Organic Chemistry - Problem Sheet

- 1. For each of the following, identify the type of organic compound and then name it.
 - a) CH₃CH₂CH·CH₂CH·CH₂CH₃ OH CH₃

- b) $\begin{array}{ccc} \text{CH}_3\text{CH}_2\text{CH} \cdot \text{CH}_2\text{CH} \\ \text{CH}_2 & \text{O} \\ \text{CH}_3 \end{array}$
- CH₃
 CH₃
 CH₂
 CH₂
 CH₂
 CH₂
 CH₂
 CH₃
 CH₃
 CH₃
 CH₃
- d) CH₃-CH₂-CH-C-OH | || Br O
- e) CH₃CH₂CH₂CH₂CH₂CH₂CH₂C-OH
 O
- f) CH₃CH₂CH·CH₂CH₂CH₃
 COOH
- g) CH₃-C-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃ O
- 2. Draw the structural formulae of the following compounds:
 - a) pentanal
- b) 2-methylbutan-2-ol
- c) 3-bromo-3-ethylhexan-2-amine

d) 2,2-dichlorooctan-4-one

- e) 4-chloro-5-methylhexanoic acid
- 3. Give the name and formula of the organic compound formed in each of the following reactions:

Reaction mixture	Name of product	Formula of product
a) CH ₃ CH ₂ CH ₂ OH is mixed with an acidified	•	
solution of potassium permanganate for a		
short time, and the product is then removed from the		
reaction mixture by distillation.		
b) CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH is boiled with an		
acidified solution of potassium dichromate.		
c) hexan-3-ol is reacted with an acidified solution		
of sodium dichromate		
d) 2-methylbutan-2-ol is boiled with a solution of		
acidified potassium permanganate.		
e) CH ₃ -CH-C-OH		
is ficulted with all defailled		
solution of potassium dichromate		
f) pentan-3-ol is mixed with an acidified solution of		
potassium permanganate and the mixture is heated.		

- 4. First write the two relevant half equations, then derive the overall ionic equation for each of the following reactions (use structural formulae for the organic compounds):
 - a) propan-2-ol is heated with an acidified solution of potassium permanganate
 - b) butan-1-ol is mixed for a short time with an acidified solution of sodium dichromate
 - c) pentanal is heated with an acidified solution of potassium permanganate
 - d) 3-methylpentan-3-ol is heated with an acidified solution of potassium permanganate
 - e) propan-1-ol is mixed and boiled with an acidified solution of sodium dichromate

5. Give the structural formulae and names of the esters that are formed when the following carboxylic acids and alcohols react:

6.	Mama	tho.	following	octore:
υ.	rvaille	uie	following	esters.

7. Give the structural formulae of the following:

a) 1-propyl ethanoate

b) ethyl hexanoate

8. Give the formulae of the organic compounds that are formed in the following reactions:

- a) methyl ethanoate is boiled with a solution of hydrochloric acid
- b) 1-propyl butanoate is heated with a solution of sodium hydroxide

9. Give the formulae and names of the isomers with the following molecular formulae:

- a) C₃H₈O
- b) C₃H₆O
- c) $C_3H_6O_2$

10. Draw a small portion of the polymer formed when the following alkenes polymerise:

a) tetrachloroethene

b)
$$CH_3 - CH = CH_2$$

11. Draw a small portion of the condensation polymer formed when the following monomers react:

- b) propane-1,3-diol + pentanedioic acid
- 12. Give the structural formulae of the monomers used to make each of the following polymers:

- 13. Identify the following as a detergent, a soap, a fatty acid, a fat or glycerol:
 - a) $CH_2 CH CH_2$ $\begin{vmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

- b) CH₃(CH₂)_n SO₃-Na⁺
- c) $CH_3(CH_2)_{16}$ COO CH_2 d) $CH_3(CH_2)_{16}$ $COO^ Na^+$ $CH_3(CH_2)_{16}$ COO CH $CH_3(CH_2)_{16}$ COO CH_2

- 14. a) An organic compound is found to contain 92.25% carbon and 7.75% hydrogen. If the molecular mass is 78, what is the molecular formula?
 - b) In the absence of a catalyst, the compound does not react with bromine in the presence or absence of sunlight. Propose a structural formula for the compound.

- 15. A sample of a compound containing carbon, hydrogen and nitrogen only was burned in oxygen and produced 264 g of carbon dioxide , 63.0 g of water and 46.0 g of nitrogen dioxide.
 - a) Calculate the empirical formula of the compound.
 - b) If the molecular mass of the compound is approximately 95, calculate the molecular formula of the compound.
 - c) If the compound is an aromatic substance, propose a structural formula of this compound.

