

4.1 INTRODUÇÃO	147
4.2 . PRINCÍPIO DE FUNCIONAMENTO	147
4.3. CAMPO GIRANTE	148
4.4. VELOCIDADES DO CAMPO GIRANTE, FREQÜÊNCIA MECÂNICA DO ROTOR, FREQÜÊNCIA ELÉTRICA D	 (C)
ROTOR E VELOCIDADE DO CAMPO DO ROTOR	151
4.4.1 VELOCIDADE DO CAMPO GIRANTE PRODUZIDO PELO ESTATOR	151
4.4.2 FREQÜÊNCIA DAS CORRENTS INDUZIDAS NO ROTOR	
4.5. TENSÃO INDUZIDA E TORQUE	
4.5.1 TENSÃO INDUZIDA	
4.5.2 TORQUE4.6. TENSÃO, CORRENTE, REATÂNCIA EM FUNÇÃO DO ESCORREGAMENTO (s)	155
4.6.1 TENSÃO	
4.6.2 REATÂNCIA	
4.6.3 CORRENTE	
4.7. CIRCUITO EQUIVALENTE DA MÁQUINA DE INDUÇÃO	157
4.7.1 CIRCUITO EQUIVALENTE DO ROTOR	
4.7.2 CIRCUITO EQUIVALENTE DO ESTATOR E ROTOR	158
4.7.3 POTÊNCIA E CIRCUITO EQUIVALENTE COMPLETO	
4.7.4 TORQUE	161
4.8. EQUAÇÃO DO CONJUGADO (Tr) EM FUNÇÃO DO ESCORREGAMENTO E PARÂMETROS DA MÁQUINA	164
4.9. DETERMINAÇÃO DOS PARÂMETROS DO MOTOR DE INDUÇÃO TRIFÁSICO A PARTIR DOS ENSAIOS A	
VAZIO E DE ROTOR BLOQUEADO (CURTO-CIRCUITO)	172
(a) ENSAIO A VAZIO	
(b) ENSAIO EM CURTO	174
4.10. PARTIDA DO MIT	175
4.10.1. CONSIDERAÇÕES GERAIS SOBRE A PARTIDA	175
4.10.2. PARTIDA CÓM PLENA TENSÃO	176
4.10.3 PARTIDA COM TENSÃO REDUZIDA CHAVE ESTRELA - TRIÂNGULO	177
4.10.4 PARTIDA COM TENSÃO REDUZIDA – CHAVE COMPENSADORA AUTOMÁTICA	179
4.11. FRENAGEM DE MIT	
4.11.1 FRENAGEM COM CC	
4.11.2 FRENAGEM POR INVERSÃO DE FASES	182
4.12 CONTROLE DE VELOCIDADE DO MOTOR DE INDUÇÃO TRIFÁSICO	186
4.12.1 CONSIDERAÇÕES GERAIS	186
4.12.2 CONTROLE DE VELOCIDADE ATRAVÉS DE VARIAÇÃO DA FREQUÊNCIA DA TENSÃO DO ESTATOR.	186
4.12.3 CONTROLE DE VELOCIDADE ATRAVÉS DA VARIAÇÃO DO ESCORREGAMENTO	191
4.12.3.1 VARIAÇÃO DA TENSÃO APLICADA	191
4.12.3.2 VARIAÇÃO DA RESISTENCIA DO CIRCUITO DO ROTOR	196
EXERCÍCIOS PROPÓSTOS (Cap. IV)	
QUESTÕES SOBRE MCC E MIT Erro! Indicador não defin	ıido.

MOTOR DE INDUÇÃO TRIFÁSICO (MIT)

INTRODUÇÃO

O motor de indução trifásico apresenta-se atualmente como uma boa opção para acionamentos controlados, pois possui algumas vantagens sobre o motor de corrente contínua, devido a inexistência do comutador.

Entre estas vantagens, pode-se citar:

O custo do MIT é muito menor que o motor de CC de mesma potência;

A manutenção do MIT é mais simples e menos onerosa;

O consumo de energia do MIT nos processos de aceleração e frenagem é menor;

Com o MIT pode-se obter velocidades maiores, o que implica em potências maiores $(P = w \cdot T)$.

A grande desvantagem do MIT reside na dependência entre fluxo e a tensão do estator, o que não ocorre nos motores CC com excitação independente. Este fato limita a faixa de variação de velocidade do motor, quando controlado por variação da tensão do estator.

Atualmente, devido à evolução de sistemas eletrônicos que permitem o controle do motor por variação simultânea da tensão e freqüência do estator, esta desvantagem desaparece.

O motor de indução, devido as suas vantagens sobre o motor CC, é o mais utilizado em tração elétrica no parque industrial nacional.

fig.1-MIT

PRINCÍPIO DE FUNCIONAMENTO

O princípio de funcionamento do MIT é o mesmo de todos os motores elétricos, ou seja, baseia-se na iteração do fluxo magnético com uma corrente em um condutor, resultando numa força no condutor. Esta

força é proporcional às intensidades de fluxo e de corrente ($F = i \hat{l} x \hat{B}$).

Existem dois tipos de MIT: Rotor em gaiola; Rotor bobinado (em anéis).

Para efeito de simplicidade estudará uma máquina de dois pólos.

O motor compõe-se de duas partes:

Estator, onde é produzido o fluxo magnético:

Rotor, onde é produzida a corrente que interage com o fluxo, conforme a fig.1.2.

No estator (parte fixa) estão montados três enrolamentos conforme mostra a fig.1. Estes enrolamentos estão ligados à rede de alimentação, podendo estar conectados em estrela ou triângulo.

fig.1.2.b

A alimentação do MIT é realizada por uma fonte de tensão trifásica e equilibrada, logo as correntes do estator (armadura) estarão defasadas de 120°. Estas correntes irão produzir um fluxo resultante girante em

relação à armadura, que irá induzir no rotor (v x B.dl) tensões alternativas em seus enrolamentos. Estando estes enrolamentos curto-circuitados irão aparecer correntes no rotor, sendo estas correntes e o fluxo girante, responsáveis pelo aparecimento do torque no MIT.

CAMPO GIRANTE

O caráter girante ou estacionário do campo de máquinas elétricas girantes, depende na realidade do sistema referência adotado.

Para um observador situado no induzido de uma máquina síncrona com indutor girante, o campo dessa máquina é girante. Para um observador localizado em seu indutor (rotor), o campo é estacionário.

As maneiras usuais mais simples de produzir campos girantes podem ser resumidas no emprego de:

enrolamentos monofásicos girantes, alimentado por corrente contínua. A fig.1.3 ilustra o campo girante de uma máquina síncrona;

fig.1.3 – Campo girante de uma máquina síncrona

enrolamentos polifásicos estacionários (na armadura), alimentado por correntes alternativas.

Esses enrolamentos podem ser encontrados nos motores e geradores síncronos e nas máquinas assíncronas. Quando alimentados por correntes polifásicas, eles produzem pólos magnéticos que se deslocam em relação aos próprios enrolamentos que os originou.

Para os MITs o campo girante é produzido por correntes trifásicas equilibradas proveniente de uma rede trifásica de alimentação.

Para melhor clareza, considerar-se-à três instantes diferentes para verificação do comportamento do campo produzido pela armadura (estator).

Sabe-se que:

$$ia = I_{\text{max}} \cdot \cos(wt);$$

 $ib = I_{\text{max}} \cdot \cos(wt - 120^{\circ});$ 3.1
 $ic = I_{\text{max}} \cdot \cos(wt + 120^{\circ}).$

As correntes ia, ib e ic produzem intensidades de campo magnético proporcionais às suas respectivas correntes, dado pela Lei de Ampère. (HI= NI).

Referências: - Adotar-se-à como positivas as correntes que penetram no papel.

- Sequência a, b e c no sentido anti-horário.

1º INSTANTE:

A fig. 3.2 ilustra a situação instantânea dos campos nas respectivas fases da máquina em t=0, ou seja, $wt=0^{\circ}$.

2º INSTANTE:

A fig. 3.3 ilustra o instante em que $wt = 120^{\circ}$.

ib= lmax; ia= - lmax /2; ic= - lmax /2;

3º INSTANTE:

A fig. 3.4 ilustra o instante em que $wt = -120^{\circ}$.

ic= Imax;

ib= - Imax /2;

ia= - Imax /2;

 $\theta_{\theta} = -120^{\circ}$ $\theta m = -120^{\circ}$

Conclusões:

módulo do vetor campo é constante;

deslocamento do vetor campo se da com velocidade $w(\theta)$, ou seja, velocidade síncrona , ou ainda, freqüência de alimentação dos enrolamentos polifásicos.

VELOCIDADES DO CAMPO GIRANTE, FREQÜÊNCIA MECÂNICA DO ROTOR, FREQÜÊNCIA ELÉTRICA DO ROTOR E VELOCIDADE DO CAMPO DO ROTOR

VELOCIDADE DO CAMPO GIRANTE PRODUZIDO PELO ESTATOR

Seja:

f1 - freqüência do estator;

Em rpm, tem-se:

4.1

FREQÜÊNCIA DAS CORRENTES INDUZIDAS NO ROTOR

Seja também:

onde: n_2 ------ velocidade mecânica do rotor e, n_1 - n_2 ------ velocidade relativa com que o campo girante irá induzir as tensões de freqüência "f $_2$ "no rotor, logo pode-se relacionar:

$$f_1 - \cdots \rightarrow n_1$$
 $f_2 - \cdots \rightarrow n_1 - n_2$
 $f_2 = \frac{n_1 - n_2}{n_1} \cdot f_1$
4.2

Define-se:

 $s = \frac{n_1 - n_2}{n_1}$, onde s é chamado de escorregamento ou deslizamento.

$$f_2 = s. f_1$$
 4.3

Seja n_0 a velocidade do campo do rotor em relação a terra (estator) Então pode-se escrever:

$$n_0 = n_2 + n_{22} 4.4$$

Onde:

n₂₂ é a velocidade do campo do rotor em relação ao próprio rotor e,

$$n_{22} = \frac{120}{p} f_2, \qquad \log o : \qquad 4.5$$

$$n_o = n_2 + \frac{120}{p} f_2, \text{ da equação } s = \frac{n_1 - n_2}{n_1}$$

tira-se:

 $n_2 = n_1 \cdot (1 - s)$, substituindo em n_0 , tem-se:

$$n_0 = n_1.(1-s) + \frac{120}{p}s.f_1 = n_1 - s.n_1 + s.n_1$$
 4.6

$$n_0 = n_1$$

Donde conclui-se que as velocidades dos campos do estator e rotor em relação ao estator são iguais, porém a velocidade mecânica do rotor é menor que a velocidade síncrona dos campos, devido ao que definiu-se sobre o escorregamento.

