

Bộ môn Giải tích

Giáo trình

VI TÍCH PHÂN 2

Giáo trình Vi tích phân $2\,$

Bộ môn Giải tích (Khoa Toán - Tin học, Trường Đại học Khoa học Tự nhiên Đại học Quốc gia Thành phố Hồ Chí Minh)

Bản ngày 8 tháng 3 năm 2023

Mục lục

Giới thiệu						
1	Phé	ép tính	n vi phân của hàm nhiều biến	4		
	1.1	Khôn	g gian \mathbb{R}^n	4		
		1.1.1	Vectơ, điểm, chiều dài, khoảng cách, tích trong	5		
		1.1.2	Hình học trong \mathbb{R}^n	10		
		1.1.3	Tập mở và tập đóng trong \mathbb{R}^n	16		
	1.2	Hàm	số nhiều biến	19		
		1.2.1	Giới hạn của hàm số	20		
		1.2.2	Hàm số liên tục	22		
	1.3	Đạo h	nàm của hàm số nhiều biến	27		
		1.3.1	Đạo hàm riêng	27		
		1.3.2	Xấp xỉ tuyến tính và Mặt phẳng tiếp xúc	29		
		1.3.3	Đạo hàm riêng cấp cao	33		
	1.4	Các t	ính chất của đạo hàm	37		
		1.4.1	Đạo hàm của hàm hợp	37		
		1.4.2	Đạo hàm theo hướng	39		
		1.4.3	Đạo hàm của hàm vecto	43		
		1.4.4	Đạo hàm của hàm ẩn	48		
	1.5	Cực t	rị của hàm số nhiều biến	55		
		1.5.1	Cực trị địa phương	56		
		1.5.2	Cực trị toàn cục	66		
2	Tích phân của hàm nhiều biến					
	2.1	Định	nghĩa và tính chất của tích phân bội	77		
		2.1.1	Tích phân trên hình hộp	78		
		2.1.2	Tích phân trên tập tổng quát	81		
		2.1.3	Thể tích	82		
		2.1.4	Tính chất của tích phân	85		
	2.2	Công	thức Fubini	87		
		2.2.1	Công thức Fubini cho miền phẳng	91		
		2.2.2	Công thức Fubini cho miền ba chiều	92		

 $M \dot{\mathcal{V}} C L \dot{\mathcal{V}} C$ iii

	2.3	Công thức đổi biến				
		2.3.1	Tọa độ cực	103		
		2.3.2	Tọa độ cầu	105		
		2.3.3 Giải thích công thức đổi biến				
	2.4	Ứng dụng của tích phân bội				
		2.4.1	Giá trị trung bình	114		
		2.4.2	Tâm khối lượng	115		
		2.4.3	Xác suất của sự kiện ngẫu nhiên	116		
3	Giả	Giải tích vectơ				
	3.1	1 Tích phân đường				
		3.1.1	Chiều dài của đường đi	123		
		3.1.2	Tích phân đường loại một	125		
		3.1.3	Tích phân đường loại hai	127		
		3.1.4	Sự phụ thuộc vào đường đi	129		
	3.2	Công	thức Newton–Leibniz và Công thức Green	135		
		3.2.1	Trường bảo toàn	135		
		3.2.2	Công thức Green	138		
		3.2.3	Điều kiện để trường vectơ phẳng là bảo toàn	142		
	3.3	Tích p	ohân mặt	152		
		3.3.1	Diện tích mặt	153		
		3.3.2	Tích phân mặt loại một	154		
		3.3.3	Tích phân mặt loại hai	154		
		3.3.4	Định hướng mặt và sự phụ thuộc vào tham số hóa $\ .\ .\ .\ .$.	156		
	3.4	Công	thức Stokes và Công thức Gauss–Ostrogradsky	162		
		3.4.1	Công thức Stokes	162		
		3.4.2	Công thức Gauss–Ostrogradsky	168		
4	Phu	ong ti	rình vi phân	178		
	4.1	Phươn	ng trình vi phân và mô hình toán học	178		
		4.1.1	Mô hình với phương trình vi phân cấp một $\dots \dots \dots$	180		
		4.1.2	Mô hình với phương trình vi phân cấp hai	183		
	4.2	Giải p	hương trình vi phân cấp một	186		
		4.2.1	Phương trình vi phân cấp một tách biến	186		
		4.2.2	Phương trình vi phân cấp một đẳng cấp	189		
		4.2.3	Phương trình vi phân cấp một tuyến tính	192		
	4.3	Giải p	phương trình vi phân cấp hai	201		
		4.3.1	Phương trình tuyến tính thuần nhất hệ số hằng	201		
		4.3.2	Phương trình tuyến tính không thuần nhất hệ số hằng	205		
Tài liệu tham khảo 21						
Chỉ mục						

iv M UC L UC

Giới thiệu

Đây là giáo trình cho các môn toán Vi tích phân 2 cho khối B và C (các ngành ngoài toán) do Bộ môn Giải tích (Khoa Toán - Tin học, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh) chủ trì biên soạn từ tháng 9 năm 2016.

- Tham gia biên soạn: Lý Kim Hà, Nguyễn Vũ Huy, Bùi Lê Trọng Thanh, Nguyễn Thị Thu Vân, Huỳnh Quang Vũ
- Tham gia sửa lỗi: Lê Văn Chánh
- Tham gia đánh máy LaTeX: Hồ Thi Kim Vân
- Tham gia vẽ hình: Nguyễn Hoàng Hải
- Biên tập: Huỳnh Quang Vũ

Tài liệu này có trên trang web của Bộ môn Giải tích ở địa chỉ https://sites.google.com/view/math-hcmus-edu-vn-giaitich

Giáo trình đang được tiếp tục xây dựng. Người đọc vui lòng gởi góp ý về cho người biên tập.

Đối tượng của giáo trình

Sinh viên các ngành khoa học dữ liệu, nhóm ngành máy tính và công nghệ thông tin, điện tử - viễn thông, hải dương, khoa học vật liệu, vật lý (môn toán B) và địa chất, hóa học, môi trường, sinh học, công nghệ sinh học, ...(môn toán C). Sinh viên ngành toán cũng có thể dùng giáo trình này làm tài liêu tham khảo.

Mục tiêu của giáo trình

Giáo trình nhằm dùng làm tài liệu giảng và học phép tính vi phân và phép tính tích phân của hàm nhiều biến, với trình độ tương đồng với một số giáo trình vi tích phân phổ biến quốc tế như [Ste16], sát với chương trình đào tạo hiện hành của Trường Đại học Khoa học Tự nhiên - Đại học Quốc gia Thành phố Hồ Chí Minh. Mục tiêu chính gồm: trang bị hiểu biết khoa học đại cương, rèn luyện khả năng tư duy chính

2 MUC LUC

xác và tính toán định lượng, cung cấp công cụ toán học cho các ngành khoa học kỹ thuật.

Việc giảng dạy của giảng viên trên lớp cũng như việc học và tự học của sinh viên không nhất thiết theo hết nội dung giáo trình. Để phục vụ nhiều đối tượng sinh viên, giáo trình đã chứa nhiều chứng minh chính xác cho các mệnh đề, nhiều ví dụ và bài tập từ dễ hơn tới khó hơn, và một số phần mở rộng, nâng cao. Mỗi giảng viên và sinh viên có thể chọn bỏ qua một số nội dung, để những phần còn lại để tự học thêm.

Mỗi mục cấp hai trong giáo trình (ví dụ như mục 1.1) ứng với khoảng 3 tiết trên lớp.

Các mục có dấu * là tương đối nâng cao, không bắt buộc.

Môn toán C bớt một số phần trong giáo trình này và có thể giảm mức độ chặt chẽ và chi tiết trong các lý luân.

Phương pháp dạy và học

Mục tiêu sư phạm nhấn mạnh: hiểu khái niệm, tăng cường năng lực tư duy và năng lực tính toán, tiếp xúc với một số ứng dụng. Việc giảng dạy và học tập nhắm tới cả 3 tiêu chí trên, không quá tập trung một tiêu chí mà bỏ qua một tiêu chí nào:

- (a) Hiểu các khái niệm, kết quả và phương pháp chính;
- (b) Phát triển tư duy bằng việc thảo luận một số lý luận toán học chặt chẽ. Các khái niệm khác khi có thể sẽ giải thích ở mức độ nhất định. Bổ sung các giải thích trưc quan, đinh lương và miêu tả ý tưởng;
- (c) Tăng cường kỹ năng tính toán, hướng dẫn sử dung phần mềm tính toán;
- (d) Giới thiệu một số ví du ứng dung cụ thể.

Về dạy và học ứng dụng

Giáo trình giới thiệu một số ứng dụng vào các ngành khoa học kỹ thuật và có một số bài tập ứng dụng hoặc đặt trong khung cảnh ứng dụng. Chẳng hạn phần Giải tích vectơ thể hiện đặc biệt rõ tiềm năng hữu ích cho ngành Vật lý.

Tuy nhiên người đọc nên lưu ý:

- (a) Hàm lượng ứng dụng được thảo luận trên lớp bị hạn chế bởi thời lượng dành cho môn học, vì vậy sinh viên cần dành thời gian tự học.
- (b) Để có thể ứng dụng được toán học vào một ngành thường cần trình độ chuyên môn tương đối cao trong ngành đó. Chẳng hạn, muốn áp dụng được phép tính vi tích phân hàm nhiều biến vào một ngành thì người ta phải ở trình độ có thể xét những mô hình nhiều biến có tính liên tục trong ngành đó.

MỤC LỤC

(c) Toán học có chức năng chính là nghiên cứu chung những quan hệ số lượng, hình dạng, cấu trúc bằng phương pháp suy luận. Việc áp dụng các hiểu biết chung đó vào từng lĩnh vực thực tế cụ thể thường là công việc của những chuyên gia trong các lĩnh vực này.

Vì thế sinh viên các ngành khoa học kỹ thuật nên học tốt các môn toán vi tích phân để có thể ứng dụng chúng vào ngành của mình khi học các môn chuyên ngành nâng cao về sau.

Chương 1 Phép tính vi phân của hàm nhiều biến

1.1 Không gian \mathbb{R}^n

Khoảng 300 năm trước Công nguyên nhà toán học Hy Lạp Euclid viết bộ sách "Cơ sở của hình học" tổng kết hiểu biết hình học phẳng và hình học không gian ba chiều đương thời bằng phương pháp suy luận, theo một số quy tắc từ một hệ thống tiên đề được đúc kết từ nhận thức của con người tới thời điểm đó. Ngày nay hình học Euclid vẫn được học ở trường trung học phổ thông, và phương pháp suy luận từ tiên đề của Euclid trở thành phương pháp chung của toán học.

Phát triển từ hình học Euclid, trong chương này chúng ta sẽ xét không gian Euclid n-chiều. Nhưng phương pháp của chúng ta là phương pháp Hình học Giải tích, xuất hiện đầu tiên từ thế kỉ 17, dùng mặt phẳng tọa độ. Trong phương pháp này điểm tương ứng với số, nhờ đó quan hệ hình học tương ứng với quan hệ số lượng. Phương pháp này đặt hình học trên nền tảng số, tỏ ra rất hiệu quả và chặt chẽ, và sẵn sàng để tổng quát hóa lên các không gian nhiều chiều. Có thể nói ý tưởng này của toán học là cơ sở của việc "số hóa" sau này.

Cụ thể hơn, cũng như môn Vi tích phân hàm một biến (xem [Bmgt1]), môn Vi tích phân hàm nhiều biến đặt trên cơ sở trên tập hợp các số thực, và mặc dù chúng ta sẽ dùng hình vẽ và trực quan để dẫn dắt nhưng mỗi suy luận chỉ được coi là chặt chẽ khi nó nằm trong hệ thống suy luận từ tập hợp số thực bằng các quy tắc suy luận toán học.

Phát triển của chúng ta vẫn nhắm tới sự tương thích với hình học Euclid và chứa các trường hợp số chiều n=1, n=2, n=3 mà ta đã học ở trung học phổ thông, người học nếu gặp khó khăn với trường hợp tổng quát thì trước tiên có thể chỉ xét các trường hợp này, khi đó nội dung của mục cơ bản đã có trong sách giáo khoa trung học phổ thông [SGKTH].

Trên tinh thần đó, chúng ta bắt đầu môn học với định nghĩa cho những khái niệm căn bản như không gian, điểm, vectơ, đường thẳng, mặt phẳng, ...

Với mỗi số nguyên dương n, tập hợp \mathbb{R}^n là tập hợp tất cả các bộ có thứ tự n số thực. Vậy $\mathbb{R}^n = \{x = (x_1, x_2, \dots, x_n) \mid x_1, x_2 \dots, x_n \in \mathbb{R}\}$. Số thực x_i được gọi là

thành phần hay toa $d\hat{o}$ thứ i của phần tử x.

Ví dụ 1.1.1. Bộ điểm môn học của mỗi sinh viên trong một lớp học có thể được ghi như một bộ có thứ tự (điểm chuyên cần, điểm bài tập, điểm kiểm tra ngắn, điểm kiểm tra giữa kì, điểm kiểm tra cuối kì), là một bộ có thứ tự 5 số thực. Chẳng hạn một sinh viên nào đó có thể có bộ điểm môn học là (7,6,9,10,8). Như thế bộ điểm của mỗi sinh viên là một phần tử của tập hợp \mathbb{R}^5 .

Khái niệm "chiều" trong toán học rất tổng quát, không chỉ là số chiều của không gian vật lý ta cảm nhận, mà có nghĩa chung là số bậc tự do, số đại lượng độc lập xác định một phần tử của một tập hợp. Vì vậy các không gian nhiều chiều rất cần thiết và hữu ích cho ứng dung.

1.1.1 Vectơ, điểm, chiều dài, khoảng cách, tích trong

Khi tập hợp \mathbb{R}^n được trang bị các phép toán nhất định thì nó được gọi là một không gian vectơ, và các phần tử của nó cũng được gọi là các \mathbf{vecto}^{-1} . Đôi khi, để nhấn mạnh việc nhìn phần tử x dưới khía cạnh vectơ người ta dùng kí hiệu \vec{x} hay x, đặc biệt khi n=2,3. Các phép toán đó gồm phép toán cộng và phép toán nhân, được định nghĩa như sau. Phép cộng + của hai vectơ $x=(x_1,x_2,\ldots,x_n)$ và $y=(y_1,y_2,\ldots,y_n)$ cho ra vectơ

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$$

Phép nhân của vecto x với số thực α cho vecto

$$\alpha \cdot x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$$

Hai phép toán + và \cdot có các tính chất mà ta dễ dàng kiểm tra được từ các tính chất của số thực:

Mệnh đề 1.1.2. Với mọi $x, y \in \mathbb{R}^n$, với mọi $\alpha, \beta \in \mathbb{R}$:

- (a) x + y = y + x,
- (b) (x+y) + z = x + (y+z),
- (c) với 0 là vectơ có tất cả các thành phần bằng 0, nghĩa là 0 = (0, 0, ..., 0) (thường được gọi là **điểm gốc tọa độ** và thường được kí hiệu là bằng chữ cái O^2), thì x + 0 = 0 + x = x,
- (d) $t \hat{o} n t \dot{q} i vecto d \hat{o} i x = (-1) \cdot x = (-x_1, -x_2, \dots, -x_n) sao cho x + (-x) = 0,$
- (e) $1 \cdot x = x$,

 $^{^1}$ từ vector trong tiếng Anh chỉ một đoạn thẳng có hướng, hay một đại lượng có hướng di chuyển 2 trong tiếng Anh "origin" nghĩa là "gốc"

(f)
$$\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$$
,

(g)
$$(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$
,

(h)
$$\alpha \cdot (x+y) = \alpha \cdot x + \alpha \cdot y$$
.

Về sau để kí hiệu đơn giản hơn ta thường bỏ đi dấu chấm để kí hiệu phép nhân ở trên, ví dụ viết 2x thay vì $2 \cdot x$.

Hình 1.1.1: Hình ảnh minh họa cho tọa độ của một điểm (x, y, z) trong \mathbb{R}^3 .

Ghi chú 1.1.3. Những tính chất trên phù hợp với các trường hợp riêng \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 đã biết. Tuy vậy có một điểm khác biệt đáng chú ý là trong các trường hợp riêng này, cũng như trong vật lý, ta thường hình dung một vectơ là một đoạn thẳng có hướng, được xác định bởi một cặp có thứ tự hai điểm, một điểm đầu và một điểm cuối; tức là vectơ trước đây là có gốc. Còn vectơ như ta vừa định nghĩa ở đây đơn giản chỉ là một phần tử của không gian, không đi kèm khái niệm điểm đầu, trước đây có khi được gọi là "vectơ tự do". Tuy vậy trong các hình vẽ minh họa các trường hợp số chiều thấp ta vẫn vẽ một vectơ như một đoạn thẳng có mũi tên chỉ hướng.

Không gian vecto \mathbb{R}^n có một bộ đặc biệt các vecto

$$(e_1 = (1, 0, ..., 0), e_2 = (0, 1, ..., 0), ..., e_n = (0, 0, ..., 1))$$

có tính chất dễ thấy là với một vecto $x = (x_1, x_2, \dots, x_n)$ bất kì trong \mathbb{R}^n thì

$$x = \sum_{i=1}^{n} x_i e_i.$$

Bộ $(e_1, e_2, ..., e_n)$ trên được gọi là **cơ sở vectơ chính tắc** của \mathbb{R}^n . Ta nói rằng n là **số chiều** của không gian vecto \mathbb{R}^n , bởi vì \mathbb{R}^n có một cơ sở vectơ gồm đúng n phần tử, và mọi phần tử của \mathbb{R}^n đều nhận được từ cơ sở đó bằng phép cộng vectơ và phép nhân với số thực, như thế \mathbb{R}^n có đúng n "chiều" độc lập, tự do.

Mỗi vectơ có một chiều dài, hay độ lớn, được gọi là **chiều dài Euclid**, kí hiệu là |x|, còn được gọi là **chuẩn** của vectơ (đặc biệt khi n > 3), kí hiệu là ||x||, cho bởi

$$||x|| = |x| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Trong trường hợp n=1 độ lớn này chính là giá trị tuyệt đối của số thực. Chiều dài vectơ có các tính chất:

Mệnh đề 1.1.4. Với mọi $x \in \mathbb{R}^n$, với mọi $\alpha \in \mathbb{R}$ thì:

- (a) $||x|| \ge 0$,
- (b) ||x|| = 0 khi và chỉ khi x = 0,
- (c) $\|\alpha x\| = |\alpha| \|x\|$,

Hai phần tử x, y bất kì của \mathbb{R}^n lại có một khoảng cách giữa chúng, kí hiệu là d(x,y), được gọi là **khoảng cách Euclid**, cho bởi

$$d(x,y) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \dots + (y_n - x_n)^2}.$$

Trong trường hợp n=1 khoảng cách này chính là chiều dài thông thường của đoạn số thực từ số x tới số y. Trong trường hợp n=2 và n=3 khoảng cách từ x tới y bằng chiều dài của vectơ đi từ x tới y, xem Hình 1.1.2 và 1.1.3.

Hình 1.1.2: Khoảng cách Euclid, trường hợp hai chiều.

Ta thấy

$$d(x,y) = \|y - x\|,$$

nghĩa là khoảng cách từ điểm x tới điểm y đúng bằng chiều dài vectơ y-x. Mặt khác, chiều dài vectơ x chính bằng khoảng cách từ điểm x.

Hình 1.1.3: Khoảng cách Euclid, trường hợp ba chiều.

Khoảng cách có các tính chất sau:

Mệnh đề 1.1.5. Với mọi $x, y \in \mathbb{R}^n$ thì:

- (a) $d(x,y) \ge 0$,
- (b) d(x,y) = 0 khi và chỉ khi x = y,
- (c) d(x,y) = d(y,x).

Trên \mathbb{R}^n ta còn có một tích vô hướng của hai vectơ, tổng quát hóa tích của số thực và tích vô hướng trong \mathbb{R}^2 , \mathbb{R}^3 mà ta đã biết, được gọi là **tích vô hướng Euclid** hay **tích trong Euclid**, cho bởi

$$x \cdot y = \langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Phép toán tích vô hướng có các tính chất sau:

Mệnh đề 1.1.6. Với mọi $x, y, z \in \mathbb{R}^n$, với mọi $\alpha \in \mathbb{R}$ thì:

- (a) $x \cdot x \ge 0$,
- (b) $x \cdot x = 0$ khi và chỉ khi x = 0,
- (c) $x \cdot y = y \cdot x$
- (d) $x \cdot (y+z) = x \cdot y + x \cdot z$,
- (e) $(\alpha x) \cdot y = \alpha(x \cdot y)$,

Ta có ngay quan hệ giữa tích vô hướng và độ lớn Euclid:

$$||x|| = \sqrt{x \cdot x}.$$

Mệnh đề 1.1.7. Với hai vectơ bất kì x và y trong không gian Euclid \mathbb{R}^n thì

$$|x \cdot y| \le ||x|| \cdot ||y||.$$

Dấu bằng xảy ra khi và chỉ khi có số thực α sao cho $x = \alpha y$ hay $y = \alpha x$.

Chứng minh. Giả sử $x=(x_1,x_2,\ldots,x_n)$ và $y=(y_1,y_2,\ldots,y_n)$. Ta có

$$x \cdot y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

trong khi

$$||x|| \cdot ||y|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \cdot \sqrt{y_1^2 + y_2^2 + \dots + y_n^2},$$

như vậy bất đẳng thức

$$|x \cdot y| \le ||x|| \cdot ||y||$$

chính là Bất đẳng thức Buniakowski 3 cho số thực. Bất đẳng thức Buniakowski khẳng định rằng với mọi bộ số thực $x = (x_1, x_2, \dots, x_n)$ và $y = (y_1, y_2, \dots, y_n)$ thì

$$|x_1y_1 + x_2y_2 + \dots + x_ny_n| \le \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \cdot \sqrt{y_1^2 + y_2^2 + \dots + y_n^2},$$

đẳng thức xảy ra khi và chỉ khi x và y tỉ lệ với nhau, xem Bài tập 1.1.15. \square

Ta có một tính chất quan trong sau của khoảng cách:

Mệnh đề 1.1.8 (Bất đẳng thức tam giác). Với ba phần tử bất kì x, y và z trong không gian Euclid \mathbb{R}^n thì

(b)
$$d(x,y) \le d(x,z) + d(z,y).$$

Tính chất này được gọi là bất đẳng thức tam giác là vì nó tổng quát hóa bất đẳng thức tam giác trong hình học Euclid phẳng.

Chứng minh. Để thu được dang (a) ta có thể làm bằng vài cách. Một cách đơn giản

 $^{^3}$ Bất đẳng thức Buniakowski còn được gọi là Bất đẳng thức Cauchy–Buniakowski hay Bất đẳng thức Schwarz

Hình 1.1.4: Bất đẳng thức tam giác: Trong một tam giác thì tổng chiều dài hai cạnh lớn hơn hay bằng chiều dài cạnh thứ ba.

là bình phương hai vế:

$$||x + y|| \le ||x|| + ||y||$$

$$\iff ||x + y||^2 \le (||x|| + ||y||)^2$$

$$\iff (x + y) \cdot (x + y) \le ||x||^2 + ||y||^2 + 2 ||x|| ||y||$$

$$\iff x \cdot x + 2x \cdot y + y \cdot y \le x \cdot x + y \cdot y + 2 ||x|| ||y||$$

$$\iff x \cdot y \le ||x|| ||y||,$$

là đúng do Mênh đề 1.1.7.

Một cách để thu được dạng (b) là dùng quan hệ giữa khoảng cách và chiều dài rồi dùng dạng (a):

$$d(x,z) + d(z,y) = ||z - x|| + ||y - z|| \ge ||(z - x) + (y - z)|| = ||y - x|| = d(x,y).$$

Mỗi phần tử x của tập hợp \mathbb{R}^n có nhiều vai trò tùy theo khía cạnh mà ta quan tâm: là một vectơ nếu ta quan tâm tới phép toán vectơ, hay là một $\operatorname{diểm}$ nếu ta quan tâm hơn tới khoảng cách. Chính vì vậy một phần tử của \mathbb{R}^n khi thì được gọi là một vectơ, khi thì được gọi là một điểm. Người đọc không nên bị rối bởi điều này. Cũng vì lí do này mà ta không nhất thiết phải dùng kí hiệu khác nhau để phân biệt điểm và vectơ.

1.1.2 Hình học trong \mathbb{R}^n

Góc giữa hai vectơ

Cho hai vecto $u=(u_1,u_2,\ldots,u_n)$ và $v=(v_1,v_2,\ldots,v_n)$ trong \mathbb{R}^n . Ta đã biết ở Mệnh đề 1.1.7 thì

$$|u\cdot v|\leq \|u\|\,\|v\|\,.$$

Nếu u và v khác 0 thì ta thu được

$$\left| \frac{u \cdot v}{\|u\| \|v\|} \right| \le 1.$$

Từ đó ta định nghĩa góc giữa hai vectơ u và v là số thực $\theta \in [0, \pi]$ thỏa

$$\cos \theta = \frac{u \cdot v}{\|u\| \, \|v\|}.$$

Ta được công thức

$$u \cdot v = ||u|| \, ||v|| \cos \theta.$$

Ta nói u vuông góc, hay trực giao với v, kí hiệu là $u \perp v$, nếu góc giữa chúng là $\pi/2$ trong trường hợp cả hai véctơ khác 0, hoặc nếu có một véctơ là véctơ 0. Ta có thể thấy ngay u và v vuông góc đồng nghĩa với $u \cdot v = 0$:

$$u \perp v \iff u \cdot v = 0.$$

Hai vectơ là *cùng phương* nếu góc giữa chúng bằng 0 hoặc π trong trường hợp cả hai véctơ khác 0, hoặc nếu có một véctơ là véctơ 0. Điều này tương ứng với việc $|u \cdot v| = ||u|| \, ||v||$, tức là dấu bằng xảy ra trong Mệnh đề 1.1.7, là khi có một vectơ là bội của vectơ kia.

Hai vectơ là *cùng hướng* nếu góc giữa chúng bằng 0 trong trường hợp cả hai véctơ khác 0, hoặc nếu có một véctơ là véctơ 0, tức là khi có một vectơ là bội không âm của vectơ kia.

Nếu vectơ $v \neq 0$ thì vectơ $\frac{v}{\|v\|} = \frac{1}{\|v\|} v$ là một vectơ cùng hướng với v nhưng có chiều dài bằng 1, được gọi là **vectơ đơn vị** theo hướng của v.

Chiếu vuông góc

Nếu $v \neq 0$ thì vectơ đơn vị theo chiều của v là $\frac{v}{\|v\|}$, nhận được bằng cách nhân vô hướng u với vectơ đơn vị theo hướng của v. Số thực

$$||u||\cos\theta = \frac{u\cdot v}{||v||} = u\cdot \frac{v}{||v||}$$

đại diện cho $thành \ phần$ (có dấu) của u trên hướng của v. Chiếu vuông góc của u lên v, kí hiệu p_vu^4 , là vectơ cùng phương với v cho bởi

$$\mathbf{p}_v u = \left(u \cdot \frac{v}{\|v\|} \right) \frac{v}{\|v\|} = \frac{u \cdot v}{\|v\|^2} v.$$

Như thế vectơ chiếu của u lên v có độ lớn bằng trị tuyệt đối của thành phần của u trên v, cùng phương với v, cùng chiều với v nếu thành phần của u trên v là dương, trái chiều với v nếu thành phần của u trên v là âm, bằng vectơ 0 nếu thành phần của u trên v là số 0 tức là u vuông góc với v.

Ta có thể kiểm được ngay rằng $(u - p_v u) \perp v$ bằng cách nhân vô hướng hai véctơ này (Bài tập 1.1.6), như vậy đây thực sự là phép chiếu vuông góc.

Trong trường hợp u là một vectơ đơn vị thì công thức của phép chiếu vuông góc

⁴p viết tắt từ projection, nghĩa là chiếu

Hình 1.1.5: Chiếu của một vecto lên một vecto khác.

trở nên đơn giản hơn:

$$p_v u = \frac{u \cdot v}{v}.$$

Tích có hướng của hai vectơ

Cho hai vecto trong \mathbb{R}^3 , $u = (u_1, u_2, u_3)$ và $v = (v_1, v_2, v_3)$. **Tích có hướng** của hai vecto này, kí hiệu là $u \times v$, được định nghĩa là vecto

$$u \times v = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

Ta thấy tích có hướng phụ thuộc vào thứ tự của vectơ: $u \times v = -v \times u$. Một tính chất căn bản của tích có hướng mà ta kiểm trực tiếp được ngay là $(u \times v) \perp u$ và $(u \times v) \perp v$. Như vậy tích có hướng của hai vectơ vuông góc với hai vectơ ấy. Tích có hướng bằng vectơ 0 khi và chỉ khi hai vectơ là cùng phương.

Ta có thể kiểm trực tiếp từ định nghĩa của tích có hướng và tích vô hướng tính chất sau (xem phần bài tập):

$$||u \times v||^2 = ||u||^2 ||v||^2 - (u \cdot v)^2.$$

Từ đó

$$||u \times v||^2 = ||u||^2 ||v||^2 - (||u|| ||v|| \cos \theta)^2 = ||u||^2 ||v||^2 (1 - \cos^2 \theta),$$

trong đó θ là góc giữa u và v. Suy ra

$$||u \times v|| = ||u|| \, ||v|| \sin \theta.$$

Trong hình học Euclid phẳng ta có thể thu được $||u|| ||v|| \sin \theta = 2 \cdot \frac{1}{2} ||u|| ||v|| \sin \theta$ chính bằng "diện tích" của hình bình hành có hai cạnh là hai vecto u và v. Từ đó ta có thể miêu tả trực quan tích có hướng như trong Hình 1.1.6.

Đường thẳng

Một đường thẳng trong \mathbb{R}^n là một tập con của \mathbb{R}^n có dạng $\{a + tv \mid t \in \mathbb{R}\}$ trong đó $a, v \in \mathbb{R}^n$, $v \neq 0$. Như vậy đây là tập hợp tất cả các điểm x sao cho vecto x - a cùng phương với vecto v. Điểm a thuộc về đường thẳng này. Vecto v được gọi là

Hình 1.1.6: Miêu tả trực quan: Tích có hướng $u \times v$ là vectơ vuông góc với cả u và v có hướng xác định bởi qui tắc bàn tay phải, lòng bàn tay phải uốn theo chiều từ u sang v thì ngón tay cái của bàn tay phải sẽ chỉ chiều của $u \times v$, có độ lớn đúng bằng diện tích của hình bình hành sinh bởi u và v. Qui tắc bàn tay phải còn được miêu tả như sau: với bàn tay phải, nếu ngón tay cái chỉ chiều của vectơ u, ngón tay trỏ chỉ chiều của vectơ v, thì ngón tay giữa ở vị trí vuông góc với ngón cái và ngón giữa sẽ chỉ chiều của vectơ tích $u \times v$.

một vectơ chỉ phương của đường thẳng này.

Từ định nghĩa trên ta thấy đường thẳng nối a và b cũng chính là đường thẳng đi qua a với vectơ chỉ phương b-a. Một điểm trên đường thẳng nối a và b có dạng $a+t(b-a)=(1-t)a+tb,\,t\in\mathbb{R}$. Xem Hình 1.1.7.

Hình 1.1.7: Minh hoa đường thẳng đi qua điểm a với vecto chỉ phương v.

Đoạn thẳng nối a và b được định nghĩa là tập hợp gồm các điểm $a+t(b-a)=(1-t)a+tb,\,t\in[0,1].$ Xem Hình 1.1.8.

Ví dụ 1.1.9. Trong \mathbb{R}^2 , xét đường thẳng đi qua hai điểm (x_0, y_0) và (x_1, y_1) . Vector chỉ phương là $(x_1, y_1) - (x_0, y_0) = (x_1 - x_0, y_1 - y_0)$. Phương trình tham số của đường thẳng là

$$(x,y) - (x_0, y_0) = t(x_1 - x_0, y_1 - y_0)$$

hay

$$x = x_0 + (x_1 - x_0)t, y = y_0 + (y_1 - y_0)t.$$

Hình 1.1.8: Minh họa đoạn thẳng nối điểm a và điểm b.

Trong trường hợp $x_1 \neq x_0$ thì $t = \frac{x - x_0}{x_1 - x_0}$, ta thu được phương trình

$$y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0).$$

Như vậy trên mặt phẳng nếu một đường thẳng không thẳng đứng (không cùng phương với trục y) thì nó có một phương trình dạng y = mx + b, với m là một hằng số thực, được gọi là hê số góc, hay đô nghiêng của đường thẳng.

Mặt phẳng

Trong \mathbb{R}^n , **mặt phẳng** P đi qua ba điểm p_1 , p_2 , p_3 được đặc trưng bởi tính chất điểm $x \in \mathbb{R}^n$ thuộc P khi và chỉ khi vecto $v = x - p_1$ là một tổ hợp tuyến tính của hai vecto $v_1 = p_2 - p_1$ và $v_2 = p_3 - p_1$, tức là có hai số thực s và t sao cho $v = sv_1 + tv_2$. Điều kiện để mặt phẳng được xác định là ba điểm đã cho không thẳng hàng, tức là v_1 và v_2 không cùng phương. Vậy

$$P = \{ x = p_1 + sv_1 + tv_2 \mid s \in \mathbb{R}, t \in \mathbb{R} \}.$$

Ta cũng nói phương trình

$$x = p_1 + sv_1 + tv_2, \ s \in \mathbb{R}, t \in \mathbb{R}$$

là một phương trình tham số của mặt phẳng P.

Dưới đây ta xét riêng trường hợp \mathbb{R}^3 .

Đặt $N=v_1\times v_2$ thì vectơ N vuông góc với v_1 và v_2 , do đó N vuông góc với mọi tổ hợp của v_1 và v_2 , tức là vuông góc với mọi vectơ sv_1+tv_2 với $s\in\mathbb{R},t\in\mathbb{R}$ (Bài tập 1.1.7). Ta nói N vuông góc với mặt phẳng P, kí hiệu là $N\perp P$, và N là một vectơ pháp tuyến của mặt phẳng P. Xem Hình 1.1.9. Ngược lại có thể kiểm được nếu vectơ v vuông góc với N thì v phải là một tổ hợp tuyến tính của v_1 và v_2 (Bài tập 1.1.16). Như vậy mặt phẳng P chính là tập hợp tất cả các điểm p sao cho vectơ $p-p_1$ vuông góc với vectơ N, tức là

$$p \in P \iff (p - p_1) \cdot N = 0.$$

Hình 1.1.9: Mặt phẳng và pháp tuyến của mặt phẳng trong trường hợp \mathbb{R}^3 .

Xét mặt phẳng đi qua điểm (x_0, y_0, z_0) với vectơ pháp tuyến $(a, b, c) \neq 0$. Mặt phẳng này gồm tất cả các điểm có tọa độ (x, y, z) sao cho vectơ $((x, y, z) - (x_0, y_0, z_0))$ vuông góc với vectơ (a, b, c), tức là sao cho

$$((x, y, z) - (x_0, y_0, z_0)) \cdot (a, b, c) = 0,$$

hay

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0,$$

có thể viết lại là

$$ax + by + cz + d = 0,$$

với $d = ax_0 + by_0 + cz_0$. Đây là các phương trình không có tham số của mặt phẳng.

Ví dụ 1.1.10. Viết phương trình mặt phẳng đi qua ba điểm (1,1,2), (1,2,0), (0,1,3).

Đặt $v_1 = (1,2,0) - (1,1,2) = (0,1,-2)$ và $v_2 = (0,1,3) - (1,1,2) = (-1,0,1)$. Ta có một phương trình tham số của mặt phẳng là

$$(x, y, z) = (1, 1, 2) + sv_1 + tv_2 = (1 - t, 1 + s, 2 - 2s + t),$$

với $s \in \mathbb{R}, t \in \mathbb{R}$. Ta có một pháp tuyến của mặt phẳng là $N = v_1 \times v_2 = (1, 2, 1)$, từ

đó thu được một phương trình không có tham số của mặt phẳng:

$$[(x,y,z)-(1,1,2)]\cdot N = 0 \iff 1\cdot (x-1) + 2\cdot (y-1) + 1\cdot (z-2) = 0 \iff x+2y+z = 5.$$

1.1.3 Tập mở và tập đóng trong \mathbb{R}^n

Với khoảng cách và độ dài Euclid, ta có thể xây dựng các cấu trúc thích hợp cho khái niệm giới hạn và liên tục. Một số khái niệm dưới đây ta chưa dùng ngay, người học có thể đọc kỹ lại sau.

Cho $x \in \mathbb{R}^n$ và $\epsilon > 0$. Các tập hợp

$$B(x,\epsilon) = \{ y \in \mathbb{R}^n \mid ||x - y|| < \epsilon \}$$

$$B'(x,\epsilon) = \{ y \in \mathbb{R}^n \mid ||x - y|| \le \epsilon \}$$

$$S(x,\epsilon) = \{ y \in \mathbb{R}^n \mid ||x - y|| = \epsilon \}$$

lần lượt được gọi là quả cầu (mở), quả cầu đóng, và mặt cầu tâm x bán kính ε trong \mathbb{R}^n . Đây là một phát triển của các khái niệm khoảng, hình tròn, quả cầu trong trường hợp n=1,2,3.

Trong phép tính vi phân ta thường khảo sát một hàm thay đổi như thế nào ở gần một điểm, vì vậy ta sử dụng các khái niệm phân loại điểm như sau.

Cho tập $D \subset \mathbb{R}^n$ và điểm $x \in \mathbb{R}^n$.

Điểm x được gọi là một $\operatorname{diểm}\ \operatorname{trong}$ của tập D nếu có một quả cầu tâm x được chứa trong D. Điểm x được gọi là một $\operatorname{diểm}\ \operatorname{biên}$ của tập D nếu bất kì quả cầu $B(x,\epsilon)$ nào cũng chứa một điểm thuộc D và một điểm không thuộc D. Điểm x được gọi là một $\operatorname{diểm}\ \operatorname{tụ}$ hay $\operatorname{diểm}\ \operatorname{giới}\ \operatorname{hạn}$ của tập D nếu bất kì quả cầu $B(x,\epsilon)$ nào cũng chứa ít nhất một điểm thuộc D khác với x.

Ví dụ 1.1.11. Xét $D = \{0\} \cup (1,2) \subset \mathbb{R}$. Điểm 0 không phải là một điểm trong của D mặc dù thuộc D. Mọi điểm thuộc khoảng (1,2) đều là một điểm trong của D. Điểm 0 không phải là một điểm tụ của D. Điểm 1 và điểm 2 cũng như mọi điểm thuộc khoảng (1,2) là điểm tu của D.

Ví dụ 1.1.12. Quả cầu bỏ đi tâm $B(a,r) \setminus \{a\}$ có tâm a là một điểm tụ.

Tập hợp tất cả các điểm trong của D được gọi là $phần\ trong$ của D, và được ký hiệu là \mathring{D} .

Tập hợp tất cả các điểm biên của D được gọi là biên của D, và được ký hiệu là ∂D .

Tập hợp D được gọi là một $t\hat{q}p$ $m\vec{o}$ nếu mọi điểm của D đều là điểm trong của D, tức là D trùng với phần trong \mathring{D} của nó. Đặc trưng của một tập mở là mỗi điểm thuộc tập có một quả cầu chứa điểm đó mà chứa trong tập.

Tập $D \subset \mathbb{R}^n$ được gọi là một $t\hat{q}p$ đóng nếu D chứa mọi điểm biên của nó, tức là D chứa biên ∂D của nó.

Ví dụ 1.1.13. Quả cầu $B(x,\epsilon)$ là một tập mở. Ta kiểm tra điều này dưới đây. Nếu y là một điểm trong quả cầu này, thì từ trực quan trong trường hợp thấp chiều ta thấy ngay có thể lấy được một quả cầu $B(y,\delta)$ chứa hoàn toàn trong $B(x,\epsilon)$. Cụ thể ta có thể thấy là bất kì số thực dương $\delta \leq \epsilon - d(x,y)$ nào cũng đảm bảo cho điều đó. Ta có thể kiểm tra chính xác như sau: nếu $z \in B(y,\delta)$, do bất đẳng thức tam giác, thì

$$d(z, x) \le d(z, y) + d(y, x) < \delta + d(y, x) \le \epsilon$$

nên $z \in B(x, \epsilon)$.

Người học có thể kiểm các ví dụ khác tiếp theo đây theo cách đã minh họa trên, tuy nhiên đây không là một yêu cầu của môn học.

Ví dụ 1.1.14. Quả cầu đóng $B'(x,\epsilon)$ và mặt cầu $S(x,\epsilon)$ là các tập đóng.

Ví dụ 1.1.15. Mặt cầu $S(x,\epsilon)$ là biên của quả cầu $B(x,\epsilon)$.

Ví dụ 1.1.16. Khoảng $D = [0,1) \subset \mathbb{R}$ không là tập mở, cũng không là tập đóng, vì điểm $0 \in D$ không phải là một điểm trong của D, còn điểm $1 \notin D$ là một điểm biên của D. Vậy chú ý thuật ngữ mở và đóng ở đây không phủ định nhau.

Người ta thường dùng thuật ngữ $l\hat{a}n$ cận của một điểm trong \mathbb{R}^n để chỉ một tập mở của \mathbb{R}^n chứa điểm đó.

Bài tập

1.1.1. Trong \mathbb{R}^4 , cho x=(2,-1,3,0) và y=(2,0,1,-3). Tính khoảng cách d(x,y) giữa x và y, độ lớn $\|x\|$ của x, độ lớn $\|y\|$ của y, độ lớn $\|x-y\|$ của x-y, tích trong $x\cdot y$ của x và y.

1.1.2. Hãy chứng tỏ

(a)
$$x \cdot y = \frac{1}{2} \left(\|x + y\|^2 - \|x\|^2 - \|y\|^2 \right).$$

(b)
$$x \cdot y = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right).$$

Như vậy tích trong có thể tính được từ độ dài.

1.1.3 (Đẳng thức hình bình hành). Hãy chứng tỏ

$$||x - y||^2 + ||x + y||^2 = 2 ||x||^2 + 2 ||y||^2$$
.

Hãy giải thích ý nghĩa hình học của điều này.

1.1.4 (Công thức Pythagore). Chứng tỏ rằng nếu $x \perp y$ thì

$$||x + y||^2 = ||x||^2 + ||y||^2$$
.

Hãy vẽ hình minh họa để thấy đây là tương tự ở số chiều bất kì của công thức Pythagore trong hình học phẳng Euclid.

- **1.1.5.** Tìm vecto đơn vị cùng chiều với vecto v = (1, 2, 3, 4).
- **1.1.6.** Kiểm tra rằng $\left(u \left(u \cdot \frac{v}{\|v\|}\right) \frac{v}{\|v\|}\right) \perp v$.
- **1.1.7.** Kiểm tra rằng nếu $a \perp b$ và $a \perp c$ thì a vuông góc với mọi tổ hợp của b và c, tức là với mọi $s, t \in \mathbb{R}$ thì $a \perp (sb + tc)$.
- **1.1.8.** Trong \mathbb{R}^3 ta thường viết cơ sở tuyến tính chuẩn tắc là

$$(\vec{i} = (1, 0, 0), \vec{j} = (0, 1, 0), \vec{k} = (0, 0, 1)).$$

Hãy chứng tỏ các vectơ trong cơ sở có chiều dài bằng 1, đôi một vuông góc, và $\vec{i} \times \vec{j} = \vec{k}$, $\vec{j} \times \vec{k} = \vec{i}$, $\vec{k} \times \vec{i} = \vec{j}$.

- **1.1.9.** Trong \mathbb{R}^3 , hãy kiểm tra rằng
 - (a) $(u \times v) \perp u$ và $(u \times v) \perp v$.
 - (b) $u \times v = -v \times u$.
- **1.1.10.** Trong \mathbb{R}^3 , hãy kiểm tra rằng

$$||u \times v||^2 = ||u||^2 ||v||^2 - (u \cdot v)^2.$$

1.1.11. Hãy kiểm tra rằng với mọi vecto $a, b, c \in \mathbb{R}^3$ thì

$$a \times (b \times c) + b \times (c \times a) + c \times (a \times b) = 0.$$

Đây có khi được gọi là Đẳng thức Jacobi.

- **1.1.12.** Trong \mathbb{R}^4 , hãy viết phương trình đường thẳng:
 - (a) Đi qua điểm (2,0,0,-3) với vecto chỉ phương (-1,0,2,3).
 - (b) Đi qua hai điểm (1, 2, -1, 1), (3, 0, 1, 2).
- **1.1.13.** Trong \mathbb{R}^3 , hãy viết phương trình mặt phẳng:
 - (a) Đi qua ba điểm (1,0,0), (0,1,0), (0,0,1).
 - (b) Đi qua ba điểm (1,0,0), (0,2,0), (0,0,3).
 - (c) Đi qua điểm (2,1,3) và song song (có cùng pháp tuyến và không trùng) với mặt phẳng -5x+2y-4z=3.
- **1.1.14.** Trong không gian Euclid \mathbb{R}^3 , cho $A=(1,0,0),\ B=(1,1,-1),\ C=(3,-2,1).$ Đặt $\overrightarrow{AB}=B-A,\ \overrightarrow{AC}=C-A.$
 - (a) Tính $\|\overrightarrow{AB}\|$ và $\|\overrightarrow{AC}\|$.
 - (b) Tính $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
 - (c) Tính $\overrightarrow{AB} \times \overrightarrow{AC}$.
 - (d) \overrightarrow{AB} có cùng phương với \overrightarrow{AC} hay không?
 - (e) \overrightarrow{AB} có vuông góc với \overrightarrow{AC} hay không?
 - (f) Viết phương trình tham số đường thẳng qua A và B.
 - (g) Viết phương trình tham số mặt phẳng qua A, B, C.

- (h) Viết phương trình không tham số mặt phẳng qua A, B, C.
- **1.1.15 (Bất đẳng thức Buniakowski).** Bất đẳng thức Buniakowski khẳng định rằng với mọi bộ số thực $x=(x_1,x_2,\ldots,x_n)$ và $y=(y_1,y_2,\ldots,y_n)$ thì

$$|x_1y_1 + x_2y_2 + \dots + x_ny_n| \le \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \cdot \sqrt{y_1^2 + y_2^2 + \dots + y_n^2}.$$

Đẳng thức trong Bất đẳng thức Buniakowski xảy ra khi và chỉ khi x và y tỉ lệ với nhau. Ta có thể kiểm bất đẳng thức này bằng cách sau.

- (a) Thử kiểm bất đẳng thức với n = 1 và n = 2.
- (b) Với n bất kì, bình phương hai vế bất đẳng thức, khai triển các tích, nhóm lại để đưa bất đẳng thức về dạng

$$\sum_{i,j=1}^{n} (x_i y_j - x_j y_i)^2 \ge 0.$$

- (c) Xét điều kiện để xảy ra dấu = trong bất đẳng thức trên.
- **1.1.16.** * Trong \mathbb{R}^3 , giả sử $v_1 \times v_2 \neq 0$, hãy kiểm rằng nếu v vuông góc với $v_1 \times v_2$ thì v phải là một tổ hợp tuyến tính của v_1 và v_2 .

1.2 Hàm số nhiều biến

Trong đời sống một đại lượng thường phụ thuộc vào nhiều đại lượng khác. Ví dụ nhiệt độ phụ thuộc vào vị trí và thời gian; giá cả của một món hàng trên thị trường phụ thuộc vào chi phí sản xuất, sản lượng cung cấp, nhu cầu thị trường; điểm môn học phụ thuộc vào điểm chuyên cần, điểm bài tập, điểm thi giữa kì, điểm thi cuối kì, Như thế để khảo sát các đại lượng trong đời sống chúng ta cần xét những hàm có nhiều biến.

Định nghĩa 1.2.1. Cho một tập không rỗng $D \subset \mathbb{R}^n$, ánh xạ

$$f: D \to \mathbb{R}$$
$$x = (x_1, ..., x_n) \mapsto f(x) = f(x_1, ..., x_n)$$

được gọi là một hàm số được xác định trên D. Ta gọi D là tập xác định, x là biến, f(x) là giá trị của f tại x.

Đồ thị của hàm số f là tập hợp tất cả các điểm (x_1, \ldots, x_n, y) trong không gian \mathbb{R}^{n+1} sao cho $y = f(x_1, \ldots, x_n)$.

Ví dụ 1.2.2. Đồ thị của một hàm số dạng z = ax + by + c, như ta đã biết, là một mặt phẳng trong \mathbb{R}^3 .

Ví dụ 1.2.3. Hàm số $f:D\to\mathbb{R}$ với $D=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$ và $f(x,y)=\sqrt{1-x^2-y^2}$ có đồ thị là tập hợp $\{(x,y,z)\in\mathbb{R}^3\mid z=\sqrt{1-x^2-y^2}\}$. Một điểm (x,y,z) nằm trên đồ thị thỏa phương trình $x^2+y^2+z^2=1$, do đó khoảng cách từ điểm (x,y,z) tới điểm gốc tọa độ 0 bằng 1. Ta suy ra đồ thị đó là nửa mặt

cầu có tâm tại gốc tọa độ và bán kính 1 nằm trong nửa không gian trên $z \geq 0$. Xem Hình 1.2.1

Hình 1.2.1: Đồ thị của hàm số $z = \sqrt{1 - x^2 - y^2}$.

Ví dụ 1.2.4. Đồ thị của hàm số $z=f(x,y)=\sqrt{x^2+y^2}$ là mặt nón tròn xoay quanh trục Oz, nằm trong nửa không gian trên $z\geq 0$. Để hình dung đồ thị, ta có thể xét một số trường hợp đặc biệt. Khi x=0 thì điểm trên đồ thị thỏa phương trình z=|y|, tạo thành một đường gấp khúc trong mặt phẳng Oyz. Tương tự khi y=0 thì điểm trên đồ thị thỏa phương trình z=|x|, tạo thành một đường gấp khúc trong mặt phẳng Oxz. Mỗi giá trị cố định của z như z=1 cho một đường tròn $x^2+y^2=1^2$ trên mặt phẳng z=1. Hơn nữa nếu z tăng lên thì bán kính của đường tròn này cũng tăng lên. Các phân tích như vậy phù hợp với Hình 1.2.2.

So với hàm một biến, vì đồ thị của của một hàm hai biến đã là một tập con của không gian ba chiều nên nói chung khó vẽ đồ thị hơn. Trong một số trường hợp như trên, ta có thể khảo sát, chẳng hạn cho mỗi biến một vài giá trị hằng, để phác họa đồ thị. Trong nhiều trường hợp khác cách thông thường là dùng phần mềm máy tính để vẽ đồ thị bằng cách chấm một lượng lớn điểm trên đồ thị. Có nhiều phần mềm như vậy, như Geogebra [GeoG], Maxima [Maxi], Wolfram Alpha [Wolf], Matlab, Python,

1.2.1 Giới hạn của hàm số

Cho f là một hàm số thực nhiều biến và cho a là một điểm tụ của miền xác định của f. Ta nói hàm f có giới hạn là số thực L khi x dần dến a nếu f(x) gần

Hình 1.2.2: Đồ thị của hàm số $z = \sqrt{x^2 + y^2}$ với $-1 \le x \le 1, -1 \le y \le 1$.

L tùy ý miễn x đủ gần a nhưng không bằng a. Khi đó ta viết

$$\lim_{x \to a} f(x) = L,$$

hoặc viết $f(x) \to L$ khi $x \to a$.

Ta thấy định nghĩa này không khác với định nghĩa giới hạn của hàm một biến (xem [Bmgt1]). Như vậy giới hạn của hàm một biến là trường hợp số chiều n=1 của giới hạn của hàm nhiều biến, và trong trường hợp n=1 ta thừa hưởng mọi tính chất đã có trong môn Vi tích phân hàm một biến.

Dưới đây là phát biểu chính xác của định nghĩa giới hạn bằng kí hiệu " ϵ - δ ", tương tự trường hợp hàm một biến.

Định nghĩa 1.2.5. Cho hàm số f xác định trên tập $D \subset \mathbb{R}^n$ theo biến x và a là một điểm tụ của D. Ta nói giới hạn của f(x) là số thực L khi x tiến tới a nếu khoảng cách giữa f(x) và L nhỏ tùy ý miễn khoảng cách giữa x và a đủ nhỏ nhưng khác 0, tức là

$$\forall \epsilon > 0, \ \exists \delta > 0, \forall x \in D, 0 < \|x - a\| < \delta \Rightarrow |f(x) - L| < \epsilon$$

hay

$$\forall \epsilon > 0, \ \exists \delta > 0, \forall x \in D \cap (B(a, \delta) \setminus \{a\}), f(x) \in B(L, \epsilon).$$

Trong một số trường hợp có thể hiểu giới hạn một cách thô sơ hơn: khi x gần tới a hơn thì f(x) gần tới L hơn.

Ghi chú 1.2.6. Trong định nghĩa trên ta cho phép điểm a là điểm tụ của miền xác định D, không nhất thiết thuộc D. Điều này là để chúng ta có thể xét những giới hạn như

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+4y^2}.$$

Ở đó chúng ta cho (x,y) dần tới (0,0) mà không bằng (0,0), nơi hàm không được xác định. Điều này giải thích điều kiện 0 < ||x-a|| tức $x \neq a$ trong định nghĩa.

Ví dụ 1.2.7. Nếu f là một hàm hằng, nghĩa là có $c \in \mathbb{R}$ với f(x) = c với mọi x, thì rõ ràng $\lim_{x \to a} f(x) = c$.

Ví dụ 1.2.8. Xét hàm lấy tọa độ f(x,y) = x. Do tính chất của khoảng cách Euclid, $|x - x_0| \le \|(x,y) - (x_0,y_0)\| = \sqrt{(x-x_0)^2 + (y-y_0)^2}$, do đó để $|f(x,y) - f(x_0,y_0)| = |x-x_0| < \epsilon$ thì chỉ cần $\|(x,y) - (x_0,y_0)\| < \epsilon$. Ta kết luận

$$\lim_{(x,y)\to(x_0,y_0)} x = x_0.$$

Như vậy khi (x, y) dần tới (x_0, y_0) thì x dần tới x_0 , và tương tự y dần tới y_0 . Điều này được dùng nhiều khi xét giới hạn.

Một số tính chất của giới hạn dưới đây có thể được giải thích và chứng minh từ đinh nghĩa, tương tư như đã làm với hàm một biến, xem [Bmgt1].

Mệnh đề 1.2.9. Giới hạn nếu tồn tại thì là duy nhất.

Mệnh đề 1.2.10. $Giả sử f, g: D \to \mathbb{R}^n$ là hai hàm số có giới hạn khi $x \to a$. Khi đó:

- (a) $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$
- (b) $\lim_{x\to a} [kf(x)] = k \lim_{x\to a} f(x)$ với k là một hằng số,
- (c) $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x),$
- (d) $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)} n \acute{e} u \lim_{x\to a} g(x) \neq 0.$
- (e) Nếu $f \leq g$ thì $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.

Mệnh đề 1.2.11 (Tiêu chuẩn kẹp). $Giả sử f, g, h : D \to \mathbb{R} \ và f \leq g \leq h$. $Giả sử f và h có cùng giới hạn L khi <math>x \to a$. Khi đó g cũng có giới hạn là L khi $x \to a$.

Ví dụ 1.2.12. Áp dụng các tính chất trên, ta tính

$$\lim_{(x,y)\to(2,3)} (x^2y^3 + 5) = \lim_{(x,y)\to(2,3)} x^2y^3 + \lim_{(x,y)\to(2,3)} 5$$

$$= \left(\lim_{(x,y)\to(2,3)} x\right)^2 \left(\lim_{(x,y)\to(2,3)} y\right)^3 + 5 = 2^23^3 + 5.$$

Như vậy giới hạn thu được đơn giản bằng cách thế số vào.

1.2.2 Hàm số liên tục

Khái niệm liên tục trong \mathbb{R}^n không có gì khác với liên tục trong \mathbb{R} . Nó vẫn có ý nghĩa là: **thay đổi giá trị của hàm là nhỏ tùy ý nếu thay đổi giá trị của biến là đủ nhỏ**.

Định nghĩa 1.2.13. Cho hàm số f xác định trên tập $D \subset \mathbb{R}^n$, ta nói f *liên tục* tại $a \in D$ nếu f(x) gần f(a) tùy ý miễn x đủ gần a. Bằng kí hiệu thì

$$\forall \epsilon > 0, \ \exists \delta > 0, \forall x \in D, \|x - a\| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$$

hay

$$\forall \epsilon > 0, \ \exists \delta > 0, \forall x \in D \cap B(a, \delta), f(x) \in B(f(a), \epsilon).$$

Hàm f được gọi là liên tục trên D nếu nó liên tục tại mọi điểm thuộc D.

Tính liên tục cho phép ta kiểm soát được sai số.

Với hàm liên tục thì giới hạn thu được đơn giản bằng cách thế vào.

Từ các định nghĩa ta có thể nói về sự liên tục thông qua giới hạn: f liên tục tại a nếu hoặc a không là một điểm tụ của D hoặc nếu a là một điểm tụ của D thì

$$\lim_{x \to a} f(x) = f(a).$$

Ta chú ý để hàm liên tục tại a thì a phải thuộc miền xác định của hàm, tức là hàm phải có giá trị tại a, mặt khác ta không cần phải yêu cầu a là một điểm tụ của miền xác định như trong định nghĩa giới hạn.

Các kết quả rằng tổng, hiệu, tích, thương, hàm hợp của các hàm liên tục là hàm liên tục vẫn đúng cho hàm nhiều biến, và có thể được suy ra ngay từ các tính chất tương ứng của giới hạn, giống như cách đã làm cho hàm một biến, người học có thể xem lại ở [Bmgt1].

Ví dụ 1.2.14. Hàm hằng là hàm liên tục.

Ví dụ 1.2.15. Xét hàm lấy tọa độ $(x,y) \mapsto x$. Từ Ví dụ 1.2.8, hàm lấy tọa độ là liên tục.

Ví dụ 1.2.16. Hàm $(x,y) \mapsto x^2$ là hợp của hàm $(x,y) \mapsto x$ với hàm $x \mapsto x^2$ là hai hàm liên tục, nên cũng là hàm liên tục.

Qua ví dụ này ta chú ý nếu f là một hàm một biến liên tục, chẳng hạn như một hàm sơ cấp, thì hàm g(x,y)=f(x) là một hàm hai biến liên tục.

Ví dụ 1.2.17. Hàm $f(x,y) = x^2y^3$ là tích của hai hàm $g(x,y) = x^2$ và $h(x,y) = y^3$ là hai hàm liên tục, nên cũng liên tục.

Ví dụ 1.2.18. Hàm $f(x,y) = \sin(x^2y^3)$ là hợp của hàm sin với hàm $g(x,y) = x^2y^3$ là hai hàm liên tục, nên cũng liên tục.

Ví du 1.2.19. Tìm giới han

$$\lim_{(x,y)\to(1,0)} (x^3 + y^3) \sin\left(\frac{1}{x^2 + y^2}\right).$$

Lý luận như trong các ví dụ trên, hàm $(x^3 + y^3) \sin\left(\frac{1}{x^2 + y^2}\right)$ được tạo ra từ tổng, tích, thương, hợp của các hàm liên tục, nên liên tục tại điểm (1,0), do đó

$$\lim_{(x,y)\to(1,0)} (x^3+y^3) \sin\left(\frac{1}{x^2+y^2}\right) = (1^3+0^3) \cdot \sin\frac{1}{1^2+0^2} = \sin 1.$$

Ví dụ 1.2.20. Tìm giới hạn

$$\lim_{(x,y)\to(0,0)} (x^3 + y^3) \sin\left(\frac{1}{x^2 + y^2}\right).$$

Đặt $f(x,y)=(x^3+y^3)\sin\left(\frac{1}{x^2+y^2}\right)$. Hàm số f này xác định trên $\mathbb{R}^2\setminus\{(0,0)\}$. Ta có $0\leq |f(x,y)|\leq |x^3+y^3|$. Vì $x^3+y^3\to 0$ khi $(x,y)\to (0,0)$ nên theo tiêu chuẩn kẹp thì $\lim_{(x,y)\to(0,0)}|f(x,y)|=0$, do đó $\lim_{(x,y)\to(0,0)}f(x,y)=0$. Vậy

$$\lim_{(x,y)\to(0,0)} (x^3 + y^3) \sin\left(\frac{1}{x^2 + y^2}\right) = 0.$$

Ví dụ 1.2.21. Tìm giới hạn

$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2}.$$

Ta đánh giá

$$0 \le \left| \frac{x^3}{x^2 + y^2} \right| \le \frac{x^2}{x^2 + y^2} |x| \le |x|.$$

Vì hàm $(x,y) \mapsto |x|$ liên tục nên

$$\lim_{(x,y)\to(0,0)} |x| = 0.$$

Theo tính chất kep của giới han thì

$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2} = 0.$$

Ví dụ 1.2.22. Xét sự liên tục của hàm số

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

Ta thấy hàm f liên tục tại mọi điểm $(x,y) \neq (0,0)$. Xét tại (0,0). Ta đánh giá

$$0 \le \frac{x^2 y^2}{x^2 + y^2} = \frac{x^2}{x^2 + y^2} y^2 \le y^2.$$

Vì

$$\lim_{(x,y)\to(0,0)} y^2 = 0$$

nên theo tính chất kẹp của giới hạn thì

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0.$$

Vậy $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$. Như thế f liên tục tại mọi điểm trên miền xác định.

Ví dụ 1.2.23. Xét sư liên tục của hàm số

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

Cho $x=0, y\neq 0$ ta được f(x,y)=0 có giới hạn là 0 khi $(x,y)\to (0,0)$. Cho $x=y\neq 0$ ta được $f(x,y)=\frac{1}{2}$ có giới hạn là $\frac{1}{2}$ khi $(x,y)\to (0,0)$. Điều này chứng tỏ f(x,y) không có giới hạn khi $(x,y)\to (0,0)$, do đó f không liên tục tại (0,0).

Ví dụ 1.2.24. Tìm giới hạn

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4 + y^2}.$$

Cho $x=0,\ y\neq 0$ ta được f(x,y)=0 có giới hạn là 0 khi $(x,y)\to (0,0)$. Cho $x=y\neq 0$ ta được $f(x,y)=\frac{x^3}{x^4+x^2}=\frac{x}{x^2+1}$ có giới hạn vẫn là 0 khi $(x,y)\to (0,0)$. Cho $y=x^2\neq 0$ ta được $f(x,y)=\frac{1}{2}$ có giới hạn là $\frac{1}{2}$ khi $(x,y)\to (0,0)$. Điều này chứng tỏ f(x,y) không có giới hạn khi $(x,y)\to (0,0)$.

* Giới hạn của hàm số thông qua dãy

Nhờ có khoảng cách ta có khái niệm giới hạn của dãy trong \mathbb{R}^n . Định nghĩa không có gì khác trong trường hợp n=1, và có dạng tương đương thường dùng là một dãy các điểm x_m , $m \in \mathbb{Z}^+$ trong \mathbb{R}^n hội tụ tới x nếu $\lim_{m\to\infty} \|x_m - x\| = 0$, khi đó ta viết $\lim_{m\to\infty} x_m = x$.

Do định nghĩa của khoảng cách và độ lớn Euclid, ta có thể thấy giới hạn của dãy tương đương với giới hạn của từng tọa độ, tức là nếu viết $x_m = (x_m^1, x_m^2, \dots, x_m^n)$ và $x = (x^1, x^2, \dots, x^n)$ thì

$$\lim_{m \to \infty} (x_m^1, x_m^2, \dots, x_m^n) = (x^1, x^2, \dots, x^n)$$

khi và chỉ khi

$$\lim_{m \to \infty} x_m^1 = x^1, \lim_{m \to \infty} x_m^2 = x^2, \dots, \lim_{m \to \infty} x_m^n = x^n.$$

Chúng ta có một liên hệ giữa hội tụ của dãy và hội tụ của hàm số, tương tự trường hợp hàm một biến ([TTQ11]):

Mệnh đề 1.2.25. Hàm f có giới hạn L khi x dần đến điểm tụ a khi và chỉ khi với mọi dãy $(x_m)_{m \in \mathbb{Z}^+}$, $x_m \neq a$ mà hội tụ về a thì dãy $(f(x_m))_{m \in \mathbb{Z}^+}$ hội tụ về L.

Bài tập

1.2.1. Tim

(a) $\lim_{(x,y)\to(0,0)} \ln(\cos(xy))$.

(b) $\lim_{(x,y)\to(2,3)} e^{xy}$.

1.2.2. Tìm

- (a) $\lim_{(x,y)\to(0,0)} \frac{x}{x^2+y^2}$.
 - $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4 + y^4}.$
- (b) $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$.

(1) $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^3+y^6}$.

(c) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+4y^2}$.

(m) $\lim_{(x,y)\to(0,0)} \frac{(\sin^2 x)y}{x^2 + y^2}$

(d) $\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{x^2+y^2}$.

- (n) $\lim_{(x,y)\to(3,4)} (x^2+y^2-25)\sin\left(\frac{1}{x-y+1}\right)$.
- (e) $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$.
- (o) $\lim_{(x,y)\to(0,0)} \frac{x-y+x^2+y^2}{x+u}$.

(f) $\lim_{(x,y)\to(0,0)} \frac{x^5}{x^4+y^2}$.

(p) $\lim_{(x,y)\to(0,0)} \frac{x-y}{x^3+y^3}$.

(g) $\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4+y^2}$.

(q) $\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+u^2}}$.

(h) $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^4 + y^2}$.

(r) $\lim_{(x,y)\to(1,2)} \frac{xy-2}{x^2+y^2-5}$.

(i) $\lim_{(x,y)\to(0,0)} \frac{xy}{xy+y^3}$

(s) $\lim_{(x,y)\to(1,1)} \frac{x^2+y^2-3}{\sqrt{x^2+y^2+13}-4}$.

(j) $\lim_{(x,y)\to(0,0)} \frac{y}{x^2+y^2}$.

1.2.3. Xét hàm số

$$f(x,y) = \frac{\sin(xy)}{e^{x^2y} + y^4}$$

Tìm miền xác định của hàm số. Hàm số này có liên tục trên miền xác định hay không?

- **1.2.4.** Cho hàm $f(x,y) = \sqrt[3]{x^2 + y^2}$.
 - (a) Hàm f liên tục ở đâu?
 - (b) Tìm giới hạn $\lim_{(x,y)\to(1,2)} f(x,y)$.

1.2.5. Hàm

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

có liên tục hay không?

1.2.6. Xét hàm số $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} x^2 y^3 \cos \frac{x+y}{x^4+y^6}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

Hàm số này liên tục ở đâu, vì sao?

1.2.7. Hàm

$$f(x,y) = \begin{cases} \frac{x(y-1)}{x^2 + (y-1)^2}, & (x,y) \neq (0,1) \\ 0, & (x,y) = (0,1) \end{cases}$$

có liên tục hay không?

1.2.8. * Hãy khảo sát chung giới hạn

$$\lim_{(x,y)\to(0,0)}\frac{x^my^n}{x^2+y^2}$$

với m và n là hai số thực không âm.

1.3 Đạo hàm của hàm số nhiều biến

1.3.1 Đạo hàm riêng

Điểm môn học phụ thuộc vào điểm giữa kì và điểm cuối kì. Ta muốn biết nếu điểm cuối kì thay đổi, trong khi điểm giữa kì giữ nguyên, thì điểm môn học thay đổi thế nào? Để trả lời ta có thể xét đạo hàm của điểm môn học theo điểm cuối kì, khi điểm giữa kì giữ nguyên.

Cho một hàm số f theo biến (x_1, x_2, \ldots, x_n) xác định trên tập $D \subset \mathbb{R}^n$. Xét một điểm trong $a = (a_1, a_2, \ldots, a_n)$ của D. Cố định $x_1 = a_1, x_2 = a_2, \ldots, x_{i-1} = a_{i-1}, x_{i+1} = a_{i+1}, \ldots, x_n = a_n$ thì $f(a_1, a_2, \ldots, a_{i-1}, x_i, a_{i+1}, \ldots, a_n)$ là hàm chỉ theo một biến là x_i . Nếu hàm này có đạo hàm tại $x_i = a_i$ thì đạo hàm đó được gọi là đạo hàm riêng của hàm f theo biến x_i , hay theo biến thứ i, tại điểm a.

Chính xác hơn, đặt $g(x_i) = f(a_1, a_2, \dots, a_{i-1}, x_i, a_{i+1}, \dots, a_n)$ thì g là hàm chỉ có một biến là x_i và đạo hàm riêng nói trên chính là đạo hàm $g'(a_i)$ của g.

Đạo hàm riêng thực chất là đạo hàm theo một biến khi chỉ biến đó được thay đổi còn tất cả các biến khác cố định. Như vậy đạo hàm riêng cũng chỉ là đạo hàm, tên "đạo hàm riêng" nói rằng ta đang xét hàm nhiều biến và đang xét đạo hàm theo từng biến.

Chính thức, từ định nghĩa của đạo hàm của hàm một biến, ta có định nghĩa sau:

Định nghĩa 1.3.1. Cho $f:D\subset\mathbb{R}^n\to\mathbb{R}$ và $a=(a_1,\ldots,a_n)$ là một điểm trong của D. Giới han

$$\lim_{h\to 0} \frac{f(a_1,\ldots,a_{i-1},a_i+h,a_{i+1},\ldots,a_n)-f(a_1,\ldots,a_{i-1},a_i,a_{i+1},\ldots,a_n)}{h},$$

nếu tồn tại, được gọi là dqo hàm riêng theo biến thứ i của f tại a.

Người ta kí hiệu đạo hàm riêng bằng những cách như $f_{x_i}(x)$, $f'_{x_i}(x)$, $D_i f(x)$, $\frac{\partial f}{\partial x_i}(x)$ ⁵.

Giả thiết điểm xét đạo hàm là điểm trong của miền xác định là để đảm bảo xét được giới hạn.

 $^{^5}$ kí hiệu ∂ thường được đọc như chữ cái d

Ví dụ 1.3.2. Khi số chiều n = 1 thì đạo hàm riêng là đạo hàm của hàm một biến mà ta đã biết trong Vi tích phân 1 [Bmgt1].

Ý nghĩa của đạo hàm riêng là ý nghĩa của đạo hàm mà ta đã biết: **đạo hàm** riêng đo tỉ lệ thay đổi giữa giá trị của hàm với giá trị của biến đang xét. Giá trị của đạo hàm riêng theo một biến cho thấy hàm đang thay đổi như thế nào theo biến đó. Vì thế mỗi khi muốn khảo sát sự thay đổi của các đại lượng phụ thuộc vào nhiều biến người ta thường thấy sư xuất hiện của đao hàm riêng.

Ví dụ 1.3.3. Giả sử f(h,t) là nhiệt độ (độ C) tại điểm cách mặt đất một chiều cao h (mét) tại thời điểm t (giờ). Giả sử $\frac{\partial f}{\partial h}(21,13) = -2$ và $\frac{\partial f}{\partial t}(21,13) = 1$. Điều này có nghĩa là tại điểm có cao độ 21 (mét) vào lúc 13 (giờ) thì nhiệt độ giảm đi khoảng 2 độ mỗi mét lên cao hơn, trong khi nhiệt độ tăng lên khoảng 1 độ mỗi giờ trôi qua.

