PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C12N 5/14, 15/00, 15/05, 15/09, 15/29, 15/31, 15/64, 15/82, A01G 13/00, A01H (11) International Publication Number:

WO 97/17432

(43) International Publicati n Date:

15 May 1997 (15.05.97)

(21) International Application Number:

PCT/US96/18003

A1

(22) International Filing Date:

6 November 1996 (06.11.96)

(30) Priority Data:

 60f/007,255
 6 November 1995 (06.11.95)
 US

 08/608,423
 28 February 1996 (28.02.96)
 US

 08/705,484
 28 August 1996 (28.08.96)
 US

(71) Applicant: WISCONSIN ALUMNI RESEARCH FOUNDA-TION [US/US]; 614 North Walnut Street, Madison, WI 53707-7365 (US).

- (72) Inventors: ENSIGN, Jerald, C.; 1810 North Walnut Street, Madison, WI 53705 (US). BOWEN, David, J.; 5668 Highway A, Oregon, WI 53575 (US). PETELL, James; 1427 Hunters Glen, Zionsville, IN 46077 (US). FATIG, Raymond: 30 Clay Court, Zionsville, IN 46077 (US). SCHOONOVER, Sue; 7142 Marstella, Brownsburg, IN 46112 (US). FFRENCH-CONSTANT, Richard, H.; 1006 University Bay Drive, Madison, WI 53705 (US). ROCHE-LEAU, Thomas, A., 3100 Buena Vista Street, Madison, WI 53704 (US). BLACKBURN, Michael, B.; 2127 Luann Lane, Madison, WI 53713 (US). HEY, Timothy, D.; 1653 Catalina Way, Zionsville, IN 46077 (US). MERLO, Donald, J.; 11845 Durbin Drive, Carmel, IN 46032 (US). ORR, Gregory, L.; 1028 Saratoga Circle, Indianapolis, IN 46280 (US). ROBERTS, Jean, L.; 26035 State Road 19, Arcadia, IN 46030 (US). STRICKLAND, James, A.; 780 Mt. Zion Road, Lebanon, IN 46052 (US). GUO, Lining; 7 Nelson Circle, Brownsburg, IN 46112 (US). CICHE, Todd, A.; 1609 Chadbourne Avenue, Madison, WI 53705 (US).
- (74) Agent: SEAY, Nicholas, J.; Quarles & Brady, P.O. Box 2113, Madison, WI 53701-2113 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: INSECTICIDAL PROTEIN TOXINS FROM PHOTORHABDUS

(57) Abstract

Proteins from the genus *Photorhabdus* are toxic to insects upon exposure. *Photorhabdus luminescens* (formerly *Xenorhabdus luminescens*) have been found in mammalian clinical samples and as a bacterial symbiont of entomopathogenic nematodes of genus *Heterorhabditis*. These protein toxins can be applied to, or genetically engineered into, insect larvae food and plants for insect control.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	Ifaired Winedom	MW	Malawi
AT	Austria	GE GE	United Kingdom		
			Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	Œ	Ireland	NZ	New Zealand
BG	Bulgaria	ſΤ	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	LT	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
Fl	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

INSECTICIDAL PROTEIN TOXINS FROM PHOTORHABDUS

5

10

15

Field of the Invention

The present invention relates to toxins isolated from bacteria and the use of said toxins as insecticides.

20

25

35

40

Background of the Invention

Many insects are widely regarded as pests to homeowners, to picnickers, to gardeners, and to farmers and others whose investments in agricultural products are often destroyed or diminished as a result of insect damage to field crops. Particularly in areas where the growing season is short, significant insect damage can mean the loss of all profits to growers and a dramatic decrease in crop yield. Scarce supply of 30 particular agricultural products invariably results in higher costs to food processors and, then, to the ultimate consumers of food plants and products derived from those plants.

Preventing insect damage to crops and flowers and eliminating the nuisance of insect pests have typically relied on strong organic pesticides and insecticides with broad toxicities. These synthetic products have come under attack by the general population as being too harsh on the environment and on those exposed to such agents. Similarly in non-agricultural settings, homeowners would be satisfied to have insects avoid their homes or outdoor meals without needing to kill the insects.

environmental and health concerns for farmers, companies that produce the insecticides, government agencies, public interest groups, and the public in general. The development of less intrusive pest management strategies has been spurred along both by societal concern for the environment and by the development of biological tools which exploit mechanisms of insect management. Biological control agents present a promising alternative to chemical insecticides.

Organisms at every evolutionary development level have devised means to enhance their own success and survival. The use of biological molecules as tools of defense and aggression is known throughout the animal and plant kingdoms. In addition, the relatively new tools of the genetic engineer allow modifications to biological insecticides to accomplish particular solutions to particular problems.

One such agent. Bacillus thuringiensis (Bt), is an effective insecticidal agent, and is widely commercially used as such. In fact, the insecticidal agent of the Bt bacterium is a protein which has such limited toxicity, it can be used on human food crops on the day of harvest. To non-targeted organisms, the Bt toxin is a digestible non-toxic protein.

Another known class of biological insect control agents are certain genera of nematodes known to be vectors of transmission for insect-killing bacterial symbionts. Nematodes containing insecticidal bacteria invade insect larvae. The bacteria then kill the larvae. The nematodes reproduce in the larval cadaver. The nematode progeny then eat the cadaver from within. The bacteria-containing nematode progeny thus produced can then invade additional larvae.

In the past, insecticidal nematodes in the Steinernema and Heterorhabditis genera were used as insect control agents. Apparently, each genus of nematode hosts a particular species of bacterium. In nematodes of the Heterorhabditis genus, the symbiotic bacterium is Photorhabdus luminescens.

Although these nematodes are effective insect control agents, it is presently difficult, expensive, and inefficient to produce, maintain, and distribute nematodes for insect control.

It has been known in the art that one may isolate an insecticidal toxin from *Photorhabdus luminescens* that has

5

10

15

20

25

30

activity on when injected into Lepidopt and Coleopteran insect larvae. This has made it impossible to effectively exploit the insecticidal properties of the nematode or its bacterial symbiont. What would be useful would be a more practical, less labor-intensive wide-area delivery method of an insecticidal toxin which would retain its biological properties after delivery. It would be quite desirous to discover toxins with oral activity produced by the genus *Photorhabdus*. The isolation and use of these toxins are desirous due to efficacious reasons. Until applicants' discoveries, these toxins had not been isolated or characterized.

Summary of the Invention

The native toxins are protein complexes that are produced and secreted by growing bacteria cells of the genus *Photorhabdus*, of interest are the proteins produced by the species *Photorhabdus luminescens*. The protein complexes, with a molecular size of approximately 1,000 kDa, can be separated by SDS-PAGE gel analysis into numerous component proteins. The toxins contain no hemolysin, lipase, type C phospholipase, or nuclease activities. The toxins exhibit significant toxicity upon exposure administration to a number of insects.

The present invention provides an easily administered insecticidal protein as well as the expression of toxin in a heterologous system.

The present invention also provides a method for delivering insecticidal toxins that are functional active and effective against many orders of insects.

Objects, advantages, and features of the present invention will become apparent from the following specification.

Brief Description of the Drawings

35 Fig. 1 is an illustration of a match of cloned DNA isolates used as a part of sequence genes for the toxin of the present invention.

Fig. 2 is a map of three plasmids used in the sequencing process.

10

Fig is a map illustrating the er-relationship of several partial DNA fragments.

Fig. 4 is an illustration of a homology analysis between the protein sequences of TcbAii and TcaBii proteins.

. 5 Fig. 5 is a phenogram of Photorhabdus strains. Relationship of Photorhabdus Strains was defined by rep-PCR. The upper axis of Fig. 5 measures the percentage similarity of strains based on scoring of rep-PCR products (i.e., 0.0 [no similarity] to 1.0 (100% similarity)). At the right axis, the 10 numbers and letters indicate the various strains tested; 14=W-14, Hm=Hm, H9=H9, 7=WX-7, 1=WX-1, 2=WX-2, 88=HP88, NC-1=NC-1, 4=WX-4, 9=WX-9, 8=WX-8, 10=WX-10, WIR=WIR, 3=WX-3, 11=WX-11, 5=WX-5, 6=WX-6, 12=WX-12, x14=WX-14, 15=WX-15, Hb=Hb, B2=B2, 48 through 52=ATCC 43948 through ATCC 43952. Vertical lines separating 15 horizontal lines indicate the degree of relatedness (as read from the extrapolated intersection of the vertical line with the upper axis) between strains or groups of strains at the base of the horizontal lines (e.g., strain W-14 is approximately 60% similar to strains H9 and Hm).

Fig. 6 is an illustration of the genomic maps of the W-14 Strain.

Detailed Description of the Invention

25 The present inventions are directed to the discovery of a unique class of insecticidal protein toxins from the genus Photorhabdus that have oral toxicity against insects. A unique feature of Photorhabdus is its bioluminescence. Photorhabdus may be isolated from a variety of sources. One such source is 30 nematodes, more particularly nematodes of the genus Heterorhabditis. Another such source is from human clinical samples from wounds, see Farmer et al. 1989 J. Clin. Microbiol. 27 pp. 1594-1600. These saprohytic strains are deposited in the American Type Culture Collection (Rockville, MD) ATCC #s 43948, 35 43949, 43950, 43951, and 43952, and are incorporated herein by reference. It is possible that other sources could harbor Photorhabdus bacteria that produce insecticidal toxins. Such sources in the environment could be either terrestrial or aquatic

based.

The ge Photorhabdus is taxonomica defined as a member of the Family Enterobacteriaceae, although it has certain traits atypical of this family. For example, strains of this genus are nitrate reduction negative, yellow and red pigment producing and bioluminescent. This latter trait is otherwise unknown within the Enterobacteriaceae. Photorhabdus has only recently been described as a genus separate from the Xenorhabdus (Boemare et al., 1993 Int. J. Syst. Bacteriol. 43, 249-255). This differentiation is based on DNA-DNA hybridization studies, phenotypic differences (e.g., presence (Photorhabdus) or absence 10 (Xenorhabdus) of catalase and bioluminescence) and the Family of the nematode host (Xenorhabdus; Steinernematidae, Photorhabdus; Heterorhabdicidae). Comparative, cellular fatty-acid analyses (Janse et al. 1990, Lett. Appl. Microbiol 10, 131-135; Suzuki 15 et al. 1990, J. Gen. Appl. Microbiol., 36, 393-401) support the separation of Photorhabdus from Xenorhabdus.

In order to establish that the strain collection disclosed herein was comprised of Photorhabdus strains, the strains were characterized based on recognized traits which define Photorhabdus and differentiate it from other Enterobacteriaceae 20 and Xenorhabdus species. (Farmer, 1984 Bergey's Manual of Systemic Bacteriology Vol. 1 pp.510-511; Akhurst and Boemare 1988, J. Gen. Microbiol. 134 pp.1835-1845; Boemare et al. 1993 Int. J. Syst. Bacteriol. 43 pp.249-255, which are incorporated herein by reference). The traits studied were the following: gram stain 25 negative rods, organism size, colony pigmentation, inclusion bodies, presence of catalase, ability to reduce nitrate, bioluminescence, dye uptake, gelatin hydrolysis, growth on selective media, growth temperature, survival under anerobic conditions and motility. Fatty acid analysis was used to confirm 30 that the strains herein all belong to the single genus Photorhabdus.

Currently, the bacterial genus *Photorhabdus* is comprised of a single defined species, *Photorhabdus luminescens* (ATCC Type strain #29999, Poinar et al., 1977, Nematologica 23, 97-102). A variety of related strains have been described in the literature (e.g. Akhurst et al. 1988 J. Gen. Microbiol., 134, 1835-1845; Boemare et al. 1993 Int. J. Syst. Bacteriol. 43 pp. 249-255; Putz et al. 1990, Appl. Environ. Microbiol., 56, 181-186). Numerous

photornal is strains have been charactedized herein. Such strains are listed in Table 18 in the Examples. Because there is currently only one species (luminescens) defined within the genus Photornabdus, the luminescens species traits were used to

characterize the strains herein. As can be seen in Fig. 5, these strains are quite diverse. It is not unforeseen that in the future there may be other *Photorhabdus* species that will have some of the attributes of the *luminescens* species as well as some different characteristics that are presently not defined as a trait of *Photorhabdus luminescens*. However, the scope of the invention herein is to any *Photorhabdus* species or strains which

invention herein is to any *Photorhabdus* species or strains which produce proteins that have functional activity as insect control agents, regardless of other traits and characteristics.

Furthermore, as is demonstrated herein, the bacteria of the genus Photorhabdus produce proteins that have functional activity as defined herein. Of particular interest are proteins produced by the species Photorhabdus luminescens. The inventions herein should in no way be limited to the strains which are disclosed herein. These strains illustrate for the first time that

20 proteins produced by diverse isolates of Photorhabdus are toxic upon exposure to insects. Thus, included within the inventions described herein are the strains specified herein and any mutants thereof, as well as any strains or species of the genus Photorhabdus that have the functional activity described herein.

There are several terms that are used herein that have a particular meaning and are as follows:

By "functional activity" it is meant herein that the protein toxins function as insect control agents in that the proteins are orally active, or have a toxic effect, or are able to disrupt or deter feeding, which may or may not cause death of the insect. When an insect comes into contact with an effective amount of toxin delivered via transgenic plant expression, formulated protein compositions(s), sprayable protein composition(s), a bait matrix or other delivery system, the results are typically death of the insect, or the insects do not feed upon the source which makes the toxins available to the insects.

10

30

The protein wins discussed herein are type ally referred to as "insecticides". By insecticides it is meant herein that the protein toxins have a "functional activity" as further defined herein and are used as insect control agents.

5

10

25

30

35

40

By the use of the term "oligonucleotides" it is meant a macromolecule consisting of a short chain of nucleotides of either RNA or DNA. Such length could be at least one nucleotide, but typically are in the range of about 10 to about 12 nucleotides. The determination of the length of the oligonucleotide is well within the skill of an artisan and should not be a limitation herein. Therefore, oligonucleotides may be less than 10 or greater than 12.

15 By the use of the term "toxic" or "toxicity" as used herein it is meant that the toxins produced by *Photorhabdus* have "functional activity" as defined herein.

By the use of the term "genetic material" herein, it is meant to include all genes, nucleic acid, DNA and RNA.

Fermentation broths from selected strains reported in Table 18 were used to determine the following: breadth of insecticidal toxin production by the *Photorhabdus* genus, the insecticidal spectrum of these toxins, and to provide source material to purify the toxin complexes. The strains characterized herein have been shown to have oral toxicity against a variety of insect orders. Such insect orders include but are not limited to *Coleoptera*, *Homoptera*, *Lepidoptera*, *Diptera*, *Acarina*, *Hymenoptera* and *Dictyoptera*.

As with other bacterial toxins, the rate of mutation of the bacteria in a population causes many related toxins slightly different in sequence to exist. Toxins of interest here are those which produce protein complexes toxic to a variety of insects upon exposure, as described herein. Preferably, the toxins are active against Lepidoptera, Coleoptera, Homopotera, Diptera, Hymenoptera, Dictyoptera and Acarina. The inventions herein are intended to capture the protein toxins homologous to protein toxins produced by the strains herein and any derivative

By the use of the term "Photorhabdus toxin" it is meant any protein produced by a Photorhabdus microorganism strain which has functional activity against insects, where the Photorhabdus toxin could be formulated as a sprayable composition, expressed by a transgenic plant, formulated as a bait matrix, delivered via a Baculovirus, or delivered by any other applicable host or delivery system.

strains ther as well as any protein to produced by Photorhabdus. These homologous proteins may differ in sequence, but do not differ in function from those toxins described herein. Homologous toxins are meant to include protein complexes of 5 between 300 kDa to 2,000 kDa and are comprised of at least two (2) subunits, where a subunit is a peptide which may or may not be the same as the other subunit. Various protein subunits have been identified and are taught in the Examples herein. Typically, the protein subunits are between about 18 kDa to about 230 kDa; between about 160 kDa to about 230 kDa; 100 kDa to 160 kDa; about 80 kDa to about 100 kDa; and about 50 kDa to about 80 kDa.

As discussed above, some Photorhabdus strains can be isolated from nematodes. Some nematodes, elongated cylindrical parasitic worms of the phylum Nematoda, have evolved an ability to exploit insect larvae as a favored growth environment. The insect larvae provide a source of food for growing nematodes and an environment in which to reproduce. One dramatic effect that follows invasion of larvae by certain nematodes is larval death. Larval death results from the presence of, in certain nematodes, bacteria that produce an insecticidal toxin which arrests larval growth and inhibits feeding activity.

Interestingly, it appears that each genus of insect parasitic nematode hosts a particular species of bacterium, uniquely adapted for symbiotic growth with that nematode. In the interim since this research was initiated, the name of the bacterial genus Xenorhabdus was reclassified into the Xenorhabdus and the Photorhabdus. Bacteria of the genus Photorhabdus are characterized as being symbionts of Heterorhabditus nematodes while Xenorhabdus species are symbionts of the Steinernema species. This change in nomenclature is reflected in this specification, but in no way should a change in nomenclature alter the scope of the inventions described herein.

The peptides and genes that are disclosed herein are named according to the guidelines recently published in the Journal of Bacteriology "Instructions to Authors" p. i-xii (Jan. 1996), which is incorporated herein by reference. The following peptides and genes were isolated from Photorhabdus strain W-14.

15

20

25

30

Peptide / Gene Nomenclature Toxin complex (Tc)

5	Peptide Name	Gene Name	Patent Sequence ID#
	tca genomic region		
	TcaA	t ca A	12
	TcaAiii	tcaA	4
10	TcaBi	tcaB	
	TcaBii		_ (25, 25,
	TcaC	t caB	5
	icac	tcaC	2
	tcb genomic region -		
15	TcbA	m	1.5
.,	TcbAi	t cbA	16
	_	t cbA	(pro-peptide)
	TcbAii	t <i>cbA</i>	1 (21, 22, 23, 24)
	TcbA _{iii}	t <i>cbA</i>	40
24			
20	tcc genomic region		
	TCCA	t CCA	8
	TCCB	t <i>ccB</i>	7
	and manager of the second		
25	tcd genomic region	_	
23	TcdAi	t cdA	(pro-peptide)
	TcdAii	t cdA	13, (38, 39
			17, 18)
	TcdA _{iii}	tcdA	41, (42, 43)
3.0	TcdB	t <i>cdB</i>	14
30			

(bracket sequence indicates internal amino acid sequence obtained by tryptic digests)

35 The sequences listed above are grouped by genomic region. The tcbA gene was expressed in E. coli as two protein fragments TcbA and TcbAiii as illustrated in the Examples. It may be beneficial to have proteolytic clippage of some sequences to obtain the higher activity of the toxins for commercial 40 transgenic applications.

The toxins described herein are quite unique in that the toxins have functional activity, which is key to developing an insect management strategy. In developing an insect management 45 strategy, it is possible to delay or circumvent the protein degradation process by injecting a protein directly into an organism, avoiding its digestive tract. In such cases, the protein administered to the organism will retain its function until it is denatured, non-specifically degraded, or eliminated by the immune system in higher organisms. Injection into insects

of an insectional toxin has potential apple tion only in the laboratory, and then only on large insects which are easily injected. The observation that the insecticidal protein toxins herein described exhibits their toxic activity after oral ingestion or contact with the toxins permits the development of an insect management plan based solely on the ability to incorporate the protein toxins into the insect diet. Such a plan could result in the production of insect baits.

The Photorhabdus toxins may be administered to insects in a purified form. The toxins may also be delivered in amounts from about 1 to about 100 mg / liter of broth. This may vary upon formulation condition, conditions of the inoculum source, techniques for isolation of the toxin, and the like. The toxins may be administered as an exudate secretion or cellular protein originally expressed in a heterologous prokaryotic or eukaryotic host. Bacteria are typically the hosts in which proteins are expressed. Eukaryotic hosts could include but are not limited to plants, insects and yeast. Alternatively, the toxins may be produced in bacteria or transgenic plants in the field or in the insect by a baculovirus vector. Typically the toxins will be introduced to the insect by incorporating one or more of the toxins into the insects' feed.

Complete lethality to feeding insects is useful but is not required to achieve useful toxicity. If the insects avoid the toxin or cease feeding, that avoidance will be useful in some applications, even if the effects are sublethal. For example, if insect resistant transgenic crop plants are desired, a reluctance of insects to feed on the plants is as useful as lethal toxicity to the insects since the ultimate objective is protection of the plants rather than killing the insect.

There are many other ways in which toxins can be incorporated into an insect's diet. As an example, it is possible to adulterate the larval food source with the toxic protein by spraying the food with a protein solution, as disclosed herein. Alternatively, the purified protein could be genetically engineered into an otherwise harmless bacterium, which could then be grown in culture, and either applied to the food source or allowed to reside in the soil in an area in which insect eradication was desirable. Also, the protein could be genetically engineered directly into an insect food source. For

5

10

15

20

25

30

35

instance, he major food source of many insect larvae is plant material.

By incorporating genetic material that encodes the insecticidal properties of the Photorhabdus toxins into the genome of a plant eaten by a particular insect pest, the adult or 5 larvae would die after consuming the food plant. Numerous members of the monocotyledonous and dictyledenous genera have been transformed. Transgenic agronmonic crops as well as fruits and vegetables are of commercial interest. Such crops include but are not limited to maize, rice, soybeans, canola, sunflower, 10 alfalfa, sorghum, wheat, cotton, peanuts, tomatoes, potatoes, and the like. Several techniques exist for introducing foreign genetic material into plant cells, and for obtaining plants that stably maintain and express the introduced gene. Such techniques 15 include acceleration of genetic material coated onto microparticles directly into cells(U.S. Patents 4,945,050 to Cornell and 5,141,131 to DowElanco). Plants may be transformed using Agrobacterium technology, see U.S. Patent 5,177,010 to University of Toledo, 5,104,310 to Texas A&M, European Patent 20 Application 0131624B1, European Patent Applications 120516, 159418B1 and 176,112 to Schilperoot, U.S. Patents 5,149,645, 5,469,976, 5,464,763 and 4,940,838 and 4,693,976 to Schilperoot, European Patent Applications 116718, 290799, 320500 all to MaxPlanck, European Patent Applications 604662 and 627752 to 25 Japan Tobacco, European Patent Applications 0267159, and 0292435 and U.S. Patent 5,231,019 all to Ciba Geigy, U.S. Patents 5,463,174 and 4,762,785 both to Calgene, and U.S. Patents 5,004,863 and 5,159,135 both to Agracetus. Other transformation technology includes whiskers technology, see U.S. Patents 30 5,302,523 and 5,464,765 both to Zeneca. Electroporation technology has also been used to transform plants, see WO 87/06614 to Boyce Thompson Institute, 5,472,869 and 5,384,253 both to Dekalb, WO9209696 and WO9321335 both to PGS. All of these transformation patents and publications are incorporated by 35 reference. In addition to numerous technologies for transforming plants, the type of tissue which is contacted with the foreign genes may vary as well. Such tissue would include but would not be limited to embryogenic tissue, callus tissue type I and II, hypocotyl, meristem, and the like. Almost all plant tissues may

-11-

be transformed during dedifferentiation : g appropriate techniques within the skill of an artisan.

Another variable is the choice of a selectable marker. The preference for a particular marker is at the discretion of the artisan, but any of the following selectable markers may be used along with any other gene not listed herein which could function as a selectable marker. Such selectable markers include but are not limited to aminoglycoside phosphotransferase gene of transposon Tn5 (Aph II) which encodes resistance to the antibiotics kanamycin, neomycin and G418, as well as those genes which code for resistance or tolerance to glyphosate; hygromycin; methotrexate; phosphinothricin (bialophos); imidazolinones, sulfonylureas and triazolopyrimidine herbicides, such as chlorosulfuron; bromoxynil, dalapon and the like.

In addition to a selectable marker, it may be desirous to use a reporter gene. In some instances a reporter gene may be used without a selectable marker. Reporter genes are genes which are typically not present or expressed in the recipient organism or tissue. The reporter gene typically encodes for a protein which provides for some phenotypic change or enzymatic property. Examples of such genes are provided in K. Weising et al. Ann. Rev. Genetics, 22, 421 (1988), which is incorporated herein by reference. A preferred reporter gene is the glucuronidase (GUS) gene.

25 Regardless of transformation technique, the gene is preferably incorporated into a gene transfer vector adapted to express the Photorhabdus toxins in the plant cell by including in the vector a plant promoter. In addition to plant promoters, promoters from a variety of sources can be used efficiently in 30 plant cells to express foreign genes. For example, promoters of bacterial origin, such as the octopine synthase promoter, the nopaline synthase promoter, the mannopine synthase promoter; promoters of viral origin, such as the cauliflower mosaic virus (35S and 19S) and the like may be used. Plant promoters include. 35 but are not limited to ribulose-1,6-bisphosphate (RUBP) carboxylase small subunit (ssu), beta-conglycinin promoter, phaseolin promoter, ADH promoter, heat-shock promoters and tissue specific promoters. Promoters may also contain certain enhancer sequence elements that may improve the transcription efficiency. 4() Typical enhancers include but are not limited to Adh-intron 1 and

10

15

Adh-intron 6. Constitutive promoters may be used. Constitutive promoters direct continuous gene expression in all cells types and at all times (e.g., actin, ubiquitin, CaMV 35S). Tissue specific promoters are responsible for gene expression in specific cell or tissue types, such as the leaves or seeds (e.g., zein, oleosin, napin, ACP) and these promoters may also be used. Promoters may also be are active during a certain stage of the plants' development as well as active in plant tissues and organs. Examples of such promoters include but are not limited to pollen-specific, embryo specific, corn silk specific, cotton fiber specific, root specific, seed endosperm specific promoters and the like.

Under certain circumstances it may be desirable to use an inducible promoter. An inducible promoter is responsible for expression of genes in response to a specific signal, such as: physical stimulus (heat shock genes); light (RUBP carboxylase); hormone (Em); metabolites; and stress. Other desirable transcription and translation elements that function in plants may be used. Numerous plant-specific gene transfer vectors are known to the art.

In addition, it is known that to obtain high expression of bacterial genes in plants it is preferred to reengineer the bacterial genes so that they are more efficiently expressed in the cytoplasm of plants. Maize is one such plant where it is preferred to reengineer the bacterial gene(s) prior to transformation to increase the expression level of the toxin in the plant. One reason for the reengineering is the very low G+C content of the native bacterial gene(s) (and consequent skewing towards high A+T content). This results in the generation of sequences mimicking or duplicating plant gene control sequences that are known to be highly A+T rich. The presence of some A+Trich sequences within the DNA of the gene(s) introduced into plants (e.g., TATA box regions normally found in gene promoters) may result in aberrant transcription of the gene(s). On the other hand, the presence of other regulatory sequences residing in the transcribed mRNA (e.g., polyadenylation signal sequences (AAUAAA), or sequences complementary to small nuclear RNAs involved in pre-mRNA splicing) may lead to RNA instability. Therefore, one goal in the design of reengineered bacterial

10

15

20

25

30

gene(s), more preferably referred to as plant optimized gene(s), is to generate a DNA sequence having a higher G+C content, and preferably one close to that of plant genes coding for metabolic enzymes. Another goal in the design of the plant optimized gene(s) is to generate a DNA sequence that not only has a higher G+C content, but by modifying the sequence changes, should be made so as to not hinder translation.

An example of a plant that has a high G+C content is maize. The table below illustrates how high the G+C content is in maize.

10 As in maize, it is thought that G+C content in other plants is also high.

Table 1
Compilation of G+C contents of protein coding regions of maize genes

Protein Class ^a	Range %G+C	Mean %G+C
Metabolic Enzymes (40)	44.4-75.3	59.0 (8.0)
Storage Proteins		
Group I (23)	46.0-51.9	48.1 (1.3)
Group II (13)	60.4-74.3	67.5 (3.2)
Group I + II (36)	46.0-74.3	55.1 (9.6)°
Structural Proteins (18)	48.6-70.5	63.6 (6.7)
Regulatory Proteins (5)	57.2-68.9	62.0 (4.9)
Uncharacterized Proteins (9)	41.5-70.3	64.3 (7.2)
All Proteins (108)	44.4-75.3	60.8 (5.2)

Number of genes in class given in parentheses.

Standard deviations given in parentheses.

Combined groups mean ignored in calculation of overall mean.

²⁰ For the data in Table 1, coding regions of the genes were extracted from GenBank (Release 71) entries, and base compositions were calculated using the MacVector™ program (IBI, New Haven, CT). Intron sequences were ignored in the

calculations. Group I and II storage protein gene sequences were distinguished by their marked difference in base composition.

Due to the plasticity afforded by the redundancy of the genetic code (i.e., some amino acids are specified by more than one codon), evolution of the genomes of different organisms or classes or organisms has resulted in differential usage of redundant codons. This "codon bias" is reflected in the mean base composition of protein coding regions. For example, organisms with relatively low G+C contents utilize codons having A or T in the third position of redundant codons, whereas those having higher G+C contents utilize codons having G or C in the third position. It is thought that the presence of "minor" codons within a gene's mRNA may reduce the absolute translation rate of that mRNA, especially when the relative abundance of the charged tRNA corresponding to the minor codon is low. An extension of this is that the diminution of translation rate by individual minor codons would be at least additive for multiple minor codons. Therefore, mRNAs having high relative contents of minor codons would have correspondingly low translation rates. This rate would be reflected by the synthesis of low levels of the encoded protein.

In order to reengineer the bacterial gene(s), the codon bias of the plant is determined. The codon bias is the statistical codon distribution that the plant uses for coding its proteins. After determining the bias, the percent frequency of the codons in the gene(s) of interest is determined. The primary codons preferred by the plant should be determined as well as the second and third choice of preferred codons. The amino acid sequence of the protein of interest is reverse translated so that the resulting nucleic acid sequence codes for the same protein as the native bacterial gene, but the resulting nucleic acid sequence corresponds to the first preferred codons of the desired plant. The new sequence is analyzed for restriction enzyme sites that might have been created by the modification. The identified sites are further modified by replacing the codons with second or third choice preferred codons. Other sites in the sequence which could affect the transcription or translation of the gene of interest are the exon:intron 5' or 3' junctions, poly A addition signals, or RNA polymerase termination signals. The sequence is

10

15

20

25

30

zed and modified to reduce the frequency of TA or GC further and doublets. In addition to the doublets, G or C sequence blocks that have more than about four residues that are the same can affect transcription of the sequence. Therefore, these blocks are also modified by replacing the codons of first or second choice, etc. with the next preferred codon of choice. preferred that the plant optimized gene(s) contains about 63% of first choice codons, between about 22% to about 37% second choice codons, and between 15% and 0% third choice codons, wherein the total percentage is 100%. Most preferred the plant optimized gene(s) contain about 63% of first choice codons, at least about 22% second choice codons, about 7.5% third choice codons, and about 7.5% fourth choice codons, wherein the total percentage is The method described above enables one skilled in the art to modify gene(s) that are foreign to a particular plant so that the genes are optimally expressed in plants. The method is further illustrated in pending provisional application U.S. 60/005,405 filed on October 13, 1995, which is incorporated herein by reference.

Thus, in order to design plant optimized gene(s) the amino acid sequence of the toxins are reverse translated into a DNA sequence, utilizing a nonredundant genetic code established from a codon bias table compiled for the gene DNA sequence for the particular plant being transformed. The resulting DNA sequence, which is completely homogeneous in codon usage, is further modified to establish a DNA sequence that, besides having a higher degree of codon diversity, also contains strategically placed restriction enzyme recognition sites, desirable base composition, and a lack of sequences that might interfere with transcription of the gene, or translation of the product mRNA.

It is theorized that bacterial genes may be more easily expressed in plants if the bacterial genes are expressed in the plastids. Thus, it may be possible to express bacterial genes in plants, without optimizing the genes for plant expression, and obtain high express of the protein. See U.S. Patent Nos. 4,762,785; 5,451,513 and 5,545,817, which are incorporated herein by reference.

10

15

One of the issues regarding commercial exploiting transgenic plants is resistance management. This is of particular concern with Bacillus thuringiensis toxins. There are numerous companies commercially exploiting Bacillus thuringiensis and there has been much concern about Bt toxins becoming resistant. One strataegy for insect resistant management would be to combine the toxins produced by Photorhabdus with toxins such as Bt, vegetative insect proteins (Ciba Geigy) or other toxins. The combinations could be formulated for a sprayable application or could be molecular combinations. Plants could be transformed with Photorhabdus genes that produce insect toxins and other insect toxin genes such as Bt as with other insect toxin genes such as Bt.

European Patent Application 0400246A1 describes transformation of 2 Bt in a plant, which could be any 2 genes. Another way to produce a transgenic plant that contains more than one insect resistant gene would be to produce two plants, with each plant containing an insect resistant gene. These plants would be backcrossed using traditional plant breeding techniques to produce a plant containing more than one insect resistant gene.

In addition to producing a transformed plant containing plant optimized gene(s), there are other delivery systems where it may be desirable to reengineer the bacterial gene(s). Along the same lines, a genetically engineered, easily isolated protein toxin fusing together both a molecule attractive to insects as a food source and the insecticidal activity of the toxin may be engineered and expressed in bacteria or in eukaryotic cells using standard, well-known techniques. After purification in the laboratory such a toxic agent with "built-in" bait could be packaged inside standard insect trap housings.

Another delivery scheme is the incorporation of the genetic material of toxins into a baculovirus vector. Baculoviruses infect particular insect hosts, including those desirably targeted with the *Photorhabdus* toxins. Infectious baculovirus harboring an expression construct for the *Photorhabdus* toxins could be introduced into areas of insect infestation to thereby intoxicate or poison infected insects.

10

15

20

25

30

Transfer of the insecticidal properties requires nucleic acid sequences encoding the coding the amino acid sequences for the *Photorhabdus* toxins integrated into a protein expression vector appropriate to the host in which the vector will reside. One way to obtain a nucleic acid sequence encoding a protein with insecticidal properties is to isolate the native genetic material which produces the toxins from *Photorhabdus*, using information deduced from the toxin's amino acid sequence, large portions of which are set forth below. As described below, methods of purifying the proteins responsible for toxin activity are also disclosed.

Using N-terminal amino acid sequence data, such as set forth below, one can construct oligonucleotides complementary to all, or a section of, the DNA bases that encode the first amino acids of the toxin. These oligonucleotides can be radiolabeled and used as molecular probes to isolate the genetic material from a genomic genetic library built from genetic material isolated from strains of Photorhabdus. The genetic library can be cloned in plasmid, cosmid, phage or phagemid vectors. The library could be transformed into Escherichia coli and screened for toxin production by the transformed cells using antibodies raised against the toxin or direct assays for insect toxicity.

This approach requires the production of a battery of oligonucleotides, since the degenerate genetic code allows an amino acid to be encoded in the DNA by any of several three-nucleotide combinations. For example, the amino acid arginine can be encoded by nucleic acid triplets CGA, CGC, CGG, CGT, AGA, and AGG. Since one cannot predict which triplet is used at those positions in the toxin gene, one must prepare oligonucleotides with each potential triplet represented. More than one DNA molecule corresponding to a protein subunit may be necessary to construct a sufficient number of oligonucleotide probes to recover all of the protein subunits necessary to achieve oral toxicity.

From the amino acid sequence of the purified protein, genetic materials responsible for the production of toxins can readily be isolated and cloned, in whole or in part, into an expression vector using any of several techniques well-known to one skilled in the art of molecular biology. A typical expression vector is a DNA plasmid, though other transfer means

10

15

20

25

30

35

including. It not limited to, cosmids, Lagemids and phage are also envisioned. In addition to features required or desired for plasmid replication, such as an origin of replication and antibiotic resistance or other form of a selectable marker such as the bar gene of Streptomyces hygroscopicus or viridochromogenes, protein expression vectors normally additionally require an expression cassette which incorporates the cis-acting sequences necessary for transcription and translation of the gene of interest. The cis-acting sequences required for expression in prokaryotes differ from those required in eukaryotes and plants.

A eukaryotic expression cassette requires a transcriptional promoter upstream (5') to the gene of interest, a transcriptional termination region such as a poly-A addition site, and a ribosome binding site upstream of the gene of interest's first codon. In bacterial cells, a useful transcriptional promoter that could be included in the vector is the T7 RNA Polymerase-binding promoter. Promoters, as previously described herein, are known to efficiently promote transcription of mRNA. Also upstream from the gene of interest the vector may include a nucleotide sequence encoding a signal sequence known to direct a covalently linked protein to a particular compartment of the host cells such as the cell surface.

Insect viruses, or baculoviruses, are known to infect and adversely affect certain insects. The affect of the viruses on insects is slow, and viruses do not stop the feeding of insects. Thus viruses are not viewed as being useful as insect pest control agents. Combining the Photorhabdus toxins genes into a baculovirus vector could provide an efficient way of transmitting the toxins while increasing the lethality of the virus. addition, since different baculoviruses are specific to different insects, it may be possible to use a particular toxin to selectively target particularly damaging insect pests. A particularly useful vector for the toxins genes is the nuclear polyhedrosis virus. Transfer vectors using this virus have been described and are now the vectors of choice for transferring foreign genes into insects. The virus-toxin gene recombinant may be constructed in an orally transmissible form. Baculoviruses normally infect insect victims through the mid-gut intestinal mucosa. The toxin gene inserted behind a strong viral coat

25

30

35

protein prom would be expressed and sh rapidly kill the infected insect.

In addition to an insect virus or baculovirus or transgenic plant delivery system for the protein toxins of the present invention, the proteins may be encapsulated using Bacillus thuringiensis encapsulation technology such as but not limited to U.S. Patent Nos. 4,695,455; 4,695,462; 4,861,595 which are all incorporated herein by reference. Another delivery system for the protein toxins of the present invention is formulation of the protein into a bait matrix, which could then be used in above and below ground insect bait stations. Examples of such technology include but are not limited to PCT Patent Application WO 93/23998, which is incorporated herein by reference.

As is described above, it might become necessary to modify the sequence encoding the protein when expressing it in a non-native host, since the codon preferences of other hosts may differ from that of *Photorhabdus*. In such a case, translation may be quite inefficient in a new host unless compensating modifications to the coding sequence are made. Additionally, modifications to the amino acid sequence might be desirable to avoid inhibitory cross-reactivity with proteins of the new host, or to refine the insecticidal properties of the protein in the new host. A genetically modified toxin gene might encode a toxin exhibiting, for example, enhanced or reduced toxicity, altered insect resistance development, altered stability, or modified target species specificity.

In addition to the *Photorhabdus* genes encoding the toxins, the scope of the present invention is intended to include related nucleic acid sequences which encode amino acid biopolymers homologous to the toxin proteins and which retain the toxic effect of the *Photorhabdus* proteins in insect species after oral ingestion.

For instance, the toxins used in the present invention seem to first inhibit larval feeding before death ensues. By manipulating the nucleic acid sequence of *Photorhabdus* toxins or its controlling sequences, genetic engineers placing the toxin gene into plants could modulate its potency or its mode of action to, for example, keep the eating-inhibitory activity while eliminating the absolute toxicity to the larvae. This change could permit the transformed plant to survive until harvest

5

10

15

20

25

30

35

without hong the unnecessarily dramat effect on the ecosystem of wiping out all target insects. All such modifications of the gene encoding the toxin, or of the protein encoded by the gene, are envisioned to fall within the scope of the present invention.

Other envisioned modifications of the nucleic acid include the addition of targeting sequences to direct the toxin to particular parts of the insect larvae for improving its efficiency.

Strains ATCC 55397, 43948, 43949, 43950, 43951, 43952 have been deposited in the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852 USA. Amino acid and nucleotide sequence data for the W-14 native toxin (ATCC 55397) is presented below. Isolation of the genomic DNA for the toxins from the bacterial hosts is also exemplified herein.

Standard and molecular biology techniques were followed and taught in the specification herein. Additional information may be found in Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989), Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, which is incorporated herein by reference.

20

25

5

10

The following abbreviations are used throughout the Examples:

Tris = tris (hydroxymethyl) amino methane; SDS = sodium dodecyl
sulfate; EDTA = ethylenediaminetetraacetic acid, IPTG =
isopropylthio-B-galactoside, X-gal = 5-bromo-4-chloro-3-indoyl-BD-galactoside, CTAB = cetyltrimethylammonium bromide; kbp =
kilobase pairs; dATP, dCTP, dGTP, dTTP, I = 2'-deoxynucleoside
5'-triphosphates of adenine, cytosine, guanine, thymine, and
inosine, respectively; ATP = adenosine 5' triphosphate.

30

Example 1

Purification of toxin from P. luminescens and Demonstration of toxicity after oral delivery of purified toxin

The insecticidal protein toxin of the present invention was purified from P. luminescens strain W-14, ATCC Accession Number 55397. Stock cultures of P. luminescens were maintained on petri dishes containing 2% Proteose Peptone No. 3 (i.e., PP3, Difco Laboratories, Detroit MI) in 1.5% agar, incubated at 25°C and transferred weekly. Colonies of the primary form of the bacteria were inoculated into 200 ml of PP3 broth supplemented with 0.5%

polyoxyethylene sorbitan mono-stearate (Tween 60, Sigma Chemical Company, St. Louis MO) in a one liter flask. The broth cultures were grown for 72 hours at 30°C on a rotary shaker. The toxin proteins can be recovered from cultures grown in the presence or absence of Tween; however, the absence of Tween can affect the form of the bacteria grown and the profile of proteins produced by the bacteria. In the absence of Tween, a variant shift occurs insofar as the molecular weight of at least one identified toxin subunit shifts from about 200 kDa to about 185 kDa.

The 72 hour cultures were centrifuged at 10,000 x g for 30 minutes to remove cells and debris. The supernatant fraction that contained the insecticidal activity was decanted and brought to 50 mM K₂HPO₄ by adding an appropriate volume of 1.0 M K₂HPO₄. The pH was adjusted to 8.6 by adding potassium hydroxide. This supernatant fraction was then mixed with DEAE-Sephacel (Pharmacia LKB Biotechnology) which had been equilibrated with 50 mM K₂HPO₄. The toxic activity was adsorbed to the DEAE resin. This mixture was then poured into a 2.6 x 40 cm column and washed with 50 mM K₂HPO₄ at room temperature at a flow rate of 30 ml/hr until the effluent reached a steady baseline UV absorbance at 280 nm. The column was then washed with 150 mM KCl until the effluent again reached a steady 280 nm baseline. Finally the column was washed with 300 mM KCl and fractions were collected.

Fractions containing the toxin were pooled and filter sterilized using a 0.2 micron pore membrane filter. The toxin was then concentrated and equilibrated to 100 mM KPO4, pH 6.9, using an ultrafiltration membrane with a molecular weight cutoff of 100 kDa at 4°C (Centriprep 100, Amicon Division-W.R. Grace and Company). A 3 ml sample of the toxin concentrate was applied to the top of a 2.6 x 95 cm Sephacryl S-400 HR gel filtration column (Pharmacia LKB Biotechnology). The eluent buffer was 100 mM KPO4, pH 6.9, which was run at a flow rate of 17 ml/hr, at 4°C. The effluent was monitored at 280 nm.

Fractions were collected and tested for toxic activity.

Toxicity of chromatographic fractions was examined in a biological assay using Manduca sexta larvae. Fractions were either applied directly onto the insect diet (Gypsy moth wheat germ diet, ICN Biochemicals Division - ICN Biomedicals, Inc.) or administered by intrahemocelic injection of a 5 µl sample through the first proleg of 4th or 5th instar larva using a 30 gauge

5

10

15

20

25

30

35

needle. weight of each larva within treatment group was recorded at 24 hour intervals. Toxicity was presumed if the insect ceased feeding and died within several days of consuming treated insect diet or if death occurred within 24 hours after injection of a fraction.

The toxic fractions were pooled and concentrated using the Centriprep-100 and were then analyzed by HPLC using a 7.5 mm x 60 cm TSK-GEL G-4000 SW gel permeation column with 100 mM potassium phosphate, pH 6.9 eluent buffer running at 0.4 ml/min. This analysis revealed the toxin protein to be contained within a single sharp peak that eluted from the column with a retention time of approximately 33.6 minutes. This retention time corresponded to an estimated molecular weight of 1,000 kDa. Peak fractions were collected for further purification while fractions not containing this protein were discarded. The peak eluted from the HPLC absorbs UV light at 218 and 280 nm but did not absorb at 405 nm. Absorbance at 405 nm was shown to be an attribute of xenorhabdin antibiotic compounds.

denaturing agarose gel (Metaphor Agarose, FMC BioProducts) showed that two protein complexes are present in the peak. The peak material, buffered in 50 mM Tris-HCl, pH 7.0, was separated on a 1.5% agarose stacking gel buffered with 100 mM Tris-HCl at pH 7.0 and 1.9% agarose resolving gel buffered with 200 mM Tris-borate at pH 8.3 under standard buffer conditions (anode buffer 1M Tris-HCl, pH 8.3; cathode buffer 0.025 M Tris, 0.192 M glycine). The gels were run at 13 mA constant current at 15°C until the phenol red tracking dye reached the end of the gel. Two protein bands were visualized in the agarose gels using Coomassie brilliant blue staining.

The slower migrating band was referred to as "protein band 1" and faster migrating band was referred to as "protein band 2." The two protein bands were present in approximately equal amounts. The Coomassie stained agarose gels were used as a guide to precisely excise the two protein bands from unstained portions of the gels. The excised pieces containing the protein bands were macerated and a small amount of sterile water was added. As a control, a portion of the gel that contained no protein was also excised and treated in the same manner as the gel pieces containing the protein. Protein was recovered from the gel

35

40

10

pieces by elemoelution into 100 mM Tris-bate pH 8.3, at 100 volts (constant voltage) for two hours. Alternatively, protein was passively eluted from the gel pieces by adding an equal volume of 50 mM Tris-HCl, pH 7.0, to the gel pieces, then incubating at 30°C for 16 hours. This allowed the protein to diffuse from the gel into the buffer, which was then collected.

Results of insect toxicity tests using HPLC-purified toxin (33.6 min. peak) and agarose gel purified toxin demonstrated toxicity of the extracts. Injection of 1.5 µg of the HPLC purified protein kills within 24 hours. Both protein bands 1 and 2, recovered from agarose gels by passive elution or electroelution, were lethal upon injection. The protein concentration estimated for these samples was less than 50 ng/larva. A comparison of the weight gain and the mortality between the groups of larvae injected with protein bands 1 cr 2 indicate that protein band 1 was more toxic by injection delivery.

When HPLC-purified toxin was applied to larval diet at a concentration of 7.5 µg/larva, it caused a halt in larval weight gain (24 larvae tested). The larvae begin to feed, but after consuming only a very small portion of the toxin treated diet they began to show pathological symptoms induced by the toxin and the larvae cease feeding. The insect frass became discolore; and most larva showed signs of diarrhea. Significant insect mortality resulted when several 5 µg toxin doses were applied to the diet over a 7-10 day period.

Agarose-separated protein band 1 significantly inhibited larval weight gain at a dose of 200 ng/larva. Larvae fed similar concentrations of protein band 2 were not inhibited and gained weight at the same rate as the control larvae. Twelve larvae were fed eluted protein and 45 larvae were fed protein-containing agarose pieces. These two sets of data indicate that protein band 1 was orally toxic to Manduca sexta. In this experiment it appeared that protein band 2 was not toxic to Manduca sexta.

Further analysis of protein bands 1 and 2 by SDS-PAGE under denaturing conditions showed that each band was composed of several smaller protein subunits. Proteins were visualized by Coomassie brilliant blue staining followed by silver staining to achieve maximum sensitivity.

10

15

20

25

30

PCT/US96/18003 WO 97/17432

otein subunits in the two hards were very similar. Protein band 1 contains 8 protein subunits of 25.1, 56.2, 60.8, 65.6, 166, 171, 184 and 208 kDa. Protein band 2 had an identical profile except that the 25.1, 60.8, and 65.6 kDa proteins were not present. The 56.2, 60.8, 65.6, and 184 kDa proteins were present in the complex of protein band 1 at approximately equal concentrations and represent 80% or more of the total protein content of that complex.

The native HPLC-purified toxin was further characterized as follows. The toxin was heat labile in that after being heated to 10 60°C for 15 minutes it lost its ability to kill or to inhibit weight gain when injected or fed to M. sexta larvae. Assays were designed to detect lipase, type C phospholipase, nuclease or red blood cell hemolysis activities and were performed with purified toxin. None of these activities were present. Antibiotic zone inhibition assays were also done and the purified toxin failed to inhibit growth of Gram-negative or -positive bacteria, yeast or filamentous fungi, indicating that the toxic is not a xenorhabdin antibiotic.

20 The native HPLC-purified toxin was tested for ability to kill insects other than Manduca sexta. Table 2 lists insects killed by the HPLC-purified P. luminescens toxin in this study.

Table 2 25 Insects Killed by P. luminescens Toxin

	Common Name	Order	Genus and species	Route of Delivery
30	Tobacco horn worm	Lepidoptera	Manduca sexta	Oral and injected
	Mealworm	Coleoptera	Tenebrio molitor	Oral
35	Pharaoh ant	Hymenoptera	Monomorium pharoanis	Oral
	German cockroach	Dictyoptera	Blattella germanica	Oral and injected
40	Mosquito	Diptera	Aedes aegypti	Oral

Example 2 Insecticide Utility

The Photorhabdus luminescens utility and toxicity were further characterized. Photorhabdus luminescens (strain W-14) 5 culture broth was produced as follows. The production medium was 2% Bacto Proteose Peptone Number 3 (PP3, Difco Laboratories, Detroit, Michigan) in Milli-Q deionized water. Seed culture flasks consisted of 175 ml medium placed in a 500 ml tribaffled flask with a Delong neck, covered with a Kaput and autoclaved 10 for 20 minutes, T=250°F. Production flasks consisted of 500 mls in a 2.8 liter 500 ml tribaffled flask with a Delong neck, covered by a Shin-etsu silicon foam closure. These were autoclaved for 45 minutes, T=250°F. The seed culture was incubated at 28°C at 150 rpm in a gyrotory shaking incubator with 15 a 2 inch throw. After 16 hours of growth, 1% of the seed culture was placed in the production flask which was allowed to grow for 24 hours before harvest. Production of the toxin appears to be during log phase growth. The microbial broth was transferred to a 1L centrifuge bottle and the cellular biomass was pelleted (30 20 minutes at 2500 RPM at 4° C, {R.C.F. = ~1600} HG-4L Rotor RC3 Sorval centrifuge, Dupont, Wilmington, Delaware). The primary broth was chilled at 4°C for 8 - 16 hours and recentrifuged at least 2 hours (conditions above) to further clarify the broth by removal of a putative mucopolysaccharide which precipitated upon 25 standing. (An alternative processing method combined both steps and involved the use of a 16 hour clarification centrifugation. same conditions as above.) This broth was then stored at 4°C prior to bioassay or filtration.

Photorhabdus culture broth and protein toxin(s) purified from this broth showed activity (mortality and/or growth inhibition, reduced adult emergence) against a number of insects. More specifically, the activity is seen against corn rootworm (larvae and adult), Colorado potato beetle, and turf grubs, which are members of the insect order Coleoptera. Other members of the Coleoptera include wireworms, pollen beetles, flea beetles, seed beetles and weevils. Activity has also been observed against aster leafhopper, which is a member of the order, Homoptera. Other members of the Homoptera include planthoppers, pear pyslla, apple sucker, scale insects, whiteflies, and spittle bugs, as

30

35

well as n ous host specific aphid species. The broth and purified fractions are also active against beet armyworm, cabbage looper, black cutworm, tobacco budworm, European corn borer, corn earworm, and codling moth, which are members of the order Lepidoptera. Other typical members of this order are clothes moth, Indian mealmoth, leaf rollers, cabbage worm, cotton bollworm, bagworm, Eastern tent caterpillar, sod webworm, and fall armyworm. Activity is also seen against fruitfly and mosquito larvae, which are members of the order Diptera. Other members of the order Diptera are pea midge, carrot fly, cabbage root fly, turnip root fly, onion fly, crane fly, house fly, and various mosquito species. Activity is seen against carpenter ant and Argentine ant, which are members of the order that also

The broth/fraction is useful for reducing populations of insects and were used in a method of inhibiting an insect population. The method may comprise applying to a locus of the insect an effective insect inactivating amount of the active described. Results are reported in Table 3.

includes fire ants, oderous house ants, and little black ants.

20 Activity against corn rootworm larvae was tested as follows. Photorhabdus culture broth (filter sterilized, cell-free) or purified HPLC fractions were applied directly to the surface (~1.5 cm²) of 0.25 ml of artificial diet in 30 µl aliquots following dilution in control medium or 10 mM sodium phosphate 25 buffer, pH 7.0, respectively. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate Diabrotica undecimpunctata howardi (Southern corn rootworm, SCR) hatched from sterilized eggs, with second instar SCR grown on artificial diet or with second instar Diabrotica 30 virgifera virgifera (Western corn rootworm, WCR) reared on corn seedlings grown in Metromix*. Second instar larvae were weighed prior to addition to the diet. The plates were sealed, placed in a humidified growth chamber and maintained at 27°C for the appropriate period (4 days for neonate and adult SCR, 2-5 days 35 for WCR larvae, 7-14 days for second instar SCR). Mortality and weight determinations were scored as indicated. Generally, 16 insects per treatment were used in all studies. Control mortalities were as follows: neonate larvae, <5%, adult beetles, 5%.

10

Activity gainst Colorado potato beet as tested as follows. Photorhabdus culture broth or control medium was applied to the surface (~2.0 cm²) of 1.5 ml of standard artificial diet held in the wells of a 24-well tissue culture plate. Each well received 50 µl of treatment and was allowed to air dry. Individual second instar Colorado potato beetle (Leptinotarsa decemlineata, CPB) larvae were then placed onto the diet and mortality was scored after 4 days. Ten larvae per treatment were used in all studies. Control mortality was 3.3%.

Activity against Japanese beetle grubs and beetles was tested as follows. Turf grubs ($Popillia\ japonica$, 2-3rd instar) were collected from infested lawns and maintained in the laboratory in soil/peat mixture with carrot slices added as additional diet. Turf beetles were pheromone-trapped locally and maintained in the laboratory in plastic containers with maple leaves as food. Following application of undiluted Photorhabdus culture broth or control medium to corn rootworm artificial diet (30 μ l/1.54 cm², beetles) or carrot slices (larvae), both stages were placed singly in a diet well and observed for any mortality and feeding. In both cases there was a clear reduction in the amount of feeding (and feces production) observed.

Activity against mosquito larvae was tested as follows. The assay was conducted in a 96-well microtiter plate. Each well contained 200 μ l of aqueous solution (*Photorhabdus* culture broth, control medium or H_20) and approximately 20, 1-day old larvae (*Aedes aegypti*). There were 6 wells per treatment. The results were read at 2 hours after infestation and did not change over the three day observation period. No control mortality was seen.

Activity against fruitflies was tested as follows.

Purchased Drosophila melanogaster medium was prepared using 50% dry medium and a 50% liquid of either water, control medium or Photorhabdus culture broth. This was accomplished by placing 8.0 ml of dry medium in each of 3 rearing vials per treatment and adding 8.0 ml of the appropriate liquid. Ten late instar Drosophila melanogaster maggots were then added to each vial. The vials were held on a laboratory bench, at room temperature, under fluorescent ceiling lights. Pupal or adult counts were made after 3, 7 and 10 days of exposure. Incorporation of Photorhabdus culture broth into the diet media for fruitfly

10

15

20

25

30

maggots sed a slight (17%) but sign cant reduction in day-10 adult emergence as compared to water and control medium (3% reduction).

Activity against aster leafhopper was tested as follows. 5 The ingestion assay for aster leafhopper (Macrosteles severini) is designed to allow ingestion of the active without other external contact. The reservoir for the active/"food" solution is made by making 2 holes in the center of the bottom portion of a 35 x 10 mm Petri dish. A 2 inch Parafilm M square is placed 10 across the top of the dish and secured with an "O" ring. A 1 oz. plastic cup is then infested with approximately 7 leafhoppers and the reservoir is placed on top of the cup, Parafilm down. test solution is then added to the reservoir through the holes. In tests using undiluted Photorhabdus culture broth, the broth and control medium were dialyzed against water to reduce control 15 mortality. Mortality is reported at day 2 where 26.5% control mortality was seen. In the tests using purified fractions (200 mg protein/ml) a final concentration of 5% sucrose was used in all treatments to improve survivability of the aster leafhoppers. 20 The assay was held in an incubator at 28°C, 70% RH with a 16/8 photoperiod. The assay was graded for mortality at 72 hours. Control mortality was 5.5%.

Activity against Argentine ants was tested as follows. A 1.5 ml aliquot of 100% Photorhabdus culture broth, control medium or water was pipetted into 2.0 ml clear glass vials. The vials were plugged with a piece of cotton dental wick that was moistened with the appropriate treatment. Each vial was placed into a separate 60x16mm Petri dish with 8 to 12 adult Argentine ants (Linepithema humile). There were three replicates per treatment. Bioassay plates were held on a laboratory bench, at room temperature under fluorescent ceiling lights. Mortality readings were made after 5 days of exposure. Control mortality was 24%.

Activity against carpenter ant was tested as follows. Black carpenter ant workers (Camponotus pennsylvanicus) were collected from trees on DowElanco property in Indianapolis, IN. Tests with Photorhabdus culture broth were performed as follows. Each plastic bioassay container (7 1/8" x 3") held fifteen workers, a paper harborage and 10 ml of broth or control media in a plastic shot glass. A cotton wick delivered the treatment to the ants

25

30

35

through a hole in the shot glass lid. All treatments contained 5% sucrose. Bioassays were held in the dark at room temperature and graded at 19 days. Control mortality was 9%. Assays delivering purified fractions utilized artificial ant diet mixed with the treatment (purified fraction or control solution) at a rate of 0.2 ml treatment/2.0 g diet in a plastic test tube. The final protein concentration of the purified fraction was less than 10 μ g/g diet. Ten ants per treatment, a water source, harborage and the treated diet were placed in sealed plastic containers and maintained in the dark at 27°C in a humidified incubator. Mortality was seen.

Activity against various lepidopteran larvae was tested as follows. Photorhabdus culture broth or purified fractions were applied directly to the surface (~1.5 cm²) of 0.25 ml of standard artificial diet in 30 μ l aliquots following dilution in control medium or 10 mM sodium phosphate buffer, pH 7.0, respectively. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate larva. European corn borer (Ostrinia nubilalis) and corn earworm (Helicoverpa zea) eggs were supplied from commercial sources and hatched inhouse, whereas beet armyworm (Spodoptera exigua), cabbage looper (Trichoplusia ni), tobacco budworm (Heliothis virescens), codling moth (Laspeyresia pomonella) and black cutworm (Agrotis ipsilon) larvae were supplied internally. Following infestation with larvae, the diet plates were sealed, placed in a humidified growth chamber and maintained in the dark at 27°C for the appropriate period. Mortality and weight determinations were scored at days 5-7 for Photorhabdus culture broth and days 4-7 for the purified fraction. Generally, 16 insects per treatment were used in all studies. Control mortality ranged from 4-12.5% for control medium and was less than 10% for phosphate buffer.

10

15

20

25

Table 3

Effect of Photorhabdus luminescens (strain W-14)

Culture Broth and Purified Toxin Fraction on Mortality and Growth

Inhibition of Different Insect Orders/Species

Insect Order/Species	Broth	Broth Purified Fract		Fraction
	% Mort.	% G.I.	% Mort.	% G.I.
COLEOPTERA				
Corn Rootworm				
Southern/neonate larva	100	na	100	na
Southern/2 nd instar	na	38.5	nt	nt
Southern/adult	45	nt	nt	nt
Western/2 nd instar	na	35	nt	nt
Colorado Potato				l
Beetle	93	nt	nt	nt
2 nd instar				
Turf Grub	na	a.f.	nt	nt
3 ^{id} instar	na	a.f.	nt	nt
adult				
DIPTERA				
Fruit Fly (adult	17	nt	nt	nt
emergence)	100	'na	nt	nt
Mosquito larvae				
HOMOPTERA				
Aster Leafhopper	96.5	na	100	na
HYMENOPTERA				
Argentine Ant	75	na	nt	na
Carpenter Ant	71	na	100	na
LEPIDOPTERA				
Beet Armyworm	12.5	36	18.75	41.4
Black Cutworm	nt	nt	0	71.2
Cabbage Looper	nt	nt	21.9	66.8
Codling Moth	nt	nt	6.25	45.9
Corn Earworm	56.3	94.2	97.9	na
European Corn Borer	96.7	98.4	100	na
Tobacco Budworm	13.5	52.5	19.4	85.6

Mort. = mortality, G.I. = growth inhibition, na = not applicable, nt = not tested, a.f. = anti-feedant

-31-

Example 3 Insecticide Utility Upon Soil Application

Photorhabdus luminescens (strain W-14) culture broth was shown to be active against corn rootworm when applied directly to soil or a soil-mix (Metromix*). Activity against neonate SCR and WCR in Metromix* was tested as follows (Table 4). The test was run using corn seedlings (United Agriseeds brand CL614) that were germinated in the light on moist filter paper for 6 days. After roots were approximately 3-6 cm long, a single kernel/seedling 10 was planted in a 591 ml clear plastic cup with 50 gm of dry Metromix*. Twenty neonate SCR or WCR were then placed directly on the roots of the seedling and covered with Metromix. Upon infestation, the seedlings were then drenched with 50 ml total volume of a diluted broth solution. After drenching, the cups 15 were sealed and left at room temperature in the light for 7 days. Afterwards, the seedlings were washed to remove all Metromix* and the roots were excised and weighed. Activity was rated as the percentage of corn root remaining relative to the control plants and as leaf damage induced by feeding. Leaf damage was scored 20 visually and rated as either -, +, ++, or +++, with representing no damage and +++ representing severe damage.

Activity against neonate SCR in soil was tested as follows (Table 5). The test was run using corn seedlings (United Agriseeds brand CL614) that were germinated in the light on moist filter paper for 6 days. After the roots were approximately 3-6 cm long, a single kernel/seedling was planted in a 591 ml clear plastic cup with 150 gm of soil from a field in Lebanon, IN planted the previous year with corn. This soil had not been previously treated with insecticides. Twenty neonate SCR were then placed directly on the roots of the seedling and covered with soil. After infestation, the seedlings were drenched with 50 ml total volume of a diluted broth solution. After drenching, the unsealed cups were incubated in a high relative humidity chamber (80%) at 78°F. Afterwards, the seedlings were washed to remove all soil and the roots were excised and weighed. Activity was rated as the percentage of corn root remaining relative to the control plants and as leaf damage induced by feeding. Leaf damage was scored visually and rated as either -, +, ++, or +++, with - representing no damage and +++ representing severe damage.

25

30

35

Table 4

Effect of Photorhabdus luminescens (Strain W-14) Culture

Broth on Rootworm Larvae After Post-Infestation Drenching
(Metromix*)

	Treatment	Larvae	Leaf Damage	Root Weight (g)	%
10	Southern Corn Roc	tworm		• • • • • • • • • • • • • • • • • • • •	
10	Water	-	_	0.4916 ± 0.023	100
	Medium $(2.0 \% \text{ V/V})$			0.4416 ± 0.029	100
	Broth (6.25%v/v)	_	_	0.4641 ± 0.081	100
	Water	+	+++	0.1410 ± 0.006	28.7
15	Media (2.0% v/v)	+	+++	0.1345 ± 0.028	30.4
	Broth (1.56% v/v)	+	-	0.4830 ± 0.031	104
	Western Corn Root	WOIM			
20	Water	_	-	0.4446 ± 0.019	100
	Broth (2.0% v/v)	-	_	0.4069 ± 0.026	100
	Water	+	_	0.2202 ± 0.015	49
25	Broth (2.0% v/v)	+	-	0.3879 ± 0.013	95

Table 5
Effect of Photorhabdus luminescens (strain W-14) Culture Broth on Southern Corn Rootworm Larvae After Post-Infestation Drenching (Soil)

	Treatment	Larvae	Leaf Damage	Root Weight(g)	%
	Water	_	_	0.2148 ± 0.014	100
35	Broth (50% v/v)	_	هند	0.2260 ± 0.016	103
	Water	+	+++	0.0916 ± 0.009	43
	Broth (50% v/v)	+	-	0.2428 ± 0.032	113

Activity of Photorhabdus luminescens (strain W-14) culture broth against second instar turf grubs in Metromix* was observed in tests conducted as follows (Table 6). Approximately 50 gm of dry Metromix* was added to a 591 ml clear plastic cup. The Metromix* was then drenched with 50 ml total volume of a 50% (v/v) diluted Photorhabdus broth solution. The dilution of crude broth was made with water, with 50% broth being prepared by adding 25 ml of crude broth to 25 ml of water for 50 ml total volume. A 1% (w/v) solution of proteose peptone #3 (PP3), which is a 50% dilution of the normal media concentration, was used as a broth control. After drenching, five second instar turf grubs were

placed on the op of the moistened Metrom Healthy turf grub larvae burrowed rapidly into the Metromix. Those larvae that did not burrow within 1h were removed and replaced with fresh larvae. The cups were sealed and placed in a 28°C incubator, in the dark. After seven days, larvae were removed from the Metromix and scored for mortality. Activity was rated the percentage of mortality relative to control.

Table 6

Effect of Photorhabdus luminescens (strain W-14) Culture Broth on Turf Grub After Pre-Infestation Drenching (Metromix*)

15	Treatment	Mortality*	Mortality %
13	Water	7/15	47
20	Control medium (1.0% w/v)	12/19	63
	Broth (50% v/v)	17/20	85

^{*}expressed as a ratio of dead/living larvae

Example 4 Insecticide Utility Upon Leaf Application

30 Activity of Photorhabdus broth against European corn borer was seen when the broth was applied directly to the surface of maize leaves (Table 7). In these assays Photorhabdus broth was diluted 100-fold with culture medium and applied manually to the surface of excised maize leaves at a rate of $\sim 6.0 \, \mu l/cm^2$ of leaf 35 surface. The leaves were air dried and cut into equal sized strips approximately 2 x 2 inches. The leaves were rolled, secured with paper clips and placed in 1 oz plastic shot glasses with 0.25 inch of 2% agar on the bottom surface to provide moisture. Twelve neonate European corn borers were then placed 40 onto the rolled leaf and the cup was sealed. After incubation for 5 days at 27°C in the dark, the samples were scored for feeding damage and recovered larvae.

Table 7

Effect of Photorhabdus luminescens (strain W-14) Culture Broth on European Corn Borer Larvae Following Pre-Infestation Application to Excised Maize Leaves

5

Treatment	L af Damage	Larvae Recovered	Weight (mg)
Water	Extensive	55/120	0.42 mg
Control Medium	Extensive	40/120	0.50 mg
Broth (1.0% v/v)	Trace	3/120	0.15 mg

10

15

20

25

Activity of the culture broth against neonate tobacco budworm (Heliothis virescens) was demonstrated using a leaf dip methodology. Fresh cotton leaves were excised from the plant and leaf disks were cut with an 18.5 mm cork-borer. The disks were individually emersed in control medium (PP3) or Photorhabdus luminescens (strain W-14) culture broth which had been concentrated approximately 10-fold using an Amicon (Beverly, MA), Proflux M12 tangential filtration system with a 10 kDa filter. Excess liquid was removed and a straightened paper clip was placed through the center of the disk. The paper clip was then wedged into a plastic, 1.0 oz shot glass containing approximately 2.0 ml of 1% Agar. This served to suspend the leaf disk above the agar. Following drying of the leaf disk, a single neonate tobacco budworm larva was placed on the disk and the cup was capped. The cups were then sealed in a plastic bag and placed in a darkened, 27°C incubator for 5 days. At this time the remaining larvae and leaf material were weighed to establish a measure of leaf damage (Table 8).

Table 8

Effect of *Photorhabdus luminescens* (Strain W-14) Culture Broth on Tobacco Budworm Neonates in a Cotton-Leaf Dip Assay

35	Treatment	Leaf Disk	Final Weights (mg) Larvae
	Control leaves	55.7 ± 1.3	na*
	Control Medium	34.0 ± 2.9	4.3 ± 0.91
	Photorhabdus broth	54.3 ± 1.4	0.0**

* - not applicable, ** - no live larvae found

Example 5, Part A Characterization of Toxin Peptide Components

In a subsequent analysis, the toxin protein subunits of the bands isolated as in Example 1 were resolved on a 7% SDS polyacrylamide electrophoresis gel with a ratio of 30:0.8 (acrylamide:BIS-acrylamide). This gel matrix facilitates better resolution of the larger proteins. The gel system used to estimate the Band 1 and Band 2 subunit molecular weights in Example 1 was an 18% gel with a ratio of 38:0.18 (acrylamide:BIS-acrylamide), which allowed for a broader range of size separation, but less resolution of higher molecular weight components.

In this analysis, 10, rather than 8, protein bands were resolved. Table 9 reports the calculated molecular weights of the 10 resolved bands, and directly compares the molecular weights estimated under these conditions to those of the prior example. It is not surprising that additional bands were detected under the different separation conditions used in this example. Variations between the prior and new estimates of molecular weight are also to be expected given the differences in analytical conditions. In the analysis of this example, it is thought that the higher molecular weight estimates are more accurate than in Example 1, as a result of improved resolution. However, these are estimates based on SDS PAGE analysis, which are typically not analytically precise and result in estimates of peptides and which may have been further altered due to post- and co-translational modifications.

Amino acid sequences were determined for the N-terminal portions of five of the 10 resolved peptides. Table 9 correlates the molecular weight of the proteins and the identified sequences. In SEQ ID NO:2, certain analyses suggest that the proline at residue 5 may be an asparagine (asn). In SEQ ID NO:3, certain analyses suggest that the amino acid residues at positions 13 and 14 are both arginine (arg). In SEQ ID NO:4, certain analyses suggest that the amino acid residue at position 6 may be either alanine (ala) or serine (ser). In SEQ ID NO:5, certain analyses suggest that the amino acid residue at position 3 may be aspartic acid (asp).

40

15

20

25

30

Table 9

	EXAMPLE 1 ESTIMATE	NEW ESTIMATE*	SEQ. LISTING
	208	200.2 kDa	SEQ ID NO:1
5	184	175.0 kDa	SEQ ID NO:2
	65.6	68.1 kDa	SEQ ID NO:3
	60.8	65.1 kDa	SEQ ID NO:4
	56.2	58.3 kDa	SEQ ID NO:5
	25.1	23.2 kDa	SEQ ID NO:15

*New estimates are based on SDS PAGE and are not based on gene sequences. SDS PAGE is not analytically precise.

Example 5, Part B

Characterization of Toxin Peptide Components

15

20

30

35

40

New N-terminal sequence, SEQ ID NO:15, Ala Gln Asp Gly Asn Gln Asp Thr Phe Phe Ser Gly Asn Thr, was obtained by further N-terminal sequencing of peptides isolated from Native HPLC-purified toxin as described in Example 5, Part A, above. This peptide comes from the tcaA gene. The peptide labeled TcaAii, starts at position 254 and goes to position 491, where the TcaAiii peptide starts, SEQ ID NO:4. The estimated size of the peptide based on the gene sequence is 25,240 Da.

25 <u>Example 6</u> Characterization of Toxin Peptide Components

In yet another analysis, the toxin protein complex was reisolated from the *Photorhabdus luminescens* growth medium (after culture without Tween) by performing a 10%-80% ammonium sulfate precipitation followed by an ion exchange chromatography step (Mono Q) and two molecular sizing chromatography steps. These conditions were like those used in Example 1. During the first molecular sizing step, a second biologically active peak was found at about 100 ± 10 kDa. Based upon protein measurements, this fraction was 20-50 fold less active than the larger, or primary, active peak of about 860 ± 100 kDa (native). During this isolation experiment, a smaller active peak of about 325 ± 50 kDa that retained a considerable portion of the starting biological activity was also resolved. It is thought that the 325 kDa peak is related to or derived from the 860 kDa peak.

A 56 kD rotein was resolved in this alysis. The N-terminal sequence of this protein is presented in SEQ ID NO:6. It is noteworthy that this protein shares significant identity and conservation with SEQ ID NO:5 at the N-terminus, suggesting that the two may be encoded by separate members of a gene family and that the proteins produced by each gene are sufficiently similar to both be operable in the insecticidal toxin complex.

A second, prominent 185 kDa protein was consistently present in amounts comparable to that of protein 3 from Table 9, and may be the same protein or protein fragment. The N-terminal sequence of this 185 kDa protein is shown at SEQ ID NO:7.

Additional N-terminal amino acid sequence data were also obtained from isolated proteins. None of the determined N-terminal sequences appear identical to a protein identified in Table 9. Other proteins were present in isolated preparation. One such protein has an estimated molecular weight of 108 kDa and an N-terminal sequence as shown in SEQ ID NO:8. A second such protein has an estimated molecular weight of 80 kDa and an N-terminal sequence as shown in SEQ ID NO:9.

when the protein material in the approximately 325 kDa active peak was analyzed by size, bands of approximately 51, 31, 28, and 22 kDa were observed. As in all cases in which a molecular weight was determined by analysis of electrophoretic mobility, these molecular weights were subject to error effects introduced by buffer ionic strength differences, electrophoresis power differences, and the like. One of ordinary skill would understand that definitive molecular weight values cannot be determined using these standard methods and that each was subject to variation. It was hypothesized that proteins of these sizes are degradation products of the larger protein species (of approximately 200 kDa size) that were observed in the larger primary toxin complex.

Finally, several preparations included a protein having the N-terminal sequence shown in SEQ ID NO:10. This sequence was strongly homologous to known chaperonin proteins, accessory proteins known to function in the assembly of large protein complexes. Although the applicants could not ascribe such an assembly function to the protein identified in SEQ ID NO:10, it was consistent with the existence of the described toxin protein complex that such a chaperonin protein could be involved in its

10

15

20

25

30

35

assembly. Moreover, although such proteins have not directly been suggested to have toxic activity, this protein may be important to determining the overall structural nature of the protein toxin, and thus, may contribute to the toxic activity or durability of the complex in vivo after oral delivery.

Subsequent analysis of the stability of the protein toxin complex to proteinase K was undertaken. It was determined that after 24 hour incubation of the complex in the presence of a 10fold molar excess of proteinase K, activity was virtually eliminated (mortality on oral application dropped to about 5%). These data confirm the proteinaceous nature of the toxin.

The toxic activity was also retained by a dialysis membrane, again confirming the large size of the native toxin complex.

15 Example 7

5

10

20

35

40

Isolation, Characterization and Partial Amino Acid Sequencing of Photorhabdus Toxins

Isolation and N-Terminal Amino Acid Sequencing: experiments conducted in parallel to Examples 5 and 6, ammonium sulfate precipitation of Photorhabdus proteins was performed by adjusting Photorhabdus broth, typically 2-3 liters, to a final concentration of either 10% or 20% by the slow addition of ammonium sulfate crystals. After stirring for 1 hour at 4°C, the 25 material was centrifuged at 12,000 x g for 30 minutes. The supernatant was adjusted to 80% ammonium sulfate, stirred at 4°C for 1 hour, and centrifuged at 12,000 x g for 60 minutes. pellet was resuspended in one-tenth the volume of 10 mM Na₂·PO₄, pH 7.0 and dialyzed against the same phosphate buffer overnight 30 at 4°C. The dialyzed material was centrifuged at 12,000 x g for 1 hour prior to ion exchange chromatography.

A HR 16/50 Q Sepharose (Pharmacia) anion exchange column was equilibrated with 10 mM Na₂•PO₄, pH 7.0. Centrifuged, dialyzed ammonium sulfate pellet was applied to the Q Sepharose column at a rate of 1.5 ml/min and washed extensively at 3.0 ml/min with equilibration buffer until the optical density (O.D. 280) reached less than 0.100. Next, either a 60 minute NaCl gradient ranging from 0 to 0.5 M at 3 ml/min, or a series of step elutions using 0.1 M, 0.4 M and finally 1.0 NaCl for 60 minutes each was applied to the column. Fractions were pooled and concentrated using a

Centriprep 1 Alternatively, proteins could be eluted by a single 0.4 M NaCl wash without prior elution with 0.1 M NaCl.

Two milliliter aliquots of concentrated Q Sepharose samples were loaded at 0.5 ml/min onto a HR 16/50 Superose 12 (Pharmacia) gel filtration column equilibrated with 10 mM Na₂•PO₄, pH 7.0. The column was washed with the same buffer for 240 min at 0.5 ml/min and 2 min samples were collected. The void volume material was collected and concentrated using a Centriprep 100. Two milliliter aliquots of concentrated Superose 12 samples were loaded at 0.5 ml/min onto a HR 16/50 Sepharose 4B-CL (Pharmacia) gel filtration column equilibrated with 10 mM Na₂•PO₄, pH 7.0. The column was washed with the same buffer for 240 min at 0.5 ml/min and 2 min samples were collected.

The excluded protein peak was subjected to a second fractionation by application to a gel filtration column that used 15 a Sepharose CL-4B resin, which separates proteins ranging from ~30 kDa to 1000 kDa. This fraction was resolved into two peaks; a minor peak at the void volume (>1000 kDa) and a major peak which eluted at an apparent molecular weight of about 860 kDa. Over a one week period subsequent samples subjected to gel 20 filtration showed the gradual appearance of a third peak (approximately 325 kDa) that seemed to arise from the major peak, perhaps by limited proteolysis. Bioassays performed on the three peaks showed that the void peak had no activity, while the 860 kDa toxin complex fraction was highly active, and the 325 kDa 25 peak was less active, although quite potent. SDS PAGE analysis of Sepharose CL-4B toxin complex peaks from different fermentation productions revealed two distinct peptide patterns, denoted "P" and "S". The two patterns had marked differences in the molecular weights and concentrations of peptide components in 30 their fractions. The "S" pattern, produced most frequently, had 4 high molecular weight peptides (> 150 kDa) while the "P" pattern had 3 high molecular weight peptides. In addition, the "S" peptide fraction was found to have 2-3 fold more activity against European Corn Borer. This shift may be related to 35 variations in protein expression due to age of inoculum and/or other factors based on growth parameters of aged cultures.

Milligram quantities of peak toxin complex fractions determined to be "P" or "S" peptide patterns were subjected to preparative SDS PAGE, and transblotted with TRIS-glycine

40

5

(Seprabuff™ to PVDF membranes (ProBlott™, Applied Biosystems) for 3-4 hours. Blots wer sent for amino acid analysis and Nterminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. Three peptides in the "S" pattern had unique N-terminal amino acid sequences compared to the sequences identified in the previous example. A 201 kDa (TcdAii) peptide set forth as SEQ ID NO:.13 below shared between 33% amino acid identity and 50% similarity with SEQ ID NO:1 (TcbAii) (Table 10, in Table 10 vertical lines denote amino acid identities and colons indicate conservative amino acid substitutions). A second peptide of 197 kDa, SEQ ID NO:14 (TcdB), had 42% identity and 58% homology with SEQ ID NO:2 (TcaC). Yet a third peptide of 205 kDa was denoted TcdAii. In addition, a limited N-terminal amino acid sequence, SEQ ID NO:16 (TcbA), of a peptide of at least 235 kDa was identical in homology with the amino acid sequence, SEQ ID NO:12, deduced from a cloned gene (tcbA), SEQ ID NO:11, containing a deduced amino acid sequence corresponding to SEQ ID NO:1 (TcbAii). This indicates that the larger 235+ kDa peptide was proteolytically processed to the 201 kDa peptide, (TcbAii), (SEQ ID NO:1) during fermentation, possibly resulting in activation of the molecule. In yet another sequence, the sequence originally reported as SEQ ID NO:5 (TcaBii) reported in Example 5 above, was found to contain an aspartic acid residue (Asp) at the third position rather than glycine (Gly) and two additional amino acids Gly and Asp at the eighth and ninth positions, respectively. In yet two other sequences, SEQ ID NO:2 (TcaC) and SEQ ID NO:3 (TcaB₁), additional amino acid sequence was obtained. Densitometric quantitation was performed using a sample that was identical to the "S" preparation sent for Nterminal analysis. This analysis showed that the 201 kDa and 197 kDa peptides represent 7.0% and 7.2%, respectively, of the total Coomassie brillant blue stained protein in the "S" pattern and are present in amounts similar to the other abundant peptides. It is speculated that these peptides may represent protein homologs, analogous to the situation found with other bacterial toxins, such as various CryI Bt toxins. These proteins vary from 40-90% homology at their N-terminal amino acid sequence, which

encompasses the toxic fragment.

10

15

20

25

30

Intern Amino Acid Sequencing: To litate cloning of toxin peptide genes, internal amino acid sequences of selected peptides were obtained as followed. Milligram quantities of peak 2A fractions determined to be "P" or "S" peptide patterns were 5 subjected to preparative SDS PAGE, and transblotted with TRISglycine (Seprabuff™ to PVDF membranes (ProBlott™, Applied Biosystems) for 3-4 hours. Blots were sent for amino acid analysis and N-terminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. Three peptides, 10 referred to as TcbAii (containing SEQ ID NO:1), TcdAii, and TcaBi (containing SEQ ID NO:3) were subjected to trypsin digestion by Harvard MicroChem followed by HPLC chromatography to separate individual peptides. N-terminal amino acid analysis was performed on selected tryptic peptide fragments. Two internal 15 peptides were sequenced for the peptide TcaB; (205 kDa peptide) referred to as TcaB_i-PT111 (SEQ ID NO:17) and TcaB_i-PT79 (SEQ ID NO:18). Two internal peptides were sequenced for the peptide TcaB; (68 kDa peptide) referred to as TcaB;-PT158 (SEQ ID NO:19) and TcaB:-PT108 (SEQ ID NO:20). Four internal peptides were 20 sequenced for the peptide TcbAii (201 kDa peptide) referred to as TCBAII-PT103 (SEQ ID NO:21), TcbAii-PT56 (SEQ ID NO:22), TcbAii-PT81(a) (SEQ ID NO:23), and TcbA_{ii}-PT81(b) (SEQ ID NO:24).

Table 10

N-Terminal Amino Acid Sequences

Example 8

40 Construction of a cosmid library of Photorhabdus luminescens W-14 genomic DNA and its screening to isolate genes encoding peptides comprising the toxic protein preparation

As a prerequisite for the production of *Photorhabdus* insect toxic proteins in heterologous hosts, and for other uses, it is n cessary to isolate and characterize the genes that encode those

peptides. Is objective was pursued in Irallel. One approach, described later, was based on the use of monoclonal and polyclonal antibodies raised against the purified toxin which were then used to isolate clones from an expression library. The other approach, described in this example, is based on the use of the N-terminal and internal amino acid sequence data to design degenerate oligonucleotides for use in PCR amplication. Either method can be used to identify DNA clones that contain the peptide-encoding genes so as to permit the isolation of the respective genes, and the determination of their DNA base sequence.

GENOMIC DNA ISOLATION: Photorhabdus luminescens strain W-14 (ATCC accession number 55397) was grown on 2% proteose peptone #3 15 agar (Difco Laboratories, Detroit, MI) and insecticidal toxin competence was maintained by repeated bioassay after passage, using the method described in Example 1 above. A 50 ml shake culture was produced in a 175 ml baffled flask in 2% proteose peptone #3 medium, grown at 28°C and 150 rpm for approximately 24 20 hours. 15 ml of this culture was pelleted and frozen in its medium at -20°C until it was thawed for DNA isolation. thawed culture was centrifuged, (700 x g, 30 min) and the floating orange mucopolysaccharide material was removed. The remaining cell material was centrifuged (25,000 x g, 15 min) to 25 pellet the bacterial cells, and the medium was removed and discarded.