16. An 11.0 mg sample of an organic compound containing carbon, hydrogen and oxygen only was burned in an excess of oxygen and yielded 26.4 mg of CO_2 and 5.40 mg of H_2O .

Calculate the empirical formula of the compound

TEE Questions

17. The following is the structural formula of the natural oil geraniol.

Which one of the following statements about geraniol is false?

- A *Cis/trans* isomerism can occur about each of the double bonds.
- B It is an alcohol
- C It will decolourise a water-solution containing potassium permanganate and sulfuric acid.
- D It will decolourise bromine water.
- E With controlled oxidation, the CH₂OH group of geraniol can be converted into COOH.

- 18. Only one of the following is a correct formula. Which is it?
 - A $CH_3 OH CH_2 CH_3$
 - $B \qquad CH_3 CH_2 = CH_2 CH_3$
 - $C CH_3 CH_3 CH CO C(CH_3)_3$
 - D $CH_3 CH_2 NH_2 CH = CH_2$
 - E $(CH_3)_2CH_2$
- 19. Which one of the following compounds can be oxidised to form a ketone?
 - A CH₃OH

- B CH₃CH₂OH
- C CH₃CH₂CH₂OH

- D CH₃CH₂CHOHCH₃
- E (CH₃)₃COH
- 20. The following is part of the structure of a polymer.

Draw a structural formula for each of the monomers needed to produce the polymer. $^{\rm H}$

- 21. A pure substance 'A' is a colourless liquid which boils at 57°C and has a strong odour. 'A' burns readily in air leaving no ash, and qualitative analysis shows that nitrogen, sulfur, and the halogens are absent. It may thus be concluded that 'A' contains the elements carbon and hydrogen and possibly oxygen.
 - a) In an experiment, 0.6047 g of 'A' is burnt in a current of dry air, and 1.078 g of carbon dioxide and 0.441 g of water are produced. Calculate the empirical formula of 'A'.
 - b) At 100°C and 1.00 atm pressure, 0.1367 g of 'A' evaporates to occupy a volume of 57 mL. Calculate the molecular weight of 'A'.
 - c) What is the molecular formula of 'A'?
 - d) A nuclear magnetic resonance spectrum of 'A' indicates that all the H atoms in 'A' are in methyl groups. Draw the structural formula for 'A'.
- 22. Many compounds have the empirical formula C_3H_6O . Draw the structural formulae for a ketone, an aldehyde, a carboxylic acid and an ester which have this empirical formula. Name each compound.

	Structure	Name
A ketone		
An aldehyde		
A carboxylic acid		
An ester		

- 23. Draw a structural formula for a section of the polymer that is made from the monomer vinyl chloride (chloroethene), CH₂CHCl. The section must contain at least 6 carbon atoms. All bonds must be shown.
- 24. A pure substance 'A' is a white solid, melting at 153°C, which is found by qualitative analysis to contain carbon and hydrogen. With no simple test for oxygen available, it can be assumed oxygen might be present. When 0.8062 g of 'A' is burnt in a current of dry oxygen, 1.110 g of carbon dioxide and 0.303 g of water are produced. Calculate the empirical formula of 'A'.

25. Which one of the following is the formula of an aromatic compound?

26. Which one of the following substances can be made from just the materials listed?

Substance Starting materials propanoic acid, ethanol, and concentrated sulfuric acid A propyl ethanoate propanoic acid, potassium permanganate, and dilute sulfuric acid В propanal C dichloroethane and a catalyst polyvinyl chloride concentrated sodium hydroxide solution and glycerol D soap ethanal, sodium dichromate, and dilute sulfuric acid ethanoic acid

27. Write equations for any reactions that occur in the following procedures.

In each case describe in full what you would observe, including any

- * gases evolved (give the colour or describe as colourless)

If a reaction occurs but the change is not visible, you should state this.

- a) A little concentrated sulfuric acid is added to a mixture of methanol and acetic acid (ethanoic acid) and the mixture is heated.
- b) Dilute hydrochloric acid is added to sodium acetate (sodium ethanoate) solution.
- 28. Identify by name or formula an example of each of the following.
 - a) A diprotic acid
 - b) A colourless redox primary standard
 - c) An aromatic acid
 - d) A negatively charged complex ion

29. Stearate ion is present in soapy water, and has the following structure

$$CH_3(CH_2)_{16} - C \begin{pmatrix} & O \\ & & O \end{pmatrix}$$

Draw the structural formula for the organic species that is produced when 1 mol $\rm L^{\text{--}1}$ HCl is added to the soap solution.

