Series, Backward Shift Operator, Invertibility and Duality

Тест, 10 вопроса

1.

Determine if the geometric series is convergent or divergent, and find the sum of the series if it is convergent.

$$-3 + \frac{3}{2} \quad \frac{3}{4} + \frac{3}{8} \quad \dots$$

- It is divergent.
- It is convergent, and the sum is $\frac{1}{2}$.
- lacksquare It is convergent, and the sum is -2.

1 Баллы

2

Express the rational function as a geometric series: $\frac{4}{1+x}$

$$4(1-x+x^2-x^3+...)$$

1 Баллы

3.

Express the following model by utilizing Backward shift operator.

$$X_t = 0.5X_{t-1} + Z_t + 0.7Z_{t-1}$$

$$(1+0.5B)X_t = (1-0.7B)Z_t$$

Series, Backward Shift Operator, Invertibility and Duality

Тест, 10 вопроса

1 Баллы

4

We write the model $X_t = X_{t-1} + 2X_{t-2} + Z_t$ as $\phi(B)X_t = Z_t$. What is $\phi(B)$?

- $\phi(B) = (1-B)(1+2B).$
- $\phi(B) = (1+B)(1-2B).$

1 Баллы

5.

Is the following process invertible?

$$X_t = Z_t + 3Z_{t-1}$$

- \bigcirc It is an invertible process since the coefficient **3** is larger than **1**.
- It is not an invertible process.

1 Баллы

6.

For what values of the heta, the process $X_t = Z_t - heta Z_{t-1} - 6 heta^2 Z_{t-2}$ is an invertible process.

- $|\theta| < \frac{1}{3}$
- $|\theta| > \frac{1}{3}$
- $|\theta|<rac{1}{2}$

1 Баллы

Series, Rackward Shift Operator, Investibility and Duality

Тест, 10 вопроса

It is not a stationary process.

It is a stationary process.

8

Find all possible values of eta so that the AR(2) process $X_t = 2 eta X_{t-1} - eta^2 X_{t-2} + Z_t$ is stationary.

1 Баллы

9

Determine if the process is stationary, invertible or both: $X_t = 0.5 X_{t-1} + Z_t + 4 Z_{t-1}$

- Invertible but not stationary.
- Stationary but not invertible.
- Stationary and invertible.
- Neither stationary nor invertible.

1 Баллы

10.

Find all values of β and θ such that duality exists for the following process, i.e., it is stationary an invertible: $X_t = \beta^2 X_{t-1} + Z_t + 8\theta^3 Z_{t-1}$.

$$igcirc$$
 $|eta| < 1$ and $| heta| < rac{1}{2}$

$$|eta| < 1$$
 and $| heta| > rac{1}{2}$

что отправка работь				
•		й не мной, мох	кет привести к то	ому, что курс не будет
•	·			
Ф. И. О. (как в удосто	верении личн			
_	льше о Кодексе честі	аккаунт Coursera заблокирован. пьше о Кодексе чести Coursera Ф. И. О. (как в удостоверении личн	пьше о Кодексе чести Coursera	льше о Кодексе чести Coursera

