dot{p} &= \left(c_1 \cdot r + c_2 \cdot p\right) \cdot q + c_3 \cdot L + c_4 \cdot N \\ \dot{q} &= c_5 \cdot p \cdot r - c_6 \cdot \left(p^2 - r^2\right) + c_7 \cdot M \\ \dot{r} &= \left(c_8 \cdot p - c_2 \cdot r\right) \cdot q + c_4 \cdot L + c_9 \cdot N \end{split}$$

where

$$\begin{split} \Gamma \cdot c_1 = & \left(I_y - I_z \right) \cdot I_z - I_{xz}^2 & \Gamma \cdot c_4 = I_{xz} & c_7 = 1 / I_y \\ \Gamma \cdot c_2 = & \left(I_x - I_y + I_z \right) \cdot I_{xz} & c_5 = \left(I_z - I_x \right) / I_y & \Gamma \cdot c_8 = I_x \cdot \left(I_x - I_y \right) + I_{xz}^2 \\ \Gamma \cdot c_3 = & I_z & c_6 = I_{xz} / I_y & \Gamma \cdot c_9 = I_x \\ & \Gamma = & I_x \cdot I_z - I_{xz}^2 \end{split}$$

euler angle

$$\begin{split} \dot{\phi} &= p + \tan\theta \cdot \left(q \cdot \sin\phi + r \cdot \cos\phi \right) \\ \dot{\theta} &= q \cdot \cos\phi - r \cdot \sin\phi \\ \dot{\psi} &= \frac{q \cdot \sin\phi + r \cdot \cos\phi}{\cos\theta} \end{split}$$

Aerodynamic force and moment

$$\begin{split} X &= \overline{q} \cdot S \cdot c_X & L &= \overline{q} \cdot S \cdot b \cdot c_l \\ Y &= \overline{q} \cdot S \cdot c_Y & M &= \overline{q} \cdot S \cdot \overline{c} \cdot c_m & \overline{q} &= \frac{1}{2} \cdot \rho \cdot V^2 \\ Z &= \overline{q} \cdot S \cdot c_Z & N &= \overline{q} \cdot S \cdot b \cdot c_n \end{split}$$

Aerodynamic values

$$V_a = \sqrt{(u^2 + v^2 + w^2)}$$

$$\alpha = \tan^{-1} \left(\frac{w}{V_a}\right)$$

$$\beta = \sin^{-1} \left(\frac{v}{V_a}\right)$$

Aerodynamic characteristic

$$\begin{split} & \text{longitudinal} \\ & c_Z = c_{Z_0} + c_{Z_\alpha}.\alpha + c_{Z_{\tilde{\alpha}}}.\& + c_{Z_q}.\frac{q.\bar{c}}{2.V} \\ & c_m = c_{m_0} + c_{m_\alpha}.\alpha + c_{m_{\tilde{\alpha}}}.\& + c_{m_q}.\frac{q.\bar{c}}{2.V} \\ & c_X = c_{X_0} + c_{X_\alpha}.\alpha + c_{X_{\alpha^2}}.\alpha^2 + c_{X_{\tilde{\alpha}}}.\& + c_{X_q}.\frac{q.\bar{c}}{2.V} \\ & \text{lateral} \\ & c_Y = c_{Y_0} + c_{Y_\beta}.\beta + c_{Y_{\tilde{\alpha}}}.\& a + c_{Y_{\tilde{\alpha}}}.\& r + c_{Y_r}.\frac{r.b}{2.V} + c_{Y_p}.\frac{p.b}{2.V} \\ & c_l = c_{l_0} + c_{l_\beta}.\beta + c_{l_{\tilde{\alpha}}}.\& a + c_{l_{\tilde{\alpha}}}.\& r + c_{l_r}.\frac{r.b}{2.V} + c_{l_p}.\frac{p.b}{2.V} \\ & c_n = c_{n_0} + c_{n_\beta}.\beta + c_{n_{\tilde{\alpha}}}.\& a + c_{n_{\tilde{\alpha}}}.\& r + c_{n_r}.\frac{r.b}{2.V} + c_{n_p}.\frac{p.b}{2.V} \end{split}$$

Non-linear longitudinal equation of motion

zero lateral values v, p, r, ϕ (side velocity, roll rate, yaw rate, roll angle)

initial condition m = 30kg, $V_a = 25m/s$, $\rho = 1{,}225kg/m^3$, $g = 9{,}81m.s^{-2}$

aircraft model $S = 2,33m^2$, $\bar{c} = 0,514m$, $I_Y = 8,36kg.m^2$

aerodynamic parameters $c_{Z_0} = -0.23$ $c_{Z_{\alpha}} = -5.4$ $c_{Z_{\alpha}} = -0.3$ $c_{Z_{\alpha}} = 0$

 $c_{m_0} = -0.031$ $c_{m_{\alpha}} = -0.52$ $c_{m_{\delta c}} = -0.5$ $c_{m_a} = -7.84$

 $c_{X_0} = -0.027$ $c_{X_{\alpha}} = -0.15$ $c_{X_{\alpha^2}} = -0.016$ $c_{X_{\delta \alpha}} = c_{X_q} = 0$

Create a non-linear model (separate longitudinal) in Matlab (m-file)

Approximatele trim aircraft for initial condition (gravity influence!)

Plot results

