Problem 1

Let $A=\mathbb{Z}/3\oplus\mathbb{Z}/12.$ Find the number of elements in $A\otimes_{\mathbb{Z}}A.$

Solution 1

$$\begin{split} A \otimes_{\mathbb{Z}} A &= (\mathbb{Z}/3 \oplus \mathbb{Z}/12) \otimes_{\mathbb{Z}} (\mathbb{Z}/3 \oplus \mathbb{Z}/12) \\ &= (\mathbb{Z}/3 \otimes_{\mathbb{Z}} \mathbb{Z}/3) \oplus (\mathbb{Z}/3 \otimes_{\mathbb{Z}} \mathbb{Z}/12) \oplus (\mathbb{Z}/12 \otimes_{\mathbb{Z}} \mathbb{Z}/3) \oplus (\mathbb{Z}/12 \otimes_{\mathbb{Z}} \mathbb{Z}/12) \end{split}$$

We know that $\mathbb{Z}/3 \otimes \mathbb{Z}/3$ has 3 elements because there are 3 element in $\mathbb{Z}/3$ that divides 3, and thus this is isomorphic to $\mathbb{Z}/3$.

Similarly, $\mathbb{Z}/12 \otimes \mathbb{Z}/12$ has 12 elements.

Finally, $\mathbb{Z}/3 \otimes \mathbb{Z}/12$ has 3 elements because $\mathbb{Z}/3 \otimes \mathbb{Z}/12 \cong (\mathbb{Z}/3)/(12\mathbb{Z}/3)$, and since 12 divides 3 the $12\mathbb{Z}/3$ is the trivial group.

Since tensor is commutative, we have that $\mathbb{Z}/12\otimes\mathbb{Z}/3\cong\mathbb{Z}/3\otimes\mathbb{Z}/12$, and thus $\mathbb{Z}/12\otimes\mathbb{Z}/3$ has 3 elements.

Problem 2

Find the number of pairs $(x, y) \in (\mathbb{Z}/30 \times \mathbb{Z}/30)$ so that 4x + 10y = 0 and 10x + 4y = 0.

Solution 2

This is equivalent to find the number of solutions for the following equation

$$\begin{pmatrix} 4 & 10 \\ 10 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

And it is equivalent to find the number of solutions for the SNF of the matrix $A = \begin{pmatrix} 4 & 10 \\ 10 & 4 \end{pmatrix}$.

We know that the only invertible element in \mathbb{Z} is ± 1 . Thus, the SNF of the matrix is $S{2 \choose 0}T$, where the left top corner must be $\gcd(4,10,10,4)$ and the right bottom corner is the determinant of matrix A.

Since we are in $\mathbb{Z}/30$, $42=6\times 7$, and 7 is invertible in $\mathbb{Z}/30^{\times}$ and thus it is equivalent to 6, and $2\mid 30$. Thus, the number of solutions is $2\times 6=12$.

Problem 3

A generating set of a group G is a set $S \subset G$ so that the smallest subgroup of G containing S is G itself. Prove of disprove: there is a subgroup of $\mathbb{Z}/12^5$ whose smallest generating set has size 7.

Solution 3

Assume such a subgroup H exists. Consider the preimage of H under the map that sends $\mathbb{Z}^5 \to \mathbb{Z}/12^5$.

Observes that the preimage is a subgroup of \mathbb{Z}^5 and it must contains a generating set at least the size of the generating set of H. Thus, the preimage must have a generating set of size larger or equal to 7.

Note that a subgroup in \mathbb{Z}^5 is a \mathbb{Z} -submodule, and since \mathbb{Z} is a PID, all of its submodule is free and must have smaller rank than \mathbb{Z}^5 . Thus, the preimage must have rank at most 5. The rank is equal to the smallest generating set of the module, and thus we have a contradiction.

Problem 4

Let G be a finite subgroup of $\mathrm{GL}_n(\mathbb{C})$. Let D be the subgroup of diagonal matrices in $\mathrm{GL}_n(\mathbb{C})$. Show that if G is abelian then it is conjugate to a subgroup of D.

