Ejercicios resueltos de propiedades de estimadores

Estadística II – Inferencia Estadística

Álvaro Toledo

A continuación, se presentan los resultados al lanzar 20 veces una moneda (no necesariamente equilibrada):

Eventos: C: cara, S: sello

$X_1 = 1$	X2= 0								
X	S	S	S	×	S	×	S	S	S
X	%	- K	S	S	K	S	Ø	S	X

Se define la variable aleatoria X_i : número de caras al lanzar una moneda una vez. i=1,...,20.

- a) Describa la distribución de la población asociada al **experimento aleatorio** e indique el parámetro de interés.
- b) Se propone como estimador para el <u>parámetro</u> de la distribución planteada en a) la proporción muestral, es decir:

$$\bar{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

¿Es \bar{p} un estimador insesgado?.

- c) Estime puntualmente la proporción de caras.
- d) Obtenga el error cuadrático medio del estimador \bar{p} .

$$X_{i} = \begin{cases} 0 & \text{is sellow} \\ 1 & \text{is contact} \end{cases}$$

$$i = 1, 2, \dots, 20$$

$$\overline{p} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\mathbb{E}(\overline{P}) = \mathbb{E}(\frac{1}{N}\sum_{i=1}^{N}X_{i}) = \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}(X_{i}) = \frac{1}{N}\sum_{i=1}^{N}P$$

$$= \frac{1}{N}\cdot \mathbb{E}(\overline{P}) = P$$

a)
$$X_i \sim \text{Bin} (n=1, p)$$
 $X_i \sim \text{Ber} (p) \quad \forall i=1,..., 22$

El parámetro de interés es la proporción de caras "p"

 $\Rightarrow E(x) = n \cdot p = 1 \cdot p = p$
 $\Rightarrow \forall \text{ar}(x) = \cancel{n} \cdot p \cdot (1-p) = p \cdot (1-p)$

$$\Rightarrow \mathbb{E}(X) = n \cdot p = 1 \cdot p = p$$

$$\Rightarrow \sqrt{\alpha}r(X) = n \cdot p \cdot (1 - p) = p \cdot (1 - p)$$

C)
$$\hat{p} = \frac{1}{20} \cdot 9 = \frac{9}{20} = 0.45$$
 ; $X_i \sim Bin (n = 1, \hat{p} = 0.45)$

d)
$$ECM(\hat{p}) = Var(\hat{p}) + Sesgo^{2}(\hat{p})$$
; $\bar{p} = \hat{p}$
 \hat{p} es insistado \rightarrow sesgo $(\hat{p}) = 0$
 $\therefore ECM(\hat{p}) = Var(\hat{p})$

$$Vor(\hat{\rho}) = Vor(\frac{1}{N}\sum X_i) = \frac{1}{N^2} \cdot \sum_{i=1}^{n} Vor(X_i) = \frac{1}{N^2} \cdot \sum_{i=1}^{n} \rho(1-\rho)$$

$$= \frac{1}{N^2} \cdot M \cdot \rho(1-\rho)$$

$$= (M(\hat{\rho})) = P(1-\rho)$$

Sea X_1 , X_2 , X_3 , X_4 v.a, iid con $E(X_i) = \mu$ y $V(X_i) = 2\mu^2$, i=1,...,4. Considere los estimadores μ_1 y μ_2 de la media poblacional. Se sabe de ellos lo siguiente:

$$E(\hat{\mu}_1) = 3\mu, \ E(\hat{\mu}_2) = \mu \ , \ \underline{Var}(\hat{\mu}_2) = \frac{\mu^2}{4} \ , \quad \underline{ECM}(\hat{\mu}_1) = \frac{5\mu^2}{100}$$
instance !!!

