Linear Optics Quantum Computation: an Overview

C. R. Myers and R. Laflamme

Quantum Information Processing with Linear Optics

Quantum Optics

Classical Electromagnetism

Quantisation

Linear Optics Quantum Computation

LOQC and Quantum Error Correction

Quantum Information Processing with Linear Optics

Quantum Optics

Classical Electromagnetism

EM waves emerge from the source free Maxwell equations

$$abla^2 \mathbf{E}(\mathbf{r},t) = rac{1}{c} rac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r},t)$$

This has the positive and negative field solutions

$$\mathbf{E}(\mathbf{r},t) = i \sum_k \left(rac{\hbar \omega_k}{2}
ight)^{1/2} \left[a_k \mathbf{u}_k(\mathbf{r}) e^{-i \omega_k t} + a_k^* \mathbf{u}_k^*(\mathbf{r}) e^{i \omega_k t}
ight]$$

The energy associated with these fields is given by

$$H=rac{1}{2}\int_V({f E}^2+{f B})\,{
m d}{f r}=\sum_k\left(rac{\hbar\omega_k}{2}
ight)a_ka_k^*$$

Quantisation

To quantise the field $\mathbf{E}(\mathbf{r},t)$ we convert the coefficients a_k into mode operators, which satisfy the canonical commutation relation

$$\left[\hat{a}_i,\hat{a}_j^\dagger
ight]=\delta_{ij}$$

This results in the energy defined as

$$\hat{H} = \sum_k \hbar \omega_k \left(\hat{a}_k^\dagger \hat{a}_k + 1/2
ight)$$

which resembles a harmonic oscillator.

Linear Optics Quantum Computation LOQC and Quantum Error Correction