Developing an Intelligent Agent for Nine Men's Morris Using Deep Q-Networks

April 15, 2025

Abstract

This report presents the development of an artificial intelligence agent for Nine Men's Morris using Deep Q-Networks (DQN). A Python-based game environment was implemented, and the DQN agent was trained against a random opponent. The methodology covers game mechanics, DQN architecture, and difficulty settings for human interaction. Extensive evaluation over 700 episodes reveals a low win rate (1-6%) against a random opponent, indicating challenges in strategic learning. Analysis identifies reward structure and training limitations as key factors, offering insights for improvement. This work provides a foundation for applying deep reinforcement learning to combinatorial games.

Contents

1	Inti	roduction				
2	Methodology					
	2.1	Game Environment				
		2.1.1 Board and State Representation				
		2.1.2 Game Phases and Rules				
		2.1.3 Action Space				
	2.2	Deep Q-Network Design				
		2.2.1 Neural Network Architecture				
		2.2.2 DQN Mechanisms				
		2.2.3 Action Selection Across Phases				
	2.3	Difficulty Calibration				
3	Exp	Experimentation				
	3.1	Training Protocol				
	3.2	Reward Design				
	3.3	Computational Setup				
	3.4	Ethical Considerations				
4	Λn	alysis and Results				
*	4.1	Performance Evaluation				
	4.2	Performance Analysis				
	4.3	Insights Gained				
	4.4	Limitations				
	4.5	Future Directions				
	4.6	Conclusion				

1 Introduction

Nine Men's Morris, a two-player strategy game of ancient origin, requires players to form mills—three aligned pieces on a 24-point board—across placement, movement, and flying phases. Its strategic depth makes it suitable for reinforcement learning (RL) exploration. This study employs Deep Q-Networks (DQN) [?] to create an agent capable of playing competitively and engaging human opponents at varied difficulty levels. Objectives include developing a robust game environment, training a DQN agent, designing rewards, and evaluating performance, while advancing practical knowledge of deep RL using PyTorch.

2 Methodology

This section outlines the game environment, DQN framework, and difficulty calibration strategies.

2.1 Game Environment

The NineMensMorrisEnv class, implemented in Python, encapsulates game rules and dynamics.

2.1.1 Board and State Representation

The 24-point board, arranged in three concentric squares, is represented as a NumPy array:

- 0: Empty point.
- 1: Player 1 piece.
- 2: Player 2 piece (AI).

The state, normalized to [0, 0.5, 1.0], is the neural network input. Figure 1 shows the board layout.

Figure 1: Nine Men's Morris board with 24 points, numbered 0–23.

2.1.2 Game Phases and Rules

Gameplay spans:

- 1. Placement: Place nine pieces on empty points.
- 2. Movement: Move pieces to adjacent empty points.
- 3. Flying: Move to any empty point with three pieces.

Mechanics include:

- get_valid_actions(): Lists legal moves (indices or tuples).
- check_mill(): Detects mills, triggering piece removal.
- remove_piece(): Prioritizes non-mill pieces.
- check_winner(): Loss occurs with fewer than three pieces or no moves.

2.1.3 Action Space

Actions are phase-dependent:

- Placement: Indices 0-23.
- Movement/Flying: Tuples (from_pos, to_pos).

The environment ensures rule adherence.

2.2 Deep Q-Network Design

DQN approximates $Q(s, a; \theta)$ for large state spaces [?].

2.2.1 Neural Network Architecture

The DQNetwork in PyTorch comprises:

- Input: 24 neurons.
- Hidden: Two 128-neuron layers with ReLU.
- Output: 24 Q-values.

```
class DQNetwork(nn.Module):
      def __init__(self, state_size=24, action_size=24):
          super(DQNetwork, self).__init__()
3
          self.fc1 = nn.Linear(state_size, 128)
          self.fc2 = nn.Linear(128, 128)
          self.fc3 = nn.Linear(128, action_size)
6
          self.relu = nn.ReLU()
      def forward(self, x):
8
          x = self.relu(self.fc1(x))
9
10
          x = self.relu(self.fc2(x))
11
          x = self.fc3(x)
12
          return x
```

Listing 1: DQN Model in PyTorch

2.2.2 DQN Mechanisms

- Experience Replay: Stores and samples transitions (s, a, r, s', done).
- Target Network: Provides stable targets, updated every 10 episodes.
- **Epsilon-Greedy**: ϵ decays from 1.0 to 0.1.

Loss is minimized via:

$$\mathcal{L}(\theta) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a'; \theta^{-}) - Q(s, a; \theta)\right)^{2}\right]$$

using Adam.

2.2.3 Action Selection Across Phases

The 24 Q-values are mapped:

- Placement: Highest valid index.
- Movement/Flying: Highest Q-value via (from_pos + to_pos) % 24.

This heuristic ensures legality but simplifies movement.

