

WEBENCH® Design Report

VinMin = 85.0V VinMax = 265.0V Vout = 15.0V lout = 2.0A Device = UCC28610DR Topology = Flyback Created = 2019-02-21 01:35:00.752 BOM Cost = NA BOM Count = 42 Total Pd = 5.44W

Design: 12 UCC28610DR UCC28610DR 85V-265V to 15.00V @ 2A

1. The EMI filter shown in the schematic is a placeholder. It has not yet been designed for the application.

Design Alerts

Component Selection Information

Click on the transformer symbol in the schematic and select "Explore Transformer Core/Bobbin Selection" to design using specific transformer cores and bobbin.

Electrical BOM

Manufacturer	Part Number	Properties	Qty	Price	Footprint
Panasonic	EEE-FK1V470P Series= FK	Cap= 47.0 uF ESR= 360.0 mOhm VDC= 35.0 V IRMS= 240.0 mA	1	\$0.11	SM_RADIAL_D 84 mm ²
Kemet	C0805C101J5GACTU Series= C0G/NP0	Cap= 100.0 pF ESR= 74.0 mOhm VDC= 50.0 V IRMS= 524.0 mA	1	\$0.01	0805 7 mm ²
Vishay-Bccomponents	MAL215749121E3 Series= 2239	Cap= 120.0 uF ESR= 1.4 Ohm VDC= 500.0 V IRMS= 1.23 A	1	\$5.29	
					157PUM-SI_2500x3500 729 mm²
Kemet	C1210X104KCRACTU Series= X7R	Cap= 100.0 nF ESR= 1.0 mOhm VDC= 500.0 V IRMS= 0.0 A	1	\$0.17	1210_250 15 mm ²
Panasonic	35SVPF82M Series= SVPF	Cap= 82.0 uF ESR= 20.0 mOhm VDC= 35.0 V IRMS= 4.0 A	2	\$0.63	CAPSMT 62 E12 106 mm ²
	Panasonic Kemet Vishay-Bccomponents Kemet	Panasonic EEE-FK1V470P Series= FK Kemet C0805C101J5GACTU Series= C0G/NP0 Vishay-Bccomponents MAL215749121E3 Series= 2239 Kemet C1210X104KCRACTU Series= X7R Panasonic 35SVPF82M	Panasonic EEE-FK1V470P Cap= 47.0 uF ESR= 360.0 mOhm VDC= 35.0 V IRMS= 240.0 mA	Panasonic EEE-FK1V470P Series= FK ESR= 360.0 mOhm VDC= 35.0 V IRMS= 240.0 mA	Panasonic EEE-FK1V470P Series= FK ESR= 360.0 mOhm VDC= 35.0 V IRMS= 240.0 mA

