DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat (c) 2002 EPO. All rts. reserv. 17038730

Basic Patent (No,Kind,Date): JP 2001077374 A2 20010323 <No. of Patents: 001> SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF (English)

Patent Assignee: SEMICONDUCTOR ENERGY LAB

Author (Inventor): YAMAZAKI SHUNPEI; ARAI YASUYUKI; KOYAMA JUN

IPC: *H01L-029/786; H01L-021/336; G02F-001/1339; G09F-009/00

Derwent WPI Acc No: *G 01-312698; G 01-312698

Language of Document: Japanese

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 2001077374 A2 20010323 JP 2000204291 A 20000705 (BASIC)

Priority Data (No,Kind,Date): JP 2000204291 A 20000705

JP 99191097 A 19990706

DIALOG(R)File 347:JAPIO

(c) 2002 JPO & JAPIO. All rts. reserv.

j |

06849874

Image available

SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF

PUB. NO.:

2001-077374 [JP 2001077374 A]

PUBLISHED:

March 23, 2001 (20010323)

INVENTOR(s): YAMAZAKI SHUNPEI

ARAI YASUYUKI

KOYAMA JUN

APPLICANT(s): SEMICONDUCTOR ENERGY LAB CO LTD

APPL. NO.:

2000-204291 [JP 2000204291]

FILED:

July 05, 2000 (20000705)

PRIORITY:

11-191097 [JP 99191097], JP (Japan), July 06, 1999 (19990706)

INTL CLASS:

H01L-029/786; H01L-021/336; G02F-001/1339; G02F-001/1368;

G09F-009/00; G09F-009/30

ABSTRACT

PROBLEM TO BE SOLVED: To improve the operating characteristics and reliability of a semiconductor and to reduce the amount of consumed power by forming the pixel electrode of a pixel section into the shape of an of an organic insulating material having a made insulating film light-reflecting surface.

SOLUTION: First, spacers, which are columnar spacers, are formed on an active matrix substrate. Columnar spacers 173 are formed to overlap a contact portion of a pixel electrode 168 in a manner covering the contact portion, in a pixel section. Then, an alignment layer 174 is formed using a polyimide resin, and then rubbed to align the layer such that liquid crystal molecules are aligned at a predetermined pre-tilt angle. A light-shielding film 176, a transparent conductive film 177, and an alignment layer 178 are formed on a mating substrate 175 on the opposite side. Then, the active matrix substrate wherein the pixel section and a driving circuit are formed is laminated to the mating substrate with a sealing agent 179. Thereafter, a liquid crystal material 606 is charged to fill a space between both substrates for their complete closure with a closing material.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-77374

(P2001 - 77374A)

(43)公開日 平成13年3月23日(2001.3.23)

(51) Int.Cl.7		識別記号		FΙ				テ ー	マコード(参考)
H01L	29/786			H0	1 L	29/78		616A	
	21/336			G 0	2 F	1/1339		500	
G02F	1/1339	500		G 0 9	9 F	9/00		3 3 8	
	1/1368							348C	
G09F	9/00	338				9/30		338	
			審査請求	未請求	衣簡	で項の数21	OL	(全 26 頁)	最終頁に続く
(21)出願番	身	特願2000-204291(P20	00-204291)	(71)	出願人	√ 000153t	378		
						株式会	社半導	体エネルギー	研究 所
(22)出顧日		平成12年7月5日(2000.7.5)		ļ		神奈川	県厚木	市長谷398番地	ı
				(72)	発明を	当 山崎 🤅	舜平		
(31)優先権主張番号		特願平11-191097				神奈川	県厚木	市長谷398番地	株式会社半
(32)優先日		平成11年7月6日(1999.7.6)				導体工	ネルギ	一研究所内	
(33)優先権主張国		日本 (JP)		(72)	発明者	皆 荒井)	康行		
						神奈川	県厚木	市長谷398番地	株式会社半
						道体工	ネルギ	一研究所内	

(72)発明者

(54)【発明の名称】 半導体装置およびその作製方法

(57) 【要約】

【課題】アクティブマトリクス基板の各種回路に対応し たTFTを作製するためにその製造工程は複雑なものと なり工程数が増加してしまう。工程数の増加は製造コス トの増加要因になるばかりか、製造歩留まりを低下させ る原因となる。

【解決手段】駆動回路のpチャネル型TFTはシングル ドレイン構造とし、nチャネル型TFTはGOLD構造 とLDD構造のいずれかとする。画素TFTはLDD構 造として、画素部に設ける画素電極は、有機絶縁物材料 からなる層間絶縁膜上に形成され、少なくとも、画素T FTのゲート電極の上方に設けた無機絶縁物材料から成 る保護絶縁膜と、該絶縁膜上に密接して形成された該層 間絶縁膜とに設けられた開孔を介して、前記画素TFT に接続している。この工程においてフォトマスク数を6 ~8枚とする。

神奈川県厚木市長谷398番地 導体エネルギー研究所内

【特許請求の範囲】

【請求項1】画素部に設けた画素TFTと、該画素部の 周辺にpチャネル型TFTとnチャネル型TFTとを設 けた駆動回路とを同一の基板上に有する半導体装置にお いて、前記駆動回路のpチャネル型TFTは、チャネル 形成領域と、ソース領域またはドレイン領域を形成する 第4濃度のp型不純物領域を有し、前記駆動回路のnチ ャネル型TFTは、チャネル形成領域と、該チャネル形 成領域に接して設けられ、ゲート電極と一部が重なるL DD領域を形成する第1濃度のn型不純物領域と、該第 1 濃度の n 型不純物領域の外側に設けられソース領域ま たはドレイン領域を形成する第3濃度のn型不純物領域 とを有し、前記画素TFTは、チャネル形成領域と、該 チャネル形成領域に接して設けられLDD領域を形成す る第2濃度の n 型不純物領域と、該第2濃度の n 型不純 物領域の外側に設けられソース領域またはドレイン領域 を形成する第3濃度のn型不純物領域とを有し、前記画 素TFTのゲート電極の上層に、無機絶縁物材料から成 る絶縁膜と、該絶縁膜上に形成された有機絶縁物材料か ら成る絶縁膜が形成され、前記画素部の画素電極は、光 反射性表面を有し前記有機絶縁物材料から成る絶縁膜上 に形成されていることを特徴とする半導体装置。

【請求項2】 画素部に設けた画素TFTと、該画素部の 周辺にpチャネル型TFTとnチャネル型TFTとを設 けた駆動回路とを同一の基板上に有する半導体装置にお いて、前記駆動回路のpチャネル型TFTは、チャネル 形成領域と、ソース領域またはドレイン領域を形成する 第4濃度のp型不純物領域を有し、前記駆動回路のnチ ャネル型TFTは、チャネル形成領域と、該チャネル形 成領域に接して設けられゲート電極と一部が重なるLD D領域を形成する第1濃度のn型不純物領域と、該第1 濃度のn型不純物領域の外側に設けられソース領域また はドレイン領域を形成する第3濃度のn型不純物領域と を有し、前記画素TFTは、チャネル形成領域と、該チ ャネル形成領域に接して設けられLDD領域を形成する 第2濃度のn型不純物領域と、該第2濃度のn型不純物 領域の外側に設けられソース領域またはドレイン領域を 形成する第1濃度のn型不純物領域とを有し、前記画素 TFTのゲート電極の上層に、無機絶縁物材料から成る 絶縁膜と、該絶縁膜上に形成された有機絶縁物材料から 成る絶縁膜が形成され、前記画素部の画素電極は、光透 過性を有し前記有機絶縁物材料から成る絶縁膜上に形成 されていることを特徴とする半導体装置。

【請求項3】一対の基板間に液晶を挟持した半導体装置であって、画素部に設けた画素TFTと、駆動回路の p チャネル型TFTと n チャネル型TFTとを有する一方の基板において、前記駆動回路の p チャネル型TFT は、チャネル形成領域と、ソース領域またはドレイン領域を形成する第4 濃度の p 型不純物領域を有し、前記駆動回路の n チャネル型TFTは、チャネル形成領域と、

該チャネル形成領域に接して設けられゲート電極と一部 が重なるLDD領域を形成する第1濃度のn型不純物領 域と、該第1濃度のn型不純物領域の外側に設けられソ ース領域またはドレイン領域を形成する第3濃度のn型 不純物領域とを有し、前記画素TFTは、チャネル形成 領域と、該チャネル形成領域に接して設けられLDD領 域を形成する第2濃度のn型不純物領域と、該第2濃度 のn型不純物領域の外側に設けられソース領域またはド レイン領域を形成する第3濃度のn型不純物領域とを有 し、前記画素TFTのゲート電極の上層に、無機絶縁物 材料から成る絶縁膜と、該絶縁膜上に形成された有機絶 縁物材料から成る絶縁膜が形成され、前記画素部の画素 電極は、光反射性表面を有し前記有機絶縁物材料から成 る絶縁膜上に形成され、前記無機絶縁物材料から成る絶 縁膜と前記有機絶縁物材料から成る絶縁膜を貫通する開 孔部にて前記画素TFTに接続され、透明導電膜が形成 された他方の基板と、前記開孔に重ねて形成された少な くとも一つの柱状スペーサを介して貼り合わされている ことを特徴とする半導体装置。

【請求項4】一対の基板間に液晶を挟持した半導体装置 であって、画素部に設けた画素TFTと、駆動回路のp チャネル型TFTとnチャネル型TFTとを有する一方 の基板において、前記駆動回路のpチャネル型TFT は、チャネル形成領域と、ソース領域またはドレイン領・ 域を形成する第4濃度のp型不純物領域を有し、前記駆 動回路のnチャネル型TFTは、チャネル形成領域と、 が重なるLDD領域を形成する第1濃度のn型不純物領 域と、該第1濃度のn型不純物領域の外側に設けられソ ース領域またはドレイン領域を形成する第3濃度のn型 不純物領域とを有し、前記画素TFTは、チャネル形成 領域と、該チャネル形成領域に接して設けられLDD領 域を形成する第2濃度のn型不純物領域と、該第2濃度 のn型不純物領域の外側に設けられソース領域またはド レイン領域を形成する第3濃度のn型不純物領域とを有 し、前記画素TFTのゲート電極の上層に、無機絶縁物 材料から成る絶縁膜と、該絶縁膜上に形成された有機絶 縁物材料から成る絶縁膜が形成され、前記画素部の画素 電極は、光透過性を有し前記有機絶縁物材料から成る絶 縁膜上に形成され、前記無機絶縁物材料から成る絶縁膜 と前記有機絶縁物材料から成る絶縁膜を貫通する開孔部 にて前記画素TFTに接続され、透明導電膜が形成され た他方の基板と、前記開孔に重ねて形成された少なくと も一つの柱状スペーサを介して貼り合わされていること を特徴とする半導体装置。

【請求項5】請求項1乃至請求項4のいずれか一項において、前記駆動回路のpチャネル型TFTは、チャネル形成領域と、ソース領域またはドレイン領域を形成する第4濃度のp型不純物領域との間に、オフセット領域が形成されていることを特徴とする半導体装置。

【請求項6】請求項5おいて、前記駆動回路のpチャネル型TFTは、アナログスイッチとして使用されていることを特徴とする半導体装置。

【請求項7】請求項1乃至請求項4のいずれか一項において、前記画素TFTと、前記駆動回路のpチャネル型TFTとのゲート電極は耐熱性導電性材料から形成され、前記駆動回路から延在し、該ゲート電極に接続するゲート配線は低抵抗導電性材料から形成されることを特徴とする半導体装置。

【請求項8】請求項7において、前記耐熱性導電性材料はタンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(Mo)から選ばれた元素、または前記元素を成分とする化合物、または前記元素を組み合わせた化合物、または前記元素を成分とする窒化物、前記元素を成分とするシリサイドであることを特徴とする半導体装置。

【請求項9】請求項3または請求項4において、前記柱 状スペーサが、前記駆動回路のpチャネル型TFTとn チャネル型TFT上に形成されていることを特徴とする 半導体装置。

【請求項10】請求項3または請求項4において、前記柱状スペーサは、前記駆動回路のpチャネル型TFTとnチャネル型TFTのソース配線またはドレイン配線を覆って形成されていることを特徴とする半導体装置。

【請求項11】請求項1乃至請求項10のいずれか一項において、前記半導体装置は、パーソナルコンピュータ、ビデオカメラ、携帯型情報端末、デジタルカメラ、デジタルビデオディスクプレーヤー、電子遊技機器、プロジェクターから選ばれた一つであることを特徴とする半導体装置。

