Efficient Analysis of Probabilistic Programs with an Unbounded Counter CAV 2011

Tomáš Brázdil¹ <u>Stefan Kiefer</u>² Antonín Kučera¹

¹Masaryk University, Brno, Czech Republic

²University of Oxford, UK


```
procedure AND(node)
if node is a leaf
   return node.value
else
   for each successor s of node
      if OR(s) = 0 then return 0
   return 1

procedure OR(node) ...
```

(evaluate only when necessary)


```
procedure AND(node)
if node is a leaf
   return node.value
else
   for each successor s of node
      if OR(s) = 0 then return 0
   return 1

procedure OR(node) ...
```

(evaluate only when necessary)

What is the average runtime?

• cannot tell: program may not even terminate


```
procedure AND(node)
if node is a leaf
    return node.value
else
    for each successor s of node
        if OR(s) = 0 then return 0
    return 1

procedure OR(node) ...
```

(evaluate only when necessary)

- cannot tell: program may not even terminate
- ⇒ probabilistic assumptions:

What is the average runtime?

- AND node has 3 kids in average (geom. distribution)
- OR node has 2 kids in average
- a branch has length 4 in average
- Pr(leaf evaluates to 0) = Pr(leaf evaluates to 1) = $\frac{1}{2}$

(arv

What is the average runtime?

- cannot tell: program may not even terminate
- ⇒ probabilistic assumptions:
 - AND node has 3 kids in average (geom. distribution)

Approximate efficiently the expected runtime

- OR node has 2 kids in average
- a branch has length 4 in average
- $Pr(leaf \ evaluates \ to \ 0) = Pr(leaf \ evaluates \ to \ 1) = \frac{1}{2}$

Probabilistic Counter Machines

Probabilistic Counter Machines induce infinite Markov chains:

$$q \stackrel{0.6}{\longleftrightarrow} r(+1)$$
 $r \stackrel{0.3}{\longleftrightarrow} q(\pm 0)$
 $q \stackrel{0.4}{\longleftrightarrow} q(-1)$ $r \stackrel{0.7}{\longleftrightarrow} r(-1)$

Modeling a Program as Prob. Counter Machine

```
and \stackrel{\ell \cdot z}{\longleftrightarrow} and 0(-1)
                                                        and \stackrel{\ell \cdot (1-z)}{\longleftrightarrow} and 1(-1)
procedure AND(node)
                                                        otherwise, call OR:
if node is a leaf
                                                        and \stackrel{1-\ell}{\longleftrightarrow} or (+1)
    return node.value
else
                                                        if OR returns 0, return 0 immediately:
    for each successor s of node
         if OR(s) = 0 then return 0
                                                        or0 \stackrel{1}{\hookrightarrow} and0(-1)
    return 1
                                                        otherwise, maybe call another OR:
                                                        or1 \stackrel{\times}{\hookrightarrow} or(+1)
                                                        or1 \stackrel{1-x}{\longleftrightarrow} and1(-1)
```

if leaf, return 0 or 1:

Applications of Probabilistic Counter Machines

PCMs model infinite-state probabilistic programs

- recursion
- unbounded data structures

PCMs = discrete-time Quasi-Birth-Death processes

- well established stochastic model
- studied since the late 60s
- ⇒ queueing theory, performance evaluation, . . .

Recently: Games over (Probabilistic) Counter Machines

- energy games [Chatterjee, Doyen et al.]
- ⇒ optimizing resource consumption in portable devices

Related Model: Probabilistic Pushdown System

Probabilistic Pushdown Systems modify a stack:

$$q(X) \stackrel{0.3}{\longleftrightarrow} r(YY)$$

$$q(X) \stackrel{0.5}{\longleftrightarrow} r(X) \qquad q(Y) \hookrightarrow \dots \quad r(X) \hookrightarrow \dots \quad r(Y) \hookrightarrow \dots$$

$$q(X) \stackrel{0.2}{\longleftrightarrow} q(\varepsilon)$$

Prob. Pushdown Systems (equivalently, Recursive Markov Chains) are more general, but more expensive to analyze.

