

海凌科雷达模块天线罩设计指南

2022/5/20

天线罩对毫米波雷达模块性能的影响

- 雷达波在天线罩边界上发生反射
 - 使得雷达辐射或接收的总功率有所损耗;
 - 反射波进入接收通道,影响发射、接收通道之间的隔离度;
 - 反射可能使天线的驻波变差,进一步影响天线增益
- 雷达波在介质中传播会发生损耗,理论上来说频率越高损耗会越大;
- 电磁波在穿过介质时会产生一定程度的折射,
 - 影响天线的辐射方向图, 进而影响传感器的覆盖范围

天线罩的设计原则

• 天线罩的结构形状

- 表面光滑平整,厚度均匀一致。如平面或者球面,不能凹凸不平
- 若有表面涂层,不能含有金属或导电的材料
- 在天线正上方,天线罩面与天线平面保持平行

• 天线到天线罩内表面的的高度H

- 理想的高度是空气中电磁波半波长的整数倍
- $H = \frac{m}{2} * \frac{c_0}{f}$, 其中m为正整数, c_0 为真空光速, f为工作中心频率
- 比如,24.125GHz中心频率,其在空气中的半波长约6.2mm

• 天线罩的厚度D

- 理想的厚度是介质中电磁波半波长的整数倍
- $D = \frac{m}{2} * \frac{c_0}{f\sqrt{\epsilon_r}}$, 其中m为正整数, ϵ_r 为天线罩材质的相对介电常数
- 比如某ABS材料 $\epsilon_r=2.5$,其半波长约3.92mm

常见材料

- 设计之前, 先了解天线罩的材质和电气特性
 - 右表仅供参考,实际值请与供应商确认
- 天线到天线罩内表面的的高度H
 - 在空间允许时,优先推荐1倍或1.5倍波长
 - 比如,对应24.125GHz推荐12.4或18.6mm
 - 误差控制: ±1.2mm
- 天线罩的厚度D
 - 推荐半波长,误差控制±20%
 - 如不能满足半波长的厚度要求
 - 推荐使用低□□的材料;
 - 厚度推荐1/8波长或更薄
- 不均匀材料或多层组合材料对雷达性能的影响,建议在设计时进行实验调整。

常见材料特性(基于24.125GHz)

介质	□□典型值	半波长 (mm)	1/8波长 (mm)	1/10波长 (mm)
空气	1.00	6.20	1.55	1.24
ABS1	1.50	5.06	1.27	1.01
ABS2	2.50	3.92	0.98	0.78
PC材料	3.00	3.58	0.89	0.72
PMMA亚克力1	2.00	4.38	1.10	0.88
PMMA亚克力2	5.00	2.77	0.69	0.55
PVC硬	4.00	3.10	0.78	0.62
PVC软	8.00	2.19	0.55	0.44
高密度PE	2.40	4.00	1.00	0.80
低密度PE	2.30	4.09	1.02	0.82
石英玻璃	5	2.77	0.69	0.55