# International Rectifier

# ST303C..C SERIES

#### **INVERTER GRADE THYRISTORS**

#### **Puk Version**

620A

#### **Features**

- Metal case with ceramic insulator
- International standard case TO-200AB (E-PUK)
- All diffused design
- Center amplifying gate
- Guaranteed high dV/dt
- Guaranteed high dl/dt
- High surge current capability
- Low thermal impedance
- High speed performance

#### **Typical Applications**

- Inverters
- Choppers
- Induction heating
- All types of force-commutated converters

case style TO-200AB (E-PUK)

### Major Ratings and Characteristics

| Parameters                         |                   | ST303CC     | Units             |  |
|------------------------------------|-------------------|-------------|-------------------|--|
| I <sub>T(AV)</sub>                 |                   | 620         | А                 |  |
|                                    | @ T <sub>hs</sub> | 55          | °C                |  |
| I <sub>T(RMS)</sub>                |                   | 1180        | А                 |  |
|                                    | @ T <sub>hs</sub> | 25          | °C                |  |
| I <sub>TSM</sub>                   | @ 50Hz            | 7950        | А                 |  |
|                                    | @ 60Hz            | 8320        | А                 |  |
| I <sup>2</sup> t                   | @ 50Hz            | 316         | KA <sup>2</sup> s |  |
|                                    | @ 60Hz            | 289         | KA <sup>2</sup> s |  |
| V <sub>DRM</sub> /V <sub>RRM</sub> |                   | 400 to 1200 | V                 |  |
| t <sub>q</sub> range (*)           |                   | 10 to 30    | μs                |  |
| T <sub>J</sub>                     |                   | - 40 to 125 | °C                |  |

<sup>(\*)</sup>  $t_q = 10$  to 20µs for 400 to 800V devices  $t_q = 15$  to 30µs for 1000 to 1200V devices

### **ELECTRICAL SPECIFICATIONS**

#### Voltage Ratings

| Type number | Voltage<br>Code | V <sub>DRM</sub> /V <sub>RRM</sub> , maximum repetitive peak voltage | V <sub>RSM</sub> , maximum<br>non-repetitive peak voltage | $I_{DRM}/I_{RRM}$ max.<br>@ $T_J = T_J$ max. |
|-------------|-----------------|----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|
|             |                 | V                                                                    | V                                                         | mA                                           |
|             | 04              | 400                                                                  | 500                                                       |                                              |
| ST303CC     | 08              | 800                                                                  | 900                                                       | 50                                           |
| 0100000     | 10              | 1000                                                                 | 1100                                                      | 30                                           |
|             | 12              | 1200                                                                 | 1300                                                      |                                              |

#### **Current Carrying Capability**

| Current Garrying Capability      |                |                 |       |                 |                  |                   |       |  |  |
|----------------------------------|----------------|-----------------|-------|-----------------|------------------|-------------------|-------|--|--|
| Frequency                        | 180∘el         | I <sub>TM</sub> | 180°6 | I <sub>TM</sub> | 100μ             | S I <sub>TM</sub> | Units |  |  |
| 50Hz                             | 1314           | 1130            | 2070  | 1940            | 6930             | 6270              |       |  |  |
| 400Hz                            | 1260           | 1040            | 2190  | 1880            | 3440             | 2960              |       |  |  |
| 1000Hz                           | 900            | 700             | 1900  | 1590            | 1850             | 1540              | Α     |  |  |
| 2500Hz                           | 340            | 230             | 910   | 710             | 740              | 560               |       |  |  |
| Recovery voltage Vr              | 50             | 50              | 50    | 50              | 50               | 50                | .,    |  |  |
| Voltage before turn-on Vd        | V <sub>D</sub> | RM              | V     | DRM             | V <sub>DRM</sub> |                   | · v   |  |  |
| Rise of on-state current di/dt   | 50             | 50              | -     | -               | -                | -                 | A/μs  |  |  |
| Heatsink temperature             | 40             | 55              | 40    | 55              | 40               | 55                | °C    |  |  |
| Equivalent values for RC circuit | 10Ω/0          | .47µF           | 10Ω/0 | .47µF           | 10Ω/0            | .47µF             |       |  |  |

