ETESP

FISICO QUIMICA) PROFESSOR JOTA | ESCOLA TECNICA ESTADUAL DE SÃO PAL

Definição

Calor de reação

É a parte da química que estuda as trocas de energia em uma reação química.

A termoquímica estuda as transferências de calor associadas às reações químicas ou às mudanças no estado físico das substâncias.

| TERMOQUÍMICA

Calor de reação é o nome dado à quantidade de calor liberado ou absorvido em uma reação química ou mudança de estado. Para medi-lo, utiliza-se um equipamento denominado de calorímetro.

REAÇÕES EXOTÉRMICAS LIBERAM CALOR ΔH<0

REAÇÕES ENDOTÉRMICAS ABSORVEM CALOR ΔΗ>0

ENTALPIA (H)

O calor é uma forma de energia e, segundo a Lei da Conservação da Energia, ela não pode ser criada e nem destruída, pode apenas ser transformada de uma forma para outra.

PORTANTO A ENERGIA

liberada por uma reação química não foi criada, ela já existia antes, armazenada nos reagentes, sob uma outra forma;

PORTANTO A ENERGIA

absorvida por uma reação química não se perdeu, ela permanece no sistema, armazenada nos produtos, sob uma outra forma.

ENERGIA ARMAZENADA

A energia armazenada nas substâncias - reagentes (Hr) ou produtos (Hp) - dá-se o nome de conteúdo de calor (Q) ou entalpia (H).

 $Q = -\Delta H$ $\Delta H = H_D - H_r$ H_o = Energia dos Produtos H_r = Energia dos Reagentes

Cada substância armazena um certo conteúdo de calor, que será alterado quando a substância sofrer uma transformação.

PROCESSOS EXOTÉRMICOS

Um processo exotérmico é aquele no qual calor é liberado pelo sistema (reação química) para o ambiente. Por exemplo, a queima de um pedaço de carvão.

PROCESSOS ENDOTÉRMICOS

Processos endotérmicos são aqueles nos quais o sistema absorve calor do ambiente. Por exemplo, a fusão do gelo é um processo endotérmico.

TERMOQUÍMICA

GRÁFICOS REAÇÕES EXOTÉRMICAS

$$2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$$

$$\Delta H = +92,2kJ/mol$$

TERMOQUÍMICA

ESTADO PADRÃO

Ocorre quando uma substância é uma substâncias simples e se encontra à 25 °C de temperatura, pressão de 1 atm ou 760 mmHg, no seu estado físico mais comum e no seu estado alotrópico mais estável;

Essas condições experimentais são chamadas de condições padrão ou estado padrão, e a entalpia, determinada nessas condições, é a entalpia padrão que é igual a zero.

ENTALPIA PADRÃO

A entalpia padrão á representada H⁰

Substâncias com entalpia padrão diferentes de zero: O2 liquido, O3 gasoso, H2 liquido, I2 gasoso, C diamante etc...

ENTALPIA OU CALOR DE FORMAÇÃO

variação de entalpia da reação de formação de 1 mol uma substância, partindo de reagentes no estado padrão (H = 0).

EXEMPLO

 $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$

 $\Delta H = -68,3 \text{ kcal/mol}$

O valor ΔH = -68,3 kcal é a entalpia de formação da água (entalpia padrão).

ESTADOS ALOTRÓPICOS MAIS COMUNS (ESTÁVEIS)

ELEMENTO

TABELAS

Tabela: ΔH (KJ/mol) para mudanças de fase

Substância		T _f (°C)	ΔH_{fin}^*	T _v (°C)	ΔH _{vap} *
Benzeno	C ₆ H ₆	5	9,84	80	30,8
Bromo	Br ₂	-7	10,8	59	30,0
Mercúrio	Hg	-39	2,33	357	59,4
Naftaleno	C ₁₀ H ₈	80	19,3	218	40,5
Água	H ₂ O	0	6,00	100	40,7

