hw8_shuangyu_zhao

Shuangyu Zhao

2023-04-23

```
library(keras)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(sqldf)
## Loading required package: gsubfn
## Loading required package: proto
## Loading required package: RSQLite
library(ggplot2)
library(neuralnet)
library(ISLR2)
library(xgboost)
  1. For the star dataset,
star <- read.csv("/Users/apple/Desktop/STT811_appl_stat_model/data/star_classification.csv")</pre>
star <- na.omit(star)</pre>
head(star)
```

```
obj_ID
                     alpha
                                delta
                                                      g
## 1 1.237661e+18 135.6891 32.4946318 23.87882 22.27530 20.39501 19.16573 18.79371
## 2 1.237665e+18 144.8261 31.2741849 24.77759 22.83188 22.58444 21.16812 21.61427
## 3 1.237661e+18 142.1888 35.5824442 25.26307 22.66389 20.60976 19.34857 18.94827
## 4 1.237663e+18 338.7410 -0.4028276 22.13682 23.77656 21.61162 20.50454 19.25010
## 5 1.237680e+18 345.2826 21.1838656 19.43718 17.58028 16.49747 15.97711 15.54461
## 6 1.237680e+18 340.9951 20.5894763 23.48827 23.33776 21.32195 20.25615 19.54544
    run_ID rerun_ID cam_col field_ID spec_obj_ID class redshift plate
##
## 1
      3606
                 301
                           2
                                   79 6.543777e+18 GALAXY 0.6347936 5812 56354
## 2
      4518
                                  119 1.176014e+19 GALAXY 0.7791360 10445 58158
                 301
                           5
## 3
      3606
                 301
                                  120 5.152200e+18 GALAXY 0.6441945 4576 55592
                                  214 1.030107e+19 GALAXY 0.9323456 9149 58039
## 4
      4192
                 301
```

```
## 5
       8102
                  301
                             3
                                     137 6.891865e+18 GALAXY 0.1161227 6121 56187
## 6
       8102
                  301
                             3
                                     110 5.658977e+18
                                                           QSO 1.4246590 5026 55855
     fiber ID
## 1
           171
## 2
           427
## 3
          299
## 4
          775
## 5
          842
## 6
          741
sqldf("SELECT DISTINCT class
      FROM star")
##
      class
## 1 GALAXY
        QSO
## 3
       STAR
  a. Create a 70/30 train test split.
star$y <- ifelse(star$class == "GALAXY", 1, ifelse(star$class == "QSO", 2, 3))
split pct <- 0.7
n <- split_pct * length(star$obj_ID)</pre>
set.seed(123)
row_samp <- sample(1:length(star$obj_ID), n, replace = FALSE)</pre>
train_star <- star[row_samp, ]</pre>
test_star <- star[-row_samp, ]</pre>
  b. Create a neural network model for type(class), using u, g, z, and Redshift. Use a single hidden layer
     with 3 nodes and tanh activation functions. Compute the confusion matrix for the train dataset. (CNN)
star_nn_1 <- neuralnet(y~ u+g+z+redshift, data = train_star,act.fct = 'tanh', hidden = c(3), linear.out
y_pred_1b <- neuralnet::compute(star_nn_1, test_star)</pre>
pred_labels_1b <- apply(y_pred_1b$net.result, 1, which.max)</pre>
accuracy_1b <- sum(pred_labels_1b == test_star$y) / length(test_star$y)</pre>
print(paste0("Accuracy: ", round(accuracy_1b, 3)))
## [1] "Accuracy: 0.598"
  c. Re-create the model predictions in (b) with algebraic operations.
X_1c <- cbind(test_star$u,test_star$g,test_star$z,test_star$redshift)</pre>
```

