Metody Probabilistyczne i Statystyka

Rafał Włodarczyk

INA 3, 2024

${\bf Contents}$

Ciała Podzbiorów
1.1 Sigma ciało podzbiorów
Przestrzenie Mierzalne
2.1 Przestrzeń probabilistyczna
2.2 Przestrzeń kombinatoryczna
2.3 Przestrzeń dyskretna skończona
2.4 Przestrzeń dyskretna nieskończona (przeliczalna)
2.5 Geometryczny model Prawdopodobieństwa
Prawdopodobieństwo Warunkowe
3.1 Prawdopodobieństwo Całkowite
Prawdopodobieństwo Warunkowe 3.1 Prawdopodobieństwo Całkowite
Zdarzenia niezależne
Zmienne Losowe
5.1 Dystrybuanta

1 Ciała Podzbiorów

Definition. Ciało podzbiorów. Ustalmy przestrzeń Ω . Rodzinę zbiorów $\mathcal{S} \subseteq \mathcal{P}(\Omega)$ nazywamy ciałem podzbiorów zbioru Ω , jeśli:

- 1. $S \neq \emptyset$
- $2. \ A \in \mathcal{S} \implies A^C \in \mathcal{S}$
- 3. $A, B \in \mathcal{S} \implies A \cup B \in \mathcal{S}$

Fact. Przekrój w ciele podzbiorów. Jeśli $\mathcal S$ jest ciałem podzbiorów, to:

$$A, B \in \mathcal{S} \implies A \cup B \in \mathcal{S}$$

Fact. Skończony zbiór indeksów. Jeśli S jest ciałem podzbiorów Ω i dla pewnego nieskończonego zbioru indeksów zachodzi $\forall i \in I(A_i \in S)$, wówczas:

$$\bigcup_{i \in I} A_i \in \mathcal{S} \text{ oraz } \bigcap_{i \in I} A_i \in \mathcal{S}$$

Fact. Omega i zbiór pusty. Niech S będzie ciałem podzbiorów Ω , wówczas:

$$\Omega \in \mathcal{S} \text{ oraz } \emptyset \in \mathcal{S}$$

1.1 Sigma ciało podzbiorów

Definition. σ -ciało podzbiorów. Ustalmy przestrzeń Ω . Rodzinę zbiorów $\mathcal{S} \subseteq \mathcal{P}(\Omega)$ nazywamy σ -ciałem podzbiorów zbioru Ω , jeśli:

- 1. $S \neq \emptyset$
- 2. $A \in \mathcal{S} \implies A^C \in \mathcal{S}$
- 3. $A_1, A_2, \dots \in \mathcal{S} \implies \bigcup_{i>1} A_i \in \mathcal{S}$

Ciało podzbiorów jest zamknięte na **skończone sumy** jego elementów, natomiast σ -ciało podzbiorów jest zamknięte na **sumy przeliczalne**

Fact. Ciało z sigma ciała. Jeśli S jest σ -ciałem podzbiorów Ω to jest też ciałem podzbiorów Ω . Każde σ -ciało zawiera \emptyset oraz Ω .

Fact. Skończone ciało podzbiorów Ω . Jeśli \mathcal{S} jest skończonym ciałem podzbiorów Ω , to \mathcal{S} jest σ -ciałem podzbiorów Ω (przeliczalne sumy redukują się do sum skończonych)

Information. Przykład Sigma Ciał. Zobaczmy przykłady σ -ciał:

- 1. $\mathcal{P}(\Omega)$ jest sigma ciałem.
- 2. $\{\emptyset, \Omega\}$ jest sigma ciałem (nazywany zdegenerowanym).
- 3. Najmniejsze sigma ciało zawierające A to $\{\emptyset, A, A^C, \Omega\}$.

