

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT
PROF. DR. PETER MÜLLER

Skript zur Vorlesung

Analysis I Analysis einer Variablen

Wintersemester 2019/20

Inhaltsverzeichnis

1	Gru	ndlagen	5			
	1.1	e e	5			
	1.2	Mengen, Relationen, Funktionen	7			
2	Aufl	Aufbau des Zahlensystems				
	2.1	Die natürlichen Zahlen \mathbb{N}	6			
	2.2	Die ganzen Zahlen $\mathbb Z$	0			
	2.3	Die rationalen Zahlen \mathbb{Q}	2			
	2.4	Endliche Summen	6			
	2.5	Folgen, Grenzwerte und Reihen	9			
	2.6	Die reellen Zahlen \mathbb{R}	8			
	2.7	Die komplexen Zahlen $\mathbb C$	1			
	2.8	Mächtigkeit von Mengen	5			
3	Steti	ge Funktionen 5	9			
	3.1	Funktionen von und nach \mathbb{R} oder \mathbb{C}				
	3.2	Limes einer Funktion				
	3.3	Stetigkeit				
	3.4	Eigenschaften stetiger Funktionen				
	3.5	Gleichmäßige Konvergenz von Funktionenfolgen				
4	Pote	nzreihen und elementare Funktionen 7	•			
•	4.1	Reihen (2. Teil)				
	4.2	Potenzreihen				
	4.3	Exponential funktion				
	4.4	Trigonometrische Funktionen, die Zahl π und Polardarstellung komplexer Zahlen 8				
	4.5	Logarithmus und allgemeine Potenz				
5	D:cc	erenzieren von Funktionen auf $\mathbb R$	_			
3	5.1	Ableitung				
	5.1		_			
		Ableitungsregeln				
	5.3	Eigenschaften differenzierbarer Funktionen	4			
6		grieren von Funktionen auf $\mathbb R$ 10				
		RIEMANN-integrierbare Funktionen				
	6.2	Eigenschaften des Riemann-Integrals	8			

1.1 Aussagenlogik

1.1 Axiom Eine (mathematische) **Aussage** A ist eine Schilderung eines Sachverhalts, der <u>entweder</u> wahr $(A \bowtie w)$ <u>oder</u> falsch $(A \bowtie f)$ ist. Dies wird als 2-wertige Logik oder auch **Bivalenzprinzip** bezeichnet.

1.2 Beispiel

 $A:\iff$ nach Dienstag kommt Mittwoch (": \iff "definiert linke Seite durch rechte Aussage)

Aussage A ist wahr.

 $B :\iff$ alle Autos sind rot

Aussage B ist falsch.

 $C:\iff$ wenn ich im Lotto gewinne, dann spende ich die Hälfte des Gewinns

Aussage C kann wahr oder falsch sein.

1.3 Definition (Verneinung) Sei A eine Aussage. Die Verneinung von A wird mit $\neg A$ ("nicht A") abgekürzt. Diese wird durch die Wahrheitstabelle

$$\begin{array}{c|cc}
A & \neg A \\
\hline
w & f \\
f & w
\end{array}$$

definiert. "Es ist nicht richtig, dass A gilt".

Eine Verknüpfung bildet aus 2 mathematischen Aussagen eine neue.

6

1.4 Definition Seien A, B Aussagen.

• Und-Verknüpfung $A \wedge B$

$A \wedge B$	$B \approx w$	$B \approx f$
$A \simeq w$	w	f
$A \asymp f$	f	f

• Logische Implikation $A \implies B$ (auch: $B \Longleftarrow A$)

"A ist hinreichend für B",

"B ist notwendig für A",

"wenn A wahr, dann auch B wahr"

$$\begin{array}{c|cccc} A \Longrightarrow B & B \asymp w & B \asymp f \\ \hline A \asymp w & w & f \\ A \asymp f & \hline & & \\ & & \uparrow \\ & & , ex falso quodlibet " \end{array}$$

• *Oder-Verknüpfung* $A \vee B$

$$egin{array}{c|cccc} A ee B & B symp & B symp f \\ \hline A symp & w & w \\ A symp f & w & f \\ \hline \end{array}$$

• \ddot{A} quivalenz $A \iff B$

"A ist hinreichend und notwendig für B" "A ist genau dann wahr, wenn B wahr"

$$\begin{array}{c|cccc} A \iff B & B \asymp w & B \asymp f \\ \hline A \asymp w & w & f \\ A \asymp f & f & w \end{array}$$

1.5 Beispiel (a) In Beispiel 1.2 gilt

 $\neg A \iff$ nach Dienstag kommt nicht Mittwoch $(\approx f)$

 $\neg B \iff$ es gibt (mindestens) ein Auto, das nicht rot ist $(\times w)$

(b) Motivation der Definition von " \Longrightarrow ": für alle Aussagen A, B gilt $(A \land B \implies A) \times w$

1.6 Lemma Seien A, B Aussagen. Dann gilt

- (a) Ausgeschlossener Widerspruch $A \land \neg A \asymp f$
- (b) Tertium non datur $A \lor \neg A \asymp w$
- (c) Symmetrie von \land und \lor

$$A \wedge B \iff B \wedge A, \qquad A \vee B \iff B \vee A$$

 $(A \iff B) \iff ((A \implies B) \land (B \implies A))$

(e) Kontraposition $(A \Longrightarrow B) \iff (\neg B \Longrightarrow \neg A)$

(f) $\neg(\neg A) \iff A$

Beweis. Vergleiche Wahrheitstafeln; alle klar bis auf (e):

Der restliche Beweis verläuft analog ⇒ Übung!

- **1.7 Bemerkung** (a) $A : \iff \neg A$ definiert keine mathematische Aussage, da A zugleich wahr und falsch wäre (Lügner-Antinomie von EUBULIDES; 4. Jhd. v. Chr.).
 - (b) **Beweismethoden:** Sei $A \simeq w$. Das Ziel ist zu zeigen, dass dann auch $B \simeq w$.
 - (1) Erkenne $(A \Longrightarrow B) \times w$ (direkter Beweis)
 - (2) Erkenne $(\neg B \implies \neg A) \times w$ (Kontraposition)
 - (3) Erkenne $(\neg B \land A) \approx f$ (Widerspruchsbeweis)

1.2 Mengen, Relationen, Funktionen

- **1.8 Axiom** ("Naives" Axiom von Cantor") Eine **Menge** ist eine Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens zu einem Ganzen. Die Reihenfolge der Zusammenfassung ist dabei irrelevant!
- **1.9 Definition** Seien M, M' Mengen.
 - (a) Element sein

$$x \in M : \iff Objekt \ x \ liegt \ in \ Menge \ M \qquad (oder \ M \ni x)$$

 $x \notin M : \iff \neg(x \in M)$

(b) Teilmenge

$$M' \subseteq M :\iff \forall x \in M' : x \in M$$

,, \forall " lies "für alle"; ":" lies "gilt" oder "so dass"

(alternativ auch: $M \supseteq M'$)

echte Teilmenge

$$M' \subset M :\iff \left(M' \subseteq M \land (\exists x \in M : x \notin M')\right)$$
,,\(\exists' \text{ lies ,,es existiert (mindestens ein)"}\)

Auch gebräuchlich ist die Schreibweise: \subset (Teilmenge), \subsetneq (echte Teilmenge).

¹GEORG CANTOR (1845 – 1918)

(c) Gleichheit von Mengen

$$M = M' : \iff (M \subseteq M') \land (M' \subseteq M)$$

d.h. jedes Element von M liegt auch in M' und umgekehrt – die Mengen bestehen also aus denselben Elementen

$$M \neq M' : \iff \neg (M = M')$$

Im Folgenden Beispiel soll die Schreibweise für Mengen veranschaulicht werden.

1.10 Beispiel • Sei \mathcal{L} die Menge der lateinischen Buchstaben,

$$\mathcal{L} := \{a, b, \dots, z, A, B, \dots, Z\}$$
 aufzählend \uparrow definierende Gleichheit

• Sei *M* die Menge der lateinischen Buchstaben im Wort Mathematik,

$$\mathcal{M} := \{a, M, t, h, e, m, i, k\} = \{\xi \in \mathcal{L} : \Psi(\xi)\},$$
[auch gebräuchlich: $\{\xi \in \mathcal{L} | \Psi(\xi)\}$]

wobei $\Psi(\xi) : \iff$ Buchstabe ξ kommt in "Mathematik" vor.

<u>Konvention</u>: tritt ein Element in der aufzählenden Schreibweise mehrfach auf, so bezeichne dies dieselbe Menge, wie wenn das Element nur einmal gelistet wird, also $\{M, a, t, h, e, m, a, t, i, k\} = \{a, M, t, h, e, m, i, k\}$.

1.11 Definition Seien M, M' Mengen.

- Leere Menge $\varnothing := Menge \ ohne \ Element$
- Schnitt $M \cap M' := \{x : x \in M \land x \in M'\}$
- Vereinigung $M \cup M' := \{x : x \in M \lor x \in M'\}$
- Differenz $M \setminus M' := \{ x \in M : x \notin M' \} =: M'^{\complement}$ Komplement von M' in M
- Kartesisches Produkt $M \times M' := \{ (m, m') : m \in M, m' \in M' \}$ Jedes $(m, m') \in M \times M'$ ist ein geordnetes Paar, das heißt die Reihenfolge ist wichtig! Für $M \neq M'$ gilt deswegen auch $M \times M' \neq M' \times M$.
- **Potenzmenge** von M $\mathscr{P}(M) := \{ L \text{ ist Menge} : L \subseteq M \}$ (auch: 2^M).

1.12 Beispiel (a) \forall Mengen M gilt: $\emptyset \subseteq M$, da

$$\varnothing \subseteq M \iff \forall x \in \varnothing \colon x \in M \iff \forall x \colon (\underbrace{x \in \varnothing \implies x \in M}) \times w$$

$$\iff (x \notin M \implies \underbrace{x \notin \varnothing})$$

- (b) \forall Mengen M gilt: $\emptyset \neq \mathscr{P}(M) \supseteq \{\emptyset, M\}$.
- (c) $\{a,b,c\} \times \{a,d\} = \{(a,a),(a,d),(b,a),(b,d),(c,a),(c,d)\}.$
- **1.13 Lemma** (Rechenregeln für \cup und \cap) Seien L, M, N Mengen
 - (a) Kommutativität:

$$M \cap N = N \cap M$$
, $M \cup N = N \cup M$

(b) Assoziativität:

$$L \cap (M \cap N) = (L \cap M) \cap N =: L \cap M \cap N$$

$$L \cup (M \cup N) = (L \cup M) \cup N =: L \cup M \cup N$$

(c) Idempotenz:

$$M \cap M = M = M \cup M$$

(d) Distributivität:

$$L \cap (M \cup N) = (L \cap M) \cup (L \cap N)$$

$$L \cup (M \cap N) = (L \cup M) \cap (L \cup N)$$

(e) de Morgan-Regeln: Seien $L, N \subseteq M$. Dann gilt

$$(L \cap N)^{\mathbf{c}} = L^{\mathbf{c}} \cup N^{\mathbf{c}}$$
$$(L \cup N)^{\mathbf{c}} = L^{\mathbf{c}} \cap N^{\mathbf{c}}$$

Beweis. Aus den entsprechenden Regeln für \land , \lor , \neg folgen sofort die Aussagen. Als Beispiel die 1. de Morgansche Regel:

$$(L \cap N)^{\complement} = \{ x \in M : \neg (x \in L \cap N) \}$$

$$= \{ x \in M : \neg (x \in L \wedge x \in N) \}$$

$$= \{ x \in M : (x \notin L) \lor (x \notin N) \}$$

$$= \{ x \in M : (x \in L^{\complement}) \lor (x \in N^{\complement}) \}$$

$$= L^{\complement} \cup N^{\complement}$$

Rest: Übung!

1.14 Bemerkung Die naive Definition einer Menge ist problematisch!

Beispiel: RUSSEL'sche Antinomie (ca. 1900).

Axiom 1.8 schließt nicht aus, dass es eine Menge M gibt mit $M \in M$. Definiere dafür zunächst

Menge
$$M$$
 ist **erlaubt** : $\iff M \notin M$.

Sei nun $\mathcal{M} := \{ M \text{ ist Menge} : M \text{ erlaubt} \}$. Frage: ist $\mathcal{M} \text{ erlaubt}$, d.h. gilt $\mathcal{M} \notin \mathcal{M}$?

- Falls ja, also $\mathcal{M} \notin \mathcal{M}$, folgt per Definition von \mathcal{M} , dass $\mathcal{M} \in \mathcal{M}$.
- Falls nein, also $\mathcal{M} \in \mathcal{M}$, folgt per Definition von \mathcal{M} , dass $\mathcal{M} \notin \mathcal{M}$.

Somit erhält man die Aussage $\mathcal{M} \in \mathcal{M} \iff \mathcal{M} \notin \mathcal{M}$. Dies steht aber im Widerspruch $(\frac{f}{4})$ zu Axiom 1.1: Aussage entweder w oder f.

Der Ausweg aus diesem Problem lautet: Man darf die Menge \mathcal{M} nicht bilden, ändere also Axiom 1.8!

- Axiomatische Mengenlehre schränkt erlaubte Aussageformen in Mengendefinition ein → Vorlesung Logik.
- Wir verwenden nur dort erlaubte Aussageformen.

1.15 Definition Seien L, M Mengen, $l \in L, m \in M$.

- Eine Relation \mathcal{R} auf $L \times M$ ist eine Teilmenge $\mathcal{R} \subseteq L \times M$. Falls L = M abkürzend auch: Relation auf M (statt $M \times M$).
- l und m erfüllen \mathcal{R} (in Zeichen: $l\mathcal{R}m$) : \iff $(l,m) \in \mathcal{R}$.
- Die inverse Relation \mathcal{R}^{-1} ist definiert als $\mathcal{R}^{-1} := \{ (m, l) \in M \times L : (l, m) \in \mathcal{R} \}.$

1.16 Beispiel Sei $L:=M:=\{a,b,c\}$ und $\mathcal R$ die Relation "kommt früher im Alphabet als", dann lautet

$$\mathcal{R} = \{(a,b), (a,c), (b,c)\}$$

 $\mathcal{R}^{-1} =$ "kommt später im Alphabet als"

1.17 Definition *Sei M Menge und* \sim *eine Relation auf M*.

 $\bullet \sim \textit{ist \ddot{A}\textit{quivalenzrelation}} :\iff \begin{cases} \textit{reflexiv:} \ \forall m \in M : m \sim m \\ \textit{transitiv:} \ \forall m_1, m_2, m_3 \in M : (m_1 \sim m_2) \land (m_2 \sim m_3) \\ \implies m_1 \sim m_3 \\ \textit{symmetrisch:} \ \forall m, n \in M : m \sim n \iff n \sim m \end{cases}$

• \ddot{A} quivalenzklasse von $m \in M$ bezüglich \sim

$$[m] := \{ m' \in M : m' \sim m \} \subseteq M.$$

Wegen der Reflexivität von \sim gilt stets $[m] \neq \emptyset$.

- $m' \in M$ heißt **Repräsentant** von $[m] :\iff m' \in [m]$.
- $M/_{\sim} := \{ [m] : m \in M \}$ heißt die **Quotientenmenge** von M.
- **1.18 Beispiel** Sei *M* eine Menge.
 - (a) $\sim :=$ "Gleichheit von Teilmengen" ist eine Äquivalenzrelation auf $\mathcal{P}(M)$.
 - (b) Sei $M := \{a, b\}$. $\sim :=$,,hat selbe Anzahl von Elementen wie" ist eine Äquivalenzrelation auf $\mathscr{P}(M)$ mit $[\varnothing] = \{\varnothing\}$, $[\{a\}] = [\{b\}] = \{\{a\}, \{b\}\}\}$ und $[\{a, b\}] = \{\{a, b\}\}$.
 - (c) Die Diagonale $\Delta := \{ (m, m) : m \in M \} \subset M \times M$ definiert eine Äquivalenzrelation auf M mit $[m] = \{m\}$ für alle $m \in M$ und $M/_{\Delta} = \{ \{m\} : m \in M \}$.
- **1.19 Definition** (Gleichheit von Elementen) Sei M eine Menge und $m_1, m_2 \in M$.

$$m_1 = m_2 : \iff m_1 \Delta m_2$$
 und $m_1 \neq m_2 : \iff \neg (m_1 = m_2).$

1.20 Lemma Sei \sim eine Äquivalenzrelation auf M und $m_1, m_2 \in M$. Dann gilt

entweder
$$[m_1] = [m_2]$$
 oder $[m_1] \cap [m_2] = \emptyset$.
 \updownarrow \updownarrow \updownarrow $m_1 \sim m_2$ $m_1 \not\sim m_2$: $\iff \neg (m_1 \sim m_2)$

Beweis. (i) $[m_1] = [m_2] \ni m_2 \implies m_2 \sim m_1$.

- (ii) Gelte $m_1 \sim m_2$. Sei $m_1' \in [m_1] \implies m_1' \sim m_1$. Aus der Transitivität von \sim folgt $m_1' \sim m_2 \implies m_1' \in [m_2]$, das heißt $[m_1] \subseteq [m_2]$. Die umgekehrte Inklusion " \supseteq " wird analog durch Vertauschen von $1 \leftrightarrow 2$ gezeigt. Also haben wir gezeigt: $m_1 \sim m_2 \implies [m_1] = [m_2]$.
- (iii) Sei $m \in [m_1] \cap [m_2] \implies m_1 \sim m \wedge m \sim m_2 \stackrel{\sim \text{trans.}}{\Longrightarrow} m_1 \sim m_2$. Also gilt: $m_1 \not\sim m_2 \implies [m_1] \cap [m_2] = \emptyset$.
- (iv) Da stets $[m] \neq \emptyset$, gilt: $[m_1] \cap [m_2] = \emptyset \Longrightarrow [m_1] \neq [m_2]$. Zudem Kontraposition von (ii): $[m_1] \neq [m_2] \Longrightarrow m_1 \not\sim m_2$. Also mit Transitivität der Implikation

$$[m_1] \cap [m_2] = \emptyset \implies m_1 \not\sim m_2.$$

1.21 Korollar Sei M eine Menge und $m_1, m_2 \in M$. Dann gilt

$$m_1 = m_2 \iff \{m_1\} = \{m_2\}$$

1.22 Definition (Beliebige Vereinigungen und Schnitte) Sei $J \neq \emptyset$ eine Menge ("Indexmenge") und für alle $j \in J$ sei M_j eine Menge. Dann heißt

$$\bigcup_{j \in J} M_j := \{ m : \exists j \in J \text{ mit } m \in M_j \}$$

die Vereinigung aller M_i mit j in J und

$$\bigcap_{j\in J} M_j := \{m : \forall j \in J \ gilt \ m \in M_j \}$$

der(Durch-)Schnitt aller M_j mit j in J.

Falls für alle $i, j \in J$ mit $i \neq j$ gilt

$$M_i \cap M_j = \emptyset$$
,

so heißen die Mengen **paarweise disjunkt**. Für die **disjunkte Vereinigung** kann auch verdeutlichend $\bigcup_{i \in J} M_i$ geschrieben werden. Der Punkt steht dann für die Disjunktheit.

1.23 Korollar Sei \sim Äquivalenzrelation auf Menge M. Dann gilt

$$M=\bigcup_{[m]\in M/_{\sim}}[m].$$

Das heißt, M wird disjunkt in Äquivalenzklassen zerlegt.

1.24 Definition Sei M Menge und \prec eine Relation auf M.

 $< \textit{ist Ordnungs relation auf } M : \iff \begin{cases} \textit{reflexiv: } \forall m \in M : m \prec m \\ \textit{transitiv: } \forall m_1, m_2, m_3 \in M : (m_1 \prec m_2) \land (m_2 \prec m_3) \\ \implies m_1 \prec m_3 \\ \textit{antisymmetrisch: } \forall m_1, m_2 \in M : (m_1 \prec m_2 \land m_2 \prec m_1) \\ \implies m_1 = m_2 \end{cases}$

In diesem Fall heißt (M, \prec) teilweise (an-)geordnete Menge.

 (M, \prec) heißt (vollständig oder total) (an-)geordnet, wenn zudem gilt

$$\forall m_1, m_2 \in M : (m_1 \prec m_2) \lor (m_2 \prec m_1),$$

d.h. wenn 2 beliebige Elemente stets vergleichbar sind!

Notation für inverse Relation: $m_1 > m_2 : \iff m_2 \prec m_1$.

1.25 Beispiel • $(\mathcal{P}(M), \subseteq)$ ist teilweise geordnet, aber nicht vollständig, falls M mehr als ein Element hat.

- \subsetneq ist keine Ordnungsrelation auf $\mathscr{P}(M)$.
- später in der Vorlesung sehen wir, dass (\mathbb{R}, \leq) geordnet ist.
- Bsp. 1.16 definiert keine Ordnungsrelation, wohl aber "steht früher oder an gleicher Stelle im Alphabet als"

1.26 Definition Sei \mathcal{R} Relation auf Mengen $X \times Y$. Wir sagen

$$\left. \begin{array}{c} \mathscr{R} \ \textit{ist Graph einer Funktion} \\ \textit{(oder Abbildung)} \end{array} \right\} : \Longleftrightarrow \left\{ \begin{array}{c} \forall (x_1,y_1), (x_2,y_2) \in \mathscr{R} \ \textit{gilt} : \\ x_1 = x_2 \implies y_1 = y_2 \end{array} \right.$$

• Definitionsbereich der Funktion:

$$\mathcal{D} := \{ x \in X : \exists y \in Y \ mit \ (x, y) \in \mathcal{R} \} = \{ x \in X : \exists_1 y =: f(x) \in Y \ mit \ (x, y) \in \mathcal{R} \}$$

$$\uparrow_{,,es \ existiert \ genau \ 1}, auch \ \exists!$$

$$auch: \ dom(f) := \mathcal{D}$$

• Wertebereich der Funktion: $f(\mathcal{D})$, wobei

$$f(D) := \{ y \in Y : \exists x \in D \ mit \ (x, y) \in \mathcal{R} \}$$
 Bild von $D \subseteq \mathcal{D}$ unter f

Schreibweise (anstatt
$$\mathcal{R} =: \mathcal{R}_f$$
): $f: \begin{matrix} \mathcal{D} \to Y \\ x \mapsto f(x) \end{matrix}$

• Gleichheit zweier Funktionen f, g mit Definitionsbereichen in X und Wertebereichen in Y:

$$f = g : \iff \mathcal{R}_f = \mathcal{R}_g$$

 $\iff \operatorname{dom}(f) = \operatorname{dom}(g) \text{ und } \forall x \in \operatorname{dom}(f) : f(x) = g(x).$

• **Restriktion** (Einschränkung) $f|_A$ einer Funktion f auf $A \subseteq \mathcal{D}$:

$$\mathscr{R}_{f|_A} := \{(x, y) \in \mathscr{R}_f : x \in A\}.$$

- **1.27 Bemerkung** f ordnet jedem $x \in \mathcal{D} =: \text{dom}(f)$ genau ein $y \in Y$ zu.
 - Schreibweise $f: X \to Y$ bedeutet auch X = dom(f).

1.28 Definition Sei $f: X \to Y$, so heißt

• f injektiv : $\iff \forall y \in f(X) \exists_1 x \in \text{dom}(f) : y = f(x)$

- f surjektiv : $\iff f(X) = Y$
- f **bijektiv** : \iff f injektiv und surjektiv

1.29 Lemma Sei $f: X \to Y$ bijektiv. Dann gilt

(a) $(\mathcal{R}_f)^{-1}$ ist Graph einer Funktion, der sogenannten **Umkehrfunktion**

$$f^{-1}: \begin{array}{ccc} Y & \to & X \\ f(x) & \mapsto & x \end{array}.$$

Auch f^{-1} ist dann bijektiv.

(b)
$$(f^{-1})^{-1} = f$$

Beweis. (a) $\mathcal{R}_f = \{(x, f(x)) \in X \times Y : x \in X\} \text{ und } (\mathcal{R}_f)^{-1} = \{(\underbrace{f(x)}_{-1}), x) \in Y \times X : x \in X\}.$

Seien $(y_1, x_1), (y_2, x_2) \in (\mathcal{R}_f)^{-1}$ mit $y_1 = y_2 =: y$, also $y = f(x_1) = f(x_2)$, dann folgt aus der Injektivität $x_1 = x_2$. Daraus folgt $(\mathcal{R}_f)^{-1} =: \mathcal{R}_{f^{-1}}$ ist Graph einer Funktion f^{-1} .

$$\operatorname{dom}(f^{-1}) = \left\{ y \in Y : \exists x \in X \text{ mit } \underbrace{(y, x) \in \mathcal{R}_{f^{-1}}} \right\} = f(X) \stackrel{\operatorname{surj.}}{=} Y$$

$$\iff (x, y) \in \mathcal{R}_{f}$$

Das heißt für alle $y \in Y \exists x \in X \text{ mit } y = f(x)$. Wegen der Injektivität gilt sogar $\exists_1 x \in X \text{ mit } y = f(x)$. Somit ist

$$f^{-1}: \begin{array}{ccc} Y & \to & X \\ y = f(x) & \mapsto & x \end{array}$$

auch surjektiv und da \mathcal{R}_f Graph einer Funktion ist, insbesondere also $x_1 = x_2 \implies f(x_1) = f(x_2)$ gilt, folgt, dass f^{-1} injektiv sein muss. Insgesamt ist somit f^{-1} bijektiv.

(b) aus
$$(\mathcal{R}_{f^{-1}})^{-1} = (\mathcal{R}_{f}^{-1})^{-1} = \mathcal{R}_{f}$$
.

1.30 Beispiel Die Relation $\mathcal{R} := \{(x, x) \in X \times X : x \in X\}$ auf X ist Graph der **Identität**

$$id := id_X : \begin{array}{ccc} X & \to & X \\ x & \mapsto & X \end{array}$$

auf X. Diese ist bijektiv und es gilt $id_X^{-1} = id_X$.

1.31 Definition Seien $f: X \to Y, g: \text{dom}(g) \to Z$ Funktionen, wobei $\text{dom}(g) \subseteq Y$. Dann heißt für

$$dom(g \circ f) := \{ x \in X : f(x) \in dom(g) \}$$

die Funktion

$$g \circ f : \begin{array}{ccc} \operatorname{dom}(g \circ f) & \to & Z \\ x & \mapsto & g(f(x)) \end{array}$$

die **Komposition** (Verkettung) von f und g.

1.32 Lemma Sei $f: X \to Y$ bijektiv. Dann gilt

- (a) $f^{-1} \circ f = \mathrm{id}_X$
- (b) $f \circ f^{-1} = idy$

Beweis. (a) da $f(X) = Y = \text{dom}(f^{-1}) \implies \text{dom}(f^{-1} \circ f) = X$. Sei $x \in X$ beliebig $\implies (f^{-1} \circ f)(x) = f^{-1}(\underbrace{f(x)}_{y}) = x$. Daraus folgt die Behauptung.

(b) analog.

1.33 Definition (Urbild) Seien X, Y, M Mengen, $M \subseteq Y$, und $f: X \to Y$ eine Funktion, dann hei βt

$$f^{-1}(M) := \{ x \in X : \exists y \in M \text{ mit } f(x) = y \}$$

das $\it Urbild\ von\ M\ unter\ f$. (Notation identisch zu $\it Bild\ unter\ f^{-1}$, falls dies existiert!)

1.34 Bemerkung (a) *f* injektiv <u>nicht</u> vorausgesetzt!

- (b) falls $M \cap f(X) = \emptyset \implies f^{-1}(M) = \emptyset$.
- (c) falls f injektiv ($\Longrightarrow f: X \to f(X)$ bijektiv) gilt

$$\underbrace{f^{-1}(M)}_{\text{Urbild von } M \text{ unter } f} = \underbrace{f^{-1}(M \cap f(X))}_{\text{Bild von } M \cap f(X) \text{ unter } f^{-1}}_{\text{gemäß Def. } 1.26}$$

Aufbau des Zahlensystems

Wir postulieren die natürlichen Zahlen $\mathbb N$ und leiten daraus $\mathbb Z, \mathbb Q, \mathbb R, \mathbb C$ samt aller Rechenregeln ab. LEOPOLD KRONECKER (1823-1891): "Die natürlichen Zahlen hat der liebe Gott geschaffen, alles andere ist Menschenwerk."

2.1 Die natürlichen Zahlen №

Wir postulieren die Existenz einer Menge ℕ, für die gelte

2.1 Axiom (Axiomensystem von PEANO)

(P1) $\mathbb{N} \neq \emptyset$, also existiert mindestens ein Element in \mathbb{N} , das mit 1 bezeichnet wird.

Es gibt eine Funktion ("Nachfolgerabbildung") $\nu: \mathbb{N} \to \mathbb{N}$ *mit*

- (P2) $1 \notin v(\mathbb{N})$ (,, 1 ist kein Nachfolger")
- (P3) v ist injektiv ("Eindeutigkeit des Vorgängers")
- (P4) "Prinzip der vollständigen Induktion" $\forall M \subseteq \mathbb{N}$ gilt

$$\left(1 \in M \land \underbrace{\nu(M) \subseteq M}\right) \implies M = \mathbb{N}$$

$$\iff \forall n \in M : \nu(n) \in M$$

Die Bezeichnungsweisen lauten: v(1) =: 2, v(2) =: 3, . . . Nach (P4) werden so alle $n \in \mathbb{N}$ mit einem Zahlensymbol erfasst.

2.2 Bemerkung Die Axiome (P1) – (P4) sind

- vollständig (im Sinne von: alle bekannten Rechenregeln ableitbar)
- unabhängig (keines der Axiome aus den anderen ableitbar)
- widerspruchsfrei (GENTZEN,1936)

2.3 Definition (Addition und Multiplikation) *Für alle* $k, n \in \mathbb{N}$ *sei*

$$n + ": n + 1 := \nu(n)$$
 (1) $n + \nu(k) := \nu(n + k)$ (2) $n \cdot 1 := n$ $n \cdot k + n$

"·" wird meist weggelassen.

2.4 Bemerkung Obige rekursive Definition erklärt wegen (P4) n + m für alle $n, m \in \mathbb{N}$, denn: Sei $M := \{m \in \mathbb{N} : \forall n \in \mathbb{N} \text{ gilt } n + m \text{ durch } (1) \text{ und } (2) \text{ definiert} \}$. Somit

- (i) $1 \in M$ wegen (1) ("Induktionsanfang")
- (ii) Sei $m \in M$ ("Induktionsannahme"). Zeige $v(m) \in M$ ("Induktionsschritt") Dies ist wahr, da $\forall n \in \mathbb{N} : n + v(m) \stackrel{\text{(2)}}{=} v(\underbrace{n+m})$ definiert. definiert nach Induktionsannahme
- (i) \wedge (ii) $\stackrel{\text{(P4)}}{\Longrightarrow} M = \mathbb{N}$. Analoges gilt für die Definition von $n \cdot m$.

2.5 Lemma (Rechenregeln) Für alle $k, m, n \in \mathbb{N}$ gilt

kommutativ
$$n+k=k+n$$
 $nk=kn$
assoziativ $(k+m)+n=k+(m+n)$ $(km)n=k(mn)$
 $=:k+m+n$ $=:kmn$
distributiv $(k+m)n=kn+mn$

(Insbesondere sind $(\mathbb{N}, +)$ und (\mathbb{N}, \cdot) abelsche Halbgruppen \rightsquigarrow Lineare Algebra)

Beweis. ,,+" ist assoziativ → Übung!

Wir beweisen hier nur die Kommutativität von + (dabei wird die Assoziativität verwendet).

1. Schritt. Zeige für alle $n \in \mathbb{N}$: n + 1 = 1 + n

Beweis per vollständiger Induktion: Sei $M := \{n \in \mathbb{N} : n + 1 = 1 + n\}$.

- (i) $1 \in M$, klar! ("Induktionsanfang")
- (ii) Sei $n \in M$. Zu zeigen: $\underbrace{n+1}_{\nu(n)} \in M$ ("Induktionsschritt")

$$\nu(n) + 1 \stackrel{(1)}{=} \nu(\nu(n)) \stackrel{n \in M}{=} \nu(n+1) \stackrel{(i)}{=} \nu(1+n) \stackrel{(2)}{=} 1 + \nu(n)$$

$$(i) \wedge (ii) \stackrel{(P4)}{\Longrightarrow} M = \mathbb{N}.$$

2. *Schritt*. Zeige für alle $n, k \in \mathbb{N}$: n + k = k + n per Induktion nach k:

Sei $K := \{ k \in \mathbb{N} : \forall n \in \mathbb{N} \text{ gilt } n + k = k + n \}$

18

- (i) $1 \in K$ wegen Schritt 1.
- (ii) Sei $k \in K$. Zu zeigen: $\nu(k) = k + 1 \in K$. Sei dazu $n \in \mathbb{N}$, dann gilt

$$n + \nu(k) \stackrel{\text{(2)}}{=} \nu(\underbrace{n+k}) \stackrel{\text{(2)}}{=} k + \underbrace{\nu(n)}_{\text{(n)}} = k + (1+n)^{n+1} \stackrel{\text{assoz.}}{=} (k+1) + n = \nu(k) + n. \quad \checkmark$$

$$= k+n, \text{ da } k \in K \qquad \underbrace{n+1}_{\text{=1+n, wegen Schritt 1}}$$

(i) \wedge (ii) $\stackrel{(P4)}{\Longrightarrow} K = \mathbb{N}$. Für "·" verläuft der Beweis völlig analog, ebenso die Distributivität.

Die Rechenregeln dürfen (sollen) ab jetzt hemmungslos verwendet werden!

- **2.6 Definition** Für alle $m, n \in \mathbb{N}$ werden durch
 - $n < m : \iff (\exists k \in \mathbb{N}: m = n + k),$ $n \le m : \iff (n < m \lor n = m)$

Relationen auf \mathbb{N} erklärt. Die entsprechenden, inversen Relationen lauten

- $n > m : \iff m < n$,
- $n \ge m : \iff m \le n$.
- **2.7 Satz** Für alle $m, n \in \mathbb{N}$ trifft jeweils genau eine der folgenden drei Aussagen zu

- m > n.

Der Beweis beruht auf den drei folgenden Lemmata.

2.8 Lemma Jedes $n \in \mathbb{N} \setminus \{1\}$ hat einen Vorgänger, das heißt

$$\forall n \in \mathbb{N} \setminus \{1\} \ \exists m \in \mathbb{N}: \ \nu(m) = n$$

Beweis. Mittels vollständiger Induktion. Sei $M := \{1\} \cup \{n \in \mathbb{N} : \exists m \in \mathbb{N} \text{ mit } \nu(m) = n\}$.

- Sei $n \in M \implies v(n) \in M$, da Nachfolger von n : M = N. $1 \in M$ klar
- **2.9 Lemma** Für alle $n \in \mathbb{N} \setminus \{1\}$ gilt 1 < n.

Beweis. Sei $n \in \mathbb{N} \setminus \{1\} \stackrel{\text{Lemma 2.8}}{\Longrightarrow} \exists k \in \mathbb{N}: n = \nu(k) = k+1 = 1+k$. Daraus folgt 1 < n.

2.10 Lemma Für alle $k, n \in \mathbb{N}$ gilt $n + k \neq n$.

Beweis. Induktion nach n:

- (i) $\forall k \in \mathbb{N} : 1 + k = \nu(k) \neq 1$, da $1 \notin \nu(\mathbb{N})$ gemäß (P2).
- (ii) Es gelte: $\forall k \in \mathbb{N} : n + k \neq n$. Wir zeigen per Widerspruch

$$\forall k \in \mathbb{N}: \ \nu(n) + k \neq \nu(n). \tag{*}$$

Annahme:
$$\exists k \in \mathbb{N}: \ \nu(n) + k = \nu(n)$$

 $\implies \nu(n) = k + \nu(n) \stackrel{\text{(2)}}{=} \nu(k+n) \stackrel{\text{(P3)}}{\Longrightarrow} n = n + k \nleq \text{zu Induktionsannahme, also ist } \neg(\star)$ falsch $\implies (\star)$ wahr.

Beweis von Satz 2.7. Sei $n \in \mathbb{N}$ fix, setze $\mathbb{N}_{<} := \{ m \in \mathbb{N} : m < n \}, \mathbb{N}_{>} := \{ m \in \mathbb{N} : n < m \} \text{ und } M := \mathbb{N}_{<} \cup \{ n \} \cup \mathbb{N}_{>}.$

1. Schritt. Zeige: $M = \mathbb{N}$ ($\Longrightarrow \forall m, n \in \mathbb{N}$ ist $m < n \lor m = n \lor n < m$ wahr)

Induktionsanfang: $1 \in M$, denn, falls n = 1 ist die Aussage klar, und falls $n \in \mathbb{N} \setminus \{1\}$ ist, gilt $1 \in \mathbb{N}_{\leq}$ wegen Lemma 2.9.

Induktionsschritt: Sei $m \in M$. Zu zeigen: $v(m) \in M$.

1. Fall:
$$m = n \implies \nu(m) = n + 1 \in \mathbb{N}_{>} \subseteq M \quad \checkmark$$
Def von <

2. Fall: $m \in \mathbb{N}_{>} \implies \exists k \in \mathbb{N}$: m = n + k

$$\implies \nu(m) = \nu(n+k) \stackrel{(2)}{=} n + \nu(k) \implies n < \nu(m) \implies \nu(m) \in \mathbb{N}_{>} \subseteq M \quad \checkmark$$
Def. von <

- 3. Fall: $m \in \mathbb{N}_{<} \implies \exists k \in \mathbb{N}$: n = m + k
 - Falls $k = 1 \implies v(m) = n \in M \quad \checkmark$
 - Falls $k \in \mathbb{N} \setminus \{1\} \implies k = \tilde{k} + 1$ für $\tilde{k} \in \mathbb{N}$ (Lemma 2.8)

$$\implies n = m + \tilde{k} + 1 = \underbrace{m + 1}_{\nu(m)} + \tilde{k} \implies \nu(m) < n \implies \nu(m) \in \mathbb{N}_{<} \subseteq M \quad \checkmark$$
Def. von <

Damit ist der 1. Schritt bewiesen.

- 2. Schritt. $M = \mathbb{N}_{<} \cup \{n\} \cup \mathbb{N}_{>}$ (paarweise disjunkte Mengen)
 - 1. Teil: zu zeigen ist $n \notin \mathbb{N}_{<}$. Sei $m \in \mathbb{N}_{<} \implies m < n \implies \exists k \in \mathbb{N}$: $n = m + k \implies m \neq n$ wegen Lemma 2.10.
 - 2. Teil: zu zeigen ist $n \notin \mathbb{N}_{>}$. (Analog zu 1. Teil).
 - 3. Teil: zu zeigen ist $\mathbb{N}_{>} \cap \mathbb{N}_{<} = \emptyset$. Sei $m_{<} \in \mathbb{N}_{<}, m_{>} \in \mathbb{N}_{>} \Longrightarrow$

$$n = m_{<} + k \qquad \text{für ein } k \in \mathbb{N}$$

$$m_{>} = n + k' \qquad \text{für ein } k' \in \mathbb{N}$$

$$\implies m_{>} = (m_{<} + k) + k' = m_{<} + \underbrace{k + k'}_{\in \mathbb{N}}$$

$$\implies m_{>} \neq m_{<} \text{ nach Lemma 2.10.}$$

20

2.11 Lemma ("Kürzen") *Für alle* $k, n, m \in \mathbb{N}$ *gilt*

•
$$n = m \iff n + k = m + k \iff nk = mk$$

• $n < m \iff n + k < m + k \iff nk < mk$

•
$$n < m \iff n + k < m + k \iff nk < mk$$

Beweis. Übung! (Vollständige Induktion nach *k*)

2.2 Die ganzen Zahlen \mathbb{Z}

<u>Ziel:</u> Konstruktion der ganzen Zahlen \mathbb{Z} aus den natürlichen Zahlen \mathbb{N} .

Durchführung: nur Ideen, Resultate; keine Beweise (→ Übung!).

grundlegende Idee: Jede ganze Zahl ist die Differenz zweier natürlicher Zahlen:

Probleme:

- Subtraktion "-" (noch) nicht defininiert
- Die Darstellung einer ganzen Zahl ist nicht eindeutig: -1 = 1 2 = 4 5

Lösung: Einführung von Äquivalenzklassen in $\mathbb{N} \times \mathbb{N}$.

Abbildung 2.1: Idee der Konstruktion von ganzen Zahlen aus den natürlichen Zahlen. Die Linien verbinden genau die einzelnen Punkte der jeweiligen Äquivalenzklassen.

2.12 Definition Für $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$ definieren wir durch

$$(a,b) \sim (c,d) : \iff a+d=b+c$$

eine Äquivalenzrelation auf $\mathbb{N} \times \mathbb{N}$ mit den Äquivalenzklassen

$$[(a,b)] := \{(c,d) \in \mathbb{N} \times \mathbb{N} : a+d = b+c\}.$$

Die Menge der ganzen Zahlen ist dann definiert als

$$\mathbb{Z} := \{ [(a,b)] : a,b \in \mathbb{N} \}$$

2.13 Satz (a) $F\ddot{u}r[(a_j,b_j)] \in \mathbb{Z}, j=1,2 \text{ sind die Rechenoperationen } \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$

Addition:
$$[(a_1,b_1)] \oplus [(a_2,b_2)] := [(a_1+a_2,b_1+b_2)] \in \mathbb{Z}$$

Mutliplikation:
$$[(a_1,b_1)] \odot [(a_2,b_2)] := [(a_1a_2 + b_1b_2, a_1b_2 + b_1a_2)] \in \mathbb{Z}$$

wohldefiniert, das heißt unabhängig von der Wahl der Repräsentanten.

