Optimization and Data Science

Lecture 14: Basic Stochastics and Statistics (1)

Prof. Dr. Thomas Slawig

Kiel University - CAU Kiel Dep. of Computer Science

Summer 2020

Contents

- Basic Stochastics and Statistics
 - Random Events, Random Numbers, Random Variables
 - Probabilities
 - Expectation, Variance and Covariance
 - Random Samples

Stochastics and Statistics

- What is it?
 Important area in mathematics
 Provides theories and methods for data analysis
- Why are we studying this?
 Data can be regarded as results of random events
- How does it work?
 Using notions of random, random variables, probabilities
 Determining or estimating parameters of given data
- What if we can use it?
 Analyze data
 Detect "typical" behavior and outliers in data
 Provide tools to decide if data support a certain hypothesis
 Quantify uncertainties

Contents

- Basic Stochastics and Statistics
 - Random Events, Random Numbers, Random Variables
 - Probabilities
 - Expectation, Variance and Covariance
 - Random Samples

Random events

- We consider a **random process**. Example:
 - Rolling the dice.
 - Randomly picking one picture out of a database of pictures.
 - Randomly choosing one index $j \in \{1, ..., m\}$.
- The result of a random process is called an **event**. Example:
 - Dice shows a "1".
 - One specific picture (e.g., number 27 in the database) is picked.
 - Index j = 5 is chosen.
- We denote by Ω the **set of all possible events**. Example:
 - $\Omega = \{1, 2, 3, 4, 5, 6\}.$
 - $\Omega = \{$ all pictures in the database $\} = \{1, \dots, m\}$.
 - $\Omega = \{1, \ldots, m\}.$
- Ω can be discrete ($\Omega \subset \mathbb{Z}^m$, as in the above examples) ...
- ... or continuous $(\Omega \subset \mathbb{R}^m)$.

Random variables and their realizations

Definition

A random variable is a mapping

X: {set of all possible random events} =: $\Omega \to \mathbb{R}$.

- A random vector is a vector of random variables.
- If we consider one fixed random event $\omega \subset \Omega$, we call $X(\omega)$ the **realization** of the random variable. Often the notation

$$x := X(\omega), \quad \omega \in \Omega,$$

for the realization of a random variable is used.

- Throwing two dice is a random event.
- Mapping a throw onto the sum of the numbers the dice show, is a **random variable**.
- If we actually throw the dice and they show certain numbers, the sum of these numbers is the **realization** of the random value.

Random variables: Examples

- Rolling a dice: The value obtained is a random variable.
- Rolling two dice: The pair of both values is a two-dimensional random vector.
- Rolling two dice: The sum of both values is a random variable.
- Consider

$$\Omega = \left\{ egin{array}{l} \mbox{(all possible choices to take one picture out of)} \\ \mbox{a finite set of pictures with either cats or dogs.} \end{array}
ight.$$

The mapping $X:\Omega \to \{0,1\}$, defined as

$$X(\omega) := \left\{ egin{array}{ll} 0, & ext{picture } \omega \in \Omega ext{ shows a cat} \\ 1, & ext{picture } \omega \in \Omega ext{ shows a dog} \end{array}
ight.$$

is a random variable.

Discrete and continuous random variables

- A random variable is called **discrete** if it attains only countably many values $x_k \in \mathbb{R}, k \in \mathbb{N}$.
- If the set Ω is finite or countably infinite, then X is a discrete random variable.
 - The sets $\{0,1\}, \{1,2,3,4,5,6\}$ are finite and thus countable.
 - The sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countably infinite.
- All examples above were discrete random variables:
 - Rolling a dice: $X(\omega) \in \{1, 2, 3, 4, 5, 6\}$ for all $\omega \in \Omega$.
 - Rolling two dice: $X(\omega) \in \{(1,1),(1,2),\ldots,(6,6)\}$ for all $\omega \in \Omega$.
 - Rolling two dice, sum: $X(\omega) \in \{2, ..., 12\}$ for all $\omega \in \Omega$.
 - Pictures of cats/dogs: $X(\omega) \in \{0,1\}$ for all $\omega \in \Omega$.
- A random variable is called continuous if it may attain uncountably many values.
- If the set Ω is countably infinite, then X may be a discrete or a continuous random variable.
 - The sets \mathbb{R} , \mathbb{R}^n , [0,1], $[0,1]^n$ are uncountably infinite.

