1 Finite Automata

1.1 Deterministic finate automaton - DFA

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- Q is a finate set of states,
- Σ is a finite input alphabet
- $q_0 \in Q$ is the *initial state*,
- $F \subseteq Q$ is the set of *final states*, and
- δ is the transition function, i.e. $\delta: Q \times \Sigma \to Q$ For each state, there must be a transition for every input symbol out of Σ .

exp. Dfa for finding modulo of binary numbers

Suppose our modulo is m. Then for every possible remainder, there must be a state in fa $\{q_0, q_1, \ldots, q_{m-1}\}.$

- state $q_0: m*k+0$ $m*k | 0 \Rightarrow 2*(5k) + 0 = m*k+0 \text{ (on } 0, \text{ we go to } q_0)$ $m*k | 1 \Rightarrow 2*(5k) + 1 = m*k+1 \text{ (on } 1, \text{ we go to } q_1)$
- state $q_1: k+1$ $m*k | 0 \Rightarrow 2*1+0=2 \text{ (go to } q_2)$ $m*k | 1 \Rightarrow 2*1+1=3 \text{ (go to } q_3)$
- state $q_{m-1}: k + (m-1)$ $m * k | 0 \Rightarrow 2 * (m-1) + 0$ $m * k | 1 \Rightarrow 2 * (m-1) + 1$

If your remainder is bigger than m, then you must modulo it!

1.2 Nondeterministic finate automaton - NFA

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- Q, Σ, q_0, F read dfa
- δ is the transition function, i.e. $\delta: Q \times \Sigma \to 2^Q$ That is $\delta(q, a)$ is the set of all states p such that there is a transition labeled from a to p.

1.3 NFA with epsilon moves - NFA_{ϵ}

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where:

- $Q, \Sigma, q_0, F \text{ read } dfa$
- δ is the transition function, i.e. $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$ That is $\delta(q, a)$ is the set of all states p such that there is a transition labeled from a to p, where a is either a symbol in Σ or ϵ .

 ϵ -closure defines which ϵ transitions are allowed from a single state in a fa (set of states we can reach).

exp. NFA for L^c

$$NFA(L) \to DFA(L) \to DFA(L^c)$$

Due to the properties of **DFA**, the complementation is applied just by switching final and non-final states of fa.

2 Regular expressions

2.1 Regular operations

Let L_1, L_2 be some regular languages. Then their

- union $\rightarrow L_1 \cup L_2 = \{ \forall x : x \in L_1 \text{ or } x \in L_2 \}$
- concatenation $\rightarrow L_1.L_2 = L_1L_2$
- kleene closure $\rightarrow = L^*$
- interscetion $\rightarrow L_1 \cap L_2$
- ullet complementation $ightarrow \overline{L}$

are also regular languages. Regexp are equialent with NFA.

2.2 Pumping lemma for regular languages Let R be a class of regular languages. Then language $L \in R \to \exists n > 0$:

$$\forall z \in L, |z| \geq n: \\ \exists u, v, w: \ |uv| \leq n, |v| \geq 1, z = uvw \rightarrow \forall i \geq 0: uv^i w \in L$$

if we negate lemma, we can prove that some languages are irregular

$$\forall n>0: \exists z\in L, |z|\geq n \\ \forall u,v,w: \ |uv|\leq n, |v|\geq 1, z=uvw \rightarrow \exists i\geq 0: uv^iw\notin L \Rightarrow L\notin R$$

3 Context-free grammars

- **3.1 Definition:** A context-free grammar (CFG) is a 4-tuple G = (V, T, P, S) where:
 - ullet V is a finite set of variables
 - \bullet T is a finite set of terminals
 - P is a finite set of productions each of which is of the form $A \to \alpha$, where $A \in V$ and α is a word in the language $(V \cup T)^*$
 - S is a special variable called the start symbol

Ambiguity: A CFG is said to be ambiguous if some word has more than one derivation tree.

exp. regex to CFG conversion

Suppose we have a regex: $a(ab)^*bb(aa+b)^*a$

Then we could model a CFG for it as:

- $S \rightarrow XYZUV$
- $\bullet X \to a$
- $Y \to abY | \epsilon$
- $Z \rightarrow bb$
- $U \rightarrow aaU|bU|\epsilon$
- $\bullet V \rightarrow a$
- 3.2 Pumping lemma for context-free languages Let L be a CFL.

$$\begin{split} \exists n > 0: \\ \forall z \in L, |z| \geq n: \\ \exists u, v, w, x, y: \ |vwx| \leq n, |vx| \geq 1 \\ z = uvwxy \rightarrow \forall i \geq 0: uv^i wx^i y \in L \end{split}$$

if we negate lemma, we can prove that some languages are not context-free.