#### On-state Conduction

|                                                  | Parameter                            | ST303CC   | Units             | Conditions                            |                                       |                                 |  |  |  |
|--------------------------------------------------|--------------------------------------|-----------|-------------------|---------------------------------------|---------------------------------------|---------------------------------|--|--|--|
| I <sub>T(AV)</sub> Max. average on-state current |                                      | 620 (230) | Α                 | 180° conduction, half sine wave       |                                       |                                 |  |  |  |
| . ,                                              | @ Heatsink temperature               | 55 (85)   | °C                | double side                           | double side (single side) cooled      |                                 |  |  |  |
| I <sub>T(RMS)</sub>                              | Max. RMS on-state current            | 1180      |                   | DC @ 25°C                             | 25°C heatsink temperature double side |                                 |  |  |  |
| I <sub>TSM</sub>                                 | Max. peak, one half cycle,           | 7950      |                   | t = 10ms                              | No voltage                            |                                 |  |  |  |
|                                                  | non-repetitive surge current         | 8320      | Α                 | t = 8.3ms                             | reapplied                             |                                 |  |  |  |
|                                                  |                                      | 6690      |                   | t = 10ms                              | 100% V <sub>RRM</sub>                 |                                 |  |  |  |
|                                                  |                                      | 7000      |                   | t = 8.3ms                             | reapplied                             | Sinusoidal half wave,           |  |  |  |
| I <sup>2</sup> t                                 | Maximum I2t for fusing               | 316       |                   | t = 10ms                              | No voltage                            | Initial $T_J = T_J \text{ max}$ |  |  |  |
|                                                  |                                      | 289       | 1642              | t = 8.3ms                             | reapplied                             |                                 |  |  |  |
|                                                  |                                      | 224       | KA <sup>2</sup> s | t = 10ms                              | 100% V <sub>RRM</sub>                 |                                 |  |  |  |
|                                                  |                                      | 204       |                   | t = 8.3ms                             | reapplied                             |                                 |  |  |  |
| I²√t                                             | Maximum I <sup>2</sup> √t for fusing | 3160      | KA²√s             | t = 0.1 to 10ms, no voltage reapplied |                                       |                                 |  |  |  |

#### On-state Conduction

|                     | Parameter                                    | ST303CC | Units | Conditions                                                                                            |
|---------------------|----------------------------------------------|---------|-------|-------------------------------------------------------------------------------------------------------|
| V <sub>TM</sub>     | Max. peak on-state voltage                   | 2.16    |       | $I_{TM}$ = 1255A, $T_J = T_J$ max, $t_p$ = 10ms sine wave pulse                                       |
|                     | Low level value of threshold voltage         | 1.44    | V     | $(16.7\% \text{ x } \pi \text{ x }  _{T(AV)} < I < \pi \text{ x }  _{T(AV)}), T_J = T_J \text{ max.}$ |
| V <sub>T(TO)2</sub> | High level value of threshold voltage        | 1.48    |       | $(I > \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$                                                  |
| r <sub>t1</sub>     | Low level value of forward slope resistance  | 0.57    | mΩ    | $(16.7\% \times \pi \times I_{T(AV)} < I < \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$             |
| r <sub>t2</sub>     | High level value of forward slope resistance | 0.56    | 11122 | $(I > \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$                                                  |
| I <sub>H</sub>      | Maximum holding current                      | 600     | mA    | $T_J = 25^{\circ}C, I_T > 30A$                                                                        |
| I <sub>L</sub>      | Typical latching current                     | 1000    | IIIA  | $T_J = 25^{\circ}C, V_A = 12V, Ra = 6\Omega, I_G = 1A$                                                |

### Switching

|                | Parameter                                             | ST303 | 3CC | Units | Conditions                                                                                                                         |
|----------------|-------------------------------------------------------|-------|-----|-------|------------------------------------------------------------------------------------------------------------------------------------|
| di/dt          | Max. non-repetitive rate of rise of turned-on current | 1000  |     | A/µs  | $I_{J} = I_{J} \text{ max}, V_{DRM} = \text{rated } V_{DRM}$ $I_{TM} = 2 \text{ x di/dt}$                                          |
| t <sub>d</sub> | Typical delay time                                    | 0.83  |     | μs    | $T_J$ = 25°C, $V_{DM}$ = rated $V_{DRM}$ , $I_{TM}$ = 50A DC, $t_p$ = 1 $\mu$ s Resistive load, Gate pulse: 10V, 5 $\Omega$ source |
|                |                                                       | Min   | Max | μδ    | $T_J = T_J \text{ max}, I_{TM} = 550\text{A}, \text{ commutating di/dt} = 40\text{A/µs}$                                           |
| t <sub>q</sub> | Max. turn-off time (*)                                | 10    | 30  |       | $V_R = 50V$ , $t_p = 500\mu s$ , dv/dt: see table in device code                                                                   |

