KOSHA GUIDE

P - 89 - 2023

회분식 공정의 안전운전지침

2023. 8.

한국산업안전보건공단

안전보건기술지침은 산업안전보건기준에 관한 규칙 등 산업안전보건법령의 요구사항을 이행하는데 참고하거나 사업장 안전·보건 수준향상에 필요한 기술적 권고 지침임

안전보건기술지침의 개요

○ 작성자 : 최 재 수

○ 개정자 : 이 정 석

한국산업안전보건공단 전문기술실 오상규

- 제·개정 경과
 - 1999년 11월 화학안전분야 기준제정위원회 심의
 - 1999년 12월 총괄기준제정위원회 심의
 - 2012년 7월 총괄 제정위원회 심의(개정,법규개정조항 반영)
 - 2023년 7월 화학안전분야 표준제정위원회 심의(개정, 법규개정조항 반영)
- 관련규격 및 자료
 - CCPS, "Guidelines for Engineering Design for Process Safety"
 - 일본 중앙노동재해방지협회, "뱃치프로세스의 안전"
- 관련법규·규칙·고시 등
 - 산업안전보건법 시행규칙 제50조(공정안전보고서의 세부내용 등)
- 안전보건기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고 하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2023년 8월 24일

제 정 자 : 한국산업안전보건공단 이사장

<u>목 차</u>

1.	목적1
2.	적용범위1
3.	용어의 정의1
4.	제조공정의 위험성에 관한 조사1
5.	설비적 안전대책3
6.	관리적 안전대책
7.	원료 및 제품의 저장10
8.	화학반응12
9.	증류14
10	. 건조15
11	. 분쇄16

회분식 공정의 안전운전지침

1. 목적

이 지침은 사업주가 작성하여야 할 회분식 공정 안전운전지침서의 원활한 작성에 필요한 사항을 제시하는데 그 목적이 있다.

2. 적용범위

이 지침은 화학설비 및 그 부속설비 중 회분식 공정에 적용한다.

3. 용어의 정의

- (1) "회분식 공정 (Batch process)"이라 함은 일반적으로 원료를 투입하여 일정 시간 혹은 일정공정을 거쳐 제품을 얻는 모든 공정을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업 안전보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 제조공정의 위험성에 관한 조사

아래 각 항에 대한 내용을 문헌이나 실험을 통하여 사전에 조사하여 회분식 공 정의 운전개시전에 화학물질의 저장에서부터 반응, 증류, 건조 등에 대한 모든 작업표준서 작성 및 운전사고 수습을 위한 절차를 작성한다.

4.1 예비조사 항목

- (1) 원료 및 제품의 화재·폭발 위험성
- (2) 주반응의 화학반응식 및 발열량
- (3) 주반응에 의한 중간체 및 최종 생성물에 대한 화재·폭발 위험성

- (4) 부반응에 대한 화재·폭발의 위험성(부반응의 발열량, 생성물의 형태 등의 영향)
- (5) 부반응이 화재·폭발의 위험성이 클 경우에는 부반응을 일으킬 수 있는 반 응조건
- (6) 반응기 및 저장탱크 등의 냉각기능 및 교반기 등의 정지, 촉매첨가량, 원료의 공급순서 및 공급량, 증류·건조공정의 계속 시간 등의 잘못과 기타 야기 될 수 있는 비정상 상태의 위험성

4.2 공정별 위험성

4.2.1 증류

- (1) 증류온도 및 증류시간의 영향에 따른 열안정성
- (2) 부산물, 불순물 농축에 따른 위험
- (3) 과열에 의한 위험
- (4) 공기의 접촉위험 등

4.2.2 건조

- (1) 건조온도 및 건조시간의 영향에 따른 열안정성
- (2) 건조시에 발생되는 용매등의 위험
- (3) 정전기에 의한 착화 위험
- (4) 과열의 위험 등