- (b) \oplus und \odot sind kommutativ, assoziativ und distributiv.
- (c) Zudem gilt:

$$[(a,a)] \in \mathbb{Z}$$
 für $(a \in \mathbb{N})$ ist **neutrales Element** von \oplus , das heißt

$$[(a_1,b_1)] \oplus [(a,a)] = [(a_1,b_1)]$$
 für alle $[(a_1,b_1)] \in \mathbb{Z}$

Für alle $[(a,b)] \in \mathbb{Z}$ gilt: [(b,a)] ist **inverses Element** bezüglich \oplus , das heißt

$$[(a,b)] \oplus [(b,a)] = [(1,1)]$$

Beweis. (a) Wohldefiniertheit von \odot (die von \oplus analog und einfacher): seien $(a,b) \sim (a_1,b_1)$ zwei verschiedene Repräsentanten derselben Äquivalenzklasse $\Longrightarrow \exists k \in \mathbb{N}$, so dass entweder $(a,b)=(a_1+k,b_1+k)$ oder $(a_1,b_1)=(a+k,b+k)$. Wir betrachten nur den 1. Fall, der 2. Fall geht analog. Da

$$(aa_2 + bb_2, ab_2 + ba_2) = (a_1a_2 + b_1b_2 + k(a_2 + b_2), a_1b_2 + a_2b_1 + k(a_2 + b_2))$$
$$\sim (a_1a_2 + b_1b_2, a_1b_2 + b_1a_2)$$

führt dies auf dieselbe Äquivalenzklasse. Analoges Argument für Änderung des Repräsentanten im 2. Faktor.

- (b) Folgt aus den entsprechenden Eigenschaften der Addition und Multiplikation auf №.
- (c) klar.

Die gewählte Konstruktion legt nun nahe die folgende Definition einzuführen.

2.14 Definition $F\ddot{u}r n \in \mathbb{N}$ sei

2.15 Satz (a) Die Abbildung
$$N \to \mathbb{Z}_+$$
 ist eine Bijektion und $\mathbb{Z} = \mathbb{Z}_- \cup \{0\} \cup \mathbb{Z}_+$.

- (b) Verträglichkeit von \bigcirc mit + und \cdot : für alle $m, n \in \mathbb{N}$ gilt
 - $\bullet \ (n+m) = (n) \oplus (m)$
 - $\bullet \ \widehat{(n \cdot m)} = \widehat{m} \odot \widehat{m}$
- (c) Mit der Subtraktion $\ominus: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, definiert durch $(z_1) \ominus (z_2) := (z_1) \oplus (-z_2)$ für $(z_1), (z_2) \in \mathbb{Z}$, gelten alle aus der Schule bekannten Rechenregeln für $(z_1), (z_2) \in \mathbb{Z}$,
- (d) $(z_1) \leq (z_2) :\iff \exists (n) \in \mathbb{Z}_+ \cup \{0\}: (z_2) = (z_1) + (n) \text{ erklärt eine Ordnungsrelation auf } \mathbb{Z}$ und $(\mathbb{Z}, \mathcal{S})$ ist total geordnet. Verträglichkeit: für alle $n, m \in \mathbb{N}$ gilt: $(n) \in \mathbb{N}$ $(m) \iff n \leq m$

Beweis. Einfaches Nachrechnen (Übung).

2.16 Bemerkung • Wie üblich sei
$$(m) \le (m) : \iff (m) \le (m) \land (m) \ne (m)$$
, $(m) \ge (m) : \iff (m) \le (m) \land (m) \ne (m)$.

- ullet Von nun an werden alle igcirc weggelassen!
- Auch identifizieren wir $\mathbb N$ mit $\mathbb Z_+$, womit $\mathbb N\subset \mathbb Z$. Rechtfertigung: Satz 2.15(a), (b) und (d).
- $(\mathbb{Z}, +)$ ist eine abelsche Gruppe, (\mathbb{Z}, \cdot) eine abelsche Halbgruppe.

2.3 Die rationalen Zahlen Q

Auch in diesem Abschnitt wird nur die Strategie der Konstruktion vorgestellt – wie in Kapitel 2.2! <u>Idee:</u> Jede rationale Zahl ist ein Bruch " $\frac{a}{b}$ " mit $a \in \mathbb{Z}, b \in \mathbb{N}$.

Probleme: Die Division ist (noch) nicht definiert und die Darstellung erneut nicht eindeutig:

$$\frac{3}{2} = \frac{6}{4} \iff 3 \cdot 4 = 2 \cdot 6.$$

2.17 Definition Für $(a,b), (c,d) \in \mathbb{Z} \times \mathbb{Z}^*$ mit $\mathbb{Z}^* := \mathbb{Z} \setminus \{0\}$ definiert

$$(a,b)\sim(c,d):\iff ad=bc$$

eine Äquivalenzrelation auf $\mathbb{Z} \times \mathbb{Z}^*$ mit Äquivalenzklassen

$$[(a,b)] := \Big\{ (c,d) \in \mathbb{Z} \times \mathbb{Z}^{\star} : \ (c,d) \sim (a,b) \Big\}.$$

Die Menge der **rationalen Zahlen** ist dann definiert als $\mathbb{Q} := \{ [(a,b)] : a \in \mathbb{Z}, b \in \mathbb{Z}^* \}.$

2.18 Satz (a) Folgende Rechenoperationen $\mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ sind wohldefiniert

Addition
$$[(a_1,b_1)] \boxplus [(a_2,b_2)] := [(a_1b_2 + a_2b_1,b_1b_2)] \in \mathbb{Q}$$

Mutliplikation $[(a_1,b_1)] \boxdot [(a_2,b_2)] := [(a_1a_2,b_1b_2)] \in \mathbb{Q}$

- (b) \boxplus und \boxdot sind kommutativ, assoziativ und distributiv.
- (c) $[(0,1)] \in \mathbb{Q}$ ist neutrales Element von \boxplus , $[(-a,b)] \in \mathbb{Q}$ ist inverses Element von $[(a,b)] \in \mathbb{Q}$ bezüglich \boxplus .
- (d) [(1,1)] ist neutrales Element von \mathbb{Q} bezüglich \boxdot und für alle $[(a,b)] \in \mathbb{Q} \setminus \{[(0,1)]\}$ ist $[(b,a)] \in \mathbb{Q} \setminus \{[(0,1)]\}$ inverses Element bezüglich \boxdot .

Zusammenfassend besagen (b) – (d), dass \mathbb{Q} ein **Körper** ist (vgl. Lineare Algebra).

(e) (Q, ≤) ist ein angeordneter Körper, wobei

$$[(a_1, b_1)] \boxtimes [(a_2, b_2)] :\iff \exists m \in \mathbb{N}_0 := \mathbb{N} \cup \{0\} \exists n \in \mathbb{N}:$$

 $[(a_2, b_2)] = [(a_1, b_1)] \boxplus [(m, n)].$

Beweis. (a) Übung, (b) Rückführung auf entsprechende Eigenschaften der Operationen in \mathbb{Z} , (c) und (d) klar, (e) einfaches Nachprüfen.

- **2.19 Definition** Subtraktion $\mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ erklärt durch $[(a_1,b_1)] \boxminus [(a_2,b_2)] \coloneqq [(a_1,b_1)] \boxminus [(-a_2,b_2)]$ für $[(a_j,b_j)] \in \mathbb{Q}$, j=1,2,
 - **Division** $\mathbb{Q} \times \mathbb{Q} \setminus \{[(0,1)]\} \to \mathbb{Q}$ erklärt durch $[(a_1,b_1)] := [(a_1,b_1)] := [(b_2,a_2)]$ für $[(a_1,b_1)] \in \mathbb{Q}$, $[(a_2,b_2)] \in \mathbb{Q} \setminus \{[(0,1)]\}$
 - $f \ddot{u} r z \in \mathbb{Z} sei \quad \boxed{z} := [(z,1)], somit \quad [(a,b)] = [(a,1)] \quad \boxed{(1,b)} = \boxed{a}$ $\boxed{[(b,1)]} = \boxed{b}$ $\mathbb{Q}_{ganz} := \{ \boxed{z} : z \in \mathbb{Z} \}$

- "Brüche" \Box .

 By the specific of the specific problem of the specific probl (a) Es gelten die aus der Schule bekannten Rechenregeln für ⊞, ⊟, ⊡, ⊟, ⊠ und

Beweis.

- (b) Klar für ⊞ und ⊡; für 🗏 siehe Übung.
- **Bemerkung** Sei $[(a,b)] \subseteq [(c,d)] : \iff ([(a,b)] \subseteq [(c,d)] \land [(a,b)] \neq [(c,d)]),$ $[(a,b)] \supseteq [(c,d)] : \iff [(c,d)] \subseteq [(a,b)].$ 2.21 Bemerkung
 - Unter Weglassung aller \square (ab sofort!) können wir mit Brüchen $[(a,b)] = \frac{a}{b}, a \in \mathbb{Z}, b \in \mathbb{Z}^*$, wie gewohnt rechnen.
 - Satz 2.20(b) rechtfertigt die Identifizierung von \mathbb{Z} mit \mathbb{Q}_{ganz} , womit $\mathbb{Z} \subset \mathbb{Q}$.
- **2.22 Lemma** (a) Die Ordnung auf \mathbb{Q} ist **archimedisch**, das heißt,

$$\forall q, \varepsilon \in \mathbb{Q} \ mit \ q, \varepsilon > 0 \ \exists \ n \in \mathbb{N} \colon \ q < n \varepsilon$$

 $\forall q, \varepsilon \in \mathbb{Q} \ mit \ q, \varepsilon > 0 \ \exists \ n \in \mathbb{N} \colon \ q < n \varepsilon.$ (b) *Dichte* von \mathbb{Q} : $\forall q, r \in \mathbb{Q} \ mit \ q < r \ \exists \ s \in \mathbb{Q} : \ q < s < r.$

(a) Schreibe $q = \frac{a}{g}$, $\varepsilon = \frac{b}{g}$ mit $a, b, g \in \mathbb{N}$ (gemeinsamer Nenner). Dann gilt:

Behauptung
$$\iff \left(\underbrace{\forall a, b \in \mathbb{N} \ \exists \ n \in \mathbb{N}: \ a < nb}_{\text{Aussage ist wahr. W\"{a}hle } n = a + 1}\right).$$

(b) Wähle $s := \frac{q+r}{2} \in \mathbb{Q} \implies$

•
$$s = q + \underbrace{\frac{r-q}{2}}_{>0} \implies s > q$$
, • $r = s + \underbrace{\frac{r-q}{2}}_{>0} \implies r > s$.

2.23 Definition

• Sei $q \in \mathbb{Q}$. Der (Absolut-)betrag von q ist definiert als

$$|q| := \begin{cases} q & , q \geqslant 0 \\ -q & , q < 0 \end{cases}$$

• Seien $q_1, q_2 \in \mathbb{Q}$. Das **Maximum** bzw. **Minimum** von q_1, q_2 ist definiert als

$$\max(q_1, q_2) := \begin{cases} q_1 & , q_1 \geqslant q_2 \\ q_2 & , q_2 \geqslant q_1 \end{cases}$$
$$\min(q_1, q_2) := \begin{cases} q_1 & , q_1 \leqslant q_2 \\ q_2 & , q_2 \leqslant q_1 \end{cases}$$

Somit ist $|q| = \max(q, -q) \ge 0$.

2.24 Satz $F\ddot{u}r \mathbb{K} := \mathbb{Q} gilt$

(B0) Der Wertebereich der Betragsfunktion ist eine total geordnete Teilmenge von K.

- (B1) $\forall q \in \mathbb{K} \text{ ist } |q| \geqslant 0 \text{ und } |q| = 0 \iff q = 0.$
- (B2) $\forall q_1, q_2 \in \mathbb{K}: |q_1q_2| = |q_1| \cdot |q_2|.$ (B3) $\forall q_1, q_2 \in \mathbb{K}: |q_1 + q_2| \leq |q_1| + |q_2|$ (Dreiecksungleichung)
- $(B0)-(B3)\ besagen,\ dass\ \mathbb{Q}\ ein\ \textit{bewerteter}\ \textit{K\"{o}rper}\ ist.$

Beweis. (B0): Ganz Q ist total geordnet. (B1): Aus Definition des Betrages ersichtlich.

(B2): Für j = 1, 2 sei $q_j = s_j r_j$ mit $r_j \ge 0$ und $s_j \in \{1, -1\}$, dann folgt

$$|q_1q_2| = |s_1s_2r_1r_2| = \underbrace{|\underbrace{s_1s_2}_{=\pm 1}|}_{1}\underbrace{r_1}_{|s_1r_1|}\underbrace{r_2}_{|s_2r_2|} = |q_1| \cdot |q_2|$$

(B3):
$$q_1 \le |q_1| \land q_2 \le |q_2| \implies q_1 + q_2 \le |q_1| + |q_2|$$
 (1) $-q_1 \le |q_1| \land -q_2 \le |q_2| \implies -(q_1 + q_2) \le |q_1| + |q_2|$ (2)

Aus (1) und (2) folgt

$$|q_1 + q_2| = \max(q_1 + q_2, -(q_1 + q_2)) \le |q_1| + |q_2|.$$

Q ist aber leider nicht groß genug!

2.25 Satz $\nexists c \in \mathbb{Q} \ mit \ c^2 = 2.$

Beweis. Wir benötigen folgende Hilfsaussage:

$$n \in \mathbb{N} \text{ ungerade}^1 \implies n^2 = (\underbrace{n-1}) \cdot n + \underbrace{n}_{\text{ungerade}} \text{ ungerade}. \tag{*}$$

Nun zum eigentlichen Beweis. Annahme: $\exists c \in \mathbb{Q}: c^2 = 2$. O.B.d.A.² sei c > 0 [denn c = 0 nicht möglich. Falls $c < 0 \implies \tilde{c} := -c > 0$ und $\tilde{c}^2 = 2$.]

$$\Rightarrow \exists p, q \in \mathbb{N} \text{ mit } p \text{ und } q \text{ teilerfremd}^3: c = \frac{p}{q}$$

$$\Rightarrow 2 = c^2 = \frac{p^2}{q^2} \Rightarrow p^2 = 2q^2 \text{ gerade}$$

$$\stackrel{(\star)}{\Rightarrow} p \text{ gerade, also } p = 2\tilde{p} \text{ mit } \tilde{p} \in \mathbb{N}$$

$$\Rightarrow q^2 = 2\tilde{p}^2 \text{ gerade} \stackrel{(\star)}{\Rightarrow} q \text{ gerade}$$

$$\Rightarrow p, q \text{ nicht teilerfremd } \frac{f}{q} \Rightarrow \text{ Behauptung.}$$

2.4 Endliche Summen

In diesem Abschnitt sei $\mathbb{K} \supseteq \mathbb{Q}$ ein Körper.

2.26 Definition Für alle $k \in \mathbb{N}$ sei $a_k \in \mathbb{K}$. Dann erklärt für alle $n \in \mathbb{N}$ die rekursive Definition

$$\sum_{k=1}^{1} a_k := a_1, \quad \sum_{k=1}^{n+1} a_k := a_{n+1} + \sum_{k=1}^{n} a_k$$

die (endliche) **Summe**. In informeller Schreibweise, $\sum_{k=1}^{n} a_k = a_1 + a_2 + \cdots + a_{n-1} + a_n$.

Analog für alle $\emptyset \neq M$, M endlich⁴, sowie $a_m \in \mathbb{K}$ für alle $m \in M$: $\sum_{m \in M} a_m := \sum_{k=1}^n a_{\Phi(k)}$

(unabhängig von Wahl der Bijektion). Falls $M=\varnothing$, setze $\sum_{m\in M}a_m:=0$, ebenso $\sum_{k=1}^0a_k:=0$.

• Der Name des Summationsindex ist belanglos:

$$\sum_{k=1}^{3} k = 1 + 2 + 3 = \sum_{j=1}^{3} j = \sum_{j=0}^{2} (j+1) = \sum_{k=2}^{4} (k-1).$$

 $^{^{1}}z \in \mathbb{Z}$ gerade : $\iff z/2 \in \mathbb{Z}$; z ungerade : $\iff z$ nicht gerade.

²Ohne Beschränkung der Allgemeinheit. Dazu synonym: ohne Einschränkung (o.E.).

 $^{^{3}}p = np'$ und q = nq' für $n, p', q' \in \mathbb{N} \implies n = 1$.

 $^{^4}M$ endlich : \iff ∃ $n ∈ \mathbb{N}$ und Bijektion Φ : $\{1, ..., n\} → M$ (siehe auch später).

• GAUSS'sche Summenformel

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Beweis: siehe Tutorium.

• Für alle $n \in \mathbb{N}_0$:

$$\sum_{\substack{k=1\\k \text{ ungerade}}}^{2n} k = \sum_{k=1}^{n} (2k-1) = n^2$$

Beweis per Induktion: n = 0: $0 = 0 \checkmark$

$$n \to n+1$$
:
$$\sum_{k=1}^{n+1} (2k-1) = 2n+1 + \underbrace{\sum_{k=1}^{n} (2k-1)}_{n^2} = (n+1)^2 \checkmark$$

• Geometrische Summe: $\forall q \in \mathbb{K} \setminus \{1\} \ \forall n \in \mathbb{N}_0$:

$$\sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q} \qquad \text{mit } q^{k} := \underbrace{q \dots q}_{k \text{ Faktoren}} \quad \textbf{k-te Potenz}$$

Beweis: siehe Übung.

2.28 Definition (a) Für $j \in \mathbb{N}$ sei $a_j \in \mathbb{K}$. Wir definieren rekursiv das (endliche) **Produkt**

$$\prod_{j=1}^{1} a_j := a_j, \quad \prod_{j=1}^{n+1} a_j := a_{n+1} \prod_{j=1}^{n} a_j, \quad n \in \mathbb{N},$$

in informeller Schreibweise $\prod_{j=1}^{n} a_j = a_1 a_2 \dots a_{n-1} a_n$.

Analog für $\emptyset \neq M$, M endlich und $a_m \in \mathbb{K}$ für alle $m \in M$: $\prod_{m \in M} a_m := \prod_{j=1}^m a_{\Phi(j)},$ unabhängig von Wahl der Rijektion $\Phi : \{1, \dots, N\} \rightarrow M$

unabhängig von Wahl der Bijektion $\Phi: \{1, ..., n\} \to M$. Falls $M = \emptyset$, setze $\prod_{m \in M} a_m := 1$, ebenso $\prod_{i=1}^{0} a_i := 1$.

Speziell gilt für die Potenz $a^n = \prod_{j=1}^n a, a \in \mathbb{K}, n \in \mathbb{N}_0$, insbesondere $a^0 = 1 \ \forall a \in \mathbb{K}$.

Negative Exponenten: $a^{-n} := \frac{1}{a^n} \ \forall a \in \mathbb{Q} \setminus \{0\} \ \forall n \in \mathbb{N}_0 \quad (\Longrightarrow (a^{-n})^{-1} = a^n)$

(b) Für $n \in \mathbb{N}_0$ sei die **Fakultät** definiert als

$$n! := \prod_{i=1}^{n} j = \begin{cases} 1 \cdot 2 \cdot \dots \cdot (n-1) \cdot n, & n \in \mathbb{N} \\ 1, & n = 0. \end{cases}$$

(c) Für $q \in \mathbb{K}$, $k \in \mathbb{Z}$ sei der **Binomialkoeffizient** definiert als

$$\begin{pmatrix} q \\ k \end{pmatrix} := \begin{cases} \prod_{j=1}^k \frac{q+1-j}{j} &, k \geq 0 \\ 0 &, k < 0 \end{cases}$$

und speziell für $q = n \in \mathbb{N}_0$ gilt

$$\binom{n}{k} = \begin{cases} \frac{n!}{(n-k)! \, k!} &, k \in \{0, 1, \dots, n\} \\ 0 &, sonst \end{cases}$$

2.29 Satz (Binomischer Satz) Für alle $x, y \in \mathbb{K}$ und für alle $n \in \mathbb{N}_0$ gilt

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Spezialfälle:

$$(x + y)^{0} = 1$$

$$(x + y)^{1} = x + y$$

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

Beweis. Per Induktion:

n = 0: klar, s.o.

$$n \to n+1$$
: $(x+y)^{n+1} = (x+y)^n x + (x+y)^n y$

$$(x+y)^{n}x = \sum_{k=0}^{n} \binom{n}{k} x^{k+1} y^{n-k} \quad \text{aus Ind.voraus.}$$

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} x^{k} y^{n+1-k}$$

$$= \sum_{k=0}^{n+1} \binom{n}{k-1} x^{k} y^{n+1-k} \quad \text{da} \binom{n}{-1} = 0$$

$$(x+y)^{n}y = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n+1-k}$$

$$= \sum_{k=0}^{n+1} \binom{n}{k} x^{k} y^{n+1-k} \quad \text{da} \binom{n}{k} = 0 \text{ für } k = n+1$$

$$\implies (x+y)^{n+1} = \sum_{k=0}^{n+1} \underbrace{\left[\binom{n}{k-1} + \binom{n}{k} \right]}_{k} x^k y^{n+1-k}.$$

$$= \binom{n+1}{k} \rightsquigarrow \text{Übung!}$$

2.30 Korollar Für alle $n \in \mathbb{N}$ gilt

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n \quad und \quad \sum_{k=0}^{n} \binom{n}{k} (-1)^k = 0.$$

Beweis. Wähle x = y = 1 bzw. -x = y = 1.

2.5 Folgen, Grenzwerte und Reihen

Im Folgenden ist $\mathbb{K} := \mathbb{Q}$. (Gebraucht wird ein archimedisch geordneter, bewerteter Körper $\mathbb{K} \supset \mathbb{Z}$.)

2.31 Definition Eine Folge $(a_n)_{n\in\mathbb{N}}\subset\mathbb{K}$ ist eine Abbildung $\begin{cases} \mathbb{N} & \to & \mathbb{K} \\ n & \mapsto & a_n \end{cases}$

Alternative Notation: (a_1, a_2, a_3, \ldots) .

Analog mit "verschobener" Indexmenge: $(a_n)_{n \in \mathbb{N}_0}$, $(a_n)_{n \geq 10}$.

Falls keine Verwechslung möglich, auch abkürzend $(a_n)_n$.

- **2.32 Beispiel** (a) konstante Folge (a, a, a, ...) mit $a \in \mathbb{K}$.
 - (b) alternierende Folge $((-1)^{n+1})_{n \in \mathbb{N}} = (1, -1, 1, -1, \dots)$.
 - (c) geometrische Folge $(a^n)_{n\in\mathbb{N}}$ mit $a\in\mathbb{K}$.
 - (d) Fibonacci-Folge $(a_n)_{n\in\mathbb{N}_0}$, rekursiv definiert durch $a_0:=0, a_1:=1, a_{n+1}:=a_n+a_{n-1}$ für alle $n\in\mathbb{N}$.
- **2.33 Definition** Sei $(a_n)_{n \in \mathbb{N}} \subset \mathbb{K}$ eine Folge und $a \in \mathbb{K}$.
 - (a) $(a_n)_{n\in\mathbb{N}}$ ist konvergent (gegen a): $\iff \forall \varepsilon > 0^5 \ \exists N \in \mathbb{N} \ \forall n \geqslant N : |a_n a| < \varepsilon$ Schreibweisen: $\lim_{n\to\infty} a_n = a$, $a_n \xrightarrow{n\to\infty} a$. Sprechweise: a ist Limes oder Grenzwert Beachte: Reihenfolge der Quantoren impliziert $N = N(\varepsilon)$ hängt von ε ab.
- (b) $(a_n)_{n\in\mathbb{N}}$ ist **Nullfolge** : $\iff \lim_{n\to\infty} a_n = 0$.
- (c) $(a_n)_{n\in\mathbb{N}}$ divergent (oder: nicht konvergent) in $\mathbb{K}:\iff \exists a\in\mathbb{K}: \lim_{n\to\infty} a_n=a$

(d) Spezialfälle von (c)

 $(a_n)_{n\in\mathbb{N}}$ (bestimmt) divergent nach $\infty:\iff \forall s\in\mathbb{N}\ \exists N\in\mathbb{N}\ \forall n\geqslant N: a_n>s$ $(a_n)_{n\in\mathbb{N}}$ (bestimmt) divergent nach $-\infty:\iff \forall s\in\mathbb{N}\ \exists N\in\mathbb{N}\ \forall n\geqslant N: a_n<-s$

 $\textit{Schreibweisen:} \lim_{n \to \infty} a_n = \infty, \, a_n \xrightarrow{n \to \infty} \infty \quad \textit{bzw.} \ \lim_{n \to \infty} a_n = -\infty, \, a_n \xrightarrow{n \to \infty} -\infty.$

Abbildung 2.2: Zur Definition des Begriffs der Folgenkonvergenz

⁵Kurzform für: $\forall \varepsilon \in \mathbb{K}, \varepsilon > 0$.

2.34 Beispiel In Beispiel 2.32 gilt:

- (a) konvergiert gegen a: N = 1 mögliche Wahl für alle $\varepsilon > 0$.
- (b) divergent: $\varepsilon \le 1$ erlaubt keine Wahl von N (was auch immer a ist). Beweis per Widerspruch: Annahme: $((-1)^n)_n \xrightarrow{n \to \infty} a \implies \text{für } \varepsilon = 1 \ \exists N \in \mathbb{N} \ \forall n \le N \colon |a_n a| < \varepsilon = 1$. Sei nun $n \ge N$. Andererseits gilt (sogar $\forall n \in \mathbb{N}$)

$$2 = |a_{n+1} - a_n| = |a_{n+1} - a + a - a_n| \stackrel{\triangle - \text{Ungl.}}{\leq} |a_{n+1} - a| + |a - a_n| < 1 + 1 = 2 \quad \text{$\frac{1}{2}$.}$$

(c) und (d) Übung!

Desweiteren (nicht in Beispiel 2.32):

(e) $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$ ist eine Nullfolge, da $\forall \varepsilon > 0$ (beliebig, aber fest!) gilt $\exists N \in \mathbb{N}$: $1 < N\varepsilon$

$$\implies \forall n \ge N \colon 0 < \frac{1}{n} \le \frac{1}{N} < \varepsilon.$$

2.35 Satz (Eindeutigkeit des Grenzwerts) Sei $(a_n)_n \subset \mathbb{K}$ eine Folge, seien $a,b \in \mathbb{K}$ und sei $\lim_{n \to \infty} a_n = a$, sowie $\lim_{n \to \infty} a_n = b$. Dann gilt a = b.

Beweis. Annahme: $a \neq b$. Dann folgt für $\varepsilon := \frac{1}{2}|a - b| > 0$

$$\exists N_a \in \mathbb{N} \ \forall n \geqslant N_a : |a_n - a| < \varepsilon$$
 und

$$\exists N_h \in \mathbb{N} \ \forall n \geqslant N_h : |a_n - b| < \varepsilon$$

$$\implies \forall n \geqslant \max\{N_a, N_b\}: |a - b| \stackrel{\triangle - \text{Ungl.}}{\leqslant} |a - a_n| + |b - a_n| < 2\varepsilon = |a - b| \ \text{$\frac{\varepsilon}{4}$}.$$

2.36 Definition Sei $(a_n)_{n \in \mathbb{N}} \subset \mathbb{K}$ eine Folge.

$$(a_n)_n$$
 beschränkt : $\iff \exists S \in \mathbb{N} \ \forall n \in \mathbb{N} : |a_n| \leq S.$

Analog definiert ist die Beschränktheit

von oben :
$$\iff \exists S \in \mathbb{K} \ \forall n \in \mathbb{N} : a_n \leq S$$
,

von unten :
$$\iff \exists S \in \mathbb{K} \ \forall n \in \mathbb{N}: a_n \geqslant S.$$

2.37 Satz Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{K}$ eine Folge. Dann gilt

$$(a_n)_{n\in\mathbb{N}}$$
 konvergent $\implies (a_n)_{n\in\mathbb{N}}$ beschränkt.

Beweis. Sei $\lim_{n\to\infty} a_n =: a$.

$$\implies \exists N \in \mathbb{N} \ \forall n \geqslant N : |a_n - a| < 1 \implies \forall n \geqslant N : |\underbrace{a_n}| < |a| + 1$$

$$\underbrace{a_n - a + a}$$

Wähle $S \in \mathbb{N}$ so, dass $S \ge |a| + 1$ und $S \ge |a_n| \ \forall n \in \{1, 2, ..., N-1\}$ (ist stets möglich) $\implies \forall n \in \mathbb{N}: |a_n| \leq S.$

2.38 Bemerkung Die Umkehrung des Satzes ist im Allgemeinen falsch! Dafür wähle zum Beispiel $a_n := (-1)^n$. Die Folge $(a_n)_{n \in \mathbb{N}}$ ist beschränkt, aber divergent gemäß Beispiel 2.34(b).

Hilfreich beim Berechnen von Limiten ist der folgende Satz.

2.39 Satz (Summe und Produkt konvergenter Folgen) Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}\subset\mathbb{K}$ konvergente Folgen mit Limiten a und b, dann gilt

(a)
$$(a_n + b_n)_{n \in \mathbb{N}}$$
 ist konvergent und $\lim_{n \to \infty} (a_n + b_n) = \left(\lim_{n \to \infty} a_n\right) + \left(\lim_{n \to \infty} b_n\right)$,
(b) $(a_n b_n)_{n \in \mathbb{N}}$ ist konvergent und $\lim_{n \to \infty} (a_n b_n) = \left(\lim_{n \to \infty} a_n\right) \left(\lim_{n \to \infty} b_n\right)$.

(b)
$$(a_n b_n)_{n \in \mathbb{N}}$$
 ist konvergent und $\lim_{n \to \infty} (a_n b_n) = \left(\lim_{n \to \infty} a_n\right) \left(\lim_{n \to \infty} b_n\right)$

Beweis. (a) Übung.

(b) Aus Satz 2.37 folgt, dass $(a_n)_n$ beschränkt ist, das heißt, $\exists S \in \mathbb{K} \ \forall n \in \mathbb{N}: |a_n| \leqslant S \land |b| \leqslant S$. Sei $\widetilde{\varepsilon} > 0$ beliebig $\stackrel{(a_n)_n,(b_n)_n \text{ kgt.}}{\Longrightarrow} \exists N \in \mathbb{N} \ \forall n \geqslant N: \ |a_n-a| < \widetilde{\varepsilon} \land |b_n-b| < \widetilde{\varepsilon}$.

$$\overset{\forall n \geqslant N}{\Longrightarrow} |a_n b_n - ab| \leqslant |a_n b_n - a_n b + a_n b - ab| \leqslant \underbrace{|a_n|}_{\leqslant S} \underbrace{|b_n - b|}_{\leqslant \widetilde{\mathcal{E}}} + \underbrace{|b|}_{\leqslant S} \underbrace{|a_n - a|}_{\leqslant \widetilde{\mathcal{E}}} < 2S\widetilde{\varepsilon}. \ (\star)$$

<u>Beweiskosmetik:</u> O.E. sei $S \neq 0$ oben. Sei nun $\varepsilon > 0$ beliebig, wähle $\tilde{\varepsilon} := \frac{\varepsilon}{2S}$

$$\stackrel{(\star)}{\Longrightarrow} \exists N \in \mathbb{N} \ \forall n \geqslant N \colon |a_n b_n - ab| < \varepsilon.$$

Dies hätte man auch von Anfang an machen können!

- **2.40 Satz** (Quotient konvergenter Folgen) Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}\subset\mathbb{K}$ konvergente Folgen mit Limiten a und $b \neq 0$. Dann existiert $N \in \mathbb{N}$, so dass
- (a) $\forall n \geq N : b_n \neq 0$, (b) $\left(\frac{a_n}{b_n}\right)_{n\geq N}$ ist konvergent mit $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$.

Beweis. (a)
$$b_n \xrightarrow{n \to \infty} b \neq 0 \implies \text{für } \varepsilon = \frac{|b|}{2} > 0 \text{ gilt}$$

$$\exists N \in \mathbb{N} \ \forall n \geqslant N \colon |b_n - b| < \frac{|b|}{2}$$

$$\implies \forall n \geqslant N \colon \ |b| \leqslant \underbrace{|b - b_n|}_{< \frac{|b|}{2}} + |b_n|$$

Aus Satz 2.24 folgt, dass $b_n \neq 0$.

(b) Es genügt zu zeigen: $\left(\frac{1}{b_n}\right)_{n\geqslant N}$ ist konvergent mit $\lim_{n\to\infty}\frac{1}{b_n}=\frac{1}{b}$, denn dann folgt die Behauptung mittels Satz 2.39.

Sei hierfür $\varepsilon>0$ beliebig $\implies \exists\,N'\geqslant N\,\,\forall n\geqslant N'\colon\,|b_n-b|<\varepsilon$

$$\stackrel{\forall n \geqslant N'}{\Longrightarrow} \left| \underbrace{\frac{1}{b_n} - \frac{1}{b}}_{b_n b} \right| = \underbrace{\frac{1}{|b_n|}}_{(\star)} \frac{1}{|b|} |b_n - b| < \frac{2}{|b|^2} \varepsilon.$$

Da $\varepsilon>0$ beliebig \implies Behauptung. (Für Beweiskosmetik ersetze ε durch $\varepsilon|b|^2/2$.)

2.41 Beispiel (a) Für $n \in \mathbb{N}$ sei $a_n := \frac{3n^2 + 13n}{n^2 - 2} = \frac{3 + \frac{13}{n}}{1 - \frac{2}{n^2}}$. Es gilt $\lim_{n \to \infty} \frac{1}{n}$ Bsp. 2.34(e) 0.

$$\implies (1) \quad \frac{13}{n} \xrightarrow{n \to \infty} 0 \qquad \text{wegen Satz } 2.39(b)$$

$$\implies (1) \quad \frac{13}{n} \xrightarrow{n \to \infty} 0 \qquad \text{wegen Satz } 2.39(b)$$

$$(2) \quad \frac{1}{n^2} = \frac{1}{n} \cdot \frac{1}{n} \xrightarrow{n \to \infty} 0 \quad \text{wegen Satz } 2.39(b) \implies \frac{2}{n^2} \to 0 \quad \text{wegen Satz } 2.39(b)$$

(3)
$$3 + \frac{13}{n} \xrightarrow{n \to \infty} 3$$
 wegen (1) \wedge Satz 2.39(a)

(4)
$$1 - \frac{2}{n^2} \xrightarrow{n \to \infty} 1$$
 wegen (2) \wedge Satz 2.39(a)

 $\implies \lim_{n \to \infty} a_n = 3 \text{ wegen (3), (4) und Satz 2.40(b)}.$

(b) $a_n := n, b_n := 1, c_n := a_n + b_n \implies \lim_{n \to \infty} a_n = \infty, \lim_{n \to \infty} b_n = 1 \text{ und } \lim_{n \to \infty} c_n = \infty.$ $\implies \text{``$\pm \infty$''} \text{ ist nur ein formales Symbol, insbesondere } \notin \mathbb{K}, \text{ und es liegt keine Konvergenz } \text{vor! (Sonst } \infty + 1 = \infty \implies 1 = 0 \quad \text{\sharp})$

Analogon von Satz 2.40 für b = 0.

34

2.42 Satz Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{K}$ eine Nullfolge und $a_n>0$ (bzw. $a_n<0$) für alle $n\in\mathbb{N}$. Dann gilt

$$\lim_{n\to\infty}\frac{1}{a_n}=+\infty \qquad (\textit{bzw.}\,-\infty).$$

Beweis. Fall $a_n > 0 \ \forall n \in \mathbb{N}$ (Fall $a_n < 0$ analog):

Sei $S \in \mathbb{N}$ beliebig, dann folgt aus der Tatsache, dass $(a_n)_n$ eine Nullfolge ist,

$$\exists N \in \mathbb{N} \ \forall n \geqslant N \colon \underbrace{0 < a_n < \frac{1}{S}}_{\text{constant}} .$$

2.43 Satz (Verträglichkeit von lim und Ordnung) Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}\subset\mathbb{K}$ konvergente Folgen mit $a_n\leqslant b_n$ für alle $n\in\mathbb{N}$. Dann gilt

$$\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$$

Beweis. Wir zeigen nur: Sei $(c_n)_{n\in\mathbb{N}}\subset\mathbb{K}$ konvergente Folge mit $c_n\geqslant 0$ für alle $n\in\mathbb{N}$. Dann gilt

$$\lim_{n\to\infty}c_n\geqslant 0.$$

(Behauptung folgt dann mit Satz 2.39(a) und $c_n := b_n - a_n$)

Angenommen: $c := \lim_{n \to \infty} c_n < 0$

2.44 Warnung! Auch wenn sogar $a_n < b_n$ für alle $n \in \mathbb{N}$ gilt, so folgt doch nur

$$\lim_{n\to\infty} a_n \le \lim_{n\to\infty} b_n$$

im Allgemeinen. Beispiel: $a_n = 0, b_n = \frac{1}{n}$ für alle $n \in \mathbb{N}$. Also $b_n > a_n$ für alle $n \in \mathbb{N}$ und $\lim_{n \to \infty} a_n = 0 = \lim_{n \to \infty} b_n$.

2.45 Korollar Sei $(a_n)_{n \in \mathbb{N}} \subset \mathbb{K}$ eine konvergente Folge und sei $A, B \in \mathbb{K}$, so dass $A \leq a_n \leq B$ für alle $n \in \mathbb{N}$. Dann gilt

$$A\leqslant \lim_{n\to\infty}a_n\leqslant B.$$

2. Aufbau des Zahlensystems

2.46 Definition Für alle $n \in \mathbb{N}$ sei $a_n \in \mathbb{K}$.

• Partialsumme
$$S_N := \sum_{n=1}^N a_n, \qquad N \in \mathbb{N}$$

• Reihe
$$\sum_{n\in\mathbb{N}} a_n \equiv \sum_{n=1}^{\infty} a_n$$
: Folge $(S_N)_{N\in\mathbb{N}}$

• Summe der Reihe: falls $(S_N)_{N\in\mathbb{N}}$ konvergent ist, setze

$$\sum_{n=1}^{\infty} a_n := \lim_{N \to \infty} S_N$$

Jargon: Reihe konvergent

Vorsicht: selbes Symbol für Reihe und deren Summe!

Analog gelten diese Definitionen auch für $\sum_{n=k}^{\infty} a_n$ mit $k \in \mathbb{Z}$.

2.47 Bemerkung Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{K}$ Folge. Darstellung als **Teleskopsumme** $\forall N\in\mathbb{N}$

$$a_{N+1} = a_1 + \sum_{n=1}^{N} (a_{n+1} - a_n).$$

2.48 Beispiel Zeige die Konvergenz der Reihe $\sum_{n \in \mathbb{N}} \underbrace{\frac{1}{n(n+1)}}_{1} \leftarrow \mathbf{Partialbruchzerlegung}$

$$\frac{1}{n} - \frac{1}{n+1} \leftarrow$$
Partialbruchzerlegung

Teleskopsumme $\sum_{n=1}^{N} \left(-\frac{1}{n+1} + \frac{1}{n} \right) = -\frac{1}{N+1} + 1 \implies$

$$S_N := \sum_{n=1}^N \frac{1}{n(n+1)} = 1 - \frac{1}{N+1} \implies \sum_{n \in \mathbb{N}} \frac{1}{n(n+1)} = 1 - \lim_{N \to \infty} \frac{1}{N+1} = 1.$$

2.49 Satz (Geometrische Reihe) Sei $q \in \mathbb{Q}$. Die geometrische Reihe $\sum_{n=0}^{\infty} q^n$ ist • konvergent $\iff |q| < 1$. In diesem Fall gilt $\sum_{n \in \mathbb{N}_0} q^n = \frac{1}{1-q}$. • divergent $\iff |q| \geqslant 1$.

• konvergent
$$\iff$$
 $|q| < 1$. In diesem Fall gilt $\sum_{n \in \mathbb{N}_0} q^n = \frac{1}{1-q}$.

Beweis. Sei
$$S_N := \sum_{n=0}^N q^n$$
 für $N \in \mathbb{N}$.

1. Fall
$$q = 1 \implies S_N = N + 1 \xrightarrow{N \to \infty} + \infty$$
 d.h. bestimmt divergent nach $+\infty$.

$$\underline{2. \, \text{Fall}} \ \ q = -1 \implies S_N = \begin{cases} 1 & N \text{ gerade} \\ 0 & N \text{ ungerade} \end{cases} \implies \text{divergent.}$$

3. Fall
$$|q| > 1$$
 oder $|q| < 1 \implies S_N = \frac{1 - q^{N+1}}{1 - q}$ (gültig für $q \neq 1$ gemäß Übung).

Übung $\implies q^{N+1} \xrightarrow{N \to \infty} 0$ für |q| < 1 und divergent für $|q| \geqslant 1$. Im konvergenten Fall erhält man mittels Satz 2.39 den Grenzwert $\frac{1}{1-q}$.

2.50 Definition Sei
$$(a_n)_{n\in\mathbb{N}}\subset\mathbb{K}$$
 eine Folge.

$$(a_n)_{n\in\mathbb{N}}$$
 Cauchy-Folge : $\iff \forall \varepsilon > 0 \exists N \in \mathbb{N} \ \forall n,m \geqslant N \colon |a_n - a_m| < \varepsilon.$

Anschaulich bedeutet die Definition, dass die Glieder einer Cauchy-Folge schließlich immer näher zusammenrücken. Die Eigenschaft der Cauchy-Folge ist eine notwendige Bedingung für Konvergenz:

2.51 Satz Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{K}$ eine konvergente Folge, dann ist $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge.

Beweis. Sei
$$\varepsilon > 0$$
 beliebig $\Longrightarrow \exists N \in \mathbb{N} \ \forall n \geqslant N \colon |a_n - a| < \frac{\varepsilon}{2} \Longrightarrow \forall n, m \geqslant N \colon |a_n - a_m| \leqslant |a_n - a| + |a - a_m| < \varepsilon.$

Die Umkehrung von Satz 2.51 gilt nur in den allerbesten Welten...

2.52 Definition Sei K ein archimedisch geordneter, bewerteter Körper.

 \mathbb{K} vollständig : \iff jede Cauchy-Folge in \mathbb{K} konvergiert.

2.53 Satz Q ist nicht vollständig.

Beweis. Heron-Verfahren (= babylonisches Wurzelziehen). Sei $0 < c \in \mathbb{Q}$, definiere $(a_n)_{n \in \mathbb{N}} \subset \mathbb{Q}$ durch

$$a_1 := 1$$

$$a_{n+1} := \frac{1}{2} \left(a_n + \frac{c}{a_n} \right) \text{ für } n \in \mathbb{N}.$$

Die Folge ist wohldefiniert, da mittels vollständiger Induktion gezeigt werden kann, dass für alle $n \in \mathbb{N}$ gilt: $0 < a_n \in \mathbb{Q}$. Um den Satz zu beweisen, zeigen wird die folgenden vier Behauptungen.

