Lógica proposicional

- 1. Quais das seguintes frases são proposições?
 - (a) Isto é verdade?
 - (b) João é um nome.
 - (c) 8 é um número ímpar.
 - (d) 8 é um número par.
 - (e) Esta cor é bonita.
- 2. Indique os valores lógicos das proposições seguintes:
 - (a) 7 é um número primo.
 - (b) Lisboa é uma cidade.
 - (c) Portugal é uma cidade.
- 3. Indique quais das seguintes proposições são atómicas e quais são compostas.
 - (a) O Frederico é alto, e o Joaquim também.
 - (b) O carro acidentado era azul ou verde.
 - (c) O carro acidentado era meu.
 - (d) Se fores ao bar, então eu vou ao bar.
- 4. Usando os símbolos r e f para "Manuel é rico" e "Manuel é feliz", respectivamente, escreva as seguintes afirmações na forma simbólica.
 - (a) Manuel é rico.
 - (b) Manuel é rico e feliz.
 - (c) Manuel é rico ou feliz.
 - (d) Se Manuel é rico, então é feliz.
- 5. Identifique todas as proposições atómicas nas frases seguintes e represente-as por símbolos p, q, r, etc. Em seguida escreva as frases sob a forma de cálculo proposicional.
 - (a) Se a Maria está no ginásio, então a Marta também está no ginásio.
 - (b) O carro do Rui é vermelho ou castanho.
 - (c) Se te levantares às sete horas, chegarás a tempo.
 - (d) Chegarás a tempo se e só se te levantares às sete horas.
 - (e) Ele virá se tu o avisares.
 - (f) É suficiente que o João tenha 9,5 valores para que passe.

- (g) Amanhã vou de autocarro ou de táxi.
- (h) Amanhã vou de autocarro se ele parar no Rossio, ou vou de táxi se tiver dinheiro.
- (i) Se acabar o meu trabalho então vou para a praia caso faça bom tempo.
- 6. Use os símbolos proposicionais $p \in q$ para formalizar os seguintes argumentos lógicos:
 - (a) Se 10 é um número primo, 10 não pode ser igual a 2 vezes 5. 10 é igual a 2 vezes 5. Logo, 10 não pode ser um número primo.
 - (b) Se chove frequentemente, os agricultores queixam-se. Se não chove frequentemente, os agricultores queixam-se. Consequentemente, os agricultores queixam-se.
 - (c) O António almoça na cantina ou o António almoça em casa. O António não almoça na cantina. Logo, o António almoça em casa.
- 7. Escreva cada uma das seguintes afirmações na forma "se p então q".
 - (a) Chove sempre que o vento sopra de Sul.
 - (b) É necessário caminhar 20 quilómetros para chegar ao topo do Everest.
 - (c) Toca nesse bolo e arrepender-te-ás.
 - (d) As rosas florirão se estiver calor durante uma semana.
 - (e) A garantia está activa só se tiveres comprado o computador há menos de um ano.
 - (f) Para teres 20 nesta disciplina, é necessário que aprendas a resolver problemas de matemática discreta.
 - (g) Para ser aprovado na disciplina, é suficiente obter 10 valores no exame.
- 8. Coloque parênteses nas expressões seguintes de tal modo que sejam indicadas as regras de prioridade estabelecidas para os conectivos envolvidos.
 - (a) $p \wedge q \wedge r \rightarrow p$.
 - (b) $p \wedge r \vee q \rightarrow \neg r$.
 - (c) $\neg (p_1 \land p_2) \rightarrow \neg q \lor p_1$.
 - (d) $p \rightarrow q \rightarrow \neg q \rightarrow \neg q$.
- 9. Escreva as tabelas de verdade para:
 - (a) $\neg(\neg p \lor \neg q)$.
 - (b) $(\neg p \land (\neg q \land r)) \lor (q \land r) \lor (p \land r)$.
 - (c) $(p \lor (q \land r)) \lor \neg ((p \lor q) \land (r \lor s))$.
 - (d) $(p \rightarrow \neg q) \land (q \rightarrow p)$.
 - (e) $((p \rightarrow q) \rightarrow q) \lor \neg p$.
- 10. O conectivo lógico conhecido por "ou exclusivo", e denotado por $\dot{\lor}$, é definido pela tabela de verdade

