线性回归与线性分类

Linear Regression and Linear Classification

洪波

Dept. of Biomedical Engineering
Tsinghua University

机器学习

Machine Learning

"学习材料": 一组观测样本 $(x_1, y_1), (x_1, y_1), \dots, (x_n, y_n)$

Linear Regression 线性回归

Linear Regression (Housing Prices Prediction)

Regression Problem: Predict real-valued output

Parameter optimization

Trai	ning	Set
------	------	-----

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_i$$
's: Parameters

How to choose θ_i 's ?

Cost Function 代价函数/目标函数

Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x, y)

代价函数
$$J(\theta) = J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

简化模型 – 只考虑一个参数

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: \min_{θ_0,θ_1} $J(\theta_0,\theta_1)$

<u>Simplified</u>

$$h_{\theta}(x) = \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \left| J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \right|$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1)$$

(function of the parameter θ_1)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1)$$

(function of the parameter θ_1)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$h_{\theta}(x)$ (for fixed θ_1 , this is a function of x) $h_{\theta}(x)$ 1 3 2 0

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

回到两个参数的情况 θ_0, θ_1

模型假设:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

模型参数:
$$\theta_0, \theta_1$$

代价函数:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

代价函数什么样?

 $h_{\theta}(x)$

(for fixed θ_0, θ_1 , this is a function of x)

$$h_{\theta}(x) = 50 + 0.06x$$

$$J(\theta_0,\theta_1)$$

(function of the parameters θ_0, θ_1)

?

代价函数

Gradient descent 梯度下降算法

$$J(\boldsymbol{\theta}) = J(\boldsymbol{\theta}_0, \boldsymbol{\theta}_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)})^2$$

$$\boldsymbol{\theta}_{j} = \boldsymbol{\theta}_{j} - \alpha \frac{\partial}{\partial \boldsymbol{\theta}_{j}} J(\boldsymbol{\theta})$$

$$\boldsymbol{\theta}_0 = \boldsymbol{\theta}_0 - \frac{\alpha}{m} \sum_{i=1}^m \left(h(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)} \right)$$

$$\boldsymbol{\theta}_{1} = \boldsymbol{\theta}_{1} - \frac{\alpha}{m} \sum_{i=1}^{m} \left(\left(h(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)} \right) x_{i} \right)$$

Gradient descent 梯度下降算法

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

线性回归算法Python实现

Algorithm for Linear Regression

```
import numpy as np
wheat and bread = np.array([[0.5,5],[0.6,5.5],[0.8,6],[1.1,6.8],[1.4,7]])
sample x=wheat and bread[:,0]
sample y=wheat and bread[:,1]
def step gradient(b current, m current, points, learningRate):
    b gradient = 0
    m gradient = 0
    N = float(len(points))
    for i in range(0, points.shape[0]):
                                                                                        0.50
        x = points[i][0]
        y = points[i][1]
        b gradient += -(2/N) * (y - ((m current * x) + b current))
        m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current))
    new b = b current - (learningRate * b gradient)
    new_m = m_current - (learningRate * m_gradient)
    return [new b, new m]
def compute value(b,m,point):
    return m*point+b
range_x=np.arange(0,2,0.05)
def gradient descent runner(points, starting b, starting m, learning rate, num iterations):
    b = starting b
    m = starting m
    plt.ion()
    for i in range(num iterations):
        b, m = step gradient(b, m, points, learning rate)
        plt.cla()
        plt.scatter(sample x, sample y)
        plt.plot(range x,compute value(b,m,range x))
        plt.pause(0.01)
    plt.ioff()
    plt.title('linear regression')
    plt.show()
    #return [b, m]
gradient descent runner(wheat and bread, 1, 1, 0.01, 100)
```


Convex Optimization 凸优化问题

梯度下降法的两个问题

1. 如果不是凸优化问题,不能保证全局最优,会落入局部极值点

2. 学习率η不能太大,太小也不好

寻优结果对初始值的敏感性

寻优结果对初始值的敏感性

寻优算法 Advanced Optimization algorithm

Given θ , we have code that can compute

- $-J(\theta)$
- $-\frac{\partial}{\partial \theta_j}J(\theta)$ (for $j=0,1,\ldots,n$)

Optimization algorithms:

- Gradient descent 梯度下降
- Conjugate gradient 共轭梯度
- BFGS/L-BFGS 拟牛顿法

Advantages:

- No need to manually pick α
- Often faster than gradient descent.

Disadvantages:

More complex

多变量问题 Multiple features (variables)

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••			•••	•••

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_{j}^{(i)}$ = value of feature j in i^{th} training example.

