

Unabalanced Dataset Problem

Dr. U. Michelucci umberto.Michelucci@toelt.ai

Problem Description – Classification in Practice (binary)

Image Source: Kolawole, P. (2022). Convolutional Neural Network for Detecting Cancer Tumors in Microscopic Images. Retrieved 19 March 2022, from https://medium.com/swlh/convolutional-neural-network-for-detecting-cancer-tumors-in-microscopic-images-1acab6481d05

Problem Description – Classification in Practice (binary)

Image Source: Kolawole, P. (2022). Convolutional Neural Network for Detecting Cancer Tumors in Microscopic Images. Retrieved 19 March 2022, from https://medium.com/swlh/convolutional-neural-network-for-detecting-cancer-tumors-in-microscopic-images-1acab6481d05

Datasets in der Praxis (hospital-acquired infections)

683 patients

Class 0 (Infected): 75 (11% of the total)

Class 1 (healthy): 608 (89% of the total)

Datasets in practice (Microsope images)

220,000 training images - 57,458 test images

Class 0 (no Tumor) 55% of images

Class 1 (Tumor) 45% of images

Unbalanced Dataset

Put simply, an dataset is said unbalanced when the target variable has more observations in a particular class than in the others.

Unbalanced Dataset in Classification - Examples Target Labels Distribution

Quiz

Starting situation

- Dataset: 1000 inputs in Class 1 (e.g. no tumor); 10 in Class 0 (e.g. tumor)
- Trained model achieved: 99% accuracy

Question:

What do you think of the model? Is it good? Ultimately, it achieves 99% accuracy!

Approx. 91% accuracy is achieved (with linear support vector classifier)

Approx. 99% accuracy is achieved (with linear support vector classifier)

Number of points in Class 1 is 1% Number of points in Class 0

Class 1 (10 points)

Class 0 (1000 points)

Accuracy a

$$a = \frac{number\ of\ correctly\ classified\ points}{total\ number\ of\ points}$$

$$a = \frac{1000}{1000 + 10} \rightarrow a = \frac{1000/1000}{1000/1000 + \frac{10}{1000}}$$

$$\rightarrow a = \frac{1}{1 + 10/1000} \rightarrow a = \frac{1}{1 + 0.01}$$

$$\rightarrow a = \frac{1}{1 + 0.01} \approx 1 - 0.01 = 0.99$$

Don't forget:

$$\frac{1}{1+x} \approx 1 - x \quad \text{for } x \ll 1$$

Approx. 99% accuracy is achieved (with linear support vector classifier)

- \bigcirc Number of points Class 1 N_1
- Number of points Class 0 N_0

In case of $N_1 \ll N_0$ (UNBALANCED DATASET)

 $a = \frac{number\ of\ correctly\ classified\ points}{total\ number\ of\ points}$

$$a = \frac{N_0}{N_0 + N_1} \longrightarrow a = \frac{1}{1 + \frac{N_1}{N_0}}$$

$$\rightarrow a = \frac{1}{1 + N_1/N_0} \approx 1 - N_1/N_0 \quad \text{Only valid for } N_1/N_0 \ll 1$$

Don't forget:

$$\frac{1}{1+x} \approx 1 - x \quad \text{for } x \ll 1$$

a	N_0	N_1
99%	1000	10
98%	1000	20
95%	1000	50

Class 0: 1000 - Class 1:10 - a = 99%

Class 0: 1000 - Class 1:50 - a = 97.3%

Class 0: 1000 - Class 1:100 - a = 95.5%

Class 0: 1000 - Class 1:1000 - a = 91%

Real-life Scenario

• Study on hospital-acquired infections: "Out of 683 patients, only 75 (11% of the total) were infected and 608 were not" (Cohen, Gilles, et al. "Learning from imbalanced data in surveillance of nosocomial infection." Artificial intelligence in medicine 37.1 (2006): 7-18)

Table 1 Baseline performance (original class distribution: 0.11 post 0.89 neg)						
Classifier	Sensitivity	Specificity	CWA	Accuracy		
IB1 (kNN)	0.19	0.96	0.38	0.88		
Nave Bayes	0.57	0.88	0.65	0.85		
C4.5 (Decision Trees)	0.28	0.95	0.45	0.88		
AdaBoost	0.45	0.95	0.58	0.90		
SVM	0.43	0.92	0.55	0.86		

Sensitivity: the ability of a test to correctly identify patients with a disease

$$Sensitivity = \frac{TP}{P} = \frac{\text{"Number of inputs classified as "sick" and have a true class of "sick""}}{\text{Number of sick patients}}$$

Strategies for dealing with unbalanced data sets

Type 1 consists in the pre-processing of the data in order to restore the class balance.