【請求項12】画素部に設けた画素TFTと、該画素部 の周辺にpチャネル型TFTとnチャネル型TFTとを 設けた駆動回路とを同一の基板上に有する半導体装置の 作製方法において、前記基板に密接して下地膜を形成す る工程と、前記下地膜上に複数の島状半導体層を形成す る工程と、前記島状半導体層の選択された領域に、前記 駆動回路のnチャネル型TFTのゲート電極と一部が重 なるLDD領域を形成する第1濃度のn型不純物領域を 形成する工程と、前記島状半導体層の選択された領域 に、前記画素TFTのLDD領域を形成する第2濃度の n型不純物領域を形成する工程と、前記島状半導体層の 選択された領域に、前記駆動回路のnチャネル型TFT と前記画素TFTとにソース領域またはドレイン領域を 形成する第3濃度のn型不純物領域を形成する工程と、 前記島状半導体層の選択された領域に、前記駆動回路の pチャネル型TFTのソース領域またはドレイン領域を 形成する第4濃度のp型不純物領域を形成する工程と、 前記駆動回路のnチャネル型TFTとpチャネル型TF Tと、前記画素TFTとのゲート電極の上層に、無機絶 縁物材料から成る絶縁膜を形成する工程と、該無機絶縁 物材料から成る絶縁膜に密接して有機絶縁物材料からなる絶縁膜を形成する工程と、前記画素TFTに接続する 光反射性表面を有する画素電極を、前記有機絶縁物材料 からなる絶縁膜上に形成する工程とを有することを特徴 とする半導体装置の作製方法。

【請求項13】 画素部に設けた画素TFTと、該画素部 の周辺にpチャネル型TFTとnチャネル型TFTとを 設けた駆動回路とを同一の基板上に有する半導体装置の 作製方法において、前記基板上に、下地膜を形成するエ 程と、前記下地膜上に複数の島状半導体層を形成する工 程と、前記島状半導体層の選択された領域に、前記駆動 回路のnチャネル型TFTのゲート電極と一部が重なる LDD領域を形成する第1濃度のn型不純物領域を形成 する工程と、前記島状半導体層の選択された領域に、前 記画素TFTのLDD領域を形成する第2濃度のn型不 純物領域を形成する工程と、前記島状半導体層の選択さ れた領域に、前記駆動回路のnチャネル型TFTと前記 画素TFTとにソース領域またはドレイン領域を形成す る第3濃度のn型不純物領域を形成する工程と、前記島 状半導体層の選択された領域に、前記駆動回路のpチャ ネル型TFTのソース領域またはドレイン領域を形成す る第4濃度のp型不純物領域を形成する工程と、前記駆 動回路のnチャネル型TFTと前記画素TFTとpチャ ネル型TFTとのゲート電極の上層に、無機絶縁物材料 から成る絶縁膜を形成する工程と、該無機絶縁物材料かり らなる絶縁膜に密接して有機絶縁物材料からなる絶縁膜 を形成する工程と、前記画案TFTに接続する導電性金 属配線を形成する工程と、前記有機絶縁物材料からなる 絶縁膜上に前記導電性金属配線に接続する透明導電膜か ら成る画素電極を形成する工程とを有することを特徴と する半導体装置の作製方法。

【請求項14】一対の基板間に液晶を挟持した半導体装 置の作製方法において、画素部に設けた画素TFTと、 駆動回路のpチャネル型TFTとnチャネル型TFTと を設けた一方の基板は、前記基板上に、下地膜を形成す る工程と、前記下地膜上に複数の島状半導体層を形成す る工程と、前記島状半導体層の選択された領域に、前記 駆動回路のnチャネル型TFTのゲート電極と一部が重 なるLDD領域を形成する第1濃度のn型不純物領域を 形成する工程と、前記島状半導体層の選択された領域 に、前記画素TFTのLDD領域を形成する第2濃度の n型不純物領域を形成する工程と、前記島状半導体層の 選択された領域に、前記駆動回路のnチャネル型TFT と前記画素TFTとにソース領域またはドレイン領域を 形成する第3濃度のn型不純物領域を形成する工程と、 前記島状半導体層の選択された領域に、前記駆動回路の p チャネル型TFTのソース領域またはドレイン領域を 形成する第4濃度のp型不純物領域を形成する工程と、 前記駆動回路のnチャネル型TFTと前記画素TFTと pチャネル型TFTとのゲート電極の上層に、無機絶縁

物材料から成る絶縁膜を形成する工程と、該無機絶縁物材料からなる絶縁膜に密接して有機絶縁物材料からなる 絶縁膜を形成する工程と、前記有機絶縁物材料からなる 絶縁膜と前記無機絶縁物材料からなる絶縁膜とに設けられた開孔を介して前記画素TFTに接続する光反射性表 面を有する画素電極を前記有機絶縁物材料からなる絶縁 膜上に形成する工程とを有し、他方の基板は少なくとも 透明導電膜を形成する工程を有し、前記開孔に重ねて形 成された少なくとも一つの柱状スペーサを介して、前記 一方の基板と前記他方の基板を貼合わせる工程を有する ことを特徴とする半導体装置の作製方法。

【請求項15】一対の基板間に液晶を挟持した半導体装 置の作製方法において、画素部に設けた画素TFTと、 駆動回路のpチャネル型TFTとnチャネル型TFTと を設けた一方の基板は、前記基板上に、下地膜を形成す る工程と、前記下地膜上に複数の島状半導体層を形成す る工程と、前記島状半導体層の選択された領域に、前記 駆動回路のnチャネル型TFTのゲート電極と一部が重 なるLDD領域を形成する第1濃度のn型不純物領域を 形成する工程と、前記島状半導体層の選択された領域 に、前記画素TFTのLDD領域を形成する第2濃度の n型不純物領域を形成する工程と、前記島状半導体層の 選択された領域に、前記駆動回路のnチャネル型TFT と前記画素TFTとにソース領域またはドレイン領域を 形成する第3濃度のn型不純物領域を形成する工程と、 前記島状半導体層の選択された領域に、前記駆動回路の pチャネル型TFTのソース領域またはドレイン領域を 形成する第4濃度のp型不純物領域を形成する工程と、 前記駆動回路のnチャネル型TFTと前記画素TFTと pチャネル型TFTとのゲート電極の上層に、無機絶縁 物材料から成る絶縁膜を形成する工程と、該無機絶縁物 材料からなる絶縁膜に密接して有機絶縁物材料からなる 絶縁膜を形成する工程と、前記有機絶縁物材料からなる 絶縁膜と保護絶縁膜とに設けられた開孔を介して前記画 素TFTに接続する導電性金属配線を形成する工程と、 前記層間絶縁膜上に該金属配線に接続する透明導電膜か ら成る画素電極を形成する工程とを有し、他方の基板は 少なくとも透明導電膜を形成する工程を有し、前記開孔 に重ねて形成された少なくとも一つの柱状スペーサを介 して、前記一方の基板と前記他方の基板を貼合わせる工 程を有することを特徴とする半導体装置の作製方法。

【請求項16】請求項12乃至請求項15のいずれか一項において、前記駆動回路のpチャネル型TFTは、該pチャネル型TFTのゲート電極上に無機絶縁物材料から成る絶縁膜を形成する工程の後に、前記島状半導体層の選択された領域に、該pチャネル型TFTのソース領域またはドレイン領域を形成する第4濃度のp型不純物領域を形成する工程を行い、該pチャネル型TFTのチャネル形成領域と、ソース領域またはドレイン領域を形成する第4濃度のp型不純物領域との間に、オフセット成する第4濃度のp型不純物領域との間に、オフセット

領域が形成することを特徴とする半導体装置の作製方 法。

【請求項17】請求項12乃至請求項15のいずれか一項において、前記画素TFTと、該画素部の周辺にpチャネル型TFTとnチャネル型TFTとのゲート電極を耐熱性導電性材料から形成する工程と、前記駆動回路から延在し、該ゲート電極に接続するゲート配線を低抵抗導電性材料から形成する工程とを有することを特徴とする半導体装置の作製方法。

【請求項18】請求項17において、前記耐熱性導電性 材料はタンタル(Ta)、チタン(Ti)、モリブデン (Mo)、タングステン(W)から選ばれた元素、また は前記元素を成分とする化合物、または前記元素を組み 合わせた化合物、または前記元素を成分とする窒化物、 前記元素を成分とするシリサイドから形成することを特 徴とする半導体装置の作製方法。

【請求項19】請求項14または請求項15において、前記柱状スペーサを、前記駆動回路のpチャネル型TFTとnチャネル型TFT上にも形成することを特徴とする半導体装置の作製方法。

【請求項20】請求項14または請求項15において、前記柱状スペーサが、前記駆動回路のpチャネル型TFTとnチャネル型TFTのソース配線またはドレイン配線を覆って形成することを特徴とする半導体装置の作製方法。

【請求項21】請求項12乃至請求項20のいずれか一項において、前記半導体装置は、パーソナルコンピュータ、ビデオカメラ、携帯型情報端末、デジタルカメラ、デジタルビデオディスクプレーヤー、電子遊技機器、プロジェクターから選ばれた一つであることを特徴とする半導体装置の作製方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は絶縁表面を有する基板上に薄膜トランジスタ(以下、TFTと記す)で構成された回路を有する半導体装置およびその作製方法に関する。特に本発明は、画素部とその周辺に設けられる駆動回路を同一基板上に設けた液晶表示装置に代表される電気光学装置、および電気光学装置を搭載した電子機器に好適に利用できる技術を提供する。尚、本明細書において半導体装置とは、半導体特性を利用することで機能する装置全般を指し、上記電気光学装置およびその電気光学装置を搭載した電子機器をその範疇に含んでいる。

[0002]

【従来の技術】アクティブマトリクス型液晶表示装置に代表される電気光学装置において、スイッチング素子や能動回路を構成するためにTFTを用いる技術が開発されている。TFTはガラスなどの基板上に気相成長法により半導体膜を形成し、その半導体膜を活性層として形成する。半導体膜にはシリコン又はシリコン・ゲルマニ

ウムなどシリコンを主成分とする材料が好適に用いられている。さらに、シリコン半導体膜はその作製法により、非晶質シリコン膜や多結晶シリコンに代表される結晶質シリコン膜などを得ることができる。

【0003】非晶質シリコン膜を活性層としたTFTは、非晶質構造などに起因する電子物性的要因から、本質的に数cm²/Vsec以上の電界効果移動度を得ることができない。従って、アクティブマトリクス型の液晶表示装置において、画素部の各画素に設けられる液晶を駆動するためのスイッチング素子(画素TFT)として使用することはできても、画像表示を行うための駆動回路まで形成することは不可能であった。そのために、TAB

(Tape Automated Bonding) 方式やCOG (Chip on Glass) 方式を使ってドライバICなどを実装する技術が用いられていた。

【0004】一方、結晶質シリコン膜を活性層としたTFTでは、高い電界効果移動度が得られることから各種の機能回路を同一のガラス基板上に形成することが可能となり、画素TFTの他に駆動回路においてnチャネル型TFTとpチャネル型TFTとから成るCMOS回路を基本として形成されるシフトレジスタ回路、レベルシフタ回路、バッファ回路、サンプリング回路などを実現することができた。そして、このような技術を根拠として、液晶表示装置において軽量化および薄型化を推進するためには、画素部の他に駆動回路を同一基板上に一体形成できる結晶質半導体膜を活性層とするTFTが適していることが明らかとなっている。

[0005]

【発明が解決しようとする課題】TFTの特性面から比較すると結晶質シリコン膜を活性層とした方が優れているが、画素TFTの他に各種回路に対応したTFTを作製するためにその製造工程は複雑なものとなり工程数が増加してしまった。工程数の増加は製造コストの増加要因になるばかりか、製造歩留まりを低下させる原因となる。

【0006】例えば、画素TFTと駆動回路のTFTとでは、それらの回路の動作条件は必ずしも同一ではなく、そのことからTFTに要求される特性も少なからず異なっている。画素TFTはnチャネル型TFTから成り、スイッチング素子として液晶に電圧を印加して駆動させるものである。液晶は交流で駆動させるので、フレーム反転駆動と呼ばれる方式が多く採用されている。この方式では消費電力を低く抑えるために、画素TFTに要求される特性はオフ電流値(TFTがオフ動作時に流れるドレイン電流)を十分低くすることである。一方、制御回路のバッファ回路は高い駆動電圧が印加されるため、高電圧が印加されても壊れないように耐圧を高めておく必要がある。また電流駆動能力を高めるために、オン電流値(TFTがオン動作時に流れるドレイン電流)を十分確保する必要がある。

【0007】オフ電流値を低減するためのTFTの構造として、低濃度ドレイン(LDD:Lightly Doped Drain)構造が知られている。この構造はチャネル形成領域と、高濃度に不純物元素を添加して形成するソース領域またはドレイン領域との間にそれよりも低い濃度で不純物元素を添加した領域を設けたものであり、この領域をLDD領域と呼んでいる。また、ホットキャリアによるオン電流値の劣化を防ぐための手段として、LDD領域をゲート絶縁膜を介してゲート電極と重ねて配置させた、いわゆるGOLD(Gate-drain Overlapped LDD)構造が知られている。このような構造とすることで、ドレイン近傍の高電界が緩和されてホットキャリア注入を防ぎ、劣化現象の防止に有効であることが知られている。

