Plano de Curso — Sistemas Microprocessados — 2017/3

ESTI013-17 - Sistemas Microprocessados (J Ranhel)				
#	(dia)	CONTEÚDO	Т	P
1	20/9	• SM-01: Microprocessadores (Von Neumann vs Harvard) – modelo Von Neumann	2	
2	22/9	LAB: Introdução às IDEs: TrueStudio – MBED – Arduino		2
3	27/9	• SM-02: Núcleo ARM (CPU+Regs+ULA+Memória), μControlador e SoC, GPIO.	2	
4	29/9	LAB Prat_01: 1o. Programa ARM em TrueStudio – Piscar LED.		2
5	04/10	• SM-03: Programação de μP , Assembly ARM (RISC/SISC, Ciclo de máquina, Pipeline, Modos de endereçamentos, Instruções ARM, PC, LR)	2	
6	06/10	LAB Prat_02: Implementação do Systick e múltiplas tarefas (piscar vários LEDs)		2
7	11/10	• SM-04: Periféricos (Portas I/O, Configuração de GPIO, Timers, RTC, PWM)	2	
8	18/10	• SM-05: Interrupções (NVIC/vetores/ISR), chamadas de funções (SP e LR), Clock	2	
9	20/10	LAB Prat_03: Saída analógica com PWM e conceito "superloop"		2
10	25/10	• SM-06 : Programação "C", CMSIS e Depuração (JTAG, SWD, OpenSDA, etc.), Watchdog timer, e external weakup.	2	
11	27/10	LAB Prat_04: Interrupção Externa e "debouncing"		2
12	01/11	• SM-07 : Outros periféricos: ADC, DMA, controle de barramentos e conflitos.	2	
13	08/11	• SM-08: Memória e Comunicação serial (UART e USART), USB	2	
14	10/11	LAB Prat_05: Projeto 1 LAB (cronometro, decoder 7-seg, serialização, mux display)		2
15	17/11	LAB Prat_05: entrega de projeto 1 LAB (entrega 1o. trabalho de laboratório)		2
16	22/11	• SM-09: Protocolos de comunicação (SPI, I2C, CAN).	2	
17	24/11	LAB Prat_06: Conversão ACD e mostra no display 7-seg		2
18	29/11	• SM-10: Sistema Operacional em Tempo Real	2	
19	01/12	LAB Prat_07: Comunicação I2C entre placas		2
20	06/12	• SM-11: Revisão para a avaliação	2	
21	08/12	LAB Prat_08: Projeto final – multifunções (ADC e Cronômetro no display 7-seg)		2
22	13/12	• SM-12: AVALIAÇÃO: avaliação do conteúdo teórico	2	
23	15/12	LAB Prat_08: Entrega de projeto final (entrega projeto final LAB)		2
24	20/12	• SM-11: REC - avaliação de recuperação e segunda chamada.	2	
		Totais = 48 horas aulas	26	22

SISTEMAS MICROPROCESSADOS

Sigla: ESTI013-17

TPI: 2-2-4

416

Carga Horária: 48h

Recomendação: Eletrônica Digital; Dispositivos Eletrônicos.

Objetivos: Apresentar as técnicas e etapas de desenvolvimento de projetos utilizando sistemas microprocessados; apresentar características dos principais componentes, suas diversas configurações de projeto e sua influência no desempenho de sistemas microcontrolados.

Ementa:

- Conceituação de sistema embarcado.
- Organização de Computadores: Processador, Memória, Dispositivos de I/O;
- Arquiteturas e operação de Microprocessadores:
- Unidade de Controle,
- Registradores,
- Conjunto de Instruções,
- · Assembly,
- DMA.
- Unidade Lógica e Aritmética,
- Ciclo de Instrução;
- Modos de Endereçamento;
- Barramento:
- Diagramas de Tempo da CPU;
- Interrupções e Tratamento de Interrupções;
- Protocolos de Comunicação e Interfaceamento;
- Programação em C voltada à microcontroladores.
- Fluxograma.

Bibliografia Básica:

•YIFENG ZHU; Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C: E-Man Press LLC; Third Edition, 2017.

GEOFFREY BROWN, Discovering the STM32 Microcontroller, CC BY-NC-SA 3.0, 2016. https://www.cs.indiana.edu/~geobrown/book.pdf.

DALTRINI, B. M.; JINO, M.; MAGALHÃES, L. P.; *Introdução a Sistemas de Computação Digital*, Makron Books, 1999.

HAYES, J. P.; Computer Architecture and Organization, 3rd Ed., McGraw-Hill Book Co., 1998. STALLINGS, W.; Computer Organization and Architecture, Prentice Hall Inc, 2000

Bibliografia Complementar:

GIMENEZ, S. P.; Microcontroladores 8051, Prentice-Hall, 2002.

ZANCO, W. S.; Microcontroladores PIC – Técnicas de Software e Hardware para Projetos de Circuitos Eletrônicos, Érica, 1a Ed., 2006.

SOUZA, D. R.; Microcontroladores ARM7 – O poder dos 32 bits, Érica, 2006.

SOUZA, D. J.; Desbravando o PIC – Ampliado e Atualizado para PIC 16F628A, Érica, 12a Ed., 2007.

STEWART, J. W.; MIAO, K. X.; The 8051 microcontroller: hardware, software, and interfacing. 2 ed. Upper Saddle River, N.J: Prentice Hall, 1999.