1. Beh.
$$\forall n \in \mathbb{N} \setminus \{1\}: a_n^2 \ge c$$
.

Die Aussage folgt aus "arithmetisches Mittel" ≥ "geometrisches Mittel":

$$\forall q, r \in \mathbb{Q} : (q-r)^2 \geqslant 0 \Longrightarrow (q^2+r^2)/2 \geqslant qr \text{ und damit auch}$$
$$[(q+r)/2]^2 = (q^2+r^2)/4 + qr/2 \geqslant qr$$
$$\Longrightarrow \forall n \in \mathbb{N} : a_{n+1}^2 = \left[\frac{1}{2}\left(a_n + \frac{c}{a_n}\right)\right]^2 \geqslant a_n \cdot \frac{c}{a_n} = c. \qquad \checkmark$$

 $\underline{\text{2. Beh.}} \lim_{n \to \infty} a_n^2 = c \text{ und } \forall n \in \mathbb{N} \setminus \{1\}: a_{n+1} \leqslant a_n.$

Der Fehler (oder Abweichung) sei für alle $n \ge 2$ definiert als $f_n := a_n^2 - c \stackrel{\text{1.Beh.}}{\geqslant} 0$.

$$\implies f_{n+1} + c = a_{n+1}^2 = \left[\frac{1}{2}(a_n + \frac{c}{a_n})\right]^2 = \frac{1}{4}\left(a_n^2 + 2c + \frac{c^2}{a_n^2}\right)$$

$$= \frac{1}{4}\left(f_n + 3c + \frac{c^2}{f_n + c}\right)$$

$$\underbrace{\frac{c^2 + f_n c}{f_n + c}}_{c} - \underbrace{\frac{f_n c}{f_n + c}}_{\geqslant 0}$$

$$\leqslant c + \frac{1}{4}f_n$$

$$\implies 0 \leqslant f_{n+1} \leqslant \frac{1}{4}f_n \quad \forall n \geqslant 2.$$

Daraus folgt $\forall n \geq 2$

Daraus folgt
$$\forall n \ge 2$$

(1) $0 \le f_n - f_{n+1} \le a_n^2 - a_{n+1}^2 = (a_n - a_{n+1})(\underbrace{a_n + a_{n+1}})$
 $\implies a_n - a_{n+1} \ge 0.$

(2) mittels Induktion:
$$0 \le f_n \le \left(\frac{1}{4}\right)^{n-2} f_2 \xrightarrow{n \to \infty} 0$$
 (Nullfolge gemäß Übung) $\implies (f_n)_{n \in \mathbb{N}}$ Nullfolge nach Sandwich-Satz (Übung!).

3. Beh. $(a_n)_{n\in\mathbb{N}}$ ist Cauchy-Folge.

2. Behauptung und Satz 2.51 $\implies (a_n^2)_{n \in \mathbb{N}}$ ist Cauchy.

$$\implies \forall \varepsilon > 0 \ \exists \ N \in \mathbb{N} \ \forall n, m \ge N \colon |a_n^2 - a_m^2| < \varepsilon$$

$$\implies |a_n - a_m| < \frac{\varepsilon}{(a_n + a_m)} \quad (\star)$$

Wähle $l \in \mathbb{N}$ so groß, dass $c \geqslant \frac{1}{l^2} \stackrel{\text{1.Beh.}}{\Longrightarrow} a_n \geqslant \frac{1}{l} \quad \forall n \in \mathbb{N}$

$$\stackrel{(\star)}{\Longrightarrow} |a_n - a_m| < \frac{l}{2} \varepsilon \qquad \checkmark$$

<u>4. Beh.</u> $(a_n)_{n\in\mathbb{N}}$ divergiert in \mathbb{Q} für c=2.

Annahme: $\exists a \in \mathbb{Q}: a_n \xrightarrow{n \to \infty} a$. Dann folgt aus Satz 2.39(b)

$$a^2 = \lim_{n \to \infty} a_n^2 \stackrel{\text{2.Beh}}{=} c \implies \text{ } \text{ } \text{ } \text{zu Satz 2.25}.$$

Aus der 3. und 4. Behauptung folgt, dass Q nicht vollständig ist.

Abbildung 2.3: Moral für c=2: Fehlender Grenzwert a in \mathbb{Q} , so dass $a^2=2$.

2.6 Die reellen Zahlen \mathbb{R}

Ziel: Menge Q hat "Löcher". Vervollständige Q durch Hinzunahme der Löcher zu einer "kontinuierlichen Zahlengerade ohne Löcher".

Frage: Mit welchem mathematischen Objekt kann das Loch eindeutig beschrieben werden?

Antwort: Cauchy-Folge (denn das Loch ist dort, wo sich die Folgenglieder verdichten).

Problem: Es gibt verschiedene Cauchy-Folgen, die sich zu dem selben Loch verdichten. Ausweg...

2.54 Definition Sei $CF(\mathbb{Q}) := \{ (a_n)_{n \in \mathbb{N}} \subset \mathbb{Q} : (a_n)_n \text{ ist Cauchy-Folge} \}.$

 \ddot{A} *quivalenzrelation auf* $CF(\mathbb{Q})$:

$$(a_n)_n \sim (b_n)_n :\iff \lim_{n \to \infty} (a_n - b_n) = 0$$

Menge der reellen Zahlen: $\mathbb{R}:=\mathrm{CF}(\mathbb{Q})/_{\sim}$ " \mathbb{R} ist die Vervollständigung von \mathbb{Q} ."

Vervollständigung ist ein sehr wichtiges Konzept in der modernen Analysis.

2.55 Definition Seien $x, y \in \mathbb{R}$ mit Repräsentanten $(a_n)_n, (b_n)_n \in CF(\mathbb{Q})$.

(a) Addition und Multiplikation reeller Zahlen

$$x + y := [(a_n + b_n)_n] \in \mathbb{R}$$
$$xy := [(a_n b_n)_n] \in \mathbb{R}$$

(b) Ordnungsrelation

$$x \leq y :\iff \exists Nullfolge (\eta_n)_n \subset \mathbb{Q} \exists N \in \mathbb{N} \forall n \geq N : a_n \leq b_n + \eta_n$$

(c) Wie üblich sei

$$x < y : \iff (x \le y \land x \ne y)$$

$$\stackrel{\ddot{U}berpr{u}fen!}{\iff} \exists N \in \mathbb{N} \exists q_1, q_2 \in \mathbb{Q} \ \forall n \ge N : a_n < q_1 < q_2 < b_n$$

$$x \ge y : \iff y \le x$$

$$x > y : \iff y < x$$

2.56 Lemma Die obigen Definitionen sind wohldefiniert, das heißt unabhängig von der Wahl der Repräsentanten, und $(a_n + b_n)_n$, $(a_n b_n)_n \in CF(\mathbb{Q})$.

Beweis. (a) "+" • Sei $c_n := a_n + b_n$ für alle $n \in \mathbb{N}$, $\varepsilon > 0$ und nach Voraussetzung existiert $N \in \mathbb{N}$, so dass $\forall m, n \ge N$: $|a_n - a_m| < \frac{\varepsilon}{2} \wedge |b_n - b_m| < \frac{\varepsilon}{2}$

$$\implies |c_n - c_m| = |a_n - a_m + b_n - b_m| \leqslant \underbrace{|a_n - a_m|}_{\triangle \text{-Ungl.}} + \underbrace{|b_n - b_m|}_{<\varepsilon/2} < \varepsilon \implies \text{Cauchy } \checkmark$$

• Seien $(\widetilde{a}_n)_n \in x$, $(\widetilde{b}_n)_n \in y$ andere Repräsentanten, d.h. $(\widetilde{a}_n - a_n) \xrightarrow{n \to \infty} 0$, $(\widetilde{b}_n - b_n) \xrightarrow{n \to \infty} 0$. Setze $\widetilde{c}_n := \widetilde{a}_n + \widetilde{b}_n \implies \lim_{n \to \infty} (\widetilde{c}_n - c_n) \xrightarrow{\text{Satz 2.39}(a)} (\widetilde{a}_n - a_n) + (\widetilde{b}_n - b_n) \xrightarrow{n \to \infty} 0 + 0 = 0$. \checkmark "·" analog. (b) Übung.

2.57 Bemerkung Da für alle $(a_n)_n \in CF(\mathbb{Q})$ und für alle $q \in \mathbb{Q}$ gilt

$$\lim_{n\to\infty} a_n = q \iff^{\text{Def. von } \sim} (a_n)_n \in [(q, q, \dots)],$$

ist es üblich via

$$i: \begin{array}{ccc} \mathbb{Q} & \rightarrow & \mathbb{R} \\ q & \mapsto & [(q,q,\dots)] \end{array}$$
 (Einbettungsabbildung)

 \mathbb{Q} mit $i(\mathbb{Q})$ zu identifizieren und somit als Teilmenge von \mathbb{R} anzusehen, $\mathbb{Q} \subset \mathbb{R}$. Notation: schreibe q statt $[(q,q,\dots)]$. Mehr Rechtfertigung dazu in Teil (e) von

2.58 Satz (a) \mathbb{R} ist ein Körper.

Addition
$$0 = [(0,0,\ldots)]$$
 $[(-a_n)_n] =: -x$ Multiplikation $1 = [(1,1,\ldots)]$ $[(1/a_n)_n] =: 1/x$ (nur für $x \neq 0$)6

(b) (\mathbb{R}, \leq) ist total geordnet und für alle $x \in \mathbb{R}$ gilt genau eine der drei Aussagen

$$\bullet \quad x < 0 \qquad \qquad \bullet \quad x = 0 \qquad \qquad \bullet \quad x > 0$$

- (c) Die Ordnung \leq auf \mathbb{R} ist archimedisch, siehe Lemma 2.22(a).
- (d) \mathbb{R} ist ein bewerteter Körper mit Absolutbetrag

das heißt, es gilt (B0) – (B3) aus Satz 2.24.

(e) Alle Operationen auf \mathbb{R} sind verträglich mit denen auf \mathbb{Q} .

⁶Präziser: gemäß Satz 2.40 ∃ $N \in \mathbb{N} \forall n \ge N : a_n \ne 0$. Ein Repräsentant für das inverse Element ist $[(1/\tilde{a}_n)_{n \in \mathbb{N}}]$ mit

Beweis. (a) Strategie: Führe auf entsprechende Eigenschaften von Q zurück. Hier nur exemplarisch für "+" kommutativ:

$$\underbrace{x}_{[(a_n)_n]} + \underbrace{y}_{[(b_n)_n]} = \underbrace{[(a_n + b_n)]}_{\substack{b_n + a_n, \text{ denn} \\ \text{in } \mathbb{Q} \text{ kommutativ}}} = [(b_n)_n] + [(a_n)_n] = y + x.$$

- (b) Übung!
- (c) Zu zeigen: $\forall \varepsilon, R \in \mathbb{R} \text{ mit } \varepsilon, R > 0 \ \exists n \in \mathbb{N}: R < \varepsilon n.$ Sei $\varepsilon = [(\delta_k)_k], R = [(q_k)_k].$
 - $\bullet \ \varepsilon > 0 \implies \exists \, \delta \in \mathbb{Q}, \delta > 0, \exists \, K \in \mathbb{N} \, \, \forall k \geq K \colon \delta_k > \delta \, \, (>\delta/2 > 0)$
 - $(q_n)_n \in \mathrm{CF}(\mathbb{Q}) \implies (q_n)_n$ beschränkt, also $\exists \, q \in \mathbb{Q}, q > 0, \, \forall k \in \mathbb{N}: \, |q_k| < q$

$$\overset{\mathbb{Q} \text{ archimedisch}}{\Longrightarrow} \exists n \in \mathbb{N}: \ q < n\delta$$

$$\Longrightarrow \forall k \geqslant K: \ q_k < q < n\delta < n\delta_k \iff R < n\varepsilon \quad \checkmark$$

(d) Hilfsbehauptung:
$$\forall (a_n)_n \in CF(\mathbb{Q}) \text{ ist } (|a_n|)_n \in CF(\mathbb{Q}) \text{ und } \underbrace{|[(a_n)_n]|}_{\text{Betrag in } \mathbb{R}} = \underbrace{[(|a_n|)_n]}_{\text{Betrag in } \mathbb{Q}}$$
 (*)

denn: sei $x := [(a_n)_n] \implies$

- Unter Dreiecksungl.: $||a_n| |a_m|| \le |a_n a_m| \ \forall n, m \in \mathbb{N} \implies (|a_n|)_n \in CF(\mathbb{Q})$
- 1. Fall: $x \ge 0$. Zu zeigen: $(a_n)_n \sim (|a_n|)_n$. Da $x \ge 0$ \exists Nullfolge $(\eta_n)_n \subset \mathbb{Q}$: $0 \le a_n + \eta_n$ o.E. sei $\eta_n \ge 0 \ \forall n \in \mathbb{N}$

$$\implies 0 \leqslant |a_n| - a_n = \begin{cases} 0, & a_n \geqslant 0 \\ -2a_n, & a_n < 0 \end{cases} \leqslant 2\eta_n$$

$$\stackrel{\text{Satz 2.43}}{\implies} (|a_n| - a_n)_n \subset \mathbb{Q} \text{ ist Nullfolge } \checkmark$$

2. Fall: x < 0: analog, da $x < 0 \implies x \le 0$.

Nun zu (B0) – (B3): (B0) klar, da $\mathbb R$ total geordnet.

- (B1) $|x| \ge 0$ klar per Definition.
 - $|x| = 0 \iff x = 0$: " \Leftarrow " klar per Definition. " \Rightarrow " $0 = |x| \stackrel{(\star)}{=} [(|a_n|)_n] \implies (|a_n|)_n \sim (0, 0, \dots) \iff (|a_n|)_n \text{ ist Nullfolge}$ $\implies (a_n)_n \sim (0, 0, \dots), \text{ d.h. } x = 0 \checkmark$

(B2)
$$|xy| = |\underbrace{[(a_n)_n] \cdot [(b_n)_n]}_{[(a_nb_n)_n]}| \stackrel{(\star)}{=} [(\underbrace{|a_nb_n|})_n] = [(|a_n|)_n][(|b_n|)_n]$$

$$\stackrel{(\star)}{=} |[(a_n)_n] \cdot [(b_n)_n] = |x| \cdot |y|$$

 $[\]widetilde{a}_n := a_n$ für $n \ge N$ und $\widetilde{a}_n := 1$ für $1 \le n < N$. Die Wahl endlich vieler Glieder – oder deren Weglassen – hat keinen Einfluss auf die Äquivalenzklasse.

(B3)
$$|x + y| = |\underbrace{[(a_n)_n] + [(b_n)_n]}_{[(a_n + b_n)_n]} | \stackrel{(\star)}{=} [\underbrace{(|a_n + b_n|)_n}] \leq [(|a_n|)_n] + [(|b_n|)_n]$$

$$\stackrel{(\star)}{=} |[(a_n)_n]| + |[(b_n)_n]| = |x| + |y|$$

(e) Seien $p, q \in \mathbb{Q}$. Für die Rechenoperationen klar, z.B. für $+(-,\cdot,/$ analog)

$$[(p, p, p, \ldots)] + [(q, q, q, \ldots)] = [(p + q, p + q, p + q, \ldots)].$$

Ordnungsrelation: $[(p, p, p, \ldots)] \leq [(q, q, q, \ldots)] \iff p \leq q$ Denn: $,\Rightarrow$ " $\exists (\eta_n)_n \subset \mathbb{Q}$ Nullfolge $\exists N \in \mathbb{N} \forall n \geq N : p \leq q + \eta_n \overset{\text{Satz } 2.43: n \to \infty}{\Longrightarrow} p \leq q$. "⇐" klar.

- (a) Eine **Folge** $(x_n)_n \subset \mathbb{R}$ ist eine Abbildung $\begin{cases} \mathbb{N} \to \mathbb{R} \\ n \mapsto x_n \end{cases}$.
 - (b) Seien $(x_n)_n \subset \mathbb{R}$ und $x \in \mathbb{R}$.

$$\lim_{n \to \infty} x_n = x : \iff \forall \varepsilon > 0^7 \,\exists \, N \in \mathbb{N} \, \forall n \geqslant N \colon |x_n - x| < \varepsilon$$

- **2.60 Bemerkung** Kapitel 2.5 über Folgen & Reihen verwendet nicht, dass $\mathbb{K} = \mathbb{Q}$, sondern nur, dass $\mathbb K$ ein bewerteter, archimedisch geordneter Körper mit $\mathbb K\supset \mathbb Z$ ist. Somit gelten alle Folgerungen aus diesem Kapitel auch für $\mathbb{K} = \mathbb{R}$.
- **2.61 Satz** Sei $(q_n)_n \in \mathrm{CF}(\mathbb{Q})$ und $x := [(q_n)_n] \in \mathbb{R}$. Dann gilt $\lim_{n \to \infty} [(q_n, q_n, q_n, \dots)] = x \qquad (\textit{Konvergenz in } \mathbb{R}).$ Kürzer mit der Notation aus Bemerkung 2.57: $\lim_{n \to \infty} q_n = x$.

$$\lim_{n \to \infty} [(q_n, q_n, q_n, \dots)] = x \qquad (Konvergenz in \mathbb{R})$$

Beweis. Sei $0 < \varepsilon \in \mathbb{R} \implies \exists \, k \in \mathbb{N}: \, 1 < \varepsilon k$. Per Definition einer Cauchy-Folge (in \mathbb{Q}) gilt \mathbb{R} archimedisch

$$\exists N \in \mathbb{N} \ \forall n, m \geqslant N \colon |q_n - q_m| < \frac{1}{k}.$$
 (hier: $1/k \in \mathbb{Q}$ verwendet)

Für $n \in \mathbb{N}$ sei $y_n := x - [(q_n, q_n, \dots)] = [(q_m)_m] - [(q_n)_m] = [(q_m - q_n)_m]$, dann folgt aus der Tatsache, dass $|[(a_n)_n]| = [(|a_n|)_n]$ auch $|y_n| = [(|q_m - q_n|)_m]$ und somit für alle $n \ge N$

$$|y_n| \leqslant \frac{1}{k} < \varepsilon$$

Folglich haben wir $\lim_{n\to\infty} y_n = 0$ gezeigt.

Moral: Alle Cauchy-Folgen aus \mathbb{Q} konvergieren in \mathbb{R} (Löcher in \mathbb{Q} sind "gestopft").

⁷Kurzform für: $\forall \varepsilon \in \mathbb{R} \text{ mit } \varepsilon > 0$.

2.62 Definition Sei $b \in \mathbb{N} \setminus \{1\}$, $n_0 \in \mathbb{N}_0$ und für alle $n \in \mathbb{Z}$, $n \ge -n_0$ sei $a_n \in \{0, 1, 2, ..., b-1\}$. Ein **b-adischer Bruch** ist eine Reihe der Form

$$\pm \sum_{n=-n_0}^{\infty} a_n b^{-n}$$

 $F\ddot{u}r b = 10$: Dezimalbruch.

 $F\ddot{u}rb = 2$: Dyadischer Bruch (Binärdarstellung).

2.63 Satz Mit der Notation von Definition 2.62 bezeichne $S_N := \pm \sum_{n=-n_0}^{N} a_n b^{-n} \in \mathbb{Q}, N \in \mathbb{Z}, N \ge -n_0$, die Partialsummen eines b-adischen Bruchs. Dann gilt:

$$(S_N)_{N \geqslant -n_0} \in \mathrm{CF}(\mathbb{Q}),$$

somit $x := [(S_N)_{N \geqslant -n_0}] \in \mathbb{R}$ und nach Satz 2.61 auch

$$x = \lim_{n \to \infty} S_N = \pm \sum_{n = -n_0}^{\infty} a_n b^{-n} \qquad (Konvergenz \ in \ \mathbb{R}).$$

Beweis. Seien $M, N \in \mathbb{Z}$ mit $-n_0 \leq M \leq N$

$$\implies |S_N - S_M| = \left| \pm \sum_{n=M+1}^N a_n b^{-n} \right| \le \sum_{n=M+1}^N b^{-(n-1)} \le \sum_{n=M+1}^\infty b^{-(n-1)}$$
$$= \frac{1}{b^M} \sum_{n=0}^\infty b^{-n} = \frac{1}{b^M} \frac{1}{1 - \frac{1}{b}} \le \frac{2}{b^M}$$

2.64 Satz Sei $b \in \mathbb{N} \setminus \{1\}$ und $x \in \mathbb{R}$. Dann existiert $\sigma \in \{-1, 1\}$, so dass unter Verwendung der Notation von Definition 2.62 gilt

$$x = \sigma \sum_{n=-n_0}^{\infty} \frac{a_n}{b^n} \qquad (Konvergenz \ in \ \mathbb{R}).$$

Moral: • Jedes $x \in \mathbb{R}$ lässt sich beliebig gut durch rationale Zahlen approximieren.

• \mathbb{R} ist z.B. die Menge aller Dezimalbrüche (b = 10)

$$\pm \sum_{n=-n_0}^{\infty} \frac{a_n}{10^n} = \pm a_{-n_0} \dots a_0, \ a_1 a_2 a_3 \dots.$$

Achtung, die Darstellung ist nicht eindeutig: so gilt z.B. $1 = 0, \overline{9} := 0,999...$

Beweis von Satz 2.64. Sei $x \in \mathbb{R}$, o.B.d.A. sei x > 0 [x = 0 klar; falls x < 0, betrachte -x > 0]. Da $b > 1 \implies$

$$\exists n \in \mathbb{N}_0: x \overset{\mathbb{R} \text{ archim.}}{\underset{\text{Satz } 2.58(c)}{\leftarrow}} (n+1)(b-1) < 1 + (n+1)(b-1) \overset{\text{Bernoulli-Ungl.}}{\leqslant} b^{n+1}.$$

Sei n_0 die kleinste Zahl aus \mathbb{N}_0 , für die diese Aussage wahr ist,⁸ das heißt

$$n_0 := \min \{ n \in \mathbb{N}_0 : x < b^{n+1} \}.$$

Behauptung: $\forall N \in \mathbb{Z}, N \geqslant -n_0, \forall n \in \{-n_0, -n_0 + 1, \dots, N\} \exists a_n \in \{0, 1, \dots, b-1\} \text{ und } \exists \xi_N \in \mathbb{R} \text{ mit } 0 \leqslant \xi_N < b^{-N}$:

$$x = \sum_{n=-n_0}^{N} \frac{a_n}{b^n} + \xi_N.$$

Aus der Behauptung folgt direkt der Satz, da $\lim_{N\to\infty} \xi_N = 0$.

Beweis der Behauptung mit Induktion nach N.

Induktionsanfang $N = -n_0$: nach Definition von n_0 gilt

$$0 \le xb^{-n_0} < b \implies \exists_1 \, a_{-n_0} \in \{0, 1, \dots, b-1\} \, \exists_1 \, 0 \le \delta < 1 \colon xb^{-n_0} = a_{-n_0} + \delta$$

Setze
$$\xi_{-n_0} := b^{n_0} \delta$$
, also $0 \le \xi_{n_0} < b^{n_0} \implies x = \frac{a_{-n_0}}{b^{-n_0}} + \xi_{-n_0} \quad \checkmark$

Induktionsschritt $N \rightarrow N + 1$:

Sei
$$x = \sum_{n=-n_0}^{N} \frac{a_n}{b^n} + \xi_N \text{ mit } 0 \le \xi_N < b^{-N} \implies 0 \le \xi_N b^{N+1} < b.$$

$$\implies$$
 $\exists_1 a_{N+1} \in \{0, 1, \dots, b-1\} \ \exists_1 \ 0 \le \delta < 1: \ \xi_N b^{N+1} = a_{N+1} + \delta.$

Setze
$$\xi_{N+1} := \delta b^{-(N+1)} \implies 0 \le \xi_{N+1} < b^{-(N+1)} \text{ und } x = \sum_{n=-n_0}^{N} \frac{a_n}{b^n} + \underbrace{\xi_N}_{n-1}.$$

2.65 Satz (Cauchy) \mathbb{R} ist vollständig, das heißt, jede Cauchy-Folge $(x_n)_n \subset \mathbb{R}$ konvergiert.

Beweis. Sei $(x_n)_n \subset \mathbb{R}$ eine beliebige, aber fixe Cauchy-Folge.

<u>1. Akt</u> Konstruktion von $(q_n)_n \subset \mathbb{Q}$ als Kandidat für Grenzwert x.

$$\forall n \in \mathbb{N} \text{ gilt: } x_n \in \mathbb{R} \implies \exists \left(\tau_k^{(n)}\right)_k \in \mathrm{CF}(\mathbb{Q}) \text{ mit } x_n = \left[\left(\tau_k^{(n)}\right)_k\right]$$

$$\stackrel{\text{Satz 2.61}}{\Longrightarrow} \lim_{k \to \infty} \tau_k^{(n)} = x_n \qquad \forall n \in \mathbb{N}. \tag{0}$$

⁸Die Minimalforderung an $n_0 \in \mathbb{N}_0$ stellt lediglich sicher (siehe Induktionsanfang weiter unten im Beweis), dass für Zahlen $|x| \ge 1$ die führende Ziffer a_{-n_0} in der b-adischen Entwicklung $\ne 0$ ist.

Ohne Einschränkung gelte $\forall n \in \mathbb{N} \ \forall k_1, k_2 \in \mathbb{N}$

$$\left|\tau_{k_1}^{(n)} - \tau_{k_2}^{(n)}\right| < \frac{1}{n}.$$
 (1)

[Für gegebenes n stimmt dies immer $\forall k_1, k_2$ groß genug, da $(\tau_k^{(n)})_k$ eine Cauchy-Folge ist; modifiziere Anfangsglieder, so dass es passt (oder wegstreichen) \Longrightarrow gültig $\forall k_1, k_2$.] Setze $q_n := \tau_n^{(n)} \ \forall n \in \mathbb{N}$. Jargon: $(q_n)_n \subset \mathbb{Q}$ ist eine **Diagonalfolge**.

<u>2. Akt</u> Wir zeigen $(q_n)_n \in CF(\mathbb{Q})$, somit ist $x := [(q_n)_n] \in \mathbb{R}$ wohldefiniert.

Sei $\varepsilon \in \mathbb{Q}, \varepsilon > 0 \implies \forall k, m, n \in \mathbb{N}$

$$|q_m - q_n| = \left|\tau_m^{(m)} - \tau_k^{(m)} + \tau_k^{(m)} - \tau_k^{(n)} + \tau_k^{(n)} - \tau_n^{(n)}\right| \le \frac{1}{m} + \left|\tau_k^{(m)} - \tau_k^{(n)}\right| + \frac{1}{n}.$$
 (2)

Da
$$(x_n)_n$$
 Cauchy $\Longrightarrow \exists \widetilde{N} \in \mathbb{N} \ \forall m, n \geq \widetilde{N} \colon |\underbrace{x_m - x_n}| = \left[\left(\left|\tau_k^{(m)} - \tau_k^{(n)}\right|\right)_k\right] < \varepsilon$

$$\left[\left(\tau_k^{(m)} - \tau_k^{(n)}\right)_k\right]$$
Def. $< \operatorname{in} \mathbb{R}$
 $\Rightarrow \exists K \in \mathbb{N} \ \forall k \geq K \colon \left|\tau_k^{(m)} - \tau_k^{(n)}\right| < \varepsilon$.

$$\stackrel{\text{Def.} < \text{in } \mathbb{R}}{\Longrightarrow} \quad \exists K \in \mathbb{N} \ \forall k \geqslant K : \left| \tau_k^{(m)} - \tau_k^{(n)} \right| < \varepsilon$$

Wähle $k \ge K$ in (2) $\implies \forall m, n \ge N := \max\{\widetilde{N}, 1/\varepsilon\}: |q_m - q_n| < 3\varepsilon.$

3. Akt Wir zeigen $\lim_{n\to\infty} x_n = x$ in \mathbb{R} .

Aus (0) \wedge (1) mit $k_1 = n$ und $k_2 \to \infty$ folgt $|q_n - x_n| \le \frac{1}{n}$ für alle $n \in \mathbb{N}$

$$\implies \lim_{n \to \infty} |q_n - x_n| = 0 \quad (\text{in } \mathbb{R}). \tag{3}$$

Andererseits aus der Definition von x und Satz 2.61: $\lim_{n\to\infty}|q_n-x|=0$ (in $\mathbb R$). (4)

Wegen
$$0 \le |x_n - x| \le |x_n - q_n| + |q_n - x| \stackrel{(3),(4)}{\Longrightarrow} \lim_{n \to \infty} x_n = x$$
.

- Satz 2.65 rechtfertigt Bezeichnung von ℝ als Vervollständigung von ℚ.
 - $\bullet\,$ Vollständigkeit ist ein wesentlicher Unterschied zwischen $\mathbb R$ und $\mathbb Q.$
 - Ab jetzt wird <u>nicht</u> mehr benötigt, dass $\mathbb{R} \ni x = [(q_n)_n]$!
 - $\varepsilon > 0$ steht ab jetzt abkürzend für $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.
- **2.67 Definition** Seien \mathcal{D} , M total geordnete Mengen und $f: \mathcal{D} \to M$ eine Funktion. Dann ist f
 - (a) (monoton) wachsend [auch: isoton] : $\iff \forall x_1, x_2 \in \mathcal{D}, x_1 < x_2 : f(x_1) \leq f(x_2)$
 - (monoton) fallend [auch: antiton] : $\iff \forall x_1, x_2 \in \mathcal{D}, x_1 < x_2 : f(x_1) \ge f(x_2)$
 - (c) streng/strikt (monoton) wachsend : $\iff \forall x_1, x_2 \in \mathcal{D}, x_1 < x_2 : f(x_1) < f(x_2)$ [auch: strikt isoton]
 - streng/strikt (monoton) fallend : $\iff \forall x_1, x_2 \in \mathcal{D}, x_1 < x_2$: $f(x_1) > f(x_2)$ [auch: strikt antiton]

2.68 Satz Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ isoton (bzw. antiton). Dann gilt

 $(x_n)_n$ konvergiert \iff $(x_n)_n$ von oben (bzw. unten) beschränkt.

Schreibweise für monotone Konvergenz: $x_n \nearrow x$ (bzw. $x_n \searrow x$).

Beweis. ,,⇒" Die Aussage folgt direkt aus Satz 2.37.

,,←" Nur für isoton [antiton analog]. Nach Voraussetzung $\exists S \in \mathbb{R}$ mit $x_n \leq S \ \forall n \in \mathbb{N}$.

Annahme: $(x_n)_n$ divergent $\stackrel{\text{Satz 2.65}}{\Longrightarrow} (x_n)_n$ keine Cauchy-Folge, das heißt

$$\exists \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists m, n \geqslant N \colon |x_m - x_n| \geqslant \varepsilon. \tag{*}$$

Ohne Einschränkung sei $m > n \implies x_m - x_n \ge \varepsilon$. Da \mathbb{R} archimedisch geordnet

$$\implies \exists K \in \mathbb{N}: S - x_1 < K\varepsilon.$$
 (**)

Nun wähle
$$N = 1$$
 in (\star) $\Longrightarrow \exists m_1 > n_1 \ge 1$: $x_{m_1} - x_{n_1} \ge \varepsilon$ wähle $N = m_1$ in (\star) $\Longrightarrow \exists m_2 > n_2 \ge m_1$: $x_{m_2} - x_{n_2} \ge \varepsilon$ \vdots \vdots \vdots wähle $N = m_{K-1}$ in (\star) $\Longrightarrow \exists m_K > n_K \ge m_{K-1}$: $x_{m_K} - x_{n_K} \ge \varepsilon$ $\Longrightarrow x_{m_K} - x_{n_1} = \sum_{k=1}^K (\underbrace{x_{m_k} - x_{n_k}}) + \sum_{k=2}^K (\underbrace{x_{n_k} - x_{m_{k-1}}}) \ge K\varepsilon > S - x_1$ $(\star\star)$ $\Longrightarrow x_{m_K} > S + \underbrace{x_{n_1} - x_1} \ge S$.

- **2.69 Definition** Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine Folge und $(n_k)_{k\in\mathbb{N}}\subset\mathbb{N}$ eine strikt isotone Folge, somit
- (a) $(y_k)_{k \in \mathbb{N}} := (x_{n_k})_{k \in \mathbb{N}} \subset \mathbb{R}$ Teilfolge $von(x_n)_{n \in \mathbb{N}}$. (b) $x \in \mathbb{R}$ Häufungspunkt $von(x_n)_{n \in \mathbb{N}} : \iff \exists$ Teilfolge $(x_{n_k})_{k \in \mathbb{N}}$ $von(x_n)_{n \in \mathbb{N}} : x_{n_k} \xrightarrow{k \to \infty} x$.
- **2.70 Beispiel** Seien $x_n := (-1)^n$ für $n \in \mathbb{N}$, sowie $n_k := 2k$ und $m_k := 2k + 1$ für $k \in \mathbb{N}$.

$$(y_k)_{k\in\mathbb{N}} := (x_{2k})_{k\in\mathbb{N}} = (\underbrace{(-1)^{2k}}_{1})_{k\in\mathbb{N}} \quad \text{und} \quad (z_k)_{k\in\mathbb{N}} := (x_{2k+1})_{k\in\mathbb{N}} = (\underbrace{(-1)^{2k+1}}_{-1})_{k\in\mathbb{N}}$$

sind Teilfolgen der Folge $(x_n)_{n\in\mathbb{N}}$ und wir erhalten 1 und -1 als Häufungspunkte von $(x_n)_{n\in\mathbb{N}}$.

2.71 Satz (BOLZANO-WEIERSTRASS) Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine beschränkte Folge. Dann besitzt $(x_n)_{n\in\mathbb{N}}$ eine monotone, und damit wegen der Beschränktheit nach Satz 2.68 auch konvergente

2.72 Korollar *Jede beschränkte Folge in* \mathbb{R} *besitzt mindestens einen Häufungspunkt.*

Beweis von Satz 2.71. Jargon: $m \in \mathbb{N}$ ist eine **Gipfelstelle** von $(x_n)_n : \iff \forall n > m$: $x_m > x_n$.

- 1. Fall $(x_n)_n$ hat ∞-viele Gipfelstellen $m_1 < m_2 < m_3 < \dots$ $\implies x_{m_1} > x_{m_2} > x_{m_3} > \dots$, d.h. $(x_{m_k})_k$ ist eine antitone Teilfolge.
- <u>2. Fall</u> $(x_n)_n$ hat keine oder nur endlich viele Gipfelstellen.

Sei m die größte Gipfelstelle, bzw. sei m := 1 falls diese nicht existent. Sei $n_1 > m$

$$n_1$$
 keine Gipfelstelle $\implies \exists n_2 > n_1: x_{n_2} \ge x_{n_1}$
 n_2 keine Gipfelstelle $\implies \exists n_3 > n_2: x_{n_3} \ge x_{n_2}$
 $:$

Das heißt $(x_{n_k})_{k \in \mathbb{N}}$ ist eine isotone Teilfolge.

2.73 Definition Seien $a, b \in \mathbb{R}$ mit a < b

$$[a,b] := \{x \in \mathbb{R} : a \leq x \leq b\}$$

$$[a,b[:= \{x \in \mathbb{R} : a \leq x < b\}]$$

$$[a,b] := \{x \in \mathbb{R} : a < x \leq b\}$$

$$[a,b[:= \{x \in \mathbb{R} : a < x \leq b\}]$$

$$[a,b[:= \{x \in \mathbb{R} : a < x \leq b\}]$$

$$[a,\infty[:= \{x \in \mathbb{R} : x \geq a\}]$$

$$[a,\infty[:= \{x \in \mathbb{R} : x \geq a\}]$$

$$[a,\infty[:= \{x \in \mathbb{R} : x \geq a\}]$$

$$[a,\infty[:= \{x \in \mathbb{R} : x \leq a\}]$$

$$[a,\infty[:= \{x \in \mathbb{R} : x \leq a\}]$$

$$[a,\infty[:= \{x \in \mathbb{R} : x \leq a\}]$$

$$[a,\infty[:= \{x \in \mathbb{R} : x \leq a\}]$$

$$[a,\infty[:= \{x \in \mathbb{R} : x \leq a\}]$$

$$[a,\infty[:= \{x \in \mathbb{R} : x \leq a\}]$$

$$[a,\infty[:= \{x \in \mathbb{R} : x \leq a\}]$$

$$[a,\infty[:= \{x \in \mathbb{R} : x \leq a\}]$$

Auch üblich: runde Klammern (a,b) für offene Intervallgrenzen [a,b], bzw. (a,b] statt [a,b], usw.

2.74 Satz (Intervallschachtelungsprinzip) Für alle $k \in \mathbb{N}$ seien $a_k, b_k \in \mathbb{R}$ mit $a_k < b_k$

 $J_k := [a_k, b_k] \ und \ |J_k| := b_k - a_k. \ Falls \ zudem$ $\bullet \ \forall k \in \mathbb{N}: \ J_{k+1} \subseteq J_k$ $\bullet \ \lim_{k \to \infty} |J_k| = 0$ $\longleftrightarrow: \ \textit{Intervallschachtelung},$

so $\exists_1 x \in \mathbb{R}$ mit $x \in J_k \ \forall k \in \mathbb{N}$. Für dieses x gilt zudem: $a_k \nearrow x$ und $b_k \searrow x$.

Beweis. Für alle $k, l \in \mathbb{N}$ gilt

$$a_k \leq b_l,$$
 (\star)

denn sonst wäre $J_k \cap J_l = \emptyset$. Aus (\star) und

- da $(a_k)_k$ isoton, folgt mit Satz 2.68 $\exists a \in \mathbb{R}$: $\lim_{k \to \infty} a_k = a$.
- $\exists b \in \mathbb{R}: \lim_{l \to \infty} b_l = b.$ • da $(b_l)_l$ antiton, folgt mit Satz 2.68

 $\Longrightarrow b - a = \lim_{k \to \infty} (b_k - a_k) = 0$. Sei also x := a = b. Dann folgt

$$\left. \begin{array}{ll} l \to \infty \text{ in } (\star) & \Longrightarrow \ \forall k \in \mathbb{N} : a_k \leqslant x \\ k \to \infty \text{ in } (\star) & \Longrightarrow \ \forall l \in \mathbb{N} : x \leqslant b_l \end{array} \right\} \implies \forall k \colon x \in J_k.$$

Jetzt bleibt noch die Eindeutigkeit zu zeigen. Es gelte hierfür für alle $k \in \mathbb{N}: x, x' \in J_k$ $|x - x'| \le b_k - a_k \xrightarrow{k \to \infty} 0 \implies x = x'.$

Es folgen weitere Anwendungen der Konvergenzsätze.

2.75 Satz (Wurzel reeller Zahlen) Sei $x \in \mathbb{R}_{>} :=]0, \infty[$ und $k \in \mathbb{N}$. Dann $\exists_1 r \in \mathbb{R}_{>}$, so dass $r^k = x$. Diese Zahl schreiben wir als

$$r := \sqrt[k]{x} =: x^{1/k},$$

Beweis. Verallgemeinerung des babylonischen Wurzelziehens aus Satz 2.53 – Übung!

2.76 Definition (Rationale Potenzen reeller Zahlen) Sei $x \in \mathbb{R}_{>}$, $q = \frac{m}{n} \in \mathbb{Q}$ mit $m \in \mathbb{Z}$ und

$$x^q := \left(\sqrt[n]{x}\right)^m = \left(x^{\frac{1}{n}}\right)^m \in \mathbb{R}_>,$$

insbesondere $x^0 := 1$. Für negative Exponenten siehe Definition 2.28(a). Desweiteren sei mit $\mathbb{Q}_{>} := \mathbb{Q} \cap [0, \infty[$

$$0^{q} := \begin{cases} 0, & q \in \mathbb{Q}_{>}, \\ 1, & q = 0. \end{cases}$$
 (nicht definiert für negative Exponenten q)

.77 Satz (a) Obiges ist wohldefiniert, d.h. unabhängig von der Darstellung $q = \frac{m}{n} = \frac{m'}{n'}$. (b) $\forall x, y \in \mathbb{R}_{>}$ und $\forall q, r \in \mathbb{Q}$ gilt $(xy)^q = x^q y^q$, $x^q x^r = x^{q+r}$, $(x^q)^r = x^{qr}$.

$$(xy)^q = x^q y^q,$$
 $x^q x^r = x^{q+r},$ $(x^q)^r = x^{qr}.$

Beweis. Übung.

2.78 Definition Sei $A \subseteq \mathbb{R}$ und $\varepsilon > 0$.

- ε -Umgebung von $a \in \mathbb{R}$: $U_{\varepsilon}(a) :=]a \varepsilon, a + \varepsilon[\subset \mathbb{R}$
- $a \in \mathbb{R}$ ist **Häufungspunkt** von A : $\iff \forall \varepsilon > 0$ enthält $U_{\varepsilon}(a) \infty$ viele Elemente von A
- A von oben (bzw. unten) beschränkt $:\iff \exists S\in\mathbb{R}\ \forall x\in A:\ x\leqslant S\ (bzw.\ x\geqslant S)$

S heißt obere (bzw. untere) Schranke von A.

• A beschränkt : \iff A von oben und unten beschränkt.

2.79 Bemerkung (a) $0 \in \mathbb{R}$ ist einziger Häufungspunkt von $A := \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \subset \mathbb{R}$.

- (b) Genau jedes $a \in [0, 1]$ ist Häufungspunkt von]0, 1[sowie von [0, 1].
- (c) Jedes $x \in \mathbb{R}$ ist Häufungspunkt von \mathbb{Q} (z.B. b-adische Bruchapproximation).
- (d) A beschränkt $\iff \exists S \in \mathbb{R} \ \forall x \in A : |x| \leq S$.
- (e) Folge $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ beschränkt $\iff \{a_n\in\mathbb{R}:n\in\mathbb{N}\}$ beschränkt.

2.80 Definition Sei $A \subseteq \mathbb{R}$ und $S, I \in \mathbb{R}$.

- S Supremum $von\ A$: \iff $\begin{cases} \bullet & S\ obsere\ Schranke\ von\ A \\ \bullet & F\"{u}r\ alle\ oberen\ Schranken\ S'\ von\ A\ gilt: S \leqslant S' \end{cases}$ $(auch:\ kleinste\ obere\ Schranke) \quad Schreibweise: \quad S = \sup A$ $\sup \varnothing := -\infty \quad und\ \sup A := +\infty, falls\ A \neq \varnothing\ nicht\ von\ oben\ beschr\"{a}nkt$
- I Infimum von $A:\iff \left\{ egin{array}{ll} \bullet & I \ untere \ Schranke \ von \ A \\ \bullet & F \ddot{u}r \ alle \ unteren \ Schranken \ I' \ von \ A \ gilt: I \geqslant I' \\ (auch: gr\"{o}\beta te \ untere \ Schranke) & Schreibweise: \ I = \inf A \\ \inf \varnothing := \infty \ und \ \inf A := -\infty, \ falls \ A \neq \varnothing \ nicht \ von \ unten \ beschr\"{a}nkt \end{array} \right.$
- S Maximum von A : \iff $S = \sup A \land S \in A$ Schreibweise: $S = \max A$
- I Minimum von A : \iff $I = \inf A \land I \in A$ Schreibweise: $I = \min A$

2.81 Satz Für $A \subseteq \mathbb{R}$ gilt: A besitzt genau ein Supremum und Infimum in $\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$. Für nicht leere und von $\left\{ \begin{array}{l} oben \\ unten \end{array} \right\}$ beschränkte Mengen A gilt zudem: $\left\{ \begin{array}{l} \sup \\ \inf \end{array} \right\} A \in \mathbb{R}$.

