

E 70 000

# DRAG COEFFICIENTS FOR IRREGULAR FRAGMENTS

BY FRANK MCCLESKEY
(KILKEARY, SCOTT & ASSOCIATES, INC.)
FOR NAVAL SURFACE WARFARE CENTER
RESEARCH AND TECHNOLOGY DEPARTMENT
AND DEPARTMENT OF DEFENSE
EXPLOSIVES SAFETY BOARD

**FEBRUARY 1988** 

Approved for public release; distribution is unlimited.

DESTRUCTION NOTICE — For classified documents, follow procedures as outlined in Chapter 17 of OPNAVINST 5510.1G. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.





**NAVAL SURFACE WARFARE CENTER** 

Dahlgren, Virginia 22448-5000 • Silver Spring, Maryland 20903-5000

| 1. OFFIC NUISE ONLY.                                                                                   | REPORT DOCUMENTATION                                                                                                                                     | PAGE                                                                                                                      |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                        | ₹ REPORT DATE.                                                                                                                                           | 3. TYPE OF REPORT AND DATES COVERED                                                                                       |
|                                                                                                        | 1988, February                                                                                                                                           | Final                                                                                                                     |
| TITLE AND SUBTITLE.                                                                                    |                                                                                                                                                          | 5. FUNDING NUMBERS.                                                                                                       |
| Drag Coefficients for Irregular Fr                                                                     | ragments                                                                                                                                                 |                                                                                                                           |
| s. Author(s)<br>McCleskey, Frank                                                                       |                                                                                                                                                          |                                                                                                                           |
| PERFORMING ORGANIZATION NAME(S) AND ADDRE                                                              | ss(ES)                                                                                                                                                   | 8. PERFORMING ORGANIZATION REPORT NU                                                                                      |
| Kilkeary, Scott & Associates, Inc.                                                                     |                                                                                                                                                          | 2009 N. 14th St. Suite-408<br>Arlington, VA 22201                                                                         |
| DOD Explosives Safety Board<br>Room 856-C, Hoffman Building I<br>2461 Eisenhower Avenue/Alexandria, VA | Naval Surface Warfare Ce<br>Dahlgren, VA 22448-5006                                                                                                      | 1 NSWC 1K 01-09                                                                                                           |
| Approved for public release; distr                                                                     |                                                                                                                                                          |                                                                                                                           |
| Mch numbers of approximately 0 area ratio is presented. A method                                       | r fragments were determined for 96<br>1. Correlation of drag coefficient w<br>I for approximating the whole drag<br>tunnel test results are given in the | of fragments in a vertical wind tunnel at with the maximum-to-average presented curve is also given. Physical appendixes. |
|                                                                                                        |                                                                                                                                                          | DEC 2 7 1988                                                                                                              |

17c. SECURITY CLASSIFICATION (OFABSTRACT).
UNCLASSIFIED

18. MEDIA TYPE.

176. SECURITY CLASSIFICATION (OF PAGE)
UNCLASSIFIED

17a SECURITY CLASSIFICATION (OF REPORT).
UNCLASSIFIED

#### **FOREWORD**

The work on fragment drag coefficients contained in this report is part of a continuing effort for the Department of Defense Explosives Safety Board (DDESB). In addition to testing, the Naval Surface Warfare Center (NSWC) is tasked with establishing analytical techniques for predicting the hazards from fragments produced by the inadvertent detonation of ordnance stacks.

All tests and data reduction for this report were directed by the author while an employee of NSWC. This documentation was done by the author while an employee of Kilkeary, Scott and Associates, Inc.

The wind tunnel tests and data reduction were conducted by the Aerodynamics Research and Concepts Assistance Branch, Research Directorate, U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, Maryland. The author acknowledges the following personnel of the Aerodynamics Research and Concepts Assistance Branch: Miles C. Miller; Richard R. Raup; Owen C. Smith, Jr.; and Daniel J. Weber. Deborah Rollins and Rose Baker of NSWC performed the fragment presented area measurements. Rose Baker made the linear measurements of the fragments and made all necessary calculations and graphical plots. Stephen F. McCleskey derived the equations for maximum presented area and the variance of the presented areas for a given fragment modeled as a rectangular parallelepiped.

This report has been reviewed by W. H. Bohli, Head, Explosion Dynamics Branch.

Approved by:

K. F. MUELLER, Head Energetic Materials Division

has Thucky

## **CONTENTS**

|                  |      |     |     |     |      |     |     |     |     |    |    |     |      |      |    |    |     |   |   | Page |
|------------------|------|-----|-----|-----|------|-----|-----|-----|-----|----|----|-----|------|------|----|----|-----|---|---|------|
| INTRODUCTION .   |      |     |     | •   | •    | •   | ٠   | •   |     |    | •  |     |      |      |    |    |     | • |   | 1    |
| DRAG COEFFICIENT | PRO  | OGI | RAI | M   |      |     |     |     |     |    |    |     |      |      |    |    |     |   |   | 2    |
| FRAGMENT SELEC   | CTIO | N   |     | ,   |      |     |     | ,   |     |    |    |     |      |      |    |    |     |   |   | 2    |
| FRAGMENT MEAS    | URE  | ME  | NI  | S   |      |     |     |     |     |    |    |     |      |      | •  |    |     |   |   | 2    |
| VERTICAL WIND T  | UN   | NEI |     |     |      |     |     |     |     |    |    |     |      |      |    |    |     |   |   | 6    |
| RESULTS          |      |     |     |     |      |     |     |     |     |    |    |     |      |      |    |    |     |   |   | 6    |
| USING THE LOW S  | UBS  | ON  | IC  | DR  | AG ( | COE | FF  | CLE | INT | TO | CA | LCU | ILA' | TE I | RA | GM | ENT | r |   |      |
| TRAJECTORIES     | •    | •   |     | •   | •    | •   | •   | •   | •   |    |    |     | •    | •    |    | •  |     |   | • | 10   |
| FUTURE CONSIDER  | ATIO | ONS | 3   |     | •    |     |     |     |     |    | •  | •   | •    |      |    |    |     |   |   | 12   |
| REFERENCES .     |      |     |     |     |      |     |     |     |     |    |    | •   |      |      |    | ٠  | •   | • | • | 13   |
| APPENDIXES       |      |     |     |     |      |     |     |     |     |    |    |     |      |      |    |    |     |   |   |      |
| A-TABLES OF FR.  | AGM  | EN  | тC  | HA  | RA   | CTE | RIS | TIC | :S  |    |    |     |      |      |    |    |     |   |   | A-1  |
| BFRAGMENT PH     | OTO  | )GR | AP  | HS  |      |     |     |     |     |    |    |     |      |      |    |    |     |   |   | B-1  |
| CVERT!CAL WIN    | T D  | UN  | NE  | LTI | EST  | RE  | COF | RDS |     |    |    |     |      |      |    |    |     |   |   | C-1  |
| DCATEGORIES C    | F FF | RAC | MI  | ENI | M O  | OTT | NC  | •   |     |    |    |     |      | •    |    | •  | •   |   | • | D-1  |
| DISTRIBUTION .   |      |     |     |     |      |     |     |     |     |    |    |     |      |      |    |    |     |   |   | (1)  |

Accession For

NTIS GRAAI

DTIC TAB

Unannounced

Justification

By

Distribution/

Availability Codes

Avail and/or

Dist

Special

## **ILLUSTRATIONS**

| Figure |                                                                                       | Page |
|--------|---------------------------------------------------------------------------------------|------|
| 1      | C <sub>D</sub> RANGE SENSITIVITY                                                      | 1    |
| 2      | FRAGMENT LINEAR DIMENSIONS                                                            | 3    |
| 3      | PERIMETER MEASUREMENTS                                                                | 4    |
| 4      | PRESENTED AREA MEASUREMENTS (ICOSAHEDRON GAGE)                                        | 5    |
| 5      | PRESENTED AREA MEASUREMENTS (EQUIVALENT WEIGHT AND VOLUME RECTANGULAR PARALLELEPIPED) | 5    |
| 6      | SUBSONIC VERTICAL WIND TUNNEL                                                         | 7    |
| 7      | EXPERIMENTAL DRAG COEFFICIENT                                                         | 7    |
| 8      | DRAG COEFFICIENT (CD) VERSUS PRESENTED AREA RATIO (AR)                                | 9    |
| 9      | VELOCITY VERSUS RANGE RATIO                                                           | 9    |
| 10     | STRAIGHT LINE APPROXIMATION TO FRAGMENT CD CURVES                                     | 11   |
|        | TABLES                                                                                |      |
| Table  |                                                                                       | Page |
| 1      | COMPARISON OF BASELINE FRAGMENTS                                                      | 8    |
| 2      | APPROXIMATION OF STRAIGHT LINE POINTS                                                 | 10   |

#### INTRODUCTION

The Naval Surface Warfare Center (NSWC) has a continuing task from the Department of Defense Explosives Safety Board (DDESB) to establish methods for predicting the fragment hazards due to the inadvertent explosion of ordnance items. As part of this task, NSWC has established a computer model, which predicts fragment hazards for specified targets.

The computer model calculates individual trajectories for each fragment recovered in small-scale fragmentation arena tests. The following variables affect the flight dynamics of a fragment which is modeled as a point mass: gravity, velocity, area to mass ratio, air density, wind speed, and drag coefficient.

Except for the drag coefficient, all of these variables can be established with a fair degree of accuracy by tests, measurements and calculations. The drag coefficient for any fragment is a function of shape only. For regular fragments, like spheres and cubes, the drag coefficients are reasonably well-defined. For irregular fragments, like those from bombs or concrete walls, no two fragments have exactly the same shape. As a result, no two irregular fragments have exactly the same drag coefficient. Additionally, drag coefficient is a function of Mach number.

The uncertainty of drag coefficients for irregular fragments produces an associated uncertainty in farfield impact range. Figure 1 shows range versus low subsonic drag coefficient  $(C_D)$  for a typical fragment trajectory. The initial elevation angle, average presented area to mass ratio, and initial velocity are shown in Figure 1. The range of low subsonic  $C_D$  varies from 0.5 to 1.5, a factor of three. The associated ranges vary by a factor of more than two. This represents a large range of uncertainty in the trajectory calculations for establishing fragment hazards for use in quantity-distance determinations. If this uncertainty is to be reduced, some correlation must be established between drag coefficient  $(C_D)$  and the characteristics of irregular fragments.



FIGURE 1. CD-RANGE SENSITIVITY

Since C<sub>D</sub> is a function of shape only, any correlating parameter must be dimensionless; i.e., geometrically similar fragments that have the same drag coefficient should have the same value for the correlating parameter. For example, the ratio of maximum to minimum presented area might be used as a measure of shape. This ratio would be dimensionless. For a sphere, this ratio would always be one no matter what the size or material of the sphere. For a cube, this ratio would always be 1.732.

The impetus for this program was provided by an observation of the data contained in one of the first systematic reports on drag coefficients for irregular fragments.<sup>2</sup> Three regular fragments were studied in the report; i.e., a sphere, a cube, and a bar. The bar length, width, and thickness were in the ratio of 5:1:1. Since these fragments were regular, exact ratios of maximum to minimum presented area could be calculated. The results, at a Mach number of about 0.75, were as follows:

|                                    | Sphere | Cube | Bar  |
|------------------------------------|--------|------|------|
| C <sub>D</sub> (AVG)               | 0.60   | 0.88 | 1.12 |
| A <sub>MAX</sub> /A <sub>MIN</sub> | 1.00   | 1.73 | 7.14 |

Note that as the correlation ratio increases so does the  $C_D$ . The report also shows that the average  $C_D$  for irregular fragments was greater than those for the sphere or cubs. For most irregular fragments, the area ratio could be expected to be on the order of that for the bar. Every thing seemed to support the idea that the  $C_D$  for irregular fragments could be correlated with dimensionless parameters.

#### DRAG COEFFICIENT PROGRAM

#### FRAGMENT SELECTION

Ninety-six fragments were selected to provide a wide range of shapes to ensure a good statistical sample. In all cases, the fragments were made of steel. Photographs of each fragment are contained in Appendix B. The fragments were recovered from the detonation of the following ordnance items:

- 1. 155mm M107 projectile
- 2. 76mm Mk 165 projectile
- 3. Mk 84 low drag bomb
- 4. Mk 82 low drag bomb

The matchup between ordnance item and fragment is given in Table A-2 of Appendix A under the heading SOURCE.

#### FRAGMENT MEASULEMENTS

Five different kinds of measurements were made for each fragment:

1. Linear maximum length (L), width (W), and thickness (T),

- 2. Linear average L, W, and T,
- 3. Perimeters in the three coordinate planes,
- 4. Presented areas:
  - a. maximum
  - b. average
  - c. minimum
  - d. variance
  - e. standard deviation
- 5. Moment of inertia (three axes)

Linear dimensions were measured as shown in Figure 2. Note that in measuring average dimensions, the average thickness is calculated to produce an equivalent weight and volume rectangular parallelepiped. Maximum and average dimensions for all fragments are contained in Table A-2 of Appendix A. The convention for L, W, and T is as follows:

 $L \ge W \ge T$ 

#### **MAXIMA**



## TMAX

#### **AVERAGES**



#### FOR EQUIVALENT WEIGHT AND VOLUME

 $T_{AVG} = \frac{WT}{L_{AVG} \cdot W_{AVG} \cdot \rho}$  WT = FRAG WEIGHT (Ib)  $L_{AVG} = AVERAGE LENGTH (in.)$   $W_{AVG} = AVERAGE WIDTH (in.)$   $\rho = FRAG DENSITY (Ib/in.3)$   $\rho = 0.28 (STEEL)$ 

#### FIGURE 2. FRAGMENT LINEAR DIMENSIONS

Perimeters were measured in three planes as shown in Figure 3. Note that the perimeters do not follow the jagged contour of the fragment. In fact, the measurements were made by stretching a string around the fragment in each of the three mutually perpendicular planes. The perimeter measurements for all fragments are shown in Table A-2 of Appendix A.



LWP - PERIMETER IN L-W PLANE

LTP - PERIMETER IN L-T PLANE

TWP - PERIMETER IN T-W PLANE

FIGURE 3. PERIMETER MEASUREMENTS

Fragment presented areas were measured in two ways. First, measurements were made using an Icosahedron Gage and second, calculations were performed using equivalent weight and volume rectangular parallelepipeds. The parallelepipeds were constructed using the average linear dimensions discussed above. Figures 4 and 5 show the essentials of these measurements and calculations. The Icosahedron Gage is an electro-optical device which throws a shadow of a fragment onto a sensing surface. The associated electronics produce a readout of presented area. The optical axis is positioned at 16 approximately equally spaced aspects so as to produce 16 distinct presented areas. The Icosahedron Gage cannot mount a fragment weighing more than 1500 grains. For larger fragments, presented area statistics were calculated using rectangular parallelepipeds as shown in Figure 5. The Icosahedron Gage presented areas for the first 84 fragments are given in Table A-1 of Appendix A. The minimum, maximum, average, standard deviation, and variance of the presented areas, calculated from the rectangular parallelepipeds, are given in Table A-3 of Appendix A.

The weight moments of inertia? for rectangular parallelepipeds are as follows:

$$I_T = \frac{M(L^2 + W^2)}{12}$$

$$I_{W} = \frac{M(L^2 + T^3)}{12}$$

$$I_L = \frac{M(W^2 + T^2)}{12}$$



FIGURE 4. PRESENTED AREA MEASUREMENTS (ICOSAHEDRON GAGE)



#### AREAS

MINIMUM = W • T

AVERAGE : 0.5 (L • W · L • T · W • T)

MAXIMUM = ((L • W) + (T • L) + (T • W))<sup>V2</sup>

VARIANCE 1/12 [L • T) + (W • T) · (L • W)] + [4/(3 $\pi$ ) - 1/2] • [L • W • (T) + T • W • (L) + T • L • (W) STANDARD DEVIATION (VARIANCE)<sup>V2</sup>

FIGURE 5. PRESENTED AREA MEASUREMENTS
(EQUIVALENT WEIGHT AND VOLUME RECTANGULAR PARALLELEPIPED)

#### where

IT-moment of inertia about Taxis

Iw-moment of inertia about Waxis

In-moment of inertia about Laxis

M--weight of fragment (grains)

L-average length (in.)

W--average width (in.)

T-average thickness (in.)

The weight moments of inertia are given in Table A-7 of Appendix A.

#### **VERTICAL WIND TUNNEL**

The vertical wind tunnel used for this program is located at the U.S. Army Chemical Research, Development and Engineering Center in Aberdeen, Maryland. The Aerodynamics Research and Concepts Assistance Branch of the Research Directorate operates the vertical wind tunnel.

The essential aspects of the vertical wind tunnel are shown in Figure 6. In operation, a fragment is placed on the fragment support screen in either the upper or lower test section depending on the air velocity necessary to raise the fragment. The air speed is controlled by opening or closing the inlet vanes of the constant speed fan. The air speed is adjusted until the fragment rises from the screen and assumes relatively stable vertical equilibrium. At this time, the air stream velocity is read directly from the velocity calibrated manometer. Air density is calculated from the ambient pressure and temperature. Ambient conditions are acceptable because of the relatively low air velocities produced in the tunnel. These parameters together with the weight and average presented area of the fragment are then used to calculate the low subsonic drag coefficient (Cp).

Each fragment was tested in the vertical wind tunnel. The velocity of the air stream was increased until the fragment hovers at a near constant vertical height. In this vertical equilibrium position, the drag and gravity forces will be equal. From the wind tunnel, the velocity of the air stream is established. Air density (p) is established from ambient pressure and temperature. The average presented area (A) of the fragment is obtained from measurements discussed above. As shown in Figure 7, once we know these values, we can calculate C<sub>D</sub>. Since we operate at a single air velocity for each fragment, we can only obtain a single point on the drag curve. This point is in the low subsonic region, roughly about a Mach number of 0.1. The remainder of the drag curve must be inferred from other sources.

#### RESULTS

The test record for each fragment is contained in Appendix C. Each record gives three views of the fragment. These views in conjunction with the photographs of Appendix B give a good indication of fragment shape. The L, W, and T axes are shown. Remember that the convention for L, W, and T is:

 $L \ge W \ge T$ 



FIGURE 6. SUBSONIC VERTICAL WIND TUNNEL



FIGURE 7. EXPERIMENTAL DRAG COEFFICIENT

The calculated C<sub>D</sub> is shown on the test records along with the values of the variables necessary for the calculation. Remarks for each test are given that include the motion of the fragment in the vertical wind tunnel.

Tables A-4, A-5, A-6, and A-7 of Appendix A list all the dimensionless ratios considered for correlation with the low subsonic  $C_D$ . Ratios containing the minimum presented area were not used because of the errors inherent in the Icosahedron Gage. This is explained in the notes on Table A-3 at the beginning of Appendix A. Correlations were attempted using the dimensionless ratios singly and in pairs. When considering pairs of dimensionless ratios, the object was to draw lines of constant value for the second ratio within the uncertainty obtained with the first ratio and thus refine the correlations. In all cases, the lines of constant value plotted vertically and yielded no additional information. The second ratios were always dependent on the first ratios. When all plots were completed, the best correlation was obtained with the ratio of maximum to average presented area  $(A_{max}/A_{avg})$ . The correlation plot is shown in Figure 8.

Figure 8 shows the plotted points for the 96 fragments and the maximum and minimum boundary lines and their equations. The three fragments used as a baseline (sphere, cube, and bar) are identified. The value for  $A_{max}/A_{avg}$  is an average of the values obtained using the icosahedron gage and the equivalent rectangular parallelepipeds. The total range of  $C_D$  uncertainty for all irregular fragments is about 1.0; i.e., from 0.5 to 1.5. The range of uncertainty at an average  $A_{max}/A_{avg}$  of about 1.5 is approximately 0.6. On average then, it can be said that the correlation reduces  $C_D$  uncertainty by about 40 percent. In order to reduce range uncertainty to about  $\pm$  10 percent, it would be necessary to reduce the  $C_D$  uncertainty by about 75 percent.

The three regular fragments (sphere, cube, and bar) tested by Dunn and Porter<sup>2</sup> gave  $C_D$  values in the high subsortic region at Mach numbers of approximately 0.75. In the vertical wind tunnels tests, the Mach numbers were nearer 0.1.  $C_D$  values for the three baseline fragments are compared at the two Mach number levels in Table 1.

|        | C <sub>D</sub> Wind Tunnel (M≈ 0.1) | C <sub>D</sub> (AVG) Dunn and Porter (M≈ 0.75) | Delta  |
|--------|-------------------------------------|------------------------------------------------|--------|
| Sphere | 0.42                                | 0.60                                           | + 0.18 |
| Cube   | 0.64                                | 0.88                                           | + 0.24 |
| Bar    | 0.94                                | 1.12                                           | + 0.18 |

TABLE 1. COMPARISON OF BASELINE FRAGMENTS

As seen in Table 1,  $C_D$  at Mach 0.75 is about 0.2 higher then  $C_D$  at Mach 0.1 for all three fragments. Owing to the consistency in the rise of  $C_D$  from Mach 0.1 to 0.75 for the three regular fragments, it seems reasonable at this time to accept the same rise in  $C_D$  for irregular fragments. In this way, the shape of the subsonic drag curve for irregular fragments is established. This is important because range is more sensitive to changes in subsonic  $C_D$  than to similar changes in supersonic  $C_D$ . This is demonstrated in Figure 9 where velocity is plotted against range ratio for a typical farfield fragment trajectory. The range ratio is the fraction of the total trajectory range traversed. From Figure 9 it can be seen that only 25 percent of the trajectory is supersonic while 75 percent is subsonic. The next point to consider is fragment motion in the wind tunnel.



FIGURE 8. DRAG COEFFICIENT (CD) VERSUS PRESENTED AREA RATIO (AR)



FIGURE 9. VELOCITY VERSUS RANGE RATIO

Each test record in Appendix C describes fragment motion in the vertical wind tunnel at near vertical equilibrium. In a further attempt at correlation, the 96 motions were divided into eight categories of typical motion. The eight categories and their associated fragments are shown in Figures D-1 through D-8 of Appendix D. No systematic correlation was discovered. One surprise, however, was observed. Only about one-third of the fragments tumbled randomly in the wind tunnel. This is contrary to the traditional assumption that all irregular fragments tumble randomly in flight. It was because of this assumption that  $C_D$  for each fragment was calculated using the average presented area. Had a larger presented area (A) been used for fragments which exhibited a motion such as flat rotation, then a smaller  $C_D$  would have been calculated. Similarly, a smaller presented area (A) would have produced a larger  $C_D$ . In practice, it is only necessary that the  $C_D \bullet$  A product be the same for the test and the trajectory calculation. Again, this knowledge did not yield any systematic correlation. It must also be borne in mind that the motion of a fragment at low subsonic velocities may differ from the motion of supersonic velocities because of such factors as shock waves.

## USING THE LOW SUBSONIC DRAG COEFFICIENT TO CALCULATE FRAGMENT TRAJECTORIES

The low subsonic drag coefficient obtained from the vertical wind tunnel tests is only one point on the drag curve. To draw an entire drag curve, points must be inferred from other sources. The current state of knowledge about drag coefficients for irregular fragments does not warrant a complex curve. A series of straight line approximations is sufficient at this time. Using data from previous drag reports, 2.4 transonic and supersonic pivot points can be approximated. From the RESULTS section, we have shown a 0.2 rise in CD from Mach 0.1 to 0.75. Table 2 shows the points necessary to define straight line approximations to the drag curve for any fragment.

TABLE 2. APPROXIMATION OF STRAIGHT LINE POINTS

| Point | Point<br>Name | Mach<br>No. | C <sub>D</sub> |
|-------|---------------|-------------|----------------|
| D1    | Anchor        | 0.10        | D1             |
| D2    | Pivot #1      | 0.75        | D1 + 0.20      |
| D3    | Pivot #2      | 1.50        | D1 + 0.65      |
| D4    | Pivot #3      | 2.50        | D1 + 0.50      |

The points and straight line approximations are shown in Figure 10. Note that above Mach 2.5,  $C_D$  is considered constant. The anchor point is taken from Figure 8 for a particular  $A_{max}/A_{avg}$  at Mach 0.10. Once the anchor point is determined then all the straight line approximations are defined. This results in the straight line approximations for all fragments being parallel to one another. Although exact parallelism would hardly be the case in all instances, there are grounds for the assumption. The Dunn and Porter reports shows that the drag curve for spheres is essentially parallel to the drag curve for long rectangular parallelepipeds and shell fragments. The drag curve for cubes and cylinders (L/D = 1) is parallel to the previous two except for a small discrepancy in the transonic region.

The anchor point may be selected in a variety of ways. For a particular fragment with a given  $A_{max}/A_{avg}$ , the anchor point may be selected anywhere within the uncertainty defined by the upper and lower boundary lines of Figure 8. The anchor point could be an average, a maximum, a minimum, or an intermediate value. It could also be chosen by random selection within the boundary lines.



FIGURE 10. STRAIGHT LINE APPROXIMATION TO FRAGMENT CD CURVES

The following equations for air density and Mach number may be of help in using fragment drag coefficients.

where

$$\rho = 0.0765 \, e^{-\left(\frac{A}{33900}\right)}$$

 $\rho$  = air density (lb/ft<sup>3</sup>) A = altitude (+) above sea level and (-) below sea level (ft)

$$M = \frac{V_F}{V_S}$$

where

M = Mach number

 $V_F$  = velocity of fragment  $V_S$  = velocity of sound

$$V_S = 1116.4 \ e^{-\left(\frac{A}{286000}\right)}$$

where

 $V_S = \text{velocity of sound (ft/sec)}$  A = altitude (+) above sea level and (-) below sea level (ft)

#### **FUTURE CONSIDERATIONS**

Significant problems remain unresolved. For an acceptable range uncertainty of about  $\pm 10$  percent, it will be necessary to reduce  $C_D$  uncertainty by about 75 percent. The work to date has only reduced the  $C_D$  uncertainty by about 40 percent. This additional reduction in  $C_D$  uncertainty might be accomplished in a variety of ways. More efficient correlation parameters might be established. The typical motion of the fragments in the vertical wind tunnel (Figures D-1 through D-8 of Appendix D) might be used as an added correlation provided the motion could be predicted based on the physical characteristics of irregular fragments. Possibly, the use of presented areas other than the average might be used in calculating  $C_D$ .

Another unresolved problem involves the shape of the transonic and supersonic portions of the drag curve. It would be a help if a practical method for testing irregular fragments could be established for a supersonic wind tunnel. Possibly, some sort of gimbal device could be designed which would allow the fragment to move freely and, at the same time, continually measure drag force. Such a device might be calibrated by using spheres or cubes for which drag curves are fairly well known.

#### REFERENCES

- 1. McCleskey, Frank, Quantity-Distance Fragment Hazard Computer Program (FRAGHAZ), Naval Surface Warfare Center TR 87-59, February 1988.
- 2. Dunn, D. J. and Porter, W. R., Air Drag Measurements of Fragments, BRL Memorandum Report No. 915, August 1955.
- 3. Myers, Jack A., Handbook of Equations for Mass and Area Properties of Various Geometrical Shapes, NAVWEPS Report 7827, April 1962.
- 4. Daniels, P., et al., Subsonic, Transonic and Supersonic Drag Characteristics of Nine Shape Categories of Warhead Fragments, Naval Surface Warfare Center TR 81-112, May 1981.

# APPENDIX A TABLES OF FRAGMENT CHARACTERISTICS

These tables contain dimensional characteristics for all 96 fragments. Additionally, they contain the dimensionless ratios used for correlation with the drag coefficients calculated from vertical wind tunnel tests. The following comments are made to the seven tables:

- Table A-1 This table contains the 16 presented areas measured by the Icosahedron Gage for the first 84 fragments. The last 12 fragments were too heavy to mount on the gage. The presented areas have been sorted and listed in ascending order for each fragment.
- Table A-2 The weapon from which each fragment was taken is listed under SOUNCE. Maximum and average length, width, and thickness are listed after the fragment weight in grains. The linear dimensions are described in Figure 2 of the DRAG COEFFICIENT PROGRAM Section. Perimeter as described in Figure 3 is listed next. Finally, the drag coefficient (CD) obtained from tests in the vertical wind tunnel is listed.
- Table A-3 The minimum, maximum, and average presented areas are listed for each fragment. The standard deviation and variance of the presented areas are given next. Under each of the five headings, values are given based on Icosahedron Gage (ICOS) measurements, and calculations (CALC) based on equal weight and volume parallelepipeds as described in Figure 5 of the DRAG COEFFICIENT PROGRAM Section. Note the large differences in the ICOS and CALC values for minimum presented area. This is due to the inherent limitations of the Icosahedron Gage caused by its preset mechanical stops. In all cases, the minimum CALC values are more near the truth. The CALC value for fragment number 1, the bar fragment, is very accurate while the ICOS value is almost three times as big.
- Table A-4 Fragments are renumbered in accordance with ascending  $C_D$ . This is done to provide a quick picture of correlation. The OLD fragment number is the number assigned in Tables A-1 through A-3 and in Appendixes B, C, and D. Three dimensionless area ratios are given and values are given for both Icosahedron Gage measurements and parallelepiped calculations.
- Table A-5 Again, fragment drag coefficients (C<sub>D</sub>) are listed in ascending order. All dimensionless ratio headings are explained at the end of the table.
- Table A-6 Here dimensionless perimeter ratios are given. Headings are explained at the bottom of the table.
- Table A-7 Weight moments of inertia and their associated dimensionless ratios are given. Weight moments of inertia are explained in the FRAGMENT MEASUREMENTS Subsection of the DRAG COEFFICIENT PROGRAM Section.

