Machine Learning

Dia 5 - Métricas e Seleção de Modelos

ImageU - Grupo de Pesquisa em Machine Learning e Visão Computacional https://imageu.github.io/

Curso de Verão 2022

Instituto de Matemática e Estatística - IME USP

Programa

- 1. Seleção de Modelos
- 2. Como escolher o melhor modelo?
- 3. Regularização
- 4. Métricas

Seleção de Modelos

Seleção de Modelos

- Bons modelos devem equilibrar duas forças:
 - Capacidade de explicação dos dados conhecidos
 - Capacidade de generalização para novos dados
- Para aferir estas propriedades, utilizamos:
 - Métricas
 - Diferentes "visões" do dataset

- Obtenção dos dados
- Divisão dos dados em dois conjuntos: treinamento e teste
- Treinamento de diferentes modelos com o conjunto de treinamento
- Escolha do melhor modelo
- Avaliação do melhor modelo no conjunto de teste

- Obtenção dos dados
- Divisão dos dados em dois conjuntos: treinamento e teste
- Treinamento de diferentes modelos com o conjunto de treinamento
- Escolha do melhor modelo
 - Como escolher o melhor modelo?
- Avaliação do melhor modelo no conjunto de teste

- Antes, uma palavrinha sobre viés (bias)
 - Confirmation Bias: quando selecionamos os dados e/ou resultados que mais favorecem os nossos experimentos;
 - Selection Bias: problema na seleção dos dados que prejudica a obtenção de amostras representativas;
 - Survival Bias: quando nos concentramos em apenas uma parte do dataset, ignorando que há outros dados

- Antes, uma palavrinha sobre viés (bias)
 - Confirmation Bias: tenho uma opinião, e só busco informações que a confirmam;
 - Selection Bias: pesquisa eleitoral realizada somente em regiões que sabidamente favorecem um candidato;
 - Survival Bias: todo mundo que morreu de câncer bebeu água, portanto água deve causar câncer. (e quem não morreu de câncer?)
 - Serve para lembrar que correlação != causalidade :-)

Como escolher o melhor modelo?

Definições

- Seja E_{in} o erro de um modelo sobre o conjunto de treinamento (in-sample)
- Seja E_{out} o erro de um modelo sobre o conjunto de teste (out-of-sample)
- Baixo E_{in} indica que o modelo possui boa capacidade de explicação dos dados de treinamento
- Baixo E_{out} indica que o modelo possui boa capacidade de generalização para os dados de teste (e com sorte, para outros dados não vistos durante o treinamento)
- O modelo ideal é aquele em que $E_{in} \approx E_{out}$
- E quando isso não ocorre?

- $E_{in} << E_{out}$ é sinal de overfitting
- Overfitting é quando o modelo está sobreajustado aos dados de treinamento
- Dizemos popularmente que o modelo "memorizou" os dados de treinamento, e portanto não tem boa capacidade de generalização
- Ein alto é sinal de underfitting
- Underfitting ocorre quando:
 - O modelo é muito simples para os dados (mais raro)
 - Os dados possuem algum problema, como atributos não informativos, erros de rotulação, etc (mais comum)

Em modelos de Regressão:

Em problemas de Classificação:

- O que fazer em casos de Overfitting? (mais comuns)
 - Utilizar um modelo mais simples
 - Treinar por menos iterações
 - Aplicar regularização*
 - Validação cruzada (cross validation)*
 - Conseguir mais dados*
- O que fazer em casos de Underfitting? (mais raros)
 - Checar qualidade dos dados
 - Utilizar modelos mais complexos
 - Conseguir mais dados
- Note que conseguir mais dados quase sempre ajuda em problemas de ML

Cross Validation (CV)

- Técnica para estimar E_{out} com parte dos dados de treinamento
- Ajuda a evitar o overfitting
- Estratégias mais comuns:
 - Hold-out (utilizada em Deep Learning)
 - k-Fold Cross Validation (utilizada em todo o resto)

Hold-out

- Reservamos uma parte do conjunto de treinamento para validação
- Estimamos E_{out} utilizando o conjunto de validação. Chamamos essa estimativa E_{val}