Khi tính đạo hàm riêng theo biến nào thì các biến còn lại là hằng số, và ta tính đạo hàm theo biến đang xét theo cách tính đạo hàm của hàm một biến.

Ví dụ 1.3.4. Cho $f(x,y)=x^3y^2$. Muốn tính $\frac{\partial f}{\partial x}$ ta xem biến số là x và y là hằng số rồi lấy đạo hàm theo x, như thế $\frac{\partial f}{\partial x}(x,y)=\frac{\partial}{\partial x}(x^3)y^2=3x^2y^2$. Tương tự, muốn tính $\frac{\partial f}{\partial y}$ ta xem biến số là y trong khi x là hằng số rồi lấy đạo hàm theo y, như thế $\frac{\partial f}{\partial y}(x,y)=x^3\frac{\partial}{\partial y}(y^2)=2x^3y$.

Ví dụ 1.3.5. Điểm môn học f phụ thuộc vào điểm giữa kì x và điểm cuối kì y theo công thức

$$f(x,y) = 30\%x + 70\%y$$
.

Hỏi nếu điểm cuối kì tăng 1 trong khi điểm giữa kì giữ nguyên thì điểm môn học thay đổi thế nào?

Đây là câu hỏi về tỉ lệ thay đổi giữa điểm môn học và điểm cuối kì. Ta tính

$$\frac{\partial f}{\partial y}(x,y) = \frac{\partial}{\partial y}(30\%x + 70\%y) = 70\% = 0.7.$$

Vậy nếu điểm cuối kì tăng 1 trong khi điểm giữa kì giữ nguyên thì điểm môn học tăng 0,7.

Với hàm số nhiều biến $f: D \subset \mathbb{R}^n \to \mathbb{R}$, ta gọi **gradient** ⁶ của f tại x, ký hiệu grad f(x) hay $\nabla f(x)$ ⁷, là vectơ mà các thành phần là các đạo hàm riêng của f:

grad
$$f(x) = \nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right).$$

Đây chẳng qua là danh sách các đạo hàm riêng.

Ví dụ 1.3.6. Với hàm $f: \mathbb{R}^2 \to \mathbb{R}$ xác định bởi $f(x,y) = x^2 + y^2$ thì $\frac{\partial f}{\partial x}(x,y) = 2x$, $\frac{\partial f}{\partial y} = 2y$, vậy $\nabla f(x,y) = (2x,2y)$. Chẳng hạn tại x = 0 y = 1 thì $\nabla f(0,1) = (0,2)$.

Ví dụ 1.3.7. Với
$$f(x,y) = x^3y^2$$
 thì grad $f(x,y) = (3x^2y^2, 2x^3y)$.

 $^{^6{\}rm trong}$ tiếng Anh gradient có nghĩa là dốc, nghiêng, ...

 $^{^7}$ kí hiệu ∇ đọc là nabla

1.3.2 Xấp xỉ tuyến tính và Mặt phẳng tiếp xúc

Xấp xỉ tuyến tính

Nhớ lại trong Vi tích phân 1 [Bmgt1], đối với hàm một biến, từ định nghĩa của đạo hàm

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

ta rút ra xấp xỉ tuyến tính

$$[\Delta x \approx 0] \implies [f(x + \Delta x) - f(x) \approx f'(x)\Delta x.]$$

Với hàm nhiều biến ta cũng có thể làm tương tự. Ta trình bày cho hàm hai biến như sau. Ta viết

$$f(x + \Delta x, y + \Delta y) - f(x, y) = f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y) + f(x, y + \Delta y) - f(x, y)$$

$$\approx f_x(x, y + \Delta y) \Delta x + f_y(x, y) \Delta y$$

$$\approx f_x(x, y) \Delta x + f_y(x, y) \Delta y,$$

ta đã giả thiết đạo hàm f_x liên tục để có bước xấp xỉ cuối $f_x(x, y + \Delta y) \approx f_x(x, y)$. Vậy ta có xấp xỉ tuyến tính

$$[(\Delta x \approx 0, \Delta y \approx 0)] \implies [f(x + \Delta x, y + \Delta y) - f(x, y) \approx f_x(x, y) \Delta x + f_y(x, y) \Delta y].$$

Dùng kí hiệu hơi khác, trong công thức trên thay x bởi a, y bởi b, rồi viết $x=a+\Delta x, y=b+\Delta y,$ ta được:

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$
 với $(x,y) \approx (a,b)$. (1.3.1)

Một cách viết khác nữa, đặt $\Delta f(x,y) = f(x,y) - f(a,b)$ là lượng thay đổi ⁸ của f(x,y) ở gần (a,b), thì

$$\Delta f(x,y) \approx f_x(a,b)\Delta x + f_y(a,b)\Delta y.$$

Vế phải của biểu thức trên có khi được gọi là "vi phân" của hàm f.

Ví dụ 1.3.8. Tiếp tục Ví dụ 1.3.3, giả sử cao độ h tăng thêm 0,5 mét trong khi thời gian t tăng thêm 12 phút tức 0,2 giờ thì nhiệt độ thay đổi như thế nào?

Chú ý ta không có công thức cụ thể của hàm nhiệt độ để tính các giá trị chính xác. Dùng xấp xỉ tuyến tính, ta được

$$f(21+0.5;13+0.2)-f(21,13) \approx f_h(21,13)\cdot 0.5+f_t(21,13)\cdot 0.2=-2\cdot 0.5+1\cdot 0.2=0.8.$$

Vậy nhiệt độ tăng thêm khoảng 0,8 độ.

⁸còn gọi là biến thiên hay số gia

Ví dụ 1.3.9. Cho $f(x,y) = \ln(2x - y^2)$, ước lượng f(1,05;0,95).

Ta thấy điểm (1,05;0,95) gần điểm (1,1), là điểm mà tại đó ta dự đoán có thể dễ dàng tính các giá trị của đạo hàm. Vậy ta viết xấp xỉ tuyến tính hàm f tại điểm (1,1), với lượng thay đổi của biến là $\Delta x = 1,05-1$ và $\Delta y = 0,95-1$:

$$f(1,05;0,95) \approx f(1,1) + f_x(1,1)\Delta x + f_y(1,1)\Delta y.$$

Tính các đạo hàm riêng:

$$f_x(x,y) = \frac{1}{2x - y^2} \cdot \frac{\partial (2x - y^2)}{\partial x} = \frac{2}{2x - y^2},$$

nên $f_x(1,1) = 2$, và

$$f_y(x,y) = \frac{1}{2x - y^2} \cdot \frac{\partial (2x - y^2)}{\partial y} = \frac{-2y}{2x - y^2},$$

nên $f_y(1,1) = -2$. Vậy

$$f(1,05;0,95) \approx \ln(1) + 2 \cdot 0.05 + (-2) \cdot (-0.05) = 0.2.$$

So sánh, một chương trình máy tính cho kết quả gần bằng 0,18.

Tương tư ta có xấp xỉ tuyến tính với hàm n biến: Nếu

$$\Delta x = (\Delta x_1, \dots, \Delta x_n) \approx 0$$

thì

$$f(x + \Delta x) - f(x) \approx \sum_{i=1}^{n} f_{x_i}(x) \Delta x_i.$$

Mặt phẳng tiếp xúc

Trong Vi tích phân 1, xấp xỉ tuyến tính khi $x \approx a$

$$f(x) \approx f(a) + f'(a)(x - a)$$

đã được giải thích hình học là đồ thị của hàm f ở gần điểm (a, f(a)) thì gần với đường thẳng có phương trình y = f(a) + f'(a)(x - a), gọi là tiếp tuyến của đồ thị tại điểm (a, f(a)).

Với hàm hai biến, trong xấp xỉ tuyến tính ở (1.3.1) thì vế phải tương ứng với phương trình

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$
(1.3.2)

là phương trình của một mặt phẳng trong \mathbb{R}^3 mà ta gọi là mặt phẳng tiếp xức của đồ thị hàm f tại điểm (a, b, f(a, b)).

Ví dụ 1.3.10. Viết phương trình mặt phẳng tiếp xúc của mặt $z = f(x, y) = x^2 + y^2$ tại điểm ứng với (x, y) = (1, 2).

Ta tính $f_x(x,y) = 2x$, $f_x(1,2) = 2$, $f_y(x,y) = 2y$, $f_y(1,2) = 4$, f(1,2) = 5. Phương trình mặt phẳng tiếp xúc tại điểm ứng với (x,y) = (1,2) là

$$z = f(1,2) + f_x(1,2)(x-1) + f_y(1,2)(y-2) = 5 + 2(x-1) + 4(y-2).$$

Xem Hình 1.3.1.

Hình 1.3.1: Mặt phẳng tiếp xúc của mặt $z = x^2 + y^2$ tại điểm (x, y) = (1, 2).

Tiếp theo đây ta tìm hiểu vì sao mặt phẳng cho bởi phương trình (1.3.2) được coi là tiếp xúc với đồ thị. Trên mặt phẳng y=b trong \mathbb{R}^3 , đồ thị của hàm f chỉ là một đường cong với phương trình z=f(x,b), xem Hình 1.3.2, có tiếp tuyến tại x=a với hệ số góc là $\frac{dz}{dx}\big|_{x=a}=f_x(a,b)$, do đó có phương trình là $z=f(a,b)+f_x(a,b)(x-a)$. Đây cũng chính là phương trình ta nhận được khi cho y=b trong (1.3.2). Tương tự, trên mặt phẳng x=a đồ thị của hàm f là đường cong với phương trình z=f(a,y), có tiếp tuyến tại y=b là $z=f(a,b)+f_y(a,b)(y-b)$, cũng chính là phương trình ta nhận được khi cho x=a trong (1.3.2). Hai đường tiếp tuyến này căng một mặt phẳng chứa cả hai đường này nên thỏa phương trình (1.3.2).

Ta còn có thể tìm hiểu thêm về phương của mặt phẳng tiếp xúc. Tiếp tuyến thứ nhất, cho bởi hệ hai phương trình y = b, $z = f(a, b) + f_x(a, b)(x - a)$, gồm những điểm

$$(x,y,z) = (x,b,f(a,b) + f_x(a,b)(x-a)) = (a,b,f(a,b)) + (x-a)(1,0,f_x(a,b))$$

nên có một vectơ chỉ phương là $(1,0,f_x(a,b))$. Tương tự tiếp tuyến thứ hai gồm những điểm

$$(x, y, z) = (a, y, f(a, b) + f_y(a, b)(y - b)) = (a, b, f(a, b)) + (y - b)(0, 1, f_y(a, b))$$

có một vectơ chỉ phương là $(0, 1, f_y(a, b))$. Hai vectơ này căng mặt phẳng tiếp xúc của đồ thị. Mặt phẳng tiếp xúc này do đó có một **vectơ pháp tuyến** là

$$(1,0,f_x(a,b)) \times (0,1,f_y(a,b)) = (-f_x(a,b),-f_y(a,b),1).$$
(1.3.3)

Hình 1.3.2: Minh họa ý nghĩa của mặt phẳng tiếp xúc.

Xem Hình 1.3.3. Từ đó ta rút ra phương trình cho mặt phẳng tiếp xúc của đồ thị của hàm f tại điểm (a,b,f(a,b)) là

$$(x-a) \cdot (-f_x(a,b)) + (y-b) \cdot (-f_y(a,b)) + (z-f(a,b)) \cdot 1 = 0,$$

tức vẫn là $z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$.

Hình 1.3.3: Minh họa mặt phẳng tiếp xúc và vectơ pháp tuyến của mặt đồ thị.

Giờ ta có thể nói rằng, tương tự trường hợp hàm một biến, ý nghĩa hình học của

xấp xỉ tuyến tính trong trường hợp hàm hai biến là $d\hat{u}ng$ mặt phẳng tiếp xúc $d\hat{e}$ $x\acute{a}p$ $x\emph{i}$ $d\mathring{o}$ $th\emph{i}$.

1.3.3 Đạo hàm riêng cấp cao

Ta biết đạo hàm cấp cao của hàm một biến được định nghĩa bằng quy nạp: đạo hàm cấp k là đạo hàm của đạo hàm cấp (k-1). Ta có thể làm tương tự đối với đạo hàm riêng cấp cao.

Cho $f:D\subset\mathbb{R}^n\to\mathbb{R}$. Nếu $\frac{\partial f}{\partial x_i}$ tồn tại tại mọi điểm $x\in D$ thì ta có một hàm mới

$$\frac{\partial f}{\partial x_i}: D \to \mathbb{R}$$
$$x \mapsto \frac{\partial f}{\partial x_i}(x).$$

Ta lại có thể xét đạo hàm riêng của hàm $\frac{\partial f}{\partial x_i}$ này, tức là

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right).$$

Các đạo hàm này, nếu có, được gọi là các đạo hàm riêng cấp 2 của f. Ta thường dùng ký hiệu 9

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_j \partial x_i} = f_{x_i x_j}.$$

Tương tự, nếu f có các đạo hàm riêng cấp 2 tại mọi điểm của D thì các đạo hàm riêng của các đạo hàm riêng cấp 2 này gọi là đạo hàm riêng cấp 3 của f, ký hiệu là

$$\frac{\partial}{\partial x_k} \left(\frac{\partial^2 f}{\partial x_j \partial x_i} \right) = \frac{\partial^3 f}{\partial x_k \partial x_j \partial x_i} = f_{x_i x_j x_k}.$$

Ví dụ 1.3.11. Hàm $f(x,y) = x^3y^4 - 4xy^2$ có $f_x(x,y) = 3x^2y^4 - 4y^2$, $f_y(x,y) = 4x^3y^3 - 8xy$. Các đạo hàm cấp 2 là $f_{xx}(x,y) = 6xy^4$, $f_{xy}(x,y) = 12x^2y^3 - 8y = f_{yx}(x,y)$, $f_{yy}(x,y) = 12x^3y^2 - 8x$.

Ví dụ 1.3.12. Hàm
$$f(x,y) = x^2 e^y + x^3 y^2 - y^5$$
 có $f_x(x,y) = 2x e^y + 3x^2 y^2$, $f_y(x,y) = x^2 e^y + 2x^3 y - 5y^4$, $f_{xy}(x,y) = 2x e^y + 6x^2 y = f_{yx}(x,y)$.

Trong các ví dụ trên ta thấy $f_{xy}=f_{yx}$. Đây không phải là tình cờ. Định lý sau cho biết một điều kiện đủ để hai đạo hàm riêng hỗn hợp bằng nhau:

Định lý 1.3.13. Nếu $f: D \subset \mathbb{R}^n \to \mathbb{R}$ có tất cả các đạo hàm riêng cấp 2 tồn tại trong một lân cận của điểm x và liên tục tại x thì với mọi $i, j = 1, \ldots, n$

$$\frac{\partial^2 f}{\partial x_i \partial x_j} x = \frac{\partial^2 f}{\partial x_j \partial x_i} x.$$

 $^{^{9}\}mathrm{chú}$ ý sự khác biệt thứ tự của biến trong hai kí hiệu

Vậy nếu các đạo hàm riêng liên tục thì thứ tự lấy đạo hàm không ảnh hưởng tới giá trị.

 $Ch\acute{u}ng\ minh$. Ta viết chứng minh cho trường hợp n=2 cho dễ theo dõi hơn. Theo định nghĩa

$$\begin{split} f_{yx}(a,b) &= \lim_{\Delta x \to 0} \frac{f_y(a + \Delta x, b) - f_y(a,b)}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{\lim_{\Delta y \to 0} \frac{f(a + \Delta x, b + \Delta y) - f(a + \Delta x, b)}{\Delta y} - \lim_{\Delta y \to 0} \frac{f(a,b + \Delta y) - f(a,b)}{\Delta y}}{\Delta x} \\ &= \lim_{\Delta x \to 0} \lim_{\Delta y \to 0} \frac{1}{\Delta x \Delta y} [(f(a + \Delta x, b + \Delta y) - f(a + \Delta x, b)) - (f(a,b + \Delta y) - f(a,b))]. \end{split}$$

Tương tư ta tính được

$$\begin{split} f_{xy}(a,b) &= \lim_{\Delta y \to 0} \frac{f_x(a,b+\Delta y) - f_x(a,b)}{\Delta y} \\ &= \lim_{\Delta y \to 0} \frac{\lim_{\Delta x \to 0} \frac{f(a+\Delta x,b+\Delta y) - f(a,b+\Delta y)}{\Delta x} - \lim_{\Delta x \to 0} \frac{f(a+\Delta x,b) - f(a,b)}{\Delta x}}{\Delta y} \\ &= \lim_{\Delta y \to 0} \lim_{\Delta x \to 0} \frac{1}{\Delta y \Delta x} [(f(a+\Delta x,b+\Delta y) - f(a,b+\Delta y)) - (f(a+\Delta x,b) - f(a,b))]. \end{split}$$

Hai biểu thức trên chỉ khác thứ tự lấy giới hạn, nên ta có thể đoán $f_{yx}(a,b)$ và $f_{xy}(a,b)$ gần bằng nhau khi Δx và Δy nhỏ.

Để chứng minh chính xác ta dùng định lý giá trị trung bình như sau.

Lấy một hình chữ nhật mở tâm tại (a,b) đủ nhỏ để hàm f có các đạo hàm riêng trong lân cận đó và lấy $(\Delta x, \Delta y)$ đủ nhỏ để điểm $(a,b) + (\Delta x, \Delta y)$ nằm trong lân cận này. Đặt $g(x) = f(x,b+\Delta y) - f(x,b)$ thì

$$[f(a + \Delta x, b + \Delta y) - f(a + \Delta x, b)] - [f(a, b + \Delta y) - f(a, b)] = g(a + \Delta x) - g(a).$$

Vì g khả vi trên một khoảng mở chứa a và $a + \Delta x$ nên theo Định lý giá trị trung bình Lagrange [Bmgt1] có một số θ giữa a và a + h sao cho $g(a + \Delta x) - g(a) = g'(\theta) \Delta x$. Tính $g'(x) = f_x(x, b + \Delta y) - f_x(x, b)$, ta được

$$[f(a+\Delta x,b+\Delta y)-f(a+\Delta x,b)]-[f(a,b+\Delta y)-f(a,b)]=[f_x(\theta,b+\Delta y)-f_x(\theta,b)]\Delta x.$$

Vì $f_x(\theta, y)$ khả vi theo biến y trên một khoảng mở chứa b và $b + \Delta y$ nên lại theo Định lý giá trị trung bình có một số δ giữa b và $b + \Delta y$ sao cho $f_x(\theta, b + \Delta y) - f_x(\theta, b) = f_{xy}(\theta, \delta)\Delta y$. Vì các đạo hàm riêng liên tục tại (a, b) nên ta viết được

$$f_{yx}(a,b) = \lim_{\Delta x \to 0} \lim_{\Delta y \to 0} f_{xy}(\theta,\delta) = \lim_{\Delta x \to 0} f_{xy}(\theta,b) = f_{xy}(a,b).$$

Hàm mà tất cả các đạo hàm riêng đều tồn tại và liên tục cho tới một cấp k nào đó được gọi là một hàm khả vi liên tuc hay hàm trơn tới cấp k. Như ta vừa thấy,

35

các hàm như vậy có những tính chất đặc biệt, khiến làm việc với chúng dễ dàng hơn. Trong Vi tích phân 1, ta biết các hàm sơ cấp cơ bản đều có đạo hàm là hàm sơ cấp, do đó đạo hàm của hàm sơ cấp cũng là hàm sơ cấp và vì vậy liên tục. Như thế các hàm sơ cấp đều trơn mọi cấp tại những điểm trong của miền xác định.

Bài tập

1.3.1. Tính các đạo hàm riêng cấp 1 và cấp 2 của hàm

(a) $f(x,y) = \sin(x^4y^5)$

(e) $z = x^y$

(b) $V = \pi r^2 h$

(f) $z = \ln(x^2 + y^2)$

(c) $f(x,y) = e^{xy}$

(g) $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$

(d) $f(x,y) = e^{-x^2 - y^2}$

(h) $f(x,y) = \arctan\left(\frac{y}{x}\right)$

1.3.2. Cho

$$f(x,y) = \int_{a}^{y} \sqrt{1+t^3} dt.$$

Tìm
$$\frac{\partial f}{\partial x}(1,2)$$
 và $\frac{\partial f}{\partial y}(1,2)$.

1.3.3. Mô hình Holling trong Sinh học cho lượng con mồi bị ăn thịt P trong khoảng thời gian cho trước T theo số lượng con săn mồi x và thông số thời gian cần để bắt một con mồi y theo công thức

$$P(x,y) = \frac{aTx}{1 + axy},$$

trong đó a > 0 là một hệ số không đổi.

- (a) Tính P_x . Giá trị của P_x là âm hay dương? Giải thích ý nghĩa của điều này.
- (b) Tính P_y . Giá trị của P_y là âm hay dương? Giải thích ý nghĩa của điều này.
- **1.3.4.** Một mô hình Cobb–Douglas trong Kinh tế cho lượng sản phẩm P (productivity) theo lượng vốn K (capital) và lượng lao động L (labor) bằng công thức $P = 1,2K^{0,75}L^{0,25}$.
 - (a) Tính $P_K(100, 200)$, $P_L(100, 200)$.
 - (b) Giải thích vì sao có thể nói giá trị $P_K(100, 200)$ xấp xỉ mức tăng của sản lượng khi lượng vốn tăng thêm 1 từ mức 100 trong khi lượng lao động giữ nguyên ở mức 200. Hàm P_K được gọi là sản lượng cận biên theo vốn (marginal productivity of capital).
- 1.3.5. Viết phương trình mặt phẳng tiếp xúc với đồ thị của hàm đã cho tại điểm cho trước:
 - (a) $z = x^3y + 2x^4y^5$ tai (x, y) = (1, 1).
 - (b) $z = x^4 y^2 \tan(x, y) = (3, 2)$.
 - (c) $z = x^3 + y^2 \tan(1, 2, 5)$.
 - (d) $z = x^2 y \text{ tại } (2, 1, 4).$
 - (e) $z = \sin x + \cos y \text{ tai } (0, 0, 1).$
 - (f) $z = e^x \cos y \text{ tai } (0, 0, 1).$

(g)
$$z = \ln(x^2 + y^4 + 1)$$
 tại $(0, 0, 0)$.

1.3.6. Cho
$$f(10,20) = 45$$
, $f_x(10,20) = 1$, $f_y(10,20) = -5$. Hãy ước lượng $f(11,18)$.

1.3.7. Tìm xấp xỉ tuyến tính của hàm:

- (a) $f(x,y) = x^2y^3$ gần điểm (x,y) = (2,1).
- (b) $f(x,y) = x^y + xe^y$ gần điểm (x,y) = (1,0).
- (c) $f(x,y) = x xy + y^2$ gần điểm (x,y) = (5,6). Viết phương trình cho mặt phẳng tiếp xúc của đồ thị ở điểm (x,y) = (5,6). Ước lượng f(5,1;5,9).
- (d) $f(x,y) = \sin(x+2y)$ gần điểm (x,y) = (0,0). Ước lượng f(-0,05;0,05). So sánh số ước lượng với kết quả thu được bằng máy tính.

(e)
$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$$
 gần điểm $(x,y) = (3,4)$. Tính xấp xỉ $\frac{1}{\sqrt{2.99^2 + 4.01^2}}$.

1.3.8. Tính xấp xỉ:

- (a) $\sqrt[3]{1,02^2+0,01^2}$.
- (b) $\sqrt{2,98^2+4,01^2}$.
- (c) $\sqrt{1.02^2 + 1.99^3}$.
- (d) $\sqrt{2,01^2+4,98}$.
- **1.3.9.** Một tấm kim loại hình chữ nhật kích thước 3 mét \times 4 mét khi gặp nóng bị giãn ra, mỗi mét chiều dài ước lượng sẽ giãn ra thêm 1 cm. Hãy ước lượng nhanh (không dùng máy tính) lượng gia tăng của diện tích tấm kim loại.

1.3.10. Cho
$$z = f(x^2, y^4)$$
. Tính $\frac{\partial^2 z}{\partial x \partial y}$.

1.3.11. Cho
$$f(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
. Chúng tỏ $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$.

- **1.3.12.** Hàm f(x,y) thỏa phương trình $f_{xx} + f_{yy} = 0$, phương trình Laplace, được gọi là một hàm điều hòa. Hãy kiểm các hàm sau có phải là hàm điều hòa hay không.
 - (a) $f(x,y) = e^x \cos y$.
 - (b) $f(x,y) = \ln(x^2 + y^2)$.
 - (c) $f(x,y) = x^3 3xy^2$.
- **1.3.13.** Hãy kiểm hàm $f(x,t) = \sin(cx)e^{-c^2t}$, với c là một hằng số thực, thỏa phương trình truyền nhiệt

$$f_t = f_{xx}$$
.

1.3.14. Hãy kiểm hàm $u(x,t)=(2\cos(ct)+3\sin(ct))\sin x$, với c là một hằng số thực, thỏa phương trình truyền sóng

$$u_{tt} = c^2 u_{xx}$$
.

1.4 Các tính chất của đạo hàm

1.4.1 Đạo hàm của hàm hợp

Trong phép tính vi phân hàm một biến ta đã thấy công thức đạo hàm của hàm hợp rất quan trọng và hữu ích. Bây giờ ta xét vấn đề này với hàm nhiều biến.

Ví dụ 1.4.1. Giả sử $f(x,y)=x^2y^3$, với $x(t)=t^4$ và $y(t)=t^5$. Đặt z(t)=f(x(t),y(t)). Tìm $\frac{dz}{dt}$. Đây là vấn đề đạo hàm của hàm hợp.

Ta có thể đưa ra một lý luận dựa trên xấp xỉ tuyến tính như sau. Vì

$$\Delta z \approx f_x(x,y)\Delta x + f_y(x,y)\Delta y$$

nên chia hai vế cho Δt ta được

$$\frac{\Delta z}{\Delta t} \approx f_x(x, y) \frac{\Delta x}{\Delta t} + f_y(x, y) \frac{\Delta y}{\Delta t}$$

qua giới hạn khi $\Delta t \rightarrow 0$ ta được

$$z'(t) \approx f_x(x, y)x'(t) + f_y(x, y)y'(t).$$

Công thức xấp xỉ này gợi ý công thức đúng cho đạo hàm của hàm hợp.

Định lý 1.4.2. Cho hàm số f(x,y) với x=x(t) và y=y(t), $t \in \mathbb{R}$. Đặt z(t)=f((x(t),y(t)). Giả sử f,x và y khả vi liên tục. Khi đó

$$\frac{dz}{dt}(t) = \frac{\partial f}{\partial x}(x(t), y(t)) \cdot \frac{dx}{dt}(t) + \frac{\partial f}{\partial y}(x(t), y(t)) \cdot \frac{dy}{dt}(t).$$
(1.4.1)

Người ta thường hiểu ngầm f là hàm của t qua hàm hợp, để công thức ngắn gọn hơn và đỡ phải đặt thêm biến mới, và viết tắt rằng

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$
 (1.4.2)

Trong trường hợp x và y là hàm của t và các biến khác nữa, thì các đạo hàm theo t trở thành các đạo hàm riêng và ta viết công thức là

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t}.$$
 (1.4.3)

Chứng minh. Chứng minh này chỉ là làm chính xác giải thích xấp xỉ ở trên, thay xấp xỉ bởi việc sử dụng định lý giá trị trung bình. Ta viết

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) = [f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y)] + [f(x, y + \Delta y) - f(x, y)].$$

Áp dụng Định lý giá trị trung bình Lagrange, có hai số thực $0 < \theta_1 < 1, \, 0 < \theta_2 < 1$ sao cho vế phải của đẳng thức trên bằng

$$f_x(x + \theta_1 \Delta x, y + \Delta y) \Delta x + f_y(x, y + \theta_2 \Delta y) \Delta y.$$

Chia cho Δt ta được

$$\frac{\Delta z}{\Delta t} = f_x(x + \theta_1 \Delta x, y + \Delta y) \frac{\Delta x}{\Delta t} + f_y(x, y + \theta_2 \Delta y) \frac{\Delta y}{\Delta t}.$$

Cho $\Delta t \to 0$, chú ý rằng do x và y liên tục theo t nên khi $\Delta t \to 0$ thì $\Delta x \to 0$ và $\Delta y \to 0$, và do f_x và f_y liên tục nên ta thu được

$$z'(t) = \lim_{\Delta t \to 0} \frac{\Delta z}{\Delta t} = f_x(x, y)x'(t) + f_y(x, y)y'(t).$$

Ví dụ 1.4.3. Tiếp tục ví dụ ở đầu mục, giả sử $f(x,y)=x^2y^3$, với $x(t)=t^4$ và $y(t)=t^5$, ta tìm $\frac{df}{dt}$.

Áp dụng công thức đạo hàm của hàm hợp:

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}
= 2xy^34t^3 + x^23y^25t^4 = 2t^4(t^5)^34t^3 + (t^4)^23(t^5)^25t^4 = 23t^{22}.$$

Ở trên ta để kí hiệu được gọn hơn ta đã lược bớt việc ghi ra giá trị của một số biến, với giả thiết là người đọc có thể tự thêm vào nếu muốn và không bị lầm lẫn.

Người đọc có thể nhận thấy ta có thể thu được kết quả bằng cách thế ngay t vào f để được $f(t) = (t^4)^2(t^5)^3 = t^{23}$ và thu được kết quả một cách nhanh chóng mà không cần dùng tới hàm nhiều biến! Quả thực trong nhiều trường hợp tính toán cụ thể ta có thể làm như vậy. Giá trị của công thức thể hiện rõ hơn trong những trường hợp các hàm không có công thức cụ thể và trong các khảo sát chung.

Ví dụ 1.4.4. Cho z là một hàm khả vi liên tục theo hai biến x và y, với x và y là hai hàm khả vi liên tục theo biến t. Giả sử x(0) = 1, y(0) = 2, x'(0) = 3, y'(0) = 4, $z_x(1,2) = 5$, $z_y(1,2) = 6$. Hãy tính z'(0).

Ta có

$$z'(t) = z_x(x(t), y(t))x'(t) + z_y(x(t), y(t))y'(t).$$

Với t = 0 thì

$$z'(0) = z_x(x(0), y(0))x'(0) + z_y(x(0), y(0))y'(0)$$

= $z_x(1, 2)x'(0) + z_y(1, 2)y'(0) = 5 \cdot 3 + 6 \cdot 4$.

Ví dụ 1.4.5. Cho $x = r\cos\theta, \ y = r\sin\theta,$ và f là một hàm khả vi liên tục của x và y. Khi đó

$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial r} = \frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta,$$

$$\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial f}{\partial x} r(-\sin \theta) + \frac{\partial f}{\partial y} r \cos \theta.$$

Hoàn toàn tương tự như trường hợp hàm số hai biến, với hàm số có số biến bất kì ta có công thức:

Định lý 1.4.6. Cho $f(x_1, x_2, ..., x_n)$ với $x_i = x_i(t)$ là các hàm số khả vi liên tục và viết $x = (x_1, x_2, ..., x_n)$ thì

$$\frac{df}{dt} = \frac{\partial f}{\partial x_1} \frac{dx_1}{dt} + \frac{\partial f}{\partial x_2} \frac{dx_2}{dt} + \dots + \frac{\partial f}{\partial x_n} \frac{dx_n}{dt}.$$
 (1.4.4)

Ví dụ 1.4.7. Cho $x = r \sin \phi \cos \theta$, $y = r \sin \phi \sin \theta$, $z = r \cos \phi$, và f là một hàm khả vi liên tục của x, y, z. Khi đó

$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial r} = \frac{\partial f}{\partial x}\sin\phi\cos\theta + \frac{\partial f}{\partial y}\sin\phi\sin\theta + \frac{\partial f}{\partial z}\cos\phi,$$

$$\frac{\partial f}{\partial \phi} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \phi} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \phi} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \phi} = \frac{\partial f}{\partial x} r \cos \phi \cos \theta + \frac{\partial f}{\partial y} r \cos \phi \sin \theta + \frac{\partial f}{\partial z} (-r \sin \phi),$$

$$\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial \theta} = \frac{\partial f}{\partial x} (-r \sin \phi \sin \theta) + \frac{\partial f}{\partial y} r \sin \phi \cos \theta + \frac{\partial f}{\partial z} 0.$$

1.4.2 Đạo hàm theo hướng

Cho tới nay ta đã xét đạo hàm riêng của hàm theo biến thứ i, xem giá trị của hàm thay đổi như thế nào khi biến thứ i thay đổi trong khi các biến còn lại cố định. Bây giờ ta quan tâm tới câu hỏi giá trị của hàm thay đổi như thế nào khi nhiều biến cùng thay đổi. Ví dụ nhiệt độ trong phòng nóng hơn hay lạnh đi nếu ta di chuyển theo một hướng bất kì nào đó, không chỉ theo hai hướng dọc và ngang? Đây là vấn đề đạo hàm theo một hướng bất kì cho trước.

Định nghĩa 1.4.8. Cho hàm $f: D \subset \mathbb{R}^n \to \mathbb{R}$ và x là một điểm trong của D. \mathbf{pao} hàm của hàm f tại điểm x theo vecto $u \in \mathbb{R}^n$ được định nghĩa là

$$D_u f(x) = \lim_{t \to 0} \frac{f(x + tu) - f(x)}{t}.$$

Ta qui ước lấy các vectơ có độ dài bằng 1, gọi là \mathbf{vecto} đơn \mathbf{vi} , để chỉ hướng, bởi vì để chỉ hướng thì chiều dài của vectơ không có vai trò. $\mathbf{N\acute{e}u}$ \mathbf{u} là \mathbf{vecto} đơn \mathbf{vi} thì $D_u f(x)$ được gọi là đạo hàm của f tại x theo hướng \mathbf{u} .

Từ định nghĩa ta thấy đạo hàm theo hướng là tỉ lệ thay đổi của hàm theo biến khi biến chỉ thay đổi theo hướng cho trước.

Ví dụ 1.4.9. Khi $u = e_i = (0, ..., 0, 1, 0, ..., 0)$ là các vectơ của cơ sở chuẩn tắc của \mathbb{R}^n , thì từ các định nghĩa ta thấy đạo hàm theo hướng e_i chính là các đạo hàm riêng theo biến thứ i, tức là

$$D_{e_i}f = D_i f = \frac{\partial f}{\partial x_i}.$$

Vậy đạo hàm riêng là một trường hợp của đạo hàm theo hướng.

Trở lại với vecto u bất kì, đặt g(t) = f(x + tu) ta có công thức:

$$D_u f(x) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = g'(0) = \frac{d}{dt} f(x + tu) \bigg|_{t=0}.$$
 (1.4.5)

Ví dụ 1.4.10. Cho $f(x,y) = x^3y + y$, tính $D_{(1,-2)}f(0,1)$.

Dùng định nghĩa, ta tính giới hạn

$$\begin{split} D_{(1,-2)}f(0,1) &= \lim_{t \to 0} \frac{f((0,1) + t(1,-2)) - f(0,1)}{t} \\ &= \lim_{t \to 0} \frac{f(t,1-2t) - 1}{t} \\ &= \lim_{t \to 0} \frac{t^3(1-2t) + (1-2t) - 1}{t} \\ &= \lim_{t \to 0} \frac{t^3 - 2t^4 - 2t}{t} \\ &= \lim_{t \to 0} t^2 - 2t^3 - 2 = -2. \end{split}$$

Thay vì tính giới hạn, ta có thể dùng Công thức (1.4.5):

$$D_{(1,-2)}f(0,1) = \frac{d}{dt}f((0,1) + t(1,-2))\Big|_{t=0}$$

$$= \frac{d}{dt}f(t,1-2t)\Big|_{t=0}$$

$$= \frac{d}{dt}(t^3(1-2t) + (1-2t))\Big|_{t=0}$$

$$= \frac{d}{dt}(t^3 - 2t^4 + 1 - 2t)\Big|_{t=0}$$

$$= (3t^2 - 8t^3 - 2)\Big|_{t=0} = -2.$$

Mệnh đề 1.4.11. Nếu $f:D\to\mathbb{R}$ khả vi liên tục thì

$$D_u f(x) = \nabla f(x) \cdot u. \tag{1.4.6}$$

Như vậy với hàm khả vi liên tục thì ta tính được đạo hàm theo hướng bất kì thông qua các đạo hàm riêng. Để tính đạo hàm theo hướng trong môn này Công thức (1.4.6) thường tiện hơn.

Chứng minh. Áp dụng công thức đạo hàm của hàm hợp (1.4.4) vào Công thức 1.4.5 cho hàm g(t) = f(x+tu), ta được

$$g'(t) = \frac{d}{dt}f(x+tu) = \frac{\partial f}{\partial x_1}(x+tu) \cdot \frac{d(x_1+tu_1)}{dt} + \dots + \frac{\partial f}{\partial x_n}(x+tu) \cdot \frac{d(x_n+tu_n)}{dt}$$
$$= \frac{\partial f}{\partial x_1}(x+tu)u_1 + \dots + \frac{\partial f}{\partial x_n}(x+tu)u_n$$
$$= \nabla f(x+tu) \cdot u,$$

$$d\tilde{a}n \ t\acute{o}i \ g'(0) = \nabla f(x) \cdot u.$$

Ví dụ 1.4.12. Với f khả vi liên tục, lấy $u = e_i$, ta thu lại

$$D_{e_i}f = \nabla f \cdot e_i = D_i f = \frac{\partial f}{\partial x_i}.$$

Ví dụ 1.4.13. Tiếp tục Ví dụ 1.4.10. Vì $f(x,y) = x^3y + y$ khả vi liên tục nên Công thức (1.4.6) áp dụng được. Ta tính $\nabla f(x,y) = (3x^2y, x^3 + 1), \nabla f(0,1) = (0,1)$, và

$$D_{(1,-2)}f(0,1) = \nabla f(0,1) \cdot (1,-2) = (0,1) \cdot (1,-2) = -2.$$

Ví dụ 1.4.14. Tìm đạo hàm của hàm $f(x,y) = \sqrt{x^2 + y^2}$ tại điểm (1,2) theo hướng của vecto (3,4).

Ta chú ý $l\acute{a}y$ vecto dơn vi $d\acute{e}$ chi hướng khi tính đạo hàm theo hướng. Vecto đơn vị theo hướng của vecto (3,4) là

$$u = \frac{(3,4)}{\|(3,4)\|} = \frac{1}{\sqrt{3^2 + 4^2}}(3,4) = \left(\frac{3}{5}, \frac{4}{5}\right).$$

Ta tính $f_x(x,y) = \frac{x}{x^2+y^2}$, $f_y(x,y) = \frac{y}{x^2+y^2}$, nên $\nabla f(1,2) = (\frac{1}{5},\frac{2}{5})$. Vậy đạo hàm của hàm $f(x,y) = \sqrt{x^2+y^2}$ tại điểm (1,2) theo hướng của vecto (3,4) là

$$D_u f(1,2) = \nabla f(1,2) \cdot u = \left(\frac{1}{5}, \frac{2}{5}\right) \cdot \left(\frac{3}{5}, \frac{4}{5}\right) = \frac{11}{25}.$$

Ý nghĩa của vectơ gradient

Ta xét câu hỏi: Theo hướng nào thì giá trị của hàm số tăng nhanh nhất?. Ví dụ từ một vị trí ta nên đi hướng nào để ấm lên nhanh nhất? Vậy câu hỏi là theo hướng nào thì đạo hàm theo hướng là lớn nhất?

Có thể hiểu Công thức (1.4.6) nói rằng u là vectơ đơn vị chỉ hướng thì đạo hàm theo hướng u bằng giá trị vô hướng của chiếu của u lên vectơ gradient của hàm. Vậy câu hỏi đưa về khi nào thì giá trị của chiếu của một vectơ đơn vị lên một vectơ cố định có giá trị lớn nhất? Hay nhìn cách khác, khi nào thì tích vô hướng của hai vectơ có chiều dài cố định là lớn nhất?

Trả lời câu hỏi này, giả sử hàm f khả vi liên tục, ta áp dụng bất đẳng thức (Mệnh đề 1.1.7):

$$|D_u f(x)| = |\nabla f(x) \cdot u| \le ||\nabla f(x)|| ||u|| = ||\nabla f(x)||$$

với dấu bằng xảy ra khi và chỉ khi $\nabla f(x)$ và u cùng phương. Ta suy ra giá trị lớn nhất của $D_u f(x)$ là $\|\nabla f(x)\|$ xảy ra ở hướng $u = \frac{\nabla f(x)}{\|\nabla f(x)\|}$, vậy **giá trị của hàm** tăng nhanh nhất theo hướng của vectơ gradient.

Tương tự, giá trị nhỏ nhất của $D_u f(x)$ là $-\|\nabla f(x)\|$ xảy ra khi ở hướng $u = -\frac{\nabla f(x)}{\|\nabla f(x)\|}$, vậy giá trị của hàm giảm nhanh nhất theo hướng đối với hướng của vecto gradient.

Phần thảo luận trên cần có giả thiết $\nabla f(x) \neq 0$. Khi $\nabla f(x) = 0$ thì đạo hàm theo hướng $D_u f(x)$ bằng 0 ở mọi hướng, ta không rõ hướng nào sẽ làm hàm tăng, hướng nào sẽ làm hàm giảm. Các điểm tại đó vectơ gradient bằng không được gọi là các điểm dừng, đóng vai trò quan trong trong vấn đề cực tri ở Mục 1.5.

Ví dụ 1.4.15. Xét hàm
$$z = f(x, y) = x^2 + y^2$$
.

Hình 1.4.1: Đồ thị hàm $z=x^2+y^2$ cùng với các đường mức là những đường tròn tâm tại gốc tọa độ. Hướng tăng nhanh nhất của giá trị của hàm là hướng từ gốc tọa độ đi ra, vuông góc với các đường mức, là hướng của vectơ gradient.

Vectơ gradient của hàm f là $\nabla f(x,y) = (2x,2y) = 2(x,y)$, là một vectơ có hướng đi từ gốc tọa độ tới điểm (x,y). Tại mỗi điểm (x,y) để giá trị hàm tăng nhanh nhất, tức cao độ z của điểm (x,y,z) trên đồ thị tăng nhanh nhất, ta cần đi theo hướng của vectơ gradient, tức là theo phương xuyên gốc tọa độ theo hướng ra khỏi gốc tọa độ. Muốn cao độ giảm nhanh nhất ta cần đi theo hướng ngược lại. Những điều này hoàn toàn phù hợp với trực quan từ hình vẽ đồ thị, Hình 1.4.1.

Ví dụ 1.4.16. Xét hàm $f(x,y,z) = 2x^3y - 3y^2z$ tại điểm P = (1,2,-1). Tìm đạo theo hướng của hàm f theo hướng từ P tới điểm Q = (3,-1,5). Theo hướng này thì giá trị của hàm f là tăng hay giảm? Theo hướng nào thì hàm tăng, giảm nhanh nhất?

Ta cần chú ý **lấy vectơ hướng có chiều dài bằng** 1. Ta có $\overrightarrow{PQ} = Q - P = (2, -3, 6)$, chỉ hướng $u = \frac{\overrightarrow{PQ}}{\left\|\overrightarrow{PQ}\right\|} = \frac{1}{7}(2, -3, 6)$. Để dùng công thức $D_u f(P) = \nabla f(P) \cdot u$, ta tính $\nabla f(x, y, z) = (6x^2y, 2x^3 - 6yz, -3y^2)$, và $\nabla f(P) = (12, 14, -3)$. Vậy $D_u f(P) = (12, 14, -3) \cdot \frac{1}{7}(2, -3, 6) = \frac{-36}{7}$.

Vì $D_u f(P) < 0$ nên theo hướng u thì giá trị của hàm f là giảm. Theo hướng

của vectơ gradient $\nabla f(P) = (12, 14, -3)$ thì hàm tăng nhanh nhất, và theo hướng ngược lại thì hàm giảm nhanh nhất.

1.4.3 Đạo hàm của hàm vectơ

Tổng quát hơn hàm số ta có hàm vectơ. Đó là những ánh xạ $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$. Mỗi hàm vectơ f như vậy là một bộ của m hàm số của n biến, cu thể nếu ta viết

$$f(x_1, x_2, \dots, x_n) = (f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_m(x_1, x_2, \dots, x_n))$$

thì $f = (f_1, f_2, \dots, f_m)$ trong đó các f_i là các hàm số của n biến, được gọi là các hàm thành phần của hàm f.

Ví dụ 1.4.17. Một ánh xạ $r:(a,b)\subset\mathbb{R}\to\mathbb{R}^m$ thường được dùng để mô hình hóa một chuyển động trong không gian theo thời gian, tương ứng mỗi thời điểm với một vị trí.

Ví dụ 1.4.18. Hàm $t\mapsto (x(t)=\cos t,y(t)=\sin t,z(t)=t)$ là một đường xoắn trong \mathbb{R}^3 . Xem Hình 1.4.2.

Hình 1.4.2: Đường xoắn.

Vì không gian đến \mathbb{R}^m có sẵn khoảng cách Euclid, nên khái niệm hội tụ và liên tục có thể mở rộng từ hàm số lên hàm vectơ mà không thay đổi nội dung, ta thảo luận một cách tóm tắt dưới đây.

Cho hàm vectơ $f=(f_1,\ldots,f_m)$ theo biến $x=(x_1,\ldots,x_n)$. Giả sử $\lim_{x\to a}f_i(x)=y_i$. Khi đó với $y=(y_1,\ldots,y_m)$ thì khoảng cách

$$||f(x) - y|| = \sqrt{(f_1(x) - y_1)^2 + \dots + (f_m(x) - y_m)^2}$$

tiến về 0 khi x tiến về a. Suy ra $\lim_{x\to a} f(x) = y$. Như vậy

$$\lim_{x \to a} (f_1, \dots, f_m) = (\lim_{x \to a} f_1, \dots, \lim_{x \to a} f_m),$$

tức là có thể lấy giới hạn của hàm véctơ bằng cách lấy giới hạn từng hàm thành phần.

Cho ánh xạ $r:(a,b)\subset\mathbb{R}\to\mathbb{R}^m,\, r(t)=(x_1(t),\ldots,x_m(t))$ thì đạo hàm của r tại t được cho bởi vecto

$$r'(t) = \lim_{h \to 0} \frac{r(t+h) - r(t)}{h}$$

$$= \lim_{h \to 0} \left(\frac{x_1(t+h) - x_1(t)}{h}, \dots, \frac{x_m(t+h) - x_m(t)}{h} \right)$$

$$= (x'_1(t), \dots, x'_m(t)).$$

Như vậy ta có thể nói tóm tắt là đạo hàm của hàm vectơ bằng vectơ các đạo hàm thành phần.

Ví dụ 1.4.19. Nếu ánh xạ $r:(a,b)\subset\mathbb{R}\to\mathbb{R}^m$ mô hình hóa một chuyển động thì vectơ r'(t) miêu tả tỉ lệ thay đổi của vị trí theo thời gian tại thời điểm t, mô hình hóa vận tốc của chuyển động tại thời điểm t, vì thế được gọi là **vectơ vận tốc** của chuyển động tại thời điểm t.

Ánh xạ r cũng thường được dùng để chỉ một đường đi trong \mathbb{R}^m . Vì r(t+h)-r(t) là một vectơ cát tuyến của đường đi, nên phương của vectơ vận tốc r'(t) là giới hạn của phương cát tuyến khi điểm r(t+h) tiến về điểm r(t), đại diện cho phương tiếp tuyến của đường đi, do đó r'(t) được coi là một **vectơ tiếp xúc** của đường đi tại điểm r(t).

Hình 1.4.3: Vận tốc của chuyển động có phương tiếp tuyến.

Ví dụ 1.4.20. Ta có thêm một cách giải thích cho phương trình mặt phẳng tiếp xúc (1.3.2) như sau. Đặt r(x,y)=(x,y,f(x,y)) thì r là một tham số hóa của đồ thị của hàm f, vì ảnh của r chính là đồ thị của f. Nếu ta cố định y=b và cho x thay đổi thì r(x,b) trở thành một đường đi trên đồ thị của f theo biến x. Vận tốc của đường đi đó tại x=a là $r_x(a,b)=\frac{\partial}{\partial x}r(a,b)=(1,0,f_x(a,b))$, tiếp xúc với đồ thị của f tại điểm (a,b,f(a,b)). Tương tự, cố định x=a và cho y thay

45

đổi ta được một vectơ tiếp xúc nữa là $r_y(a,b) = (0,1,f_y(a,b))$. Suy ra một vectơ pháp tuyến của mặt phẳng tiếp xúc của đồ thị hàm f tại điểm (a,b,f(a,b)) là $r_x(a,b) \times r_y(a,b) = (-f_x(a,b),-f_y(a,b),1)$.

Ma trận các đạo hàm riêng của các hàm thành phần của hàm f được gọi là $ma\ trận\ Jacobi\ ^{10}$ của f, kí hiệu là

$$J_f = \left(\frac{\partial f_i}{\partial x_j}\right)_{1 \le i \le m, \ 1 \le j \le n} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}.$$

Ma trận Jacobi chẳng qua là một cách viết danh sách các đạo hàm riêng của hàm thành một bảng, được gọi là một ma trận.

Khi m=1 ta có hàm số nhiều biến $f:D\subset\mathbb{R}^n\to\mathbb{R}$, khi đó ma trận Jacobi là một bảng chỉ có một hàng, chính là gradient của f.

Ví dụ 1.4.21. Cho z = f(x, y) với (x, y) = r(t). Công thức đạo hàm của hàm hợp (1.4.1)có thể được viết lại là

$$\frac{d(f \circ r)}{dt}(t) = \frac{d}{dt}f(x(t), y(t))(t) = \frac{\partial f}{\partial x}(x(t), y(t))\frac{dx}{dt}(t) + \frac{\partial f}{\partial y}(x(t), y(t))\frac{dy}{dt}(t)$$
$$= \left(\frac{\partial f}{\partial x}(x(t), y(t)), \frac{\partial f}{\partial y}(x(t), y(t))\right) \cdot (x'(t), y'(t)) = \nabla f(r(t)) \cdot r'(t).$$

Tương tự, trong trường hợp số chiều bất kì, ta nhận thấy vế phải của Công thức đạo hàm hàm hợp (1.4.4) có thể được viết lại là

$$(f \circ x)'(t) = \nabla f(x(t)) \cdot x'(t). \tag{1.4.7}$$

Dấu · ở trên hiểu là phép nhân của hai ma trận hoặc phép nhân vô hướng của hai vectơ đều được. Công thức đạo hàm hàm hợp nhiều chiều đã được viết lại vừa ngắn gon vừa tương tư về hình thức với dang quen thuộc ở trường hợp một chiều.

* Sơ lược về ma trận

Với người đọc chưa học đại số tuyến tính, để tiện theo dõi dưới đây là tóm tắt vài điều về ma trận. Một ma trận chẳng qua là một cách viết một danh sách thành một bảng hai chiều gồm các hàng và các cột

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ a_{2,1} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix}.$$

 $^{^{10}}$ Jacobi là họ của một nhà toán học sống vào thế kỉ 19.

Cách viết như vậy đã phổ biến trong đời sống, cái mới ở đây là ta đưa ra được một số phép tính trên các bảng, như cộng hay nhân chúng.

Trong trường hợp thường gặp trong môn học này, ta nhân một ma trận m hàng n cột với một ma trận n hàng n cột để được một ma trận n hàng n cột như sau:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ a_{2,1} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{1,1}x_1 + \cdots + a_{1,n}x_n \\ a_{2,1}x_1 + \cdots + a_{2,n}x_n \\ \vdots \\ a_{m,1}x_1 + \cdots + a_{m,n}x_n \end{pmatrix}.$$

Đặc biệt khi m=1 phép tính nhân ma trận có kết quả giống như phép nhân vô hướng của hai vectơ trong \mathbb{R}^n , và do đó hai phép tính thường được đồng nhất:

$$\begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_1 x_1 + \cdots + a_n x_n \end{pmatrix}.$$

Tổng quát hơn ta có thể nhân hai ma trận để thu được một ma trận mà mỗi cột là tích của ma trận thứ nhất với cột tương ứng của ma trận thứ hai.

Một ma trận mà có số hàng bằng số cột thì được gọi là một ma trận vuông. Với mỗi ma trận vuông A có tương ứng một số thực gọi là **dịnh thức** của A, kí hiệu là det A^{11} . Trong trường hợp thường gặp ma trận 2×2 thì

$$\det \left(\begin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \end{array} \right) = a_1 b_2 - a_2 b_1.$$

Trong trường hợp ma trận 3×3 thì

$$\det \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = a_1 \det \begin{pmatrix} b_2 & c_2 \\ b_3 & c_3 \end{pmatrix} - a_2 \det \begin{pmatrix} b_1 & c_1 \\ b_3 & c_3 \end{pmatrix} + a_3 \det \begin{pmatrix} b_1 & c_1 \\ b_2 & c_2 \end{pmatrix}$$
$$= a_1 b_2 c_3 - a_1 b_3 c_2 + a_2 b_3 c_1 - a_2 b_1 c_3 + a_3 b_1 c_2 - a_3 b_2 c_1.$$

Ví dụ 1.4.22. Cho hai vectơ trong \mathbb{R}^3 , $a = (a_1, a_2, a_3)$ và $b = (b_1, b_2, b_3)$. Tích có hướng của hai vectơ này được định nghĩa là vectơ

$$\begin{aligned} a \times b &= (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1) \\ &= \det \left(\begin{array}{cc} a_2 & a_3 \\ b_2 & b_3 \end{array} \right) \vec{i} - \det \left(\begin{array}{cc} a_1 & a_3 \\ b_1 & b_3 \end{array} \right) \vec{j} + \det \left(\begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array} \right) \vec{k}. \end{aligned}$$

¹¹Từ determinant trong tiếng Anh có nghĩa là cái quyết định.

Để dễ nhớ hơn người ta thường viết công thức thuần túy kí hiệu hình thức:

$$a \times b = \det \left(\begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array} \right).$$

Người học có thể tìm hiểu thêm trong các giáo trình Đại số tuyến tính.

* Ánh xa đao hàm

Nếu $f:D\subset\mathbb{R}^n\to\mathbb{R}^m$ khả vi liên tục tại x thì ta có thể xét một ánh xạ $f'(x):\mathbb{R}^n\to\mathbb{R}^m$ cho bởi

$$f'(x)(h) = J_f(x) \cdot h$$

trong đó phép nhân bên vế phải là phép nhân ma trận. Ánh xạ này được gọi là $\acute{a}nh$ xa $\acute{a}ao$ hàm của f tại x, còn được gọi là đạo hàm Fréchet.

Với người đọc có biết đại số tuyến tính thì có thể nhận thấy ma trận Jacobi $J_f(x)$ chính là ma trận biểu diễn ánh xạ đạo hàm f'(x), một ánh xạ tuyến tính, trong cơ sở chuẩn tắc của \mathbb{R}^n .

Với cách nhìn nâng cao hơn dùng ánh xạ đạo hàm ta có thể viết công thức đạo hàm hàm hợp theo cùng hình thức như với hàm một biến. Cho U, V, W là các tập mở của \mathbb{R}^m , \mathbb{R}^n , \mathbb{R}^p theo thứ tự đó, cho $f: U \to V$ và $g: V \to W$ khả vi liên tục, ta có công thức đạo hàm của hàm hợp ở dạng quen thuộc

$$(g \circ f)'(x) = g'(f(x)) \circ f'(x).$$
 (1.4.8)

Chú ý rằng ở vế phải là hợp của hai ánh xạ tuyến tính. Nếu viết ở dạng ma trận biểu diễn thì công thức này cho

$$J_{g \circ f}(x) = J_g(f(x)) \cdot J_f(x). \tag{1.4.9}$$

Ở vế phải tích là phép nhân của ma trận.

Có thể chứng minh công thức này một cách tương tự như chứng minh cho trường hợp riêng đã biết, tuy trừu tượng hơn và có một số chi tiết kỹ thuật phức tạp hơn, có chẳng hạn trong [TTQ11, tr. 118].

Ví dụ 1.4.23. Công thức (1.4.7) là trường hợp riêng của Công thức (1.4.9) khi m=p=1.

Ví dụ 1.4.24. Tổng quát hóa Công thức (1.4.6), với f là hàm vectơ vào \mathbb{R}^m , dùng công thức tổng quát cho đạo hàm của hàm hợp (1.4.9), ta được

$$D_u f(x) = g'(0) = f'(x + 0u) \circ \frac{d}{dt}(x + tu) \Big|_{t=0} = f'(x)(u) = J_f(x) \cdot u.$$

1.4.4 Đạo hàm của hàm ẩn

Đạo hàm của hàm cho ở dạng ẩn

Xét phương trình f(x,y) = c với c là một hằng số. Giả sử (x_0,y_0) là một nghiệm của phương trình, và giả sử $f_y(x_0,y_0) \neq 0$. Khi đó nếu x đủ gần x_0 thì y là một hàm của x, điều này được giải thích chính xác bằng Định lý hàm ẩn, có trong các tài liệu như [TTQ11]. Đạo hàm của y theo x có thể thu được bằng cách viết f(x,y(x)) = c rồi lấy đạo hàm theo x của hai vế theo qui tắc đạo hàm của hàm hợp:

$$f_x \frac{dx}{dx} + f_y \frac{dy}{dx} = 0$$

suy ra

$$\frac{dy}{dx} = -\frac{f_x}{f_y},$$

cu thể hơn

$$\frac{dy}{dx}(x_0) = -\frac{f_x}{f_y}(x_0, y_0). \tag{1.4.10}$$

Đây được gọi là **Phương pháp đạo hàm của hàm ẩn**, đã được giới thiệu ở Vi tích phân 1 ([Bmgt1]).

Ví dụ 1.4.25. Tìm phương trình đường thẳng tiếp xúc với đường tròn $x^2 + y^2 = 2$ tại điểm (1,1).

Xem y là hàm của x, lấy đạo hàm hai vế theo x, ta được $2x + 2y \cdot y'(x) = 0$, suy ra $y'(x) = \frac{-x}{y}$. Tại điểm (1,1) thì y'(1) = -1. Phương trình đường thẳng tiếp xúc tại điểm (1,1) là y = 1 + (-1)(x-1), hay y = -x + 2.

Với hàm có nhiều biến hơn thì phương pháp vẫn tương tự. Cho phương trình F(x,y,z)=c với c là một hằng số. Giả sử z là một hàm khả vi liên tục của x và y. Ta có thể tính đạo hàm của z theo x và theo y theo cách như trên:

$$\frac{\partial}{\partial x}F(x,y,z(x,y)) = \frac{\partial c}{\partial x} = 0,$$

suy ra

$$\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} + \frac{\partial F}{\partial z}\frac{\partial z}{\partial x} = 0,$$

từ đó

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0,$$

vậy

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}.$$

Điều kiện để công thức có nghĩa là $\frac{\partial F}{\partial z}$ khác 0 tại điểm đang xét, hóa ra cũng chính là điều kiện để áp dụng Định lý hàm ẩn.

Ví dụ 1.4.26. Tính $\frac{\partial z}{\partial x}$ và $\frac{\partial z}{\partial y}$ nếu x, y, z được ràng buộc bởi phương trình $x^2 + y^2 + z^2 = 14$.

Lấy đạo hàm hai vế của phương trình theo theo biến x:

$$\frac{\partial}{\partial x}(x^2 + y^2 + z^2) = \frac{\partial 1}{\partial x} = 0,$$

ta được

$$2x + 2z \frac{\partial z}{\partial x} = 0,$$

vậy

$$\frac{\partial z}{\partial x} = -\frac{x}{z}.$$

Lấy đạo hàm hai vế của phương trình theo theo biến y:

$$\frac{\partial}{\partial y}(x^2+y^2+z^2) = \frac{\partial 1}{\partial y} = 0,$$

ta được

$$2y + 2z\frac{\partial z}{\partial y} = 0,$$

vậy

$$\frac{\partial z}{\partial y} = -\frac{y}{z}.$$

Các tính toán này áp dụng được khi $z \neq 0$.

Trong trường hợp này phương trình đủ đơn giản để ta giải được công thức tường minh $z = \sqrt{14 - x^2 - y^2}$ hoặc $z = -\sqrt{14 - x^2 - y^2}$ ở gần những điểm với $z \neq 0$, nhờ đó có thể kiểm tra kết quả trên bằng tính toán trực tiếp không dùng phương pháp đạo hàm hàm ẩn. Tuy nhiên giải phương trình thường khó, nên phương pháp đao hàm hàm ẩn có thể hiệu quả hơn.

Ví dụ 1.4.27. Tìm phương trình mặt phẳng tiếp xúc với mặt cầu $x^2 + y^2 + z^2 = 14$ tai điểm (3,1,2).

Theo phương pháp thông thường, giải tìm z, tại gần điểm (3,1,2) thì mặt cầu $x^2+y^2+z^2=14$ là đồ thị của hàm $z=\sqrt{14-x^2-y^2}$, và phương trình mặt phẳng tiếp xúc của mặt đồ thi này là

$$z = z(3,1) + z_x(3,1)(x-3) + z_y(3,1)(y-1).$$

Tính trực tiếp $z_x(x,y)=-x(14-x^2-y^2)^{\frac{1}{2}}$ và $z_y(x,y)=-y(14-x^2-y^2)^{\frac{1}{2}}$, nên $z_x(3,1)=-\frac{3}{2},\ z_y(3,1)=-\frac{1}{2}.$

Nếu dùng đạo hàm hàm ẩn, ở Ví dụ 1.4.26 trên ta đã tính được $z_x=-\frac{x}{z}$, $z_y=-\frac{y}{z}$, nên $z_x(3,1)=-\frac{3}{2}$, $z_y(3,1)=-\frac{1}{2}$.

Vậy phương trình mặt phẳng tiếp xúc tại điểm (3,1,2) là

$$z = 2 - \frac{3}{2}(x - 3) - \frac{1}{2}(y - 1) = -\frac{3}{2}x - \frac{1}{2}y + 7.$$

Tập mức

Với mỗi số thực c cố định, phương trình f(x) = c xác định tập $C = f^{-1}(\{c\})$, được gọi là $t\hat{q}p$ mức (hay tập đẳng trị) của hàm f ứng với mức c.

Giả sử x_0 là một điểm thuộc C. Giả sử x=r(t) là một đường đi khả vi trong C đi qua điểm x_0 , với $r(0)=x_0$. Ta luôn có f(r(t))=c, do đó lấy đạo hàm theo t ta được $\nabla f(r(t)) \cdot r'(t)=0$, đặc biệt khi t=0 thì $\nabla f(x_0) \cdot r'(0)=0$. Điều này có nghĩa là vectơ $\nabla f(x_0)$ phải vuông góc với vectơ r'(0). Mà vectơ r'(0) là vectơ vận tốc của đường r tại điểm r(0), là một vectơ tiếp xúc bất kì của tập C tại điểm x_0 (xem Ví dụ 1.4.19), nên ta kết luận $\nabla f(x_0)$ vuông góc với mọi vectơ tiếp xúc của C, do đó ta nói $\nabla f(x_0)$ vuông góc với C.

Điều kiện cho lý luận trên chỉ đơn giản là vectơ gradient $\nabla f(x_0)$ là khác 0, có nguồn gốc từ Định lý hàm ẩn.

Ta đi đến một quan sát quan trọng: **vectơ gradient của một hàm luôn vuông góc với tập mức của hàm và chỉ theo hướng tăng của mức**. Xem minh họa ở các Hình 1.4.4, 1.4.5, 1.4.1.

Hình 1.4.4: Vecto gradient luôn vuông góc với tập mức. Trường hợp hai chiều.

Xét trường hợp số chiều n=2, ta thu được ngay một phương trình cho đường thẳng tiếp xúc của đường cho ở dạng ẩn f(x,y)=c tại một điểm (x_0,y_0) trên đường. Điều kiện để một điểm (x,y) nằm trên đường thẳng tiếp xúc tại điểm (x_0,y_0) là vectơ tiếp xúc $(x,y)-(x_0,y_0)$ vuông góc với vectơ pháp tuyến $\nabla f(x_0,y_0)$, tức là

$$\nabla f(x_0, y_0) \cdot (x - x_0, y - y_0) = 0,$$

hay

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) = 0.$$

Nếu $f_y(x_0, y_0) \neq 0$ thì ta rút ra được

$$y = y_0 - \frac{f_x(x_0, y_0)}{f_y(x_0, y_0)}(x - x_0). \tag{1.4.11}$$

Hình 1.4.5: Vecto gradient luôn vuông góc với tập mức. Trường hợp ba chiều.

Từ điều này, hệ số góc của đường tiếp tuyến tại (x_0, y_0) là $-\frac{f_x}{f_y}(x_0, y_0)$. Ta thu lại kết quả ở Phương trình (1.4.10).

Ví dụ 1.4.28. Trở lại Ví dụ 1.4.25, tìm phương trình đường thẳng tiếp xúc với đường tròn $x^2 + y^2 = 2$ tai điểm (1,1).

Đường tròn này là một tập mức của hàm $f(x,y)=x^2+y^2$. Vecto gradient $\nabla f(x,y)=(2x,2y)$ là một vecto pháp tuyến của đường tại điểm (x,y). Tại điểm (1,1) thì $\nabla f(1,1)=(2,2)$. Phương trình đường thẳng tiếp xúc tại điểm (1,1) là 2(x-1)+2(y-1)=0, hay y=-x+2.

Xét trường hợp n=3, ta rút ra một phương trình cho mặt phẳng tiếp xúc của mặt mức f(x,y,z)=c tại một điểm (x_0,y_0,z_0) trên mặt như sau. Điều kiện để một điểm (x,y,z) nằm trên mặt phẳng tiếp xúc tại điểm (x_0,y_0,z_0) là vectơ tiếp xúc $(x,y,z)-(x_0,y_0,z_0)$ vuông góc với vectơ pháp tuyến $\nabla f(x_0,y_0,z_0)$, tức là

$$\nabla f(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0.$$

Như vậy mặt phẳng tiếp xúc của mặt mức f(x,y,z)=c có phương trình

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0.$$
 (1.4.12)

Ví dụ 1.4.29. Trở lại Ví dụ 1.4.27, tìm phương trình mặt phẳng tiếp xúc với mặt cầu $x^2 + y^2 + z^2 = 14$ tại điểm (3, 1, 2).

Mặt cầu này là một tập mức của hàm $f(x,y,z)=x^2+y^2+z^2$. Vecto gradient $\nabla f(x,y,z)=(2x,2y,2z)$ là một vecto pháp tuyến của mặt tại điểm (x,y,z). Tại điểm (3,1,2) thì $\nabla f(3,1,2)=(6,2,4)$. Phương trình mặt phẳng tiếp xúc tại điểm (3,1,2) là 6(x-3)+2(y-1)+4(z-2)=0 hay 3x+y+2z=14.

Ví dụ 1.4.30 (mặt phẳng tiếp xúc của mặt đồ thị). Cho mặt đồ thị z = f(x, y). Đặt g(x, y, z) = f(x, y) - z thì đồ thị của f chính là tập mức g(x, y, z) = 0 của g,

chú ý để áp dụng phương pháp hàm ẩn thì phương trình của hàm ẩn phải có một vế là hằng số. Theo cách tiếp cận này thì $\nabla g = (f_x, f_y, -1)$, và mặt phẳng tiếp xúc tại (x_0, y_0, z_0) , với $z_0 = f(x_0, y_0)$ là

$$\nabla g(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0,$$

tức là

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - 1(z - z_0) = 0,$$

hay

$$z = z_0 + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0),$$

chính là phương trình ta đã có ở Công thức (1.3.2).

Bài tập

Đạo hàm của hàm hợp

- 1.4.1. Tính đạo hàm bằng hai cách: thế và đạo hàm hàm hợp.
 - (a) z = uv, u = x + y, v = x y. Tim $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.
 - (b) $z = u^2 + v^2$, $u = x^2y$, $v = xy^3$. Tim $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.
 - (c) $z = (x^2 + y^2)e^{\sqrt{x^2 + y^2}}$, x = uv, y = u v. Tim $\frac{\partial z}{\partial u}$, $\frac{\partial z}{\partial v}$.
 - (d) $f(x,y) = x \ln(x^2 + y^4)$, x = 2s + 3t, y = 5s 3t, F(s,t) = f(x(s,t), y(s,t)). Tim $\frac{\partial F}{\partial s}$, $\frac{\partial F}{\partial s}$.
- **1.4.2.** Cho f là một hàm khả vi liên tục theo hai biến x và y, với x và y là hai hàm khả vi liên tục theo biến t. Đặt z(t) = f(x(t), y(t)). Cho x(1) = 2, y(1) = -2, x'(1) = 4, y'(1) = -3, $f_x(2, -2) = -4$, $f_y(2, -2) = 6$. Hãy tính z'(1).
- **1.4.3.** Cho g và h là các hàm khả vi liên tục một biến và f là một hàm khả vi liên tục theo hai biến. Cho $x = g(t), y = h(t), g(1) = 3, h(1) = 4, g'(1) = -2, h'(1) = 5, f_x(3, 4) = 7$ và $f_y(3, 4) = 6$. Cho z(t) = f(x(t), y(t)). Tính $\frac{dz}{dt}(1)$.
- **1.4.4.** Cho f là một hàm khả vi liên tục theo hai biến x, y. Cho $x = s^2 + t^2$, $y = t \sin(\pi s)$. Cho $f_x(2,0) = 1$ và $f_y(2,0) = -1$. Đặt z(s,t) = f(x(s,t),y(s,t)). Tính $\frac{\partial z}{\partial s}(1,1)$, $\frac{\partial z}{\partial t}(1,1)$.
- **1.4.5.** Xét hàm

$$f(x,y) = x^2y + e^{x^2+y}.$$

- **1.4.6.** Nhiệt độ tại mỗi điểm (x,y) trên mặt phẳng được cho bởi f(x,y)=2x+3y. Một vật đang chuyển động trên đường tròn $x^2+y^2=1$ theo phương trình $x=\cos(5t),\ y=\sin(5t)$. Hỏi nhiệt độ tại vị trí của vật tại thời điểm t=0 đang tăng hay giảm?
 - (a) Trả lời bằng cách thế công thức để tính trực tiếp đạo hàm của hàm một biến.
 - (b) Trả lời bằng cách dùng công thức đạo hàm hàm hợp của hàm nhiều biến.
- **1.4.7.** Cho $z=f(x,y),\, x=u-v,\, y=v-u.$ Chứng tỏ $\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=0.$
- **1.4.8.** Cho $z = f(x, y), x = t \cos s, y = t \sin s$. Tính $\frac{\partial^2 z}{\partial s \partial t}$.

