

#### 推荐系统文章整理

# Collaborative Topic Modeling for Recommending Scientific Articles

Wang C, Blei D M. Collaborative topic modeling for recommending scientific articles[C]//Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2011: 448-456.

## 推荐系统的两类任务



- In-matrix 预测 Figure a 这种每篇文章至少被一个用户评价过的 预测问题
- Out-matrix 预测 Figure b 像 4、5 这种每篇文章从未被别人评价 过的预测问题,存在冷启动问题,通常的协同过滤算法无法处理



Figure: 两种推荐系统问题的图示, √表示喜欢, ×表示不喜欢,?表示未被评分

## 矩阵分解方法做推荐



#### 变量定义及损失函数

- 用低维空间来表示用户、物品隐向量  $u_i, v_j$ ,用户评分可以表示为  $\hat{r}_{ij} = u_i^T v_j$
- 于是可以转化为优化问题: 最小化带正则的损失平方, 如下式:

$$min_{U,V} \sum_{i,j} (r_{ij} - u_i^T v_j)^2 + \lambda_u \|u_i\|^2 + \lambda_v \|v_j\|^2$$
  
其中  $U = (u_i)_{i=1}^I$  和  $V = (u_j)_{j=1}^J$ 

## 矩阵分解方法做推荐



#### probabilistic matrix factorization(PMF)

#### 可以假设如下生成过程:

- 对于每个用户 i,用户 i 隐变量  $u_i \sim N(0, \lambda_u^{-1} I_K)$
- 对于每个物品 j,物品 j 隐变量  $v_j \sim N(0, \lambda_v^{-1} I_K)$
- 对于每个用户物品对 (i,j), 评分  $r_{ij} \sim N(u_i^T v_j, c_{ij}^{-1})$  其中  $c_{ij}$  是 针对  $r_{ij}$  的参数,定义如下:

$$c_{ij} = \begin{cases} a, & if \quad r_{ij} = 1\\ b, & if \quad r_{ij} = 0 \end{cases}$$

具体理解参考: http://blog.csdn.net/shenxiaolu1984/article/details/50372909

## 概率主题模型



#### 隐狄利克雷模型 (文档主题模型)

隐狄利克雷模型生成过程:(注意:下列参数均为向量)

- 1、对于每篇文章  $w_j$ ,从参数为  $\alpha$ (参数预先给定)的狄利克雷分布得到主题参数,即:
  - $\theta_j \sim Dirichlet(\alpha)$
- 2、对于每个单词 n
  - (a) 从参数为  $\theta_j$  的多项分布得到词的主题,即:
  - $z_{jn} \sim Mult(\theta_j)$
  - (b) 从参数为  $\beta_{z_{jn}}$ ( $\beta$  参数对应刚得到的主题)的狄利克雷分布得到单词分布参数,并由该参数通过多项分布生成最终单词,即: $w_{jn}\sim Mult(Dirichlet(\beta_{z_{jn}}))$
- 3、具体理解参考: http://blog.csdn.net/yhao2014/article/details/51098037



#### 模型布局

- $\alpha$  为主题先验参数,生成  $\theta$  主题后验参数,生成对应主题 z,然后根据  $\beta_z$  作为单词先验参数生成单词后验参数,最终生成单词(分布对应 LDA)
- 由主题后验参数  $\theta$  加入干扰项  $\varepsilon$  得到隐物品向量 v,和隐用户向量 u 得到评分 r



Figure: CTR 模型的图示



#### 模型生成过程

假设有 K 个主题, 主题先验参数  $\beta=\beta_{1:K}$ 

- 1、对于每个用户 i,用户 i 隐变量  $u_i \sim N(0, \lambda_u^{-1} I_K)$
- 2、对于每个物品 j,
  - (a) 主题后验参数  $\theta_i \sim Dirichlet(\alpha)$
  - (b) 物品偏移量  $arepsilon \sim N(0, \lambda_v^{-1} I_K)$ ,并得到隐物品向量
  - $v_j = \varepsilon_j + \theta_j$ ,这个偏离量指文章内容以外的用户造成的影响
  - (c) 对于每个单词  $w_{jn}$
  - 生成主题  $z_{jn} \sim Mult(\theta_j)$ ,单词  $w_{jn} \sim Mult(Dirichlet(\beta_{z_{jn}}))$
- 3、对于每个用户物品对 (i,j),评分  $r_{ij} \sim N(u_i^T v_j, c_{ij}^{-1})$  协同主题回归模型的解释  $E[r_{ij}|u_i, \theta_i, \varepsilon_j] = u_i^T(\theta_i + \varepsilon_j)$