Definition. Sigma ciało generowane. Niech $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ będzie rodziną podzbiorów Ω . Sigma ciałem generowanym przez rodzinę \mathcal{A} nazywamy rodzinę podzbiorów:

$$\sigma(\mathcal{A}) = \bigcup \mathcal{H}$$

gdzie $\mathcal{H} = \{ \mathcal{S} \subseteq \mathcal{P}(\Omega) : \mathcal{S} \text{ jest sigma ciałem } \wedge \mathcal{A} \subseteq \mathcal{S} \}$

Niech $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ będzie rodziną podzbiorów Ω . Wówczas istnieje najmniejsze σ -ciało podzbiorów Ω zawierające \mathcal{A} .

Definition. Sigma ciało zbiorów borelowskich. Sigma ciało generowane przez rodzinę wszystkich otwartych podzbiorów \mathbb{R} nazywamy σ -ciałem zbiorów borelowskich prostej rzeczywistej i oznaczamy je przez $\mathcal{B}(\mathbb{R}) = \mathcal{B}$.

Information. Elementy $\mathcal{B}(\mathbb{R})$. Zobaczmy elementy zbiorów borelowskich:

- 1. wszystkie odcinki otwarte $(a, b), a < b \in \mathbb{R}$
- 2. półprosta $(0, \infty) = \bigcup_{n \ge 1} (0, n)$
- 3. półprosta $(-\infty, 0] = (0, \infty)^C = \bigcap_{n>1} (-\infty, \frac{1}{n})$
- 4. półproste $(-\infty, a)$ oraz $[a, \infty), a \in \mathbb{R}$
- 5. $\mathcal{B}(\mathbb{R}) = \sigma(\{(a,b) : a,b \in \mathbb{R} \land a < b\})$
- 6. $\mathcal{B}(\mathbb{R}^n) = \sigma(\{A \subseteq \mathbb{R}^n : A \text{ jest zbiorem otwartym}\})$

2 Przestrzenie Mierzalne

Definition. Przestrzeń mierzalna. Parę (S, \mathcal{S}) , gdzie S jest niepustym zbiorem, a \mathcal{S} jest σ -ciałem podzbiorów S nazywamy **przestrzenią mierzalną**. Zbiory $A \in \mathcal{S}$ nazywamy wówczas zbiorami mierzalnymi.

Definition. Miara. Niech (S, \mathcal{S}) będzie przestrzenią mierzalną. **Miarą** na przestrzeni nazywamy funkcję zbioru $\mu: \mathcal{S} \to [0, \infty]$, taką że:

- 1. $\mu(\emptyset) = 0$
- 2. dla dowolnej rodziny $\{E_n\}_{n\geqslant 1}$ parami rozłącznych zbiorów z \mathcal{S} , zachodzi:

$$\mu\left(\bigcup_{n\geqslant 1} E_n\right) = \sum_{n\geqslant 1} \mu(E_n)$$

Trójkę (S, \mathcal{S}, μ) nazywamy **przestrzenią z miarą**. (własność 2 to przeliczalna addytywność)

Information. Miara Lebesgue'a. Miara Lebesgue'a na przestrzeni $(\mathbb{R}, \mathcal{B})$ staniowi naturalną formalizację pojecia długości.

$$\lambda([a,b]) = b - a$$

Uwaga, istnieją zbiory niemierzalne w sensie Lebesgue'a.

2.1 Przestrzeń probabilistyczna

Definition. Przestrzeń Probabilistyczna. Nazywamy trójkę (Ω, \mathcal{S}, P) taką, że $\Omega \neq \emptyset, \mathcal{S} \subseteq \mathcal{P}(\Omega)$ jest σ -ciałem podzbiorów Ω , a $P: \mathcal{S} \to [0,1]$ jest funkcją zbioru (nazywaną **prawdopodobieństwem**) spełniającą:

- 1. $P(\Omega) = 1$
- 2. Jeśli $(A_n)_{n\geqslant 1}$ jest rodziną parami rozłącznych zbiorów z \mathcal{S} to:

$$P\left(\bigcup_{n\geqslant 1}A_n\right) = \sum_{n\geqslant 1}P(A_n)$$

P jest miarą na przestrzeni (Ω, \mathcal{S})

Miarę spełniającą warunek 1. nazywamy miarą probabilistyczną.