- Vantagens:
 - Requer treinar apenas um modelo para cada conjunto de parâmetros
- Desvantagens:
 - Se D_{valid} for muito pequeno, E_{val} não será uma boa estimativa
 - Se D_{valid} for muito grande, sobrarão poucos dados para treinamento
 - E_{val} pode ser uma estimativa otimista de E_{out} , dependendo da escolha de D_{valid}

k-Fold Cross Validation

- Repetimos k vezes a estratégia usada em Hold-out:
 - Dividimos D_{train} em k partes iguais D_1, D_2, \ldots, D_k
 - Repetimos o treinamento k vezes
 - Na rodada i, $D_{train}^{(i)} = D \setminus D_i$ e $D_{val}^{(i)} = D_i$

$$\bullet \quad E_{cv} = \frac{1}{k} \sum_{i=1}^{k} E_{val}^{(i)}$$

• Exemplo com k = 5:

- Vantagem: E_{cv} é uma estimativa mais robusta de E_{out} do que E_{val}
- Desvantagem: É preciso treinar k modelos

Workflow Típico de ML - Ajustado

- Obtenção dos dados
- Divisão dos dados em dois conjuntos: treinamento e teste
- Treinamento de diferentes modelos com o conjunto de treinamento
 - Utilizando Cross Validation
- Escolha do melhor modelo
- Avaliação do melhor modelo no conjunto de teste
 - Depois de re-treinar o melhor modelo com todo o conjunto de treinamento

Regularização

Regularização L1 e L2

- Conjunto de técnicas que ajudam o algoritmo de aprendizagem a criar modelos menos complexos, e portanto menos propensos a overfitting
- Duas técnicas tradicionais, regularização L1 e L2, que adicionam termos extras à função de custo, cuja intensidade é controlada por α:
 - L1: $J(w) + \alpha \sum_{w \in \mathbf{w}} |w|$
 - L2: $J(w) + \alpha \sum_{w \in \mathbf{w}} w^2$
- As duas técnicas tornam o problema de otimização mais difícil, mas afetam o modelo de formas diferentes:
 - L1 faz com que os valores de w menos importantes sejam zerados (weight pruning)
 - L2 faz com que os valores de w sejam reduzidos tal que todos tenham uma contribuição mínima (weight decay)
- Na prática:
 - L1 gera modelos mais fáceis de interpretar, por possuírem menos pesos
 - L2 gera modelos com desempenho melhor

Regularização L1 e L2

 Exemplos de regularização L1 (modelo linear e polinômio de grau 10):

Fonte: Hands-On Machine Learning with Scikit-Learn and Tensorflow

Regularização L1 e L2

 Exemplos de regularização L2 (modelo linear e polinômio de grau 10):

Fonte: Hands-On Machine Learning with Scikit-Learn and Tensorflow

Outras técnicas que possuem efeito regularizador

- Conseguir mais dados (nem sempre possível)
- Criar mais dados: Data Augmentation!
 - Criação de amostras sintéticas mas verossímeis a partir das amostras originais:
 - No caso de dados tabulares, criar versões dos dados existentes com ruído
 - No caso de imagens, criar versões rotacionadas, com alterações de brilho, contraste, etc

Métricas

Métricas - Regressão

■ Erro (diferença) entre o valor observado e o valor previsto $E_i = v_i - \hat{v}_i$

- Erro pode ser agregado de diversas formas (MSE, MAE, Huber, logcosh, etc)
- MSE e MAE são as mais comuns

Métricas - Regressão

- Mean Square Error MSE: $\frac{1}{N} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- Mean Absolute Error MAE: $\frac{1}{N}\sum_{i=1}^{n}|y_i-\hat{y}_i|$

Principal diferença: MAE é menos sensível a outliers

- Duas classes possíveis: Positivo/Negativo
- Quatro possíveis diagnósticos:
 - Verdadeiro Positivo (TP)
 - Falso Positivo (FP)
 - Falso Negativo (FN)
 - Verdadeiro Negativo (TN)

		Actual Values				
		Positive (1)	Negative (0)			
y Values	Positive (1)	TP	FP			
Predicted Values	Negative (0)	FN	TN			

