Конспекты к экзамену по математической статистике

June 3 2016

Contents

0.3 Выборочные характеристики. Выборочные моменты Π vctь $X = (X_1, \dots, X_n)$ — выборка из $\mathcal{L}(\mathcal{E})$, F и F, — соответственно теоритическая и эмпирическая функции расшредс

Всякой характиристике \hat{g} случайной величины ξ $\tilde{g} = \int_{-}^{\cdot} g(\tau)dF(\tau)$

можно поставить в соответствие статистический авалог — случайную величину
$$G$$
:
$$G = \int_X g(x) \mathrm{d} P_n(x) = \frac{1}{n} \sum_{j=1}^n g \circ X_j$$

$$G(\omega) = \int_{\mathcal{X}} g(x)d\left((F_n(x))(\omega)\right) = \frac{1}{n}\sum_{i=1}^{n} g(x_i)$$

Выборочным моментом k-го порядка называется статистический аналог характеристики $\alpha_k = \mathbb{E} \xi^k = \int_{\mathbb{R}} \tau^k \mathrm{d} F(\tau)$:

$$A_k = \frac{1}{n} \sum_{i=1}^{n} J_i$$

 $\bar{X}=A_1$ называют выброчным средины. Выболочным центральным моментом k-го поредка вызывают случыйную величину M_k — статистический аналог характерис Выборочным центральным момен $\mu_k = \mathbb{E}(\xi - \mathbb{E}\xi)^k = \int_{\mathbb{R}} (\tau - \alpha_1)^k dF(\tau)$

$$M_k = \frac{1}{n} \sum_{i=1}^{n} (X_j - \bar{X})^i$$

 M_2 называют выборочной дисперсией

NB 1. Выборочное среднее является несмещённой оценкой математического ожидания

$$\mathbb{E}\bar{X} = \frac{1}{n}\sum_{j=1}^{n}\mathbb{E}X_{j} = \frac{n\alpha_{1}}{n} = \alpha_{1}$$

0.0 Список вопросов к экзамену по математической статистике

- 2. Гистограмма
- 4. Точечные оценки и их свойства
- 5. Функция правдоподобия. Неравенство Крамера-Рао

- 9. Интегнальные опенки. Поветительные интегналы
- Доверительные интервал для дисперсии вормальной генеральной совокупности
- 11. Асимптотические свойства оценки максимального правдоподобия.
- Асимитотический доверительный интервал
- 12. Проверка статистических гипотез.
- Критерий Неймана-Пирсона проверки простых гипотез
- 13. Наяболее мощный критерий. Теорема Неймана-Пирсона
- 14. Проверка статистических гипотез о параметрах нормального распределения
- 16. Функция мощности при альтернативе
- 17. Критерий согласия χ^2 -Пирсона
- 20. Критерий однородности χ^2

1. 1. Случайная выборка и генеральная совокупность

- 2. Функция распределения выборки
- 2. 1. Эмпирическая функция распределения
- 3. Выборочные характеристики. Выборочные моменты

- 6. Метод максимального правдополобия, свойства оценок максимального правдополобия
- 7. Метол моментов тля точечных опенок

- 15. Критерии для сложных гипотез
- 18. Краттерий согласия Колмогорова
- 19. Критерий однородности Колмогорова-Смирнова

0.4 Точечные оценки

Пусть некоторый процесс описывается вероятностной моделью (Ω, A, \mathbb{P}) , где Ω — пространство элементарных событий, $A \subset 2^{\Omega}$ — σ -алгебра событий, $\mathbb{P}: A \to [0,1]$ — вероятностная мера, а проводимый эксперимент соответствует случайной величине $\xi \in \mathcal{L}^0$, с фициара водения — — — по то проведения в — проведе

$$F \in \mathcal{F} = \{F_{\theta}; \theta \in \Theta\}$$

где Θ — мисмество значений параметра θ . То есть известно, что распределение определяется некоторым неизвестным истиниым начением θ_0 параметра θ , и задача сводится к его оценке. Пусть $X = (X_1, \dots, X_n)$ — выборка из $\mathcal{L}(\xi)$. Говорят, что пара $(\mathcal{X}, \mathcal{F})$ задаёт "статистическую модель".

Def. 9. Статистика Измеримая функция, определённая на выборочном пространство

$$g: X \to \mathbb{R}^r$$

насывается статистикой. Также статистикой иногла булет называть случайную величину $g\circ X$ — композицию g и выборки X

$$(g \circ X)(\omega) = g(x)$$

 $\mathbf{Def.}$ 10. Точечная оценка параметра θ есть статистика $T=t\circ X:\Omega\to\Theta$, реализацию $T(\omega)=t(x)$ которой принимают за приближённое значение параметра θ

0.4.1 Характеристики оценок

 $\textbf{Def. 11.} \ \ \text{Hechem@inioctl.} \ (\text{unbiasedness}) \ \ \text{Hechem@inioctl.} \ \ \text{изсывают такую оценку} \ T = t \circ X, \ \text{что её математическим ожиданием является}$

$$ET = \int_{Y} t(x)f(x; \theta_0)dx = \theta_0$$

 $\textbf{Def. 12. Coctoste...} (consistency) \ O \textbf{querka} \ T = to X \ \textbf{называется состоятельной, если она сходится по вероятности к оцениваемому}$

$$\lim_{n \to \infty} \mathbb{P}\{\omega \in \Omega; |T(\omega) - \theta_0| < \varepsilon\} = \lim_{n \to \infty} \mathbb{P}\{|t(x) - \theta_0| < \varepsilon\} = 1$$

