13 Mai 2025

PROJET MACHINE LEARNING

PRÉDICTION DES MALADIES
CARDIOVASCULAIRES PAR MACHINE
LEARNING

Présenté par :

Aïssatou NDIAYE

Encadré par :

Mr Jean Marc GIRAULT

Mme Sarra MARGI

Table des matières

01

Contexte et Base de données

02

Traitement des données & Nettoyage

03

Extraction & Sélection des features

04

Cross Validation et Équilibrage

05

Résultats
Classification (matrice de confusion et courbe ROC)

06

Résultats Régression (EQM, scatter plot)

07

Discussion et Limites

08

Conclusion et Perspectives

Contexte et Base de données

Cardiovascular Disease dataset

The dataset consists of 70 000 records of patients data, 11 features + target.

- 1. Age | Objective Feature | age | int (days)
- 2. Height | Objective Feature | height | int (cm) |
- 3. Weight | Objective Feature | weight | float (kg) |
- 4. Gender | Objective Feature | gender | categorical code |
- 5. Systolic blood pressure | Examination Feature | ap_hi | int |
- 6. Diastolic blood pressure | Examination Feature | ap_lo | int |
- 7. Cholesterol | Examination Feature | cholesterol | 1: normal, 2: above normal, 3: well above normal |
- 8. Glucose | Examination Feature | gluc | 1: normal, 2: above normal, 3: well above normal
- 9. Smoking | Subjective Feature | smoke | binary |
- 10. Alcohol intake | Subjective Feature | alco | binary |
- 11. Physical activity | Subjective Feature | active | binary |
- 12. Presence or absence of cardiovascular disease | Target Variable | cardio | binary |

Etapes:

- Gestion des valeurs manquantes,
- Outliers,
- Encodage,
- Standardisation.

introduction to data analysis: Box Plot

shutterstock.com · 2120620286

```
df_clean1 = df[(df['ap_hi'] > 70) & (df['ap_hi'] < 250) & (df['ap_lo'] > 40) & (df['ap_lo'] < 180)]</pre>
```


Extraction et sélection des features

Extraction et sélection des features

```
numerical_features = ['age', 'height', 'weight', 'ap_hi', 'ap_lo', 'imc', 'ap_ratio']
categorical_features = ['gender', 'cholesterol', 'gluc', 'active', 'chol_gluc']
```


Cross Validation et Equilibrage

50,03% / 49,97%

grid_search = GridSearchCV(pipeline_rf, param_grid, cv=5, scoring='accuracy', n_jobs=-1)

Résultats Classification : Matrice de confusion et Courbe ROC

Pour les matrices de confusion

Random Forest

Vrais Négatifs (TN): 5507 (40.05 %)

• Faux Positifs (FP): 1436 (10.45 %)

• Faux Négatifs (FN) : 2252 (16.39 %)

• Vrais Positifs (TP): 4552 (33.11%)

Decision Tree

• Vrais Négatifs (TN): 5184 (37.71%)

Faux Positifs (FP): 1759 (12.80 %)

Faux Négatifs (FN): 2064 (15.02 %)

Vrais Positifs (TP): 4740 (34.47 %)

Gradient Boosting

Vrais Négatifs (TN): 5376 (39.12 %)

• Faux Positifs (FP): 1567 (11.40 %)

Faux Négatifs (FN): 2133 (15.52 %)

• Vrais Positifs (TP): 4671 (33.96 %)

Naive Bayes

Vrais Négatifs (TN): 5759 (41.91 %)

• Faux Positifs (FP) : 1184 (8.62 %)

• Faux Négatifs (FN): 3619 (26.34 %)

• Vrais Positifs (TP): 3185 (23.14 %)

Résultats Régression : EQM / MSE et Scatter Plot

Régression linéaire entre chaque variable et la cible

Résultats Régression : EQM / MSE et Scatter Plot

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

=== Random Forest ===
R²: -0.10354926598548797
MSE: 33737.82540312458
RMSE: 183.6785926642639
MAE: 17.917680788265308

=== Linear Regression ===
R²: 0.0009506007982974518

MSE: 30543.044373523047 RMSE: 174.76568419893835 MAE: 15.017121064147442 === Gradient Boosting ===

R2: -0.1829177771316144

MSE: 36164.28795816303

RMSE: 190.16910358458082

MAE: 17.032929563035466

=== SGD Regressor ===

R2: 0.0008157514276443401

MSE: 30547.167002809343

RMSE: 174.77747853430472

MAE: 15.499494024214252

Discussion et Limites

- Base de données assez volumineux : manque de temps pour bien tester les modèles de classification.
- Variables importantes absentes (génétique, VES, mode de vie, stress, rigidité artérielle, antécédents, marqueurs biologiques...).
- Données simplifiées (ex : cholestérol codé sur 3 niveaux)
- Données statiques, pas d'évolution dans le temps

Conclusion

01

CONCLUSION

En résumé, la classification donne d'assez bons résultats pour détecter les patients à risque, mais la régression reste un défi.

02

PERSPECTIVES

Pour aller plus loin, il faudrait enrichir la base de données avec des variables plus fines, et explorer de nouveaux modèles ou de nouveaux types de données.