Matriz de confusão

	True co	ondition			
Total population	Condition positive	Condition negative	$Prevalence = \frac{\sum Condition positive}{\sum Total population}$	Accuracy (ACC) = $\frac{\Sigma}{\Gamma}$ True positive + $\frac{\Sigma}{\Gamma}$ True negative $\frac{\Sigma}{\Gamma}$ Total population	
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$	
Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma}{\Sigma}$ True negative $\frac{\Sigma}{\Sigma}$ Predicted condition negative	
	True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR = FPR	Diagnostic odds ratio (DOR) = LR+ LR-	F ₁ score = 2 · Precision · Recall Precision + Recall
	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR		

$$Recall = \frac{TP}{TP + FN}$$

	True co	ndition			
Total population	Condition positive	Condition negative	$\frac{\Gamma}{\Gamma} = \frac{\Gamma}{\Gamma} $	Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma}{\Gamma}$ False positive $\frac{\Sigma}{\Gamma}$ Predicted condition positive	
Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma}{\Gamma}$ True negative $\frac{\Sigma}{\Gamma}$ Predicted condition negative	
	True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma}{\Sigma} \text{True positive}$ $= \frac{\Sigma}{\Sigma} \text{Condition positive}$	False positive rate (FPR), Fall-out, probability of false alarm Σ False positive Σ Condition negative	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	$= \frac{LR+}{LR-}$	2 · Precision · Recall Precision + Recall

False Positive Rate =
$$\frac{FP}{FP+TN}$$

	True condition				
Total population	Condition positive	Condition negative	$\frac{\Gamma}{\Gamma} = \frac{\Gamma}{\Gamma} $	Accuracy (ACC) = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Total population}}$	
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$	
Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma}{\Gamma}$ True negative $\frac{\Sigma}{\Gamma}$ Predicted condition negative	
	True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma}{\Sigma} \text{True positive}$ = $\frac{\Sigma}{\Sigma} \text{Condition positive}$	False positive rate (FPR), Fall-out, probability of false alarm = Σ False positive Σ Condition negative	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR) = LR+ LR-	F ₁ score =
	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma}{\Sigma}$ True negative $\frac{\Sigma}{\Sigma}$ Condition negative	Negative likelihood ratio (LR-) = FNR TNR		2 · Precision · Recall Precision + Recall

$$Precision = \frac{TP}{TP + FP}$$

	True condition				
Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\Sigma \text{ Total population}} = \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$	
Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
	True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma}{\Sigma} \text{ True positive}$ $= \frac{\Sigma}{\Sigma} \text{ Condition positive}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma}{\Sigma}$ True negative $\frac{\Sigma}{\Sigma}$ Condition negative	Negative likelihood ratio (LR-) = FNR TNR	$= \frac{LR+}{LR-}$	2 · Precision · Recall Precision + Recall

Accuracy =
$$\frac{TP+TN}{TP+FP+TN+FN}$$

	True condition				
Total population	Condition positive	Condition negative	$\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$	
Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
	True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma}{\Sigma} \text{ True positive}$ = $\frac{\Sigma}{\Sigma} \text{ Condition positive}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR) = LR+ LR-	F ₁ score = 2 · Precision · Recall Precision + Recall
	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR		

F1-score =
$$2 \frac{Precision*Recall}{Precision+Recall}$$

	True co	ondition			
Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\Sigma \text{ Total population}} = \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Total population}}$	
Predicted condition positive	True positive , Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
	True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$ False negative rate (FNR),	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$ Specificity (SPC), Selectivity,	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR) = LR+ LR-	F ₁ score = 2 · <u>Precision · Recall</u> Precision + Recall
	$= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$		

- Acurácia vs Precisão
 - Acurácia: quanto a estimativa é próxima do real
 - Precisão: quão reprodutível é o resultado
- Pense em média e desvio padrão:

Fonte: Wikipedia,

Métricas - Classificação Multiclasse

- Micro-averaging
 - Calcular TP_j, FP_j, TN_j, FN_j individualmente, por classe j (uma classe contra o restante)
 - Somá-los para obter *TP*, *FP*, *TN*, *FN*, e calcular a métrica
 - Atribui mesmo peso para as métricas → classes maiores dominam
- Macro-averaging
 - Calcular a métrica para cada classe e depois calcular a média
 - Atribui mesmo peso para as classes → mesma importância para todas as classes
- Há controvérsias sobre qual é melhor
- Macro-averaging é o mais comum (usado no scikit-learn e no Keras)

Classes maiores e menores?

- Datasets com classes desbalanceadas são sempre um problema
- Adiciona dificuldades no treinamento e na avaliação
- No caso de classificação binária é mais fácil tratar; no caso multi-classes nem tanto

Próxima Aula: Pré-processamento, Regressão Logística Multi-classe

