16 段数码管驱动及键盘控制芯片 CH454

手册 版本:1E http://wch.cn

1、概述

CH454 是数码管显示驱动和键盘扫描控制芯片。CH454 内置时钟振荡电路,可以动态驱动 8 只 16 段的数码管或者 128 只 LED,支持 11 段、14 段、16 段 \times 8 以及 17 段 \times 7 等;同时还可以进行 64 键的键盘扫描:CH454 通过 2 线串行接口与单片机等交换数据。

2、特点

2.1. 显示驱动

- 内置电流驱动级,段电流不小于 20mA, 字电流不小于 150mA。
- 动态显示扫描控制,直接驱动 8 位 16 段的数码管或者 128 只发光管 LED。
- 各数码管的数字独立闪烁控制,可选快慢两种闪烁速度。
- 通过占空比设定提供 16 级亮度控制。
- 部分段位寻址,独立控制前 64 个 LED 或者各数码管的前 8 个段的亮与灭。
- 扫描极限控制,支持1到8个数码管,只为有效数码管分配扫描时间。
- 可以选择字驱动输出极性,便于外部扩展驱动电压和电流。

2.2. 键盘控制

- 内置 64 键键盘控制器,基于 8×8 矩阵键盘扫描。
- 内置按键状态输入的下拉电阻,内置去抖动电路。
- 键盘中断输出,低电平有效。
- 提供按键释放标志位,可供查询按键按下与释放。
- 支持按键唤醒,处于低功耗节电状态中的 CH454 可以被部分按键唤醒。

2.3. 其它杂项

- 两线串行接口,兼容 I²C 总线,节约引脚。
- 内置时钟振荡电路,不需要外部提供时钟或者外接振荡元器件,更抗干扰。
- 支持低功耗睡眠,节约电能,可以被按键唤醒或者被命令操作唤醒。
- 提供 SOP28 和 SDIP32 两种无铅封装,兼容 RoHS。

CH454 手册 2

3、封装

封装形式	宽度		引脚	间距	封装说明	订货型号
SOP28	7. 62mm	300mil	1. 27mm	50mil	标准的 28 脚贴片	CH454S
SDIP32	10. 16mm	400mil	1. 78mm	70mil	窄距 32 脚双列直插	CH454A

注:基于成本和供货周期等考虑,推荐用贴片封装。

4、引脚

		•		
S0P28 的引脚号	SDIP32 的引脚号	引脚名 称	类型	引脚说明
24	27	VCC	电源	正电源,持续电流不小于 150mA
9	10	GND	电源	公共接地,持续电流不小于 150mA
16~23	19~26	SEGO ∼SEG7	三态输出 及输入	数码管的段驱动,高电平有效, 键盘扫描输入,高电平有效,内置下拉电阻
10~13、 25、26、 14、15	11~14、 29、30、 15、18	XSG0 ∼XSG7	三态输出 及输入	数码管的扩展段驱动,高电平有效, 通用 I/0 输入输出,内置弱上拉电阻
8~1	9~2	DIGO ~DIG7	输出	数码管的字驱动,低电平有效, 键盘扫描输出,高电平有效, 其中 DIG7 兼做数码管的第 17 段驱动
27	31	SDA	开漏输出 及输入	2 线串行接口的数据输入和输出, 内置上拉电阻
28	32	SCL	输入	2 线串行接口的数据时钟,内置上拉电阻
无	28	INT#	开漏输出	键盘中断输出,内置上拉电阻,低电平有效
无	1	RSTI	输入	外部手工复位输入,高电平有效,内置下拉
无	16、17	NC	空脚	保留引脚,禁止连接

5、功能说明

5.1. 一般说明

本手册中的数据,以 B 结尾的为二进制数,以 H 结尾的为十六进制数,否则为十进制数,标注为 x 的位表示该位可以是任意值。

5.2. 显示驱动

CH454 对数码管和发光管采用动态扫描驱动,顺序为 DIG0 至 DIG7,当其中一个引脚吸入电流时,其它引脚则不吸入电流。CH454 内部具有电流驱动级,可以直接驱动 0.5 英寸至 1 英寸的共阴数码管。对于 7 段或者 8 段数码管,段驱动引脚 SEG6~SEGO 分别对应数码管的段 G~段 A,段驱动引脚 SEG7 对应数码管的第 8 段小数点:对于 16 段数码管,应该使用 SEG7~SEGO 和 XSG7~XSGO 驱动各段:对于 17 段数码管,还需要使用 DIG7 驱动第 17 段小数点并且扫描极限必须小于 8;对于 11 段或者 14 段数码管,可以在 SEG7~SEGO 和 XSG7~XSGO 中任意悬空不需要的引脚。对于 17 段数码管,字驱动引脚 DIG6~DIGO 分别连接 7 个数码管的阴极;对于少于 17 段的数码管,字驱动引脚 DIG7~DIGO 分别连接 8 个数码管的阴极。CH454 也可以连接 16×8 矩阵的发光二级管 LED 阵列或者 128 个独立发光管。CH454 可以改变字驱动输出极性以便直接驱动共阳数码管,或者通过外接反相驱动器支持共阳数码管,或者外接大功率管支持大尺寸的数码管。

