Лекции А.В. Дмитрука "Вариационное исчисление и оптимальное управление" Мехмат, 4 курс 2 поток, осень 2008 года

Существование решения в задачах на экстремум

Приведем два классических примера, в которых решение не существует.

Пример Вейерштрасса.

$$J = \int_0^1 t^2 u^2 dt \to \min, \qquad \dot{x} = u, \qquad x(0) = 0, \qquad x(1) = 1.$$

Ищем решение в классе $u \in L_{\infty}[0,1]$. Ясно, что на любой допустимой функции J(u)>0. Покажем, что $\inf J=0$. Действительно, $\forall \, \varepsilon>0$ положим $u_{\varepsilon}(t)=1/\varepsilon$ на $[0,\varepsilon]$, и равной нулю вне этого отрезка. Тогда

$$J(u_{\varepsilon}) = \int_{0}^{\varepsilon} t^{2} \frac{1}{\varepsilon^{2}} dt = \frac{1}{3} \varepsilon \to 0.$$

Пример Больца.

$$J = \int_0^1 (x^2 + (u^2 - 1)^2) dt \to \min, \quad \dot{x} = u, \quad x(0) = 0, \quad x(1) = 0.$$

Здесь опять на любой допустимой функции J(u) > 0. Действительно, если J(u) = 0, то $x(t) \equiv 0$, почти всюду $\dot{x}(t) = u(t) = 0$, но тогда $(u^2 - 1)^2 = 1$, и J(u) > 0, противоречие.

Покажем, что inf J=0. Для любого n положим $u_n(t)=sign\,\sin{(2\pi n\,t)}$. Тогда $|u_n(t)|\equiv 1$, а $|x_n(t)|\leq {\rm const}\,\frac{1}{n}\to 0$ при $n\to\infty$, поэтому $J(u_n)\to 0$.

Для формулировки теорем существования потребуется следующее понятие.

Полунепрерывные снизу функции. Пусть X — топологическое пространство. Функция $f: X \to \mathbb{R}$ называется полунепрерывной снизу в точке x_0 , если

$$f(x_0) \le \lim_{x \to x_0} f(x), \tag{0.1}$$

и просто полунепрерывной снизу, если это неравенство верно для всех $x_0 \in X$.

Лемма 1. Пусть $f: X \to \mathbb{R}$ — произвольная функция. Тогда следующие три свойства эквивалентны:

- а) f полунепрерывна снизу на X;
- б) её надграфик $epi f = \{(x, z) \in X \times \mathbb{R} : z \geq f(x)\}$ замкнут в $X \times \mathbb{R}$;
- в) $\forall \mu \in \mathbb{R}$ лебегово множество $L_{\mu}(f) = \{x \mid f(x) \leq \mu\}$ замкнуто в X .

Теорема Вейерштрасса. Пусть пространство X компактно, а функция $f: X \to \mathbb{R}$ полунепрерывна снизу на X. Тогда f достигает на X своего минимума.

Доказательство можно провести двумя способами. Обозначим $A = \inf f$.

1) Возьмем любую минимизирующую последовательность $x_n \in X$, т.е. такую, для которой $f(x_n) \to A$. Поскольку X — компакт (но, вообще говоря, без первой аксиомы счетности), из этой последовательности можно выбрать nodнаправленность (т.е. обобщенную последовательность) x_{n_α} , параметризованную индексом α из некоторого направленного множества, сходящуюся к некоторой точке $\hat{x} \in X$. Для нее попрежнему $f(x_{n_\alpha}) \to A$. В силу (0.1), $f(\hat{x}) \leq A$, но так как знак < здесь быть не может, получаем $f(\hat{x}) = A$.

(Если X обладает первой аксиомой счетности (напр. метрическое), то вместо поднаправленности можно брать обычную подпоследовательность; в этом случае доказательство очень прозрачно.)

