RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION EXAMEN DU BACCALAURÉAT Épreuve : Mathématiques Session de contrôle 2023 Section : Sciences de l'informatique Durée : 3h Coefficient de l'épreuve: 3

N° d'inscription

Le sujet comporte 4 pages. (La page 4 sur 4 est à rendre avec la copie)

Exercice N°1:(5 points)

- 1) a) Vérifier que $(\sqrt{3} + 2i)^2 = -1 + 4i\sqrt{3}$.
 - b) Résoudre dans $\mathbb C$ l'équation : $z^2 + \left(\sqrt{3} 4i\right)z 3\left(1 + i\sqrt{3}\right) = 0$.
- 2) Dans le plan complexe muni d'un repère orthonormé direct $\left(O,\vec{u},\vec{v}\right)$, on considère les points A, B et E d'affixes respectives $z_A=-\sqrt{3}+i$, $z_B=3i$ et $z_E=2+i\left(3-\sqrt{3}\right)$.
 - a) Justifier que le point A appartient au cercle (C) de centre O et de rayon 2.
 - b) Montrer que $(z_B z_A)(\overline{z_B z_E}) = -7i$.
 - c) Montrer que le triangle ABE est isocèle rectangle en B.
 - d) Dans la figure 1 de l'annexe ci-jointe, on a construit le cercle (C).
 Placer le point B et construire les points A et E.
- 3) Soit un point D d'affixe $z_D = x + i$, où x est un réel.
 - a) Montrer que $(z_B z_D)(\overline{z_B z_E}) = 2x + 2\sqrt{3} + i(x\sqrt{3} 4)$.
 - b) Pour quelle valeur du réel x, le point D appartient-il à la droite (BE)?

 Construire alors ce point D.

Exercice N°2:(5 points)

- 1) On considère dans \mathbb{Z} le système (S): $\begin{cases} n \equiv 10[11] \\ n \equiv 8[13]. \end{cases}$
 - a) Vérifier que le couple (-7,6) est une solution de l'équation

(E):
$$11u + 13v = 1$$
, $(u, v) \in \mathbb{Z} \times \mathbb{Z}$.

Pour un couple (u,v) solution de l'équation (E), on pose N=88u+130v.

b) Vérifier que N=10-22u.

- c) Montrer alors que N est une solution du système(S).
- d) Déduire une solution particulière N₀ de(S).
- 2) Soit k un entier relatif. Montrer que si 11 divise k et 13 divise k alors 143 divise k.
- 3) a) Soit n un entier relatif vérifiant le système(S).

Montrer que $n-164 \equiv 0[143]$.

- b) Déduire qu'un entier relatif n est solution de(S) si et seulement si n=143p+21, où $p\in\mathbb{Z}$.
- 4) Un grand père possède une somme d'argent, en dinars, comprise entre 460 et 730.
 - S'il la partage entre ses treize petits-fils à parts égales il lui reste 8 dinars.
 - Le jour de l'Aïd, seuls onze parmi eux étaient présents ; après le partage de cette somme à parts égales entre eux, il lui reste 10 dinars.

Quelle est la somme d'argent reçue par chacun des onze petits-fils le jour de l'Aïd.

Exercice N°3:(4 points)

On considère la suite $\left(u_n\right)$ définie sur $\mathbb N$ par $\begin{cases} u_0=0\\ u_{n+1}=\dfrac{3u_n-1}{u_n+5} \end{cases}$, pour tout $n\in\mathbb N.$

- 1) a) Montrer que pour tout $n \in \mathbb{N}$, $-1 < u_n \le 0$.
 - b) Vérifier que pour tout $n\in\mathbb{N}$, $u_{n+1}-u_n=-\frac{\left(u_n+1\right)^2}{u_n+5}.$
 - c) En déduire la monotonie de la suite (u_n) .
 - d) Montrer que la suite (u_n) est convergente et calculer sa limite.
- 2) On considère la suite (v_n) définie sur \mathbb{N} par : $v_n = \frac{1}{u_n + 1}$.
 - a) Montrer que (v_n) est une suite arithmétique de raison $\frac{1}{4}$ dont on précisera le premier terme.
 - b) Exprimer v_n en fonction de n, puis montrer que pour tout $n \in \mathbb{N}$, $u_n = \frac{4}{n+4} 1$.
 - c) Déterminer la plus petite valeur de n tel que $u_n < -0.97$.

Exercice N°4:(6 points)

Soit la fonction f définie sur $]0,+\infty[$ par $:f(x)=(\ln x)^2-1$ et on désigne par (\mathscr{C}) sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$.

- 1) a) Déterminer $\lim_{x\to 0^+} f(x)$. Interpréter graphiquement le résultat obtenu.
 - b) Déterminer $\lim_{x\to +\infty} f(x)$.
 - c) En remarquant que pour tout $x \in \left]0,+\infty\right[: \frac{\left(\ln x\right)^2}{x} = \left(\frac{\ln x}{\sqrt{x}}\right)^2$, déterminer $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement les résultats obtenus.
- 2) a) Justifier que f est dérivable et que pour tout $x \in]0,+\infty[$, f'(x) et $(\ln x)$ ont le même signe.
 - b) Dresser le tableau de variation de la fonction f.
- 3) Montrer que la courbe (\mathscr{C}) coupe l'axe des abscisses aux points d'abscisses $\frac{1}{e}$ et e.
- 4) a) Montrer que pour tout $x \in \left]0,+\infty\right[, f''(x) = \frac{2}{x^2}(1-\ln x).$
 - b) Déduire que le point I(e,0) est un point d'inflexion pour la courbe (8).
 - c) Déterminer une équation de la tangente T à (8) au point I.
- 5) Dans la **figure 2** de l'annexe ci-jointe on a placé les points de coordonnées $\left(\frac{1}{e},0\right)$ et (e,0).

 Tracer T et (\mathscr{C}) .
- 6) a) Vérifier que la fonction F définie sur $]0,+\infty[$ par : $F(x)=x(\ln x-1)^2$ est une primitive de la fonction f sur $]0,+\infty[$.
 - b) Soit \mathcal{A} l'aire, en unité d'aire, de la partie du plan limitée par la courbe (\mathscr{C}), l'axe des abscisses et les droites d'équations $x = \frac{1}{e}$ et x = e.

Calculer A.

	Section :		Signature	s des surveilla	nts	
	Date et lieu de naissance					
Épreuve: Mathématiques - Section : Sciences de l'informatique Session de contrôle (2023) Annexe à rendre avec la copie						
Figure	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3			
Figure 5.	2					
\vec{j}						
-1 0 -1.	$\frac{1}{e}$ \vec{i} 1 2 \vec{e} 3 4 5 6 7 8	ġ	10	11 12	13	

Page 4 sur 4