

Föreläsning 8: Enkel linjär och icke-linjär regression

Matias Quiroz¹

¹Statistiska institutionen, Stockholms universitet

VT 2023

Innehåll

- Minsta kvadratmetoden för linjär regression.
- ► Prediktion i linjär regression.
- ► Regression mot medelvärdet.
- Residualanalys.
- ► R-kvadrat som mått på förklaringsgrad.
- ► Variansuppdelning i linjär regression.
- Icke-linjär regression via transformationer.

Prediktion är mer användbart än korrelation!

- ► Förra föreläsningen gick vi igenom begreppet samband och **speciellt linjärt** samband i form av korrelation.
- ► Korrelationskoefficienten är ett mått på linjärt samband.
- Att veta styrkan och riktningen på det linjära sambandet mellan två variabler är viktigt.
- ► Men det är mycket viktigare (och roligare!) att, om y och x har ett samband, prediktera värdet på y givet ett värde på x.
- ► En modell som predikterar y givet ett värde på x kallas för regression i statistik. I machine learning kallas det AI (artificial intelligence) ⑤.
- När vi antar att y beror linjärt på x så kallas det för enkel linjär regression (linear regression på engelska).
- När vi antar att y beror linjärt på k variabler x_1, x_2, \ldots, x_k , så kallas modellen multipel linjär regression (multiple linear regression på engelska).

Fett mot protein för olika menyalternativ på Burger King:

Figure 1: Figur 7.1 i De Veaux et al. (2021).

- ► Korrelationskoefficienten är r = 0.76.
- Det verkar finnas ett linjärt samband mellan y och x.
- Vilken rät linje ska vi välja för att beskriva sambandet?

- ▶ Låt \hat{y} vara modellens predikterade genomsnittliga värde för ett givet x.
- Om vi antar en linjär modell, så predikterar vi enligt

$$\hat{y}=b_0+b_1x,$$

där b_0 är interceptet (prediktionen för \hat{y} när x = 0) och b_1 är linjens lutning.

- ▶ I praktiken finns det oändligt många värden på b_0 och b_1 vi kan välja.
- ightharpoonup Vi vill välja b_0 och b_1 som anpassar data på ett optimalt sätt.
- ► Vad vi menar med "att anpassar data på ett optimalt sätt"? Vi vill minimera (i någon mening) modellens prediktionsfel.
- ▶ Prediktionsfelet mäts av **residualer**. En residual är skillnaden mellan en observation och modellens prediktion av observationen,

Residual = Observation - Predikterat värde.

► En residual betecknas e och beräknas enligt

$$e = y - \hat{y} = y - (b_0 + b_1 x),$$

eftersom $\hat{y} = b_0 + b_1 x$ för en linjär regression.

Burger King datasetet med en anpassad linje (röd).

Figure 2: Från lärarmaterialet skapat av utgivaren av De Veaux et al. (2021).

- ▶ Den röda linjen beskrivs av ekvationen $\hat{y} = b_0 + b_1 x$.
- ▶ Observationer ovanför (under) linjen har positiva (negativa) residualer.

- Vi vill att den räta linjen i någon mening minimerar prediktionsfelen, dvs residualerna.
- Ett tänkbart mått som mäter det sammanlagda prediktionsfelet är residualkvadratsumman (residual sum of squares på engelska)

$$\sum e^2, \tag{1}$$

 $d\ddot{a}r \ e = y - \hat{y} = y - (b_0 + b_1 x).$

- ► Varför kvadrerar vi residualerna? Vi vill inte att de positiva och negativa felen ska ta ut varandra.
- ► Man kan visa att

$$b_1 = r \frac{s_y}{s_y}$$
 och $b_0 = \overline{y} - b_1 \overline{x}$,

ger en modell $\hat{y} = b_0 + b_1 x$ som minimerar (1).

 $\qquad \hat{y} = b_0 + b_1 x \text{ med}$

$$b_1 = r \frac{s_y}{s_x}$$
 och $b_0 = \overline{y} - b_1 \overline{x}$,

kallas för minsta kvadratanpassningen av data.

- Metoden, dvs att hitta värden b_0 och b_1 som minimeras (1) kallas för minsta kvadratmetoden (**least squares method** på engelska).
- För Burger King exempel ger minsta kvadratmetoden

$$\widehat{Fat} = 8.4 + 0.91$$
 Protein,

dvs

$$b_0 = 8.4 \text{ och } b_1 = 0.91.$$

▶ Hur tolkas b_0 och b_1 ?