p	\overline{q}	$p \stackrel{\cdot}{\lor} q$
V	V	F
V	F	V
F	V	V
F	F	F

- (a) Mostre que \vee é equivalente a $\neg (p \leftrightarrow q)$.
- (b) Construa a tabela de verdade para $(p \lor q) \lor r$.
- 11. Determine valores de verdade para as variáveis proposicionais p, q e r para os quais o valor de verdade da fbf $(p \lor q \rightarrow r) \land p \rightarrow (r \rightarrow q)$ seja falso.
- 12. Qual é o valor de verdade das seguintes proposições?
 - (a) O número 2 é primo ou 4 é ímpar.
 - (b) O número 2 não é primo e 4 é ímpar.
 - (c) O número 2 é primo e 4 é ímpar.
 - (d) O número 2 não é primo ou 4 é ímpar.
 - (e) Se 2 não for primo então 4 é ímpar.
 - (f) Se 2 não for primo então 4 é par.
 - (g) Se 2 não for primo e 4 for par então 4 < 2.
- 13. Diga quais das seguintes fórmulas são tautologias, contradições, ou contingências.
 - (a) $((p \rightarrow q) \rightarrow \neg (q \rightarrow p)) \leftrightarrow (p \leftrightarrow q)$.
 - (b) $((p \rightarrow q) \rightarrow q) \rightarrow q$.
 - (c) $((p \rightarrow q) \rightarrow p) \leftrightarrow (q \rightarrow (q \rightarrow p))$.
 - (d) $(p \rightarrow (q \land \neg q)) \rightarrow \neg p$.
- 14. Simplifique as expressões seguintes:
 - (a) $(p \wedge V) \wedge (q \wedge V)$.
 - (b) $(r \wedge V) \wedge (q \wedge \neg r)$.
 - (c) $p \vee \neg q \vee (p \wedge q) \wedge (p \vee \neg q) \wedge \neg p \wedge q$.
- 15. Escreva a negação das proposições (a), (b), (c) e (i) do Exercício 5.
- 16. Prove que $\neg p \to (q \to r)$ e $q \to (p \lor r)$ são logicamente equivalentes,
 - (a) usando uma tabela de verdade;
 - (b) usando equivalências lógicas conhecidas.
- 17. Use a tabela das equivalências básicas para provar que:
 - (a) $\neg((\neg p \land q) \lor (p \land \neg q))$ é equivalente a $(\neg p \land \neg q) \lor (p \land q)$.
 - (b) $\neg q \land (p \rightarrow q) \rightarrow \neg p$ é uma tautologia.

18. Demonstre a utilidade do método de Quine na averiguação se a fbf seguinte é uma tautologia, contradição ou contingência:

$$(p \rightarrow q) \rightarrow (p \lor r \rightarrow q \lor r).$$

- 19. Mostre que a fórmula $(\neg p \rightarrow q) \rightarrow (p \rightarrow \neg q)$ não é uma tautologia. Encontre fórmulas ϕ e ψ tais que $(\neg \phi \rightarrow \psi) \rightarrow (\phi \rightarrow \neg \psi)$ seja uma contradição.
- 20. Determine expressões logicamente equivalentes às seguintes mas sem os conectivos \rightarrow e \leftrightarrow :
 - (a) $(p \rightarrow q) \lor (q \rightarrow r)$.
 - (b) $(p \rightarrow q) \leftrightarrow (p \land q \leftrightarrow q)$.
 - (c) $\neg p \rightarrow \neg q$.
- 21. Verifique se o argumento seguinte está correcto (isto é, se a conclusão é logicamente implicada pela conjunção das hipóteses).