2) Для любого $\mu > A$ множество подуровня $L_{\mu}(f)$ очевидно непусто и замкнуто. Семейство этих множеств центрировано, так как любое конечное число таких множеств имеет непустое пересечение (надо взять минимальное из данных μ , тогда соответствующее непустое $L_{\mu}(f)$ будет содержаться в каждом множестве из данного набора). Поскольку X — компакт, то и все эти множества имеют непустое пересечение, т.е. найдется точка \hat{x} , принадлежащая всем им: $f(\hat{x}) \leq \mu$ для любого $\mu > A$. Но тогда $f(\hat{x}) \leq A$, и значит $f(\hat{x}) = A$.

Практически все теоремы существования решения в задачах на экстремум так или иначе основаны на теореме Вейерштрасса.

Задача оптимального управления, выпуклая по управлению

На фиксированном отрезке времени $\Delta = [0, T]$ рассмотрим следующую задачу E:

$$J = \int_0^T L(t, x, u) dt + \varphi(x(0), x(T)) \to \min,$$
 (1.1)

$$\dot{x} = f(t, x, u) = a(t, x) + B(t, x) u, \tag{1.2}$$

$$u(t) \in U$$
 для п.в. $t \in \Delta$, (1.3)

$$(x(0), x(T)) \in M, \tag{1.4}$$

$$x(t) \in S(t) \qquad \forall t \in \Delta.$$
 (1.5)

Здесь, как обычно, $x:\Delta \to \mathbb{R}^n$ — абсолютно непрерывная, а $u:\Delta \to \mathbb{R}^r$ — измеримая ограниченная функции.

Предположения:

- A1) функция L(t,x,u) непрерывна на $\Delta \times \mathbb{R}^n \times U$ и выпукла по u,
- A2) вектор-функция a(t,x) и матрица B(t,x) (соответствующих размерностей) непрерывны на $\Delta \times \mathbb{R}^n$, концевая функция $\varphi(x_0,x_T)$ непрерывна на \mathbb{R}^{2n} ,
- А3) множество $M \subset \mathbb{R}^{2n}$ замкнуто (как правило, оно задается некоторым набором ограничений типа равенства $\eta(x(0),x(T))=0$ и неравенства $\zeta(x(0),x(T))\leq 0$ с непрерывными функциями η и ζ),
- А4) при каждом $t \in \Delta$ множество $S(t) \subset \mathbb{R}^n$ замкнуто, и хотя бы при одном $t_0 \in \Delta$ оно ограничено: $|S(t_0)| \leq s_0$,
 - А5) множество $U \subset \mathbb{R}^r$ есть выпуклый компакт,
- А6) тройка (f, S, U) удовлетворяет условию Филиппова: существует такое число K, что $\forall t \in \Delta, x \in S(t), u \in U$ выполнена оценка

$$|(x, f(t, x, u))| \le K(|x|^2 + 1).$$
 (1.6)

Можно ограничиться и более слабой оценкой

$$sign(t - t_0)(x, f(t, x, u)) \le K(|x|^2 + 1).$$
 (1.7)

(Если, например, S(t) равномерно ограничено, то слева в (1.6) стоит ограниченная величина, поэтому условие Филиппова автоматически выполнено.)

При этих предположениях верна следующая теорема существования (первый вариант которой был доказан А.Ф. Филипповым):

Теорема 1. Пусть в задаче E существует хотя бы один допустимый процесс. Тогда существует и (глобально) оптимальный процесс, т.е. функционал J достигает своего минимума.

Доказательство состоит из нескольких этапов. Обозначим через \mathcal{D} множество всех допустимых процессов (x(t),u(t)). Мы покажем, что \mathcal{D} есть компакт в некоторой топологии, а J полунепрерывен снизу в этой топологии. Будем рассматривать допустимые процессы как элементы пространства $C(\Delta) \times L_{\infty}(\Delta)$.