PCMs are Prob. Pushdown Systems with a single stack symbol.

Probabilistic Counter Machines

Runtime T := number of steps from (q, 1) to (*, 0) We want to efficiently approximate $\mathbb{E} T$.

Trend t:= "average increase of the counter per step" Assume t < 0. Intuition: The more negative the trend t, the smaller T.

Runtime T := number of steps from (q, 1) to (*, 0) We want to efficiently approximate $\mathbb{E}T$.

Trend t := "average increase of the counter per step" Assume t < 0. Intuition: The more negative the trend t, the smaller T.

Proposition (from martingale theory: Azuma's inequality)

Let $m^{(0)}, m^{(1)}, m^{(2)}, \ldots$ be random variables with $m^{(0)} = 1$. Let t < 0.

Assume $\mathbb{E}(m^{(k+1)} \mid m^{(k)}) = m^{(k)} + t$ for all k. Then for all k: $\Pr(m^{(k)} \ge 1) \le a^k$, where $a = e^{-t^2/2} < 1$.

 $m^{(0)}=1$

Runtime T := number of steps from (q, 1) to (*, 0) We want to efficiently approximate $\mathbb{E} T$.

Trend t := "average increase of the counter per step" Assume t < 0. Intuition: The more negative the trend t, the smaller T.

Proposition (from martingale theory: Azuma's inequality)

Let $m^{(0)}, m^{(1)}, m^{(2)}, \ldots$ be random variables with $m^{(0)} = 1$. Let t < 0.

Assume $\mathbb{E}(m^{(k+1)} \mid m^{(k)}) = m^{(k)} + t$ for all k. Then for all k: $\Pr(m^{(k)} \ge 1) \le a^k$, where $a = e^{-t^2/2} < 1$.

Runtime T := number of steps from (q, 1) to (*, 0) We want to efficiently approximate $\mathbb{E}T$.

Trend t := "average increase of the counter per step" Assume t < 0.

Intuition: The more negative the trend t, the smaller T.

Proposition (from martingale theory: Azuma's inequality)

Let $m^{(0)}, m^{(1)}, m^{(2)}, \ldots$ be random variables with $m^{(0)} = 1$. Let t < 0.

Assume $\mathbb{E}(m^{(k+1)} \mid m^{(k)}) = m^{(k)} + t$ for all k. Then for all k: $\Pr(m^{(k)} \ge 1) \le a^k$, where $a = e^{-t^2/2} < 1$.

$$m^{(0)} = 1$$
 $m^{(1)}$
 $m^{(2)}$

Runtime T := number of steps from (q, 1) to (*, 0) We want to efficiently approximate $\mathbb{E}T$.

Trend t := "average increase of the counter per step" Assume t < 0.

Intuition: The more negative the trend t, the smaller T.

Proposition (from martingale theory: Azuma's inequality)

Let $m^{(0)}, m^{(1)}, m^{(2)}, \ldots$ be random variables with $m^{(0)} = 1$. Let t < 0.

Assume $\mathbb{E}(m^{(k+1)} \mid m^{(k)}) = m^{(k)} + t$ for all k. Then for all k: $\Pr(m^{(k)} \ge 1) \le a^k$, where $a = e^{-t^2/2} < 1$.

Runtime T := number of steps from (q, 1) to (*, 0)We want to efficiently approximate $\mathbb{E} T$.

Trend t := "average increase of the counter per step" Assume t < 0.

Intuition: The more negative the trend t, the smaller T.

Proposition (from martingale theory: Azuma's inequality) Let $m^{(0)}$, $m^{(1)}$, $m^{(2)}$, ... be random variables with $m^{(0)} = 1$.

Let t < 0.

Assume $\mathbb{E}(m^{(k+1)} \mid m^{(k)}) = m^{(k)} + t$ for all k.

Then for all k: $Pr(m^{(k)} \ge 1) \le a^k$, where $a = e^{-t^2/2} < 1$.