- ▶ I ekvationen $\hat{y} = b_0 + b_1 x$ är b_0 interceptet och b_1 linjens lutning.
- Interceptet är det predikterade värdet när x = 0: $\hat{y} = b_0$.
- ► För Burger King exemplet: Den predikterade genomsnittliga fettmängden för en produkt utan proteiner.
- ▶ Man ska vara försiktig med att tolka interceptet som något meningsfullt.
- Exempel: Modell som predikterar blodtryck som en linjär funktion av vikt. Meningsfull tolkning av interceptet?
- ► Viktigt att fråga sig om det är meningsfullt att tolka interceptet innan man gör det!

► En lutning i en rät linje defineras som

Lutning =
$$\frac{\text{F\"{o}r\"{a}ndring i } y \text{ variabeln}}{\text{F\"{o}r\"{a}ndring i } x \text{ variabeln}} = \frac{\Delta y}{\Delta x}.$$
 (2)

- Lutningen har enheten: enhet y/enhet x, dvs "enhet y per enhet x".
- ▶ I Burger King exemplet: 0.91 gram fett per gram protein.
- ▶ Vi kan skriva om (2) som

$$\Delta x \cdot \mathsf{Lutning} = \Delta y. \tag{3}$$

- Antag att x ökar en enhet, dvs $x \to x+1$. Då är $\Delta x = x+1-x=1$.
- ▶ $\Delta x = 1$ i (3) ger $\Delta y = 1$ · Lutning = Lutning.
- Således kan vi tolka b_1 som den förändringen i y som är associerad med en en-enhets ökning av x.

- Det är frestande att säga: Att öka x med en enhet medför en ökning av y med b₁ enheter.
- Detta är en kausal tolkning! Vi säger att x medför y.
- ► Regression modellerar inte kausalitet.
- ► Regression modellerar samband.
- ► Kausalitet kräver teoretiska resonemang kring variablerna i fråga.
- ► I Burger King exemplet:
 - Lägger vi till ett gram protein så medför det i genomsnitt $b_1 = 0.91$ extra gram fett (kausal tolkning).
 - Produkter med ett extra gram protein tenderar att (i genomsnitt) ha $b_1 = 0.91$ extra fett (sambandstolkning).

- ► Minsta kvadratanpassningens $\hat{y} = b_0 + b_1 x$ egenskaper:
 - 1. Minimerar residualkvadratsumman i (1).
 - 2. Residualerna summerar till 0, dvs $\sum e = 0$.
 - 3. Den anpassade linjen går genom punkten $(\overline{x}, \overline{y})$.
- Man kan visa 1. genom att minimera (1) med avseende på b_0 och b_1 . Se s.236 i De Veaux et al. (2021) (för den nyfikne studenten).
- Egenskap 2. kan visas genom att använda $b_0 = \overline{y} b_1 \overline{x}$,

$$\begin{split} \sum e &= \sum y - (b_0 + b_1 x) \\ &= \sum y - b_0 - b_1 x \\ &= \sum y - (\overline{y} - b_1 \overline{x}) - b_1 x \\ &= \sum y - \overline{y} - b_1 (x - \overline{x}) \\ &= \sum (y - \overline{y}) - b_1 \sum (x - \overline{x}), \end{split}$$

och utnyttja att både $\sum (y - \overline{y})$ och $\sum (x - \overline{x})$ är 0.

För egenskap 3., det predikterade värdet för \overline{x}

$$\widehat{y} = b_0 + b_1 \overline{x}$$

$$= \overline{y} - b_1 \overline{x} + b_1 \overline{x}$$

$$= \overline{y},$$

eftersom $b_0 = \overline{y} - b_1 \overline{x}$. Alltså ligger punkten $(\overline{x}, \overline{y})$ på linjen.

- ▶ Hur beräknar vi b_0 och b_1 i praktiken?
- Funktionen lm i R (linear models) räknar ut b_0 och b_1 .
- R får inte användas på tentan. Enkelt att räkna genom formlerna

$$b_1 = r \frac{s_y}{s_x}$$
 och $b_0 = \overline{y} - b_1 \overline{x}$.

