Математическая логика

Замкнутые классы

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела	
Π/Π	раздела дисциплины		
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.	
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.	
		Принцип двойственности. Совершенная дизъюнктивная нормальная	
		форма (СДНФ). Совершенная конъюнктивная нормальная форма	
		(СКНФ). Разложение булевых функций по переменным. Построение	
		СДНФ для функции, заданной таблично.	
2.	Минимизация	Проблема минимизации. Порождение простых импликантов.	
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.	
3.	Полнота и	Замкнутые классы. Класс логических функций, сохраняющий	
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс	
	логических функций	самодвойственных функций. Определение и лемма о	
		несамодвойственной функции. Класс монотонных функций.	
		Определение и лемма о немонотонной функции. Класс линейных	
		функций. Определение и лемма о нелинейной функции.	
4.	Исчисление	Общие принципы построения формальной теории. Интерпретация,	
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод	
	предикатов	резолюций для исчисления высказываний. Понятие предиката.	
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм	
		преобразования формул в предваренную нормальную форму.	
		Скулемовская стандартная форма. Подстановка и унификация.	
		Алгоритм унификации. Метод резолюций в исчислении предикатов.	

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Определение:

 T_0 - класс всех логических функций $f(x_1,...,x_n)$, сохраняющих константу 0 на нулевом наборе, т.е. f(0,...,0) = 0.

Если $f \in T_0$, а функция g получена из функции f путем добавления или изъятия фиктивных переменных, то $g \in T_0$.

$f \in T_0$	$f \not\in T_0$

Заполните примеры функций.

$f \in T_0$	$f \notin T_0$
0	1
\mathcal{X}	$\overline{\mathcal{X}}$
$x \cdot y$	$x \downarrow y$ (1000)
$x \lor y$	$x \rightarrow y$
$x \oplus y$	x y (1110)

Докажем замкнутость класса T_0 . Найдем значение $\Phi = f(f_1, ..., f_n)$ на наборе (0, ..., 0) и проверим, $\Phi = f(f_1, ..., f_n) \in T_0$, при условии, что $f, f_1, ..., f_n \in T_0$.

$$\Phi(0,...,0) = f\left(\underbrace{f_1(0,...,0)}_{0},...,\underbrace{f_n(0,...,0)}_{0}\right) = f(0,...,0) = 0$$

Следовательно, $\Phi \in T_0$ и T_0 - замкнутый класс.

Определение:

Обозначим через T_1 класс всех логических функций $f(x_1,...,x_n)$, сохраняющих константу 1 на единичном наборе, т.е. f(1,...,1)=1.

Заметим, что если $f \in T_1$, а функция g получена из функции f путем добавления или изъятия фиктивных переменных, то и $g \in T_1$.

$f \in T_1$	$f \notin T_1$

Заполните таблицу

$f \in T_1$	$f \notin T_1$
1	0
\mathcal{X}	$\overline{\mathcal{X}}$
$x \cdot y$	$x \downarrow y$ (1000)
$x \lor y$	$x \oplus y$
$x \rightarrow y$	x y (1110)

Покажем, что T_1 —замкнутый класс.

Найдем значение $\Phi = f(f_1,...,f_n)$ на наборе (1,...,1) и проверим, $\Phi \in T_1$, если $f, f_1,..., f_n \in T_1$?

$$\Phi(1,...,1) = f\left(\underbrace{f_1(1,...,1)}_{1},...,\underbrace{f_n(1,...,1)}_{1}\right) = f(1,...,1) = 1$$

Следовательно, $\Phi = f(f_1, ..., f_n) \in T_1$, и T_1 - замкнутый класс.

Определение:

S - класс всех самодвойственных функций f из P_2 , т.е. таких, что $f^* = f$.

Заметим, что если $f \in S$, а функция g получена из функции f путем добавления или изъятия фиктивных переменных, то и $g \in S$.

$f \in S$	$f \notin S$

Заполните таблицу

$f \in S$	$f \not\in S$
\mathcal{X}	0
\overline{x}	$x \vee y$
$xy \lor xz \lor yz$	$x \downarrow y$ (1000)
(0101)	$x \oplus y$

Докажем, что класс S замкнут.

