MATEMÁTICAS BÁSICAS Entrega tercera

- 1. Sean A un conjunto no vacío, $\mathcal{P}(A)$ el conjunto de sus partes y $B \in \mathcal{P}(A)$ que no es ni el vacío ni A. Determina si la aplicación $f : \mathcal{P}(A) \to \mathcal{P}(A)$ dada por $f(D) = D \cap B$ es inyectiva, suprayectiva y/o biyectiva, $f^{-1}(\{B\})$ y cuál es la imagen Im(f).
- 2. Se define en \mathbb{R}^2 la relación (x,y)R(a,b) si y solo si existe $n\in\mathbb{Z}$ tal que $n-1< x\leq n$ y $n-1< a\leq n$. Demuestra que es una relación de equivalencia. Describe la clase de equivalencia del punto (1/2,2), del punto (-4,3) y del punto $(\pi,-1)$. Representa gráficamente el conjunto cociente. ¿Es numerable el conjunto cociente?

MATEMÁTICAS BÁSICAS Tercera entrega

- 1. Sean A un conjunto no vacío, $\mathcal{P}(A)$ el conjunto de sus partes y $B \in \mathcal{P}(A)$ que no es ni el vacío ni A. Decide si la aplicación $f: \mathcal{P}(A) \to \mathcal{P}(A)$ dada por $f(D) = D \cup B$ es inyectiva, suprayectiva y/o biyectiva. Determina $f^{-1}(\{B\})$ e Im(f).
- 2. Se define en \mathbb{R}^2 la relación (x,y)R(a,b) si y solo si $x^2=a^2$. Demuestra que R es una relación de equivalencia. Describe las clases de equivalencia [(0,0)],[(1,-2)],[(-1,2)] y $[(\pi,1)]$. Describe la clase de un punto cualquiera $(a,b)\in\mathbb{R}^2$. Describe el conjunto cociente \mathbb{R}^2/R . Estudia si asignar a cada clase $[(x,y)]\in\mathbb{R}^2/R$ el número real x define una aplicación con dominio \mathbb{R}^2/R .

MATEMÁTICAS BÁSICAS Tercera entrega

1. Sean $A = \{2,3,5\}, B = \{1,2,3,4\}, C = \{1,2,3,4,5,6\}$ y la función $f: A \times B \to C$ definida por

$$f((a,b)) = \begin{cases} 2a & \text{si } a < b \\ b & \text{si } a > b \\ a+b & \text{si } a = b \end{cases}$$

¿Es la aplicación f inyectiva? ¿es f sobreyectiva? Calcula $f^{-1}(\{1,3,5\})$, $f(f^{-1}(\{5\}))$, $f(f^{-1}(\{4,5\}))$ y f((f(3,2),f((f(3,2),f(2,3))))). Si $D = \{(a,b) \in A \times B : a+b=6\}$, determina $f^{-1}(f(D))$.

2. En el plano cartesiano \mathbb{R}^2 se considera la relación dada por $(x_1, y_1)\mathcal{R}(x_2, y_2)$ si y sólo si $x_1 - x_2 \in \mathbb{Z} \land y_1 - y_2 \in \mathbb{Z}$. Prueba que \mathcal{R} una relación de equivalencia en \mathbb{R}^2 . ¿Cuáles son los elementos que pertenecen a la clase del (0,0)? ¿Y a la del (1/2,7/3)? Demuestra que toda clase de equivalencia tiene un representante que pertenece al cuadrado con vértices en (0,0),(0,1),(1,0),(1,1).

MATEMÁTICAS BÁSICAS Tercera entrega

- 1. Sean $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ y $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ dadas por $f(m,n) = \min\{m,n\}$ y $g(m,n) = m^2 + n$. Determina las imágenes por f de $\mathbb{N} \times \{2\}$, $\{5\} \times \mathbb{N}$ y por g de $\mathbb{Z} \times \{0\}$, $\{0\} \times \mathbb{Z}$. Calcula $f^{-1}(\{n\})$, con $n \in \mathbb{N}$ y $g^{-1}(\{-m\})$, con $m \in \mathbb{N}$. Decide si f y/o g son inyectivas, suprayectivas y/o biyectivas.
- 2. En \mathbb{N} considera la relación \mathcal{R} definida por $a\mathcal{R}b$ si y sólo si el último dígito de a y de b es el mismo. Prueba que \mathcal{R} es una relación de equivalencia. ¿Cuántas clases tiene \mathbb{N}/\mathcal{R} ? Estudia si asignar a cada clase [a] el número a+1 define una aplicación $h: \mathbb{N}/\mathcal{R} \to \mathbb{Z}$. ¿Y asociar a cada clase [a] el número 1 si a es par y el número -1 si a es impar?