What is Data?

Data is nothing but facts and statistics stored or free flowing over a network, generally it's raw and unprocessed. For example: When you visit any website, they might store you IP address, that is data, in return they might add a cookie in your browser, marking you that you visited the website, that is data, your name, it's data, your age, it's data.

Data becomes information when it is processed.

# Types of data:

Categorical, discrete and continuous

| Feature          | Categorical Data                   | Contínuous Data                        |
|------------------|------------------------------------|----------------------------------------|
| Type of values   | Non-numerical                      | Numerical                              |
| Number of values | Finite                             | Infinite                               |
| Order of values  | No inherent order                  | Order matters                          |
| Examples         | Hair color, blood type, shirt size | Height, weight, temperature, time      |
| Visualization    | Pie charts, bar charts, heatmaps   | Line charts, scatter plots, histograms |
|                  |                                    | Export to Sheets                       |

Here's a clear explanation of the difference between discrete and continuous data, along with examples:

**Discrete data** consists of distinct, countable values that can't be subdivided into smaller units. It often involves integers (whole numbers) and represents items that can be counted.

Examples of discrete data:

- Number of students in a class (e.g., 25)
- Number of cars sold in a month (e.g., 120)
- Shoe size (e.g., 8, 9, 10)
- Number of pets owned (e.g., 0, 1, 2, 3)
- Number of goals scored in a game (e.g., 3)
- Number of items in a shopping cart (e.g., 5)

**Continuous data,** on the other hand, can take on any value within a given range, even values that include decimals or fractions. It represents measurements or quantities that can be divided into smaller units.

Examples of continuous data:

- Height (e.g., 1.75 meters)
- Weight (e.g., 65.3 kilograms)

- Time (e.g., 2.5 hours)
- Temperature (e.g., 23.7 degrees Celsius)
- Distance (e.g., 100.2 kilometers)
- Speed (e.g., 60.5 kilometers per hour)
- Age (e.g., 25.8 years)

#### Key differences:

- Values: Discrete data has distinct, separate values, while continuous data can take on any value within a range.
- Countability: Discrete data can be counted, while continuous data cannot be counted but can be measured.
- Measurement: Discrete data is often measured using whole numbers, while continuous data is often measured using decimals or fractions.
- Visualization: Discrete data is often visualized using bar charts or pie charts, while continuous data is often visualized using line charts, scatter plots, or histograms.

# **Uses of charts based on specification of data:**

Here are some common data visualization charts, the types of data they're best suited for, and examples of their use:

#### 1. Bar Charts:

- Data: Categorical or discrete data, comparisons between categories.
- Use Cases:
  - Comparing sales figures for different products.
  - Showing population distribution across regions.
  - Illustrating survey responses.



Bar chart example

#### 2. Line Charts:

- Data: Continuous data over time, trends, patterns.
- Use Cases:
  - o Tracking temperature changes over a day.
  - o Visualizing stock prices over a year.
  - o Monitoring website traffic growth.



Opens in a new window www.jaspersoft.com

## Line chart example

### 3. Pie Charts:

- Data: Parts of a whole, proportions.
- Use Cases:
  - o Showing budget allocation for different departments.
  - o Illustrating market share for various companies.
  - o Representing the composition of a population by age group.



Pie chart example

## 4. Scatter Plots:

- Data: Relationships between two numerical variables.
- Use Cases:
  - o Exploring correlations between height and weight.
  - Analyzing the relationship between study hours and exam scores.
  - o Investigating patterns in customer spending habits.



Scatter plot example

## 5. Histograms:

- Data: Distribution of continuous data.
- Use Cases:
  - Showing the distribution of test scores.
  - $\circ\quad$  Visualizing the frequency of different income levels.
  - Analyzing the spread of product lifespans.



Histogram example

#### 6. Area Charts:

- Data: Change over time or cumulative values.
- Use Cases:
  - o Visualizing rainfall patterns over a year.
  - Comparing total sales of different products.
  - o Showing population growth over time.



Area chart example

### 7. Heatmaps:

- Data: Variation in intensity across two dimensions.
- Use Cases:
  - Visualizing website user clicks.
  - Showing geographic data like crime rates or population density.
  - Displaying gene expression patterns.



Opens in a new window

techtarget.com

### Heatmap example

### 8. Treemaps:

- Data: Hierarchical data, part-to-whole relationships.
- Use Cases:
  - Visualizing file structure on a computer.
  - o Showing product categories and subcategories in a store.
  - o Illustrating organizational structure.



Treemap example

#### 9. Box Plots:

- Data: Distribution of data, including outliers.
- Use Cases:
  - o Comparing the distribution of test scores between different classes.
  - o Analyzing the variability of product prices.
  - o Investigating the spread of customer satisfaction ratings.



Box plot example

Remember: The best chart type depends on the specific data you're working.