- a) Determine la varianza de μ_1
- b) Determine el ECM de $\hat{\mu}_2$.
- c) ¿Cuál de los dos estimadores es mejor? Justifique su respuesta.

a)
$$ECM(\hat{\mu_1}) = Var(\hat{\mu_1}) + Sesso^2(\hat{\mu_1})$$

 $5\mu^2$? $9bs: Sesso(\hat{\mu_1}) = E(\hat{\mu_1}) - \mu e$
 $= 3\mu - \mu = 2\mu$
 $Ser(\hat{\mu_1}) = 5\mu^2 - 4\mu^2 = \mu^2$

b)
$$ECM(\mu_z) = Var(\mu_z) = \frac{\mu^2}{4}$$

c)
$$ECM(\mu_1) = 5\mu^2$$
 > $ECM(\hat{\mu}_2) = \frac{\mu^2}{4}$; $\mu \neq 0$
 $\hat{\mu}_2$ es mijor estimador que $\hat{\mu}_1$

Si
$$\mu = 0$$
, entonces, $\hat{\mu}_1 + \hat{\mu}_2$ son ignales (ninguno es mejor que el otro)

m.a

Sea X_1 , X_2 y X_3 v.a, iid con $E(X_i) = \mu$ y $V(X_i) = \sigma^2$. Considere los siguientes estimadores puntuales de la media poblacional.

$$\rho_1 = \frac{1}{3}(X_1 + X_2 + X_3)$$

$$\rho_2 = \left(\frac{1}{2}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3\right)$$

$$\rho_3 = \frac{1}{3}(3X_1 + 2X_2 + X_3)$$

- a) Determine cuál(es) de los estimadores propuestos es insesgado. $\boxed{\Box}$ ($\cancel{\lambda}$) = $\cancel{\Box}$
- b) Determine la varianza de los estimadores.
- c) Determine el ECM (error cuadrático medio) para los tres estimadores de la media poblacional
- d) Determine el EIMV (estimador insesgado de varianza mínima)

: M'es insesgado.

$$\mathbb{E}(\mu_{2}^{2}) = \mathbb{E}\left(\frac{1}{2} \times_{1} + \frac{1}{4} \times_{2} + \frac{1}{4} \times_{3}\right) = \frac{1}{2} \mathbb{E}(X_{1}) + \frac{1}{4} \mathbb{E}(X_{2}) + \frac{1}{4} \mathbb{E}(X_{3})$$

$$= \frac{1}{2} \mu_{1} + \frac{1}{4} \mu_{2} + \frac{1}{4} \mu_{3} = \mu_{3}$$

i lez es insesquado.

$$\mathbb{E}(\hat{\mu_{3}}) = \mathbb{E}(\frac{1}{3}(3x_{1} + 2x_{2} + x_{3})) = \frac{1}{3} \cdot (3\mathbb{E}(x_{1}) + 2\mathbb{E}(x_{2}) + \mathbb{E}(x_{3}))$$

$$= \frac{1}{3} \cdot (3\mu + 2\mu + \mu) = \frac{1}{3}\mu = \frac{1}{3}\mu \neq \mu$$

$$= \frac{1}{1} \Delta_{s} + \frac{10}{1} \Delta_{s} + \frac{10}{1} \Delta_{s} = \frac{10}{10} \Delta_{s} = \frac{10}{10} \Delta_{s} = \frac{8}{3} \Delta_{s}$$

$$= \frac{1}{1} A^{aL} (\lambda^{1}) + \frac{10}{1} A^{oL} (\lambda^{s}) + \frac{10}{1} A^{aL} (\lambda^{3})$$

$$A = A^{aL} (A^{S}) = A^{aL} (\frac{S}{1} \lambda^{1} + \frac{10}{1} \lambda^{5} + \frac{10}{1} \lambda^{3})$$

 $Var(\mu_3) = Var(\frac{1}{3}(3x_1 + 2x_2 + x_3)) = \frac{1}{9}(9Var(x_1) + 4Var(x_2) + Var(x_3))$