Проверим, $\Phi = f(f_1, ..., f_n) \in S$ при условии, что $f, f_1, ..., f_n$ – самодвойственны.

$$\Phi^* = f^*(f_1^*, ..., f_n^*) = f(f_1, ..., f_n) = \Phi.$$

Следовательно класс S замкнут.

Лемма о несамодвойственной функции

Если $f(x_1,...,x_n) \notin S$, то из нее путем подстановки функций x и \overline{x} можно получить несамодвойственную функцию одной переменной, т.е. константу.

 $f(x,y) = x \oplus y$. Если $f(x,y) \notin S$, представить с помощью подстановок константу.

Решение:

Проверяем самодвойственность, например, через таблицу.

x y	f(x,y)	$f^*(x,y)$
0 0		
0 1		
1 0		
1 1		

Проверяем самодвойственность через таблицу.

x y	f(x,y)	$f^*(x,y)$
0 0	0	1
0 1	1	0
1 0	1	0
1 1	0	1

 $f \neq f^*$, следовательно $f(x,y) \notin S$ и по лемме о несамодвойственной функции можно через нее представить константу.

Для $f \in S$ по определению самодвойственности

$$f^*(x,y) = \overline{f(\overline{x},\overline{y})} = f(x,y),$$

для несамодвойственных $f(\bar{x}, \bar{y}) = f(x, y)$.

Для поиска константы необходимо найти противоположные наборы, на которых значения функции равны (противоположные наборы находятся симметрично относительно центра наборов).

x y	f(x,y)
0 0	0
0 1	1
1 0	1
1 1	0

Представим константу 0. f(0,0)=0 и f(1,1)=0, следовательно вместо переменных можно подставить x или \overline{x} и получить константу 0, например, f(x,x)=0 или $f(\overline{x},\overline{x})=0$. Оба представления возможны. Проверим, $f(x,x)=x\oplus x=0$, верно. Также и $f(\overline{x},\overline{x})=\overline{x}\oplus \overline{x}=0$.

20

x y	f(x,y)
0 0	0
0 1	1
1 0	1
1 1	0

Представим константу 1. f(0,1) = f(1,0) = 1, тогда $f(x,\overline{x}) = f(\overline{x},x) = 1$. Проверим, $f(x,\overline{x}) = x \oplus \overline{x} = 1$, верно.

Лемма о несамодвойственной функции

Если $f(x_1,...,x_n) \notin S$, то из нее путем подстановки функций x и \overline{x} можно получить константу.

Док-во.

Т.к. $f \notin S$ то найдется набор $(\alpha_1,...,\alpha_n)$ такой, что $f(\bar{\alpha}_1,...,\bar{\alpha}_n) = f(\alpha_1,...,\alpha_n)$. Рассмотрим функции

$$\varphi_i(x) = x^{\alpha_i} = x_i$$
, $i = \overline{1, n}$, r.e. $\varphi_i(x) = \left| \frac{x}{\overline{x}} \right|$.

Построим таблицу обозначений:

α_i	0^{lpha_i}	${oldsymbol{lpha}_{i}^{\ 0}}$	1^{α_i}	$\alpha_i^{\ 1}$
0	$\bar{0} = 1$			
1				

Лемма о несамодвойственной функции

$lpha_i$	0^{α_i}	$\alpha_i^{\ 0}$	1^{α_i}	$\alpha_i^{\ 1}$
0	1	1	0	0
1	0	0	1	1

Введем
$$\varphi(x) = f(\varphi_1(x),...,\varphi_n(x))$$
. Тогда имеем
$$\varphi(0) = f(\varphi_1(0),...,\varphi_n(0)) = f(0^{\alpha_1},...,0^{\alpha_n}) = f(\overline{\alpha}_1,...,\overline{\alpha}_n) = f(\alpha_1,...,\alpha_n) = f(1^{\alpha_1},...,1^{\alpha_n}) = f(\varphi_1(1),...,\varphi_n(1)) = \varphi(1)$$
.

Т.к. $\varphi(0) = \varphi(1)$, то функция является константой. \square

Тема следующей лекции:

«Замкнутые классы. Часть 2».