$$\begin{aligned} \forall n > 0: \\ \exists z \in L, |z| \geq n: \\ \forall u, v, w, x, y: \ |vwx| \leq n, |vx| \geq 1 \\ z = uvwxy \rightarrow \exists i \geq 0: uv^i wx^i y \notin L \end{aligned}$$

4 Pushdown Automata

- **4.1 Definition:** A pushdown automaton (PDA) is a 7 tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ where:
 - Q, Σ, q_0, F read dfa
 - Γ is the stack alphabet
 - $Z_0 \in \Gamma$ is the start stack symbol, and
 - δ is the transition function
 i.e. a mapping from Q × (Σ ∪ {ε}) × Γ to finite subsets of Q × Γ*
 → 2^Q×Γ*
- **4.2** Accepted languages of the PDA

For PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ we define two languages:

- L(M), the language accepted by final state, to be $L(M) = \{w \in \Sigma^* | (q_0, w, Z_0) \to^* (p, \epsilon, \gamma) \}$ for some $p \in F$ and $\gamma \in \Gamma^* \}$
- L(M), the language accepted by empty stack, to be $N(M) = \{w \in \Sigma^* | (q_0, w, Z_0) \to^* (p, \epsilon, \epsilon); \text{ for some } p \in Q\}$

4.3 The class of CFLs is **closed** under:

union, concatenation, kleene closure, substitution, inverse homomorphism

The class of CFLs is *not* **closed** under: intersection, complementation.

But is closed for intersection if both CFL represent some regular sets.

5 Touring Machines

5.1 Definition: A basic Toruing Machine (TM) is a 7-tuple $M = \{Q, \Sigma, \Gamma, \delta, q_0, B, F\}$ where:

- ullet Q is a finite set of states
- Σ is the input alphabet
- Γ is the tape alphabet $B \in \Gamma => \Sigma \subseteq \Gamma$
- \bullet δ is the transition function
- q_0 is the *initial state* and,
- $F \subseteq Q$: is the set of final states

5.2 TM modifications:

- Finite storage $\Rightarrow \delta: Q \times \Gamma \times \Gamma^k \to Q \times \Gamma \times \{L, R, S\} \times \Gamma^k$
- Multiple track tape $\Rightarrow \delta: Q \times \Gamma^{tk} \to Q \times \Gamma^{tk} \times \{L, R, S\}$
- Two-way infinite tape $\Rightarrow \delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$
- Multiple tapes $\Rightarrow \delta: Q \times \Gamma^{tp} \to Q \times (\Gamma \times \{L, R, S\})^{tp}$
- Multidimensional tape \Rightarrow δ : $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L_1, R_1, \dots, L_d, R_d, S\}$

5.3 Universal Touring Machine (UTM)

is a TM, that accepts some *Touring machine* M description and a word w. The universal TM then decides if $w \in L(M)$.

[TM description|w] $111 < q_1 > 11 < q_2 > 11 \dots 11 < q_k > 111w$

- \rightarrow language L is **semi-decidable**, if there exists a TM, which: for every $w \in L$, TM halts in a final state
 - \rightarrow language L is **decidable**, if there exists a TM, which:

for every $w \in L$, TM halts in a final state

for every $w \notin L$, TM halts in a non-final state

 \rightarrow language L is **undecidable**, if it is not decidable.

5.4 Theorems for sets

Let S, A, B be arbitrary sets. Then:

- S is $decidable \Rightarrow S$ is semi-decidable
- S is $decidable \Rightarrow \overline{S}$ is decidable
- S and \overline{S} are semi-decidable \Rightarrow S is decidable
- A and B are semi-decidable $\Rightarrow A \cap B \& A \cup B$ are semi-decidable
- A and B are $decidable \Rightarrow A \cap B \& A \cup B$ are decidable

5.5 Three possibilities for set complementation:

- S and \overline{S} are decidable
- S and \overline{S} are *undecidable*, one is semi, and the other is not.
- S and \overline{S} are *undecidable*, and neither is semi-decidable.

5.6 Known languages:

- Diagonalizable language $\to L_d = \{ < M > | < M > \notin L(M) \}$ undecidable / not semi-decidable.
- Universal language $\to L_u = \{(< M >, w) | w \in L(M)\}$ semi-decidable, but not decidable.

- Empty language $\rightarrow L_e\{\langle M \rangle | L(M) = \{\}\}$ undecidable
- Non-Empty language $\to L_{ne} = \{ < M > | L(M) \neq \{ \} \}$ semi-decidable, but not decidable.