Beweis. Nur für sup [inf analog]. Sei $\emptyset \neq A$ von oben beschränkt [sonst Beh. klar per def]. Sei $S_1 \in \mathbb{R}$ obere Schranke von A und $x_1 \in A$.

1. Akt \exists Intervallschachtelung $[x_1, S_1] \supseteq [x_2, S_2] \supseteq [x_3, S_3] \supseteq \dots$, so dass $\forall n \in \mathbb{N}$

- (a) $x_n \in A$
- (b) S_n ist obere Schranke von A
- (c) $0 \le S_n x_n \le 2^{-(n-1)}(S_1 x_1)$

Beweis von (a), (b) per Induktion. n = 1: klar.

 $n \to n+1$: Setze $M := \frac{1}{2}(x_n + S_n)$

<u>1. Fall:</u> $A \cap [M, S_n] = \emptyset \implies M$ ist obere Schranke und $x_{n+1} := x_n, S_{n+1} := M$ erfüllen (a), (b)

 $\underline{2. \text{ Fall: }} A \cap]M, S_n] \neq \varnothing \implies \text{ wähle } x_{n+1} \in A \cap]M, S_n], S_{n+1} \coloneqq S_n \implies \text{ (a), (b)}$

Konstruktion zeigt auch: $0 \le S_{n+1} - x_{n+1} \le \frac{1}{2} (S_n - x_n) \ \forall n \in \mathbb{N} \implies (c)$ $\overset{\text{Satz 2.74}}{\Longrightarrow} S := \lim_{n \to \infty} S_n \in \mathbb{R} \text{ existiert (sogar antitone Konvergenz: } S_n \setminus S).$

- 2. Akt S ist Supremum (damit notwendigerweise eindeutig!)
 - Sei $x \in A$ beliebig $\stackrel{\forall n \in \mathbb{N}}{\Longrightarrow} x \leqslant S_n \implies x \leqslant \lim_{n \to \infty} S_n = S \implies S$ ist obere Schranke.
 - Sei S' obere Schranke von A. Annahme: $\underline{S' < S}$. Dann $\exists n \in \mathbb{N}$ (genügend groß):

$$S_n - x_n \leqslant 2^{-(n-1)}(S_1 - x_1) < S - S' \stackrel{(S_n)_n \text{ antiton}}{\leqslant} S_n - S'$$
 $\implies S' \leqslant x_n \not \downarrow, \text{ da } x_n \in A \text{ und } S' \text{ obere Schranke. Also } S \leqslant S'.$

- - $\sup[a,b] = \sup[a,b[=b, \inf[a,b] = \inf]a,b] = a$ $a = \min[a,b], b = \max[a,b], [a,b[hat kein Maximum,]a,b]$ hat kein Minimum.
 - $: n \in \mathbb{N}$ = 1, hat aber kein Maximum.
- **2.83 Definition** *Mittels der Vereinbarungen* $-\infty < r < \infty$ $\forall r \in \mathbb{R}, \infty \leq \infty$ *und* $-\infty \leq -\infty$ *ist* $(\overline{\mathbb{R}}, \leq)$ *total geordnet.*
 - $Sei(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ und $\forall n\in\mathbb{N}$ sei

$$y_n^+ := \sup\{x_k \in \mathbb{R} : k \geqslant n\} \in \mathbb{R} \cup \{\infty\}, \qquad y_n^- := \inf\{x_k \in \mathbb{R} : k \geqslant n\} \in \mathbb{R} \cup \{-\infty\}.$$

 $\implies (y_n^+)_{n \in \mathbb{N}}, (y_n^-)_{n \in \mathbb{N}} \subset \overline{\mathbb{R}} \text{ sind antiton bzw. isoton.}$

$$\limsup_{n \to \infty} x_n := \overline{\lim_{n \to \infty}} x_n := \begin{cases} \lim_{n \to \infty} y_n^+, & \text{falls } \lim \text{ existiert} \\ -\infty, & \text{falls } (y_n^+)_n \text{ bestimmt divergent nach } -\infty \\ \infty, & \text{falls } (y_n^+)_n = (\infty, \infty, \dots) \end{cases}$$

is inferior:
$$\lim_{n \to \infty} \inf x_n := \lim_{n \to \infty} x_n := \begin{cases}
\lim_{n \to \infty} y_n^-, & \text{falls } \lim \text{ existiert} \\
\infty & \text{falls } (y_n^-)_n \text{ bestimmt divergent } \text{nach } \infty \\
-\infty, & \text{falls } (y_n^-)_n = (-\infty, -\infty, \dots)
\end{cases}$$

 $\limsup_{n\to\infty} x_n \text{ und } \liminf_{n\to\infty} x_n \text{ existieren stets in } \overline{\mathbb{R}} \text{ (lim nicht notwendigerweise in } \overline{\mathbb{R}}).$

2.84 Satz Sei $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ beschränkt. Setze

$$H := \{ h \in \mathbb{R} : h \text{ ist H\"aufungspunkt von } (x_n)_n \},$$

also $\varnothing \neq H \subset \mathbb{R}$ nach Korollar 2.72. Dann besitzt H ein Maximum und ein Minimum und es gilt

 $\limsup_{n\to\infty} x_n = \max H \ (gr\"{o}\beta ter \ H\"{a}ufungspunkt), \ \liminf_{n\to\infty} x_n = \min H \ (kleinster \ H\"{a}ufungspunkt).$

Beweis. Wir beweisen den Satz nur für lim sup [für lim inf alles analog].

1. Akt H besitzt ein Maximum $M = \max H$.

Sei $M:=\sup H<\infty$ (Folge beschränkt!) und $j\in\mathbb{N}$ beliebig. Da $M-\frac{1}{j}$ keine obere Schranke

$$\implies \exists h_j \in H \colon M - \frac{1}{i} < h_j \le M \tag{*}$$

Zeige nun $M \in H \ (\Longrightarrow M = \max H)$:

$$\stackrel{(*)}{\Longrightarrow} \quad \exists \, \delta_j > 0 : \, U_{\delta_j}(h_j) \subseteq U_{\frac{1}{j}}(M).$$

 h_j ist Häufungspunkt von $(x_n)_n \implies \exists$ Teilfolge $(x_{n_k^{(j)}})_{k \in \mathbb{N}}$ und $\exists K_j \in \mathbb{N} \ \forall k \geqslant K_j$: $x_{n_k^{(j)}} \in U_{\delta_j}(h_j) \subseteq U_{\frac{1}{j}}(M)$. Definiere rekursiv Diagonalfolge

$$m_1 := n_{K_1}^{(1)}$$
 und $m_{j+1} := \max\{n_{K_{j+1}}^{(j+1)}, m_j + 1\} \quad \forall j \in \mathbb{N}$

 $\implies (m_j)_{j \in \mathbb{N}} \subset \mathbb{N}$ ist strikt isoton, also $(x_{m_j})_{j \in \mathbb{N}}$ eine Teilfolge und $\forall j \in \mathbb{N} : |x_{m_j} - M| < \frac{1}{j} \implies \lim_{j \to \infty} x_{m_j} = M \implies M \in H.$

 $\underline{2. \text{ Akt}} \ M = \limsup_{n \to \infty} x_n =: S.$

Beh.:
$$M \leq S$$
. N.V. ist $M \in H \implies \exists \text{ Teilfolge } (x_{n_j})_{j \in \mathbb{N}} : x_{n_j} \xrightarrow{j \to \infty} M$

$$\stackrel{\forall n \in \mathbb{N}}{\Longrightarrow} y_n^+ \geqslant \sup \{ x_{n_j} \in \mathbb{R} : j \in \mathbb{N} \text{ mit } n_j \geqslant n \} \geqslant M$$

$$\stackrel{n \to \infty}{\Longrightarrow} S \geqslant M. \qquad \checkmark$$

Beh.: $M \ge S$. Annahme: $M < S \implies \exists \delta > 0$: $S > M + \delta$

$$\implies \forall n \geqslant \mathbb{N}: \ y_n^+ > M + \delta$$

 \implies \exists Teilfolge $(x_{\ell_k})_{k \in \mathbb{N}} : x_{\ell_k} > M + \delta \ \forall k \in \mathbb{N}.$

Wegen $(x_n)_n$ beschränkt $\stackrel{\text{Satz 2.71}}{\Longrightarrow} (x_{\ell_k})_k$ hat Häufungspunkt $\widetilde{h} \ge M + \delta$

$$\implies$$
 \exists Teilfolge $(x_{l_{k_m}})_{m \in \mathbb{N}}$: $\lim_{m \to \infty} x_{\ell_{k_m}} = \tilde{h}$

 $\implies \widetilde{h}$ ist Häufungspunkt von $(x_n)_n \implies \widetilde{h} \in H$

2.85 Beispiel
$$\limsup_{n \to \infty} n^{(-1)^n} = \infty$$
, $\liminf_{n \to \infty} n^{(-1)^n} = 0$.

Die komplexen Zahlen C

<u>Motivation</u>: Wir suchen einen mathematischen Rahmen für Lösungen der Gleichung $x^2 + 1 = 0$.

2.86 Definition Menge der komplexen Zahlen $\mathbb{C} := \mathbb{R} \times \mathbb{R}$ mit den zwei Verknüpfungen

2.87 Satz $(\mathbb{C}, \mathbb{A}, \mathbb{A})$ ist ein Körper mit

Beweis. Kommutativität, Assoziativität und Distributivität von ≜ und △ folgen direkt aus den entsprechenden Eigenschaften von \mathbb{R} . Assoziativität von \triangle benötigt eine kurze Rechnung \rightsquigarrow Übung.

2.88 Bemerkung Die Abbildung $J: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ x & \mapsto & (x,0) \end{array}$ ist ein Körperhomomorphismus, das heißt verträglich mit den Körperoperationen. Deshalb identifizieren wir \mathbb{R} mit $J(\mathbb{R})$, so dass dann auch $\mathbb{R} \subset \mathbb{C}$. Notation: x := (x, 0) für alle $x \in \mathbb{R}$.

Somit gilt unter Weglassung von \triangle :

2.89 Lemma Seien
$$z := (x, y) \in \mathbb{C}$$
 und $i := (0, 1) \in \mathbb{C}$, so gilt

(a) $i^2 = -1$,

(b) $i^{-1} = -i$,

2. Aufbau des Zahlensystems

Abbildung 2.4: Darstellung einer komplexen Zahl z im $\mathbb{R} \times \mathbb{R}$ und ihrer Spiegelungen $\overline{z}, -z, -\overline{z}$.

Beweis. (a), (b): klar. (c) Mittels einfacher Identifizierung folgt

2.90 Definition $F\ddot{u}rz = x + iy \in \mathbb{C}$ sei

- $\overline{z} := x iy$ komplexe Konjugation (entspricht Spiegelung an x-Achse!) Re z := x Realteil (reellwertig!)
- Im z := y **Imaginärteil** (reellwertig!)

Daraus lassen sich sofort die im nächsten Lemma genannten Rechenregeln herleiten (Beweis klar).

2.91 Lemma $F\ddot{u}r z, z_1, z_2 \in \mathbb{C}$ gelten

(a)
$$\overline{\overline{z}} = z$$
, $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$,

(b)
$$z = \operatorname{Re} z + i \operatorname{Im} z$$
, $\operatorname{Re} z = \frac{1}{2}(z + \overline{z})$, $\operatorname{Im} z = \frac{1}{2i}(z - \overline{z})$

(c)
$$z_1 = z_2 \iff (\text{Re } z_1 = \text{Re } z_2 \land \text{Im } z_1 = \text{Im } z_2),$$

(a)
$$\overline{z} = z$$
, $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$,
(b) $z = \operatorname{Re} z + i \operatorname{Im} z$, $\operatorname{Re} z = \frac{1}{2}(z + \overline{z})$, $\operatorname{Im} z = \frac{1}{2i}(z - \overline{z})$,
(c) $z_1 = z_2 \iff (\operatorname{Re} z_1 = \operatorname{Re} z_2 \land \operatorname{Im} z_1 = \operatorname{Im} z_2)$,
(d) $\operatorname{Falls} z \neq 0$: $\frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}}$ NB : $z \cdot \overline{z} = (\operatorname{Re} z)^2 + (\operatorname{Im} z)^2 \stackrel{\text{(c)}}{>} 0$.

Standardtrick, um $\frac{1}{z}$ in Real- und Imaginärteil zu zerlegen!

2.92 Satz Die Betragsabbildung

$$|\cdot|: \begin{array}{ccc} \mathbb{C} & \to & \mathbb{R} \\ z & \mapsto & \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2} = (z \cdot \overline{z})^{1/2} \end{array}$$

erfüllt die Eigenschaften

(B0) der Wertebereich von | • | ist total geordnet,

(B1)
$$\forall z \in \mathbb{C}$$
: $|z| \ge 0$ und $|z| = 0 \iff z = 0$,

(B2)
$$\forall z_1, z_2 \in \mathbb{C}: |z_1 z_2| = |z_1||z_2|,$$

(B3)
$$\forall z_1, z_2 \in \mathbb{C}: |z_1 + z_2| \leq |z_1| + |z_2|.$$

Somit ist $\mathbb C$ ein bewerteter Körper, siehe Satz 2.24.

Beweis. (B0) klar, (B1) klar wegen Lemma 2.91(c),

(B2)
$$|z_1z_2|^2 = z_1z_2\overline{z_1z_2} = z_1\overline{z_1}z_2\overline{z_2} = |\overline{z_1}|^2|\overline{z_2}|^2$$
,

(B3) per Definition gilt $|\text{Re } z| \leq |z|$ und somit

$$|z_1 + z_2|^2 = (z_1 + z_2)\overline{(z_1 + z_2)}$$

$$= |z_1|^2 + z_1\overline{z_2} + \overline{z_1}z_2 + |z_2|^2$$

$$\underbrace{z_1\overline{z_2}}_{\overline{z_1}\overline{z_2}}$$

$$\leq |z_1\overline{z_2}| = |z_1||z_2|$$

$$\leq (|z_1| + |z_2|)^2.$$

Wir übertragen nun die Konvergenzbegriffe aus Kapitel 2.5 und 2.6.

2.93 Definition Sei $(z_n)_n \subset \mathbb{C}$ eine Folge und $z \in \mathbb{C}$.

 $(z_n)_{n\in\mathbb{N}}$ konvergent (in \mathbb{C}) gegen z : $\iff \forall \varepsilon > 0^9 \exists N \in \mathbb{N} \ \forall n \geqslant N \colon |z_n - z| < \varepsilon$

<u>Schreibweise:</u> $\lim_{n\to\infty} z_n = z$

2.94 Warnung! Da es keine natürliche Totalordnung auf \mathbb{C} gibt, können wir

- bestimmte Divergenz nach $\pm \infty$
- Beschränktheit von oben/unten

⁹Nach wie vor: Kurzschreibweise für: $\forall \varepsilon \in \mathbb{R} \text{ mit } \varepsilon > 0$.

2. Aufbau des Zahlensystems

54

Abbildung 2.5: ε -Ball um $z \in \mathbb{C}$.

- · Verträglichkeit von Limes und Ordnung
- Isotone/antitone Folgen
- Intervallschachtelungsprinzip
- obere/untere Schranken, Supremum, Infimum, Min/Max
- lim inf, lim sup

nicht von \mathbb{R} nach \mathbb{C} verallgemeinern!

2.95 Satz Sei $(z_n)_n \subset \mathbb{C}$ eine Folge. Dann gilt

 $(z_n)_n$ konvergiert in $\mathbb{C} \iff (\operatorname{Re} z_n)_n$ und $(\operatorname{Im} z_n)_n$ konvergieren in \mathbb{R} .

Im Fall der Konvergenz gilt $\lim_{n\to\infty} z_n = \lim_{n\to\infty} \operatorname{Re} z_n + \mathrm{i} \lim_{n\to\infty} \operatorname{Im} z_n$.

Beweis. Sei $z_n = x_n + \mathrm{i} y_n$ mit $x_n \coloneqq \mathrm{Re} \, z_n, y_n \coloneqq \mathrm{Im} \, z_n \, \forall n \in \mathbb{N}$ und sei $= x + \mathrm{i} y$ mit $x \coloneqq \mathrm{Re} \, z_n, y \coloneqq \mathrm{Im} \, z_n$

2.96 Korollar Sei $(z_n)_n \subset \mathbb{C}$ eine Folge. Dann gilt

$$z_n \xrightarrow{n \to \infty} z \iff \overline{z_n} \xrightarrow{n \to \infty} \overline{z}.$$

2.97 Bemerkung Die Definitionen von Cauchy-Folgen und konvergenten Reihen bleiben exakt die gleichen, bis auf die Ausnahme, dass der Betrag auf \mathbb{R} durch den Betrag auf \mathbb{C} aus Definition 2.92 ersetzt werden muss. Wegen Satz 2.95 und 2.98 überträgt sich alles weitere – mit Ausnahme der in obiger Warnung genannten Konzepte – auf Folgen $(z_n)_n \subset \mathbb{C}$.

```
2.98 Satz Sei (z_n)_n \subset \mathbb{C}. Dann gilt (z_n)_n \subset \mathbb{C} Cauchy-Folge in \mathbb{C} \iff (\operatorname{Re}(z_n))_n, (\operatorname{Im}(z_n))_n \subset \mathbb{R} Cauchy-Folgen in \mathbb{R}.
```

Beweis. Analog zu Satz 2.95; ersetze Konvergenz-Kriterium durch Cauchy-Kriterium.

2.99 Korollar \mathbb{C} ist vollständig, das heißt jede Cauchy-Folge in \mathbb{C} ist konvergent.

Beweis. Übung! Verwende Satz 2.65 von Cauchy für \mathbb{R} .

Die reelle Version des Satzes von BOLZANO-WEIERSTRASS für beschränkte Folgen liefert eine konvergente Teilfolge basierend auf der Konstruktion einer monotonen Teilfolge. Trotz des fehlenden Konzepts der Monotonie in $\mathbb C$ gibt es dennoch eine Variante für komplexe Zahlen.

2.100 Satz (Satz von BOLZANO-WEIERSTRASS – Version für \mathbb{C}) Sei $(z_n)_n \subset \mathbb{C}$ beschränkt, das heißt

$$\exists S \in \mathbb{R} \ \forall n \in \mathbb{N}: \ |z_n| \leq S,$$

dann hat $(z_n)_n$ mindestens einen Häufungspunkt.

Beweis. Übung! Verwende Sätze 2.95 und 2.71.

2.8 Mächtigkeit von Mengen

2.101 Definition Seien M, N Mengen.

- M und N gleichmächtig : $\iff \exists$ Bijektion $M \to N$
- M endlich : $\iff M = \emptyset$ oder $(\exists n \in \mathbb{N} \text{ und Bijektion } \{1, ..., n\} \to M)$ Schreibweise: n := |M| := #(M) für Anzahl der Elemente von M (:= 0, falls $M = \emptyset$).
- M abzählbar : $\iff \exists$ Surjektion $\mathbb{N} \to M$
- M abzählbar unendlich : $\iff \exists Bijektion \mathbb{N} \to M$
- *M überabzählbar* :←→ *M nicht abzählbar*.

2. Aufbau des Zahlensystems

Abbildung 2.6: CANTOR'sches Diagonalverfahren.

2.102 Beispiel • M endlich \Longrightarrow abzählbar

• N abzählbar unendlich

Der Ursprung der Notation $\mathcal{P}(M) = 2^M$ für die Potenzmenge liegt in

2.103 Satz Sei M endliche Menge. Dann gilt $|\mathcal{P}(M)| = 2^{|M|}$.

Beweis.

$$|(\mathscr{P}(M)| = \sum_{k=0}^{|M|} \underbrace{\left| \{ N \subseteq M : |N| = k \} \right|}_{\substack{\text{Anzahl M\"oglichkeiten } k \text{ Elemente aus } |M| \text{ Elemente auszuw\"{ahlen}}}_{=(|M|)} = \sum_{k=0}^{|M|} \binom{|M|}{k} \overset{\text{Kor. 2.30}}{=} 2^{|M|}.$$

2.104 Satz Abzählbare Vereinigungen abzählbarer Mengen sind abzählbar.

Beweis. Mittels Cantorschem Diagonalverfahren (Abb. 2.6) ist eine Abzählung möglich.

2.105 Korollar \mathbb{Q} ist abzählbar.

Beweis. Für
$$n \in \mathbb{N}$$
 sei $A_n := \left\{ \frac{k}{n} : k \in \mathbb{Z} \right\} \implies \mathbb{Q} = \bigcup_{n \in \mathbb{N}} A_n$. Da A_n abzählbar $\stackrel{\text{Satz } 2.104}{\Longrightarrow}$ Beh.

2.106 Satz Endliche kartesische Produkte abzählbarer Mengen sind abzählbar. Das heißt, für $n \in \mathbb{N}$ und für abzählbare M_1, \ldots, M_n ist

$$\underset{k=1}{\overset{n}{\times}} M_k := M_1 \times \cdots \times M_n$$

abzählbar.

Beweis. Per Induktion mit Cantorschem Diagonalverfahren. Details: Übung.

Achtung: die Aussage des letzten Satzes überträgt sich nicht auf unendliche kartesische Produkte! Stattdessen gilt

2.107 Satz Die Menge

$$\{0,1\}^{\mathbb{N}} := \underset{\mathbb{N}}{\times} \{0,1\} := \{(a_1, a_2, a_3, \dots) : a_n \in \{0,1\} \ \forall n \in \mathbb{N}\} = \{\mathbb{N} \to \{0,1\}\}$$

ist überabzählbar.

Beweis. Übung!

Der Beweis verwendet

2.108 Satz Sei M eine Menge. Dann gibt es keine Surjektion $M \to \mathcal{P}(M)$.

Beweis. 1. Fall $M = \emptyset$. Dann gilt $\mathscr{P}(M) = \{\emptyset\} \implies |M| = 0$ und $|\mathscr{P}(M)| = 1$.

2. Fall $M \neq \emptyset$. Annahme: \exists Surjection $\sigma: M \to \mathscr{P}(M)$

Setze
$$A := \{ m \in M : m \notin \sigma(m) \} \stackrel{\forall m \in M}{\Longrightarrow}$$

$$m \in A \iff m \notin \sigma(m)$$
 (*)

$$\sigma \text{ surjektiv} \implies \exists x \in M \colon \sigma(x) = A \stackrel{(*) \text{ mit } m = x}{\Longrightarrow} \left[x \in A \iff x \notin \sigma(x) = A \right]. \not\downarrow \quad \blacksquare$$

Der letzte Satz liefert sofort

2.109 Korollar $\mathcal{P}(\mathbb{N})$ ist überabzählbar.

2.110 Satz \mathbb{R} , und somit auch die Menge der **irrationalen Zahlen** $\mathbb{R} \setminus \mathbb{Q}$, ist überabzählbar.

Beweis. Idee: ordne einer reellen Zahl $x \in]0, 1[$ die Folge $(a_n)_{n \in \mathbb{N}} \in \{0, 1, \dots, b-1\}^{\mathbb{N}}$ der Ziffern ihres b-adischen Bruchs aus Satz 2.64 zu.

Problem: wegen

$$\sum_{n=N+1}^{\infty} \frac{b-1}{b^n} = (b-1) \left(\sum_{n=0}^{\infty} \frac{1}{b^n} - \sum_{n=0}^{N} \frac{1}{b^n} \right) = (b-1) \left(\frac{1}{1-1/b} - \frac{1-(1/b)^{N+1}}{1-1/b} \right) = \frac{1}{b^N}$$

 $\forall N \in \mathbb{N}$ kann eine reelle Zahl 2 solcher Darstellungen besitzen: eine davon enthält dann einen periodischen Bruch mit der höchsten Ziffer b-1. Obige Zuordnung ist also *nicht* als surjektive Funktion realisierbar.

Ausweg: sei

$$\mathcal{D} := \left\{ x \in]0, 1[: x = \sum_{n \in \mathbb{N}} a_n b^{-n}, a_n \in \{0, 1, \dots, b - 2\} \ \forall n \in \mathbb{N} \right\},\,$$

dann gibt es für $x \in \mathcal{D}$ keine Mehrdeutigkeit in der b-adischen Entwicklung \implies

$$\exists \, \text{Surjektion:} \, \mathcal{D} \to \{0, 1, \dots, b-2\}^{\mathbb{N}} \quad \stackrel{\mathbb{R} \supseteq \mathcal{D}}{\Longrightarrow} \quad \exists \, \text{Surjektion:} \, \mathbb{R} \to \{0, 1, \dots, b-2\}^{\mathbb{N}}.$$

Die Behauptung folgt (mit b=3) aus Satz 2.107, denn gäbe es eine Surjektion: $\mathbb{N} \to \mathbb{R}$, so dann auch eine Surjektion: $\mathbb{N} \to \{0,1\}^{\mathbb{N}}$. \not Also ist \mathbb{R} überabzählbar.

Wäre
$$\mathbb{R} \setminus \mathbb{Q}$$
 abzählbar, so auch nach Satz 2.104 $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$.

Stetige Funktionen

3.1 Funktionen von und nach \mathbb{R} oder \mathbb{C}

Generalvoraussetzung: \mathbb{K} , $\mathbb{K}' \in \{\mathbb{R}, \mathbb{C}\}$, $\mathscr{D} \subseteq \mathbb{K}$ und $f : \mathscr{D} \to \mathbb{K}'$ eine Funktion.

3.1 Beispiel (allgemeine Beispiele für (nicht zwingend) stetige Funktionen)

- Konstante Funktion $f: \begin{array}{ccc} \mathbb{K} & \to & \mathbb{K}' \\ x & \mapsto & c \end{array}, \quad c \in \mathbb{K}',$
- $\bullet \ \, \text{Identit\"{a}t} \quad \text{id} := \text{id}_{\mathbb{K}} : \begin{array}{ccc} \mathbb{K} & \to & \mathbb{K} \\ x & \mapsto & x \end{array},$
- $\bullet \ \, \text{Betragsfunktion} \quad | \cdot | : \begin{array}{c} \mathbb{K} & \to & \mathbb{R}_{\geqslant} \\ x & \mapsto & |x| \end{array} ,$
- (Quadrat-) Wurzelfunktion $\sqrt{\cdot}: \begin{array}{ccc} \mathbb{R}_{\geqslant} & \to & \mathbb{R}_{\geqslant} \\ x & \mapsto & \sqrt{x} \end{array}$
- Ganzzahliger Anteil (Gauß-Klammer) $[\cdot]: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \lfloor x \rfloor := \max \{ k \in \mathbb{Z} : k \leqslant x \} \end{array}$

$$\mathbb{K} \rightarrow \mathbb{K}$$

 $p: x \mapsto p(x) := \sum_{k=0}^{n} a_k x^k$ • Polynom *n*-ten Grades

wobei $n \in \mathbb{N}_0$, $a_k \in \mathbb{K} \ \forall k \in \{1, ..., n\}$, $a_n \neq 0$,

$$p(x)$$

• Rationale Funktion $r: \begin{array}{ccc} \mathscr{D} & \to & \mathbb{K} \\ & & \\ x & \mapsto & \dfrac{p(x)}{q(x)} \end{array},$

wobei $p, q : \mathbb{K} \to \mathbb{K}$ Polynome und $\mathcal{D} := \mathbb{K} \setminus \{x \in \mathbb{K} : q(x) = 0\},\$

$$\mathbb{R} \rightarrow \mathbb{R}$$

• Dirichlet-Kamm $f: x \mapsto \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$

Abbildung 3.1: Graphen der Funktionen $|\cdot|$, $\sqrt{\cdot}$, $[\cdot]$.

3.2 Definition (Operationen mit \mathbb{K}' -wertigen Funktionen) Seien $f,g: \mathcal{D} \to \mathbb{K}'$, so sind die folgenden Operationen punktweise erklärt

• Addition

$$f + g: \begin{array}{ccc} \mathscr{D} & \to & \mathbb{K}' \\ x & \mapsto & f(x) + g(x) =: (f + g)(x) \end{array}$$

• Subtraktion

$$f - g: \begin{array}{ccc} \mathscr{D} & \to & \mathbb{K}' \\ x & \mapsto & f(x) - g(x) =: (f - g)(x) \end{array}$$

• Multiplikation

$$f \cdot g : \mathcal{D} \to \mathbb{K}'$$

 $x \mapsto f(x) \cdot g(x) =: (f \cdot g)(x)$

Spezialfall: skalare Multiplikation für $\alpha \in \mathbb{K}'$: $(\alpha f)(x) := \alpha f(x) \ \forall x \in \mathcal{D}$.

• Division

$$\frac{f}{g}: \mathcal{D} \setminus \{x \in \mathbb{K} : g(x) = 0\} \rightarrow \mathbb{K}'$$

$$x \mapsto \frac{f(x)}{g(x)} =: \left(\frac{f}{g}\right)(x)$$

• $F\ddot{u}r \mathbb{K}' = \mathbb{R}$ und $f\ddot{u}r \mathcal{R} \in \{ \leq, <, =, \geq, > \}$

$$f \mathcal{R} g : \iff \mathcal{D}_f = \mathcal{D}_g \wedge f(x) \mathcal{R} g(x) \ \forall x \in \mathcal{D}_f.$$

- **3.3 Bemerkung** Addition und Multiplikation von Funktionen sind kommutativ, assoziativ und distributiv.
 - \leq ist eine partielle (aber keine totale) Ordnungsrelation auf $\{f: \mathscr{D}_f \to \mathbb{R} \text{ mit } \mathscr{D}_f \subseteq \mathbb{K}\}.$

3.2 Limes einer Funktion

3.4 Definition Sei $f: \mathcal{D} \to \mathbb{K}'$ und $a \in \mathbb{K}$ Häufungspunkt von \mathcal{D} .

(a) Limes von f für x gegen a

$$\lim_{x \to a} f(x) \text{ existiert} \quad :\iff \quad \exists y \in \mathbb{K}' \ \forall (x_n)_n \subset \mathcal{D} \setminus \{a\} \text{ mit } x_n \xrightarrow{n \to \infty} a \text{ gilt:}$$
$$\lim_{n \to \infty} f(x_n) = y$$

Notation: $\lim_{x \to a} f(x) = y$.

<u>Beachte:</u> • $\exists (x_n)_n \subset \mathcal{D} \setminus \{a\} \text{ mit } x_n \xrightarrow{n \to \infty} a, \text{ da a ein Häufungspunkt ist.}$

• Der Grenzwert y ist unabhängig von der gewählten Folge $(x_n)_n$.

(b) Für $\mathbb{K} = \mathbb{R}$ und falls $a \in \mathbb{R}$ Häufungspunkt von $\mathcal{D} \cap]-\infty, a[$: linksseitiger Limes

$$\lim_{x \nearrow a} f(x) \text{ existiert} \quad :\iff \quad \exists y \in \mathbb{K}' \ \forall (x_n)_n \subset \mathcal{D} \cap]-\infty, a[\text{ mit } x_n \xrightarrow{n \to \infty} a \text{ gilt:}$$

$$\lim_{n \to \infty} f(x_n) = y$$

Notation: $\lim_{x \nearrow a} f(x) = y$.

Analog: rechtsseitiger Limes

$$\lim_{x \searrow a} f(x) \text{ existiert } :\iff \exists y \in \mathbb{K}' \ \forall (x_n)_n \subset \mathcal{D} \cap]a, \infty[\text{ mit } x_n \xrightarrow{n \to \infty} a \text{ gilt:}$$
$$\lim_{n \to \infty} f(x_n) = y$$

Notation: $\lim_{x \searrow a} f(x) = y$.

(c) Für $\mathbb{K} = \mathbb{R}$ und \mathcal{D} von oben unbeschränkt: Limes von f für x gegen ∞

$$\lim_{x \to \infty} f(x) \ existiert \quad :\iff \quad \exists y \in \mathbb{K}' \ \forall (x_n)_n \subset \mathcal{D} \ mit \ x_n \xrightarrow{n \to \infty} \infty \ gilt:$$

$$\lim_{n \to \infty} f(x_n) = y$$

Notation: $\lim_{x \to \infty} f(x) = y$. Analog $\lim_{x \to -\infty} f(x) = y$.

(d) Falls $\mathbb{K}' = \mathbb{R}$ und es gilt in (a), dass $\lim_{n \to \infty} f(x_n) = \infty$ für alle dort zugelassenen Folgen $(x_n)_n$: (bestimmte) Divergenz von f nach ∞ für x gegen a

Notation: $\lim_{x \to a} f(x) = \infty$. Beachte: $\lim_{x \to a} f(x)$ existiert nicht!

Analog für $-\infty$ oder für die Situationen in (b) und (c), d.h. $x \nearrow a$, $x \searrow a$, $x \rightarrow \pm \infty$.

(e) Falls sogar $a \in \mathcal{D}$, jedoch kein Häufungspunkt von \mathcal{D} (\iff : a ist **isolierter Punkt** von \mathcal{D}), setze $\lim_{x \to a} f(x) := f(a)$.

3.5 Beispiel Betrachte
$$f: \begin{array}{ccc} \mathbb{R}\setminus\{0\} & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{x} \end{array}$$
. Es gil

3.5 Beispiel Betrachte
$$f: \frac{\mathbb{R} \setminus \{0\} \to \mathbb{R}}{x \mapsto \frac{1}{x}}$$
. Es gilt
$$\lim_{x \to \infty} f(x) = 0, \lim_{x \to -\infty} f(x) = 0, \lim_{x \to 0} f(x) = \infty, \lim_{x \to 0} f(x) = -\infty, \lim_{x \to 0} f(x) \text{ existiert nicht.}$$

3.6 Definition (Rechenregeln in $\overline{\mathbb{R}}$)

- $\forall r \in \mathbb{R} \cup \{\infty\}$: $\infty + r := r + \infty := \infty$ $\forall r \in \mathbb{R} \cup \{-\infty\}$: $-\infty + r := r \infty := -\infty$ $\forall r \in \mathbb{R}_{>} \cup \{\infty\}$: $(\pm \infty) \cdot r := r \cdot (\pm \infty) := \pm \infty$ $\forall r \in \mathbb{R}_{<} \cup \{-\infty\}$: $(\pm \infty) \cdot r := r \cdot (\pm \infty) := \mp \infty$
- $\forall r \in \mathbb{R}$: $\frac{r}{\pm \infty} := r \cdot \frac{1}{\pm \infty} := \frac{1}{\pm \infty} \cdot r := 0$

<u>Beachte:</u> $\infty - \infty, -\infty + \infty, (\pm \infty) \cdot 0, 0 \cdot (\pm \infty), \frac{\pm \infty}{\pm \infty}$ sind nicht definiert!

3.7 Satz Seien $f,g: \mathcal{D} \to \mathbb{K}', a \in \mathbb{K}$ Häufungspunkt von \mathcal{D} , sowie $\lim_{x \to a} f(x) =: \varphi$ und $\lim_{x \to a} g(x) =: \psi \text{ existieren. Dann gilt}$

- (a) $\lim_{x \to a} (f+g)(x) = \varphi + \psi$, (b) $\lim_{x \to a} (fg)(x) = \varphi \psi$.
- (c) Falls $\psi \neq 0$, so ist a auch Häufungspunkt von $\widetilde{\mathcal{D}} := \{x \in \mathcal{D} : g(x) \neq 0\}$ und

$$\lim_{x \to a} \left(\frac{f}{g} \right) (x) = \frac{\varphi}{\psi}.$$

Es gelten außerdem noch die folgenden Zusätze

- (Z1) Falls $\mathbb{K} = \mathbb{R}$: auch analog für $x \nearrow a$, $x \searrow a$, $x \to \pm \infty$.
- (Z2) Falls $\mathbb{K}' = \mathbb{R}$:
 - (a) und (Z1) bleiben gültig für $\varphi, \psi \in \mathbb{R} \cup \{\infty\}$ oder $\varphi, \psi \in \mathbb{R} \cup \{-\infty\}$,
 - (b) und (Z1) bleiben gültig für $\varphi, \psi \in \overline{\mathbb{R}} \setminus \{0\}$,
 - (c) und (Z1) bleiben gültig für $\varphi \in \overline{\mathbb{R}}, \psi \in \mathbb{R} \setminus \{0\}$ oder $\varphi \in \mathbb{R}, \psi \in \overline{\mathbb{R}} \setminus \{0\}$.

Beweis. (a) Sei
$$(x_n)_n \subset \mathcal{D} \setminus \{a\}$$
 mit $x_n \xrightarrow{n \to \infty} a$
 $\implies (f+g)(x_n) = f(x_n) + g(x_n) \xrightarrow{n \to \infty} \varphi + \psi.$
Satz 2.39

- (b) Analog zu (a).
- (c) Zeige zuerst: a Häufungspunkt von $\widetilde{\mathscr{D}}$ a Häufungspunkt von $\mathscr{D} \Longrightarrow \exists (x_n)_n \subset \mathscr{D} \setminus \{a\} \text{ mit } x_n \xrightarrow{n \to \infty} a \text{ und } x_n \neq x_m \ \forall n \neq m$ [denn per Def. 2.78 eines Häufungspunkts existieren folgende Wahlmöglichkeiten: wähle $x_1 \in U_1(a) \setminus \{a\}$, wähle $x_2 \in U_{1/2}(a) \setminus \{a, x_1\}, \ldots$, wähle $x_n \in U_{1/n}(a) \setminus \{a, x_1, \ldots, x_{n-1}\}, \ldots$]. Da $\lim_{n \to \infty} g(x) = \psi \neq 0 \Longrightarrow \text{ für obige Folge gilt}$

$$\exists N \in \mathbb{N} \ \forall n \geqslant N \colon \underbrace{|g(x_n) - \psi| < \frac{|\psi|}{2}}_{g(x_n) \neq 0} \implies x_n \in \widetilde{\mathcal{D}}$$

 \implies jede ε -Umgebung von a enthält ∞ -viele Punkte aus $\widetilde{\mathscr{D}}$. \checkmark

Sei nun
$$(x_n)_n \subset \widetilde{\mathcal{D}} \setminus \{a\}$$
 mit $x_n \xrightarrow{n \to \infty} a$ beliebig $\Longrightarrow \left(\frac{f}{g}\right)(x_n) = \frac{f(x_n)}{g(x_n)} \xrightarrow{n \to \infty} \frac{\varphi}{\psi}$.

Die Zusätze werden analog bewiesen, exemplarisch hier (Z2) für (a) und $\varphi = \infty, \psi \in \mathbb{R} \cup \{\infty\}$: Sei $x_n \xrightarrow{n \to \infty} a, x_n \neq a \ \forall n \in \mathbb{N}$. Sei

$$\lim_{x \to a} g(x) = \psi \in \mathbb{R} \cup \{\infty\} \qquad \lim_{x \to \infty} f(x) = \infty$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\exists U \in \mathbb{R} \ \forall n \in \mathbb{N}: \qquad \forall S \in \mathbb{R} \ \exists N \in \mathbb{N} \ \forall n \geqslant N:$$

$$g(x_n) > U \qquad \qquad f(x_n) > S - U$$
(hier geht ein, dass $\psi \neq -\infty$)
$$\swarrow \qquad \qquad \qquad \bigvee$$

$$\forall n \geqslant N: (f + g)(x_n) = f(x_n) + g(x_n) > S,$$

d.h. $\lim_{n\to\infty} (f+g)(x_n) = \infty$. Da $(x_n)_n \subset \mathcal{D}\setminus\{a\}$ bel. mit $x_n \xrightarrow{n\to\infty} a \implies \lim_{x\to a} (f+g)(x) = \infty$.

3.3 Stetigkeit

3.8 Definition Sei $f: \mathcal{D} \to \mathbb{K}'$ und $a \in \mathcal{D}$.

(a) $f \text{ folgenstetig in } a :\iff \forall (x_n)_n \subset \mathcal{D} \text{ mit } x_n \xrightarrow{n \to \infty} a \text{ gilt:} \\ \lim_{n \to \infty} f(x_n) = f(a)$

(b) $f \text{ stetig in } a :\iff \forall \varepsilon > 0 \,\exists \, \delta > 0 \,\forall x \in \mathscr{D}: \\ |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$

Moral: sobald x nur nahe genug bei a liegt, dann liegt auch f(x) nahe bei f(a).

3.9 Satz Sei
$$f: \mathcal{D} \to \mathbb{K}'$$
 und $a \in \mathcal{D}$. Dann gilt f stetig in $a \iff f$

$$f$$
 stetig in $a \iff f$ folgenstetig in a .

Beweis. " \Rightarrow " Sei $(x_n)_n \subset \mathcal{D}$ mit $x_n \xrightarrow{n \to \infty} a$. Sei $\varepsilon > 0$. Nach Voraussetzung gilt

$$\exists \delta > 0 \ \forall x \in \mathcal{D}: |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon.$$

Per Definition von $x_n \xrightarrow{n \to \infty} a$ gilt

$$\exists N \in \mathbb{N} \ \forall n \geqslant N \colon \underbrace{|x_n - a| < \delta}_{|f(x_n) - f(a)| < \varepsilon}$$

$$\implies \lim_{n \to \infty} f(x_n) = f(a).$$

" \Leftarrow " Beweis durch Kontraposition. Sei f ist nicht stetig in a, das heißt

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in \mathscr{D} \ \text{mit} \ |x - a| < \delta \ \text{und} \ |f(x) - f(a)| \ge \varepsilon$$

$$\stackrel{\delta = n^{-1}}{\Longrightarrow} \exists \varepsilon > 0 \ \forall n \in \mathbb{N} \ \exists x_n \in \mathscr{D} \ \text{mit} \ |x_n - a| < \frac{1}{n} \ \text{und} \ |f(x_n) - f(a)| \ge \varepsilon$$

$$\implies \exists (x_n)_n \subset \mathscr{D} \ \text{mit} \ \lim_{n \to \infty} x_n = a \ \text{und} \ f(x_n) \xrightarrow{n \to \infty} f(a)$$

$$\implies f \ \text{nicht folgenstetig in } a.$$

3.10 Bemerkung Wegen Satz 3.9 unterschieden wir fortan meist nicht zwischen folgenstetig und stetig. Der Grund für die Unterscheidung in ihrer Definition ist, dass in allgemeineren Räumen als \mathbb{R} oder \mathbb{C} (topologische Räumen ohne 1. Abzählbarkeitsaxiom – siehe nächstes Semester) nur noch "stetig \Longrightarrow folgenstetig" gilt, nicht aber die Umkehrung.