Burger King exemplet:

Protein	Fat	
$\bar{x} = 18.0 g$	$\bar{y} = 24.8 \text{ g}$	
$s_{\chi} = 13.5 \mathrm{g}$	$s_y = 16.2 \mathrm{g}$	
r = 0.76		

Figure 3: Tabell från s.230 i De Veaux et al. (2021).

▶ $b_1 = 0.76 \cdot 16.2/13.5 = 0.912$ och $b_0 = 24.8 - 0.912 \cdot 18 = 8.384$ (utan avrundning).

Prediktion i linjär regression

- När vi anpassat modellen, dvs har ekvationen för linjen, börjar det roliga!
- ▶ Burger King gör reklam för en ny produkt med proteininnehåll 63 gram men det framgår inte från reklamen hur mycket fett den innehåller.
- ► Enligt vår modell kommer den i genomsnitt att den innehålla

$$\hat{y} = 8.4 + 0.91 \cdot 63 = 65.7$$

gram fett.

- Enkelt att prediktera i linjär regression:
 - 1. Anpassa modellen med minsta kvadratmetoden, dvs räkna b_0 och b_1 .
 - 2. Beräkna $\hat{y} = b_0 + b_1 x$ för det x värdet man vill prediktera responsvariabeln för.
- ► Var försiktig med att prediktera för *x*-värden utanför intervallet för de *x* värden användes för att anpassa modellen.
- Linjära modellen måste vara trovärdig. Mer om hur vi kollar detta snart.

Vad händer om vi får nya data?

- Nya data ger ny deskriptiv statistik. Villanis widget1 och widget2.
- Om vi tar ett nytt stickprov ändras minsta kvadratanpassningen, dvs hela linjen.
- Nya b_0 och b_1 . Hur varierar lutningen b_1 från stickprov till stickprov?
- ▶ Ett stickprov på 193 broar i New York state. Skick mot ålder vid inspektion.

Figure 4: Figur från s.232 i De Veaux et al. (2021).

▶ $b_1 \approx -0.02$. Skickmåttet \downarrow med ca 0.02 per år en byggnad föråldras.

Vad händer om vi får nya data?, forts.

- ▶ Det finns 17493 broar i New York state. Tag 1000 nya stickprov, varje stickprov bestående av 193 observationer.
- **Samplingfördelningen** för lutningskoefficienten b_1 :

Figure 5: Figur från s.234 i De Veaux et al. (2021).

- Kommentarer:
 - ▶ 95% av alla stickprov ger lutningar mellan -0.0201 och -0.136.
 - Samplingfördelningen är (approximativt) symmetrisk.
 - ▶ Det negativa sambandet ($b_1 < 0$) uppkommer vid varje stickprov.
 - ▶ $b_1 \approx 0.02$ är inte ett alltför ovanligt värde.

Regression mot medelvärdet

- ► Regression mot medelvärdet (regression to the mean på engelska): En avvikande x observation resulterar i en prediktion ŷ som avviker mindre.
- ▶ Exempel: Antag att x avviker 2 SD (s_x) från \overline{x} . Då avviker $\hat{y} < 2$ SD (s_y) från \overline{y} .
- \hat{y} är närmare sitt medelvärde (mätt i SD s_y) än vad x är närmare sitt medelvärde (mätt i SD s_x).
- ► Regressionen har "dragit ner" prediktionen närmare medelvärdet för y, jämfört med hur långt ifrån x låg från medelvärdet för x.
- Låt oss göra en regression på standariserade data för att förklara fenomenet.,

Regression mot medelvärdet, forts.

Standariserade data

$$z_X = \frac{x - \overline{x}}{s_X}$$
 och $z_X = \frac{y - \overline{y}}{s_y}$.

- Medelvärdena efter standarisering är 0, dvs $\overline{z}_x = 0$ och $\overline{z}_y = 0$.
- Standardavvikelserna efter standarisering är 1, dvs $s_{z_x} = 1$ och $s_{z_y} = 1$.
- ightharpoonup En minsta kvadratanpassning för regressionen z_y mot z_x ger

$$\hat{z}_y = b_0 + b_1 z_x,$$

där $b_0=\overline{z}_y-b_1\overline{z}_x$ och $b_1=r\frac{s_{z_y}}{s_{z_x}}$, och r är korrelationskoefficienten mellan z_y och z_x .