Tabela: Calores de formação (KJ/mol) a 25°C e 1 atm

Cátions				Ânions				
Ag*(aq)	+105,9	K*(aq)	-251,2	Br(aq)	-120,9	H ₂ PO ₄ (aq)	-1302,5	
Al3+(aq)	-524.7	Li*(aq)	-278,5	Cl'(aq)	-167,4	HPO ₄ 2-(aq)	-1298,7	
Ba2*(aq)	-538,4	Mg2*(aq)	-462,0	ClO ₃ (aq)	-98,3	I'(aq)	-55,9	
Ca2+(aq)	-543,0	Mn2+(aq)	-218,8	ClO ₄ -(aq)	-131,4	MnO ₄ (aq)	-518,4	
Cd2*(aq)	-72,4	Na*(aq)	-239,7	CO ₃ ² (aq)	-676,3	NO ₃ (aq)	-206,6	
Cu2*(aq)	+64,4	NH ₄ *(aq)	-132,8	CrO ₄ ² (aq)	-863,2	OH'(aq)	-229,9	
Fe2+(aq)	-87,9	Ni2*(aq)	-64,0	F(aq)	-329,1	PO ₄ 3 (aq)	-1284,1	

AgBr(s)	-99,5	$C_2H_2(g)$	+226,7	H ₂ O(l)	-285,8	NH ₄ Cl(s)	-315,4
AgCl(s)	-127,0	C2H4(g)	+52,3	H ₂ O ₂ (l)	-187,6	NH ₄ NO ₃ (s)	-365,1
Agl(s)	-62,4	C2H6(g)	-84,7	H ₂ S(g)	-20,1	NO(g)	+90,4
Ag ₂ O(s)	-30,6	$C_3H_8(g)$	-103,8	H ₂ SO ₄ (1)	-811,3	NO ₂ (g)	+33,9
Ag ₂ S(s)	-31,8	n-C ₄ H ₁₀ (g)	-124,7	HgO(s)	-90,7	NiO(s)	-244,3
Al ₂ O ₃ (s)	-1669,8	n-C ₅ H ₁₂ (l)	-173,1	HgS(s)	-58,2	PbBr2(s)	-277,0
BaCl ₂ (s)	-860,1	C ₂ H ₅ OH(l)	-277,6	KBr(s)	-392,2	PbCl _z (s)	-359,2
BaCO ₃ (s)	-1218,8	CoO(s)	-239,3	KCl(s)	-435,9	PbO(s)	-217,9
BaO(s)	-558,1	Cr ₂ O ₃ (s)	-1128,4	KClO ₃ (s)	-391,4	PbO ₂ (s)	-276,6
BaSO ₄ (s)	-1465,2	CuO(s)	-155,2	KF(s)	-562,6	Pb ₃ O ₄ (s)	-734,7
CaCl ₂ (s)	-795,0	Cu ₂ O(s)	-166,7	MgCl ₂ (s)	-641,8	PCl ₃ (g)	-306,4
CaCO ₃ (s)	-1207,0	CuS(s)	-48,5	MgCO ₃ (s)	-1113	PCl ₅ (g)	-398,9
CaO(s)	-635,5	CuSO ₄ (s)	-769,9	MgO(s)	-601,8	SiO ₂ (s)	-859,4
Ca(OH)2(s)	-986,6	Fe ₂ O ₃ (s)	-822,2	Mg(OH)2(s)	-924,7	SnCl ₂ (s)	-349,8
CaSO ₄ (s)	-1432,7	Fe ₃ O ₄ (s)	-1120,9	MgSO ₄ (s)	1278,2	SnCl ₄ (1)	-545,2
CCl ₄ (l)	-139,5	HBr(g)	-36,2	MnO(s)	-384,9	SnO(s)	-286,2
CH ₄ (g)	-74,8	HCl(g)	-92,3	MnO ₂ (s)	-519,7	SnO ₂ (s)	-580,7
CHCl ₃ (l)	-131,8	HF(g)	-268,6	NaCl(s)	-411,0	SO ₂ (g)	-296,1
CH ₃ OH(1)	-238,6	HI(g)	+25,9	NaF(s)	-569,0	SO ₃ (g)	-395,2
CO(g)	-110,5	HNO ₃ (l)	-173,2	NaOH(s)	-426,7	ZnO(s)	-348,0
CO ₂ (g)	-393,5	H ₂ O(g)	-241,8	NH ₃ (g)	-46,2	ZnS(s)	-202,9

TERMOQUÍMICA