

Overview of the module

- Day 1 Concept of algorithm, Cryptography, recursion, Knapsack, Shortest Path
- Day 2 Complexity, Graph problems, Theory

Organisation

- ▶ The exercices will be in python
- Please clone the following repository :
 https://github.com/nlehir/ALGO1.git
- Third party libs : matplotlib, numpy, networkx
- Optional but useful: ipdb (python debug) or another debugger
- Some scripts in the github are still using pygraphviz, graphviz but we will not use them during the exercises.

Day 2

The problem of complexity

Time and space complexities Measuring time complexities Profiling Computing complexities Space complexity

Famous graph problems

Random graphs
Dominating set
Coloring
Independent Set

Theoretical problems

➤ Today we will **quantify** the **complexity** of several problems : how many operations are required to answer a given question, as a function of the size of the input ? Is it possible to **compute** an answer with a computer ?

- ► Today we will **quantify** the **complexity** of several problems : how many operations are required to answer a given question, as a function of the size of the input ? Is it possible to **compute** an answer with a computer ?
- Importantly, this is called the time complexity of the problem. It does not take the memory usage into account.

- ➤ Today we will **quantify** the **complexity** of several problems : how many operations are required to answer a given question, as a function of the size of the input ? Is it possible to **compute** an answer with a computer ?
- Importantly, this is called the time complexity of the problem. It does not take the memory usage into account.
- ► However, we will also discuss **space complexity** that quantifies memory usage.

► The answer is that **it depends on the problem**. For some problems, it is very probable that there exists **no exact fast** solution (for instance the NP-hard problems)

Average and worst case complexities

- ▶ Often, for a given algorithm, the exact number of operations needed will **depend on the instance of the problem**.
- ▶ It is possible to compute several complexities given a problem size *n*:
 - worst-case the maximum number of operation needed
 - average-case average complexity, averaged over a distribution on the input. Thus this distribution is to be known, or assumed.

Measuring complexities

► Let us measure the time complexity of some simple programs. How ?

Measuring complexities

- ► Let us start by measuring the complexity of some simple programs.
- ▶ We can first measure the computing time.

Exercice 1 : Linear complexity

cd complexity/ and use linear_complexity.py to verify that the complexity of a sequence of multiplications is proportionnal to its length.

Exercice 1: Linear complexity

- cd complexity/ and use linear_complexity.py to verify that the complexity of a sequence of multiplications is proportionnal to its length.
- It should look like this :

Exercice 2 : Non linear complexity

► What happens with matrix multiplication ? modify matrix_multiplication.py to estimate the computing time as a function of the size of the matrix.

Exercice 2: Non linear complexity

- What happens with matrix multiplication? modify matrix_multiplication.py to estimate the computing time as a function of the size of the matrix.
- It should look like this :

Matrix multiplication

Let's give a rough approximation of the number of operations as a function of the size *n* of the matrix.

Matrix multiplication

- ► Let's give a rough approximation of the number of operations as a function of the size *n* of the matrix.
- ▶ It should then be of order $\mathcal{O}(n^3)$. However, some **sub-cubic** algorithms exists : faster than n^3

Measuring the time?

▶ Why is **time** maybe not the best tool to evaluate the complexity of an algorithm ?

Measuring the time?

- Why is time maybe not the best tool to evaluate the complexity of an algorithm ?
- ▶ It depends on the machine

Measuring the time?

- Why is time maybe not the best tool to evaluate the complexity of an algorithm ?
- ▶ It depends on the machine
- ▶ We could count the number of elementary operations instead.

Experimental evaluation

Exercice 3 : Counting the number of elementary operations

▶ Please use a variable in **exponentiation_complexity.py** to compute the number of operations in fast exponentiation and normal exponentiation.

