Real-time Urban Traffic Monitoring By Using Transit Buses As Probes

Shangkun Jiang, Yuran Sun, Wai Wong*, Yiming Xu, Xilei Zhao

01/10/2024

Research Motivation

- Real-time urban traffic monitoring is a critical component in ITS and smart city development.
- However, challenges persist in immediate access to the real-time data.
 - Cost
 - Privacy
 - Coverage
 - Accuracy
 - Accessibility
 - •

Source: https://blog.ptvgroup.com/en/city-and-mobility/big-data-mobility/

Source: https://datafromsky.com/news/datafromsky-real-time-traffic-monitoring/

Research Motivation

On-road fixed detectors:

BlueTOAD Radio Cellular Modern Battery
Buttery

Solar Panel

Loop detectors

Bluetooth

Video camera

Mobile data sources:

Research Motivation

TABLE 1: Comparison of the pros and cons for datasets used for urban traffic monitoring.

Performance	On-Road Fixed Detectors			Mobile Data Sources				
	Loop detectors	Traffic camera	Traffic sensors	floating car data	CV data	LBS data	Google traffic data	GTFS data
Cost Effectiveness	*	*	*	*	*	*	*	***
Accuracy	*	**	*	**	***	*	*	***
Temporal Contiguity	**	*	**	**	**	*	***	**
Pre-Processing Simplicity	*	*	*	*	*	*	***	***
Spatial Coverage	*	*	*	***	***	**	***	**
Accessibility	*	*	*	*	*	*	**	***
Privacy Protection	***	*	**	*	*	*	**	***
Penetration Rate	/	/	/	*	*	**	***	**

Notes: The number of "*" represents the performance of the grading variables;

Cost Effectiveness: the overall cost-effectiveness of collecting data;

Accuracy: the degree of different data sources precisely reflects the real-world situation;

Temporal Contiguity: time continuity of the different data sources;

Pre-processing Simplicity: the straightforwardness of processing the raw data;

Spatial Coverage: the geographical spatial coverage of different data sources;

Accessibility: the easiness of data acquisition;

Privacy Protection: the protection of travelers' private information across different data sources;

Penetration Rate: the market share of data sources in real-time urban traffic monitoring.

GTFS data description

- An open standard data used for publishing public transit information to passengers.
 - Public accessibility
 - No privacy concerns
- GTFS Static data
 - Defines fixed schedules and geographic information for public transport services.
- GTFS Realtime data
 - Dynamic updates, including real-time bus speed and location.

GTFS data description

- An open standard used for publishing public transit information to passengers.
 - Public accessibility
 - No privacy concerns
- GTFS Static data
 - Defines fixed schedules and geographic information for public transport services.
- GTFS Realtime data
 - Dynamic updates, including real-time bus speed and location.

GTFS data description

- An open standard used for publishing public transit information to passengers.
 - Public accessibility
 - No privacy concerns
- GTFS Static data
 - Defines fixed schedules and geographic information for public transport services.
- GTFS Realtime data
 - Dynamic updates, including real-time bus speed and location.

GTFS data description

Static data

- Bus_route.shp
- Bus_stop.shp

GTFS data description

Realtime data

Vehicle **Positions**

- 1. Position: lat, lon, speed, direction, odometer
- 2. Congestion Level: Class 1~5, up to agency
- 3. Occupancy Status: available space for bus, empty to unavailable
- Vehicle Stop Status: coming at/stopped at / transit to Vehicle Descriptor: ID, Label, License plate

GTFS Realtime

Service **Alerts**

- 1. Time Range: time coverage for alert
- 2. Entity Selector: specify exactly which parts of the network this alert affects3. Cause

 - Effect: no service, detour...

Research Questions

Can GTFS Realtime Data be used for real-time network sensing?

- Bus travel patterns \rightarrow on/off boarding \rightarrow different from normal traffic
- Bus travel speed \rightarrow low \rightarrow different speed variation pattern
- How to validate the results?