Random variable - Example: (Pseudo-) random number generator

• One way to generate (pseudo-)random numbers $x_k, k \in \mathbb{N}$, is:

$$a_0 \in \mathbb{N}, \quad a_{k+1} := ba_k + c \mod m, k \in \mathbb{N}, \quad x_k := \frac{a_k}{m} \in [0, 1],$$
 (1)

where b, c, m are fixed parameters.

- For fixed **random seed** a_0 , the sequence is deterministic.
- If a_0 is taken randomly, each x_k in (1) is the realization of a random variable

$$X:\Omega\rightarrow [0,1].$$

- On a computer, ao is usually taken pseudo-randomly using the system clock etc.
- Thus, (1) actually does not realize a random variable.
- Even if a_0 is random, (1) can attain only countably many values.
- However, it is taken as an approximation of a **continuous** random variable, i.e., one that may attain all uncountably many values in [0, 1].

Random events and data science

- In data science, we often regard the given data as realizations of a random variable.
- Measurement results are often considered as random variables, since they usually contain measurement errors.
- Data from unknown or not exactly known processes are also considered as being random and are treated as random variables:
- Consider data from social behavior (internet data)
- data from social, medical, biological, pharmaceutical, ... experiments
- natural phenomena, e.g. weather.
- Consider rolling dice: there are clear physical laws that determine this process, ...
- ... but the dependency on parameters (position, direction of throw, velocity) is too high.
- Thus, an exact computation is difficult ...
- ... and the modeling as random variable is used.
- Real random processes are rare in nature \rightsquigarrow quantum physics, radioactive decay.

Contents

- Basic Stochastics and Statistics
 - Random Events, Random Numbers, Random Variables
 - Probabilities
 - Expectation, Variance and Covariance
 - Random Samples

Mathematical assumption for the set of events

For the exact mathematical definition of probabilities, we need an abstract concept:

Definition (Sigma-Algebra)

Let
$$\Omega \neq \emptyset$$
. A system \mathcal{A} of subsets of Ω , i.e., $\mathcal{A} \subset \mathcal{P}(\Omega)$ is called σ -algebra (on Ω) if
 (1) $\Omega \in \mathcal{A}$, (2) $A \in \mathcal{A} \Rightarrow A^c := \Omega \setminus A \in \mathcal{A}$, (3) $A_k \in \mathcal{A}, k \in \mathbb{N} \Rightarrow \bigcup_{k \in \mathbb{N}} A_k \in \mathcal{A}$.

- The set $\{\{\},\Omega\}$ is a trivial σ -algebra on Ω .
- The power set $\mathcal{P}(\Omega)$ (set of all subsets of Ω) is always a σ -algebra on Ω .
- Let $\Omega = \{1, 2, 3, 4, 5, 6\}$ (rolling dice). The systems of subsets of Ω , given by

$$\mathcal{A} := \big\{ \{\}, \Omega \big\} = \big\{ \{\}, \{1, 2, 3, 4, 5, 6\} \big\},$$

$$\mathcal{A} := \mathcal{P}(\Omega) = \big\{ \{\}, \{1\}, \dots, \{1, 2\}, \dots, \{3, 4, 5, 6\}, \dots, \{2, 3, 4, 5, 6\}, \dots, \{1, 2, 3, 4, 5, 6\} \big\}$$

are both σ -algebras on Ω . Clearly, the second one is more appropriate in this case.

Probability measures

Definition (Probability measure)

Let \mathcal{A} be a σ -algebra on Ω . A mapping $P: \mathcal{A} \to [0,1]$ is called **probability (measure)** if:

$$(1) \ P(\Omega) = 1, \qquad (2) \ P\Big(\bigcup_{i \in \mathbb{N}} A_i\Big) = \sum_{i \in \mathbb{N}} P(A_i) \quad \text{for } A_i \in \mathcal{A}, A_i \cap A_j = \emptyset, i, j \in \mathbb{N}.$$

The triple (Ω, \mathcal{A}, P) is called **probability space**.

