L10 – Transconductance Amplifier Design

I. be gan desist.

DAC [-10 V, 10 V]
[-10 A 10A) · -1 [A/V]. u g

bac output touse

Assume
$$L(j\omega) \rightarrow \infty$$
 $\frac{T_0}{V_{Tr}} = -\frac{1}{R_s} \frac{R_6}{R_s} = -1$

. If
$$R_3 = 0.20$$
, $\rightarrow \begin{cases} \text{Auk}R5 & \text{such that } \frac{R_5 \gg R_5}{R_5} : R_5 = |K,R| \\ \text{Rick } R_3 \rightarrow \frac{k_5}{R_5} : 1 \rightarrow \frac{R_3 = 5}{R_5} \times \frac{R_5}{R_5} = \frac{1}{R_5} \times \frac{1}{R_5} = \frac{1}{R_5} \times \frac{1}{R_5} \times \frac{1}{R_5} \times \frac{1}{R_5} = \frac{1}{R_5} \times \frac$

 $\overline{L}. Loop Shaping.$ $L(S) = Z_{4}(S).$ $T_{5}(S) \left(\frac{k_{1}+R_{2}}{k_{1}}\right) \left(\frac{k_{5}}{k_{5}}\right)$ C(S). C(S).

besign (cs) = $Z_{+}(s)$. such that L(s) = C.f. achieves a "desired Loop shape"

Compansator"
Compansator"
Compansator"
Compansator

Compa

o Desired Loop shape

before comp Lm5+Rm+Ps Rm ~ IKHZ

 $L_{m} = (mH)$ $R_{m} = 6.2$ $R_{1} - 1k\Omega$ $R_{2} = 9k\Omega$ $R_{3} = 8.2 \Omega$ $R_{5} - 1k\Omega$

Di faciencias

- · Low loop gain.
- . Floot de loop gain

 -> nant "Steep" slope

e.g.) set pm > 60° We = lok42 -> Dm = 90°. (3) Raise to [Lojus]= 1 at w= wc. 30k2. (4). Intudue the integration. by selecting e.g. R4C4 = 1kHz (5) => |C4 = 5.5 nF "Trade-off" & low win -s wearth dist reject bond transfers.

Low win -s sacrifies Dun