CH454 支持扫描极限控制,并且只为有效数码管分配扫描时间。当扫描极限设定为 1 时,唯一的数码管 DIGO 将得到所有的动态驱动时间,从而等同于静态驱动;当扫描极限设定为 8 时,8 个数码管 DIG7~DIGO 各得到 1/8 的动态驱动时间;当扫描极限设定为 4 时,4 个数码管 DIG3~DIGO 各得到 1/4 的动态驱动时间,此时各数码管的平均驱动电流将比扫描极限为 8 时增加一倍,所以降低扫描极限可以提高数码管的显示亮度。驱动 17 段数码管时,扫描极限必须小于或者等于 7。

CH454 内部具有 8 个 16 位的数据寄存器,用于保存 8 个字数据,分别对应于 CH454 所驱动的 8 个数码管或者 8 组每组 16 个的发光二极管。当数据位为 1 时,对应的数码管的段或者发光管就会点亮; 当数据位为 0 时,则对应的数码管的段或者发光管就会熄灭。

CH454 支持部分段位寻址,可以用于独立控制 64 个发光管 LED 中的任意一个或者数码管中的特定段(例如小数点),段位编址顺序与键盘编址一致,编址从 00H 到 3FH。当用"段位寻址置 1"命令将某个地址的段位置 1 后,该地址对应的发光管 LED 或者数码管的段会点亮,该操作不影响任何其它 LED 或者数码管其它段的状态。CH454 的段位寻址只支持由 SEG7~SEGO 引脚驱动的 8×8 矩阵,而由 XSG7~XSGO 引脚驱动的 LED 或者数码管的段不支持段位寻址。

下图是7段和8段数码管的段名称

下图是 16 段和 17 段数码管的段名称

5.3. 键盘扫描

CH454 的键盘扫描功能支持 8×8 矩阵的 64 键键盘。在键盘扫描期间,DIG7~DIGO 引脚用于列扫描输出,SEG7~SEGO 引脚都带有内部下拉电阻,用于行扫描输入。

CH454 定期在显示驱动扫描过程中插入键盘扫描。在键盘扫描期间,DIG7~DIG0 引脚按照 DIG0 至 DIG7 的顺序依次输出高电平,其余 7 个引脚输出低电平;SEG7~SEG0 引脚的输出被禁止,当没有键被按下时,SEG7~SEG0 都被下拉为低电平;当有键被按下时,例如连接 DIG3 与 SEG4 的键被按下,则当 DIG3 输出高电平时 SEG4 检测到高电平;为了防止因为按键抖动或者外界干扰而产生误码,CH454 实行两次扫描,只有当两次键盘扫描的结果相同时,按键才会被确认有效。如果 CH454 检测到有效的按键,则记录下该按键代码,并通过 INT#引脚产生低电平有效的键盘中断,此时单片机可以通过串行接口读取按键代码;在没有检测到新的有效按键之前,CH454 不再产生任何键盘中断。CH454 不支持组合键,也就是说,同一时刻,不能有两个或者更多的键被按下;如果多个键同时按下,那么按键代码较小的按键优先,时间有先后的情况下,先按的有效。

CH454 所提供的按键代码为 8 位,位 2 \sim 位 0 是列扫描码,位 5 \sim 位 3 是行扫描码,位 6 是状态

码(键按下为 1,键释放为 0),位 7 为 0。例如,连接 DIG3 与 SEG4 的键被按下,则按键代码是 01100011B 或者 63H,键被释放后,按键代码通常是 00100011B 或者 23H (也可能是其它值,但是肯定小于 40H),其中,对应 DIG3 的列扫描码为 011B,对应 SEG4 的行扫描码为 100B。单片机可以在任何时候读取按键代码,但一般在 CH454 检测到有效按键而产生键盘中断时读取按键代码,此时按键代码的位 6 总是 1,另外,如果需要了解按键何时释放,单片机可以通过查询方式定期读取按键代码,直到按键代码的位 6 为 0。

下表是在 $DIG7 \sim DIG0$ 与 $SEG7 \sim SEG0$ 之间 8×8 矩阵的顺序编址,既是按键编址,也是数码管段位和发光管 LED 阵列编址。由于按键代码是 8 位,键按下时位 6 总是 1,所以当键按下时,CH454 所提供的实际按键代码是表中的按键编址加上 40H,也就是说,此时的按键代码应该在 40H 到 7FH 之间。

编址	DIG7	DIG6	DIG5	DIG4	DIG3	DIG2	DIG1	DIGO
SEG0	07H	06H	05H	04H	03H	02H	01H	00H
SEG1	0FH	0EH	ODH	0CH	OBH	OAH	09H	08H
SEG2	17H	16H	15H	14H	13H	12H	11H	10H
SEG3	1FH	1EH	1DH	1CH	1BH	1AH	19H	18H
SEG4	27H	26H	25H	24H	23H	22H	21H	20H
SEG5	2FH	2EH	2DH	2CH	2BH	2AH	29H	28H
SEG6	37H	36H	35H	34H	33H	32H	31H	30H
SEG7	3FH	3EH	3DH	3CH	3BH	3AH	39H	38H