Genomic DNA was isolated by an adaptation of the CTAB method described in section 2.4.1 of Current Protocols in Molecular Biology (Ausubel et al. eds, John Wiley & Sons, 1994) [modified to include a salt shock and with all volumes increased 10-fold]. The pelleted bacterial cells were resuspended in TE buffer (10 mM Tris-HC1, 1 mM EDTA, pH 8.0) to a final volume of 10 ml, then 12 ml of 5 M NaC1 was added; this mixture was centrifuged 20 min at 15,000 x g. The pellet was resuspended in 5.7 ml TE and 300 ml of 10% SDS and 60 ml of 20 mg/ml proteinase K (Gibco BRL Products, Grand Island, NY; in sterile distilled water) were added to the suspension. This mixture was incubated at 37°C for 1 hr; then approximately 10 mg lysozyme (Worthington Biochemical Corp., Freehold, NJ) was added. After an additional 45 min, 1 ml of 5 M NaC1 and 800 ml of CTAB/NaC1 solution (10% w/v CTAB, 0.7 M

10

30

35

then gently agreated and further incubated and agitated for approximately 20 min to assist clearing of the cellular material. An equal volume of chloroform/isoamyl alcohol solution (24:1, v/v) was added, mixed gently and centrifuged. After two extractions with an equal volume of PCI (phenol/chloroform/isoamyl alcohol; 50:49:1, v/v/v; equilibrated with 1 M Tris-HCl, pH 8.0; Intermountain Scientific Corporation, Kaysville, UT), the DNA was precipitated with 0.6 volume of isopropanol. The DNA precipitate was gently removed with a glass rod, washed twice with 70% ethanol, dried, and dissolved in 2 ml STE (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 1 mM EDTA). This preparation contained 2.5 mg/ml DNA, as determined by optical density at 260 nm (i.e., OD260).

The molecular size range of the isolated genomic DNA was evaluated for suitability for library construction. CHEF gel analysis was performed in 1.5% agarose (Seakem® LE. FMC BioProducts, Rockland, ME) gels with 0.5 X TBE buffer (44.5 mM Tris-HCl pH 8.0, 44.5 mM H₃BO₃, 1 mM EDTA) on a BioRad CHEF-DR II apparatus with a Pulsewave 760 Switcher (Bio-Rad Laboratories, Inc., Richmond, CA). The running parameters were: initial A time, 3 sec; final A time, 12 sec; 200 volts; running temperature, 4-18°C; run time, 16.5 hr. Ethidium bromide staining and examination of the gel under ultraviolet light indicated the DNA ranged from 30-250 kbp in size.

CONSTRUCTION OF LIBRARY: A partial Sau3A 1 digest was made of this Photorhabdus genomic DNA preparation. The method was based on section 3.1.3 of Ausubel (supra.). Adaptions included running smaller scale reactions under various conditions until nearly optimal results were achieved. Several scaled-up large reactions with varied conditions were run, the results analyzed on CHEF gels, and only the best large scale preparation was carried forward. In the optimal case, 200 µg of Photorhabdus genomic DNA was incubated with 1.5 units of Sau3A 1 (New England Biolabs, "NEB", Beverly, MA) for 15 min at 37°C in 2 ml total volume of 1X NEB 4 buffer (supplied as 10X by the manufacturer). The reaction was stopped by adding 2 ml of PCI and centrifuging at 8000 x g for 10 min. To the supernatant were added 200 µl of 5 M NaCl plus 6 ml of ice-cold ethanol. This preparation was

15

20

25

30

35

chilled 30 min at -20°C, then centil aged at 12,000 \times g for 15 min. The supernatant was removed and the precipitate was dried in a vacuum oven at 40°C, then resuspended in 400 μ 1 STE. Spectrophotometric assay indicated about 40% recovery of the

- 5 input DNA. The digested DNA was size fractionated on a sucrose gradient according to section 5.3.2 of CPMB (op. cit.). A 10% to 40% (w/v) linear sucrose gradient was prepared with a gradient maker in Ultra-ClearTM tubes (Beckman Instruments, Inc., Palo Alto, CA) and the DNA sample was layered on top. After
- 10 centrifugation, (26,000 rpm, 17 hr, Beckman SW41 rotor, 20°C), fractions (about 750 μ1) were drawn from the top of the gradient and analyzed by CHEF gel electrophoresis (as described earlier). Fractions containing Sau3A 1 fragments in the size range 20-40 kbp were selected and DNA was precipitated by a modification
- (amounts of all solutions increased approximately 6.3-fold) of the method in section 5.3.3 of Ausubel (supra.). After overnight precipitation, the DNA was collected by centrifugation (17,000 x g, 15 min), dried, redissolved in TE, pooled into a final volume of 80 μ l, and reprecipitated with the addition of 8 μ l 3 M sectium
- 20 acetate and 220 μl ethanol. The pellet collected by centrifugation as above was resuspended in 12 μl TE. Concentration of the DNA was determined by Hoechst 33258 dye (Polysciences, Inc., Warrington, PA) fluorometry in a Hoefer TKO100 fluorimeter (Hoefer Scientific Instruments, San Francisco,
- 25 CA). Approximately 2.5 μg of the size-fractionated DNA was recovered.

Thirty μg of cosmid pWE15 DNA (Stratagene, La Jolla, CA) was digested to completion with 100 units of restriction enzyme FamH 1 (NEB) in the manufacturer's buffer (final volume of 200 μl ,

- 30 37°C, 1 hr). The reaction was extracted with 100 μ l of FCI and DNA was precipitated from the aqueous phase by addition of 20 μ l 3M sodium acetate and 550 μ l -20°C absolute ethanol. After 30 min at -70°C, the DNA was collected by centrifugation (17,000 x g, 15 min), dried under vacuum, and dissolved in 180 μ l of 10 mM
- 35 Tris-HCl, pH 8.0. To this were added 20 μl of 10X CIP buffer.

 (100 mM Tris-HCl, pH 8.3; 10 mM ZnCl₂; 10 mM MgCl₂), and 1 μl

 (0.25 units) of 1:4 diluted calf intestinal alkaline phosphatase

(Boehringer heim Corporation, Indianapo IN). After 30 min at 37°C, the following additions were made: 2 μl 0.5 M EDTA, pH 3.0; 10 μl 10% SDS; 0.5 μl of 20 mg/ml proteinase K (as above), followed by incubation at 55°C for 30 min. Following 5 sequential extractions with 100 μl of PCI and 100 μl phenol (Intermountain Scientific Corporation, equilibrated with 1 M Tris-HCl, pH 8.0), the dephosphorylated DNA was precipitated by addition of 72 μl of 7.5 M ammonium acetate and 550 μl -20°C ethanol, incubation on ice for 30 min, and centrifugation as above. The pelleted DNA was washed once with 500 μl -20°C 70% ethanol, dried under vacuum, and dissolved in 20 μl of TE buffer.

Ligation of the size-fractionated Sau3A 1 fragments to the BamH 1-digested and phosphatased pWE15 vector was accomplished using T4 ligase (NEB) by a modification (i.e., use of premixed 10X ligation buffer supplied by the manufacturer) of the protocol in section 3.33 of Ausubel. Ligation was carried out overnight in a total volume of 20 μ l at 15°C, followed by storage at -20°C.

Four µl of the cosmid DNA ligation reaction, containing 20 about 1 µg of DNA, was packaged into bacteriophage lambda using a commercial packaging extract (Gigapack III Gold Packaging Extract, Stratagene), following the manufacturer's directions. The packaged preparation was stored at 4°C until use. The packaged cosmid preparation was used to infect Escherichia coli 25 XL1 Blue MR cells (Stratagene) according to the Gigapack III Gold protocols ("Titering the Cosmid Library"), as follows. XL1 Blue MR cells were grown in LB medium (g/L: Bacto-tryptone, 10; Bactoyeast extract, 5; Bacto-agar, 15; NaCl, 5; [Difco Laboratories, Detroit, MI]) containing 0.2% (w/v) maltose plus 10 mM MgSO4, at 30 37°C. After 5 hr growth, cells were pelleted at 700 x g (15 min) and resuspended in 6 ml of 10 mM MgSO4. The culture density was adjusted with 10 mM MgSO₄ to $OD_{600} = 0.5$. The packaged cosmid library was diluted 1:10 or 1:20 with sterile SM medium (0.1 M NaCl, 10 mM MgSO4 50 mM Tris-HCl pH 7.5, 0.01% w/v gelatin), and 35 25 μl of the diluted preparation was mixed with 25 μl of the diluted XL1 Blue MR cells. The mixture was incubated at 25°C for 30 min (without shaking), then 200 µl of LB broth was added, and incubation was continued for approximately 1 hr with occasional

gentle shaking. Aliquots (20-40 µl) of this culture were spread on LB agar plates containing 100 mg/l ampicillin (i.e., LB-Am $p_{1,\alpha}$) and incubated overnight at 37°C. To store the library without amplification, single colonies were picked and inoculated into individual wells of sterile 96-well microwell plates; each well containing 75 µl of Terrific Broth (TB media: 12 g/l Bactotryptone, 24 g/l Bacto-yeast extract, 0.4% v/v glycerol, 17 mM KH_2PO_4 , 72 mM K_2HPO_4) plus 100 mg/l ampicillin (i.e., $TB-Amp_{122}$) and incubated (without shaking) overnight at 37°C. After replicating 10 the 96-well plate into a copy plate, 75 μ l/well of filtersterilized TB:glycerol (1:1, v/v; with, or without, 100 mg/l ampicillin) was added to the plate, it was shaken briefly at 100 rpm, 37°C, and then closed with Parafilm (American National Can, Greenwich, CT) and placed in a -70°C freezer for storage. Copy plates were grown and processed identically to the master plates. 15 A total of 40 such master plates (and their copies) were prepared.

SCREENING OF THE LIBRARY WITH RADIOLABELED DNA PROBES: TO 20 prepare colony filters for probing with radioactively labeled probes, ten 96-well plates of the library were thawed at 25°C (bench top at room temperature). A replica plating tool with 95 prongs was used to inoculate a fresh 96-well copy plate containing 75 µl/well of TB-Amp₁₀₀. The copy plate was grown 25 overnight (stationary) at 37°C, then shaken about 30 min at 100 rpm at 37°C. A total of 800 colonies was represented in these copy plates, due to nongrowth of some isolates. The replica tool was used to inoculate duplicate impressions of the 96-well arrays onto Magna NT (MSI, Westboro, MA) nylon membranes (0.45 micron, 30 220 x 250 mm) which had been placed on solid LB-Amp₁₀₀ (100 ml/dish) in Bio-assay plastic dishes (Nunc, 243 x 243 x 18 mm; Curtin Mathison Scientific, Inc., Wood Dale, IL). The colonies were grown on the membranes at 37°C for about 3 hr.

A positive control colony (a bacterial clone containing a GZ4 sequence insert, see below) was grown on a separate Magna NT membrane (Nunc, 0.45 micron, 82 mm circle) on LB medium supplemented with 35 mg/l chloramphenicol (i.e., LB-Cam₁₅), and processed alongside the library colony membranes. Bacterial colonies on the membranes were lysed, and th DNA was denatured

and neutrali according to a protocol ta from the Genius™ System User's Guide version 2.0 (Boehringer Mannheim. Indianapolis, IN). Membranes were placed colony side up on filter paper soaked with 0.5 N NaOH plus 1.5 M NaCl for 15 min to denature, and neutralized on filter paper soaked with 1 M Tris-5 HCl pH 8.0, 1.5 M NaCl for 15 min. After UV-crosslinking using a Stratagene UV Stratalinker set on auto crosslink, the membranes were stored dry at 25°C until use. Membranes were trimmed into strips containing the duplicate impressions of a single 96-well 10 plate, then washed extensively by the method of section 6.4.1 in CPMB (op. cit.): 3 hr at 25°C in 3X SSC, 0.1% (w/v) SDS, followed by 1 hr at 65°C in the same solution, then rinsed in 2X SSC in preparation for the hybridization step (20X SSC = 3 M NaCl, 0.3 M sodium citrate, pH 7.0).

15

Amplification of a specific genomic fragment of a tcaC mene. Based on the N-terminal amino acid sequence determined for the purified TcaC peptide fraction [disclosed herein as SEQ ID NO:2], a pool of degenerate oligonucleotides (pool S4Psh) was

20 synthesized by standard β-cyanoethyl chemistry on an Applied BioSystem ABI394 DNA/RNA Synthesizer (Perkin Elmer, Foster City, CA). The oligonucleotides were deprotected 8 hours at 55°C, dissolved in water, quantitated by spectrophotometric measurement, and diluted for use. This pool corresponds to the determined N-terminal amino acid segmence of the mass partitle.

determined N-terminal amino acid sequence of the TcaC peptide.

The determined amino acid sequence and the corresponding degenerate DNA sequence are given below, where A, C, G, and T are the standard DNA bases, and I represents inosine:

Amino Met Gln Asp Ser Pro Glu Val 30 Acid

S4Psh 5' ATG CA(A/G) GA(T/C) (T/A)(C/G)(T/A) CCI GA(A/G) GT 3'

Another set of degenerate oligonucleotides was synthesized (pool P2.3.5R), representing the complement of the coding strand for the determined amino acid sequence of the SEQ ID NO:17:

Amino

Acid Ala Phe Asn Ile Asp Asp Val

40 Codons 5' GCN TT(T/C) AA(T/C) AT(A/T/C) GA(T/C) GA(T/C) GT 3' P2.3.5R 3'CG(A/C/G/T) AA(A/G) TT(A/G) TA(T/A/G) CT(A/G) CT(A/G) CA 5'

These oligonucleotides were used as primers in Polymerase Chain Reactions (PCR*, Roche Molecular Systems, Branchburg, NJ) to

amplify a ecitic DNA tragment from ge c DNA prepared from Photorhabdus strain W-14 (see above). A typical reaction (50 ul) contained 125 pmol of each primer pool P2Psh and P2.3.5R, 253 ng of genomic template DNA, 10 nmol each of dATP, dCTP, dGTP, and dTTP, 1X GeneAmp PCR buffer, and 2.5 units of AmpliTag DNA polymerase (both from Roche Molecular Systems; 10X GeneAmp* buffer is 100 mM Tris-HCl pH 8.3, 500 mM KCl, 0.01% w/v gelatin) Amplifications were performed in a Perkin Elmer Cetus DNA Thermal Cycler (Perkin Elmer, Foster City, CA) using 35 cycles of 94°C 10 (1.0 min), 55°C (2.0 min), 72°C (3.0 min), followed by an extension period of 7.0 min at 72°C. Amplification products were analyzed by electrophoresis through 2% w/v NuSieve 3:1 agarose (FMC BioProducts) in TEA buffer (40 mm Tris-acetate, 2 mm EDTA, pH 8.0). A specific product of estimated size 250 bp was 15 observed amongst numerous other amplification products by ethidium bromide (0.5 μ g/ml) staining of the gel and examination under ultraviolet light.

The region of the gel containing an approximately 250 bp product was excised, and a small plug (0.5 mm dia.) was removed and used to supply template for PCR amplification (40 cycles). The reaction (50 µl) contained the same components as above, minus genomic template DNA. Following amplification, the ends of the fragments were made blunt and were phosphorylated by incubation at 25°C for 20 min with 1 unit of T4 DNA polymerase (NEB), 1 nmol ATP, and 2.15 units of T4 kinase (Pharmacia Biotech Inc., Piscataway, NJ).

DNA fragments were separated from residual primers by electrophoresis through 1% w/v GTG³ agarose (FMC) in TEA. A gel slice containing fragments of apparent size 250 bp was excised, and the DNA was extracted using a Qiaex kit (Qiagen Inc., Chatsworth, CA).

The extracted DNA fragments were ligated to plasmid vector pBC KS(+) (Stratagene) that had been digested to completion with restriction enzyme Sma 1 and extracted in a manner similar to that described for pWE15 DNA above. A typical ligation reaction (16.3 µl) contained 100 ng of digested pBC KS(+) DNA, 70 ng of 250 bp fragment DNA, 1 nmol [Co(NH₁)₆]Cl₁, and 3.9 Weiss units of T4 DNA ligase (Collaborative Biomedical Products, Bedford, MA), in 1X ligation buffer (50 mM Tris-HCl, pH 7.4; 10 mM MgCl₁; 10 mM

20

25

30

dithiothreitol; 1 mM spermidine, 1 mM ATP, 100 mg/ml bovine serum albumin). Following overnight incubation at 14°C, the ligated products were transformed into frozen, competent Escherichia wii DH5 α cells (Gibco BRL) according to the suppliers

5 recommendations, and plated on LB-Cam₃₅ plates, containing IPT⁽³⁾
(119 μg/ml) and X-gal (50 μg/ml). Independent white colonies
were picked, and plasmid DNA was prepared by a modified alkalinelysis/PEG precipitation method (PRISMTM Ready Reaction DyeDeoxyTM
Terminator Cycle Sequencing Kit Protocols; ABI/Perkin Elmer).

The nucleotide sequence of both strands of the insert DNA was determined, using T7 primers [pBC KS(+) bases 601-623:

TAAAACGACGGCCAGTGAGCGCG) and LacZ primers [pBC KS(+) bases 792-816: ATGACCATGATTACGCCAAGCGCGC) and protocols supplied with the PRISM™ sequencing kit (ABI/Perkin Elmer). Nonincorporated dyelerminator dideoxyribonucleotides were removed by passage through Centri-Sep 100 columns (Princeton Separations, Inc., Adelphia, NJ) according to the manufacturer's instructions. The DNA sequence was obtained by analysis of the samples on an ABI Model 373A DNA Sequencer (ABI/Perkin Elmer). The DNA sequences of two isolates, GZ4 and HB14, were found to be as illustrated in Figure

This sequence illustrates the following features: 1) bases 1-20 represent one of the 64 possible sequences of the S4Psh degenerate oligonucleotides, ii) the sequence of amino acids 1-3 and 6-12 correspond exactly to that determined for the N-terminus of TcaC (disclosed as SEQ ID NO:2), iii) the fourth amino acid encoded is a cysteine residue rather than serine. This difference is encoded within the degeneracy for the serine codons (see above), iv) the fifth amino acid encoded is proline, corresponding to the TcaC N-terminal sequence given as SEQ ID

NO:2, v) bases 257-276 encode one of the 192 possible sequences designed into the degenerate pool, vi) the TGA termination codon introduced at bases 268-270 is the result of complementarity to the degeneracy built into the oligonucleotide pool at the corresponding position, and does not indicate a shortened reading frame for the corresponding gene.

Labeling of a TcaC peptide gene-specific probe. DNA fragments corresponding to the above 276 bases were amplified (35)

-50-

SUBSTITUTE SHEET (RULE 26)

1.

25

30

PCT/US96/18003 WO 97/17432

cycles; CR° in a 100 µl reaction vol 2, using 100 pmol each of P2Psh and P2.3.5R primers, 10 ng of plasmids GZ4 or HB14 as templates, 20 nmol each of dATP, dCTP, dGTP, and dTTP, 5 units of AmpliTAq DNA polymerase, and 1% concentration of GeneAmp buffer, under the same temperature regimes as described above. The amplification products were extracted from a 1% GTG* agarose gel by Qiaex kit and quantitated by fluorometry.

The extracted amplification products from plasmid HB14 template (approximately 400 ng) were split into five aliquots and labeled with "P-dCTP using the High Prime Labeling Mix (Boehringer Mannheim) according to the manufacturer's instructions. Nonincorporated radioisotope was removed by passage through NucTrap Probe Purification Columns (Stratagene), according to the supplier's instructions. The specific activity 15 of the labeled DNA product was determined by scintillation counting to be $3.11 \times 10^8 \text{ dpm/\mug}$. This labeled DNA was used to probe membranes prepared from 800 members of the genomic library.

Screening with a TcaC-peptide gene specific probe. 20 radiolabeled HB14 probe was boiled approximately 10 min, then added to "minimal hyb" solution. [Note: The "minimal hyb" method is taken from a CERES protocol; "Restriction Fragment Length Polymorphism Laboratory Manual version 4.0", sections 4-40 and 4-47; CERES/NPI, Salt Lake City, UT. NPI is now defunct, with its 25 successors operating as Linkage Genetics]. "Minimal hyb" solution contains 10% w/v PEG (polyethylene glycol, M.W. approx. 8000), 7% w/v SDS; 0.6X SSC, 10 mM sodium phosphate buffer (from a 1M stock containing 95 g/l NaH₂PO₄•1H₂O and 84.5 g/l Na₂HPO₄•7H₂O), 5 mM EDTA, and 100 mg/ml denatured salmon sperm 30 DNA. Membranes were blotted dry briefly then, without prehybridization, 5 strips of membrane were placed in each of 2 plastic boxes containing 75 ml of "minimal hyb" and 2.6 ng/ml of radiolabeled HB14 probe. These were incubated overnight with slow shaking (50 rpm) at 60°C. The filters were washed three times for approximately 10 min each at 25°C in "minimal hyb wash 35 solution* (0.25% SSC, 0.2% SDS), followed by two 30-min washes with slow shaking at 60°C in the same solution. The filters were placed on paper covered with Saran Wrap' (Dow Brands, Indianapolis, IN) in a light-tight autoradiographic cassette and exposed to X-Omat X-ray film (Kodak, Rochester, NY) with two 40

DuPont Crob. Lightning-Plus C1 enhancers ligma Chemical Co., St. Louis, MO), for 4 hr at -70°C. Upon development (standard photographic procedures), significant signals were evident in both replicates amongst a high background of weaker, more irregular signals. The filters were again washed for about 4 hr at 68°C in "minimal hyb wash solution" and then placed again in the cassettes and film was exposed overnight at -70°C. Twelve possible positives were identified due to strong signals on both of the duplicate 96-well colony impressions. No signal was seen with negative control membranes (colonies of XLl Blue MR cells containing pWE15), and a very strong signal was seen with positive control membranes (DH5α cells containing the GZ4 isolate of the PCR product) that had been processed concurrently with the experimental samples.

The twelve putative hybridization-positive colonies were retrieved from the frozen 96-well library plates and grown overnight at 37°C on solid LB-Amp₁₀₀ medium. They were then patched (3/plate, plus three negative controls: XL1 Blue MR cells containing the pWE15 vector) onto solid LB-Amp₁₀₀. Two sets of membranes (Magna NT nylon, 0.45 micron) were prepared for hybridization. The first set was prepared by placing a filter directly onto the colonies on a patch plate, then removing it with adherent bacterial cells, and processing as below. Filters of the second set were placed on plates containing LB-Amp₁₀₀ medium, then inoculated by transferring cells from the patch plates onto the filters. After overnight growth at 37°C, the filters were removed from the plates and processed.

Bacterial cells on the filters were lysed and DNA denatured by placing each filter colony-side-up on a pool (1.0 ml) of 0.5 N NaOH in a plastic plate for 3 min. The filters were blotted dry on a paper towel, then the process was repeated with fresh 0.5 N NaOH. After blotting dry, the filters were neutralized by placing each on a 1.0 ml pool of 1 M Tris-HCl, pH 7.5 for 3 min, blotted dry, and reneutralized with fresh buffer. This was followed by two similar soakings (5 min each) on pools of 0.5 M Tris-HCl pH 7.5 plus 1.5 M NaCl. After blotting dry, the DNA was UV crosslinked to the filter (as above), and the filters were washed (25°C, 100 rpm) in about 100 ml of 3X SSC plus 0.1%(w/v) SDS (4 times, 30 min each with fresh solution for each wash). They were then placed in a minimal volume of prehybridization

10

15

20

25

30

35

solution SSC plus 1% w/v each of Fi 400 (Pharmacia), polyvinylpyrrolidone (av. M.W. 360,000; Sigma) and bovine serum albumin Fraction V; (Sigma)) for 2 hr at 65°C, 50 rpm. The prehybridization solution was removed, and replaced with the HB14 ³²P-labeled probe that had been saved from the previous hybridization of the library membranes and which had been denatured at 95°C for 5 min. Hybridization was performed at 60°C for 16 hr with shaking at 50 rpm.

Following removal of the labeled probe solution, the

membranes were washed 3 times at 25°C (50 rpm, 15 min) in 3X SSC
(about 150 ml each wash). They were then washed for 3 hr at 68°C
(50 rpm) in 0.25X SSC plus 0.2% SDS (minimal hyb wash solution),
and exposed to X-ray film as described above for 1.5 hr at 25°C
(no enhancer screens). This exposure revealed very strong
hybridization signals to cosmid isolates 22G12, 25A10, 26A5, and
26B10, and a very weak signal with cosmid isolate 8B10. No
signal was seen with the negative control (pWE15) colonies, and a
very strong signal was seen with positive control membranes (DH5α
cells containing the GZ4 isolate of the PCR product) that had
been processed concurrently with the experimental samples.

Amplification of a specific genomic fragment of a tcaB gene. Based on the N-terminal amino acid sequence determined for the purified TcaB, peptide fraction (disclosed here as SEQ ID NO:3) a pool of degenerate oligonucleotides (pool P8F) was synthesized as described for peptide TcaC. The determined amino acid sequence and the corresponding degenerate DNA sequence are given below, where A. C. G. and T are the standard DNA bases, and I represents inosine:

30

35

40

25

Amino Acid Leu Phe Thr Gln Thr Leu Lys Glu Ala Arg

P8F 5' TTT ACI CA(A/G) ACI (C/T)TI AAA GAA GCI (A/C)G 3'

Another set of degenerate oligonucleotides was synthesized (pool P8.108.3R), representing the complement of the coding strand for the determined amino acid sequence of the $TcaB_i$ -PT108 internal peptide (disclosed herein as SEQ ID NO:20):

Amino Acid Met Tyr Tyr Ile Gln Ala Gln Gln

Codons ATG TA(T/C) TA(T/C) AT(T/C/A) CA(A/G) GC($\overline{A/C}/G/T$) CA(A/G) CA(A/G) PR(104.3R 3' AT(A/G) AT(A/G) TA(A/G/T) GT(T/C) CGI GT(T/C) GT 5' TAC

5

10

These oligonucleotides were used as primers for PCR* using HotStart 50 TubesTM (Molecular Bio-Products, Inc., San Diego, CA) to amplify a specific DNA fragment from genomic DNA prepared from *Photorhabdus* strain W-14 (see above). A typical reaction (50 µl) contained (bottom layer) 25 pmol of each primer pool P8F and P8.108.3R, with 2 nmol each of dATP, dCTP, dGTP, and dTTP, in 1% GeneAmp* PCR buffer, and (top layer) 230 ng of genomic template DNA, 8 nmol each of dATP, dCTP, dGTP, and dTTP, and 2.5 units of AmpliTag* DNA polymerase, in 1% GeneAmp* PCR buffer.

- 15 Amplifications were performed by 35 cycles as described for the TcaC peptide. Amplification products were analyzed by electrophoresis through 0.7% w/v SeaKem LE agarose (FMC) in TEA buffer. A specific product of estimated size 1600 bp was observed.
- Four such reactions were pooled, and the amplified DNA was extracted from a 1.0% SeaKem® LE gel by Qiaex kit as described for the TcaC peptide. The extracted DNA was used directly as the template for sequence determination (PRISM® Sequencing Kit) using, the P8F and P8.108.3R primer pools. Each reaction contained about 100 ng template DNA and 25 pmol of one primer pool, and was processed according to standard protocols as described for the TcaC peptide. An analysis of the sequence derived from extension of the P8F primers revealed the short DNA sequence (and encoded amino acid sequence):

30 GAT GCA TTG NTT GCT

Asp Ala Leu (Val) Ala

which corresponds to a portion of the N-terminal peptide sequence disclosed as SEQ ID NO:3 (TcaBi).

35 Labeling of a TcaBi-peptide gene-specific probe.

Approximately 50 ng of gel-purified TcaBi DNA fragment was labeled with $^{32}\text{P-dCTP}$ as described above, and nonincorporated radioisotopes were removed by passage through a NICK Column (Pharmacia). The specific activity of the labelled DNA was determined to be 6 x 10° dpm/ μ g. This labeled DNA was used to

probe come. y membranes prepared from members of the genomic library that had hybridized to the TcaC-peptide specific probe.

The membranes containing the 12 colonies identified in the TcaC-probe library screen (see above) were stripped of radioactive TcaC-specific label by boiling twice for approximately 30 min each time in 1 liter of 0.1X SSC plus 0.1 % SDS. Removal of radiolabel was checked with a 6 hr film exposure. The stripped membranes were then incubated with the TcaBi peptide-specific probe prepared above. The labeled DNA was denatured by boiling for 10 min, and then added to the filters 10 that had been incubated for 1 hr in 100 ml of "minimal hyb" solution at 60°C. After overnight hybridization at this temperature, the probe solution was removed, and the filters were washed as follows (all in 0.3% SSC plus 0.1% SDS): once for 5 min 15 at 25°C, once for 1 hr at 60°C in fresh solution, and once for 1 hr at 63°C in fresh solution. After 1.5 hr exposure to X-ray film by standard procedures, 4 strongly-hybridizing colonies were observed. These were, as with the TcaC-specific probe, isolates 22G12, 25A10, 26A5, and 26B10.

The same TcaBiprobe solution was diluted with an equal volume (about 100 ml) of "minimal hyb" solution, and then used to screen the membranes containing the 800 members of the genomic library. After hybridization, washing, and exposure to X-ray film as described above, only the four cosmid clones 22G12, 25A10, 26A5, and 26B10, were found to hybridize strongly to this probe.

ISOLATION OF SUBCLONES CONTAINING GENES ENCODING TeaC AND TeaBi PEPTIDES, AND DETERMINATION OF DNA BASE SEQUENCE THEREOF: Three hybridization-positive cosmids in strain XL1 Blue MR were grown with shaking overnight (200 rpm) at 30°C in 100 ml TB-Amp₁₂₀. After harvesting the cells by centrifugation, cosmid DNA was prepared using a commercially available kit (BIGprepTM, 5 Prime 3 Prime, Inc., Boulder, CO), following the manufacturer's protocols. Only one cosmid, 26A5, was successfully isolated by this procedure. When digested with restriction enzyme EcoR 1 (NEB) and analyzed by gel electrophoresis, fragments of approximate sizes 14, 10, 8 (vector), 5, 3.3, 2.9, and 1.5 kbp were detected. A second attempt to isolate cosmid DNA from the same three strains (8 ml cultures; TB-Amp₁₀₀, 30°C) utilized a

30

35

resiling mini method (Evans G. and G. Wa 1987, "Cosmid vectors for genomic walking and rapid restriction mapping." in Guide to Molecular Cloning Techniques. Meth. Enzymology, vol. 152, S. Berger and A. Kimmel, eds., pgs. 604-610). Only one cosmid, 25A10, was successfully isolated by this method. When digested with restriction enzyme EcoR 1 (NEB) and analyzed by gel electrophoresis, this cosmid showed a fragmentation pattern identical to that previously seen with cosmid 26A5.

A 0.15 μ g sample of 26A5 cosmid DNA was used to transform 50 10 ml of E. coli DH5 α cells (Gibco BRL), by the supplier's protocols. A single colony isolate of that strain was inoculated into 4 ml of TB-Amp₁₀₀, and grown for 8 hr at 37°C. Chloramphenicol was added to a final concentration of 225 µg/ml, incubation was continued for another 24 hr, then cells were harvested by centrifugation and frozen at -20°C. Isolation of 15 the 26A5 cosmid DNA was by a standard alkaline lysis miniprep (Maniatis et al., op. cit., p. 382), modified by increasing all volumes by 50% and with stirring or gentle mixing, rather than vortexing, at every step. After washing the DNA pellet in 70% 20 ethanol, it was dissolved in TE containing 25 µg/ml ribonuclease A (Boehringer Mannheim).

Identification of EcoR 1 fragments hybridizing to GZ4derived and TcaBi - probes. Approximately 0.4 µg of cosmid 25Al0 25 (from XL1 Blue MR cells) and about 0.5 µg of cosmid 26A5 (from chloramphenicol-amplified DH5 α cells) were each digested with about 15 units of EcoR 1 (NEB) for 85 min, frozen overnight, then heated at 65°C for five min, and electrophoresed in a 0.7% agarose gel (Seakem LE, 1X TEA, 80 volts, 90 min). The DNA was 30 stained with ethidium bromide as described above, and photographed under ultraviolet light. The EcoR l digest of cosmid 25A10 was a complete digestion, but the sample of cosmid 26A5 was only partially digested under these conditions. The agarose gel containing the DNA fragments was subjected to depurination, denaturation and neutralization, followed by 35 Southern blotting onto a Magna NT nylon membrane, using a high salt (20X SSC) protocol, all as described in section 2.9 of Ausubel et al. (CPMB, op. cit.). The transferred DNA was then UV-crosslinked to the nylon membrane as before.

An TcaC-peptide specific DNA fragment corresponding to the insert of plasmid isolate GZ4 was amplified by PCR $^{\circ}$ in a 100 ml reaction volume as described previously above. The amplification products from three such reactions were pooled and were extracted from a 1% GTG $^{\circ}$ agarose gel by Qiaex kit, as described above, and quantitated by fluorometry. The gel-purified DNA (100 ng) was labeled with 12 P-dCTP using the High Prime Labeling Mix (Boehringer Mannheim) as described above, to a specific activity of 6.34 x $^{\circ}$ dpm/µg.

The ¹²P-labeled GZ4 probe was boiled 10 min, then added to "minimal hyb" buffer (at 1 ng/ml), and the Southern blot membrane containing the digested cosmid DNA fragments was added, and incubated for 4 hr at 60°C with gentle shaking at 50 rpm. The membrane was then washed 3 times at 25°C for about 5 min each (minimal hyb wash solution), followed by two washes for 10 min each at 60°C. The blot was exposed to film (with enhancer screens) for about 30 min at -70°C. The GZ4 probe hybridized strongly to the 5.0 kbp (apparent size) EcoR 1 fragment of both these two cosmids, 26A5 and 25A10.

The membrane was stripped of radioactivity by boiling for about 30 min in 0.1X SSC plus 0.1 % SDS, and absence of radiolabel was checked by exposure to film. It was then hybridized at 60°C for 3.5 hours with the (denatured) TcaBi probe in "minimal hyb" buffer previously used for screening the colony membranes (above), washed as described previously, and exposed to film for 40 min at -70°C with two enhancer screens. With both cosmids, the TcaBi probe hybridized lightly with the about 5.0 kbp EcoR 1 fragment, and strongly with a fragment of approximately 2.9 kbp.

The sample of cosmid 26A5 DNA previously described, (from DH5 α cells) was used as the source of DNA from which to subclone the bands of interest. This DNA (2.5 μ g) was digested with about 3 units of EcoR 1 (NEB) in a total volume of 30 μ l for 1.5 hr, to give a partial digest, as confirmed by gel electrophoresis. Ten μ g of pBC KS (+) DNA (Stratagene) were digested for 1.5 hr with 20 units of EcoR 1 in a total volume of 20 μ l, leading to total digestion as confirmed by electrophoresis. Both EcoR 1-cut DNA preparations were diluted to 50 μ l with water, to each an equal volume of PCI was added, the suspension was gently mixed, spun in

30

a microcentr — e and the aqueous supernata — was collected. THA was precipitated by 150 μ l ethanol, and the mixture was placed at -20°C overnight. Following centrifugation and drying, the EcoR l-digested pBC KS (+) was dissolved in 100 μ l TE; the partially digested 26A5 was dissolved in 20 μ l TE. DNA recovery was checked by fluorometry.

In separate reactions, approximately 60 ng of EcoR 1-digested pBC KS(+) DNA was ligated with approximately 180 ng or 270 ng of partially digested cosmid 26A5 DNA. Ligations were carried out in a volume of 20 µl at 15°C for 5 hr, using T4 ligase and buffer from New England BioLabs. The ligation mixture, diluted to 100 µl with sterile TE, was used to transform frozen, competent DH5 α cells (Gibco BRL) according to the supplier's instructions. Varying amounts (25-200 µl) of the transformed cells were plated on freshly prepared solid LB-Camis medium with 1 mM IPTG and 50 mg/l X-gal. Plates were incubated at 37°C about 20 hr, then chilled in the dark for approximately 3 hr to intensify color for insert selection. White colonies were picked onto patch plates of the same composition and incubated overnight at 37°C.

Two colony lifts of each of the selected patch plates were prepared as follows. After picking white colonies to fresh plates, round Magna NT nylon membranes were pressed onto the patch plates, the membrane was lifted off, and subjected to denaturation, neutralization and UV crosslinking as described above for the library colony membranes. The crosslinked colony lifts were vigorously washed, including gently wiping off the excess cell debris with a tissue. One set was hybridized with the GZ4(TcaC) probe solution described earlier, and the other set was hybridized with the TcaBi probe solution described earlier, according to the 'minimal hyb' protocol, followed by washing and film exposure as described for the library colony membranes.

Colonies showing hybridization signals either only with the GZ4 probe, with both GZ4 and TcaB₁ probes, or only with the TcaB₁ probe, were selected for further work and cells were streaked for single colony isolation onto LB-Cam₁₅ media with IPTG and X-gal as before. Approximately 35 single colonies, from 16 different isolates, were picked into liquid LB-Cam₁₅ media and grown

10

15

20

25

30

overnigh: 37°C; the cells were collected by centrifugation and plasmid DNA was isolated by a standard alkaline lysis miniprep according to Maniatis et al. (op. cit. p. 368). DNA pellets were dissolved in TE + 25 μg/ml ribonuclease A and DNA concentration was determined by fluorometry. The EcoR l digestion pattern was analyzed by gel electrophoresis. The following isolates were picked as useful. Isolate A17.2 contains religated pBC KS(+) only and was used for a (negative) control. Isolates D38.3 and C44.1 each contain only the 2.9 kbp, TcaBi -hybridizing EcoR 1 fragment inserted into pBC KS(+). These plasmids, named pDAB2000 and pDAB2001, respectively, are illustrated in Fig. 2.

Isolate A35.3 contains only the approximately 5 kbp, GZ4)-hybridizing EcoR 1 fragment, inserted into pBC KS(+). This plasmid was named pDAB2002 (also Fig. 2). These isolates provided templates for DNA sequencing.

Plasmids pDAB2000 and pDAB2001 were prepared using the BIGprepTM kit as before. Cultures (30 ml) were grown overnight in TB-Cam₃₅ to an OD₆₀₀ of 2, then plasmid was isolated according to the manufacturer's directions. DNA pellets were redissolved in 100 μ l TE each, and sample integrity was checked by EcoR 1 digestion and gel electrophoretic analysis.

Sequencing reactions were run in duplicate, with one replicate using as template pDAB2000 DNA, and the other replicate using as template pDAB2001 DNA. The reactions were carried out using the dideoxy dye terminator cycle sequencing method, as described above for the sequencing of the GZ4/HB14 DNAs. Initial sequencing runs utilized as primers the LacZ and T7 primers described above, plus primers based on the determined sequence of the $TcaB_i$ PCR amplification product (TH1 =

30 ATTGCAGACTGCCAATCGCTTCGG, TH12 = GAGAGTATCCAGACCGCGGATGATCTG).

After alignment and editing of each sequencing output, each was truncated to between 250 to 350 bases, depending on the integrity of the chromatographic data as interpreted by the Perkin Elmer Applied Biosystems Division SeqEd 675 software. Subsequent sequencing "steps" were made by selecting appropriate

Subsequent sequencing "steps" were made by selecting appropriate sequence for new primers. With a few exceptions, primers (synthesized as described above) were 24 bases in length with a 50% G+C composition. Sequencing by this method was carried out on both strands of the approximately 2.9 kbp EcoR 1 fragment.

10

15

20

25

from isolate pDAB2002 was prepared by BIGprep kit. Sequencing reactions were performed and analyzed as described above.

Initially, a T3 primer (pBS SK (+) bases 774-796:

5 CGCGCAATTAACCCTCACTAAAG) and a T7 primer (pBS KS (+) bases 621-643: GCGCGTAATACGACTCACTATAG) were used to prime the sequencing reactions from the flanking vector sequences, reading into the insert DNA. Another set of primers, (GZ4F:

GTATCGATTACAACGCTGTCACTTCCC; TH13: GGGAAGTGACAGCGTTGTAATCGATAC;

TH14: ATGTTGGGTGCGTCGGCTAATGGACATAAC; and LW1-204:
GGGAAGTGACAGCGTTGTAATCGATAC) was made to prime from internal
sequences, which were determined previously by degenerate
oligonucleotide-mediated sequencing of subcloned TcaC-peptide PCR
products. From the data generated during the initial rounds of
sequencing, new sets of primers were designed and used to walk
the entire length of the ~5 kbp fragment. A total of 55 oligo
primers was used, enabling the identification of 4832 total bp of
contiguous sequence.

When the DNA sequence of the EcoR 1 fragment insert of pDAB2002 is combined with part of the determined sequence of the 20 pDAB2000/pDAB2001 isolates, a total contiguous sequence of 6005 bp was generated (disclosed herein as SEQ ID NO:25). When long open reading frames were translated into the corresponding amino acids, the sequence clearly shows the TcaBi N-terminal peptide (disclosed as SEQ ID NO:3), encoded by bases 19-75, immediately 25 following a methionine residue (start of translation). Upstream lies a potential ribosome binding site (bases 1-9), and downstream, at bases 166-228 is encoded the TcaBi-PT158 internal peptide (disclosed herein as SEQ ID NO:19). Further downstream, in the same reading frame, at bases 1738-1773, exists a sequence 30 encoding the TcaBi-PT108 internal peptide (disclosed herein as SEQ ID NO:20). Also in the same reading frame, at bases 1897-1923, is encoded the TcaBii N-terminal peptide (disclosed herein as SEQ ID NO:5), and the reading frame continues uninterrupted to a translation termination codon at nucleotides 3586-3588. 35

The lack of an in-frame stop codon between the end of the sequence encoding $TcaB_i$ -PT108 and the start of the $TcaB_{ii}$ encoding region, and the lack of a discernible ribosome binding site immediately upstream of the $TcaB_{ii}$ coding region, indicate that

peptides ' Bii and TcaBi are encoded by single open reading frame of 3567 bp beginning at base pair 16 in SEQ ID NO:25), and are most likely derived from a single primary gene product of 1189 amino acids (131.586 Daltons; disclosed herein as SEQ ID NO:26) by post-translational cleavage. If the amino acid immediately preceding the TcaBii N-terminal peptide represents the C-terminal amino acid of peptide TcaBi, then the predicted mass of TcaBii (627 amino acids) is 70.814 Daltons (disclosed herein as SEQ ID NO:28), somewhat higher than the size observed 10 by SDS-PAGE (68 kDa). This peptide would be encoded by a contiguous stretch of 1881 base pairs (disclosed herein as SEQ ID NO:27). It is thought that the native C-terminus of TcaBi lies somewhat closer to the C-terminus of TcaBi-PT108. The molecular mass of PT108 [3.438 kDa; determined during N-terminal amino acid 15 sequence analysis of this peptide) predicts a size of 30 amino acids. Using the size of this peptide to designate the Cterminus of the TcaBi coding region [Glu at position 604 of SEQ ID NO:28], the derived size of TcaBi is determined to be 604 amino acids or 68,463 Daltons, more in agreement with 20 experimental observations.

Translation of the TcaB_{ii} peptide coding region of 1686 base pairs (disclosed herein as SEQ ID NO:29) yields a protein of 562 amino acids (disclosed herein as SEQ ID NO:30) with predicted mass of 60,789 Daltons, which corresponds well with the observed 61 kDa.

A potential ribosome binding site (bases 3633-3638) is found 48 bp downstream of the stop codon for the tcaB open reading frame. At bases 3645-3677 is found a sequence encoding the N-terminus of peptide TcaC, (disclosed as SEQ ID NO.2). The open reading frame initiated by this N-terminal peptide continues uninterrupted to base 6005 (2361 base pairs, disclosed herein as the first 2361 base pairs of SEQ ID NO.31). A gene (tcaC) encoding the entire TcaC peptide, (apparent size ~165 kDa; ~1500 amino acids), would comprise about 4500 bp.

Another isolate containing cloned EcoR 1 fragments of cosmid 26A5, E20.6, was also identified by its homology to the previously mentioned GZ4 and TcaBiprobes. Agarose gel analysis of EcoR 1 digests of the DNA of the plasmid harbored by this strain (pDAB2004, Fig. 2), revealed insert fragments of estimated

25

30

nd 3.3 kbp. DNA sequence a vsis initiated from sizes 2.9, primers designed from the sequence of plasmid pDAB2002 revealed that the 3.3 kbp EcoR I fragment of pDAB2004 lies adjacent to the 5 kbp EcoR 1 fragment represented in pDAB2002. The 2361 base pair open reading frame discovered in pDAB2002 continues uninterrupted for another 2094 bases in pDAB2004 [disclosed herein as base pairs 2362 to 4458 of SEQ ID NO:31). DNA sequence analysis using the parent cosmid 26A5 DNA as template confirmed the continuity of the open reading frame. Altogether, the open reading frame (TCaC SEQ ID NO:31) comprises 4455 base pairs, and encodes a protein (TcaC) of 1485 amino acids (disclosed herein as SEQ ID NO:32]. The calculated molecular size of 166,214 Daltons is consistent with the estimated size of the TcaC peptide (165 kDa), and the derived amino acid sequence matches exactly that disclosed for the TcaC N-terminal sequence (SEQ ID NO:2).

The lack of an amino acid sequence corresponding to SEQ ID NO:17; used to design the degenerate oligonucleotide primer pool in the discovered sequence indicates that the generation of the PCR® products found in isolates GZ4 and HB14, which were used as probes in the initial library screen, were fortuitously generated by reverse-strand priming by one of the primers in the degenerate pool. Further, the derived protein sequence does not include the internal fragment disclosed herein as SEQ ID NO:18. These sequences reveal that plasmid pDAB2004 contains the complete coding region for the TcaC peptide.

Example 9

Screening of the Photorhabdus genomic library for genes encoding the TcbAii peptide

30

10

15

20

25

This example describes a method used to identify DNA clones that contain the $TcbA_{11}$ peptide-encoding genes, the isolation of the gene, and the determination of its partial DNA base sequence.

35 Primers and PCR reactions

The TcbAii polypeptide of the insect active preparation is ~206 kDa. The amino acid sequence of the N-terminus of this peptide is disclosed as SEQ ID NO:1. Four pools of degenerate oligonucleotide primers ("Forward primers": TH-4, TH-5, TH-6, and

TH-7) were synthesized to encode a portion of this amino acid sequence, as described in Example 8, and are shown below.

Table 11

5	Amino Acid		Ile	Gln	Gly	Tyr	Ser	Asp	Leu	Phe
	TH-4	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	TCI	GA(T/C)	CTI	TT-3'
	TH-5	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	AG(T/C)	GA(T/C)	CTI	TT- 3 .
	TH-6	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	TCI	GA(T/C)	TT(A/G)	TT-3'
10	TH-7	5'-TT(T/C)	ATI	CA(A/G)	GGI	TA(T/C)	AG(T/C)	GA(T/C)	TT(A/G)	TT-3'

In addition, a primary ("a") and a secondary ("b") sequence of an internal peptide preparation (TcbA_{ii}-PT81) have been determined and are disclosed herein as SEQ ID No:23 and SEQ ID No:24, respectively. Four pools of degenerate oligonucleotides ("Reverse Primers": TH-8, TH-9, TH-10 and TH-11) were similarly designed and synthesized to encode the reverse complement of sequences that encode a portion of the peptide of SEQ ID NO:23, as shown below.

rable 1

Acid	Thr	Tyr	Leu	Thr	Ser	Phe	Glu	Glo	Val Ala		Asn
TH-8	3.TCI	TH-8 3'TGI AT(A/G) GAI	GAI	TCI	AGI	AA (A/G)	AA(A/G) CT(T/C) GT(T/C) CAI CGI	GT(T/C)	CAI	CGI	TT(G/A)-5'
TH-9	3'TGI	TH-9 3'TGI AT(A/G) TT(A/G) TGI	TT(A/G)		AGI	AA (A/G)	AA(A/G) CT(T/C) GT(T/C) CAI CGI	GT(T/C)	CAI		TT(G/A)-5'
TH-10	3'TGI	TH-10 3'TGI AT(A/G) GAI	GAI	TGI	TC (G/A)	AA (A/G)	CT(T/C)	GT(T/C)	CAI	CGI	TGI TC(G/A) AA(A/G) CT(T/C) GT(T/C) CAI CGI TT(G/A)-5'
TH-11	3'TGI	AT(A/G)	TT (A/G)	TGI	TH-11 3'TGI AT(A/G) TT(A/G) TGI TC(G/A) AA(A/G) CT(T/C) GT(T/C) CAI	AA (A/G)	CT(T/C)	GT(T/C)	CAI	CGI	TT(G/A)-5'

these primers were used in reactions to amplity TcbAii- encoding gene fragments from the genomic Photornabdus luminescens W-14 DNA prepared in Example 6. All PCR* reactions were run with the "Hot Start" technique using AmpliWax™ gems and other Perkin Elmer reagents and protocols. Typically, a mixture (total volume 11 μ 1) of MgCl₂, dNTP's, 10X GeneAmp⁴ PCR Buffer II. and the primers were added to tubes containing a single wax bead. [10X GeneAmp* PCR Buffer II is composed of 100 mM Tris-HCl, pH 8.3; and 500 mM KCl.) The tubes were heated to 80°C for 210 minutes and allowed to cool. To the top of the wax seals, a solution containing 10% GeneAmp PCR Buffer II, DNA template, and AmpliTaq DNA polymerase were added. Following melting of the wax seal and mixing of components by thermal cycling, final reaction conditions (volume of 50 μ l) were: 10 mM Tris-HCl, pH 8.3; 50 mH 15 KCl; 2.5 mM MgCl₂; 200 μM each in dATP, dCTP, dGTP, dTTP; 1.25 mM in a single Forward primer pool; 1.25 µM in a single Reverse primer pool, 1.25 units of AmpliTaq® DNA polymerase, and 170 ng of template DNA.

The reactions were placed in a thermocycler (as in 20 Example 8) and run with the following program:

Table 13

Temperature	Time	Cycle Repatition	
94°C	2 minutes	1X	
94°C	15 seconds	7	
55-65°C	30 seconds	30X	
72°C	l minute		
72°C	7 minutes	1X	
15°C	Constant		

-65-

A series of amplifications was run at three different annealing temperatures (55°, 60°, 65° C) using the degenerate primer pools. Reactions with annealing at 65°C had no amplification products visible following agarose gel electrophoresis. Reactions having a 60°C annealing regime and containing primers TH-5+TH-10 produced an amplification product that had a mobility corresponding to 2.9 kbp. A lesser amount of the 2.9 kbp product was produced under these conditions with primers TH-7+TH-10. When reactions were annealed at 55°C, these primer pairs produced more of the 2.9 kbp product, and this product was also produced by primer pairs TH-5+TH-8 and TH-5+TH-11. Additional very faint 2.9 kbp bands were seen in lanes containing amplification products from primer pairs TH-7 plus TH-8, TH-9, TH-10, or TH-11.

To obtain sufficient PCR amplification product for cloning and DNA sequence determination, 10 separate PCR reactions were set up using the primers TH-5+TH-10, and were run using the above conditions with a 55°C annealing temperature. All reactions were pooled and the 2.9 kbp product was purified by Qiaex extraction from an agarose gel as described above.

Additional sequences determined for TcbA_{ii} internal peptides are disclosed herein as SEQ ID NO:21 and SEQ ID NO:22. As before, degenerate oligonucleotides (Reverse primers TH-17 and TH-18) were made corresponding to the reverse complement of sequences that encode a portion of the amino acid sequence of these peptides.

30 Table 14

From SEQ ID NO:21

5

10

15

20

25

45

Amino
Acid Met Glu Thr Gln Asn Ile Gln Glu Pro

35
TH-17 3'-TAC CTT/C TGI GTT/C TTA/G TAI GTT/C GTT/C GG-5'

Table 15

40 From SBQ ID NO:22

Amino
Acid Asn Pro Ile Asn Ile Asn Thr Gly Ile Asp

TH-18 3'-TT(A/G) GGI TAI TT(A/G) TAI TT(A?G) TGI CCI TAI CT(A/G)-5'

-66-

amplification experiment with Photorhabdus luminescens W-14 DNA as template and primers TH-4, TH-5, TH-6, or TH-7 as the 5'-(Forward) primers. These reactions amplified products of approximately 4 kbp and 4.5 kbp, respectively. These DNAs were transferred from agarose gels to nylon membranes and hybridized with a 'P-labeled probe (as described above) prepared from the 2.9 kbp product amplified by the TH-5+TH10 primer pair. Both the 4 kbp and the 4.5 kbp amplification products hybridized strongly to the 2.9 kbp probe. These results were used to construct a map ordering the TcbAii internal peptide sequences as shown in Fig. 3. Approximate distances between the primers are shown in nucleotides in Fig. 3.

15 DNA Sequence of the 2.9 kbp TcbAii-encoding fragment

Approximately 200 ng of the purified 2.9 kbp fragment (prepared above) was precipitated with ethanol and dissolved in 17 ml of water. One-half of this was used as sequencing template with 25 pmol of the TH-5 pool as primers, the other half was used as template for TH-10 priming. Sequencing reactions were as given in Example 8. No reliable sequence was produced using the TH-10 primer pool; however, reactions with TH-5 primer pool produced the sequence disclosed below:

- 1 AATCGTGTTG ATCCCTATGC CGNGCCGGGT TCGGTGGAAT CGATGTCCTC ACCGGGGGTT
 25 51 TATTNGAGGG ANTNGTCCCG TGAGGCCAAA AANTGGAATG AAAGAAGTTC AATTINTTAC
 121 CTAGATAAAC GTCGCCCGGN TTTAGAAAGN TTANTGNTCA GCCAGAAAAT TTTGGTTGAG
 181 GAAATTCCAC CGNTGGTTCT CTCTATTGAT TNGGGCCTGG CCGGGTTCGA ANNAAAACNA
 241 GGAAATNCAC AAGTTGAGGT GATGGNTTTG TNGCNANCTT NTCGTTTAGG TGGGGAGAAA
 301 CCTTNTCANC ACGNTTNTGA AACTGTCCGG GAAATCGTCC ATGANCGTGA NCCAGGNTTN
- 30 361 CGCCATTGG

20

Based on this sequence, a sequencing primer (TH-21, 5'-CCGGGCGACGTTTATCTAGG-3') was designed to reverse complement bases 120-139, and initiate polymerization towards the 5' end (i.e., TH-5 end) of the gel-purified 2.9 kbp TcbA;; encoding PCR

35 TH-5 end) of the gel-purified 2.9 kbp TcbA_{ii}-encoding PCR fragment. The determined sequence is shown below, and is compared to the biochemically determined N-terminal peptide sequence of TcbA_{ii} SEQ ID NO:1.

TabAii 2.9 kb EP fragment Sequence Confirm on [Underlined amino acids = encoded by degenerate oligonucleotides]

From the homology of the derived amino acid sequence to the biochemically determined one, it is clear that the 2.9 kbp PCR fragment represents the *TcbA* coding region. This 2.9 kbp fragment was then used as a hybridization probe to screen the *Photorhabdus* W-14 genomic library prepared in Example 8 for cosmids containing the TcbAii-encoding gene.

15

20

25

30

35

40

5

10

Screening the Photorhabdus cosmid library

The 2.9 kb gel-purified PCR fragment was labeled with "P using the Boehringer Mannheim High Prime labeling kit as described in Example 8. Filters containing remnants of approximately 800 colonies from the cosmid library were screened as described previously (Example 8), and positive clones were streaked for isolated colonies and rescreened. Three clones (8All, 25G8, and 26D1) gave positive results through several screening and characterization steps. No hybridization of the TcbAii-specific probe was ever observed with any of the four cosmids identified in Example 8, and which contain the ccaB and ccaC genes. DNA from cosmids 8A11, 25G8, and 26D1 was digested with restriction enzymes Bgl 2, EcoR 1 or Hind 3 (either alone or in combination with one another), and the fragments were separated on an agarose gel and transferred to a nylon membrane as described in Example 8. The membrane was hybridized with 'Plabeled probe prepared from the 4.5 kbp fragment (generated by amplification of Photorhabdus genomic DNA with primers TH-5+TH-The patterns generated from cosmid DNAs 8All and 26Dl were identical to those generated with similarly-cut genomic DNA on the same membrane. It is concluded that cosmids 8All and 26Dl are accurate representations of the genomic TcbAii encoding locus. However, cosmid 25G8 has a single Bgl 2 fragment which is slightly larger than the genomic DNA. This may result from positioning of the insert within the vector.

-68-

DNA sequend of the tcbA-encoding gene

The membrane hybridization analysis of cosmid 26D1 revealed that the 4.5 kbp probe hybridized to a single large EcoR 1 fragment (greater than 9 kbp). This fragment was gel purified and ligated into the EcoR 1 site of pBC KS (+) as described in Example 8, to generate plasmid pBC-S1/R1. The partial DNA sequence of the insert DNA of this plasmid was determined by "primer walking" from the flanking vector sequence, using procedures described in Example 8. Further sequence was 10 generated by extension from new oligonucleotides designed from the previously determined sequence. When compared to the determined DNA sequence for the tcbA gene identified by other methods (disclosed herein as SEQ ID NO:11 as described in Example 12 below), complete homology was found to nucleotides 1-272, 319-15 826, 2578-3036, and 3068-3540 (total bases = 1712). It was concluded that both approaches can be used to identify DNA fragments encoding the TcbAii peptide.

Analysis of the derived amino acid sequence of the tcbA gene.

20 The sequence of the DNA fragment identified as SEQ ID NO:11 encodes a protein whose derived amino acid sequence is disclosed herein as SEQ ID NO:12. Several features verify the identity of the gene as that encoding the TcbAii protein. The TcbAii N-terminal peptide (SEQ ID NO:1; Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala) is 25 encoded as amino acids 88-100. The TcbA $_{ii}$ internal peptide TcbA $_{ii}$ -PT81(a) (SEQ ID NO:23) is encoded as amino acids 1065-1077, and TcbAii-PT81(b) (SEQ ID NO:24) is encoded as amino acids 1571-1592. the internal peptide TcbAii-PT56 (SEQ ID NO:22) is encoded as amino acids 1474-1488, and the internal peptide TcbAii-PT103 (SEQ ID NO:24) 30 is encoded as amino acids 1614-1639. It is obvious that this gene is an authentic clone encoding the TcbAii peptide as isolated from insecticidal protein preparations of Photorhabdus luminescens strain W-14.

The protein isolated as peptide TcbAii is derived from cleavage of a longer peptide. Evidence for this is provided by the fact that the nucleotides encoding the TcbAii N-terminal peptide SEQ ID NO:1 are preceded by 261 bases (encoding 87 N-terminal-proximal amino acids) of a longer open reading frame (SEQ ID NO:11). This reading frame begins with nucleotides that encode the amino acid sequence Met Gln Asn Ser

Leu. Which corresponds to the n-terminal seque of the large peptide TobA, and is disclosed herein as SEQ ID NO:16. It is thought that TobA is the precursor protein for TobAii.

5 Relationship of tcbA. tcaB and tcaC genes.

The tcaB and tcaC genes are closely linked and may be transcribed as a single mRNA (Example 8). The tcbA gene is borne on cosmids that apparently do not overlap the ones harboring the tcaB and tcaC cluster, since the respective genomic library screens identified different cosmids. However, comparison of the amino sequences encoded by the tcaB and tcaC genes with the tcbA gene reveals a substantial degree of homology. The amino acid conservation (Protein Alignment Mode of MacVector Sequence Analysis Software, scoring matrix pam250, hash value = 2; Kodak Scientific Imaging Systems, Rochester, NY) is shown in Fig. 4. On the score line of each panel in Fig. 4, up carats (^) indicate homology or conservative amino acid changes, and down carats (v) indicate nonhomology.

This analysis shows that the amino acid sequence of the TcbA peptide from residues 1739 to 1894 is highly homologous to amino 20 acids 441 to 603 of the TcaB; peptide (162 of the total 627 amino acids of P8: SEO ID NO:28). In addition, the sequence of TcbA amino acids 1932 to 2459 is highly homologous to amino acids 12 to 531 of peptide TcaBii (520 of the total 562 amino acids; SEQ 25 ID NO:30). Considering that the TcbA peptide (SEQ ID NO:12) comprises 2505 amino acids, a total of 684 amino acids (27%) at the C-proximal end of it is homologous to the TcaBi or TcaBii peptides, and the homologies are arranged colinear to the arrangement of the putative TcaB preprotein (SEQ ID NO:26). A sizeable gap in the TcbA homology coincides with the junction 30 between the $TcaB_i$ and $TcaB_{ii}$ portions of the TcaB preprotein. Clearly the TcbA and TcaB gene products are evolutionarily related, and it is proposed that they share some common function(s) in Photorhabdus.

35

10

Example 10

Characterization of zinc-metalloproteases in *Photorhabdus* Broth: Protease Inhibition, Classification, and Purification

5 Protease Inhibition and Classification Assays: Protease assays were performed using FITC-casein dissolved in water as substrate (0.08% final assay concentration). Proteolysis reactions were performed at 25°C for 1 h in the appropriate buffer with 25 µl of Photorhabdus broth (150 µl total reaction 10 Samples were also assayed in the presence and absence of dithiothreitol. After incubation, an equal volume of 12% trichloroacetic acid was added to precipitate undigested protein. Following precipitation for 0.5 h and subsequent centrifugation, 100 µl of the supernatant was placed into a 96-well microtiter 15 plate and the pH of the solution was adjusted by addition of an equal volume of 4N NaOH. Proteolysis was then quantitated using a Fluoroskan II fluorometric plate reader at excitation and emission wavelengths of 485 and 538 nm, respectively. Protease activity was tested over a range from pH 5.0-10.0 in 0.5 units 20 increments. The following buffers were used at 50 mM final concentration: sodium acetate (pH 5.0 - 6.5); Tris-HCL (pH 7.0 -8.0); and bis-Tris propane (pH 8.5-10.0). To identify the class of protease(s) observed, crude broth was treated with a variety of protease inhibitors (0.5 $\mu g/\mu l$ final concentration) and then 25 examined for protease activity at pH 8.0 using the substrate described above. The protease inhibitors used included E-64 (Ltrans-expoxysaccinylleucylamido(4-,-guanidino)-butane), 3,4 dichloroisocoumarin, Leupeptin, pepstatin, amastatin, ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline.

Protease assays performed over a pH range revealed that indeed protease(s) were present which exhibited maximal activity at ~ pH 8.0 (Table 16). Addition of DTT did not have any effect on protease activity. Crude broth was then treated with a variety of protease inhibitors (Table 17). Treatment of crude broth with the inhibitors described above revealed that 1,10 phenanthroline caused complete inhibition of all protease activity when added at a final concentration of 50 µg, with the IC50 = 5 µg in 100 µl of a 2 mg/ml crude broth solution. These data indicate that the most abundant protease(s) found in the

30

Photornabdus been are from the zinc-metallo ease class of enzymes.

Table 16
5 Effect of pH on the protease activity found in a Day 1 production of Photorhabdus luminescens (strain W-14).

	рН	Flu. Units ^a Activity ^b	Percent
10	5.0	3013 ± 78	17
	5.5	7994 ± 448	45
15	6.0	12965 ± 483	7.4
	6.5	14390 ± 1291	82
	7.0	14386 ± 1287	82
20	7.5	14135 ± 198	80
	8.0	17582 ± 831	100
25	8.5	16183 ± 953	92
	9.0	16795 ± 760	96
20	9.5	16279 ± 1022	93
30	10.0	15225 ± 210	87

a Flu. Units = Fluorescence Units (Maximum = ~28,000; background = ~ 2200).

b. Percent activity relative to the maximum at pH 8.0

Table 17
Effect of different protease inhibitors on the protease activity at pH 8 found in a Day 1 production of Photorhabdus luminescens (strain W-14).

5

	Inhibitor	Corrected Flu.	Units ^a Percen	t Inhibition ^b
	Control	13053		
	E-64	14259	C	•
10	1,10 Phenanthroline ^C	15	99	
	3,4 Dichloroisocoumari	ind 7956	39)
	Leupeptin	13074	C)
	Pepstatin ^C	13441	(1
	Amastatin	12474	4	
15	DMSO Control	12005	8	
	Methanol Control	12125		•

a. Corrected Flu. Units = Fluorescence Units background(2200 flu. units).

b. Percent Inhibition relative to protease activity at pH $20-8.0\,.$

c. Inhibitors were dissolved in methanol.

d. Inhibitors were dissolved in DMSO.

The isolation of a zinc-metalloprotease was performed by applying dialyzed 10-80% ammonium sulfate pellet to a Q Sepharose column equilibrated at 50 mM Na2PO4, pH 7.0 as described in Example 5 for Photorhabdus toxin. After extensive washing, a 0 to 0.5 M NaCl gradient was used to elute toxin protein. majority of biological activity and protein was eluted from 0.15 30 - 0.45 M NaCl. However, it was observed that the majority of proteolytic activity was present in the 0.25-0.35 M NaCl fraction with some activity in the 0.15-0.25 M NaCl fraction. SDS PAGE analysis of the 0.25-0.35 M NaCl fraction showed a major peptide band of approximately 60 kDa. The 0.15-0.25 M NaCl fraction 35 contained a similar 60 kDa band but at lower relative protein concentration. Subsequent gel filtration of this fraction using a Superose 12 HR 16/50 column resulted in a major peak migrating at 57.5 kDa that contained a predominant (> 90% of total stained protein) 58.5 kDa band by SDS PAGE analysis. Additional analysis 40 of this fraction using various protease inhibitors as described above determined that the protease was a zinc-metalloprotease. Nearly all of the protease activity present in Photorhabdus broth at day 1 of fermentation corresponded to the ~58 kDa zincmetalloprotease.

In yet a second isolation of zinc-metalloprotease(s), W-14

Photorhabdus broth grown for three days was taken and protease

ualized using sodium dodecy lfateactivity was polyacrylamide gel electrophoresis (SDS-PAGE) laced with gelatin as described in Schmidt, T.M., Bleakley, B. and Nealson, K.M. 1988. SDS running gels (5.5 x 8 cm) were made with 12.5 % polyacrylamide (40% stock solution of acrylamide/bis-acrylamide; Sigma Chemical Co., St. Louis, MO) into which 0.1% gelatin final concentration (Biorad EIA grade reagent; Richmond CA) was incorporated upon dissolving in water. SDS-stacking gels (1.0 x 8 cm) were made with 5% polyacrylamide, also laced with 0.1% gelatin. Typically, 2.5 µg of protein to be tested was diluted 10 in 0.03 ml of SDS-PAGE loading buffer without dithiothreitol (DTT) and loaded onto the gel. Proteins were electrophoresed in SDS running buffer (Laemmli, U.K. 1970. Nature 227, 680) at 0° C and at 8 mA. After electrophoresis was complete, the gel was washed for 2 h in 2.5% (v/v) Triton X-100. Gels were then 15 incubated for 1 h at 37 °C in 0.1 M glycine (pH 8.0). After incubation, gels were fixed and stained overnight with 0.1% amido black in methanol-acetic acid- water (30:10:60, vol./vol./vol.; Sigma Chemical Co.). Protease activity was visualized as light areas against a dark, amido black stained background due to 20 proteolysis and subsequent diffusion of incorporated gelatin. At least three distinct bands produced by proteolytic activity at 58-, 41-, and 38 kDa were observed.

Activity assays of the different proteases in W-14 day three culture broth were performed using FITC-casein dissolved in water as substrate (0.02% final assay concentration). Proteolysis experiments were performed at 37 °C for 0-0.5 h in 0.1M Tris-HCl (pH 8.0) with different protein fractions in a total volume of 0.15 ml. Reactions were terminated by addition of an equal volume of 12% trichloroacetic acid (TCA) dissolved in water. After incubation at room temperature for 0.25 h, samples were centrifuged at 10,000 x g for 0.25 h and 0.10 ml aliquots were removed and placed into 96-well microtiter plates. The solution was then neutralized by the addition of an equal volume of 2 H sodium hydroxide, followed by quantitation using a Fluoroskan II fluorometric plate reader with excitation and emission wavelengths of 485 and 538 nm, respectively. Activity measurements were performed using FITC-Casein with different protease concentrations at 37° C for 0-10 min. A unit of

25

30

activity as arbitrarily defined as the amount of enzyme needed to produce 1000 fluorescent units/min and specific activity was defined as units/mg of protease.

Inhibition studies were performed using two zincmetalloprotease inhibitors; 1,10 phenanthroline and N-(arhamnopyranosyloxyhydroxyphosphinyl)-Leu-Trp(phosphoramidon) with stock solutions of the inhibitors dissolved in 100% ethanol and water, respectively. Stock concentrations were typically 10 mg/ml and 5 mg/ml for 1,10 phenanthroline and phosphoramidon, 10 respectively, with final concentrations of inhibitor at 0.5-1.0 mg/ml per reaction. Treatment of three day W-14 crude broth with 1,10 phenanthroline, an inhibitor of all zinc metalloproteases. resulted in complete elimination of all protease activity while treatment with phosphoramidon, an inhibitor of thermolysin-like 15 proteases (Weaver, L.H., Kester, W.R., and Matthews, B.W. 1977. J. Mol. Biol. 114, 119-132), resulted in ~56% reduction of protease activity. The residual proteolytic activity could not be further reduced with additional phosphoramidon.

The proteases of three day W-14 Photorhabdus broth were 20 purified as follows: 4.0 liters of broth were concentrated using an Amicon spiral ultra filtration cartridge Type S1Y100 attached to an Amicon M-12 filtration device. The flow-through material having native proteins less than 100 kDa in size (3.8 L) was concentrated to 0.375 L using an Amicon spiral ultra filtration 25 cartridge Type S1Y10 attached to an Amicon M-12 filtration device. The retentate material contained proteins ranging in size from 10-100 kDa. This material was loaded onto a Pharmacia HR16/10 column which had been packed with PerSeptive Biosystem (Framington, MA) Poros® 50 HQ strong anion exchange packing that 30 had been equilibrated in 10 mM sodium phosphate buffer (pH 7.0). Proteins were loaded on the column at a flow rate of 5 ml/min, followed by washing unbound protein with buffer until A280 = 0.00. Afterwards, proteins were eluted using a NaCl gradient of 0-1.0 M NaCl in 40 min at a flow rate of 7.5 ml/min. Fractions were assayed for protease activity, supra., and active fractions 35 were pooled. Proteolytically active fractions were diluted with 50% (v/v) 10 mM sodium phosphate buffer (pH 7.0) and loaded onto a Pharmacia HR 10/10 Mono Q column equilibrated in 10 mM sodium phosphate. After washing the column with buffer until A280 =

0.00, protein ere eluted using a NaCl gra t of 0-0.5 M NaCl for 1 h at a flow rate of 2.0 ml/min. Fractions were assayed for protease activity. Those fractions having the greatest amount of phosphoramidon-sensitive protease activity, the phosphoramidon sensitive activity being due to the 41/38 kDa protease, infra., were pooled. These fractions were found to elute at a range of 0.15-0.25 M NaCl. Fractions containing a predominance of phosphoramidon-insensitive protease activity, the 58 kDa protease, were also pooled. These fractions were found to elute at a range of 0.25-0.35 M NaCl. The phosphoramidon-sensitive 10 protease fractions were then concentrated to a final volume of 0.75 ml using a Millipore Ultrafree®-15 centrifugal filter device Biomax-5K NMWL membrane. This material was applied at a flow rate of 0.5 ml/min to a Pharmacia HR 10/30 column that had been 15 packed with Pharmacia Sephadex G-50 equilibrated in 10 mM sodium phosphate buffer (pH 7.0) / 0.1 M NaCl. Fractions having the maximal phosphoramidon-sensitive protease activity were then pooled and centrifuged over a Millipore Ultrafree®-15 centrifugal filter device Biomax-50K NMWL membrane. Proteolytic activity analysis, supra., indicated this material to have only 20 phosphoramidon-sensitive protease activity. Pooling of the phosphoramidon-insensitive protease, the 58 kDa protein, was followed by concentrating in a Millipore Ultrafree®-15 centrifugal filter device Biomax-50K NMWL membrane and further 25 separation on a Pharmacia Superdex-75 column. Fractions containing the protease were pooled.

Analysis of purified 58- and 41/38 kDa purified proteases revealed that, while both types of protease were completely inhibited with 1.10 phenanthroline, only the 41/38 kDa protease was inhibited with phosphoramidon. Further analysis of crude broth indicated that protease activity of day 1 W-14 broth has 23% of the total protease activity due to the 41/38 kDa protease, increasing to 44% in day three W-14 broth.

Standard SDS-PAGE analysis for examining protein purity and obtaining amino terminal sequence was performed using 4-20% gradient MiniPlus SepraGels purchased from Integrated Separation Systems (Natick, MA). Proteins to be amino-terminal sequenced were blotted onto PVDF membrane following purification, infra., (ProBlott^m Membranes; Applied Biosystems, Foster City, CA),

30

visualized of 0.1% amido black, excised and sent to Cambridge Prochem; Cambridge, MA, for sequencing.

Deduced amino terminal sequence of the 58- (SEQ ID NO:45) and 41/38 kDa (SEQ ID NO:44) proteases from three day old W-14 broth were DV-GSEKANEKLK (SEQ ID NO: 45) and DSGDDDKVTNTDIHR (SEQ ID NO:44), respectively.

Sequencing of the 41/38 kDa protease revealed several amino termini, each one having an additional amino acid removed by proteolysis. Examination of the primary, secondary, tertiary and quartenary sequences for the 38 and 41 kDa polypeptides allowed for deduction of the sequence shown above and revealed that these two proteases are homologous.

Example 11, Part A

Screening of Photorhabdus Genomic Library via use of Antibodies

for Genes encoding TcbA Peptide

In parallel to the sequencing described above, suitable probing and sequencing was done based on the TcbAii peptide (SEQ ID NO:1). This sequencing was performed by preparing bacterial culture broths and purifying the toxin as described in Examples 1 and 2 above.

Genomic DNA was isolated from the *Photorhabdus luminescens* strain W-14 grown in Grace's insect tissue culture medium. The bacteria were grown in 5 ml of culture medium in a 250 ml Erlenmeyer flask at 28°C and 250 rpm for approximately 24 hours. Bacterial cells from 100 ml of culture medium were pelleted at 5000 x g for 10 minutes. The supernatant was discarded, and the cell pellets then were used for the genomic DNA isolation.

The genomic DNA was isolated using a modification of the CTAB method described in Section 2.4.3 of Ausubel (supra.). The section entitled "Large Scale CsCl prep of bacterial genomic DNA" was followed through step 6. At this point, an additional chloroform/isoamyl alcohol (24:1) extraction was performed followed by a phenol/chloroform/isoamyl (25:24:1) extraction step and a final chloroform/isoamyl/alcohol (24:1) extraction. The DNA was precipitated by the addition of a 0.6 volume of isopropanol. The precipitated DNA was hooked and wound around the end of a bent glass rod, dipped briefly into 70% ethanol as a final wash, and dissolved in 3 ml of TE buffer.

10

20

25

30

35

The DNA incentration, estimated by o stal density at 280/260 nm, was approximately 2 mg/ml.

Using this genomic DNA, a library was prepared.

Approximately 50 µg of genomic DNA was partly digested with Sau3

Al. Then NaCl density gradient centrifugation was used to size fractionate the partially digested DNA fragments. Fractions containing DNA fragments with an average size of 12 kb, or larger, as determined by agarose gel electrophoresis, were ligated into the plasmid BluScript, Stratagene, La Jolla,

10 California, and transformed into an E. coli DH5 α or DHB10 strain.

Separately, purified aliquots of the protein were sent to the biotechnology hybridoma center at the University of Wisconsin, Madison for production of monoclonal antibodies to the proteins. The material that was sent was the HPLC purified fraction containing native bands 1 and 2 which had been denatured at 65°C, and 20 µg of which was injected into each of four mice. Stable monoclonal antibody-producing hybridoma cell lines were recovered after spleen cells from unimmunized mouse were fused with a stable myeloma cell line. Monoclonal antibodies were recovered from the hybridomas.

Separately, polyclonal antibodies were created by taking native agarose gel purified band 1 (see Example 1) protein which was then used to immunize a New Zealand white rabbit. The protein was prepared by excising the band from the native agarose gels, briefly heating the gel pieces to 65°C to melt the agarose, and immediately emulsifying with adjuvant. Freund's complete adjuvant was used for the primary immunizations and Freund's incomplete was used for 3 additional injections at monthly intervals. For each injection, approximately 0.2 ml of emulsified band 1, containing 50 to 100 micrograms of protein, was delivered by multiple subcontaneous injections into the back of the rabbit. Serum was obtained 10 days after the final injection and additional bleeds were performed at weekly intervals for 3 weeks. The serum complement was inactivated by heating to 56°C for 15 minutes and then stored at -20°C.

The monoclonal and polyclonal antibodies were then used to screen the genomic library for the expression of antigens which could be detected by the epitope. Positive clones were detected on nitrocellulose filter colony lifts. An immunoblot analysis of the positive clones was undertaken.

15

20

25

30

35

An ysis of the clones as define by both immunoblot and Southern analysis resulted in the tentative identification of five classes of clones.

In the first class of clone was a gene encoding the peptide designated here as TcbA_{ii}. Full DNA sequence of this gene (TcbA) was obtained. It is set forth as SEQ ID NO:11. Confirmation that the sequence encodes the internal sequence of SEQ ID NO:1 is demonstrated by the presence of SEQ ID NO:1 at amino acid number 88 from the deduced amino acid sequence created by the open reading frame of SEQ ID NO:11. This can be confirmed by referring to SEQ ID NO:12, which is the deduced amino acid sequence created by SEQ ID NO:11.

The second class of toxin peptides contains the segments referred to above as TcaB_i, TcaB_i and TcaC. Following the screening of the library with the polyclonal antisera, this second class of toxin genes was identified by several clones which produced different size proteins, all of which cross-reacted with the polyclonal antibody on an immunoblot and were also found to share DNA homology on a Southern Blot. Sequence comparison revealed that they belonged to the gene complex designated TcaB and TcaC above.

Three other classes of antibody toxin clones were also isolated in the polyclonal screen. These classes produced proteins that cross-react with a polyclonal antibody and also shared DNA homology with the classes as determined by Southern blotting. The classes have been designated Class III, Class IV and Class V. It was also possible to identify monoclonals that cross-reacted with Class I, II, III, and IV. This suggests that all have regions of high protein homology. Thus, it appears that the P. luminescens extracellular protein genes represent a family of genes which are evolutionarily related.

To further pursue the concept that there might be evolutionarily related variations in the toxin peptides contained within this organism, two approaches have been undertaken to examine other strains of *P. luminescens* for the presence of related proteins. This was done both by PCR amplification of genomic DNA and by immunoblot analysis using the polyclonal and monoclonal antibodies.

25

30

The resu indicate that related prote are produced by P. luminescens strains WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-3, WX-11, WX-12, WX-15 and W-14.

5 Example 11, Part B Sequence and analysis of Class III toxin clones - tcc

Further DNA sequencing was performed on plasmids isolated from Class III *E. coli* clones described in Example 11, Part A. The nucleotide sequence was shown to be three closely linked open reading frames at this genomic locus. This locus was designated tcc with the three open reading frames designated tccA SEQ ID NO:56, tccB SEQ ID NO:58 and tccC SEQ ID NO:60 (Fig. 6B).

The deduced amino acid from the tccA open reading frame indicates the gene encodes a protein of 105,459 Da. This protein was designated TccA. The first 12 amino acids of this protein match the N-terminal sequence obtained from a 108 kDa protein. SEQ ID NO:7, previously identified as part of the toxin complex.

The deduced amino acid from the tccB open reading frame indicates this gene encodes a protein of 175,716 Da. This protein was designated TccB. The first 11 amino acids of this protein match the N-terminal sequence obtained from a protein with estimated molecular weight of 185 kDa, SEQ ID NO:8.

The deduced amino acid sequence of tccC indicated that this open reading frame encodes a protein of 111,694 Da and the protein product was designated TccC.

Example 12 Characterization of Photorhabdus Strains

30

35

10

15

20

25

In order to establish that the collection described herein was comprised of *Photorhabdus* strains, the strains herein were assessed in terms of recognized microbiological traits that are characteristic of *Photorhabdus* and which differentiate it from other *Enterobacteriaceae* and *Xenorhabdus* spp. (Farmer, J.J. 1984. Bergey's Manual of Systemic Bacteriology, vol 1. pp. 510-511. (ed. Kreig N.R. and Holt, J.G.). Williams & Wilkins, Baltimore.; Akhurst and Boemare, 1988, Boemare et al., 1993). These characteristic traits are as follows: Gram's stain negative

rods, organism size of 0.5-2 µm in width and 2-10 µm in length, red/yellow colony pigmentation, presence of crystalline inclusion bodies, presence of catalase, inability to reduce nitrate, presence of bioluminescence, ability to take up dye from growth media, positive for protease production, growth-temperature range below 37°C, survival under anaerobic conditions and positively motile. (Table 18). Reference Escherichia coli, Xenorhabdus and Photorhabdus strains were included in all tests for comparison. The overall results are consistent with all strains being part of the family Enterobacteriaceae and the genus Photorhabdus.

A luminometer was used to establish the bioluminescence of each strain and provide a quantitative and relative measurement of light production. For measurement of relative light emitting units, the broths from each strain (cells and media) were measured at three time intervals after inoculation in liquid culture (6, 12, and 24 hr) and compared to background luminosity (uninoculated media and water). Prior to measuring light emission from the various broths, cell density was established by measuring light absorbance (560 nM) in a Gilford Systems (Oberlin, OH) spectrophotometer using a sipper cell. Appropriate dilutions were then made (to normalize optical density to 1.0 unit) before measuring luminosity. Aliquots of the diluted broths were then placed into cuvettes (300 µl each) and read in a Bio-Orbit 1251 Luminometer (Bio-Orbit Oy, Twiku, Finland). integration period for each sample was 45 seconds. The samples were continuously mixed (spun in baffled cuvettes) while being read to provide oxygen availability. A positive test was determined as being ≥ 5-fold background luminescence (~5-10 units). In addition, colony luminosity was detected with photographic film overlays and visually, after adaptation in a darkroom. The Gram's staining characteristics of each strain were established with a commercial Gram's stain kit (BBL, Cockeysville, MD) used in conjunction with Gram's stain control slides (Fisher Scientific, Pittsburgh, PA). Microscopic evaluation was then performed using a Zeiss microscope (Carl Zeiss, Germany) 100% oil immersion objective lens (with 10% ocular and 2X body magnification). Microscopic examination of individual strains for organism size, cellular description and inclusion bodies (the latter after logarithmic growth) was

10

20

25

30

wet mount slides (10% ocular) X body and 40X objective magnification) with oil immersion and phase contrast microscopy with a micrometer (Akhurst, R.J. and Boemare, N.E. 1990. Entomopathogenic Nematodes in Biological Control (ed. Gaugler, R. and Kaya, H.). pp. 75-90. CRC Press, Boca Raton, 5 USA.; Baghdiguian S., Boyer-Giglio M.H., Thaler, J.O., Bonnot G., Boemare N. 1993. Biol. Cell 79, 177-185.). Colony pigmentation was observed after inoculation on Bacto nutrient agar, (Difco Laboratories, Detroit, MI) prepared as per label instructions. Incubation occurred at 28°C and descriptions were produced after 10 5-7 days. To test for the presence of the enzyme catalase, a colony of the test organism was removed on a small plug from a nutrient agar plate and placed into the bottom of a glass test tube. One ml of a household hydrogen peroxide solution was gently added down the side of the tube. A positive reaction was 15 recorded when bubbles of gas (presumptive oxygen) appeared immediately or within 5 seconds. Controls of uninoculated nutrient agar and hydrogen peroxide solution were also examined. To test for nitrate reduction, each culture was inoculated into 10 ml of Bacto Nitrate Broth (Difco Laboratories, Detroit, MI). 20 After 24 hours incubation at 28°C, nitrite production was tested by the addition of two drops of sulfanilic acid reagent and two drops of alpha-naphthylamine reagent (see Difco Manual, 10th edition, Difco Laboratories, Detroit, MI, 1984). The generation of a distinct pink or red color indicates the formation of 25 nitrite from nitrate. The ability of each strain to uptake dye from growth media was tested with Bacto MacConkey agar containing the dye neutral red; Bacto Tergitol-7 agar containing the dye bromothymol blue and Bacto EMB Agar containing the dye eosin-Y (agars from Difco Laboratories, Detroit, MI, all prepared 30 according to label instructions). After inoculation on these media, dye uptake was recorded after incubation at 28°C for 5 days. Growth on these latter media is characteristic for members of the family Enterobacteriaceae. Motility of each strain was tested using a solution of Bacto Motility Test Medium (Difco 35 Laboratories, Detroit, MI) prepared as per label instructions. butt-stab inoculation was performed with each strain and motility was judged macroscopically by a diffuse zone of growth spreading

from the line of inoculum. In many cases, motility was also

abserved microscopically from liquid culture under wer mount slides. Biochemical nutrient evaluation for each strain was performed using BBL Enterotube II (Benton, Dickinson, Germany). Product instructions were followed with the exception that incubation was carried out at 28°C for 5 days. Results were consistent with previously cited reports for Photorhabdus. The production of protease was tested by observing hydrolysis of gelatin using Bacto gelatin (Difco Laboratories, Detroit, MI) plates made as per label instructions. Cultures were inoculated and the plates were incubated at 28°C for 5 days. To assess 10 growth at different temperatures, agar plates (2% proteose peptone #3 with two percent Bacto-Agar (Difco, Detroit, MI) in deionized water] were streaked from a common source of inoculum. Plates were sealed with Nesco® film and incubated at 20, 28 and 37°C for up to three weeks. Plates showing no growth at 37°C 15 showed no cell viability after transfer to a 28°C incubator for one week. Oxygen requirements for Photorhabdus strains were tested in the following manner. A butt-stab inoculation into fluid thioglycolate broth medium (Difco, Detroit, MI) was made. 20 The tubes were incubated at room temperature for one week and cultures were then examined for type and extent of growth. The indicator resazurin demonstrates the level of medium oxidation or the aerobiosis zone (Difco Manual, 10th edition, Difco Laboratories, Detroit, MI). Growth zone results obtained for the 25 Photorhabdus strains tested were consistent with those of a facultative anaerobic microorganism.