Type 2 consists of modifying the algorithms themselves so that they can handle unbalanced data.

Today we will deal with type 1.

Unbalanced Dataset - Solutions

- 1) Collect more data on the less represented class
- 2) Undersampling (subsampling) and oversampling
- 3) Use different metrics

Under- und Oversampling

Oversampling

Undersampling (random undersampling)

Advantages and disadvantages

Oversampling

Advantages:

- You have a larger data set for training
- Disadvantages:
- The model generalizes worse because it has seen very few Class 1 cases

Advantages and disadvantages

Downsampling

Advantages:

- You don't duplicate data

Disadvantages:

- The training record is much smaller, and you lose a lot of data in class 0.
- It can happen that the performance of the models quickly deteriorates with small data sets.

Class 0

Class 1

Oversampling

Oversampling

Undersampling

Undersampling

Metrics for Unbalanced Dataset Scenarios

Metrics - Overview

Binary Classification 人		Multi-class Classification			
Metric	Discussed today	Metric	Discussed today		
Accuracy	•	Accuracy	•		
Specificity	•	Accuracy pro class			
Sensitivity	•				
Balanced Accuracy	•				
F1 Score	•				
Area Under The Curve (AUC / Receiving Operating Curve)	•				

Confusion Matrix

Not really a metric (it contains multiple numbers)

Confusion Matrix (binary classification)

True Label 0

Number of inputs classified as 0 and that have a true class of 0 (TRUE POSITIVES, TP) Number of inputs classified as 1 and that have a true class of 0 (FALSE NEGATIVES, FN)

In the case of the perfect classifier:

FN = 0 and FP = 0

True Label 1

Number of inputs classified as 0 and that have a true class of 1 (FALSE POSITIVES, FP) classified as 1 and that have a true class of 1 (TRUE NEGATIVES, TN)

Predicted Label 0

Predicted Label 1

Sensitivity und Specificity

Sensitivity / Recall
True Positive Rate

$$\frac{TP}{P} = \frac{TP}{TP + FN}$$

How many of the cases in class 0 were correctly identified? "How many sick among all the sick have I identified?"

Specificity / selectivity
True Negative Rate

$$\frac{TN}{N} = \frac{TN}{TN + FP}$$

How many of the cases in Class 1 were correctly identified? "How many healthy people among all healthy people have I identified?"

Confusion Matrix

$$P = TP + FN$$

$$N = TN + FP$$

Predicted Label

PAY ATTENTION: Sensitivity + Specificity ≠ 1

In the case of the perfect classifier:

$$FN = 0$$
 und $FP = 0 \rightarrow P = TP$ und $TN = N$

Sensitivity = 1 AND Specificity = 1

Balanced Accuracy

Sensitivity / Recall True Positive Rate

$$\frac{TP}{P} = \frac{TP}{TP + FN}$$

How many of the cases in class 0 were correctly identified? "How many sick among all the sick have I identified?"

Specificity / selectivity
True Negative Rate

$$\frac{TN}{N} = \frac{TN}{TN + FP}$$

How many of the cases in Class 1 were correctly identified? "How many healthy people among all healthy people have I identified?"

Confusion Matrix

Lrue Label AT AT AT

$$P = TP + FN$$

$$N = TN + FP$$

Balanced Accuracy =
$$a_B = \frac{Sensitivity + Specificity}{2}$$

F1 Score

Sensitivity / Recall True Positive Rate

$$\frac{TP}{P} = \frac{TP}{TP + FN}$$

How many of the cases in class 0 were correctly identified? "How many sick among all the sick have I identified?"

Specificity / selectivity
True Negative Rate

$$\frac{TN}{N} = \frac{TN}{TN + FP}$$

How many of the cases in Class 1 were correctly identified? "How many healthy people among all healthy people have I identified?"

