ITERATIVE METHODS FOR LINEAR ALGEBRA

Pierre Jolivet pierre@joliv.et
Ronan Guivarch ronan.guivarch@toulouse-inp.fr
2/2 Advanced preconditioning

TABLE OF CONTENTS

- 1. Introduction
- 2. Overlapping Schwarz methods
- 3. Coarse space operators
- 4. Substructuring methods
- 5. Implementation aspects
- 6. Links with multigrid methods

INTRODUCTION

MOTIVATION

How to solve Poisson equation on "complex" domains?

MOTIVATION

How to solve Poisson equation on "complex" domains?

"Simpler" domains and Fourier transforms [Schwarz 1870]

OVERLAPPING SCHWARZ METHODS

CONTINUOUS FORMULATION

Given \mathcal{L} , a source term f, and Dirichlet BC g,

$$\mathcal{L}u = f \text{ in } \Omega$$
$$u = g \text{ on } \partial \Omega$$

CONTINUOUS FORMULATION

Given \mathcal{L} , a source term f, and Dirichlet BC $g+u_2^{(0)}$, $\mathcal{L}u_1^{(n+1)}=f|_{\Omega_1} \text{ in } \Omega_1 \qquad \mathcal{L}u_2^{(n+1)}=f|_{\Omega_2} \text{ in } \Omega_2$ $u_1^{(n+1)}=g \quad \text{on } \partial\Omega_1\setminus\Omega_2 \qquad u_2^{(n+1)}=g \quad \text{on } \partial\Omega_2\setminus\Omega_1$ $u_1^{(n+1)}=u_2^{(n)} \text{ on } \partial\Omega_1\cap\Omega_2 \qquad u_2^{(n+1)}=u_1^{(n+1)} \text{ on } \partial\Omega_2\cap\Omega_1$

ERROR ESTIMATES

The errors
$$\{e_i^{(n+1)} = u_i^{(n+1)} - u|_{\Omega_i}\}_{i \in [\![1;2]\!]}$$
 verify:
$$\mathcal{L}e_1^{(n+1)} = 0|_{\Omega_1} \text{ in } \Omega_1 \qquad \mathcal{L}e_2^{(n+1)} = 0|_{\Omega_2} \quad \text{in } \Omega_2$$

$$e_1^{(n+1)} = 0 \quad \text{on } \partial\Omega_1 \setminus \Omega_2 \qquad e_2^{(n+1)} = 0 \quad \text{on } \partial\Omega_2 \setminus \Omega_1$$

$$e_1^{(n+1)} = e_2^{(n)} \quad \text{on } \partial\Omega_1 \cap \Omega_2 \qquad e_2^{(n+1)} = e_1^{(n+1)} \quad \text{on } \partial\Omega_2 \cap \Omega_1$$

ERROR ESTIMATES

The errors
$$\{e_i^{(n+1)} = u_i^{(n+1)} - u|_{\Omega_i}\}_{i \in [\![1;2]\!]}$$
 verify:
$$\mathcal{L}e_1^{(n+1)} = 0|_{\Omega_1} \text{ in } \Omega_1 \qquad \mathcal{L}e_2^{(n+1)} = 0|_{\Omega_2} \quad \text{in } \Omega_2$$

$$e_1^{(n+1)} = 0 \quad \text{on } \partial\Omega_1 \setminus \Omega_2 \qquad e_2^{(n+1)} = 0 \quad \text{on } \partial\Omega_2 \setminus \Omega_1$$

$$e_1^{(n+1)} = e_2^{(n)} \quad \text{on } \partial\Omega_1 \cap \Omega_2 \qquad e_2^{(n+1)} = e_1^{(n+1)} \quad \text{on } \partial\Omega_2 \cap \Omega_1$$

Convergence rates

$$\circ \text{ 1D, } \mathcal{L} = -\frac{\partial^2}{\partial x^2} \implies \rho(\delta) = \left| \frac{e_2^{(n+1)}(L_1)}{e_2^{(n)}(L_1)} \right| = \frac{1 - \delta/(L - l_2)}{1 + \delta/l_2}$$

$$\circ \text{ 2D, } \mathcal{L} = (\nu - \Delta) \implies \rho(k, \delta, \nu) = \left| \frac{\hat{e}_1^{(n+1)}(0)}{\hat{e}_1^{(n)}(0)} \right| = e^{-2\delta\sqrt{\nu + k^2}}$$