3.11 Satz Sei
$$f: \mathcal{D} \to \mathbb{K}'$$
 und $a \in \mathcal{D}$. Dann gilt

$$f \text{ stetig in } a \iff \lim_{x \to a} f(x) = f(a)$$

Beweis. Wir müssen 2 Fälle unterscheiden.

- 1. Fall a isolierter Punkt von \mathcal{D} .
 - Die rechte Seite der Aussage gilt stets per Definition.
 - Die linke Seite gilt auch stets wegen:

$$a ext{ isolierter Punkt von } \mathscr{D} \overset{\text{Übung}}{\Longleftrightarrow} \begin{cases} \forall (x_n) \subset \mathscr{D} \text{ mit } x_n \xrightarrow{n \to \infty} a \text{ gilt:} \\ \exists N \in \mathbb{N} \ \forall n \geqslant N: \ \underbrace{x_n = a} \end{cases}$$

$$\Longrightarrow \forall (x_n) \subset \mathscr{D} \text{ mit } x_n \xrightarrow{n \to \infty} a: \ f(x_n) \xrightarrow{n \to \infty} f(a).$$

2. Fall a Häufungspunkt von \mathcal{D} .

- "⇒" Aussage klar, da links nach Definition 3.8(a) die Konvergenz für mehr Folgen gelten muss als rechts.
- $, \Leftarrow$ " Annahme: f nicht stetig, also

$$\exists \varepsilon > 0 \ \forall n \in \mathbb{N} \ \exists x_n \in \mathscr{D} \ \mathrm{mit} \ |x_n - a| < \frac{1}{n} \ \mathrm{und} \ \underbrace{|f(x_n) - f(a)| > \varepsilon}_{\Longrightarrow x_n \neq a}.$$

Also
$$\exists (x_n)_n \subset \mathcal{D} \setminus \{a\} \text{ mit } x_n \xrightarrow{n \to \infty} a \text{ und } f(x_n) \xrightarrow{n \to \infty} f(a) \not z \text{ usin } f(x) = f(a).$$

Der vorherige Beweis hat gezeigt

3.12 Korollar Sei $f: \mathcal{D} \to \mathbb{K}'$ und $a \in \mathcal{D}$ ein isolierter Punkt. Dann ist f stetig in a.

3.13 Definition Sei $f: \mathcal{D} \to \mathbb{K}'$ und $A \subseteq \mathcal{D}$. Wir definieren

- f stetig auf $A : \iff \forall a \in A : f$ stetig in a
- f stetig : \iff f stetig auf \mathscr{D}

3.14 Beispiel (a) Jede konstante Funktion ist stetig,

- (b) die Identität id_K ist stetig,
- (c) jede Funktion der Form $f: \mathbb{Z} \to \mathbb{K}'$ ist stetig.

3.15 Satz (Summen und Produkte stetiger Funktionen sind stetig)

Seien $f,g: \mathcal{D} \to \mathbb{K}'$ in $a \in \mathcal{D}$ stetige Funktionen. Dann gilt

(a)
$$f+g$$
 ist stetig in a ,
(b) fg ist stetig in a ,
(c) $falls\ g(a)\neq 0$, so ist auch $\frac{f}{g}: \{x\in \mathscr{D}: g(x)\neq 0\}\to \mathbb{K}'$ stetig in a .

Beweis. Der Satz folgt aus Satz 3.11 zusammen mit Satz 3.7 bzw. Korollar 3.12.

3.16 Korollar *Jede rationale Funktion ist stetig.*

3.17 Satz (Verkettung stetiger Funktionen ist stetig) Seien $f: \mathscr{D}_f \to \mathbb{K}'$ und $g: \mathscr{D}_g \to \mathbb{K}''$, wobei auch $\mathbb{K}'' \in \{\mathbb{R}, \mathbb{C}\}$. Weiter sei $a \in \mathscr{D}_f$, $f(a) \in \mathscr{D}_g \subseteq \mathbb{K}'$, sowie

• f stetig in a, • g stetig in f(a). Dann ist $a \in \mathcal{D}_{g \circ f} := \{x \in \mathcal{D}_f : f(x) \in \mathcal{D}_g\}$ und $g \circ f : \mathcal{D}_f \to \mathbb{K}''$ stetig in a.

Beweis. Sei $(x_n)_n \subset \mathcal{D}_{g \circ f} \subseteq \mathcal{D}_f$ beliebig mit $x_n \xrightarrow{n \to \infty} a$. Da f stetig in a ist, folgt

$$y_n := f(x_n) \xrightarrow{n \to \infty} f(a) =: y.$$

Nun ist $(y_n)_n \subset \mathcal{D}_g$ mit $y_n \xrightarrow{n \to \infty} y \in \mathcal{D}_g$ und g stetig in y. Folglich

$$g(y_n) \xrightarrow{n \to \infty} g(y),$$

also
$$\lim_{n \to \infty} (g \circ f)(x_n) = \lim_{n \to \infty} (g(\underbrace{f(x_n)}_{y_n})) = g(y) = g(f(a)) = (g \circ f)(a).$$

3.18 Beispiel Sei f stetig $\stackrel{\text{Satz 3.17}}{\Longrightarrow} |f|$ stetig, da $|f| = |\cdot| \circ f$ und $|\cdot|$ stetig ist (siehe Übung).

Eigenschaften stetiger Funktionen

- **3.19 Satz** Sei $f: \mathcal{D} \to \mathbb{K}'$ stetig in $a \in \mathcal{D}$. (a) Falls $f(a) \neq 0$, dann $\exists \delta > 0 \ \forall x \in \mathcal{D}$ mit $|x a| < \delta$ gilt: $f(x) \neq 0$. (b) Falls $\mathbb{K}' = \mathbb{R}$ und f(a) > 0, dann $\exists \delta > 0 \ \forall x \in \mathcal{D}$ mit $|x a| < \delta$ gilt: f(x) > 0.
 - (c) Falls $\mathbb{K}' = \mathbb{R}$ und f(a) < 0, dann $\exists \delta > 0 \ \forall x \in \mathcal{D}$ mit $|x a| < \delta$ gilt: f(x) < 0.

Beweis. Sei $\varepsilon := \frac{|f(a)|}{2}$, so ist nach Voraussetzung $\varepsilon > 0$. Da f stetig in a ist, folgt $\exists \, \delta > 0 \, \, \forall x \in \mathcal{D}$ mit $|x - a| < \delta$ gilt:

$$|f(x) - f(a)| < \frac{|f(a)|}{2} \tag{*}$$

- (a) $\stackrel{(\star)}{\Longrightarrow} f(x) \neq 0$, sonst $|f(a)| < \frac{|f(a)|}{2} \nleq$.
- (b) Annahme: $f(x) \le 0 \stackrel{(\star)}{\Longrightarrow} f(a) f(x) < \frac{f(a)}{2} \implies \frac{f(a)}{2} < f(x) \le 0 \nleq$.
- (c) analog zu (b) oder zurückführen auf (b) mittels g := -f.

Der folgende Satz gilt nur für $\mathbb{K} = \mathbb{K}' = \mathbb{R}$.

3.20 Satz (Nullstellensatz von Bolzano) Seien $a, b \in \mathbb{R}, a < b \text{ und } f : [a, b] \to \mathbb{R}$ stetig mit f(a) f(b) < 0. Dann gilt

$$\exists \xi \in [a, b[: f(\xi) = 0.$$

Abbildung 3.2: Veranschaulichung der Situation im Nullstellensatz von Bolzano.

Beweis. O.B.d.A. sei f(a) > 0 und f(b) < 0. Setze $A := \{x \in [a,b] : f(x) \ge 0\} \subset \mathbb{R}$

- $A \neq \emptyset$ (da $a \in A$),
- A von oben beschränkt (da b obere Schranke ist)

 $\implies \xi := \sup A \in [a, b]$. Somit $\exists (x_n)_n \subset A : x_n \xrightarrow{n \to \infty} \xi$, denn $\forall n \in \mathbb{N}$ ist $\xi - n^{-1}$ keine obere Schranke, also $\exists x_n \in A \cap]\xi - n^{-1}, \xi]$. Da f stetig ist, folgt weiter

$$f(\xi) = \lim_{n \to \infty} \underbrace{f(x_n)}_{\geqslant 0} \geqslant 0 \implies \xi \in [a, b[.$$

Auch der nächste Satz gilt wieder nur für $\mathbb{K} = \mathbb{K}' = \mathbb{R}$.

3.21 Korollar (Zwischenwertsatz) Seien $a, b \in \mathbb{R}, a < b \text{ und } f : [a, b] \to \mathbb{R}$ stetig. Dann nimmt f jeden Wert zwischen $m := \min\{f(a), f(b)\}$ und $M := \max\{f(a), f(b)\}$ an, das heißt

$$\forall y \in [m, M] \ \exists x \in [a, b] \colon f(x) = y.$$

Beweis. O.B.d.A. sei f(a) > f(b), denn der Fall ,,=" ist trivial und der Fall ,,<" analog. Sei $y \in]f(b)$, f(a)[ein beliebiger Zwischenwert (die Fälle y = f(a) und y = f(b) sind klar!). Setze $g: [a,b] \to \mathbb{R}$, $x \mapsto g(x) \coloneqq f(x) - y$, so gilt

•
$$g$$
 stetig • $g(a) > 0$ • $g(b) < 0$

und mit Satz 3.20 folgt $\exists \xi \in [a, b[: 0 = g(\xi) = f(\xi) - y]$.

3.22 Satz Sei $I \subseteq \mathbb{R}$ ein Intervall (uneigentliches Intervall erlaubt, das heißt auch Grenzen $\pm \infty$) und $f: I \to \mathbb{R}$ stetig. Dann ist $f(I) \subseteq \mathbb{R}$ ein (möglicherweise uneigentliches) Intervall.

Beweis. 1. Fall f = a konstant $\implies f(I) = [a, a]$.

2. Fall f nicht konstant.

 $\operatorname{Mit} A := \inf f(I) \in \mathbb{R} \cup \{-\infty\}, \, B := \sup f(I) \in \mathbb{R} \cup \{\infty\} \text{ (NB: } \overset{f \neq \text{ const.}}{\Longrightarrow} A < B) \text{ gilt}$

$$f(I) \subseteq \begin{cases} [A, B], & \text{falls } A, B \in \mathbb{R}, \\]A, B], & \text{falls } A = -\infty, B \in \mathbb{R}, \\ [A, B[, & \text{falls } A \in \mathbb{R}, B = \infty, \\]A, B[, & \text{falls } A = -\infty, B = \infty. \end{cases}$$

$$(1)$$

Andererseits

Def. von sup, inf
$$\Rightarrow \forall y \in]A, B[\exists a, b \in I: f(a) < y < f(b)$$
Zwischenwertsatz
$$\Rightarrow \forall y \in]A, B[\exists x \in]a, b[: f(x) = y$$

$$|a,b[\subset I]| \Rightarrow |A,B[\subseteq f(I).$$
(2)

$$(1) \land (2) \implies f(I) \in \{ [A, B[, [A, B[,]A, B], [A, B] \}.$$

3.23 Satz (Stetigkeit der Umkehrfunktion) Sei I (uneigentliches) Intervall mit |I| > 0, das heißt nicht ausgeartet. Sei $f: I \to \mathbb{R}$ strikt monoton. Dann existiert $f^{-1}: f(I) \to I$ und ist stetig.

Beweis. Ohne Einschränkung sei f strikt isoton (sonst betrachte -f). Dann ist f injektiv und die Umkehrfunktion f^{-1} existiert und ist strikt isoton.

Annahme: $\exists y \in f(I)$: f^{-1} nicht stetig in $y \implies$

$$\exists \, \varepsilon > 0 \, \exists \, (y_n)_n \subset f(I) \, \forall n \in \mathbb{N} \colon |y_n - y| < \frac{1}{n} \, \text{und} \, |\underbrace{f^{-1}(y_n)}_{=: \, x_n \in I} - \underbrace{f^{-1}(y)}_{=: \, x \in I}| \geqslant \varepsilon. \tag{*}$$

Insbesondere gilt $y_n \neq y$.

- Falls $y < y_n \implies x < \underbrace{x + \varepsilon} \overset{(\star)}{\leqslant} x_n \implies f(x) < f(x + \varepsilon) \leqslant f(x_n) \overset{n \to \infty}{\Longrightarrow} (\text{da } y_n \overset{n \to \infty}{\longrightarrow} y)$ $f(x) < f(x + \varepsilon) \leqslant f(x). \quad \not\downarrow$
- Falls $y_n < y \implies x_n \overset{(\star)}{\leqslant} \underbrace{x \varepsilon}_{\in I, \text{ da } I \text{ Intervall}} < f(x_n) \leqslant f(x \varepsilon) < f(x). \frac{1}{4} \text{ wie oben.}$
- **3.24 Bemerkung** f muss nicht stetig sein, damit f^{-1} es ist.
 - Stärkere Voraussetzung: f stetig auf Intervall und injektiv $\implies f$ strikt monoton. Beweisskizze: per Widerspuch; zeige dann $\exists x_j \in I, j = 1, 2, 3$, mit $x_1 < x_2 < x_3$ und

 $f(x_2) \ge \max\{f(x_1), f(x_3)\}\$ oder $f(x_2) \le \min\{f(x_1), f(x_3)\}; \ \ \ \$ mit Zwischenwertsatz zur Injektivität.

3.25 Definition

 $K \subset \mathbb{K}$ (folgen-)kompakt : $\iff \forall (x_n)_n \subset K \exists Teilfolge (x_{n_k})_k \exists x \in K : \lim_{k \to \infty} x_{n_k} = x.$

3.26 Beispiel (a) K = [a, b] kompakt in \mathbb{R} für $a, b \in \mathbb{R}$,

(b) $K = \overline{B}_r(z_0) := \{z \in \mathbb{C} : |z - z_0| \leq r\}$ kompakt in \mathbb{C} für $z_0 \in \mathbb{C}, r > 0$, denn: K beschränkt $\stackrel{\text{Bolzano-W.}}{\Longrightarrow} (x_n)_n \subset K$ hat konvergente Teilfolge $(x_{n_k})_k \subset K$. Wegen " \leq "

beziehungsweise abgeschlossenes Intervall gilt auch dim $x_{n_k} \in K$.

3.27 Satz Sei $K \subset \mathbb{K}$ kompakt, $f: K \to \mathbb{R}$ stetig. Dann ist die Funktion f beschränkt $(:\iff f(K) \text{ ist beschränkt})$ und nimmt ihr Maximum und Minimum an:

$$\exists x_+, x_- \in K: f(x_+) = \max f(K) \quad und \quad f(x_-) = \min f(K).$$

Beweis. Sei $S := \sup f(K) \in \mathbb{R} \cup \{\infty\}$ (Beachte: $S = \infty \iff f(K)$ nicht von oben beschränkt)

$$\implies$$
 \exists Folge $(x_n)_n \subset K$ mit $f(x_n) \xrightarrow{n \to \infty} S$. (Konvergenz oder best. Divergenz.) (*)

 $K \text{ kompakt} \implies \exists \text{ Teilfolge } (x_{n_k})_k \subset K \text{ mit } x_+ := \lim_{k \to \infty} x_{n_k} \in K. \text{ Da } f \text{ stetig} \implies$

$$f(x_{+}) = \lim_{k \to \infty} f(x_{n_k}) \stackrel{(\star)}{=} S.$$

Also ist $S < \infty$, das Supremum wird als Maximum angenommen und f(K) ist von oben beschränkt. Analog für $I := \inf f(K)$. Also ist f auch beschränkt.

3.28 Definition *Sei* $f : \mathcal{D} \to \mathbb{K}'$.

• f gleichmäßig stetig $:\iff \forall \varepsilon > 0 \ \exists \ \delta > 0 \ \forall x, x' \in \mathscr{D} \ mit \ |x - x'| < \delta: |f(x) - f(x')| < \varepsilon$

Beachte: δ hängt nicht von $x, x' \in \mathcal{D}$ ab (Jargon: δ ist gleichmäßig in x, x').

• f Lipschitz-stetig : $\iff \exists C \in]0, \infty[\forall x, x' \in \mathcal{D} : |f(x) - f(x')| \leq C|x - x'|$

3.29 Lemma Für
$$f: \mathcal{D} \to \mathbb{K}'$$
 gilt
$$f \text{ Lipschitz-stetig} \implies f \text{ gleichmäßig stetig} \implies f \text{ stetig.}$$

Beweis. Linke Implikation: wähle
$$\delta = \varepsilon/C$$
. Rechte Implikation: Klar, denn: stetig $\iff \forall \varepsilon > 0 \ \forall x \in \mathscr{D} \ \exists \ \delta > 0 \ \forall x' \in \mathscr{D} \ \text{mit} \ |x - x'| < \delta \colon |f(x) - f(x')| < \varepsilon$.

3.30 Satz Sei $K \subset \mathbb{K}$ kompakt und $f: K \to \mathbb{K}'$ stetig. Dann ist f gleichmäßig stetig auf K.

Beweis. Annahme: f nicht gleichmäßig stetig auf K $\stackrel{\delta=1/n}{\Longrightarrow}$

$$\exists \, \varepsilon > 0 \, \forall n \in \mathbb{N} \, \exists \, x_n, x_n' \in K \, \text{mit} \, \underbrace{|x_n - x_n'| < \frac{1}{n}}_{\text{(1)}} \, \text{und} \, \underbrace{|f(x_n) - f(x_n')| \geqslant \varepsilon}_{\text{(2)}}.$$

K kompakt $\implies (x_n)_n$ hat konvergente Teilfolge $(x_{n_k})_k$ mit $\xi := \lim_{k \to \infty} x_{n_k} \in K$

$$\stackrel{(1)}{\Longrightarrow} \lim_{k \to \infty} x'_{n_k} = \xi \stackrel{f \text{ stetig}}{\Longrightarrow} \lim_{k \to \infty} f(x_{n'_k}) = f(\xi) = \lim_{k \to \infty} f(x_{n_k})$$
(3)

$$\stackrel{(2)}{\Longrightarrow} \forall k \in \mathbb{N}: \left| f(x_{n_k}) - f(x_{n'_k}) \right| \ge \varepsilon \tag{4}$$

$$\stackrel{\text{(3)}}{\Longrightarrow} 0 = \lim_{k \to \infty} \left| f(x_{n_k}) - f(x_{n'_k}) \right| \stackrel{\text{(4)}}{\geqslant} \varepsilon > 0. \quad \text{(4)}$$

3.5 Gleichmäßige Konvergenz von Funktionenfolgen

Illustration der Fragestellung dieses Abschnitts anhand von

3.31 Beispiel

Für $n \in \mathbb{N}$ sei

$$f_n: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ & & \\ f_n: & & \mapsto & \frac{x}{\frac{1}{n} + |x|}. \end{array}$$

 $\forall n \in \mathbb{N} : f_n \text{ stetig nach Beispiel } 3.14(a),$ (b), Beispiel 3.18 und Satz 3.15.

Zudem existiert punktweise $\forall x \in \mathbb{R}$

$$\lim_{n \to \infty} f_n(x) = \operatorname{sgn}(x) := \begin{cases} 1, & x > 0 & f_1 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

Die Funktion sgn: $\mathbb{R} \to \mathbb{R}$, obwohl punktweiser Limes stetiger Funktionen, ist unstetig! Der Stetigkeitsverlust kann vermieden werden, falls eine schärfere Konvergenzart vorliegt.

3.32 Definition Sei $\mathscr{D} \subseteq \mathbb{K}$ und $\forall n \in \mathbb{N}$ sei $f_n : \mathscr{D} \to \mathbb{K}'$.

(a) Die Funktionenfolge $(f_n)_n$ konvergiert punktweise gegen $f: \mathscr{D} \to \mathbb{K}'$: \iff $\begin{cases} \forall x \in \mathscr{D} \ \forall \varepsilon > 0 \ \exists \ N = N_{\varepsilon, x} \in \mathbb{N} \ \forall n \geqslant N : \\ |f_n(x) - f(x)| < \varepsilon \end{cases}$

$$\left(\iff \forall x \in \mathcal{D}: \lim_{n \to \infty} f_n(x) = f(x) \right)$$

(b) Die Funktionenfolge $(f_n)_n$ konvergiert gleichmäßig gegen $f: \mathscr{D} \to \mathbb{K}'$: \iff $\begin{cases} \forall \varepsilon > 0 \,\exists \, N = N_\varepsilon \in \mathbb{N} \, \forall n \geqslant N \colon \\ \|f_n - f\|_{\infty} \coloneqq \sup_{x \in \mathscr{D}} |f_n(x) - f(x)| < \varepsilon \end{cases}$

<u>Beachte:</u> in (b) hängt N nicht von x ab. Jargon: N ist "gleichmäßig" in x.

- 3.33 Bemerkung Aus gleichmäßger Konvergenz folgt punktweise Konvergenz.
- **3.34 Beispiel** Die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$ aus Beispiel 3.31 konvergiert punktweise, aber nicht gleichmäßig gegen sgn. Beweis durch Rechnung oder aber mit

3.35 Satz (Gleichmäßige Limiten stetiger Funktionen sind stetig) $Sei \mathcal{D} \subseteq \mathbb{K}$ und $\forall n \in \mathbb{N}$ sei $f_n : \mathcal{D} \to \mathbb{K}'$ stetig und $(f_n)_n$ gleichmäßig konvergent gegen $f : \mathcal{D} \to \mathbb{K}'$. Dann ist f stetig.

Beweis. Sei $x \in \mathcal{D}$ beliebig fest und $\varepsilon > 0$. Für alle $y \in \mathcal{D}$ und für alle $n \in \mathbb{N}$ gilt

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|. \tag{*}$$

Aus der gleichmäßigen Konvergenz $f_n \to f$ folgt

$$\exists N \in \mathbb{N} \ \forall n \geq N \ \forall \xi \in \mathcal{D}: \ |f_n(\xi) - f(\xi)| < \frac{\varepsilon}{3}.$$

 $n = N \text{ in } (\star) \Longrightarrow$

$$\forall y \in \mathcal{D}: |f(x) - f(y)| < \frac{2}{3}\varepsilon + |f_N(x) - f_N(y)|. \tag{**}$$

(Beachte: $(\star\star)$ wäre im Allgemeinen falsch, wenn N von ξ abhinge.) Da f_N stetig in x ist, folgt

$$\exists \, \delta = \delta_{x,N,\varepsilon} > 0 \,\, \forall \, y \in \mathscr{D} \,\, \text{mit} \,\, |x - y| < \delta \colon \, |f_N(x) - f_N(y)| < \frac{\varepsilon}{3}.$$

Mit
$$(\star\star)$$
 folgt $\forall y \in \mathcal{D}$ mit $|x-y| < \delta$: $|f(x) - f(y)| < \varepsilon$, also f stetig in x .

Potenzreihen und elementare Funktionen

Zur Vorbereitung dieses Kapitels vertiefen wir zuerst ein wenig unser Verständnis über...

4.1 Reihen (2. Teil)

<u>Zur Erinnerung aus Abschnitt 2.5:</u> \mathbb{K} ∈ { \mathbb{R} , \mathbb{C} }. Für $(a_k)_{k\in\mathbb{N}}$ ⊂ \mathbb{K} und N ∈ \mathbb{N} sei $S_N := \sum_{k=1}^N a_k$ und

$$\sum_{k\in\mathbb{N}} a_k \text{ konvergiert } :\iff (S_N)_N \text{ konvergiert } \iff (S_N)_N \text{ ist Cauchy-Folge}.$$

4.1 Satz Sei
$$(a_k)_k \subset \mathbb{K}$$
. Dann gilt $\sum_{k \in \mathbb{N}} a_k$ konvergent $\Longrightarrow (a_k)_k$ ist Nullfolge.

Beweis. Nach Voraussetzung ist $(S_N)_N$ eine Cauchy-Folge, das heißt

$$\forall \varepsilon > 0 \ \exists \ N \in \mathbb{N} \ \forall n, m \geqslant N \colon |S_n - S_m| < \varepsilon.$$

Für n = m + 1 gilt $S_{m+1} - S_m = a_{m+1}$ und somit folgt

$$\forall \varepsilon > 0 \ \exists \ N \in \mathbb{N} \ \forall m \geqslant N \colon |a_{m+1}| < \varepsilon.$$

4.2 Bemerkung Die Umkehrung " \Leftarrow " des Satzes gilt nicht. Als Beispiel dient die *harmonische Reihe* $a_k = 1/k$ (siehe Übung).

4.3 Definition Sei
$$(a_k)_k \subset \mathbb{K}$$
.

$$\sum_{k\in\mathbb{N}} a_k \text{ ist absolut konvergent (in } \mathbb{K}) \quad :\Longleftrightarrow \quad \sum_{k\in\mathbb{N}} |a_k| \text{ ist konvergent (in } \mathbb{R}).$$

4.4 Satz Sei
$$(a_k)_k \subset \mathbb{K}$$
. Dann gilt $\sum_{k \in \mathbb{N}} a_k$ absolut konvergent $\Longrightarrow \sum_{k \in \mathbb{N}} a_k$ konvergent.

4.5 Bemerkung Die Umkehrung " —" des Satzes gilt auch hier nicht. Als Beispiel dient die alternierende harmonische Reihe $a_k = \frac{(-1)^k}{k}$ (siehe Übung).

Beweis von Satz 4.4. Für $N \in \mathbb{N}$ sei $S_N := \sum_{k=1}^N a_k$ und $A_N := \sum_{k=1}^N |a_k|$. Mit der iterierten Dreiecksungleichung folgt $\forall M \in \mathbb{N}, M \geqslant N$

$$|S_M - S_N| = \left| \sum_{k=N+1}^M a_k \right| \le \sum_{k=N+1}^M |a_k| = A_M - A_N = |A_M - A_N|$$

und somit $(A_N)_N$ Cauchy $\Longrightarrow (S_N)_N$ Cauchy.

4.6 Satz (Majoranten-Kriterium) Seien $(a_k)_k \subset \mathbb{K}, (c_k)_k \subset \mathbb{R}_{\geq mit} \sum_{k \in \mathbb{N}} c_k$ konvergent und $\exists N \in \mathbb{N} \ \forall k \geq N : |a_k| \leq c_k$. Dann ist $\sum_{k \in \mathbb{N}} a_k$ absolut konvergent.

Beweis. Ohne Einschränkung gelte N=1 (denn: endlich viele Glieder abändern beeinflusst die Konvergenz nicht). Für $n \in \mathbb{N}$ sei $A_n := \sum_{k=1}^n |a_k|$ und $C_n := \sum_{k=1}^n c_k$. Für alle $m \in \mathbb{N}$, $m \ge n$ gilt

$$|A_m - A_n| = \sum_{k=n+1}^m \underbrace{|a_k|}_{\leqslant c_k} \leqslant C_m - C_n = |C_m - C_n|$$

und somit $(C_n)_n$ Cauchy $\Longrightarrow (A_n)_n$ Cauchy

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$
 konvergiert,

4.7 Beispiel $\forall \alpha \in \mathbb{Q}, \alpha \geqslant 2$ gilt $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} \text{ konvergiert,}$ denn $\forall k \in \mathbb{N}$: $k^{\alpha} = \underbrace{k^{\alpha-2}}_{\geqslant 1} \underbrace{k^2}_{\geqslant k^{\frac{k+1}{2}}} \Longrightarrow \frac{1}{k^{\alpha}} \leqslant \frac{2}{k(k+1)} =: c_k$. Mit Satz 4.6 und Beispiel 2.48

folgt die Behauptung. (Das Resultat ist noch nicht optimal, denn Konvergenz gilt $\forall \alpha > 1$; dazu später mehr).

4.8 Satz (Quotientenkriterium) Sei $(a_k)_k \subset \mathbb{K}$ mit $\exists N \in \mathbb{N} \ \forall k \geqslant N : a_k \neq 0$ und

$$\exists \theta \in]0,1[\ \forall k \geqslant N : \left| \frac{a_{k+1}}{a_k} \right| \leqslant \theta \qquad (\longleftarrow \ unabh \ddot{a}ngig \ von \ k!). \tag{Q}$$

Dann ist $\sum_{k \in \mathbb{N}} a_k$ absolut konvergent.

Abbildung 4.1: Zusammenfassen der Summanden im Beweis von Satz 4.11 zu Päckchen.

Beweis. O.B.d.A. gelte N=1 (denn: endlich viele Glieder beeinflussen die Konvergenz nicht).

$$(\mathbf{Q}) \underset{\text{Vollst. Induktion}}{\Longrightarrow} \forall k \in \mathbb{N} \colon |a_k| \leqslant \underbrace{\theta^{k-1}|a_1|}_{=: c_k \geqslant 0}$$

Geometrische Reihe: $\sum_{k=1}^{\infty} c_k = |a_1| \sum_{k=0}^{\infty} \theta^k = \frac{|a_1|}{1-\theta}$ konvergent, da $|\theta| < 1$. Die Behauptung folgt

- **4.9 Bemerkung** (a) Zum Quotientenkriterium: (Q) $\iff \limsup_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| < 1$.

 (b) Warnung: Die Bedingung $\exists N \in \mathbb{N} \ \forall k \geqslant N$: $\left| \frac{a_{k+1}}{a_k} \right| < 1$ ist nicht hinreichend für die Konvergenz der Reihe. Beispiel: harmonische Reihe mit $a_k = 1/k \ \forall k \in \mathbb{N}$.
- **4.10 Beispiel** Die **Exponentialreihe** $\exp(x) := \sum_{k=0}^{\infty} \frac{x^k}{k!}$ ist konvergent für alle $x \in \mathbb{K}$, denn

$$\forall k \in \mathbb{N} \text{ mit } k \geqslant |x|: \quad \left| \frac{a_{k+1}}{a_k} \right| = \frac{|x|}{k+1} \leqslant \frac{|x|}{|x|+1} =: \theta < 1.$$

4.11 Satz (CAUCHY'scher Verdichtungssatz) Sei
$$(a_n)_n \subset [0, \infty[$$
 antiton. Dann gilt
$$\sum_{n=1}^{\infty} a_n \text{ konvergiert } \iff \sum_{k=0}^{\infty} 2^k a_{2^k} \text{ konvergiert.}$$

Beweis. " \Leftarrow " Sei $N \in \mathbb{N}$. Wähle $K \in \mathbb{N}$: $2^{K+1} > N \implies$

$$S_N := \sum_{n=1}^N a_n \underset{a_n \geqslant 0}{\leqslant} S_{2^{K+1}-1} \underset{\text{Abb. 4.1}}{=} \sum_{k=0}^K \sum_{n=2^k}^{2^{k+1}-1} \underbrace{a_n}_{k=0} \leqslant \sum_{k=0}^K 2^k a_{2^k} =: \sigma_K \xrightarrow[\text{n.V.}]{K \to \infty} \sigma \in \mathbb{R}.$$

Da $(S_N)_N$ isoton und $\forall N \in \mathbb{N}$: $S_N \leq \sigma \stackrel{\text{Satz 2.68}}{\Longrightarrow} (S_N)_N$ konvergiert.

 $,\Rightarrow$ "Sei $K\in\mathbb{N}$. Wähle $N\in\mathbb{N}:\ N\geqslant 2^K\Longrightarrow$

$$\sigma_{K} = a_{1} + 2\sum_{k=1}^{K} 2^{k-1} a_{2^{k}} = a_{1} + 2\sum_{k=1}^{K} \sum_{n=2^{k-1}+1}^{2^{k}} \underbrace{a_{2^{k}}}_{\substack{d \ antiton}} \leqslant 2S_{2^{K}} \leqslant 2S_{N} \xrightarrow[\text{n.V.}]{N \to \infty} 2S \in \mathbb{R}.$$

Da $(\sigma_K)_K$ isoton und $\forall K \in \mathbb{N}$: $\sigma_K \leq 2S \stackrel{\text{Satz 2.68}}{\Longrightarrow} (\sigma_K)_K$ konvergiert.

4.12 Korollar Sei $\alpha \in \mathbb{Q}$. Die Reihe

$$\sum_{n \in \mathbb{N}} \frac{1}{n^{\alpha}} \quad \begin{cases} \text{konvergiert für } \alpha > 1, \\ \text{divergiert für } \alpha \leq 1. \end{cases}$$

(Auch gültig für $\alpha \in \mathbb{R}$. Potenzen mit irrationalen Exponenten werden aber erst später definiert.)

Beweis.
$$\bullet \ \alpha > 1 \implies r := \left(\frac{1}{2}\right)^{\alpha - 1} < 1$$
, denn $\exists p, q \in \mathbb{N} : \alpha - 1 = \frac{p}{q}$. Wäre nun $(2^{-p})^{\frac{1}{q}} \ge 1 \implies 2^{-p} \ge 1 \ \text{$\frac{1}{2}$}$. Also ist

$$\sum_{k=0}^{\infty} 2^k \frac{1}{(2^k)^{\alpha}} = \sum_{k=0}^{\infty} \left[\left(\frac{1}{2} \right)^{\alpha - 1} \right]^k = \sum_{k=0}^{\infty} r^k$$

als geometrische Reihe mit 0 < r < 1 konvergent. Mit Satz 4.11 folgt die Behauptung.

• $\alpha \le 1 \implies \frac{1}{n^{\alpha}} = \frac{1}{n} \cdot \underbrace{n^{1-\alpha}}_{\geqslant 1} \ge \frac{1}{n}$. Mit dem Minorantenkriterium (Übung) und der Tatsache, dass $\sum_{n \in \mathbb{N}} \frac{1}{n}$ divergiert, folgt die Behauptung.

4.13 Bemerkung Sei $\sum_{n \in \mathbb{N}} a_n$ konvergente Reihe. Dann gilt

(a) Man darf Klammern (zusätzlich) setzen

$$\sum_{n=1}^{\infty} a_n = \underbrace{(a_1 + a_2)}_{b_1} + \underbrace{a_3}_{b_2} + \underbrace{(a_4 + a_5 + a_6)}_{b_3} + \dots = \sum_{k=1}^{\infty} b_k,$$

wobei $b_k := \sum_{n=N_k}^{N_{k+1}-1} a_n$ mit $1 = N_1 < N_2 < N_3 < \dots$, das heißt $(N_k)_k \subseteq \mathbb{N}$ strikt isoton.

Beweis: $\sum_{k=1}^{K} b_k = \sum_{n=1}^{N_{K+1}-1} a_n = S_{N_{K+1}-1}$. Da $(S_n)_n$ konvergent, so auch jede Teilfolge mit demselben Limes.

(b) Man darf bestehende Klammern nicht umsetzen. Gegenbeispiel: $a_n := 0 = 1 - 1 \implies$

$$0 = \sum_{n \in \mathbb{N}} a_n = (1 - 1) + (1 - 1) + (1 - 1) + \dots$$

Verschieben der Klammern ⇒

$$1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + \cdots = 1$$

"Erschaffung der Welt aus dem Nichts" (GUIDO GRANDI).

Nützlich für die Bestimmung von Konvergenz, beziehungsweise Divergenz ist

4.14 Satz (Wurzelkriterium) Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{K}$ eine Folge und

$$\alpha := \limsup_{n \to \infty} \sqrt[n]{|a_n|} \in [0, \infty].$$

Dann gilt:

$$\sum_{n \in \mathbb{N}} a_n \begin{cases} konvergiert \ absolut & für \ \alpha < 1, \\ divergiert & für \ \alpha > 1. \end{cases}$$

Für $\alpha = 1$ ist keine Aussage möglich (absolute Konvergenz, Konvergenz oder Divergenz möglich).

Beweis. Fall $\alpha < 1$: Da lim sup der größte Häufungspunkt ist und $\alpha < 1$ ist, gibt es ein $N \in \mathbb{N}$, sodass für alle $n \ge N$ gilt

$$\sqrt[n]{|a_n|} \le \frac{\alpha}{2} + \frac{1}{2} =: q \in]\alpha, 1[.$$

Daraus folgt nun direkt

$$\sum_{n\in\mathbb{N}}|a_n|=\sum_{n=1}^N|a_n|+\sum_{n=N+1}^\infty\left(\sqrt[n]{|a_n|}\right)^n\leqslant M+\sum_{n\in\mathbb{N}_0}q^n=M+\frac{1}{1-q}<\infty.$$

Fälle $\alpha \ge 1$: Übung.

4.15 Satz (Umordnungssatz) Sei
$$(a_n)_n \subset \mathbb{K}$$
 und $\Phi : \mathbb{N} \to \mathbb{N}$ bijektiv (Umordnung). Dann gilt
$$\sum_{k \in \mathbb{N}} a_k \text{ konvergiert absolut } \Longrightarrow \sum_{k \in \mathbb{N}} a_{\Phi(k)} \text{ konvergiert absolut und } \sum_{k \in \mathbb{N}} a_k = \sum_{k \in \mathbb{N}} a_{\Phi(k)}.$$

(a) Absolute Konvergenz der Reihe ist wesentliche Voraussetzung, das heißt, ohne sie ist die Behauptung falsch; siehe Übung (Riemannscher Umordnungssatz) oder

Beispiel: Die alternierende harmonische Reihe $\sum_{n \in \mathbb{N}} (-1)^n n^{-1}$ ist konvergent, aber nicht absolut konvergent. Betrachte folgende Umordnung

$$\sum_{n \in \mathbb{N}} a_{\Phi(n)} = -1 + \frac{1}{2} - \underbrace{\left(\frac{1}{3}\right) + \frac{1}{4} - \underbrace{\left(\frac{1}{5} + \frac{1}{7}\right)}_{2^{1} \text{ Glieder}} + \frac{1}{6} - \underbrace{\left(\frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15}\right)}_{2^{2} \text{ Glieder}} + \frac{1}{8}$$

$$\dots - \underbrace{\left(\frac{1}{2^{n} + 1} + \frac{1}{2^{n} + 3} + \dots + \frac{1}{2^{n+1} - 1}\right)}_{\geqslant 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{2^{n+1} - 1}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}} + \underbrace{\frac{1}{6} - \frac{1}{12}}_{\Rightarrow 2^{n-1} \cdot \frac{1}{2^{n+1}} = \frac{1}{4}}_{\Rightarrow 2^{n-1} \cdot \frac{1$$

Annahme: $\sum_{n \in \mathbb{N}} a_{\Phi(n)}$ konvergent $\stackrel{\text{Bem. 4.13(a)}}{\Longrightarrow} \sum_{n \in \mathbb{N}} b_n$ konvergent. $\frac{1}{4}$, da $\sum_{n \in \mathbb{N}} b_n = -\infty$.

(b) Es gilt sogar für $\sum_{n\in\mathbb{N}}a_n$ konvergent: (per Widerspruch zu Riemannschem Umordnungssatz)

 $\sum_{n\in\mathbb{N}} a_{\Phi(n)}$ konvergiert für alle Umordnungen $\Phi \implies \sum_{n\in\mathbb{N}} a_n$ konvergiert absolut.

Beweis von Satz 4.15. Sei $S := \sum_{n \in \mathbb{N}} a_n$ und $A := \sum_{n \in \mathbb{N}} |a_n|$. Absolute Konvergenz \Longrightarrow

$$\forall \varepsilon > 0 \,\exists \, N \in \mathbb{N}: \, \sum_{n=N+1}^{\infty} |a_n| = \lim_{\substack{K \to \infty \\ K > N}} \sum_{n=N+1}^{K} |a_n| = A - \sum_{n=1}^{N} |a_n| < \frac{\varepsilon}{2}$$

$$\sum_{n=1}^{K} |a_n| - \sum_{n=1}^{N} |a_n|$$

$$\implies \left| S - \sum_{n=1}^{N} a_n \right| = \lim_{\substack{K \to \infty \\ K > N}} \sum_{n=N+1}^{K} |a_n| \leq \lim_{\substack{K \to \infty \\ K > N}} \sum_{n=N+1}^{K} |a_n| = \sum_{n=N+1}^{\infty} |a_n| < \frac{\varepsilon}{2}.$$

 $\exists M:=M_N\in\mathbb{N} \text{ (groß genug), dass } \{\Phi(1),\Phi(2),\ldots,\Phi(M)\}\supseteq\{1,2,\ldots,N\}.$ Damit gilt $\forall m\geqslant M$

$$\left|S - \sum_{k=1}^{m} a_{\Phi(k)}\right| \leq \underbrace{\left|S - \sum_{n=1}^{N} a_{n}\right|}_{< \frac{\varepsilon}{2}} + \left|\underbrace{\sum_{n=1}^{N} a_{n} - \sum_{k=1}^{m} a_{\Phi(k)}}_{= \frac{\varepsilon}{2} + \sum_{n=N+1}^{\infty} |a_{n}| < \varepsilon, \frac{\varepsilon}{2}}_{= \frac{\varepsilon}{2} + \sum_{n=N+1}^{\infty} |a_{n}| < \varepsilon, \frac{\varepsilon}{2}}$$

d.h. die umgeordnete Reihe konvergiert und hat denselben Limes. Analog gilt

$$\left| A - \sum_{k=1}^{m} |a_{\Phi(k)}| \right| \leq \underbrace{A - \sum_{n=1}^{N} |a_n|}_{< \frac{\varepsilon}{2}} + \left| \underbrace{\sum_{n=1}^{N} |a_n| - \sum_{k=1}^{m} |a_{\Phi(k)}|}_{= \frac{\varepsilon}{2}} \right| < \frac{\varepsilon}{2} + \sum_{n=N+1}^{\infty} |a_n| < \varepsilon.$$

4.17 Satz (Von MERTENS über das Cauchy-Produkt von Reihen) Seien $\sum_{n \in \mathbb{N}_0} a_n$, $\sum_{n \in \mathbb{N}_0} b_n$ konvergente Reihen in \mathbb{K} , eine davon <u>absolut</u> konvergent. Für $n \in \mathbb{N}_0$ sei $c_n := \sum_{k=0}^n a_k b_{n-k}$.

