1M x 16Bit CMOS Dynamic RAM with Fast Page Mode

DESCRIPTION

This is a family of 1,048,576 x 16 bit Fast Page Mode CMOS DRAMs. Fast Page Mode offers high speed random access of memory cells within the same row. Power supply voltage (+5.0V or +3.3V), refresh cycle (1K Ref. or 4K Ref.), access time (-5,-6 or -7), power consumption(Normal or Low power) and package type(SOJ or TSOP-II) are optional features of this family. All of this family have \overline{CAS} -before- \overline{RAS} refresh, \overline{RAS} -only refresh and Hidden refresh capabilities. Furthermore, Self-refresh operation is available in L-version. This 1Mx16 Fast Page Mode DRAM family is fabricated using Samsung's advanced CMOS process to realize high band-width, low power consumption and high reliability. It may be used as graphic memory unit for microcomputer, personal computer and portable machines.

FEATURES

Part Identification

- KM416C1000B/B-L (5V, 4K Ref.)
- KM416C1200B/B-L (5V, 1K Ref.)
- KM416V1000B/B-L (3.3V, 4K Ref.)
- KM416V1200B/B-L (3.3V, 1K Ref.)

Active Power Dissipation

Speed	3.3	3V	5	V				
Орсси	4K	1K	4K	1K				
-5	396	576	605	880				
-6	360	540	550	825				
-7	324	504	495	770				

Unit: mW

Refresh Cycles										
Part	Vcc	Refresh	Refresh period							
NO.	cycle		Normal	L-ver						
C1000B	5V	4K 64ms								
V1000B	3.3V	711	0-1113	128ms						
C1200B	5V	41/	16	1201113						

1K

16ms

Perfomance Range

3.3V

V1200B

Speed	trac	tcac	trc	tpc	Remark
-5	50ns	15ns	90ns	35ns	5V/3.3V
-6	60ns	15ns	110ns	40ns	5V/3.3V
-7	70ns	20ns	130ns	45ns	5V/3.3V

- Fast Page Mode operation
- _a 2 CAS Byte/Word Read/Write operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden refresh capability
- Self-refresh capability (L-ver only)
- TTL(5V)/LVTTL(3.3V) compatible inputs and outputs
- Early Write or output enable controlled write
- JEDEC Standard pinout
- Available in 42-pin SOJ 400mil and 50(44)-pin TSOP(II) 400mil packages
- Single +5V; 3/10% power supply (5V product)
- Single +3.3V; 30.3V power supply (3.3V product)

FUNCTIONAL BLOCK DIAGRAM

Note) +1: 1K Refresh

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PIN CONFIGURATION (Top Views)

*A10 and A11 are N.C for KM416C/V1200B(5V/3.3V, 1K Ref. product)

J : 400mil 42 SOJ T : 400mil 50(44) TSOP II

Pin Name	Pin Function
A0 - A11	Address Inputs (4K Product)
A0 - A9	Address Inputs (1K Product)
DQ0 - 15	Data In/Out
Vss	Ground
RAS	Row Address Strobe
UCAS	Upper Column Address Strobe
LCAS	Lower Column Address Strobe
V	Read/Write Input
ŌĒ	Data Output Enable
Vcc	Power(+5V)
VOC	Power(+3.3V)
N.C	No Connection

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Units		
raiametei	3.3V		5V	Oilles	
Voltage on any pin relative to Vss	VIN,VOUT	-0.5 to +4.6	-1.0 to +7.0	V	
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to +4.6	-1.0 to +7.0	V	
Storage Temperature	Tstg	-55 to +150	-55 to +150	įÉ	
Power Dissipation	PD	1	1	W	
Short Circuit Output Current	los	50	50	mA	

^{*} Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to Vss, TA= 0 to 70 i É)

Parameter	Symbol	3.3V				Units		
Farameter	Syllibol	Min	Тур	Max	Min	Тур	Max	Offics
Supply Voltage	Vcc	3.0	3.3	3.6	4.5	5.0	5.5	V
Ground	Vss	0	0	0	0	0	0	V
Input High Voltage	VIH	2.0	-	Vcc+0.3*1	2.4	-	Vcc+1.0*1	V
Input Low Voltage	VIL	-0.3 ^{*2}	-	0.8	-1.0 ^{*2}	-	0.8	V

