Security at the Application Layer: PGP and S/MIME

Objectives

- ☐ To explain the general structure of an e-mail application program
- ☐ To discuss how PGP can provide security services for e-mail
- ☐ To discuss how S/MIME can provide security services for e-mail
- □ To define trust mechanism in both PGP and S/MIME
- ☐ To show the structure of messages exchanged in PGP and S/MIME

E-MAIL

Let us first discuss the electronic mail (e-mail) system in general.

Topics discussed in this section:

16.1.1 E-mail Architecture

16.1.2 E-mail Security

E-mail Security

Cryptographic Algorithms

Note

In e-mail security, the sender of the message needs to include the name or identifiers of the algorithms used in the message.

Certificates

It is obvious that some public-key algorithms must be used for e-mail security.

Cryptographic Secrets

In e-mail security, the encryption/decryption is done using a symmetric-key algorithm, but the secret key to decrypt the message is encrypted with the public key of the receiver and is sent with the message.

PGP

Pretty Good Privacy (PGP) can be used to create a secure e-mail message or to store a file securely for future retrieval.

Topics discussed in this section:

- 16.2.1 Scenarios
- **16.2.2 Key Rings**
- 16.2.3 PGP Certificates
- **16.2.4** Key Revocation
- 16.2.5 Extracting Information from Rings
- 16.2.6 PGP Packets
- 16.2.7 PGP Messages

A plaintext message

Message Integrity

An authenticated message

A compressed message

Confidentiality with One-Time Session Key

A confidential message

- Code Conversion
- Another service provided by PGP is code conversion. PGP uses Radix-64 conversion.
- Segmentation
- PGP allows segmentation of the message.

Index	Binary	Char									
0	000000	Α	16	010000	Q	32	100000	g	48	110000	W
1	000001	В	17	010001	R	33	100001	h	49	110001	x
2	000010	С	18	010010	S	34	100010	i	50	110010	у
3	000011	D	19	010011	T	35	100011	j	51	110011	z
4	000100	Е	20	010100	U	36	100100	k	52	110100	0
5	000101	F	21	010101	V	37	100101	1	53	110101	1
6	000110	G	22	010110	W	38	100110	m	54	110110	2
7	000111	Н	23	010111	X	39	100111	n	55	110111	3
8	001000	I	24	011000	Y	40	101000	0	56	111000	4
9	001001	J	25	011001	Z	41	101001	р	57	111001	5
10	001010	K	26	011010	а	42	101010	q	58	111010	6
11	001011	L	27	011011	b	43	101011	r	59	111011	7
12	001100	M	28	011100	С	44	101100	s	60	111100	8
13	001101	N	29	011101	d	45	101101	t	61	111101	9
14	001110	0	30	011110	е	46	101110	u	62	111110	+
15	001111	Р	31	011111	f	47	101111	v	63	111111	1
Pa	dding	=	-						•		

R

A

D

I

Key rings in PGP

PGP Algorithms

 Table 16.1
 Public-key algorithms

ID	Description
1	RSA (encryption or signing)
2	RSA (for encryption only)
3	RSA (for signing only)
16	ElGamal (encryption only)
17	DSS
18	Reserved for elliptic curve
19	Reserved for ECDSA
20	ElGamal (for encryption or signing)
21	Reserved for Diffie-Hellman
100-110	Private algorithms

 Table 16.2
 Symmetric-key algorithms

ID	Description
0	No Encryption
1	IDEA
2	Triple DES
3	CAST-128
4	Blowfish
5	SAFER-SK128
6	Reserved for DES/SK
7	Reserved for AES-128
8	Reserved for AES-192
9	Reserved for AES-256
100-110	Private algorithms

 Table 16.3
 Hash Algorithms

ID	Description
1	MD5
2	SHA-1
3	RIPE-MD/160
4	Reserved for double-width SHA
5	MD2
6	TIGER/192
7	Reserved for HAVAL
100-110	Private algorithms

 Table 16.4
 Compression methods

ID	Description
0	Uncompressed
1	ZIP
2	ZLIP
100-110	Private methods

X.509 Certificates

Protocols that use X.509 certificates depend on the hierarchical structure of the trust.