多变量线性回归 $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

$$h_{\boldsymbol{\theta}}(x) = \begin{bmatrix} \boldsymbol{\theta}_0 & \boldsymbol{\theta}_1 & \cdots & \boldsymbol{\theta}_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \boldsymbol{\theta}^{\mathrm{T}} x$$

$$X = \begin{bmatrix}
x_0^{(1)} & x_1^{(1)} & x_2^{(1)} & \cdots & x_n^{(1)} \\
x_0^{(2)} & x_1^{(2)} & x_2^{(2)} & \cdots & x_n^{(2)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_0^{(m)} & x_1^{(m)} & x_2^{(m)} & \cdots & x_n^{(m)}
\end{bmatrix}, \theta = \begin{bmatrix}
\theta_0 \\
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_n
\end{bmatrix}$$

 $h_{\theta}(X) = X\theta$

样本个数m

在scikit-learn中,训练样本就是用m×n维的矩阵来表达的

多维情况的代价函数和梯度下降算法

$$J(\boldsymbol{\theta}) = \frac{1}{2m} \sum_{i=1}^{m} (h(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)})^{2}$$

$$J(\boldsymbol{\theta}) = \frac{1}{2m} (\boldsymbol{X}\boldsymbol{\theta} - \vec{\boldsymbol{y}})^{\mathrm{T}} (\boldsymbol{X}\boldsymbol{\theta} - \vec{\boldsymbol{y}})$$

$$\boldsymbol{\theta}_{j} = \boldsymbol{\theta}_{j} - \alpha \frac{\partial}{\partial \boldsymbol{\theta}_{j}} J(\boldsymbol{\theta})$$

$$\boldsymbol{\theta}_{j} = \boldsymbol{\theta}_{j} - \frac{\alpha}{m} \sum_{i=1}^{m} \left(\left(h(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)} \right) \boldsymbol{x}_{j}^{(i)} \right)$$

算法伪代码

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat $\{$ $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ $\}$ (simultaneously update for every $j = 0, \dots, n$)

梯度下降:从单变量到多变量

Previously (n=1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1

New algorithm $(n \ge 1)$ Repeat { $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneously update for θ_i $j=0,\ldots,n$ $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$ $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1} (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$

Modified from Andrew Ng ML

 $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1} (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$

多项式回归 Polynomial regression

示例:房价预测

·CRIM: 城镇人均犯罪率。

·ZN: 城镇超过25,000平方英尺的住宅区域的占地比例。

·INDUS: 城镇非零售用地占地比例。

·CHAS: 是否靠近河边, 1为靠近, 0为远离。

·NOX: 一氧化氮浓度。

·RM: 每套房产的平均房间个数。

·AGE: 在1940年之前就盖好,且业主自住的房子的比例。

·DIS: 与波士顿市中心的距离。

·RAD: 周边高速公道的便利性指数。

·TAX: 每10,000美元的财产税率。

·PTRATIO: 小学老师的比例。

·B: 城镇黑人的比例。

·LSTAT: 地位较低的人口比例。

(506, 13)

from sklearn.datasets import load_boston

boston = load_boston()

X = boston.data

y = boston.target

X.shape

示例:多项式拟合正弦函数

Logistic Regression 分类器

从回归到分类

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
 , predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
 , predict "y = 0"

对数几率回归模型 Logistic Regression Model

$$h_{\theta}(x) = \theta^T x \qquad h_{\theta}(x) = g(z) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

Sigmoid function Logistic function

Sigmoid function and beyond

https://github.com/Kulbear/deep-learning-nano-foundation/wiki/ReLU-and-Softmax-Activation-Functions

模型输出的含义 Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\theta}(x) = 0.7$ 70% 概率是恶性肿瘤

Probability that y = 1, given x, parameterized by Θ

$$P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$$

 $P(y = 0|x; \theta) = 1 - P(y = 1|x; \theta)$

决策边界 Decision boundary

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y = 1" if $h_{\theta}(x) \ge 0.5$

$$\theta^T X \ge 0$$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

$$\theta^T X < 0$$

决策边界 Decision boundary

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

非线性决策边界

Non-linear decision boundaries

优化问题 Optimization

Training set:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

m examples
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$
 $x_0 = 1, y \in \{0, 1\}$

$$x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

代价函数 Cost Function 🐸

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

当y=1时,随着 $h_{\theta}(x)$ 的值(预 测为1的概率)越来越大,预测 值越来越接近真实值, 其成本越 来越小。

当y=0时,随着 h_{θ} (x)的值(预测 为0的概率)越来越大,预测值 越来越偏离真实值, 其成本越来 越大。

代价函数 Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
 上式的前半部分为0。因此下式 分开表达的成本计算公式等价。

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

寻优算法:梯度下降法 Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

```
\begin{array}{ll} \text{Want } \min_{\theta} J(\theta) & : \\ \text{Repeat} \, \{ & \\ \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \\ \\ \} & \text{(simultaneously update all } \theta_j \, ) \end{array}
```

Algorithm looks identical to linear regression!

