4 EXERCICES D'APPLICATION

Exercice 59 (Emballage de cadeau). On cherche à emballer un cadeau en forme de parallélépipède de dimensions strictement positives a, b et c:

- 1. Exprimer en fonction de a, b et c la surface latérale S du parallélépipède et son volume V.
- 2. À volume V > 0 donné, comment choisir a, b et c pour minimiser la surface latérale du cadeau? Indication: on pourra tout d'abord considérer a fixé puis choisir b et c de sorte à minimiser la surface du cadeau, puis choisir la valeur de a permettant d'optimiser cette surface minimale.
- 3. À surface S > 0 donnée, comment choisir a, b et c de sorte à maximiser le volume du cadeau ? Indication : on pourra mettre en évidence un lien entre ce problème et le précédent.
- **Exercice 60** (Interprétation mécanique des résultats du cours). On considère un solide en déplacement le long d'un axe gradué et orienté et dont on repère la position au temps $t \in \mathbb{R}$ par un réel noté s(t). On suppose que la fonction $t \mapsto s(t)$ est dérivable et on note $v: t \mapsto s'(t)$ sa dérivée. Pour tout $t \in \mathbb{R}$, on appelle v(t) la vitesse instantanée du solide au temps t.
 - 1. Donner une approximation de la position du solide au temps t = 1,01 si s(1) = 2 et v(1) = 4.
 - 2. Donner une fonction s correspondant à une vitesse constante égale à 3. Une telle fonction est-elle unique?
 - 3. Donner une fonction s associée à la fonction de vitesse instantanée $v:t\mapsto 2t$. Une telle fonction est-elle unique?
 - 4. Partant d'une ville A, je me déplace en voiture le long d'une route menant à une ville B distante de 100 kilomètres. De quels résultats du cours les affirmations suivantes sont-elles des corollaires?
 - (a) Si j'atteins la ville B, il existera un instant où je me serai trouvé à 50 kilomètres de la ville A.
 - (b) Si je rebrousse chemin et retourne dans la ville A, il existera un instant auquel ma vitesse par rapport à l'axe de la route sera nulle.

- (c) Il existe un instant auquel mon compteur de vitesse affichera un nombre égal à ma vitesse moyenne sur le trajet.
- (d) Si la vitesse affichée par le compteur est toujours inférieure à 50 km/h, il me faudra au minimum 2 heures pour atteindre la ville B.
- 5. Imaginer un dispositif embarqué permettant d'évaluer la vitesse v(t) d'une voiture à chaque instant $t \in \mathbb{R}$. Cette estimation est-elle exacte?
- 6. Comment pourrait-on définir l'accélération instantanée a(t) d'un solide au temps t?
- 7. Donner une fonction s correspondant à une accélération constante égale à -10.
- 8. On considère une balle de tennis de masse m=0,06 kilogrammes lancée verticalement à partir de l'altitude s(0)=1 mètre, avec une vitesse initiale de v(0)=20 mètres par seconde. On note s(t) l'altitude de la balle (en mètres) au temps $t\geqslant 0$ (en secondes). La deuxième loi de Newton, ou principe fondamental de la dynamique, stipule que l'accélération a(t) de la balle au temps t vérifie approximativement l'égalité suivante (dont l'unité est le m.s⁻²) :

$$a(t) \approx -10$$

tant que la balle n'a pas touché le sol.

Calculer l'altitude maximale atteinte par la balle et le temps auquel elle touchera le sol.

est accrochée à un ressort vertical dont l'extrémité haute est fixée (voir figure ci-contre). On appelle position d'équilibre de la boule la position de la boule lorsque le système est au repos. À l'instant t=0, on tire la boule vers le bas sur une longueur $x_0 \ge 0$, puis on la relâche avec une vitesse nulle. À chaque instant $t \ge 0$, on note x(t) le déplacement de la boule vers le bas par rapport à la position d'équilibre (on a donc $x(0) = x_0$ et x'(0) = 0).

En négligeant les frottements, des considérations physiques permettent d'établir que x est dérivable, que x' l'est aussi et que l'on a l'équation du mouvement suivante :

$$mx''(t) = -kx(t),$$

où k est une constante positive (appelée constante de raideur du ressort).

1. Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que la fonction $y: t \mapsto \lambda \cos\left(\sqrt{\frac{k}{m}}t\right)$ vérifie $y(0) = x_0$ et y'(0) = 0.