Experimental evaluation

Exercice 3 : Counting the number of elementary operations

- Please use a variable in exponentiation_complexity.py to compute the number of operations in fast exponentiation and normal exponentiation.
- It should look like :

Experimental evaluation

Exercice 3: Counting the number of elementary operations

▶ We note the **logarithmic complexity** $\mathcal{O}(\log n)$

Asymptotic behavior

▶ What matters is the **asymptotic** behavior, when $n \to \infty$

Asymptotic behavior

- ▶ What matters is the **asymptotic** behavior, when $n \to \infty$
- ► This tells if the algorithm **scales** (still works when the instance of the problem is larger)

Asymtptic behavior : \mathcal{O} notation

Mathematically speaking, we say that $f = \mathcal{O}(g)$ if the ratio $\frac{|f(n)|}{|g(n)|}$ is **bounded**.

$$\exists A \geq 0, \forall n \in \mathbb{N} | \frac{f(n)}{g(n)} | \leq A$$
 (1)

- ▶ || means "absolute value"
- ▶ intuitively, this means that f is not bigger than g

Asymptotic behavior : examples

$$n^2 + n = \mathcal{O}(?) \tag{2}$$

$$5 \times n^4 + 2178 \times n^3 + \log 3n = \mathcal{O}(?)$$
 (3)

Asymptotic behavior : examples

$$n^2 + n = \mathcal{O}(n^2) \tag{4}$$

$$5 \times n^4 + 2178 \times n^3 + \log 3n = \mathcal{O}(n^4)$$
 (5)

Asymtptic behavior : o notation

Mathematically speaking, we say that $f=\wr(g)$ if the ratio $\frac{|f(n)|}{|g(n)|}$ goes to 0 when $n\to+\infty$

$$\lim_{n \to +\infty} \left| \frac{f(n)}{g(n)} \right| = 0 \tag{6}$$

ightharpoonup intuitively, this means that f is smaller than g

Asymtptic behavior : o notation

Mathematically speaking, we say that f=o(g) if the ratio $\frac{|f(n)|}{|g(n)|}$ goes to 0 when $n\to +\infty$

$$\lim_{n \to +\infty} \left| \frac{f(n)}{g(n)} \right| = 0 \tag{7}$$

Please define this limit mathematically ?

Asymtptic behavior : o notation

Mathematically speaking, we say that f=o(g) if the ratio $\frac{|f(n)|}{|g(n)|}$ goes to 0 when $n\to +\infty$

$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0 \tag{8}$$

•

$$\forall \epsilon > 0, \exists A \in \mathbb{R}, \forall n \ge A, \left| \frac{f(n)}{g(n)} \right| \le \epsilon$$
 (9)

Asymptotic behavior : general rules

When $n \to +\infty$:

• if
$$\alpha < \beta$$
, $n^{\alpha} = o(n^{\beta})$

• if
$$0 < a < b$$
,

• if
$$\alpha > 0$$
, $\beta \in \mathbb{R}$, $(\log n)^{\beta} = o(n^{\alpha})$

• if
$$a > 1$$
, $n^{\alpha} = o(a^n)$

Asymptotic behavior : equivalence

▶ We say that $f(n) \sim_{n \to +\infty} g(n)$ when

$$f(n) = g(n) + o(g(n))$$
 (10)

Asymptotic behavior : equivalence

▶ We say that $f(n) \sim_{n \to +\infty} g(n)$ when

$$f(n) = g(n) + o(g(n))$$
(11)

When talking about complexities, we will be interested in the simplest equivalent.

Equivalence

Exercice 3: Find equivalents and the limits for the following functions:

$$u_n = 3n^3 - n^2(\sqrt{n}\sin n) + \cos(\sqrt{n})$$

$$v_n = -0.2 * n^n + 10 * n^2 * n!$$

- Maximum number of edges in a simple directed graph
- ► n!

