

Ayudantía 3 - Satisfactibilidad y modelacíon

Hector Núñez, Paula Grune, Manuel Irarrázaval

1. Funcionalidad completa

Demuestre que el conectivo ↑ (también conocido como NAND) es funcionalmente completo. Su tabla de verdad es la siguiente:

p	q	$p \uparrow q$
0	0	1
0	1	1
1	0	1
1	1	0

Solución

Sabemos que el conjunto $C = \{\neg, \land\}$ es funcionalmente completo (demostrado en clases, se puede usar). Demostraremos por inducción estructural que toda fórmula construida a partir de los conectivos del conjunto C tiene una fórmula equivalente que solo usa conectivos de $C' = \{\uparrow\}$, con ello demostrando que $\{\uparrow\}$ es funcionalmente completo.

BI: Con $\varphi = p$, se cumple trivialmente que φ puede ser construida con conectivos de C'.

HI: Supongamos que $\varphi, \psi \in \mathcal{L}(P)$ son fórmulas construidas con los conectivos de C, y que existen $\varphi', \psi' \in \mathcal{L}(P)$ construidas con los conectivos de C' tales que $\varphi \equiv \varphi'$ y $\psi \equiv \psi'$.

TI: Demostraremos que toda fórmula θ construida con los pasos inductivos del conjunto C tiene una fórmula θ' construida con conectivos de C' tal que $\theta \equiv \theta'$. Notemos, en primer lugar, que para dos fórmulas α, β cualquiera se tiene que $\neg(\alpha \land \beta) \equiv \alpha \uparrow \beta$. Como C tiene dos conectivos, hay dos casos:

• $\theta = \neg \varphi \stackrel{HI}{\equiv} \neg \varphi' \equiv \neg (\varphi' \land \varphi') \equiv \varphi' \uparrow \varphi'$. Luego, $\theta' = \varphi' \uparrow \varphi'$ cumple la propiedad.

•
$$\theta = \varphi \wedge \psi \stackrel{HI}{\equiv} \varphi' \wedge \psi' \equiv \neg(\neg(\varphi' \wedge \psi')) \equiv \neg(\varphi' \uparrow \psi') \equiv (\varphi' \uparrow \psi') \uparrow (\varphi' \uparrow \psi')$$
. Luego, $\theta' = (\varphi' \uparrow \psi') \uparrow (\varphi' \uparrow \psi')$ cumple la propiedad.

Concluímos que toda fórmula construida con conectivos de C tiene una equivalente construida con conectivos de C', y con ello que $\{\uparrow\}$ es funcionalmente completo.

2. DNF y CNF

La fórmula es:

$$(p \lor q) \to (r \leftrightarrow q)$$

Paso 1: Reescribir Implicaciones y Bicondicionales

Reescribimos la implicación y el bicondicional:

$$\neg (p \lor q) \lor ((r \to q) \land (q \to r))$$

Sustituyendo el bicondicional:

$$\neg (p \lor q) \lor ((\neg r \lor q) \land (\neg q \lor r))$$

Paso 2: Aplicar la Ley de De Morgan

Aplicamos la Ley de De Morgan a $\neg(p \lor q)$:

$$(\neg p \wedge \neg q) \vee ((\neg r \vee q) \wedge (\neg q \vee r))$$

Paso 3: Distribución

Distribuyendo:

$$(\neg p \wedge \neg q) \vee (q \wedge \neg q) \vee (q \wedge r) \vee (\neg q \wedge \neg r) \vee (r \wedge \neg r)$$

Simplificando, obtenemos la DNF:

$$(\neg p \land \neg q) \lor (q \land r) \lor (\neg q \land \neg r)$$

Ahora pasamos a CNF utilizando la fórmula en DNF.

Paso 1: Agrupar

Agrupamos por $\neg q$:

$$(\neg q \land (\neg p \lor \neg r)) \lor (q \land r)$$

Paso 2: Distribución

Distribuimos $(q \land \neg r)$:

$$(\neg q \lor (q \land r)) \land (\neg p \lor \neg r \lor (q \land r))$$

Distribuimos $\neg q$ y simplificamos:

$$(\neg q \vee r) \wedge (\neg p \vee \neg r \vee (q \wedge r))$$

Distribuimos $\neg r$ y simplificamos, llegando a CNF:

$$(\neg q \lor r) \land (\neg p \lor \neg r \lor q)$$

3. Equivalencia lógica e inconsistencia

Demuestre que $\Sigma = \{p \leftrightarrow q, p \lor q\}$, con ' \lor ' la disyunción exclusiva, es inconsistente.