Table 18
Taxonomic Traits of Photorhabdus Strains

Traits Assessed*

GHI

30

Strain

_ t

W-14

WX-1

wx-2

WX - 3

CD

±| ±

±|±

<u>+</u>

rd

rd

rd

rd

S

0 <u>+</u> <u>+</u> <u>+</u> <u>+</u> 0 <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u> 0 YT <u>+</u> <u>+</u> <u>+</u> <u>+</u> <u>+</u>

N

F

WX-5]-		主	<u>rd</u> 5	÷	=	<u>+</u>	÷	±	LY		E	÷	+	-	-	-
WX - 7	1=	=	=	rd S	<u>+</u>	=	÷	±	<u>÷</u>	R	÷	÷	÷	<u>+</u>	±	÷	-
WX - 8	=	Ξ	Ξ	rd S	<u>±</u>	=	÷	÷	±	2	÷	±	÷	+	÷	<u>÷</u>	-
WX - 9	-	<u>+</u>	±	rd S	<u>+</u>	=	<u>+</u>	<u>+</u>	<u>+</u>	YT	+	<u>+</u>	<u></u>	+1	+	+	-
WX-10	=	<u>+</u>	<u>+</u>	rd S	÷	-	<u>+</u>	±	+-	Ro	+1	+1	±	11	+	+1	1
MX-11	=	<u>+</u>	±	rd S	÷	=	<u>+</u>	+1	+1	Ro	+1	+1	+	+1	+1	+	-
WX-12	=	±	<u>+</u>	rd S	±	Ξ	±	±	±	<u>o</u>	÷	÷	÷	÷	<u>+</u>	+	Ξ
WX-14	=	=	=	rd S	<u>+</u>	=	±	±	±	LR	÷	÷	÷	<u>+</u>	<u>+</u>	<u>+</u>	=
WX-15	=	±	<u>+</u>	rd S	±	Ξ	±	<u>+</u>	<u>+</u>	LR	<u>+</u>	÷	÷	<u>+</u>	<u>+</u>	<u>+</u>	=
Н9	=	÷	÷	<u>rd</u> S	±	= :	+	+	+	LY	+	+	<u>+</u>	<u>+</u>	<u>+</u>	±	1.
Нр	=	±	±	rd S	÷	Ξ	+	+-	+	YT	+	<u>+</u>	<u>+</u>	+	<u>+</u>	<u>+</u>	-
Hm	=	±	÷	<u>rd</u> S	÷		+	+-	+-	TY	+	+1	<u>+</u>	<u>+</u>	<u>+</u>	+1	-
НР88	=	÷	±	<u>rd</u> S	±	Ξ	<u>+</u>	+	+	Γλ	<u>+</u>	+	<u>+</u>	+	<u>+</u>	±	-
NC-1	=	=	<u>+</u>	<u>rd</u> S	÷		+	+	+	<u>o</u>	<u>+</u>	+	÷	<u>+</u>	<u>+</u>	±	-
W30	=	÷	÷	<u>rd</u> S	±	-	±	+	+	YT	±	<u>+</u>	±	+	+	<u>+</u>	
WIR	=	<u>÷</u>	÷	rd S	±		+	+-	+	RO	<u>+</u>	±	÷	<u>+</u>	<u>+</u>	± .	=
B2	=	±	÷	<u>rd</u> S	±		+	+1	+)	<u>R</u>	±	<u>+</u>	÷	<u>+</u>	<u>+</u>	±	-
43948	=	<u>±</u>	÷	<u>rd</u> S	Ξ	Ξ	+1	+1	+1	<u>o</u>	÷	÷	÷	+	+1	÷	<u>-</u>
43949	=	±	÷	<u>rd</u> S	÷	=	±	+	+1	<u>o</u>	+	+1	÷	+1	+1	<u>+</u>	-
43950	=	=	÷	<u>rd</u> S	±	Ξ	÷	<u>+</u>	<u>+</u>	<u>o</u>	±	<u>+</u>	±	<u>+</u>	+	<u>+</u>	-
43951	=	<u>+</u>	÷	<u>rd</u> S	÷	=	<u></u>	+	<u>+</u>	<u>o</u>	±	±	÷	+1	+	<u>+</u>	-
43952	=	÷	Ξ	<u>rd</u> S	±	=	=	÷	÷	<u>o</u>	÷	÷	÷	<u>+</u>	<u></u>	<u>+</u>	=

* - A = Gram's stain, B=Crystaline inclusion bodies, C=Bioluminescence, D=Cell form, E=Motility, F=Nitrate reduction, G=Presence of catalase, H=Gelatin hydrolysis, I=Dye uptake, J=Pigmentation, K=Growth on EMB agar, L=Growth on MacConkey agar, M=Growth on Tergitol-7 agar, N=Facultative anaerobe, O=Growth at 20°C, P=Growth at 28°C, Q=Growth at 37°C, † - +/- = positive or negative for trait, rd=rod, S=sized within Genus descriptors, RO=red-orange, LR = light red, R= red, O= organge, Y= yellow, T= tan, LY= light yellow, YT= yellow tan, and LO= light orange.

10

Cellular fatty acid analysis is a recognized tool for bacterial characterization at the genus and species level (Tornabene, T.G. 1985. <u>Lipid Analysis and the Relationship to</u>

Chemotaxonomy in Methods in Microbiology, Vol 18, 203-2:4.; Goodfellow, M. and O'Donnell, A.G. 1993. Roots of Bacterial Systematics in Handbook of New Bacterial Systematics (ed. Goodfellow, M. & O'Donnell, A.G.) pp. 3-54. London: Academic Press Ltd.), these references are incorporated herein by reference, and were used to confirm that our collection was related at the genus level. Cultures were shipped to an external, contract laboratory for fatty acid methyl ester analysis (FAME) using a Microbial ID (MIDI, Newark, DE, USA) 10 Microbial Identification System (MIS). The MIS system consists of a Hewlett Packard HP5890A gas chromatograph with a $25mm \times 0.2mm$ 5% methylphenyl silicone fused silica capillary column. Hydrogen is used as the carrier gas and a flame-ionization detector functions in conjunction with an automatic sampler, integrator 15 and computer. The computer compares the sample fatty acid methyl esters to a microbial fatty acid library and against a calibration mix of known fatty acids. As selected by the contract laboratory, strains were grown for 24 hours at 28 C on trypticase soy agar prior to analysis. Extraction of samples was 20 performed by the contract lab as per standard FAME methodology. There was no direct identification of the strains to any luminescent bacterial group other than Photorhabdus. When the cluster analysis was performed, which compares the fatty acid profiles of a group of isolates, the strain fatty acid profiles 25 were related at the genus level.

The evolutionary diversity of the *Photorhabdus* strains in our collection was measured by analysis of PCR (Polymerase Chain Reaction) mediated genomic fingerprinting using genomic DNA from each strain. This technique is based on families of repetitive DNA sequences present throughout the genome of diverse bacterial species (reviewed by Versalovic, J., Schneider, M., DE Bruijn, F.J. and Lupski, J.R. 1994. Methods Mol. Cell. Biol., 5, 25-40.). Three of these, repetitive extragenic palindromic sequence (REP), enterobacterial repetitive intergenic consensus (ERIC) and the BOX element are thought to play an important role in the organization of the bacterial genome. Genomic organization is believed to be shaped by selection and the differential dispersion of these elements within the genome of closely related bacterial strains can be used to discriminate these strains (e.g.

30

Louws, F.J., P. Dright, D.W., Stephens, C.T. and DE Bruijn, F.J. 1994. Appl. Environ. Micro. 60, 2286-2295.). Rep-PCR utilizes oligonucleotide primers complementary to these repetitive sequences to amplify the variably sized DNA fragments lying between them. The resulting products are separated by electrophoresis to establish the DNA "fingerprint" for each strain.

To isolate genomic DNA from our strains, cell pellets were resuspended in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to a final volume of 10 ml and 12 ml of 5 M NaCl was then added. This 10 mixture was centrifuged 20 min. at 15,000 x g. The resulting pellet was resuspended in 5.7 ml of TE and 300 µl of 10% SDS and 60 ul 20 mg/ml proteinase K (Gibco BRL Products, Grand Island, NY) were added. This mixture was incubated at 37 °C for 1 hr. 15 approximately 10 mg of lysozyme was then added and the mixture was incubated for an additional 45 min. One milliliter of 5M NaCl and 800 ul of CTAB/NaCl solution (10% w/v CTAB, 0.7 M NaCl) were then added and the mixture was incubated 10 min. at 65°C, gently agitated, then incubated and agitated for an additional 20 min. 20 to aid in clearing of the cellular material. An equal volume of chloroform/isoamyl alcohol solution (24:1, v/v) was added, mixed gently then centrifuged. Two extractions were then performed with an equal volume of phenol/chloroform/isoamyl alcohol (50:49:1). Genomic DNA was precipitated with 0.6 volume of isopropanol. 25 Precipitated DNA was removed with a glass rod, washed twice with 70% ethanol, dried and dissolved in 2 ml of STE (10 mM Tris-HCl pH8.0, 10 mM NaCl, 1 mM EDTA). The DNA was then quantitated by optical density at 260 nm. To perform rep-PCR analysis of Photorhabdus genomic DNA the following primers were used, REP1R-30 I; 5'-IIIICGICGICATCIGGC-3' and REP2-I; 5'-ICGICTTATCIGGCCTAC-3'. PCR was performed using the following 25µl reaction: 7.75 µl H₂O, 2.5 µl 10X LA buffer (PanVera Corp., Madison, WI), 16 µl dNTP mix (2.5 mM each), 1 μ l of each primer at 50 pM/ μ l, 1 μ l DMSO, 1.5 μ l genomic DNA (concentrations ranged from 0.075-0.480 µg/µl) and 35 0.25 µl TaKaRa EX Tag (PanVera Corp., Madison, WI). amplification was performed in a Perkin Elmer DNA Thermal Cycler (Norwalk, CT) using the following conditions: 95°C/7 min. then 35 cycles of: 94°C/1 min., 44°C/1 min., 65°C/8 min., followed by 15 min. at 65°C. After cycling, the 25 μl reaction was added to 5 μl

of 6% gel Toading buffer (0.25% bromophenol blue, 40% www sucrose in H2O). A 15x20cm 1%-agarose gel was then run in TBE buffer (0.09 M Tris-borate, 0.002 M EDTA) using 8 ul of each reaction. The gel was run for approximately 16 hours at 45v. Gels were then stained in 20 ug/ml ethidium bromide for 1 hour and destained in TBE buffer for approximately 3 hours. Polaroid® photographs of the gels were then taken under UV illumination.

The presence or absence of bands at specific sizes for each strain was scored from the photographs and entered as a 10 similarity matrix in the numerical taxonomy software program, NTSYS-pc (Exeter Software, Setauket, NY). Controls of E. coli strain HB101 and Xanthomonas oryzae pv. oryzae assayed at the same time produced PCR "fingerprints" corresponding to published reports (Versalovic, J., Koeuth, T. and Lupski, J.R. 1991. 15 Nucleic Acids Res. 19, 6823-6831; Vera Cruz, C.M., Halda-Alija, L., Louws, F., Skinner, D.Z., George, M.L., Nelson, R.J., DE Bruijn, F.J., Rice, C. and Leach, J.E. 1995. Int. Rice Res. Notes, 20, 23-24.; Vera Cruz, C.M., Ardales, E.Y., Skinner, D.Z., Talag, J., Nelson, R.J., Louws, F.J., Leung, H., Mew, T.W. and 20 Leach, J.E. 1996. Phytopathology (in press, respectively). The data from Photorhabdus strains were then analyzed with a series of programs within NTSYS-pc; SIMQUAL (Similarity for Qualitative data) to generate a matrix of similarity coefficients (using the Jaccard coefficient) and SAHN (Sequential, Agglomerative, 25 Heirarchical and Nested) clustering [using the UPGMA (Unweighted Pair-Group Method with Arithmetic Averages) method] which groups related strains and can be expressed as a phenogram (Figure 5). The COPH (cophenetic values) and MXCOMP (matrix comparison) programs were used to generate a cophenetic value matrix and 30 compare the correlation between this and the original matrix upon which the clustering was based. A resulting normalized Mantel statistic (r) was generated which is a measure of the goodness of fit for a cluster analysis (r=0.8-0.9 represents a very good fit). In our case r = 0.919. Therefore, our collection is

comprised of a diverse group of easily distinguishable strains

representative of the Photorhabdus genus.

Example 13 Insecticidal Utility of Toxin(s) Produced by Various Fhotorhabdus Strains

Initial "seed" cultures of the various Photorhabdus strains 5 were produced by inoculating 175 ml of 2% Proteose Peptone #3 (PP3) (Difco Laboratories, Detroit, MI) liquid media with a primary variant subclone in a 500 ml tribaffled flask with a Delong neck, covered with a Kaput. Inoculum for each seed culture 10 was derived from oil-overlay agar slant cultures or plate cultures. After inoculation, these flasks were incubated for 16 hrs at 28°C on a rotary shaker at 150 rpm. These seed cultures were then used as uniform inoculum sources for a given fermentation of each strain. Additionally, overlaying the post-15 log seed culture with sterile mineral oil, adding a sterile magnetic stir bar for future resuspension and storing the culture in the dark, at room temperature provided long-term preservation of inoculum in a toxin-competent state. The production broths were inoculated by adding 1% of the actively growing seed culture to fresh 2% PP3 media (e.g. 1.75 ml per 175 ml fresh media). 20 Production of broths occurred in either 500 ml tribaffled flasks (see above), or 2800 ml baffled, convex bottom flasks (500 ml volume) covered by a silicon foam closure. Production flasks were incubated for 24-48 hrs under the above mentioned conditions. Following incubation, the broths were dispensed into sterile 1 L polyethylene bottles, spun at 2600 x g for 1 hr at 10°C and decanted from the cell and debris pellet. The liquid broth was then vacuum filtered through Whatman GF/D (2.7 uM retention) and GF/B (1.0 uM retention) glass filters to remove 30 debris. Further broth clarification was achieved with a tangential flow microfiltration device (Pall Filtron, Northborough, MA) using a 0.5 µM open-channel filter. When necessary, additional clarification could be obtained by chilling the broth (to 4°C) and centrifuging for several hours at 2600 x g. Following these procedures, the broth was filter sterilized 35 using a 0.2 uM nitrocellulose membrane filter. Sterile broths were then used directly for biological assay, biochemical analysis or concentrated (up to 15-fold) using a 10,000 MW cutoff, M12 ultra-filtration device (Amicon, Beverly MA) or

centrifugal concentrators (Millipore, Bedrord, MA and Pall Filtron, Northborough, MA) with a 10,000 MW pore size. In the case of centrifugal concentrators, the broth was spun at $2000 \times g$ for approximately 2 hr. The 10,000 MW permeate was added to the corresponding retentate to achieve the desired concentration of components greater than 10,000 MW. Heat inactivation of processed broth samples was acheived by heating the samples at 100°C in a sand-filled heat block for 10 minutes.

The broth(s) and toxin complex(es) from different Photorhabdus strains are useful for reducing populations of insects and were used in a method of inhibiting an insect population which comprises applying to a locus of the insect an effective insect inactivating amount of the active described. A demonstration of the breadth of insecticidal activity observed from broths of a selected group of Photorhabdus strains fermented as described above is shown in Table 19. It is possible that additional insecticidal activities could be detected with these strains through increased concentration of the broth or by employing different fermentation methods. Consistent with the activity being associated with a protein, the insecticidal activity of all strains tested was heat labile (see above).

Culture broth(s) from diverse Photorhabdus strains show differential insecticidal activity (mortality and/or growth inhibition, reduced adult emergence) against a number of insects. More specifically, the activity is seen against corn rootworm larvae and boll weevil larvae which are members of the insect order Coleoptera. Other members of the Coleoptera include wireworms, pollen beetles, flea beetles, seed beetles and Colorado potato beetle. Activity is also observed against aster leafhopper and corn plant hopper, which are members of the order Homoptera. Other members of the Homoptera include planthoppers, pear psylla, apple sucker, scale insects, whiteflies, spittle bugs as well as numerous host specific aphid species. The broths and purified toxin complex(es) are also active against tobacco budworm, tobacco hornworm and European corn borer which are members of the order Lepidoptera. Other typical members of this order are beet armyworm, cabbage looper, black cutworm, corn earworm, codling moth, clothes moth, Indian mealmoth, leaf rollers, cabbage worm, cotton bollworm, bagworm, Eastern tent

5

10

15

20

25

30

seen against fruitfly and mosquito larvae which are members of the order Diptera. Other members of the order Diptera are, pea midge, carrot fly, cabbage root fly, turnip root fly, onion fly, crane fly and house fly and various mosquito species. Activity with broth(s) and toxin complex(es) is also seen against two-spotted spider mite which is a member of the order Acarina which includes strawberry spider mites, broad mites, citrus red mite. European red mite, pear rust mite and tomato russet mite.

Activity against corn rootworm larvae was tested as follows. Photorhabdus culture broth(s) (0-15 fold concentrated, filter sterilized), 2% Proteose Peptone #3, purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer , pH 7.0 were applied directly to the surface (about 1.5 cm²) of artificial diet (Rose, R. I. and McCabe, J. M. (1973). J. Econ. Entomol. 66, (398-400) in 40 µl aliquots. Toxin complex was diluted in 10 mM sodium phosphate buffer, pH 7.0. The diet plates were allowed to air-dry in a sterile flow-hood and the wells were infested with single, neonate Diabrotica undecimpunctata howardi (Southern corn rootworm, SCR) hatched from surface sterilized eggs. The plates were sealed, placed in a humidified growth chamber and maintained at 27°C for the appropriate period (3-5 days). Mortality and larval weight determinations were then scored. Generally, 16 insects per treatment were used in all studies. Control mortality was generally less than 5%.

Activity against boll weevil (Anthomonas grandis) was tested as follows. Concentrated (1-10 fold) Photorhabdus broths, control medium (2% Proteose Peptone #3), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0 were applied in 60 µl aliquots to the surface of 0.35 g of artificial diet (Stoneville Yellow lepidopteran diet) and allowed to dry. A single, 12-24 hr boll weevil larva was placed on the diet, and the wells were sealed and held at 25°C, 50% RH for 5 days. Mortality and larval weights were then assessed. Control mortality ranged between 0-13%.

Activity against mosquito larvae was tested as follows. The assay was conducted in a 96-well microtiter plate. Each well contained 200 ul of aqueous solution (10-fold concentrated Photorhabdus culture broth(s), control medium (2% Proteose

10

15

20

25

30

Peptone #3), 10 mM sodium phosphate buffer, toxin complex(es) @ 0.23 mg/ml or H20) and approximately 20, 1-day old larvae (Aedes aegypti). There were 6 wells per treatment. The results were read at 3-4 days after infestation. Control mortality was between 0-20%.

Activity against fruitflies was tested as follows.

Purchased Drosophila melanogaster medium was prepared using 50% dry medium and a 50% liquid of either water, control medium (2% Proteose Peptone #3), 10-fold concentrated Photorhabdus culture broth(s), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0. This was accomplished by placing 4.0 ml of dry medium in each of 3 rearing vials per treatment and adding 4.0 ml of the appropriate liquid. Ten late instar Drosophila melanogaster maggots were then added to each 25 ml vial. The vials were held on a laboratory bench, at room temperature, under fluorescent ceiling lights. Pupal or adult counts were made after 15 days of exposure. Adult emergence as compared to water and control medium (0-16% reduction).

Activity against aster leafhopper adults (Macrosteles 20 severini) and corn planthopper nymphs (Peregrinus maidis) was tested with an ingestion assay designed to allow ingestion of the active without other external contact. The reservoir for the active/"food" solution is made by making 2 holes in the center of the bottom portion of a 35x10 mm Petri dish. A 2 inch Parafilm 25 M® square is placed across the top of the dish and secured with an "O" ring. A l oz. plastic cup is then infested with approximately 7 hoppers and the reservoir is placed on top of the cup, Parafilm down. The test solution is then added to the reservoir through the holes. In tests using 10-fold concentrated 30 Photorhabdus culture broth(s), the broth and control medium (2% Proteose Peptone #3) were dialyzed against 10 mM sodium phosphate buffer, pH 7.0 and sucrose (to 5%) was added to the resulting solution to reduce control mortality. Purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0 was also 35 tested. Mortality is reported at day 3. The assay was held in an incubator at 28°C, 70% RH with a 16/8 photoperiod. The assays were graded for mortality at 72 hours. Control mortality was less than 6%.

5

10

Activity ainst lepidopteran larvae v tested as follows. Concentrated (19-fold) Photorhabdus culture broth(s), control medium (2% Proteose Peptone #3), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0 were applied 5 directly to the surface $(\sim 1.5 \text{ cm}^2)$ of standard artificial lepidopteran diet (Stoneville Yellow diet) in 40 µl aliquots. The diet plates were allowed to air-dry in a sterile flow-hood and each well was infested with a single, neonate larva. European corn borer (Ostrinia nubilalis) and tobacco hornworm (Manduca 10 sexta) eggs were obtained from commercial sources and hatched inhouse, whereas tobacco budworm (Heliothis virescens) larvae were supplied internally. Following infestation with larvae, the diet plates were sealed, placed in a humidified growth chamber and maintained in the dark at 27°C for the appropriate period. Mortality and weight determinations were scored at day 5. Generally, 16 insects per treatment were used in all studies. Control mortality generally ranged from 4-12.5% for control medium and was less than 10% for phosphate buffer.

Activity against two-spotted spider mite (Tetranychus urticae) was determined as follows. Young squash plants were trimmed to a single cotyledon and sprayed to run-off with 10-fold concentrated broth(s), control medium (2% Proteose Peptone #3), purified toxin complex(es) [0.23 mg/ml] or 10 mM sodium phosphate buffer, pH 7.0. After drying, the plants were infested with a mixed population of spider mites and held at lab temperature and humidity for 72 hr. Live mites were then counted to determine levels of control.

Table 19 Observed Insecticidal Spectrum of Broths From Different Photorhabdus Strains

5	Photorhabdus Strain	Sensitive* Insect Species
	WX - 1	3**, 4, 5, 6, 7, 8
	WX - 2	2, 4
	WX - 3	1, 4
	WX - 4	1, 4
10	wx-5	4
	wx-6	4
	wx - 7	3, 4, 5, 6, 7, 8
	WX - 8	1, 2, 4
	WX - 9	1, 2, 4
15	WX - 10	4
	WX-11	1, 2, 4
	WX-12	2, 4, 5, 6, 7, 8
	WX - 14	1, 2, 4
	WX-15	1, 2, 4
20	W30	3, 4, 5, 8
	NC - 1	1, 2, 3, 4, 5, 6, 7, 8, 9
	WIR	2, 3, 5, 6, 7, 8
	889Н	1, 3, 4, 5, 7, 8
	нь	3, 4, 5, 7, 8
25	Hm	1, 2, 3, 4, 5, 7, 8
	Н9	1, 2, 3, 4, 5, 6, 7, 8
	W-14	1, 2, 3, 4, 5, 6, 7, 8, 10
	ATCC 43948	4
	ATCC 43949	4
30	ATCC 43950	4
	ATCC 43951	4
	ATCC 43952	4

^{* = ≥ 25%} mortality and/or growth inhibition vs. control
** = 1; Tobacco budworm, 2; European corn borer, 3; 35 Tobacco hornworm, 4; Southern corn rootworm, 5; Boll weevil, 6; Mosquito, 7; Fruit Fly, 8; Aster Leafhopper, 9; Corn planthopper, 10; Two-spotted spider mite.

Example 14

Non M-14 Photorhabdus Strains:

Purification, Characterization and Activity Spectrum

5 Purification

The protocol, as follows, is similar to that developed for the purification of W-14 and was established based on purifying those fractions having the most activity against Southern corn root worm (SCR), as determined in bioassays (see Example 13). Typically, 4-20 L of broth that had been filtered, as described 10 in Example 13, were received and concentrated using an Amicon spiral ultra filtration cartridge Type S1Y100 attached to an Amicon M-12 filtration device. The retentate contained native proteins consisting of molecular sizes greater than 100 kDa. whereas the flow through material contained native proteins less 15 than 100 kDa in size. The majority of the activity against SCR was contained in the 100 kDa retentate. The retentate was then continually diafiltered with 10 mM sodium phosphate (pH = 7.0) until the filtrate reached an A280 < 0.100. Unless otherwise stated, all procedures from this point were performed in buffer 20 as defined by 10 mM sodium phosphate (pH 7.0). The retentate was then concentrated to a final volume of approximately 0.20 L and filtered using a 0.45 mm Nalgene™ Filterware sterile filtration The filtered material was loaded at 7.5 ml/min onto a Pharmacia HR16/10 column which had been packed with PerSeptive 25 Biosystem Poros® 50 HQ strong anion exchange matrix equilibrated in buffer using a PerSeptive Biosystem Sprint® HPLC system. After loading, the column was washed with buffer until an A280 $^{\prime\prime}$ 0.100 was achieved. Proteins were then eluted from the column at 2.5 ml/min using buffer with 0.4 M NaCl for 20 min for a total 30 volume of 50 ml. The column was then washed using buffer with 1.0 M NaCl at the same flow rate for an additional 20 min (final volume = 50 ml). Proteins eluted with 0.4 M and 1.0 M NaCl were placed in separate dialysis bags (Spectra/Por® Membrane MWCO: 2.000) and allowed to dialyze overnight at 4° C in 12 L buffer. 35 The majority of the activity against SCR was contained in the 0.4 M fraction. The 0.4 M fraction was further purified by application of 20 ml to a Pharmacia XK 26/100 column that had

-94-

been prepacked with Sepharose CL4B (Pharmacia) using a flow rate

of 0.75 ml/min. Fractions were pooled based on A280 peak profile and concentrated to a final volume of 0.75 ml using a Millipore Ultrafree®-15 centrifugal filter device Biomax-50K NMWL membrane. Protein concentrations were determined using a Biorad Protein Assay Kit with bovine gamma globulin as a standard.

Characterization

10

15

20

25

30

35

The native molecular weight of the SCR toxin complex was determined using a Pharmacia HR 16/50 that had been prepacked with Sepharose CL4B in buffer. The column was then calibrated using proteins of known molecular size thereby allowing for calculation of the toxin approximate native molecular size. As shown in Table 20, the molecular size of the toxin complex ranged from 777 kDa with strain Hb to 1,900 kDa with strain WX-14. The yield of toxin complex also varied, from strain WX-12 producing 0.8 mg/L to strain Hb, which produced 7.0 mg/L.

Proteins found in the toxin complex were examined for individual polypeptide size using SDS-PAGE analysis. Typically, 20 mg protein of the toxin complex from each strain was loaded onto a 2-15% polyacrylamide gel (Integrated Separation Systems) and electrophoresed at 20 mA in Biorad SDS-PAGE buffer. After completion of electrophoresis, the gels were stained overnight in Biorad Coomassie blue R-250 (0.2% in methanol: acetic acid: water; 40:10:40 v/v/v). Subsequently, gels were destained in methanol:acetic acid: water; 40:10:40 (v/v/v). The gels were then rinsed with water for 15 min and scanned using a Molecular Dynamics Personal Laser Densitometer. Lanes were quantitated and molecular sizes were calculated as compared to Biorad high molecular weight standards, which ranged from 200-45 kDa.

Sizes of the individual polypeptides comprising the SCR toxin complex from each strain are listed in Table 21. The sizes of the individual polypeptides ranged from 230 kDa with strain WX-1 to a size of 16 kDa, as seen with strain WX-7. Every strain, with the exception of strain Hb, had polypeptides comprising the toxin complex that were in the 160-230 kDa range, the 100-160 kDa range, and the 50-80 kDa range. These data indicate that the toxin complex may vary in peptide composition and components from strain to strain, however, in all cases the

PCT/US96/18003 WO 97/17432

appears to consist of a lare oligomeric toxin attribut protein complex.

Table 20 Characterization of a Toxin Complex From Non W-14 Photorhabdus Strains

Strain	Approx.	Yield
	Native	Active
	Molecular Wt.a	Fraction
		(mg/L)b
Н9	972,000	1.8
НЬ	777,000	7.0
Hm	1,400,000	1.1
нр88	813,000	2.5
NC1	1,092,000	3.3
WIR	979,000	1.0
WX-1	973,000	0.8
WX-2	951,000	2.2
WX-7	1,000,000	1.5
WX-12	898,000	0.4
WX-14	1,900,000	1.9
W-14	860,000	7.5
a Nation malagular	woight determined using a	Dharmacia UD

a Native molecular weight determined using a Pharmacia HR 16/50 column packed with Sepharose CL4B

Activity Spectrum

5

10

15

As shown in Table 21, the toxin complexes purified from strains Hm and H9 were tested for activity against a variety of insects, with the toxin complex from strain W-14 for comparison. The assays were performed as described in Example 13. The toxin complex from all three strains exhibited activity against tobacco bud worm, European corn borer, Southern corn root worm, and aster leafhopper. Furthermore, the toxin complex from strains Hm and W-14 also exhibited activity against two-spotted spider mite. In addition, the toxin complex from W-14 exhibited activity against mosquito larvae. These data indicate that the toxin complex, while having similarities in activities between certain orders of 20 insects, can also exhibit differential activities against other orders of insects.

b Amount of toxin complex recovered from culture broth.

Table 21
The Approximate Sizes (in kDa) of Peptides in a Purified
Toxin Complex From Non W-14 Photorhabdus

Н9	НÞ	Hm	HP	NC-1	WIR	WX-1	WX-2	WX-7	WX-12	WX-14	M-T1
1			88								j
180	150	170	170	180	170	230	200	200	180	210	190
170	140	140	160	170	160	190	170	180	160	180	180
160	139	100	140	140	120	170	150	110	140	160	170
140	130	81	130	110	110	160	120	87	139	120	160
120	120	72	129	44	89	110	110	75	130	110	150
98	100	68	110	16	79	98	82	43	110	100	130
87	98	49	100		74	76	64	33	92	95	120
84	88	46	86		62	58	37	28	87	80	119
79	81	30	81		51	53	30	26	80	69	93
72	75	22	77		40	41		23	73	49	90
68	69	20	73		39	35		22	59	41	77
60	60	19	60		37	31		21	56	33	69
57	57		58		33	28		19	51		65
52	54		45		30	24		18	37		63
46	49		39		28	22		16	33		60
40	44		35		27				32		5 l
37	39				25				26		45
	37				23						4 C
Į	35										3.9
											2.9

Table 22
Observed Insecticidal Spectrum of a Purified Toxin Complex from
Photorhabdus Strains

5	<u>Photorhabdus</u> Strain Sensitive* Insect Species
10	Hm Toxin Complex 1**, 2, 3, 5, 6, 7, 8 H9 Toxin Complex 1, 2, 3, 6, 7, 8 W-14 Toxin Complex 1, 2, 3, 4, 5, 6, 7, 8
	= > 25% mortality or growth inhibition= > 25% mortality or growth inhibition
15	 ** = 1; Tobacco bud worm, 2; European corn borer, 3; Southern corn root worm, 4; Mosquito, 5; Two-spotted spider mite, 6; Aster Leafhopper, 7; Fruit Fly, 8; Boll Weevil

<u>Example 15</u>
<u>Sub-Fractionation of *Photorhabdus* Protein Toxin Complex</u>

20

25

30

35

40

The Photorhabdus protein toxin complex was isolated as described in Example 14. Next, about 10 mg toxin was applied to a MonoQ 5/5 column equilibrated with 20 mM Tris-HCl, pH 7.0 at a flow rate of lml/min. The column was washed with 20 mM Tris-HCl, pH 7.0 until the optical density at 280 nm returned to baseline absorbance. The proteins bound to the column were eluted with a linear gradient of 0 to 1.0 M NaCl in 20 mM Tris-HCl, pH 7.0 at 1 ml/min for 30 min. One ml fractions were collected and subjected to Southern corn rootworm (SCR) bioassay (see Example 13). Peaks of activity were determined by a series of dilutions of each fraction in SCR bioassays. Two activity peaks against SCR were observed and were named A (eluted at about 0.2-0.3 M NaCl) and B (eluted at 0.3-0.4 M NaCl). Activity peaks A and B were pooled separately and both peaks were further purified using a 3-step procedure described below.

Solid (NH4)2SO4 was added to the above protein fraction to a final concentration of 1.7 M. Proteins were then applied to a phenyl-Superose 5/5 column equilibrated with 1.7 M (NH4)2SO4 in 50 mM potassium phosphate buffer, pH 7 at 1 ml/min. Proteins bound to the column were eluted with a linear gradient of 1.7 M (NH4)2SO4, 0% ethylene glycol, 50 mM potassium phosphate, pH 7.0 to 25% ethylene glycol, 25 mM potassium phosphate, pH 7.0 (no (NH4)2SO4) at 0.5 ml/min. Fractions were dialyzed overnight

against 10 sodium phosphate buffer, pH ... Activities in each fraction against SCR were determined by bioassay.

The fractions with the highest activity were pooled and applied to a MonoQ 5/5 column which was equilibrated with 20 mM Tris-HCl, pH 7.0 at 1 ml/min. The proteins bound to the column were eluted at 1 ml/min by a linear gradient of 0 to 1M NaCl in 20 mM Tris-HCl, pH 7.0.

For the final step of purification, the most active fractions above (determined by SCR bioassay) were pooled and subjected to a second phenyl-Superose 5/5/ column. Solid (NH4)2SO4 was added to a final concentration of 1.7 M. The solution was then loaded onto the column equilibrated with 1.7 M (NH4)2SO4 in 50 mM potassium phosphate buffer, pH 7 at lml/min. Proteins bound to the column were eluted with a linear gradient of 1.7 M (NH4)2SO4, 50 mM potassium phosphate, pH 7.0 to 10 mM potassium phosphate, pH 7.0 at 0.5 ml/min. Fractions were dialyzed overnight against 10 mM sodium phosphate buffer, pH 7.0. Activities in each fraction against SCR were determined by bioassay.

The final purified protein by the above 3-step procedure from peak A was named toxin A and the final purified protein from peak B was named toxin B.

Characterization and Amino Acid Sequencing of Toxin A and Toxin B
In SDS-PAGE, both toxin A and toxin B contained two major (>
90% of total Commassie stained protein) peptides: 192 kDa (named
Al and Bl, respectively) and 58 kDa (named A2 and B2,
respectively). Both toxin A and toxin B revealed only one major
band in native PAGE, indicating Al and A2 were subunits of one
protein complex, and Bl and B2 were subunits of one protein
complex. Further, the native molecular weight of both toxin A
and toxin B were determined to be 860 kDa by gel filtration
chromatography. The relative molar concentrations of Al to A2
was judged to be a l to l equivalence as determined by
densiometric analysis of SDS-PAGE gels. Similarly, Bl and B2
peptides were present at the same molar concentration.

Toxin A and toxin B were electrophoresed in 10% SDS-PAGE and transblotted to PVDF membranes. Blots were sent for amino acid analysis and N-terminal amino acid sequencing at Harvard MicroChem and Cambridge ProChem, respectively. The N-terminal

10

15

25

30

35

amino sequen f Bl was determined to be intical to SEQ ID NO:1. the TcbAii region of the tcbA gene (SEQ ID NO:12, position 87 to 99). A unique N-terminal sequence was obtained for peptide B2 (SEQ ID NO:40). The N-terminal amino acid sequence of peptide B2 was identical to the TcbAiii region of the derived amino acid sequence for the tcbA gene (SEQ ID NO:12, position 1935 to 1945). Therefore, the B toxin contained predominantly two peptides. TcbAii and TcbAiii, that were observed to be derived from the same gene product, TcbA.

The N-terminal sequence of A2 (SEQ ID NO:41) was unique in comparison to the TcbAiii peptide and other peptides. The A2 peptide was denoted TcdAiii (see Example 17). SEQ ID NO:6 was determined to be a mixture of amino acid sequences SEQ ID NO:40 and 41.

Peptides Al and A2 were further subjected to internal amino 15 acid sequencing. For internal amino acid sequencing, 10 µg of toxin A was electrophoresized in 10% SDS-PAGE and transblotted to PVDF membrane. After the blot was stained with amide black, peptides Al and A2, denoted TcdAii and TcdAiii, respectively, were excised from the blot and sent to Harvard MicroChem and 20 Cambridge ProChem. Peptides were subjected to trypsin digestion followed by HPLC chromatography to separate individual peptides. N-terminal amino acid analysis was performed on selected tryptic peptide fragments. Two internal amino acid sequences of peptide Al (TcdAii-PK71, SEQ ID NO:38 and TcdAii-PK44, SEQ ID NO:39) were 25 found to have significant homologies with deduced amino acid sequences of the TcbAii region of the tcbA gene (SEQ ID NO:12). Similarly, the N-terminal sequence (SEQ ID NO:41) and two internal sequences of peptides A2 (TcdAiii-PK57, SEQ ID NO:42 and TcdAiii-PK20, SEQ ID NO.43) also showed significant homology with 30 deduced amino acid sequences of TcbAiii region of the tcbA gene (SEQ ID NO:12).

In summary of above results, the toxin complex has at least two active protein toxin complexes against SCR; toxin A and toxin B. Toxin A and toxin B are similar in their native and subunits molecular weight, however, their peptide compositions are different. Toxin A contained peptides TcdAii and TcdAiii as the major peptides and the toxin B contains TcbAii and TcbAiii as the major peptides.

-100-

35

5

Example 16

Cleavage and Activation of TcbA Peptide

5

10

15

20

.25

30

35

40

In the toxin B complex, peptide TcbAii and TcbAiii originate from the single gene product TcbA (Example 15). The processing of TcbA peptide to TcbAii and TcbAiii is presumably by the action of Photorhabdus protease(s), and most likely, the metalloproteases described in Example 10. In some cases, it was noted that when Photorhabdus W-14 broth was processed, TcbA peptide was present in toxin B complex as a major component, in addition to peptides TcbAii and TcbAiii. Identical procedures, described for the purification of toxin B complex (Example 15), were used to enrich peptide TcbA from toxin complex fraction of W-14 broth. purified material was analyzed in a 4-20% gradient SDS-PAGE and major peptides were quantified by densitometry. It was determined that TcbA, TcbAii and TcbAiii comprised 58%, 36%, and 6%, respectively, of total protein. The identities of these peptides were confirmed by their respective molecular sizes in SDS-PAGE and Western blot analysis using monospecific antibodies. molecular weight of this fraction was determined to be 860 kDa.

The cleavage of TcbA was evaluated by treating the above purified material with purified 38 kDa and 58 kDa W-14 Photorhabdus metalloproteases (Example 10), and Trypsin as a control enzyme (Sigma, MO). The standard reaction consisted 17.5 ug the above purified fraction, 1.5 unit protease, and 0.1 M Tris buffer, pH 8.0 in a total volume of 100 µl. For the control reaction, protease was omitted. The reaction mixtures were incubated at 37 °C for 90 min. At the end of the reaction, 20 ul was taken and boiled with SDS-PAGE sample buffer immediately for electrophoresis analysis in a 4-20% gradient SDS-PAGE. determined from SDS-PAGE that in both 38 kDa and 58 kDa protease treatments, the amount of peptides TcbAii and TcbAiii increased about 3-fold while the amount of TcbA peptide decreased proportionally (Table 23). The relative reduction and augmentation of selected peptides was confirmed by Western blot analyses. Furthermore, gel filtration of the cleaved material revealed that the native molecular size of the complex remained the same. Upon trypsin treatment, peptides TcbA and TcbAii were

nonspecifically digested into small peptides. This indicated that 38 kDa and 58 kDa Photorhabdus proteases can specifically process peptide TcbA into peptides TcbAii and TcbAiii. Protease treated and untreated control of the remaining 80 ul reaction mixture were serial diluted with 10 mM sodium phosphate buffer, pH 7.0 and analyzed by SCR bioassay. By comparing activity in several dilution, it was determined that the 38 kDa protease treatment increased SCR insecticidal activity approximately 3 to 4 fold. The growth inhibition of remaining insects in the protease treatment was also more severe than control (Table 23).

Table 23 Conversion and activation of peptide TcbA into peptides $TcbA_{ii}$ and $TcbA_{iii}$ by protease treatment.

15		Control	38 kDa protease treatment
-	SO (% of total protein)	58	18
	S1 (% of total protein)	36	64
	S9 (% of total protein)	6	18
-	LD50 (µg protein)	2.1	0.52
20	SCR Weight (mg/insect)*	0.2	0.1

^{*:} an indication of growth inhibition by measuring the average weight of live insect after 5 days on diet in the assay.

Example 17 Screening of the library for a gene encoding the TcdAii Peptide

The cloning and characterization of a gene encoding the TcdA_{ii} peptide, described as SEQ ID NO:17 (internal peptide TcdA_{ii}-PT111 N-terminal sequence) and SEQ ID NO:18 (internal peptide TcdA_{ii}-PT79 N-terminal sequence) was completed. Two pools of degenerate oligonucleotides, designed to encode the amino acid sequences of SEQ ID NO:17 (Table 24) and SEQ ID NO:18 (Table 25), and the reverse complements of those sequences, were synthesized as described in Example 8. The DNA sequence of the oligonucleotides is given below:

25

30

Table 24
Degenerate Oligonucleotide for SEQ ID NO:17

P2-PT111	1	2	3	7	S	9	7	
Amino Acid	Ala	Phe	Asb	110	Asp	Asp	Val	Ser
Codons	S. GCN	TT(T/C)	AA (T/C)	AT(T/C/A)	GA(T/C)	GA(T/C)	GTN 3.	
P2.3.6.CB	5' GC (A/C/G/T)	(G/T) TT(T/C)	AAT	ATT	GAT	GAT	Gr 3'	
P2.3.5	5. GC(A/C/G/T)	/G/T) TT(T/C)	AA (T/C)	AT(T/C/A)	GA(T/C)	GA(T/C)	GT 3.	
P2.3.5R	5. AC	(G/A) TC	(G/A) TC	(G/A)TC (T/G/A)AT (G/A)TT		(G/A) AA	(A/C/G/T)GC 3.	
P2.3.5RI	5. ACI	TCI	ICI	ATI	LLI	AAI	GC 3.	
P2.3R.CB	S. CAG	(A/G)CT	(A/C)AC	ATC	ATC	AAT	ATT	AAA 3.

Table 23 Degenerate Oligonucleotide for SEQ ID NO:18

P2-PT79			2	3	4	5	9	7	8	6	10	11	12	13	
Amino Acid	I.	Phe	116	Val	Tyr	Thr	Ser	กอา	Gly	Val	Авп	Pro	Лвп	Увр	_
Codons.	2.	TTY	ATH	CTN	TAY	ACN	9	9	CGN	GTN	AAY	CCN	AAY	AAY 3	<u>-</u>
P2.79.2	2,	TTY	ATY	GTK	TAT	ACY	TCI	YTR	SGY	GTK	AAT	CCR	AAT	AAT	<u>-</u>
P2.79.3	2.	TTT	ATT	GTK	TAT	ACY	AGY	YTR	LOS	GTK	AAT	CCR	AAT	AAT 3	m
P2.79.R.1	. 5	ATT	ATT	SSX	ATT	MAC	RCC	YAR	RCT	RGT	ATA	MAC	AAT	AAA 3	~
P2.79R.CB	2.	ATT	ATT	SSK	ATT	MAC	ACC	CAG	RCT	GGT	ATA	MAC	AAT	T AAA 3'	3.
)

Ė or Ř I According to IUPAC-IUB codes for nucleotides, N = A, C, G or T, K = G or T, R = A or G, and

polymerase Chain Reactions (PCR) were serformed essentially as described in Example 8, using as forward primers F2.3.5.CB or P2.3.5, and as reverse primers P2.79.R.1 or P2.79R.CB, in all forward/reverse combinations, using Photorhabdus W-14 genomic DNA as template. In another set of reactions, primers P2.79.2 or P2.79.3 were used as forward primers, and P2.3.5R, P2.3.5RI, and P2.3R.CB were used as reverse primers in all forward/reverse combinations. Only in the reactions containing P2.3.6.CB as the forward primers combined with P2.79.R.1 or P2.79R.CB as the reverse primers was a non-artifactual amplified product seen, of estimated size (mobility on agarose gels) of 2500 base pairs. The order of the primers used to obtain this amplification product indicates that the peptide fragment TcdAii-PT111 lies amino-proximal to the peptide fragment TcdAii-PT79.

The 2500 bp PCR products were ligated to the plasmid vector pCRMII (Invitrogen, San Diego, CA) according to the supplier's instructions, and the DNA sequences across the ends of the insert fragments of two isolates (HS24 and HS27) were determined using the supplier's recommended primers and the sequencing methods described previously. The sequence of both isolates was the same. New primers were synthesized based on the determined sequence, and used to prime additional sequencing reactions to obtain a total of 2557 bases of the insert [SEQ ID NO:36]. Translation of the partial peptide encoded by SEQ ID No: 36 yields the 845 amino acid sequence disclosed as SEQ ID NO:37. Protein homology analysis of this portion of the TcdAii peptide fragment reveals substantial amino acid homology (68% similarity; 53% identity) to residues 542 to 1390 of protein TcbA [SEQ ID NO:12]. It is therefore apparent that the gene represented in part by SEQ ID NO:36 produces a protein of similar, but not identical, amino acid sequence as the TcbA protein, and which likely has similar, but not identical biological activity as the TcbA protein.

In yet another instance, a gene encoding the peptides TcdAii-PK44 and the TcdAii 58 kDa N-terminal peptide, described as SEQ ID NO:9 (internal peptide TcdAii-PK44 sequence), and SEQ ID NO:41(TcdAiii 58 kDa N-terminal peptide sequence) was isolated. Two pools of degenerate oligonucleotides, designed to encode the amino acid sequences described as SEQ ID NO:39 (Table 27) and SEQ

-104-

SUBSTITUTE SHEET (RULE 26)

5

10

15

20

25

30

ID NO:41 (Table 26), and the reverse complements of those sequences, were synthesized as described in Example 3, and their DNA sequences.

Table 26
Degenerate Oligonucleotide for SEQ ID NO:41

_					
14	पछ	?, ℃	ය ද	RCC 3:	ICC 3.
13	P 20	Ŗ	B	RCT	ATT
77	[eu	YTR	YIR	\mathfrak{M}	151
11	eq.	TIT	TIX	RTT	90
10	Leu	YTR	YTR	RGT	IGF
6	Уер	GMT	S.	YAR	RIC
8	Thr	ACY	ACI	RGT	90
7	Les.	YIR	YIR	RIC	AAA
9	扣	λCλ	ACI	WK	ည်
5	уш	M	JAY	AMA	Œ
4	भूष	Œ	Œ	YAR	S, ™
3	Ser	YCX		33 X	
2	Arg	χSO		31 ·S	
1	181	S' YTR			
Ooden #	Acido	A2.1	N2.2	A2.3.R	A2.4.R

Table 27
Degenerate Oligonucleotide for SEQ ID NO:39

Amino Acid	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
Codon #	1	2	~	7	5	9	7	8	6
Amino Acid	Gly	Pro	Val	Glu	Ile	Asn	Thr	Ala	Ile
A1.44.1	S · GGY	CCR	GTK	GAA	ATT	AAT	ACC	CCI	AT 3'
A1.44.1R	5. ATI	໑ວ໑	GTA	TTA	ATT	TCM	ACY	GGR	CC 3.
A1.44.2	2. GGI	100	GTI	GAR	ATY	AAY	ACI	CCI	AT 3'
A1.44.2R	S. ATI	CCI	GTR	TTR	ATY	TCI	ACI	GGI	CC 3.

Polymerase Chain Reactions (PCR) were performed essentially as described in Example 8, using as forward primers A1.44.1 or A1.44.2, and reverse primers A2.3R or A2.4R, in all forward/reverse combinations, using Photorhabdus W-14 genomic DNA as template. In another set of reactions, primers A2.1 or A2.2 were used as forward primers, and A1.44.1R, and A1.44.2R were used as reverse primers in all forward/reverse combinations. Only in the reactions containing A1.44.1 or A1.44.2 as the forward primers combined with A2.3R as the reverse primer was a non-artifactual amplified product seen, of estimated size (mobility on agarose gels) of 1400 base pairs. The order of the primers used to obtain this amplification product indicates that the peptide fragment TcdAii-PK44 lies amino-proximal to the 58 kDa peptide fragment of TcdAii.

The 1400 bp PCR products were ligated to the plasmid vector pCR™II according to the supplier's instructions. The DNA sequences across the ends of the insert fragments of four isolates were determined using primers similar in sequence to the supplier's recommended primers and using sequencing methods described previously. The nucleic acid sequence of all isolates differed as expected in the regions corresponding to the degenerate primer sequences, but the amino acid sequences deduced from these data were the same as the actual amino acid sequences for the peptides determined previously, (SEQ ID NOS:41 and 39).

Screening of the W-14 genomic cosmid library as described in Example 8 with a radiolabeled probe comprised of the DNA prepared above (SEQ ID NO:36) identified five hybridizing cosmid isolates, namely 17D9, 20B10, 21D2, 27B10, and 26D1. These cosmids were distinct from those previously identified with probes corresponding to the genes described as SEQ ID NO:11 or SEQ ID NO:25. Restriction enzyme analysis and DNA blot hybridizations identified three EcoR I fragments, of approximate sizes 3.7, 3.7, and 1.1 kbp, that span the region comprising the DNA of SEQ ID NO:36. Screening of the W-14 genomic cosmid library using as probe the radiolabeled 1.4 kbp DNA fragment prepared in this example identified the same five cosmids (17D9, 20B10, 21D2, 27B10, and 26D1). DNA blot hybridization to EcoR I-digested cosmid DNAs also showed hybridization to the same subset

25

30

of EcoR I fragments as seen with the 2.5 kg TcdAii gene probe, indicating that both fragments are encoded on the genomic DNA.

DNA sequence determination of the cloned EcoR I fragments revealed an uninterrupted reading frame of 7551 base pairs (SEQ ID NO:46), encoding a 282.9 kDa protein of 2516 amino acids (SEQ 5 ID NO:47). Analysis of the amino acid sequence of this protein revealed all expected internal fragments of peptides TcdAii(SEQ ID NOS:17, 18, 37, 38 and 39) and the TcdAii peptide N-terminus (SEQ ID NO:41) and all TcdAiii internal peptides (SEQ ID NOS:42 and 43). The peptides isolated and identified as TcdAii and 10 TcdAiii are each products of the open reading frame, denoted tcdA, disclosed as SEQ ID NO:46. Further, SEQ ID NO:47 shows, starting at position 89, the sequence disclosed as SEQ ID NO:13, which is the N-terminal sequence of a peptide of size approximately 201 kDa, indicating that the initial protein 15 produced from SEQ ID No: 46 is processed in a manner similar to that previously disclosed for SEQ ID NO:12. In addition, the protein is further cleaved to generate a product of size 209.2 kDa, encoded by SEQ ID NO:48 and disclosed as SEQ ID NO:49 (TcdAii peptide), and a product of size 63.6 kDa, encoded by SEQ 20 ID NO:50 and disclosed as SEQ ID NO:51 (TcdAiii peptide). Thus, it is thought that the insecticidal activity identified as toxin A (Example 15) derived from the products of SEQ ID NO:46, as exemplified by the full-length protein of 282.9 kDa disclosed as SEQ ID NO:47, is processed to produce the peptides disclosed as 25 SEQ ID NOS:49 and 51. It is thought that the insecticidal activity identified as toxin B (Example 15) derives from the products of SEQ ID NO:11, as exemplified by the 280.6 kDa protein disclosed as SEQ ID NO:12. This protein is proteolytically 30 processed to yield the 207.6 kDa peptide disclosed as SEQ ID NO:53, which is encoded by SEQ ID NO:52, and the 62.9 kDa peptide having N-terminal sequence disclosed as SEQ ID NO:40, and further disclosed as SEQ ID NO:55, which is encoded by SEQ ID NO:54.

Amino acid sequence comparisons between the proteins disclosed as SEQ ID NO:12 and SEQ ID NO:47 reveal that they have 69% similarity and 54% identity. This high degree of evolutionary relationship is not uniform throughout the entire amino acid sequence of these peptides, but is higher towards the carboxy-terminal end of the proteins, since the peptides

-108-

disclosed as SEQ ID NO:51 (derived from SEQ ID NO:47) and SEQ ID NO:55 (derived from SEQ ID NO:12) have 76% similarity and 64% identity.

5

Example 18

Control of European Cornborer-Induced Leaf Damage on Maize Plants by Spray Application of Photorhabdus (Strain W-14) Broth

10 The ability of Photorhabdus toxin(s) to reduce plant damage caused by insect larvae was demonstrated by measuring leaf damage caused by European corn borer (Ostrinia nubilalis) infested onto maize plants treated with Photorhabdus broth. Fermentation broth from Photorhabdus strain W-14 was produced and concentrated 15 approximately 10-fold using ultrafiltration (10,000 MW pore-size) as described in Example 13. The resulting concentrated broth was then filter sterilized using 0.2 micron nitrocellulose membrane filters. A similarly prepared sample of uninoculated 2% proteose peptone #3 was used for control purposes. Maize plants (a 20 DowElanco proprietary inbred line) were grown from seed to vegetative stage 7 or 8 in pots containing a soilless mixture in a greenhouse (27°C day; 22°C night, about 50%RH, 14 hr daylength, watered/fertilized as needed). The test plants were arranged in a randomized complete block design (3 reps/treatment, 25 6 plants/treatment) in a greenhouse with temperature about 22°C day; 18°C night, no artificial light and with partial shading, about 50%RH and watered/fertilized as needed. (uninoculated media and concentrated Photorhabdus broth) were applied with a syringe sprayer, 2.0 mls applied from directly 30 (about 6 inches) over the whorl and 2.0 additional mls applied in a circular motion from approximately one foot above the whorl. In addition, one group of plants received no treatment. the treatments had dried (approximately 30 minutes), twelve neonate European corn borer larvae (eggs obtained from commercial 35 sources and hatched in-house) were applied directly to the whorl. After one week, the plants were scored for damage to the leaves using a modified Guthrie Scale (Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., 40 Maddox, D., McPherson, K., Meghji, M. Z., Merlin, E., Rhodes, R.,

-109-

Warren, G. W. Wright, M. and Evola, S. V. 1993).

Bio/Technology, 11, 194-195.) and the scores were compared statistically [T-test (LSD) p<0.05 and Tukey's Studentized Range (HSD) Test p<0.1]. The results are shown in Table 28. For reference, a score of 1 represents no damage, a score of 2 represents fine "window pane" damage on the unfurled leaf with no pinhole penetration and a score of 5 represents leaf penetration with elongated lesions and/or mid rib feeding evident on more than three leaves (lesions < 1 inch). These data indicate that broth or other protein containing fractions may confer protection against specific insect pests when delivered in a sprayable formulation or when the gene or derivative thereof, encoding the protein or part thereof, is delivered via a transgenic plant or microbe.

15

35

Table 28

Effect of *Photorhabdus* Culture Broth on European Corn Borer-Induced Leaf Damage on Maize

20	Treatment	Average Guthrie	Score
	No Treatment		5.02 ^a
	Uninoculated med:	ium	5.15 ^a
	Photorhabdus Brot	th	2.24 ^b

Means with different letters are statistically different (p<0.05 or p<0.1).

Example 19

Genetic Engineering of Genes for Expression in E. coli

30 Summary of constructions

A series of plasmids were constructed to express the tcbA gene of Photorhabdus W-14 in Escherichia coli. A list of the plasmids is shown in Table 29. A brief description of each construction follows as well as a summary of the E. coli expression data obtained.

Table 29
Expression plasmids for the ccbA gene.

Plasmid	Gene	Vector/Selection	Compartment
pDAB634	t cbA	pBC/Chl	Intracellular
pAcGP67B/ tcbA	<i>ECDA</i>	pAcGP67B/Amp	Baculovirus, secreted
pDAB635	<i>CCDA</i>	pET27b/Kan	Periplasm
pET15- <i>ccbA</i>	<i>ECDA</i>	pET15-tcbA	Intracellular

Abbreviations: Kan=kanamycin, Chl=chloramphenicol, Amp=ampicillin

5

10

Construction of pDAB634

In Example 9, a large EcoR I fragment which hybridizes to the TcbA_{ii} probe is described. This fragment was subcloned into pBC (Stratagene, La Jolla CA). Sequence analysis indicates that this fragment is 8816 base pairs. The fragment encodes the *ccbA* gene with the initiating ATG at position 571 and the terminating TAA at position 8086. The fragment therefore carries 570 base pairs of *Photorhabdus* DNA upstream of the ATG and 730 base pairs downstream of the TAA.

15

20

25

30

35

Construction of Plasmid pAcGP67B/tcbA

The tcbA gene was PCR amplified using the following primers; 5' primer (S1Ac51) 5' TTT AAA CCA TGG GAA ACT CAT TAT CAA GCA CTA TC 3' and 3' primer (S1Ac31) 5' TTT AAA GCG GCC GCT TAA CGG ATG GTA TAA CGA ATA TG 3'. PCR was performed using a TaKaRa LA PCR kit from PanVera (Madison, Wisconsin) in the following reaction: 57.5 ml water, 10 ml 10X LA buffer, 16 ml dNTPs (2.5 mM each stock solution), 20 ml each primer at 10 pmoles/ml, 300 ng of the plasmid pDAB634 containing the W-14 tcbA gene and one ml of TaKaRa LA Taq polymerase. The cycling conditions were 98°C/20 sec, 68°C/5 min, 72°C/10 min for 30 cycles. A PCR product of the expected about 7526bp was isolated in a 0.8% agarose gel in TBE (100 mM Tris, 90 mM boric acid, 1 mM EDTA) buffer and purified using a Qiaex II kit from Qiagen (Chatsworth, California). purified tcbA gene was digested with Nco I and Not I and ligated into the baculovirus transfer vector pAcGP67B (PharMingen (San Diego, California)) and transformed into DH5α E. coli. gene was then cut from pAcGP67B and transferred to pET27b to create plasmid pDAB635. A missense mutation in the tcbA gene was repaired in pDAB635.

-111-

The replaced tcbA gene contains two changes from the sequence shown in Sequence ID NO:11; an A>G at 212 changing an asparagine 71 to serine 71 and a G.A at 229 changing an alanine 77 to threonine 77. These changes are both upstream of the proposed TcbAii N-terminus.

Construction of pET15-tcbA

5

10

15

20

25

30

35

40

The *tcbA* coding region of pDAB635 was transferred to vector pETI5b. This was accomplished using shotgun ligations, the DNAs were cut with restriction enzymes Nco I and Xho I. The resulting recombinant is called pETI5-*tcbA*.

Expression of TcbA in E. coli from plasmid pET15-tcbA

Expression of tcbA in E. coli was obtained by modification of the methods previously described by Studier et al. (Studier. F.W., Rosenberg, A., Dunn, J., and Dubendorff, J., (1990) T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol., 185: 60-89.). Competent E. coli cells strain BL21(DE3) were transformed with plasmid pET15-tcbA and plated on LB agar containing 100 µg/ml ampicillin and 40 mM glucose. transformed cells were plated to a density of several hundred isolated colonies/plate. Following overnight incubation at 37°C the cells were scraped from the plates and suspended in LB broth containing 100 µg /ml ampicillin. Typical culture volumes were from 200-500 ml. At time zero, culture densities (OD600) were from 0.05-0.15 depending on the experiment. Cultures were shaken at one of three temperatures (22°C, 30°C or 37°C) until a density of 0.15-0.5 was obtained at which time they were induced with 1 mM isopropylthio- β -galactoside (IPTG). Cultures were incubated at the designated temperature for 4-5 hours and then were transferred to 4°C until processing (12-72 hours).

Purification and characterization of TcbA expressed in *E.coli* from Plasmid pET15-tcbA.

 $E.\ coli$ cultures expressing TcbA peptides were processed as follows. Cells were harvested by centrifugation at 17,000 x G and the media was decanted and saved in a separate container.

The media was concentrated about 8x using the M12 (Amicon, Beverly MA) filtration system and a 100 kD molecular mass cut-off filter. The concentrated media was loaded onto an anion exchange

column and the bound proteins were eluted with 1.0 M NaCl. The 1.0 M NaCl elution peak was found to cause mortality against Southern corn rootworm (SCR) larvae Table 30). The 1.0 M NaCl fraction was dialyzed against 10 mM sodium phosphate buffer pH 7.0, concentrated, and subjected to gel filtration on Sepharose CL-4B (Pharmacia, Piscataway, New Jersey). The region of the CL-4B elution profile corresponding to calculated molecular weight (about 900 kDa) as the native W-14 toxin complex was collected, concentrated and bioassayed against larvae. The collected 900 kDa fraction was found to have insecticidal activity (see Table 30 below), with symptomology similar to that caused by native W-14 toxin complex. This fraction was subjected to Proteinase K and heat treatment, the activity in both cases was either eliminated or reduced, providing evidence that the activity is proteinaceous in nature. In addition, the active fraction tested immunologically positive for the TcbA and TcbAiii peptides in immunoblot analysis when tested with an anti-TcbAiii monoclonal antibody (Table 30).

Table 30

Results of Immunoblot and SCR Bioassays.

Fraction	SCR Activi	ty	Immunoblot	Native Size		
	% Mortality	% Growth Inhibit.	Peptides Detected	[CL-4B Estimated Size]		
TcbA Media 1.0 M Ion Exchange	+++	+++	TcbA			
TcbA Media CL-4B	+++	+++	TcbA, TcbA _{iii}	~900 kDa		
TcbA Media CL-4B + Proteinase K	++	+++	NT			
TcbA Media CL-4B + heat treatment	-	-	NT			
TcbA Cell Sup CL-4B	-	+++	TM	~900 kD		

PK = Proteinase K treatment 2 hours; Heat treatment = 100° C for 10 minutes; ND = None Detected; NT = Not Tested. Scoring system for mortality and growth inhibition as compared to control samples; 5-24%="+", 25-49%="++", 50-100%="+++".

The cell pellet was resuspended in 10 mM sodium phosphate buffer, pH=7.0, and lysed by passage through a Bio-Neb™ cell nebulizer (Glas-Col Inc., Terra Haute, IN). The pellets were

25

10

separate the cell pellet from the cell supernatant. The supernatant fraction was decanted and filtered through a 0.2 micron filter to remove large particles and subjected to anion exchange chromatography. Bound proteins were eluted with 1.0 M NaCl, dialyzed and concentrated using Blomax^{IM} (Millipore Corp, Bedford, MA) concentrators with a molecular mass cut-off of 50,000 Daltons. The concentrated fraction was subjected to gel filtration chromatography using Sepharose CL-4B beaded matrix. Bioassay data for material prepared in this way is shown in Table 30 and is denoted as "TcbA Cell Sup".

In yet another method to handle large amounts of material, the cell pellets were re-suspended in 10 mM sodium phosphate buffer, pH = 7.0 and thoroughly homogenized by using a Kontes 15 Glass Company (Vineland, NJ) 40 ml tissue grinder. The cellular debris was pelleted by centrifugation at 25,000 x g and the cell supernatant was decanted, passed through a 0.2 micron filter and subjected to anion exchange chromatography using a Pharmacia 10/10 column packed with Poros HQ 50 beads. The bound proteins 20 were eluted by performing a NaCl gradient of 0.0 to 1.0 M. Fractions containing the TcbA protein were combined and concentrated using a 50 kDa concentrator and subjected to gel filtration chromatography using Pharmacia CL-4B beaded matrix. The fractions containing TcbA oligomer, molecular mass of 25 approximately 900 kDa, were collected and subjected to anion exchange chromatography using a Pharmacia Mono Q 10/10 column equilibrated with 20 mM Tris buffer pH = 7.3. A gradient of 0.0 to 1.0 M NaCl was used to elute recombinant TcbA protein. Recombinant TcbA eluted from the column at a salt concentration 30 of approximately 0.3-0.4 M NaCl, the same molarity at which native TcbA oligomer is eluted from the Mono Q 10/10 column. recombinant TcbA fraction was found to cause SCR mortality in bioassay experiments similar to those in Table 30.

35

5

SECURNCE LISTING

5	(1) GENE	RAL INFORMATION:
J	(i)	APPLICANT: Ensign, Jerald C Bowen, David J Petell, James
10		Fatig, Raymond Schoonover, Sue ffrench-Constant, Richard Orr, Gregory L Merlo, Donald J
15		Roberts, Jean L Rocheleau, Thomas A Blackburn, Michael B Hey, Timothy D Strickland, James A
20	(ii)	TITLE OF HIVENTION: Insecticidal Protein Toxins From Photorhabdus
	(iii)	NUMBER OF SEQUENCES: 61
25	(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Quarles & Brady (B) STREET: 1 South Pinckney Street (C) CITY: Madison
30		(D) STATE: WI (E) COUNTRY: US (F) ZIP: 53703
35	(V)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.30
40	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
45	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/063,615 (B) FILING DATE: 18-MAY-1993
50	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08'395,497 (B) FILING DATE: 28-FEB-1995
	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/007,255 (B) FILING DATE: 06-NOV-1995
55	(vii)	PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 08/608,423 (B) FILING DATE: 28-FEB-1996

-115-

(vii) PRIS APPLICATION DATA: (A) APPLICATION NUMBER: US 08/705,484 (B) FILING DATE: 23-AUG-1996 5 (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Seay, Nicholas J (B) REGISTRATION NUMBER: 27386 (C) REFERENCE/DOCKET NUMBER: 960296.93804 10 (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 608-251-5000 (B) TELEFAX: 603-251-9166 15 (2) INFORMATION FOR SEO ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids 20 (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 25 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: 30 Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn 35 (2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acids (B) TYPE: amino acid 40 (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 45 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: 50 Met Gln Asp Ser Pro Glu Val Ser Ile Thr Thr Trp 5 (2) INFORMATION FOR SEQ ID NO:3: 55 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: 60 (D) TOPOLOGY: linear

-116-

SUBSTITUTE SHEET (RULE 26)

-117-

(V) FRAGMENT TYPE: N-terminal 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Leu Gly Gly Ala Ala Thr Leu Leu Asp Leu Leu Pro Gln Ile 10 (2) INFORMATION FOR SEQ ID NO:7: (i) SEOUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid 15 (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 20 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: 25 Met Leu Ser Thr Met Glu Lys Gln Leu Asn Glu 30 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid 35 (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 40 (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: 45 Met Asn Leu Ala Ser Pro Leu Ile Ser (2) INFORMATION FOR SEQ ID NO:9: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: 55 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: N-terminal 60

-118-

'Xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: Met Ile Asn Leu Asp Ile Asn Glu Gln Asn Lys Ile Met Val Val Ser 5 (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: protein (v) FRAGMENT TYPE: N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: 20 Ala Ala Lys Asp Val Lys Phe Gly Ser Asp Ala Arg Val Lys Met Leu 25 Arg Gly Val Asn (2) INFORMATION FOR SEQ ID NO:11: 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7515 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double 35 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: 40 (A) NAME/KEY: CDS (B) LOCATION: 1..7515 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: 45 ATG CAA AAC TCA TTA TCA AGC ACT ATC GAT ACT ATT TGT CAG AAA CTG Met Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln Lys Leu 1 50 CAA TTA ACT TGT CCG GCG GAA ATT GCT TTG TAT CCC TTT GAT ACT TTC Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp Thr Phe 20 CGG GAA AAA ACT CGG GGA ATG GTT AAT TGG GGG GAA GCA AAA CGG ATT 55 Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys Arg Ile 35 40 TAT GAA ATT GCA CAA GCG GAA CAG GAT AGA AAC CTA CTT CAT GAA AAA Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His Glu Lys 60 CGT ATT TTT GCC TAT GCT AAT CCG CTG CTG AAA AAC GCT GTT CGG TTG Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val Arg Leu -119-

SUBSTITUTE SHEET (RULE 26)

	65			,		70					75					30	
5	GGT Gly	ACC Thr	CGG Arg	CAA Gln	ATG Met 85	TTG Leu	GGT Gly	TTT Phe	ATA Ile	CAA Gln 90	GGT Gly	TAT Tyr	AGT Ser	GAT Asp	CTG Leu 95	TTT Phe	283
10	GGT Gly	TAA. Asn	CGT Arg	GCT Ala 100	GAT Asp	AAC Asn	TAT Tyr	GCC Ala	GCG Ala 105	CCG Pro	GGC Gly	TCG Ser	GTT Val	GCA Ala 110	TCG Ser	ATG Met	336
••	TTC Phe	TCA Ser	CCG Pro 115	GCG Ala	GCT Ala	TAT Tyr	TTG Leu	ACG Thr 120	GAA Glu	TTG Leu	TAC Tyr	CGT Arg	GAA Glu 125	GCC Ala	AAA Lys	AAC Asn	384
15	TTG Leu	CAT His 130	GAC A sp	AGC Ser	AGC Ser	TCA Ser	ATT Ile 135	TAT Tyr	TAC Tyr	CTA Leu	GAT Asp	AAA Lys 140	CGT Arg	CGC Arg	CCG Pro	GAT Asp	432
20	TTA Leu 145	GCA Ala	AGC Ser	TTA Leu	ATG Met	CTC Leu 150	AGC Ser	CAG Gln	AAA Lys	AAT Asn	ATG Met 155	GAT Asp	GAG Glu	GAA Glu	ATT Ile	TCA Ser 150	480
25	ACG Thr	CTG Leu	GCT Ala	CTC Leu	TCT Ser 155	AAT Asn	GAA Glu	TTG Leu	TGC Cys	CTT Leu 170	GCC Ala	GGG Gl;	ATC Ile	GAA Glu	ACA Thr 175	AAA Lys	528
30	ACA Thr	GGA Gly	AAA Lys	TCA Ser 130	CAA Gln	GAT Asp	GAA Glu	GTG Val	ATG Met 185	GAT Asp	ATG Met	TTG Leu	TCA Ser	ACT Thr 190	TAT Tyr	CGT Arg	576
	TTA Leu	AGT Ser	GGA Gl; 195	GAG Glu	ACA Thr	CCT Pro	TAT Tyr	CAT His 200	CAC His	GCT Ala	TAT Tyr	GAA Glu	ACT Thr 205	GTT Val	CGT Arg	GAA Glu	624
35	ATC Ile	GTT Val 210	CAT His	GAA Glu	CGT Arg	GAT Asp	CCA Pro 215	GGA Gly	TTT Phe	CGT Arg	CAT His	TTG Leu 220	TCA Ser	CAG Gln	GCA Ala	ccc Pro	572
40	ATT Ile 225	GTT Val	GCT Ala	GCT Ala	AAG Lys	CTC Leu 230	GAT Asp	CCT Pro	GTG Val	ACT Thr	TTG Leu 235	TTG Leu	GGT Gly	ATT Ile	AGC Ser	TCC Ser 240	720
45		ATT Ile															768
50		GAT Asp															316
	ATT	ACT Thr	ACT Thr 275	GCT Ala	CAG Gln	TTA Leu	ATG Met	TCC Ser 280	CCA Pro	AGT Ser	TAT Tyr	CTG Leu	GCC Ala 285	CGG Arg	TAT Tyr	TAT Tyr	364
55	GGC Gly	GTC Val 290	TCA Ser	CCG Pro	GAA Glu	GAT Asp	ATT Ile 295	GCC Ala	TAC Tyr	GTG Val	ACG Thr	ACT Thr 300	TCA Ser	TTA Leu	TCA Ser	CAT His	912
60	GTT Val 305	GGA Gly	TAT Tyr	AGC Ser	AGT Ser	GAT Asp 310	ATT Ile	CTG Leu	GTT Val	ATT Ile	CCG Pro 315	TTG Leu	GTC Val	GAT Asp	GGT Gl _?	GTG Val 320	960
65		AAG Lys															1008

-120-

SUBSTITUTE SHEET (RULE 26)

PCT/US96/18003 WO 97/17432 õ

0 ///	,405																
			CAG Gln														1056
5			ATC Ile 355														1104
10			CAA Gln														1152
15			TAT Tyr														1200
20			AAA Lys														1248
20			CAT His														1296
25			TAC Tyr 435			-											1344
30			CTC Leu														1392
35			AGT Ser														1440
40			TAT Tyr														1483
-10			GCC Ala														1536
45			CAG Gln 515														1584
50			ATT Ile														1632
55	AAT Asn 545	CCT Pro	GAT Asp	CTG Leu	AAC Asn	CTT Leu 550	AAA Lys	CCA Pro	GAC Asp	AGT Ser	ACC Thr 555	Gly	GAT Asp	GAT Asp	CAA Gln	CGC Arg 560	1580

550

AAG GCG GTT TTA AAA CGC GCG TTT CAG GTT AAC GCC AGT GAG TTG TAT 1728 Lys Ala Val Leu Lys Arg Ala Phe Gln Val Asn Ala Ser Glu Leu Tyr

CAG ATG TTA TTG ATC ACT GAT CGT AAA GAA GAC GGT GTT ATC AAA AAT 1776 Gln Met Leu Leu Ile Thr Asp Arg Lys Glu Asp Gly Val Ile Lys Asn 590

65 AAC TTA GAG AAT TTG TCT GAT CTG TAT TTG GTT AGT TTG CTG GCC CAG 1824 Asn Leu Glu Asn Leu Ser Asp Leu Tyr Leu Val Ser Leu Leu Ala Gln

-121-

SUBSTITUTE SHEET (RULE 26)

595 600 ATT CAT AAC CTG ACT ATT GCT GAA TTG AAC ATT TTG TTG GTG ATT TGT 1872 Ile His Asn Leu Thr Ile Ala Glu Leu Asn Ile Leu Leu Val Ile Cys 615 620 GGC TAT GGC GAC ACC AAC ATT TAT CAG ATT ACC GAC GAT AAT TTA GCC 1920 Gly Tyr Gly Asp Thr Asn Ile Tyr Gln Ile Thr Asp Asp Asn Leu Ala 630 635 10 AAA ATA GTG GAA ACA TTG TTG TGG ATC ACT CAA TGG TTG AAG ACC CAA 1968 Lys Ile Val Glu Thr Leu Leu Trp Ile Thr Gln Trp Leu Lys Thr Gln 15 AAA TGG ACA GTT ACC GAC CTG TTT CTG ATG ACC ACG GCC ACT TAC AGC 2016 Lys Trp Thr Val Thr Asp Leu Phe Leu Met Thr Thr Ala Thr Tyr Ser ACC ACT TTA ACG CCA GAA ATT AGC AAT CTG ACG GCT ACG TTG TCT TCA 2064 20 Thr Thr Leu Thr Pro Glu Ile Ser Asn Leu Thr Ala Thr Leu Ser Ser 680 ACT TTG CAT GGC AAA GAG AGT CTG ATT GGG GAA GAT CTG AAA AGA GCA 2112 Thr Leu His Gly Lys Glu Ser Leu Ile Gly Glu Asp Leu Lys Arg Ala 25 590 695 ATG GCG CCT TGC TTC ACT TCG GCT TTG CAT TTG ACT TCT CAA GAA GTT 2160 Met Ala Pro Cys Phe Thr Ser Ala Leu His Leu Thr Ser Gln Glu Val 710 715 30 GCG TAT GAC CTG CTG TTG TGG ATA GAC CAG ATT CAA CCG GCA CAA ATA 2208 Ala Tyr Asp Leu Leu Trp Ile Asp Gln Ile Gln Pro Ala Gln Ile 730 35 ACT GTT GAT GGG TTT TGG GAA GAA GTG CAA ACA ACA CCA ACC AGC TTG 2256 Thr Val Asp Gly Phe Trp Glu Glu Val Gln Thr Thr Pro Thr Ser Leu 740 745 AAG GTG ATT ACC TTT GCT CAG GTG CTG GCA CAA TTG AGC CTG ATC TAT 2304 40 Lys Val Ile Thr Phe Ala Gln Val Leu Ala Gln Leu Ser Leu Ile Tyr CGT CGT ATT GGG TTA AGT GAA ACG GAA CTG TCA CTG ATC GTG ACT CAA 2352 Arg Arg Ile Gly Leu Ser Glu Thr Glu Leu Ser Leu Ile Val Thr Gln 45 770 TCT TCT CTG CTA GTG GCA GGC AAA AGC ATA CTG GAT CAC GGT CTG TTA 2400 Ser Ser Leu Leu Val Ala Gly Lys Ser Ile Leu Asp His Gly Leu Leu 785 790 795 50 ACC CTG ATG GCC TTG GAA GGT TTT CAT ACC TGG GTT AAT GGC TTG GGG 2448 Thr Leu Met Ala Leu Glu Gly Phe His Thr Trp Val Asn Gly Leu Gly 55 CAA CAT GCC TCC TTG ATA TTG GCG GCG TTG AAA GAC GGA GCC TTG ACA 2496 Gln His Ala Ser Leu Ile Leu Ala Ala Leu Lys Asp Gly Ala Leu Thr 820 825 GTT ACC GAT GTA GCA CAA GCT ATG AAT AAG GAG GAA TCT CTC CTA CAA 2544 60 Val Thr Asp Val Ala Gln Ala Met Asn Lys Glu Glu Ser Leu Leu Gln 840 ATG GCA GCT AAT CAG GTG GAG AAG GAT CTA ACA AAA CTG ACC AGT TGG 2592 Met Ala Ala Asn Gln Val Glu Lys Asp Leu Thr Lys Leu Thr Ser Trp 65 855

-122-

SUBSTITUTE SHEET (RULE 26)

WO 9	7/174	32													PCT	US96	/18003
											CAG Gln 875						2649
5											ATG Met						2683
10											GCG Ala						2736
15	GCT Ala	GAT Asp	CAT His 915	GCT Ala	TAA Asn	CAG Gln	GCA Ala	CAG Gln 920	AAA Lys	AAA Lys	CTG Leu	GAT Asp	GAG Glu 925	ACG Thr	TTC Phe	AGT Ser	2784
20											GTT Val						2832
											TAT Tyr 955						2880
25											ATT						2928
30											AAC Asn						2976
35									Gln		TTC Phe			Trp			3024
40			Lys					Trp			GTC Val		Glu				3072
,,		Pro					Asp				CGC Arg 103	Ile					3120
45						Leu					Gln					Ala	3168
5()					Asp					Tyr	TTG Leu				Glu		3216
55	GTA Val	GCA Ala	AAT Asn 107	Leu	AAA Lys	GTA Val	ATT Ile	AGT Ser 108	Ala	TAC Tyr	CAC His	GAT Asp	AAT Asn 108	Val	AAT Asn	GTG Val	3264
60	GAT Asp	CAA Gln 109	Gly	TTA Leu	ACT Thr	TAT Tyr	TTT Phe 109	Ile	GGT Gly	ATC Ile	GAC Asp	CAA Gln 110	Ala	GCT Ala	CCG Pro	GGT Gly	3312
00		Tyr					Val				AAA Lys 111	Cys					
65	TTT Phe	GCC Ala	GCT Ala	AAT Asn	GCT Ala	TGG Trp	GGT Gly	GAG Glu	TGG	AAT Asn	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ATT	ACC Thr	TGT Cys	GCT Ala	GTC Val	3408

-123-

4	
V	2.2

1130

1135

					-		
5		Asn Ile			GTT TAT Val Tyr		-
10				Ser Lys	AAA AGT Lys Ser		GGT AAA 3504 Gly Lys
Ю	Ile Tr				GCT CAT Ala His 1180	Ile Arg	TAC GAC 3552 Tyr Asp
15			Phe Thr		GTG ACA Val Thr 1195		GTA AAA 3600 Val Lys 1200
20					Ser Leu		TAT TGT 3648 Tyr Cys 1215
25		Gly Glu			GTT ATG Val Met		
30				Asp Asn	AAT GCG Asn Ala		ACT GGG 3744 Thr Gly
30	Ile Phe				AAT ATG Asn Met 1260	Thr Asn	GCA CAA 3792 Ala Gln
35			Asn Ser		CAA TTT Gln Phe 1275		GTG ATG 3840 Val Met 1280
40					Ile Thr		GTT AAT 3888 Val Asn 1295
45		Glu Asp			TCC TCT Ser Ser		
50	 _			Ser Leu	ACC ATG Thr Met		GGT GGT 3984 Gly Gly
30	Pro Asn				GCA GAA Ala Glu 1340	Asp Leu	AGG CTA 4032 Arg Leu
55			Ser Ile		AAT GGA Asn Gly 1355		GGA ACC 4080 Gly Thr 1360
60					Tyr Ala		GGT GAT 4128 Gly Asp 1375
65		Tyr Asp			GAT GCA Asp Ala		

SUBSTITUTE SHEET (RULE 26)