1.4.9. Cho
$$z=f(x,y), \ x=2s+3t, \ y=3s-2t.$$
 Tính $\frac{\partial^2 z}{\partial s^2}, \ \frac{\partial^2 z}{\partial s\partial t}, \ \frac{\partial^2 z}{\partial t^2}.$

- 1.4.10. Điện thế V trong một mạch điện đơn giản đang giảm dần vì pin yếu đi theo thời gian. Điện trở R đang dần tăng lên do thiết bị bị nóng lên. Theo định luật Ohm, V=IR. Dùng đạo hàm hàm hợp, hãy tìm xem cường độ dòng điện I đang thay đổi như thế nào theo thời gian, đang mạnh lên hay đang yếu đi, khi $R=400\Omega,\ I=0.08A,\ dV/dt=-0.01V/s,$ và $dR/dt=0.03\Omega/s$.
- **1.4.11.** Giả thiết số lượng cá thể C của một loài phụ thuộc vào lượng thức ăn A và lượng thú săn mồi S. Trong khi đó lượng thức ăn A và lượng thú săn mồi S lại thay đổi theo thời gian t. Hãy viết công thức định lượng diễn tả tốc độ thay đổi số lượng cá thể theo thời gian $\frac{dC}{dt}$ thông qua tốc độ thay đổi của lượng thức ăn $\frac{dA}{dt}$ và tốc độ thay đổi của lượng thú săn mồi $\frac{dS}{dt}$. Áp dụng, giả sử tại một thời điểm nhất định $\frac{dA}{dt} = -2,4; \frac{dS}{dt} = 3,1; \frac{\partial C}{\partial A} = 4,05; \frac{\partial C}{\partial S} = -0,4;$ hãy tính $\frac{dC}{dt}$ tại thời điểm đó.
 - (a) Tính $\nabla f(x,y)$.
 - (b) Tính $\frac{\partial^2 f}{\partial x \partial y}$ và $\frac{\partial^2 f}{\partial u \partial x}$.
 - (c) Tìm giá trị gần đúng của f(1,08;0,93) bằng xấp xỉ tuyến tính tại (1,1).
 - (d) Cho $x(t)=t^2$, y(t)=1-t. Đặt g(t)=f(x(t),y(t)). Dùng đạo hàm hàm hợp của hàm nhiều biến, tính $\frac{dg}{dt}(1)$.

1.4.12. Cho
$$f: \mathbb{R} \to \mathbb{R}, (x, y, z) \in \mathbb{R}^3, v = f\left((x^2 + y^2 + z^2)^{\frac{1}{2}}\right).$$

- (a) Tính $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial z}$.
- (b) Chứng tỏ rằng

$$\left[\left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right] (x, y, z) = f' \left((x^2 + y^2 + z^2)^{\frac{1}{2}} \right)^2.$$

Đạo hàm theo hướng

- 1.4.13. Tìm đạo hàm theo hướng của hàm tại điểm đã cho theo hướng của vectơ đã cho. Lưu ý lấy vectơ đơn vị để chỉ hướng.
 - (a) $f(x,y) = y\sqrt{x}$ tại điểm (1,2) theo hướng của vecto (2,3).
 - (b) $f(x,y) = x^2 y^2$ tại điểm (-2,2) theo hướng của vecto (1,-1).
 - (c) $f(x,y) = x^2y^3$ tại điểm (1,1) theo hướng của vecto (4,3).
 - (d) $f(x,y) = x^2y + y^3$ tại điểm (3,1) theo hướng của vecto (0,3).
 - (e) $f(x,y) = ye^{x^2}$ tại điểm (0,1) theo hướng của vecto (1,3).
 - (f) $f(x,y) = 5x^2y^3$ tại điểm (1,1) theo hướng từ điểm (1,1) tới điểm (3,2).
 - (g) $f(x,y) = \sqrt{x^2y y^3}$ tại điểm (2,1) theo hướng từ điểm (2,1) tới điểm (1,3).
 - (h) $f(x,y) = e^{x-2y}$ tại điểm (2,1) theo hướng từ điểm (2,1) tới điểm (0,0).
 - (i) $f(x,y) = x^2 + xy + 1$ tại điểm (0,3) theo hướng từ điểm (0,3) tới điểm (3,-1).
 - (j) $f(x,y) = x^4 xy + y^3$ tại điểm (1,2) theo hướng tạo một góc 60° với trục x.

- **1.4.14.** Đặt hệ tọa độ trên một vùng trên mặt phẳng sao cho hướng trục x là hướng đông và hướng trục y là hướng bắc. Nhiệt độ tại một điểm có tọa độ (x,y) trong vùng được mô hình hóa bởi công thức $T(x,y) = 100e^{-2x^2+3y^2}$. Tại điểm có tọa độ (1,2):
 - (a) Nếu đi về hướng đông thì nhiệt độ tăng hay giảm?
 - (b) Nếu đi về hướng đông bắc thì nhiệt độ tăng hay giảm?
 - (c) Nên đi theo hướng nào để nhiệt độ giảm nhanh nhất?
- **1.4.15.** Cho $T(x,y)=x^2+y^2-x-y$ là nhiệt độ tại điểm (x,y) trên mặt phẳng. Một con kì nhông đang nằm ở điểm (1,3) đang muốn được ấm lên càng nhanh càng tốt. Nó nên bò theo hướng nào?
- **1.4.16.** Giả sử ta đang đi trên một ngọn núi. Đặt hệ tọa độ mà trục x chỉ hướng Đông, trục y chỉ hướng Bắc, và trục z chỉ hướng vuông góc ra khỏi mặt đất. Độ cao của ngọn núi được cho bởi

$$z = 1000 - 2x^2 + 3xy - 5y^2.$$

Ta đang ở tại điểm ứng với x=1, y=0 trên núi. Nếu ta đi theo hướng Nam thì sẽ đi lên cao hơn hay xuống thấp hơn? Nếu ta đi theo hướng Tây Bắc thì sẽ đi lên cao hơn hay xuống thấp hơn? Muốn đi xuống nhanh nhất thì nên đi theo hướng nào?

- **1.4.17.** Giả sử một ngọn đồi có hình dạng đồ thị của hàm $z = 500 x^2 2y^2$. Giả sử một người đang ở tại điểm ứng với tọa độ x = 6, y = 5 và muốn đi xuống nhanh nhất. Hỏi người đó nên đi theo hướng nào? Hãy dùng máy tính vẽ hình để minh họa.
- 1.4.18. Quả núi có hình dạng cho bởi phương trình

$$f(x,y) = \frac{3000}{x^2 + 2y^2 + 5.}$$

Một dòng suối chảy từ trên núi xuống. Tại điểm ứng với x=5, y=4 trên dòng suối, dự đoán dòng suối chảy theo hướng nào?

- **1.4.19.** Xét hàm $f(x,y) = 1 + x \ln(xy 5)$
 - (a) Tìm $\nabla f(x,y)$ tại điểm A=(2,3).
 - (b) Tìm tuyến tính hóa (xấp xỉ tuyến tính) của f tại điểm A.
 - (c) Tìm phương trình mặt phẳng tiếp xúc với đồ thị của f tại điểm A.
 - (d) Tính tỉ lệ biến thiên của f tại A theo góc chỉ hướng $\theta = \frac{3\pi}{4}$. Theo hướng này thì giá trị của hàm f tăng hay giảm?
 - (e) Từ A đi theo hướng nào thì giá trị của hàm f tăng nhanh nhất? Chú ý lấy vectơ đơn vị chỉ hướng.

Đạo hàm của hàm ẩn

- 1.4.20. Tìm phương trình tiếp tuyến của đường đã cho tại điểm đã cho.
 - (a) $x^2 + y^2 = 4$ tại điểm $(1, \sqrt{3})$.
 - (b) $x^2 y^2 = 3$ tại điểm (2, 1).
 - (c) $x^2y + xy^2 = 2$ tại điểm (1, 1).

- (d) $x^2 + y^2 + x^4y^4 = 1$ tai điểm (1,0).
- **1.4.21.** Cho x và y liên hệ với nhau bởi phương trình $x^4 + y^4 + 2 = 4xy^3$.
 - (a) Tìm $\frac{dy}{dx}$.
 - (b) Tìm tất cả các điểm (x,y) mà tại đó tiếp tuyến với đường cho bởi phương trình trên nằm ngang (cùng phương với trực x).
- 1.4.22. Tìm phương trình mặt phẳng tiếp xúc của mặt đã cho tại điểm đã cho.
 - (a) $x^2 + y^2 + z^2 = 4$ tại điểm $(1, 1, \sqrt{2})$.
 - (b) $x^2 + y^2 z^2 = 1$ tai điểm (1, 2, 2).
 - (c) $x^2y + y^2z z^2x = 1$ tại điểm (1, 1, 0).
 - (d) $3xy + z^2 = 4$ tại điểm (1, 1, 1).
 - (e) $x^2 + y^2 + z^2 + x^4y^4 + x^4z^4 + y^4z^4 9z = 21$ tai điểm (1, 1, 2).
- **1.4.23.** Cho $x^2 + y^3 = e^y$. Tính $\frac{\partial y}{\partial x}$.
- **1.4.24.** Cho $x + y + z = e^z$. Tính $\frac{\partial z}{\partial x}$.
- **1.4.25.** Cho $3x^2z x^2y^2 + 2z^3 + 3yz 2 = 0$. Tính $\frac{\partial z}{\partial x}(0,0), \frac{\partial z}{\partial y}(0,0)$.

Các bài tập khác

1.4.26. Đặt $\vec{r} = (x, y, z) \in \mathbb{R}^3$. Hãy kiểm công thức

$$\nabla \left(\frac{1}{\|\vec{r}\|} \right) = -\frac{\vec{r}}{\|\vec{r}\|^3}.$$

- **1.4.27.** Cho $f,g:D\subset\mathbb{R}^n\to\mathbb{R}$ có đạo hàm riêng theo mọi biến tại $x\in D$, hãy kiểm tra rằng
 - (a) $\nabla (f+g)(x) = \nabla f(x) + \nabla g(x)$.
 - (b) $\nabla (fg)(x) = g(x)\nabla f(x) + f(x)\nabla g(x)$.
 - (c) $\nabla \left(\frac{f}{g}\right)(x) = \frac{1}{g^2(x)}(g(x)\nabla f(x) f(x)\nabla g(x))$ nếu $g(x) \neq 0$.
- **1.4.28.** Cho $u, v: (a, b) \to \mathbb{R}^n$. Hãy kiểm tra các công thức sau về đao hàm của hàm véctơ:
 - (a) $(u \cdot v)' = u' \cdot v + u \cdot v'$.
 - (b) $(u \times v)' = u' \times v + u \times v'$

1.5 Cực trị của hàm số nhiều biến

Tìm giá trị lớn nhất và nhỏ nhất là một bài toán phổ biến, được gọi là bài toán cực trị hay bài toán tối ưu hóa. Bài toán này với hàm nhiều biến có sự tương tự với trường hợp hàm một biến, rất hữu ích nếu người học ôn tập lai [Bmgt1, Chương 4].

Cũng giống như đối với hàm một biến, ta chia vấn đề thành hai phần: cực trị địa phương, là cực trị trên một lân cận nào đó, và cực trị toàn cục, là cực trị trên toàn miền xác đinh.

Định nghĩa 1.5.1. Hàm $f: D \subset \mathbb{R}^n \to \mathbb{R}$ có cực đại địa phương, hay cực đại tương đối, tại $a \in D$ nếu có một quả cầu $B(a,r) \subset D$ sao cho $f(a) \geq f(x)$ với mọi $x \in B(a,r)$. Điểm a được gọi là một điểm cực đại địa phương.

Tương tự $f: D \subset \mathbb{R}^n \to \mathbb{R}$ có **cực tiểu địa phương**, hay **cực tiểu tương đối**, tại $a \in D$ nếu có một quả cầu $B(a,r) \subset D$ sao cho $f(a) \leq f(x)$ với mọi $x \in B(a,r)$. Điểm a được gọi là một điểm cực tiểu địa phương.

Cực tiểu và cực đại được gọi chung là *cực trị*. Chú ý rằng ta chỉ xét cực trị địa phương tại những *điểm trong* của miền xác định.

Định nghĩa 1.5.2. Hàm $f: D \subset \mathbb{R}^n \to \mathbb{R}$ có cực đại toàn cục, hay cực đại tuyệt đối, tại $a \in D$ nếu $f(a) \geq f(x)$ với mọi $x \in D$. Khi đó f(a) là giá trị lớn nhất của f.

Tương tự $f: D \subset \mathbb{R}^n \to \mathbb{R}$ có **cực tiểu toàn cục**, hay **cực tiểu tuyệt đối**, tại $a \in D$ nếu $f(a) \leq f(x)$ với mọi $x \in D$. Khi đó f(a) là giá trị nhỏ nhất của f.

1.5.1 Cực trị địa phương

Với hàm một biến, để hàm khả vi có cực trị địa phương tại một điểm thì đạo hàm phải bằng 0 tại điểm đó. Đối với hàm nhiều biến, một cực trị theo tất cả các biến hẳn nhiên phải là một cực trị theo từng biến, do đó đạo hàm theo từng biến phải bằng 0 tại điểm đó. Vậy một điều kiện cần để có cực trị địa phương là tất cả các đao hàm riêng phải bằng 0.

Định lý 1.5.3 (Điều kiện cần cho cực trị địa phương). Nếu $f: D \subset \mathbb{R}^n \to \mathbb{R}$ có tất cả các đạo hàm riêng tại a và f có cực trị địa phương tại a thì tất cả các đạo hàm riêng tại a phải bằng 0, nghĩa là $\forall i = 1, \ldots, n, \frac{\partial f}{\partial x_i}(a) = 0$, $hay \nabla f(a) = 0$.

Một cách khác để thấy điều này là từ ý nghĩa của vectơ gradient: nếu $\nabla f(a) \neq 0$ thì tại a hàm f có hướng tăng và có hướng giảm, phản đảo, nếu f có cực trị địa phương tại a thì phải có $\nabla f(a) = 0$.

Chứng minh. Ta viết chi tiết hơn lý luận trên. Xét $a=(a_1,a_2,\ldots,a_n)$ là một điểm trong của D. Hàm một biến $g:x_i\mapsto f(a_1,\ldots,a_{i-1},x_i,a_{i+1},\ldots,a_n)$ xác định trong một khoảng mở chứa a_i và khả vi tại a_i . Vì f có cực trị địa phương tại a nên g có cực trị địa phương tại a_i . Do vậy $0=g'(a_i)=\frac{\partial f}{\partial x_i}(a)$.

Trong trường hợp n=2, kết quả này dẫn tới rằng tại điểm trên mặt đồ thị mà xảy ra cực trị địa phương thì vectơ pháp tuyến của mặt là thẳng đứng và mặt phẳng tiếp xúc là nằm ngang, một điều rất rõ về trực quan, xem Hình 1.5.1 và xét Hình 1.3.3.

Nếu tại a các đạo hàm riêng cấp một triệt tiêu thì a được gọi là một $diểm\ dừng$ hay $diểm\ tới\ hạn$. Đây là những điểm ở đó có thể xảy ra cực trị địa phương. Như vây ta $tìm\ cực\ tri\ dia\ phương\ trong\ các\ diểm\ dừng$.

Việc các đạo hàm riêng cấp một triệt tiêu tại điểm cực trị là điều kiện cần, nhưng không phải là điều kiện đủ.

Ví dụ 1.5.4. Xét hàm hai biến $f(x,y)=x^2-y^2$. Ta có $\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0$, nhưng f(x,0)>f(0,0)>f(0,y) với mọi $x\neq 0$ và $y\neq 0$. Vậy (0,0) là một điểm dừng, nhưng hàm không có cực trị địa phương tại (0,0). Điểm (0,0) thường được gọi, dựa vào hình dạng đồ thị, là một **điểm** $y\hat{e}n^{12}$, xem Hình 1.5.1.

Như vậy cần lưu ý rằng cực trị địa phương phải xảy ra ở điểm dừng, nhưng điểm dừng không chắc là điểm cực trị địa phương.

Điều kiện đủ cho cực trị địa phương trong trường hợp hàm hai biến

Phát biểu điều kiện đủ trong trường hợp nhiều biến cùng với chứng minh khá phức tạp nên ta để lại ở phần tiếp theo sau. Thay vào đó ta phát biểu ngay kết quả trong trường hợp hàm hai biến.

Để tìm điều kiện đủ, tức là tìm điều kiện để có thể đưa ra kết luận về cực trị, ta nhớ lại trong hàm một biến [Bmgt1, Mục 4.2.2] tại các điểm dừng ta đã dùng dấu của đạo hàm bậc hai, giúp kiểm soát chặt chẽ hơn cách thay đổi của hàm. Cụ thể nếu $f'(x_0) = 0$ và $f''(x_0) > 0$ thì hàm f là lồi quanh x_0 , hàm f có cực tiểu tại x_0 , ngược lại nếu $f'(x_0) = 0$ và $f''(x_0) < 0$ thì hàm f là lõm quanh x_0 , hàm f có cực đại tại x_0 . Dưới đây ta phát triển kĩ thuật này cho hàm hai biến.

Các đạo hàm bậc hai có vai trò quan trọng trong vấn đề này. Bảng tất cả các đạo hàm riêng bậc hai của hàm xếp dưới dạng một ma trận 2×2 được gọi là ma trận Hesse 13 của hàm, kí hiệu là

$$H(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}.$$

Định lý 1.5.5. Sau đây là điều kiện đủ cho cực trị địa phương của hàm hai biến.

 $^{^{12} \}mbox{Đồ}$ thị ở lân cận của một điểm yên giống cái yên dùng để cưỡi ngựa ngày trước, tiếng Anh là saddle point.

 $^{^{13}}$ tên một nhà toán học sống vào thế kỉ 19

Tìm cực trị địa phương của hàm hai biến

Bước 1: Tìm các điểm dùng (x_0, y_0) bằng cách giải hệ phương trình

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0. \end{cases}$$

Bước 2: Tính định thức của ma trận Hesse tại các điểm dùng:

$$D(x_0, y_0) = \det H(f)(x_0, y_0) = \det \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{pmatrix}$$
$$= \frac{\partial^2 f}{\partial x^2}(x_0, y_0) \cdot \frac{\partial^2 f}{\partial y^2}(x_0, y_0) - \left(\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)\right)^2.$$

Bước 3: Biên luân:

- Nếu $D(x_0, y_0) > 0$ thì (x_0, y_0) là một điểm cực trị địa phương của f. Tiếp theo:
 - $-n\acute{e}u \frac{\partial^2 f}{\partial x^2}(x_0,y_0) > 0$ thì (x_0,y_0) là một điểm cực tiểu địa phương của f,
 - $-n\acute{e}u \frac{\partial^2 f}{\partial x^2}(x_0,y_0) < 0$ thì (x_0,y_0) là một điểm cực đại địa phương của f.
- Nếu D(x₀, y₀) < 0 thì (x₀, y₀) không là điểm cực trị địa phương của f.

Ví dụ 1.5.6. Xét $f(x,y) = x^2 + y^2$. Ta có $f_x(x,y) = 2x$, $f_y(x,y) = 2y$. Giải hệ phương trình 2x = 0 và 2y = 0 ta được điểm dùng duy nhất là (x,y) = (0,0). Tính đạo hàm bậc hai, ta được $f_{xx} = 2 > 0$, $f_{xy} = f_{yx} = 0$, $f_{yy} = 2$. Tiếp theo $D = [f_{xx}f_{yy} - f_{xy}^2] = 4 > 0$. Vậy hàm có cực tiểu địa phương tại (0,0). Điều này ta thấy ngay từ hình vẽ đồ thị của hàm, Hình 1.5.1, và có thể kiểm lại được mà không dùng đạo hàm.

Tương tự với $g(x,y) = -x^2 - y^2$ ta có $g_x(x,y) = -2x$, $g_y(x,y) = -2y$. Điểm dừng duy nhất là (x,y) = (0,0). Ta có $g_{xx} = -2 < 0$, $g_{xy} = g_{yx} = 0$, $g_{yy} = -2$, $D = [g_{xx}g_{yy} - g_{xy}^2] = 4 > 0$. Vậy hàm có cực đại địa phương tại (0,0).

Với $h(x,y)=x^2-y^2$ ta có $h_x(x,y)=2x$, $h_y(x,y)=-2y$. Điểm dùng duy nhất là (x,y)=(0,0). Ta có $h_{xx}=2$, $h_{xy}=h_{yx}=0$, $h_{yy}=-2$, $D=[h_{xx}h_{yy}-h_{xy}^2]=-4<0$. Vậy hàm không có cực trị địa phương tại (0,0), đó là một điểm yên. Điều này ta thấy rõ từ hình vẽ đồ thị của hàm, Hình 1.5.1.

Tiêu chuẩn cực trị có thể hơi khó nhớ, một cách giúp dễ nhớ hoặc dễ tìm lại tiêu chuẩn này là làm lại trường hợp tiêu biểu trong ví dụ trên.

Hình 1.5.1 phần nào minh họa nguồn gốc của tiêu chuẩn cực trị. Khi $D(x_0, y_0) > 0$ thì hàm hoặc là lồi theo mọi hướng hoặc là lõm theo mọi hướng. Nếu $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0$ thì có một hướng mà hàm là lồi, do đó hàm là lồi theo mọi hướng, từ đó (x_0, y_0) là

Hình 1.5.1: Đồ thị của các hàm $z=x^2+y^2,\,z=-x^2-y^2,\,z=x^2-y^2,$ tương ứng với điểm cực tiểu địa phương, điểm cực đại địa phương, và điểm yên.

điểm cực tiểu địa phương. Tương tự khi $\frac{\partial^2 f}{\partial x^2}(x_0,y_0)<0$ thì có một hướng mà hàm là lõm, do đó hàm là lõm theo mọi hướng, từ đó (x_0,y_0) là điểm cực đại địa phương. Khi $D(x_0,y_0)<0$ thì hàm là lồi theo một hướng nhưng lại lõm theo một hướng khác, nên (x_0,y_0) là điểm yên.

Ví dụ 1.5.7. Tìm và phân loại các điểm cực trị của hàm $f(x,y) = x^4 + y^4 - 4xy + 1$.

Bước 1: Tìm các điểm dùng. Tính,

$$\frac{\partial f}{\partial x} = 4x^3 - 4y; \quad \frac{\partial f}{\partial y} = 4y^3 - 4x.$$

Cho những đạo hàm riêng này bằng 0,

$$x^3 - y = 0$$
 và $y^3 - x = 0$.

Thế $y=x^3$ từ phương trình thứ nhất vào phương trình thứ hai,

$$0 = x^9 - x = x(x^8 - 1) = x(x^4 - 1)(x^4 + 1) = x(x^2 - 1)(x^2 + 1)(x^4 + 1).$$

Có 3 nghiệm thực: x = 0, 1, -1. Có ba điểm dừng là (0,0), (1,1), và (-1,-1). Bước 2: Tính các đạo hàm riêng cấp 2:

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 12x^2; \quad \frac{\partial^2 f}{\partial x \, \partial y}(x,y) = -4; \quad \frac{\partial^2 f}{\partial y^2}(x,y) = 12y^2.$$

Tính định thức:

$$D(x,y) = (12x^2) \cdot (12y^2) - (-4)^2 = 144x^2y^2 - 16.$$

Bước 3: Vì D(0,0)=-16<0 nên (0,0) là một điểm yên. Vì D(1,1)=128>0 và $\frac{\partial^2 f}{\partial x^2}(1,1)=12>0$ nên f có cực tiểu địa phương tại (1,1). Vì D(-1,-1)=128>0 và $\frac{\partial^2 f}{\partial x^2}(-1,-1)=12>0$ nên f cũng có cực tiểu địa phương tại (-1,-1). Xem Hình 1.5.2.

Hình 1.5.2: Đồ thị của hàm $f(x, y) = x^4 + y^4 - 4xy + 1$.

Ví dụ 1.5.8 (Phương pháp bình phương tối thiểu). Trong thống kê và xử lý dữ liệu, người ta thường xét một tập dữ liệu gồm các cặp số thực (x, y). Người ta xét một mô hình đơn giản, rằng x và y phụ thuộc tuyến tính sao cho thể hiện "gần nhất" tập dữ liệu. Mô hình này được gọi là *hỗi quy tuyến tính* (linear regression). Xem ví dụ ở Hình 1.5.3.

Hình 1.5.3: Xấp xỉ bộ dữ liệu bằng một hàm tuyến tính.

Cụ thể, ta có tập dữ liệu gồm n cặp số thực (x_i, y_i) và ta muốn tìm một hàm tuyến tính y = ax + b sao cho hàm này "xấp xỉ tốt nhất" tập dữ liệu. Có một cách thường dùng để diễn đạt sự "xấp xỉ tốt nhất" được gọi là "bình phương tối thiểu" (least-squares), đó là **tổng bình phương sai số là tối thiểu**. Như thế ta tìm số thực a và b sao cho với hàm f(x) = ax + b thì tổng bình phương các khoảng cách từ điểm $(x_i, f(x_i))$ tới điểm (x_i, y_i) là tối thiểu.

Ta thiết lập bài toán cực trị: Tìm a và b sao cho hàm số

$$L(a,b) = \sum_{i=1}^{n} (f(x_i) - y_i)^2 = \sum_{i=1}^{n} (ax_i + b - y_i)^2$$

đạt cực tiểu.

Ta có sẵn phương pháp vi phân hàm nhiều biến để giải bài toán này. Cực tiểu nếu xảy ra phải ở điểm dừng, do đó các đạo hàm riêng của L ở đó phải bằng 0, tức là vectơ gradient của L ở đó phải là vectơ 0. Vậy phải có

$$\begin{cases} \frac{\partial L}{\partial a}(a,b) = \sum_{i=1}^{n} 2(ax_i + b - y_i)x_i = 0\\ \frac{\partial L}{\partial b}(a,b) = \sum_{i=1}^{n} 2(ax_i + b - y_i) = 0. \end{cases}$$

Suy ra a và b là nghiệm của hệ phương trình tuyến tính

$$\begin{cases} (\sum_{i=1}^{n} x_i^2) a + (\sum_{i=1}^{n} x_i) b &= \sum_{i=1}^{n} x_i y_i \\ (\sum_{i=1}^{n} x_i) a + nb &= \sum_{i=1}^{n} y_i. \end{cases}$$
(1.5.1)

Chẳng hạn với dữ liệu gồm 3 điểm (0,5), (1,3), (2,6), giải hệ (1.5.1) ta tính được $a=1/2,\,b=25/6$, xem Hình 1.5.4.

Hình 1.5.4: Hồi quy tuyến tính cho 3 điểm bằng phương pháp bình phương tối thiểu (vẽ bằng lệnh FitLine của Geogebra).

Qua tính toán trên ta có thể nhận thấy một lý do đơn giản vì sao ta lấy bình phương khoảng cách chứ không lấy khoảng cách: hàm khoảng cách cho bởi giá trị tuyệt đối không khả vi, trong khi bình phương của nó lại khả vi, cho phép ta dùng phép tính vi phân.

* Điều kiện đủ cho cực trị địa phương trong trường hợp hàm có số biến bất kì và Chứng minh Định lý 1.5.5

Giả sử f khả vi liên tục cấp hai trong một quả cầu B(x,r). Với $h \in B(0,r)$ ta đặt $g(t) = f(x+th) = f((x_1+th_1,\ldots,x_n+th_n)), t \in (-1,1)$. Giá trị của hàm g là giá trị của hàm f khi biến chỉ di chuyển dọc theo đoạn thẳng từ x tới h.

Ta tính đạo hàm của g theo qui tắc đạo hàm hàm hợp:

$$g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x+th) \frac{d(x_i+th_i)}{dt} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x+th)h_i,$$
 (1.5.2)

$$g'(0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)h_i, \tag{1.5.3}$$

$$g''(t) = \sum_{j=1}^{n} \frac{\partial}{\partial x_j} \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (x+th) h_i \right) \frac{d(x_j + th_j)}{dt} = \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (x+th) h_i h_j,$$

$$(1.5.4)$$

$$g''(0) = \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x) h_i h_j. \tag{1.5.5}$$

Ta có thể đoán rằng dấu của g''(0) có vai trò trong điều kiện đủ cho cực trị. Chẳng hạn nếu g''(0) > 0 và g'(0) = 0 thì theo kết quả về hàm một biến chắc chắn $g(t) = f(x + th) \ge g(0) = f(x)$ với mọi t đủ bé (phụ thuộc vào h).

Để trình bày chính xác ta dùng khai triển Taylor.

Mệnh đề 1.5.9 (khai triển Taylor). Cho f khả vi liên tục cấp hai trong một quả cầu B(x,r). Với mọi $h \in B(0,r)$ ta có

$$f(x+h) = f(x) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)h_i + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x+\theta h)h_i h_j,$$

 $v\acute{o}i \ \theta \in (0,1) \ phụ \ thuộc vào h. Từ đó$

$$f(x+h) = f(x) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x)h_i + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x)h_i h_j + \epsilon(h) \|h\|^2,$$

 $v\acute{\sigma}i \lim_{h\to 0} \epsilon(h) = 0.$

Như vậy khai triển Taylor phát triển xấp xỉ tuyến tính, từ bậc 1 lên bậc 2.

Chứng minh. Áp dụng khai triển Taylor cho hàm một biến g tại 0 ta được

$$g(t) = g(0) + g'(0)t + \frac{1}{2}g''(\theta)t^2,$$

với θ nằm giữa 0 và t. Chú ý là ta có thể cho t thuộc một khoảng mở chứa 0 và 1 mà vẫn đảm bảo $x + th \in B(x, r)$. Cho t = 1 ta được ngay công thức thứ nhất.

So sánh công thức thứ nhất và công thức thứ hai, ta chỉ cần chứng minh

$$\lim_{h \to 0} \left(\sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (x + \theta h) - \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (x) \right) \frac{h_i h_j}{\|h\|^2} = 0.$$

Dùng đánh giá $|h_i| \leq ||h||$ ta được

$$\left| \sum_{i,j=1}^{n} \left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x + \theta h) - \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \right) \frac{h_{i} h_{j}}{\|h\|^{2}} \right| \leq \sum_{i,j=1}^{n} \left| \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x + \theta h) - \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \right| \frac{|h_{i} h_{j}|}{\|h\|^{2}}$$

$$\leq \sum_{i,j=1}^{n} \left| \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x + \theta h) - \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \right|.$$

Cho
$$h \to 0$$
 thì $\frac{\partial^2 f}{\partial x_i \partial x_j}(x + \theta h) \to \frac{\partial^2 f}{\partial x_i \partial x_j}(x)$, ta được kết quả.

Bảng các đạo hàm bậc hai $\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$ xếp dưới dạng một ma trận $n \times n$ được gọi là ma trận Hesse, kí hiệu là

$$H(f,x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)_{1 \le i,j \le n}.$$

Bây giờ ta có thể phát biểu một điều kiện đủ cho cực trị địa phương:

Định lý 1.5.10 (điều kiện đủ cho cực trị). $Gi\mathring{a}$ sử f có các đạo hàm riêng cấp hai liên tục trên một quả cầu chứa x và x là một điểm dùng của f, tức $\nabla f(x) = 0$.

- (a) Nếu ma trận H(f,x) **xác định âm**, nghĩa là $\forall h = (h_1, h_2, \dots, h_n) \in \mathbb{R}^n \setminus \{0\}$ ta có $\sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(x) h_j h_j < 0$, thì f có cực đại địa phương tại x.
- (b) Nếu ma trận H(f,x) **xác định dương**, nghĩa là $\forall h = (h_1, h_2, \dots, h_n) \in \mathbb{R}^n \setminus \{0\}$ ta có $\sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(x) h_j h_j > 0$, thì f có cực tiểu địa phương tại x.
- (c) Nếu ma trận H(f,x) **không xác định dấu**, nghĩa là $\exists h = (h_1, h_2, \dots, h_n) \in \mathbb{R}^n \setminus \{0\}$ sao cho $\sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(x) h_j h_j < 0$ và $\exists h = (h_1, h_2, \dots, h_n) \in \mathbb{R}^n \setminus \{0\}$ sao cho $\sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(x) h_j h_j > 0$, thì f không có cực trị địa phương tại x.

Chứng minh. Áp dụng công thức công thức Taylor, chú ý x là điểm dừng, nghĩa là tất cả các đạo hàm bậc nhất $\frac{\partial f}{\partial x_i}(x)$ đều bằng 0, ta được với $h \neq 0$ thì

$$f(x+h) - f(x) = \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) h_{i} h_{j} + \epsilon(h) \|h\|^{2}$$
$$= \left(\frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \frac{h_{i} h_{j}}{\|h\|^{2}} + \epsilon(h)\right) \|h\|^{2},$$

với $\lim_{h\to 0} \epsilon(h) = 0$.

Giả sử H(f,x) xác định dương. Đặt $u=h/\|h\|$, thì

$$\frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x) \frac{h_i}{\|h\|} \frac{h_j}{\|h\|} = \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x) u_i u_j$$

là một hàm liên tục theo biến u trên mặt cầu đơn vị S(0,1), có giá trị dương. Vì mặt cầu có tính đóng và bị chặn (compắc) nên hàm này có giá trị nhỏ nhất $\alpha > 0$

(xem Định lý 1.5.13). Vậy bây giờ ta có

$$f(x+h) - f(x) \ge (\alpha + \epsilon(h)) \|h\|^2.$$

Khi h đủ nhỏ thì $\epsilon(h) > -\alpha$, do đó f(x+h) > f(x). Vậy x là một cực tiểu địa phương của f.

Trường hợp H(f,x) xác định âm là tương tự.

Nếu H(f,x) không xác định dấu thì từ công thức $g''(0) = \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x) h_i h_j$ ở Phương trình (1.5.5) ta thấy tồn tại hướng h theo hướng đó g có cực đại ngặt tại 0, đồng thời lại tồn tại hướng h mà theo hướng đó g có cực tiểu ngặt tại 0. Vậy f không có cực tri đia phương tai x.

Tính xác định dương và xác định âm của ma trận thực ra có thể cần những khảo sát sâu hơn để kiểm tra (một đề tài của môn Đại số tuyến tính nâng cao). Trong môn học này chúng ta chỉ dừng lại ở việc chỉ ra rằng trong trường hợp hai chiều có một cách rất thiết thực để kiểm tra điều này.

Mệnh đề 1.5.11. Cho ma trận

$$H = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

 $D \breve{a} t D = \det H = ac - b^2.$

- (a) Nếu D > 0 và a > 0 thì H là xác định dương. (Chú ý nếu D > 0 thì a và c cùng dấu nên vai trò của a và c ở đây như nhau.)
- (b) $N\hat{e}u D > 0$ và a < 0 thì H là xác định âm,
- (c) Nếu D < 0 thì H là không xác định dấu.

Rõ ràng mệnh đề này cùng với Định lý 1.5.10 cho ta Định lý 1.5.5, điều kiện đủ cho cực trị địa phương của hàm hai biến mà ta dùng trong mục trước.

Chứng minh. Theo phát biểu của Định lý 1.5.10 ta cần xét dấu của

$$\Delta(h) = ah_1^2 + 2bh_1h_2 + ch_2^2,$$

với $h = (h_1, h_2) \in \mathbb{R}^2$. Đây là một bài toán có thể khá đơn giản và quen thuộc với người đọc, cơ bản là viết biểu thức lại ở dạng tổng các bình phương.

Giả sử $a \neq 0$. Ta biến đổi

$$\Delta(h) = a \left[(h_1 + \frac{b}{a}h_2)^2 + \frac{ac - b^2}{a^2} h_2^2 \right].$$

Nếu D>0 và a>0 thì $\forall h\neq 0, \Delta(h)>0$ (nếu $h_2=0$ và $h_1+\frac{b}{a}h_2=0$ thì $h_1=0$). Tương tự, nếu D>0 và a<0 thì $\forall h\neq 0, \Delta(h)<0$.

Nếu D<0, lấy h=(1,0) thì $\Delta(h)=a$, nhưng lấy h=(-b/a,1) thì $\Delta(h)=D/a$, trái dấu, nên H là không xác định dấu.

Nếu a=0 và $c\neq 0$ thì ta chỉ cần đổi vai trò của a và c trong lý luận trên.

Giả sử a=c=0. Khi đó $D=-b^2\leq 0$. Nếu D<0 thì $b\neq 0$, khi đó $\Delta(h)=2bh_1h_2$ có giá trị 2b khi $h_1=h_2=1$ và giá trị -2b khi $h_1=-h_2=1$, nên H là không xác định dấu.

1.5.2 Cực trị toàn cục

Trong phần này chúng ta khảo sát bài toán tìm cực trị toàn cục, tức là tìm giá trị lớn nhất và giá trị nhỏ nhất.

Một tập con của không gian \mathbb{R}^n được gọi là bi chặn nếu nó được chứa trong một quả cầu với bán kính đủ lớn, nói cách khác độ lớn của các phần tử của tập này không vượt quá một số thực nhất định.

Nhắc lại một tập con của không gian \mathbb{R}^n được gọi là đóng nếu nó chứa mọi điểm biên của nó. Điều này cũng có nghĩa là tập này kín dưới phép qua giới hạn, tức là giới hạn của một dãy các phần tử trong tập này vẫn nằm trong tập này. Mỗi tập đóng đều là phần bù của một tập mở.

Một tập đóng và bị chặn trong \mathbb{R}^n là một $t\hat{q}p$ compắc ¹⁴.

Ví dụ 1.5.12. Trong mặt phẳng Euclid, hình tam giác, hình chữ nhật, hình tròn, đường tròn là những tập compắc.

Định lý 1.5.13. Một hàm số liên tục trên một tập compắc thì có giá trị lớn nhất và giá tri nhỏ nhất trên đó.

Đây là một tổng quát hóa của Định lý giá trị lớn nhất và nhỏ nhất của hàm một biến, nói rằng một hàm số liên tục trên một khoảng đóng các số thực thì có giá trị lớn nhất và giá trị nhỏ nhất trên đó [Bmgt1, Mục 4.1]. Chứng minh của nó vượt ra khỏi phạm vi của môn học này, thường có trong các giáo trình Giải tích như [TTQ11, Rud76, Lan97].

Áp dụng định lý này, giá trị lớn nhất và nhỏ nhất của một hàm trên một tập compắc tồn tại, hoặc xảy ra ở phần trong của miền xác định thì đó là các giá trị cực trị địa phương và phải tại các điểm dừng, hoặc xảy ra trên biên của miền xác định. Vì vậy để tìm giá trị lớn nhất và nhỏ nhất ta thực hiện các bước sau:

¹⁴từ compact trong tiếng Anh có nghĩa là gọn, chặt, ...

67

Tìm giá trị lớn nhất và nhỏ nhất của một hàm trên một tập compắc

Bước 1: Tìm các giá trị của hàm tại các điểm dừng ở phần trong của miền xác định.

Bước 2: Tìm các giá trị cực trị của hàm trên biên của miền xác định, dùng các phương pháp phù hợp với trường hợp cụ thể.

Bước 3: Số lớn nhất trong các giá trị ở Bước 1 và Bước 2 là giá trị lớn nhất của hàm và số nhỏ nhất trong các giá trị này là giá trị nhỏ nhất của hàm.

Ví dụ 1.5.14. Tìm giá trị lớn nhất và nhỏ nhất của hàm số $f(x,y) = x^2 - 2xy + 2y$ trong hình chữ nhật $D = \{(x,y) \mid 0 \le x \le 3, 0 \le y \le 2\}.$

Hình chữ nhật D đóng và bị chặn nên compắc. Vì f là một đa thức nên nó liên tục, vậy f có giá trị lớn nhất và nhỏ nhất trên D.

Ta thực hiện Bước 1, xét phần trong của hình chữ nhật D. Giải hệ

$$f_x(x,y) = 2x - 2y = 0,$$
 $f_y(x,y) = -2x + 2 = 0,$

ta có được điểm dừng duy nhất là (1,1), và giá trị của f ở đó là f(1,1)=1.

Hình 1.5.5

Trong Bước 2 chúng ta xét f trên biên của D, bao gồm 4 đoạn thẳng $L_1,\,L_2,\,L_3,\,L_4$ trong Hình 1.5.5.

Trên L_1 chúng ta có y = 0 và

$$f(x,0) = x^2, \qquad 0 \le x \le 3.$$

Đây là một hàm tăng của x, do đó giá trị nhỏ nhất của nó là f(0,0) = 0 và giá trị lớn nhất của nó là f(3,0) = 9.

Trên L_2 ta có x=3 và

$$f(3,y) = 9 - 4y, \quad 0 \le y \le 2.$$

Đây là một hàm giảm của y, do đó giá trị cực đại của nó là f(3,0)=9 và giá trị cực tiểu của nó là f(3,2)=1.

Trên L_3 chúng ta có y=2 và

$$f(x,2) = x^2 - 4x + 4, \qquad 0 \le x \le 3.$$

Bằng các phương pháp của vi phân hàm một biến, hay đơn giản bằng cách quan sát rằng $f(x,2) = (x-2)^2$, chúng ta thấy rằng giá trị cực tiểu của hàm số này là f(2,2) = 0 và giá trị cực đại là f(0,2) = 4.

Cuối cùng, trên L_4 chúng ta có x=0 và

$$f(0,y) = 2y, \quad 0 \le y \le 2$$

với giá trị cực đại f(0,2) = 4 và giá trị cực tiểu f(0,0) = 0. Do đó, trên biên, giá trị nhỏ nhất của f là 0 và giá trị lớn nhất là 9.

Trong Bước 3 chúng ta so sánh các giá trị này với giá trị f(1,1) = 1 ở Bước 1 và kết luận rằng giá trị lớn nhất của f trên D là f(3,0) = 9 và giá trị nhỏ nhất là f(0,0) = f(2,2) = 0.

Khi miền xác định không compắc nhưng sự tồn tại của giá trị lớn nhất được ngầm giả thiết, như thường thấy trong các bài toán ứng dụng, thì ta có thể giải bằng phương pháp đã có.

Ví dụ 1.5.15. Một doanh nghiệp bán hai loại sản phẩm với đơn giá lần lượt là 500 và 700 (đơn vị nghìn đồng/sản phẩm). Giả sử chi phí sản xuất của doanh nghiệp được cho bởi $C(x,y) = x^2 + xy + y^2 + 20000$, với x,y lần lượt là số đơn vị sản phẩm mỗi loại. Hỏi doanh nghiệp nên sản xuất như thế nào để tối ưu hóa lợi nhuận?

Doanh thu của doanh nghiệp được cho bởi R(x,y)=500x+700y. Lợi nhuận của doanh nghiệp được cho bởi

$$P(x,y) = R(x,y) - C(x,y) = 500x + 700y - (x^2 + xy + y^2 + 20000).$$

Bài toán là tìm giá trị lớn nhất của hàm P. Tập ràng buộc là $\{(x,y)\in\mathbb{R}^2\mid x\geq 0,y\geq 0\}$.

Ta tìm điểm dừng của P. Giải hệ $P_x(x,y) = 500 - 2x - y = 0$ và $P_y(x,y) = 700 - x - 2y = 0$, ta được x = 100, y = 300, và P(100,300) = 110000.

Trên biên, khi y=0 thì $P(x,0)=500x-x^2-20000$ có giá trị lớn nhất là 95000, còn khi x=0 thì $P(0,y)=700y-y^2-20000$ có giá trị lớn nhất là 102500.

Trong trường hợp này tập ràng buộc không bị chặn nên không compắc. Nếu ta giả thiết sự tồn tại của giá trị lớn nhất thì giá trị lớn nhất phải xảy ra ở một điểm dừng, do đó là 110000 xảy ra ở x = 100, y = 300.

Ở các bài tập ứng dụng tương tự trong môn này thì giá trị lớn nhất hoặc nhỏ nhất được ngầm giả thiết là tồn tại, người học không cần kiểm tra.

Ghi chú 1.5.16. * Khi miền xác định không compắc và không có giả thiết sự tồn tại của cực trị toàn cục, thì tùy trường hợp cụ thể ta tìm cách vận dụng để giải bài toán, có thể cần những khảo sát nâng cao hơn.

Trong Ví dụ 1.5.15, một cách tiếp cận là ta để ý nếu $\|(x,y)\|$ đủ lớn thì P(x,y) sẽ âm, chẳng hạn bằng nhận xét rằng $P(x,y) \leq \sqrt{500^2 + 700^2} \sqrt{x^2 + y^2} - (x^2 + y^2)$ tiến về $-\infty$ khi $x^2 + y^2$ tiến về ∞ . Do đó ta chỉ cần xét (x,y) thuộc về một hình tròn D đủ lớn chứa điểm (100,300) để ngoài D thì P có giá trị âm. Vì D là một tập compắc nên P có giá trị lớn nhất trên D, và đó phải là P(100,300) = 110000, cũng là giá trị lớn nhất trên toàn miền xác định của P. Ta có thể dùng máy tính vẽ đồ thị của hàm P để dự đoán và kiểm tra nhận xét trên.

Một cách tiếp cận khác là như sau. Ta tính $P_{xx}(x,y)=-2<0$, $P_{xy}(x,y)=-1$, $P_{yy}(x,y)=-2$, $D(x,y)=(-2)\cdot(-2)-(-1)^2=3>0$, $\forall (x,y)$. Khi xét kĩ hơn các lý luận ở mục trước ta có thể thu được một kết quả nâng cao hơn khẳng định rằng việc tập xác định $\{(x,y)\mid x>0,y>0\}$ là lồi mở cùng với việc D(x,y)>0 với mọi (x,y) đủ để dẫn tới kết luận P có giá trị lớn nhất và xảy ra duy nhất tại điểm dừng. Có thể tìm hiểu thêm ở [Syd16, tr. 500].

Phương pháp nhân tử Lagrange

Ta xét bài toán tìm cực trị của hàm f(x) trên tập xác định cho bởi phương trình g(x) = c trong đó c là một hằng số thực. Đây được gọi là một bài toán cực trị có ràng buộc, hay cực trị có điều kiện. Tập xác định của hàm f là tập mức $g^{-1}(\{c\})$. Tập như vậy không những có thể không phải là một tập mở mà còn có thể có phần trong bằng tập rỗng, khiến cho các phương pháp xét cực trị địa phương ở phần trước không áp dụng được.

Trước hết để đơn giản hơn ta khảo sát trường hợp hàm hai biến. Bài toán là

$$\begin{cases} \text{Tìm cực trị của } f(x,y) \\ \text{thỏa } g(x,y) = c. \end{cases} \tag{1.5.6}$$

 $\mathring{\mathrm{O}}$ đây f thường được gọi là hàm mục tiêu, g được gọi là hàm ràng buộc.

Ví dụ 1.5.17. Tìm cực trị của hàm f(x,y) = x + y thỏa $x^2 + y^2 = 1$.

Ta có thể nhìn bài toán như là tìm cực trị của hàm trên đường tròn đơn vị. Ta chú ý rằng đường tròn đơn vị có phần trong bằng rỗng, do đó trường hợp này không có cực trị địa phương theo Định nghĩa 1.5.2. Như vậy với Bài toán (1.5.6) ta tìm cực trị toàn cục. Ở những khảo sát nâng cao hơn người ta có thể mở rộng khái niệm cực trị địa phương để áp dụng cho trường hợp này.

Dưới đây ta xét một phương pháp để giải bài toán này dựa trên một quan sát đặc biệt, là tại điểm cực trị thì vectơ gradient của hàm mục tiêu và hàm ràng buộc phải cùng phương, vì cùng vuông góc với tập ràng buộc. Từ quan sát này, nếu (x_0, y_0) là

một nghiệm của Bài toán (1.5.6) thì hai vecto $\nabla g(x_0, y_0)$ và $\nabla f(x_0, y_0)$ phải là bội của nhau, phải có một số thực λ sao cho $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$. Số thực λ này được gọi là **nhân tử Lagrange**. Xem Hình 1.5.6.

Hình 1.5.6: Nguyên lí của phương pháp nhân tử Lagrange: Tại điểm cực trị thì vecto gradient của hàm muc tiêu và hàm ràng buôc cùng phương.

Định lý 1.5.18. Giả sử f và g khả vi liên tục trên một tập mở trong \mathbb{R}^2 . Nếu (x_0, y_0) là một nghiệm của Bài toán (1.5.6) thỏa $\nabla g(x_0, y_0) \neq 0$, thì phải tồn tại $\lambda \in \mathbb{R}$ sao cho

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0).$$

Chứng minh. Dưới đây là một lý luận hình học. Như ta đã thảo luận trong Mục 1.4.4, phương trình g(x,y)=c xác định một đường mức C của hàm g, và vector gradient của g phải vuông góc với C tại mọi điểm trên C.

Giả sử r(t) = (x(t), y(t)) là một đường khả vi trên C đi qua điểm $(x_0, y_0) = r(0)$. Hàm f có cực trị tại (x_0, y_0) nên hàm f(r(t)) có cực trị địa phương tại t = 0, do đó có đạo hàm bằng 0 tại t = 0, tức là $\frac{d}{dt}(f(r(t))|_{t=0} = \nabla f(r(0)) \cdot r'(0) = 0$. Vậy vectơ gradient của f vuông góc với một vectơ tiếp xúc r'(0) bất kì của C, nên cũng phải vuông góc với đường C tại điểm cực trị (x_0, y_0) .

Như thế trên mặt phẳng ta có hai vecto $\nabla g(x_0, y_0)$ và $\nabla f(x_0, y_0)$ cùng vuông góc với đường C tại điểm (x_0, y_0) . Dưới điều kiện kỹ thuật rằng $\nabla g(x_0, y_0) \neq 0$ thì C có tiếp tuyến một chiều tại (x_0, y_0) , hai vecto $\nabla g(x_0, y_0)$ và $\nabla f(x_0, y_0)$ cùng vuông góc với tiếp tuyến này nên phải cùng phương.

Chứng minh chi tiết hơn có thể viết bằng cách dùng Định lý hàm ẩn như sau.

Với giả thiết $\nabla g(x_0, y_0) \neq 0$, để nhất định ta giả sử $\frac{\partial g}{\partial y}(x_0, y_0) \neq 0$. Theo Định lý hàm ẩn, có một lân cận của (x_0, y_0) trên đó C là đồ thị của một hàm khả vi theo biến x, tức là phương trình g(x, y) = 0 giải được $y = \varphi(x)$. Như thế có một khoảng mở chứa x_0 trên đó ta có đẳng thức $g(x, \varphi(x)) = 1$. Lấy đạo hàm hai vế theo x bằng đạo hàm hàm hợp, ta được $g_x + g_y \varphi_x = 0$. Suy ra

$$\nabla g = (g_x, g_y) = g_y(-\varphi_x, 1).$$

Mặt khác, f có cực trị tại (x_0, y_0) dẫn tới hàm $f(x, \varphi(x))$ có cực trị tại x_0 , dẫn tới đạo hàm theo x phải bằng 0 tại x_0 , do đó tại (x_0, y_0) thì $\frac{\partial}{\partial x} f(x, \varphi(x)) = f_x + f_y \varphi_x = 0$. Suy ra

$$\nabla f = (f_x, f_y) = f_y(-\varphi_x, 1).$$

Vậy tại (x_0, y_0) thì ∇g và ∇f cùng phương với vecto $(-\varphi_x, 1)$ nên cùng phương với nhau. Ngoài ra ta thấy $(-\varphi_x, 1) \perp (1, \varphi_x)$, mà $(1, \varphi_x)$ là một vecto chỉ phương tiếp tuyến của đường C là đồ thị địa phương của hàm $y = \varphi(x)$, nên phương của $(-\varphi_x, 1)$ phải là phương pháp tuyến của C.

Từ định lý trên ta rút ra phương pháp sau:

Phương pháp nhân tử Lagrange

$$\begin{cases} \textbf{Tim cực trị của} \ f(x,y) \\ \textbf{thỏa} \ g(x,y) = c. \end{cases}$$

Với giả thiết ∇g luôn khác 0 trên tập ràng buộc, nghiệm của bài toán phải thỏa hệ phương trình sau gồm 3 phương trình và 3 ẩn x, y, λ :

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = \lambda \frac{\partial g}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) = \lambda \frac{\partial g}{\partial y}(x,y) \\ g(x,y) = c. \end{cases}$$

Ví dụ 1.5.19. Tìm cực trị toàn cục của hàm f(x,y)=x+y thỏa $x^2+y^2=1$.

Ta dùng phương pháp nhân tử Lagrange với $f(x,y)=x+y,\ g(x,y)=x^2+y^2.$ Ta có $\nabla f(x,y)=(1,1),\ \nabla g(x,y)=(2x,2y).$ Trên tập $x^2+y^2=1$ thì $\nabla g(x,y)$ luôn khác 0. Ta giải hệ

$$\begin{cases} 1 = \lambda(2x) \\ 1 = \lambda(2y) \\ x^2 + y^2 = 1 \end{cases} \iff \begin{cases} x = y = \frac{1}{2\lambda} \\ x^2 + y^2 = 1. \end{cases}$$

Nghiệm là $x=y=\frac{\sqrt{2}}{2}$ hoặc $x=y=-\frac{\sqrt{2}}{2}$. Vậy nếu bài toán có nghiệm thì nó phải ở các điểm $(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$ và $(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})$. Hàm f chắc chắn có giá trị lớn nhất và giá trị nhỏ nhất trên đường tròn đơn vị $x^2+y^2=1$ vì đây là một tập compắc, để xác định ta chỉ cần tính giá trị f tại hai điểm này. Vì $f(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})=\sqrt{2}$ còn $f(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})=-\sqrt{2}$ nên hai giá trị này lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm.

Bài toán này cũng có những lời giải khác, chẳng hạn dùng Bất đẳng thức Buniakowski.

Ví dụ 1.5.20. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm f(x,y) = x + y trên miền xác định $x^2 + y^2 \le 1$.

Ta tìm điểm dừng trên phần trong của miền xác định của f, trên tập cho bởi $x^2 + y^2 < 1$. Ta tính $f_x(x,y) = 1$, $f_y(x,y) = 1$. Vậy hàm f không có điểm dừng trên phần trong của miền xác định, do đó cực trị không xảy ra ở đó.

Trên biên của miền xác định, cho bởi phương trình $x^2+y^2=1$, Ví dụ 1.5.19 cho $f(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})=\sqrt{2}$ và $f(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})=-\sqrt{2}$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của f. Vậy đây cũng là giá trị lớn nhất và giá trị nhỏ nhất của f trên toàn miền xác định.

Làm tương tự trường hợp hai biến ta có thể thu được phương pháp nhân tử Lagrange cho trường hợp số biến bất kì:

Định lý 1.5.21. $Gi\mathring{a}$ sử f và g khẩ vi liên tục trên một tập mở trong \mathbb{R}^n . Xét bài toán

$$\begin{cases} Tim \ cực \ trị \ của \ f(x) \\ thỏa \ g(x) = c. \end{cases}$$
 (1.5.7)

Nếu a là một nghiệm của Bài toán (1.5.7) và $\nabla g(a) \neq 0$ thì phải tồn tại $\lambda \in \mathbb{R}$ sao cho

$$\nabla f(a) = \lambda \nabla g(a).$$

Ví dụ 1.5.22. Tìm cực trị của hàm f(x,y,z)=x+2y+3z thỏa $x^2+y^2+z^2=1$. Đặt $g(x,y,z)=x^2+y^2+z^2$, ta có ràng buộc g(x,y,z)=1. Ta thấy $\nabla g(x,y,z)=(2x,2y,2z)$ luôn khác 0 trên tập ràng buộc. Áp dụng phương pháp nhân tử Lagrange, cực trị của hàm f nếu có phải thỏa hệ phương trình

$$\begin{cases} \nabla f(x, y, z) = \lambda \nabla g(x, y, z) \\ g(x, y, z) = 1. \end{cases}$$

Tính toán các đạo hàm riêng ta được hệ

$$\begin{cases}
1 = \lambda 2x \\
2 = \lambda 2y \\
3 = \lambda 2z \\
x^2 + y^2 + z^2 = 1.
\end{cases}$$

Từ ba phương trình đầu, tính x,y,z theo λ rồi thế vào phương trình thứ tư, ta tính được $\lambda=\pm\frac{\sqrt{14}}{2}$. Vậy cực trị chỉ có thể xảy ra ở điểm $(\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}})$ hoặc điểm $-(\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}})$. Vì tập ràng buộc mặt cầu đơn vị là compắc nên cực trị toàn cục xảy ra, ta kết luận hai điểm tìm được thực sự ứng với giá trị lớn nhất $f(\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},\frac{3}{\sqrt{14}})=\sqrt{14}$ và giá trị nhỏ nhất $f(-\frac{1}{\sqrt{14}},-\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}})=-\sqrt{14}$.

Ví dụ 1.5.23. Tìm giá trị lớn nhất và nhỏ nhất của hàm số f(x,y)=x+y-z trên tập $x^2+y^2+z^2=1$.

Tập xác định $x^2 + y^2 + z^2 = 1$ là một mặt cầu trong \mathbb{R}^3 . Mặt cầu thì bị chặn và đóng, nên là compắc, do đó bài toán có nghiệm. Chú ý mặt cầu không có điểm trong do không chứa quả cầu nào, và mọi điểm của mặt cầu là điểm biên.

73

Đặt $g(x,y,z)=x^2+y^2+z^2$. Điểm cực trị phải thỏa hệ phương trình

$$\begin{cases} \nabla f(x,y,z) = \lambda \nabla g(x,y,z) \\ g(x,y,z) = 1. \end{cases}$$

Tính toán các đao hàm riêng ta được hệ

$$\begin{cases} (1, 1, -1) = \lambda(2x, 2y, 2z) \\ x^2 + y^2 + z^2 = 1 \end{cases}$$

hay

$$\begin{cases}
1 = \lambda 2x \\
1 = \lambda 2y \\
-1 = \lambda 2z \\
x^2 + y^2 + z^2 = 1.
\end{cases}$$

Từ ba phương trình đầu ta rút ra $\lambda \neq 0$ và x = y = -z. Thay vào phương trình cuối ta được $x = \pm \frac{1}{\sqrt{3}}$. Vậy cực trị chỉ có thể xảy ra tại hai điểm $A = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$ hoặc $B = (-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$.

Tính $f(A) = \sqrt{3}$, $f(B) = -\sqrt{3}$, ta kết luận giá trị lớn nhất là $\sqrt{3}$ đạt được ở A và giá trị nhỏ nhất là $-\sqrt{3}$ đạt được ở B.

Ta cũng có thể phát triển phương pháp cho nhiều ràng buộc:

Mệnh đề 1.5.24. $Gi\mathring{a}$ sử f và g_i , $1 \leq i \leq p < n$, khả vi liên tục trên một tập mở trong \mathbb{R}^n . Xét bài toán

$$\begin{cases}
Tim \ cực \ trị \ của \ f(x) \\
thỏa \ g_i(x) = c_i, \ 1 \le i \le p.
\end{cases}$$
(1.5.8)

Nếu a là một nghiệm của Bài toán (1.5.8), và $\nabla g_1(a), \nabla g_2(a), \dots, \nabla g_p(a)$ độc lập tuyến tính, thì phải tồn tại $\lambda_1, \lambda_2, \dots, \lambda_p \in \mathbb{R}$ sao cho

$$\nabla f(a) = \sum_{i=1}^{p} \lambda_i \nabla g_i(a).$$

Ví dụ 1.5.25. Tìm cực trị của f(x, y, z) = x thỏa x + y + z = 1 và $x^2 + y^2 + z^2 = 1$.

Đặt g(x,y,z)=x+y+z, $h(x,y,z)=x^2+y^2+z^2$, ta có ràng buộc g(x,y,z)=1, h(x,y,z)=1. Ta áp dụng định lý trên với p=2. Ta có $\nabla g(x,y,z)=(1,1,1)$, $\nabla h(x,y,z)=(2x,2y,2z)$. Hai vectơ này phụ thuộc tuyến tính khi và chỉ khi chúng cùng phương, tức là x=y=z, tuy nhiên khi đó hai ràng buộc không thể cùng được thỏa, vậy hai vectơ này luôn độc lập tuyến tính trên tập ràng buộc. Phương pháp

nhân tử Lagrange cho biết cực trị của hàm f nếu có phải thỏa hệ phương trình

$$\begin{cases} \nabla f(x, y, z) = \lambda_1 \nabla g(x, y, z) + \lambda_2 \nabla h(x, y, z) \\ g(x, y, z) = 1 \\ h(x, y, z) = 1. \end{cases}$$

Ta được hệ

$$\begin{cases} 1 = \lambda_1 + \lambda_2 2x \\ 0 = \lambda_1 + \lambda_2 2y \\ 0 = \lambda_1 + \lambda_2 2z \\ x + y + z = 1 \\ x^2 + y^2 + z^2 = 1. \end{cases}$$

Từ ba phương trình đầu, tính x,y,z theo λ_1 và λ_2 rồi thế vào phương trình thứ tư, ta tính được $\lambda_2=\frac{1-3\lambda_1}{2}$. Thế vào phương trình thứ năm ta được $\lambda_1=0$ hoặc $\lambda_1=\frac{2}{3}$, tương ứng điểm (x,y,z)=(1,0,0) hoặc $(x,y,z)=(-\frac{1}{3},\frac{2}{3},\frac{2}{3})$. Vậy cực trị chỉ có thể xảy ra ở hai điểm này. Tập ràng buộc là giao của một mặt phẳng với một mặt cầu, là một đường tròn nên là tập compắc, ta kết luận hai điểm tìm được thực sự ứng với giá trị lớn nhất f(1,0,0)=1 và giá trị nhỏ nhất $f(-\frac{1}{3},\frac{2}{3},\frac{2}{3})=-\frac{1}{3}$.

Các phương pháp để khảo sát các bài toán cực trị được nghiên cứu trong một lĩnh vực toán học gọi là Tối ưu hóa.

Bài tâp

1.5.1. Tìm và phân loại các điểm tới hạn của hàm số:

- (a) $f(x,y) = x^3 + y^3 3x 12y + 5$.
- (b) $f(x,y) = x^2 xy + y^2 + 9x 6y + 10$.
- (c) $f(x,y) = x^3 6xy + 8y^3$.
- (d) $f(x,y) = 3xy x^2y xy^2$.
- (e) $f(x,y) = (x^2 + y)e^{y/2}$.
- (f) $f(x,y) = -x^3 + 4xy 2y^2 + 1$.
- (g) $f(x,y) = x^3 + y^3 3x^2 3y^2 9x$.
- (h) $f(x,y) = x^3 3x^2 + 3x(1-y) + y^3 + 3y$.
- (i) $f(x,y) = x^3 3x^2 + 3x y^2$.
- (i) $f(x,y) = 1 x^2 + 4xy 4y^2$.
- (k) $f(x,y) = 3x^2 x^3 2y^2 + y^4$.
- (1) $f(x,y) = \ln(x^2 + y^2 + 1)$.
- 1.5.2. Tìm các giá trị lớn nhất và nhỏ nhất của hàm theo các ràng buộc được cho:
 - (a) f(x,y) = 6 4x 3y, $x^2 + y^2 = 1$.

75

- (b) $f(x,y) = x^2y, x^2 + y^2 = 1.$
- (c) $f(x,y) = e^{-xy}, x^2 + 4y^2 = 1.$
- (d) $f(x,y) = x^2y, x^2 + 2y^2 = 6.$
- (e) f(x,y) = xy, $(x-1)^2 + y^2 = 1$.
- (f) $f(x, y, z) = x + z, x^2 + y^2 + z^2 = 1.$
- (g) $f(x, y, z) = xyz, x^2 + y^2 + z^2 = 3.$
- (h) $f(x,y,z) = x^2 + y^2 + z^2$, x + y + z = 1, $x^2 + y^2 = 1$.
- (i) f(x, y, z) = x + y + z, x + z = 1, $x^2 + y^2 = 2$.
- (j) $f(x,y) = x^2 3y + y^2$, $-1 \le x \le 1$, $0 \le y \le 2$.
- (k) f(x,y) = xy x 2y trên tam giác với các đỉnh (3,0), (0,6), (0,0).
- (l) $f(x,y) = 4xy^2 x^2y^2 xy^3$ trên tam giác với các đỉnh (0,0), (0,6), (6,0).
- (m) $f(x,y) = xy, x^2 + y^2 \le 1$.
- (n) $f(x,y) = x^2 + y^2 x y$, $x^2 + y^2 \le 1$.
- (o) $f(x,y) = x^2 + xy^2 2x + 3$, $x^2 + y^2 \le 10$.
- **1.5.3.** Cho hàm số $f(x,y) = 3y y^3 3x^2y$.
 - (a) Tìm các điểm cực đại và cực tiểu địa phương của hàm f.
 - (b) Hàm f có cực trị toàn cục trên tập $0 \le x \le 2$ và $0 \le y \le 3$ hay không? Nếu có, hãy tìm.
- **1.5.4.** Tìm điểm trên đồ thị $z = x^2 + y^2$ mà gần nhất tới điểm (0,0,2).
- **1.5.5.** Tìm điểm trên mặt phẳng 2x + y z = 3 gần nhất tới gốc tọa độ.
- **1.5.6.** Cho

$$f(x,y) = e^{-x^2 - y^2}(x^2 + 2y^2).$$

- (a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của f trên hình tròn $x^2 + y^2 \le 4$.
- (b) * Tìm giá trị lớn nhất và giá trị nhỏ nhất của f trên \mathbb{R}^2 .
- **1.5.7.** Một ngọn núi có độ cao được mô hình hóa bởi $h(x,y) = 15 xy x^2 (y-1)^2$, đơn vị là trăm mét. Hãy tìm độ cao của đỉnh ngọn núi.
- **1.5.8.** Một mảnh kim loại phẳng có dạng hình tròn $x^2 + y^2 \le 1$, được nung nóng theo thiết kế sao cho nhiệt độ tại điểm (x,y) là $x^2 + 2y^2 x$. Hỏi trên mảnh kim loại ở đâu nóng nhất, ở đâu nguội nhất?
- **1.5.9.** Nhiệt độ trên mặt cầu $x^2+y^2+z^2=1$ được mô hình hóa bằng hàm $T(x,y,z)=50-100(x+2y+3z)^2$. Tìm nơi lạnh nhất trên mặt cầu.
- **1.5.10.** Tìm điểm trên mặt bầu dục $g(x,y,z)=5x^2+y^2+3z^2=9$ mà tại đó nhiệt độ f(x,y,z)=750+5x-2y+9z là cao nhất.
- **1.5.11.** Một công ty sản xuất hai loại điện thoại di động. Gọi x là số điện thoại loại 1 (đơn vị nghìn cái), và y là số điện thoại loại 2 (đơn vị nghìn cái). Chi phí sản xuất được mô hình hóa bằng hàm $C(x,y) = 3x^2 3xy + 4y^2$ (đơn vị tỉ đồng).

- (a) Hãy tính $C_x(3,4)$ và giải thích ý nghĩa của kết quả.
- (b) Hãy tính doanh thu R(x,y) nếu mỗi điện thoại loại 1 có giá bán 30 triệu đồng và mỗi điện thoại loại 2 có giá bán 20 triệu đồng.
- (c) Công ty nên sản xuất với sản lượng mỗi loại là bao nhiêu để được lợi nhuận tối đa?
- **1.5.12.** Một công ty sản xuất hai mẫu xe gắn máy. Gọi x là số xe theo mẫu thứ nhất, y là số xe theo mẫu thứ hai (đơn vị là nghìn chiếc). Chi phí sản xuất được cho bởi hàm $C(x,y) = 3x^2 + 4xy + 5y^2$ (đơn vị tỉ đồng). Giá bán mỗi xe thuộc mẫu thứ nhất là 34 triệu đồng và giá bán mỗi xe thuộc mẫu thứ thứ hai là 52 triệu đồng.
 - (a) Tìm công thức cho doanh thu và lợi nhuận.
 - (b) Công ty nên sản xuất với sản lượng mỗi loại là bao nhiều để có lợi nhuận lớn nhất?
- 1.5.13. Một công ty có hàm lợi nhuận là

$$\pi = 3K^{\frac{1}{3}}L^{\frac{1}{3}} - 0.04K - L.$$

Đây là một mô hình Cobb–Douglas, xem Bài tập 1.3.4. Tìm K và L để lợi nhuận của công ty là tối đa.

- **1.5.14.** Giả sử năng suất cây trồng S phụ thuộc vào hàm lượng chất Nitơ N và Phốtpho P trong đất theo công thức $S = NPe^{-N-P}$. Hãy tìm các hàm lượng chất để năng suất cây trồng đạt cao nhất.
- 1.5.15. Người ta gia công một bể chứa hình hộp chữ nhật để làm chứa một lượng chất lỏng cho trước. Bể chứa gồm mặt đáy và bốn mặt hông, không có mặt trên. Ước tính chi phí cho mỗi đơn vị diện tích của mặt đáy gấp 2 lần chi phí cho mỗi đơn vị diện tích của mặt hông. Hãy tìm kích thước bể để chi phí xây dựng là nhỏ nhất.
- **1.5.16.** Hãy dùng phương pháp nhân tử Lagrange để chứng minh rằng trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất. Cụ thể hơn, hãy tìm giá trị lớn nhất của hàm f(x,y) = xy dưới ràng buộc $g(x,y) = x + y = c = \text{hằng số và } x \geq 0, y \geq 0.$
- **1.5.17.** Hãy dùng phương pháp nhân tử Lagrange để chứng minh rằng trong các hình hộp chữ nhật có cùng diện tích thì hình hộp vuông (hình hộp có các cạnh có cùng chiều dài) có thể tích lớn nhất, bằng cách tìm giá trị lớn nhất của hàm f(x,y,z)=xyz dưới ràng buộc g(x,y)=2(xy+yz+zx)=c=hằng số và $x\geq 0,\,y\geq 0,\,z\geq 0.$
- **1.5.18.** Dùng phương pháp bình phương tối thiểu ở Ví dụ 1.5.8 để tìm hồi quy tuyến tính cho bộ dữ liệu $\{(-1,3),(2,1),(4,3),(5,6)\}$. Hãy tính trực tiếp và so sánh với kết quả dùng máy tính.
- **1.5.19.** * Hãy khảo sát sự tồn tại nghiệm của phương pháp hồi quy tuyến tính ở Ví dụ 1.5.8. Hãy kiểm tra điểm tới hạn, nghiệm của phương trình (1.5.1) trong tính toán bình phương tối thiểu, quả thực là điểm cực tiểu, sử dung tiêu chuẩn đao hàm bâc hai.
- **1.5.20.** Cho hàm $f(x,y)=x^3$. Hãy phác họa đồ thị của hàm này. Phương pháp dùng ma trận Hesse có cho kết luận về cực trị địa phương của hàm này hay không? Vì sao?
- 1.5.21. * Tìm và phân loại các điểm tới hạn của hàm số. Hãy vẽ (bằng máy tính) đồ thị của hàm số trong lân cận các điểm tới hạn để khảo sát và kiểm tra kết quả.
 - (a) $f(x,y) = xy(x^2 y^2)$ (đồ thị này có khi được gọi là "yên chó").

