Кольца и поля

Определения

Кольцо

Кольцом называют множество R на котором заданы две бинарные операции $\{+,*\}$ со следующими свойствами $\forall a,b,c\in R$

- 1. a + (b + c) = (a + b) + c ассоциативность.
- 2. $\exists 0_R$ т. ч. $0_R+a=a+0_R=a$ нейтрал по сложению.
- 3. $\forall a \in R \; \exists b \in R$ т. ч. $a+b=b+a=0_R$ противоположный элемент по сложению b=-a.
- 4. a + b = b + a коммутативность по сложению.
- 5. a*(b*c)=(a*b)*c ассоциативность по умножению.
- 6. a*(b+c)=(a*b)+(a*c) и (a+b)*c=(a*c)+(b*c) дистрибутивность.

Свойства 1-4 — абелева группа по сложению, 5 — полугруппа по умножению, 6 — двусторонняя дистрибутивность.

Иногда, кольцом называют множество без свойства 5, а со свойством 5 — ассоциативным кольцом.

АКУ-кольцо

Рассматривают также два дополнительных свойства:

- 7. $\exists 1_R \in R$ такой, что $a*1_R=1_R*a=a$ кольцо с единицей (унитарность).
- 8. a * b = b * a коммутативность по умножению.

Кольцо со свойствами 5,7,8 называют ассоциативным коммутативным унитарным кольцом, АКУ-кольцо или акузативное кольцо. Кольцо со свойствами 5 и 7, но без 8 называют моноидом.

Поле

Если к свойствам АКУ-кольца добавить еще два требования:

- 9. $\forall a \in R \; \exists b \in R$ такой что $a*b=b*a=1_R$ противоположный элемент по умножению $b=a^{-1}$,
- 10. $1_R \neq 0_R$,

то получим определение поля.

- Элемент кольца $a\in R$ называется левым (правым) делителем нуля, если $\exists b\neq 0_R$ такой что $a*b=0_R$ ($b*a=0_R$).
- Если умножение в кольце коммутативно, то понятия левого и правого элементов совпадают.
- Сам 0_R называется собственным (тривиальным) делителем нуля. Делители нуля отличные от 0_R называется нетривиальными или несобственными.

В дальнейшем мы будем использовать именно поля, поэтому дадим еще раз полное его определение.

Полное определение поля

Полем называют множество $\mathbb P$ на котором заданы две бинарные операции $\{+,*\}$ со следующими свойствами $\forall a,b,c\in \mathbb P$

- 1. a + (b + c) = (a + b) + c ассоциативность.
- 2. $\exists 0_{\mathbb{P}}$ т. ч. $0_{\mathbb{P}}+a=a+0_{\mathbb{P}}=a$ нейтрал по сложению.
- 3. $\forall a \in \mathbb{P} \ \exists b \in \mathbb{P}$ т. ч. $a+b=b+a=0_{\mathbb{P}}$ противоположный элемент по сложению b=-a.
- 4. a + b = b + a коммутативность по сложению.
- 5. a * (b * c) = (a * b) * c ассоциативность по умножению.
- 6. a*(b+c)=(a*b)+(a*c) и (a+b)*c=(a*c)+(b*c) дистрибутивность.
- 7. $\exists 1_{\mathbb{P}} \in \mathbb{P}$ такой, что $a*1_{\mathbb{P}} = 1_{\mathbb{P}}*a = a$ кольцо с единицей (унитарность).
- 8. a * b = b * a коммутативность по умножению.
- 9. $\forall a \in \mathbb{P} \ \exists b \in \mathbb{P}$ такой что $a*b=b*a=1_{\mathbb{P}}$ противоположный элемент по умножению $b=a^{-1}$,
- 10. $1_{\mathbb{P}} \neq 0_{\mathbb{P}}$.

Кольца и поля

Примеры

Примеры полей

Пример

Примерами полей являются числовые множества:

- Q рациональные числа,
- \mathbb{R} действительные числа,
- С комплексные числа,
- Алгебраические числа (корни полиномов).

В дальнейшем мы будем почти всегда использовать поле действительных чисел $\mathbb R$ и поле комплексных чисел $\mathbb C$. Для краткости их элементы будем называть скалярами.