Observación: La disyunción exclusiva es similar a la disyunción, la única diferencia es que cuando los dos valores $(p \land q)$ son verdad, esta es falsa.

p	q	$p \vee q$
0	0	0
0	1	1
1	0	1
1	1	0

Solución:

Podemos demostrar con resolución que Σ es inconsistente. Para ello podemos reescribir $\{p \leftrightarrow q\}$ y $\{p \lor q\}$ como,

$$p \leftrightarrow q = (p \Rightarrow q) \land (q \Rightarrow p) = (\neg p \lor q) \land (\neg q \lor p) = \{\neg p \lor q, \neg q \lor p\}$$
$$p \lor q = p \lor q$$

Luego, demostrar que $\Sigma' = \{ \neg p \lor q, \neg q \lor p, p \lor q, \neg p \lor \neg q \}$ es inconsistente es equivalente a demostrar que Σ es inconsistente (pues $\Sigma' \supseteq \Sigma$). Por resolución,

(1)	$\neg q \lor p$	$\in \Sigma$
(2)	$p \lor q$	$\in \Sigma$
(3)	$p \lor q$	resolución de (1) y (2)
(4)	$\neg p \lor q$	$\in \Sigma$
(5)	q	resolución de (3) y (4)
(6)	$\neg p \lor \neg q$	$\in \Sigma$
(7)	$\neg p$	resolución de (5) y (6)
(8)	p	resolución de (4) y (8)
(9)		contradicción

Obteniendo así que Σ' es inconsistente, por lo cual Σ es inconsistente.

4. Modelación

Considere M médicos, P pabellones y C cirugías agendadas para un día dado. Queremos asignar a los médicos disponibles a las distintas cirugías, suponiendo que el día tiene 24 bloques de 1 hora, durante los cuales los pabellones están disponibles y que las cirugías duran una cantidad entera de horas dada por T_c para cada cirugía c, con $1 \le c \le C$. Además, contamos con una tabla de compatibilidad cirugía-pabellón. Para cada cirugía c, con $1 \le c \le C$, y pabellón p, con $1 \le p \le P$, definimos:

$$K_{c,p} := \begin{cases} 1 & \text{si la cirug\'ia } c \text{ puede ser realizada en el pabell\'on } p \\ 0 & \text{en caso contrario} \end{cases}$$

Para construir una fórmula φ tal que φ sea satisfactible si y sólo si existe una calendarización adecuada de todas las cirugías, considere las siguientes variables proposicionales:

- $x_{m,c,p,t}$: Será verdadera si el médico m realiza la cirugía c en el pabellón p durante la hora t.
- $k_{c,p}$: Deberá representar nuestras constantes $K_{c,p}$.

Modele las siguientes restricciones en lógica proposicional:

- (a) Inicialización de las variables $k_{c,p}$.
- (b) Las cirugías solo pueden ser realizadas en pabellones adecuados para ellas.
- (c) Los médicos solo pueden ser asignados a una cirugía a la vez.
- (d) Si un médico es asignado a una cirugía, debe seguir asignado a la cirugía durante toda su duración.
- (e) Si un médico es asignado a una cirugía, no podrá realizar otra cirugía por al menos 8 horas desde el término de la cirugía.
- (f) Todas las cirugías deben tener exactamente un médico asignado durante su duración.

Solución

a) Inicialización de las variables $k_{c,p}$

Utilizamos la fórmula φ_K para la inicialización de las variables $k_{c,p}$ dada por

$$\varphi_K := \bigwedge_{c=1}^C \bigwedge_{p=1}^P \left(k_{c,p} \leftrightarrow K_{c,p} \right)$$

(*) Otras notaciones como (c, p): $K_{c,p} = 1$ también deberían ser aceptadas para los subíndices de las conjunciones.

b) Las cirugías solo pueden ser realizadas en pabellones adecuadas para ellas.

Utilizamos la fórmula φ_P dada por

$$\varphi_P := \bigwedge_{m=1}^{M} \bigwedge_{c=1}^{C} \bigwedge_{p=1}^{P} \bigwedge_{t=1}^{24} (x_{m,c,p,t} \to k_{c,p})$$

(*) Nótese que la expresión entre paréntesis también puede escribirse como cualquiera de sus equivalencias, como $\neg x_{m,c,p,t} \lor k_{c,p}$, incluyendo su contraposición $\neg k_{c,p} \to \neg x_{m,c,p,t}$.

c) Los médicos solo pueden ser asignados a una cirugía a la vez.

Lo expresamos con la fórmula φ_U dada por

$$\varphi_U := \bigwedge_{m=1}^M \bigwedge_{c=1}^C \bigwedge_{p=1}^P \bigwedge_{t=1}^{24} \left(x_{m,c,p,t} \to \bigwedge_{\substack{1 \le c' \le C \\ c' \ne c}} \neg x_{m,c',p,t} \right)$$

(*) Así igualmente hay varias escrituras de la fórmula que son válidas, notablemente separarla con implicación del consecuente en dos partes, para $1 \le c' \le C - 1$ y para $c + 1 \le c' \le C$.