- (b) $f(x,y) = x^3 3xy^2$ (đồ thị này có khi được gọi là "yên khỉ").
- (c) $f(x,y) = xy^2(1-x-y)$.
- (d) $f(x,y) = x^4 + y^4 x^2 2xy y^2$.
- **1.5.22.** * Hãy dùng phương pháp nhân tử Lagrange để chứng minh bất đẳng thức Cauchy: Nếu x_1, x_2, \ldots, x_n là các số thực không âm thì $\sqrt[n]{x_1 x_2 \cdots x_n} \leq \frac{x_1 + x_2 + \cdots + x_n}{n}$, bằng cách tìm giá trị lớn nhất của hàm số $f(x_1, x_2, \ldots, x_n) = x_1 x_2 \cdots x_n$ dưới ràng buộc $g(x_1, x_2, \ldots, x_n) = x_1 + x_2 + \cdots + x_n = c =$ hằng số và $x_1, x_2, \ldots, x_n \geq 0$.

Chương 2 Tích phân của hàm nhiều biến

Trong chương này chúng ta sẽ nghiên cứu tích phân trong không gian nhiều chiều. Tích phân trên không gian nhiều chiều phát triển tương tự tích phân một chiều, do đó các ý chính có thể đã quen thuộc, để dễ theo dõi hơn người đọc có thể xem lại phần tích phân một chiều trong [Bmgt1]. Tuy phần trình bày sau đây cho số chiều bất kì nhưng người đọc nếu muốn có thể chỉ xem xét các trường hợp 1, 2, 3 chiều.

Một số kết quả nền tảng trong phần này có những giải thích, nhưng chứng minh đầy đủ thì vượt quá phạm vi môn học. Các thảo luận thêm và chứng minh có trong các tài liệu như [PTT02, Vugt3, Apo69].

2.1 Định nghĩa và tính chất của tích phân bội

Cho I là một hình hộp n-chiều, và cho hàm $f:I\to\mathbb{R}$. Giả sử thêm hàm f là không âm. Ta muốn tìm "thể tích" của khối bên dưới đồ thị của hàm f bên trên hình hộp I. Như trường hợp số chiều n=1, ta xấp xỉ khối đó bằng những hình hộp với đáy là một hình hộp con của I và chiều cao là một giá trị của f trong hình hộp con đó. Ta hy vong rằng khi số hình hộp tăng lên thì ta sẽ gần hơn giá trị đúng của thể tích.

Hình 2.1.1: Xấp xỉ diện tích bên dưới đồ thị bởi diện tích các hình chữ nhật.

Ví dụ 2.1.1. Ở Hình 2.1.2, nếu ta xét tình huống lượng nước mưa rơi trên một vùng đất hình chữ nhật I, thì tổng lượng nước mưa rơi trên I được xấp xỉ bằng cách

Hình 2.1.2: Xấp xỉ thể tích bên dưới đồ thi bởi thể tích các hình hộp.

chia I thành những ô chữ nhật nhỏ, trong mỗi ô nhỏ lấy một điểm đại diện để đo lượng nước mưa rơi tại điểm đó, rồi nhân với diện tích của ô nhỏ để thu được xấp xỉ lượng nước mưa rơi trên ô nhỏ đó, rồi cộng trên tất cả các ô nhỏ.

Ví dụ trên là một tình huống mà ta muốn tính "tổng giá trị" của hàm f trên hình hộp I. Ý tưởng cũng là chia nhỏ miền xác định, trên mỗi mảnh nhỏ xấp xỉ bằng hàm hằng, lấy tổng, rồi qua giới hạn khi phép chia mịn hơn.

Dưới đây ta bắt đầu làm chính xác hóa ý tưởng này.

2.1.1 Tích phân trên hình hộp

Thể tích của hình hộp là tích các kích thước các chiều của hình hộp. Điều này ta đã học từ lâu nhưng giờ ta dành thời gian xem lại nguồn gốc của công thức này.

Chiều dài của đoạn thẳng [a,b], được cho bằng số thực b-a. Ta thử giải thích vì sao như vậy. Ta muốn khái niệm chiều dài toán học mô phỏng khái niệm chiều dài thường dùng trong đời sống từ xưa, đại diện cho độ lớn của một vật thẳng. Như vậy trước hết ta muốn một đoạn thẳng [a,b] thì có chiều dài, kí hiệu là |[a,b]|, là một số thực không âm. Ta muốn qua phép tịnh tiến thì chiều dài của đoạn thẳng không thay đổi, vậy cần có |[a+c,b+c]|=|[a,b]|. Một tính chất quan trọng khác mà ta muốn là "tính cộng": chiều dài của hai vật rời nhau phải bằng tổng chiều dài của hai vật.

Chiều dài của một điểm phải bằng bao nhiêu? Nếu đó là một số thực dương thì do tính cộng, chiều dài của bất kì đoạn [a,b] nào, do chứa vô hạn điểm, phải bằng vô hạn. Điều này ta không muốn, do đó chiều dài của một điểm phải bằng 0.

Với n là số nguyên dương và a là một số thực dương, thì đoạn thẳng [0,na] là hợp của n đoạn thẳng $[0,a],[a,2a],[2a,3a],\ldots,[(n-1)a,na]$ có cùng chiều dài mà hai đoạn liên tiếp chỉ có phần chung là một điểm. Do tính cộng ta rút ra |[0,na]|=n|[0,a]|. Điều này cũng dẫn tới $|[0,a]|=n|[0,\frac{1}{n}a]|$, hay viết cách khác

$$\begin{split} |[0,\frac{1}{n}a]| &= \frac{1}{n}|[0,a]|. \text{ Với } m,n \text{ là số nguyên dương thì } |[0,\frac{m}{n}]| = m|[0,\frac{1}{n}]| = \frac{m}{n}|[0,1]|. \\ \text{Vậy với } a \text{ là số hữu tỉ dương thì } [0,a]| &= a|[0,1]|. \text{ Với } a \text{ là số vô tỉ dương, thì gần } a \\ \text{tùy ý có các số hữu tỉ dương } b \text{ và } c \text{ sao cho } b < a < c, \text{ dẫn tới } |[0,b]| &= b|[0,1]| \leq |[0,a]| \leq |[0,c]| &= c|[0,1]|. \\ \text{Điều này dẫn tới bắt buộc } |[0,a]| &= a|[0,1]|. \end{split}$$

Vậy với hai số thực a < b thì phải có |[a,b]| = |[0,b-a]| = (b-a)|[0,1]|. Để chuẩn hóa ta thường lấy |[0,1]| = 1, và như thế |[a,b]| = (b-a).

Giải thích trên chỉ ra nguồn gốc là chiều dài cần có những tính chất như tính cộng và tính không thay đổi dưới phép dời hình. Các tính chất đó dẫn tới chiều dài phải được định nghĩa theo một cách duy nhất sai khác một cách chọn chiều dài đơn vi, một đơn vi đo.

Lý luận tương tự, diện tích của một hình chữ nhật $[a,b] \times [c,d]$ phải bằng (b-a)(d-c) nhân diện tích của hình chữ nhật $[0,1] \times [0,1]$, do đó tỉ lệ với chiều dài nhân chiều rộng.

Giờ ta có thể đưa ra định nghĩa cho thể tích của hình hộp cho trường hợp nhiều chiều. Một **hình hộp** n-chiều trong \mathbb{R}^n là một tập con của \mathbb{R}^n có dạng $[a_1,b_1] \times [a_2,b_2] \times \cdots \times [a_n,b_n]$, tức là

$$\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2, \dots, a_n \le x_n \le b_n\}$$

trong đó $a_i < b_i$ với mọi i = 1, ..., n. **Thể tích** n-**chiều của hình hộp** $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$ được định nghĩa là số thực $(b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$.

Ta thường dùng kí hiệu |I| để chỉ thể tích n-chiều của I. Khi số chiều n=1 ta thường thay từ thể tích 1-chiều bằng từ **chiều dài**. Khi n=2 ta thường dùng từ **diện tích**.

Bây giờ ta bắt đầu quá trình chia nhỏ miền xác định. Một **phép chia** (hay phân hoạch) của một khoảng [a,b] là một tập con hữu hạn của khoảng [a,b] mà chứa cả a và b. Ta có thể đặt tên các phần tử của một phép chia là x_0, x_1, \ldots, x_m với $a = x_0 < x_1 < x_2 < \cdots < x_m = b$. Mỗi khoảng $[x_{i-1}, x_i]$ là một **khoảng con** của khoảng [a,b] tương ứng với phép chia.

Một phép chia của hình hộp $I = \prod_{i=1}^{n} [a_i, b_i]$ là một tích của các phép chia của các khoảng $[a_i, b_i]$. Mỗi điểm chia của hình hộp I có tọa độ thứ i là một điểm chia của khoảng $[a_i, b_i]$. Một hình hộp con là một tích các khoảng con của các cạnh của hình hộp I. Xem ví du ở Hình 2.1.3.

Bây giờ là việc xấp xỉ. Cho I là một hình hộp, và $f: I \to \mathbb{R}$. Với một phép chia của I, với mỗi hình hộp con R ứng với phép chia đó, lấy x_R là một điểm bất kì thuộc R, đóng vai trò là một điểm đại diện, và giá trị $f(x_R)$ là giá trị đại diện của f trên R. Ta thành lập tổng Riemann 1

$$\sum_{R} f(x_R)|R|$$

ở đây tổng được lấy trên tất cả các hình hộp con R của phép chia. Xem Hình 2.1.4.

¹Bernard Riemann là người đã đề xuất một định nghĩa chặt chẽ cho tích phân vào khoảng năm 1854, mặc dù tích phân đã được dùng từ lâu trước đó.

Hình 2.1.3: Một phép chia của hình chữ nhật $[a,b] \times [c,d]$ gồm những điểm mà các tọa độ thứ nhất tạo thành một phép chia của [a,b] và các tọa độ thứ hai tạo thành một phép chia của [c,d].

Hình 2.1.4: Xấp xỉ Riemann.

Ví dụ 2.1.2. Xét hàm f(x,y) = x + 2y trên hình chữ nhật $[0,4] \times [0,2]$. Giả sử ta chia đều hình chữ nhật này thành 4 phần bằng nhau, và lấy điểm đại diện trên mỗi hình chữ nhật con là điểm giữa của hình chữ nhật con. Tổng Riemann tương ứng là

$$[f(1;0,5) + f(3;0,5) + f(1;1,5) + f(3,1,5)] \times 2 \times 1 = [2+4+4+6] \times 2 = 32.$$

Sau xấp xỉ bằng tổng Riemann là quá trình giới hạn. "Giới hạn" của tổng Riemann khi phép chia "mịn hơn" là tích phân của hàm f trên I, kí hiệu là $\int_I f^2$. Quá trình giới hạn này cần và có thể được làm rõ hơn. Ta có thể hiểu tích phân

 $^{^{2}}$ Kí hiệu \int do Gottfried Leibniz đặt ra khi xây dựng phép tính vi tích phân vào thế kỉ 17. Nó đại diện cho chữ cái "s" trong chữ Latin "summa" (tổng).

của hàm f trên hình hộp I là số thực sao cho các tổng Riemann của f gần số thực này tùy ý miễn phép chia hình hộp I là "đủ mịn". Chính xác bằng kí hiệu như sau.

Định nghĩa 2.1.3. Ta nói f là $kh \mathring{a}$ tích (có tích phân) trên I nếu có một số thực, gọi là tích phân của f trên I, kí hiệu là $\int_I f$, có tính chất là với mọi $\epsilon > 0$, có $\delta > 0$, sao cho nếu một phép chia của hình hộp I có tất cả các cạnh của các hình chữ nhật con đều có chiều dài nhỏ hơn δ , thì với mọi cách chọn điểm đại diện x_R thuộc hình hộp con R, ta có $\left|\sum_R f(x_R) |R| - \int_I f\right| < \epsilon$.

Ta nhận xét là *tổng Riemann gần tùy ý tới giá trị tích phân khi kích* thước hình chữ nhật con đủ nhỏ. Như thế ta có thể dùng tổng Riemann để cho giá trị gần đúng của tích phân với độ chính xác tùy ý.

Ví dụ 2.1.4. Nếu f=c là hàm hằng có giá trị bằng hằng số thực c thì ta thấy ngay từ định nghĩa là mọi tổng Riemann đều bằng c|I|, nên $\int_I c = c|I|$. Đặc biệt $\int_I 1 = |I|$.

Khi số chiều n=1 ta có tích phân của hàm một biến quen thuộc từ trung học và đã được khảo sát trong môn Vi tích phân hàm một biến, với $\int_{[a,b]} f$ thường được viết là $\int_a^b f(x) \ dx$. Như vậy ta thừa hưởng tất cả các kết quả đã có trong Vi tích phân hàm một biến, chẳng hạn như công thức Newton–Leibniz để tính tích phân.

Khi n=2 ta có **tích phân bội hai**, thường được viết là $\iint_I f(x,y) dA$ hay $\iint_I f(x,y) dxdy$. Khi n=3 ta có **tích phân bội ba**, thường được viết là $\iiint_I f(x,y,z) dV$ hay $\iiint_I f(x,y,z) dxdydz$.

Ghi chú 2.1.5. Trong môn này dx, dxdy, dxdydz, dA, dV chỉ là kí hiệu để chỉ loại tích phân, không có ý nghĩa đôc lập.

2.1.2 Tích phân trên tập tổng quát

Để ngắn gon hơn ta thường dùng từ $mi \tilde{e} n$ để chỉ một tập con của \mathbb{R}^n .

Cho $D \subset \mathbb{R}^n$ là một miền bị chặn, và cho $f: D \to \mathbb{R}$. Vì D bị chặn nên có thể đặt D vào trong một hình hộp I nào đó. Mở rộng hàm f lên hình hộp I thành hàm $F: I \to \mathbb{R}$ xác định bởi

$$F(x) = \begin{cases} f(x), & x \in D \\ 0, & x \in I \setminus D. \end{cases}$$

Hàm F này xác định trên một hình hộp, trùng với f trên miền xác định của f, và bằng 0 bên ngoài miền xác định của f, do đó tổng của F hẳn phải đúng bằng tổng của f, từ đó ta đưa ra định nghĩa:

Định nghĩa 2.1.6. Ta nói f là khả tích trên D nếu F khả tích trên I, và khi đó tích phân của f trên D được định nghĩa là tích phân của F trên I:

$$\int_{D} f = \int_{I} F.$$

Để tích phân của f trên D được định nghĩa thì F phải bị chặn trên I, do đó f phải bị chặn trên D.

Tích phân $\int_D f$ không phụ thuộc vào cách chọn hình hộp I. Điều này có thể đoán và có thể kiểm tra chặt chẽ được.

Chúng ta thấy khi D là một hình hộp thì định nghĩa tích phân này trùng với định nghĩa đã có của tích phân trên hình hộp.

2.1.3 Thể tích

Ta đinh nghĩa thể tích thông qua tích phân:

Định nghĩa 2.1.7. Cho D là một tập con bị chặn của \mathbb{R}^n . **Thể tích** n-chiều của D được định nghĩa là tích phân của hàm 1 trên D:

$$|D| = \int_D 1.$$

Thể tích của tập D đúng bằng tích phân của hàm hằng 1 trên D vì ta chờ đợi thể tích của khối có chiều cao bằng 1 trên D đúng bằng 1 nhân với thể tích của D.

Ta nhận xét rằng nếu D là hình hộp thì thể tích của D theo định nghĩa này trùng với thể tích của D như là hình hộp (Ví dụ 2.1.4).

Ta thường thay từ thể tích bằng từ *chiều dài* khi n = 1 và bằng từ *diện tích* khi n = 2.

Có thể giải thích định nghĩa thể tích ở trên sâu hơn như sau. Đặt tập bị chặn D vào trong một hình hộp I. Xét hàm có giá trị bằng 1 trên D và bằng 0 ngoài D. Hàm này thường được gọi là hàm đặc trưng của D, kí hiệu là χ_D 3 :

$$\chi_D(x) = \begin{cases} 1, & x \in D \\ 0, & x \in \mathbb{R}^n \setminus D. \end{cases}$$

Định nghĩa nói rằng

$$|D| = \int_I \chi_D.$$

Xét một phép chia của I. Tùy cách chọn điểm đại diện trong mỗi hình chữ nhật con mà mỗi tổng Riemann của hàm đặc trưng tương ứng một xấp xỉ của thể tích của D bởi tổng thể tích của một số hình chữ nhật con của I. Tập D có thể tích khi và chỉ khi các xấp xỉ này gần tùy ý một số thực được gọi là thể tích của D. Xem minh hoa ở Hình 2.1.5.

Ý niệm thể tích đã có từ hàng nghìn năm trước, và ta đã học từ tiểu học, tuy nhiên nhìn lại ta có thể thấy trước đây thể tích chỉ được giả sử là tồn tại thỏa những tích chất mong muốn. Trong sách giáo khoa trung học [SGKTH] và giáo trình Vi tích phân 1 [Bmgt1] khái niệm diện tích và thể tích chỉ được định nghĩa cho một số trường hợp riêng, và các công thức được thừa nhận trong một số trường hợp riêng

 $^{^{3}\}chi$ là một chữ cái Hy Lạp, có thể đọc là "khi".

Hình 2.1.5: Các xấp xỉ diện tích của một hình tròn bằng diện tích của các hình chữ nhất.

khác. Ở đây ta đã định nghĩa khái niệm này một cách thống nhất, theo chuẩn mực chính xác hiên đai.

Từ định nghĩa chính xác của tích phân và thể tích người ta có nhận ra không phải hàm nào cũng có tích phân, không phải tập nào cũng có thể tích. Tuy nhiên vấn đề này không nằm trong yêu cầu của môn học này, trong các bài tập của môn này các điều kiện để có tích phân và có thể tích đều được thỏa và người học không cần phải khảo sát thêm. Mặc dù vậy mục tiếp theo có thể giúp người học hiểu rõ hơn một số mệnh đề quan trọng về sau.

* Điều kiên để có tích phân và có thể tích

Qua ý của tích phân ta thấy việc xấp xỉ dựa trên một giả thiết: nếu biến thay đổi ít thì giá trị của hàm thay đổi ít. Như vậy sự khả tích phụ thuộc chặt chẽ vào sự liên tục. Mặt khác không nhất thiết phải liên tục tại mọi điểm thì mới khả tích. Sau đây là một ví dụ một hàm không liên tục tại một điểm nhưng khả tích.

Ví dụ 2.1.8. Cho $f:[0,1] \to \mathbb{R}$,

$$f(x) = \begin{cases} 0, & x \neq \frac{1}{2} \\ 1, & x = \frac{1}{2}. \end{cases}$$

Với phép chia bất kì của [0,1] sao cho chiều dài của mỗi khoảng con nhỏ hơn $\frac{\epsilon}{2}$, thì vì chỉ có không quá 2 khoảng con đó có thể chứa điểm $\frac{1}{2}$, nên một tổng Riemann tương ứng phải nhỏ hơn ϵ . Vì thế hàm f khả tích và có tích phân bằng 0, mặc dù f không liên tục tại $\frac{1}{2}$.

Để nói rõ không liên tục tới mức độ nào thì vẫn khả tích ta đưa ra khái niệm sau. Một tập con của \mathbb{R}^n là có **thể tích** n-**chiều không** nếu ta có thể phủ tập đó bằng hữu hạn hình hộp có tổng thể tích nhỏ hơn số dương cho trước bất kì. Có thể hiểu sơ lược tập có thể tích không là không đáng kể đối với thể tích và tích phân,

không ảnh hưởng tới tích phân.

- **Ví dụ 2.1.9.** (a) Tập rỗng \emptyset có thể tích n-chiều không.
 - (b) Tập hợp gồm một điểm trong \mathbb{R}^n có thể tích n-chiều không.
 - (c) Hội của hai tập có thể tích không là một tập có thể tích không.
 - (d) Tập hợp gồm hữu hạn điểm trong \mathbb{R}^n có thể tích n-chiều không.

Dưới đây là một điều kiện tổng quát cho sư khả tích:

Định lý 2.1.10. Cho D là tập con có thể tích của \mathbb{R}^n . Nếu f bị chặn và liên tục trên D trừ một tập có thể tích không thì f khả tích trên D.

Ví dụ 2.1.11. Vì hình hộp có thể tích nên hàm liên tục trên hình hộp thì khả tích.

Về sự có thể tích, ta thấy tập điểm không liên tục của hàm đặc trưng của một tập chính là biên của tập đó, từ đó ta có:

Mệnh đề 2.1.12. Một tập con bị chặn của \mathbb{R}^n có thể tích n-chiều khi và chỉ khi biên của nó có thể tích n-chiều không.

Ta có một tiêu chuẩn tiện dùng cho các tập có thể tích không:

Mệnh đề 2.1.13. Đồ thị của một hàm khả tích trên một tập con bị chặn của \mathbb{R}^n có thể tích không trong \mathbb{R}^{n+1} .

Ví dụ 2.1.14. Vì hàm liên tục trên hình hộp thì khả tích nên đồ thị của hàm liên tục trên hình hôp có thể tích không.

Ví dụ 2.1.15. Trong mặt phẳng \mathbb{R}^2 thì đồ thị của một hàm liên tục trên một khoảng đóng có diện tích không. Vậy trong mặt phẳng thì một đoạn thẳng, một đoạn parabola, một đường tròn thì có diện tích không.

Ví dụ 2.1.16 (Hình tròn có diện tích). Xét hình tròn cho bởi $x^2 + y^2 \le R^2$. Biên của hình tròn này là đường tròn $x^2 + y^2 = R^2$. Đường tròn này là hội của nửa đường tròn trên và nửa đường tròn dưới. Nửa đường tròn trên là đồ thị của hàm $y = \sqrt{R^2 - x^2}$, $-R \le x \le R$. Theo Mệnh đề 2.1.13, tập này có diện tích không. Tương tự nửa đường tròn dưới có diện tích không. Vậy đường tròn có diện tích không, do đó theo Hệ quả 2.1.12 ta kết luận hình tròn có diện tích.

Ví dụ 2.1.17. Tương tự, một hình tam giác trong mặt phẳng thì có diện tích vì biên của nó là một hội của hữu hạn những đoạn thẳng là những tập có diện tích không.

Ví dụ 2.1.18 (Quả cầu có thể tích). Xét quả cầu cho bởi $x^2 + y^2 + z^2 \le R^2$. Nửa mặt cầu trên là đồ thị của hàm $z = \sqrt{R^2 - x^2 - y^2}$ với (x,y) thuộc về hình tròn $x^2 + y^2 \le R^2$. Vì hình tròn có diện tích và hàm trên liên tục, nên theo Định lý 2.1.10 hàm trên khả tích, và theo Mệnh đề 2.1.13 thì đồ thị của nó có thể tích không trong \mathbb{R}^3 . Tương tự nửa mặt cầu dưới cũng có thể tích không, do đó mặt cầu có thể tích không, và do Hệ quả 2.1.12 nên quả cầu có thể tích.

2.1.4 Tính chất của tích phân

Ta có những tính chất cơ bản của tích phân, tương tự ở trường hợp hàm một biến:

Mệnh đề 2.1.19. Nếu f và g khả tích trên D thì:

- (a) f + g khả tích và $\int_D (f + g) = \int_D f + \int_D g$.
- (b) Với mọi số thực c thì cf khả tích và $\int_D cf = c \int_D f$.
- (c) Nếu $f \leq g$ thì $\int_D f \leq \int_D g$.

Có thể giải thích sơ lược các tính chất này qua tính chất tương ứng của tổng Riemann. Một tổng Riemann của hàm cf thì bằng c nhân với tổng Riemann tương ứng của f với cùng phép chia và cùng cách chọn điểm đại diện. Một tổng Riemann của hàm f+g thì bằng tổng Riemann của f với cùng phép chia và cùng cách chọn điểm đại diện cộng với tổng Riemann của g với cùng phép chia và cùng cách chọn điểm đại diện. Nếu $f \leq g$ thì một tổng Riemann của f phải nhỏ hơn hay bằng tổng Riemann của g với cùng cách chọn điểm đại diện. Các tính chất này của tổng Riemann khi qua giới hạn dẫn tới các tính chất tương ứng của tích phân.

Ví dụ 2.1.20. Ước lượng giá trị của tích phân

$$\iint_{[0,1]\times[2,4]} x^2 y^3 \, dx dy.$$

Tích phân này tồn tại vì hàm là liên tục trên hình hộp. Với $0 \le x \le 1$ và $2 \le y \le 4$ ta có đánh giá

$$0 = 0^2 \cdot 2^3 < x^2 y^3 < 1^2 \cdot 4^3 = 64.$$

Suy ra

$$\iint_{[0,1]\times[2,4]} 0 \, dx dy \le \iint x^2 y^3 \, dx dy \le \iint_{[0,1]\times[2,4]} 64 \, dx dy.$$

Vây

$$0 = 0 \cdot (1 - 0) \cdot (4 - 2) \le \iint_{[0,1] \times [2,4]} x^2 y^3 \, dx \, dy \le 64 \cdot (1 - 0) \cdot (4 - 2) = 128.$$

Trong mục trước ta có nhắc tới một loại tập gọi là "tập có thể tích không", ví dụ như các tập hữu hạn, hay các đồ thị của hàm liên tục trên hình hộp. Các tập này được coi là "không đáng kể" đối với tích phân. Các kết quả tiếp theo là cơ sở cho nhiều tính toán ở phần sau.

Mệnh đề 2.1.21. Cho D là tập con bị chặn của \mathbb{R}^n , f và g bị chặn trên D, và f=g trên D trừ ra một tập có thể tích không. Khi đó f khả tích khi và chỉ khi g khả tích, và $\int_D f = \int_D g$.

Vậy thêm bớt một tập có thể tích không không ảnh hưởng tới tích phân.

Mệnh đề 2.1.22. Cho D_1 và D_2 là hai tập con bị chặn của \mathbb{R}^n . Giả sử $D_1 \cap D_2$ có thể tích không. Nếu f khả tích trên D_1 và trên D_2 thì f khả tích trên $D_1 \cup D_2$, và

$$\int_{D_1 \cup D_2} f = \int_{D_1} f + \int_{D_2} f.$$

Kết quả này cho thấy ta **có thể tính tích phân trên một tập bằng cách** chia tập đó thành những tập con.

Ví dụ 2.1.23. Mệnh đề 2.1.22 cho một dạng tổng quát hóa của công thức quen thuộc cho hàm một biến: $\int_a^b f + \int_b^c f = \int_a^c f$.

Trong Mệnh đề 2.1.22 lấy f = 1 ta có kết quả: Nếu D_1 và D_2 có thể tích và $D_1 \cap D_2$ có thể tích không thì $|D_1 \cup D_2| = |D_1| + |D_2|$. Đây chính là **tính cộng của thể tích**. Khi tính diện tích một hình ta vẫn thường chia hình đó thành những hình đơn giản hơn bằng những đoan thẳng hay đoan cong, rồi công các diên tích lai.

Bài tập

2.1.1. Một hồ nước hình chữ nhật kích thước $4m \times 8m$ có độ sâu không đều. Người ta đo được chiều sâu tại một số điểm trên hồ như trong bảng sau. Ví dụ trong bảng này độ sâu tại điểm cách bờ trái 5m và bờ trên 1m là 4,6m. Hãy ước lượng lượng nước trong hồ.

vị trí	1	3	5	7
1	3,1	4,5	4,6	4,0
3	3,7	4,1	4,5	4,4

2.1.2. Một tỉnh về địa lý có thể xem như một hình chữ nhật kích thước dài 110km rộng $55 \,\mathrm{km}$. Tỉnh được chia đều thành 3×2 vùng hình chữ nhật, chiều dài được chia làm 3, chiều rộng được chia làm 2, ở mỗi vùng có một trạm quan trắc khí tượng. Dưới đây là dữ liệu lượng mưa đo được ở các trạm quan trắc này trong năm 2020:

1293,4	1230,8	1938,2
3196,5	2690,1	1452,0

Lượng mưa có đơn vị là mm, theo đó 1mm nghĩa là 1mm nước mưa trên 1m² diện tích. Dùng dữ liệu trên, hãy ước tính tổng lượng nước mưa trên cả tỉnh trong năm.

2.1.3. Tính tích phân của các hàm sau.

(a)
$$f(x) = \begin{cases} 2, & 0 \le x \le 1, \ x \ne \frac{1}{2}, \\ 0, & x = \frac{1}{2}. \end{cases}$$

(b)
$$f(x,y) = \begin{cases} 4, & 0 \le x \le 1, \ 0 \le y \le 1, \ (x,y) \ne (\frac{1}{2}, \frac{1}{2}), \\ 5, & (x,y) = (\frac{1}{2}, \frac{1}{2}). \end{cases}$$

(c)
$$f(x,y) = \begin{cases} 2, & 0 \le x \le 1, \ 0 \le y \le 1, \ y \ne x, \\ 3, & 0 \le x \le 1, \ 0 \le y \le 1, \ y = x. \end{cases}$$

(d)
$$f(x,y) = \begin{cases} 3, & 0 \le x \le 1, \ 0 \le y \le 1, \ y \ne x^2, \\ 1-x, & 0 \le x \le 1, \ 0 \le y \le 1, \ y = x^2. \end{cases}$$

(e)
$$f(x,y) = 4$$
, $0 < x < 1$, $0 \le y < 2$.

(f)
$$f(x,y) = \begin{cases} 2, & 0 \le x \le 1, \ 0 \le y \le 1, \\ 3, & 1 < x \le 2, \ 0 \le y \le 1. \end{cases}$$

2.1.4. Hãy cho một ước lượng cho giá trị của tích phân (nghĩa là cho biết tích phân có thể có giá trị trong khoảng nào)

$$\iint_{[0,1]\times[1,2]} e^{x^2y^3} \, dx dy.$$

 ${\bf 2.1.5.}$ Bằng cách ước lượng tích phân, hãy cho biết điều sau đây là đúng hay sai:

$$\iint_{[0,1]\times[1,4]} (x^2 + \sqrt{y})\sin(xy^2) dA = 10.$$

2.1.6. Cho $D \subset \mathbb{R}^2 = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, 0 \le y \le x\}$. Cho $f:D \to \mathbb{R}$ với

$$f(x,y) = \ln(x^4 + y^3 + 1).$$

Hãy ước lượng giá trị của tích phân $\iint_D f$, tức xác định giá trị tích phân nằm trong khoảng số thực nào, khoảng càng nhỏ càng tốt.

- **2.1.7.** Giả sử $A \subset \mathbb{R}^n$, A có thể tích. Cho $c \in \mathbb{R}$. Giải thích vì sao $\int_A c = c|A|$.
- **2.1.8.** Giả sử $A \subset B \subset \mathbb{R}^n$, A và B có thể tích. Giải thích vì sao $|A| \leq |B|$.
- **2.1.9.** Giả sử $A\subset B\subset \mathbb{R}^n,\, f$ khả tích trên A và B, và $f\geq 0$. Giải thích vì sao $\int_A f\leq \int_B f.$
- **2.1.10.** Giải thích vì sao nếu f khả tích và |f| khả tích thì $\left| \int_I f \right| \leq \int_I |f|$.
- 2.1.11. * Hãy khảo sát các ví dụ để thấy rằng xấp xỉ Riemann ứng với một phép chia mịn hơn không nhất thiết tốt hơn, mà còn phụ thuộc vào cách chọn điểm đại diện.
- **2.1.12.** * Tìm tập $D \subset \mathbb{R}^2$ sao cho tích phân

$$\iint_D (1 - x^2 - y^2) dA$$

đat giá tri lớn nhất.

2.2 Công thức Fubini

Công thức Fubini ⁴ trong không gian hai chiều có dạng:

$$\iint_{[a,b]\times[c,d]} f(x,y) \, dx dy = \int_a^b \left(\int_c^d f(x,y) \, dy \right) \, dx = \int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy.$$

Công thức Fubini đưa tích phân nhiều chiều về các tích phân một chiều, và vì tích phân một chiều thì ta đã hiểu biết nhiều, nên đây là một công cụ rất hiệu quả để tính tích phân nhiều chiều.

 $^{^4}$ Gui
do Fubini chứng minh một dạng tổng quát của công thức vào đầu thế kỉ 20, nhưng những kết quả dạng này đã được biết trước đó khá lâu.

Các tích phân của tích phân còn được gọi là các tích phân lặp.

Về mặt số lượng, Công thức Fubini nói rằng tổng giá trị của hàm trên hình chữ nhật bằng tổng của các tổng giá trị trên các đoạn cắt song song, tương ứng với hai cách đếm theo chiều dọc và theo chiều ngang.

Về mặt hình học, ta có thể giải thích như sau. Giả sử f > 0. Khi đó $\int_{[a,b]\times[c,d]} f$ là "thể tích" của khối bên dưới mặt z = f(x,y) bên trên hình chữ nhật $[a,b]\times[c,d]$. Khi đó $\int_c^d f(x_0,y)\,dy$ là "diện tích" của mặt cắt (tiết diện) của khối bởi mặt phẳng $x = x_0$. Vậy Công thức Fubini nói rằng thể tích của khối bằng tổng diện tích các mặt cắt song song. Xem Hình 2.2.1.

Hình 2.2.1: Thể tích của khối bằng tổng diên tích các mặt cắt song song.

Có thể giải thích công thức này bằng cách xấp xỉ thể tích của khối như sau. Chia khoảng [a,b] thành những khoảng con. Ứng với những khoảng con này, khối được cắt thành những mảnh bởi những mặt cắt song song. Vì chiều dài mỗi khoảng con là nhỏ, ta có thể xấp xỉ thể tích của mỗi mảnh bởi diện tích một mặt cắt nhân với chiều dài của khoảng con. Giải thích cũng gợi ý một tên khác của phương pháp, là phương pháp cắt lớp.

Chi tiết hơn, ta xấp xỉ theo tổng Riemann: Giả sử $a=x_0 < x_1 < \cdots < x_m=b$ là một phép chia của khoảng [a,b] và $c=y_0 < y_1 < \cdots < y_n=d$ là một phép chia của khoảng [c,d]. Với x_i^* là điểm đại diện bất kì thuộc khoảng con $\Delta x_i = [x_{i-1},x_i]$ và y_i^* là điểm bất kì thuộc $\Delta y_j = [y_{j-1},y_j]$ thì

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx \approx \sum_{i=1}^{m} \left(\int_{c}^{d} f(x_{i}^{*}, y) \, dy \right) |\Delta x_{i}|$$

$$\approx \sum_{i=1}^{m} \left(\sum_{j=1}^{n} f(x_{i}^{*}, y_{j}^{*}) |\Delta y_{j}| \right) |\Delta x_{i}|$$

$$= \sum_{1 \leq i \leq m, 1 \leq j \leq n} f(x_{i}^{*}, y_{j}^{*}) |\Delta x_{i}| |\Delta y_{j}|$$

$$\approx \iint_{[a,b] \times [c,d]} f(x, y) \, dx dy.$$

Ta phát biểu công thức một cách chính xác dưới đây, chứng minh có thể thu được dựa theo lý luận trên.

Định lý 2.2.1 (Công thức Fubini). Cho A là một hình hộp trong \mathbb{R}^m và B là một hình hộp trong \mathbb{R}^n . Cho f khả tích trên hình hộp $A \times B$ trong \mathbb{R}^{m+n} . Giả sử với mỗi $x \in A$ tích phân $\int_B f(x,y) dy$ tồn tại. Khi đó

$$\int_{A \times B} f = \int_{A} \left(\int_{B} f(x, y) \, dy \right) \, dx.$$

Ví dụ 2.2.2. Tính tích phân $\iint_{[0,1]\times[2,3]} x \ dxdy$.

Vì hàm $(x,y) \mapsto x$ là liên tục trên hình chữ nhật $[0,1] \times [2,4]$ nên tích phân trên tồn tại, công thức Fubini áp dụng được, cho:

$$\iint_{[0,1]\times[2,4]} x\,dxdy = \int_0^1 \left(\int_2^4 x\,\,dy\right)\,dx = \int_0^1 xy|_{y=2}^{y=4}\,dx = \int_0^1 2x\,dx = \left.x^2\right|_{x=0}^{x=1} = 1.$$

Ta cũng có thể áp dụng công thức Fubini theo thứ tự khác:

$$\iint_{[0,1]\times[2,4]} x \, dx dy = \int_2^4 \left(\int_0^1 x \, dx \right) \, dy = \int_2^4 \left. \frac{1}{2} x^2 \right|_{x=0}^{x=1} \, dy = \int_2^4 \left. \frac{1}{2} \, dy = \left. \frac{1}{2} y \right|_{y=2}^{y=4} = 1.$$

Hệ quả 2.2.3 (thể tích dưới đồ thị). Giả sử f là hàm không âm trên miền bị chặn $D \subset \mathbb{R}^n$. Gọi E là miền dưới đồ thị của f bên trên miền D, tức $E = \{(x,y) \in \mathbb{R}^n \times \mathbb{R} \mid x \in D, \ 0 \leq y \leq f(x)\}$. Nếu E có thể tích thì thể tích đó bằng tích phân của f trên D:

$$|E| = \int_D f.$$

Vậy *thể tích của miền bên dưới đồ thị bằng tích phân của hàm*. Ta đã có ý này từ đầu khi xây dựng tích phân nhưng giờ mới thu được.

Chứng minh. Vì E có thể tích nên nó bị chặn, có một hình hộp chứa nó. Ta có thể lấy hình hộp đó là $I \times [0, c]$ với I là một hình hộp n-chiều trong \mathbb{R}^n chứa D và c đủ

Hình 2.2.2: Thể tích của miền bên dưới đồ thị.

lớn. Áp dụng công thức Fubini:

$$|E| = \int_E 1 = \int_{I \times [0,c]} \chi_E = \int_I \left(\int_0^c \chi_E(x,y) \, dy \right) \, dx.$$

Nếu $x \in I \setminus D$ thì $\chi_E(x,y) = 0 \ \forall y \in [0,c]$, do đó $\int_0^c \chi_E(x,y) \, dy = 0$. Nếu $x \in D$ thì $\chi_E(x,y) = 1$ khi và chỉ khi $0 \le y \le f(x)$, do đó $\int_0^c \chi_E(x,y) \, dy = \int_0^{f(x)} 1 \, dy = f(x)$. Do đó

$$|E| = \int_D \left(\int_0^c \chi_E(x, y) \, dy \right) \, dx = \int_D f(x) \, dx.$$

Ví dụ 2.2.4. Trong trường hợp n=1, giả sử $f:[a,b]\to\mathbb{R}$ không âm, thì kết quả này nói rằng diện tích của phần mặt phẳng bên dưới đồ thị của f bên trên đoạn [a,b] nếu tồn tại phải bằng $\int_a^b f(x)\,dx$. Trong môn Vi tích phân hàm một biến [Bmgt1] công thức này được lấy làm định nghĩa cho diện tích của miền.

Ví dụ 2.2.5 (Diện tích tam giác). Xét D là tam giác với các đỉnh (0,0), (a,0), (0,b), với a,b>0. Đây là miền dưới đồ thị $y=\frac{b}{a}x$ với $0 \le x \le a$. Như ta đã biết ở Ví du 2.1.17, tam giác D có diên tích. Vây

$$|D| = \int_0^a \frac{b}{a} x \ dx = \frac{1}{2} ab.$$

2.2.1 Công thức Fubini cho miền phẳng

Việc áp dụng công thức Fubini dễ dàng hơn đối với những miền "đơn giản". Một tập con của \mathbb{R}^2 được gọi là một miền đơn giản theo chiều đứng nếu nó có dạng $\{(x,y)\in\mathbb{R}^2\mid a\leq x\leq b,\ g(x)\leq y\leq h(x)\}$. Đây là một miền giữa hai đồ thị có cùng miền xác định. Một đường thẳng đứng nếu cắt miền này thì phần giao là một đoạn thẳng.

Tương tự, một tập con của \mathbb{R}^2 được gọi là một miền đơn giản theo chiều ngang nếu nó có dạng $\{(x,y)\in\mathbb{R}^2\mid c\leq y\leq d,\ g(y)\leq x\leq h(y)\}.$

Hình 2.2.3: Miền hai chiều đơn giản.

Mệnh đề 2.2.6. Cho miền đơn giản theo chiều đứng $D = \{(x,y) \in \mathbb{R}^2 \mid a \leq x \leq b, g(x) \leq y \leq h(x)\}$. Giả sử f, g và h liên tục. Khi đó

$$\iint_D f(x,y) \, dx dy = \int_a^b \left(\int_{g(x)}^{h(x)} f(x,y) \, dy \right) \, dx.$$

Công thức có thể đúng dưới những điều kiện tổng quát hơn như ở Hệ quả 2.2.3 nhưng chúng ta chỉ phát biểu ở dạng thường dùng trong môn học này. Trường hợp miền đơn giản theo chiều nằm ngang là tương tự.

Chứng minh. Ta có thể chỉ ra với những điều kiện này thì miền D có diện tích, tuy nhiên lí luận chi tiết vượt ra khỏi phạm vi môn học này ([Vugt3]). Lấy một hình chữ nhật $I = [a,b] \times [c,d]$ chứa D. Gọi F là mở rộng của f lên I bằng không ngoài D. Vì f liên tục trên tập có diện tích D nên f khả tích trên D, do đó F khả tích trên I. Ngoài ra $\int_c^d F(x,y) \ dy = \int_{g(x)}^{h(x)} f(x,y) \ dy$ tồn tại. Áp dụng công thức Fubini cho F:

$$\iint_D f(x,y) \, dxdy = \iint_I F(x,y) \, dxdy$$
$$= \int_a^b \left(\int_c^d F(x,y) \, dy \right) \, dx = \int_a^b \left(\int_{g(x)}^{h(x)} f(x,y) \, dy \right) \, dx.$$

Ví dụ 2.2.7 (Diện tích giữa hai đồ thị). Cho f = 1, ta được diện tích của miền nằm giữa đồ thị của g và h, với $g \leq h$, bên trên đoạn [a,b], là $\int_a^b [h(x) - g(x)] dx$. Trong môn Vi tích phân 1 [Bmgt1] công thức này được lấy làm định nghĩa của diện tích miền này.

Ví dụ 2.2.8 (Diện tích hình tròn). Xét hình tròn D cho bởi phương trình $x^2+y^2 \le R^2$. Áp dụng công thức ở Mệnh đề 2.2.6 cho hàm $f=1, g(x)=-\sqrt{R^2-x^2}$, $h(x)=\sqrt{R^2-x^2}$, với $-R \le x \le R$, hay nhanh hơn dùng Ví dụ 2.2.7, ta có

$$|D| = \iint_D 1 \, dx \, dy = \int_{-R}^R \left(\int_{-\sqrt{R^2 - x^2}}^{\sqrt{R^2 - x^2}} 1 \, dy \right) \, dx = \int_{-R}^R 2\sqrt{R^2 - x^2} \, dx.$$

Đổi biến $x=R\sin t,\, dx=R\cos t\,\, dt,\, x=-R\implies t=-\pi/2,\, x=R\implies t=\pi/2,$ ta được

$$\int_{-R}^{R} 2\sqrt{R^2 - x^2} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2R^2 \cos^2 t \, dt = \pi R^2.$$

Vậy diện tích của hình tròn bán kính R là πR^2 .

Ví dụ 2.2.9. Tính tích phân $\iint_D e^{y^2} dA$, trong đó D là tam giác với các đỉnh (0,0), (4,2), (0,2).

Các giả thiết ở Mệnh đề 2.2.6 được thỏa. Ta có thể miêu tả D theo hai cách

$$D = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 4, \ \frac{x}{2} \le y \le 2\} = \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le 2, \ 0 \le x \le 2y\}.$$

Theo cách miêu tả thứ nhất, tức là xem D là miền đơn giản theo chiều đứng, thì công thức Fubini cho:

$$I = \iint_D e^{y^2} dA = \int_0^4 \left(\int_{\frac{x}{2}}^2 e^{y^2} dy \right) dx.$$

Tuy nhiên người ta biết nguyên hàm của hàm e^{y^2} theo biến y không phải là một hàm sơ cấp, do đó không có công thức cho nó.

Ta chuyển hướng dùng cách miêu tả thứ hai, xem D là miền đơn giản theo chiều ngang:

$$I = \int_0^2 \left(\int_0^{2y} e^{y^2} dx \right) dy = \int_0^2 x e^{y^2} \Big|_{x=0}^{x=2y} dy = \int_0^2 2y e^{y^2} dy = e^{y^2} \Big|_{y=0}^{y=2}$$
$$= e^4 - 1.$$

Trong trường hợp miền không đơn giản ta có thể tìm cách chia miền thành những phần đơn giản để tính, dựa trên cơ sở Hê quả 2.1.22.

2.2.2 Công thức Fubini cho miền ba chiều

Tương tự trường hợp hai chiều ta có thể nói về miền ba chiều đơn giản. Một tập con của \mathbb{R}^3 được gọi là một miền đơn giản theo chiều trực z nếu nó có dạng

 $\{(x,y,z)\in\mathbb{R}^3\mid (x,y)\in D,\ f(x,y)\leq z\leq g(x,y)\}$. Đây là miền nằm giữa hai đồ thị có cùng miền xác định. Một đường thẳng cùng phương với trục z nếu cắt miền này thì phần giao là một đoạn thẳng. Tương tự có khái niệm miền đơn giản theo chiều trục x và trục y.

Hình 2.2.4: Miền ba chiều đơn giản theo chiều truc z.

Tương tự trường hợp hai chiều ở Mệnh đề 2.2.6, ta có:

Mệnh đề 2.2.10. Cho miền $D \subset \mathbb{R}^2$ có diện tích, và miền $E = \{(x,y,z) \in \mathbb{R}^3 \mid (x,y) \in D, \ g(x,y) \leq z \leq h(x,y)\}$. Giả sử f, g và h bị chặn và liên tục. Khi đó

$$\iiint_E f(x, y, z) dxdydz = \iint_D \left(\int_{g(x,y)}^{h(x,y)} f(x, y, z) dz \right) dxdy.$$

Chứng minh. Ta có thể chỉ ra với những điều kiện này thì E có thể tích.

Lấy mở rộng F của f lên $I \times [a,b]$ sao cho F bằng không ngoài E. Nếu $(x,y) \notin D$ thì F có giá trị 0 trên $\{(x,y)\} \times [a,b]$. Nếu $(x,y) \in D$ thì $\int_a^b F(x,y,z) \, dz = \int_{g(x,y)}^{h(x,y)} f(x,y,z) \, dz$. Áp dụng công thức Fubini cho F:

$$\begin{split} \iiint_{I\times[a,b]} F(x,y,z) \ dV &= \iint_{I} \Big(\int_{a}^{b} F(x,y,z) \, dz \Big) \, dA \\ &= \iint_{D} \Big(\int_{a}^{b} F(x,y,z) \, dz \Big) \, dA \\ &= \iint_{D} \Big(\int_{g(x,y)}^{h(x,y)} f(x,y,z) \, dz \Big) \, dA. \end{split}$$

Ví dụ 2.2.11. Tính tích phân $\iiint_E x \ dV$ với E là khối tứ diện với các đỉnh (0,0,0), (1,0,0), (0,2,0), (0,0,3).

Bước chính là miêu tả khối E. Ta có thể xem E là một khối đơn giản theo chiều trục z, là miền bên dưới mặt phẳng P qua ba điểm (1,0,0), (0,2,0), (0,0,3) và bên trên tam giác D với các đỉnh (0,0,0), (1,0,0), (0,2,0) trong mặt phẳng xy.

Phương trình của P, thu được theo các phương pháp trong chương trước, là 6x + 3y + 2z = 6.

Ta có thể chọn coi tam giác D là miền đơn giản theo chiều trục y trong mặt phẳng xy. Khi đó ta có một miêu tả:

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x \le 1, 0 \le y \le 2 - 2x, 0 \le z \le (6 - 6x - 3y)/2\}.$$

Một miêu tả khối E như một miền đơn giản lập tức cho cách viết tích phân trên E như là tích phân lặp, chú ý là các điều kiện áp dụng công thức Fubini ở Mệnh đề 2.2.10 đều được thỏa:

$$\iiint_{E} x \, dV = \int_{0}^{1} \left(\int_{0}^{2-2x} \left(\int_{0}^{3-3x-\frac{3}{2}y} x \, dz \right) \, dy \right) \, dx$$

$$= \int_{0}^{1} \left(\int_{0}^{2-2x} x \left(3 - 3x - \frac{3}{2}y \right) \, dy \right) \, dx$$

$$= \int_{0}^{1} \left(x(3-3x)y - \frac{3}{4}xy^{2} \right) \Big|_{y=0}^{y=2-2x} \, dx$$

$$= \int_{0}^{1} (3x^{3} - 6x^{2} + 3x) \, dx = \frac{1}{4}.$$

Ví dụ 2.2.12. Cho $E \subset \mathbb{R}^3$ là khối được bao bởi các mặt $z=0,\ z=2,\ y=0,\ y=1-x^2.$ Tính tích phân

$$\iiint_{\mathcal{E}} y \, dV.$$

Khối được miêu tả dựa vào trực quan vì thế ta nên vẽ hình. Với trợ giúp từ Hình

Hình 2.2.5

2.2.5, ta có thể nhìn E như một khối trụ theo chiều trục z và miêu tả

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid (x, y) \in D, 0 \le z \le 2\}$$

với

$$D = \{(x, y) \in \mathbb{R}^2 \mid -1 \le x \le 1, 0 \le y \le 1 - x^2\}$$

hay

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid -1 \le x \le 1, 0 \le y \le 1 - x^2, 0 \le z \le 2\}.$$

Xem E là khối đơn giản theo chiều trực z, áp dụng Công thức Fubini, ta được

$$\iiint_E y \, dV = \int_0^2 \left(\iint_D y \, dx dy \right) \, dz.$$

Tiếp theo xem D là miền đơn giản theo chiều trục y và lại áp dụng Công thức Fubini, ta được

$$\iiint_{E} y \, dV = \int_{0}^{2} \left(\iint_{D} y \, dx dy \right) \, dz = \int_{0}^{2} \left(\int_{-1}^{1} \left(\int_{0}^{1-x^{2}} y \, dy \right) \, dx \right) \, dz$$

$$= \int_{0}^{2} \left(\int_{-1}^{1} \frac{1}{2} y^{2} \Big|_{y=0}^{y=1-x^{2}} \, dx \right) \, dz$$

$$= \int_{0}^{2} \left(\int_{-1}^{1} \frac{1}{2} (1 - 2x^{2} + x^{4}) \, dx \right) \, dz = \int_{0}^{2} \frac{1}{2} \frac{16}{15} \, dz = \frac{16}{15}.$$

Ví dụ 2.2.13 (phương pháp cắt lớp). Giả sử tập $E \subset \mathbb{R}^3$ có thể tích. Giả sử $a \leq z \leq b$ với mọi $(x,y,z) \in E$. Giả sử với mỗi $z \in [a,b]$ tập $E_z = \{(x,y) \in a\}$

 $\mathbb{R}^2 \mid (x,y,z) \in E$ có diện tích. Tập E_z chính là một mặt cắt (thiết diện) của khối E bởi mặt phẳng vuông góc trục z tại tọa độ z. Xem Hình 2.2.6.

Hình 2.2.6: Tính thể tích khối bằng phương pháp cắt lớp.

Đặt E vào trong một hình hộp $I \times [a,b]$ với I là một hình chữ nhật trong \mathbb{R}^2 . Áp dụng công thức Fubini cho hình hộp $I \times [a,b]$ và hàm χ_E ta được

$$\begin{split} |E| &= \iiint_{I \times [a,b]} \chi_E \, dx dy dz = \int_{[a,b]} \left(\iint_I \chi_E(x,y,z) \, dx dy \right) \, dz \\ &= \int_{[a,b]} \left(\iint_I \chi_{E_z}(x,y) \, dx dy \right) \, dz = \int_a^b |E_z| \, dz. \end{split}$$

Ta thu được công thức đáng chú ý, nói rằng thể tích của khối đúng bằng tích phân của diện tích mặt cắt:

$$|E| = \int_a^b |E_z| \ dz.$$

Trong sách giáo khoa Giải tích lớp 12 [SGKTH] công thức này đã được thừa nhận, từ đó rút ra các công thức tính thể tích của một số vật thể như khối lăng trụ, khối hình chóp, khối hình chóp cụt, như trong phần bài tập của mục này.

Ví dụ 2.2.14 (thể tích khối tròn xoay). Cho f là hàm liên tục trên khoảng [a,b] và f(x)>0 trên [a,b]. Xét khối tròn xoay nhận được bằng cách xoay miền dưới đồ thị của f quanh trục x. Khối này có biên gồm hai hình tròn và một mặt tròn xoay. Mỗi mặt cắt của mặt tròn xoay này với mặt phẳng vuông góc trục x là một đường tròn có tâm trên trục x và bán kính là f(x), vậy mặt tròn xoay này gồm những điểm (x,y,z) thỏa $a \le x \le b$ và $y^2 + z^2 = f(x)^2$. Có thể xem đây là hội của hai đồ thị của hai hàm liên tục $z = \pm \sqrt{f(x)^2 - y^2}$ trên miền $a \le x \le b$, $|y| \le f(x)$. Nhờ đó ta kết luận được biên của khối tròn xoay có thể tích không, do đó khối tròn xoay có thể tích. Xem Hình 2.2.7.

Để tính thể tích ta áp dụng phương pháp cắt lớp ở Ví dụ 2.2.13. Khối tròn xoay này có mặt cắt tại mỗi x là một hình tròn có bán kính là f(x), có diện tích là $\pi[f(x)]^2$. Vậy thể tích của khối tròn xoay nhận được bằng cách xoay miền dưới đồ

Hình 2.2.7: Khối tròn xoay và mặt cắt.

thị của f quanh trục x bằng

$$\int_a^b \pi [f(x)]^2 dx.$$

Mặt tròn xoay còn có thể được tạo ra bằng cách xoay quanh trục y, trong trường hợp đó công thức cần được điều chỉnh tương ứng.

Bài tập

Trong các bài tập tính toán cơ bản ở mục này các điều kiện để áp dụng các công thức đã được thỏa, người học có thể chỉ áp dụng các công thức.

2.2.1. Cho hàm

$$f: [0,1] \times [0,1] \quad \to \quad \mathbb{R}$$

$$(x,y) \quad \mapsto \quad f(x,y) = \begin{cases} x+y, & x \leq y \\ xy, & x > y. \end{cases}$$

Tích phân của f bằng bao nhiêu?

2.2.2. Cho hàm số

$$f(x,y) = \begin{cases} x^2 y, & 0 \le x \le 1, 0 \le y \le 1, y \le x^2, \\ xy^2, & 0 \le x \le 1, 0 \le y \le 1, y > x^2. \end{cases}$$

Tính tích phân của hàm f.

- **2.2.3.** Hãy tính các tính phân sau. Nên vẽ phác họa các hình liên quan để xác định tích phân.
 - (a) Tính tích phân $\iint_D x^2 y \, dA,$ với D là hình chữ nhật $0 \leq x \leq 2, \, -1 \leq y \leq 2.$
 - (b) Tính thể tích của khối bên dưới mặt z=4-x-y bên trên hình chữ nhật $0\leq x\leq 1,$ $1\leq y\leq 2.$

(c) Tính:

$$\iint_{D} (\sqrt{x} - y^2) \, dA$$

trong đó D là miền bao bởi các đường cong $y = x^2$, $x = y^4$.

- (d) Gọi D là miền được bao bởi các đường cong $x=y^2,\,y-x=3,\,y=-3,\,y=2.$ Tính $\iint_D x\,dA.$
- (e) Gọi D là miền trong góc phần tư thứ nhất, nằm bên trên đường hyperbola xy=1, bên trên đường thẳng y=x, bên dưới đường thẳng y=2. Tính $\iint_D y \, dA$.
- (f) Tính tích phân của hàm x^2y^3 trên miền được bao bởi các đường $y=4x^2,\,y=5-\sqrt{3}x^2.$
- (g) Tính tích phân của hàm 1+x+y trên miền được bao bởi các đường $y=-x,\, x=\sqrt{y},\, y=2.$
- (h) Tính tích phân của hàm xy trên hình tam giác với các đỉnh (0,0), (1,0), (1,1).
- 2.2.4. Đổi thứ tự tích phân trong các tích phân lặp sau và tính chúng:
 - (a) $\int_0^1 \left(\int_{x^2}^1 x e^{-y^2} dy \right) dx$.
 - (b) $\int_0^1 \left(\int_{\sqrt{y}}^1 \sqrt{x^3 + 2} \, dx \right) \, dy$.
 - (c) $\int_0^1 \left(\int_{3y}^3 \cos(x^2) \, dx \right) \, dy$.
 - (d) $\int_0^2 \left(\int_{y^2}^4 y \cos(x^2) \, dx \right) \, dy$.
 - (e) $\int_0^1 \left(\int_{\sqrt{x}}^1 e^{y^3} \, dy \right) \, dx$.
 - (f) Tính tích phân của hàm 1+x+y trên miền được bao bởi các đường $y=-x,\, x=\sqrt{y},\, y=2,\, z=0.$
 - (g) Tính tích phân của hàm xy trên hình tam giác với các đỉnh (0,0), (1,0), (1,1).
- 2.2.5. Hãy tính các tích phân sau. Nên vẽ phác họa các hình liên quan để xác định tích phân.
 - (a) Tính tích phân $\iiint_E y \, dV$ trong đó E là khối tứ diện với 4 đỉnh (0,0,0), (1,0,0), (2,1,0) và (0,0,1).
 - (b) Tính tích phân $\iiint_E z\,dV$ trong đó E là khối được bao bởi các mặt $z=0,\,x=0,\,y=x,\,y=1,\,z=2x+3y.$
 - (c) Tìm thể tích của khối được bao bởi các mặt y = 0, z = 0, z = 1 x + y, $y = 1 x^2$.
 - (d) Tính thể tích của khối bên dưới đồ thị của hàm $z=y^2$ bên trên hình chữ nhật $0 \le x \le 1, \, -1 \le y \le 0.$
 - (e) Tính thể tích của khối bao bởi các mặt $z=0,\,y+z=1,\,y=x^2.$
 - (f) Tính thể tích của khối bao bởi các mặt $x=4-y^2,\,y+z=2,\,x=0,\,y=0,\,z=0.$
 - (g) Tính thể tích của khối bao bởi các mặt $x^2 + y^2 = 1$, z = -y, z = 0.
- **2.2.6.** Dùng phương pháp cắt lớp, hãy tìm công thức thể tích của:
 - (a) Quả cầu.
 - (b) Hình nhận được bằng cách xoay phần bên dưới đường $y=\sqrt{x},\,0\leq x\leq 4,$ quanh trục x.

- (c) Hình nhận được bằng cách xoay phần bên dưới đường $y=\sqrt{x},\, 1\leq x\leq 4,$ quanh trục y=1.
- (d) Hình nhận được bằng cách xoay phần giữa đường x=2/y và trục y, quanh trục y.
- (e) Hình nhận được bằng cách xoay phần giữa đường $x=y^2+1$ và đường x=3, quanh trục x=3.
- (f) Hình nhận được bằng cách xoay phần giữa đường $y=x^2+1$ và đường y=-x+3, quanh truc x.
- (g) Hình nhận được bằng cách xoay phần giữa đường $y=x^2$ và đường $y=2x,\,x\geq 0,$ quanh trục y.
- **2.2.7.** Một cái chén có dạng đồ thị của hàm $z = \frac{1}{2}(x^2 + y^2)$, có chiều cao là 2. Hỏi cái chén có thể đựng được bao nhiêu nước?
- 2.2.8. Tính thể tích của khối được miêu tả trong Hình 2.2.8.

Hình 2.2.8

- **2.2.9** (Nguyên lý Cavalieri ⁵). Nếu hai khối ba chiều có thể tích, và có một phương sao cho mọi mặt phẳng với phương đó cắt hai khối theo hai mặt cắt có cùng diện tích, thì hai khối đó có cùng thể tích.
- **2.2.10.** Chứng tỏ rằng thể tích của khối bao bởi mặt $x^2+(y-z-3)^2=1,\,0\leq z\leq 1$ bằng với thể tích của khối bao bởi mặt $x^2+y^2=1,\,0\leq z\leq 1$ (Hình 2.2.9).

Hình 2.2.9: Mặt $x^2 + y^2 = 1$ (trái) và mặt $x^2 + (y - z - 3)^2 = 1$ (phải).

 $^{^5 \}mathrm{Bonaventura}$ Francesco Cavalieri là một nhà toán học sống vào đầu thế kỉ 17.

2.2.11. Hai cái vại có dạng đồ thị của hàm $z = x^2 + y^2$ và $z = (x-3)^2 + y^2$, với $0 \le z \le 1$. Xem Hình 2.2.10. Hãy giải thích vì sao hai cái vại này đựng được cùng một lượng nước (tức là bao hai khối có thể tích bằng nhau), và hãy tính lượng nước đó.

Hình 2.2.10

- **2.2.12.** Cho f là hàm liên tục, hãy viết lại tích phân $\int_{-1}^{1} \int_{|x|}^{1} \int_{0}^{1-y} f(x,y,z) \ dz \ dy \ dx$ theo thứ tự $dx \ dz \ dy$.
- **2.2.13.** Tính $\int_0^2 \int_0^1 \int_{z^2}^4 x^3 z \cos(y^2) \, dy \, dx \, dz$.
- **2.2.14.** Cho g liên tục trên hình hộp $[a,b]\times [c,d]\times [e,f],$ chứng tỏ

$$\iiint_{[a,b]\times[c,d]\times[e,f]}g(x,y,z)\,dV = \int_a^b \left(\int_c^d \left(\int_e^f g(x,y,z)\,dz\right)\,dy\right)\,dx.$$

2.2.15. Dùng phương pháp cắt lớp, hãy tìm công thức thể tích của khối lăng trụ đáy là một hình chữ nhật như Hình 2.2.11.

Hình 2.2.11: Khối lăng trụ đáy chữ nhật.

2.2.16 (thể tích của khối lăng trụ tổng quát). * Giả sử D là một miền trong mặt phẳng Oxy. Cho v là một vectơ của \mathbb{R}^3 không nằm trong mặt phẳng Oxy. Tập hợp tất cả các điểm có dạng p+tv với $p\in D$, $0\leq t\leq 1$, được gọi là một khối lăng trụ. Miền D được gọi là đáy của khối lăng trụ, còn khoảng cách từ v tới mặt phẳng Oxy được gọi là chiều cao của khối lăng trụ. Xem Hình 2.2.12.

Có thể kiểm được nếu đáy có diện tích thì khối lăng trụ có thể tích. Dùng phương pháp cắt lớp hãy chứng tỏ thể tích của khối lăng trụ đúng bằng diện tích đáy nhân chiều cao.

Hình 2.2.12: Khối lăng tru tổng quát.

2.3 Công thức đổi biến

Nhớ lại trong tích phân hàm một biến, để tính $\int_0^1 \sqrt{1-x^2} \ dx$ ta thường làm như sau. Đặt $x=\sin t$ thì $dx=\cos t \ dt,\ x=0$ tương ứng $t=0,\ x=1$ tương ứng $t=\frac{\pi}{2}$, và

$$\int_0^1 \sqrt{1 - x^2} \, dx = \int_0^{\pi/2} \sqrt{1 - \sin^2 t} \cos t \, dt = \int_0^{\pi/2} \cos^2 t \, dt$$
$$= \int_0^{\pi/2} \frac{1}{2} (1 + \cos 2t) \, dt = \left(\frac{1}{2} t + \frac{1}{4} \sin 2t \right) \Big|_{t=0}^{t=\frac{\pi}{2}} = \frac{\pi}{4}.$$

Mục đích của phần này là khảo sát tổng quát hóa phương pháp ở trên lên nhiều chiều: Với tích phân $\int_A f(x) \ dx$, nếu đổi biến $x = \varphi(u)$ thì tích phân sẽ biến đổi như thế nào?

Cho A và B là hai tập mở trong \mathbb{R}^n . Một ánh xạ $\varphi: A \to B$ được gọi là một **phép đổi biến** nếu φ là song ánh, khả vi liên tục, và ánh xạ ngược φ^{-1} cũng khả vi liên tục.

Ví dụ 2.3.1. Trong \mathbb{R}^n phép tịnh tiến theo vectơ a cho bởi $x \mapsto x + a$ là một phép đổi biến.

Cho $f:X\subset\mathbb{R}^n\to\mathbb{R}$ và cho $\varphi:U\to X=\varphi(U)$ là một phép đổi biến. Thực hiện phép đổi biến φ nghĩa là ta thay việc xét hàm f bằng việc xét hàm $f\circ\varphi$, tức là nếu x là biến của f và u là biến của φ thì ta thay x bởi $\varphi(u)$, thay f(x) bởi $f(\varphi(u))$.

Định lý 2.3.2 (Công thức đổi biến). Công thức đổi biến

$$\int_{\varphi(A)} f = \int_{A} (f \circ \varphi) |\det J_{\varphi}| \tag{2.3.1}$$

được thỏa dưới những giả thiết: U là một tập mở trong \mathbb{R}^n , φ là một phép đổi biến từ U lên $\varphi(U)$, U và $\varphi(U)$ có thể tích, f và $(f \circ \varphi)|\det J_{\varphi}|$ khả tích.

Có một cách viết hình thức tương tự trường hợp một chiều như sau. Đặt

$$x = \varphi(u)$$

thì

$$dx = |\det J_{\varphi}| \ du,$$

với

$$x \in X \iff u \in U$$

thì

$$\int_X f(x) \ dx = \int_U f(\varphi(u)) |\det J_{\varphi}| \ du.$$

Dấu trị tuyệt đối có thể được bỏ đi nếu ta biết dấu của det J_{φ} . Nếu det J_{φ} luôn dương thì φ được gọi là một **phép đổi biến bảo toàn định hướng**. Nếu det J_{φ} luôn âm thì φ được gọi là một **phép đổi biến đảo ngược định hướng**.

Như trường hợp một chiều, đổi biến có thể dùng để làm cho hàm dưới dấu tích phân đơn giản hơn. Trong trường hợp nhiều chiều, đổi biến còn hay được dùng để làm cho miền lấy tích phân đơn giản hơn.

Để kiểm một ánh xạ thực sự là một phép đổi biến, kết quả sau thường tiện dụng:

Mệnh đề 2.3.3. $Giả sử U và X là các tập mở của <math>\mathbb{R}^n$, và $\varphi : U \to X$ là một song ánh khả vi liên tục. Nếu det J_{φ} luôn khác không thì φ là một phép đổi biến.

Ví dụ 2.3.4 (đổi biến một chiều). Ta kiểm đây chính là phương pháp đổi biến (còn gọi là phương pháp thế) trong tích phân cho hàm một biến quen thuộc. Cho $x = \varphi(t)$ với $t \in [a,b]$, ở đây φ liên tục và $\varphi: (a,b) \to \varphi((a,b))$ là một phép đổi biến. Cho f khả tích trên $\varphi([a,b])$. Theo công thức đổi biến:

$$\int_{\varphi((a,b))} f(x) dx = \int_{(a,b)} f(\varphi(t)) |\varphi'(t)| dt.$$

Do $\varphi'(t) \neq 0$, $\forall t \in (a, b)$ nên hoặc $\varphi'(t) > 0$, $\forall t \in (a, b)$ hoặc $\varphi'(t) < 0$, $\forall t \in (a, b)$. Vì vậy hoặc φ là hàm tăng hoặc φ là hàm giảm trên [a, b].

Nếu φ là hàm tăng (bảo toàn định hướng) thì $\varphi([a,b])=[\varphi(a),\varphi(b)]$. Do đó, dùng Mệnh đề 2.1.21 để chuyển đổi giữa tích phân trên khoảng mở (a,b) và tích phân trên khoảng đóng [a,b], ta được

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{[a,b]} f(\varphi(t))\varphi'(t) dt = \int_{(a,b)} f(\varphi(t))\varphi'(t) dt$$
$$= \int_{(\varphi(a),\varphi(b))} f(x) dx = \int_{[\varphi(a),\varphi(b)]} f(x) dx$$
$$= \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Nếu φ là hàm giảm (đảo ngược định hướng) thì $\varphi([a,b]) = [\varphi(b), \varphi(a)]$ và $|\varphi'(t)| =$

 $-\varphi'(t)$. Do đó

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = -\int_{(a,b)} f(\varphi(t)) |\varphi'(t)| dt$$

$$= -\int_{(\varphi(b),\varphi(a))} f(x) dx$$

$$= -\int_{\varphi(b)}^{\varphi(a)} f(x) dx = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Trong cả hai trường hợp ta được công thức đổi biến cho tích phân hàm một biến:

$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Nếu ta giả sử hàm f liên tục thì trong Vi tích phân hàm một biến công thức đổi biến được chứng minh bằng cách dùng công thức Newton–Leibniz và qui tắc đạo hàm hàm hợp, và chỉ cần hàm φ là trơn, xem [Bmgt1].

Ví dụ 2.3.5 (đổi biến hai chiều). Với phép đổi biến $(u,v)\mapsto (x,y)$ người ta thường dùng kí hiệu

$$\frac{\partial(x,y)}{\partial(u,v)} = \det\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}.$$

Với kí hiệu này công thức đổi biến có dạng như sau. Nếu phép đổi biến $(u, v) \mapsto (x, y)$ mang tập A thành tập B thì

$$\iint_B f(x,y) \, dx dy = \iint_A f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du dv.$$

Một cách hình thức ta có thể viết:

$$dxdy = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dudv.$$

2.3.1 **T**ọa độ cực

Một điểm P=(x,y) trên mặt phẳng \mathbb{R}^2 có thể được miêu tả bằng hai số thực (r,θ) , với r là khoảng cách từ O tới P, và $0 \le \theta \le 2\pi$ là góc từ vectơ (1,0) (tia Ox) tới vectơ \overrightarrow{OP} . Vậy $x=r\cos\theta$, $y=r\sin\theta$, $r\ge 0$, $0 \le \theta \le 2\pi$.

Tuy nhiên tương ứng $(x,y) \mapsto (r,\theta)$ này không là song ánh và không liên tục trên tia Ox. Vì vậy ta phải hạn chế miền xác định là mặt phẳng bỏ đi tia Ox. Khi đó ánh xa ngược là

$$(0,\infty) \times (0,2\pi) \quad \to \quad \mathbb{R}^2 \setminus \{(x,0) \mid x \ge 0\}$$
$$(r,\theta) \quad \mapsto \quad (x,y) = (r\cos\theta, r\sin\theta).$$

105

Ta tính được

$$\frac{\partial(x,y)}{\partial(r,\theta)}(r,\theta) = \det \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix} = r > 0,$$

vì vậy đây là một phép đổi biến theo Mệnh đề 2.3.3. Một cách hình thức, có thể nhớ rằng

$$dxdy = r \, dr d\theta.$$

Ví dụ 2.3.6 (tích phân trên hình tròn). Gọi $B'^2(O,R)$ là hình tròn đóng tâm O bán kính R. Để áp dụng công thức đổi biến ta dùng phép đổi biến φ từ hình chữ nhật mở $(0,R)\times(0,2\pi)$ sang miền D là $B'^2(O,R)$ bỏ đi đường tròn biên và tia Ox. Giả sử f khả tích trên $B'^2(O,R)$. Tập bị bỏ đi có diện tích không, do đó nó không ảnh hưởng đến tích phân, nên:

$$\begin{split} \iint_{B'^2(O,R)} f(x,y) \, dx dy &= \iint_D f(x,y) \, dx dy = \iint_{(0,R) \times (0,2\pi)} f(r\cos\theta, r\sin\theta) r \, dr d\theta \\ &= \iint_{[0,R] \times [0,2\pi]} f(r\cos\theta, r\sin\theta) r \, dr d\theta. \end{split}$$

Chẳng han diện tích của hình tròn là:

$$|B'^{2}(O,R)| = \iint_{B'^{2}(O,R)} 1 \, dx dy = \int_{0}^{R} \int_{0}^{2\pi} 1 \cdot r \, d\theta \, dr = \pi R^{2}.$$

Như vậy chú ý rằng với mục đích lấy tích phân thì để đơn giản ta thường lấy cận trong tọa độ cực là $r \geq 0$ và $0 \leq \theta \leq 2\pi$.

