

# Cloud RAN-based cellular system

Matteo Halilaga Lorenzo Mancinelli Rocco Giuseppe Pastore

## Introduction



Analyze the performances of a Cloud RANbased cellular system using the following KPIs:

- Mean end-to-end delay
- Queueing time on the BBU

The operating modes of the system are:

- **1. No compression** before sending a packet
- Compression of X% before sending a packet



## Configuration variables

- Distribution of packet generation rate  $\exp(\lambda_T)$
- Distribution of packet size  $\exp(\lambda_S)$  ,  $lognormal(\mu_S, \sigma_S)$
- Link transmission speed M
- Packet compression X
- Number of cells N





# **Implementation**



- **Application Server**: generates packets of size S every T seconds.
- **BBU**: routes packets to the appropriate RRH, with or without compression.
- **RRH**: forward the packet to the specified cell, maybe after a decompression stage.
- **Cell**: destination of the packet. Here the end-toend delay is measured.

```
message Packet {
    double size;
    int cell;
    simtime_t timestamp;
}
```





### **Degeneracy tests**

**Without compression**: very high values of link speed, packet size or generation rate lead to **almost zero or infinite end-to-end delay**.

| LINK M<br>[bytes/s] | PKT SIZE<br>[bytes] | lamdaT<br>[pkts/s] | E[T]<br>(1/lamdaT)<br>[s] | END-TO-<br>END DELAY<br>[s] |
|---------------------|---------------------|--------------------|---------------------------|-----------------------------|
| 10000000            | 200                 | 10                 | 0.1                       | 0.000020                    |
| 200                 | 100000              | 10                 | 0.1                       | ∞                           |
| 200                 | 200                 | 1000               | 0.001                     | ∞                           |

#### With compression

| %X    | LINK M<br>[bytes/s] | PKT SIZE<br>[bytes] | E[T]<br>(1/lamdaT)<br>[s] | END-TO-<br>END DELAY<br>[s] | QUEUEING<br>TIME [s] |                           |
|-------|---------------------|---------------------|---------------------------|-----------------------------|----------------------|---------------------------|
| 0%    | 10000000            | 200                 | 0.1                       | 0.000020                    | 0                    | — ► Equal to the previous |
| 99.9% | 100000              | 200                 | 0.1                       | 0.050000                    | 0                    | → Almost zero queueing    |





## Consistency

Doubling the packet size leads to a doubling of the end-to-end delay.

| LINK M<br>[bytes/s] | PKT SIZE<br>[bytes] | E[T]<br>(1/lamdaT)<br>[s] | END -TO- END<br>DELAY [s] |
|---------------------|---------------------|---------------------------|---------------------------|
| 10000               | 500                 | 0.1                       | 0.050                     |
| 10000               | 1000                | 0.1                       | 0.100                     |

## Continuity

**Slight variations** in simulation parameters lead to **slight changes** in end-to-end delay.







# Theoretical model – exponential case

#### Without compression

**M/M/1** system with  $E[N] = \frac{\rho}{1-\rho}$ ,  $E[R] = \frac{E[N]}{\lambda_T}$ 



The **stability condition** of the system is

$$\rho = \frac{\lambda_T}{\mu_S} < 1, \qquad \mu_S = \lambda_S \cdot M = \frac{1}{S} \cdot M$$

#### With compression

M/D/1 system



We have two stability conditions:

$$\begin{cases} \frac{\lambda_T}{\mu_{S'}} < 1, & \mu_{S'} = \lambda_{S'} \cdot M = \frac{1}{S'} \cdot M \\ \frac{\left(\frac{\lambda_T}{N}\right)}{\mu_C} < 1, & \mu_C = 50ms \times X \end{cases}$$





# Warmup and simulation time



Warmup period = **40s** 

Simulation time = 160s



## Scenarios

|                          | Load                                                                   | Link speed  |
|--------------------------|------------------------------------------------------------------------|-------------|
| General load – fast link | Any type of traffic                                                    | M = 10Mbps  |
| High load – medium link  | <ul><li>Generic – 500 bytes</li><li>Videostream – 1000 bytes</li></ul> | M = 1Mbps   |
| Low load – slow link     | • VoIP (100, 200 bytes)                                                | M = 100kbps |

The higher the speed of the M link, the lower the system usage and the less convenient the compression will be.



## Exponential distribution – end-to-end delay

#### Low usage ( $\rho = 0, 16$ )



#### High usage ( $\rho = 0.8$ )



Slow link  $\rightarrow M = 100kbps$ 



# Exponential distribution – queueing time

#### Low usage



#### High usage



Slow link  $\rightarrow M = 100kbps$ 



# Lognormal distribution

 $\sim$  same results as the exponential case!



#### High usage



Low load - slow link  $\rightarrow$  S = 200 bytes, M = 100kbps

|                              | P(0 <x<20)< th=""><th>P(200<x<1000)< th=""><th>P(1000<x<2000)< th=""></x<2000)<></th></x<1000)<></th></x<20)<> | P(200 <x<1000)< th=""><th>P(1000<x<2000)< th=""></x<2000)<></th></x<1000)<> | P(1000 <x<2000)< th=""></x<2000)<> |
|------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------|
|                              | 0.0952                                                                                                         | 0.3611                                                                      | 0.0067                             |
| $\sigma = 0.832554611157697$ | 0.0094                                                                                                         | 0.3292                                                                      | 0.0087                             |
|                              | σ = 0.832554611157697                                                                                          |                                                                             |                                    |

## Conclusion

- The correct functioning of the system strongly depends on the **sizing of the link** between BBU and RRH.
- With the same packet size and generation rate, the **higher the link**, the **lower the system usage**, given that not much queue will form on the BBU.
- When there is high utilization, it's convenient performing compression.
- Increasing the number of cells improves system performance slightly when packet compression is performed.