TENSÃO INDUZIDA E TORQUE

TENSÃO INDUZIDA

Estando o rotor inicialmente parado e sendo submetido ao campo girante de velocidade n₁, resultará em seus enrolamentos uma f.e.m induzida (devido à variação do fluxo magnético em relação às espiras do rotor) que é proporcional a intensidade do fluxo e a velocidade do campo girante. Assim:

A tensão induzida será máxima no eixo do estator, ou seja, no eixo magnético resultante.

$$v_{20} = K.\phi.n_1$$
 ou $V_{20} = K.\frac{120}{p}.\phi.f_1 = K'''.\phi.f_1$

onde:
$$K''' = \frac{120}{p}.K$$

Como o enrolamento do rotor esta curto-circuitado, resultará a circulação da corrente rotórica I₂₀.

$$I_{20} = \frac{V_{20}}{\sqrt{R_2^2 + X_{20}^2}}$$
 onde: 5.1

R₂ – Resistência do circuito do rotor;

X₂₀ – Reatância do circuito do rotor na partida.

TORQUE

A corrente l₂₀ circulando pelos enrolamentos do rotor e interagindo com o fluxo produzido no estator dá origem ao conjugado de partida dado por:

 $T_P = K_1.\phi.Ir$; onde

Ir – Corrente real, ou seja: Ir = I_{20} .cos ψ_{20}

Logo o torque de partida será:

$$T_{p} = K_{1}.\phi.I_{20}.\cos \varphi 20$$
 e
$$\cos (\varphi_{20}) = \frac{R_{2}}{\left[R_{2}^{2} + X_{20}^{2}\right]^{1/2}}$$
5.2

Se o conjugado de partida T_P é maior que o conjugado de carga T_C , resulta num conjugado acelerador, que coloca o rotor em movimento.

$$T_a = \frac{2\pi}{60} . J . \frac{dn}{dt}$$

Com o aumento da velocidade do rotor, a velocidade relativa entre este e o campo girante diminui, provocando a redução da freqüência da tensão induzida no rotor. Desta forma:

$$\downarrow V_2 = K'''\phi.f_2 \downarrow; \quad \begin{cases} V_{20} = K'''\phi.f_1; & \downarrow f_2 = \downarrow sf_1 \\ e, \downarrow s = \frac{n_1 - n_2 \uparrow}{n_1} \end{cases}$$

 f_2 = freqüênciada tensão V_2 induzida no rotor.

Observe que com o aumento da velocidade (redução de f_2), a tensão induzida no rotor diminui. O mesmo ocorre com a reatância rotórica " X_2 ". Para uma velocidade qualquer a corrente rotórica I_2 será:

O comportamento das grandezas elétricas do motor está ligado à variação de velocidade relativa

$$I_2 = \frac{V_2}{\left[R_2^2 + X_2^2\right]^{1/2}}$$

entre o campo girante e o rotor (s). Esta grandeza é denominada escorregamento.

TENSÃO, CORRENTE, REATÂNCIA EM FUNÇÃO DO ESCORREGAMENTO (s)

TENSÃO

Sabe-se que:

$$V_2 = K'''.\phi.f_2$$
 e $V_{20} = K'''.\phi.f_1$ 5.3
 $V_2 = V_{20}.\frac{f_2}{f_1} = s.V_{20}$

REATÂNCIA

Sabe-se que:

$$X_2 = 2\pi . L. f_2 \rightarrow \text{Reatância}$$
 em um instante qualquer. e
$$X_{20} = 2\pi . L. f_1$$

Logo:

$$X_2 = X_{20} \frac{f_2}{f_1} = s.X_{20}$$
 5.4

CORRENTE

$$I_2 = \frac{V_2}{\left[R_2^2 + X_2^2\right]^{1/2}} \qquad \Rightarrow \qquad I_2 = \frac{s.V_{20}}{\left[R_2^2 + (X_{20}.s)^2\right]^{1/2}}$$

$$I_{2} = \frac{V_{20}}{\left(\frac{R_{2}^{2}}{s^{2}} + X_{20}^{2}\right)}$$
 5.5

Conclui-se então que a corrente do rotor varia com a velocidade, sendo máxima para s=1, ou seja, para $n_2=0$ (partida).

Exemplo 1:

Um MIT tetrapolar apresenta os seguintes dados nominais (rotor bobinado).

$$P_n = 90 \text{ (KW)}$$
 $n_N = 1.780 \text{ (rpm)}$ $V_n = 380 \text{ (V)}, 60 \text{ (Hz)}$ $I_{2N} = 148 \text{ (A)}$ $V_{20} = 400 \text{ (V)}$

a) Calcule o escorregamento nominal do motor.

$$S_N = \frac{n_1 - n_N}{n_1}$$

$$n_I = \frac{120}{P} \cdot f_I = \frac{120}{4} \cdot 60 = 1.800 rpm$$

$$s_N = \frac{1.800 - 1.780}{1.800} = 0.011$$

b) Determine a tensão induzida no rotor para as condições nominais de operação.

$$V_{2N} = s_N \ . \ V_{20} = 0,011 \ . \ 400$$

$$V_{2N} = 4,444 \text{ (V)}$$

c) Determine o valor aproximado da resistência rotórica para as condições nominais de operação.

Nas condições nominais, tem-se:

$$I_{2N_f} = \frac{V_{2N_f}}{\left[R_2^2 + X_2^2\right]^{\frac{1}{2}}}$$

Deve-se observar que o valor da tensão de partida V_{20} fornecido é sempre um valor de linha e que, para velocidade nominal o escorregamento é muito pequeno, o que faz com que a reatância X_2 seja também muito pequena, podendo ser desprezada.

$$\begin{split} X_2 &= 2\pi \cdot L \cdot f_2 \quad \text{ e } \quad f_2 = s \cdot f_1 = 0,011 \cdot 60 = 0,66 Hz \\ X_2 &= X_{20} \cdot \frac{0,66}{60} = 0,011 \cdot X_{20} \end{split}$$

Logo:

$$R_2 = \frac{V_{2N}}{\sqrt{3}.I_{2N}} = \frac{4,44}{\sqrt{3}.148} \Rightarrow R_2 = 0.0173(\Omega / fase)$$

d) Determine o conjugado nominal do motor.

$$T_N = \frac{60 \cdot P_N}{2\pi \cdot n_N}$$

$$T_N = \frac{60*90*10^3}{2\pi*1.780}$$

$$T_N = 482,83[N.m]$$

CIRCUITO EQUIVALENTE DA MÁQUINA DE INDUÇÃO

Suposições:

a) O enrolamento do roto possui o mesmo número de pólos e fases que no enrolamento do estator;

b) As correntes são sempre valores de linha e as tensões sempre valores de fase, isto é, a máquina é suposta ligada em Y.

Afirmações:

a) Sabe-se que: $s=\frac{n_{\mathrm{l}}-n_{\mathrm{2}}}{n_{\mathrm{l}}}$

Para $n_2 = 0$ (máquina parada) $\rightarrow s = 1$

O campo girante tem a mesma velocidade (Freqüência) que a freqüência produzida pelos enrolamentos do rotor.

$$f_2 = f_{20} = f_1$$

b) Com rotor na velocidade síncrona (s = 0), não há movimento relativo entre campo girante e rotor (não há indução). A freqüência do rotor é nula (na verdade a própria corrente do rotor é zero).

CIRCUITO EQUIVALENTE DO ROTOR

CIRCUITO EQUIVALENTE DO ESTATOR E ROTOR

O motor de indução no instante da partida (s=1; $n_2=0$) tem o mesmo comportamento de um transformador (estator é o primário e o rotor é o secundário).

Referindo-se X₂₀ e R₂/s para o primário, tem-se a fig.7.2.1.+

fig.7.2.1

Onde:

$$a = \frac{N_1}{N_2}$$
 (n.° esp. primário)
 N_2 (n.° esp. secundário)
 E_{20} '= $a.E_{20}$

$$I_{2}' = \frac{I_{2}}{a} I_{2}' = \frac{I_{2}}{a}$$

POTÊNCIA E CIRCUITO EQUIVALENTE COMPLETO

Da resistência rotórica, pode-se escrever:

$$\frac{R_2'}{s} = R_2' - R_2' + \frac{R_2'}{s} = R_2' + R_2'. \frac{(1-s)}{s}$$

Multiplicando-se a expressão anterior por l₂', tem-se:

$$\frac{R_2'}{s}.I_2'^2 = R_2'.I_2^2 + R_2'.\frac{(1-s)}{s}.I_2'^2$$
 7.1

fig.7.3.1

Da eq.7.5, obtêm-se o circuito equivalente final.

$$\frac{R_2'}{s} = R_2' + R_2' \cdot \frac{(1-s)}{s}$$
 7.5

Resistência de carga fictícia (representa a carga mecânica do rotor).

Portanto o circuito equivalente completo fica:

fig.7.3.2 No diagrama da fig.7.3.3 é apresentado o fluxo de potência do motor de indução trifásico, considerando-se todas as perdas, bem como as potências de entrada e saída.

Seja q₁ o n.º de fases do motor de indução, e sejam as tensões e correntes valores de fases, então tem-se :

fig.7.3.3

Dessa forma as perdas e as potências podem ser calculadas através de:

$$P_{en} = q_1 \cdot V_1 \cdot I_1 \cdot \cos \varphi_1$$

$$Wj_1 = P_{N1} + P_{C1}$$

$$P_{C1} = q_1 \cdot R_1 \cdot I_1^2$$

$$P_{in} = q_1 \cdot \frac{R_2'}{s} \cdot I_2'^2 = q_2 \cdot \frac{R_2}{s} \cdot I_2^2$$

$$7.9$$

$$P_{in} = q_1.E_1.I_2'.\cos\varphi_2 = q_2.E_2.I_2.\cos\varphi_2$$
 7.10

$$Wj_2 = q_1 R_2 I_2^2 = q_2 R_2 I_2^2$$
 7.11

$$P = q_1 \cdot \frac{R_2'}{s} \cdot (1 - s) \cdot I_2'^2 = q_2 \cdot \frac{R_2}{s} \cdot (1 - s) \cdot I_2^2$$
 7.12

$$P_{out} = P - (P_M + P_V) 7.13$$

TORQUE

Exemplo 2:

Um motor de indução trifásico de 6 pólos, apresenta os seguintes dados de placa:

$$\begin{split} P_{\text{N}} &= 10 \text{ HP;} \\ V_{1\text{N}} &= 220(\text{V}), \, 60(\text{Hz}), \, \text{Y;} \\ R_1 &= 0,294 \, (\Omega/\text{fase}); \\ R_2 &= 0,144 \, (\Omega/\text{fase}); \\ X_1 &= 0,503 \, (\Omega/\text{fase}); \\ X_2 &= 0,209 \, (\Omega/\text{fase}); \\ Xm &= 13,25 \, (\Omega/\text{fase}); \\ Rm &\approx \infty \end{split}$$

Para s=2%, calcule:

Velocidade do rotor (rpm); Corrente e f.p no estator; Potência de saída (Pout); Torque de saída (Tout); Rendimento do motor.

Solução:

 $n_2=?$

Da equação do escorregamento tira-se n₂:

$$n_2 = (1-s).n_1$$

$$n_1 = \frac{120}{P}.f_1 = \frac{120}{6}.60$$

$$n_1 = 1200(rpm)$$

$$n_2 = (1-0.02).1200$$

$$n_2 = 1176(rpm)$$

OBS: As perdas por atrito e no ferro valem 403(W).

