Extremal words avoiding a fractional power

Eric Rowland

Hofstra University

University of Massachusetts Amherst Discrete Math Seminar 2020–11–13

Avoiding squares

Axel Thue (1863-1922)

A square is a nonempty word of the form xx. For example: 00, 0101. Are there arbitrarily long square-free words on the alphabet $\{0, 1\}$?

Try to construct one!

010X

Avoiding squares

Are squares avoidable on the alphabet $\{0, 1, 2\}$?

01020120210120102012021020102101201020120210...

Theorem (Thue 1906)

There exist arbitrarily long square-free words on 3 letters.

The backtracking algorithm builds the lexicographically least word.

Open question (Allouche–Shallit, *Automatic Sequences* §1.10)

What is the structure of the lex. least square-free word on $\{0, 1, 2\}$?

Avoiding overlaps

An overlap is a word of the form xxc, where c is the first letter of x. For example: 000, 01010.

Overlaps are avoidable on a binary alphabet (Thue 1912).

The Thue–Morse morphism is defined by $\varphi(0) = 01$ and $\varphi(1) = 10$.

$$\varphi(0) = 01$$
 $\varphi^{2}(0) = \varphi(01) = 0110$
 $\varphi^{3}(0) = \varphi(0110) = 01101001$
 \vdots

The Thue-Morse word

$$\varphi^{\infty}(0) = 01101001100101101001011001101001 \cdots$$

is overlap-free.

Morphisms

A morphism on a set Σ is a function $\varphi \colon \Sigma^* \to \Sigma^*$ such that $\varphi(xy) = \varphi(x)\varphi(y)$ for all words $x, y \in \Sigma^*$.

If there is a letter $c \in \Sigma$ such that $\varphi(c) = cx$ for some word x, then

$$\varphi(c) = c x$$

$$\varphi^{2}(c) = \varphi(c x) = c x \varphi(x)$$

$$\varphi^{3}(c) = \varphi(c x \varphi(x)) = c x \varphi(x) \varphi^{2}(x)$$

$$\vdots$$

$$\varphi^{\infty}(c) = c x \varphi(x) \varphi^{2}(x) \varphi^{3}(x) \varphi^{4}(x) \cdots$$

 $\varphi^{\infty}(c)$ is a fixed point of φ .

Uniform morphisms

 φ is *k*-uniform if $|\varphi(c)| = k$ for all $c \in \Sigma$. The Thue–Morse morphism is 2-uniform: $\varphi(0) = 01$, $\varphi(1) = 10$.

Fixed points of *k*-uniform morphisms reflect base-*k* representations.

Let w(i) be the *i*th letter of the Thue–Morse word

$$\varphi^{\infty}(0) = 01101001100101101001011001101001 \cdots$$

i	$rep_2(i)$	w(i)
0	ϵ	0
1	1	1
2	10	1
3	11	0
4	100	1
5	101	0
6	110	0
7	111	1

Infinite alphabet

What is the lexicographically least square-free word on $\mathbb{Z}_{\geq 0}$?

01020103010201040102010301020105...

Theorem (Guay-Paquet-Shallit 2009)

Let
$$\varphi(n) = 0 (n + 1)$$
.

The lexicographically least square-free word on $\mathbb{Z}_{\geq 0}$ is $\varphi^{\infty}(0)$.

 φ is 2-uniform.

$$arphi(0) = 01$$
 $arphi^2(0) = 0102$ $arphi^3(0) = 01020103$:

For each integer $a \ge 2$, let $\varphi(n) = 0^{a-1}(n+1)$.

The lexicographically least *a*-power-free word on $\mathbb{Z}_{\geq 0}$ is $\varphi^{\infty}(0)$.

Avoiding overlaps

What is the lexicographically least overlap-free word on $\mathbb{Z}_{\geq 0}$?

Let σ be the right shift: $\sigma(xc) = cx$ for words x and letters c.

Theorem (Guay-Paquet–Shallit 2009)

Define φ recursively by $\varphi(n) = \sigma(\varphi^n(00))(n+1)$. The lexicographically least overlap-free word on $\mathbb{Z}_{\geq 0}$ is $\varphi^{\infty}(0)$.