1) Покажем, что множество всех допустимых траекторий x(t) равномерно ограничено в пространстве $C(\Delta)$. Обозначим $z=|x|^2+1$. Тогда в силу (1.2) и (1.6) имеем $|\dot{z}|=2\,|(x,f(t,x,u))|\leq 2Kz$, и так как в силу $\mathrm{A4}\ |z(t_0)|\leq (s_0^2+1)$, то $\forall\,t\in\Delta$

$$|z(t)| \le |z(t_0)| e^{2K(t-t_0)} \le (s_0^2 + 1) e^{2KT},$$

и тогда $|x(t)| \leq \text{const} = K_0$. (При выполнении лишь оценки (1.7) надо отдельно рассмотреть случаи $t < t_0$ и $t > t_0$.) Отсюда, из равномерной ограниченности значений u(t) и непрерывности f вытекает в силу (1.2), что и $|\dot{x}(t)| \leq \text{const} = K_1$.

Таким образом, множество всех допустимых траекторий x(t), рассматриваемое в пространстве $C(\Delta)$, равномерно ограничено и равномерно липшицево (а следовательно, равностепенно непрерывно). По теореме Асколи–Арцела это предкомпакт в $C(\Delta)$.

2) Рассмотрим теперь множество всех управляющих функций

$$\mathcal{U} = \{ u \in L_{\infty}(\Delta) : u(t) \in U \text{ п.в. на } \Delta \}.$$

Поскольку U ограничено, то \mathcal{U} содержится в некотором замкнутом шаре пространства $L_{\infty}(\Delta)$, а так как по теореме Алаоглу такой шар есть компакт в слабой-* топологии, то наше \mathcal{U} есть предкомпакт в слабой-* топологии. (Напомним, что это
топология сходимости на каждом элементе пространства $L_1(\Delta)$, см. К Φ .)

Слабая-* топология в любом шаре пространства, сопряженном к сепарабельному (как у нас: $L_1^* = L_{\infty}$), метризуема, и поэтому сходимость в этой топологии можно рассматривать на обычных последовательностях.

Итак, множество \mathcal{D} всех допустимых процессов (x(t),u(t)) есть предкомпакт в пространстве $C(\Delta) \times L_{\infty}(\Delta)$ относительно топологии $C \times \sigma^*$ — произведения равномерной топологии по x и слабой-* топологии по u (т.е. относительно равномерной сходимости x и слабой-* сходимости u).

Покажем теперь, что \mathcal{D} замкнуто в этой топологии. Возьмем любую последовательность $(x_n, u_n) \in \mathcal{D}$, такую что $x_n \Longrightarrow \hat{x} \in C(\Delta)$, $u_n \overset{\text{сл.-*}}{\longrightarrow} \hat{u} \in L_{\infty}(\Delta)$, и покажем, что предельная пара $(\hat{x}, \hat{u}) \in \mathcal{D}$, т.е. что она удовлетворяет всем ограничениям задачи E.

- 3) Так как множества M и S(t) замкнуты, для предельного \hat{x} ограничения (1.4) и (1.5) очевидно выполнены.
- 4) Для проверки дифференциального уравнения (1.2) представим его в интегральной форме. Для любого $t \in \Delta$ имеем

$$x_n(t) = x_n(0) + \int_0^t (a(\tau, x_n) + B(\tau, x_n) u_n) d\tau.$$

Так как $x_n(t) \Longrightarrow \hat{x}(t)$, левая часть и первые два члена в правой части очевидно сходятся к соответствующим пределам. Покажем, что $\forall t \in \Delta$

$$\int_0^t B(\tau, x_n) \, u_n \, d\tau \, \to \, \int_0^t B(\tau, \hat{x}) \, \hat{u} \, d\tau.$$

Разность этих интегралов представим в виде

$$\int_0^t [B(\tau, x_n) u_n - B(\tau, \hat{x}) u_n] d\tau + \int_0^t [B(\tau, \hat{x}) u_n - B(\tau, \hat{x}) \hat{u}] d\tau.$$

Первый интеграл стремится к нулю, так как в силу непрерывности функции B его подинтегральное выражение равномерно стремится к нулю, а второй стремится к нулю

так как $u_n \stackrel{\text{сл.}-*}{\longrightarrow} \hat{u}$, а функция $B(\tau, \hat{x}(\tau))$ ограничена и следовательно, принадлежит $L_1(\Delta)$.