【0008】このように、画素TFTと、シフトレジス 夕回路やバッファ回路などの駆動回路のTFTとでは、 その要求される特性は必ずしも同じではない。例えば、 画素TFTにおいてはゲートに大きな逆バイアス(nチ ャネル型TFTでは負の電圧)が印加されるが、駆動回 路のTFTは基本的に逆バイアス状態で動作することは ない。また、動作速度に関しても、画素TFTは制御回 路のTFTの1/100以下で良い。また、GOLD構 造はオン電流値の劣化を防ぐ効果は高いが、その反面、 通常のLDD構造と比べてオフ電流値が大きくなってし まう問題があった。従って、画素TFTに適用するには 好ましい構造ではなかった。逆に通常のLDD構造はオ フ電流値を抑える効果は高いが、ドレイン近傍の電界をはいる。 緩和してホットキャリア注入による劣化を防ぐ効果は低 かった。このように、アクティブマトリクス型液晶表示 装置のような動作条件の異なる複数の集積回路を有する 半導体装置において、全てのTFTを同じ構造で形成す ることは必ずしも好ましくなかった。このような問題点 は、特に結晶質シリコンTFTにおいて、その特性が高 まり、またアクティブマトリクス型液晶表示装置に要求 される性能が高まるほど顕在化してきた。

【0009】また、nチャネル型TFTおよびpチャネル型TFTを用いて作製されるこれらの回路の動作を安定化させるためには、TFTのしきい値電圧やサブスレショルド定数(S値)などの値を所定の範囲内とする必要がある。そのためには、TFTを構造面からと構成する材料面からとの両面から検討する必要がある。

【0010】本発明はこのような問題点を解決するための技術であり、TFTを用いて作製されるアクティブマトリクス型の液晶表示装置に代表される電気光学装置ならびに半導体装置において、各種回路に配置されるTFTの構造を、回路の機能に応じて適切なものとすることにより、半導体装置の動作特性および信頼性を向上させ、かつ、低消費電力化を図ると共に、工程数を削減して製造コストの低減および歩留まりの向上を実現することを目的としている。

[0011]

【課題を解決するための手段】工程数を削減して製造コストの低減および歩留まりを実現するためには、TFTの製造に要するフォトマスクの枚数を削減することが必要である。フォトマスクはフォトリソグラフィーの技術において、エッチング工程のマスクとするレジストパターンを基板上に形成するために用いる。従って、フォトマスクを1枚使用することは、その前後の工程において、被膜の成膜およびエッチングなどの工程の他に、レジスト剥離、洗浄や乾燥工程などが付加され、フォトリソグラフィーの工程においても、レジスト塗布、プレベーク、露光、現像、ポストベークなどの煩雑な工程が行われることを意味する。

【0012】上記問題点を解決するために本発明の構成 は、画素部に設けた画素TFTと、該画素部の周辺にp チャネル型TFTとnチャネル型TFTとを設けた駆動 回路とを同一の基板上に有する半導体装置において、前 記駆動回路のpチャネル型TFTは、チャネル形成領域 と、ソース領域またはドレイン領域を形成する第4濃度 のp型不純物領域を有し、前記駆動回路のnチャネル型 TFTは、チャネル形成領域と、該チャネル形成領域に 接して設けられゲート電極と重なるLDD領域と重なら ないLDD領域とを形成する第1濃度のn型不純物領域 と、該第1濃度のn型不純物領域の外側に設けられソー ス領域またはドレイン領域を形成する第3濃度の n型不 純物領域とを有し、前記画素TFTは、チャネル形成領 域と、該チャネル形成領域に接して設けられLDD領域 を形成する第2濃度のn型不純物領域と、該第2濃度の n型不純物領域の外側に設けられソース領域またはドレ イン領域を形成する第3濃度のn型不純物領域とを有 し、前記画素TFTのゲート電極の上層に、無機絶縁物 材料から成る絶縁膜と、該絶縁膜上に形成された有機絶 縁物材料から成る絶縁膜が形成され、前記画素部の画素 電極は、光反射性表面を有し前記有機絶縁物材料から成 る絶縁膜上に形成されていることを特徴としている。

【0013】また、他の発明の構成は、画素部に設けた画素TFTと、該画素部の周辺にpチャネル型TFTとれまれた型ではphaとを同一の基板上に有する半導体装置において、前記駆動回路のpチャネル型でphaとでする光度である第4濃度のp型不純物領域となったがでする第4濃度のp型不純物領域とを有し、前記駆動回路のnチャネル型でphaに接して設けられが一ト電極と一部が重なるLDD領域を形成する第1濃度のn型不純物領域と、該第1濃度のn型不純物領域を形成する第3濃度のn型不純物領域とを有し、前記画素でphaに設けられソース領域またはドレイン領域を形成する第3濃度のn型不純物領域とを有し、前記画素でphaに設けられどであれたの領域を形成する第2濃度のn型不純物領域と、該第2濃度のn型不純物領域の外側に設けられソースに対した。

ス領域またはドレイン領域を形成する第3濃度のn型不 純物領域とを有し、前記画素TFTのゲート電極の上層 に、無機絶縁物材料から成る絶縁膜と、該絶縁膜上に形 成された有機絶縁物材料から成る絶縁膜が形成され、前 記画素部の画素電極は、光透過性を有し前記有機絶縁物 材料から成る絶縁膜上に形成されていることを特徴とし ている。

【0014】また、他の発明の構成は、一対の基板間に 液晶を挟持した半導体装置であって、画素部に設けた画 素TFTと、該画素部の周辺にpチャネル型TFTとn チャネル型TFTとを設けた駆動回路とを有する一方の 基板は、前記駆動回路のpチャネル型TFTは、チャネ ル形成領域と、ソース領域またはドレイン領域を形成す る第4濃度のp型不純物領域を有し、前記駆動回路のn チャネル型TFTは、チャネル形成領域と、該チャネル 形成領域に接して設けられゲート電極と一部が重なるL DD領域を形成する第1濃度のn型不純物領域と、該第 1 濃度の n 型不純物領域の外側に設けられソース領域ま たはドレイン領域を形成する第3濃度のn型不純物領域 とを有し、前記画素TFTは、チャネル形成領域と、該 チャネル形成領域に接して設けられLDD領域を形成す る第2濃度のn型不純物領域と、該第2濃度のn型不純 物領域の外側に設けられソース領域またはドレイン領域 を形成する第3濃度のn型不純物領域とを有し、前記画 素TFTのゲート電極の上層に、無機絶縁物材料から成 る絶縁膜と、該絶縁膜上に形成された有機絶縁物材料か ら成る絶縁膜が形成され、前記画素部の画素電極は、光 反射性表面を有し前記有機絶縁物材料から成る絶縁膜上 に形成され、前記無機絶縁物材料から成る絶縁膜と前記 有機絶縁物材料から成る絶縁膜を貫通する開孔部にて前 記画素TFTに接続され、透明導電膜が形成された他方 の基板と、前記開孔に重ねて形成された少なくとも一つ の柱状スペーサを介して貼り合わされていることを特徴 としている。

【0015】また、他の発明の構成は、一対の基板間に 液晶を挟持した半導体装置であって、画素部に設けた画 素TFTと、該画素部の周辺にpチャネル型TFTとn チャネル型TFTとを設けた駆動回路とを有する一方の 基板は、前記駆動回路のpチャネル型TFTは、チャネ ル形成領域と、ソース領域またはドレイン領域を形成す る第4濃度のp型不純物領域を有し、前記駆動回路のn チャネル型TFTは、チャネル形成領域と、該チャネル 形成領域に接して設けられゲート電極と一部が重なるL DD領域を形成する第1濃度のn型不純物領域と、該第 1 濃度の n 型不純物領域の外側に設けられソース領域ま たはドレイン領域を形成する第3濃度のn型不純物領域 とを有し、前記画素TFTは、チャネル形成領域と、該 チャネル形成領域に接して設けられLDD領域を形成す る第2濃度のn型不純物領域と、該第2濃度のn型不純 物領域の外側に設けられソース領域またはドレイン領域 を形成する第3濃度のn型不純物領域とを有し、前記画 素TFTのゲート電極の上層に、無機絶縁物材料から成 る絶縁膜と、該絶縁膜上に形成された有機絶縁物材料か ら成る絶縁膜が形成され、前記画素部の画素電極は、光 透過性を有し前記有機絶縁物材料から成る絶縁膜上に形 成され、前記無機絶縁物材料から成る絶縁膜と前記有機 絶縁物材料から成る絶縁膜を貫通する開孔部にて前記画 素TFTに接続され、透明導電膜が形成された他方の基 板と、前記開孔に重ねて形成された少なくとも一つの柱 状スペーサを介して貼り合わされていることを特徴とし

【0016】上記本発明の構成において、前記駆動回路 のpチャネル型TFTは、チャネル形成領域と、ソース 領域またはドレイン領域を形成する第4濃度のp型不純 物領域との間に、オフセット領域が形成されていても良 い。このようなpチャネル型TFTは、アナログスイッ チとして好適に利用することができる。

【0017】また、上記本発明の構成において、前記画 素TFTと、該画素部の周辺にpチャネル型TFTとn チャネル型TFTとのゲート電極は耐熱性導電性材料か ら形成され、前記駆動回路から延在し、該ゲート電極に 接続するゲート配線は低抵抗導電性材料から形成される る第2濃度のn型不純物領域を形成する工程と、前記島 ことを特徴とする。前記耐熱性導電性材料は、タンタル・・・・ 状半導体層の選択された領域に、前記駆動回路のnチャ グステン (W) から選ばれた元素、または前記元素を成 分とする化合物、または前記元素を組み合わせた化合 物、または前記元素を成分とする窒化物、前記元素を成っている記駆動回路のpチャネル型TFTのソース領域またはド 分とするシリサイド、であることが望ましい。

【0018】また、上記本発明の構成において、前記柱 状スペーサが、前記駆動回路のpチャネル型TFTとn チャネル型TFT上に形成されていること、或いは、前 記柱状スペーサが、少なくとも、前記駆動回路のpチャ ネル型TFTとnチャネル型TFTのソース配線または ドレイン配線を覆って形成されていることを特徴とす る。

【0019】上記問題点を解決するために本発明の半導 体装置の作製方法のは、画素部に設けた画素TFTと、 該画素部の周辺にpチャネル型TFTとnチャネル型T FTとを設けた駆動回路とを同一の基板上に有する半導 体装置の作製方法において、前記基板に密接して下地膜 を形成する工程と、前記下地膜上に複数の島状半導体層 を形成する工程と、前記島状半導体層の選択された領域 に、前記駆動回路のnチャネル型TFTのゲート電極と 一部が重なるLDD領域を形成する第1濃度のn型不純 物領域を形成する工程と、前記島状半導体層の選択され た領域に、前記画素TFTとのLDD領域を形成する第 2 濃度の n 型不純物領域を形成する工程と、前記島状半 導体層の選択された領域に、前記駆動回路のnチャネル 型TFTと前記画素TFTとにソース領域またはドレイ ン領域を形成する第3濃度のn型不純物領域を形成する 工程と、前記島状半導体層の選択された領域に、前記駆 動回路のpチャネル型TFTのソース領域またはドレイ ン領域を形成する第4濃度のp型不純物領域を形成する 工程と、前記駆動回路のnチャネル型TFTとpチャネ ル型TFTと、前記画素TFTとのゲート電極の上層 に、無機絶縁物材料から成る絶縁膜を形成する工程と、 該無機絶縁物材料から成る絶縁膜に密接して有機絶縁物 材料からなる絶縁膜を形成する工程と、前記画素TFT に接続する光反射性表面を有する画素電極を、前記有機 絶縁物材料からなる絶縁膜上に形成する工程とを有する ことを特徴としている。

【0020】また、他の発明は、画素部に設けた画素T FTと、該画素部の周辺にpチャネル型TFTとnチャ ネル型TFTとを設けた駆動回路とを同一の基板上に有 する半導体装置の作製方法において、前記基板上に、下 地膜を形成する工程と、前記下地膜上に複数の島状半導 体層を形成する工程と、前記島状半導体層の選択された 領域に、前記駆動回路のnチャネル型TFTのゲート電 極と一部が重なるLDD領域を形成する第1濃度のn型 不純物領域を形成する工程と、前記島状半導体層の選択 された領域に、前記画素TFTとのLDD領域を形成す (Ta)、チタン(Ti)、モリブデン(Mo)、タン ネル型TFTと前記画素TFTとにソース領域またはド レイン領域を形成する第3濃度のn型不純物領域を形成・・・ する工程と、前記島状半導体層の選択された領域に、前 レイン領域を形成する第4濃度のp型不純物領域を形成 する工程と、前記駆動回路のnチャネル型TFTと前記 画素TFTとpチャネル型TFTとのゲート電極の上層 に、無機絶縁物材料から成る絶縁膜を形成する工程と、 該無機絶縁物材料からなる絶縁膜に密接して有機絶縁物 材料からなる絶縁膜を形成する工程と、前記画素TFT に接続する導電性金属配線を形成する工程と、前記有機 絶縁物材料からなる絶縁膜上に前記導電性金属配線に接 続する透明導電膜から成る画素電極を形成する工程とを 有することを特徴としている。

