

中华人民共和国农业行业标准

NY/T 1121.23-2010

土壤检测 第23部分:土粒密度的测定

Soil testing—
Part 23: Method for determination of soil particle density

2010-07-08 发布

2010-09-01 实施

前 言

本部分遵照 GB/T 1.1-2009 给出的规则起草。

NY/T 1121《土壤检测》为系列标准,本部分为 NY/T 1121 的第 23 部分。

本部分由中华人民共和国农业部提出并归口。

本部分起草单位:全国农业技术推广服务中心、农业部肥料质量监督检验测试中心(济南)、农业部肥料质量监督检验测试中心(杭州)、农业部肥料质量监督检验测试中心(郑州)、农业部肥料质量监督检验测试中心(郑州)、农业部肥料质量监督检验测试中心(石家庄)。

本部分主要起草人:辛景树、任意、郑磊、侯晓芳、李桂荣、边武英、管泽民、吕英华、段霄燕、谢驾阳。

土壤检测 第 23 部分:土粒密度的测定

1 范围

NY/T 1121 的本部分规定了土粒密度的测定方法。 本部分适用于各类土壤中土粒密度的测定。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 6682 分析实验室用水规格和试验方法

GB 8170 数值修约规则与极限数值的表示和判定

NY/T 52 土壤水分测定法

3 术语和定义

下列术语和定义适用于本文件。

3. 1

土粒密度 soil particle density

是土壤颗粒质量与其体积之比,即土粒单位体积的质量。

4 方法提要

将已知质量的土壤样品放入水中,排尽空气,求出由土壤置换出的液体的体积。以烘干土质量除以 求得的土壤固相体积,即得土粒密度。

本试验方法所用水为 GB/T 6682 中规定的三级水。

5 仪器与设备

- 5.1 天平(感量 0.001 g)。
- 5.2 电热板(温度可控)。
- 5.3 比重瓶(100 mL)。
- 5.4 温度计(0℃~50℃,精度 0.1℃)。

6 试剂和溶液

无二氧化碳水:将水注入烧瓶中(水量不超过烧瓶体积的 2/3),煮沸 $10 \min$,放置冷却,用装有碱石灰干燥管的橡皮塞塞进。如制备 $10 L\sim 20 L$ 较大体积的无二氧化碳的水,可插入一玻璃管到底部,通氮气到水中 $1 h\sim 2 h$,以除去被水吸收的二氧化碳。

7 分析步骤

7.1 称取比重瓶质量(m₀)(精确到 0.001 g)。

- 7. 2 称取通过 2 mm 筛孔风干土壤样品 $10 \text{ g}\pm 0.5 \text{ g}$,经小漏斗装人比重瓶中并称重(精确到 0.001 g) (m_3) 。同时,按 NY/T 52 规定的方法测定土壤样品含水量。
- 7.3 向装有试样的比重瓶中缓缓注入水至比重瓶约 1/3 处,边注水边摇动,使土粒充分浸润,将未加瓶塞的比重瓶放在电热板上加热,沸腾后保持微沸 1 h 并经常摇动以驱除空气,冷却至室温。
- 7.4 注入无二氧化碳水至比重瓶瓶颈为止。待比重瓶内悬液澄清后,注满无二氧化碳水,塞好瓶塞,使多余的水自瓶塞毛细管中溢出,用滤纸擦干后立即称重 (m_2) ,并用温度计测定比重瓶内的水温 (T_1) 。
- 7.5 将比重瓶中土液倒出,洗净比重瓶,注满无二氧化碳水,测量比重瓶内水温 (T_2) ,注水至瓶口,塞上毛细管塞,擦干瓶外壁后立即称重 (m_4) 。若比重瓶事先都经过校正,在测定时便可省去此步骤。

测定的土壤含水溶盐或较多的活性胶体时,土壤样品应先在 105℃烘干,并用非极性液体代替水,用真空抽气法驱逐土壤样品及液体中的空气。抽气过程要保持接近一个大气压的负压,经常摇动比重瓶,直至无气泡逸出为止。其余步骤同上。

8 结果计算

土粒密度 (d_s) 以 g/cm³ 表示,按式(1)计算:

$$d_s = \frac{m}{m_1 + m - m_2} \times d_{wl} \quad \cdots \qquad (1)$$

式中:

m——烘干试样质量,单位为克(g);

 m_1 — T_1 时瓶+水质量,单位为克(g);

 m_2 —— T_1 时瓶+水+风干试样质量,单位为克(g);

 d_{rel} 一 T_1 时水的密度,单位为克每立方厘米(g/cm³);

式(1)中的烘干试样质量(m)从式(2)求得:

$$m = (m_3 - m_0) \times \frac{100}{100 + w} \dots$$
 (2)

式中:

w——试样含水量(烘干基),单位为百分率(%);

 m_3 ——比重瓶+风干试样质量,单位为克(g);

 m_0 ——比重瓶质量,单位为克(g);

如 $T_1 = T_2$,则 $m_1 = m_4$, m_4 不需校正,直接代入(1) 式中计算。否则,应将 T_2 时的 m_4 校正为 T_1 时的 m_1 。可由表 1 查出 T_1 、 T_2 时水的密度,按式(3) 求得。先求出比重瓶体积(V_p)

$$V_{p} = \frac{m_{4} - m_{0}}{d_{m^{2}}} \quad \dots \tag{3}$$

式中:

 d_{u2} —— T_2 时水的密度,单位为克每立方厘米。

校正至 T_1 时的瓶 + 水质量 (m_1) ,由式(4)计算:

平行测定结果以算术平均值表示,保留两位小数。

数值修约按 GB 8170的规定进行。

9 精密度

平行测定结果允许绝对相差≤0.02g/cm³。

表 1 不同温度下水的密度(g/cm³)

温度,℃	密度	温度,℃	密度	温度,℃	密度	温度,℃	密度
0.0~1.5	0.9999	18. 0	0.998 6	25. 5	0.9969	33. 0	0. 994 7
2.0~6.5	1.0000	18. 5	0.998 5	26. 0	0.9968	33. 5	0.994 6
7.0~8.0	0.9999	19.0	0.9984	26. 5	0.9967	34.0	0.9944
8.5~9.5	0.9998	19. 5	0.9983	27.0	0.9965	34. 5	0.9942
10.0~10.5	0. 999 7	20.0	0.998 2	27.5	0.9964	35.0	0.994 1
11.0~11.5	0.9996	20.5	0.998 1	28. 0	0.9963	35. 5	0.9939
12.0~12.5	0.999 5	21.0	0.998 0	28. 5	0.996 1	36.0	0. 993 7
13.0	0.9994	21. 5	0.9979	29.0	0.9960	36. 5	0.993 5
13.5~14.0	0.9993	22. 0	0.9978	29.5	0.9958	37.0	0. 993 4
14.5	0.999 2	22. 5	0. 997 7	30.0	0. 995 7	37. 5	0.993 2
15.0	0.999 1	23. 0	0.9976	30.5	0.9955	38. 0	0. 993 0
15.5~16.0	0.9990	23. 5	0.9974	31.0	0.9954	38. 5	0.9928
16.5	0.9989	24.0	0.997 3	31.5	0.995 2	39. 0	0.9926
17.0	0.9988	24. 5	0.997 2	32.0	0.995 1	39. 5	0.9924
17.5	0.9987	25. 0	0.997 1	32. 5	0.9949	40.0	0. 992 2