REMARKS ABOUT THE CONVERGENCE RATES

 \circ both methods converge $\iff \delta > 0$

REMARKS ABOUT THE CONVERGENCE RATES

- \circ both methods converge $\iff \delta > 0$
- \circ for $k_1 > k_2$, $\rho(k_2, \delta, \nu) \gg \rho(k_1, \delta, \nu)$ (smoothing property)

// VARIANT OF THE ALTERNATING SCHWARZ METHOD

Given
$$(u_1^{(0)}, u_2^{(0)})$$
, [Lions 1988]:
$$\mathcal{L}u_1^{(n+1)} = f|_{\Omega_1} \text{ in } \Omega_1 \qquad \mathcal{L}u_2^{(n+1)} = f|_{\Omega_2} \text{ in } \Omega_2$$

$$u_1^{(n+1)} = g \quad \text{on } \partial\Omega_1 \setminus \Omega_2 \qquad u_2^{(n+1)} = g \quad \text{on } \partial\Omega_2 \setminus \Omega_1$$

$$u_1^{(n+1)} = u_2^{(n)} \text{ on } \partial\Omega_1 \cap \Omega_2 \qquad u_2^{(n+1)} = u_1^{(n)} \text{ on } \partial\Omega_2 \cap \Omega_1$$

// VARIANT OF THE ALTERNATING SCHWARZ METHOD

Given
$$(u_1^{(0)}, u_2^{(0)})$$
, [Lions 1988]:
$$\mathcal{L}u_1^{(n+1)} = f|_{\Omega_1} \text{ in } \Omega_1 \qquad \mathcal{L}u_2^{(n+1)} = f|_{\Omega_2} \text{ in } \Omega_2$$

$$u_1^{(n+1)} = g \quad \text{on } \partial\Omega_1 \setminus \Omega_2 \qquad u_2^{(n+1)} = g \quad \text{on } \partial\Omega_2 \setminus \Omega_1$$

$$u_1^{(n+1)} = u_2^{(n)} \text{ on } \partial\Omega_1 \cap \Omega_2 \qquad u_2^{(n+1)} = u_1^{(n)} \text{ on } \partial\Omega_2 \cap \Omega_1$$

Slower convergence but more suited to parallel computing

CONNECTION WITH THE BLOCK GAUSS-SEIDEL METHOD

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 and $M = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix}$
given x_0
$$x_{k+1} = x_k + M^{-1} r_k$$

CONNECTION WITH THE BLOCK GAUSS-SEIDEL METHOD

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 and $M = \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix}$ given x_0

$$X_{k+1} = X_k + M^{-1} r_k$$

In order to explicit the workload distribution: given x_0

$$X_{k+1/2} = X_k + \left(R_1^T (R_1 A R_1^T)^{-1} R_1\right) r_k$$

$$X_{k+1} = X_{k+1/2} + \left(R_2^T (R_2 A R_2^T)^{-1} R_2\right) r_{k+1/2}$$

with appropriate restriction operators $\{R_i\}_{i \in [1:2]}$

Let
$$\{B_i = R_i^T (R_i A R_i^T)^{-1} R_i\}_{i \in [1;2]}$$

 $X_{k+1} = X_k + (B_1 + B_2 - B_2 A B_1) r_k$

Let
$$\{B_i = R_i^T (R_i A R_i^T)^{-1} R_i\}_{i \in [1;2]}$$

 $X_{k+1} = X_k + (B_1 + B_2 - B_2 A B_1) r_k$
 $e_{k+1} = (I - M^{-1} A) e_k$
 $= (I - B_2 A) (I - B_1 A) e_k$

A-orthogonal projection on span(R_i^T): $P_i = B_i A$

Let
$$\{B_i = R_i^T (R_i A R_i^T)^{-1} R_i\}_{i \in [1;2]}$$

 $X_{k+1} = X_k + (B_1 + B_2 - B_2 A B_1) r_k$
 $e_{k+1} = (I - M^{-1} A) e_k$
 $= (I - B_2 A) (I - B_1 A) e_k$