 $I_1 e fp_1 = ?$

Do modelo do motor de indução trifásico, calcula-se a corrente e f.p, da seguinte forma:

$$I_{1} = \frac{V_{L}}{Z_{eq}}$$
 e $Z_{eq} = R_{1} + jX_{1} + \frac{jX_{m} \cdot \left(\frac{R_{2}'}{s} + jX_{20}'\right)}{\frac{R_{2}'}{s} + j \cdot \left(X_{20}' + X_{m}\right)}$

$$Z_{eq} = 0,294 + j0,503 + \frac{\left(\frac{0,144}{0,02} + j0,209\right).j13,25}{\frac{0,144}{0,02} + j(0,209 + 13,25)}$$

$$Z_{eq} = 6,745 | 31,42^{\circ} (\Omega/\text{fase})$$

$$I_1 = \frac{V_{1N}}{\sqrt{3.Z_{eq}}} \Rightarrow I_1 = \frac{220}{\sqrt{3.6,745}} \cdot \left[-31,42^{\circ} \right]$$

$$|I_1| = 18,831 \text{ (A)}$$

fp=cos(31,42°), ou seja fp=0,88 indutivo.

Pout =?

$$P_{out} = P - (P_M + P_V)$$

$$P_{out} = q_1.R_2'.\frac{(1-s)}{s}.I_2'^2-403$$

Para o cálculo de I_2 ', utiliza-se o divisor de corrente:

$$\begin{split} I_2' &= I_1 \cdot \left(\frac{Z_m + Z_1 - Z_e}{Z_m} \right) \\ I_2' &= 18,831 \left\lfloor \frac{-31,42^\circ}{2} \cdot \left(\frac{j13,25 + 0,294 + j0,503 - 5,94 - j3,19}{j13,25} \right) \\ I_2' &= 16,21 \left\lfloor \frac{-4,61^\circ}{2} \right. (A) \\ P_{out} &= 3. \left(16,21 \right)^2 \cdot \left(\frac{1 - 0,02}{0,02} \right) \cdot 0,144 - 403 \\ P_{out} &= 5159,19(W) \end{split}$$

$$T_{out} = ?$$

$$T_{out} = \frac{60}{2.\pi.n_2}.P_{out}$$

$$T_{out} = \frac{60}{2.\pi.1176}.5159,19$$

$$T_{out} = 41,89(N.m)$$

e)
$$\eta_{\%}=?$$

$$\eta_{\%}=\frac{P_{out}}{P_{en}}.100\%$$

$$\eta_{\%}=\frac{5159,19}{\sqrt{3}.V_{1N}.I_{1}.\cos\varphi_{1}}.100\%$$

$$\eta_{\%}=\frac{5159,19}{\sqrt{3}.220.18,83.0,88}.100\%$$

$$\eta_{\%}=81,7\%$$

EQUAÇÃO DO CONJUGADO (T_E) EM FUNÇÃO DO ESCORREGAMENTO E PARÂMETROS DA MÁQUINA.

Do circuito equivalente e, consideram-se o valor de R_m desprezível ($R_m = \infty$ ou circuito aberto), determina-se as equações de potência (P) e Torque elétrico (T_e), da seguinte forma:

A potência desenvolvida no rotor é:

$$P = q_1 \cdot \frac{(1-s)}{s} \cdot R_2 \cdot I_2 \cdot I_2$$
8.1

Onde:

 $q_1 - n^{\circ}$ de fases

s – escorregamento

e o torque elétrico é dado por:

$$T_e = \frac{60.P}{2.\pi . n_2}$$
 8.2

A velocidade pode ser determinado através de:

$$n_2 = (1 - s).n_1$$
 8.3

Substituindo-se 8.1 e 8.3 em 8.2, obtem-se:

$$T_e = \frac{60}{2\pi . n_1 . (1-s)} . q_1 . \frac{(1-s)}{s} . R_2 ' I_2'^2$$

$$T_e = \frac{60}{2\pi n_1} q_1 \frac{R_2'}{s} I_2'^2$$
8.4

Trabalhando-se com o circuito equivalente de Thevenin referente ao modelo da fig.8.l entre os pontos 'a' e 'b', obtém-se os seguintes valores para a impedância (Zth) e tensão de Thevenin (V_{20} '):

fig.8.2

$$Z_{th} = R_1' + jX_1'$$
 8.5

$$R_{1}' = \frac{R_{1}.X_{m}^{2}}{(X_{1} + X_{m})^{2}}$$
8.6

$$X_{1}' = \frac{X_{1}.X_{m}}{(X_{1} + X_{m})}$$
8.7

A impedância de Thevenin é obtida do paralelo entres as impedâncias Z_1 e jX_m , com a fonte V_1 curto-circuitada.

A tensão de Thevenin (V20') é obtida entre os pontos 'a' e 'b' com a carga desconectada, ou seja:

$$V_{20}' = V_1 \cdot \frac{X_m}{\left[R_1^2 + (X_1 + X_m)^2\right]^{1/2}}$$
8.8

A corrente I₂' pode ser calculada levando-se em conta a fig 8.2.

$$I_{2}' = \frac{V_{20}'}{\left[\left(R_{1} + \frac{R_{2}'}{s}\right)^{2} + \left(X_{1}' + X_{20}'\right)^{2}\right]^{1/2}}$$
8.9

e, finalmente o torque elétrico é determinado, substituindo-se a equação 8.9 na equação 8.4:

$$T_e = \frac{60}{2.\pi . n_1} . q_1 . \frac{R_2'}{s} . \frac{V_{20'}^2}{\left(R_1' + \frac{R_2'}{s}\right)^2 + (X_1' + X_{20'})^2}$$
8.10

A fig.8.3 ilustra o comportamento do torque elétrico em função do escorregamento e parâmetros da máquina.

fig8.3 (Torque elétrico X s)

Onde:

 T_K – Torque máximo (s=s_k);

Tp – Torque de partida;

s_k - Escorregamento correspondente ao torque máximo;

 s_N – Escorregamento nominal.

Para e determinação de T_K e s_k , deriva-se a equação 8.10 em relação a 's' e iguala-se a zero esse resultado (valor máximo da função).

Dessa forma obtem-se os seguintes resultados:

$$S_{k} = \frac{R_{2}^{'}}{\sqrt{R_{1}^{'2} + (X_{1}^{'} + X_{20}^{'})^{2}}}$$
8.11

е

$$Tk = \frac{60}{2\pi . n_1} . q_1 . V_{20}'^2 . \frac{1}{[R_1' + \sqrt{R_1'^2 + (X_1' + X_{20}')^2}]}$$
 8.12

Observe que s_k cresce com o crescimento do valor da resistência rotórica e que, T_k não depende de R_2 ', ou seja, não depende da resistência rotórica.

De acordo com o torque de partida, torque máximo e escorregamento correspondente ao torque máximo, tem-se os seguintes tipos de motores de indução trifásico, conforme a fig.8.4.

fig.8.4 (curvas típicas de conjugados X escorregamento de motores de indução trifásicos).

A equação 8.10 é bastante limitada quanto à sua aplicação a partir de dados de fabricantes, uma vez que os parâmetros da equação não são fornecidos em catálogos.

A combinação das equações 8.10, 8.11 e 8.12, fornece a equação 8.13, bastante útil em termos práticos.

$$\frac{T}{Tk} = \frac{2}{\frac{s}{s_k} + \frac{s_k}{s}}$$
8.13

Para as condições nominais de operação, obtem-se a equação 8.14:

$$\frac{T_N}{Tk} = \frac{2}{\frac{s_N}{s_k} + \frac{s_k}{s_N}}$$
 8.14

Exemplo 3:

Um MIT de anéis apresenta os seguintes dados nominais (4 pólos).

$$\begin{array}{lll} P_{N}\!\!=\!\!220(KW) & n_{N}\!\!=\!\!1.780(rpm) \\ V_{N}\!\!=\!\!440(V),\,60(Hz) & (T_{k}\!/T_{N})\!\!=\!\!3.2 \\ I_{N}\!\!=\!\!340(A) & \eta_{N}\!\!=\!\!93\% \\ V_{20}\!\!=\!\!E_{20}\!\!=\!\!460(V) & cos\Psi\!\!=\!\!0.92 \\ I_{2N}\!\!=\!\!300(A) & \end{array}$$

Determine a equação do conjugado T em função do escorregamento.

Da equação 8.13, tem-se:

$$\frac{T}{Tk} = \frac{2}{\frac{s}{sk} + \frac{sk}{s}}$$

Sabe-se que: $T_K = 3.2T_N$ e $T_N = \frac{60.P_N}{2.\pi.n_N}$

$$T_N = \frac{60.220.10^3}{2\pi.1780} = 1180,25(N.m)$$

$$T_K = 3,2.1180,25 \rightarrow T_K = 3776,8(N.m)$$

Para determinar sk, usa-se a equação 8.14, ou seja:

$$\frac{T_N}{Tk} = \frac{2}{\frac{s_N}{sk} + \frac{sk}{s_N}}$$
8.15

е

$$s_K = s_N \cdot \left[\frac{T_K}{T_N} + \sqrt{\left(\frac{T_K}{T_N}\right)^2 - 1} \right]$$
 8.16

Substituindo-se os valores, obtém-se:

$$S_{N} = \frac{1800 - 1780}{1800} = 0,011$$

$$\frac{T_{K}}{T_{N}} = 3,2$$

$$sk = 0,011. (3,2 + \sqrt{3,2^{2} - 1})$$

$$sk = 0,0693$$

Dessa forma a equação do conjugado em função do escorregamento será:

$$T = \frac{2 \times 3776,8}{\frac{s}{0,0693} + \frac{0,0693}{s}}$$

$$T = \frac{7553,6}{\frac{s}{0,0693} + \frac{0,0693}{s}}$$

b) Calcule a velocidade do motor, quando a carga no eixo for 25% maior que a nominal.

$$n_2=n_1.(1-s)$$

A equação 8.13 fornece o escorregamento em função da carga. Para as condições propostas, tem-se:

$$\frac{T_K}{T} = \frac{T_K}{1,25T_N} = \frac{3,2}{1,25}$$

de 8.13 tira-se:

$$s = s_{K} \cdot \left[\frac{T_{K}}{T} - \sqrt{\left(\frac{T_{K}}{T}\right)^{2} - 1} \right] \rightarrow$$

$$s = 0,0693. \boxed{\frac{3,2}{1,25} - \sqrt{\left(\frac{3,2}{1,25}\right)^2 - 1}}$$

$$s = 0.0141$$

A velocidade será:

$$n_2 = n_1.(1-s) = 1800.(1-0.0141)$$

$$n_2 = 1774,63 \text{ (rpm)}$$

- c) Determine o valor da resistência externa por fase a ser inserida no circuito do rotor, para que o conjugado máximo $T_{\rm K}$ ocorre na partida.
- A equação 8.11, que fornece o valor de sk, mostra que este parâmetro cresce com a resistência do circuito do rotor.

$$S_{k} = \frac{R_{2}^{'}}{\sqrt{R_{1}^{'2} + (X_{1}^{'} + X_{20}^{'})^{2}}}$$

- Por outro lado, o parâmetro T_K não varia com a resistência do rotor.

$$Tk = \frac{60}{4.\pi.n_1}.q_1.V_{20}'^2.\frac{1}{[R_1' + \sqrt{R_1'^2 + (X_1' + X_{20}')^2}]}$$

- O que pretende no acionamento está indicado na fig.8.5.