 $= \frac{d}{l} \left(d a_s + d a_s + a_s \right) = \frac{d}{ld} a_s$

$$\operatorname{Aut}\left(\hat{h}_{1}^{s}\right) = \operatorname{Aut}\left(\frac{1}{3}(x_{1} + x_{2} + x_{3})\right) = \frac{1}{4}\left(\operatorname{Aut}\left(x_{1}\right) + \operatorname{Aut}\left(x_{3}\right) + \operatorname{Aut}\left(x_{3}\right)\right)$$

$$= \frac{1}{4}\left(A_{s} + A_{s} + A_{s}\right)$$

$$= \frac{1}{4}\left(A_{s} + A_{s} + A_{s}\right)$$

$$= \frac{1}{4}\left(\operatorname{Aut}\left(x_{1}\right) + \operatorname{Aut}\left(x_{2}\right) + \operatorname{Aut}\left(x_{3}\right)\right)$$

$$ECH(\hat{W}) = \sqrt{\alpha(\hat{W})} = \frac{3}{2}$$

$$E(h(h^s) = \sqrt{a}(h^s) = \frac{8}{3} a_s$$

$$E(M(\hat{\mu}_3) = Vor(\hat{\mu}_3) + Sesso^2(\hat{\mu}_3)$$

Previo: Sesque (
$$\hat{\mu}_3$$
) = $\mathbb{E}(\hat{\mu}_3) - \mu = 2\mu - \mu = \mu$

 $\frac{3}{1}$ \times $\frac{\delta}{3}$

8 < 9

d)
$$Var(\hat{V}_1) = \frac{2}{4s} < Var(\hat{V}_2) = \frac{8}{3}4s$$

Considere tres muestras aleatorias de tamaño $n_1 = 20$, $n_2 = 10$ y $n_3 = 8$ de una población con media μ y varianza σ^2 . Sean $\hat{\sigma}_1^2$, $\hat{\sigma}_2^2$ y $\hat{\sigma}_3^2$ las respectivas varianzas muestrales insesgadas determinadas en base a estas muestras aleatorias. $\boxed{ \left(\vec{\sigma}_{i}^2 \right) = \vec{\sigma}^2 } \quad \forall i = 1, 3, 3$

Se define un estimador de σ^2 dado por la combinación de los tres estimadores anteriores de la forma:

$$\hat{\sigma}^2 = \frac{20 \,\hat{\sigma}_1^2 + 10 \,\hat{\sigma}_2^2 + 8 \,\hat{\sigma}_3^2}{38}$$

¿Es $\hat{\sigma}^2$ un estimador insesgado de σ^2 ?. Justifique.

$$= \frac{38}{1} \left(50 \mathbb{E}(Q_{5}^{1}) + 10 \mathbb{E}(Q_{5}^{2}) + 8 \mathbb{E}(Q_{5}^{2}) \right) = \frac{38}{1} \left(50 Q_{5}^{1} + 10 Q_{5}^{2} + 8 Q_{5}^{2} \right)$$

$$= \frac{38}{1} \left(50 \mathbb{E}(Q_{5}^{1}) + 10 \mathbb{E}(Q_{5}^{2}) + 8 \mathbb{E}(Q_{5}^{2}) \right) = \frac{38}{1} \left(50 Q_{5}^{2} + 10 Q_{5}^{2} + 8 Q_{5}^{2} \right)$$

De una muestra aleatoria de 30 individuos a los cuales se les consultó respecto a la cantidad de dinero que gastan mensualmente en videojuegos se obtuvo el siguiente resumen mediante la función "análisis de datos" proporcionada por Excel.

Invertido (Miles de peso	os: M\$)
Media	55,5
Error estándar	18,46
Mediana	47,3
Moda	49,5
Desviación estándar	11,2 = 9
Varianza de la muestra	125,44
Curtosis	-0,5968
Coeficiente de asimetría	0,1465
Rango	46
Mínimo	31,6
Máximo	77,6
Suma	1557,7
Cuenta	30

Se está interesado en estimar la verdadera media respecto a la cantidad de dinero invertida (en miles de pesos). Asumiendo normalidad de las observaciones y que históricamente la desviación estándar es 12 M\$:

Indique el estimador puntual de la verdadera media de la cantidad de dinero gastada (en miles de pesos), además, indique la varianza de tal estimador puntual (debe especificar la forma y el valor en cada caso). ¿Es posible determinarlo con la información proporcionada?

El estimador puntual de la media es la media aritmética (muestral)

Por enunciado
$$\sqrt{} = 12$$

$$\sqrt{\alpha(1/1)} = \frac{30}{15_{5}} = \frac{30}{144} = 4.8$$