5.4. 串行接口

CH454 的 2 线串行接口包含 3 个信号线: 串行数据时钟输入线 SCL、串行数据输入和输出线 SDA、以及可选的中断输出线 INT#。其中,SCL 是带上拉的输入信号线,默认是高电平; SDA 是带上拉的准双向信号线,默认是高电平; INT#是带上拉的开漏输出信号线,默认是高电平。

SDA 用于串行数据输入和输出,高电平表示位数据 1,低电平表示位数据 0,串行数据输入的顺序是高位在前,低位在后。

SCL 用于提供串行时钟,CH454 在其上升沿后的高电平期间从 SDA 输入数据,在其下降沿后的低电平期间从 SDA 输出数据。

INT#用于键盘中断输出。当 CH454 检测到有效按键时,INT#输出低电平有效的键盘中断;单片机被中断后,发出读取按键代码命令,CH454 将 INT#恢复为高电平,并从 SDA 输出按键代码,单片机从 SDA 获得一个字节的数据,即是按键代码。

在 SCL 为高电平期间发生的 SDA 下降沿定义为串行接口的启动信号,在 SCL 为高电平期间发生的 SDA 上升沿定义为串行接口的停止信号。CH454 只在检测到启动信号后才接收并分析命令。所以在单片机 1/0 引脚资源紧张时,只要保持 SDA 引脚状态不变,SCL 引脚就可以与其它接口电路共用。

单片机与 CH454 的通讯过程总是分为 6 个步骤,按单片机的操作方向分成两种类型,一种是写操作,用于输出数据,一种是读操作,用于输入数据。具体过程可以参考例子程序中的说明。

写操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输出字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 通常为 0,输出字节 1 和输出字节 2 各自包含 8 个数据位,即一个字节数据。

读操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输入字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 通常为 0,输出字节 1 和输入字节 2 各自包含 8 个数据位,即一个字节数据。

下图是一个写操作的实例,字节 1 为 01001000B,即 48H;字节 2 为 00000001B,即 01H。

6、操作命令

CH454 手册 5

CH454 各个操作命令的启动信号、停止信号、应答都相同,区别在于输出字节 1 和字节 2 的数据不同以及字节 2 的传输方向不同。字节 1 的位 15 和位 14 固定为 0 和 1,位 8 为读写方向位 R/-W,为 0 时执行写入操作,将字节 2 写入 CH454,为 1 时执行读取操作,从 CH454 读取字节 2。

下表列出了 CH454 的各个操作命令所对应的串行数据。其中标有名称的位表示该位在 CH454 芯 片内部具有相应的寄存器,其数据根据操作命令的不同而变化,标为灰色的数据是读取操作的返回。