Runtime T := number of steps from (q, 1) to (*, 0)We want to efficiently approximate $\mathbb{E} T$.

Trend t := "average increase of the counter per step" Assume t < 0.

Intuition: The more negative the trend t, the smaller T.

Proposition (from martingale theory: Azuma's inequality)

Let $m^{(0)}$, $m^{(1)}$, $m^{(2)}$, ... be random variables with $m^{(0)} = 1$. Let t < 0.

Assume $\mathbb{E}(m^{(k+1)} \mid m^{(k)}) = m^{(k)} + t$ for all k.

Then for all k: $Pr(m^{(k)} \ge 1) \le a^k$, where $a = e^{-t^2/2} < 1$.

Runtime T := number of steps from (q, 1) to (*, 0)

We want to efficiently approximate $\mathbb{E} T$.

Trend t := "average increase of the counter per step"

Assume t < 0.

Intuition: The more negative the trend t, the smaller T.

Proposition (from martingale theory: Azuma's inequality)

Let $m^{(0)}, m^{(1)}, m^{(2)}, \ldots$ be random variables with $m^{(0)} = 1$. Let t < 0.

Assume $\mathbb{E}(m^{(k+1)} \mid m^{(k)}) = m^{(k)} + t$ for all k.

Then for all k: $Pr(m^{(k)} \ge 1) \le a^k$, where $a = e^{-t^2/2} < 1$.

Runtime T := number of steps from (q, 1) to (*, 0)We want to efficiently approximate $\mathbb{E} T$.

Trend t := "average increase of the counter per step" Assume t < 0.

Intuition: The more negative the trend t, the smaller T.

Proposition (from martingale theory: Azuma's inequality)

Let $m^{(0)}$, $m^{(1)}$, $m^{(2)}$, ... be random variables with $m^{(0)} = 1$. Let t < 0. But the trend must be independent of k

Assume $\mathbb{E}(m^{(k+1)} \mid m^{(k)}) = m^{(k)} + t$ for all k.

Then for all k: $Pr(m^{(k)} > 1) < a^k$, where $a = e^{-t^2/2} < 1$.

Average counter increase depends on state:

$$\binom{0.4 \cdot (-1) + 0.6 \cdot (+1)}{0.3 \cdot 0 + 0.7 \cdot (-1)} = \binom{0.2}{-0.7}$$

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

$$0.4 \qquad q \qquad r \qquad 0.7 \qquad {1/3 \choose 2/3}$$

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

$$0.4 \qquad q \qquad r \qquad 0.7 \qquad {1/3 \choose 2/3}$$

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

$$0.4 \qquad q \qquad r \qquad 0.7 \qquad {1/3 \choose 2/3}$$

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

$$0.4 \qquad q \qquad r \qquad 0.7 \qquad {1/3 \choose 2/3}$$

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

$$q,3$$
 0.4
 0.3
 0.4
 0.6
 0.7
 0.4
 0.6
 0.7
 0.4
 0.9
 0.7
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

$$0.4$$
 q r 0.7 0.7 0.7 0.7 0.7

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

$$q,3$$
 0.4
 $q,2$
 0.6
 $q,2$
 0.6
 $q,3$
 0.7
 0.4
 0.6
 0.7
 0.4
 0.7
 0.7
 0.7
 0.7
 0.7

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

Weight this by the stationary distribution of the counterless system:

$$0.6$$

$$0.4$$

$$q$$

$$r$$

$$0.7$$

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

0.3

$$q, 3$$
 0.4
 $q, 2$
 0.6
 $r, 3$
 0.7
 $q, 1$
 0.6
 $r, 2$
 0.7
 $q, 0.7$
 0.7
 0.7
 0.7
 0.7
 0.7

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

Weight this by the stationary distribution of the counterless system:

$$0.6$$

$$0.4$$

$$q$$

$$r$$

$$0.7$$

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

0.3

$$q,3$$
 0.4
 $q,2$
 0.6
 $q,3$
 0.7
 0.4
 0.6
 0.7
 0.4
 0.9
 0.7
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9

