Econ 6190: Econometrics I Introduction to Statistical Inference

Chen Qiu

Cornell Economics

2024 Fall

Contents

- Sampling Model
- Some Common Statistics
- Sampling from Normal Distribution
- Sufficient Statistics
- Examples of Estimators and Measures of Their Quality

Reference

- Hansen Ch. 5 and 6
- Casella and Berger, Ch. 6

1. Sampling Model

Motivation

 Economists often collect data that consist of some observations on variables of interest

Table: Some Observations from March 2009 Current Population Survey

Observation	Wage	Education
1	37.93	18
2	40.87	18
3	14.18	13
4	16.83	16
5	33.17	16
6	29.81	18
7	54.62	16
8	43.08	18
9	14.42	12
10	14.90	16
11	21.63	18
12	11.09	16
13	10.00	13
14	31.73	14
15	11.06	12
16	18.75	16
17	27.35	14
18	24.04	16
19	36.06	18
20	23.08	16

The statistical view of the table:

a random sample from a large population, from which we can learn about the wages/education of the population

The population

- Definition: Let X be a random vector of interest. The distribution of X, denoted as F, is called population distribution, or population
- We have n repeated observations made from X

$$\left\{X_1,X_2\ldots X_n\right\},\,$$

which we call a sample or data

- What we observe for X_1 is an realization of the random vector X_1
- Notation: Capital X refers to a random variable; lowercase x refers to a realization of variable X
- We need to model how these observations are collected

The random sampling model

- **Definition**: The collection of random vectors $\{X_1, X_2 ... X_n\}$ are called **a random sample of size n from population** F if $\{X_1 ... X_n\}$ are
 - mutually independent
 - have the same marginal distribution F
- Alternatively, we say $\{X_1 \dots X_n\}$ are independent and identically distributed (iid) random vectors

7

• Because of the random sampling scheme, the joint pdf/pmf of $\{X_1 \dots X_n\}$ is given by

$$\underbrace{\frac{f(x_1, x_2 \dots x_n)}{\text{joint pdf/pmf}}}_{\text{joint pdf/pmf}} = \underbrace{\frac{f(x_1)}{f(x_1)} \cdot f(x_2) \cdot \cdot \cdot f(x_n)}_{\text{marginal pdf/pmf of } X_1}$$

$$= \prod_{i=1}^n f(x_i)$$

because of random sampling, all marginal distributions are the same

• If $f(\cdot)$ is known, we can use the joint pdf/pmf of the random sample to calculate any probability events about the random sample

Example: exponential distribution

• Let $\{X_1 \dots X_n\}$ be a random sample from the exponential distribution with parameter β :

$$f(x \mid \beta) = \begin{cases} \frac{1}{\beta} e^{-\frac{1}{\beta}x}, & x \ge 0, \\ 0, & x < 0 \end{cases}$$

• Then, the joint pdf of $\{X_1 \dots X_n\}$ is

$$f(x_1, \dots x_n) = \prod_{i=1}^n f(x_i \mid \beta)$$

$$= \begin{cases} \left(\frac{1}{\beta}\right)^n e^{-\frac{1}{\beta} \sum_{i=1}^n x_i}, & x_i \ge 0, \text{ for all } i = 1, \dots n, \\ 0, & \text{otherwise.} \end{cases}$$

9

• We may calculate

$$P\{X_1 > 2, \dots, X_n > 2\}$$

$$= \int_2^{\infty} \dots \int_2^{\infty} f(x_1, \dots x_n) dx_1 \dots dx_n$$

$$= \int_2^{\infty} \dots \int_2^{\infty} \left(\frac{1}{\beta}\right)^n e^{-\frac{1}{\beta} \sum_{i=1}^n x_i} dx_1 \dots dx_n$$

$$= e^{-2/\beta} \int_2^{\infty} \dots \int_2^{\infty} \left(\frac{1}{\beta}\right)^{n-1} e^{-\frac{1}{\beta} \sum_{i=2}^n x_i} dx_2 \dots dx_n \text{ (integrate out } x_1\text{)}$$

$$\vdots$$

$$= \left(e^{-2/\beta}\right)^n = e^{-2n/\beta}$$

Alternatively, we may also calculate

$$P\{X_1 > 2, ..., X_n > 2\}$$

$$= P\{X_1 > 2\} \cdot ... \cdot P\{X_n > 2\}$$

$$= [P\{X_1 > 2\}]^n$$

$$= (e^{-2/\beta})^n = e^{-2n/\beta}$$

 In general, calculation of such probabilities for any random sample may be difficult, even if the population distribution is known

Statistics, parameters and estimators

- A parameter θ is any function of the population F
- A **statistic** is a function of sample $\{X_i : i = 1, ..., n\}$, say $T(X_1, ..., X_n)$ for a real or vector valued function T
- A statistic is a random vector. Its distribution is called sampling distribution
 - Sampling distribution of $T(X_1, ... X_n)$ can be quite tractable if $\{X_1, ... X_n\}$ is a random sample
- An **estimator** $\hat{\theta}$ for a parameter θ is a **statistic** intended as a guess about θ
 - $\hat{\theta}$ is an **estimate** when it is a specific (or realized) value calculated in a specific sample

Example 1: Judging whether I have a fair coin

- I want to figure out whether I have a fair coin by flipping it 10 times and recording 0 for each tail and 1 for each head
- Sample: $\mathbf{X} = (X_1, X_2 \dots X_n)$, where X_i is the result of i-th experiment
- Note $X_i \sim \text{i.i.d.}$ Bernoulli(p). That is, the pmf of each X_i is $f(x_i) = p^{x_i}(1-p)^{1-x_i}$
- The pmf of **X** is $f_{\mathbf{X}}(x_1, x_2 ... x_n) = \prod_{i=1}^{10} p^{x_i} (1-p)^{1-x_i}$, known up to p
- The goal is to make some judgment about p
- A statistic is any function of X, e.g.,

$$Y_1 = \{\text{number of heads}\} = \sum_{i=1}^n X_i$$

 $Y_2 = \{$ the order number of the first experiment resulting in heads, with 0 if no heads $\}$ = $X_1 + 2X_2(1 - X_1) + 3X_3(1 - X_2)(1 - X_1) + ...$

