

Distilling Blackbox to Interpretable models for Efficient **Transfer Learning**

Shantanu Ghosh¹, Ke Yu², Kayhan Batmanghelich¹

¹Dept. Of Electrical and Computer Engineering, Boston University ²Intelligent Systems Program (ISP), University of Pittsburgh

TLDR: Extracting a mixture of interpretable models from a BlackBox to provide concept-based explanations for efficient transfer learning.

Motivation

- Neural Networks fail to generalize due to scanner types, disease subtypes, patient subpopulation.
- Fine-tuning a Blackbox to a new domain can solve.
- This is data and computationally expensive.
- Whole process is not interpretable.

Approach by radiologist

- Search for patterns for anatomical changes to read abnormality.
- Apply generalizable logical rules for disease diagnosis.
- Whole process is interpretable.

Design choices

- Carve a mixture of interpretable models from Blackbox.
- Built on domain-invariant anatomical concepts.
- Transfer the interpretable models to an unseen domain without any concept annotation.

log(Flops) (T)

% of training samples

Extract concepts from MIMIC-CXR using Radgraph NLP pipeline

Ke Yu et al., MICCAI, 2022

Report:

Right upper lobe **consolidation** with adjacent. While this may be infectious in nature, a CT scan is recommended for further clarification.

Diversity in local explanations

Not compromising the accuracy in MIMIC-CXR

Transferring the first 3 experts of MIMIC-CXR to Stanford-CXR

2.5

% of training samples