30. Work out the equation for the reaction that occurs when propan-2-ol is warmed with water-solution containing potassium dichromate and sulfuric acid.

Oxidation half-equation	
Reduction half-equation	
Redox equation	

31. For each of the following pairs of compounds, describe a chemical test to distinguish between them. Give all the steps, but equations are not required.

	Your chemical test. Describe fully	What you would observe in each case
Cu(NO ₃) ₂ and CuSO ₄		with Cu(NO ₃) ₂ with CuSO ₄
MgCl ₂ and ZnCl ₂		with MgCl ₂ with ZnCl ₂
CH ₃ CH ₂ OH and CH ₃ COOH		with CH₃CH₂OH with CH₃COOH

32. Work out the equation for the reaction that occurs when ethanal (acetaldehyde) is warmed with water-solution containing potassium dichromate and sulfuric acid.

Oxidation half-equation

Reduction half-equation

Redox equation

33. One or more of the following compounds can be used industrially to produce a polymer.

Draw a structural formula showing part of this polymer, including in your diagram as least four monomer units.

34. Write the systematic (IUPAC) name of each of the following:

b)
$$CH_3 - CH_2 - C = O$$

 $|$
 $O - CH_2 - CH_3$

35. The following diagram shows part of a polymer molecule

- a) Draw structural formula for the two monomer molecules which combine to form the polymer.
- b) Name the type of polymerisation process involved.
- c) Give the formula of the substance which is produced in the polymerisation, besides the polymer.
- 36. a) A pure compound, which is a colourless liquid at room temperature, boils at 138°C, and analysis shows it to contain 90.49% carbon and 9.48% hydrogen by mass. Calculate the empirical formula of the compound.
 - b) Explain why the empirical formula calculated in a) cannot be its molecular formula.
 - c) A known mass of the liquid is vaporised, and from the volume of gas produced the molecular weight of the compound is calculated to be about 105. What is the molecular formula of the compound.
- d) The odour of the liquid, and the smoky flame when a sample is burned, indicates that the compound is aromatic.

 Draw one of the four possible structural formulae for the compound.

37. Which one of the following is an esterification reaction?

$$A \hspace{0.5cm} CH_3CH_2CH_3 \hspace{0.2cm} + \hspace{0.2cm} Br_2 \hspace{0.2cm} \rightarrow \hspace{0.2cm} CH_3CH_2CH_2Br \hspace{0.2cm} + \hspace{0.2cm} HBr$$

B
$$CH_3COOH + CH_3OH \rightarrow CH_3COOCH_3 + H_2O$$

$$C \quad CH_3CHCH_2 \quad + \quad HBr \quad \rightarrow \quad CH_3CH_2CH_2Br$$

$$D \quad CH_3COOCH_3 \ + \ OH^- \ \rightarrow \ CH_3COO^- + \ CH_3OH$$

E
$$CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$$

38. Which two of the following substances are commonly used in the manufacture of soap?

I A long chain fatty acid II A natural oil
III Sodium hydroxide IV Stearic acid

A I and II B I and III C II and III

D II and IV E III and IV

39. Which of the following could be used for cleaning purposes?

I CHCl₃ II A water solution of NH₃ III A water solution of CH₃(CH₂)₁₆COONa

A I only B II only C III only

D I and II only E All of them

40. Examine this section of the structure of an addition polymer.

Which one of the following compounds could polymerise to form this chain?

A $CH_3 - C = CH_2$ CI

- B $CH_3 CH = CH$ | Cl
- $\begin{array}{ccc} C & CH_2 = CH CH_2 \\ & | \\ & Cl \end{array}$

- $\begin{array}{ccc} D & CH_2 = C CH = CH \\ & | & | \\ Cl & Cl \end{array}$
- E $CH_2=C-CH=CH_2$ |
 Cl

41. Which one of the following is the correct classification of the molecule depicted here?

$$\begin{array}{c|c} HO-C-CH_2-CH_2-O-C-CH_3\\ \parallel & \parallel\\ O & O \end{array}$$

- A Alcohol and aldehyde
- C Carboxylic acid and ketone
- E Dicarboxylic acid
- B Alcohol and ketone
- D Carboxylic acid and ester
- - a) Which of the labelled arrows (A, B, C) on the diagram above indicates
 - i) the part of the ion where delocalised electrons may be found
 - ii) a hydrophobic group
 - III) a hydrophilic group?
 - b) i) What common substances contain such an ion?
 - ii) In one or two sentences, state how the properties of this ion relate to its use.
- 43. An unknown organic compound Q is known to be a simple carboxylic acid. Its molecular weight is known to be 74.
 - a) Draw a complete structural formula for the compound Q including all hydrogen atoms.

