

Pixel Tracer

Presentation of the project

Proposed by : Mr. Halim Djerroud

Prepared by:

- Mr. Halim Djerroud

- Mr. Fabien Calcado

Asma Gabis asma.gabis@efrei.fr

Digital image

Definition

- Real image obtained from digital camera, scanner, ...
- Computer generated image

PARIS PANTHEON-ASSAS UNIVERSITE

Digital image

Raster image

- The image data is represented as a matrix of multi-dimensional points called (pixel in the 2D case).
- Examples of raster file formats: jpeg, gif, png, bmp
- Examples of software for creating raster images: Photoshop, After Effects, Gimp

Benefits

- Possibility to modify the image pixel by pixel
- Create important color shades (gradients, shadows, . . .)
- Have textures effects

Disadvantages

- large file (even compressed)
- Pixelation (enlargement)

PARIS PANTHEON-ASSAS UNIVERSITE

Digital image

Vector image

- the image data is represented from a mathematical point of view.
- Examples of vector file formats: svg, ai, eps, pdf
- Examples of software for creating vector images: Illustrator, CorelDRAW, <u>Inkscape</u>, <u>librecad</u>, <u>Diagram Editor</u>

Benefits

- light file, no quality loss when resizing

Disadvantages

- Allows to represent only simple geometrical shapes (lines, arcs, circles, . . .) so not adapted to photography.

Vector drawing

Store only the characteristics of the object

.

Vector drawing

For more complex images, vector drawing software relies on the :

- Windows
- Drawing areas
- Layers
- Geometric objects

(a) Contenu fenêtre 1 avec calque ronds non visible

- (b) Contenu fenêtre 1 avec calque courbe de Bézier non visible et calque ronds visible
- Graphes de flux

 | Complete de flux | Complete de f

(c) Contenu fenêtre 2 et ses différents calques

FIGURE 3 – Logiciel Dia Diagram Editor avec son système de calques par fenêtre

Representation in memory

Think about the data structures to be used

Actions to be implemented

Carry out the following orders

- —clear: clear the screen
- —exit: exit the program
- —point x y: add a point to the array of objects
- —line x1 y1 x2 y2: draws a segment connecting the two points (x1, y1) and (x2, y2)
- —circle x y radius: draws a circle with center (x, y) and radius radius
- —square x y length: draws a square whose upper left corner is (x, y) and side length.
- —rectangle x y width height: draws a rectangle whose upper left corner is (x, y), width width and length height.
- —polygon x1 y1 x2 y2 x3 y3
- —**plot**: displays all the objects of the same table on the screen.
- —**list**: displays the list of objects that make up the drawing with their identifiers (id).
- —**delete id**: delete the object whose id is equal to id.
- —erase: delete all objects from the same array.
- —help: displays the list of commands as well as a mini manual allowing the user to use the commands correctly

Drawing on screen

- The design itself will be done through ASCII characters
- To generate the geometric shape, we will rely on algorithms already known in computer graphics such as :
 - <u>Segment drawing algorithm</u> to draw a line
 - Bresenham's segment drawing algorithm for drawing a line
 - Andres circle drawing algorithm to draw a circle

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•		•	•	•	#	#	#	#	#		•	•	•	•	•	•	•
•			•		#		•				#		•			•		•
				#								#						
			#										#					
			#										#					
			#										#					
			#										#					
			#										#					
				#								#						
					#						#							
						#	#	#	#	#								

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		#																						
			#	#																				
•	•	•			-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
٠	٠	٠	٠	٠	π	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
						#	#																	
							#	#																
									#															
										#	#													
												#												
													#											
														#	#									
																#								

Pedagogical interest

- Reinforce your learning on structures
- Reinforce your learning on the arrays
- Reinforce your learning on pointers
- Reinforce your learning on the modularity of a program
- Reinforce your learning on dynamic allocation
- Reinforce your learning about generics
- Acquire knowledge on advanced concepts

The basic structures

Several structures are to be developed:

- The Point structure
- The Line structure
- The Circle structure
- The square structure
- The Rectangle structure
- The Polygon structure

Associate to each geometric shape, three functions:

- Create the geometrical shape in memory by means of dynamic allocation
- Delete the geometric shape from the memory
- Display the geometric shape

The basic structures

Use of the void* pointer for generics :

- Creation of the Shape structure allowing to associate a unique identifier to a geometrical shape
- Method of generating a unique ID
- Creation of generic functions associated with geometric shapes

To go further:

- Implementation of the drawing areas
- Layer implementation
- Use of linked lists
-