Def. 13. Оптимальность (effectiveness) Оценка $T_0 = t_0 \circ X$ низывается опицывальной σ κлюсос \mathcal{T} несмещённых оценок, если среди всех оценок класса \mathcal{T} , оценка T_0 имеет минимальную денереню, то есть для любого $T \in \mathcal{T} = t \circ X$

$$DT_0 \le DT$$

Оценка называется оплимальной, если она оптимальна в классе всех несмещённых оценок

Тhm. 1. Единственность оптимальной оценки Если две несмещённые оценки $T_1 = t_1 \circ X, T_2 = \tau_2 \circ X$ параметра θ оптимальны, то они развии почти-яскду $T_1 \stackrel{\mathbb{Z}}{=} T_2$: $P\{T_1 \neq T_2\} = 0$

0.1 Случайная выборка, генеральная совокупность, функция распределения выборки

 $\mathbf{Def.}$ 1. Выборка (sample) Пусть эксперемент состоит в проведении n испытаний, результат j-го из которых является случайной

and disable J_1, J_2, J_3, J_4 of J_4 of J

Def. 2. Выборочное пространство (sample space) Выборочным пространством называется измеряваее пространство (\mathcal{X}, \mathcal{A}), где $\mathcal{X} = \{X(\omega); \omega \in \Omega\}$ есть знюжество возможных значений выборки, а $\mathcal{A} - \sigma$ -алитебра в \mathcal{X}

Особенно выжен случай, когда случайные величины X_j являются независимыми и имеют распределение одной случайной величины ξ . Этот случай соответствует повторонию n рыз одного эксперемента, описываемого случайной величиной ξ

Def. 3. Генеральная совокупность (population) Генеральной совокупностью называют распределение $\mathcal{L}(\xi)$ случайной величины ξ

Оно может быть задано, например, множеством возможных значений г.v. ξ и её функцией распределения При этом X называют выборкой из (генеральной совокупности) $\mathcal{L}(\xi)$

Def. 4. Функция распределения выборки $X \in \mathcal{L}(\xi)$

$$F_X(x) = \mathbb{P}\{X \leq x\} = \prod \mathbb{P}\{X_j \leq x_j\} = \prod F_{X_j}(x_j)$$

0.2 Эмпирическая функция распределения, гистограмма

Пусть $A \subset \Omega_0$, событие, провежодящее в холе испытания с вероятностью $\mathbb{P}A = \mathfrak{p}$, и пусть эксперимент состоят в проведении в таких

$$\Omega = \prod_{j=1}^{n}$$

$$X_j = I_{\{\omega; \omega_j \in A\}} = \begin{cases} 1; & \omega_j \in A \\ 0; & \omega_j \notin A \end{cases}$$

является индиватором того, что в ходе j-то испытавина случалось событие A Пуст. т. $k = \sum_{j \ge 1} X_j$ — часло проявлений A в ходе эксперимента. Вворём т. ν , $\frac{1}{2} = \sum_{j \ge 1} X_j$ — Османдло Е $p_k^a = p_k$. Османдло Е $p_k^a = p_k$. Кроме того, и 35 Ч в форме Бернулли следует

$$\lim_{n\to\infty} \mathbb{P}\{|p_n^*-p|<\varepsilon\}=1 \quad \forall \varepsilon>0$$

Таким образом, значение случайной величины p_n^* можно считить приближённой оценкой величины p. Пусть тепера $X=(X_1,\ldots,X_n)$ — наборка объдав n из генеральной совокупности $\mathcal{L}(\xi), x=(x_1,\ldots,x_n)$ — реализация.

Def. 5. Порадковые статистики Къздъф роализации x можно сопоставить в соответствие от верестномор $x_{(i)} = x_{(i)}$ β порадковой статистикой изланется случайныя всигинна $X_{(i)}$, при кождъф роализации $X(\omega) = x$, принимет значение $X_{(j)}(\omega) = x_{(j)}$

Def. 6. Вариационный ряд Случайный вектор $(X_{(1)},\dots,X_{(n)})$ иззывается вариационным рядом

Def. 7. Эмпирическая функция распределения Для каждого $\tau \in \mathbb{R}$ зададим случайную величину $\mu_n(\tau)$, равную количеству элементов выборки X, заичения которых не препосходят τ :

$$\mu_n(\tau) = \sum I_{\{X_j \le \tau\}}$$

Эмпирической функцией распределения, построенной по выборке X, называют случайную функцию $F_n : \mathbb{R} \to \mathcal{L}^0(\Omega)$

$$F_n(\tau) = \frac{1}{n} \mu_n(\tau)$$

 $E\bar{e}$ значение в точке τ является случайной величиной, сходящейся по вероятности к значению $F(\tau)$ теоретической функции распределение EDF можно перезаписать с помощью функции Хевисайды (Heaviside):

$$\tau$$
) =

$$\begin{cases}
0; & \tau < 0 \\
1; & \tau \ge 0
\end{cases}$$

$$F_n(\tau) = \frac{1}{n} \sum_{i=1}^{n} H(t - X_{(k)})$$

Def. 8. Γικτοτριακία Ρωσδιέδι οбιμετь πανσειπθ τ.ν. ξ на равные шитерналы Δ_i , n для κοκдого Δ_i подечитаем число n_i элементов x_j воктора x, понаниих a Δ_i , $n = \sum n_i$.

Ποττριακη τραφίας ετγιπετειτική φημικαμία n_i .

$$\tau \mapsto \frac{n_i}{nh_i}, \quad \tau \in \Delta_i, h_i = |\Delta_i|$$