Introduction to Raspberry Pi

-Credit Card Sized Computer

What is a Raspberry Pi?

- A single board, very flexible, four watt credit card sized computer
- A mostly-open educational platform. (Some chip firmware not open)
- A standalone Linux, BSD, RISC OS, or Plan 9 system with a lot of I/O
- A powerful programming environment
- Capability:
 - Programming
 - Electronic Projects
 - Office
 - Play HD Videos

Pi History?

- Around 2005 Eben Upton was Director of Studies in Computer science at Cambridge.
- Incoming students had relatively few programming and/or hardware skills vs "the old days", creating vision of "Something like the BBC Computer, but running modern language like python"
- The name "Raspberry pi" is combination of "a fruit name" and play on "python"
- Developed in UK by Raspberry-pi foundation in 2009.
- Basic aim is to promote the study of basic computer science in schools and to develop interest among kids and adults

BROADCOM。

Pi GPIO's

Programming Languages

- The Raspberry Pi Foundation recommends Python
- Any language which will compile for ARMv6 can be used
- Installed by default on the Raspberry Pi:
 - C
 - C++
 - Python
 - Java
 - Scratch
 - Ruby

OS for Raspberry Pi

Comparison

	Raspberry Pi 3 Model B	Raspberry Pi Zero	Raspberry Pi 2 Model B	Raspberry Pi Model B+
Introduction Date	2/29/2016	11/25/2015	2/2/2015	7/14/2014
SoC	BCM2837	BCM2835	BCM2836	BCM2835
CPU	Quad Cortex A53 @ 1.2GHz	ARM11 @ 1GHz	Quad Cortex A7 @ 900MHz	ARM11 @ 700MHz
Instruction set	ARMv8-A	ARMv6	ARMv7-A	ARMv6
GPU	400MHz VideoCore IV	250MHz VideoCore IV	250MHz VideoCore IV	250MHz VideoCore IV
RAM	1GB SDRAM	512 MB SDRAM	1GB SDRAM	512MB SDRAM
Storage	micro-SD	micro-SD	micro-SD	micro-SD
Ethernet	10/100	none	10/100	10/100
Wireless	802.11n / Bluetooth 4.0	none	none	none
Video Output	HDMI / Composite	HDMI / Composite	HDMI / Composite	HDMI / Composite
Audio Output	HDMI / Headphone	HDMI	HDMI / Headphone	HDMI / Headphone
GPIO	40	40	40	40
Price	\$35	\$5	\$35	\$ 35

SETUP

Basic GNU/Linux commands

- \$ls List Files
- \$cd Change Directory
- \$mkdir Create folder
- \$rmdir Delete folder
- \$clear Clear terminal
- \$nano Text editor
- \$dmesg Show kernel messages

Basic GNU/Linux commands

- \$lsusb List connected usb devices
- \$cp Copy Files
- \$ssh Secure shell
- \$scp Copy files from one pc to other using ssh
- \$vncviewer Connect to vnc server
- \$ sudo Run in root privilage
- \$ping Pinging to ip address
- \$nmap Searching tool of IP and Ports

Introduction to Python

"Life's better without braces and Semicolons"

--Bruce Eckel

Python was developed by Guido van Rossum in the 90's at the National Research Institute for Mathematics and Computer Science in the Netherlands.

Python is an experiment in how much freedom programmers need. Too much freedom and nobody can read another's code; too little and expressiveness is endangered.

— Guido van Rossum —

AZ QUOTES

Introduction to Python

- Python is a high-level programming language
- Open source and community driven
- "Batteries Included"
 - a standard distribution includes many modules
- Dynamic typed
- Source can be compiled or run just-in-time
- Similar to perl, tcl, ruby

Compiling and interpreting

• Many languages require you to *compile* (translate) your program into a form that the machine understands.