Average counter increase depends on state:

$$\begin{pmatrix} 0.4 \cdot (-1) + 0.6 \cdot (+1) \\ 0.3 \cdot 0 + 0.7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}$$

Weight this by the stationary distribution of the counterless system:

$$0.6$$

$$0.4$$

$$q$$

$$r$$

$$0.7$$

trend
$$t = \left\langle \begin{pmatrix} 0.2 \\ -0.7 \end{pmatrix}, \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix} \right\rangle = -0.4$$

$$\Rightarrow$$
 expected height increase: $t = -0.4$. independent of control state :-)

0.3

Positive Trend

If t > 0, then $\Pr(T = \infty) > 0$. $\mathbb{E}(T \mid \text{finite})$ can be bounded as before.

Zero Trend

Proposition (from martingale theory: Optional stopping theorem)

Let $m^{(0)}, m^{(1)}, m^{(2)}, ...$ be random variables with $m^{(0)} = 1$.

Assume $\mathbb{E}(m^{(i+1)} \mid m^{(i)}) = m^{(i)}$ for all i.

Let $k \in \mathbb{N}$.

Let τ be the first time with $m^{(\tau)} \notin (0, k)$.

Then $\mathbb{E}m^{(\tau)}=1$.

Zero Trend

Proposition (from martingale theory: Optional stopping theorem)

Let $m^{(0)}, m^{(1)}, m^{(2)}, \ldots$ be random variables with $m^{(0)} = 1$.

Assume $\mathbb{E}(m^{(i+1)} \mid m^{(i)}) = m^{(i)}$ for all i.

Let $k \in \mathbb{N}$.

Let τ be the first time with $m^{(\tau)} \notin (0, k)$.

Then $\mathbb{E}m^{(\tau)}=1$.

Assuming all jumps are $+1,\pm 0,-1$, we must have $m^{(\tau)}=\mathbf{k}$ $m^{(\tau)}=0$

Zero Trend

Proposition (from martingale theory: Optional stopping theorem)

Let $m^{(0)}, m^{(1)}, m^{(2)}, \ldots$ be random variables with $m^{(0)} = 1$.

Assume $\mathbb{E}(m^{(i+1)} \mid m^{(i)}) = m^{(i)}$ for all i.

Let $k \in \mathbb{N}$.

Let τ be the first time with $m^{(\tau)} \notin (0, k)$.

Then $\mathbb{E}m^{(\tau)}=1$.

Assuming all jumps are $+1, \pm 0, -1$, we must have $\Pr(m^{(\tau)} = k) = 1/k$ and $\Pr(m^{(\tau)} = 0) = 1 - 1/k$

Zero Trend

Proposition (from martingale theory: Optional stopping theorem)

Let $m^{(0)}, m^{(1)}, m^{(2)}, \ldots$ be random variables with $m^{(0)} = 1$.

Assume $\mathbb{E}(m^{(i+1)} \mid m^{(i)}) = m^{(i)}$ for all i.

Let $k \in \mathbb{N}$.

Let τ be the first time with $m^{(\tau)} \notin (0, k)$.

Then $\mathbb{E}m^{(\tau)}=1$.

Assuming all jumps are $+1, \pm 0, -1$, we must have $\Pr(m^{(\tau)} = k) = 1/k$ and $\Pr(m^{(\tau)} = 0) = 1 - 1/k$

$$\Rightarrow$$
 $\Pr(T \ge k) \ge \Pr(m^{(\tau)} = k) = 1/k$ and hence $\mathbb{E}T = \infty$

Finiteness of Expected Time

We condition on runs $q \downarrow r$: from (q, 1) reach (r, 0) (e.g., consider $[and \downarrow and 0]$, $[and \downarrow and 1]$)

Theorem

Either some easy case holds or one of the following:

- If trend $t \neq 0$, then $\mathbb{E}(T \mid q \downarrow r) \leq 85000 \cdot \frac{|Q|^6}{x_{\min}^{5|Q|+|Q|^3} \cdot t^4}$.
- If trend t = 0, then $\mathbb{E}(T \mid q \downarrow r)$ is infinite.