Итак, для предельной пары выполнено равенство

$$\hat{x}(t) = \hat{x}(0) + \int_0^t (a(\tau, \hat{x}) + B(\tau, \hat{x}) \, \hat{u}) \, d\tau, \qquad t \in \Delta.$$

Отсюда следует, что функция $\hat{x}(t)$ абсолютно непрерывна, и для пары (\hat{x}, \hat{u}) почти всюду на Δ выполнено уравнение (1.2).

5) Проверим слабую-* замкнутость множества управлений \mathcal{U} . Так как исходное множество $U \subset \mathbb{R}^r$ — выпуклый компакт, он есть пересечение некоторого семейства замкнутых полупространств $(p,u) \leq \alpha$, где $p \in \mathbb{R}^r$, $\alpha \in \mathbb{R}$, и пара (p,α) пробегает некоторое множество $F \subset \mathbb{R}^{r+1}$. Ясно, что достаточно рассматривать (p,α) из любого плотного подмножества в F, а в качестве такового (в силу сепарабельности \mathbb{R}^r) можно взять некоторое счетное множество $(p_i,\alpha_i) \in F, i=1,2,\ldots$ Таким образом, U есть пересечение счетного семейства полупространств $U_i = \{u \in \mathbb{R}^r : (p,u) \leq \alpha_i\}, i=1,2,\ldots$ Введем соответствующие множества функций

$$\mathcal{U}_i = \{ u \in L_{\infty}(\Delta) : u(t) \in U_i \text{ п.в. на } \Delta \},$$

и покажем, что $\mathcal{U} = \bigcap_i \mathcal{U}_i$. Включение \subset здесь очевидно, надо установить лишь включение \supset . Пусть $u \in \mathcal{U}_i$ для всех $i=1,2,\ldots$ Это означает, что $\forall i$ имеется множество полной меры $E_i \subset \Delta$, на котором $u(t) \subset U_i$. В силу счетной аддитивности меры Лебега множество $\bigcap_i E_i$ также имеет полную меру, и на нем $u(t) \subset \bigcap_i U_i = U$, и значит, $u \in \mathcal{U}$.

Теперь достаточно показать, что каждое множество \mathcal{U}_i слабо-* замкнуто. Это вытекает из следующего простого утверждения.

Лемма 2. Пусть дана последовательность скалярных функций $v_n(t)$ из пространства $L_{\infty}(\Delta)$, слабо-* сходящихся к функции $\hat{v}(t)$. Пусть каждая $v_n(t) \leq 0$ почти всюду на Δ . Тогда и $\hat{v}(t) \leq 0$ почти всюду на Δ .

Доказательство. Допустим, это не так, т.е. $\hat{v}(t) > 0$ на некотором множестве E положительной меры. Тогда для характеристической функции l(t) множества E в силу слабой-* сходимости должно выполняться

$$\int_0^T l(t) \, v_n(t) \, dt \, \, \rightarrow \, \, \int_0^T l(t) \, \hat{v}(t) \, dt.$$

Но интегралы слева ≤ 0 , а справа стоит $\int_E \hat{v}(t) dt > 0$ как интеграл от строго положительной функции по множеству положительной меры. Противоречие.