2.3 Difficulty Calibration

The select_action function offers:

- Easy: 70% random, mill priority.
- Moderate: 30% random, blocks mills, DQN with $\epsilon = 0.2$.
- **Difficult**: Strategic checks, DQN with $\epsilon = 0.05$.

3 Experimentation

This section covers training, rewards, and computational setup.

3.1 Training Protocol

The train_agent() function executes:

- 1. Initialize environment and agent.
- 2. For 20,156 episodes:
 - (a) Reset to state s.
 - (b) Select action via ϵ -greedy.
 - (c) Execute action, store transition.
 - (d) Random opponent plays.
 - (e) Train on mini-batch.
- 3. Decay ϵ , update target network, save model.

3.2 Reward Design

Rewards include:

• Sparse: +10.0 (win), -10.0 (loss).

• Dense:

- +2.0: Piece removed.

- +1.0: Mill formed.

- +0.05: Central position.

 $- +0.1 \times \text{count}$: Potential mills.

 $- +0.5 \times \text{count}$: Blocked opponent mills.

 $-+0.2 \times \text{piece_difference}$: Piece advantage.

- -0.05: Per move.

3.3 Computational Setup

Training used a desktop with PyTorch. Hyperparameters:

- $\gamma = 0.95$, learning rate = 0.001, batch size = 32.
- Replay buffer = 2000, target update every 10 episodes.
- ϵ : 1.0 to 0.0997, decay = 0.995.

3.4 Ethical Considerations

Training was resource-efficient, adhering to ethical AI principles for fair gameplay.

4 Analysis and Results

This section evaluates performance based on seven evaluation runs, each comprising 100 episodes against a random opponent, using the model at episode 20,156 ($\epsilon = 0.0997$).

4.1 Performance Evaluation

Table 1 summarizes the evaluation results.

Table 1: Evaluation Results Against Random Opponent (100 Episodes per Run)

Run	Win Rate (%)	Average Reward	Average Episode Length (Moves)
1	4.00	-14.24	190.22
2	6.00	-13.64	179.06
3	5.00	-11.77	190.11
4	5.00	-13.34	191.65
5	2.00	-15.42	178.82
6	3.00	-18.80	177.37
7	1.00	-18.57	174.99
Mean	3.71	-15.11	183.17
Std. Dev.	1.70	2.62	6.83

Across 700 episodes:

• Win Rate: Averaged 3.71% (range: 1–6%), with 26 wins, 674 losses, and no draws.

- Average Reward: -15.11 (range: -18.80 to -11.77), reflecting frequent losses (-10.0) compounded by per-move penalties (-0.05).
- **Episode Length**: Averaged 183.17 moves (range: 174.99–191.65), indicating prolonged games despite losses.

The agent struggled significantly, losing 96.29% of games on average. However, qualitative observations suggest it learned to form mills and occasionally block opponent moves, though inconsistently.

4.2 Performance Analysis

The low win rate against a random opponent is unexpected, given 20,156 training episodes. Possible contributing factors include:

- Reward Structure: Dense rewards (e.g., +1.0 for mills, +0.05 for central positions) may overemphasize intermediate goals, diluting focus on winning (+10.0). The -0.05 per-move penalty accumulates in long games, skewing total rewards negatively.
- **Training Opponent**: Exclusive training against a random opponent may have limited strategic depth, failing to expose the agent to robust counter-strategies.
- Action Mapping: The heuristic for movement phases ((from_pos + to_pos) % 24) may misalign Q-values with optimal moves, reducing effectiveness.
- State Representation: Excluding phase or piece counts may hinder the agent's ability to contextualize actions.
- Exploration: An $\epsilon=0.0997$ during evaluation introduces 10% randomness, potentially disrupting learned policies.

The variance in rewards (std. dev. 2.62) and win rates (std. dev. 1.70) suggests instability, possibly due to insufficient convergence or hyperparameter sensitivity.

4.3 Insights Gained

- RL Dynamics: Understood state-action-reward interplay and exploration challenges.
- DQN Stability: Confirmed the role of replay and target networks.
- Reward Design: Learned the need for balanced sparse and dense rewards.
- Action Challenges: Recognized limitations of heuristic mappings.
- Evaluation Needs: Highlighted the importance of diverse opponents.

4.4 Limitations

- Overreliance on random opponent training.
- Inefficient movement action mapping.
- Simplified state representation.
- Potential reward misalignment.

4.5 Future Directions

- Refine rewards to prioritize winning (e.g., reduce per-move penalty).
- Train against varied opponents or self-play [?].
- Enhance action representation (e.g., explicit tuple outputs).
- Include phase and piece counts in state.
- Explore advanced RL methods (e.g., Double DQN [?]).

4.6 Conclusion

The DQN agent for Nine Men's Morris, while demonstrating basic strategic behaviors, achieved a low win rate (3.71%) against a random opponent, highlighting challenges in reward design, training setup, and action mapping. The project offers valuable lessons in deep RL application, establishing a foundation for future enhancements to achieve competitive performance.