## TABLE A-1. PRESENTED AREA (SQ. IN.) (ICOSAHEDRON GAGE)

| No.   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FRAG |               |               |                |                        |               |                       | PRESENT            | TED AREA              |                       |               |               |                       |               |               |               |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|---------------|----------------|------------------------|---------------|-----------------------|--------------------|-----------------------|-----------------------|---------------|---------------|-----------------------|---------------|---------------|---------------|---------------|
| 2         2         7.785         4.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895         6.895 </td <td></td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td></td> <td></td> <td>9</td> <td>10</td> <td>11</td> <td>12</td> <td>13</td> <td>14</td> <td>15</td> <td>16</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 1             | 2             | 3              | 4                      | 5             | 6                     |                    |                       | 9                     | 10            | 11            | 12                    | 13            | 14            | 15            | 16            |
| 2         2         7.785         4.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.785         6.898         6.893         6.895         6.927         6.935         6.985         6.985         6.287         6.935         6.285         6.275         6.285         6.287         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283         6.283 </td <td>1</td> <td>6, 198</td> <td>9, 219</td> <td>B. 274</td> <td>8, 284</td> <td>0.311</td> <td>8.323</td> <td>B. 323</td> <td>9, 326</td> <td>B. 340</td> <td>6, 357</td> <td><b>0.</b> 357</td> <td>0.397</td> <td>0.406</td> <td>0.485</td> <td>0.403</td> <td>E 433</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1    | 6, 198        | 9, 219        | B. 274         | 8, 284                 | 0.311         | 8.323                 | B. 323             | 9, 326                | B. 340                | 6, 357        | <b>0.</b> 357 | 0.397                 | 0.406         | 0.485         | 0.403         | E 433         |
| 8. 1.8.28   8. 1.885   8. 1.885   8. 1.887   8. 1.886   8. 1.887   8. 1.888   8. 1.889   8. 1.889   8. 1.899   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890   8. 1.890                         |      | 8,785         | ¥. 785        |                | B. /85                 |               |                       | 8,785              |                       | 8, 785                | 0,785         | <b>8.</b> 785 |                       | 8.785         | 9, 785        | 6.785         |               |
| 4         1.192         6.229         6.235         6.246         6.245         6.246         6.245         6.276         6.236         6.239         6.235         6.235         6.237         6.236         6.237         6.236         6.247         6.247         6.247         6.247         6.247         6.256         6.237         6.236         6.248         6.235         6.236         6.248         6.235         6.236         6.248         6.235         6.236         6.248         6.237         6.236         6.237         6.236         6.237         6.236         6.237         6.236         6.237         6.236         6.237         6.236         6.237         6.236         6.237         6.236         6.237         6.236         6.237         6.236         6.237         6.236         6.237         6.236         6.237         6.237         6.236         6.237         6.237         6.237         6.237         6.236         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6.237         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 8, 638        | 0. 687        | <b>8.86</b> 5  | <b>a.</b> 889          | 8.827         | 0.854                 | 9.888              | 0.898                 | A. 890                | 8.893         | 0. 920        | 0.932                 |               |               | 0.976         |               |
| 5         6.1,71         8.248         8.245         8.247         8.248         8.258         8.238         8.238         8.238         8.247         8.248         8.258         8.228         8.228         8.228         8.228         8.228         8.228         8.228         8.228         8.238         8.238         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8.318         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |               | 0. 229        | 8. 236         |                        | 0, 278        | 8.268                 | 8.293              | 8, 296                | D. 386                |               |               |                       |               |               |               |               |
| 6         6         1.57         8.157         8.258         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.278         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.484         8.485         8.484         8.485         8.485         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288         8.288 <td>5</td> <td>-</td> <td>8,248</td> <td>8. 245</td> <td>0, 279</td> <td></td> <td>0.290</td> <td>8.359</td> <td><b>e.</b> 373</td> <td><b>6.</b> 393</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    | -             | 8,248         | 8. 245         | 0, 279                 |               | 0.290                 | 8.359              | <b>e.</b> 373         | <b>6.</b> 393         |               |               |                       |               |               |               |               |
| No.   1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |               | 2, 216        | Ø. 228         | B. 247                 | 8.247         | 0.256                 | 0.278              | 0, 276                | 8. 3M                 | 9.311         |               |                       | <b>0.</b> 361 | 0.376         |               |               |
| 8         8         1,183         8         2,183         8         2,183         8         2,283         8         3,277         8         8         1,183         8         2,285         8         2,285         8         2,378         8         1,135         8         2,271         8         2,271         8         2,278         8         1,375         8,135         8,285         8,285         8         2,278         8         1,375         8,136         8,435         8,573         8,573         8,136         8,437         8,136         8,377         8,278         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,236         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,336         8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 0, 197        | 0.263         | <b>6.</b> 237  | 8, 243                 |               |                       | 0.290              |                       | <b>6.</b> 2 <b>89</b> | 8.312         | 8. 327        | 8, 366                | 8.373         | 8, 388        | <b>8.</b> 399 |               |
| No.    | 8    |               | 9. 213        | 8. 247         | 6. 271                 | 0.274         | 0.291                 | 0.355              | 0.360                 | 0, 367                |               |               |                       |               | 0. 526        | 6.551         |               |
| 14   12   13   14   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9    |               | 8, 199        | <b>8.</b> 283  | 8, 285                 | 0.387         | 9.315                 | D. 327             | 8.334                 | <b>6.</b> 337         | 8.401         | 0. 401        | 0.481                 | 8.435         | 0.475         |               |               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10   | 0, 230        | 8. 249        | B. 262         | 8, 271                 | <b>8.</b> 328 | <b>8.</b> 340         | 8.367              | 0.391                 | C. 438                | B. 445        | 9.578         | 0.573                 | 8.580         | 8. 585        | 8, 622        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11   | 8. 201        | 0. 217        | <b>8.</b> 257  | <b>6.</b> 267          | 0, 275        | 9.288                 | 8.292              | <b>e.</b> 315         | <b>Q.</b> 337         | 8, 368        | 0.484         | 8.487                 | 8.413         | 0,415         | 8,434         |               |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |               | 8, 222        | <b>0.</b> 226  | 8.248                  |               | 8.278                 |                    |                       |                       |               |               |                       |               |               |               |               |
| 14   15   16   17   17   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13   | 0.206         | 9, 231        | <b>8.</b> 239  | 8. 248                 | 0.245         | <b>9.</b> 268         | <b>8.</b> 268      | 0, 269                | O. 288                | 0.296         | <b>6. 383</b> | 0.318                 | 8.328         | B. 349        | 8. 353        |               |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14   | 0, 190        | 0. 266        | Ø. 278         | 6, 278                 | 0, 290        | 0.298                 | 8. 383             | <b>6.</b> 339         | E. 347                | 0.357         | <b>8.</b> 366 | 8.374                 | 6. 488        |               | 8.445         |               |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |               | 9. 237        | 0.266          | 0.276                  | 9, 380        | 8.383                 | 8. 325             | 8. 335                | <b>e.</b> 337         |               | 6. 389        |                       |               |               |               |               |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |               | 8, 236        | <b>8.</b> 329  | 8. 359                 | 0.379         | 8. 383                | 8.388              |                       |                       |               | 6.472         |                       | 8,522         |               |               |               |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 8, 210        | 0.239         | 0. 295         | 8. 327                 | 0.330         | 0.337                 | 8. 337             | 0.349                 | <b>6.</b> 359         | 8.413         | 8,432         |                       |               |               |               |               |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |               | 9, 257        | R. 294         | 8.311                  | 9.313         | 0.315                 | 0.374              | 0.401                 |                       |               | 8. 423        |                       |               |               | 8.475         |               |
| 28         8, 223         8, 256         8, 343         8, 360         8, 377         8, 339         8, 424         8, 435         8, 487         8, 580         8, 519         8, 522         8, 538         8, 538         8, 338         8, 338         8, 338         8, 338         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 538         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438         8, 438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |               |               | 0. 252         | 6, 255                 | 9, 267        | 9.388                 | 6.338              |                       |                       |               | -             |                       |               |               |               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 0, 223        |               | 8.343          |                        |               |                       |                    |                       |                       |               |               |                       |               |               | B. 544        |               |
| 22 6.281 6.338 6.388 6.418 6.418 8.434 8.588 6.587 6.537 6.622 6.632 6.641 6.676 6.781 6.794 6.886 23 6.272 6.239 6.334 0.373 6.388 8.312 8.437 6.451 6.488 6.471 6.486 6.518 6.598 6.518 6.591 6.593 6.513 25 6.266 6.262 6.407 6.409 6.449 6.455 8.469 6.441 6.448 6.471 6.468 6.471 6.468 6.593 6.598 6.598 6.598 6.598 6.598 6.598 26 8.294 6.355 6.367 6.441 6.455 6.475 6.475 6.495 6.595 6.592 6.593 6.597 6.597 6.591 6.592 6.593 6.593 6.594 6.594 6.594 6.594 6.594 6.594 6.594 6.594 6.745 27 6.339 6.351 6.361 6.445 6.475 6.477 6.489 6.595 6.555 6.556 6.356 6.358 6.359 6.555 6.514 6.644 6.666 6.657 6.781 6.782 6.794 6.745 29 6.333 6.356 6.421 6.445 6.475 6.477 6.489 6.523 6.555 6.356 6.358 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359 6.359  |      |               |               |                |                        |               |                       |                    |                       |                       |               |               | -                     |               |               |               |               |
| 23         6,272         8,339         9,341         0,373         8,388         8,512         8,437         0,451         0,468         0,441         0,446         0,533         0,538         0,513         0,293         0,468         0,461         0,444         0,444         0,443         0,441         0,444         0,453         0,453         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,468         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,478         0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |               | 8. 389         | 6.419                  | 8.418         |                       |                    |                       |                       |               |               |                       |               |               |               |               |
| 24         9,255         6,275         9,2275         9,229         0,229         8,480         9,441         8,444         8,464         8,533         8,683         8,683         8,683         8,683         8,683         8,683         8,683         8,683         8,683         8,787         8,784         8,784         8,785         8,476         8,485         8,585         8,589         8,539         8,585         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,518         8,528         8,538         8,528         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8,538         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | -             | 8, 339        | 9.341          | 0. 373                 | <b>8.389</b>  |                       | 8.437              | 9.451                 | 8. 46B                | 0.471         | 8.498         |                       |               |               |               |               |
| 25         8, 260         8, 262         8, 487         8, 489         8, 429         8, 431         8, 489         8, 589         8, 589         8, 519         8, 519         8, 615         8, 615         8, 781         8, 784         8, 784           26         8, 234         8, 335         8, 424         8, 445         8, 447         8, 458         8, 515         8, 519         8, 513         8, 615         8, 615         8, 616         8, 615         8, 616         8, 617         8, 618         8, 782         8, 617         8, 784         8, 774         8, 784         8, 785         8, 515         8, 515         8, 515         8, 515         8, 515         8, 516         8, 516         8, 614         8, 647         8, 647         8, 648         8, 6475         8, 517         8, 518         8, 538         8, 538         8, 536         8, 536         8, 516         8, 658         8, 658         8, 537         8, 518         8, 658         8, 653         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538         8, 538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _    |               | 8, 275        | მ. 275         | 9, 290                 | 0.299         | 6.469                 | B. 468             | 9,441                 | E. 444                |               |               |                       |               |               |               |               |
| 25       8,294       8,335       9,387       0,441       8,495       8,495       8,589       8,539       8,618       8,615       8,615       8,728       8,749       9,764         27       8,335       8,424       8,446       8,447       6,477       6,489       8,535       8,536       8,516       8,624       8,646       8,673       6,477       8,489       8,535       8,536       8,536       8,546       8,666       8,627       8,781         29       8,351       8,356       8,348       8,427       8,489       8,523       8,536       8,536       8,537       8,562       8,579       8,562       8,577       8,666       8,633       8,663       8,673       8,663       8,733       8,666       8,633       8,663       8,673       8,536       8,536       8,537       8,536       8,536       8,536       8,537       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536       8,536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |               | 9, 252        | 9.487          | 8, 499                 |               | 0.431                 | 6.458              | <b>8.58</b> 5         | <b>0.58</b> B         | 8.519         | 8.612         |                       |               |               |               |               |
| 27         8.333         8.353         8.424         8.456         8.473         8.585         8.515         9.522         9.539         8.547         8.541         8.642         8.645         8.745         8.775         8.488         8.525         8.535         8.535         8.552         8.553         8.561         8.544         8.665         8.677         8.751         8.527         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.525         8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26   | 8, 294        | <b>8.</b> 355 | <b>9.</b> 367  | 0,441                  | 0.455         | <b>8.</b> 47 <b>8</b> | 8.495              | 8, 589                | <b>e.</b> 539         | 6.618         | <b>8.</b> 615 | 0.615                 | 8.634         | 6.728         | 6.749         |               |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |               | 0.353         | B. 424         |                        | 8.473         | 0.565                 | 8.515              | 0.522                 | P- 539                | B. 547        | 0.571         |                       | 8.542         |               |               |               |
| 29         8.351         9.351         9.361         9.372         9.437         9.488         9.523         9.530         9.542         9.572         9.566         9.530         9.652         9.572         9.566         9.530         9.666         9.532         9.572         9.536         9.531         9.566         9.533         9.666         9.531         9.566         9.533         9.566         9.531         9.566         9.535         9.562         9.572         9.531         9.566         9.535         9.562         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.536         9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28   | <b>0.</b> 333 | <b>8.</b> 364 | 8.421          | 6. 445                 | 6.475         | 6.477                 | 6. 48 <del>8</del> | 0.536                 | 6.536                 | <b>8.558</b>  | 8.565         | 6.614                 | B. 544        | 0.666         | 8.697         | 0, 751        |
| 31         8,344         8,379         8,393         8,488         8,411         8,418         8,423         8,488         8,477         8,590         8,579         8,590         8,590         8,679         8,679         8,699         8,738         8,788         8,792         8,812         8,590         8,670         8,679         8,699         8,699         8,738         8,768         8,792         8,812         8,471         8,478         8,580         8,510         8,576         8,576         8,535         8,458         8,471         8,478         8,580         8,510         8,547         8,576         8,591         8,585         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,587         8,589         8,589         8,699         8,611         8,677         8,787         8,689         8,499         8,999         8,599         8,599         8,631         8,677         8,789         8,599         8,699         8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29   | 0.351         | <b>0.</b> 351 | <b>W.</b> 390  | 6.417                  | 9, 437        | 8.468                 | 9.523              | 0,530                 | 8,542                 | <b>8.</b> 559 | 0.562         | 8.572                 | 0.685         | <b>6. 638</b> | 0.670         |               |
| 32         8.289         8.487         8.581         8.531         9.536         8.546         8.590         8.620         8.679         8.679         8.699         8.699         8.738         8.738         8.768         8.792         9.812           33         8.360         8.355         8.439         8.439         8.439         8.458         8.471         8.478         8.478         8.500         8.510         8.547         8.576         8.591         8.591         8.590         8.699         8.611         8.697         8.732         8.744         8.832         8.928         8.668         8.527         8.716         8.765         8.587         8.587         8.590         8.699         8.611         8.697         8.732         8.744         8.832         8.927         8.697         8.591         8.697         8.732         8.744         8.832         8.927         8.673         8.582         8.599         8.631         8.671         8.689         8.697         8.738         8.937         8.966         8.937         8.966         8.937         8.967         8.967         8.979         8.671         8.571         8.599         8.599         8.621         8.621         8.627         8.732         8.747 <td>38</td> <td>0,295</td> <td>8.329</td> <td><b>6.</b> 348</td> <td>6.429</td> <td>9, 432</td> <td>8.454</td> <td>8.583</td> <td>8,530</td> <td><b>8.537</b></td> <td>0.554</td> <td>0.575</td> <td>B. 581</td> <td>8.585</td> <td>G' 222</td> <td><b>8.</b> 669</td> <td>C. 735</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38   | 0,295         | 8.329         | <b>6.</b> 348  | 6.429                  | 9, 432        | 8.454                 | 8.583              | 8,530                 | <b>8.537</b>          | 0.554         | 0.575         | B. 581                | 8.585         | G' 222        | <b>8.</b> 669 | C. 735        |
| 33         8.368         8.369         8.439         8.439         8.458         8.458         8.471         8.478         8.580         8.510         8.510         8.547         8.591         8.595           34         8.313         8.491         8.496         8.526         9.536         8.565         8.565         8.587         8.594         8.689         8.611         8.622         8.732         8.744         8.832         8.484         8.489         8.489         8.585         8.565         8.582         8.592         8.593         8.631         8.677         8.689         8.899         8.996         8.592         8.592         8.593         8.631         8.677         8.689         8.499         8.696         8.592         8.592         8.593         8.631         8.677         8.689         8.499         8.996         8.592         8.592         8.593         8.631         8.677         8.689         8.743         8.743         8.444         8.447         8.523         8.593         8.592         8.593         8.631         8.657         8.743         8.743         8.743         8.743         8.743         8.644         8.644         8.447         8.425         8.583         8.593         8.651 <td>31</td> <td>8,344</td> <td><b>8.</b> 379</td> <td><b>8.</b> 393</td> <td><b>8.48</b>8</td> <td>9.411</td> <td>8.418</td> <td>0.423</td> <td><b>1.448</b></td> <td>8.477</td> <td>E. 494</td> <td>9.528</td> <td>0.531</td> <td>B. 536</td> <td>0.536</td> <td><b>0.548</b></td> <td>B. 578</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31   | 8,344         | <b>8.</b> 379 | <b>8.</b> 393  | <b>8.48</b> 8          | 9.411         | 8.418                 | 0.423              | <b>1.448</b>          | 8.477                 | E. 494        | 9.528         | 0.531                 | B. 536        | 0.536         | <b>0.548</b>  | B. 578        |
| 34         8.313         8.491         8.496         8.526         9.536         8.565         8.565         8.587         6.594         8.689         6.611         8.697         8.732         8.744         8.832         8.842           35         8.312         9.322         8.418         6.489         9.598         8.688         6.627         0.716         0.765         0.825         0.854         0.899         0.894         0.997         1.847           36         9.351         9.393         8.464         9.518         9.545         8.582         9.592         0.599         8.631         0.677         0.697         0.738         0.738         0.995         0.996           37         9.389         9.331         9.444         0.447         0.523         0.572         0.599         0.599         0.621         0.643         0.667         0.789         0.743         0.748         0.912         0.853           38         8.349         9.331         0.425         0.459         0.581         0.581         0.589         0.599         0.621         0.643         0.633         0.653         0.678         0.721         0.787           39         0.418         0.467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32   | <b>0.</b> 289 | <b>8.</b> 487 | <b>0.</b> 501  | <b>6.5</b> 31          | 9,536         | 8.546                 | 6.590              | <b>8.</b> 62 <b>0</b> | 0. 659                | 8.679         | O. 699        | <b>u.</b> 699         | 6.73B         | 8.76B         | 0.792         | <b>6.8</b> 12 |
| 35         6,312         9,322         8,418         6,489         8,499         8,598         8,688         8,627         8,716         8,765         8,823         8,854         8,889         8,897         1,847           36         8,351         9,391         9,393         8,464         9,518         9,555         8,582         9,592         8,599         8,631         8,677         8,697         8,785         8,899         9,965           37         9,300         9,432         9,444         8,447         9,523         8,572         8,599         8,599         8,631         8,677         8,697         8,748         8,912         8,833           38         8,349         9,349         9,371         8,425         9,459         9,581         8,581         8,589         8,583         8,678         8,657         8,683         8,734         8,633         8,678         8,692         8,737         8,486         8,937         9,585         4,488         8,536         8,587         8,665         8,683         8,734         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33   | 9.368         | <b>9.</b> 365 | 2.400          | <b>6.</b> 439          | 6. 439        | <b>8.45</b> 8         | 8.458              | 8.471                 | 6.47B                 | 8.47B         | 8.500         | <b>0.</b> 51 <b>0</b> | B-547         | 0.576         | 6. 591        |               |
| 36         6,351         6,391         0,393         8,464         6,518         6,545         8,582         6,592         8,599         8,631         8,677         8,637         8,735         8,735         8,899         8,985           37         6,380         6,432         8,444         8,447         6,523         6,572         8,599         8,599         8,667         8,667         8,789         8,748         8,122         8,833           38         8,349         9,349         8,371         8,425         8,459         9,581         8,581         8,588         8,599         8,569         8,594         8,633         8,633         8,670         8,692         8,771         8,494         8,536         8,587         8,565         8,683         8,744         8,694         8,937         8,962         1,485         4,486         8,277         8,484         8,553         8,571         8,571         8,571         8,571         8,589         8,689         8,691         8,694         8,694         8,789         8,767         4,486         8,531         8,531         8,548         8,553         8,571         8,565         8,689         8,691         8,694         8,694         8,789         8,767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34   | 0.313         | O. 491        | 8.496          | 8.526                  | 9.536         | 8.565                 | 8.565              | <b>0.</b> 587         | <b>6.</b> 594         | B. 689        | <b>6.</b> 611 | 8.697                 | 8.732         | E. 744        | <b>6.832</b>  | 6, 842        |
| 37         8,380         8,432         8,444         8,447         9,523         8,572         8,599         8,599         8,599         8,621         8,643         8,667         8,789         8,743         8,483         8,692         8,721         8,833           38         8,349         9,349         8,371         8,425         9,459         9,581         8,581         8,581         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,691         8,691         8,694         8,693         8,767         8,499         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,589         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693         8,693 <td>35</td> <td>6,312</td> <td>9. 322</td> <td>6.410</td> <td><b>6.</b> 489</td> <td>0.499</td> <td>0.598</td> <td>0. 50R</td> <td>0.627</td> <td>6,716</td> <td>0.765</td> <td>6.825</td> <td>8.854</td> <td>0.883</td> <td>0.854</td> <td><b>0.</b> 987</td> <td>1.647</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35   | 6,312         | 9. 322        | 6.410          | <b>6.</b> 489          | 0.499         | 0.598                 | 0. 50R             | 0.627                 | 6,716                 | 0.765         | 6.825         | 8.854                 | 0.883         | 0.854         | <b>0.</b> 987 | 1.647         |
| 37         0.380         0.432         0.444         0.447         0.523         0.572         0.599         0.599         0.621         0.643         0.667         0.789         0.743         0.748         0.012         0.683           38         0.349         0.349         0.371         0.425         0.459         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501         0.501 <td>36</td> <td>0,351</td> <td>8, 391</td> <td>Ø. 393</td> <td>8.464</td> <td>8.518</td> <td>8.545</td> <td>8.582</td> <td>0,592</td> <td><b>6.</b> 599</td> <td><b>8.</b> 631</td> <td>8.677</td> <td>8, 697</td> <td>0.758</td> <td>B. 755</td> <td>8.859</td> <td>8, 986</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36   | 0,351         | 8, 391        | Ø. 393         | 8.464                  | 8.518         | 8.545                 | 8.582              | 0,592                 | <b>6.</b> 599         | <b>8.</b> 631 | 8.677         | 8, 697                | 0.758         | B. 755        | 8.859         | 8, 986        |
| 39 8.418 9.467 8.477 8.494 9.536 8.587 8.565 8.683 8.734 8.888 8.822 8.864 8.986 8.937 8.962 1.045 48 8.277 9.525 8.544 8.544 8.569 8.571 8.571 8.659 8.689 8.691 8.694 8.694 8.788 8.745 8.759 8.767 41 8.484 8.499 8.581 8.531 8.531 8.548 8.553 8.575 8.588 8.582 8.592 8.631 8.636 8.636 8.663 8.663 42 8.422 8.472 8.496 8.581 8.618 8.639 8.654 8.659 8.659 8.659 8.689 8.788 8.788 8.763 8.772 8.876 43 8.553 9.731 8.768 8.788 8.888 8.928 8.977 1.887 1.896 1.896 1.125 1.125 1.125 1.194 1.283 1.312 1.431 44 8.391 8.448 8.596 8.516 8.549 8.548 8.543 8.550 8.578 8.577 8.578 8.577 8.594 8.599 8.684 8.624 8.668 45 8.485 8.482 8.482 8.488 8.522 8.535 8.576 8.591 8.591 8.618 8.635 8.635 8.687 8.786 8.721 8.789 46 8.486 8.482 8.482 8.489 8.522 8.533 8.580 8.684 8.651 8.658 8.722 8.774 8.887 8.887 8.888 8.523 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.689 8.722 8.775 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738 8.738  | 37   | <b>8.</b> 300 | 9.432         | 8. 444         | 6, 447                 | <b>8.5</b> 23 | 8.572                 | <b>6.</b> 599      | <b>8.</b> 599         | <b>6.</b> 621         | 8.643         | 0.667         | 6. 789                | £.743         | 8.748         | 6.012         |               |
| 39         8.418         8.467         8.477         8.494         9.536         8.587         6.665         8.683         8.734         8.806         8.822         8.964         8.966         8.937         6.962         1.045           48         8.277         9.525         8.544         8.549         8.571         8.571         6.659         8.689         8.691         8.694         6.694         8.768         8.765         8.777         8.689         8.691         8.694         8.694         8.695         8.765         8.767         8.777         8.589         8.691         8.694         8.694         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.695         8.772         8.675         8.675         8.677         8.675         8.675         8.577         8.577 <td>38</td> <td>8.349</td> <td>9. 349</td> <td><b>8.</b> 371</td> <td>6.425</td> <td>0.459</td> <td>9.581</td> <td>8,501</td> <td>8,588</td> <td><b>6.</b> 569</td> <td>B. 594</td> <td>€ E23</td> <td>8. 653</td> <td>8.570</td> <td>8.692</td> <td>6.721</td> <td>6, 787</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38   | 8.349         | 9. 349        | <b>8.</b> 371  | 6.425                  | 0.459         | 9.581                 | 8,501              | 8,588                 | <b>6.</b> 569         | B. 594        | € E23         | 8. 653                | 8.570         | 8.692         | 6.721         | 6, 787        |
| 41         8.484         8.499         8.581         8.531         9.543         8.548         8.553         9.575         8.580         8.582         8.592         8.651         8.636         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.663         8.672         8.763         8.678         8.676         8.674         8.659         8.659         8.689         8.788         8.772         8.763         8.678         8.677         8.676         8.678         8.677         8.676         8.678         8.677         8.676         8.678         8.672         8.772         8.577         8.577         8.577         8.579         8.684         8.624         8.668         8.624         8.668         8.676         8.576         8.575         8.576         8.571         8.571         8.571         8.571         8.571         8.571         8.571         8.571         8.571         8.571         8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39   | 8.418         | <b>8.</b> 457 | 8.477          | 8.494                  | 9.535         | 8.587                 | 6, 565             | 0.683                 | B. 734                | A. 900        | <b>8.</b> 822 | 8.864                 | 8.986         | <b>6.</b> 937 | 0.952         |               |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48   | 8,277         | 9.525         | 8.544          | 8.544                  | <b>0.5</b> 69 | <b>2.5</b> 71         | <b>0.</b> 571      | 0,659                 | <b>9.</b> 689         | <b>8.</b> 691 | 8.694         | O. 694                | 6.768         | B. 745        | 9, 759        | B, 767        |
| 43 8,553 9,731 8,768 8,788 8,888 0,928 0,977 1,887 1,856 1,896 1,125 1,125 1,125 1,194 1,283 1,312 1,431 44 8,391 8,468 8,556 8,516 8,549 8,548 8,548 8,558 8,578 8,577 8,594 8,599 8,684 8,668 45 8,495 8,492 8,481 8,488 8,522 8,535 8,576 8,591 8,591 8,618 8,635 8,635 8,687 8,786 8,721 8,789 46 8,496 8,452 8,469 8,492 8,543 8,543 8,585 8,651 8,678 8,688 8,722 8,724 8,887 8,888 8,525 47 8,467 8,472 8,536 8,543 8,553 8,589 8,684 8,617 8,622 8,634 8,675 8,715 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,7 | 41   | 6, 484        | 8.499         | <b>8.</b> 501  | <b>6.</b> 531          | 0.543         | 8.548                 | <b>8.55</b> 3      | 0.575                 | <b>0.</b> 580         | <b>8.</b> 582 | 0. 592        | 6. 631                | 8.635         | <b>6.636</b>  | B. 663        | <b>6.</b> 695 |
| 43 8,553 9,731 8,768 8,788 8,888 0,928 0,977 1,887 1,856 1,896 1,125 1,125 1,125 1,194 1,283 1,312 1,431 44 8,391 8,468 8,556 8,516 8,549 8,548 8,548 8,558 8,578 8,577 8,594 8,599 8,684 8,668 45 8,495 8,492 8,481 8,488 8,522 8,535 8,576 8,591 8,591 8,618 8,635 8,635 8,687 8,786 8,721 8,789 46 8,496 8,452 8,469 8,492 8,543 8,543 8,585 8,651 8,678 8,688 8,722 8,724 8,887 8,888 8,525 47 8,467 8,472 8,536 8,543 8,553 8,589 8,684 8,617 8,622 8,634 8,675 8,715 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,7 | 42   | 0.422         | 9.472         | <b>8.</b> 495  | <b>0.</b> 501          | 9,619         | 0.639                 | 8, 654             | <b>0. 659</b>         | <b>8.</b> 659         | <b>0.</b> 659 | 8, 689        | 8, 786                | 6.758         | 6.763         | 6.772         | 8.876         |
| 44 8,391 8,448 8.585 8.516 8.548 8.548 8.548 8.558 8.558 8.578 8.577 8.594 8.599 8.684 8.624 8.668 45 8,485 8.485 8.522 8.535 8.576 8.591 8.591 8.618 8.635 8.635 8.687 8.786 8.721 8.789 46 8.486 8.482 8.489 8.543 8.543 8.543 8.585 8.651 8.678 8.688 8.722 8.724 8.887 8.887 8.888 8.523 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.583 8.5 |      |               | <b>0.</b> 731 | 9.758          | 8.780                  | <b>8.88</b> 8 | <b>0.9</b> 28         | 0.977              | 1.667                 |                       |               |               |                       |               |               |               |               |
| 45 0.405 0.429 0.481 0.488 0.522 0.535 0.576 0.591 0.591 0.618 0.635 0.635 0.687 0.706 0.721 0.789 46 0.406 0.452 0.469 0.452 0.535 0.543 0.543 0.585 0.651 0.678 0.688 0.722 0.724 0.807 0.810 0.928 0.925 47 0.467 0.472 0.536 0.543 0.553 0.580 0.604 0.617 0.622 0.634 0.675 0.715 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.739 0.7 |      |               | 9. 440        | 0.5 <b>8</b> 6 | <b>0.</b> 516          |               |                       | <b>8.</b> 543      |                       | 9.570                 | 8.572         | 9.577         | 6, 594                | <b>8.599</b>  | 8. 684        | 8.624         |               |
| 46 8,486 8,482 8,482 8,482 8,583 8,583 8,583 8,588 8,684 8,617 8,622 8,634 8,675 8,724 8,887 8,888 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,739 8,7 |      |               | 8, 429        | <b>0.</b> 481  | 9, 488                 | 0.522         |                       | 0.576              | <b>0.</b> 591         | <b>0.</b> 591         |               | 0.635         | O. 655                |               |               | 8.721         | <b>8.</b> 789 |
| 47 8.467 8.472 8.535 8.543 9.553 8.588 8.684 8.617 8.622 8.634 8.675 8.715 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.739 8.7 |      |               | 8. 452        | D. 469         | 8.492                  | 8.543         | <b>8.543</b>          | 8, 585             |                       |                       |               |               | 8.724                 |               |               | 0. 220        |               |
| 49 8.378 8.455 6.472 8.589 6.512 8.548 8.551 8.598 8.645 8.659 8.759 8.776 8.781 8.784 8.864 8.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47   |               | 0.472         | <b>0.</b> 536  | <b>8.</b> 543          | 9. 553        | 8.589                 | B. 684             | 8,617                 | <b>3.</b> 622         | 0.634         | 8.675         | <b>0.</b> 715         | <b>6.</b> 739 | <b>2.</b> 739 | 8.795         | 6, 820        |
| 49 8.378 8.456 6.472 8.589 8.512 8.548 8.551 8.598 8.646 8.659 8.759 8.776 8.781 8.784 8.864 8.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |               | <b>8.</b> 425 | G. 477         | <b>6.</b> 489          | 8.518         | <b>0.</b> 531         | 8,594              | <b>0.</b> 653         | 8,712                 | 6.722         | 6,862         |                       |               | 8.965         | 0.517         | 8, 974        |
| 58 8,427 9.449 8.516 8.537 9.581 8.589 8.591 8.594 9.633 8.653 8.784 8.719 8.765 8.797 8.799 8.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49   | 8.378         | <b>8.</b> 456 | <b>6.47</b> 2  | <b>6.</b> 5 <b>0</b> 9 | 0,512         | 0.548                 | 6.551              |                       | 9. 646                | <b>0.</b> 659 | <b>0.</b> 759 | 8.775                 | <b>6.</b> 781 | 8.784         | O. 864        | <b>0.</b> 8%  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50   | 8,427         | 0, 449        | <b>6.</b> 518  | <b>0.</b> 537          | <b>9.</b> 581 | <b>6.</b> 589         | <b>8.</b> 591      | 8, 594                | <b>6°</b> 222         | <b>0.</b> 653 | B. 784        | <b>8.</b> 719         | 9.765         | 0. 797        | <b>6.</b> 799 | 6, 831        |

