Maxwell's Equations (Guassian)	Maxwell's Equations (SI)
Electrodynamics	Electrodynamics
Gaussian Integrals	Geometric Series
General Math	General Math
Stirling's Approximation	Bernoulli's equation
General Math	Mechanics
Adiabatic Process	Adiabatic Properties of Ideal Gas

Adiabatic Process Adiabatic Properties of Ideal Gas

THERMODYNAMICS THERMODYNAMICS

Bose-Einstein Distribution Carnot Efficiency

THERMODYNAMICS THERMODYNAMICS

$$\begin{split} \vec{\nabla} \cdot \vec{D} &= \rho_f \\ \vec{\nabla} \times \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\ \vec{\nabla} \cdot \vec{B} &= 0 \\ \vec{\nabla} \times \vec{H} &= \frac{\partial \vec{D}}{\partial t} + \vec{J}_f \end{split}$$

$$\vec{\nabla} \cdot \vec{D} = 4\pi \rho_f \qquad \vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{H} = \frac{1}{c} \left(\frac{\partial \vec{D}}{\partial t} + 4\pi \vec{J}_f \right)$$

$$\sum_{i=0}^{N} r^{i} = \frac{1 - r^{N+1}}{1 - r}$$
$$\sum_{i=0}^{\infty} r^{i} = \frac{1}{1 - r}$$

$$I_{n}(x) = \int_{0}^{\infty} x^{n} e^{-ax^{2}} dx = \begin{cases} \frac{1}{2} \sqrt{\frac{\pi}{a^{m+1}}} \frac{(2m)!}{4^{m} m!} & n = 2m \\ \frac{1}{2} \frac{1}{a^{k+1}} k! & n = 2k+1 \end{cases}$$

$$I_{0}(x) = \frac{1}{2} \sqrt{\frac{\pi}{a}} \qquad I_{1}(x) = \frac{1}{2a}$$

$$I_{2}(x) = \frac{1}{4a} \sqrt{\frac{\pi}{a}} \qquad I_{3}(x) = \frac{1}{2a^{2}}$$

$$\frac{v^2}{2} + gz + \frac{p}{\rho} = \text{constant}$$

$$n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

 $\ln n! \approx n \ln n - n$

$$T_1 V_1^{\gamma - 1} = \text{const}$$

 $T_1^{\gamma/(1 - \gamma)} P_1 = \text{const}$
 $P_1 V_1^{\gamma} = \text{const}$

Also called *isentropic*. $\Delta S = 0$ in the process. Use the thermodynamic identity at constant volume and a systems internal energy equation to derive properties about the entropy of the system.

$$\eta = 1 - \frac{T_l}{T_h}$$

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/k_B T} - 1}$$

Carnot Cycle	Equipartition Theorem
Thermodynamics	Thermodynamics
Fermi Gasses	Fermi-Dirac Distribution
Thermodynamics	Thermodynamics
Gibbs Free Energy	Helmholtz Free Energy
THERMODYNAMICS	Thermodynamics
Ideal Gasses	Ideal Gas (RMS Average Speed)

THERMODYNAMICS THERMODYNAMICS

Ideal Monoatomic Gas Maxwell Speed Distribution

THERMODYNAMICS THERMODYNAMICS

A classical gas's energy gains $\frac{1}{2}k_BT$ for each degree of freedom. An ideal monotomic gas has $U=\frac{3}{2}k_BT$ from three translational degrees of freedom, while an ideal diatomic gas has $U=\frac{5}{2}k_BT$ from an additional two degrees of rotational freedom.

$$W = (T_h - T_I) (S_H - S_I)$$

Characterized by alternating stages of isothermal and isentropic expansion and compression. Work done is

where T_l and T_h are the low and high temperatures reached during the cycle and S_L and S_H are the low and high entropies of the working substance.

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/k_B T} + 1}$$

- 1. High kinetic energy
- 2. Low heat capacity
- 3. Low magnetic susceptibility
- 4. Low interparticle collision rate
- 5. High pressure

Acts as effective energy in isothermal changes of volume.

$$F \equiv U - TS$$
$$dF = dU - SdT$$

$$G \equiv U + PV - TS$$

Derived by considering a single particle. For translation in three dimensions $KE=\frac{3}{2}k_BT$ and also $KE=\frac{1}{2}mv^2$ so that when combined,

$$\frac{1}{2}mv^2 = \frac{3}{2}k_BT$$

$$v = \sqrt{\frac{3k_BT}{m}}$$

$$PV = nRT$$

$$PV = Nk_BT$$

$$Z_N = \frac{Z_1^N}{N!}$$

$$f(v) = \sqrt{\left(\frac{m}{2\pi k_B T}\right)^3} 4\pi v^2 \exp\left(-\frac{mv^2}{2k_B T}\right)$$

$$v_{\rm rms} = \sqrt{\frac{3k_BT}{m}}$$
 $\langle v \rangle = \sqrt{\frac{8k_BT}{\pi m}}$

$$C_V = \frac{3}{2}Nk_B \qquad C_P = \frac{5}{2}Nk_B$$

$$U = \frac{3}{2}Nk_BT \qquad \gamma = \frac{5}{3}$$

Partition Function

Photon Gasses

THERMODYNAMICS	Thermodynamics
Planck Distribution function	Planck Spectral Density (frequency)
THERMODYNAMICS	Thermodynamics
Radiant Energy Flux (blackbody)	Stefan-Boltzmann Law (energy density)
Thermodynamics	Thermodynamics
Thermodynamic Identity	
THERMODYNAMICS	

$$U = \sigma_b V T^4$$

$$P = \frac{1}{3} \sigma_b V T^4$$

$$Z = \sum_{n} e^{-\varepsilon_n/k_B T}$$

$$u = 0$$

$$U = k_B T^2 \frac{\partial \ln Z}{\partial T}$$

$$F = -k_B T \ln Z$$

$$F = -k_B T \ln Z$$

$$u_{\omega} = \frac{\hbar}{\pi^2 c^3} \frac{\omega^3}{e^{\hbar \omega/k_B T} - 1}$$

$$\langle s \rangle = \frac{1}{e^{\hbar \omega / k_B T} - 1}$$

$$\frac{U}{V} = u = \frac{\pi^2 k_B^3}{15\hbar^3 c^3} T^4$$
$$u = \sigma_B T^4$$
$$u = \frac{4}{c} J_u$$

$$J_u = \frac{\pi^2 k_B^4}{60\hbar^3 c^2} T^4$$

$$J_u = \frac{c}{4} u$$

$$dU = TdS - PdV + \mu dN$$

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V = T \left(\frac{\partial S}{\partial T}\right)_V \qquad P = -\left(\frac{\partial U}{\partial V}\right)_S$$