	CTG Leu	GTG Val	CCA Pro 139	Leu	TTT Phe	AAA Lys	TTC Phe	149 GJA GGY	Lys	Asp GAC	GAG Glu	AAC Asn	TCA Ser 140	ąs,	GAT Asp	AGT Ser	4224
5	ATT Ile	TGT Cys 141	Ile	TAT T/r	AAT Asn	GAA Glu	AAC Asn 141	Pro	TCC	TCT Ser	GAA Glu	GAT Asp 142	Lys	AAG Lys	TGG Trp	TAT Tyr	42~_
10	TTT Phe 1425	Ser	TCG Ser	AAA Lys	GAT Asp	GAC Asp 143	Asn	AAA Lys	ACA Thr	GCG Ala	GAT Asp 1435	Trr	AAT Asn	GG T Gly	GGA Gly	ACT Thr 1440	432
15	Gln	Cy's	Ile	Asp	Ala 144	Gly 5	Thr	Ser	Asn	Lys 145		Phe	Tyr	Tyr	Asn 145	Leu 5	
20	CAG Gln	GAG Glu	ATT	GAA Glu 146	Val	ATT	AGT Ser	GTT Val	ACT Thr 146	Gly	GGG Gly	TAT Tyr	TGG Trp	TCG Ser 1476	Ser	TAT Tyr	4415
	AAA Lys	ATA Ile	TCC Ser 1479	Asn	CCG Pro	ATT Ile	AAT Asn	ATC Ile 1480	Asn	ACG Thr	GGC Gly	ATT Ile	GAT Asp 1485	Ser	GCT Ala	AAA L;;s	4461
25	GTA Val	AAA Lys 1490	Val	ACC Thr	GTA Val	AAA Lys	GCG Ala 149	Gly	GGT Gly	GAC Asp	GAT Asp	CAA Gln 1500	Ile	TTT Phe	ACT Thr	GCT Ala	451.:
3()	GAT Asp 1505	Asn	AGT Ser	ACC Thr	TAT Tyr	GTT Val 1510	Pro	CAG Gln	CAA Gln	CCG Pro	GCA Ala 1515	Pro	AGT Ser	TTT Phe	GAG Glu	GAG Glu 1520	4569)
35	ATG Met	ATT Ile	TAT Tyr	CAG Gln	TTC Phe 1525	Asn	AAC Asn	CTG Leu	ACA Thr	ATA Ile 1530	Asp	TGT Cys	AAG Lys	AAT Asn	TTA Leu 1539	Asn	460à
40	TTC Phe	ATC Ile	GAC Asp	AAT Asn 1540	Gln	GCA Ala	CAT His	ATT	GAG Glu 1549	Ile	GAT Asp	TTC Phe	ACC Thr	GCT Ala 1550	Thr	GCA Ala	4656
	CAA Gln	GAT Asp	GGC Gly 1555	Arg	TTC Phe	TTG Leu	GGT Gly	GCA Ala 1560	Glu	ACT Thr	TTT Phe	ATT Ile	ATC Ile 1565	Pro	GTA Val	ACT Thr	4704
45	Lys	AAA Lys 1570	Val	CTC Leu	GGT Gly	ACT Thr	GAG Glu 1579	Asn	GTG Val	ATT Ile	GCG Ala	TTA Leu 1580	Tyr	AGC Ser	GAA Glu	AAT Asn	4752
50	AAC Asn 1585	Gly	GTT Val	CAA Gln	TAT Tyr	ATG Met 1590	Gln	ATT Ile	GGC	GCA Ala	TAT Tyr 1595	Arg	ACC Thr	CGT Arg	TTG Leu	AAT Asn 1600	4800
55	ACG Thr	TTA Leu	TTC Phe	GCT Ala	CAA Gln 1605	Gln	TTG Leu	GTT Val	AGC Ser	CGT Arg 1610	Ala	AAT Asn	CG T Arg	GGC Gly	ATT Ile 1615	Asp	4848
60	GCA Ala				Met					Ile					Leu		4896
	GCG Ala			Tyr					Leu					Glu			1944
65	CAT His	GGC Gly	ACT Thr	TAA naa	AAA Lys	AGC Ser	TTT Phe	GCT Ala	ATT Ile	GAA Glu	TAT Tyr	GTT Val	GAT Asp	ATA Ile	TTT Phe	AAA Lys	4992

1650 1655 1660

GAG AAC GAT AGT TTT GTG ATT TAT CAA GGA GAA CTT AGC GAA ACA AGT 5040 Glu Asn Asp Ser Phe Val Ile T/r Gln Gly Glu Leu Ser Glu Thr Ser 1670 CAA ACT GTT GTG AAA GTT TTC TTA TCC TAT TTT ATA GAG GCG ACT GGA 5088 Gln Thr Val Val Lys Val Phe Leu Ser Tyr Phe Ile Glu Ala Thr Gly 1690 1625 10 AAT AAG AAC CAC ITA TGG GTA CGT GCT AAA TAC CAA AAG GAA ACG ACT 5136 Asn Lys Asn His Leu Trp Val Arg Ala Lys Tyr Gln Lys Glu Thr Thr 1700 1705 15 GAT AAG ATC TTG TTC GAC CGT ACT GAT GAG AAA GAT CCG CAC GGT TGG 5184 Asp Lys Ile Leu Phe Asp Arg Thr Asp Glu Lys Asp Pro His Gly Trp 1715 1720 TTT CTC AGC GAC GAT CAC AAG ACC TTT AGT GGT CTC TCT TCC GCA CAG 5232 Phe Leu Ser Asp Asp His Lys Thr Phe Ser Gly Leu Ser Ser Ala Gln 20 1735 1730 GCA TTA AAG AAC GAC AGT GAA CCG ATG GAT TTC TCT GGC GCC AAT GCT 5280 Ala Leu Lys Asn Asp Ser Glu Pro Met Asp Phe Ser Gly Ala Asn Ala 25 1750 1755 1745 CTC TAT TTC TGG GAA CTG TTC TAT TAC ACG CCG ATG ATG ATG GCT CAT 5328 Leu Tyr Phe Trp Glu Leu Phe Tyr Tyr Thr Pro Met Met Ala His 30 CGT TTG TTG CAG GAA CAG AAT TTT GAT GCG GCG AAC CAT TGG TTC CGT 5376 Arg Leu Leu Gln Glu Gln Asn Phe Asp Ala Ala Asn His Trp Phe Arg 1780 1785 35 TAT GTC TGG AGT CCA TCC GGT TAT ATC GTT GAT GGT AAA ATT GCT ATC 5424 Tyr Val Trp Ser Pro Ser Gly Tyr Ile Val Asp Gly Lys Ile Ala Ile 1795 1800 TAC CAC TGG AAC GTG CGA CCG CTG GAA GAA GAC ACC AGT TGG AAT GCA 5472 40 Tyr His Trp Asn Val Arg Pro Leu Glu Glu Asp Thr Ser Trp Asn Ala 1810 1815 1820 CAA CAA CTG GAC TCC ACC GAT CCA GAT GCT GTA GCC CAA GAT GAT CCG 5520 Gln Gln Leu Asp Ser Thr Asp Pro Asp Ala Val Ala Gln Asp Asp Pro 45 1835 1825 1830 ATG CAC TAC AAG GTG GCT ACC TTT ATG GCG ACG TTG GAT CTG CTA ATG 5553 Met His Tyr Lys Val Ala Thr Phe Met Ala Thr Leu Asp Leu Leu Met 1845 50 GCC CGT GGT GAT GCT GCT TAC CGC CAG TTA GAG CGT GAT ACG TTG GCT 5616 Ala Arg Gly Asp Ala Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Ala 1870 1860 1865 GAA GCT AAA ATG TGG TAT ACA CAG GCG CTT AAT CTG TTG GGT GAT GAG 5664 Glu Ala Lys Met Trp Tyr Thr Gln Ala Leu Asn Leu Leu Gly Asp Glu 1875 1880 CCA CAA GTG ATG CTG AGT ACG ACT TGG GCT AAT CCA ACA TTG GGT AAT 5712 Pro Gln Val Met Leu Ser Thr Thr Trp Ala Asn Pro Thr Leu Gly Asn 1890 1895 GCT GCT TCA AAA ACC ACA CAG CAG GTT CGT CAG CAA GTG CTT ACC CAG 5760

-126-

Ala Ala Ser Lys Thr Thr Gln Gln Val Arg Gin Gln Val Leu Thr Gln

1910

65

											-						
		CGT Arg				Arg					Leu					Asn	5308
5		CTG Leu			Leu				_	Glu					Lys		5356
10		TGG Trp		Thr					Met					His			5904
15		ATT Ile 1970	Asp					Ser					Ala				5952
20	GAT Asp 1985	Pro	AAA Lys	GCT Ala	TTA Leu	CTG Leu 1990	Ser	GCG Ala	GCG Ala	GTT Val	TCA Ser 1999	Ala	TCT Ser	CAA Gln	GGG Gly	GGA Gly 2000	6000
		GAC Asp				Ala					His					Met	6048
25		GAA Glu			Arg					Gln					Gly		6096
30		CTA Leu		Gly					Gln					Met			6144
35		CTG Leu 2050	Gln					Glu					Ser				6192
40		Asp					Glu					Lys					6240
40		TC T Ser				Val					Asp					Leu	6288
45	TAT Tyr	GAG Glu	GAG Glu	AAC Asn 2100	Ile	AAC Asn	GCA Ala	GGT Gly	GAG Glu 210	Gln	CGA Arg	GCG Ala	CTG Leu	GCG Ala 2110	Leu	CGC Arg	6336
50		GAA Glu		Ala					Gly					Arg			6384
55	GGC Gly	GCG Ala 2130	Gly	GTT Val	GAT Asp	ATG Met	GCA Ala 213	Pro	AAT Asn	ATC Ile	TTC Phe	GGC Gly 214	Leu	GCT Ala	GAT Asp	GGC Gly	6432
60		Met					Ile					Ala					6 4 80
O()	TTG Leu	AGT Ser	GCT Ala	TCT Ser	GCC Ala 216	Lys	ATG Met	GTT Val	GAT Asp	GCG Ala 217	Glu	AAA Lys	GTT Val	GCT Ala	CAG Gln 217	Ser	6528
65	GAA Glu	ATA Ile	TAT Tyr	CGC Arg	CGT Arg	CGC Arg	CGT Arg	CAA Gln	GAA Glu	TGG Trp	AAA Lys	ATT Ile	CAG Gln	CGT Arg	GAC Asp	AAC Asn	6576

2 00

2135

2190

				210	0				213	כ				213	J		
5				Glu					Asn		CAA Gln			Ser			6624
10			Arg					Met			GAG Glu		Leu				6672
		Ala					Gln				TTA Leu 2235	Arg					์ ดาวข
15	TAA nek	CAA Gln	GCG Ala	TTA Leu	TAT Tyr 224	Ser	TGG Trp	TTA Leu	CGA Arg	GGG Gly 2250	Arg	TTG Leu	TCA Ser	GGT Gly	ATT Ile 2255	T_{x} r	6768
20	TTC Phe	CAG Gln	TTC Phe	TAT T;r 2260	Asp	TTG Leu	GCC Ala	GTA Val	TCA Ser 226	Arg	TGC Cys	CTG Leu	ATG Met	GCA Ala 2270	Glu	CAA Gln	6315
25				Trp					Asn		ATT			Val			6364
30			Trp					Ala			TTG Leu		Gly				5912
		Gln					Met				TAT Tyr 2315	Leu					6960
35						Glu					Leu					Asp	7003
40					Asn					Leu	GCG Ala				Pro		7056
45				L' _y ·s					Ala		ACT Thr			Asn		-	7104
50			Ala					Ser			GTC Val		Leu				7152
		Leu					Pro				GTT Val 2395	Gly					7200
55						Ile					Pro					Pro	7248
60			Asp		Gln					Tyr	GGT Gly				Gln		7296
65				C∵s					⊽al		CAT His			Asn			7344

-128<u>-</u>

GGT CAG TTC CAG TTG GAT TTC AAT GAC GGC AAA TAC CTG CCA TTT GAA 7392 Gly Gln Phe Gln Leu Asp Phe Asn Asp Gly Lys Tyr Leu Pro Phe Glu 2450 2455 2460

- 5 GGT ATT GCT CTT GAT GAT CAG GGT ACA CTG AAT CTT CAA TTT CCG AAT 7440 Gly Ile Ala Leu Asp Asp Gln Gly Thr Leu Asn Leu Gln Phe Pro Asn 2465 2470 2480
- GCT ACC GAC AAG CAG AAA GCA ATA TTG CAA ACT ATG AGC GAT ATT 7488 10 Ala Thr Asp Lys Gln Lys Ala Ile Leu Gln Thr Met Ser Asp Ile Ile 2485 2490 2495

TTG CAT ATT CGT TAT ACC ATC CGT TAA
Leu His Ile Arg Tyr Thr Ile Arg *
2500 2505

7515

(2) INFORMATION FOR SEQ ID NO:12:

- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2505 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 25 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

- 30 Met Gln Asn Ser Leu Ser Ser Thr Ile Asp Thr Ile Cys Gln Lys Leu 1 5 10 15
- Gln Leu Thr Cys Pro Ala Glu Ile Ala Leu Tyr Pro Phe Asp Thr Phe 20 25 30
 - Arg Glu Lys Thr Arg Gly Met Val Asn Trp Gly Glu Ala Lys Arg Ile 35 40 45
- Tyr Glu Ile Ala Gln Ala Glu Gln Asp Arg Asn Leu Leu His Glu Lys
 50 55 60
 - Arg Ile Phe Ala Tyr Ala Asn Pro Leu Leu Lys Asn Ala Val Arg Leu 65 70 75 80
- 45 Gly Thr Arg Gln Met Leu Gly Phe Ile Gln Gly Tyr Ser Asp Leu Phe 85 90 95
- Gly Asn Arg Ala Asp Asn Tyr Ala Ala Pro Gly Ser Val Ala Ser Met 100 105 110
 - Phe Ser Pro Ala Ala Tyr Leu Thr Glu Leu Tyr Arg Glu Ala Lys Asn 115 120 125
- Leu His Asp Ser Ser Ser Ile Tyr Tyr Leu Asp Lys Arg Arg Pro Asp 130 135 140
 - Leu Ala Ser Leu Met Leu Ser Gln Lys Asn Met Asp Glu Glu Ile Ser 145 150 155 160
- 60 Thr Leu Ala Leu Ser Asn Glu Leu Cys Leu Ala Gly Ile Glu Thr Lys 165 170 175
- Thr Gly Lys Ser Gln Asp Glu Val Met Asp Met Leu Ser Thr Tyr Arg 180 185 190

-129-

	Leu	Ser	31y 195	Glu	Thr	Pro	Tyr	His 200	His	Ala	Tyr	Glu	1mf 205	Val	λrg	Glu
5	Ile	Val 210	His	Glu	Arg	Asp	Pro 215	Gly	Phe	Arg	His	Leu 220	Ser	Gln	Ala	Pro
	Ile 225	Val	Ala	Ala	Lys	Leu 230	Asp	Pro	Val	Thr	Leu 235	Leu	Gly	Ile	Ser	Ser 240
10	His	Ile	Ser	Pro	Glu 245	Leu	Tyr	Asn	Leu	Leu 250	Ile	Glu	Glu	Ile	Pro 255	Glu
15	Lys	Asp	Glu	Ala 260	Ala	Leu	Asp	Thr	Leu 265	Tyr	Lys	Thr	Asn	Phe 270	Gly	Asp
13	Ile	Thr	Thr 275	Ala	Gln	Leu	Met	Ser 280	Pro	Ser	Tyr	Leu	Ala 285	Arg	Tyr	Tyr
20	Gly	Val 290	Ser	Pro	Glu	Asp	Ile 295	Ala	Tyr	Val	Thr	Thr 300	Ser	Leu	Ser	His
	Val 305	Gly	Tyr	Ser	Ser	Asp 310	Ile	Leu	Val	Ile	Pro 315	Leu	Val	Asp	Gly	Val 320
25	Gly	Lys	Met	Glu	Val 325	Val	Arg	Val	Thr	Arg 330	Thr	Pro	Ser	Asp	Asn 335	Tyr
30	Thr	Ser	Gln	Thr 340	Asn	Tyr	Ile	Glu	Leu 345	Tyr	Pro	Gln	Gly	Gly 350	Asp	Asn
30	Tyr	Leu	Ile 355	Lys	Tyr	Asn	Leu	Ser 360	Asn	Ser	Phe	Gly	Leu 365	Asp	Asp	Phe
35	Tyr	Leu 370	Gln	Tyr	Lys	Asp	Gly 375	Ser	Ala	Asp	Trp	Thr 380	Glu	Ile	Ala	His
	Asn 385	Pro	Tyr	Pro	Asp	Met 390	Val	Ile	Asn	Gln	Lys 395	Tyr	Glu	Ser	Gln	Ala 400
40	Thr	Ile	Lys	Arg	Ser 405	Asp	Ser	Asp	Asn	Ile 410	Leu	Ser	Ile	Gly	Leu 415	Gln
45	Arg	Trp	His	Ser 420	Gly	Ser	Tyr	Asn	Phe 425	Ala	Ala	Ala	Asn	Phe 430	Lys	Ile
45	Asp	Gln	Tyr 435	Ser	Pro	Lys	Ala	Phe 440	Leu	Leu	Lys	Met	Asn 445	Lys	Ala	Ile
50	Arg	Leu 450	Leu	Lys	Ala	Thr	Gly 4 55	Leu	Ser	Phe	Ala	Thr 460	Leu	Glu	Arg	Ile
	Val 465	Asp	Ser	Val	Asn	Ser 470	Thr	Lys	Ser	Ile	Thr 475	Val	Glu	Val	Leu	Asn 480
55	Ly:s	Val	Tyr	Arg	Val 485	L ys	Phe	Tyr	Ile	Asp 490	Arg	Tyr	Gly	Ile	Ser 495	Glu
<i>4</i> 0	Glu	Thr	Ala	Ala 500	Ile	Leu	Ala	Asn	Ile 505	Asn	Ile	Ser	Gln	Gln 510	Ala	Val
60	Gly	Asn	Gln 515	Leu	Ser	Gln	Phe	Glu 520	Gln	Leu	Phe	Asn	His 525	Pro	Pro	Leu
65	Asn	Gly 530	Ile	Arg	Tyr	Glu	Ile 535	Ser	Glu	Asp	Asn	Ser 540	Lys	His	Leu	Pro

	345 545	Pro	Asp	Leu	Asn	Leu 550	Lys	Pro	Asp	Ser	Thr 555	Gly	Asp	Аsр	Gln	Arg 560
5	Lys	Ala	Val	Leu	Lys 565	Arg	Ala	Phe	Gln	Val 570	Asn	Ala	Ser	Glu	Leu 575	Tyr
	Gln	Mec	Leu	Leu 580	Ile	Thr	Asp	Arg	Lys 585	Glu	Asp	Gly	Val	Ile 590	Lys	Asn
10	Asn	Leu	Glu 595	Asn	Leu	Ser	Asp	Leu 600	Tyr	Leu	Vai	Ser	Leu 605	Leu	Ala	Gln
15	Ile	His 610	Asn	Leu	Thr	Ile	Ala 615	Glu	Leu	Asn	Ile	Leu 620	Leu	Val	Ile	Cys
	Gly 625	Tyr	Gly	Asp	Thr	Asn 630	Ile	Tyr	Gln	Ile	Thr 635	Asp	Asp	Asn	Leu	Ala 640
20	Lys	Ile	Val	Glu	Thr 645	Leu	Leu	Trp	Ile	Thr 650	Gln	Trp	Leu	Lys	Thr 655	Gln
	Lys	Trp	Thr	Val 660	Thr	Asp	Leu	Phe	Leu 665	Met	Thr	Thr	Ala	Thr 670	Tyr	Ser
25	Thr	Thr	Leu 675	Thr	Pro	Glu	Ile	Ser 680	Asn	Leu	Thr	Ala	Thr 685	Leu	Ser	Ser
30	Thr	Leu 690	His	Gly	Lys	Glu	Ser 695	Leu	Ile	Gly	Glu	Asp 700	Leu	Lys	Arg	Ala
	Met 705	Ala	Pro	Суѕ	Phe	Thr 710	Ser	Ala	Leu	His	Leu 715	Thr	Ser	Gln	Glu	Val 720
35	Ala	Tyr	Asp	Leu	Leu 725	Leu	Trp	Ile	Asp	Gln 730	Ile	Gln	Pro	Ala	Gln 735	Ile
	Thr	Val	Asp	Gly 740	Phe	Trp	Glu	Glu	Val 745	Gln	Thr	Thr	Pro	Thr 750	Ser	Leu
40	Lys	Val	Ile 755	Thr	Phe	Ala	Gln	Val 760	Leu	Ala	Gln	Leu	Ser 765	Leu	Ile	Tyr
45	Arg	Arg 770	Ile	Gly	Leu	Ser	Glu 775	Thr	Glu	Гел	Ser	Leu 780	Ile	Val	Thr	Gln
	Ser 785	Ser	Leu	Leu	Val	Ala 790	Gly	Lys	Ser	Ile	Leu 795	Asp	His	Gly	Leu	Leu 800
50	Thr	Leu	Met	Ala	Leu 805	Glu	Gly	Phe	His	Thr 810	Trp	Val	Asn	Gly	Leu 815	Gly
	Gln	His	Ala	Ser 820	Leu	Ile	Leu	Ala	Ala 825	Leu	Lys	Asp	Gly	Ala 830	Leu	Thr
55	Val	Thr	Asp 835	Val	Ala	Gln	Aia	Met 840	Asn	Lys	Glu	Glu	Ser 845	Leu	Leu	Gln
60	Met	Ala 850	Ala	Asn	Gln	Val	Glu 855	Lys	Asp	Leu	Thr	Lys 860	Leu	Thr	Ser	Trp
.,•	Thr 865	Gln	Ile	Asp	Ala	Ile 870	I.eu	Gln	Trp	Leu	Gln 875	Met	Ser	Ser	Ala	Leu 380
65	Ala	Val	Ser	Pro	Leu 885	Asp	Leu	Ala	Gly	Met 890	Met	Ala	Leu	Lys	Tyr 895	Gly

					•											
•	Ile	Asp	His	Asn 900	Tyr	Ala	Ala	Trp	Gln 905	Ala	Ala	ala	Ala	Ala 910	Lēu	Met
5	Ala	Asp	His 915	Ala	Asn	Gln	Ala	Gln 920	Lys	Lys	Leu	Аsр	Glu 925	Thr	Phe	Ser
	Lys	Ala 930	Leu	Cys	Asn	туr	Tyr 935	Ile	Asn	Ala	Val	Val 940	Asp	Ser	Ala	Ala
10	Gly 945	Val	Arg	Asp	Arg	Asn 950	Gly	Leu	Tyr	Thr	Tyr 955	Leu	Leu	Ile	Asp	Asn 960
	Gln	Val	Ser		Asp 965	Val	Ile	Thr	Ser	Arg 970	Ile	Ala	Glu	Ala	Ile 975	Ala
15	Gly	Ile	Gln	Leu 980	Tyr	Val	Asn	Arg	Ala 985	Leu	Asn	Arg	Asp	Glu 990	Gly	Gln
20	Leu	Ala	Ser 995	Asp	Val	Ser	Thr	Arg 1000		Phe	Phe	Thr	Asp 1005	Trp	Glu	Arg
	Tyr	Asn 1010	Lys)	Arg	Tyr	sər	Thr 1019		Ala	Gly	Val	Set 1020	Glu)	Leu	Val	Tyr
25	Tyr 1025		Glu	Asn	Tyr	Val 1030		Pro	Thr	Gln	Arg 1035	Ile	Gly	Gln	Thr	Lys 1040
20	Met	Met	Asp	Ala	Leu 1049		Gln	Ser	Ile	Asn 105	Gln)	Ser	Gln	Leu	Asn 105	Ala 5
30	Asp	Thr	Val	Glu 1060		Ala	Phe	Lys	Thr 1065	Tyr 5	Leu	Thr	Ser	Phe 107	Glu D	Gln
35	Val	Ala	Asn 1075		Lys	Val	Ile	Ser 108	Ala O	туr	His	Asp	Asn 108	Val 5	Asn	Val
	Asp	Gln 1090		Leu	Thr	Tyr	Phe 109	Ile 5	Gly	Ile	Asp	Gln 110	Ala O	Ala	Pro	Gly
40	Thr 1105		Tyr	Trp	Arg	Ser 111		Asp	His	Ser	Lys 111	Cys 5	Glu	Asn	Gly	Lys 1120
	Phe	Ala	Ala	Asn	Ala 112	Trp 5	Gly	Glu	Trp	Asn 113	Lys 0	Ile	Thr	Cys	Ala 113	Val 5
45	Asn	Pro	Trp	Lys 1140		Ile	Ile	Arg	Pro 114	Val 5	Val	Туr	Met	Ser 115	Arg O	Leu
5 0	Tyr	Leu	Leu 115		Leu	Glu	Gln	Gln 116	Ser 0	Lys	Lys	Ser	Asp 116	Asp 5	Gly	L ys
	Thr	Thr 117		Tyr	Gln	Tyr	Asn 117	Leu 5	Lys	Leu	Ala	His 118	Ile O	Arg	Tyr	Asp
55	118		Trp	Asn	Thr	Pro 119		Thr	Phe	Asp	Val 119	Thr 5	Glu	Lys	Val	Lys 1200
	Asn	Туг	Thr	Ser	Ser 120		Asp	Ala	Ala	Glu 121	Ser 0	Leu	Gly	Leu	Tyr 121	Cys 5
60	Thr	Gly	Tyr	Gln 122		Glu	Asp	Thr	Leu 122	Leu 5	Val	Met	Phe	Tyr 123	Ser 0	Met
65	Gln	Ser	Ser 123		Ser	Ser	Туг	Thr 124	Asp 0	Asn	Asn	Ala	Pro	Val	Thr	Gly

-132-

	L÷u	T/r 1250		Phe	Ala	Ąsp	Met 1255		3er	Asp	Asn	Met 1260		Asn	Aia	Sin
5	Ala 1269	Thr 5	Asn	Tyr	Trp	Asn 1270		Ser	T _i 'r	Pro	Gln 1275		Asp	Thr	Val	Met 1280
	Ala	Аsp	Pro	Аsр	Ser 1285	_	Asn	L', s	Lys	Val 1290		Thr	Arg	Arg	Val 1295	
10	Asn	Arg	Tyr	Ala 1300		Ąsp	Tyr	Glu	Ile 1305		Ser	ser	7al	Thr 1310		Asn
15	ser	Asn	Tyr 1315		Trp	Gly	Asp	His 1320		Leu	Thr	Met	Leu 1325	-	Gly	Gly
	ser	Val 1330		Asn	Ile	Thr	Phe 1335		Ser	Ala	Ala	Glu 1340		Leu	Arg	Leu
20	ser 1345	Thr	Asn	Met	Ala	Leu 1350		Ile	Ile	His	Asn 1355	_	Tyr	Ala	Gly	Thr 1360
	Arg	Arg	Ile	Gln	Cys 1365		Leu	Met	Lys	Gln 1370	-	Ala	Ser	Leu	Gly 1375	•
25	Lys	Phe	Ile	Ile 1380	-	Asp	Ser	Ser	Phe 1385	-	Asp	Ala	Asn	Arg 1390		Asn
30	Leu	Val	Pro 1395		Phe	Lys	Phe	Gly 1400	•	Asp	Glu	Asn	Ser 1405	•	Asp	Ser
	Ile	Cys 1410		Tyr	Asn	Glu	Asn 1415		Ser	Ser	Glu	Asp 1420	-	Lys	Trp	Тут
35	Phe 1425	Ser	Ser	Lys	Asp	Asp 1430		Lys	Thr	Ala	Asp 1435	-	Asn	Gly	Gly	Thr 1440
	Gln	Cys	Ile	Asp	Ala 1445		Thr	Ser	Asn	Lys 1450		Phe	Tyr	Tyr	Asn 1455	
40	Gln	Glu	Ile	Glu 1460		Ile	Ser	Val	Thr 1465	-	Gly	Tyr	Trp	Ser 1470		Tyr
45	L;/s	Ile	Ser 1475		Pro	Ile	Asn	Ile 1480		Thr	Gly	Ile	Asp 1485		Ala	Lys
-	Val	Lys 1490		Thr	Val	Lys	Ala 1495	-	Gly	Asp	Asp	Gln 1500		Phe	Thr	Ala
50	Asp 1505		Ser	Thr	Tyr	Val 1510		Gln	Gln	Pro	Ala 1515		Ser	Phe	Glu	Glu 1520
	Met	Ile	Tyr	Gln	Phe 1525		Asn	Leu	Thr	Ile 1530	_	Cys	Lys	Asn	Leu 1539	
55	Phe	Ile	Asp	Asn 1540		Ala	His	Ile	Glu 1545		qzA	Phe	Thr	Ala 1550		Ala
60	Gln	Asp	Gly 1555		Phe	Leu	Gly	Ala 1560		Thr	Phe	Ile	Ile 1565		Val	Thr
.,,,	•	•	1						17 - 1	*1.	212	Leu	Tur	Ser	Glu	Asn
	Lys	1570		Leu	GIA	Thr	Glu 1575		val	116	n.u	1580		501		

	Thr	Leu	Phe	Ala	Gln 1609		Leu	Val	Ser	Arg 1610		Asn	Arg	Gly	Ile 1615	
5	Ala	Val	Leu	Ser 162		Glu	Thr	Gln	Asn 1625		Gln	Glu	Pro	Gln 1630		Gl;
	Ala	Gly	Thr 1639		Val	Gln	Leu	Val 1640		Asp	Lys	T _j ·r	Asp 1649		Ser	Ile
10	His	Gly 1550		Asn	Lys	Ser	Phe 1655		Ile	Glu	Tyr	Val 1660		Ile	Phe	Lys
15	Glu 1669		Asp	Ser	Phe	Val 1670	Ile	Tyr	Gln	Gly	Glu 1675		Ser	Glu	Thr	Ser 1680
.,	Gln	Thr	Val	Val	Lys 1685		Phe	Leu	Ser	Tyr 1690		Ile	Glu	Ala	Thr 1699	
20	Asn	Lys	Asn	His 1700		Trp	Val	Arg	Ala 1709		Tyr	Gln	Lys	Glu 1710		Thr
	qzA	Lys	Ile 1719		Phe	Asp	Arg	Thr 1720		Glu	Lys	Asp	Pro 1729		Gly	Trp
25	Phe	Leu 1730		Asp	Asp	His	Lys 1735		Phe	Ser	Gly	Leu 1740		Ser	Ala	Gln
30	Ala 1749		Lys	Asn	qzƙ	Ser 1750	Glu)	Pro	Met	Asp	Phe 1755		Gly	Ala	Лsп	Ala 1760
50	Leu	Tyr	Phe	Trp	Glu 1765		Phe	Tyr	Tyr	Thr 1770		Met	Met	Met	Ala 1779	
35	Arg	Leu	Leu	Gln 1780		Gln	Asn	Phe	Asp 1785		Ala	Asn	His	Trp 1790		Arg
	Tyr	Val	Trp 1795		Pro	Ser	Gly	Tyr 1800		Val	Asp	Gly	Lys 1809		Ala	Ile
40	Tyr	His 1810		Asn	Val	Arg	Pro 1815		Glu	Glu	Asp	Thr 1820		Trp	Asn	Ala
45	Gln 1825		Leu	Asp	Ser	Thr 1830		Pro	Asp	Ala	Val 1835		Gln	Asp	Asp	Pro 1840
	Met	His	Туr	Lys	Val 1845		Thr	Phe	Met	Ala 1850		Leu	Asp	Leu	Leu 1859	
50	Ala	Arg	Gly	Asp 1860		Ala	Туr	Arg	Gln 1865		Glu	Arg	Asp	Thr 1870		Ala
	Glu	Ala	Lys 1875		Trp	Tyr	Thr	Gln 1880		Leu	Asn	Leu	Leu 1889		Asp	Glu
55	Pro	Gln 1890		Met	Leu	Ser	Thr 1895		Trp	Ala	Asn	Pro 1900		Leu	Gly	Asn
60	Ala 1905		Ser	Lys	Thr	Thr 1910	Gln	Gln	Val	Arg	Gln 1915		Val	Leu	Thr	Gln 1920
.,,,	Leu	Arg	Leu	Asn	Ser 1925		Val	Lys	Thr	Pro 1930		Leu	Gly	Thr	Ala 1939	
65	Ser	Lau	Thr	Ala 1940		Phe	Leu	Pro	Gln 1945		Asn	Ser	Lys	Leu 1950		Gly

-134-

	Tyr	Trp	Arg 195		Leu	Aia	Gln	Arg 1960		Phe	γsu	Leu	1965 Yrā		Asn	Leu
5	Ser	11e 197		Gly	Gln	Pro	Leu 1975		Leu	Pro	Leu	Tyr 1980		Lys	Pro	Ala
	Asp 138		Lys	Ala	Leu	Leu 1990		Ala	Ala	Val	Ser 1995		Ser	Gln	Gly	Gly 2000
10	Ala	Asp	Leu	Pro	7002		Pro	Leu	Thr	Ile 2010		Arg	Phe	Pro	Gln 2015	
15	Leu	Glu	GĮĄ	Ala 2020		Gly	Leu	Val	Asn 2025		Leu	Ile	Gln	Phe 2030	-	Ser
1.7	Ser	Leu	Leu 203	Gly 5	Tyr	Ser	Glu	Arg 2040		Asp	Ala	Glu	Ala 2045		Ser	Gln
20	Leu	Leu 2050		Thr	Gln	Ala	Ser 2055		Leu	Ile	Leu	Thr 2060		Ile	Arg	Met
	Gln 2065		Asn	Gln	Leu	Ala 2070		Leu	Asp	Ser	Glu 2075		Thr	Ala	Leu	Gln 2080
25	Val	Ser	Leu	Ala	Gly 2085		Gln	Gln	Arg	Phe 2090		Ser	Tyr	Ser	Gln 2095	
30	Tyr	Glu	Glu	Asn 2100		Asn	Ala	Gly	Glu 2105		Arg	Ala	Leu	Ala 2110		Arg
30	Ser	Glu	Ser 2115	Ala 5	Ile	Glu	Ser	Gln 2120		Ala	Gln	Ile	Ser 2125		Met	Ala
35	Gly	Ala 2130		Val	Asp	Met	Ala 2135		Asn	Ile	Phe	Gly 2140		Ala	Asp	GIY
			His	Tyr	Gly			Ala	T\17	Ala	Ile		Asp	Gly	Ile	Glu 2160
	2145	•				2150)		.,.		2155					2100
40				Ser	Ala 2165	Lys					Glu		Val	Ala	Gln 2175	Ser
	Leu	Ser	Ala	Ser Arg 2180	2165 Arg	Lys	Met	Val	Asp	Ala 2170 Trp	Glu	Lys	Gln		2175 Asp	Ser
40 45	Leu Glu	Ser	Ala Tyr	Arg 2180 Glu	2165 Arg	Lys	Met Arg	Val Gln	Asp Glu 2185 Asn	Ala 2170 Trp	Glu Lys	Lys	Gln	Arg 2190 Ser	2175 Asp	Ser Asn
	Leu Glu Ala	Ser Ile Gln	Ala Tyr Ala 2195 Arg	Arg 2180 Glu	2165 Arg	Lys Arg Asn	Met Arg Gln	Val Gln Leu 2200 Met	Asp Glu 2185 Asn	Ala 2170 Trp	Glu Lys Gln	Lys Ile Leu	Gln Glu 2205 Leu	Arg 2190 Ser	2175 Asp Leu	Ser Asn Ser
4 5	Leu Glu Ala Ile	Ser Ile Gln Arg 2210	Ala Tyr Ala 2199 Arg	Arg 2180 Glu	2165 Arg Ile Ala	Lys Arg Asn Ala	Met Arg Gln Glu 2215	Val Gln Leu 2200 Met	Asp Glu 2185 Asn Gln	Ala 2170 Trp Ala Lys	Glu Lys Gln Glu	Lys Ile Leu Tyr 2220	Glu 2205 Leu	Arg 2190 Ser Lys	2175 Asp Leu Thr	Ser Asn Ser Gln
4 5	Leu Glu Ala Ile Gln 2225	Ile Gln Arg 2210	Ala Tyr Ala 2195 Arg	Arg 2180 Glu Glu	2165 Arg Ile Ala Gln	Lys Arg Asn Ala Ala 2230	Met Arg Gln Glu 2215 Gln	Val Gln Leu 2200 Met	Asp Glu 2185 Asn Gln Thr	Ala 2170 Trp Ala Lys	Glu Lys Gln Glu Leu 2235	Lys Ile Leu Tyr 2220	Glu 2205 Leu Ser	Arg 2190 Ser Lys	2175 Asp Leu Thr	Ser Asn Ser Gln Ser 2240
15 50	Leu Glu Ala Ile Gln 2225 Asn	Ser Ile Gln Arg 2210 Ala Gln	Ala Tyr Ala 2195 Arg Gln	Arg 2180 Glu Glu Ala	2165 Arg Ile Ala Gln Tyr 2245 Asp	Arg Asn Ala Ala 2230	Met Arg Gln Glu 2215 Gln Trp	Val Gln Leu 2200 Met Leu Leu	Asp Glu 2185 Asn Gln Thr	Ala 2170 Trp Ala Lys Phe Gly 2250	Glu Lys Gln Glu Leu 2235	Lys Ile Leu Tyr 2220 Arg	Glu Glu 2205 Leu Ser	Arg 2190 Ser Lys Lys	Asp Leu Thr Phe 11e 2255	Ser Asn Ser Gln Ser 2240
45 50	Leu Glu Ala Ile Gln 2225 Asn	Ser Ile Gln Arg 2210 Ala Gln Gln	Ala Tyr Ala 2195 Arg Gln Ala	Arg 2180 Glu Glu Ala Leu Tyr 2260	2165 Arg Ile Ala Gln Tyr 2245 Asp	Lys Arg Asn Ala 2230 Ser Leu	Met Arg Gln Glu 2215 Gln Trp Ala	Val Gln Leu 2200 Met Leu Leu Val	Asp Glu 2185 Asn Gln Thr Arg Ser 2265	Ala 2170 Trp Ala Lys Phe Gly 2250	Glu Lys Gln Glu Leu 2235 Arg	Lys Ile Leu Tyr 2220 Arg Leu Leu	Glu 2205 Leu Ser Ser	Arg 2196 Ser Lys Lys Gly Ala 2270	Asp Leu Thr Phe 11e 2255	Ser Asn Ser Gln Tyr

	11e 230	Gln 5	Asn	Leu	Ala	Gln 231		Slu	Glu	Ala	Tyr 2319	Leu	L;′s	Trp	Glu	Ser 2320
5	Arg	Ala	Leu	Glu	Val 2325		λrg	Thr	Val	3er 2330		Ala	Val	Val	T;r 2335	
	Ser	Leu	Glu	Gly 2340		λsp	Arg	Phe	Asn 2345	Leu	Ala	Glu	Gln	11e 2350		Ala
Ю	Leu	Leu	Asp 2355		Gly	Glu	Gly	Thr 2360		Gly	Thr	Lys	Glu 2365	Asn	Gly	Leu
	Ser	Leu 2370		Asn	Ala	Ile	Leu 2375		Ala	Ser	Val	Lys 2380		Ser	дsр	Leu
15	Lys 2389	Leu 5	Gly	Thr	Asp	Tyr 2390		Asp	Ser	Ile	Val 2395		Ser	Asn	Lys	Val 2400
20	Arg	Arg	Ile	L ys	Gln 2405		Ser	Val	Ser	Leu 2410		Ala	Leu	Val	Gly 2415	
	T'''r	Gln	Asp	Val 2420		Ala	Met	Leu	Ser 2425		Gly	Gly	Ser	Thr 2430		Leu
25	Pro	Lys	Gly 2435	-	Ser	Ala	Leu	Ala 2440		Ser	His	Gly	Thr 2445		Asp	Ser
	Gly	Gln 2450		Gln	Leu	Asp	Phe 2455		Asp	Gly	Lys	Tyr 2460		Pro	Phe	Glu
30	Gly 2 46 5	Ile	Ala	Leu	Asp	Asp 2470		Gly	Thr	Leu	Asn 2475		Gln	Phe	Pro	Asn 2480
35	Ala	Thr	Asp	Lys	Gln 2485		Ala	Ile	Leu	Gln 2490		Met	Ser	Asp	Ile 2495	
	Leu	His	Ile	Arg 2500		Thr	Ile	Arg	* 2505	i						
ю	(2)	INF	ORMA	ATIO	N FO	R S	EQ I	D NO	0:13	:						
		(i) SI						STIC		5					
15				(B) (C)	TYPE S TR A	: a:	minc	ac:	id sing	_						
50		(ii) MC													
0		(xi	.) SI	EQUE	NCE	DES	CRIF	TIOI	N: S	EQ :	ID N	0:13	3:			
55		Leu 1	ı Ile	Gly	туг	Asr 5	n Asr	Gln	Phe	Ser	Gly 10	/ Xaa	a Alá	a		
	(2)	INF	ORMA	ATIO	N FC	OR S	EO I	D NO	0:14	:						
50	, _ ,) SI	EQUE	NCE	СНА	RACI	ERIS	STIC	S:						
				(B)	TYPE	: a:	mino	ac	no a id sing		5					
							Y: 1		ar							
									- I.	36-						

SUBSTITUTE SHEET (RULE 26)

		(ii) MOLECULE TYFE: peptide
5		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
		Met Gln Asn Ser Gln Thr Phe Ser Val Gly Glu Leu 1 5 10
10	(2)	INFORMATION FOR SEQ ID NO:15:
15		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
20		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
25		Ala Gln Asp Gly Asn Gln Asp Thr Phe Phe Ser Gly Asn Thr 1 5 10
	(2)	INFORMATION FOR SEQ ID NO:16:
30		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDENESS: single
35		(ii) MOLECULE TYPE: peptide
40		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
		Met Gln Asn Ser Leu 1 5
45	(2)	INFORMATION FOR SEQ ID NO:17:
50		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
55		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
60		Ala Phe Asn Ile Asp Asp Val Ser Leu Phe I 5 10

-137-

	(2) INFORMATION FOR SEQ ID NO:18:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10	(ii) MOLECULE TYPE: peptide
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
15	Phe Ile Val Tyr Thr Ser Leu Gly Val Asn Pro Asn Asn Ser Ser Asn 1 5 10 15
	(2) INFORMATION FOR SEQ ID NO:19:
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 amino acids(B) TYPE: amino acid
25	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
	Ile Ser Asp Leu Val Thr Thr Ser Pro Leu Ser Glu Ala Ile Gly Ser 1 10 15
35	Leu Gln Leu Phe Ile 20
	(2) INFORMATION FOR SEQ ID NO:20:
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 12 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
45	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
	Met Tyr Tyr Ile Gln Ala Gln Gln Leu Leu Gly Pro 1 5 10
55	(2) INFORMATION FOR SEQ ID NO:21:
60	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 26 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear

-138-

SUBSTITUTE SHEET (RULE 26)

		(ii) MOLECULE TYPE: peptide
5		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
		Gly Ile Asp Ala Val Leu Ser Met Glu Thr Gln Asn Ile Gln Glu Pro 1 5 10 15
10		Gln Leu Gly Ala Gly Thr Tyr Val Gln Leu 20 25
1.5	(2)	INFORMATION FOR SEQ ID NO:22:
15		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single
20		(D) TOPOLOGY: linear
		(ii) MOLECULE TYPE: peptide
25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
		Ile Ser Asn Pro Ile Asn Ile Asn Thr Gly Ile Asp Ser Ala Lys 1 5 10 15
30	(2)	INFORMATION FOR SEQ ID NO:23:
35		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
40		(ii) MOLECULE TYPE: peptide
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
45		Thr Tyr Leu Thr Ser Phe Glu Gln Val Ala Asn Leu Lys 1 5 10
	(2)	INFORMATION FOR SEQ ID NO:24:
50		(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 amino acids(B) TYPE: amino acid
<u></u>		<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>
55		(ii) MOLECULE TYPE: peptide
٠. س		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
60		Val Leu Gly Thr Glu Asn Val Ile Ala Leu Tyr Ser Glu Asn Asn Gly

-139-

WO 97/17432 10 Val Gln Tyr Met Gln Ile 20 5 (2) INFORMATION FOR SEQ ID NO:25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6005 base pairs 10 (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: (A) NAME/KEY: RBS (B) LOCATION: 1..9 20 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 16..3585 (D) OTHER INFORMATION: /product = "P8" 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: AAGAAGGAAT TGATT ATG TCT GAA TCT TTA TTT ACA CAA ACG TTG AAA GAA 51 30 Met Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu GCG CGC CGT GAT GCA TTG GTT GCT CAT TAT ATT GCT ACT CAG GTG CCC Ala Arg Arg Asp Ala Leu Val Ala His Tyr Ile Ala Thr Gln Val Pro 35 20 GCA GAT TTA AAA GAG AGT ATC CAG ACC GCG GAT GAT CTG TAC GAA TAT Ala Asp Leu Lys Glu Ser Ile Gln Thr Ala Asp Asp Leu Tyr Glu Tyr 30 40 CTG TTG CTG GAT ACC AAA ATT AGC GAT CTG GTT ACT ACT TCA CCG CTG Leu Leu Leu Asp Thr Lys Ile Ser Asp Leu Val Thr Thr Ser Pro Leu 50 TCC GAA GCG ATT GGC AGT CTG CAA TTG TTT ATT CAT CGT GCG ATA GAG Ser Glu Ala Ile Gly Ser Leu Gln Leu Phe Ile His Arg Ala Ile Glu GGC TAT GAC GGC ACG CTG GCA GAC TCA GCA AAA CCC TAT TTT GCC GAT 50 Gly Tyr Asp Gly Thr Leu Ala Asp Ser Ala Lys Pro Tyr Phe Ala Asp GAA CAG TTT TTA TAT AAC TGG GAT AGT TTT AAC CAC CGT TAT AGC ACT

-140-

Glu Gln Phe Leu Tyr Asn Trp Asp Ser Phe Asn His Arg Tyr Ser Thr

TGG GCT GGC AAG GAA CGG TTG AAA TTC TAT GCC GGG GAT TAT ATT GAT Trp Ala Gly Lys Glu Arg Leu Lys Phe Tyr Ala Gly Asp Tyr Ile Asp

CCA ACA TTG CGA TTG AAT AAG ACC GAG ATA TTT ACC GCA TTT GAA CAA 435 Pro Thr Leu Arg Leu Asn Lys Thr Glu Ile Phe Thr Ala Phe Glu Gin

100

55

60

	GGT Gly	ATT Ile	TCT Ser	CAA Gln	GGG Gly 145	AAA Lys	TTA Leu	AAA Lys	AGT Ser	GAA Glu 150	TTA Leu	GTC Val	GAA Glu	TCT Ser	AAA L;;;s 155	TTA Leu	483
5	CGT Arg	GAT Asp	TAT Tyr	CTA Leu 160	ATT Ile	AGT Ser	TAT Tyr	GAC Asp	ACT Thr 165	TTA Leu	GCC Ala	ACC Thr	CTT Leu	GAT Asp 170	TAT Tyr	ATT Ile	531
10	ACT Thr	GCC Ala	TGC Cys 175	CAA Gln	Gly	AAA Lys	GAT Asp	AAT Asn 180	AAA Lys	ACC Thr	ATC Ile	TTC Phe	TTT Phe 185	ATT Ile	GGC Gly	CGT Arg	579
15	ACA Thr	CAG Gln 190	AAT Asn	GCA Ala	CCC Pro	TAT Tyr	GCA Ala 195	TTT Phe	TAT Tyr	TGG Trp	CGA Arg	AAA Lys 200	TTA Leu	ACT Thr	TTA Leu	GTC Val	627
20	ACT Thr 205	GAT Asp	GGC Gly	GG T Gly	AAG Lys	TTG Leu 210	AAA Lys	CCA Pro	GAT Asp	CAA Gln	TGG Trp 215	TCA Ser	GAG Glu	TGG Trp	CGA Arg	GCA Ala 220	675
20	ATT Ile	AAT Asn	GCC Ala	GGG Gly	ATT Ile 225	AGT Ser	GAG Glu	GCA Ala	TAT Tyr	TCA Ser 230	GGG Gly	CAT His	GTC Val	GAG Glu	CCT Pro 235	TTC Phe	723
25	TGG Trp	GAA Glu	AAT Asn	AAC Asn 240	AAG Lys	CTG Leu	CAC His	ATC Ile	CGT Arg 245	TGG Trp	TTT Phe	ACT Thr	ATC Ile	TCG Ser 250	AAA Lys	GAA Glu	771
30	GAT Asp	AAA Lys	ATA Ile 255	GAT Asp	TTT Phe	GTT Val	TAT Tyr	AAA Lys 260	AAC Asn	ATC Ile	TGG Trp	GTG Val	ATG Met 265	AGT Ser	AGC Ser	GAT Asp	819
35	TAT Tyr	AGC Ser 270	TGG Trp	GCA Ala	TCA Ser	AAG Lys	AAA Lys 275	AAA Lys	ATC Ile	TTG Leu	GAA Glu	CTT Leu 280	TCT Ser	TTT	ACT Thr	GAC Asp	867
. 40	TAC Tyr 285	AAT Asn	AGA Arg	GTT Val	GGA Gly	GCA Ala 290	ACA Thr	GGA Gly	TCA Ser	TCA Ser	AGC Ser 295	CCG Pro	ACT Thr	GAA Glu	GTA Val	GCT Ala 300	915
40	TCA Ser	CAA Gln	TAT Tyr	GGT Gly	TCT Ser 305	GAT Asp	GCT Ala	CAG Gln	ATG Met	AAT Asn 310	ATT Ile	TCT Ser	GAT Asp	GAT Asp	GGG Gly 315	ACT Thr	963
45	GTA Val	CTT Leu	ATT	TTT Phe 320	Gln	Asn	Ala	Gly	Gly	Ala	Thr	CCC Pro	Ser	Thr	Gly	GTG Val	1011
50	ACG Thr	TTA Leu	TGT Cys 335	Tyr	GAC Asp	TCT Ser	GGC	AAC Asn 340	Val	ATT	AAG Lys	AAC Asn	CTA Leu 345	Ser	AGT Ser	ACA Thr	1059
55	GGA Gly	AGT Ser 350	Ala	AAT Asn	TTA Leu	TCG Ser	TCA Ser 355	Lys	GAT Asp	TAT Tyr	GCC Ala	ACA Thr 360	Thr	AAA Lys	TTA Leu	CGC Arg	1107
<i>(</i> 1)	ATG Met 365	Cys	CAT	GGA Gly	CAA Gln	AGT Ser 370	Tyr	AAT Asn	GAT Asp	AAT Asn	AAC Asn 375	Tyr	TGC	AAT Asn	TTT Phe	ACA Thr 380	1155
60	CTC Leu	TCT	ATT	AAT Asn	ACA Thr 385	Ile	GAA Glu	TTC Phe	ACC Thr	TCC Ser 390	Tyr	GGC	ACA Thr	TTC Phe	TCA Ser 395	ser	1203
65	GAT Asp	GGA Gly	AAA Lys	CAA Gln	TTT	ACA Thr	CCA	CCT Pro	TCT Ser	Gly	TCT Ser	GCC Ala	ATI	GAT Asp	TTA Leu	CAC His	1251

				400					405					410			
5	CTC Leu	CCT Pro	AAT Asn 415	TAT Tyr	GTA Val	GAT Asp	CTC Leu	AAC Asn 420	GCG Ala	CTA Leu	TTA Leu	GAT Asp	ATT Ile 425	λGC Ser	CTC Leu	GAT Asp	1299
	TCA Ser	CTA Leu 430	CTT Leu	AAT Asn	TAT Tyr	GAC Asp	GTT Val 435	CAG Gln	GGG Gly	CAG Gln	TTT Phe	GGC Gly 440	GGA Gly	TCT Ser	AAT Asn	CCG Pro	1347
10	GTT Val 445	GAT Asp	AAT Asn	TTC Phe	AGT Ser	GGT Gly 450	CCC Pro	TAT Tyr	ggt Gly	ATT Ile	TAT Tyr 455	CTA Leu	TGG Trp	GAA Glu	ATC Ile	TTC Phe 460	1395
15	TTC Phe	CAT His	ATT Ile	CCG Pro	TTC Phe 465	CTT Leu	GTT Val	ACG Thr	GTC Val	CGT Arg 470	ATG Met	CAA Gln	ACC Thr	GAA Glu	CAA Gln 475	CGT Arg	1443
20	TAC Tyr	GAA Glu	GAC Asp	GCG Ala 480	GAC Asp	ACT Thr	TGG Trp	TAC Tyr	AAA Lys 485	TAT Tyr	ATT	TTC Phe	CGC Arg	AGC Ser 490	GCC Ala	GGT Gly	1491
25	TAT Tyr	CGC Arg	GAT Asp 495	GCT Ala	AAT Asn	GGC Gly	CAG Gln	CTC Leu 500	ATT Ile	ATG Met	GAT Asp	GGC Gly	AGT Ser 505	AAA Lys	CCA Pro	CGT Arg	1539
30	TAT Tyr	TGG Trp 510	AAT Asn	GTG Val	ATG Met	CCA Pro	TTG Leu 515	CAA Gln	CTG Leu	GAT Asp	ACC Thr	GCA Ala 520	TGG Trp	GAT Asp	ACC Thr	ACA Thr	1587
30	CAG Gln 525	CCC Pro	GCC Ala	ACC Thr	ACT Thr	GAT Asp 530	CCA Pro	GAT Asp	GTG Val	ATC Ile	GCT Ala 535	ATG Met	GCG Ala	GAC Asp	CCG Pro	ATG Met 540	1635
35	CAT His	TAC Tyr	AAG Lys	CTG Leu	GCG Ala 545	ATA Ile	TTC Phe	CTG Leu	CAT His	ACC Thr 550	CTT Leu	GAT Asp	CTA Leu	TTG Leu	ATT Ile 555	GCC Ala	1683
40	CGA Arg	GGC Gly	GAC Asp	AGC Ser 560	GCT Ala	TAC Tyr	CGT Arg	CAA Gln	CTT Leu 565	GAA Glu	CGC Arg	GAT Asp	ACT Thr	CTA Leu 570	GTC Val	GAA Glu	1731
45	GCC Ala	AAA Lys	ATG Met 575	TAC Tyr	TAC Tyr	ATT Ile	CAG Gln	GCA Ala 580	CAA Gln	CAG Gln	CTA Leu	CTG Leu	GGA Gly 585	CCG Pro	CGC Arg	CCT Pro	1779
50	GAT Asp	ATC Ile 590	CAT His	ACC Thr	ACC Thr	AAT Asn	ACT Thr 595	TGG Trp	CCA Pro	AAT Asn	CCC Pro	ACC Thr 600	TTG Leu	AGT Ser	AAA Lys	GAA Glu	1827
30	GCT Ala 605	Gly	GC T Ala	ATT	GCC Ala	ACA Thr 610	Pro	ACA Thr	TTC Phe	CTC Leu	AGT Ser 615	Ser	CCG Pro	GAG Glu	GTG Val	ATG Met 620	1875
55	ACG Thr	TTC Phe	GCT Ala	GCC Ala	TGG Trp 625	CTA Leu	AGC Ser	GCA Ala	GGC	GAT Asp 630	Thr	GCA Ala	AAT Asn	ATT	GGC Gly 635	GAC Asp	1923
60	GGT Gly	GAT Asp	TTC Phe	TTG Leu 640	Pro	CCG Pro	TAC Tyr	AAC Asn	GAT Asp 645	Val	CTA Leu	CTC Leu	GGT Gly	TAC Tyr 650	Trp	GAT Asp	1971
65	AAA Lys	CTT Leu	GAG Glu 655	Leu	CGC Arg	CTA Leu	TAC Tyr	AAC Asn 660	Leu	CGC Arg	CAC	AAT Asn	CTG Leu 665	Ser	CTG Leu	GAT Asp	2019

	GGT	5AA Gln 670	CCG Pro	CTA Leu	TAS Asn	CTG Leu	CCA Pro 675	CTG Leu	TAT Tyr	GCC Ala	ACG Thr	CCG Pro 680	GTA Val	GAC Asp	CCS Pro	AAA Lys	2057
5	ACC Thr 685	CTG Leu	CAA Gln	CGC Arg	CAG Gln	CAA Gln 690	GCC Ala	GGA Gly	GGG Gly	GAC Asp	GGT Gly 695	ACA Thr	GGC Gly	AGT Ser	AGT Ser	CCG Pro 700	2115
10	GCT Ala	G GT Gly	GGT Gly	CAA Gln	GGC Gly 705	AGT Ser	GTT Val	CAG Gln	GGC Gly	TGG Trp 710	CGC	TAT Tyr	CCG Pro	TTA Leu	TTG Leu 715	GTA Val	2153
15	GAA Glu	CGC Arg	GCC Ala	CGC Arg 720	TCT Ser	GCC Ala	GTG Val	AGT Ser	TTG Leu 725	TTG Leu	ACT Thr	CAG Gln	TTC Phe	GGC Gly 730	AAC Asn	AGC Ser	2211
20	TTA Leu	CAA Gln	ACA Thr 735	ACG Thr	TTA Leu	GAA Glu	CAT His	CAG Gln 740	GAT Asp	AAT Asn	GAA Glu	AAA Lys	ATG Met 745	ACG Thr	ATA Ile	CTG Leu	2259
	TTG Leu	CAG Gln 750	ACT Thr	CAA Gln	CAG Gln	GAA Glu	GCC Ala 755	ATC Ile	CTG Leu	AAA Lys	CAT His	CAG Gln 760	CAC His	GAT Asp	ATA Ile	CAA Gln	2307
25	CAA Gln 765	AAT Asn	AAT Asn	CTA Leu	AAA Lys	GGA Gly 770	TTA Leu	CAA Gln	CAC His	AGC Ser	CTG Leu 775	ACC Thr	GCA Ala	TTA Leu	CAG Gln	GCT Ala 780	2355
30	AGC Ser	CGT Arg	GAT Asp	GGC Gly	GAC Asp 785	ACA Thr	TTG Leu	CGG Arg	CAA Gln	AAA Lys 790	CAT His	TAC Tyr	AGC Ser	GAC Asp	CTG Leu 795	ATT Ile	2403
35		GGT Gly															2451
40	ACC Thr	GCC Ala	ATG Met 815	ATT Ile	ACC Thr	AAT Asn	GGC Gly	GTT Val 820	GCA Ala	ACG Thr	GGA Gly	TTG Leu	CTG Leu 825	ATT Ile	GCC Ala	GGC Gly	2499
40		ATC Ile 830															2547
45		Glu			Ala		Leu			Ser							2595
50		GCC Ala															2643
55		TAT Tyr															2691
60		yau YyC															2739
00		ATC Ile 910															2787
65		AAT Asn															2835

	925	,	930	,		9:	35			340	
5	CAG GCA Gln Ala										2333
10	CAA ATG Gln Met		Ser Thr	CTG CCA							2931
10	Leu Val			GAG AAA Glu Lys 980	Glu		sp Ser				2979
15	CCG GTG Pro Val 990							Gly Glu			3027
20	AGT TCA Ser Ser 1005			Leu Asp		Ile Tr			Gly		
25	ATT GGG										3123
30	ACA GGG . Thr Gly		Ser Glu			Lys Va			Glu		3171
30	GTA TCT Val Ser				Leu		u Thr				3219
35	CAA GCA . Gln Ala ' 1070	Thr Leu									3267
40	TTG GGT A Leu Gly A 1085			Arg Arg		Lys Ar			Thr		
45	CCA ACA (Pro Thr I										3363
50	GGT GCG (Ala Ala			Gly Va	_		Gly .		3411
	TTT GTT A				Arg		eu Pro				3459
55	GAT GCA A Asp Ala 1 1150	Thr Thr									3507
60	GAG GGA 2 Glu Gly 3 1165			Leu Val		Asn Le			Ile '		
65	CAT CTG A					TAA AT 1190	TICTIT	rc tttgt	CGAT	r	3605

	ACAGGTCCCT	ATC: LoGGGCC	TGTTATTAAG	GAGTACTITA	TGCAL PTC	ACCAGAAGTA	3555
	TCGATTACAA	CGCTGTCACT	TCCCAAAGGT	GGCGGTGCTA	TCAATGGCAT	GGGAGAAGCA	3725
5	CTGAATGCTG	CCGGCCCTGA	TGGAATGGCC	TCCCTATCTC	TGCCATTACC	CCTTTCGACC	3785
	GGCAGAGGGA	CGGCTCCTGG	ATTATCGCTG	ATTTACAGCA	ACAGTGCAGG	TAATGGGCCT	3845
10	TTCGGCATCG	GCTGGCAATG	CGGTGTTATG	TCCATTAGCC	GACGCACCCA	ACATGGCATT	3905
10	CCACAATACG	GTAATGACGA	CACGTTCCTA	TCCCCACAAG	GCGAGGTCAT	GAATATCGCC	3965
	CTGAATGACC	AAGGCAACC	TGATATCCGT	CAAGACGTTA	AAACGCTGCA	AGGCGTTACC	4025
15	TTGCCAATTT	CCTATACCGT	GACCCGCTAT	CAAGCCCGCC	AGATCCTGGA	TTTCAGTAAA	4085
	ATCGAATACT	GGCAACCTGC	CTCCGGTCAA	GAAGGACGCG	CTTTCTGGCT	GATATCGACA	4145
20	CCGGACGGGC	ATCTACACAT	CTTAGGGAAA	ACCGCGCAGG	CTTGTCTGGC	AAATCCGCAA	4205
20	AATGACCAAC	AAATCGCCCA	GTGGTTGCTG	GAAGAAACTG	TGACGCCAGC	CGGTGAACAT	4265
	GTCAGCTATC	AATATCGAGC	CGAAGATGAA	GCCCATTGTG	ACGACAATGA	AAAAACCGCT	4325
25	CATCCCAATG	TTACCGCACA	GCGCTATCTG	GTACAGGTGA	ACTACAGGCA	ACATCAAACC	4385
	ACAAGCCAGC	CTGTTCGTAC	TGGATAACGC	ACCTCCCGCA	CCGGAAGAGT	GGCTGTTTCA	4445
30	TCTGGTCTTT	GACCACGGTG	AGCGCGTACC	TCACTTCATA	CCGTGCCAAC	ATGGGATGCA	4505
50	GGTACAGCGC	AATGGTCTGT	ACGCCCGGAT	ATCTTCTCTC	GCTATGAATA	TGGTTTTGAA	4565
	GTGCGTACTC	GCCGCTTATG	TCAACAAGTG	CTGATGTTTC	ACCGCACCGC	GCTCATGGCC	4625
35	GGAGAAGCCA	GTACCAATGA	CGCCCCGGAA	CTGGTTGGAC	GCTTAATACT	GGAATATGAC	4685
	AAAAACGCCA	GCGTCACCAC	GTTGATTACC	ATCCGTCAAT	TAAGCCATGA	ATCGGACGGG	4745
40	AGGCCAGTCA	CCCAGCCACC	ACTAGAACTA	GCCTGGCAAC	GGTTTGATCT	GGAGAAAATC	4805
	CCGACATGGC	AACGCTTTGA	CGCACTAGAT	AATTTTAACT	CGCAGCAACG	TTATCAACTG	4865
	GTTGATCTGC	GGGGAGAAGG	GTTGCCAGGT	ATGCTGTATC	AAGATCGAGG	CGCTTGGTGG	4925
45	TATAAAGCTC	CGCAACGTCA	GGAAGACGGA	GACAGCAATG	CCGTCACTTA	CGACAAAATC	4985
	GCCCCACTGC	CTACCCTACC	CAATTTGCAG	GATAATGCCT	CATTGATGGA	TATCAACGGA	5045
50	GACGGCCAAC	TGGATTGGGT	TGTTACCGCC	TCCGGTATTC	GCGGATACCA	TAGTCAGCAA	5105
	CCCGATGGAA	AGTGGACGCA	CTTTACGCCA	ATCAATGCCT	TGCCCGTGGA	ATATTTTCAT	5165
	CCAAGCATCC	AGTTCGCTGA	CCTTACCGGG	GCAGGCTTAT	CTGATTTAGT	GTTGATCGGG	5225
55	CCGAAAAGCG	TGCGTCTATA	TGCCAACCAG	CGAAACGGCT	GGCGTAAAGG	AGAAGATGTC	5285
	CCCCAATCCA	CAGGTATCAC	CCTGCCTGTC	ACAGGGACCG	ATGCCCGCAA	ACTGGTGGCT	5345
60	TTCAGTGATA	TGCTCGGTTC	CGGTCAACAA	CATCTGGTGG	AAATCAAGGG	TAATCGCGTC	5405
	ACCTGTTGGC	CGAATCTAGG	GCATGGCCGT	TTCGGTCAAC	CACTAACTCT	GTCAGGATTT	5465
	AGCCAGCCCG	AAAATAGCTT	CAATCCCGAA	CGGCTGTTTC	TGGCGGATAT	CGACGGCTCC	5525
65	GGCACCACCG	ACCTTATCTA	TGCGCAATCC	GGCTCTTTGC	TCATTTATCT	CAACCAAAGT	5585

	JGT	CTAA	AGT	TTGA	TGCC	cc s	TTGA	CATT	A GC	GTTG	CCAG	AAG	GCGT	'ACA	ATTT	GACAAS
	ACT	TGCC	CAAC	TTCA	AGTC	GC C	GATA	TTCA	G GG	ATTA	.GGGA	TAG	CCAG	CTT	Gatt	CTGACT
5	GTG	CCAC	ATA	TCGC	GCCA	CA T	CACT	CGCG	т тс	TGAC	CTGT	CYC	TGAC	CAA	ACCC	TGGTTG
	TTG	AATO	TAA	TGAA	CAAT	AA C	CGGG	GCGC	A CA	TCAC	ACGC	TAC	ATTA	TCG	TAGT	TCCGCG
10	CAA	TTCI	CGT	TGGA	TGAA	AA A	TTAC	AGCT	C AC	CAAA	GCAG	GCA	AATC	TCC	GGCT	TGTTAT
10	CTG	CCGI	TTC	CAAT	GCAT	TT G	CTAT	GGTA	T AC	CGAA	ATTC	AGG	ATGA	AAT	CAGC	GGCAAC
	CGG	CTCA	CCA	GTGA	AGTC	AA C	TACA	GCCA	c GG	CGTC	TGGG	ATG	GTAA	AGA	GCGG	GAATTC
15	(2)	IN	FORM	ATI	ON F	OR S	SEQ	ID N	10:2	5:						
20			(i)		(A) (B) (D)	LENC TYPE TOPC	STH: E: ai DLOG	ACTE 119 mino Y: 1	0 ar ac: inea	mino id ar		ids				
25			(11)	MOI	ECU:	LE I	YPE	: pr	ote:	ın						
20			(xi)	SEC	UEN	CE D	ESC	RIPT	'ION	: SE	Q II	ОИО	: 26:	:		
30	Met 1	Ser	Glu	Ser	Leu 5	Phe	Thr	Gln	Thr	Leu 10	_	Glu	Ala	Arg	Arg 15	Asp
50	Ala	Leu	Val	Ala 20	His	Tyr	Ile	Ala	Thr 25	Gln	Val	Pro	Ala	Asp 30	Leu	Lys
35	Glu	Ser	Ile 35	Gln	Thr	Ala	Asp	Asp 40	Leu	Tyr	Glu	Tyr	Leu 45	Leu	Leu	Asp
	Thr	Lys 50	Ile	Ser	Asp	Leu	Val 55	Thr	Thr	Ser	Pro	Leu 60	Ser	Glu	Ala	Ile
40	Gly 65	Ser	Leu	Gln	Leu	Phe 70	Ile	His	Arg	Ala	Ile 75	Glu	Gly	Tyr	Asp	Gly 80
45	Thr	Leu	Ala	Asp	Ser 85	Ala	Lys	Pro	Tyr	Phe 90	Ala	Asp	Glu	Gln	Phe 95	Leu
	Tyr	Asn	Trp	Asp 100	Ser	Phe	Asn	His	Arg 105	Tyr	Ser	Thr	Trp	Ala 110	Gly	Lys
50	Glu	Arg	Leu 115	Lys	Phe	Tyr	Ala	Gly 120	Asp	Tyr	Ile	Asp	Pro 125	Thr	Leu	Arg
	Leu	Asn 130	Lys	Thr	Glu	Ile	Phe 135	Thr	Ala	Phe	Glu	Gln 140	Gly	Ile	Ser	Gln
55	Gly 145	Lys	Leu	Lys	Ser	Glu 150	Leu	Val	Glu	Ser	Lys 155	Leu	Arg	Asp	Tyr	Leu 160
60	Ile	Ser	Tyr	Asp	Thr 165	Leu	Ala	Thr	Leu	Asp 170	Tyr	Ile	Thr	Ala	Cys 175	Gln
-	Gly	Lys	Asp	Asn 180	Lys	Thr	Ile	Phe	Phe 185	Ile	Gly	Arg	Thr	Gln 190	Asn	Ala

-146-

Pro Tyr Ala Phe Tyr Trp Arg Lys Leu Thr Leu Val Thr Asp Gly Gly 195 200 205

		(- 6					
	Lys	Leu 210		Pro	Asp	Gln	Trp 215	Ser	Glu	Trp	Arg	Ala 220	Ile	Asn	Ala	Gly
5	11e 225	Ser	Glu	λla	Tyr	Ser 230	Gly	Hıs	Val	Glu	Pro 235	Phe	Trp	Glu	Asn	Asn 240
10	Lys	Leu	His	Ile	Arg 245	Trp	Phe	Thr	Ile	Ser 250	Lys	Glu	qzA	Lys	I1 255	Asp
10	Phe	7al	Tyr	Lys 260	Asn	Ile	Trp	Val	Met 265	Ser	Ser	Asp	Tyr	Ser 270	Trp	Ala
15	Ser	Lys	Lys 275	Lys	Ile	Leu	Glu	Leu 230	Ser	Phe	Thr	Asp	Tyr 285	Asn	Arg	Val
	Gly	Ala 290	Thr	Gly	Ser	Ser	Ser 295	Pro	Thr	Glu	Val	Ala 300	Ser	Gln	Туr	Gly
20	Ser 305	Asp	Ala	Gln	Met	Asn 310	Ile	Ser	Asp	Asp	Gly 315	Thr	Val	Leu	Ile	Phe 320
25	Gln	Asn	Ala	Gly	Gly 325	Ala	Thr	Pro	Ser	Thr 330	Gly	Val	Thr	Leu	Cys 335	Tyr
23	Asp	Ser	Gly	Asn 340	Val	Ile	Lys	Asn	Leu 345	Ser	Ser	Thr	Gly	<i>S</i> er 350	Ala	Asn
30	Leu	Ser	Ser 355	Lys	Asp	Tyr	Ala	Thr 360	Thr	Lys	Leu	Arg	Met 365	Cys	His	Gly
	Gln	Ser 370	Tyr	Asn	Asp	Asn	Asn 375	Tyr	Cys	Asn	Phe	Thr 380	Leu	Ser	Ile	Asn
35	Thr 385	Ile	Glu	Phe	Thr	Ser 390	Tyr	Gly	Thr	Phe	Ser 395	Ser	Asp	Gly	Lys	Gln 400
40	Phe	Thr	Pro	Pro	Ser 405	Gly	Ser	Ala	Ile	Asp 410	Leu	His	Leu	Pro	Asn 415	Tyr
	Val	Asp	Leu	Asn 420	Ala	Leu	Leu	Asp	Ile 425	Ser	Leu	Asp	Ser	Leu 430	Leu	Asn
45	Tyr	Asp	Val 435	Gln	Gly	Gln	Phe	Gly 440	Gly	Ser	Asn	Pro	Val 445	Asp	Asn	Phe
	Ser	Gly 450	Pro	Tyr	Gly	Ile	Tyr 455	Leu	Trp	Glu	Ile	Phe 460	Phe	His	Ile	Pro
50	Phe 465	Leu	Val	Thr	Val	Arg 470	Met	Gln	Thr	Glu	Gln 475	Arg	Tyr	Glu	Asp	Ala 480
55	Asp	Thr	Trp	Tyr	Lys 485	Tyr	Ile	Phe	Arg	Ser 490	Ala	Gly	Tyr	Arg	Asp 495	Ala
33	Asn	Gly	Gln	Leu 500	Ile	Met	Asp	Gly	Ser 505	Lys	Pro	Arg	Tyr	Trp 510	Asn	Val
60	Met	Pro	Leu 515	Gln	Leu	Asp	Thr	Ala 520	Trp	Asp	Thr	Thr	Gln 525	Pro	Ala	Thr
	Thr	Asp 530	Pro	Asp	Val	Ile	Ala 535	Met	Ala	Asp	Pro	Met 540	His	Tyr	Lys	Leu
65	λla 545	Ile	Phe	Leu	His	Thr 550	Leu	Asp	Leu	Leu	Ile 555	Ala	Arg	Gly	Asp	Ser 560

-147-

	Ala	T; r	Arg	Gln	Leu 565	Glu	Arg	Asp	Thr	Leu 570	Val	Glu	Ala	Lys	Met 575	Tyr
5	T; r	Ile	Gln	Ala 580	Gln	Gln	Leu	Leu	Gl; 585	Pro	Arg	Pro	Asp	11e 590	His	Thr
10	Thr	Asn	Thr 595	Trp	Pro	Asn	Pro	Thr 600	Leu	Ser	Ľ}.s	Glu	Ala 605	Gly	Ala	Ile
10	Ala	Thr 610	Pro	Thr	Phe	Leu	Ser 615	Ser	Pro	Glu	Va1	Met 620	Thr	Phe	Ala	Ala
15	Trp 625	Leu	Ser	Ala	Gly	Asp 630	Thr	Ala	Asn	Ile	Gly 635	Asp	Gly	Asp	Phe	Leu 540
	Pro	Pro	Tyr	Asn	Asp 645	Val	Leu	Leu	Gly	Tyr 650	Trp	Asp	Lys	Leu	Glu 655	Leu
20	Arg	Leu	Tyr	Asn 660	Leu	Arg	His	Asn	Leu 665	Ser	Leu	Asp	Gly	Gln 670	Pro	Leu
25	Asn	Leu	Pro 675	Leu	Tyr	Ala	Thr	Pro 680	Val	Asp	Pro	Lys	Thr 685	Leu	Gln	Arg
-5	Gln	Gln 690	Ala	Gly	Gly	Аsр	Gly 695	Thr	Gly	Ser	Ser	Pro 700	Ala	Gly	Gly	Gln
30	Gly 705	Ser	Val	Gln	Gly	Trp 710	Arg	Tyr	Pro	Leu	Leu 715	Val	Glu	Arg	Ala	Arg 720
	Ser	Ala	Val	Ser	Leu 725	Leu	Thr	Gln	Phe	Gly 730	Asn	Ser	Leu	Gln	Thr 735	Thr
35	Leu	Glu	His	Gln 740	Asp	Asn	Glu	Lys	Met 745	Thr	Ile	Leu	Leu	Gln 750	Thr	Gln
40	Gln	Glu	Ala 755	Ile	Leu	Lys	His	Gln 760	His	Asp	Ile	Gln	Gln 765	Asn	Asn	Leu
40	Lys	Gly 770	Leu	Gln	His	Ser	Leu 775	Thr	Ala	Leu	Gln	Ala 780	Ser	Arg	Asp	Gly
45	Asp 785	Thr	Leu	Arg	Gln	Lys 790	His	Tyr	Ser	Asp	Leu 795	Ile	Asn	Gly	Gly	Leu 300
	Ser	Ala	Ala	Glu	Ile 805	Ala	Gly	Leu	Thr	Leu 810	Arg	Ser	Thr	Ala	Met 815	Ile
50	Thr	Asn	Gly	Val 820	Ala	Thr	Gly	Leu	Leu 825	Ile	Ala	Gly	Gly	11e 830	Ala	Asn
55	Ala	Val	Pro 835	Asn	Val	Phe	Gly	Leu 840	Ala	Asn	Gly	Gly	Ser 845	Glu	Trp	Gly
J J	Ala	Pro 850	Leu	Ile	Gly	Ser	Gly 855	Gln	Ala	Thr	Gln	Val 860	Gly	Ala	Gly	Ile
60	Gln 365	Asp	Gln	Ser	Ala	Gly 870	Ile	Ser	Glu	Val	Thr 875	Ala	Gly	Tyr	Gln	Arg 880
	Arg	Gln	Glu	Glu	Trp 885	Ala	Leu	Gln	Arg	Asp 890	Ile	Ala	Asp	Asn	Glu 895	Ile
65	Thr	Gln	Leu	Asp	Ala	Gln	Ile	Gln	Ser	Leu	Gln	Glu	Gln	Ile	Thr	Met

-148-

	Ala	Gln	915	Gln	Ile	Thr	Leu	3er 920	Slu	Thr	Slu	h	Ala 925	Asn	Ala	Gln
5	Ala	11e 930		Asp	Leu	Gln	Thr 935	Thr	Arg	Phe	Thr	G17 940	Gln	Ala	Leu	T, r
10	Asn 945	Trp	Met	Ala	Gly	Arg 950	Leu	Ser	Ala	Leu	Tyr 955	T;r	Gln	Met	Tyr	Asp 960
10	Ser	Thr	Leu	Pro	Ile 965	Cys	Leu	Gln	Pro	L;;s 970	Ala	Ala	Leu	Val	Gln 975	Glu
15	Leu	Gly	Glu	Lys 980	Glu	Ser	Asp	Ser	Leu 985	Phe	Gln	Val	Pro	Val 990	Trp	Asn
	Asp	Leu	Trp 995	Gln	Gly	Leu	Leu	Ala 1000	-	Glu	Gly	Leu	Ser 100		Glu	Leu
20	Gln	Lys 101		Asp	Ala	Ile	Trp 1015		Ala	Arg	Gly	Gly 102		Gly	Leu	Glu
25	Ala 1029		Arg	Thr	Val	Ser 1030		Asp	Thr	Leu	Phe 1035	•	Thr	Gly	Thr	Leu 1040
	Ser	Glu	Asn	Ile	Asn 1049	-	Val	Leu	Asn	Gly 105		Thr	Val	Ser	Pro 1055	
30	Gly	Gly	Val	Thr 1060		Ala	Leu	Thr	Gly 1065		Ile	Phe	Gln	Ala 1070		Leu
	Asp	Leu	Ser 1075	Gln 5	Leu	Gly	Leu	Asp 1080		Ser	Tyr	Asn	Leu 1089	_	Asn	Glu
35	Lys	Lys 1090	_	Arg	Ile	Lys	Arg 1095		Ala	Val	Thr	Leu 110		Thr	Leu	Leu
40	Gly 1105		Tyr	Gln	Asp	Leu 1110		Ala	Thr	Leu	Val 1115		Gly	Ala	Glu	Ile 1120
	Ala	Ala	Leu	Ser	His 1129		Va1	Asn	Asp	Gly 1136		Arg	Phe	Val	Thr 1135	_
45	Phe	Asn	Asp	Ser 1140	_	Phe	Leu	Pro	Phe 1145		Gly	Arg	Asp	Ala 1150		Thr
	Gly	Thr	Leu 1155	Glu	Leu	Asn	Ile	Phe 1160		Ala	Gly	Lys	Glu 116	_	Thr	Gln
50	His	Glu 1170		Val	Ala	Asn	Leu 1179		Asp	Ile	Ile	Val 113		Leu	Asn	Tyr
55	Ile 1135		Arg	Asp	Ala	1190)									
	(2)	INF	FORM	ATIO	N F	OR S	EQ I	ID N	0:27	':						
60		(i		EQUE (A) (B) (C) (D)	LENO TYPI STR	GTH: E: n ANDE	188 ucle DNES	31 b ≥ic 55:	ase acid doub	pai l	rs				٠	
65		(ii	i) M	OLEC	ULE	TYP	E: [ONA	(gen	omi	c:					

-149-

PCT/US96/18003 WO 97/17432

(ix) FEATURE:

5

(A) NAME/KEY: CDS (B) LOCATION: 1..1881

(D) OTHER INFORMATION: /product = "P8"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27: 10 ATG TOT GAA TOT TTA TTT ACA CAA ACG TTG AAA GAA GCG CGC CGT GAT Met Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu Ala Arg Arg Asp 10 15 SCA TTG GTT GCT CAT TAT ATT GCT ACT CAG GTG CCC GCA GAT TTA AAA Ala Leu Val Ala His Tyr Ile Ala Thr Gln Val Pro Ala Asp Leu Lys GAG AGT ATC CAG ACC GCG GAT GAT CTG TAC GAA TAT CTG TTG CTG GAT 20 Glu Ser Ile Gln Thr Ala Asp Asp Leu Tyr Glu Tyr Leu Leu Leu Asp 40 ACC AAA ATT AGC GAT CTG GTT ACT TCA CCG CTG TCC GAA GCG ATT Thr Lys Ile Ser Asp Leu Val Thr Thr Ser Pro Leu Ser Glu Ala Ile 25 GGC AGT CTG CAA TTG TTT ATT CAT CGT GCG ATA GAG GGC TAT GAC GGC Gly Ser Leu Gln Leu Phe Ile His Arg Ala Ile Glu Gly Tyr Asp Gly 30 ACG CTG GCA GAC TCA GCA AAA CCC TAT TTT GCC GAT GAA CAG TTT TTA Thr Leu Ala Asp Ser Ala Lys Pro Tyr Phe Ala Asp Glu Gln Phe Leu 35 TAT AAC TGG GAT AGT TTT AAC CAC CGT TAT AGC ACT TGG GCT GGC AAG Tyr Asn Trp Asp Ser Phe Asn His Arg Tyr Ser Thr Trp Ala Gly Lys 100 105 GAA CGG TTG AAA TTC TAT GCC GGG GAT TAT ATT GAT CCA ACA TTG CGA 40 Glu Arg Leu Lys Phe Tyr Ala Gly Asp Tyr Ile Asp Pro Thr Leu Arg TTG AAT AAG ACC GAG ATA TTT ACC GCA TTT GAA CAA GGT ATT TCT CAA Leu Asn Lys Thr Glu Ile Phe Thr Ala Phe Glu Gln Gly Ile Ser Gln 45 130 GGG AAA TTA AAA AGT GAA TTA GTC GAA TCT AAA TTA CGT GAT TAT CTA Gly Lys Leu Lys Ser Glu Leu Val Glu Ser Lys Leu Arg Asp Tyr Leu 50 ATT AGT TAT GAC ACT TTA GCC ACC CTT GAT TAT ATT ACT GCC TGC CAA lie Ser Tyr Asp Thr Leu Ala Thr Leu Asp Tyr Ile Thr Ala Cys Gin 170 55 GGC AAA GAT AAT AAA ACC ATC TTC TTT ATT GGC CGT ACA CAG AAT GCA Gly Lys Asp Asn Lys Thr Ile Phe Phe Ile Gly Arg Thr Gln Asn Ala 185 CCC TAT GCA TTT TAT TGG CGA AAA TTA ACT TTA GTC ACT GAT GGC GGT 60 Pro Tyr Ala Phe Tyr Trp Arg Lys Leu Thr Leu Val Thr Asp Gly Gly 195 200 AAG TTG AAA CCA GAT CAA TGG TCA GAG TGG CGA GCA ATT AAT GCC GGG 672 Lys Leu Lys Pro Asp Gln Trp Ser Glu Trp Arg Ala Ile Asn Ala Gly 65 215

-150-

5				G-A Ala													723
J				ATC Ile													758
10				AAA Lys 260													316
15	TCA Ser	AAG Lys	AAA Lys 275	AAA Lys	ATC Ile	TTG Leu	GAA Glu	CTT Leu 280	TCT Ser	TTT Phe	ACT Thr	GAC Asp	TAC Tyr 285	AAT Asn	AGA Arg	GTT Val	364
20				GGA Gly													912
25				CAG Gln													960
				GGC Gly													1008
30				AAC Asn 340													1056
35				AAG Lys													1104
40				AAT Asn													1152
45				TTC Phe													1200
				Pro		Gly		Ala	Ile	Asp		His	Leu				1248
50				AAC Asn 420													1296
55				CAG Gln													1344
60				TAT Tyr													1392
65				ACG Thr													1440
	GAC	ACT	TGG	TAC	AAA	TAT	ATT	TTC	CCC	AGC	GCC	CCT	TAT	ccc	GAT	GCT	1488

Lys Tyr lie Phe Arg Ser Ala Gly Tyr Arg Asp Ala Asp Thr Trp Ty AAT GGC CAG CTC ATT ATG GAT GGC AGT AAA CCA CGT TAT TGG AAT GTG 1536 Asn Gly Gln Leu Ile Met Asp Gly Ser Lys Pro Arg Tyr Trp Asn Val 500 505 ATG CCA TTG CAA CTG GAT ACC GCA TGG GAT ACC ACA CAG CCC GCC ACC 1584 Met Pro Leu Gln Leu Asp Thr Ala Trp Asp Thr Thr Gln Pro Ala Thr 520 10 515 ACT GAT COA GAT GTG ATC GCT ATG GCG GAC CCG ATG CAT TAC AAG CTG 1632 Thr Asp Pro Asp Val Ile Ala Met Ala Asp Pro Met His Tyr Lys Leu 535 15 GCG ATA TTC CTG CAT ACC CTT GAT CTA TTG ATT GCC CGA GGC GAC AGC 1680 Ala Ile Phe Leu His Thr Leu Asp Leu Leu Ile Ala Arg Gly Asp Ser 550 555 20 GCT TAC CGT CAA CTT GAA CGC GAT ACT CTA GTC GAA GCC AAA ATG TAC 1728 Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Val Glu Ala Lys Met Tyr 570 TAC ATT CAG GCA CAA CAG CTA CTG GGA CCG CGC CCT GAT ATC CAT ACC 1776 Tyr Ile Gln Ala Gln Gln Leu Leu Gly Pro Arg Pro Asp Ile His Thr 25 580 585 ACC AAT ACT TGG CCA AAT CCC ACC TTG AGT AAA GAA GCT GGC GCT ATT 1824 Thr Asn Thr Trp Pro Asn Pro Thr Leu Ser Lys Glu Ala Gly Ala Ile 30 600 GCC ACA CCG ACA TTC CTC AGT TCA CCG GAG GTG ATG ACG TTC GCT GCC 1872 Ala Thr Pro Thr Phe Leu Ser Ser Pro Glu Val Met Thr Phe Ala Ala 615 620 35 1991 TGG CTA AGC Trp Leu Ser 625 40 (2) INFORMATION FOR SEQ ID NO:28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 627 amino acids 45 (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28: Met Ser Glu Ser Leu Phe Thr Gln Thr Leu Lys Glu Ala Arg Arg Asp 1 55 Ala Leu Val Ala His Tyr Ile Ala Thr Gln Val Pro Ala Asp Leu Lys Glu Ser Ile Gln Thr Ala Asp Asp Leu Tyr Glu Tyr Leu Leu Leu Asp 60 Thr Lys Ile Ser Asp Leu Val Thr Thr Ser Pro Leu Ser Glu Ala Ile Gly Ser Leu Gln Leu Phe Ile His Arg Ala Ile Glu Gly Tyr Asp Gly 65

