

Rare disorder diagnostics

From whole exome sequencing to regulatory regions in whole genomes.

Paweł Sztromwasser

Department of Biostatistics and Translational Medicine

Medical University of Lodz

SMM, Kraków 12/11/2018

Outline

- 1. NGS in medical diagnostics a success story
- 2. Challenges
- 3. Remus REgulatory MUtation Search
- 4. Case study RCAD

Haukeland University Hospital

University of Bergen

Hereditary neurological disorders

Haris Tzoulis

Hereditary neurological disorders

progressive encephalopathy diagnosed at age 1 dystonia, epilepsy, episodic exacerbations

parents unaffected

Whole exome sequencing

Bamshad MJ, et al (2011). Exome sequencing as a tool for Mendelian disease gene discovery, Nature Reviews Genetics 12, 745-755

Nature Reviews | Genetics

Whole exome sequencing

Whole exome sequencing

Dystonia genes

Symbol	ОМІМ	Gene	Locus	Alt Name
DYT1	128100₺	TOR1A	9q34	Early-onset torsion dystonia
DYT2	224500₺	HPCA	1p35-p34.2	Autosomal recessive primary isolated dystonia
DYT3	314250₺	TAF1	Xq13	X-linked dystonia-parkinsonism
DYT4	128101@	TUBB4 ^[4]	19p13.12-13	Autosomal dominant whispering dysphonia
DYT5a	128230₺	GCH1	14q22.1-q22.2	Autosomal dominant dopamine-responsive dystonia
DYT5b	191290₺	TH	11p15.5	Autosomal recessive dopamine-responsive dystonia
DYT6	602629₺	THAP1	8p11.21	Autosomal dominant dystonia with cranio-cervical predilection
DYT7	602124₺	unknown	18p (questionable)	Autosomal dominant primary focal cervical dystonia
DYT8	118800₺	MR1	2q35	Paroxysmal nonkinesigenic dyskinesia
DYT9	601042₺	SLC2A1	1p35-p31.3	Episodic choreoathetosis/spasticity (now known to be synonymous with DYT18)
DYT10	128200₺	PRRT2	16p11.2-q12.1	Paroxysmal kinesigenic dyskinesia
DYT11	159900₺	SGCE	7q21	Myoclonic dystonia
DYT12	128235₺	ATP1A3	19q12-q13.2	Rapid onset dystonia parkinsonism and alternating hemiplegia of childhood
DYT13	607671₽	unknown, near D1S2667 ^[5]	1p36.32-p36.13	Autosomal dominant cranio-cervical/upper limb dystonia in one Italian family
DYT14	See DYT5			
DYT15	607488₺	unknown	18p11 ^[6]	Myoclonic dystonia not linked to SGCE mutations
DYT16	612067₺	PRKRA	2q31.3	Autosomal recessive young onset dystonia parkinsonism
DYT17	612406₺	unknown, near D20S107 ^[7]	20p11.2-q13.12	Autosomal recessive dystonia in one family
DYT18	612126₺	SLC2A1	1p35-p31.3	Paroxysmal exercise-induced dyskinesia
DYT19	611031₽	probably PRRT2	16q13-q22.1	Episodic kinesigenic dyskinesia 2, probably synonymous with DYT10
DYT20	611147₺	unknown	2q31	Paroxysmal nonkinesigenic dyskinesia 2
DYT21	614588₺	unknown	2q14.3-q21.3	Late-onset torsion dystonia
DYT24	610110₽	ANO3 ^[8]	11p14.2	Autosomal dominant cranio-cervical dystonia with prominent tremor

SLC19A3

SLC19A3: c.337T>C, p.Y113H c.541T>C, p.S181P

SLC19A3: c.337T>C, p.Y113H ???

RNA sequencing

in brain, only the mutated allele was expressed...