Ví dụ 2.3.7. Cho E là khối được bao bởi các mặt $z=x^2+y^2$ và z=1. Tính $\iiint_E z \ dx dy dz$.

"Bao" ở đây chỉ là một miêu tả trực quan, vì thế ta nên vẽ hình rồi từ đó đưa ra một miêu tả toán học, tức là miêu tả dưới dạng tập hợp.

Xem E là một khối đơn giản theo chiều trục z, nằm trên mặt $z=x^2+y^2$, dưới mặt z=1. Như vậy $E=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2\leq z\leq 1\}$. Chiếu khối E xuống

mặt phẳng xOy ta được hình tròn $x^2 + y^2 \le 1$. Áp dụng công thức Fubini:

$$\iiint_{E} z \, dx dy dz = \iint_{x^{2}+y^{2} \le 1} \left(\int_{x^{2}+y^{2}}^{1} z \, dz \right) \, dx dy
= \iint_{x^{2}+y^{2} \le 1} \frac{1}{2} z^{2} \Big|_{z=x^{2}+y^{2}}^{1} dx dy
= \iint_{x^{2}+y^{2} \le 1} \frac{1}{2} \left(1 - \left(x^{2} + y^{2} \right)^{2} \right) dx dy
= \iint_{0 \le r \le 1, 0 \le \theta \le 2\pi} \frac{1}{2} \left(1 - \left(r^{2} \right)^{2} \right) r \, dr d\theta
= \frac{1}{2} \int_{0}^{1} \left(\int_{0}^{2\pi} (r - r^{5}) \, d\theta \right) dr = \frac{\pi}{3}.$$

Trong ví dụ này một điểm (x, y, z) trong \mathbb{R}^3 được miêu tả bằng cách dùng tọa độ cực (r, θ) để miêu tả (x, y). Người ta thường gọi hệ tọa độ (r, θ, z) là hệ **tọa độ** try.

2.3.2 Tọa độ cầu

Một điểm P=(x,y,z) trong \mathbb{R}^3 có thể được miêu tả bằng bộ ba số thực (ρ,ϕ,θ) , với ρ là khoảng cách từ O tới P, ϕ là góc giữa vecto (0,0,1) (tia Oz) và vecto \overrightarrow{OP} , và nếu gọi M=(x,y,0) là hình chiếu của điểm P xuống mặt phẳng Oxy thì θ là góc từ vecto (1,0,0) (tia Ox) tới vecto \overrightarrow{OM} .

Trong Hình 2.3.1 ta tính được ngay $z = PM = \rho \cos \phi$, $OM = \rho \sin \phi$, $x = OM \cos \theta = \rho \sin \phi \cos \theta$, $y = OM \sin \theta = \rho \sin \phi \sin \theta$.

Tương tự như trường hợp tọa độ cực, để có một phép đổi biến thực sự ta phải hạn chế miền xác định bằng cách bỏ đi tập $\{(x,y,z)\in\mathbb{R}^3\mid y=0,\ x\geq 0\}$, tức một nửa của mặt phẳng xOz, ứng với $\rho=0,\ \phi=0,\ \phi=\pi,\ \theta=0,\ \theta=2\pi.$ Khi đó ánh xạ

$$\varphi: (0, \infty) \times (0, \pi) \times (0, 2\pi) \rightarrow \mathbb{R}^3 \setminus \{(x, y, z) \in \mathbb{R}^3 \mid y = 0, \ x \ge 0\}$$
$$(\rho, \phi, \theta) \mapsto (x, y, z) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$$

Hình 2.3.1: $\rho = \text{const}$ ứng với một mặt cầu. Trên mỗi mặt cầu các đường $\phi = \text{hằng}$ là các đường vĩ tuyến, các đường $\theta = \text{hằng}$ là các đường kinh tuyến, với $0 \le \rho$, $0 \le \phi \le \pi$, $0 \le \theta \le 2\pi$. Bộ (ρ, ϕ, θ) đại diện cho (cao độ, vĩ độ, kinh độ) của một điểm trong không gian.

là một song ánh, có

$$\det J_{\varphi}(\rho, \phi, \theta) = \det \begin{pmatrix} \sin \phi \cos \theta & \rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\ \sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\ \cos \phi & -\rho \sin \phi & 0 \end{pmatrix} = \rho^2 \sin \phi > 0.$$

Vậy đây là một phép đổi biến theo Mệnh đề 2.3.3. Cũng như trường hợp tọa độ cực, phần bị bỏ đi thường không ảnh hưởng tới tích phân nên ta thường không nhắc tới chi tiết kĩ thuật này.

Một cách hình thức, có thể nhớ rằng

$$dxdydz = \rho^2 \sin \phi \, d\rho d\phi d\theta.$$

Có tài liệu dùng thứ tự trong tọa độ cầu là (ρ, θ, ϕ) . Thứ tự tọa độ trong tọa độ cầu liên quan tới định hướng trên mặt cầu, tuy không ảnh hưởng tới tích phân bội nhưng sẽ ảnh hưởng tới tích phân mặt ở chương sau.

Ví dụ 2.3.8 (thể tích quả cầu). Gọi $B^3(O, R)$ là quả cầu mở tâm O bán kính R trong \mathbb{R}^3 . Thể tích của quả cầu này là:

$$|B^{3}(O,R)| = \iiint_{B^{3}(O,R)} 1 \ dV = \int_{0}^{R} \int_{0}^{\pi} \int_{0}^{2\pi} 1 \cdot \rho^{2} \sin \phi \, d\theta \, d\phi \, d\rho = \frac{4\pi}{3} R^{3}.$$

Sau đây là một số ví dụ các phép đổi biến khác với tọa đồ cầu và tọa độ cực. Đây là những phép đổi biến tuyến tính.

Ví dụ 2.3.9 (diện tích hình bầu dục). Một hình bầu dục (e-líp, ellipse) D trong

mặt phẳng là tập hợp các điểm thỏa

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} \le 1$$

trong đó a, b > 0. Viết lại công thức ở dạng

$$\left(\frac{x-x_0}{a}\right)^2 + \left(\frac{y-y_0}{b}\right)^2 \le 1,$$

ta thấy có thể làm phép đổi biến

$$u = \frac{x - x_0}{a}$$
$$v = \frac{y - y_0}{b}.$$

Phép đổi biến này đưa hình bầu dục về hình tròn $u^2+v^2\leq 1$. Đây chẳng qua là một phép tịnh tiến hợp với một phép co dãn (vị tự). Ta tính được $dudv=\frac{1}{ab}dxdy$, từ đó

$$|D| = \iint_D 1 \, dx dy = \iint_{u^2 + v^2 \le 1} 1 \cdot ab \, du dv = ab \iint_{u^2 + v^2 \le 1} 1 \, du dv.$$

Như vậy diện tích của hình bầu dục này bằng ab lần diện tích của hình tròn đơn vị, tức là bằng $ab\pi$.

Ví dụ 2.3.10. Tính $\iint_R \frac{x-2y}{3x-y} \ dA$ trong đó R là hình bình hành bao bởi các đường thẳng $x-2y=0,\ x-2y=4,\ 3x-y=1,\ \text{và } 3x-y=8.$

Đặt u=x-2y và v=3x-y. Miền bao bởi các đường thẳng $u=0,\ u=4,\ v=1,\ \text{và }v=8$ là hình chữ nhật $D=[0,4]\times[1,8]$ trong mặt phẳng (u,v).

Ta có x = (u - 2v)/(-5) và y = (3u - v)/(-5), nên

$$\frac{\partial(x,y)}{\partial(u,v)} = \det\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \det\begin{pmatrix} -1/5 & 2/5 \\ -3/5 & 1/5 \end{pmatrix} = \frac{1}{5} \neq 0,$$

suy ra ánh xạ $(x,y) \mapsto (u,v)$ là một phép đổi biến từ phần trong của D sang phần trong của R. Biên của D và R không ảnh hưởng đến tích phân vì chúng có diện tích không và ta đang lấy tích phân hàm liên tục.

Công thức đổi biến cho:

$$\iint_{R} \frac{x - 2y}{3x - y} dx dy = \iint_{D} \frac{u}{v} \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv$$
$$= \frac{1}{5} \iint_{D} \frac{u}{v} du dv = \frac{1}{5} \int_{0}^{4} \left(\int_{1}^{8} \frac{u}{v} dv \right) du = \frac{8}{5} \ln 8.$$

2.3.3 Giải thích công thức đổi biến

Chúng ta sẽ không chứng minh công thức đổi biến vì một chứng minh sẽ khó và dài vượt khỏi phạm vi môn học này. Dưới đây chúng ta đưa ra một giải thích, tuy chưa phải là một chứng minh, nhưng sẽ giúp ta hiểu rõ hơn công thức.

Để cho đơn giản, xét trường hợp A là một hình chữ nhật. Ánh xạ φ mang miền A trên mặt phẳng (u, v) sang miền $\varphi(A)$ trên mặt phẳng (x, y).

Xét một phép chia A thành những hình chữ nhật con. Ta xem tác động của φ lên một hình chữ nhật con đại diện $[u_0, u_0 + \Delta u] \times [v_0, v_0 + \Delta v]$, có diện tích $\Delta u \Delta v$. Hàm trơn φ mang mỗi cạnh của hình chữ nhật này thành một đoạn cong trên mặt phẳng (x,y), do đó ta được một "hình chữ nhật cong" trên mặt phẳng (x,y) với một đỉnh là điểm $\varphi(u_0,v_0)$. Xem Hình 2.3.2.

Hình 2.3.2: Minh hoa công thức đổi biến.

Bây giờ ta tính diện tích hình chữ nhật cong này bằng cách xấp xỉ tuyến tính. Đoạn cong từ $\varphi(u_0, v_0)$ tới $\varphi(u_0 + \Delta u, v_0)$ sẽ được xấp xỉ tuyến tính bằng một đoạn thẳng tiếp tuyến tại $\varphi(u_0, v_0)$. Vì vectơ tiếp xúc chính là $\frac{\partial \varphi}{\partial u}(u_0, v_0)$ nên đoạn tiếp tuyến này cho bởi vectơ $\frac{\partial \varphi}{\partial u}(u_0, v_0)\Delta u$.

Tương tự, đoạn cong $\varphi(u_0, v_0 + \Delta v)$ được xấp xỉ bởi vectơ tiếp xúc $\frac{\partial \varphi}{\partial v}(u_0, v_0) \Delta v$. Vậy hình chữ nhật cong được xấp xỉ bởi hình bình hành sinh bởi hai vectơ tiếp xúc trên.

Vấn đề bây giờ là tính diên tích hình bình hành sinh bởi hai vecto. Giả sử

Hình 2.3.3: Xấp xỉ tuyến tính đường cong: $r(t + \Delta t) - r(t) \approx r'(t) \Delta t$.

 $a=(a_1,a_2)$ và $b=(b_1,b_2),$ diện tích của hình bình hành sinh bởi a và b là

$$|a| |b| \sin \alpha = \sqrt{|a|^2 |b|^2 (1 - \cos^2 \alpha)} = \sqrt{|a|^2 |b|^2 - |a|^2 |b|^2 \cos^2 \alpha}$$

$$= \sqrt{|a|^2 |b|^2 - \langle a, b \rangle^2} = \sqrt{(a_1^2 + a_2^2)(b_1^2 + b_2^2) - (a_1b_1 + a_2b_2)^2}$$

$$= \sqrt{(a_1b_2 - a_2b_1)^2} = |a_1b_2 - a_2b_1| = |\det \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}| = |\det(a, b)|.$$
(2.3.2)

Trở lại công thức đổi biến, vậy diện tích của hình bình hành sinh bởi hai vecto $\frac{\partial \varphi}{\partial u}(u_0, v_0)\Delta u$ và $\frac{\partial \varphi}{\partial v}(u_0, v_0)\Delta v$ là

$$|\det\left(\frac{\partial\varphi}{\partial u}(u_0,v_0)\Delta u,\frac{\partial\varphi}{\partial v}(u_0,v_0)\Delta v\right)| = |\det\left(\frac{\partial\varphi}{\partial u}(u_0,v_0),\frac{\partial\varphi}{\partial v}(u_0,v_0)\right)|\Delta u\Delta v$$
$$= |\det J_{\varphi}(u_0,v_0)|\Delta u\Delta v.$$

Điều này cũng giải thích sư xuất hiện của dấu tri tuyệt đối.

Có thể nhận xét rằng công thức tính diện tích thông qua hàm sin ở trên chưa được thiết lập trong chương này. Việc này có phần vượt ra ngoài phạm vi môn học này.

Ta đã thu được một giải thích ý nghĩa hình học của định thức: giá trị tuyệt đối của định thức của ma trận cấp hai chính là diện tích của hình bình hành sinh bởi hai vectơ cột của ma trận.

Bài tập

Một số bài tập tính toán có thể dùng máy tính.

2.3.1. Tính:

(a) Tính thể tích của khối được bao bởi mặt $z=4-x^2-y^2$ và mặt phẳng xOy.

- (b) Tính thể tích của khối được bao bởi mặt $z=9-x^2-y^2,\,y\leq x$, trong góc phần tám thứ nhất (tức $x,y,z\geq 0$).
- (c) Tính tích phân $\iint_D \sqrt{x^2 + y^2} \ dA$ trong đó D là miền được bao bởi hai đường cong $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$.
- (d) Tính tích phân $\iint_D (x+y) dA$ trong đó D là miền được bao bởi hai đường cong $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ trong góc phần tư thứ nhất.
- (e) Tính tích phân $\iint_D (x^2 + y^2)^{3/2} dA$ trong đó D là miền trong góc phần tư thứ nhất bao bởi đường tròn $x^2 + y^2 = 9$, đường thẳng y = 0 và $y = \sqrt{3}x$.
- (f) Tính tích phân $\iint_D \frac{y^2}{x^2} dA$ trong đó D là miền trong góc phần tư thứ nhất bao bởi đường tròn $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, đường thẳng y = 0 và y = x.
- (g) Tính tích phân $\iint_D x^2 dA$ trong đó D là miền được bao bởi e-líp $3x^2 + 4y^2 = 8$.
- (h) Tính tích phân $\iiint_E \cos\left[(x^2+y^2+z^2)^{3/2}\right]\ dV$ trong đó E là quả cầu đơn vị $x^2+y^2+z^2\leq 1$.
- (i) Tính thể tích của khối được bao phía trên bởi mặt cầu $x^2 + y^2 + z^2 = 2$ và được bao phía dưới bởi mặt paraboloid $z = x^2 + y^2$.
- (j) Tìm thể tích của khối bị chặn trên bởi mặt cầu $x^2+y^2+z^2=4$ và bị chặn dưới bởi mặt nón $z^2=3x^2+3y^2,\,z\geq 0.$
- (k) Tìm thể tích của khối bị chặn bởi mặt cầu $x^2 + y^2 + z^2 = 9$ và mặt trụ $x^2 + y^2 = 2y$.
- (l) Tính thể tích của miền phía dưới mặt cầu $x^2 + y^2 + z^2 = 1$ phía trên mặt phẳng $z = 1/\sqrt{2}$.
- (m) Tính thể tích của khối bên dưới mặt $z = 4 x^2 y^2$ bên trên mặt $x^2 + y^2 + z^2 = 6$.
- (n) Tính thể tích của khối được bao bởi các mặt $z = 9 x^2 y^2$, $z = 3x^2 + 3y^2 16$.
- (o) Tính thể tích của khối được bao bởi các mặt z = 3 2y, $z = x^2 + y^2$.
- (p) Tính tích phân $\iiint_E x \; dV$ trong đó E là khối được bao bởi hai mặt $z=6-x^2-y^2$ và $z=x^2+3y^2.$
- **2.3.2.** Tính thể tích của khối được miêu tả bởi điều kiện $x^2+y^2 \leq z^2 \leq 3(x^2+y^2)$, $1 \leq x^2+y^2+z^2 \leq 4, z \geq 0$.

2.3.3. Tính:

- (a) Tính diện tích của miền được bao bởi đường cong hình bông hoa $r=4+3\cos(11\theta)$ (đây là đường trong mặt phẳng xy được cho bởi phương trình tham số $x=r\cos\theta$, $y=r\sin\theta$ với r như trên), xem Hình 2.3.4.
- (b) Tính diện tích miền được bao bởi đường cong hình trái tim $r=1+\cos\theta$, xem Hình 2.3.5.
- (c) Đường cong trong mặt phẳng xy cho bởi phương trình $r = \sqrt{\theta}$, $0 \le \theta \le 2\pi$ cùng với tia Ox bao một miền D hình vỏ ốc được vẽ trong Hình 2.3.6. Hãy tính tích phân $\iint_D e^{x^2+y^2} dxdy$.

2.3.4. Tính:

(a) Tính tích phân $\iint_R (x^2 + 2xy) dA$ trong đó R là hình bình hành bao bởi các đường thẳng y = 2x + 3, y = 2x + 1, y = 5 - x, y = 2 - x.

Hình 2.3.4: Đường $r = 4 + 3\cos(11\theta)$.

Hình 2.3.5: Đường $r = 1 + \cos \theta$.

- (b) Tính tích phân $\iint_R (x+y)^2 dA$ trong đó R là hình bình hành bao bởi các đường thẳng y=-x, y=-x+1, y=2x, y=2x-3.
- (c) Tính diện tích của miền phẳng được bao bởi các đường cong $y^2=x,\,y^2=2x,\,y=1/x,\,y=2/x.$
- (d) Tính diện tích của miền phẳng được bao bởi các đường cong $y^2=x,\,3y^2=x,\,y=x^2,\,y=2x^2.$
- **2.3.5.** Xét khối bầu dục E được bao bởi mặt có phương trình $x^2 + 2y^2 + 3z^2 = 4$. Hãy tính thể tích của E bằng cách đổi biến để đưa về thể tích của quả cầu. Tìm công thức thể tích của khối bầu dục tổng quát.
- **2.3.6.** Dùng phép đổi biến, tìm diện tích của miền phẳng được bao bởi đường cong $x^2 2xy + 2x + 3y^2 2y = 2$.
- **2.3.7.** Gọi D là miền phẳng được xác định bởi $x^4 + x^2 + 3y^4 + y^2 2y \le 1$. Dùng tính đối xứng của miền, hãy tính tích phân $\iint_D x \ dx dy$.
- **2.3.8.** Tìm thể tích của khối được tạo bằng cách xoay miền bao bởi đồ thị của hàm $f(x) = x x^3$ và trục x quanh trục y.
- **2.3.9.** Dùng máy tính hãy vẽ mặt cầu mấp mô cho bởi phương trình trong tọa độ cầu $\rho = 1 + \sin^2(3\theta) \sin^4(5\phi)$. Tính (xấp xỉ) thể tích của khối bao bởi mặt này.
- 2.3.10. Hãy giải bài 2.2.14 (thể tích khối tròn xoay) bằng cách đổi biến.
- 2.3.11. Giải bài 2.2.10 bằng cách dùng công thức đổi biến.

Hình 2.3.6: Đường $r = \sqrt{\theta}$.

Hình 2.3.7: Mặt xuyến.

2.3.12. Mặt xuyến có thể được miêu tả như là mặt tròn xoay nhận được bằng cách xoay quanh trục z một đường tròn trên mặt phẳng Oyz không cắt trục z. Hãy kiểm tra rằng mặt xuyến có phương trình dạng ẩn:

$$\left(\sqrt{x^2 + y^2} - b\right)^2 + z^2 = a^2, \ 0 < a < b,$$

và dạng tham số: $((b+a\cos\theta)\cos\phi,(b+a\cos\theta)\sin\phi,a\sin\theta),\ 0\leq\phi,\ \theta\leq2\pi.$ (Hình 2.3.8.) Hãy tính thể tích của khối bao bởi mặt xuyến.

Hình 2.3.8: Phương trình của mặt xuyến.

2.3.13. * Trong mặt phẳng \mathbb{R}^2 một phép quay quanh gốc tọa độ một góc α có thể được miêu tả bằng 2 cách: Trong tọa độ cực, đó là ánh xạ $(r,\theta)\mapsto (r,\theta+\alpha)$. Tương ứng trong tọa độ Euclid đó là

$$\left(\begin{array}{c} x \\ y \end{array}\right) \mapsto \left(\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right).$$

Dùng công thức đổi biến, hãy chứng tỏ một phép quay quanh gốc tọa độ mang một hình có diện tích thành một hình có cùng diện tích.

2.3.14. Dùng phương pháp cắt lớp, hãy tính thể tích của hình chóp cân đáy là một hình chữ nhật, tức là hình kim tự tháp, xem Hình 2.3.9.

Hình 2.3.9: Hình kim tự tháp.

2.3.15 (thể tích của khối nón tổng quát). * Giả sử D là một miền trong mặt phẳng Oxy. Cho A là một điểm phía trên mặt phẳng Oxy trong \mathbb{R}^3 . Tập hợp tất cả các điểm nằm trên các đoạn thẳng nối A với các điểm thuộc D được gọi là một khối nón hay khối chóp. Chẳng hạn một khối tứ diện là một khối nón. Miền D được gọi là đáy của khối nón, còn khoảng cách từ A tới mặt phẳng Oxy được gọi là chiều cao của khối nón. Xem Hình 2.3.10.

Hình 2.3.10: Khối nón.

Có thể kiểm được nếu đáy có diện tích thì khối nón có thể tích. Ta chứng tỏ thể tích của khối nón bằng một phần ba diện tích đáy nhân chiều cao. Có thể làm theo các bước sau.

(a) Hãy viết khối nón là $E = \{(1-t)(x,y,0) + t(x_A,y_A,z_A) \mid t \in [0,1], (x,y) \in D\}$, với $A = (x_A,y_A,z_A), z_A > 0$. Mặt cắt ứng với mỗi $z, 0 \le z \le z_A$, là $E_z = \{(1-t)(x,y) + t(x_A,y_A) \mid t \in [0,1], (x,y) \in D, tz_A = z\}$.

(b) Chứng tỏ, với $t = \frac{z}{z_A}$ cho trước, ánh xạ

$$D \to E_z$$
$$(x,y) \mapsto (1-t)(x,y) + t(x_A, y_A)$$

là một phép đổi biến. Đây là hợp của phép vị tự với hệ số (1-t) với phép tịnh tiến theo vecto (x_A, y_A) trên mặt phẳng. Như vậy mặt cắt E_z đồng dạng với đáy D với tỉ số đồng dạng là (1-t).

- (c) Tính diện tích của mặt cắt E_z .
- (d) Tính thể tích E bằng phương pháp cắt lớp.

2.3.16. * Một phép dời hình trong \mathbb{R}^2 được định nghĩa là một song ánh từ \mathbb{R}^2 vào chính nó bảo toàn khoảng cách. Người ta biết trong mặt phẳng một phép dời hình bất kì là một hợp của các phép tinh tiến, phép quay quanh gốc toa đô, và phép lấy đối xứng qua truc x.

Dùng công thức đổi biến, hãy chứng tỏ diện tích của một hình phẳng không thay đổi qua một phép dời hình.

2.4 Ứng dụng của tích phân bội

Tích phân là tổng, vì vậy mỗi khi có nhu cầu tính tổng của vô hạn giá trị thì tích phân có thể xuất hiện.

Nếu tại mỗi điểm x_i , $1 \le i \le n$ có tương ứng các giá trị $f(x_i)$ của một đại lượng thì tổng giá trị của đại lượng đó dĩ nhiên là $\sum_{i=1}^n f(x_i)$. Nếu tập hợp D các điểm đang xét là vô hạn thì hàm $f:D\to\mathbb{R}$ có khi được gọi là **hàm mật độ** của đại lượng, và tổng giá trị của đại lượng là $\int_D f$.

Ví dụ 2.4.1. Điện tích phân bố trên mảnh kim loại hình chữ nhật $[0,1] \times [0,2]$ theo công thức $\rho(x,y) = 1000xy$. Hãy tính lượng điện tích có trên mảnh này.

Tổng lượng điện tích có trên mảnh là

$$\begin{split} \iint_{[0,1]\times[0,2]} \rho(x,y) \, dx dy &= \int_0^1 \left(\int_0^2 1000xy \, dy \right) \, dx \\ &= 1000 \left(\int_0^1 x \, dx \right) \left(\int_0^2 y \, dy \right) = 1000 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 2^2 = 1000. \end{split}$$

2.4.1 Giá trị trung bình

Nếu tại các điểm x_i , $1 \le i \le n$ có tương ứng các giá trị $f(x_i)$ thì giá trị trung bình tại các điểm này như ta đã biết là $\frac{1}{n} \sum_{i=1}^{n} f(x_i)$. Trong trường hợp miền xác định có vô hạn phần tử thì ta thay số phần tử của miền xác định bởi thể tích của miền xác định và thay tổng bởi tích phân. Vậy với $f: D \to \mathbb{R}$ thì **giá trị trung bình** của f được cho bởi

$$\frac{1}{|D|} \int_D f.$$

Đây là tổng quát hóa khái niệm giá trị trung bình đã có trong Vi tích phân 1.

Ví dụ 2.4.2. Nhiệt độ tại điểm (x,y) trên mặt phẳng là $50e^{-x^2-y^2}$ (độ Celcius). Hãy tìm nhiệt đô trung bình trên đĩa tròn đơn vi tâm tai gốc toa đô.

Gọi D là đĩa tròn $x^2 + y^2 \le 1$. Nhiệt độ trung bình trên D được cho bởi

$$\frac{1}{|D|} \iint_D 50e^{-x^2 - y^2} dxdy = \frac{1}{\pi} \int_0^1 \int_0^{2\pi} 50e^{-r^2} r d\theta dr$$
$$= 50 \left(1 - \frac{1}{e}\right) \approx 31,6.$$

Ví dụ 2.4.3. Khu trung tâm thành phố được miêu tả như một hình tam giác với các đỉnh tại (0,0), (2,0) và (0,3) (đơn vị chiều dài là kilomét). Giá đất trong khu vực này được mô hình hóa bằng hàm p(x,y) = 3x + 2y + 1 (trăm triệu đồng/m² tức 10^6 triệu đồng/km²). Hãy tính giá đất trung bình ở khu vực này.

Các đỉnh (0,0), (2,0) và (0,3) tạo thành tam giác D bao bởi hai trục tọa độ theo chiều dương và đường thẳng 3x + 2y = 6. Giá đất trung bình ở khu vực này là giá trị trung bình của hàm p trên miền D, cho bởi

$$\frac{1}{|D|} \iint_D p.$$

Diện tích tam giác D là |D|=3. Xem D là miền đơn giản theo chiều trục y và áp dụng Công thức Fubini ta được

$$\frac{1}{|D|} \iint_D p = \frac{1}{3} \int_0^2 \left(\int_0^{3 - \frac{3}{2}x} (3x + 2y + 1) \, dy \right) dx$$

$$= \frac{1}{3} \int_0^2 \left((3xy + y^2 + y) \Big|_0^{3 - \frac{3}{2}x} \right) dx$$

$$= \frac{1}{3} \int_0^2 \left(3x(3 - \frac{3}{2}x) + (3 - \frac{3}{2}x)^2 + (3 - \frac{3}{2}x) \right) dx = 5.$$

Tích phân cuối ta có thể dùng máy để tính. Vậy giá đất trung bình của khu vực là $5 \text{ trăm triệu } \text{đồng/m}^2$.

2.4.2 Tâm khối lượng

Ta giới thiệu khái niệm tâm khối lượng. Trong trường hợp hai chất điểm có khối lượng m_1 tại điểm p_1 và có khối lượng m_2 tại điểm p_2 thì tâm khối lượng của hệ hai điểm này, theo nguyên tắc đòn bẩy của vật lý, nằm tại điểm

$$\frac{m_1p_1 + m_2p_2}{m_1 + m_2}.$$

Đối với hệ gồm n chất điểm, bằng qui nạp ta tìm được vị trí của tâm khối lượng là

$$\frac{\sum_{i=1}^{n} m_i p_i}{\sum_{i=1}^{n} m_i},$$

với tổng khối lượng là $m = \sum_{i=1}^{n} m_i$.

Xét trường hợp khối lượng liên tục, giả sử ta có một khối vật chất chiếm phần không gian E trong \mathbb{R}^3 . Tại mỗi điểm $p=(x,y,z)\in\mathbb{R}^3$ gọi $\rho(p)$ là mật độ khối lượng của khối tại p, đó là giới hạn của khối lượng trung bình quanh p, có thể hiểu là khối lượng tại điểm p. Khối lượng của khối chính là tích phân của mật độ khối lượng:

$$m = \int_{E} \rho.$$

Từ công thức của trường hợp rời rạc ở trên ta suy ra vị trí của tâm khối lượng trong trường hợp liên tuc sẽ là

$$\frac{\int_E \rho p}{\int_E \rho} = \frac{\int_E \rho p}{m}.$$

Ở đây tích phân của hàm vectơ được hiểu là vectơ tích phân của từng thành phần. Cụ thể hơn, viết p=(x,y,z) thì tâm khối lượng của E nằm ở điểm

$$\frac{1}{m} \left(\int_E \rho x, \int_E \rho y, \int_E \rho z \right).$$

Ví dụ 2.4.4. Ta tìm tâm khối lượng của nửa hình tròn đồng chất.

Ta xem như khối này không có chiều dày, tức là xem như tất cả nằm trên mặt phẳng z=0. Gọi D là nửa trên của hình tròn tâm O bán kính R trong mặt phẳng (x,y) và gọi hằng số ρ là mật độ khối lượng của nó. Khối lượng của khối này là $m=\iint_D \rho \ dA=\rho\pi R^2/2$. Tọa độ của tâm khối lượng là

$$\begin{split} x &= \frac{1}{m} \iint_D \rho x \; dx dy = 0, \\ y &= \frac{1}{m} \iint_D \rho y \; dx dy = \frac{\rho}{m} \int_0^R \int_0^\pi (r \sin \theta) r \; d\theta \; dr = \frac{4}{3\pi} R. \end{split}$$

2.4.3 Xác suất của sự kiện ngẫu nhiên

Trước hết ta điểm lại trường hợp một biến ngẫu nhiên đã xét trong Vi tích phân hàm một biến [Bmgt1].

Một biến ngẫu nhiên X là một ánh xạ từ một tập hợp các sự kiện vào tập hợp các số thực.

Trước hết ta xét trường hợp tập giá trị D của X là hữu hạn, ta nói X là một biến ngẫu nhiên rời rạc. Với mỗi giá trị $x \in D$ có một số thực $0 \le f(x) \le 1$ là xác suất để X có giá trị x, kí hiệu là P(X=x). Hàm f được gọi là hàm phân bố xác suất của biến ngẫu nhiên X. Xác suất để X có giá trị trong tập $C \subset D$ được cho bởi

$$P(X \in C) = \sum_{x \in C} f(x).$$

Ta phải có $\sum_{x \in D} f(x) = P(X \in D) = 1.$ Giá trị trung bình (mean) hay kỳ vọng

(expected value) theo xác suất của X được cho bởi:

$$E(X) = \sum_{x \in D} x f(x).$$

Trong trường hợp biến ngẫu nhiên liên tục, tập giá trị của biến ngẫu nhiên X là một tập con vô hạn D của \mathbb{R} . Tương tự với trường hợp rời rạc, có một hàm phân bố xác suất, còn được gọi là hàm mật độ xác suất (probability density function) $f:D\to\mathbb{R}$ sao cho $f(x)\geq 0$ và xác suất để X có giá trị trong tập $C\subset D$ được cho bởi

$$P(X \in C) = \int_C f.$$

Một hệ quả là hàm mật độ xác suất phải thỏa $P(X \in D) = \int_D f = 1$. Trung bình hay kỳ vọng của biến ngẫu nhiên X được cho bởi:

$$E(X) = \int_D xf.$$

Ví dụ 2.4.5. Một nhà sản xuất bảo hành một sản phẩm 2 năm. Gọi T là biến xác suất ứng thời điểm hư hỏng của sản phẩm với số thực $t \geq 0$ là thời gian từ khi sản phẩm được sản xuất theo năm. Giả sử hàm mật độ xác suất được cho bởi $f(t) = 0, 1e^{-0.1t}$. Xác suất sản phẩm bị hư trong thời gian bảo hành sẽ là

$$P(0 \le T \le 2) = \int_0^2 0.1e^{-0.1t} dt \approx 18\%.$$

Bây giờ ta xét trường hợp có nhiều biến ngẫu nhiên.

Nếu có n biến ngẫu nhiên thì tập giá trị của biến ngẫu nhiên là một tập con của \mathbb{R}^n , hàm phân bố xác suất là một hàm n biến, và các tích phân trong các công thức trên là tích phân bội.

Ví dụ 2.4.6. Một chuyến xe buýt thường tới trạm trễ, nhưng trễ không quá 10 phút, và đợi ở trạm 5 phút. Hàm mật độ xác suất của giờ xe tới trạm, gọi là X, được cho bởi $f_1(x) = -0.02x + 0.2$, $0 \le x \le 10$. Một người thường đi xe buýt vào giờ này nhưng hay bị trễ, có khi tới 20 phút. Hàm mật độ xác suất của giờ người này tới trạm, gọi là Y, được cho bởi $f_2(y) = -0.005y + 0.1$, $0 \le y \le 20$. Hỏi xác suất để người này đón được chuyến xe buýt này là bao nhiêu?

Ở đây có hai biến xác suất độc lập nên hàm phân bố xác suất chung là

$$f(x,y) = f_1(x) f_2(y) = (-0.02x + 0.2)(-0.005y + 0.1).$$

Xác suất cần tìm được cho bởi

$$\begin{split} P(Y \leq X + 5) &= \iint_{\{(x,y) \in \mathbb{R}^2 \mid 0 \leq x \leq 10, \ y \leq x + 5\}} f(x,y) \, dx dy \\ &= \int_0^{10} \int_0^{x+5} (-0.02x + 0.2)(-0.005y + 0.1) \, dy \, dx \\ &\approx 65\%. \end{split}$$

Ví dụ 2.4.7. Hàm mật đô xác suất của hai biến ngẫu nhiên X và Y có dang

$$f(x,y) = cxe^{-y}, 0 \le y \le x \le 1.$$

(a) Tìm giá trị của hằng số c. Điều kiện để f là hàm mật độ xác suất là tích phân của f bằng 1. Ta phải có

$$\begin{split} 1 &= \iint_{(x,y)\in[0,1]\times[0,1]} f(x,y) \, dx dy \\ &= \iint_{(x,y)\in[0,1]\times[0,1]} cx e^{-y} \, dx dy = c \int_0^1 \left(\int_0^1 x e^{-y} \, dy \right) \, dx \\ &= c \left(\int_0^1 x \, dx \right) \left(\int_0^1 e^{-y} \, dy \right) = c \frac{1}{2} (1 - e^{-1}). \end{split}$$

Vậy $c = \frac{2}{1 - e^{-1}}$.

(b) Tính kỳ vọng E(X) của biến ngẫu nhiên X.

$$\begin{split} E(X) &= \iint_{(x,y) \in [0,1] \times [0,1]} x f(x,y) \, dx dy \\ &= \iint_{(x,y) \in [0,1] \times [0,1]} c x^2 e^{-y} \, dx dy = c \int_0^1 \left(\int_0^1 x^2 e^{-y} \, dy \right) \, dx \\ &= c \left(\int_0^1 x^2 \, dx \right) \left(\int_0^1 e^{-y} \, dy \right) = c \frac{1}{3} (1 - e^{-1}) = \frac{2}{3}. \end{split}$$

(c) Tính kỳ vọng E(Y) của biến ngẫu nhiên Y.

$$E(Y) = \iint_{(x,y)\in[0,1]\times[0,1]} yf(x,y) \, dxdy$$

$$= \iint_{(x,y)\in[0,1]\times[0,1]} cxye^{-y} \, dxdy = c \int_0^1 \left(\int_0^1 xye^{-y} \, dy \right) \, dx$$

$$= c \left(\int_0^1 x \, dx \right) \left(\int_0^1 ye^{-y} \, dy \right) = c \frac{1}{2} \int_0^1 ye^{-y} \, dy.$$

Với tích phân $\int_0^1 y e^{-y} dy$ ta có thể tính bằng cách dùng máy tính, hay dùng công thức tích phân từng phần áp dụng cho u = y và $v' = e^{-y}$:

$$\int_0^1 y e^{-y} \, dy = y(-e^{-y}) \Big|_{y=0}^{y=1} - \int_0^1 -e^{-y} \, dy = 1 - 2e^{-1}.$$

Vậy $E(Y) = \frac{1-2e^{-1}}{1-e^{-1}}$.

(d) Tính xác suất biến X có giá trị giữa 0 và $\frac{1}{2}$ và biến Y có giá trị giữa 0 và $\frac{1}{3}$.

$$P((X,Y) \in \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le \frac{1}{2}, 0 \le y \le \frac{1}{3}\}) = \iint_{(x,y) \in [0,\frac{1}{2}] \times [0,\frac{1}{3}]} f(x,y) \, dx dy$$

$$= \iint_{(x,y) \in [0,\frac{1}{2}] \times [0,\frac{1}{3}]} cx e^{-y} \, dx dy = c \int_0^{\frac{1}{2}} \left(\int_0^{\frac{1}{3}} x e^{-y} \, dy \right) \, dx$$

$$= c \left(\int_0^{\frac{1}{2}} x \, dx \right) \left(\int_0^{\frac{1}{3}} e^{-y} \, dy \right) = c \frac{1}{4} (1 - e^{-\frac{1}{3}}) = \frac{1 - e^{-\frac{1}{3}}}{2(1 - e^{-1})}.$$

Ví dụ 2.4.8 (phân bố chuẩn). Tích phân $\int_{-\infty}^{\infty} e^{-x^2} dx$ rất quan trọng trong môn Xác suất. Ta tính nó thông qua tích phân bội.

Hình 2.4.1: Đường cong e^{-x^2} thường được gọi là đường hình chuông.

Gọi B'(R) là hình tròn đóng tâm 0 bán kính R, tức $B'(R) = \{(x,y) \mid x^2 + y^2 \le R^2\}$. Gọi I(R) là hình vuông tâm 0 với chiều dài cạnh 2R, tức $I(R) = [-R, R] \times [-R, R]$.

Theo Công thức Fubini:

$$\iint_{I(R)} e^{-(x^2+y^2)} \ dA = \Big(\int_{-R}^R e^{-x^2} \ dx \Big) \cdot \Big(\int_{-R}^R e^{-y^2} \ dy \Big) = \Big(\int_{-R}^R e^{-x^2} \ dx \Big)^2,$$

nên

$$\lim_{R \to \infty} \iint_{I(R)} e^{-(x^2 + y^2)} dA = \lim_{R \to \infty} \left(\int_{-R}^{R} e^{-x^2} dx \right)^2 = \left(\int_{-\infty}^{\infty} e^{-x^2} dx \right)^2.$$

Dùng tọa độ cực thì

$$\iint_{B'(R)} e^{-(x^2+y^2)} dA = \iint_{[0,R]\times[0,2\pi]} re^{-r^2} dA = \pi(1-e^{-R^2}),$$

nên

$$\lim_{R\to\infty}\iint_{B'(R)}e^{-(x^2+y^2)}\ dA=\pi.$$

Cuối cùng ta nhận xét rằng

$$\lim_{R \to \infty} \iint_{I(R)} e^{-(x^2 + y^2)} \ dA = \lim_{R \to \infty} \iint_{B'(R)} e^{-(x^2 + y^2)} \ dA.$$

Thực vậy, do $B'(R) \subset I(R) \subset B'(R\sqrt{2})$, nên

$$\iint_{B'(R)} e^{-(x^2+y^2)} \ dA \leq \iint_{I(R)} e^{-(x^2+y^2)} \ dA \leq \iint_{B'(R\sqrt{2})} e^{-(x^2+y^2)} \ dA.$$

Lấy giới hạn khi $R \to \infty$, dùng tính chất kẹp, ta kiểm được nhận xét trên. Vây ta thu được công thức nổi tiếng:

$$\int_{-\infty}^{\infty} e^{-x^2} \ dx = \sqrt{\pi}.$$

Đặt
$$f(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$$
. Đổi biến $t = \frac{x}{\sqrt{2}}$ thì

$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{h \to \infty} \int_{-h}^{h} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \, dx = \lim_{h \to \infty} \int_{-\frac{h}{\sqrt{2}}}^{\frac{h}{\sqrt{2}}} \frac{1}{\sqrt{2\pi}} e^{-t^2} \, \sqrt{2} \, dt$$
$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} \, dt = 1.$$

Như vậy f thỏa yêu cầu của một hàm phân bố xác suất, có tên gọi là phân bố chuẩn (normal distribution). Xem thêm ở Bài tập 2.4.10.

Bài tâp

2.4.1. Tính:

- (a) Tìm tâm khối lượng của hình chữ nhật đồng chất $[-1,1] \times [-2,2] \subset \mathbb{R}^2$.
- (b) Tìm tâm khối lượng của vật có hình dạng một miếng mỏng chiếm miền trên mặt phẳng bao bởi đường $y=12{,}37x^2$ và đường $y=8{,}5$ với hàm mật độ khối lượng $\rho(x,y)=103{,}6x^4y^{1,2}$.
- (c) Tìm tâm khối lượng của hình trái tim ở Hình 2.3.5.
- (d) Tìm tâm khối lượng của hình vỏ ốc ở Hình 2.3.6.
- (e) Chứng tỏ tâm khối lượng của một tam giác chính là trọng tâm (giao điểm của ba đường trung tuyến) của tam giác.
- (f) Tìm tâm khối lượng của một khối đồng chất có dạng hình nón nhọn cân chiều cao là h và với đáy là hình tròn bán kính R.
- (g) Tìm tâm khối lượng của khối tứ diện đồng chất được bao bởi các mặt $x=0,\,y=0,$ $z=0,\,\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ với a,b,c>0.
- **2.4.2.** Cho $D \subset \mathbb{R}^2$ là một tập đồng chất, có diện tích, đối xứng qua gốc tọa độ O tức là nếu $p \in D$ thì $-p \in D$. Hãy tìm tâm khối lượng của D.

2.4.3. Xét một mô hình đơn giản cho cấu trúc hành tinh Trái đất, gồm phần lõi cứng ở gần tâm có mật độ khối lượng cao và phần ngoài có mật độ khối lượng giảm dần từ trong ra ngoài. Gọi ρ là khoảng cách từ một điểm tới tâm, thì mật độ khối lượng tại điểm đó được mô hình hóa như sau:

$$f(\rho) = \begin{cases} 13 \cdot 10^9, & 0 \le \rho \le 1000, \\ \frac{13 \cdot 10^{12}}{\rho}, & 1000 \le \rho \le 6400, \end{cases}$$

ở đây đơn vị khối lượng là kg và đơn vị chiều dài là km. Hãy ước lượng khối lượng của Trái đất.

- **2.4.4.** Một cái bồn chứa nước có đáy ở dạng mặt có phương trình $z=x^2+y^2$. Cái bồn cần có chiều cao tối thiểu là bao nhiêu để chứa được 4 đơn vị thể tích nước?
- 2.4.5. Tính giá trị trung bình của hàm trên miền.
 - (a) Hàm $f(x,y) = x\cos(xy)$ trên miền $0 \le x \le 1, 0 \le y \le 2$.
 - (b) Hàm $f(x,y) = 1 (x^2 + y^2)$ trên miền $x^2 + y^2 \le 1$.
 - (c) Hàm $f(x,y) = x y^2$ trên miền bao bởi các đường $y = x^2$ và $x = y^4$.
 - (d) Hàm f(x,y,z)=xyz trên hình hộp bao bởi các mặt phẳng $x=0,\,x=1,\,y=1,\,y=2,\,z=2,\,z=3.$
- **2.4.6.** Khu trung tâm thành phố được miêu tả như một hình chữ nhật $[0,1] \times [0,2]$ với đơn vị chiều dài là km. Giá đất trong khu vực này trong được mô hình hóa bằng hàm p, ở vị trí $(x,y) \in [0,1] \times [0,2]$ thì $p(x,y) = 200 10(x-\frac{1}{2})^2 15(y-1)^2$ (triệu đồng/m² tức 10^6 triệu đồng/km²). Hãy tính giá đất trung bình ở khu vực này.
- **2.4.7.** Giả sử rằng gốc tọa độ ở trung tâm thành phố và mật độ dân số tại điểm có tọa độ (x,y) có mô hình $p(x,y)=2000(x^2+y^2)^{-0.2}$ người trên km², hãy tìm số dân trong bán kính 5 km từ trung tâm thành phố.
- **2.4.8.** Kim tự tháp Vua Khufu là kim tự tháp lớn nhất ở Ai Cập, được xây dựng trong khoảng từ năm 2580 TCN tới 2560 TCN. Đáy của nó là một hình vuông với chiều dài cạnh là 230,4 mét và chiều cao là 146,5 mét.
 - (a) Hãy tính thể tích của kim tự tháp.
 - (b) Kim tự tháp được làm bằng đá vôi. Mật độ khối lượng của đá vôi vào khoảng 2400 kg/m³. Hãy ước lượng khối lượng của kim tự tháp.
 - (c) Tìm tâm khối lượng của kim tự tháp.
 - (d) Hãy ước lượng công xây dựng kim tự tháp này. Công này ít nhất bằng tổng thế năng trong trường của khối kim tư tháp.
 - (e) Mỗi người nhận khoảng 2000 kcal năng lượng mỗi ngày từ thức ăn. Giả sử mỗi người dùng được 20% năng lượng đó để làm việc. Kim tự tháp được xây trong 20 năm. Hãy ước lượng cần ít nhất bao nhiêu người mỗi ngày để xây kim tự tháp này?
- **2.4.9.** Hai công ty sản xuất hai sản phẩm cạnh tranh với nhau. Gọi X, Y là biến xác suất ứng với thời điểm hư hỏng của hai sản phẩm tính theo thời gian từ khi sản phẩm được sản xuất (theo năm), và giả sử hai biến này là độc lập với nhau. Giả sử các hàm mật độ xác suất được cho bởi $f(x) = 0.2e^{-0.2x}$ và $g(y) = 0.1e^{-0.1y}$. Hãy tính xác suất sản phẩm của công ty thứ nhất bị hư trước sản phẩm của công ty thứ hai trong thời gian bảo hành 3 năm.

2.4.10. Chứng tỏ hàm được dùng trong mô hình phân bố chuẩn (normal distribution) của môn Xác suất

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

thỏa mãn tính chất cần có của hàm phân bố xác suất: $\int_{-\infty}^{\infty} f(x) \ dx{=}1.$

2.4.11. Hãy đưa ra một giải thích cho công thức sau, thường được dùng trong xác suất khi có hai biến ngẫu nhiên:

$$\iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} \ dx dy = \pi.$$

Từ đó hãy đưa ra công thức cho mô hình phân bố chuẩn của hai biến ngẫu nhiên.

Hình 2.4.2: Đồ thị của hàm $e^{-(x^2+y^2)}$

 ${\bf 2.4.12.}$ * Hàm Gamma là một mở rộng của hàm giai thừa lên tập hợp các số thực. Ta định nghĩa

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \ dt, \qquad z \in \mathbb{R}, \ z > 0.$$

- (a) Chúng tỏ $\Gamma(z)$ được xác định.
- (b) Kiểm tra rằng $\Gamma(z+1)=z\Gamma(z)$. Suy ra với số nguyên dương n thì $\Gamma(n+1)=n!$.
- (c) Kiểm tra công thức $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

2.4.13. * Hãy tìm lại công thức của Pappus ⁶: Thể tích của khối tròn xoay nhận được bằng cách xoay một miền phẳng quanh một trục bên ngoài bằng diện tích của miền nhân với chiều dài của đường đi của tâm khối lượng của miền.

Cụ thể hơn, gọi D là miền bao bởi hai đồ thị của hai hàm f và g trên đoạn [a,b], với $0 \le g(x) \le f(x)$ trên [a,b]. Gọi (x_0,y_0) là tâm khối lượng của D. Khi đó thể tích của khối tròn xoay nhận được bằng cách xoay miền D quanh trục x bằng $2\pi y_0|D|$.

Ứng dụng, hãy tìm lại công thức thể tích của khối xuyến.

 $^{^6}$ Pappus xứ Alexandria, một nhà hình học sống vào thể kỉ thứ 4 sau Công nguyên.

Chương 3

Giải tích vectơ

Trong chương trước chúng ta đã khảo sát thể tích của miền trong không gian n-chiều và tích phân trên những miền đó. Tuy nhiên những câu hỏi chẳng hạn như về chu vi của đường tròn, diện tích của mặt cầu, hay nói chung là độ đo của tập con "k-chiều" trong không gian n-chiều với k < n và tích phân trên đó thì chúng ta chưa xét. Chương này sẽ trả lời những câu hỏi này cho trường hợp đường (k = 1) và mặt (k = 2).

Chương này cũng giới thiệu các quan hệ giữa phép tính vi phân và phép tính tích phân của hàm nhiều biến thông qua phép tính tích phân đường, phép tính tích phân mặt, và các công thức liên hệ chúng, như các công thức Green, công thức Stokes, công thức Gauss–Ostrogradsky. Đây là cơ sở để trình bày và khảo sát nhiều hiện tượng vật lý.

3.1 Tích phân đường

3.1.1 Chiều dài của đường đi

Khi nói tới một "đường" ta thường nghĩ tới một "con đường", tức là một tập hợp điểm, ví dụ một đường thẳng hay một đường tròn. Mục đích của chúng ta trong mục này là thực hiện các đo đạc trên đường, chẳng hạn như đo chiều dài của đường. Các đo đạc đó sẽ được thực hiện qua một chuyến đi trên con đường. Tuy nhiên ta có thể đi trên một con đường theo nhiều cách khác nhau, và ta chưa có căn cứ để cho rằng các đo đạc bằng các cách đi khác nhau trên cùng một con đường sẽ cho ra cùng một kết quả. Do đó trước mắt chúng ta sẽ làm việc với từng cách đi cụ thể mà ta gọi là đường đi.

Một đường đi là một ánh xạ từ một khoảng đóng [a,b] vào \mathbb{R}^n , tức là một tương ứng mỗi thời điểm với một vị trí.

Tập hợp các điểm mà đường đi đã đi qua được gọi là $\mathbf{v\acute{e}t}$ của đường $\mathbf{d}i$ (đây là "con đường" hay "đường cong" như đã bàn ở trên). Với đường đi $r:[a,b]\to\mathbb{R}^n$ thì vết của r là tập ảnh $r([a,b])=\{r(t)\mid t\in[a,b]\}$.

Đường đi $r:[a,b]\to\mathbb{R}^n$ được gọi là:

• kin hay ding nếu r(a) = r(b), tức là điểm đầu và điểm cuối trùng nhau.

- đơn nếu nó không đi qua điểm nào hai lần (không có điểm tự cắt). Chính xác hơn, nếu r không phải là đường kín thì nó được gọi là đơn nếu r là đơn ánh trên [a, b]; nếu r là đường kín thì nó được gọi là đơn nếu r là đơn ánh trên [a, b).
- $li\hat{e}n$ tuc nếu r là hàm liên tục trên [a, b].

Đường không đơn, không kín

Hình 3.1.1: Minh hoa một số loại đường. Trong hình là vết (ảnh) của đường đi.

Đường đi $r:[a,b]\to\mathbb{R}^n$ được gọi là trơn nếu r là hàm trơn trên [a,b], nghĩa là nếu r mở rộng được thành một hàm trơn (tức khả vi liên tục) trên một khoảng (c,d) chứa [a,b].

Nếu r là một đường đi trơn thì đạo hàm r'(t) có ý nghĩa vật lý là \mathbf{v} chuyển động) tại thời điểm t, xem Ví dụ 1.4.19. Độ lớn của vận tốc |r'(t)| là \mathbf{t} đ \mathbf{c} tại thời điểm t.

Trong vật lý, nếu một vật di chuyển với vận tốc không đổi, tức là chuyển động đều, thì quãng đường đi được bằng tốc độ nhân thời gian đi. Về mặt toán học, nếu $r'(t) = v \in \mathbb{R}$ không đổi thì r(t) = vt + r(0), với $t \in [a,b]$ thì vết của r là r([a,b]) = [r(a),r(b)] và chiều dài của nó là r(b) - r(a) = v(b-a).

Vấn đề bây giờ ta đặt ra là nếu chuyển đông không đều thì sao?

Ý tưởng cơ bản là ý tưởng của tích phân: nếu vận tốc chuyển động có tính liên tục, thì trên những khoảng thời gian nhỏ vận tốc thay đổi nhỏ, do đó trên khoảng thời gian nhỏ đó ta có thể xấp xỉ chuyển động bằng một chuyển động đều. Dưới đây ta tiến hành ý tưởng này.

Cho đường đi $r:[a,b] \to \mathbb{R}^n$. Xét một phép chia $a=t_0 < t_1 < \cdots < t_m = b$ của [a,b]. Trên mỗi khoảng con $[t_{i-1},t_i]$, $1 \le i \le m$, ta xấp xỉ tuyến tính đường đi bằng

công thức $r(t) - r(t_{i-1}) \approx r'(t_{i-1})(t - t_{i-1})$. Nói cách khác, ta xấp xỉ chuyển động bằng một chuyển động đều với vận tốc không đổi $r'(t_{i-1})$. Quãng đường đi được trong khoảng thời gian từ t_{i-1} tới t_i được xấp xỉ bởi vecto $r'(t_{i-1})\Delta t_i$, có chiều dài là $|r'(t_{i-1})\Delta t_i|$. Xem Hình 3.1.2.

Hình 3.1.2: Xấp xỉ tuyến tính: $r(t_i) - r(t_{i-1}) \approx r'(t_{i-1}) \Delta t_i$, thay vectơ cát tuyến bởi vectơ tiếp tuyến.

Như vậy "chiều dài" của đường đi được xấp xỉ bởi $\sum_{i=1}^m |r'(t_{i-1})| \Delta t_i$. Đây chính là tổng Riemann của hàm |r'(t)| trên khoảng [a,b]. Giới hạn của tổng Riemann này khi phép chia mịn hơn, theo lý thuyết tích phân ở chương trước, chính là tích phân của hàm |r'(t)| với t trên khoảng [a,b]. Từ đó ta có thể đưa ra định nghĩa:

Định nghĩa 3.1.1. Chiều dài của đường đi $r:[a,b]\to\mathbb{R}^n$ là

$$\int_{a}^{b} |r'(t)| dt.$$

Ví dụ 3.1.2. Giả sử một vật di chuyển trên một đường với tốc độ hằng v, trong khoảng thời gian từ a tới b. Khi đó quãng đường vật đã đi được có chiều dài là $\int_a^b v \ dt = v(b-a)$, đúng như ta chờ đợi. Như vậy định nghĩa chiều dài này chứa công thức đã quen biết: quãng đường đi được = tốc độ \times thời gian.

3.1.2 Tích phân đường loại một

Cho đường đi $r:[a,b]\to\mathbb{R}^n$. Giả sử f là một hàm thực xác định trên vết của đường, tức $f:r([a,b])\to\mathbb{R}$. Ta muốn tính **tổng giá trị của hàm trên đường**.

Ta làm một cách tương tự như đã làm khi định nghĩa chiều dài đường đi, chia nhỏ và xấp xỉ trên mỗi khoảng chia bằng hàm hằng. Xét một phép chia $a=t_0 < t_1 < \cdots < t_m = b$. Trên khoảng con $[t_{i-1},t_i]$ ta xấp xỉ tuyến tính đường đi $r(t) - r(t_{i-1}) \approx r'(t_{i-1})(t-t_{i-1})$. Khi đó phần đường từ $r(t_{i-1})$ đến $r(t_i)$ được xấp xỉ bằng $r'(t_{i-1})\Delta t_i$. Trên phần đường này ta xấp xỉ hàm f bởi hàm hằng với giá trị

Hình 3.1.3: Một ý tưởng khác để định nghĩa độ dài đường là lấy giới hạn tổng độ dài các đoạn thẳng gấp khúc nối các điểm liên tiếp trên đường cong khi số điểm dần đến vô hạn. Cách tiếp cận này cho ra cùng kết quả.

 $f(r(t_{i-1}))$. Do đó tổng giá trị của f trên phần đường từ $r(t_{i-1})$ đến $r(t_i)$ được xấp xỉ bằng $f(r(t_{i-1})) |r'(t_{i-1})| \Delta t_i$. Tổng giá trị của f trên đường r được xấp xỉ bằng

$$\sum_{i=1}^{m} f(r(t_{i-1})) |r'(t_{i-1})| \Delta t_i.$$

Đây là tổng Riemann của hàm f(r(t)) | r't) | với t trên khoảng [a,b]. Vậy ta định nghĩa:

Định nghĩa 3.1.3. Cho f là một hàm xác định trên vết của đường $r:[a,b]\to\mathbb{R}^n$. Tích phân của f trên r là

$$\int_{r} f \, ds = \int_{a}^{b} f(r(t)) \left| r'(t) \right| \, dt.$$

Ví dụ 3.1.4. Nếu $f \equiv 1$ thì $\int_r 1 \ ds = \int_a^b |r'(t)| \ dt$ là chiều dài của đường đi r.

Ví dụ 3.1.5. Xét trường hợp hai chiều, n = 2. Viết r(t) = (x(t), y(t)), khi đó

$$\int_r f \ ds = \int_a^b f((x(t), y(t)) \sqrt{x'(t)^2 + y'(t)^2} \ dt.$$

Một cách hình thức có thể nhớ rằng

$$ds = \sqrt{x'(t)^2 + y'(t)^2} dt.$$

Để có tích phân thì đường đi phải khả vi, tức là có đạo hàm. Nếu đường đi chỉ **khả vi từng khúc**, tức là có các số $a = t_0 < t_1 < t_2 < \cdots < t_m = b$ sao cho trên

mỗi khoảng $[t_{i-1}, t_i]$ ánh xạ r_i thu hẹp của ánh xạ r trên khoảng $[t_{i-1}, t_i]$ là khả vi, thì ta định nghĩa tích phân trên đường khả vi từng khúc là tổng các tích phân trên các khúc, tức là

$$\int_{r} f \, ds = \sum_{i=1}^{m} \int_{r_i} f \, ds.$$

Hình 3.1.4: Đường khả vi từng khúc.

3.1.3 Tích phân đường loại hai

Một trường vectơ là một tương ứng mỗi điểm với một vectơ. Cụ thể hơn, một trường vectơ trên tập $D \subset \mathbb{R}^n$ là một ánh xạ $F: D \to \mathbb{R}^n$. Đôi khi để nhấn mạnh hoặc để dùng kí hiệu thường có trong vật lý ta để thêm mũi tên trên kí hiệu trường, viết là \vec{F} .

Cho đường đi $r:[a,b]\to\mathbb{R}^n$ và cho F là một trường vectơ xác định trên vết của r. Ta muốn tính tổng thành phần của trường cùng chiều đường đi.

Ví dụ 3.1.6. Trong vật lý, nếu một vật di chuyển theo một đường dưới tác động của một trường lực thì tổng tác động của lực, tức tổng thành phần của lực cùng chiều chuyển động, được gọi là công của trường lực. Trong trường hợp riêng, giả sử lực là hằng \vec{F} và vật chuyển động đều trên một đường thẳng theo một vecto \vec{s} tạo với \vec{F} một góc θ thì công của lực bằng thành phần lực cùng phương chuyển động nhân với chiều dài quãng đường đi, tức là bằng $(|\vec{F}|\cos\theta)|\vec{s}| = \vec{F} \cdot \vec{s}$. Vấn đề đặt ra là khi trường lực không hằng và chuyển động không đều thì công của trường lực (đóng góp của trường lực vào chuyển động) được tính như thế nào?

Tương tự như công, nếu một trường hằng \vec{F} xác định dọc theo một đoạn thẳng từ A tới B thì thành phần cùng phương với đường của \vec{F} là chiếu của \vec{F} lên $\vec{s} = \overrightarrow{AB}$, là số thực $\vec{F} \cdot \frac{\vec{s}}{|\vec{s}|} = |\vec{F}| \cos \theta$, với θ là góc giữa \vec{F} và \vec{s} , nhắc lại Hình 1.1.5. Tổng lượng này trên đường \overrightarrow{AB} là $(|\vec{F}| \cos \theta)$ $|\vec{s}| = \vec{F} \cdot \vec{s}$.

Bây giờ ta xét trường hợp tổng quát khi trường F thay đổi trên đường. Xét một phép chia $a = t_0 < t_1 < \cdots < t_m = b$ của [a, b]. Trên mỗi khoảng con $[t_{i-1}, t_i]$, $1 \le i \le m$, ta xấp xỉ đường bằng xấp xỉ tuyến tính: $r(t) \approx r'(t_{i-1})(t - t_{i-1})$. Khi đó

phần đường từ $r(t_{i-1})$ đến $r(t_i)$ được xấp xỉ bằng $r'(t_{i-1})\Delta t_i$. Trên phần đường này trường F có thể được xấp xỉ bằng trường hằng, đại diện bởi vecto $F(r(t_{i-1}))$.

Hình 3.1.5: Xấp xỉ tổng thành phần của trường cùng chiều đường đi.

Tổng của thành phần cùng chiều đường đi của trường F trên phần đường từ $r(t_{i-1})$ đến $r(t_i)$ được xấp xỉ bằng $F(r(t_{i-1})) \cdot r'(t_{i-1}) \Delta t_i$. Tổng thành phần tiếp tuyến của F dọc theo r được xấp xỉ bằng $\sum_{i=1}^m F(r(t_{i-1})) \cdot r'(t_{i-1}) \Delta t_i$. Đây là tổng Riemann của hàm $F(r(t)) \cdot r'(t)$ với t trên khoảng [a, b]. Vậy ta định nghĩa:

Định nghĩa 3.1.7. Cho F là một trường vectơ trên vết của một đường đi $r:[a,b] \to \mathbb{R}^n$. Tích phân của F trên r được kí hiệu là $\int_r F \cdot d\vec{s}$ và được định nghĩa là:

$$\int_{r} F \cdot d\vec{s} = \int_{a}^{b} F(r(t)) \cdot r'(t) dt.$$

Định nghĩa này được mở rộng cho đường khả vi từng khúc theo cách như tích phân đường loại một.

Ghi chú 3.1.8. Có một số cách kí hiệu khác cho tích phân đường loại hai, chẳng hạn $\int_r F \cdot d\vec{r}$, $\int_r F \cdot d\vec{l}$.

Ví dụ 3.1.9. Xét trường hợp hai chiều, n=2. Viết F(x,y)=(P(x,y),Q(x,y)) và r(t)=(x(t),y(t)). Khi đó

$$\int_{r} F \cdot d\vec{s} = \int_{a}^{b} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)] dt.$$

Từ đó người ta thường dùng hai kí hiệu:

$$\int_r P(x,y) dx = \int_a^b P(x(t), y(t))x'(t) dt.$$

$$\int_r Q(x,y) dy = \int_a^b Q(x(t), y(t))y'(t) dt.$$

Với kí hiệu trên người ta thường viết

$$\int_{r} F \cdot d\vec{s} = \int_{r} P(x, y) \, dx + Q(x, y) \, dy.$$

Một cách hình thức có thể nhớ rằng

$$d\vec{s} = r'(t) dt$$
, $dx = x'(t) dt$, $dy = y'(t) dt$.

3.1.4 Sự phụ thuộc vào đường đi

Như đã bàn ở đầu chương, ta rất quan tâm tới việc các kết quả đo đạc có thay đổi hay không nếu ta đi theo những đường đi khác nhau trên cùng một con đường.

Cho $\varphi:[c,d]\to[a,b]$ là một phép đổi biến, như ở Mục 2.3. Nếu $\varphi'(t)>0$ với mọi $t\in[c,d]$ thì φ bảo toàn định hướng. Nếu $\varphi'(t)<0$ với mọi $t\in[c,d]$ thì φ đảo ngược định hướng.

Nếu $r:[a,b]\to\mathbb{R}^n$ là một đường đi thì $r\circ\varphi$ là một đường đi cùng vết với r. Ta nói $r\circ\varphi$ và r sai khác một phép đổi biến. Ta có kết quả sau đây về sự bất biến của tích phân đường qua một phép đổi biến.

Định lý 3.1.10. (a) Tích phân đường loại một không thay đổi qua phép đổi biến.

(b) Tích phân đường loại hai không thay đổi qua phép đổi biến bảo toàn định hướng và đổi dấu qua phép đổi biến đảo ngược định hướng.

Chứng minh. Cho f là một hàm thực và F là một trường vectơ xác định trên vết của đường $r:[a,b]\to\mathbb{R}^n$. Cho $\varphi:[c,d]\to[a,b]$ là một phép đổi biến. Ta xét trường hợp φ đảo ngược định hướng, trường hợp còn lại là tương tự. Theo công thức đổi biến của tích phân bội, với phép đổi biến $u=\varphi(t)$ thì

$$\int_{r} f \, ds = \int_{a}^{b} f(r(u)) \left| r'(u) \right| \, du = \int_{c}^{d} f(r(\varphi(t))) \left| r'(\varphi(t)) \right| \left| \varphi'(t) \right| \, dt$$

$$= \int_{c}^{d} f(r(\varphi(t))) \left| r'(\varphi(t)) \varphi'(t) \right| \, dt$$

$$= \int_{c}^{d} f(r \circ \varphi(t)) \left| (r \circ \varphi)'(t) \right| \, dt$$

$$= \int_{r \circ \varphi} f \, ds.$$

Trong khi đó

$$\int_{r} F \cdot d\vec{s} = \int_{a}^{b} F(r(u)) \cdot r'(u) \ du = \int_{c}^{d} [F(r(\varphi(t))) \cdot r'(\varphi(t))] |\varphi'(t)| \ dt$$

$$= -\int_{c}^{d} [F(r(\varphi(t))) \cdot r'(\varphi(t))] |\varphi'(t)| \ dt$$

$$= -\int_{c}^{d} F(r \circ \varphi(t)) \cdot (r \circ \varphi)'(t) \ dt$$

$$= -\int_{r \circ \varphi} F \cdot d\vec{s}.$$

Ví dụ 3.1.11. Cả hai loại tích phân đường không thay đổi dưới một phép tịnh tiến của biến thời gian $t \mapsto t + c$ với $c \in \mathbb{R}$.

Ví dụ 3.1.12. Với đường đi r(t), $t \in [a,b]$ thì đường r(a+b-t), $t \in [a,b]$, khởi đầu ở r(b) và kết thúc ở r(a), được gọi là **đường ngược** của đường r, kí hiệu là -r. Ta nói đường -r trái chiều với đường r. Định lý 3.1.10 nói trên **đường ngược thì** tích phân đường loại một không thay đổi trong khi đó tích phân đường loại hai bị đổi dấu.

Khái niệm chính xác về định hướng của đường cong khá trừu tượng, nhưng trong thực tế tính toán trong môn học này ta thường chỉ cần hình dung một cách trực quan định hướng trên một đường cong như là một "chiều" trên đường cong đó. Trên hình vẽ trực quan ta thường biểu diễn định hướng bằng một mũi tên trên đường cong.

Hình 3.1.6: Biểu diễn trưc quan một đường cong được đinh hướng.

Đường đi $r:[a,b]\to\mathbb{R}^n$ được gọi là **chính quí** nếu r tron trên [a,b] và vận tốc r'(t) luôn khác không.

Có thể chứng tỏ hai đường đi đơn chính qui với cùng vết khác biệt bởi một phép đổi biến.

Từ đó ta nói hai đường đi đơn chính qui có cùng vết là *cùng định hướng* nếu chúng sai khác một phép đổi biến bảo toàn định hướng, và ngược lại nếu phép đổi biến là đảo ngược định hướng thì ta nói hai đường là *trái định hướng*.

Dưới đây là kết quả chính của phần này, hệ quả của những thảo luận trên và Định lý 3.1.10:

Định lý 3.1.13. (a) Tích phân đường loại một dọc theo hai đường đi đơn chính qui có cùng vết thì bằng nhau.

¹Trong quyển sách của Stewart [Ste16] thuật ngữ đường trơn chính là thuật ngữ đường chính qui ở đây.

Hình 3.1.7: Hai đường đi cùng vết khác biệt bởi một phép đổi biến.

(b) Tích phân đường loại hai dọc theo hai đường đi đơn chính qui có cùng vết thì bằng nhau nếu hai đường cùng định hướng và đối nhau nếu hai đường trái định hướng.

Như vậy ta có thể nói đến tích phân đường trên một tập hợp điểm, ví dụ như một đường tròn, một đồ thị, ... nếu tập điểm ấy là vết của một đường đi đơn chính qui nào đó. Ta nói vết đó là một đường cong, còn đường đi là một tham số hóa của đường cong.

Ví dụ 3.1.14. Định lý 3.1.13 tương thích với trải nghiệm của chúng ta trong đời sống. Cùng một con đường, ta đi theo cách nào, thời gian nào, chiều nào, miễn là đi một cách trơn tru, không dừng lại và do đó không quay đầu, thì đi được cùng một quãng đường. Cùng một con đường, khi ta xuống dốc thì công của trọng lực là dương, còn khi ta lên dốc thì công của trọng lực là âm, bằng nhau về độ lớn nhưng đối nhau.

Tóm tắt lai:

Tính tích phân đường trên một đường cong

Bước 1: Chọn một đường đi, tức là một tham số hóa, đơn chính qui bất kì trên đường cong.

Bước 2: Xác định đây là tích phân đường loại một hay loại hai.

Bước 3: Thay tham số hóa vào công thức trong định nghĩa của đúng loại tích phân để tính.

Bước 4: Nếu là tích phân đường loại hai thì đường cong được cho thêm một định hướng, thường ở dạng trực quan. Xác định tham số hóa đã chọn ở Bước 1 là cùng định hướng hay trái định hướng đã cho, bằng trực quan hay tính toán điểm đầu và điểm cuối của đường đi. Nếu là trái định hướng thì lấy giá trị đối của tích phân đã thu được ở Bước 3

Bây giờ ta đã có đủ cơ sở để làm những ví du cu thể.

Ví dụ 3.1.15. Giả sử hàm thực f xác định trên khoảng [a, b]. Gọi γ là một đường chính qui bất kì đi từ a tới b. Vì khoảng [a, b] cũng là vết của đường đơn chính qui

 $\alpha(t)=t$ với $t\in [a,b]$ nên

$$\int_{\gamma} f \, ds = \int_{\alpha} f \, ds = \int_{a}^{b} f(\alpha(t))\alpha'(t) \, dt = \int_{a}^{b} f(t) \, dt.$$

Đây chính là tích phân của hàm f trên khoảng [a, b]. Vậy tích phân của hàm thực trên khoảng là một trường hợp riêng của tích phân đường loại một.