- For example, if we observe a sample $\{0, 1, 1, 0, 0, 0, 1, 0, 1, 1\}$, $Y_1 = 5$, $Y_2 = 2$.
- Notice both Y_1 and Y_2 are random variables and have a distribution that depends on p
- For example, in this example, Y_1 follows a binomial distribution with parameter (n, p)

$$P\{Y_1 = k\} = \binom{n}{k} p^k (1-p)^k, k = 1, ..., n,$$

where

$$\left(\begin{array}{c}n\\k\end{array}\right)=\frac{n!}{k!(n-k)!}$$

Example 2: Estimate average income of a worker

- Suppose you want to estimate the average income of a worker aged between 25 and 65 who resides in Ithaca
- A sample of n workers: $\mathbf{X} = \{X_1, X_2 \dots X_n\}$, where $X_i \sim \text{i.i.d. } F(\cdot)$, and $F(\cdot)$ is the unknown distribution of income
- The distribution of **X**: $F_{\mathbf{X}}(x_1, x_2 \dots x_n) = \prod_{i=1}^n F(x_i)$
- The parameter of interest is $\mu = \int u dF(u)$, the mean of the unknown income distribution
- A statistic is any function of X, e.g.,

$$Y_1 = \frac{1}{n} \sum_{i=1}^n X_i \text{ (average)}.$$

 Y_2 = average of 80% of middle values (trimmed mean)

• The distribution of Y_1 and Y_2 can be difficult to characterize

The goal of this course

- Based on observed random sample/data $\{X_1 \dots X_n\}$, construct a "good" statistic to learn about the population parameter of interest θ
- Here, "good" means "good statistical property". ⇒ Requires careful evaluation of the sampling uncertainty (the underlying randomness of our data) ⇒ Need to study the sampling distribution of any statistic
- Three approaches: Finite sample approach, asymptotic approach, and bootstrap

Alternative sampling models

- i.n.i.d. sampling: each X_i is independent but not necessarily identically distributed, i.e., X_i is drawn from heterogeneous population F_i
- Bootstrap with replacement
 - a finite population of N values $\{x_1, \dots x_N\}$
 - Each X_i , i = 1 ... n, is drawn from the N values with equal probability (think of drawing numbers from a hat)
 - Then, each X_i is a **discrete** random variable that takes on values $\{x_1, \dots x_N\}$ with equal probability 1/N

$$P\{X_i = x_k\} = \frac{1}{N}, k = 1 \dots N$$

• The joint pmf of $\{X_1, X_2 \dots X_n\}$ is

$$P\{X_1 = t_1, \ldots, X_n = t_n\} = \left(\frac{1}{N}\right)^n, t_j \in \{x_1, \ldots x_N\}, j = 1 \ldots n.$$

- Bootstrap without replacement
 - a finite population of N values $\{x_1, \dots x_N\}$
 - X_1 is drawn from the N values with equal probability $\frac{1}{N}$. Record $X_1 = x_1$
 - X_2 is drawn from remaining N-1 values equal probability $\frac{1}{N-1}$. Record $X_1 = x_2$
- With bootstrap without replacement, the sample we get

$$\{X_1 \dots X_n\}$$

does not satisfy i.i.d assumption.

Useful result

In bootstrap without replacement,

$$\{X_1 \dots X_n\}$$

are NOT independently distributed. However, they are identically distributed.

Proof

2. Some Common Statistics

Sample mean and sample variance

- We now define three statistics that are often used and provide goos summaries of the random sample
- The sample mean is the arithmetic average of the values in a random sample

$$\bar{X} = \frac{X_1 + \ldots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$

• The sample variance is the statistic defined by

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$$

The **sample standard deviation** is the statistic defined by

$$s = \sqrt{s^2}$$

Properties of sample mean and sample statistics

- \bar{X} and s^2 are themselves random variables
- We start by deriving some basic algebraic properties of the sample mean and variance

Theorem

The following are true:

•
$$\min_{a} \sum_{i=1}^{n} (X_i - a)^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2$$

•
$$(n-1)s^2 = \sum_{i=1}^n (X_i - \bar{X})^2 = \sum_{i=1}^n X_i^2 - n(\bar{X})^2$$

Proof

Useful results

 We now begin our study of sampling distributions by considering their moments. The following result will be useful.

Theorem

Let $\{X_1, ... X_n\}$ be a random sample from a population. Let g(x) be a function such that $\mathbb{E}g(X_1)$ and $\text{var}(X_1)$ exist. Then:

- $\bullet \mathbb{E}\left[\sum_{i=1}^n g(X_i)\right] = n\mathbb{E}g(X_1);$
- $2 Var(\sum_{i=1}^n g(X_i)) = nVar(g(X_1))$

Proof

Moments of sample mean and variance

Theorem

Let $\{X_1, \dots X_n\}$ be a random sample from a population with mean μ and variance σ^2 , then:

- $\bullet \mathbb{E}[\bar{X}] = \mu,$
- $2 \operatorname{var}(\bar{X}) = \frac{\sigma^2}{n},$
- **3** $\mathbb{E}[s^2] = \sigma^2$.

Proof

- To prove (1), directly use the linearity of expectations and iid assumption
- To prove (2), note

$$\operatorname{var}[\bar{X}] = \operatorname{var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n^{2}}\operatorname{var}\left[\sum_{i=1}^{n}X_{i}\right]$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{var}[X_{i}] \qquad \text{(by mutual independence)}$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{var}[X] \qquad \text{(by identical distribution)}$$

$$= \frac{1}{n}\operatorname{var}[X] = \frac{\sigma^{2}}{n}$$

• Thus, the variance of sample mean declines with sample size at rate $\frac{1}{n}$

• To show (3), by the previous theorem,

$$s^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - n (\bar{X}_{n})^{2} \right]$$

Thus,

$$\mathbb{E}\left[s^{2}\right] = \frac{1}{n-1} \left[\sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{2}\right] - n\mathbb{E}\left[\left(\bar{X}_{n}\right)^{2}\right] \right]$$

$$= \frac{1}{n-1} \left[n\mathbb{E}\left[X_{1}^{2}\right] - n\mathbb{E}\left[\left(\bar{X}_{n}\right)^{2}\right] \right]$$

$$= \frac{1}{n-1} \left[n\left(\mu^{2} + \sigma^{2}\right) - n\left(\mu^{2} + \frac{\sigma^{2}}{n}\right) \right]$$

$$= \sigma^{2},$$

where we have used

$$\mathbb{E}\left[X_{1}^{2}\right] = Var\left(X_{1}\right) + \left(\mathbb{E}\left[X_{1}\right]\right)^{2},$$

$$\mathbb{E}\left[\left(\bar{X}_{n}\right)^{2}\right] = Var\left(\bar{X}_{n}\right) + \left(\mathbb{E}\left[\bar{X}_{n}\right]\right)^{2}.$$

3. Sampling from Normal Distribution

Motivation

- In order to make statistical inference, we often need to know the distribution of a statistics
- The most widely used statistical model assumes samples are drawn from a normal distribution
- In this section, we study the properties of common statistics when observations are normally distributed
- This also leads us to many well-known sampling distributions

Normal sampling model

- Let $\{X_1, X_2, \dots X_n\}$ be a random sample from a normal distribution $N(\mu, \sigma^2)$. This is called a **normal sampling model**
- The normal sampling model has many attractive and tractable properties, since $\{X_1, X_2, \dots X_n\}$ follows a multivariate normal distribution with positive-definite and diagonal covariance matrix
- Before studying sampling distribution under the normal sampling model, we first introduce the univariate and multivariate normal distributions.