 $logi \leftarrow function(x) 1/(1 + exp(-1*x))$

n1 <- logi(star_nn_1\$result.matrix[4]</pre>

+ star_nn_1\$result.matrix[5]*X_1c[,1]
+ star_nn_1\$result.matrix[6]*X_1c[,2]

```
+ star_nn_1$result.matrix[7]*X_1c[,3]
           + star_nn_1$result.matrix[8]*X_1c[,4])
n2 <- logi(star_nn_1$result.matrix[9]</pre>
           + star_nn_1$result.matrix[10]*X_1c[,1]
           + star_nn_1$result.matrix[11]*X_1c[,2]
           + star_nn_1$result.matrix[12]*X_1c[,3]
           + star_nn_1$result.matrix[13]*X_1c[,4])
n3 <- logi(star_nn_1$result.matrix[14]
           + star_nn_1$result.matrix[15]*X_1c[,1]
           + star_nn_1$result.matrix[16]*X_1c[,2]
           + star_nn_1$result.matrix[17]*X_1c[,3]
           + star_nn_1$result.matrix[18]*X_1c[,4])
test_1d <- cbind(n1, n2, n3)
pr <- logi(star_nn_1$result.matrix[19] + star_nn_1$result.matrix[20]*n1 + star_nn_1$result.matrix[21]*n
head(cbind(pr,predict(star_nn_1, test_star)[,1]))
            pr
## 2 0.997071 0.9999999
## 3 0.997071 0.9999999
## 9 0.997071 0.9999999
```

d. Create an xgboost model using the Texas 2-step. Use the outputs of the hidden layer from (c) as inputs to an xgboost model to create predictions for Class. Compare the results to what we get in (b).