Ví dụ 3.1.16 (Chiều dài của đường tròn). Xét đường đi $r(t) = (R\cos t, R\sin t)$, $0 \le t \le 2\pi$, một đường đi với tốc độ hằng |r'(t)| = R quanh đường tròn tâm O bán kính R. Chiều dài của đường này là $\int_0^{2\pi} |r'(t)| dt = \int_0^{2\pi} R dt = 2\pi R$.

Nếu ta lấy một đường đi khác $\alpha(t)=(R\cos(2\pi t),R\sin(2\pi t)),\ 0\leq t\leq 1$, thì chiều dài của đường này là $\int_0^1 |\alpha'(t)|\ dt=\int_0^1 2\pi R\ dt=2\pi R.$

Việc hai tích phân trên bằng nhau đã được khẳng định bởi Định lý 3.1.13. Bây giờ ta có thể nói chiều dài của đường tròn bán kính R bằng $2\pi R$, không phụ thuộc vào cách chọn một tham số hóa đơn chính qui để tính.

Ví dụ 3.1.17. Cho trường $\vec{F}(x,y)=(2y,-3x)$ và C là đường cong $y=x^2,\ 0\leq x\leq 1$, định hướng từ (0,0) tới (1,1). Ta tính $\int_C \vec{F}\cdot d\vec{s}$.

Ta cần đưa ra một tham số hóa cho đường cong C. Vì C là một đồ thị, ta có ngay tham số hóa $C_1(x) = (x, x^2)$, $0 \le x \le 1$. Ta cũng có thể dùng các tham số hóa khác như $C_2(y) = (\sqrt{y}, y)$, $0 \le y \le 1$, hoặc $C_3(t) = (\ln t, \ln^2 t)$, $1 \le t \le e$. Đây đều là các đường đi đơn, chính qui với vết C, theo định hướng đã cho. Định lý 3.1.13 đảm bảo tích phân trên ba đường này có cùng kết quả, ta có thể chọn lấy đường nào để tính cũng được.

Với C_1 :

$$\int_{C_1} \vec{F} \cdot d\vec{s} = \int_0^1 \vec{F}(C_1(x)) \cdot C_1'(x) \ dx = \int_0^1 (2x^2, -3x) \cdot (1, 2x) \ dx = -\frac{4}{3}.$$

Với C_2 :

$$\int_{C_2} \vec{F} \cdot d\vec{s} = \int_0^1 \vec{F}(C_2(y)) \cdot C_2'(y) \ dy = \int_0^1 (2y, -3\sqrt{y}) \cdot \left(\frac{1}{2\sqrt{y}}, 1\right) \ dy = -\frac{4}{3}.$$

Với C_3 :

$$\int_{C_3} \vec{F} \cdot d\vec{s} = \int_1^e \vec{F}(C_3(t)) \cdot C_3'(t) dt = \int_1^e (2\ln^2 t, -3\ln t) \cdot \left(\frac{1}{t}, \frac{2\ln t}{t}\right) dt$$
$$= \int_1^e -4\frac{\ln^2 t}{t} dt = -\frac{4}{3}\ln^3 t \Big|_1^e = -\frac{4}{3}.$$

* Liên hệ giữa hai loại tích phân đường

Cho đường cong được định hướng C là vết của một đường đi đơn chính qui r theo hướng đã định xác định trên $a \le t \le b$. Tại điểm p = r(t) với a < t < b, ta đưa ra định nghĩa hướng tiếp tuyến là hướng của vecto vận tốc r'(t). Có thể kiểm được là

hướng này không phụ thuộc vào cách chọn đường đi đơn chính qui trên đường cong. Vì vậy việc định hướng cho đường cong đồng nghĩa với việc chọn hướng tiếp tuyến.

Tại điểm p = r(t) vectơ tiếp tuyến cùng chiều đơn vị được định nghĩa là $T(p) = \frac{r'(t)}{|r'(t)|}$, thực ra không phụ thuộc vào cách chọn đường đi r theo định hướng của C.

Nếu F là một trường vectơ trên C thì ta viết được

$$\int_{C} F \cdot d\vec{s} = \int_{a}^{b} F(r(t)) \cdot r'(t) dt = \int_{a}^{b} \left[F(r(t)) \cdot \frac{r'(t)}{|r'(t)|} \right] |r'(t)| dt$$
$$= \int_{a}^{b} \left[F(r(t)) \cdot T(r(t)) \right] |r'(t)| dt = \int_{C} F \cdot T ds.$$

Vậy trong trường hợp này tích phân đường loại hai có thể được biểu diễn qua tích phân đường loại một. Biểu thức trên cũng khẳng định lại ý nghĩa của tích phân loại hai, đó là tổng thành phần tiếp tuyến của trường doc theo đường.

Bài tập

3.1.1. Tính:

- (a) Chiều dài của đường $r(t) = (2\sqrt{2}t, e^{-2t}, e^{2t}), 0 \le t \le 1.$
- (b) Tìm khối lượng của sợi dây hình parabol $y=x^2,\,1\leq x\leq 2,$ với mật độ khối lượng $\rho(x,y)=y/x.$
- (c) $\int_C (x^2 + y) ds$, với C là cung tròn $(\cos t, \sin t)$, $0 \le t \le \pi$.
- (d) $\int_C (x+y+z) \, ds$, với C là đường xoắn $(\cos t, \sin t, t)$, $0 \le t \le \pi$.
- (e) $\int_C \sqrt{1+9xy} \, ds$, với C là đường $y=x^3$, $0 \le x \le 1$.
- (f) $\int_C x^2 y \, ds$, với C là đường thẳng đi từ (1,2) tới (3,5).
- (g) Tính $\int_C 4y \, dx + 2x \, dy$, với C là đường $y = x^3$, $0 \le x \le 1$.
- (h) Tính $\int_C x^2 y \, dx + xy^2 \, dy$, với C là đường $y = x^3$ đi từ điểm (1,1) tới điểm (2,8).
- (i) $\int_C \sin z^2 dx + e^x dy + e^y dz$, với C là đường $(2, t, e^t)$, $0 \le t \le 1$.
- (j) $\int_C x^3 dx + zy^2 dy x^2 y dz$, với C là đoạn thẳng đi từ điểm (3,2,1) tới gốc tọa độ.
- (k) $\int_C \vec{F} \cdot d\vec{r}$, với $\vec{F}(x,y,z) = (\sin z, z, -xy)$ và C là đường $(\cos \theta, \sin \theta, \theta)$, $0 \le \theta \le 9\pi/4$.
- (1) Tìm công của trường $\vec{F}(x, y, z) = (y x^2, z^2 + x, yz)$ trên đường $(t, t^2, t^3), 0 \le t \le 1$.
- (m) Tìm công của trường $\vec{F}(x,y,z) = (2z,x^2,3x)$ trên đường $(t,t^2,e^t), 0 \le t \le 1$.
- 3.1.2. (a) Một vật di chuyển trong trường trọng lực của Quả đất từ một điểm có cao độ 100 mét đến một điểm có cao độ 200 mét. Hỏi công của trọng lực là âm, bằng không, hay dương?
 - (b) Cho C là một đường và n là vectơ pháp tuyến. Hỏi $\int_C n \cdot d\vec{s}$ là âm, bằng không, hay dương?
- **3.1.3.** Cho trường $F(x,y) = \left(2xye^{x^2y}, x^2e^{x^2y}\right)$. Tính tích phân đường của trường này dọc theo một đường đi từ điểm (0,0) tới điểm (1,1) bằng các cách sau:

- (a) dùng đường thẳng,
- (b) dùng đường gấp khúc,
- (c) dùng một đường khác.
- **3.1.4.** Phân tử DNA trong không gian ba chiều có hình dạng đường xoắn kép, mỗi đường có thể được mô hình hóa bởi đường $(R\sin t,R\cos t,ht)$. Hãy vẽ đường này (xem Hình 1.4.2). Bán kính của mỗi đường xoắn khoảng 10 angstrom (1 angstrom = 10^{-8} cm). Mỗi đường xoắn ốc xoắn lên khoảng 34 angstrom sau mỗi vòng xoay. Hãy ước tính chiều dài của mỗi vòng xoay của phân tử DNA.
- **3.1.5.** Một sợi dây với hai đầu cố định dưới tác động của trọng trường sẽ có hình dạng một đường xích (catenary) với phương trình $y = a \cosh\left(\frac{x}{a}\right)$, với cosh là hàm hyperbolic cosine cho bởi $\cosh x = (e^x + e^{-x})/2$.

Đài tưởng niệm Gateway Arch ở Saint Louis nước Mỹ có dạng một đường xích đảo ngược. Vị trí điểm tâm hình học (cũng là tâm khối lượng của mặt cắt vuông góc) (centroid) của cổng được thiết kế theo công thức $y=693,8597-68,7672\cosh0,0100333x$ với y là khoảng cách tới mặt đất và $-299,2239 \le x \le 299,2239$, đơn vị đo là feet. Hãy tính chiều dài của đường tâm hình học.

- 3.1.6. Cầu Akashi-Kaikyo ở Nhật Bản hiện là một trong những cây cầu treo dài nhất thế giới. Hai tháp cao 297m tính từ mặt biển. Chiều dài nhịp chính (khoảng cách giữa hai tháp) là 1991m. Mỗi sợi cáp chính có dạng một đường parabola. Điểm thấp nhất của sợi cáp chính cách mặt biển khoảng 97m. Hãy tính chiều dài của một sợi cáp chính, bằng tính chính xác hoặc tính xấp xỉ.
- **3.1.7.** * Cho đường đi chính qui $r:[a,b]\to\mathbb{R}^n$. Đặt

$$s(t) = \int_a^t |r'(u)| \, du.$$

Hàm s được gọi là **hàm chiều dài** của r. Đặt chiều dài của r là l = s(b).

- (a) Chứng tỏ hàm s(t) có hàm ngược tron. Gọi hàm đó là t(s), $0 \le s \le l$.
- (b) Kiểm tra rằng đường $\alpha(s) = r(t(s))$ có cùng vết với đường r. Chứng tỏ tốc độ của α luôn là 1.

Việc thay r bởi α được gọi là **tham số hóa lại theo chiều dài**. Tham số hóa theo chiều dài được đặc trưng bởi tính chất tốc độ luôn bằng 1.

Chú ý rằng $\frac{ds}{dt}(t) = |r'(t)|$. Điều này thường được viết dưới dạng kí hiệu là ds = |r'(t)|dt.

3.1.8. Hãy kiểm tra rằng đường tròn tâm 0 bán kính R có tham số hóa theo chiều dài là

$$R\left(\cos\left(\frac{t}{R}\right),\sin\left(\frac{t}{R}\right)\right), 0 \le t \le 2\pi R.$$

- **3.1.9.** Giả sử đường γ trong \mathbb{R}^n được tham số hóa theo chiều dài có vết C. $\mathbf{D}\hat{\mathbf{\rho}}$ cong của đường C là tốc độ biến thiên của phương chuyển động, do đó được tính qua gia tốc, cho bởi $k = |\gamma''|$.
 - (a) Chúng tỏ độ cong của một đường thẳng bằng 0 tại mọi điểm.
 - (b) Chứng tỏ độ cong của một đường tròn bán kính R đúng bằng $\frac{1}{R}$ tại mọi điểm.
 - (c) Hãy tính độ cong của đường xoắn (Ví dụ 1.4.2).

3.2 Công thức Newton-Leibniz và Công thức Green

3.2.1 Trường bảo toàn

Định lý 3.2.1 (Công thức Newton–Leibniz). Cho r là một đường đi trơn bắt đầu ở A và kết thúc ở B và cho f là một hàm thực trơn trên một tập mở chứa vết của r, khi đó:

$$\int_{r} \nabla f \cdot d\vec{s} = f(B) - f(A).$$

Như vậy tích phân trên một đường đi từ điểm A tới điểm B của gradient của một hàm đúng bằng hiệu giá trị của hàm tại B và A.

Công thức trên cho mối liên hệ giữa tích phân của đạo hàm với giá trị của nguyên hàm trên biên của miền xác định. Hình thức của nó có dạng

$$\int_{A}^{B} f' = f(B) - f(A).$$

Như thế ta có thể xem đây là một dạng tổng quát hóa của Công thức Newton–Leibniz của phép tính vi tích phân hàm một biến, vốn thường được gọi là Định lý cơ bản của Vi tích phân ([Bmgt1]), vì vậy công thức này cũng được gọi là Định lý cơ bản của tích phân đường.

Chứng minh. Giả sử $r:[a,b]\to\mathbb{R}^n$, r(a)=A và r(b)=B. Khi đó theo công thức đao hàm của hàm hợp (1.4.7) và Công thức Newton-Leibniz của hàm một biến:

$$\int_{r} \nabla f \cdot d\vec{s} = \int_{a}^{b} \nabla f(r(t)) \cdot r'(t) dt = \int_{a}^{b} \frac{d}{dt} (f \circ r)(t) dt$$
$$= (f \circ r)(b) - (f \circ r)(a) = f(B) - f(A).$$

Công thức Newton–Leibniz gợi ý ta xét những trường vectơ mà là gradient của một hàm nào đó.

Định nghĩa 3.2.2. Một trường vectơ F được gọi là **bảo toàn** nếu có hàm số thực f, gọi là một **hàm thế** của F, sao cho $\nabla f = F$.

Ý nghĩa và lý do của các tên gọi trên sẽ rõ hơn nhờ các phần sau của mục này. Vectơ $\nabla f(x)$ đại diện cho đạo hàm của f, vì thế ta có thể hiểu hàm thế f là một "nguyên hàm" của hàm F, và "bảo toàn nghĩa là có nguyên hàm".

Do đinh nghĩa trên một trường bảo toàn còn được gọi là một trường gradient.

Ví dụ 3.2.3. Giả sử $c=(c_1,c_2,\ldots,c_n)\in\mathbb{R}^n$ và F là trường trên \mathbb{R}^n cho bởi F(x)=c. Vậy F là một trường hằng. Xét $f(x)=c\cdot x=\sum_{i=1}^n c_i x_i$. Ta có $\frac{\partial f}{\partial x_i}(x)=c_i$, nên $\nabla f(x)=c$. Vậy f là một hàm thế của F và F là bảo toàn. Ta kết luận mọi trường hằng đều bảo toàn.

Từ Công thức Newton–Leibniz ta lập tức thu được các hệ quả quan trọng. Trước hết ta thấy tích phân $\int_r \nabla f \cdot d\vec{s}$ không phụ thuộc vào sự lựa chọn đường đi r từ điểm A tới điểm B. Ta nói tích phân này là $d\hat{\rho}c$ lập với đường đi.

Hệ quả 3.2.4 (Tích phân của trường bảo toàn chỉ phụ thuộc vào điểm đầu và điểm cuối của đường đi). Nếu F là một trường bảo toàn liên tục trên miền D thì tích phân của F trên một đường đi trơn trong D chỉ phụ thuộc vào điểm đầu và điểm cuối của đường đi.

Nếu đường đi là kín thì điểm đầu và điểm cuối trùng nhau, do đó ta có:

Hệ quả 3.2.5 (Tích phân của trường bảo toàn trên đường đi kín bằng không). Nếu F là một trường bảo toàn liên tục trên miền D thì tích phân của F trên một đường đi trơn kín trong D bằng không.

Những kết quả trong phần trên có thể được mở rộng cho các đường trơn từng khúc.

Ví dụ 3.2.6. Tính tính phân $\int_C y dx + (x+6y) dy$ trong đó C là một đường đi từ (1,0) tới (2,1).

Ta tìm một hàm thế cho trường (y, x + 6y). Ta giải hệ phương trình đạo hàm riêng để tìm nguyên hàm:

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) &= y\\ \frac{\partial f}{\partial y}(x,y) &= x + 6y. \end{cases}$$

Từ phương trình thứ nhất ta được $f(x,y) = \int y \ dx = xy + D(y)$. Thay vào phương trình thứ hai ta được D'(y) = 6y, suy ra $D(y) = \int 6y \ dy = 3y^2 + E$. Vậy ta tìm được một hàm thế là $f(x,y) = xy + 3y^2$. Suy ra tích phân đã cho bằng f(2,1) - f(1,0) = 5.

Ví dụ 3.2.7. Dự đoán trường vectơ trong hình sau có bảo toàn quanh điểm giữa hay không?

Lấy một đường kín quanh điểm giữa, chẳng hạn một đường tròn hay đường vuông, ta thấy hình chiếu của các vectơ của trường lên đường khử nhau đôi một, do đó tích phân của trường dọc theo đường bằng 0. Vậy ta dự đoán trường trong hình là bảo toàn.

Ví dụ 3.2.8 (Trọng trường ở bề mặt Quả đất). Xét vật có khối lượng m ở trong không gian gần bề mặt Quả đất. Ta xấp xỉ bằng cách giả sử trọng trường không đổi trong phần không gian này. Nếu ta đặt trục z vuông góc với mặt đất, chỉ ra ngoài, và gốc tọa độ trên mặt đất thì trọng lực tác động lên vật là $\vec{F} = -mg\vec{k} = (0, 0, -mg)$ trong đó $g \approx 9.8 \text{ m/s}^2$ là hằng số trọng trường gần mặt đất. Ta tìm được hàm thế của trường này có dạng f(z) = -mgz + C. Vậy trọng trường là bảo toàn.

Trong vật lý ta thường cho thế năng của vật ở trên mặt đất là dương, còn thế năng tại mặt đất bằng 0, do đó thế năng của vật được cho bởi hàm U(z) = mgz. Như vậy hàm thế trong vật lý là đối của hàm thế trong toán. Từ "thế" trong "hàm thế" có nghĩa như trong "thế năng", "vị thế", không phải như trong "thay thế" 2 .

Ví dụ 3.2.9 (Trường trọng lực). Tổng quát hơn và chính xác hơn, giả sử một vật có khối lượng M nằm ở gốc tọa độ trong \mathbb{R}^3 , và một vật có khối lượng m nằm ở điểm $\vec{r} = (x, y, z)$, theo cơ học Newton, vật có khối lượng m sẽ chịu tác động của lực hấp dẫn từ vật có khối lượng M bằng

$$F(\vec{r}) = -\frac{mMG}{|\vec{r}|^3}\vec{r}.$$

Ta tìm một nguyên hàm cho F bằng cách giải hệ phương trình

$$\begin{cases} \frac{\partial f}{\partial x}(x,y,z) = -mMG \frac{x}{(x^2+y^2+z^2)^{3/2}} \\ \frac{\partial f}{\partial y}(x,y,z) = -mMG \frac{y}{(x^2+y^2+z^2)^{3/2}} \\ \frac{\partial f}{\partial z}(x,y,z) = -mMG \frac{z}{(x^2+y^2+z^2)^{3/2}}. \end{cases}$$

²thuật ngữ tiếng Anh của hàm thế là "potential function", còn thế năng là "potential energy"

Từ phương trình thứ nhất, lấy tích phân theo x ta được

$$f(x,y,z) = \int -mMG \frac{x}{(x^2 + y^2 + z^2)^{3/2}} \ dx = \frac{mMG}{(x^2 + y^2 + z^2)^{1/2}} + C(y,z).$$

Thay vào hai phương trình còn lại, ta được C(y,z) thực sự chỉ là một hằng số C. Vậy trường trọng lực là một trường bảo toàn với một hàm thế là $f(\vec{r}) = \frac{mMG}{|\vec{r}|}$.

* Ý nghĩa vật lý của trường bảo toàn

Giả sử một vật di chuyển dưới tác dụng của tổng lực F. Giả sử trường F là bảo toàn với f là một hàm thế. Giả sử vị trí của vật ở thời điểm t là r(t). Giả sử $r(t_0) = x_0$ và $r(t_1) = x_1$. Ta định nghĩa động năng (năng lượng từ chuyển động) của vật là $K(t) = \frac{1}{2}m|r'(t)|^2$; và **thế năng** (năng lượng từ vị trí) của vật là U(x) = -f(x) (chú ý như vậy thế năng của vật lý là đối của hàm thế của toán).

Theo định lý cơ bản của tích phân đường:

$$\int_{x_0}^{x_1} F \cdot d\vec{s} = f(x_1) - f(x_0) = -(U(x_1) - U(x_0)).$$

Vậy công của trường bằng đối của biến thiên thế năng. Mặt khác theo cơ học Newton: F = ma = mr''. Do đó:

$$\int_{x_0}^{x_1} F \cdot d\vec{s} = \int_{t_0}^{t_1} F(r(t)) \cdot r'(t) \ dt = \int_{t_0}^{t_1} mr''(t) \cdot r'(t) \ dt.$$

Bây giờ chú ý hệ thức (xem Bài tập 1.4.28) $(r' \cdot r')' = r'' \cdot r' + r' \cdot r'' = 2r'' \cdot r'$, hay $r'' \cdot r' = \frac{1}{2}(|r'|^2)'$, ta biến đổi

$$\int_{x_0}^{x_1} F \cdot d\vec{s} = \int_{t_0}^{t_1} m \frac{1}{2} (|r'(t)|^2)' dt$$
$$= \frac{1}{2} m |r'(t_1)|^2 - \frac{1}{2} m |r'(t_0)|^2 = K(t_1) - K(t_0).$$

Vậy công của trường bằng biến thiên động năng. Ta kết luận K(t) + U(r(t)) không đổi, vậy tổng động năng và thế năng, tức năng lượng cơ học, được bảo toàn trong quá trình chuyển động trong trường bảo toàn. Như thế thuật ngữ "trường bảo toàn" xuất phát từ ý nghĩa bảo toàn năng lương trong vât lý.

3.2.2 Công thức Green

Trong phần này ta nói tới định hướng tương thích của biên của một miễn phẳng. Miêu tả trực quan là: biên được định hướng sao cho khi đi trên biên thì miền nằm bên tay trái; hoặc: đặt bàn tay phải theo hướng của biên thì miền nằm ở phía lòng bàn tay. Xem Hình 3.2.1.

Hình 3.2.1: Định hướng tương thích của biên của miền phẳng.

Định lý 3.2.10 (Công thức Green 3). Cho D là một miền đơn giản theo cả hai chiều với biên tron từng khúc được định hướng tương thích. Giả sử $\vec{F} = (P,Q)$ là một trường vecto tron trên một tập mở chứa D. Khi đó:

$$\int_{\partial D} \vec{F} \cdot d\vec{s} = \int_{\partial D} P \, dx + Q \, dy = \iint_{D} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] \, dx dy.$$

Công thức Green cho một quan hệ giữa tích phân trên một miền với tích phân trên biên của miền đó, tương tự Công thức Newton–Leibniz nhưng ở một chiều cao hơn.

Ta miêu tả chính xác định hướng của biên trong Định lý 3.2.10 như sau. Là một miền đơn giản theo chiều thẳng đứng, $D = \{(x,y) \mid a \leq x \leq b, f(x) \leq y \leq g(x)\}$ trong đó f(x) và g(x) là hàm trơn, trong khi đó theo chiều nằm ngang thì $D = \{(x,y) \mid c \leq y \leq d, \ h(y) \leq x \leq k(y)\}$ trong đó h(y) và k(y) là hàm trơn. Biên ∂D được định hướng cùng chiều với định hướng của các đường đi $\gamma_1(x) = (x,f(x)),$ $a \leq x \leq b$ và đường $-\gamma_2$ với $\gamma_2(x) = (x,g(x)),$ $a \leq x \leq b$. Có thể kiểm tra được rằng đây cũng là định hướng của đường $-\gamma_3$ với $\gamma_3(y) = (h(y),y),$ $c \leq y \leq d$ và đường γ_4 với $\gamma_4(y) = (k(y),y),$ $c \leq y \leq d$. Xem Hình 3.2.2.

Chứng minh. Xem D là miền đơn giản theo chiều thẳng đứng, xét tích phân đường trên biên:

$$\int_{\partial D} P \ dx = \int_{\gamma_1} P \ dx + \int_{-\gamma_2} P \ dx$$
$$= \int_a^b P(x, f(x)) \ dx - \int_a^b P(x, g(x)) \ dx.$$

³George Green là một nhà toán học sống vào đầu thế kỉ 19, người đầu tiên phát biểu công thức này.

Hình 3.2.2: Chi tiết định hướng tương thích của biên.

Do các đạo hàm riêng của trường là liên tục trên D nên dùng Công thức Fubini:

$$\iint_{D} -\frac{\partial P}{\partial y} dA = -\int_{a}^{b} \left(\int_{f(x)}^{g(x)} \frac{\partial P}{\partial y} dy \right) dx$$
$$= \int_{a}^{b} \left[P(x, f(x)) - P(x, g(x)) \right] dx.$$

Vây

$$\int_{\partial D} P \ dx = \iint_{D} -\frac{\partial P}{\partial y} \ dA.$$

Tương tự, xem D là miền đơn giản theo chiều nằm ngang, ta được

$$\int_{\partial D} Q \ dy = \iint_{D} \frac{\partial Q}{\partial x} \ dA.$$

Cộng lại ta được kết quả.

Ví dụ 3.2.11. Tính tính phân $I = \int_C (x - y) dx + (x + y) dy$ với C là đường tròn tâm tại gốc tọa độ bán kính 3 định hướng ngược chiều kim đồng hồ.

Tính trực tiếp, ta dùng một tham số hóa của C, tức một đường đi trên C, như $r(t)=(x(t),y(t))=(3\cos t,3\sin t)$ với $0\leq t\leq 2\pi$. Ta thấy đường r cùng chiều C, và ta tính được $dx=x'(t)dt=-3\sin t\,dt,\,dy=y'(t)dt=3\cos t\,dt$. Ta có

$$I = \int_0^{2\pi} \left[(3\cos t - 3\sin t)(-3\sin t) + (3\cos t + 3\sin t)3\cos t \right] dt = \int_0^{2\pi} 9 dt = 18\pi.$$

Bây giờ ta có một cách tiếp cận mới là dùng Công thức Green. Xét D là hình tròn được bao bởi đường tròn C. Định hướng của C trùng với định hướng biên của D. Áp dụng Công thức Green ta đưa tích phân đường trên C thành tích phân bội trên D:

$$I = \iint_D \left[\frac{\partial}{\partial x} (x+y) - \frac{\partial}{\partial y} (x-y) \right] dx dy = \iint_D 2 dx dy = 2|D| = 2\pi 3^2 = 18\pi.$$

Đối với một miền không đơn giản nhưng có thể được phân chia thành một hội

của hữu hạn những miền đơn giản với những phần chung chỉ nằm trên biên, ta có thể áp dụng công thức Green cho từng miền đơn giản rồi cộng lại, xem Hình 3.2.3.

Hình 3.2.3: Minh họa cách áp dụng Công thức Green cho miền không đơn giản.

Ví dụ 3.2.12. Công thức Green vẫn đúng cho miền $D = \{(x,y) \mid 1 \le x^2 + y^2 \le 2, y \ge 0\}$, mặc dù miền này không phải là một miền đơn giản.

Hình 3.2.4

Chia D thành hội của hai miền đơn giản D_1 và D_2 được miêu tả trong Hình 3.2.4. Chú ý rằng khi được định hướng dương ứng với D_2 thì đường C_7 được định hướng ngược lại, trở thành $-C_7$, do đó hai tích phân đường tương ứng triệt tiêu. Áp dụng công thức Green cho D_1 và D_2 ta được:

$$\begin{split} \iint_D \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] \; dA \; &= \; \iint_{D_1} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] \; dA + \iint_{D_2} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] \; dA \\ &= \; \int_{\partial D_1} F \cdot d\vec{s} + \int_{D_2} F \cdot d\vec{s} \; \\ &= \; \left(\int_{C_1} F \cdot d\vec{s} + \int_{C_7} F \cdot d\vec{s} + \int_{C_5} F \cdot d\vec{s} + \int_{C_6} F \cdot d\vec{s} \right) + \\ &+ \left(\int_{C_2} F \cdot d\vec{s} + \int_{C_3} F \cdot d\vec{s} + \int_{C_4} F \cdot d\vec{s} + \int_{-C_7} F \cdot d\vec{s} \right) \\ &= \; \int_{C_1} F \cdot d\vec{s} + \int_{C_2} F \cdot d\vec{s} + \int_{C_3} F \cdot d\vec{s} + \int_{C_4} F \cdot d\vec{s} + \\ &+ \int_{C_5} F \cdot d\vec{s} + \int_{C_6} F \cdot d\vec{s} \end{split}$$

$$&= \; \int_{\partial D} F \cdot d\vec{s}.$$

3.2.3 Diều kiện để trường vectơ phẳng là bảo toàn

Định lý 3.2.13 (Điều kiện cần để trường bảo toàn). Nếu trường F = (P, Q) trơn và bảo toàn trên một tập mở chứa tập D thì trên D ta phải có

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

Chứng minh. Giả sử f là hàm thế của F. Khi đó $\frac{\partial f}{\partial x} = P$ và $\frac{\partial f}{\partial y} = Q$. Với giả thiết về tính tron như trên thì các đạo hàm riêng của P và Q tồn tại và liên tục trên D, và $\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial y \partial x}$ và $\frac{\partial Q}{\partial x} = \frac{\partial^2 f}{\partial x \partial y}$. Vì $\frac{\partial^2 f}{\partial x \partial y}$ và $\frac{\partial^2 f}{\partial y \partial x}$ tồn tại và liên tục nên chúng bằng nhau (Định lý 1.3.13), do đó $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

Ví dụ 3.2.14 (Điều kiện $P_y = Q_x$ cần nhưng không đủ). Xét trường

$$F(x,y) = (P(x,y), Q(x,y)) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

Ta có $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$ trên miền xác định là mặt phẳng bỏ đi điểm (0,0). Mặt khác, ta thử tính tích phân của \vec{F} trên đường tròn bán kính đơn vị C tâm tại (0,0) ngược chiều kim đồng hồ, tham số hóa bởi $r(t) = (\cos t, \sin t), 0 \le t \le 2\pi$, thì

$$\int_{C} \vec{F} \cdot d\vec{s} = \int_{0}^{2\pi} \frac{-\sin t}{\cos^{2} t + \sin^{2} t} (-\sin t) dt + \frac{\cos t}{\cos^{2} t + \sin^{2} t} \cos t dt = \int_{0}^{2\pi} 1 dt = 2\pi,$$

khác 0. Vậy \vec{F} không phải là một trường vectơ bảo toàn trên miền xác định của nó. Đây là một ví du hay gặp.

Hình 3.2.5: Miền hình sao.

Một tập $D \subset \mathbb{R}^n$ được gọi là một $miền \ hình \ sao$ nếu có một điểm $p_0 \in D$ sao cho với mọi điểm $p \in D$ thì đoạn thẳng nối p_0 và p được chứa trong D.

Ví dụ 3.2.15. \mathbb{R}^n là một miền hình sao. Một tập con lồi của \mathbb{R}^n là một miền hình sao. \mathbb{R}^n trừ đi một điểm không là miền hình sao.

Kết quả dưới đây, đôi khi được gọi là Bổ đề Poincaré, nói rằng điều kiện $P_y = Q_x$ cũng là một điều kiện đủ để trường là bảo toàn nếu miền xác định của trường là mở hình sao. Kết quả vẫn đúng cho một loại miền tổng quát hơn gọi là miền đơn liên, đại khái là miền chỉ gồm một mảnh không có lỗ thủng.

đơn liên

không đơn liên: có lỗ thủng hoặc gồm hai mảnh

Định lý 3.2.16. Giả sử F = (P,Q) là một trường vectơ trơn trên miền mở hình sao D. Nếu $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ trên D thì F là bảo toàn trên D.

Chứng minh. Để gợi ý, ở đây ta dùng kí hiệu $\int_{p_0}^p F \cdot d\vec{s}$ để chỉ tích phân của F trên đoạn thẳng $p_0 + t(p-p_0), \ 0 \le t \le 1$, nối điểm p_0 với điểm p. Đặt

$$f(p) = \int_{p_0}^p F \cdot d\vec{s}.$$

thì đây chính là một hàm thế của F. Ta sẽ kiểm tra rằng $\frac{\partial f}{\partial x} = P$, chứng minh

 $\frac{\partial f}{\partial y}=Q$ là tương tự. Theo định nghĩa của đạo hàm, với $\vec{i}=(1,0),$ ta có:

$$\frac{\partial f}{\partial x}(p) = \lim_{h \to 0} \frac{1}{h} \left[\int_{p_0}^{p+h\vec{i}} F \cdot d\vec{s} - \int_{p_0}^{p} F \cdot d\vec{s} \right].$$

Chú ý do D mở nên nếu h đủ nhỏ thì điểm $p+h\vec{i}$ sẽ nằm trong D. Nếu ba điểm p_0 , p và $p+h\vec{i}$ không cùng nằm trên một đường thẳng thì chúng tạo thành một tam giác. Tam giác này là một miền đơn giản do đó ta có thể áp dụng định lý Green cho miền này, dùng giả thiết $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, ta được tích phân đường trên biên của tam giác bằng 0, tức là

$$\int_{p_0}^{p+h\vec{i}} F \cdot d\vec{s} - \int_{p_0}^p F \cdot d\vec{s} = \int_p^{p+h\vec{i}} F \cdot d\vec{s}.$$

Công thức này cũng đúng nếu ba điểm là thẳng hàng. Viết p=(x,y), và lấy đường đi thẳng từ p tới $p+h\vec{i}$ là r(t)=(t,y) với $x\leq t\leq x+h$, ta được

$$\int_{p}^{p+h\vec{i}} F \cdot d\vec{s} = \int_{x}^{x+h} P(t,y) dt.$$

Do đó

$$\frac{\partial f}{\partial x}(p) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} P(t, y) dt$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\int_{x}^{x+h} P(t, y) dt - \int_{x}^{x} P(t, y) dt \right)$$

$$= \left(\frac{d}{dt} \int_{x}^{t} P(t, y) dt \right) \Big|_{t=x} = P(t, y)|_{t=x} = P(x, y).$$

Đẳng thức cuối cùng dùng Định lý cơ bản của Vi tích phân [Bmgt1].

Ví dụ 3.2.17. Trường $\vec{F}(x,y) = (e^{x^2}, y^3)$ có bảo toàn hay không?

Ta có $\frac{\partial (e^{x^2})}{\partial y} = 0 = \frac{\partial (y^3)}{\partial x}$. Miền xác định của trường là \mathbb{R}^2 , một miền mở hình sao. Kết quả trên áp dụng được, cho ta kết luận trường là bảo toàn trên miền xác định.

* Dạng thông lượng của công thức Green

Cho D là miền phẳng và F là một trường trên D sao cho ta có thể áp dụng công thức Green. Giả sử ∂D được tham số hóa theo chiều dương bởi C(t)=(x(t),y(t)), $a\leq t\leq b.$

Vectơ vận tốc của đường biên là C'(t) = (x'(t), y'(t)). **Vectơ pháp tuyến ngoài** n của ∂D tại điểm (x(t), y(t)) là

$$n = \frac{1}{|C'(t)|}(y'(t), -x'(t)).$$

Ta giải thích điều này sau đây. Vecto (-y'(t), x'(t)) vuông góc (x'(t), y'(t)) (do tích vô hướng bằng 0), vậy n cùng phương với (-y'(t), x'(t)). Chiều của n được xác định theo nguyên tắc chiều từ pháp tuyến ngoài sang tiếp tuyến phải cùng chiều với chiều dương chuẩn tắc của mặt phẳng, tức là chiều từ (1,0) sang (0,1).

Từ công thức Green:

$$\int_{C} F \cdot n \, ds = \int_{a}^{b} \langle (P(C(t)), Q(C(t))), \frac{1}{|C'(t)|} (y'(t), -x'(t)) \rangle |C'(t)| \, dt$$

$$= \int_{C} -Q \, dx + P \, dy = \iint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \, dA.$$

Người ta thường đặt

$$\operatorname{div}(P,Q) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}.$$

Toán tử div sẽ được thảo luận nhiều hơn ở Mục 3.4.2 phía sau. Vậy

$$\int_{\partial D} F \cdot n \, ds = \iint_{D} \operatorname{div} F \, dA. \tag{3.2.1}$$

Tích phân $\int_C F \cdot n \, ds$ là tổng thành phần pháp tuyến ngoài của F dọc theo biên ∂D . Nếu F là một trường vectơ vận tốc thì tích phân này thể hiện **thông lượng** (lương đi qua, flux) của F qua ∂D .

Bài tập

- 3.2.1. Hình 3.2.6 vẽ của một trường vecto.
 - (a) Ước đoán trường có bảo toàn không?
 - (b) Ước đoán tích phân của trường dọc theo đường C là âm, dương hay bằng 0?
- 3.2.2. Ước đoán trường trong Hình 3.2.7 có bảo toàn không?
- **3.2.3.** Tính:
 - (a) Tìm một hàm f(x, y, z) sao cho f(0, 0, 0) = 6 và $\nabla f(x, y, z) = (2y, 2x, e^z)$.
 - (b) Tính công của trường lực $F(x,y,z)=(2,3y,4z^2)$ khi vật đi từ điểm (1,1,1) tới điểm (1,0,0).
 - (c) Giải bài 3.1.3 bằng cách dùng hàm thế.
 - (d) Tìm hàm thế cho trường $(e^x \sin y yz, e^x \cos y xz, z xy)$.

Hình 3.2.6

(e) Tìm một hàm thế cho trường

$$\left(xy - \sin z, \frac{1}{2}x^2 - \frac{e^y}{z}, \frac{e^y}{z^2} - x\cos z\right).$$

- (f) Tính tích phân $\int_C (2y-3z) dx + (2x+z)dy + (y-3x) dz$ với C là đường gấp khúc đi từ (0,0,0) tới (0,1,2) tới (3,4,3) rồi tới (2,3,1).
- (g) Tính $\int_C (x-4y^2) dx + (\ln y 8xy) dy$ với C là một đường trên nửa mặt phẳng y > 0 đi từ điểm (-3,4) tới điểm (2,6).
- (h) Tính $\int_C (\sqrt{x} + 8xy) \ dx + (\sqrt{y} + 4x^2) \ dy$ với C là một đường trong góc phần tư thứ nhất của mặt phẳng đi từ điểm (3,2) tới điểm (4,1).
- **3.2.4.** Cho C là đường $y = x^3$ từ điểm (0,0) tới điểm (1,1).
 - (a) Tính $\int_C 3y \ dx + 2x \ dy$.
 - (b) Dùng câu trên, tính $\int_C (3y + ye^x) dx + (2x + e^x + e^y) dy$.
- **3.2.5.** Cho *C* là đường e-líp $4x^2 + y^2 = 4$.
 - (a) Tính $\int_C (e^x \sin y + 2y) \ dx + (e^x \cos y + 2x 2y) \ dy$
 - (b) Tính $\int_C (e^x \sin y + 4y) \ dx + (e^x \cos y + 2x 2y) \ dy$.
- **3.2.6** (Điện trường là bảo toàn). Định luật Coulomb ⁴ là một định luật của vật lý có được từ thực nghiệm được phát biểu như sau: Nếu trong \mathbb{R}^3 có hai điện tích q_1 và q_2 thì điện tích q_1 tác động lên điện tích q_2 một lực bằng

$$F(\vec{r}) = \frac{q_1 q_2}{4\pi\epsilon_0 |\vec{r}|^3} \vec{r},$$

trong đó \vec{r} là vectơ từ điểm mang điện tích q_1 sang điểm mang điện tích q_2 , và ϵ_0 là một hằng số. Để đơn giản ta giả sử điện tích q_1 nằm ở gốc tọa độ, khi đó $\vec{r}=(x,y,z)$ là vị trí của điện tích q_2 . Chứng tỏ điện trường là một trường bảo toàn.

 $^{^4}$ Định luật này được phát biểu lần đầu tiên bởi Charles Coulomb năm 1785.

Hình 3.2.7

3.2.7. Cho f là một hàm trơn trên mặt phẳng. Gọi $\vec{F} = \nabla f$. Biết f(A) = -1, f(B) = 13. Hãy tính công của trường \vec{F} tác động lên một chuyển động theo đường C đi từ điểm A tới điểm B. Xem Hình 3.2.8.

Hình 3.2.8

- **3.2.8.** Tính công của trường lực bảo toàn tác động lên vật di chuyển từ điểm P tới điểm Q theo đường C trong Hình 3.2.9. Trong hình các đường cong khác C là các đường mức của một hàm thế với các mức tương ứng được ghi. Chú ý các đường mức này đều vuông góc với trường vectơ, vì trường là gradient của một hàm, xem Mục 1.4.4.
- **3.2.9.** Trên mặt phẳng Oxy, xét trường

$$F(x,y) = (P(x,y), Q(x,y)) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right).$$

- (a) Kiểm tra rằng $P_y = Q_x$ trên miền xác định của F.
- (b) Trường F có bảo toàn trên miền xác định không?
- **3.2.10.** * Trên mặt phẳng Oxy, xét trường

$$F(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

Hình 3.2.9

Hình 3.2.10: Trường $\left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$. Trong Ví dụ 3.2.14 ta đã biết trường này không bảo toàn, một điều có thể thấy ngay từ hình vẽ.

(a) Kiểm tra rằng nếu $x \neq 0$ thì F có một hàm thế là $\theta = \arctan \frac{y}{x}$, với θ chính là biến góc trong tọa độ cực. Người ta thường viết một cách hình thức

$$d\theta = \frac{-y}{x^2 + y^2}dx + \frac{x}{x^2 + y^2}dy.$$

- (b) Có thể mở rộng θ thành một hàm tron trên toàn miền xác định của F không?
- (c) Tích phân $\frac{1}{2\pi} \int_C d\theta$ được gọi **số vòng**, tính theo chiều ngược chiều kim đồng hồ, của đường đi C quanh điểm O. Chứng tỏ số vòng của đường đi $(\cos t, \sin t)$, $0 \le t \le 2n\pi$ đúng bằng n.

Công thức Green

3.2.11. Tính:

- (a) Cho C là biên của hình vuông $[0,1]^2 \subset \mathbb{R}^2$ định hướng theo chiều kim đồng hồ. Tính tích phân $\int_C x^3 dx + (x + \sin(2y)) dy$.
- (b) Cho C là biên của hình vuông $[0,1]^2 \subset \mathbb{R}^2$ định hướng theo chiều kim đồng hồ. Tính tích phân $\int_C x^2 dy + y^2 dx$.
- (c) Tính $\int_C (x-y)^2 dx + (x+y)^2 dy$ trong đó C là chu tuyến (tức đường biên) theo chiều dương của tam giác OAB với $O=(0,0),\ A=(2,0),\ B=(4,2)$ bằng cách tính trực tiếp và bằng công thức Green.
- (d) Cho $F(x,y)=(x^2+y,x+\sqrt{y^4+y^2+1})$. Trường này có bảo toàn không? Gọi $C(t)=(1-\cos^2t,\sin 2t),\ 0\leq t\leq \pi.$ Tính $\int_C F\cdot d\vec{s}$.
- (e) Cho $F(x,y) = (y 2xye^{-x^2}, e^{-x^2} + y)$. Tính tích phân của trường này trên cung tròn đơn vị trong góc phần tư thứ nhất đi từ (1,0) tới (0,1).
- (f) Hãy kiểm chứng công thức Green trong trường hợp miền được bao bởi hai đường cong y = x và $y = x^2$ và trường là (xy, y^2) .
- (g) Hãy kiểm chứng công thức Green trong trường hợp miền được bao bởi hai đường cong $y=\sqrt{x}$ và $y=x^2$ và trường là $(x+y,x^2+y^2)$.
- (h) Tính tích phân $\int_C 4y dx + 2x^3 dy$ với C gồm đoạn thẳng từ (-1,0) tới (1,0) và đoạn cong $y=1-x^2$ nối hai điểm này bằng cách tính trực tiếp và cách dùng công thức Green.
- (i) Tính tích phân $\int_C x dx 5 dy$ với C là đường e-líp $x=2+4\cos\theta,\ y=3+2\sin\theta,$ $0\le\theta\le 2\pi$ bằng 2 cách.
- **3.2.12.** Trong các bài sau ta tính một tích phân bằng nhiều cách.
 - (a) Cho $F(x,y)=2xy\vec{i}+x^2\vec{j}$. Gọi T là tam giác với các đỉnh (0,0),~(0,1),~(1,1), định hướng ngược chiều kim đồng hồ. Hãy tính $\int_T F\cdot d\vec{s}$ bằng ba cách.
 - (b) Cho trường $F(x,y) = (x \sin(y^2), x^2 y \cos(y^2))$ và gọi T là đường biên theo chiều dương của tam giác với các đỉnh O = (0,0), A = (1,0), B = (2,1). Hãy tính $\int_T F \cdot d\vec{s}$ bằng ba cách. Để ý rằng trong trường hợp này có thể không tính trực tiếp được các tích phân đường.
- **3.2.13.** Gọi D là một miền trên đó công thức Green có thể áp dụng được. Chứng tỏ diện tích của D có thể được tính theo công thức

$$|D| = -\int_{\partial D} y \ dx = \int_{\partial D} x \ dy = \frac{1}{2} \int_{\partial D} x \ dy - y \ dx.$$

- **3.2.14.** Cho đường cong trong mặt phẳng (x,y) viết bằng phương trình dùng tọa độ cực $r=4+3\cos(11\theta)$, với $0\leq\theta\leq2\pi$ (xem Hình 2.3.4). Dùng Bài tập 3.2.13, hãy tính diện tích của miền được bao bởi đường cong này.
- **3.2.15.** Cho đường cong hình sao (astroid) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2^{\frac{2}{3}}$.
 - (a) Vẽ đường này, dùng tham số hóa của đường astroid: $x=2\cos^3\theta,\ y=2\sin^3\theta.$
 - (b) Tính diện tích của miền bao bởi đường cong trên bằng cách dùng tích phân bội.

- (c) Tính diện tích miền này bằng cách dùng tích phân đường.
- **3.2.16.** Cho $\vec{F}=(P,Q)$ là trường vectơ trơn xác định trên mặt phẳng trừ điểm O, có $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ tại mọi điểm. Giả sử $\int_a \vec{F}\cdot d\vec{s}=1$ và $\int_b \vec{F}\cdot d\vec{s}=2$ (xem Hình 3.2.11). Hãy tính tích phân của \vec{F} trên c, d, và e.

Hình 3.2.11

- **3.2.17.** Cho $F(x,y)=\left(\frac{-y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$. Cho C_1 là đường e-líp $9x^2+4y^2=36$ và C_2 là đường tròn $x^2+y^2=1$, đều được định hướng cùng chiều kim đồng hồ. Chứng tỏ tích phân của F trên C_1 và trên C_2 là bằng nhau.
- **3.2.18.** Trên mặt phẳng Oxy, xét trường

$$F(x,y) = (P(x,y), Q(x,y)) = \left(2x - \frac{y}{x^2 + y^2}, 1 + \frac{x}{x^2 + y^2}\right).$$

(a) Trong hình vẽ a là một nửa đường tròn đi từ (-1,0) tới (1,0)). Tính tích phân của \vec{F} trên a.

- (b) Tính tích phân của \vec{F} trên f (một nửa đường tròn đi từ (-1,0) tới (1,0)).
- (c) Dùng công thức Green, hãy tính tích phân của \vec{F} trên c và d.
- (d) Hãy tính tích phân của \vec{F} trên b (một đường đi từ (-1,0) tới (1,0)).
- (e) Hãy tính tích phân của \vec{F} trên e.

3.2.19 (tích phân từng phần). Cho D là miền đơn giản trên mặt phẳng có biên trơn từng khúc được định hướng dương. Cho f và g là hàm thực khả vi liên tục trên một tập mở chứa D. Hãy chứng minh công thức tích phân từng phần sau:

$$\iint_D f_x g \ dxdy = \int_{\partial D} fg \ dy - \iint_D fg_x \ dxdy.$$

3.2.20. Cho D là miền đơn giản trên mặt phẳng với biên trơn từng khúc được định hướng dương. Cho f là một hàm trơn trên một tập mở chứa D. Hãy kiểm rằng:

(a)
$$\int_{\partial D} f_x \ dx + f_y \ dy = 0.$$

(b)
$$\int_{\partial D} -f_y \ dx + f_x \ dy = \iint_D \Delta f \ dx dy.$$

Ở đây với f(x,y) là hàm thực trên miền $D \subset \mathbb{R}^2$ kí hiệu **toán tử Laplace** tác động vào f là $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial u^2}$.

3.2.21. Cho D là miền đơn giản trên mặt phẳng với biên trơn từng khúc được định hướng dương. Cho (P,Q) là một trường vectơ trơn trên một tập mở chứa D. Hãy kiểm rằng

$$\int_{\partial D} (QP_x - PQ_x) \ dx + (PQ_y - QP_y) \ dy = 2 \iint_D (PQ_{xy} - QP_{xy}) \ dxdy.$$

- **3.2.22.** Kí hiệu đạo hàm của f theo hướng cho bởi vectơ đơn vị v là $D_v f$. Nhắc lại công thức $D_v f = \nabla f \cdot v$. Kí hiệu n là véctơ pháp tuyến đơn vị ngoài của ∂D . Hãy chứng minh các công thức sau, cũng được gọi là các **công thức Green**, với giả thiết dạng thông lượng của công thức Green ở Công thức (3.2.1) có thể áp dụng được.
 - (a) $\int_{\partial D} D_n f \ ds = \iint_D \Delta f \ dA$.
 - (b) $\int_{\partial D} (f \nabla g) \cdot n \ ds = \iint_{D} (f \Delta g + \nabla f \cdot \nabla g) \ dA$.
 - (c) $\int_{\partial D} (f \nabla g g \nabla f) \cdot n \ ds = \iint_D (f \Delta g g \Delta f) \ dA$.
- 3.2.23 (diên tích của đa giác). *
 - (a) Một tam giác trong mặt phẳng có 3 đỉnh có tọa độ (x_1, y_1) , (x_2, y_2) , (x_3, y_3) . Chứng tỏ diện tích của tam giác này bằng

$$\frac{1}{2} \left| x_1 y_2 - x_2 y_1 + x_2 y_3 - x_3 y_2 + x_3 y_1 - x_1 y_3 \right|.$$

(b) Tổng quát hơn, giả sử một đa giác trong mặt phẳng bao một miền mà Công thức Green áp dụng được. Giả sử các đỉnh của đa giác này có tọa độ (x_i, y_i) , $1 \le i \le n$ với thứ tự theo định hướng "đa giác nằm bên trái" của Công thức Green. Để cho tiện, đặt $(x_{n+1}, y_{n+1}) = (x_1, y_1)$. Khi đó ta có công thức cho diện tích của đa giác là

$$\frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i).$$

3.2.24. Giả sử nhiệt độ tại một điểm (x,y) trên mặt phẳng được cho bởi f(x,y). Dùng công thức Green ở Bài tập 3.2.22, hãy giải thích vì sao nếu phân bố nhiệt độ là **điều hòa**,

nghĩa là $\Delta f = 0$, thì trên mỗi miền kín lượng nhiệt đi ra luôn đúng bằng lượng nhiệt đi vào.

3.3 Tích phân mặt

Giống như đường, ban đầu đối với chúng ta một $m \not a t$ là một ánh xạ r từ một tập con D của \mathbb{R}^2 vào \mathbb{R}^3 . Tập ảnh r(D) được gọi là $v \not e t$ của mặt. Ta thường nói r là một $t ham s \acute{o} h \acute{o} a$ của vết của mặt.

Ví dụ 3.3.1. Nửa trên của mặt cầu đơn vị là vết của mặt $(x,y,z=\sqrt{1-x^2-y^2})$ với $x^2+y^2\leq 1$ trong tọa độ Euclid. Đó cũng là vết của mặt $(\sin\phi\cos\theta,\sin\phi\sin\theta,\cos\phi)$ với $0\leq\theta\leq 2\pi$ và $0\leq\phi\leq\pi/2$ trong tọa độ cầu.

Ví dụ 3.3.2 (mặt đồ thị). Giả sử $f: D \to \mathbb{R}$ là một hàm tron trên một tập mở chứa D. Đồ thị của hàm f là vết của mặt $r: D \to \mathbb{R}^3$ với r(x,y) = (x,y,f(x,y)).

Cho măt

$$\begin{split} r: D \subset \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (u,v) & \mapsto & r(u,v) = (x,y,z). \end{split}$$

Nếu giữ v cố định và chỉ cho u thay đổi thì r(u,v) trở lại là một đường đi trong \mathbb{R}^3 theo tham số u. Đạo hàm của đường đi này theo u là $\frac{\partial r}{\partial u}(u,v) = r_u(u,v)$ là vectơ vận tốc của đường này, do đó ta có thể coi vectơ đó là một vectơ tiếp xúc của mặt r tại điểm r(u,v). Như vậy với $(a,b) \in D$ cho trước ta có sẵn hai vectơ tiếp xúc của mặt là $r_u(a,b)$ và $r_v(a,b)$, và một vectơ pháp tuyến là $r_u(a,b) \times r_v(a,b)$. Xem Hình 3.3.1.

Hình 3.3.1: Vectơ tiếp xúc và vectơ pháp tuyến của mặt.

Ví dụ 3.3.3 (pháp tuyến của mặt đồ thị). Giả sử $f: D \to \mathbb{R}$ là một hàm trơn trên một tập mở chứa D. Xét mặt r(x,y) = (x,y,f(x,y)) có vết là đồ thị của hàm f. Ta tính được $r_x = (1,0,f_x)$, $r_y = (0,1,f_y)$, $r_x \times r_y = (-f_x,-f_y,1)$. Vậy đồ thị của hàm f có một pháp tuyến là $(-f_x,-f_y,1)$. So sánh với phần mặt phẳng tiếp xúc ở Chương Phép tính vi phân, Hình 1.3.3.

3.3.1 Diện tích mặt

Ta xây dựng diện tích mặt tương tự như đã làm khi xây dựng chiều dài đường. Cho mặt

$$\begin{split} r: D \subset \mathbb{R}^2 & \to & \mathbb{R}^3 \\ (u,v) & \mapsto & r(u,v) = (x,y,z). \end{split}$$

Với một phép chia của D ta có một phép chia của mặt thành những mảnh nhỏ. Một hình chữ nhật con với kích thước $\Delta u \times \Delta v$ sẽ được mang thành một mảnh trên mặt được xấp xỉ tuyến tính bằng hình bình hành xác định bởi các vecto $r_u(u,v)\Delta u$ và $r_v(u,v)\Delta v$. Diện tích của hình bình hành này được cho bởi độ lớn của tích có hướng của hai vecto này, tức là $|r_u(u,v)\times r_v(u,v)|\Delta u\Delta v$, xem Hình 3.3.2. Diện tích của

Hình 3.3.2: Xấp xỉ mảnh cong nhỏ bằng hình bình hành tiếp xúc.

mặt được xấp xỉ bởi tổng $\sum |r_u(u,v) \times r_v(u,v)| \Delta u \Delta v$, là tổng Riemann của hàm $|r_u \times r_v|$ trên D. Vậy ta đưa ra định nghĩa:

Định nghĩa 3.3.4. Diên tích của mặt $r: D \to \mathbb{R}^3$ là

$$\iint_D |r_u \times r_v| \ dudv.$$

Ví dụ 3.3.5 (diện tích mặt đồ thị). Giả sử $f: D \to \mathbb{R}$ là một hàm trơn trên một tập mở chứa D. Xét mặt r(x,y) = (x,y,f(x,y)) có vết là đồ thị của hàm f. Ta đã tính được $r_x = (1,0,f_x), r_y = (0,1,f_y), r_x \times r_y = (-f_x,-f_y,1)$. Vậy diện tích

của mặt này là

$$\iint_D \sqrt{1 + f_x^2 + f_y^2} \ dx dy.$$

Đặc biệt, nếu đồ thị của hàm f là một phần của mặt phẳng, tức $f \equiv 0$, thì diện tích của mặt chính là diện tích của miền phẳng D.

3.3.2 Tích phân mặt loại một

Cho mặt $r: D \to \mathbb{R}^3$ và cho f là một hàm thực xác định trên vết S = r(D). Ta muốn tính **tổng giá trị của hàm trên mặt**.

Làm như trong phần diện tích mặt, trên mỗi mảnh con của mặt ta xấp xỉ tuyến tính diện tích của mảnh con bằng diện tích của một hình bình hành, bằng $|r_u(u,v) \times r_v(u,v)| \Delta u \Delta v$, và xấp xỉ giá trị của hàm f bằng giá trị của nó tại một điểm r(u,v). Tổng giá trị của hàm trên mảnh con này được xấp xỉ bằng $f(r(u,v))|r_u(u,v) \times r_v(u,v)|\Delta u \Delta v$. Từ đó ta đưa ra định nghĩa:

Định nghĩa 3.3.6. Cho mặt $r: D \to \mathbb{R}^3$ với vết S = r(D). Cho $f: S \to \mathbb{R}$. Tích phân mặt loại một của f trên r là

$$\iint_{T} f \, dS = \iint_{D} f(r(u, v)) |r_{u}(u, v) \times r_{v}(u, v)| \, du dv.$$

Ghi chú 3.3.7. Trong các tài liệu khác tích phân mặt loại 1 còn được kí hiệu bằng $\int_S f \ d\sigma$, $\int_S f \ d\Sigma$.

Ví dụ 3.3.8. Nếu $f \equiv 1$ thì $\iint_r 1 dS$ chính là diện tích của mặt r.

Ví dụ 3.3.9. Giả sử $f: D \to \mathbb{R}$ là một hàm trơn trên một tập mở chứa D. Xét mặt r(x,y) = (x,y,f(x,y)) có vết là đồ thị S của hàm f. Giả sử $g: S \to \mathbb{R}$. Khi đó tích phân của g trên r là

$$\iint_{T} g \, dS = \iint_{D} g(x, y, f(x, y)) \sqrt{1 + f_{x}^{2} + f_{y}^{2}} \, dx dy.$$

3.3.3 Tích phân mặt loại hai

Ta muốn tính tổng của thành phần pháp tuyến của một trường vectơ trên mặt. Đại lượng này thường được dùng để đại diện cho lượng của trường đi xuyên qua mặt, tức là thông lượng của trường.

Cách xây dựng có sư tương tư với cách xây dựng tích phân đường loại hai.

Cho mặt $r: D \to \mathbb{R}^3$ với vết S = r(D). Cho F là một trường vectơ trên S, tức $F: S \to \mathbb{R}^3$. Như trong tích phân mặt loại một, diện tích của một mảnh con của mặt được xấp xỉ bởi diện tích hình bình hành là $|r_u(u,v) \times r_v(u,v)| \Delta u \Delta v$. Trên mảnh con trường F được xấp xỉ bằng giá trị của nó tại điểm r(u,v).

Vecto pháp tuyến đơn vị của mặt tại điểm r(u,v) là

$$\frac{r_u(u,v) \times r_v(u,v)}{|r_u(u,v) \times r_v(u,v)|}.$$

Thành phần pháp tuyến của vecto F(r(u,v)) là số thực (nhắc lại Hình 1.1.5)

$$F(r(u,v)) \cdot \frac{r_u(u,v) \times r_v(u,v)}{|r_u(u,v) \times r_v(u,v)|}.$$

Tổng thành phần pháp tuyến của F trên mảnh con đó được xấp xỉ bằng thành phần pháo tuyến của F tại r(u,v) nhân với diện tích của hình bình hành:

$$F(r(u,v)) \cdot \frac{r_u(u,v) \times r_v(u,v)}{|r_u(u,v) \times r_v(u,v)|} |r_u(u,v) \times r_v(u,v)| \Delta u \Delta v$$

= $[F(r(u,v)) \cdot (r_u(u,v) \times r_v(u,v))] \Delta u \Delta v$.

Từ đây ta đưa ra định nghĩa:

Định nghĩa 3.3.10. Cho mặt $r: D \to \mathbb{R}^3$ với vết S = r(D). Cho F là một trường vectơ trên S, tức $F: S \to \mathbb{R}^3$. Tích phân mặt loại hai của của F trên r là

$$\iint_r F \cdot d\vec{S} = \iint_D F(r(u,v)) \cdot (r_u(u,v) \times r_v(u,v)) \ dudv.$$

Ghi chú 3.3.11. Ta tính được ngay, với r(u, v) = (x, y, z),

$$r_u(u,v) \times r_v(u,v) = \frac{\partial(y,z)}{\partial(u,v)}\vec{i} + \frac{\partial(z,x)}{\partial(u,v)}\vec{j} + \frac{\partial(x,y)}{\partial(u,v)}\vec{k}.$$

Từ đó trong một số tài liệu người ta dùng thêm các kí hiệu:

$$\iint_r P(x,y,z)\,dydz = \iint_r P\vec{i}\cdot d\vec{S} = \iint_r P(r(u,v))\frac{\partial(y,z)}{\partial(u,v)}\,dudv,$$

$$\iint_r Q(x,y,z)\,dzdx = \iint_r Q\vec{j}\cdot d\vec{S} = \iint_r Q(r(u,v))\frac{\partial(z,x)}{\partial(u,v)}\,dudv,$$

$$\iint_r R(x,y,z)\,dxdy = \iint_r R\vec{k}\cdot d\vec{S} = \iint_r R(r(u,v)) \frac{\partial(x,y)}{\partial(u,v)}\,dudv.$$

Với các kí hiệu này và $F = P\vec{i} + Q\vec{j} + R\vec{k}$ thì

$$\iint_{T} F \cdot d\vec{S} = \iint_{T} P \, dy dz + Q \, dz dx + R \, dx dy.$$

Tuy nhiên trong tài liệu này ta không dùng các kí hiệu trên.

3.3.4 Định hướng mặt và sự phụ thuộc vào tham số hóa

Tương tự như đã xảy ra với đường, trong nhiều ứng dụng ta muốn xem một mặt, chẳng hạn một mặt cầu, như là một tập hợp điểm chứ không phải là một ánh xạ. Bây giờ ta xây dựng quan điểm này. Ta giải quyết việc này theo cách tương tự như đã làm với đường.

Cho D và D' là hai tập con mở của \mathbb{R}^2 và φ là một phép đổi biến từ D lên D'. Như ở Mục 2.3, nếu det J_{φ} luôn dương trên D thì φ được gọi là một phép đổi biến bảo toàn định hướng, nếu det J_{φ} luôn âm thì φ được gọi là một phép đổi biến đảo ngược định hướng.

Định lý 3.3.12. Giả sử D và D' là hai tập con mở bị chặn của \mathbb{R}^2 và $\varphi: D' \to D$ là một phép đổi biến. Cho mặt trơn $r: D \to \mathbb{R}^3$. Khi đó:

(a) Tích phân mặt loại một không đổi qua phép đổi biến:

$$\iint_r f \ dS = \iint_{r \circ \varphi} f \ dS.$$

(b) Tích phân mặt loại hai không đổi qua phép đổi biến bảo toàn định hướng:

$$\iint_r F \cdot d\vec{S} = \iint_{r \circ \varphi} F \cdot d\vec{S}.$$

(c) Tích phân mặt loại hai đổi dấu qua phép đổi biến đảo ngược định hướng:

$$\iint_r F \cdot d\vec{S} = -\iint_{r \circ \varphi} F \cdot d\vec{S}.$$

Chứng minh. Theo qui tắc đạo hàm của hàm hợp:

$$\frac{\partial (r \circ \varphi)}{\partial s} = \frac{\partial r}{\partial u} \cdot \frac{\partial u}{\partial s} + \frac{\partial r}{\partial v} \cdot \frac{\partial v}{\partial s},$$

$$\frac{\partial (r \circ \varphi)}{\partial t} = \frac{\partial r}{\partial u} \cdot \frac{\partial u}{\partial t} + \frac{\partial r}{\partial v} \cdot \frac{\partial v}{\partial t}.$$

Nhân hai vecto này, và đơn giản hóa, ta được

$$\frac{\partial (r \circ \varphi)}{\partial s} \times \frac{\partial (r \circ \varphi)}{\partial t} = \left(\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right) \cdot \left(\frac{\partial u}{\partial s} \cdot \frac{\partial v}{\partial t} - \frac{\partial u}{\partial t} \cdot \frac{\partial v}{\partial s}\right)$$
$$= \left(\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right) \cdot \frac{\partial (u, v)}{\partial (s, t)}.$$

Viết cách khác:

$$(r \circ \varphi)_s \times (r \circ \varphi)_t = (r_u \times r_v) \det J_{\varphi}(s, t).$$
 (3.3.1)

Bây giờ dùng công thức đổi biến của tích phân bội (2.3.1) ta được điều phải chứng minh.

Miêu tả chính xác khái niệm định hướng trên mặt khá trừu tượng, tuy nhiên trong môn học này ta thường chỉ cần hình dung trực quan *một định hướng trên mặt cong là một chiều pháp tuyến được chọn trên mặt cong đó*. Miêu tả liên quan là nếu ta tưởng tượng được rằng mình là một người quan sát đứng trên mặt, đầu hướng theo chiều pháp tuyến đã được chọn, nhìn xuống mặt, thì tại lân cận của điểm đang xét mặt được định hướng ngược chiều kim đồng hồ, xem Hình 3.3.3 và Hình 3.3.1.

Trong môn này biên của mặt cong chỉ cần được hình dung như phần "rìa" hay "bờ" của mặt cong, và thường chỉ cần được miêu tả một cách trực quan, đặc biệt thông qua hình vẽ. (Khái niệm biên của mặt có khác với khái niệm biên của tập hợp ở Chương Vi phân hàm nhiều biến.)

Hình 3.3.3: Minh hoa trưc quan biên của mặt và định hướng của mặt.

Trong các bài tập tính toán trong môn này thì các điều kiện áp dụng các kết quả đều được thỏa do đó người học không cần kiểm tra, và các miêu tả trực quan là đủ.

Ví dụ 3.3.13 (định hướng của mặt cầu). Xét phần mặt cầu $x^2 + y^2 + z^2 = 1$, x, y, z > 0. Tập điểm này có thể được tham số hóa như là một mặt đồ thị x = x, y = y, $z = \sqrt{1 - x^2 - y^2}$). Một cách khác để tham số hóa tập này là dùng tọa độ cầu: $x = \sin\phi\cos\theta$, $y = \sin\phi\sin\theta$, $z = \cos\phi$, với $0 < \phi < \pi/2$, $0 < \theta < \pi/2$. Hai tham số hóa này có cùng định hướng, nếu ta tưởng tượng ta ở ngoài mặt cầu nhìn xuống mặt cầu thì thứ tự (x,y) lẫn thứ tự (ϕ,θ) đều là ngược chiều kim đồng hồ (tham khảo Hình 2.3.1). Vì vectơ pháp tuyến chỉ ra phần bên ngoài (không bị chặn) của mặt cầu nên định hướng này được miêu tả trực quan là **định hướng ra ngoài** của mặt cầu.

Ví dụ 3.3.14 (định hướng của mặt đồ thị). Cho hàm thực f tron trên một tập mở chứa D. Xét mặt r(x,y)=(x,y,f(x,y)) với $(x,y)\in D$. Vết của r là mặt đồ thị z=f(x,y). Ta có $r_x=(1,0,f_x)$ và $r_y=(0,1,f_y)$, do đó $r_x\times r_y=(-f_x,-f_y,1)\neq 0$. Vì pháp tuyến $(-f_x,-f_y,1)$ hướng về nửa không gian trên (z>0) nên đây thường được gọi là định hướng lên trên của mặt đồ thị. Hãy xem lại Hình 1.3.3.

Mặt $r: D \to \mathbb{R}^3$ được gọi là **đơn** nếu r là đơn ánh.

Mặt $r: D \to \mathbb{R}^3$ được gọi là **chính qui** nếu hai vectơ $r_u(u,v)$ và $r_v(u,v)$ xác định và luôn không cùng phương trên D, nói cách khác vectơ $r_u(u,v) \times r_v(u,v)$ luôn khác 0 trên D. Một cách trực quan, mặt là chính qui nếu pháp tuyến có thể được xác định.

Ghi chú 3.3.15. * Dưới đây là sơ lược miêu tả chính xác khái niệm định hướng của mặt, chi tiết có trong [Vugt3]. Tương tự như cho đường, ta có kết quả rằng dưới những điều kiện nhất định thì hai mặt chính qui khác nhau bởi một phép đổi biến:

Mệnh đề 3.3.16. Cho D và D' là tập con đóng, bị chặn của \mathbb{R}^2 và cho $r:D\to\mathbb{R}^3$ và $r':D'\to\mathbb{R}^3$ là hai mặt đơn, liên tục, và chính qui trên phần trong của miền xác định, có cùng vết. Khi đó $r(\partial D)=r'(\partial D')$, và $r'^{-1}\circ r:\overset{\circ}{D}\to\overset{\circ}{D'}$ là một phép đổi biến.

Do mệnh đề trên ta gọi tập $r(\partial D) = r'(\partial D')$, ảnh của biên của miền xác định của mặt, là biên của mặt cong S = r(D) = r'(D'), kí hiệu là ∂S . Ta nói hai mặt r và r' có cùng định hướng nếu $r'^{-1} \circ r$ là một phép đổi biến và bảo toàn định hướng; và trái định hướng nếu $r'^{-1} \circ r$ là một phép đổi biến và đảo ngược định hướng. Mỗi lớp các tham số hóa có cùng định hướng của S được gọi là một định hướng của mặt cong S.

Bây giờ là kết quả chính về sự phụ thuộc của tích phân mặt vào tham số hóa, hệ quả của Mệnh đề 3.3.16 và Định lý 3.3.12:

Định lý 3.3.17. Trên những mặt đơn xác định trên tập con đóng bị chặn có diện tích của \mathbb{R}^2 , chính qui trên phần trong của miền xác đinh, với cùng vết, thì:

- (a) tích phân mặt loại một là như nhau,
- (b) tích phân mặt loại hai là như nhau nếu hai mặt cùng định hướng và đối nhau nếu hai mặt trái định hướng.

Như vậy ta có thể nói tới tích phân mặt trên một tập điểm – một mặt cong – nếu tập điểm đó là vết của một mặt như trong định lý trên. Bây giờ ta có thể dùng kí hiệu $\iint_S f \ dS$ và $\iint_S F \cdot d\vec{S}$, tích phân trên mặt cong.

Tóm tắt lai:

Tính tích phân mặt trên một mặt cong

Bước 1: Chon một tham số hóa, đơn chính qui bất kì trên mặt cong.

Bước 2: Xác định đây là tích phân mặt loại một hay loại hai.

Bước 3: Thay tham số hóa vào công thức trong định nghĩa của đúng loại tích phân để tính.

Bước 4: Nếu là tích phân mặt loại hai thì mặt cong được cho thêm một định hướng, thường ở dạng trực quan. Xác định tham số hóa đã chọn ở Bước 1 là cùng định hướng hay trái định hướng đã cho, bằng trực quan. Nếu là trái định hướng thì lấy giá trị đối của tích phân đã thu được ở Bước 3.

Bây giờ ta đã có đủ cơ sở để làm những ví du cu thể.