Univariate normal

• A random variable Z has the standard normal distribution, written as $Z \sim N(0,1)$, if it has the density

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), \ x \in \mathbb{R}.$$

 The cdf of a standard normal does not have a closed form but is written as

$$\Phi(x) = \int_{-\infty}^{x} \phi(u) du.$$

- Note key properties of $\phi(\cdot)$ and $\Phi(\cdot)$
 - $\int_{-\infty}^{\infty} \phi(x) dx = 1$ (a pdf must integrate to 1)
 - $\phi(x) = \phi(-x)$, and $\Phi(-x) = 1 \Phi(x)$ (due to symmetry of $\phi(\cdot)$ around 0)

- If $Z \sim N(0,1)$, and $X = \mu + \sigma Z$ for $\mu \in \mathbb{R}$ and $\sigma \geq 0$, then X has the normal distribution, written as $X \sim N(\mu, \sigma^2)$.
- If $X \sim N(\mu, \sigma^2)$ with $\sigma > 0$, then X has the density

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \ x \in \mathbb{R}.$$

Moments of normal distribution

- All positive integer moments of the standard normal distribution are finite. This is because the tails of the density decline exponentially.
- If $Z \sim N(0,1)$, then $\mathbb{E}[Z] = 0$, Var(Z) = 1.
- For any positive integer m,

$$\mathbb{E}[Z^m] = \begin{cases} 0, & m \text{ odd,} \\ 2^{-\frac{m}{2}} \frac{m!}{(m/2)!} & m \text{ even.} \end{cases}$$

Quantiles of standard normal

 The normal distribution is commonly used for statistical inference. Its quantiles are used for hypothesis testing and confidence interval construction

Figure: Normal probabilities and quantiles

	$\mathbb{P}\left[Z \leq x\right]$	$\mathbb{P}\left[Z>x\right]$	$\mathbb{P}\left[Z >x\right]$
x = 0.00	0.50	0.50	1.00
x = 1.00	0.84	0.16	0.32
x = 1.65	0.950	0.050	0.100
x = 1.96	0.975	0.025	0.050
x = 2.00	0.977	0.023	0.046
x = 2.33	0.990	0.010	0.020
x = 2.58	0.995	0.005	0.010

 Historically, statistical and econometrics textbooks would include extensive tables of normal (and other) quantiles. This is unnecessary today since these calculations are embedded in statistical software.

Multivariate standard normal

• Let $\{Z_1, Z_2, \dots Z_m\}$ be iid standard normal. Therefore, the joint pdf of $\{Z_1, Z_2, \dots Z_m\}$ equals

$$f(z_1, \dots z_m) = \prod_{i=1}^m f(z_i)$$

$$= \prod_{i=1}^m \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z_i^2}{2}\right)$$

$$= \frac{1}{(2\pi)^{\frac{m}{2}}} \exp\left(-\frac{\sum_{i=1}^m z_i^2}{2}\right)$$

$$= \frac{1}{(2\pi)^{\frac{m}{2}}} \exp\left(-\frac{\mathbf{z}'\mathbf{z}}{2}\right),$$

where
$$\mathbf{z} = (z_1, z_2 \dots z_m)'$$
.

The above density is called multivariate standard normal density

• **Definition**: An m dimensional vector **Z** has the **multivariate** standard normal distribution, written $\mathbf{Z} \sim \mathrm{N}(0, I_m)$ if it has joint pdf

$$f(\mathbf{z}) = \frac{1}{(2\pi)^{\frac{m}{2}}} \exp\left(-\frac{\mathbf{z}'\mathbf{z}}{2}\right)$$

- It is the joint pdf of m independently and identically distributed standard normal random variables
- The mean of **Z** is $\mathbb{E}[\mathbf{Z}] = 0$, and the covariance matrix of **Z** is $\text{var}(Z) = I_m$
- Since we have now introduced a vector of random variables, we next review some useful matrix-based notations.

Expectation and covariance

• **Definition**: The expectation of $\mathbf{X} \in \mathbb{R}^m$ is the vector of expectations of its elements

$$\mathbb{E}[\mathbf{X}] = \left(egin{array}{c} \mathbb{E}[X_1] \ \mathbb{E}[X_2] \ dots \ \mathbb{E}[X_m] \end{array}
ight)$$

• **Definition**: The $m \times m$ covariance matrix of $\mathbf{X} \in \mathbb{R}^m$ is

$$\begin{split} \boldsymbol{\Sigma} &= \mathsf{var}(\mathbf{X}) = \mathbb{E}\left[\left(\mathbf{X} - \mathbb{E}[\mathbf{X}] \right) \left(\mathbf{X} - \mathbb{E}[\mathbf{X}] \right)' \right] \\ &= \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1m} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{m1} & \sigma_{m2} & \cdots & \sigma_m^2 \end{pmatrix} \end{split}$$

where on the diagonal $\sigma_j^2 = \text{var}(X_j), j = 1 \dots m$, and on the off-diagonal $\sigma_{ij} = \text{cov}(X_i, X_j), i \neq j$