Give the IUPAC name.

b) Draw the structure of an ester which is isomeric with the unknown compound Q.

Give the IUPAC name for the ester.

44.	Substance A has the empirical formula C_2H_4O and is immiscible with water. When A is heated with 6 mol L ⁻¹
	sodium hydroxide solution, two substances B and C are produced. When C is treated with an acidified solution of
	potassium permanganate, a monoprotic acid D is formed. When D is neutralised with sodium hydroxide solution
	more substance B is produced. If the molecular weight of B is 82, write the names of substances A, B, C and D.

Substance A: Substance B:

Substance C: Substance D:

ANSWERS

- 1. a) alcohol, 5-methylheptan-3-ol c) aldehyde. 2,4,4,5-tetramethylhexanal
 - e) carboxylic acid, octanoic acid
 - g) ketone, octan-2-one

- b) aldehyde, 3-ethylpentanal

- d) carboxylic acid, 2-bromobutanoic acid
 f) carboxylic acid, 2-ethylpentanoic acid
 h) ketone, 1-chloro-4-methylpentan-2-one

- 2. a) CH₃ CH₂ CH₂ CH₂ CHO
 - b) OHCH₃ C CH₂ CH₃ CH_3

- c) Br CH₃ CH C CH₂ CH₂ CH₃ NH₂ CH₂CH₃
- d) Cl CH₃ C CH₂ C CH₂ CH₂ CH₂ CH₃ Ċl Ö
- e) CH₃ CH CH CH₂ CH₂ COOH CH₃ Cl
- 3. a) propanal CH₃ CH₂ CHO
 - c) hexan-3-one CH₃ CH₂ C CH₂ CH₂ CH₃
- b) pentanoic acid CH₃ CH₂ CH₂ CH₂ COOH
- d) no reaction
- e) methylpropanoic acid CH₃ - CH - C - OH
 - CH₃ O
- f) pentan-3-one CH₃ CH₂ C CH₂ CH₃

O

- O 4. a) OH $CH_3CCH_3 + 2H^+ + 2e$ CH₃ CH CH₃ x 5 MnO_4 + $8H^{+}$ Mn^{2+} 4H₂Ox 2 5e O OH
 - $5 \text{ CH}_3 \text{ CH CH}_3 + 2 \text{MnO}_4^- + 6 \text{H}^+$ $5 CH_3 C CH_3 + 2 Mn^{2+}$ 8 H₂O
 - b) $CH_3 CH_2 CH_2 CH_2 OH \rightarrow CH_3 CH_2 CH_2 CHO +$ х3 $Cr_2O_7^{2-} + 14H^+ + 6e \rightarrow 2Cr^{3+} + 7 H_2O$

 $3 \text{ CH}_3 \text{ CH}_2 \text{ CH}_2 \text{ CH}_2 \text{ OH} + \text{ Cr}_2 \text{O}_7^{2-} + 8 \text{H}^+ \rightarrow 3 \text{ CH}_3 \text{ CH}_2 \text{ CH}_2 \text{ CHO} + 2 \text{Cr}^{3+} + 7 \text{ H}_2 \text{O}$

 $CH_3 CH_2 CH_2 CHO + H_2O \rightarrow$ CH₃ CH₂ CH₂ CCOOH + $2H^{+}$ c) + 2e x 5 Mn^{2+} MnO_4 + $8H^+$ + 5e → $4H_2O$ x 2

 $5 \; CH_{3} \; CH_{2} \; CH_{2}$

- d) no reaction
- CH₃ CH₂ CH₂OH + H₂O CH₃CH₂ COOH + x 3 $Cr_2O_7^{2-} + 14H^+ + 6e$ $2Cr^{3+} + 7 H_2O$ x 2