片内部具有相应的	い可什		· 蚁/店 (飞 插探	1, E Jab	ぞ的イ		党化 ;	怀刃冽	《巴的多	以据定	头拟採	TFHIL	<u> </u>
操作命令	字节 1,位 15=0,位 14=1				字节 2									
	位 13		位11		位 9	位8	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
段位寻址清 0	0	0	0	0	1	0	1	0			BIT_	ADDR		
段位寻址置 1	0	0	0	0	1	0	1	1			BIT_	ADDR	•	ı
芯片内部复位	0	0	0	1	0	0	0	0	0	0	0	0	0	1
进入睡眠状态	0	0	0	1	0	0	0	0	0	0	0	0	1	0
设定辅助参数	0	0	0	1	0	0	1	0	1	0	0	0	0	LMTC
自定义 BCD 码	0	0	0	1	1	0	1			S	ELF_B(D	•	ı
设定系统参数	0	0	1	0	0	0	XGP0	XS0E	0	SSPD	DPLR	0	KEYB	DISP
设定显示参数	0	0	1	0	1	0	MODE		LIMIT			INTE	NSITY	
设定闪烁控制	0	0	1	1	0	0	D7S	D6S	D5S	D4S	D3S	D2S	D1S	DOS
加载字数据 0L	0	1	0	0	0	0	DIO	G_DATA	0_L0,	DIGO	对应的	的字数	据低 8	位
加载字数据 1L	0	1	0	0	1	0	DIO	G_DATA	\1_L0,	DIG1	对应的	的字数	据低 8	位
加载字数据 2L	0	1	0	1	0	0	DIO	G_DATA	\2_L0,	DIG2	对应的	的字数	据低 8	位
加载字数据 3L	0	1	0	1	1	0	DIO	G_DATA	\3_L0,	DIG3	对应的	的字数	据低 8	位
加载字数据 4L	0	1	1	0	0	0	DIO	G_DATA	۸4_L0,	DIG4	对应的	的字数	据低 8	位
加载字数据 5L	0	1	1	0	1	0	DIO	G_DATA	\5_L0,	DIG5	对应的	的字数	据低 8	位
加载字数据 6L	0	1	1	1	0	0	DIO	G_DATA	،6_L0	DIG6	对应的	的字数	据低 8	位
加载字数据 7L	0	1	1	1	1	0	DIO	G_DATA	.7_L0,	DIG7	'对应的	的字数	据低 8	位
加载字数据 0H	1	0	0	0	0	0	DIO	G_DATA	۸0_HI,	DIGO	对应的	的字数	据高 8	位
加载字数据 1H	1	0	0	0	1	0	DIO	G_DATA	1_HI,	DIG1	对应的	的字数	据高 8	位
加载字数据 2H	1	0	0	1	0	0	DIO	G_DATA	λ2_HΙ,	DIG2	对应的	的字数	据高 8	位
加载字数据 3H	1	0	0	1	1	0	DIO	G_DATA	۱3_HI,	DIG3	对应的	的字数	据高 8	位
加载字数据 4H	1	0	1	0	0	0	DIO	G_DATA	4_HI,	DIG4	对应的	的字数	据高 8	位
加载字数据 5H	1	0	1	0	1	0	DIO	G_DATA	λ5_HΙ,	DIG5	对应的	的字数	据高 8	位
加载字数据 6H	1	0	1	1	0	0	DIO	G_DATA	۸6_HI,	DIG6	对应的	的字数	据高 8	位
加载字数据 7H	1	0	1	1	1	0	DIO	G_DATA	۲ <u>.</u> H۱,	DIG7	对应的	的字数	据高 8	位
读取 SEG 引脚	0	0	0	0	1	1	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0
读取 XSG 引脚	0	0	0	1	0	1	XSG7	XSG6	XSG5	XSG4	XSG3	XSG2	XSG1	XSG0
读自定义 BCD 码	0	0	0	1	1	1	0			S	ELF_BO	D		
回读系统参数	0	0	1	0	0	1	XGP0	XS0E	0	SSPD	DPLR	0	KEYB	DISP
回读显示参数	0	0	1	0	1	1	MODE		LIMIT			INTE	NSITY	
回读闪烁控制	0	0	1	1	0	1	D7S	D6S	D5S	D4S	D3S	D2S	D1S	DOS
读取按键代码	0	0	1	1	1	1	KEY7	KEY6	KEY5	KEY4	KEY3	KEY2	KEY1	KEY0
回读字数据 0L	0	1	0	0	0	1	DIC	G_DATA	0_L0,	DIGO	对应的	的字数	据低 8	位
回读字数据 1L	0	1	0	0	1	1	DIC	G_DAT	\1_L0,	DIG1	对应的	的字数	据低 8	位
回读字数据 2L	0	1	0	1	0	1	DIC	G_DATA	2_L0,	DIG2	对应的	的字数	据低 8	位
回读字数据 3L	0	1	0	1	1	1	DIC	G_DAT	\3_L0,	DIG	对应的	的字数	据低 8	位
回读字数据 4L	0	1	1	0	0	1	DIC	G_DATA	۸4_L0,	DIG4	对应的	的字数	据低 8	位
回读字数据 5L	0	1	1	0	1	1	DIC	G_DAT	\5_L0,	DIG	对应的	的字数	据低 8	位
回读字数据 6L	0	1	1	1	0	1	DIC	G_DATA	6_L0,	DIG6	对应的	的字数	据低 8	位
回读字数据 7L	0	1	1	1	1	1	DIO	G_DATA	7_L0,	DIG7	'对应的	的字数	据低 8	位

6.1. 芯片内部复位: 000100-0000001B

内部复位命令将 CH454 的各个寄存器和各种参数复位到默认的状态。芯片上电时,CH454 总是被复位,此时各个寄存器均复位为 0,各种参数均恢复为默认值。

6.2. 进入睡眠状态: 000100-00000010B

进入睡眠状态命令使 CH454 暂停显示驱动和键盘扫描,并进入低功耗睡眠状态,从而可以节约电能。处于低功耗睡眠状态中的 CH454 可以被下述两种事件中的任何一种唤醒,第一种事件是检测到 SEG3~SEG0 上的按键,有效按键代码是 40H 到 5FH,第二种事件是检测到 SCL 引脚的状态变化。睡眠和唤醒操作本身不会影响 CH454 的工作状态。