4.2.3 분쇄

- (1) 피분쇄물의 충격·마찰·가열 등에 따른 위험
- (2) 이물질 혼입에 따른 위험

4.2.4 혼합

- (1) 혼합순서 착오 등에 의한 혼합 위험
- (2) 이물질 혼입에 따른 위험
- (3) 충격 · 마찰 · 가열 등에 따른 위험 등

4.2.5 저장

- (1) 저장시간, 온도의 영향, 중합억제제, 분산억제제 등의 자기반응성에 의한 위험
- (2) 물 등의 이물질 혼입에 따른 위험 등

4.2.6 세정

- (1) 세정용제의 화재·폭발 위험
- (2) 세정작업시 산소결핍 위험
- (3) 산 · 알칼리 등과 같은 세정제와 피세정 물질의 반응위험 등

4.2.7 배기

배기 닥트내에 응축되는 위험물 및 여러 종의 배기가스가 혼합됨으로써 일어 나는 화학반응에 의한 화재·폭발의 위험 등

5. 설비적 안전대책

5.1 건축물 및 그 부속설비

- (1) 반응폭주 및 이상반응으로 화재나 폭발이 발생할 수 있는 설비는 피해를 최소화하기 위하여 격리된 장소에 설치한다.
- (2) 건축물의 벽, 기둥, 계단 및 지붕등은 불연성 재료를 사용하고 바닥은 원료, 중간생성물등과 같은 화합물질에 의해 부식이나 침투가 일어나지 않는 재료를 사용한다.
- (3) 위험물을 취급, 저장하는 장소에 설치하는 건축물의 기둥과 보, 위험물 저장, 취급용기의 지지대 그리고 배관 및 전선관의 지지대는 내화구조로 하여야 한다.
- (4) 화재등의 비상사태에 대비하여 화재탐지 및 경보시설을 설치하고 피난용 통로 및 출입구를 확보한다.
- (5) 운전, 검사, 정비, 보수 등이 용이하도록 설비간 충분한 거리를 유지하고 시설물 사이의 통로에는 장애물을 설치하지 않는다.

5.2 설비기기의 구조

- (1) 설비, 배관, 밸브 등의 재질은 취급되는 원료, 중간생성물 등 화학물질의 부식성과, 온도, 농도 등 반응조건에 따른 위험성을 고려하여 적절한 재질을 선정한다.
- (2) 설비 또는 배관의 플랜지, 밸브 등의 접합부에서의 누출을 방지하기 위하여 적절한 가스킷을 사용하고 접합면을 상호 밀착시키는 등의 조치를 한다.
- (3) 설비 또는 배관의 외면은 부식방지 조치를 한다.
- (4) 밸브 등은 비상시 신속하게 조작이 가능하도록 쉽게 식별할 수 있고, 안전한 위치에 설치한다.
- (5) 밸브 등은 오조작 방지를 위하여 개폐방향을 표시하고 색이나 형상으로 구분한다.
- (6) 필요한 경우 온도변화에 따른 배관의 신축을 고려하여 신축 연결부를 설치하다.
- (7) 중합촉매로서 유기과산화물을 사용하는 탱크, 배관, 밸브 등의 재료는 철녹 등 유기과산화물의 분해를 촉진하는 물질이 발생되지 않도록 한다.
- (8) 통상 사용하지 않는 밸브는 오조작 방지를 위하여 시건장치 또는 봉인을 한다.
- (9) 강산, 강알칼리 등 부식성물질을 수송하는 배관의 플랜지 부위는 누출로 인한 비산방지를 위하여 내산성재질의 덮개를 설치한다.
- (10) 반응기와 그 쟈켓에 대한 기밀시험은 주기적으로 실시하고 기록을 유지 관리한다.
- (11) 배관은 지반면에 닿지 않도록 하되 점검·보수를 위하여 지면에서 30cm이 상 높이에 설치한다.

5.3 이상발생에 대비한 설비

5.3.1 안전밸브

회분식 공정에 있어서 설비가 대기압 이상으로 운전되거나 이상반응등으로 인하여 내부 압력이 대기압을 초과할 우려가 있는 설비에는 안전밸브, 파열판, 자동조절기 등의 안전장치 또는 이에 대처할 수 있는 방호장치를 설치한다. 단,설치시에는 KOSHA GUIDE "안전밸브 설계 및 설치 등에 관한 기술지침"에 준한다.

5.3.2 이상반응방지 안전장치

회분식 공정에 있어서 발열반응이 일어나는 반응장치 및 폭발범위 내에 도달할 위험이 있는 상태에서 운전되거나 이상반응 등으로 화재, 폭발 위험성이 높은 설비에는 다음 각호와 같은 안전장치 등을 설치한다.

