1 Lecture 8: 2017.03.20: Boosting

Recall the PAC-learning scheme:

Figure 1: Scheme for PAC learning.

Hypothesis/Accuracy Boosting question:

If we have an algorithm for PAC-learning some class \mathcal{C} but only for fixed ε_0 , does this imply a full PAC algorithm (i.e. $\varepsilon \to 0$)

Remark 1.1. Today we see that the answer to this question is Yes. By the remark above, this implies that the proof must use the fact that we are allowing any distribution.

1.0.1 Confidence Boosting

- Given algorithm L that can achieve error ε ($\varepsilon \to 0$), but only for some fixed value of $\delta = \delta_0$ (e.g. $\delta_0 = \frac{9}{10}$) w.p. $1 \frac{9}{10} = \frac{1}{10}$
- Run L k times, we get k hypothesis h_1, \ldots, h_k , which are independent. Note that each hypothesis has a chance $\frac{1}{10}$ of having error less than ε_0 so if k is big enough, choosing the one with the best error has as high probability as we want to achieve error less than ε_0 . (It is basically the minimum of k independent Bernoulli trials).

$$\mathbb{P}_{S_1,\dots,S_k \sim D} \left[\forall 1 \le i \le k, \quad Err(h_i) > \varepsilon \right] \le \delta_0^k, \tag{1.1}$$

which is less than any chosen δ if k is big enough. It is enough to pick $k \geq \frac{\log(\frac{1}{\delta})}{\log(\frac{1}{\delta_0})}$

1.0.2 Accuracy Boosting

Given algorithm L such that for any distribution, w.p $\geq 1 - \delta$, outputs h such that $Err(h) \leq \varepsilon_0 = \frac{1}{2} - \gamma$ (i.e. slightly better than random guessing) (weak learning algorithm). One my try a similar thing as above but with taking a majority vote:

Figure 2: Majority vote.

The problem is that L could be evil and always output the same hypothesis. The key idea is to create filtered distributions to force L to learn something "new".

1.1 "Original" Boosting construction (Schapire)

- 1. Call weak learning algorithm L on $D_1 = D$ and we get h_1 such that $Err_{D_1}(h_1) \leq \varepsilon_0$
- 2. We create a new distribution, D_2 . To sample from D_2 :
 - Flip a fair coin.
 - If heads, sample $x \sim D_1$ until $h_1(x) \neq c(x)$.
 - If tails, sample until $h_1(x) = c(x)$.

Remark 1.2. Note that if these conditions are not met for a lot of samples, then either h_1 or $\neg h_1$ are already good enough hypothesis. This guarantees that L cannot output h_1 or its negation as hypothesis because they would have error 50/50.

Algebraically, this corresponds to modifying the weights of the original distribution, see the picture below.

Figure 3: Modify weights of original distribution.

Then we run L on $EX(c, D_2)$ to get some $h_2 \neq h_1$ such that $Err_{D_2}(h_2) \leq \varepsilon_0$.

- 3. Define a distribution D_3 . To sample from D_3 :
 - Draw $x \sim D_1$ until $h_1(x) \neq h_2(x)$. We will quickly get such a an x by construction.
 - Create labeled example $\langle x, c(x) \rangle$.

Run L on $EX(c, D_3)$ to get h_3 such that $Err_{D_3}(h_3) \leq \varepsilon_0$.

4. Final hypothesis, for any x, $h(x) = \text{majority}\{h_1(x), h_2(x), h_3(x)\}$.

Lemma 1.3. $Err_{D_1}(h) \leq 3\varepsilon_0^2 - 2\varepsilon_0^3$.

Figure 4: $3x^2 - 2x^3$.

Remark 1.4. Note that it is a convex function below the line $\{y = x\}$. So we gain a little bit by boosting. Then we can iterate to obtain an arbitrary boosting.

Figure 5: Boosting iterations.

Also note that the number of iterations needed to obtain error $\leq \varepsilon$ is $\sim \log \log \frac{1}{\varepsilon}$.

We are actually changing the hypothesis space in the final algorithm. We output a ternary tree of majority hypotheses

Figure 6: Majority tree.