6.3. 设定系统参数: 001000-[XGP0][XS0E]0[SSPD][DPLR]0[KEYB][DISP]B

设定系统参数命令用于设定 CH454 的系统级参数:显示驱动使能 DISP、键盘扫描使能 KEYB、字驱动输出极性 DPLR、闪烁速度 SSPD、XSG 引脚输出使能 XSOE、XSG 引脚工作模式 XGPO。各个参数均通过 1 位数据控制,详细说明参考下表。例如,命令数据 001000-010000001B 表示关闭键盘扫描的功能、启用显示扫描驱动的功能、允许扩展段 XSG 输出以支持 16 段。如果 XGPO 为 1,那么 XSG 引脚用于通用输入输出 GPIO,XSOE 设置 I/O 方向,为 1 时则输出 DIGO 字数据高 8 位 DIG_DATAO_HI 到 XSG 引脚。如果 XGPO 为 0 并且 XSOE 为 1,那么 XSG 引脚用于扩展段扫描输出,支持 16 段数码管,如果此时扫描极限 LIMIT 小于或者等于 7,那么 DIG7 引脚用于驱动第 17 段,支持 17 段数码管,其数据来自 DIG7 字数据低 8 位 DIG_DATA7_LO,位 0 对应 DIG0 的第 17 段,位 6 对应 DIG6 的第 17 段。

位	参数说明	简写	位为 0 (默认)	位为 1
0	显示驱动功能的使能	DISP	关闭显示驱动	允许显示驱动
1	键盘扫描功能的使能	KEYB	关闭键盘扫描	启用键盘扫描
3	字驱动 DIG 输出极性	DPLR	低电平有效	高电平有效
4	闪烁速度/频率	SSPD	低速(约 2. 3Hz)	快速(约 4. 6Hz)
6	XSG 引脚输出使能	XS0E	禁止 XSG 引脚输出	允许 XSG 引脚输出
7	XSG 引脚工作模式	XGP0	XSG 用于扩展段扫描	XSG 用于 I/O 扩展 GPIO

6.4. 设定显示参数: 001010-[MODE][LIMIT][INTENSITY]B

设定显示参数命令用于设定 CH454 的显示参数: 译码方式 MODE、扫描极限 LIMIT、显示亮度 INTENSITY。译码方式 MODE 通过 1 位数据控制,置 1 时为低 8 段 SEG7~SEG0 选择 BCD 译码方式(XSG 始终不译码),置 0 时选择不译码方式(默认值)。扫描极限 LIMIT 通过 3 位数据控制,数据 0018~1118 和 0008 分别设定扫描极限为 1~7 和 8(默认值)。显示亮度 INTENSITY 通过 4 位数据控制,数据 00018~11118 和 00008 分别设定显示驱动占空比为 $1/16\sim15/16$ 和 16/16(默认值)。例如,命令数据 001010-011100008 表示不译码方式、扫描极限为 7、显示驱动占空比为 16/16;命令数据 001010-100010108 表示 BCD 译码方式、扫描极限为 8、显示驱动占空比为 10/16。

6.5. 设定辅助参数: 000100-1010000[LMTC]B

设定辅助参数命令用于设定 CH454 的辅助参数: 段电流限制 LMTC。默认情况下,段输出电流没有上限,实际短路电流可达 80mA 以上,当设定 LMTC 段电流限制为 1 后,CH454 内部会将 SEG 和 XSG 段输出电流限制在 30mA 之内,从而可以去掉段驱动引脚与数码管之间的 8 只或者 16 只串接限流电阻。

6.6. 自定义 BCD 码: 000110-1[SELF BCD]B

自定义 BCD 码命令用于自行定义常规 BCD 译码中未实现的特殊字符,CH454 支持一个自定义 BCD 码,其 BCD 值为 1EH,显示编码由该命令指定,编码共 7 位,分别对应于数码管的 7 个段,而小数点由 BCD 值的最高位单独控制。例如,命令数据 0011101111110B 表示自定义 BCD 字符 U(对应的段显示数据为 3EH),在 BCD 译码方式下,当单片机要求显示 BCD 值 1EH 时,CH454 会在对应的数码管中显示字符 U,当单片机要求显示 BCD 值 9EH 时,CH454 会在对应的数码管中显示字符 U,(含小数点)。

6.7. 设定闪烁控制: 001100-[D7S][D6S][D5S][D4S][D3S][D2S][D1S][D0S]B

设定闪烁控制命令用于设定 CH454 的闪烁显示属性: D7S~D0S 分别对应于 8 个字驱动 DIG7~DIGO。闪烁属性 D7S~D0S 分别通过 1 位数据控制,将相应的数据位置为 1 则使能闪烁显示,否则为正常显示,不闪烁(默认值)。例如,命令数据 011000100001B 表示设定数码管 DIG5 和 DIGO 闪烁显示,其余数码管正常显示,不闪烁。

6.8. 段位寻址清 0: 000010-10[BIT_ADDR] B

段位寻址清 0 命令用于将指定地址的发光管(或者数码管的指定段)熄灭,该命令一次只能熄灭指定地址的一个发光管,并且完全不影响其它发光管的状态。段位寻址的编址顺序与按键代码一致,可以用按键代码值减去 40H。例如,命令数据 000010-10111010B 表示将编址为 3AH 的发光管熄灭,也就是 DIG2 数码管的 SEG7 熄灭。