Examples of algorithms

- Fast exponentiation
- Naive exponentiation
- Merge sort
- Insertion sort
- Matrix multiplication
- Enumeration of subsets, TSP, coloring
- ► Enumeration of permutations

- ▶ Fast exponentiation $\mathcal{O}(\log n)$
- Naive exponentiation
- Merge sort
- Insertion sort
- Matrix multiplication
- Enumeration of subsets, TSP, coloring
- ► Enumeration of permutations

- ▶ Fast exponentiation $\mathcal{O}(\log n)$
- ▶ Naive exponentiation $\mathcal{O}(n)$
- Merge sort
- Insertion sort
- Matrix multiplication
- Enumeration of subsets, TSP, coloring
- ► Enumeration of permutations

- ▶ Fast exponentiation $\mathcal{O}(\log n)$
- ▶ Naive exponentiation $\mathcal{O}(n)$
- ▶ Merge sort $\mathcal{O}(n \log n)$
- Insertion sort
- Matrix multiplication
- Enumeration of subsets, TSP, coloring
- ► Enumeration of permutations

- ▶ Fast exponentiation $\mathcal{O}(\log n)$
- ▶ Naive exponentiation $\mathcal{O}(n)$
- ▶ Merge sort $\mathcal{O}(n \log n)$
- ▶ Insertion sort $\mathcal{O}(n^2)$
- Matrix multiplication
- Enumeration of subsets, TSP, coloring
- ► Enumeration of permutations

- ▶ Fast exponentiation $O(\log n)$
- ▶ Naive exponentiation $\mathcal{O}(n)$
- ▶ Merge sort $\mathcal{O}(n \log n)$
- ▶ Insertion sort $\mathcal{O}(n^2)$
- ▶ Matrix multiplication $\mathcal{O}(n^{2.37})$
- Enumeration of subsets, TSP, coloring
- Enumeration of permutations

- ▶ Fast exponentiation $\mathcal{O}(\log n)$
- ▶ Naive exponentiation $\mathcal{O}(n)$
- ▶ Merge sort $\mathcal{O}(n \log n)$
- ▶ Insertion sort $\mathcal{O}(n^2)$
- ▶ Matrix multiplication $\mathcal{O}(n^{2.37})$
- ▶ Enumeration of subsets, TSP, coloring $\mathcal{O}(2^n)$
- Enumeration of permutations

- ▶ Fast exponentiation $\mathcal{O}(\log n)$
- ▶ Naive exponentiation $\mathcal{O}(n)$
- ▶ Merge sort $\mathcal{O}(n \log n)$
- ▶ Insertion sort $\mathcal{O}(n^2)$
- ▶ Matrix multiplication $\mathcal{O}(n^{2.37})$
- ▶ Enumeration of subsets, TSP, coloring $\mathcal{O}(2^n)$
- ▶ Enumeration of permutations $\mathcal{O}(n!)$

Orders of magnitude

Orders of magnitude

Taille	n log n	n ³	2 ⁿ
n = 20	60	8000	1048576
n = 50	196	125000	112589990700000
n = 100	461	1000000	12676506000000000000000000000000000000000
Hence the idea of a border between polynomial and evappential algorithms			

⇒ Hence the idea of a border between polynomial and exponential algorithms.

Profiling

- Another useful tool to monitor the execution of a program is profiling
- ► From the python docs : "A profile is a set of statistics that describes how often and for how long various parts of the program executed"
- https://docs.python.org/3.6/library/profile.html

Profiling

Exercice 4: Profiling a piece of code

cd profiling and profile some programs that we used before

Profiling

Exercice 4: Profiling a piece of code

- cd profiling and profile some programs that we used before
- However note that when profiling profiling_demo.py, the elementary multiplications are not taken into account in the profiling output.

Computing complexities

We now want to compute some complexities with paper and pen. Let us focus on some intuitive rules:

- ► For a sequence of blocks :
- ► For a loop :

Computing complexities

We now want to compute some complexities with paper and pen. Let us focus on some intuitive rules :

- ▶ For a sequence of blocks : complexities sum up
- ► For a loop :

Computing complexities

We now want to compute some complexities with paper and pen. Let us focus on some intuitive rules :

- ► For a sequence of blocks : complexities sum up
- ► For a loop : complexities of all iterations sum up
- If a loop consists in similar iterations, its complexity is the product of the compexity of one iteration by the size of the loop.