Fact. Fakty z Przestrzeni probabilistycznych. Z definicji widzimy, że:

1.
$$P(\emptyset) = 0$$

Information. Notacja w Przestrzeni probabilistycznej. Wprowadzamy nazewnictwo:

- Ω przestrzeń zdarzeń elementarnych ($\omega \in \Omega$ zdarzenie elementarne)
- ${\mathcal S}$ σ -ciało zdarzeń. ($A\in {\mathcal S})$ zdarzenie
- P prawdopodobieństwo, P(A) prawdopodobieństwo zdarzenia $A \in \mathcal{S}$

2.2 Przestrzeń kombinatoryczna

Przestrzeń (Ω, \mathcal{S}, P) , gdzie:

- 1. $|\Omega| < \infty$
- 2. $S = \mathcal{P}(\Omega)$
- 3. $P(A) = |A|/|\Omega|, A \in \mathcal{S}$

2.3 Przestrzeń dyskretna skończona

Przestrzeń (Ω, \mathcal{S}, P) , gdzie:

- 1. $\Omega = \{\omega_1, \ldots, \omega_n\}$
- 2. $S = \mathcal{P}(\Omega)$
- 3. P zadane przez wektor $(p_1, \ldots, p_n), p_i \ge 0, \sum_{i=1}^n p_i = 1$
- 4. $P(\{\omega_i\}) = p_i$
- 5. Dla $A\subseteq\Omega$ określamy $P(A)=\sum_{\omega\in A}P(\{\Omega\})=\sum_{\omega_i\in A}p_i$

2.4 Przestrzeń dyskretna nieskończona (przeliczalna)

Przestrzeń (Ω, \mathcal{S}, P) , jak wyżej tylko P jest zadane przez ciąg (p_1, p_2, \dots)

Jeśli Ω jest przeliczalna to za σ -ciało możemy bezpiecznie przyjąć $\mathcal{P}(\Omega)$

2.5 Geometryczny model Prawdopodobieństwa

Weźmy $\Omega \in \mathcal{B}(\mathbb{R}^n)$, taki że $\lambda^n(\Omega) < \infty$. (Miarę Lebesgue'a w \mathbb{R}^n). Ustalmy $\mathcal{S} = \mathcal{B}(\Omega)$. Wtedy:

$$P(A) = \frac{\lambda^n(A)}{\lambda^n(\Omega)}, A \in \mathcal{S}$$

n=1 - długość, n=2 - pole powierzchni, n=3 objętość.

3 Prawdopodobieństwo Warunkowe

Definition. Prawdopodobieństwo Warunkowe. Ustalmy przestrzeń probabilistyczną (Ω, \mathcal{S}, P) . Niech $A, B \in \mathcal{S}$ i załóżmy, że P(B) > 0. Prawdopodobieństwo warunkowe zdarzenia A pod warunkiem zdarzenia B określamy jako:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Fact. Prawdopodobieństwo Warunkowe jest dobrze określone. Ustalmy przestrzeń probabilistyczną (Ω, \mathcal{S}, P) , niech $B \in \mathcal{S}$ będzie zdarzeniem takim, że P(B) > 0. Niech:

$$P_B(A) = P(A|B)$$
, dla $A \in \mathcal{S}$

Wówczas $(\Omega, \mathcal{S}, P_B)$ jest przestrzenią probabilistyczną.