6.9. 段位寻址置 1: 000010-11[BIT_ADDR]B

段位寻址置 1 命令用于将指定地址的发光管(或者数码管的指定段)点亮,该命令一次只能点亮指定地址的一个发光管,并且完全不影响其它发光管的状态。段位寻址的编址顺序与按键代码一致,可以用按键代码值减去 40H。例如,命令数据 000010-11000110B 表示将编址为 06H 的发光管点亮,也就是 DIG6 数码管的 SEGO 点亮。

6.10. 加载字数据低字节: 01[DIG ADDR]0-[DIG DATA LO]B

加载字数据低字节命令用于将字数据的低字节 DIG_DATA_LO 写入 DIG_ADDR 指定地址的数据寄存器中。DIG_ADDR 通过 3 位数据指定数据寄存器的地址,数据 $0008\sim111B$ 分别指定地址 $0\sim7$,对应于 DIGO \sim DIG7 引脚驱动的 8 个数码管。DIG_DATA_LO 是 16 位字数据的低 8 位。例如,命令数据 010100-01111001B 表示将字数据 79H 写入第 3 个数据寄存器的低字节(由 DIG2 引脚驱动)。

6.11. 加载字数据高字节: 10[DIG_ADDR]0-[DIG_DATA_HI]B

加载字数据高字节命令用于将字数据的高字节 DIG_DATA_HI 写入 DIG_ADDR 指定地址的数据寄存器中。DIG_ADDR 通过 3 位数据指定数据寄存器的地址,数据 $0008\sim111B$ 分别指定地址 $0\sim7$,对应于 DIGO \sim DIG7 引脚驱动的 8 个数码管。DIG_DATA_HI 是 16 位字数据的高 8 位。例如,命令数据 100110-01011011B 表示将字数据 5BH 写入第 4 个数据寄存器的高字节(由 DIG3 引脚驱动)。

- 6. 12. 读取 SEG 引脚: 000011-[SEG7] [SEG6] [SEG5] [SEG4] [SEG3] [SEG2] [SEG1] [SEG0] B 读取 SEG 引脚命令用于获取 CH454 的 SEG7~SEGO 引脚的当前状态,即从引脚输入 8 位数据。
- 6. 13. 读取 XSG 引脚: 000101-[XSG7] [XSG6] [XSG5] [XSG4] [XSG3] [XSG2] [XSG1] [XSG0] B 读取 XSG 引脚命令用于获取 CH454 的 XSG7~XSG0 引脚的当前状态,即从引脚输入 8 位数据。
- 6.14. 读自定义 BCD 码: 000111-0 [SELF_BCD] B 读自定义 BCD 码命令用于获取之前写入的自定义 BCD 码。
- 6. 15. 回读系统参数: 001001-[XGP0][XS0E]0[SSPD][DPLR]0[KEYB][DISP]B 回读系统参数命令用于获取 CH454 的当前系统级参数。
- 6. 16. 回读显示参数: 001011-[MODE] [LIMIT] [INTENSITY] B 回读显示参数命令用于获取 CH454 的当前显示参数。
- 6. 17. 回读闪烁控制: 001101-[D7S] [D6S] [D5S] [D4S] [D3S] [D2S] [D1S] [D0S] B 回读闪烁控制命令用于获取 CH454 的当前闪烁显示属性。
- 6. 18. 读取按键代码: 001111-[KEY7] [KEY6] [KEY5] [KEY4] [KEY3] [KEY2] [KEY1] [KEY0] B 读取按键代码命令用于获得 CH454 最近检测到的有效按键的按键代码。按键代码的位 7 是 0,位 6 是状态码,位 $5\sim$ 位 0 是扫描码和按键编址。例如,CH454 检测到有效按键并中断,那么单片机向

CH454 发出读取按键代码命令并从 CH454 获得按键代码。如果这是复位后的第一条命令则返回 ID 数据 2AH。

6.19. 回读字数据低字节: 01[DIG_ADDR]1-[DIG_DATA_L0]B 回读字数据低字节命令用于获取由 DIG_ADDR 指定地址的数据寄存器的低字节数据 DIG_DATA_L0。

7、参数

7.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	$^{\circ}\!\mathbb{C}$
TS	储存时的环境温度	-55	125	$^{\circ}\!\mathbb{C}$
VCC	电源电压(VCC 接电源,GND 接地)	-0. 5	6. 0	٧
V10	输入或者输出引脚上的电压	-0. 5	VCC+0. 5	٧
lMdig	单个 DIG 引脚的连续驱动电流	0	200	mA
IMseg	单个 SEG 引脚的连续驱动电流	0	30	mA
lMall	所有 SEG 引脚的连续驱动电流的总和	0	200	mA

