Ch2 Notatie & getallen, IR, functies Def $\mathbb{N} = \{0, 1, 2, ... \}$, $\mathbb{Z} = \{...-2, -1, 0, 1, ... \}$ RiLi: $Q = \left\{ \frac{P}{q} \mid P \in \mathbb{Z} \mid q \in \mathbb{Z} - \{0\} \right\} = Q(\mathbb{Z})$ en de reële getallen IR zign gedefinieerd als de verameling Dedekind-sneden in Q. Deze blyken (Inl. Wiskunde) te voldoen aan: \ fout Dearkind-sn. inn en mogelyte constructe.

Elke begrensde ACR heeft een kleinste De bovengrens u* ER. We schrijven u* = sup A axioma's Def En zoin supremum u* voldoet aan: Hilbert geformulen. en er nyn verschillende $\forall a \in A$ $a \leq u^*$ constructies die aen $\forall u \in R$ $(\forall a \in A \ a \leq u) \Rightarrow u^* \leq u$ noemt men (1.) een Equivalent hiernee is:

de axioma's. "model" voor $u^* > u \implies (\exists a \in A \quad a > u)$ (2.) Yue R dit is simpelweg de modus tollens van (1.) een infinimum inf A = l* voldset aan VaeA l* =a $\forall l \in \mathbb{R} \quad (\forall a \in A \quad l \leq a) \Rightarrow l \leq l^* \quad (3.)$ eq.: $\forall l \in \mathbb{R}$ $l > l^* \Rightarrow (\exists a \in A \quad l > a)$ (4)

Def $C = \{a+bi \mid a,b \in \mathbb{R} \}$ Elke 7 € C kan geschieven worden als $Z = r \cdot (\cos \phi + i \sin \phi) = r e^{i\phi}$ verder $\mathcal{R}Z = a$, $\mathcal{F}Z = b$ en $\overline{Z} = a - bi$, $|Z| = |\overline{Z}\overline{Z}|$ Bovendien $\overline{ZW} = \overline{Z}W$, gaat men na door vermenigv. uit te schrijven.

2.1.1 \overline{Zy} $(\overline{B}_{\alpha})_{\alpha}$ een collectie van verzameling geïndexeerd door \overline{I} Te bow. $\left(\bigcap_{\alpha \in I} B_{\alpha} \right) = \bigcup_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_{\alpha} \left(\bigcup_{\alpha \in I} B_{\alpha} \right) = \bigcap_{\alpha \in I} B_$ RE(ABa) & DXET REBX ⇔ VaeIn¢B,⇔ VaeIneB, A REAB rne volgt wegens (B°) = B dat $\left(\begin{array}{c} U B_{\alpha} \\ \alpha \in I \end{array} \right)^{c} = \left(\begin{array}{c} U (B_{\alpha}^{c})^{c} \\ \alpha \in I \end{array} \right)^{c} = \left(\begin{array}{c} A B_{\alpha}^{c} \\ \alpha \in I \end{array} \right)^{c}$ = ABC