- Rolling dice: $\Omega = \{1, 2, 3, 4, 5, 6\}$ with the σ -algebra $\mathcal{A} = \{\{\}, \{1, 2, 3, 4, 5, 6\}\}$. Then the setting $P(\{\}) = 0$, $P(\Omega) = 1$ defines a probability measure.
- Using $\mathcal{A} = \{\{\}, \{1\}, \dots, \{6\}, \{1, 2\}, \dots, \{1, 2, 3, 4, 5, 6\}\}$, the setting $P(\{1\}) = \dots = P(\{6\}) = \frac{1}{6}$ and applying (2) from above defines a probability measure as well.

Probabilities associated with discrete random variables

A discrete random variable X can attain only countably many values $x_k, k \in \mathbb{N}$.

Definition

For a discrete random variable $X:\Omega\to\mathbb{R}$, the probability for X attaining a value $x\in\mathbb{R}$ is denoted by

$$P(X = x)$$
.

The function

$$F_X : \mathbb{R} \to [0,1], \quad F_X(x) := P(X \le x) = \sum_{s \le x} P(X = s)$$

is called (cumulative) distribution function (cdf) of X.

• Rolling a dice with $\mathcal{A} = \{\{\}, \{1\}, \dots, \{6\}, \dots, \{1, 2, 3, 4, 5, 6\}\}$, taking the value of the dice as random variable. $P(X = 1) = \dots P(X = 6) = \frac{1}{6}$. $F_X(2) = \sum_{s \le 2} P(X \le s) = P(X = 1) + P(X = 2) = \frac{1}{3}$.

Example: Probability of a discrete random variable, sum of two dice

- Set of events: $\Omega = \{\{1,1\},\{1,2\},\ldots,\{6,6\}\}, \sigma$ -algebra: $\mathcal{A} = \mathcal{P}(\Omega)$.
- Random variable: $X : \Omega \ni \omega = (\omega_1, \omega_2) \mapsto X(\omega) := \omega_1 + \omega_2$.
- Probabilities:

$$(\omega_{1}, \omega_{2}) = (1, 1) \rightsquigarrow P(X = 2) = \frac{1}{36}, \quad (\omega_{1}, \omega_{2}) = (6, 6) \rightsquigarrow P(X = 12) = \frac{1}{36},$$

$$(\omega_{1}, \omega_{2}) \in \{(1, 2), (2, 1)\} \rightsquigarrow P(X = 3) = \frac{2}{36},$$

$$(\omega_{1}, \omega_{2}) \in \{(5, 6), (6, 5)\} \rightsquigarrow P(X = 11) = \frac{2}{36}, \dots$$

$$P(X = 4) = P(X = 10) = \frac{3}{36} \quad P(X = 5) = P(X = 9) = \frac{4}{36}$$

$$P(X = 6) = P(X = 8) = \frac{5}{36} \quad P(X = 7) = \frac{6}{36}.$$

Continuous random variables: probability density function

Definition

For a continuous random variable X, the probability for X attaining a value in [a, b] is given by

$$P(a \le X \le b) := \int_a^b f_X(x) dx.$$

The function $f_X : \mathbb{R} \to \mathbb{R}_{\geq 0}$ is called the **probability** density function (pdf) of X. A probability density function is piecewise continuous and satisfies

$$\int_{-\infty}^{\infty} f_X(x) dx = 1.$$

Example: Gauss pdf,

area =
$$P(-1 \le X \le -0.5)$$

Continuous random variables: cumulative distribution function

Definition

For a continuous random variable X, the function

$$F_X: \mathbb{R} \to [0,1],$$

$$F_X(x) := \int_{-\infty}^x f_X(s) \, ds = P(X \le x)$$

is called the **(cumulative) distribution function (cdf)**. A cumulative distribution function is non-decreasing and satisfies

$$\lim_{x \to -\infty} F_X(x) = 0, \quad \lim_{x \to \infty} F_X(x) = 1.$$

Example: Gauss cdf and pdf

Contents

- Basic Stochastics and Statistics
 - Random Events, Random Numbers, Random Variables
 - Probabilities
 - Expectation, Variance and Covariance
 - Random Samples

Expectation of a random variable

Definition (Expectation/Expected Value)

For a discrete random variable X, we define the **expectation** (or **expected value**) as

$$\mathbb{E}(X) := \sum_{k \in \mathbb{N}} x_k P(X = x_k),$$

and for a continuous random variable (with density f_X) as

$$\mathbb{E}(X) := \int_{\mathbb{R}} x \, f_X(x) dx.$$

For vectors and matrices of random variables, the expectation is defined component-wise.