Para a característica 1 da fig.8.5, tem-se:

$$S_{k1} = \frac{R_{2}^{'}}{\sqrt{R_{1}^{'2} + (X_{1}^{'} + X_{20}^{'})^{2}}}$$

Para a característica 2 da fig.8.5, tem-se:

$$S_{k2} = \frac{R_{2}^{'} + R_{21}^{'}}{\sqrt{{R_{1}^{'}}^{2} + (X_{1}^{'} + X_{20}^{'})^{2}}} \text{ , onde:}$$

 R_{21} '- valor referido da resistência externa inserida no circuito do rotor.

Comparando-se as duas equações, obtém-se:

$$\frac{s_{k2}}{s_{k1}} = \frac{R_2' + R_{21}'}{R_2'}$$
 Esta equação tanto vale para valores referidos quanto para os valores reais.

Dessa forma obtém-se:

$$\frac{s_{k2}}{s_{k1}} = 1 + \frac{R_{21}}{R_{2}} = 1 + r_{21}$$

Onde r_{21} é o valor da resistência externa inserida em relação à resistência própria do rotor.

$$r_{21} = \frac{s_{k2}}{s_{k1}} - 1$$

$$r_{21} = \frac{1}{0.0693} - 1$$
 Para o exemplo: $s_{k2} = sp = 1$ e $s_{k1} = s_k = 0.0693$

$$r_{21} = 13,43$$

Isto significa que deve-se introduzir uma resistência de 13,43 vezes a resistência própria do rotor para obterse o conjugado máximo na partida.

Apêndice (A).

Análise da expressão do escorregamento. Sabe-se que:

$$\frac{T}{T_k} = \frac{2}{\frac{s}{s_k} + \frac{s_k}{s}}$$
, de onde se pode tirar:

$${s_k}^2 - 2.\frac{T_k}{T}s.s_k + s^2 = 0$$
 , dessa expressão tira-se:

$$s_k = s \left[\frac{T_k}{T} \pm \sqrt{\left(\frac{T_k}{T}\right)^2 - 1} \right]$$

$$s = s_k \cdot \left[\frac{T_k}{T} \pm \sqrt{\left[\frac{T_k}{T} \right]^2 - 1} \right]$$

Supõe-se a seguinte condição: T < T_K

Para $s > s_k$ usa-se: '+' (mais) em 2 e '-' (menos) em 1.

Para $s < s_k$ usa-se: '+' (mais) em 1 e '-' (menos) em 2.

Exemplo: Se $s = s_N$ usa-se:

е

em 2

DETERMINAÇÃO DOS PARÂMETROS DO MOTOR DE INDUÇÃO TRIFÁSICO A PARTIR DOS ENSAIOS A VAZIO E DE ROTOR BLOQUEADO (CURTO-CIRCUITO)

(a) ENSAIO A VAZIO

O modelo aproximado para o cálculo dos parâmetros Rm e Xm é mostrado na fig. 9.1.

Procedimento:

Aplica-se a tensão nominal aos terminais do motor, estando o mesmo sem carga no eixo (a vazio), mede-se.

Mede-se os valores de tensão (V_{1f}), corrente (_{lof}) e a potência (Po).

A potência lida Po vale:

$$P_{O} = q_{1}R_{1ac}I_{of}^{2} + P_{N} + P_{a}$$
9.1

Onde:

 q_1 - n° de fases;

P_N - Perdas no núcleo;

Pa - Perdas por rotacionais (atrito);

I_{of} - Corrente na fase do motor;

R₁ac- Valor da Resistência estatórica por fase em AC.

* Cálculo de I_{pf}.

A corrente I_{pf} na fig. 9.1, pode ser calculada por:

$$I_{pf} = \frac{P_n}{q_1 V_{nf}}$$
 9.2

* Cálculo de P_N.

Dessa forma as perdas no núcleo (P_N) podem ser determinadas em função da equação 9.1.

$$P_N = P_O - q_1 R_{1ac} I_{of}^2 - P_a 9.3$$

* Determinação de Pa.

Para a determinação de P_a, utiliza-se o gráfico da figura 9.2. Para isso, deverá ser levantada em laboratório tal curva.

* Determinação de I_{qf}.

Para o cálculo de Iqf, utiliza-se o valor do fator de potência a vazio, ou seja:

$$\varphi_0 = \cos^{-1} \left[\frac{P_0}{q_1 N_1 I_{0f}} \right]$$
 9.4

$$I_{qf} = I_{of} \cdot \operatorname{sen} \varphi_0$$
 9.5

Dessa forma, determina os parâmetros R_{m} e X_{m} :

$$R_m = \frac{V_{1f}}{I_{pf}}$$
 9.6

$$X_m = \frac{V_{1f}}{I_{qf}}$$
 9.7

(b) ENSAIO EM CURTO

O modelo utilizado para esse ensaio é apresentado na fig. 9.3.

Procedimento:

Aplica-se uma tensão reduzida aos terminais do motor, tal que, faça circular pelo mesmo a corrente nominal, estando o motor com rotor travado (curto-circuitado), mede-se:

Tensão (V_{ccf}) , Corrente (I_{Nf}) e Potência (P_{cc}) .

Calcula-se:

$$Z_{eq} = \frac{V_{ccf}}{I_{Nf}}$$

$$R_{eq} = \frac{P_{cc}}{3.I_{Nf}}$$
9.8

Em condições normais de trabalho, o valor de $R_{\rm e}$ é calculado da seguinte forma:

$$R_e = R_{1ac} + R'_{2dc} 9.10$$

Dessa forma, pode-se determinar o valor de R'_{2dc} , utilizando-se as equações 9.9 e 9.10.

$$R_{2dc}' = \frac{P_{cc}}{3.I_{Nf}^{2}} - R_{1ac}$$
 9.11

O valor de R_{1ac} pode ser obtido da relação:

$$\frac{R_{lac}}{R_{ldc}} = \frac{R_{eac}}{R_{edc}}$$
9.12

* A determinação da resistência R_{1dc} é calculada da seguinte forma:

$$R_{1dc} = \frac{V_{ccf}}{I_{ccf}}$$
 (ensaio em corrente contínua) 9.13

* A determinação da resistência R_{edc} é calculada da seguinte forma:

O valor de R_{edc} é obtido do ensaio do gráfico da fig. 9.4, levantado em laboratório.

Finalmente, determina-se X_e e R'_{2dc} , da seguinte forma:

$$X_e = [Z_e^2 - R_e^2]^{1/2} = X_1' + X_{20}'$$
 9.15
$$R'_{2dc} = R_{edc} - R_{1dc} \text{ (operação normal)}$$
 9.17

PARTIDA DO MIT

CONSIDERAÇÕES GERAIS SOBRE A PARTIDA

- Quase todos os motores de indução trifásicos poderiam partir em plena tensão (desde que alimentados por um barramento infinito).
- Todavia a alimentação do MIT não é ideal. Neste caso, embora o motor suporte a sobrecarga na partida, ocorre uma queda de tensão de alimentação, refletindo-se em todas as cargas ligadas no mesmo barramento.
- A queda de tensão na partida de um MIT de potência nominal (P) e corrente de partida ($I_p = kI_N$) produzida em um barramento de potência de curto-circuito (P_{cc}), expressa em percentagem da tensão nominal é:

$$\Delta V\% = 100.K.\frac{P}{P_{co}}$$
 10.1

- Este valor não pode ultrapassar 10%. Quando esta percentagem é ultrapassada, são utilizados métodos de partida, conforme descrito a seguir.

PARTIDA COM PLENA TENSÃO

Quando a queda de tensão durante a partida fica dentro dos valores admissíveis, pode-se usar o sistema de partida direta. A fig. 10.1 mostra o diagrama funcional do ramo de alimentação de um MIT, que através de comandos manuais pode operar nos dois sentidos de rotação. Está previsto um relé de tempo que impede o religamento do motor, antes da parada total.

Fig 10.1

No diagrama da fig.10.1, tem-se:

A₁ - Secionador sob carga (para fins de manutenção);

F₁, F₂, F₃ e F₄ - Fusíveis de proteção;

k₁ e k₂ - Contatores;

s₁ e s₂ - Botões liga (à direita e à esquerda);

s₃ - Botão desliga;

d₁ - Relé de tempo;

d_{1i} - Contato instantâneo do relé de tempo;

d_{1t} - Contato temporizado do relé de tempo;

PARTIDA COM TENSÃO REDUZIDA CHAVE ESTRELA - TRIÂNGULO

Quando, devido às características da rede, a partida direta não seja possível, é utilizada a partida do motor com tensão reduzida. Um dos métodos mais eficientes e mais largamente utilizados é a partida do motor com utilização da chave estrela-triângulo automática.

Na partida os enrolamentos do motor são ligados em Y e quando a velocidade de operação é praticamente atingida, a conexão é mudada para Δ .

Tomando-se como base a fig. 10.2, pode-se escrever:

$$I_Y = \frac{V}{\sqrt{3}.Z}$$
 e $I\Delta = \frac{I\Delta}{\sqrt{3}} = \frac{V}{Z}$

fig.10.2

Comparando as duas equações, tem-se:

$$I_Y = \frac{I\Delta}{3}$$
 10.2

Isto significa que a utilização da chave tem como conseqüência a redução para um terço da corrente de partida.

Todavia deve-se observar que o conjugado de partida (que depende do quadrado da tensão) é também reduzido para um terço do conjugado normal (plena tensão).

$$T_{PY}=Aigg(rac{V_1^2}{\sqrt{3}}igg)$$
 e $T_{p_\Delta}=A.V_1^2$, onde A é uma constante para as condições de partida.

Logo:
$$T_{PY} = \frac{T_{P_{\Delta}}}{T_{P_{\Delta}}} \tag{10.3}$$

A equação 8.14 permite concluir que a chave $Y-\Delta$ só pode ser usada quando o acionamento parte a vazio ou com carga muito pequena.

A fig. 10.3 mostra o diagrama funcional de uma chave $Y-\Delta$ automática.

Fig. 10.3

Fig. 10.4

OBS.: Com a redução da tensão o torque com a velocidade se comporta como na fig. 10.4.

PARTIDA COM TENSÃO REDUZIDA - CHAVE COMPENSADORA AUTOMÁTICA.

A Chave compensadora é usada para reduzir a elevada corrente de partida de um MIT, aliviando a rede elétrica de alimentação.

A tensão de partida do motor é reduzida através do auto-transformador dessa chave(geralmente provido de taps, por exemplo, 65 e 80%).

A tensão do tap usada deverá ser tal que permita a aceleração do conjunto motor-carga até uma velocidade próxima à sua rotação nominal(90% ou mais), dentro de um tempo de partida admissível para o motor.

A corrente e o torque de partida fica reduzidos a "a²" de seu valor nominal, onde: a'>1; a' = relação entre tensão secundária e tensão primária(no auto-transformador).

