RECOMMENDER SYSTEMS

WHAT RECOMMENDER SYSTEMS DO WE KNOW?

Netflix, Spotify, Reddit, Amazon...

WHICH TYPES ARE THERE?

- Generic vs Personalised
- Memory Based vs Model Based
- Content Based Filtering vs Collaborative Filtering
- Hybrid Models

WHY DO WE NEED THEM?

▶ Too much choice

NON PERSONALISED RECOMMENDATIONS

NON PERSONALISED RECOMMENDER SYSTEMS

- Everyone sees the same recommendations;
- Demographic filtering

EXAMPLES:

- Amazon product ratings
- eBay
- Reddit
- Hacker News

AMAZON RATINGS

More options available

Highland Park 12 Year Old Single Malt Scotch Whisky with Glass Gift Pack, 70 cl

by Highland Park

£37.76 (£53.94/I) **Prime**

Get it by Tomorrow, Mar 29

More buying choices

£31.49 new (8 offers)

Eligible for FREE UK Delivery

Haig Club Clubman Single Grain Scotch Whisky, 70 cl

by Haig Club

£18.00 (£25.71/I) £23.52 Prime

Get it by Tomorrow, Mar 29

More buying choices £18.00 new (12 offers)

Eligible for FREE UK Delivery

★★★☆☆ ▼ 94

Aberlour 12 Year Old Single Malt Scotch Whisky, 70 cl

by Aberlour

£26.00 (£37.14/I) £33.75 **/Prime**

Get it by Tomorrow, Mar 29

More buying choices

£26.00 new (7 offers)

Eligible for FREE UK Delivery

★★★★★ ▼ 113

REDDIT'S 'BEST' RANKING ALGORITHM

- How to rank comments?
 - Net upvotes

$$Score = Upvotes - Downvotes$$

Upvote proportion

$$Score = \frac{Upvotes}{\text{Total votes}}$$

REDDIT'S 'BEST' RANKING ALGORITHM

- Solution Lower bound of Wilson score
 - What would be the score of a comment if everyone had voted on it?

Based on the current votes predict the real average rating.

PERSONALISED RECOMMENDATIONS

NEIGHBOURHOOD BASED: ITEM TO ITEM VS USER TO USER

What if we look for similar items?

USER TO USER

$$\hat{r_{u,i}} = rac{\sum_{v}^{K} s_{u,v} imes r_{v,i}}{\sum_{v}^{K} s_{u,v} + \lambda}$$

ITEM TO ITEM

$$r_{u,i} = rac{\sum_{j}^{K} s_{i,j} * r_{u,j}}{\sum_{j}^{K} s_{i,j} + \lambda}$$

USER TO USER

$$r_{u,i}^{\hat{}} = rac{\sum_{v}^{K} s_{u,v} imes r_{v,i}}{\sum_{v}^{K} s_{u,v} + \lambda}$$

ITEM TO ITEM

$$r_{u,i} = rac{\sum_{j}^{K} s_{i,j} * r_{u,j}}{\sum_{j}^{K} s_{i,j} + \lambda}$$

CONTENT BASED FILTERING

Users / Items are similar when they have similar characteristics

FINDING CONTENT BASED SIMILARITIES

Taking textual descriptions of users or items:

- Tokenisation: Bag of Words
- ▶ TF-IDF:

TF-IDF =
$$tf \times log(\frac{N}{n_t})$$

Cosine Similarity:

$$cos_{sim}(a,b) = \frac{a.b}{||a||.||b||}$$

COLLABORATIVE FILTERING

- Users are similar when they have similar tastes
- Items are similar when they are consumed by the same users

FINDING COLLABORATIVE FILTERING SIMILARITIES

Take the items rated by each user C_a or the ratings of each user V_a :

Jaccard Similarity:

Jacccard_Sim
$$(a,b) = \frac{|C_a \cap C_b|}{|C_a \cup C_b|}$$

Cosine Similarity

$$cos_{sim}(a,b) = \frac{a.b}{||a||.||b||}$$

NETFLIX PRIZE

- Prize: 1 million \$
- ▶ 48,000 teams from 182 different
- Goal: Improve by 10% the RMSE
- Data: 100 million ratings from 500.000 users to 18.000 movies
- From Oct 2006 to Sept 2009
- Won by a difference of 20 min