▶ Notera att $b_0 = 0 - b_1 \cdot 0 = 0$ och $b_1 = r^{\frac{1}{1}} = r$.

Regression mot medelvärdet, forts.

Minsta kvadratanpassningen är därför

$$\hat{z}_y = rz_x$$
.

- -1 < r < 1, dvs kan inte vara större eller mindre än 1.
- ▶ Exempel: Låt $z_x = 2$ (x avviker 2 SD från \overline{x}). För alla -1 < r < 1,

$$\hat{z}_y = r \cdot 2 < 2$$
, dvs \hat{y} avviker < 2 SD från \overline{y} .

Residualanalys

- ► En förutsättning för att använda linjär regression är att den linjära modellen måste vara trovärdig, dvs anpassa observerade data.
- ► "All models are wrong, but some are useful" George E. P. Box.
- ► En residualanalys är en mycket viktig del av modellvalidering.
- ► Om modellen beskriver data på ett adekvat sätt, så kommer residualerna inte ha något tydligt mönster i sig. De beter sig slumpmässigt.
- ▶ Stora enskilda residualer ger information om outliers. Dessa bör examineras.
- \blacktriangleright Vad räknas som en stor residual? Om residualerna är normalfördelade, så vet vi att 99.7% ligger ± 3 SD från sitt medelvärde.
- ► Vad är residualernas medelvärde?
- ▶ Tips: $\sum e = 0$ enligt egenskap 2. från slide 11.

Residualanalys, forts.

- $ightharpoonup \overline{e} = rac{\sum e}{n} = rac{0}{n} = 0$, dvs residualernas medelvärde är 0.
- ► Residualernas standardavvikelse kan räknas enligt

$$s_e = \sqrt{\frac{\sum e^2}{n-2}}.$$

- ▶ Varför delar vi med n-2 istället för n eller n-1? Vi behöver lära oss mer statistik innan vi kan förklara det.
- ▶ I del två av kursen kommer vi att räkna **samplingfördelningen** för *b*₁. För att göra det behöver vi fler modellantaganden som medför:
 - 1. Residualerna är normalfördelade.
 - 2. Residualernas varians är konstant, dvs beror inte på x.
- ▶ Vi kan undersöka 1. genom 68–95–99.7 regeln eller en normalfördelningsplot.
- ▶ Vi kan undersöka 2. genom att plotta *e* mot *x* och se om spridningen är ungefärlig densamma för alla *x*.

Residualerna uppfyller modellantaganden

Residualerna är inte normalfördelade (skeva åt höger)

Residualerna är inte slumpmässiga

Residualernas varians är inte konstant

- Varför anpassar vi regressionsmodeller?
 - 1. Förstå sambandet mellan y och x (positivt/negativt, inget linjärt samband).
 - 2. Prediktera y givet ett värde på x.
 - 3. **Förklara variationen** i *y* med hjälp av *x*
- ▶ Vad menar vi med att "förklara variation i y med hjälp av x" ?
- Antag först att vi bara har variabeln y (dvs inget x). Ett tänkbart mått på variationen i y från Föreläsning 3 är den totala kvadratsumman,

$$SST = \sum (y - \overline{y})^2.$$

▶ Tag nu in x och skatta en regression $\hat{y} = b_0 + b_1 x$. Ett tänkbart mått på variationen i y runt regressionslinjen är **residualkvadratsumman**

$$SSE = \sum (y - \hat{y})^2.$$

► Vilken av SST och SSE är störst?

Man kan visa att $SSE \leq SST$. Ju mindre SSE är i förhållande till SST, desto mer av den totala variationen SST fångas av regressionen.

Figuren visar hur en regression (\hat{y}) lämnar mindre variation kvar jämfört med att inte ha en regression (\bar{y}) .

- ► SST är den totala oförklarade variationen.
- SSE är den variationen som är kvar efter regressionen, dvs regressionens oförklarade variation.
- ► SSE/SST är regressionens oförklarade variation som andel av den totala oförklarade variationen.
- ▶ Eftersom $0 \le SSE \le SST$, så ligger $0 \le SSE/SST \le 1$.
- ► R-kvadrat, betecknad R² mäter andelen av den totala variationen som förklaras av regressionen, dvs modellens förklaringsgrad.
- ► Den defineras enligt

$$R^2 = 1 - \frac{\text{SSE}}{\text{SST}},$$

eller i ord

Andel förklarad variation = 1 - Andel of orklarad variation.