## TABLE A-1. PRESENTED AREA (SQ. IN.) (ICOSAHEDRON GAGE) (Continued)

| PRESENTED ANEX |                |               |                |                |                |                |                       |                |               |               |                |               |                |                |               |
|----------------|----------------|---------------|----------------|----------------|----------------|----------------|-----------------------|----------------|---------------|---------------|----------------|---------------|----------------|----------------|---------------|
| 1              | 2              | 3             | 4              | 5              | 6              | 7              | •                     | 9              | 10            | 11            | 12             | 13            | 14             | 15             | 16            |
| 8.482          | B. 427         | <b>6.</b> 560 | a. 609         | 0.737          | 6.757          | 8.787          | 0.821                 | B. 855         | 0.865         | O. 890        | <b>8. 89</b> 5 | B, 920        | B. 325         | A. 383         | 1.053         |
| 0.48B          | B. 452         | B. 492        | 8.526          | e. 570         | 8,625          | B. 625         | 0.627                 | 6° 825         | 0.065         | <b>2.876</b>  | B. 676         | 1.639         | 1.078          | 1.172          | 1.282         |
| <b>8.54</b> 3  | <b>8.548</b>   | <b>6.</b> 567 | <b>6.</b> 715  | 8,725          | <b>8.725</b>   | 9.750          | 8.760                 | B. 779         | 8.784         | C MA          | <b>6.8</b> 14  | F 823         | G. 823         | 6.000          | 8. 03B        |
| gr 228         | 8.581          | <b>e.</b> 533 | 8.619          | 8, 634         | <b>6.663</b>   | <b>L.</b> 747  | 6. <b>82</b> 1        | L 994          | 1.633         | 1.231         | 1.248          | 1.364         | 1.443          | 1.525          | 1.670         |
| 0.436          | B. 476         | € 622         | <b>8.673</b>   | 0, 530         | 8.742          | 8.766          | <b>6.82</b> 1         | <b>6' 82</b> 1 | <b>Q.</b> 944 | £ 383         | 1.018          | 1.653         | 1.067          | 1.132          | 1. 2001       |
| GT 228         | B. 644         | 2, 684        | 8.713          | <b>8.773</b>   | <b>8.882</b>   | B. 852         | 0.921                 | f. 33)         | 1.669         | 1,659         | 1,679          | 1.148         | 1.246          | 1.25           | 1.385         |
| G. 458         | <b>8.</b> 498  | <b>p. 562</b> | <b>4.686</b>   | 8.545          | 0.670          | <b>6.</b> 749  | 0.754                 | £ 773          | <b>6.784</b>  | <b>8.8</b> 18 | 0.828          | B. \$28       | <b>6' 82</b> 2 | <b>L. 95</b> 1 | <b>8. 951</b> |
| O. 289         | <b>a</b> 619   | <b>a</b> 619  | <b>6.</b> 713  | <b>8.</b> 723  | <b>6.738</b>   | 8.777          | <b>8.</b> 91 <b>0</b> | R. 310         | <b>8.</b> 915 | 1.004         | 1.884          | 1.078         | 1.152          | 1.201          | 1.344         |
| 8.452          | <b>0.</b> 516  | <b>6.</b> 556 | A. 560         | 6.625          | 0.728          | <b>8. 827</b>  | 1.856                 | L 365          | 0.876         | 1.212         | 1,265          | 1.281         | 1.365          | 1.310          | 1.32          |
| 8.486          | <b>1.58</b> 5  | <b>A.</b> 590 | <b>0.</b> 614  | 8. 574         | 0.688          | <b>6. 69</b> 3 | <b>0.</b> 723         | <b>8.</b> 748  | <b>0.767</b>  | 8.772         | 6.882          | 0.822         | <b>L 315</b>   | A. 925         | <b>A. 985</b> |
| <b>0.</b> 525  | <b>8.</b> 525  | 2.584         | <b>6.732</b>   | <b>8.</b> 742  | <b>B. 821</b>  | B. 540         | 0.545                 | 1.040          | 1.048         | 1.365         | 1.365          | 1.394         | 1.453          | 1.455          | 1.680         |
| er 223         | C. 668         | <b>6.</b> 732 | <b>6.841</b>   | 1, 256         | 0.851          | <b>6.870</b>   | 6.865                 | L 365          | 0.305         | L 335         | <b>a. 985</b>  | <b>0.9</b> 15 | F 222          | C 222          | £. 334        |
| <b>0.</b> 238  | B. 447         | <b>6.713</b>  | <b>6.</b> 718  | <b>0.733</b>   | B. <b>88</b> 2 | 0.837          | 1.15                  | <b>8.94</b> 5  | C 252         | 1.824         | 1.050          | 1.245         | 1.325          | 1.335          | L.394         |
| <b>0.</b> 517  | F 22           | £ 635         | <b>8. 668</b>  | <b>e.</b> 773  | <b>6.76</b> 3  | 6.862          | 0.300                 | 1.157          | 1.237         | 1.434         | 1.533          | 1.517         | 1.730          | 1.554          | 1.942         |
| 6.435          | B. 480         | <b>6.618</b>  | <b>0.</b> 628  | 8,677          | 0.637          | <b>8.727</b>   | 0.765                 | 0.765          | 0. 160        | C SM          | N. 558         | <b>8.908</b>  | 1.005          | 1.627          | 1. 131        |
| <b>8.5</b> 31  | L 533          | £ 335         | <b>£</b> 595   | 8, 524         | <b>6.</b> 733  | <b>6.762</b>   | 6.772                 | B. 782         | 0.752         | 1.053         | 1.050          | 1.090         | 1.113          | 1.117          | r 22          |
| <b>6.522</b>   | 8, 637         | <b>6.73</b> 5 | 0.768          | 9. 200         | <b>6.834</b>   | <b>6' 223</b>  | 0.849                 | f 820          | 0, 952        | 1.163         | 1,200          | 1.214         | 1.240          | 1.23           | 1.451         |
| <b>8.585</b>   | 0.600          | £ 619         | 0.624          | <b>8. 63</b> 3 | <b>8.</b> 733  | <b>8. 86</b> 7 | 0.875                 | L 895          | <b>6. 325</b> | C 220         | 1.004          | 1.000         | 1.000          | 1.113          | 1. 137        |
| <b>0.565</b>   | F 222          | <b>£</b> 737  | <b>6.737</b>   | 0.757          | 6.835          | 0. 871         | 0.030                 | B. 979         | 1.884         | 1.843         | 1.663          | 1.167         | 1.127          | 1.147          | 1.200         |
| 8. 434         | 6.572          | <b>8. 687</b> | <b>9.</b> 661  | 8, 700         | 9,700          | L 725          | 8.773                 | 8, 789         | <b>C.</b> 783 | B. 814        | 6° 822         | <b>0.873</b>  | F 300          | 9.562          | <b>6.912</b>  |
| 0.506          | <b>8.</b> 546  | <b>8.752</b>  | <b>6. 86</b> 2 | 8,882          | 0.570          | O. 550         | 1.079                 | 1. 079         | 1.315         | 1.363         | 1.454          | 1.464         | 1.700          | 1.700          | 1.670         |
| 0.614          | 6. 663         | £ 673         | 8.712          | 9. 534         | 9,556          | 1.013          | 1.967                 | 1.339          | 1.363         | 1.35          | 1.665          | 1.758         | 1.822          | 1.35           | 2.953         |
| <b>0.52</b> 3  | 8.671          | 0.700         | 2.710          | 9.729          | 6.863          | 8. 322         | 1.005                 | r e21          | 1,000         | 1.341         | 1.351          | 1.430         | 1.450          | 1.450          | 1.682         |
| er e22         | E. 678         | <b>6.700</b>  | 0.759          | 8, 912         | 8.912          | 0. 351         | 8.976                 | 1.039          | 1.035         | 1.055         | 1, 188         | 1.237         | 1.272          | 1.33           | 1.430         |
| 6.508          | <b>6. 68</b> 1 | <b>6L 854</b> | Ø. 833         | 8. 273         | 6.833          | 1.635          | 1.651                 | 1.13           | 1.169         | 1.327         | 1.376          | 1.384         | 1.411          | 1.411          | 1.640         |
| <b>0.</b> 467  | A. 669         | <b>8.</b> 748 | 0.750          | 9, 798         | 0.982          | 0.851          | 1.844                 | 1, 217         | 1.232         | 1.241         | 1.469          | 1.577         | 1.500          | 1,725          | 2.00          |
| <b>6.48</b> 2  | <b>8.</b> 571  | <b>6.837</b>  | 0.916          | 1,665          | 1.625          | 1.635          | 1.854                 | 1.133          | 1.252         | 1. 251        | 1.311          | 1.539         | 1.685          | 1.745          | 1.75          |
| <b>6</b> ° 823 | C. 948         | 6.977         | 1.007          | 1,056          | 1.155          | 1.224          | 1.234                 | 1.363          | 1.333         | 1.4:2         | 1.50           | 1.550         | 1.550          | 1.747          | 1.05          |
| 6.682          | <b>6.</b> 761  | 0.000         | 8, 900         | 0,500          | 1.117          | 1.16           | 1,165                 | 1.15           | 1.294         | 1.61          | 1.650          | 1.719         | 1.700          | 1.7            | 207A          |
| 8.674          | B. 694         | 8.551         | 8.971          | 1.119          | 1.158          | 1.207          | 1.227                 | 1.257          | 1.365         | 1.415         | 1.464          | 1.494         | 1.323          | 1.553          | 1.70          |
| 6, 682         | 6.839          | 1.046         | 1.075          | 1,165          | 1,125          | 1.125          | 1.154                 | 1.174          | 1,263         | 1.322         | 1.342          | 1.371         | 1.500          | 1.549          | <b>3.60</b>   |
| 0.685          | 0.763          | F 812         | 6, 842         | 0, 572         | 0.897          | 0.505          | 1.005                 | 1.000          | 1.160         | 1, 163        | 1.281          | 1.295         | 1.400          | 1.563          | 1.357         |
| 0.500          | C. 618         | <b>6.776</b>  | 0, 830         | 8, 855         | 8, 989         | 1.623          | 1.314                 | 1.343          | 1.397         | 1.447         | 1.624          | 1.680         | 1.876          | 1.965          | 1.973         |
| <b>6L 683</b>  | & 871          | £ 599         | i. <b>658</b>  | 1.050          | 1, 157         | 1.15           | 1.195                 | 1, 374         | 1.512         | 1,710         | 1.729          | 1.628         | 1. 337         | 2.045          | 2.25          |

TABLE A-2. FRAGMENT DATA

| FNAG     |               | WL 19HT        | LIMIX        | MMAX         | THAX         | LANG       | MANG       | TAVE           | LMP          | LTP          | THP                           |                |
|----------|---------------|----------------|--------------|--------------|--------------|------------|------------|----------------|--------------|--------------|-------------------------------|----------------|
| IID.     | SCURCE        | CRAINS         | IN.          | IN.          | IN.          | IN         | IM.        | DL.            | <b>II</b> .  | IN.          | DL.                           |                |
| 1        | 1             | 153.3          | 1.25         | 1.23         | 6.25         | _1.3       | <b>8.3</b> | LZ             | 3.25         | 3.19         | 1.13                          | . r.a.         |
| 2        | 2             | 1638.4         |              |              |              | TER - 1    |            |                | LL FERINE    |              |                               | CD = .42       |
| 3        | 2             | 822*0          | 1.76         | 8.76         | 6.76         | F          | 6.8        | LX             | 3.65<br>2.32 | 7.22         | 3.65                          | B.64           |
| 4        | 5             | 110.7          | 6.53         | 8.00         | 0.45         | 8.3        | 8.5<br>8.4 | 6. 13          | 2.50<br>3.63 | 2.19         | 1.75                          | 0. 5i<br>1. 19 |
| 5<br>6   | 5<br>5        | 112.3<br>113.2 | 1.73         | 1.48<br>1.53 | 8.21<br>6.25 | 1.6        | 8.5        | 8.12           | 2. <b>3</b>  | 3.50<br>2.5  | 1.25<br>1.39                  | 1.66           |
| 7        | 5             | 115.2          | 1.02<br>1.01 | 1.0          | 8.27         | 1.8<br>1.8 | 6.5        | B. 12          | 2.03         | 2.25         | 1.30                          | 1.65           |
|          | 5             | 113.7          | 1.29         | 8.81         | 6. 21        | 1.2        | B.6        | P.M.           | 3.25         | 2.73         | 1.75                          | 1.34           |
| •        | 5             | 121.5          | 1.24         | 1.3          | 6.23         | 1.1        | 2.5        | B.11           | 3.6          | 2.69         | 1.50                          | 6.53           |
| 10       | 5             | 121.8          | 1.48         | 6.72         | 8.22         | 1.2        | 6.7        | 8.07           | 3.44         | 2.33         | 1,38                          | L 57           |
| 11       | 5             | 128.6          | 1.64         | G. 71        | 9.27         | 1,1        | 4.5        | B.:2           | 2.81         | 2.31         | 1.39                          | 2.75           |
| 12       | 5             | 128.8          | 1.3          | 6.73         | 8.23         | 6.8        | 6.8        | L 10           | 2.75         | 2.00         | 1.75                          | L.             |
| 13       | 5             | 138.8          | LB           | LB           | 6.4          | 8.7        | 0.6        | B. 16          | 2.31         | 2.00         | 1.94                          | 1.83           |
| 14       | 5             | 132.9          | 1.00         | 6.73         | 6.23         | 1.0        | 8.5        | B. 14          | 2.0          | 2.31         | 1.94                          | 1.55           |
| 15       | 5             | 133.5          | 1.62         | 8.76         | 8.32         | 8.9        | 0.6        | 0.13           | 2.75         | 2.39         | 1.69                          | 1.3            |
| 15       | 5             | 138.1          | 1.74         | 1.5          | ű. 23        | 1.7        | 8.4        | B. 11          | 2.63         | 3.50         | 1,50                          | 8.55           |
| 17       | 5             | 135.5          | 1.28         | 8.63         | 8.32         | 1.3        | 8.5        | 8, 12          | 3.00         | 2.63         | 1.50                          | 1.34           |
| 18       | 5             | 13.6           | 1.35         | B. 71        | E. 34        | 1.4        | 8.4        | B. 14          | <b>3.6</b>   | 2.75         | 1.81                          | 6.83           |
| 19       | 5             | 151.1          | 1.9          | B. 74        | 6.25         | 1.6        | 8.5        | B. 14          | 2.81         | 2.13         | 1.69                          | 1.21           |
| 20       | 5             | 178.2          | 1.43         | 8. 82        | <b>8.</b> 37 | 1.3        | 0,6        | B. 12          | 3.38         | 2.81         | 1.81                          | 1,29           |
| 21       | 5             | 188.5          | 1.70         | <b>B.</b> 74 | 0.27         | 1.5        | 8.6        | <b>6.</b> 11   | ふお           | 2.28         | 1.63                          | 1.38           |
| 22       | 5             | 265.7          | 1. 84        | ٠. ۵         | 8.30         | 1.5        | 0.5        | B. 12          | 4.33         | 4.00         | 1.44                          | 1.18           |
| 23       | 5             | 213.8          | 1.23         | <b>6.</b> 73 | 6.3          | 1.1        | 8.6        | <b>B.</b> 17   | 712          | 273          | 1.00                          | 1.62           |
| 24       | 5             | 214.5          | 1.67         | F.28         | <b>6.</b> X  | 1.5        | 6.8        | B. 14          | Z. 19        | 2.38         | 1.94                          | 1.48           |
| 25       | 5             | 235.4          | 1.51         | B. 81        | 6.29         | 1.5        | 4.6        | <b>€</b> 13    | 7.2          | 2.00         | 1.34                          | 1.30           |
| *        | 5             | 233.4          | 1.48         | 6.73         | 6.41         | 1.5        | 6.6        | B. 14          | 2.12         | 3.65         | 1.75                          | 1.19           |
| 27       | 5             | 341.5          | 1.54         | F #2         | L.43         | 1.4        | 4.6        | <b>8.</b> 15   | 2.81         | 2.44         | 1.63                          | 1.85           |
| 28       | 5             | 244.8          | 1.30         | 2,78         | 2.40         | 1.3        | 0.6        | £ 16           | 7.30         | 721          | 2.65                          | 1.23           |
| 29       | <b>6</b><br>5 | 248.7          | 1.38         | 8.74         | 0.3          | 1.3        | 8.6        | 8.15           | 3. 19        | 7.02         | 1.63                          | L.S            |
| 28       |               | 255.1<br>258.9 | 1.74         | B.77         | 0.35<br>0.47 | 1.7        | 8.5<br>8.6 | 8. 15<br>8. 21 | 3.94<br>2.09 | 3.63<br>2.44 | 1.75                          | 1.24<br>8.55   |
| 25<br>21 | 5<br>5        |                | 1.65         | 8.#<br>8.77  | 0.46         | 1.1<br>1.9 | 0.5        | B. 15          | 46           | 22           | 2. <b>55</b><br>1. <b>5</b> 4 | 1.5            |
| 22       | ŗ             | 277.4<br>200.2 | 1.20         | 1.63         | 1.4          | 1.1        | 0.6        | 2.22           | 2.8          | 24           | 2.13                          | l.5            |
| 33<br>34 | 6             | 291.1          | 1.49         | 1.83         | 0.4          | 1.4        | 6.7        | B. 15          | 2.34         | 721          | 2.13                          | 1.29           |
| <b>2</b> | 4             | 27.8           | 1.91         | 78           | 6.32         | 1.9        | 2.6        | B. 14          | 4.3          | 4.00         | 1.81                          | 6.79           |
| 35       | 4             | XL.S           | 1.69         | 1.8          | 1.3          | 1.5        | A.7        | C. 13          | . T          | 24           | 1.75                          | 1.15           |
| 37       | 5             | 383.4          | 1.53         | 1.82         | 8.37         | 1.4        | 8.7        | B. 16          | 3.70         | 7.21         | 1,88                          | 1.55           |
| 28       | Ä             | 313.1          | 1.54         | LS           | 6.3          | 1.3        | 8.7        | B. 18          | 3.44         | Z.13         | 1.81                          | 13             |
| 23       | Ä             | 323.9          | 1.42         | 1, 13        | 6.3          | 1.3        | 6.9        | \$.14          | 4.5          | 2.81         | 2.63                          | 1.85           |
| 4        | 5             | 325.7          | 1.5          | 9.78         | 9.57         | 1.4        | 8.6        | 1.20           | 3.44         | 3.44         | 1.81                          | LE             |
| 41       | Ā             | 333.2          | 1.12         | 1.99         | 6.80         | 1.1        | 6.8        | <b>9.19</b>    | 2.8          | 2.73         | 2.69                          | 0.76           |
| 42       | 6             | 322.8          | 1.73         | 1.6          | 6.22         | 1.5        | 0.6        | B. 19          | 4.25         | 3.54         | 1.75                          | 4.50           |
| 43       | Ā             | 332.8          | 2.71         | 0.04         | 6.19         | 2.6        | 6.7        | B. 18          | 7.25         | 5.25         | 1.54                          | 4.95           |
| 44       | 4             | 22F 0          | 1, 17        | 13 9         | 2.74         | 1.1        | 8.7        | B. 23          | 2.31         | 3.65         | 2.25                          | £.72           |
| 45       | À             | 354.9          | 1.34         | 8. 55        | 8.53         | 1.2        | 0.7        | B. 22          | 3.30         | 3.65         | 2.25                          | 6.50           |
| 45       | 2             | 337.9          | 1.35         | 1. 14        | 6.51         | 1.3        | 0.7        | 8.20           | 2.81         | 2.62         | 2.25                          | F 82           |
| 47       | 6             | 333.2          | i. 43        | LR           | 0. E7        | 1.4        | <b>L</b> 7 | E. 19          | 2.           | Z 13         | 2.31                          | 0.87           |
| 48       | 5             | 368, 2         | 1.38         | 1.23         | 6.46         | 1.2        | 6.5        | B. 17          | 4.00         | 2.86         | 2.81                          | 1.54           |
| 45       | 5             | 236.2          | 1.30         | r e          | 0.43         | 1.3        | 6.8        | B. 18          | 7.           | 2.98         | 2.66                          | 1.14           |
| 50       | 4             | 381.8          | 1.12         | B. 93        | 0.62         | 1.2        | 0, 8       | S. 20          | 2.63         | 2.54         | 2.55                          | 1.11           |