Confusion Matrix

Lrue Label NT P TN

$$P = TP + FN$$

$$N = TN + FP$$

$$F1 = \frac{2}{\frac{1}{Sensitivity} + \frac{1}{Specificity}}$$

* harmonic mean

Summary – confusion matrix

PREDICTED CLASS			ED CLASS		
		POSITIVE PP	NEGATIVE PN		
ACTUAL (TRUE) CLASS	POSITIVE P	TRUE POSITIVES (TP)	FALSE NEGATIVES (FN)	$\frac{TP}{TP+FN} = \frac{TP}{P}$	$a_B = \frac{\text{Balanced}}{\text{Accuracy}}$ $a_B = \frac{\text{Sensitivity} + \text{Specificity}}{2}$
	NEGATIVE N	FALSE POSITIVES (FP)	TRUE NEGATIVES (TN)	$\frac{TN}{TN+FP} = \frac{TN}{N}$	F1 SCORE $F1 = \frac{2}{\text{Sensitivity}^{-1} + \text{Specificity}^{-1}}$
		$\frac{TP}{TP+FP} = \frac{TP}{PP}$	NEGATIVE PREDICTIVE VALUE $\frac{TN}{TN+FN} = \frac{TN}{PN}$	ACCURACY $\frac{TP+TN}{TP+TN+FP+FN}$	

Class 0:1000 – Class 1:10 – Confusion Matrix

SENSITIVITY

$$\frac{TP}{TP + FN} = \frac{TP}{P}$$
$$= 100 \%$$

SPECIFICITY

$$\frac{TN}{TN + FP} = \frac{TN}{N}$$
$$= 0 \%$$

Balanced Accuracy

$$a_B = 50\%$$

Class 0:1000 – Class 1:50 – Confusion Matrix

SENSITIVITY

$$\frac{TP}{TP + FN} = \frac{TP}{P}$$
= 99.7 %

SPECIFICITY

$$\frac{TN}{TN + FP} = \frac{TN}{N}$$
$$= 50 \%$$

Balanced Accuracy $a_R = 74.9\%$

Class 0:1000 – Class 1:100 – Confusion Matrix

SENSITIVITY

$$\frac{TP}{TP + FN} = \frac{TP}{P}$$
= 98.9 %

SPECIFICITY

$$\frac{TN}{TN + FP} = \frac{TN}{N}$$
$$= 61 \%$$

Balanced Accuracy

$$a_B = 80\%$$

Class 0:1000 – Class 1:1000 – Confusion Matrix

SENSITIVITY

$$\frac{TP}{TP + FN} = \frac{TP}{P}$$
= 91.2 %

SPECIFICITY

$$\frac{TN}{TN + FP} = \frac{TN}{N}$$
$$= 90.7 \%$$

Balanced Accuracy

$$a_B = 91\%$$

Class 0:1000 – Class 1:10 – Confusion Matrix (mit vs. ohne Oversampling)

Real-life Scenarios

Study on hospital-acquired infections: "Out of 683 patients, only 75 (11% of the total) were infected and 608 were not" (Cohen, Gilles, et al. "Learning from imbalanced data in surveillance of nosocomial infection." *Artificial intelligence in medicine* 37.1 (2006): 7-18)

Table 1	Baseline performance	(original class distribution:	0.11 pos, 0.89 neg)
---------	----------------------	-------------------------------	---------------------

Classifier	Sensitivity	Specificity	a_B	CWA	Accuracy
IB1 (kNN)	0.19	0.96	0.58	0.38	0.88
Nave Bayes	0.57	0.88	0.73	0.65	0.85
C4.5 (Decision Trees)	0.28	0.95	0.62	0.45	0.88
AdaBoost	0.45	0.95	0.70	0.58	0.90
SVM	0.43	0.92	0.68	0.55	0.86

^{*} CWA – Class Weighted Accuracy (proposed in the paper)

Real-life Scenarios

Study on hospital-acquired infections: "Out of 683 patients, only 75 (11% of the total) were infected and 608 were not" (Cohen, Gilles, et al. "Learning from imbalanced data in surveillance of nosocomial infection." Artificial intelligence in medicine 37.1 (2006): 7-18)

Table 2 Random subsampling and oversampling (0.5 pos, 0.5 neg)