A fig. 10.5 ilustra o diagrama funcional de uma chave compensadora automática.

A chave compensadora é usada como processo de partida em motores assíncronos trifásicos quando:

É necessário um certo torque de partida, ou seja, o MIT parte com carga parcial ou até com plena carga(moinhos após falta de energia, exaustores, ventiladores, etc.).

Mesmo na falta das exigências em "a", o motor não satisfaz as exigências para ser acionado por chave estrela-triângulo, ou seja, a tensão da rede coincide com a tensão de placa em "Y" ao invés de coincidir com a de triângulo.

Exemplo: Rede 380[V], Motor Y - 380[V] $\Delta - 220[V]$

fig. 10.5

FRENAGEM DE MIT

Existem dois métodos usuais para frenagens elétricas de motores de indução trifásicos: Frenagem com corrente contínua(CC);

Frenagem por inversão de fases.

FRENAGEM COM CC

A aplicação de tensão contínua nos enrolamentos do motor provoca um campo magnético estacionário. O comportamento do conjugado em função da velocidade, durante a frenagem, é semelhante ao do conjugado de partida.

A fig. 11.1 mostra, para os dois tipos de conexão dos enrolamentos do estator, a aplicação de tensão contínua para obtenção de frenagem.

fig.11.1

A figura 11.2 ilustrada comportamento físico da frenagem.

$$\vec{V} \times \vec{B} = V.B. \operatorname{sen} \theta$$

$$\vec{F} = lx\vec{i}x\vec{B}$$

fig.11.2

Neste tipo de frenagem, define-se o tempo de frenagem e a partir daí é calculado a corrente. Admitindo-se que o conjugado de carga contribua para a frenagem, para que a frenagem ocorra no tempo t_{fR} , o motor deve produzir o conjugado T_{fR} definido pela a equação.

$$T_{fRM} + T_{CM} = -\frac{2\pi}{60} J_T \cdot \frac{\Delta_n}{\Delta_t} = \frac{2\pi}{60} J_T \cdot \frac{n_N}{t_{fR}}$$
 11.1

Para simplificar o problema, adota-se para T_{fR} um valor médio, conforme mostra a fig.11.3.

fig.11.3

Este valor $\,$ médio pode ser calculado em função do conjugado de frenagem para s=1. $\,$ T_{Fm} = $b.T_{fR1}$

Para os enrolamentos do estator percorridos por corrente alternadas, os conjugados de partida e frenagem para s=1 variam com o quadrado da corrente.

$$\frac{T_{fR1}}{T_P} = \left(\frac{I}{I_P^*}\right)^2,$$
11.3

onde: (ver equação 8.4)

T_{fr1} – conjugado inicial de frenagem;

Tp – conjugado de partida;

 I – Valor eficaz da corrente na fase que produz o o conjugado de frenagem, em substituição ao modelo

CC:

Ip* – valor eficaz da corrente de partida na fase.

Admitindo-se os enrolamentos do estator ligados em Y, o valor da corrente contínua que produz o mesmo efeito do valor eficaz I pode ser obtido a partir das igualdades entre as forças magnetomotrizes.

- Para corrente contínua, tem-se:

$$F_{MM}^{2} = (N.I_{fR})^{2} + (N.I_{fR})^{2} + 2.(N.I_{fR})^{2}.\cos 60^{0}$$

$$F_{MM} = \sqrt{3}.I_{fR}.N$$
 11.4

Onde:

I_{fR} – valor médio da corrente contínua de frenagem;

N – número de espiras por fase do enrolamento do estator.

Para corrente alternada I, tem -se:

$$F_{MM} = N.\operatorname{Im} + N.\frac{\operatorname{Im}}{2}.\cos 60^{\circ} + N.\frac{\operatorname{Im}}{2}.\cos 60^{\circ}$$

$$F_{MM} = \frac{3}{2}.\operatorname{Im}.N \Rightarrow \operatorname{Im} = \sqrt{2}.I$$

$$F_{MM} = \frac{3}{2}.\sqrt{2}.I.N = 2,12I.N$$
11.5

Comprando-se as equações 11.4 e 11.5, obtém-se;

Levando-se em conta as equações 11.1, 11.2, 11.3 e 11.6, encontra-se:

$$I_{fR} = 1,23.I_{pf}^*.\sqrt{\frac{2.\pi J.n_{2N}}{60.t_{fR}} - T_C}$$

$$b.T_P$$
11.7

Para os enrolamentos ligados em Δ tem-se:

$$I_{fR} = 2,12.I_{pf}^*.\sqrt{\frac{\frac{2\pi J.n_{2N}}{60.t_{fR}} - T_C}{b.T_P}}$$
11.8

FRENAGEM POR INVERSÃO DE FASES

Quando inverte-se duas fases da tensão de alimentação do estator no MIT, na verdade esta invertendo-se o sentido de rotação do campo girante.

O princípio de funcionamento pode ser visto na fig. 11.3

Antes da inversão das fases, a velocidade do motor tem o mesmo sentido do campo girante. Após a inversão estes apresentam sentidos contrários.

$$\overrightarrow{F} = \overrightarrow{lixB}$$
 fig.11.5

Portanto a força \overrightarrow{F} age no sentido de freiar o rotor.

Na frenagem por inversão de fases, o conjugado produzido pode ser obtido em relação ao conjugado de partida.

$$\frac{Tp}{Tk} = \frac{2}{\frac{1}{SK} + SK} \qquad e \qquad \frac{TfR1}{Tk} = \frac{2}{\frac{2}{SK} + \frac{Sk}{2}}$$
(a) (b)

Dividindo-se "b" por "a", obtém-se:

$$\frac{T_{fR1}}{T_P} = \frac{2(1+SK^2)}{4+SK^2}$$
 11.9

Neste tipo de frenagem a corrente de frenagem a corrente é maior que a corrente de partida. Para motores normais pode-se tomar:

$$I_{fR1} \cong 1,3 I_{P}$$
 11.10

O conjugado de frenagem, conforme pode ser visto pela equação 11.9 é praticamente a metade do conjugado de partida.

Admitindo-se que o conjugado da carga contribua para a frenagem, obtém-se para o termo de frenagem:

$$t_{fR1} = \frac{2\pi . J. n_N}{60[T_{fRM} + Tc_M]}$$
 11.11

Obs.: Este método é restringido à pequenos motores (corrente de frenagem grande e torque de frenagem pequeno).

Exemplo 4:

Um MIT apresenta os seguintes dados nominais:

$$\begin{array}{c} {\rm P_N=37~[KW]} & {\rm I_N=75~[A]} \\ {\rm n_N=3550~[rpm]} & {\rm V_N=380~[V],~60~[HZ]} \\ {\rm T_N=99,53~[N.m]} & {\rm \eta_N=84\%} \\ \hline \frac{T_p}{T_N}=2,4 & {\rm cos}\varphi=0,88 \\ \\ {\rm I_P=6,5.I_N} \\ \hline \frac{T_k}{T_N}=2,1 & {\rm J_M=0,33~[Kg.m^2]} \end{array}$$

O motor aciona uma carga constante e nominal acoplada diretamente ao eixo e de momento de inércia 0,36 [Kg.m²]. Sabendo-se que a frenagem ocorre a vazio, analise os métodos com corrente contínua e inversão de fases.

Frenagem com CC.

O tempo e a corrente de frenagem são definidos a partir das equações válidas para o motor ligado em triângulo.

$$I_{fR} = 2,12 \ I_{Pf}^{*} \sqrt{\frac{\frac{2\pi . J.n_{N}}{60.t_{fR}} - Tc}{b.T_{p}}}$$

Onde:

$$Ipf^* = 6.5 \frac{I_N}{\sqrt{3}} = 6.5 \frac{75}{\sqrt{3}} = 281.46 [A] ;$$

$$J = J_M + J_C = 0.33 + 0.36 = 0.69 [Kg.m2]$$
;

 $n_N = 3550 [rpm]$;

 $T_C = 0$ (frenagem a vazio);

 $t_{fR} = 1.5$ [seg.] (valor definido);

$$T_P = 2.4 T_N = 2.4 .99,53 = 238,87 [N.m]$$

O fator 'b' representa a relação entre o conjugado médio de frenagem e o conjugado de partida. Das características do motor sugere-se b = 0,94. Desta forma resulta:

$$I_{fR} = 2,12 . 281,46. \sqrt{\frac{\frac{2\pi.0,69.3550}{60.1,5}}{0,94.238,87}}$$

$$I_{fR} = 520,73 [A]$$

b) Frenagem por inversão de fases.

Neste caso a corrente de frenagem vale aproximadamente 30% mais que a corrente de partida.

$$I_{fRL} = 1.3 . I_{PL} = 1.3 . 6.5 . 75 = 633.75 [A]$$

O conjugado desenvolvido inicialmente pelo motor será:

$$T_{fR1} = Tp \frac{2.(1 + S_K^2)}{4 + S_K^2}$$

Uma vez que o parâmetro S_K é muito pequeno, pode-se concluir:

$$T_{fR1} \cong \frac{T_p}{2} = \frac{238,87}{2} = 119,435 \text{ [N.m]}$$

Observa-se que este é o valor inicial do conjugado de frenagem, cujo comportamento é mostrado abaixo:

Pode-se então, para o cálculo do tempo de frenagem, tomar o valor médio do conjugado

$$\begin{aligned} \mathbf{t}_{\text{fR}} &= \frac{2\pi.J.n_{_N}}{60.(T_{_{f\!R\!M}} + Tc_{_M})} = \frac{2\pi.0,69.3550}{60.(\frac{238,87 + 119,435}{2})} \\ &\quad \mathbf{t}_{\text{fR}} = \text{1,43 [seg.]} \end{aligned}$$

Os tempos de frenagem para os dois métodos são praticamente iguais, porém as correntes requeridas da linha são bastante diferentes. Na frenagem por inversão de fases esta corrente vale 633,75 [A], enquanto que para frenagem com corrente contínua tem-se:

$$I_L = I_{fR} \cdot \sqrt{\frac{2}{3}} = 520,73. \sqrt{\frac{2}{3}}$$
 $I_L = 425,17 [A]$

OBS.: O circuito de força para a realização da frenagem por injeção de corrente contínua pode ser visto na fig. 11.5.

fig.11.6

Frenagem por injeção de CC, o fator $\sqrt{2/3}$ se deve ao tipo de conversor utilizado (no caso um conversor CA/CC não controlado).

CONTROLE DE VELOCIDADE DO MOTOR DE INDUÇÃO TRIFÁSICO

CONSIDERAÇÕES GERAIS

A partir da equação que relaciona a velocidade do motor com a velocidade síncrona e o escorregamento, pode-se concluir:

$$n_2 = \frac{2.60}{p1} \cdot f_1 \cdot (1 - s) \tag{12.1}$$

Inicialmente, verifica-se que a velocidade n_2 do motor pode ser controlada através de variação da freqüência da tensão aplicada ao estator, do número de pólos e do escorregamento. Os métodos usuais são os de variação de freqüência e do escorregamento.