• Python is instead directly *interpreted* into machine instructions. *interpret*

1. Python is a calculator

2. A variable is a container

3. Different types cannot be compared

4. A program is a recipe

The Python Interpreter

- Python is an interpreted language
- The interpreter provides an interactive environment to play with the language
- Results of expressions
 are printed on the screen

```
>>> 3 + 7
10
>>> 3 < 15
True
>>> 'print me'
'print me'
>>> print 'print me'
print me
>>> by
```

The print Statement

- Elements separated by commas print with a space between them
- A comma at the end of the statement (print 'hello',)
 will not print a newline character

>>> print 'hello'
hello
>>> print 'hello', 'there'
hello there

Python has five standard data types:

- Numbers
- String
- List
- Tuple
- Dictionary

Python Number data types:

```
1  a = 5
2  print(a, "is of type", type(a))
3
4  a = 2.0
5  print(a, "is of type", type(a))
6
7  a = 1+2j
8  print(a, "is complex number?", isinstance(1+2j,complex))
```

```
5 is of type <class 'int'>
2.0 is of type <class 'float'>
(1+2j) is complex number? True
```

Python Lists:

- •Lists are the most versatile of Python's compound data types.
- •A list contains items separated by commas and enclosed within square brackets ([]). To some extent, lists are similar to arrays in C

Python Lists

- Lists are the most versatile of Python's compound data types.
- A list contains items separated by commas and enclosed within square brackets ([]). To some extent, lists are similar to arrays in C

```
list=['abcd', 786 , 2.23, 'john', 70.2]

tinylist=[123,'john']

print list  # Prints complete list

print list[0]  # Prints first element of the list

print list[1:3]  # Prints elements starting from 2nd till 3rd

print list[2:]  # Prints elements starting from 3rd element

print tinylist * 2  # Prints list two times

print list + tinylist  # Prints concatenated lists
```

Python Tuples-()

- A tuple is another sequence data type that is similar to the list. A tuple consists of a number of values separated by commas.
- tuples are enclosed in Parentheses (()) and cannot be updated.
- Tuples can be thought of as read-only

Python Tuple Example

```
#!/usr/bin/python
tuple = ( 'abcd', 786 , 2.23, 'john', 70.2 )
tinytuple = (123, 'john')
print tuple # Prints complete list
print tuple[0] # Prints first element of the list
print tuple[1:3] # Prints elements starting from 2nd till 3<sup>rd</sup>
print tuple[2:] # Prints elements starting from 3rd element
print tinytuple * 2 # Prints list two times
print tuple + tinytuple # Prints concatenated lists
```

Python Dictionaries

- Python's dictionaries are kind of hash table type.
- Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed using square braces ([]).

Example Dictionaries

```
#!/usr/bin/python
dict = \{\}
dict['one'] = "This is one"
dict[2] = "This is two"
tinydict = {'name': 'john','code':6734, 'dept': 'sales'}
print dict['one'] # Prints value for 'one' key
print dict[2] # Prints value for 2 key
print tinydict # Prints complete dictionary
print tinydict.keys() # Prints all the keys
print tinydict.values() # Prints all the values
```

Python Operators

- Arithmetic Operators
- Comparison (Relational) Operators
- Assignment Operators
- Logical Operators
- Bitwise Operators
- Membership Operators
- Identity Operators

Ticks

- Time intervals are floating-point numbers in units of seconds. Particular instants in
- Time are expressed in seconds since 12:00am, January 1, 1970(epoch).

Python Time Module

#!/usr/bin/python
import time; # This is required to include time module.
ticks = time.time()
print "Number of ticks since 12:00am, January 1,
1970:", ticks

• Output:

Number of ticks since 12:00am, January 1, 1970: 1499329502.34

Printing localtime

#!/usr/bin/python
import time;
localtime = time.localtime(time.time())
print "Local current time :", localtime

Output:

```
Local current time: time.struct_time(tm_year=2017, tm_mon=7, tm_mday=6, tm_hour=14, tm_min=0, tm_sec=32, tm_wday=3, tm_yday=187, tm_isdst=0)
```

