MATHS PAPER 2 MARKING SCHEME

1	$(\sqrt{2} + 2\sqrt{5})(\sqrt{5} + \sqrt{2})$	M1			
	$(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})$	M1			
	$\sqrt{10} + 4 + 10 + 2\sqrt{10}$				
	3	A 1			
2	a) $1 + \frac{-5}{2}x + 10\left(\frac{1}{2}x\right)^2 + 10\left(-\frac{1}{2}x\right)^3$	+			
	$5\left(-\frac{1}{2}x\right)^4 + \left(-\frac{1}{2}x\right)^5$				
	$1 - \frac{5}{2}x + \frac{5}{2}x^2 - \frac{5}{4}x^3 + \frac{5}{16}x^4 - \frac{5}{32}x^5$ $x = 0.04$		B1		
	b) $1 - \frac{5}{2}(0.04) + \frac{5}{2}(0.04)^2 - \frac{5}{4}(0.04)^3$		M1	✓Substitution	
	1 - 0.1 + 0.004 - 0.00008 = 0.90392		A1	CAO	
			03		
3	Perimeter = $2(1 + w)$ Absolute error for both length and width = 0.5 Max perimeter = $2(80.5 + 60.5)$				
	= 282 Actual perimeter = $2(80 + 60)$ $= 280$		B1	For either max, actual or min perimeter	
	Percentage error = $\frac{282-280}{280}$ x 100		M1		
	$= 0.714 \cong 0.7$		A1		
	(2)		03		
4	$\frac{(3x+1)(3x-1)}{(3x-1)(x+1)}$		B1 B1	For num For deno	
				Tor delio	
	$=\frac{(3x+1)}{x+1}$		B1		
			02		
5	$(x + 3)^2 + (-y - 2)^2 = 3^2$		M1		
	$x^{2} + 6x + 9 + y^{2} + 4y + 4 = 9$ $x^{2} + y^{2} + 6x + 4y + 4 = 0$		M1		
	x + y + 0x + 4y + 4 = 0		A1		

6	$\log\left(\frac{2x-11}{2}\right) = \log\left(\frac{3}{x}\right)$		
		3.41	
	$\left \frac{2x - 11}{2} \right = \frac{3}{x} \Rightarrow 2x^2 - 11x - 6 = 0$	M1	Forming quadratic equation
	2 %		equation
	$x = \frac{-(-11) \pm \sqrt{(-11)^2 - (4 \times 2 \times -6)}}{2 \times 2}$	M1	
		M1	✓ attempt to solve the formed equation
	$x = \frac{11 \pm 13}{4}$	1711	Square root of discriminant
	$x = \frac{11 - 13}{4} = -\frac{1}{2} $ (discriminate)		
	$x = \frac{11+13}{4} = 6$		
	Hence $x = 6$	A1	
	Tatal	3	A0 of both values missing
7	Total	M1, M1	
/	$\frac{1}{5} \times \frac{10}{8} \times 3 \times 2 \times \frac{1}{2}$	1011, 1011	
	= 3 days	A1	
	Total	3	
8	$\begin{cases} x = 2 \to x - 2 = 0 \\ x = 4 \to x - 4 = 0 \end{cases}$		
	$\begin{vmatrix} x - 4 \rightarrow x - 4 = 0 \\ x = -3 \rightarrow x + 3 = 0 \end{vmatrix}$		
	(x-2)(x-4)(x+3) = 0	B1	All three expressions
	Consider $(x-2)(x-4) = x(x-4) - 2(x-4)$ $x^2 - 4x - 2x + 8 = x^2 - 6x + 8$		-
	$\begin{vmatrix} x^2 - 4x - 2x + 8 = x^2 - 6x + 8 \\ (x+3)(x^2 - 6x + 8) = 0 \end{vmatrix}$	M1	Expansion and
	$x(x^2 - 6x + 8) + 3(x^2 - 6x + 8) = 0$	IVI 1	simplification
	$x^3 - 6x^2 + 8x + 3x^2 - 18x + 24 = 0$		Simplification
	$y = x^3 - 3x^2 - 10x + 24$	A1	
	Total	3	
9	$\mathbf{AB} = \begin{pmatrix} 1 & k \\ 3 & 3 \end{pmatrix} \begin{pmatrix} -3 & 5 \\ 1 & -2 \end{pmatrix}$		
	$\mathbf{AB} = \begin{pmatrix} -3+k & 5-2k \\ -6 & 9 \end{pmatrix}$	B1	
	$9(-3+k) - \{-6(5-2k)\} = 9$	M1	
	-27 + 9k - (-30 + 12k) = 9		
	-27 + 30 + 9k - 12k = 9		
	-3k = 9 + 27 - 30		
	-3k = 6		
	k = 2	A1	
	Total	3	

