СОДЕРЖАНИЕ 1

Содержание

1.	Гра	фы и базовый поиск в глубину	2
	1.1	Определения	2
	1.2	Хранение графа	3
	1.3	Поиск в глубину	5
	1.4	Компоненты связности	6
	1.5	Классификация рёбер	7
	1.6	Топологическая сортировка	8
2.	Вве	дение в теорию сложности	8
	2.1	Основные классы	8
	2.2	Decision/search problem	10
	2.3	DTime, P, EXP (классы для decision задач)	10
	2.4	NP (non-deterministic polynomial)	11
	2.5	NP-hard, NP-complete	12
	2.6	Сведения, новые NP-полные задачи	14
	27	Залачи поиска	15

1. Графы и базовый поиск в глубину

1.1 Определения

Определение 1. $\Gamma pa \phi G$ — пара множеств вершин и рёбер $\langle V, E \rangle$. V — множество вершин, E — множество ребер (пар вершин).

- Вершины ещё иногда называют узлами.
- Если направление ребёр не имеет значение, граф неориентированный (неорграф).
- Если направление ребёр имеет значение, граф ориентированный (орграф).
- Если ребру дополнительно сопоставлен вес, то граф называют взвешенным.
- Рёбра в орграфе ещё называют дугами и у ребра вводят понятие начало и конец.
- \circ Если E мультимножество, то могут быть равные рёбра, их называют $\kappa pamнымu$.
- \circ Иногда, чтобы подчеркнуть, что E мультимножество, говорят *мультиграф*.
- \circ Для ребра e = (a,b), говорят, что a иниидентно вершине b.
- \circ Cmenehb вершины a в неорграфе $\deg v$ количество инцидентных ей рёбер.
- \circ В орграфе определяют ещё входящую и исходящую степени: $\deg v = \deg_{in} v + \deg_{out} v$.
- Два ребра с общей вершиной называют смежными.
- Две вершины, соединённых ребром тоже называют смежными.
- Вершину степени ноль называют изолированной.
- Вершину степени один называют висячей или листом.
- \circ Ребро (a,a) называют $nem \land \ddot{e} \ddot{u}$.
- Простым будем называть граф без петель и кратных рёбер.

Определение 2. Πymb — чередующаяся последовательность вершин и рёбер, в которой соседние элементы инцидентны, а крайние — вершины. В орграфе направление всех рёбер от i к i+1.

- Путь вершинно простой или просто простой, если все вершины в нём различны.
- Путь рёберно простой, если все рёбра в нём различны.

• Пути можно рассматривать и в неорграфах и в орграфах. Если в графе нет кратных рёбер, обычно путь задают только последовательностью вершин.

Замечание. Иногда отдельно вводят понятие маршрута, цепи, простой цепи. Мы, чтобы не захламлять лексикон, ими пользоваться не будем.

- Цикл путь с равными концами. Циклы тоже бывают вершинно и рёберно простыми.
- Ацикличный граф граф без циклов.
- Дерево − ацикличный связный неорграф.

1.2 Хранение графа

Будем обозначать |V|=n, |E|=m. Иногда сами V и E будут обозначать размеры.

Список ребер

Можно просто хранить рёбра: pair<int,int> edges[m]; Чтобы в будущем удобно обрабатывать и взвешенные графы, и графы с потоком:

```
struct Edge {
   int from, to, weight;
};
Edge edges[m];
```

Матрица смежности

Можно для каждой пары вершин хранить наличие ребра, или количество рёбер, или вес...

```
bool c[n][n]; для простого невзвешенного графа. n^2 бит памяти.
```

int c[n][n]; для простого взвешенного графа или незвешенного мультиграфа. $\mathcal{O}(n^2)$ памяти. vector<int> c[n][n]; для взвешенного мультиграфа придётся хранить список всех весов всех рёбер между парой вершин.