- (1) 내부의 이상상태를 조기에 파악하기 위한 온도계, 유량계, 압력계, 액면계 등 계측장치와 자동경보장치
- (2) 이상상태 발생에 따른 원재료 공급의 긴급차단장치, 반응물질을 옥외 방출용탱크에 이송하기 위한 블로우다운 시스템 및 불활성가스 주입설비
- (3) 이상발열 등에 대비한 냉각용수 공급장치와 고장에 대비한 살수설비 등 비상냉각장치
- (4) 전력공급 중단시 사용할 수 있는 예비 동력원
- (5) 반응기의 경우 교반기의 정지시 즉시 파악할 수 있는 전류계 등과 경보를 발하는 장치
- (6) 건조설비 등에 필요한 경우 폭발압력방산구
- (7) 냉각수 공급펌프의 정지를 즉시 파악할 수 있는 경보장치
- (8) 중합반응기 등에는 균압식 또는 가압식의 중합억제제 투입설비

5.4 안전장치의 설치방법

- (1) 인화성액체 또는 가연성가스를 저장하거나 취급하는 설비로부터 가스 또는 증기를 대기로 방출할 때에는 외부로부터의 화염방지를 위한 화염방지기를 벤트 배관 상단에 설치한다.
- (2) 위험물 취급설비의 배기구는 배기닥트 내로 공기가 유입되는 것을 방지하는 구조의 환기 및 닥트를 설치, 안전한 곳으로 배기되게 한다.
- (3) 각 반응기 등에 전용 냉각수 공급펌프가 없고 하나의 펌프에 의해 여러개의 반응기에 냉각수를 공급하는 경우에는 냉각수 주배관에 압력저하를 즉시 파악할 수 있는 압력경보장치를 설치한다.
- (4) 가연성가스나 증기 또는 독성물질의 누출위험이 있는 곳에는 누출탐지기 및 경보장치를 각각 누출감지가 용이한 장소와 근로자가 항상 상주하는 장소에 설치한다.

5.5 독성물질의 취급설비와 관리

- (1) 사업장내 독성물질의 저장 및 취급량을 최소화한다.
- (2) 공정에 사용되는 독성물질의 입·출하량과 재고량, 사용량은 일일기록을 유지한다.
- (3) 독성물질 취급설비의 이상운전으로 독성물질이 외부로 방출될 우려가 있는 경우는 적절한 저장, 포집 또는 처리설비를 설치한다.
- (4) 독성물질의 누출을 감지·경보할 수 있는 설비를 설치한다.

5.6 전기 및 정전기방지 설비

- (1) 가연성가스, 증기 또는 분진 등의 누출로 폭발한계에 달할 위험이 있는 장소에 설치하는 전동기, 개폐기, 조명기구, 계측기기 등 전기기계·기구 등은 적절한 방폭성능이 있는 방폭구조의 전기기계·기구를 설치한다.
- (2) 폭발범위에 달할 위험이 있는 장소에 설치하는 전기기계·기구 또는 금속 체등에 대하여는 접지한다.

- (3) 정전기에 의한 화재·폭발 등의 위험이 발생할 우려가 있는 설비에 대하여 는 접지 또는 도전성재료를 사용하거나 제전장치를 설치하는 등 정전기의 발생을 억제하거나 제거하는 장치를 설치한다.
- (4) 반응기, 저장설비 등에 인화성물질을 공급할 경우에는 공급관의 끝단을 하 부까지 삽입하여 액중에 잠기는 구조로 설계·설치한다.
- (5) 누전에 의한 감전위험 방지를 위하여 전기기계·기구의 금속제 외함 및 철 대 등에는 접지를 한다.
- (6) 가연성가스, 증기 또는 분진 등을 수송, 저장, 취급하는 설비 및 부속설비와 배관 등에는 유효한 정전기방지 대책을 강구한다.
- (7) 드럼 등의 용기에서 탱크로 인화성액체를 이송할 때는 드럼을 접지하고 전 도성파이프를 사용한다.
- (8) 위험물을 저장하거나 취급하는 설비에는 피뢰설비를 설치한다.

5.7 방화 및 소화설비

- (1) 화재·폭발의 원인이 될 우려가 있는 물질을 취급하는 장소에는 건축물 등의 규모, 넓이 및 취급하는 물질의 종류와 양에 따라 예상되는 소화설비를 설치한다.
- (2) 화재·폭발을 일으킬 위험이 있는 설비와 건축물 기타 가연성물체 사이에 는 방화에 필요한 안전거리를 유지하거나 방호벽 등을 설치한다.

