CLASE 12 : GRÁFICAS DE POLINDMIOS

- Reaneraines: hate hoy 12:00 am
- Temorio I3: hoste transf. de fra (inclumbres)

•
$$\phi(x) = Q_m x^m + Q_{m-1} x^{m-1} + \dots + Q_1 x + Q_0$$

 $m \ge 0, Q_m \ne 0$

•
$$m=0$$
: $\varphi(x)=0$.

.
$$\underline{M=2}$$
: $p(x)=\alpha_2 x^2 + \alpha_1 x + \alpha_2$

- M≥3: Capo pa Labo
- · Cass simples : p(x) = axm, m>2

m por

m impor

Q>0

0**~**0

• Ej:
$$p(x) = 3x^5 + 7x^3 - x^2 + 14$$

•
$$E_1$$
: $\phi(x) = -x^4 + 4x^3 + 1$

En el asso de la polinamio:

$$\frac{p(x)-\alpha_{m}x^{m}}{\alpha_{m}x^{m}} = \frac{\alpha_{m-1}}{\alpha_{m}} \frac{1}{x} + \frac{\alpha_{m-2}}{\alpha_{m}} \frac{1}{x^{2}} + \dots + \frac{\alpha_{n}}{x^{n}}$$

$$pequino 5: |x| & grande$$

-> p(x) ≈ qm xm: el euror relativo es pequeño cuendo (x1 es grande

• Charro Coso:
$$p(x) = \alpha_n x^n + \cdots + \alpha_1 x + \alpha_n$$

$$\approx \alpha_n x^n$$

Esto se como Comportomiento en infinito"

• Ej:
$$p(x) = 3x^{5} + 7x^{3} - x^{2} + 14$$
 $p(x) \longrightarrow \infty$ 5: $x \longrightarrow \infty$
 $p(x) \longrightarrow -\infty$ 5: $x \longrightarrow -\infty$

• Ej:
$$p(x) = -x^4 + 4x^3 + 1$$

$$p(x) \longrightarrow -\infty \quad \text{fi} \quad x \longrightarrow \infty$$

$$p(x) \longrightarrow -\infty \quad \text{fi} \quad x \longrightarrow -\infty$$

· Falha averigner el comportamiento de pas pene x "pequeño", es decir, cuae de les heises del politornio.

• E;
$$p(x) = x^3 - 7x + 6$$

ii) Rovas:

$$p(x) = x^{3} - 7x + 6$$

$$p(1) = 0 \implies p(x) = (x - 1)q(x)$$

$$p(x) = x^{3} - 7x + 6$$

$$= x^{3} - x^{2} + x^{2} - 7x + 6$$

$$= x^{3} - x^{2} + x^{2} - x - 6x + 6$$

$$= \chi^{2}(\chi - 1) + \chi(\chi - 1) - \zeta(\chi - 1)$$

$$= (\chi^{2} + \chi - \zeta)(\chi - 1)$$

$$= (\chi + 3)(\chi - 2)(\chi - 1)$$

Rokes: -3,1,2

· Signo:

J	-3			2		
X+3)	+	+	+		
X-1	ı	_ (+	+		
X-2	1)	-	+		
P6)	- 1	+ 1) <i>- 0</i>	+		

$$p(x) \longrightarrow \infty \quad \text{fi} \quad x \longrightarrow \infty$$

$$p(x) \longrightarrow -\infty \quad \text{fi} \quad x \longrightarrow -\infty$$

• Signo:
$$P(x) = (x+z)(x+1)^2 \times^3 (x-1)$$

_	-2		0) 	1	
X+ Z		+	+	+	+	
(X+1)2	+	+	+	+	+	_
× ³	-	ı	- (+	+	
x-1	1	-	1	- 6	+	
†(X)	- 6	+ 4	+ a	- 4	+	

· Obs: podnomos ser mos precisos

$$p(x) = A(x-c_1)^m (x-c_2)^m \dots (x-c_k)^m x$$
 $A \neq 0, \quad m_1 + \dots + m_k = m$

$$p(x) \approx A(c_j-c_i)'(c_j-c_j)'' \cdot (x-c_j)'' \cdot (c_j-c_k)'''$$

$$\approx B(x-c_j)'''^j$$

