MATH 7310 Homework 7

James Harbour

March 27, 2022

Problem 2

If X, Y are sets, and $f: X \to \mathbb{C}$, $g: Y \to \mathbb{C}$, we define $f \otimes g: X \times Y \to \mathbb{C}$ by $(f \otimes g)(x, y) = f(x)g(y)$. Fix $1 \leq p < +\infty$.

- (a): Let $(X, \Sigma, \mu), (Y, \mathcal{F}, \nu)$ be σ -finite measure spaces. Show that if $f \in L^p(X, \mu), g \in L^p(Y, \nu)$, then $||f \otimes g||_p = ||f||_p ||g||_p$.
- (b): Let (Z, \mathcal{O}, ζ) be a finite measure space. Suppose that $A \subseteq \mathcal{O}$ is an algebra which generates the σ -algebra of \mathcal{O} . Use the monotone class lemma to show that $\{\mathbb{1}_A : A \in A\}$ is dense in $\{\mathbb{1}_E : E \in \mathcal{O}\}$ in the L^p -norm for all $1 \leq p < +\infty$.
- (c): Let $(X, \Sigma, \mu), (Y, \mathcal{F}, \nu)$ be finite measure spaces. Use the previous part to show that $\{\mathbb{1}_E : E \in \Sigma \otimes \mathcal{F}\} \subseteq \overline{\operatorname{Span}}^{\|\cdot\|_p} \{\mathbb{1}_E \otimes \mathbb{1}_F : E \in \Sigma, F \in \mathcal{F}\}$. Use this to show that $\overline{\operatorname{Span}}^{\|\cdot\|_p} \{\mathbb{1}_E \otimes \mathbb{1}_F : E \in \Sigma, F \in \mathcal{F}\} = L^p(X \times Y, \mu \otimes \nu)$.
- (d): Let $(X, \Sigma, \mu), (Y, \mathcal{F}, \nu)$ be σ -finite measure spaces. Suppose that $D_X \subseteq L^p(X, \mu), D_Y \subseteq L^p(Y, \nu)$ and that

 $\overline{\operatorname{Span}}^{\|\cdot\|_p}(D_X) = L^1(X,\mu), \quad \overline{\operatorname{Span}}^{\|\cdot\|_p}(D_Y) = L^1(Y,\nu).$

Show that $\overline{\operatorname{Span}}^{\|\cdot\|_p}(\{f\otimes g: f\in D_X, g\in D_Y\})=L^p(X\times Y, \mu\otimes \nu).$

Problem 3

Suppose that $f \in L^p \cap L^\infty$ for some $p < +\infty$ so that $f \in L^q$ for all q > p. Prove that then $||f||_{\infty} = \lim_{q \to \infty} ||f||_q$.

Problem 4

If f is a measurable function on X, define the essential range R_f of f to be the set of all $z \in \mathbb{C}$ such that $\{x : |f(x) - z| < \varepsilon\}$ has positive measure for all $\varepsilon > 0$.

(a): Prove that R_f is closed.

Proof. Let $z \in \overline{R_f}$. Then there exists a sequence $(z_n)_{n=1}^{\infty}$ in R_f such that $z_n \to z$. Fix $\varepsilon > 0$. There is some $N \in \mathbb{N}$ such that $n \geq N \implies B_{\varepsilon/2}(z_n) \subseteq B_{\varepsilon}(z)$. Then $f^{-1}(B_{\varepsilon/2}(z_n)) \subseteq f^{-1}(B_{\varepsilon}(z))$, whence $0 < \mu(f^{-1}(B_{\varepsilon/2}(z_n))) \leq \mu(f^{-1}(B_{\varepsilon}(z)))$. Hence $z \in R_f$, so R_f is closed.

(b): Prove that if $f \in L^{\infty}$, then R_f is compact and $||f||_{\infty} = \max\{|z| : z \in R_f\}$.

Problem 5

Suppose that $1 \leq p < +\infty$ and $(f_n)_{n=1}^{\infty}$ in L^p . Prove that $(f_n)_{n=1}^{\infty}$ is Cauchy in the L^p -norm if an only if the following three conditions hold:

- 1. (f_n) is Cauchy in measure;
- 2. the sequence $(|f_n|^p)_{n=1}^{\infty}$ is uniformly integrable
- 3. for every $\varepsilon > 0$ there exists $E \subseteq X$ such that $\mu(E) < +\infty$ and $\int_{E^c} |f_n|^p d\mu < \varepsilon$ for all $n \in \mathbb{N}$.

Problem 6

Prove that if E is a subset of a Hilbert space \mathcal{H} , then $(E^{\perp})^{\perp}$ is the smallest closed subspace of \mathcal{H} containing E.

Claim. If M is a closed linear subspace of \mathcal{H} , then $(M^{\perp})^{\perp} = M$.

Proof of Claim. Note that we have $\mathcal{H} = M \oplus M^{\perp}$. Let $y \in (M^{\perp})^{\perp}$. Then there exist unique $x \in M$, $x^{\perp} \in M^{\perp}$ such that $y = x + x^{\perp}$. Noting that $M \subseteq (M^{\perp})^{\perp}$, we have that $x^{\perp} = y - x \in M^{\perp} \cap (M^{\perp})^{\perp} = \{0\}$, whence $x^{\perp} = 0$ and $y = x \in M$. Thus $M = (M^{\perp})^{\perp}$.

Proof. On one hand, note that $E \subseteq \overline{\operatorname{Span}(E)} \implies (E^{\perp})^{\perp} \subseteq (\overline{\operatorname{Span}(E)}^{\perp})^{\perp} \stackrel{\text{claim}}{=} \overline{\operatorname{Span}(E)}$. On the other hand, as $(E^{\perp})^{\perp}$ is a closed linear subspace of \mathcal{H} and $E \subseteq (E^{\perp})^{\perp}$, it follows that $\overline{\operatorname{Span}(E)} \subseteq (E^{\perp})^{\perp}$.