CONTROLE DE VELOCIDADE ATRAVÉS DE VARIAÇÃO DA FREQUÊNCIA DA TENSÃO DO ESTATOR

Este método constitui-se atualmente no método mais atraente e de maior crescimento de aplicações em acionamentos controlados. A sua limitação de aplicação no passado deveu-se a complexidade e custo do sistema de controle.

Atualmente com o desenvolvimento acelerado dos conjuntos de eletrônica de potência, pode-se aproveitar plenamente as vantagens do MIT, tornando o seu comportamento semelhante ao do motor de corrente contínua em termos de variação de velocidade.

Levando-se em conta as equações 5.5 e 8.4 obtém-se:

$$T = \frac{60}{2\pi n_0} . I_2^{'2} . \frac{R_2^{'}}{s}$$
 8.4

е

$$I_{2}' = \frac{E_{20}'}{\left[\left(\frac{R_{2}'}{s}\right)^{2} + X_{20}'^{2}\right]^{1/2}}$$
 5.5

$$T = \frac{60}{2\pi . n_1} \cdot \frac{E_{20}^{'2}}{\left[\left(\frac{R_2^{'}}{s} \right)^2 + X_{20}^{'2} \right]} \cdot \frac{R_2^{'}}{s}$$
 12.2

Como normalmente os motores disponíveis no mercado operam com escorregamento muito pequeno, podese considerar:

$$\left(\frac{R_2^{'}}{s}\right)^2 >> X_{20}^{'2}$$

Resultado então para a equação 12.2:

$$T = \frac{60}{2\pi . n1} . E_{20}^{'2} . \frac{s}{R_2'}$$
 12.3

Lembrando-se que a tensão de partida do rotor é diretamente proporcional à tensão do estator e, levando-se em conta a equação 4.1,

 $K_{20} \rightarrow Relação de tensão entre rotor e estator na partida.$

obtém-se:

$$T = \frac{60}{2\pi \cdot \frac{120}{p_1} \cdot f_1} \cdot (K_{20} \cdot V_1)^2 \cdot \frac{s}{R_2}$$
 12.4

Multiplicando-se e dividindo-se a equação 12.4 por f₁, obtém-se:

$$T = \frac{P_1 \cdot K_{20}^2}{4\pi} \cdot \left(\frac{V_1}{f_1}\right)^2 \cdot \frac{s \cdot f_1}{R_2}$$
 ou

$$T = K_{20} \cdot \left(\frac{V_1}{f_1}\right)^2 \cdot \frac{s \cdot f_1}{R_2}$$
 12.5

onde:
$$K_{20}' = \frac{p_1.K_{20}^2}{4\pi}$$

A equação 12.5 permite concluir que, variando-se a tensão e freqüência do estator na mesma proporção, a freqüência $s.f_1 = f_2$ da tensão induzida no rotor dependerá apenas do comportamento da carga. Por outro lado, a variação simultânea da tensão e freqüência do estator, torna o fluxo no entre-ferro praticamente constante.

Considerando-se que o fluxo permanece constante e, a freqüência f_2 da tensão induzida no rotor depende da carga, o valor eficaz de V_2 (E_2) dessa tensão passa a depender também apenas da carga. O mesmo acontece com a corrente I_2 do rotor. Dessa forma pode-se concluir que no controle de velocidade do MIT através de variação simultânea e na mesma proporção de tensão e freqüência, a corrente do motor dependerá apenas do comportamento da carga, como acontece em motores CC com excitação independente.

A equação 12.5 para as condições nominais vale:

$$T_{N} = K_{20} \cdot \left(\frac{V_{N}}{f_{1N}}\right)^{2} \cdot \frac{s_{N} \cdot f_{1N}}{R_{2}}$$
 12.6

Comparando-se as equações 12.5 e 12.6, obtém-se:

$$\frac{T}{T_{N}} = \left(\frac{V_{1}}{f_{1}}\right)^{2} \left(\frac{f_{1N}}{V_{1N}}\right)^{2} \cdot \frac{s \cdot f_{1}}{s_{N} \cdot f_{1N}}$$

$$\frac{T}{T_N} = \frac{s.f_1}{s_N.f_{1N}}$$

$$\frac{T}{T_{N}} = \left(\frac{n_{1} - n_{2}}{n_{1}}\right) \left(\frac{f_{1}}{f_{1N}}\right) \left(\frac{n_{1N}}{n_{1N} - n_{2N}}\right)$$

$$\frac{T}{T_N} = \left(\frac{n_1 - n_2}{n_{1N} - n_{2N}}\right) \left(\frac{f_1}{f_{1N}}\right) \left(\frac{120.f_{1N}}{p_1}\right) \left(\frac{p_1}{120.f_1}\right)$$

$$\frac{T}{T_N} = \frac{n_1 - n_2}{n_{1N} - n_{2N}} \longrightarrow \frac{T}{T_N} (n_{1N} - n_{2N}) = n_1 - n_2$$

$$n_1 = \frac{T}{T_N} (n_{1N} - n_{2N}) + n_2$$
 12.6 (a)

$$\frac{120.f_1}{p_1} = \frac{T}{T_N} \left(\frac{120f_{1N}}{p_1} - n_{2N} \right) + n_2$$

$$f_1 = \frac{T}{T_N} \left(f_{1N} - \frac{p_1 \cdot n_{2N}}{120} \right) + \frac{p_1 \cdot n_2}{120}$$
 12.7

Considerando-se a variação simultânea e de maneira proporcional para a tensão e freqüência do estator, obtém-se:

$$\frac{V_1}{f_1} = \frac{V_{1N}}{f_{1N}} \implies V_1 = \frac{V_{1N}}{f_{1N}}.f_1$$
 12.8

Apêndice B

Análise do termo $s.f_1=f_2$ na expressão da equação 12.5.

$$T = K_{20} \left(\frac{V_1}{f_1}\right)^2 \cdot \frac{s \cdot f_1}{R_2}$$
 12.5

Sabe-se que da equação 12.6(a), tira-se:

$$n_2 = n_1 - \frac{T}{T_N} (n_{1N} - n_{2N})$$
 12.6 (a)

Para melhor compreensão do fato, exemplificar-se-á numericamente a mudança de freqüência de alimentação do estator, mantida a carga constante.

Seja:

$$\begin{array}{rcl} p_1 &=& 4 \ \ p\'olos; \\ & n_{1N} \,=& 1800 \ rpm, \\ & n_{2N} \,=& 1780 \ rpm; \\ & s_N &=& 0,01111. \end{array} \qquad f_1 = 60 \ Hz;$$

Suponha-se que o MIT deva operar na freqüência de 50 Hz (f₁ = 50 Hz)

$$n_1 = \frac{120}{p_1}.f_1 = \frac{120}{4}.50 = 1500$$
 rpm

Da equação 12.6 (a), tira-se:

$$n_2 = 1500 - \frac{T_{\scriptscriptstyle N}}{T_{\scriptscriptstyle N}} \big(1800 - 1780\big) = 1480 \ \mathrm{rpm}$$

$$s = \frac{n_1 - n_2}{n_1} = \frac{1500 - 1480}{1500} = 0,01333$$
Logo:

$$s_N.f_{1N} = 0.01111.60 = 0.666$$
 e $s.f_1 = 0.01333.50 = 0.666$

Portanto, o termo $s.f_1$ não varia com a frequência e sim com a carga, como mostra a equação 12.6(a).

Exemplo 5:

Um MIT apresenta os seguintes dados nominais:

$$P_N = 37 [kW];$$

$$V_N = 380 [V]$$
, 60 [Hz]; $n_N = 3540 [rpm]$.

Determine a tensão e frequência do estator para que o motor opere com 1770[rpm]. A carga é constante e nominal.

Da equação 12.7, obtém-se:

$$f_1 = \frac{T}{T_N} \left(f_{1N} - \frac{P_1 \cdot n_{2N}}{120} \right) + \frac{P_1 \cdot n_2}{120}$$

$$T = T_N$$
$$f_{1N} = 60 \text{ Hz}$$

 $n_{2N} = 3540$ [rpm] $n_2 = 1770$ [rpm], considerar $P_1=2$ pólos:

$$f_1 = \frac{T_N}{T_N} \left(60 - \frac{2.3540}{120} \right) + \frac{2.1770}{120}$$

$$f_1 = 30,5Hz$$

Da equação 12.8, obtém-se:

$$V_1 = \frac{V_{1N}}{f_{1N}}.f_1 = \frac{380}{60}.30,5$$

$$V_1 = 193,17[V]$$

CONTROLE DE VELOCIDADE ATRAVÉS DA VARIAÇÃO DO ESCORREGAMENTO

Este tipo de controle pode ser efetuado de duas formas:

Variação da tensão aplicada;

Variação da resistência do circuito do rotor.

VARIAÇÃO DA TENSÃO APLICADA

O comportamento do conjugado T=f(s) (em função do escorregamento da tensão aplicada no estator pode ser visto na fig.12.1.

fig.12.1

Considerando-se as características da fig.12.1 e, levando-se em conta a equação 8.12, obtém-se:

$$\frac{T_K^{'}}{T_K} = \left(\frac{E_{20}}{E_{20N}}\right)^2 \qquad E_{20N} = K_{20} V_{1N}$$

$$E_{20} = K_{20} V_{1}$$

$$12.9$$

$$\frac{T_K^{'}}{T_K} = \left(\frac{V_1}{V_{1N}}\right)^2$$
 12.10

Para as características 1 e 2 na fig.12.1, valem as equações:

$$\frac{T}{Tk} = \frac{2}{\frac{s}{s_k} + \frac{s_k}{s}}$$
 12.11

е

$$\frac{T}{T_K'} = \frac{2}{\frac{s}{s_k} + \frac{s_k}{s}}$$
12.12

Combinando-se as equações 12.12 e 12.10, obtém-se:

$$\frac{T}{Tk} = \frac{2}{\frac{s}{s_k} + \frac{s_k}{s}} \cdot \left(\frac{V_1}{V_{1N}}\right)^2$$
 12.13

A equação 12.13 representa o conjugado em função do escorregamento e da tensão aplicada no estator.

Para a operação nominal, a equação 12.13 vale:

$$\frac{T_N}{T_k} = \frac{2}{\frac{s_N}{s_k} + \frac{s_k}{s_N}}$$
 12.14

Combinando-se as equações 12.13 e 12.14, fornece:

$$V_{1} = V_{N} \cdot \sqrt{\frac{\frac{s}{s_{K}} + \frac{s_{K}}{s}}{\frac{s_{N}}{s_{K}} + \frac{s_{K}}{s_{N}}}} \cdot \left(\frac{T}{T_{N}}\right)$$
12.15

A equação 12.15 permite calcular o valor da tensão que deve ser aplicada no motor para obter-se a equação com o escorregamento "s", em função do tipo de carga acionada (T/T_N) .

É evidente que a tensão aplicada no estator não pode ser reduzida indefinidamente.

A tensão mínima de operação deve ser tal que o conjugado $T_{K}^{'}$ correspondente seja suficientemente maior que o conjugado de carga Tc, de modo que oscilações admissíveis da tensão da rede não provoque o travamento do rotor.