SUBSTITUTE SHEET (RULE 26)

-152-

	65					70					75					8 0
5	Thr	Leu	Ala	Asp	Ser 85	Ala	Lys	Pro	Tyr	Phe 90	Ala	Asp	Glu	Gln	Phe 95	Leu
3	Tyr	Asn	Trp	λsp 100	ser	Phe	Asn	His	Arg 105	Tir	Ser	Thr	Trp	Ala 110	Gly	L; s
10	Glu	λrg	Leu 115	Lys	Phe	Tyr	λla	Gly 120	Asp	Tyr	Ile	Asp	Pro 125	Thr	Leu	Arg
	Leu	130 Asn	Lys	Thr	Glu	Ile	Phe 135	Thr	Ala	Phe	Glu	Gln 140	Gly	Ile	Ser	Gln
15	Gly 145	Lys	Leu	Lys	Ser	Glu 150	Leu	Val	Glu	Ser	Lys 155	Leu	Arg	Asp	Tyr	Leu 160
20		Ser			165					170					175	
	Gly	Lys	Asp	Asn 180	Lys	Thr	Ile	Phe	Phe 185	Ile	Gly	Arg	Thr	Gln 190	Asn	Ala
25	Pro	Tyr	Ala 195	Phe	Tyr	Trp	Arg	Lys 200	Leu	Thr	Leu	Val	Thr 205	Asp	Gly	Gly
	Lys	Leu 210	Lys	Pro	Asp	Gln	Trp 215	Ser	Glu	Trp	Arg	Ala 220	Ile	Asn	Ala	Gly
30	225	Ser			-	230					235					240
35		Leu			245					250					255	
		Val		260					265					270		
40		Lys	275					280					285			
4.0		Ala 290					295					300				
45	305	Asp				310					315					320
5()		Asn			325					330					335	
		Ser		340			-		345				-	350		
55		Ser	355					360					365			
	Gln	Ser 370	Tyr	Asn	Asp	Asn	Asn 375	Tyr	Cys	Asn	Phe	Thr 380	Leu	Ser	Ile	Asn
60	Thr 385	Ile	Glu	Phe	Thr	Ser 390	Tyr	Gly	Thr	Phe	Ser 395	Ser	Asp	Gly	Lys	Gln 400
65	Phe	Thr	Pro	Pro	Ser 405	Gly	Ser	Ala	Ile	Asp 410	Leu	His	Leu	Pro	Asn 415	Tyr
	Val	Asp	Leu	Asn	Ala	Leu	Leu	Asp	Ile	Ser	Leu	Asp	Ser	Leu	Leu	Asn

420 425 430 Tyr Asp Val Gln Gly Gln Phe Gly Gly Ser Ash Pro Val Asp Ash Fhe 5 Ser Gly Pro Tyr Gly Ile Tyr Leu Trp Glu Ile Phe Phe His Ile Pro Phe Leu Val Thr Val Arg Met Gln Thr Glu Gln Arg Tyr Glu Asp Ala 10 Asp Thr Trp Tyr Lys Tyr Ile Phe Arg Ser Ala Gly Tyr Arg Asp Ala 490 15 Asn Gly Gln Leu Ile Met Asp Gly Ser Lys Pro Arg Tyr Trp Asn Val 505 Met Pro Leu Gln Leu Asp Thr Ala Trp Asp Thr Thr Gln Pro Ala Thr 20 Thr Asp Pro Asp Val Ile Ala Met Ala Asp Pro Met His Tyr Lys Leu 535 Ala Ile Phe Leu His Thr Leu Asp Leu Leu Ile Ala Arg Gly Asp Ser 25 Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Val Glu Ala Lys Met Tyr 30 Tyr Ile Gln Ala Gln Gln Leu Leu Gly Pro Arg Pro Asp Ile His Thr 585 Thr Asn Thr Trp Pro Asn Pro Thr Leu Ser Lys Glu Ala Gly Ala Ile 600 35 Ala Thr Pro Thr Phe Leu Ser Ser Pro Glu Val Met Thr Phe Ala Ala 615 620 Trp Leu Ser 40 625 (2) INFORMATION FOR SEQ ID NO:29: 45 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1689 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 50 (ii) MOLECULE TYPE: DNA (genomic) (ix) FEATURE: 55 (A) NAME/KEY: CDS (B) LOCATION: 1..1689 (D) OTHER INFORMATION: /product = "S8" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29: GCA GGC GAT ACC GCA AAT ATT GGC GAC GGT GAT TTC TTG CCA CCG TAC Ala Gly Asp Thr Ala Asn Ile Gly Asp Gly Asp Phe Leu Pro Pro Tyr

-154-

5		TAE Asp						-									35
		CTG Leu															144
10		TAT T, r 50															132
15		GGG Gly															240
20		GGC Gly															288
25		TTG Leu															336
		GAT Asp															384
30		CTG Leu 130															432
35		CAC His															480
40		CAA Gln															523
45		ATC Ile															576
		GCA Ala			_												624
50		GTC Val 210					_										672
55	ATT Ile 225	GGC Gly	TCC Ser	GGG Gly	CAA Gln	GCA Ala 230	ACC Thr	CAA Gln	GTT Val	GGC Gly	GCC Ala 235	GGC Gly	ATC Ile	CAG Gln	GAT Asp	CAG Gln 240	720
60	AGC Ser	GCG Ala	GGC Gly	ATT Ile	TCA Ser 245	GAA Glu	GTG Val	ACA Thr	GCA Ala	GGC Gly 250	TAT Tyr	CAG Gln	CGT Arg	CGT Arg	CAG Gln 255	GAA Glu	768
65	GAA Glu	TGG Trp	GCA Ala	TTG Leu 260	CAA Gln	CGG Arg	GAT Asp	ATT	GCT Ala 265	GAT Asp	AAC Asn	GAA Glu	ATA Ile	ACC Thr 270	CAA Gln	CTG Leu	316
(1)	GAT	GCC	CAG	ATA	CAA	AGC	CTG	CAA	GAG	CAA	ATC	ACG	ATG	GCA	CAA	AAA	864

Asp Ala Gin Tie Gin Ser Leu Gin Glu Gin Tie Thr Met Ala Gin Lys 280 CAG ATC ACG CTC TCT GAA ACC GAA CAA GCG AAT GCC CAA GCG ATT TAT Sin Ile Thr Leu Ser Glu Thr Giu Gin Ala Asn Ala Gin Ala Ile Tyr 295 290 GAC CTG CAA ACC ACT CGT TTT ACC GGG CAG GCA CTG TAT AAC TGG ATG 960 Asp Leu Gln Thr Thr Arg Phe Thr Gly Gln Ala Leu Tyr Asn Trp Met 10 310 GCC GGT CGT CTC TCC GCG CTC TAT TAC CAA ATG TAT GAT TCC ACT CTG 1008 Ala Gly Arg Leu Ser Ala Leu Tyr Tyr Gln Met Tyr Asp Ser Thr Leu 325 330 15 CCA ATC TGT CTC CAG CCA AAA GCC GCA TTA GTA CAG GAA TTA GGC GAG 1056 Pro Ile Cys Leu Gln Pro Lys Ala Ala Leu Val Gln Glu Leu Gly Glu AAA GAG AGC GAC AGT CTT TTC CAG GTT CCG GTG TGG AAT GAT CTG TGG 1104 Lys Glu Ser Asp Ser Leu Phe Gln Val Pro Val Trp Asn Asp Leu Trp 360 CAA GGG CTG TTA GCA <mark>GGA GAA GGT TTA AGT TCA GAG CTA CAG AAA</mark> CTG 1152 Gin Gly Leu Leu Ala Gly Glu Gly Leu Ser Ser Glu Leu Gin Lys Leu 375 380 GAT GCC ATC TGG CTT GCA CGT GGT GGT ATT GGG CTA GAA GCC ATC CGC 1200 Asp Ala Ile Trp Leu Ala Arg Gly Gly Ile Gly Leu Glu Ala Ile Arg 30 ACC GTG TCG CTG GAT ACC CTG TTT GGC ACA GGG ACG TTA AGT GAA AAT 1248 Thr Val Ser Leu Asp Thr Leu Phe Gly Thr Gly Thr Leu Ser Glu Asn 405 410 35 ATC AAT AAA GTG CTT AAC GGG GAA ACG GTA TCT CCA TCC GGT GGC GTC 1296 Ile Asn Lys Val Leu Asn Gly Glu Thr Val Ser Pro Ser Gly Gly Val 420 425 40 ACT CTG GCG CTG ACA GGG GAT ATC TTC CAA GCA ACA CTG GAT TTG AGT 1344 Thr Leu Ala Leu Thr Gly Asp Ile Phe Gln Ala Thr Leu Asp Leu Ser 440 CAG CTA GGT TTG GAT AAC TCT TAC AAC TTG GGT AAC GAG AAA AAA CGT 1392 45 Gln Leu Gly Leu Asp Asn Ser Tyr Asn Leu Gly Asn Glu Lys Lys Arg 455 CGT ATT AAA CGT ATC GCC GTC ACC CTG CCA ACA CTT CTG GGG CCA TAT 1440 Arg Ile Lys Arg Ile Ala Val Thr Leu Pro Thr Leu Leu Gly Pro Tyr 50 470 CAA GAT CTT GAA GCC ACA CTG GTA ATG GGT GCG GAA ATC GCC GCC TTA 1488 Gln Asp Leu Glu Ala Thr Leu Val Met Gly Ala Glu Ile Ala Ala Leu 485 55 TCA CAC GGT GTG AAT GAC GGA GGC CGG TTT GTT ACC GAC TTT AAC GAC 1536 Ser His Gly Val Asn Asp Gly Gly Arg Phe Val Thr Asp Phe Asn Asp 500 60 AGC CGT TTT CTG CCT TTT GAA GGT CGA GAT GCA ACA ACC GGC ACA CTG 1584 Ser Arg Phe Leu Pro Phe Glu Gly Arg Asp Ala Thr Thr Gly Thr Leu GAG CTC AAT ATT TTC CAT GCG GGT AAA GAG GGA ACG CAA CAC GAG TTG 1632 65 Glu Leu Asn Ile Phe His Ala Gly Lys Glu Gly Thr Gln His Glu Leu 535

-156-

STO GOG AAT CTG AGT GAC ATC ATT GTG CAT CTG AAT TAC ATC ATT GGA 1699
Val Ala Asn Leu Ser Asp Ile Ile Val His Leu Asn Tyr Ile Ile Arg
545 550 555 560

GAC GCG TAA 1639 Asp Ala *

(2) INFORMATION FOR SEO ID NO:30:

5

15

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 563 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Ala Gly Asp Thr Ala Asn Ile Gly Asp Gly Asp Phe Leu Pro Pro T;r

1 5 10 15
25

Asn Asp Val Leu Leu Gly Tyr Trp Asp Lys Leu Glu Leu Arg Leu Tyr

Asn Leu Arg His Asn Leu Ser Leu Asp Gly Gln Pro Leu Asn Leu Pro 30 35 40 45

Leu Tyr Ala Thr Pro Val Asp Pro Lys Thr Leu Gln Arg Gln Gln Ala 50 55 60

35 Gly Gly Asp Gly Thr Gly Ser Ser Pro Ala Gly Gly Gln Gly Ser Val 65 70 75 80

Gln Gly Trp Arg Tyr Pro Leu Leu Val Glu Arg Ala Arg Ser Ala Val 85 90 95

Ser Leu Leu Thr Gln Phe Gly Asn Ser Leu Gln Thr Thr Leu Glu His 100 105 110

Gln Asp Asn Glu Lys Met Thr Ile Leu Leu Gln Thr Gln Gln Glu Ala
45 115 120 125

Ile Leu Lys His Gln His Asp Ile Gln Gln Asn Asn Leu Lys Gly Leu 130 135 140

50 Gln His Ser Leu Thr Ala Leu Gln Ala Ser Arg Asp Gly Asp Thr Leu 145 150 155 160

Arg Gln Lys His Tyr Ser Asp Leu Ile Asn Gly Gly Leu Ser Ala Ala 165 170 175

Glu Ile Ala Gly Leu Thr Leu Arg Ser Thr Ala Met Ile Thr Asn Gly 180 $$185\$

7al Ala Thr Gly Leu Leu Ile Ala Gly Gly Ile Ala Asn Ala Val Pro 6() 195 200 205

Asn Val Phe Gly Leu Ala Asn Gly Gly Ser Glu Trp Gly Ala Pro Leu 210 215 220

65 Ile Gly Ser Gly Gln Ala Thr Gln Val Gly Ala Gly Ile Gln Asp Gln

-157-

	225					530					235					240
5	Ser	Aia	Gly	Ile	Ser 245	Glu	∵al	Thr	Ala	31; 250	T/r	Gln	Arg	Arg	Gln 255	Glu
J	Glu	Trp	Ala	Leu 260	Gln	Arg	Аsp	īle	Ala 265	Asp	Asn	Glu	Ile	Thr 270	Gln	Leu
10	Яsр	Ala	Gln 275	Ile	Gln	ser	Leu	31n 280	Glu	Gln	Ile	Thr	Met 285	Ala	Gln	Lys
	Gln	Ile 290	Thr	Leu	Ser	Glu	Thr 295	Glu	Gln	Ala	Asn	Ala 300	Gln	Ala	Ile	Ty'r
15	Asp 305	Leu	Gln	Thr	Thr	Arg 310	Phe	Thr	Gly	Gln	Ala 315	Leu	Tyr	Asn	Trp	Met 320
20	Ala	Gly	Arg	Leu	Ser 325	Ala	Leu	Tyr	Tyr	Gln 330	Met	Tyr	Asp	Ser	Thr 335	Leu
	Pro	Ile	Cys	Leu 340	Gln	Pro	Lys	Ala	Ala 345	Leu	Val	Gln	Glu	Leu 350	Gly	Glu
25	Ľ, s	Glu	Ser 355	Asp	Ser	Leu	Phe	Gln 360	Val	Pro	Val	Trp	Asn 365	Asp	Leu	Trp
	Gln	Gly 370	Leu	Leu	Ala	Gly	Glu 375	Gly	Leu	Ser	Ser	Glu 380	Leu	Gln	Lys	Leu
30	Asp 385	Ala	Ile	Trp	Leu	Ala 390	Arg	Gly	Gly	Ile	Gly 395	Leu	Glu	Ala	Ile	Arg 400
35	Thr	Val	Ser	Leu	Asp 405	Thr	Leu	Phe	Gly	Thr 410	Gly	Thr	Leu	Ser	Glu 415	Asn
	lle	Asn	Lys	Val 420	Leu	Asn	Gly	Glu	Thr 425	Val	Ser	Pro	Ser	Gly 430	Glà	Val
40	Thr	Leu	Ala 435	Leu	Thr	Gly	Asp	11e 440	Phe	Gln	Ala	Thr	Leu 445	Asp	Leu	Ser
	Gln	Leu 450	Gly	Leu	Asp	Asn	Ser 455	Tyr	Asn	Leu	Gly	Asn 460	Glu	Lys	Lys	Arg
45	Arg 465	Ile	Lys	Arg	Ile	Ala 470	Val	Thr	Leu	Pro	Thr 475	Leu	Leu	Gly	Pro	Tyr 480
50	Gln	Asp	Leu	Glu	Ala 485	Thr	Leu	Val	Met	Gly 490	Ala	Glu	Ile	Ala	Ala 495	Leu
			Gly	500					505					510		
55			Phe 515					520					525			
	Glu	Leu 530	Asn	Ile	Phe	His	Ala 535	G1A	Lys	Glu	Gly	Thr 540	Gln	His	Glu	Leu
60	7al 545	Ala	Asn	Leu	Ser	Asp 550	Ile	Ile	Val	His	Leu 555	Asn	Tyr	Ile	Ile	Arg 560
65	Asp	Ala	•													

-158-

	(Z)	IN	FORM	LATIO	2N F	OR 3	SEQ	ID N	10:3.	i:							
5		{	1) S	(B)	LEN TYP	GTH: E: r ANDE	44 ucl DNE	58 b eic SS:	ase acid doub	paı i	rs						
10		!i.	i) M	OLE	CULE	TYF	E:	AND	(ger	nomi	c)						
15		(13	x) F		JRE : NAM LOC.				458			•					
		(x	i) S	EQUE	ENCE	DES	CRI	PTIO	N: 9	EQ	1 di	10:3	1:				
20	ATG Met 1	CAG Gln	GAT Asp	TCA Ser	CCA Pro 5	GAA Glu	GTA Val	TCG Ser	ATT Ile	ACA Thr 10	ACG Thr	CTG Leu	TCA Ser	CTT Leu	CCC Pro 15	AAA Lys	43
25	GGT Gly	GGC Gly	GGT Gly	GCT Ala 20	ATC Ile	AAT Asn	GGC Gly	ATG Met	GGA Gly 25	GAA Glu	GCA Ala	CTG Leu	AAT Asn	GCT Ala 30	GCC Ala	GGC Gl;;	96
30		GAT Asp															144
30		GGG Gly 50															192
35		GGG GLY															240
40	CGA Arg	CGC Arg	ACC Thr	CAA Gln	CAT His 85	GGC Gly	ATT Ile	CCA Pro	CAA Gln	TAC Tyr 90	GGT Gly	AAT Asn	GAC Asp	GAC Asp	ACG Thr 95	TTC Phe	288
45		TCC Ser															336
50		CCT Pro															384
<i>3</i> ()		ATT Ile 130															432
55		AGT Ser															480
60		TTC Phe															528
		ACC Thr															575

-159-

		130			135			130		
5				ACT Thr 200						624
10				GAT Asp						672
10				ACC Thr						720
15				CAA Gln						- 58
20				TGG Trp						815
25				CAT His 280						864
30				CCG Pro						912
30				CGC Arg						960
35				GGA Gly						1003
40				CTG Leu						1056
45	 	 	 	 CAA Gln 360						1104
50				GAA Glu						1152
30				CGC Arg						1200
55				GTT Val						1248
60				GGC Gly						1296
65				AAT Asn 440						1344

-160-

WO 9	7/1743	12	4												PCT	/US96	/18003
	TTA Pro	273 Leu 450	Pro	ACC Thr	CTA Leu	CCC	AAT Asn 455	TTG Leu	CAG Gln	GAT Asp	AAT Asn	GCC Ala 460	TCA Ser	TTG Leu	ATG Mec	GAT Asp	1392
5	ATC Ile 465	AAC Asn	GGA Gly	GAC Asp	GGC Gly	CAA Gln 470	CTG Leu	GAT Asp	TGG Trp	GTT Val	GTT Val 475	ACC Thr	GCC Ala	TCC Ser	GGT Gly	ATT Ile 430	1446
10	Arg CGC	GGA Gly	TAC Tyr	CAT His	AGT Ser 485	CAG Gln	CAA Gln	CCC Pro	GAT Asp	GGA Gly 490	AAG Lys	TGG Trp	ACG Thr	CAC His	TTT Phe 495	ACG Thr	1438
15	CCA Pro	ATC Ile	AAT Asn	GCC Ala 500	TTG Leu	CCC Pro	GTG Val	GAA Glu	TAT Tyr 505	TTT Phe	CAT His	CCA Pro	AGC Ser	ATC Ile 510	CAG Gln	TTC Phe	1536
20	GCT Ala	GAC Asp	CTT Leu 515	ACC Thr	GGG Gly	GCA Ala	GGC Gly	TTA Leu 520	TCT Ser	GAT Asp	TTA Leu	GTG Val	TTG Leu 525	ATC Ile	GGG Gly	CCG Pro	1584
	AAA Lys	AGC Ser 530	GTG Val	CGT Arg	CTA Leu	TAT Tyr	GCC Ala 535	AAC Asn	CAG Gln	CGA Arg	AAC Asn	GGC Gly 540	TGG Trp	CGT Arg	AAA Lys	GGA Gly	1632
25	GAA Glu 545	GAT Asp	GTC Val	CCC Pro	CAA Gln	TCC Ser 550	ACA Thr	GGT Gly	ATC Ile	ACC Thr	CTG Leu 555	CCT Pro	GTC Val	ACA Thr	GGG Gly	ACC Thr 560	1680
30	GAT Asp	GCC Ala	CGC Arg	AAA Lys	CTG Leu 565	GTG Val	GCT Ala	TTC Phe	AGT Ser	GAT Asp 570	ATG Met	CTC Leu	GGT Gly	TCC Ser	GGT Gly 575	CAA Gln	1728
35			CTG Leu														1776
40	CTA Leu	GGG Gly	CAT His 595	GGC Gly	CGT Arg	TTC Phe	GGT Gly	CAA Gln 600	CCA Pro	CTA Leu	ACT Thr	CTG Leu	TCA Ser 605	GGA Gly	TTT Phe	AGC Ser	1324
			GAA Glu														1872
45			TCC Ser														1920
50			TAT Tyr														1968
55			TTG Leu														2016
60		_	GAT Asp 675														2064
			ATC Ile														2112
65			TTG Leu									_	_				2160

	705					710					715					720	
5	CTA Leu	CAT His	TAT Tyr	CGT Arg	AGT Ser 725	TCC Ser	GCG Ala	CAA Gln	TTC Phe	TGG Trp 730	TTG Leu	GAT Asp	GAA Glu	AAA Lys	TTA Leu 735	CAG Gln	2208
	CTC Leu	ACC Thr	AAA Lys	GCA Ala 740	GGC Gly	AAA Lys	TCT Ser	CCG Pro	GCT Ala 745	TGT Cys	TAT Tyr	CTS Leu	CCG Pro	TTT Phe 750	CCA Pro	ATG Met	2256
10	CAT His	TTG Leu	CTA Leu 755	TGG Trp	TAT Tyr	ACC Thr	GAA Glu	ATT Ile 760	CAG Gln	GAT Asp	GAA Glu	ATC Ile	AGC Ser 765	GGC Gly	AAC Asn	cgg Arg	2304
15	CTC L e u	ACC Thr 770	AGT Ser	GAA Glu	GTC Val	AAC Asn	TAC Tyr 775	AGC Ser	CAC H1s	GGC Gly	GTC Val	TGG Trp 780	GAT Asp	GGT Gly	AAA Lys	GAG Glu	2352
20	CGG Arg 785	GAA Glu	TTC Phe	AGA Arg	GGA Gly	TTT Phe 790	GGC Gly	TGC Cys	ATC Ile	AAA Lys	CAG Gln 795	ACA Thr	GAT Asp	ACC Thr	ACA Thr	ACG Thr 800	2400
25	TTT Phe	TCT Ser	CAC His	GGC Gly	ACC Thr 805	GCC Ala	CCC Pro	GAA Glu	CAG Gln	GCG Ala 810	GCA Ala	CCG Pro	TCG Ser	CTG Leu	AGT Ser 815	ATT Ile	2448
30	AGC Ser	TGG Trp	TTT Phe	GCC Ala 820	ACC Thr	GGC Gly	ATG Met	GAT Asp	GAA Glu 825	GTA Val	GAC Asp	AGC Ser	CAA Gln	TTA Leu 830	GCT Ala	ACG Thr	2496
30	GAA Glu	TAT Tyr	TGG Trp 835	CAG Gln	GCA Ala	GAC Asp	ACG Thr	CAA Gln 840	GCT Ala	TAT Tyr	AGC Ser	GGA Gly	TTT Phe 845	GAA Glu	ACC Thr	CGT Arg	2544
35						CAC His											2592
40	AAT Asn 865	GAG Glu	ACA Thr	CAA Gln	CGT Arg	AAC Asn 870	TGG Trp	C TG Leu	ACG Thr	CGA Arg	GCG Ala 875	C TT Leu	AAA Lys	GGC Gly	CAA Gln	CTG Leu 330	2640
45	CTA Leu	CGC Arg	ACT Thr	GAG Glu	CTC Leu 885	TAC Tyr	GGT Gly	CTG Leu	GAC Asp	GGA Gly 890	ACA Thr	GAT Asp	AAG Lys	CAA Gln	ACA Thr 895	GTG Val	2688
50	CCT Pro	TAT Tyr	ACC Thr	GTC Val 900	AGT Ser	GAA Glu	TCG Ser	CGC Arg	TAT Tyr 905	CAG Gln	GTA Val	CGC Arg	TCT Ser	ATT Ile 910	CCC Pro	GTA Val	2736
30	AAT Asn	AAA Lys	GAA Glu 915	ACT Thr	GAA Glu	TTA Leu	TCT Ser	GCC Ala 920	TGG Trp	G TG Val	ACT Thr	GCT Ala	ATT Ile 925	GAA Glu	AAT Asn	CGC Arg	2784
55	AGC Ser	TAC Tyr 930	CAC His	TAT Tyr	GAA Glu	CGT Arg	ATC Ile 935	ATC Ile	ACT Thr	GAC Asp	CCA Pro	CAG Gln 940	TTC Phe	AGC Ser	CAG Gln	AGT Ser	2832
60	ATC Ile 945	AAG Lys	TTG Leu	CAA Gln	CAC H1s	GAT Asp 950	ATC Ile	TTT Phe	GGT Gly	CAA Gln	TCA Ser 955	CTG Leu	CAA Gln	AGT Ser	GTC Val	GAT Asp 960	2880
65	ATT Ile	GCC Ala	TGG Trp	CCG Pro	CGC Arg 965	CGC Arg	GAA Glu	AAA Lys	CCA Pro	GCA Ala 970	GTG Val	AAT Asn	ccc Pro	TAC Tyr	CCG Pro 975	CCT Pro	2928

-162-

WO 97/17432 PCT/US96/18003 A AGG CTA TTT GAG AGG AGG TAT G. . IT GAA GAA TAA 1976 ADD DTG DEG Thr Leu Pro Glu Thr Leu Phe Asp Ser Ser Tyr Asp Asp Gln Gln Gin **380** 385 CTA TTA CGT CTG GTG AGA CAA AAA AAT AGC TGG CAT CAC CTG ACT GAT 3024 Leu Leu Arg Leu Val Arg Gln Lys Asn Ser Trp His His Leu Thr Asp 995 1900 GGG GAA AAC TGG CGA TTA GGT TTA CCG AAT GCA CAA CGC CGT GAT GTT 3072 10 Gly Glu Asn Trp Arg Leu Gly Leu Pro Asn Ala Gln Arg Arg Asp Val 1010 1015 THE ACT THE GAC COG AGO AAA ATT COA ACC GAA GGG ATT TOO OTT GAA 3120 Tyr Thr Tyr Asp Arg Ser Lys Ile Pro Thr Glu Gly Ile Ser Leu Glu 15 1030 1035 ATC TTG CTG AAA GAT GAT GGC CTG CTA GCA GAT GAA AAA GCG GCC GTT 3168 Ile Leu Leu Lys Asp Asp Gly Leu Leu Ala Asp Glu Lys Ala Ala Val 1045 1050 20 TAT CTG GGA CAA CAA CAG ACG TTT TAC ACC GCC GGT CAA GCG GAA GTC 3216 Tyr Leu Gly Gln Gln Gln Thr Phe Tyr Thr Ala Gly Gln Ala Glu Val 1060 1065 ACT CTA GAA AAA CCC ACG TTA CAA GCA CTG GTC GCG TTC CAA GAA ACC 3264 25 Thr Leu Glu Lys Pro Thr Leu Gln Ala Leu Val Ala Phe Gln Glu Thr 1075 1080 1085 GCC ATG ATG GAC GAT ACC TCA TTA CAG GCG TAT GAA GGC GTG ATT GAA 3312 Ala Met Met Asp Asp Thr Ser Leu Gln Ala Tyr Glu Gly Val Ile Glu 30 1095 1100 GAG CAA GAG TTG AAT ACC GCG CTG ACA CAG GCC GGT TAT CAG CAA GTC 3360 Glu Gln Glu Leu Asn Thr Ala Leu Thr Gln Ala Gly Tyr Gln Gln Val 35 1110 1115 GCG CGG TTG TTT AAT ACC AGA TCA GAA AGC CCG GTA TGG GCG GCA CGG 3408 Ala Arg Leu Phe Asn Thr Arg Ser Glu Ser Pro Val Trp Ala Ala Arg 1125 1130 40 CAA GGT TAT ACC GAT TAC GGT GAC GCC GCA CAG TTC TGG CGG CCT CAG 3456 Gln Gly Tyr Thr Asp Tyr Gly Asp Ala Ala Gln Phe Trp Arg Pro Gln 1140 1145 45 GCT CAG CGT AAC TCG TTG CTG ACA GGG AAA ACC ACA CTG ACC TGG GAT 3504 Ala Gln Arg Asn Ser Leu Leu Thr Gly Lys Thr Thr Leu Thr Trp Asp 1155 1160 1165 ACC CAT CAT TGT GTA ATA ATA CAG ACT CAA GAT GCC GCT GGA TTA ACG 3552 50 Thr His His Cys Val Ile Ile Gln Thr Gln Asp Ala Ala Gly Leu Thr 1175 ACG CAA GCC CAT TAC GAT TAT CGT TTC CTT ACA CCG GTA CAA CTG ACA 3600 Thr Gln Ala His Tyr Asp Tyr Arg Phe Leu Thr Pro Val Gln Leu Thr 55 1190 1195 GAT ATT AAT GAT AAT CAA CAT ATT GTG ACT CTG GAC GCG CTA GGT CGC 3648 Asp Ile Asn Asp Asn Gln His Ile Val Thr Leu Asp Ala Leu Gly Arg 1205 1210 60 GTA ACC ACC AGC CGG TTC TGG GGC ACA GAG GCA GGA CAA GCC GCA GGC 3696 Val Thr Thr Ser Arg Phe Trp Gly Thr Glu Ala Gly Gln Ala Ala Gly 1220 1225 65 TAT TOO AAC CAG CCC TTC ACA CCA CCG GAC TCC GTA GAT AAA GCG CTG 3744

-163-

Tyr Ser Asn Gln Pro Phe Thr Pro Pro Asp Ser Val Asp Lys Ala Leu

1235 / 1240

5	GCA Ala	TTA Leu 125	Thr	GGC Gly	GCA Ala	CTC Leu	CCT Pro 125	Val	SCC Ala	CAA Gln	TGT Cys	TTA Leu 126	∵al	TAT Tyr	SCC Ala	GTT Val	3792
10		ser	TGG				Leu					Leu					3840)
10			GCA Ala			Leu					Arg					Ile	3888
15			GAT Asp		L;·s					Ser					Thr		3936
20			AAC Asn 131	Leu					Ile					Ser			3984
25			Pro					Gly					Arg				4032
30		Pro	CAA Gln				Gln					Phe					4080)
3(/			TTA Leu			Ser					Glu					Trp	4128
35			AAA Lys		Asp					Val					Val		4176
40			GCC Ala 1395	Pro					Trp					Arg			4224
45			Asp					Val					Pro				4272
50		Asp	TGG Trp				Ser					Arg					4320
30			ACC Thr			Tyr					Arg					Ile	4368
55			AAG Lys		T_{r} r					Leu					Phe		4416
60			GAG Glu 1475	Asp					Ala					•			4458

(2) INFORMATION FOR SEQ ID NO:32:

-164-

65

11 SEQUENCE CHARACTERISTICS: (A) LENGTH: 1486 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 5 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32: 10 Met Gln Asp Ser Pro Glu Val Ser Ile Thr Thr Leu Ser Leu Pro Lys Gly Gly Gly Ala Ile Asn Gly Met Gly Glu Ala Leu Asn Ala Ala Gly 15 Pro Asp Gly Met Ala Ser Leu Ser Leu Pro Leu Pro Leu Ser Thr Gly 20 Arg Gly Thr Ala Pro Gly Leu Ser Leu Ile Tyr Ser Asn Ser Ala Gly Asn Gly Pro Phe Gly Ile Gly Trp Gln Cys Gly Val Met Ser Ile Ser 65 70 75 80 25 Arg Arg Thr Gln His Gly Ile Pro Gln Tyr Gly Asn Asp Asp Thr Phe Leu Ser Pro Gin Gly Glu Val Met Asn Ile Ala Leu Asn Asp Gin Gly 30 Gln Pro Asp Ile Arg Gln Asp Val Lys Thr Leu Gln Gly Val Thr Leu 35 Pro Ile Ser Tyr Thr Val Thr Arg Tyr Gln Ala Arg Gln Ile Leu Asp Phe Ser Lys Ile Glu Tyr Trp Gln Pro Ala Ser Gly Gln Glu Gly Arg 40 Ala Phe Trp Leu Ile Ser Thr Pro Asp Gly His Leu His Ile Leu Gly Lys Thr Ala Gln Ala Cys Leu Ala Asn Pro Gln Asn Asp Gln Gln Ile 45 Ala Gln Trp Leu Leu Glu Glu Thr Val Thr Pro Ala Gly Glu His Val 200 50 Ser Tyr Gln Tyr Arg Ala Glu Asp Glu Ala His Cys Asp Asp Asn Glu Lys Thr Ala His Pro Asn Val Thr Ala Gln Arg Tyr Leu Val Gln Val 55 Asn Tyr Gly Asn Ile Lys Pro Gln Ala Ser Leu Phe Val Leu Asp Asn Ala Pro Pro Ala Pro Glu Glu Trp Leu Phe His Leu Val Phe Asp His 60 265 Gly Glu Arg Asp Thr Ser Leu His Thr Val Pro Thr Trp Asp Ala Gly Thr Ala Gln Trp Ser Val Arg Pro Asp Ile Phe Ser Arg Tyr Glu Tyr

-165-

		290					295					300				
5	G17 305	Phe	Glu	Val	Arg	Thr 310	Arg	Arg	Leu	Суѕ	Gln 315	Gln	Val	Leu	Met	Phe 320
J	Hıs	Arg	Thr	Ala	Leu 325	Met	Ala	Gly	Glu	Ala 330	3er	Thr	Asn	Asp	Ala 335	Pro
10	Glu	Leu	Val	Gly 340	Arg	Leu	Ile	Leu	Glu 345	Tyr	Asp	Lys	Asn	Ala 350	Ser	7al
	Thr	Thr	Leu 355	Ile	Thr	Ile	Arg	Gln 360	Leu	Ser	His	Glu	Ser 365	Asp	Gly	Arg
15	Pro	Val 370	Thr	Gln	Pro	Pro	Leu 375	Glu	Leu	Ala	Trp	Gln 380	Arg	Phe	qsA	Leu
20	Glu 385	Lys	Ile	Pro	Thr	Trp 390	Gln	Arg	Phe	Ąsp	Ala 395	Leu	Asp	Asn	Phe	Asn 400
20	Ser	Gln	Gln	Arg	Tyr 405	Gln	Leu	Val	Asp	Leu 410	Arg	Gly	Glu	Gly	Leu 415	Pro
25	Gly	Met	Leu	Туг 420	Gln	Asp	Arg	Gly	Ala 425	Trp	Trp	Tyr	Lys	Ala 430	Pro	Gln
	Arg	Gln	Glu 435	Asp	Gly	Asp	Ser	Asn 440	Ala	Val	Thr	Tyr	Asp 445	Lys	Ile	Ala
30	Pro	Leu 450	Pro	Thr	Leu	Pro	Asn 455	Leu	Gln	Asp	Asn	Ala 460	Ser	Leu	Met	Asp
25	Ile 465	Asn	Gly	Asp	Gly	Gln 470	Leu	Asp	Trp	Val	Val 475	Thr	Ala	Ser	Gly	Ile 480
35	Arg	Gly	Tyr	His	Ser 485	Gln	Gln	Pro	Asp	Gly 490	Lys	Trp	Thr	His	Phe 495	Thr
40	Pro	Ile	Asn	Ala 500	Leu	Pro	Val	Glu	Tyr 505	Phe	His	Pro	Ser	Ile 510	Gln	Phe
	Ala	Ąsp	Leu 515	Thr	Gly	Ala	Gly	Leu 520	Ser	Asp	Leu	Val	Leu 525	Ile	Gly	Pro
45	Lys	Ser 530	Val	Arg	Leu	Тут	Ala 535	Asn	Gln	Arg	Asn	Gly 540	Trp	Arg	Lys	Gly
50	Glu 545	Asp	Val	Pro	Gln	Ser 550	Thr	Gly	Ile	Thr	Leu 555	Pro	Val	Thr	Gly	Thr 560
50	Asp	Ala	Arg	Lys	Leu 565	Val	Ala	Phe	Ser	Asp 570	Met	Leu	Gly	Ser	Gly 575	Gln
55	Gln	His	Leu	Val 580	Glu	Ile	Lys	Gly	Asn 585	Arg	Val	Thr	Суs	Trp 590	Pro	Asn
	Leu	Gly	His 595	Gly	Arg	Phe	Gly	Gln 600	Pro	Leu	Thr	Leu	Ser 605	Gly	Phe	Ser
60	Gln	Pro 610	Glu	Asn	Ser	Phe	Asn 615	Pro	Glu	Arg	Leu	Phe 620	Leu	Ala	Asp	Ile
, -	Asp 625	Gly	Ser	Gly	Thr	Thr 630	Asp	Leu	Ile	Туr	Ala 635	Gln	Ser	Gly	Ser	610 Leu
65	Leu	Ile	туr	Leu	Asn	Gln	Ser	Gly			Phe	Asp	Ala	Pro	Leu	Thr
									- 1	66-						

					545					65û					á55	
5	Leu	Ala	Leu	Pro 550	Glu	Gl7	Val	Gln	Phe 665	Asp	Asn	Thr	C';'s	Gln 670	Lėu	G1.
,	Val	Ala	Asp 675	Ile	Gln	Gly	Leu	Gly 680	Ile	Ala	Ser	Leu	Ile 685	Leu	Thr	Val
10	Pro	His 690	Ile	Ala	Pro	His	H15 695	Trp	Arg	Cys	Asp	Leu 700	Ser	Leu	Thr	Lys
	Pro 705	Trp	Leu	Leu	Asn	Val 710	Met	Asn	Asn	Asn	Arg 715	Gly	Ala	Hıs	Hıs	Thr
15	Leu	Hıs	Tyr	Arg	Ser 725	Ser	Ala	Gln	Phe	Trp 730	Leu	Asp	Glu	Lys	Leu 735	Gln
20	Leu	Thr	Lys	Ala 740	Gly	Lys	Ser	Pro	Ala 745	Cys	Tyr	Leu	Pro	Phe 750	Pro	Met
20	His	Leu	Le u 755	Trp	Tyr	Thr	Glu	Ile 760	Gln	Asp	Glu	Ile	Ser 765	Gly	Asn	Arg
25	Leu	Thr 770	Ser	Glu	Val	Asn	Tyr 775	Ser	His	Gly	Val	Trp 780	Asp	Gly	Lys	Glu
	Arg 785	Glu	Phe	Arg	Gly	Phe 790	Gly	Cys	Ile	Lys	Gln 795	Thr	Asp	Thr	Thr	Thr 800
30	Phe	Ser	His	Gly	Thr 805	Ala	Pro	Glu	Gln	Ala 810	Ala	Pro	Ser	Leu	Ser 815	Ile
35	Ser	Trp	Phe	Ala 820	Thr	Gly	Met	Asp	Glu 825	Val	Asp	Ser	Gln	Leu 830	Ala	Thr
,,,	Glu	Tyr	Trp 835	Gln	Ala	qsA	Thr	Gln 840	Ala	Туr	Ser	Gly	Phe 845	Glu	Thr	Arg
40	Tyr	Thr 850	Val	Trp	qsA	His	Thr 855	Asn	Gln	Thr	Asp	Gln 860	Ala	Phe	Thr	Pro
	Asn 865	Glu	Thr	Gln	Arg	Asn 870	Trp	Leu	Thr	Arg	Ala 875	Leu	Lys	Gly	Gln	Let 880
45	Leu	Arg	Thr	Glu	Leu 885	Tyr	Gly	Leu	Asp	Gly 890	Thr	Asp	Lys	Gln	Thr 895	Va]
51)	Pro	Tyr	Thr	Val 900	Ser	Glu	Ser	Arg	Tyr 905	Gln	Val	Arg	Ser	11e 910	Pro	۷al
50	Asn	Lys	Glu 915	Thr	Glu	Leu	ser	Ala 920	Trp	Val	Thr	Ala	11e 925	Glu	Asn	Arg
55	Ser	Tyr 930	His	Tyr	Glu	Arg	Ile 935	Ile	Thr	Asp	Pro	Gln 940	Phe	Ser	Gln	Sei
	Ile 9 45	Lys	Leu	Gln	His	Asp 950	Ile	Phe	Gly	Gln	Ser 955	Leu	Gln	Ser	Val	As g 960
60	Ile	Ala	Trp	Pro	Arg 965	Arg	Glu	Lys	Pro	Ala 970	Val	Asn	Pro	Tyr	Pro 975	Pro
45	Thr	Leu	Pro	Glu 980	Thr	Leu	Phe	Asp	Ser 9a5	Ser	Tyr	Ąsp	Asp	Gln 990	Gln	Gli
65	Leu	Leu	Arg	Leu	Val	Arg	Gln	Lys	Asn	Ser	Trp	His	His	Leu	Thr	ÀS

-167-

			335					100	0				100	5		
_	Gly	Glu 101		Trp	Arg	Leu	Gly 101		Pro	Asn	Ala	Gln 1020		Arg	Asp	Va)
5	Туг 102		Tyr	Asp	Arg	ser 103		Ile	Pro	Thr	Glu 103		Ile	Ser	Leu	Glu 104
10	Ile	Leu	Leu	Lys	Asp 1045		Gly	Leu	Leu	Ala 1050		Glu	Lys	Ala	Ala 1059	
	T/r	Leu	Gly	Gln 106	Gln 0	Gln	Thr	Phe	Tyr 1065		Ala	Gly	Gln	Ala 1070		Val
15	Thr	Leu	Glu 1075		Pro	Thr	Leu	Gln 1080		Leu	Val	Ala	Phe 1089		Glu	Thr
20	Ala	Met 109		Asp	Asp	Thr	Ser 1095		Gln	Ala	Tyr	Glu 1100		Val	Ile	Glu
-17	Glu 110		Glu	Leu	Asn	Thr 1110		Leu	Thr	Gln	Ala 1119		Tyr	Gln	Gln	Val
25	Ala	Arg	Leu	Phe	Asn 1125		Arg	Ser	Glu	Ser 1130		Val	Trp	Ala	Ala 1139	
	Gln	Gly	Tyr	Thr 1140	Asp)	Tyr	Gly	Asp	Ala 1145		Gln	Phe	Trp	Arg 1150		Gln
30	Ala	Gln	Arg 115		Ser	Leu	Leu	Thr 1160		Lys	Thr	Thr	Leu 1169		Trp	Asp
35	Thr	His 1170		Cys	Val	Ile	Ile 1179		Thr	Gln	Asp	Ala 1180		Gly	Leu	Thr
	Thr 1185		Ala	His	Tyr	Asp 1190		Arg	Phe	Leu	Thr 1199		Val	Gln	Leu	Thr 120
40	Asp	Ile	Asn	Ąsp	Asn 1205		His	Ile	Val	Thr 1210		Asp	Ala	Leu	Gly 1215	Arg
	Val	Thr	Thr	Ser 1220	Arg	Phe	Trp	Gly	Thr 1225		Ala	Gly	Gln	Ala 1230		Gly
45	Tyr	Ser	Asn 1235		Pro	Phe	Thr	Pro 1240		Asp	Ser	Val	Asp 1245		Ala	Leu
50	Ala	Leu 1250		Gly	Ala	Leu	Pro 1255		Ala	Gln	Cys	Leu 1260		Tyr	Ala	Val
30	Asp 1265		Trp	Met	Pro	Ser 1270		Ser	Leu	Ser	Gln 1275		Ser	Gln	Ser	Gln 128
55	Glu	Glu	Ala	Glu	Ala 1285		Trp	Ala	Gln	Leu 1290		Ala	Ala	His	Met 129	
	Thr	Glu	λsp	Gly 1300	Lys)	Val	Cys	Ala	Leu 1305		Gly	Lys	Arg	Gly 1310		Ser
60	His	Gln	Asn 1319		Thr	Ile	Gln	Leu 1320		Ser	Leu	Leu	Ala 1325		Ile	Pro
65	Arg	Leu 1330		Pro	His	Val	Leu 1335		Ile	Thr	Thr	Asp 1340		Tyr	Asp	Ser

SUBSTITUTE SHEET (RULE 26)

Asp Pro Gln Gln Gln His Gln Gln Thr Val Ser Phe Ser Asp Gly Phe

-168-

	134	5				135	9				135	5				. 3 d 0	
5	Sly	Arg	Leu	Leu	Gln 136		Ser	Ala	Arg	His 137		Ser	Gly	Asp	Ala 1379	•	
J	Gln	Arg	Lys	Glu 138		Gly	Gly	Leu	Val 138		Asp	Ala	Asn	Gly 139		Lau	
10	Val	ser	Ala 139		Thr	λsp	Thr	Arg 140		Ala	Val	Ser	Gly 140	_	Thr	Glu	
	Tyr	Asp 141		Lys	Gly	Gln	Pro 141		Arg	Thr	Tyr	Gln 1420		Tyr	Phe	Leu	
15	Asn 142	Asp 5	Trp	Arg	Tyr	Val 143		Asp	Asp	Ser	Ala 143		Asp	Asp	Leu	1440 1440	
20	Ala	Asp	Thr	His	Leu 1445		Asp	Pro	Leu	Gly 1450		Glu	Tyr	Lys	Val 1459		
	Thr	Ala	Lys	Lys 1460		Leu	Arg	Glu	Lys 146		Tyr	Thr	Pro	Trp 1470		Ile	
25	Val	Ser	Glu 1475	_	Glu	Asn	Asp	Thr 1480		Ser	Arg	Thr	Pro 148				
30	(2)					E CF	LEN TYP STR	CTER GTH: E: n ANDE	3: ucle DNE:	ICS: 288 eic	base acid doub	i	irs				
35		(:	ii)	MOI	LECU	LE 1	YPE	: D	NA	(gen	omio	=)					
			ii) ki)								omio		: 33:				
35 40			ki) ACT	SE(QUEN ATG	CE I	ESC:	RIPT AAA	'ION ATA	: SE	II Q:	O NO TTA	TCA	GGT			13
	Met 1 GAA	GTG Val CAG Gln	ACT Thr	SE(CTT Val	OUEN ATG Met 5 CTT Leu	CE I CAA Gln GAC Asp	AAT Asn GCC Ala	RIPT AAA Lys GGT Gly	TAT	TCA Ser 10 CAA Gln	Q II TTT Phe AAC	O NO TTA Leu GTA Val	TCA Ser TTT Phe	GGT Gly GAT Asp	Thr 15 ATC Ile	Ser	
40	Met 1 GAA Glu TCA	GTG Val CAG Gln	ACT Thr CCC Pro	SE(CTT Val	QUENG ATG Met 5 CTT Leu	CE I CAA Gln GAC Asp	AAT Asn GCC Ala	RIPT AAA Lys GGT Gly GTT	TAT Tyr 25 CAA	: SE TCA Ser 10 CAA Gln	TTT Phe AAC ASD	O NO TTA Leu GTA Val	TCA Ser TTT Phe	GGT Gly GAT Asp 30	Thr 15 ATC Ile	Ser GCA Ala	
40 45 50	Met I GAA Glu TCA Ser	GTG Val CAG Gln	ACT Thr CCC Pro AGC Ser 35	SE(COTT VAI) CTG Leu 20 CGG Arg	OUENG ATG Met 5 CTT Leu GCT Ala	CE I CAA Gln GAC Asp ACT Thr	DESC AAT ASD GCC Ala TTC Phe	AAA Lys GGT Gly GTT Val 40	TAT TYP 25 CAA Gln	TCA Ser 10 CAA Gln TCC Ser	TTT Phe AAC Asn GTT Val	O NO TTA Leu GTA Val CCC Pro	TCA Ser TTT Phe ACC Thr 45	GGT Gly GAT Asp 30 CTG Leu	Thr 15 ATC Ile CCC Pro	GCA Ala GTT Val	96
40	Met I GAA Glu TCA Ser AAA Lys	GTG Val CAG Gln ATC Ile	CCC Pro AGC Ser 35 GCT Ala	SEC GTT Val CTG Leu 20 CGG Arg CAT His	OUEN ATG Met 5 CTT Leu GCT Ala ACC Thr	CE I CAA Gln GAC Asp ACT Thr GTC Val	AAT ASN GCC Ala TTC Phe TAT Tyr 55	RIPT AAA Lys GGT Gly GTT Val 40 CGT Arg	TAT Tyr 25 CAA Gln CAG	TCA Ser 10 CAA Gln TCC Ser GCG Ala	TTT Phe AAC Asn GTT Val CGG Arg	O NO TTA Leu GTA Val CCC Pro CAA Gln 60 CAG	TCA Ser TTT Phe ACC Thr 45 CGT Arg	GGT Gly GAT Asp 30 CTG Leu GCG Ala	Thr 15 ATC Ile CCC Pro GAA Glu	GCA Ala GTT Val AAT Asn	96 144
40 45 50	Met I GAA Glu TCA Ser AAA Lys CTG Leu 65	GTG Val CAG Gln ATC Ile GAG Glu 50	ACT Thr CCC Pro AGC Ser 35 GCT Ala TCC Ser	SEC GTT Val CTG Leu 20 CGG Arg CAT His	OUENO ATG Met 5 CTT Leu GCT Ala ACC Thr TAC Tyr	CE I CAA Gln GAC Asp ACT Thr GTC Val CGA Arg 70 CTT	AAT ASN GCC Ala TTC Phe TAT Tyr 55 GCC Ala AAC	RIPT AAA Lys GGT Gly GTT Val 40 CGT Arg TGG Trp	TAT Tyr 25 CAA Gln CAG Gln	TCA Ser 10 CAA Gln TCC Ser GCG Ala TTG Leu	TTT Phe AAC Asn GTT Val CGG Arg CGT Arg 75	TTA Leu GTA Val CCC Pro CAA Gln 60 CAG Gln	TCA Ser TTT Phe ACC Thr 45 CGT Arg GAG Glu	GGT Gly GAT Asp 30 CTG Leu GCG Ala CCG Pro	Thr 15 ATC Ile CCC Pro GAA Glu GTT Val	GCA Ala GTT Val AAT Asn ATT Ile 30 CAA	96

			100			105			110			
5			Ala	CAA Gln								334
10		Pro		TAT T/r								432
10				TCC Ser 150								430
15				TTA Leu							_	528
20				TTG Leu						Asp		576
25				GCA Ala								624
30				GAT Asp								672
				ACT Thr 230								720
35				ACG Thr								768
40				TTT Phe								816
45				CAA Gln								864
50				GGC Gly								912
				GTC Val 310								960
55				CTC Leu								1008
60				GGC Gly								1056
65				ATT Ile								1104

-170-

			CCA Pro						1152
5			CAG Gln						1200
10			GGA Gly 405						1248
15			AAG Lys						1296
20			AAC Asn						1344
20			CCA Pro						 1392
25			ACC Thr						1440
30			AAC Asn 485						1488
35			AGC Ser						1536
40			TTC Phe						1584
40			AGC Ser						1632
45			ACC Thr						1680
50			CTG Leu 565						1728
55			AAG Lys						1776
60			GCT Ala						1824
00			GAA Glu						1872
65			CAC His						1920

	á25					630					535					540	
5	GCA Ala	CTG Leu	GCA Ala	GAG Glu	TAT Tyr 645	GTC Val	AGC Ser	CTA Leu	aaa Lys	CAG Gln 650	CGC Arg	TAT Tyr	GGG Gly	CTT Leu	GAT Asp 655	GCC Ala	1963
10	7 <u>44</u> Asn	ACC Thr	TTT	GCG Ala 660	ACC Thr	TTC Phe	ATT Ile	AGT Ser	GCA Ala 665	GTA Val	AAT Asn	CCT Pro	TAT Tyr	ACG Thr 670	CCA Pro	GAT Asp	2015
10			CCC Pro 675														2064
15			ATT Ile														2112
20			TTA Leu														2160
25			CTC Leu														2208
30			GAT Asp														2256
50			TTG Leu 755														2304
35			GAA Glu														2352
40			CTG Leu														2400
45	GAT Asp	TGG Trp	ATG Met	TCG Ser	TCC Ser 805	GTA Val	AAT Asn	CTA Leu	AGT Ser	CTG Leu 810	ACT Thr	TAT Tyr	CTG Leu	CAA Gln	GGG Gly 819	Met	2448
50			ACG Thr														2496
	TTG Leu	GAA Glu	AAC Asn 835	GTT Val	TGT Cys	GAC Asp	AGC Ser	GTG Val 840	AAT Asn	AGT Ser	CAA Gln	GCT Ala	GCC Ala 845	ACT Thr	AAA Lys	GAA Glu	2544
55	ACA Thr	ATG Met 850	GAT Asp	TCG Ser	GCG Ala	TTA Leu	CAG Gln 855	CAG Gln	AAA Lys	GTG Val	CTG Leu	CGG Arg 860	GCG Ala	CTA Leu	AGC Ser	GCC Ala	2592
60	GGT Gly 865	TTC Phe	GGC Gly	ATT Ile	AAG Lys	AGC Ser 870	AAT Asn	GTG Val	ATG Met	GGT Gly	ATC Ile 875	GTC Val	ACC Thr	TTC Phe	TGG Trp	CTG Leu 880	2640
65	GAG Glu	AAA Lys	ATC Ile	ACA Thr	ATC Ile 885	GGT Gly	AGT Ser	GAT Asp	AAT Asn	CCT Pro 890	TTT Phe	ACA Thr	TTG Leu	GCA Ala	AAC Asn 895	TAC Tyr	2688

-172-

			GAT Asp	11≘ 900	TAA Gln	ACC Thr	CT G Leu	TTT	AGC Ser 905	CAT His	GAC Asp	AA. Asn	Scc Ala	ACG Thr 910	TTA Leu		2736
5	TCC Ser	TTA Leu	CAA Gln 915	ACC Thr	GAC Asp	ACT Thr	TCT Ser	CTG Leu 920	GTA Val	ATT Ile	GCT Ala	ACT Thr	CAG Gln 925	CAA Gln	CTT Leu	AGC Ser	2784
10	CAG Gln	CTA Leu 930	GTG Val	TTA Leu	ATT Ile	GTG Val	AAA Lys 935	TGG Trp	CTG Leu	AGC Ser	CTG Leu	ACC Thr 940	G AG Glu	CAG Gln	GAT Asp	CTG Leu	2832
15	CAA Gln 945	TTA Leu	CTG Leu	ACA Thr	ACC Thr	TAT Tyr 950	CCC	GAA Glu	CGT Arg	TTA Leu	ATC Ile 955	AAC Asn	GGC Gly	ATC Ile	ACG Thr	AAT Asn 960	2880
20	GTT Val	CCT Pro	GTA Val	CCC Pro	AAT Asn 965	CCG Pro	GAG Glu	CTA Leu	TTA Leu	CTC Leu 970	ACG Thr	CTA Leu	TCA Ser	CGT Arg	TTT Phe 975	AAG Lys	2923
20	CAG Gln	TGG Trp	GAA Glu	ACT Thr 980	CAA Gln	GTC Val	ACC Thr	GTT Val	TCC Ser 985	CGT Arg	GAT Asp	GAA Glu	GCG Ala	ATG Met 990	CGC Arg	TGT Cys	2976
25	TTC Phe	GAT Asp	CAA Gln 995	TTA Leu	AAT Asn	GCC Ala	AAT Asn	GAT Asp 1000	Met	ACG Thr	ACT Thr	GAA Glu	AAT Asn 1005	Ala	GGT Gly	TCA Ser	3024
30			Ala	ACA Thr				Met					Gly				3072
35		Thr		CTA Leu			Glu					Lys					3120
40				CTT Leu		Thr					Gly					Val	3168
••				ACT Thr 1060	Leu					Ser					Asp		3216
45		Ala		AGT Ser		Ala		Leu	Ala		Val	Ala		Asn			3264
50			Ile	AGC Ser		Arg											3285
55	(2)			MATI SEQL	JENC (A) (B)	E CH	LEN TYP	CTER GTH: E: a	IST: 10 min:	ICS: 095 o ac	ids	no a	cids	;			
					(C)		TOP	orog	·¥: .	line	ar						
60		(:	ii)	MOL	ECU:	LE T	YPE	: p	rote	ein							
			ki) 'eatu	_	UEN F	CE D	ESC	RIPT To	ION		Q II scri						
65						254 254					Q ID aAji		15 tide				

-173-

5	Met 1	: Val	Thr	: Val	Met 5	Gln	Asn	Lys	Ile	Ser 10	Phe	Leu	Sēr	Gly	Thr 15	
J	Glu	Glr	Pro	Leu 20		Asp	Ala	Gly	Tyr 25		Asn	Val	Phe	Asp 30	Ile	Als
10	Ser	Ile	Ser 35		Ala	Thr	Phe	Val 40		Ser	Val	Pro	Thr 45	Leu	Pro	Va)
	Lys	Glu 50		His	Thr	Val	Туг 55		Gln	Ala	Arg	Gln 60		Ala	Glu	Asr
15	Leu 65	Lys	Ser	Leu	Tyr	Arg 70	Ala	Trp	Gln	Leu	Arg 75	Gln	Glu	Pro	Val	11e
20	Lys	Gly	Leu	Ala	Lys 85	Leu	Asn	Leu	Gln	Ser 90	Asn	Val	Ser	Val	Leu 95	Glr
20	Asp	Ala	Leu	Val 100	Glu	Asn	Ile	Gly	Gly 105	Asp	Gly	Аsр	Phe	Ser 110	Asp	Leu
25	Met	Asn	Arg 115	Ala	Ser	Gln	Tyr	Ala 120	Asp	Ala	Ala	Ser	Ile 125	Gln	Ser	Leu
	Phe	Ser 130	Pro	Gly	Arg	Tyr	Ala 135	Ser	Ala	Leu	Tyr	Arg 140	Val	Ala	Lys	Asp
30	Leu 145	His	Lys	Ser	Asp	Ser 150	Ser	Leu	His	Ile	Asp 155	Asn	Arg	Arg	Ala	Asp 160
35	Leu	Lys	Asp	Leu	Ile 165	Leu	Ser	Glu	Thr	Thr 170	Met	Asn	Lys	Glu	Val 175	Thr
33	Ser	Leu	Asp	Ile 180	Leu	Leu	Asp	Val	Leu 185	Gln	Lys	Gly	Gly	Lys 19		Ile
40	Thr	Glu	Leu 195	Ser	Gly	Ala	Phe	Phe 200	Pro	Met	Thr	Leu	Pro 205	Tyr	Asp	Asp
	His	Leu 210	Ser	Gln	Ile	Asp	Ser 215	Ala	Leu	Ser	Ala	Gln 220	Ala	Arg	Thr	Leu
45	Asn 225	Gly	Val	Trp	Asn	Thr 230	Leu	Thr	Asp	Thr	Thr 235	Ala	Gln	Ala	Val	Ser 240
50	Glu	Gln	Thr	Ser	Asn 245	Thr	Asn	Thr	Arg	Lys 250	Leu	Phe	Ala	Ala	Gln 255	Asp
50	Gly	Asn	Gln	Asp 260	Thr	Phe	Phe	Ser	Gly 265	Asn	Thr	Phe	Tyr	Phe 270	Lys	Ala
55	Val	Gly	Phe 275	Ser	Gly	Gln	Pro	Met 280	Val	Tyr	Leu	Ser	Gln 285	Tyr	Thr	Ser
	Gly	Asn 290	Gly	Ile	Val	Gly	Ala 295	Gln	Leu	Ile	Ala	300 GJA	Asn	Pro	Asp	Gln
60	Ala 305	Ala	Ala	Ala	Ile	Val 310	Ala	Pro	Leu	Lys	Leu 315	Thr	Trp	Ser	Met	Ala 320
65	Lys	Gln	Cys	Tyr	Tyr 325	Leu	Val	Ala	Pro	Asp 330	Gly	Thr	Thr	Met	Gly 335	Asp
בנו	Gly	Asn	Val	Leu	Thr	Gly	Суѕ	Phe		Arg	Gly	Asn	Ser	Pro	Thr	Asn

				340					345					350		
5	Pro	λsp	Lys 355	Asp	Gly	Ile	Phe	Ala 360	Gln	Val	Ala	Asn	Lys 365	Ser	G17	Sei
	Thr	Gln 370	Pro	Leu	Pro	Ser	Phe 375	His	Leu	Pro	Val	Thr 380	Leu	Glu	His	Ser
10	Glu 385	Asn	Lys	Asp	Gln	Tyr 390	Tyr	Leu	Lys	Thr	Glu 395	Gln	Gly	T ₂ 'r	Ile	Thr 400
		Asp			405					410					415	
15		Thr		420					425					430		
20		Thr	435					440					445			
		Pro 450					455					460				
25	465	Gln				470					475					430
20		Tyr			485					490			W4 ×	•	495	
30		Glu		500					505					510		
35		Arg	515					520					525			
		530					535					540				
40	545	Gly				550					555					560
45		Asn			565					570					575	
43		Thr		580					585		-			590		
50		Ala	595					600					605			
		Ser 610					615					620				
55	625	Pro				630					635					640
40		Leu			645					650		-	-		655	
60		Thr		660					ő 6 5					670		
65		Thr	675					680					685			
	HIS	Val	TIG	Ala	reu	GIÀ	Thr	Glu		Lys 75-	туr	Ala	GIU	ASN	Glu	GIN

700 ó95 690 Asp Glu Leu Ala Ala Ile Cys Cys Lys Ala Leu Gly Val Thr Ser Asp 710 5 Glu Leu Leu Arg Ile Gly Arg Tyr Cys Phe Gly Asn Ala Gly Ser Phe Thr Leu Asp Glu Tyr Thr Ala Ser Gln Leu Tyr Arg Phe Gly Ala Ile 10 Pro Arg Leu Phe Gly Leu Thr Phe Ala Gln Ala Glu Ile Leu Trp Arg 15 Leu Met Glu Gly Gly Lys Asp Ile Leu Leu Gln Gln Leu Gly Gln Ala Lys Ser Leu Gln Pro Leu Ala Ile Leu Arg Arg Thr Glu Gln Val Leu 20 Asp Trp Met Ser Ser Val Asn Leu Ser Leu Thr Tyr Leu Gln Gly Met Val Ser Thr Gln Trp Ser Gly Thr Ala Thr Ala Glu Met Phe Asn Phe 25 Leu Glu Asn Val Cys Asp Ser Val Asn Ser Gln Ala Ala Thr Lys Glu Thr Met Asp Ser Ala Leu Gln Gln Lys Val Leu Arg Ala Leu Ser Ala 30 Gly Phe Gly Ile Lys Ser Asn Val Met Gly Ile Val Thr Phe Trp Leu 875 35 Glu Lys Ile Thr Ile Gly Ser Asp Asn Pro Phe Thr Leu Ala Asn Tyr Trp His Asp Ile Gln Thr Leu Phe Ser His Asp Asn Ala Thr Leu Glu 40 Ser Leu Gln Thr Asp Thr Ser Leu Val Ile Ala Thr Gln Gin Leu Ser 920 Gln Leu Val Leu Ile Val Lys Trp Leu Ser Leu Thr Glu Gln Asp Leu 45 935 Gln Leu Leu Thr Thr Tyr Pro Glu Arg Leu Ile Asn Gly Ile Thr Asn 50 Val Pro Val Pro Asn Pro Glu Leu Leu Leu Thr Leu Ser Arg Phe Lys Gin Trp Glu Thr Gln Val Thr Val Ser Arg Asp Glu Ala Met Arg Cys 55 985 Phe Asp Gln Leu Asn Ala Asn Asp Met Thr Thr Glu Asn Ala Gly Ser 1000 Leu Ile Ala Thr Leu Tyr Glu Met Asp Lys Gly Thr Gly Ala Gln Val 60 1015 Asn Thr Leu Leu Cly Glu Asn Asn Trp Pro Lys Ser Phe Thr Ser 1030 1035 65 Leu Trp Gln Leu Leu Thr Trp Leu Arg Val Gly Gln Arg Leu Asn Val -176-

1045 105 Ú Gly Ser Thr Thr Leu Gly Asn Leu Leu Ser Met Met Gln Ala Asp Pro 1060 1065 5 Ala Ala Glu Ser Ser Ala Leu Leu Ala Ser Val Ala Gln Asn Leu Ser Ala Ala Ile Ser Asn Arg Gln ... 10 1095 INFORMATION FOR SEQ ID NO:35 (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 603 amino acids TYPE: amino acid (B) (C) TOPOLOGY: linear (ii) MOLECULE TYPE: protein 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35: Pro Leu Ser Thr Ser Glu Leu Thr Ser Lys Leu Asn Ser Ile Asp Thr 25 Phe Cys Glu Lys Thr Arg Leu Ser Phe Asn Gln Leu Met Asp Leu Thr 30 Ala Gln Gln Ser Tyr Ser Gln Ser Ser Ile Asp Ala Lys Ala Ala Ser Arg Tyr Val Arg Phe Gly Glu Thr Thr Pro Thr Arg Val Asn Val Tyr 35 Gly Ala Ala Tyr Leu Asn Ser Thr Leu Ala Asp Ala Ala Asp Gly Gln Tyr Leu Trp Ile Gln Thr Asp Gly Lys Ser Leu Asn Phe Thr Asp Asp 40 Thr Val Val Ala Leu Ala Gly Arg Ala Glu Lys Leu Val Arg Leu Ser 45 Ser Gln Thr Gly Leu Ser Phe Glu Glu Leu Asp Trp Leu Ile Ala Asn Ala Ser Arg Ser Val Pro Asp His His Asp Lys Ile Val Leu Asp Lys 50 Pro Val Leu Glu Ala Leu Ala Glu Tyr Val Ser Leu Lys Gln Arg Tyr Gly Leu Asp Ala Asn Thr Phe Ala Thr Phe Ile Ser Ala Val Asn Pro 55 Tyr Thr Pro Asp Gln Thr Pro Ser Phe Tyr Glu Thr Ala Phe Arg Ser 60 Ala Asp Gly Asn His Val Ile Ala Leu Gly Thr Glu Val Lys T/r Ala

-177-

Glu Asn Glu Gln Asp Glu Leu Ala Ala Ile Cys Cys Lys Ala Leu Gly

65

	7a. 22		r 3e	ÀS	p Glu	1 Leu 230		ı Arg	; Ilá	e Gly	/ Arg 235		Cys	Phe	s Gly	/ Asn 240
5	Al.	a Gl	y Arg	g Phe	e Thr 245	: Leu	Asp	3lu	туг	250	Ala)	. S€1	Gln	Leu	Tyr 255	
	Phe	e Gl	y Als	11e 260		Arg	Leu	Phe	Gly 255	/ Leu	Thr	Phe	Ala	Gln 270		Glu
10	Ile	e Let	275	Arg	, Leu	Met	Glu	Gly 280		Lys	Asp	Ile	Leu 285		Gln	Gln
15	ХХХ	Gl _y 290	/ Glm	Ala	Lys	Ser	Leu 295		Pro	Leu	Ala	11e 300		Arg	Arg	Thr
	Glu 305	Glr	n Val	Leu	Asp	Trp 310	Met	Ser	Pro	Val	Asn 315		Ser	Leu	Thr	Tyr 320
20	Leu	Glr	Gly	Met	Val 325	Ser	Thr	Gln	Trp	Ser 330		Thr	Ala	Thr	Ala 335	
	Met	Phe	Asn	Phe 340	Leu	Glu	Asn	Val	Cys 345	Asp	Ser	Val	Asn	Ser 350	Gln	Ala
25	ХХХ	Thr	Lys 355	Glu	Thr	Met	Asp	Ser 360	Ala	Leu	Gln	Gln	Lys 365	Val	Leu	Arg
30	Ala	Leu 370	Ser	Ala	Gly	Phe	Gly 375	Ile	Lys	Ser	Asn	Val 380	Met	Gly	Ile	Val
50	Thr 385	Phe	Trp	Leu	Glu	Lys 390	Ile	Thr	Ile	Gly	Arg 395	Asp	Asn	Pro	Phe	Thr
35	Leu	Ala	Asn	Tyr	Trp 405	His	Asp	Ile	Gln	Thr 410	Leu	Phe	Ser	His	Asp 415	Asn
	Ala	Thr	Leu	Glu 420	Ser	Leu	Gln	Thr	Asp 425	Thr	Ser	Leu	Val	Ile 430	Ala	Thr
40	Gln	Gln	Leu 435	Ser	Gln	Leu	Val	Leu 440	Ile	Val	Lys	Trp	Val 445	Ser	Leu	Thr
45	Glu	Gln 450	Asp	Leu	Gln	Leu	Leu 455	Thr	Thr	Tyr	Pro	Glu 460	Arg	Leu	Ile	Asn
43	Gly 465	Ile	Thr	Asn	Val	Pro 470	Val	Pro	Asn	Pro	Glu 475	Leu	Leu	Leu	Thr	Leu 480
50	Ser	Arg	Phe	Lys	Gln 485	Trp	Glu	Thr	Gln	Val 490	Thr	Val	Ser	Arg	Asp 495	Glu
	Ala	Met	Arg	Cys 500	Phe	Asp	Gln	Leu	Asn 505	Ala	Asn	Asp	Met	Thr 510	Thr	Glu
55	Asn	Ala	Gly 515	Ser	Leu	Ile	Ala	Thr 520	Leu	Tyr	Glu	Met	Asp 525	Ĺys	Gly	Thr
60	Gly	Ala 530	Gln	Val	Asn	Thr	Leu 535	Leu	Leu	Gly	Glu	Asn 540	Asn	Trp	Pro	Lys
11()	Ser 545	Phe	Thr	Ser		Trp 550	Gln	Leu	Leu	Thr	Trp 555	Leu	Arg	Val	Gly	Gln 560
65	λrg	Leu	Asn	Val	Gly 565	Ser	Thr	Thr	Leu	Gly 570	Asn	Leu	Leu	Ser	Met 575	Mec

-178-

```
Gln Ala Asp Pro Ala Ala Glu Ser Ser Ala Leu Leu Ala Ser Val Ala
                 580
                                     585
                                                         590
     Gln Asn Leu Ser Ala Ala Ile Ser Asn Arg Gln *
 5
             595
                                 600
     (2)
          INFORMATION FOR SEQ ID NO:36:
                SEQUENCE CHARACTERISTICS:
10
                 (A)
                      LENGTH: 2557 base pairs
                 (B)
                      TYPE: nucleic acid
                      TOPOLOGY: linear
                 (C)
                MOLECULE TYPE: DNA (genomic)
           (ii)
15
           (xi)
                 SEQUENCE DESCRIPTION: SEQ ID NO:36:
     GAATTCGGCT TGCGTTTAAT ATTGATGATG TCTCGCTCTT CCGCCTGCTT AAAATTACCG
                                                                        60
20
     ACCATGATAA TAAAGATGGA AAAATTAAAA ATAACCTAAA GAATCTTTCC AATTTATATA
     TTGGAAAATT ACTGGCAGAT ATTCATCAAT TAACCATTGA TGAACTGGAT TTATTACTGA 180
     TTGCCGTAGG TGAAGGAAAA ACTAATTTAT CCGCTATCAG TGATAAGCAA TTGGCTACCC
     TGATCAGAAA ACTCAATACT ATTACCAGCT GGCTACATAC ACAGAAGTGG AGTGTATTCC
                                                                       300
     AGCTATTTAT CATGACCTCC ACCAGCTATA ACAAAACGCT AACGCCTGAA ATTAAGAATT
                                                                       360
25
     TGCTGGATAC CGTCTACCAC GGTTTACAAG GTTTTGATAA AGACAAAGCA GATTTGCTAC
                                                                        420
     ATGTCATGGC GCCCTATATT GCGGCCACCT TGCAATTATC ATCGGAAAAT GTCGCCCACT
                                                                        480
     CGGTACTCCT TTGGGCAGAT AAGTTACAGC CCGGCGACGG CGCAATGACA GCAGAGGGAN
                                                                       540
     TCTGGGACTG GTTGAATACT AAGTATACGC CGGGTTCATC GGAAGCCGTA GAAACGCAGG
     AACATATCGT TCAGTATTGT CAGGCTCTGG CACAATTGGA AATGGTTTAC CATTCCACCG
                                                                        660
30
     GCATCAACGA AAACGCCTTC CGTCTATTTG TGACAAAACC AGAGATGTTT GGCGCTGCAA
                                                                       720
     CTGGAGCAGC GCCCGCGCAT GATGCCCTTT CACTGATTAT GCTGACACGT TTTGCGGATT
                                                                       780
     GGGTGAACGC ACTAGGCGAA AAAGCGTCCT CGGTGCTAGC GGCATTTGAA GCTAACTCGT
                                                                       840
     TAACGCAGA ACAACTGGCT GATGCCATGA ATCTTGATGC TAATTTGCTG TTGCAAGCCA
                                                                       900
     GTATTCAAGC ACAAAATCAT CAACATCTTC CCCCAGTAAC TCCAGAAAAT GCGTTCTCCT
35
     GTTGGACATC TATCAATACT ATCCTGCAAT GGGTTAATGT CGCACAACAA TTGAAATGTC
                                                                      1020
     GCCCCACAGG GCGTTTCCGC TTTGGTCGGG CTGGATTATA TTCAATCAAT GAAAGAGACA
                                                                       1080
     CCGACCTATG CCCAGTGGGA AAACGCGGCA GGCGTATTAA CCGCCGGGTT GAATTCAACA 1140
     ACAGGCTAAT ACATTACAAC GCTTTTCTGG ATGAATCTCG CAGTGCCGCA TTAAGCACCT
                                                                       1200
                                                                       1260
     ACTATATCCG TCAAGTCGCC AAGGCAGCGG CGGCTATTAA AAGCCGTGAT GACTTGTATC
40
     AATACTTACT GATTGATAAT CAGGTTTCTG CGGCAATAAA AACCACCCGG ATCGCCGAAG
                                                                       1320
     CCATTGCCAG TATTCAACTG TACGTCAACC GGGCATTGGA AAATGTGGAA GAAAATGCCA
     ATTCGGGGGT TATCAGCCGC CAATTCTTTA TCGACTGGGA CAAATACAAT AAACGCTACA
                                                                       1440
     GCACTTGGGC GGGTGTTTCT CAATTAGTTT ACTACCCGGA AAACTATATT GATCCGACCA
                                                                       1500
     TGCGTATCGG ACAAACCAAA ATGATGGACG CATTACTGCA ATCCGTCAGC CAAAGCCAAT
                                                                       1560
     TAAACGCCGA TACCGTCGAA GATGCCTTTA TGTCTTATCT GACATCGTTT GAACAAGTGG
45
                                                                       1620
     CTAATCTTAA AGTTATTAGC GCATATCACG ATAATATTAA TAACGATCAA GGGCTGACCT
                                                                       1680
     ATTITATOGG ACTOAGTGAA ACTGATGCOG GTGAATATTA TTGGCGCAGT GTCGATCACA 1740
     GTAAATTCAA CGACGGTAAA TTCGCGGCTA ATGCCTGGAG TGAATGGCAT AAAATTGATT
     GTCCAATTAA CCCTTATAAA AGCACTATCC GTCCAGTGAT ATATAAATCC CGCCTGTATC
                                                                       1360
```

	TGO	TOTO	GTT	GGAA	مممدي	AG C	AGAT	CACC	A AA	CAGA	CAGG	AAA	TAGT	AAA	Gatc	GCTATC	1923
	ددد	CTG	CAAJ	GGAT	TATO	GT I	`ATGA	ACTA	A AA	TTGG	CGCA	TAT	ccac	TAT	GATG	GCACTT	1980
	GGA	ATAC	GCC	AATO	ACCI	TT C	ATGT	CAAT	A AA	AAAA	TATC	CGA	GCTA	AAA	CTGG	AAAAA	2040
	ATA	GAGC	GCC	CGGA	CTCT	AT I	GTGC	CGGT	T AT	CAAG	GTGA	AGA	TACG	TTG	CTGG	TGATGT	2100
5	TTI	ATA	CCA	ACAA	.GACA	CA C	TAGA	TAGT	т ат	AAAA	ACGC	TTC	AATG	CAA	GGAC'	TATATA	2160
	TCI	TTGC	TGA	TATG	GCAT	CC A	AAGA	TATG.	A CC	CCAG.	AACA	GAG	CAAT	GTT	TATO	GGGATA	2220
	ATA	GCTA	TCA	ACAA	TTTG	AT A	CCAA	TAAT	G TC	AGAA	GAGT	GAA	TAAC	cgc '	TATG	CAGAGG	2280
	ATT	ATGA	GAT	TCCT	TCTT	cc c	TAAG	TAGC	C GT	AAAG.	ACTA	TGG	TTGG	GGA (GATT.	ATTACC	2340
	TCA	GCAT	'GCT	ATAT	AACG	GA G	ATAT	TCCA.	A CT	ATCA	ATTA	CAA	AGCC	GCA '	TCAA	GTGATT	2400
10	TAA	TAAA	TTA	TATT	TCAC	CA A	AATT.	aaga.	A TT	ATTC.	ATAA	TGG.	TATA	SAA (GGAC.	AGAAGC	2460
	GCA	ATCA	ATG	CAAT	TTGA	TG A	ATAA	ΑΤΑΤ	G GC.	AAAC'	TAGG	TGA	TAAA	rrr .	attgʻ	TGTATA	2520
	CCA	GCCT	GGG	CGTT	AATC	CG A	ATAA'	TAAG	C CG	AATT	С						2557
15	(2)		NFOR i)	MATI SEQ (A)	UENC L1	ENGT	HARA	CTEF 845	IST ami	ICS:		s					
20		,	ii)	(C)	T	OPOL	OGY:	li	near	•	(na:	rria	1)				
		`	11	110				٠ ٢	/L U C	C 111	(pu.		.				
		(xi)	SE	QUEN	CE !	DESC	RIPT	NOI	: SE	Q II	ON C	:37	:			
25		Phe	Asn	Ile	Asp	Asp	Val	Ser	Leu		Arg	Leu	Leu	Lys		Thr	
)				5					10					15		
30	дsр	His	Asp	Asn 20	Lys	Asp	Gly	Lys	Ile 25	Lys	Asn	Asn	Leu	Lys 30	Asn	Leu	
	Ser	Asn	Leu 35	Tyr	Ile	Gly	Lys	Leu 40	Leu	Ala	Asp	Ile	His 45	Gln	Leu	Thr	
35	Ile	Asp 50	Glu	Leu	Asp	Leu	Leu 55	Ĺeu	Ile	Ala	Val	Gly 60	Glu	Gly	Lys	Thr	
	Asn 65	Leu	Ser	Ala	Ile	Ser 70	Asp	Lys	Gln	Leu	Ala 75	Thr	Leu	Ile	Arg	Lys 80	
4 0	Leu	Asn	Thr	Ile	Thr 85	Ser	Trp	Leu	His	Thr	Gln	Lys	Trp	Ser	Val 95	Phe	
45	Gln	Leu	Phe	Ile 100	Met	Thr	Ser	Thr	Ser 105	Tyr	Asn	Lys	Thr	Leu 110	Thr	Pro	
	Glu	Ile	Lys 115	Asn	Leu	Leu	Asp	Thr 120	Val	Tyr	His	Gly	Leu 125	Gln	Gly	Phe	
50	Asp	Lys 130	Asp	Lys	Ala	Asp	Leu 135	Leu	His	Val	Met	Ala 140	Pro	Tyr	Ile	Ala	
	Ala 145	Thr	Leu	Gln	Leu	Ser 150	Ser	Glu	Asn	Val	Ala 155	His	Ser	Val	Leu	Leu 160	
55	Trp	Ala	Asp	Lys	Leu 165	Gln	Pro	Gly	Asp	Gly 170	Ala	Met	Thr	Ala	Glu 175	Gly	
	Phe	Trp	Asp	Trp	Leu	Asn	Thr	Ļys			Pro	Gly	Ser	Ser	Glu	Ala	
									- 1	80-							

				180					185					190		
5	Val	Glu	Thr 195	Gln	Glu	His	Ile	Val 200	Gln	Tyr	Суѕ	Gln	Ala 205	Leu	Ala	Glr
J	Leu	Glu 210	Met	Val	Tyr	His	Ser 215	Thr	Gly	Ile	Asn	Glu 220	Asn	Ala	Phe	Arç
10	Leu 225	Phe	Val	Thr	Lys	Pro 230	Glu	Met	Phe	Gly	Ala 235	Ala	Thr	Gly	Ala	Ala 240
	Pro	Ala	His	Asp	Ala 245	Leu	Ser	Leu	Ile	Met 250	Leu	Thr	Arg	Phe	Ala 255	Asp
15	Trp	Val	Asn	Ala 260	Leu	Gly	Glu	Lys	Ala 265	Ser	Ser	Val	Leu	Ala 270	Ala	Phe
20	Glu	Ala	Asn 275	Ser	Leu	Thr	Ala	Glu 280	Gln	Leu	Ala	Asp	Ala 285	Met	Asn	Leu
	Asp	Ala 290	Asn	Leu	Leu	Leu	Gln 295	Ala	Ser	Ile	Gln	Ala 300	Gln	Asn	His	Glr
25	His 305	Leu	Pro	Pro	Val	Thr 310	Pro	Glu	Asn	Ala	Phe 315	Ser	Cys	Trp	Thr	Ser 320
	Ile	Asn	Thr	Ile	Leu 325	Gln	Trp	Val	Asn	Val 330	Ala	Gln	Gln	Leu	Lys 335	CYS
30	Arg	Pro	Thr	Gly 340	Arg	Phe	Arg	Phe	Gly 345	Arg	Ala	Gly	Leu	Tyr 350	Ser	Ile
35	Asn	Glu	Arg 355	Asp	Thr	Asp	Leu	Cys 360	Pro	Val	Gly	Lys	Arg 365	Gly	Arg	Arc
	Ile	Asn 370	Arg	Arg	Val	Glu	Phe 375	Asn	Asn	Arg	Leu	Ile 380	His	Tyr	Asn	Ala
40	Phe 385	Leu	Asp	Glu	Ser	Arg 390	Ser	Ala	Ala	Leu	Ser 395	Thr	Tyr	Tyr	Ile	Arg 400
	Gln	Val	Ala	Lys	Ala 405	Ala	Ala	Ala	Ile	Lys 410	Ser	Arg	Asp	Asp	Leu 415	Тут
45	Gln	Tyr	Leu	Leu 420	Ile	Asp	Asn	Gln	Val 425	Ser	Ala	Ala	Ile	Lys 430	Thr	Thi
50	Arg	Ile	Ala 435	Glu	Ala	Ile	Ala	Ser 440	Ile	Gln	Leu	Tyr	Val 445	Asn	Arg	Alá
	Leu	Glu 450	Asn	Val	Glu	Glu	Asn 455	Ala	Asn	Ser	Gly	Val 460	Ile	Ser	Arg	Gli
55	Phe 465	Phe	Ile	Asp	Trp	Asp 470	Lys	Tyr	Asn	Lys	Arg 475	Tyr	Ser	Thr	Trp	A14 480
	Gly	Val	Ser	Gln	Leu 485	Val	Tyr	Tyr	Pro	Glu 490	Asn	Tyr	Ile	Asp	Pro 495	Thi
60	Met	Arg	Ile	Gly 500	Gln	Thr	Lys	Met	Met 505	Asp	Ala	Leu	Leu	Gln 510	Ser	Va.
65	Ser	Gln	Ser 515	Gln	Leu	Asn	Ala	Asp 520	Thr	Val	Glu	Asp	Ala 525	Phe	Met	Set
UJ	Tyr	Leu	Thr	Ser	Phe	Glu	Gln	Val	Ala	Asn	Leu	Lys	Val	Ile	ser	Ala