> 【0021】また、他の発明の構成は、一対の基板間に 液晶を挟持した半導体装置の作製方法において、画素部 に設けた画素TFTと、該画素部の周辺にpチャネル型 TFTとnチャネル型TFTとを設けた駆動回路とを一 方の基板は、前記基板上に、下地膜を形成する工程と、 前記下地膜上に複数の島状半導体層を形成する工程と、 前記島状半導体層の選択された領域に、前記駆動回路の nチャネル型TFTのゲート電極と一部が重なるLDD 領域を形成する第1濃度のn型不純物領域を形成する工 程と、前記島状半導体層の選択された領域に、前記画素 TFTとのLDD領域を形成する第2濃度のn型不純物 領域を形成する工程と、前記島状半導体層の選択された 領域に、前記駆動回路のnチャネル型TFTと前記画素

TFTとにソース領域またはドレイン領域を形成する第 3 濃度の n 型不純物領域を形成する工程と、前記島状半 導体層の選択された領域に、前記駆動回路のpチャネル 型TFTのソース領域またはドレイン領域を形成する第 4 濃度の p 型不純物領域を形成する工程と、前記駆動回 路のnチャネル型TFTと前記画素TFTとpチャネル 型TFTとのゲート電極の上層に、無機絶縁物材料から 成る絶縁膜を形成する工程と、該無機絶縁物材料からな る絶縁膜に密接して有機絶縁物材料からなる絶縁膜を形 成する工程と、前記有機絶縁物材料からなる絶縁膜と前 記無機絶縁物材料からなる絶縁膜とに設けられた開孔を 介して前記画素TFTに接続する光反射性表面を有する 画素電極を前記有機絶縁物材料からなる絶縁膜上に形成 する工程とを有し、他方の基板は少なくとも透明導電膜 を形成する工程を有し、前記開孔に重ねて形成された少 なくとも一つの柱状スペーサを介して前記一方の基板と 前記他方の基板を貼合わせる工程を有することを特徴と している。

【0022】また、他の発明の構成は、一対の基板間に 液晶を挟持した半導体装置の作製方法において、画素部 に設けた画素TFTと、該画素部の周辺にpチャネル型 TFTとnチャネル型TFTとを設けた駆動回路とを一 方の基板は、前記基板上に、下地膜を形成する工程と、 前記下地膜上に複数の島状半導体層を形成する工程と、 前記島状半導体層の選択された領域に、前記駆動回路の nチャネル型TFTのゲート電極と一部が重なるLDD 領域を形成する第1濃度のn型不純物領域を形成する工 程と、前記島状半導体層の選択された領域に、前記画素 TFTとのLDD領域を形成する第2濃度のn型不純物 領域を形成する工程と、前記島状半導体層の選択された 領域に、前記駆動回路のnチャネル型TFTと前記画素 TFTとにソース領域またはドレイン領域を形成する第 3 濃度の n 型不純物領域を形成する工程と、前記島状半 導体層の選択された領域に、前記駆動回路のpチャネル 型TFTのソース領域またはドレイン領域を形成する第 4 濃度の p 型不純物領域を形成する工程と、前記駆動回 路のnチャネル型TFTと前記画素TFTとpチャネル 型TFTとのゲート電極の上層に、無機絶縁物材料から 成る絶縁膜を形成する工程と、該無機絶縁物材料からな る絶縁膜に密接して有機絶縁物材料からなる絶縁膜を形 成する工程と、前記有機絶縁物材料からなる絶縁膜と保 護絶縁膜とに設けられた開孔を介して前記画素TFTに 接続する導電性金属配線を形成する工程と、前記層間絶 縁膜上に該金属配線に接続する透明導電膜から成る画素 電極を形成する工程とを有し、他方の基板は少なくとも 透明導電膜を形成する工程を有し、前記開孔に重ねて形 成された少なくとも一つの柱状スペーサを介して前記一 方の基板と前記他方の基板を貼合わせる工程を有するこ とを特徴としている。

【0023】上記本発明の半導体装置の作製方法におい

て、前記駆動回路のpチャネル型TFTは、該pチャネル型TFTのゲート電極上に無機絶縁物材料から成る絶縁膜を形成する工程の後に、前記島状半導体層の選択された領域に、該pチャネル型TFTのソース領域またはドレイン領域を形成する第4濃度のp型不純物領域を形成する工程を行い、該pチャネル型TFTのチャネル形成領域と、ソース領域またはドレイン領域を形成する第4濃度のp型不純物領域との間に、オフセット領域が形成することを特徴としている。

【0024】また、上記本発明の半導体装置の作製方法において、前記画素TFTと、該画素部の周辺にpチャネル型TFTとのゲート電極を耐熱性導電性材料から形成する工程と、前記駆動回路から延在し、該ゲート電極に接続するゲート配線を低抵抗導電性材料から形成する工程とを有することを特徴としている。前記耐熱性導電性材料は、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)から選ばれた示素。または前記示素を成分とする

(W) から選ばれた元素、または前記元素を成分とする 化合物、または前記元素を組み合わせた化合物、または 前記元素を成分とする窒化物、前記元素を成分とするシ リサイド、から形成することが望ましい。

【0025】また、上記本発明の半導体装置の作製方法において、前記柱状スペーサを、前記駆動回路のpチャネル型TFTとnチャネル型TFT上にも形成することを特徴とし、前記柱状スペーサが、少なくとも、前記駆動回路のpチャネル型TFTとnチャネル型TFTのソース配線またはドレイン配線を覆って形成することを特徴としている。

[0026]

【発明の実施の形態】本発明の実施の形態について、以 下に示す実施例により詳細な説明を行う。

[実施例1]本発明の実施例を図1〜図3を用いて説明する。ここでは、画素部の画素TFTおよび保持容量と、表示領域の周辺に設けられる駆動回路のTFTを同時に作製する方法について工程に従って詳細に説明する。

【0027】図1(A)において、基板101にはコーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板の他に、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)などができる。ガラス基板を用いる場合には、ガラス歪み点とができる。ガラス基板を用いる場合には、ガラス歪み点して必要であらかじめ熱処理しても良い。そして、基板101のTFTを形成するを化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜の下地膜102を形成する。例えば、プラズマCVDとでSiH、NH、N2Oから作製される酸化窒化シリコン膜102aを10~200mm(好ましくは50~

100nm)、同様にSiH、NOから作製される酸化 窒化水素化シリコン膜102bを50~200nm(好 ましくは100~150nm)の厚さに積層形成する。

【0028】酸化窒化シリコン膜は従来の平行平板型の プラズマCVD法を用いて形成する。酸化窒化シリコン 膜102aは、SiH、を10SCCM、NH、を100SCC M、N₂Oを20SCCMとして反応室に導入し、基板温度3 25℃、反応圧力40Pa、放電電力密度0.41W/c m¹、放電周波数60MHzとした。一方、酸化窒化水素化 シリコン膜102bは、SiH.を5SCCM、N.Oを12 OSCCM、H₂を125SCCMとして反応室に導入し、基板 温度400℃、反応圧力20Pa、放電電力密度0. 41 W/cm、放電周波数60MHzとした。これらの膜は、基板 温度を変化させ、反応ガスの切り替えのみで連続して形 成することもできる。

【0029】このようにして作製した酸化窒化シリコン 膜102aは、密度が9.28×10゚゚/cm゚であり、フ ッ化水素アンモニウム(NH,HF,)を7.13%とフ ッ化アンモニウム (NH,F) を15. 4%含む混合溶 液(ステラケミファ社製、商品名LAL500)の20 ℃におけるエッチング速度が約63nm/minと遅く、緻密 で硬い膜である。このような膜を下地膜に用いると、こ の上に形成する半導体層にガラス基板からのアルカリ金 …… 属元素が拡散するのを防ぐのに有効である。 【0030】次に、25~80nm(好まじくは30~6 Onm)の厚さで非晶質構造を有する半導体層103a 形成する。例えば、プラズマCVD法で非晶質シリコン 膜を55nmの厚さに形成する。非晶質構造を有する半導 体膜には、非晶質半導体膜や微結晶半導体膜があり、非 晶質シリコン・ゲルマニウム膜などの非晶質構造を有す る化合物半導体膜を適用しても良い。また、下地膜10 2と非晶質半導体層103aとは両者を連続形成するこ とも可能である。例えば、前述のように酸化窒化シリコ ン膜102aと酸化窒化水素化シリコン膜102bをプ ラズマCVD法で連続して成膜後、反応ガスをSi H.、N.O、H.からSiH.とH.或いはSiH.のみに 切り替えれば、一旦大気雰囲気に晒すことなく連続形成 できる。その結果、酸化窒化水素化シリコン膜102b の表面の汚染を防ぐことが可能となり、作製するTFT の特性バラツキやしきい値電圧の変動を低減させること

【0031】そして、結晶化の工程を行い非晶質半導体 層103aから結晶質半導体層103bを作製する。そ の方法としてレーザーアニール法や熱アニール法(固相 成長法)、またはラピットサーマルアニール法(RTA 法)を適用することができる。前述のようなガラス基板 や耐熱性の劣るプラスチック基板を用いる場合には、特 にレーザーアニール法を適用することが好ましい。RT A法では、赤外線ランプ、ハロゲンランプ、メタルハラ

イドランプ、キセノンランプなどを光源に用いる。或い は特開平7-130652号公報で開示された技術に従 って、触媒元素を用いる結晶化法で結晶質半導体層10 3 b を形成することもできる。結晶化の工程ではまず、 非晶質半導体層が含有する水素を放出させておくことが 好ましく、400~500℃で1時間程度の熱処理を行 い含有する水素量を5atomic%以下にしてから結晶化さ せると膜表面の荒れを防ぐことができるので良い。

【0032】結晶化をレーザーアニール法にて行う場合 には、パルス発振型または連続発光型のエキシマレーザ ーやアルゴンレーザーをその光源とする。パルス発振型 のエキシマレーザーを用いる場合には、レーザー光を線 状に加工してレーザーアニールを行う。レーザーアニー ル条件は実施者が適宜選択するものであるが、例えば、 レーザーパルス発振周波数30Hzとし、レーザーエネ ルギー密度を100~500mJ/cm (代表的には300 ~400mJ/cm)とする。そして線状ビームを基板全面 に渡って照射し、この時の線状ビームの重ね合わせ率 (オーバーラップ率)を80~98%として行う。この ようにして図1 (B) に示すように結晶質半導体層10 3 b を得ることができる。

- 【0033】そして、結晶質半導体層103b上にフォ **トマスク1 (PM1) を用い、フォトリソグラフィーの** 技術を用いてレジストパターンを形成し、ドライエッチ ングによって結晶質半導体層を島状に分割し、島状半導・ 体層10.4~108を形成しする。ドライエッチングに - を、プラズマCVD法やスパッタ法などの公知の方法で、****はCF とO,の混合ガスを用いる。その後、プラズマC -VD法またはスパッタ法により50~100mmの厚さの 酸化シリコン膜によるマスク層194を形成する。

> 【0034】この状態で島状半導体層に対し、TFTの しきい値電圧(Vth)を制御する目的でp型を付与する 不純物元素を1×10 cm2 fx10 atoms/cm3程度の 濃度で島状半導体層の全面に添加しても良い。半導体に 対してp型を付与する不純物元素には、ホウ素(B)、 アルミニウム(Al)、ガリウム(Ga)など周期律表 第13族の元素が知られている。その方法として、イオ ン注入法やイオンドープ法を用いることができるが、大 面積基板を処理するにはイオンドープ法が適している。 イオンドープ法ではジボラン (B,H,) をソースガスと して用いホウ素 (B) を添加する。このような不純物元 素の注入は必ずしも必要でなく省略しても差し支えない が、特にnチャネル型TFTのしきい値電圧を所定の範 囲内に収めるために好適に用いる手法である。

> 【0035】駆動回路のnチャネル型TFTのLDD領 域を形成するために、n型を付与する不純物元素を島状 半導体層105、107に選択的に添加する。そのた め、フォトマスク2(PM2)を用い、レジストマスク 195a~195eを形成した。n型を付与する不純物 元素としては、リン(P)や砒素(As)を用いれば良 く、ここではリン(P)を添加すべく、フォスフィン

【0036】次に、添加した不純物元素を活性化させる 工程を行う。活性化は、窒素雰囲気中で500~600 ℃で1~4時間の熱処理や、レーザー活性化の方法により行うことができる。また、両者を併用して行っても良い。レーザー活性化の方法による場合、KrFエキシマレーザー光(波長248nm)を用い、線状ビームを形成して、発振周波数5~50Hz、エネルギー密度100~500mJ/cm²として線状ビームのオーバーラップ割合を80~98%として走査して、島状半導体層が形成された基板全面を処理した。尚、レーザー光の照射条件には何ら限定される事項はなく、実施者が適宜決定すれば良い。マスク層194はこの段階でフッ酸などの溶液でエッチング除去する。