Note

In X.509, there is a single path from the fully trusted authority to any certificate.

In PGP, there is no need for CAs; anyone in the ring can sign a certificate for anyone else in the ring.

Note

In PGP, there can be multiple paths from fully or partially trusted authorities to any subject.

Trusts and Legitimacy

The entire operation of PGP is based on introducer trust, the certificate trust, and the legitimacy of the public keys.

Figure 16.7 Format of private key ring table

User ID	Key ID	Public key	Encrypted private key	Timestamp
•	•	•	•	•

16.2.3 Continued Example 16.1

Let us show a private key ring table for Alice. We assume that Alice has only two user IDs, alice@some.com and alice@anet.net. We also assume that Alice has two sets of private/public keys, one for each user ID.

Table 16.5 Private key ring table for Example 1

User ID	Key ID	Public Key	Encrypted Private Key	Timestamp
alice@anet.net	AB1345	AB134559	3245239823	031505-16:23
alice@some.com	FA2312	FA231222	564A492323	031504-08:11

Figure 16.8 Format of a public key ring table

User ID	Key ID	Public key	Producer trust	Certificate(s)	Certificate trust(s)	Key Legitimacy	Timestamp
•••	•	•	:	•	•	•	•

16.2.3 Continued Example 16.2

A series of steps will show how a public key ring table is formed for Alice.

Table 16.6 *Example 2, starting table*

User	Key	Public	Prod.	Certificate	Cert.	Key	Time-
ID	ID	key	trust		trust	legit.	stamp
Alice	AB	AB	F			F	******

Table 16.7 Example 2, after Bob is added to the table

User ID	Key ID	Public key	Prod. trust	Certificate	Cert. trust	Key legit.	Time- stamp
Alice	AB	AB	F			F	
Bob	12	12	F			F	

Example 16.2 Continued

Table 16.8 Example 2, after Ted is added to the table

User ID	Key ID	Public key	Prod. trust	Certificate	Cert. trust	Key legit.	Time- stamp
Alice	AB	AB	F			F	
Bob	12	12	F			F	
Ted	48	48	F	Bob's	F	F	•••••

Table 16.9 Example 2, after Anne is added to the table

User ID	Key ID	Public key	Prod. trust	Certificate	Cert. trust	Key legit.	Time- stamp
Alice	AB	AB	F			F	*******
Bob	12	12	F			F	
Ted	48	48	F	Bob's	F	F	
Anne	71	71	P	Bob's	F	F	

Example 16.2 Continued

Table 16.10 Example 2, after John is added to the table

User ID	Key ID	Public key	Prod. Trust	Certificate	Cert. trust	Key legit.	Time- stamp
Alice	AB	AB	F			F	
Bob	12	12	F			F	
Ted	48	48	F	Bob's	F	F	• • • • • • •
Anne	71	71	P	Bob's	F	F	
John	31	31	N	Anne's	P	Р	

Example 16.2 Continued

 Table 16.11
 Example 2, after one more certificate received for John

User ID	Key ID	Public key	Prod. trust	Certificate	Cert. trust	Key legit.	Time- stamp
Alice	AB	AB	F			F	
Bob	12	12	F			F	
Ted	48	48	F	Bob's	F	F	
Anne	71	71	P	Bob's	F	F	•••••
John	31	31	N	Anne's Ted's	P F	F	

16-3 S/MIME

Another security service designed for electronic mail is Secure/Multipurpose Internet Mail Extension (S/MIME). The protocol is an enhancement of the Multipurpose Internet Mail Extension (MIME) protocol.