A-orthogonal projection on span(R_i^T): $P_i = B_i A$

Moreover, $B_i r = P_i e$

Let
$$\{B_i = R_i^T (R_i A R_i^T)^{-1} R_i\}_{i \in [1;2]}$$

 $X_{k+1} = X_k + (B_1 + B_2 - B_2 A B_1) r_k$
 $e_{k+1} = (I - M^{-1} A) e_k$
 $= (I - B_2 A) (I - B_1 A) e_k$

A-orthogonal projection on span(R_i^T): $P_i = B_i A$

Moreover, $B_i r = P_i e$

A-orthogonal projection on span(R_i^T) $^{\perp_A}$: $I - P_i$

CONNECTION WITH THE BLOCK JACOBI METHOD

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 and $M = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}$
given x_0
 $x_{k+1} = x_k + M^{-1} r_k$

CONNECTION WITH THE BLOCK JACOBI METHOD

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
 and $M = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}$ given x_0

$$X_{k+1} = X_k + M^{-1} r_k$$

In order to explicit the parallelism:

given
$$x_0$$

$$X_{k+1} = X_k + \left(R_1^{\mathsf{T}} (R_1 A R_1^{\mathsf{T}})^{-1} R_1 + R_2^{\mathsf{T}} (R_2 A R_2^{\mathsf{T}})^{-1} R_2 \right) r_k$$

1D domain

Initial decomposition

Overlapping decomposition

Initial decomposition

Overlapping decomposition

ALTERNATING SCHWARZ METHOD

Just as for the block GS method, with N subdomains: given x_0

$$X_{k+1/N} = X_k + \left(R_1^{\delta^T} (R_1^{\delta} A R_1^{\delta^T})^{-1} R_1^{\delta} \right) r_k$$

$$\vdots$$

$$X_{k+1} = X_{k+(N-1)/N} + \left(R_N^{\delta^T} (R_N^{\delta} A R_N^{\delta^T})^{-1} R_N^{\delta} \right) r_{k+(N-1)/N}$$

ALTERNATING SCHWARZ METHOD

Just as for the block GS method, with N subdomains: given x_0

$$X_{k+1/N} = X_k + \left(R_1^{\delta^T} (R_1^{\delta} A R_1^{\delta^T})^{-1} R_1^{\delta} \right) r_k$$

$$\vdots$$

$$X_{k+1} = X_{k+(N-1)/N} + \left(R_N^{\delta^T} (R_N^{\delta} A R_N^{\delta^T})^{-1} R_N^{\delta} \right) r_{k+(N-1)/N}$$

Red–Black coloring of subdomains for better concurrency

ADDITIVE SCHWARZ METHOD

Just as for the block Jacobi method, with *N* subdomains: given *x*₀

$$X_{k+1} = X_k$$

$$X_{k+1} += \left(R_1^{\delta^T} (R_1^{\delta} A R_1^{\delta^T})^{-1} R_1^{\delta}\right) r_k$$

$$\vdots$$

$$X_{k+1} += \left(R_N^{\delta^T} (R_N^{\delta} A R_N^{\delta^T})^{-1} R_N^{\delta}\right) r_k$$

ADDITIVE SCHWARZ METHOD

Just as for the block Jacobi method, with N subdomains: given x_0

$$X_{k+1} = X_k$$

$$X_{k+1} += \left(R_1^{\delta^T} (R_1^{\delta} A R_1^{\delta^T})^{-1} R_1^{\delta}\right) r_k$$

$$\vdots$$

$$X_{k+1} += \left(R_N^{\delta^T} (R_N^{\delta} A R_N^{\delta^T})^{-1} R_N^{\delta}\right) r_k$$