10.	
$P = \frac{Kt^3}{\sqrt{5}}$ $16 = \frac{K2^3}{\sqrt{5}}$	
$\frac{16\times3}{8} = \frac{8}{8}K$	$\frac{16 \times -3}{8} = K$
K=6 $K=-6$	-6
$P = \frac{6t^3}{\sqrt{5}}$	
$P = \frac{6 \times 3^3}{\sqrt{36}} =$	$\frac{6 \times 27}{6} = 27$
$P = \frac{-6 \times 3^3}{\sqrt{36}} =$	$\frac{-6\times27}{6} = -27$
11 () 750 2	0/0

$$M_1 \text{ for } 16 = \frac{K 2^3}{\sqrt{9}}$$

$$M_1$$
 for $P = \frac{6 \times 3^3}{\sqrt{3}}$

 A_1 correct value of P.

11.(a)
$$TS^2 = 8(8 + x)$$

$$144 = 64 + 8x$$

$$80 = 8$$

$$10 = x$$

$$Vu = 10cm$$

$$M_1$$
 for $144 = 64 + 8x$

$$A_1$$
 for $C.A$

$$(b)vx = 4cm \left(\frac{2}{5} \times 10^2\right)$$

$$Xu = 10cm - 4 = 6$$

$$(b)vx = 4cm \left(\frac{2}{5} \times 1/0^2\right)$$

$$Xu = 10cm - 4 = 6$$

$$4 \times 6 = 3 \times x \qquad x = \frac{4 \times 6^2}{3} = 8cm$$

$$Sx = 8cm$$

$$M_1$$
 for vx or xu

$$A_1$$
 for $8cm$

$$12. \frac{r}{p} = \frac{m}{\sqrt{n-1}}$$

$$\frac{r^2}{p^2} = \frac{m^2}{n-1}$$

$$r^{2}(n-1) = m$$

$$\frac{r^2}{p^2} = \frac{m^2}{n-1}$$

$$r^2 (n-1) = m^2 p^2$$

$$r^2 n - r^2 = m^2 p^2$$

$$\frac{r^2 n}{r^2} = \frac{m^2 p^2 + r^2}{r^2}$$

$$n = \frac{m^2 p^2 + r^2}{r^2}$$

 M_1 for squaring

 A_1 for C.A

		1	I
13	(i) P. A. Y. $E = 5000 - (3944)$		
	= Ksh 1056	B1	CAO
	(ii) Gross tax = $1056 + 1056$		
	= Ksh 2112	B1	CAO
	SLABS:		
	$9680 \times \frac{10}{100} = 968$ _		
	$\frac{9000 \times 100}{100} = \frac{900}{-}$		
	= 1144	M1	
	$X \times \frac{15}{100} = 2112$		
	$X = \frac{1144}{0.15} = 7,626.67$	M1	
	Monthly income = $9680 + 7,626.67$		
	-	A1	Acc. Vab. 17, 206, 67
	= Ksh 17,306.70	AI	Acc. Ksh 17, 306.67
		04	

14.Use logarithms tables to evaluate. (4mks)

$$\sqrt[3]{\frac{36.72 \times (0.46)^2}{185.4}}$$

Log	No
1.5649	36.72
1.3256 +	$(0.46)^2 \Rightarrow 2(1.6628)$
0.8905	,
2.2682 -	
$\frac{\overline{2}.6223}$	
$\frac{1}{2}$.6223	
3	
3 +1.6223	
3	
1.5408	3.474×10^{-1}
	= 0.3474

$VE = \sqrt{60}$ $D 2 E 2$ B	
E DΘ O	M1 Expression for an
Cos $\theta = \frac{1.5}{\sqrt{60}}$ = 0.1936 $\theta = \cos^{-} 0.1936$ $\theta = 78.84^{\circ}$	
16 A(50°S, 25°E) B(50°S, 140°E) θ = 140-25 long θ , \propto θ = 115° $\frac{\theta}{360} 2\pi 2$	B1
$\frac{115^{\circ}}{360} \times 2x \frac{22}{7} \times 6370$ $= 12,790.56 \text{km}$	M1 A1