Ví dụ 3.3.18 (diện tích mặt cầu). Xét phần mặt cầu nằm trong góc phần tám thứ nhất, tức tập hợp $A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = R^2, \ x \ge 0, y \ge 0, z \ge 0\}.$

Tham số hóa phần này như là một mặt đồ thị $r(x,y)=(x,y,z=\sqrt{R^2-x^2-y^2})$, $x^2+y^2\leq R^2,\,x\geq 0,y\geq 0$. Đây là một tham số hóa đơn, liên tục. Ta tính được ngay $(r_x\times r_y)(x,y)=\left(\frac{x}{\sqrt{R^2-x^2-y^2}},\frac{y}{\sqrt{R^2-x^2-y^2}},1\right)$, tuy nhiên đại lượng này chỉ có nghĩa trên phần trong của miền xác định, tức là tập $x^2+y^2< R^2,\,x>0,y>0$. Diện tích của phần mặt cầu $B=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=R^2,\,x>0,y>0,z>0\}$ tính theo tham số hóa này bằng

$$\iint_{x^2+y^2 < R^2, x > 0, y > 0} |(r_x \times r_y)(x, y)| dxdy = \iint_{x^2+y^2 < R^2, x > 0, y > 0} \frac{R}{\sqrt{R^2 - x^2 - y^2}} dxdy$$

$$= \int_0^{\pi/2} \int_0^R \frac{Rr}{\sqrt{R^2 - r^2}} dr d\theta$$

$$= \pi R^2/2.$$

Tham số hóa tập A bằng tọa độ cầu $s(\phi,\theta)=R(\sin\phi\cos\theta,\sin\phi\sin\theta,\cos\phi)$, $0 \le \phi \le \pi/2$, $0 \le \theta \le \pi/2$. Đây là một tham số hóa đơn, chính qui, với $(s_{\phi} \times s_{\theta})(\phi,\theta)=R^2\sin\phi(\sin\phi\cos\theta,\sin\phi\sin\theta,\cos\phi)$. Tập B ứng với s hạn chế lại trên phần trong của miền xác định, tức $0<\phi<\pi/2$, $0<\theta<\pi/2$. Ta tính diện tích của B:

$$\iint_{0 < \phi < \pi/2, 0 < \theta < \pi/2} |(s_{\phi} \times s_{\theta})(\phi, \theta)| \ d\phi d\theta = \int_{0}^{\pi/2} \int_{0}^{\pi/2} R^{2} \sin \phi \ d\phi \ d\theta$$
$$= \pi R^{2}/2.$$

Hai tính toán cho cùng kết quả, phù hợp với Định lý 3.3.16. Từ đây ta nói diện

tích của mặt cầu bán kính R là $4\pi R^2$.

Từ tính toán trên ta cũng có thể ghi lại một công thức cho phần tử diện tích của mặt cầu

$$dS = R^2 \sin \phi d\phi d\theta.$$

Việc tính diện tích mặt cầu bằng cách chia thành nhiều phần như trên dẫn tới câu hỏi về sự phụ thuộc vào cách chia, cần các khảo cứu nâng cao hơn.

Ví dụ 3.3.19. Tính tích phân của trường $\vec{F}(x,y,z) = (x,y,1)$ trên mặt S là đồ thị $z = x^2 + y^2$, với $x^2 + y^2 \le 1$, định hướng lên trên.

Mặt S có thể được tham số hóa bởi mặt đơn, chính qui $r(x,y)=(x,y,x^2+y^2)$, trên miền $x^2+y^2\leq 1$, xem Ví dụ 3.3.14. Tham số hóa này cho định hướng lên trên như yêu cầu. Vậy:

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{x^{2}+y^{2} \le 1} (\vec{F} \circ r) \cdot (r_{x} \times r_{y}) \, dxdy$$

$$= \iint_{x^{2}+y^{2} \le 1} (x, y, 1) \cdot (-2x, -2y, 1) \, dxdy$$

$$= \iint_{x^{2}+y^{2} \le 1} (-2x^{2} - 2y^{2} + 1) \, dxdy$$

$$= \int_{0}^{2\pi} \int_{0}^{1} (-2r^{2} + 1)r \, dr \, d\theta = 2\pi.$$

* Liên hệ giữa hai loại tích phân mặt

Dưới các giả thiết của Mệnh đề 3.3.16, giả sử r và r' có cùng định hướng. Giả sử p=r(u,v)=r'(s,t) với $(u,v)\in \overset{\circ}{D}$ và $(s,t)\in \overset{\circ}{D'}$. Theo Phương trình (3.3.1) tại p hai vecto $r_u\times r_v$ và $r'_s\times r'_t$ có cùng phương cùng chiều. Vậy tại p vecto pháp tuyến đơn v_t

$$n(p) = \frac{r_u(u, v) \times r_v(u, v)}{|r_u(u, v) \times r_v(u, v)|} = \frac{r'_s(s, t) \times r'_t(s, t)}{|r'_s(s, t) \times r'_t(s, t)|}$$

được xác định không phụ thuộc vào cách chọn tham số hóa cùng định hướng, và là một hàm trơn. Vì vậy việc định hướng mặt cong đồng nghĩa với việc chọn một trường vectơ pháp tuyến đơn vị trơn trên mặt.

Ta có

$$\iint_{S} F \cdot n \ dS = \iint_{D} F(r(u,v)) \cdot \frac{r_{u}(u,v) \times r_{v}(u,v)}{|r_{u}(u,v) \times r_{v}(u,v)|} |r_{u}(u,v) \times r_{v}(u,v)| \ dA$$

$$= \iint_{D} F(r(u,v)) \cdot (r_{u}(u,v) \times r_{v}(u,v)) \ dA$$

$$= \iint_{S} F \cdot d\vec{S}.$$

Vây

$$\iint_{S} F \cdot d\vec{S} = \iint_{S} F \cdot n \ dS.$$

Điều này khẳng định lại rằng tích phân mặt loại hai là tổng thành phần pháp tuyến của trường trên mặt.

Bài tập

3.3.1. Tính:

- (a) Tính diện tích phần mặt nón $z^2=x^2+y^2,\,3\leq z\leq 5.$
- (b) Cho S là mặt xác định bởi $z=x^2+y$ với $1\leq x\leq 2,\, 0\leq y\leq 1.$ Tính $\iint_S x\ dS.$
- (c) Cho S là mặt cầu tâm 0 bán kính 2. Tính $\iint_S z^4 \ dS.$
- (d) Cho S là tam giác trong \mathbb{R}^3 với các đỉnh (1,0,0), (0,1,0), (0,0,1). Tính $\iint_S y \ dS$.
- (e) Cho S là mặt trụ $x^2 + y^2 = 9$, $0 \le z \le 2$. Tính $\iint_S z \ dS$.
- (f) Cho $\vec{F}(x,y,z)=(-x,y,z)$. Cho S là mặt tứ diện bao bởi các mặt phẳng $x=0,\,y=0,\,z=0,\,x+2y+z=2,$ định hướng ra ngoài. Tính tích phân $\iint_S \vec{F} \cdot d\vec{S}$.
- (g) Cho khối E xác định bởi điều kiện $x^2 + y^2 \le 1$, $1 \le z \le 2$. Gọi S là mặt biên của E, định hướng ra ngoài. Cho F(x,y,z) = (2x,3y,4z). Tính thông lượng của F qua S.
- (h) Tính tích phân của trường (x, y, z 2y) trên mặt $(s \cos t, s \sin t, t)$, $0 \le s \le 2$, $0 \le t \le 2\pi$. Hãy vẽ mặt này (bằng máy tính).
- **3.3.2.** Cho mặt elliptic paraboloid $z = \left(\frac{x}{3}\right)^2 + \left(\frac{y}{4}\right)^2$, $z \le 5$.
 - (a) Bằng cách đổi biến $\frac{x}{3}=r\cos\theta,\ \frac{y}{4}=r\sin\theta$ đưa ra một phương trình tham số của mặt.
 - (b) Tính xấp xỉ diện tích của mặt này.
- **3.3.3.** Cho S là mặt z=xy với $0 \le x \le 2$ và $0 \le y \le 3$. Tính tích phân mặt

$$\iint_{S} xyz \ dS$$

ra số thập phân.

- **3.3.4.** Mặt helocoid có phương trình tham số $\varphi(r,\theta) = (r\cos\theta, r\sin\theta, \theta)$, 1 < r < 2, $0 \le \theta \le 2\pi$. Vẽ mặt này. Giả sử một vật có hình dạng một mặt helocoid có mật độ khối lượng tỉ lệ với khoảng cách tới trục, cụ thể $\rho(x,y,z) = r$. Hãy tính khối lượng của vật này.
- **3.3.5.** Trên bề mặt Quả đất, tọa độ kinh tuyến và vĩ tuyến có liên hệ chặt chẽ với tọa độ cầu. Đặt hệ trục tọa độ Oxyz với O ở tâm Quả đất, trục Oz đi qua Cực Bắc, và phần tư đường tròn từ tia Oz sang tia Ox đi qua Greenwich, nước Anh. Giả sử một điểm có tọa độ là φ° vĩ độ Bắc và λ° kinh độ Đông, khi đó tọa độ cầu của điểm đó là $\phi = (90 \varphi)^{\circ}$ và $\theta = \lambda^{\circ}$ (tuy nhiên nhớ là trong tọa độ cầu góc cần được đo bằng radian).

Thành phố Hồ Chí Minh nằm trong vùng từ $10^{\circ}10'$ tới $10^{\circ}38'$ vĩ độ Bắc và $106^{\circ}22'$ tới $106^{\circ}54'$ kinh độ Đông ($1'=1/60^{\circ}$). Tính diện tích của vùng này. Bán kính của Quả đất là 6378 km.

3.3.6. Cho $v=(y^2,x^2,z^2+2y)$ là trường vectơ vận tốc (đơn vị centimeter/giây) của một dòng chất lỏng trong \mathbb{R}^3 . Hãy tính tốc độ chất lỏng đi qua mặt cầu đơn vị tâm tại gốc tọa độ (tức là thể tích chất lỏng đi qua mặt trong một đơn vị thời gian).

3.3.7 (Định luật Gauss về điện trường). Gọi E là điện trường gây bởi điện tích q tại điểm O. Lấy quả cầu B(O,R) tâm O, định hướng ra ngoài. Dùng định luật Coulomb (3.2.6), hãy tính tích phân và chứng tỏ

$$\iint_{\partial B(O,R)} E \cdot d\vec{S} = \frac{q}{\epsilon_0}.$$

Vậy thông lượng của điện trường qua một mặt cầu tâm tại vị trí của điện tích tỉ lệ với điện tích (xem dạng tổng quát hơn ở Mục 3.4.2).

3.3.8. Giá trị trung bình của hàm f trên mặt S được định nghĩa bằng

$$\frac{1}{|S|} \iint_S f \ dS.$$

Nhiệt độ trên một mái vòm hình nửa mặt cầu bán kính 20 mét tỉ lệ với cao độ, cụ thể nhiệt độ tại điểm (x, y, z) trên mặt cầu $x^2 + y^2 + (z - 50)^2 = 20^2$ là $T(x, y, z) = \frac{1}{2}z$. Hãy tính nhiệt độ trung bình trên mái vòm này.

- **3.3.9 (diện tích mặt tròn xoay).** Giả sử f(x) dương, tron trên [a,b]. Hãy tính diện tích của mặt tròn xoay nhận được bằng cách xoay đồ thị y = f(x) quanh trục x.
- **3.3.10.** Tính diện tích mặt ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$
- **3.3.11.** Tính diện tích mặt nón cân với đáy là hình tròn bán kính R và chiều cao h.
- **3.3.12.** Không cần tính, hãy cho biết giá trị của tích phân

$$\iint_{x^2+y^2+z^2=1} x \ dS.$$

3.3.13. Cho S là mặt cầu tâm 0 bán kính R. Hãy tính $\iint_S x^2 \ dS$ mà không cần tham số hóa.

Có thể làm theo ý sau đây:

- (a) Chứng tỏ, mà không cần tính, rằng $\iint_S x^2 \ dS = \iint_S y^2 \ dS = \iint_S z^2 \ dS.$
- (b) Tính $\iint_S (x^2 + y^2 + z^2) dS$ mà không cần tham số hóa.
- **3.3.14.** Hãy tính $\iint_S (x, y, z) \cdot d\vec{S}$ trong đó S là mặt cầu tâm 0 bán kính R định hướng ra ngoài, mà không tham số hóa (tính nhẩm!).

3.4 Công thức Stokes và Công thức Gauss— Ostrogradsky

3.4.1 Công thức Stokes

Định nghĩa 3.4.1. Cho F=(P,Q,R) là trường theo ba biến (x,y,z) trên \mathbb{R}^3 thì ta đặt

$$\operatorname{curl} F = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right).$$

Trường curl F còn được gọi là trường xoay của trường F.

Toán tử curl còn được kí hiệu là rot 5 .

Dưới dạng phép toán kí hiệu hình thức ta có một công thức khá dễ nhớ:

$$\operatorname{curl} F = \nabla \times F = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times (P, Q, R).$$

Dạng chính của công thức Stokes được dùng trong môn học này là

$$\int_{\partial S} F \cdot d\vec{s} = \iint_{S} \operatorname{curl} F \cdot d\vec{S}.$$

Trong công thức này biên ∂S cần được định hướng tương thích với định hướng của S. Một cách miêu tả trực quan cho định hướng trên biên ∂S là khi đi dọc theo biên theo chiều đã định, thân người hướng theo chiều pháp tuyến đã chọn của S thì mặt S phải nằm bên tay trái. Một cách miêu tả khác là: đặt lòng bàn tay phải hướng theo chiều của biên thì ngón tay cái chỉ chiều của pháp tuyến của mặt.

Công thức Stokes là một phát triển của công thức Green lên không gian ba chiều. Thực vậy, nếu S là miền phẳng và F là một trường phẳng trên S thì F(x,y,z) = (P(x,y),Q(x,y),0). Công thức Stokes trở thành

$$\int_{\partial S} P dx + Q dy = \iint_{S} (0, 0, Q_x - P_y) \cdot d\vec{S} = \iint_{S} (0, 0, Q_x - P_y) \cdot k \, dS$$
$$= \iint_{S} (Q_x - P_y) \, dS = \iint_{S} (Q_x - P_y) \, dx dy,$$

chính là công thức Green.

Công thức Stokes còn có thể được viết ở dạng tọa độ:

⁵Trong tiếng Anh curl có nghĩa là xoắn, cuộn, quăn, ...; còn rotation nghĩa là sự xoay

$$\int_{\partial S} Pdx + Qdy + Rdz = \iint_{S} (R_y - Q_z) \ dydz + (P_z - R_x) \ dzdx + (Q_x - P_y) \ dxdy.$$

Tuy chúng ta ít dùng dạng trên trong môn này nhưng nó thể hiện rõ hơn sự tương tự của công thức Stokes với công thức Green.

Dưới đây là một phát biểu chính xác mà ta có thể chứng minh được:

Định lý 3.4.2 (Công thức Stokes). Cho miền phẳng D có biên ∂D là vết của đường γ có hướng tương thích với D và giả sử công thức Green có thể áp dụng được cho D. Cho mặt r tron cấp hai trên một tập mở chứa D. Gọi $\partial r = r \circ \gamma$ là đường biên của r. Cho trường F tron trên một tập mở chứa vết của r. Khi đó:

$$\int_{\partial r} F \cdot d\vec{s} = \iint_r \operatorname{curl} F \cdot d\vec{S}.$$

Chứng minh. Chứng minh dưới đây tuy chứa những biểu thức dài dòng nhưng chỉ gồm những tính toán trực tiếp và việc áp dụng công thức Green. Viết F = (P, Q, R) và (x, y, z) = r(u, v). Viết $\gamma(t) = (u(t), v(t))$, $a \le t \le b$, một tham số hóa theo định hướng dương của ∂D . Ta được (trong vài biểu thức dưới đây biến được lược bỏ cho gọn hơn):

$$\begin{split} \int_{\partial r} F \cdot d\vec{s} &= \int_{a}^{b} F(r(u(t), v(t)) \cdot \frac{d}{dt} r(u(t), v(t)) \ dt \\ &= \int_{a}^{b} F(r(u(t), v(t)) \cdot (r_{u}u' + r_{v}v') \ dt \\ &= \int_{a}^{b} [P(x, y, z)(x_{u}u' + x_{v}v') + Q(x, y, z)(y_{u}u' + y_{v}v') + \\ &\quad + R(x, y, z)(z_{u}u' + z_{v}v')] \ dt \\ &= \int_{a}^{b} [(P(x, y, z)x_{u} + Q(x, y, z)y_{u} + R(x, y, z)z_{u})u' + (P(x, y, z)x_{v} + \\ &\quad + Q(x, y, z)y_{v} + R(x, y, z)z_{v})v'] \ dt \\ &= \int_{\gamma} (Px_{u} + Qy_{u} + Rz_{u}) \ du + (Px_{v} + Qy_{v} + Rz_{v}) \ dv. \end{split}$$

Bây giờ áp dụng công thức Green cho D ta được tích phân trên bằng

$$\iint_{D} \left[\frac{\partial}{\partial u} \left(Px_{v} + Qy_{v} + Rz_{v} \right) - \frac{\partial}{\partial v} \left(Px_{u} + Qy_{u} + Rz_{u} \right) \right] du dv.$$

Tính các đao hàm hàm hợp, chẳng han

$$(Px_v)_u = (P_x x_u + P_y y_u + P_z z_u) x_v + Px_{uv},$$

và đơn giản hóa, dùng tính trơn cấp hai của r, ta được tích phân trên bằng

$$\iint_{D} [(R_y - Q_z)(y_u z_v - z_u y_v) + (P_z - R_x)(z_u x_v - x_u z_v) + (Q_x - P_y)(x_u y_v - x_v y_u)] du dv$$

$$= \iint_{D} [\operatorname{curl}(P, Q, R) \cdot (r_u \times r_v)] du dv = \iint_{r} \operatorname{curl} F \cdot d\vec{S}.$$

Ta có thể phát biểu một hệ quả độc lập với tham số hóa, là dạng thường gặp trong môn học này, sử dụng các khái niệm đã được đưa ra ở Mệnh đề 3.3.16:

Định lý 3.4.3. Giả sử S là vết của một mặt xác định trên tập đóng bị chặn, có biên là vết của một đường chính qui từng khúc, trên đó công thức Green áp dụng được. Giả sử mặt này là đơn, chính qui, hơn nữa trơn cấp hai trên tập mở chứa miền xác định. Giả sử S và ∂S có định hướng tương thích. Cho trường F trơn trên một tập mở chứa S. Khi đó

$$\int_{\partial S} F \cdot d\vec{s} = \iint_{S} \operatorname{curl} F \cdot d\vec{S}.$$

Ví dụ 3.4.4. Cho $F(x,y,z)=(x^2,y^3,z^4)$. Cho C là đường tam giác với các đỉnh $(1,2,3),\,(2,0,-1),\,(4,3,1),$ định hướng theo thứ tự đó. Ta tính $\int_C F\cdot d\vec{s}$.

Có thể tính trực tiếp hoặc dùng phương pháp trường bảo toàn, nhưng bây giờ ta có thêm một công cụ là công thức Stokes. Đường tam giác C bao hình tam giác S với định hướng sinh bởi C. Áp dụng công thức Stokes:

$$\int_C F \cdot d\vec{s} = \iint_S \operatorname{curl} F \cdot d\vec{S}.$$

Ở đây curl F=0. Vậy tích phân trên bằng 0.

Ví dụ 3.4.5. Cho F(x,y,z)=(xy,yz,zx). Gọi C là giao của mặt phẳng x+y+z=1 với mặt trụ $x^2+y^2=1$, định hướng ngược chiều kim đồng hồ nếu nhìn từ trên xuống. Ta tính $\int_C F \cdot d\vec{s}$ bằng hai cách: tính trực tiếp, và dùng Công thức Stokes.

(a) Tính trực tiếp: Ta lấy một tham số hóa của đường C là $C(t) = (\cos t, \sin t, 1 - \cos t - \sin t)$, $0 \le t \le 2\pi$, ngược chiều kim đồng hồ nếu nhìn từ trên xuống. Tính trực tiếp I:

$$\begin{split} \int_C F \cdot d\vec{s} &= \int_C F(C(t)) \cdot C'(t) \ dt \\ &= \int_0^{2\pi} \left(\cos t \sin t, \sin t (1 - \cos t - \sin t) + (1 - \cos t - \sin t) \cos t \right) \cdot \\ &\cdot \left(-\sin t, \cos t, \sin t - \cos t \right) \ dt = -\pi. \end{split}$$

(b) Dùng Công thức Stokes: Trước hết tính được $\operatorname{curl} F(x,y,z) = (-y,-z,-x)$. Tham số hóa mặt S bao bởi C bởi $r(x,y) = (x,y,1-x-y), x^2+y^2 \leq 1$. Tham số hóa này có vectơ pháp tuyến tương ứng là $r_x \times r_y(x,y) = (1,1,1)$, hướng lên, do đó phù hợp với định hướng cần thiết trong công thức Stokes. Theo Công thức Stokes:

$$\begin{split} \int_C F \cdot d\vec{s} &= \iint_S \operatorname{curl} F \cdot d\vec{S} = \iint_{x^2 + y^2 \le 1} \operatorname{curl} F(x,y) \cdot (r_x \times r_y(x,y)) \, dx dy \\ &= \iint_{x^2 + y^2 \le 1} (-y, -(1-x-y), -x) \cdot (1,1,1) \, dx dy = -\pi. \end{split}$$

Ví dụ 3.4.6. Trong \mathbb{R}^3 , cho mặt S có phương trình $z=2x^2+2y^2$, với $z\leq 8$, có định hướng lên trên, và trường $F(x,y,z)=\left(x+4y,xy^2,2z\right)$. Tính lưu lượng của trường F trên mặt S, nghĩa là tính $\iint_S \operatorname{curl} F \cdot d\vec{S}$, bằng cách tính trực tiếp, và bằng cách dùng Công thức Stokes.

(a) Tính trực tiếp: Ta lấy một tham số hóa của mặt S như là mặt đồ thị $r(x,y)=(x,y,2x^2+2y^2), 2x^2+2y^2 \leq 8$. Ta tính $r_x(x,y)=(1,0,4x), r_y(x,y)=(1,0,4y), (r_x\times r_y)(x,y)=(-4x,-4y,1)$ là pháp tuyến hướng lên trên (theo chiều dương của trục z) đúng định hướng của mặt S. Ta tính được $\mathrm{curl} F(x,y,z)=(0,0,y^2-4)$. Tiếp theo:

$$\iint_{S} \operatorname{curl} F \cdot d\vec{S} = \iint_{x^{2}+y^{2} \leq 4} \operatorname{curl} F(x,y) \cdot (r_{x} \times r_{y})(x,y) \, dx dy
= \iint_{x^{2}+y^{2} \leq 4} (0,0,y^{2}-4) \cdot (-4x,-4y,1) \, dx dy
= \iint_{x^{2}+y^{2} \leq 4} (y^{2}-4) \, dx dy
= \int_{0}^{2} \int_{0}^{2\pi} ((r\sin t)^{2}-4)r \, dt \, dr
= \int_{0}^{2} \int_{0}^{2\pi} (r^{3} \frac{1-\cos 2t}{2} - 4r) \, dt \, dr
= \left(\int_{0}^{2} r^{3} \, dr\right) \left(\int_{0}^{2\pi} \frac{1-\cos 2t}{2} \, dt\right) - 2\pi \int_{0}^{2} 4r \, dr = -12\pi.$$

(b) Dùng Công thức Stokes: Vẽ hình ta có thể thấy mặt S có biên là đường tròn $2x^2 + 2y^2 = 8$ tức $x^2 + y^2 = 4$ trên mặt phẳng z = 8. Do S được định hướng lên trên nên chiều tương thích của biên ∂S là ngược chiều đồng hồ khi nhìn từ trên xuống. Đường biên ∂S có một tham số hóa là $C(t) = (2\cos t, 2\sin t, 8)$,

 $0 \le t \le 2\pi$, theo chiều dương. Theo Công thức Stokes:

$$\iint_{S} \operatorname{curl} F \cdot d\vec{S} = \int_{C} F \cdot d\vec{s} = \int_{C} F(C(t)) \cdot C'(t) dt
= \int_{0}^{2\pi} (2\cos t + 8\sin t, 2\cos t \cdot 4\sin^{2} t, 16) \cdot (-2\sin t, 2\cos t, 0) dt
= \int_{0}^{2\pi} (-4\cos t \sin t - 16\sin^{2} t + 16\cos^{2} t \sin^{2} t) dt
= \int_{0}^{2\pi} (-2\sin 2t - 16\sin^{4} t) dt
= \int_{0}^{2\pi} -16\left(\frac{1-\cos 2t}{2}\right)^{2} dt = \int_{0}^{2\pi} -16\left(\frac{1-\cos 2t}{2}\right)^{2} dt
= -4\int_{0}^{2\pi} (1-\cos 2t + \cos^{2} 2t) dt
= -4\int_{0}^{2\pi} (1-2\cos 2t + \frac{1+\cos 4t}{2}) dt = -12\pi.$$

* Điều kiện để trường ba chiều là bảo toàn

Mệnh đề 3.4.7 (curl grad = 0). Nếu f là hàm thực có các đạo hàm riêng cấp hai liên tục trên một tập mở thì trên đó curl $(\nabla f) = 0$.

Chứng minh. Tương tự như trường hợp hai chiều, tính trực tiếp ta được

$$\operatorname{curl} \nabla f = (f_{zy} - f_{yz}, f_{xz} - f_{zx}, f_{yx} - f_{xy}) = 0.$$

Hệ quả 3.4.8 (Điều kiện cần để trường ba chiều là bảo toàn). Nếu F là trường trơn bảo toàn trên một tập mở thì curl F = 0 trên đó. Nói cách khác điều kiện sau phải được thỏa:

$$\begin{cases} R_y = Q_z \\ P_z = R_x \\ Q_x = P_y. \end{cases}$$

Ta có thể dùng kết quả này để chứng tỏ một trường là không bảo toàn bằng cách chỉ ra rằng curl của nó khác 0.

Ví dụ 3.4.9. Trường F(x,y,z)=(y,x,y) có bảo toàn trên \mathbb{R}^3 hay không? Trường F trơn cấp một trên \mathbb{R}^3 . Nếu F là bảo toàn thì phải có curl F=0. Nhưng trong trường hợp này curl $F=(1,0,0)\neq 0$, vậy F không bảo toàn.

Bằng cách chứng minh tương tự ở Định lý 3.2.16 nhưng thay công thức Green bởi công thức Stokes ta được:

Mệnh đề 3.4.10. Nếu F trơn trên một miền mở hình sao trong \mathbb{R}^3 và curl F = 0 thì F là bảo toàn trên đó.

3.4.2 Công thức Gauss-Ostrogradsky

Định nghĩa 3.4.11. Cho F=(P,Q,R) là trường theo ba biến (x,y,z) trên \mathbb{R}^3 thì

$$\operatorname{div} F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}.$$

Dưới dạng kí hiệu hình thức thì div $F = \nabla \cdot F$. Hàm div F còn được gọi là **hàm phân tán** (divergence) của trường F.

Công thức Gauss–Ostrogradsky 6 còn được gọi là công thức Divergence 7 . Đây là tổng quát hoá của dạng thông lượng của công thức Green 3.2.1, cho một công thức có dang

$$\iint_{\partial E} P \, dy dz + Q \, dz dx + R \, dx dy = \iiint_{E} (P_x + Q_y + R_z) \, dx dy dz.$$

Dưới đây ta sẽ phát biểu và chứng minh công thức này cho **khối đơn giản với biên trơn từng mảnh**. Đây là các khối đơn giản theo cả ba chiều, theo mỗi chiều thì khối là miền nằm giữa hai đồ thị.

Ví dụ 3.4.12. Quả cầu đóng, khối bầu dục, khối hộp chữ nhật là những khối đơn giản với biên trơn từng mảnh.

Chi tiết để đưa ra phát biểu chính xác là như sau. Theo chiều trục z thì khối là $E = \{(x,y,z) \in \mathbb{R}^3 \mid (x,y) \in D \subset \mathbb{R}^2, \ f(x,y) \leq z \leq g(x,y)\}$, với D đóng, bị chặn, có diện tích. Giả sử thêm rằng trên ∂D thì f = g hoặc f < g. Giả sử các hàm f, g là tron thì biên ∂E là hội của mặt dưới là $\{(x,y,f(x,y)) \mid (x,y) \in D\}$, mặt trên là $\{(x,y,g(x,y)) \mid (x,y) \in D\}$, ngoài ra nếu trên ∂D mà f < g thì biên còn gồm mặt bên hông là $\{(x,y,z) \mid (x,y) \in \partial D, f(x,y) \leq z \leq g(x,y)\}$. Giả sử thêm ∂D là vết của một đường chính qui từng khúc.

Định lý 3.4.13 (Công thức Gauss-Ostrogradsky). Cho trường F trơn trên một tập mở chứa một khối đơn giản E với biên trơn từng mảnh được định hướng ra ngoài. Khi đó:

$$\iint_{\partial E} F \cdot n \, dS = \iint_{\partial E} F \cdot d\vec{S} = \iiint_{E} \operatorname{div} F \, dV.$$

Công thức Gauss–Ostrogradsky cũng cho một liên hệ giữa tích phân trên miền với tích phân trên biên của miền. Như thế nó có cùng dạng như các công thức Newton–Leibniz, Green, Stokes, nhưng cho trường hợp miền ba chiều.

Chứng minh. Viết $F = P\vec{i} + Q\vec{j} + R\vec{k}$. Viết E như là khối đơn theo chiều Oz như là tập hợp những điểm (x,y,z) với $f(x,y) \le z \le g(x,y)$ trong đó f,g là hàm trơn xác định trên miền phẳng D. Ta sẽ chứng tỏ

$$\iint_{\partial E} R \vec{k} \cdot d \vec{S} = \iiint_{E} \frac{\partial}{\partial z} R \, dV.$$

⁶tên Ostrogradsky còn được viết là Ostrogradski

 $^{^7{\}rm trong}$ tiếng Anh "divergence" có nghĩa là sự phát tán, sự phân kì, sự phân rã, ...

Tương tự ta chứng minh hai biểu thức tương ứng cho hai chiều còn lại, cộng lại và được đẳng thức phải được chứng minh.

Nếu f < g trên ∂D thì ∂E có mặt hông, nhưng tích phân của $R\vec{k}$ bằng không trên đó, cơ bản là vì mặt hông chứa những đoạn thẳng thẳng đứng, nên pháp tuyến của mặt hông nằm ngang, vuông góc với trường $R\vec{k}$, chi tiết đầy đủ hơn có ở [Vugt3].

Như vậy tích phân của $R\vec{k}$ trên ∂E bằng tổng tích phân của $R\vec{k}$ trên mặt trên và mặt dưới, là các mặt đồ thị, bằng:

$$\begin{split} \iint_{D} R(x,y,g(x,y)) \vec{k} \cdot (-g_{x},-g_{y},1) \, dA + \\ &+ \iint_{D} R(x,y,f(x,y)) \vec{k} \cdot (f_{x},f_{y},-1) \, dA \\ &= \iint_{D} \left[R(x,y,g(x,y)) - R(x,y,f(x,y)) \right] \, dA. \end{split}$$

Mặt khác, theo công thức Fubini

$$\iiint_E R_z dV = \iint_D \left(\int_{f(x,y)}^{g(x,y)} R_z dz \right) dA$$

$$= \iint_D \left(R(x, y, g(x, y) - R(x, y, f(x, y)) \right) dA.$$

Vậy ta được đẳng thức mong muốn.

Ví dụ 3.4.14. Dùng công thức Gauss–Ostrogradsky, ta tính thông lượng của trường $F(x, y, z) = (2x + e^y z, x^2 y, yz)$ qua mặt cầu đơn vị $x^2 + y^2 + z^2 = 1$ định hướng ra ngoài:

$$\begin{split} \iint_{x^2+y^2+z^2=1} F \cdot d\vec{S} &= \iiint_{x^2+y^2+z^2 \le 1} \operatorname{div} F(x,y,z) \ dx dy dz \\ &= \iiint_{x^2+y^2+z^2 \le 1} (2+x^2+y) \ dx dy dz \\ &= 2\frac{4\pi}{3} + \int_0^1 \int_0^\pi \int_0^{2\pi} (\rho \sin \phi \cos \theta)^2 \rho^2 \sin \phi \ d\theta d\phi d\rho + 0 \\ &= \frac{8\pi}{3} + \frac{1}{5} \cdot \frac{4}{3} \cdot \pi = \frac{44\pi}{15}. \end{split}$$

Ví dụ 3.4.15. Hãy tính thông lượng của trường F(x,y,z) = (x,y,2-2z) qua mặt S cho bởi $z = 1 - x^2 - y^2$, $z \ge 0$, định hướng lên trên, bằng hai cách: (a) tính trực tiếp, và (b) tính thông lượng của F qua một mặt khác và dùng định lý Gauss-Ostrogradsky.

(a) Tham số hóa mặt
$$S$$
: $r(x,y)=(x,y,1-x^2-y^2)$ với $x^2+y^2\leq 1$. Có

 $r_x \times r_y(x,y) = (2x,2y,1)$ hướng lên trên.

$$I = \iint_{S} F \cdot d\vec{S} = \iint_{x^{2}+y^{2} \le 1} F(r(x,y)) \cdot (r_{x} \times r_{y})(x,y) \, dxdy$$
$$= \iint_{x^{2}+y^{2} \le 1} (x,y,2-2(1-x^{2}-y^{2}))(2x,2y,1) \, dxdy$$
$$= \iint_{x^{2}+y^{2} \le 1} 4(x^{2}+y^{2}) \, dxdy = \int_{0}^{2\pi} \int_{0}^{1} 4r^{2} \, rdrd\theta = 2\pi.$$

(b) Gọi S_1 là mặt cho bởi $x^2+y^2\leq 1,\,z=0$, định hướng xuống dưới. Mặt S cùng S_1 tạo thành mặt kín S_2 bao khối E. Áp dụng công thức Gauss–Ostrogradsky:

$$\iint_{S} F \cdot d\vec{S} + \iint_{S_{1}} F \cdot d\vec{S} = \iint_{S_{2}} F \cdot d\vec{S} = \iiint_{E} \operatorname{div} F \ dV = \iiint_{D} 0 \ dV = 0.$$

Mặt khác

$$\begin{split} \iint_{S_1} F \cdot d\vec{S} &= \iint_{S_1} F \cdot n \ dS = \iint_{x^2 + y^2 \le 1} (x, y, 2 - 0) \cdot (0, 0, -1) \ dA \\ &= \iint_{x^2 + y^2 \le 1} -2 \ dA = -2\pi. \end{split}$$

Do đó $\iint_S F \cdot d\vec{S} = 2\pi$.

* Ý nghĩa vật lý của div và curl

Trước hết ta cần bổ đề sau đây:

Bổ đề 3.4.16. Cho f là một hàm thực khả tích trên một lân cận của điểm $p \in \mathbb{R}^n$ và liên tục tại p. Gọi B'(p,r) là quả cầu đóng tâm tại p với bán kính r. Khi đó:

$$\lim_{r \to 0} \frac{1}{|B'(p,r)|} \int_{B'(p,r)} f = f(p).$$

Vậy giá trị trung bình của một hàm liên tục quanh một điểm tiến về giới hạn là giá trị của hàm tại điểm đó.

Chứng minh. Vì f liên tục tại p nên cho $\epsilon>0$, với r đủ nhỏ thì với mọi $q\in B'(p,r)$ ta có $|f(q)-f(p)|\leq \epsilon$. Từ đó

$$\left| \left(\frac{1}{|B'(p,r)|} \int_{B'(p,r)} f \right) - f(p) \right| = \left| \frac{1}{|B'(p,r)|} \int_{B'(p,r)} [f(q) - f(p)] \right| \\
\leq \frac{1}{|B'(p,r)|} \int_{B'(p,r)} |f(q) - f(p)| \\
\leq \frac{1}{|B'(p,r)|} \int_{B'(p,r)} \epsilon = \epsilon.$$

Áp dung bổ đề trên cho div ta được

$$\operatorname{div} F(p) = \lim_{r \to 0} \frac{1}{|B'(p,r)|} \iiint_{B'(p,r)} \operatorname{div} F \ dA = \lim_{r \to 0} \frac{1}{|B'(p,r)|} \iint_{\partial B'(p,r)} F \cdot n \ dS.$$
(3.4.1)

Tích phân $\iint_{\partial B'(p,r)} F \cdot n \ dS$ là thông lượng của trường F ra khỏi mặt cầu $\partial B'(p,r)$. Vậy div F(p) chỉ độ phát tán của trường F trên đơn vị thể tích quanh p.

Xét một điểm p. Lấy một mặt phẳng qua p với phương định bởi pháp tuyến n. Xét hình tròn B'(p,r) trên mặt phẳng này với tâm tại p và bán kính r. Ta có:

$$\operatorname{curl} F(p) \cdot n = \lim_{r \to 0} \frac{1}{|B'(p,r)|} \iint_{B'(p,r)} \operatorname{curl} F \cdot n \ dA = \lim_{r \to 0} \frac{1}{|B'(p,r)|} \int_{\partial B'(p,r)} F \cdot d\vec{s}.$$
(3.4.2)

Vậy curl $F(p) \cdot n$ thể hiện lưu lượng ngược chiều kim đồng hồ (độ xoay) của trường F trên phần tử diện tích quanh p trong mặt phẳng qua p vuông góc n.

Ta có curl $F(p) \cdot n$ đạt giá trị lớn nhất khi n cùng phương cùng chiều với curl F(p). Vậy curl F(p) cho phương của mặt phẳng mà trên đó độ xoay của trường quanh p là lớn nhất, chiều của nó được xác định bởi chiều xoay của trường theo qui tắc bàn tay phải. Hơn nữa có thể chứng tỏ là độ lớn của curl F(p) tỉ lệ với tốc độ xoay theo góc của trường quanh p. Nói vắn tắt, curl F(p) chỉ sự xoay của trường F tại điểm p. Từ điều này tích phân $\iint_S \operatorname{curl} F \cdot d\vec{S}$ còn được gọi là $\mathit{lưu lượng}$ (circulation) của trường F trên mặt S.

Ta có một miêu tả trực quan cho curl F(p): Tưởng tượng rằng ta thả một cái chong chóng vào trường, cố định nó tại điểm p nhưng để cho nó tự do đổi hướng và tự do xoay. Khi đó hướng ổn định của chong chóng chính là hướng của curl F(p), chiều xoay của nó chính là chiều xoay của trường, còn vận tốc xoay của chong chóng chỉ đô xoay của trường quanh p.

Công thức cho div (3.4.1) và cho curl (3.4.2) cho thấy chúng là những đại lượng vật lý, không phụ thuộc hệ tọa độ.

* Ứng dụng

Điện từ

Gọi E là điện trường gây bởi điện tích q tại điểm O. Giả sử S là một mặt kín, biên của khối D. Giả sử công thức Gauss–Ostrogradsky có thể áp dụng được cho D. Nhắc lại từ 3.4.21 là div E=0. Nếu D không chứa điểm O thì

$$\iint_{S} E \cdot d\vec{S} = \iiint_{D} \operatorname{div} E \ dV = 0.$$

Nếu D chứa điểm O ở phần trong, nói cách khác nếu S bao điểm O, thì lấy một quả cầu B(O,R) đủ nhỏ sao cho nó không cắt S, và cho biên $\partial B(O,R)$ định hướng ra ngoài B(O,R). Khi đó S cùng $\partial B(O,R)$ tạo thành biên của một khối D' không chứa O. Giả sử công thức Gauss–Ostrogradsky có thể áp dụng được cho D', ta được

$$\iint_S E \cdot d\vec{S} - \iint_{\partial B(O,R)} E \cdot d\vec{S} = \iiint_{D'} \operatorname{div} E \ dV = 0.$$

Suy ra $\iint_S E \cdot d\vec{S} = \iint_{\partial B(O,R)} E \cdot d\vec{S}$. Ở Bài tập 3.3.7, dùng Định luật Coulomb (Bài tập 3.2.6), ta đã tính được $\iint_{\partial B(O,R)} E \cdot d\vec{S} = \frac{q}{\epsilon_0}$.

Vây

$$\iint_S E \cdot d\vec{S} = \frac{q}{\epsilon_0},$$

thông lượng của điện trường qua một mặt kín bao điện tích không phụ thuộc vào mặt và tỉ lệ với điện tích. Đây là nội dung của định luật được phát biểu bởi Johann Carl Friedrich Gauss.

Ở trên ta vừa trình bày định luật Coulomb và định luật Gauss cho một điện tích. Trong trường hợp môi trường chứa điện tích tại mọi điểm (môi trường liên tục) thì ta có:

Định luật Coulomb	Định luật Gauss
	$\iint_S E \cdot d\vec{S} = \frac{1}{\epsilon_0} \iiint_D \rho \ dV = \frac{Q}{\epsilon_0}, \text{ với}$ D là khối được bao bởi mặt S và Q
tích	là tổng điện tích trên D

Tuy có thể chỉ ra rằng hai định luật là tương đương về mặt toán học, nhưng Định luật Gauss có thể được kiểm chứng bằng thí nghiệm dễ hơn Định luật Coulomb, vì Định luật Gauss có tính vĩ mô trong khi Định luật Coulomb có tính vi mô.

Không lâu sau hai định luật Coulomb và Gauss, trong thập kỉ 1820, André Marie Ampère phát hiện ra rằng một dòng điện tạo ra quanh nó một từ trường theo định luật:

$$\int_C B \cdot d\vec{s} = \mu_0 I,$$

trong đó C là một đường cong kín bao quanh một dòng điện có cường độ không đổi I, B là từ trường, và μ_0 là một hằng số.

Năm 1831 Michael Faraday phát hiện rằng một từ trường thay đổi theo thời gian tới lượt nó lại tạo ra một điện trường. Định luật Faraday cho công thức:

$$\int_{\partial S} E \cdot d\vec{s} = -\frac{d}{dt} \iint_{S} B \cdot d\vec{S}.$$

Năm 1864, James Clerk Maxwell phát triển định luật Ampère và thống nhất điện trường với từ trường:

Các phương trình Maxwell	
Dạng vi phân	Dạng tích phân
(1) (Coulomb) div $E = \frac{\rho}{\epsilon_0}$	(Gauss) $\iint_S E \cdot d\vec{S} = \frac{Q}{\epsilon_0}$, với S là
	một mặt kín
(2) $\operatorname{curl} E = -\frac{\partial B}{\partial t}$	(Faraday)
	$\int_{\partial S} E \cdot d\vec{s} = -\frac{d}{dt} \iint_{S} B \cdot d\vec{S}$
(3) $\operatorname{div} B = 0$	$\iint_S \boldsymbol{B} \cdot d\vec{S} = 0,$ với S là một mặt kín
(4) (Ampère) $\frac{1}{\epsilon_0 \mu_0} \operatorname{curl} B = \frac{J}{\epsilon_0} + \frac{\partial E}{\partial t}$,	$\frac{1}{\epsilon_0 \mu_0} \int_{\partial S} B \cdot d\vec{S} = \frac{I}{\epsilon_0} + \frac{d}{dt} \iint_S E \cdot d\vec{S},$
với J là mật độ dòng điện	với I là cường độ dòng điện qua
	mặt S

Chẳng bao lâu sau lý thuyết của Maxwell đã được ứng dụng trong thực tế với việc phát minh ra sóng điện từ của Heinrich Hertz năm 1887. Các phương trình Maxwell cùng với các định luật của Newton tổng kết vật lý cổ điển.

Cơ học chất lỏng

Gọi \vec{F} là trường vận tốc chuyển động của một dòng chất lỏng. Nếu div $\vec{F}=0$ (tại mọi điểm) thì người ta nói dòng chất lỏng là không nén được (incompressible) (vì nó không có chỗ bơm vào lẫn chỗ thoát ra). Các toán tử vi phân của Giải tích vectơ xuất hiện phổ biến trong mô hình hóa các hiện tượng cơ học. Chẳng hạn, một trong những phương trình quan trọng nhất mô tả dòng chảy chất lỏng cho tới nay vẫn đang được tập trung nghiên cứu là phương trình Navier–Stokes:

$$\left\{ \begin{array}{rcl} \frac{\partial \vec{F}}{\partial t} + (\vec{F} \cdot \nabla) \vec{F} - \nu \Delta \vec{F} & = & -\nabla w + \vec{g}, \\ \operatorname{div} \vec{F} & = & 0. \end{array} \right.$$

Bài tập

Công thức Stokes

- **3.4.1.** Cho S là mặt $z=x^2+y^2$ với $z\leq 1$, định hướng lên trên. Tính lưu lượng của trường $\vec{F}(x,y,z)=(3y,-xz,yz^2)$ trên S, tức là $\iint_S \operatorname{curl} \vec{F}\cdot d\vec{S}$, bằng hai cách:
 - (a) Tính trực tiếp.
 - (b) Dùng Công thức Stokes.
- **3.4.2.** Cho S là mặt $z = 9 x^2 y^2$ với $z \ge 0$, định hướng lên trên.
 - (a) Cho trường F(x,y,z)=(2z-y,x+z,3x-2y). Tính trực tiếp lưu lượng của F trên S, tức $\iint_S \operatorname{curl} F \cdot d\vec{S}$.
 - (b) Dùng công thức Stokes tính $\iint_S {\rm curl} F \cdot d\vec{S}.$
- **3.4.3.** Cho C là đường giao của mặt $4x^2 + 4y^2 + z^2 = 40$ và mặt z = 2 được định hướng ngược chiều kim đồng hồ khi nhìn từ trên xuống. Tìm $\int_C \vec{F} \cdot d\vec{s}$ với $\vec{F}(x,y,z) = (y,2yz + 1,xz^4 + \cos(2z + 1))$ bằng cách tính trực tiếp và bằng cách dùng Công thức Stokes.
- **3.4.4.** Cho F(x,y,z)=(xy,yz,zx). Gọi C là giao của mặt phẳng x+y+z=1 với mặt trụ $x^2+y^2=1$, định hướng ngược chiều kim đồng hồ nếu nhìn từ trên xuống. Đặt $I=\int_C F\cdot d\vec{s}$.
 - (a) Tìm một tham số hóa của đường C.
 - (b) Tính trực tiếp I.
 - (c) Tính $\operatorname{curl} F$.
 - (d) Dùng Công thức Stokes, tính I.
- **3.4.5.** Trong \mathbb{R}^3 cho S_1 là nửa mặt cầu trên $x^2 + y^2 + z^2 = 1$, $z \ge 0$; cho S_2 là mặt paraboloid $z = 1 x^2 y^2$, $z \ge 0$, cả hai được định hướng lên trên.
 - (a) Vẽ hai mặt này trên cùng một hệ tọa độ.
 - (b) Cho F là một trường tron trên \mathbb{R}^3 . Chứng tỏ $\iint_{S_1} \operatorname{curl} F \cdot d\vec{S} = \iint_{S_2} \operatorname{curl} F \cdot d\vec{S}$.
 - (c) Hãy tổng quát hóa.
- **3.4.6.** Chứng tỏ nếu S là mặt cầu thì $\iint_S \operatorname{curl} F \cdot d\vec{S} = 0.$
- **3.4.7.** Cho $\vec{v} \in \mathbb{R}^3$ là một vectơ cố định. Cho S là một mặt mà trên đó Công thức Stokes có thể áp dung được. Hãy chứng minh:

$$\int_{\partial S} (\vec{v} \times \vec{r}) \cdot d\vec{s} = 2 \iint_{S} \vec{v} \cdot \vec{n} \ dS,$$

trong đó \vec{r} là vecto vị trí, tức $\vec{r}(x, y, z) = (x, y, z)$.

3.4.8. Cho f và g là hai hàm thực tron cấp hai trên \mathbb{R}^3 .

- (a) Chúng tổ $\operatorname{curl}(f\nabla g) = \nabla f \times \nabla g$.
- (b) Tính tích phân $\int_C f \nabla f \cdot d\vec{s}$ trong đó $C(t) = (\cos t, \sin t, \sin t), 0 \le t \le 2\pi$.
- 3.4.9 (Cảm ứng điện từ). * Định luật Faraday phát biểu rằng khi thông lượng từ trường qua một mặt giới hạn bởi một mạch kín thay đổi thì trong mạch xuất hiện dòng điện cảm ứng. Chính xác hơn, gọi \vec{E} là điện trường, \vec{B} là từ trường, S là một mặt với biên là đường ∂S được định hướng tương thích như trong công thức Stokes, thì

$$\int_{\partial S} \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{S}.$$

Giả sử một nguồn năng lượng cơ học như sức nước hay sức gió làm quay một trục với vận tốc ω vòng/đơn vị thời gian. Một vòng dây phẳng được gắn vào trục này, được đặt trong một từ trường cố định \vec{B} . Gọi A là diện tích của hình phẳng bao bởi vòng dây. Đại lượng $\int_{\partial S} \vec{E} \cdot d\vec{s}$ thường được kí hiệu là emf. Chứng tỏ

$$emf = -A|\vec{B}|2\pi\omega\sin(2\pi\omega t).$$

Vậy trong vòng dây xuất hiện một dòng điện xoay chiều. Đây là một nguyên lý cơ sở của máy phát điện.

3.4.10. Tiếp tục bài tập 3.2.1 và 3.2.2, xem F như là trường phẳng trong không gian ba chiều. Ước đoán divF tại điểm gốc tọa độ là âm, dương hay bằng không? Hãy miêu tả curlF tại điểm gốc tọa độ.

Công thức Gauss-Ostrogradsky

3.4.11. Tính:

- (a) Tiếp tục Bài tập 3.3.1. Nếu mặt S là kín hãy tính tích phân $\iint_S \vec{F} \cdot d\vec{S}$ bằng cách dùng công thức Gauss–Ostrogradsky.
- (b) Tính thông lượng của trường $\vec{F}(x,y,z)=(3x,y^2,z^2)$ qua mặt cầu đơn vị $x^2+y^2+z^2=1$, đinh hướng ra ngoài.
- (c) Tính thông lượng của trường $F(x,y,z)=(2x+e^{yz},2xy,y^2)$ qua mặt cầu đơn vị $x^2+y^2+z^2=1$ định hướng ra ngoài.
- (d) Tính thông lượng của trường F(x,y,z)=(y,z,x) qua mặt $x^2+y^4+z^6=2$, định hướng ra ngoài.

3.4.12. Cho trường

$$\vec{F}(x,y,z) = \left(\frac{x}{(x^2+y^2+z^2)^{3/2}}, \frac{y}{(x^2+y^2+z^2)^{3/2}}, \frac{z}{(x^2+y^2+z^2)^{3/2}}\right).$$

Chú ý đây là một trường xuyên tâm, tỉ lệ với trọng trường và điện trường.

- (a) Tính $\operatorname{div}(\vec{F})$.
- (b) Gọi S_2 là mặt cầu $x^2+y^2+(z-3)^2=1$ được định hướng ra ngoài. Dùng công thức Gauss–Ostrogradsky, hãy tính $\iint_{S_2} \vec{F} \cdot d\vec{S}$.
- (c) Gọi S_1 là mặt cầu $x^2+y^2+z^2=1$ được định hướng ra ngoài. Tính tích phân mặt $\iint_{S_1} \vec{F} \cdot d\vec{S} \text{ bằng cách dùng tọa độ Euclid } (x,y,z) \text{ hoặc dùng tọa độ cầu.}$

3.4. CÔNG THÚC STOKES VÀ CÔNG THÚC GAUSS-OSTROGRADSKY 177

- (d) Gọi S_3 là mặt $x^2+4y^2+9z^2=36$ được định hướng ra ngoài. Hãy tính $\iint_{S_3} \vec{F} \cdot d\vec{S}$.
- **3.4.13.** Cho S là mặt $z = 9 x^2 y^2$ với $z \ge 0$, định hướng lên trên.
 - (a) Cho $G(x,y,z)=(e^y\cos z,x^2z,y^2+z)$. Cho S_1 là đĩa $x^2+y^2\leq 9,\ z=0,$ định hướng xuống dưới. Tính thông lượng của G qua S_1 , tức $\iint_{S_1}G\cdot d\vec{S}$.
 - (b) Dùng định lý Gauss–Ostrogradsky tính $\iint_{S \cup S_1} G \cdot \ d\vec{S}.$
 - (c) Tính $\iint_S G \cdot d\vec{S}$.
- **3.4.14** (div curl = 0). Chứng tỏ nếu F là trường có các đạo hàm riêng cấp hai liên tục trên một tâp mở thì trên đó div(curl F) = 0.
- 3.4.15. Trường sau có bảo toàn hay không?
 - (a) F(x, y, z) = (y, x, y).
 - (b) $F(x, y, z) = (2xe^{x^2}, z\sin y^2, z^3).$
- **3.4.16.** Tồn tại hay không một trường F khả vi liên tục cấp hai thỏa ${\rm curl}\, F(x,y,z)=(e^{yz},\sin(xz^2),z^5)?$
- **3.4.17.** Cho T là nhiệt độ trên một miền $D \subset \mathbb{R}^3$, giả sử là một hàm trơn cấp hai. Vì nhiệt được chuyển từ nơi có nhiệt độ cao tới nơi có nhiệt độ thấp, và vectơ gradient chỉ hướng mà hàm có tốc độ thay đổi lớn nhất, nên sự thay đổi nhiệt trên miền này được mô hình hóa một cách đơn giản bằng trường dòng nhiệt $F = -k\nabla T$, với k là một hằng số dương.
 - (a) Chứng tổ $\operatorname{curl} F = 0$.
 - (b) Chứng tỏ div $F = -k\Delta T$, trong đó Δ là toán tử Laplace: $\Delta T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}$.
 - (c) Chứng tỏ nếu T là hàm điều hòa, tức là $\Delta T=0$, thì tổng dòng nhiệt qua một mặt cầu bất kì trong miền D luôn bằng không. (Xem Bài tập 3.2.24.)
- **3.4.18.** Áp dụng công thức Gauss–Ostrogradsky cho hàm F(x, y, z) = (x, y, z), hãy tính diện tích của mặt cầu tâm tại 0 với bán kính R.
- **3.4.19.** Hãy chứng minh các công thức sau, cũng được gọi là các **công thức Green**, với giả thiết công thức Gauss–Ostrogradsky có thể áp dụng được. Kí hiệu n là véctơ pháp tuyến đơn vị ngoài của ∂E . So sánh Bài tập 3.2.22.
 - (a) $\iint_{\partial E} \nabla f \cdot n \ dS = \iiint_{E} \Delta f \ dV$.
 - (b) $\iint_{\partial E} (f \nabla g) \cdot n \ dS = \iiint_{E} (f \Delta g + \nabla f \cdot \nabla g) \ dV$.
 - (c) $\iint_{\partial E} (f \nabla g g \nabla f) \cdot n \ dS = \iiint_{E} (f \Delta g g \Delta f) \ dV.$
 - (d) $\iint_{\partial E} f n_i \ dS = \iiint_E \frac{\partial f}{\partial x_i} \ dV$. Ở đây n_i là tọa độ thứ i của vectơ pháp tuyến n.
 - (e) $\iint_{\partial E} fgn_i \ dS = \iiint_E \frac{\partial f}{\partial x_i} g \ dV + \iiint_E f \frac{\partial g}{\partial x_i} \ dV$.
- **3.4.20.** Dùng công thức Gauss–Ostrogradsky hãy đưa ra một cách khác để tìm ra thể tích của một khối nón (xem 2.3.15). Cụ thể, đặt đỉnh khối nón ở O và đáy khối nón trên một mặt phẳng nằm ngang z=a, và áp dụng công thức Gauss–Ostrogradsky cho trường (x,y,z).

3.4.21. Giả sử có một điện tích q tại một điểm O. Theo định luật Coulomb (3.2.6), điện trường gây bởi điện tích q này tại một điểm bất kì trong không gian có vị trí cho bởi vectơ \vec{r} đi từ điểm mang điện tích q tới điểm đang xét là:

$$E(\vec{r}) = \frac{q}{4\pi\epsilon_0 |\vec{r}|^3} \vec{r}.$$

Đáng chú ý là điện trường có độ lớn tỉ lệ nghịch với $|\vec{r}|^2$, do đó định luật Coulomb thường được gọi là một luật nghịch đảo bình phương (inverse-square law). Như ta đã thấy (3.2.9), trong trường cũng được cho bởi một luật nghịch đảo bình phương.

- (a) Tính toán trực tiếp, chúng tỏ div E = 0.
- (b) Chứng tỏ rằng một trường có dạng $E=k\frac{\vec{r}}{|\vec{r}|^m}$ (được gọi là một trường xuyên tâm, radial) thì có div E=0 khi và chỉ khi m=3. (Các thí nghiệm sau này kiểm chứng hằng số m trong định luật Coulomb bằng 3 sai khác không quá 3×10^{-16} .)
- ${\bf 3.4.22.}$ * Mặt cyclide nhận được từ một mặt xuyến qua phép nghịch đảo qua một mặt cầu. Mặt xuyến được cho bởi tham số hóa

$$r(u, v) = ((5 + \cos u)\cos v, (5 + \cos u)\sin v, \sin u), \quad 0 \le u, v \le 2\pi.$$

Đưa mặt xuyến này ra ngoài mặt cầu đơn vị tâm O bán kính 1 bằng một phép tịnh tiến, chẳng hạn theo vecto (9,0,0), được một mặt xuyến mới với tham số hóa

$$\operatorname{rtorus}(u,v) = (9 + (5 + \cos u)\cos v, (5 + \cos u)\sin v, \sin u), \quad 0 \le u, v \le 2\pi.$$

Thực hiện phép lấy nghịch đảo qua mặt cầu tâm O bán kính 1, tức là phép biến đổi mang mỗi điểm $p \neq 0$ thành điểm $\frac{p}{||p||^2}$. Khi đó mặt xuyến trở thành mặt cyclide S với tham số hóa

$$\operatorname{rcyclide}(u, v) = \frac{\operatorname{rtorus}(u, v)}{\|\operatorname{rtorus}(u, v)\|^{2}}.$$

Hãy trả lời các câu hỏi sau bằng cách sử dụng máy tính.

- (a) V \tilde{e} mặt cyclide S.
- (b) Tính diện tích mặt cyclide S ra số thập phân.
- (c) Cho trường F(x,y,z)=(y,x,3z). Tính thông lượng của F qua mặt cyclide S ra số thập phân.
- (d) Tính thể tích của khối bao bởi mặt cyclide S ra số thập phân.

Chương 4 — Phương trình vi phân

4.1 Phương trình vi phân và mô hình toán học

Người ta xây dựng những mô hình toán học về các hiện tượng trong thế giới rồi cố gắng khảo sát các mô hình đó để hiểu về các hiện tượng. Thường các hiện tượng thay đổi theo thời gian và không gian, vì thế các mô hình thường chứa các đạo hàm để đo tốc độ thay đổi. Các mô hình như thế thường dẫn tới những phương trình ở đó ẩn là các hàm, còn bản thân phương trình thì chứa các đạo hàm. Những phương trình như thế được gọi là những phương trình vi phân.

Ví du 4.1.1. Đây là một phương trình vi phân:

$$y' = y$$
.

Giải phương trình này nghĩa là tìm một hàm y mà đạo hàm y' bằng y. Nói cách khác, tìm hàm y theo biến x sao cho với mọi x thì y'(x) = y(x).

Ta có thể kiểm được ngay là hàm $y = e^x$ là một nghiệm của phương trình vi phân trên. Làm sao để giải tìm nghiệm của một phương trình vi phân là một đề tài ta sẽ khảo sát trong chương này.

Một *phương trình vi phân cấp một* là một phương trình chứa một hàm số một biến chưa biết và đạo hàm cấp một của hàm số đó. Nói một cách khác, đây là phương trình có dạng

$$F(x, y(x), y'(x)) = 0$$

với F là biểu thức chứa x, y(x) và y'(x), và y là hàm số cần tìm phụ thuộc vào x.

Hàm số y(x) được gọi là nghiệm của phương trình vi phân cấp một nếu nó có đạo hàm cấp một tồn tại và thỏa đẳng thức trên. Giải phương trình vi phân cấp một là đi tìm hàm y thỏa đẳng thức trên.

Bài toán tìm nghiệm y của phương trình vi phân cấp một thỏa mãn điều kiện $y(x_0) = y_0$, với x_0 và y_0 cho trước, được gọi là một **bài toán giá trị đầu**. Như vậy

đây là bài toán giải hệ

$$\begin{cases} F(x, y(x), y'(x)) = 0\\ y(x_0) = y_0. \end{cases}$$

Ví dụ 4.1.2. Xét phương trình vi phân

$$y' = y$$
.

Thế vào phương trình, ta kiểm được ngay không chỉ $y = e^x$, mà $y = ke^x$ trong đó k là số thực bất kì, là nghiệm của phương trình vi phân.

Ví dụ 4.1.3. Xét bài toán giá trị đầu:

$$\begin{cases} y' = y \\ y(0) = 2. \end{cases}$$

Thay x = 0 vào nghiệm $y = ke^x$ ta được y(0) = k. Do đó để y(0) = 2 thì k = 2. Vậy bài toán giá trị đầu này có một nghiệm là $y = 2e^x$.

Tìm công thức nghiệm của một phương trình vi phân có thể khó. Ở các mục tiếp theo chúng ta sẽ tìm hiểu một số phương pháp tìm nghiệm của phương trình vi phân. Trong nhiều trường hợp thay vì tìm công thức của nghiệm ta tìm hiểu các tính chất của nghiệm, hay xấp xỉ nghiệm.

Ví dụ 4.1.4. Xét phương trình vi phân

$$y' = 2x + y.$$

Nếu đặt vế phải là F(x,y) = 2x + y thì ta có thể diễn đạt phương trình vi phân như sau: Tìm một đường cong y theo biến x mà tại mỗi điểm (x,y) thì độ nghiêng y'(x) của đường được cho bởi số thực F(x,y). Tại mỗi điểm (x,y) trên mặt phẳng ta vẽ một vectơ có độ nghiêng bằng F(x,y), chẳng hạn như vectơ (1,F(x,y)), thì ta được một trường vectơ ứng với phương trình vi phân. Đường cong nghiệm phải luôn tiếp xúc với các vectơ của trường vectơ này tại điểm mà đường cong đi qua, vì cả hai có cùng đô nghiêng.

Cách tiếp cận này có thể sử dụng được dễ dàng hơn nếu ta dùng công cụ máy tính. Hình vẽ giúp chúng ta hình dung tính chất và dáng điệu của nghiệm.

Qua Hình 4.1.1 ta có thể quan sát thấy những tính chất chẳng hạn như nghiệm y thỏa điều kiện đầu y(0) = 0 sẽ có y(x) càng lớn khi x càng lớn.

Ghi chú 4.1.5. Trong các bài toán giải phương trình vi phân trong tài liệu này chúng ta bằng lòng với việc *tìm ra được một nghiệm nào đó* của phương trình xác định trên một khoảng nào đó, mà không nhất thiết tìm được tất cả các nghiệm. Thực ra với những khảo sát nâng cao hơn về sự tồn tại và tính chất của nghiệm phương trình vi phân thì ta biết rằng dưới những điều kiện khá tổng quát mà thường được thỏa trong tài liệu này, với mỗi điều kiện đầu phương trình có duy nhất một

Hình 4.1.1: Trường vectơ và đường cong nghiệm của phương trình y' = 2x + y đi qua điểm (0,0). Đường này là đồ thị của nghiệm của phương trình vi phân với điều kiện đầu y(0) = 0.

nghiệm xác định trên một khoảng nào đó. Điều này được thể hiện trong hình vẽ nghiệm của phương trình: qua mỗi điểm chỉ có một đường cong nghiệm mà thôi. Vấn đề này thường được khảo sát trong các tài liệu nâng cao hơn về môn Phương trình vi phân như [Long, Boyce09].

4.1.1 Mô hình với phương trình vi phân cấp một

Ví dụ 4.1.6 (Mô hình tăng trưởng dân số). Ta lập mô hình tăng trưởng của dân số (số lượng cá thể trong một quần thể sinh vật nào đó) P theo thời gian t.

Ta đưa ra một giả thiết là tốc độ tăng dân số tỉ lệ hằng với qui mô dân số, nói cách khác tốc độ tăng tương đối là một hằng số. Ví dụ nếu cứ mỗi 100 người trong một năm có 3 trẻ được sinh ra và 1 người chết đi thì tốc độ tăng dân số tương đối là 2 người trên mỗi 100 người mỗi năm, tức là 2%/năm, và ta giả sử tốc độ này không thay đổi theo thời gian.

Tốc độ tăng trưởng dân số theo thời gian chính là đạo hàm $\frac{dP}{dt}.$ Tốc độ tăng trưởng tương đối là

$$\frac{\frac{aP}{dt}}{P}$$

vậy mô hình là

$$\frac{\frac{dP}{dt}}{P} = k,$$

trong đó k là hằng số tỉ lê, độc lập với thời gian, hay

$$\frac{dP}{dt} = kP. (4.1.1)$$

Phương trình (4.1.1) là một mô hình đơn giản nhưng hiệu quả về sự tăng trưởng số

lượng của quần thể.

Hình 4.1.2: Một số nghiệm của phương trình dân số $P(t) = P_0 e^{kt}$ ứng với k = 1 và những giá trị khác nhau của P_0 .

Nếu k>0 thì $\frac{dP}{dt}$ luôn dương, nên dân số luôn tăng. Hơn nữa khi P càng lớn thì $\frac{dP}{dt}$ càng lớn, nghĩa là dân số càng lớn thì tăng càng nhanh. Như vậy mô hình dân số (4.1.1) phù hợp với những tình huống mà sự phát triển của dân số không bị hạn chế bởi nguồn lương thực, sự tấn công của kẻ địch, bệnh dịch,

Nếu k=0 thì $\frac{dP}{dt}$ luôn bằng 0, do đó P bằng một hằng số. Vậy dân số không đổi. Một nghiệm hằng như vậy của phương trình vi phân còn được gọi là một nghiệm cân bằng.

Nếu k < 0 thì $\frac{dP}{dt}$ luôn âm, nên dân số luôn giảm.

Phương trình này được giải ở Ví dụ 4.2.2, còn lúc này ta có thể dễ dàng kiểm tra bằng cách thế vào rằng phương trình có một nghiệm là

$$P(t) = P_0 e^{kt}.$$

Trong đó $P_0 = P(0)$ là dân số tại thời điểm 0, tức là dân số ban đầu. Xem Hình 4.1.2.

Mô hình tăng trưởng dân số cũng áp dụng được cho các trường hợp khác mà tốc độ thay đổi của đại lượng tỉ lệ với giá trị của đại lượng, như mô hình lãi nhập vốn (Bài tập 4.2.8), mô hình phân rã mũ (Bài tập 4.2.9).

Ví dụ 4.1.7 (Mô hình tăng trưởng dân số có kìm hãm). Thường khi dân số của một cộng đồng tăng lên thì những yếu tố kìm hãm xuất hiện như hạn chế về nguồn lương thực, tài nguyên, sự cạnh tranh của các cộng đồng khác, Trong trường hợp này thì tốc độ tăng trưởng dân số tương đối sẽ không phải là một hằng số. Một mô hình đơn giản là tốc độ tăng trưởng dân số tương đối sẽ phụ thuộc vào chính dân số:

 $\frac{P'}{P} = h(P).$

Đơn giản hơn nữa ta lấy h là một hàm cấp 1:

$$h(P) = r\left(1 - \frac{P}{K}\right),$$

trong đó r, K là các hằng số dương. Vậy ta có mô hình

$$\frac{P'}{P} = r\left(1 - \frac{P}{K}\right),\tag{4.1.2}$$

còn được gọi là *mô hình hậu cần*.

Hình 4.1.3: Một số nghiệm của phương trình hậu cần với r = 1, K = 3 và những điều kiện đầu khác nhau. Nghiệm P = K là nghiệm cân bằng, có đồ thị là một đường thẳng nằm ngang. Các nghiệm mà có giá trị đầu nhỏ hơn K khi thời gian lớn hơn tăng gần tới nhưng không đạt giá trị K. Các nghiệm mà có giá trị đầu lớn hơn K khi thời gian lớn hơn giảm gần tới nhưng không đạt giá trị K.

Quan sát mô hình hậu cần ta thấy nếu P < K thì P' > 0, như vậy dân số sẽ tăng. Tuy nhiên khi P càng lớn thì $\left(1 - \frac{P}{K}\right)$ sẽ càng nhỏ, tuy vẫn là số dương. Như vậy khi dân số lớn lên thì tốc độ tăng tương đối sẽ giảm đi, đúng như ta muốn miêu tả. Phương trình có một nghiệm hằng P(t) = K, được gọi là nghiệm cân bằng. Giá trị K được coi là mức trần của môi trường, nếu dân số khởi đầu ở một mức thấp hơn thì dân số không thể tăng vượt qua mức này.

Trong mục sau ta sẽ giải phương trình hậu cần ở Ví dụ 4.2.3. Hiện giờ ta có thể kiểm rằng phương trình có một nghiệm là

$$P(t) = \frac{K}{1 + e^{-rt + C}},$$

với $C \in \mathbb{R}$. Ở Hình 4.1.3 ta thấy nghiệm có những tính chất như dự đoán từ mô hình.

4.1.2 Mô hình với phương trình vi phân cấp hai

Một *phương trình vi phân cấp hai* là một phương trình chứa một hàm số (một biến) chưa biết và đạo hàm cấp hai của hàm số đó (có thể có chứa thêm cả đạo hàm cấp một). Nói một cách khác, đây là phương trình có dạng

$$F(x, y(x), y'(x), y''(x)) = 0$$

với F là một hàm số của bốn biến thực và y là một hàm số cần tìm phụ thuộc vào x. Hàm số y được gọi là nghiệm của phương trình vi phân nếu nó có đạo hàm cấp hai và thỏa đẳng thức trên. Giải phương trình vi phân cấp hai là đi tìm hàm y thỏa đẳng thức trên.

Ví dụ 4.1.8. Xét phương trình vi phân cấp hai y''(x) + y'(x) = 0.

Ta có kiểm tra trực tiếp rằng họ các hàm số

$$y(x) = C_1 + C_2 e^{-x}$$

với C_1, C_2 là các hằng số thực, là nghiệm của phương trình vi phân này. Thật vậy, ta có $y'(x) = -C_2 e^{-x}$ và $y''(x) = C_2 e^{-x}$. Thay vào vế trái của phương trình ta thấy ngay dấu bằng xảy ra.

Bài toán giá trị đầu của phương trình vi phân cấp hai bao gồm thêm điều kiện đầu cho đạo hàm cấp một. Đây là bài toán có dạng tìm hàm y thỏa

$$\begin{cases} F(x, y(x), y'(x), y''(x)) = 0 \\ y(x_0) = y_0 \\ y'(x_0) = w_0, \end{cases}$$

với $x_0, y_0, \text{ và } w_0 \text{ cho trước.}$

Ví dụ 4.1.9. Tiếp tục Ví du 4.1.8, xét bài toán giá tri đầu sau

$$\begin{cases} y''(x) + y'(x) = 0 \\ y(0) = 1 \\ y'(0) = -\frac{1}{2}. \end{cases}$$

Ở Ví dụ 4.1.8 ta đã thấy $y(x) = C_1 + C_2 e^{-x}$ là một nghiệm của phương trình vi phân chưa xét điều kiện đầu. Thay x=0 vào y(x), ta được

$$C_1 + C_2 = 1$$
.