Dann ist $\sum_{n \in \mathbb{N}_0} c_n$ konvergent und

$$\left(\sum_{n\in\mathbb{N}_0} a_n\right) \left(\sum_{n\in\mathbb{N}_0} b_n\right) = \sum_{n\in\mathbb{N}_0} c_n = \sum_{n=0}^{\infty} \sum_{k=0}^n a_k b_{n-k}.$$

Falls beide Reihen $\sum_{n \in \mathbb{N}_0} a_n$, $\sum_{n \in \mathbb{N}_0} b_n$ absolut konvergieren, dann konvergiert auch $\sum_{n \in \mathbb{N}_0} c_n$ absolut.

Beweis. O.B.d.A. sei $A:=\sum_{n\in\mathbb{N}_0}a_n$ die absolut konvergente Reihe. Sei $B:=\sum_{n\in\mathbb{N}_0}b_n$ und für $N\in\mathbb{N}$ seien

$$A_N := \sum_{n=0}^{N} a_n, \ B_N := \sum_{n=0}^{N} b_n, \ C_N := \sum_{n=0}^{N} c_n$$

die zugehörigen Partialsummen. Es folgt

$$C_{N} = a_{0}b_{0} + (a_{0}b_{1} + a_{1}b_{0}) + \dots + (a_{0}b_{N} + a_{1}b_{N-1} + \dots + a_{N}b_{0})$$

$$= a_{0}B_{N} + a_{1}B_{N-1} + \dots + a_{N}B_{0}$$

$$= A_{N}B - \underbrace{(a_{0}\beta_{N} + \dots + a_{N}\beta_{0})}_{=: \omega_{N}}$$

$$B_{N} =: B - \beta_{N} =: \omega_{N}$$

Wir zeigen: $(\omega_N)_N$ ist Nullfolge ($\Longrightarrow C_N \xrightarrow{n \to \infty} AB$). Es gilt

- (i) $(\beta_N)_N$ ist Nullfolge. Klar, da $B_N \xrightarrow{n \to \infty} B$.
- (ii) $(a_n)_n$ ist Nullfolge. Klar, da $\sum_n a_n$ konvergent (sogar absolut).

Setze
$$S := \sum_{n \in \mathbb{N}} |a_n| < \infty$$
. Sei $\varepsilon > 0$ beliebig $\stackrel{\text{(i)}}{\Longrightarrow} \exists k \in \mathbb{N} \ \forall N \geqslant k \colon |\beta_N| \leqslant \varepsilon/S$.

$$\implies \forall N \geqslant k \colon |\omega_N| = \left| \sum_{j=0}^N \beta_j a_{N-j} \right| \leqslant \sum_{j=0}^{k-1} |\beta_j| |a_{N-j}| + \underbrace{\sum_{j=k}^N \underbrace{|\beta_j|}_{\leqslant \frac{\varepsilon}{S}} |a_{N-j}|}_{\leqslant \frac{\varepsilon}{S}}$$

$$\Longrightarrow \limsup_{N \to \infty} |\omega_N| \leqslant \sum_{j=0}^{k-1} |\beta_j| \cdot \limsup_{N \to \infty} |a_{N-j}| + \varepsilon = \varepsilon \stackrel{\varepsilon > 0 \text{ bel.}}{\Longrightarrow} \limsup_{N \to \infty} |\omega_N| = 0. \quad \checkmark$$

Absolute Konvergenz von $\sum_{n\in\mathbb{N}_0}c_n$ folgt aus Anwendung des bisher Bewiesenen auf die konvergenten Reihen $\sum_{n \in \mathbb{N}_0} |a_n|$ und $\sum_{n \in \mathbb{N}_0} |b_n|$.

4.2 Potenzreihen

4.18 Definition Sei $(a_n)_n \subset \mathbb{K}, x \in \mathbb{K}$.

- Potenzreihe (in \mathbb{K}): $\sum_{n=0}^{\infty} a_n x^n$

4.19 Beispiel (a)
$$\sum_{n \in \mathbb{N}_0} \frac{x^n}{n!} \underset{\text{Beispiel 4.10}}{\Longrightarrow} \mathscr{D} = \mathbb{K}$$
, (b) $\sum_{n \in \mathbb{N}_0} x^n \underset{\text{geometrische Reihe}}{\Longrightarrow} \mathscr{D} = \{x \in \mathbb{K} : |x| < 1\}$ Beachte: Satz 2.49 gilt auch für $q \in \mathbb{C}$. (c) $\sum_{n \in \mathbb{N}_0} n^n x^n$. Für $x \neq 0$ und $n > \frac{2}{|x|} \Longrightarrow |n^n x^n| > 2^n \Longrightarrow \text{divergent. Somit } \mathscr{D} = \{0\}$.

(c)
$$\sum_{n \in \mathbb{N}_0} n^n x^n$$
. Für $x \neq 0$ und $n > \frac{2}{|x|} \implies |n^n x^n| > 2^n \implies \text{divergent. Somit } \mathcal{D} = \{0\}$.

Diese Beispiele illustrieren die drei prinzipiellen Möglichkeiten, die auftreten können.

Abbildung 4.2: Illustration des Konvergenzkreises für $\mathbb{K} = \mathbb{C}$.

4.20 Definition Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty} a_n x^n$:

$$R := \begin{cases} \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}, & \text{falls } \limsup_{n \to \infty} \sqrt[n]{|a_n|} \in]0, \infty[, \\ 0, & \text{falls } \limsup_{n \to \infty} \sqrt[n]{|a_n|} = \infty, \\ \infty, & \text{falls } \limsup_{n \to \infty} \sqrt[n]{|a_n|} = 0. \end{cases}$$

Erinnerung: für r > 0 ist $B_r := \{x \in \mathbb{K} : |x| < r\}$ und $\overline{B}_r := \{x \in \mathbb{K} : |x| \leqslant r\}$.

4.21 Satz (von Cauchy–Hadamard) Sei $\sum_{n=0}^{\infty} a_n x^n$ Potenzreihe in \mathbb{K} mit Definitionsbereich \mathcal{D} .

- Dann gilt (siehe Abb. 4.2)

 (a) $R = \infty \implies \mathscr{D} = \mathbb{K}$,

 (b) $R = 0 \implies \mathscr{D} = \{0\}$,

 (c) $R \in]0, \infty[\implies B_R \subseteq \mathscr{D} \subseteq \overline{B}_R$.

Zudem gilt: Für x = 0 und $x \in B_R$ ist die Konvergenz der Potenzreihe absolut.

4.22 Bemerkung (a) Auf dem Rand $\{x \in \mathbb{K} : |x| = R\}$ des Konvergenzkreises B_R ist keine Aussage möglich (absolute Konvergenz, Konvergenz, Divergenz möglich).

Beispiel: $a_n := 1/n \implies$

$$\sum_{n \in \mathbb{N}_0} \frac{x^n}{n} \begin{cases} \text{konvergiert} & \text{für } x = -1 \text{ (alternierende harmonische Reihe).} \\ \text{divergiert} & \text{für } x = 1 \text{ (harmonische Reihe).} \end{cases}$$

$$\stackrel{\text{Satz 4.21(c)}}{\Longrightarrow} R = 1.$$

- (b) Falls $\exists N \in \mathbb{N} \ \forall n \ge N : \ a_n \ne 0$, dann ist $R = \liminf_{n \to \infty} |a_n|^{-\frac{1}{n}}$.
- (c) Abschätzungen des Konvergenzradius aus dem Quotientenkriterium (falls $\exists N \in \mathbb{N} \ \forall n \geq$ $N: a_n \neq 0$; Beweis siehe Übung)

$$\liminf_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \leqslant R \leqslant \limsup_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

Beweis von Satz 4.21. Wende das Wurzelkriterium, Satz 4.14, auf $\sum_{n \in \mathbb{N}_0} c_n$ mit $c_n := a_n x^n$ an.

- (a) $\forall x \in \mathbb{K}$: $\limsup_{n \to \infty} \sqrt[n]{|c_n|} = |x| \cdot \limsup_{n \to \infty} \sqrt[n]{|a_n|} = 0 \implies \text{absolut konvergent.}$
- (b) $\forall 0 \neq x \in \mathbb{K}$: $\limsup_{n \to \infty} \sqrt[n]{|c_n|} = |x| \cdot \limsup_{n \to \infty} \sqrt[n]{|a_n|} = \infty \implies$ divergent und für x = 0 absolut konvergent.

(c)
$$|x| < R \implies \limsup_{n \to \infty} \sqrt[n]{|c_n|} < 1 \implies \text{absolut konvergent.}$$

 $|x| > R \implies \limsup_{n \to \infty} \sqrt[n]{|c_n|} > 1 \implies \text{divergent.}$

Zur Vorbereitung der Stetigkeit von Potenzreihen dient der folgende Satz.

- **4.23 Satz** (Konvergenzkriterium von WEIERSTRASS) $Sei \mathcal{D} \subseteq \mathbb{K}$ und für alle $n \in \mathbb{N}$ sei φ_n : $\mathcal{D} \to \mathbb{K}'$ mit $\sum_{n \in \mathbb{N}} \|\varphi_n\|_{\infty} < \infty$, wobei $\|\varphi_n\|_{\infty} := \sup_{x \in \mathcal{D}} |\varphi_n(x)|$. Dann gilt
- (a) Für alle $x \in \mathcal{D}$ konvergiert die Reihe $\sum_{n \in \mathbb{N}} \varphi_n(x)$ absolut und $\Phi : \mathcal{D} \to \mathbb{K}'$ $x \mapsto \sum_{n \in \mathbb{N}} \varphi_n(x)$ ist wohldefiniert. Notation: $\sum_{n \in \mathbb{N}} \varphi_n := \Phi$.

 (b) Die Funktionenfolge $(S_n)_{n \in \mathbb{N}}$ konvergiert gleichmäßig gegen Φ , wobei $S_n := \sum_{k=1}^n \varphi_k$.

<u>Jargon:</u> $\sum_{n \in \mathbb{N}} \varphi_n$ konvergiert absolut und gleichmäßig.

Beweis. (a) $\forall x \in \mathcal{D} \ \forall n \in \mathbb{N}: \ |\varphi_n(x)| \leq \|\varphi_n\|_{\infty} \implies \text{Behauptung mit Majorantenkriterium}.$

(b) Sei $\varepsilon > 0$. Da $\sum_{n \in \mathbb{N}} \|\varphi_n\|_{\infty}$ konvergent \Longrightarrow

$$\exists N \in \mathbb{N} \ \forall n \geqslant N \colon \sum_{k=n+1}^{\infty} \|\varphi_k\|_{\infty} < \varepsilon. \tag{*}$$

Und somit $\forall n \geq 1$

$$\|\Phi - S_n\|_{\infty} = \sup_{x \in \mathscr{D}} |\underbrace{\Phi(x) - S_n(x)}_{\sum_{k=n+1}^{\infty} \varphi_k(x)}| \leqslant \sup_{x \in \mathscr{D}} \sum_{k=n+1}^{\infty} \underbrace{|\varphi_k(x)|}_{\leqslant \|\varphi_k\|_{\infty}} \leqslant \sum_{k=n+1}^{\infty} \|\varphi_k\|_{\infty} \overset{(\star)}{\leqslant} \varepsilon.$$

Für $g: \begin{array}{ccc} \mathscr{D} & \to & \mathbb{K}' \\ x & \mapsto & g(x) \end{array}$ und $A \subseteq \mathscr{D}$ ist $g \big|_A: \begin{array}{ccc} A & \to & \mathbb{K}' \\ x & \mapsto & g(x) \end{array}$ die Restriktion auf A (siehe Def. 1.26).

- **4.24 Satz** Sei $\sum_{n \in \mathbb{N}_0} a_n x^n$ Potenzreihe in \mathbb{K} mit Konvergenzradius $R \neq 0$ und $f_{(a_n)_n}$ die assoziierte Potenzreihenfunktion. Dann gilt:

 (a) $\forall \rho \in]0$, R[konvergiert $f_{(a_n)_n}|_{B_\rho}$ absolut und gleichmäßig.

 (b) $f_{(a_n)_n}|_{B_R}$ ist stetig.

 (c) $\forall \rho \in]0$, R[ist $f_{(a_n)_n}|_{\overline{B}_\rho}$ gleichmäßig stetig.
- Beweis. (a) Sei $\rho \in]0, R[$ und für $n \in \mathbb{N}_0$ sei $\varphi_n : \begin{cases} B_\rho \to \mathbb{K} \\ x \mapsto a_n x^n \end{cases} \implies \|\varphi_n\|_{\infty} = |a_n|\rho^n$ $\stackrel{\rho < R, \, \text{Satz 4.21}(c)}{\Longrightarrow} \sum_{n \in \mathbb{N}_0} \|\varphi_n\|_{\infty} \text{ konvergent } \stackrel{\text{Satz 4.23}}{\Longrightarrow} f_{(a_n)_n}\big|_{B_\rho} = \sum_{n \in \mathbb{N}_0} \varphi_n \text{ absolut und gleichmäßig}$ konvergent.
 - (b) $\forall \rho \in]0, R[\ \forall N \in \mathbb{N} \text{ ist } \sum_{n=0}^{N} \varphi_n : B_\rho \to \mathbb{K} \text{ stetig } \stackrel{\text{Satz } 3.35 \& (a)}{\Longrightarrow} f_{(a_n)_n} \text{ stetig auf } B_\rho.$ Nun sei $x \in B_R$ beliebig $\Longrightarrow \exists \rho \in]0, R[: x \in B_\rho \Longrightarrow f_{(a_n)_n} \text{ stetig in } x \Longrightarrow f_{(a_n)_n}$ stetig auf B_R .
 - (c) Für $\rho \in]0, R[$ ist \overline{B}_{ρ} kompakt und $f_{(a_n)_n}$ stetig auf $\overline{B}_{\rho} \subset B_R \stackrel{\text{Satz 3.30}}{\Longrightarrow} f_{(a_n)_n}$ ist gleichmäßig stetig auf \overline{B}_{ρ} .

Potenzreihen sind bereits durch ihre Werte auf "wenigen" Punkten eindeutig bestimmt.

4.25 Satz (Identitätssatz) Seien $\sum_{n\in\mathbb{N}_0} a_n x^n$, $\sum_{n\in\mathbb{N}_0} b_n x^n$ Potenzreihen in \mathbb{K} mit Konvergenzradius R>0. Falls es eine Folge $(x_m)_{m\in\mathbb{N}}\subset B_R\setminus\{0\}$ gibt mit $x_m\xrightarrow{m\to\infty} 0$ und $f_{(a_n)_n}(x_m)=f_{(b_n)_n}(x_m)$ $\forall m\in\mathbb{N}$, dann gilt $a_n=b_n$ $\forall n\in\mathbb{N}_0$.

- Der Satz kann verallgemeinert werden. Es reicht, wenn $x_m \xrightarrow{m \to \infty} \tilde{x} \in$ 4.26 Bemerkung B_R , das heißt \tilde{x} muss nicht 0 sein. Mehr dazu in der Vorlesung Funktionentheorie.
 - Moral: Gleichheit auf einer Folge mit Häufungspunkt in $B_R \implies$ Gleichheit überall.
 - Gilt insbesondere für Polynome.

Beweis von Satz 4.25. Wir zeigen $\forall n \in \mathbb{N}_0$: $a_j = b_j \ \forall j \in \{0, \dots, n\}$ per Induktion nach $n \in \mathbb{N}_0$. n = 0:

$$a_0 = f_{(a_v)_v}(0) \stackrel{\text{stetig}}{=} \lim_{m \to \infty} f_{(a_v)_v}(x_m) = \lim_{m \to \infty} f_{(b_v)_v}(x_m) \stackrel{\text{stetig}}{=} f_{(b_v)_v}(0) = b_0.$$

 $\underline{n \to n+1}$: Es gelte $a_j = b_j \ \forall j \in \{0, \dots, n\}$. Zu zeigen ist $a_{n+1} = b_{n+1}$. Für $x \in B_R \setminus \{0\}$ sei

$$g(x) := \frac{1}{x^{n+1}} \left[f_{(a_v)_v}(x) - \sum_{j=0}^n a_j x^j \right] = a_{n+1} + a_{n+2}x + \dots = \sum_{j=0}^\infty a_{n+1+j} x^j,$$

$$h(x) := \frac{1}{x^{n+1}} \left[f_{(b_v)_v}(x) - \sum_{j=0}^n b_j x^j \right] = \sum_{j=0}^\infty b_{n+1+j} x^j,$$

also Potenzreihen mit demselben Konvergenzradius R und $\forall m \in \mathbb{N}: g(x_m) \stackrel{\text{Ind.vorauss.}}{=} h(x_m) \implies$

$$a_{n+1} = f_{(a_{n+1+\nu})_{\nu}}(0) \stackrel{\text{stetig in 0}}{=} \lim_{m \to \infty} \underbrace{f_{(a_{n+1+\nu})_{\nu}}(x_m)}_{g(x_m) = h(x_m)} \stackrel{\text{stetig in 0}}{=} f_{(b_{n+1+\nu})_{\nu}}(0) = b_{n+1}.$$

Exponential funktion

4.27 Definition

Wohldefiniert, da Konvergenzradius $R = \infty$, also absolut konvergent auf \mathbb{C} (siehe Beispiel 4.10).

- .28 Satz Es gelten die folgenden Eigenschaften der Exponentialfunktion.

$$\exp(z_1) \exp(z_2) = \exp(z_1 + z_2)$$

- (a) $\exp ist \ stetig$, (b) $\exp(0) = 1$, $\exp(1) = \sum_{n \in \mathbb{N}_0} \frac{1}{n!} =: e$, (c) Funktionalgleichung: $\forall z_1, z_2 \in \mathbb{C}$: $\exp(z_1) \exp(z_2) = \exp(z_1 + z_2)$, (d) $\forall z \in \mathbb{C}$: $\exp(z) \neq 0$ und $\exp(-z) = \frac{1}{\exp(z)}$, (e) $\forall z \in \mathbb{C}$: $\overline{\exp(z)} = \exp(\overline{z})$, (f) Insbesondere gilt $\forall x \in \mathbb{R}$: $\overline{\exp(ix)} = \exp(-ix)$ und $|\exp(ix)| = 1$.

Beweis. (a) Satz 4.24(b), da $R = \infty$.

- (b) Klar.
- (c) Übung.
- (d) Annahme: $\exists z_0 \in \mathbb{C}$: $\exp(z_0) = 0 \implies$

$$1 = \exp(0) = \exp(z_0 - z_0) \stackrel{\text{(c)}}{=} \underbrace{\exp(z_0)}_{0} \underbrace{\exp(-z_0)}_{\in \mathbb{K}} = 0 \quad \text{(2)}$$

Somit erhalten wir $\forall z \in \mathbb{C}$

$$1 = \exp(0) = \exp(z - z) \stackrel{\text{(c)}}{=} \exp(z) \exp(-z) \stackrel{\exp(z) \neq 0}{\Longrightarrow} \exp(-z) = \frac{1}{\exp(z)}.$$

(e)

$$\overline{\exp(z)} = \overline{\lim_{N \to \infty} \sum_{n=0}^{N} \frac{z^n}{n!}} \stackrel{\text{Kor. 2.96}}{=} \lim_{N \to \infty} \overline{\sum_{n=0}^{N} \frac{z^n}{n!}} = \lim_{N \to \infty} \sum_{n=0}^{N} \overline{\frac{1}{n!} z^n} = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{1}{n!} \overline{z^n}$$
$$= \lim_{N \to \infty} \sum_{n=0}^{N} \frac{(\overline{z})^n}{n!} = \exp(\overline{z}).$$

- (f) Folgt aus (e) und (c).
- **4.29 Satz** (Reelle Exponentialfunktion) (a) $\exp|_{\mathbb{R}}: \mathbb{R} \to]0, \infty[$ ist strikt isoton, bijektiv, stetig. (b) $x \ge 0 \implies \exp(x) \ge 1$ (und $\exp(x) > 1$ für x > 0). (c) $\lim_{x \to \infty} \exp(x) = \infty$ und $\lim_{x \to -\infty} \exp(x) = 0$.

Beweis. (b) Sei
$$x \ge 0 \implies \exp(x) = 1 + x + \underbrace{\sum_{n=2}^{\infty} \frac{x^n}{n!}}_{\ge 0} \ge 1 + x \implies \text{Beh.}$$

(c)
$$\lim_{x \to \infty} \exp(x) \stackrel{\text{Beweis von (b)}}{\geqslant} \lim_{x \to \infty} (1+x) = \infty \implies$$

$$\lim_{x \to -\infty} \exp(x) = \lim_{x \to \infty} \exp(-x) = \lim_{x \to \infty} \frac{1}{\exp(x)} = 0.$$

- Stetigkeit folgt aus der von exp auf ℂ.
 - $-\exp(\mathbb{R}) \subseteq \mathbb{R}$, da nur reelle Koeffizienten in der exp-Reihe. Sei $x \in \mathbb{R} \implies$

$$\exp(x) = \bigwedge_{\text{Satz } 4.28(c)} \left(\underbrace{\exp\left(\frac{x}{2}\right)}_{\in \mathbb{R} \setminus \{0\}} \right)^2 > 0 \quad \Longrightarrow \quad \exp(\mathbb{R}) \subseteq]0, \infty[. \tag{*}$$

- Sei
$$x_2 > x_1 \implies \exp(x_2) = \exp(x_1) \exp(\underbrace{x_2 - x_1}_{>0}) > \exp(x_1) \implies \text{strikt isoton.}$$

- Injektivität folgt aus der strikten Isotonie.
- $-\text{ exp stetig} \overset{Satz \ 3.22, \ (c)}{\Longrightarrow} \exp(\mathbb{R}) \supseteq]0, \infty[\stackrel{(*)}{\Longrightarrow} \exp(\mathbb{R}) =]0, \infty[, \text{ also auch surjektiv.}$

- $\exp(z) = \exp(\operatorname{Re}(z)) \exp(i \operatorname{Im}(z)),$ $|\exp(z)| = \exp(\operatorname{Re}(z)).$

4.31 Satz Für alle
$$q \in \mathbb{Q}$$
 gilt $\exp(q) = e^q$.

Beweis. Sei $q = \frac{m}{n}$ mit $m \in \mathbb{Z}, n \in \mathbb{N} \implies e^q = \sqrt[n]{e^m}$. Andererseits

$$[\exp(q)]^n = \exp(\underline{nq}) = [\underbrace{\exp(1)}]^m = e^m > 0 \implies \exp(q) = \sqrt[n]{[\exp(q)]^n} = \sqrt[n]{e^m}.$$
Eindeutigkeit der positiven *n*-ten Wurzel

4.32 Definition Für alle
$$z \in \mathbb{C}$$
 setze $e^z := \exp(z)$.

4.33 Bemerkung Konsistent für $z \in \mathbb{Q}$ mit Definition 2.76 wegen Satz 4.31.

4.4 Trigonometrische Funktionen, die Zahl π und Polardarstellung komplexer Zahlen

4.34 Definition Trigonometrische Funktionen Kosinus und Sinus

Wohldefiniert, da Konvergenzradius $R = \infty$, also absolut konvergent auf \mathbb{C} .

4.35 Satz Für alle
$$z \in \mathbb{C}$$
 gilt mit der Notation $\sin z := \sin(z)$, $\cos z := \cos(z)$

- (a) $\sin \cos \sin d \sec i g$. (b) $\cos z = \frac{1}{2} (e^{iz} + e^{-iz})$, $\sin z = \frac{1}{2i} (e^{iz} e^{-iz})$. Insbesondere $\cos 0 = 1$, $\sin(0) = 0$.

(c)
$$\cos z = \cos(-z)$$
, $\sin z = -\sin(-z)$.

- (d) Eulersche Formel $e^{iz} = \cos z + i \sin z$. (e) Satz von Pythagoras $\sin^2 z + \cos^2 z = 1$, wobei $\sin^2 z = (\sin z)^2$, $\cos^2 z = (\cos z)^2$. (f) Additionstheoreme $\forall z_1, z_2 \in \mathbb{C}$

(i)
$$\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$$
,

(ii)
$$\cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2$$
,

(iii)
$$\sin z_1 - \sin z_2 = 2\cos\left(\frac{z_1 + z_2}{2}\right)\sin\left(\frac{z_1 - z_2}{2}\right)$$

(iii)
$$\sin z_1 - \sin z_2 = 2\cos\left(\frac{z_1 + z_2}{2}\right)\sin\left(\frac{z_1 - z_2}{2}\right)$$
,
(iv) $\cos z_1 - \cos z_2 = -2\sin\left(\frac{z_1 + z_2}{2}\right)\sin\left(\frac{z_1 - z_2}{2}\right)$.

Und viele mehr, siehe z.B. GRADSHTEYN/RYZHIK: Table of Integrals, series and products.

Beweis. (a) Satz 4.24(b), da $R = \infty$.

(b) Hier nur für cos [für sin verläuft der Beweis analog]

$$e^{iz} + e^{-iz} = \sum_{n=0}^{\infty} \frac{(iz)^n}{n!} + \sum_{n=0}^{\infty} \frac{(-iz)^n}{n!} = \sum_{\substack{\text{beide Reihen konvergent} \\ \text{konvergent}}} \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{\left[(iz)^n + (-iz)^n \right]}_{= \begin{cases} 0, & n \text{ ungerade} \\ 2i^n z^n, & n \text{ gerade} \end{cases}}_{= 2\sum_{k=0}^{\infty} \frac{1}{(2k)!} \underbrace{i^{2k}}_{(-1)^k} z^{2k} = 2\cos z.$$

- (c) Folgt aus Definition oder (b).
- (d) Folgt aus (b).
- (e), (f) Übung.

4.36 Satz (Reelle trigonometrische Funktionen) (a)
$$\sin |_{\mathbb{R}} : \mathbb{R} \to [-1, 1]$$
 und $\cos |_{\mathbb{R}} : \mathbb{R} \to [-1, 1]$ sind stetig.
(b) $\forall x \in \mathbb{R} : \cos x = \operatorname{Re}(e^{ix}), \sin x = \operatorname{Im}(e^{ix}).$

(b)
$$\forall x \in \mathbb{R}$$
: $\cos x = \text{Re}(e^{ix})$, $\sin x = \text{Im}(e^{ix})$.

Beweis. $\sin(\mathbb{R}) \subseteq \mathbb{R}$, $\cos(\mathbb{R}) \subseteq \mathbb{R}$ gemäß Definition $\implies \sin^2 x \ge 0$, $\cos^2 x \ge 0 \ \forall x \in \mathbb{R} \xrightarrow{\text{Satz 4.35(e)}} \sin^2 x \in [0, 1]$, $\cos^2 x \in [0, 1]$. Restliche Behauptungen aus Satz 4.35(a) und (d).

4.37 Satz und Definition Es gibt genau ein $\xi \in]0, 2[$ mit $\cos \xi = 0.$

Kreiszahl: $\pi := 2\xi$.

Der Beweis dieses Satzes beruht auf

4.38 Lemma Für alle
$$x \in]0, 3[$$
 gilt

(a) $1 - \frac{x^2}{2} < \cos x < 1 - \frac{x^2}{2} + \frac{x^4}{24},$

(b) $x - \frac{x^3}{6} < \sin x < x.$

(b)
$$x - \frac{x^3}{6} < \sin x < x$$
.

Die Aussagen sind sogar für alle x > 0 wahr – mehr dazu später.

Beweis. Übung.

Beweis von Satz 4.37. Es gilt cos(0) = 1 > 0 und

$$\cos(2) < 1 - 2 + \frac{16}{24} = -\frac{1}{3} < 0.$$
Lemma 4.38

Da cos stetig ist, folgt mit dem Nullstellensatz von Bolzano (Satz 3.20)

$$\exists \xi \in [0, 2[\text{ mit } \cos(\xi) = 0.$$

 ξ ist eindeutig, da \cos : $]0,2[\to \mathbb{R}$ strikt antiton. Letzteres gilt, denn seien $x,y \in]0,2[$ mit x>y

$$\implies \cos x - \cos y = \underset{\text{Satz } 4.35(f)(iv)}{\uparrow} -2\sin\left(\underbrace{\frac{x-y}{2}}\right)\sin\left(\underbrace{\frac{x+y}{2}}\right) < 0,$$

da gemäß Lemma 4.38(b) für alle $\tilde{x} \in [0, 2]$ gilt

$$\sin \tilde{x} > \tilde{x} \left(1 - \frac{\tilde{x}^2}{6} \right) > \frac{\tilde{x}}{3} > 0. \tag{*}$$

(a)
$$\cos\left(z + \frac{\pi}{2}\right) = -\sin z$$
, $\sin\left(z + \frac{\pi}{2}\right) = \cos z$,

(b)
$$\cos(z + \pi) = -\cos z$$
, $\sin(z + \pi) = -\sin z$,

4.39 Satz Für alle
$$z \in \mathbb{C}$$
 gilt

(a) $\cos\left(z + \frac{\pi}{2}\right) = -\sin z$, $\sin\left(z + \frac{\pi}{2}\right) = \cos z$,

(b) $\cos\left(z + \pi\right) = -\cos z$, $\sin\left(z + \pi\right) = -\sin z$,

(c) $\cos\left(z + 2\pi\right) = \cos z$, $\sin\left(z + 2\pi\right) = \sin z$,

das heißt, 2π ist eine **Periode** von sin und \cos – und ist sogar die **kleinste Periode**,

(d) $\forall x \in \mathbb{R}$ gilt

$$\cos x = 0 \iff \exists k \in \mathbb{Z}: x = \frac{\pi}{2} + k\pi,$$

$$\sin x = 0 \iff \exists k \in \mathbb{Z}: x = k\pi.$$

Beweis. (a) Es gilt
$$\cos\left(\frac{\pi}{2}\right) = 0 \Longrightarrow \left|\sin\left(\frac{\pi}{2}\right)\right| = 1 \Longrightarrow \sin\left(\frac{\pi}{2}\right) = 1 \Longrightarrow \text{Beh.}$$
Satz 4.35(e) (*) im Beweis von Satz 4.37 Satz 4.35(f)(i),(ii)

- (b) und (c) sind Iterationen von (a). Dass 2π die kleinste Periode, folgt aus dem Beweis von
- (d) Nullstellen:

cos stetig, Lemma 4.38, strikt antiton auf [0, 2] (Beweis von Lemma 4.38), Satz 4.37 und cos gerade

Insbesondere sind $\frac{\pi}{2}$ und $\frac{3\pi}{2}$ die einzigen Nullstellen von cos in $[0, 2\pi] \stackrel{\text{(b)}}{\Longrightarrow}$ Beh. für cos; und mit (a) die Beh. für sin.

4.40 Satz (a) $2\pi i$ ist die kleinste imaginäre Periode von exp. Insbesondere gilt für alle $z \in \mathbb{C}$

$$e^{z+2\pi i}=e^z.$$

(b) Mit wachsendem $x \in [0, 2\pi[$ durchläuft e^{ix} genau einmal den Einheitskreis in \mathbb{C} entgegen dem Uhrzeigersinn.

Abbildung 4.3: Der Einheitskreis in \mathbb{C} .

Beweis. (a) $z_P \in \mathbb{C}$ ist Periode von exp $\stackrel{\text{Satz 4.28(c)}}{\Longleftrightarrow} e^{z_P} = 1$. Aus Korollar 4.30 und Satz 4.29 folgt Re $(z_P) = 0$, und mit der Eulerschen Formel cos $(\text{Im } (z_P)) = 1$, sin $(\text{Im } (z_P)) = 0 \Longrightarrow \text{Beh.}$

(b) Siehe Abbildung 4.3. Folgt aus der Eulerschen Formel und dem Verhalten von sin und cos, Lemma 4.38 und Satz 4.39.

4.41 Korollar (Polardarstellung komplexer Zahlen) $\forall z \in \mathbb{C} \ \exists \varphi \in \mathbb{R}$ (*Phase oder Argument*), so dass $z = |z| e^{i\varphi}$. Falls $z \neq 0$, ist φ eindeutig bis auf Addition von $2k\pi$, $k \in \mathbb{Z}$.

Abbildung 4.4: Polardarstellung einer komplexen Zahl mit Betrag r und Phase φ .

Beweis. Falls $z=0 \implies |z|=0$ und φ beliebig. Falls $0 \neq z \in \mathbb{C} \implies \left|\frac{z}{|z|}\right|=1 \stackrel{\text{Satz } 4.40}{\Longrightarrow} \exists_1 \varphi \in]-\pi,\pi] \colon \frac{z}{|z|}=\mathrm{e}^{\mathrm{i}\varphi}.$

4.42 Definition (Hauptzweig des Arguments)

 $\arg: \begin{array}{ccc} \mathbb{C}\setminus\{0\} & \to &]-\pi,\pi] \\ z & \mapsto & \varphi \end{array} \quad wobei \ \varphi \ eindeutig \ aus \ Korollar \ 4.41 \ bestimmt, \ ist \ wohlde finiert.$

Es gilt damit für alle $z \in \mathbb{C} \setminus \{0\}$: $z = |z|e^{i \arg(z)}$. (Auch gebräuchlich Schreibweise: Arg)

4.43 Lemma $F\ddot{u}r z_j := r_j e^{i\varphi_j} \in \mathbb{C}, \ j \in \{1, 2\}, \ ist \ z_1 z_2 = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}.$

4.44 Korollar Sei $n \in \mathbb{N}$. Die Gleichung $z^n = 1$ besitzt genau n Lösungen¹ in \mathbb{C} . Diese sind

$$z_k := e^{i2\pi \frac{k}{n}}, \qquad k = 0, \dots, n-1,$$

und heißen die n-ten Einheitswurzeln.

¹Alternative Formulierung: Das Polynom $\mathbb{C} \to \mathbb{C}, z \mapsto z^n - 1$, besitzt genau *n* Nullstellen.

Abbildung 4.5: Multiplikation zweier komplexer Zahlen als Drehstreckung.

4.45 Beispiel Eine Illustration der Einheitswurzeln für n=5 befindet sich in Abbildung 4.6. Allgemein ergibt sich ein regelmäßiges n-Eck.

Abbildung 4.6: Die 5-ten Einheitswurzeln in ℂ.

Eine schöne Anwendung von Lemma 4.43 und der Sätze über stetige Funktionen ist der folgende

4.46 Satz (Fundamentalsatz der Algebra) Sei $P: \mathbb{C} \to \mathbb{C}$ ein Polynom vom Grad $n \in \mathbb{N}$, das heißt $\exists a_0, a_1, \ldots, a_n \in \mathbb{C}$ mit $a_n \neq 0$, so dass $P(z) = \sum_{j=0}^n a_j z^j$ für alle $z \in \mathbb{C}$. Dann besitzt P eine Nullstelle.

Beweis. Ohne Einschränkung sei $a_n=1$ (sonst betrachte $\widetilde{P}:=\frac{1}{a_n}P$). Sei $Q: {\mathbb{C}} \to {\mathbb{R}} \geqslant |P(z)|$.

1. Akt: Q nimmt Minimum an.

(i) $\forall z \in \mathbb{C} \setminus \{0\}$

$$Q(z) = |z^n| \cdot \left| 1 + \underbrace{\sum_{j=0}^{n-1} a_j z^{j-n}}_{=: r(z)} \right| \implies |r(z)| \leqslant \sum_{j=0}^{n-1} |a_j| |z|^{j-n} \xrightarrow{|z| \to \infty} 0,$$

da j - n < 0 und endliche Summe. Also $\exists \rho \in]0, \infty[\forall z \in \mathbb{C} \text{ mit } |z| > \rho: |r(z)| < \frac{1}{2}.$ Aus $1 = |1 - r(z) + r(z)| \le |1 + r(z)| + |r(z)| \text{ folgt } |1 + r(z)| \ge 1 - |r(z)| > \frac{1}{2}$

$$\implies Q(z) > \frac{|z|^n}{2} \text{ für alle } |z| > \rho.$$

Sei $R \geqslant \rho$ so groß, dass $\frac{R^n}{2} \geqslant |a_0| = Q(0)$, so folgt

$$\inf_{z \in \mathbb{C}} Q(z) = \inf_{z \in \overline{B}_R} Q(z)$$

 $\operatorname{mit} \overline{B}_R := \{ z \in \mathbb{C} : |z| \leq R \}.$

(ii) Da \overline{B}_R kompakt (Beispiel 3.26) und $Q: \overline{B}_R \to \mathbb{R}_{\geq}$ stetig, folgt mit Satz 3.27

$$\exists z_{-} \in \overline{B}_{R}: \ Q(z_{-}) = \min_{z \in \overline{B}_{R}} Q(z) = \inf_{z \in \overline{B}_{R}} Q(z) \stackrel{\text{(i)}}{=} \inf_{z \in \mathbb{C}} Q(z).$$

2.Akt: $Q(z_{-}) = 0$.

Annahme: $Q(z_{-}) > 0$. Sei $p(z) := \frac{1}{P(z_{-})} P(z_{-} + z) \ \forall z \in \mathbb{C}$ $\implies p \text{ ist Polynom vom Grad } n \text{ mit } |p(z)| \ge p(0) = 1 \text{ für alle } z \in \mathbb{C}$ $\implies \exists m \in \{1, \dots, n\} \text{ und } \exists b_m, b_{m+1}, \dots, b_n \in \mathbb{C} \text{ mit}^2 b_m \ne 0 :$

$$p(z) = 1 + \sum_{j=m}^{n} b_j z^j =: 1 + b_m z^m + z^{m+1} \tilde{p}(z),$$

wobei $\tilde{p}:\mathbb{C}\to\mathbb{C}$ ebenfalls ein Polynom (falls m=n, ist $\tilde{p}=0$). Wähle nun $\xi\in\mathbb{C}$, so dass $\xi^m=-\frac{b_m}{|b_m|}$ (existiert nach Korollar 4.43 und hat Betrag $|\xi|=1$) \Longrightarrow $\forall t\in[0,|b_m|^{-1/m}|]$

$$|p(\xi t)| = \left| 1 - |b_m|t^m + (\xi t)^{m+1} \widetilde{p}(\xi t) \right| \le \left| 1 - |b_m|t^m \right| + t^{m+1} |\widetilde{p}(\xi t)|$$

$$= 1 - t^m \left(\underbrace{|b_m| - t|\widetilde{p}(\xi t)|}_{>0} \right).$$

$$t \le |b_m|^{-1/m} > 0$$

Also
$$\exists t_0 > 0$$
: $|p(\xi t_0)| < 1$. $\xi \text{ zu } |p| \ge 1$.

Der vorstehende Satz liefert eine weitreichende Verallgemeinerung von Korollar 4.44.

 $^{^2}$ m ist kleinster Grad aller Monome, aus denen das Polynom p-1 aufgebaut ist. Es gilt auch noch $b_n \neq 0$ (interessiert aber nicht).

4.47 Korollar Sei $P: \mathbb{C} \to \mathbb{C}$ ein Polynom vom Grad $n \in \mathbb{N}$. Dann besitzt P genau n Nullstellen in \mathbb{C} , gezählt mit ihrer Vielfachheit, das heißt $\exists \zeta_1, \ldots, \zeta_n \in \mathbb{C}$ und $\exists a \in \mathbb{C} \setminus \{0\}$:

$$P(z) = a \prod_{k=1}^{n} (z - \zeta_k) \quad \forall z \in \mathbb{C}.$$

Beweis. Per Induktion nach $n \in \mathbb{N}$. n = 1: klar.

 $\underline{n \to n+1}$: Sei P vom Grad n+1 und sei $\zeta_{n+1} \in \mathbb{C}$ eine Nullstelle von P nach Satz 4.46. Es gilt

$$\exists$$
 Polynom $Q: \mathbb{C} \to \mathbb{C}$ vom Grad n mit $P(z) = (z - \zeta_{n+1})Q(z) \quad \forall z \in \mathbb{C}$, (*)

denn: sei $P(z) = \sum_{j=0}^{n+1} a_j z^j$, dann bestimme Q mittels Ansatz $Q(z) = \sum_{j=0}^{n} b_j z^j$ durch Koeffizientenvergleich (gerechtfertigt wegen Identitätssatz 4.25):

$$a_{n+1} = b_n$$
 und $a_j = b_{j-1} - \zeta_{n+1}b_j$ $\forall j = 1, ..., n$.

Dies liefert rekursiv $b_n, b_{n-1}, \ldots, b_0$.

Mit (*) und der Induktionsvoraussetzung $Q(z) = a \prod_{k=1}^{n} (z - \zeta_k)$ folgt der Induktionsschritt.

4.5 Logarithmus und allgemeine Potenz

4.48 Lemma und Definition

- Links geschlitzte komplexe Ebene $\mathbb{C}_l \coloneqq \mathbb{C} \setminus \mathbb{R}_{\leq}$
- Offener Horizontalstreifen (der Breite 2π) $S := \{ z \in \mathbb{C} : -\pi < \text{Im } z < \pi \}$

Die Restriktion der komplexen e-Funktion $\exp |_S: S \to \mathbb{C}_l$ ist bijektiv. Die Umkehrfunktion

$$ln: \mathbb{C}_I \to S$$

heißt Hauptzweig des (natürlichen) Logarithmus (auch: log, Log).

Auch übliche Notation: $\ln z := \ln(z)$ für $z \in \mathbb{C}_l$.

Beweis (Bijektivität). Sei
$$z \in S \implies e^z = \underbrace{e^{\operatorname{Re} z}}_{|e^z|} \underbrace{e^{\operatorname{i} \operatorname{Im} z}}_{e^{\operatorname{i} \operatorname{arg}(e^z)}}$$

• Satz 4.29
$$\Longrightarrow$$
 \mathbb{R} $\xrightarrow{\mathbb{R}}$ $0, \infty$ [bijektiv,

• Definition 4.42 $\Longrightarrow \lim_{z \to \infty} \frac{]-\pi, \pi[\to \{z \in \mathbb{C} : |z| = 1\} \setminus \{-1\} \}}{[\operatorname{Im} z \to \operatorname{e}^{i \operatorname{Im} z}]}$ bijektiv

Damit folgt die Behauptung aus der Polardarstellung.