Corollary

Whether $\mathbb{E}(T \mid q \downarrow r)$ is finite can be decided in polynomial time.

Finiteness of Expected Time

We condition on runs $q \downarrow r$: from (q, 1) reach (r, 0) (e.g., consider $[and \downarrow and 0]$, $[and \downarrow and 1]$)

Theorem

Either some easy case holds or one of the following:

- If trend $t \neq 0$, then $\mathbb{E}(T \mid q \downarrow r) \leq 85000 \cdot \frac{|Q|^6}{x_{\min}^{5|Q|+|Q|^3} \cdot t^4}$.
- If trend t = 0, then $\mathbb{E}(T \mid q \downarrow r)$ is infinite.

Corollary

Whether $\mathbb{E}(T \mid q \downarrow r)$ is finite can be decided in polynomial time.

But we want an approximation of $\mathbb{E}(T \mid q \downarrow r)$.

Return Probabilities

```
"return probabilities": [q \downarrow r] := \Pr (from (q, 1) reach (r, 0))
```

Proposition (from [EWY'08])

- If $[q \downarrow r] > 0$, then $[q \downarrow r] \ge x_{\min}^{|Q|^3}$.
- $[q \downarrow r]$ can be approximated within any error $\varepsilon > 0$ in time $poly(|\mathcal{S}|, \log(1/\varepsilon))$ in unit-cost arithmetic.

(does not hold for pushdown systems)

Approximating Expected Runtime

Theorem

The value $\mathbb{E}(T \mid q \downarrow r)$ can be approximated within any error $\varepsilon > 0$ in time poly($|\mathcal{S}|$, $\log(1/\varepsilon)$) in unit-cost arithmetic.

Use the following procedure:

- Set up an equation system $A\mathbf{x} = \mathbf{1}$. (system already known) Solution vector contains $\mathbb{E}(T \mid q \downarrow r)$ for all $q, r \in Q$. The matrix A contains return probabilities.
- Approximate A by approximating the return probabilities.
- Solve the approximated equation system.

Approximating Expected Runtime

$\mathsf{Theorem}$

The value $\mathbb{E}(T \mid q \downarrow r)$ can be approximated within any error $\varepsilon > 0$ in time poly($|\mathcal{S}|$, $\log(1/\varepsilon)$) in unit-cost arithmetic.

Use the following procedure:

- Set up an equation system $A\mathbf{x} = \mathbf{1}$. (system already known) Solution vector contains $\mathbb{E}(T \mid q \downarrow r)$ for all $q, r \in Q$. The matrix A contains return probabilities.
- Approximate A by approximating the return probabilities.
- Solve the approximated equation system.

Precision of this method depends on the condition number of *A*. The condition number is good enough as:

- the return probabilities cannot be too small
- the solution cannot be too large (by our bound on $\mathbb{E}T$)

Rules for Zero Counter

Now allow rules for zero counter (not -1)

⇒ all runs are infinite

Rules for Zero Counter

Now allow rules for zero counter (not -1)

⇒ all runs are infinite

Rules for Zero Counter

Now allow rules for zero counter (not -1)

⇒ all runs are infinite

 ω -regular Specifications

Theorem

Given an ω -regular specification in terms of a Rabin automaton \mathcal{R} , the probability of a run satisfying the specification can be approximated within any error $\varepsilon > 0$ in time $\operatorname{poly}(|\mathcal{S}|, |\mathcal{R}|, \log(1/\varepsilon))$ in unit-cost arithmetic.

Proof uses again "trend"-based martingale arguments.

Summary

- Probabilistic Counter Machines model infinite-state systems with a regular "counter-like" structure.
- Expected runtime and other quantities can be efficiently approximated (cf. prob. pushdown systems).
- Martingale techniques play a key role for the analysis.

