Теория автоматов и формальных языков Контекстно-свободные языки

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

4 октября 2016г.

В предыдущей серии

- Регулярные выражения, регулярные грамматики и конечные автоматы задают класс регулярных языков
- Класс регулярных языков замкнут относительно теоретико-множественных операций, конкатенации, итерации, гомоморфизма цепочек
- Определение принадлежности слова языку осуществляется за O(n) операций
- Однако класс регулярных языков достаточно узок, ни один используемый в промышленности язык программирования не является регулярным
 - ▶ Лемма о накачке для доказательства нерегулярности языка
 - Язык правильных скобочных последовательностей, язык палиндромов не являются регулярными

Контекстно-свободная грамматика

Четверка $\langle V_T, V_N, P, S \rangle$

- V_T алфавит терминальных символов (терминалов)
- ullet V_N алфавит нетерминальных символов (нетерминалов)
 - $V_T \cap V_N = \emptyset$
 - $V ::= V_T \cup V_N$
- ullet Р конечное множество правил вида A olpha
 - $A \in V_N$
 - $\alpha \in V^*$
- ullet S начальный нетерминал грамматики, $S \in V_N$

Пример: арифметические выражения

$$E \rightarrow E + E \mid E * E \mid N$$

$$N \rightarrow 0 \mid 1 \mid \dots \mid 9$$

Вывод в грамматике

• Отношение выводимости:

$$\forall \alpha, \gamma, \delta \in V^*, A \in V_N : A \to \alpha \in P. \gamma A \delta \Rightarrow \gamma \alpha \delta$$

- Вывод транизитивное, рефлексивное замыкание отношения выводимости $(\stackrel{*}{\Rightarrow}, \stackrel{+}{\Rightarrow}, \stackrel{k}{\Rightarrow})$
- Левосторонний (правосторонний) вывод на каждом шаге заменяем самый левый (правый) нетерминал
 - ▶ Если не специфицируется, подразумевается левосторонний вывод
- По сути, правила грамматики рассматриваются как правила переписывания

Пример вывода

Построим левосторонний вывод цепочки 2+3*4 в грамматике $\langle \{0,1,\dots,9,+,*\}, \{E,N\},P,E \rangle$

$$\begin{array}{ccc} E & \rightarrow & E + N \mid E * N \mid N \\ N & \rightarrow & 0 \mid 1 \mid \dots \mid 9 \end{array}$$

$$E \Rightarrow E * N \Rightarrow E + N * N \Rightarrow N + N * N \Rightarrow 2 + N * N \stackrel{2}{\Rightarrow} 2 + 3 * 4$$

Существование левостороннего вывода

Теорема

Если для цепочки ω существует некоторый вывод $S \stackrel{*}{\Rightarrow} \omega$, то существует и левосторонний вывод для этой цепочки $S \stackrel{*}{\Rightarrow} \omega$

Доказательство.

Докажем более общее утверждение: если существует $A\overset{*}{\Rightarrow}\omega$, то существует $A\overset{*}{\Rightarrow}\omega$, где $A\in V_N$.

Доказываем по индукции по длине вывода k

$$k=1:A\Rightarrow\omega$$
 — тривиально.

$$k \to k+1 : \langle A \Rightarrow \alpha \stackrel{*}{\Rightarrow} \omega.$$

Обозначим $\alpha = B_1 B_2 \dots B_m \stackrel{*}{\Rightarrow} \omega_1 \omega_2 \dots \omega_m = \omega; \forall i.B_i \stackrel{l_i}{\Rightarrow} \omega_i, l_i \leq n$ По индукционному предположению $\forall i.B_i \stackrel{*}{\Rightarrow} \omega_i$

$$\Rightarrow$$
: $A\Rightarrow B_1B_2\dots B_m\stackrel{*}{\Rightarrow}\omega_1B_2\dots B_m\stackrel{*}{\Rightarrow}\omega$ — левосторонний вывод

Единственность вывода

Не всегда (левосторонний) вывод единственен: 2 вывода строки 2+3*4

$$\begin{array}{ccc} E & \rightarrow & E+E \,|\, E*E \,|\, N \\ N & \rightarrow & 0 \,|\, 1 \,|\, \dots \,|\, 9 \end{array}$$

Однозначность грамматики

- Грамматика называется **однозначной**, если для *любого* слова языка существует *единственный* (левосторонний) вывод
- Грамматика называется неоднозначной, если существует слово языка, такое что для него существует несколько (левосторонних) выводов
- По однозначной грамматике можно тривиальным образом построить неоднозначную: продублировать правило
 - \triangleright $S \rightarrow A$; $A \rightarrow a$
 - ightharpoonup S
 ightarrow A|B;A
 ightarrow a;B
 ightarrow a
- Не существует общего алгоритма преобразования неоднозначной грамматики в однозначную