11 0.997071 0.9999999 ## 13 0.997071 0.9999999 ## 14 0.997071 0.9999999

```
X_1d_train <- cbind(train_star$u, train_star$g, train_star$z, train_star$redshift)</pre>
n1 <- logi(star_nn_1$result.matrix[4]</pre>
           + star_nn_1$result.matrix[5]*X_1d_train[,1]
           + star_nn_1$result.matrix[6]*X_1d_train[,2]
           + star_nn_1$result.matrix[7]*X_1d_train[,3]
           + star_nn_1$result.matrix[8]*X_1d_train[,4])
n2 <- logi(star_nn_1$result.matrix[9]</pre>
           + star_nn_1$result.matrix[10]*X_1d_train[,1]
           + star_nn_1$result.matrix[11]*X_1d_train[,2]
           + star_nn_1$result.matrix[12]*X_1d_train[,3]
           + star_nn_1$result.matrix[13]*X_1d_train[,4])
n3 <- logi(star_nn_1$result.matrix[14]
           + star_nn_1$result.matrix[15]*X_1d_train[,1]
           + star_nn_1$result.matrix[16]*X_1d_train[,2]
           + star_nn_1$result.matrix[17]*X_1d_train[,3]
           + star_nn_1$result.matrix[18]*X_1d_train[,4])
train_1d <- cbind(n1,n2,n3)
train_star$y <- as.integer(factor(train_star$y)) - 1</pre>
test_star$y <- as.integer(factor(test_star$y)) - 1</pre>
star_xgb <- xgboost(data = data.matrix(train_1d), nrounds = 100, max_depth = 2, eta = 0.3,
                     label = train_star$y, objective = "multi:softmax", num_class = 3)
```

```
train-mlogloss:1.006863
   [2]
        train-mlogloss:0.951331
   [3]
        train-mlogloss:0.915954
   [4]
##
        train-mlogloss:0.892602
##
   [5]
        train-mlogloss:0.876806
   [6]
##
        train-mlogloss:0.865833
        train-mlogloss:0.857991
   [7]
   [8]
##
        train-mlogloss:0.852376
   [9]
        train-mlogloss:0.847935
   [10] train-mlogloss:0.844581
   [11] train-mlogloss:0.842132
   [12] train-mlogloss:0.840100
   [13] train-mlogloss:0.838609
   [14] train-mlogloss:0.837337
  [15] train-mlogloss:0.836344
   [16] train-mlogloss:0.835576
   [17] train-mlogloss:0.834961
   [18] train-mlogloss:0.834468
   [19] train-mlogloss:0.834033
   [20] train-mlogloss:0.833687
  [21] train-mlogloss:0.833422
  [22] train-mlogloss:0.833202
  [23] train-mlogloss:0.833004
   [24] train-mlogloss:0.832852
   [25] train-mlogloss:0.832700
   [26] train-mlogloss:0.832563
   [27] train-mlogloss:0.832457
   [28] train-mlogloss:0.832365
   [29] train-mlogloss:0.832271
   [30] train-mlogloss:0.832187
   [31] train-mlogloss:0.832125
   [32] train-mlogloss:0.832064
   [33] train-mlogloss:0.831989
   [34] train-mlogloss:0.831907
   [35] train-mlogloss:0.831855
   [36] train-mlogloss:0.831777
##
   [37] train-mlogloss:0.831704
   [38] train-mlogloss:0.831609
   [39] train-mlogloss:0.831548
   [40] train-mlogloss:0.831506
   [41] train-mlogloss:0.831430
   [42] train-mlogloss:0.831374
   [43] train-mlogloss:0.831353
   [44] train-mlogloss:0.831300
   [45] train-mlogloss:0.831269
   [46] train-mlogloss:0.831232
   [47] train-mlogloss:0.831167
   [48] train-mlogloss:0.831133
   [49] train-mlogloss:0.831069
   [50] train-mlogloss:0.831033
   [51] train-mlogloss:0.830976
  [52] train-mlogloss:0.830926
## [53] train-mlogloss:0.830902
## [54] train-mlogloss:0.830844
```

```
## [55] train-mlogloss:0.830794
## [56] train-mlogloss:0.830753
## [57] train-mlogloss:0.830705
## [58] train-mlogloss:0.830657
  [59] train-mlogloss:0.830617
## [60] train-mlogloss:0.830551
## [61] train-mlogloss:0.830503
## [62] train-mlogloss:0.830482
   [63] train-mlogloss:0.830435
  [64] train-mlogloss:0.830385
## [65] train-mlogloss:0.830354
## [66] train-mlogloss:0.830301
   [67] train-mlogloss:0.830261
## [68] train-mlogloss:0.830186
## [69] train-mlogloss:0.830157
## [70] train-mlogloss:0.830132
## [71] train-mlogloss:0.830099
## [72] train-mlogloss:0.830063
## [73] train-mlogloss:0.830035
## [74] train-mlogloss:0.830000
## [75] train-mlogloss:0.829955
## [76] train-mlogloss:0.829895
## [77] train-mlogloss:0.829882
## [78] train-mlogloss:0.829829
## [79] train-mlogloss:0.829788
## [80] train-mlogloss:0.829738
## [81] train-mlogloss:0.829692
## [82] train-mlogloss:0.829657
## [83] train-mlogloss:0.829616
## [84] train-mlogloss:0.829561
## [85] train-mlogloss:0.829531
   [86] train-mlogloss:0.829506
   [87] train-mlogloss:0.829477
## [88] train-mlogloss:0.829458
   [89] train-mlogloss:0.829434
## [90] train-mlogloss:0.829377
## [91] train-mlogloss:0.829336
## [92] train-mlogloss:0.829273
## [93] train-mlogloss:0.829243
## [94] train-mlogloss:0.829228
## [95] train-mlogloss:0.829212
## [96] train-mlogloss:0.829199
## [97] train-mlogloss:0.829148
## [98] train-mlogloss:0.829066
## [99] train-mlogloss:0.828973
## [100]
            train-mlogloss:0.828916
pred_1d <- predict(star_xgb, as.matrix(test_1d[]))</pre>
pred_labels_1d <- max.col(pred_1d) - 1</pre>
# Evaluate the accuracy of the predictions
accuracy_1d <- sum(pred_labels_1d == test_star$y) / length(test_star$y)</pre>
print(paste0("Accuracy: ", round(accuracy_1d, 3)))
```

```
## [1] "Accuracy: 0.598"
```