Running time

Exercice 5 : Computing a running time I

Please compute the running time and give the complexity of the following algorithm.

```
result = 0
for i in range(n):
    result += i**2
```

Running times

Exercice 6 : Computing a running time II

Please compute the running time and give the complexity of the following algorithm.

Running times

```
Exercice 7 : Computing a running time II
Could we have known that is was polynomial without performing
the exact computation ?

for i in range(n):
    for j in range(i):
        I = [i+j+k for k in range(n)]
```

Some mathematical concepts

- Mathematical induction
- ▶ Applications : prime factors decomposition, $\sum_{k=1}^{n} k$
- ► Optional

$$\sum_{k=1}^{n} k^2 ? (12)$$

$$\sum_{k=1}^{n} k^{3} ? (13)$$

Insertion Sort

► We will study the classic **Insertion sort algorithm**, in order to illustrate the concept of **average-case complexity**.

Insertion Sort

Exercice 8: Insertion sort:

cd insertion_sort/ and fix the function in **insertion_sort.py** in order to perform the algorithm.

Average-case complexity

- ▶ We assume a uniform_distribution on the integer that we want to sort. All values have the same probability.
- ▶ What is the average-case complexity of the algorithm ?

Complexity

Exercice 9: use the file complexity.py in order to check if our theoretical reslut is correct. You will need to fix the function number_of_operations

- Let us consider the case of evaluating polynoms
- ▶ A polynom is a function of the form $f: x \to a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$
- How many multiplications are involved with the naive method ?

- Let us consider the case of evaluating polynoms
- A polynom is a function of the form $f: x \to a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$
- How many multiplications are involved with the naive method ?
- ▶ We look fot an algorithm that is faster than the naive solution.

► Example of Horner algorithm when

$$P: x \to 7x^4 + 2x^3 - 5x + 1:$$

$$P(x) = (((7x+2)x+0)x-5)x+1$$
 (14)

Example of Horner algorithm when

$$P: x \to 7x^4 + 2x^3 - 5x + 1:$$

$$P(x) = (((7x+2)x+0)x-5)x+1$$
 (15)

How many multiplications are now involved ?

Example of Horner algorithm when

$$P: x \to 7x^4 + 2x^3 - 5x + 1:$$

$$P(a) = (((7a+2)a+0)a-5)a+1$$
 (16)

- ▶ How many multiplications are now involved ? $\mathcal{O}(n)$.
- So we went from quadratic to linear.

Example of Horner algorithm when

$$P: x \to 7x^4 + 2x^3 - 5x + 1:$$

$$P(x) = (((7x+2)x+0)x-5)x+1$$
 (17)

▶ We input the polynom to the algorithm as the list of the coefficients $[a_n, a_{n-1}, \ldots, a_0]$

Evaluating polynoms

Exercice 9: Implementation of Horner Algorithm

Example of Horner algorithm when $P : x \rightarrow 7x^4 + 2x^3 - 5x + 1$:

$$P(x) = (((7x+2)x+0)x-5)x+1$$
 (18)

- ▶ We input the polynom to the algorithm as the list of the coefficients $[a_n, a_{n-1}, \ldots, a_0]$
- Please modify complexity/horner.py so that it performs the horner algorithm.
- ▶ In order to test that our method is correct, we will test it against the method **polyval** from **numpy**.

Horner

► What do you see if you write **help(numpy.polyval)** inside python ?

Horner

What do you see if you write help(numpy.polyval) inside python?

Figure: Horner is actually the method used by numpy

Space complexty

Space complexity is the sum of :

- ▶ input space
- auxiliary space : temporary space used during the algorithm

Space complexity and sorting

We will illustrate space complexity with the example of sorting.

Graph problems

Graph problems

We will look at famous graph problems, typically of the form :

- "what is the largest subset of nodes of the graph, verifying some property?"
- "what is the largest subset of edges of the graph, such that some property is verified?"

Graphviz

We will use graphviz to visualize graphs.