TABLE A-2. FRAGMENT DATA (Continued)

| FNAG       |         | METON          | LITAX | MAN          | THAK          | LANG | WWG         | TRVE          | LIP          | LTP   | THP   |              |
|------------|---------|----------------|-------|--------------|---------------|------|-------------|---------------|--------------|-------|-------|--------------|
| MD.        | SOLINCE | Grains         | IN.   | IN.          | DL.           | IH.  | in.         | DL            | IK.          | IN    | IK.   | <b>C3</b>    |
| 51         | 4       | <b>22gr</b> 5  | 2.25  | LU           | <b>6.</b> 51  | 2.8  | 8.5         | B. 17         | 4.8          | 4.73  | 1.69  | 1.85         |
| 25         | 5       | 222.2          | 1.65  | 1.67         | 6.40          | 1.6  | 6.8         | B. 15         | 4.44         | 7.21  | 2.31  | 1.16         |
| 22         | 4       | 222 1          | 1.62  | L 73         | 8.52          | 1.5  | 6.7         | B. 13         | 4.35         | 4.66  | 2.13  | 4.76         |
| 54         | 4       | 484.6          | 2.19  | 1.16         | 6.27          | 2.8  | 8.3         | 6.11          | 5.25         | 4.31  | 2.3   | 1.11         |
| 35         | 5       | 432.7          | 2.63  | L 75         | B. 42         | 1.9  | 8.7         | 6.17          | 4.4          | 4.38  | 1.69  | r sa         |
| <b>\$</b>  | 4       | 455.3          | 2.75  | LX           | <b>0.37</b>   | 2.5  | 8.5         | <b>0.</b> 16  | 5.8          | 5.09  | 1.81  | 1.63         |
| 57         | 5       | 451.7          | 1.35  | <b>8. 35</b> | 6.47          | 1.3  | 6.8         | <b>L.23</b>   | 70           | 7.33  | 2.13  | 0.78         |
| 32         | F.      | 464.8          | 2.65  | 1. X         | 0.52          | 2.1  | 8.7         | B. 16         | 4.81         | 4.25  | 2.25  | 1.12         |
| 59         | 4       | 453.2          | 1.38  | 1.35         | 6.22          | 1.6  | L.          | D. 15         | 4.81         | 7 12  | 2.54  | 1.65         |
| <b>68</b>  | 5       | 484.1          | 1.54  | F 22         | 8.61          | 1.3  | R.S         | LX            | 70           | 3.44  | 2.38  | F 28         |
| 61         | 4       | 485.7          | 2.47  | 1.65         | 0.37          | 2.1  | 6.9         | <b>6</b> . 13 | 5.60         | 5.65  | 721   | 1.55         |
| <b>62</b>  | 4       | 483,3          | 1.63  | 6.30         | 1.33          | 1.8  | 6.7         | 1.20          | 3.5          | 4.44  | 2.81  | <b>8.73</b>  |
| 22         | 6       | 450.9          | 2.13  | 1. 62        | C 23          | 2.1  | 6.8         | <b>R</b> . 15 | 2.13         | 4.69  | 2.80  | 1.85         |
| 54         | 4       | 455.1          | 1.55  | 1.59         | 1.33          | 2.6  | 1,8         | £13           | 6.38         | 2.81  | 722   | LB           |
| 2          | 5       | 367.0          | 1.72  | <b>B.</b> 31 | 8.41          | 1.0  | 0.6         | B. 24         | 4.44         | 722   | 1.54  | 4.86         |
| 66         | 6       | 319.6          | 1.12  | 1.20         | <b>6</b> ° 22 | 1.4  | 1.0         | £ 13          | 4.3          | 7.00  | 2. 61 | 1.65         |
| 67         | 6       | 531.9          | 2.12  | 1. 65        | 0.40          | 2.0  | 8.8         | 6.17          | 5.3          | 7.21  | 2.38  | L 92         |
| 68         | 5       | 547.9          | 1.00  | 1.00         | 6.42          | 1.6  | 4.8         | 8.22          | 7.02         | 7.50  | 3.44  | 0.52         |
| 69         | 6       | 555.2          | 1.57  | 1.67         | 6.42          | 1.5  | 6.8         | <b>L</b> 19   | 5.6          | 4.44  | 2.25  | 8, 87        |
| 79         | 4       | 551.2          | 1.73  | L 53         | <b>1.67</b>   | 1.5  | 8.7         | 0.27          | 4.19         | 4.13  | 2.55  | 8.71         |
| 71         | 4       | 6 <b>08.</b> 4 | 2.57  | r æ          | <b>F2</b>     | 2.3  | L.S         | <b>0.</b> 15  | LK           | 5.25  | 2.13  | 4.38         |
| 72         | 6       | 651.7          | 2.19  | 1.30         | F.28          | 2.1  | 1.1         | 9.14          | 20           | 7.21  | 2.73  | S' 32        |
| 73         | 6       | 635.4          | 1.33  | 1.37         | 1.44          | 1.6  | 1.1         | B. 19         | 4.54         | 702   | 2.54  | LM           |
| 74         | 4       | 635.1          | 1.83  | 1. 15        | 1.65          | 1.9  | 6.8         | L 22          | 4.03         | 4.00  | 7.0   | 1.85         |
| 75         | 6       | 668.5          | 2.31  | 1.87         | 8.44          | 2.1  | 8.8         | R.28          | 5.35         | 5.86  | 2.59  | 1,99         |
| 76         | 5       | 713.9          | 2.12  | 1.24         | 6.30          | 1.8  | 1.0         | 0.20          | 5.66         | 4.31  | 2.00  | 6.84         |
| 77         | 6       | 719.1          | 2.51  | F 22         | 6.38          | 2.6  | 8.8         | B. 18         | 6.40         | 5.65  | 2.19  | 1.29         |
| 78         | 4       | 767.0          | 2.85  | 1.16         | 8.53          | 2.8  | 0.7         | 8.28          | 7.44         | E 13  | 2.00  | <b>I. 38</b> |
| 79         | 6       | 776.7          | 2.53  | 1.27         | 0.45          | 2.3  | 1.6         | <b>L</b> 17   | 7.13         | 5.65  | 2.69  | 1.31         |
| **         | 4       | 777.0          | 2.85  | rĸ           | 0.55          | 2.8  | 8.7         | 1.28          | £ 22         | 6.06  | 2.19  | 4.55         |
| 81         | 6       | 782.2          | 2.43  | L 57         | LU            | 2    | 8.8         | B. 21         | 2.03         | 722   | 2.13  | 1.33         |
| 12         | 4       | 994.8          | 1.60  | 1.49         | 1.33          | 1.5  | 1.1         | 8.23          | 4.8          | 3.55  | 2.44  | r et         |
| 82         | 6       | 833.7          | 1.76  | 1. 39        | 0.40          | 1.6  | 1.4         | <b>C</b> 19   | 5.00         | 2.69  | 2.30  | 6.89         |
| *          | 6       | <b>865'</b> 2  | 2.5   | 1. 67        | 6.43          | 3.0  | <b>L</b> .9 | <b>6.</b> 16  | 7.98         | 5.81  | 2.31  | 1,00         |
| <b>5</b> 5 | 4       | 1617.7         | 1.23  | 1.27         | 1.55          | 2.7  | 1.1         | 8.28          | 7.81         | 6.73  | 2.81  | 6. 93        |
| <b>85</b>  | 6       | 1638.8         | 2.22  | 1.95         | 9.45          | 2.3  | 1.2         | B.21          | 8.81         | 6.75  | 4.19  | 1.24         |
| 87         | 4       | 1793.4         | 3.53  | 2.65         | L.55          | 2.3  | 1.2         | 6.23          | 8.38         | 6.35  | 2.63  | F 28         |
| <b>88</b>  | 6       | 1973.2         | 7.35  | 1.85         | 8.49          | 2.8  | 1.2         | 8.22          | ₹21          | LID   | 2.81  | L 95         |
| <b>8</b> 5 | 4       | 2005.7         | 2.59  | 1.49         | 6. 57         | 2.5  | 8.9         | B. 45         | 5.75         | 5. 69 | 2.88  | L            |
| <b>30</b>  | 6       | 2005.2         | 2.71  | 2.00         | <b>6.73</b>   | 2.4  | 1.0         | B.43          | <b>6.</b> 19 | 5.81  | 3.55  | 6.79         |
| 91         | 5       | 28227. 6       | 2.20  | 1.84         | 0.45          | 3.0  | 1,4         | L 25          | 8.88         | 6.25  | 2.88  | 1.99         |
| 22         | 4       | 2763.3         | 4.39  | 2.69         | 0.57          | 4.3  | 1.5         | L.22          | 12.25        | 8.88  | 5.55  | 1.42         |
| 22         | 6       | 3146.0         | 4.33  | 1.98         | 8.46          | 4.1  | 1.5         | L25           | 13.55        | 10.00 | 2.21  | 1.01         |
| *          | 4       | 3278.2         | 1.17  | 1.89         | 6.74          | 2.9  | 1.4         | 6.41          | 8.56         | 6.81  | 4, 69 | 1.62         |
| 55         | 7       | 15395.1        | 3.17  | 2. 81        | 2.33          | 3.1  | 2.8         | 1.28          | 9.63         | 8.88  | 8. 19 | 0.50         |
| *          | 7       | 23413.5        | 4.35  | 3.77         | 1.79          | 4.2  | 2.4         | R.84          | 12.63        | 9.81  | 8.63  | 9, 99        |

#### SOURCE CODE

- 1 BAR (1/4 X 1/4 X 1 1/4) 5 76MM MK 165 PROJECTILE 2 1.80 IN. DIAMETER SPHERE 6 MK 84 LOW DRAG BOMB 3 .76 IN. PER SIDE CUBE 7 MK 82 LOW DRAG BOMB 4 155MM M107 PROJECTILE

TABLE A-3. ICOSAHEDRON VS CALCULATED AREAS

| FRAG       | MIN               | AREA           | MAX                          | AREA                  | AVG            | AREA           | STD            | DEV                          | VARI                  | ANCE                   |
|------------|-------------------|----------------|------------------------------|-----------------------|----------------|----------------|----------------|------------------------------|-----------------------|------------------------|
| NO.        | 1008              | CALC           | 1008                         | CALC                  | 1 COS          | CALC           | ICOS           | CALC                         | ICOS                  | CALC                   |
| 1          | Ø. 20             | <b>6.</b> 07   | <b>8.</b> 43                 | 0. 5 <del>0</del>     | Ø. 34          | <b>6.</b> 38   | 0. 07          | 0. 89                        | 0. 602                | 6.008                  |
| 2          | Ø. 79             | Ø. 79          | 0. 79                        | <b>6.</b> 79          | Ø. 78          | <b>0.</b> 79   | 0. <b>00</b>   | 0. 06                        | 8. <b>8</b> 73        | 9. 888                 |
| 3          | Ø. 64             | <b>8.</b> 58   | <b>e.</b> 98                 | 1.00                  | Ø. 87          | 0. 87          | 0. 1 <b>0</b>  | e. 09                        | <b>8. 86</b> 9        | 0.000                  |
| 4          | <b>0.</b> 19      | <b>8. 9</b> 6  | <b>0.</b> 37                 | D. 47                 | 0. 30          | <b>0.</b> 31   | 6. 63          | 0. 11                        | <b>8. 86</b> 3        | <b>6</b> , <b>0</b> 12 |
| 5          | Ø. 17             | 0.04           | 0. 58                        | 0. 56                 | 9, 37          | 8.41           | <b>0.</b> 11   | 0. 15                        | 8.013                 | 6. 827                 |
| 6          | <b>0</b> . 15     | 8. 66          | 8. 41                        | <b>6.</b> 52          | 8, 38          | 8. 34          | <b>6.</b> 67   | <b>2</b> . 12                | 0. 965                | 0.015                  |
| 7          | Ø. 2 <del>8</del> | <b>0.</b> 26   | <b>0.</b> 41                 | <b>0.</b> 52          | 0. 30          | 9. 34          | 9. 97          | 0.12                         | 0.005                 | 0.6:5                  |
| 8          | <b>0.</b> 18      | 0. 05          | 0. 58                        | <b>8.</b> 73          | Ø. 37          | 7. 44          | <b>6.</b> 12   | <b>6</b> . 19                | <b>0.</b> 615         | <b>0. 6</b> 36         |
| 9          | 0.18              | 0. 06          | 0. 50                        | 0. 57                 | <b>0.</b> 35   | <b>0.</b> 37   | ø. <b>ø</b> 9  | 0. 14                        | 0. 009                | <b>6. 6</b> 19         |
| 10         | <b>0.</b> 23      | <b>0. 0</b> 5  | 8. 70                        | 9. 85                 | 0.43           | 0, 49          | 0. 15          | <b>8.</b> 22                 | <b>8. 82</b> 3        | 9. 858                 |
| 11         | 0. 20             | 9. 06          | 0.49                         | 0. 57                 | 8. 34          | <b>6.</b> 37   | 0. 86          | 8, 14                        | <b>8. 667</b>         | <b>0.</b> 618          |
| 12         | 0.21              | 9. 68          | <b>8.</b> 51                 | 0, 63                 | <b>0.</b> 33   | 8.40           | O. 10          | 9. 16                        | 0. 810                | <b>8. 6</b> 27         |
| 13         | 0.21              | 0.10           | <b>0.</b> 36                 | 0.44                  | 0, 28          | 0. 31          | 0.05           | 0. 10                        | 0.002                 | 0.009                  |
| 14         | 0.19              | 0.07           | 0.46                         | <b>0.</b> 52          | 0.34           | <b>9.</b> 35   | 0.07           | 0. 12                        | <b>8. 86</b> 6        | 0.014                  |
| 15         | 0.22              | 0. 98          | B. 45                        | <b>8.</b> 56          | 0.34           | <b>0.</b> 37   | <b>0</b> . 07  | 0. 13                        | 0. 005                | <b>0. 0</b> 17         |
| 16         | Ø. 21             | 9. 95          | 0.57                         | 9.71                  | 0.42           | 8, 45          | 0. 11          | 0. 17                        | 9. 011                | 0.029                  |
| 17         | Ø. 21             | 0. 06          | 8. 55                        | <b>6.</b> 67          | 8. 28          | 0, 43          | <b>8.</b> 18   | 0. 16                        | 0.009                 | <b>6. 826</b>          |
| 18<br>19   | 0. 25<br>0. 21    | 0. 06<br>0. 08 | 9. 52<br>9. 52               | 6, 68<br>6, 62        | <b>0.</b> 38   | 8. 41<br>8. 41 | 9.08           | <b>6.</b> 13                 | 0.007                 | 0.018                  |
| <b>56</b>  | 0.22              | 6. 07          | <b>0.</b> 52                 | 0.86                  | 9. 44          | 8. 50          | 9. 10<br>9. 10 | 8, 15<br>8, 28               | 0. 010<br>0. 010      | <b>6. 8</b> 21         |
| 21         | Ø. 20             | 9. 96          | <b>0.</b> 74                 | <b>8.</b> 92          | 0. 48          | 9. 56          | 0. 16          | e, 23                        |                       | <b>6. 6</b> 29         |
| 22         | <b>0.</b> 28      | 0. 67          | 6. 80                        | <b>0.</b> 92          | 0. 55          | 8. 57          | <b>0.</b> 16   | <b>8.</b> 23                 | 0. 026<br>0. 025      | 0. 854<br>0. 853       |
| 23         | 8.27              | 8. 18          | 0. 51                        | 0. 69                 | 0. 45          | B. 47          | 0. 10          | <b>0.</b> 16                 | 8. 81 8               | 8. 824                 |
| 24         | 0. 27             | 0. 11          | 8. 75                        | 0, 62                 | 8. 46          | 8. 52          | 8. 16          | 9. 20                        | D. 825                | 0. 840                 |
| 25         | 0.26              | 2.06           | 8. 79                        | 9. 93                 | <b>8.</b> 53   | 0. 59          | Ø. 17          | 8. 23                        | 8.029                 | 8. 851                 |
| 26         | Ø. 29             | 0. 68          | 0.76                         | <b>6.</b> 93          | 6. 54          | ø. 59          | <b>B.</b> 14   | <b>8.</b> 23                 | 8, 620                | 0. 651                 |
| 27         | 0.34              | 0. 09          | 0. 75                        | 0. 87                 | 0. 54          | 0.57           | 0. 12          | 8. 21                        | 8.815                 | 0, 843                 |
| 28         | 0.33              | 8. 18          | 0.75                         | <b>6.</b> 81          | 0.54           | 0. 54          | 6. 12          | 0. 19                        | 0.014                 | 0. 836                 |
| 29         | <b>0.</b> 35      | 0. 10          | <b>0.</b> 69                 | 0. 81                 | Ø. 52          | 8. 54          | 0. 11          | 0, 19                        | 0. 01 1               | 9, 935                 |
| 30         | 0.30              | 9. 08          | B. 74                        | <b>6.</b> 69          | <b>9.</b> 51   | 9, 59          | Ø. 12          | 8. 21                        | 0.016                 | 9. 843                 |
| 31         | 0.34              | 8. 12          | <b>6.</b> 57                 | <b>6.</b> 71          | 0.46           | <b>0.</b> 51   | Ø. <b>0</b> 7  | 0. 15                        | 8. 885                | 0. 822                 |
| 32         | 0. 29             | 0. 07          | <b>8.</b> 81                 | <b>6</b> . 99         | Ø. <b>5</b> 2  | 0. 65          | <b>0.</b> 14   | <b>e.</b> 23                 | 0.019                 | 0. 955                 |
| 3 <b>3</b> | <b>0.</b> 36      | <b>6.</b> 13   | <b>0</b> . 60                | <b>8.</b> 71          | Ø. 48          | <b>6.</b> 51   | 0. 07          | <b>6.</b> 15                 | 0.005                 | 8. 622                 |
| 34         | 0, 31             | <b>0.</b> 11   | 0.84                         | 1.01                  | <b>6.</b> 61   | 0. 65          | <b>6.</b> 14   | 8. 24                        | 0.018                 | 0. 059                 |
| 35         | <b>0.</b> 31      | Ø. <b>0</b> 6  | 1.05                         | 1.17                  | <b>0.</b> 68   | <b>6</b> . 74  | <b>6.</b> 23   | ø. 29                        | <b>e. 85</b> 3        | <b>0. 0</b> 84         |
| <b>3E</b>  | ø. 3 <b>5</b>     | Ø. 10          | <b>0.</b> 99                 | 1.08                  | <b>6.</b> 62   | <b>0</b> . 59  | <b>6.</b> 18   | <b>8.</b> 26                 | <b>0. 6</b> 31        | <b>6. 6</b> 69         |
| 37         | 0.30              | <b>8.</b> 11   | Ø. 85                        | 1.01                  | <b>6.</b> 61   | 0. 56          | <b>9.</b> 15   | 0, 24                        | Ø. <b>8</b> 23        | <b>8.</b> 658          |
| 38         | ø. 35             | Ø. 12          | 0. 79                        | 9. 95                 | <b>0.</b> 55   | <b>e.</b> 53   | <b>6.</b> 14   | 0. 22                        | 0.619                 | <b>6. 6</b> 48         |
| 39         | 0.42              | <b>0.</b> 13   | 1.05                         | 1.19                  | <b>6.</b> 71   | <b>6.</b> 74   | 0. 20          | <b>6. 38</b>                 | 8. 848                | <b>0. 6</b> 69         |
| 40         | <b>0.</b> 28      | 0.12           | 0.77                         | 0.89                  | 0.62           | <b>0.</b> 62   | 6. 12          | 6, 20                        | 0.015                 | <b>6.6</b> 39          |
| 41         | Ø. 48             | <b>9.</b> 15   | 0.70                         | <b>0.</b> 92          | <b>9.</b> 58   | 0, 52          | 0.06           | 0. 21                        | 0.004                 | 0.043                  |
| 42         | Ø. 42             | 0.11           | <b>9.</b> 88                 | <b>9.</b> 95          | 0. 65          | 0. 63          | 0.12           | 0. 21                        | 9. 615                | 9. 846                 |
| 43         | 9.55              | <b>9.07</b>    | 1.43                         | 1.84                  | 1.62           | 1.67           | <b>8.</b> 24   | 0. 49                        | <b>9. 6</b> 56        | <b>8.</b> 235          |
| 44<br>45   | 0.39              | Ø. 15          | <b>8.</b> 56                 | <b>0.</b> 83          | 0. 55<br>0. 59 | <b>8.68</b>    | 9.07           | <b>8.</b> 17                 | <b>8.86</b> 4         | 0.029                  |
| 45<br>46   | 0.41<br>0.41      | 0.15<br>0.14   | <b>0. 79</b><br><b>0.</b> 83 | w. 83<br><b>8. 96</b> | <b>9.</b> 59   | 6. 62<br>6. 66 | 0.11           | 0.19                         | 0.812                 | <b>0. 6</b> 37         |
| 46<br>47   | <b>6.</b> 41      | Ø. 14<br>Ø. 13 | 6. 83<br>6. 82               | 1.02                  | <b>8.</b> 63   | Ø. 69          | 0. 14<br>0. 11 | 8, 21<br>8, 24               | <b>6.020</b><br>0.012 | 9.045                  |
| 48         | 0.40              | <b>6.</b> 15   | <b>0.</b> 97                 | 1. 11                 | <b>0.</b> 68   | Ø. 72          | <b>0.</b> 11   | <b>0.</b> 24<br><b>0.</b> 27 | 0.012                 | 0.055<br>0.071         |
| 49         | 0.37              | <b>9.</b> 15   | 8. 98                        | 1.08                  | 0. 64          | 0.71           | <b>0.</b> 15   | <b>6.</b> 25                 | 0. 025                | <b>0.0</b> 64          |
| 50         | 0.43              | Ø. 15          | <b>0.</b> 83                 | 1.00                  | <b>0.</b> 64   | <b>0.</b> 68   | <b>8.</b> 12   | <b>0.</b> 23                 | 0.015                 | 0. <b>0</b> 52         |
|            |                   | · -            |                              |                       |                |                | ~              | 20                           |                       |                        |

TABLE A-3. ICOSAHEDRON VS CALCULATED AREAS (Continued)

|           | MIN 0850              | MAX AREA       | AVG AREA            | STD DEV           | VARIANCE                    |
|-----------|-----------------------|----------------|---------------------|-------------------|-----------------------------|
| FRAG      | MIN AREA<br>ICOS CALC | ICOS CALC      | ICOS CALC           | ICOS CALC         | ICOS CALC                   |
| NO.<br>51 | 0.40 0.10             | 1.05 1.25      | 0.78 0.82           | Ø. 19 Ø. 30       | 9. 937 9. 988               |
| 52<br>52  | 0.41 0.13             | 1.20 1.31      | 0.77 0.83           | 0.26 0.32         | 0.068 0.184                 |
| 53<br>53  | 0.54 0.13             | 0.90 1.10      | 0.75 0.74           | 0. 11 0. 25       | 0.012 0.064                 |
| 54<br>54  | 0.34 0.10             | 1.67 1.82      | 0.96 1.07           | 0.41 0.48         | 0.169 <b>0.22</b> 8         |
| 55<br>55  | 0.46 0.12             | 1.20 1.37      | 0.85 0.88           | e. 23 e. 33       | <b>0</b> 51 <b>0</b> .111   |
| 56        | 0.36 0.09             | 1,39 1,55      | 0.93 0.99           | 8. 27 Ø. 38       | D. 1 72 D. 144              |
| 57        | 0.46 0.18             | 0.96 1.10      | 0.73 0.76           | 0. 15 0. 24       | 0.022 0.059                 |
| 56        | 0,29 0.11             | 1.34 1.51      | 0.87 0.96           | 0.26 0.37         | 0.069 0.138                 |
| 59        | 0.45 0.15             | 1.55 1.63      | 0.92 1.00           | 0.35 0.41         | Ø. 121 Ø. 169               |
| <b>60</b> | 0.49 0.19             | 9.97 1.10      | 0.73 0.77           | 0.14 0.24         | 0.020 0.057                 |
| <b>51</b> | 0.53 0.12             | 1.66 1.91      | 1.03 1.14           | 0.36 0.50         | 0.131 0.246                 |
| 62        | 0.64 0.14             | 0,99 1.32      | 0.86 0.88           | 0.10 0.31         | <b>0.</b> 010 0.094         |
| 63        | 0,40 0.12             | 1.39 1.71      | 0.93 1.06           | 0.30 C.43         | 0.089 0.187                 |
| 64        | 9,52 9.13             | 1.94 2.02      | 1.15 1.19           | 0.47 0.53         | 0.225 0.280                 |
| 65        | 0.46 0.14             | 1.13 1.17      | 0.79 0.83           | 0. 20 2. 25       | <b>0.0</b> 40 <b>0.0</b> 63 |
| 66        | 0.53 0.19             | 1.36 1.44      | 0.85 0.93           | 0.26 0.35         | <b>0.0</b> 67 <b>0.</b> 120 |
| 67        | 0,62 0.14             | 1.45 1.64      | Ø. 97 1. <b>8</b> 4 | 0. 25 0. 40       | <b>0.0</b> 64 <b>0.</b> 164 |
| 68        | 0.59 0.17             | 1.14 1.34      | 0.86 <b>0.9</b> 0   | 0.20 Ø.31         | <b>0.0</b> 39 <b>0.0</b> 94 |
| 69        | 0.57 0.15             | 1.28 1.57      | 0.92 1.01           | 0.21 0.38         | 0.044 0.143                 |
| 70        | 0.43 0.19             | 0.91 1.14      | 0.75 0.82           | 0.13 <b>0</b> .24 | 0.018 0.055                 |
| 71        | 0.51 0.13             | 1.88 2.10      | 1.15 1.27           | Ø. 42 Ø. 54       | 0.174 0.290                 |
| 72        | 0.61 6.16             | 2.09 2.34      | 1.26 1.39           | 0.49 0.61         | 0.242 0.370                 |
| 73        | 0.52 0.21             | 1.69 1.80      | 1.06 1.14           | 0.36 0.44         | 0.127 0.196                 |
| 74        | 0.64 <b>0</b> .18     | 1.44 1.59      | 1.01 1.06           | 0.24 0.37         | 0.059 0.136                 |
| 75        | 0.51 0.16             | 1.65 1.74      | 1,10 1,13           | 0.31 0.42         | 0.097 0.173                 |
| 76        | 0.47 0.20             | 2.00 1.85      | 1.14 1.18           | Ø. 44 Ø. 45       | 0.196 0.202                 |
| 77        | 0.48 0.14             | 1.76 2.13      | 1.17 1.34           | 0. 38 0. 53       | 0.147 0.281                 |
| 76        | 0.84 8.14             | 1.86 2.04      | 1.29 1.33           | 0.38 0.49         | 0.068 0.238                 |
| 79        | 0.68 0.17             | 2.07 2.34      | 1.30 1.43           | 0.42 0.59         | 0.175 0.352                 |
| 80        | 0.67 <b>C</b> .14     | 1.70 2.05      | 1.24 1.33           | 9.39 0.49         | 0.090 0.238                 |
| 81        | 0.60 Ø.17             | 1.61 1.99      | 1,20 1.29           | 0.26 0.48         | 0.067 0.227<br>0.078 0.184  |
| 82        | 0.69 <b>0</b> .26     | 1.55 1.82      | 1.08 1.19           | 0.28 0.43         |                             |
| 83        | 0.61 0.27             | 1.98 2.28      | 1.27 1.40           | 0.45 0.57         | 0.216 0.329<br>0.210 0.494  |
| 84        | 0.68 <b>0</b> .15     | 2.20 2.75      | 1.41 1.67           | 0.45 0.70         | 6. 216 6. 434<br>6. 535     |
| 85        | 0.31                  | 2.08           | 2.01                | Ø. 73             | 1. <b>05</b> 3              |
| 86        | <b>0.</b> 26          | 4. Ø3          | 2.46                | 1.03              | 1.034                       |
| 87        | 0. 28                 | 4. 04          | 2 <b>. 50</b>       | 1.02              | 1.490                       |
| 88        | 0, 25                 | 4. 54          | 2.83                | 1.18<br>Ø.50      | 0. 245                      |
| 89        | 0.41                  | 2. 55          | 1.90                | Ø. 54             | 0. 245<br>0. 285            |
| 90        | 0.43                  | 2. 64          | 1.93<br>2.64        | 1.08              | 1. 151                      |
| 91        | <b>0.</b> 35          | 4. 28          |                     | 1.71              | 2.906                       |
| 92        | <b>0.</b> 33          | <b>5. 5</b> 3  | 3.86<br>3.81        | 1,60              | 2. 549                      |
| 93        | <b>0.</b> 29          | 6. 25<br>4. 37 | 3. 81<br>2. 92      | 0.96              | Ø. 925                      |
| 94        | Ø. 58                 | 4. 27          | 2. 32<br>E. 37      | 1.11              | 1, 232                      |
| 95        | 2.57                  | 7. <b>60</b>   |                     | 3.33              | 11.078                      |
| 96        | 2.84                  | 14. 98         | 10.32               | ~. <b></b>        |                             |

```
EXPLANATION OF COLUMN HEADINGS
```

MIN AREA - MINIMUM PRESENTED AREA (SQ. IN.)

MAX AREA - MAXIMUM PRESENTED AREA (SQ. IN.)