This fixed-point algorithm does not converge

The error in the overlap does not decrease

Partition of unity

A set of diagonal matrices $\{D_i\}_{i \in [\![1:N]\!]}$:

$$\sum_{i=1}^{N} R_i^{\mathsf{T}} D_i R_i = I$$

Partition of unity

A set of diagonal matrices $\{D_i\}_{i \in [\![1:N]\!]}$:

$$\sum_{i=1}^{N} R_i^T D_i R_i = I$$

Multiplicity scaling

Partition of unity

A set of diagonal matrices $\{D_i\}_{i \in [\![1:N]\!]}$:

$$\sum_{i=1}^{N} R_i^{\mathsf{T}} D_i R_i = I$$

Multiplicity scaling

Master-slave

Partition of unity

A set of diagonal matrices $\{D_i\}_{i \in [1;N]}$:

Introduced by [Cai and Sarkis 1999]

$$\sum_{i=1}^{N} R_i^{\mathsf{T}} D_i R_i = I$$

given
$$x_0$$

$$x_{k+1} = x_k$$

$$x_{k+1} += (R_1^T D_1 (R_1 A R_1^T)^{-1} R_1) r_k$$

$$\vdots$$

$$x_{k+1} += (R_N^T D_N (R_N A R_N^T)^{-1} R_N) r_k$$

13

SCHWARZ METHODS AS PRECONDITIONERS

Fixed-point algorithms as preconditioners, e.g.:

$$M_{ASM}^{-1} = \sum_{i=1}^{N} R_{i}^{T} (R_{i}AR_{i}^{T})^{-1}R_{i}$$

$$M_{RAS}^{-1} = \sum_{i=1}^{N} R_{i}^{T} D_{i} (R_{i}AR_{i}^{T})^{-1}R_{i}$$

SCHWARZ METHODS AS PRECONDITIONERS

Fixed-point algorithms as preconditioners, e.g.:

$$M_{ASM}^{-1} = \sum_{i=1}^{N} R_i^T (R_i A R_i^T)^{-1} R_i$$

$$M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i (R_i A R_i^T)^{-1} R_i$$

Better convergence inside a Krylov method

 M_{ASM}^{-1} does actually converge

OPTIMIZED BOUNDARY CONDITIONS

Instead of considering Dirichlet BC, use Robin BC

$$\text{Let } \left\{ \mathcal{B}_i = \frac{\partial}{\partial n_i} + \alpha \right\}_{i \in \llbracket 1; 2 \rrbracket} \text{, for } \alpha \in \mathbb{R}^{+\star}$$

$$\mathcal{L}u_1^{(n+1)} = f|_{\Omega_1} \quad \text{in } \Omega_1 \qquad \qquad \mathcal{L}u_2^{(n+1)} = f|_{\Omega_2} \quad \text{in } \Omega_2$$

$$u_1^{(n+1)} = g \quad \text{on } \partial\Omega_1 \setminus \Omega_2 \qquad \qquad u_2^{(n+1)} = g \quad \text{on } \partial\Omega_2 \setminus \Omega_1$$

$$\mathcal{B}_1 u_1^{(n+1)} = \mathcal{B}_1 u_2^{(n)} \text{ on } \partial\Omega_1 \cap \Omega_2 \qquad \mathcal{B}_2 u_2^{(n+1)} = \mathcal{B}_2 u_1^{(n+1)} \text{ on } \partial\Omega_2 \cap \Omega_1$$

OPTIMIZED BOUNDARY CONDITIONS

Instead of considering Dirichlet BC, use Robin BC

$$\text{Let } \left\{ \mathcal{B}_i = \frac{\partial}{\partial n_i} + \alpha \right\}_{i \in \llbracket 1; 2 \rrbracket} \text{, for } \alpha \in \mathbb{R}^{+\star}$$

$$\mathcal{L}u_1^{(n+1)} = f|_{\Omega_1} \quad \text{in } \Omega_1 \qquad \qquad \mathcal{L}u_2^{(n+1)} = f|_{\Omega_2} \quad \text{in } \Omega_2$$

$$u_1^{(n+1)} = g \quad \text{on } \partial\Omega_1 \setminus \Omega_2 \qquad \qquad u_2^{(n+1)} = g \quad \text{on } \partial\Omega_2 \setminus \Omega_1$$

$$\mathcal{B}_1 u_1^{(n+1)} = \mathcal{B}_1 u_2^{(n)} \text{ on } \partial\Omega_1 \cap \Omega_2 \qquad \mathcal{B}_2 u_2^{(n+1)} = \mathcal{B}_2 u_1^{(n+1)} \text{ on } \partial\Omega_2 \cap \Omega_1$$