Применяя эту лемму для каждого i к функциям

$$v_n(t) = (p_i, u_n(t)) - \alpha_i \xrightarrow{\text{CJI.}-*} \hat{v}(t) = (p_i, \hat{u}(t)) - \alpha_i$$

получаем слабую-* замкнутость каждого множества \mathcal{U}_i и тем самым слабую-* замкнутость множества \mathcal{U} .

6) Покажем теперь, что функционал $J: C \times L_{\infty} \to \mathbb{R}$ полунепрерывен снизу на \mathcal{D} относительно введенной сходимости. Для этого рассмотрим сначала более простой функционал $I: L_{\infty}(\Delta) \to \mathbb{R}$,

$$I(u) = \int_0^T \Phi(t, u) dt,$$

где функция Φ непрерывна по $(t,u) \in \Delta \times U$ и выпукла по u.

Теорема 2. I полунепрерывен снизу на $\mathcal U$ относительно слабой-* сходимости, т.е. если $u_n \stackrel{\text{с.л.}-*}{\longrightarrow} \hat u$, то

$$\underline{\lim}_{n} I(u_n) \geq I(\hat{u}).$$

Здесь нам потребуются следующие два факта.

Лемма 3. Пусть $u_n \in \mathcal{U}$ и $||u_n - \hat{u}||_1 \to 0$. Тогда $I(u_n) \to I(\hat{u})$, т.е. I непрерывен на \mathcal{U} относительно сходимости по норме L_1 .

Доказательство. Из сходимости $u_n(t) \to \hat{u}(t)$ по норме L_1 вытекает сходимость по мере: $\forall \, \delta > 0$ $mes\{t: |u_n(t) - \hat{u}(t)| \geq \delta\} \to 0$. Покажем, что тогда и $\Phi(t, u_n(t))$ сходится по мере к $\Phi(t, \hat{u}(t))$, т.е. $\forall \, \varepsilon > 0$

$$mes \{t : |\Phi(t, u_n(t)) - \Phi(t, \hat{u}(t))| \ge \varepsilon\} \to 0.$$

Из непрерывности Φ по (t,u) вытекает, что $\forall \varepsilon > 0 \quad \exists \delta > 0$ такое, что из неравенства $|u'-u''| < \delta$ следует, что $\forall t \quad |\Phi(t,u') - \Phi(t,u'')| < \varepsilon$. Поэтому для данных ε , δ

$$\{t: |\Phi(t, u_n(t)) - \Phi(t, \hat{u}(t))| > \varepsilon\} \subset \{t: |u_n(t) - \hat{u}(t)| > \delta\}.$$

Так как мера правого множества стремится к нулю, то и мера левого также стремится к нулю.

Так как функции $\Phi(t, u_n(t))$ равномерно ограничены (опять в силу непрерывности Φ), то из их сходимости по мере к $\Phi(t, \hat{u}(t))$ вытекает и сходимость интегралов от этих функций. Лемма доказана.

Теорема 3 (Мазур). Пусть в нормированном пространстве V дана последовательность u_n , слабо сходящихся к \hat{u} (т.е. сходящихся на каждом линейном функционале $l \in V^*$). Тогда существует последовательность конечных выпуклых комбинаций элементов u_n , сходящихся к \hat{u} по норме, т.е. $\forall n$ существует элемент

$$v_n = \sum_{i=1}^{m_n} \alpha_n^{(i)} \, u_i \,, \qquad$$
 где $\alpha_n^{(i)} \geq 0, \qquad \sum_{i=1}^{m_n} \alpha_n^{(i)} = 1,$

такой что $v_n \Longrightarrow \hat{u}$.

Доказательство. Пусть $\Omega = \{u_n, n = 1, 2\}$, и пусть Q есть его выпуклая замкнутая оболочка (т.е. замыкание множества всех конечных выпуклых комбинаций элементов из Ω). Теорема утверждает, что $\hat{u} \in Q$.

