lab1

Лера Самсонова

April 2024

Тогда можно воспользоваться формулой Остроградского

$$\int \int_{S} W_n d\sigma = \int \int_{V} \int div W dV$$

и преобразовать уравнение к виду

$$\int \int_{V} \int c\rho [u(P,t_{2}) - u(P,t_{1})]dV_{p} =$$

$$= -\int_{t_0}^{t_1} \int \int \int \int \int div W dV_p + \int \int_{t_0}^{t_1} \int \int \int \int \int F(P,t) dV_p dt.$$

(Будем предполагать F(P, t) непрерывной функцией своих аргументов.)

Применяя теорему о среднем и теорему о конечных приращениях для функций многих переменных, получим:

$$c\rho \frac{\partial u}{\partial t}\bigg|_{t=t_1,P=P_1} \Delta t \cdot V = -divW\bigg|_{t=t_2,P=P_2} \Delta t \cdot V + F\bigg|_{t=t_2,P=P_2} \Delta t \cdot V,$$

где t_3, t_4, t_5 - промежуточные точки на интервале Δt , а P_1, P_2, P_3 - точки в объеме V. Фиксируем некоторую точку M(x, y, z) внутри V и будем стягивать V в эту точку, а Δt стремить к нулю. После сокращения на Δt V и указанного предельного перехода получим:

$$c\rho \frac{\partial u}{\partial t}(x, y, z, t) = -divW(x, y, z, t) + F(x, y, z, t).$$

Заменяя W по формуле W —k grad u, получим дифференциальное уравнение теплопроводности

$$c\rho u_t == div(k \ grad \ u) + F$$

или

$$c\rho u_t == \frac{\partial}{\partial x} \left(k \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial u}{\partial z} \right) + F.$$

Если среда однородна, то это уравнение обычно записывают в виде

$$u_t = a^2(u_{xx} + u_{yy} + u_{zz}) + \frac{F}{c\rho},$$

где $a^2 = k/c\rho$ - коэффициент температуропроводности, или

$$u_t = a^2 \Delta u + f \left(f = \frac{F}{c\rho} \right),$$

где
$$\Delta == \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial y^2}$$
 — оператор Лапласа.

4. Постановка краевых задач. Для выделения единственного решения уравнения теплопроводности необходимо к уравнению присоединить начальные и граничные условия.

Начальное условие в отличие от уравнения гиперболического типа состоит лишь в задании значений функции $\mathbf{u}(\mathbf{x},\,\mathbf{t})$ в начальный момент t_0

Граничные условия могут быть различны в зависимость от температурного режима на границах. Рассматривают три основных типа граничных условий.

1. На конце стержня x = 0 задана температура

$$u(0,t) == \mu(t),$$

где $\mu(t)$ — функция, заданная в некотором промеутке $t_0 \le t \le T$ есть промежуток времени, в течение которого изучается процесс.

2. На конце x == l задано значение производной

$$\frac{\partial u}{\partial x}(l,t) == v(t).$$

K этому условию мы приходим, если задана величина теплового потока Q(l, t), протекающего через торцевое сечение стержня,

$$Q(l,t) = -k \frac{\partial u}{\partial x}(l,t),$$

откуда $\frac{\partial u}{\partial x}(l,t) = v(t)$, где v(t) — известная функция, выражающаяся через заданный поток Q(l,t) по формуле

$$v(t) = -\frac{Q(l,t)}{k}.$$

3. На конце x == l задано линейное соотношение между производной и функцией

$$\frac{\partial u}{\partial x}(l,t) = -\lambda [u(l,t) - \Theta(t)].$$

Это граничное условие соответствует теплообмену по закону Ньютона на поверхности тела с окружающей средой, температура которой Θ известна. Пользуясь двумя выражениями для теплового потока, вытекающего через сечение $x =\!\!\!= l,$

$$Q == h(u - \Theta)$$

И

$$Q = -k \frac{\partial u}{\partial x}$$

получаем математическую формулировку третьего граничного условия в виде

$$\frac{\partial u}{\partial x}(l,t) = -\lambda [u(l,t) - \Theta(t)],$$