体論 (第9回)

9. 単拡大

今回はまず \mathbb{C} に含まれる任意の有限次拡大が単拡大になることを証明する。また後半では、K-準同型と K 上共役との関係をみる。

定義 9-1(単拡大)

体の拡大 L/K は $L=K(\alpha)$ $(\alpha \in L)$ と表せるとき, **単拡大**といい, このときの α を L の**原始元**と呼ぶ.

ℂに含まれる有限次拡大はすべて単拡大である.

定理 9-1

L を \mathbb{C} の部分体とし, L/K は有限次拡大とする.

- (1) $\alpha, \beta \in \mathbb{C}$ が K 上代数的ならば, $K(\alpha, \beta) = K(\gamma)$ となる $\gamma \in \mathbb{C}$ が存在する.
- (2) L/K は単拡大である.

[証明]

(1) α と β の K 上共役全体をそれぞれ $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_m, \beta = \beta_1, \beta_2, \ldots, \beta_n$ とし、

$$c \notin \left\{ \frac{\beta_j - \beta}{\alpha - \alpha_i} \mid 2 \le i \le m, \ 1 \le j \le n \right\}$$
 (eq1)

を満たす $c \in K$ を取る. $\gamma = \beta + c\alpha$ と置けば, $K(\gamma) \subseteq K(\alpha, \beta)$ である.

仮に $K(\gamma) \neq K(\alpha,\beta)$ とする. $M=K(\gamma)$ として, f(x) を α の M 上の最小多項式とする. $M \neq K(\alpha,\beta)$ より $\alpha \notin M$ である. よって $\deg f \geq 2$. そこで, $f(\delta)=0$ を満たす $\delta \in \mathbb{C}$ $(\delta \neq \alpha)$ を 取る. δ は α の M 上共役より, 定理 7-1 から α の K 上共役でもある. 従って $\delta=\alpha_i$ $(2 \leq i \leq m)$ と表せる.

次に g(x) を β の K 上の最小多項式とし, $G(x)=g(\gamma-cx)\in M[x]$ と置く.このとき, $G(\alpha)=g(\gamma-c\alpha)=0$.定理 3-1 より $f(x)\mid G(x)$ である.従って, $f(\alpha_i)=0$ より $g(\gamma-c\alpha_i)=G(\alpha_i)=0$. よって, $\beta_j=\gamma-c\alpha_i$ $(2\leq j\leq n)$ と表せる. $\gamma=\beta+c\alpha$ より, $\beta_j-\beta=c(\alpha-\alpha_i)$ となり,c の取り方に矛盾.以上より $K(\gamma)=K(\alpha,\beta)$.

copyright ⓒ 大学数学の授業ノート

(2) 問題 6-2 より、

$$L = K(\alpha_1, \alpha_2, ..., \alpha_n) \quad (\alpha_1, \alpha_2, ..., \alpha_n \in L)$$

と表せる. $n \geq 3$ の場合を示せばよい. $M = K(\alpha_1, \alpha_2)$ と置くと, (1) より $M = K(\beta)$ を満たす $\beta \in M$ が取れる. 従って

$$L=M(\alpha_3,...,\alpha_n)=K(\underbrace{\beta,\alpha_3,...,\alpha_n}_{n-1}).$$

この操作を繰り返せば $L = K(\gamma)$ ($\gamma \in L$) の形に変形することができる.

[補足] より一般的に, 有限次分離拡大は単拡大であることが示せる (参考文献 [1] 定理 3.7.1).

問題 9-1 定理 9-1 の証明を参考にして, $\mathbb{Q}(\sqrt{3}, \sqrt[3]{2}) = \mathbb{Q}(\sqrt{3} + \sqrt[3]{2})$ を示せ.

次に K-準同型と共役元との関係を考察する.

定理 9-2

L を \mathbb{C} の部分体とし, L/K を有限次拡大とする. $\beta \in L$ に対して,

$$\{\gamma \in \mathbb{C} \mid \gamma \text{ は } \beta \text{ O } K \text{ 上共役 } \} = \{\sigma(\beta) \mid \sigma \in \operatorname{Hom}_K(L,\mathbb{C})\}.$$

証明の前にこの定理の使い方をみておく. 定理 9-2 より, $\operatorname{Hom}_K(L,\mathbb{C})$ を用いて L の各元の共役を計算できる.

