Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №2 дисциплины «Алгоритмизация»

	Выполнила: Кубанова Ксения Олеговна 2 курс, группа ИВТ-б-о-22-1, 09.03.01 «Информатика и вычислительная техника», очная форма обучения
	(подпись)
	Руководитель практики: Воронкин Р.А.
	(подпись)
Отчет защищен с оценкой	_ Дата защиты

Порядок выполнения работы

1. Написать рекурсивную программу для нахождения чисел Фибоначчи по алгоритму, данному на лекции. Составить таблицу и график.

Блок-схема:

Рисунок 1 - блок-схема к заданию 1

Код:

Рисунок 2 - выполнение алгоритма к заданию 1

Результат:

```
© C:\Users\Cepreй\source\repos\A.

0
1
1
2
3
5
8
13
21
34
55
0.032 seconds
```

Рисунок 3 - результат выполнения алгоритма и время его выполнения

```
0 1.407 seconds
1 1.511 seconds
2 1.155 seconds
3 0.692 seconds
4 0.646 seconds
5 0.727 seconds
6 0.629 seconds
7 0.518 seconds
8 0.529 seconds
9 0.541 seconds
10 0.433 seconds
```

Рисунок 4 - подсчёт каждого числа при выполнении 100000 раз

Таблица 1

Алгоритм рекурсии, повторяющийся 100000 раз				
	времяТ,			
число F	С			
0	1,407			
1	1,511			
2	1,155			
3	0,692			
4	0,646			
5	0,727			
6	0,629			
7	0,518			
8	0,529			
9	0,541			
10	0,433			
Общее время	8,788			

Рисунок 5 – Фибоначчи (рекурсия)

2. Написать программу с массивом, который будет искать число Фибоначчи по алгоритму, данному на лекции. Составить таблица и график.

Блок-схема:

Рисунок 6 - блок-схема к алгоритму 2

Код:

Рисунок 7 - код для алгоритма 2

Результат:

```
0.0

1.1

2.1

3.2

4.3

5.5

6.8

7.13

8.21

9.34

10.55

0.011
```

Рисунок 8 - вывод итога алгоритма и количество секунд, за которое он сработал

```
    0.024
    0.025
    0.026
    0.035
    0.05
    0.078
    0.059
    0.024
    0.024
    0.024
    0.024
```

Рисунок 9 - подсчёт секунд при 100000 итераций

Таблица 2

Алгоритм массива, повторяющийся 100000 раз			
число F	время Т, с		
0	0,024		
1	0,025		
2	0,026		
3	0,035		
4	0,05		
5	0,078		
6	0,059		
7	0,024		
8	0,024		
9	0,024		
10	0,024		
Общее время	0,393		

Рисунок 10 – Фибоначчи (массив)

3. Сравнить работу двух алгоритмов.

Таблица 3

Сравнение работы двух			
алгоритмов			
	время Т,		
	С,	время Т,	
число F	рекурсия	с, массив	
0	1,407	0,024	
1	1,511	0,025	
2	1,155	0,026	
3	0,692	0,035	
4	0,646	0,05	
5	0,727	0,078	
6	0,629	0,059	
7	0,518	0,024	
8	0,529	0,024	
9	0,541	0,024	
10	0,433	0,024	
Общее			
время	8,788	0,393	
Среднее			
время	0,8	0,4	

Рисунок 11 – Сравнение алгоритмов

Вывод: в ходе изучения лабораторной работы и построения разного типа алгоритмов и их сравнения можно сделать следующий итог: наивные алгоритмы менее удачны, поскольку на большой объём данных его работы не хватит.