【0037】ゲート絶縁膜109はプラズマCVD法またはスパッタ法を用い、膜厚を $40\sim150$ nmとしてシリコンを含む絶縁膜で形成する。例えば、120nmの厚さで酸化窒化シリコン膜から形成すると良い。また、 SiH_4 と N_2 Oに O_2 を添加させて作製された酸化窒化シリコン膜は、膜中の固定電荷密度が低減されているのでこの用途に対して好ましい材料となる。勿論、ゲート絶縁膜はこのような酸化窒化シリコン膜に限定されるものでなく、他のシリコンを含む絶縁膜を単層または積層構造として用いても良い(図1(E))。

【0038】そして、図1(E)に示すように、ゲート 絶縁膜109上にゲート電極を形成するための耐熱性導 電層を形成する。耐熱性導電層は単層で形成しても良い が、必要に応じて二層あるいは三層といった複数の層か ら成る積層構造としても良い。このような耐熱性導電性 材料を用い、例えば、導電性の窒化物金属膜から成る導 電層 (A) 110と金属膜から成る導電層 (B) 111 とを積層した構造とすると良い。導電層 (B) 111は タンタル (Ta) 、チタン(Ti)、モリブデン(M o) 、タングステン (W) から選ばれた元素、または前 記元素を主成分とする合金か、前記元素を組み合わせた 合金膜(代表的にはMo-W合金膜、Mo-Ta合金 膜)で形成すれば良く、導電層(A)110は窒化タン タル(TaN)、窒化タングステン(WN)、窒化チタ ン(TiN)膜、窒化モリブデン(MoN)などで形成 する。また、導電層(A)110はタングステンシリサ イド、チタンシリサイド、モリブデンシリサイドを適用 しても良い。導電層 (B) 111は低抵抗化を図るため に含有する不純物濃度を低減させることが好ましく、特に酸素濃度に関しては $30ppm以下とすると良かった。例えば、タングステン(W)は酸素濃度を<math>30ppm以下とすることで<math>20\mu\Omegacm以下の比抵抗値を実現することができる。$

【0039】導電層 (A) 110は10~50nm (好ま しくは20~30nm) とし、導電層 (B) 111は20 0~400nm (好ましくは250~350nm) とすれば 良い。Wをゲート電極とする場合には、Wをターゲット としたスパッタ法で、アルゴン(Ar)ガスと窒素(N) ガスを導入して導電層 (A) 111を窒化タングス テン (WN) で50nmの厚さに形成し、導電層 (B) 1 10をWで250nmの厚さに形成する。その他の方法と して、W膜は6フッ化タングステン(WF₂)を用いて 熱CVD法で形成することもできる。いずれにしてもゲ ート電極として使用するためには低抵抗化を図る必要が あり、W膜の抵抗率は20μΩcm以下にすることが望ま しい。W膜は結晶粒を大きくすることで低抵抗率化を図 ることができるが、W中に酸素などの不純物元素が多い 場合には結晶化が阻害され高抵抗化する。このことよ り、スパッタ法による場合、純度99.9999%のW ターゲットを用い、さらに成膜時に気相中からの不純物 の混入がないように十分配慮してW膜を形成することに、 より、抵抗率9~20μΩcmを実現することができる。. 【0040】一方、導電層(A)110にTaN膜を、 導電層(B)111にTa膜を用いる場合には、同様に スパッタ法で形成することが可能である。TaN膜はT a をターゲットとしてスパッタガスにArと窒素との混 合ガスを用いて形成し、Ta膜はスパッタガスにArを 用いる。また、これらのスパッタガス中に適量のXeや Krを加えておくと、形成する膜の内部応力を緩和して 膜の剥離を防止することができる。 α 相のT a 膜の抵抗 率は20μΩcm程度でありゲート電極に使用することが できるが、β相のTa膜の抵抗率は180μ $\,\Omega\,$ cm程度で ありゲート電極とするには不向きであった。TaN膜は α相に近い結晶構造を持つので、この上にTa膜を形成 すればα相のTa膜が容易に得られる。尚、図示しない が、導電層(A)110の下に2~20nm程度の厚さで リン (P) をドープしたシリコン膜を形成しておくこと は有効である。これにより、その上に形成される導電膜 の密着性向上と酸化防止を図ると同時に、導電層(A) 110または導電層 (B) 111が微量に含有するアル カリ金属元素がゲート絶縁膜109に拡散するのを防ぐ ことができる。いずれにしても、導電層(B)111は 抵抗率を10~50μΩcmの範囲ですることが好まし

【0041】次に、フォトマスク3 (PM3) を用い、 フォトリソグラフィーの技術を使用してレジストマスク 112~117を形成し、導電層 (A) 110と導電層 (B) 111とを一括でエッチングしてゲート電極11 8~122と容量配線123を形成する。ゲート電極1 18~122と容量配線123は、導電層(A)から成 3118a~123aと、導電層(B)から成3118 b~123bとが一体として形成されている(図2 (A))。

【0042】導電層(A) および導電層(B) をエッチ ングする方法は実施者が適宣選択すれば良いが、前述の ようにWを主成分とする材料で形成されている場合に は、高速でかつ精度良くエッチングを実施するために高 密度プラズマを用いたドライエッチング法を適用するこ とが望ましい。高密度プラズマを得る手法の一つとし て、誘導結合プラズマ(Inductively Coupled Plasma: ICP) エッチング装置を用いると良い。ICPエッチ ング装置を用いたWのエッチング法は、エッチングガス にCF、とC1,の2種のガスを反応室に導入し、圧力 0. 5~1. 5 Pa (好ましくは1 Pa) とし、誘導結 合部に200~1000Wの高周波(13.56MHz)電 力を印加する。この時、基板が置かれたステージには2 OWの高周波電力が印加され、自己バイアスで負電位に 帯電することにより、正イオンが加速されて異方性のエ ッチングを行うことができる。ICPエッチング装置を 使用することにより、Wなどの硬い金属膜も2~5nm/. 秒のエッチング速度を得ることができる。また、残渣を、、、、、て機能する上で何ら問題はない。 残すことなくエッチングするためには、1.0~2.0%程 度の割合でエッチング時間を増しオーバーエッチングを すると良い。しかし、この時に下地とのエッチングの選 択比に注意する必要がある。例えば、W膜に対する酸化。 窒化シリコン膜(ゲート絶縁膜109)の選択比は2... 5~3であるので、このようなオーバーエッチング処理 により、酸化窒化シリコン膜が露出した面は20~50 nn程度エッチングされて実質的に薄くなる。

【0043】そして、画素TFTのnチャネル型TFTにLDD領域を形成するために、n型を付与する不純物元素添加の工程(nドープ工程)を行う。ゲート電極 $118\sim122$ および容量配線123をマスクとして自己整合的にn型を付与する不純物元素をイオンドープ法で添加する。n型を付与する不純物元素として添加するリン(P)の濃度は $1\times10^{16}\sim5\times10^{19}$ atoms/ c^{3} の濃度範囲で添加する。このようにして、図2(B)に示すように島状半導体層に第2濃度のn型不純物領域 $124\sim129$ を形成する。

【0044】次に、n チャネル型TFTにおいて、ソース領域またはドレイン領域として機能する第3 濃度のn 型不純物領域の形成を行う(n ドープ工程)。まず、フォトマスク4(PM4)を用い、レジストのマスク130~134を形成し、n 型を付与する不純物元素を添加して第3 濃度のn 型不純物領域 135~140 を形成する。n 型を付与する不純物元素にはリン(P)を用い、その濃度が $1\times10^{20}~1\times10^{21}$ atoms/cm の濃度範囲となるようにフォスフィン(PH)を用いたイ

オンドープ法で行う(図2(C))。

【0045】そして、pチャネル型TFTを形成する島 状半導体層104、106にソース領域およびドレイン 領域とする第4濃度のp型不純物領域144、145を 形成する。ここでは、ゲート電極118、120をマス クとしてp型を付与する不純物元素を添加し、自己整合 的に第4 濃度の p型不純物領域を形成する。このとき、 nチャネル型TFTを形成する島状半導体膜105、1 07、108は、フォトマスク5 (PM5) を用いてレ ジストマスク141~143を形成し全面を被覆してお く。第4濃度のp型不純物領域144、145はジボラ ン(B,H,)を用いたイオンドープ法で形成する。この 領域のボロン (B) 濃度は3×10²⁰~3×10²¹ atom s/cmとなるようにする(図2(D))。この第4濃度 のp型不純物領域144、145には、前工程において リン (P) が添加されていて、第4濃度のp型不純物領 域144a、145aには1×10^{**}~1×10^{**}atom s/cmの濃度で、第4濃度のp型不純物領域144b、 145bには1×10~5×10 atoms/cmの濃度 で含有しているが、この工程で添加するボロン(B)の 濃度を1.5から3倍となるようにすることにより、p チャネル型TFTのソース領域およびドレイン領域とし

__【0.0 4 6】その後、図3(A)に示すように、ゲート 電極およびゲート絶縁膜上から保護絶縁膜146を形成・・ する。保護絶縁膜は酸化シリコン膜、酸化窒化シリコン 膜、窒化シリコン膜、またはこれらを組み合わせた積層。 膜で形成すれば良い。いずれにしても保護絶縁膜146 は無機絶縁物材料から形成する。保護絶縁膜146の膜 厚は100~200nmとする。ここで、酸化シリコン膜 を用いる場合には、プラズマCVD法で、オルトケイ酸 テトラエチル(Tetraethyl Ortho Silicate: TEO S) とO2とを混合し、反応圧力40Pa、基板温度30 0~400℃とし、高周波 (13.56MHz) 電力密度 0. 5~0. 8 W/cm で放電させて形成することができ る。酸化窒化シリコン膜を用いる場合には、プラズマC VD法でSiH、N,O、NH、から作製される酸化窒 化シリコン膜、またはSiH、N,Oから作製される酸 化窒化シリコン膜で形成すれば良い。この場合の作製条 件は反応圧力20~200Pa、基板温度300~400 ℃とし、高周波(60MHz)電力密度0.1~1.0W/c mで形成することができる。また、SiH、N。O、H から作製される酸化窒化水素化シリコン膜を適用して も良い。窒化シリコン膜も同様にプラズマCVD法でS iH、NHから作製することが可能である。

【0047】その後、それぞれの濃度で添加されたn型またはp型を付与する不純物元素を活性化する工程を行う。この工程はファーネスアニール炉を用いる熱アニール法で行う。その他に、レーザーアニール法、またはラピッドサーマルアニール法(RTA法)を適用すること

ができる。熱アニール法では酸素濃度が1 ppm以下、好ましくは0.1 ppm以下の窒素雰囲気中で $400\sim70$ 0℃、代表的には $500\sim600$ ℃で行うものであり、本実施例では550℃で4時間の熱処理を行った。また、基板101に耐熱温度が低いプラスチック基板を用いる場合にはレーザーアニール法を適用することが好ましい(図3(B))。

【0048】活性化の工程の後、さらに、 $3\sim100\%$ の水素を含む雰囲気中で、 $300\sim450\%$ で $1\sim12$ 時間の熱処理を行い、島状半導体膜を水素化する工程を行った。この工程は熱的に励起された水素により島状半導体膜にある $10^{16}\sim10^{18}/\mathrm{cm}$ のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。

【0049】活性化および水素化の工程が終了したら、有機絶縁物材料からなる層間絶縁膜147を1.0~2.0μmの平均厚を有して形成する。有機樹脂材料としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、BCB(ベンソシクロブテン)等を使用することができる。例えば、基板に塗布後、熱重合するタイプのポリイミドを用いる場合には、クリーンオーブンを用いる場合には、2液性のものを用い、主材と硬化剤を混合した後、スピナーを用いて基板全面に塗布した後、ホットプレートを用い80℃で60秒の予備加熱を行い、さらにクリーンオーブンを用い250℃で60分焼成して形成することができる。

【0050】このように、層間絶縁膜を有機絶縁物材料で形成することにより、表面を良好に平坦化させることができる。また、有機樹脂材料は一般に誘電率が低いので、寄生容量を低減することができる。しかし、吸湿性があり保護膜としては適さないので、本実施例のように、保護絶縁膜146として形成した酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜などと組み合わせて用いる必要がある。

【0051】その後、フォトマスク6(PM6)を用い、所定のパターンのレジストマスクを形成し、それぞれの島状半導体膜に形成されたソース領域またはドレイン領域に達するコンタクトホールを形成する。コンタクトホールの形成はドライエッチング法により行う。この場合、エッチングガスにCF、 O_2 、He の混合ガスを用い有機樹脂材料から成る層間絶縁膜をまずエッチングし、その後、続いてエッチングガスをCF、 O_2 として保護絶縁膜146をエッチングする。さらに、島状半導体層との選択比を高めるために、エッチングガスをCHF。に切り替えてゲート絶縁膜をエッチングすることにより、良好にコンタクトホールを形成することができる。