Действительно, если это не так, то по теореме Хана-Банаха найдется линейный функционал $l \in V^*$, строго отделяющий точку \hat{u} от Q: при некотором $\delta > 0$

$$(l, \hat{u}) \geq (l, Q) + \delta.$$

Ho это противоречит тому, что $u_n \in Q$ и $(l, u_n) \to (l, \hat{u})$.

Теперь мы можем дать

Доказательство теоремы 2. Пусть последовательность $u_n \in L_{\infty}, u_n \stackrel{\text{сл.}-*}{\longrightarrow} \hat{u},$ т.е. сходится относительно функционалов из L_1 . Тогда (внимание!) можно считать, что $u_n \in L_1$ и $u_n \stackrel{\text{сл.}}{\longrightarrow} \hat{u}$ относительно функционалов из L_{∞} (ибо $L_{\infty} \subset L_1$).

Положим $A=\varliminf I(u_n)$. Нам надо показать, что $I(\hat u)\leq A$. Без нарушения общности считаем, что $I(u_n)\to A$. Возьмем любое $\varepsilon>0$. Тогда $\exists\,N$ такое, что $\forall\,n\geq N$ имеем $I(u_n)< A+\varepsilon$. По теореме Мазура $\forall\,n\geq N$ найдется выпуклая комбинация $v_n=\sum_{i=N}^{m_n}\alpha_n^{(i)}u_i$ такая что $||v_n-\hat u||_1\to 0$.

В силу выпуклости функции Φ по u имеем

$$I(v_n) \leq \sum_{i=N}^{m_n} \alpha_n^{(i)} I(u_i) < \sum_{i=N}^{m_n} \alpha_n^{(i)} (A + \varepsilon) = A + \varepsilon.$$

По лемме 3 $I(v_n) \to I(\hat{u})$, и следовательно, $I(\hat{u}) \le A + \varepsilon$. Это выполнено $\forall \varepsilon > 0$. Отсюда $I(\hat{u}) \le A$, ч.т.д.

Из теоремы 2 легко вытекает слабая полунепрерывность снизу функционала $J = \int_0^T L(t, x, u) dt$. Пусть $x_n \Longrightarrow \hat{x}, \quad u_n \overset{\text{сл.}-*}{\longrightarrow} \hat{u}$. Тогда

$$J(x_n, u_n) = (J(x_n, u_n) - J(\hat{x}, u_n)) + J(\hat{x}, u_n).$$

Скобка справа стремится к нулю, ибо $|L(t,x_n(t),u_n(t))-L(t,\hat{x}(t),u_n(t))| \Longrightarrow 0$ в силу равномерной непрерывности L. А последний член есть $I(u_n)$ для функции $\Phi(t,u)=L(t,\hat{x}(t),u)$. По теореме 2 $\varliminf J(\hat{x},u_n)\geq J(\hat{x},\hat{u})$, а тогда и $\varliminf J(x_n,u_n)\geq J(\hat{x},\hat{u})$. Добавление концевого функционала $\varphi(x(0),x(T))$ ничего не меняет, так как от просто непрерывен относительно равномерной сходимости x.

Итак, мы показали, что в некоторой топологии множество всех допустимых процессов \mathcal{D} есть компакт, а функционал J полунепрерывен снизу. По теореме Вейерштрасса J достигает своего минимума на \mathcal{D} . Теорема 1 доказана.

Некоторые обобщения

Рассмотренная задача Е, конечно, не охватывает всех возможных типов задач оптимального управления. Укажем некоторые обобщения этой задачи, в которых также можно установить существование решения. Точные формулировки и тем более доказательства мы здесь не приводим.

