

SOLUCIONES GUÍA N°3 DE CÁLCULO I

- Nº1 a) A los 30 minutos está en el kilómetro 23
 - b) La velocidad promedio entre los 30 y 60 minutos es de 1,8 km/min
 - c) Se estima que La velocidad Instantánea a los 30 minutos es de 1,2
 km/min

Intervalos de	Velocidad Promedio
Tiempo	(m/s)
$28 \le x \le 31$	1,18
$29 \le x \le 30,5$	1,19
$29,9 \le x \le 30,1$	1,20
$29,99 \le x \le 30,01$	1,20

- N°2 a) La población a los 10 años será de 21.040 habitantes aproximadamente
 - b) La tasa de crecimiento promedio entre el 6to y décimo año es de 2148 habitantes por año
 - c) La tasa de crecimiento instantánea a los 10 años será de 6780 **habitantes por año** aproximadamente.

Intervalos de Tiempo	Tasa de Crecimiento Promedio
$9,5 \le t \le 10,5$	$\frac{p(10,5) - p(9,5)}{10,5 - 9,5} \approx 6,94019012$
$9,9 \le t \le 10,1$	$\frac{p(10,1) - p(9,9)}{10,1 - 9,9} \approx 6,78651724$
$9,99 \le t \le 10,01$	$\frac{p(10,01) - p(9,99)}{10,01 - 9,99} \approx 6,78022262$
$9,999 \le t \le 10,001$	$\frac{p(10,001) - p(9,999)}{10,001 - 9,999} \approx 6,78015969$

Función	Tipo de Función	Derivada
$a) f(x) = x^3$	Potencia	$\frac{df}{dx} = 3x^2$
b) $f(x) = 5$	Constante	$\frac{df}{dx} = 0$
c) $f(x) = 5^x$	Exponencial	$f'(x) = 5^x \ln(5)$
$d) g(x) = \log_5(x)$	Logarítmica	$g'(x) = \frac{1}{x \ln(5)}$
e) $y = e^x$	Exponencial	$y'=e^x$
$f) f(x) = \log(x)$	Logarítmica	$y' = \frac{1}{x \ln(10)}$
g) $g(x) = \left(\frac{5}{3}\right)^x$	Exponencial	$\frac{dg}{dx} = \left(\frac{5}{3}\right)^x \ln\left(\frac{5}{3}\right)$
h) $g(x) = x^{-5}$	Potencia	$g'(x) = -5x^{-6}$
$i) h(x) = \frac{1}{x}$	Potencia	$h'(x) = -\frac{1}{x^2}$
$\mathbf{j)} h(x) = \frac{1}{\sqrt{x}}$	Potencia	$h'(x) = -\frac{1}{2\sqrt{x^3}}$
k) f(x) = -4	Constante	$\frac{df}{dx} = 0$
$f(x) = \frac{1}{\sqrt{2}}$	Constante	$\frac{df}{dx} = 0$
$m) f(t) = \sqrt[3]{t}$	Potencia	$f'(t) = \frac{1}{3\sqrt[3]{t^2}}$

$n) f(x) = t^{\frac{3}{4}}$	Potencia	$f'(x) = \frac{3}{4\sqrt[4]{t}}$
$o) f(x) = 2^x$	Exponencial	$\frac{df}{dx} = 2^x \ln(2)$
$p) h(x) = \log_e(x)$	Logarítmica	$h'(x) = \frac{1}{x}$
q) $f(x) = \sqrt[5]{x^2}$	Potencia	$\frac{df}{dx} = \frac{2}{5\sqrt[5]{x^3}}$
$f(x) = x^{\frac{1}{2}}$	Potencia	$f'(x) = \frac{1}{2}x^{\frac{-1}{2}}$
$f(x) = \frac{5}{2}$	Constante	f'(x) = 0

a) Potencia $f'(x) = 12x^{11}$	b) Potencia $f'(x) = -11x^{-12}$	c) Potencia $f'(x) = \frac{5\sqrt[3]{x^2}}{3}$
d) Lineal $f'(x) = 1$	e) Potencia $m'(x) = \frac{1}{2\sqrt{x}}$	f) Exponencial $h'(x) = 9^x \ln(9)$
g) Logarítmica $g'(x) = \frac{1}{x \ln(3)}$	h) Constante $g'(x) = 0$	i) Logarítmica $g'(x) = \frac{1}{x}$

Operación	Operación	Derivada
a) $h(x) = 5 \cdot x^6$	Multiplicación por constante	$h'(x) = 30x^5$
b) $h(x) = x + x^2$	Suma	h'(x) = 1 + 2x
c) $h(x) = x^5 - e^x$	Resta	$h'(x) = 5x^4 - e^x$

