1

Assignment 19

Sri Harsha CH

Abstract—This document explains the representation of transformations by matrix.

Download all python codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment19 /code

and latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment19

1 Problem

Let **A** be an $m \times n$ matrix of rank m with n > m. If for some non-zero real number α , we have $\mathbf{x}^{T}\mathbf{A}\mathbf{A}^{T}\mathbf{x} = \alpha\mathbf{x}^{T}\mathbf{x}$, for all $x \in \mathbf{R}^{m}$, then $\mathbf{A}^{T}\mathbf{A}$ has,

- 1. exactly two distinct eigenvalues.
- 2. 0 as an eigenvalue with multiplicity n m.
- 3. α as a non-zero eigenvalue.
- 4. exactly two non-zero distinct eigenvalues.

2 EXPLANATION

Refer Table 0.

3 Solution

Refer Table 1.

Given	Derivation	
Given	A is a $m \times n$ matrix of rank m with $n > m$.	
	A non-zero real number α .	
	To find eigenvalues of $A^{T}A$.	
Eigenvalues of AA ^T	$\mathbf{A}\mathbf{A}^{\mathrm{T}}$ is a $m \times m$ matrix and $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is a $n \times n$ matrix.	
	Let, λ be a non-zero eigen value of $\mathbf{A}^{T}\mathbf{A}$.	
	$\mathbf{A}^{\mathbf{T}}\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \mathbf{v} \in \mathbf{R}^{\mathbf{n}}$	(2.0.1)
	$\mathbf{A}\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{v} = \lambda \mathbf{A}\mathbf{v}$	(2.0.2)
	Let, $\mathbf{x} = \mathbf{A}\mathbf{v} \mathbf{x} \in \mathbf{R}^{\mathbf{m}}$	(2.0.3)
	$\mathbf{A}\mathbf{A}^{\mathrm{T}}\mathbf{x} = \lambda\mathbf{x}$	(2.0.4)
	$\mathbf{x}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{x} = \lambda \mathbf{x}^{T} \mathbf{x}$	(2.0.5)
	Given, $\mathbf{x}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{x} = \alpha \mathbf{x}^{T} \mathbf{x}$	(2.0.6)
	$\implies \alpha \mathbf{x}^{T} \mathbf{x} = \lambda \mathbf{x}^{T} \mathbf{x}$	(2.0.7)
	From equation (2.0.7), $\lambda = \alpha$ as $ \mathbf{x} \neq 0$	
	$\mathbf{A}^{T}\mathbf{A}$ has an eigenvalue α with multiplicity m .	
Eigenvalues of A^TA	$\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is a $n \times n$ matrix. Given $n > m$,	
	We know that, A^TA and AA^T have same number of non-zero eigenvalues and if one of them has more number of eigenvalues than the other	
	then these eigenvalues are zero.	
	1. From above, as α is non-zero, $\mathbf{A}^{T}\mathbf{A}$ has α as its eigenvalue with multiplicity m	
	2. $A^{T}A$ has 0 as its eigenvalue with multiplicity $n-m$	
	3. Therefore, the two distinct eigenvalues of A^TA are α and 0.	

TABLE 0: Explanation

A ^T A has exactly two distinct eigenvalues.	True statement
$\mathbf{A}^{T}\mathbf{A}$ has 0 as an eigenvalue with multiplicity $n-m$	True statement
A^TA has α as a non-zero eigenvalue	True statement
$A^{T}A$ has exactly two non-zero distinct eigenvalues.	False statement

TABLE 1: Solution