Whole-genome sequencing

I.Flønes, et al. Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy. PLoS ONE, 2016

Novel *SLC19A3* Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy

Irene Flønes^{1,2}, Paweł Sztromwasser^{3,4,5}, Kristoffer Haugarvoll^{1,2}, Christian Dölle^{1,2}, Maria Lykourl^{1,2}, Thomas Schwarzlmüller^{2,7}, Inge Jonassen⁵, Hrvoje Miletic^{8,5,10}, Stefan Johansson^{3,4,6}, Per M. Knappskog^{3,4,6}, Laurence A. Bindoffl^{1,2}, Charalampos Tzoulis^{1,2,a}

1 Department of Neurology, Haukeland University Hospital, Bergen, Norway, 2 Department of Clinical Medicine, University of Bergen, Bergen, Norway, 3 Department of Clinical Science, University of Bergen, Bergen, Norway, 4 Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway, 5 Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway, 6 Log-bes en Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway, 7 Department of Radiology, Haukeland University Hospital, Bergen, Norway, 8 Department of Parthology, Haukeland University Hospital, Bergen, Norway, 9 Department of Bornedicine, University of Bergen, Bergen, Norway, 10 KG Jebsen Brain Tumor Research Center, University of Bergen, Bergen, Norway, 10 KG Jebsen Brain Tumor Research Center, University of Bergen, Bergen, Norway, 10 KG Jebsen Brain Tumor Research Center, University of Bergen, Bergen, Norway, 10 KG Jebsen Brain Tumor Research Center, University of Bergen, Bergen, Norway, 10 KG Jebsen Brain Tumor Research Center, University of Bergen, Bergen, Norway, 10 KG Jebsen Brain Tumor Research Center, University of Bergen, Bergen, Norway, 10 KG Jebsen Brain Tumor Research Center, University of Bergen, Bergen, Norway, 10 KG Jebsen, Brain Tumor Research Center, University of Bergen, Bergen, Norway, 10 KG Jebsen, Brain Tumor Research Center, University of Bergen, Bergen, Norway, 10 KG Jebsen, Brain Tumor Research Center, University of Bergen, Bergen, Norway, 10 KG Jebsen, Brain Tumor Research Center, University of Bergen, Bergen, Norway, 10 KG Jebsen, Brain Tumor Research Center, University of Bergen, Norway, 10 KG Jebsen, Brain Tumor Research Center, University of Bergen, Norway, 10 KG Jebsen, Brain Tumor Research Center, University of Bergen, Norway, 10 KG Jebsen, Brain Tumor Research Center, University of Bergen, Norway, 10 KG Jebsen, Brain Tumor Research Center, University of Bergen, Norway, 10 KG Jebsen, Brain Tumor Research Center, University of Berg

* Charalampos.Tzoulis@nevro.uib.no

G OPEN ACCESS

Citation: Flenes I, Sztromwasser P, Haugarvoll K, Dölle C, Lykouf M, Schwarzlmüller T, et al. (2016) Novel SLC1943 Promoter Deletion and Alelc Sillencing in Biotin-Thinin-Responsive Basal Ganglia Encephalopathy. PLoS ONE 11(2): e0149055. doi:10.1371/journal.pone.0149055

Editor: Andreas R. Janecke, Innsbruck Medical University, AUSTRIA

Received: October 19, 2015

Accepted: January 25, 2016

Published: February 10, 2016

Copyright: 9 2016 Filense et al. This is an open access article distributed under the term of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are oredited.

Data Availability Statement: All relevant data are within the paper. Whide-exome and geneome sequences of patients cannot be made freely available due to ethical reasons. Requests for data can be made to: Charalampor Sculps, Bepartment of Neurology, Haukeland University Hospital, 5021 Bengen, Norwey, E-mail: Charalampos. Tzoulis@nero.ub.no.

Funding: This work was supported (authors CT and PMK) by grants from the Regional Health Authority of Western Norway (Heise Vest, http://www.heise-vest.nolen/Sideridefault.aspx, grant no 911903 and

Abstract

Background

Biotin-thiamine responsive basal ganglia disease is a severe, but potentially treatable disorder caused by mutations in the SLC 19A3 gene. Although the disease is inherited in an autosomal recessive manner, patients with typical phenotypes carrying single heterozygous mutations have been reported. This makes the diagnosis uncertain and may delay treatment.