Thay x = 0 vào y'(x), ta được

$$-C_2 = -\frac{1}{2}.$$

Giải hệ phương trình của C_1, C_2 , ta được

$$C_1 = \frac{1}{2}, C_2 = \frac{1}{2}.$$

Vậy nghiệm của bài toán là $y(x) = \frac{1}{2} + \frac{1}{2}e^{-x}$.

Ví dụ 4.1.10 (Mô hình chuyển động của lò xo). Bây giờ ta hãy xem một ví dụ về một mô hình từ cơ học cổ điển: sự chuyển động của một vật có khối lượng m được đặt ở cuối của một lò xo đứng so với mặt đất, như trong Hình 4.1.4.

Hình 4.1.4: Chuyển đông của một lò xo ở vi trí thẳng đứng so với mặt đất.

Theo định luật Hooke trong Vật lý, nếu lò xo giãn ra hay nén lại một chiều dài x so với chiều dài tự nhiên (chiều dài khi ở trạng thái nghỉ, không chuyển động, vị trí là hằng) của nó thì vật chịu tác động của một lực có độ lớn tỉ lệ với x nhưng trái chiều chuyển động:

lực phục hồi
$$= -kx$$

trong đó k là một hằng số dương phụ thuộc vào cấu tạo của lò xo. Theo định luật thứ hai của Newton, tổng lực tác động bằng khối lượng nhân gia tốc chuyển động, giả sử rằng vật không chịu sự tác động của lực nào khác, thì tại mọi thời điểm t vị trí x của vật phải thỏa

$$m\frac{d^2x}{dt^2}(t) = -kx(t),$$

hay ngắn gọn hơn:

$$mx'' = -kx. (4.1.3)$$

Đây là một ví dụ mô hình toán học dùng phương trình vi phân cấp hai. Ở Ví dụ 4.3.5 ta sẽ giải được phương trình này và sẽ biết hoàn toàn cách thức lò xo chuyển đông.

Bài tập

4.1.1. Kiểm tra rằng $y = \frac{2}{3}e^x + e^{-2x}$ là một nghiệm của phương trình vi phân $y' + 2y = 2e^x$.

4.1.2. Kiểm tra rằng $y=-t\cos t-t$ là một nghiệm của bài toán giá trị đầu

$$t\frac{dy}{dt} = y + t^2 \sin t, \quad y(\pi) = 0.$$

- **4.1.3.** Xét phương trình vi phân $x^2y' + xy = 1$.
 - (a) Kiểm tra rằng mọi phần tử của họ các hàm số $y=(\ln x+C)/x$ đều là nghiệm của phương trình.
 - (b) Tìm một nghiệm của phương trình vi phân thỏa mãn điều kiện ban đầu y(1) = 2.
 - (c) Tìm một nghiệm của phương trình vi phân thỏa mãn điều kiện ban đầu y(2) = 1.
- **4.1.4.** Xét phương trình vi phân $y' = -y^2$.
 - (a) Hãy kiểm tra rằng tất cả các phần tử của họ y=1/(x+C) đều là nghiệm của phương trình
 - (b) Hãy tìm một nghiệm của bài toán giá trị ban đầu

$$y' = -y^2$$
, $y(0) = 0.5$.

- **4.1.5.** Xét phương trình vi phân $y' = xy^3$.
 - (a) Hãy kiểm tra rằng tất cả phần tử của họ $y=(c-x^2)^{-1/2}$ đều là nghiệm.
 - (b) Hãy vẽ đồ thị nhiều phần tử của họ các nghiệm trên cùng một mặt phẳng.
 - (c) Hãy tìm một nghiệm của bài toán giá trị ban đầu

$$y' = xy^3, \quad y(0) = 2.$$

4.1.6. Một dân số được mô hình bởi phương trình vi phân theo mô hình tăng trưởng có kìm hãm

$$\frac{dP}{dt} = 1.2P \left(1 - \frac{P}{4200} \right).$$

- (a) Với những giá trị nào của P thì dân số tăng theo thời gian?
- (b) Với những giá tri nào của P thì dân số giảm theo thời gian?
- (c) Những nghiệm nào là nghiệm cân bằng (nghiệm hằng, dân số không đổi theo thời gian)?
- **4.1.7** (**Mô hình của sự nguội**). Người ta đưa ra một quan sát rằng tốc độ nguội của một vật tỉ lệ với sự chênh lệch nhiệt độ giữa vật đó với môi trường xung quanh (đây là một định luật của I. Newton).
 - (a) Một ấm nước vừa sôi ở nhiệt độ $100^{\circ}C$ được để nguội trong một phòng có nhiệt độ $26^{\circ}C$. Hãy viết một phương trình vi phân miêu tả nhiệt độ của ấm nước để nguội phù hợp với quan sát này.
 - (b) Hãy vẽ phác họa đồ thị nghiệm của bài toán giá trị ban đầu ở phần (a).
- **4.1.8** (Mô hình của sự học). Đặt P(t) là lượng kiến thức tích lũy được của một người học (đo theo một cách nào đó) theo thời gian t. Đạo hàm dP/dt cho tốc độ tăng của lượng kiến thức tích lũy, thể hiện tốc độ tiến bộ của người học. Có quan sát rằng kiến thức tích lũy được tăng theo thời gian, nhưng với tốc độ giảm dần, và không thể vượt quá một mức trần M nhất định.

(a) Hãy giải thích vì sao phương trình vi phân

$$\frac{dP}{dt} = k(M - P),$$

với k là một hằng số, là phù hợp với quan sát trên.

- (b) Hãy vẽ phác hoa một nghiêm của phương trình vi phân này dựa theo mô hình trên.
- **4.1.9.** Xét phương trình vi phân 2y'' + y' y = 0.
 - (a) Với các giá trị nào của r thì hàm số $y = e^{rx}$ thỏa mãn phương trình?
 - (b) Nếu r_1 và r_2 là các giá trị của r mà đã tìm được ở phần (a), chứng tỏ rằng mọi phần tử của họ các hàm số $y = ae^{r_1x} + be^{r_2x}$ đều là nghiệm.
- **4.1.10.** Xét phương trình vi phân 4y'' = -25y.
 - (a) Với các giá trị nào của k thì hàm số $y = \cos kt$ thỏa mãn phương trình?
 - (b) Với các giá trị k đó, kiểm tra rằng mọi phần tử của họ các hàm số $y = A \sin kt + B \cos kt$ đều là nghiệm.

4.2 Giải phương trình vi phân cấp một

4.2.1 Phương trình vi phân cấp một tách biến

Một phương trình vi phân cấp một tách biến, còn được gọi là phương trình vi phân cấp một biệt số phân li, là một phương trình vi phân cấp một mà trong đó biểu thức cho dy/dx có thể được phân tích thành một hàm của x nhân với một hàm của y. Cu thể hơn, đó là phương trình có dang

$$\frac{dy}{dx} = g(x)f(y).$$

Đối với phương trình như vậy ta có thể đưa hết hàm của x về một vế và hàm của y về vế còn lai, tức là tách biến.

Ví dụ 4.2.1. Giải phương trình

$$y' = y$$
.

Viết lại phương trình ở dang

$$\frac{dy}{dx} = y.$$

Đưa về dang y ở một bên, x ở một bên (tách biến):

$$\frac{dy}{y} = dx.$$

Ở đây ta đã giả thiết y(x) luôn khác 0. Lấy tích phân hai vế:

$$\int \frac{dy}{y} = \int dx$$

ta được

$$ln |y| = x + C,$$

tức là

$$|y(x)| = e^{x+C} = e^C e^x,$$

trong đó C là một hằng số thực. Nếu ta tìm nghiệm y xác định trên một khoảng, thì vì y là hàm liên tục và luôn khác 0 nên y(x) hoặc luôn dương hoặc luôn âm (Định lý giá trị trung gian), do đó hoặc $y(x) = e^C e^x$ với mọi x hoặc $y(x) = -e^C e^x$ với mọi x.

Như đã bàn ở Ghi chú 4.1.5, trong môn học này chúng ta chỉ cần tìm được một nghiệm của phương trình vi phân xác định trên một khoảng nào đó, chứ không cần tìm tất cả các nghiệm hay biện luận về sự duy nhất nghiệm, vì vậy lý luận trên về việc không đổi dấu của y người học có thể bỏ qua.

Kết hợp hai trường hợp, và nhận thấy y=0 cũng là nghiệm, ta có nghiệm tổng quát là

$$y(x) = De^x,$$

xác đinh với moi số thực x và D là một hằng số thực bất kì.

Cách giải chung của phương trình tách biến là như sau:

Cách giải phương trình tách biến

$$\frac{dy}{dx} = g(x)f(y)$$

Bước 1: Viết lại dưới dạng vi phân

$$h(y)dy = g(x)dx$$

ở đây $h = \frac{1}{f}$, để tất cả y đều nằm về một vế của phương trình và tất cả x nằm về vế kia (tách biến).

Bước 2: Lấy nguyên hàm hai vế:

$$\int h(y)dy = \int g(x)dx \tag{4.2.1}$$

Trong một số trường hợp ta có thể tính được tích phân rồi giải được phương trình (4.2.1) để được công thức tường minh y theo x.

Có thể giải thích cách giải này như sau. Ta viết

$$y'(x) = \frac{g(x)}{h(y)}$$

hay

$$h(y)y'(x) = g(x)$$

rồi lấy nguyên hàm cả hai vế thì được

$$\int h(y)y'(x) \ dx = \int g(x) \ dx.$$

 \mathring{O} vế trái, đổi biến y = y(x) ta được

$$\int h(y) \ dy = \int g(x) \ dx.$$

 \mathbf{Vi} dụ 4.2.2. Giải phương trình tăng trưởng dân số (4.1.1)

$$P' = kP$$
.

Bước 1: Viết

$$\frac{dP}{dt} = kP.$$

Ta giả thiết dân số P(t) luôn khác 0, do đó luôn dương. Đưa về dạng P ở một bên, t ở một bên (tách biến):

$$\frac{dP}{P} = kdt.$$

Bước 2: Lấy tích phân hai vế:

$$\int \frac{dP}{P} = \int k \, dt$$

ta được

$$ln P = kt + C,$$

tức là

$$P(t) = e^{kt+C} = e^C e^{kt}.$$

Nếu đặt $P_0 = P(0) = e^C$ là dân số ban đầu thì ta viết được nghiệm là

$$P(t) = P_0 e^{kt}.$$

Ví dụ 4.2.3. Giải phương trình tăng trưởng dân số có kìm hãm (mô hình hậu cần) (4.1.2)

$$P' = r \left(1 - \frac{P}{K} \right) P.$$

Ta nhận thấy đây là một phương trình tách biến. Ta viết nó dưới dạng P ở một vế còn t ở vế kia:

$$\frac{dP}{\left(1 - \frac{P}{K}\right)P} = rdt.$$

Lấy nguyên hàm hai vế (giả sử P < K):

$$\int \frac{dP}{\left(1 - \frac{P}{K}\right)P} = \int r \, dt.$$

Suy ra

$$\int \left(\frac{1}{K-P} + \frac{1}{P}\right) dP = rt + C,$$

với $C \in \mathbb{R}$. Từ đó

$$-\ln(K - P) + \ln P = rt + C,$$

hay

$$\ln \frac{P}{K-P} = rt + C,$$

vậy

$$\frac{P}{K-P} = e^{rt+C}.$$

Giải phương trình này tìm P, ta được

$$P(1 + e^{rt+C}) = Ke^{rt+C},$$

vậy nghiệm là

$$P = \frac{Ke^{rt+C}}{1+e^{rt+C}} = \frac{K}{1+e^{-rt-C}},$$

với $C \in \mathbb{R}$.

4.2.2 Phương trình vi phân cấp một đẳng cấp

Một phương trình vi phân cấp một đẳng cấp là một phương trình có dạng

$$y'(x) = F\left(\frac{y(x)}{x}\right),$$

hay ngắn gọn hơn

$$y' = F\left(\frac{y}{x}\right),\,$$

với F là một hàm một biến.

Ví dụ 4.2.4. Các phương trình sau có dạng đẳng cấp:

(a)
$$y' = \frac{x+y}{x-y}$$
, vì ta có thể viết lại như sau, với $u = \frac{y}{x}$:

$$y' = \frac{1 + y/x}{1 - y/x} = \frac{1 + u}{1 - u}.$$

(b) $y' = \frac{x^2 + xy + y^2}{x^2 + y^2}$, vì ta có thể viết lại như sau, với $u = \frac{y}{x}$:

$$y' = \frac{1 + y/x + (y/x)^2}{1 + (y/x)^2} = \frac{1 + u + u^2}{1 + u^2}.$$

Ví dụ 4.2.5. Giải phương trình sau

$$y' = \frac{y^2 + 2xy}{x^2}.$$

Ta đưa về dạng đẳng cấp như sau:

$$y' = \left(\frac{y}{x}\right)^2 + 2\frac{y}{x} = u^2 + 2u$$

với $u=\frac{y}{x},\ x\neq 0$. Do y(x)=u(x)x, ta tính được y'(x)=u'(x)x+u(x). Thay vào phương trình trên ta được

$$u'x + u = u^2 + 2u,$$

tức là

$$u'x = u^2 + u.$$

Xét $u^2+u=0$. Cho u=0 hay u=-1, ta được nghiệm y=0 và nghiệm y(x)=-x, xác định với mọi $x\in\mathbb{R}$.

Xét $u^2(x) + u(x)$ luôn khác 0, ta có thể đưa phương trình về dạng tách biến

$$\frac{u'}{u^2+u} = \frac{1}{x}.$$

Ta giải phương trình tách biến như ở mục trước. Lấy nguyên hàm hai vế:

$$\int \frac{1}{u^2 + u} \, du = \int \frac{1}{x} \, dx.$$

Tính tích phân:

$$\int \frac{1}{u^2 + u} \, du = \int \frac{1}{u(u+1)} \, du = \int \left(\frac{1}{u} - \frac{1}{u+1}\right) \, du = \ln|u| - \ln|u+1| = D + \ln|x|.$$

Viết $D = \ln C$, C > 0, ta thu được

$$\left| \frac{u}{u+1} \right| = C|x|.$$

Từ điều này, trên mỗi khoảng xác định của x không chứa 0 ta xét phương trình

$$\frac{u}{u+1} = Cx.$$

Giải phương trình này ta được

$$u = \frac{Cx}{1 - Cx}.$$

Thay u bởi $\frac{y}{x}$, ta được một nghiệm là

$$y(x) = \frac{Cx^2}{1 - Cx},$$

trong đó C là một hằng số thực.

Ta có thể kiểm các nghiệm thu được bằng cách thế vào phương trình đã cho.

Tổng kết lại, để giải phương trình đẳng cấp ta làm như sau:

Cách giải phương trình đẳng cấp

$$y' = F\left(\frac{y}{x}\right)$$

Bước 1: Đặt $u=\frac{y}{x}$ hay y(x)=u(x)x, do công thức đạo hàm của hàm tích, ta có y'(x)=u'(x)x+u(x).

Bước 2: Thay vào phương trình ban đầu ta thu được một phương trình vi phân cấp một u'x + u = F(u) tách biến được theo x và u.

Bước 3: Giải phương trình ở Bước 2 theo cách giải phương trình tách biến, ta tìm u, sau đó thay $u = \frac{y}{x}$ để tìm y theo x.

Ví dụ 4.2.6. Giải phương trình xy' + y = 2x.

Xét $x \neq 0$, ta viết lại phương trình là

$$y' = 2 - \frac{y}{x}.$$

Đây là một phương trình đẳng cấp. Đặt $u=\frac{y}{x}$ thì y'=u'x+u, ta viết lại phương trình là

$$u'x + u = 2 - u.$$

Xem đây là một phương trình tách biến ta viết lại

$$\frac{u'}{1-u} = \frac{2}{x}$$

(với giả thiết u(x) luôn khác 1 và $x \neq 0$). Theo phương pháp tách biến tới đây ta lấy nguyên hàm hai vế. Ta chia làm hai trường hợp.

Trường hợp u(x) luôn nhỏ hơn 1 ta được

$$-\ln(1 - u) = \ln(x^2) + D.$$

Viết $D = \ln C$ với C là một hằng số dương thì ta tính được

$$\ln(1-u)^{-1} = \ln(Cx^2)$$

do đó

$$1 - u = C^{-1}x^{-2}.$$

Thay $u = \frac{y}{x}$ vào ta được

$$y = x - \frac{1}{Cx}.$$

Trường hợp u(x) luôn lớn hơn 1, ta làm tương tự. Ta được

$$-\ln(u-1) = \ln(x^2) + D.$$

Viết $D = \ln C$ với C là một hằng số dương thì ta tính được

$$\ln(u-1)^{-1} = \ln(Cx^2)$$

do đó

$$u - 1 = C^{-1}x^{-2}.$$

Thay $u = \frac{y}{x}$ vào ta được

$$y = x + \frac{1}{Cx}.$$

Tổng hợp cả hai trường hợp, và để ý y=x cũng là một nghiệm, ta có thể viết nghiệm chung là

$$y = x + \frac{C}{x}$$

với C là một hằng số bất kì, kể cả bằng 0.

4.2.3 Phương trình vi phân cấp một tuyến tính

Một *phương trình vi phân cấp một tuyến tính* là một phương trình có dạng

$$\frac{dy}{dx} + P(x)y = Q(x).$$

Goi là tuyến tính là vì bác cao nhất của y là 1.

Ví dụ 4.2.7. Giải phương trình xy' + y = 2x.

Ta đã giải phương trình này ở Ví dụ 4.2.6 bằng phương pháp cho phương trình đẳng cấp. Bây giờ ta giải bằng phương pháp cho phương trình tuyến tính.

Dùng công thức đao hàm của tích:

$$xy' + y = xy' + x'y = (xy)',$$

ta có thể viết lại phương trình là

$$(xy)' = 2x.$$

Lấy tích phân hai vế phương trình này ta nhận được

$$xy = x^2 + C.$$

Xét nghiệm xác định trên một khoảng chứa x=0, thì thế x=0 vào ta được C=0, do đó nghiệm là y=x. Xét nghiệm xác định trên một khoảng không chứa x=0, thì chia hai vế cho x ta được nghiệm $y=x+\frac{C}{x}$. Ta có thể viết chung nghiệm là

$$y = x + \frac{C}{x}$$

với C là hằng số thực bất kì.

Ví dụ 4.2.8. Giải phương trình y' = y.

Ở Ví dụ 4.2.1 ta đã giải phương trình này bằng phương pháp tách biến. Bây giờ ta giải bằng cách khác như sau. Viết phương trình là

$$y' - y = 0.$$

Nhân hai vế với e^{-x} ta được

$$e^{-x}y' - e^{-x}y = 0.$$

Chú ý áp dụng quy tắc đạo hàm của tích vào vế trái, đây chính là

$$\left(e^{-x}y\right)' = 0.$$

Ta dễ dàng giải được phương trình này: $e^{-x}y = C$, tức là $y = Ce^x$, trong đó C là một hằng số thực.

Phương pháp chung để giải phương trình tuyến tính là nhân hai vế với một lượng thích hợp để sử dụng công thức đạo hàm của tích. Cụ thể như sau.

Cách giải phương trình tuyến tính

$$\frac{dy}{dx} + P(x)y = Q(x)$$

Bước 1: Tính thừa số tích phân

$$\mu(x) = e^{\int P(x)dx}$$
.

Ta có $\mu'(x) = \mu(x)P(x)$.

Bước 2: Nhân hàm $\mu(x)$ vào hai vế của phương trình vi phân:

$$\mu(x)y'(x) + \mu(x)P(x)y(x) = \mu(x)Q(x).$$

Bước 3: Do công thức đạo hàm của tích phương trình được viết lại là

$$(\mu(x)y(x))' = \mu(x)Q(x).$$

Bước 4: Lấy nguyên hàm:

$$y(x) = \frac{1}{\mu(x)} \int \mu(x)Q(x)dx.$$

Ví dụ 4.2.9. Giải phương trình vi phân $\frac{dy}{dx}+3x^2y=6x^2$. Phương trình này là tuyến tính với $P(x)=3x^2$ và $Q(x)=6x^2$. Thừa số tích phân là

$$\mu(x) = e^{\int 3x^2 dx} = e^{x^3}.$$

Ở đây ta chỉ cần một nguyên hàm nào đó mà thôi chứ không cần cả một họ nguyên hàm. Nhân hai vế của phương trình với e^{x^3} chúng ta được

$$e^{x^{3}} \frac{dy}{dx} + 3x^{2} e^{x^{3}} y = 6x^{2} e^{x^{3}}$$

$$\frac{d}{dx} (e^{x^{3}} y) = 6x^{2} e^{x^{3}}$$

$$e^{x^{3}} y = \int 6x^{2} e^{x^{3}} dx = 2e^{x^{3}} + C$$

$$y = 2 + Ce^{-x^{3}}.$$

Ví dụ 4.2.10. Tìm nghiệm của bài toán giá trị đầu

$$x^2y' + xy = 1$$
, $x > 0$, $y(1) = 2$.

Đầu tiên chúng ta phải chia hai vế cho hệ số của y' để đưa phương trình vi phân về dạng chuẩn

$$y' + \frac{1}{x}y = \frac{1}{x^2}, \quad x > 0.$$

Thừa số tích phân là

$$\mu(x) = e^{\int \frac{1}{x} dx} = e^{\ln x} = x.$$

Nhân vế của phương trình được cho với x

$$xy' + y = \frac{1}{x}$$

tức là

$$(xy)' = \frac{1}{x}.$$

Từ đó

$$xy = \int \frac{1}{x} dx = \ln x + C$$

và do đó

$$y = \frac{\ln x + C}{x}.$$

Vi y(1) = 2 ta có

$$2 = \frac{\ln 1 + C}{1} = C.$$

Vây nghiệm của bài toán giá tri đầu là

$$y = \frac{\ln x + 2}{x}.$$

Ví dụ 4.2.11. Giải phương trình tăng trưởng dân số (4.1.1)

$$P' = kP$$
.

Ta đã giải phương trình này theo phương pháp tách biến ở Ví dụ 4.2.2. Bây giờ viết lại phương trình ở dạng P'-kP=0 ta lại thấy đây cũng là một phương trình tuyến tính. Nhân hai vế với $e^{\int -k \, dt} = e^{-kt}$ ta được

$$e^{-kt}P' - ke^{-kt}P = 0.$$

hay

$$(e^{-kt}P)' = 0.$$

Lấy nguyên hàm ta được $e^{-kt}P = C$, hay

$$P = Ce^{kt}$$
.

Kết quả này trùng với kết quả thu được ở Ví du 4.2.2.

Ví dụ 4.2.12 (Ứng dụng vào mạch điện). Một nguồn điện tạo ra một điện áp E(t) vôn (volt) và một cường độ dòng điện tức thời I(t) ampe (ampere) tại thời điểm t trong một mạch điện. Mạch điện còn chứa một điện trở với trở kháng R ôm (Ohm) và một cuộn cảm với cảm kháng bằng L henri. Xem Hình 4.2.1.

Theo định luật Ohm độ giảm áp do điện trở gây ra là RI. Độ giảm áp do cuộn cảm gây ra là $L(\frac{dI}{dt})$. Một định luật của Kirchhoff nói rằng tổng độ giảm áp chính

Hình 4.2.1: Mạch điện.

bằng điện áp tại nguồn E(t). Do đó chúng ta có

$$L\frac{dI}{dt} + RI = E(t).$$

Nghiệm là cường độ dòng điện tức thời I(t) tại thời điểm t.

Với L=4, R=12 và E(t)=60 (đây là trường hợp điện thế không đổi được cung cấp bởi pin chẳng hạn), phương trình trở thành

$$4\frac{dI}{dt} + 12I = 60,$$

hay

$$\frac{dI}{dt} = 15 - 3I.$$

Ta nhận ra rằng phương trình này là tách biến được, và ta giải nó như sau:

$$\int \frac{dI}{15 - 3I} = \int dt$$

$$\frac{-1}{3} \ln|15 - 3I| = t + C$$

$$|15 - 3I| = e^{-3(t+C)}$$

$$15 - 3I = \pm e^{-3C}e^{-3t} = Ae^{-3t}.$$

Vậy nghiệm là

$$I(t) = 5 - \frac{1}{3}Ae^{-3t}.$$

Giả sử thay vì dùng pin chúng ta dùng máy phát điện tạo ra một điện áp thay đổi $E(t)=60\sin 30t$ vôn. Phương trình vi phân trở thành

$$4\frac{dI}{dt} + 12I = 60\sin 30t$$

hay

$$\frac{dI}{dt} + 3I = 15\sin 30t.$$

Đây là một phương trình cấp một tuyến tính. Thừa số tích phân là $e^{\int 3\,dt}=e^{3t}$, dẫn

đến

$$e^{3t}\frac{dI}{dt} + 3e^{3t}I = \frac{d}{dt}(e^{3t}I) = 15e^{3t}\sin 30t.$$

Dùng bảng tích phân hoặc dùng máy tính ta có thể tính được tích phân:

$$e^{3t}I = \int 15e^{3t}\sin 30t \, dt = 15\frac{e^{3t}}{909}(3\sin 30t - 30\cos 30t) + C.$$

Vậy nghiệm là

$$I(t) = \frac{5}{101}(\sin 30t - 10\cos 30t) + Ce^{-3t}.$$

Bài tập

Phương trình tách biến

4.2.1. Giải các phương trình vi phân:

(a)
$$\frac{dy}{dx} = xy^2$$
.

(b)
$$\frac{dy}{dx} = xe^{-y}$$
.

(c)
$$xy^2y' = x + 1$$
.

(d)
$$(y^2 + xy^2)y' = 1$$
.

(e)
$$(y + \sin y)y' = x + x^3$$
.

(f)
$$\frac{dv}{ds} = \frac{s+1}{sv+s}$$
.

(g)
$$\frac{dp}{dt} = t^2p - p + t^2 - 1$$
.

(h)
$$\frac{dz}{dt} + e^{t+z} = 0.$$

(i)
$$(x^2+4)\frac{dy}{dx} = xy$$
.

(j)
$$y' = y^2 x^3$$
.

(k)
$$\frac{dx}{dt} = x^2 - 2x + 2$$
.

(1)
$$\frac{dy}{dx} = \frac{\ln x}{xy}, x > 0, y > 0.$$

4.2.2. Tìm nghiệm của phương trình vi phân thỏa điều kiện đầu cho trước.

(a)
$$\frac{dy}{dx} = \frac{x}{y}$$
, $y(0) = -3$.

(b)
$$\frac{dy}{dx} = \frac{\ln x}{xy}$$
, $y(1) = 2$.

(c)
$$\frac{dP}{dt} = \sqrt{Pt}$$
, $P(1) = 2$.

(d)
$$\frac{dL}{dt} = kL^2 \ln t$$
, $L(1) = -1$.

Phương trình đẳng cấp

4.2.3. Giải các phương trình vi phân:

(a)
$$y' = \frac{y+x}{r}$$
.

(b)
$$y' = \frac{y - x}{x}$$
.

(c)
$$y' = \frac{2y + x}{x}$$
.

(d)
$$y'(x) = \frac{x - y}{x + y}$$

(e)
$$\frac{dy}{dx} = \frac{4x - 3y}{x - y}.$$

(f)
$$\begin{cases} \frac{dy}{dx} = \frac{y - 6x}{2x - y} \\ y(0) = 1. \end{cases}$$

(g)
$$y' = \frac{x^2 + y^2}{xy}$$
, $y(1) = 2$.

(h)
$$(x^2 + y^2)\frac{dy}{dx} + 2x(y + 2x) = 0.$$

(i)
$$\begin{cases} x^2 y'(x) = y^2 - xy + x^2 \\ y(1) = 2. \end{cases}$$

$$(j) y^2 = (xy - x^2) \frac{dy}{dx}.$$

(k)
$$\begin{cases} x\frac{dx}{dt} = \frac{x^2 + t^2}{t} \\ x(2) = 1. \end{cases}$$

Phương trình tuyến tính

4.2.4. Giải phương trình vi phân:

(a)
$$y' + y = 1$$
.

(b)
$$y' - y = e^x$$
.

(c)
$$y' = x - y$$
.

(d)
$$4x^3y + x^4y' = \sin^3 x$$
.

(e)
$$xy' + y = \sqrt{x}$$
.

(f)
$$y' + y = \sin(e^x)$$
.

(g) $x\frac{dy}{dx} - 4y = x^4 e^x.$

(h)
$$(1+t)\frac{du}{dt} + u = 1+t, \quad t > 0.$$

(i)
$$t \ln t \frac{dr}{dt} + r = te^t$$
.

(j)
$$\frac{dz}{dx} = xz - x$$
.

(k)
$$z' - \frac{2}{x}z = \frac{2}{3}x^4$$
.

4.2.5. Giải phương trình vi phân:

(a)
$$y' + 3xy = 4x$$
.

(b)
$$x^2y' + 2xy = \ln x$$
, $y(1) = 2$

(c)
$$t\frac{du}{dt} = t^2 + 3u$$
, $t > 0$, $u(2) = 4$

(d)
$$2xy' + y = 6x$$
, $x > 0$, $y(4) = 20$

(e)
$$(x^2 + 1)\frac{dy}{dx} + 3x(y - 1) = 0$$
, $y(0) = 2$

(f)
$$y' + y \cos x = e^{-\sin x}$$
.

(g)
$$xy'(x) - y(x) = x \ln x \text{ với } x > 0$$
, và $y(1) = 2$.

Ứng dụng và các bài toán khác

4.2.6. Một quần thể vi khuẩn có tăng trưởng số lượng tỉ lệ với số lượng hiện có. Sau 1 giờ có 1000 cá thể vi khuẩn, sau 4 giờ có 3000 cá thể. Hãy tìm số cá thể ở một thời điểm bất kì và số cá thể ở thời điểm ban đầu.

4.2.7. Lượng muỗi tr
ong môi trường đang tăng với tốc độ theo thời gian (tính bằng ngày) tỉ lệ với số lượng hiện có, và gấp đôi sau mỗi tuần. Giả sử số lượng muỗi ban đầu là 100.000 con, hãy tìm công thức của số lượng muỗi tại thời điểm bất kì.

4.2.8 (Mô hình lãi nhập vốn liên tục). Một tài khoản có lượng tiền ban đầu là P (gốc). Lãi suất theo thời gian là r/năm, thường được viết ở dạng phần trăm/năm. Chẳng hạn r=0.05=5% có nghĩa là sau 1 năm thì cứ 100 đơn vị tiền tài khoản sẽ nhận được một khoản lãi là 5 đơn vị tiền. Nếu lãi được nhập vào vốn, thì r chính là tốc độ tăng tương đối của lượng tiền trong tài khoản. Trong mô hình lãi nhập vốn liên tục thì lượng tiền A ở thời điểm t (tính bằng năm) thỏa

$$\frac{A'(t)}{A(t)} = r.$$

(a) Giải phương trình vi phân, chứng tỏ lượng tiền trong tài khoản được cho bởi

$$A(t) = Pe^{rt}$$
.

Bài toán này đã được thảo luận bằng phương pháp khác trong Vi tích phân hàm một biến [Bmgt1].

- (b) Chứng tỏ thời gian cần để lượng tiền trong tài khoản tăng gấp đôi không phụ thuộc vào khoản đầu tư ban đầu.
- (c) Để lượng tiền tăng gấp đôi mỗi 10 năm thì lãi suất phải bằng bao nhiêu?

4.2.9 (**Phân rã của Carbon** C^{14}). Carbon C^{14} là một chất phóng xạ. Theo hóa học số lượng nguyên tử bị phân rã trong một đơn vị thời gian trên một đơn vị số lượng nguyên tử là không đổi, nói cách khác chất phân rã theo một tỉ lệ không đổi. Như vậy nếu gọi C là số lượng nguyên tử ở thời điểm t thì

$$\frac{C'(t)}{C(t)} = k$$

trong đó k là một số thực không thay đổi theo t.

(a) Chứng tỏ

$$C(t) = C_0 e^{kt}$$

trong đó $C_0 = C(0)$.

- (b) Người ta biết C^{14} phân rã theo qui luật số lượng giảm đi phân nửa sau 5730 năm. Từ đó hãy kiểm rằng $k=-0{,}00012$.
- **4.2.10** (Định tuổi bằng phân rã Carbon). Carbon C^{14} được sinh ra trong khí quyển Quả Đất do tác động của tia vũ trụ. Tỉ lệ giữa C^{14} (phóng xạ) và C^{12} (không phóng xạ) trong môi trường có thể coi là không thay đổi theo thời gian. Các cơ thể sống trao đổi chất với môi trường nên tỉ lệ giữa C^{14} và C^{12} trong cơ thể bằng với tỉ lệ trong môi trường. Khi một cơ thể chết đi, nó không trao đổi chất nữa, lượng C^{12} không đổi trong khi lượng C^{14} giảm đi theo thời gian do phóng xạ. Bằng cách đo tỉ lệ C^{14} còn trong cơ thể ta có thể suy ra thời điểm mà cơ thể chết. Về mặt toán học, gọi C(t) là lượng C^{14} trong cơ thể ở thời điểm t, theo Bài tập 4.2.9 ta biết $C(t) = C(0)e^{kt}$ với $k = -0{,}00012$. Vậy nếu biết giá trị của $\frac{C(t)}{C(0)}$, tức tỉ lệ lượng C^{14} trong cơ thể ở thời điểm t so với lượng C^{14} trong cơ thể sống, ta có thể tính được t. Đây là nguyên lí của phương pháp định tuổi bằng Carbon (radiocarbon dating).

Năm 1991 người ta phát hiện được một xác người đóng băng trên dãy núi Alps ở Châu Âu, và đo được lượng C^{14} trong xác ướp này bằng 53% lượng C^{14} có trong một cơ thể sống. Hãy tính xem xác ướp này bao nhiêu tuổi?

- **4.2.11.** Năm 1950 người ta phát hiện ở gần Biển Chết những phần của những cuốn sách viết trên giấy và da có nội dung liên quan tới kinh của người Do Thái cổ. Các nhà khảo cổ xác định được hàm lượng Carbon-14 trong các cuốn sách chỉ còn là 78%. Hãy tính tuổi của các cuốn sách này.
- **4.2.12.** Người ta tìm thấy những bánh xe bằng gỗ của các chiến xa do ngựa kéo ở Kazakhstan. Hàm lượng Carbon-14 trong gỗ chỉ còn bằng 62,5% so với hàm lượng trong cây sống. Hãy tính tuổi của các bánh xe này.
- **4.2.13.** Dân số loài người là 5,28 tỉ người vào năm 1990 và 6,07 tỉ người vào năm 2000. Giả thiết rằng do các hạn chế về tài nguyên, Quả Đất không thể đủ chỗ cho quá 10 tỉ người. Hãy dùng mô hình tăng trưởng dân số có kìm hãm để dự đoán dân số thế giới vào năm 2025.
- **4.2.14.** Giải phương trình của sự học ở Bài tập 4.1.8

$$P' = k(M - P).$$

Hãy vẽ đường cong nghiệm.

4.2.15. Giải phương trình của sự nguội ở Bài tập 4.1.7. Hãy vẽ đường cong nghiệm.

201

- **4.2.16.** Một vật nóng được để nguội trong môi trường có nhiệt độ là 30° . Sau 10 phút ta đo được nhiệt độ của vật là 50° và sau 20 phút thì nhiệt độ của vật là 40° . Dùng mô hình phương trình vi phân của sự nguội, hãy tính nhiệt độ ban đầu của vật và sau bao lâu thì nhiệt độ của vật còn là 35° ?
- **4.2.17.** Trong mạch điện được cho ở Hình 4.2.1 tìm cường độ dòng điện tức thời I(t) và vẽ đồ thi của nó (có thể dùng máy tính) trong các trường hợp:
 - (a) Một pin cung cấp một điện áp không đổi 40 vôn, cảm kháng là 2 henri, trở kháng là 10 ôm và I(0)=0.
 - (b) Một máy phát điện cung cấp một điện áp $E(t)=40\sin 60t$ vôn, cảm kháng là 1 henri, trở kháng là 20 ôm và I(0)=1 ampe.
- **4.2.18.** Một hồ chứa 100 lít nước có 10 kg muối hòa tan trong đó. Bơm nước nguyên chất vào hồ với tốc độ bơm 10 lít/phút, đồng thời cho nước trong hồ thoát ra ngoài với tốc độ thoát cũng là 10 lít/phút. Gọi lượng muối còn trong hồ sau t phút là S(t) kg. Cho rằng nước nguyên chất chảy vào hồ được hòa đều vào hồ ngay tức thì, nghĩa là xem như muối lúc nào cũng được phân bố đều trong hồ.
 - (a) Từ thời điểm t đến thời điểm $t + \Delta t$, thể tích dung dịch thoát ra là bao nhiều lít và mang theo lương muối là bao nhiều kg?
 - (b) Giải thích bất đẳng thức

$$\frac{S(t)}{100}(10\Delta t) \ge S(t) - S(t + \Delta t) \ge \frac{S(t + \Delta t)}{100}(10\Delta t).$$

- (c) Hãy lập phương trình vi phân liên hệ S(t) và S'(t). Có thể bằng cách dùng định nghĩa của đao hàm và bất đẳng thức trên.
- (d) Giải phương trình vi phân trên để tìm S(t).
- (e) Sau 30 phút thì lượng muối trong hồ còn bao nhiêu?
- 4.2.19. Một phương trình vi phân Bernoulli là phương trình có dạng

$$\frac{dy}{dx} + P(x)y = Q(x)y^n.$$

Nếu n=0 hoặc n=1 thì phương trình Bernoulli là tuyến tính. Với n nhận những giá trị khác, phép thế $u=y^{1-n}$ biến đổi phương trình Bernoulli thành phương trình tuyến tính

$$\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x).$$

Dùng phương pháp trên để giải các phương trình vi phân sau:

(a)
$$xy' + y = -xy^2$$
. (b) $y' + \frac{2}{x}y = \frac{y^3}{x^2}$.

4.2.20. Một phương trình vi phân

$$\frac{dy}{dx} = \frac{-P(x,y)}{Q(x,y)}$$

có thể được viết lai là

$$Pdx + Qdy = 0,$$

và được gọi là một *phương trình vi phân toàn phần*, hay một phương trình vi phân khớp (exact), nếu

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

Ta tìm một hàm f(x, y) sao cho

$$\begin{cases} \frac{\partial f}{\partial x} = P \\ \frac{\partial f}{\partial y} = Q. \end{cases}$$

khi đó phương trình ẩn f(x,y) = C, với $C \in \mathbb{R}$ là một hằng số, xác định một nghiệm của phương trình vi phân.

Ta có thể nhận thấy phương pháp này chính là phương pháp tìm hàm thế của một trường phẳng thỏa điều kiện cần của trường bảo toàn mà ta đã khảo sát ở Chương Giải tích vectơ, Mục 3.2.1, xem Ví dụ 3.2.6.

Dùng phương pháp trên để giải các phương trình vi phân sau:

(a)
$$y' = \frac{-2xy}{1+x^2}$$
.

(c)
$$y' = \frac{2 + ye^{xy}}{2y - xe^{xy}}$$
.

(b)
$$y' = \frac{-y^2}{2xy+1}$$
.

(d)
$$y' = -\frac{x^2 + y + 1}{x + y + y^3}$$
.

4.2.21. Một *phương trình tích phân* là một phương trình chứa một ẩn hàm y(x) và một tích phân chứa y(x). Giải phương trình tích phân sau. (*Hướng dẫn*: Lấy đạo hàm và sử dụng một điều kiện đầu thu được từ phương trình tích phân.)

(a)
$$y(x) = 2 + \int_{2}^{x} [t - ty(t)] dt$$
.

(b)
$$y(x) = 4 + \int_0^x 2t \sqrt{y(t)} dt$$
.

4.3 Giải phương trình vi phân cấp hai

4.3.1 Phương trình vi phân cấp hai tuyến tính thuần nhất với hệ số hằng

Một *phương trình vi phân cấp hai tuyến tính thuần nhất với hệ số hằng* là một phương trình có dạng

$$ay''(x) + by'(x) + cy(x) = 0$$

với $a, b, c \in \mathbb{R}$ và $a \neq 0$.

Ta ứng phương trình vi phân trên với một phương trình với ẩn là số thực hoặc phức, gọi là **phương trình đặc trưng** cho phương trình vi phân trên, là

$$ar^2 + br + c = 0.$$

Cách giải phương trình cấp hai tuyến tính thuần nhất với hệ số hằng

$$ay''(x) + by'(x) + cy(x) = 0$$

Bước 1: Giải phương trình đặc trưng $ar^2 + br + c = 0$.

Bước 2: Biện luận dựa vào nghiệm của phương trình đặc trung:

• nếu phương trình đặc trưng có hai nghiệm thực khác nhau r_1, r_2 thì phương trình vi phân có nghiệm tổng quát là

$$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x},$$

• nếu phương trình đặc trưng có nghiệm thực kép là r_0 thì phương trình vi phân có nghiệm tổng quát là

$$y(x) = C_1 e^{r_0 x} + C_2 x e^{r_0 x},$$

• nếu phương trình đặc trưng có nghiệm phức là $\alpha \pm i\beta$, thì phương trình vi phân có nghiệm tổng quát là

$$y(x) = e^{\alpha x} [C_1 \cos \beta x + C_2 \sin \beta x],$$

với $C_1, C_2 \in \mathbb{R}$.

 $\mathring{\text{O}}$ đây ta gọi $nghiệm\ tổng\ quát$ là nghiệm có thể thỏa điều kiện đầu cho trước bất kì.

 $Ch\acute{u}ng\ minh$. Ta xét trường hợp thứ nhất: phương trình đặc trưng có hai nghiệm thực khác nhau r_1, r_2 . Với

$$y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

ta tính được

$$y'(x) = C_1 r_1 e^{r_1 x} + C_2 r_2 e^{r_2 x}$$

và

$$y''(x) = C_1 r_1^2 e^{r_1 x} + C_2 r_2^2 e^{r_2 x}.$$

Từ đó

$$ay''(x) + by'(x) + cy(x) = C_1e^{r_1x}(ar_1^2 + br_1 + cr_1) + C_2e^{r_2x}(ar_2^2 + br_2 + cr_2) = 0.$$

Trường hợp thứ hai tương tự, với

$$y(x) = C_1 e^{r_0 x} + C_2 x e^{r_0 x}$$

ta tính được

$$y'(x) = C_1 r_0 e^{r_0 x} + C_2 e^{r_0 x} + C_2 x r_0 e^{r_0 x}$$

và

$$y''(x) = C_1 r_0^2 e^{r_0 x} + C_2 r_0 e^{r_0 x} + C_2 r_0 e^{r_0 x} + C_2 x r_0^2 e^{r_0 x},$$

từ đó

$$ay''(x) + by'(x) + cy(x) = C_1 e^{r_0 x} (ar_0^2 + br_0 + cr_0) + C_2 x e^{r_0 x} (ar_0^2 + br_0 + cr_0) + C_2 e^{r_0 x} (2ar_0 + b) = 0,$$

chú ý rằng $r_0 = -b/2a$.

Trường hợp thứ ba cần tính toán nhiều hơn một chút. Thế nghiệm $\alpha + i\beta$ vào phương trình đặc trưng ta được $a(\alpha^2 - \beta^2) + b\alpha + c = 0$ và $2a\alpha\beta + b\beta = 0$. Ta cũng tính trực tiếp được

$$ay''(x) + by'(x) + cy(x) = C_1 e^{\alpha x} \left[(\cos \beta x) \left(a\alpha^2 - a\beta^2 + b\alpha + c \right) - (\sin \beta x) \left(2a\alpha\beta + b\beta \right) \right] + C_2 e^{\alpha x} \left[(\sin \beta x) \left(a\alpha^2 - a\beta^2 + b\alpha + c \right) + (\cos \beta x) \left(2a\alpha\beta + b\beta \right) \right] = 0.$$

Ví dụ 4.3.1. Giải phương trình vi phân cấp hai

$$y'' - 2y' - 8y = 0.$$

Phương trình đặc trưng $r^2-2r-8=0$ có hai nghiệm thực phân biệt $r_1=4,$ $r_2=-2.$ Do đó nghiệm tổng quát của phương trình này là

$$y(x) = C_1 e^{4x} + C_2 e^{-2x},$$

với $C_1, C_2 \in \mathbb{R}$.

Ví dụ 4.3.2. Giải phương trình vi phân cấp hai

$$y'' - 4y' + 4y = 0.$$

Phương trình đặc trưng $r^2 - 4r + 4 = 0$ có một nghiệm thực kép $r_0 = 2$. Do đó nghiệm tổng quát của phương trình này là

$$y(x) = C_1 e^{2x} + C_2 x e^{2x},$$

với $C_1, C_2 \in \mathbb{R}$.

Ví dụ 4.3.3. Giải phương trình vi phân cấp hai

$$y'' + 2y' + 10y = 0.$$

Phương trình đặc trưng $r^2 + 2r + 10 = 0$ có hai nghiệm phức là $-1 \pm 3i$. Do đó nghiệm tổng quát của phương trình này là

$$y(x) = e^{-x} [C_1 \cos 3x + C_2 \sin 3x]$$

với $C_1, C_2 \in \mathbb{R}$.

Ví dụ 4.3.4. Giải bài toán giá tri đầu sau

$$\begin{cases} y''(x) + y'(x) = 0\\ y(0) = 1\\ y'(0) = -\frac{1}{2}. \end{cases}$$

Phương trình đặc trưng $r^2 + r = 0$ có hai nghiệm thực phân biệt $r_1 = -1$, $r_2 = 0$. Do đó nghiệm tổng quát của phương trình này là

$$y(x) = C_1 + C_2 e^{-x},$$

với $C_1, C_2 \in \mathbb{R}$. Do y(0) = 1, ta thu được $C_1 + C_2 = 1$. Ngoài ra, ta tính được đạo hàm của y như sau

$$y'(x) = -C_2 e^{-x}.$$

Từ điều kiện $y'(0) = -\frac{1}{2}$, ta tìm được $C_2 = \frac{1}{2}$. Do đó, $C_1 = \frac{1}{2}$. Vậy, nghiệm của bài toán là

$$y(x) = \frac{1}{2} + \frac{1}{2}e^{-x}.$$

Ví dụ 4.3.5. Ta giải phương trình vi phân chuyển động của lò xo (4.1.3):

$$mx'' = -kx.$$

Đây là một phương trình vi phân cấp hai tuyến tính thuần nhất với hệ số hằng. Giải phương trình đặc trưng

$$mr^2 = -k$$

ta được hai nghiệm phức $r=\pm i\sqrt{\frac{k}{m}}$. Vậy phương trình có nghiệm tổng quát là

$$x(t) = C_1 \cos \sqrt{\frac{k}{m}} x + C_2 \sin \sqrt{\frac{k}{m}} x,$$

với $C_1, C_2 \in \mathbb{R}$. Nếu C_1 và C_2 không đồng thời bằng 0, ta viết được

$$x(t) = \sqrt{C_1^2 + C_2^2} \left(\frac{C_1}{\sqrt{C_1^2 + C_2^2}} \cos \sqrt{\frac{k}{m}} x + \frac{C_2}{\sqrt{C_1^2 + C_2^2}} \sin \sqrt{\frac{k}{m}} x \right).$$

Đặt
$$\sin\beta=\frac{C_1}{\sqrt{C_1^2+C_2^2}},\,\cos\beta=\frac{C_2}{\sqrt{C_1^2+C_2^2}}$$
thì ta viết được

$$x(t) = \sqrt{C_1^2 + C_2^2} \left(\sin\beta\cos\sqrt{\frac{k}{m}}x + \cos\beta\sin\sqrt{\frac{k}{m}}x\right) = \sqrt{C_1^2 + C_2^2}\sin\left(\beta + \sqrt{\frac{k}{m}}x\right).$$

Đây là một hàm thể hiện một dao động điều hòa có đồ thị hình sin, đúng như hiện tượng vật lí.

4.3.2 Phương trình vi phân cấp hai tuyến tính không thuần nhất với hệ số hằng

Một phương trình vi phân cấp hai tuyến tính không thuần nhất với hệ số hằng là một phương trình có dang

$$ay''(x) + by'(x) + cy(x) = f(x)$$

với $a, b, c \in \mathbb{R}$ và $a \neq 0$, f là một hàm liên tục trên một khoảng nào đó.

Ta giới thiệu một phương pháp được gọi là **phương pháp hệ số bất định** giúp tìm được nghiệm trong một số trường hợp. Trong các trường hợp này ta cố gắng tìm ra một nghiệm của phương trình, gọi là **nghiệm riêng** hay **nghiệm đặc biệt**. Gọi như vậy là vì nghiệm này chỉ thỏa một điều kiện đầu nhất định, trái với nghiệm tổng quát mà ta muốn tìm có thể thỏa điều kiên đầu cho trước bất kì.

Giả sử y là nghiệm tổng quát và y_r là một nghiệm riêng. Ta có đồng thời

$$ay'' + by' + cy = f$$

và

$$ay_r'' + by_r' + cy_r = f.$$

Trừ hai phương trình ta được

$$a(y - y_r)'' + b(y - y_r)' + c(y - y_r) = 0.$$

Vậy hiệu $y-y_r$ của nghiệm tổng quát với nghiệm riêng của phương trình không thuần nhất là một nghiệm của phương trình thuần nhất tương ứng

$$ay'' + by' + cy = 0.$$

Cách giải phương trình thuần nhất này ta đã thảo luận trong mục trước. Đặt y_0 là nghiệm tổng quát của phương trình thuần nhất tương ứng này, ta được nghiệm tổng quát của phương trình không thuần nhất là

$$y = y_0 + y_r.$$

Như vậy bước chính để giải là tìm một nghiệm riêng của phương trình không thuần

nhất.

Cách giải phương trình vi phân cấp hai tuyến tính không thuần nhất với hệ số hằng

$$ay''(x) + by'(x) + cy(x) = f(x)$$

Bước 1: Giải phương trình thuần nhất

$$ay''(x) + by'(x) + cy(x) = 0$$

để được nghiệm tổng quát y_0 của phương trình này.

Bước 2: Tìm một nghiệm riêng y_r của phương trình không thuần nhất. Nếu hàm f là một tổng, tức là $f = f_1 + \cdots + f_n$, thì ta tìm nghiệm riêng tương ứng $y_{r,1}, \ldots, y_{r,n}$ cho từng hàm thành phần f_1, \ldots, f_n , khi đó $y_r = y_{r,1} + \cdots + y_{r,n}$.

Bước 3: Bây giờ nếu hàm f chỉ có một thành phần thì:

- (a) Nếu f là một đa thức bậc n thì y_r là một đa thức bậc n, có dạng $y_r(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, với các a_i là hằng số.
- (b) Nếu $f(x) = Ce^{kx}$ với C và k là hằng số, thì $y_r(x) = ae^{kx}$, với a là hằng số.
- (c) Nếu $f(x) = C \sin \alpha x$ hoặc $f(x) = C \cos \alpha x$ với C là hằng số, thì $y_r(x) = a \sin \alpha x + b \cos \alpha x$, với a và b là hằng số.

Bước 4: So sánh y_r với y_0 . Nếu có thành phần trong y_r xuất hiện trong y_0 thì phải chỉnh y_r bằng cách nhân thêm x hoặc x^2 vào y_r để y_r và y_0 không còn thành phần chung.

Bước 5: Thế y_r vào phương trình không thuần nhất tương ứng để giải tìm các hệ số chưa biết.

Bước 6: Nghiệm tổng quát của phương trình không thuần nhất là

$$y = y_0 + y_r.$$

Phương pháp này còn được phát triển hơn nữa, như khi f là một tích, có ở các tài liệu nâng cao hơn như [Long, Boyce09]. Phương pháp này khá phức tạp, để dễ hiểu hơn ta hãy xem xét các ví dụ sau.

Ví dụ 4.3.6. Tìm nghiệm tổng quát của phương trình vi phân

$$y'' - y = x^2.$$

Giải phương trình thuần nhất tương ứng

$$y'' - y = 0$$

ta có nghiệm $y_0(x) = C_1 e^x + C_2 e^{-x}$.

Vế phải của phương trình vi phân x^2 là một đa thức bậc 2, vậy ta tìm nghiệm y_r có dạng

$$y_r(x) = ax^2 + bx + c,$$

và ta thấy không có thành phần nào của y_r xuất hiện trong y_0 .

Ta có

$$\begin{cases} y'_r(x) = 2ax + b \\ y''_r(x) = 2a. \end{cases}$$

Thay vào phương trình không thuần nhất ban đầu, ta được

$$2a - (ax^2 + bx + c) = x^2$$

hay

$$-ax^2 - bx + 2a - c = x^2$$
.

Đồng nhất các hệ số tương ứng, ta được

$$\begin{cases}
-a = 1 \\
-b = 0 \\
2a - c = 0
\end{cases}$$

hay a = -1, b = 0, c = -2. Do đó ta tìm được $y_r(x) = -x^2 - 2$.

Vậy nghiệm tổng quát của phương trình không thuần nhất là

$$y(x) = y_0(x) + y_r(x) = C_1 e^x + C_2 e^{-x} - x^2 - 2.$$

Ví dụ 4.3.7. Tìm nghiệm tổng quát của phương trình vi phân

$$y'' + y = e^{2x}.$$

Giải phương trình thuần nhất tương ứng

$$y'' + y = 0$$

ta có nghiệm tổng quát $y_0(x) = C_1 \cos x + C_2 \sin x$.

Vế phải của phương trình không thuần nhất là hàm e^{2x} , vậy nghiệm y_r có dạng

$$y_r(x) = ae^{2x}$$
,

và ta thấy không có thành phần nào của y_r xuất hiện trong y_0 .

Ta có

$$\begin{cases} y'(x) = 2ae^{2x} \\ y''(x) = 4ae^{2x}. \end{cases}$$

Thay vào phương trình không thuần nhất ban đầu ta được $5ae^{2x}=e^{2x}$, do đó $a=\frac{1}{5}$, và $y_r(x)=\frac{1}{5}e^{2x}$.

Vậy nghiệm tổng quát của phương trình không thuần nhất là

$$y(x) = y_0(x) + y_r(x) = C_1 \cos x + C_2 \sin x + \frac{1}{5}e^{2x}.$$

Ví dụ 4.3.8. Tìm nghiệm tổng quát của phương trình vi phân

$$y'' - y' - 2y = \sin 2x.$$

Giải phương trình thuần nhất tương ứng

$$y'' - y' - 2y = 0$$

ta có nghiệm tổng quát $y_0(x) = C_1 e^{-x} + C_2 e^{2x}$.

Vế phải của phương trình không thuần nhất là hàm $\sin 2x$, vậy nghiệm y_r có dạng

$$y_r(x) = a\sin 2x + b\cos 2x,$$

và ta thấy không có thành phần nào của y_r xuất hiện trong y_0 .

Ta có

$$\begin{cases} y'(x) = 2a\cos 2x - 2b\sin 2x \\ y''(x) = -4a\sin 2x - 4b\cos 2x. \end{cases}$$

Thay vào phương trình không thuần nhất ban đầu ta được -6a+2b=1 và -2a-6b=0, do đó $a=-\frac{3}{20},\ b=\frac{1}{20}$, và

$$y_r(x) = -\frac{3}{20}\sin 2x + \frac{1}{20}\cos 2x.$$

Vậy nghiệm tổng quát của phương trình không thuần nhất là

$$y(x) = y_0(x) + y_r(x) = C_1 e^{-x} + C_2 e^{2x} - \frac{3}{20} \sin 2x + \frac{1}{20} \cos 2x.$$

Ví dụ 4.3.9. Tìm nghiệm tổng quát của phương trình vi phân

$$y'' - y' - 12y = e^{4x}.$$

Giải phương trình thuần nhất tương ứng

$$y'' - y' - 12y = 0$$

ta có nghiệm $y_0(x) = C_1 e^{4x} + C_2 e^{-3x}$.

Vế phải của phương trình không thuần nhất là hàm e^{4x} , vậy nghiệm y_r có dạng

$$y_r(x) = ae^{4x},$$

nhưng ta thấy **thành phần** e^{4x} **của** y_r **cũng xuất hiện trong** y_0 , do đó theo phương pháp ta phải nhân thêm với y_r thừa số x, và nghiệm y_r thực ra có dạng

$$y_r(x) = axe^{4x}$$
.

Bây giờ thì y_r không còn thành phần chung với y_0 .

Ta có

$$\begin{cases} y'(x) = ae^{4x} + 4axe^{4x} \\ y''(x) = 8ae^{4x} + 16axe^{4x}. \end{cases}$$

Thay vào phương trình không thuần nhất ban đầu, ta được

$$(8ae^{4x} + 16axe^{4x}) - (ae^{4x} + 4axe^{4x}) - 12axe^{4x} = e^{4x}.$$

Đồng nhất các hệ số tương ứng, ta được $a = \frac{1}{7}$. Do đó ta tìm được

$$y_r(x) = \frac{1}{7}xe^{4x}.$$

Vậy nghiệm tổng quát của phương trình không thuần nhất là

$$y(x) = y_0(x) + y_r(x) = C_1 e^{4x} + C_2 e^{-3x} + \frac{1}{7} x e^{4x}.$$

Ví dụ 4.3.10. Tìm nghiệm tổng quát của phương trình vi phân

$$y'' - y' - 12y = e^{4x} + 3x - 2.$$

Phương trình thuần nhất tương ứng

$$y'' - y' - 12y = 0$$

ta đã giải trong Ví dụ 4.3.9 vừa rồi. Nghiệm là $y_0(x) = C_1 e^{4x} + C_2 e^{-3x}$.

Vế phải của phương trình không thuần nhất là hàm $e^{4x} + (3x - 2)$, là tổng của hai hàm e^{4x} và 3x - 2, vậy ta cần tìm hai nghiệm riêng $y_{r,1}$ tương ứng với e^{4x} và $y_{r,2}$ tương ứng với 3x - 2.

Nghiệm $y_{r,1}$ tương ứng với phương trình

$$y'' - y' - 12y = e^{4x}$$

ta đã tìm được trong Ví du 4.3.9 vừa rồi là

$$y_{r,1}(x) = \frac{1}{7}xe^{4x}.$$

Nghiệm $y_{r,2}$ tương ứng với phương trình

$$y'' - y' - 12y = 3x - 2,$$

là một đa thức bậc 1, có dang

$$y_{r,2}(x) = ax + b.$$

Thay vào phương trình ta được

$$-a - 12(ax + b) = 3x - 2.$$

Suy ra $a = -\frac{1}{4}$ và $b = \frac{3}{16}$. Vậy

$$y_{r,2}(x) = -\frac{1}{4}x + \frac{3}{16}.$$

Vậy nghiệm tổng quát của phương trình đã cho là

$$y(x) = y_0(x) + y_{r,1}(x) + y_{r,2}(x) = C_1 e^{4x} + C_2 e^{-3x} + \frac{1}{7} x e^{4x} - \frac{1}{4} x + \frac{3}{16}.$$

Bài tập

4.3.1. Tìm nghiệm của phương trình vi phân.

(a)
$$y'' + 3y' - 10y = 0$$

(b)
$$\begin{cases} y'' + 3y' - 10y = 0 \\ y(0) = 1 \\ y'(0) = 3. \end{cases}$$

$$\begin{cases} y'(0) = 3. \\ 4y'' + 20y' + 25y = 0 \\ y(0) = 1 \\ y'(0) = 2. \end{cases}$$

(d)
$$\begin{cases} y'' - 8y' + 16y = 0 \\ y(0) = 1 \\ y'(0) = 6. \end{cases}$$

(e)
$$\begin{cases} y'' + 3y' = 0 \\ y(0) = 1 \\ y'(0) = 1. \end{cases}$$

(f)
$$\begin{cases} y'' + y' + y = 0 \\ y(0) = 1 \\ y'(0) = 3. \end{cases}$$

(g)
$$\begin{cases} y'' + 2y' + 2y = 0 \\ y(\pi) = e^{-\pi} \\ y'(\pi) = -2e^{-\pi}. \end{cases}$$

4.3.2. Tìm nghiệm của phương trình vi phân.

(a)
$$y'' + y' - 2y = 2x$$
.

(b)
$$y'' - y' - 2y = 4x^2$$

(c)
$$y'' - 2y' + y = x^2 - 1$$
.

(d)
$$\begin{cases} y'' - 7y' + 10y = 100x \\ y(0) = 0 \\ y'(0) = 5. \end{cases}$$

(e)
$$y'' + 4y = 3\sin x$$
.

(f)
$$y'' - y' + 4y = \sin 2x$$
.

(g)
$$y'' + 2y' - 3y = 2\cos 3x$$
.

(h)
$$y'' - 3y' - 4y = 2\sin x$$

(i)
$$y'' - 3y' + 2y = 6e^{3x}$$
.

(j)
$$y'' - 2y' + y = -4e^x$$
.

(k)
$$y'' - 3y' - 4y = 3e^{2x}$$
.

(1)
$$y'' + 4y' - 5 = e^{-5x}$$
.

(m)
$$y'' - 6y' + 9y = e^{3x}$$
.

(n)
$$y'' + y = 2e^{-x}$$
.

(o)
$$y'' + 4y = x^2 + 3e^x$$
.

(p)
$$y'' + 4y = \sin t + \sin(2t)$$
.

(q)
$$\begin{cases} y'' + 3y' + 2y = 3 - 2e^x \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

(r)
$$\begin{cases} y'' - 4y' + 2y = xe^x \\ y(0) = -2/9 \\ y'(0) = 5/9. \end{cases}$$

Tài liệu tham khảo

- [Ang] Sigurd Angenent, Calculus, http://www.math.wisc.edu/~angenent/Free-Lecture-Notes.
- [Apo69] Tom M. Apostol, Calculus, vol. 2, John Wiley and Sons, 1969.
- [Bmgt1] Βô môn Giải tích, $Gi\'{a}o$ trình $Ph\acute{e}p$ tinhtichphân Trường Khoa Toán Tin $_{
 m hoc}$ Đai hoc Khoa hoc Quốc gia Thành phố Đai học Ηồ https://sites.google.com/view/math-hcmus-edu-vn-giaitich.
- [Boyce09] William E. Boyce and Richard C. DiPrima, *Elementary Differential Equations and Boundary Value Problems*, 9th ed., John Wiley and Sons, 2009.
- [Buc78] Greighton Buck, Advanced calculus, 3rd ed., McGraw-Hill, 1978.
- [Fic77] G. M. Fichtengôn, Cơ sở Giải tích toán học, NXB Đại học và Trung học chuyên nghiệp, 1977.
- [GeoG] GeoGebra, phần mềm miễn phí, có phiên bản trên web, trên máy tính, và trên điện thoại, https://www.geogebra.org.
- [Kap02] Wilfred Kaplan, Advanced calculus, 5th ed., Addison-Wesley, 2002.
- [Kha15] Đỗ Công Khanh, Nguyễn Minh Hằng, Ngô Thu Lương, Toán cao cấp, Nhà Xuất Bản Đai học Quốc gia Thành phố Hồ Chí Minh, 2015.
- [Kha96] Phan Quốc Khánh, *Phép tính vi tích phân*, Nhà Xuất Bản Giáo dục, 1996.
- [Lan97] Serge Lang, Undergraduate analysis, 2nd ed., Springer, 1997.
- [Long] Nguyễn Thành Long, *Giáo trình Giải tích A4*, Khoa Toán–Tin học Đại học Khoa học Tự nhiên Thành phố Hồ Chí Minh.
- [MT03] Jerrold E. Marsden and Anthony J. Tromba, *Vector calculus*, Freeman, 2003.

- [Maxi] Maxima, phần mềm tính toán mã nguồn mở, có ở http://maxima.sourceforge.net.
- [Pis69] N. Piskunov, Differential and Integral Calculus, Mir, 1969.
- [PTT02] Nguyễn Đình Phư, Nguyễn Công Tâm, Đinh Ngọc Thanh, Đặng Đức Trọng, *Giáo trình giải tích hàm nhiều biến*, Nhà Xuất Bản Đại học Quốc gia Thành phố Hồ Chí Minh, 2002.
- [Rud76] Walter Rudin, *Principles of mathematical analysis*, 3rd ed., McGraw-Hill, 1976.
- [SGKTH] Bộ Giáo dục và Đào tạo, Sách giáo khoa các môn Đại số, Giải tích, Hình học lớp 10, 11, 12, Nhà xuất bản Giáo dục, 2019.
- [Ste
16] James Stewart, Calculus: Early transcendentals, 8th ed., Brooks/Cole,
2016. Có bản dịch tiếng Việt cho lần xuất bản thứ 7, Nhà xuất bản Hồng Đức 2016.
- [Syd16] Knut Sydsæter, Peter Hammond, Arne Strøm, Andrés Carvajal, Essential mathematics for economic analysis, 5th ed., Pearson, 2016.
- [TPTT02] Đinh Ngọc Thanh, Nguyễn Đình Phư, Nguyễn Công Tâm, Đặng Đức Trong, Giải tích hàm một biến, Nhà xuất bản Giáo duc, 2002.
- [TTQ11] Đinh Ngọc Thanh, Đặng Đức Trọng, Phạm Hoàng Quân, Giáo trình giải tích 2, Nhà Xuất Bản Đại học Quốc gia Thành phố Hồ Chí Minh, 2011.
- [Tri07] Nguyễn Đình Trí, Tạ Văn Đĩnh, Nguyễn Hồ Quỳnh, Toán học cao cấp, NXB Giáo dục, 2007.
- [Vugt3] Huỳnh Quang Vũ, *Bài giảng Tích phân bội và Giải tích vecto*, https://sites.google.com/view/hqvu/teaching.
- [Wolf] Wolfram Alpha, phần mềm tính toán, giao diện web miễn phí ở https://www.wolframalpha.com.

Chỉ mục

$p_v u$, 11	góc giữa hai vecto, 11
khoảng cách Euclid, 7	hàm Gamma, 122
biên, 16 bài toán giá trị đầu, 178 bất đẳng thức tam giác, 9 bổ đề Poincaré, 143, 167 chiếu vuông góc, 11 chiều dài Euclid, 7 curl, 162 công thức Divergence, 168 công thức Fubini, 89	hàm mật độ, 114 hàm thế, 135 hàm điều hòa, 36 hàm điều hòa, 151, 176 hình hộp, 79 thể tích, 79 hình sao, 142 hồi quy tuyến tính, 60 khả tích, 81 khả vị liên tực, 34
công thức Gauss–Ostrogradsky, 168 công thức Green, 138, 145, 151, 176	khả vi liên tục, 34 khả vi từng khúc, 126
Công thức Newton–Leibniz, 135 công thức Pappus, 122 công thức Stokes, 164	khối lăng trụ, 100 khối nón, 113 khối đơn giản với biên trơn từng mảnh, 168
công thức tích phân từng phần, 151 công thức đổi biến, 101 cơ sở vectơ chính tắc, 6	liên tục, 23 lân cận, 17
cực tiểu toàn cục, 56 cực tiểu địa phương, 56 cực tiểu tuyệt đối, 56 cực tiểu tương đối, 56 cực trị, 56 cực đại toàn cục, 56 cực đại địa phương, 56 cực đại tuyệt đối, 56 cực đại tương đối, 56	ma trận, 45 không xác định dấu, 64 xác định dương, 64 xác định âm, 64 ma trận Hesse, 57, 64 ma trận Jacobi, 45 miền, 81 miền đơn giản, 91, 93 mô hình của sự học, 185
div, 145, 168 giá trị trung bình, 114	mô hình của sự nguội, 185 mô hình hậu cần, 182 mô hình lãi nhập vốn liên tục, 198

 $CH \mathring{I} \ M \ddot{U} C$

mô hình tăng trưởng dân số, 180	phương trình đặc trưng, 201
mô hình tăng trưởng dân số có kìm hãm,	phần trong, 16
181	
mặt, 152	qui tắc bàn tay phải, 13
biên, 158	số chiều, 6
chính qui, 158	,
vết, 152	tham số hóa, 131 , 152
đơn, 158	thông lượng, 145 , 154
định hướng, 158	thế năng, 138
định hướng lên trên, 158	thể tích, 82
mặt cong, 159	thể tích không, 83
mặt phẳng, 14	tiêu chuẩn kẹp, 22
mặt phẳng tiếp xúc, 30	toán tử Laplace, 151
nghiệm cân bằng, 181	tron, 34
nghiệm riêng, 205	đường đi, 124
nghiệm tổng quát, 202	trường
nghiệm đặc biệt, 205	bảo toàn, 135
nhân tử Lagrange, 69	gradient, 135
man va Başıange, ov	trường vectơ, 127
phân hoạch, 79	trực giao, 11
phân rã của Carbon C^{14} , 199	tích phân, 81
phép chia, 79	tích phân lặp, 88
khoảng con, 79	tích phân mặt
phép đổi biến, 101	loại hai, 155
bảo toàn định hướng, 102 , 129 , 156	loại một, 154
đảo ngược định hướng, 102, 156	tích phân đường
phương pháp bình phương tối thiểu, 60	loại hai, 128
phương pháp cắt lớp, 88	loại một, 126
phương pháp hệ số bất định, 205	độc lập với đường đi, 136
phương pháp nhân tử Lagrange, 69	tích trong Euclid, 8
phương trình Laplace, 36	tích vô hướng Euclid, 8
phương trình vi phân	tập mức, 50
Bernoulli, 200	tập bị chặn, 66
toàn phần, 200	tập compắc, 66
trường vectơ, 179	tập mở, 16
phương trình vi phân cấp hai tuyến tính	tập đóng, 16
thuần nhất với hệ số hằng, 201	tọa độ, 5
phương trình vi phân cấp một tuyến tính,	tọa độ cầu, 106
192	tọa độ trụ, 105
phương trình vi phân cấp một tách biến,	tổng Riemann, 79
186	
phương trình vi phân cấp một đẳng cấp,	vecto, 5
189	cùng hướng, 11

 $CH\stackrel{.}{I}M\stackrel{.}{V}C$ 217

```
cùng phương, 11
    tích có hướng, 12, 46
vecto pháp tuyến, 14, 31
vecto pháp tuyến ngoài, 144
vecto pháp tuyến đơn vị, 160
vecto vận tốc, 44
vecto đơn vị, 11, 39
vuông góc, 11
Định lý cơ bản của tích phân đường, 135
điểm, 10
điểm biên, 16
điểm dừng, 56
điểm giới hạn, 16
điểm gốc tọa độ, 5
điểm trong, 16
điểm tới han, 56
điểm tụ, 16
điểm yên, 57
đường cong, 131
    hướng tiếp tuyến, 132
đường mức, 69
đường thẳng, 12
đường đi, 123
    chính qui, 130
    cùng định hướng, 130
    liên tục, 124
    trái định hướng, 130
    vết, 123
    đóng, 123
    đơn, 124
đạo hàm
    ánh xạ, 47
đạo hàm riêng, 27
đạo hàm theo hướng, 151
định hướng
    ra ngoài, 158
định luật Faraday, 175
định thức, 46
định tuổi bằng Carbon, 199
đồ thị, 19
độ cong, 134
động năng, 138
```