Property of Σ

- Theorem: $\Sigma = \mathbb{E}\left[(\mathbf{X} \mathbb{E}[\mathbf{X}]) (\mathbf{X} \mathbb{E}[\mathbf{X}])' \right]$ is
 - symmetric: $\Sigma = \Sigma'$
 - positive semi-definite: for any vector $a \neq 0$, $a'\Sigma a \geq 0$
- Proof: Symmetry holds because $cov(X_i, X_j) = cov(X_j, X_i)$. For positive semi-definiteness,

$$a'\Sigma a = a'\mathbb{E}\left[\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right)\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right)'\right] a$$

$$= \mathbb{E}\left[a'\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right)\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right)' a\right]$$

$$= \mathbb{E}\left\{\left[a'\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right)\right]^{2}\right\} \ge 0$$

since
$$[a'(\mathbf{X} - \mathbb{E}[\mathbf{X}])]^2 \geq 0$$

Property of expectation and covariance

- Theorem: If $\mathbf{X} \in \mathbb{R}^m$ has expectation μ and covariance matrix Σ , and \mathbf{A} is $q \times m$, then $\mathbf{A}\mathbf{X}$ is a random vector with mean $\mathbf{A}\mu$ and covariance $\mathbf{A}\Sigma\mathbf{A}'$
- Proof:

$$\begin{split} \mathbb{E}[\mathbf{A}\mathbf{X}] &= \mathbf{A}\mathbb{E}[\mathbf{X}] = \mathbf{A}\mu \\ \text{var}[\mathbf{A}\mathbf{X}] &= \mathbb{E}\left[(\mathbf{A}\mathbf{X} - \mathbb{E}[\mathbf{A}\mathbf{X}])(\mathbf{A}\mathbf{X} - \mathbb{E}[\mathbf{A}\mathbf{X}])'\right] \\ &= \mathbb{E}\left[\mathbf{A}\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right)(\mathbf{A}\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right))'\right] \\ &= \mathbb{E}\left[\mathbf{A}\left(\mathbf{X} - \mathbb{E}[\mathbf{X}]\right)(\mathbf{X} - \mathbb{E}[\mathbf{X}])'\mathbf{A}'\right] \\ &= \mathbf{A}\mathbb{E}\left[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])'\right]\mathbf{A}' \\ &= \mathbf{A}\mathbf{\Sigma}\mathbf{A}' \end{split}$$

Multivariate normal

- **Definition**: If $\mathbf{Z} \sim \mathrm{N}(0, I_m)$ and $\mathbf{X} = \mu + \mathbf{B}\mathbf{Z}$ for $q \times m$ \mathbf{B} , then \mathbf{X} has the multivariate normal distribution, written $\mathbf{X} \sim \mathrm{N}(\mu, \Sigma)$, with $q \times 1$ mean vector μ and $q \times q$ covariance matrix $\mathbf{\Sigma} = \mathbf{B}\mathbf{B}'$
- If $\mathbf{X} \sim \mathrm{N}(\mu, \Sigma)$ where Σ is invertible, then \mathbf{X} has pdf

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{m}{2}} (\det \Sigma)^{\frac{1}{2}}} \exp\left(-\frac{(\mathbf{x} - \mu)' \Sigma^{-1} (\mathbf{x} - \mu)}{2}\right)$$

• The mean of **X** is $\mathbb{E}[\mathbf{X}] = \mu$, the covariance matrix of **X** is $Var(\mathbf{X}) = \Sigma$.

Property of multivariate normal

- **Theorem**: If X and Y are multivariate normal with cov(X, Y) = 0, then X and Y are independent
- **Theorem**: If $X \sim N(\mu, \Sigma)$ then

$$\mathbf{Y} = \mathbf{a} + \mathbf{B}\mathbf{X} \sim \mathrm{N}(\mathbf{a} + \mathbf{B}\mu, \mathbf{B}\Sigma\mathbf{B}')$$

- In words: if X is multivariate (jointly) normal, then any linear combination of X is also multivariate (jointly) normal
- However, note the following statement is WRONG:
 - Wrong statement: If X and Y are both normal, then X+Y are also normal

• **Theorem**: If (X, Y) are multivariate normal

$$\left(\begin{array}{c} Y \\ X \end{array}\right) \sim \mathsf{N}\left(\left(\begin{array}{c} \mu_Y \\ \mu_X \end{array}\right), \left(\begin{array}{cc} \Sigma_{YY} & \Sigma_{YX} \\ \Sigma_{XY} & \Sigma_{XX} \end{array}\right)\right)$$

with $\Sigma_{YY} > 0$ and $\Sigma_{XX} > 0$, then the conditional distributions $Y \mid X$ and $X \mid Y$ are also normal

$$\begin{split} Y \mid X \sim \mathrm{N} \left(\mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} \left(X - \mu_X \right), \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} \right) \\ X \mid Y \sim \mathrm{N} \left(\mu_X + \Sigma_{XY} \Sigma_{YY}^{-1} \left(Y - \mu_Y \right), \Sigma_{XX} - \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{YX} \right). \end{split}$$

In summary

- Multivariate normal distribution has many attractive properties. The most important insight is:
 - If a random vector X has a multivariate normal distribution, then any of their marginal and conditional distributions are also multivariate normal
- We are now ready to study the sampling distribution of key statistics under the normal sampling model

Sampling distribution under normal sampling model

• **Theorem**: if X_i , $i = 1 \dots n$ are i.i.d $N(\mu, \sigma^2)$, then

$$\bar{X}_n \sim \mathrm{N}(\mu, \frac{\sigma^2}{n})$$

 Proof: use the fact that a linear combination of multivariate normal random variables is still normal

Sampling distribution of sample variance

• Recall sample variance is

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}$$

• To study its distribution under normal sampling, introduce the notion of χ^2_r distribution

• **Definition**: Let $\{Z_1, Z_2 \dots Z_r\}$ be r > 0 i.i.d $\mathrm{N}(0,1)$ random variables. Then $\sum_{i=1}^r Z_i^2$ follows a **chi square distribution** with degrees of freedom r, written as χ_r^2

Figure: Chi-Square Densities

- Theorem: if X_i , $i=1\dots n$ are i.i.d $\mathrm{N}(\mu,\sigma^2)$, then
 - 1 \bar{X}_n and s^2 are independent;
 - $\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$

Proof of statement **1**

- Define residual $\hat{e}_i = X_i \bar{X}_n$, $i = 1 \dots n$
- Note \hat{e}_i is a linear combination of X_1, \ldots, X_n , which are multivariate normal. So \hat{e}_i is also normal
- Also $\mathbb{E}[\hat{e}_i] = \mathbb{E}[X_i] \mathbb{E}[\bar{X}_n] = \mu \mu = 0$, and

$$\begin{aligned} \text{cov}(\hat{\mathbf{e}}_{i}, \bar{X}_{n}) &= \mathbb{E}\left[\hat{\mathbf{e}}_{i} \left(\bar{X}_{n} - \mu\right)\right] \\ &= \mathbb{E}\left[\left(X_{i} - \mu + \mu - \bar{X}_{n}\right) \left(\bar{X}_{n} - \mu\right)\right] \\ &= \mathbb{E}\left[\left(X_{i} - \mu\right) \left(\bar{X}_{n} - \mu\right)\right] - \mathbb{E}\left[\left(\bar{X}_{n} - \mu\right)^{2}\right] \\ &= \frac{\sigma^{2}}{n} - \frac{\sigma^{2}}{n} = 0 \end{aligned}$$