3.1 Prawdopodobieństwo Całkowite

Definition. Prawdopodobieństwo Całkowite. Ustalmy przstrzeń probablistyczną (Ω, \mathcal{S}, P) . Niech $\{A_1, \ldots, A_n\}$ będzie rozbiciem Ω na zdarzenia $\forall 1 \leq i \leq n (A_i \in \mathcal{S}) A_i \cap A_j = \emptyset$ dla $i \neq j$ oraz $\bigcup_{i=1}^n A_i = \Omega$. Niech $B \in \mathcal{S}$ Wtedy:

$$P(B) = \sum_{i=1}^{n} P(B \cup A_i)$$

Jeśli ponadto $P(A_i) > 0$ dla $1 \le i \le n$ to:

$$P(B) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$

Fact. Rozbicie. Jeśli $\{A_1, \ldots, A_n\}$ jest rozbiciem Ω na zdarzenia, a $B \in \mathcal{S}$, takie że P(B) > 0, to:

$$\sum_{i=1}^{n} P(A_i|B) = 1$$

3.2 Wzór Bayesa

Definition. Wzór Bayesa. Ustalmy przestrzeń probabilistyczną (Ω, \mathcal{S}, P) . oraz rozbicie Ω na zdarzenia A_1, \ldots, A_n , takie że $P(A_i) > 0$ dla $1 \le i \le n$. Niech $B \in \mathcal{S}$ będzie takie, że P(B) > 0. Wtedy dla $1 \le i \le n$ mamy:

$$P(A_i|B) = \frac{P(B|A_i) \cdot P(A_i)}{\sum_{j=1}^{n} P(B|A_j) \cdot P(A_j)}$$

Dla n=2:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|A^C) \cdot P(A^C)}$$

4 Zdarzenia niezależne

Definition. Zdarzenie niezależne. Zdarzenia A i B są niezależne, gdy:

$$P(A \cap B) = P(A) \cdot P(B)$$

Powiemy, że zdarzenia A_t , $t \in T$ (T - zbiór indeksów) są niezależne, jeśli dla dowolnych róznych indeksów $i_1, \ldots, i_n \in T$ zachodzi:

$$P(\bigcap_{j=1}^{n} A_{i_j}) = \prod_{j=1}^{n} P(A_{i_j})$$

Information. Niezależność, a prawdopodobieństwo warunkowe. Jeśli zdarzenia A i B są niezależne oraz P(B) > 0, to:

$$P(A|B) = P(A)$$

5 Zmienne Losowe

Definition. Zmienne Losowe. Ustalmy przestrzeń probabilistyczną (Ω, \mathcal{S}, P) . Zmienną losową nazywamy funkcję $X : \Omega \to \mathbb{R}$ taką, że:

$$(\forall B \in \mathcal{B})(X^{-1}(B) = \{\omega \in \Omega : X(\omega \in B\} \in \mathcal{S})$$

(Intuicja) Każdemu zdarzeniu $B\in\mathcal{B}$ mogę przyporządkować ppb. odpowiadające ppb. zdarzenia z Ω reprezentowanego przez B, czyli $P(X^{-1}(B))$

Definition. Funkcje mierzalne. Niech (S, S) oraz (T, T) będą przestrzeniami mierzalnymi. Funkcję $f: S \to T$ nazywamy funkcją S/T-mierzalną, jeśli

$$(\forall B \in \mathcal{T})(f^{-1}(B) = \{s \in S : f(s) \in B\} \in \mathcal{S})$$

Zmienne losowe to funkcje mierzalne z (Ω, \mathcal{S}) w $(\mathbb{R}, \mathcal{B})$. (Zachowuje strukturę σ -ciał)

Fact. Funkcje ciągłe. Funkcje ciągłe są mierzalne.

Definition. Równość prawie wszędzie. Niech (S, \mathcal{S}, μ) będzie przestrzenią z miarą, a $f, g: S \to \mathbb{R}$ będą funkcjami mierzalnymi $(\mathcal{S}/\mathcal{B}$ mierzalnymi). Mówimy, że f i g są równe μ -prawie wszędzie, jeśli:

$$\mu\{s\in S: f(s)\neq g(s)\}=0$$

Information. Oznaczenie. Dla dowolnego $B \in \mathcal{B}$ niech:

$$P_X(B) = (P \circ X^{-1})(B) = P(X^{-1}(B)) = P(\{\omega \in \Omega : X(\omega) \in B\}) = P(X \in B)$$

Prawdopodobieństwo P_X na przestrzeni $(\mathbb{R}, \mathcal{B})$ oznaczamy rozkładem zmiennej losowej X.