- а) Мы предполагали, что функции $a(t,x),\ B(t,x),\ L(t,x,u)$ непрерывны по совокупности своих переменных, в том числе по t. Внимательно прослеживая доказательство теоремы 1, нетрудно заметить, что от непрерывности по t можно отказаться, оставив лишь измеримость по t и потребовав, чтобы на любом ограниченном множестве значений x (или x,u) все эти функции были равностепенно относительно t непрерывны по x (или x,u), т.е. чтобы они имели общий $\forall t \in \Delta$ модуль непрерывности по x (или x,u).
- б) Множество $U \subset \mathbb{R}^r$ может зависеть от t, т.е. ограничение на управление может иметь вид $u(t) \in U(t)$. Здесь надо требовать, чтобы для п.в. $t \in \Delta$ множество U(t) было выпуклым компактом и содержалось в некотором шаре, не зависящем от t, и кроме того, чтобы многозначное отображение $t \mapsto U(t)$ было измеримым. (Одно из эквивалентных определений: для любого открытого множества $G \subset \mathbb{R}^r$ множество $\{t: U(t) \cap G \neq \emptyset\}$ измеримо.)

Для доказательства слабой-* замкнутости соответствующего множества функций $\mathcal U$ здесь надо использовать теорему об измеримом выборе (см. ИТ).

- в) Множество U может зависеть также и от x, и тогда мы фактически имеем смешанное ограничение $u(t) \in U(t,x(t))$. Здесь надо требовать, чтобы для п.в. $t \in \Delta$ и для любого ограниченного множества значений x множество U(t,x) было равномерно ограниченным выпуклым компактом, и чтобы многозначное отображение $(t,x) \mapsto U(t,x)$ имело замкнутый график (это эквивалентно его полунепрерывности сверху). Доказательство того, что предельная пара (\hat{x},\hat{u}) удовлетворяет этому ограничению, т.е. $\hat{u}(t) \in U(t,\hat{x}(t))$, опирается на т.н. Q— свойство Чезари, состоящее в следующем. Для любых (t,x) и любого $\varepsilon > 0$ пусть $Q_{\varepsilon}(t,x)$ есть замыкание выпуклой оболочки объединения U(t',x') по всем (t',x') из ε окрестности (t,x). Тогда $\bigcap_{\varepsilon>0} Q_{\varepsilon}(t,x) = U(t,x)$.
- г) Управляемая система $\dot{x} = f(t,x,u)$ может быть нелинейной по u. Тогда надо требовать, чтобы множество возможных скоростей f(t,x,U) этой системы было ограниченным, а выпуклым и замкнутым было множество скоростей расширенной системы:

$$\dot{y} = L(t, x, u) + v, \qquad \dot{x} = f(t, x, u), \qquad u \in U, \qquad v \ge 0.$$

Выпуклость самого множества U не играет уже роли. Здесь надо рассматривать сходимость траекторий (y(t), x(t)) в пространстве $C[0,T] \times C^n[0,T]$, а для представления предельной траектории в виде решения указанной системы при некоторых управлениях u(t), v(t) применять один из вариантов теоремы об измеримом выборе, например, лемму Филиппова о включении:

пусть функция $\varphi(t,u)$ измерима по t и непрерывна по $u\in U$. Тогда любая измеримая функция $v(t)\in \varphi(t,U)$ может быть реализована с помощью некоторой измеримой функции $u(t)\in U$: $v(t)=\varphi(t,u(t))$.

д) Задачи на нефиксированном отрезке времени $t \in [t_0, t_1]$ можно сводить на фиксированный отрезок с помощью введения нового времени $\tau \in [0, 1]$ следующим образом:

 $\frac{dt}{d\tau} = z,$ $\frac{dz}{d\tau} = 0,$ $\frac{dx}{d\tau} = z \left[a(t,x) + B(t,x) u \right].$

Обратим внимание, что здесь z — фазовая переменная, а не управление, как было раньше (при выводе ПМ). При этом новая управляемая система остается линейной по управлению. Для существования решения исходной задачи надо требовать, чтобы нашлась минимизирующая последовательность, на которой t_0 и t_1 ограничены. Тогда после сведения ее на фиксированный отрезок времени получим ограниченность z, и при выполнении тех же условий A1—A6 решение будет существовать.