	•		
17	(a) (i) $PQ = PO + OQ$		
	= -p + q or q - p	B1	
	(ii)OR = OP + PR	3.64	
	$=p+\frac{2}{3}(-p+q)$	M1	
	$-p+\frac{3}{3}(-p+q)$	A 1	
	$=\frac{1}{3}p+\frac{2}{3}q$	A1	
	(iii) $SQ = SO + OQ$		
	$= -\frac{3}{4}OP + OQ$ = $-\frac{3}{4}p + q \text{ or } q - \frac{3}{4}p$	B1	
	$-\frac{3}{9}$ n +a or a $-\frac{3}{9}$ n		
	$= \frac{-p}{4} + q \text{ or } q - \frac{p}{4}$	B1	
	(b) OT = $n(\frac{1}{3}p + \frac{2}{3}q)$		
	Errore DOST	M1	
	From DOST		
	OT = OS + ST	M1	
	$=\frac{3}{4}p + m(\frac{3}{4}p + q)$		
	$\frac{n}{3}p + \frac{2n}{3}q = (\frac{3}{4} - \frac{3}{4}m)p + mq$		
		M1	
	$\frac{n}{3} = \frac{3}{4} - \frac{3m}{4}$		
	4n + 9m = 9(i)	M1	
	$2n = m, M = 2 _n \dots (ii)$		
	3(1)	D . 41.	
	3 $(2n)$	Both	
	$4n+9\left(\frac{2n}{3}\right)=9$	A1	
	4n + 6n = 9		
	10n = 9 n		
	= 9		
	$\mathbf{M} = \frac{2}{3} \times \frac{10}{10} = \frac{3}{5}$		
	3 10 5		

	WORKING								MARKS	REMARKS
18	(a) Table									
	x ⁰	20	40	80	120	140	160	180		
	$-3\cos 2x$	-2.30	-0.52	2.82	1.5	-0.52	-2.30	-3.00	B2	All points ✓ (B1
	$2\sin\left(\frac{3}{2}x\right) + 30$	1.73	2.00	2.00	-1.00	-1.73	-2.00	-1.73	52	for at least 6 points \checkmark)
	(b) Graph									
	3									
	2.5								S1	
	1.5	V	/	\\y	=-3co	s(2x)			51	Given scales used and consistent
	1	/		\					P1	Consistent
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\					Plotting of 1 st
	0.5	40° 60°	80° 11	00° 120°	140° 16	60° 180°	x		C1	curve
	-0.5								P1	Smooth 1st curve drawn
	-1.5	y=1	$2sin(rac{3}{2}x$	+ 30°)	1	/			C1	Plotting 2 nd curv
	-2.5									Smooth 2 nd curv drawn
	(c) (i) Period	of the pe	eriod of	y=2 s	$\sin\left(\frac{3}{2}x\right)$	$+30)^{0}$				
	Period	$1 = \frac{360^0}{\frac{3}{2}}$	-= 240	0					B1	
	(ii) Solutio	ons 2								2400 222
		$5^0 \pm 4^0$							B1	240° seen
		$6^0 \pm 4^0$							B1	

	WORKING	MARKS	REMARKS
19.	(a) (i) Let the annual increment be Ksh. d		
	(ii) $T_{11} = a + 10d \rightarrow 288,000 = 180,000 + 10d$	M1	✓ attempt to get T_{11}
	$d = \frac{288,000 - 180,000}{10}$		10 000
	10	A1	10,800 seen
	d = Ksh. 10,800	AI	
	(iii) Sum after 11 years		✓ attempt to get S_{11}
	$S_{11} = \frac{11}{2} \{180,000 + (11 - 1)10,800\}$	M1	1,584,000 seen
	$S_{11} = 5.5\{180,000 + (10 \times 10,800)\}$	Λ 1	
	$S_{11} = \text{Ksh.} 1,584,000$	A1	✓ attempt to get T_{10}
	(b) Let the annual salary in the 10^{th} year be T_{10}		1 0 10
	$T_{10} = ar^9 \to 150,000(1.1)^9$	M1	Attempt for division
	$T_{10} = \text{Ksh.} 353,692.1537$		by 12
	Monthly salary in year 10		29,470 seen
	$\frac{353,692.1537}{12} = 29,474.35$	M1	
	= Ksh29,470 (to the nearest Ksh. 10)		
	(c) Let the years be <i>n</i>	A1	
	$\frac{n}{2}\{180,000 + (n-1)10,800\} = 1,022,400$		
	$n\{180,000 + 10,800n - 10,800\} = 2,044,800$		
	n(169,200 + 10,800n) - 2,044,800 = 0		
	$10800n^2 + 169,200n - 2,044,800 = 0$		
	Divide all through by 400		
	$27n^2 + 423n - 5112 = 0$	M1	Formation and
	$n = \frac{-(423) \pm \sqrt{(423^2) - (4 \times 27 \times -5112)}}{2 \times 27}$		solution of quadratic
			equation
	$n = \frac{-423 \pm 855}{}$		_
	$n = \frac{54}{54}$		
	$n = \frac{-423 - 855}{54} = -23\frac{2}{3} \text{ (discriminate)}$		
		A 1	Both values seen
	$n = \frac{-423 + 855}{54} = 8$		2001 (0.000)
	Hence $n = 8$	B1	8 seen
	Total	10	