Exemplo 6:

Um MIT aciona uma carga variável e apresenta os seguintes dados nominais:

$$\begin{array}{lll} P_N = 55 \ [kW] & T_K/T_N = 3.0 \\ n_N = 3570 \ [rpm] & & & & & & \\ T_N = 147.12 \ [N.m] & & & & & & \\ T_P/T_N = 3.0 & & & & & & \\ V_N = 380 \ [V], \ 60 \ [Hz] & & & & \\ p = 7.I_N & & & & & \\ cos \phi_N = 0.9 & & & & \\ \end{array}$$

a) Determine a faixa de variação de velocidade do rotor obtida pelo controle da tensão do estator, admitindo-se a carga nominal e o conjugado $T_{K}^{'}$ para tensão mínima 1,8. T_{N} .

Como o conjugado $T_K^{'}$ para tensão reduzida deve ser 1,8. T_N , pode-se determinar a tensão mínima de operação com o auxílio da equação 12.10.

$$\frac{T_K^{'}}{T_K} = \left(\frac{V_{1\min}}{V_{1N}}\right)^2$$

$$\frac{T_K'}{T_N} = \left(\frac{V_{1\min}}{V_{1N}}\right)^2$$

$$\frac{1.8}{3.0} = \left(\frac{V_{1 \text{min}}}{V_{1 N}}\right)^2 \longrightarrow V_{1 \text{min}} = V_{1 N} \sqrt{\frac{1.8}{3.0}}$$

$$V_{1min} = 380 \sqrt{\frac{1,8}{3,0}} = 294,35 \text{ [V]}$$

Usando-se a equação 12.13, pode-se, calcular o escorregamento máximo com carga nominal.

$$\frac{T}{T_k} = \frac{2}{\frac{s}{s_k} + \frac{s_k}{s}} \cdot \left(\frac{V_{1_{\min}}}{V_{1_N}}\right)^2$$

$$\frac{T_N}{T_k} = \frac{2}{\frac{s_{\text{max}}}{s_k} + \frac{s_k}{s_{\text{max}}}} \cdot \left(\frac{V_{1_{\text{min}}}}{V_{1N}}\right)^2$$

$$s_{\text{max}} = s_k \left[\frac{T_k}{T_N} \left(\frac{V_{1 \text{min}}}{V_{1N}} \right)^2 - \sqrt{\left(\frac{T_k}{T_N} \right)^2 \left(\frac{V_{1 \text{min}}}{V_{1N}} \right)^4 - 1} \right]$$

Da equação 8.16, tira-se o valor de S_K.

$$S_K = S_N \cdot \left[\frac{T_K}{T_N} + \sqrt{\left(\frac{T_K}{T_N}\right)^2 - 1} \right]$$
 8.16

$$S_K = \frac{3600 - 3570}{3600} \left[3 + \sqrt{3^2 - 1} \right]$$

$$S_K = 0.0486$$

$$\frac{T_K}{T_N} = 3.0$$

$$\frac{V_{1\min}}{V_{1N}} = \sqrt{\frac{1,8}{3,0}}$$

Desta forma, obtém-se:

$$s_{\text{máx}} = 0.0486 \left[3. \left(\frac{1.8}{3} \right) - \sqrt{3^2 \left(\frac{1.8}{3} \right)^2 - 1} \right]$$

$$s_{máx} = 0.0147$$

A velocidade mínima correspondente será:

$$n_{2min} = n_1 (1-S_{max})$$

$$n_{2min} = 3600 (1 - 0.0147)$$

$$n_{2min} = 3546,93$$
 [rpm]

 $3546,93 < n_2 < 3570 \rightarrow$ faixa de variação de velocidade quando controlado através da variação da tensão do estator.

b) Determine para a tensão mínima de operação, calculada no item anterior, a velocidade do rotor quando a carga for de $0.5 \, T_N$.

Neste caso a equação 12.13 será:

0, 5.
$$\frac{T_N}{T_k} = \frac{2}{\frac{s_{\text{max}}}{s_k} + \frac{s_k}{s_{\text{max}}}} \left(\frac{V_{1\text{min}}}{V_{1N}}\right)^2$$

$$s_{\text{max}} = s_k \left[\frac{T_k}{0.5.T_N} \left(\frac{V_{1\text{min}}}{V_{1N}} \right) - \sqrt{\left(\frac{T_k}{0.5.T_N} \right)^2 \left(\frac{V_{1\text{min}}}{V_{1N}} \right)^2 - 1} \right]$$

$$s_{\text{max}} = 0.0486 \cdot \left[\frac{3}{0.5} \cdot \left(\frac{1.8}{3} \right) - \sqrt{\left(\frac{3}{0.5} \right)^2 \cdot \left(\frac{1.8}{3} \right)^2 - 1} \right]$$

 $sm\acute{a}x = 0,00689$

Logo:

$$n_{2min} = 3.600 (1 - 0.00689)$$

$$n_{2min} = 3575,21 [rpm]$$

<u>OBS.:</u> observe que o controle de velocidade do MIT através da variação da tensão do estator é bastante limitada no que diz respeito à faixa de variação da velocidade.

VARIAÇÃO DA RESISTÊNCIA DO CIRCUITO DO ROTOR

Do mesmo modo que no caso anterior, as equações 8.11 e 8.12 permitem concluir, que variando-se a resistência do circuito do rotor, o conjugado máximo T_k permanece constante e o escorregamento S_k varia. Seja o circuito indicado na fig.12.2.

fig.12.2

Para a chave ch fechada o escorregamento correspondente ao conjugado máximo vale S_K . Para a chave aberta esta escorregamento assume o valor S_{K1} . A relação entre estes parâmetros é fornecida pela equação 8.11.

$$\frac{S_{K1}}{S_K} = \frac{R_2 + R_{21}}{R_2} \tag{12.16}$$

A fig. 12.3. mostra a variação da característica T = f (s) com a introdução da resistência externa R₂₁.

fig.12.3

Exemplo 7:

Um MIT de anéis apresenta os seguintes dados nominais.

$$P_N = 160 [KW]$$
 $n_N = 1185 [rpm]$

$$V_{\rm N} = 440 \ [\ V], \ 60 \ [\ Hz) \qquad \qquad \frac{T_k}{T_N} = 2,8$$

$$I_{\rm N} = 265 \ [\rm A] \qquad \qquad n_{\rm N} = 93\%$$

$$V_{\rm 20} = 300 \ [\rm V] \qquad \qquad \cos \varnothing_{\rm N} = 0,86$$

$$I_{\rm 2N} = 345 \ [\rm A)$$

O motor aciona uma carga variável.

a) Determine as resistências a serem inseridas no circuito do rotor, para que com a carga nominal seja possível a operação com 1185 [rpm], 700 [rpm] e 500 [rpm].

Como é pretendida a operação com 4 velocidades diferentes, devem ser inseridos 3 estágios de resistências, um vez que uma das velocidades é a nominal. A fig. 12.4 mostra o diagrama unifilar do circuito.

fig.12.4

Para obtenção da velocidade nominal as chaves S₁, S₂ e S₃ devem estar fechadas.

A velocidade de 1000 rpm deve ser obtida para S₁ aberta, ou seja com R₂₁ inserida no circuito do rotor.

O escorregamento S_{K1} pode ser obtido através do escorregamento s_1 desejado.

$$S_1 = \frac{n_1 - n_2}{n_1} = \frac{1200 - 1000}{1200} = 0.167$$

$$S_{K1} = s_1 \left[\frac{T_K}{T_N} + \sqrt{\left(\frac{T_K}{T_N}\right)^2 - 1} \right]$$

$$S_{K1} = 0.167 \left[2.8 + \sqrt{2.8^2 - 1} \right]$$

$$S_{K1} = 0.904$$

O valor do estágio R₂₁ pode ser obtido em valor absoluto em valor absoluto com auxílio da equação 12.16.

$$r_{21} = \frac{S_{K1}}{S_K} - 1$$

Onde o valor de S_K é:

$$S_{K} = S_{N} \left[\frac{T_{K}}{T_{N}} + \sqrt{\left(\frac{T_{K}}{T_{N}}\right)^{2} - 1} \right]$$

$$s_k = \frac{1200 - 1185}{1200} \left[2.8 + \sqrt{2.8^2 - 1} \right]$$

$$s_k = 0.0677$$

Desta forma resulta:

$$r_{21} = \frac{0.904}{0.0677} - 1 = 12,355 \text{ p.u.}$$

A resistência a ser inserida $R_{21}\,$ deve ser 12,355 vezes a resistência própria do rotor.

Para o cálculo das resistências R_{22} e $R_{23}\,$ deve ser seguido o mesmo roteiro.

2º ESTÁGIO - R₂₂

$$s_{K2} = s_2 \left[\frac{T_k}{T_N} + \sqrt{\left(\frac{T_k}{T_N}\right)^2 - 1} \right]$$

$$s_{K2} = \frac{1200 - 700}{1200} \left[2.8 + \sqrt{2.8^2 - 1} \right]$$

$$s_{K2} = 2,258$$

$$r_{22} = \frac{s_{k2}}{s_k} - 1 - r_{21}$$

$$r_{22} = \frac{2,258}{0,0677} - 1 - 12,355$$

$$r_{22} = 20 \text{ p.u.}$$

3° ESTÁGIO - R₂₃

$$s_{k3} = s_3 \left[\frac{T_k}{T_N} + \sqrt{\left(\frac{T_k}{T_N}\right)^2 - 1} \right]$$

$$s_{k3} = \frac{1200 - 500}{1200} \left[2,8 + \sqrt{2,8^2 - 1} \right]$$

$$s_{k3} = 3,157$$

$$r_{23} = \frac{s_{k3}}{s_k} - 1 - r_{21} - r_{22}$$

$$r_{23} = \frac{3,157}{0,0677} - 1 - 12,355 - 20$$

$$r_{23} = 13,279 \text{ p.u.}$$

b) Determine o conjugado de partida do motor para as chaves S_1 , S_2 e S_3 abertas durante a partida.

Neste caso, a equação do conjugado será:

$$\frac{T}{T_k} = \frac{2}{\frac{S}{S_{k3}} + \frac{S_{k3}}{S}}$$

Para a partida tem-se:

$$\frac{T_p}{T_k} = \frac{2}{\frac{1}{S_{k3}} + \frac{S_{k3}}{1}}$$

$$\frac{T_p}{T_k} = \frac{2}{\frac{1}{3,157} + 3,157} = 0,576$$

ou ainda:

$$\frac{T_P}{T_N} = 0,576.\frac{T_k}{T_N}$$

$$\frac{T_P}{T_N} = 0,576 \times 2,8 = 1,612$$

Isto significa que se o motor partir com todas as resistências internas no circuito do rotor, o conjugado de partida será $1,612.T_{\rm N}$.

1.14 – ALGUNS TIPOS DE MOTORES DE INDUÇÃO

MOTORES DE ALTO RENDIMENTO

Os fabricantes de motores elétricos têm buscado nos últimos anos aumentar o rendimento dos motores elétricos. Esses motores utilizam materiais de melhor qualidade e, para a mesma potência no eixo, consomem menos energia durante um mesmo ciclo de operação.