-181-

535

535 Tyr His Asp Asn Ile Asn Asn Asp Gln Gly Leu Thr Tyr Phe Ile Gly 5 Leu Ser Glu Thr Asp Ala Gly Glu Tyr Tyr Trp Arg Ser Val Asp His Ser Lys Phe Asn Asp Gly Lys Phe Ala Ala Asn Ala Trp Ser Glu Trp 10 His Lys Ile Asp Cys Pro Ile Asn Pro Tyr Lys Ser Thr Ile Arg Pro Val Ile Tyr Lys Ser Arg Leu Tyr Leu Leu Trp Leu Glu Gln Lys Glu 15 Ile Thr Lys Gln Thr Gly Asn Ser Lys Asp Gly Tyr Gln Thr Glu Thr 20 Asp Tyr Arg Tyr Glu Leu Lys Leu Ala His Ile Arg Tyr Asp Gly Thr Trp Asn Thr Pro Ile Thr Phe Asp Val Asn Lys Lys Ile Ser Glu Leu 25 Lys Leu Glu Lys Asn Arg Ala Pro Gly Leu Tyr Cys Ala Gly Tyr Gln Gly Glu Asp Thr Leu Leu Val Met Phe Tyr Asn Gln Gln Asp Thr Leu 30 Asp Ser Tyr Lys Asn Ala Ser Met Gln Gly Leu Tyr Ile Phe Ala Asp 35 Met Ala Ser Lys Asp Met Thr Pro Glu Gln Ser Asn Val Tyr Arg Asp 730 Asn Ser Tyr Gln Gln Phe Asp Thr Asn Asn Val Arg Arg Val Asn Asn 745 40 Arg Tyr Ala Glu Asp Tyr Glu Ile Pro Ser Ser Val Ser Ser Arg Lys 760 Asp Tyr Gly Trp Gly Asp Tyr Tyr Leu Ser Met Val Tyr Asn Gly Asp 45 Ile Pro Thr Ile Asn Tyr Lys Ala Ala Ser Ser Asp Leu Lys Ile Tyr 795 50 Ile Ser Pro Lys Leu Arg Ile Ile His Asn Gly Tyr Glu Gly Gln Lys 810 Arg Asn Gln Cys Asn Leu Met Asn Lys Tyr Gly Lys Leu Gly Asp Lys 55

60 (2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:

Phe Ile Val Tyr Thr Ser Leu Gly Val Asn Pro Asn Asn

(A) LENGTH: 16 amino acids

840

65 (B) TYPE: amino acid

-182-

```
(C)
                     STRANDNESS: single
                (D) TOPOLOGY: linear
           (ii) MOLECULAR TYPE: protein
 5
           (v) FRAGMENT TYPE: N-terminal
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
10
     Arg Tyr Tyr Asn Leu Ser Asp Glu Glu Leu Ser Gln Phe Ile Gly
    Lys
15
          INFORMATION FOR SEQ ID NO:39:
              SEQUENCE CHARACTERISTICS:
20
                (A) LENGTH: 20 amino acids
                    TYPE: amino acid
                (B)
                (C) STRANDNESS: single
                (D) TOPOLOGY: linear
25
          (ii) MOLECULAR TYPE: protein
          (v) FRAGMENT TYPE: N-terminal
30
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
    Gly Thr Ala Thr Asp Val Ser Gly Pro Val Glu Ile Asn Thr Ala
35
    Ile Ser Pro Ala Lys
          INFORMATION FOR SEQ ID NO:40:
    (2)
40
               SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 11 amino acids
               (B) TYPE: amino acid(C) STRANDNESS: single
45
               (D) TOPOLOGY: linear
          (ii) MOLECULAR TYPE: protein
          (v) FRAGMENT TYPE: N-terminal
50
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
    Ala Asn Ser Leu Tyr Ala Leu Phe Leu Pro Gln
55
     (2)
         INFORMATION FOR SEQ ID NO:41:
60
               SEQUENCE CHARACTERISTICS:
          (i)
               (A) LENGTH: 14 amino acids
```

-183-

```
TYPE: amino acid
                (B)
                (C) STRANDNESS: single
                     TOPOLOGY: linear
                (D)
 5
          (ii) MOLECULAR TYPE: protein
          (v) FRAGMENT TYPE: N-terminal
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
10
    Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro Gln
                                      10
          INFORMATION FOR SEQ ID NO:42:
15
     (2)
               SEQUENCE CHARACTERISTICS:
          (i)
                (A) LENGTH: 19 amino acids
                     TYPE: amino acid
                (B)
                (C) STRANDNESS: SINGLE (D) TOPOLOGY: linear
20
                    STRANDNESS: single
          (ii) MOLECULAR TYPE: protein
25
          (v) FRAGMENT TYPE: N-terminal
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:
30
    Arg Ala Leu Glu Val Glu Arg Thr Val Ser Leu Ala Glu Val Tyr
    Ala Gly Leu Glu
35
    (2)
          INFORMATION FOR SEQ ID NO:43:
               SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 11 amino acids
40
                    TYPE: amino acid
                (B)
                (C) STRANDNESS: single
                (D) TOPOLOGY: linear
          (ii) MOLECULAR TYPE: protein
45
          (v) FRAGMENT TYPE: N-terminal
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:
50
    Ile Arg Glu Asp Tyr Pro Ala Ser Leu Gly Lys
55
    (2)
          INFORMATION FOR SEQ ID NO:44:
               SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 16 amino acids
                    TYPE: amino acid
                (B)
60
                    STRANDNESS: single
               (C)
                   TOPOLOGY: linear
               (D)
```

-184-

(ii) MOLECULAR TYPE: protein FRAGMENT TYPE: (V) N-terminal 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44: Asp Asp Ser Gly Asp Asp Asp Lys Val Thr Asn Thr Asp Ile His (0 10 Arg 15 INFORMATION FOR SEQ ID NO:45: (2) SEQUENCE CHARACTERISTICS: LENGTH: 13 amino acids (A) (B) TYPE: amino acid 20 (C) STRANDNESS: single TOPOLOGY: linear (ii) MOLECULAR TYPE: protein 25 FRAGMENT TYPE: (V) N-terminal (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45: 30 Asp Val Xaa Gly Ser Glu Lys Ala Asn Glu Lys Leu Lys INFORMATION FOR SEQ ID NO:46: 35 SEQUENCE CHARACTERISTICS: LENGTH: 7551 base pairs (A) TYPE: nucleic acid STRANDEDNESS: double (C) (D) TOPOLOGY: linear 40 (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46 (ccdA): 45 ATG AAC GAG TCT GTA AAA GAG ATA CCT GAT GTA TTA AAA AGC CAG TGT Mer Asn Glu Ser Val Lys Glu Ile Pro Asp Val Leu Lys Ser Gln Cys 50 GGT TTT AAT TGT CTG ACA GAT ATT AGC CAC AGC TCT TTT AAT GAA TTT Gly Phe Asn Cys Leu Thr Asp Ile Ser His Ser Ser Phe Asn Glu Phe CGC CAG CAA GTA TCT GAG CAC CTC TCC TGG TCC GAA ACA CAC GAC TTA Arg Gln Gln Val Ser Glu His Leu Ser Trp Ser Glu Thr His Asp Leu 55 40 TAT CAT GAT GCA CAA CAG GCA CAA AAG GAT AAT CGC CTG TAT GAA GCG Tyr His Asp Ala Gln Gln Ala Gln Lys Asp Asn Arg Leu Tyr Glu Ala 60 50 CGT ATT CTC AAA CGC GCC AAT CCC CAA TTA CAA AAT GCG GTG CAT CTT Arg Ile Leu Lys Arg Ala Asn Pro Gin Leu Gin Asn Ala Val His Leu 65

-185-

											4						
	GCC Ala	ATT Ile	Leu	SCT Ala	CCC Pro 85	AAT Asn	GCT Ala	GAA Glu	CTG Leu	ATA Ile 90	GGC Gly	Tyr	AAC Asn	TAA Asn	CAA Gln 95	TTT Phe	288
5	AGC Ser	GGT Gly	AGA Arg	GCC Ala 100	AGT Ser	CAA Gln	TAT Tyr	GTT Val	GCG Ala 105	CCG Pro	GGT Gly	ACC Thr	GTT Val	TCT Ser 110	TCC Ser	ATG Met	336
10	TTC Phe	TCC Ser	CCC Pro 115	GCC Ala	GCT Ala	TAT Tyr	TTG Leu	ACT Thr 120	GAA Glu	CTT Leu	TAT Tyr	CGT Arg	GAA Glu 125	GCA Ala	CGC Arg	AAT Asn	384
15	TTA Leu	CAC His 130	GCA Ala	AG T Ser	GAC Asp	TCC Ser	GTT Val 135	TAT Tyr	TAT Tyr	CTG Leu	GAT Asp	ACC Thr 140	CGC Arg	CGC Arg	CCA Pro	GAT Asp	432
20	CTC Leu 145	AAA Lys	TCA Ser	ATG Met	GCG Ala	CTC Leu 150	AGT Ser	CAG Gln	CAA Gln	AAT Asn	ATG Met 155	GAT Asp	ATA Ile	GAA Glu	TTA Leu	TCC Ser 160	480
20	ACA Thr	CTC Leu	TCT Ser	TTG Leu	TCC Ser 165	AAT Asn	GAG Glu	CTG Leu	TTA Leu	TTG Leu 170	GAA Glu	AGC Ser	ATT	AAA Lys	ACT Thr 175	GAA Glu	528
25	TCT Ser	AAA Lys	CTG Leu	GAA Glu 180	AAC Asn	TAT Tyr	ACT Thr	AAA Lys	GTG Val 185	ATG Met	GAA Glu	ATG Met	CTC Leu	TCC Ser 190	ACT Thr	TTC Phe	576
30	CGT	CCT Pro	TCC Ser 195	GGC Gly	GCA Ala	ACG Thr	CCT Pro	TAT Tyr 200	CAT His	GAT Asp	GCT Ala	TAT Tyr	GAA Glu 205	AAT Asn	GTG Val	CGT Arg	624
35	GAA Glu	GTT Val 210	ATC Ile	CAG Gln	CTA Leu	CAA Gln	GAT Asp 215	CCT Pro	GGA Gly	CTT Leu	GAG Glu	CAA Gln 220	CTC Leu	AAT Asn	GCA Ala	TCA Ser	672
40	CCG Pro 225	GCA Ala	ATT Ile	GCC Ala	GGG Gly	TTG Leu 230	ATG Met	CAT His	CAA Gln	GCC Ala	TCC Ser 235	CTA Leu	TTG Leu	GGT Gly	ATT Ile	AAC Asn 240	720
40	GCT Ala	TCA Ser	ATC Ile	TCG Ser	CCT Pro 245	GAG Glu	CTA Leu	TTT Phe	AAT Asn	ATT Ile 250	CTG Leu	ACG Thr	GAG Glu	GAG Glu	ATT Ile 255	ACC Thr	768
45	GAA Glu	GG T Gly	AAT Asn	GCT Ala 260	GAG Glu	GAA Glu	CTT Leu	TAT Tyr	AAG Lys 265	AAA Lys	AAT Asn	TTT Phe	GGT Gly	AAT Asn 270	ATC Ile	GAA Glu	816
5 0	CCG Pro	GCC Ala	TCA Ser 275	TTG Leu	GCT Ala	ATG Met	CCG Pro	GAA Glu 280	TAC Tyr	CTT Leu	AAA Lys	CGT Arg	TAT Tyr 285	TAT Tyr	AAT Asn	TTA Leu	864
55	AGC Ser	GAT Asp 290	GAA Glu	GAA Glu	CTT Leu	AGT Ser	CAG Gln 295	TTT Phe	ATT Ile	GGT Gly	AAA Lys	GCC Ala 300	AGC Ser	AAT Asn	TTT Phe	GGT Gly	912
60	CAA Gln 305	CAG Gln	GAA Glu	TAT Tyr	AGT Ser	AAT Asn 310	AAC Asn	CAA Gln	CTT Leu	ATT Ile	ACT Thr 315	CCG Pro	GTA Val	GTC Val	AAC Asn	AGC Ser 320	960
60	AGT Ser	GAT Asp	GGC Gly	ACG Thr	GTT Val 325	AAG Lys	GTA Val	TAT Tyr	CGG Arg	ATC Ile 330	ACC Thr	CGC Arg	GAA Glu	TAT Tyr	ACA Thr 335	ACC Thr	1003
65	AAT Asn	GCT Ala	TAT Tyr	CAA Gln 340	ATG Met	GAT Asp	GTG Val	GAG Glu	CTA Leu 345	TTT Phe	CCC Pro	TTC Phe	GGT Gly	GGT Gly 350	GAG Glu	AAT Asn	1056
70	TAT Tyr	CGG Arg	TTA Leu 355	GAT Asp	TAT Tyr	AAA Lys	TTC Phe	AAA Lys 360	AAT Asn	TTT Phe	TAT Tyr	AAT Asn	GCC Ala 365	TCT Ser	TAT Tyr		1104

-186-

5	TCC 3er	ATC Ile 370	Lys	TTA Leu	AAT Asn	GAT Asp	AAA Lys 375	Arg	GAA Glu	CTT Leu	GTT Val	CGA Arg 380	ACT Thr	GAA Glu	GGC Gly	GCT Ala	1152
•	CCT Pro 385	CAA Gln	GTC Val	AAT Asn	ATA Ile	GAA Glu 390	TAC Tyr	TCC Ser	GCA Ala	AAT Asn	ATC Ile 395	ACA Thr	TTA Leu	AAT Asn	ACC Thr	GCT Ala 400	1200
10		ATC Ile															1248
15	GGT Gly	TCT Ser	TGG Trp	GCA Ala 420	TAT Tyr	GCC Ala	GCC Ala	GCA Ala	AAA Lys 425	TTT Phe	ACC Thr	GTT Val	GAA Glu	GAG Glu 430	TAT Tyr	AAC Asn	1296
20	CAA Gln	TAC Tyr	TCT Ser 435	TTT Phe	CTG Leu	CTA Leu	AAA Lys	CTT Leu 440	AAC Asn	AAG Lys	GCT Ala	ATT Ile	CGT Arg 445	CTA Leu	TCA Ser	CGT Arg	1344
25		ACA Thr 450															1392
		CTA Leu															1440
30		AAA Lys															1488
35		CTA Leu															1536
40		CAA Gln															1584
45		TCT Ser 530															1632
		TGG Trp															1680
50		CTC Leu															1728
55		ATT Ile															1776
60		CTG Leu															1824
65		ATT Ile 610															1372
1,,,		CAA Gln															1920
70		CAT His															1968

545 650 655 ACC AGC TAT AAC AAA ACG CTA ACG CCT GAA ATT AAG AAT TTG CTG GAT Thr Ser Tyr Asn Lys Thr Leu Thr Pro Glu Ile Lys Asn Leu Leu Asp ACC GTC TAC CAC GGT TTA CAA GGT TTT GAT AAA GAC AAA GCA GAT TTG Thr Val Tyr His Gly Leu Gln Gly Phe Asp Lys Asp Lys Ala Asp Leu 2064 10 CTA CAT GTC ATG GCG CCC TAT ATT GCG GCC ACC TTG CAA TTA TCA TCG Leu His Val Met Ala Pro Tyr Ile Ala Ala Thr Leu Gln Leu Ser Ser GAA AAT GTC GCC CAC TCG GTA CTC CTT TGG GCA GAT AAG TTA CAG CCC Glu Asn Val Ala His Ser Val Leu Leu Trp Ala Asp Lys Leu Gln Pro GGC GAC GGC GCA ATG ACA GCA GAA AAA TTC TGG GAC TGG TTG AAT ACT 2203 Gly Asp Gly Ala Met Thr Ala Glu Lys Phe Trp Asp Trp Leu Asn Thr 20 AAG TAT ACG CCG GGT TCA TCG GAA GCC GTA GAA ACG CAG GAA CAT ATC 2256 Lys Tyr Thr Pro Gly Ser Ser Glu Ala Val Glu Thr Gln Glu His Ile 25 GTT CAG TAT TGT CAG GCT CTG GCA CAA TTG GAA ATG GTT TAC CAT TCC Val Gln Tyr Cys Gln Ala Leu Ala Gln Leu Glu Met Val Tyr His Ser 755 760 765 30 ACC GGC ATC AAC GAA AAC GCC TTC CGT CTA TTT GTG ACA AAA CCA GAG Thr Gly Ile Asn Glu Asn Ala Phe Arg Leu Phe Val Thr Lys Pro Glu ATG TTT GGC GCT GCA ACT GGA GCA GCG CCC GCG CAT GAT GCC CTT TCA 2400 Met Phe Gly Ala Ala Thr Gly Ala Ala Pro Ala His Asp Ala Leu Ser CTG ATT ATG CTG ACA CGT TTT GCG GAT TGG GTG AAC GCA CTA GGC GAA Leu Ile Met Leu Thr Arg Phe Ala Asp Trp Val Asn Ala Leu Gly Glu 2448 805 AAA GCG TCC TCG GTG CTA GCG GCA TTT GAA GCT AAC TCG TTA ACG GCA Lys Ala Ser Ser Val Leu Ala Ala Phe Glu Ala Asn Ser Leu Thr Ala 825 GAA CAA CTG GCT GAT GCC ATG AAT CTT GAT GCT AAT TTG CTG TTG CAA 2544 Glu Gln Leu Ala Asp Ala Met Asn Leu Asp Ala Asn Leu Leu Cln 840 50 GCC AGT ATT CAA GCA CAA AAT CAT CAA CAT CTT CCC CCA GTA ACT CCA Ala Ser Ile Gln Ala Gln Asn His Gln His Leu Pro Pro Val Thr Pro GAA AAT GCG TTC TCC TGT TGG ACA TCT ATC AAT ACT ATC CTG CAA TGG Glu Asn Ala Phe Ser Cys Trp Thr Ser Ile Asn Thr Ile Leu Gln Trp GTT AAT GTC GCA CAA CAA TTG AAT GTC GCC CCA CAG GGC GTT TCC GCT 2688 Val Asn Val Ala Gln Gln Leu Asn Val Ala Pro Gln Gly Val Ser Ala TTG GTC GGG CTG GAT TAT ATT CAA TCA ATG AAA GAG ACA CCG ACC TAT Leu Val Gly Leu Asp Tyr Ile Gln Ser Met Lys Glu Thr Pro Thr Tyr 65 905 GCC CAG TGG GAA AAC GCG GCA GGC GTA TTA ACC GCC GGG TTG AAT TCA Ala Gln Trp Glu Asn Ala Ala Gly Val Leu Thr Ala Gly Leu Asn Ser 70 CAA CAG GCT AAT ACA TTA CAC GCT TTT CTG GAT GAA TCT CGC AGT GCC 2832 -188-

	Gln	Gln 930		Asn	Thr	Leu	His 935	Ala	Phe	Leu	Asp	Glu 340	Ser	Arg	Ser	Ala	
5											GCC Ala 955						2880
10											TTA Leu						2928
15	GTT Val	TCT Ser	GCG Ala	GCA Ala 980	ATA Ile	AAA Lys	ACC Thr	ACC Thr	CGG Arg 985	ATC Ile	GCC Ala	GAA Glu	GCC Ala	ATT Ile 990	GCC Ala	AGT Ser	2976
									Leu		AAT Asn			Glu			3024
20			Gly					Gln			ATC Ile		Trp				3072
25	AAT Asn 1025	Lys	CGC Arg	TAC Tyr	AGC Ser	ACT Thr 1030	Trp	GCG Ala	GGT Gly	GTT Val	TCT Ser 1035	Gln	TTA Leu	G TT Val	TAC Tyr	TAC Tyr 1040	3120
30						Asp					ATC Ile					Met	3163
35					Leu					Gln	AGC Ser				Ala		3216
33				Asp					Tyr		ACA Thr			Glu			3264
40			Leu					Ala			GAT Asp		Ile				3312
45		Gly					Ile				GAA Glu 1115	Thr					3360
50						Val					TTC Phe					Phe	3408
55					Trp					Lys	ATT Ile				Ile		3456
33				Ser					Val		TAT Tyr			Arg			3504
60			Trp					Glu			laa Lys		Thr				3552
65		Asp					Glu				CGT Arg 1195	Tyr					3600
70	GCG Ala	CAT His	ATC Ile	CGC Arg	TAT Tyr 1209	Asp	GGC Gly	ACT Thr	TGG Trp	AAT Asn 1210	ACG Thr	CCA Pro	ATC Ile	ACC Thr	TTT Phe 121	Asp	3648

-189-

	GTC Val	AAT Asn	AAA Lys	AAA Lys 1220	Ile	TCC Ser	GAG Glu	CTA Leu	AAA Lys 1225	Leu	GAA Glu	AAA Lys	AAT Asn	AGA Arg 1230	ALA	ece Pro	3636
5	GGA Gly	CTC Leu	TAT Tyr 1235	Cys	GCC Ala	GGT Gly	TAT Tyr	CAA Gln 1240	Gly	GAA Glu	GAT Asp	ACG Thr	TTG Leu 1245	Lêu	GTG Val	ATG Met	3744
10	TTT Phe	TAT T/r 1250	AAC Asn)	CAA Gln	CAA Gln	GAC Asp	ACA Thr 1255	Leu	GAT Asp	AGT Ser	TAT Tyr	AAA Lys 1260	.Asn	GCT Ala	TCA Ser	ATG Met	3792
15	CAA Gln 1265	Gly	CTA Leu	TAT Tyr	ATC Ile	TTT Phe 1270	Ala	GAT Asp	ATG Met	GCA Ala	TCC Ser 1275	Lys	GAT Asp	ATG Met	ACC Thr	CCA Pro 1280	3840
20	GAA Glu	CAG Gln	AGC Ser	AAT Asn	GTT Val 1285	Tyr	CGG Arg	GAT Asp	AAT Asn	AGC Ser 1290	Tyr	CAA Gln	CAA Gln	TTT Phe	GAT Asp 1295	Thr	3888
20	AAT Asn	AAT Asn	GTC Val	AGA Arg 1300	Arg	GTG Val	AAT Asn	AAC Asn	CGC Arg 1305	Tyr	GCA Ala	GAG Glu	GAT Asp	TAT Tyr 1310	Glu	ATT Ile	3936
25	CCT Pro	TCC Ser	TCG Ser 1315	Val	AGT Ser	AGC Ser	CGT Arg	AAA Lys 1320	Asp	TAT Tyr	GGT Gly	TGG Trp	GGA Gly 1325	Asp	TAT Tyr	TAC Tyr	3984
30	CTC Leu	AGC Ser 1330	ATG Met)	GTA Val	TAT Tyr	AAC Asn	GGA Gly 1335	Asp	ATT Ile	CCA Pro	ACT Thr	ATC Ile 1340	Asn	TAC Tyr	AAA Lys	GCC Ala	4032
35	GCA Ala 1345	Ser	AGT Ser	GAT Asp	TTA Leu	AAA Lys 1350	Ile	TAT Tyr	ATC Ile	Ser	CCA Pro 1355	Lys	TTA Leu	AGA Arg	ATT Ile	ATT Ile 1360	4080
40	CAT H1s	AAT Asn	GGA Gly	TAT Tyr	GAA Glu 1365	Gly	CAG Gln	AAG Lys	CGC Arg	AAT Asn 1370	Gln	TGC Cys	TAA Asn	CTG Leu	ATG Met 137	Asn	4128
40	AAA Lys	TAT Tyr	GGC Gly	AAA Lys 1380	Leu	GGT Gly	GAT Asp	AAA Lys	TTT Phe 1385	Ile	GTT Val	TAT Tyr	ACT Thr	AGC Ser 139	Leu	GGG Gly	4176
45	GTC Val	AAT Asn	CCA Pro 1395	Asn	AAC Asn	TCG Ser	TCA Ser	AAT Asn 1400	Lys	CTC Leu	ATG Met	TTT Phe	TAC Tyr 140	Pro	GTC Val	TAT Tyr	4224
50	CAA Gln	TAT Tyr 1410	AGC Ser	GGA Gly	AAC Asn	ACC Thr	AGT Ser 141	Gly	CTC Leu	AAT Asn	CAA Gln	GGG Gly 1420	Arg	CTA Leu	CTA Leu	TTC Phe	4272
55	CAC His 142	Arg	GAC Asp	ACC. Thr	ACT Thr	TAT Tyr 143	Pro	TCT Ser	AAA Lys	GTA Val	GAA Glu 143	Ala	TGG Trp	ATT	CCT Pro	GGA Gly 1440	4320
40	GCA Ala	AAA Lys	CGT Arg	TCT Ser	CTA Leu 144	Thr	AAC Asn	CAA Gln	AAT Asn	GCC Ala 145	Ala	ATT Ile	GGT Gly	GAT Asp	GAT Asp 145	TAT Tyr 5	4368
60	GCT Ala	ACA Thr	GAC Asp	TCT Ser 146	Leu	AAT Asn	AAA Lys	CCG Pro	GAT Asp 146	Asp	CTT Leu	AAG Lys	CAA Gln	TAT Tyr 147	lle	TTT Phe	4416
65	ATG Met	ACT Thr	GAC Asp 1475	Ser	AAA Lys	GGG Gly	ACT Thr	GCT Ala 148	Thr	GAT Asp	GTC Val	TCA Ser	GGC Gly 148	Pro	GTA Val	GAG Glu	1464
70	ATT Ile	AAT Asn 1490	Thr	GCA Ala	ATT Ile	TCT Ser	CCA Pro 149	Ala	AAA Lys	GTT Val	CAG Gln	ATA Ile 150	Ile	GTC Val	AAA Lys	GCG Ala	4512

-190-

				Phe Thr		AAA GAT Lys Asp 1515		ATT CAG Ile Gln 1520	4560
5	CCA TCA Pro Ser	CCT AGC Pro Ser	TTT GAT Phe Asp 1525	GAA ATG Glu Met	AAT TAT Asn Tyr 153	CAA TTT Gln Phe û	AAT GCC Asn Ala	CTT GAA Leu Glu 1535	4603
10			Gly Leu			AAC TCA Asn Ser		Ile Asp	4656
15	GTT ACT Val Thr	TTT ACC Phe Thr 1555	GCA TTT Ala Phe	GCG GAG Ala Glu 156	Asp Gly	CGC AAA Arg Lys	CTG GGT Leu Gly 1565	TAT GAA Tyr Glu	4704
20	AGT TTC Ser Phe 157	Ser Ile	CCT GTT Pro Val	ACC CTC Thr Leu 1575	AAG GTA Lys Val	AGT ACC Ser Thr 1580	Asp Asn	GCC CTG Ala Leu	4752
25				Asn Gly		TAT ATG Tyr Met 1595			4800
						CGC CAG Arg Gln 0			4848
30			Ile Asp			ATG GAA Met Glu		Asn Ile	4896
35					Phe Tyr	GCT ACG Ala Thr			4944
40		Asn Leu				CGT TGG Arg Trp 1660	Phe Lys		4992
45				Asn Asn	Ser His	ATT ATC Ile Ile 1675			5040
.5						TTT ATT Phe Ile 0			5088
50			Gln Asp			GTT TAT Val Tyr		Phe Lys	5136
55					Trp Gly	CCT CAC Pro His		AGA GAT Arg Asp	5184
60		Gly Ile				TCC ATT Ser Ile 1740	Leu Thr		5232
45				Asn Asn		AGC GAA Ser Glu 1755			5280
65						CTG TTC Leu Phe 0			5328
70						CAG AAC Gln Asn			5376

	1730		1785	179C
5	AAC CGT TGG CTG : Asn Arg Trp Leu ! 1795	AAA TAT GTC TGG Lys Tyr Val Trp 1800	S r Pro Ser Gly	TAT ATT GTC CAC 5424 Pyr Ile Val His 1805
10	GGC CAG ATT CAG 2 Gly Gln Ile Gln 2 1310	AAC TAC CAG TGG Asn Tyr Gln Trp 1815	AAC GTC CGC CCG 1 Asn Val Arg Pro I 1820	TTA CTG GAA GAC 5472 Leu Leu Glu Asp
10	ACC AGT TGG AAC 2 Thr Ser Trp Asn 5 1825	AGT GAT CCT TTG Ser Asp Pro Leu 1830	GAT TCC GTC GAT C Asp Ser Val Asp E 1835	CCT GAC GCG GTA 5520 Pro Asp Ala Val 1840
15	GCA CAG CAC GAT C Ala Gln His Asp I	CCA ATG CAC TAC Pro Met His Tyr 1845	AAA GTT TCA ACT T Lys Val Ser Thr E 1850	TT ATG CGT ACC 5568 The Met Arg Thr 1855
20	TTG GAT CTA TTG A Leu Asp Leu Leu 1 1360	ATA GCA CGC GGC Ile Ala Arg Gly	GAC CAT GCT TAT C Asp His Ala Tyr A 1865	GC CAA CTG GAA 5616 Grg Gln Leu Glu 1870
25	CGA GAT ACA CTC A Arg Asp Thr Leu A 1875		Met Trp Tyr Met C	AA GCG CTG CAT 5664 In Ala Leu His 885
30	CTA TTA GGT GAC A Leu Leu Gly Asp I 1890			
30	CCA CGA CTA GAC A Pro Arg Leu Asp A 1905	AGA GCC GCG GAT Arg Ala Ala Asp 1910	ATC ACT ACC CAA A Ile Thr Thr Gln A 1915	AT GCT CAC GAC 5760 sn Ala His Asp 1920
35	AGC GCA ATA GTC G Ser Ala Ile Val A	GCT CTG CGG CAG Ala Leu Arg Gln 1925	AAT ATA CCT ACA C Asn Ile Pro Thr E 1930	CG GCA CCT TTA 5808 Pro Ala Pro Leu 1935
40	TCA TTG CGC AGC G Ser Leu Arg Ser A 1940	GCT AAT ACC CTG	ACT GAT CTC TTC C Thr Asp Leu Phe I 1945	TG CCG CAA ATC 5856 eu Pro Gln Ile 1950
45	AAT GAA GTG ATG A Asn Glu Val Met M 1955	ATG AAT TAC TGG Met Asn Tyr Trp 1960	Gln Thr Leu Ala C	AG AGA GTA TAC 5904 In Arg Val Tyr 965
50	AAT CTG CGT CAT A Asn Leu Arg His A 1970	NAC CTC TCT ATC ASD Leu Ser Ile 1975	GAC GGC CAG CCG T Asp Gly Gln Pro I 1980	TA TAT CTG CCA 5952 eu Tyr Leu Pro
50	ATC TAT GCC ACA C Ile Tyr Ala Thr F 1985	CCG GCC GAT CCG Pro Ala Asp Pro 1990	AAA GCG TTA CTC A Lys Ala Leu Leu S 1995	GC GCC GCC GTT 6000 er Ala Ala Val 2000
55	GCC ACT TCT CAA G Ala Thr Ser Gln G 2	GT GGA GGC AAG Bly Gly Gly Lys 1005	CTA CCG GAA TCA 1 Leu Pro Glu Ser 9 2010	TT ATG TCC CTG 6048 the Met Ser Leu 2015
60	TGG CGT TTC CCG C Trp Arg Phe Pro H 2020	lis Met Leu Glu	AAT GCG CGC GGC A Asn Ala Arg Gly M 2025	TG GTT AGC CAG 6096 let Val Ser Gln 2030
65	CTC ACC CAG TTC G Leu Thr Gln Phe G 2035	GC TCC ACG TTA Sly Ser Thr Leu 2040	Gln Asn Ile Ile G	AA CGT CAG GAC 6144 lu Arg Gln Asp 045
70	GCG GAA GCG CTC A Ala Glu Ala Leu A 2050	LAT GCG TTA TTA Len Len Len 2055	CAA AAT CAG GCC G Gln Asn Gln Ala A 2060	CC GAG CTG ATA 6192 la Glu Leu Ile
70	TTG ACT AAC CTG A	GC ATT CAG GAC	AAA ACC ATT GAA G -192-	AA TTG GAT GCC 6240

wo	97/17432												P	CT/US	96/1800
	Leu Thr 2065	Asn 1	L∈u S		e Gln 70	Asp	L∵s	Thr	Ile 2075		Glu	Leu	Asp	Ala 2080	
5	GAG AAA Glu Lys		Val L						Gly					Phe	6283
10	GAT AGC Asp Ser	Tyr (Asn					Glu		6336
15	CAA GCC Gln Ala	ATG A Met ' 2115	ACG C Thr L	TA CG eu Ar	A GCG g Ala	TCC Ser 2120	Ala	GCC Ala	GGG Gly	C TT Leu	ACC Thr 2125	Thr	GCA Ala	GTT Val	538 4
13	CAG GCA Gln Ala 2130	Ser 1				Ala					Val				6432
20	TTC GGC Phe Gly 2145			ly Gl						Ala					6480
25	ACA GGT Thr Gly		Val M						Val					Ala	6528
30)	GAT AAA Asp Lys	Ile :						Arg					Glu		6576
35	GAG ATC Glu Ile						Ala					Ile			5624
33	CAG CTC Gln Leu 2210	Lys :				Arg					Val				6672
4()	ACC AGT Thr Ser 2225			hr Gl						Ser					6720
45	CTG CAA Leu Gln		Lys P						Tyr					Gly	6768
50	CGA CTG Arg Leu	Ala .						Tyr					Ala		6816
55	TGC CTG Cys Leu		Ala G				Arg					Asp			6864
<i>J</i> J	GCC CGC Ala Arg 229	Phe				Ala					Tyr				6912
60	CTT GCA Leu Ala 2305			hr Le						Gln					6960
65	CAT CTG His Leu	AAA Lys	Arg A	AT AL Asp L;	A CGC 's Arg	GCA Ala	TTA Leu	GAG Glu 233	Val	GAA Glu	CGC Arg	ACA Thr	GTA Val 233	Ser	7008
70	CTG GCC Leu Ala	Glu	GTT 1 Val 1 2340	TAT GO	A GGA La Gly	TTA Leu	CCA Pro 234	Lys	GAT Asp	AAC Asn	GGT Gly	CCA Pro 235	Phe	TCC Ser	7056

-193-

	CTG GCT CAG GAA ATT GAC AAG CTG GTG AGT CAA GGT TCA GGC AGT GCC Leu Ala Gln Glu Ile Asp Lys Leu Val Ser Gln Gly Ser Gly Ser Ala 2355 2360 2365	7154
5	GGC AGT GGT AAT AAT AAT TTG GCG TTC GGC GCC GGC ACG GAC ACT AAA Gly Ser Gly Asn Asn Asn Leu Ala Phe Gly Ala Gly Thr Asp Thr Lys 2370 2375 2380	7152
10	ACC TCT TTG CAG GCA TCA GTT TCA TTC GCT GAT TTG AAA ATT CGT GAA Thr Ser Leu Gln Ala Ser Val Ser Phe Ala Asp Leu Lys Ile Arg Glu 2385 2390 2395 2400	7200
15	GAT TAC CCG GCA TCG CTT GGC AAA ATT CGA CGT ATC AAA CAG ATC AGC ASP Tyr Pro Ala Ser Leu Gly Lys Ile Arg Arg Ile Lys Gln Ile Ser 2405 2415	7248
20	GTC ACT TTG CCC GCG CTA CTG GGA CCG TAT CAG GAT GTA CAG GCA ATA Val Thr Leu Pro Ala Leu Leu Gly Pro Tyr Gln Asp Val Gln Ala Ile 2420 2425 2430	7296
20	TTG TCT TAC GGC GAT AAA GCC GGA TTA GCT AAC GGC TGT GAA GCG CTG Leu Ser Tyr Gly Asp Lys Ala Gly Leu Ala Asn Gly Cys Glu Ala Leu 2435 2440 2445	7344
25	GCA GTT TCT CAC GGT ATG AAT GAC AGC GGC CAA TTC CAG CTC GAT TTC Ala Val Ser His Gly Met Asn Asp Ser Gly Gln Phe Gln Leu Asp Phe 2450 2460	7392
30	AAC GAT GGC AAA TTC CTG CCA TTC GAA GGC ATC GCC ATT GAT CAA GGC ASN ASD Gly Lys Phe Leu Pro Phe Glu Gly Ile Ala Ile Asp Gln Gly 2465 2470 2480	7440
35	ACG CTG ACA CTG AGC TTC CCA AAT GCA TCT ATG CCG GAG AAA GGT AAA Thr Leu Thr Leu Ser Phe Pro Asn Ala Ser Met Pro Glu Lys Gly Lys 2485 2490 2495	7488
40	CAA GCC ACT ATG TTA AAA ACC CTG AAC GAT ATC ATT TTG CAT ATT CGC Gln Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu His Ile Arg 2500 2505 2510	7536
40	TAC ACC ATT AAA TAA 7551 Tyr Thr Ile Lys ••• 2516	
45	(2) INFORMATION FOR SEQ ID NO:47: (i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 2516 amino acids (B) TYPE: amino acids (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	
55	<pre>(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47 (TcdA): Features From To Description Peptide 1 2516 TcdA proteins Peptide 89 1937 TcdA; peptide</pre>	
60	Fragment 89 100 S2 N-terminus (SEQ ID NO:13) Fragment 284 299 (SEQ ID NO:38) Fragment 554 563 (SEQ ID NO:17) Fragment 1080 1092 (SEQ ID NO:23; 12/13)	
65	Fragment 1385 1400 (SEQ ID NO:18) Fragment 1478 1497 (SEQ ID NO:39) Fragment 1620 1642 (SEQ ID NO:21; 19/23) Fragment 1938 1948 (SEQ ID NO:41)	
	Peptide 1938 2516 TcdA _{ii} peptide Fragment 2327 2345 (SEQ ID NO:42) Fragm nt 2398 2408 (SEQ ID NO:43)	
	-194-	

	Met 1	Asn	Glu	Ser	7a1 5	Ľ;'s	Glu	Ile	Pro	Asp 10	Val	Leu	Lys	Ser	Gln 15	Суз
5	Gly	Phe	Asn	Cys 20	Leu	Thr	Asp	Ile	Ser 25	His	Ser	Ser	Phe	Asn 30	Glu	Phe
10	Arg	Gln	Gln 35	Val	Ser	Glu	His	Leu 40	Ser	Trp	Ser	Glu	Thr 45	His	Asp	Leu
	Tyr	His 50	Asp	Ala	Gln	Gln	Ala 55	Gln	Lys	Asp	Asn	Arg 60	Leu	Tyr	Glu	Ala
15	Arg 65	Ile	Leu	Lys	Arg	Ala 70	Asn	Pro	Gln	Leu	Gln 75	Asn	Ala	Val	His	Leu 30
	Ala	Ile	Leu	Ala	Pro 85	Asn	Ala	Glu	Leu	Ile 90	Gly	Tyr	Asn	Asn	Gln 95	Phe
20	Ser	Gly	Arg	Ala 100	Ser	Gln	Tyr	Val	Ala 105	Pro	Gly	Thr	Val	Ser 110	Ser	Met
25	Phe	Ser	Pro 115	Ala	Ala	Tyr	Leu	Thr 120	Glu	Leu	Tyr	Arg	Glu 125	Ala	Arg	Asn
	Leu	H15 130	Ala	Ser	Asp	Ser	Val 135	Tyr	Tyr	Leu	Asp	Thr 140	Arg	Arg	Pro	Asp
30	Leu 145	Lys	Ser	Met	Ala	Leu 150	Ser	Gln	Gln	Asn	Met 155	Asp	Ile	Glu	Leu	Ser 160
					Ser 165					170				-	175	
35				180	Asn				185		•			190		
4 0	Arg	Pro	Ser 195	Gly	Ala	Thr	Pro	Tyr 200	His	Asp	Ala	Tyr	Glu 205	Asn	Val	Arg
	Glu	Val 210	Ile	Gln	Leu	Gin	Asp 215	Pro	Gly	Leu	Glu	Gln 220	Leu	Asn	Ala	Ser
45	225				Gly	230					235					240
	Ala	Ser	Ile	Ser	Pro 245	Glu	Leu	Phe	Asn	11e 250	Leu	Thr	Glu	Glu	11e 255	Thr
50	Glu	Gly	Asn	Ala 260	Glu	Glu	Leu	Tyr	Lys 265	Lys	Asn	Phe	Gly	Asn 270	Ile	Glu
55	Pro	Ala	Ser 275	Leu	Ala	Met	Pro	Glu 280	Tyr	Leu	Lys	Arg	Tyr 285	Tyr	Asn	Leu
	Ser	Asp 290	Glu	Glu	Leu	Ser	Gln 295	Phe	Ile	Gly	Lys	Ala 300	Ser	Asn	Phe	Gly
50	Gln 305	Gln	Glu	Tyr	Ser	Asn 310	Asn	Gln	Leu	Ile	Thr 315	Pro	Val	Val	Asn	Ser 320
	Ser	Asp	Gly	Thr	Val 325	Lys	Val	Tyr	Arg	Ile 330	Thr	Arg	Glu	Tyr	Thr 335	Thr
65	Asn	Ala	Tyr	Gln 340	Met	Asp	Val	Glu	Leu 345	Phe	Pro	Phe	Gly	Gly 350	Glu	Asn
70		,	355	_	Tyr			360			-		365			
	Ser	Ile	Lys	Leu	Asn	Asp	Lys	Arg		Leu 95-	Val	Arg	Thr	Glu	Gly	Ala

		370					375					30				
_	Pro 385	Gln	Val	Asn	Ile	Glu 390	Tyr	Ser	Ala	Asn	Ile 395	Thr	Leu	Asn	Thr	Ala 400
5	ąs£	Ile	Ser	Gln	Pro 105	Phe	Glu	Ile	Gly	Leu 410	Thr	Arg	Val	Leu	Pro 415	Ser
10	Gly	Ser	Trp	Ala 420	Tyr	Ala	Ala	Ala	Lys 425	Phe	Thr	Val	Glu	Glu 430	T/r	Asn
	Gln	Tyr	Ser 435	Phe	Leu	Leu	Lys	Leu 440	Asn	Lys	Ala	Ile	Arg 445	Leu	ser	Arg
15	Ala	Thr 450	Glu	Leu	Ser	Pro	Thr 455	Ile	Leu	Glu	Gly	Ile 460	Val	Arg	ser	Val
20	Asn 465	Leu	Gln	Leu	Asp	Ile 470	Asn	Thr	Asp	Val	Leu 475	Gly	Lys	Val	Phe	Leu 430
20	Thr	Lys	Tyr	Tyr	Met 485	Gln	Arg	Tyr	Ala	Ile 490	His	Ala	Glu	Thr	Ala 495	Leu
25				500	Ala				505					510		
			515		Arg			520					525			
30		530			Asp		535					540				
35	545				Thr	550					כככ					300
33					Leu 565					5/0					,,,	
40				580	Asn				585					390		
			595		Ile			600					603			
45		610			Gly		615					620				
50	625				Thr	630					635					040
50					645					650					0,5,5	Ser
55				660					665					0,0		Asp
			675					680					00)			Leu
60		690)				695	•				700	,			Ser
65	705					710					/12	•				Pro 720
.,,					725					/ 3 (,				, , ,	
70	Lys	Туг	Thr	740	Gly	Ser	Ser	Glu	745	Val	Glu	Thr	Glr	750	His	Ile

-196-

	∵al	Gln	Tyr 755	cys	Gln	Ala	Leu	Ala ~60	Gln	Leu	Glu	Met	Val 765	T;r	His	Ser
5	Thr	Gly 770	Ile	Asn	Glu	Asn	Ala 775	Phe	Arg	Leu	Phe	Val 780	Thr	Lys	Pro	Glu
	Met 785	Phe	Gly	Ala	Ala	Thr 790	Gly	Ala	Ala	Pro	Ala 795	His	Asp	Ala	Leu	Ser 800
10	Leu	Ile	Met	Leu	Thr 305	Arg	Phe	Ala	Asp	Trp 310	Val	Asn	Ala	Leu	Gl; 815	Glu
15	Lys	Ala	Ser	Ser 820	Val	Leu	Ala	Ala	Phe 825	Glu	Ala	Asn	Ser	Leu 330	Thr	Ala
()	Glu	Gln	Leu 835	Ala	Asp	Ala	Met	Asn 840	Leu	Asp	Ala	Asn	Leu 845	Leu	Leu	Gln
20	Ala	Ser 850	Ile	Gln	Ala	Gln	Asn 855	His	Gln	His	Leu	Pro 860	Pro	Val	Thr	Pro
	Glu 865	Asn	Ala	Phe	Ser	Cys 870	Trp	Thr	Ser	Ile	Asn 875	Thr	Ile	Leu	Gln	Trp 380
25	Val	Asn	Val	Ala	Gln 885	Gln	Leu	Asn	Val	Ala 890	Pro	Gln	Gly	Val	Ser 895	Ala
30	Leu	Val	Gly	Leu 900	Asp	Tyr	Ile	Gln	Ser 905	Met	Lys	Glu	Thr	Pro 910	Thr	Tyr
50	Ala	Gln	Trp 915	Glu	Asn	Ala	Ala	Gly 920	Val	Leu	Thr	Ala	Gly 925	Leu	Asn	Ser
35	Gln	Gln 930	Ala	Asn	Thr	Leu	His 935	Ala	Phe	Leu	Asp	Glu 9 40	Ser	Arg	Ser	Ala
	Ala 9 45	Ləu	Ser	Thr	Tyr	Tyr 950	Ile	Arg	Gln	Val	Ala 955	Lys	Ala	Ala	Ala	Ala 960
40	Ile	Lys	Ser	Arg	Asp 965	Asp	Leu	Tyr	Gln	Tyr 970	Leu	Leu	Ile	Asp	Asn 975	Gln
4 5	Val	Ser	Ala	Ala 980	Ile	Lys	Thr	Thr	Arg 985	Ile	Ala	Glu	Ala	11e 990	Ala	Ser
	Ile	Gln	Leu 995	Tyr	Val	Asn	Arg	Ala 1000		Glu	Asn	Val	Glu 1005		Asn	Ala
50	Asn	Ser 1010	Gly)	Val	Ile	Ser	Arg 1015		Phe	Phe	Ile	Asp 1020		Asp	Lys	Tyr
	Asn 1025		Arg	Tyr				Ala			Ser 1035		Leu	Val	-	Tyr 1040
55	Pro	Glu	Asn	Tyr	Ile 1045	•	Pro	Thr	Met	Arg 1050		Gly	Gln	Thr	Lys 1055	
50	Met	Asp	Ala	Leu 1060		Gln	Ser	Val	Ser 1065		Ser	Gln	Leu	Asn 1070		Ąsρ
χ,	Thr	Val	Glu 1075		Ala	Phe	Met	Ser 1080	_	Leu	Thr	Ser	Phe 1085		Gln	Val
55	Ala	Asn 1090	Leu)	Lys	Val	Ile	Ser 1095		Tyr	His	Asp	Asn 1100		Asn	Asn	Asp
	Gln 1105		Leu	Thr	Tyr	Phe 1110		Gly	Leu	Ser	Glu 1115		Asp	Ala	Gly	Glu 1120
70	Tyr	Tyr	Trp	Arg	Ser 1125		Asp	His	Ser	Lys 1130		Asn	Asp	Gly	Lys	

-197-

	Ala	Ala	Asn	Ala 1140	Trp	Ser	Glu	Trp	His 1145	Lys	Ile	ysb	C;; s	Pro 1150	Ile	Asn
5	Pro	Tyr	Lys 1155		Thr	Ile	Arg	Pro 1160	Val	Ile	T/T	Lys	Ser 1165	Arg	Leu	Tyr
10	Leu	Leu 1170		Leu	Glu	Gln	Lys 1175	Glu	Ile	Thr	Lys	Gln 1180	Thr	Gly	Asn	Ser
10	Lys 1139		Gly	Туr	Gln	Thr 1190	Glu)	Thr	Asp	Tyr	Arg 1195	Tyr	Glu	Leu	Lys	Leu 1200
15	Ala	His	Ile	Arg	Tyr 1205		Gly	Thr	Trp	Asn 1210	Thr	Pro	Ile	Thr	Phe 1215	Asp
	Val	Asn	Lys	Lys 1220		Ser	Glu	Leu	Lys 1225	Leu	Glu	Ĺys	Asn	Arg 1230	Ala	Pro
20	Gly	Leu	Tyr 1235		Ala	Gly	Tyr	Gln 1240	Gly	Glu	Asp	Thr	Leu 12 4 5	Leu	Val	Met
25	Phe	Tyr 1250		Gln	Gln	Asp	Thr 1255	Leu	Asp	Ser	Tyr	Lys 1260	Asn	Ala	Ser	Met
<u> </u>	Gln 1265		Leu	Тут	Ile	Phe 1270	Ala)	Asp	Met	Ala	Ser 1275	Lys	Asp	Met	Thr	Pro 1280
30	Glu	Gln	Ser	Asn	Val 1285		Arg	Asp	Asn	Ser 1290	Tyr)	Gln	Gln	Phe	Asp 1295	Thr
	Asn	Asn	Val	Arg 1300		Val	Asn	Asn	Arg 1305	Tyr	Ala	Glu	Asp	Tyr 1310	Glu)	Ile
35	Pro	Ser	Ser 1319		Ser	Ser	Arg	Lys 1320		Tyr	Gly	Trp	Gly 1325	Asp	Tyr	Tyr
40	Leu	Ser 1330	Met)	Val	Tyr	Asn	Gly 1335		Ile	Pro	Thr	Ile 1340	Asn)	Tyr	Ĺys	Ala
40	Ala 1345		Ser	Asp	Leu	Lys 1350	Ile	Tyr	lle	Ser	Pro 1355	Lys	Leu	Arg	Ile	Ile 1360
45	His	Asn	Gly	Tyr	Glu 1365		Gln	Lys	Arg	Asn 1370	Gln)	Суѕ	Asn	Leu	Met 137	Asn
	Lys	Tyr	Gly	Lys 1380	Leu)	Gly	Asp	Lys	Phe 1389	Ile	Val	Tyr	Thr	Ser 1390	Leu)	Gly
50	Val	Asn	Pro 1399		Asn	Ser	Ser	Asn 1400	Lys)	Leu	Met	Phe	Tyr 140	Pro	Val	Tyr
55	Gln	Tyr 141		Gly	Asn	Thr	Ser 141		Leu	Asn	Gln	Gly 1420	Arg)	Leu	Leu	Phe
33	His 1429		Asp	Thr	Thr	Tyr 143		Ser	Lys	Val	Glu 1435	Ala	Trp	Ile	Pro	Gly 1440
60	Ala	Lys	Arg	Ser	Leu 144		Asn	Gln	Asn	Ala 1450	Ala O	Ile	Gly	Asp	Asp 145	Tyr 5
	Ala	Thr	Asp	Ser 146		Asn	Lys	Pro	Asp 1465	Asp	Leu	Lys	Gln	Tyr 1470	lle	Phe
65	Met	Thr	Asp 147	Ser 5	Lys	Gly	Thr	Ala 148	Thr	Asp	Val	Ser	Gly 148	Pro 5	Val	Glu
70	Ile	Asn 149		Ala	Ile	Ser	Pro 149	Ala 5	Lys	Val	Gln	11e 150	Ile	Val	Lys	Ala
,,,	Gly	Gly	Lys	Glu	Gln	Thr	Phe	Thr		Asp 98-	Lys	Asp	Val	Ser	Ile	Gln

	1503	5				1510)				1519	5				1520
5	Pro	ser	Pro	Ser	Phe 1529		Glu	Mer	Asn	T/r 1530		₽h∋	Asn	Ala	Leu 1535	
,	Ile	Asp	Gly	Ser 1540		Leu	λsn	Phe	Ile 1545		λsn	Ser	Ala	Ser 1550		Asp
10	∵al	Thr	Phe 1555		Ala	Phe	Ala	Glu 1560		GĮĄ	Arg	Lys	Leu 1565	-	Tyr	Glu
	Ser	Fhe 1570	3∈r)	Ile	Pro	Val	Thr 1575		Lys	Val	Ser	Thr 1580		Asn	Ala	Leu
15	Thr 1585		His	His	Asn	Glu 1590		Gly	Ala	Gln	T;r 1595		Gln	Trp	Gln	Ser 1600
20	T ₂ 'r	Arg	Thr	Arg	Leu 1605		Thr	Leu	Phe	Ala 1610		Gln	Leu	Val	Ala 1615	
-	Ala	Thr	Thr	Gly 1620		Asp	Thr	Ile	Leu 1625		Met	Glu	Thr	Gln 1630		Ile
25	Gln	Glu	Pro 1635		Leu	Gly	Lys	Gly 1640		Tyr	Ala	Thr	Phe 1645		Ile	Pro
	Pro	T;r 1650) Asn	Leu	Ser	Thr	His 1655		Asp	Glu	Arg	Trp 1660		Lys	Leu	Tyr
3()	11e 1665		His	Val	Val	Asp 1670		Asn	Ser		11e 675	Ile	Tyr	Ser	Gly	Gln 1680
35	Leu	Thr	Asp	Thr	Asn 1685		Asn	Ile	Thr	Leu 1690		Ile	Pro	Leu	Asp 1695	
	Val	Pro	Leu	Asn 1700		Asp	Tyr	His	Ala 1705		Val	Tyr	Met	Thr 1710		Lys
4 0	Lys	Ser	Pro 1715		Asp	Gly	Thr	Trp 1720		Gly	Pro	His	Phe 1725		Arg	Asp
	Asp	Lys 1730	Gly	Ile	Val	Thr	Ile 1735		Pro	Lys	Ser	Ile 1740		Thr	His	Phe
15	Glu 1745		Val	Asn	Val	Leu 1750		Asn	Ile	Ser	Ser 1755		Pro	Met	Asp	Phe 1760
50	Ser	Gly	Ala	Asn	ser 1765		Tyr	Phe	Trp	Glu 17 7 0		Phe	Tyr	Tyr	Thr 1775	
			Val	1780	1				1785	5				1790)	
55	λsπ	Arg	Trp 1795		Lys	Tyr	Val	Trp 1800		Pro	Ser	Gly	Tyr 1809		Val	His
	Gly	Gln 1810	Ile	Gln	Asn	Tyr	Gln 1815		Asn	Val	Arg	Pro 1820		Leu	Glu	Asp
50	1825	;				1830	l		_		1835	5				Val 1340
55			His		1845	•				1850)				1855	•
			Leu	1860	ı				1865	5				1870)	
70	Arg	Asp	Thr 1875		Asn	Glu	Ala	Lys 1880		Trp	Tyr	Met	Gln 1885		Leu	His

															-	
	Leu	1390 Leu	Gly)	Asp		Pro	T/r 1895		Pro	Leu	Ser	Thr 1900		p	Ser	Asp
5	Pro 1905		Leu	Asp	Arg	21a 1910		Asp	Ile	Thr	Thr 1915	Gln	Asn	Ala	His	Asp 1920
	Ser	Ala	Ile	Val	Ala 1925		Arg	Gln	Asn	Ile 1930		Thr	Pro	Ala	Pro 1935	Leu
10	Ser	Leu	Arg	Ser 1940		Asn	Thr	Leu	Thr 1945		Leu	Phe	Leu	Pro 1950		Ile
15	Asn	Glu	Val 1955		Met	Asn	Tyr	Trp 1960		Thr	Leu	Ala	Gln 1965	Arg	Val	Tyr
כו	λsn	Leu 1970	Arg)	His	Asn	Leu	Ser 1975		Asp	Gly	Gln	Pro 1980		Tyr	Leu	Pro
20	Ile 1985		Ala	Thr	Pro	Ala 1990		Pro	Lys	Ala	Leu 1995		Ser	Ala	Ala	Val 2000
	Ala	Thr	Ser	Gln	Gly 2005		Gly	Lys	Leu	Pro 2010		Ser	Phe	Met	Ser 2015	
25	Trp	Arg	Phe	Pro 2020		Met	Leu	Glu	Asn 2025		Arg	Gly	Met	Val 2030		Gln
30	Leu	Thr	Gln 2035		Gly	Ser	Thr	Leu 2040		Asn	Ile	Ile	Glu 2045	Arg	Gln	Asp
30	Ala	Glu 2050	Ala	Leu	Asn	Ala	Leu 2055		Gln	Asn	Gln	Ala 2060		Glu	Leu	Ile
35	Leu 2065		Asn	Leu	Ser	Ile 2070		Asp	Lys	Thr	Ile 2075	Glu	Glu	Leu	Asp	Ala 2080
	Glu	Lys	Thr	Val	Leu 2085		Lys	ser	Lys	Ala 2090		Ala	Gln	Ser	Arg 2095	Phe
40	Asp	Ser	Tyr	Gly 2100		Leu	Tyr	Asp	Glu 2105	Asn	Ile	Asn	Ala	Gly 2110	Glu)	Asn
45	Gln	Ala	Met 2115		Leu	Arg	Ala	Ser 2120	Ala)	Ala	Gly	Leu	Thr 2125	Thr	Ala	Val
+3	Gln	Ala 2130	Ser	Arg	Leu	Ala	Gly 2135		Ala	Ala	Asp	Leu 2140		Pro	Asn	Ile
50	Phe 2145		Phe	Ala	Gly	Gly 2150		Ser	Arg	Trp	Gly 2155		Ile	Ala	Glu	Ala 2160
	Thr	Gly	Туr	Val	Met 2165	Glu	Phe	ser	Ala	Asn 2170	Val	Met	Asn	Thr	Glu 2175	Ala
55	λsp	Lys	Ile	Ser 2180		Ser	Glu	Thr	Tyr 2185	Arg 5	Arg	Arg	Arg	Gln 2190	Glu)	Trp
60	Glu	Ile	Gln 2195		Asn	Asn	Ala	Glu 2200		Glu	Leu	Lys	Gln 2205	Ile	Asp	Ala
1117	Gln	Leu 2210	Lys)	Ser	Leu	Ala	Val 2215		Arg	Glu	Ala	Ala 2220	Val	Leu	Gln	Lys
65	Thr 2225		Leu	Lys	Thr	Gln 2230		Glu	Gln	Thr	Gln 2235	Ser	Gln	Leu	Ala	Phe 2240
	Leu	Gln	Arg	Lys	Phe 2245		Asn	Gln	Ala	Leu 2250	Tyr)	Asn	Trp	Leu	Arg 2255	Gly

-200-

Arg Leu Ala Ala Ile Tyr Phe Gln Phe Tyr Asp Leu Ala Val Ala Arg 2260 2265 2270

70

	Cys	Leu	Met 227	Ala 5	Glu	Gln	Ala	Tyr 228	Arg 0	Trp	Glu	Leu	Asn 228		Asp	Ser	
5	Ala	Arg 229	Phe 0	Ile	Lys	Pro	Gly 229	Ala 5	Trp	Gln	Gly	Thr 230		Ala	Gly	Leu	
10	Leu 230	Ala 5	Gly	Glu	Thr	Leu 231	Met 0	Leu	Ser	Leu	Ala 2319		Met	Glu	Asp	Ala 2320	
•••	His	Leu	Lys	Arg	Asp 2329	Lys 5	Àrg	Ala	Leu	Glu 2330		Glu	Arg	Thr	Val 2339		
15	Leu	Ala	Glu	Val 2340	Tyr	Ala	Gly	Leu	Pro 2345		Asp	Asn	Gly	Pro 2350		Ser	
	Leu	Ala	Gln 235	Glu 5	Ile	Asp	Lys	Leu 2360		Ser	Gln	Gly	Ser 2365		Ser	Ala	
20	Gly	Ser 237	Gly 0	Asn	Asn	Asn	Leu 2375	Ala	Phe	Gly	Ala	Gly 2380		Asp	Thr	Lys	
25	Thr 238	Ser 5	Leu	Gln	Ala	Ser 2390	Val	Ser	Phe	Ala	Asp 2395	Leu	Lys	Ile	Arg	Glu 2 4 00	
	Asp	Tyr	Pro	Ala	Ser 2405	Leu	Gly	Lys	Ile	Arg 2410		Ile	Lys	Gln	Ile 2415		
30	Val	Thr	Leu	Pro 2420	Ala)	Leu	Leu	Gly	Pro 2425		Gln	Ąsp	Val	Gln 2430		Ile	
	Leu	Ser	Tyr 2439	Gly 5	Asp	Lys	Ala	Gly 2440		Ala	Asn	Gly	Cys 2 44 5		Ala	Leu	
35	Ala	Val 2450	Ser	His	Gly	Met	Asn 2455		Ser	Gly	Gln	Phe 2460		Leu	Asp	Phe	
4 0	Asn 2465	Asp	Gly	Lys	Phe	Leu 2470		Phe	Glu	Gly	Ile 2475		Ile	Asp	Gln	Gly 2480	
•0	Thr	Leu	Thr	Leu	Ser 2485	Phe	Pro	Asn	Ala	Ser 2490		Pro	Glu	Lys	Gly 2495		
15	Gln	Ala	Thr	Met 2500		Lys	Thr	Leu	Asn ²		Ile	Ile	Leu	His 2510		Arg	
	Tyr	Thr	Ile	Lys 2516	5												
50																	
	(2)			MATI J OB 2	JENC: (A)	E CH	ARA(LEN(CTER GTH:	IST 55	CS:	base		irs				
55					(B) (C) (D)			ANDE	DNES	SS:	ació doub ar						
		()	ii)	MOL	.ECUI	LE I	YPE	: D	NA (gen	omic	:)					
50		()	(i)	SEC	UEN	CE D	ESCI	RIPT	ION:	SE	Q ID	00	: 48	(tcc	iAii	coding	region,
55	CTG Leu l	ATA Ile	GGC Gly	TAT Tyr	AAC Asn 5	AAT Asn	CAA Gln	TTT Phe	AGC Ser	GGT Gly 10	AGA Arg	GCC Ala	AGT Ser	CAA Gln	TAT Tyr 15	GTT 48 Val	
				ACC Thr 20												ACT 96 Thr	

5	CTT Leu								144
J	CTG Leu 50								192
10	AAT Asn								240
15	TTG Leu								288
20	ATG Met								336
25	GAT Asp								384
	CTT Leu 130								432
30	GCC Ala								480
35	ATT Ile								528
40	AAA Lys								57á
45	CTT Leu								624
43	GGT Gly 210								672
50	ATT Ile								720
55	ATC Ile								768
60	TTT Phe								816
65	TTT Phe								864
113	CTT Leu 290								912
70	AAT Asn								960

-202-

	305					310					315					320	
5		CTG Leu															1003
		TTT Phe															1056
10		AAG Lys															1104
15		GAA Glu 370															1152
20		GTA Val															1200
25		ATT Ile															1248
30		CGT Arg															1296
30		CCA Pro															1344
35		TTA Leu 450															1392
40		GCA Ala															1440
45		GAC Asp															1488
50		TCC Ser															1536
30		ATT Ile															1584
55	ACT Thr	AAT Asn 530	TTA Leu	TCC Ser	GCT Ala	ATC Ile	AGT Ser 535	GAT Asp	AAG Lys	CAA Gln	TTG Leu	GCT Ala 540	ACC Thr	CTG Leu	ATC Ile	AGA Arg	1632
60		CTC Leu															1680
65	TTC Phe	CAG Gln	CTA Leu	TTT Phe	ATC Ile 565	ATG Met	ACC Thr	TCC Ser	ACC Thr	AGC Ser 570	TAT Tyr	AAC Asn	AAA Lys	ACG Thr	CTA Leu 575	ACG Thr	1728
70	CCT Pro	GAA Glu	ATT Ile	AAG Lys 580	AAT Asn	MG Leu	CTG Leu	GAT Asp	ACC Thr 585	GTC Val	TAC Tyr	CAC H1s	GGT Gly	TTA Leu 590	CAA Gln	GGT Gly	1776
W	TTT	GAT	AAA	GAC	AAA	GCA	gat	TTG		CAT 03-	GTC	atg	GCG	ccc	TAT	ATT	1324

	Pt.e	Asp	Lys 595	-	Lys	Ala	Asp	Leu ŏŏō	Leu	His	∵al	Met	Ala 605	Pro	Tyr	īle	
5	GCG Ala	GCC Ala 610	ACC Thr	TTG Leu	CAA Gln	TTA Leu	TCA Ser 615	TCG 3er	GAA Glu	AAT Asn	GTC Val	GCC Ala 620	CAC His	TCG Ser	GTA Val	CTC Leu	1372
10		TGG Trp															1920
15		TTC Phe															1963
15		GTA Val															2016
20		TTG Leu															2064
25		CTA Leu 690															2112
30		CCC Pro															2160
35		TGG Trp															2208
<i>J J</i>		GAA Glu															2256
40		GAT Asp															2304
45		CAT His 770															2352
50		ATC Ile															2400
5 5		GCC Ala															2448
33		ATG Met															2496
60		TTA Leu															2544
65		CTG Leu 350															2592
70		GTC Val															2640

	CAA Gln	TAC Tyr	TTA Leu	CTG Leu	ATT 11= 385	GAT Asp	AAT Asn	CAG Gln	GTT Val	TCT Ser 390	GCG Ala	GCA Ala	ATA Ile	AAA Lys	ACC Thr a95	ADD Thr	2688
5				GAA Glu 900													2736
10				GTG Val													2784
15	TTC Phe	TTT Phe 930	ATC Ile	GAC Asp	TGG Trp	GAC Asp	AAA Lys 935	TAC Tyr	AAT Asn	AAA Lys	Arg	TAC Tyr 940	AGC Ser	ACT Thr	TGG Trp	GCG Ala	2832
20	GGT Gly 945	GTT Val	TCT Ser	CAA Gln	TTA Leu	GTT Val 950	TAC Tyr	TAC Tyr	CCG Pro	GAA Glu	AAC Asn 955	TAT Tyr	ATT Ile	GAT Asp	CCG Pro	ACC Thr 960	2980
	ATG Mec	CGT Arg	ATC Ile	GGA Gly	CAA Gln 965	ACC Thr	AAA Lys	ATG Met	ATG Met	GAC Asp 970	GCA Ala	TTA Leu	CTG Leu	CAA Gln	TCC Ser 975	GTC Val	2928
25	AGC Ser	CAA Gin	AGC Ser	CAA Gln 980	TTA Leu	AAC Asn	GCC Ala	GAT Asp	ACC Thr 985	GTC Val	GAA Glu	GAT Asp	GCC Ala	TTT Phe 990	ATG Met	TCT Ser	2976
30	TAT Tyr	CTG Leu	ACA Thr 995	TCG Ser	TTT Phe	GAA Glu	CAA Gln	GTG Val 1000	Ala	AAT Asn	CTT Leu	AAA Lys	GTT Val 1005	Ile	AGC Ser	GCA Ala	3024
35			Asp	AAT Asn				Asp					Tyr				3072
40		Ser		ACT Thr			Gly					Arg					3120
				AAC Asn		Gly									Glu	Trp	3168
45										1050)				1055	•	
			АТТ	GAT Asp 1060	Cys					TAT Tyr	AAA				CGT Arg	CCA	3216
50	His	Lys ATA Ile	ATT Ile TAT Tyr	Asp 1060	Cys) TCC Ser	Pro CGC Arg	Ile CTG Leu	Asn TAT Tyr	Pro 1065 CTG Leu	TAT Tyr CTC Leu	AAA Lys TGG Trp	Ser TTG Leu	Thr GAA Glu	Ile 1070 CAA Gln	CGT Arg)	CCA Pro	3216 3264
_	HIS GTG Val	Lys ATA Ile	ATT Ile TAT Tyr 1075	Asp 1060 AAA Lys	Cys) TCC Ser ACA	Pro CGC Arg	Ile CTG Leu AAT	TAT Tyr 1080 AGT Ser	Pro 1065 CTG Leu	TAT Tyr CTC Leu	AAA Lys TGG Trp	TTG Leu TAT	GAA Glu 1085 CAA Gln	CAA Gln ACT	CGT Arg) AAG Lys	CCA Pro GAG Glu ACG	
50	GTG Val ATC Ile	ATA Ile ACC Thr 1090	ATT Ile TAT Tyr 1075 AAA Lys	ASP 1060 AAA Lys CAG Gln	Cys) TCC Ser ACA Thr	Pro CGC Arg GGA Gly CTA	CTG Leu AAT ASN 1095	TAT Tyr 1080 AGT Ser	Pro 1065 CTG Leu AAA Lys	TAT Tyr CTC Leu GAT Asp	AAA Lys TGG Trp GGC Gly	TTG Leu TAT Tyr 1100 CGC Arg	GAA Glu 1085 CAA Gln	CAA Gln ACT Thr	CGT Arg) AAG Lys GAA Glu	CCA Pro GAG Glu ACG Thr	3264 3312 3360
50	His GTG Val ATC Ile GAT Asp 1105	ATA Ile ACC Thr 1090 TAT Tyr	TAT Tyr 1075 AAA Lys CGT ACG	ASP 1060 AAA Lys CAG Gln TAT Tyr	TCC Ser ACA Thr GAA Glu	CGC Arg GGA Gly CTA Leu 1110 ACC Thr	CTG Leu AAT Asn 1095 AAA Lys	TAT TYT 1080 AGT Ser TTG Leu	Pro 1065 CTG Leu AAA Lys GCG Ala	TAT Tyr CTC Leu GAT ASP CAT His	AAA Lys TGG Trp GGC Gly ATC Ile Ills AAA Lys	TTG Leu TAT Tyr 1100 CGC Arg	GAA Glu 1085 CAA Gln TAT Tyr	CAA Gln ACT Thr GAT Asp	AAG Lys GAA Glu GGC Gly	GAG Glu ACG Thr ACT Thr 1120 CTA Leu	3264 3312 3360
50	GTG Val ATC Ile GAT Asp 1105 TGG Trp	ATA 11e ACC Thr 1090 TAT Tyr AAT ASD	TAT Tyr 1075 AAA Lys CGT Arg ACG Thr	AAA Lys CAG Gln TAT Tyr	TCC Ser ACA Thr GAA Glu ATC Ile 1125	CGC Arg GGA Gly CTA Leu 1110 ACC Thr	CTG Leu AAT ASN 1095 AAA Lys TTT Phe	TAT Tyr 1080 AGT Ser TTG Leu GAT Asp	Pro 1065 CTG Leu AAA Lys GCG Ala GTC Val	TAT Tyr CTC Leu GAT Asp CAT His AAT Asn 1130 CTC Leu	TGG Trp GGC Gly ATC Ile 1115 AAA Lys	TTC Leu TAT TYT 1100 CGC Arg AAA Lys	GAA Glu 1085 CAA Gln TAT Tyr	CAA GIN ACT Thr GAT Asp	AAG Lys GAA Glu GGC Gly GAG Glu 113	GAG GAG Glu ACG Thr ACT Thr 1120 CTA Leu 5	3264 3312 3360

-205-

5	GAT Asp	AGT Ser 117	Tyr	AAA Lys	AAC Asn	GCT Ala	TCA Ser 1175	Met	CAA Gln	GGA Gly	CTA Leu	TAT Tyr 1180	Ile	TTT Phe	GCT Ala	GAT Asp	3552
,	ATG Met 118	Ala	TCC Ser	AAA Lys	GAT Asp	ATG Met 1190	Thr	CCA Pro	GAA Glu	CAG Gln	AGC Ser 1195	Asn	GTT Val	TAT Tyr	CGG Arg	GAT Asp 1200	3600)
10	AAT Asn	AGC Ser	TAT Tyr	CAA Gln	CAA Gln 1205	Ph€	GAT Asp	ACC Thr	AAT Asn	AAT Asn 1210	Val	AGA Arg	AGA Arg	GTG Val	AAT Asn 1215	Asn	3648
15	CGC Arg	TAT Tyr	GCA Ala	GAG Glu 1220	Asp	ТАТ Туг	GAG Glu	ATT	CCT Pro 1225	Ser	TCG Ser	GTA Val	AGT Ser	AGC Ser 1230	Arg	AAA Lys	3696
20	GAC Asp	TAT Tyr	GGT Gly 1235	Trp	GGA Gly	GAT Asp	TAT Tyr	TAC Tyr 1240	Leu	AGC Ser	ATG Met	GTA Val	TAT Tyr 1245	Asn	GGA Gly	GAT Asp	3744
25			Thr					Ala			AGT Ser		Leu				3792
_3	ATC Ile 1265	Ser	CCA Pro	AAA Lys	TTA Leu	AGA Arg 1270	Ile	ATT Ile	CAT His	AAT Asn	GGA Gly 1275	Tyr	GAA Glu	GGA Gly	CAG Gln	AAG Lys 1280	3840
30	CGC Arg	AAT Asn	CAA Gln	TGC Cys	AAT Asn 1285	Leu	ATG Met	AAT Asn	AAA Lys	TAT Tyr 1290	Gly	AAA Lys	CTA Leu	GGT Gly	GAT Asp 129	Lys	3888
35	TTT Phe	ATT Ile	GTT Val	TAT Tyr 1300	Thr	AGC Ser	TTG Leu	GGG Gly	GTC Val 1305	Asn	CCA Pro	AAT Asn	AAC Asn	TCG Ser 1310	Ser	AAT Asn	3936
40	AAG Lys	CTC Leu	ATG Met 1315	Phe	TAC Tyr	CCC Pro	GTC Val	TAT Tyr 1320	Gln	TAT Tyr	AGC Ser	GGA Gly	AAC Asn 1325	Thr	AGT Ser	GGA Gly	3984
45	CTC Leu	AAT Asn 1330	Gln	GGG Gly	AGA Arg	CTA Leu	CTA Leu 1335	Phe	CAC His	CG T Arg	GAC Asp	ACC Thr 1340	Thr	ТАТ Туг	CCA Pro	TCT Ser	4032
	AAA Lys 1345	Val	GAA Glu	GCT Ala	TGG Trp	ATT Ile 1350	Pro	GGA Gly	GCA Ala	AAA Lys	CGT Arg 1355	Ser	CTA Leu	ACC Thr	AAC Asn	CAA Gln 1360	4080
50			Ala	Ile	Gly	Asp	Asp	Tyr	Ala	Thr	GAC Asp	Ser	Leu	Asn		Pro	4128
55	GAT Asp	GAT Asp	CTT Leu	AAG Lys 1380	Gln	TAT Tyr	ATC Ile	TTT Phe	ATG Met 1385	Thr	GAC Asp	AGT Ser	AAA Lys	GGG Gly 1390	Thr	GCT Ala	4176
60	ACT Thr	GAT Asp	GTC Val 1395	Ser	GGC Gly	CCA Pro	Val	GAG Glu 400	ATT Ile	AAT Asn	ACT Thr	Ala	ATT Ile 405	TCT Ser	CCA Pro	GCA Ala	4224
65	AAA Lys	GTT Val 1410	Gln	ATA Ile	ATA Ile	GTC Val	AAA Lys 1415	Ala	GGT Gly	GGC Gly	AAG Lys	GAG Glu 1420	Gln	ACT Thr	TTT Phe	ACC Thr	4272
	GCA Ala 1425	Asp	AAA Lys	GAT Asp	GTC Val	TCC Ser 1430	Ilè	CAG Gln	CCA Pro	TCA Ser	CCT Pro 1435	Ser	TTT Phe	GAT Asp	GAA Glu	ATG Met 1440	4320
7 0	AAT Aan	TAT Tyr	CAA Gln	TTT Phe	AAT Asn	GCC Ala	CTT Leu	GAA Glu	Ile	GAC Asp 06-	GGT Gly	TCT Ser	GGT Gly	CTG Leu	AAT Asn	TTT Phe	4368

					144	5				145)				145	5	
5	ATT A	ARC .	AAC naA	TCA Sér 146	Ala	AGT Ser	ATT Ile	GAT Asp	GTT Val 146	Thr	TTT Phe	ACC Thr	GCA Ala	TTT Phe 147	Ala	GAG Glu	4416
10	GAT C	ly i	CGC Arg 1475	Lys	CTG Leu	GGT Gly	TAT Tyr	GAA Glu 1480	Ser	TTC Phe	AGT Ser	ATT Ile	CCT Pro 1485	Val	ACC Thr	CTC Leu	1161
••	AAG C Lys V 1	TA : 'al : 490	AGT Ser	ACC Thr	GAT Asp	AAT Asn	GCC Ala 1495	Leu	ACC Thr	CTG Leu	HIS	CAT H1s 1500	Asn	GAA Glu	AAT Asn	ggt Gly	4512
15	GCG C Ala G 1505	AA 1	rat Tyr	ATG Met	CAA Gln	TGG Trp 1510	Gln	TCC Ser	TAT Tyr	CGT Arg	ACC Thr 1515	Arg	CTG Leu	AAT Asn	ACT Thr	CTA Leu 1520	
20	TTT G Phe A	CC C	GC Arg	CAG Gln	TTG Leu 1525	Val	GCA Ala	CGC Arg	GCC Ala	ACC Thr 1530	Thr	GGA Gly	ATC Ile	GAT Asp	ACA Thr 1535	Ile	4608
25	CTG A Leu S	er M	1et	G1u 1540	Thr	Gln	Asn	Ile	Gln 1545	Glu	Pro	Gln	Leu	Gly 1550	Lys)	GIA	
30	TTC T Phe T	yr A 1	11a 1555	Thr	Phe	Val	Ile	Pro 1560	Pro	Tyr	Asn	Leu	Ser 1569	Thr	Hıs	Gly	
		1u A 570	arg	Trp	Phe	Lys	Leu 1575	Tyr	Ile	Lys	His	Val 1580	Val	Asp	Asn	Asn	
35	TCA C. Ser H 1585	AT A 1s I	le	ATC Ile	TAT Tyr	TCA Ser 1590	Gly	CAG Gln	CTA Leu	ACA Thr	GAT Asp 1595	Thr	AAT Asn	ATA Ile	AAC Asn	ATC Ile 1600	
40	ACA T	TA T eu P	TT he	ATT Ile	CCT Pro 1605	Leu	GAT Asp	GAT Asp	GTC Val	CCA Pro 1610	Leu	AAT Asn	CAA Gln	GAT Asp	TAT Tyr 1615	His	4848
45	GCC A	AG G ys V	al '	TAT Tyr 1620	Met	ACC Thr	TTC Phe	AAG Lys	AAA Lys 1625	Ser	CCA Pro	TCA Ser	GAT Asp	GGT Gly 1630	Thr	TGG Trp	4896
50	TGG GG Trp G	ly P	ro 635	H12	TTT Phe	GTT Val	AGA Arg	GAT Asp 1640	Asp	AAA Lys	GGA Gly	ATA Ile	GTA Val 1645	Thr	ATA Ile	AAC Asn	4944
	Pro L	AA T ys S 650	cc . er	ATT Ile	TTG Leu	ACC Thr	CAT His 1655	Phe	GAG Glu	AGC Ser	GTC Val	AAT Asn 1660	Val	CTG Leu	AAT Asn	AAT Asn	4992
55	ATT AG Ile S 1665	GT A er S	GC (GAA Glu	CCA Pro	ATG Met 1670	Asp	TTC Phe	AGC Ser	GGC Gly	GCT Ala 1675	Asn	AGC Ser	CTC Leu	TAT Tyr	TTC Phe 1680	
60	TGG G	AA C lu L	TG ' .eu	TTC Phe	TAC Tyr 1685	Tyr	ACC Thr	ccg Pro	ATG Met	CTG Leu 1690	Val	GCT Ala	CAA Gln	CGT Arg	TTG Leu 1695	Leu	5088
65	CAT G	AA C lu G	ln.	AAC Asn 1700	Phe	GAT Asp	GAA Glu	GCC Ala	AAC Asn 1705	Arg	TGG Trp	CTG Leu	AAA Lys	TAT Tyr 1710	Val	TGG Trp	5136
70	AGT C	ro s	CC (er (715	GGT Gly	TAT Tyr	ATT Ile	GTC Val	CAC H15 1720	Gly	CAG Gln	ATT Ile	CAG Gln	AAC Asn 1725	Tyr	CAG Gln	TGG Trp	5184
	AAC G	TC C	GC (ccg	TTA	CTG	gaa	GAC		agt 07-	TGG	AAC	AGT	GAT	CCT	TTG	5232