Solution 4

We know that C^n is a C[G]-module. Further we know that \mathbb{C}^n can be written as sum of one dimensional simple C[G]-modules, denoted as V_i .

Then we further know that each V_i will be determined by the action of G, i.e. $\delta_i:G\to\mathbb{C}^{\times}$, and thus there must exist some B such that $\forall A\in G:BAB^{-1}=\begin{pmatrix}\delta_1(g)&0&0\\0&\ddots&0\\0&0&\delta_{n(g)}\end{pmatrix}\in D$

Problem 5

Suppose that (a,b) and (c,d) are two elements of \mathbb{Z}^2 and let G be the subgroup of \mathbb{Z}^2 that they generate. Suppose that ad-bc=12. Find the number, up to isomorphism, of all possible quotient groups \mathbb{Z}^2/G .

Solution 5

It suffices to consider all matrix of the form $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where ad-bc=12 and $a,b,c,d\in\mathbb{Z}.$ Note that $ad-bc=\det(A),$ and $\det(A)=d_1\times d_2,$ where d_1 and d_2 are the invariant factors of A.

Thus it suffices to consider all the possible invariant factor of A.

Since $12 = 3 \times 4$, and thus the only invariant factor combination is (1, 12) and (2, 6), which means the number of quotient group is only 2 up to isomorphism.

Problem 6

Let $A = \mathbb{Z} \oplus \mathbb{Z}/6 \oplus \mathbb{Z}/3$. Consider the homomorphsm $\varphi : A \to \mathbb{Q} \otimes_{\mathbb{Z}} A$ given by $\varphi(a) = 1 \otimes a$. Find the number of elements in $\ker(\varphi)$.

Solution 6

We know that $\mathbb{Q} \otimes_{\mathbb{Z}} A = \mathbb{Q} \otimes (\mathbb{Z} \oplus \mathbb{Z}/6 \oplus \mathbb{Z}/3) = \mathbb{Q} \otimes \mathbb{Z} \oplus \mathbb{Q} \otimes \mathbb{Z}/6 \oplus \mathbb{Q} \otimes \mathbb{Z}/3.$

Since this is a direct sum of three tensor product, it will be 0 if and only if all three entries are 0.

Firstly consider how many elements in $\mathbb{Z}/6$ that will be 0 when sending $a \mapsto 1_{\mathbb{Q}} \otimes a$. Since 6 divides 1 in \mathbb{Q} , we know that all elements in $\mathbb{Z}/6$ will be 0 when sending $a \mapsto 1_{\mathbb{Q}} \otimes a$.

Similar reasoning yield us that all elements in $\mathbb{Z}/3$ will be 0 when sending $a \mapsto 1_{\mathbb{Q}} \otimes a$.

Finally, we know that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}$ is isomorphic to \mathbb{Q} with isomorphism $f: (q \otimes z) \mapsto q \cdot z$, and thus $\mathbb{Q} \otimes \mathbb{Z}$ will be 0 if and only if z is 0, which means we have only 0 maps to 0 in φ . Therefore the number of elements in $\ker(\varphi)$ is $1 \times 3 \times 6 = 18$.

Problem 7

Suppose that A is 4×4 matrix with rational entries and whose characteristic polynomial is $x^2(x^2+1)$. Produce a finite collection S of explicit matrices and show that, for some B in $\mathrm{GL}_4(\mathbb{Q})$, BAB^{-1} belongs to S.

Solution 7

It suffices to find the all possible Rational Canonical Form with characteristic polynomial $x^2(x^2+1)$.

The prime decomposition of $x^2(x^2+1)$ is

$$x, x, (x^2 + 1)$$

We know that the product of invariant factors are the characteristic polynomial. Thus the possible invariant factors are

$$x^2(x^2+1) = x^4 + x^2$$

$$x, x(x^2 + 1) = x^3 + x$$

Using the algorithm in the book, we can find the possible Rational Canonical Form are

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

Since these are the only two possible Rational Canonical Form with charateristic polynomial $x^2(x^2+1)$, we know that A must be conjugate to one of them.