Convergence rate

$$\circ \mathcal{L} = (\nu - \Delta) \implies \rho(k, \delta, \nu, \alpha) = \left| \frac{\sqrt{\nu + k^2} - \alpha}{\sqrt{\nu + k^2} + \alpha} \right| e^{-\delta \sqrt{\nu + k^2}}$$

OPTIMAL BOUNDARY CONDITIONS

Given general BC operators
$$\{\mathcal{B}_i\}_{i\in \llbracket 1;2\rrbracket}$$
 $\mathcal{L}u_i^{(n+1)}=f|_{\Omega_i}$ in Ω_i $u_i^{(n+1)}=g$ on $\partial\Omega_i\setminus\Omega_j$ $\nabla u_i^{(n+1)}\cdot n_i+\mathcal{B}_iu_i^{(n+1)}=-\nabla u_i^{(n)}\cdot n_j+\mathcal{B}_iu_i^{(n)}$ on $\partial\Omega_i\cap\Omega_j$

OPTIMAL BOUNDARY CONDITIONS

Given general BC operators
$$\{\mathcal{B}_i\}_{i\in \llbracket 1;2\rrbracket}$$

$$\mathcal{L}u_i^{(n+1)} = f|_{\Omega_i} \qquad \text{in } \Omega_i$$

$$u_i^{(n+1)} = g \qquad \text{on } \partial\Omega_i \setminus \Omega_j$$

$$\nabla u_i^{(n+1)} \cdot n_i + \mathcal{B}_i u_i^{(n+1)} = -\nabla u_j^{(n)} \cdot n_j + \mathcal{B}_i u_j^{(n)} \text{ on } \partial\Omega_i \cap \Omega_j$$

Use the Dirichlet-to-Neumann operators $\{DtN_i\}_{i \in [1:2]}$

$$\mathsf{DtN}_i \colon \partial \Omega_i \setminus \Omega \to \mathbb{R}$$
$$q \mapsto \nabla \mathsf{V} \cdot \mathsf{n}_i$$

where v satisfies

$$\mathcal{L}v = 0 \text{ in } \Omega_i \setminus \Omega_j$$

 $v = 0 \text{ on } \partial\Omega_i \cap \partial\Omega$
 $v = g \text{ on } \partial\Omega_i \cap \partial\Omega_j$

COARSE SPACE OPERATORS

MOTIVATION

No exchange of global information

$$\kappa(M^{-1}A) \leqslant C \frac{1}{H^2} \left(1 + \frac{H}{\delta}\right)$$

- \circ level of overlap δ
- characteristic size of a subdomain H

[Le Tallec 1994; Toselli and Widlund 2005]

ABSTRACT SETTING

Let Z be a tall and skinny matrix search for
$$\min_{v} ||A(y + Zv) - f||_{A^{-1}}$$
 $\iff \min_{v} v^T Z^T A Z v - 2 v^T Z^T (f - Ay) + \lambda$ $\implies v = (Z^T A Z)^{-1} Z^T (f - Ay)$

ABSTRACT SETTING

Let Z be a tall and skinny matrix search for
$$\min_{v} ||A(y+Zv)-f||_{A^{-1}}$$
 $\iff \min_{v} v^T Z^T A Z v - 2 v^T Z^T (f-Ay) + \lambda$ $\implies v = (Z^T A Z)^{-1} Z^T (f-Ay)$

Define a two-level additive Schwarz method as:

$$M^{-1} = Z (Z^{T}AZ)^{-1} Z^{T} + \sum_{i=1}^{N} R_{i} (R_{i}^{T}AR_{i})^{-1} R_{i}^{T}$$

NICOLAIDES COARSE SPACE

Smallest coarse space possible [Nicolaides 1987]

$$Z = \begin{bmatrix} R_1^T D_1 R_1 & \cdots & R_N^T D_N R_N \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