^{*1 :} Vcc+1.3V/15ns(3.3V), Vcc+2.0V/20ns(5V), Pulse width is measured at Vcc

DC AND OPERATING CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

Max	Parameter	Symbol	Min	Max	Units
	Input Leakage Current (Any input 0;ÂVIN;ÂVIN+0.3V, all other input pins not under test=0 Volt)	lı(L)	-5	5	uA
3.3V	Output Leakage Current (Data out is disabled, 0V;ÂVOUT;ÂVCC)	IO(L)	-5	5	uA
	Output High Voltage Level(IoH=-2mA)	Vон	2.4	-	V
	Output Low Voltage Level(IoL=2mA)	Vol	-	0.4	V
	Input Leakage Current (Any input 0;ÂVIN;ÂVIN+0.5V, all other input pins not under test=0 Volt)	lı(L)	-5	5	uA
5V	Output Leakage Current (Data out is disabled, 0V;ÂVOUT;ÂVCC)	IO(L)	-5	5	uA
	Output High Voltage Level(IoH=-5mA)	Vон	2.4	-	V
	Output Low Voltage Level(IoL=4.2mA)	Vol	-	0.4	V

^{*2: -1.3}V/15ns(3.3V), -2.0V/20ns(5V), Pulse width is measured at Vss

DC AND OPERATING CHARACTERISTICS (Continued)

Symbol	Power	Speed	Max						
Symbol	Power	Speed	KM416V1000B	KM416V1200B	KM416C1000B	KM416C1200B	Units		
ICC1	Don't care	-5 -6 -7	110 100 90	160 150 140	110 100 90	160 150 140	mA mA mA		
ICC2	Normal L	Don't care	2 1	2 1	2 1	2 1	mA mA		
Icc3	Don't care	-5 -6 -7	110 100 90	160 150 140	110 100 90	160 150 140	mA mA mA		
ICC4	Don't care	-5 -6 -7	100 90 80	100 90 80	100 90 80	100 90 80	mA mA mA		
ICC5	Normal L	Don't care	1 200	1 200	1 200	1 200	mA uA		
ICC6	Don't care	-5 -6 -7	110 100 90	160 150 140	110 100 90	160 150 140	mA mA mA		
ICC7	L	Don't care	400	300	450	350	uA		
Iccs	L	Don't care	200	200	250	250	uA		

Icc1*: Operating Current (RAS and UCAS, LCAS cycling @trc=min.)

ICC2: Standby Current (RAS=UCAS=LCAS=W=VIH)

ICC3*: RAS-only Refresh Current (UCAS=LCAS=VIH, RAS cycling @trc=min.)

Icc4*: Fast Page Mode Current (RAS=VIL, UCAS or LCAS, Address cycling @tpc=min.)

ICC5 : Standby Current (RAS=UCAS=LCAS=W=Vcc-0.2V)

Icce*: CAS-Before-RAS Refresh Current (RAS, UCAS or LCAS cycling @trc=min.)

Icc7: Battery back-up current, Average power supply current, Battery back-up mode

Input high voltage(VIH)=VCC-0.2V, Input low voltage(VIL)=0.2V, UCAS, LCAS=0.2V,

Din=Don't care, TRC=31.25us(4K/L-ver), 125us(1K/L-ver),

TRAS=TRASmin~300ns

Iccs: Self Refresh Current

RAS=UCAS=LCAS=VIL, W=OE=A0 ~ A11=Vcc-0.2V or 0.2V,

DQ0 ~ DQ15=Vcc-0.2V, 0.2V or Open

*Note: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as an average current. In Icc1, Icc3 and Icc6, address can be changed maximum once while RAS=VIL. In Icc4, address can be changed maximum once within one fast page mode cycle time, tpc.