Примеры однозначной и неоднозначной грамматики

• Неоднозначная грамматика

$$E \rightarrow E + E \mid E * E \mid N$$

$$N \rightarrow 0 \mid 1 \mid \dots \mid 9$$

• Однозначная грамматика

$$\begin{array}{ccc} E & \rightarrow & E + N \mid E * N \mid N \\ N & \rightarrow & 0 \mid 1 \mid \dots \mid 9 \end{array}$$

Проверка однозначности грамматики — неразрешимая задача

- Проверка однозначности грамматик сводится к задаче соответствий Поста
- Задача соответствий Поста: Даны списки $A=(a_1,\ldots,a_n)$ и $B=(b_1,\ldots,b_n)$, где $\forall i.\ a_i\in\Sigma^*$ и $b_i\in\Sigma^*$. Существует ли непустая последовательность (i_1,\ldots,i_k) , удовлетворяющая условию $a_{i_1}\ldots a_{i_k}=b_{i_1}\ldots b_{i_k}$, где $\forall j.\ 1\leq i_j\leq n$

Контекстно-свободный язык

- Язык называется контекстно-свободным, если для него существует контекстно-свободная грамматика
- Язык, задаваемый КС грамматикой $\langle V_T, V_N, P, S \rangle$: $\{\omega \in V_T^* | S \stackrel{*}{\Rightarrow} \omega\}$
- КС язык называется **существенно неоднозначным**, если для него не существует однозначной грамматики

Пустота КС языка

Теорема

Существует алгоритм, определяющий, является ли язык, порождаемый КС грамматикой, пустым

Доказательство.

Для доказательства потребуется следующая лемма

Лемма

Теорема

Если в данной грамматике выводится некоторая цепочка, то существует цепочка, дерево вывода которой не содержит ветвей длиннее m, где m — количество нетерминалов грамматики

Доказательство.

Рассмотрим дерево вывода цепочки ω . Если в нем есть 2 узла, соответствующих одному нетерминалу A, обозначим их n_1 и n_2 . Предположим, n_1 расположен ближе к корню дерева, чем n_2 ; $A_{n_1} \stackrel{*}{\Rightarrow} \alpha \omega_1 \beta$; $A_{n_2} \stackrel{*}{\Rightarrow} \gamma \omega_2 \delta$. При этом ω_2 является подцепочкой ω_1 . Заменим в изначальном дереве узел n_1 на n_2 . Полученное дерево является деревом вывода $\alpha \omega_2 \delta$. Повторяем процесс замены одинаковых нетерминалов до тех пор, пока в дереве не останутся только уникальные нетерминалы.

В полученном дереве не может быть ветвей длины большей, чем m. По постороению оно является деревом вывода.

Алгоритм проверки пустоты КС языка

Доказательство.

Строим коллекцию деревьев, представляющих вывод в грамматике.

- Инициализируем коллекцию деревом из одного узла S
- ② Добавляем в коллекцию дерево, полученное применением единственного правила грамматики из какого-нибудь дерева из коллекции, если его в нем еще нет, и самая длинная ветвь не длиннее *m*
- Если после окончания построения коллекции в ней существует дерево, являющееся деревом вывода некоторой цепочки терминалов, значит, язык не пуст

Упрощение KC грамматики: удаление непродуктивных нетерминалов

Продуктивный нетерминал: нетерминал, для которого существует цепочка терминалов, выводимая из него $(\exists \omega \in V_T^*. A \stackrel{*}{\Rightarrow} \omega)$ **Непродуктивный нетерминал**: нетерминал, не являющийся продуктивным

Упрощение KC грамматики: удаление непродуктивных нетерминалов

Теорема

Для любой КС грамматики $G = \langle V_T, V_N, P, S \rangle$: $L(G) \neq \emptyset$, можно постороить эквивалентную грамматику, каждый нетерминал которой продуктивен

Доказательство.

Удаляем из грамматики все нетерминалы $A:L(A)=\varnothing$, а также правила, использующие их. Полученную грамматику обозначаем G_1 . Докажем, что $L(G)=L(G_1)$. Очевидно, $L(G_1)\subseteq L(G)$. Докажем от противного, что $L(G)\subseteq L(G_1)$. Предположим, что $\exists \omega\in L(G)$, но $\omega\notin L(G_1)$. Тогда $S\stackrel{*}{\Rightarrow}\alpha_1A\alpha_2\stackrel{*}{\Rightarrow}\omega$, где $A\in V_N\setminus V_{N_1}$, но тогда $\exists\gamma\in V_T^*.A\stackrel{*}{\Rightarrow}\gamma$. Противоречие

Упрощение КС грамматики: приведение

Теорема

Для любой КС грамматики, порождающей непустой язык, можно постороить эквивалентную, для каждого нетерминала A которой существует вывод вида $S \stackrel{*}{\Rightarrow} \omega_1 A \omega_3 \stackrel{*}{\Rightarrow} \omega_1 \omega_2 \omega_3, \omega_i \in V_T^*$

Доказательство.