NICOLAIDES COARSE SPACE

Smallest coarse space possible [Nicolaides 1987]

$$Z = \begin{bmatrix} R_1^T D_1 R_1 & \cdots & R_N^T D_N R_N \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Galerkin operator $E = Z^T A Z$ of order $N \ll n$

Much better conditioning
$$\kappa(M^{-1}A) \leqslant C\left(1 + \frac{H}{\delta}\right)$$

DTN COARSE SPACE

For this coarse space, $\mathcal{L} = \eta - \nabla \cdot (\kappa \nabla)$

- o errors are harmonic inside subdomains
- \circ fast decay \Longrightarrow large eigenvalue of the DtN operator

Solve local eigenvalue problems $DtN_i(u) = \lambda \kappa u$

SUBSTRUCTURING METHODS

ALGEBRAIC DECOMPOSITION

Given two subdomains, assume that:

$$A = \begin{bmatrix} A_{11} & 0 & A_{1\Gamma} \\ 0 & A_{22} & A_{2\Gamma} \\ A_{\Gamma 1} & A_{\Gamma 2} & A_{\Gamma \Gamma} \end{bmatrix} \qquad f = \begin{bmatrix} f_1 \\ f_2 \\ f_{\Gamma} \end{bmatrix}$$

Now, eliminate x_1 and x_2 from Ax = f:

$$(A_{\Gamma\Gamma} - A_{\Gamma 1}A_{11}^{-1}A_{1\Gamma} - A_{\Gamma 2}A_{22}^{-1}A_{2\Gamma}) x_{\Gamma} = f_{\Gamma} - A_{\Gamma 1}A_{11}^{-1}f_{1} - A_{\Gamma 2}A_{22}^{-1}f_{2}$$
$$= g_{b} = g_{b}^{(1)} + g_{b}^{(2)}$$

The Schur complement S_p is defined as:

$$S_{p} = A_{\Gamma\Gamma}^{(1)} - A_{\Gamma 1}A_{11}^{-1}A_{1\Gamma} + A_{\Gamma\Gamma}^{(2)} - A_{\Gamma 2}A_{22}^{-1}A_{2\Gamma}$$
$$= S_{p}^{(1)} + S_{p}^{(2)}$$

SOLVING THE CONDENSED SYSTEM

Appropriate preconditioner for $S_p x_b = g_b$?

If
$$S_p^{(1)} = S_p^{(2)}$$
, choose $M^{-1} = \frac{1}{4} \left(S_p^{(1)^{-1}} + S_p^{(2)^{-1}} \right)$

$$A^{(1)} = \begin{bmatrix} A_{11} & A_{1\Gamma} \\ A_{\Gamma 1} & A_{\Gamma \Gamma}^{(1)} \end{bmatrix}$$

$$= \begin{bmatrix} I & 0 \\ A_{\Gamma 1} A_{11}^{-1} & I \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & S_p^{(1)} \end{bmatrix} \begin{bmatrix} I & A_{11}^{-1} A_{1\Gamma} \\ 0 & I \end{bmatrix}$$

$$S_p^{(1)^{-1}}\lambda = \begin{bmatrix} 0 & I \end{bmatrix} A^{(1)^{-1}} \begin{bmatrix} 0 & 1 \end{bmatrix}^T \lambda$$

[Gosselet and Rey 2006]

Subdomain tearing

[Gosselet and Rey 2006]

Local numbering
$$A^{(k)} = \begin{bmatrix} A_{ii} & A_{ib} \\ A_{bi} & A_{bb} \end{bmatrix}$$

23

[Gosselet and Rey 2006]

Elimination of interior d.o.f.

$$S_p^{(k)} = A_{bb} - A_{bi}A_{ii}^{-1}A_{ib}$$

Jump operators: $\{B^{(i)}\}_{i=1}^3$

Primal constraints [Mandel 1993]