2. Fit a neural network to the Default data. Use a single hidden layer with 10 units, and dropout regularization. Have a look at Labs 10.9.1-10.9.2 for guidance. Compare the results from using different dropout regularization rates.

```
default <- na.omit(Default)</pre>
head(default)
##
     default student balance
                                   income
## 1
                 No 729.5265 44361.625
         No
## 2
                 Yes 817.1804 12106.135
## 3
        No
                No 1073.5492 31767.139
## 4
          No
                  No 529.2506 35704.494
## 5
          No
                 No 785.6559 38463.496
## 6
                 Yes 919.5885 7491.559
split_pct <- 0.7</pre>
n <- split_pct * length(default$default)</pre>
set.seed(123)
row_samp <- sample(1:length(default$default), n, replace = FALSE)</pre>
train_default <- default[row_samp, ]</pre>
test_default <- default[-row_samp, ]</pre>
default_train_feature <- as.matrix(train_default[, c(3, 4)])</pre>
default_test_feature <- as.matrix(test_default[, c(3, 4)])</pre>
default_train_target <- ifelse(train_default$student == "Yes", 1, 0)</pre>
default_test_target <- ifelse(test_default$student == "Yes", 1, 0)</pre>
default_train_target_onehot <- to_categorical(default_train_target, 2)</pre>
default_test_target_onehot <- to_categorical(default_test_target, 2)</pre>
# drop out rate = 0.1
model_nn_2_01 <- keras_model_sequential() %>%
  layer_dense(units = 10, activation = "relu", input_shape =c(2)) %>%
  layer_dropout(rate = 0.1) %>%
  layer_dense(units = 2, activation = "softmax")
model_nn_2_01 %>% compile(loss = "categorical_crossentropy", optimizer = optimizer_rmsprop(), metrics =
system.time(
 history <- model_nn_2_01 %>%
    fit(default_train_feature, default_train_target_onehot, epochs = 30, batch_size = 128,
        validation split = 0.2)
##
      user system elapsed
##
     4.239 0.447 4.233
plot(history, smooth = FALSE)
```



```
test_pred_2_01 <- predict(model_nn_2_01, default_test_feature)
test_pred_2_01_label <- apply(test_pred_2_01, 1, which.max) - 1
train_cm <- confusionMatrix(data =as.factor(test_pred_2_01_label), reference = as.factor(default_test_t
ggplot(data = data.frame(train_cm$table), aes(x = Prediction, y = Reference, fill = Freq)) +
    geom_tile() +
    geom_text(aes(label = Freq), color = "white") +
    labs(title = "Confusion Matrix(drop out rate = 0.1)",
        x = "Predicted",
        y = "Actual",
        fill = "Frequency")</pre>
```

Confusion Matrix(drop out rate = 0.1)

plot(history, smooth = FALSE)


```
# drop out rate = 0.3
model_nn_2_03 <- keras_model_sequential() %>%
  layer_dense(units = 10, activation = "relu", input_shape =c(2)) %>%
  layer_dropout(rate = 0.3) %>%
  layer_dense(units = 2, activation = "softmax")
model_nn_2_03 %>% compile(loss = "categorical_crossentropy", optimizer = optimizer_rmsprop(), metrics =
system.time(
 history <- model_nn_2_03 %>%
    fit(default_train_feature, default_train_target_onehot, epochs = 30, batch_size = 128,
        validation_split = 0.2)
)
##
      user system elapsed
           0.378 3.773
##
     3.970
```


Confusion Matrix(drop out rate = 0.3)


```
# drop out rate = 0.5
model_nn_2_05 <- keras_model_sequential() %>%
  layer_dense(units = 10, activation = "relu", input_shape =c(2)) %>%
  layer_dropout(rate = 0.5) %>%
  layer_dense(units = 2, activation = "softmax")
model_nn_2_05 %>% compile(loss = "categorical_crossentropy", optimizer = optimizer_rmsprop(), metrics =
system.time(
 history <- model_nn_2_05 %>%
    fit(default_train_feature, default_train_target_onehot, epochs = 30, batch_size = 128,
        validation_split = 0.2)
)
##
      user system elapsed
           0.386
                    3.852
##
     4.023
plot(history, smooth = FALSE)
```



```
test_pred_2_05 <- predict(model_nn_2_05, default_test_feature)
test_pred_2_05_label <- apply(test_pred_2_05, 1, which.max) - 1
train_cm <- confusionMatrix(data =as.factor(test_pred_2_05_label), reference = as.factor(default_test_t
ggplot(data = data.frame(train_cm$table), aes(x = Prediction, y = Reference, fill = Freq)) +
    geom_tile() +
    geom_text(aes(label = Freq), color = "white") +
    labs(title = "Confusion Matrix(drop out rate = 0.5)",
        x = "Predicted",
        y = "Actual",
        fill = "Frequency")</pre>
```