多分类问题 Multi-class classification

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest)

$$\max_{i} h_{\theta}^{(i)}(x)$$

示例:乳腺癌检测

٩

·radius: 半径,即病灶中心点离边界的平均距离。

·texture: 纹理, 灰度值的标准偏差。

·perimeter:周长,即病灶的大小。

·area: 面积, 也是反映病灶大小的一个指标。

·smoothness: 平滑度, 即半径的变化幅度。

·compactness:密实度,周长的平方除以面积的商,再减1,即

perimeter² -1.

·concavity: 凹度, 凹陷部分轮廓的严重程度。

·concave points: 凹点, 凹陷轮廓的数量。

·symmetry: 对称性。

·fractal dimension: 分形维度。

上述代码输出结果如下:

```
data shape: (569, 30); no. positive: 357; no. negative: 212
                    1.03800000e+01
                                     1.22800000e+02
[ 1.79900000e+01
                                                      1.00100000e+03
  1.18499999e-91
                    2.77688888e-81
                                     3.00100000e-01
                                                      1.47189888e-91
                    7.87199999e-92
                                     1.09500000e+00
                                                      9.05300000e-01
  2.41988888e-81
  8.58900000e+00
                    1.53488888e+82
                                     6.39900000e-03
                                                       4.99499999e-92
  5.37399999e-92
                    1.58700000e-02
                                     3.00300000e-02
                                                       6.19300000e-03
  2.53899999e+91
                    1.73399999e+91
                                     1.84699999e+92
                                                       2.01900000e+03
  1.62200000e-01
                    6.65600000e-01
                                     7.11998999e-91
                                                      2.65400000e-01
  4.60100000e-01
                    1.18900000e-011
```

Overfitting and Regularization 过拟合与正则化

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well ($J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0$), but fail to generalize to new examples (predict prices on new examples).

Example: Logistic regression

$$\begin{array}{ll} h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) & g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 \\ \text{(g= sigmoid function)} & +\theta_3 x_1^2 + \theta_4 x_2^2 \\ & +\theta_5 x_1 x_2) & +\theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots) \end{array}$$

如何解决过拟合问题?

1. Reduce number of features

- Manually select which features to keep.
- Model selection algorithm (later in course).

2. Regularization 正则化

- Keep all the features, but reduce magnitude/values of parameters θ_j .
- Works well when we have a lot of features, each of which contributes a bit to predicting y.

正则化 Regularization

Suppose we penalize and make θ_3 , θ_4 really small.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

正则化 Regularization

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

正则项

过度正则化导致欠拟合

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

线性回归的正则化梯度下降算法 Linear regression - Gradient descent with regularization

代价函数
$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

梯度
$$\frac{\partial J(\theta)}{\partial \theta_i}$$

$$\boldsymbol{\theta}_{j} = \boldsymbol{\theta}_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left[\left(\left(h(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)} \right) \boldsymbol{x}_{j}^{(i)} \right) + \frac{\lambda}{m} \boldsymbol{\theta}_{j} \right]$$

$$\boldsymbol{\theta}_{j} = \boldsymbol{\theta}_{j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(\left(h(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \right)$$

对数几率回归的正则化

Logistic regression with regularization

代价函数

$$J(\theta) = -\left[\frac{1}{m}\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right]$$

$$IEMUL$$

$$J(\theta) = -\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)}))\right] + \frac{\lambda}{2m}\sum_{j=1}^{n} \theta_{j}^{2}$$

对数几率回归的正则化梯度下降算法

代价函数

$$\boldsymbol{\theta}_{j} = \boldsymbol{\theta}_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) - \boldsymbol{y}^{(i)} \right) \boldsymbol{x}_{j}^{(i)} + \frac{\lambda}{m} \boldsymbol{\theta}_{j} \right]$$

$$\boldsymbol{\theta}_{j} = \boldsymbol{\theta}_{j} \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(\left(h(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \right)$$

感知器Perceptron

感知机 Perceptron

Frank Rosenblatt, 1957

感知机 Perceptron

Frank Rosenblatt, 1957

- Rosenblatt (1958) introduced the perceptron, the simplest form of neural network
- The perceptron is a single neuron with adjustable synaptic weights and a threshold activation function
- Rosenblatt also developed an error-correction rule to adapt these weights (the perceptron learning rule)
- He also proved that if the (two) classes were linearly separable, the algorithm would converge to a solution (the perceptron convergence theorem)

感知机 Perceptron

The perceptron, invented in the late 1950s, was considered a paradigm shift. For the first time, a machine could be taught to perform certain tasks using examples. This surprising invention was almost immediately followed by an equally surprising theoretical result, the perceptron convergence theorem, which states that a machine executing the perceptron algorithm can effectively produce a decision rule that is compatible with its training examples. A youthful wave of optimism took over the research community. Although it only dealt with a very specific category of tasks, namely pattern recognition tasks, the perceptron was widely publicized as the forerunner of more general learning machines.