- $\mathbb{E}(X)$ is the value that we "expect" as average of a high number of realizations of X.
- The expectation is linear: For random variables X_1, X_2 and $\alpha \in \mathbb{R}$, it holds

$$\mathbb{E}(\alpha X_1 + X_2) = \alpha \mathbb{E}(X_1) + \mathbb{E}(X_2).$$

Expectation of a random variable - Examples

• Rolling a dice:

$$\mathbb{E}(X) = (1+2+3+4+5+6)\frac{1}{6} = \frac{21}{6} = \frac{7}{2}.$$

• Sum of two dice, probabilities:

$$P(X = 2) = P(12) = \frac{1}{36}, P(3) = \frac{2}{36} = P(11) = \frac{2}{36}, P(4) = P(10) = \frac{3}{36},$$

$$P(5) = P(9) = \frac{4}{36}, P(6) = P(8) = \frac{5}{36}, P(7) = \frac{6}{36}$$

$$\mathbb{E}(X) = \frac{2 + 12 + 2(3 + 11) + 3(4 + 10) + 4(5 + 9) + 5(6 + 8) + 6 \cdot 7}{36} = \frac{18 \cdot 14}{36} = 7.$$

Linearity of expectation: $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.

• Uniform random number generator on [0, 1]:

Expectation of a random variable - Examples

• Rolling a dice:

$$\mathbb{E}(X) = (1+2+3+4+5+6)\frac{1}{6} = \frac{21}{6} = \frac{7}{2}.$$

• Sum of two dice, probabilities:

$$P(X = 2) = P(12) = \frac{1}{36}, P(3) = \frac{2}{36} = P(11) = \frac{2}{36}, P(4) = P(10) = \frac{3}{36},$$

$$P(5) = P(9) = \frac{4}{36}, P(6) = P(8) = \frac{5}{36}, P(7) = \frac{6}{36}$$

$$\mathbb{E}(X) = \frac{2 + 12 + 2(3 + 11) + 3(4 + 10) + 4(5 + 9) + 5(6 + 8) + 6 \cdot 7}{36} = \frac{18 \cdot 14}{36} = 7.$$

Linearity of expectation: $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.

• Uniform random number generator on [0, 1]:

$$\int_{\mathbb{R}} x \, f_X(x) dx = \int_0^1 x dx = \frac{1}{2}.$$

Variance of a random variable

Definition (Variance)

For a random variable X, the **variance** is defined as

$$\mathbb{V}(X) := \mathbb{E}\left((X - \mathbb{E}(X))^2\right)$$

- $\mathbb{V}(X)$ is the expectation of the (squared) difference of the value of X and its expectation, i.e., the average deviation of X from its expectation for a high number of realizations.
- The variance is also called 2nd centered moment:

Definition (Moments)

For a random variable X, $\mathbb{E}(X^k)$ is called the k-th moment, and $\mathbb{E}\left((X - \mathbb{E}(X))^k\right)$ the k-th centered moment.

• Rolling a dice: $\mathbb{E}(X) = \frac{7}{2}$:

$$\mathbb{V}(X) = \mathbb{E}\left(\left(X - \frac{7}{2}\right)^2\right) = \dots$$

• gives:

• Rolling a dice: $\mathbb{E}(X) = \frac{7}{2}$:

$$\mathbb{V}(X) = \mathbb{E}\left(\left(X - \frac{7}{2}\right)^2\right) = \dots$$

gives:

$$\mathbb{V}(X) = \frac{1}{6} \sum_{x=1}^{6} \left(x - \frac{7}{2} \right)^2 = \frac{1}{6} \left(\left(1 - \frac{7}{2} \right)^2 + \dots \left(6 - \frac{7}{2} \right)^2 \right)$$
$$= \frac{1}{6} \left(\left(-\frac{5}{2} \right)^2 + \left(-\frac{3}{2} \right)^2 + \left(-\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 + \left(\frac{3}{2} \right)^2 + \left(\frac{5}{2} \right)^2 \right)$$
$$= \frac{1}{3} \left(\frac{1}{4} + \frac{9}{4} + \frac{25}{4} \right) = \frac{35}{12}.$$