vector<vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
vector
ve

Списки смежности

Можно для каждой вершины хранить список инцидентных ей рёбер: vector<Edge> c[n]; Чтобы списки смежности умели быстро удалять, заменяем vector на set/unordered_set.

	adjacent	get	all	add	del	memory
Список ребер	$\mathcal{O}(E)$	$\mathcal{O}(E)$	$\mathcal{O}(E)$	$\mathcal{O}(1)$	$\mathcal{O}(E)$	$\mathcal{O}(E)$
Матрица смежности	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(V^2)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(V^2)$
Списки смежности (vector)	$\mathcal{O}(deg)$	$\mathcal{O}(deg)$	$\mathcal{O}(V+E)$	$\mathcal{O}(1)$	$\mathcal{O}(deg)$	$\mathcal{O}(E)$
Списки смежности (hashTable)	$\mathcal{O}(deg)$	$\mathcal{O}(1)$	$\mathcal{O}(V+E)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(E)$

Список ребер

Сравнение способов хранения

Основных действий, которых нам нужно будет проделывать с графом не так много:

- 1. adjacent(v) перебрать все инцидентные v ребра.
- 2. get(a,b) посмотреть на наличие/вес ребра между a и b.
- 3. all просмотреть все рёбра графа.
- 4. add(a,b)-добавить ребро в граф.
- 5. del(a,b) удалить ребро из графа.

Ещё важно оценить дополнительную память.

Единственные плюсы первого способа – не нужна доппамять; в таком виде удобно хранить граф в файле (чтобы добавить одно ребро, допишем его в конец файла). Если матрица смежности уж слишком велика, можно хранить хеш-таблицу $\langle a,b \rangle \to c[a,b]$. В большинстве задач граф хранят списками смежности (иногда с set вместо vector).

Пример задачи, которую хорошо решает матрица смежности: даны граф и последовательность вершин в нём, проверить, что она – простой путь.

Пример задачи, которую хорошо решают списки смежности: пометить все вершины, смежные с v.

Пример задачи, где нужна сила обеих структур: даны две смежные вершины, найти третью, чтобы получился треугольник.

Мультисписок

Рёбра, смежные с v, лежат в односвязном списке head[v], next[head[v]], next[head[v]]]... Все перечисленные элементы — номера рёбер.

По номеру ребра e можем хранить любую информацию про него, например, куда оно ведёт.

```
1 struct MultiList {
2 struct Edge { int next, to; };
```

```
3
           vector<int> head; // first edge for every vertex
4
           vector <Edge > es; // all edges
           int e; // amount of edges
5
6
           MultiList(int n, int m) :
7
               head(n, -1), // -1 is a sign of the enf of the list
8
               e\ s\ (\ m\ ) , // max amount of edges
               e = 0 { } // there is no edges at the start
9
10
           void addEdge(int a, int b) { // one directed edge
               es[e] = {head[a], b}, head[a] = e++;
11
12
           }
           void adjacent(int v) { // all connected with v edges
13
           for (int e = head[v]; e != -1; e = es[e].next)
14
               cout << es[e].next << " "; // or anything else</pre>
15
           }
16
17
       };
```

По сути эти те же «списки смежности», но более аккуратно сохранённые.

Пусть $V=E=10^6$, граф случайный. Оценим память. На 64-битной машине vector<vector<int> g будет в итоге весить $X=?_1=3\cdot 8+?_2$ мегабайта (сам по себе вектор – 3 указателя). Можно подумать, что $?_2=E\cdot 4$, но нет, в векторе size \neq сарасіty \Rightarrow нужно проводить эксперимент. На двух экспериментах видим, что $?_2\approx E\cdot 12$ и $E\cdot 16$. Итого $X\approx 36-38$ мегабайт. А мультисписок $12=3\cdot 4$ мегабайта. Итого разница в ≈ 3 раза. По скорости создания/удаления (выделить память, положить все элементы, освободить память) мультисписок будет в ≈ 10 раз быстрее.

