Aula 18 - Ricart-Agrawala e Quorums

Wednesday, May 11, 2016 13:44

Trabalho Prático 2

Eventos

broadcast -> schedule dos receive_msg cada em tempo aleatório send_msg executa_RC libera RC

Quando o nodo estiver na RC, use o SMPL para fingir que o nodo está falho e gerar um schedule para sair da RC

Relembrando Ricart-Agrawala

Requisição da RC

- Processo envia REQUEST para todos os demais
- Processo recebe REQUESTi
 - SE não tem requisição de maior prioridade E não está na RC
 - ENTÃO send REPLY
 - SENÃO, pendentes[i] <- 1

Execução da RC

- Depois de receber (N-1) REPLIES, executa_RC
- Schedule para libera RC
- Tempo fixo para execução da RC

Liberação da RC

 Após sair da RC, o processo envia REPLY para todo processo i tal que pendentes[i] = 1.

Executar também para tempo constante de transmissão de mensagens

Quorums

- Em um algoritmo baseado em quorums, um nodo nunca precisa fazer uma requisição a **todos** os demais; basta um **subconjunto dos demais**, que é o quorum.
- Um conjunto de quorums (chamado de **coterie**) deve ter as seguintes propriedades:
 - o **Interseção**: para 2 quorums quaisquer $g, h \in C$, $g \cap h \neq \phi$.
 - **Minimalidade**: para 2 quorums quaisquer $g, h \in C, \nexists g \supseteq h$.

Exemplos: sistema tem N=7. $C = \{\{1,2,3\},\{2,4,5\},\{4,6,7\}\}$ Não é coterie porque $C_1 \cap C_2 = \phi$.

Um sistema de quorums importante: Quorums de Maekawa Condições:

- 1. $(\forall i, \forall j: i \neq j, 1 \leq i, j \leq N, Q_i \cap Q_j \neq \phi)$
- 2. $(\forall i: 1 \leq i \leq N, p_i \in Q_i)$
- 3. $(\forall i: 1 \le i \le N, |Q_i| = k)$
- 4. Cada processo p está em k quorums.

$$N = k(k-1) + 1 \cong \sqrt{N}$$
 quorums

Exemplo: N = 6, k = 3. $\{\{1,2,3\},\{1,4,5\},\{2,4,6\},\{3,5,6\}\}$

O nodo 1 faz requisições para os nodos dos quorums a que pertence.

$$Q_1 = \{2,3,4,5\}$$

$$Q_2 = \{4,6,1,3\}$$

$$Q_3 = \{1,2,5,6\}$$

$$Q_4 = \{1,5,2,6\}$$

$$Q_5 = \{1,4,3,6\}$$

$$Q_6 = \{2,3,4,5\}$$

Um quorum mais simples: árvore

O problema dos generais bizantinos

4 generais ao redor de uma cidade murada. Um deles é o comandante. Um é um traidor.

Eles decidem por:

- A) Atacar ou
- B) Recuar

Os objetivos são

- IC1) Todos os generais leais executam a mesma ação
- IC2) Se o general comandante é leal, então todo comandado leal executa sua ordem.