4.49 Satz (Funktionalgleichung des ln) Seien $z_1, z_2 \in \mathbb{C}_l$ mit $z_1 z_2 \in \mathbb{C}_l$. Dann existiert genau ein $k := k_{z_1, z_2} \in \{0, 1, -1\}$, so dass

$$\ln(z_1 z_2) = \ln z_1 + \ln z_2 + 2k\pi i.$$

Beweis. Für j=1,2 setze $\zeta_j:=\ln z_j\in S$, also $z_j=\mathrm{e}^{\zeta_j}$. Aus der Funktionalgleichung von exp folgt

$$z_1 z_2 = e^{\zeta_1 + \zeta_2} = e^{\zeta_1 + \zeta_2 + 2k\pi i}$$

wobei $k \in \{0, 1, -1\}$ eindeutig festgelegt ist durch die Forderung $\zeta := \zeta_1 + \zeta_2 + 2k\pi i \in S$, denn $z_1z_2 \in \mathbb{C}_l \implies \operatorname{Im}(\zeta_1 + \zeta_2) \neq \pm \pi$. Damit folgt $\ln(z_1z_2) = \zeta$.

4.50 Korollar (Reller Logarithmus) Die Funktion $\exp|_{\mathbb{R}}: \mathbb{R} \to \mathbb{R}_{>}$ ist bijektiv mit stetiger Umkehrfunktion $\ln|_{\mathbb{R}_{>}}:]0, \infty[\to \mathbb{R}$. Es gilt für alle $x_1, x_2 \in]0, \infty[$

$$\ln(x_1 x_2) = \ln x_1 + \ln x_2.$$

Beweis. Sätze 4.29, 3.23, 4.49.

4.51 Korollar Für alle $z \in \mathbb{C}_l$ gilt

$$ln z = ln |z| + i arg(z)$$

und $\ln : \mathbb{C}_l \to S$ ist stetig.

Beweis. Polardarstellung und Satz 4.49. Stetigkeit aus Korollar 4.50 und Stetigkeit von | • | und arg (letzteres siehe Übung). ■

4.52 Definition Für $a \in \mathbb{C}_l$ und $z \in \mathbb{C}$ setze

$$a^z := \exp(z \ln a).$$

- **4.53 Bemerkung** Konsistent mit Definition 4.32 für a = e wegen ln e = 1.
 - Ebenfalls konsistent mit Definition 2.76 für $a \in \mathbb{R}_{>}$ und $z = \frac{m}{n} \in \mathbb{Q}, m \in \mathbb{Z}, n \in \mathbb{N}$, da

$$\left[\exp\left(\frac{m}{n}\ln a\right)\right]^n = \exp\left(m\ln a\right) = \left[\exp(\ln a)\right]^m = a^m$$

und damit wegen der Eindeutigkeit der positiven n-ten Wurzel positiver Zahlen

$$\exp\left(\frac{m}{n}\ln a\right) = \sqrt[n]{a^m}.$$

- Für alle $a \in \mathbb{C}_l$ gilt: $\begin{array}{c} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & a^z \end{array}$ ist stetig. $a^{z_1}a^{z_2} = a^{z_1+z_2} \ \forall z_1, z_2 \in \mathbb{C}$.

- **4.54 Satz** (a) Für alle $z_1 \in S$ und alle $z_2 \in \mathbb{C}$ gilt $(e^{z_1})^{z_2} = e^{z_1 z_2}$. (b) Für alle $z_1 \in \mathbb{C}_l$ und alle $z_2 \in \mathbb{C}$ mit $z_1^{z_2} \in \mathbb{C}_l$ gibt es genau ein $k \in \mathbb{Z}$, so dass

$$\ln(z_1^{z_2}) = z_2 \ln z_1 + 2k\pi i.$$

Beweis. Übung.

Differenzieren von Funktionen auf R

Generalvoraussetzung in diesem Kapitel: $\mathscr{D} \subseteq \mathbb{R}, \mathbb{K}' \in \{\mathbb{R}, \mathbb{C}\}.$

5.1 Ableitung

5.1 Definition Sei $f: \mathcal{D} \to \mathbb{K}'$ und $a \in \mathcal{D}$ ein Häufungspunkt von \mathcal{D} .

(a)

$$f$$
 differenzierbar in a : \iff $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} =: f'(a) =: \frac{\mathrm{d}f}{\mathrm{d}x}(a)$ existiert

(1.) Ableitung von f in a (auch: Differentialquotient)

(b) Falls $a \in \mathcal{D}$ Häufungspunkt von $\mathcal{D} \cap [a, \infty[$:

f von rechts differenzierbar in a :
$$\iff$$
 $\lim_{x \searrow a} \frac{f(x) - f(a)}{x - a} =: f'_{+}(a)$ existiert

rechtsseitige (1.) Ableitung von f in a

Analog: von links differenzierbar.

(c) Sei $A \subseteq \mathcal{D}$ und jedes $a \in A$ sei Häufungspunkt von \mathcal{D} :

$$f$$
 differenzierbar auf A : \iff $\forall a \in A$: f differenzierbar in a

und

(1.) Ableitung von
$$f$$
 auf A : $f': A \rightarrow \mathbb{K}'$ $a \mapsto f'(a)$

Alternative Notation: $f' =: \frac{df}{dx} =: \frac{d}{dx}f$.

(d) f differenzierbar : \iff f differenzierbar auf \mathcal{D}

5. Differenzieren von Funktionen auf \mathbb{R}

96

5.2 Bemerkung (a) Für $a \in \mathcal{D}$ Häufungspunkt von \mathcal{D} gilt

$$f$$
 differenzierbar in a : $\iff \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ existiert.

beliebige Nullfolgen $(h_n)_n \subset \{x - a : x \in \text{dom}(f)\} \setminus \{0\}$

- (b) $\frac{df}{dx}$ ist kein Quotient, sondern lediglich Notation!
- (c) Geometrische Interpretation für $\mathbb{K}' = \mathbb{R}$: f'(a) ist Steigung der Tangente am Graphen von f im Punkt a.

5.3 Beispiel (a) Konstante Funktionen $f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ x & \mapsto & c \end{array}$ für $c \in \mathbb{C}$

$$\stackrel{\forall a \in \mathbb{R}}{\Longrightarrow} \quad f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{c - c}{x - a} = 0.$$

(b) Monome $f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^n \end{array}$ für $n \in \mathbb{N}$

$$\stackrel{\forall a \in \mathbb{R}}{\Longrightarrow} \quad f'(a) = na^{n-1},$$

denn

$$\frac{1}{h} \left(\underbrace{f(a+h) - f(a)}_{(a+h)^n - a^n} \right) = \frac{1}{h} \sum_{k=1}^n \binom{n}{k} h^k a^{n-k} = \binom{n}{1} a^{n-1} + \underbrace{\sum_{k=2}^n \binom{n}{k} h^{k-1} a^{n-k}}_{h \to 0}.$$

(c) Exponential function
$$f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ x & \mapsto & \mathrm{e}^{\lambda x} \end{array}$$
 für $\lambda \in \mathbb{C}$

$$\stackrel{\forall a \in \mathbb{R}}{\Longrightarrow} f'(a) = \lambda e^{\lambda a} = \lambda f(a). \tag{*}$$

Insbesondere gilt

- $\exp' = \exp$,
- $\sin' = \cos$,
- $\cos' = -\sin$

(für letztere beide wegen Satz 4.35(b) und (*) mit $\lambda = \pm i$). Beweis von (*): $\forall h \neq 0$

$$\frac{1}{h} (f(a+h) - f(a)) = \int_{\text{Funktionalgleichung}} e^{\lambda a} \frac{e^{\lambda h} - 1}{h} = e^{\lambda a} \lambda \sum_{n=1}^{\infty} \frac{(\lambda h)^{n-1}}{n!}.$$

 $h\mapsto g(h)$ ist assoziierte Funktion zu einer Potenzreihe mit Konvergenzradius ∞ (Quotientenkriterium!) $\stackrel{\text{Satz 4.24(b)}}{\Longrightarrow} g$ stetig auf $\mathbb{R} \implies \lim_{h\to 0} g(h) = g(0) = 1$.

- (d) $|\cdot|$: $\mathbb{R} \to \mathbb{R}$ ist differenzierbar auf $\mathbb{R} \setminus \{0\}$, aber nicht in 0, mit $\frac{d}{dx}|x| = \operatorname{sgn}(x)$ für alle $x \in \mathbb{R} \setminus \{0\}$. Die Ableitungen von rechts und links existieren dagegen in x = 0.
- **5.4 Definition** (Höhere Ableitungen) Sei $f: \mathcal{D} \to \mathbb{K}', x \in \mathcal{D}$ und $A \subseteq \mathcal{D}$.
 - (a) Sei $\varepsilon > 0$, so dass f diff.-bar auf $\mathscr{D} \cap]x \varepsilon, x + \varepsilon[$ und f' diff.-bar in x.
 - 2. Ableitung von f in x: f''(x) := (f')'(x),
 - f 2-mal diff.-bar (auf A) : \iff f, f' diff.-bar (auf A).
 - (b) Induktive Definition für $k \in \mathbb{N}$.
 - Sei $\varepsilon > 0$, so dass $f^{(0)} := f, f^{(1)} := f', \dots, f^{(k-2)}$ diff.-bar auf $\mathscr{D} \cap]x \varepsilon, x + \varepsilon[$ und $f^{(k-1)}$ diff.-bar in x.

k-te Ableitung von
$$f$$
 in x : $f^{(k)}(x) := (f^{(k-1)})'(x)$,

• f k-mal diff-bar (auf A) $:\iff f^{(0)}, \ldots, f^{(k-1)} diff$ -bar (auf A).

k-te Ableitung von
$$f$$
 (auf A): $f^{(k)}: A \to \mathbb{K}'$
 $x \mapsto f^{(k)}(x)$.

Alternative Notation:
$$f^{(k)} =: \frac{d^k f}{dx^k} =: \frac{d^k}{dx^k} f =: \left(\frac{d}{dx}\right)^k f$$
.

(c) f k-mal stetig diff.-bar (auf A) : \iff f k-mal diff.-bar (auf A) und f (k) stetig (auf A).

5.5 Beispiel (a) $\exp^{(k)} = \exp \quad \forall k \in \mathbb{N},$ (b) $\sin'' = -\sin,$ (c) $\cos'' = -\cos$

5.6 Satz (Lineare Approximierbarkeit) Sei $f: \mathcal{D} \to \mathbb{K}'$ und $a \in \mathcal{D}$ ein Häufungspunkt von \mathcal{D} .

$$f \text{ diff.-bar in } a \iff \begin{cases} \exists m \in \mathbb{K}' \ \exists \delta > 0 \text{ und } \exists \varphi : \ \mathcal{D} \cap B_{\delta}(a) \to \mathbb{K}' \text{ mit } \lim_{x \to a} \frac{\varphi(x)}{x - a} = 0 \\ \text{und } f(x) = f(a) + m(x - a) + \varphi(x) \quad \forall x \in \mathcal{D} \cap B_{\delta}(a). \end{cases}$$

Beweis. ,, \Rightarrow " Setze m := f'(a) und $\forall x \in \mathcal{D} : \varphi(x) := f(x) - f(a) - m(x - a) \implies$

$$\forall x \in \mathcal{D} \setminus \{a\}: \quad \frac{\varphi(x)}{x - a} = \underbrace{\frac{f(x) - f(a)}{x - a}}_{\xrightarrow{x \to a} m} - m \xrightarrow{x \to a} 0.$$

 $,,\Leftarrow$ " $\forall x \in \mathcal{D} \cap B_{\delta}(a) \setminus \{a\}$ gilt

$$\frac{f(x) - f(a)}{x - a} = m + \frac{\varphi(x)}{x - a}.$$

Daraus folgt nach Voraussetzung an φ , dass f diff.-bar in a mit f'(a) = m.

- 5.7 Bemerkung (a) Aus dem Beweis folgt, dass der Satz auch mit $,\delta = \infty$ " gilt, d.h. mit \mathcal{D} anstelle von $\mathcal{D} \cap B_{\delta}(a)$.
 - (b) Insbesondere gilt $\lim_{x \to a} \varphi(x) = \lim_{x \to a} \left[\frac{\varphi(x)}{x a} (x a) \right] = 0 = \varphi(a)$.
 - (c) Später dient lineare Approximierbarkeit als Definition der Diff.-barkeit in allgemeineren Situationen.
- **.8 Korollar** (a) f diff.-bar in $a \implies f$ stetig in a. (b) f k-mal stetig diff.-bar für ein $k \in \mathbb{N} \implies f^{(j)}$ stetig für alle $j \in \{0, 1, ..., k\}$.

5.2 Ableitungsregeln

5.9 Satz $Sei \mathcal{D} \subseteq \mathbb{R}, x \in \mathcal{D}, f, g : \mathcal{D} \to \mathbb{K}' diff.-bar in x. Es gilt$

(a) Linearität der Ableitung: $\forall \lambda, \mu \in \mathbb{K}'$ ist $\lambda f + \mu g$ diff.-bar in x und

$$(\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x).$$

(b) **Produktregel:** fg ist diff.-bar in x und

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x).$$

(c) **Quotientenregel:** Sei $g(x) \neq 0$, dann ist $\frac{f}{g}$ diff.-bar in x und

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}.$$

Beweis. (a) Folgt direkt aus den Regeln für Limiten.

(b) Sei $h \in \mathbb{R}$ mit $x + h \in \mathcal{D} \implies$

$$(fg)(x+h) = f(x+h)g(x+h) = f(x+h)g(x) + f(x+h)[g(x+h) - g(x)]$$

$$\implies \lim_{h \to 0} \frac{(fg)(x+h) - (fg)(x)}{h} = f'(x)g(x) + \lim_{h \to 0} \left[f(x+h)\frac{g(x+h) - g(x)}{h} \right]$$

$$= f'(x)g(x) + f(x)g'(x).$$

(c) Da $g(x) \neq 0$ und g diff.-bar in $x \stackrel{\text{Kor. 5.8(a), Satz 3.19}}{\Longrightarrow} \exists \delta > 0 \ \forall y \in \mathscr{D} \cap B_{\delta}(x) \colon g(y) \neq 0.$

1. Akt: f = 1. Sei $h \in \mathbb{R}$, $|h| < \delta$ mit $x + h \in \mathcal{D}$ (also $g(x + h) \neq 0$), dann folgt

$$\left(\frac{1}{g(x+h)} - \frac{1}{g(x)}\right)\frac{1}{h} = \underbrace{\frac{1}{g(x+h)g(x)}}_{\substack{h \to 0 \\ \text{da } g \text{ stetig}}} \underbrace{\frac{g(x) - g(x+h)}{h}}_{\substack{h \to 0 \\ -g'(x)}}$$

$$\implies \frac{1}{g}$$
 diff.-bar in x und $\left(\frac{1}{g}\right)'(x) = -\frac{g'(x)}{(g(x))^2}$

2. Akt: $f \neq 1$. Produktregel und 1. Akt \Longrightarrow

$$\left(\frac{f}{g}\right)' = \left(f\frac{1}{g}\right)' = f'\frac{1}{g} + f\left(\frac{1}{g}\right)' = \frac{f'g - fg'}{g^2}.$$

5.10 Beispiel (a) (Komplexer) Tangens

$$\tan: \begin{array}{ccc} \mathscr{D} & \to & \mathbb{C} \\ \tan: & z & \mapsto & \frac{\sin(z)}{\cos(z)} \end{array} \qquad \mathrm{mit} \quad \mathscr{D} := \mathbb{C} \setminus \bigg\{ \Big(k + \frac{1}{2} \Big) \pi : k \in \mathbb{Z} \bigg\},$$

denn $\cos z = 0 \iff \mathrm{e}^{2\mathrm{i}z} = -1 \iff 2z = \pi + 2\pi k \text{ für } k \in \mathbb{Z}.$ Quotientenregel $\implies \tan|_{\mathscr{D} \cap \mathbb{R}}$ ist diff.-bar mit

$$\tan'(x) = \frac{\cos(x)\cos(x) - \sin(x)(-\sin(x))}{\cos^2(x)} = \frac{1}{\cos^2(x)} \qquad \forall x \in \mathcal{D} \cap \mathbb{R}.$$

Abbildung 5.1: Funktionsgraph des (rellen) Tangens.

(b) Inverse Potenz $\begin{array}{ccc} \mathbb{R}\setminus\{0\} & \to & \mathbb{R} \\ x & \mapsto & x^{-n} \end{array}$, $n\in\mathbb{N}$, ist diff.-bar mit

$$\frac{d}{dx}(x^{-n}) = \frac{d}{dx}\frac{1}{x^n} = -\frac{nx^{n-1}}{x^{2n}} = -nx^{-n-1} \qquad \forall x \in \mathbb{R} \setminus \{0\}.$$

Zusammen mit Beispiel 5.3(a), (b) folgt

$$\frac{\mathrm{d}}{\mathrm{d}x}x^n = nx^{n-1} \qquad \forall n \in \mathbb{Z} \quad \forall x \in \begin{cases} \mathbb{R}, & n \in \mathbb{Z}_{\geq}, \\ \mathbb{R} \setminus \{0\}, & n \in \mathbb{Z}_{<}. \end{cases}$$

5.11 Satz (Kettenregel) Seien $\mathcal{D}_f, \mathcal{D}_g \subseteq \mathbb{R}$ und $f: \mathcal{D}_f \to \mathbb{R}, g: \mathcal{D}_g \to \mathbb{K}'$ Funktionen mit $f(\mathcal{D}_f) \subseteq \mathcal{D}_g$. Sei f diff.-bar in $x \in \mathcal{D}_f$ und g diff.-bar in $f(x) \in \mathcal{D}_g$. Dann ist $g \circ f$ diff.-bar in $x \in \mathcal{D}_{g \circ f}$ mit

$$(g \circ f)'(x) = g'(f(x))f'(x).$$

Beweis. Nach Satz 5.6 und Bemerkung 5.7(a) gilt (mit einer translatierten Restfunktion)

• f diff.-bar in $x \implies \exists \varphi_f : \underbrace{\mathscr{D}_f - \{x\}}_{:= \{x' - x : x' \in \mathscr{D}_f\}} \rightarrow \mathbb{R}$ mit

$$f(x+h) = f(x) + \underbrace{f'(x)h + \varphi_f(h)}_{=: \theta(h)} \quad \forall h \in \mathcal{D}_f - \{x\} \text{ und } \frac{\varphi_f(h)}{h} \xrightarrow{h \to 0} 0.$$

•
$$g$$
 diff.-bar in $y := f(x) \implies \exists \varphi_g : \mathscr{D}_g - \{y\} \to \mathbb{R}$ mit

$$g(y+l) = g(y) + g'(y)l + \varphi_g(l) \quad \forall l \in \mathcal{D}_g - \{y\} \text{ und } \frac{\varphi_g(l)}{l} \xrightarrow{l \to 0} 0.$$

Also ist $\forall h \in \mathcal{D}_f - \{x\}$

$$g(\underbrace{f(x+h)}_{f(x)+\theta(h)}) = g(f(x)) + g'(f(x))\theta(h) + \varphi_g(\theta(h)).$$

und somit $\forall 0 \neq h \in \mathcal{D}_f - \{x\}$

$$\frac{1}{h}\Big[(g\circ f)(x+h)-(g\circ f)(x)\Big]=g'\Big(f(x)\Big)\Big[f'(x)+\underbrace{\frac{\varphi_f(h)}{h}}_{h\to 0}\Big]+\underbrace{\frac{\varphi_g\big(\theta(h)\big)}{h}}_{=:\Phi(h)}.$$

Es bleibt zu zeigen, dass $\Phi(h) \xrightarrow{h \to 0} 0$.

$$\underline{1. \, \text{Fall}} \ \theta(h) = 0 \implies \varphi_g \left(\theta(h) \right) = \varphi_g \left(0 \right) \stackrel{\text{Bem. 5.7(b)}}{=} 0 \implies \Phi(h) = 0.$$

$$\underline{2. \text{ Fall }} \theta(h) \neq 0 \implies \Phi(h) = \underbrace{\frac{\theta(h)}{h}}_{h \to 0} \underbrace{\frac{\varphi_g(\theta(h))}{\theta(h)}}_{h \to 0, \text{ da } \theta(h) \to 0 \text{ und } \frac{\varphi_g(l)}{l}}_{l \to 0} 0.$$

5.12 Satz (Ableitung der Umkehrfunktion) Sei $I \subseteq \mathbb{R}$ ein (uneigentliches) nicht ausgeartetes Intervall (d.h. |I| > 0). Set $f: I \to \mathbb{R}$ streng monoton und diff.-bar in $x \in I$ mit $f'(x) \neq 0$. Dann ist f^{-1} diff.-bar in y := f(x) mit

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Beweis. Übung.

5.13 Beispiel (a) Logarithmus
$$\mathbb{R}_{>} \to \mathbb{R}$$
 \Longrightarrow $f := \exp \Longrightarrow f' \circ f^{-1} = \exp \circ \ln = \mathrm{id}$ \Longrightarrow $\frac{\mathrm{Satz} \, 5.12}{\mathrm{d}} \, \mathrm{d} \ln x = \frac{1}{x}$ $\forall x \in \mathbb{R}_{>}$. (b) Allgemeine Potenz $\mathbb{R}_{>} \to \mathbb{C}$ $x \mapsto x^{z} = \mathrm{e}^{z \ln x} \, \mathrm{mit} \, z \in \mathbb{C} \Longrightarrow$ $\frac{\mathrm{d}}{\mathrm{d}x} x^{z} = \frac{\mathrm{d}}{\mathrm{d}x} \mathrm{e}^{z \ln x} = \sum_{g := \mathrm{e}^{z}} \underbrace{g'(\ln x)}_{zg(\ln x)} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \ln x \stackrel{\mathrm{(a)}}{=} zx^{z} \cdot \frac{1}{x} = zx^{z-1}$ $\forall x \in \mathbb{R}_{>}$.

(b) Allgemeine Potenz
$$\mathbb{R}_{>} \to \mathbb{C}$$
 $x \mapsto x^z = e^{z \ln x}$ mit $z \in \mathbb{C}$

$$\frac{\mathrm{d}}{\mathrm{d}x}x^{z} = \frac{\mathrm{d}}{\mathrm{d}x}e^{z\ln x} = \underbrace{\frac{g'(\ln x)}{z} \cdot \frac{\mathrm{d}}{\mathrm{d}x}\ln x}_{g:=e^{z}} \underbrace{\frac{g'(\ln x)}{z} \cdot \frac{\mathrm{d}}{\mathrm{d}x}\ln x}_{z\in[\ln x]} = zx^{z} \cdot \frac{1}{x} = zx^{z-1} \quad \forall x \in \mathbb{R}_{>}.$$

5.3 Eigenschaften differenzierbarer Funktionen

In diesem Unterkapitel sei stets $a, b \in \mathbb{R}$ mit a < b und $\mathbb{K}' = \mathbb{R}$ (Funktionen sind reellwertig).

5.14 Definition *Sei* $f : \mathcal{D} \to \mathbb{R}$ *und* $\xi \in \mathcal{D}$.

```
f \text{ hat lokales Maximum in } \xi :\iff \exists \varepsilon > 0 \ \forall x \in \big(B_{\varepsilon}(\xi) \setminus \{\xi\}\big) \cap \mathscr{D} \colon f(\xi) \geq f(x),
f \text{ hat striktes lokales Maximum in } \xi :\iff \exists \varepsilon > 0 \ \forall x \in \big(B_{\varepsilon}(\xi) \setminus \{\xi\}\big) \cap \mathscr{D} \colon f(\xi) > f(x),
f \text{ hat lokales Minimum in } \xi :\iff \exists \varepsilon > 0 \ \forall x \in \big(B_{\varepsilon}(\xi) \setminus \{\xi\}\big) \cap \mathscr{D} \colon f(\xi) \leq f(x),
f \text{ hat striktes lokales Minimum in } \xi :\iff \exists \varepsilon > 0 \ \forall x \in \big(B_{\varepsilon}(\xi) \setminus \{\xi\}\big) \cap \mathscr{D} \colon f(\xi) \leq f(x).
```

- ξ heißt Maximalstelle bzw. Minimalstelle.
- (Striktes) lokales Extremum: (striktes) lokales Maximum oder Minimum Extremalstelle: Maximalstelle oder Minimalstelle.

Eine notwendige Bedingung für Extrema differenzierbarer Funktionen liefert

5.15 Satz Sei $f:]a,b[\to \mathbb{R}$ mit lokalem Extremum in $\xi \in]a,b[$ und f diff.-bar in ξ . Dann gilt $f'(\xi) = 0$.

Beweis. Sei ohne Einschränkung ξ Maximalstelle (für Minimalstelle analog). Nach Voraussetzung $\exists \varepsilon > 0$: $B_{\varepsilon}(\xi) \subset]a,b[$ und $f(x) \leq f(\xi) \ \forall x \in B_{\varepsilon}(\xi) \Longrightarrow$

$$f'(\xi) = \lim_{x \to \xi} \frac{f(x) - f(\xi)}{x - \xi} = \underbrace{\lim_{x \to \xi} \frac{f(x) - f(\xi)}{x - \xi}}_{\geqslant 0} = \underbrace{\lim_{x \to \xi} \frac{f(x) - f(\xi)}{x - \xi}}_{\leqslant 0} \implies f'(\xi) = 0.$$

- **5.16 Warnung!** (a) Die Bedingung $f'(\xi) = 0$ ist <u>nicht hinreichend</u> für Existenz von Extrema. Beispiel: $f: \begin{bmatrix} -1, 1[\rightarrow \mathbb{R} \\ x \mapsto x^3 \end{bmatrix}$ und $\xi = 0$.
 - (b) Randpunkte a, b sind ausgeschlossen in Satz 5.15.

Beispiel: $f: \begin{bmatrix} [0,1] & \to & \mathbb{R} \\ x & \mapsto & x \end{bmatrix}$ und $\xi = 0$ oder $\xi = 1$.

5.17 Satz (Satz von Rolle) Sei $f: [a,b] \to \mathbb{R}$ stetig mit f(a) = f(b) und f diff.-bar auf [a,b]. Dann existiert $\xi \in [a,b]$ mit $f'(\xi) = 0$.

Beweis. 1. Fall f = const. ist trivial.

2. Fall $f \neq \text{const.} \implies \exists x_0 \in]a, b[: f(x_0) \neq f(a). \text{ O.B.d.A. sei } f(x_0) > f(a) \ (< \text{analog)}.$ Satz 3.27 $\implies f$ nimmt Maximum an, das heißt

$$\exists \xi \in [a, b] \text{ mit } f(\xi) \geqslant f(x) \quad \forall x \in [a, b].$$

Abbildung 5.2: Geometrische Interpretation des Mittelwertsatzes der Differentialrechnung für g = id.

Wegen
$$f(x_0) > f(a) = f(b) \implies \xi \in]a, b[\implies$$
 Behauptung mit Satz 5.15.

5.18 Korollar (Mittelwertsatz der Differentialrechnung) Seien $f, g: [a,b] \to \mathbb{R}$ stetig und diff.-bar in]a, b[. Sei $g'(x) \neq 0$ für alle $x \in]a, b[$. Dann

$$\exists \ ,Mittelwert" \xi \in]a,b[: f'(\xi) = \frac{f(b) - f(a)}{g(b) - g(a)} g'(\xi).$$

[Beachte: Satz von Rolle \implies $g(a) \neq g(b)$.]

Insbesondere für g = id gilt

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Beweis. Anwendung des Satzes von Rolle auf

$$\varphi: x \mapsto \varphi(x) := f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \left(g(x) - g(a) \right),$$

denn φ ist stetig auf [a, b], diff.-bar auf [a, b] und $\varphi(a) = f(a) = \varphi(b)$. Somit

$$\exists \, \xi \in \,]a,b[\, : \, 0 = \varphi'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)} \, g'(\xi).$$

Der Zusammenhang zwischen Monotonie und Ableitung erfolgt in

5.19 Satz Sei
$$f: [a,b] \to \mathbb{R}$$
 stetig und auf $]a,b[$ diff.-bar. Dann gilt

(a) $f'(x) \ge 0 \quad \forall x \in]a,b[\implies f \text{ isoton} \quad (d.h. \text{ auf dem Def.bereich } [a,b]),$
 $f'(x) > 0 \quad \forall x \in]a,b[\implies f \text{ strikt iston},$
 $f'(x) \le 0 \quad \forall x \in]a,b[\implies f \text{ antiton},$
 $f'(x) < 0 \quad \forall x \in]a,b[\implies f \text{ strikt antiton}.$

(b)
$$f \ isoton \implies f'(x) \ge 0 \quad \forall x \in]a,b[,$$
 $f \ antiton \implies f'(x) \le 0 \quad \forall x \in]a,b[.$ [Hier keine extra Version für "strikt". Beispiel: $x \mapsto f(x) = x^3$.]

Beweis. Übung.

5.20 Satz Sei $f:]a,b[\to \mathbb{R} \text{ diff.-bar und } \xi \in]a,b[$. Weiter sei

- f 2-mal diff.-bar in ξ,
 f'(ξ) = 0,
 f''(ξ) > 0 [bzw. f''(ξ) < 0].

Dann hat f in ξ ein striktes lokales Minimum [bzw. Maximum].

5.21 Bemerkung Im Gegensatz zu Satz 5.15 gibt Satz 5.20 eine hinreichende, aber nicht notwendige Bedingung für ein lokales Extremum. Beispiel: $f: \begin{bmatrix} -1, 1[\rightarrow \mathbb{R} \\ x \mapsto x^4 \end{bmatrix}$ und $\xi = 0$.

Beweis von Satz 5.20. Sei o.E. $f''(\xi) > 0$ [Fall < 0 analog].

$$0 < f''(\xi) \stackrel{f'(\xi)=0}{=} \lim_{x \to \xi} \frac{f'(x)}{x - \xi} \implies \exists \, \varepsilon > 0 \text{ mit } B_{\varepsilon}(\xi) \subset]a,b[\text{ und } \forall x \in B_{\varepsilon}(\xi) \setminus \{\xi\}: \, \frac{f'(x)}{x - \xi} > 0.$$

Und somit

$$\forall h \in]0, \varepsilon[: f'(\xi - h) < 0 < f'(\xi + h).$$

Mit Satz 5.19(a) folgt f strikt antiton in $]\xi - \varepsilon, \xi]$ und f strikt isoton in $[\xi, \xi + \varepsilon] \implies \text{Beh.}$

5.22 Satz (Regeln von DE L'HOSPITAL) Sei $\mathscr{D} :=]a,b[$ und seien $f,g: \mathscr{D} \to \mathbb{R}$ diff.-bar. Es gebe $b' \in]a, b[$, so dass $g'(x) \neq 0 \ \forall x \in]a, b'[$ und es gelte

$$\underline{entweder} \quad \lim_{x \searrow a} f(x) = 0 = \lim_{x \searrow a} g(x) \qquad \underline{oder} \quad \lim_{x \searrow a} g(x) = \pm \infty.$$

Falls $\lim_{x \searrow a} \frac{f'(x)}{g'(x)}$ existiert oder eine bestimmte Divergenz vorliegt, dann gilt das auch für

$$\lim_{x \searrow a} \frac{f(x)}{g(x)} = \lim_{x \searrow a} \frac{f'(x)}{g'(x)}.$$

Die Aussage gilt analog für $x \nearrow b$ und, falls (anders als oben!) $\mathscr{D} \supseteq]a, \infty[$, bzw. $\mathscr{D} \supseteq]-\infty, b[$ auch für $x \to \pm \infty$.

Beweis. Im Fall der Voraussetzung "oder" sei o.E. $\lim_{x \to a} g(x) = \infty$ [sonst betrachte -g].

Sei
$$L := \lim_{x \searrow a} \frac{f'(x)}{g'(x)} \in \overline{\mathbb{R}}.$$

 $\underline{\text{Fall: } L \in \mathbb{R} \cup \{-\infty\}.} \quad \text{ Sei } L_+ > L \text{ beliebig und } \ell \in]L, L_+[\implies$

$$\exists x_0 \in]a, b'] \ \forall x \in]a, x_0]: \frac{f'(x)}{g'(x)} < \ell. \tag{1}$$

Fixiere ein beliebiges $y \in]a, x_0]$. Dann gilt $\forall x \in]a, y[$ gemäß Anwendung des Mittelwertsatzes (Kor. 5.18) auf [x, y]

$$\exists \, \xi \in \,]x, y[: \, \frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f'(\xi)}{g'(\xi)} \stackrel{(1)}{<} \ell. \tag{2}$$

• Im Fall der Voraussetzung "entweder" folgt mit $x \setminus a$ in (2)

$$\frac{f(y)}{g(y)} \le \ell < L_+ \qquad \forall y \in]a, x_0]. \tag{3}$$

• Im Fall der Voraussetzung "oder" $\exists x_1 \in]a, y[\forall x \in]a, x_1]$: $g(x) > \max\{g(y), 0\}$. Nach Multiplikation von (2) mit $\frac{g(x) - g(y)}{g(x)}$ folgt

$$\frac{f(x)}{g(x)} \le \ell \left(1 - \frac{g(y)}{g(x)} \right) + \frac{f(y)}{g(x)} \qquad \forall x \in]a, x_1].$$

Da g divergiert und $\ell < L_+ \implies \exists x_2 \in]a, x_1]$ mit

$$\frac{f(x)}{g(x)} < L_{+} \qquad \forall x \in]a, x_{2}]. \tag{4}$$

Zusammenfassung der beiden Fälle (3) und (4):

$$\forall L_{+} > L \ \exists \ x_{+} \in]a, b[\ \forall x \in]a, x_{+}]: \ \frac{f(x)}{g(x)} < L_{+}.$$
 (5)

Falls $L = -\infty$, folgt die Behauptung aus (5) durch Wahl von $L_+ \in -\mathbb{N}$.

Fall: $L \in \mathbb{R} \cup \{\infty\}$. Analog zum obigen Fall gilt

$$\forall L_{-} < L \ \exists \ x_{-} \in \]a, b[\ \forall x \in \]a, x_{-}]: \ \frac{f(x)}{g(x)} > L_{-}. \tag{6}$$

Falls $L = \infty$, folgt die Behauptung aus (6) durch Wahl von $L_{-} \in \mathbb{N}$. Falls $L \in \mathbb{R}$, wähle in (5) und (6) $L_{\pm} := L \pm \varepsilon$ mit $\varepsilon > 0$ beliebig.

<u>Zusätze:</u> Der Beweis der Behauptung für $x \nearrow b$ ist analog. Für $x \to \pm \infty$ folgt sie mittels $\widetilde{f}\left(\frac{1}{x}\right) := f(x), \ \widetilde{g}\left(\frac{1}{x}\right) := g(x)$ aus der Behauptung für $x \nearrow 0$ bzw. $x \searrow 0$ für $\widetilde{f}, \ \widetilde{g}$.

5.23 Beispiel Sei $\mathcal{D} =]0, \infty[$ und $\alpha > 0$. Dann gilt

(a)
$$\lim_{x \searrow 0} x^{\alpha} \ln x = 0,$$

$$\operatorname{denn} \ln x \xrightarrow{x \setminus 0} -\infty, \quad x^{-\alpha} = e^{-\alpha \ln x} \xrightarrow{x \setminus 0} \infty \implies$$

$$\lim_{x \searrow 0} x^{\alpha} \ln x = \lim_{x \searrow 0} \frac{\ln x}{x^{-\alpha}} \stackrel{\text{Satz 5.22}}{=} \lim_{x \searrow 0} \frac{(\ln x)'}{(x^{-\alpha})'} = \lim_{x \searrow 0} \frac{x^{-1}}{(-\alpha)x^{-\alpha-1}} = -\frac{1}{\alpha} \lim_{x \searrow 0} x^{\alpha} = 0.$$

(b)
$$\lim_{x \to \infty} \frac{\ln x}{x^{\alpha}} = 0$$

(b)
$$\lim_{x \to \infty} \frac{\ln x}{x^{\alpha}} = 0$$

wegen (a) mittels $y := \frac{1}{x}$ und $\ln \left(\frac{1}{y}\right) = -\ln y$.

Moral: Der Logarithmus wächst "langsamer" als jede Potenz.

Integrieren von Funktionen auf R

General voraus setzung in diesem Kapitel: $a, b \in \mathbb{R}, a < b \text{ und } I := [a, b]$

6.1 RIEMANN-integrierbare Funktionen

6.1 Definition (a) $\varphi: I \to \mathbb{R}$ *Treppenfunktion*

$$:\iff \left\{ \begin{array}{l} \exists \, n \in \mathbb{N} \, \exists \, \textit{Unterteilung} \, a = x_0 < x_1 < \dots < x_{n-1} < x_n = b \, \textit{von} \, I \colon \\ \forall \, j = 1, \dots, n \, \exists \, c_j \in \mathbb{R} \, \textit{mit} \, \varphi \big|_{]x_{j-1}, x_j[} = c_j. \end{array} \right.$$

Die Werte $\varphi(x_j)$, j = 0, ..., n, sind definiert – über sie ist aber nichts ausgesagt.

- (b) Menge der Treppenfunktionen auf I: $\mathcal{F}(I) := \{ \varphi : I \to \mathbb{R} : \varphi \text{ Treppenfunktion} \}.$
- (c) Sei $\varphi \in \mathcal{T}(I)$ Treppenfunktion

Integral von φ : $\int_a^b \varphi(x) dx := \sum_{j=1}^n c_j (x_j - x_{j-1}).$

Alternative Notationen: $\int_a^b dx \, \varphi(x), \int_I \varphi(x) dx, \int_I \varphi$.

6.2 Bemerkung $\int_a^b \varphi(x) \, dx$ ist wohldefiniert, d.h. unabhängig von der gewählten Unterteilung von φ . Für den Beweis verwende gröbste Verfeinerung zweier gegebener Unterteilungen, siehe im Beweis von Lemma 6.3(a). Kern des Arguments ist, dass für $x_{j-1} = z_{\alpha_{j-1}} < z_{\alpha_{j-1}+1} < \ldots < z_{\alpha_j} = x_j$ gilt

$$c_j(x_j - x_{j-1}) = \sum_{\alpha = \alpha_{j-1} + 1}^{\alpha_j} c_{j(\alpha)}(z_\alpha - z_{\alpha-1}) \quad \text{mit } j(\alpha) = j \,\forall \alpha = \alpha_{j-1} + 1, \dots, \alpha_j.$$

Abbildung 6.1: Das Integral einer Treppenfunktion φ .

6.3 Lemma (a) $\mathcal{F}(I)$ ist Vektorraum über \mathbb{R} und $\forall \varphi, \psi \in \mathcal{F}(I) \ \forall \lambda, \mu \in \mathbb{R}$

 $\int_{a}^{b} (\lambda \varphi + \mu \psi)(x) dx = \lambda \int_{a}^{b} \varphi(x) dx + \mu \int_{a}^{b} \psi(x) dx.$

 $\varphi \geqslant 0 \quad \Longrightarrow \quad \int_a^b \varphi(x) \, \mathrm{d}x \geqslant 0.$

Beweis. (b) klar. Zu (a): $\mathcal{T}(I)$ ist Vektorraum, da

- $0 \in \mathcal{T}(I)$ klar.
- Sei $\varphi \in \mathcal{F}(I), \lambda \in \mathbb{R} \implies \lambda \varphi \in \mathcal{F}(I), \text{ denn } c_i \rightarrow \lambda c_i$.
- Seien $\varphi, \psi \in \mathcal{F}(I)$ mit $\varphi\big|_{]x_{j-1},x_j[} = c_j, j = 1,\ldots,n, \psi\big|_{]y_{k-1},y_k[} = d_k, k = 1,\ldots,m.$ Definiere **gröbste Verfeinerung** $a = z_0 < z_1 < \cdots < z_{\nu-1} < z_{\nu} = b$ beider Unterteilungen, das heißt

$${z_{\alpha}: \alpha = 1, \dots, \nu - 1} = {x_j: j = 1, \dots, n - 1} \cup {y_k: k = 1, \dots, m - 1}.$$

Sie ist gröbste Unterteilung, die die Unterteilungen von φ und ψ enthält \Longrightarrow

$$\forall \alpha = 1, \dots, \nu \; \exists \; j(\alpha) \in \{1, \dots, n\} \; \exists \; k(\alpha) \in \{1, \dots, m\}:$$

$$\varphi\big|_{]z_{\alpha-1}, z_{\alpha}[} = c_{j(\alpha)} \; \text{ und } \; \psi\big|_{]z_{\alpha-1}, z_{\alpha}[} = d_{k(\alpha)} \implies (\varphi + \psi)\big|_{]z_{\alpha-1}, z_{\alpha}[} = c_{j(\alpha)} + c_{k(\alpha)},$$
 also $\varphi + \psi \in \mathcal{T}(I)$.

Linearität des Integrals:

$$\int_{a}^{b} (\lambda \varphi + \mu \psi)(x) dx = \sum_{\alpha=1}^{v} (\lambda c_{j(\alpha)} + \mu d_{k(\alpha)})(z_{\alpha} - z_{\alpha-1})$$

$$= \lambda \underbrace{\sum_{\alpha=1}^{v} c_{j(\alpha)}(z_{\alpha} - z_{\alpha-1})}_{\sum_{j=1}^{n} c_{j}(x_{j} - x_{j-1})} + \mu \underbrace{\sum_{\alpha=1}^{v} d_{k(\alpha)}(z_{\alpha} - z_{\alpha-1})}_{\sum_{k=1}^{m} d_{k}(y_{k} - y_{k-1})}$$
 [s. Bem. 6.2]
$$= \lambda \int_{a}^{b} \varphi(x) dx + \mu \int_{a}^{b} \psi(x) dx.$$

(a) Sei $f: I \to \mathbb{R}$.