1.3 Поиск в глубину

Поиск в глубину = depth-first-search = dfs.

Задача: пометить все вершины, достижимые из a.

Решение: рекурсивно вызываемся от всех соседей а.

```
vector < vector < int >> g(n);
void dfs(int v) {
    used[v] = true;
    for (int u : g[v])
        p[u] = v, dfs(u);
}
dfs(v);
```

Время работы $\mathcal{O}(E)$, так как по каждому ребру dfs проходит не более одного раза.

Для восстановления пути из вершины v в вершину u достаточно хранить массив предков, где для каждой вершины, хранится номер вершины, из которой мы пришли. У стартовой p[v] = -1.

Немного его модифицируем, а именно будем сохранять для каждой вершины, в какой момент мы в неё вошли и в какой вышли — соответствующие массивы будем называть tin и tout.

Как их заполнить: заведем таймер, отвечающий за «время» на текущем состоянии обхода, и будем инкрементировать его каждый раз, когда заходим в новую вершину:

```
1
       std::vector<int> tin(n), tout(n);
       int t = 0; // timer
2
3
       void dfs(int v) {
4
            tin[v] = t++;
5
6
            for (int u : g[v])
7
                if (!used[u])
8
                    dfs(u);
9
            tout[v] = t;
10
```

Полезные свойства этих массивов:

- 1. Вершина и является предком $v_v \in [tin_u, tout_u)$. Эту проверку можно делать за константу.
- 2. Два полуинтервала $[tin_u, tout_u)$ и $[tin_v, tout_v)$ либо не пересекаются, либо один вложен в другой.
- 3. В массиве tin есть все числа от 0 до (n-1), причём у каждой вершины свой номер.
- 4. Размер поддерева вершины v (включая саму вершину) равен $(tout_v tin_v)$.
- 5. Если ввести нумерацию вершин, соответствующую tin-ам, то индексы любого поддерева всегда будут каким-то промежутком в этой нумерации.

1.4 Компоненты связности

Определение 3. Две вершины u и v называются censan+numu (adjacent), если в графе G существует путь из u в v (обозначение: $u \leadsto v$).

Определение 4. *Компонентой связности неориентированного графа* называется подмножество вершин, достижимых из какой-то заданной вершины.

Теорема 1. Связанность — отношение эквивалентности.

Доказательство. Рефлексивность: $\forall a \in V \ a \leadsto a$.

Симметричность: $a \leadsto b \Rightarrow b \leadsto a$ (в силу неориентированности).

Транзитивность: $a \leadsto b \land b \leadsto c \Rightarrow a \leadsto c$

Действительно, сначала пройдем от a до b, затем от b до c, что и означает существования пути $a \rightsquigarrow c$.

Поиск компонент связности

Для решения задачи модифицируем обход в глубину так, чтобы запустившись от вершины какой-то компоненты, от пометил все вершины этой компоненты — то есть все достижимые вершины — заданным номером этой компоненты.

```
void dfs(int v, int col) {
1
2
            used[v] = col;
3
            for (int u : g[v])
                if (!used[v])
4
5
                    p[u] = v, dfs(u, col);
6
       }
7
8
       int comp = 0;
       for (int v = 0; v < n; v++)
9
10
            if (!used[v])
                dfs(v, ++comp);
11
```

Итоговая асимптотика составит $\mathcal{O}(V+E)$, потому что такой алгоритм не будет запускаться от одной и той же вершины дважды, и каждое ребро будет просмотрено ровно два раза (с одного конца и с другого).

1.5 Классификация рёбер

После dfs(v) остаётся дерево с корнем в v. Отец вершины u — та, из которой мы пришли в v. Пусть все вершины достижимы из v. Рёбра разбились на следующие классы:

- 1. Древесные: принадлежат дереву.
- 2. Прямые: идут вниз по дереву.
- 3. Обратные: идут вверх по дереву.
- 4. Перекрёстные: идут между разными поддеревьями.