例題 9-1

 $\alpha = \sqrt[4]{2}, L = \mathbb{Q}(\alpha)$ とする. このとき, α の \mathbb{Q} 上共役は $\pm \alpha$, $\pm \alpha i$ である. 定理 8-1 より,

$$\operatorname{Hom}_{\mathbb{Q}}(L,\mathbb{C}) = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$$

と表せる. ここで、各 σ_i は $\sigma_1(\alpha) = \alpha$, $\sigma_2(\alpha) = -\alpha$, $\sigma_3(\alpha) = \alpha i$, $\sigma_4(\alpha) = -\alpha i$ を満たすものとする.

- (1) $\beta = 2 + \alpha^3$ の \mathbb{Q} 上の共役を求めよ.
- (2) $\beta = 2 + \alpha^3$ の \mathbb{Q} 上の最小多項式を求めよ.

[解答]

(1) 定理 9-2 から, β の ℚ 上共役全体は次で与えられる.

$$\sigma_{1}(\beta) = \sigma_{1}(2) + \sigma_{1}(\alpha)^{3} = 2 + \alpha^{3},
\sigma_{2}(\beta) = \sigma_{2}(2) + \sigma_{2}(\alpha)^{3} = 2 - \alpha^{3},
\sigma_{3}(\beta) = \sigma_{3}(2) + \sigma_{3}(\alpha)^{3} = 2 - i\alpha^{3},
\sigma_{4}(\beta) = \sigma_{4}(2) + \sigma_{4}(\alpha)^{3} = 2 + i\alpha^{3}.$$

(2) f(x) を β の \mathbb{Q} 上の最小多項式とする. f(x) の根は $\sigma_1(\beta)$, $\sigma_2(\beta)$, $\sigma_3(\beta)$, $\sigma_4(\beta)$ なので、

$$f(x) = (x - (2 + \alpha^3))(x - (2 - \alpha^3))(x - (2 - i\alpha^3))(x - (2 + i\alpha^3))$$

$$= \prod_{n=0}^{3} ((x - 2) - i^n \alpha^3)$$

$$= (x - 2)^4 - (\alpha^3)^4$$

$$= x^4 - 8x^3 + 24x^2 - 32x + 8.$$

定理 9-2 の証明のために次の補題を準備する.

補題 9-1

L を $\mathbb C$ の部分体とし, L/K を有限次拡大とする. M を L/K の中間体とし, $au\in \mathrm{Hom}_K(M,\mathbb C)$ とする. このとき, $\sigma\mid_{M}=\tau$ となる $\sigma\in \mathrm{Hom}_K(L,\mathbb C)$ が存在する.

[証明]

証明のアイデアは定理 8-1 と同様である. 詳細は参考文献 [1] 補題 3.2.2 を参照のこと.

[定理 9-2 の証明]

 \supseteq について. f(x) を β の K 上の最小多項式とし, $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in K[x]$ と置く. このとき、

$$f(\sigma(\beta)) = \sigma(\beta)^n + a_{n-1}\sigma(\beta)^{n-1} + \dots + a_0$$
$$= \sigma(\beta^n + a_{n-1}\beta^{n-1} + \dots + a_0)$$
$$= 0.$$

従って, $\sigma(\beta)$ は β の K 上共役である.

 \subseteq について. γ を $\beta \in L$ の K 上共役とする. 定理 8-1 より $\tau(\beta) = \gamma$ となる $\tau \in \operatorname{Hom}_K(K(\beta), \mathbb{C})$ が取れる. さらに、補題 9-1 より $\sigma|_{K(\beta)} = \tau$ となる $\sigma \in \operatorname{Hom}_K(L, \mathbb{C})$ が存在する. このとき、

$$\sigma(\beta) = \tau(\beta) = \gamma$$

が成り立つ.

問題 9-2 $\alpha=\sqrt[4]{2}$ とし、 $\sigma_1,\sigma_2,\sigma_3,\sigma_4$ を例 9-1 のものとする. また、 $\beta=2\alpha+\alpha^2$ とする.

- (1) $\sigma_n(\beta)$ (n = 1, 2, 3, 4) を α と i を用いて表せ.
- (2) β の \mathbb{Q} 上の最小多項式 f(x) を求めよ.

参考文献

[1] 雪江明彦, 代数学 2 環と体とガロア理論, 日本評論社, 2010.