Definições, Propriedades e Resultados P2 Introdução a Topologia

Yuri Kosfeld

Abril 2025

1 Variedades

Definição (Variedade e Atlas). Dado M um espaço métrico, dizemos que M é uma variedade de dimensão n se, existe uma família de funções $A = \{\varphi_i : U_i \subset M \to V_i \subset \mathbb{R}^n\}$ que satisfazem:

- 1. $\forall i \in I, U_i \ \'e \ aberto \ em \ M \ e \ V_i \ \'e \ aberto \ em \ \mathbb{R}^n$.
- 2. $\bigcup_{i \in I} U_i = M$.
- 3. $\forall i \in I, \varphi_i \ \'e \ um \ homeomorfismo.$

Denotaremos por M^n . Definimos também A como o **atlas da variedade**.

Exemplo.

- \mathbb{R}^n é uma variedade
- qualquer aberto de \mathbb{R}^n é uma variedade
- \bullet S^1 é uma variedade

Definição (Fibrado). Sejam M, N e F espaços métricos. M é um fibrado com base N e fibras F se existem:

- 1. Uma aplicação $\pi: M \to N$ continua tal que $\forall x \in N$, a fibra $\pi^{-1}(x)$ é homeomorfa a F.
- 2. Uma família de abertos $\{U_i\}_{i\in I}$ de N tal que

$$\bigcup_{i \in I} U_i = N$$

3. Para cada $i \in I$, existe um homeomorfismo $\varphi_i : U_i \times F \to \pi^{-1}(U_i) \subset M$ satisfazendo

$$\pi(\varphi(x,v)) = x \quad \forall x \in U_i, v \in F$$

2 Bases

Definição (Base). Dado M um espaço métrico. Uma base de M é uma coleção de abertos $\beta = \{\beta_i\}_{i \in I}$ que verifica: $\forall U \subset M$ aberto, $\exists I' \subset I$ tal que

$$U = \bigcup_{i \in I'} \beta_i$$

Exemplo. $\beta = \{B(x,r) \mid x \in M, r > 0\}$ é uma base.

Lema. Seja M espaço métrico e $\beta = \{\beta_i\}_{i \in I}$ uma coleção de abertos. Se β satisfaz: $\forall U \subset M$ aberto e $\forall x \in U, \exists i \in I$ tal que $x \in B_i \subset U$, então β é uma base de M.

Demonstração. Seja U aberto de M. Queremos mostrar que U é união de elementos de β . Por hipotese: $\forall x \in U, \exists i(x) \in I \text{ tal que } x \in B_{i(x)} \subset U$. Logo

$$U = \bigcup_{x \in U} x \subset \bigcup_{x \in U} B_{i(x)} \subset \bigcup_{x \in U} U = U$$

$$\Rightarrow U = \bigcup_{x \in U} B_{i(x)}$$

e assim β é base.

Atenção. As bases não são únicas!

Definição (Base Enumerável). Um espaço métrico M admite base enumerável se existe $\beta = \{\beta_i\}_{i \in I}$ base tal que I é enumerável.

Exemplo. \mathbb{R} admite base enumerável: $\beta = \{(a,b) \subset \mathbb{R} \mid a,b \in \mathbb{Q}\}$. Sabemos que \mathbb{Q} é enumerável e β é base pelo **lema** anterior: dado $U \in \mathbb{R}$ e $x \in U$, temos que $x \in (a,b) \subset B(x,\varepsilon) \subset U$.

Atenção. O produto de espaços que admitem base enumerável também admite base enumerável.

Proposição. Seja M espaço métrico. São equivalentes:

- 1. M admite base enumerável.
- 2. $\exists D \subset M$ enumerável e denso (M é separavél).

