応用幾何 ma・pa 課題 #10 解答例.

(2023.12.08)

- (1) (外微分)
 - (i) \mathbb{R}^3 上の 関数 $f(x,y,z) = xy + y \cos z$ の 外微分 df を 求めよ.
 - (ii) \mathbb{R}^3 上の 微分 1-形式 $\alpha = y dx + xyz dy + yz dz$ の 外微分 $d\alpha$ を 求めよ.
 - (iii) \mathbb{R}^3 上の 微分 2-形式 $\eta = x^2 dy \wedge dz + y dz \wedge dx + z^3 dx \wedge dy$ の 外微分 $d\eta$ を 求めよ.

(解答例)

- (i) $df = f_x dx + f_y dy + f_z dz = y dy + (x + \cos z) dy (y \sin z) dz$
- (ii) $d\alpha = (\partial_y (yz) \partial_z (xyz)) dy \wedge dz + (\partial_z y \partial_x (yz)) dz \wedge dx + (\partial_x (xyz) \partial_y y) dx \wedge dy$ = $(z - xy) dy \wedge dz + 0 dz \wedge dx + (yz - 1) dx \wedge dy$
- (iii) $d\eta = (\partial_x x^2 + \partial_y y + \partial_z z^3) dx \wedge dy \wedge dz = (2x + 1 + 3z^2) dx \wedge dy \wedge dz$
- (2) 次の等式を 微分形式の外微分の定義 に基付いて示せ.

$$d(df)=0$$
 ただし、 f は 空間の開集合 U 上の C^2 級 関数 (微分 0 形式)

(解答例)
$$d(df) = d(f_x dx + f_y dy + f_z dz)$$
$$= (f_{zy} - f_{yz})dy \wedge dz + (f_{xz} - f_{zx})dz \wedge dx + (f_{yx} - f_{xy})dx \wedge dy = 0$$

(3) \mathbb{R}^3 上の ベクトル場 $\mathbf{v}(x,y,z) = (y^2 \sin z, 2xy \sin z, xy^2 \cos z)$ を考える.

関数 $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ で grad f = v を満たすものを求めよ.

[補足] この問題は次と同値:

$$\mathbb{R}^3$$
 上の 微分 1 形式 $\alpha=(y^2\sin z)\,dx+(2xy\sin z)\,dy+(xy^2\cos z)\,dz$ を考える. 関数 $f:\mathbb{R}^3\longrightarrow\mathbb{R}$ で $\alpha=df$ を満たすものを求めよ.

(解答例)

$$\operatorname{grad} f = (f_x, f_y, f_z) = (y^2 \sin z, 2xy \sin z, xy^2 \cos z)$$
 $f_x = y^2 \sin z$ より $f = xy^2 \sin z + g(y, z)$ と書ける.
 $f_y = 2xy \sin z + g_y(y, z) = 2xy \sin z$ ∴ $g_y = 0$ ∴ $g(y, z) = h(z)$ と書ける.
 $f_z = xy^2 \cos z + h'(z) = xy^2 \cos z$ ∴ $h'(z) = 0$ ∴ $h(z) \equiv c$ (定数)
∴ $f = xy^2 \sin z + c$ (c : 任意定数)