Рёбра можно классифицировать относительно любого корневого дерева, но именно относителтно дерева, полученного dfs в неорграфе, нет перекрёстных рёбер.

Лемма 1. Относительно дерева dfs неорграфа нет перекрёстных рёбер.

Доказательство. Если есть перекрёстное ребро $a \to b$, есть и $b \to a$ (граф неориентированный). Пусть $tin_a < tin$)b. $a \to b$ перекрёстное $\Rightarrow tin_b > tout_a$. Противоречие с тем, что dfs пытался пройти по ребру $a \to b$.

1.6 Топологическая сортировка

Определение 5. Топологической сортировкой орграфа называется сопоставление вершинам номеров $ind[v]: \forall (a \to b) \ ind \ a < ind \ b.$

Лемма 2. Топологическая сортировка существует тогда и только тогда, когда граф ацикличен.

Доказательство. Если есть цикл, то рассмотрим неравенства по циклу и получим противоречие.

Если цикла нет, то сещствует вершина нулевой входящей степени, сопоставим ей ind[v] = 0, удалим ее из графа, граф останется ациклинчым, по индукции нумеруем оставшиеся вершины.

В процессе доказательства получили нерекурсивный алгоритм топологической сортировки за $\mathcal{O}(V+E)$: поддерживаем входящие степени и очереди вершин нулевой входящей степени. Итенрация:

Алгоритм топологической сортировки

dfs умеет сортировать вершины по времени входа и времени выхода.

```
void dfs(int v) {
    in_time_order.push_back(v);

out_time_order.push_back(v);
}
```

Топологический порядок вершин записан в reverse(out_time_order).

Доказательство. Пусть есть ребро $a \to b$, тогда мы сперва выйдем из b и тоолько затем из a.

2. Введение в теорию сложности

2.1 Основные классы

Алгоритмы позволяют для какой-то задачи сказать, за сколько она решается: дана задача $A \to$ решим ее за $\mathcal{O}(2^n)$

2.1 Основные классы

Теория сложности же позволяет сказать, что для какой-то задачи не существует алгоритма, решающего ее за какую-то асимптотику: дана задача $A \to$ не решается быстрее, чем за $\mathcal{O}(n \log n)$.

Алгоритмически не разрешимые задачи

Существуют ли неразрешимые задачи (то есть для которых нет решающих их алгоритмов)? На самом деле, таких задач больше, чем алгоритмов.

```
Рассмотрим следующие задачи: A: \left\{ egin{align*} \mbox{input: } n \in \mathbb{N} \\ \mbox{output: } true/false \end{array} \right.
```

Любую такую задачу можно задать подмножеством натуральных чисел, на которых ответ true $A\subseteq \mathbb{N}.$

Задач по крайней мере столько, сколько множеств натуральных чисел — $|2^N|$. Алгоритмов счётное число (то есть |N|), ведь их всех можно пронумеровать: сначала выпишем все однобуквенные, затем все двухбуквенные, и так далее.

 $|2^n|>|N|$ — тут можно либо сослаться на общую теорему Кантора $(2^A>|A|)$, либо вспомнить школьные доказательства того, что |2N|=|R| и |R|>|N|. Так что на самом деле «почти все» задачи неразрешимы.

Пример 1. Неразрешимая задача: задача остановки HALTING: Дана программа, остановится ли она когда-нибудь на данном входе?

```
HALTING:  \begin{cases} 	ext{input: код программы и вход для этой программы} \\ 	ext{output: остановится ли запуск?} \end{cases}
```

Теорема 2. Halting problem алгоритмически не разрешима.

Доказательство. От противного. Пусть есть алгоритм terminates(code, x), всегда останавливающийся, и возвращающий true только если code(x) останавливается. Рассмотрим программу:

```
def invert(code):
   if terminates(code, code): while (true)
```

Запустим invert(invert), что может случится:

- 1. Он зависнет \Rightarrow terminate(invert, invert)= $false \Rightarrow$ invert не зависает ?!
- 2. Он завершится \Rightarrow terminate(invert, invert)= $true \Rightarrow$ invert зависает ?!