 φ is non-uniform.

$$\varphi(0) = 001$$
 $\varphi^{2}(0) = 0010011001002$
 \vdots

Fractional powers

01220 = $(0122)^{5/4}$ is a $\frac{5}{4}$ -power. 011101 = $(0111)^{3/2}$ is a $\frac{3}{2}$ -power.

Definition

Let $\frac{a}{b} > 1$. A word w is an $\frac{a}{b}$ -power if

$$w = (xy)^e x$$

and $\frac{|w|}{|xy|} = \frac{a}{b}$ for some words x, y and some integer $e \ge 1$.

 $\frac{5}{4}$ -powers look like *xyx* where |y| = 3|x|.

 $\frac{3}{2}$ -powers look like *xyx* where |y| = |x|.

Notation

Let $\mathbf{w}_{a/b}$ be the lex. least $\frac{a}{b}$ -power-free word on $\mathbb{Z}_{\geq 0}$.

We assume gcd(a, b) = 1.

Avoiding 3/2-powers

$$\mathbf{w}_{3/2} = 001102100112001103100113001102100114001103\cdots$$

```
\mathbf{w}_{3/2} = 001102
100112
001103
100113
001102
100114
001103
100112
\vdots
```

Theorem (Rowland-Shallit 2012)

The ith letter w(i) of $\mathbf{w}_{3/2}$ satisfies w(6i+5) = w(i) + 2.

Other notions of avoidance

Notation

- Let $\mathbf{w}_{\geq a/b}$ be the lex. least infinite word on $\mathbb{Z}_{\geq 0}$ avoiding $\frac{p}{q}$ -powers for all $\frac{p}{q} \geq \frac{a}{b}$.
- Let $\mathbf{w}_{>a/b}$ be the lex. least infinite word on $\mathbb{Z}_{\geq 0}$ avoiding $\frac{p}{q}$ -powers for all $\frac{p}{q} > \frac{a}{b}$.

What are the relationships between $\mathbf{w}_{a/b}$, $\mathbf{w}_{>a/b}$, and $\mathbf{w}_{>a/b}$?

The lex. least overlap-free word is $\mathbf{w}_{>2}$.

Avoiding $\geq 3/2$ -powers

$$\mathbf{w}_{\geq 3/2} = 012031021301204102140120310215012041021301203\cdots$$

$$\mathbf{w}_{\geq 3/2} = 01203$$
 10213
 01204
 10214
 01203
 10215
 01204
 10213
 \vdots

Theorem

We have $\mathbf{w}_{>3/2}(5i+4) = \mathbf{w}_{3/2}(i) + 3$ for all $i \ge 0$.

Avoiding 4/3-powers

w_{4/3}:

Conjecture:

$$\mathbf{w}_{\geq 4/3}(336i+1666) = \mathbf{w}_{4/3}(56i+17)+4$$
 for all $i \geq 0$.

Are there similar relationships between $\mathbf{w}_{\geq a/b}$ and $\mathbf{w}_{a/b}$ for other $\frac{a}{b}$?

We focus on $\mathbf{w}_{a/b}$.

The interval $\frac{a}{b} \geq 2$

$$\mathbf{w}_{5/2} = 00001000010000100001000020000100001 \cdots = \mathbf{w}_5 = \varphi^{\infty}(0)$$

where $\varphi(n) = 0000(n+1)$.

Theorem

If $\frac{a}{b} \geq 2$, then $\mathbf{w}_{a/b} = \mathbf{w}_a$.

Proof (one direction).

The a-power $v^a = (v^b)^{a/b}$ is also an $\frac{a}{b}$ -power.

So $\mathbf{w}_{a/b}$ is a-power-free. Thus $\mathbf{w}_a \leq \mathbf{\tilde{w}}_{a/b}$ lexicographically.