Figure: Undirected random graph generated with python

Warm up question

Given an **unoriented** graph with n nodes, how many edges can we build ?

Notation of a graph : G(V, E)

V : set of n vertices

► *E* : set of edges

Warm up question

Given an **unoriented** graph with n nodes, how many edges can we build ?

Notation of a graph : G(V, E)

- V : set of n vertices
- ▶ E: set of edges, maximum size: $\frac{n(n-1)}{2} = \binom{n}{2} = \frac{n!}{2!(n-2)!}$

Graphviz

In order to do the following exercises, you will need **graphviz**.

Exercice 10: Please cd ./graphs/random_graphs and use random_undirected_graph.py to generate a random undirected graph with a chosen number of nodes and edges.

Figure: Random undirected graph with 10 nodes, 40 edges

Exercice 11: Please use **random_directed_graph.py** to generate a random directed graph with a chosen number of nodes and edges.

Figure: Random directed graph with 10 nodes, 30 edges

Dominating set

Say you want to cover a network. Some nodes are able to transmit information in the network, but not to all nodes : only the nodes that are close enough.

You need to cover the network, but with the smallest possible number of emitters (because then it is less work).

Exercice 12: How would you formalize this problem with a graph?

For instance : we want to use the smallest possible number of emitters to cover a network.

Mathematically speaking : if G(V, E) is the graph. We look for a **subset of nodes** D such that **all nodes in the graph** are the neighbor of **at least one node** in D.

Mathematically speaking: if G(V, E) is the graph. We look for a subset of nodes D such that all nodes in the graph are the neighbor of at least one node in D. And we want to pick the smallest D that works.

What is the most trivial dominating subset ?

Figure: Some simple graph

Figure: Is this a dominating subset?

Figure: Is this a dominating subset?

Figure: Is this a dominating subset?

Figure: Concept of minimal dominating set ?

Figure: Is this a dominating subset? Yes. Is it minimal?

Please find a dominating set in this graph.

Please find a minimal dominating set in this graph.

Please find a minimal dominating set in this graph.

Is **minimal** the same thing as minimum?

What would be the **exhaustive search** in the case of the Dominating set problem ?

How many possibilities do have to try as a function of n?

How many possibilities do have to try as a function of n? The number of subsets in [1:n] is :

How many possibilities do have to try as a function of n? The number of subsets in [1:n] is :

$$2^n = \sum_{k=0}^n \binom{n}{k} \tag{19}$$

Heuristic

Ok so the exhaustive search is no possible. So what method should we use ?

Heuristic

Ok so the exhaustive search is no possible. So what method should we use ?

Let's build a greedy algorithm.

Greedy algorithm

In a graph (unweighted), the **degree of a node** is its number of neighbors.

dominating set

Exercice 13: Greedy algorithm implementation cd graphs/dominating_set and modify greedy_standard.py in order to apply the greedy algorithm:

- sort nodes by degree
- progressively add the to the set until it's dominating

Subset size: 1 Algo step: 1

Subset size: 2 Algo step: 2

Subset size: 3 Algo step: 3

Subset size: 4 Algo step: 4

Subset size: 5 Algo step: 5

Subset size: 6 Algo step: 6

Subset size: 7 Algo step: 7

Subset size: 8 Algo step: 8

Subset size: 9 Algo step: 9

Subset size: 10 Algo step: 10

Subset size: 11 Algo step: 11

Subset size: 12 Algo step: 12

dominating set

Exercice 13: Greedy algorithm implementation
Generate new instances of the problem using
generate_problem_instance.py and apply the algorithm to them.
You can use the file params.txt.

Complexity

Exercice 14: What is the complexity of the greedy algorithm?

