

IPv6 Fundamentals, by Rick Graziani

IPv6 Primer

Selected by Alvaro Barradas for Redes II

<abarra@ualg.pt>

Chapter 2

IPv6 Primer

IPv6 Primer

- Hexadecimal number system
- IPv6 address types
- Address terminology
- ICMPv6 Neighbor Discovery Protocol (NDP)
- Dynamic address alocation

Number Systems

Three general rules for integer-based number systems:

- 1. Base *n* number system have *n* number digits
- 2. All number systems begin with 0
- 3. The rightmost column, or least significant digit, is always the column of 1s (ones). Each preceding column is n times the previous column (where n is the base n number system).

Base <i>n</i> Number System	n ³	n²	n¹	n ^o
Base 10	1,000	100	10	1
Base 2	8	4	2	1
Base 16	4,096	256	16	1

Decimal (Base 10)		Н	exadecimal (Base 16)	Binary (Base 2)
0	Rule #2 →	0	1	0000
1	Begin	1	/	0001
2	with 0	2	Rule #1	0010
3		3	Base n	0011
4		4	n digits	0100
5		5	/	0101
6		6		0110
7		7		0111
8		8		1000
9	/ D. J. #2	9	*	1001
10	Rule #3	A		1010
11	All digits in the column	В		1011
12	of 1s	C		1100
13	01 13	D		1101
14		Е		1110
15		F		1111

Hexadecimal number system

Why use hexadecimal digits to represente IPv6 addresses?

- 4 bits (half of na octet) can be represented by a single digit.
- 2 digits can represente a single octet.

Hexadecimal is a natural fit for IPv6 addresses.

IPv6 Address Types

- Global Unicast Address
 - Globally unique
 - Routable
 - (eq. to public IPv4 addresses)
 - Begins with 2 or 3
 - Can be source or destination

2001:db8:cafe:1::100

- Link-local Unicast Address
 - Link refers to a logical network segment or subnet
 - Limited to a particular link
 - Not routable beyond the local subnet
 - Any IPv6-enabled device requires one
 - Typically auto-created by the device's OS
 - Commonly begin with fe80
 - Can be source or destination

fe80::a299:9bff:fe18:50d1

Figure 2-1 Comparison Between IPv6 Global Unicast Address Addresses and Link-Local Addresses

IPv6 Address Types

- Unspecified Address
 - All-0s address
 - Must never be assigned to a node
 - Indicates the absence of an address
 - Used only as a source by na initializing host
 - Never forwarded by na IPv6 router

0:0:0:0:0:0:0:0

Multicast Address

- Is an identifier for a group of interfaces (typically on diferente nodes).
- Defines a group of devices known as a multicast group.
- Use prefix ff00::/8 (eq. to IPv4 multicast 224.0.0.0/4).
- Can only be a destination address.
- IPv6 does not have a broadcast address but does include na all-IPv6 devices multicast address.

ff02::1: All IPv6 devices ff02::2: All IPv6 routers

Address Terminology

- Prefix: the network portion of na IPv6 address.
- Prefix length: the number of most-significant (leftmost) bits, that define the prefix.
- Node or device: anything that can have na IPv6 address.
- Interface ID: eq. to the host portion of na IPv4 address. This name is used because na IP address is assigned to na interface, and a device may have multiple interfaces.

Figure 2-4 Example of an IPv6 Global Unicast Address

ICMPv6 NDP

- The ICMPv6 Neighbour Discovery Protocol (NDP) adds new functionality used for on-link (same subnet) device discovery and messaging.
- NDP includes 5 message types:
 - Router Solicitation
 - Router Advertisement
 - Neighbour Solicitation
 - Neighbour Advertisement
 - Redirect Messages

Used for messaging between a device and a router on the same link (subnet)

Used for messaging between any two devices on the same link (subnet)

Figure 2-5 Comparison of IPv4 ARP Request and ARP Reply to IPv6 NS and NA Messages

Dynamic Address Allocation

IPv4 devices have 2 ways to get addressing information:

- IP address
- Subnet mask
- Default gateway address
- Domain nameDNS server address
- Static configuration
- Dynamic configuration from a DHCP server

In IPv6, addresses can also be statically or dynamically assigned

Dynamic addressing

- IPv6 uses the ICMPv6 Router Advertisement (RA) message to suggest how to obtain IPv6 addressing information.
- An IPv6 router sends a RA message periodically (every 200 seconds) or when it receives a Router Solicitation request.
- The RA message is typically sent to the all-IPv6 devices multicast address (ff02::1), so every device on the link receives it. (It can also be sent in unicast).
- Other routers do not forward RA messages.

Dynamic Address Allocation

The RA message will advertise one of 3 methods:

- Method 1: Stateless Address Autoconfiguration (SLAAC)
- Method 2: SLAAC and stateless DHCPv6 server
- Method 3: Statefull DHCPv6 server

Dynamic Address Allocation

The RA message will advertise one of 3 methods:

- Method 1: Stateless Address Autoconfiguration (SLAAC)
 - The device uses the information in the RA message for all of its addressing needs.
 - It uses the prefix in the RA to create na IPv6 global unicast address.
 - Will use the source IPv6 address of the RA as its default gateway.
 - This is the default in Cisco IOS.
- Method 2: SLAAC and stateless DHCPv6 server
- Method 3: Statefull DHCPv6 server

Dynamic Address Allocation

The RA message will advertise one of 3 methods:

- Method 1: Stateless Address Autoconfiguration (SLAAC)
- Method 2: SLAAC and stateless DHCPv6 server:
 - Devices use information in the RA message to create their IPv6 global unicast addresses. The RA message may contain other information but the device should contact a stateless DHCPv6 server for additional information (such as DNS server address).
- Method 3: Statefull DHCPv6 server:
 - This method is similar to DHCP for IPv4.