- Since $\hat{\mathbf{e}}_i$ and \bar{X}_n are jointly normal, uncorrelatedness means independence
- Thus, any function of \hat{e}_i (including s^2) and \bar{X}_n are also independent

Proof of statement 2

- We now show $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$
- Write $s_n^2 = s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$ and use proof by induction
- First verify that (left for homework)

$$(n-1)s_n^2 = (n-2)s_{n-1}^2 + \frac{n-1}{n}(X_n - \bar{X}_{n-1})^2$$
 (1)

• Consider n=2. Define $0 \cdot s_1^2=0$, so that we have

$$s_2^2 = (X_2 - \bar{X}_1)^2 = \frac{1}{2}(X_2 - X_1)^2$$

• Since $\frac{X_2-X_1}{\sqrt{2\sigma^2}} \sim N(0,1)$, we have

$$\frac{s_2^2}{\sigma^2} = \frac{1}{2\sigma^2} (X_2 - \bar{X}_1)^2 = \left(\frac{X_2 - X_1}{\sqrt{2\sigma^2}}\right)^2 \sim \chi_1^2$$

- Suppose when n=k, $k\geq 1$, $\frac{(k-1)s_k^2}{\sigma^2}\sim \chi_{k-1}^2$
- Then for n = k + 1, we have from (1)

$$ks_{k+1}^2 = (k-1)s_k^2 + \frac{k}{k+1}(X_{k+1} - \bar{X}_k)^2$$

- Note we assumed $\frac{(k-1)s_k^2}{\sigma^2} \sim \chi_{k-1}^2$
- Proof is done if we can establish

$$(\blacktriangle) \quad \frac{k}{(k+1)\,\sigma^2} (X_{k+1} - \bar{X}_k)^2 \sim \chi_1^2$$

$$(\blacktriangledown) \quad \frac{k}{(k+1)\,\sigma^2} (X_{k+1} - \bar{X}_k)^2 \text{ is independent of } s_k^2$$

- (\blacktriangle) follows from $X_{k+1} \bar{X}_k \sim \mathrm{N}(0, \frac{k+1}{k}\sigma^2)$
- (\blacktriangledown) follows from statement $oldsymbol{0}$ and X_{k+1} independent of s_k^2

Studentized t ratio

• We know if $\{X_1, \dots X_n\}$ are i.i.d $\mathrm{N}(\mu, \sigma^2)$, then

$$\frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathsf{N}(0, 1) \tag{2}$$

- If σ is known, (2) can be used for inference on μ
- Usually σ is unknown. Replacing σ with s, it is natural to consider distribution of $\frac{\bar{X}_n \mu}{\frac{s}{\sqrt{n}}}$
- Note

$$\frac{\bar{X}_n - \mu}{\frac{s}{\sqrt{n}}} = \frac{\frac{X_n - \mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt{\frac{s^2}{\sigma^2}}} = \frac{N(0, 1)}{\sqrt{\frac{\chi_{n-1}^2}{(n-1)}}}$$

Moreover, $\frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}}$ is independent of $\sqrt{\frac{s^2}{\sigma^2}}$

- **Definition**: Let $Z \sim \mathrm{N}(0,1)$ and $Q \sim \chi_r^2$ be independent. Then $T = \frac{Z}{\sqrt{Q/r}}$ has a **Student's t distribution with** r **degrees of freedom**, written as $T \sim t_r$
- **Theorem**: if X_i , $i = 1 \dots n$ are i.i.d $N(\mu, \sigma^2)$, then

$$rac{ar{X}_n - \mu}{rac{s}{\sqrt{n}}} \sim t_{n-1}$$

Student t distribution

Figure: Normal, Cauchy, Student t, and Logistic Densities

Some facts about t distribution

- The pdf of t_r distribution is symmetric around 0
- The pdf of t_r distribution has heavier tails than N(0,1)
- Only the first r-1 moment exists (vs. all moments of N(0,1) exists)
- As $r \to \infty$, t_r distribution is approaching to N(0,1)

Motivation for F distribution

- Variability comparison of two independent populations $N(\mu_X, \sigma_X^2)$ and $N(\mu_Y, \sigma_Y^2)$
- One ideal ratio is $\frac{\sigma_X^2}{\sigma_Y^2}$
- Information about the aforementioned ratio is contained in $\frac{s_X^2}{s_Y^2}$
- Since $(n-1)s_X^2/\sigma_X^2\sim\chi_{n-1}^2$, $(m-1)s_Y^2/\sigma_Y^2\sim\chi_{m-1}^2$

$$\frac{s_X^2/\sigma_X^2}{s_Y^2/\sigma_Y^2} = \frac{\chi_{n-1}^2/(n-1)}{\chi_{m-1}^2/(m-1)}$$

F distribution

• **Definition**: Let $Q_p \sim \chi_p^2$ and $Q_q \sim \chi_q^2$ be independent. Then $\frac{Q_p/p}{Q_q/q}$ follows an F distribution with p and q degrees of freedom, written as

$$rac{Q_p/p}{Q_q/q}\sim F_{p,q}$$

Figure: F(m, r) Distribution Densities with r = 10

• Theorem: Let $\{X_1,\ldots,X_n\}$ be a random sample from $\mathrm{N}(\mu_X,\sigma_X^2)$ population. Let $\{Y_1,\ldots,Y_m\}$ be a random sample from an independent $\mathrm{N}(\mu_Y,\sigma_Y^2)$ population. Then

$$\frac{s_X^2/\sigma_X^2}{s_Y^2/\sigma_Y^2} \sim F_{n-1,m-1}$$

- Some facts about F distribution
 - If $X \sim F_{m,r}$, then $\frac{1}{X} \sim F_{r,m}$
 - If $X \sim t_q$, then $X^2 \sim F_{1,q}$

4. Sufficient Statistics

Introduction

- Suppose we want to use a sample $\mathbf{X} = \{X_1, \dots, X_n\}$ to learn about a parameter of interest θ
- All the information we can use is from X
- However, X is a long list of vectors that can be hard to interpret
- As one data reduction technique, the concept of sufficient statistics allows to separate information from ${\bf X}$ into two parts: one part containing all useful information about θ and the other containing no useful information

Sufficient statistics

- Definition: A statistic T(X) is sufficient for θ if the conditional distribution of X given T(X) does not depend on θ
- A sufficient statistic $T(\mathbf{X})$ contains all useful information about θ in the following sense
 - Experimenter 1 is provided with **X** and can learn about θ from pair $(\mathbf{X}, \mathcal{T}(\mathbf{X}))$
 - Experimenter 2 is not provided with X, but only T(X)
 - Since T(X) is a sufficient statistics, the conditional distribution of X given T(X) is known to Experimenter 2
 - Experimenter 2 can back out the joint distribution of (X, T(X)) without knowing X
 - Thus, Experimenter 2 has as much information as Experimenter 1

• **Theorem**: If $p(\mathbf{x}|\theta)$ is the joint pdf or pmf of \mathbf{X} and $q(t|\theta)$ is the pdf or pmf of a statistic $T(\mathbf{X})$, then $T(\mathbf{X})$ is a sufficient statistic for θ if

$$\frac{p(\mathbf{x}|\theta)}{q(t|\theta)}$$
 does not depend on θ for all \mathbf{x} in the sample space.