5.8 폐기 · 처리설비

- (1) 유해위험물질을 폐기·처리할 경우에는 냉각, 분리, 흡수, 흡착, 소각 등의 처리공정을 설치 처리함으로서 이들이 외부로 방출되지 않도록 한다.
- (2) 독성물질을 폐기·처리 또는 방출하는 설비를 설치할 경우에는 자동으로 작동될 수 있는 구조로 하거나 원격조작이 가능한 구조로 한다.

6. 관리적 안전대책

6.1 작업표준

회분식 공정에서는 각각의 공정마다 작업행위를 구분하여 안전을 위한 작업 포 인트를 구체적이고 명확하게 나타낼 수 있는 작업표준을 만들어 오조작 등으로 인한 사고를 방지하여야 한다.

- (1) 작업자는 작업표준을 충분히 이해한 후에 작업에 임하고 이를 철저하게 준수하여야 한다.
- (2) 작업표준은 공정의 특성, 화학약품의 취급시 위험성, 이상반응 등으로 인한 재해사례 등을 참고하여 충분히 검토한 후에 작성한다.
- (3) 작업표준은 작업방법의 변경, 작업자의 제안 등을 수렴하여 관계자 전원의 의견교환 등을 통하여 필요시 변경해 나간다.
- (4) 단위공정마다 포인트를 정하여 그렇게 하지 않으면 위험하거나 공정상 문제가 될 수 있는 것, 그렇게 하면 작업이 순조롭고 능률이 향상되는 것을 명시한다.
- (5) 작업 전에 점검할 사항의 인수인계에 관한 사항을 정한다.
- (6) 비정상 운전 또는 사고수습대책 등에 관한 사항은 별도로 작업표준을 정한다.
- (7) 특히 다음 사항은 명시되어야 한다.
- (가) 밸브. 코크의 조작
- (나) 냉각, 가열 및 교반장치의 조작
- (다) 계측 및 제어장치의 감시 및 조정
- (라) 안전밸브, 긴급차단장치 및 기타 안전장치 및 자동경보장치의 조정
- (마) 맨홀, 플랜지, 밸브 및 코크 등의 접합부에서 누출여부 점검
- (바) 시료의 채취
- (사) 일시적 또는 부분적인 운전중단시의 작업방법 및 운전재개시 방법
- (아) 제품 및 제조공정 변경에 따른 설비의 개조. 배관의 변경 등 작업 방법
- (자) 가연물질의 이송, 인입설비 등의 정전기 제거를 위한 조치
- (차) 이상상태 발생시의 응급조치

6.2 작업방법

- (1) 위험물질이나 단량체 등을 저장·취급 또는 반응시키는 경우에는 질소등 불활성가스 분위기하에서 실시하거나 강제 배기 등에 의해 폭발성분위기를 형성하지 않도록 한다.
- (2) 인화성액체 등 위험물질을 탱크로리로 주입하는 경우에는 15 분 이상의 정치시간을 두고 액체의 유속을 1 m/sec 이하로 하는 등 정전기 발생을 방지하기 위한 조치를 취한다.
- (3) 인화성액체 등 위험물질을 드럼으로부터 반응기나 탱크 등에 옮기는 경우는 드럼을 접지하고 전도성파이프를 사용하며 공구는 방폭형을 사용한다.
- (4) 폭발·화재위험이 있는 장소에서 용접, 용단 등의 작업, 착화원 가능성이 있는 기계기구를 사용하여서는 안되며, 착화원이 될 우려가 있는 물질을 휴대하지 않는다.
- (5) 인화성물질 또는 가연성가스를 설비나 드럼등에 주입할 때는 호스의 결합 부를 확실하게 연결한 후에 작업한다.
- (6) 서로다른 물질의 접촉으로 인하여 발화하거나 폭발할 위험이 있을 때는 이들 물질을 접근시켜 저장하거나 동일 운반기에 적재하여서는 안된다.
- (7) 유해, 위험물질을 폐기처리할 경우는 다음 사항을 준수하여야 한다.
- (가) 폐기물과 폐액은 안전하게 처리한 후에 폐기한다.
- (나) 유해, 위험물질을 폐기할 때는 적절한 보호구를 착용하고 작업한다.
- (다) 혼합시 위험성이 있는 물질은 동일 폐액용기에 버린다.
- (라) 독극물, 중금속류 및 기타 화학약품류는 폐액이 소량이라도 유출, 방류하지 않는다.