 $3 \text{ CH}_3 \text{CH}_2 \text{CH}_2 \text{OH} + 2 \text{Cr}_2 \text{O}_7^{2-} + 16 \text{H}^+ \rightarrow 3 \text{ CH}_3 \text{CH}_2 \text{COOH} + 4 \text{Cr}^{3+} + 11 \text{ H}_2 \text{O}_7^{3-} + 16 \text{ H}_7^{3-} + 16 \text{ H}_7^{3-$

- 5. $CH_3 - C - O - CH_2 - CH_2 - CH_3$ 1-propyl ethanoate a) 0
 - CH_3 CH_2 CH_2 C O CH_2 CH_3 ethyl butanoate b) O

5(cont) c) CH₃ CH₂ CH₂ COO CH₃ methyl butanoate

- 6. a) ethyl pentanoate b) 1-propyl propanoate c) ethyl butanoate d) 1-propyl methanoate
- 7. a) $CH_3 C O CH_2 CH_2 CH_3$ b) $CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3$ \parallel O
- 8. a) CH₃ COOH + CH₃OH b) CH₃ CH₂ COO⁻ Na⁺ + CH₃ CH₂ CH₂OH
- 9. a) $CH_3 CH_2 CH_2 OH$ $CH_3 CH CH_3$ $CH_3 O CH_2 CH_3$ propan-1-ol OH (an ether) propan-2-ol

 - 1-hydroxyprop-3-ene OH OH
 (or prop-3-ene-1-ol) 2-hydroxyprop-1-ene (or prop-1-ene-2-ol) (or prop-1-ene-1-ol)
 - c) $CH_3 CH_2 COH$ $CH_3 CO CH_3$ $H CO CH_2 CH_3$ \parallel O O O propanoic acid $CH_3 COCH_3$ CH_3 CH_3 CH

Also, a series of compounds with - one double bond and two alcohol groups - a three membered ring and two alcohol groups

- one alcohol group and an aldehyde or ketone group

- 10. a) CCl₂ CCl₂ CCl₂ CCl₂ CCl₂ CCl₂ -

- 11. a) $-C CH_2 CH_2 C O CH_2 O C CH_2 CH_2 C O CH_2 O$ $\parallel \qquad \parallel \qquad \parallel \qquad \parallel \qquad \parallel \qquad \parallel \qquad 0$ $O \qquad O \qquad O$
- 12. a) $CH = CH_2$ b) CH_3 | CH = CHCI

12 (cont) d)
$$HO$$
 - CH - CH_2 - OH \mid Cl

HOOC - CH₂ - CH₂ - CH₂ - COOH

- b) detergent
- c) fat
- d) soap
- e) fatty acid

14 a) C_6H_6

13. a) glycerol

(benzene)

- 15. a) C_6H_7N
- b) C_6H_7N
- NH_2 c)

- 16. C₃H₃O
- 17. A
- 18. Е
- 19. D

20.

- 21. a) moles of $CO_2 = 1.078/44.01 = 0.02449 = moles of C in 'A'$ moles of $H_2O = 0.441/18.016 = 0.02448$ so, moles of H in 'A' = 2 x 0.02448 = 0.0490 mass of C present = $0.02449 \times 12.01 = 0.2941 g$ mass of H present = $1.008 \times 0.0490 = 0.04939 \text{ g}$ mass of O present = 0.6047 - (0.2941 + 0.04939) = 0.2612 gmole of O present in 'A' = 0.2612/16.0 = 0.01632moles ratio = C : H : O = 0.02449 : 0.0490 : 0.01632 = 1.50 : 3.00 : 1 = 3 : 6 : 2i.e. the **empirical formula is** $C_3H_6O_2$
 - b) PV = nRT n = 0.001862molar mass = $0.1367/0.001863 = 73.38 \text{ g mol}^{-1}$ i.e. **molecular weight = 73.4**
 - c) molecular formula = n x empirical formula i.e. $n = 73.4/74 \approx 1$ so molecular formula = $C_3H_6O_2$
 - $CH_3 C O CH_3$ O
- 22.