$d) h(x) = x \cdot e^x$	Multiplicación de dos funciones	$h'(x) = e^x + xe^x$
e) $h(x) = x^2 \cdot 2^x$	Multiplicación de dos funciones	$h'(x) = 2x \cdot 2^{x} + x^{2} \cdot 2^{x} \ln(2)$
$f) h(x) = \frac{x^4}{e^x}$	División	$h'(x) = \frac{4x^{3} \cdot e^{x} - x^{4} \cdot e^{x}}{e^{2x}}$
g) $h(x) = \frac{x^2 + 1}{x}$	División	$h'(x) = \frac{2x^2 - (x^2 + 1)}{x^2}$

a) $h'(x) = \frac{7}{x \ln(10)}$	b) $g'(x) = \frac{1}{\sqrt{x}}$	c) $f'(x) = 140 + 56x$
d) $f'(x) = 2x \cdot \ln(x) + x$	e) $g'(x) = 2x \cdot e^x + (x^2 + 5)e^x$	f) $Q'(p) = e^p + \frac{5}{p}$
g) $f'(x) = \frac{1 - \ln(x)}{x^2}$	h) $f'(x) = \frac{e^x \cdot \ln(x) - \frac{e^x}{x}}{(\ln(x))^2}$	i) $h'(t) = 9 - 1.8t + \frac{10}{t^2}$

a) $g'(x) = 6x^2 - 106x + 160$	b) $f'(x) = \frac{e^x(2x-3) - e^x(x^2 - 3x)}{e^{2x}}$
c) $f'(x) = e^x \cdot \log(x) + \frac{e^x}{x \ln(10)}$	d) $f'(x) = \frac{\frac{x}{\ln(5)} - 2x \cdot \log_s(x)}{x^4}$
e) $d'(t) = 2t^2 - \frac{3}{2}t + 12 + \frac{40}{t^3}$	f) $f'(x) = \frac{2x+3}{x\ln(10)} + 2\log(x)$

	f(x)	Derivada
a)	$f(x)=e^{4x}$	$f'(x) = e^{4x} \cdot 4$
b)	$f(x) = (8x^5 - 3x^3 - 15)^{13}$	$f'(x) = 13(8x^5 - 3x^3 - 15)^{12} \cdot (40x^4 - 9x^2)$
c)	$f(x) = \log(2x + 5)$	$f'(x) = \frac{2}{(2x+5)\ln(10)}$
d)	$f(x) = 125e^{0.8x}$	$f'(x) = 125e^{0.8x} \cdot 0.8 = 100e^{0.8x}$

N°9

a) $f'(x) = 5(3x^4 - 2x^{-2})^4 \cdot (12x^3 + 4x^{-3})$	b) $y' = \frac{1}{3x^2 + 2x} \cdot (6x + 2)$
c) $f'(x) = \frac{(2x+3)}{(x^2+3x)\ln(10)}$	d) $f'(x) = 112 \cdot (2x+6)^6 - \frac{3}{x}$
e) $y'=2(x^2-3x)\cdot(2x-3)$	f) $y' = e^{(2x^2 - 5)} \cdot 4x$

N°10

$a) \frac{dy}{dx} = 2x \cdot e^{x^2}$	b) $\frac{dy}{dx} = -e^{-x}$	c) $\frac{dy}{dx} = \frac{3}{x}$
$d) \frac{dy}{dx} = \frac{2x}{\left(x^2 + 1\right)\ln(10)}$	e) $\frac{dy}{dx} = 3(5x + 7x^2)^2 \cdot (5 + 14x)$	$f) \frac{dy}{dx} = 7^{5x} \cdot \ln(7) \cdot 5$

a) $I'(x) = 20x + 70$	b) $d'(t) = 20t - 38$
c) $f'(x) = \frac{-2}{(x-1)^2}$	d) $f'(w) = 2 \cdot 2^{6w} + 12w \cdot 2^{6w} \ln(2)$

e) $f'(x) = \frac{-10}{x^3}$	f) $f(x) = \frac{3^x}{x} + \ln(x) \cdot 3^x \ln(3)$
g) $V'(t) = 100e^{0.8t}$	h) $p'(t) = 0.75e^{0.75t}$
i) $R' = \frac{9.6x^{-0.6}(1+4x^{0.4})-1.6x^{-0.6}(40+24x^{0.4})}{(1+4x^{0.4})^2}$	j) $V'(t) = \frac{-10.000}{3} \left(1 - \frac{t}{60} \right)$
k) V'= -12.500	1) $p'(t) = \frac{5e^{-0.5t}}{(1+10e^{-0.5t})^2}$
m) $g'(x) = -5x^{-6} - 6^x \ln(6) - \frac{5}{x^6}$	n) $f'(x) = 6x^2 \cdot 2^x + (2x^3 + 3) \cdot 2^x \ln(2)$
o) $f'(x) = \frac{\frac{5^x}{x \ln(10)} - \log(x) \cdot 5^x \ln(5)}{5^{2x}}$	p) $f'(x) = 2(x+1)$
q) $N'(t) = \frac{3578210e^{-0.895}}{\left(1 + 1999e^{-0.895t}\right)^2}$	r) $P'(t) = 1.500k \cdot e^{kt}$