Ash Mal Arg Pro Leu Leu Glu Asp Thr Ser Trp Ash Ser Asp Pro Leu 1735 GAT TOO GTO GAT COT GAO GOG GTA GOA CAG CAC GAT COA ATG CAC TAC 5230 Asp Ser Val Asp Pro Asp Ala Val Ala Gln His Asp Pro Met His Tyr 1750 AAA GTT TCA ACT TTT ATG CGT ACC TTG GAT CTA TTG ATA GCA CGC GGC 5328 Lys Val Ser Thr Phe Met Arg Thr Leu Asp Leu Leu Ile Ala Arg Gly 10 1765 1770 GAC CAT GCT TAT CGC CAA CTG GAA CGA GAT ACA CTC AAC GAA GCG AAG 5376 Asp His Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Asn Glu Ala Lys 1785 1780 15 ATG TGG TAT ATG CAA GCG CTG CAT CTA TTA GGT GAC AAA CCT TAT CTA 5424 Met Trp Tyr Met Gln Ala Leu His Leu Leu Gly Asp Lys Pro Tyr Leu 1800 20 CCG CTG AGT ACG ACA TGG AGT GAT CCA CGA CTA GAC AGA GCC GCG GAT 5472 Pro Leu Ser Thr Trp Ser Asp Pro Arg Leu Asp Arg Ala Ala Asp 1815 1820 ATC ACT ACC CAA AAT GCT CAC GAC AGC GCA ATA GTC GCT CTG CGG CAG 5520 25 Ile Thr Thr Gln Asn Ala His Asp Ser Ala Ile Val Ala Leu Arg Gln 1830 1835 AAT ATA CCT ACA CCG GCA CCT TTA TCA Asn Ile Pro Thr Pro Ala Pro Leu Ser 30 1845 1849 (2) INFORMATION FOR SEQ ID NO:49: SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 1849 amino acids (B) TYPE: amino acids(C) STRANDEDNESS: single (D) TOPOLOGY: linear 40 MOLECULE TYPE: protein (ii) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49 (TcdAii): To Features From Description 45 1849 Peptide 1 TcdAii peptide 12 Fragment 1 S2 N-terminus (SEQ ID NO:13) 196 (SEQ ID NO:38) Fragment 211 466 475 (SEQ ID NO:17) Fragment (SEQ ID NO:23; 12/13) (SEQ ID NO:18) 993 1004 Fragment 50 Fragment 1297 1312 (SEQ ID NO:39) 1390 1409 Fragment 1532 1554 (SEQ ID NO:21; 19/23) Fragment Leu Ile Gly Tyr Asn Asn Gin Phe Ser Gly Arg Ala Ser Gin Tyr Val 55 Ala Pro Gly Thr Val Ser Ser Met Phe Ser Pro Ala Ala Tyr Leu Thr 60 Glu Leu Tyr Arg Glu Ala Arg Asn Leu His Ala Ser Asp Ser Val Tyr Tyr Leu Asp Thr Arg Arg Pro Asp Leu Lys Ser Met Ala Leu Ser Gln 65 Gin Asn Met Asp Ile Glu Leu Ser Thr Leu Ser Leu Ser Asn Glu Leu Leu Leu Glu Ser Ile Lys Thr Glu Ser Lys Leu Glu Asn Tyr Thr Lys -208-

					a5					9 0					95	
5	Val	Met	Glu	Met 100	Leu	Ser	Thr	Phe	Arg 105	Pro	Ser	Gly	Ala	Thr 110	Pro	Tyr
,	His	Asp	Ala 115	Tyr	Glu	Asn	Val	Arg 120	Glu	Val	Ile	Gln	Leu 125	Gln	Asp	Pro
10	Gly	Leu 130	Glu	Gln	Leu	Asn	Ala 135	Ser	Pro	Ala	Ile	Ala 140	Gly	Leu	Met	Hıs
	Gln 145	Ala	Ser	Leu	Leu	Gly 150	Ile	Asn	Ala	Ser	Ile 155	Ser	Pro	Glu	Leu	Phe 160
15	Asn	Ile	Leu	Thr	Glu 165	Glu	Ile	Thr	Glu	Gly 170	Asn	Ala	Glu	Glu	Leu 175	Tyr
20	Lys	Lys	Asn	Phe 180	Gly	Asn	Ile	Glu	Pro 185	Ala	Ser	Leu	Ala	Met 190	Pro	Glu
	Tyr	Leu	Lys 195	Arg	Tyr	Tyr	Asn	Leu 200	Ser	Asp	Glu	Glu	Leu 205	Ser	Gln	Phe
25		210			Ser		215					220				
	Leu 225	Ile	Thr	Pro	Val	Val 230	Asn	Ser	Ser	Asp	Gly 235	Thr	Val	Lys	Val	Tyr 240
30	Arg	Ile	Thr	Arg	Glu 245	Tyr	Thr	Thr	Asn	Ala 250	Tyr	Gln	Met	Asp	Val 255	Glu
35	Leu	Phe	Pro	Phe 260	Gly	Gly	Glu	Asn	Tyr 265	Arg	Leu	Asp	Tyr	Lys 270	Phe	Lys
	Asn	Phe	Tyr 275	Asn	Ala	Ser	Tyr	Leu 280	Ser	Ile	Lys	Leu	Asn 285	Asp	Lys	Arg
40	Glu	Leu 290	Val	Arg	Thr	Glu	Gly 295	Ala	Pro	Gln	Val	Asn 300	Ile	Glu	Tyr	Ser
	Ala 305	Asn	Ile	Thr	Leu	Asn 310	Thr	Ala	Asp	Ile	Ser 315	Gln	Pro	Phe	Glu	Ile 320
45	Gly	Leu	Thr	Arg	Val 325	Leu	Pro	Ser	Gly	Ser 330	Trp	Ala	Tyr	Ala	Ala 335	Ala
50	Lys	Phe	Thr	Val 340	Glu	Glu	Tyr	Asn	Gln 345	Tyr	Ser	Phe	Leu	Leu 350	Lys	Leu
	Asn	Lys	Ala 355	Ile	Arg	Leu	Ser	Arg 360	Ala	Thr	Glu	Leu	Ser 365	Pro	Thr	Ile
55	Leu	Glu 370	Gly	Ile	Val	Arg	Ser 375	Val	Asn	Leu	Gln	Leu 380	Asp	Ile	Asn	Thr
	Asp 385	Val	Leu	Gly	Lys	Val 390	Phe	Leu	Thr	Lys	Tyr 395	Tyr	Met	Gln	Arg	Tyr 400
60	Ala	Ile	His	Ala	Glu 405	Thr	Ala	Leu	Ile	Leu 410	Cys	Asn	Ala	Pro	Ile 415	Ser
65	Gln	Arg	Ser	Tyr 420	Asp	Asn	Gln	Pro	Ser 425	Gln	Phe	Asp	Arg	Leu 430	Phe	Asn
	Thr	Pro	Leu 435	Leu	Asn	Gly	Gln	Tyr 440	Phe	Ser	Thr	Gly	Asp 445	Glu	Glu	Ile
70	Asp	Leu 450	Asn	Ser	Gly	Ser	Thr 455	Gly	λsp	Trp	Arg	Lys 460	Thr	Ile	Leu	Lys

-209-

																., 00)
	Arg 465	Ala	Phe	As	þ	Asp 470	Asp	7al	Ser	Leu	Phe 475	λrg		Гел	Lys	190 115
5	Thr	Asp	His	Asp	Asn 485	L;; s	Asp	Gly	Lys	11e 490	L'y's	Asn	Asn	Leu	L;;s 495	Asn
	Leu	Ser	Asn	Leu 500	Tyr	Ile	Gly	L;;s	Leu 505	Leu	Ala	λsp	Ile	His 510	Gln	Leu
10	Thr	Ile	3.sp 515	Glu	Leu	λsp	Leu	Leu 520	Leu	Ile	Ala	Val	Gly 525	Glu	Gly	Lys
1.5	Thr	Asn 530	Leu	Ser	Ala	Ile	Ser 535	Asp	Lys	Gln	Leu	Ala 540	Thr	Leu	Ile	Arg
15	Lys 545	Leu	Asn	Thr	Ile	Thr 550	Ser	Trp	Leu	His	Thr 555	Gln	Lys	Trp	Ser	Val 560
20	Phe	Gln	Leu	Phe	Ile 565	Met	Thr	Ser	Thr	Ser 570	Tyr	Asn	Lys	Thr	Leu 575	Thr
	Pro	Glu	Ile	Lys 580	Asn	Leu	Leu	Asp	Thr 585	Val	Tyr	His	Gly	Leu 590	Gln	Gly
25	Phe	Asp	Lys 595	Asp	Lys	Ala	Asp	Leu 600	Leu	His	Val	Met	Ala 605	Pro	Tyr	Ile
30	Ala	Ala 610	Thr	Leu	Gln	Leu	Ser 615	Ser	Glu	Asn	Val	Ala 620	His	Ser	Val	Leu
50	Leu 625	Trp	Ala	Asp	Lys	Leu 630	Gln	Pro	Gly	Asp	Gly 635	Ala	Met	Thr	Ala	Glu 640
35	Lys	Phe	Trp	Asp	Trp 645	Leu	Asn	Thr	Lys	Tyr 650		Pro	Gly	Ser	Ser 655	Glu
	Ala	Val	Glu	Thr 660	Gln	Glu	His	Ile	Val 665	Gln	Tyr	Cys	Gln	Ala 670	Leu	Ala
40	Gln	Leu	Glu 675	Met	Val	Tyr	His	Ser 680	Thr	Gly	Ile	Asn	Glu 685	Asn	Ala	Phe
45	Arg	Leu 690	Phe	Val	Thr	Lys	Pro 695	Glu	Met	Phe	Gly	Ala 700	Ala	Thr	Gly	Ala
73	705		Ala Val			710					715					Ala 720 Ala
	wsb	110	vai	ASII	725	Ded	Gly	314	٠, ٥	730	501				735	
50	Phe	Glu	Ala	Asn 740	Ser	Leu	Thr	Ala	Glu 745	Gln	Leu	Ala	Asp	Ala 750	Met	Asn
55	Leu	Asp	Ala 755	Asn	Leu	Leu	Leu	Gln 760	Ala	Ser	Ile	Gln	Ala 765	Gln	Asn	His
	Gln	His 770	Leu	Pro	Pro	Val	Thr 775	Pro	Glu	Asn	Ala	Phe 780	Ser	Cys	Trp	Thr
60	Ser 785	Ile	Asn	Thr	Ile	Leu 790	Gln	Trp	Val	Asn	Val 795	Ala	Gln	Gln	Leu	Asn 800
65	Val	Ala	Pro	Gln	Gly 805	Val	Ser	Ala	Leu	Val 810	Gly	Leu	Asp	T ₂ 'r	Ile 815	Gln
65	Ser	Met	Lys	Glu 820	Thr	Pro	Thr	Tyr	Ala 825	Gln	Trp	Glu	Asn	Ala 830	Ala	Gly
70	7al	Leu	Thr 835	Ala	Gly	Leu	Asn	Ser 840	Gln	Gln	Ala	Asn	Thr 845	Leu	Hıs	λla

	Phe	L⊖u 350	Α	lu	3÷r	Arg	Ser 355	Ala	Ala	Leu	Ser		Tyr	Tyr	Ile	Arg
5	Gln 365	Val	Ala	Lys	Ala	Ala 870	λla	Ala	Ile	L; s	Ser 875	Arg	Asp	Asp	Leu	T;'r 330
	Gln	Tyr	Leu	Leu	Ile 885	Asp	Asn	Gln	Val	Ser 890	Ala	Ala	Ile	Lys	Thr 895	Thr
10	yrğ	Ile	Ala	Glu 900	Ala	Ile	Ala	ser	Ile 905	Gln	Leu	Tyr	7al	Asn 910	Arg	Ala
15	Leu	Glu	Asn 915	Val	Glu	Glu	Asn	Ala 920	Asn	Ser	Gly	Val	Ile 925	Ser	Arg	Gln
13	Phe	Phe 930	Ile	Asp	Trp	Asp	Lys 935	Tyr	Asn	Lys	Arg	Tyr 940	Ser	Thr	Trp	Ala
20	Gly 945	Val	Ser	Gln	Leu	Val 950	Tyr	Tyr	Pro	Glu	Asn 955	Tyr	Ile	Asp	Pro	Thr 960
	Met	Arg	Ile	Gly	Gln 965	Thr	Lys	Met	Met	Asp 970	Ala	Leu	Leu	Gln	Ser 975	Val
25	Ser	Gln	Ser	Gln 980	Leu	Asn	Ala	Asp	Thr 985	Val	Glu	Asp	Ala	Phe 990	Met	Ser
30	Tyr	Leu	Thr 995	Ser	Phe	Glu	Gln	Val 1000		Asn	Leu	Lys	Val 1005		Ser	Ala
50	Tyr	His 1010	Asp	Asn	Ile	Asn	Asn 1015		Gln	Gly	Leu	Thr 1020		Phe	Ile	Gly
35	Leu 1025	Ser	Glu	Thr	Asp	Ala 1030		Glu	Tyr	Tyr	Trp 1035		Ser	Val	Asp	His 1040
	Ser	Lys	Phe	Asn	Asp 1045		Lys	Phe	Ala	Ala 1050		Ala	Trp	Ser	Glu 1055	
40			Phe Ile		1045 Cys	5				1050 Tyr)				1055 Arg	5
4 0	His	Lys		Asp 1060 Lys	1045 Cys	Pro	Ile	Asn	Pro 1065	1050 Tyr	Lys	Ser	Thr	Ile 1070	1059 Arg	Pro
	His Val	Lys Ile	Ile Tyr 1075	Asp 1060 Lys	Cys Cys	Pro Arg	Ile Leu	Asn Tyr 1080 Ser	Pro 1065 Leu	105(Tyr Leu	Lys Trp	Ser Leu	Thr Glu 1085 Gln	Ile 1070 Gln	1059 Arg) Lys	Pro Glu
	His Val Ile	Lys Ile Thr 1090	Ile Tyr 1075	Asp 1060 Lys Gln	Cys Ser Thr	Pro Arg Gly	Ile Leu Asn 1095	Asn Tyr 1080 Ser	Pro 1065 Leu Lys	1050 Tyr Leu Asp	Lys Trp Gly	Ser Leu Tyr 1100	Thr Glu 1085 Gln	Ile 1070 Gln Thr	Lys Glu Gly	Pro Glu Thr
45	His Val Ile Asp	Lys Ile Thr 1090	Tyr 1075 Lys	Asp 1060 Lys Gln Tyr	Cys Ser Thr	Pro Arg Gly Leu 1110	Leu Asn 1095	Asn Tyr 1080 Ser Leu	Pro 1065 Leu Lys Ala	1050 Tyr Leu Asp	Lys Trp Gly Ile 1115	Ser Leu Tyr 1100	Thr Glu 1085 Gln Tyr	Ile 1070 Gln Thr	Lys Glu	Pro Glu Thr Thr 1120 Leu
45	His Val Ile Asp 1105	Lys Ile Thr 1090 Tyr	Tyr 1075 Lys	Asp 1060 Lys Gln Tyr	Cys Ser Thr Glu Ile 1125	Pro Arg Gly Leu 1110	Leu Asn 1095 Lys	Tyr 1080 Ser Leu	Pro 1065 Leu Lys Ala	Tyr Leu Asp His Asn 1130	Lys Trp Gly Ile ills	Ser Leu Tyr 1100 Arg	Thr Glu 1085 Gln Tyr	Ile 1070 Gln Thr Asp	Lys Glu Gly Glu 1135	Pro Glu Thr Thr 1120 Leu
45 50	His Val Ile Asp 1105 Trp	Lys Ile Thr 1090 Tyr Asn	Tyr 1075 Lys Arg	Asp 1060 Lys Gln Tyr Pro Lys 1140	Cys Ser Thr Glu Ile 1125	Pro Arg Gly Leu 1110 Thr	Leu Asn 1095 Lys Phe Ala	Tyr 1080 Ser Leu Asp	Pro 1065 Leu Lys Ala Val Gly 1145	Tyr Leu Asp His Asn 1130 Leu	Lys Trp Gly Ile 1115 Lys	Leu Tyr 1100 Arg Lys	Thr Glu 1085 Gln Tyr Ile	Ile 1070 Gln Thr Asp Ser Gly 1150	Lys Glu Gly Glu 1135	Pro Glu Thr Thr 1120 Leu
45 50 55	His Val Ile Asp 1105 Trp Lys	Lys Ile Thr 1090 Tyr Asn Leu Glu	Tyr 1075 Lys Arg Thr Glu Asp 1155	Asp 1060 Lys Gln Tyr Pro Lys 1140	Cys Ser Thr Glu Ile 1125 Asn	Pro Arg Gly Leu 1110 Thr	Leu Asn 1099 Lys Phe Ala	Asn Tyr 1080 Ser Leu Asp Pro Met 1160	Pro 1065 Leu Lys Ala Val Gly 1145 Phe	Tyr Leu Asp His Asn 1130 Leu	Lys Trp Gly Ile Ills Lys Tyr	Leu Tyr 1100 Arg Cys Cys	Thr Glu 1085 Gln Tyr Ile Ala Gln 1165	Ile 1070 Gln Thr Asp Ser Gly 1150	Lys Glu Gly Clu 1135 Tyr	Pro Glu Thr Thr 1120 Leu Gln Leu
45 50 55	His Val Ile Asp 1105 Trp Lys Gly Asp	Lys Ile Thr 1090 Tyr Asn Leu Glu Ser 1170	Tyr 1075 Lys Arg Thr Glu Asp 1155	Asp 1060 Lys Gln Tyr Pro Lys 1140 Thr	Cys Ser Thr Glu Ile 1125 Asn Leu Asn	Pro Arg Gly Leu 1110 Thr Arg Leu Ala	Leu Asn 1099 Lys Phe Ala Val Ser 1175	Asn Tyr 1080 Ser Leu Asp Pro Met 1160	Pro 1065 Leu Lys Ala Val Gly 1145 Phe	Tyr Leu Asp His Asn 1130 Leu Tyr	Lys Trp Gly Ile 1115 Lys Tyr Asn	Leu Tyr 1100 Arg Lys Cys Gln Tyr 1180 Asn	Thr Glu 1085 Gln Tyr Ile Ala Gln 1165	Ile 1070 Gln Thr Asp Ser Gly 1150 Asp	Lys Glu Gly Tyr Thr	Pro Glu Thr Thr 1120 Leu Gln Leu Asp
45 50 55	His Val Ile Asp Il05 Trp Lys Gly Asp	Lys Ile Thr 1090 Tyr Asn Leu Glu Ser 1170	Tyr 1075 Lys Arg Thr Glu Asp 1155	Asp 1060 Lys Gln Tyr Pro Lys 1140 Thr	Cys Ser Thr Glu Ile 1125 Asn Leu Asn	Pro Arg Gly Leu 1110 Thr Arg Leu Ala Met 1190 Phe	Leu Asn 1099 Lys Phe Ala Val Ser 1175	Asn Tyr 1080 Ser Leu Asp Pro Met 1160 Met	Pro 1065 Leu Lys Ala Val Gly 1145 Phe	Leu Asp His Asn 1130 Leu Tyr	Lys Trp Gly Ile ills Lys Tyr Asn Leu Ser ill95 Val	Lys Cys Gln Tyr 1180	Thr Glu 1085 Gln Tyr Ile Ala Gln 1165 Ile	Ile 1070 Gln Thr Asp Ser Gly 1150 Asp	Lys Glu Gly Tyr Thr Ala Arg	Pro Glu Thr Thr 1120 Leu Gln Leu Asp Asp 1200 Asn

	Asp Tir	Gly 123		17	Asp	Tyr	T.r 124		Ser	Met	7al	124		Gly	Asp
5	Ile Pro 125		Ile	Asn	Tyr	Lys 125		Ala	Ser	Ser	Asp 126		Lys	Ile	Tyr
10	Ile Ser 1265	Pro	Lys	Leu	Arg 127		Ile	His	Asn	Gly 127		Glu	Gly	Gln	Lys 1230
10	Arg Asn	Gln	Cys	Asn 128		Met	Asn	s'زل	T;'r 129		Lys	Leu	Gly	Asp 12	
15	Phe Ile	Val	T; r 1300		Ser	Leu	Gly	Val 130		Pro	Asn	Asn	Ser 131		Asn
	Lys Leu	Met 1319		Tyr	Pro	Val	Tyr 132		Tyr	Ser	Gly	Asn 132		Ser	Gly
20	Leu Asn 133		Gly	Arg	Leu	Leu 133		His	Arg	Asp	Thr 1340		Tyr	Pro	Ser
25	Lys Val 1345	Glu	Ala	Trp	Ile 1350		Gly	Ala	Lys	Arg 1359		Leu	Thr	Asn	Gln 1360
20	Asn Ala	Ala	Ile	Gly 1365		Asp	Tyr	Ala	Thr 1370		Ser	Leu	Asn	Lys 1375	
30	Asp Asp	Leu	Lys 1380		Tyr	Ile	Phe	Met 1389		Аsр	Ser	Lys	Gly 139		Ala
	Thr Asp	Val 1395		Gly	Pro		Glu L400	Ile	Asn	Thr		11e 1405	Ser	Pro	Ala
35	Lys Val 1410		Ile	Ile	Val	Lys 1419		Gly	Gly	Lys	Glu 1420		Thr	Phe	Thr
40	Ala Asp 1425	Lys	Asp	Val	Ser 1430		Gln	Pro	Ser	Pro 1435		Phe	Asp	Glu	Met 1440
	Asn Tyr	Gln	Phe	Asn 1445		Leu	Glu	Ile	Asp 1450		Ser	Gly	Leu	Asn 1459	
45	Ile Asn		Ser 1460		Ser	Ile	Asp	Val 1465		Phe	Thr	Ala	Phe 1470		Glu
	Asp Gly	Arg 1475		Leu	Gly	Tyr	Glu 1480		Phe	Ser	Ile	Pro 1489		Thr	Leu
50	Lys Val 1490		Thr	Asp	Asn	Ala 1495		Thr	Leu	His	His 1500		Glu	Asn	Gly
55	Ala G i n 1505	Tyr	Met	Gln	Trp 1510		Ser	Tyr	Arg	Thr 1515		Leu	Asn	Thr	Leu 1520
	Phe Ala	Arg	Gln	Leu 1525		Ala	Arg	Ala	Thr 1530		Gly	Ile	Asp	Thr 1535	
60	Leu Ser		Glu 1540		Gln	Asn	Ile	Gln 1545		Pro	Gln	Leu	Gly 1550		Gly
	Phe Tyr	Ala 1555		Phe	Val	Ile	Pro 1560		Tyr	Asn	Leu	Ser 1565		His	Gly
65	Asp Glu 1570	Arg '	Trp	Phe		Leu 1575		Ile	Lys		Val 1580		Asp	Asn	Asn
70	Ser His 1585	Ile	Ile '		Ser 1590		Gln	Leu		Asp 1595		Asn	Ile	Asn	Ile 1600

1605 1610 1615 Ala Lys Val Tyr Met Thr Phe Lys Lys Ser Pro Ser Asp Gly Thr Trp 1625 Trp Gly Pro His Phe Val Arg Asp Asp Lys Gly Ile Val Thr Ile Asn Pro Lys Ser Ile Leu Thr His Phe Glu Ser Val Asn Val Leu Asn Asn 10 Ile Ser Ser Glu Pro Met Asp Phe Ser Gly Ala Asn Ser Leu Tyr Phe 1670 Trp Glu Leu Phe Tyr Tyr Thr Pro Met Leu Val Ala Gln Arg Leu Leu 1685 1690 1695 15 1690 His Glu Gln Asn Phe Asp Glu Ala Asn Arg Trp Leu Lys Tyr Val Trp 1705 20 Ser Pro Ser Gly Tyr Ile Val His Gly Gln Ile Gln Asn Tyr Gln Trp 1720 Asn Val Arg Pro Leu Leu Glu Asp Thr Ser Trp Asn Ser Asp Pro Leu 25 Asp Ser Val Asp Pro Asp Ala Val Ala Gln His Asp Pro Met His Tyr 1750 Lys Val Ser Thr Phe Met Arg Thr Leu Asp Leu Leu Ile Ala Arg Gly 1765 1770 1775 30 Asp His Ala Tyr Arg Gln Leu Glu Arg Asp Thr Leu Asn Glu Ala Lys 1785 35 Met Trp Tyr Met Gln Ala Leu His Leu Leu Gly Asp Lys Pro Tyr Leu 1800 Pro Leu Ser Thr Thr Trp Ser Asp Pro Arg Leu Asp Arg Ala Ala Asp 40 1815 1820 Ile Thr Thr Gln Asn Ala His Asp Ser Ala Ile Val Ala Leu Arg Gln 1825 1830 1835 1840 45 Asn Ile Pro Thr Pro Ala Pro Leu Ser (2) INFORMATION FOR SEQ ID NO:50: 50 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1740 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 55 (ii) MOLECULE TYPE: DNA (genomic) SEQUENCE DESCRIPTION: SEQ ID NO:50 (TcdAiii coding region): (xi) 60 TTG CGC AGC GCT AAT ACC CTG ACT GAT CTC TTC CTG CCG CAA ATC AAT 48 Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro Gln Ile Asn 65 GAA GTG ATG ATG AAT TAC TGG CAG ACA TTA GCT CAG AGA GTA TAC AAT 96 Glu Val Met Met Asn Tyr Trp Gln Thr Leu Ala Gln Arg Val Tyr Asn

-213-

CTG CGT CAT AAC CTC TCT ATC GAC GGC CAG CCG TTA TAT CTG CCA ATC 144

	Leu	Arg	His 35	Asn	Leu	3er	Ilē	Asp 40	Gly	Gln	Pro	Leu	T;r 45	Leu	Pro	Ile	
5	TAT Tyr	GCC Ala 50	ACA Thr	CCG Pro	GCC Ala	GAT Asp	CCG Pro 55	AAA Lys	GCG Ala	TTA Leu	CTC Lêu	AGC Ser 60	GCC Ala	GCC Ala	GTT Val	GCC Ala	192
10	ACT Thr 65	TCT Ser	CAA Gln	GGT Gly	GGA Gly	GGC Gly 70	AAG Lys	CTA Leu	CCG Pro	GAA Glu	TCA Ser 75	TTT Phe	ATG Met	TCC Ser	CTG L e u	TGG Trp 30	240
15	CGT Arg	TTC Phe	CCG Pro	CAC His	ATG Met 85	CTG Leu	GAA Glu	AAT Asn	GCG Ala	CGC Arg 90	GGC Gly	ATG Met	GTT Val	AGC Ser	CAG Gln 95	CTC Leu	283
13	ACC Thr	CAG Gln	TTC Phe	GGC Gly 100	TCC Ser	ACG Thr	TTA Leu	CAA Gln	AAT Asn 105	ATT Ile	ATC Ile	GAA Glu	CGT Arg	CAG Gln 110	GAC Asp	GCG Ala	336
20		GCG Ala															384
25	ACT Thr	AAC Asn 130	CTG Leu	AGC Ser	ATT Ile	CAG Gln	GAC Asp 135	AAA Lys	ACC Thr	ATT Ile	GAA Glu	GAA Glu 140	TTG Leu	GAT Asp	GCC Ala	GAG Glu	432
30	AAA Lys 145	ACG Thr	GTG Val	TTG Leu	GAA Glu	AAA Lys 150	TCC Ser	AAA Lys	GCG Ala	GGA Gly	GCA Ala 155	CAA Gln	TCG Ser	CGC Arg	TTT Phe	GAT Asp 160	480
35	AGC Ser	TAC Tyr	GGC Gly	AAA Lys	CTG Leu 165	TAC Tyr	GAT Asp	GAG Glu	AAT Asn	ATC Ile 170	AAC Asn	GCC Ala	GGT Gly	GAA Glu	AAC Asn 175	CAA Gln	528
33	GCC Ala	ATG Met	ACG Thr	CTA Leu 180	CGA Arg	GCG Ala	TCC Ser	GCC Ala	GCC Ala 185	GGG Gly	CTT L e u	ACC Thr	ACG Thr	GCA Ala 190	GTT Val	CAG Gln	576
40	GCA Ala	TCC Ser	CGT Arg 195	CTG Leu	GCC Ala	GGT Gly	GCG Ala	GCG Ala 200	GCT Ala	GAT Asp	CTG Leu	GTG Val	CCT Pro 205	AAC Asn	ATC Ile	TTC Phe	624
45	GGC Gly	TTT Phe 210	GCC Ala	GGT Gly	GGC Gly	GGC	AGC Ser 215	CGT Arg	TGG Trp	GGG Gly	GCT Ala	ATC Ile 220	GCT Ala	GAG Glu	GCG Ala	ACA Thr	672
50	GGT Gly 225	TAT Tyr	GTG Val	ATG Met	Glu	TTC Phe 230	TCC Ser	GCG Ala	AAT Asn	GTT Val	ATG Met 235	AAC Asn	ACC Thr	GAA Glu	GCG Ala	GAT Asp 240	720
55	AAA Lys	ATT Ile	AGC Ser	CAA Gln	TCT Ser 245	GAA Glu	ACC Thr	TAC Tyr	CGT Arg	CGT Arg 250	CGC Arg	CGT Arg	CAG Gln	GAG Glu	TGG Trp 255	GAG Glu	768
33	ATC Ile	CAG Gln	CGG Arg	AAT Asn 260	AAT Asn	GCC Ala	GAA Glu	GCG Ala	GAA Glu 265	TTG Leu	AAG Lys	CAA Gln	ATC Ile	GAT Asp 270	GCT Ala	CAG Gln	816
60	CTC Leu	AAA Lys	TCA Ser 275	CTC Leu	GCT Ala	GTA Val	CGC Arg	CGC Arg 280	GAA Glu	GCC Ala	GCC Ala	GTA Val	TTG Leu 285	CAG Gln	AAA Lys	ACC Thr	864
65		CTG Leu 290															912
70	CAA Gln 305	CGT Arg	AAG Lys	TTC Phe	AGC Ser	AAT Asn 310	CAG Gln	GCG Ala	TTA Leu	TAC Tyr	AAC Asn 315	TGG Trp	CTG Leu	CGT Arg	GGT Gly	CGA Arg 320	960

			GCG Ala														1308
5			GCA Ala														1056
10	CGC Arg	TTC Phe	ATT Ile 355	AAA Lys	CCG Pro	GGC Gly	GCC Ala	TGG Trp 360	CAG Gln	GGA Gly	ACC Thr	TAT Tyr	GCC Ala 365	GGT Gly	CTG Leu	CTT Leu	1104
15	GCA Ala	GGT Gly 370	GAA Glu	ACC Thr	TTG Leu	ATG Met	CTG Leu 375	AGT Ser	CTG Leu	GCA Ala	CAA Gln	ATG Met 380	GAA Glu	GAC Asp	GCT Ala	CAT His	1152
20	CTG Leu 385	AAA Lys	CGC Arg	GAT Asp	AAA Lys	CGC Arg 390	GCA Ala	TTA Leu	GAG Glu	GTT Val	GAA Glu 395	CGC Arg	ACA Thr	GTA Val	TCG Ser	CTG Leu 400	1200
20	GCC Ala	GAA Glu	GTT Val	TAT Tyr	GCA Ala 405	GGA Gly	TTA Leu	CCA Pro	AAA Lys	GAT Asp 410	AAC Asn	GGT Gly	CCA Pro	TTT Phe	TCC Ser 415	CTG Leu	1248
25	GCT Ala	CAG Gln	GAA Glu	ATT Ile 420	GAC Asp	AAG Lys	CTG Leu	GTG Val	AGT Ser 425	CAA Gln	GGT Gly	TCA Ser	GGC Gly	AGT Ser 430	GCC Ala	GGC Gly	1296
30			AAT Asn 435														1344
35			CAG Gln														1392
40	TAC Tyr 465	CCG Pro	GCA Ala	TCG Ser	CTT Leu	GGC Gly 470	AAA Lys	ATT Ile	CGA Arg	CGT Arg	ATC Ile 475	AAA Lys	CAG Gln	ATC Ile	AGC Ser	GTC Val 480	1440
40			CCC Pro														1488
45			GGC Gly														1536
50			CAC His 515														1584
55			AAA Lys														1632
60			CTG Leu														1680
w			ATG Met														1728
65			AAA Lys 579		17	40											

70 (2) INFORMATION FOR SEQ ID NO:51:

-215-

MOLECULE TYPE: protein

5 (ii)MOLECULE TYPE: protein SEQUENCE DESCRIPTION: SEQ ID NO:51 (TcdAiii): Ю Leu Arg Ser Ala Asn Thr Leu Thr Asp Leu Phe Leu Pro Gln Ile Asn Glu $\mbox{\em Val}$ Met Asn Tyr Trp Gln Thr Leu Ala Gln Arg $\mbox{\em Val}$ Tyr Asn 20 25 3015 Leu Arg His Asn Leu Ser Ile Asp Gly Gln Pro Leu Tyr Leu Pro Ile 35 40 45 Tyr Ala Thr Pro Ala Asp Pro Lys Ala Leu Leu Ser Ala Ala Val Ala 50 55 60 20 Thr Ser Gln Gly Gly Gly Lys Leu Pro Glu Ser Phe Met Ser Leu Trp 70 75 80 25 Arg Phe Pro His Met Leu Glu Asn Ala Arg Gly Met Val Ser Gln Leu 85 90 95 Thr Gln Phe Gly Ser Thr Leu Gln Asn Ile Ile Glu Arg Gln Asp Ala 100 105 11030 Glu Ala Leu Asn Ala Leu Leu Gln Asn Gln Ala Ala Glu Leu Ile Leu Thr Asn Leu Ser Ile Gln Asp Lys Thr Ile Glu Glu Leu Asp Ala Glu 130 135 140 35 Lys Thr Val Leu Glu Lys Ser Lys Ala Gly Ala Gln Ser Arg Phe Asp 145 150 155 160 40 Ser Tyr Gly Lys Leu Tyr Asp Glu Asn Ile Asn Ala Gly Glu Asn Gln Ala Met Thr Leu Arg Ala Ser Ala Ala Gly Leu Thr Thr Ala Val Gln 45 Ala Ser Arg Leu Ala Gly Ala Ala Ala Asp Leu Val Pro Asn Ile Phe 50 Gly Phe Ala Gly Gly Gly Ser Arg Trp Gly Ala Ile Ala Glu Ala Thr 210 220 Gly Tyr Val Met Glu Phe Ser Ala Asn Val Met Asn Thr Glu Ala Asp 55 Lys Ile Ser Glu Ser Glu Thr Tyr Arg Arg Arg Gln Glu Trp Glu 245 250 255 Ile Gin Arg Asn Asn Ala Glu Ala Glu Leu Lys Gln Ile Asp Ala Gln 260 270 60 Leu Lys Ser Leu Ala Val Arg Arg Glu Ala Ala Val Leu Gln Lys Thr 275 280 285 65 Ser Leu Lys Thr Gln Gln Glu Gln Thr Gln Ser Gln Leu Ala Phe Leu Gln Arg Lys Phe Ser Asn Gln Ala Leu Tyr Asn Trp Leu Arg Gly Arg

-216-

70

Leu Ala Ala Ile Tyr Phe Gln Phe Tyr Asp Leu Ala Val Ala Arg Cys 325 330 335 Leu Met Ala Glu Gln Ala Tyr Arg Trp Glu Leu Asn Asp Asp Ser Ala 340 345 3505 Arg Phe Ile Lys Pro Gly Ala Trp Gln Gly Thr Tyr Ala Gly Leu Leu 355 365 Ala Gly Glu Thr Leu Met Leu Ser Leu Ala Gln Met Glu Asp Ala His 370 380 Leu Lys Arg Asp Lys Arg Ala Leu Glu Val Glu Arg Thr Val Ser Leu 385 390 395 15 Ala Glu Val Tyr Ala Gly Leu Pro Lys Asp Asn Gly Pro Phe Ser Leu Ala Gln Glu Ile Asp Lys Leu Val Ser Gln Gly Ser Gly Ser Ala Gly
420 425 430 20 Ser Gly Asn Asn Leu Ala Phe Gly Ala Gly Thr Asp Thr Lys Thr Ser Leu Gln Ala Ser Val Ser Phe Ala Asp Leu Lys Ile Arg Glu Asp 450 455 Tyr Pro Ala Ser Leu Gly Lys Ile Arg Arg Ile Lys Gln Ile Ser Val 30 Thr Leu Pro Ala Leu Leu Gly Pro Tyr Gln Asp Val Gln Ala Ile Leu Ser Tyr Gly Asp Lys Ala Gly Leu Ala Asn Gly Cys Glu Ala Leu Ala 500 510 35 Val Ser His Gly Met Asn Asp Ser Gly Gln Phe Gln Leu Asp Phe Asn 515 520 525 40 Asp Gly Lys Phe Leu Pro Phe Glu Gly Ile Ala Ile Asp Gln Gly Thr Leu Thr Leu Ser Phe Pro Asn Ala Ser Met Pro Glu Lys Gly Lys Gln 555 560 45 Ala Thr Met Leu Lys Thr Leu Asn Asp Ile Ile Leu His Ile Arg Tyr 50 INFORMATION FOR SEQ ID NO:52: SEQUENCE CHARACTERISTICS: 55 (A) LENGTH: 5532 base pairs (B) TYPE: nucleic acid(C) STRANDEDNESS: double (D) TOPOLOGY: linear 60 (ii) MOLECULE TYPE: DNA (genomic) SEQUENCE DESCRIPTION: SEQ ID NO:52 (TcdAiii coding region): 65 TTT ATA CAA GGT TAT AGT GAT CTG TTT GGT AAT CGT GCT GAT AAC TAT 48 Phe Ile Gln Gly Tyr Ser Asp Leu Phe Gly Asn Arg Ala Asp Asn Tyr

10
15

-217-

SUBSTITUTE SHEET (RULE 26)

GCC GCG CCG GGC TCG GTT GCA TCG ATG TTC TCA CCG GCG GCT TAT TTG 96

	EIA	Ala	Pro	31; 20		Val	Ala	Ser	Met 25	Phe	5er	Pro	Α	la 10	Trr	Leu	
5	ACG Thr	GAA Glu	TTG Leu 35	TAC Tyr	CGT Arg	GAA Glu	GCC Ala	AAA L;;s 40	λλς nak	TTG Leu	CAT His	GAC Asp	AGC Ser 45	AGC Ser	TCA Ser	ATT Ile	144
10	TAT Tyr	TAC Tyr 50	CTA Leu	GAT Asp	777 Lys	CGT Arg	CGC Arg 55	CCG Pro	GAT Asp	TTA Leu	GCA Ala	AGC Ser 60	TTA Leu	ATG Met	CTC Leu	AGC Ser	192
1.5	CAG Gln 65	AAA Lys	AAT Asn	ATG Met	GAT Asp	GAG Glu 70	GAA Glu	ATT Ile	TCA Ser	ACG Thr	CTG Leu 75	GCT Ala	CTC Leu	TCT Ser	AAT Asn	GAA Glu 80	240
15							GAA Glu										288
20							ACT Thr										336
25							GTT Val										384
30							CAG Gln 135										432
35	CCT Pro 145	GTG Val	ACT Thr	TTG Leu	TTG Leu	GGT Gly 150	ATT Ile	AGC Ser	TCC Ser	CAT His	ATT Ile 155	TCG Ser	CCA Pro	GAA Glu	CTG Leu	TAT Tyr 160	480
33	AAC Asn	TTG Leu	CTG Leu	ATT	GAG Glu 165	GAG Glu	ATC Ile	CCG Pro	GAA Glu	AAA Lys 170	GAT Asp	GAA Glu	GCC Ala	GCG Ala	CTT Leu 175	GAT Asp	528
40	ACG Thr	CTT Leu	TAT Tyr	AAA Lys 180	ACA Thr	AAC Asn	TTT Phe	GGC Gly	GAT Asp 185	ATT Ile	ACT Thr	ACT Thr	GCT Ala	CAG Gln 190	TTA Leu	ATG Met	576
45	TCC Ser	CCA Pro	AGT Ser 195	TAT Tyr	CTG Leu	GCC Ala	CGG Arg	TAT Tyr 200	TAT Tyr	GGC Gly	GTC Val	TCA Ser	CCG Pro 205	GAA Glu	GAT Asp	ATT Ile	624
50	GCC Ala	TAC Tyr 210	GTG Val	ACG Thr	ACT Thr	TCA Ser	TTA Leu 215	TCA Ser	CAT His	GTT Val	GGA Gly	TAT Tyr 220	AGC Ser	AGT Ser	GAT Asp	ATT Ile	672
55	CTG Leu 225	GTT Val	ATT Ile	CCG Pro	TTG Leu	GTC Val 230	GAT Asp	GGT Gly	GTG Val	GGT Gly	AAG Lys 235	ATG Met	GAA Glu	GTA Val	GTT Val	CGT Arg 240	720
<i>33</i>							GAT Asp										768
60	GAG Glu	CTG Leu	TAT Tyr	CCA Pro 260	CAG Gln	GGT Gly	GGC Gly	GAC Asp	AAT Asn 265	TAT Tyr	TTG Leu	ATC Ile	AAA Lys	TAC Tyr 270	AAT Asn	CTA Leu	816
65	AGC Ser	AAT Asn	AGT Ser 275	TTT Phe	GGT Gly	TTG Leu	GAT Asp	GAT Asp 280	TTT Phe	TAT Tyr	CTG Leu	CAA Gln	TAT Tyr 285	AAA Lys	GAT Asp	GG T Gly	864
70	TCC Ser	GCT Ala 290	GAT Asp	TGG Trp	ACT Thr	GAG Glu	ATT Ile 295	GCC Ala	CAT His	AAT Asn	CCC Pro	TAT Tyr 300	CCT Pro	GAT Asp	ATG Met	GTC Val	912

WO 97/17432 PCT/US96/18003 ATA AAT CAA AAS TAT GAA TOA CAG GOG ACA ATO AAA, ST AGT GAO TOT 350 lle Asn Gln Lys Tyr Glu Ser Gln Ala Thr Ile Lys Arg Ser Asp Ser 310 315 SAC AAT ATA CTC AGT ATA GGG TTA CAA AGA TGG CAT AGC GGT AGT TAT 1008 Asp Asn Ile Leu Ser Ile Gly Leu Gln Arg Trp His Ser Gly Ser Tyr AAT TIT GCC GCC GCC AAT TIT AAA ATT GAC CAA TAC TCC CCG AAA GCT 1056 Asn Phe Ala Ala Ala Asn Phe Lys Ile Asp Gln Tyr Ser Pro Lys Ala 345 TTC CTG CTT AAA ATG AAT AAG GCT ATT CGG TTG CTC AAA GCT ACC GGC 1104 Phe Leu Leu Lys Met Asn Lys Ala Ile Arg Leu Leu Lys Ala Thr Gly 15 360 CTC TCT TTT GCT ACG TTG GAG CGT ATT GTT GAT AGT GTT AAT AGC ACC 1152 Leu Ser Phe Ala Thr Leu Glu Arg Ile Val Asp Ser Val Asn Ser Thr AAA TCC ATC ACG GTT GAG GTA TTA AAC AAG GTT TAT CGG GTA AAA TTC 1200 Lys Ser Ile Thr Val Glu Val Leu Asn Lys Val Tyr Arg Val Lys Phe TAT ATT GAT CGT TAT GGC ATC AGT GAA GAG ACA GCC GCT ATT TTG GCT 1248 Tyr Ile Asp Arg Tyr Gly Ile Ser Glu Glu Thr Ala Ala Ile Leu Ala 410 AAT ATT AAT ATC TCT CAG CAA GCT GTT GGC AAT CAG CTT AGC CAG TTT 1296 30 Asn Ile Asn Ile Ser Gin Gln Ala Val Gly Asn Gln Leu Ser Gln Phe 425 GAG CAA CTA TTT AAT CAC CCG CCG CTC AAT GGT ATT CGC TAT GAA ATC 1344 Glu Gln Leu Phe Asn His Pro Pro Leu Asn Gly Ile Arg Tyr Glu Ile 35 AGT GAG GAC AAC TCC AAA CAT CTT CCT AAT CCT GAT CTG AAC CTT AAA 1392 Ser Glu Asp Asn Ser Lys His Leu Pro Asn Pro Asp Leu Asn Leu Lys 40 CCA GAC AGT ACC GGT GAT GAT CAA CGC AAG GCG GTT TTA AAA CGC GCG 1440 Pro Asp Ser Thr Gly Asp Asp Gln Arg Lys Ala Val Leu Lys Arg Ala 470 TTT CAG GTT AAC GCC AGT GAG TTG TAT CAG ATG TTA TTG ATC ACT GAT 1488 45 Phe Gln Val Asn Ala Ser Glu Leu Tyr Gln Met Leu Leu Ile Thr Asp CGT AAA GAA GAC GGT GTT ATC AAA AAT AAC TTA GAG AAT TTG TCT GAT 1536 50 Arg Lys Glu Asp Gly Val Ile Lys Asn Asn Leu Glu Asn Leu Ser Asp 505 CTG TAT TTG GTT AGT TTG CTG GCC CAG ATT CAT AAC CTG ACT ATT GCT 1584 Leu Tyr Leu Val Ser Leu Leu Ala Gln Ile His Asn Leu Thr Ile Ala 55 GAA TTG AAC ATT TTG TTG GTG ATT TGT GGC TAT GGC GAC ACC AAC ATT 1632 Glu Leu Asn Ile Leu Leu Val Ile Cys Gly Tyr Gly Asp Thr Asn Ile 535 TAT CAG ATT ACC GAC GAT AAT TTA GCC AAA ATA GTG GAA ACA TTG TTG 1680 T/r Gln Ile Thr Asp Asp Asn Leu Ala Lys Ile Val Glu Thr Leu Leu 550 TGG ATC ACT CAA TGG TTG AAG ACC CAA AAA TGG ACA GTT ACC GAC CTG 1728 Trp Ile Thr Gln Trp Leu Lys Thr Gln Lys Trp Thr Val Thr Asp Leu TTT CTG ATG ACC ACG GCC ACT TAC AGC ACC ACT TTA ACG CCA GAA ATT 1776 70 Phe Leu Met Thr Thr Ala Thr Tyr Ser Thr Thr Leu Thr Pro Glu Ile 580

-219-

	365				370					875					Зãũ	
5	ACT TCA															2688
14)	CGG GCT Arg Ala															2736
10	CGT CAG Arg Gln															2784
15	TGG GCT Trp Ala 930	Gly														2832
20	CCC ACT Pro Thr 945															2380
25	TCC ATC															2928
30	AAA ACT Lys Thr															2976
30	AGT GCT Ser Ala	TAC Tyr 995	CAC His	GAT Asp	AAT Asn	G TG Val	AAT Asn 1000	Val	GAT Asp	CAA Gln	GGA Gly	TTA Leu 1005	Thr	TAT Tyr	TTT Phe	3024
35	ATC GGT Ile Gly 101	Ile	GAC Asp	CAA Gln	GCA Ala	GCT Ala 1015	Pro	GGT Gly	ACG Thr	TAT Tyr	TAC Tyr 1020	Trp	CGT Arg	AGT Ser	GTT Val	3072
40	GAT CAC Asp His 1025	AGC Ser	AAA Lys	TGT Cys	GAA Glu 1030	Asn	G]A GCC	AAG Lys	TTT Phe	GCC Ala 103	Ala	AAT Asn	GCT Ala	TGG Trp	GGT Gly 1040	
45	GAG TGG Glu Trp	AAT Asn	AAA Lys	ATT Ile 104	Thr	TGT Cys	GCT Ala	GTC Val	AAT Asn 1050	Pro	TGG Trp	AAA Lys	AAT Asn	ATC Ile 1059	Ile	3168
50)	CGT CCG	Val	GTT Val 1060	Tyr	Met	Ser	Arg	Leu	Tyr	CTG Leu	CTA Leu	TGG Trp	CTG Leu 107	Glu	CAG Gln	3216
50	CAA TCA Gln Ser	AAG Lys 107	Lys	AGT Ser	GAT Asp	GAT Asp	GGT Gly 108	Lys	ACC Thr	ACG Thr	ATT Ile	TAT Tyr 108	Gln	TAT Tyr	AAC Asn	3264
55	TTA AAA Leu Lys 109	Leu	GCT Ala	CAT His	ATT Ile	CGT Arg 109	Tyr	GAC Asp	GG T Gly	AGT Ser	TGG Trp 110	Asn	ACA Thr	CCA Pro	TTT Phe	3312
60	ACT TTT Thr Phe 1105	GAT Asp	GTG Val	ACA Thr	GAA Glu 111	Lys	GTA Val	AAA Lys	AAT Asn	TAC Tyr 111	Thr	TCG Ser	AGT Ser	ACT Thr	GAT Asp 112	
65	GCT GCT Ala Ala	GAA Glu	TCT Ser	TTA Leu 112	Cly	TTG Leu	TAT Tyr	TGT Cys	ACT Thr 113	Gly	TAT Tyr	CAA Gln	GGG Gly	GAA Glu 113	Asp	3408
70	ACT CTA	TTA Leu	GTT Val 114	Met	TTC Phe	TAT Tyr	TCG Ser	ATG Met 114	Gln	AGT Ser	AGT Ser	ТАТ Туг	AGC Ser 115	Ser	TAT Tyr	3456
70	ACC GAT	TAA T	AAT	GCG	CCG	GTC	ACT		CTA	TAT	ATT	TTC	GCT	GAT	ATG	3504

SUBSTITUTE SHEET (RULE 26)

-221-

	Thr	Asp	Asn 115		Ala	Pro	Val	Thr 1150		Leu	ryr	Ile	Phe 1169	Ala 5	Asp	Met	
5	TCA Ser	TCA Ser 1170	Asp	AAT Asn	ATG Met	ACG Thr	AAT Asn 1175	ala	CAA Gln	GCA Ala	ACT Thr	AAC Asn 1180	Trr	TGG Trp	AAT Asn	AAC Asn	3552
10	AGT Ser 1189	Tyr	CCG Pro	CAA Gln	TTT Phe	GAT Asp 1190	Thr	GTG Val	ATG Met	GCA Ala	GAT Asp 1195	Pro	GAT Asp	AGC Ser	GAC Asp	AAT Asn 1200	3600
1.5	aaa Lys	AAA Lys	GTC Val	ATA Ile	ACC Thr 1205	Arg	AGA Arg	GTT Val	AAT Asn	AAC Asn 1210	Arg	TAT Tyr	GCG Ala	GAG Glu	GAT Asp 1215	Tyr	3643
15					Ser					Ser					Gly		3696
20				Thr					Gly	AGT Ser				Ile			3744
25	GAA Glu	TCG Ser 1250	Ala	GCA Ala	GAA Glu	GAT Asp	TTA Leu 1255	Arg	CTA Leu	TCT Ser	ACC Thr	AAT Asn 1260	Met	GCA Ala	TTG Leu	AGT Ser	3792
30	ATT 11e 1269	Ile	CAT H1s	AAT Asn	GGA Gly	TAT Tyr 1270	Ala	GGA Gly	ACC Thr	CGC Arg	CGT Arg 1275	Ile	CAA Gln	TGT Cys	AAT Asn	CTT Leu 1280	3840
35	ATG Met	AAA Lys	CAA Gln	TAC Tyr	GCT Ala 1285	Ser	TTA Leu	GGT Gly	GAT Asp	AAA Lys 1290	Phe	ATA Ile	ATT Ile	TAT Tyr	GAT Asp 1295	Ser	3888
33	TCA Ser	TTT Phe	GAT Asp	GAT Asp 1300	Ala	AAC Asn	CGT Arg	TTT Phe	AAT Asn 1305	Leu	GTG Val	CCA Pro	TTG Leu	TTT Phe 1310	Lys	TTC Phe	3936
40	GGA Gly	AAA Lys	GAC Asp 1315	Glu	AAC Asn	TCA Ser	GAT Asp	GAT Asp 1320	Ser	ATT Ile	TGT Cys	ATA Ile	TAT Tyr 1325	Asn	GAA Glu	AAC Asn	3984
45	CCT Pro	TCC Ser 1330	Ser	GAA Glu	GAT Asp	AAG Lys	AAG Lys 1335	Trp	TAT Tyr	TTT Phe	TCT Ser	TCG Ser 1340	Lys	GAT Asp	GAC Asp	AAT Asn	4032
50	AAA Lys 1349	Thr	Ala	Asp	Tyr	Asn	Gly	Gly	Thr	Gln	Cys	Ile	Asp	Ala	Gly	Thr	4080
55	AGT Ser	AAC Asn	AAA Lys	GAT Asp	TTT Phe 1365	Tyr	TAT Tyr	AAT Asn	CTC Leu	CAG Gln 1370	Glu	ATT Ile	GAA Glu	GTA Val	ATT Ile 137	Ser	4128
JJ	GTT Val	ACT Thr	GGT Gly	GGG Gly 1380	Tyr	TGG Trp	TCG Ser	AGT Ser	TAT Tyr 1389	Lys	ATA Ile	TCC Ser	AAC Asn	CCG Pro 139	Ile	AAT Asn	4176
60	ATC Ile	AAT Asn	ACG Thr 1399	Gly	ATT Ile	GAT Asp	AGT Ser	GCT Ala 1400	Lys	GTA Val	AAA Lys	GTC Val	ACC Thr 140	Val	AAA Lys	GCG Ala	4224
65	GGT Gly	GGT Gly 1410	Asp	GAT Asp	CAA Gln	ATC Ile	TTT Phe 1415	Thr	GCT Ala	GAT Asp	AAT Asn	AGT Ser 1420	Thr	TAT Tyr	GTT Val	CCT Pro	1 272
70	CAG Gln 1429	Gln	CCG Pro	GCA Ala	CCC Pro	AGT Ser 1430	Phe	GAG Glu	GAG Glu	ATG Met	ATT Ile 1435	Tyr	CAG Gln	TTC Phe	AAT Asn	AAC Asn 1440	4320)

	CTG ACA Leu Thr	ATA GAT	TGT AAG Cys Lys 1445	AAT TTA Asn Leu	AAT TTC Asn Phe 145	Ile Asp	AAT CAG Asn Gln	GCA CAT 4163 Ala His 1455
5	ATT GAG Ile Glu	ATT GAT lle Asp 146	Phe Thr	GCT ACG Ala Thr	GCA CAA Ala Gln 1465	GAT GGC Asp Gly	CGA TTC Arg Phe 1470	
10	GCA GAA Ala Glu	ACT TTT Thr Phe 1475	ATT ATC Ile Ile	CCG GTA Pro Val 148	Thr Lys	AAA GTT Lys Val	CTC GGT Leu Gly 1485	ACT GAG 4464 Thr Glu
15	AAC GTG Asn Val 149	Ile Ala	TTA TAT Leu Tyr	AGC GAA Ser Glu 1495	AAT AAC Asn Asn	GGT GTT Gly Val 1500	Gln Tyr	ATG CAA 4512 Met Gln
20	ATT GGC Ile Gly 1505	GCA TAT Ala Tyr	CGT ACC Arg Thr 1510	Arg Leu	AAT ACG Asn Thr	TTA TTC Leu Phe 1515	GCT CAA Ala Gln	CAG TTG 4560 Gln Leu 1520
	GTT AGC Val Ser	CGT GCT Arg Ala	AAT CGT Asn Arg 1525	GGC ATT Gly Ile	GAT GCA Asp Ala 1530	Val Leu	AGT ATG Ser Met	GAA ACT 4608 Glu Thr 1535
25	CAG AAT Gln Asn	ATT CAG Ile Gln 1540	Glu Pro	CAA TTA Gln Leu	GGA GCG Gly Ala 1545	GGC ACA Gly Thr	TAT GTG Tyr Val 1550	
30	GTG TTG Val Leu	GAT AAA Asp Lys 1555	TAT GAT Tyr Asp	GAG TCT Glu Ser 156	Ile His	GGC ACT Gly Thr	AAT AAA Asn Lys 1565	AGC TTT 4704 Ser Phe
35		Glu Tyr					Ser Phe	GTG ATT 4752 Val Ile
40	TAT CAA Tyr Gin 1585	GGA GAA Gly Glu	CTT AGC Leu Ser 1590	Glu Thr	AGT CAA Ser Gln	ACT GTT Thr Val 1595	GTG AAA Val Lys	GTT TTC 4800 Val Phe 1600
		TAT TTT Tyr Phe				Lys Asn		TGG GTA 4848 Trp Val 1615
45	CGT GCT Arg Ala	AAA TAC Lys Tyr 1620	Gln Lys	GAA ACG Glu Thr	ACT GAT Thr Asp 1625	AAG ATC Lys Ile	TTG TTC Leu Phe 1630	
50		GAG AAA Glu Lys 1635			Trp Phe	_		CAC AAG 4944 His Lys
55		Ser Gly					Asn Asp	AGT GAA 4992 Ser Glu
60		GAT TTC Asp Phe		Ala Asn				CTG TTC 5040 Leu Phe 1630
,		ACG CCG Thr Pro				Leu Leu		CAG AAT 5088 Gln Asn 1695
65		GCG GCG Ala Ala 1700	Asn His					
70		GTT GAT Val Asp 1715			Ile Tyr			CGA CCG 5184 Arg Pro

£	CTG Leu	GAA Glu 173	Glu	GAC Asp	ACC Thr	AGT Ser	TGG Trp 173	Asn	GCA Ala	CAA Gln	CAA Gln	CTG Leu 174	Asp	TCC Ser	ACC Thr	GAT Asp	5233
5	CCA Pro 1745	Asp	GCT Ala	GTA Val	GCC Ala	CAA Gln 175	Asp	GAT Asp	CCG Pro	ATG Met	CAC His 175	Tyr	AAG Lys	GTG Val	GCT Ala	ACC Thr 1760	
10	TTT Phe	ATG Met	GCG Ala	ACG Thr	TTG Leu 176	Asp	CTG Leu	CTA Leu	ATG Met	GCC Ala 1770	Arg	G GT Gly	GAT Asp	GCT Ala	GCT Ala 1779	Tyr	5328
15	Arg (Arg					Glu					Tyr		537d
20	CAG (Gln			Asn					Glu					Leu			5424
25	ACT '		Ala					Gly					Lys				5472
	CAG (Gln ' 1825	7al					Leu					Leu					
30	AAA /					532											
35	(2)			SEQU (A)	LENC LEN	E CH IGTH	IARA : 1	ID : CTER .844	IST: ami	ICS: no a	acid	s					
40		(:	ii)	(D)	TOF	POLO	GY:	ESS: line : p	ear								
45			(i)					RIPT			Q II	ои с	:53	(Tc	bAii):	
			eatur Pept Frag	_		rom 1 1	:	To 1844 11		T:	crip cbA _i seQ	i pe	eptio 0:1)				
50			Frag Frag	ment ment ment		978 1387 1484 1527	:	990 1401 1505 1552		(:	SEQ SEQ SEQ	ID NO	0:22 0:24))			
55	Phe :	lle	Gln	Gly	Tyr 5	Ser	Asp	Leu	Phe	Gly 10	Asn	Arg	Ala	Asp	Asn 15	Tyr	
	Ala A	Ala	Pro	Gly 20	Ser	Val	Ala	Ser	Met 25	Phe	Ser	Pro	Ala	Ala 30	Туг	Leu	
60	Thr (Slu	Leu 35	Tyr	Arg	Glu	Ala	Lys 40	Asn	Leu	His	Asp	Ser 45	Ser	Ser	Ile	
65	Tyr ?	Tyr 50	Leu	Asp	Lys	Arg	Arg 55	Pro	Asp	Leu	Ala	Ser 60	Leu	Met	Leu	Ser	
(J)	Gln I	Ĺγs	Asn	Met	Asp	Glu 70	Glu	Ile	Ser	Thr	Leu 75	Ala	Leu	Ser	Asn	Glu 30	
	Leu (2;'s	Leu	Ala	Gly	Ile	Glu	Thr		Thr 24-	Gly	Lys	Ser	Gln	Asp	Glu	
									-								

35 Val Met Asp Met Leu Ser Thr Tyr Arg Leu Ser Gly Glu Thr Pro Tyr 5 His His Ala Tyr Glu Thr Val Arg Glu Ile Val His Glu Arg Asp Pro 115 120 125 Gly Phe Arg His Leu Ser Gln Ala Pro Ile Val Ala Ala Lys Leu Asp 130 140 10 Pro Val Thr Leu Leu Gly Ile Ser Ser His Ile Ser Pro Glu Leu Tyr 145 150 155 160 Asn Leu Leu Ile Glu Glu Ile Pro Glu Lys Asp Glu Ala Ala Leu Asp 165 170 175 Thr Leu Tyr Lys Thr Asn Phe Gly Asp Ile Thr Thr Ala Gln Leu Met 180 185 190 20 Ser Pro Ser Tyr Leu Ala Arg Tyr Tyr Gly Val Ser Pro Glu Asp Ile 195 200 205 Ala Tyr Val Thr Thr Ser Leu Ser His Val Gly Tyr Ser Ser Asp Ile 210 215 220 25 Leu Val Ile Pro Leu Val Asp Gly Val Gly Lys Met Glu Val Val Arg 225 230 235 240 30 Val Thr Arg Thr Pro Ser Asp Asn Tyr Thr Ser Gln Thr Asn Tyr Ile 245 250 255 Glu Leu Tyr Pro Gln Gly Gly Asp Asn Tyr Leu Ile Lys Tyr Asn Leu 260 265 270 35 Ser Asn Ser Phe Gly Leu Asp Asp Phe Tyr Leu Gln Tyr Lys Asp Gly 275 280 285 Ser Ala Asp Trp Thr Glu Ile Ala His Asn Pro Tyr Pro Asp Met Val 290 295 300 40 Ile Asn Gln Lys Tyr Glu Ser Gln Ala Thr Ile Lys Arg Ser Asp Ser 310 45 Asp Asn Ile Leu Ser Ile Gly Leu Gln Arg Trp His Ser Gly Ser Tyr 325 330 335 Asn Phe Ala Ala Ala Asn Phe Lys Ile Asp Gln Tyr Ser Pro Lys Ala 50 Phe Leu Lys Met Asn Lys Ala Ile Arg Leu Leu Lys Ala Thr Gly 355 360 365 Leu Ser Phe Ala Thr Leu Glu Arg Ile Val Asp Ser Val Asn Ser Thr 370 380 55 Lys Ser Ile Thr Val Glu Val Leu Asn Lys Val Tyr Arg Val Lys Phe 385 390 395 60 Tyr Ile Asp Arg Tyr Gly Ile Ser Glu Glu Thr Ala Ala Ile Leu Ala Asn Ile Asn Ile Ser Gln Gln Ala Val Gly Asn Gln Leu Ser Gln Phe 65 Glu Gln Leu Phe Asn His Pro Pro Leu Asn Gly Ile Arg Tyr Glu Ile 435 440 445 Ser Glu Asp Asn Ser Lys His Leu Pro Asn Pro Asp Leu Asn Leu Lys 70

-225-

	Pro 465	Asp	Ser	Thr	517	710 72b	Asp	Gln	Arg	Lys	Ala 475	Val	Lêu	Lys	Arg	Ala 130
5	Phe	Gln	Val	Asn	Ala 485	Ser	Glu	Leu	Tyr	Gln 490	Met	Leu	Leu	Ile	Thr 495	Asp
	Arg	Lys	Glu	Asp 500	Gly	Val	Ile	Lys	Asn 505	Asn	Leu	Glu	Asn	Leu 510	Ser	Asp
10	Leu	T,'r	Leu 515	Val	ser	Leu	Leu	Ala 520	Gln	Ile	His	Asn	Leu 525	Thr	Ile	εlκ
15	Glu	Leu 530	Asn	Ile	Leu	Leu	Val 535	Ile	Суѕ	Gly	T;'r	Gly 540	Asp	Thr	Asn	Ile
13	Tyr 545	Gln	Ile	Thr	Asp	Asp 550	Asn	Leu	Ala	Lys	Ile 555	Val	Glu	Thr		Leu 60
20	Trp	Ile	Thr	Gln	Trp 565	Leu	Lys	Thr	Gln	Lys 570	Trp	Thr	Val	Thr	Asp 575	Leu
	Phe	Leu	Met	Thr 580	Thr	Ala	Thr	Tyr	Ser 585	Thr	Thr	Leu	Thr	Pro 590	Glu	Ile
25	Ser	Asn	Leu 595	Thr	Ala	Thr	Leu	Ser 600	Ser	Thr	Leu	His	Gly 605	Lys	Glu	Ser
30	Leu	Ile 610	Gly	Glu	Asp	Leu	Lys 615	Arg	Ala	Met	Ala	Pro 620	Cys	Phe	Thr	ser
30	Ala 625	Leu	His	Leu	Thr	Ser 630	Gln	Glu	Val	Ala	Tyr 635	Asp	Leu	Leu	Leu	Trp 640
35	Ile	Asp	Gln	Ile	Gln 645	Pro	Ala	Gln	Ile	Thr 650	Val	Asp	Gly	Phe	Trp 655	Glu
	Glu	Val	Gln	Thr 660	Thr	Pro	Thr	Ser	Leu 665	Lys	Val	Ile	Thr	Phe 670	Ala	Gln
40	Val	Leu	Ala 675	Gln	Leu	Ser	Leu	1le 680	Tyr	Arg	Arg	Ile	Gly 685	Leu	Ser	Glu
15	Thr	Glu 690	Leu	Ser	Leu	Ile	Val 695	Thr	Gln	Ser	Ser	Leu 700	Leu	Val	Ala	Gly
45	Lys 705	Ser	Ile	Leu	Asp	His 710	Gly	Leu	Leu	Thr	Leu 715	Met	Ala	Leu	Glu	Gly 720
50	Phe	His	Thr	Trp	Val 725	Asn	Gly	Leu	Gly	Gln 730	His	Ala	Ser	Leu	Ile 735	Leu
	Ala	Ala	Leu	Lys 740	Asp	Gly	Ala	Leu	Thr 745	Val	Thr	Asp	Val	Ala 750	Gln	Ala
55	Met	Asn	Lys 755	Glu	Glu	Ser	Leu	Leu 760	Gin	Met	Ala	Ala	Asn 765	Gln	Val	Glu
40	Lys	Asp 770	Leu	Thr	Lys	Leu	Thr 775	Ser	Trp	Thr	Gln	Ile 780	Asp	Ala	Ile	Leu
60	Gin 785	Trp	Leu	Gln	Met	Ser 790	Ser	Ala	Leu	Ala	Val 795	Ser	Pro	Leu	Asp	Leu 800
65	Ala	Gly	Met	Met	Ala 805	Leu	Lys	Tyr	Gly	Ile 810	Asp	Hıs	Asn	Tyr	Ala 315	Ala
	Trp	Gln	Ala	Ala 820	Ala	Ala	Ala	Leu	Met 825	Ala	Asp	His	Ala	Asn 830	Gln	Ala
70	Gln	Lys	Lys a35	Leu	Asp	Glu	Thr	Phe 840	Ser	Lys	Ala	Leu	Cys 845	Asn	Tyr	Tyr

-226-

	Ile	350	n Ala	Val	. Val	. Asp	Ser 855	Ala	Ala	Gly	' Val	Arg 860		Arg	Asn	Gly
5	Leu 865	Тут	Thr	Tir	Leu	Leu 370	Ile	Asp	Asn	Gln	Val 875		Ala	Asp	Val	Ile aso
10	Thr	Ser	Arg	Ile	Ala 885	Glu	Ala	Ile	Ala	Gly 890		Gln	Leu	Tyr	Val 895	Asn
	Arg	Ala	Leu	Asn 900	Arg	Asp	Glu	Gly	Gln 905	Leu	Ala	Ser	Asp	Val 910	Ser	Thr
15			915			Asp		920					925			
	Trp	Ala 930	Gly	Val	Ser	Glu	Leu 935	Val	Tyr	Tyr	Pro	Glu 940	Asn	Tyr	Val	Asp
20	Pro 945	Thr	Gln	Arg	Ile	Gly 950	Gln	Thr	Lys	Met	Met 955	Asp	Ala	Leu	Leu	Gln 960
25	Ser	Ile	Asn	Gln	Ser 965	Gln	Leu	Asn	Ala	Asp 970	Thr	Val	Glu	Asp	Ala 975	Phe
	Lys	Thr	Tyr	Leu 980	Thr	Ser	Phe	Glu	Gln 985	Val	Ala	Asn	Leu	Lys 990	Val	Ile
30			995			Asn		1000)				1009	5		
	Ile	Gly 101	Ile	Asp	Gln	Ala	Ala 1015	Pro	Gly	Thr	Tyr	Tyr 1020		Arg	Ser	Val
35	Asp 1025	His	Ser	Lys	Суѕ	Glu 1030	Asn	Gly	Lys	Phe	Ala 1035		Asn	Ala	Trp	Gly 1040
40	Glu	Trp	Asn	Lys	11e 1049	Thr	Cys	Ala	Val	Asn 1050		Trp	Lys	Asn	Ile 1055	
	Arg	Pro	Val	Val 1060	Tyr)	Met	Ser	Arg	Leu 1065		Leu	Leu	Trp	Leu 1070		Gln
45	Gln	Ser	Lys 1075	Lys	Ser	Asp	Asp	Gly 1080		Thr	Thr	Ile	Tyr 1085		Tyr	Asn
	Leu	Lys 1090	Leu)	Ala	His	Ile	Arg 1095		Asp	Gly	Ser	Trp 1100		Thr	Pro	Phe
50	Thr 1105	Phe	Asp	Val	Thr	Glu 1110		Val	Lys	Asn	Tyr 1115		Ser	Ser	Thr	Asp 1120
55	Ala	Ala	Glu	Ser	Leu 1125	Gly	Leu	Tyr	Суѕ	Thr 1130		Tyr	Gln	Gly	Glu 1135	
	Thr	Leu	Leu	Val 1140	Met	Phe	Tyr	Ser	Met 1145	Gln	Ser	Ser	Tyr	Ser 1150	Ser	Tyr
60	Thr	Asp	Asn 1155	Asn	Ala	Pro	Val	Thr 1160		Leu	Туг	Ile	Phe 1165		Asp	Met
	Ser	Ser 1170	Asp	Asn	Met	Thr	Asn 1175	Ala	Gln	Ala	Thr	Asn 1180		Trp	Asn	Asn
65	Ser 1135	Tyr	Pro	Gln	Phe	Asp 1190	Thr	Val	Met	Ala	Asp 1195		Asp	Ser	Asp	Asn 1200
70	Lys	Lys	Val	Ile	Thr 1205	Arg	Arg	Val	Asn	Asn 1210		Tyr	Ala	Glu	Asp 1215	
. 0	Glu	Ile	Pro	Ser	Ser	Val	Thr	Ser	Asn -21		Asn	Tyr	Ser	Trp	Gly	Asp

				122					1225	5				230)	
=	His	Ser	Leu 1235		Met	Leu	Tyr	G17 1240	Gly)	Ser	7al	Pro	Asn 1245	Ile	Thr	Phe
5	Glu	Ser 1250	Ala O	Ala	Glu	Asp	Leu 1259	Arg 5	Leu	Ser	Thr	Asn 1260	Met)	Ala	Leu	Ser
10	Ile 1265		His	Asn	Gly	Tyr 1270		Gly	Thr	Arg	Arg 1275	Ile	Gln	Cys	Asn	Leu 1280
	Met	Lys	Gln	Tyr	Ala 1285		Leu	Gly	Asp	Lys 1290		Ile	Ile	Tyr	Asp 1299	
15	Ser	Phe	Asp	Asp 1300		Asn	Arg	Phe	Asn 1305		Val	Pro	Leu	Phe 1310		Phe
20			Asp 1315	5				1320)				1325	•		
		1330					1339	5				1340)			
25	1345	5	Ala			1350)				1355	5				1360
			Lys		1365	5				1370)				1375	5
30			Gly	1380)				1385	5				1390)	
35			Thr 1399	5				1400)				1405	i		
		1410					1415	5				1420)			
40	1425	5	Pro			1430)				1435	5				1440
			Ile		1445	5				1450	י				1455	5
45			Ile	1460)				1469	5				1470	כ	
50			Thr 1475	5				1480)				1485	5		
		1490					1495	5				1500)			
55	1505	•	Ala			1510)				1515	5				1520
			Arg		1525	5				1530)				1535	5
60			Ile	1540)				1545	5				1550)	
65			Asp 1555	5				1560)				1565	•		
		1570					1579	5				1580)			
70	Tyr 1589		Gly	Glu	Leu	Ser 1590		Thr	Ser	Gln	Thr 1595	Val	Val	Lys	Val	Phe 1600

-228-

	L⊋u	Ser	Tyr	Phe	Ile 1605		Ala	Thr	GIY	Asn 1610		Asn	Hıs	Leu	Trp 1615				
5	Arg	Ala	Lys	Tyr 1620		L;·s	Glu	Thr	Thr 1625		L;; s	Ile	Leu	Phe 1630		Arg			
	Thr	Яsр	Glu 1635		Asp	Pro	His	Gly 1640		Phe	Leu	Ser	Asp 1645		His	Lys			
10	Thr	Phe 1650	Ser	Gly	Leu	Ser	Ser 1655		Gln	Ala	Leu	Lys 1660		Asp	Ser	Glu			
15	Pro Loos		Asp	Phe	Ser	Gly 1670		Asn	Ala	Leu	Tyr 1675		Trp	Glu	Leu	Phe 1680			
	Tyr	Tyr	Thr	Pro	Met 1685		Met	Ala	His	Arg 1690		Leu	Gln	Glu	Gln 1695				
20	Phe	Asp	Ala	Ala 1700		His	Trp	Phe	Arg 1705		Val	Trp	Ser	Pro 1710		G] A			
	Tyr	Ile	Val 1715		Gly	Lys	Ile	Ala 1720		Tyr	His	Trp	Asn 1725		Arg	Pro			
25	Léu	Glu 1730	Glu)	Asp	Thr	Ser	Trp 1735		Ala	Gln	Gln	Leu 1740		Ser	Thr	Asp			
30	Pro 1745	•	Ala	Val	Ala	Gln 1750	-	Asp	Pro	Met	His 1755	-	Lys	Val	Ala	Thr 1760			
5 (7	Phe	Mec	Ala	Thr	Leu 1765		Leu	Leu	Met	Ala 1770		Gly	Asp	Ala	Ala 1775				
35	Arg	Gln	Leu	Glu 1780		Asp	Thr	Leu	Ala 1785		Ala	Lys	Met	Trp 1790		Thr			
	Gln	λla	Leu 1795		Leu	Leu	Gly	Asp 1800		Pro	Gln	Val	Met 1805		Ser	Thr			
40	Thr	Trp 1810	Ala)	Asn	Pro	Thr	Leu 1815		Asn	Ala	Ala	Ser 1820		Thr	Thr	Gln			
45	Gln 1825		Arg	Gln	Gln	Val 1830		Thr	Gln	Leu	Arg 1835		Asn	Ser	Arg	Val 1840			
+3	Lys	Thr	Pro	Leu 1844	l.														
50	(2)		ifori	SEQUAL (A)	JENC: LEN TYP	E CH IGTH PE: 1	SEQ IARA(: l nucl EDNE	CTER 722 eic	IST: bas aci	ICS: e pa d	irs								
55			: : \	(D)	TOP	OLO	GY:	line	ear		om i s	- 1							
		{ .	ii)	MOI	JECU.	LE I	YPE	; L	MA	(gen	Omic	<i>:</i>)							
60			(ix															regio	on::
65			ACA Thr													AAT Asn	13		
65	AGC Ser	AAG Lys	CTC Leu	AAA Lys 20	GGC Gly	TAC Tyr	TGG Trp	CGG Arg	ACA Thr 25	CTG Leu	GCG Ala	CAG Gln	CGT Arg	ATG Met 30	TTT Phe	AAT Asn	96		

-229-

PCT/US96/18003 WO 97/17432 TTA CGT CAT AA TG TCG ATT GAC GGC CAG CCG CTC Leu Arg His As Teu Ser Ile Asp Gly Gln Pro Leu S TAT GCT AAA CCG GCT GAT CCA AAA GCT TTA CTG AGT GCG GCG GTT TCA 192 Tyr Ala Lys Pro Ala Asp Pro Lys Ala Leu Leu Ser Ala Ala Val Ser GCT TCT CAA GGG GGA GCC GAC TTG CCG AAG GCG CCG CTG ACT ATT CAC 240 Ala Ser Gln Gly Gly Ala Asp Leu Pro Lys Ala Pro Leu Thr Ile His 10 CGC TTC CCT CAA ATG CTA GAA GGG GCA CGG GGC TTG GTT AAC CAG CTT 288 Arg Phe Pro Gln Met Leu Glu Gly Ala Arg Gly Leu Val Asn Gln Leu 15 ATA CAG TTC GGT AGT TCA CTA TTG GGG TAC AGT GAG CGT CAG GAT GCG 336 Ile Gln Phe Gly Ser Ser Leu Leu Gly Tyr Ser Glu Arg Gln Asp Ala 20 GAA GCT ATG AGT CAA CTA CTG CAA ACC CAA GCC AGC GAG TTA ATA CTG 384 Glu Ala Met Ser Gln Leu Leu Gln Thr Gln Ala Ser Glu Leu Ile Leu ACC AGT ATT CGT ATG CAG GAT AAC CAA TTG GCA GAG CTG GAT TCG GAA 432 25 Thr Ser Ile Arg Met Gln Asp Asn Gln Leu Ala Glu Leu Asp Ser Glu 135 AAA ACC GCC TTG CAA GTC TCT TTA GCT GGA GTG CAA CAA CGG TTT GAC 480 Lys Thr Ala Leu Gln Val Ser Leu Ala Gly Val Gln Gln Arg Phe Asp 30 150 AGC TAT AGC CAA CTG TAT GAG GAG AAC ATC AAC GCA GGT GAG CAG CGA 528 Ser Tyr Ser Gln Leu Tyr Glu Glu Asn Ile Asn Ala Gly Glu Gln Arg 35 GCG CTG GCG TTA CGC TCA GAA TCT GCT ATT GAG TCT CAG GGA GCG CAG 576 Ala Leu Ala Leu Arg Ser Glu Ser Ala Ile Glu Ser Gln Gly Ala Gln 40 ATT TCC CGT ATG GCA GGC GCG GGT GTT GAT ATG GCA CCA AAT ATC TTC 624 Ile Ser Arg Met Ala Gly Ala Gly Val Asp Met Ala Pro Asn Ile Phe GGC CTG GCT GAT GGC GGC ATG CAT TAT GGT GCT ATT GCC TAT GCC ATC 672 45 Gly Leu Ala Asp Gly Gly Met His Tyr Gly Ala Ile Ala Tyr Ala Ile GCT GAC GGT ATT GAG TTG AGT GCT TCT GCC AAG ATG GTT GAT GCG GAG 720 Ala Asp Gly Ile Glu Leu Ser Ala Ser Ala Lys Met Val Asp Ala Glu 50 AAA GTT GCT CAG TCG GAA ATA TAT CGC CGT CGC CGT CAA GAA TGG AAA 768 Lys Val Ala Gln Ser Glu Ile Tyr Arg Arg Arg Gln Glu Trp Lys 55 ATT CAG CGT GAC AAC GCA CAA GCG GAG ATT AAC CAG TTA AAC GCG CAA 816 Ile Gln Arg Asp Asn Ala Gln Ala Glu Ile Asn Gln Leu Asn Ala Gln 60 CTG GAA TCA CTG TCT ATT CGC CGT GAA GCC GCT GAA ATG CAA AAA GAG 864 Leu Glu Ser Leu Ser Ile Arg Arg Glu Ala Ala Glu Met Gln Lys Glu 280 TAC CTG AAA ACC CAG CAA GCT CAG GCG CAG GCA CAA CTT ACT TTC TTA 912 65 Tyr Leu Lys Thr Gln Gln Ala Gln Ala Gln Ala Gln Leu Thr Phe Leu AGA AGC AAA TTC AGT AAT CAA GCG TTA TAT AGT TGG TTA CGA GGG CGT 960 Arg Ser Lys Phe Ser Asn Gln Ala Leu Tyr Ser Trp Leu Arg Gly Arg

-230-

310

PCT/US96/18003 WO 97/17432

5											TTG Leu						lcua
J	CTG Leu	ATG Met	GCA Ala	GAG Glu 340	CAA Gln	TCC Ser	TAT Tyr	CAA Gln	TGG Trp 345	GAA Glu	GCT Ala	AAT Asn	GAT Asp	AAT Asn 350	TCC Ser	ATT Ile	1056
10	AGC Ser	TTT Phe	GTC Val 355	AAA Lys	CCG Pro	GGT Gly	GCA Ala	TGG Trp 360	CAA Gln	GGA Gly	ACT Thr	TAC Tyr	GCC Ala 365	GGC Gly	TTA Leu	TTG Leu	1104
15	TG T Cys	GGA Gly 370	GAA Glu	GCT Ala	TTG Leu	ATA Ile	CAA Gln 375	AAT Asn	CTG Leu	GCA Ala	CAA Gln	ATG Met 380	GAA Glu	GAG Glu	GCA Ala	TAT Tyr	1152
20	CTG Leu 385	AAA Lys	TGG Trp	GAA Glu	TCT Ser	CGC Arg 390	GCT Ala	TTG Leu	GAA Glu	GTA Val	GAA Glu 395	CGC Arg	ACG Thr	GTT Val	TCA Ser	TTG Leu 400	1200
25	GCA Ala	GTG Val	GTT Val	TAT Tyr	GAT Asp 405	TCA Ser	CTG Leu	GAA Glu	GGT Gly	AAT Asn 410	GAT Asp	CGT Arg	TTT Phe	AAT Asn	TTA Leu 415	GCG Ala	1243
											GAG Glu						1296
30											ATC Ile						1344
35	Lys	Leu 450	Ser	Asp	Leu	Lys	Leu 455	Gly	Thr	Asp	Tyr	Pro 460	Asp	Ser	Ile	Val	1392
40											ATC Ile 475						1440
45											GCT Ala						1488
											GCG Ala						1536
50											GAT Asp						1584
55											GAT Asp						1632
60											AAA Lys 555						1630
65											ACC Thr					172	2
.,,																	

(2) INFORMATION FOR SEQ ID NO:55:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 573 amino acids
(B) TYPE: amino acids

70

-231-

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55 (TcbAiii):

Leu Gly Thr Ala Asn Ser Leu Thr Ala Leu Phe Leu Pro Gln Glu Asn 10 10 15

Ser Lys Leu Lys Gly Tyr Trp Arg Thr Leu Ala Gln Arg Met Phe Asn 20 25 30

15 Leu Arg His Asn Leu Ser Ile Asp Gly Gln Pro Leu Ser Leu Pro Leu 35 40 45

Tyr Ala Lys Pro Ala Asp Pro Lys Ala Leu Leu Ser Ala Ala Val Ser 50 55 60

Ala Ser Gln Gly Gly Ala Asp Leu Pro Lys Ala Pro Leu Thr Ile His 65 70 75 80

Arg Phe Pro Gln Met Leu Glu Gly Ala Arg Gly Leu Val Asn Gln Leu 25 90 95

Ile Gl
n Phe Gly Ser Ser Leu Leu Gly Tyr Ser Glu Arg Gl
n Asp Ala 100 105 110

30 Glu Ala Met Ser Gln Leu Leu Gln Thr Gln Ala Ser Glu Leu Ile Leu 115 120 125

Thr Ser Ile Arg Met Gln Asp Asn Gln Leu Ala Glu Leu Asp Ser Glu 130 135 140

Lys Thr Ala Leu Gln Val Ser Leu Ala Gly Val Gln Gln Arg Phe Asp 145 150 155 160

Ser Tyr Ser Gln Leu Tyr Glu Glu Asn Ile Asn Ala Gly Glu Gln Arg 165 170 175

Ala Leu Ala Leu Arg Ser Glu Ser Ala Ile Glu Ser Gln Gly Ala Gln 180 185 190

45 Ile Ser Arg Met Ala Gly Ala Gly Val Asp Met Ala Pro Asn Ile Phe 195 200 205

Gly Leu Ala Asp Gly Gly Met His Tyr Gly Ala Ile Ala Tyr Ala Ile 210 215 220

Ala Asp Gly Ile Glu Leu Ser Ala Ser Ala Lys Met Val Asp Ala Glu 225 230 235 240

Lys Val Ala Gln Ser Glu Ile Tyr Arg Arg Arg Gln Glu Trp Lys 245 250 255

Ile Gin Arg Asp Asn Ala Gln Ala Glu Ile Asn Gln Leu Asn Ala Gln 260 265 270

60 Leu Glu Ser Leu Ser Ile Arg Arg Glu Ala Ala Glu Met Gln Lys Glu 275 280 285

Tyr Leu Lys Thr Gln Gln Ala Gln Ala Gln Ala Gln Leu Thr Phe Leu 290 295 300

Arg Ser Lys Phe Ser Asn Gln Ala Leu Tyr Ser Trp Leu Arg Gly Arg 305 310 315 320

Leu Ser Gly Ile Tyr Phe Gln Phe Tyr Asp Leu Ala Val Ser Arg Cys 325 330 335

65

	Leu	Mêt	Ala	Glu 340	Gln	Ser	Tyr	Gln	Trp 345	Glu	Ala	Asn	Asp	Asn 350	Ser	Ile	
5	Ser	Phe	Val 355	Lys	Pro	Gly	Ala	Trp 360	Gln	Gly	Thr	Tyr	Ala 365	Gly	Leu	Leu	
10	C7s	Gly 370	Glu	Ala	Leu	Ile	Gln 375	Asn	Leu	Ala	Gln	Met 330	Glu	Glu	Ala	Tyr	
10	Leu 385	Lys	Trp	Glu	Ser	Arg 390	Ala	Leu	Glu	Val	Glu 395	Arg	Thr	Val	Ser	Leu 400	
15	Ala	Val	Val	Tyr	Asp 405	Ser	Leu	Glu	Gly	Asn 410	Asp	Arg	Phe	Asn	Leu 415	Ala	
	Glu	Gln	Ile	Pro 420	Ala	Leu	Leu	Asp	Lys 425	Gly	Glu	Gly	Thr	Ala 430	Gly	Thr	
20	Lys	Glu	Asn 435	Gly	Leu	Ser	Leu	Ala 440	Asn	Ala	Ile	Leu	Ser 445	Ala	Ser	Val	
25	Lys	Leu 450	Ser	Asp	Leu	Lys	Leu 455	Gly	Thr	Asp	Tyr	Pro 460	Asp	Ser	Ile	Val	
_	Gly 465	Ser	Asn	Lys	Val	Arg 470	Arg	Ile	Lys	Gln	11e 475	Ser	Val	Ser	Leu	Pro 480	
30		Leu			485					490					495		
		Ser		500					505					510			
35		Thr	515					520					525				
40	Tyr	Leu 530	Pro	Phe	Glu	Gly	11e 535	Ala	Leu	Asp	Asp	Gln 540	Gly	Thr	Leu	Asn	
	Leu 545	Gln	Phe	Pro	Asn	Ala 550	Thr	Asp	Lys	Gln	Lys 555	Ala	Ile	Leu	Gln	Thr 560	
45	Met	Ser	Asp	Ile	11e 565	Leu	His	Ile	Arg	Tyr 570	Thr	Ile	Arg 573	•••			
50	(2)		IFORI i)			E CF	IARA LEN TYP STR	CTER GTH: E: r ANDE	IST 2 ucle DNE	66 ICS: 898 eic SS: line	base acie doul	d	irs				
55		(:	ii)	мот	LECU	LE 1	TYPE	: [NA	(gen	omi	c)					
		(:	xi)	SE	QUEN	CE I	DESC	RIPI	NOI	: SE	Q II	D NO	:56	(50	cA)		
60	1 1	ATG / Met /	AAT (Asn (CAA (Gln 1	CTC (Leu /	GCC Ala	AGT (Ser	CCC (Pro l	CTG /	ATT '	rcc (Ser /	CGC A	ACC (GAA (Glu (GAG . Glu	ATC CAC Ile His	48 16
65	49 17	AAC Asn	TTA Leu	CCC Pro	GGT Gly	AAA Lys	TTG Leu	ACC Thr	GAT Asp	CTT Leu	GGT Gly	тат Туг	ACC Thr	TCA Ser	GTG Val	TTT GAT Phe Asp	96 32
	97	GTG	GTA	CGT	ATG	CCG	CGT	GAG		TTT 33-	ATT	CGT	GAG	CAT	CGT	GCT GAT	14-

