MRMAC: Mixed Reality Multi-user Asymmetric Collaboration

- Faisal Zaman
- Craig Anslow
- Andrew Chalmers
- Taehyun Rhee

Collaborative Tools

Limited Field of view

Barely see others' body language & gaze

Collaborative Tools

Limited Field of view

Barely see others' body language & gaze

Collaborative XR Tools

Project starline, Lawrence et al. 2021

Spatial.io

Microsoft Remote Assist

Microsoft Mesh

Collaborative XR Tools

Related Work

[S. Kasahara and J. Rekimoto 2014]

[S. Nagai et al. 2015]

[Teo et al. 2017]

[Lee et al. 2020]

[Rhee et al. 2020]

Only One-One & One-Many

No Audio-Visual Sync

Contributions

Mixed Reality Multi-user Asymmetric Collaboration (MRMAC) system that enables multiple remote users to virtually teleport into a real-world task space to collaborate with local users.

MRMAC

Design & Implementation

- Design concept for multi-user asymmetric remote collaboration
- Bidirectional face-to-face communication
- Synchronised audio-visual communication
- Client-server architecture for avatars, view controls, and asset streaming

Evaluation

- System evaluation
 - scalability and latency
- User evaluation
 - communication and awareness
 - · compared against two baseline conditions

Architecture

Viewpoint Sharing

Multiple Avatar Control

Personalised Avatar

Spatial Audio

Viewpoint Sharing

F. Zaman, C. Anslow, T. Rhee. Vicarious: Context-aware Viewpoints Selection for Mixed Reality Collaboration. ACM VRST, 2023.

Viewpoint Sharing

Multiple Avatar Control

Personalised Avatai

Spatial Audio

Viewpoint Sharing

Multiple Avatar Control

Personalised Avatar

Spatial Audio

Personalised Avatar

Viewpoint Sharing

Multiple Avatar Control

Personalised Avatar

Spatial Audio

Interaction Cues

Evaluation

System Evaluation: Latency

Average end-to-end latency

Changes in the 360-degree video to show up on the local computer and in the VR/AR window.

System Evaluation: Scalability

Network latency as the number of users increases

- average frame rate = video streaming 30FPS
- audio streaming 44.1kHz
- rendering time of 60±10 FPS.

36 participants

18—81 years $\mu = 30.83, \sigma = 14.10$

3×2 mixed factorial design

between-subjects factor: local vs. remote

within-subjects factor:

C1 vs. C2 vs. C3

Physical model

3×2 mixed factorial design

between-subjects factor: local vs. remote

within-subjects factor: C1 vs. C2 vs. C3

Condition 3
360 video with
augmented visual cues

Viewing Device:
Desktop Monitor
Camera control:
N/A
Interaction:
Mouse for 2D Annotation

Mouse for 2D Annota Representation: Appears in 2D video

VR HMD (Viewing 360 Video) Camera Control by VR HMD N/A

No Visual, Voice Only

VR HMD (Viewing 360 Video)
Camera Control by VR HMD
VR Controller
3D Avatar

VR-Travelers

Viewing Device: Desktop Monitor Camera control:

N/A Interaction: N/A

Representation: Appears in 2D video

Desktop Monitor

N/A

N/A

Appears in 360-degree Video

AR HMD

N/A

N/A

Appears in 360-degree Video

Condition 1

Condition 1 **Conventional video** with 2D annotation

Condition 2 360 Video without augmented visual cues

Condition 3 360 video with augmented visual cues

Viewing Device: **Desktop Monitor** Camera control: N/A Interaction:

Mouse for 2D Annotation Representation: Appears in 2D video

VR HMD (Viewing 360 Video) Camera Control by VR HMD N/A

VR HMD (Viewing 360 Video) Camera Control by VR HMD VR Controller 3D Avatar

Viewing Device: Desktop Monitor Camera control: N/A

Interaction: N/A

AR-Hosts

Representation: Appears in 2D video

No Visual, Voice Only

Desktop Monitor

N/A

N/A

Appears in 360-degree Video

AR HMD

N/A

N/A

Appears in 360-degree V26eo

Condition 2

360 video with augmented visual cues

Representation: Appears in 2D video

VR HMD (Viewing 360 Video) Camera Control by VR HMD N/A

VR HMD (Viewing 360 Video) Camera Control by VR HMD VR Controller 3D Avatar

No Visual, Voice Only

Desktop Monitor Camera control: N/A N/A Interaction: N/A N/A Representation: Appears in 2D video Appears in 360-degree Video

N/A Appears in 360-degree Video

VR-Travelers

Condition 1 with 2D annotation

Condition 2

Condition 3 360 video with augmented visual cues

Condition 3

Desktop Monitor amera control: Mouse for 2D Annotation epresentation:

VR HMD (Viewing 360 Video) Camera Control by VR HMD N/A

No Visual, Voice Only

VR HMD (Viewing 360 Video) Camera Control by VR HMD **VR** Controller 3D Avatar

amera control: nteraction: tepresentation: Appears in 2D video

Desktop Monitor N/A N/A Appears in 360-degree Video

AR HMD N/A N/A Appears in 360-degree Video

Results: Spatial Presence

H1: Spatial presence would be significantly higher in MRMAC.

Accepted

Justification:

Our system allow users to see each other and explore the real environment of users, social presence and spatial presence should be higher between AR and VR users.

Results: Social Presence

H1: Social presence would be significantly higher in MRMAC.

Justification:

Our system allow users to see each other and talk to each other.

Results: Task Completion Time

H2: With MRMAC participants will complete the task faster.

Partially Accepted

Justification:

Available communication and awareness tools in MRMAC made it significantly easier for remote and local users to complete the task faster.

 $\mu = 396.88$, $\sigma = 92.79$

Results: Work Load (TLX)

H2: With MRMAC participants will have less workload.

Accepted

Measured by: TLX

Justification:

Available communication and awareness tools in MRMAC made it significantly easier for remote and local users to complete the task faster.

Results: Usability

H3: System usability would be significantly higher in MRMAC.

Accepted

Measured by: SUS

Results: Preference

H4: Participants would prefer MRMAC more.

[...] live-streaming the physical environment and blending 3D virtual assets really amps up the collaboration experience

[...] it feels like we're all in the same room. I can hear everyone's voices coming from different directions, it even more realistic

Q. Which condition did you prefer overall?

Limitation and Future Work

Explore more capture modalities

- Integrate depth information.
- Teleoperate robots.

System adaptability in challenging environment

Conduct more in-depth user studies.

Conclusion

Summary

Fully bidirectional asymmetric collaboration system

- Real-time collaboration
- Audio-visual synchronisation
- Virtual assets blending

System evaluation

- Reasonably Scalable
- Low-latency

User evaluation

- MRMAC performed collaborative tasks faster
- MRMAC preferred over conventional 2D and traditional 360

faisal.zaman@vuw.ac.nz iguery404.github.io

Taehyun Rhee

Acknowledgements