AVG AREA - AVERAGE PRESENTED AREA (SQ. IN.)
STD DEV - STANDARD DEVIATION OF PRESENTED AREA (SQ. IN.)
VARIANCE - VARIANCE OF PRESENTED AREA (IN. 4TH)

- AREAS CALCULATED FROM ICOSAHEDRON GAGE DATA ICOS - AREAS CALCULATED FROM APPROXIMATING RECTANGULAR PARALLELEPIPEDS CALÇ

TABLE A-4. PRESENTED AREA RATIOS

| FRAG     | NO.        |                   | MAX          | / MIN          | MAX /         | AVB   | AVG            | / MIN          |
|----------|------------|-------------------|--------------|----------------|---------------|-------|----------------|----------------|
| NEW      | OLD        | CD                | 1008         | CALC           | 1008          | CALC  | 1008           | CALC           |
| 1        | 2          | 8, 42             | 1.00         | 1.00           | 1.60          | 1.00  | 1.00           | 1.00           |
| 2        | 95         | 8. 58             |              | 3.84           |               | 1. 22 |                | 2,48           |
| 3        | 3          | 0, 64             | 1.54         | 1.73           | 1.13          | 1.15  | 1.35           | 1,50           |
| 4        | 70         | 0.71              | 2.10         | 5 <b>. 99</b>  | 1.22          | 1.39  | 1.73           | 4, 32          |
| 5        | 44         | 8. 72             | 1.69         | 5. 05          | 1.20          | 1.39  | 1.41           | 3, 63          |
| 6        | 62         | 8, 73             | 1.56         | 9, 49          | 1.16          | 1.50  | 1.34           | e, 33          |
| 7        | <b>5</b> 3 | <b>0.</b> 76      | 1.65         | 8, 16          | 1,29          | 1.49  | 1,38           | 5, 48          |
| 8        | 41         | <b>0.</b> 76      | 1.44         | 5. 94          | 1. 2 <b>8</b> | 1.47  | 1.19           | 4, 83          |
| 9        | 11         | <b>0</b> , 76     | 2. 42        | 9. 53          | 1.45          | 1.53  | 1.67           | 6, 21          |
| 10       | 57         | <b>8</b> . 78     | 2.10         | 6. 85          | 1.31          | 1.45  | 1.68           | 4, 18          |
| 11       | 35         | 0. 79             | <b>3.</b> 36 | 14.41          | 1.55          | 1.58  | 2. 17          | 9, <b>0</b> 9  |
| 12       | 90         | 8. 79             |              | 6, 20          |               | 1.37  |                | 4, 51          |
| 13       | 45         | 0. 80             | 1.95         | 5. 91          | 1.34          | 1.43  | 1.46           | 4, 14          |
| 14       | 89         | 0.80              |              | 6. 24          |               | 1.35  |                | 4, 64          |
| 15       | 82         | 0. 81             | 2. 27        | 7. 08          | 1.43          | 1.52  | 1.58           | 4, 66          |
| 16       | 48         | 8, 82             | 2, 77        | 7. 52          | 1.23          | 1.44  | 2. 26          | 5, 21          |
| 17       | 13         | 9, 83             | 1.72         | 4. 67          | 1.26          | 1.43  | 1.37           | 3, 29          |
| 18       | 46         | 0, 83             | 2.83         | 6. 81          | 1.29          | 1.46  | 1.57           | 4, 67          |
| 19       | 18         | <b>8</b> , 83     | 2.11         | 10. 35         | 1.37          | 1.46  | 1.54           | 7.09           |
| 20       | 73         | 0. 84             | 3. 24        | 8. 60          | 1.59          | 1.58  | 2.93           | 5, 44          |
| 21       | 76         | 8. 84             | 4. 28        | 9. 13          | 1.75          | 1.56  | 2. 44          | 5, 85          |
| 22       | <u>22</u>  | 0. 86             | 3.50         | 14.36          | 1.51          | 1.62  | 2. 33          | 8, 96          |
| 23       | 33         | 8, 86             | 1.66         | 5. 49          | 1.24          | 1.39  | 1.33           | 3, 96          |
| 24       | 74         | 0. 96<br>2. 86    | 2.27         | 9. 81          | 1.43          | 1.50  | 1.59           | 6. <b>60</b>   |
| 25       | 55<br>59   | 0. 86             | 2.50<br>2.49 | 9. 37<br>8. 18 | 1.47<br>1.42  | 1.61  | 1.70           | 5, 82          |
| 25<br>27 | 47         | 0. 87             | 1.76         | 7. 81          | 1.30          | 1.49  | 1, 75<br>1, 35 | 5, 77<br>5, 24 |
| 28       | 69         | 0. 87<br>0. 87    | 2.27         | 10.50          | 1.39          | 1.55  | 1, 63          | 5. 7B          |
| 29       | 55         | 0, 88             | 2.63         | 11.81          | 1.42          | 1.56  | 1.86           | 7, 58          |
| 30       | 64         | 9.88              | 3.76         | 15.99          | 1.69          | 1.78  | 2. 22          | 9, 42          |
| 31       | 12         | 8, 88             | 2.38         | 7, 92          | 1.52          | 1.62  | 1.56           | 4, 90          |
| 32       | 27         | 6, 89             | 2.20         | 9. 87          | 1.37          | 1.53  | 1.60           | 6, 44          |
| 33       | 82         | 0.89              | 3, 25        | 8. 56          | 1.56          | 1.62  | 2, 98          | 5, 28          |
| 34       | 78         | 0. 90             | 2, 21        | 14.62          | 1.43          | 1.54  | 1.54           | 9, 51          |
| 35       | 32         | 0, 90             | 2.81         | 13.35          | 1.31          | 1.52  | 2, 15          | 8, 78          |
| 36       | 60         | 0. <del>9</del> 0 | 1.99         | 5. 89          | 1.32          | 1.43  | 1.50           | 4.65           |
| 37       | 4          | 0. 91             | 1.90         | 7.46           | 1.23          | 1.50  | 1.54           | 4, 99          |
| 28       | 67         | <b>0.</b> 92      | 2.33         | 12.10          | 1.50          | 1.58  | 1.56           | 7.65           |
| 29       | 68         | <b>6.</b> 92      | 1.94         | 7. 66          | 1.33          | 1.48  | 1.47           | 5.16           |
| 40       | 85         | <b>0.</b> 93      |              | 10.07          |               | 1.53  |                | E. 59          |
| 41       | 72         | <b>0.</b> 93      | 3.41         | 14. 75         | 1.66          | 1.69  | 2. Ø5          | 8.75           |
| 42       | 9          | <b>0.</b> 93      | 2.71         | 10.05          | 1.41          | 1.55  | 1.93           | 6. 48          |
| 43       | 1          | 0, 94             | 2.19         | 6. 92          | 1.29          | 1.30  | 1. 70          | 5, 33          |
| 44       | 17         | 0. 94             | 2.63         | 11.01          | 1.45          | 1.55  | 1.82           | 7. 13          |
| 45       | 88         | 0, 95             |              | 17.53          |               | 1.64  |                | 10, 69         |
| 46       | 43         | 0. 95             | 2.59         | 26.57          | 1.41          | 1.71  | 1.84           | 15.50          |
| 47       | 16         | <b>0.</b> 95      | 2.75         | 15.71          | 1.35          | 1.54  | 2. 04          | 10.17          |
| 48       | 80         | <b>0.</b> 96      | 2.52         | 14.44          | 1.37          | 1.53  | 1.84           | 9.42           |
| 49       | 31         | 0.96              | 1.66         | 5.69           | 1.23          | 1.40  | 1.35           | 4.06           |
| 50       | 29         | <b>0.</b> 96      | 1.97         | 8. 34          | 1.33          | 1.49  | 1.48           | 5, 58          |

TABLE A-4. PRESENTED AREA RATIOS (Continued)

| FRAG      | NO       |                | MAX            | / MIN         | MAX  | / AVG   | AVG            | / MIN  |
|-----------|----------|----------------|----------------|---------------|------|---------|----------------|--------|
| NEW       | OLD      | CD             | ICOS           | CALC          | ICOS | CALC    | ICOS           | CALC   |
| 51        | 37       | Ø. 96          | 2,84           | 8. 97         | 1.41 | 1.54    | 2.02           | 5.85   |
| 52        | 5,<br>61 | Ø. 96          | 3, 16          | 16.18         | 1.61 | 1.68    | 1.95           | 9. 66  |
| 53        | 14       | Ø. 96          | 2.41           | 7.71          | 1.34 | 1.49    | 1,79           | 5.19   |
| 54        | 10       | Ø. 97          | 3.04           | 16.34         |      | 1.73    | 1.89           | 9. 47  |
| 55        | 87       | Ø. 97<br>Ø. 98 | S. <b>2</b> 4  | 14.53         | 1.61 | 1.62    | 1.03           | 8. 99  |
|           |          |                |                |               |      |         | 0.00           |        |
| 56        | 71       | Ø. 98          | 3.71           | 15.58         | 1.63 | 1.65    | 2.28           | 9.45   |
| 57        | 15       | Ø. 98          | 2.06           | 7.26          | 1.34 | 1.52    | 1.54           | 4.76   |
| 58        | 38       | Ø. 98          | 2.26           | 7.70          | 1.43 | 1.50    | 1.57           | 5. 13  |
| 59        | 42       | Ø. 98          | 2.08           | 8.33          | 1.36 | 1.46    | 1.53           | 5.69   |
| 60        | 75       | Ø. 99          | 3. 24          | 10.72         | 1.50 | 1.53    | 2. 17          | 6. 98  |
| 61        | 96       | 0. 99          |                | 5.27          |      | 1.45    |                | 3. 63  |
| 62        | 91       | Ø. 99          |                | 12.35         |      | 1.62    |                | 7. 54  |
| 63        | 81       | 0.99           | 2.67           | 11.97         | 1.34 | 1.54    | 2.00           | 7.77   |
| 64        | 84       | 1.00           | 7,23           | 18.65         | 1.57 | 1.65    | 2. Ø6          | 11.33  |
| 65        | 93       | 1.01           |                | 15.97         |      | 1.64    |                | 9. 72  |
| <b>66</b> | 94       | 1.02           |                | 7.41          |      | 1.46    |                | 5. Ø6  |
| 67        | 23       | 1.02           | 2.25           | 6. 98         | 1.35 | 1.47    | 1.67           | 4.74   |
| 68        | 59       | 1.03           | 3, 43          | 10.55         | 1.68 | 1.63    | 2. 04          | 6. 49  |
| 69        | 56       | 1.03           | 3, 87          | 16.68         | 1.48 | 1.57    | 2.61           | 10.64  |
| 7Ø        | 48       | 1.04           | 2, 45          | 7.25          | 1.44 | 1.54    | 1.70           | 4.69   |
| 71        | 51       | 1.05           | 2.62           | 12.55         | 1.35 | 1.53    | 1.95           | 8. 19  |
| 72        | 7        | 1.05           | 2. Ø9          | 8.80          | 1.36 | 1.53    | 1.54           | 5. 75  |
| 73        | ε        | 1.ØE           | 2 <b>. 6</b> 2 | <b>8.</b> 94  | 1.39 | 1.53    | 1.89           | 5. 93  |
| 74        | 66       | 1.06           | 2.56           | 7. 59         | 1.61 | 1.55    | 1.59           | 4.90   |
| 75        | 50       | 1.11           | 1.95           | 6. 18         | 1.31 | 1.47    | 1.49           | 4.21   |
| 76        | 54       | 1.11           | 4. 94          | 17. 51        | 1.74 | 1.70    | 2.84           | 10.33  |
| 77        | 58       | 1.12           | 4.65           | 13.40         | 1.54 | 1.57    | 3 <b>. 2</b> 3 | 8. 51  |
| 78        | 49       | 1.14           | 2.42           | 7.41          | 1.41 | 1.51    | 1.72           | 4.89   |
| 79        | 36       | 1.16           | 2.73           | 10.40         | 1.60 | 1.57    | 1.70           | 6. 64  |
| 80        | 52       | 1.15           | 2.95           | 10.45         | 1.57 | 1.58    | 1.88           | 6.60   |
| 81        | 22       | 1.18           | 2.86           | 13.27         | 1.47 | 1.61    | 1.95           | 8, 24  |
| 82        | 5        | 1,19           | 3, 37          | 18.34         | 1.55 | 1.60    | 2. 17          | 11. 44 |
| 83        | 26       | 1.19           | 2.60           | 11.38         | 1.41 | 1.56    | 1.84           | 7. 28  |
| 84        | 19       | 1.21           | 2.43           | 7.55          | 1.45 | 1.52    | 1.68           | 4. 98  |
| 85        | 28       | 1.24           |                | 15.79         |      | 1.64    |                | 9. 63  |
| 86        | 30       | 1.24           | 2.49           | 11.65         | 1.43 | 1.50    | 1.74           | 7. 75  |
| 87        | 77       | 1.29           | 3.64           | 15.13         | 1.51 | 1.59    | 2.42           | 9.50   |
| 88        | 34       | 1.29           | 2,69           | 9.50          | 1.38 | 1.55    | 1.94           | 6.12   |
| 69        | 20       | 1. 29          | 2.77           | 11.41         | 1.41 | 1.59    | 1.97           | 7. 16  |
| 90        | 25       | 1.30           | 3.05           | 11.51         | 1.50 | 1.57    | 2.04           | 7.35   |
| 91        | 79       | 1.31           | 3.04           | 13.58         | 1.50 | 1.63    | 1.90           | 8.32   |
| 92        | 28       | 1.33           | 2.26           | €. 46         | 1.40 | 1.50    | 1.61           | 5.64   |
| 93        | 8        | 1.34           | 3.17           | 14.32         | 1.55 | 1.67    | 2.05           | 8. 57  |
| 94        | 21       | 1.38           | 3.72           | 14.29         | 1.56 | 1.63    | 2.38           | 8.77   |
| 95        | 92       | 1.42           | wa fam         | 19.91         | 2.00 | 1.69    | 2.00           | 11.77  |
| 96        | 24       | 1.48           | 2.81           | 7.48          | 1.61 | 1.57    | 1.74           | 4, 78  |
|           |          | *****          |                | , <del></del> | 1.01 | 1 4 W f | 2014           | · ·    |

ICOS - PRESENTED AREA RATIOS CALCULATED FROM ICOSAHEDRON GAGE DATA CALC - PRESENTED AREA RATIOS CALCULATED FROM APPROXIMATING RECTANGULAR PARALLELE PIPEDS

TABLE A-5. LINEAR AND STATISTICAL RATIOS

| FRAG | NO. |       |               |                |                |              | SD /         | AAVG           | VAR /          | AAVG+2         |
|------|-----|-------|---------------|----------------|----------------|--------------|--------------|----------------|----------------|----------------|
| NEW  | OLD | CD    | L/T           | W/T            | L'/T'          | W'/T'        | ICOS         | CALC           | ICOS           | CALC           |
| 1    | 2   | 0.42  | (SPHERE)      |                |                |              |              |                |                |                |
| 2    | 95  | 0.50  | 2.42          | 1.56           | 1.74           | 1.33         |              | Ø. 17          |                | 0.03           |
| 3    | 3   | Ø. 64 | 1.00          | 1.00           | 1.00           | 1.00         | 0.11         | Ø. 1Ø          | 0.01           | Ø. Ø1          |
| 4    | 70  | 0.71  | 5. <b>50</b>  | 2.57           | 3.43           | 1.4E         | Ø. 18        | Ø. 29          | 0.03           | 0.10           |
| 5    | 44  | 0.72  | 4.69          | 2.98           | 2.33           | 1.56         | 0.12         | Ø. 29          | 0,01           | Ø. 14          |
| ε    | 62  | 0.73  | 9 <b>. 08</b> | 3 <b>. 5</b> 3 | 4. 61          | 2.03         | Ø. 11        | Ø. 35          | 0.01           | Ø <b>.</b> 14  |
| 7    | 53  | 0.76  | 7. 81         | 3. <b>6</b> 5  | 4.38           | 2.04         | 0.15         | Ø. 34          | <b>0. 0</b> 2  | 0.16           |
| 8    | 41  | Ø. 76 | 5, 59         | 4.14           | 2. 24          | 1.90         | 0.11         | Ø.33           | 0.01           | Ø. 18          |
| 9    | 11  | Ø. 75 | 9. 22         | 4.19           | 5.50           | 3.11         | Ø. 25        | Ø. 37          | Ø. Ø6          | Ø. 35          |
| 10   | 57  | 0.78  | 5. 74         | 3.53           | 4.11           | 2.53         | 0.20         | Ø. 32          | 0. 04          | Ø. 13          |
| 11   | 35  | Ø. 79 | 14.02         | 4.43           | 8. 36          | 2.81         | 0.34         | Ø. 39          | 0.12           | 0.21           |
| 12   | 90  | 0.79  | 5.63          | 2.34           | 4.42           | 2.66         |              | Ø. 28          |                | 0.08           |
| 13   | 45  | Ø. 80 | 5, 57         | 3.25           | 3 <b>. 55</b>  | 2.31         | Ø. 18        | Ø. 31          | 0.03           | <b>0.</b> 15   |
| 14   | 89  | 0.60  | 5. 50         | 1.98           | 3, 57          | 1.68         |              | Ø. 26          |                | 0.07           |
| 15   | 82  | Ø. 81 | 6. 86         | 4.71           | 4 <b>. Ø</b> 3 | 3. 16        | Ø. 26        | Ø. 36          | Ø. Ø7          | Ø. 11          |
| 16   | 40  | 0,82  | 7.08          | 3.03           | 3.96           | 1.80         | 0.20         | 0.32           | Ø. Ø4          | Ø. 16          |
| 17   | 13  | Ø. 63 | 4.41          | 3.78           | 2.55           | 2.34         | Ø. 16        | Ø. 3Ø          | <b>0.0</b> 3   | Ø. 3Ø          |
| 18   | 46  | Ø. 93 | Б. 48         | 3.49           | 3. 73          | 2.59         | Ø. 22        | Ø. 33          | 0.05           | Ø. 16          |
| 19   | 18  | Ø. 83 | 9. 69         | 2.77           | 5. 70          | 2.29         | Ø. 21        | <b>0.</b> 33   | Ø. Ø5          | Ø. 26          |
| 20   | 73  | Ø. 84 | 8.42          | 5. 79          | 5. Ø6          | 3.92         | Ø. 34        | Ø. 39          | Ø. 11          | 0.13           |
| 21   | 76  | Ø. 84 | 8.90          | 4.94           | 5. 58          | 3. 19        | 0.39         | Ø. 36          | Ø. 15          | Ø. 12          |
| 22   | 63  | Ø. 86 | 14.09         | 5. 37          | 7. 85          | 3.38         | Ø. 32        | Ø. 41          | Ø. 1Ø          | Ø. 15          |
| 23   | 33  | Ø. 86 | 5.08          | 2.77           | 3.40           | 2.50         | 0.15         | Ø. 29          | 0.02           | Ø. 16          |
| 24   | 74  | Ø. Se | 8. 53         | 3.63           | 4. 24          | 2.23         | Ø. 24        | Ø. 35          | 0.06           | Ø. 11          |
| 25   | 39  | Ø. 86 | 9.20          | 6.37           | <b>5. 4</b> 3  | 4. Ø5        | Ø. 28        | Ø. 4Ø          | Ø. Ø8          | Ø. 22          |
| 26   | 65  | Ø. 86 | 7.55          | 2. 52          | 5. 43          | 2.33         | Ø. 25        | Ø. 3Ø          | Ø. Ø6          | Ø. 11          |
| 27   | 47  | 0.87  | 7.49          | 3.74           | 3. 49          | 1.85         | Ø. 17        | Ø. 34          | Ø. Ø3          | 0.17           |
| 28   | 69  | Ø. 87 | 10.18         | 4, 29          | 6. 38          | 3. Ø8        | Ø. 23        | Ø. 37          | 0.05           | 0.14           |
| 29   | 55  | Ø. 88 | 11.45         | 4.22           | Б. 71          | 2.47         | Ø. 27        | Ø. 38          | 0. 07          | Ø. 16          |
| 30   | 64  | 0.88  | 15.84         | 7. 92          | 6.32           | 4.14         | Ø. 41        | Ø. 45          | 0. 17          | 0.17           |
| 31   | 12  | Ø. 28 | 7.79          | 7. 79          | 4. 55          | 4. 15        | Ø. 30        | 0.41           | 0.09           | 0.41           |
| 32   | 27  | Ø. 89 | 9.54          | 4.09           | 5. 10          | 2. 48        | 0. 23        | 0.37           | 0.05           | 0.24           |
| 33   | 83  | 0.89  | 9.43          | 7. 37          | 5. 70          | 5. Ø7        | Ø. 37        | Ø. 41          | 0.13           | 0.12           |
| 34   | 78  | 0.90  | 14.02         | 3. 51          | 7. 74          | 2. 55        | Ø. 23        | Ø. 37          | Ø. Ø5          | 0.10           |
| 35   | 32  | 0.90  | 12.75         | 3.36           | 6. 19          | 2. Ø9        | Ø. 22        | Ø. 36          | 0.05           | 0.20           |
| 36   | 60  | 0.90  | 5. 47         | 3.37           | 3. 35          | 2.04         | Ø. 19        | Ø. 31          | 0. 04          | 0.13           |
| 37   | _4  | Ø. 91 | 7. 17         | 3.98           | 2. 97          | 1.79         | 0.17         | Ø. 35          | 0.03           | 0.38           |
| 38   | 67  | Ø. 92 | 11.79         | 4.72           | 7, 23          | 3, 27        | 0.26         | Ø.39           | 0.07           | 0.15           |
| 39   | £8  | Ø. 92 | 7.33          | 3.66           | 5. Ø1          | 2.82         | Ø. 23        | Ø. 34          | 0. 05          | 0.13           |
| 40   | 85  | 0.93  | 9.72          | 3.96           | 7.08           | 2.83         | <b>4 7</b> 0 | Ø. 36          | Ø 15           | Ø. 13          |
| 41   | 72  | 0.93  | 14.59         | 7.64           | 9.66           | 5. 41        | 0.39         | Ø. 44          | Ø. 15          | Ø. 14          |
| 42   | 9   | Ø. 93 | 9.76          | 4.44           | 5. 81          | 2.68         | Ø. 27        | Ø. 37          | 0.07           | 0.38           |
| 43   | 1   | 0.94  | 5. 17         | 1.15           | 5.16           | 1.15         | Ø. 21        | Ø. 23<br>Ø. 37 | Ø. Ø4<br>Ø. Ø7 | Ø. 14          |
| 44   | 17  | 0.94  | 10.65         | 4.10           | 5.84           | 2.56         | Ø. 26        | Ø. 37<br>Ø. 42 | w. w/          | Ø.32<br>Ø.17   |
| 45   | 88  | Ø. 95 | 17.21         | 5.44           | 10.86          | 4.31<br>5.33 | a 27         | Ø. 42<br>Ø. 45 | 0.05           | Ø. 17<br>Ø. 19 |
| 45   | 43  | Ø. 95 | 26.29         | 7.08           | 18.38          |              | 0.23<br>0.25 | Ø. 45<br>Ø. 37 | Ø. Ø5<br>Ø. Ø6 | 0.19           |
| 47   | 16  | Ø. 95 | 15.10         | 3,55<br>7,45   | 8.76<br>9.05   | 2.42         |              | Ø.37           | Ø. Ø5          |                |
| 48   | 80  | Ø. 96 | 13.84         | 3.46           | 8.05           | 2.22         | 0.24         |                |                | 0.10           |
| 49   | 31  | Ø. 96 | 5.29          | 2. 99          | 3.17           | 2.18         | Ø. 15        | Ø. 29          | 0.02           | Ø. 17          |
| 50   | 29  | Ø. 96 | 7.99          | 3. 69          | 4. 94          | 2.47         | Ø. 20        | Ø. 35          | 0.04           | Ø. 22          |

TABLE A-5. LINEAR AND STATISTICAL RATIOS (Continued)

| FRAG | NO. |       |        |               |                |       | SD /         | AAVG         | VAR / | AAVG+2        |
|------|-----|-------|--------|---------------|----------------|-------|--------------|--------------|-------|---------------|
| NEW  | OLD | CD    | レノエ    | W/T           | L'/T'          | W'/T' | ICOS         | CALC         | ICOS  | CALC          |
| 51   | 37  | Ø. 96 | 8. 69  | 4.35          | 5.61           | 2.86  | Ø. 25        | 0.37         | 0.06  | 0.20          |
| 52   | 61  | Ø. 96 | 15.98  | 6.85          | 9. 11          | 3.89  | Ø. 35        | Ø. 43        | Ø. 12 | 0.17          |
| 53   | 14  | Ø. 96 | 7.37   | 3.69          | 4.30           | 2.68  | Ø. 22        | Ø. 34        | 0.05  | Ø. 33         |
| 54   | 10  | 0.97  | 16, 22 | 9.46          | 9. 12          | 4.83  | 0.35         | 0.46         | Ø. 12 | 0.43          |
| 55   | 87  | 0.98  | 14.23  | 5. 18         | 7.66           | 3.64  |              | 0.41         |       | Ø. 17         |
| 56   | 71  | 0, 98 | 15.34  | 6.00          | 9.74           | 3.72  | Ø. 36        | 0.42         | Ø. 13 | 0.14          |
| 57   | 15  | 0.98  | 7.03   | 4.69          | 4. 29          | 3.04  | 0.21         | 0.36         | 0. 05 | 0.35          |
| 58   | 38  | Ø. 98 | 7.41   | 3. 99         | 5. 11          | 2.81  | Ø. 25        | 0.35         | 0.06  | 0.19          |
| 59   | 42  | 0.98  | 7.88   | 3.15          | 5. 98          | 2.33  | Ø. 19        | 0.33         | 0. 04 | Ø. 17         |
| 60   | 75  | 0.99  | 10.34  | 3.94          | 6.86           | 2.91  | Ø. 28        | Ø. 37        | 0. 08 | 0.12          |
| 61   | 96  | 0.99  | 5.02   | 4. ØE         | 3. 34          | 2.73  |              | <b>0.</b> 32 |       | 0.10          |
| 62   | 91  | 0, 99 | 12.13  | 5, 66         | 8. 91          | 4.58  |              | 0.41         |       | Ø. 17         |
| 63   | 81  | 0.99  | 11.55  | 3.85          | 7. 57          | 2.77  | Ø. 22        | 0.37         | 0.05  | Ø. 11         |
| 64   | 84  | 1.00  | 18.33  | 5.50          | 10.09          | 3.32  | 0.33         | Ø. 42        | Ø. 11 | 0. 11         |
| 65   | 93  | 1.01  | 15.70  | 5.74          | 12.05          | 4. 83 |              | 0.42         |       | 0.18          |
| 6E   | 94  | 1.02  | 7.04   | 3.40          | 5. 27          | 2.86  |              | 0.33         |       | Ø. 11         |
| 67   | 23  | 1.02  | 6.66   | 3,63          | 4.46           | 2.44  | 0.22         | 0.33         | 0.05  | 0.24          |
| 68   | 59  | 1.03  | 10.38  | 6.49          | 6. 57          | 4.88  | 0.38         | 0.41         | Ø. 14 | 0.17          |
| 63   | 56  | 1,03  | 15.12  | 3. 87         | 19.90          | 2.59  | Ø. 29        | <b>0.</b> 38 | Ø. Ø8 | Ø. 15         |
| 70   | 48  | 1.04  | 7.05   | 5. 29         | 4. Ø9          | 3. 38 | Ø. 28        | Ø. 37        | 0.08  | Ø. 19         |
| 71   | 51  | 1.05  | 12.06  | 3.62          | 6.30           | 1.83  | 0.24         | 0.36         | 0.05  | Ø. 16         |
| 72   | 7   | 1.05  | 8, 51  | 4. 25         | 5. 19          | 2.84  | 0.23         | 0.36         | 0. 05 | Ø. 39         |
| 73   | 6   | 1.06  | 8. 66  | 4.33          | 5. 53          | 3.23  | Ø. 24        | <b>0.</b> 37 | 0. 06 | 0.40          |
| 74   | 65  | 1,06  | 7.39   | 5. 28-        | 5. 21          | 3.80  | 0.30         | Ø. 37        | 0. 09 | Ø. 15         |
| 75   | 50  | 1.11  | 5, 91  | 3. <u>9</u> 4 | 2.82           | 2.18  | Ø. 19        | Ø. 33        | Ø. Ø4 | Ø. 16         |
| 76   | 54  | 1.11  | 17.44  | 7. 85         | 10.53          | 5. 36 | 0, 43        | 0.45         | Ø. 18 | Ø <b>.</b> 19 |
| 77   | 58  | 1.12  | 13.02  | 4.34          | 6. Ø5          | 2.47  | 0.30         | 0.39         | 0. 09 | 0.16          |
| 78   | 49  | 1.14  | 7.16   | 4.40          | 4.25           | 2.70  | Ø. 25        | <b>0.</b> 36 | 0.06  | Ø. 18         |
| 79   | 36  | 1.15  | 10.13  | 4.73          | 6. 26          | 2. 95 | Ø. 29        | Ø. 38        | Ø. Ø8 | Ø. 21         |
| 80   | 52  | 1.16  | 10.21  | 5. 10         | 5. 86          | 3, 36 | Ø. 34        | 0.39         | Ø. 12 | 0.18          |
| 81   | 22  | 1.18  | 12.99  | 5.20          | 8. Ø4          | 3.01  | ຍ. 29        | 0.40         | Ø. Ø8 | Ø. 28         |
| 82   | 5   | 1,19  | 17.87  | 4.47          | 11.12          | 2. 94 | Ø. 31        | 0.40         | Ø. 10 | Ø. 39         |
| 83   | 26  | 1.19  | 11.05  | 4.42          | 5. 46          | 2.55  | Ø. 26        | 0.38         | 0. 07 | 0.24          |
| 84   | 19  | 1.21  | 7.30   | 4.38          | 4. 99          | 3.38  | Ø. 28        | 0. 3E        | Ø. Ø8 | 0.31          |
| 85   | 86  | 1.24  | 15,52  | 5 <b>,</b> 64 | 10.07          | 4.75  |              | 0.42         |       | Ø <u>.</u> 17 |
| 8E   | 30  | 1.24  | 11.10  | 3. 27         | 6 <b>. 8</b> 4 | 2.52  | <b>0.</b> 24 | ø. 35        | Ø. Ø6 | 0.21          |
| 87   | 77  | 1.29  | 14.74  | 4.54          | 9. 36          | 3.11  | Ø. 33        | 0.40         | Ø. 11 | Ø. 12         |
| 88   | 34  | 1.29  | 9. 24  | 4. 52         | 4.89           | 2. 69 | Ø. 22        | <b>0.</b> 38 | Ø. Ø5 | 0, 22         |
| 89   | 20  | 1.29  | 11.15  | 5. 15         | 5. 61          | 2.92  | <b>0.</b> 23 | 0.40         | Ø. Ø5 | Ø. 31         |
| 90   | 25  | 1.30  | 11.19  | 4.48          | 7. 10          | 3.33  | Ø. 32        | Ø. 38        | 0.10  | Ø. 25         |
| 91   | 79  | 1.31  | 13.35  | 5. 90         | 7.76           | 3.65  | Ø. 32        | 0.41         | 0.10  | 0.12          |
| 92   | 28  | 1.33  | 8.12   | 3. 75         | 4. 19          | 2.15  | Ø. 22        | <b>0.</b> 35 | 0.05  | Ø. 22         |
| 93   | 8   | 1.34  | 14. 15 | 7.07          | 8. 45          | 4.78  | Ø. 33        | 0.43         | Ø. 11 | 0.43          |
| 94   | 21  | 1.38  | 14.04  | 5. 61         | 8. 49          | 3.56  | Ø. 34        | 0.41         | 0. 12 | 0.30          |
| 95   | 92  | 1.42  | 19.67  | 6. 8E         | 11.15          | 5.31  |              | Ø. 44        | _     | Ø. 20         |
| 96   | 24  | 1.48  | 7. 31  | 5. 85         | 5. 22          | 4.28  | Ø. 34        | <b>0.</b> 38 | Ø. 12 | Ø. 28         |

#### HEADINGS

L - AVERAGE LENGTH W - AVERAGE WIDTH T - AVERAGE THICKNESS

L' = MAXIMUM LENGTH PLUS AVERAGE LENGTH

W' = MAXIMUM WIDTH PLUS AVERAGE WIDTH

T' = MAXIMUM THICKNESS PLUS AVERAGE THICKNESS

SD - STANDARD DEVIATION OF PRESENTED AREAS (SQ. IN.)