Jump operators: $\{\underline{B}^{(i)}\}_{i=1}^3$

Dual constraints [Farhat and Roux 1991]

$$\forall k \in [1; N], S_p^{(k)} X_b^{(k)} = g_b^{(k)} + \lambda_b^{(k)}$$

$$\forall k \in [1; N], S_p^{(k)} X_b^{(k)} = g_b^{(k)} + \lambda_b^{(k)}$$

$$\sum_{k=1}^{N} \underline{B}^{(k)} X_b^{(k)} = 0$$

$$\forall k \in [1; N], S_p^{(k)} X_b^{(k)} = g_b^{(k)} + \lambda_b^{(k)}$$

$$\sum_{k=1}^{N} \underline{B}^{(k)} X_{b}^{(k)} = 0$$

$$\sum_{k=1}^{N} B^{(k)} \lambda_{b}^{(k)} = 0$$

$$\forall k \in [1; N], S_p^{(k)} x_b^{(k)} = g_b^{(k)} + \lambda_b^{(k)}$$

$$R_b^{(k)^T} \lambda_b^{(k)} = 0$$

$$\sum_{k=1}^N \underline{B}^{(k)} x_b^{(k)} = 0$$

$$\sum_{k=1}^N B^{(k)} \lambda_b^{(k)} = 0$$

PRIMAL METHODS

Define a unique displacement $x_b \implies x_b^{(k)} = B^{(k)^T} x_b$

Eliminate the reactions:

$$\sum_{k=1}^{N} B^{(k)} S_p^{(k)} B^{(k)^{\mathsf{T}}} X_b = \sum_{k=1}^{N} B^{(k)} g^{(k)}$$

Weighted sum of pseudo-inverses as a preconditioner:

$$M^{-1} = \sum_{k=1}^{N} B^{(k)} D_p^{(k)} S_p^{(k)\dagger} D_p^{(k)} B^{(k)\dagger}$$

The preconditioner should be applied to vectors in $Im(S_p)$

BALANCING DOMAIN DECOMPOSITION

A vector r_b is balanced if:

$$\sum_{k=1}^{N} R_{b}^{(k)^{\mathsf{T}}} D_{p}^{(k)} B^{(k)^{\mathsf{T}}} r_{b} = 0$$

Let

$$\mathbf{R}_{b} = \begin{bmatrix} B^{(1)} D_{p}^{(1)} R_{b}^{(1)} & \cdots & B^{(N)} D_{p}^{(N)} R_{b}^{(N)} \end{bmatrix}$$
$$\mathbf{S}_{p} = \sum_{b=1}^{N} B^{(b)} S_{p}^{(b)} B^{(b)^{T}}$$

Then,
$$P = I - \mathbf{R}_b \left(\mathbf{R}_b^\mathsf{T} \mathbf{S}_p \mathbf{R}_b \right)^{-1} \mathbf{R}_b^\mathsf{T} \mathbf{S}_p \implies \mathbf{R}_b^\mathsf{T} \mathbf{S}_p P = 0$$

DUAL METHODS

Define a unique reaction $\lambda_b \implies \lambda_b^{(k)} = \underline{B}^{(k)^T} \lambda_b$

Eliminate the displacements:

$$\forall k \in [1; N], x_b^{(k)} = S_d^{(k)} (g_b^{(k)} + \underline{B}^{(k)^T} \lambda_b) + R_b^{(k)} \alpha^{(k)}$$
$$0 = R_b^{(k)^T} (g_b^{(k)} + \underline{B}^{(k)^T} \lambda_b)$$

With similar notations:

$$\begin{bmatrix} \mathbf{S}_d & \mathbf{R}_b \\ \mathbf{R}_b^\mathsf{T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \lambda_b \\ \alpha \end{bmatrix} = \begin{bmatrix} -\mathbf{b}_d \\ -\mathbf{g}_b \end{bmatrix}$$

IMPLEMENTATION ASPECTS

DISTRIBUTED PARALLELISM

Domain decomposition widely use with FE

Easy way to speedup the assembly phase

Message Passing Interface

- distributed numbering of unknowns
- o ghost elements for assembled operators
- connectivity with neighboring subdomains