Противоречие. Значит, такого terminate не существует.

Теорема 3. Теорема Успенского-Райса

Любое нетривиальное свойство программ неразрешимо (то есть нет алгоритма, которые бы его проверял).

Поясним, что это значит. Будем говорить, что программы A и B эквивалентны $(A \sim B)$, если для каждого входа A либо они обе зависают, либо обе останавливаются и печатают одно и тот же ответ (время работы и память при этом могут отличаться).

Определение 6. Свойство программы — это такой предикат P(code) который для любых эквивалентных программ \mathcal{A} и \mathcal{B} выдаёт одно и то же: $\mathcal{A} \sim \lfloor \Rightarrow P(\mathcal{A}) = P(\mathcal{B})$. «Нетривиальное» означает, что хотя бы одна программа ему удовлетворяет, но не все программы.

Теорема 4. Теорема Гёделя о неполноте

Eсли формальная система S непротиворечива, то в ней невыводимы обе формулы B и !B; иначе говоря, если система S непротиворечива, то она неполна, и B служит примером неразрешимой формулы.

Один из способов доказательства этой теоремы — через неразрешимость.

2.2 Decision/search problem

Определение 7. Если в задаче ответ – true/false, то это decision problem (задача распознавания). Иначе это search problem (задача поиска).

Пример 2.

- 1. Decision: проверить, есть ли x в массиве a.
- 2. Search: Найти позицию x в массиве a.
- 3. Decision: Проверить, есть ли путь из a в b в графе G.
- 4. Search: Найти сам путь.
- 5. Decision: Проверить, есть ли в графе клика размера хотя бы k.
- 6. Search: Найти максимальный размер клики (или саму клику).

Замечание. Decision problem f можно задавать, как язык (множество входов) $L = \{x : f(x) = true\}.$

2.3 DTime, P, EXP (классы для decision задач)

Определение 8. DTime[f(n)] — множество задач распознавания, для которых C>0 и детерминированный алгоритм, работающий на всех входах не более чем $C \cdot f(n)$, где n — длина входа.

Пример 3. IS_SORTED \in DTime[n]

 $IS_SORTED \in DTime[n^2]$

Определение 9. $P = \bigcup_{k>0} DTime[n^k]$. Т.е. задачи, имеющие полиномиальное решение.

Определение 10. EXP= $\bigcup_{k>0}$ DTime[2^{n^k}]. Т.е. задачи, имеющие экспоненциальное решение.

Пример 4. KNAPSACK: n предметов, рюкзак размера w, можно ли уложить $\geq k$ предметов? Умеем решать за $\mathcal{O}(2^n \cdot n)$, за $\mathcal{O}(nw)$ (не полиномиальное решение!).

Длина входа: $\mathcal{O}(n \log n + W \log W + k \log n + n \log W) = |x|$.

Теорема 5. Об иерархии по времени

 $DTime[f(n)] \subseteq DTime[f(n)\log^2 f(n)].$

Доказательство. ⊂ понятно, почему.

Но почему не \subseteq ? Значит, существует задача, которая решает за $\mathcal{O}(f(n)\log^2 f(n))$ и не решается за $\mathcal{O}(f(n))$ шагов.

Задача: дана программа и вход. Завершится ли она на этом входе за $f(n)\log f(n)$ шагов?

Следствие 1. $P \neq EXP$.

Доказательство. $P \subseteq DTime[2^n] \subsetneq DTime[2^{2n}] \subseteq EXP$.

2.4 NP (non-deterministic polynomial)

3адача \rightarrow да + сертификат / нет.

Определение 11. $NP = \{L : \exists \text{ алгоритм } M, \text{ работающий за полином от } |x|, \forall x (\exists y : M(x,y) = 1) \Leftrightarrow (x \in L)\}.$

Неформально: «NP – класс языков $L: \forall x \in L$, если нам дадут подсказку y(x), то мы за полином сможем убедиться, что $x \in L$ ».

