Introduction aux réseaux : Objectifs généraux

- Connaître la notion de réseau informatique et comprendre sa structure et son principe de fonctionnement
- Concevoir un réseau local

Introduction aux réseaux : Plan du module

- Chapitre 1 : Généralités sur les réseaux
- Chapitre 2 : Construire un réseau
- Chapitre 3 : Communiquer dans un réseau
- Chapitre 4 : Interconnecter des réseaux
- Chapitre 5 : Faire communiquer des applications
- Chapitre 6 : Découvrir les applications réseau

Chapitre 1 : Généralités sur les réseaux

Objectifs spécifiques

- Expliquer un réseau informatique et son utilité
- Connaître les topologies physiques des réseaux
- Connaître la notion de protocoles et de fonctions réseaux
- Comprendre la structure en couches des réseaux
- Connaître la normalisation des réseaux : le modèle OSI et le modèle TCP/IP

Plan

- Introduction
- Réseau informatique
- Utilisations des réseaux
- Topologies physiques
- Protocoles réseau
- Structures en couches
- Normalisation des réseaux : modèles OSI et TCP/IP
- Conclusion

Introduction

- Besoin de communiquer
- Avec les réseaux, les limites spatiales et temporelles sont repoussées
- Communiquer tout type de données
- Intégration du monde physique : les objets du commun peuvent aussi communiquer

Evolution des systèmes de communication

- 1. Poste (XV°s)
- 2. Télégraphe (XVIII°s)
- 3. Téléphonie, Radiodiffusion, Télévision (XIX°s)
- Notion de salle informatique,
 Téléinformatique, Arpanet (XX°s)
- 5. Réseaux locaux (années 80)
- 6. Internet, réseaux mobiles, satellites (années 90)
- 7. <u>Aujourd'hui</u>: réseaux de nouvelle génération (accès à tout type de ressources situées partout, disponibles à tout moment et sur tout type de périphérique)

Qu'est ce qu'un réseau?

Un réseau est...

- Un ensemble de liaisons reliant plusieurs entités
 - Exemple : réseau électrique, routier, téléphonique,...
- Réseau Informatique : ensemble de dispositifs informatiques connectés
 - directement ou
 - par le biais d'équipements de connexion

A quoi sert un réseau?

Utilités d'un réseau Informatique (1/2)

- Echange de données : documents, images, vidéo
- Partage de ressources :
 - matérielles : imprimantes, serveurs de stockage, calcul...
 - logicielles: progiciels, serveurs d'applications, SI
 - données : Bases de données, sites web, ...
- Communication : email, visioconférence, VoIP

Utilités d'un réseau Informatique (2/2)

- Outils interactifs: chats, blogs, forums, réseaux sociaux
- Outils collaboratifs : wiki agenda, documents partagés
- Cloud : délocalisation de ressources
- Internet des objets (IoT) : interaction avec le monde physique

Structures physiques (1/2)?

- En bus
- En anneau

Structures physiques (2/2)?

- En étoile
- En étoile étendue
- Maillée

Classification des réseaux

Comment fonctionnent les réseaux informatiques ?

Notions de protocoles

- La communication réseau est régie par des règles appelées protocoles
 - Analogie : envoi postal, code de conduite,...
- Il existe beaucoup de protocoles :
 - pour définir le format des messages, leurs contenus, le mode de communication, pour vérifier leur acheminement, leur intégrité,...
- Ils sont définis et normalisés par des organismes de normalisation comme l'ISO ou par des consortiums comme IEEE
- Les protocoles réseau sont regroupés en couches

Pourquoi regrouper les protocoles en couches ?

Beaucoup de fonctions sont mises en œuvre dans un réseau

- Pour fonctionner, le réseau exécute plusieurs de opérations :
 - Formatage des messages
 - Gestion du dialogue
 - Définition du chemin que vont emprunter les messages
 - Gestion des erreurs
 - Codage des bits en signaux,
 - ...
- Ainsi pour faciliter la conception de ces fonctions, réduire leur complexité, faciliter leur maintenance et leur évolution, il est préférable d'introduire la modularité en les répartissant en couches.