Demonstração. $(1) \Rightarrow (2)$:

Seja $\beta = \{\beta_k\}$ base enumerável. Para cada $k \in \mathbb{N}$ escolhemos $x_k \in \beta_k$, e então defina $D = \{x_k \mid k \in \mathbb{N}\}$. D é natualmente enumerável pela construção, então precisamos verificar ainda que D é denso. Para ver que D é denso, basta ver que dado U aberto, vale $U \cap D \neq \emptyset$. Dado U, $\exists k$ tal que $\beta_k \neq \emptyset$ e $\beta_k \subset U$. Logo $x_k \in D \cap U$, e portanto D é denso.

$$(2) \Rightarrow (1)$$
:

Seja D denso e enumerável e considere

$$\beta = \{ B(y, r) \mid y \in D, r \in \mathbb{Q}^+ \}$$

Temos que β é enumerável e é base pelo **lema**:

Seja U aberto e $x \in U$. Queremos B elemento da base tal que $x \in B \subset U$. Temos $\exists y \in D \cap B(x, \varepsilon/2)$, ou seja, $d(x,y) < \varepsilon/2$. Temos também, $\exists r \in \mathbb{Q}$ tal que $d(x,y) < r < \varepsilon/2$. Para este r, vale que $x \in B(y,r)$. Assim $B(y,r) \subset B(x,\varepsilon) \subset U$.

Definição (Base Local). Dado M espaço métrico $e \ x \in M$, uma base local de M em $x \notin \beta = \{\beta_i\}_{i \in I}$ de vizinhanças de x que verifica: $\forall U$ vizinhança de x, $\exists \beta_i \in \beta$ tal que $x \in B_i \subset U$.

Definição (Primeiro Axioma de Enumerabilidade). Todo ponto admite base local enumerável.

Atenção. Todo espaço métrico satisfaz o Primeiro Axioma de Enumerabilidade. Basta tomar:

$$\beta = \{B(x, 1/k)\}\$$

3 Conexidade

Definição (**Separação**). Seja M espaço métrico Uma **separação** de M é um par de subconjuntos de M $\{A,B\}$ que verificam:

- \bullet $A \cup B = M$.
- $A \cap B = \emptyset$.
- A e B são abertos.

Chamamos $\{M,\emptyset\}$ de separação trivial.

Definição (Conexo). M é conexo se a única separação que admite é a trivial. Se M não é conexo, dizemos que M é desconexo.

Atenção. Se {A, B} é separação, então A e B são fechados.

Proposição. M é conexo se e somente se os únicos conjuntos abertos e fechados de M são M e \emptyset .

Demonstração. COMPLETAR!

Atenção. $X \subset M$ é conexo se X com a topologia relativa é conexo.

Proposição. Se $f: M \to N$ é contínua e M é conexo, então f(M) também é conexo.

Demonstração. Queremos ver que f(M) é conexo. Seja $\{A,B\}$ separação de f(M). $\exists A', B'$ abertos em N tais que

$$A' \cap f(M) = A$$

$$B' \cap f(M) = B$$

Como f é contínua, $f^{-1}(A')$ e $f^{-1}(B')$ são abertos de M. Logo

$$f^{-1}(A') = f^{-1}(f(M) \cap A')$$

= $f^{1}(A)$

 $e \ tamb\'em \ f^{-1}(B') = f^{-1}(B).$

Vamos mostrar que $\{f^{-1}(A), f^{-1}(B)\}\$ é separação de M.

- $f^{-1}(A)$ e $f^{-1}(B)$ são abertos.
- $M = f^{-1}(f(M)) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

• $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = \emptyset.$

Como M é conexo, temos duas opções: $f^{-1}(A) = \emptyset$ ou $f^{-1}(B) = \emptyset$. Se $f^{-1}(A) = \emptyset$, como $A \subset Im(f)$, segue que $A = \emptyset$ e então B = f(M). Se $f^{-1}(B) = \emptyset$, analogo ao caso anterior temos, $B = \emptyset$ e A = f(M). Assim $\{A, B\}$ é a separação trivial de f(M).

Corolário 1. Seja $f: M \to N$ homeomorfismo. Então, M é conexo se e somente se N é conexo.

Exemplo.

- $M = \{x\}$ é conexo.
- $[0,1) \cup (1,2]$ não é conexo. Basta perceber que $\{[0,1),(1,2]\}$ é separação, já que $[0,1) = (-1,1) \cap M$ e $(1,2] = (1,3) \cap M$ são abertos.

Teorema. Se $I \subset \mathbb{R}$ é um intervalo, então I é conexo. Mais ainda, os únicos conexos de \mathbb{R} são intervalos ou conjuntos com um único ponto.