Methodology

Overview

- Metric: Speed
 - Data Collection
 - Pre-processing
 - Trip Identification
 - Travel Time Estimation

Methodology

Algorithm 1 Segment-Trip Extraction Algorithm

```
1: input GTFS Realtime data D, intersection locations P_{intxn}, bus route R, segment buffer radius
    b_{seg}
 2: S \leftarrow \emptyset
 3: for p_k in P_{intyn} do
         s_k \leftarrow route segment between p_k and p_{k+1}
          S \leftarrow S \cup \{s_k\}
 6: end for
 7: n \leftarrow number of segments in S
 8: TD \leftarrow \{TD_1, TD_2, \dots, TD_n\} where TD_1, TD_2, \dots, TD_n are \emptyset
 9: for s_k in S do
          for D_i in D do
              tid \leftarrow trip id of D_i
11:
              date \leftarrow date of D_i
12:
              l \leftarrow \text{bus location of } D_i
13:
              d_k \leftarrow \text{distance between } s_k \text{ and } l
14:
              if d_k < b_{seg} then
15:
                    TD_k \leftarrow TD_k \cup \{(tid, date)\}
16:
              end if
17:
          end for
19: end for
20: output TD, S
```

Algorithm 2 Segment Speed Estimation Algorithm

```
1: input route segments S, trips on specific segments TD, time windows TW
 2: n \leftarrow number of segments in S
 3: a \leftarrow number of time windows in TW
 4: V \leftarrow \{V_{11}, V_{21}, \dots, V_{a1}, \dots, V_{an}\}, where V_{11}, V_{21}, \dots, V_{a1}, \dots, V_{an} are \emptyset
 5: for s_k in S do
         length \leftarrow length of s_k
         for td_m in TD_k do
              \nabla t_m \leftarrow estimated travel time of trip td_m
              v_m \leftarrow length/\nabla t_m
              p_s \leftarrow the first point of trip td_m on segment s_k
              t_s \leftarrow the timestamp of the p_s
11:
              for tw_a in TW do
12:
                   if t_s \in tw_a then
13:
                        V_{ak} \leftarrow V_{ak} \cup \{v_m\}
14:
                   end if
15:
16:
               end for
17:
          end for
18: end for
19: Speed \leftarrow \{u_{11}, u_{21}, \dots, u_{a1}, \dots, u_{an}\}, where u_{11}, u_{21}, \dots, u_{a1}, \dots, u_{an} is 0
20: for q in 1 : a do
         for k in 1 : n do
21:
               u_{ak} \leftarrow mean(V_{ak})
23:
          end for
24: end for
25: output Speed
```


Methodology

Travel Time Estimation

$$\Delta t_{1,k} = \sum_{i=1}^{S} \left(t_e^i - t_s^i \right)$$

Notes:

S: segment number;

P: the number of stops that the bus skipped;

M: the number of stops that the bus stopped;

s: the first GTFS Realtime data point in each subsegment;

e: the last GTFS Realtime data point in each subsegment.

Methodology

Travel Time Estimation

$$\Delta t_{2,k} = \sum_{j=1}^{P} (t_{e+1}^{j} - t_{s-1}^{j}) + \sum_{l=1}^{M} \frac{2(x_{e+1}^{l} - x_{s-1}^{l})}{(v_{e+1}^{l} + v_{s-1}^{l})}$$

$$\text{Bus skipping} \qquad \text{Bus stop}$$

$$\text{Bus stop}$$

Methodology

Travel Time Estimation

$$\Delta t_{3,k} = \left(t_S^k - t_e^{k-1}\right) \frac{\left(x_S^k - x_o^{k-1}\right)}{\left(x_S^k - x_e^{k-1}\right)} + \left(t_S^{k+1} - t_e^k\right) \frac{\left(x_o^{k+1} - x_e^k\right)}{\left(x_S^{k+1} - x_e^k\right)}$$

$$\Delta t_k = \Delta t_{1,k} + \Delta t_{2,k} + \Delta t_{3,k}$$

Case Study

Research Area

GTFS Realtime data:

• Research area: Gainesville, FL

• Time span: 2 weeks in Oct. 2023

6 am. \rightarrow 11 pm.

Interval=15s

• **Records**: $1.1 \text{ M} \rightarrow \text{Originally}$

1.06 M \rightarrow After Pre-processing

Gainesville, FL

Case Study

Validation

Data collection:

- ✓ GTFS Realtime data → Bus
- ✓ Bluetooth data

TABLE 3: Characteristics of road segments in validation area.

Validation seg	Length (m)	Speed limit (mph)	Bus route	Road hierarchy	Data collection period
Segment 1	1997	45	1I, 38I, 150I	Arterials	10.09~10.13
Segment 2	1673	40	20I	Collectors	10.09~10.13
Segment 3	1987	45	10, 380, 1500	Arterials	$10.25 \sim 10.29$
Segment 4	2190	35	3O	Local roads	$10.25 \sim 10.29$
Segment 5	1606	45	43O	Collectors	$10.25 \sim 10.29$

Notes: In 'Bus route' field, 'I' represents bus routes that enter the downtown direction; 'O' represents the opposite.