- 2. Montrer que la fonction y ainsi définie vérifie $(y-x)'' = -\frac{k}{m}(y-x)$.
- 3. Que vaut la dérivée de la fonction $((y-x)')^2 + \frac{k}{m}(y-x)^2$?
- 4. En déduire que x(t) = y(t) pour tout $t \ge 0$.
- 5. Les variations asymptotiques de x en fonction de t vous semblent-elles crédibles?
- **Exercice 62** (Microéconomie du producteur). Une entreprise en situation de monopole vend un bien sur un marché en fixant librement son prix $p \ge 0$. L'entreprise dispose d'une fonction de demande D, c'est-à-dire qu'elle est capable de prédire la demande D(p) (non nécessairement entière) qui lui est adressée en fonction du prix p pratiqué.
 - 1. On considère tout d'abord que le coût marginal de production d'une unité de bien supplémentaire est nul.
 - (a) Donner des exemples de situations concrètes correspondant à ce choix de modélisation.
 - (b) Calculer le prix maximisant le profit pour l'entreprise dans les cas suivants :

(i)
$$D(p) = \max(100 - p, 0)$$

(iv)
$$D(p) = \max(100 - p^2, 0)$$

(ii)
$$D(p) = \max(100 - 4p, 0)$$

(iii)
$$D(p) = \max(200 - p, 0)$$

(v)
$$D(p) = \frac{100}{100 + p^2}$$

- (c) Commenter les différences entre les résultats obtenus dans les trois premiers cas.
- 2. On considère à présent que le coût marginal de production d'une unité de bien supplémentaire est égal à $10 \in$.
 - (a) Donner des exemples de situations concrètes correspondant au choix d'un coût marginal constant.
 - (b) Calculer le prix maximisant le profit pour l'entreprise dans les cas suivants :

(i)
$$D(p) = \max(100 - p, 0)$$

(iv)
$$D(p) = \max(500 - p^2, 0)$$

(ii)
$$D(p) = \max(100 - 4p, 0)$$

(iii)
$$D(p) = \max(200 - p, 0)$$

$$(v) D(p) = \frac{100}{100 + p^2}$$

- 3. On suppose à présent que l'entreprise fait face à un coût marginal croissant, et que le coût total de production d'une quantité $q \ge 0$ de bien est $C(q) = q^2$.
- 4. Vérifier que le coût marginal C' associé à la fonction de coût est bien croissant.
 - (a) Donner des exemples de situations concrètes correspondant à un coût marginal croissant.
 - (b) Vérifier que le coût marginal C' associé à la fonction de coût est bien croissant.

- (c) Déterminer le prix maximisant le profit du producteur et la quantité échangée associée lorsque $D(p) = \max(100 p, 0)$.
- 5. On considère enfin que l'entreprise produit des biens de luxe dont le coût marginal de production est égal à $9\,000\,$, et que sa fonction de demande est définie par $D(p) = \max\left(5p \frac{p^2}{3000}, 0\right)$.
 - (a) Comment interpréter l'allure de la courbe de demande?
 - (b) Calculer le prix maximisant le profit du producteur.
- **Exercice 63** (Microéconomie du consommateur). Un consommateur peut consommer deux biens 1 et 2 en quantités respectives $x \ge 0$ et $y \ge 0$. Il en retire alors un niveau de satisfaction (ou d'utilité) u(x,y), où la fonction $u: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ est la fonction d'utilité de Cobb-Douglas donnée par

$$\forall x, y \in \mathbb{R}_+, \quad u(x, y) = x^{\alpha} y^{\beta}$$

avec $\alpha > 0$ et $\beta > 0$, en convenant du fait que $0^{\alpha} = 0^{\beta} = 0$.

Si $(x,y) \in (\mathbb{R}_+^*)^2$, on définit l'*utilité marginale du bien 1* (au point (x,y)), que l'on note $u_{m,1}(x,y)$, comme le nombre dérivé de la fonction $t \mapsto u(t,y)$ en x, et on définit l'utilité marginale du bien 2 (au point (x,y)), notée $u_{m,2}(x,y)$, comme le nombre dérivé de la fonction $t \mapsto u(x,t)$ en y.

- 1. Interpréter les utilités marginales en termes économiques, puis les calculer.
- 2. À quelle condition sur α (resp. β) peut-on dire que l'utilité marginale de x (resp. y) est décroissante? Comment interpréter cette propriété en termes économiques?

On considère que le prix du bien 1 est $p_1 > 0$, que le prix du bien 2 est $p_2 > 0$ et que le consommateur dispose d'un revenu R > 0, si bien qu'il fait face à la contrainte de budget suivante :

$$p_1x + p_2y \leqslant R$$
.

Le problème du consommateur revient alors à choisir le panier de biens $(x, y) \in (\mathbb{R}_+)^2$ qui maximise son utilité u(x, y) tout en satisfaisant la contrainte de budget.

- 3. Montrer que le consommateur a intérêt à saturer la contrainte de budget, c'est-à-dire à choisir un panier de biens (x, y) tel que $p_1x + p_2y = R$.
- 4. En exprimant y en fonction de x grâce à la contrainte de budget saturée, reformuler le problème comme la maximisation d'une fonction d'une variable.
- 5. Déterminer le panier de biens (x^*, y^*) répondant au problème du consommateur.
- 6. Commenter la formule donnant x^* en fonction des paramètres du modèle. On montrera notamment que la part du revenu allouée à la consommation du bien 1 à l'optimum ne dépend pas de p_1 .