е) Пусть в задаче Е множество U — компакт, но не выпуклый. Здесь множество управляющих функций \mathcal{U} уже не будет слабо-* замкнутым. Можно показать, что его слабое-* замыкание состоит из функций $u(t) \in coU$. Обозначим через \widetilde{E} задачу с этим расширенным множеством управлений. Так как coU — выпуклый компакт, по доказанной теореме 1 минимум в задаче \widetilde{E} существует и достигается на некотором процессе (\hat{x}, \hat{u}) , где $\hat{u}(t) \in coU$. Как он связан с инфимумом в исходной задаче E? Рассмотрим случай, когда управляемая система полностью линейна: $\dot{x} = A(t)x + B(t)u$, а фазовое ограничение (1.5) отсутствует. Поскольку данное управление $\hat{u}(t)$ есть слабый-* предел некоторых управлений $u_n(t) \in U$, то нетрудно показать, что соответствующие фазовые компоненты $x_n(t) \Longrightarrow \hat{x}(t)$ (при сходимости их начальных условий), и более того, в силу линейности системы последовательность $u_n(t) \in U$ может быть выбрана таким образом, чтобы концы x_n просто совпадали с концами данной траектории \hat{x} . Тогда процессы (x_n, u_n) допустимы в задаче E. $\underline{\lim} J(x_n, u_n) = J(\hat{x}, \hat{u})$, поэтому инфимум в задаче E равен минимуму в задаче E.

Процесс (\hat{x}, \hat{u}) , вообще говоря, не является допустимым в задаче E; он называется скользящим режимом, поскольку реализуется как предел последовательности процессов, у которых управление "очень часто" переключается между точками множества U, принимая в пределе значение $\hat{u}(t) \in coU$.

Аналогичное явление "овыпукления" возникает также в случае, когда подинтегральная функция целевого функционала L(t,x,u) не выпукла по u (как в примере Больца). Если управляемая система линейна, множество U — выпукло (но не обязательно замкнуто — например, все пространство), и опять фазовое ограничение (1.5) отсутствует, то справедлива классическая теорема Боголюбова, утверждающая, что инфимум в исходной задаче E равен инфимуму в задаче E, в которой функцию L(t,x,u) надо замененить на ее овыпукление по u, т.е. взять функцию L(t,x,u), которая при любых (t,x) есть наибольшая выпуклая по u функция, не превосходящая L(t,x,u).

ж) Наконец, множество U может быть неограниченным, например, $U = \mathbb{R}^r$. Здесь надо добиться того, чтобы, тем не менее, на минимизирующей последовательности нормы $||u_n||_p$ при некотором p>1 были равномерно ограничены, и тогда в соответствующем пространстве $u \in L_p(\Delta)$ решение будет существовать. Для этого на функцию L(t,x,u) накладываются условия достаточно быстрого роста по u. Такой случай рассматривался еще в КВИ, где была установлена теорема Тонелли и ее различные варианты, см. ИТ, ОПУ.

Литература

- [АФ] А.Ф. Филиппов. О некоторых вопросах теории оптимального регулирования. Вестник МГУ, сер. матем., мех., астрон., физ., хим., 1959, №2, с. 25–32.
 - [ИТ] А.Д. Иоффе, В.М. Тихомиров. Теория экстремальных задач. М., Наука, 1974.
- [АТФ] В.М. Алексеев, В.М. Тихомиров, С.В. Фомин. Оптимальное управление. М., Наука, 1979, Физматлит, 2006.
- [КФ] А.Н. Колмогоров, С.В. Фомин. Элементы теории функций и функционального анализа. М.: Наука, 1968.
- [ОПУ] Оптимальное управление. Коллективная монография кафедры ОПУ (под ред. Н.П. Осмоловского и В.М. Тихомирова), М., МЦНМО, 2008.