#### 参数学习-E 步

- 采用 EM 算法, E 步优化  $u_i, v_j, \theta_j$ , M 步优化  $\beta$
- 最大化似然函数,优化 U,V, $\theta_{1:J}$  和 R,给定  $\lambda_u, \lambda_v, \beta$ ,损失函数如下

$$L = -\frac{\lambda_u}{2} \sum_{i} u_i^T u_i - \frac{\lambda_v}{2} \sum_{j} (v_j - \theta_j)^T (v_j - \theta_j) + \sum_{j} \sum_{n} log(\sum_{k} \theta_{jk} \beta_{k, w_{jn}}) - \sum_{i,j} \frac{c_{ij}}{2} (r_{ij} - u_i^T v_j)^2$$

- 通过使偏导为 0 优化  $u_i, v_j$   $u_i \rightarrow (VC_iV^T + \lambda_u I_K)^{-1}VC_iR_i$  $v_j \rightarrow (UC_jU^T + \lambda_v I_K)^{-1}(UC_jR_j + \lambda_v\theta_j)$
- 定义  $q(z_{jn}=k)=\phi_{jnk}$ ,然后分离含有  $\theta_j$  项的,并用 Jensen 不等式

$$\begin{array}{l} \mathsf{L}(\theta_{j},\phi_{j}) = -\frac{\lambda_{v}}{2} \sum_{j} (v_{j} - \theta_{j})^{T} (v_{j} - \theta_{j}) \\ + \sum_{n} \sum_{k} \phi_{jnk} (\log \theta_{jk} \beta_{k,w_{jn}} - \log \phi_{jnk}) \\ \text{最优的 } \phi_{jnk} \text{ 服从 } \phi_{jnk} \propto \theta_{jk} \beta_{k,w_{in}}, \text{ 文中使用投影梯度优化 } \theta_{j} \end{array}$$



#### 参数学习-M 步

• 使用 E 步得到的 U、V 和  $\phi$ ,优化  $\beta$  过程,与 LDA 模型中一致,即  $\beta \propto \sum_i \sum_n \phi_{jnk} 1[w_{jn} = w]$ 

#### 预测

- D 作为观测到的数据,总体预测可以估计为:  $E[r_{ij}|D] \approx E[u_i|D]^T(E[\theta_i|D] + E[\varepsilon_i|D])$
- in-matrix 问题, $r_{ij}^* \approx (u_i^*)^T (\theta_j^* + \varepsilon_j^*) = (u_i^*)^T v_j^*$
- out-matrix 问题,  $r_{ij}^* \approx (u_i^*)^T \theta_j^*$

## 评估方法



- 评估公式
  recall@M = number of articles the user like in topM total number of article the user likes
- in-matrix 预测5 倍交叉验证,每篇文章至少出现 5 次平均分配到每组中,少于5 次的放入训练集
- out-of-matrix 预测5 倍交叉验证,平均分配,测试集测试其中从未出现在训练集中的文章即可



Figure: 对比 LDA、CF、CTR 在两种预测问题的召回率

## 评估 $\lambda_v$ 参数影响



•  $\lambda_v$  的影响  $\lambda_v$  小的时候内容影响小,CTR 贴近 CF, $\lambda_v$  大的时候内容影响 大,CTR 贴近 LDA



Figure: 在不同  $\lambda_v$  下,CTR 与 LDA、CF 召回率对比

## 评估用户的召回率与其收藏文章数量关系





Figure: 一个用户收藏文章数量与召回率的散点图

- 两种问题预测结果都表明,有更多文章的用户预测召回率方差较小,文章少的用户容易产生评分的极值 0 或 1
- 文章很多的用户召回率有降低趋势,因为多阅读量的用户容易有不常见的文章,相对难以预测

## 评估文章的召回率与被收藏用户数量关系





Figure: 一篇文章被收藏的用户数量与召回率的散点图

- 在 in-matrix 问题中,有更多用户的文章容易有更高的召回率,信息更多,更容易预测,在 LDA 方法中这个效应弱一些,因为其不用用户评分信息
- 在 out-matrix 问题中,由于都是新文章,提取不到用户信息,所以就没有上述效应