$$\frac{6}{11} \times \frac{5}{8} \times \frac{7}{8} = \frac{105}{352}$$
(ii) G and prefect and pass

$$\frac{5}{11} \times \frac{2}{11} \times \frac{4}{7} = \frac{40}{847}$$

B NP passes or G NP passes
$$= \frac{6}{11} \times \frac{5}{8} \times \frac{7}{8} + \frac{5}{11} \times \frac{9}{11} \times \frac{4}{7}$$

$$=\frac{105}{352} + \frac{180}{847}$$
$$= 0.5108$$

$$M_1$$
 for $\frac{7}{8}$
 M_1 for $\frac{6}{11} \times \frac{5}{8} \times \frac{7}{8}$
 A_1 for $C.A$

$$M_1$$
 for $\frac{6}{11} \times \frac{5}{8} \times \frac{7}{8}$

$$A_1$$
 for $C.A$

$$M_1$$
 for $\frac{5}{11} \times \frac{2}{11} \times \frac{4}{7}$
 A_1 for $C.A$

$$A_1$$
 for $C.A$

$$M_1$$
 for $\frac{1}{11} \times \frac{1}{11} \times \frac{7}{7}$
 A_1 for $C.A$
 M_1 for $\frac{6}{11} \times \frac{5}{8} \times \frac{7}{8} + \frac{5}{11} \times \frac{9}{11} \times \frac{4}{7}$
 A_1 for $\frac{105}{352}$
 A_1 for $\frac{180}{847}$

$$A_1$$
 for $\frac{105}{252}$

$$A_1$$
 for $\frac{180}{847}$

$$A_1$$
 for 0.5108

$$21 \quad (d) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0^{11} & A^{11} & B^{11} & C^{11} \\ 0 & -4 & -6 & -2 \\ 0 & 0 & 8 & 8 \end{pmatrix} = \begin{pmatrix} 0 & A & B & C \\ 0 & 2 & 3 & 1 \\ 0 & 0 & 2 & 2 \end{pmatrix}$$