【0052】そして、導電性の金属膜をスパッタ法や真

空蒸着法で形成し、フォトマスク7(PM7)によりレジストマスクパターンを形成し、エッチングによってソース配線148~152とドレイン配線153~158を形成する。ここで、ドレイン配線157は画素電極として機能するものである。図示していないが、本実施例ではこの電極を、Ti膜を50~150nmの厚さで形成し、島状半導体層のソースまたはドレイン領域を形成する半導体膜とコンタクトを形成し、そのTi膜上に重ねてアルミニウム(A1)を300~400nmの厚さで形成して配線とする。

【0053】この状態で水素化処理を行うとTFTの特性向上に対して好ましい結果が得られた。例えば、3~100%の水素を含む雰囲気中で、300~450 $^{\circ}$ で1~12時間の熱処理を行うと良く、あるいはプラズマ水素化法を用いても同様の効果が得られる。また、このような熱処理により保護絶縁膜146 $^{\circ}$ 、下地膜102に存在する水素を島状半導体膜104~108に拡散させ水素化をすることもできる。いずれにしても、島状半導体膜104~108中の欠陥密度を10 $^{\circ}$ /cm以下とすることが望ましく、そのために水素を0.01~0.1atomic%程度付与すれば良い(図3(C))。

【0054】こうして7枚のフォトマスクにより、同一の基板上に、駆動回路のTFTと画素部の画素TFTとを有した基板を完成させることができる。駆動回路には第1のpチャネル型TFT200、第1濃度のnチャネル型TFT201、第2のpチャネル型TFT202、第2のnチャネル型TFT203、画素部には画素TFT204、保持容量205が形成されている。本明細書では便宜上このような基板をアクティブマトリクス基板と呼ぶ。

【0055】駆動回路の第1のpチャネル型TFT20 0には、島状半導体膜104にチャネル形成領域20 6 、第 4 濃度の p 型不純物領域から成るソース領域 2 0 7 a 、2 0 7 b 、ドレイン領域 2 0 8 a , 2 0 8 b を有 したシングルドレインの構造を有している。第1のnチ ャネル型TFT201には、島状半導体膜105にチャ ネル形成領域209、第1濃度の不純物領域から形成さ れ、ゲート電極119と重なるLDD領域210、第3 濃度の不純物領域から形成されるソース領域212、ド レイン領域211を有している。このLDD領域におい て、ゲート電極119と重なるLDD領域をLovとして そのチャネル長方向の長さは0.5~3.0μm、好ま しくは1.0~2.0 μmとした。nチャネル型TFT におけるLDD領域の長さをこのようにすることによ り、ドレイン領域近傍に発生する高電界を緩和して、ホ ットキャリアの発生を防ぎ、TFTの劣化を防止するこ とができる。駆動回路の第2のpチャネル型TFT20 2は同様に、島状半導体膜106にチャネル形成領域2 13、第4濃度のp型不純物領域から成るソース領域2 14a、214b、ドレイン領域215a, 215bを 有したシングルドレインの構造を有している。第2のn チャネル型TFT203には、島状半導体膜107にチ ャネル形成領域216、第1濃度の不純物領域から形成 され、ゲート電極121と一部が重なるLDD領域21 7、218、第3濃度の不純物領域から形成され、ソー ス領域220、ドレイン領域219が形成されている。 このTFTのゲート電極と重なるLovの長さも0.5~ 3. $0 \mu m$ 、好ましくは1. $0 \sim 2$. $0 \mu m$ とした。ま た、ゲート電極と重ならないLDD領域をLoffとし て、このチャネル長方向の長さは0.5~4.0 μm、 好ましくは1.0~2.0 μ mとした。画素TFT20 4には、島状半導体膜108にチャネル形成領域22 1、222、第2濃度の不純物領域から形成されるLD D領域223~225、第3濃度の不純物領域から形成 されるソースまたはドレイン領域226~228を有し ている。LDD領域(Loff)のチャネル長方向の長さ は $0.5 \sim 4.0 \mu m$ 、好ましくは $1.5 \sim 2.5 \mu m$ で ある。さらに、容量配線123と、ゲート絶縁膜と同じ 材料から成る絶縁膜と、画素TFT204のドレイン領 域228に接続する半導体層229とから保持容量20 5が形成されている。図3(C)では画素TFT204 をダブルゲート構造としたが、シングルゲート構造でも 良いし、複数のゲート電極を設けたマルチゲート構造と しても差し支えない。

【0056】図16は画素部のほぼ一画素分を示す上面 【0060】次に、nチャネル型TFTにおいて、ソー 図である。図中に示すA-A'断面が図3(C)に示す ゲート配線を兼ねるゲート電極122は、図示されてい ないゲート絶縁膜を介してその下の島状半導体層108 と交差している。図示はしていないが、島状半導体層に は、ソース領域、ドレイン領域、LDD領域が形成され ている。また、256はソース配線152とソース領域 226とのコンタクト部、257はドレイン配線157 とドレイン領域228とのコンタクト部である。保持容 量205は、画素TFT204のドレイン領域228か ら延在する半導体層229とゲート絶縁膜を介して容量 配線123が重なる領域で形成されている。この構成に おいて半導体層229には、価電子制御を目的とした不 純物元素は添加されていない。

【0057】以上の様な構成は、画素TFTおよび駆動 回路が要求する仕様に応じて各回路を構成するTFTの 構造を最適化し、半導体装置の動作性能と信頼性を向上 させることを可能としている。さらにゲート電極を耐熱 性を有する導電性材料で形成することによりLDD領域 やソース領域およびドレイン領域の活性化を容易として いる。

【0058】 [実施例2] 高精細で高画質の液晶表示装 置を実現するためには、画素TFTや駆動回路の各回路 を構成するTFTの特性を向上させる必要がある。要求 されるTFTの特性は、しきい値電圧や電界効果移動

度、サブスレショルド係数 (S値) などの他に、オフ状 態で流れる電流(オフ電流)値を低減させることがあ る。オフ電流値が高い場合には、消費電力が増大するば かりでなく、駆動回路の動作特性が悪化して画質の低下 をもたらす要因となる。実施例1で作製したnチャネル 型TFTにはLDD領域が形成され、これによってオフ 電流値を問題ない程度にまで低減させることができる。 一方、pチャネル型TFTはシングルドレイン構造なの で、オフ電流値の増加がしばしば問題となることがあ る。本実施例ではそのような場合に適したオフセット領 域を有するpチャネル型TFTの作製方法を図4を用い て説明する。

【0059】まず、実施例1と同様にして図1 (A) ~ 図2(A)に示す工程を行い、ゲート電極118~12 2と容量配線123までを形成する。そして、nチャネ ル型TFTにLDD領域を形成するために、n型を付与 する不純物元素添加の工程(n ドープ工程)を行う。 ここではゲート電極をマスクとして自己整合的にn型を 付与する不純物元素を添加するが、フォトマスクを用い てpチャネル型TFTを形成する島状半導体層104、 106の全面をレジストマスク158、159で被覆し て不純物元素が添加されないようにする。このようにし て、図4(A)。に示すように島状半導体層に第2濃度の n型不純物領域125~129を形成する。

ス領域またはドレイン領域として機能する第3濃度のn 画素部の断面図に対応している。画素TFT204は、 🚓 🗠型不純物領域の形成を行う。フォトマスクを用い、レジュニュー 🚉 🚉 🛒 ストのマスク130~134を形成し、n型を付与する 不純物元素を添加して第3濃度のn型不純物領域135 ~140を形成する(図4(B))。

entry to the second

【0061】その後、実施例1と同様にして保護絶縁層 146を形成する。そして、pチャネル型TFTを形成 する島状半導体層104、106にソース領域およびド レイン領域とする第4濃度のp型不純物領域144、1 45を形成する。nチャネル型TFTを形成する島状半 導体膜105、107、108は、フォトマスクを用い てレジストマスク160~162を形成し全面を被覆し ておく。この工程はイオンドープ法などで行われるもの であり、注入される不純物元素は僅かなゆらぎを持つも のの、島状半導体層の表面に対してほぼ垂直に入射す る。ここで、保護絶縁層146はゲート電極の端部にお いても被覆性良く形成されるので、その端部に形成され た保護絶縁層がマスクとして機能するので、実質的にそ の膜厚分だけゲート電極から離れて第4濃度のp型不純 物領域144、145が形成される。即ち、チャネル形 成領域と第4濃度の p 型不純物領域との間にオフセット 領域230、231がLoの長さで形成される。具体的 にLoの長さは、保護絶縁層146の厚さに相当するも のであるから、100~200mmの長さで形成される。

【0062】このようなオフセット領域は、TFTの電

気的特性において直列抵抗成分として寄与し、オフ電流値を1/10から1/100程度低減させることができる。以降は、実施例1と同様にして図3(A)からの工程を行うことにより7枚のフォトマスクによりアクティブマトリクス基板を完成させることができる。

【0063】 [実施例3] 実施例1ではゲート電極の材料にWやTaなどの耐熱性導電性材料を用いる例を示した。このような材料を用いる理由は、ゲート電極形成後に価電子制御を目的として半導体層に添加した不純物元素を主として、400~700℃の熱アニールによって活性化させることに起因している。しかしながら、このような耐熱性導電性材料は面積抵抗で10Ω程度あり、画面サイズが4インチクラスかそれ以上の液晶表示装置には適していない。ゲート電極に接続するゲート配線を同じ材料で形成すると、基板面上における引回し長さが必然的に大きくなり、配線抵抗の影響による配線遅延の問題を無視することができなくなるためである。

【0064】例えば、画素密度がVGAの場合、480本のゲート配線と640本のソース配線が形成され、XGAの場合には768本のゲート配線と1024本のソース配線が形成される。表示領域の画面サイズは、13インチクラスの場合対角線の長さは340mmとなり、18インチクラスの場合には460mmとなる。本実施例ではこのような液晶表示装置を実現する手段として、ゲート配線をAIや銅 (Cu) などの低抵抗導電性材料で形成する方法について図5を用いて説明する。

【0065】まず、実施例1と同様にして図1(A)~図2(D)に示す工程を行う。そして、価電子制御を目的としてそれぞれの島状半導体層に添加された不純物元素を活性化する工程を行う。この工程はファーネスアニール炉を用いる熱アニール法で行う。その他に、レーザーアニール法、またはラピッドサーマルアニール法(RTA法)を適用することができる。熱アニール法では酸素濃度が1ppm以下、好ましくは0.1ppm以下の窒素雰囲気中で400~700℃、代表的には500~600℃で行うものであり、本実施例では525℃で4時間の熱処理を行う。

【0066】この熱処理において、ゲート電極118~122と容量配線123を形成する導電層(B)118b~123bは、表面から5~80nmの厚さで導電層(C)118c~123cが形成される。例えば、導電層(B)118b~123bがタングステン(W)の場合には窒化タングステン(WN)が形成され、タンタル(Ta)の場合には窒化タンタル(TaN)が形成される。また、導電層(C)118c~123cは、窒素またはアンモニアなどを用いた窒素を含むプラズマ雰囲気にゲート電極118~123を晒しても同様に形成することができる。さらに、3~100%の水素を含む雰囲気中で、300~450℃で1~12時間の熱処理を行い、島状半導体層を水素化する工程を行う。この工程は

熱的に励起された水素により半導体層のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い(図5(A))。

【0068】その後、実施例1と同様にして有機絶縁物 材料から成る層間絶縁膜147、ソース配線148~1 51、167、ドレイン配線153~156、168を 形成してアクティブマトリクス基板を完成させることが できる。図6(A)、(B)はこの状態の上面図を示 し、図6 (A) のB-B'断面および図6 (B) のC-C'断面は図5 (C) のA-A'およびC-C'に対応し ている。図6(A)、(B)ではゲート絶縁膜、保護絶 層104、105、108の図示されていないソースお よびドレイン領域にソース配線148、149、167 とドレイン配線153、154、168がコンタクトホ ールを介して接続している。また、図6(A)のD-D'断面および図6 (B) のE-E'断面を図7 (A) と (B) にそれぞれ示す。ゲート配線163はゲート電極 118、119と、またゲート配線164はゲート電極 122と島状半導体層104、105、108の外側で 重なるように形成され、導電層(C)と導電層(D)が 接触して電気的に導通している。このようにゲート配線 を低抵抗導電性材料で形成することにより、配線抵抗を 十分低減できる。従って、画素部(画面サイズ)が4イ ンチクラス以上の表示装置に適用することができる。

【0069】 [実施例4] 実施例1で作製したアクティブマトリクス基板はそのまま反射型の液晶表示装置に適用することができる。一方、透過型の液晶表示装置とする場合には画素部の各画素に設ける画素電極を透明電極で形成すれば良い。本実施例では透過型の液晶表示装置に対応するアクティブマトリクス基板の作製方法について図10を用いて説明する。