Os motores de alto rendimento são dotados das seguintes características:

- uso de chapas magnéticas de aço silício de qualidade superior, que proporcionam a redução da corrente de magnetização e conseqüentemente, aumentam o rendimento do motor;
- uso de maior quantidade de cobre nos enrolamentos, o que permite reduzir as perdas Joule;
- alto fator de enchimento das ranhuras, proporcionando melhor dissipação do calor gerado pelas perdas internas:
- tratamento térmico do rotor, reduzindo as perdas suplementares;
- dimensionamento adequado das ranhuras do rotor e anéis de curto-circuito, o que permite reduzir as perdas Joule.

Veja figura abaixo:

Com base nas considerações anteriores, os motores de alto rendimento operam com temperaturas inferiores às dos motores convencionais, permitindo maior capacidade de sobrecarga, resultando um fator de serviço normalmente superior a 1,1.

Teoricamente, o rendimento dos motores pode atingir um número muito próximo à unidade, porém a um custo comercialmente insuportável para o comprador.

Quando se processa uma auditoria energética numa indústria, normalmente se estuda a conveniência econômica de substituição de alguns motores convencionais por motores de alto rendimento. Estes estudos recaem principalmente sobre os motores que operam continuamente.

MOTOR DE INDUÇÃO - ROTOR DE DUPLA GAIOLA

O motor de indução de dupla gaiola foi desenhado para que se conseguisse um melhor motor de partida direta da linha. A figura b) mostra um rotor fundido correspondente a um motor de grande capacidade, no qual são usados dois conjuntos de barras do rotor de diferentes ligas, tendo seções transversais de mesma área ou de área diferentes. A barra de cima é construída de uma liga de cobre de alta resistência e a barra de baixo pode ser de alumínio fundido ou de uma liga de cobre de baixa resistência. As barras de cima estão próximas do campo magnético girante e estão engastadas em ferro, de maneira que, quando por elas circula a corrente, sua auto-indutância e sua reatância de dispersão são pequenas. As barras de baixo são engastadas profundamente nas ranhuras e estão separadas do ferro do estator por um grande entreferro magnético, produzindo uma elevada auto-indutância e uma grande reatância de dispersão.

Na partida, portanto, quando a freqüência do rotor é grande e igual à da linha, a impedância do enrolamento de baixo é muito maior que a do enrolamento de cima. A maior parte da corrente do rotor é induzida, portanto, no enrolamento de cima, que é projetado de tal maneira que a sua alta resistência iguale sus reatância durante a partida, desenvolvendo-se o torque máximo.

Conforme o motor acelera, entretanto, a freqüência do rotor cai e a impedância do enrolamento mais baixo também cai, fazendo com que mais e mais corrente seja induzida nele. Para pequenos valores de escorregamento, portanto, quando o motor está na sua gama de funcionamento normal de plena carga, a maior parte da corrente circula pelo enrolamento de baixo de baixa resistência, levando a um alto rendimento (baixas perdas no cobre) e uma boa regulação de velocidade (escorregamento proporcional à resistência).

Motores de Indução Monofásicos

O motor de indução monofásico possui um único enrolamento no estator. Este enrolamento gera um campo que não é girante, mas se alterna ao longo do eixo do enrolamento.

Quando o rotor está parado, o campo do estator, induz correntes no rotor. O campo gerado no totor tem polaridade oposta ao do estator(Lei de Lenz). A oposição dos campos determina o aparecimento de forças que atuam sobre a parte superior e a parte inferior do rotor, com a tendência de girá-lo 180 graus a partir da posição inicial. A ação de forças é igual e. ambos os sentidos, pois elas atuam através do centro do rotor (regra da mão esquerda). O resultado é que o rotor continua parado.

Entretanto, se o rotor estiver girando ao se ligar o motor, ele continuará em movimento no sentido inicial, pois a ação das forças será ajudada pela inércia do rotor.

Como o campo criado pela tensão monofásica aplicada ao enrolamento do estator é pulsativo, os motores de indução monofásicos desenvolvem um torque pulsativo, Portanto eles são menos eficientes do que os motores trifásicos cujos torques são mais uniformes.

Motores de Indução Monofásicos - Fase Dividida

Já se sabe que o motor monofásico continua girando, depois de dada a da partida no mesmo. Contudo, não é prático acionar o rotor com a mão, e portanto, um dispositivo elétrico deve ser incorporado ao estator para dar origem a um campo resultante não nulo na partida. Assim temos o motor de fase dividida. Esse motor possiu um enrolamneto principal e um auxiliar (para a partida),. O eixos dos dois enrolamentos ficam separados fisicamente por 90 graus. O enrolamento auxiliar cria um deslocamento de fase que produz o torque (conjugado) necessário para a rotação inicial.

Quando o motor atinge uma rotação pré-determinada (geralmente 75% da velocidade normal), o enrolamento auxiliar é desconectado da rede através de uma chave que normanmente é acionada pela força centrífuga. Como o enrolamento auxuiliar é dimensionado para atuar somentew na partida seu não desligamento provocará a sua queima. Estes motores são usados em máquinas de escritório, ventiladores e exaustores, bombas centrífugas. O sentido de rotação é invertido com a troca das ligações do enrolamento auxiliar.

Motores de indução Monofásicos - Capacitor de Partida

É semelhante ao de fase dividida. A principal diferença está na inclusão de um capacitor eletrolítico em série com o enrolamento auxiliar de partida. O capacitor permite um maior ângulo de defasagem entre as correntes dos dois enrolamentos, proporcionando assim, elevados conjugados de partida. Da mesma forma que o motor monofásico anterior, após a partida e depois de atingir determinada velocidade, a chave centrífuga retirará o enrolamento auxiliar e o capacitor.

EXERCÍCIOS PROPOSTOS

1. Demonstre a expressão 10.1 e, calcule a flutuação de tensão em um alimentador no instante da partida de um MIT, sabendo-se que a corrente de partida é 5 vezes a corrente nominal e que, o motor expressa os seguintes dados nominais:

```
Pn = 400 \text{ [KW]} Vn = 380 \text{ [V], } 60 \text{ [Hz], } Y \eta = 0.9 Zi = 0.5 \text{ [pu]} \quad Impedância de entrada do alimentador
```

- **2.** Demonstre a expressão que calcula a corrente de frenagem por injeção de corrente contínua, supondo-se que os enrolamentos do estator estejam ligados em delta.
- 3. Explique de maneira sucinta as vantagens e desvantagens do MIT em relação ao motor CC.
- 4. Quais as maneiras de se obter campo girante, e em que máquinas são encontradas.
- 5. Defina e explique sobre a grandeza "escorregamento".
- **6.** Invertendo-se duas fases de um MIT, inverte-se também o sentido de rotação do campo girante, explique. Justifique o princípio de funcionamento de frenagem por inversão de fases.
- 7. Explique o princípio de funcionamento de frenagem por injeção de corrente contínua.
- **8.** Com base no diagrama de força e comando, explique o funcionamento e seqüência de operação dos contatores e relês de uma chave Y-delta (conforme fig. 10.3).

9. Seja um MIT com rotor em gaiola, 60 Hz, 6 pólos, velocidade nominal igual a 1160 rpm, Tn=3,25 N.m. E_{20} =50 V/fase, R_2 =0,2 Ohm/fase, X_{20} =0,8 Ohm/fase. Baseado nestes dados complete a tabela abaixo para os seguintes escorregamentos.

s = [1,0;0,75;0,5;0,25;0,1;0,05;0,033;0,02;0,01;0,005;0,0]

n_2	f_2	E_2	X_2	Z_2	I_2	$\cos \psi_2$	Wj_2	Pin	Р	Т

- **10.** Construir os gráficos: Tx_5 ; Txn_2 ; Txl_2 ; $Txcos\psi_2$; em relação ao problema $n^{\underline{o}}$ 9.
- **11.** Um MIT trifásico, 60 Hz, 6 pólos, consome 48 kW a 1140 rpm. A perda no núcleo é de 1,6 kW , a perda no cobre é de 1.4 kW, a perda mecânica é de 1 kW. Calcule o rendimento.
- **12.** UM MIT de 10 CV, 6 pólos, 60 Hz, gira a um escorregamento de 3% a plena carga. As perdas rotacionais e suplementares a plena carga são 4% da potência de saída. Calcular:

A perda no cobre do rotor a plena carga;

- b. O conjugado a plena carga;
- c. A potência entregue pelo estator ao entreferro a plena carga.
- **13.** Um MIT em gaiola, 10 CV, 230 V, 60 Hz, ligado em Y, 4 pólos, desenvolve um conjugado interno em plena carga a um escorregamento de 0,004 quando funciona a tensão e freqüência nominais. Para os objetivos deste problema, as perdas rotacionais e no ferro podem ser desprezadas. Os valores das impedâncias do motor são:

$$R'_2=0,125 \Omega/fase;$$

$$R_1 = 0.36 \Omega/\text{fase}$$
;

$$X_1 = X_{20}$$
 '=0,47 Ω /fase;

$$Xm = 15.5 \Omega/fase$$
:

$$E'_{20} = 380 \text{ V}$$

Determine o conjugado interno máximo sob tensão e freqüência nominais, o escorregamento à máximo conjugado e , o conjugado interno de partida sob tensão e freqüência nominais.

14. Um MIT com tensão e freqüência nominais, tem um conjugado de partida de 160% e um conjugado máximo de 200% do conjugado nominal. Desprezando-se as perdas rotacionais e a resistência de estator, supondo-se que a resistência do rotor seja constante, determinar:

O escorregamento a plena carga;

O escorregamento com conjugado máximo;
c. A corrente de rotor na partida, em p.u. da corrente no rotor a plena carga.
15. Quando funcionado sob tensão e corrente nominais, um MIT em gaiola (classificado c alto escorregamento) fornece potência nominal com escorregamento 8,5% e desenvolve

15. Quando funcionado sob tensão e corrente nominais, um MIT em gaiola (classificado como um motor de alto escorregamento) fornece potência nominal com escorregamento 8,5% e desenvolve um conjugado máximo de 250% do conjugado nominal a um escorregamento de 50%. Desprezar as perdas no ferro e rotacionais e, supor que as resistências e reatâncias do motor são constantes.

Determine o conjugado e a corrente do rotor de partida com tensão e freqüência nominais.

16. Um MIT em gaiola gira com escorregamento de 5% em plena carga. A corrente do rotor na partida é 5 vezes a corrente do rotor em plena carga. A resistência do rotor é independente da freqüência do rotor e, as perdas rotacionais, perdas suplementares e resistência do estator podem desprezadas. Calcule:

O conjugado de partida;

- b. O conjugado máximo e seu correspondente escorregamento.
- **17.** Um MIT de anéis, 50 CV, 440V, 60Hz, 4 pólos, desenvolve um conjugado interno máximo de 250% com escorregamento de 16%, quando funciona sob tensão e freqüência nominais com rotor curto-circuitado diretamente nos anéis coletores. A resistência de estator e as perdas rotacionais podem ser desprezadas a e resistência do rotor pode ser considerada constante. Determine:

O escorregamento em plena carga;

b. A perda do cobre do rotor a plena carga;

O conjugado de partida com tensão e frequência nominais;

d. O conjugado nominal.