	33	Val	Val	Arg	Met	Pro	Arg ·	Glu	Arg	Phe	Ile	Arg (Glu	Hıs	Arg	Ala	Ąsp	43
5	145 49	C TC Leu														TAT Tyr		64 192
10	193 65	CAT His														GCT Ala		240 30
	241 81															TAC Tyr		288 96
15	289 97															CCA Pro	AGT Ser	336 112
20	337 113															CAT His	ATT Ile	38 4 128
25	385 129															ATT Ile		432 144
30	433 145															ATT Ile		480 160
	481 161															AAT Asn		528 17 6
35	529 177								-							CTG Leu		576 192
40	577 193															CTG Leu		62 4 208
45	625 209															TTG Leu		672 224
50	673 225															ccc Pro		720 240
	721 241															GCC Ala		768 256
55	769 257															GAG Glu		816 272
60	817 273															CTT Leu		86 4 233
65	865 289															ACC Thr		912 304

_	913 305	ATG Met	ACT Thr	GAT Asp	CGA Arg	ACA Thr	AGT Ser	TTG Leu	ACT Thr	GTA Val	CCC Pro	CAG Gln	GTA Val	GAA Glu	CTG Leu	ATG Met	TT3 Leu	360 310
5	961 321	TGT Cys	TCA Ser	ACT Thr	GTC Val	GGA Gly	GGT Gly	TCT Ser	ACG Thr	GTT Val	GTT Val	AAG Lys	TCT Ser	GAT Asp	AAT Asn	GTG . Val :	AGT Ser	1003 336
10	1009 337	TCT 3er	GGT Gly	GAC	ACG Thr	ACA Thr	GCG Ala	ACG Thr	CCA Pro	TTT Phe	GCG Ala	TAT Tyr	GGC Gly	GCC Ala	CGC Arg	TTT Phe	ATT lie	1056 352
15	1057 353	CAT Hls	GCC Ala	GGT Gly	AAG Lys	CCG Pro	GAG Glu	GCG Ala	ATT	ACC Thr	C T G Leu	AGT Ser	CGC	AGT Ser	GGT Gly	GCG Ala	GAG Glu	110 4 368
20	1105 369	GCG Ala	CAT	TTT Phe	GCT Ala	CTG Leu	ACG Thr	GTT Val	'AAC Asn	AAT Asn	CTG Leu	ACA Thr	GAT Asp	GAC Asp	AAG Lys	TTG Leu	GAC Asp	1152 334
	1153 3 8 5	CGT Arg	ATT	AAC Asn	CGC Arg	ACA Thr	GTG Val	CGC Arg	CTG	CAA Gln	AAA Lys	TGG	C TG Leu	AAT Asn	CTG Leu	CCT Pro	TAT Tyr	1200 400
25	1201 401	GAG Glu	GAT Asp	ATT Ile	GAC Asp	CTG Leu	TTA Leu	GTG Val	ACT Thr	TCT Ser	GC T Ala	ATG Met	GAT Asp	GCG Ala	GAA Glu	ACA Thr	GGA Gly	1248 416
30	1249 417					TCG Ser												1296 432
35	1297 433					CAG Gln												1344 148
40	1345 449	GGC				GTA Val												1392 464
4.5	1393 465					GTG Val												190 1110
45	1441 481	_				CAG Gln												1483 496
50	1489 497					AAG Lys												1536 512
55	1537 513					TTG Leu												1584 523
60	15 85 529	ACG Thr				CTC Leu												544 1632
	1633 545					TTG Leu												1580 560
65	1681	TGT	GCC	T T G	GTT	GAT	CGA	TTA	GAT	GCA	GGT	ACA	GGC	ATC	GTC	TGG	CAG	1723

-235-

	551	Суз	Ala	Leu	Val	Asp	Arg	Leu	Asp	Ala	Gly	Thr	Gly	Ile	Val	Trp	Sin	574
5	1729 577																cca Pro	1773 532
10	1777 1824 593 608																	ATT GCT
15	1825 609	CAA Gln																1372 624
20	1873 625					CCT Pro												1920 640
25	1921 641	AAC Asn																1958 656
25	1969 657					TCC Ser												2016 672
30	2017 673					TGG Trp												2064 688
35	2065 639					GGT Gly												2112 764
40	2113 705					AAT Asn												2160 720
45	2161 721					CTG Leu											CAA Gln	2208 736
43	2209 737					GTC Val												2256 752
50	22 57 753					TTA Leu											CAG Gln	2304 763
55	2305 769	TGG Trp				ACT Thr												2352 784
60	2353 785	G AT Asp				GAC Asp												2 4 00 800
	2401 301	TCC Ser																2448 316
65																		

	2449 317	TTG Leu	CTG Leu	GAC Asp	TAT Tyr	CCA Pro	GCC Ala	TAT Tyr	TTT Phe	GGC Gly	GC T Ala	TCC Ser	GCA Ala	GAA Glu	ACA Thr	GTS Val	ACC Thr	2498 632
5	2497 833	GAT Asp	ATC	AGT Ser	TTG Leu	TGG Trp	ATG Met	CTT Leu	TAT Tyr	ACC Thr	CTG Leu	AGC Ser	TGT Cys	TAT Tyr	AGC Ser	GAT Asp	TTA Léu	2544 348
10	2545 849	TTG Leu	C T C Leu	CAA Gln	ATG Met	G GT Gly	GAA Glu	GCT Ala	GGT Gly	GGT Gly	ACC Thr	GAA Glu	GAT Asp	GAT Asp	GTA Val	CTG Leu	GCC Ala	2592 364
15	2593 865	TAC Tyr	TTA Leu	CGC Arg	ACA Thr	GCT Ala	AAT Asn	GCT Ala	ACC Thr	ACA Thr	CCG Pro	TTG Leu	AGC Ser	CAA Gln	TCT Ser	GAT Asp	GCT Ala	2640 880
20	2641 381	GCA Ala	CAG Gln	ACG Thr	TTG Leu	GCA Ala	ACG Thr	CTA Leu	TTG Leu	GGT Gly	TGG Trp	GAG Glu	GTT Val	AAC Asn	GAG Glu	TTG Leu	CAA Gln	2688 396
20	2689 897	GCC Ala	GCT Ala	TGG Trp	TCG Ser	GTA Val	TTG Leu	GGC Gly	GGG Gly	ATT Ile	GCC Ala	AAA Lys	ACC Thr	ACA Thr	ccs Pro	CAA Gln	CTG Leu	2736 912
25	2737 913	GAT Asp	GCG Ala	CTT Leu	CTG Leu	CGT Arg	TTG Leu	CAA Gln	CAG Gln	GCA Ala	CAG Gln	AAC Asn	CAA Gln	ACT Thr	GGT Gly	CTT Leu	GGC Gly	2784 928
30	2785 929										CTG Leu							2832 944
35	2833 945	ACC Thr	CTT Leu	TGG Trp	CAA Gln	AGC Ser	ACC Thr	ggt Gly	CAG Gln	GCG Ala	CTG Leu	GTG Val	GCT Ala	GGC GLY	GTA Val	TCC Ser	CAT His	2880 960
	2881 961		AAG Lys						398 56									
40	(2)	INFO	ORMA SE	QUE		CHAI	Q II RACT	ERIS	TIC		ino a	acid) e					
45	r			(B)	T	PE:	ami	no	ació		4010	.5					
50		(ii (xi			ENCE				otei: ON:		ID 1	NO: 5	<i>7</i> (9	rcca	per	otid	e)	
	Feat	ures		-	Fro		TO 10		De	escr	ipti D NO	on						
55	1	Met A										_						16 32
60	33 49	Val V							_			_			-		•	48
,	65	His C						-								•		30
65	31	Gln E	Phe C	Sly (.eu ?	Arg S	Ser F	Pro E	he s	Ser \	Jal S	Ser (Sly (Pro ?	Asp 1	ryr l	Ala	95

-237-

				4														
	97	Asn	Gln	Phe	ueu	Asp	Ala	Asn	Thr	Gly	Trp	Lys	Аsp	Lys	Ala	Pro	3er	111
	113	Gly	Ser	Pro	Glu	Ala	Asn	Asp	Ala	Pro	Val	Ala	Tyr	Leu	Thr	His	Ile	128
5	129	Tyr	Gln	Leu	Ala	Leu	Glu	Gln	Glu	Lys	Asn	Gly	Ala	Thr	Thr	Ile	Met	144
	145	Asn	Thr	Leu	Ala	Glu	Arg	Arg	Pro	Asp	Leu	Gly	Ala	Leu	Leu	Ile	Asn	160
10	161	Asp	Lys	Ala	Ile	Asn	Glu	Val	Ile	Pro	Gln	Lêu	Gln	Leu	Val	Asn	Glu	176
10	177	Ile	Leu	Ser	Lys	Ala	Ile	Gln	Lys	Lys	Leu	Ser	Leu	Thr	Asp	Leu	Glu	192
	193	Ala	Val	Asn	Ala	Arg	Leu	Ser	Thr	Thr	Arg	Tyr	Pro	Asn	Asn	Leu	Pro	208
15	209	Tyr	His	Tyr	Gly	Hıs	Gln	Gln	Ile	Gln	Thr	Ala	Gln	Ser	Val	Leu	Gly	224
	225	Thr	Thr	Leu	Gln	λsp	Ile	Thr	Leu	Pro	Gln	Thr	Leu	Asp	Leu	Pro	Gln	240
20	241	Asn	Phe	Trp	Ala	Thr	Ala	Lys	Gly	Lys	Leu	Ser	Asp	Thr	Thr	Ala	Ser	256
_0	257	Ala	Leu	Thr	Arg	Leu	Gln	Ile	Met	Ala	Ser	Gln	Phe	Ser	Pro	Glu	Gln	272
	273	Gln	Lys	Ile	Ile	Thr	Glu	Thr	Val	Gly	Gln	Asp	Phe	Tyr	Gln	Leu	Asn	288
25	289	Tyr	Gly	Asp	Ser	Ser	Leu	Thr	Val	Asn	Ser	Phe	Ser	Asp	Met	Thr	Ile	304
	305	Met	Thr	Asp	Arg	Thr	Ser	Leu	Thr	Val	Pro	Gln	Val	Glu	Leu	Met	Leu	320
30	321	Cys	Ser	Thr	Val	Gly	Gly	Ser	Thr	Val	Val	Lys	Ser	Asp	Asn	Val	Ser	336
50	337	Ser	Gly	Asp	Thr	Thr	Ala	Thr	Pro	Phe	Ala	Tyr	Gly	Ala	Arg	Phe	Ile	352
	353	His	Ala	Gly	Lys	Pro	Glu	Ala	Ile	Thr	Leu	Ser	Arg	ser	Gly	Ala	Glu	368
35	369	Ala	His	Phe	Ala	Leu	Thr	Val	Asn	Asn	Leu	Thr	Asp	Asp	Lys	Leu	Asp	384
	385	Arg	Ile	Asn	Arg	Thr	Val	Arg	Leu	Gln	Lys	Trp	Leu	Asn	Leu	Pro	Tyr	400
40	401	Glu	Asp	Ile	Asp	Leu	Leu	Val	Thr	Ser	Ala	Met	Asp	Ala	Glu	Thr	Gly	416
40	417	Asn	Thr	Ala	Leu	Ser	Met	Asn	Asp	Asn	Thr	Leu	Arg	Met	Leu	Gly	Val	432
	433	Phe	Lys	His	Tyr	Gln	Ala	Lys	Tyr	Gly	Val	Ser	Ala	Lys	Gln	Phe	Ala	448
45	449	Gly	Trp	Leu	Arg	Val	Val	Ala	Pro	Phe	Ala	Ile	Thr	Pro	Ala	Thr	Pro	464
	465	Phe	Leu	Asp	Gln	Val	Phe	Asn	Ser	Val	Gly	Thr	Phe	Asp	Thr	Pro	Phe	480
5 0	481	Val	Ile	Asp	Asn	Gln	Asp	Phe	Val	Tyr	Thr	Leu	Thr	Thr	Gly	Gly	Asp	496
30	497	Gly	Ala	Arg	Val	Lys	His	Ile	Ser	Thr	Ala	Leu	Gly	Leu	Asn	His	Arg	512
	513	Gln	Phe	Leu	Leu	Leu	Ala	Asp	Asn	Ile	λla	Arg	Gln	Gln	Gly	Asn	Val	528
55	529	Thr	Gln	Ser	Thr	Leu	Asn	Cys	Asn	Leu	Phe	Val	Val	Ser	Ala	Phe	Tyr	544
	545	Arg	Leu	Ala	Asn	Leu	Ala	Arg	Thr	Leu	Gly	Ile	Asn	Pro	Glu	Ser	Phe	560
60	561	Cys	Ala	Leu	Val	Asp	Arg	Leu	Asp	Ala	Gly	Thr	Gly	Ile	Val	Trp	Gln	576
1117	577	Gln	Leu	Ala	Gly	Lys	Pro	Thr	Ile	Thr	Val	Pro	Gln	Lys	Asp	Ser	Pro	592
	593	Leu	Ala	Ala	Asp	Ile	Leu	Ser	Leu	Leu	Gln	Ala	Leu	Ser	Ala	Ile	Ala	608
65	609	Gln	Trp	Gln	Gln	Gln	His	Asp	Leu	Glu	Phe	Ser	Ala	Leu	Leu	Leu	Leu	624

-238-

PCT/US96/18003 WO 97/17432

	625	Leu	ı Sel	: Asp	Asn	Pro	Ile	ser	Thr	Ser	Gln	Gly	Thr	Аsp	Asp	Gla	Leu	ı	£40	
	641	Ast	n Phe	lle	Arg	Gln	7al	Trp	Gln	Asn	Leu	Gly	Ser	Thr	Phe	Val	GI;		ó55	
5	÷57	Ala	Thi	Leu	Leu	Ser	Arg	Ser	Gly	Ala	Pro	Leu	Val	Asp	Thr	Asn	Gly		67.2	
	673	His	Alé	lle	Asp	Trp	Phe	Ala	Leu	Leu	Ser	Ala	Gly	Asn	Ser	Pro	Leu	1	688	
10	689	Ile	. Asp	Lys	Val	Gly	Leu	Val	Thr	Asp	Ala	Gly	Ile	Gln	Ser	Val	Ile	•	764	
117	705	Ala	Thr	Val	Val	Asn	Thr	Gln	Ser	Leu	Ser	Asp	Glu	Asp	Lys	Lys	Leu	l	720	
	721	Ala	Ile	Thr	Thr	Leu	Thr	Asn	Thr	Leu	Asn	Gln	Val	Gln	Lys	Thr	Gir	,	736	
15	737	Gln	Gly	Val	Ala	Val	Ser	Leu	Leu	Ala	Gln	Thr	Leu	Asn	Val	Ser	Glr	1	752	
	753	Ser	Leu	Pro	Ala	Leu	Leu	Leu	Arg	Trp	Ser	Gly	Gln	Thr	Thr	Tyr	Glr	ı	768	
20	769	Trp	Leu	Ser	Ala	Thr	Trp	Ala	Leu	Lys	Asp	Ala	Val	Lys	Thr	Ala	Ala	ı	734	
	785	Asp	Ile	Pro	Ala	Asp	Tyr	Leu	Arg	Gln	Leu	Arg	Glu	Val	Val	Arg	Arg	r	300	
	301	Ser	Leu	Leu	Thr	Gln	Gln	Phe	Thr	Leu	Ser	Pro	Ala	Met	Val	Gln	Thi		816	
25	317	Leu	Leu	Asp	Tyr	Pro	Ala	Tyr	Phe	Gly	Ala	Ser	Ala	Glu	Thr	Val	Thr	•	832	
	833	Asp	Ile	Ser	Leu	Trp	Met	Leu	Tyr	Thr	Leu	Ser	Cys	Tyr	Ser	Эsр	Leu	ı	848	
30	349	Leu	Leu	Gln	Met	Gly	Glu	Ala	Gly	Gly	Thr	Glu	Asp	Asp	Val	Leu	Ala	•	964	
	865	Tyr	Leu	Arg	Thr	Ala	Asn	Ala	Thr	Thr	Pro	Leu	Ser	Gln	Ser	Asp	Ala	ı	880	
	881	Ala	Gln	Thr	Leu	Ala	Thr	Leu	Leu	Gly	Trp	Glu	Val	Asn	Glu	Leu	Glr	7	896	
35	397	Ala	Ala	Trp	Ser	Val	Leu	Gly	Gly	Ile	Ala	Lys	Thr	Thr	Pro	Gln	Lei	ı	912	
	913	Asp	Ala	Leu	Leu	Arg	Leu	Gln	Gln	Ala	Gln	Asn	Gln	Thr	Gly	Leu	Gly	,	928	
4 0	929	Val	Thr	Gln	Gln	Gln	Gln	Gly	Tyr	Leu	Leu	Ser	Arg	Asp	Ser	Asp	Tyri	•	944	
	945	Thr	Leu	Trp	Gln	Ser	Thr	Gly	Gln	Ala	Leu	Val	Ala	Gly	Val	Ser	His	3	960	
	361	Val	Lys	Gly	Ser	Asn	96	55												
1 5	(2)			ATIC SEQUI	ENCE (A)	CHA	ARAC LENG	TERI TH:	STIC 46	CS: 98 b	ase	pai	rs							
50					(B) (C) (D)	9	TYPE STRA TOPO	NDEI	NES:	S: d	loub	le								
		(i	.i)	MOL	ECUL	E TY	PE:	DI\	IA (geno	mic)								
55		(×	:i)	SEQ	JENC	E DI	ESCR	I PT I	ON:	SEC	ID.	NO:	58	(·B)					
5()				TTA :																1
				GTG A																<u>و</u> 3

-239-

Ϋć

65

	97 33	AGT Ser	GGT Gly	CAG Gln	ccg Pro	GTG Val	ACG Thr	GTG Val	GAA Glu	GAT Asp	TTA Leu	TAC Tyr	GAA Glu	TAT Tyr	TTG Leu	CTG Leu	ATT Ile	19 111
5	145 49																GCG	64 192
10	193 65							TAT Tyr										90 540
15	241 81							GAG Glu										288 96
	289 97							ATC Ile									AAT Asn	336 112
20	337 113							TCA Ser										384 123
25	385 129							ACG Thr										432 144
30	433 145							GTT Val									GCA Ala	480 160
35	481 161							CTC Leu										528 176
	529 177							TTT Phe										576 192
40	577 193							ATG Met										624 208
45	625 209	GCA Ala	GGG GLY	AAT Asn	CCG Pro	GTG Val	ACG Thr	CCA Pro	AAT Asn	TGC Cys	TGG Trp	AAT Asn	GAT Asp	TGG Trp	CAG Gln	GAA Glu	ATC Ile	672 224
50	673 225							GAT Asp									CCG Pro	720 240
55	721 241							CTA Leu										768 256
	769 257							GAC Asp										316
60	817 273	TAC Tyr	AAC Asn	ATA Ile	AAG Lys	TTT Phe	GGT Gly	тат туг	AAA Lys	CGT Arg	TAT Tyr	GAT Asp	GAT Asp	ACT Thr	TGG Trp	ACA Thr	GCG Ala	364
65	865 289	CCG Fro	AAT Asn	ACG Thr	ACC Thr	ACG Thr	TTA Leu	ATG Met	ACA Thr	CAA Gln	CAA Gln	GCA Ala	GGG Gly	GAA Glu	AGT Ser	TCA Ser	GAA Glu	912 304

-240-

5	913 305									GAT Asp								320 320
	961 321	CAA Gln								GAT Asp								190a 336
10	1009 337									CGC Arg								1056 352
15	1057 353									AAT Asn								1104 368
20	1105 369									GCT Ala								1152 384
25	1153 385	ccg Pro								AGT Ser								1200 1200
		GGT																1243 416
30	1249 417									GAA Glu							TGG Trp	1296 432
35	1297 433	GTA Val								CAA Gln								1344 448
40	1345 449																AAT Asn	1392 464
45	1393 465	GGG Gly								TTT Phe								1440 430
	1441 481																TTT Phe	1488 496
50	1489 497																ATA Ile	1536 512
55	1537 513									GGT Gly							GGA Gly	1584 523
60	1585 529	ACG Thr															CCC	1632 544
65	1633 545	C TG Leu	C TT Leu	GAT Asp	ACT Thr	CTC Leu	CAT H1s	ACT Thr	GTT Val	ACT Thr	CTG Val	AAG Lys	G17 GGC	AGT Ser	TAT Tyr	ATC Ile	GCT Ala	1630 560

-241-

	1631 561								GGT Gly	1728 576
5	1729 577								CTT Leu	1776 592
10	1777 593								ACC Thr	182 4 608
15	1825 609	ATC Ile							CAG Gln	1872 624
	1873 625								TAC Tyr	1920 6 4 0
20	1921 641	 ACT Thr								1968 656
25	1969 657	ACT Thr								2016 672
30	2017 673	 CAG Gln								2064 688
35	2065 689	AAA Lys								2112 704
	2113 705	GCG Ala								2160
40	2161 721								TGG Trp	2208 736
45	2209 737	TCA Ser								2256 752
50	2257 753	TTG Leu								2304 768
55	2305 769	TTG Leu								2352 784
	2353 785	AGC Ser								2 4 00 300
60	2 401 301	TTG Leu								2448 316
65	2449 817	CAG Gln								2 4 96 332

-242-

í

2497 CCG GCG ATG AAA AAC AAG CCA CAC AAT GCC CCG GCT TAT TGG AAT GTA 2544 333 Pro Ala Met Lys Ash Lys Pro His Ash Ala Pro Ala Tyr Trp Ash Tal 319 5 2545 CGT CCG TTG GTT GAA GGA AAC AGC GAT TTG TCA CGT CAT TTG GAC GAT 2592 349 Arg Pro Leu Val Glu Gly Asn Ser Asp Leu Ser Arg His Leu Asp Asp 864 10 2593 TOT ATA GAC COA GAT ACT CAA GOT TAT GOT CAT COG GTG ATA TAC CAG 2610 365 Ser Ile Asp Pro Asp Thr Gln Ala Tyr Ala His Pro Val Ile Tyr Gln 068 2641 AAA GCG GTG TTT ATT GCC TAT GTC AGT AAC CTG ATT GCT CAG GGA GAT 881 Lys Ala Val Phe Ile Ala Tyr Val Ser Asn Leu Ile Ala Gin Gly Asp 15 2688 فافاق 2689 ATG TGG TAT CGC CAA TTG ACT CGT GAC GGT CTG ACT CAG GCC CGT GTC 2736 20 897 Met Trp Tyr Arg Gln Leu Thr Arg Asp Gly Leu Thr Gln Ala Arg Val 912 2737 TAT TAC AAT CTG GCC GCT GAA TTG CTA GGG CCT CGT CCG GAT GTA TC3 2721 913 Tyr Tyr Asn Leu Ala Ala Glu Leu Leu Gly Pro Arg Pro Asp Val Ser 25 2795 CTG AGT AGC ATT TGG ACG CCG CAA ACC CTG GAT ACC TTA GCA GCC GGG 2332 929 Leu Ser Ser Ile Trp Thr Pro Gln Thr Leu Asp Thr Leu Ala Ala Gly 944 30 2833 CAA AAA GCG GTT TTA CGT GAT TTT GAG CAC CAG TTG GCT AAT AGT GAT 2880 945 Gln Lys Ala Val Leu Arg Asp Phe Glu His Gln Leu Ala Asn Ser Asp 35 2881 ACC GCT TTA CCC GCA TTG CCG GGC CGC AAT GTC AGC TAC TTG AAA CTG 2923 961 Thr Ala Leu Pro Ala Leu Pro Gly Arg Asn Val Ser Tyr Leu Lys Leu 976 2929 GCA GAT AAT GGC TAC TTT AAT GAA CCG CTC AAT GTT CTG ATG TTG TCT 2976 40 977 Ala Asp Asn Gly Tyr Phe Asn Glu Pro Leu Asn Val Leu Met Leu Ser 992 2977 CAC TGG GAT ACG TTG GAT GCA CGG TTA TAC AAT CTG CGT CAT AAC CTG 3024 993 His Trp Asp Thr Leu Asp Ala Arg Leu Tyr Asn Leu Arg His Asn Leu 1003 45 3025 ACC GTT GAT GGC AAG CCG CTT TCG CTG CCG CTG TAT GCT GCG CCT GTT 3072 1009 Thr Val Asp Gly Lys Pro Leu Ser Leu Pro Leu Tyr Ala Ala Pro Val 1024 50 3073 GAT CCG GTA GCG TTG TTG GCT CAG CGT GCT CAG TCC GGC ACG TTG ACG 3120 1025 Asp Pro Val Ala Leu Leu Ala Gln Arg Ala Gin Ser Gly Thr Leu Thr 1040 55 3121 AAT GGC GTC AGT GGC GCC ATG TTG ACG GTG CCG CCA TAC CGT TTC AGC 3153 1041 Asn Gly Val Ser Gly Ala Met Leu Thr Val Pro Pro Tyr Arg Phe Ser 1056 3169 GCT ATG TTG CCG CGA GCT TAC AGC GCC GTG GGT ACG TTG ACC AGT TTT 3216 60 1057 Ala Met Leu Pro Arg Ala Tyr Ser Ala Val Cly Thr Leu Thr Ser Phe 1072 3217 GGT CAG AAC CTG CTT AGT TTG TTG GAA CGT AGC GAA CGA GCC TGT CAA 3264 1073 Gly Gln Asn Leu Leu Ser Leu Leu Glu Arg Ser Glu Arg Ala Cys Gin 1036 65

	3265 1089	GAA Glu	GAG Glu	TTG Leu	GCG Ala	CAA Gln	CAG Gln	CAA Gln	CTG Leu	TTG Leu	GAT Asp	ATG Met	TCC Ser	AGC Ser	TAT Tyr	GCC Ala	ATC Ile	3311 1164
5	3313 1105																GCG Ala	3360 1120
10	3361 1121																TAC Tyr	3403 1156
15	3409 1137																GAC Asp	3456 1152
	3457 1153																CAA Gln	1169 3504
20	3505 1169																GCT Ala	3552 1134
25	3553 1185																GGG Gly	3600 1200
30	3601 1201																GCA Ala	36 4 8 1216
35	3649 1217																TAC Tyr	3696 1232
33	3697 1233																GCG Ala	3744 1248
40	3745 1249																AAG Lys	3792 1264
45	3793 1265																CGT Arg	3840 1280
50	38 41 1281																GCG Ala	3888 1296
55	33 8 9 1297																GCC Ala	3936 1312
<i>.</i> ,	3937 1313																ATC Ile	398 4 1323
60	3985 1329																GAG Glu	4032 1344
65	4033 1345																CGT Arg	4030 1360

\checkmark	
-	

5	4081 1361															CTA Leu	4128 1376
	4129 1377									TTA Leu							4176 1392
10	4177 1393									GAC Asp							4224 1408
15	4225 1409									GTG Val						GGG Gly	4272 1424
20	4273 1425									CTC Leu							4320 1440
25	4321 1441									GTT Val					_		4368 1456
	4369 1457	GGT Gly								ATT Ile							4416 1472
30	4417 1473									ATT Ile							4464 1488
35	4465 1489									CTA Leu						GCT Ala	4512 1504
40	4513 1505	GTT Val														ATT Ile	4560 1520
45	4561 1521															GCG Ala	4608 1536
	4609 1537									GTG Val						GGC Gly	4656 1552
50	4657 1553															ნ98 566	
55		NFOR i)		UENC (A)	E CI	HARA LEN	CTEI GTH	RIST : 1	ICS: 665	ami	no a	cid	s				
60	(ii)	мо	(B) (C) LECU)	TYP TOP	OLO	GY:	line								

-245-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59 (TccB peptide)

SUBSTITUTE SHEET (RULE 26)

From To Description

65 Features

I 11 SEQ ID NO:7

_	1	Met	Leu	Ser	Thr	Mec	Glu	Lys	Gln	Leu	Asn	Glu	Ser	Gln	Arg	Аsр	Ala	. i
5	17	Leu	Val	Thr	Gly	туr	Met	Asn	Phe	Val	Ala	Pro	Thr	Leu	Lys	Gly	Val	3.2
	33	ser	Gly	Gin	Pro	Val	Thr	Val	Glu	Asp	Leu	Tyr	Glu	Tyr	Leu	Leu	Ile	43
10	49	Asp	Pro	Glu	Val	Ala	Asp	Glu	Va1	Glu	Thr	Ser	Arg	Val	Ala	Gln	Ala	64
	ć5	Ile	Ala	Ser	Ile	Gln	Gln	Tyr	Met	Thr	Arg	Leu	Val	Asn	Gly	Ser	Glu	30
15	81	Pro	Gly	Arg	Gln	Ala	Met	Glu	Pro	Ser	Thr	Ala	Asn	Glu	Trp	Arg	Asp	96
13	97	Asn	Asp	Asn	Gln	T;'r	Ala	Ile	Trp	Ala	Ala	Gly	Ala	Glu	Val	Arg	Asn	112
	113	Tyr	Ala	Glu	Asn	Tyr	Ile	Ser	Pro	Ile	Thr	Arg	Gln	Glu	Lys	Ser	Hls	123
20	129	Tyr	Phe	Ser	Glu	Leu	Glu	Thr	Thr	Leu	Asn	Gln	Asn	Arg	Leu	Asp	Pro	144
	145	Asp	Arg	Val	Gln	Asp	Ala	Val	Leu	Ala	Tyr	Leu	Asn	Glu	Phe	Glu	Ala	160
25	161	Val	Ser	Asn	Leu	Tyr	Val	Leu	Ser	Gly	Tyr	Ile	Asn	Gln	qzA	Lys	Phe	176
	177	Asp	Gln	Ala	Ile	Tyr	Tyr	Phe	Ile	Gly	Arg	Thr	Thr	Thr	Lys	Pro	Tyr	192
	193	Arg	Tyr	Tyr	Trp	Arg	Gln	Met	Asp	Leu	ser	Lys	Asn	Arg	Gln	ązĶ	Pro	208
30	209	Ala	GJA	Asn	Pro	Val	Thr	Pro	Asn	Cys	Trp	Asn	Asp	Trp	Gln	Glu	Ile	224
	225						Gly											240
35	241						Arg											256
	257	Ala	Val	Gln	Lys	Asp	Ala	Asp	Gly	Lys	Asn	Ile	Gly	Lys	Thr	His	Ala	272
	273	Tyr	Asn	Ile	Lys	Phe	Gly	Tyr	Lys	Arg	Tyr	Asp	Asp	Thr	Trp	Thr	Ala	238
40	289	Pro	Asn	Thr	Thr	Thr	Leu	Met	Thr	Gln	Gln	Ala	Gly	Glu	Ser	Ser	Glu	304
	305	Thr	Gln	Arg	Ser	Ser	Leu	Leu	Ile	Asp	Glu	Ser	Ser	Thr	Thr	Leu	Arg	. 20
45	321	Gln	Val	Asn	Leu	Leu	Ala	Thr	Thr	Asp	Phe	Ser	Ile	Asp	Pro	Thr	Glu	336
	337	Glu	Thr	Asp	Ser	Asn	Pro	Tyr	Gly	Arg	Leu	Met	Leu	Gly	Val	Phe	Val	352
	353	Arg	Gln	Phe	Glu	Gly	Asp	Gly	Ala	Asn	Arg	Lys	Asn	Lys	Pro	Val	Val	368
5 0	369	Tyr	Gly	Tyr	Leu	Tyr	Cys	Asp	Ser	Ala	Phe	Asn	Arg	Hıs	Val	Leu	Arg	384
	385						Phe											400
55	401						Gln											416
	417						Gly											432
	433					_	Asp											113
60	149						Gly											101
	465	Gly	Asp	Phe	Ile	Asn	Arg	His	Thr	Phe	Gly	Tyr	Asn	Asp	Leu	Val	Tyr	480
65	481					_	Tyr											136
	197	Tyr	Leu	Asp	Tyr	His	Asp				Tyr	Thr	Phe	His	λsn	Ala	Ile	512
									-246	_								

-246-

	513	Ile	Asn	Tyr	Trr	Pro	ser	Gly	Tyr	Gly	Gly	Gly	Ser	7al	Pro	Asn	Sly	523
5	529	Thr	Trp	Ala	Leu	Glu	Gln	Arg	Ile	Asn	Glu	Gly	Trp	Ala	Ile	Ala	Pro	244
3	545	Leu	Leu	Asp	Thr	Leu	His	Thr	Val	Thr	Val	Lys	Gly	Ser	Tyr	Ile	Ala	560
	561	Trp	Glu	Gly	Glu	Thr	Pro	Thr	Gly	Tyr	Asn	Leu	Tyr	Ile	Pro	Asp	Gly	576
10	5~7	Thr	7al	Leu	Leu	Аsр	Trp	Phe	Asp	Lys	Ile	Asn	Phe	Ala	Ile	Gly	Leu	592
	593	Asn	Lys	Leu	Glu	Ser	Val	Phe	Thr	Ser	Pro	Asp	Trp	Pro	Thr	Leu	Thr	608
15	609	Thr	Ile	Lys	Asn	Phe	Ser	Lys	Ile	Ala	Asp	Asn	Arg	Lys	Phe	Tyr	Gln	624
13	625	Glu	Ile	Asn	Ala	Glu	Thr	Ala	Asp	Gly	Arg	Asn	Lëu	Phe	Lys	Arg	Tir	640
	ō41	Ser	Thr	Gln	Thr	Phe	Gly	Leu	Thr	Ser	Gly	Ala	Thr	Tyr	Ser	Thr	Thr	จ๋5จ์
20	657	Tyr	Thr	Leu	Ser	Glu	Ala	Asp	Phe	Ser	Thr	Asp	Pro	Asp	Lys	Asn	Tir	672
	673	Leu	Gln	Val	Cys	Leu	Asn	Val	Val	Trp	Asp	His	Tyr	Asp	Arg	Pro	Ser	688
25	589	Gly	Lys	Lys	Gly	Ala	Tyr	Ser	Trp	Val	Ser	Lys	Trp	Phe	λsn	Val	Tyr	704
-5	705	Val	Ala	Leu	Gln	Asp	Ser	Lys	Ala	Pro	Asp	Ala	Ile	Pro	Arg	Leu	Val	720
	721	Ser	Arg	Tyr	Asp	Ser	Lys	Arg	Gly	Leu	Val	Gln	Tyr	Leu	Asp	Phe	Trp	736
30	737	Thr	Ser	Ser	Leu	Pro	Ala	Lys	Thr	Arg	Leu	Asn	Thr	Thr	Phe	Val	Arg	752
	753	Thr	Leu	Ile	Glu	Lys	Ala	Asn	Leu	Gly	Leu	Asp	Ser	Leu	Leu	Asp	Tyr	768
35	769	Thr	Leu	Gln	Ala	Asp	Pro	Ser	Leu	Glu	Ala	Asp	Leu	Val	Thr	Asp	Gly	764
	785	Lys	Ser	Glu	Pro	Met	Asp	Phe	Asn	Gly	Ser	Asn	Gly	Leu	Tyr	Phe	Trp	800
	801	Glu	Leu	Phe	Phe	His	Leu	Pro	Phe	Leu	Val	Ala	Thr	Arg	Phe	Ala	Asn	316
40	817	Glu	Gln	Gln	Phe	Ser	Pro	Ala	Gln	Lys	Ser	Leu	His	Tyr	Ile	Phe	Asp	932
	333	Pro	Ala	Met	Lys	Asn	Lys	Pro	His	Asn	Ala	Pro	Ala	Tyr	Trp	Asn	Val	348
45	349	Arg	Pro	Leu	Val	Glu	Gly	Asn	Ser	Asp	Leu	ser	Arg	His	Leu	Asp	Asp	364
	965	Ser	Ile	Asp	Pro	Asp	Thr	Gln	Ala	Tyr	Ala	His	Pro	Val	Ile	Tyr	Gln	086
	881	Lys	Ala	Val	Phe	Ile	Ala	Tyr	Val	Ser	Asn	Leu	Ile	Ala	Gln	Gly	Asp	396
50	897	Met	Trp	Tyr	Arg	Gln	Leu	Thr	Arg	Asp	Gly	Leu	Thr	Gln	Ala	Arg	Val	912
	913	Tyr	Tyr	Asn	Leu	Ala	Ala	Glu	Leu	Leu	Gly	Pro	Arg	Pro	Asp	Val	Ser	928
55	929	Leu	Ser	Ser	Ile	Trp	Thr	Pro	Gln	Thr	Leu	Asp	Thr	Leu	Ala	Ala	Gly	911
33	945	Gln	Lys	Ala	Val	Leu	Arg	Asp	Phe	Glu	His	Gln	Leu	Ala	Asn	ser	Asp	960
	961	Thr	Ala	Leu	Pro	Ala	Leu	Pro	Gly	Arg	Asn	Val	Ser	Tyr	Leu	Lys	L e u	376
60	977	Ala	Asp	Asn	GJA	Tyr	Phe	Asn	Glu	Pro	Leu	Asn	Val	Leu	Met	Leu	Ser	992
	993	His	Trp	Asp	Thr	Leu	Asp	Ala	Arg	Leu	Tyr	Asn	Leu	Arg	Hıs	Asn	Leu	1003
65	1009	Thr	Val	Asp	Gly	Lys	Pro	Leu	ser	Leu	Pro	Leu	Tyr	Ala	Ala	Pro	Val	1024
	.25	Asp	Pro	Val	Ala	Leu	Leu	Ala	Gln	Arg	Ala	Gln	Ser	Gly	Thr	Leu	Thr	1040

	1041	Asn	Gly	Val	Ser	Gly	Ala	Met	Leu	Thr	7a1	Pro	Pro	T/r	Arg	Phe	3er	1056
-	1057	Ala	Met	Leu	Pro	Arg	Ala	T;'r	Ser	Ala	Val	Gly	Thr	Læu	Thr	Ser	Phe	1072
5	1073	Gly	Gln	Asn	Leu	Leu	Ser	Leu	Leu	Glu	Arg	Ser	Glu	Arg	Ala	Cys	Gln	8601
	1089	Glu	Glu	Leu	Ala	Gln	Gln	Gln	Leu	Leu	Asp	Met	Ser	ser	Tyr	Ala	Ile	1104
10	1105	Thr	Leu	Gln	Gln	Gln	Ala	Leu	Asp	Gly	Leu	Ala	Ala	Asp	Arg	Leu	Ala	1120
	1121	Leu	Leu	Ala	Ser	Gln	λla	Thr	Ala	Gln	Gln	Arg	His	Asp	Hıs	Tyr	Tyr	1136
15	1137	Thr	Leu	Tyr	Gln	Asn	Asn	Ile	Ser	Ser	Ala	Glu	Gln	Leu	Val	Met	Аsр	1152
13	1153	Thr	Gln	Thr	Ser	Ala	Gln	Ser	Leu	Ile	Ser	Ser	Ser	Thr	Gly	Val	Gln	1168
	1169	Thr	Ala	Ser	Gly	Ala	Leu	Lys	Val	Ile	Pro	Asn	Ile	Phe	Gly	Leu	Ala	1134
20	1185	Asp	Gly	Gly	Ser	Arg	Tyr	Glu	Gly	Val	Thr	Glu	Ala	Ile	Ala	Ile	Gly	1200
	1201	Leu	Met	Ala	Ala	Gly	Gln	Ala	Thr	Ser	Val	Val	Ala	Glu	Arg	Leu	Ala	1216
25	1217	Thr	Thr	Glu	Asn	Tyr	Arg	Arg	Arg	Arg	Glu	Glu	Trp	Gln	Ile	Gln	Tyr	1232
23	1233	Gln	Gln	Ala	Gln	Ser	Glu	Val	Asp	Ala	Leu	Gln	Lys	Gln	Leu	Asp	Ala	1248
	1249	Leu	Ala	Val	Arg	Glu	Lys	Ala	Ala	Gln	Thr	Ser	Leu	Gln	Gln	Ala	Lys	1264
30	1265	Ala	Gln	Gln	Val	Gln	Ile	Arg	Thr	Met	Leu	Thr	Tyr	Leu	Thr	Thr	Arg	1280
	1281	Phe	Thr	Gln	Ala	Thr	Leu	Tyr	Gln	Trp	Leu	Ser	Gly	Gln	Leu	Ser	Ala	1296
35	1297	Leu	Tyr	Tyr	Gln	Ala	Tyr	Asp	Ala	Val	Val	Ala	Leu	Суѕ	Leu	Ser	Ala	1312
23	1313	Gln	Ala	Cys	Trp	Gln	Tyr	Glu	Leu	Gly	Asp	Tyr	Ala	Thr	Thr	Phe	Ile	1328
	1329	Gln	Thr	Gly	Thr	Trp	Asn	Asp	His	Tyr	Arg	Gly	Leu	Gln	Val	Gly	Glu	1344
40	1345	Thr	Leu	Gln	Leu	Asn	Leu	His	Gln	Met	Glu	Ala	Ala	Tyr	Leu	Val	Arg	1360
	1361	His	Glu	Arg	Arg	Leu	Asn	Val	Ile	Arg	Thr	Val	Ser	Leu	Lys	Ser	Leu	1376
45	1377	Leu	Gly	Asp	Asp	Gly	Phe	Gly	Lys	Leu	Lys	Thr	Glu	Gly	Lys	Val	Asp	1392
4)	1393	Phe	Pro	Leu	Ser	Glu	Lys	Leu	Phe	Asp	Asn	Asp	Tyr	Pro	Gly	His	Tyr	1408
	1409	Leu	Arg	Gln	Ile	Lys	Thr	Val	Ser	Val	Thr	Leu	Pro	Thr	Leu	Val	Gly	1424
50	1425	Pro	Tyr	Gln	Asn	Val	Lys	Ala	Thr	Leu	Thr	Gln	Thr	Ser	Ser	Ser	Ile	1110
	1441	Leu	Leu	Ala	Ala	Asp	Ile	Asn	Gly	Val	Lys	Arg	Leu	Asn	Asp	Pro	Thr	1456
55	1457	Gly	Lys	Glu	Gly	Asp	Ala	Thr	His	Ile	Val	Thr	Asn	Leu	Arg	Ala	Ser	1472
J J	1473	Gln	Gln	Val	Ala	Leu	Ser	Ser	Gly	Ile	Asn	Asp	Ala	Gly	Ser	Phe	Glu	1488
	1489	Leu	Arg	Leu	Glu	Asp	Glu	Arg	Tyr	Leu	Ser	Phe	Glu	Gly	Thr	Gly	Ala	1504
60	1505	Val	Ser	Lys	Trp	Thr	Leu	Asn	Phe	Pro	Arg	Ser	Val	Asp	Glu	His	Ilê	1520
	1521	Asp	Asp	Lys	Thr	Leu	Lys	Ala	Asp	Glu	Met	Gln	Ala	Ala	Leu	Leu	Ala	1536
65	1537	Asn	Met	Asp	Asp	Val	Leu	Val	Gin	Val	His	Tyr	Thr	Ala	Cys	Asp	Gl;	1552
()	1553	Gly	Ala	Ser	Phe	Ala	Asn	Gln	Val	Lys	Lys	Thr	Leu	Ser	1	565		

-248-

5		NFOR		UENC (A) (B) (C)	E C!													
10	I	(ii)	MO					ONA			: 1							
15		(xi) ATG Met	AGT	CCG	тст	GAG	ACT	ACT	CTT	TAT	ACT	:60 CAA Gln	ACC	CCA	ACA Thr	GTC Val	AGC Ser	18 16
20	49 17	GTG Val	TTA Leu	GAT Asp	AAT Asn	CGC Arg	GGT Gly	CTG Leu	TCC Ser	ATT Ile	CGT Arg	GAT Asp	ATT Ile	GGT Gly	TTT Phe	CAC His	CGT Arg	96 32
25	97 33											GTC Val					TAT Tyr	144 48
	145 49																GAT Asp	192 64
30	193 65																CAT H1s	30 240
35	241 81																CGT Arg	288 95
40	2 89 97																AAT Asn	336 112
45	337 113																CCC Pro	384 123
	385 129																GCT Ala	432
50	433 145	AAA Lys																480 160
55	481 161																GGA Gly	528 176
60	529 177																CAA Gln	575 192
65	577 193																GAC Asp	624 203

	625	GAC	GAA	ACT	GTC	TGJ	CAG	GGA	ATG	CTG	GCA	AGT	GAG	GTC	TAT	ACG	ACA	672
	209	Asp	Glu	Thr	Val	Trp	Gln	Gly	Met	L e u	Ala	Ser	Glu	Val	Tyr	Thr	Thr	224
5	673	CAA	AGT	ACC	ACT	AAT	GCC	ATC	GGG	GCT	TTA	CTG	ACC	CAA	ACC	GAT	GCG	720
	225	Gln	Ser	Thr	Thr	Asn	Ala	Ile	Gly	Ala	Leu	Leu	Thr	Gln	Thr	Asp	Ala	240
10	731 241	AAA Lys	GGC	AAT Asn	ATT Ile	CAG Gln	CGT Arg	CTG Leu	GCT Ala	TAT Tyr	GAC Asp	ATT Ile	GCC Ala	GGT Gly	CAG Gln	TTA Leu	AAA Lys	763 256
15	769	GGG	AGT	TGG	TTG	ACG	GTG	AAA	GGC	CAG	AGT	GAA	CAG	GTG	ATT	GTT	AAG	816
	257	Gly	Ser	Trp	Leu	Thr	Val	Lys	Gly	Gln	Ser	Glu	Gln	Val	Ile	Val	Lys	272
20	317	TCC	CTG	AGC	TGG	TCA	GCC	GCA	GGT	CAT	AAA	TTG	CGT	GAA	GAG	CAC	GGT	864
	273	Ser	Leu	Ser	Trp	Ser	Ala	Ala	Gly	His	Lys	Leu	Arg	Glu	Glu	H1s	Gly	288
	865	AAC	GGC	GTG	GTT	ACG	GAG	TAC	AGT	TAT	GAG	CCG	GAA	ACT	CAA	CGT	CTG	912
	289	Asn	Gly	Val	Val	Thr	Glu	Tyr	Ser	Tyr	Glu	Pro	Glu	Thr	Gln	Arg	Leu	30 4
25	913	ATA	GGT	ATC	ACC	ACC	CGG	CGT	GCC	GAA	GGG	AGT	CAA	TCA	GGA	GCC	AGA	960
	305	Ile	Gly	Ile	Thr	Thr	Arg	Arg	Ala	Glu	Gly	Ser	Gln	Ser	Gly	Ala	Arg	320
30	961 321	GTA Val	TTG Leu	CAG Gln	GAT Asp	CTA Leu	CGC Arg	TAT Tyr	AAG Lys	TAT Tyr	GAT Asp	CCG Pro	GTG Val	GGG	AAT Asn	G TT Val	ATC Ile	1008 336
35	1009	AGT	ATC	CAT	AAT	GAT	GCC	GAA	GCT	ACC	CGC	TTT	TGG	CGT	AAT	CAG	AAA	1056
	337	Ser	Ile	His	Asn	Asp	Ala	Glu	Ala	Thr	Arg	Phe	Trp	Arg	Asn	Gln	Lys	352
40	1057	GTG	GAG	CCG	GAG	AAT	CGC	ТАТ	GTT	TAT	GAT	TCT	CTG	TAT	CAG	CTT	ATG	1104
	353	Val	Glu	Pro	Glu	Asn	Arg	Туг	Val	Tyr	Asp	Ser	Leu	Tyr	Gln	Leu	Met	368
	1105	AGT	GCG	ACA	GGG	CGT	GAA	ATG	GCT	AAT	ATC	GGT	CAG	CAA	AGC	AAC	CAA	1152
	369	Ser	Ala	Thr	Gly	Arg	Glu	Met	Ala	Asn	Ile	Gly	Gln	Gln	Ser	Asn	Gln	384
45	1153	CTT	CCC	TCA	CCC	GTT	ATA	CCT	G TT	CCT	ACT	GAC	GAC	AGC	ACT	TAT	ACC	1200
	385	Leu	Pro	Ser	Pro	Val	Ile	Pro	Val	Pro	Thr	Asp	Asp	Ser	Thr	Tyr	Thr	400
50	1201	AAT	TAC	C TT	CGT	ACC	TAT	ACT	ТАТ	GAC	CGT	GGC	GGT	AAT	TTG	GTT	CAA	1243
	401	Asn	Tyr	Leu	Arg	Thr	Tyr	Thr	Туг	Asp	Arg	Gly	Gly	Asn	Leu	Val	Gln	416
55	12 49	ATC	CGA	CAC	AGT	TCA	CCC	GCG	ACT	CAA	AAT	AGT	TAC	ACC	ACA	GAT	ATC	132
	417	Ile	Arg	His	Ser	Ser	Pro	Ala	Thr	Gln	Asn	Ser	Tyr	Thr	Thr	Asp	Ile	1296
60	1297	ACC	GTT	TCA	AGC	CGC	AGT	AAC	CGG	GCG	GTA	TTG	AGT	ACA	TTA	ACG	ACA	1344
	433	Th r	Val	Ser	Ser	Arg	Ser	Asn	Arg	Ala	Val	Leu	Ser	Thr	Leu	Thr	Thr	448
	1345 449	GAT Asp	CCA Pro	ACC Thr	CGA Arg	GTG Val	GAT Asp	GCG Ala	CTA Leu	TTT Phe	GAT Asp	TCC Ser	GGC	GGT	CAT His	CAG Gin	AAG Lys	191 1392
65	1393	ATG	TTA	ATA	CCG	GGG	CAA		CTG	GAT	TGG	AAT	` ATT	, cea	GGT	'GAA	, TTG	1440

-250-

SUBSTITUTE SHEET (RULE 26)

	465	Met	Leu	Ile	Pro	Gly	Gln	Asn	Leu	Asp	Trp	Asn	Ile	Arg	Gly	Glu	Leu	450
5	1441 431																TGG Trp	1433 1433
10	1489 497											CTA Leu					CAG Gln	1536 512
	1537 513																GGA Gly	1584 528
15	1585 529	TTA Leu	GAG Glu	CTA Leu	CGG Arg	ACA Thr	ACT Thr	GGG Gly	GTT Val	GCA Ala	GAT Asp	AAA Lys	ACA Thr	ACC Thr	GAA Glu	GAT Asp	TTG Leu	1632 544
20	1633 545											GCA Ala						1580 560
25	1581 561											GAC Asp					CGC Arg	1723 576
30	1729 577											CAG Gln						1776 592
	1777 593											TAT Tyr						1324 608
35	1825 609											GCC Ala					ATT Ile	1872 624
40	1873 625											GGA Gly						1920 640
45	1921 641											TGG Trp						1963 656
50	1969 657											CGA Arg					AAC Asn	2016 672
	2017 673																AGA Arg	2064 638
55	2065 689											TTG Leu						2112 704
60	2113 705											CAA Gln						_50 5199
65	2161 721											GCG Ala						2203 736

	2209 737				GCG Ala												SGC Sly	2356 752
5	2257 753				GGC Gly												GAA Glu	2204 763
10	2305 769				GCA Ala												TTA Leu	2352 784
15	2353 785				GCG Ala													2406 300
20	2401 801				CGG Arg												GCG Ala	2443 316
2.5	2449 817	GTA Val			GCT Ala													2496 832
25	2497 833				ATT Ile													2544 848
30	2545 849				GCC Ala												GGT Gly	2592 864
35	2593 865				GGT Gly												GCA Ala	26 4 0 aa0
40	2641 881				GCC Ala													2588 896
	2689 897				GTC Val												GCA Ala	2736 912
45	2737 913				GCC Ala													2784 928
50	2785 929				GGA Gly												CCA Pro	2832 944
55	2833 945				GGT Gly													2830 960
60	2881 961				GAG Glu													2928 976
	2929 977				GGC Gly													2976 992
65	2977	AGA	GCG	TTA	AGT	GCT	GCC	GGT	AGT	GGT	ATA	GAT	CAT	GTC	GCT	GGC	ATG	3024

-252-

SUBSTITUTE SHEET (RULE 26)

	à à	3 Ar	cg A	la L	eu S	er Al	a Al	.a G	ly Sa	er 31	y II	le As	sp H:	ıs 70	ai A	la J	31 <i>y</i>	Met	1313
5	302 100										CC TT								3371 1014
10	307 102 312	5 As	in A.	la I		sp Ty		.y Ti			T GT .a Va								3120 1940
15	104	1 Ph			eu Er		1043 Q II		:61										
20		(i) (ii)		- (A) B) C)	T	ENGT (PE: (POL	H: ami OGY:	104 ino : li:	3 am acid near		aci	ds						
25		(xi) S	EQU	ENCE	DES	CRI	PTIC	M: .	SEQ	ID 1	NO : 6	1 (7	rccC	per	otio	de)		
30	1 17	Met Val								•									16 32
30	33 49	Ile Asp			_		_			•	Arg						_		43 64
35	65	_			_				-		Pro					-		_	30
40	81 97	Asp Thr									Glu Arg								96 112
40	113 129	Ala Gly		_		_			•	_	_								128
45		Lys																	150
	161 177										Arg Ala								175 192
50	193										Glu								203
	209					_					Ala								224
55	225										Leu Asp								240 256
<i>(</i> 1)	257	_									Ser								272
60	273	Ser	Leu	Ser	Trp	Ser	Ala	Ala	Gly	His	Lys	Leu	Arg	Glu	Glu	Н1:	s G	ly	233
	239										Glu								304
65	305	Ile	Gly	Ile	Thr	Thr	Arg	Arg	Ala	Glu	Gly	Ser	Gln	Ser	Gly	Ala	a Ai	rg	320

	321	∵a1	Leu	Sin	Asp	Leu	Arg	T,'T	Lys	T/r	Asp	Pro	Val	Gly	Asn	Val	I1÷	: . ว่
•	337	ser	Ile	His	Asn	Asp	äla	Glu	Ala	Thr	Arg	Phe	Trp	Arg	Asn	Gln	Lys	352
5	353	Val	Glu	Pro	Glu	Asn	Arg	T;r	Val	Tyr	Asp	Ser	Leu	Tyr	Gln	Leu	Met	368
	369	Ser	Ala	Thr	Gly	Arg	Glu	Met	Ala	Asn	Ile	Gly	Gln	Gln	Ser	Asn	Gln	334
10	335	Leu	Pro	Ser	Pro	Val	Ile	Pro	Val	Pro	Thr	Asp	Asp	Ser	Thr	Tyr	Thr	400
	101	Asn	Tyr	Leu	Arg	Thr	Tyr	Thr	Tyr	Asp	Arg	Gly	Gly	Asn	Leu	Val	Gln	41 ô
15	417	Ile	Arg	His	ser	ser	Pro	Ala	Thr	Gln	Asn	Ser	Tyr	Thr	Thr	Asp	Ile	432.
13	433	Thr	Val	Ser	ser	Arg	Ser	Asn	Arg	Ala	Val	Leu	Ser	Thr	Leu	Thr	Thr	443
	449	Asp	Pro	Thr	Arg	Val	Asp	Ala	Leu	Phe	Asp	Ser	Gly	Gly	His	Gln	Lys	164
20	465	Met	Leu	Ile	Pro	Gly	Gln	Asn	Leu	Asp	Trp	Asn	Ile	Arg	Gly	Glu	Leu	130
	481	Gln	Arg	Val	Thr	Pro	Val	Ser	Arg	Glu	Asn	ser	ser	Asp	ser	Glu	Trp	495
25	497	Tyr	Arg	Tyr	Ser	ser	Asp	Gly	Met	Arg	Leu	Leu	Lys	Val	Ser	Glu	Gln	512
<i>43</i>	513	Gln	Thr	Gly	Asn	Ser	Thr	Gln	Val	Gln	Arg	Val	Thr	Tyr	Leu	Pro	Gly	528
	529	Leu	Glu	Leu	Arg	Thr	Thr	Gly	Val	Ala	Asp	Lys	Thr	Thr	Glu	Asp	Leu	544
30	545	Gln	Val	Ile	Thr	Val	Gly	Glu	Ala	Gly	Arg	Ala	Gln	Val	Arg	Val	Leu	560
	561	His	Trp	Glu	Ser	Gly	Lys	Pro	Thr	Asp	Ile	Asp	Asn	Asn	Gln	Val	Arg	576
35	577	Tyr	Ser	Tyr	Asp	Asn	Leu	Leu	Gly	Ser	ser	Gln	Leu	Glu	Leu	Asp	Ser	592
33	593	Glu	Gly	Gln	Ile	Leu	Ser	Gln	Glu	Glu	Tyr	Tyr	Pro	Tyr	Gly	Gly	Thr	909
	609	Ala	Ile	Trp	Ala	Ala	Arg	Asn	Gln	Thr	Glu	Ala	Ser	Tyr	Lys	Phe	Ile	624
40	625	Arg	Tyr	Ser	Gly	Lys	Glu	Arg	Asp	Ala	Thr	Gly	Leu	Tyr	Tyr	Tyr	Gly	640
	641	Tyr	Arg	Tyr	Tyr	Gln	Pro	Trp	Val	Gly	Arg	Trp	Leu	ser	Ala	Asp	Pro	ó5ó
45	657	Ala	Gly	Thr	Val	Asp	Gly	Leu	Asn	Leu	Tyr	Arg	Met	Val	Arg	Asn	Asn	672
→ J	673	Pro	Ile	Thr	Leu	Thr	Asp	His	Asp	Gly	Leu	Ala	Pro	Ser	Pro	Asn	Arg	ő88
	689	Asn	Arg	Asn	Thr	Phe	Trp	Phe	Ala	Ser	Phe	Leu	Phe	Arg	Lys	Pro	Asp	704
50	705	Glu	Gly	Met	Ser	Ala	Ser	Met	Arg	Arg	Gly	Gln	Lys	Ile	Gly	Arg	Ala	720
	721	Ile	Ala	Gly	Gly	lle	Ala	Ile	Gly	Gly	Leu	Ala	Ala	Thr	Ile	Ala	Ala	736
55	737	Thr	Ala	Gly	Ala	Ala	Ile	Pro	Val	Ile	Léu	Gly	Val	Ala	Ala	Val	Gly	752
JJ	753	Ala	Gly	Ile	Gly	Ala	Leu	Met	Gly	Tyr	Asn	Val	Gly	Ser	Leu	Leu	Glu	753
	769	Lys	Gly	Gly	Ala	Leu	Leu	Ala	Arg	Leu	Val	Gln	Gly	Lys	Ser	Thr	Leu	_31
60	785	Val	Gln	Ser	Ala	Ala	Gly	Ala	Ala	Ala	Gly	Ala	Ser	Ser	Ala	Ala	Ala	300
	801	Tyr	Gly	Ala	Arg	Ala	Gln	Gly	Val	Gly	Val	Ala	Ser	Ala	Ala	Gly	Ala	316
45	317	Val	Thr	Gly	Ala	Val	Gly	Ser	Trp	Ile	Asn	Asn	Ala	Asp	Arg	Gly	Ile	332
65	833	Gly	Gly	Ala	Ile	Gly	Ala	Gly	Ser	Ala	Val	Gly	Thr	Ile	Asp	Thr	Met	543

-254-

SUBSTITUTE SHEET (RULE 26)

	349	Lēu	Gly	Thr	Ala	ŝer	Thr	Leu	Thr	His	Slu	Val	Sly	Ala	Ala	Ala	317	s S 🕹
5	865	Gly	Ala	Ala	Gly	Gly	Met	Ilê	Thr	Gly	Thr	Gln	Gly	Ser	Thr	Arg	Ala	330
3	381	Gly	Ile	Hıs	Ala	Gly	Ile	Gly	Thr	Tyr	Trr	Gly	ser	Trp	Ile	Gly	Phe	395
	397	Gly	Leu	Asp	Val	Ala	Ser	Asn	Pro	Ala	Gly	His	Leu	Ala	Asn	Tyr	Ala	912
10	313	Val	Gly	Tyr	Ala	Ala	Gly	Leu	Gly	Ala	Glu	Met	Ala	Val	λsn	Arg	Ile	923
	929	Met	Gly	Gly	Gly	Phe	Leu	Ser	Arg	Leu	Leu	Gly	Arg	Val	Val	Ser	Pro	944
15	945	Tyr	Ala	Ala	Gly	Leu	Ala	Arg	Gln	Leu	Val	His	Phe	Ser	۷al	Ala	Arg	960
13	961	Pro	Val	Phe	Glu	Pro	Ile	Phe	ser	Val	Leu	Gly	Gly	Leu	Val	Gly	Gly	976
	977	Ile	Gly	Thr	Gly	Leu	His	Arg	Val	Met	Gly	Arg	Glu	Ser	Trp	Ile	Ser	992
20	993	Arg	Ala	Leu	Ser	Ala	Ala	Gly	Ser	Gly	Ile	Asp	His	Val	Ala	Gly	Met	1909
	1009	Ile	Gly	Asn	Gln	Ile	Arg	Gly	Arg	Val	Leu	Thr	Thr	Thr	Gly	Ile	Ala	1024
25	1025	Asn	Ala	Ile	Asp	Tyr	Gly	Thr	Ser	Ala	Val	Gly	Ala	Ala	Arg	Arg	Val	1040
	1641	Phe	Ser	Leu	104	13												

10

We claim:

- 1. A composition, comprising an effective amount of a Photorhabdus protein toxin that has functional activity against an insect.
 - 2. The composition of Claim 1, wherein the *Photorhabdus* toxin is produced by a purified culture of *Photorhabdus*, a transgenic plant, Baculovirus, or heterologous microbial host.
- 3. The composition of Claim 2, wherein the *Photorhabdus* toxin produced by a purified culture of *Photorhabdus luminescens*.
- 4. The composition of Claim 2, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated ATCC 55397.
- The composition of Claim 2, wherein the toxin is produced by a purified culture of *Photorhabdus luminescens* strain
 designated W-14.
 - The composition of Claim 1, wherein the toxin is produced by a purified culture of *Photorhabdus* strain designated WX-1, WX-2, WX-3, WX-4, WX-5, WX6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# 43950, ATCC# 43951, or ATCC# 43952.
- 7. The composition of Claim 2, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens*30 strain designated WX-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# 43950, ATCC# 43951, or ATCC# 43952.
- 35 8. The composition of Claim 1, wherein the toxin is respresented by amino acid sequence is SEQ ID NO:12.
- The composition of Claim 6, wherein the composition is a mixture of one or more toxins produced from purified cultures of the Photorhabdus.

-256-

10. The composition of Claim 1 or 6, wherein the insect is of the order Lepidoptera, Coleoptera, Hymenoptera, Diptera, Dictyoptera, Acarina or Homoptera.

5

11. The composition of Claim 1 or 6, wherein the insect species is from order *Coleoptera* and is Southern Corn Rootworm, Western Corn Rootworm, Colorado Potato Beetle, Mealworm, Boll Weevil or Turf Grub.

10

12. The composition of Claim 1 or 6, wherein the insect species is from order *Lepidoptera* and is Beet Armyworm, Black Cutworm, Cabbage Looper, Codling Moth, Corn Earworm, European Corn Borer, Tobacco Hornworm, or Tobacco Budworm.

15

- 13. The composition of Claim 1 or 6, wherein the toxin is formulated as a sprayable insecticide.
- 14. The composition of Claim 1 or Claim 6, wherein the 20 toxin is formulated as a bait matrix and delivered in an above ground or below ground bait station.
 - 15. A method of controlling an insect, comprising orally delivering to an insect an effective amount of a protein toxin that has functional activity against an insect, wherein the protein is produced by a purified bacterial culture of the genus *Photorhabdus*.
- 16. The method of Claim 15, wherein the bacterium is a 30 purified culture of *Photorhabdus luminescens*.
 - 17. The method of Claim 15, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated ATCC 55397.

35

18. The method of Claim 16, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strain designated W-14.

- 19. The method of Claim 15, wherein the toxin is produced from a purified culture of Photorhabdus strains designated WW-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# ATCC# 43950, ATCC# 43951, or ATCC# 43952.
- 20. The method of Claim 15, wherein the toxin is produced from a purified culture of *Photorhabdus luminescens* strains designated WX-1, WX-2, WX-3, WX-4, WX-5, WX-6, WX-7, WX-8, WX-9, WX-10, WX-11, WX-12, WX-14, WX-15, H9, Hb, Hm, HP88, NC-1, W30, WIR, ATCC# 43948, ATCC# 43949, ATCC# ATCC# 43950, ATCC# 43951, or ATCC# 43952.
- 21. The method of Claim 19, wherein a mixture of one or 15 more toxins is produced from a purified culture of *Photorhabdus* and said toxins are orally delivered to an insect.
 - 22. The method of Claim 15, wherein the toxin is produced by a prokaryotic host transformed with a gene encoding the toxin.
 - 23. The method of Claim 15, wherein the toxin is produced by a eukaryotic host transformed with a gene encoding the toxin.
- 24. The method of Claim 23, wherein the eukaryotic host is baculovirus.
 - 25. The method of Claim 15 or 19, wherein the insect is of the order Lepidoptera, Coleoptera, Hymenoptera, Diptera, Dictyoptera, Acarina or Homoptera.
 - 26. The method of Claim 15 or 19, wherein the insect species is from order *Coleoptera* and is Southern Corn Rootworm, Western Corn Rootworm, Colorado Potato Beetle, Mealworm, Boll Weevil or Turf Grub.
 - 27. The method of Claim 15 or 19, wherein the insect species is from order *Lepidoptera* and is Beet Armyworm, Black Cutworm, Cabbage Looper, Codling Moth, Corn Earworm, European Corn Borer, Tobacco Hornworm, or Tobacco Budworm.

40

20

30

- 23. The method of Claim 15 or 19, wherein the toxin is formulated as a sprayable insecticide.
- 29. The method of Claim 15 or Claim 19, wherein the toxin5 is formulated as a bait matrix and delivered in an above ground or below ground bait station.
- A method of isolating a gene coding for a protein subunit, comprising the steps of: constructing at least one RNA or DNA oligonucleotide molecule that corresponds to at least a 10 part of a DNA coding region of an amino acid sequence selected from a group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID 15 NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43, wherein the nucleotide molecule is used to isolate genetic material from Photorhabdus or 20 Photorhabdus luminescens.
 - 31. A method for expressing a protein produced by a purified bacterial culture of the genus *Photorhabdus* in a prokaryotic or eukaryotic host in an effective amount so that the protein has functional activity against an insect, wherein the method comprises: constructing a chimeric DNA construct having 5' to 3' a promoter, a DNA sequence encoding a protein, a transcription terminator, and then transferring the chimeric DNA construct into the host.

3υ

25

32. The method of Claim 31, wherein the protein has functional activity against insects selected from a group consisting of Coleoptera, Lepidoptera, Diptera, Homoptera, Hymenoptera, Dictyoptera, and Acarina.

35

4()

33. The method of Claim 31, wherein the protein encoded by the DNA sequence has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9. SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:14, SEQ

ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.

5

10

- 34. The method of Claim 31, wherein the protein encoded by the DNA sequence includes the amino acid sequence selected from the group consisting of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:23, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59 and SEQ ID NO:61.
- 35. A chimeric DNA construct, adapted for expression in a prokaryotic or eukaryotic host comprising, 5' to 3' a transcriptional promoter active in the host; a DNA sequence encoding a *Photorhabdus* protein that has functional activity against an insect; and a transcriptional terminator.
- 36. A chimeric DNA construct of Claim 35, wherein the
 20 protein encoded by the DNA sequence has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.
- 37. The chimeric DNA construct of Claim 35, wherein the protein encoded by the DNA sequence has an amino acid sequence selected from the group consisting of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, and SEQ ID NO:61.

35

38. The chimeric DNA construct of Claim 35, wherein the DNA sequence encoding the *Photorhabdus luminescens* protein is selected from the group comprising SEQ ID NO:11, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID

10

NO:46, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:54, SEO ID NO:56, SEQ ID NO: 58, and SEQ ID NO:60.

- 39. The chimeric DNA construct of Claim 35, wherein the 5 host is baculovirus.
 - 40. An isolated and substantially purified preparation comprising, a DNA molecule capable of encoding an effective amount of a protein that is produced by a bacterium of the genus *Photorhabdus* and that has functional activity against an insect.
 - 41. The preparation of Claim 40, wherein the bacterium is Photorhabdus luminescens.
- 15
 42. A purified preparation comprising, a protein produced by Photorhabdus or Photorhabdus luminescens having an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.
- 43. A purified protein preparation comprising, a protein that has an N-terminal amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:10, SEQ ID NO: 13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.
- 35
 44. A purified protein preparation comprising, a protein selected from the group of SEQ ID NO:12, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, and SEQ ID NO:61.

- 45. A purified DNA preparation comprising, a DNA sequence selected from the group consisting of SEQ ID NO:11, SEQ ID NO:25. SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:58 and SEQ ID NO:60, wherein the DNA sequence is isolated from its native host.
- 46. A purified protein preparation comprising, a Photorhabdus luminescens protein with at least one subunit having an approximate molecular weight between 18 kDa to about 230 kDa; between about 160 kDa to about 230 kDa; 100 kDa to 160 kDa; about 80 kDa to about 100 kDa; or about 50 kDa to about 80 kDa.
- 47. A purified protein preparation comprising, a

 15 Photorhabdus luminescens protein with at least one subunit having an approximate molecular weight of about 280 kDa.
 - 48. A substantially pure microorganism culture comprising, ATCC 55397.

20

- 49. The culture of Claim 48, wherein the culture is a derivative of ATCC 55397 that produces a protein toxin that has functional activity against an insect.
- 25 50. A substantially pure microorganism culture comprising, H9.
 - 51. A substantially pure microorganism culture comprising, Hb.

- 52. A substantially pure microorganism culture comprising, Hm.
- 53. A substantially pure microorganism culture comprising, 35 HP88.
 - 54. A substantially pure microorganism culture comprising, NC-1.
- 40 55. A substantially pure microorganism culture comprising,

W30.

56. A substantially pure microorganism culture comprising, WIR.

5

57. A transgenic plant comprising in its genome, a chimeric artificial gene construction imbuing the plant with an ability to express an effective amount of a *Photorhabdus* protein that has functional activity against an insect.

10

58. The transgenic plant of Claim 57, wherein the plant is transformed using acceleration of genetic material coated onto microparticles directly into cells, *Agrobacteria*, whiskers, or electroporation techniques

15

20

- 59. The transgenic plant of Claim 57, wherein the selectable marker is selected from the group consisting of kanamycin, neomycin, glyphosate, hygromycin, methotrexate, phosphinothricin (bialophos), chlorosulfuron, bromoxynil, dalapon and the like.
- 60. The transgenic plant of Claim 57, wherein the promoter is selected from the group consisting of octopine synthase, nopaline synthase, mannopine synthase, 35S, 19S, ribulose-1,6-bisphosphate (RUBP) carboxylase small subunit (ssu), beta-conglycinin, phaseolin, alcohol dehydrogenase (ADH), heat-shock, ubiquitin, zein, oleosin, napin, or acyl carier protein (ACP).
- 61. The transgenic plant of Claim 57, wherein embryogenic 30 tissue, callus tissue type I or II, hypocotyl, meristem, or plant tissue during dedifferentiation is used in preparing the transgenic plant.
- 62. The transgenic plant of Claim 57, wherein the chimeric gene is a DNA sequence which encodes a *Photorhabdus* protein that has functional activity against an insect and at least one codon of the gene has been modified so that the codon is a plant preferred codon.

63. A method of controlling an insect comprising orally delivering to an insect an effective amount of a protein toxin, wherein the protein is produced by a transgenic plant, which said insect feeds.

5

64. A composition of matter, comprising a purified DNA sequence from a purified bacterial culture from the genus *Photorhabdus*.

व्यक्ति भ्र E SS इंड इं FS IS A Ser 999 884 84 84 84 ATG Het E X 3 25 & S ME 3 មួ ម្ពុជ្ញា 838 ie gar gg z Se Ses 883 88 3 विश्व में ACA TGT E BC 88 ਰੰ និនី **8** 69 8 AGC Ser AT Asn SE CE 36 **588** 888 gg GAT TGT CGG CTA ACA GGC Asp Cys Pro Asn 2503 88 អូ E E E 4 86 Ala CATA Ile

<u>교</u>

FIG. 2

3/8

FIG. 3

1770 1780 1750 1760 1740 SSAQALKNDS EPMDFSGANA LYFWELFYYT PMMMAHRLLQ EQNFDAANHW TcbA 470 480 450 460 gS nPvDFSGpyg iYlWEiFfhi PflvtvRmqt EQryedAdtW> TcaBi 1810 1820 1830 1790 1800 FRYVWSPSGY IVDGKIAIYH WNVRPLEEDT SWNAQQLDST DPDAVAQDDP TcbA rdangql | 490 Š20 510 ykYifrsaGY ImDGskprY- WNVmPLqlDT aWdttQpatT DPDviAmaDP> TcaBi 1880 1850 1860 1870 1840 MHYKVATFMA TLDLLMARGD AAYRQLERDT LAEAKMWYTQ ALNLLGDEPQ TcbA 570 540 560 550 MHYKLAiFlh TLDLLiARGD sAYRQLERDT LvEAKMyYiQ AqqLLGprPd> TcaBi 1910 1920 1930 1890 1900 VMLSTTWANP TLGNAASKTT QQVRQQVLTQ LRLNSRVKTP LLGTANSLTA TcbA 600 TcaBi ihttnTWpNP TLsk> ^vv^-^^^^ 1950 1960 1970 1980 1940 LFLPOENSKL KGYWRTLAOR MFNLRHNLSI DGQPLSLPLY AKPADPKALL TcbA 5Ò 40 20 30 _FLPpyNdvL lGYWdkLelR lyNLRHNLSl DGQPLnLPLY AtPvDPKtLq> TcaBii 2020 2030 2000 2010 1990 SAAVSASQGG ADLPKAPLTI HRFPQMLEGA RGLVNQLIQF GSSLLGYSER TcbA gw 90 100 80 | rqqaggdgtG sspaggqgsv qRyPllvErA RsaVslLtQF GnSLqttlEh> TcaBii 2070 2080 2040 2050 2060 QDAEAMSQLL QTQASELILT SIRMQDNQLA ELDSEKTALQ VSLAGVQQRF TcbA 130 140 150 120 QDnEkMtiLL QTQqeailkh qhdiQqNnLk gLqhslTALQ aSrdGdtlRq> TcaBii ^^=^v^^v^^ ^^^==-^^vv vvv^^^^^^v =^^v-v^^^^ -^v-^vvv^v

FIG. 4A

TcbA TcaBii	170 khYSdLingg	INAGEORALA 180 1saaEiagLt	LRSESATESO	200	GVDMAPNIFG a 210
TcbA	2140 LADGGMHYGA 		2160 LSASAKMVDA	2170 EKVAQSEIYR	2180 RRRQEWKIQR
TcaBii	220 LAnGGsewGA ^^^^v^-^^	230 pligsgqatq vvv^v^^^	240 vgAgiqdqsA ^^^vvv-^	250 gisevtagYq -vv-v^-v^^	260 RRqeEWalQR>
TcbA			REAAEMOKEY	LKTQQAQAQA	2230 QLTFLRSKFS
TcaBii	270 DiAdnEItQL ^v^^-^^	280 dAQiqSLqeq ^^^^^VV^	290 itmAqkQitl v-v^^-^v-v	300 seTeQAnAQA v-^^^^^	310 iydlqttrFt> vv-^vv^^^
TcbA	2240 NQALYSWLRG	2250 RLSGIYFQFY	2260 DLAVSRCLMA	2270 EQSYQWEAND 1	2280 NSISFVKPGA
TcaBii	320 gQALYnWmaG -^^^^^v	330 RLSalYyQmY	340 DstlpiCLqp ^V^^v^v^	kaalvqEgek	360 eSdSlfqvpv> ^^v^^v^v-
TcbA	2290 WQGTYAGLLC	2300 GEALIQNLAQ 	2310 MEEAYLKWES	2320 RALEVERTVS	2330 LAVVYDSLEG
TcaBii	370 WndlwqGLLa ^^^v^^v	380 GEgLsseLqk	390 ldaiwLargg ^^-v-^v^-^	400 igLEaiRTVS v^^^-v^^^	410 LdtlfgtG>
TcbA	2340 NDRFNLAEQI 	2350 PALLDKGEGT	2360 AGTKKNGLSL	2370 ANAILSASVK	2380 LSDLKLGTDY
TcaBii	tLsEnI	420 nkvLn-GEtv vv^^^ ^^-	430 spsggvtLaL ^v^vvv-^^^	440 tgdIfqAtld ^^^v^^-	450 LSqLgLdnsY>
TcbA	2390 PDSIVGSNKV	2400 RRIKQISVSL	2410 PALVGPYQDV	2420 QAMLSYGGST il	2430 QLPKGCSALA
TcaBii	460 -nlGneKk	470 RRIKrIaVtL	480 PtLlGPYQD1	490 eAtLvmGaea	500 aLshGvndgg> -^^-^v^-v^
TcbA	2440 VSHGTNDSGQ	2450 FQLDFNDGKY	2460 LPFEGIALDD	2470 QGTLNLQFPN	
TcaBii	510 rfvtdfndsr vvvv^-^^	520 F-LpF-eGrd ^ ^v^ ^^v	530 attgtleLn> v-v^-^		

FIG. 4B

FIG. 6A

(peonpep)

TcbAi:

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 6B

INTERNATIONAL SEARCH REPORT

	ASSIFICATION OF SUBJECT MATTER			
IPC(6)	:Please See Extra Sheet. :536/23.7, 24.1; 435/172.3, 240.4, 320.1; 800/205	. 47/60		
	to International Patent Classification (IPC) or to be		and IPC	
B. FIE	LDS SEARCHED			
Minimum o	documentation searched (classification system follow	ed by classification sym	nbols)	
U.S. :	536/23.7, 24.1; 435/172.3, 240.4, 320.1; 800/205	; 47/58		
Documenta	tion searched other than minimum documentation to t	he extent that such docu	ments are included	in the fields scarched
Electronic o	data base consulted during the international search (name of data base and,	where practicable	, search terms used)
APS, C	ABA, CAPLUS, MEDLINE, GENBANK, BIOSIS erms: photorhabdus, xenorhabdus, luminescer			
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where	appropriate, of the relev	ant passages	Relevant to claim No.
Y	CLARKE et al. Virulence Mechai Strain K122 toward Wax Mo Invertebrate Pathology. 1995, Vo entire document.	oth Larvae.	Journal of	1-64
Y	US 5,039,523 A (PAYNE ET AL.) 1-10.	13 August 199	1, columns	1-64
Y	US 5,254,799 A (DE GREVE E columns 1-14.	T AL.) 19 Octo	ber ·1993,	1-64
Furth	er documents are listed in the continuation of Box (C. See patent	family annex.	
'A' doc	scial entegories of cited documents: cament defining the general state of the art which is not considered to of particular relevance	date and not in c	published after the inte- onflict with the applica ory underlying the inve	restional filing date or priority tion but cited to understand the ention
	tior document published on or after the international filing date	"X" document of pa	rticular relevance; the	claimed invention cannot be red to involve an inventive step
cito	nument which may throw doubts on priority claim(s) or which is d to establish the publication date of another citation or other	when the docum	sent is taken alone	
-	cisi resson (as specified) nument referring to an oral disclosure, use, exhibition or other	considered to i	nvolve an inventive	claimed invention cannot be step when the document is documents, such combination e art
the	rement published prior to the international filing date but later than priority date claimed		er of the same patent i	
Date fth i	actual completi n of the international search	Date of mailing f th		rch report
23 DECEN	MBER 1996	28JAN	1 1997	
Commission Box PCT	nailing address of the ISA/US her of Patents and Trademarks D.C. 20231	Authorized officer THOMAS HAAS	Man S	Fek
Facsimile N		Telephone No. (70	3) 308-0196	
rm PCT/IS	A/210 (second sheet)(July 1992)*			

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):
C12N 5/14, 15/00, 15/05, 15/09, 15/29, 15/31, 15/64, 15/82; A01G 13/00; A01H 1/00

Form PCT/ISA/210 (extra sheet)(July 1992)*

593 **633** \$85 \$ **\$** \$ हुई है 8 2 3 EXE មិនិមិ CA GGA ម្ភីដូ 88 ម៉ង់ 36 25 E 8 3 88 퉊참 448 88 3 Į3 88 និគី ij i d Val **3**63 GLy. 888 gb PZPsh T GGC ATG A GCG TAC 88 ផ្ដែ Cys Pro GLy Met CAT TGT C Asn 5 8 G 88 gg & 説は ដូន្តិ ទ

֓֞֟֟֝֟֟ ֖֖֖֖֖֖֖֖֖֓

FIG. 2

3/8

FIG. 3

SUBSTITUTE SHEET (RULE 26)

FIG. 4A

2090 2100 2110 2120 2130 Toba DSYSQLYEEN INAGEORALA LREESATESO GAOISEMAGA GVINAPNIPO 180 190 200 210 khySdLingg lsAaElagLt LRStamI-th Gvatglling GinevPNvFG> TcaBii 2140 2250 2160 2170 2180 LADOGMHYGA LAYATADGIE LSASAMWDA HKVAQSEIYR RRROEWKIOR TobA 230 240 250 TcaBii LANGGSEWGA plipaggatg vgAgiqdqsA gisevtagYq RRqeEMalQR> <u>^^^^^</u>\ 2200 2210 2220 TcbA IMAGAEINGL NACLESLSIR REAAFMOKEY LETGOAGAGA CLIFFLESKFS 280 270 29D 300 310 TcaBii DiAdnEItQL dAQiqSlqeq itmAqkQitl seTeQAnAQA iydlqttrFt> 2270 2240 225D 2260 2280 Teba NOALYSWLRG RLSGIYFOFY DLAVERCLMA EQSYQWEAND NSISFVKPGA 340 1 330 TcaBii 2300 2310 WOGTYAGLLC GEALIONLAG MERAYLKWES RALEVERTVS LAVVYDSLEG Teba 370 380 390 400 TcaBii WmdlwqGlia GBgtsselqk ldaiwlargo iglEaiRTVS Ldtlfgt--G> anny_ianay annayyaain aalyyayaid yaaalyeaaah allanka . m 2350 2360 2370 Toba NDRFNLAEGI PALLDROEGT AGTKKNGLSL AMAILSASVK LSDLKLGTDY 430 440 ----tlakni nkvlm-džtv spagovtlei tedifoAtld LSqLqLdnsY> TozBii 2430 2390 2400 2410 2420 POSTVOSNKV RRIKQISVSL PALNOPYODV ÇANDSYGGST ÇLPKGCSALA **TcbA** 490]] 480 TeaBil -n--lgnekk RRIKrlavti PtllGPYQDi eAtlumGaea alehGvndgg> ANADO ADAADAAAA AAAAAAAAA AAYYYYAAAA -AA-AYA-YA 2450 2460 2470 Teba VSKGTNDSGQ FOLDFNDOKY LPFEGIALDD OGTLNLOFFN 510 520 330 TceBii rfvtdfnder F-LpF-eGrd attgtleLn> 777--VO-64 4 4V4 4447 V-V-4-4-44

FIG. 4B

FIG. 6A

SUBSTITUTE SHEET (RULE 26)

TcdA