Пример 5. Примеры NP-задач:

1. HAMPATH = $\{G \mid G$ – неорграф, в котором есть гамильтонов путь $\}$.

Подсказка y – путь. M получает вход x=G, подсказку y проверяет, что y прост, |y|=n и $\forall (e\in y)\ e\in G.$

2. k-CLIQUE — проверить наличие в графе клики размером k. Подсказка y — клика.

3. IS-SORTED – отсортирован ли массив? Она даже лежит в Р.

Замечание. P ⊆ NP (можно взять пустую подсказку).

Определение 12. $coNP = \{L \mid \overline{L} \in NP\}$

Определение 13. coNP= $\{L: \exists M, \text{ работающий за полином от } |x|, \forall x \ (\exists y \ M(x,y) = 0) \Leftrightarrow (x \in L)\}.$

Определение 14. coNP= $\{L: \exists M, \text{ работающий за полином от } |x|, \forall x \ (\exists y \ M(x,y)=1) \Leftrightarrow (x \notin L)\}.$

Пример 6. Пример со Р задачи:

PRIME – является ли число простым. Подсказкой является делитель.

На самом деле $PRIME \in P$, но этого мы пока не умеем понимать.

3амечание. Вопрос P = NP или $P \neq NP$ остаётся открытым. Предполагают, что \neq .

2.5 NP-hard, NP-complete

Определение 15. \exists полиномиальное сведение (по Карпу) задачи A к задаче B ($A \leq_P B$) $\Leftrightarrow \exists$ алгоритм f, работающий за полином, ($x \in A$) \Leftrightarrow ($f(x) \in B$).

3амечание. f работает за полином $\Rightarrow |f(x)|$ полиномиально ограничена |x|.

Определение 16. \exists *сведение по Куку* задачи A к задаче B ($A \leq_C B$) $\Leftrightarrow \exists M$, решающий A, работающий за полином, которому разрешено обращаться за $\mathcal{O}(1)$ к решению/оракулу B.

Ещё говорят «задача A сводится к задаче B».

В обоих сведениях мы решаем задачу A, используя уже готовое решение задачи B.

Другими словами доказываем, что «A не сложнее B». Различие в том, что в первом случае решением B можно воспользоваться только один раз (и инвертировать ответ нельзя), во втором случае – полином раз.

Определение 17. NP-hard = NPh = $\{L : \forall A \in \text{NP} \Rightarrow A \leq_P L\}$.

NP-трудные задачи – класс задач, которые не проще любой задачи из класса NP.

Определение 18. NP-complete = NPc = NPh \cap NP.

NP-полные задачи – самые сложные задачи в классе NP.

Если мы решим хотя бы одну из NPc за полином, то решим все из NP за полином. Хорошая новость: все NP-полные по определению сводятся друг к другу за полином.

Замечание. Когда хотите выразить мысль, что задача трудная в смысле решения за полином (например, поиск гамильтонова пути), неверно говорить «это NP задача» (любая из Р тоже в NP) и странно говорить «задача NP-полна» (в этом случае вы имеете в виду сразу, что и трудная, и в NP). Логично сказать «задача NP-трудна».

Лемма 3. $A \leq_P B, B \in P \Rightarrow A \in P$.

Доказательство. Сведение f работает за n^s , B решается за $n^t \Rightarrow A$ решается за n^{st} .

Лемма 4. $A \leq_P B, A \in NPh \Rightarrow B \in NPh$.

NP-полные задачи существуют!

Приведём простую и очень важную теорему. На экзамене доказательство можно сформулировать в одно предложение, здесь же оно для понимания расписано максимально подробно.

Определение 19. ВН = BOUNDED-HALTING: вход $x = \langle \underbrace{11...1}_k, Mx \rangle$, проверить, \exists ли такой y : M(x,y) остановится за k шагов и вернёт true.