- Man kan visa att R^2 också kan räknas genom r^2 , därav namnet.
- ▶ R² ligger mellan 0 och 1. Ibland uttrycks den i procent och multipliceras då med 100.
- ▶ $R^2 \approx 1$ betyder att den linjära modellen har förklarat mestadels av variationen i y med hjälp av x.
- $ightharpoonup R^2 pprox 0$ betyder att den linjära modellen förklarar nästan inget av variationen i y med hjälp av x.
- ightharpoonup Det går inte att säga vad ett bra värde på R^2 är, det beror på applikationen.
- ightharpoonup I vetenskapliga experiment kan R^2 vara runt 0.8-0.9 om modellen är bra.
- ▶ I de sociala vetenskaperna får man vara nöjd med 0.3-0.5. Svårare att prediktera variabler i t.ex ekonomi jämfört med fysik.

Figure 6: Figur 11.10 in Walpole et al. (2016).

- ► Figuren till vänster visar en linjär regression som fångar mestadels av den totala variationen.
- ► Figuren till höger visar en linjär regression som fångar väldigt lite av den totala variationen.

Variansuppdelning i linjär regression

- ▶ Vi har definierat två olika variationer i linjär regression:
 - SST är den totala oförklarade variationen i y.
 - SSE är residualernas variation, dvs regressionens oförklarade variation.
- ▶ Det finns en tredje variation som mäter hur mycket prediktionen \hat{y} varierar kring \overline{y} .
- Denna kallas regressionens kvadratsumma (sum of squares regression på engelska),

$$SSR = \sum (\hat{y} - \overline{y})^2.$$

► Ett viktigt resultat är att SST kan dekomponeras enligt

$$SST = SSR + SSE$$
,

dvs

$$\sum (y - \overline{y})^2 = \sum (\hat{y} - \overline{y})^2 + \sum (y - \hat{y})^2.$$

Resultatet kallas för variansuppdelning. Analysis of variance (ANOVA) på engelska.

Variansuppdelning i linjär regression, forts.

► Intuition för resultatet fås genom omskrivningen

$$y - \overline{y} = y - \hat{y} + \hat{y} - \overline{y} = (y - \hat{y}) + (\hat{y} - \overline{y}).$$

Variansuppdelning i regressionen f\u00f6rv\u00e4ntad livsl\u00e4ngd mot h\u00e4lsobudget f\u00f6r olika l\u00e4nder:

Notera att R-kvadrat också kan räknas som $R^2 = \frac{\rm SSR}{\rm SST}$.

R-kvadrat och variansuppdelning

Repetition av antaganden i linjär regression

- Både y och x måste vara numeriska variabler.
- ▶ Det finns andra regressionsmodeller man kan använda när y är en kategorisk variabel fortsätt läsa statistik (SDA II)!
- ► Variablerna måste förhålla sig (approximativt) linjärt till varandra.
- ▶ Uppenbara outliers kan påverka minsta kvadratanpassningen. Anpassa linjen utan outliers för att kontrollera att resultaten blir ungefär desamma.
- ► Spridningen för y densamma för alla x. Residualernas varians måste vara konstant.
- Residualerna bör vara (approximativt) normalfördelade.
- Vad gör vi om variablerna inte förhåller sig linjärt? Icke-linjär regression via transformationer!

- Om y och x inte förhåller sig linjärt så kan vi transformera variablerna för att få ett linjärt förhållande.
- Förra föreläsningen diskuterade vi ladder of powers.
- ightharpoonup Stege av potenstransformationer för y (inklusive ingen transformation y):

(toppen)
$$y^2$$
, y , $y^{1/2}$, $\log(y)$, $-y^{-1/2}$, $-y^{-1}$ (botten),

ightharpoonup Stege av potenstransformationer för x (inklusive ingen transformation x):

(toppen)
$$x^2$$
, x , $x^{1/2}$, $\log(x)$, $-x^{-1/2}$, $-x^{-1}$ (botten).

- ▶ Plotta y mot x och gå upp och ner för stegen (dvs transformera) tills sambandet mellan de transformerade variablerna ter sig någorlunda linjärt.
- ► Ska vi röra oss upp eller ner längst stegen?
- Beror på formen på sambandet. Mer av en konst än vetenskap, men det finns tumregler.
- ► Transformationer av x kallas **feature learning** i machine learning.