Proof

Example: Normal sufficient statistic with known variance

- Let $\{X_1 \dots X_n\}$ be iid $N(\mu, \sigma^2)$ where σ^2 known
- We show that sample mean $T(\mathbf{X}) = \bar{X}$ is a sufficient statistic for μ
- Note the joint pdf of the sample **X** is

$$f(\mathbf{x}|\mu) = \prod_{i=1}^{n} (2\pi\sigma^{2})^{-\frac{1}{2}} \exp\left(-\frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left(-\sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left(-\sum_{i=1}^{n} \frac{(x_{i} - \bar{x} + \bar{x} - \mu)^{2}}{2\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-\frac{n}{2}} \exp\left(-\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + n(\bar{x} - \mu)^{2}}{2\sigma^{2}}\right)$$

where the last equality holds since the cross-product term $\sum_{i=1}^{n} (x_i - \bar{x})(\bar{x} - \mu) = (\bar{x} - \mu) \sum_{i=1}^{n} (x_i - \bar{x}) = 0$

• Recall in a normal sampling model $\bar{X} \sim \mathrm{N}(\mu, \frac{\sigma^2}{n})$. It follows

$$\begin{split} \frac{p(\mathbf{x}|\theta)}{q(t|\theta)} &= \frac{\left(2\pi\sigma^2\right)^{-\frac{n}{2}} \exp\left(-\frac{\sum_{i=1}^n (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2}{2\sigma^2}\right)}{\left(2\pi\sigma^2/n\right)^{-\frac{1}{2}} \exp\left(-\frac{n(\bar{x} - \mu)^2}{2\sigma^2}\right)} \\ &= n^{-\frac{1}{2}} \left(2\pi\sigma^2\right)^{-\frac{n-1}{2}} \exp\left(-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2\sigma^2}\right), \end{split}$$

which does not depend on μ .

Factorization Theorem

- It may be unwise to use the definition of a sufficient statistic to find a sufficient statistic for a particular parameter
- The following theorem allows find a sufficient statistic more conveniently
- **Theorem** (Factorization Theorem): Let $f(\mathbf{x}|\theta)$ be the joint pdf or pmf of \mathbf{X} . A statistic $T(\mathbf{X})$ is a sufficient statistic for θ if and only if there exist functions $g(t|\theta)$ and $h(\mathbf{x})$ such that, for all sample points \mathbf{x} and for all parameter points θ

$$f(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x}). \tag{3}$$

Proof for Factorization Theorem

- We give a proof only for discrete distributions
- Only if: Suppose $T(\mathbf{X})$ is a sufficient statistic. Choose

$$g(t|\theta) = P_{\theta}\{T(\mathbf{X}) = t\}$$
$$h(\mathbf{x}) = P\{\mathbf{X} = \mathbf{x}|T(\mathbf{X}) = T(\mathbf{x})\}.$$

Since $T(\mathbf{X})$ is sufficient, $h(\mathbf{x})$ does not depend on θ . For this choice, we have

$$f(\mathbf{x}|\theta) = P_{\theta}\{\mathbf{X} = \mathbf{x}\}$$

$$= P_{\theta}\{\mathbf{X} = \mathbf{x}, T(\mathbf{X}) = T(\mathbf{x})\}$$

$$= P_{\theta}\{T(\mathbf{X}) = T(\mathbf{x})\}P\{\mathbf{X} = \mathbf{x}|T(\mathbf{X}) = T(\mathbf{x})\}$$

$$= g(T(\mathbf{x})|\theta)h(\mathbf{x})$$

so the only if part is established

- For the if part, suppose factorization (3) exists
- Let $q(t|\theta)$ be the pmf of $T(\mathbf{X})$. To show $T(\mathbf{X})$ is sufficient, it suffices to examine the ratio $\frac{f(\mathbf{x}|\theta)}{q(T(\mathbf{x})|\theta)}$ for each \mathbf{x}
- Define $A_{T(\mathbf{x})} = \{\mathbf{y} : T(\mathbf{y}) = T(\mathbf{x})\}$. Then

$$\frac{f(\mathbf{x}|\theta)}{q(T(\mathbf{x})|\theta)} = \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{q(T(\mathbf{x})|\theta)} \qquad \text{(apply (3))}$$

$$= \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sum_{A_{T(\mathbf{x})}} f(\mathbf{x}|\theta)} \qquad \text{(by definition of pmf)}$$

$$= \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{\sum_{A_{T(\mathbf{x})}} g(T(\mathbf{y})|\theta)h(\mathbf{y})} \qquad \text{(apply (3))}$$

$$= \frac{g(T(\mathbf{x})|\theta)h(\mathbf{x})}{g(T(\mathbf{x})|\theta)\sum_{A_{T(\mathbf{x})}} h(\mathbf{y})} \qquad \text{(T is a constant on $A_{T(\mathbf{x})}$)}$$

$$= \frac{h(\mathbf{x})}{\sum_{A_{T(\mathbf{x})}} h(\mathbf{y})}$$

which does not depend on θ

Example: Normal sufficient statistic with unknown variance

- Let $\{X_1 ... X_n\}$ be iid $N(\mu, \sigma^2)$ where σ^2 unknown. Thus, the parameter is $\theta = (\mu, \sigma^2)$
- Note we already know

$$f(\mathbf{x}|\theta) = \left(2\pi\sigma^2\right)^{-\frac{n}{2}} \exp\left(-\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2 + n(\bar{x}-\mu)^2}{2\sigma^2}\right),$$

 $T_2(\mathbf{x}) = s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ • We can define $h(\mathbf{x}) = 1$ and

$$g(t|\theta) = g(t_1, t_2|\mu, \sigma^2) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{(n-1)t_2 + n(t_1 - \mu)^2}{2\sigma^2}\right)$$

• Thus $f(\mathbf{x}|\theta) = g(T_1(\mathbf{x}), T_2(\mathbf{x})|\mu, \sigma^2)h(\mathbf{x})$. By the Factorization Theorem,

which depends on **x** only through $T_1(\mathbf{x}) = \bar{x}$, and

$$T(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X})) = (\bar{X}, s^2)$$

is a sufficient statistic for (μ, σ^2) in this normal model

Example: discrete uniform distribution

• Let $\{X_1, \ldots, X_n\}$ be a random sample from the discrete uniform distribution on $\{1, 2 \ldots \theta\}$. That is, the pmf for X_i is

$$f(x|\theta) = \begin{cases} \frac{1}{\theta}, & x = 1, 2 \dots \theta, \\ 0, & \text{otherwise.} \end{cases}$$

Show that $\max_i X_i$ is a sufficient statistic for θ .