【0070】アクティブマトリクス基板は実施例1と同様に作製する。図10(A)では、ソース配線とドレイン配線は導電性の金属膜をスパッタ法や真空蒸着法で形

成する。これは、Ti膜を50~150nmの厚さで形成し、島状半導体層のソースまたはドレイン領域を形成する半導体膜とコンタクトを形成し、そのTi膜上に重ねてアルミニウム(A1)を300~400nmの厚さで形成し、さらにTi膜または窒化チタン(TiN)膜を100~200nmの厚さで形成して3層構造とした。その後、透明導電膜を全面に形成し、フォトマスクを用いたパターニング処理およびエッチング処理により画素電極171を形成する。画素電極171は、層間絶縁膜147上に形成され、画素TFT204のドレイン配線169と重なる部分を設け、接続構造を形成している。

【0071】図10(B)では最初に層間絶縁膜147上に透明導電膜を形成し、パターニング処理およびエッチング処理をして画素電極171を形成した後、ドレイン配線169を画素電極171と重なる部分を設けて形成した例である。ドレイン配線169はTi膜を50~150nmの厚さで形成し、島状半導体層のソースまたはドレイン領域を形成する半導体膜とコンタクトを形成し、そのTi膜上に重ねてアルミニウム(A1)を300~400nmの厚さで形成して設ける。この構成にすると、画素電極171はドレイン配線169を形成するTi膜のみと接触することになる。その結果、透明導電膜材料とA1とが反応するのを防止できる。

【007.2】透明導電膜の材料は、酸化インジウム(In_2O_3)や酸化インジウム酸化スズ合金(In_2O_3 — SnO_2 ; ITO)などをスパッタ法や真空蒸着法などを用いて形成して用いることができる。このような材料のエッチング処理は塩酸系の溶液により行う。しかし、特にITOのエッチングは残渣が発生しやすいので、エッチング加工性を改善するために酸化インジウム酸化亜鉛合金(In_2O_3 —ZnO)を用いても良い。酸化インジウム酸化亜鉛合金は表面平滑性に優れ、ITOに対して熱安定性にも優れているので、ドレイン配線 169 の端面で接触するA1との腐蝕反応を防止できる。同様に、酸化亜鉛(ZnO)も適した材料であり、さらに可視光の透過率や導電率を高めるためにガリウム(Ga)を添加した酸化亜鉛(ZnO:Ga)などを用いることができる。

【0073】このようにして、透過型の液晶表示装置に対応したアクティブマトリクス基板を完成させることができる。本実施例では、実施例1と同様な工程として説明したが、このような構成は実施例2や実施例3で示すアクティブマトリクス基板に適用することができる。

【0074】[実施例5]本実施例では、実施例1~実施例4で示したアクティブマトリクス基板のTFTの活性層を形成する結晶質半導体層の他の作製方法について示す。結晶質半導体層は非晶質半導体層を熱アニール法やレーザーアニール法、またはRTA法などで結晶化させて形成するが、その他に特開平7-130652号公報で開示されている触媒元素を用いる結晶化法を適用す

ることもできる。その場合の例を図8を用いて説明する。

【0075】図8(A)で示すように、実施例1と同様にして、ガラス基板101上に下地膜102a、102b、非晶質半導体層103aを25~80nmの厚さで形成する。例えば、非晶質シリコン膜を55nmの厚さで形成する。そして、重量換算で10ppmの触媒元素を含む水溶液をスピンコート法で塗布して触媒元素を含する層170を形成する。触媒元素にはニッケル(Ni)、ゲルマニウム(Ge)、鉄(Fe)、パラジウム(Pd)、スズ(Sn)、鉛(Pb)、コバルト(Co)、白金(Pt)、銅(Cu)、金(Au)などである。この触媒元素を含有する層170は、スピンコート法の他にスパッタ法や真空蒸着法によって上記触媒元素の層を1~5nmの厚さに形成しても良い。

【0076】そして、図8 (B) に示す結晶化の工程では、まず400~500℃で1時間程度の熱処理を行い、非晶質シリコン膜の含有水素量を5atomic%以下にする。そして、ファーネスアニール炉を用い、窒素雰囲気中において550~600℃で1~8時間の熱アニールを行う。以上の工程により結晶質シリコン膜から成る結晶質半導体層103cを得ることができる(図8

【0077】このうようにして作製された結晶質半導体層103cから島状半導体層104~108を作製すれば、実施例1と同様にしてアクティブマトリクス基板を完成させることができる。しかし、結晶化の工程においてシリコンの結晶化を助長する触媒元素を使用した場合、島状半導体膜中には微量($1\times10^{17}\sim1\times10^{19}$ atoms/cm程度)の触媒元素が残留する。勿論、そのような状態でもTFTを完成させることが可能であるが、残留する触媒元素を少なくともチャネル形成領域から除去する方がより好ましい。この触媒元素を除去する手段の一つにリン(P)によるゲッタリング作用を利用する手段がある。

【0078】この目的におけるリン(P)によるゲッタリング処理は、図3(B)で説明した活性化工程で同時に行うことができる。この様子を図9で説明する。ゲッタリングに必要なリン(P)の濃度は第3濃度のn型不純物領域の不純物濃度と同程度でよく、活性化工程の熱アニールにより、nチャネル型TFTおよびpチャネル型TFTのチャネル形成領域から触媒元素をその濃度で

リン(P)を含有する不純物領域へ偏析させることができる(図9で示す矢印の方向)。その結果その不純物領域には $1\times10^{19}\sim1\times10^{19}$ atoms/cm 程度の触媒元素が偏析した。このようにして作製したTFTはオフ電流値が下がり、結晶性が良いことから高い電界効果移動度が得られ、良好な特性を達成することができる。

【0079】 [実施例6] 本実施例では実施例1で作製 したアクティブマトリクス基板から、アクティブマトリ クス型液晶表示装置を作製する工程を説明する。まず、 図11(A)に示すように、図3(C)の状態のアクテ ィブマトリクス基板に柱状スペーサから成るスペーサを 形成する。スペーサは数μmの粒子を散布して設ける方 法でも良いが、ここでは基板全面に樹脂膜を形成した後 これをパターニングして形成する方法を採用した。この ようなスペーサの材料に限定はないが、例えば、JSR 社製のNN700を用い、スピナーで塗布した後、露光 と現像処理によって所定のパターンに形成する。さらに クリーンオーブンなどで150~200℃で加熱して硬 化させる。このようにして作製されるスペーサは露光と 現像処理の条件によって形状を異ならせることができる が、好ましくは、図13で示すように、柱状スペーサ1 73の形状は柱状で頂部が平坦な形状となるようにする と、対向側の基板を合わせたときに液晶表示パネルとし ての機械的な強度を確保することができる。形状は円錐 状、角錐状など特別の限定はないが、例えば円錐状とし たときに具体的には、高さΗを1.2~5μmとし、平 均半径L1を5~7μm、平均半径L1と底部の半径L 2との比を1対1.5とする。このとき側面のテーパー 角は±15°以下とする。

【0080】柱状スペーサの配置は任意に決定すれば良いが、好ましくは、図11(A)で示すように、画素部においてはドレイン配線168(画素電極)のコンタクト部と重ねてその部分を覆うように柱状スペーサ173を形成すると良い。コンタクト部は平坦性が損なわれこの部分では液晶がうまく配向しなくなるので、このようにしてコンタクト部にスペーサ用の樹脂を充填する形で柱状スペーサ173を形成することでディスクリネーションなどを防止することができる。

【0081】その後、配向膜174を形成する。通常液晶表示素子の配向膜にはポリイミド樹脂を用いる。配向膜を形成した後、ラビング処理を施して液晶分子がある一定のプレチルト角を持って配向するようにした。画素部に設けた柱状スペーサ173の端部からラビング方向に対してラビングされない領域が2μm以下となるようにした。また、ラビング処理では静電気の発生がしばしば問題となるが、駆動回路のTFT上にもスペーサ172を形成しておくと、スペーサとしての本来の役割と、静電気からTFTを保護する効果を得ることができる。【0082】対向側の対向基板175には、遮光膜17

6、透明導電膜177および配向膜178を形成する。

遮光膜176はTi、Cr、Alなどを150~300 nmの厚さで形成する。そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール剤179で貼り合わせる。シール剤179にはフィラー180が混入されていて、このフィラー180とスペーサ172、173によって均一な間隔を持って2枚の基板が貼り合わせられる。その後、両基板の間に液晶材料606を注入し、封止剤(図示せず)によって完全に封止する。液晶材料には公知の液晶材料を用いれば良い。このようにして図11(B)に示すアクティブマトリクス型液晶表示装置が完成する。

【0083】また、図19に示すように、配向膜174を形成して後、スペーサを形成した構成としても良い。 【0084】図11ではスペーサ172を駆動回路のTFT上の全面に形成する例を示したが、図12に示すようにこのスペーサを複数個に分割してスペーサ172a~172eとして形成しても良い。駆動回路が形成されている部分に設けるスペーサは、このように少なくとも駆動回路のソース配線およびドレイン配線を覆うように形成すれば良い。このような構成とすることによって、駆動回路の各TFTは、保護絶縁膜146と層間絶縁膜147とスペーサ172またはスペーサ172a~172eによって完全に覆われ保護されることになる。

【0085】図14はアクティブマトリクス基板の上面図を示し、画素部および駆動回路部とスペーサおよびシール剤の位置関係を示す上面図である。画素部188の周辺に駆動回路として走査信号駆動回路185と画像信号駆動回路186が設けられている。さらに、その他CPUやメモリーなどの信号処理回路187も付加されていても良い。そして、これらの駆動回路は接続配線183によって外部入出力端子182と接続されている。画素部188では走査信号駆動回路185から延在するゲート配線群189と画像信号駆動回路186から延在するソース配線群190がマトリクス状に交差して画素を形成し、各画素にはそれぞれ画素TFT204と保持容量205が設けられている。

【0086】画素部において設けられる柱状スペーサ173は、すべての画素に対して設けても良いが、マトリクス状に配列した画素の数個から数十個おきに設けても良い。即ち、画素部を構成する画素の全数に対するスペーサの数の割合は20~100%とすると良い。また、駆動回路部に設けるスペーサ172、172′、172′はその全面を覆うように設けても良いし、図12で示したように各TFTのソースおよびドレイン配線の位置にあわせて複数個に分割して設けても良い。

【0087】シール剤179は、基板101上の画素部188および走査信号制御回路185、画像信号制御回路186、その他の信号処理回路187の外側であって、外部入出力端子182よりも内側に形成する。

【0088】このようなアクティブマトリクス型液晶表

示装置の構成を図15の斜視図を用いて説明する。図1 5においてアクティブマトリクス基板は、ガラス基板1 01上に形成された、画素部188と、走査信号駆動回 路185と、画像信号駆動回路186とその他の信号処 理回路187とで構成される。画素部188には画素T FT204と保持容量205が設けられ、画素部の周辺 に設けられる駆動回路はCMOS回路を基本として構成 されている。走査信号駆動回路185と、画像信号駆動 回路186はそれぞれゲート配線122とソース配線1 52で画素TFT204に接続している。また、フレキ シブルプリント配線板(Flexible Printed Circuit: F PC) 191が外部入力端子182に接続していて画像 信号などを入力するのに用いる。そして接続配線183 でそれぞれの駆動回路に接続している。また、対向基板 175には図示していないが、遮光膜や透明電極が設け られている。

【0089】図18は外部入出力端子182とFPC1 91との接続構造を説明する図である。外部入出力端子 182はソース配線またはドレイン配線と同じ構成で導 電性金属膜から形成され、層間絶縁膜147が除去され た基板101上に形成される。 FPC191はポリイミ ドなどの有機樹脂フィルム301に銅配線302が形成 2と接続する。異方性導電性接着剤は接着剤303と、 · その中に混入され金などがメッキされた数十~数百 μm 径の導電性表面を有する粒子304により構成され、こ に接触することによりこの部分で電気的な接触が形成さ れる。FPC191は基板101との接着強度を高める ために、外部入出力端子182の外側にはみだして接着 されると共に、端部には樹脂層192が設けられこの部 分における機械的強度を高めている。

【0090】また、図20に示すように、外部入出力端 子182とFPC191との接続構造を同一なものとし て、シール剤179の外側にもスペーサ199を設け、 アクティブマトリクス基板と対向基板とで挟持させると この部分の機械的強度を高めることができる。このよう な構成は、特に、外部入出力端子182を露出させるた めに、対向基板の一部を切断するときに有効に作用す る。

【0091】このような構成の液晶表示装置は、実施例 1~4で示したアクティブマトリクス基板を用いて形成 することができる。実施例1~3で示すアクティブマト リクス基板を用いれば反射型の液晶表示装置が得られ、 実施例4で示すアクティブマトリクス基板を用いると透 過型の液晶表示装置を得ることができる。

【0092】 [実施例7] 図17は実施例1~4で示し たアクティブマトリクス基板の回路構成の一例であり、 直視型の表示装置の回路構成を示す図である。このアク ティブマトリクス基板は、画像信号駆動回路186、走 査信号駆動回路(A)(B)185、画素部188を有 している。尚、本明細書中において記した駆動回路と は、画像信号駆動回路186、走査信号駆動回路185 を含めた総称である。