1.2 Adaboost (Freund/Schapire)

- View input $S = (x_1, y_1), (x_2, y_2), \dots, (x_m, y_m) \sim EX(c, D)$. Assume that $y_i \in \{-1, 1\}$. We want to use the weak learning algorithm to find a hypothesis that is consistent with S, recall that as we saw before this is enough for PAC learning.
- Start with D_1 the uniform distribution on S. If we can get h such that $Err_{D_1}(h) < \frac{1}{m}$, then h is consistent with S and apply VC-theory.
- Let's look at the "code", recall that the distributions refer to S.

 $D_1 = \mathrm{Unif}(S)$

for t in range $1, \ldots, T$

- run weak learning algorithm L using D_t to get some $h_t in \mathcal{H}$
- choose a weight $\alpha_t>=0$ for the hypothesis h_t (See analysis below)
- define the next distribution D_{t+1}

$$D_{t+1}(x_i, y_i) = D_t(x_i, y_i)e^{-\alpha_t y_i h_t(x_i)} Z_t, \tag{1.2}$$

where Z_t is the normalization factor.

Remark 1.5. Note that $y_i h_t(x_i)$ is 1 if they agree or -1 otherwise. This means that we are increasing the weight on the places where h_t was wrong and reducing the weight on the ones where it was right.

Final classifier: $h(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$

Analysis

Remark 1.6 (Notation). Let $\varepsilon_i := \mathbb{P}_{i \sim D_t}[h_t(x_i) \neq y_i]$ and $\gamma_t := \frac{1}{2} - \varepsilon_t$ "advantage" of h_t over random guessing.

If $y_i \neq H(x_i) = sign\left(\sum_{t=1}^T \alpha_t h_t(x_i)\right)$, then $y_i \sum_{t=1}^T \alpha_t h_t(x_i) \leq 0$, which implies that $e^{-\sum_{t=1}^T \alpha_t h_t(x_i)} \geq 1$. So

$$\frac{1}{m} \left| \left\{ i : H(x_i) \neq y_i \right\} \right| \le \frac{1}{m} \sum_{i} e^{-\sum_{t} \alpha_t h_t(x_i)}. \tag{1.3}$$

Take any fixed i, we can measure how much the distribution changes from t to t+1

$$Z_{t} = \frac{D_{t}(x_{i}, y_{i})e^{-\alpha_{t}y_{i}h_{t}(x_{i})}}{D_{t+1}(x_{i}, y_{i})}$$
(1.4)

Now we want take a look at how much the distribution has changed over t

$$\prod_{t}^{T} Z_{t} = \frac{D_{1}(x_{i}, y_{i})}{D_{T+1}(x_{i}, y_{i})} e^{-y_{i} \sum_{t} \alpha_{t} h_{t}(x_{i})} = e^{-y_{i} \sum_{t} \alpha_{t} h_{t}(x_{i})},$$
(1.5)

since the Z_t 's are independent of i so must be the right-hand-side above. We obtain,

$$\prod_{t}^{T} Z_{t} = \frac{m}{m} \prod_{t}^{T} Z_{t} = \frac{1}{m} \sum_{i} e^{-y_{i} \sum_{t} \alpha_{t} h_{t}(x_{i})},$$
(1.6)

so to estimate the error we only need to analyze the Z_t 's and recall that we are still free to choose the weights α_t 's

$$Z_t = \sum_i D_t(x_i, y_i) e^{-\alpha_t y_i h_t(x_i)}, \qquad (1.7)$$

therefore, we can choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\varepsilon_t}{\varepsilon_t} \right)$ to obtain

$$Z_t = (1 - \varepsilon_t)e^{-\alpha_t} + \varepsilon_t e^{\alpha_t} = \dots \le 2\sqrt{\varepsilon_t(1 - \varepsilon_t)}.$$
 (1.8)

Thus, we can bound the training error

training error
$$\leq \prod_{t} 2\sqrt{\varepsilon_t(1-\varepsilon_t)} = \prod_{t} 2\sqrt{1-4\gamma_t^2} \leq e^{-2\sum_{t} \gamma_t}.$$
 (1.9)

We have arrived at the following result.

Theorem 1.7. Our training error on the original S is bounded above by $e^{-2\sum_t \gamma_t}$.