# Дружный комбинаторный чат

# Опубликовал

sobody

# Автор или источник

sobopedia

### Предмет

Теория Вероятностей (/Subjects/Details?id=1)

#### Тема

Основы комбинаторики (/Topics/Details?id=3)

### Раздел

Как определить, каким способом пользоваться (/SubTopics/Details?id=23)

### Дата публикации

05.09.2019

## Дата последней правки

13.09.2019

# Последний вносивший правки

sobody

#### Рейтинг



## **Условие**

Вы хотите сформировать в мессенджере чат любителей комбинаторики. Вы можете пригласить в него любое количество друзей из 10 доступных.

- 1. Сколькими способами вы можете сформировать чат? При этом порядок приглашений не имеет значение, важно лишь какие именно люди в итоге останутся в чате.
- 2. Повторите предыдущий пункт учитывая, что каждый из ваших друзей также может пригласить в чат сколько угодно друзей из 5 доступных и не пересекающихся с вашими 10. При этом друзья ваших друзей приглашать в чат своих друзей уже не могут.
- 3. Повторите предыдущий пункт учитывая, что ваши друзья под номерами 1 и 2 знакомы между собой, а значит входят в число 5 доступных для приглашения друзей в отношении друг к другу. Учтите, что способ зависит лишь от того, какие, в конечном итоге, люди окажутся в чате, а не от того, кто их пригласил. **Подсказка**: без потери общности можно предположить, что друг 1 не может пригласить друга 2 и наоборот.
- 4. Повторите предыдущий пункт учитывая, что между собой знакомы друзья 1-5.
- 5. Повторите третий пункт учитывая, что вы также можете назначать друзей администраторами и модераторами, но лишь тех, которых пригласили самостоятельно. Поэтому каждый способ должен учитывать не только приглашенных друзей, но и наличие у них статуса администратора или модератора. При этом можно совмещать статусы администратора и модератора.

# Решение

- 1. Поскольку каждый друг может быть приглашен или нет, то количество способов составит  $2^{10}$ .
- 2. Теперь в отношении каждого друга появляются не два варианта (пригласить или нет), а сразу  $1+2^5$ , поскольку 1 способ приходится на то, чтобы не пригласить друга и  $2^5$  способами приглашенный друг может пригласить своих друзей. В итоге получаем ответ  $\left(1+2^5\right)^{10}$  способов.
- 3. Для 3-10 друзей все остается по-прежнему, поэтому получаем  $\left(1+2^5\right)^8$  способов. Теперь нужно посчитать, сколько на каждый из этих способов приходится способов пригласить 1 и 2 друзей.

Для начала рассмотрим варианты для друга под номером 1. Во-первых, его можно не пригласить. Вовторых, существуют  $2^4$  вариантов, когда мы его приглашаем, но он не приглашает друга под номером 2. Втретьих, есть столько же, то есть  $2^4$  вариантов, в которых он приглашает друга под номером 2. Однако, в последнем случае друг 2 также может пригласить друга 1. Данное обстоятельство приведет к тому, что будут посчитаны лишние способы. Поэтому, без потери общности предположим, что друг 1 не может пригласить друга 2 и наоборот. Тогда достаточно рассмотреть лишь первые два из указанных вариантов, которые дают  $1+2^4$  способов.

В итоге получаем ответ  $\left(1+2^{5}\right)^{8} \left(1+2^{4}\right)^{2}$  способов.

- 4. Действуя аналогичным образом имеем  $\left(1+2^5\right)^5\left(1+2^0\right)^5=\left(1+2^5\right)^52^5$  способов.
- 5. Без потери общности предположим, что приглашать друзей 1 и 2 можете только вы. Тогда нетрудно догадаться, что поскольку добавляются три дополнительных варианта (назначить администратором, модератором или и тем и другим), то, каждый приглашенный лично вами имеет одну из  $2^2=4$  ролей, а значит количество способов составит:

$$\left(1+4*2^{5}\right)^{8} \left(1+4*2^{4}\right)^{2} = \left(1+2^{7}\right)^{8} \left(1+2^{6}\right)^{2}$$

Показать решение

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.

© 2018 - 2022 Sobopedia