CMOS DRAM

CAPACITANCE (TA=25;É, VCC=5V or 3.3V, f=1MHz)

Parameter	Symbol	Min	Max	Units
Input capacitance [A0 ~ A11]	CIN1	-	5	pF
Input capacitance [RAS, UCAS, LCAS, W, OE]	CIN2	-	7	pF
Output capacitance [DQ0 - DQ15]	CDQ	-	7	pF

AC CHARACTERISTICS (0 j É j ÂTA j Â70 j É, See note 1,2)

 $\label{eq:condition} Test condition (5V device): Vcc=5.0V; $\%10\%, Vih/Vil=2.4/0.8V, Voh/Vol=2.4/0.4V \\ Test condition (3.3V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Vih/Vil=2.2/0.7V, Voh/Vol=2.0/0.8V \\ Test condition (5V device): Vcc=3.3V; $\%0.3V, Voh/Vol=2.0V, Voh/$

Parameter	Symbol	-	5	-6		-7		Units	Notes
Farameter	Syllibol	Min	Max	Min	Max	Min	Max	Ullits	Notes
Random read or write cycle time	trc	90		110		130		ns	
Read-modify-write cycle time	trwc	133		155		185		ns	
Access time from RAS	trac		50		60		70	ns	3,4,9
Access time from CAS	tcac		15		15		20	ns	3,4
Access time from column address	taa		25		30		35	ns	3,9
CAS to output in Low-Z	tclz	0		0		0		ns	3
Output buffer turn-off delay	toff	0	13	0	15	0	20	ns	5
Transition time (rise and fall)	tτ	3	50	3	50	3	50	ns	2
RAS precharge time	trp	30		40		50		ns	
RAS pulse width	tras	50	10K	60	10K	70	10K	ns	
RAS hold time	trsh	13		15		20		ns	
CAS hold time	tcsн	50		60		70		ns	
CAS pulse width	tcas	13	10K	15	10K	20	10K	ns	
RAS to CAS delay time	trcd	20	37	20	45	20	50	ns	4
RAS to column address delay time	trad	15	25	15	30	15	35	ns	9
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address set-up time	tasr	0		0		0		ns	
Row address hold time	trah	10		10		10		ns	
Column address set-up time	tasc	0		0		0		ns	10
Column address hold time	t CAH	10		10		15		ns	10
Column address to RAS lead time	tral	25		30		35		ns	
Read command set-up time	trcs	0		0		0		ns	
Read command hold time referenced to CAS	trch	0		0		0		ns	7
Read command hold time referenced to RAS	trrh	0		0		0		ns	7
Write command hold time	twch	10		10		15		ns	
Write command pulse width	twp	10		10		15		ns	
Write command to RAS lead time	trwL	15		15		20		ns	
Write command to CAS lead time	tcwL	13		15		20		ns	

CMOS DRAM

AC CHARACTERISTICS (Continued)

Parameter	Symbol		5	_	6	_	7	Units	Notes
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Units	Notes
Data set-up time	tos	0		0		0		ns	8,16
Data hold time	tон	10		10		15		ns	8,16
Refresh period (1K, Normal)	tref		16		16		16	ms	
Refresh period (4K, Normal)	tref		64		64		64	ms	
Refresh period (L-ver)	tref		128		128		128	ms	
Write command set-up time	twcs	0		0		0		ns	6
CAS to W delay time	tcwp	36		40		50		ns	6,12
RAS to W delay time	trwd	73		85		95		ns	6
Column address to \overline{W} delay time	tawd	48		55		60		ns	6
CAS precharge to W delay time	tcpwd	53		60		65		ns	6
CAS set-up time (CAS -before-RAS refresh)	tcsr	5		5		5		ns	14
CAS hlod time (CAS -before-RAS refresh)	tchr	10		10		15		ns	15
RAS to CAS precharge time	trpc	5		5		5		ns	
CAS precharge time (CBR counter test cycle)	t CPT	20		20		25		ns	
Access time from CAS precharge	tcpa		30		35		40	ns	3
Fast Page mode cycle time	tpc	35		40		45		ns	
Fast Page read-modify-write cycle time	tprwc	76		80		95		ns	
CAS precharge time (Fast Page cycle)	tcp	10		10		10		ns	11
RAS pulse width (Fast Page cycle)	trasp	50	200K	60	200K	70	200K	ns	
RAS hold time from CAS precharge	trhcp	30		35		40		ns	
OE access time	toea		13		15		20	ns	3
OE to data delay	toed	13		15		20		ns	
Output buffer turn off delay time from $\overline{\text{OE}}$	toez	0	13	0	15	0	20	ns	
OE command hold time	toeh	13		15		20		ns	
RAS pulse width (C-B-R self refresh)	trass	100		100		100		us	17
RAS precharge time (C-B-R self refresh)	trps	90		110		130		ns	17
CAS hold time (C-B-R self refresh)	tchs	-50		-50		-50		ns	17