VAR - VARIANCE OF PRESENTED AREAS (IN. 4TH)

AAVG+2 - AVERAGE PRESENTED AREA SQUARED (IN. 4TH)

ICOS - AREAS CALCULATED FROM ICOSAHEDRON GAGE DATA

CALC - AREAS CALCULATED FROM APPROXIMATING RECTANGULAR PARALLELAEPIPEDS

TABLE A-6. PERIMETER RATIOS

| FRAG     | NO.       |                   |              |              |              |                       |              |
|----------|-----------|-------------------|--------------|--------------|--------------|-----------------------|--------------|
| NEW      |           | CD                | LWP/LTP      | LWP/TWP      | LTP/TWP      | LWP/LMAX              | TWP/WMAX     |
| 1        | 2         | 0.42              | 1.00         | 1.00         | 1.00         | 3. 14                 | 3. 14        |
| 2        | 95        | 0.50              | 1.68         | 1.18         | 1.08         | 3. Ø4                 | 2. 91        |
| 3        | 3         | Ø. 64             | 1.00         | 1.00         | 1.00         | 4. Ø3                 | 4. 03        |
| 4        | 70        | Ø. 71             | 1.01         | 2.03         | 2.00         | 2.42                  | 3.03         |
| 5        | 44        | Ø. 72             | 1.08         | 1.47         | 1.36         | 2.83                  | 2.74         |
| 6        | €2        | 0.73              | 1.25         | 1.98         | 1.58         | 3. Ø4                 | 3. 12        |
| 7        | 53        | Ø. 76             | 1, 12        | 2.14         | 1.91         | 2. 81                 | 2.84         |
| 8        | 41        | Ø. 76             | 1.05         | 1.07         | 1.02         | 2. 57                 | 2.47         |
| 9        | 11        | Ø. 7E             | 1.22         | 1.87         | 1.54         | 2 <b>. 70</b>         | 2.11         |
| 10       | 57        | 0.78              | 1.07         | 1.70         | 1.59         | 2, 33                 | 2. 22        |
| 11       | <b>35</b> | Ø. 79             | 1.10         | 2.42         | 2.21         | 2, 29                 | 2. 66        |
| 12       | 90        | Ø. 79             | 1.07         | 1.74         | 1.63         | 2.28                  | 1.71         |
| 13       | 45        | 0.80              | 1.10         | 1.50         | 1.36         | 2. 52                 | 2. 37        |
| 14       | 89        | Ø. 8Ø             | 1.01         | 1.48         | 1.47         | 2. 22                 | 2.60         |
| 15       | 82        | Ø, 81             | 1.37         | 1.42         | 1.03         | 2 <b>. 90</b>         | 2.31         |
| 16       | 40        | Ø, 82             | 1.00         | 1.90         | 1.90         | 2. 21                 | 2.32         |
| 17       | 13        | Ø. 83             | 1.16         | 1.19         | 1.03         | 2.78                  | 2. 43        |
| 18       | 46        | <b>0.</b> 83      | 1.25         | 1.59         | 1.36         | 2.82                  | 1. 97        |
| 19       | 18        | Ø, 83             | 1.11         | 1.69         | 1.52         | 2. 25                 | 2. 55        |
| 20       | 73        | Ø. 84             | 1.36         | 1.68         | 1.23         | 3.11                  | 2. 15        |
| 21       | 76        | Ø. 84             | 1.17         | 1.69         | 1.44         | 2.39                  | 2.42         |
| 22       | <b>63</b> | 0. SE             | 1.09         | 2.57         | 2, 35        | 2.41                  | 1.96         |
| 23       | 33        | 0.86              | 1.18         | 1.35         | 1.15         | 2.40                  | 1.95         |
| 24       | 74        | Ø. 86             | 1.15         | 1.54         | 1.33         | 2. 53                 | 2.59         |
| 25       | 39        | Ø. 86             | 1.62         | 1.70         | 1.04         | 3. 21                 | 2.38         |
| 26       | 65        | Ø. 8E             | 1. 18        | 2. 25        | 1.93         | 2. 58                 | 2. 13        |
| 27       | 47        | 0.87              | 1.24         | 1.68         | 1.35         | 2. 58                 | 2.82         |
| 28       | <b>E9</b> | Ø. 87             | 1.14         | 2.25         | 1.97         | 2.57                  | 2. 10        |
| 29       | 55        | Ø. 88             | 1.11         | 2.89         | 2.59         | 2-40                  | 2. 25        |
| 30       | 64        | Ø. 88             | 1.67         | 1.96         | 1.17         | 3. 26                 | 2. 04        |
| 31       | 12        | Ø. 88             | 1.38         | 1.57         | 1.14         | 2. 93                 | 2. 22        |
| 32       | 27        | Ø. 89             | 1.11         | 2.34         | 2.11         | 2. 47                 | 1.96         |
| 33       | 83        | Ø. 89             | 1.54         | 1.63         | 1.05         | 3. 23                 | 2.20         |
| 34       | 78        | Ø. 90             | 1.21         | 2.58         | 2.13         | 2.61                  | 2.48         |
| 35       | 32        | Ø. 9Ø             | 1.03         | 2.09         | 2.03         | 2. 17                 | 2.52         |
| 36       | 60        | 0.90              | 1.06         | 1.53         | 1.45         | 2.36                  | 2.56         |
| 37       | _4        | 0.91              | 1.09         | 1.36         | 1.25         | 2.56                  | 2.92         |
| 38       | 67        | Ø. 92             | 1.29         | 2.34         | 1.81         | 2.62                  | 2. 25        |
| 39       | 68        | Ø. 92             | 1.04         | 1.06         | 1.02         | 2. 27                 | 3. 44        |
| 40       | 85        | Ø. 93             | 1.16         | 2.78         | 2.40         | 2.42                  | 2.21         |
| 41       | 72        | Ø. 93             | 1.31         | 2.05         | 1.57         | 2.57                  | 2.12         |
| 42       | 9         | Ø. 93             | 1.14         | 2.04         | 1.79         | 2. 47<br>2. 52        | 2.59         |
| 43       | 1         | Ø. 94             | 1.02         | 2.88         | 2.82         |                       | 3. 92        |
| 44       | 17        | Ø. <del>9</del> 4 | 1.14         | 2.00<br>2.44 | 1.75<br>2.10 | 2.34                  | 2.38         |
| 45<br>45 | 88        | 0,95              | 1.16         |              | 3. 22        | 2.37                  | 2.05         |
| 46       | 43        | Ø. 95<br>Ø. 95    | 1.16<br>1.05 | 3.74<br>2.46 | 2.33         | 2. <b>68</b><br>2. 12 | 2.31         |
| 47<br>48 | 16<br>80  | Ø. 95             | 1.05         | 2.45<br>3.03 | 2.33<br>2.77 | 2.12                  | 2.73<br>2.55 |
|          | 31        |                   | 1.10         | 1.31         | 1.18         | 2.33<br>2.56          | -            |
| 49       | 29        | Ø. 96             |              | 1.96         |              |                       | 2.34         |
| 50       | 23        | Ø <b>,</b> 96     | 1.04         | 1.36         | 1.88         | 2. 31                 | 2. 20        |

TABLE A-6. PERIMETER RATIOS (Continued)

| FRAG | NO.  |               |         |               |              |                |                |
|------|------|---------------|---------|---------------|--------------|----------------|----------------|
| NEW  | OLD  | CD            | LWP/LTP | LWP/TWP       | LTP/TWP      | LWP/LMAX       | TWP/WMAX       |
| 51   | 37   | Ø <b>.</b> 96 | 1.13    | 1.99          | 1.76         | 2.37           | 2, 29          |
| 52   | 61   | Ø. 96         | 1.12    | 2. AG         | 2.19         | 2.30           | 2, 20          |
| 53   | 14   | Ø. 96         | 1.25    | 1.48          | 1.19         | 2, 88          | 2. 59          |
| 54   | 10   | Ø. 97         | 1.45    | 2.29          | 1.59         | 2.32           | 2. Ø8          |
| 55   | 87   | Ø. 98         | 1.35    | 2.41          | 1.78         | 2.52           | 1.80           |
| 56   | 71   | ø. 98         | 1. 15   | 2.85          | 2.46         | 2.36           | 2. 22          |
| 57   | 15   | Ø. 98         | 1.16    | 1.63          | 1.41         | 2.70           | 2, 22          |
| 58   | 38   | Ø. 96         | 1.08    | 1.90          | 1.76         | 2. 23          | 2.10           |
| 59   | 42   | Ø. 98         | 1.08    | 2.43          | 2. 25        | 2.46           | 2.65           |
| 6Ø   | 75   | Ø. 99         | 1.10    | 2.07          | 1.88         | 2.41           | 2.51           |
| 51   | 96   | 0. 99         | 1.39    | 1.58          | 1.14         | 2.98           | 2, 29          |
| 62   | 91   | Ø. 99         | 1.42    | 2. 29         | 1.61         | 2.69           | 2.11           |
| 63   | 81   | Ø. 99         | 1.00    | 2.64          | 2.64         | 2.32           | 2. 20          |
| 64   | 84   | 1.00          | 1.36    | 3.41          | 2.52         | 2.64           | 2. 16          |
| 65   | 93   | 1.01          | 1.31    | 3 <b>. 95</b> | 3.02         | 2.85           | 1.67           |
| 66   | 94   | 1.02          | 1.26    | 1.83          | 1.45         | 2.70           | 2.48           |
| 67   | 23   | 1.02          | 1.14    | 1.66          | 1.46         | 2.35           | 2. 58          |
| 68   | 59   | 1.03          | 1.54    | 1.64          | 1.06         | 3.04           | 2. 16          |
| 69   | 56   | 1.03          | 1.03    | 3. 25         | 3, 14        | 2.14           | 2, 38          |
| 70   | 48   | 1.04          | 1.39    | 1.42          | 1.02         | 2.90           | 2. 28          |
| 71   | 51   | 1.05          | 1.03    | 2.89          | 2.81         | 2. 16          | 2. 64          |
| 72   | 7    | 1.05          | 1.20    | 1.79          | 1.50         | 2.65           | 2.50           |
| 73   | 6    | 1.05          | 1.20    | 1.71          | 1.42         | 2.51           | 2.21           |
| 74   | 66   | 1.06          | 1.47    | 1.60          | 1.09         | 2.78           | 2.34           |
| 75   | 50   | 1.11          | 1.26    | 1.44          | 1.15         | 3.29           | 2.59           |
| 76   | 54   | 1.11          | 1.22    | 2.10          | 1.72         | 2.51           | 2. 15          |
| 77   | 58   | 1.12          | 1.13    | 2.14          | 1.89         | 2.37           | 2, 30          |
| 78   | 49   | 1.14          | 1.35    | 1.88          | 1.40         | 2. 98<br>2. 23 | 2. 42<br>2. 19 |
| 79   | 36   | 1.15          | 1.09    | 2.14          | 1.97         | 2. 23<br>2. 67 | 2. 15          |
| 80   | 52   | 1.16          | 1.34    | 1.92          | 1.43         | 2. 17          | 2, 16          |
| 81   | 22   | 1.18          | 1.00    | 2.78          | 2.78<br>2.80 | 2.10           | 2. 6 <b>6</b>  |
| 82   | 5    | 1.19          | 1.04    | 2.90          | 1.75         | 2. 62          | 2, 22          |
| 83   | 26   | 1.19          | 1.27    | 2.22          | 1.75         | 2. 8 <b>7</b>  | 2, 28          |
| 84   | 19   | 1.21          | 1.32    | 1.66<br>2.10  | 1.61         | 2.61           | 2. 15          |
| 85   | 86   | 1.24          | 1.31    | 2. 25         | 2.07         | 2. 25          | 2. 27          |
| 86   | . 30 | 1.24          | 1.09    | 2. 74         | 2.31         | 2. 3 <b>0</b>  | 2. 35          |
| 87   | 77   | 1.29          | 1.19    | 2.74<br>1.91  | 1.61         | 2. 54          | 2. 33<br>2. 31 |
| 88   | 34   | 1.29          | 1.19    |               | 1.55         | 2.35           | 2. 21          |
| 89   | 20   | 1.29          | 1.20    | 1.87          | 1.48         | 2.36           | 2.40           |
| 90   | 25   | 1.30          | 1.24    | 1.84          | 1.48         | 2.82           | 2. 12          |
| 91   | 79   | 1.31          | 1.41    | 2.65          | 1.66         | 2. 52<br>2. 54 | 2. 54          |
| 92   | 28   | 1.33          | 1.05    | 1.70          | 1.57         | 2. 5 <b>2</b>  | 2. 16          |
| 93   | 8    | 1.34          | 1.18    | 1.86          | 2.07         | 2. 32<br>2. 21 | 2. 20          |
| 94   | 21   | 1.38          | 1.11    | 2.30          | 1.52         | 2.72           | 2. <b>0</b> 7  |
| 95   | 92   | 1.42          | 1.38    | 2.20          |              | 2.72<br>2.98   | 2. 16          |
| 96   | 24   | 1.48          | 1.34    | 1.54          | 1,23         | ۷. ۵۵          | 2. 10          |

#### HEADINGS

LWP - PERIMETER IN LW PLANE (IN.) LTP - PERIMETER IN LT PLANE (IN.) TWP - PERIMETER IN TW PLANE (IN.)

LMAX - MAXIMUM LENGTH (IN.)
WMAX - MAXIMUM WIDTH (IN.)

TABLE A-7. MOMENT OF INERTIA RATIOS

| FRAG       | ND. | WEIGHT         |              | GR             | AINS-IN+       | 2          |         |       |                   | IT+2/        |
|------------|-----|----------------|--------------|----------------|----------------|------------|---------|-------|-------------------|--------------|
| NEW        | OLD | GRAINS         | CD           | 17             | IW             | ΙĻ         | IT/IW   | IT/IL | IW/IL             | IL+IW        |
| 1          | 2   | 1030.4         | 0.42         | SPHER          | E: ALL R       | ATIOS EQUA | AL 1.00 |       |                   |              |
| 2          | 95  | 15595.1        | Ø. 5Ø        |                | 14618.3        | 7327.6     | 1.21    | 2.41  | 1.99              | 2.92         |
| 3          | 3   | 835. Ø         | 0.64         | CUBE:          | ALL RAT        | IDS EQUAL  | 1.00    |       |                   |              |
| 4          | 70  | 561.2          | Ø. 71        | 128, 1         | 108.6          | 26.3       | 1.18    | 4.87  | 4. 13             | 5. 74        |
| 5          | 44  | 354.0          | <b>0.</b> 72 | <b>50.</b> 2   | 37. 3          | 16. 0      | 1.35    | 3.13  | 2, 33             | 4.22         |
| 6          | 62  | 489. 3         | 0.73         | 152, 1         | 133.7          | 21.6       | 1.14    | 7. 24 | 6. 19             | 8.00         |
| 7          | 53  | 395. 1         | 0.76         | 90. 2          | 75. 3          | 17.3       | 1.20    | 5. 21 | 4. 35             | 6. 24        |
| 8          | 41  | 333.2          | Ø. 76        | 51.4           | 34.6           | 19. 8      | 1.48    | 2.74  | 1.84              | 4.06         |
| 9          | 1.1 | 128.6          | Ø. 76        | 15.6           | 13, 1          | 2.8        | 1.19    | 5. 52 | 4. 63             | 6. 58        |
| 10         | 57  | 461.7          | Ø. 78        | 89. 6          | 67. 1          | 26.7       | 1.34    | 3. 36 | 2, 52             | 4.50         |
| 11         | 35  | 302.8          | Ø. 79        | 100.2          | 91.6           | 9.6        | i. Ø9   | 10.46 | 9. 56             | 11.44        |
| 12         | 90  | 2006.2         | Ø. 79        | 1130.2         | 993 <b>. 9</b> | 198. 1     | 1.14    | 5. 71 | 5. 62             | 6. 49        |
| 13         | 45  | 354.9          | 0.80         | 57.1           | 44. Ø          | 15. 9      | 1.30    | 3.58  | 2 <b>. 76</b>     | 4.65         |
| 14         | 89  | 2005.7         | 0.80         | 1180.0         | 1078.5         | 169. 2     | 1.09    | 6.97  | 6. 37             | 7,63         |
| 15         | 82  | 804.8          | 0.81         | 252. 8         | 175. 2         | 84.7       | 1.44    | 2. 99 | 2 <b>. Ø7</b>     | 4.31         |
| 16         | 40  | 325.7          | Ø. 82        | 63.0           | 54. 3          | 10.9       | 1.16    | 5.80  | 5.00              | 6.73         |
| 17         | 13  | 130.8          | Ø. 83        | 9, 3           | 5. 6           | 4. 2       | 1.65    | 2. 20 | 1.34              | 3.63         |
| 18         | 46  | 357.9          | 0.83         | 65, Ø          | 51.6           | 15. 8      | 1.26    | 4.11  | 3, 26             | 5. 18        |
| 19         | 18  | 158. €         | Ø. 83        | 28 <b>. Ø</b>  | 26. 2          | 2.4        | 1.07    | 11.80 | 11.02             | 12.64        |
| 20         | 73  | 655. 4         | Ø. 34        | 205.9          | 141.8          | 68. 1      | 1.45    | 3.03  | 2 <b>. 0</b> 8    | 4.39         |
| 21         | 76  | 713.9          | 0.84         | 252, 2         | 195. 1         | 61.9       | 1.29    | 4.08  | 3. 15             | 5.27         |
| 22         | 63  | 490. 9         | Ø. 36        | <b>206.</b> 6  | 181.3          | 27. 1      | 1.14    | 7. 62 | 6. 69             | 8.68         |
| 23         | 33  | 2 <b>80.</b> 2 | 0.86         | 36. 7          | 29, 4          | 9. 5       | 1.25    | 3.84  | 3 <b>. 08</b>     | 4.80         |
| 24         | 74  | 65e. Ø         | Ø. 86        | 232, 3         | 200. 0         | 37. 5      | 1.16    | 6.17  | 5, 31             | 7.17         |
| 25         | 39  | 323.9          | 0. 86        | 67. 5          | 45. 1          | 22.4       | 1.46    | 3. 01 | 2. 06             | 4.41         |
| 26         | 65  | 505.0          | Ø. 86        | 151.5          | 138. 6         | 17. E      | 1.09    | 8. 62 | 7. 90             | 9. 41        |
| 27         | 47  | 359. 2         | Ø. 87        | 73. 3          | 59. 7          | 15. 7      | 1.23    | 4.66  | 3 <b>. 79</b>     | <b>5.</b> 72 |
| 28         | 69  | 556. 2         | Ø. 87        | 197. Ø         | 169. Ø         | 31.3       | 1.17    | 6. 29 | 5. 39             | 7.33         |
| 29         | 55  | 432.7          | Ø. 88        | 147.8          | 131.2          | 18. 7      | 1, 13   | 7. 90 | 7. Ø1             | 8.90         |
| 30         | 64  | 495. 1         | Ø. 88        | 2 <b>06.</b> 3 | 165. 7         | 42.0       | 1.24    | 4. 92 | J. 95             | 6.12         |
| 31         | 12  | 128. 8         | Ø. 88        | 13.7           | 7. Ø           | 7. 0       | 1.97    | 1.97  | 1.00              | 3.88         |
| 32         | 27  | 241.E          | Ø. 89        | 46.7           | 39 <b>. 9</b>  | 7. 7       | 1.17    | 6.07  | 5. 18             | 7.10         |
| 33         | 83  | 833.7          | Ø. 69        | 314,0          | 180.4          | 138. 7     | 1.74    | 2. 26 | 1.30              | 3.94         |
| 34         | 78  | 767.Ø          | Ø. 9Ø        | 532, 4         | 503.7          | 33. 9      | 1.06    | 15.72 | 14. 37            | 16.61        |
| 3 <b>5</b> | 32  | 277.4          | Ø. 90        | 89. 2          | 84.0           | 6.3        | 1.06    | 14.17 | 13.33             | 15.05        |
| 36         | ۯ   | 484. 1         | 0.90         | 94. Ø          | 70.5           | 28. 1      | 1.33    | 3, 34 | 2.51              | 4.45         |
| 37         | 4   | 110.7          | Ø. 91        | 9.8            | 7.6            | 2.5        | 1.28    | 3. 97 | 3,10              | 5.09         |
| 38         | 67  | 531.9          | Ø. 92        | 205.7          | 178.6          | 25. 6      | 1.15    | 6. 94 | 6, Ø2             | 7.93         |
| 39         | 68  | 547.9          | Ø. 92        | 146. 1         | 119.1          | 31.4       | 1.23    | 4. 65 | 3. 7 <del>9</del> | 5. 70        |
| 40         | 85  | 1617.7         | Ø. 93        | 1145.9         | 993. 3         | 173. 7     | 1.15    | 6.60  | 5. 72             | 7.61         |
| 41         | 72  | 651.7          | Ø. 93        | 305.2          | 243.6          | 66. 8      | 1.27    | 4. 57 | 3,60              | 5.80         |
| 42         | 9   | 121.5          | ø. 93        | 14.8           | 12.4           | 2. 7       | 1.19    | 5. 57 | 4.66              | 6.65         |
| 43         | . 1 | 159.3          | 0.94         | 23.6           | 23.3           | 2.0        | 1.02    | 11.67 | 11, 49            | 11.8E        |
| 44         | 17  | 155.5          | 0.94         | 25. 1          | 22. 1          | 3. 4       | 1.14    | 7.34  | 6. 45             | 8. 35        |
| 45         | 88  | 1973.2         | Ø. 95        | 2611.2         | 2382.4         | 244. 7     | 1.10    | 10.67 | 9. 73             | 11.69        |
| 46         | 43  | 352.8          | Ø. 95        | 213.1          | 199.0          | 14. 7      | 1.07    | 14.50 | 13.54             | 15.53        |
| 47         | 16  | 150.1          | Ø. 95        | 38.2           | 36.3           | 2.2        | 1.05    | 17.72 | 16.86             | 18.63        |
| 48         | වුම | 777.0          | Ø. 96        | 539.4          | 510.2          | 34.3       | 1.06    | 15.72 | 14.87             | 16.61        |
| 49         | 31  | 268.9          | Ø. 96        | 3 <b>5.</b> 2  | 28.1           | 9. 1       | 1.25    | 3.89  | 3. 10             | 4.86         |
| 50         | 29  | 248. 7         | Ø. 96        | 42.5           | 35.6           | s. Ø       | 1.19    | 5. 32 | 4. 45             | 6. 35        |