Proof

Refinement of sufficient statistic

- It should be obvious that each problem has numerous sufficient statistic. For example:
 - In the previous normal model with unknown variance, $(\bar{X}, \frac{1}{n}\sum_{i=1}^{n}(x_i \bar{x})^2)$ is also a sufficient statistic
 - it is always true that the complete sample, X, is sufficient statistic, as for all x

$$f(\mathbf{x}|\theta) = f(T(\mathbf{X})|\theta)h(\mathbf{x}), \text{ by letting } T(\mathbf{X}) = \mathbf{x}, h(\mathbf{x}) = 1.$$

- Also, any one-to-one function of a sufficient statistic is a sufficient statistic (exercise)
- Is there one sufficient statistic better than another?

Minimal sufficient statistic

• **Definition**: A sufficient statistic $T^*(\mathbf{X})$ is a minimal sufficient statistic if for any sufficient statistic $T(\mathbf{X})$, there exists some function such that

$$T^*(\mathbf{X}) = r(T(\mathbf{X})).$$

- The above definition implies that, for any sufficient statistic $T(\mathbf{X})$, if $T(\mathbf{x}) = T(\mathbf{y})$, then $T^*(\mathbf{x}) = T^*(\mathbf{y})$
- Intuitively, the minimal sufficient statistic achieves the greatest data reduction without a loss of information about parameters

Finding a minimal sufficient statistic

• **Theorem**: Let $f(\mathbf{x}|\theta)$ be the joint pdf or pmf of **X**. Suppose there exists a $T(\mathbf{X})$ such that, for every two sample points \mathbf{x} and \mathbf{y} , the ratio

$$\frac{f(\mathbf{x}|\theta)}{f(\mathbf{y}|\theta)}$$
 does not depend on θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$.

Then T(X) is a minimal sufficient statistic

- We leave this statement unproven here
- Note minimal sufficient statistic is also not unique

Example: Normal minimal sufficient statistic

- Consider the previous example where $\{X_1 \dots X_n\}$ is iid $\mathrm{N}(\mu, \sigma^2)$ with σ^2 unknown
- Let \mathbf{x} and \mathbf{y} be two sample points, and let $(\bar{x}, s_{\mathbf{x}}^2)$ and $(\bar{y}, s_{\mathbf{y}}^2)$ be the sample means and variances corresponding two the \mathbf{x} and \mathbf{y} samples, respectively
- It follows

$$\begin{split} \frac{f(\mathbf{x}|\theta)}{f(\mathbf{y}|\theta)} &= \frac{\left(2\pi\sigma^2\right)^{-\frac{n}{2}} \exp\left(-\frac{(n-1)s_{\mathbf{x}}^2 + n(\bar{\mathbf{x}} - \mu)^2}{2\sigma^2}\right)}{\left(2\pi\sigma^2\right)^{-\frac{n}{2}} \exp\left(-\frac{(n-1)s_{\mathbf{y}}^2 + n(\bar{\mathbf{y}} - \mu)^2}{2\sigma^2}\right)} \\ &= \exp\left(\frac{\left(n-1\right)(s_{\mathbf{y}}^2 - s_{\mathbf{x}}^2) + n(\bar{\mathbf{y}}^2 - \bar{\mathbf{x}}^2) + 2n\mu(\bar{\mathbf{x}} - \bar{\mathbf{y}})}{2\sigma^2}\right). \end{split}$$

This ratio is a constant not depending on (μ, σ^2) if and only if $\bar{x} = \bar{y}$ and $s_y^2 = s_x^2$. Thus, (\bar{X}, s^2) is a minimal sufficient statistic

4. Examples of Estimators and Measures of Their Quality

Estimators and some examples

- An **estimator** $\hat{\theta}$ for a parameter θ is a also a **statistic**, intended as a guess about θ
 - $\hat{\theta}$ is an **estimate** when it is a specific (or realized) value calculated in a specific sample
- Let population parameter be $\mu = \mathbb{E}[X]$
 - The **sample mean** is $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$
- Let population parameter be $\theta = \mathbb{E}[g(X)]$ for some known function g
 - An estimator is the sample mean of $g(X_i)$: $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} [g(X_i)]$
- Let population parameter be $\beta = h(\mathbb{E}[g(X)])$ for some known functions g and h
 - A plug-in estimator for β is $\hat{\beta} = h(\hat{\theta}) = h\left(\frac{1}{n}\sum_{i=1}^{n}[g(X_i)]\right)$

Quality of an estimator: estimation bias

• **Definition**: The **bias** of an estimator $\hat{\theta}$ of a parameter θ is

$$\mathsf{bias}[\hat{\theta}] = \mathbb{E}[\hat{\theta}] - \theta$$

- An estimator is is unbiased if the bias is zero
- Bias depends on the population distribution F
- Let ${\mathscr F}$ be a collection of possible distributions
- An estimator $\hat{\theta}$ of a parameter θ is **unbiased in** \mathscr{F} if bias[$\hat{\theta}$] = 0 for every $F \in \mathscr{F}$
- **Theorem**: \bar{X} is unbiased for $\mu = \mathbb{E}[X]$ if $\mathbb{E}|X| < \infty$
 - Sample mean is an unbiased estimator for population mean as long as population mean is finite

Quality of an estimator: sampling variance

- **Definition**: The **variance** of an estimator $\hat{\theta}$, also called **sampling variance**, is $var[\hat{\theta}]$
- We already know that If $\mathbb{E}X^2 < \infty$, then $\text{var}[\bar{X}] = \frac{\sigma^2}{n}$, where $\sigma^2 = \text{var}(X)$
- Therefore, the variance of \bar{X} declines with sample size at rate $\frac{1}{n}$

Estimation of sampling variance

- Sampling variance is the variance of an estimator and thus usually unknown!
- To estimate $var[\bar{X}_n]$, we need an estimator for

$$\sigma^2 = \mathsf{var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$$

• The **plug-in** estimator for σ^2 is

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - (\bar{X}_n)^2$$

- **Theorem**: If $\sigma^2 < \infty$, then $\mathbb{E}[\hat{\sigma}^2] = (1 \frac{1}{n})\sigma^2$ (proof left as homework).
- Question: is there an unbiased estimator for σ^2 ?