【0093】画像信号駆動回路186は、シフトレジス 夕回路501a、レベルシフタ回路502a、バッファ 回路503a、サンプリング回路504を備えている。 また、走査信号駆動回路(A)(B)185は、シフト レジスタ回路501b、レベルシフタ回路502b、バ ッファ回路503bを備えている。

【0094】シフトレジスタ回路501a、501bは 駆動電圧が5~16V(代表的には10V)であり、こ の回路を形成するCMOS回路のTFTは、図3 (C) の第1のpチャネル型TFT200と第1のnチャネル 型TFT201で形成する。また、レベルシフタ回路5 02a、502bやバッファ回路503a、503bは 駆動電圧が14~16Vと高くなるがシフトレジスタ回 路と同様なTFTを用いれば良い。また、これらの回路 において、ゲートをマルチゲート構造で形成すると耐圧 が高まり、回路の信頼性を向上させる上で有効である。

【0095】サンプリング回路504はアナログスイッ チから成り、駆動電圧が14~16Vであるが、極性が されていて、異方性導電性接着剤で外部入出力端子1.8 交互に反転して駆動される上、オフ電流値を低減させる 必要があるため、図3(C)で示す第2のpチャネル型 TFT202と第2濃度のnチャネル型TFT203で 形成することが望ましい。この回路において、pチャネ の粒子304が外部入出力端子182と銅配線302と ル型TFT202のオフ電流値が問題となるときは、実 施例2で示す工程で作製した、オフセット領域を設けた シングルドレイン構造のTFTで作製すると良い。

> 【0096】また、画素部は駆動電圧が14~16Vで あり、低消費電力化の観点からサンプリング回路よりも さらにオフ電流値を低減することが要求され、図3

> (C)で示す画素TFT204のようにマルチゲート構 造とし、さらにLDD領域を設けた構造とするのが望ま しい。

> 【0097】尚、本実例の構成は、実施例1~4に示し た工程に従ってTFTを作製することによって容易に実 現することができる。本実施例では、画素部と駆動回路 の構成のみを示しているが、実施例1~4の工程に従え ば、その他にも信号分割回路、分周波回路、D/Aコン バータ、γ補正回路、オペアンプ回路、さらにメモリ回 路や演算処理回路などの信号処理回路、あるいは論理回 路を同一基板上に形成することが可能である。このよう に、本発明は同一基板上に画素部とその駆動回路とを含 む半導体装置、例えば信号制御回路および画素部を具備 した液晶表示装置を実現することができる。

> 【0098】 [実施例8] 本発明を実施して作製された アクティブマトリクス基板および液晶表示装置並びにE L型表示装置は様々な電気光学装置に用いることができ る。そして、そのような電気光学装置を表示媒体として

組み込んだ電子機器全てに本発明を適用することがでできる。電子機器としては、パーソナルコンピュータ、デジタルカメラ、ビデオカメラ、携帯情報端末(モバイルコンピュータ、携帯電話、電子書籍など)、ナビゲーションシステムなどが上げられる。それらの一例を図22に示す。

【0099】図22(A)はパーソナルコンピュータであり、マイクロプロセッサやメモリーなどを備えた本体2001、画像入力部2002、表示装置2003、キーボード2004で構成される。本発明は表示装置2003やその他の信号処理回路を形成することができる。

【0100】図22(B)はビデオカメラであり、本体2101、表示装置2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106で構成される。本発明は表示装置2102やその他の信号制御回路に適用することができる。

【0101】図22(C)は携帯情報端末であり、本体2201、画像入力部2202、受像部2203、操作スイッチ2204、表示装置2205で構成される。本発明は表示装置2205やその他の信号制御回路に適用することができる。

【0102】このような携帯型情報端末は、屋内はもと より屋外で使用されることも多い。長時間の使用を可能 とするためにはバックライト使用せず、外光を利用する 反射型の液晶表示装置が低消費電力型として適している が、周囲が暗い場合にはバックライトを設けた透過型の 液晶表示装置が適している。このような背景から反射型 と透過型の両方の特徴を兼ね備えたハイブリット型の液 晶表示装置が開発されているが、本発明はこのようなハ イブリット型の液晶表示装置にも適用できる。図21に それを携帯型情報端末に適用した例を示す。表示装置2 205はタッチパネル3002、液晶表示装置300 3、LEDバックライト3004により構成されてい る。タッチパネル3002は携帯型情報端末の操作を簡 便にするために設けている。タッチパネル3002の構 成は、一端にLEDなどの発光素子3100を、他の一 端にフォトダイオードなどの受光素子3200が設けら れ、その両者の間に光路が形成されている。このタッチ パネル3002を押して光路を遮ると受光素子3200 の出力が変化するので、この原理を用いて発光素子と受 光素子を液晶表示装置上でマトリクス状に配置させるこ とにより、入力媒体として機能させることができる。

【0103】図21(B)はハイブリット型の液晶表示装置の画素部の構成であり、層間絶縁膜147上にドレイン電極169と画素電極171が設けられている。このような構成は、実施例4を適用すれば形成することができる。ドレイン電極はTi膜とAl膜の積層構造として画素電極を兼ねる構成としている。画素電極171は実施例4で説明した透明導電膜材料を用いて形成する。液晶表示装置3003をこのようなアクティブマトリク

ス基板から作製することで携帯型情報端末に好適に用いることができる。

【0104】図22 (D) はテレビゲームまたはビデオ ゲームなどの電子遊技機器であり、CPU等の電子回路 2308、記録媒体2304などが搭載された本体23 01、コントローラ2305、表示装置2303、本体 2301に組み込まれた表示装置2302で構成され る。表示装置2303と本体2301に組み込まれた表 示装置2302とは、同じ情報を表示しても良いし、前 者を主表示装置とし、後者を副表示装置として記録媒体 2304の情報を表示したり、機器の動作状態を表示し たり、或いはタッチセンサーの機能を付加して操作盤と することもできる。また、本体2301とコントローラ 2305と表示装置2303とは、相互に信号を伝達す るために有線通信としても良いし、センサ部2306、 2307を設けて無線通信または光通信としても良い。 本発明は、表示装置2302、2303に適用すること ができる。表示装置2303は従来のCRTを用いるこ ともできる。

【0105】図22(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体2401、表示装置2402、スピーカー部2403、記録媒体2404、操作スイッチ2405で構成される。尚、記録媒体にはDVD(Digital Versatile Disc)やコンパクトディスク(CD)などを用い、音楽プログラムの再生や映像表示、ビデオゲーム(またはテレビゲーム)やインターネットを介した情報表示などを行うことができる。本発明は表示装置2402やその他の信号制御回路に好適に利用することができる。

【0106】図22(F)はデジタルカメラであり、本体2501、表示装置2502、接眼部2503、操作スイッチ2504、受像部(図示しない)で構成される。本発明は表示装置2502やその他の信号制御回路に適用することができる。

【0107】図23(A)はフロント型プロジェクターであり、光源光学系および投射装置2601、スクリーン2602で構成される。本発明は投射装置やその他の信号制御回路に適用することができる。図23(B)はリア型プロジェクターであり、本体2701、光源光学系および投射装置2702、ミラー2703、スクリーン2704で構成される。本発明は投射装置やその他の信号制御回路に適用することができる。

【0108】なお、図23 (C) に、図23 (A) および図23 (B) における光源光学系および投射装置2601、2702の構造の一例を示す。光源光学系および投射装置2601、2702は光源光学系2801、ミラー2802、2804~2806、ダイクロイックミラー2803、ビームスプリッター2807、液晶表示装置2808、位相差板2809、投射光学系2810で構成される。投射光学系2810は複数の光学レンズ

で構成される。図23(C)では液晶表示装置2808を三つ使用する三板式の例を示したが、このような方式に限定されず、単板式の光学系で構成しても良い。また、図23(C)中で矢印で示した光路には適宜光学レンズや偏光機能を有するフィルムや位相を調節するためのフィルムや、IRフィルムなどを設けても良い。また、図23(D)は図23(C)における光源光学系2801はリフレクター2811、光源2812、レンズアレイ2813、2814、偏光変換素子2815、集光レンズ2816で構成される。尚、図23(D)に示した光源光学系は一例であって図示した構成に限定されるものではない。

【0109】また、ここでは図示しなかったが、本発明はその他にも、ナビゲーションシステムやイメージセンサの読み取り回路などに適用することも可能である。このように本願発明の適用範囲はきわめて広く、あらゆる分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施例1~4の結晶化技術を用いて実現することができる。

[0110]

【発明の効果】本発明を用いることで、同一の基板上に 複数の機能回路が形成された半導体装置(ここでは具体 的には電気光学装置)において、その機能回路が要求す る仕様に応じて適切な性能のT.F.Tを配置することが可 能となり、その動作特性を大幅に向上させることができ る。

【0111】本発明の半導体装置の作製方法に従えば、駆動回路部のpチャネル型TFTをシングルドレインの構造としnチャネル型TFTをGOLD構造またはLDD構造とし、また画素部の画素TFTをLDD構造としたアクティブマトリクス基板を6枚のフォトマスクで製造することができ、このようなアクティブマトリクス基板から反射型の液晶表示装置を作製することができる。また、同工程に従えば透過型の液晶表示装置を7枚のフォトマスクで製造することができる。

【0112】本発明の半導体装置の作製方法に従えば、 駆動回路部のpチャネル型TFTをオフセット領域を有 するシングルドレインの構造としnチャネル型TFTを GOLD構造またはLDD構造とし、また画素部の画素 TFTをLDD構造としたアクティブマトリクス基板を 7枚のフォトマスクで製造することができ、このような アクティブマトリクス基板から反射型の液晶表示装置を 作製することができる。また、同工程に従えば透過型の 液晶表示装置を8枚のフォトマスクで製造することがで きる。

【0113】本発明の半導体装置の作製方法に従えば、 ゲート電極を耐熱性導電性材料で形成し、ゲート配線を 低抵抗導電性材料で形成したTFTにおいて、駆動回路 部のpチャネル型TFTをシングルドレインの構造とし nチャネル型TFTをGOLD構造またはLDD構造とし、また画素部の画素TFTをLDD構造としたアクティブマトリクス基板を7枚のフォトマスクで製造することができ、このようなアクティブマトリクス基板から反射型の液晶表示装置を作製することができる。また、同工程に従えば、透過型の液晶表示装置を8枚のフォトマスクで製造することができる。

【0114】このように、アクティブマトリクス基板の 製造に必要なフォトマスクの枚数を6~8枚とすること により、製造工程が簡略化され、製造コストを大幅に低 減することができる。

【図面の簡単な説明】

【図1】 画素TFT、駆動回路のTFTの作製工程を 示す断面図。

【図2】 画素TFT、駆動回路のTFTの作製工程を示す断面図。

【図3】 画素TFT、駆動回路のTFTの作製工程を示す断面図。

【図4】 画素TFT、駆動回路のTFTの作製工程を示す断面図。

【図5】 画素TFT、駆動回路のTFTの作製工程を 示す断面図。

【図6】 駆動回路のTFTと画素TFTの構造を示す上面図。

【図7】 駆動回路のTFTの作製工程を示す断面図。

【図8】 結晶質半導体膜の作製工程を示す断面図。

【図10】 画素TFT、駆動回路のTFTの作製工程を示す断面図。

【図11】 アクティブマトリクス型液晶表示装置の作製工程を示す断面図。

【図12】 アクティブマトリクス型液晶表示装置の作製工程を示す断面図。

【図13】 柱状スペーサの形状を説明する図

【図14】 液晶表示装置の入出力端子、配線、回路配置、スペーサ、シール剤の配置を説明する上面図。

【図15】 液晶表示装置の構造を示す斜視図。

【図16】 画素部の画素を示す上面図。

【図17】 液晶表示装置の回路構成を説明するブロック図。

【図18】 フレキシブルプリント配線板と外部入出力端子の接続構造を説明する図。

【図19】 アクティブマトリクス型液晶表示装置の作製工程を示す断面図。

【図20】 フレキシブルプリント配線板と外部入出力端子の接続構造を説明する図。

【図21】 半導体装置の一例を示す図。

【図22】 半導体装置の一例を示す図。

【図23】 投影型液晶表示装置の構成を示す図。

【図2】

【図9】

【図11】

【図12】

【図17】

【図18】

【図20】

【図21】

(A) 携帯情報端末機器 (光学式タッチパネル) の外観図および新面図

(B) 國素部斯面図

【図23】

フロン	ノトペ-	- ジの続き	
/		2 17 17 0	

(51) Int. Cl. 7		識別記号	FI	テーマコード(参考)
G 0 9 F	9/00	3 4 8	G O 9 F 9/30	3 4 8 A
• • • • • • • • • • • • • • • • • • • •	9/30	3 3 8	G O 2 F 1/136	500
		3 4 8	H O 1 L 29/78	6 1 2 B
				6 1 7 A

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)