TABLE A-7. MOMENT OF INERTIA RATIOS (Continued)

| FRAG       | NO.        | WEIGHT  |       | 13      | RAINS-IN+    | 2      |       |               |        | IT+2/           |
|------------|------------|---------|-------|---------|--------------|--------|-------|---------------|--------|-----------------|
| NEW        | OLD        | GRAINS  | CD    | IT      | IW           | IL     | IT/IW | IT/IL         | IW/IL  | IL+IW           |
| 51         | 37         | 309.4   | Ø. 96 | 63.2    | 51.2         | 13.3   | 1.23  | 4. 75         | 3, 85  | 5.86            |
| 52         | 61         | 486.7   | 0.96  | 211.7   | 179.5        | 33. 5  | 1.16  | 6.31          | 5.35   | 7.44            |
| <b>5</b> 3 | 14         | 132.9   | 0.96  | 13.8    | 11.3         | 3.0    | 1.23  | 4. 64         | 3.78   | 5.68            |
| 54         | 10         | 121.8   | Ø. 97 | 19.6    | 14.7         | 5. 0   | 1.34  | 3.90          | 2.92   | 5. 21           |
| 55         | 87         | 1799. 4 | 0.98  | 1848.9  | 1640.9       | 223. 9 | 1.13  | 8, 26         | 7.33   | 9.31            |
| 56         | 71         | 608.4   | Ø. 98 | 309.3   | 269. 3       | 42, 2  | 1.15  | 7. 33         | 6.38   | 8.41            |
| 57         | 15         | 135. 5  | 2.98  | 13.2    | 9.3          | 4.3    | 1.41  | 3.10          | 2.19   | 4. 39           |
| 58         | 38         | 313. 1  | Ø. 98 | 56. 9   | 44.9         | 13.6   | 1.27  | 4. 17         | 3.30   | 5. 28           |
| 59         | 42         | 335. 0  | Ø. 98 | 73.0    | 64. 0        | 11.1   | 1. 14 | 6. 59         | 5. 77  | 7.52            |
| 60         | 75         | 669.5   | 0. 99 | 281.3   | 247. 9       | 37.9   | 1.13  | 7. 43         | 6. 54  | 8. 43           |
| Б1         | 96         | 23413.5 | 0. 99 | 56972.9 | 35794.6      |        | 1.59  | 2.38          | 1.50   | 3.79            |
| 62         | 91         | 2035.6  | Ø. 99 | 1859.2  | 1537.3       | 343. 1 | 1.21  | 5. 42         | 4. 48  | 6. 55           |
| 63         | <b>£</b> 1 | 782.2   | Ø. 99 | 417.2   | 376.3        | 44.6   | 1.10  | 9. 36         | 8.48   | 10.32           |
| 64         | 84         | 866.3   | 1.00  | 708.2   | 651.6        | 60.3   |       | 11.74         | 10.80  | 12.76           |
| 65         | 93         | 3148.0  | 1.01  | 5000.1  | 4427.6       | 608.0  | 1.13  | 8. 22         | 7. 28  | 9. 29           |
| 66         | 94         | 3278. 2 | 1.02  | 2832.9  | 2343.4       | 581.4  | 1.21  | 4.87          | 4.03   | 5. 89           |
| 67         | 23         | 213.8   | 1.02  | 28.0    | 22. 1        | 6.9    | 1.27  | 4. 04         | 3.19   | 5. 12           |
| 68         | 59         | 483. 2  | 1.03  | 143.3   | 104.0        | 41.2   | 1.38  | 3.48          | 2.53   | 4.80            |
| 69         | 56         | 455. 9  | 1.03  | 251.1   | 238.4        | 14.6   | 1.05  | 17.14         | 16.27  | 18.26           |
| 70         | 48         | 360.2   | 1.04  | 67.5    | 44.1         | 25. 2  | 1.53  | 2.68          | 1.75   |                 |
| 71         | 51         | 390.2   | 1.05  | 141.8   | 131.0        | 12.6   | 1.08  | 11,21         | 10.36  | 4. 11<br>12. 13 |
| 72         | 7          | 115.2   | 1.05  | 12.0    | 9. 7         | 2.5    | 1. 23 | 4.73          | 3.84   | 5.83            |
| 73         | Ė          | 113.2   | 1.06  | 11.8    | 9. 6         | 2,5    |       | 4.73          | 3. 84  | 5.83            |
| 74         | 66         | 519.6   | 1.06  | 128.2   | 86.4         | 44.9   |       | 2.86          | 1.93   | 4. 24           |
| 75         | 50         | 381.8   | 1.11  | 66. 2   | 47. 1        | 21.6   | 1.41  | 3. <b>0</b> 6 | 2.18   | 4.30            |
| 76         | 54         | 404. E  | 1.11  | 162.2   | 135.3        | 27. 7  | 1.20  | 5.85          | 4. 38  | 7.01            |
| 77         | 58         | 464.8   | 1.12  | 189.8   | 171.8        | 20.0   | 1.10  | 9. 50         | 8.60   | 10.50           |
| 76         | 49         | 370.3   | 1.14  | 71.9    | 53.2         | 20.7   | 1.35  | 3. 47         | 2.56   | 4. 69           |
| 79         | 36         | 304.8   | 1.15  | 69. 6   | 57. 7        | 13.0   | 1.21  | 5. 35         | 4. 43  | <b>5.</b> 45    |
| 80         | 52         | 393. 3  | 1.16  | 104.9   | 84.7         | 21,8   |       | 4.81          | 3.88   | 5. 95           |
| 81         | 22         | 203.7   | 1.18  | 44.3    | 38.4         | 6. 4   | 1. 15 | 6. 97         | 6.05   | 6. Ø4           |
| 82         | 5          | 112.3   | 1.19  | 25. 5   | 24.0         | 1.6    | 1.06  | 16.18         | 15. 28 | 17.14           |
| 83         | 26         | 239. 4  | 1.19  | 52. 1   | 45. 3        | 7, 6   |       | 6.88          | 5. 98  | 7. 91           |
| 84         | 19         | 161.1   | 1.21  | 18.3    | 13.7         | 5. 1   | 1.33  | 3.58          | 2.69   | 4.78            |
| 85         | <b>86</b>  | 1650.8  | 1.24  | 1696. 2 | 1504. 2      | 204. 2 | 1.13  | 8.31          | 7.37   | 9. 37           |
| SE         | 30         | 255. 1  | 1.24  | 66. 8   | 61.9         | 5, 8   | 1.08  | 11.52         | 10.69  | 12.42           |
| <b>27</b>  | 77         | 719. 1  | 1.29  | 443.4   | 407.0        | 40. 3  | 1.09  | 11.01         | 10.10  | 11.99           |
| 88         | 34         | 291.1   | 1.29  | 59.4    | 48. 1        | 12.4   |       | 4. 78         | 3.87   | 5. 91           |
| 29         | 20         | 178. 2  | 1.29  | 30.4    | 25. 3        | 5.6    | 1.20  | 5. 48         | 4.55   | 6. 59           |
| 90         | 25         | 236. 4  | 1.30  | 51.4    | 44.7         | 7.4    | 1.15  | 6. 92         | 6. 01  | 7. 97           |
| ۲,_        | 79         | 776. 7  | 1.31  | 407.1   | 344.3        | 66.6   | 1.18  | 6. 11         | 5. 17  | 7. 23           |
| 92         | 28         | 244.8   | 1.33  | 41.8    | 35.0         | 7. 9   | 1.19  | 5.32          | 4. 45  | 6.35            |
| 93         | 8          | 119.7   | 1.34  | 18.0    | 14.4         | 3.7    | 1.24  | 4. 91         | 3.95   | 6. 11           |
| 94         | 21         | 189. 5  | 1.38  | 41.0    | 35. <b>5</b> | 5.8    | 1.15  | 7. 01         | 6.08   | 8. 29           |
| 95         | 92         | 2763.3  | 1.42  |         | 4268. 9      | 529, 3 | 1.12  | 9.02          | 8.07   | 10.10           |
| 96         | 24         | 214.6   | 1.48  | 29. 3   | 18.2         | 11.8   | 1.61  | 2.49          | 1.55   | 4.00            |
|            |            | _       |       | • =     |              |        |       |               |        |                 |

#### HEADINGS

IT - MOMENT OF INERTIA ABOUT THE T AXIS IW - MOMENT OF INERTIA ABOUT THE W AXIS

IL - MOMENT OF INERTIA ABOUT THE L AXIS

IT/IW - RATIO OF IT TO IW
IT/IL - RATIO OF IT TO IL

IW/IL - RATIO OF IW TO IL.
IT+2/(IL+IW) - RATIO OF IT+2 TO IL+IW

# APPENDIX B FRAGMENT PHOTOGRAPHS

Photographs of fragments 1 through 96 are contained in this Appendix. The photographs show the shapes and sizes of the fragments. Comparison with Appendixes C and D present a good description of the overall fragment shapes and sizes.



FRAGMENTS 1 THROUGH 4



FRAGMENTS 5 THROUGH 8



FRAGMENTS 9 THROUGH 12



FRAGMENTS 13 THROUGH 16



FRAGMENTS 17 THROUGH 20



FRAGMENTS 21 THROUGH 24



FRAGMENTS 25 THROUGH 28



FRAGMENTS 29 THROUGH 32



FRAGMENTS 33 THROUGH 36



FRAGMENTS 37 THROUGH 40



FRAGMENTS 41 THROUGH 44



FRAGMENTS 45 THROUGH 48



FRAGMENTS 49 THROUGH 52



FRAGMENTS 53 THROUGH 56



FRAGMENTS 65 THROUGH 68



FRAGMENTS 69 THROUGH 72



FRAGMENTS 57 THROUGH 60



FRAGMENTS 61 THROUGH 64



FRAGMENTS 73 THROUGH 76



FRAGMENTS 77 THROUGH 80



FRAGMENTS 81 THROUGH 84



FRAGMENTS 85 THROUGH 88



FRAGMENTS 89 THROUGH 92



FRAGMENTS 93 THROUGH 94



FRAGMENTS 95 THROUGH 96

# APPENDIX C VERTICAL WIND TUNNEL TEST RECORDS

This appendix contains the individual test records for the 96 fragments tested in the vertical wind tunnel. Each record contains three diagrams (views) of the fragment which are faithful representations of the fragment shape but not to scale. The dimensions of the three views can be inferred by reference to Table A-2 of Appendix A and the plan views in Appendix D.

Each record shows the axes about which fragment motion in the wind tunnel is referenced in the comments at the bottom of the test record. The calculated  $C_{\rm D}$  and the values of variables necessary to calculate it are also given. In all cases the area refers to the average presented area of the fragment.



COMMENTS: PARALLELEPIPED HAS REPLACED THE 1.626 SPHERE AS FRAGMENT # 1
ROTATES AROUND L AXIS AND IF DISTURBED WILL START TO CONE
AROUND THE SAME AXIS

FIGURE C-1. TEST RECORD FOR FRAGMENT NO. 1



COMMENTS: SPHERE

FIGURE C-2. TEST RECORD FOR FRAGMENT NO. 2



COMMENTS: CUBE (%) WILL ROTATE AROUND ANY AXIS

FIGURE C-3. TEST RECORD FOR FRAGMENT NO. 3



COMMENTS: TUMBLES IN ALL DIRECTIONS

FIGURE C-4. TEST RECORD FOR FRAGMENT NO. 4



FRAGMENT NUMBER VELOCITY (ft/s) WEIGHT DENSITY (SLUG/112) TEMP AREA (ft²) PRESS (Ib) (Hg-mm) (deg f) .01604 .00258 754.8 .002261 68.1 1.18582

COMMENTS: ROTATES ALONG THE LONGITUDINAL AXIS AND WILL CONE ABOUT THE

FIGURE C-5. TEST RECORD FOR FRAGMENT NO. 5



COMMENTS: ROTATES AROUND BOTH T AND L AXIS - WHEN DISTURBED, IT TUMBLES

FIGURE C-6. TEST RECORD FOR FRAGMENT NO. 6



| FRAGMENT | WEIGHT | AREA    | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|---------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (lb)   | (n²)    | (Hg·mm) | (deg F) | (SLUG/11 <sup>2</sup> ) | (ft/s)   |         |
| 7        | .01646 | .002106 | 784.8   | 82      | .002261                 | 81       | 1.06374 |

COMMENTS: WILL ROTATE ABOUT THE LAND WAXIS

DATE

TEST NO. 210 RUN NO. 7

FIGURE C-7. TEST RECORD FOR FRAGMENT NO. 7



COMMENTS: ROTATES AROUND THE L AXIS

FIGURE C-8. TEST RECORD FOR FRAGMENT NO. 8



AREA (ft²) FRAGMENT WEIGHT PRESS TEMP DENSITY VELOCITY CD NUMBER (lb) (Hg-mm) (SLUG/ft3) (ft/s) (deg F) .92624 .01736 .002451 755.3 .002331

COMMENTS: ROTATES AROUND LAND T AND ALSO CONING AROUND THE LAXIS

FIGURE C-9. TEST RECORD FOR FRAGMENT NO. 9



COMMENTS: ROTATES AROUND LAND W

DATE

TEST NO. 210 RUN NO. 9

3/29/85

FIGURE C-10. TEST RECORD FOR FRAGMENT NO. 10



COMMENTS: AT LIFT OFF IT WAS SPINNING FLAT AROUND T — THEN WOULD ROTATE AROUND ALL 3 AXES

FIGURE C-11. TEST RECORD FOR FRAGMENT NO. 11



COMMENTS: LIFT'S OFF FLOATING FLAT, THEN ROTATES AROUND ALL 3 AXES

FIGURE C-12. TEST RECORD FOR FRAGMENT NO. 12



COMMENTS: ROTATES AROUND L AND W - GOES FLAT AND THEN TUMBLES

FIGURE C-13. TEST RECORD FOR FRAGMENT NO. 13



COMMENTS: ROTATES AROUND L TO START AND THEN TUMBLES

FIGURE C-14. TEST RECORD FOR FRAGMENT NO. 14



| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft <sup>2</sup> ) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|--------------------|----------------|----------------------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 15                 | .01936         | .002373                    | 755.4            | 61              | .002354                            | 84.2               | .97770 |

COMMENTS: ROTATES IN LAXIS THEN W

DATE

TEST NO. 210 RUN NO. 15

FIGURE C-15. TEST RECORD FOR FRAGMENT NO. 15



|   | FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft.'s) | CD     |
|---|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|---------------------|--------|
| l | 16                 | .02144         | .002918       | 755.4            | 61              | .002354                            | 81                  | .95146 |

COMMENTS: ROTATES AROUND L AND T

FIGURE C-16. TEST RECORD FOR FRAGMENT NO. 16



| FRAGMENT | WEIGHT | AREA    | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|---------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)   | (ft²)   | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 17       | .02221 | .002649 | 755.4   | 64      | .002340                 | 87.4     | .93812 |

COMMENTS: STARTS OFF AROUND THE LAXIS THEN TUMBLES

DATE

TEST NO. 210 RUN NO. 17

3/29/85

FIGURE C-17. TEST RECORD FOR FRAGMENT NO. 17



| FRAGMENT | WEIGHT | AREA    | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|---------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)   | (ft²)   | (Hg·mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 18       | .02266 | .002638 | 755.4   | 64      | .002340                 | 93.8     | .83444 |

COMMENTS: STARTS OF ROTATING AROUND W AND THEN TUMBLES

FIGURE C-18. TEST RECORD FOR FRAGMENT NO. 18



DATE 3/29/8

TEST NO. 210

**RUN NO. 19** 

| FRAGMENT | WEIGHT | AREA               | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|--------------------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (lb)   | (ft <sup>2</sup> ) | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |         |
| 19       | .02301 | .00248             | 765     | 66      | .002330                 | 81       | 1.21386 |

COMMENTS: FLAT SPIN AROUND T

FIGURE C-19. TEST RECORD FOR FRAGMENT NO. 19



| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg·mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD      |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|---------|
| 20                 | .02546         | .003043       | 755              | 67              | .002325                            | 74.6               | 1.29326 |

COMMENTS: FLAT ROTATION

FIGURE C-20. TEST RECORD FOR FRAGMENT NO. 20



DATE 3/29/85

**TEST NO. 210** 

RUN NO. 21

| FRAGMENT | WEIGHT | AREA               | PRESS   | TEMP    | DENSITY                 | YELOCITY | CD      |
|----------|--------|--------------------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (lb)   | (ft <sup>2</sup> ) | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (f://3)  |         |
| 21       | .02693 | .00331             | 755     | 67      | .002325                 | 71.3     | 1.37669 |

COMMENTS: FLAT SPIN AND TUMBLE

FIGURE C-21. TEST RECORD FOR FRAGMENT NO. 21



| 22       | .0291  | .00380             | 755     | 67      | .002325                 | 74.6     | 1.18369 |
|----------|--------|--------------------|---------|---------|-------------------------|----------|---------|
| FRAGMENT | WEIGHT | AREA               | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
| NUMBER   | (lb)   | (ft <sup>2</sup> ) | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |         |

COMMENTS: STARTS ROTATING AROUND LITHEN T AND W

FIGURE C-22. TEST RECORD FOR FRAGMENT NO. 22



DATE 3/29/85

TEST NO. 210

**RUN NO. 23** 

| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY    | VELOCITY | CD      |
|----------|--------|--------|---------|---------|------------|----------|---------|
| NUMBER   | (Ib)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft³) | (ft/s)   |         |
| 23       | .03054 | .00315 | 755     | 67      | .002325    | 90.6     | 1.01604 |

COMMENTS: ROTATES AROUND T THEN L

FIGURE C-23. TEST RECORD FOR FRAGMENT NO. 23



| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|--------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (Ib)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |         |
| 24       | .03066 | .00320 | 755     | 68      | .002321                 | 74.6     | 1.48354 |

COMMENTS: ROTATES AROUND T TO START IN A FLAT SPIN

FIGURE C-24. TEST RECORD FOR FRAGMENT NO. 24



DATE 3/29/85

TEST NO. 210

RUN NO. 25

| 26                 | .03377 | .0036779      | (Hg-mm)<br>755,2 | (deg F) | .002331                | 77.8     | 1.30155 |
|--------------------|--------|---------------|------------------|---------|------------------------|----------|---------|
| FRAGMENT<br>NUMBER | WEIGHT | AREA<br>(ft²) | PRE88            | TEMP    | DENSITY<br>(SLUG/1123) | VELOCITY | CD      |

COMMENTS: FLAT ROTATION AROUND T

FIGURE C-25. TEST RECORD FOR FRAGMENT NO. 25



| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|--------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (ib)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |         |
| 26       | .0342  | .00376 | 755.1   | 66      | .002330                 | 81       | 1.18999 |

COMMENTS: FLAT SPIN AROUND T AND ALSO ROTATES AROUND THE LAXIS

FIGURE C-26. TEST RECORD FOR FRAGMENT NO. 26



TEST NO. 210

DATE

**RUN NO. 27** 

| FRAGMENT NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/11 <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|-----------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 27              | .03451         | .00377        | 755.1            | 66              | .002330                            | 93.8               | .89304 |

COMMENTS: ROTATES AROUND ALL 3 AXES

FIGURE C-27. TEST RECORD FOR FRAGMENT NO. 27



| FRAGMENT | WEIGHT | AREA               | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|--------------------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (Ib)   | (ft <sup>2</sup> ) | (Hg·mm) | (deg F) | (SLUG/11 <sup>3</sup> ) | (ft/s)   |         |
| 28       | .03497 | .0037161           | 755.1   | 66      | .002330                 | 77.8     | 1.33452 |

COMMENTS: FLAT SPINNING AROUND T

FIGURE C-28. TEST RECORD FOR FRAGMENT NO. 28



DATE 3/29/85

TEST NO. 210

**RUN NO. 29** 

| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)   | (n²)   | (Hg-mm) | (deg F) | (SLUG/11 <sup>3</sup> ) | (ft/s)   |        |
| 29       | .03553 | .00362 | 755.5   | 67      | .002327                 | 93.8     | .95877 |

COMMENTS: ROTATES AROUND T AND L

FIGURE C-29. TEST RECORD FOR FRAGMENT NO. 29



TEST NO. 210

RUN NO. 30

DATE

| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD      |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|---------|
| 30                 | .03644         | .00357        | 755.5            | 67              | .002327                            | 84.2               | 1.23743 |

COMMENTS: ROTATES AROUND T AND L

FIGURE C-30. TEST RECORD FOR FRAGMENT NO. 30



| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/11/2) | VELOCITY<br>(ft/s) | CD     |
|--------------------|----------------|---------------|------------------|-----------------|------------------------|--------------------|--------|
| 31                 | .03841         | .00322        | 786              | 68              | .002324                | 103.5              | .98830 |

COMMENTS: ROTATES AROUND T AND L

DATE

RUN NO. 31

FIGURE C-31. TEST RECORD FOR FRAGMENT NO. 31



| FRAGMENT | WEIGHT | AREA               | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------------------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)   | (ft <sup>2</sup> ) | (Hg·mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 32       | .03963 | .00432             | 756     | 68      | .002324                 | 93.8     | .89728 |

COMMENTS: ROTATES AROUND T AND L

FIGURE C-32. TEST RECORD FOR FRAGMENT NO. 32



69

.002318

109.9

.86874

| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/11-2) | VELOCITY<br>(ft/s) | CD |
|--------------------|----------------|---------------|------------------|-----------------|------------------------|--------------------|----|

785.5

.04003 COMMENTS: ROTATES AROUND T AND L

.00333

DATE

**TEST NO. 210** RUN NO. 33

33

FIGURE C-33. TEST RECORD FOR FRAGMENT NO. 33



| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|--------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (lb)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/11 <sup>3</sup> ) | (ft/s)   |         |
| 34       | .04159 | .00423 | 755.5   | 69      | .002318                 | 81       | 1.29299 |

COMMENTS: ROTATES AROUND ALL 3 AXES

FIGURE C-34. TEST RECORD FOR FRAGMENT NO. 34



FRAGMENT NUMBER AREA (ft²) DENSITY WEIGHT PRESS TEMP VELOCITY CD (Ib) (Hg-mm) (deg F) (SLUG/ft3) (ft/s) .04326 100.3 .78774 .00471 755.5 .002318 38 69

COMMENTS: STARTED OFF ROTATING AROUND LAND THEN WENT INTO ALL 3

FIGURE C-35. TEST RECORD FOR FRAGMENT NO. 35



FRAGMENT NUMBER AREA (ft²) WEIGHT PRESS TEMP DENSITY VELOCITY CD (lb) (Hg-mm) (deg F) (SLUG/1t2) (ft/s) .04354 .00427 755.5 71 .002309 87.4 1.15517

COMMENTS: ROTATES AROUND T AND L

FIGURE C-36. TEST RECORD FOR FRAGMENT NO. 36



TEST NO. 210

3/29/85

RUN NO. 37

DATE

| 1 | RAGMENT<br>NUMBER | WEIGHT<br>/Ib) | AREA<br>(ft <sup>2</sup> ) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|---|-------------------|----------------|----------------------------|------------------|-----------------|------------------------------------|--------------------|--------|
|   | 37                | .0442          | .00422                     | 755.5            | 71              | .002309                            | 97.1               | .96223 |

COMMENTS: FLAT SPIN AND AROUND L

FIGURE C-37. TEST RECORD FOR FRAGMENT NO. 37



| FRAGMENT | WEIGHT | AREA               | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------------------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (Ib)   | (ft <sup>2</sup> ) | (Hg·mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 38       | .04473 | .00381             | 755.5   | 71      | .002309                 | 101.9    | .97934 |

COMMENTS: FLAT SPIN AND ROTATES AROUND L

FIGURE C-38. TEST RECORD FOR FRAGMENT NO. 38



TEST NO. 210 RUN NO. 39

3/29/85

DATE

| FRAGMENT<br>NUMBER | WEIGHT<br>(Ib) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 39                 | .04627         | .00495        | 755              | 72              | .002304                            | 97.1               | .86060 |

COMMENTS: ROTATES AROUND ALL AXES

FIGURE C-39. TEST RECORD FOR FRAGMENT NO. 39



| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft <sup>2</sup> ) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|--------------------|----------------|----------------------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 40                 | .04653         | .00434                     | 755              | 72              | .002304                            | 106.7              | .81745 |

COMMENTS: ROTATES AROUND T AND L AND THEN CONING

FIGURE C-40. TEST RECORD FOR FRAGMENT NO. 40



DENSITY (SLUG/ft<sup>3</sup>) AREA (ft²) FRAGMENT WEIGHT PRESS TEMP VELOCITY CD NUMBER (Ib) (Hg-mm) (deg F) (ft/s) .0476 .76050 .00401 755 72 .002304 116.4

COMMENTS: ROTATES AROUND T, SPINS LIKE A TOP EITHER AS SHOWN OR INVERTED

FIGURE C-41. TEST RECORD FOR FRAGMENT NO. 41



| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 42       | .04797 | .00449 | 755     | 72.5    | .002301                 | 97.1     | .96481 |

COMMENTS: ROTATES AROUND T AND L AND CONING

FIGURE C-42. TEST RECORD FOR FRAGMENT NO. 42



FRAGMENT NUMBER WEIGHT AREA (ft²) PRESS TEMP DENSITY VELOCITY CD (lb) (Hg-mm) (deg F) (SLUG/ft3)  $\{ft/s\}$ 43 .0604 .00705 755 .002295 .94985

DATE

COMMENTS: ROTATES AROUND ALL 3 AXES - CHANGES FROM ONE TO ANOTHER WHEN IT CONTACTS THE

FIGURE C-43. TEST RECORD FOR FRAGMENT NO. 43



| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)   | (ft²)  | (Hg·mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 44       | .05057 | .00383 | 755     | 74      | .002295                 | 126      | .72477 |

COMMENTS: ACTS LIKE FRAGMENT NO. 3 (CUBE) ROTATES AROUND ALL 3

FIGURE C-44. TEST RECORD FOR FRAGMENT NO. 44



DATE 3/29/8

TEST NO. 210

**RUN NO. 45** 

| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (Ib)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 45       | .0507  | .00409 | 755     | 74      | .002295                 | 116.4    | .79731 |

COMMENTS: ROTATES AROUND T AND L

FIGURE C-45. TEST RECORD FOR FRAGMENT NO. 45



| FRAGMENT<br>NUMBER | WEIGHT<br>(Ib) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 46                 | .05113         | .00443        | 755              | 74              | .002295                            | 109.9              | .83277 |

COMMENTS: ROTATES AROUND L

FIGURE C-46. TEST RECORD FOR FRAGMENT NO. 46



AREA (ft<sup>2</sup>) FRAGMENT WEIGHT **PRESS** TEMP DENSITY VELOCITY CD NUMBER (lb) (Hg-mm) (deg F) (SLUG/ft<sup>3</sup>) (ft/s) .00439 755 .86842 47 .05131 74 .002295 108.3

COMMENTS: FLAT SPIN AROUND T, THEN TUMBLES

DATE

TEST NO. 210 RUN NO. 47

FIGURE C-47. TEST RECORD FOR FRAGMENT NO. 47



FRAGMENT WEIGHT VELOCITY AREA PRESS TEMP DENSITY CD NUMBER  $(ft^2)$ (SLUG/ft3) (IP) (Hg-mm) (deg F) (ft/s) .05146 .00471 755.2 .002296 95.5 1.04352 48

COMMENTS: ROTATES AROUND T

FIGURE C-48. TEST RECORD FOR FRAGMENT NO. 48



| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|--------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (lb)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |         |
| 49       | .0829  | .00442 | 755.2   | 74      | .002296                 | 95.5     | 1.14310 |

COMMENTS: ROLLS, TUMBLES - ALL AXES

#### FIGURE C-49. TEST RECORD FOR FRAGMENT NO. 49



| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|--------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (lb)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |         |
| 50       | .05454 | .00442 | 765.2   | 75      | .002291                 | 98.7     | 1.10877 |

COMMENTS: ROTATES AROUND T - FLAT SPIN

FIGURE C-50. TEST RECORD FOR FRAGMENT NO. 50



FRAGMENT WEIGHT VELOCITY PRESS TEMP DENSITY CD NUMBER (12)(lb) (Hg-mm) (deg F) (SLUG/ft<sup>3</sup>) (ft/s) 1.05268 51 .05574 .00543 752.5 54 .002376 90.6

COMMENTS: ROTATES AROUND LAND WAND CONING

DATE

TEST NO. 210 RUN NO. 51

FIGURE C-51. TEST RECORD FOR FRAGMENT NO. 51



COMMENTS: FLAT SPIN

52

.05619

.00532

FIGURE C-52. TEST RECORD FOR FRAGMENT NO. 52

54

752.5

.002376

87.4

1.16388



TEST NO. 210

RUN NO. 53

DATE

| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (Ib)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 53       | .05644 | .00520 | 752.5   | 54      | .002376                 | 109.9    | .75644 |

COMMENTS: ROTATES AROUND ALL AXES AND TUMBLES

#### FIGURE C-53. TEST RECORD FOR FRAGMENT NO. 53



| FRAGMENT | WEIGHT | AREA               | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|--------------------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (lb)   | (ft <sup>2</sup> ) | (Hg·mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |         |
| 54       | .0578  | .00667             | 752.5   | 54      | .002376                 | 81       | 1,11177 |

COMMENTS: FLUTTERS LIKE A FALLING LEAF

FIGURE C-54. TEST RECORD FOR FRAGMENT NO. 54



| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg·mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 55                 | .06181         | .00588        | 752.5            | 54              | .002376                            | 100.3              | .87956 |

COMMENTS: ALL AXES - TUMBLES

FIGURE C-55. TEST RECORD FOR FRAGMENT NO. 55



| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|--------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (lb)   | (ft²)  | (Hg·mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |         |
| 56       | .06513 | .00649 | 752.5   | 54      | .002376                 | 90.6     | 1.02911 |

COMMENTS: ROTATES AROUND L AND FLOATS MOTIONLESS

FIGURE C-56. TEST RECORD FOR FRAGMENT NO. 56



DATE 4/1/8
TEST NO. 210

RUN NO. 87

| FRAGMEN<br>NUMBER | T WEIGHT | AREA<br>(ft <sup>2</sup> ) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|-------------------|----------|----------------------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 57                | .06596   | .00510                     | 752.5            | 54              | .002376                            | 118.0              | .78186 |

COMMENTS: ROTATES AROUND L AND W AND TUMBLES

#### FIGURE C-57. TEST RECORD FOR FRAGMENT NO. 57



| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|--------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (lb)   | (tt²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |         |
| 58       | .0664  | .00607 | 752.5   | 54      | .002376                 | 90.6     | 1.12178 |

COMMENTS: WITH THE FLAT SIDE DOWN AS SHOWN IN A.A. THE FRAG FLOATS; WITH THE FLAT SIDE UP (OR ON TOP) THE FRAG DOES A FLAT SPIN

FIGURE C-58. TEST RECORD FOR FRAGMENT NO. 58



DATE 4/1/85 TEST NO. 210

RUN NO. 59

| RAGMENT<br>NUMBER | WEIGHT<br>(Ib) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD      |
|-------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|---------|
| 59                | .06903         | .00642        | 782.5            | 54              | .002376                            | 93.8               | 1.02868 |

COMMENTS: ROTATES AROUND T AND L AND FLAT SPIN

#### FIGURE C-59. TEST RECORD FOR FRAGMENT NO. 59



| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | ÇD    |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|-------|
| 60                 | .06916         | .00507        | 752.5            | 54              | .002376                            | 113.1              | .8976 |

COMMENTS: ROTATES AROUND T - FLAT SPIN

FIGURE C-60. TEST RECORD FOR FRAGMENT NO. 60



FRAGMENT NUMBER AREA (ft²) WEIGHT PRESS TEMP DENSITY VELOCITY CD (SLUG/ft<sup>3</sup>) (IP) (Hg-mm) (deg F) (ft/s) 61 .06953 .00716 752.5 55 .002372 92.2 .96319

COMMENTS: ROTATES AROUND ALL 3 AXES AND FLAT

DATE

TEST NO. 210 RUN NO. 61

FIGURE C-61. TEST RECORD FOR FRAGMENT NO. 61



| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (Ib)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 62       | .0699  | .00597 | 752.5   | 55      | .002372                 | 116.4    | .72864 |

COMMENTS: ROTATES AROUND L AND GOOD TUMBLE

FIGURE C-62. TEST RECORD FOR FRAGMENT NO. 62



FRAGMENT NUMBER WEIGHT PRESS TEMP DENSITY VELOCITY ÇD (lb)  $(tt^2)$ (SLUG/ft3) (Hg-mm) (deg F) (ft/s) 63 .07013 .00643 752.5 55 .002372 103.5 .85847