Topics discussed in this section:

16.3.1 **MIME**

16.3.2 S/MIME

16.3.3 Applications of S/MIME

Figure 16.23 MIME

E-mail header

MIME-Version: 1.1

Content-Type: type/subtype

Content-Transfer-Encoding: encoding type

Content-Id: message id

Content-Description: textual explanation of nontextual contents

E-mail body

MIME headers

 Table 16.14
 Data types and subtypes in MIME

Туре	Subtype	Description			
	Plain	Unformatted.			
	HTML	HTML format.			
Multipart	Mixed	Body contains ordered parts of different data types.			
	Parallel	Same as above, but no order.			
	Digest	Similar to Mixed, but the default is message/RFC822.			
	Alternative	Parts are different versions of the same message.			
Message	RFC822	Body is an encapsulated message.			
	Partial	Body is a fragment of a bigger message.			
	External-Body	Body is a reference to another message.			
Image	JPEG	Image is in JPEG format.			
	GIF	Image is in GIF format.			
Video	MPEG	Video is in MPEG format.			
Audio	Basic	Single channel encoding of voice at 8 KHz.			
Application	PostScript	Adobe PostScript.			
	Octet-stream	General binary data (eight-bit bytes).			

MIME-Version

This header defines the version of MIME used. The current version is 1.1.

MIME-Version: 1.1

Content-Type

The content type and the content subtype are separated by a slash. Depending on the subtype, the header may contain other parameters.

Content-Type: <type / subtype; parameters>

 Table 16.15
 Content-transfer-encoding

Туре	Description
7bit	NVT ASCII characters and short lines.
8bit	Non-ASCII characters and short lines.
Binary	Non-ASCII characters with unlimited-length lines.
Radix-64	6-bit blocks of data are encoded into 8-bit ASCII characters using Radix-64 conversion.
Quoted-printable	Non-ASCII characters are encoded as an equal sign followed by an ASCII code.

 Table 16.16
 Radix-64 encoding table

Value	Code										
0	A	11	L	22	W	33	h	44	S	55	3
1	В	12	M	23	X	34	i	45	t	56	4
2	C	13	N	24	Y	35	j	46	u	57	5
3	D	14	О	25	Z	36	k	47	v	58	6
4	E	15	P	26	a	37	1	48	w	59	7
5	F	16	Q	27	b	38	m	49	X	60	8
6	G	17	R	28	c	39	n	50	y	61	9
7	Н	18	S	29	d	40	0	51	Z	62	+
8	I	19	Т	30	e	41	р	52	0	63	1
9	J	20	U	31	f	42	q	53	1		
10	K	21	V	32	g	43	r	54	2		

Figure 16.26 Quoted-printable

16.3.2 S/MIME

S/MIME adds some new content types to include security services to the MIME. All of these new types include the parameter "application/pkcs7-mime," in which "pkcs" defines "Public Key Cryptography Specification."

Cryptographic Message Syntax (CMS)

To define how security services, such as confidentiality or integrity, can be added to MIME content types, S/MIME has defined Cryptographic Message Syntax (CMS). The syntax in each case defines the exact encoding scheme for each content type. For details, the reader is referred to RFC 3369 and 3370.

Figure 16.27 Signed-data content type

 S_1 Signed with private key of signer 1

S_N Signed with private key of signer N

Figure 16.28 Enveloped-data content type

 R_1 Encrypted with public key of recipient 1

Figure 16.29 Digest-data content type

Figure 16.30 Authenticated-data content type

 R_1 Encrypted with public key of recipient 1

R_N Encrypted with public key of recipient N

Cryptographic Algorithms

S/MIME defines several cryptographic algorithms. The term "must" mean an absolute requirement; the term "should" means recommendation.

Table 16.17 Cryptographic algorithm for S/MIME

Algorithm	Sender must support	Receiver must support	Sender should support	Receiver should support
Content-encryption algorithm	Triple DES	Triple DES		1. AES 2. RC2/40
Session-key encryption algorithm	RSA	RSA	Diffie-Hellman	Diffie-Hellman
Hash algorithm	SHA-1	SHA-1		MD5
Digest-encryption algorithm	DSS	DSS	RSA	RSA
Message-authentication algorithm		HMAC with SHA-1		