	Structure	Name
A ketone	$CH_3 - C - CH_3$	propanone
An aldehyde	CH ₃ – CH ₂ – CH	propanal
A carboxylic acid	$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - C - OH$	hexanoic acid
	 O	
An ester	$CH_3 - CH_2 - CH_2 - CH_2 - C - O - CH_3$	methyl
		pentanoate
	0	

24. moles of $CO_2 = 1.110/44.01 = 0.02522 = moles of C in 'A'$ moles of $H_2O = 0.303/18.016 = 0.01682$ so, moles of H in 'A' = $2 \times 0.01682 = 0.03364$ mass of C present = $0.02522 \times 12.01 = 0.3029 \, g$ mass of H present = $1.008 \times 0.03364 = 0.03391 \, g$ mole of O present in 'A' = 0.4695/16.0 = 0.02934 moles ratio = $C: H: O = 0.02522: 0.03364: 0.02934 = 1: 1.33: 1.16 = 6: 7.98: 6.983 <math>\approx 6: 8: 7$

i.e. the empirical formula is C₆H₈O₇

- 25. B 26. E
- 27. a) $CH_3COOH(l) + CH_3OH(l) \rightarrow CH_3COOCH_3(l) + H_2O(l)$ sweet smelling odour produced, mixture remains colourless
 - b) $CH_3COO^{-}(aq) + H^{+}(aq) \rightarrow CH_3COOH(aq)$ solution remains colourless, vinegar-smelling odour produced.
- 28. a) sulfuric acid
- b) oxalic acid
- c) benzoic acid

- d) tetrahydroxozincate ion
- 29. CH₃(CH₂)₁₆ C OH
- 30.

Oxidation half-equation $CH_3CHOHCH_3 \rightarrow CH_3COCH_3 + 2H^+ + 2e$
Reduction half-equation $Cr_2O_7^{2-} + 14H^+ + 6e \rightarrow 2Cr^{3+} + 7H_2O$
Redox equation $Cr_2O_7^{2-} + 8H^+ + 3CH_3CHOHCH_3 \rightarrow 2Cr^{3+} + 7H_2O + 3CH_3COCH_3$

31.

	Your chemical test. Describe fully	What you would observe in each case
Cu(NO ₃) ₂ and	Dissolve both in water, add a solution of barium nitrate to each	with Cu(NO ₃) ₂ - no precipitate forms with CuSO ₄ - precipitate forms
CuSO ₄		
MgCl ₂	Dissolve both in water, then slowly add a solution	with MgCl ₂ - a white precipitate forms
and ZnCl ₂	of sodium hydroxide to each	with ZnCl ₂ - a white precipitate forms, but it then dissolves when excess NaOH
		is added. with CH ₃ CH ₂ OH - litmus not affected
CH₃CH₂OH	Test both with moist blue litmus paper	with C113C112O11 - Intilius not affected
and CH₃COOH		with CH₃COOH - litmus turns red

32.

Oxidation half-equation	$CH_3CHO + H_2O \rightarrow CH_3COOH + 2H^+ + 2e$
Reduction half-equation	$Cr_2O_7^{2-} + 14H^+ + 6e \rightarrow 2Cr^{3+} + 7H_2O$
Redox equation $Cr_2O_7^2$	$^{-} + 8H^{+} + 3CH_{3}CHO \rightarrow 2Cr^{3+} + 4H_{2}O + 3CH_{3}COOH$

- 34. a) 4-methylhexanal
- b) ethyl propanoate
- c) butanal
- d) 1-propyl methanoate

35. a)
$$HO - CH_2CH_2 - OH$$

$$\begin{array}{ccc} HO-C-CH_2CH_2-C-OH \\ \parallel & \parallel \\ O & O \end{array}$$

- b) condensation
- c) H₂O
- 36. a) C : H = 90.49/12.01 : 9.48/1.008 = 7.53 : 9.40 = 1 : 1.25 = 4 : 5 i.e. the **empirical formula is C**₄**H**₅
 - b) Hydrocarbons have an even number of hydrogens (or there would be an uneven number of electrons in this molecule)
- 36. c) molecular formula = $n \times m$ empirical formula so **molecular formula** = C_8H_{10}

i.e.
$$n = 105/53 \approx 2$$

d) CH₂CI

37. B

- 38. C
- 39. E

40. A

41. D

- 42. a) i) B
- ii) A
- iii) C

- b) i) detergents
 - ii) When a detergent is added to washing water, the surfactant molecules surround the grease and oil with the non-polar "tails" attached to the grease, and the polar ends left exposed to the water. With agitation, small grease blobs surrounded by detergent ions are produced. These blobs are able to mix, and possibly dissolve in the water because they act as polar substances (due to the polar ends of the ions projecting from them). Thus, the grease can be rinsed away.
- 43. a) It is a carboxylic acid containing 3 C atoms i.e.

name: methyl ethanoate

- 44. Substance A: ethyl ethanoate
 - Substance C: ethanol

- Substance B: sodium ethanoate
- Substance D: ethanoic acid