Therefore it suffices to consider $1 < \frac{a}{b} < 2$.

w_{8/5} wrapped into 100 columns

 $\boldsymbol{w}_{8/5} = 00000001001000001001000000100110000000100\cdots$

w_{8/5} wrapped into 733 columns

 $\mathbf{w}_{8/5} = 0000000100100000100100000011001000000100\cdots$

Theorem

$\mathbf{w}_{8/5} = \varphi^{\infty}(0)$ for the 733-uniform morphism

w_{7/4} wrapped into 50847 columns

$$\mathbf{w}_{7/4} = 0000001001000000100100000110000001 \cdots$$

Theorem

 $\mathbf{w}_{7/4}=arphi^{\infty}(0)$ for some 50847-uniform morphism $arphi(n)=u\,(n+2).$

w_{6/5} wrapped into 1001 columns

 $\mathbf{w}_{6/5} = 0000011111102020201011101000202120210110010\cdots$

There is a transient region.

Introduce a new letter 0', and let $\tau(0') = 0$ and $\tau(n) = n$ for $n \in \mathbb{Z}_{\geq 0}$.

There exist words u,v of lengths |u|= 1000 and |v|= 29949 such that $\mathbf{w}_{6/5}=\tau(\varphi^{\infty}(0')),$ where

$$\varphi(n) = \begin{cases} v \, \varphi(0) & \text{if } n = 0' \\ u \, (n+2) & \text{if } n \in \mathbb{Z}. \end{cases}$$

w_{27/23} wrapped into 353 columns

There exist words u, v on $\{0, 1, 2\}$ of lengths |u| = 352 and |v| = 75019 such that $\mathbf{w}_{27/23} = \tau(\varphi^{\omega}(0'))$, where

$$\varphi(n) = \begin{cases} v \, \varphi(0) & \text{if } n = 0' \\ u \, (n + 0) & \text{if } n \in \mathbb{Z}. \end{cases}$$

 $\bm{w}_{27/23}$ is also the lex. least $\frac{27}{23}\text{-power-free}$ word on $\{0,1,2\}.$

$$\boldsymbol{w}_{5/3} = 000010100001010000101000010100001020000101\cdots$$

$$\mathbf{w}_{5/3} = 0000101$$
 0000101
 0000101
 0000101
 0000102
 0000101
 0000102
 0000101
 \vdots

$$w(7i+6)=w(i)+1$$

 $\mathbf{w}_{5/3} = \varphi^{\infty}(0)$, where $\varphi(n) = 000010(n+1)$ is a 7-uniform morphism.

A family related to $\mathbf{w}_{5/3}$

Theorem (Pudwell–Rowland 2018)

Let $\frac{5}{3} \leq \frac{a}{b} < 2$ with b odd. Then $\mathbf{w}_{a/b} = \varphi^{\infty}(0)$, where $\varphi(n) = 0^{a-1} \cdot 1 \cdot 0^{a-b-1} \cdot (n+1)$ is a (2a-b)-uniform morphism.

Catalog of $\mathbf{w}_{a/b}$

General recurrence for self-similar column: w(ki + r') = w(i + s) + d(i).

a/b	k	d(i)	r'	s	rank	note
$a\in\mathbb{Z}_{\geq 2}$	а	1	0	0	2	
3/2	6	2	0	0	3	
4/3	56	1,2	73	0	4	
5/3	7	1	0	0	2	
5/4	6	1, 2, 3	123061	5920	188	
7/4	50847	2	0	0	2	
6/5	1001	3	30949	0	33	
7/5	80874	1	173978	0		conjectural
8/5	733	2	0	0	2	
9/5	13	1	0	0	2	
7/6	41190	3	41201	0		conjectural
11/6						[no conjecture]

Does every word $\mathbf{w}_{a/b}$ arise from some k-uniform morphism?

References

- Mathieu Guay-Paquet and Jeffrey Shallit, Avoiding squares and overlaps over the natural numbers, *Discrete Mathematics* **309** (2009) 6245–6254.
- Lara Pudwell and Eric Rowland, Avoiding fractional powers over the natural numbers, *The Electronic Journal of Combinatorics* **25** (2018) #P2.27.
- Eric Rowland and Jeffrey Shallit, Avoiding 3/2-powers over the natural numbers, *Discrete Mathematics* **312** (2012) 1282–1288.
- Eric Rowland and Manon Stipulanti, Avoiding 5/4-powers on the alphabet of non-negative integers, *The Electronic Journal of Combinatorics* **27** (2020) #P3.42.