• Sum of two dice: $\mathbb{E}(X) = 7$:

• Sum of two dice: $\mathbb{E}(X) = 7$:

$$\mathbb{V}(X) = \mathbb{E}\left((X-7)^2\right)$$

$$= \frac{1}{36}\left((2-7)^2 + 2(3-7)^2 + 3(4-7)^2 + 4(5-7)^2 + 5(6-7)^2 + 6(7-7)^2 + 5(8-7)^2 + 4(9-7)^2 + 3(10-7)^2 + 2(11-7)^2 + (12-7)^2\right)$$

$$= \frac{1}{36}\left(25 + 2 \cdot 16 + 3 \cdot 9 + 4 \cdot 4 + 5 + 5 + 4 \cdot 4 + 3 \cdot 9 + 2 \cdot 16 + 25\right)$$

$$= \frac{1}{36}\left(50 + 64 + 54 + 32 + 10\right)$$

$$= \frac{210}{36} = \frac{35}{6}$$

• Uniform random number generator on [0,1]: $\mathbb{E}(X)=rac{1}{2}$

$$\mathbb{V}(X) = \mathbb{E}\left(\left(X - \frac{1}{2}\right)^2\right)$$

$$= \int_{\mathbb{R}} \left(x - \frac{1}{2}\right)^2 f_X(x) dx$$

$$= \int_0^1 \left(x - \frac{1}{2}\right)^2 dx$$

$$= \int_0^1 \left(x^2 - x + \frac{1}{4}\right) dx$$

$$= \left[\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{4}\right]_{x=0}^{x=1} = \frac{1}{3} - \frac{1}{2} + \frac{1}{4} = \frac{4 - 6 + 3}{12} = \frac{1}{12}.$$

Covariances and independence of random variables

Definition (Covariance (matrix))

For two random variables X, Y, the **covariance** is defined as

$$Cov(X, Y) := \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$

For a random vector $(X_i)_{i=1}^n$, the **covariance matrix** is defined as

$$Cov(X) := (Cov(X_i, X_j))_{i,i=1}^n$$
.

• The covariance describes the interdependence of random variables.

Definition (Independence of random variables)

The random variables X_i , $i=1,\ldots,n$, are called **(mutually) independent**, if $Cov(X_i,X_j)=0$ for all $i,j=1,\ldots,n, i\neq j$.

Correlation of random variables

Definition (Correlation (matrix))

For two random variables X, Y, the **correlation** is defined as

$$Cor(X, Y) := \frac{Cov(X, Y)}{\sqrt{\mathbb{V}(X)\mathbb{V}(Y)}}$$

For a random vector $(X_i)_{i=1}^n$, the **correlation matrix** is defined as

$$Cor(X) := \left(\frac{Cov(X_i, X_j)}{\sqrt{\mathbb{V}(X_i)\mathbb{V}(X_j)}} \right)_{i, i=1}^n.$$

Random variables are called **uncorrelated (negative/positive correlated)** if their correlation is zero (lower/greater than zero).

• The correlation (matrix) is the normalized covariance (matrix). It has always values (elements) in [-1,1].

Rules for the Variance

• Linearity of \mathbb{E} gives:

$$\mathbb{V}(X) = \mathbb{E}\left(X^{2} - 2\mathbb{E}(X)X + \mathbb{E}(X)^{2}\right) = \mathbb{E}\left(X^{2}\right) - 2\mathbb{E}(X)^{2} + \mathbb{E}(X)^{2} = \mathbb{E}\left(X^{2}\right) - \mathbb{E}(X)^{2}$$

$$\mathbb{V}(\alpha X) = \mathbb{E}\left((\alpha X - \mathbb{E}(\alpha X))^{2}\right) = \mathbb{E}\left((\alpha X - \alpha \mathbb{E}(X))^{2}\right) = \mathbb{E}\left(\alpha^{2}(X - \mathbb{E}(X))^{2}\right)$$