<sup>(\*)</sup>  $t_q = 10$  to 20µs for 400 to 800V devices;  $t_q = 15$  to 30µs for 1000 to 1200V devices.

### Blocking

|                                      | Parameter                                          | ST303CC | Units | Conditions                                                                   |
|--------------------------------------|----------------------------------------------------|---------|-------|------------------------------------------------------------------------------|
| dv/dt                                | Maximum critical rate of rise of off-state voltage | 500     | V/μs  | $T_J = T_J$ max. linear to 80% $V_{DRM}$ , higher value available on request |
| I <sub>RRM</sub><br>I <sub>DRM</sub> | Max. peak reverse and off-state leakage current    | 50      | mA    | $T_J = T_J \text{ max, rated V}_{DRM}/V_{RRM} \text{ applied}$               |

### Triggering

|                    | Parameter                                | ST303CC | Units | Conditions                                            |
|--------------------|------------------------------------------|---------|-------|-------------------------------------------------------|
| P <sub>GM</sub>    | Maximum peak gate power                  | 60      | 147   | T T may 6 5011- 40/ 50                                |
| P <sub>G(AV)</sub> | Maximum average gate power               | 10      | W     | $T_J = T_J \text{ max, } f = 50 \text{Hz, } d\% = 50$ |
| I <sub>GM</sub>    | Max. peak positive gate current          | 10      | Α     | $T_J = T_J \text{ max, } t_p \le 5 \text{ms}$         |
| +V <sub>GM</sub>   | Maximum peak positive gate voltage       | 20      | v     | T - T may t < 5mg                                     |
| -V <sub>GM</sub>   | Maximum peak negative gate voltage       | 5       | V     | $T_J = T_J \text{ max, } t_p \le 5 \text{ms}$         |
| I <sub>GT</sub>    | Max. DC gate current required to trigger | 200     | mA    | T 25°C V 12V Pa 60                                    |
| V <sub>GT</sub>    | Max. DC gate voltage required to trigger | 3       | V     | $T_J = 25^{\circ}C$ , $V_A = 12V$ , $Ra = 6\Omega$    |
| I <sub>GD</sub>    | Max. DC gate current not to trigger      | 20      | mA    | T. T. many rested V. applied                          |
| V <sub>GD</sub>    | Max. DC gate voltage not to trigger      | 0.25    | ٧     | $T_J = T_J$ max, rated $V_{DRM}$ applied              |

#### Thermal and Mechanical Specification

|                    | <u> </u>                         |                    |        |                                 |
|--------------------|----------------------------------|--------------------|--------|---------------------------------|
|                    | Parameter                        | ST303CC            | Units  | Conditions                      |
| T <sub>J</sub>     | Max. operating temperature range | -40 to 125         | °C     |                                 |
| T <sub>stg</sub>   | Max. storage temperature range   | -40 to 150         |        |                                 |
| R <sub>thJ-h</sub> | Max. thermal resistance,         | 0.09               | 16/104 | DC operation single side cooled |
|                    | junction to heatsink             | 0.04               | K/W    | DC operation double side cooled |
| R <sub>thC-h</sub> | s Max. thermal resistance,       | 0.020              | K/W    | DC operation single side cooled |
|                    | case to heatsink                 | 0.010              | 10,44  | DC operation double side cooled |
| F                  | Mounting force, ± 10%            | 9800               | N      |                                 |
|                    |                                  | (1000)             | (Kg)   |                                 |
| wt                 | Approximate weight               | 83                 | g      |                                 |
|                    | Case style                       | TO - 200AB (E-PUK) |        | See Outline Table               |