Le principe des couches

- Chaque <u>couche</u> exécute un <u>ensemble de fonctions</u>
- Chaque couche offre ses services à la couche adjacente supérieure et utilise ceux de la couche adjacente inférieure via des fonctions de primitives appelées interfaces
- Chaque couche communique (indirectement avec sa couche homologue en passant par les couches adjacentes) via des unités de données de protocoles (PDU)

Principe des couches : analogie avec la communication humaine

Encapsulation & Décapsulation

- La communication se fait par une suite d'encapsulations lors de l'émission
- Le récepteur au contraire fait une décapsulation au niveau de chaque couche
- PDU (Protocol Data Unit) : donnée envoyée entre couches paires
- SDU (Service Data Unit) : donnée utile au service
- PCI (Protocol Control Information) : donnée de protocole

Modèles de référence

- Chaque constructeur d'équipements réseaux peut définir les fonctions réseaux en un nombre de couches différent d'un autre constructeur.
- Mais pour permettre l'interopérabilité, il faut normaliser la structure en couches suivant un modèle donnée appelée modèle de référence.
- On distingue 2 principaux modèles de référence : OSI et TCP/IP

Modèle OSI

Modèle OSI

- Norme ISO7498 (officielle)
- 7 couches
- Modèle générique :
 - Objectif : décrire le fonctionnement d'un réseau

Couche	Nom	Rôle
7	Application	Définition message
6	Présentation	Syntaxe, formatage
5	Session	Gestion du dialogue
4	Transport	Gestion du transfert entre applications
3	Réseau	Définition des chemins
2	Liaison de données	Gestion des liaisons de chemin
1	Physique	Transmission des bits sur le support

Modèle TCP/IP

Couche	Protocoles	Rôle
Application	HTTP, FTP, SMTP, DNS, POP, IMAP, DHCP,	Définition et syntaxe des messages
Transport	TCP, UDP	Gestion dialogue et application
Internet	IP	Interconnexion réseaux
Accès réseau	Non défini	Non défini

Modèle TCP/IP

- Standard : norme de fait
- 4 couches
- Modèle adapté à l'internet :
 - Objectif : assurer
 l'interconnexion de réseaux.

Modèle hybride

- Pour remédier aux inconvénients des modèles OSI et TCP/IP
 - Couches presque vides (dans le modèle OSI)
 - Couche non définie(dans le modèle TCP/IP)
 - Rigidité du modèle TCP/IP : ne supporte que la pile des protocoles TCP/IP
 - Complexité du modèle OSI
- 5 couches

Couch e	Nom	Rôle
5	Application	Définition message, Syntaxe
4	Transport	Gestion des applications et du dialogue
3	Réseau	Définition des chemins
2	Liaison de données	Gestion des liaisons de chemin
1	Physique	Transmission des bits

Encapsulation des données à travers les couches

Niveau couche application

Niveau couche transport

Niveau couche réseau

Niveau couche liaison de données

Récepteur Emetteur par protocole Données reçues Données envoyées AH Données **Application Application** 5 Adresses AH Données TH **Transport Transport** communication 3 Réseau NH TH AHDonnées Réseau 2 Liaison LH NH TH AH Données LQ Liaison erreurs et des Physique Physique

Communication virtuelle

physiques des machines en

Gestion des flux

Niveau couche physique

Ajout de bits de synchronisation : préambule

Conclusion

- Les réseaux informatiques sont un moyen efficace et facile de communication
- Pour assurer cela, un ensemble de fonctions implémentés sous forme de protocoles dans les équipements du réseau, sont mises en œuvre
- Pour faciliter la conception et l'évolution des communications, les fonctions sont réparties en couches : on parle de l'abstraction en couches des réseaux
- Avant de fonctionner, le réseau est d'abord construit et les protocoles bien configurés.
- Dans le chapitre suivant, nous verrons comment construire un réseau