USN 1 R V 2 0 I 3 0 3 3

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU) III Semester B. E. Examinations April-2022

Common CSE / ISE

LINEAR ALGEBRA, LAPLACE TRANSFORMS AND COMBINATORICS

Time: 03 Hours
Instructions to candidates:

Maximum Marks: 100

1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.

2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6.

PART-A

1 1.1	Is the not of weekers ((1.2.1) (2.1.0) (1.1.0)	
1 1.1	Is the set of vectors $\{(1,2,1),(2,1,0),(1,-1,2)\}$ linearly independent or not?	
10		02
1.2	Write the induced matrix in the following transformations:	
	- i. Projection of xz – plane in R^3	
	ii. Counter clockwise rotation through an angle θ about the positive y –axis in R^3 .	
		02
1.3	What multiple of $a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ should be subtracted from $a_2 = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ to make	
	the result orthogonal to a_1 ?	
1.4	F 451	02
1.4	If 4.5 is an Figure roots of 4 2	
	If $\begin{bmatrix} -4.5 \\ -4 \\ 1 \end{bmatrix}$ is an Eigen vector of $\begin{bmatrix} 8 & -4 & 2 \\ 4 & 0 & 2 \\ 0 & -2 & -4 \end{bmatrix}$, then the Eigen value	
	corresponding to the Eigen vector is	02
1.5	Evaluate $\int_0^\infty e^{-3t} \cos^2 t dt$ using Laplace transforms.	
16		02
-1.6	Find $L^{-1}\left[\frac{1}{\sqrt{2s+3}}\right]$	02
1.7	The total number of positive divisors of 1412 are	02
1.8	The Euler's totient function ϕ for the integer 219 is	02
1.9	Calculate the number of dearrangements of d_4 . Hence write	
	corresponding dearrangements.	
	corresponding dearrangements.	02
1.10	Find the generating function for the sequence 2,4,8,16,32,	
		02

2 8		Determine the basis and dimension for the row space, column space and null space of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ 2 & -1 & -4 & 8 \\ -1 & 1 & 3 & -5 \\ -1 & 2 & 5 & -6 \\ -1 & -2 & -3 & 1 \end{bmatrix}$ Examine whether following sets forms a subspace or not? i. $M_{22} = \{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} / a, b \text{ are integers } \}$ on the set of all 2×2 matrices.	08
		ii. $S = \{ (a, b, c)/ a + b + c = 0 \text{ and } a, b, c \in R \}$ as the set of all real numbers.	08
3 8	a .	[1/2/2 1/2/14]	
		Find a third column so that the matrix $Q = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{14} & -\\ 1/\sqrt{3} & 2/\sqrt{14} & -\\ 1/\sqrt{3} & -3/\sqrt{14}1 & - \end{bmatrix}$ is	
		orthogonal. Verify that the rows automatically become orthogonal at the same time.	08
t)	Diagonalize the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.	
		Diagonalize the matrix $A = \begin{bmatrix} 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	08
		OR	
4 _a		Obtain the QR factorization for the matrix $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 3 & 2 \\ 2 & 1 & 3 \end{bmatrix}$ using Gram	
		Schmidt process.	08
1)	Obtain the singular value decomposition of the matrix $\begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$	08
5 8	a	The periodic function $f(t)$ is shown in the Fig 5a below. Write a	
		mathematical expression for $f(t)$ and hence show that $L[f(t)] = \frac{1}{s} \tanh\left(\frac{as}{2}\right)$	
		$ \mathcal{L} _{S}(\mathcal{L}) = \frac{1}{S} \operatorname{call}(2)$	
		1 -1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
		Fig 5a	08
ŀ)	Obtain the Laplace transforms of the following functions.	
		i. $e^{-t} \int_0^t \frac{e^{2t} \sin 3t}{t} dt$ ii. $\left(\sqrt{t} + \frac{1}{\sqrt{t}}\right)^3$	
		11. $\left(\sqrt{t} + \sqrt{t}\right)$	08

		OR	
6	a b	Using convolution theorem, evaluate $\left(\frac{s^2}{(s^2+16)(s^2+a)}\right)$. Solve by using Laplace transforms $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 3te^{-t}$ given that	08
		$x = 4, \frac{dx}{dt} = 2 \text{ when } t = 0.$	08
7	а	Find the gcd(12378, 3054) using the Euclidean algorithm and also find	
1	b	the integers $x \& y$ to satisfy $12378x + 3054y = d$. Given the public key $(e, n) = (7, 51)$, encrypt plain text $L I V$, where the	08
		alphabets A, B, C, X, Y , are assigned the numbers 3,4,5,26,27,28. Give the cipher text and also find the private key d .	08
8	a	Using expansion formula, find the rook polynomial for the board shown in Fig 8a.	
		456 78	08
	b	Fig 8a How many integers between 1 and 300 are i. Divisible by at least one of 5,6,8?	
		ii. Divisible by none of 5,6,8 ?	08