## 用户画像



## • 通过 CTR 方法得到两个用户的偏好主题与推荐文章 (通过隐向量 $u_i$ )

|                 | user I                                                                                                              | in user's lib? |
|-----------------|---------------------------------------------------------------------------------------------------------------------|----------------|
| top 3 topics    | 1. image, measure, measures, images, motion, matching, transformation, entropy, overlap, computed, match            |                |
|                 | 2. learning, machine, training, vector, learn, machines, kernel, learned, classifiers, classifier, generalization   |                |
|                 | 3. sets, objects, defined, categories, representations, universal, category, attributes, consisting, categorization |                |
| top 10 articles | Information theory inference learning algorithms                                                                    | <b>√</b>       |
|                 | Machine learning in automated text categorization                                                                   | ✓              |
|                 | Artificial intelligence a modern approach                                                                           | ×              |
|                 | 4. Data xmining: practical machine learning tools and techniques                                                    | ×              |
|                 | 5. Statistical learning theory                                                                                      | ×              |
|                 | 6. Modern information retrieval                                                                                     | ✓              |
|                 | 7. Pattern recognition and machine learning, information science and statistics                                     | ✓              |
|                 | 8. Recognition by components: a theory of human image understanding                                                 | ×              |
|                 | 9. Data clustering a review                                                                                         | ✓              |
|                 | 10. Indexing by latent semantic analysis                                                                            | ✓              |
|                 | user II                                                                                                             | in user's lib? |
| top 3 topics    | users, user, interface, interfaces, needs, explicit, implicit, usability, preferences, interests, personalized      |                |
|                 | 2. based, world, real, characteristics, actual, exploring, exploration, quite, navigation, possibilities, dealing   |                |
|                 | 3. evaluation, collaborative, products, filtering, product, reviews, items, recommendations, recommender            |                |
| top 10 articles | Combining collaborative filtering with personal agents for better recommendations                                   | ×              |
|                 | An adaptive system for the personalized access to news                                                              | ✓              |
|                 | 3. Implicit interest indicators                                                                                     | ×              |
|                 | Footprints history-rich tools for information foraging                                                              | ✓              |
|                 | 5. Using social tagging to improve social navigation                                                                | ✓              |
|                 | User models for adaptive hypermedia and adaptive educational systems                                                | ✓              |
|                 | 7. Collaborative filtering recommender systems                                                                      | ✓              |
|                 | Knowledge tree: a distributed architecture for adaptive e-learning                                                  | ✓              |
|                 | Evaluating collaborative filtering recommender systems                                                              | <b>✓</b>       |
|                 | 10. Personalizing search via automated analysis of interests and activities                                         | ✓              |

## 文章的隐空间 (偏离向量 $\varepsilon$ 的影响)



| title                                                                                 | # dataset | # Google | avg-like | avg-dislike |
|---------------------------------------------------------------------------------------|-----------|----------|----------|-------------|
| The structure and function of complex networks                                        | 212       | 5,192    | 0.909    | 0.052       |
| Emergence of scaling in random networks                                               |           | 8,521    | 0.899    | 0.058       |
| R: a language and environment for statistical computing                               |           | 837      | 0.827    | 0.047       |
| A mathematical theory of communication                                                |           | 39,401   | 0.817    | 0.062       |
| <ol><li>Maximum likelihood from incomplete data via the EM algorithm</li></ol>        |           | 22,874   | 0.864    | 0.055       |
| 6. A tutorial on hidden Markov models and selected applications in speech recognition |           | 11,929   | 0.822    | 0.048       |
| 7. The structure of collaborative tagging systems                                     | 321       | 648      | 0.903    | 0.055       |
| 8. Why most published research findings are false                                     |           | 713      | 0.846    | 0.049       |
| Phase-of-firing coding of natural visual stimuli in primary visual cortex             |           | 64       | 1.057    | -0.004      |
| 10. Defrosting the digital library bibliographic tools for the next generation web    |           | 37       | 0.840    | 0.042       |

- 偏离向量  $\varepsilon_j^T \varepsilon_j = (v_j \theta_j)^T (v_j \theta_j)$ ,上表表示最大偏离量的 10 篇文章的概况和预测情况
- 表格第二三列为文章出现在数据中次数及 Google Scholar 中引用 次数
- 这些偏移量大的往往引用量很高,是很大众化文章,这些文章常被不同领域人阅读
- 后两列表示喜欢和不喜欢的平均预测评分

2017-03

15 / 17

## 文章的隐空间 (偏离向量 $\varepsilon$ 的影响)







topic 1: estimate, estimates, likelihood, maximum, estimated, missing, distances topic 10: parameters. Bayesian, inference, optimal, procedure, prior, assumptions

topic 1: neurons, responses, neuronal, spike, cortical, stimuli, stimulus

Figure: 主题参数分布图

- 左图表示偏移量大且很受普遍关注的文章,偏移量来自众多读者 的偏好, 隐向量会多出很多文本本身以外的主题。
- 右图表示不那么受普遍关注的文章也可以有较大偏移,但由于读 者少, 主要主题不会变, 偏移量调整隐向量, 一般不会推荐给文 章主题爱好以外的用户

## 总结与展望



- 这篇文章整合矩阵分解方法和 LDA 主题模型预测推荐,后者预测物品隐向量
- 引入偏移量更好衡量内容的隐向量与该文章的隐向量,从而反映 用户影响
- 作为一个传统方法,测试其他方法做 baseline
- LDA 表示文章主题仍有不足,所以后续引入深度学习来搞这个,参考 CDL 这篇文章 (Wang H, Wang N, Yeung D Y. Collaborative deep learning for recommender systems[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2015: 1235-1244.)