Examen d'Analyse de Fourier mercredi 26 novembre 2008

documents autorisés: 2 feuilles au format A4, recto-verso.

Remarque : dans tout l'énoncé, $\int_a^b f(x)dx$ désigne l'intégrale de Lebesgue $\int_{[a;b]} fd\lambda$ de f sur [a,b] $(-\infty \le a \le b \le +\infty)$ par rapport à la mesure de Lebesgue λ .

1 Transformée de Hankel

On appelle fonction de Bessel d'ordre 0 la fonction définie par :

$$J_0(t) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \exp\left(-it\cos(\theta - \alpha)\right) d\theta$$

- 1. En étudiant la périodicité de la fonction $\theta \mapsto \exp(-it\cos(\theta \alpha))$, et en effectuant un changement de variable, montrer que J_0 ne dépend pas de α .
- 2. Montrer que $\int_{-\pi}^{+\pi} \sin(t\cos\theta)d\theta = 2\int_{0}^{+\pi} \sin(t\cos\theta)d\theta$, puis que pour tout $u \in [0; \pi/2]$, on a : $\sin(t\cos(\pi/2 u)) = -\sin(t\cos(\pi/2 + u))$. En déduire que $J_0(t)$ est réel.
- 3. Montrer que J_0 est paire.

On rappelle que dans \mathbb{R}^2 , la transformée de Fourier d'une fonction f intégrable sur \mathbb{R}^2 à valeurs dans \mathbb{R} ou \mathbb{C} est définie par

$$\widehat{f}(\xi_1, \xi_2) = \int_{\mathbb{R}^2} f(x_1, x_2) e^{-2j\pi(x_1\xi_1 + x_2\xi_2)} dx_1 dx_2$$

La formule de Parseval-Plancherel pour des fonctions de $L^2(\mathbb{R})$ se généralise aux fonctions de $L^2(\mathbb{R}^2)$, à savoir :

$$\forall f, g \text{ dans } \mathbb{R}^2, \ \int_{\mathbb{R}^2} f(x_1, x_2) \overline{g(x_1, x_2)} dx_1 dx_2 = \int_{\mathbb{R}^2} \widehat{f}(\xi_1, \xi_2) \overline{\widehat{g}(\xi_1, \xi_2)} d\xi_1 d\xi_2$$

De plus, on dit qu'une fonction f de \mathbb{R}^2 dans \mathbb{R} est radiale si et seulement si il existe une fonction F de \mathbb{R}^+ dans \mathbb{R} telle que, pour tout $x = (x_1, x_2) \in \mathbb{R}^2$, on ait : f(x) = F(||x||), avec $||x|| = \sqrt{x_1^2 + x_2^2}$.

4. Soit f une fonction radiale intégrable sur \mathbb{R}^2 . Montrer que la transformée de Fourier de f (dans \mathbb{R}^2), notée \widehat{f} , est telle que

$$\forall (x_1, x_2) \in \mathbb{R}^2, \ \widehat{f}(\xi_1, \xi_2) = 2\pi \int_0^{+\infty} r J_0(2\pi \|\xi\| \, r) F(r) dr$$

aide : on effectuera pour cela le changement de variables $x_1 = r\cos\theta$, $x_2 = r\sin\theta$, puis on posera : $\xi_1 = \|\xi\|\cos\varphi$, $\xi_2 = \|\xi\|\sin\varphi$, et on utilisera la formule $\cos a\cos b + \sin a\sin b = \cos(a-b)$.

5. En déduire que \widehat{f} est radiale.

On peut alors définir la transformée de Hankel, notée TH, qui à une fonction F intégrable de \mathbb{R}^+ dans \mathbb{R} fait correspondre l'application notée TH(F) de \mathbb{R}^+ dans \mathbb{R} définie par

$$TH(F)(\rho) = 2\pi \int_0^{+\infty} r J_0(2\pi\rho r) F(r) dr$$

Chaque fois que nécessaire, on pourra considérer cette transformée de Hankel de F comme la transformée de Fourier dans \mathbb{R}^2 de la fonction radiale f définie par $f(x) = F(||x||), x \in \mathbb{R}^2$.

