Geometric Method to obtain Harmonic Mean of Two numbers

Archisman Panigrahi*

2016

Let the two numbers whose harmonic mean has to be determined be a and b ($b \ge a$). Any parallelogram OAEB is drawn, whose diagonal OE = b unit.

D is a point on OE such that OD = a unit.

 $FG \parallel AE$ is drawn through D.

BF is drawn, which intersects OE at C.

Then, the magnitude of twice the length of OC is the harmonic mean of a and b.

Proof:

$$\frac{OC}{CD} = \frac{OB}{FD}$$
 (:: $\triangle OBC$ and $\triangle CFD$ are similar)

$$\therefore \frac{OC}{CD} = \frac{AE}{FD} (\because OE = FD)$$
 (1)

Also,
$$\frac{OC}{CD} = \frac{FD}{AE}$$
 (: $\triangle OFD$ and $\triangle OAE$ are similar) ———(2)

From (1) and (2),
$$\frac{OC}{CD} = \frac{OE}{OD}$$

Let
$$OC = x$$
 unit. $\therefore CD = (a - x)$ unit.

Thus,
$$\frac{x}{a-x} = \frac{b}{a}$$

$$\implies x = \frac{ab}{a+b}$$

Therefore, twice the magnitude of OC is the harmonic mean of a and b.

^{*}archismanp@iisc.ac.in