Methods and Results

In two siblings with early-onset encephalopathy dystoria and epilepsy, whole-exome sequencing revealed a novel single heterozygous SLC1943 mutation (c.337T>C). Although Sanger-sequencing and copy-number analysis revealed no other aberrations, RNA-sequencing in brain tissue suggested the second allele was silenced. Whole-genome sequencing resolved the genetic defect by revealing a novel 45,049 bp deletion in the 5'-UTR region of the gene abolishing the promoter. High dose thiamine and biotin therapy was started in the surviving sibling who remains stable. In another patient two novel compound heterozygous SLC1943 mutations were found. He improved substantially on thiamine and biotin therapy.

Conclusions

We show that large genomic deletions occur in the regulatory region of SLC19A3 and should be considered in genetic testing. Moreover, our study highlights the power of whole-

PLOS ONE | DOI:10.1371/journal.pone.0149055 February 10, 2016

1/1

I.Flønes, et al. Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy. PLoS ONE, 2016

La Cidende

Gentest på sykehus ble redningen for Frank (23)

GOD VENN: Frank S. Arnesen (23) har en sjelden genfell. En test ga svaret. Her er han i sofaen sammen med hunden Sharky.

Legene fant ikke ut hva Frank Stræng Arnesen feilte. Han var nær ved å dø av den mystiske sykdommen. Så tok han en gentest ved Haukeland universitetssykehus. Det ble et vendepunkt for 23-åringen. Nå er han på NYHETER #SIDE 4-6 bedringens vei.

Acknowledgement

Irene Flønes

Charalampos Tzoulis

Stefan Johansson

Vidar Steen

I.Flønes, et al. Novel SLC19A3 Promoter Deletion and Allelic Silencing in Biotin-Thiamine-Responsive Basal Ganglia Encephalopathy. PLoS ONE, 2016

Challenges

WES - 25-50 % success rate (diagnostic yield)

WGS - 50 % success rate

70-90% of the genome accessible to short read technologies

Structural variants - small number but equal in extent

Challenges

WES - 25-50 % success rate (diagnostic yield)

WGS - 50 % success rate

70-90% of the genome accessible to short read technologies

Structural variants - small number but equal in extent

Focused on protein coding – 1% of the genome

Non-coding genome

99% of the genome is non-coding

80.4% of the genome could be assigned a function

Enhancer-like - 400,000 (8% of the genome), promoter like - 70,000

8.8k small RNAs, 9.6k long non-coding RNAs

Challenges

453

cases of **noncoding**, **regulatory** mutations causing a rare monogenic disease, according to **OMIM** database

Pathogenic noncoding mutations

Table 1. Mendelian Regulatory Mutations

Category	Example	Count
Enhancer	triphalangeal thumb, type I (SHH [MIM: 174500])	42
Promoter	hemophilia B (F9 [MIM: 306900])	142
5' UTR		153
Transcription (core promoter)	acute intermittent porphyria (HMBS [MIM: 176000])	52/153
200.000.00	Marie Unna hereditary hypotrichosis (HR [MIM: 146550])	37/153
	hyperferritemia cataract syndrome (FTL [MIM: 600886])	31/153
Kozak sequence	beta thalassemia (HBB [MIM: 613985])	2/153
Unclassified	thrombocytopenia 2 (ANKRD26 [MIM: 188000])	31/153
3' UTR		43
Polyadenylation	permanent neonatal diabetes (INS [MIM: 606176])	14/43
miRNA binding	autosomal-dominant spastic paraplegia 31 (REEP1 [MIM: 610250])	5/43
Other	autosomal-dominant myopia 21 (ZNF644 [MIM: 614167])	24/43
Large non-coding RNA gene	microcephalic osteodysplastic primordial dwarfism, type 1 (RNU4ATAC [MIM: 210710])	65
MicroRNA gene	autosomal-dominant deafness 50 (MIR96 [MIM: 613074])	5
Imprinting control region	Beckwith-Wiedemann syndrome (H19 [MIM: 130650])	3
Total		453
Total single-nucleotide variants		406

Remus - REgulatory MUtation Search

Cis regulatory elements of disease gene and its regulatory neighborhood

tissue-specific

Experimental & predicted

miRTarBase DIANA-TarBase

RegNetwork RegulatoryCircuits.org

1

genes regulating and regulated by **disease gene(s)**

Experimental, tissue-specific

DNase-seq (ENCODE) & RNA-seq (GTEx)

ChIP-seq (ENCODE)

CAGE (FANTOM5)

Cis regulatory elements of disease gene and its regulatory neighborhood Tissue / cell-type specific filter

Regions of interest

Remus is a tool for identification of regulatory regions potentially associated with monogenic disease phenotypes.