7.2. 电气参数 (测试条件: TA=25℃, VCC=5V)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压	2. 8	5	5. 3	٧
ICC	电源电流	2	50	150	mA
lslp5	5V 低功耗睡眠电流(所有 I/0 悬空)		0. 08		mA
lslp3	3.3V 低功耗睡眠电流(所有 I/0 悬空)		0. 03		mA
VILseg	SEG 和 XSG 引脚低电平输入电压	-0. 5		0. 5	٧
VIHseg	SEG 和 XSG 引脚高电平输入电压	1.8		VCC+0. 5	٧
VIL	其余引脚低电平输入电压	-0. 5		0. 8	٧
VIH	其余引脚高电平输入电压	2. 0		VCC+0. 5	٧
V0Ldig	DIG 引脚低电平输出电压(-120mA)			0. 8	٧
V0Hdig	DIG 引脚高电平输出电压(8mA)	4. 5			٧
V0Lseg	SEG 和 XSG 引脚低电平输出电压(-20mA)			0. 5	٧
V0Hseg	SEG 和 XSG 引脚高电平输出电压(20mA)	4. 5			٧
VOL	其余引脚低电平输出电压(-4mA)			0. 5	٧
I DN1	SEG 引脚的输入下拉电流	-30	-80	-400	uA
I DNO	RSTI 引脚的输入下拉电流	-80	-140	-200	uA
IUP0	XSG 引脚的输入上拉电流	10	20	300	uA
I UP1	SCL 引脚的输入上拉电流	30	80	150	uA
IUP2	SDA 引脚的输入输出上拉电流	60	100	200	uA
IUP3	INT#引脚的输出上拉电流	500	3500	5000	uA
VR	上电复位的默认电压门限	2. 0	2. 3	2. 7	٧

7.3. 内部时序参数 (测试条件: TA=25℃, VCC=5V)

(注:本表时序参数都是内置时钟周期的倍数,内置时钟的频率可能受电源电压的影响)

CH454 手册 9

名称	参数说明	最小值	典型值	最大值	单位
TPR	电源上电复位时间	3	10	50	mS
TSLP	收到睡眠命令到正式开始睡眠的时间	8	20	60	uS
TWK	在睡眠中被唤醒到恢复工作的时间	10	100	200	uS
TDP	显示扫描周期(扫描极限为8时)		4		mS
FSPS	闪烁显示的频率(慢速/默认)		2. 3		Hz
TKS	键盘扫描间隔,按键响应时间		30		mS

7.4. 接口时序参数 (测试条件: TA=25℃, VCC=5V, 参考附图)

名称	参数说明	最小值	典型值	最大值	单位
TSSTA	SDA 下降沿启动信号的建立时间	200			nS
THSTA	SDA 下降沿启动信号的保持时间	200			nS
TSST0	SDA 上升沿停止信号的建立时间	200			nS
THST0	SDA 上升沿停止信号的保持时间	200			nS
TCLOW	SCL 时钟信号的低电平宽度	200			nS
TCHIG	SCL 时钟信号的高电平宽度	200			nS
TSDA	SDA 输入数据对 SCL 上升沿的建立时间	30			nS
THDA	SDA 输入数据对 SCL 上升沿的保持时间	10			nS
TAA	SDA 输出数据有效对 SCL 下降沿的延时	2		30	nS
TDH	SDA 输出数据无效对 SCL 下降沿的延时	2		40	nS
Rate	平均数据传输速率	0		2M	bps

8、应用

8.1. 连接单片机(下图)

CH454 通过 2 线串行接口与单片机 U2 相连接。电容 C1 和 C2 布置于 U1 的电源引脚附近,用于电源退耦,减少驱动大电流产生的干扰。当不需要键盘功能时,还可以省去 KEY 信号线,只使用 SCL 和 SDA 两个信号线;当使用键盘功能时,CH454 的 INT#引脚的 KEY 信号线可以连接到单片机的中断输入引脚或者普通 I/0 引脚供查询。

如果启用了 CH454 的段电流限制 LMTC 功能,那么段限流电阻 R1 和 R3 可以省掉;否则,需要为段驱动引脚串接电阻 R1 和 R3,用以限制和均衡各个段的驱动电流。串接限流电阻的阻值越大则段驱动电流越小,数码管的显示亮度越低,R1 或 R3 的阻值一般在 $50\,\Omega$ 至 $1K\,\Omega$ 之间,在其它条件相同的情况下,应该优先选择较大的阻值。在 5V 电源电压下,串接 $200\,\Omega$ 电阻通常对应段电流 13mA。

CH454 手册 1 0

由于标准 MCS51 单片机的部分 I/O 引脚是弱上拉的准双向口,所以在与 CH454 进行远距离连接的电路中,建议对 SCL、SDA 加上拉电阻以减少干扰,上拉电阻的阻值可以是 $IK\Omega$ 到 $IOK\Omega$,近距离无需上拉电阻,距离越远则阻值应该越小。

8.2. 驱动共阴数码管(下图)

CH454 可以动态驱动 8 个 16 段的共阴数码管,如果数码管不足 8 个,那么可以依次去掉 DIG7、DIG6、DIG5、DIG4 等所驱动的数码管,并设置相应的扫描极限以获得更大的动态驱动电流提高显示亮度。

CH454 也可以动态驱动 16 个 8 段的共阴数码管 (参考下图),如果只需要驱动 8 个 8 段的共阴数码管,那么多余的 XSG0~XSG7 引脚可以用于通用 I/O 扩展,用于扩展单片机系统的输入输出引脚。