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Coutx1	TDK	C2012X5R1V106K085AC Series= X5R	Cap= 10.0 uF ESR= 2.818 mOhm VDC= 35.0 V IRMS= 3.8868 A	1	\$0.19	0805 7 mm ²
Csnub	CUSTOM	CUSTOM Series= ?	Cap= 165.2 pF ESR= 1.0 mOhm VDC= 100.827 V IRMS= 1.0 A	1	NA	CUSTOM 0 mm ²
Cvdd	MuRata	GRM319R71H104KA01D Series= X7R	Cap= 100.0 nF ESR= 10.0 mOhm VDC= 50.0 V IRMS= 900.0 mA	1	\$0.04	1206 11 mm ²
Cvgg	MuRata	GRM319R71H104KA01D Series= X7R	Cap= 100.0 nF ESR= 10.0 mOhm VDC= 50.0 V IRMS= 900.0 mA	1	\$0.04	1206 11 mm ²
Dac	Vishay-Semiconductor	GBU4K-E3/45	VF@Io= 1.0 V VRRM= 800.0 V	1	\$0.73	GBU 131 mm ²
Daux	SMC Diode Solutions	ST1300ATR	VF@Io= 1.1 V VRRM= 300.0 V	1	\$0.07	SMA 37 mm ²
Ddrv	Panasonic	DB2S31600L	VF@Io= 550.0 mV VRRM= 30.0 V	1	\$0.04	SOD-523 5 mm ²
Dg	Panasonic	DB2S31600L	VF@Io= 550.0 mV VRRM= 30.0 V	1	\$0.04	SOD-523 5 mm ²
Dsec1	SMC Diode Solutions	SBRD10200TR	VF@Io= 950.0 mV VRRM= 200.0 V	1	\$0.12	DPAK 102 mm²
Dsec2	SMC Diode Solutions	SBRD10200TR	VF@Io= 950.0 mV VRRM= 200.0 V	1	\$0.12	DPAK 102 mm²
Dsnub	Bourns	CD214C-F3600	VF@Io= 1.12 V VRRM= 600.0 V	1	\$0.23	SMC 83 mm ²
Dzaux	Nexperia	BZX585-C22,115	Zener	1	\$0.02	SOD-523 5 mm ²
Dzfb	ON Semiconductor	MMBZ5243BLT1G	Zener	1	\$0.03	S OT-23 14 mm ²
Dzfb	ON Semiconductor	MMBZ5243BLT1G	Zener	1	\$0.03	S OT-23 14 mm ²
M1	Infineon Technologies	IPP65R190C7	VdsMax= 650.0 V IdsMax= 13.0 Amps	1	\$1.57	TO-220AB 79 mm ²
O1	Fairchild Semiconductor	FOD817A	Optocoupler	1	\$0.13	DIP-4 71 mm ²
Rbias	Panasonic	ERJ-6ENF1001V Series= ERJ-6E	Res= 1000.0 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rbias	Panasonic	ERJ-6ENF1001V Series= ERJ-6E	Res= 1000.0 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
Rc	Panasonic	ERJ-6ENF1001V Series= ERJ-6E	Res= 1000.0 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rcl	Panasonic	ERJ-6ENF6192V Series= ERJ-6E	Res= 61.9 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rcomp	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rcomp1	Panasonic	ERJ-6ENF2002V Series= ERJ-6E	Res= 20.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rfb	Vishay-Dale	CRCW0402316RFKED Series= CRCWe3	Res= 316.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rfb	Vishay-Dale	CRCW0402316RFKED Series= CRCWe3	Res= 316.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
Rg	Yageo	RC0805FR-074R7L Series= ?	Res= 4.7 Ohm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rmot	Yageo	RC0201FR-0786K6L Series= ?	Res= 86.6 kOhm Power= 50.0 mW Tolerance= 1.0%	1	\$0.01	0201 2 mm ²
Rs1	Vishay-Dale	CRCW12062M05FKEA Series= CRCWe3	Res= 2.05 MOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
Rs2	Vishay-Dale	CRCW12062M05FKEA Series= CRCWe3	Res= 2.05 MOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
Rs3	Vishay-Dale	CRCW12062M05FKEA Series= CRCWe3	Res= 2.05 MOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
Rsnub11	Vishay-Dale	CRCW20101M00FKEF Series= CRCWe3	Res= 1000.0 kOhm Power= 750.0 mW Tolerance= 1.0%	1	\$0.04	2010 32 mm ²
Rsnub12	Vishay-Dale	CRCW20101M00FKEF Series= CRCWe3	Res= 1000.0 kOhm Power= 750.0 mW Tolerance= 1.0%	1	\$0.04	2010 32 mm ²
Rsnub2	Yageo	RC1206FR-0722RL Series=?	Res= 22.0 Ohm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
Rzcd1	Panasonic	ERJ-6ENF1183V Series= ERJ-6E	Res= 118.0 kOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 7 mm ²
Rzcd2	Yageo	RC0201FR-0768K1L Series= ?	Res= 68.1 kOhm Power= 50.0 mW Tolerance= 1.0%	1	\$0.01	0201 2 mm ²
Γ1	Core=Wurth Elektronik , CoilFormer=Wurth Elektronik	Core=150-1945 , CoilFormer=070-5643	Lp= 232.0 µH Turns Ratio(Nas)= 15:14 Turns Ratio(Nps)= 59:14 Npri= 59.0 Naux= 15.0 Nsec= 14.0	1	NA	EE20/10/6 555 mm ²

Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
U1	Texas Instruments	UCC28610DR	Switcher	1	\$0.46	