6.3 작업관리

- (1) 설비기기의 보수시에는 안전작업 허가지침을 준수한다.
- (2) 조종실 운전자와 현장 운전자는 정확한 의사전달이 이루어져야 한다.

- (3) 제품이나 제조공정의 변경시에는 운전전에 사전점검을 실시한다. 특히 다음 사항은 반드시 점검한다.
 - (가) 반응기, 증류기 등 각종 설비내부에서의 화재·폭발원인이 될 수 있는 물질의 유무
- (나) 설비의 내외면에 대한 현저한 손상, 변형, 부식 및 누출 등의 유무
- (다) 뚜껑, 플랜지, 밸브, 코크 등의 상태
- (라) 안전밸브, 긴급차단장치 및 기타 안전장치와 자동경보장치의 기능
- (마) 냉각, 가열, 교반, 압축, 계측장치 및 제어장치의 기능
- (바) 예비동력워의 기능 등
- (4) 반응기 등에 원료 및 촉매 등을 주입시에 작업자가 보기 쉬운 곳에 원료의 종류, 주입대상설비 및 기타 필요한 사항을 기입하여 게시하고 제품이나 공정의 변경시 마다 사전에 명확하게 알 수 있도록 수정한다.
- (5) 작업기록을 필요로 하는 작업의 종류와 기록의 작성방법, 보존방법, 보존기 가 등을 정한다.
- (6) 교대업무를 포함하여 각 작업의 인수인계는 확실한 규정을 정하고 운전내용과 조치변화 등에 있어서는 일지에 기록하여 전달해야 한다.
- (7) 부품이나 비품의 정기적인 교환기준을 작성하여 관리한다.

7. 원료 및 제품의 저장

7.1 저장시설의 안전장치

- (1) 원료 및 제품을 저장하는 장소 주위에는 환기설비, 소화설비, 필요시 가스 누출검지 및 경보설비 등을 설치한다.
- (2) 저장탱크 등에는 외부에서 액위를 측정할 수 있는 액면계 및 액위상승시에 대비하여 경보장치를 설치한다.
- (3) 저장설비에는 필요시 내부온도와 압력을 측정할 수 있는 온도계와 압력계 및 경보장치를 설치한다.

- (4) 저장설비에는 필요시 냉각을 위한 살수설비를 설치하고 저온저장이 필요한 경우는 보온, 보냉을 위한 단열처리를 하여야 한다.
- (5) 이상사태에 대비하여 저장설비의 출구배관에는 긴급차단밸브를 설치하고 내부 인입 배관에는 역류방지밸브를 설치한다.
- (6) 저장설비에는 필요시 역화방지기와 통기밸브를 설치한다.
- (7) 저장설비에는 필요시 불활성가스 밀봉설비를 한다.
- (8) 저장물질의 어는점이 대기온도일 경우는 동결방지조치를 한다.
- (9) 실내 저장설비의 통기구는 옥외의 안전한 곳으로 배출되도록 설치한다.
- (10) 저장설비 주위에는 필요시 방유제를 설치한다.
- (11) 저장설비에는 필요시 안전밸브를 설치하되 고장을 대비하여 두개를 설치한다.
- (12) 본체, 펌프, 배관 등 필요한 곳에는 접지시설을 한다.

7.2 반입 및 반출작업시 안전사항

- (1) 배관 등을 통하여 반입 및 반출시 유속제한 및 정치시간을 준수하며 「위험물주입 중」,「화기엄금」등의 표시물을 게시한다.
- (2) 탱크로리 등 위험물 운송설비 및 주입설비 등에는 접지 등 제전조치를 한 후 작업한다.
- (3) 필요시는 내부를 불활성가스 등으로 치환한 후 주입작업을 한다.
- (4) 위험물질을 탱크에 주입할 때는 책임자의 입회하에 실시한다.
- (5) 드럼 등으로 위험물을 저장설비에 주입하는 경우는 드럼을 접지하고 필요시는 전도성 파이프 등을 사용한다.
- (6) 위험물질을 반입, 반출시는 호스의 결합부 등을 확실하게 연결한 후 작업한다.

(7) 접촉으로 인하여 발화 등의 위험이 있는 물질 등은 별도로 구분 저장하거나 적재한다.