Potenstransformationer för y och x.

Stegnivå	y	x
1	y^2	x^2
2	y	x
3	$y^{1/2}$	$x^{1/2}$
4	$\log(y)$	$\log(x)$
5	$-y^{-1/2}$	$-x^{-1/2}$
6	$-y^{-1}$	$-x^{-1}$

Figure 7: Tabell från Lab 4. Ladder of powers.

John Tukeys cirkel för hur man rör sig upp och ner längst stegen:

Figure 8: Figur 8.24 i De Veaux et al. (2021).

- ▶ Om data är en avtagande funktion som är konvex (konkav uppåt) befinner vi oss på tredje kvadranten. Flytta $x \downarrow$ och/eller $y \downarrow$ i stegen.
- ▶ Om data är en avtagande funktion som är konkav befinner vi oss på första kvadranten. Flytta $x \uparrow$ och/eller $y \uparrow$ i stegen.

Pingviners dykpuls mot tid för dykningen. Tredje kvadranten på Tukeys cirkel.

 Förväntad livslängd mot antal TV per capita. Andra kvadranten på Tukeys cirkel.

- När vi bestämt transformation(er) så anpassar vi en regression på transformerade variabler.
- ▶ I pingvinexemplet väljer vi transformationerna $DHR^{1/2}$ och $Duration^{1/2}$.
- ► Vi anpassar modellen

$$\widehat{DHR^{1/2}} = 11.847 - 1.746 Duration^{1/2}$$
.

- ightharpoonup Notera att anpassningen ger en prediktion i den transformerade skalan, dvs $DHR^{1/2}$
- ► Hur går vi från $\widehat{DHR}^{1/2} \Longrightarrow \widehat{DHR}$?
- ▶ Vi behöver "reversera transformationen". En funktion som reverserar en transformation kallas för en inverstransformation.

Prediktion i originalskala (kolumn till höger) för olika transformerade responser (kolumn till vänster).

Transformation av responsen	Prediktion i y -skala (\hat{y})
y^2	$\left(\widehat{y^2}\right)^{1/2}$
y	\hat{y}
$y^{1/2}$	$\left(\widehat{y^{1/2}} ight)^2$
$\log(y)$	$\exp\left(\widehat{\log(y)}\right)$
$-y^{-1/2}$	$\left(\widehat{-y^{-1/2}}\right)^2$
$-y^{-1}$	$- \left(\widehat{-y^{-1}} \right)^{-1}$

Figure 9: Tabell från Lab 4. Prediktion i originalskala med olika transformerade responser.

- Antag att vill prediktera dykpulsen för en pingvin som dyker 16 minuter, dvs $Duration^{1/2} = 16^{1/2} = 4$.
- ► I DHR^{1/2} skala är prediktionen

$$\widehat{DHR^{1/2}} = 11.847 - 1.746 \cdot 16^{1/2} = 4.863.$$

▶ I *DHR* skala blir prediktionen $\widehat{DHR} = 4.863^2 \approx 23.65$ slag per minut.

Notera att anpassningen är linjär i de transformerade skalorna.

Figure 10: Data och anpassad regression i transformerad skala.

Varför kallar vi det här för icke-linjär regression?

Regressionen är icke-linjär i originalskalan!

Figure 11: Data och anpassad regression i original skala.

Transformationer i linjär regression, forts.

- ▶ Det finns tolkningar av b_1 för vissa transformationer men vi går inte igenom dom i SDA I^1 .
- ightharpoonup Är en modell användbar om vi inte kan tolka b_1 ?
- ▶ Om målet är prediktion så bryr vi oss inte om att tolka koefficienter.
- ▶ Deep learning modeller saknar tolkningar av koefficienterna. Extremt bra på prediktion för många typer av data, speciellt bilder.
- ▶ Deep learning kan ses som en regression där man gör väldigt komplexa transformationer av x variabeln².

¹Några modeller i SDA II. Ännu fler i Generaliserade Linjära Modeller (GLM).

²Vår kurs Maskininlärning på masternivå lär ut deep learning.

References I

De Veaux, R. D., Velleman, P., and Bock, D. (2021). Stats: Data and Models. Pearson, Harlow, United Kingdom, fifth edition.

Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (2016). *Probability & Statistics for Engineers and Scientists*. Macmillan New York, 9 edition.