Standard error

• **Definition**: The **standard error** of an estimator $\hat{\theta}$ for parameter θ is

$$\mathit{se}(\hat{ heta}) = \hat{V}^{1/2}, \text{ where } \hat{V} \text{ is an estimator for } V = \mathsf{var}[\hat{ heta}]$$

- Standard error can be interpreted as an estimator for $V^{1/2}$, the **standard deviation** of $\hat{\theta}$
- Standard error is usually a biased estimator of $V^{1/2}$
- Example:
 - sample mean \bar{X}_n is an estimator for μ
 - the exact variance of \bar{X}_n is $\frac{\sigma^2}{n}$
 - if we estimate σ^2 by the plug-in estimator $\hat{\sigma}^2$
 - the standard error of \bar{X}_n is $\sqrt{\frac{\hat{\sigma}^2}{n}}$

Quality of an estimator: mean square error

- A standard measure of estimation quality is mean square error (MSE)
- **Definition**: The **mean square error** of an estimator $\hat{\theta}$ for θ is

$$\mathsf{mse}(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta)^2]$$

• **Theorem**: For any estimator with a finite variance

$$\mathsf{mse}(\hat{\theta}) = \mathsf{var}(\hat{\theta}) + (\mathsf{bias}[\hat{\theta}])^2$$

Proof: start from

$$\begin{aligned} \mathsf{mse}(\hat{\theta}) &= \mathbb{E}[(\hat{\theta} - \theta)^2] \\ &= \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}] + \mathbb{E}[\hat{\theta}] - \theta)^2] \end{aligned}$$

and apply standard algebra

 An estimator with smaller MSE is considered to be better, or more efficient

Best unbiased estimator

- Among a class of unbiased estimators, the one with the lowest sampling variance also has the smallest MSE
- ullet This motivates finding the best unbiased estimator for estimating parameter heta
- Theorem: If $\sigma^2 < \infty$, the sample mean \bar{X}_n has the lowest variance among all linear unbiased estimators of μ

Proof

Consider a class of linear estimators

$$\tilde{\mu} = \sum_{i=1}^{n} w_i X_i$$

with some weights $\{w_1, \dots w_n\}$

Unbiasedness requires

$$\mu = \mathbb{E}\tilde{\mu} = \sum_{i=1}^{n} w_i \mathbb{E}[X_i] = \sum_{i=1}^{n} w_i \mu$$

which holds if and only if

$$\sum_{i=1}^{n} w_i = 1$$

• The variance of $\tilde{\mu}$ is

$$\operatorname{var}(\tilde{\mu}) = \operatorname{var}\left(\sum_{i=1}^{n} w_i X_i\right) \stackrel{\text{(independence)}}{=} \sum_{i=1}^{n} w_i^2 \operatorname{var}(X_i) = \sigma^2 \sum_{i=1}^{n} w_i^2$$

Hence the best unbiased linear estimator solves

$$\min_{w_1...w_n} \sum_{i=1}^n w_i^2, \text{ s.t. } \sum_{i=1}^n w_i = 1$$

which has an Lagrangian

$$L(w_1, \ldots w_n) = \sum_{i=1}^n w_i^2 - \lambda \left(\sum_{i=1}^n w_i - 1 \right)$$

• FOC with respect to w_i , $i = 1 \dots n$ is

$$2w_i - \lambda = 0 \Rightarrow w_i = \frac{\lambda}{2}$$

implying $w_i = \frac{1}{n}$ in order to satisfy $\sum_{i=1}^{n} w_i = 1$. Conclusion follows

- In fact, we have a much stronger statement
- Theorem: If $\sigma^2 < \infty$, the sample mean \bar{X}_n has the lowest variance among all **unbiased estimators** of μ

Multivariate means

• Let $X \in \mathbb{R}^m$ be a random vector and $\mu = \mathbb{E}[X]$ be its mean. The sample mean estimator for μ is

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

$$= \begin{pmatrix} \bar{X}_{1n} \\ \bar{X}_{2n} \\ \vdots \\ \bar{X}_{mn} \end{pmatrix}$$

 Most properties of the univariate sample mean extend to the multivariate mean

- The multivariate mean is unbiased for the population expectation: $\mathbb{E}\left[\bar{X}_{n}\right]=\mu$
- The exact covariance matrix of \bar{X}_n is

$$Var\left(\bar{X}_{n}\right) = \mathbb{E}\left[\left(\bar{X}_{n} - \mathbb{E}(\bar{X}_{n})\right)\left(\bar{X}_{n} - \mathbb{E}(\bar{X}_{n})\right)'\right]$$
$$= \frac{1}{n}Var(X) = \frac{\Sigma}{n}$$

• The MSE matrix of \bar{X}_n is

$$MSE\left(\bar{X}_{n}\right) = \mathbb{E}\left[\left(\bar{X}_{n} - \mu\right)\left(\bar{X}_{n} - \mu\right)'\right] = \frac{\Sigma}{n}$$

- \bar{X}_n is the best unbiased estimator for μ
- An unbiased covariance matrix estimator is

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} \left[\left(X_i - \bar{X}_n \right) \left(X_i - \bar{X}_n \right)' \right]$$

Connection between efficiency and sufficient statistics

- Suppose we have a random sample $\mathbf{X} = \{X_1, \dots, X_n\}$ from a distribution F_{θ} , where $\theta \in \mathbb{R}^k$ is the parameter of interest
- Let $\widehat{\theta} := \widehat{\theta}(\mathbf{X})$ be a candidate estimator for θ that we, as researchers, think is "good" (e.g., it has some desirable MSE properties)
- Suppose we also know that $T(\mathbf{X})$ is a sufficient statistics for θ
- Question: Can we do better than $\widehat{\theta}$?

Rao-Blackwell Theorem

Rao-Blackwell Theorem

Under the setup from last slide, let

$$\widetilde{ heta}(\mathbf{X}) := \mathbb{E}\left[\widehat{ heta}(\mathbf{X}) \mid \mathcal{T}(\mathbf{X})
ight].$$

Then,

- 2 If $\widehat{\theta}(\mathbf{X})$ is an unbiased estimator, so is $\widetilde{\theta}(\mathbf{X})$

Proof