$$-4a = 2
a = -\frac{1}{2}$$

$$-6a + 8b = 3
8b = 3 + 6a
b = 0$$

$$-2c + 8d = 2
8d = 2
8d = 2$$

$$b = 0$$

$$-2c + 8d = 2
8d = 2$$

$$-4c = 0$$

$$c = 0$$

$$-2c + 8d = 2$$

$$8d = 2$$

$$d = \frac{1}{4}$$

$$matrix = \begin{pmatrix} -\frac{1}{2} & 0\\ 0 & \frac{1}{4} \end{pmatrix}$$

 M_1 for finding cordinates

 A_1 for cordinates

 B_1 for OABC drawn

 B_1 for $O^1A^1B^1C^1drawn$

 M_1 for Attempting to find cordinates of $O^{11}A^{11}B^{11}C^{11}$

 A_1 coordinates of $O^{11}A^{11}B^{11}C^{11}$

 B_1 for $O^{11}A^{11}B^{11}C^{11}drawn$

 M_1 for Attempting to find matrix

$$A_1$$
 for $a = -\frac{1}{2}$

 A_1 for matrix

$V = 10t - \frac{1}{2}t^2 - \frac{15}{2}$		
(a) $V = 10(0) - \frac{1}{2} (3)^2 - \frac{15}{2}$ = -7.5 mls	B1	✓ velocity (award B0 for
(b) $V = 10t - \frac{1}{2}t^2 - \frac{15}{2} \mid_{t=3}$	DI	wrong units)
$V = 10(3) - \frac{1}{2}(3)^{2} - \frac{15}{2}$ = 18 mls	M1	✓substitution
	A1	✓ velocity (award A0 for wrong units)
(c) $s = \int_4^5 \left(10t - \frac{1}{2}t^2 - \frac{15}{2} \right) dt$	M1	√limits
$S = \left[\frac{10t^2}{2} - \frac{t^3}{6} - \frac{15}{2}t + c\right]_4^5$ $S = \left[5t^2 - \frac{t^3}{6} - \frac{15}{2}t + c\right]_4^5$	M1	✓integral
$S = \left[5t^{2} - \frac{1}{6} - \frac{1}{2}t + C \right]_{4}$ $S = \left[\left(5(5)^{2} - \frac{(5)^{3}}{6} - \frac{15}{2}(5) \right) - \left(5(4)^{2} - \frac{(4)^{3}}{6} - \frac{15}{2}(4) \right) \right]$	M1	attempt to subst. & subtr.
$= \left[\left(66 \frac{2}{3} \right) - \left(30 \frac{1}{3} \right) \right]$		
$=27\frac{1}{3} \text{ m}$	A1	
(d) $a = \frac{dV}{dt} = 10 - t$ $10 - t = 0 \Rightarrow t = 10$	B1	for t = 10s
$V = 10(10) - \frac{1}{2} (10)^2 - \frac{15}{2}$	M1	✓ subst.
= 42.5 mls	A1	✓ velocity (award A0 for wrong units)
	10	

23.(a) The 1st term and the common difference.

(3mks

$$a + d = 8$$

$$a + 4d = 17$$

$$3d = a$$

$$d = 3$$

$$a = 5$$

(b) The first three terms of the G.P and the 10th term of the G.P.

(4mks)

$$2^{\text{nd}} = 8$$

 $10^{\text{th}} = 5 + 9 \times 3 = 32$
 $42^{\text{nd}} = 5 + 41 \times 3 = 128$
 \therefore GP is 8, 32, 128, ----
 $a = 8$

$$r = 4$$

 n^{th} term of G.P = ar^{n-1}
∴ 10^{th} term= $8(4)^9$
= 2097152

(c) The sum of the first 10 terms of the G.P.

(3mks)

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$S_{10} = \frac{8(4^{10} - 1)}{4 - 1}$$

$$= \frac{8}{3} \times 1048575$$

$$= 2796200$$

24 (a) Det =
$$32 - 35$$

= - 3
P-1 = $-\frac{1}{3} \begin{pmatrix} 8 & -7 \\ -5 & 4 \end{pmatrix}$
(b) (i) $8b + 14m = 47600$
 $10b + 16m = 57400$
B1
$$\checkmark Accept \begin{pmatrix} -\frac{8}{3} & \frac{7}{3} \\ \frac{5}{3} & -\frac{4}{3} \end{pmatrix}$$
M1

$\begin{pmatrix} 8 & 14 \\ 10 & 16 \end{pmatrix} \begin{pmatrix} b \\ m \end{pmatrix} = \begin{pmatrix} 47600 \\ 57400 \end{pmatrix}$	A1	
or $ \begin{pmatrix} 4 & 7 \\ 5 & 8 \end{pmatrix} \begin{pmatrix} b \\ m \end{pmatrix} = \begin{pmatrix} 23800 \\ 28700 \end{pmatrix} $ (ii) $ \begin{pmatrix} b \\ m \end{pmatrix} = \begin{pmatrix} \frac{-8}{2} & \frac{7}{3} \\ \frac{5}{3} & -\frac{4}{3} \end{pmatrix} \begin{pmatrix} 23800 \\ 28700 \end{pmatrix} $ $ \begin{pmatrix} b \\ m \end{pmatrix} = \begin{pmatrix} -\frac{8}{3}x23800 + 28700x\frac{7}{3} \\ \frac{5}{3}x23800 + -\frac{4}{3}x28700 \end{pmatrix} $	M1	
${m \choose \frac{5}{3}x23800 + -\frac{4}{3}x28700}$ ${b \choose m} = {3500 \choose 1400}$ Bag of beans cost Sh. 3500	M1	
Bag of maie cost Sh. 1400 (c) $\frac{115}{100}$ x 3500 = 4025	A1	Both
$8 \times 4025 = 32400$	B1	
47600 - 32400 = 15400 $\therefore 1400m = 15400$ m = 11 bags	B1	
Ratio 8:11	B1	