5.6 Rice's theorem for (not)semi-decidabilty:

- 1. $L \in S \land L \subseteq L' \Rightarrow L' \in S$
- 2. $L \in S \land L \ infinite \Rightarrow \exists L' \subseteq L : L \in S, \ L' \ finite$
- 3. in numerability of final sets in ${\cal S}$
 - $(1) \wedge (2) \wedge (3) \Leftrightarrow L_s$ is semi-decidable

6 Complexity classes

6.1 In terms of formal languages:

- DTIME $(T(n)) = \{L | L \text{ is a language } \land L \text{ has time complexity } T(n)\}$
- DSPACE $(S(n)) = \{L | L \text{ is a language } \land L \text{ has space complexity } S(n)\}$
- NTIME $(T(n)) = \{L | L \text{ is a language } \land L \text{ has nondet. time complexity } T(n)\}$
- DSPACE(S(n)) = {L| L is a language \land L has nondet. space complexity S(n)}

6.2 In terms of decision problems:

- DTIME $(T(n)) = \{D \mid D \text{ is a decision problem } \land L(D) \text{ has time complexity } T(n)\}$
- DSPACE(S(n)) = {D| D is a decision problem \land L(D) has space complexity S(n)}
- NTIME $(T(n)) = \{D \mid D \text{ is a decision problem } \land L(D) \text{ has non-det. time complexity } T(n)\}$
- DSPACE $(S(n)) = \{D | D \text{ is a decision problem } \land L(D) \text{ has nondet. space complexity } S(n)\}$

6.3 Relations between different complexity classes:

- DTIME $(T(n)) \subseteq DSPACE(T(n))$ i.e. What can be solved in time O(T(n)), can also be solved on space O(T(n))
- $L \in DSPACE(S(n)) \land S(n) \ge log_2 n \Rightarrow \exists c : L \in DTIME(c^{S(n)})$ i.e. What can be solved nondeterminstically in space O(S(n)), can be solved deterministically in (at most) time $O(c^{S(n)})$
- $L \in NTIME(T(n)) \Rightarrow \exists c : L \in DTIME(c^{T(n)})$ i.e What can be solved nondeterministically in time O(T(n)), can be solved deterministically in (at most) time $O(c^{T(n)})$
 - Consequentely, the substitution of nondeterministic algorithm with a deterministic one causes at most *exponential* increase in the **time** required to (deterministically) solve a problem.
- $NSPACE(S(n)) \subseteq DSPACE(S^2(n))$, if $S(n) \ge log_2n \land S(n)$ is "well behaved" i.e What can be solved nondeterministically on space O(S(n)), can also be solved deterministically on space $O(S^2(n))$ Consequentely, the substitution of nondeterministic algorithm with a deterministic one causes at most quadratic increase in the **space** required to (deterministically) solve a problem.

6.4 Define P, NP, PSPACE, NPSPACE:

- $P = \bigcup_{i \ge 1} \text{DTIME}(n^i)$ is the class of all decision problems **deterministically** solvable in *polynomial time*.
- $NP = \bigcup_{i \geq 1} \text{ NTIME}(n^i)$ is the class of all decision problems **nondeterministically** solvable in *polynomial time*.
- $PSPACE = \bigcup_{i \geq 1} DSPACE(n^i)$ is the class of all decision problems **deterministically** solvable on *polynomial space*.
- $NPSPACE = \bigcup_{i \geq 1} NSPACE(n^i)$ is the class of all decision problems **nondeterministically** solvable on *polynomial space*.

6.5 Relations between P, NP, PSPACE, NPSPACE:

$$P \subseteq NP \subseteq PSPACE = NPSPACE$$

Proof:

- $P \subseteq NP \rightarrow$ Every deterministic TM of polynomial time complexity can be viewed as a (trivial) nondeterministic TM of the same complexity.
- NP \subseteq PSPACE \rightarrow If $L \in NP$, then $\exists k$ such that $L \in$ $NTIME(n^k)$. So $L \in NSPACE(n^k)$, and hence $L \in DSPACE(n^{2k})$. Therefore $L \in PSPACE$.

 • (PSPACE = NPSPACE) \rightarrow Trivially, PSPACE $\subseteq NPSPACE$.

 NP-hard: $D \leq^p D^*$, for every $D \in NP$.

 NP-complete: $D^* \in NP \land D \leq^p D^*$, for every $D \in NP$.

 Hence, D^* is NP-complete if D^* is in NP and D^* is NP-hard.

The opposite direction: $NPSPACE = (def) = \cup NSPACE(n^i) \subseteq (by$ Savitch) $\subseteq \cup$ DSPACE $(n^j) \subseteq$ PSPACE

6.6 NP-complete & NP-hard problems