

Использования машинного обучения для повышения эффективности кислотных обработок в нефтяной промышленности

Давыдов Николай kolya.davydov@inbox.ru

Что такое кислотная обработка?

Нефтяная скважина со временем «засоряется» и начинает давать меньше нефти.

Что бы скважина давала больше нефти проводят кислотные обработки.

Закачивают кислоту в скважину – растворяют «засор» и скважина дает больше нефти (кислотная обработка).

Средняя стоимость кислотной обработки ~ 500 000 руб.

Эффективность положительная – скважина дает на 3 тонны нефти в сутки больше

Текущая эффективность кислотных обработок

Геологи считают по стандартным гео-физическим формулам потенциальные скважины.

На основании формул предполагают что кислотная обработка окажется эффективной.

Статистика эффективности кислотных обработок в России 50-60 %.

Цель

На основании имеющихся данных с использованием ML спрогнозировать эффективность кислотной обработки с высокой степенью точности

Повысить точность предсказания ≥ 80%.

Датасет. Анализ подготовка.

Исходный формат – таблица Excel (2439 строк, 18 столбцов)

2439 скважин

718 кислотных обработок (набор скважин, которые можно анализировать)

Текущий показатель эффективности – 59 %

Data	columns (total 15 columns):		
#	Column	Non-Null Count	Dtype
0	Тип скважины	718 non-null	category
1	Тип коллектора	718 non-null	category
2	Мощность пласта, м	718 non-null	float64
3	Начальное пластовое давление, атм	718 non-null	int64
4	Текущее пластовое давление, атм	718 non-null	int64
5	Текущий дебит нефти, тн	718 non-null	float64
6	Текущий дебит жидкости, м3	718 non-null	float64
7	Обводненость, %	718 non-null	int64
8	Текущий коэффициент продуктивности, м3/сут/атм	718 non-null	float64
9	Скин-фактор	718 non-null	float64
10	Температура пласта, град	718 non-null	int64
11	Вязкость нефти, сПз	718 non-null	float64
12	Наличие ГРП	718 non-null	int64
13	Прирост нефти от кислотных обработок, тн	718 non-null	float64
14	Эффективность	718 non-null	int64

Обучение модели

Задача классификации:

кислотная обработка для данной скважины эффективна или не эффективна

KNeighborsClassifier – 73 %

Swm from sklearn – 80 %

CatBoostClassifier – 89 %

Интерфейс

Мини web-приложение с использованием фреймворка Flask

обработки в нефтяной промышленности Тип скважины ∨ Тип коллектора диапазон 0.1 - 200 Мощность пласта, м Начальное пластовое давл диапазон 31 - 518 Текущее пластовое давлен диапазон 21 - 503 Текущий дебит нефти, тн диапазон 0.0-338.4 Текущий дебит жидкости, и диапазон 0.0-1093.0 Обводненость, % диапазон 0 - 100 Текущий коэффициент продилатон 0.0 - 40.0 диапазон -10.0 - 15.0 Скин-фактор Температура пласта, град диапазон 19 - 102 Вязкость нефти, сПз диапазон 0.1 - 163.9 диапазон: 1 - есть ГРП или 0 - нет ГРП Наличие ГРП Рекомендация к проведению кислотной обработки скважины

Предсказание эффективности кислотной

Спасибо за внимание

Давыдов Николай kolya.davydov@inbox.ru