Classifier	(a) Random subsampling				(b) Random oversampling				
_	Sens	Spec	CWA	Accu		Sens	Spec	CWA	Accu
IB1 (kNN)	0.01	0.99	0.26	0.88	П	0.19	0.96	0.38	0.88
Nave Bayes	0.21	0.96	0.40	0.88		0.68	0.83	0.72	0.81
C4.5 (Decision Trees	0.00	1.00	0.25	0.89		0.49	0.87	0.59	0.83
AdaBoost	0.04	1.00	0.28	0.89		0.73	0.87	0.77	0.85
SVM	0.05	0.99	0.29	0.88		0.60	0.89	0.67	0.86

Example – Images and Neural Networks

Question

Are neural networks smarter? Can they handle unbalanced records?

The goal is to convince you that what we've seen can happen with almost any algorithm.

Problem Description

I want to develop a classifier that distinguishes the 1 from all the others.

```
# Number 1s: 6742 (11.2%)
# Number 0,2,3,4,5,6,7,8,9:
ca. 53258 (88.8%)
```

```
3681796691
6757863485
21797/2845
4819018894
7618641560
7592658197
1222234480
0 2 3 8 0 7 3 8 5 7
0146460243
7128169861
```

Handwritten digits - 28x28 pixel images

Confusion Matrix 1 vs. all (MNIST)

True Label 1

True Label 0,2,3,4,5,6,7,8,9

0	6742
0	53258

Predicted Label 1

Predicted Label 0,2,3,4,5,6,7,8,9

* Not relevant: Results of a neural network with 1 neuron with sigmoid activation function.

Receiving Operating Curve (ROC)

 The ROC curve is a very important method for studying binary classification metrics.

 It is used to derive the Area Under the Cruve (AUC) metric.

ROC Curve (I)

An ROC curve (receiver operating characteristic curve) is a graph showing the performance of a classification model at all classification thresholds. This curve plots two parameters:

- True Positive Rate (TPR)
- False Positive Rate (FPR)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

How can we draw the curve? A model has only one value for TPR and FPR!

ROC Curve (II) - Derivation

Let us suppose we have a model that has, as output, the probability \hat{y}_i of an observation x_i of being in class 1.

The input observation is classified according to the following rule¹⁾

$$\begin{cases} Class \ 1 \ if \ \hat{y}_i > \alpha \\ Class \ 0 \ if \ \hat{y}_i \le \alpha \end{cases}$$

With $\alpha \in [0,1]$ is a real number. Normally one chooses $\alpha = 0.5$.

¹⁾ For the more mathematical savy of you, this is the translated Heaviside step function.

ROC Curve (III) - Derivation

For each value of α one get a value of $TPR(\alpha)$ and $FPR(\alpha)$.

The ROC curve is obtained by plotting $TPR(\alpha)$ and $FPR(\alpha)$ by varying α from 0 to 1.

ROC Curve (IV) – AUC (Area Under the Curve)

To get a general metric on all possible cases (or possible α), the area under the curve (indicated with A) is often given as a metric.

Metrics for Multi-Class Problems

Multiclass classification is the problem of classifying instances into one of three or more classes.

e.g. diabetes type I, II or "gestational".

Metrics - Overview

Binary Classification		Multi-class Classification 人				
Metric	Discussed today	Metric				
Accuracy	•	Accuracy				
Specificity	•	Accuracy pro class				
Sensitivity	•					
Balanced Accuracy	•					
F1 Score	•					
Area Under The Curve (AUC / Receiving Operating Curve)	•					

Confusion Matrix

Not really a metric (it contains multiple numbers)

Confusion Matrix (Multi-class classification)

True Label 0	Number of inputs classified as 0 and that have a true class of 0	Number of inputs classified as 1 and that have a true class of 0	Number of inputs classified as 2 and that have a true class of 0
True Label 1	Number of inputs classified as 0 and that have a true class of 1	Number of inputs classified as 1 and that have a true class of 1	***
	:	:	:
	Predicted Label 0	Predicted Label 1	Predicted Label 2

Quiz: Classifier is good or bad?

Quiz: Classifier is good or bad?

Honorable Mention for Computer Vision Problems

This really works

Data Augmentation

Especially in computer vision, data augmentation (a.k.a. generating new images from existing one, but slightly different) is a really powerful techniques that will make your model performance better! We will see it when we will discuss computer vision techniques.