神经细胞的MP模型

McCulloch-Pitts 1943

从感知机到神经网络

线性分类器 Linear Classifier

- No probability distribution (no shape or parameters are known)
- Only labeled data available

• The shape of discriminant functions is assumed to be linear

Need to estimate parameters of the linear function

分类超平面 Hyperplane

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0$$

$$\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

$$g(X) = W^{T}(X_{p} + r \frac{W}{\|W\|}) + w_{0} = W^{T}X_{p} + w_{0} + r \frac{W^{T}W}{\|W\|} = r\|W\|$$

$$r = \frac{g(\mathbf{x})}{\|\mathbf{w}\|}$$

- The orientation of the surface is determined by the vector w
- The location of the surface is determined by the bias w₀
- The discriminant function g(x) is proportional to the signed distance from x to the hyperplane

线性判别函数的增广形式

$$g(x) = w^{T}x + w_{0} \Leftrightarrow \begin{cases} g(x) > 0 & x \in \omega_{1} \\ g(x) < 0 & x \in \omega_{2} \end{cases}$$

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$

$$\mathbf{a} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} = \begin{bmatrix} w_0 \\ \mathbf{w} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}$$

Augmented feature vector

$$g(x) = a^{T}y \begin{cases} > 0 & x \in \omega_{1} \\ < 0 & x \in \omega_{2} \end{cases}$$

样本规范化 Normalization

$$g(x) = a^{T}y \begin{cases} > 0 & x \in \omega_{1} \\ < 0 & x \in \omega_{2} \end{cases}$$

$$y \leftarrow [-y] \forall y \in \omega_2$$

$$a^Ty > 0 \forall y$$

- 向量a 的取值范围如何确定?
- 怎样的a是最优的?

准则函数 Criterion Function

- Which decision boundary is better (怎样的a是最优的)?
- The task is to find the best parameter of the line to separate the two classes with least error.

■ Need criterion function J(a) which is minimized when a is a solution vector

感知器准则 Perceptron Rule

• 更好的选择: *Perceptron* criterion function

$$J_{p}(a) = \sum_{y \in Y_{M}} \left(-a^{t}y\right)$$

其中YM是错分样本集

$$Y_M(a) = \{ sample \ y_i \ s.t. \ a^t y_i < 0 \}$$

感知器准则下的梯度下降法

优化目标是最小化错分样本的负判决值之和

$$J_{P}(a) = \sum_{y \in Y_{M}} (-a^{T}y)$$

$$\nabla_{a}J_{P}(a) = \sum_{y \in Y_{M}} (-y)$$

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta \sum_{y \in Y_M(k)} y$$

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta \cdot y^k$$

Batch Update 成批更新

Single-sample Update

单样本逐个更新

感知器准则算法伪代码

Batch Update

```
begin initialize \mathbf{a}, \eta(\cdot), criterion \theta, k = 0
\underline{\mathbf{do}} \quad k \leftarrow k + 1
\mathbf{a} \leftarrow \mathbf{a} + \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_k} \mathbf{y}
\underline{\mathbf{until}} \quad \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_k} \mathbf{y} < \theta
\underline{\mathbf{return}} \quad \mathbf{a}
\underline{\mathbf{end}}
```

Single-sample Update

```
1 begin initialize \mathbf{a}, k = 0
2 do k \leftarrow (k+1) \bmod n
3 if \mathbf{y}_k is misclassified by a then \mathbf{a} \leftarrow \mathbf{a} - \mathbf{y}_k
4 until all patterns properly classified
5 return \mathbf{a}
6 end
```

Learning rate in single-sample update

 η is too large, previously correctly classified sample y_k is now misclassified

 η is too small, y_M is still misclassified

Perceptron Learning Algorithm: A Graphical Explanation Of Why It Works

https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975

XOR problem killed Perceptron

Minsky and Papert, 1969

总结:线性回归与线性分类

对数几率回归分类器 Logistic regression

感知机线性分类Perceptron

机器学习的核心方法

- ☑ 模型选择 Model selection
- ☑ 代价函数 Cost function
- ☑ 优化算法 Optimization algorithm
- ☑ 正则化 Regularization
- ☑ 核函数升维 Kernel trick