Confusion Matrix(drop out rate = 0.5)

3. Use the code in ISLR1 Section 10.9.3 to create a CNN for the CIFAR data. Compare the accuracy results to 4 or 5 modifications of your choice, such as:

```
cifar100 <- dataset cifar100()</pre>
x_train <- cifar100$train$x</pre>
y_train <- cifar100$train$y</pre>
x_test <- cifar100$test$x</pre>
y_test <- cifar100$test$y</pre>
x_train_3 <- x_train/255</pre>
x_test_3 <- x_test/255</pre>
y_train_3 <- to_categorical(y_train, 100)</pre>
y_test_3 <- to_categorical(y_test, 100)</pre>
#model_3 <- keras_model_sequential() %>%
\# layer_conv_2d(filters = 32, kernel_size = c(3, 3), padding = "same", activation = "relu", input_shap
# layer_max_pooling_2d(pool_size = c(2, 2)) %>%
\# layer_conv_2d(filters = 64, kernel_size = c(3, 3), padding = "same", activation = "relu") %>%
# layer_max_pooling_2d(pool_size = c(2, 2)) %>%
# layer_conv_2d(filters = 128, kernel_size = c(3, 3), padding = "same", activation = "relu") %>%
# layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 \# \ layer\_conv\_2d(filters = 256, \ kernel\_size = c(3, \ 3), \ padding = "same", \ activation = "relu") \ \%>\% 
# layer_max_pooling_2d(pool_size = c(2, 2)) %>%
# layer flatten() %>%
# layer_dropout(rate = 0.5) %>%
```

```
# layer_dense(units = 512, activation = "relu") %>%
# layer_dense(units = 100, activation = "softmax")
```

a. Changing max pooling to average pooling

```
model_a <- keras_model_sequential() %>%
  layer_conv_2d(filters = 32, kernel_size = c(3, 3), padding = "same", activation = "relu", input_shape
layer_average_pooling_2d(pool_size = c(2, 2)) %>%
  layer_conv_2d(filters = 64, kernel_size = c(3, 3), padding = "same", activation = "relu") %>%
  layer_average_pooling_2d(pool_size = c(2, 2)) %>%
  layer_conv_2d(filters = 128, kernel_size = c(3, 3), padding = "same", activation = "relu") %>%
  layer_average_pooling_2d(pool_size = c(2, 2)) %>%
  layer_conv_2d(filters = 256, kernel_size = c(3, 3), padding = "same", activation = "relu") %>%
  layer_average_pooling_2d(pool_size = c(2, 2)) %>%
  layer_flatten() %>%
  layer_dropout(rate = 0.5) %>%
  layer_dense(units = 512, activation = "relu") %>%
  layer_dense(units = 512, activation = "relu") %>%
  layer_dense(units = 100, activation = "softmax")

summary(model_a)
```

```
## Model: "sequential_3"
##
## Layer (type)
                               Output Shape
                                                         Param #
## conv2d_3 (Conv2D)
                               (None, 32, 32, 32)
                                                         896
## average pooling2d 3 (AveragePoolin (None, 16, 16, 32)
## g2D)
## conv2d 2 (Conv2D)
                               (None, 16, 16, 64)
                                                         18496
## average_pooling2d_2 (AveragePoolin (None, 8, 8, 64)
## g2D)
## conv2d_1 (Conv2D)
                               (None, 8, 8, 128)
                                                         73856
## average_pooling2d_1 (AveragePoolin (None, 4, 4, 128)
## g2D)
## conv2d (Conv2D)
                               (None, 4, 4, 256)
                                                         295168
## average_pooling2d (AveragePooling2 (None, 2, 2, 256)
## D)
## flatten (Flatten)
                               (None, 1024)
                                                         0
## dropout_3 (Dropout)
                               (None, 1024)
## dense_7 (Dense)
                               (None, 512)
                                                         524800
## dense 6 (Dense)
                               (None, 100)
                                                         51300
## Total params: 964,516
## Trainable params: 964,516
## Non-trainable params: 0
```