Теорема 6. BH = BOUNDED-HALTING $\in NPc$.

Доказательство.

1. BH \in NP

Подсказка – такой y. Алгоритм – моделирование k шагов M за $\mathcal{O}((k))$.

Важно, что если бы число k было записано, используя $\log_2 k$ бит, моделирование работало бы за экспоненту от длины входа, и нельзя было бы сказать «задача лежит в NP».

2. BH ∈ NPh. То есть нужно доказать, что любой язык из NP к ней сводится.

$$L \in NP: \exists y: A(x,y) = 1 \Leftrightarrow x \in L$$

A — полиномиальный алгоритм $\Rightarrow \exists P(x)$, ограничивающий время работы A. Программа A всегда отрабатывает за P(|x|), если ее запустить с ограничением P(|x|), то ничего не поменяется.

Рассмотрим $f(x) = \underbrace{(11...1}_{P(|x|)}, A, x)$. Получили полиномиальное сведение:

$$x \in L \Leftrightarrow \exists y : A(x,y) = 1 \Leftrightarrow f(x) \in BH.$$

2.6 Сведения, новые NP-полные задачи

Началось всё с того, что в 1972-м Карп опубликовал список из 21 полной задачи, и дерево сведений. Кстати, в его работе все сведения крайне лаконичны. Итак, приступим:

Чтобы доказать, что $B \in \text{NPh}$, нужно взять любую $A \in \text{NPh}$ и свести A к B полиномиально. Пока такая задача A у нас одна – BH. На самом деле их очень много.

Чтобы доказать, что $B \in \text{NPc}$, нужно ещё не забыть проверить, что $B \in \text{NPc}$

Во всех теоремах ниже эта проверка очевидна, мы проведём её только в доказательстве первой.

Теорема 7.
$$BH \leq_p CIRCUIT\text{-}SAT \leq_p SAT \leq_p 3\text{-}SAT \leq_p k\text{-}INDEPENDENT \leq_p k\text{-}CLIQUE}$$
 $BH = \{(A, x, 1^k) \mid A(x)\}$

Определение 20. CIRCUIT-SAT. Дана схема, состоящая из входов, выхода, гейтов AND, OR, NOT. Проверить, существует ли набор значений на входах, дающий true на выходе.

Теорема 8. CIRCUIT- $SAT \in NPc$.

Доказательство.
$$\{C_{\text{схема}} \mid \exists \vec{x} : C(\vec{x}) = 1\}, \vec{x} = (x_1, ..., x_n)$$

 $\circ \in NP$

Подсказка – набор значений на входах \Rightarrow CIRCUIT-SAT NP.

 $\circ \in NPh$

Сводим ВН к CIRCUIT-SAT \Rightarrow нам даны программа A, время выполнения k, вход x'.

$$f(A,x,\underbrace{1..1}_{k}) = C (A,x,1^{k}) \in BH \Leftrightarrow C \in CIRCUIT\text{-SAT}$$

За время k программа обратится не более чем к k ячейкам памяти.

Обозначим за $s_{i,j}$ состояние true/false j-й ячейки памяти в момент времени i. $s_{o,i}$ – вход, $s_{t,potput}$ – выход, $\forall i \in [1,k)$ $s_{i,j}$ зависит от $\mathcal{O}(1)$ переменных (i1)-го слоя. f запишем в КНФ, чтобы получить гейты вида AND, OR, NOT. Размер КНФ – $\mathcal{O}(1)$ (КНФ –частный случай схемы). Размер схемы вырастет в константу раз. Получили $\mathcal{O}(tn)$ булевых гейтов \Rightarrow по (A,x,k) за полином построили вход к CIRCUIT-SAT.

Теорема 9. $SAT \in NPc$.

Теорема 10. 3- $SAT \in NPc$.