D0008A 57 mm²

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	715.356 mA	Capacitor	Input capacitor RMS ripple current
2.	Cin Pd	716.43 mW	Capacitor	Input capacitor power dissipation
3.	Cout IRMS	2.314 A	Capacitor	Output capacitor RMS ripple current
4.	Cout Pd	53.531 mW	Capacitor	Output capacitor power dissipation
5.	Coutx Pd	285.69 μW	Capacitor	Output capacitor_x power loss
6.	Dsec Pd	1.9 W	Diode	Secondary Diode Power Dissipation
7.	IC Pd	75.862 mW	IC	IC power dissipation
8.	IC Tj	38.914 degC	IC	IC junction temperature
9.	ICThetaJA	117.5 degC/W	IC	IC junction-to-ambient thermal resistance
10.	lin Avg	417.75 mA	IC	Average input current
11.	M1 Irms	650.182 mA	Mosfet	Q lavg
12.	M1 Pd	351.64 mW	Mosfet	MOSFET power dissipation
13.	M1 Rdson	190.0 mOhm	Mosfet	Drain-Source On-resistance
14.	M1 TjOP	53.385 degC	Mosfet	M1 MOSFET junction temperature
	Cin Pd	716.43 mW	Power	Input capacitor power dissipation
16.	Cout Pd	53.531 mW	Power	Output capacitor power dissipation
17.	Coutx Pd	285.69 μW	Power	Output capacitor_x power loss
18.	Avg Bridge Diode Pd	540.06 mW	Power	Power Dissipation in Feedback Resistors
	Dsec Pd	1.9 W	Power	Secondary Diode Power Dissipation
20.	Feedback Pd	4.744 mW	Power	Power Dissipation in Feedback Resistors
	IC Pd	75.862 mW	Power	IC power dissipation
22.	M1 Pd	351.64 mW	Power	MOSFET power dissipation
23.	Snubber Pd	1.185 W	Power	Snubber Power Dissipation
24.	T1 Pd	577.97 mW	Power	Estimated Losses in Transformer
25.	Total Pd	5.44 W	Power	Total Power Dissipation
26.	Avg Bridge Diode Pd	540.06 mW	Resistor	Power Dissipation in Feedback Resistors
27.	Feedback Pd	4.744 mW	Resistor	Power Dissipation in Feedback Resistors
28.	BOM Count	42	System	Total Design BOM count
			Information	·
29.	Duty Cycle	48.593 %	System	Duty cycle
	• •		Information	, ,
30.	Efficiency	84.679 %	System	Steady state efficiency
	•		Information	,
31.	FootPrint	2.508 k mm ²	System	Total Foot Print Area of BOM components
			Information	·
32.	Frequency	126.9 kHz	System	Switching frequency
			Information	
33.	lout	2.0 A	System	lout operating point
			Information	
34.	Mode	DCM	System	Conduction Mode
			Information	
35.	Pout	30.068 W	System	Total output power
			Information	• •
36.	Total BOM	NA	System	Total BOM Cost
			Information	
37.	Vin	85.0 V	System	Vin operating point
			Information	
38.	Vout	15.0 V	System	Operational Output Voltage
			Information	
39.	Vout p-p	68.082 mV	System	Peak-to-peak output ripple voltage
			Information	
40.	T1 Iprim RMS	650.182 mA	Transformer	Transformer Primary RMS Current
	•			•

#	Name	Value	Category	Description
41.	T1 Iprim pk	1.616 A	Transformer	Transformer Primary Peak Current
42.	T1 Is1 RMS	3.306 A	Transformer	Transformer Secondary1 RMS Current
43.	T1 Pd	577.97 mW	Transformer	Estimated Losses in Transformer

Design Inputs

Name	Value	Description	
lout	2.0	Maximum Output Current	
VinMax	265.0	Maximum input voltage	
VinMin	85.0	Minimum input voltage	
Vout	15.0	Output Voltage	
acFrequency	50.0	AC Frequency	
base_pn	UCC28610	Base Product Number	
source	AC	Input Source Type	
Та	30.0	Ambient temperature	

WEBENCH® Assembly

Component Testing

Some published data on components in datasheets such as Capacitor ESR and Inductor DC resistance is based on conservative values that will guarantee that the components always exceed the specification. For design purposes it is usually better to work with typical values. Since this data is not always available it is a good practice to measure the Capacitance and ESR values of Cin and Cout, and the inductance and DC resistance of L1 before assembly of the board. Any large discrepancies in values should be electrically simulated in WEBENCH to check for instabilities and thermally simulated in WebTHERM to make sure critical temperatures are not exceeded.