model_a %>% compile(loss = "categorical_crossentropy", optimizer = optimizer_rmsprop(), metrics = c("acchistory <- model_a %>% fit(x_train_3, y_train_3, epochs = 30, batch_size = 128, validation_split = 0.2)

```
accuracy <- function(pred, truth)
  mean(drop(pred) == drop(truth))
y_pred_a <- predict(model_a, x_test_3)
accuracy(y_pred_a, y_test_3)</pre>
```

[1] 2e-06

plot(history)

b. Change to pooling size

```
model_b <- keras_model_sequential() %>%
  layer_conv_2d(filters = 32, kernel_size = c(3, 3), padding = "same", activation = "relu", input_shape
layer_average_pooling_2d(pool_size = c(3, 3)) %>%
  layer_conv_2d(filters = 64, kernel_size = c(3, 3), padding = "same", activation = "relu") %>%
  layer_average_pooling_2d(pool_size = c(2, 2)) %>%
  layer_conv_2d(filters = 128, kernel_size = c(3, 3), padding = "same", activation = "relu") %>%
  layer_average_pooling_2d(pool_size = c(2, 2)) %>%
  layer_conv_2d(filters = 256, kernel_size = c(3, 3), padding = "same", activation = "relu") %>%
  layer_average_pooling_2d(pool_size = c(2, 2)) %>%
  layer_average_pooling_2d(pool_size = c(2, 2)) %>%
  layer_dense(units = 512, activation = "relu") %>%
  layer_dense(units = 512, activation = "relu") %>%
  layer_dense(units = 100, activation = "softmax")
```

summary(model_b)

Layer (type)

Model: "sequential_4"

```
(None, 32, 32, 32)
## conv2d 7 (Conv2D)
                                                         896
## average_pooling2d_7 (AveragePoolin (None, 10, 10, 32)
## g2D)
## conv2d 6 (Conv2D)
                               (None, 10, 10, 64)
                                                         18496
## average_pooling2d_6 (AveragePoolin (None, 5, 5, 64)
## g2D)
## conv2d_5 (Conv2D)
                               (None, 5, 5, 128)
                                                         73856
## average_pooling2d_5 (AveragePoolin (None, 2, 2, 128)
## conv2d_4 (Conv2D)
                                                         295168
                               (None, 2, 2, 256)
## average_pooling2d_4 (AveragePoolin (None, 1, 1, 256)
## g2D)
## flatten_1 (Flatten)
                               (None, 256)
                                                         0
## dropout_4 (Dropout)
                               (None, 256)
                                                         0
## dense_9 (Dense)
                               (None, 512)
                                                         131584
## dense_8 (Dense)
                               (None, 100)
                                                         51300
## Total params: 571,300
## Trainable params: 571,300
## Non-trainable params: 0
## ______
model_b %>% compile(loss = "categorical_crossentropy", optimizer = optimizer_rmsprop(), metrics = c("ac
history <- model_b %>% fit(x_train_3, y_train_3, epochs = 10, batch_size = 128, validation_split = 0.2)
y_pred_b <- predict(model_b, x_test_3)</pre>
accuracy(y_pred_b, y_test_3)
```