如果同时使用 CH454 的键盘扫描功能,考虑到某些数码管在较高工作电压时存在反向漏电现象,容易被 CH454 误认为是某个按键一直按下,所以建议在数码管的共阴极串接二级管防止数码管反向漏电,并提高键盘扫描时 SEGO~SEG7 输入信号的电平,确保键盘扫描更可靠。当电源电压较低时(例如 VCC=3. 3V),这些二级管应该去掉以避免影响显示亮度。

8.3.8×8键盘扫描(下图)

CH454 具有 64 键的键盘扫描功能,如果应用中只需要很少的按键,那么可以在 8×8 矩阵中任意去掉不用的按键。为了防止键被按下后在 SEG 信号线与 DIG 信号线之间形成短路而影响显示,一般应该在 CH454 的 DIGO \sim DIG7 引脚与键盘矩阵之间串接限流电阻 R2,其阻值可以从 $2K\Omega$ 至 $15K\Omega$ 。如果

单片机使 CH454 进入低功耗睡眠状态并且之前已经启用了 CH454 的键盘扫描功能,那么处于睡眠状态的 CH454 可以被按键 KO~K31 唤醒,并且唤醒后的 CH454 将会向单片机提供按键中断。

8.4. 驱动共阳数码管(下图)

如果将段驱动信号 SEGO~SEG7、XSGO~XSG7 和字驱动信号 DIGO~DIG7 分别反相,那么可以驱动共阳数码管,但不支持键盘功能。下图中,段信号 SEGO~SEG7 由 U22 达林顿管阵列反相驱动,也可以用 8 个基极串了限流电阻的 NPN 三级管代替,字信号 DIGO~DIG7 由 8 个 PNP 三级管 T1 等反相驱动,如果 U22 本身不支持恒流驱动,那么使用电阻 R13 限制和均衡段电流。该电路的驱动电流比 CH454直接驱动共阴数码管大几倍,图中电阻 R13 和 R14 应该根据实际的驱动电流大小选择相应的阻值。

为了节约成本,下图中的 U22 也可以去掉,直接由 CH454 驱动段引脚,但是加载的字数据必须按位取反(0 亮 1 灭),建议在开启显示之前全部加载字数据 OFFH。

对于用多个 LED 串联构成的大尺寸数码管,由于其电压降较大,5V 电源电压不能直接驱动,通常需要外接高电压驱动电路。下图中,设置 CH454 的字驱动 DIG 输出极性为 "高电平有效",再经 NPN 三级管 T2 和 PNP 三级管 T3 两次反相后输出 24V 驱动电压,配合上图中的段反相驱动电路 U22,可以驱动高电压的大尺寸共阳数码管。图中电阻 R16 应该根据实际的驱动电流大小选择相应的阻值。

8.5. 抗干扰与手工复位(重要)

CH454 内置了上电复位功能,在 CH454 正常工作期间,RSTI 引脚可以用于手工复位输入,当 RSTI 输入高电平时, CH454 芯片被复位。如果是将 RSTI 连接到仪器面板作为手工复位输入,为了减少外界干扰,建议在 RSTI 引脚与地 GND 之间跨接一个电容,容量在 1000pF 至 0.1uF 之间。

由于 CH454 驱动数码管或者 LED 的电流较大,会在电源上产生较大的毛刺电压,所以如果电源线或者地线的 PCB 布线不合理,将有可能影响单片机或者 CH454 的稳定性,有关电源干扰的解决措施:

- ①、建议使用较短的和较粗的电源线和地线,尤其当 CH454 和单片机分属两块 PCB 时;
- ②、靠近 CH454 在正负电源之间并联电源退耦电容,至少一只 0. 1uF 的独石或者瓷片电容和一只容量不小于 100uF 的电解电容。

对于信号线较长时的外来干扰,参考下图解决:

- ①、 在信号线的靠近 CH454 引脚端,增加电容 C5 和 C6,电容值可以是 47pF 到 470pF,电容越大,与单片机通讯接口的传输速度越慢:
- ②、 可选地增加电阻 R7 和 R8, 电阻值可以是 100Ω 到 470Ω ;
- ③、降低单片机与 CH454 之间的传输速度 (因为增加了电阻电容);
- ④、如果是由准双向 I/0 引脚驱动(例如标准 MCS51 单片机),建议增加电阻 R5 和 R6,电阻值可以是 500 Ω 到 10K Ω,以加强 MCS-51 单片机的准双向 I/0 引脚的上拉能力,以便在远距离传输时保持较好的数字信号波形;信号线较短时无需上拉电阻 R5 和 R6,对于图腾柱驱动方式的双向 I/0 引脚,无需上拉电阻 R5 和 R6。

另外,对于强干扰的应用环境,单片机可以每隔数秒定期对 CH454 进行刷新,包括重新加载各个数码管的数据寄存器,以及重新开启显示。

8.6. 单片机接口程序

网站上提供了常用单片机的 C 语言和 ASM 汇编接口程序。