Soldering Component to Board

If board assembly is done in house it is best to tack down one terminal of a component on the board then solder the other terminal. For surface mount parts with large tabs, such as the DPAK, the tab on the back of the package should be pre-tinned with solder, then tacked into place by one of the pins. To solder the tab town to the board place the iron down on the board while resting against the tab, heating both surfaces simultaneously. Apply light pressure to the top of the plastic case until the solder flows around the part and the part is flush with the PCB. If the solder is not flowing around the board you may need a higher wattage iron (generally 25W to 30W is enough).

Initial Startup of Circuit

It is best to initially power up the board by setting the input supply voltage to the lowest operating input voltage 85.0V and set the input supply's current limit to zero. With the input supply off connect up the input supply to Vin and GND. Connect a digital volt meter and a load if needed to set the minimum lout of the design from Vout and GND. Turn on the input supply and slowly turn up the current limit on the input supply. If the voltage starts to rise on the input supply continue increasing the input supply current limit while watching the output voltage. If the current increases on the input supply, but the voltage remains near zero, then there may be a short or a component misplaced on the board. Power down the board and visually inspect for solder bridges and recheck the diode and capacitor polarities. Once the power supply circuit is operational then more extensive testing may include full load testing, transient load and line tests to compare with simulation results.

Load Testing

The setup is the same as the initial startup, except that an additional digital voltmeter is connected between Vin and GND, a load is connected between Vout and GND and a current meter is connected in series between Vout and the load. The load must be able to handle at least rated output power + 50% (7.5 watts for this design). Ideally the load is supplied in the form of a variable load test unit. It can also be done in the form of suitably large power resistors. When using an oscilloscope to measure waveforms on the prototype board, the ground leads of the oscilloscope probes should be as short as possible and the area of the loop formed by the ground lead should be kept to a minimum. This will help reduce ground lead inductance and eliminate EMI noise that is not actually present in the circuit.

14.0

26.0

1.0

1.0

Triple Insulated

WEBENCH[®] Transformer Report

#	Name	Value
1.	Core Part Number	150-1945
2.	Core Manufacturer	Wurth Elektronik
3.	Coil Former Part Number	070-5643
4.	Coil Former Manufacturer	Wurth Elektronik

Transformer Electrical Diagram

Primary	
Turns	59.0
AWG	36.0
Layers	2.0
Strands	2.0
Insulation Type	Heavy Insulated Magnet Wire
Auxiliary	
Turns	15.0
AWG	28.0
Layers	1.0
Strands	1.0
Insulation Type	Heavy Insulated

Transformer Construction Diagram

Magnet Wire

Winding Instruction

Winding	AWG	Turns	Winding Orientation
Primary First 1/2.0	36.0	30	Clockwise

Winding	AWG	Turns	Winding Orientation
Auxiliary	28.0	15.0	Counter Clockwise
Triple Insulated Secondary	26.0	14.0	Counter Clockwise
Primary Second 1/2.0	36.0	29	Clockwise

Transformer Parameters

#	Name	Value
1.	Lpri	2.32E-4H
2.	Inductance Factor(AI)	67.0nH
3.	Npri	59.0
4.	Nsec	14.0
5.	Naux	15.0
6.	Core Type	EE20/10/6
7.	Core Material	TP4A
8.	Bmax	0.20T
9.	Switching Frequency	77.30kHz
10.	DMax	0.39
11.	Ipk(Primary)	1.62A
12.	Irms(Primary)	0.5A
13.	Ipk(Secondary)	6.81A
14.	Irms(Secondary)	3.07A

Design Assistance

- 1. Isolated feedback, AC-DC Flyback controller with wide Vin range
- 2. Master key: 799E36AE94D7ADB1[v1]
- 3. UCC28610 Product Folder: http://www.ti.com/product/UCC28610: contains the data sheet and other resources.

Important Notice and Disclaimer

TI provides technical and reliability data (including datasheets), design resources (including reference designs), application or other design advice, web tools, safety information, and other resources AS IS and with all faults, and disclaims all warranties. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Providing these resources does not expand or otherwise alter TI's applicable Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with TI products.