Output Shape

[1] 0

c. Varying the dropout rate

```
model_c <- keras_model_sequential() %>%
    layer_conv_2d(filters = 32, kernel_size = c(3, 3), padding = "same", activation = "relu", input_shape
layer_average_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 64, kernel_size = c(3, 3), padding = "same", activation = "relu") %>%
layer_average_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 128, kernel_size = c(3, 3), padding = "same", activation = "relu") %>%
layer_average_pooling_2d(pool_size = c(2, 2)) %>%
layer_conv_2d(filters = 256, kernel_size = c(3, 3), padding = "same", activation = "relu") %>%
layer_average_pooling_2d(pool_size = c(2, 2)) %>%
layer_flatten() %>%
layer_flatten() %>%
layer_dense(units = 512, activation = "relu") %>%
layer_dense(units = 512, activation = "relu") %>%
layer_dense(units = 100, activation = "softmax")
summary(model_c)
## Model: "sequential_5"
```

```
## conv2d 10 (Conv2D)
                                 (None, 16, 16, 64)
                                                             18496
## average_pooling2d_10 (AveragePooli (None, 8, 8, 64)
## conv2d_9 (Conv2D)
                                 (None, 8, 8, 128)
                                                             73856
## average_pooling2d_9 (AveragePoolin (None, 4, 4, 128)
## g2D)
## conv2d 8 (Conv2D)
                                 (None, 4, 4, 256)
                                                             295168
## average_pooling2d_8 (AveragePoolin (None, 2, 2, 256)
## g2D)
## flatten_2 (Flatten)
                                 (None, 1024)
                                                             0
## dropout_5 (Dropout)
                                 (None, 1024)
## dense_11 (Dense)
                                 (None, 512)
                                                             524800
## dense_10 (Dense)
                                 (None, 100)
                                                             51300
## Total params: 964,516
## Trainable params: 964,516
## Non-trainable params: 0
## ______
model_c %>% compile(loss = "categorical_crossentropy", optimizer = optimizer_rmsprop(), metrics = c("ac
history <- model_c %>% fit(x_train_3, y_train_3, epochs = 30, batch_size = 128, validation_split = 0.2)
y_pred_c <- predict(model_c, x_test_3)</pre>
accuracy(y_pred_c, y_test_3)
## [1] 7e-04
```

plot(history)

d. Changing the activation function to softmax

```
model_d <- keras_model_sequential() %>%
    layer_conv_2d(filters = 32, kernel_size = c(3, 3), padding = "same", activation = "softmax", input_sh
    layer_average_pooling_2d(pool_size = c(2, 2)) %>%
    layer_conv_2d(filters = 64, kernel_size = c(3, 3), padding = "same", activation = "softmax") %>%
    layer_average_pooling_2d(pool_size = c(2, 2)) %>%
    layer_conv_2d(filters = 128, kernel_size = c(3, 3), padding = "same", activation = "softmax") %>%
    layer_average_pooling_2d(pool_size = c(2, 2)) %>%
    layer_conv_2d(filters = 256, kernel_size = c(3, 3), padding = "same", activation = "softmax") %>%
    layer_average_pooling_2d(pool_size = c(2, 2)) %>%
    layer_flatten() %>%
    layer_flatten() %>%
    layer_dense(units = 512, activation = "softmax") %>%
    layer_dense(units = 512, activation = "softmax") %>%
    layer_dense(units = 100, activation = "softmax")
    summary(model_d)

## Model: "sequential_6"
```

```
## conv2d 14 (Conv2D)
                               (None, 16, 16, 64)
                                                        18496
## average_pooling2d_14 (AveragePooli (None, 8, 8, 64)
## ng2D)
## conv2d_13 (Conv2D)
                               (None, 8, 8, 128)
                                                        73856
## average_pooling2d_13 (AveragePooli (None, 4, 4, 128)
## ng2D)
## conv2d 12 (Conv2D)
                               (None, 4, 4, 256)
                                                        295168
## average_pooling2d_12 (AveragePooli (None, 2, 2, 256)
## ng2D)
## flatten_3 (Flatten)
                               (None, 1024)
                                                        0
## dropout_6 (Dropout)
                               (None, 1024)
## dense_13 (Dense)
                               (None, 512)
                                                        524800
## dense_12 (Dense)
                               (None, 100)
                                                        51300
## Total params: 964,516
## Trainable params: 964,516
## Non-trainable params: 0
## ______
```

```
model_d %>% compile(loss = "categorical_crossentropy", optimizer = optimizer_rmsprop(), metrics = c("ac
history <- model_d %>% fit(x_train_3, y_train_3, epochs = 30, batch_size = 128, validation_split = 0.2)
y_pred_d <- predict(model_d, x_test_3)
accuracy(y_pred_d, y_test_3)</pre>
```

[1] 0

plot(history)