Calendar Module

#!/usr/bin/python
import calendar
cal = calendar.month(2008, 1)
print "Here is the calendar:"
print cal;

Output:

```
Here is the calendar:
    January 2008

Mo Tu We Th Fr Sa Su
    1 2 3 4 5 6
    7 8 9 10 11 12 13
    14 15 16 17 18 19 20
    21 22 23 24 25 26 27
    28 29 30 31
```

Indentation

- Indentation is **required** and must be **consistent**
- Standard indentation is 4 spaces **or** one tab
- IDLE does this pretty much automatically for you
- Example:

```
if 2 + 2 != 4:
    print "Oh, no!"
    print "Arithmethic doesn't work!"
    print "Time to buy a new computer."
```

"Life's better without braces and Semicolons"

--Bruce Eckel

Blinking of LED

fritzing

Importing GPIO pins of Raspberry Pi

Import RPi.GPIO as GPIO ## Import GPIO library

GPIO.setmode(GPIO.BOARD) ## Use board pin numbering

GPIO.setup(7, GPIO.OUT) ## Setup GPIO Pin 11 to OUT

Or

GPIO.setmode(GPIO.BCM) ## Broadcom SOC number

GPIO.setup(4, GPIO.OUT) ## Setup GPIO Pin 11 to OUT

Pi GPIO's

LED Blink Python Programme

import time

importRPi.GPIO as GPIO

GPIO.setmode(GPIO.BOARD)

GPIO.setup(7, GPIO.OUT)

Import GPIO library

Use board pin numbering

Setup GPIO Pin 11 to OUT

while True:

GPIO.output(7,True)

time.sleep(1)

GPIO.output(7,False)

time.sleep(1)

Turn on Led

Wait for one second

Turn off Led

Wait for one second

DHT11 Temperature and Humidity Sensor

- DHT11 is a basic, ultra low-cost digital temperature and humidity sensor
- Capacitive humidity sensor and a thermistor to measure the surrounding air
- Detects water vapor by measuring the electrical resistance between two electrodes
- Humidity sensing component is a moisture holding substrate with electrodes

applied to the surface

Technical Specification:

- Humidity Range: 20-90% RH
- Humidity Accuracy: ±5% RH
- Temperature Range: 0-50 °C
- Temperature Accuracy: ±2% °C
- Operating Voltage: 3V to 5.5V

DHT11 Temperature and Humidity Sensor

DHT11 Temperature and Humidity Sensor

+ve pin of DHT11 to 5v

-ve pin of DHT11 to GND

OUT pin of DHT11 to GPIO4

Ultrasonic Sensor

The Frequency Ranges of the Sound

Human hearing

Conventional power ultrasound

Extended range for sonochemistry

Diagnostic ultrasound

16Hz - 18kHz

20kHz - 100kHz

20kHz - 2MHz

5MHz - 10MHz

Pin Outs

Working

Timing Diagram

Applications

- Park assistance
- Distance measuring device
- •SONAR
- Fishing

Preva Systems Pr

Elizabeth Months

Working

Ultrasonic Sensor

fritzing

VCC pin of Sensor to 5v GND of sensor to GND Trig pin of sensor to GPIO 23 Echo pin of sensor to GPIO 24

Touch Sensor

A touch sensor detects touch on physical contact.

Surface capacitive sensing

Touch Sensor With Raspberry pi

VCC pin of Sensor to 5v GND of sensor to GND OUT pin of sensor to GPIO 23

LDR(LIGHT DEPENDENT RESISTOR)

- LDR stands for Light dependant resistor. An LDR is usually made of a semiconductor material(Normally Silicon) doped with a small percentage of a valency 5 material (commonly Arsenic), to make it an "N" material.
- Another word for LDR is photoresistor.
- The resistance of LDR decreases with increase in the intensity of light. An LDR works in the similar manner as any other analog device would work.

LDR With Raspberry Pi

VCC pin of Sensor to 5v GND of sensor to GND Analog OUT pin of sensor to GPIO 4

