Contents

Clase 4: Composición de Funciones

1. Objetivos Específicos de la Clase:

- Comprender el concepto de composición de funciones.
- Aprender a calcular la composición de dos o más funciones.
- Determinar el dominio de una función compuesta.
- Aplicar la composición de funciones en la resolución de problemas.

2. Contenido Teórico Detallado:

2.1. Definición de Composición de Funciones:

La composición de dos funciones f y g, denotada por $(f \circ g)(x)$ o f(g(x)) (léase "f compuesta con g"), se define como la función que resulta de aplicar primero la función g a x, y luego aplicar la función f al resultado obtenido, g(x).

Formalmente:

$$(f \circ g)(\mathbf{x}) = f(g(x))$$

La función g es la función "interna" y la función f es la función "externa".

2.2. Dominio de la Composición de Funciones:

El dominio de la función compuesta $(f \circ g)(x)$ es el conjunto de todos los valores de x en el dominio de g tales que g(x) está en el dominio de f. En otras palabras, x debe estar en el dominio de g, y g(x) debe estar en el dominio de f.

Matemáticamente:

Dominio
$$(f \circ g) = \{ x \mid x \text{ Dominio}(g) \mid y \mid g(x) \text{ Dominio}(f) \}$$

2.3. Observaciones Importantes:

- En general, $(f \circ g)(x)$ $(g \circ f)(x)$. La composición de funciones no es conmutativa.
- La composición de funciones puede extenderse a más de dos funciones. Por ejemplo, (f o g o h)(x) = f(g(h(x))).

3. Ejemplos y Casos de Estudio:

Ejemplo 1: Cálculo de la Composición y su Dominio

Sean
$$f(x) = \sqrt{x} y g(x) = x + 1$$
.

1. Hallar $(f \circ g)(x)$:

$$(f \circ g)(x) = f(g(x)) = f(x+1) = \sqrt{(x+1)}$$

2. Hallar $(g \circ f)(x)$:

$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = \sqrt{x+1}$$

- 3. Dominio de $(f \circ g)(x)$:
 - Dominio de g(x) = x + 1: Todos los números reales, $(-\infty, \infty)$.
 - Dominio de $f(x) = \sqrt{x}$: x = 0, $[0, \infty)$.
 - Para que $\sqrt{(x+1)}$ esté definida, necesitamos x+1 0, lo que implica x -1.

Por lo tanto, el Dominio $(f \circ g) = [-1, \infty)$.

- 4. Dominio de $(g \circ f)(x)$:
 - Dominio de $f(x) = \sqrt{x}$: $x = 0, [0, \infty)$.
 - Dominio de g(x) = x + 1: Todos los números reales, $(-\infty, \infty)$.

• Para que $\sqrt{x} + 1$ esté definida, necesitamos x = 0.

Por lo tanto, el Dominio $(g \circ f) = [0, \infty)$.

Ejemplo 2: Composición con Funciones Definidas a Tramos

Sea
$$f(x) = \{ x^2 \text{ si } x < 0; x + 1 \text{ si } x = 0 \} \text{ y } g(x) = x - 1.$$

Hallar $(f \circ g)(x)$.

Primero, encontramos q(x) = x - 1. Luego, necesitamos determinar cómo f actúa sobre q(x).

- Si g(x) < 0 => x 1 < 0 => x < 1, entonces $f(g(x)) = (x 1)^2$.
- Si g(x) 0 => x 1 0 => x 1, entonces f(g(x)) = (x 1) + 1 = x.

Por lo tanto, $(f \circ g)(x) = \{(x-1)^2 \text{ si } x < 1; x \text{ si } x = 1\}.$

4. Problemas Prácticos con Soluciones:

Problema 1:

Sean f(x) = 2x + 3 y $g(x) = x^2 - 1$.

- a) Hallar $(f \circ g)(x)$.
- b) Hallar $(g \circ f)(x)$.
- c) Evaluar $(f \circ g)(2)$ y $(g \circ f)(2)$.

Solución:

- a) $(f \circ g)(x) = f(g(x)) = f(x^2 1) = 2(x^2 1) + 3 = 2x^2 2 + 3 = 2x^2 + 1$.
- b) $(g \circ f)(x) = g(f(x)) = g(2x+3) = (2x+3)^2 1 = 4x^2 + 12x + 9 1 = 4x^2 + 12x + 8$.
- c) $(f \circ g)(2) = 2(2)^2 + 1 = 2(4) + 1 = 9.$

(*g* o *f*)(2) = 4(2) < sup > 2 < / sup > + 12(2) + 8 = 4(4) + 24 + 8 = 16 + 24 + 8 = 48.

Problema 2:

Dadas f(x) = 1/x y g(x) = x/(x+1), hallar $(f \circ g)(x)$ y su dominio.

Solución:

$$(f \circ g)(x) = f(g(x)) = f(x/(x+1)) = 1/(x/(x+1)) = (x+1)/x.$$

Para el dominio:

- x debe estar en el dominio de g, lo que significa x -1.
- g(x) debe estar en el dominio de f, lo que significa g(x) 0, o sea, x/(x+1) 0, lo que implica x 0.

Por lo tanto, el dominio de $(f \circ g)(x)$ es todos los números reales excepto -1 y 0, o sea, $(-\infty, -1)$ (-1, 0) $(0, \infty)$.

Problema 3:

Si
$$f(x) = \sqrt{(x-4)}$$
 y $g(x) = x^2$, ¿cuál es el dominio de $f(g(x))$?

Solución:

 $f(g(x)) = f(x^2) = \sqrt{(x^2 - 4)}$. Para que la raíz cuadrada esté definida, $x^2 - 4 = 0$, lo cual implica $x^2 = 4$. Esto significa que x = 2 o x = -2.

Por lo tanto, el dominio es $(-\infty, -2]$ [2, ∞).

5. Materiales Complementarios Recomendados:

- Libros de texto de cálculo y pre-cálculo (revisar las secciones correspondientes a composición de funciones).
- Videos explicativos en plataformas como Khan Academy o YouTube (buscar "composición de funciones").
- Ejercicios resueltos y problemas de práctica en línea.
- Software de graficación (e.g., GeoGebra) para visualizar la composición de funciones.