8. 화학반응

8.1 반응기의 안전장치

- (1) 반응기가 설치된 장소 주위에는 환기설비, 가스누출 검지기 및 경보설비, 소화설비, 물분무설비, 비상조명설비, 통신설비 등을 설치한다.
- (2) 주위에 원재료를 보관하고 있을 경우는 비상세척시설을 설치한다.
- (3) 내부의 이상사태 파악을 온도계, 압력계, 유량계 등의 계측 또는 기록장치를 설치한다.
- (4) 이상온도상승에 대비하여 반응기 본체 및 냉각수 회수부위에 온도경보장치를 설치한다.
- (5) 이상압력상승 등에 대비하여 압력경보장치를 설치한다.
- (6) 이상압력상승으로 인한 보호를 위하여 안전밸브를 설치한다.
- (7) 내부물질이 부식성이거나 고형물 생성이 예상될 경우에는 안전밸브의 전단 에 파열판을 설치하고 그 사이에 압력지시계를 설치한다.
- (8) 인화성액체 및 가연성가스를 취급하는 경우에는 전동기 등 전기기계·기구 는 방폭형을 설치한다.
- (9) 원료 등 공급배관에는 긴급차단장치를 설치한다.
- (10) 불활성가스 주입설비를 설치한다.
- (11) 이상시 반응기내 반응물을 안전하게 방출하기 위한 장치를 설치한다.
- (12) 중합반응기의 경우 중합억제제 투입장치를 설치한다.

- (13) 냉각 및 교반장치, 계장 및 조명설비 등 안전상 필요한 설비에는 예비동력 원을 설치한다. 이들 장치들은 가능한 이상온도상승과 이상압력상승시 적 절하게 작동되도록 인터록시켜야 한다.
- (14) 접지시설을 한다.
- (15) 냉각수 펌프용량, 냉각수 공급배관의 직경, 냉각수의 온도, 냉각형식 등은 이상반응 등에 기인된 열적 최악조건을 예상하여 설계한다.
- (16) 교반기의 형상, 회전수, 회전력 등의 성능은 반응 중 발생열을 균일하게 할 수 있도록 설계한다.
- (17) 배기시스템에는 필요시 역화방지기를 설치한다.

8.2 반응작업시 안전사항

- (1) 폭발분위기의 형성을 방지한다. 특히 주입시, 반응중 또는 생산물 취출시 등 필요시는 불활성가스를 이용한다.
- (2) 반응잔류물 등의 방치, 축척 등으로 인한 혼합위험을 방지한다.
- (3) 인화성액체 등 위험물질을 드럼으로 반응기에 주입하는 경우 드럼을 접지하고 전도성파이프를 사용한다.
- (4) 원료의 계량기 고장 또는 오조작에 의한 계량측정오류가 없도록 주의한다.
- (5) 주입원료의 총량은 교반시에도 그 액면이 상방향의 온도감지기 위치보다 높게 한다.
- (6) 반응중에는 반응기내의 온도와 교반상황을 확인한다.
- (7) 작업조건을 임의로 변경하여서는 아니된다.

9. 증류

9.1 증류설비의 안전장치

- (1) 증류기가 설치된 장소 주위에는 환기설비, 가스누출 감지기, 경보설비, 소화설비 그리고 통신설비를 설치한다.
- (2) 이상온도 상승에 대비하여 온도제어기, 온도기록계, 온도경보장치 등을 설치하고 온도계는 2개소 이상 설치한다.
- (3) 이상압력상승에 대비하여 압력측정기와 압력경보장치를 설비한다.
- (4) 냉각수 공급장치, 유량 조절기, 계장설비 등에는 예비동력원을 설치한다.
- (5) 냉각수 공급펌프에는 정지경보장치 또는 ON-OFF감시등을 설치한다.
- (6) 불활성가스 주입설비를 설치한다.
- (7) 접지시설을 한다.

9.2 증류작업시 안전사항

- (1) 가열온도와 가열시간을 적정하게 한다. 즉 일정한 온도상승곡선으로 가열하고 급격한 가열을 하지 않는다.
- (2) 완전증류 또는 증류잔여물을 과도하게 농축시키지 않는다. 과도 농축시에는 과열분해 또는 냉각시 잔류물이 배출밸브 등을 차단시킬 위험이 있다.
- (3) 공기혼입 방지를 위해 기밀유지를 한다. 특히 감압증류나 산화발열성 잔여물을 취출할 때 주의한다.
- (4) 증류잔여물이 방치, 축적되지 않게 세척한다. 잔여물 누적시는 이물질 혼입으로 인한 위험 뿐만아니라 전열효율의 저하로 인한 돌비 등의 위험이 있다.
- (5) 작업중 항상 액위를 확인한다.