Demonstração. Tomemos I intervalo de \mathbb{R} e suponhamos que admite uma separação não trivial $\{A, B\}$. $\exists a \in A, b \in B$. Podemos supor que a < b. Como I é um intervalo, vale $[a, b] \subset I$. Defina $C = \{x \in [a, b] \mid [a, x] \subset A\}$. Vamos mostrar que $C \subset A$.

Primeiro vamos mostrar que $C \neq \emptyset$. $a \in A$, como A é aberto em $I. \Rightarrow A \cap [a,b]$ é aberto em [a,b]. $\Rightarrow \exists \varepsilon > 0 \ (a - \varepsilon, a + \varepsilon) \cap [a,b] \subset A$.

Como $C \neq \emptyset$ e é limitado pois $C \subset [a,b]$. Existe $c = \sup(C)$. Como $\{A,B\}$ é separação, então $c \in A$ ou $c \in B$. Afirmação: $c \notin B$.

Se $c \in B$, como B é aberto, $\exists \varepsilon > 0$ tal que $(c - \varepsilon, c + \varepsilon) \subset B$. Logo $c - \varepsilon/2$ é uma cota superior de C menor que c. Absurdo, já que c é $\sup(C)$. Então $c \in A$. Afirmação: $\sup(C) = b$ Se c < b, como A é aberto, $\exists \varepsilon > 0$ tal que $(c - \varepsilon, c + \varepsilon) \subset A$. Como $c = \sup(C)$, $\exists x \in (c - \varepsilon/2, c]$ tal que

 $x \in C \Rightarrow [a,x] \subset A \Rightarrow (c-\varepsilon,c+\varepsilon/2] \subset A$. Logo a união $[a,c+\varepsilon/2]$ está contido em A, logo $c+\varepsilon/2 \in C$, absurdo já que $c = \sup(C)$. Então c = b e portanto $b \in A \cap B$ um absurdo.

Exemplo.

- S^1 é conexo
- S^1 não é homeomorfo a nenhum intervalo de \mathbb{R} .

Corolário 2 (Teorema do Valor Intermediario). Se $f:[a,b] \to \mathbb{R}$ é contínua e f(a) < f(b), então $\forall d \in [f(a), f(b)] \exists c \in [a,b]$ tal que f(c) = d.

Demonstração. COMPLETAR!!

Lema. Se M é espaço métrico, $\{A, B\}$ separação de M e $X \subset M$ é conexo, então $X \subset A$ ou $X \subset B$.

Demonstração. $\{A \cap X, B \cap X\}$ é separação de X. Então ou $A \cap X = X$ ou $B \cap X = X$. Logo ou $X \subset A$ ou $X \subset B$.

Proposição. Se $X \subset Y \subset \overline{X} \subset M$ com X conexo, então Y é conexo.

Demonstração. Seja $\{A,B\}$ separação de Y. Pelo lema anterior, como X é conexo, então ou $X \subset A$ ou $X \subset B$. Suponhamos que $X \subset A$, como A é fechado em Y $\overline{X}^Y \subset \overline{A}^Y = A$. Mas $\overline{X}^Y = \overline{X}^M \cap Y$. Logo Y = A. $\Rightarrow \{A,B\}$ é separação trivial de Y.

Proposição. Seja $\{X_i\}_{i\in I}$ uma família de subconjuntos conexos em M, tais que $\bigcap_{i\in I} X_i \neq \emptyset$. Então $\bigcup_{i\in I} X_i \neq \emptyset$. é conexo.

Demonstração. Seja $\{A, B\}$ separação de $X = \bigcup_{i \in I} X_i$. Tome $x_0 \in \bigcap_{i \in I} X_i$. Pela separação, cada $X_i \subset A$ ou $X_i \subset B$. Se $x_0 \in A$, então $X_i \subset A \quad \forall i$. Assim A = X e $B = \emptyset$.

Proposição. Se M_1, M_2, \ldots, M_n são espaços conexos, então $M = M_1 \times M_2 \times \cdots \times M_n$ é conexo.

Demonstração. Vamos provar por indução em n, quantidade de espaços conexos.