6. Montrer, en utilisant la formule d'inversion de la transformée de Fourier dans \mathbb{R}^2 , c'est-à-dire, pour $\widehat{f} \in L^1(\mathbb{R}^2)$, $f(x_1, x_2) = \int_{\mathbb{R}^2} \widehat{f}(\xi_1, \xi_2) e^{+2j\pi(x_1\xi_1 + x_2\xi_2)} d\xi_1 d\xi_2$ p.p. (avec égalité aux points où f est continue), que si F est continue et $TH(F) \in L^1(\mathbb{R}^2)$, alors

$$\forall r > 0, \ F(r) = 2\pi \int_0^{+\infty} \rho J_0(2\pi \rho r) TH(F)(\rho) d\rho$$

7. Soit a > 0. Pour une fonction g donnée définie sur \mathbb{R}^+ , on note $dil_a(g)$ la fonction dilatée de g définie par : $\forall r > 0$, $dil_a(g)(r) = g(ar)$. Montrer que

$$TH\left(dil_a(F)\right) = \frac{1}{a^2} dil_{\frac{1}{a}}(TH(F))$$

8. Soient F et G deux applications de $L^2(\mathbb{R}^+)$. Montrer, en passant par les fonctions radiales associées f et g, et en utilisant la formule de Parseval-Plancherel dans $L^2(\mathbb{R}^2)$, que

$$\int_{0}^{+\infty} rF(r)\overline{G(r)}dr = \int_{0}^{+\infty} \rho TH(F)(\rho)\overline{TH(G)(\rho)}d\rho$$

(on utilisera les changements de variables coordonnées pôlaires/coordonnées cartésiennes.)

9. Calculer la transformée de Hankel de la fonction définie de \mathbb{R}^+ dans \mathbb{R}^+ $F(r) = e^{-\pi r^2}$. **aide**: on rappelle $\widehat{e^{-\pi x^2}}(\xi) = e^{-\pi \xi^2}$.

2 Distributions

2.1 Transformée de Fourier d'une distribution homogène

Soit φ une fonction quelconque de $S(\mathbb{R})$. Soit $\alpha > 0$. On note φ_{α} la fonction définie par : $\varphi_{\alpha}(x) = \varphi(\alpha x)$, $\forall x \in \mathbb{R}$. On dit qu'une distribution T de $S'(\mathbb{R})$ est homogène de degré d si et seulement si :

$$\forall \varphi \in \mathcal{S}(\mathbb{R}), \quad \langle T, \varphi_{\alpha} \rangle = \alpha^{-(d+1)} \langle T, \varphi \rangle$$

- 1. Exprimer $\widehat{\varphi}_{\alpha}$ en fonction de $\widehat{\varphi}$.
- 2. Montrer alors, en calculant $\langle \widehat{T}, \varphi_{\alpha} \rangle$, que si T est homogène de degré d, alors \widehat{T} est homogène, d'un degré que l'on précisera.

2.2 Convergence vers δ

On considère une suite de fonctions f_n définie sur \mathbb{R} , intégrables, positives, telles que

$$\int_{\mathbb{R}} f_n(t)dt = 1, \, \forall n \ge 1$$

et le support de f_n est inclus dans $\left[-\frac{1}{n};\frac{1}{n}\right]$. On veut montrer que la suite de fonctions f_n (plus précisément, la suite de distributions régulières T_{f_n}) tend vers la distributions de Dirac δ dans $D'(\mathbb{R})$.

- 1. Soit φ une fonction quelconque de $D(\mathbb{R})$. Rappeler la caractérisation de la continuité de φ en 0.
- 2. Rappeler la définition de la convergence d'une suite de distributions.
- 3. Montrer, en utilisant la continuité de φ en 0, que pour tout $\varepsilon > 0$, il existe N_{ε} tel que

$$\forall n \geq N_{\varepsilon}, \qquad \left| \int_{-\infty}^{+\infty} f_n(t) \varphi(t) dt - \varphi(0) \right| dt \leq \varepsilon \int_{\left[-\frac{1}{n}; \frac{1}{n} \right]} f_n(t) dt$$

aide : on écrira $\int_{-\infty}^{+\infty} f_n(t)\varphi(t)dt - \varphi(0) = \int_{-\infty}^{+\infty} f_n(t) (\varphi(t) - \varphi(0)) dt$.

4. En déduire le résultat.