NOTES

- 1. An initial pause of 200us is required after power-up followed by any 8 ROR or $\overline{\text{CBR}}$ cycles before proper device operation is achieved.
- 2. Input voltage levels are Vih/Vil. VIH(min) and VIL(max) are reference levels for measuring timing of input signals. Transition times are measured between VIH(min) and VIL(max) and are assumed to be 5ns for all inputs.
- 3. Measured with a load equivalent to 2 TTL(5V)/1TTL(3.3V) loads and 100pF.
- 4. Operation within the tRCD(max) limit insures that tRAC(max) can be met. tRCD(max) is specified as a reference point only.

 If tRCD is greater than the specified tRCD(max) limit, then access time is controlled exclusively by tCAC.
- 5. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 6. twcs, trwd, tcwd, tawd and tcpwd are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs; Atwcs(min), the cycles is an early write cycle and the data output will remain high impedance for the duration of the cycle. If tcwd; Atcwd(min), trwd; Atrwd(min), tawd; Atrwd(min) and tcpwd; Atcpwd(min), then the cycle is a read-modify-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.
- 7. Either tRCH or tRRH must be satisfied for a read cycle.
- 8. These parameters are referenced to the $\overline{\sf CAS}$ leading edge in ealy write cycles and to the $\overline{\sf W}$ falling edge in $\overline{\sf OE}$ controlled write cycle and read-modify-write cycles.
- 9. Operation within the tRAD(max) limit insures that tRAC(max) can be met. tRAD(max) is specified as a reference point only. If tRAD is greater than the specified tRAD(max) limit, then access time is controlled by tAA.

KM416C/V10(2)00B/BL Truth Table

RAS	LCAS	UCAS	W	ŌĒ	DQ0 - DQ7	DQ8-DQ15	STATE
Н	Х	Х	Х	Х	X Hi-Z Hi-Z		Standby
L	Н	Н	Х	Х	Hi-Z	Hi-Z	Refresh
L	L	Н	Н	L	L DQ-OUT Hi-Z		Byte Read
L	Н	L	Н	L	Hi-Z	Hi-Z DQ-OUT	
L	L	L	Н	L	DQ-OUT	DQ-OUT	Word Read
L	L	Н	L	Н	DQ-IN	-	Byte Write
L	Н	L	L	Н	-	DQ-IN	Byte Write
L	L	L	L	Н	DQ-IN	DQ-IN	Word Write
L	L	Ĺ	Н	Н	Hi-Z	Hi-Z	-

- 10. tasc, tcah are referenced to the earlier CAS rising edge.
- 11. tcp is specified from the last \overline{CAS} rising edge in the previous cycle to the first \overline{CAS} falling edge in the next cycle.
- 12. tcwD is referenced to the later \overline{CAS} falling edge at word read-modify-write cycle.
- 13. tcwL is specified from \overline{W} falling edge to the earlier \overline{CAS} rising edge.
- 14. tcsR is referenced to earlier $\overline{\text{CAS}}$ falling low before $\overline{\text{RAS}}$ transition low.
- 15. tCHR is referenced to the later \overline{CAS} rising high after \overline{RAS} transition low.

- 16. tds, tdh is independently specified for lower byte DIN(0-7), upper byte DIN(8-15)
- 17.4096(4K Ref.)/1024(1K Ref.) of burst refresh must be executed within 16ms before and after self-refresh in order to meet refresh specification (L-version).