5.1 Dystrybuanta

Definition. Dystrybuanta. (Cumulative Distribution Function -CDF) zmiennej losowej $X: \Omega \to \mathbb{R}$ nazywamy funkcję $F_X: \mathbb{R} \to [0,1]$ taką, że:

$$F_X(t) = P(X \leqslant t) = P(\{\omega \in \Omega : X(\omega) \leqslant t\}) = P(X^{-1}((-\infty, t]))$$

Information. Własności dystrybuanty. Niech $X:\Omega\to\mathbb{R}$ będzie zmienną losową

1. dystrybuanta $F_X(t)$ jest funkcją niemalejącą tzn.

$$(\forall s, t \in \mathbb{R})(s \leqslant t \implies F_X s) \leqslant F_X(t))$$

2. granica dystrybuanty w ∞ , $-\infty$ wyraża się poprzez:

$$\lim_{t \to \infty} F_X(t) = 1 \text{ oraz } \lim_{t \to \infty} F_X(t) = 0$$

3. dystrybuanta $F_X(t)$ jest prawostronnie ciągła tzn.

$$(\forall a \in \mathbb{R}) \left(\lim_{t \to a^+} F_X(t) = F_X(a) \right)$$

Theorem. Twierdzenie. Funkcja $F : \mathbb{R} \to [0, 1]$ jest dystrybuantą pewnej zmiennej losowej wtedy i tylko wtedy, g dy spełnia powyższe 3 warunki.

5.2 Dyskretna zmienna losowa

Theorem. Dyskretna zmienna losowa. Rozkład dyskretnej zmiennej losowej X jest wyznaczony jednoznacznie przez określenie ppb. przyjmowania dla poszczególnych wartości przez X (P(X=x)) dla każdego $x \in \operatorname{rng}(X)$. Dla dowolnego $A \in \mathbb{B}$ mamy:

$$P(X \in A) = P(\{\omega \in \Omega : X(\omega) \in A\}) \tag{1}$$

$$= P(\{\omega \in \Omega : X(\omega) \in A \cap \operatorname{rng}(X)\}) \tag{2}$$

$$= P\left(\bigcup_{x \in \operatorname{rng}(X) \cap A} \{x\}\right) \tag{3}$$

$$= \sum_{x \in \operatorname{rng}(X) \cap A} P(X = x) \tag{4}$$

Definition. Funkcja masy prawdopodobieństwa. (Probablity Mass Function - PMF) dyskretnej zmiennej losowej X nazywamy funkcję: $p_X : \operatorname{rng}(X) \to [0, 1]$ zadaną wzorem:

$$p_X(x) = P(X = x)$$

Fact. Wzór na Dystrybuantę. Dystrybuanta dyskretnej zmiennej losowej X z PMF p_x zadana jest wzorem:

$$F_X(t) = P(X \leqslant t) = \sum_{y \in rng(X)y \leqslant t} p_X(y)$$

Theorem. Istnienie zmiennej losowej o zadanym rozkładzie dyskretnym. Niech $B=\{b_i:i\in I\}$ będzie przeliczalnym podzbiorem zbioru liczb rzeczywistych, takich że $b_i\neq b_j$ dla $i\neq j$. Niech $p_i,i\in I$ będą nieujemnymi liczbami rzeczywistymi, takimi że $\sum_{i\in I}p_i=1$.

Istnieje wówczas ppb. (Ω, \mathcal{S}, P) i dyskretna zmienna losowa $X: \Omega \to \mathbb{R}$, której PMF zadana jest przez:

$$p_X(b_i) = p_i, i \in I \text{ oraz } p_X(b) = 0, b \notin B.$$