- f Riemann-integrierbar (über I) : \iff $\mathbb{R} \ni \mathcal{O}_I(f) = \mathcal{U}_I(f) =: \int_I f(x) \, \mathrm{d}x.$

 $f \ \textit{Riemann-integrierbar} : \iff \text{Re} \ f \ \textit{und} \ \text{Im} \ f \ \textit{Riemann-integrierbar}.$

$$\int_{I} f(x) dx := \int_{I} (\operatorname{Re} f)(x) dx + i \int_{I} (\operatorname{Im} f)(x) dx.$$

(a) Seien $m_{\pm} \in \mathbb{R}$ mit $m_{-} \leq f \leq m_{+}$, sei $|I| := b - a \implies$

$$\begin{array}{cccc} m_{-}|I| & \leqslant & \mathscr{U}_{I}(f) & \leqslant & \mathscr{O}_{I}(f) & \leqslant & m_{+}|I|. \\ & \uparrow & & \uparrow & & \uparrow \\ \varphi = m_{-} & & \text{Lemma 6.3(b):} & & \psi = m_{+} \\ & \text{zugelassen} & & \varphi \leqslant \psi \Longrightarrow \int_{I} \varphi \, \mathrm{d}x \leqslant \int_{I} \psi \, \mathrm{d}x \end{array}$$

(b) Jedes $\varphi \in \mathcal{T}(I)$ ist Riemann-integrierbar mit

$$\int_{I} \varphi(x) dx = \mathcal{O}_{I}(\varphi) = \mathcal{U}_{I}(\varphi) = \bigoplus_{\varphi \mid_{]x_{j-1}, x_{j}[=c_{j}]}^{n} \sum_{j=1}^{n} c_{j}(x_{j} - x_{j-1}).$$

(c) Die Funktion $x \mapsto 1_{\mathbb{Q}}(x) := \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}, \end{cases}$ ist nicht Riemann-integrierbar über $I := \{0, x \in \mathbb{R} \setminus \mathbb{Q}, 1\}$

- $\mathcal{O}_I(1_{\mathbb{Q}}) = 1$, da inf durch $1_{[0,1]}$ realisiert wird, da \mathbb{Q} dicht in \mathbb{R} .
- $\mathcal{U}_I(1_{\mathbb{Q}}) = 0$, da sup durch 0 realisiert wird, da $\mathbb{R} \setminus \mathbb{Q}$ dicht in \mathbb{R} .
- (d) Der Name der Integrationsvariable ist irrelevant (so wie der Name des Summationsindex).

$$\int_{I} f(x) \, \mathrm{d}x = \int_{I} f(t) \, \mathrm{d}t.$$

6.6 Lemma Sei $f: I \to \mathbb{R}$ Riemann-integrierbar. Dann ist f beschränkt.

 $\textit{Beweis.} \ \ \text{Da} \ \mathscr{O}_I(f), \ \mathscr{U}_I(f) \in \mathbb{R} \ \implies \ \{\varphi_+ \in \mathscr{T}(I) : f \leqslant \varphi_+\} \neq \varnothing \ \ \text{und} \ \{\varphi_- \in \mathscr{T}(I) : \varphi_- \leqslant \varphi_+\} = \emptyset$ $f \} \neq \emptyset$. Da Treppenfunktionen beschränkt \implies Behauptung.

6.7 Definition Sei $f: I \to \mathbb{R}$. Sei $a = x_0 < x_1 < \dots < x_n = b$ eine Unterteilung von I und $\forall j \in \{1, \dots, n\}$ sei $\xi_j \in [x_{j-1}, x_j]$ ("Stützstelle").

- **Zerlegung** (= Unterteilung mit Stützstellen) $\mathcal{Z} := ((x_j)_{j \in \{0,\dots,n\}}, (\xi_j)_{j \in \{1,\dots,n\}})$
- Feinheit der Zerlegung $\mu(\mathcal{Z}) := \max \{x_j x_{j-1} : j = 1, ..., n\}$
- Riemann-Approximante (von f zur Zerlegung \mathcal{Z}) $\varphi_{\mathcal{Z}} \in \mathcal{F}(I)$ mit $\varphi_{\mathcal{Z}}|_{]x_{i-1},x_{i}[} = f(\xi_{j})$
- Riemann-Summe (von f zur Zerlegung \mathcal{Z})

$$\mathscr{R}(\mathcal{Z}, f) := \int_{I} \varphi_{\mathcal{Z}}(x) \, \mathrm{d}x = \sum_{j=1}^{n} f(\xi_{j})(x_{j} - x_{j-1}).$$

Der nächste Satz dient zur Charakterisierung von Riemann-integrierbaren Funktionen.

- **6.8 Satz** (Integrabilitätskriterium von Riemann) Sei $f: I \to \mathbb{R}$. Dann sind äquivalent
 - (i) f ist Riemann integrierbar.
 - (ii) $\exists J \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \ Zerlegungen \ \mathcal{Z} \ mit \ \mu(\mathcal{Z}) < \delta$:

$$|J - \mathcal{R}(\mathcal{Z}, f)| < \varepsilon.$$

$$\int_{I} \varphi_{+}(x) \, \mathrm{d}x - \int_{I} \varphi_{-} \, \mathrm{d}x < \varepsilon.$$

Trifft eine der Aussagen (i) – (iii) zu, so ist

$$J = \int_{I} f(x) \, \mathrm{d}x.$$

Beweis. (iii) \Rightarrow (i) $\forall \varphi_{\pm} \in \mathcal{F}(I)$ mit $\varphi_{-} \leqslant f \leqslant \varphi_{+}$ gilt

$$-\infty < \int_{I} \varphi_{-}(x) \, \mathrm{d}x \leqslant \mathscr{U}_{I}(f) \leqslant \mathscr{O}_{I}(f) \leqslant \int_{I} \varphi_{+}(x) \, \mathrm{d}x < \infty \quad \overset{\text{(iii)}}{\Longrightarrow} \quad \mathscr{U}_{I}(f) = \mathscr{O}_{I}(f) \in \mathbb{R}.$$

(i) \Rightarrow (iii) Sei $\varepsilon > 0$. Per def. von $\mathcal{U}(I)$ und $\mathcal{O}(I)$ als nicht-leeres sup bzw. inf $\exists \varphi_{\pm} \in \mathcal{F}(I)$ mit

$$\varphi_{-} \leqslant f \leqslant \varphi_{+}, \qquad \mathscr{U}(I) - \varepsilon < \int_{I} \varphi_{-}(x) \, \mathrm{d}x, \qquad \int_{I} \varphi_{+}(x) \, \mathrm{d}x < \mathscr{O}(I) + \varepsilon$$

Wegen (i) ist $\mathcal{U}_I(f) = \mathcal{O}_I(f)$ und somit

$$0 \le \int_{I} \varphi_{+}(x) \, \mathrm{d}x - \int_{I} \varphi_{-}(x) \, \mathrm{d}x < 2\varepsilon.$$

 $\underbrace{\text{(ii)} \Rightarrow \text{(iii)}}_{j=1,\dots,n} \text{ Nach Voraussetzung } \exists J \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists \delta > 0, \text{ so dass für } a = x_0 < x_1 < \dots < x_n = b$ $\underset{j=1,\dots,n}{\text{mix}} (x_j - x_{j-1}) < \delta \Longrightarrow$

$$\forall j = 1, ..., n \ \forall \xi_j \in [x_{j-1}, x_j]: \left| J - \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1}) \right| < \varepsilon.$$
 (*)

Für j = 1, ..., n sei $f_j^+ := \sup \{ f(x) : x \in]x_{j-1}, x_j[\}, f_j^- := \inf \{ f(x) : x \in]x_{j-1}, x_j[\}$ $\stackrel{\text{Def. sup, inf}}{\Longrightarrow} \exists (\eta_{j,\nu}^{\pm})_{\nu \in \mathbb{N}} \subset]x_{j-1}, x_j[\text{ mit } \lim_{\nu \to \infty} f(\eta_{j,\nu}^{\pm}) = f_j^{\pm}.$

Beh.: $f_i^{\pm} \in \mathbb{R} \ \forall j = 1, \dots, n$.

<u>Bew.:</u> Fixiere $j \in \{1, ..., n\}$. Wähle $\xi_j = \eta_{j, \nu}^{\pm}$ in (*), belasse die anderen ξ_k für $k \neq j \stackrel{\nu \to \infty}{\Longrightarrow}$

$$\left| \underbrace{J - \sum_{k \neq j} f(\xi_k)(x_k - x_{k-1})}_{\mathcal{E}} - f_j^{\pm}(x_j - x_{j-1}) \right| \leqslant \varepsilon. \quad \checkmark$$

Wähle nun $\xi_k = \eta_{k,\nu}^{\pm} \ \forall k = 1, \dots, n \text{ in } (*) \overset{\nu \to \infty}{\Longrightarrow} \ \left| J - \sum_{k=1}^n f_k^{\pm} (x_k - x_{k-1}) \right| \leqslant \varepsilon.$

Definiere $\varphi_{\pm} \in \mathcal{F}(I)$ durch $\varphi_{\pm}|_{]x_{k-1},x_k[} := f_k^{\pm} \text{ und } \varphi_{\pm}(x_k) := f(x_k) \ \forall k = 1,\ldots,n \implies$

$$\varphi_{-} \leqslant f \leqslant \varphi_{+} \quad \text{und} \quad \int_{I} \varphi_{+}(x) \, \mathrm{d}x - \int_{I} \varphi_{-}(x) \, \mathrm{d}x \leqslant 2\varepsilon.$$

 $\underline{\text{(iii)} \Rightarrow \text{(ii)}}$ Seien $\varepsilon > 0$ und φ_{\pm} wie in (iii). Sei $a = x_0 < x_1 < \dots < x_n = b$ eine gemeinsame Unterteilung von φ_{+} und φ_{-} und sei $\delta > 0$ mit

$$2n\delta \left(\underbrace{\sup_{x \in I} |\varphi_{+}(x)| + \sup_{x \in I} |\varphi_{-}(x)|}_{- \cdot \varsigma} \right) < \varepsilon. \tag{1}$$

Sei $\mathcal{Z} = ((y_k)_{k=0,\dots,m}, (\xi_k)_{k=1,\dots,m})$ eine beliebige Zerlegung mit $\mu(\mathcal{Z}) < \delta$ und sei

$$a = z_0 < z_1 < \dots < z_{\nu} = b$$

die *gröbste* gemeinsame Unterteilung von $(x_j)_j$ und $(y_k)_k$, also $v \le m + (n-1)$ [man denke sich die x_j , $j=1,\ldots,n-1$, in die Unterteilung $(y_k)_{k=0,\ldots,m}$ hineingeworfen].

Definition.
$$\alpha \in \{1, ..., \nu\}$$
 gut $\iff \varphi_{-} \leqslant \varphi_{\mathcal{I}} \leqslant \varphi_{+}$ auf $]z_{\alpha-1}, z_{\alpha}[$. (2)

Es gilt

$$\exists$$
 höchstens $2n$ nicht gute α 's, da (siehe auch Abb.) (3)

- (a) $\xi_k \in]z_{\alpha-1}, z_{\alpha}[\implies \alpha \text{ gut.}$
- (b) $\xi_k = z_\alpha \text{ und } z_\alpha \notin \{x_0, \dots, x_n\} \implies \alpha \text{ und } \alpha + 1 \text{ gut.}$ (c) $\xi_k = z_\alpha \text{ und } z_\alpha \in \{x_0, \dots, x_n\} \implies \text{ keine Aussage für } \alpha \text{ und } \alpha + 1 \text{ möglich}$
- \implies falls (c) nicht vorliegt für ein ξ_k , liefert es mindestens ein gutes α
- \implies für $m > n \exists$ mindestens m (n + 1) gute α 's \implies (3) [für $m \le n$ ist (3) klar].

Für
$$\sigma \in \{+, -, \mathcal{Z}\}, \alpha \in \{1, \dots, \nu\}$$
 sei $c_{\sigma, \alpha} := \varphi_{\sigma}|_{]z_{\alpha-1}, z_{\alpha}[}$. Setze

$$\int_{I,g} \varphi_{\sigma}(x) dx := \sum_{\substack{\alpha=1\\\alpha \text{ gut}}}^{\nu} c_{\sigma,\alpha}(z_{\alpha} - z_{\alpha-1}).$$

Es folgt

$$\left| \int_{I} \varphi_{\sigma}(x) \, \mathrm{d}x - \int_{I,g} \varphi_{\sigma}(x) \, \mathrm{d}x \right| \leq \sum_{\substack{\alpha = 1 \\ \alpha \text{ nicht gut}}}^{\nu} \underbrace{|c_{\sigma,\alpha}|}_{\leq S} \underbrace{(z_{\alpha} - z_{\alpha-1})}_{\leq \mu(\mathcal{Z}) < \delta} \stackrel{(3),(1)}{<} \varepsilon, \tag{4}$$

$$\int_{I,g} \varphi_{-}(x) \, \mathrm{d}x \stackrel{(2)}{\leqslant} \int_{I,g} \varphi_{\mathcal{I}}(x) \, \mathrm{d}x \stackrel{(2)}{\leqslant} \int_{I,g} \varphi_{+}(x) \, \mathrm{d}x, \tag{5}$$

und weiter

$$\left| \int_{I,g} \varphi_{+}(x) \, \mathrm{d}x - \int_{I,g} \varphi_{-}(x) \, \mathrm{d}x \right| \leq \left| \int_{I,g} \varphi_{+}(x) \, \mathrm{d}x - \int_{I} \varphi_{+}(x) \, \mathrm{d}x \right|$$

$$+ \left| \int_{I} \varphi_{+}(x) \, \mathrm{d}x - \int_{I} \varphi_{-}(x) \, \mathrm{d}x \right|$$

$$+ \left| \int_{I} \varphi_{-}(x) \, \mathrm{d}x - \int_{I,g} \varphi_{-}(x) \, \mathrm{d}x \right|$$

$$\stackrel{(4), \text{ n.V.}, (4)}{\leq} 3\varepsilon.$$

Zusammen mit (5) folgt

$$0 \le \int_{L,\mathfrak{g}} \varphi_{+}(x) \, \mathrm{d}x - \int_{L,\mathfrak{g}} \varphi_{\mathcal{I}}(x) \, \mathrm{d}x < 3\varepsilon. \tag{6}$$

Insgesamt schließen wir mit $-\infty < \int_I \varphi_-(x) \, \mathrm{d}x \le \mathscr{U}_I(f) \le \underbrace{\mathscr{O}_I(f)}_{=: J \implies \in \mathbb{R}} \le \int_I \varphi_+(x) \, \mathrm{d}x < \infty$

$$\begin{aligned} \left| J - \underbrace{\mathscr{R}(\mathcal{Z}, f)}_{\int_{I} \varphi_{\mathcal{Z}}(x) \, \mathrm{d}x} \right| &\leq \left| J - \int_{I} \varphi_{+}(x) \, \mathrm{d}x \right| + \left| \int_{I} \varphi_{+}(x) \, \mathrm{d}x - \int_{I, g} \varphi_{+}(x) \, \mathrm{d}x \right| \\ &+ \left| \int_{I, g} \varphi_{+}(x) \, \mathrm{d}x - \int_{I, g} \varphi_{\mathcal{Z}}(x) \, \mathrm{d}x \right| + \left| \int_{I, g} \varphi_{\mathcal{Z}}(x) \, \mathrm{d}x - \int_{I} \varphi_{\mathcal{Z}}(x) \, \mathrm{d}x \right| \\ &\stackrel{\text{n.V.}, (4), (6), (4)}{\leq} \varepsilon + \varepsilon + 3\varepsilon + \varepsilon = 6\varepsilon. \end{aligned}$$

Also gilt (ii).

Wert von
$$J$$
: Da $J = \mathcal{O}_I(f) \in \mathbb{R} \stackrel{\text{(i) gilt}}{\Longrightarrow} J = \int_I f(x) \, \mathrm{d}x$.

Ziel ist eine andere Charakterisierung der Menge der Riemann-integrierbaren Funktionen in Satz 6.12. Dazu 2 Vorbereitungen: Nullmengen und die Überdeckungskompaktheit abgeschlossener eigentlicher Intervalle (Satz 6.11).

6.9 Definition Sei $N \subset \mathbb{R}$.

$$N \text{ (LEBESGUE-) Nullmenge } :\iff \left\{ \begin{array}{l} \forall \varepsilon > 0 \text{ } \exists \textit{ offene Intervalle } J_n \subset \mathbb{R}, n \in \mathbb{N} \text{:} \\ N \subseteq \bigcup_{n \in \mathbb{N}} J_n \text{ } \textit{ und } \sum_{n \in \mathbb{N}} |J_n| < \varepsilon. \end{array} \right.$$

.10 Satz (a) Seien $N_k \subset \mathbb{R}$ Nullmengen $\forall k \in \mathbb{N} \implies \bigcup_{k \in \mathbb{N}} N_k$ ist Nullmenge. (b) Sei $M \subset \mathbb{R}$ abzählbar $\implies M$ ist Nullmenge.

- (a) Sei $\varepsilon > 0$. $\forall k \in \mathbb{N}$ existiert nach Voraussetzung eine "Überdeckung" $N_k \subset \bigcup_{n \in \mathbb{N}} J_n^k$ Beweis.

 $\text{mit offenen Intervallen } J_n^k, \text{ so dass } \sum_{n \in \mathbb{N}} |J_n^k| < 2^{-k} \varepsilon.$ $\text{Daraus folgt } \bigcup_k N_k \subseteq \bigcup_{k \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} J_n^k \text{ mit offenen Intervallen und } \sum_{k \in \mathbb{N}} \sum_{n \in \mathbb{N}} |J_n^k| < \varepsilon \sum_{k \in \mathbb{N}} 2^{-k} = \varepsilon.$

(b) $\forall x \in \mathbb{R} \ \forall \varepsilon > 0$: $\{x\} \subset [x - \varepsilon/4, x + \varepsilon/4] =: J \text{ und } |J| = \varepsilon/2 < \varepsilon$; also einpunktige Mengen sind Nullmengen. Da M abzählbar, folgt die Behauptung aus (a).

(a) Q ist Nullmenge. (b) Teilmengen einer Nullmenge sind Nullmengen.

Der nächste (und letzte) Hilfssatz für die Charakterisierung integrierbarer Funktionen ist ein Spezialfall des Kompaktheitssatzes von HEINE-BOREL (siehe Analysis II). Der Vollständigkeit halber geben wir dennoch bereits hier einen Beweis.

6.11 Satz (Überdeckungskompaktheit abgeschlossener Intervalle) Seien $-\infty < a < b < \infty$, \mathcal{J} eine (unendliche) Indexmenge und für alle $\alpha \in \mathcal{J}$ sei I_{α} ein offenes Intervall. Es gelte

$$[a,b]\subseteq\bigcup_{\alpha\in\mathscr{J}}I_{\alpha}.$$

Dann existiert eine endliche Teilüberdeckung, das heißt, $\exists J \in \mathbb{N} \ \exists \alpha_1, \dots, \alpha_J \in \mathcal{J}$, so dass

$$[a,b]\subseteq\bigcup_{j=1}^J I_{\alpha_n}.$$

Beweis. Per Widerspruch. Annahme: $\not\exists$ endliche Teilüberdeckung von $[a,b] =: K_1$.

 \implies mindestens eines der Intervalle $[a,\frac{a+b}{2}],[\frac{a+b}{2},b]$ besitzt keine endliche Teilüberdeckung. Wähle eines davon aus und bezeichne es als K_2 .

Per Induktion folgt: \exists Intervallschachtelung $(K_n)_{n \in \mathbb{N}}$: $\forall n \in \mathbb{N}$ gilt

- (1) $K_n \subseteq K_{n-1}$
- (2) $|K_n| = |K_{n-1}|/2$

(3) $\not\exists$ endliche Teilüberdeckung von K_n .

Satz 2.74 (Intervallschachtelungsprinzip – benötigt Abgeschlossenheit und Beschränktheit!) ⇒

$$\exists_1 x \in \mathbb{R} \ \forall n \in \mathbb{N}: \ x \in K_n.$$

Da
$$(I_{\alpha})_{\alpha \in J} \supseteq [a, b] \implies \exists \alpha_0 \in \mathscr{J}: x \in I_{\alpha_0}$$
. Nun

$$I_{\alpha_0}$$
 offen $\implies \exists \varepsilon > 0: x \in]x - \varepsilon, x + \varepsilon[\subseteq I_{\alpha_0}.$

Schließlich betrachte $n \in \mathbb{N}$ so groß, dass $|K_n| < \varepsilon \stackrel{x \in K_n}{\Longrightarrow} K_n \subset]x - \varepsilon, x + \varepsilon [\subseteq I_{\alpha_0}. \notin zu (3).$ Nun zum zweiten Charakterisierungssatz.

6.12 Satz (Integrabilitätskriterium von Lebesgue)

Sei $f: I \to \mathbb{R}$ und $\mathcal{N}_f := \{x \in I: f \text{ nicht stetig in } x\}$. Dann gilt f Riemann-integrierbar auf $I \iff f$ beschränkt und \mathcal{N}_f Nullmenge.

Beweis. " \Leftarrow ". Sei $\varepsilon > 0$.

• Sei
$$x \in I \setminus \mathcal{N}_f \stackrel{f \text{ stetig in } x}{\Longrightarrow} \quad \exists \, \delta_x > 0 \, \forall \, y \in B_{\delta_x}(x) \cap I :$$

$$|f(x) - f(y)| < \varepsilon. \tag{1}$$

• Da \mathcal{N}_f Nullmenge, \exists Überdeckung $(J_n)_{n\in\mathbb{N}}$ von \mathcal{N}_f aus offenen Intervallen mit

$$\sum_{k \in \mathbb{N}} |J_n| < \varepsilon. \tag{2}$$

Damit gilt

$$I \subseteq \left(\bigcup_{x \in I \setminus \mathcal{N}_f} B_{\delta_x}(x)\right) \cup \left(\bigcup_{n \in \mathbb{N}} J_n\right)$$

Nach Satz 6.11 ist I überdeckungskompakt, das heißt \exists endliche Teilüberdeckung. Also $\exists K, N \in \mathbb{N} \exists x_1, \dots, x_K \in I \setminus \mathcal{N}_f \exists n_1, \dots, n_N \in \mathbb{N}$ mit

$$I \subseteq \left(\bigcup_{k=1}^K B_{\delta_{x_k}}(x_k)\right) \cup \left(\bigcup_{\nu=1}^N J_{n_{\nu}}\right).$$

Sei $a = z_0 < z_1 < \cdots < z_{L-1} < z_L = b$ eine Unterteilung von I = [a, b] mit $\forall l = 1, \dots, L$ gilt

$$\begin{array}{ll} \underline{\text{entweder}} & \exists \, k_l = 1, \dots, K \colon \, I_l \coloneqq] z_{l-1}, z_l [\subseteq B_{\delta_{x_{k_l}}}(x_{k_l}) & \iff \colon l \, \, \text{gut}, \\ \underline{\text{oder}} & \exists \, v_l = 1, \dots, N \colon \, I_l \subseteq J_{n_{v_l}} & \iff \colon l \, \, \text{schlecht}. \end{array}$$

Seien $\varphi_{\pm} \in \mathcal{F}(I)$ mit $\varphi_{+}\big|_{I_{l}} := \sup_{x \in I_{l}} f(x) \in \mathbb{R}, \ \varphi_{-}\big|_{I_{l}} := \inf_{x \in I_{l}} f(x) \in \mathbb{R} \text{ konstant auf } I_{l} \ \forall l = 1, \ldots, L \text{ und } \varphi_{\pm}(z_{l}) := f(z_{l}) \ \forall l = 0, \ldots, L.$

$$\implies 0 \leqslant \mathcal{O}_{I}(f) - \mathcal{U}_{I}(f) \overset{\varphi_{-} \leqslant f \leqslant \varphi_{+}}{\leqslant} \int_{I} \varphi_{+}(x) \, \mathrm{d}x - \int_{I} \varphi_{-}(x) \, \mathrm{d}x = \sum_{l=1}^{L} \left(\varphi_{+} \big|_{I_{l}} - \varphi_{-} \big|_{I_{l}} \right) |I_{l}|$$

$$= \sum_{l \text{ gut}} \left(\underbrace{\varphi_{+} \big|_{I_{l}} - \varphi_{-} \big|_{I_{l}}}_{\leqslant 2\varepsilon \text{ gemäß } (1)} \right) |I_{l}| + \sum_{l \text{ schlecht}} \left(\underbrace{\varphi_{+} \big|_{I_{l}} - \varphi_{-} \big|_{I_{l}}}_{x \in I} \right) |I_{l}|$$

$$\leqslant 2\varepsilon |I| + 2S \sum_{\nu=1}^{N} |J_{n_{\nu}}| < 2\varepsilon (|I| + S).$$

Da $\varepsilon > 0$ beliebig war, folgt hieraus die Behauptung.

" \Rightarrow ". Für Beschränktheit, siehe Lemma 6.6. Nun zu den Unstetigkeitsstellen. Für $x \in I$ sei (beachte: Limiten antitoner, von unten beschränkter Folgen existieren!)

$$\omega_f(x) := \lim_{\delta \searrow 0} \sup_{x' \in \mathbb{I}_{x} - \delta, x + \delta \in I} |f(x) - f(x')|.$$

Es gilt: f stetig in $x \iff \omega_f(x) = 0$. Also

$$\mathcal{N}_f = \left\{ x \in I : \omega_f(x) > 0 \right\} = \bigcup_{s \in \mathbb{N}} \underbrace{\left\{ x \in I : \omega_f(x) > \frac{1}{s} \right\}}_{=: N_{f,s}}.$$

Wir zeigen: $N_{f,s}$ ist Nullmenge $\forall s \in \mathbb{N} \ [\stackrel{\text{Satz } 6.10(a)}{\Longrightarrow} \text{ Behauptung}].$ Sei dazu $s \in \mathbb{N}$ und $\varepsilon > 0$. Nach Voraussetzung und Satz $6.8 \implies \exists \varphi_{\pm} \mathcal{F}(I) \text{ mit } \varphi_{-} \leqslant f \leqslant \varphi_{+} \text{ und}$

$$\int_{I} \varphi_{+}(x) \, \mathrm{d}x - \int_{I} \varphi_{-}(x) \, \mathrm{d}x < \frac{\varepsilon}{s} \,. \tag{3}$$

Sei $a = x_0 < x_1 < \ldots < x_n = b$ eine gemeinsame Unterteilung von φ_+ und φ_- und sei $J_j :=]x_{j-1}, x_j[$ für $j \in \{1, \ldots, n\} \Longrightarrow$

$$\varphi_{+}\big|_{J_{j}} - \varphi_{-}\big|_{J_{j}} \geqslant \sup_{x \in J_{j}} f(x) - \inf_{x \in J_{j}} f(x) = \sup_{x \in J_{j}} \sup_{x' \in J_{j}} |f(x) - f(x')|. \tag{4}$$

$$\operatorname{Mit} S := \left\{ j = 1, \dots, n : J_j \cap N_{f,s} \neq \emptyset \right\} \implies \bigcup_{j \in S} J_j \supseteq N_{f,s} \setminus \{x_k : k = 0, \dots, n\}.$$

Wir erhalten (sogar) endliche Überdeckung aus offenen Intervallen

$$N_{f,s} \subseteq \left(\bigcup_{j \in S} J_j\right) \cup \left(\bigcup_{k=0}^n \left] x_k - \frac{\varepsilon}{n+1}, x_k + \frac{\varepsilon}{n+1} \right[\right) =: \mathscr{L}.$$

Schließlich

$$\frac{\varepsilon}{s} \stackrel{(3)}{>} \sum_{j=1}^{n} \int_{J_{j}} \underbrace{\left[\varphi_{+}(x) - \varphi_{-}(x)\right]}_{\geqslant 0} dx \geqslant \sum_{j \in S} \int_{J_{j}} \left[\varphi_{+}(x) - \varphi_{-}(x)\right] dx \stackrel{(4)}{>} \sum_{j \in S} \sum_{j \in J_{j} \cap N_{f,s}} \sum_{j \in S} |J_{j}| \underbrace{\omega_{f}(y_{j})}_{> \frac{1}{s}}$$

$$\implies \sum_{j \in S} |J_j| < \varepsilon \implies |\mathcal{L}| < 3\varepsilon \stackrel{\varepsilon > 0 \text{ bel.}}{\Longrightarrow} N_{f,s} \text{ Nullmenge.}$$

6.13 Definition Sei $f: I \to \mathbb{R}$ und \mathcal{N}_f wie in Satz 6.12

$$f \text{ stiickweise stetig } :\iff \begin{cases} \mathcal{N}_f \text{ ist endlich,} \\ \lim_{y \searrow x} f(y) \text{ existiert } \forall x \in [a, b[, \\ \lim_{y \nearrow x} f(y) \text{ existiert } \forall x \in [a, b]. \end{cases}$$

6.14 Bemerkung Für $f: I \to \mathbb{R}$ gilt: f stetig $\Longrightarrow f$ stückweise stetig $\stackrel{\text{Satz 3.27}}{\Longrightarrow} f$ beschränkt.

- **6.15 Korollar** Sei $f: I \to \mathbb{R}$. Dann gilt

 (a) f stückweise stetig $\Longrightarrow f$ integrierbar auf I,

 (b) f monoton $\Longrightarrow f$ integrierbar auf I.

Beweis. (a) Bemerkung 6.14 und Satz 6.12.

(b) Folgt aus "monoton auf $I \implies$ beschränkt", dem nächsten Satz und Satz 6.12.

6.16 Satz Sei $f: \mathbb{R} \to \mathbb{R}$ monoton, dann ist \mathcal{N}_f höchstens abzählbar.

Beweis. Ohne Einschränkung sei f isoton (sonst betrachte -f). Aus der Monotonie folgt $\forall x \in \mathbb{R}$ existiert $\lim_{y \not \to x} f(y) =: f(x_{-}) \in \mathbb{R}$ und $\lim_{y \searrow x} f(y) =: f(x_{+}) \in \mathbb{R}$. Für $M, n \in \mathbb{N}$ setze

$$U_n^M := \left\{ x \in [-M, M] : f(x_+) - f(x_-) \ge \frac{1}{n} \right\}.$$

Dann ist

$$\mathcal{N}_f = \bigcup_{M \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} U_n^M.$$

$$\operatorname{Da} \frac{1}{n} |\{U_n^M\}| \leqslant f(M) - f(-M) < \infty \implies |U_n^M| < \infty \ \forall n, M \in \mathbb{N} \implies \mathscr{N}_f \text{ abz\"{a}hlbar}.$$

Eigenschaften des Riemann-Integrals

6.17 Satz Seien $f, g: I \to \mathbb{C}$ Riemann-integrierbar und $\lambda, \mu \in \mathbb{C}$.

(a) **Linearität.** $\lambda f + \mu g$ ist Riemann-integrierbar und

$$\int_{I} (\lambda f + \mu g)(x) dx = \lambda \int_{I} f(x) dx + \mu \int_{I} g(x) dx.$$

- (b) **Produkte.** fg ist Riemann-integrierbar.
- (c) *Monotonie.* Für $f, g: I \to \mathbb{R}$

$$f \leqslant g \implies \int_{I} f(x) \, \mathrm{d}x \leqslant \int_{I} g(x) \, \mathrm{d}x.$$

(d) **Dreiecksungleichung.** $|f|: I \to \mathbb{R}_{\geqslant}$ ist Riemann-integrierbar und

$$\left| \int_{I} f(x) \, \mathrm{d}x \right| \le \int_{I} |f(x)| \, \mathrm{d}x.$$

- (e) Additivität. Seien I = [a, b] und a < c < b. Dann sind äquivalent:
 - (i) f ist Riemann-integrierbar auf I,
 - (ii) f ist Riemann-integrierbar auf [a, c] und auf [c, b].

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

- (a) Für f, g \mathbb{R} -wertig und $\lambda, \mu \in \mathbb{R}$ aus $\mathcal{R}(\mathcal{Z}, \lambda f + \mu g) = \lambda \mathcal{R}(\mathcal{Z}, f) + \mu \mathcal{R}(\mathcal{Z}, g)$ und Satz 6.8. Im allgemeinen (komplexen) Fall zerlege f, g und λ, μ jeweils in Real- und Imaginärteil und wende die \mathbb{R} -Linearität auf deren Beiträge zu Real- und Imaginärteil von λf + μg an.
 - (b) Satz 6.12 und Satz 6.10(a).
 - (c) Wegen (a) genügt es zu zeigen: $g \ge 0 \implies \int_I g(x) \, \mathrm{d}x \ge 0$. Klar, $\mathrm{da} \ g \ge 0 \implies \mathscr{R}(\mathcal{Z}, g) \ge 0$ $0 \forall Zerlegungen \mathcal{Z}$.
 - (d) f integrierbar \Longrightarrow Re $f \land$ Im f integrierbar $\stackrel{\text{Sätze 6.12, 6.10(a)}}{\Longrightarrow} |f| = \sqrt{(\text{Re } f)^2 + (\text{Im } f)^2}$ integrierbar. Somit gilt integrierbar. Somit gilt

$$\left| \int_{I} f(x) \, \mathrm{d}x \right| \stackrel{\text{Satz 6.8}}{=} \lim_{\mu(\mathcal{Z}) \to 0} \underbrace{\frac{|\mathcal{R}(\mathcal{Z}, f)|}{\leqslant \mathcal{R}(\mathcal{Z}, |f|)}}^{\text{Satz 6.8}} \int_{I} |f(x)| \, \mathrm{d}x.$$

(e) (i) ⇐⇒ (ii) aus Satz 6.12 und Satz 6.10(a). Die Zerlegung des Integrals in die beiden Teilintegrale folgt aus Satz 6.8 und einer Zerlegung \mathcal{Z} mit c als Unterteilungspunkt.

Es gelte von nun an die folgende Konvention

6.18 Definition • Für f Riemann-integrierbar auf [a,b]: $\int_b^a f(x) dx := -\int_a^b f(x) dx$.

Der folgende Satz gilt nur für $\mathbb{K}' = \mathbb{R}$.

6.19 Satz (Mittelwertsatz der Integralrechnung) Seien $f,g:I\to\mathbb{R}$ Riemann-integrierbar. Weiter sei f stetig und $g\geqslant 0$. Dann $\exists\,\xi=\xi(f,g,I)\in I$:

$$\int_{I} f(x)g(x) dx = f(\xi) \int_{I} g(x) dx.$$

Speziell für g = 1 gilt

$$\int_{I} f(x) \, \mathrm{d}x = f(\xi) \, |I|.$$

Beweis. Integrierbarkeit von fg gemäß Satz 6.17(b). Seien $M_+ := \sup\{f(x) : x \in I\} \in \mathbb{R}, M_- := \inf\{f(x) : x \in I\} \in \mathbb{R}$ (da f beschränkt nach Lemma 6.6) $\stackrel{g \geqslant 0}{\Longrightarrow} M_- g \leqslant fg \leqslant M_+ g$

$$\overset{\text{Satz 6.17(c)}}{\Longrightarrow} M_{-} \int_{I} g(x) \, \mathrm{d}x \leq \int_{I} f(x)g(x) \, \mathrm{d}x \leq M_{+} \int_{I} g(x) \, \mathrm{d}x$$

$$\implies \exists \mu \in [M_-, M_+] : \int_I f(x)g(x) dx = \mu \int_I g(x) dx.$$

Da I kompakt, f stetig und Satz 3.27 $\Longrightarrow \exists x_{\pm} \in I \colon f(x_{\pm}) = M_{\pm}$. Aus Zwischenwertsatz (wähle $a := \min\{x_{+}, x_{-}\}, b := \max\{x_{+}, x_{-}\}$ in Kor. 3.21) folgt $\exists \xi \in I \colon \mu = f(\xi)$.

Eine unmittelbare Anwendung des Satzes ist der folgende

6.20 Satz (Hauptsatz der Differential und Integralrechnung) Sei $f:I\to\mathbb{C}$ stetig, $x_0\in I$ und

$$F: \begin{array}{ccc} I & \to & \mathbb{C} \\ x & \mapsto & \int_{x_0}^x f(y) \, \mathrm{d}y \end{array}.$$

Dann ist F differenzierbar mit F' = f.

Beweis. Es genügt den Satz für $f:I\to\mathbb{R}$ stetig zu zeigen (\Longrightarrow Behauptung für \mathbb{C} durch separate Betrachtung von Real- und Imaginärteil). Sei $x\in I, 0\neq h\in\mathbb{R}$, so dass $x+h\in I$, dann folgt

$$\frac{F(x+h) - F(x)}{h} \underset{\text{Satz 6.17(e)}}{=} \frac{1}{h} \int_{x}^{x+h} f(y) \, \mathrm{d}y \underset{\exists \, \xi_h : \, |\xi_h - x| \leq |h|}{=} f(\xi_h) \xrightarrow{h \to 0} f(x).$$

6.21 Definition *Sei* $f: I \to \mathbb{C}$ *stetig.*

 $F: I \to \mathbb{C}$ diff.-bar ist **Stammfunktion zu** $f: \iff F' = f$.

<u>Notationen:</u> $F = \int f = \int f(x) dx$, $F(x) = \int_{-\infty}^{x} f(t) dt$.

6.22 Satz Sei $f: I \to \mathbb{C}$ stetig und F Stammfunktion zu f. Dann gilt

 $G: I \to \mathbb{C}$ diff.-bar ist Stammfunktion zu $f \iff F - G = const.$

Beweis. $,\Leftarrow$ " $0 = F' - G' = f - G' \implies f = G'$.

" \Rightarrow " Sei G auch Stammfunktion zu $f \implies (G - F)' = G' - F' = f - f = 0$.

Da G - F differenzierbar auf I, folgt mit dem Mittelwertsatz der Diff.rechnung (Kor. 5.18 mit b = x): $G(x) - F(x) = G(a) - F(a) \ \forall x \in]a, b]$.

6.23 Korollar Sei $f: I \to \mathbb{C}$ stetig. Dann ist $\forall x_0 \in I$

$$I \to \mathbb{C}$$

$$x \mapsto \int_{x_0}^x f(t) \, \mathrm{d}t$$

eine Stammfunktion zu f und für eine beliebige Stammfunktion F zu f gilt

$$\int_{x_0}^{x} f(t) dt = F(x) - F(x_0) =: F(t) \Big|_{x_0}^{x}.$$

6.24 Beispiel (a) Sei $r \in \mathbb{R} \setminus \{-1\}$, $I = [a, b] \subset \mathbb{R}_{>}$ abgeschlossenes Intervall, dann gilt

$$\int_a^b x^r \, \mathrm{d}x = \frac{1}{r+1} x^{r+1} \bigg|_a^b.$$

Für $r \ge 0$ genügt die Voraussetzung $I \subset \mathbb{R}_{\geqslant}$, für $r \in \mathbb{Z} \setminus \{-1\}$ dass $0 \notin I$ und für $r \in \mathbb{N}_0$ ist keine Voraussetzung an I nötig.

(b) Sei $0 \notin I$, dann gilt

$$\int_{a}^{b} \frac{1}{x} dx = \begin{cases} \ln x \Big|_{a}^{b}, & a > 0 \\ \ln(-x) \Big|_{a}^{b}, & b < 0 \end{cases} = \ln|x| \Big|_{a}^{b}.$$

$$\int \frac{1}{1+x^2} \, \mathrm{d}x = \arctan x.$$

Falls eine Stammfunktion nicht offensichtlich ist, können die folgenden Integrationsformeln der partiellen Integration und der Integration durch Substitution unter Umständen nützlich sein.

6.25 Satz (Partielle Integration) Seien $f, g : [a, b] \to \mathbb{C}$ stetig diff.-bar. Dann gilt

$$\int_a^b f(x)g'(x) dx = f(x)g(x)\Big|_a^b - \int_a^b f'(x)g(x) dx.$$

Beweis. Aus der Produktregel für $\Phi := fg \implies \Phi' = f'g + fg' =: \varphi$ und Korollar 6.23 mit $f = \varphi, F = \Phi$.

6.26 Beispiel (a) Seien $0 < a < b \implies$

$$\int_{a}^{b} \underbrace{\ln(x) \cdot 1}_{=f} \cdot \underbrace{1}_{=g'} dx = \ln(x) \cdot x \Big|_{a}^{b} - \underbrace{\int_{a}^{b} \frac{1}{x} \cdot x dx}_{x \Big|_{a}^{b}} = x \left(\ln x - 1\right) \Big|_{a}^{b}.$$

- (b) Sei $I_m(x) := \int_0^x \underbrace{\sin^m t}_{:=(\sin t)^m} dt$ für $m \in \mathbb{N}_0, x \in \mathbb{R}$. Damit folgt
 - m = 0, 1: $I_0(x) = x$, $I_1(x) = -\cos x + 1$.
 - m > 2

$$I_m(x) = \int_0^x \underbrace{\sin t}_{=g'} \underbrace{\sin^{m-1} t}_{=f} dt = -\cos x \sin^{m-1} x + \int_0^x \underbrace{\cos^2 t}_{1-\sin^2 t} (m-1) \sin^{m-2} t dt$$

$$= -\cos x \sin^{m-1} x + (m-1) [I_{m-2}(x) - I_m(x)]$$

Damit können nun rekursiv alle $I_m(x)$ berechnet werden

$$I_m(x) = -\frac{1}{m}\cos x \sin^{m-1} x + + \left(1 - \frac{1}{m}\right)I_{m-2}(x).$$

Insbesondere ist

$$I_2(x) = \int_0^x \sin^2 t \, ddt = -\frac{1}{2} \sin x \cos x + \frac{x}{2}.$$

6.27 Satz (Riemannsches Lemma) Sei $f:[a,b] \to \mathbb{C}$ stetig differenzierbar und sei

$$\widetilde{f}: \begin{array}{ccc}
\mathbb{R} & \to & \mathbb{C} \\
k & \mapsto & \int_a^b f(x) e^{ikx} dx
\end{array}.$$

Dann gilt

$$\lim_{k \to \pm \infty} \tilde{f}(k) = 0.$$

Beweis. Sei $k \neq 0$, so gilt

$$\begin{split} \widetilde{f}(k) &= f(x) \frac{\mathrm{e}^{\mathrm{i}kx}}{\mathrm{i}k} \bigg|_a^b - \frac{1}{\mathrm{i}k} \int_a^b f'(x) \mathrm{e}^{\mathrm{i}kx} \, \mathrm{d}x \\ & \Longrightarrow_{\mathrm{Satz \, 6.17(d)}} |\widetilde{f}(k)| \leqslant \frac{1}{|k|} (\underbrace{|f(b)|}_{<\infty} + \underbrace{|f(a)|}_{<\infty}) + \frac{1}{|k|} (b-a) \underbrace{\sup_{x \in [a,b]} |f'(x)|}_{x \in \mathrm{satz \, 6.17(d)}} \xrightarrow{f' \, \mathrm{stetig \, auf \, [a,b]}}_{\Longrightarrow \, \mathrm{beschränkt}} 0. \end{split}$$

6.28 Bemerkung • $\tilde{f}: \mathbb{R} \to \mathbb{C}$ heißt **Fourier-Transformierte** von f (modulo Vorfaktor).

 $\bullet\,$ Wird später (Ana III) verallgemeinert auf integrierbare $f\,\leadsto$ Riemann–Lebesgue-Lemma.

• Moral: Für $|k| \gg \frac{1}{\varepsilon} \gg \sup_{x \in [x_0 - \varepsilon, x_0 + \varepsilon]} |f'(x)|$