10. 건조

10.1 건조설비의 안전장치

- (1) 가스, 증기 또는 분진의 농도는 폭발하한계값의 25 %이하로 유지할 수 있는 환기장치를 설치한다. 다만, 농도를 연속적으로 지시하거나 조절하는 장치가 설치된 경우는 50 %로 유지가 가능하다.
- (2) 설비내부의 온도를 지시, 기록하거나 일정온도로 유지 조절할 수 있는 장치를 설치한다.
- (3) 환기장치에는 가동중 공기유량을 검출할 수 있는 유량계측장치를 설치한다.
- (4) 설비내부는 운전시에 항상 음압이 유지되도록 배기설비를 설치한다.
- (5) 폭발위험이 높은 설비에는 불활성가스 주입설비를 설치한다.
- (6) 위험물건조설비 내부에 사용하는 전기설비는 방폭성능이 있는 것을 설치한다.
- (7) 위험물건조설비 또는 분진이 발생되는 건조설비에는 정전기가 발생할 수 있는 곳에 접지외에 도전성재료를 사용하거나 제전장치를 설치하여 정전기 발생을 억제한다.
- (8) 위험물건조설비나 분진 등으로 인한 화재·폭발위험이 있는 설비에는 폭발 압력방산구를 설치한다.
- (9) 배기 및 재순환용 송풍기는 가열장치 건조물공급 설비, 경보장치 등과 인터록 하는 등 필요시 안전을 위하여 각종 인터록장치를 설치한다.
- (10) 배기닥트는 배기량을 수동 또는 자동으로 조절할 수 있는 댐퍼를 설치한다.

10.2 건조설비의 구조

- (1) 건조설비의 내부는 온도가 국부적으로 상승되지 않는 구조로 한다.
- (2) 내부표면에 분진등의 축적을 최소화할 수 있고 청소가 용이한 구조로 한다. 이는 배기닥트류에도 적용되며 청소구는 분진이 축적되기 쉬운 곳에 설치한다.

10.3 건조작업시 안전사항

- (1) 폭발하한계를 억제하기 위하여 휘발성이 크고 발생량이 많은 경우에는 공급량을 줄이거나 예비건조(상온)한 후 건조기에 넣는다.
- (2) 건조설비 내부는 청소 등을 철저하게 함으로서 잔류물이나 기타 가연물질의 자연발화 등을 방지한다.
- (3) 고온으로 가열건조한 가연성물질은 발화위험이 없는 온도로 냉각시킨 후에 보관한다.
- (4) 건조방법, 건조물의 종류 변경시 등에는 사전에 작업내용을 주지시키고 관리자가 직접 지휘한다.
- (5) 내부온도, 환기상태 및 건조물의 상태를 수시로 점검하고 이상현상 발견시 즉각 조치한다.
- (6) 연료가스 배관의 플랜지, 밸브 등 가스누출 우려가 있는 장소에는 정기적으로 가스검지 등을 행한다.

11. 분쇄

분쇄설비에는 다음 설비를 설치한다.

- (1) 필요시는 불활성가스 주입설비를 설치한다.
- (2) 가연성분진의 발생되는 경우는 집진설비를 설치한다.
- (3) 분쇄, 집진설비 및 부속 닥트류 등에는 폭발압력방산구를 설치한다.
- (4) 필요시는 컨베이어 등 공급설비에 금속파편 등 이물질 제거장치를 설치한다.
- (5) 정전기 등으로 인한 폭발·화재위험이 있는 경우에는 접지외에 도전성 재료를 사용하고 제전장치 등을 설치한다.
- (6) 전동기 등 전기설비는 방폭성능이 있는 것을 사용한다.

안전보건기술지침 개정 이력

□ 개정일 : 2023. 8. 24.

○ 개정자 : 안전보건공단 전문기술실 오상규

○ 개정사유 : 산업안전보건법 관련 법령조항 삭제

○ 주요 개정내용

- (1. 목적) 산업안전보건법 제 49조의2, 같은 법 시행령 제 33조의 7 및 시 행규칙 제130조의 2" 법령 조항 삭제