MODEL BASED: SIMON FUNK'S SVD

The rating results of the linear combination of user factors and item factors

$$r_{u,i} \approx p_u^T \cdot q_i$$

Items

Users $\begin{bmatrix} ? & 3 & ? & 5 & ? & 3 & ? \\ ? & 4 & ? & ? & 2 & ? & 5 \\ 3 & ? & ? & 5 & ? & 2 & ? \\ ? & ? & ? & ? & ? & ? & ? \\ ? & 5 & 4 & ? & ? & ? & 4 \\ 5 & ? & ? & ? & 5 & 1 & ? \\ ? & ? & ? & 4 & ? & ? & ? \\ ? & ? & ? & 4 & ? & ? & ? \\ 2 & 3 & ? & ? & ? & 2 \\ ? & 2 & 3 & ? & ? & ? & 4 \\ 4 & ? & 2 & ? & 5 & ? & 3 \\ ? & 2 & ? & ? & 5 & ? & ? \\ ? & 4 & ? & 2 & ? & 5 & ? & ? \\ ? & 4 & ? & 2 & ? & 3 & ? \end{bmatrix} = \begin{bmatrix} u_{1,1} \\ u_{2,1} \\ u_{3,1} \\ u_{4,1} \\ u_{5,1} \\ u_{8,1} \\ u_{9,1} \\ u_{10,1} \\ u_{11,1} \\ u_{12,1} \end{bmatrix}$

 $\begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} \\ u_{2,1} & u_{2,2} & u_{2,3} \\ u_{3,1} & u_{3,2} & u_{3,3} \\ u_{4,1} & u_{4,2} & u_{4,3} \\ u_{5,1} & u_{5,2} & u_{5,3} \\ u_{6,1} & u_{6,2} & u_{6,3} \\ u_{7,1} & u_{7,2} & u_{7,3} \\ u_{8,1} & u_{8,2} & u_{8,3} \\ u_{9,1} & u_{9,2} & u_{9,3} \\ u_{10,1} & u_{10,2} & u_{10,3} \\ u_{11,1} & u_{11,2} & u_{11,3} \\ u_{12,1} & u_{12,2} & u_{12,3} \end{bmatrix}$

$$\times \begin{bmatrix} i_{1,1} & i_{1,2} & i_{1,3} & i_{1,4} & i_{1,5} & i_{1,6} & i_{1,7} \\ i_{2,1} & i_{2,2} & i_{2,3} & i_{2,4} & i_{2,5} & i_{2,6} & i_{2,7} \\ i_{3,1} & i_{3,2} & i_{3,3} & i_{3,4} & i_{3,5} & i_{3,6} & i_{3,7} \end{bmatrix}$$

ESTIMATING THE RATING FROM HIDDEN FACTORS

$$r_{u,i} \approx \mu + b_i + b_u + p_u^T \cdot q_i$$

Going through each known ratings with SGD:

$$b_{u}(k+1) = b_{u}(k) + \gamma * (e_{u,i}(k) - \lambda_{1} * b_{u}(k))$$

$$b_{i}(k+1) = b_{i}(k) + \gamma * (e_{u,i}(k) - \lambda_{1} * b_{i}(k))$$

$$q_{i}(k+1) = q_{i}(k) + \gamma * (e_{u,i}(k) * q_{i}(k) - \lambda_{1} * q_{i}(k))$$

$$p_{u}(k+1) = p_{u}(k) + \gamma * (e_{u,i}(k) * p_{u}(k) - \lambda_{1} * p_{u}(k))$$

PROBLEMS WITH RECOMMENDER SYSTEMS

- Cold-Start
- Lack of Novelty & Diversity (The Bubble)
- Privacy Concerns
- Scalability

COLD START

How do these systems make recommendations for new users?

- Clustering
- Ask them for data
- Start with random recommendations

HYBRID RECOMMENDATION SYSTEMS

- Switching models
- Weighted Recommendations
- Graph based

QUESTIONS?

REFERENCES

- Reddit's Algorithm: Reddit Blog and Evan Miller
- Recommender Systems:
 - Mining Massive Datasets Chapter 9
 - Recommender Systems Handbook
- ▶ SVD: Simon Funk original blog post
- SVD with implicit ratings: <u>SVD ++ paper</u>
- "Matrix Factorization Techniques For Recommender Systems"
- Netflix Prize: "All Together Now"