Description:

Starting from a small set of genes implicated in the disease pathogenesis, Remus finds regulatory features linked with these genes in several large scale repositories of tissue-specific genome-scale regulatory data. Customizable search and step-by-step process allows for iterative building of a tissue-specific set of regions that likely play a role in regulating expression of the input genes in the tissues affected by the disease.

Genes Organs, tissues and cell types Enhancers Accessible chromatin Micro RNA Download result Query

ect genes: NF1B HNF F1A F1A-AS1		
NF1B HNF		
F1A		
30.0		
-1A-AS1		
F1B		
-4A		
-4G		
anscription start sites		
hancers		
cessible chromatin		
cro RNA		

	hg19
Genes	
Organs, tissues and cell types	
Select organs/tissues/cell types:	
×kidney (CHRM, ENH_F5, TSS_F5)	
×kidney epithelial cell (CHRM, ENH_F5, TSS_F5) kidne	
KIUNEY (CHRIVI, EIVIT_F3, 133_F3)	
kidney epithelial cell (CHRM, ENH_F5, TSS_F5)	
kidney_embryonic (CHRM)	
left kidney (CHRM)	
left kidney_embryonic (CHRM)	
right kidney (CHRM)	
Enhancers	
Accessible chromatin	
Micro RNA	
Query Download result	
Query Download result	

Transcription start sites

MEDICAL
JNIVERSITY
OF LODZ

4	FAN	ITO	M

- Active in all selected tissues
- Active in any of selected tissues

bps upstream

3000

bps downstream

100

Enhancers

✓ FANTOM5

- Active in all selected tissues
- Active in any of selected tissues

Kb upstream

500

Kb downstream

500

■ ENCODE

- Active in all selected tissues
- Active in any of selected tissues

Kb upstream

500

Kb downstream

500

Accessible chromatin

ENCODE

- Accessible in all selected tissues
- Accessible in any of selected tissues

Kb upstream

500

Kb downstream

500

FANTOM5		■ ENCODE	
 Active in all selected tissues 		 Active in all selected tissues 	
 Active in any of selected tissues 		Active in any of selected tissues	
Kb upstream		Kb upstream	
500		500	
Kb downstream		Kb downstream	
500		500	
■ ENCODE			
■ ENCODE Micro RNA			
7.5%	□ miRWalk	Active in	n all selected tissues
Micro RNA	□ miRWalk		n all selected tissues n any of selected tissues
Micro RNA	□ miRWalk		
Micro RNA	□ miRWalk	Active in	
Micro RNA	□ miRWalk	Active in Summary table	n any of selected tissues

Acknowledgments

Damian Skrzypczak

Wojciech Fendler

https://github.com/seru71/Remus

Project funded by National Science Center in Poland (POLONEZ 2016/23/P/NZ2/04251)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665778.

Study case: RCAD syndrome

Prevalence:

1-9 / 1 000 000

Autosomal dominant

HNF1B

Study case: RCAD syndrome

Prevalence:

1-9 / 1 000 000

Autosomal dominant

HNF1B

What if no mutations in HNF1B?

Case: RCAD

WGS data for 9 patients with RCAD phenotype and no HNF1B mutatation

15+ additional WGS samples

Case: RCAD

WGS data for 9 patients with RCAD phenotype and no HNF1B mutatation

15+ additional WGS samples

Looking for interesting cases!

Acknowledgements

Arkadiusz Michalak

Beata Małachowska

Anna Hogendorf

Wojciech Fendler

Karolina Antosik

Paulina Młudzik

Maciej Borowiec

https://biostat.umed.pl/polonez_eng.html

Project funded by National Science Center in Poland (OPUS 2014/15/B/NZ5/00144, POLONEZ 2016/23/P/NZ2/04251)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665778.