Variant

Exercice 15: Try to see what happens using a variant of the heurstic, where we can add nodes that are already dominated, to the (built) dominating set. Which method is faster? You can use **greedy_bis.py**

Subset size: 1 Algo step: 1

Subset size: 2 Algo step: 2

Subset size: 3 Algo step: 3

Subset size: 4 Algo step: 4

Subset size: 5 Algo step: 5

Subset size: 6 Algo step: 6

Subset size: 7 Algo step: 7

Subset size: 8 Algo step: 8

Subset size: 9 Algo step: 9

Subset size: 10 Algo step: 10

Subset size: 11 Algo step: 11

Subset size: 12 Algo step: 12

Variant 2

Exercice 16: Implement of another variant where the degrees of the nodes are recomputed after each algorithm step.

You can use greedy_ter.py

Subset size: 1 Algo step: 1

Subset size: 2 Algo step: 2

Subset size: 3 Algo step: 3

Subset size: 4 Algo step: 4

Subset size: 5 Algo step: 5

Subset size: 1 Algo step: 1

Subset size: 2 Algo step: 2

Subset size: 3 Algo step: 3

Subset size: 4 Algo step: 4

Subset size: 5 Algo step: 5

Subset size: 1 Algo step: 1

Subset size: 2 Algo step: 2

Subset size: 3 Algo step: 3

Non optimal greedy algorithm

Let us find an example where the greedy algorithm is clearly not optimal.

Non optimal greedy algorithm

Let us find an example where the standard greedy algorithm is clearly not optimal.

Figure: Complete bipartie graph

The coloring problem

Say you have a map with different countries. You need to assign a color to each country, so that two countries that have a common border are filled with a different color. We assume that we would like to use a small number of colors (the smaller, the better). Exercice 17: How would you formalize this problem with a graph?

The coloring problem

We want to find the smallest number of **fully disconnected subgraph** in a graph.

The coloring problem

We want to find the smallest number of **fully disconnected subgraph** in a graph.

Each subgraph will be associated with a color.

Coloring

Is this a coloring?

Is this a coloring?

Is this a coloring? yes

Could we have used only 3 colors?

Coloring

▶ What would be a trivial coloring?

Coloring

- ► What would be a trivial coloring ? assign a color to each node (very bad solution)
- ► Could you think of a heuristic?

Other applications

- ▶ Planning activities (color : time in the day)
- Assigning frequencies (color : frequency)

Independent set

You have a group of people. Some people cannot work with each other. You want to build to largest possible team of people. Exercice 18: How would you formalize this with a graph?

Independent Set

Assuming that an edge represents the fact that two persons cannot work with each other, we want to find **the largest disconnected subgraph**.

Independent set

Independent set: what is a trivial independent set?

Maximal vs maximum independent set

Complexity

- Running time of an algorithm is its running time on the worst possible input (instance I) it can get (for a given size)
- Complexity of a problem is the running time of the best possible algorithm for that problem.

$$T(P) = \min_{A} \max_{I} T(P, A, I)$$
 (20)

Equivalence between problems

- Some problems have the same difficulty because they are equivalent
- Some are strictly more complex than others
- ► Hard problems : Maximum independent set, minimum coloring, smallest dominating set, TSP, etc.
- ► Easier problem : Shortest Path

Equivalence between problems

Exercice 19: Can you relate the maximum clique problem to another problem we saw before ?

Polynomial-time reduction

To study a problem, it is sometimes useful to transform it into another.

Exercice 20: Transformation **cd clique/** and use **complement_graph.py** in order to transform a graph into its **complement graph**.

Exercice 20: Transformation

cd clique/ and use **complement_graph.py** in order to transform a graph into its **complement graph**.

What is the complexity of this operation?

Complement graph

Complement graph

Dominating set to set covering

▶ This is another example of two problems that are equivalent.

Problems that are not equivalent

► Eulerian paths and hamiltonian paths

Classes of complexity

- Problems have been gathered under classes of complexity
- ▶ **P** : we can obtain a solution with polynomial complexity
- ▶ **NP**: we can verify a solution in polynomial time (doesn't mean we can find a solution)
- ▶ **NP hard** : if it is in *P*, all *NP* problems are in *P*.
- ▶ NP complete : NP and NP hard

P=NP?