Se o orçamento não for cortado, uma condição necessária e suficiente para os preços permanecerem estáveis é que os impostos sejam aumentados. Os impostos serão aumentados somente se o orçamento não for cortado. Se os preços permanecerem estáveis, os impostos não serão aumentados. Portanto os impostos não serão aumentados.

- 22. Decida se $p \vee \neg s$ é consequência tautológica das premissas $p \vee \neg q$, $q \vee r$ e $r \vee s$.
- 23. Encontre uma fórmula restrita (isto é, contendo apenas os conectivos $\neg, \land e \lor$) correspondente à função de verdade f(p, q, r) dada pela tabela

p	q	r	f(p,q,r)
V	٧	V	V
F	V	V	F
V	F	V	F
F	F	V	F
V	V	F	F
F	V	F	F
V	F	F	V
F	F	F	F

24. Seja f a função lógica dada pela tabela

p	q	r	f(p,q,r)
F	F	F	F
F	F	V	V
F	V	F	F
F	V	V	F
V	F	F	V
V	F	V	F
V	V	F	F
V	V	V	V

(a) Determine a forma normal disjuntiva de f.

- (b) Determine a forma normal conjuntiva de f.
- 25. Mostre que cada um dos seguintes conjuntos de conectivos é completo para o cálculo proposicional:
 - (a) $\{\neg, \rightarrow\}$.
 - (b) $\{\neg, \wedge\}$.
 - (c) $\{\neg, \lor\}$.
- 26. Prove as regras de inferência seguintes, usando tabelas de verdade.
 - (a) Modus ponens.
 - (b) $a \rightarrow b, \neg a \rightarrow b \models b.$
- 27. Mostre que $(p \rightarrow q) \land (\neg p \rightarrow q) \rightarrow q$ é uma tautologia e use esta tautologia para provar que

$$\neg p \rightarrow \neg q, \neg \neg p \rightarrow \neg q \models \neg q.$$

- 28. Mostre que os seguintes argumentos são correctos, usando tabelas de verdade.
 - (a) $p \lor q, \neg p \lor r \models q \lor r$.
 - (b) $p \rightarrow q, p \rightarrow r \models p \rightarrow q \land r$.
 - (c) $p, p \rightarrow q \models p \land q$.
 - (d) $p \lor q, p \rightarrow r, q \rightarrow r \models r$.
- 29. Averigue se os seguintes argumentos são válidos, indicando, para cada argumento válido, a regra de inferência que é usada.
 - (a) O número $\log_2 3$ é irracional se não for igual à razão de dois inteiros. Por conseguinte, como $\log_2 3$ não é igual à razão de dois inteiros, conclui-se que $\log_2 3$ é irracional.
 - (b) Se n é um número real tal que n > 1, então $n^2 > 1$. Suponhamos que $n^2 > 1$. Então n > 1.
 - (c) Se n é um número real tal que n > 3, então $n^2 > 9$. Suponhamos que $n^2 \le 9$. Então $n \le 3$.
 - (d) A função f tem derivada nula no ponto a ou não tem derivada em a. Como f tem derivada em a, conclui-se que f'(a) = 0.
 - (e) Se durmo menos do que 7 horas por dia então trabalho muito. Se trabalho muito e durmo menos do que 7 horas por dia então estou cansado. Eu não estou cansado. Logo eu não trabalho muito.
 - (f) O resto da divisão de um número par por 4 é 0 ou 2. Assim, se o resto da divisão de um número par por 4 não é 0, então é 2.
 - (g) Se n é um número primo então é ímpar ou igual a 2. Logo, se n é um número par diferente de 2, concluímos que n não é primo.
- 30. $A, B \in C$ compareceram perante um tribunal, acusados de roubo. Conseguiu-se estabelecer que:
 - Se A não é culpado, o culpado é B ou C.
 - \bullet Se A não é culpado então C não é culpado.
 - \bullet Se B é culpado então A é culpado.

Será possível decidir sobre a culpabilidade de A a partir destes factos? Se sim, determine se A é ou não culpado.