Como caso base vamos provar para n=2. Sejam M e N conexos. Tome um ponto (x,y') em $M\times N$. Temos que $\{x\} \times N$ é homeomorfo a N, logo é conexo. De maneira analoga temos que $M \times \{y'\}$ é conexo. Defina então $C_x = (\{x\} \times N) \cup (M \times \{y'\})$. C_x é conexo pois é união de dois conexos com um ponto em comum, (x,y'). Agora $M \times N = \bigcup_{x \in M} C_x$, com cada C_x conexo e $\bigcap_{x \in M} C_x = M \times \{y'\}$. Então pela proposicao novamente, $M \times N$ é conexo. Seguindo pela indução temos:

$$M_1 \times \cdots \times M_n \times M_{n+1} = (M_1 \times \cdots \times M_n) \times M_{n+1}$$

Então pela hipotese de indução, é conexo.

Definição (Componentes Conexas). Dado M espaço métrico, definimos \sim em M, $x \sim y$ se existe $C \subset M$ conexo tal que $x, y \in C$. Chamamos as classes de N como componentes conexas de M.

Proposição. M espaço métrico, $\{C_i\}_{i\in I}$ as componentes conexas de M. Então:

- 1. $M = \bigcup_{i \in I} C_i$.
- 2. Se $i \neq j$ então $C_i \cap C_j = \emptyset$.
- 3. $Cada C_i \ \'e \ conexa$.
- 4. Se $C \subset M$ é conexo, então existe $i \in I$ tal que $C \subset C_i$.
- 5. $Cada C_i \ \'e \ fechada$.
- 6. $M \notin conexo \ se \ e \ somente \ se \ |I| = 1$.

Demonstração. (1) e (2) são imediatos, pois ~ é uma relação de equivalencia e as classes formam uma partição do espaço.

- (3): Fixemos $x \in C_i$, e para cada $y \in C_i$ seja D_y conexo de M tal que $x, y \in D_y$. Então $C_i = \bigcup_{y \in C_i} D_y$ e $\{x\} \subset \bigcap_{y \in C_i} D_y$. Logo C_i é união de conexos com um ponto em comum e portanto é conexo.
- (4): Se $C \subset M$ é conexoe $x \in C$, seja C_i tal que $x \in C_i$. $\forall y \in C, y \sim x \Rightarrow y \in C_i \Rightarrow C \subset C_i$. (5): C_i conexo, então $\overline{C_i}$ é conexo. Mas pelo item (4) $\overline{C_i} \subset C_i$, portanto $C_i = \overline{C_i}$.
- (6): Trivial.

Atenção. C_i nem sempre é aberto. Precisamos de uma quantidade finita de compontes conexas para que cada uma delas seja aberta.

Definição (Totalmente Disconexo). Se $\forall i \in I, |C_i| = 1$, ou seja, C_i é um único ponto, dizemos que M é totalmente disconexo.

Exemplo.

• \mathbb{Q} é totalmente disconexo.

• Todo espaço discreto é totalmente disconexo.

Atenção. Conexão é uma propriedade global. Ou seja, temos que entender todo o espaço para determinar se verifica a propriedade.

Definição (Localmente Conexo). M é localmente conexo se $\forall x, \forall U_x$ vizinhança de $x \exists V_x$ vizinhança de x conexa com $V_x \subset U_x$.

Exemplo.

- \mathbb{R} $e \mathbb{R}^n$ são localmente conexos.
- $M = [0,1) \cup (1,2]$ é localmente conexo, mas não é conexo.

Proposição. Seja M espaço métrico localmente conexo, então toda componente conexa é aberta.

Demonstração. Seja C componente conexa $e \ x \in C$. $\exists \ V_x \ aberto \ conexo \ que \ contém \ x. \ Então \ V_x \subset C \ e$ portanto x é ponto de interior de C. Logo C é aberto.

Teorema. Seja M conexo, $\forall x \in M \ \exists \varepsilon > 0$ tal que $B(x, \varepsilon)$ é separavél. Então M é separavél.

Demonstração. Se considerarmos $A \subset M$ tal que se provarmos que A = M então concluimos o teorema. Para provarmos que A = M, mostraremos que

- 1. $A \neq \emptyset$
- 2. A é aberto
- 3. A é fechado

Assim como M é conexo, ganhamos que A = M.