Foundations of Data Science & Analytics: **Evaluation and Testing**

Ezgi Siir Kibris

Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

Evaluation

Types of Classification Problems

- Binary Classification
- Multi-Class Classification

Confusion Matrix		Predicted	
		Yes	No
A ofugal	Yes	TP	FN
Actual	No	FP	TN

Confusion Matrix		Predicted	
		Yes	No
A otuol	Yes	5	2
Actual	No	40	1000

$$Accuracy = rac{TP+TN}{TP+TN+FP+FN}$$

$$Error\,Rate = rac{FP+FN}{TP+TN+FP+FN}$$
 $ullet$

$$= 1 - Accuracy$$

Confusion Matrix		Predicted	
		Yes	No
Actual	Yes	TP	FN
	No	FP	TN

Pros:

- Can apply to multi-class
- A general evaluation

Cons:

- Tends to ignore minority classes
- Need to decide a threshold

$$Recall = rac{TP}{TP+FN}$$

$$Precision = rac{TP}{TP+FP}$$

$$F_1 = 2 imes rac{precision imes recall}{precision + recall}$$

Confusion Matrix		Predicted	
		Yes	No
Actual	Yes	TP	FN
Actual	No	FP	TN

Pros:

Good indicator for imbalanced classes

Cons:

- Must be used together (precision + recall)
- Cannot directly apply to multi-class

Confusion Matrix		Predicted	
		Yes	No
Actual	Yes	5	2
	No	40	1000

$$egin{aligned} Precision &= rac{TP}{TP+FP} \ Recall &= rac{TP}{TP+FN} \ F_1 &= 2 imes rac{precision imes recall}{precision + recall} \end{aligned}$$

Accuracy =
$$1005/1047 = 0.960$$

Precision =
$$5/45 = 0.111$$

Recall =
$$5/7 = 0.714$$

$$F1 \text{ score} = 0.192$$

$$Accuracy = rac{correct\ predictions}{all\ data}$$

$$Error\,Rate = rac{incorrect\,predictions}{all\,data} \ = 1 - Accuracy$$

Pros:

 A general evaluation

Cons:

- Tend to ignore minority classes
- Need to decide a threshold

One vs. Rest		Predicted	
		Yes (Ci)	No (Not Ci)
Actual	Yes (Ci)	TP(Ci)	FN(Ci)
	No (Not Ci)	FP(Ci)	TN(Ci)

$$Precision(C_i) = rac{TP(C_i)}{TP(C_i) + FP(C_i)}$$

$$Recall(C_i) = rac{TP(C_i)}{TP(C_i) + FN(C_i)}$$

$$F_1(Ci) = 2 imes rac{precision(Ci) imes recall(Ci)}{precision(Ci) + recall(Ci)}$$

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (🐴)
Pr	Cat (🐯)	4	6	3
Predicted	Fish (��)	1	2	0
ed	Hen (4)	1	2	6

Class	Precision	Recall	F1-score
Cat	30.8%	66.7%	42.1%
Fish	66.7%	20.0%	30.8%
Hen	66.7%	66.7%	66.7%

Macro-precision =
$$(31\% + 67\% + 67\%) / 3 = 54.7\%$$

Macro-recall =
$$(67\% + 20\% + 67\%) / 3 = 51.1\%$$

Macro-F1 =
$$(42.1\% + 30.8\% + 66.7\%) / 3 = 46.5\%$$

Minority Classes are represented equally in Macrometrics

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (🐴)
Pr	Cat (🐯)	4	6	3
Predicted	Fish (��)	1	2	0
ed	Hen (4)	1	2	6

Weighted-F1 = $(6 \times 42.1\% + 10 \times 30.8\% + 9 \times 66.7\%) / 25 = 46.4\%$

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (🐴)
Pr	Cat (🐷)	4	6	3
Predicted	Fish (��)	1	2	0
ed	Hen (4)	1	2	6

Micro-F1 = Micro-Precision = Micro-Recall = Accuracy = Green/(Green+Red)=12/25

Testing

Why is Testing Needed?

- Compare the performance of different models
- Check if performance of a certain model is "good enough" on future (unseen) data

How?

- Reserve a subset of the full data set as the test set
- Train model on rest of the data, then evaluate model predictions on the test set.

How?

Holdout

- The most basic way to create a training and test set is to use "Holdout"
- Split the data using X% for training and Y% for testing
 - Typical splits tend to be 75/25, 80/20, 90/10
 - Splits should use stratified sampling, based upon the class distribution of the full data set
- This process should be repeated multiple times to mitigate the effects of "luck"

Cross-Validation

Use all data for testing

Cross-Validation

K-folds:

- split data into K subsets
- each subset will be used as validation set once
- performances are averaged across all K subsets

$$F1_{cross} = (0.6 + 0.7 + 0.6 + 0.4) / 4 = 0.575$$

Cross-Validation

- L × K-fold:
 - Shuffle data L times randomly
 - Each time perform a K-fold crossvalidation
 - Collect performance
 - End up with L performance metrics

Avoid lucky wins

 Compare the L metrics of each treatment to decide which is the best