Les Compteurs

A). Présentation:

I). Introduction:

Un compteur est un ensemble de bascules qui servent à compter les impulsions mises en entrées (Horloge). Le comptage peut-être fait dans différents codes : Binaires, B.C.D., Gray, Complémenté, ...

Chaque chiffre binaire nécessite une bascule :

Si on compte de 0 à 1_{10} : 1 bascule;

Si on compte de 0 à 3_{10} : 2 bascules;

Si on compte de 0 à 7_{10} : 3 bascules;

Si on compte de 0 à $(2^n-1)_{10}$: n bascules;

Exemple : Si on veut compter de 0 à 12 combien faut-il de bascules ?

Réponse : 4 bascules : $(2^4-1)_{10}=15 > 12$; $(2^3-1)_{10}=7 < 12$

II). Cycle de comptage :

On représente le cycle de comptage par un des graphes suivant :

Exemples pour un compteur de 0 à 7 :

III). Type de compteurs Asynchrones et Synchrones :

1°). Compteur Synchrone:

Sur un compteur branché en mode synchrone, toutes les entrées d'horloges des bascules sont reliées ensembles à l'entrée d'horloge du montage.

Avantages:

> Toutes les bascules commutent en même temps

Inconvénients:

Montage compliqué pour prévoir les états.

2°). Compteur Asynchrone:

Sur un compteur branché en mode asynchrone, l'entrée d'horloge du montage est branchée sur l'horloge de la première bascule ; la sortie de la première bascule sert d'horloge pour la $2^{\text{ème}}$ bascule, et ainsi de suite

<u>Avantages:</u>

➤ Montage simple

Inconvénients:

A cause des décalages temporels, ne va pas haut en fréquence

B). Les compteurs Asynchrones :

I). A l'aide de bascules D:

1°). Compteur de base à l'aide de bascules D :

Si on réalise le schéma suivant :

On a alors les chronogrammes suivants :

On obtient un montage de base de Diviseur par 2 de la fréquence d'horloge d'entrée.

2°). Compteur à l'aide de bascules D :

Si on réalise le schéma suivant :

On a alors les chronogrammes suivants :

On remarque que si l'on prend les sorties QC.QB.QA, on obtient le nombre de fronts d'horloge que l'on a eu en entrée, on a donc réalisé un compteur.

Cycle de Comptage :

3°). Décompteur à l'aide de bascules D :

Si on réalise le schéma suivant :

On a alors les chronogrammes suivants :

De même que si l'on prend les sorties QC.QB.QA, on obtient le décompte du nombre fronts d'horloge que l'on a eu en entrée, on a donc réalisé un décompteur.

Cycle de décomptage :

En résumé, si on a des bascules front montants, on réalise un décompteur, alors que si on a des bascules fronts descendants, on réalise un compteur.

4°). Comptage incomplet à l'aide de bascules D :

On cherche à réaliser un comptage de 2 à 5 par exemple.

Si on utilise des bascules avec Set et Reset, il suffit de faire un reset ou un set des bascules au nombre de fin +1 ici 6 (110_2) pour obtenir le nombre de départ voulu ici 2 (010_2).

On réalise alors le schéma suivant :

On a alors à la mise sous tension le chronogramme suivant :

On peut tracer le graphe de comptage suivant :

5°). <u>Exercice</u> :

Réaliser un décompteur de 6 à 2 avec des bascules D.

Solution:

On réalise un décompteur de 7 à 0 ; puis pour le nombre 1 (001_2) , on fait un set et reset à 6 (110_2) des bascules.

On obtient alors les chronogrammes suivants :

On peut tracer le graphe de décomptage suivant :

II). A l'aide de bascules JK :

1°). Compteur de base à l'aide de bascules JK :

Si on réalise un des schémas suivants :

On obtient de même un montage de base de Diviseur par 2 de la fréquence d'horloge d'entrée.

2°). Compteur à l'aide de bascules JK :

Si on réalise le schéma suivant :

3°). <u>Décompteur à l'aide de bascules JK :</u>

Si on réalise le schéma suivant :

De même que si l'on prend les sorties QC.QB.QA, on obtient le décompte du nombre fronts d'horloge que l'on a eu en entrée, on a donc réalisé un décompteur.

En résumé, si on a des bascules front montants, on réalise un décompteur, alors que si on a des bascules fronts descendants, on réalise un compteur.

4°). Comptage incomplet à l'aide de bascules JK :

On cherche à réaliser un comptage de 3 à 5 par exemple.

Si on utilise des bascules avec Set et Reset, il suffit de faire un reset ou un set des bascules au nombre de fin +1 ici 6 (110_2) pour obtenir le nombre de départ voulu ici 3 (011_2).

On réalise alors le schéma suivant :

5°). Décomptage incomplet à l'aide de bascules JK :

On cherche à réaliser un décomptage de 5 à 3 par exemple.

Si on utilise des bascules avec Set et Reset, il suffit de faire un reset ou un set des bascules au nombre de fin -1 ici 2 (010₂) pour obtenir le nombre de départ voulu ici 5 (101₂).

On réalise alors le schéma suivant :