Будем рассматривать грамматику без непродуктивных нетерминалов $G_1 = \langle V_{N_1}, V_T, P_1, S \rangle$.

Верно: если существует $S \stackrel{*}{\Rightarrow} \alpha_1 A \alpha_3, \alpha_i \in V^*$, то

 $S \stackrel{*}{\Rightarrow} \alpha_1 A \alpha_3 \stackrel{*}{\Rightarrow} \omega_1 A \omega_3 \stackrel{*}{\Rightarrow} \omega_1 \omega_2 \omega_3, \omega_i \in V_T^*$

Строим множество нетерминалов, встречающихся в выводах: добавляем сначала S, потом добавляем нетерминалы, встречающиеся в правой части правил для нетерминалов из множества. Завершаем процесс, когда больше ничего не добавить. Обозначаем полученное множество V_{N_2} , удаляем все правила грамматики, содержащие нетерминалы из $V_{N_1} \setminus V_{N_2}$

Упрощение КС грамматики: приведение

Доказательство.

Получили грамматику $G_2 = \langle V_{N_2}, V_T, P_2, S \rangle$.

Докажем: $L(G_2) = L(G_1)$

 $L(G_2)\subseteq L(G_1)$, так как $P_2\subseteq P_1$

Докажем: $L(G_1)\subseteq L(G_2)$. Пусть $S\overset{*}{\underset{G_1}{\Longrightarrow}}\omega$. Все нетерминалы,

встречающиеся в этом выводе содержатся в V_{N_2} , соответственно используются только правила из $P_2 \Rightarrow S \stackrel{*}{\underset{G_2}{\Rightarrow}} \omega$

Так как все нетерминалы V_{N_2} продуктивны, то

$$S \stackrel{*}{\Rightarrow} \omega_1 A \omega_3 \stackrel{*}{\Rightarrow} \omega_1 \omega_2 \omega_3, \omega_i \in V_T^*$$

Грамматика G_2 называется **приведенной**, ее нетерминалы — **достижимыми**

Недостижимые и непродуктивные нетерминалы называются **бесполезными**

Упрощение КС грамматики: удаление цепных правил

Правило называется **цепным**, если оно имеет вид A o B; $A,B\in V_N$.

Теорема

Для любой КС грамматики $G = \langle V_N, V_T, P, S \rangle$ можно построить эквивалентную, не содержащую цепных правил

Доказательство.

Строим новое множество правил P_1 . Включаем в него все нецепные правила P. Затем добавляем в P_1 правила вида $A \stackrel{*}{\Rightarrow} \alpha$, если $A \stackrel{*}{\Rightarrow} B$, где $A, B \in V_N$ и $B \to \alpha$ — нецепное правило из P.

Замечание: достаточно проверять только цепные выводы длины меньшей, чем V_N

Обозначем полученную грамматику за $G_1 = \langle V_N, V_T, P_1, S
angle$, докажем $L(G_1) = L(G)$

Упрощение КС грамматики: удаление цепных правил

Доказательство.

Очевидно $L(G_1) \subseteq L(G)$ Покажем $L(G)\subseteq L(G_1)$. Пусть $\omega\in L(G)$. Рассмотрим левосторонний вывод $S \Rightarrow \alpha_0 \Rightarrow \alpha_1 \Rightarrow \ldots \Rightarrow \alpha_n = \omega$. Предположим $\alpha_i \Rightarrow \alpha_{i+1}$ — первый шаг, выполняемый посредством цепного правило в выводе; $\forall k \in [i..j]. \ \alpha_k \Rightarrow \alpha_{k+1} -$ посредством цепного правила; $lpha_j \Rightarrow lpha_{j+1}$ — посредством нецепного правила Тогда $|\alpha_i|=|alpha_{i+1}|=\cdots=|alpha_i|$, и на каждом шаге заменяется один и тот же нетерминал. Тогда $\alpha_i \Longrightarrow_{G_1} \alpha_{j+1}$ посредством правила из $P_1 \setminus P \Rightarrow \omega \in L(G_1)$

Нормальная форма Хомского

КС грамматика находится в **нормальной форме Хомского**, если все ее правила имеют вид $A \to BC$, или $A \to a$, где $A, B, C \in V_N, a \in V_T$

Теорема

Для любой КС грамматики можно построить эквивалентную в нормальной форме Хомского

- f 0 Удаляем цепные правила. Теперь orall A o B. $B\in V_T$
- ② Заменяем правило $A o B_1B_2\dots B_n$ на $A o C_1C_2\dots C_n$, где $C_i=B_i$, если $B_i\in V_N$, или $C_i o B_i$, если $B_i\in V_T$
- $oxed{3}$ Заменяем правило $A o C_1C_2\dots C_n$ на множество правил $A o C_1D1, D1 o C_2D_2,\dots, D_{n-3} o C_{n-2}D_{n-2}, D_{n-2} o C_{n-1}C_n$

Полученная грамматика находится в НФХ и эквивалентна данной

Пример приведения в НФХ