COMMENTS: FLAT SPIN OR TUMBLE

DATE

TEST NO. 210 RUN NO. 63

#### FIGURE C-63. TEST RECORD FOR FRAGMENT NO. 63



| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (Ib)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/1t <sup>3</sup> ) | (ft/s)   |        |
| 64       | .07073 | .00797 | 752.5   | 55      | .002372                 | 92.2     | .88024 |

COMMENTS: WILL FLOAT OR TUMBLE

FIGURE C-64. TEST RECORD FOR FRAGMENT NO. 64



DATE 4/1/85

**TEST NO. 210** 

RUN NO. 65

| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------|---------|---------|-------------------------|----------|--------|
| NJMBER   | (lb)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (fi/s)   |        |
| 65       | .07214 | .00552 | 752.5   | 55      | .002372                 | 113      | .86144 |

COMMENTS: WILL FLOAT MOTIONLESS OR TUMBLE

FIGURE C-65. TEST RECORD FOR FRAGMENT NO. 65



| FRAGMENT<br>NUMBER | WEIGHT<br>('b) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD      |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|---------|
| 66                 | .07423         | .00588        | 752.5            | 58              | .002367                            | 100.3              | 1.06031 |

COMMENTS: FLOAT - SLOW OR NO ROTATION AROUND THE T AXIS

FIGURE C-66. TEST RECORD FOR FRAGMENT NO. 66



DATE 4/1/85

TEST NO. 210

**RUN NO. 67** 

| FRAGMENT | WEIGHT | AREA     | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|----------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)   | (ft²)    | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 67       | .07599 | .0067382 | 752.5   | 56      | .002367                 | 101.9    | .91769 |

COMMENTS: FLAT SPIN OR WILL FLOAT

FIGURE C-67. TEST RECORD FOR FRAGMENT NO. 67



| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 68                 | .07827         | .00595        | 752.3            | 58              | .002357                            | 109.9              | .92417 |

COMMENTS: WILL FLOAT MOTIONLESS OR GO INTO A FLAT SPIN

FIGURE C-68. TEST RECORD FOR FRAGMENT NO. 68



TEST NO. 210

1631 NO. 210

DATE

**RUN NO. 69** 

| FRAGMENT<br>NUMBER | WEIGHT<br>(Ib) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 69                 | .07946         | .00639        | 752.3            | 58              | .002357                            | 109.9              | .87362 |

COMMENTS: WILL TUMBLE AND CONING AROUND LAXIS

FIGURE C-69. TEST RECORD FOR FRAGMENT NO. 69



TEST NO. 210

RUN NO. 70

DATE

| FRAGMENT | WEIGHT | AREA               | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------------------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)   | (ft <sup>2</sup> ) | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 70       | .08017 | .00521             | 752.3   | 58      | .002357                 | 135.6    | .71011 |

COMMENTS: ROTATES AROUND LAXIS AND TUMBLES

FIGURE C-70. TEST RECORD FOR FRAGMENT NO. 70



DATE 4/1/88

TEST NO. 210

RUN NO. 71

| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 71       | .08691 | .00800 | 752.3   | 58      | .002357                 | 97.1     | .97771 |

COMMENTS: ROTATES AROUND LAXIS AND CONING

FIGURE C-71. TEST RECORD FOR FRAGMENT NO. 71



| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 72                 | .0931          | .00876        | 752.3            | 58              | .002357                            | 98.7               | .92572 |

COMMENTS: FLOATS MOTIONLESS, ROTATES AROUND L AXIS AND TUMBLES

FIGURE C-72. TEST RECORD FOR FRAGMENT NO. 72



AREA (ft²) FRAGMENT WEIGHT PRESS TEMP DENSITY VELOCITY CD NUMBER (lb) (Hg-mm) (deg F) (SLUG/ft3) (ft/s).83981 .09363 .00738 762.2 57 .002362 113.1 73

COMMENTS: FLAT SPIN AND FLOATS MOTIONLESS

FIGURE C-73. TEST RECORD FOR FRAGMENT NO. 73



COMMENTS: ROTATES AROUND L AND WILL TUMBLE

FIGURE C-74. TEST RECORD FOR FRAGMENT NO. 74



FRAGMENT NUMBER AREA (ft²) VELOCITY WEIGHT PRESS TEMP DENSITY CD (SLUG/ft3) (ft/s) (lb) (Hg·mm) (deg F) .0955 57 .98805 .00764 752.2 .002362 103.5

COMMENTS: LITTLE BIT OF EVERYTHING - ROLL, TUMBLE, CONE

DATE

TEST NO. 210 RUN NO. 75

4/1/85

FIGURE C-75. TEST RECORD FOR FRAGMENT NO. 75



FRAGMENT NUMBER DENSITY (SLUG/ft<sup>3</sup>) VELOCITY WEIGHT AREA (ft²) PRESS TEMP CD (Ib) (Hg-mm) (ft/s) (deg F) 76 .10198 .00792 751.4 50 .84165 .002392 113.1

COMMENTS: ROTATES AND TUMBLES IN ALL DIRECTIONS

FIGURE C-76. TEST RECORD FOR FRAGMENT NO. 76



DATE 4/1/86

TEST NO. 210

**RUN NO. 77** 

| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|--------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (Ib)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |         |
| 77       | .10273 | .00810 | 751.4   | 50      | .002392                 | 90.6     | 1.29151 |

COMMENTS: FLAT SPIN (LIKE A PROPELLER) WILL ROTATE AROUND THE L AXIS ALSO

FIGURE C-77. TEST RECORD FOR FRAGMENT NO. 77



FRAGMENT NUMBER AREA (ft²) DENSITY (SLUG/ft<sup>3</sup>) WEIGHT PRESS TEMP VELOCITY CD (Hg-mm) (deg F) (ft/s) (Ib) 78 .10957 .00899 751.4 50 .002392 106.7 .8953

COMMENTS: ROTATES AROUND ALL 3 AXES AND CONING

FIGURE C-78. TEST RECORD FOR FRAGMENT NO. 78



DATE 4/1/85

TEST NO. 210

RUN NO. 79

DATE

TEST NO. 210 RUN NO. 80

| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/a) | CD      |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|---------|
| 79                 | .11096         | .00901        | 751              | 54              | .002372                            | 89                 | 1.31092 |

COMMENTS: FLAT SPIN AROUND T

FIGURE C-79. TEST RECORD FOR FRAGMENT NO. 79



| FRAGMENT NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|-----------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 80              | .111           | .00860        | 751              | 54              | .002372                            | 106.7              | .95590 |

COMMENTS: ROTATES AROUND LAND T

FIGURE C-80. TEST RECORD FOR FRAGMENT NO. 80



DATE 4/1/85

**TEST NO. 210** 

**RUN NO. 81** 

| FRAGMENT | WEIGHT | AREA               | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------------------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (Ib)   | (ft <sup>2</sup> ) | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/a)   |        |
| 81       | .11174 | .00834             | 751     | 54      | .002372                 | 105.7    | .99227 |

COMMENTS: FLAT SPIN AROUND T

FIGURE C-81. TEST RECORD FOR FRAGMENT NO. 81



DATE 4/1/85 TEST NO. 210

RUN NO. 82

| FRAGMENT | WEIGHT | AREA   | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|--------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)   | (ft²)  | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/a)   |        |
| 82       | .11497 | .00753 | 750.6   | 54      | .002370                 | 126.0    | .81158 |

COMMENTS: TUMBLES AROUND ALL AXES

FIGURE C-82. TEST RECORD FOR FRAGMENT NO. 82



DATE 4/1/85

TEST NO. 210

RUN NO. 83

| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | ARÉA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/11 <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 83                 | .1191          | .00879        | 750.6            | 54              | .002370                            | 113.1              | .89388 |

COMMENTS: ROTATES AROUND L AND TUMBLES

#### FIGURE C-83. TEST RECORD FOR FRAGMENT NO. 83



COMMENTS: LOOKED LIKE A FLOATING LEAF TO START AND THEN WENT INTO A FLAT SPIN

FIGURE C-84. TEST RECORD FOR FRAGMENT NO. 84



DATE

TEST NO. 210

RUN NO. 85

DATE

| FRAGMENT | WEIGHT | AREA     | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|----------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)   | (ft²)    | (Hg·mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 85       | .2311  | .0139409 | 750.5   | 53      | .002375                 | 122.8    | .92572 |

COMMENTS: ROTATES AROUND L AND A FLAT SPIN

FIGURE C-85. TEST RECORD FOR FRAGMENT NO. 85



| FRAGMENT | WEIGHT | AREA     | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD      |
|----------|--------|----------|---------|---------|-------------------------|----------|---------|
| NUMBER   | (lb)   | (ft²)    | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |         |
| 86       | .23583 | .0170312 | 750.5   | 53      | .002375                 | 97.1     | 1.23674 |

COMMENTS: FLAT SPIN AND WOULD ALSO FLOAT MOTIONLESS

FIGURE C-86. TEST RECORD FOR FRAGMENT NO. 86

<sup>\*</sup>FRAGMENT INFORMATION FOR NUMBERS 85 THRU 96 WAS TAKEN FROM TABLE A-2



| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(n²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ħ³) | VELOCITY (R/s) | 8      |
|--------------------|----------------|--------------|------------------|-----------------|----------------------|----------------|--------|
| 87                 | .25706         | .0173281     | 750.5            | 53              | .002376              | 113.1          | .97002 |

COMMENTS: TUMBLES AND FLAT SPIN AROUND T

FIGURE C-87. TEST RECORD FOR FRAGMENT NO. 87



COMMENTS: FLAT SPIN AROUND T

FIGURE C-88. TEST RECORD FOR FRAGMENT NO. 88



| FRAGMENT | WEIGHT | AREA              | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|--------|-------------------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (PH    | (N <sup>2</sup> ) | (Hg-mm) | (deg F) | (SLUG/11 <sup>3</sup> ) | (ft/s)   |        |
| **       | .20063 | .013126           | 750.5   | 54      | .002370                 | 151.7    | .80054 |

COMMENTS ROTATES AROUND T AND L

FIGURE C-89. TEST RECORD FOR FRAGMENT NO. 89



| TEST NO. | 210 |
|----------|-----|
| RUN NO.  | 90  |

DATE

| FRAGMENT<br>NUMBER | WEIGHT<br>(lb) | AREA<br>(ft²) | PRESS<br>(Hg-mm) | TEMP<br>(deg F) | DENSITY<br>(SLUG/ft <sup>3</sup> ) | VELOCITY<br>(ft/s) | CD     |
|--------------------|----------------|---------------|------------------|-----------------|------------------------------------|--------------------|--------|
| 90                 | .2866          | .0133152      | 750.5            | 54              | .002370                            | 151.7              | .78929 |

COMMENTS: SPIN AROUND T AND TUMBLES

FIGURE C-90. TEST RECORD FOR FRAGMENT NO. 90



COMMENTS: FLAT SPIN AND FLOATS MOTIONLESS

.0183263

.2908

91

FIGURE C-91. TEST RECORD FOR FRAGMENT NO. 91

54

.002369

116.4

.98873

750.0



COMMENTS: GOOD FLAT SPIN AROUND T

FIGURE C-92. TEST RECORD FOR FRAGMENT NO. 92



 FRAGMENT NUMBER
 WEIGHT (Ib)
 AREA (ft²)
 PRESS (Hg-mm)
 TEMP (deg F)
 DENSITY (SLUG/ft³)
 VELOCITY (ft/s)
 CD

 93
 .4497
 .0263708
 750
 54
 .002369
 119.6
 1.00647

COMMENTS: ROTATES AROUND T

#### FIGURE C-93. TEST RECORD FOR FRAGMENT NO. 93



FRAGMENT WEIGHT (Ib) AREA (Hg-mm) FRESS TEMP (SLUG/ft3) (H/s) CD (Hg-mm) Geg F) (SLUG/ft3) (H/s) CD (Hg-mm) RESS (Hg-mm) R

COMMENTS: ROTATES ANY DIRECTION AND TUMBLES

FIGURE C-94. TEST RECORD FOR FRAGMENT NO. 94



| FRAGMENT | WEIGHT  | AREA     | PRESS   | TEMP    | DENSITY                 | VELOCITY | CD     |
|----------|---------|----------|---------|---------|-------------------------|----------|--------|
| NUMBER   | (lb)    | (ft²)    | (Hg-mm) | (deg F) | (SLUG/ft <sup>3</sup> ) | (ft/s)   |        |
| 95       | 2.22787 | .0440173 | 750.0   | 54      | .002369                 | 293.2    | .49706 |

COMMENTS: THIS FRAGMENT WOULD FLOAT MOTIONLESS

FIGURE C-95. TEST RECORD FOR FRAGMENT NO. 95



COMMENTS: ROTATES AROUND T AXIS

FIGURE C-96. TEST RECORD FOR FRAGMENT NO. 96

# API ENDIX D CATEGORIES OF FRAGMENT MOTION

The fragment motions in the wind tunnel given in the COMMENTS of test records of Appendix C were divided in eight categories in an attempt at further correlation with the drag coefficients. The eight categories together with their associated fragments are given in Figures D-1 through D-8.

The eight categories are listed as follows:

- 1. Random Tumbling,
- 2. Floats Motionless,
- 3. Flat Rotation.
- 4. Rotates about L & T axes,
- 5. Rotates about L & W axes,
- 6. Rotates around Taxis,
- 7. Rotates around the Laxes,
- 8. Coning

The L, W and T axes are those given in the test records of Appendix C. When two axes are given for the motion, the fragments will rotate about either at different times. The difference between flat rotation and rotates around the T axis is that rotation around the T axis involves much more wobble than flat rotation. Flat rotation is also about the T axis.

Coning can be explained by imagining a thin rod held fixed at its center. One end of the rod is then moved to describe a circle such that the half rod length sweeps out a cone with apex at the fixed center. As a result the other half of the rod also sweeps out a cone with its apex also at the fixed center. Viewed from the side, it would appear to be something like a bow tie.

Below each fragment plan view, there are two numbers. The first is the fragment number given in Appendix C; second, in parenthesis, is the low subsonic drag coefficient obtained from the vertical wind tunnel tests.

This appendix, together with Appendixes A, B and C give a good idea of both the shape and size of the fragments.



FIGURE D-1. RANDOM TUMBLING



FIGURE D-1. RANDOM TUMBLING (Continued)



FIGURE D-2. FLOATS MOTIONLESS



FIGURE D-3. FLAT ROTATION



FIGURE D-4. ROTATES ABOUT THE L AND T AXIS



FIGURE D-5. ROTATES ABOUT THE LAND WAXIS



FIGURE D-6. ROTATES AROUND THE T-AXIS



FIGURE D-6. ROTATES AROUND THE T-AXIS (Continued)



FIGURE D-7. ROTATES AROUND THE L-AXIS



D-8

# **DISTRIBUTION**

|             |                              | Copies |                                            | Copies |
|-------------|------------------------------|--------|--------------------------------------------|--------|
| Chief of N  | aval Research                |        | Commanding Officer                         |        |
| ATTN:       | ONR-410                      | 1      | Naval Research Laboratory                  |        |
|             | ONR-430                      | 1      | ATTN: Technical Information Section        | 1      |
| 800 N. Ot   | incy Street                  | _      | Washington, DC 20375                       |        |
| •           | , VA 22217                   |        |                                            |        |
|             | , ====                       |        | Commander                                  |        |
| Office of i | Vaval Technology             | 1      | David W. Taylor Naval Ship Research        |        |
|             | incy Street                  | -      | and Development Center                     |        |
|             | , VA 22217                   |        | ATTN: Library                              | 1      |
|             | ,                            |        | Code 5221                                  | 1      |
| Chief of N  | aval Operations              |        | Bethesda, MD 20084-5000                    | _      |
| ATTN: 0     |                              | 1      |                                            |        |
|             | ent of the Navy              | •      | Commanding Officer                         |        |
| •           | on, DC 20350                 |        | Naval Weapons Center                       |        |
|             | , 20 2000                    |        | ATTN: Library                              | 1      |
| Comman      | der                          |        | China Lake, CA 93555                       | _      |
|             | r Systems Command            |        |                                            |        |
|             | AIR-350                      | 1      | Commanding Officer                         |        |
| ••••        | AIR-541                      | ī      | Naval Weapons Support Center               | 1      |
|             | AIR-542                      | ī      | Crane, IN 47522                            | _      |
| Naval Air   | r Systems Command Headquar   | ters   |                                            |        |
|             | ton, DC 20361                |        | Commanding Officer                         |        |
|             |                              |        | Naval Explosive Ordnance Disposal Facility |        |
| Comman      | der                          |        | ATTN: Technical Library                    | 1      |
| Naval Se    | a Systems Command            |        | Indian Head, MD 20640                      |        |
| ATTN:       | . •                          | 1      |                                            |        |
|             | SEA-652                      | 5      | Commanding Officer                         |        |
|             | SEA-662                      | i      | Naval Ordnance Station                     |        |
|             | SEA-99612                    | 2      | ATTN: Technical Library                    | 1      |
| Washing     | ton, DC 20362                | _      | Indian Head, MD 20640                      |        |
| Comman      | ding Officer                 |        | Commander                                  |        |
| Naval Fa    | cilities Engineering Command |        | Naval Safety Center                        |        |
| ATTN:       | Code 032E                    | 1      | Naval Air Station                          | 1      |
|             | Code 04T5                    | 1      | Norfolk, VA 23511                          |        |
| 200 Stove   | ill Street                   |        |                                            |        |
| Alexandr    | ia, VA 22332                 |        | Chief of Research, Development, and        |        |
|             |                              |        | Acquisition                                |        |
| Office in   | Charg <del>e</del>           |        | ATTN: DAMA-CSM-CA (Lippi)                  | 1      |
| Civil Eng   | ineering Laboratory          |        | Department of the Army                     |        |
| Naval Co    | nstruction Battalion Center  |        | Washington, DC 20310                       |        |
| ATTN: C     | ode L61                      | 1      | •                                          |        |
| Port Hue    | neme, CA 93043               |        |                                            |        |

| Copies                                  |         |                                                  | Copies |
|-----------------------------------------|---------|--------------------------------------------------|--------|
| Commander US Army Armament Research and |         | Commander<br>US Army Toxic & Hazardous Materials |        |
| Development Center                      |         | Agency                                           | •      |
| ATTN: SMCAR-LCM-SP(D)                   | 1       | ATTN: DRXTH-TE                                   | 1      |
| Dover, NJ 07801                         |         | Aberdeen Proving Ground, MD 21010,               |        |
| Commanding General                      |         | Commanding General                               |        |
| US Army Armament Command                |         | US Army Natick Research and                      |        |
| ATTN: AMSAR-SA                          | 1       | Development Command                              |        |
| Rock Island Arsenal                     |         | ATTN: Library                                    | 1      |
| Rock Island, IL 61201                   |         | Natick, MA 01782                                 |        |
| Commander                               |         | AFISC/SEV                                        | 5      |
| US Army Material Development and        |         | Norton AFB, CA 92049                             |        |
| Readiness Command                       |         | ·                                                |        |
| ATTN: AMCSF                             | 1       | AFSG/IGFC                                        | 1      |
| 5001 Eisenhower Avenue                  |         | Andrews AFB                                      |        |
| Alexandria, VA 22333                    |         | Washington, DC 20334                             |        |
| Commander                               |         | AFAL/DLYV                                        |        |
| US Army Mobility Equipment              |         | ATTN: R. L. McGuire                              | 1      |
| Research & Development Command          |         | Eglin AFB, FL 32542                              |        |
| ATTN: AMXME-ND                          | 1       |                                                  |        |
| Fort Belvoir, VA 22060                  |         | AFESC/RDC                                        |        |
| 10.100.10.11, 111 10000                 |         | ATTN: W. C. Buchholtz                            | 1      |
| Chief of Engineers                      |         | Tyndall AFB, FL 32403                            |        |
| ATTN: DAEN-RDL (A. E. Simonini)         | 1       |                                                  |        |
| DAEN-RDZ-A (Dr. Choromokos)             | i       | Directorate of Safety Headquarters               |        |
| DAEN-ECE-T (R. L. Wight)                | ī       | Eastern Space and Missile Center                 |        |
| Department of the Army                  | •       | ATTN: SEM (L. Ullian)                            | 1      |
| Washington, DC 20314                    |         | Patrick AFB, FL 32925                            |        |
| Director                                |         | Commander                                        |        |
| US Army Engineer Waterways Experiment   | Station | Air Force Weapons Laboratory                     |        |
| ATTN: WESNP                             | 1       | ATTN: SUL                                        | 1      |
| P.O. Box 631                            | •       | NTESS                                            | 1      |
| Vicksburg, MS 39180                     |         | Kirtland Air Force Base                          | _      |
| Vicasouig, Mo 00100                     |         | Albuquerque, NM 87117-6008                       |        |
| Director                                |         |                                                  |        |
| US Army Ballistic Research Laboratory   |         | Commander                                        |        |
| ATTN: SLCBR-TB-B (C. N. Kingery)        | 3       | Field Command                                    |        |
| AMXBR-TBD (Dr. P. M. Howe)              | 3       | Defense Nuclear Agency                           |        |
| Aberdeen Proving Ground, MD 21005       |         | ATTN: FCTT                                       | 1      |
| •                                       |         | Kirkland Air Force Base, NM 87115                |        |

|                                         | Copies |                                         | Copies |
|-----------------------------------------|--------|-----------------------------------------|--------|
| Ballistic Missile Office                |        | Defense Nuclear Agency                  |        |
| Air Force Systems Command               | 1      | ATTN: SPTD                              | 1      |
| Norton Air Force Base, CA 92409         |        | Washington, DC 20305                    |        |
| •                                       |        | Director                                |        |
| Commander                               |        |                                         |        |
| Armament Development & Test Center      |        | HQDA (DAPE-HRS)                         | j      |
| ATTN: DLOSL                             | 1      | Washington, DC 20310                    |        |
| Technical Library                       | 1      |                                         |        |
| Eglin AFB, FL 32542                     |        | HQDA (DALO-SMA)                         |        |
| _                                       |        | ATTN: COL W. F. Paris, II               | 1      |
| Commander                               |        | Washington, DC 20310                    |        |
| Air Force Logistics Command             |        | -                                       |        |
| ATTN: A. E. Adams                       | 3      | Commander                               |        |
| Wright Patterson Air Force Base, OH 454 | 33     | USA Safety Center                       |        |
| •                                       |        | ATTN: PESC-Z                            | 5      |
| OOAMA                                   |        | Ft. Rucker, AL 36362-5363               |        |
| ATTN: Code MMWR                         | 3      | ·                                       |        |
| Hill Air Force Base                     |        | Director                                |        |
| Ogden, UT 84401                         |        | AMC Field Safety Activity               |        |
|                                         |        | ATTN: AMXOS-SE                          | 5      |
| Commander                               |        | Charlestown, IN 47111-9669              |        |
| Air Force Cambridge Research Laboratory | ,      | ·                                       |        |
| ATTN: Library                           | 1      | Director                                | •      |
| L. G. Hanscomb Field                    |        | Office of Operational and Environmental |        |
| Bedford, MA 01730                       |        | Safety                                  |        |
| ·                                       |        | US Department of Energy                 | 1      |
| Chairman                                |        | Washington, DC 20545                    |        |
| Department of Defense Explosives        |        |                                         |        |
| Safety Board                            |        | Albuquerque Operations Office           |        |
| ATTN: DDESB-KT                          | 5      | US Department of Energy                 |        |
| 2461 Eisenhower Avenue                  |        | ATTN: Division of Operation Safety      | 1      |
| Alexandria, VA 22331-0600               |        | P.O. Box 5400                           |        |
|                                         |        | Albuquerque, NM 87115                   |        |
| Under Secretary of Defense for Research |        | • • •                                   |        |
| and Engineering                         |        | Mason & Hanger-Silas Mason Co., Inc.    |        |
| ATTN: OUSDRE/TWP/OM                     | 1      | Pantex Plant                            | ,      |
| OUSDRE/RAT/MES                          | 1      | ATTN: Director of Development           | 1      |
| Department of Defense                   |        | P.O. Box 647                            |        |
| Washington, DC 20301                    |        | Amarillo, TX 79177                      | ,      |
| aa                                      |        |                                         |        |
| Assistant Secretary of Defense (FM & P) |        | Black & Veatch Consulting Engineers     |        |
| ATTN: RM & S                            | 1      | ATTN: H. L. Callahan                    | 1      |
| Washington, DC 20305                    | _      | 1500 Meadow Lake Parkway                | _      |
| a                                       |        | Kansas City, MO 64114                   |        |

|                                      | <u>Copies</u> |                                           | Copies |
|--------------------------------------|---------------|-------------------------------------------|--------|
| Director, Pittsburgh Mining & Safety |               | University of New Mexico                  |        |
| Research Center                      | •             | New Mexico Engineering Research Institute | 1      |
| ATTN: Richard W. Watson              | 1             | Campus, P.O. Box 25                       |        |
| Bureau of Mines                      |               | Albuquerque, NM 87131                     |        |
| Department of the Interior           |               | A OM A T                                  |        |
| 4800 Forbes Avenue                   |               | ACTA Incorporated                         |        |
| Pittsburgh, PA 15213                 |               | Plaza de Rina                             |        |
| T                                    |               | Suite 101                                 | •      |
| Institute of Makers of Explosives    | _             | 24430 Hawthorne Blvd.                     | 1      |
| 1120 19th St., N.W. 310              | 1             | Torrance, CA 90505                        |        |
| Washington, DC 20036-3605            |               |                                           |        |
|                                      |               | Boeing Military Airplane Company          |        |
| Agbabian Associates                  |               | ATTN: K75-79 (R. Lorenz)                  | 1      |
| ATTN: Dr. D. P. Reddy                | 1             | Wichita, KS 67277-7730                    |        |
| 250 N. Nash Street                   |               |                                           |        |
| El Segundo, CA 90245                 |               | AAI Corporation                           | 1      |
|                                      |               | Hunt Valley, MD 21030-0126                |        |
| Ammann & Whitney                     |               |                                           |        |
| ATTN: N. Dobbs                       | 1             | T & E International, Inc.                 |        |
| Suite 1700                           |               | 2023 Emmerton Road                        | 1      |
| Two World Trace Center               |               | Bel Air, MD 21014-6101                    |        |
| New York, NY 10048                   |               | •                                         |        |
| ,                                    |               | Advanced Technology, Inc.                 |        |
| Southwest Research Institute         |               | ATTN: W. D. Smith                         | 5      |
| ATTN: P. Bowles                      | 1             | 2121 Crystal Drive                        | _      |
| Technical Library                    | i             | Suite 300                                 |        |
| 8500 Culebra Road                    | •             | Arlington, VA 22202                       |        |
| San Antonio, TX 78206                |               |                                           |        |
| Dan Antonio, 112 10200               |               | Library of Congress                       |        |
| IIT Research Institute               |               | ATTN: Gift and Exchange Division          | 4      |
| ATTN: H. Napadensky                  | 1             | Washington, DC 20540                      | -      |
| Technical Library                    | 1             | Washington, DC 20040                      |        |
| •                                    | 1             | Williams South & Associates Inc           |        |
| 10 West 35th Street                  |               | Kilkeary, Scott & Associates, Inc.        | 2      |
| Chicago, IL 60616                    |               | ATTN: Scott Mitchell                      | 4      |
| A 11 170 1 A 1 A 7                   |               | 2009 N. 14th Street, Suite 408            |        |
| Applied Research Associates, Inc.    |               | Arlington, VA 22201                       |        |
| ATTN: J. L. Drake                    | 1             | T . 1751 . 11 . 1                         |        |
| 1204 Openwood Street                 |               | Internal Distribution:                    | _      |
| Vicksburg, MS 39180                  |               | <b>E</b>                                  | 1      |
|                                      |               | E211 (Gray)                               | 1      |
| TERANew Mexico Institute of Mining a | nd            | E231                                      | 9      |
| Technology                           | 1             | E232                                      | 3      |
| Socorro, NM 87801                    |               | F                                         | 1      |
|                                      |               | C                                         |        |

|                  | Copie |
|------------------|-------|
| G13 (Dickinson)  | 1     |
| G302 (W. Soper)  | 1     |
| Н                | 1     |
| K                | 1     |
| N                | 1     |
| R                | 1     |
| R10              | 1     |
| R11              | 1     |
| R12              | 1     |
| R13              | 1     |
| R14              | 1     |
| R15              | 1     |
| R15 (M. Swisdak) | 8     |
| R15 (V. Moore)   | 1     |
| R15 (J. Powell)  | 15    |