Assignment-1 2020/11/013

6 Construction CBCMAC For a given message med 0,13 lbn & ke keys k, k2 Edo,13", the Scheme is as follows Divide the message into of blocks of length n 2) For each block, cadcutate $t_i = F_k(t_{i-1}, \oplus m_i)$ where to=0", Finally we'll have to 3) colculate $t = F_{k_2}(t_d)$ for verification, check if tag as input & calculated tag are same Proof of Security We findlefine CBCk as CBCk: (40,13") + of 0,13" $CBC_{k}f_{m_{1}}\cdots n_{d}) = F_{k}[F_{k} - (F_{k}(n_{1}) \oplus n_{2}) \oplus \cdots \oplus n_{d})$ RTP $P_{Y}[D^{CBC}F_{R}^{(\cdot)}(B) = 1] - P_{Y}[D^{CBC}f^{(\cdot)}(1^{n}) = 1] \leq q^{\frac{2}{n}}^{2}$ We are using CBC key with a PRF Let $P = \langle X_1, X_2, \dots, X_q \rangle$ $X_i \in (\alpha_0, 13^n)^*$ Yt, 600,13, 6 15159 Pr[Xi = fi] = 1 of f is a fun uniformly randomly P. J. Pr[i Ki=fi] = 1

for
$$X_i \in P$$
 $I_i = X_i$
 $I_2 = CBC_F(x_i) \oplus n_2$
 $I_i = CBC_F(x_i) \oplus n_2$
 $I_i = CBC_F(x_i) \oplus n_2$
 $I_i = CBC_F(x_i) \oplus n_2$

det as consider the exact collision which is defined as if there is collision in $X_i (\exists i \exists j) \exists i \neq j | I_i = I_j)$ as collision between $X_i \land X_j$

collision $(\exists i \exists j) \exists i \neq j | I_i = I_j)$ as collision between $X_i \land X_j$
 $CBC_F(X_i) \neq | \leq i \leq q$ will be uniformly distributed $X_i = I_i \neq i$
 $Y_i = I_i \neq$

Procedure

For steps, c=1 to (t-1) - choose uniform Fx (Ii) $i = + \rightarrow /$ $F_{\alpha}(I_{t})$ i= +1 +0(1-1) → 11 /1 Fx(Ii) $i = l + o(2l-t-2) \rightarrow "$ " $F_{\kappa}(\mathcal{I}_{i}^{!})$

Let collision (k) be collision at kth step

Pr[coll(i,j)] = Pr[(collesion(i)) < Pr[coll(1)]

f 21-t-2 Pr[collision(p)/collision(p-1)]

The first 2 terms represent coll of itself Last term represent last her steps that can have call".

Pr[+i: CBC_F(Xi)=ti] = Pr[+i CBC_F(Xi)=ti/Coll]. Pr(coll) $= 2^{-nq} (1 - P_{Y}[coll])$ $= 2^{-nq} (1 - \frac{q^{2}p^{2}}{2^{n}}) = 2^{-nq} (1 - S)$

... The given CBC is a smooth CBC

: Smooth CBC's unply inclustinguishebility . . Since message was prepared with length, we know that the

inputs out be prefix free

... CBCMAC ès secure