Case Study

Validation

-+- Google Traffic

• Similar Speed variation pattern

Segment 3

Case Study

Validation

• Hypothesis test → Kolmogorov–Smirnov (KS) test

 H_0 : Three datasets follow the same distribution;

 H_A : Three datasets do not follow the same distribution.

 $\alpha = 0.05$

Cannot reject H_0 in most of time

TABLE 4: KS-test results for GTFS Realtime data with other two datasets.

	Date	GR - BL	GR - GT
	10/09/23	0.182(0.654)	0.182(0.654)
Segment 1	10/10/23	0.273(0.173)	0.303(0.097)
	10/11/23	0.152(0.851)	0.242(0.290)
	10/12/23	0.091(0.999)	0.212(0.453)
	10/13/23	0.333(0.051)	0.303(0.097)
	10/09/23	0.212(0.453)	0.364(0.025)
	10/10/23	0.182(0.654)	0.182(0.654)
Segment 2	10/11/23	0.182(0.654)	0.182(0.654)
	10/12/23	0.273(0.173)	0.212(0.453)
	10/13/23	0.121(0.973)	0.152(0.851)
	10/25/23	0.242(0.290)	0.393(0.011)
	10/26/23	0.121(0.973)	0.303(0.097)
Segment 3	10/27/23	0.273(0.173)	0.333(0.051)
	10/28/23	0.182(0.654)	0.242(0.290)
	10/29/23	0.182(0.654)	0.242(0.290)
	10/25/23	0.357(0.343)	0.214(0.921)
	10/26/23	0.357(0.343)	0.286(0.635)
Segment 4	10/27/23	0.214(0.921)	0.143(0.999)
	10/28/23	0.143(0.999)	0.286(0.635)
	10/29/23	0.214(0.921)	0.286(0.635)
	10/25/23	0.308(0.588)	0.385(0.300)
	10/26/23	0.154(0.999)	0.154(0.999)
Segment 5	10/27/23	0.385(0.300)	0.308(0.588)
	10/28/23	0.308(0.588)	0.231(0.898)
	10/29/23	0.308(0.588)	0.308(0.588)

Notes: GR: GTFS Realtime; BL: Bluetooth; GT: Google Traffic.

Case Study

Validation

✓ Average travel time of the automobile (ATT) ~ average travel time of bus (BTT)

Linear relationship

✓ Cross validation: 80% data model fit – 20% data validation

TABLE 5: Results of model calibration and validation.

Correlation and Error Analysis

	Correlation Coefficient (R)		RMSE		MAPE (%)	
	BL - GR	GT -GR	BL - GR	GT - GR	BL - GR	GT - GR
Segment 1	0.647	0.360	19.658	37.554	8.742	11.660
Segment 2	0.365	0.383	24.824	25.587	12.807	11.137
Segment 3	0.586	0.595	21.145	28.453	10.001	12.047
Segment 4	0.409	0.390	36.949	35.607	12.863	14.945
Segment 5	0.458	0.484	25.681	26.855	19.446	13.578

Notes: GR: GTFS Realtime; BL: Bluetooth; GT: Google Traffic.

^[2] Zhou, P., S. Jiang, and M. Li, Urban Traffic Monitoring with the Help of Bus Riders. In 2015 IEEE 35th International Conference on Distributed Computing Systems, 2015, pp. 21–30.

^[3] Chakroborty, P. and S. Kikuchi, Using bus travel time data to estimate travel times on urban corridors. Transportation Research Record, Vol. 1870, No. 1, 2004, pp. 18–25.

^[4] Kieu, L. M., A. Bhaskar, and E. Chung, Empirical modelling of the relationship between bus and car speeds on signalised urban networks. Transportation Planning and Technol- ogy, Vol. 38, No. 4, 2015, pp. 465-482.

Major Take-aways

- GTFS Realtime data can effectively capture link speed variations;
- Proposing a novel methodology to estimate real-time traffic speed based on GTFS Realtime data;
- Validating the possibility of extending real-time network sensing to the spatial coverage by using GTFS Realtime data.

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Department of Civil and Coastal Engineering

Thank you!

Shangkun Jiang (jiang.shangkun@ufl.edu)

jiang.Shangkun@ufl.edu