## $\Delta R_{\text{thJ-hs}} \, \text{Conduction}$

(The following table shows the increment of thermal resistence R<sub>In.I-hs</sub> when devices operate at different conduction angles than DC)

|                  | פודעונו          |             |             |              |       |            |                          |  |  |  |
|------------------|------------------|-------------|-------------|--------------|-------|------------|--------------------------|--|--|--|
| Conduction angle | Sinusoidal       | conduction  | Rectangula  | r conduction | Units | Conditions |                          |  |  |  |
|                  | Conduction angle | Single Side | Double Side | Single Side  |       |            | Conditions               |  |  |  |
|                  | 180°             | 0.010       | 0.010       | 0.007        | 0.007 |            |                          |  |  |  |
|                  | 120°             | 0.012       | 0.012       | 0.012        | 0.013 |            |                          |  |  |  |
|                  | 90°              | 0.015       | 0.015       | 0.016        | 0.017 | K/W        | $T_J = T_J \text{ max.}$ |  |  |  |
|                  | 60°              | 0.022       | 0.022       | 0.023        | 0.023 |            |                          |  |  |  |
|                  | 30°              | 0.036       | 0.036       | 0.036        | 0.037 |            |                          |  |  |  |

#### Ordering Information Table

#### **Device Code**



- 1 Thyristor
- 2 Essential part number
- 3 3 = Fast turn off
- 4 C = Ceramic Puk
- 5 Voltage code: Code x 100 = V<sub>RRM</sub> (See Voltage Rating Table)
- 6 C = Puk Case TO-200AB (E-PUK)
- 7 Reapplied dv/dt code (for t<sub>a</sub> test condition)
- 8 t<sub>a</sub> code -
- 9 0 = Eyelet term. (Gate and Aux. Cathode Unsoldered Leads)
  - 1 = Fast-on term. (Gate and Aux. Cathode Unsoldered Leads)
  - 2 = Eyelet term. (Gate and Aux. Cathode Soldered Leads)
  - 3 = Fast-on term. (Gate and Aux. Cathode Soldered Leads)
- 10 Critical dv/dt:

None = 500V/µsec (Standard value)

L = 1000V/µsec (Special selection)

| dv/dt - t <sub>q</sub> combinations available |        |    |    |     |      |     |  |  |  |
|-----------------------------------------------|--------|----|----|-----|------|-----|--|--|--|
| dv/dt                                         | (V/µs) | 20 | 50 | 100 | 200  | 400 |  |  |  |
| t <sub>q</sub> (µs)                           | 10     | CN | DN | EN  | FN * | ZH  |  |  |  |
| -                                             | 12     | CM | DM | EM  | FM   | HM  |  |  |  |
| up to 800V                                    | 15     | CL | DL | EL  | FL * | HL  |  |  |  |
|                                               | 20     | CK | DK | EK  | FK * | HK  |  |  |  |
| t <sub>q</sub> (µs)                           | 15     | CL |    |     |      |     |  |  |  |
| ч                                             | 18     | CP | DP |     |      |     |  |  |  |
|                                               | 20     | CK | DK | EK  | FK * | HK  |  |  |  |
| only for                                      | 25     | CJ | DJ | EJ  | FJ * | HJ  |  |  |  |
| 1000/1200V                                    | 30     |    | DH | EH  | FH   | НН  |  |  |  |

\*Standard part number.
All other types available only on request.

#### Outline Table





Fig. 1 - Current Ratings Characteristics



Fig. 2 - Current Ratings Characteristics



Fig. 3 - Current Ratings Characteristics



Fig. 5 - On-state Power Loss Characteristics



Fig. 7 - Maximum Non-repetitive Surge Current Single and Double Side Cooled



Fig. 4 - Current Ratings Characteristics



Fig. 6 - On-state Power Loss Characteristics



Fig. 8 - Maximum Non-repetitive Surge Current Single and Double Side Cooled



Fig. 9 - On-state Voltage Drop Characteristics



Fig. 11 - Reverse Recovered Charge Characteristics



Fig. 10 - Thermal Impedance  $Z_{thJ\text{-}hs}$  Characteristics



Fig. 12 - Reverse Recovery Current Characteristics



Fig. 13 - Frequency Characteristics



Fig. 14 - Frequency Characteristics



Fig. 15 - Frequency Characteristics



Fig. 16 - Maximum On-state Energy Power Loss Characteristics



Fig. 17 - Gate Characteristics