Exercice 64 (Un modèle épidémiologique). On souhaite étudier la propagation d'une épidémie au sein d'une population de N > 0 individus (N étant un nombre non nécessairement entier), composée au temps $t \ge 0$ d'un nombre S(t) d'individus sains (aussi dits *susceptibles*) et d'un nombre I(t) := N - S(t) d'individus infectés.

On modélise cette situation par des fonctions dérivables $S: \mathbb{R} \to [0, N]$ et I:=N-S vérifiant l'équation différentielle

$$\forall t \in \mathbb{R}, \quad S'(t) = \gamma I(t) - \frac{\beta I(t)S(t)}{N},$$
 (*

où $\beta, \gamma \in \mathbb{R}_+^*$. On admet que de telles fonctions existent.

- On modélise ici la population de façon continue plutôt que discrète, au sens où le nombre d'individus qui composent les différentes sous-populations évolue dans \mathbb{R} plutôt que dans \mathbb{N} . Ce choix de modélisation, outre qu'il permet l'utilisation des dérivées, a du sens si l'on considère par exemple que la population considérée est comptée en milliards d'individus.
- 1. On interprète le paramètre β comme le taux de contact infectieux entrepris par un individu infecté et le paramètre γ comme le taux instantané de rémission d'un individu infecté. Interpréter l'équation (*).
- 2. On suppose tout d'abord que $\beta < \gamma$.
 - (a) Montrer que S est croissante.
 - (b) Montrer que S'(t) ne peut pas admettre une limite strictement positive lorsque $t \to +\infty$. Indication: raisonner par l'absurde, justifier l'existence d'un $A \in \mathbb{R}$ et d'un $\varepsilon > 0$ tels que $S'(x) \geqslant \varepsilon$ pour tout $x \geqslant A$, puis utiliser le théorème des accroissements finis entre A et x.
 - (c) Montrer que S(t) tend vers N lorsque $t \to +\infty$.

 Indication: on justifiera d'abord l'existence d'une limite pour S en $+\infty$, puis on montrera que cette limite vaut N en raisonnant par l'absurde à l'aide de l'équation (*).
 - (d) Quelle est l'évolution à long terme du nombre d'individus infectés dans la population?
- 3. On suppose à présent que $\beta > \gamma$. On suppose aussi que $S(0) \in]\frac{\gamma}{\beta}N, N[$ et on définit la fonction G de la façon suivante :

$$orall x \in \left] rac{\gamma}{eta} N, N \right[\ , \quad G(x) = rac{1}{eta - \gamma} \left(\ln(N - x) - \ln\left(x - rac{\gamma}{eta} N
ight)
ight).$$

- (a) On admet que $G \circ S$ est bien définie, c'est-à-dire que S prend ses valeurs dans $\left] \frac{\gamma}{\beta} N, N \right[$. Montrer que $G \circ S$ est dérivable et que $(G \circ S)' = 1$.
- (b) Montrer qu'il existe $\alpha \in \mathbb{R}$ tel que $(G \circ S)(t) = t + \alpha$ pour tout $t \in \mathbb{R}$, puis déterminer α en fonction de S(0).
- (c) En déduire la forme explicite de S(t) en fonction de t, puis la limite de S(t) quand $t \to +\infty$.
- (d) Quelle est l'évolution à long terme du nombre d'individus infectés dans la population ?

- 4. À partir des deux cas considérés ci-dessus, expliquer le rôle du facteur $R_0 := \frac{\beta}{\gamma}$, appelé nombre de reproduction de base, dans la dynamique à long terme d'une épidémie.
- 5. On suppose dans un troisième temps que $\beta < \gamma$ mais que l'on parvient à vacciner une fraction $p \in [0,1]$ de la population, ce qui conduit à rendre une proportion p des individus non atteignables par l'épidémie.
 - (a) Justifier que l'équation différentielle suivie par S est à présent

$$\forall t \in \mathbb{R}, \quad S'(t) = \gamma I(t) - \frac{\beta(1-p)I(t)S(t)}{N} = I(t) \left(\gamma - \beta(1-p)\frac{S(t)}{N}\right). \tag{**}$$

(b) Montrer que la proportion de la population qu'il est nécessaire de vacciner pour que l'épidémie s'éteigne d'elle-même dans le cadre du modèle considéré vaut

$$p^* = 1 - \frac{1}{R_0}.$$

- (c) Dans le cas de l'épidémie de COVID-19, le paramètre R_0 a parfois été estimé à 2, 5. Que vaut p dans ce cas?
- (d) Le modèle considéré est-il adapté pour décrire l'évolution de l'épidémie de COVID-19?