MATRIX-VECTOR PRODUCTS

o for overlapping Schwarz methods:

$$\forall k \in [1; N], R_k A x = R_k \sum_{i=1}^N A R_i^T D_i R_i x$$
$$= \sum_{i=1}^N R_k A R_i^T D_i x_i$$

for substructuring methods:

$$\forall k \in [[1; N]], B^{(k)^{T}} S_{p} x_{b} = B^{(k)^{T}} \sum_{j=1}^{N} B^{(j)} S_{p}^{(j)} B^{(j)^{T}} x_{b}$$

DOT PRODUCTS

Same strategy using the appropriate scaling:

$$(u, v) = u^{T}v$$

$$= u^{T} \sum_{k=1}^{N} R_{k}^{T} D_{k} R_{k} v$$

$$= \sum_{k=1}^{N} u_{k}^{T} D_{k} v_{k}$$

COARSE SPACE CORRECTIONS

Implies global information exchanges:

- local computations
- o all-to-few gathering
- o either compute or idle
- few-to-all scattering
- local computations

LINKS WITH MULTIGRID METHODS

CONVERGENCE RESULTS

The damped Jacobi preconditioner reads $M^{-1} = \omega D^{-1}$

Error propagation:

$$e_{k+1} = (I - M^{-1}A)e_k$$

= $(I - M^{-1}A)^{k+1}e_0$

On a uniform 1D grid:

$$(I - M^{-1}A) = I - \frac{\omega}{2} \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots \\ & & -1 & 2 \end{bmatrix},$$

whose eigenvalues are $\left\{\mu_k = 1 - 2\omega \sin^2\left(\frac{k\pi}{2n}\right)\right\}_{k \in [\![1;n]\!]}$

WHY USE MULTIPLE GRIDS?

Low frequencies of the error on a coarser grid:

- more oscillatory
- o cheaper to relax
- o better condition number of the operator
- + aliasing for the high frequencies

A TWO-GRID METHOD

Given x_0 ,

- smooth ν times to relax $Ax_k = f$ with the initial guess x_k
- o compute the residual $r_k = f Ax_k$
- \circ restrict the residual to the coarser grid R_k
- solve $A_C E_{k+1} = R_k$
- \circ interpolate the error back on the fine grid e_{k+1}
- \circ smooth μ times with the initial guess $x_k + e_{k+1}$

RESTRICTION AND PROLONGATION OPERATORS

- $\circ\,$ restriction $R^h_{2h}:$ canonical injection, full-weighting $R^h_{2h,\text{fw}}$
- \circ prolongation P_h^{2h} : interpolation
- \circ coarse operator $A_C = A_{2h}$

On a regular grid,

$$2R_{2h,\text{fw}}^h = P_h^{2h^T}$$

 $A_{2h} = R_{2h,\text{fw}}^h A_h P_h^{2h}$

ITERATION MATRIX OF THE TWO-GRID METHOD

- \circ coarse grid correction $e_{k+1} = P_h^{2h} \left(R_{2h}^h A_h P_h^{2h} \right)^{-1} R_{2h}^h A_h e_k$
- coarse grid operator

$$\tilde{X}_{k+1} = \tilde{X}_k + e_{k+1}
= \left(I - P_h^{2h} \left(R_{2h}^h A_h P_h^{2h}\right)^{-1} R_{2h}^h A_h\right) \tilde{X}_k
+ P_h^{2h} \left(R_{2h}^h A_h P_h^{2h}\right)^{-1} R_{2h}^h f$$

complete iteration

$$X_{k+1} = S^{\mu} \left(I - P_h^{2h} \left(R_{2h}^h A_h P_h^{2h} \right)^{-1} R_{2h}^h A_h \right) S^{\nu} X_k + g_k$$

RECURSION TO CREATE DIFFERENT CYCLES

Solve the coarse problem using a two-grid method
Two-grid cycle

RECURSION TO CREATE DIFFERENT CYCLES

Solve the coarse problem using a two-grid method

RECURSION TO CREATE DIFFERENT CYCLES

Solve the coarse problem using a two-grid method

REMARKS

Multigrid methods may be used as preconditioners Use the cycles to solve $M^{-1}z = r$, with 0 as an initial guess

Algebraic multigrid (AMG) is a black-box solver Build the restriction + prolongation operators on the fly