$$= \alpha^{2}\mathbb{E}\left((X - \mathbb{E}(X))^{2}\right) = \alpha^{2}\mathbb{V}(X), \quad \alpha \in \mathbb{R},$$

$$\mathbb{V}(X + Y) = \mathbb{E}\left((X + Y - \mathbb{E}(X + Y))^{2}\right)$$

$$= \mathbb{E}\left((X - \mathbb{E}(X) + Y - \mathbb{E}(Y))^{2}\right)$$

$$= \mathbb{E}\left((X - \mathbb{E}(X))^{2} + 2(X - \mathbb{E}(X))(Y - \mathbb{E}(Y)) + (Y - \mathbb{E}(Y))^{2}\right)$$

$$= \mathbb{E}\left((X - \mathbb{E}(X))^{2}\right) + 2\mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right) + \mathbb{E}\left((Y - \mathbb{E}(Y))^{2}\right)$$

$$= \mathbb{V}(X) + 2Cov(X, Y) + \mathbb{V}(Y).$$

• Rolling a dice: $\mathbb{V}(X) = \frac{35}{12} \rightsquigarrow \text{Sum of two independent throws of a dice: } \mathbb{V}(X+Y) = \frac{35}{6}$.

Rule for Covariance

Lemma

Let
$$X = (X_i)_{i=1}^n$$
 be a random vector and $A \in \mathbb{R}^{m \times n}$. Then $Cov(AX) = A Cov(X)A^{\top}$.

Proof.

The covariance matrix can be written as

$$Cov(X) = \left(\mathbb{E}((X_i - \mathbb{E}(X_i))(X_j - \mathbb{E}(X_j)))\right)_{i,j=1}^n$$

$$= \mathbb{E}\left(\left((X_i - \mathbb{E}(X_i))(X_j - \mathbb{E}(X_j))\right)_{i,j=1}^n\right) = \mathbb{E}\left((X - \mathbb{E}(X))(X - \mathbb{E}(X))^\top\right)$$

This gives, using the linearity of the expectation:

$$Cov(AX) = \mathbb{E}\left((AX - \mathbb{E}(AX))(AX - \mathbb{E}(AX))^{\top}\right)$$

$$= \mathbb{E}\left((AX - A\mathbb{E}(X))(AX - A\mathbb{E}(X))^{\top}\right) = \mathbb{E}\left(A(X - \mathbb{E}(X))(X - \mathbb{E}(X))^{\top}A^{\top}\right)$$

$$= A\mathbb{E}\left((X - \mathbb{E}(X))(X - \mathbb{E}(X))^{\top}\right)A^{\top} = ACov(X)A^{\top}.$$

Contents

- Basic Stochastics and Statistics
 - Random Events, Random Numbers, Random Variables
 - Probabilities
 - Expectation, Variance and Covariance
 - Random Samples

Random samples

To perform a statistical analysis, a given set of data is regarded as a set of realizations of random variables with the same probability distribution.

Definition (Random sample)

A set of random variables $\{X_i, i = 1, ..., n\}$ that

- are mutually independent
- and have the same cumulative distribution or (for a continuous random variable) density function

is called a (random) sample or independent and identically distributed (iid).

- \rightarrow Some authors call the **realizations of iid random variables** a random sample.
- Random variable: Age of the students in the course.
 Taking 10 students out of the group, we obtain a random sample.
- Random variable: Measurement of temperature at some location in the ocean at 0:00. Taking measurements at a number of days is a random sample.

What is important

- A random event is an event that is regarded as being not deterministic. The result of a random event can only be predicted with a probability.
- A random variable associates a real number with a random event.
- Data can be regarded as output of a random event, or as result of a random variable.
- We consider discrete and continuous random variables.
- For both, the distribution function describes the probability that the random variable attains a certain value or values in a certain range.
- For continuous random variables, the distribution can be (and is often) described by the probability density function (pdf).
- Important parameters of (the distribution of) a random variable are expectation, variance, and covariance.
- The covariance is used to define independence of random variables.
- A random sample is a set of independent and identically distributed random variables.