2.7 Задачи поиска

Доказательство. Пусть есть клоз $(x_1 \lor x_2 \lor ... \lor x_n)$, $n \ge 4$. Введём новую переменную w и заменим его на $(x_1 \lor x_2 \lor w) \land (x_1 \lor x_2 \lor ... \lor x_n \lor \overline{w})$.

 $\phi(x_1,...,x_n) \to \psi(x_1,...,x_n,w)$. Хотим доказать, что ϕ выполнима $\Leftrightarrow \psi$ выполнима.

1. ϕ выполнима $\Rightarrow \psi$ выполнима.

Если $x_i = 1$, то одна часть формулы равна 1, а вторую можно сделать равна 1, если w (или \overline{w}) сделать равной 1.

2. ψ выполнима $\Rightarrow \phi$ выполнима.

Посмотрим на скобку, в которой w=0. Значит, там есть $x_i=1\Rightarrow \phi(...)=1.$

Определение 21. k-INDEPENDENT: $(G,k) \to \exists$ существует независимое множество размера $\geq k$?

Теорема 11. k-INDEPENDENT $\in NPc$.

Доказательство. Сведем: 3-SAT $\leq_p k$ -INDEPENDENT

Наша формула – m клозов $(l_{i1} \lor l_{i2} \lor l_{i3})$, где l_{ij} – литералы.

Построим граф из ровно 3m вершин – l_{ij} . $\forall i$ добавим треугольник (l_{i1}, l_{i2}, l_{i3}) (итого 3m рёбер).

В любое независимое множество входит максимум одна вершина из каждого треугольника.

 $\forall k=1...n$ соединим все вершины $l_{ij}=x_k$ со всеми вершинами $l_{ij}=\overline{x}_k$.

Теперь $\forall k=1...n$ в независимое множество нельзя одновременно включить x_k и \overline{x}_k .

Итог: \exists независимое размера $m \Rightarrow y$ 3-SAT было решение.

Теорема 12. k- $CLIQUE \in NPc$.

Доказательство. Сведем: k-CLIQUE $\leq_p k$ -INDEPENDENT.

$$(G,k) \leftrightarrow (\overline{G},k), \overline{G} = (V,\overline{E})$$

 $(vu) \in E \Leftrightarrow (vu) \notin \overline{E}$

TODO

1. GI,
$$(G,H)$$

$$T = 2^{O(\log^3 n)} = n^{O(\log^2 n)}$$

2.7 Задачи поиска

Определение 22. \overline{NP} , \overline{NPc} , \overline{NPh}° .

2.7 Задачи поиска

Сведение задач минимизации, максимизации к decision задачам

Пусть мы умеем проверять, есть ли в графе клика размера k. Чтобы найти размер максимальной клики, достаточно применить бинпоиск по ответу. Это общая техника, применимая для максимизации/минимизации численной характеристики.

MAX-CLIQUE $\rightarrow k$ -CLIQUE

Сведение search задач к decision задачам

Последовательно фиксируются биты (части) подсказки у.

Пример 7.

1. 3-SAT

 $\varphi(x_1,..,x_n), \varphi$ невыполнима \Rightarrow +

Рассмотрим $x_n = 0$.

 $\varphi(x_1,..,x_{n-1},0)$ невыполнима $\Rightarrow x_n = 1$.

 $\varphi(x_1,..,x_{n-1},0)$ выполнима $\Rightarrow x_n = 0$.

И перейдем к следующей переменной.

2. k-INDEPENDENT

$$G' = G \setminus \{v\}$$

$$G'$$
 — есть k -IS $\Rightarrow G := G'$

Иначе IS= $\{v\} \cup$ IS $(G\{u \mid g[v]\})$ (соседи v)

Решение NP-трудных задач

Если встретилась задача, которую не удается быстро решить, то:

- 1. Поискать ее в списке трудных.
- 2. Свести трудную к ней.
- 3. Свести задачу к SAT (существуют SAT-solver'ы, которые могут ее решить).