10/522852 PCT/KR 0 2 / 0 2 2 5 1 RO/KR 26.03.2003

> REC'D 0 4 APR 2003 WIPO **PCT**

대 KOREAN INTELLECTUAL PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

沯 원 벋 **Application Number**

10-2002-0044788 PATENT-2002-0044788 **PRIORITY**

COMPLIANCE WITH RULE 17.1(a) OR (b)

2002년 07월 30일

Date of Application

JUL 30, 2002

춬 원 Applicant(s) 주식회사 유진텍 이십일 1명

yujintech21 Co., Ltd., et al.

2002 12 30 일

인 :

COMMISSIONER

출력 일자: 2002/12/31

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0003

【제출일자】 2002.07.30

【발명의 명칭】 조광렌즈의 제조방법

【발명의 영문명칭】 A Process For Producing Photochromic Lens

【출원인】

【명칭】 주식회사 유진텍이십일

【출원인코드】 1-2001-049395-7

【출원인】

【성명】 하진욱

【출원인코드】 4-2000-026558-2

【대리인】

【성명】 이세진

【대리인코드】9-2000-000320-8【포괄위임등록번호】2001-070342-1

【포괄위임등록번호】 2001-070364-1

【대리인】

【성명】 김성남

【대리인코드】9-1998-000150-9【포괄위임등록번호】2001-070343-8

【포괄위임등록번호】 2001-070365-9

【대리인】

【성명】 손민

【대리인코드】9-1999-000420-6【포괄위임등록번호】2001-070344-5【포괄위임등록번호】2001-070366-6

【발명자】

【성명】 하진욱

【출원인코드】 4-2000-026558-2

출력 일자: 2002/12/31

【발명자】

【성명의 국문표기】 하진헌

【성명의 영문표기】 HA,Jin Heon

【주민등록번호】 660119-1074229

【우편번호】 135-080

【주소】 서울특별시 강남구 역삼동 761-10 대림역삼아파트 701호

44/2

【국적】 KR

【발명자】

【성명의 국문표기】 홍지녀

【성명의 영문표기】 HONG, Jee Nyu

【주민등록번호】 780629-2162615

【우편번호】 442-374

【주소】 경기도 수원시 팔달구 매탄4동 205-33

【국적】 KR

【발명자】

【성명의 국문표기】 조승현

【성명의 영문표기】 CHO, Seung Hyun

 【주민등록번호】
 750111-1069416

【우편번호】 435-010

【주소】 경기도 군포시 당동 873번지 쌍용아파트 107동 804호

 【국적】
 KR

 【심사청구】
 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정

에 의한 출원심사 를 청구합니다. 대리인

이세진 (인) 대리인 김성남 (인) 대리인

손민 (인)

【수수료】

【기본출원료】15면29,000원【가산출원료】0면0원【우선권주장료】0건0원

【심사청구료】 3 항 205,000 원

출력 일자: 2002/12/31

【합계】

【감면사유】

【감면후 수수료】

[첨부서류]

234,000 원

소기업 (70%감면)

70,200 원

1. 요약서·명세서(도면)_1통

출력 일자: 2002/12/31

【요약서】

[요약]

본 발명은 톨루엔중에 용해된 스피로피란(spiropyran) 광가변색 화합물 및/또는 스피로옥사진(spirooxazine) 광가변색 화합물의 용액을 아크릴계 바인더와 혼합하여 형성된 용액으로 렌즈의 표면에 코팅한 후 열경화시켜 조광렌즈(plastic photochromic lens)를 제조하는 방법에 관한 것이다. 본 발명에 따라 제조된 조광렌즈는 가변시간이 짧고, 헤이즈(haze) 현상이 생기지 않으며, 코팅된 렌즈의 표면의 부착력 및 자외선 차단률이 우수하다.

【대표도】

도 1

【색인어】

조광렌즈, 광가변색 화합물, 스피로피란, 스피로옥사진, 톨루엔, 바인더

출력 일자: 2002/12/31

【명세서】

【발명의 명칭】

조광렌즈의 제조방법 {A Process For Producing Photochromic Lens}

【도면의 간단한 설명】

도 1은 본 발명에 따라 제조된 플라스틱 조광렌즈의 UV/Vis 스펙트럼 결과를 보여 주는 그래프이다.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 조광렌즈(photochromic lens)의 제조방법에 관한 것이다. 보다 자세하게는, 본 발명은 햇빛 또는 자외선에 노출되면 변색되었다가 햇빛 또는 자외선이 차단되면무색 투명한 상태로 복귀하는 가변시간이 짧은 플라스틱 조광렌즈를 제조하는 방법에관한 것이다.
- 조광렌즈는 실내에서는 무색에 가까운 엷은색, 자외선과 단파장의 가시광선 조사량이 많은 옥외에서는 짙은 농도의 색으로 바뀌는 렌즈로, 최초로 생산한 미국의 코닝사 (corning works)의 이름을 따서 '코닝렌즈'라고도 한다. 유리나 플라스틱 렌즈 중에 감광선 염화은(AgC1), 브롬화은(AgBr), 요도화은(Ag1) 등의 미세한 결정이 분산되어 있어

서 자외선의 조사량에 따라 색의 농도가 변한다. 즉, 자외선의 조사를 받으면 착색되고 차단하면 본래의 무색 렌즈로 되돌아가는 것을 반복하는 렌즈를 조광렌즈라 한다.

- 조광렌즈는 상기와 같이 햇빛으로부터 자외선을 차단하여 눈의 피로를 적게하고 백 내장을 일으키는 것으로 알려진 유해 자외선(UV-B)으로부터 눈을 보호하는 역할을 하며 70% 내지 80%의 햇빛 차단이 가능하므로 빛 조사량이 많은 여름철이나 실외에서는 선글 라스의 역할도 가능하여 그 사용 용도가 매우 다양하다.
- ** 최근에, 광가변색 화합물들이 조광렌즈에 적용되고 있다. 광가변색 화합물이란 햇빛이나 수은램프광과 같은 자외선을 받으면 변색되었다가 광선 조사가 차단되거나 암소에 저장될 때 원래의 상태로 되돌아오는 가역적인 색변화를 일으키는 성질의 화합물을 가리킨다. 다양한 유형의 광가변색 화합물이 합성되어 왔으나 이들은 일반적으로 구조적유사성이 없다. 초기에 본 분야에서 많은 관심을 끌어 온 광가변색 화합물은 하기 구조식의 1,3,3-트리메틸-인돌리노벤조스피로피란 유도체(R1 및 R2는 다양한 치환체이다)이다:

이후, 위 유도체를 보완하기 위한 광가변색 화합물들이 다양하게 소개되었으며 대표적으로는 미국특허 제4,215,010호 및 제4,342,668호에 개시된 스피로옥사진 화합물이다.

이외에, 스피로피란 또는 나프토피란과 같은 피란 유도체, 펼자이드(fulgide), 아크리돈 및 나프타센 퀴논 등이 공지되어 있다.

출력 일자: 2002/12/31

- 종래에는 광가변색 화합물을 안경 렌즈의 제조시 단량체에 직접 혼입시켜 제조하였다. 그러나, 그 범주가 유리 렌즈에만 국한되었으며 가변시간이 너무 길어 소비자들의 욕구를 충족시키기에는 부족함이 있었다. 또한, 플라스틱 렌즈에 적용된 사례가 있으나, 마이크로파를 가열한다든지 진공상태에서 코팅이 이루어지기 때문에 공정에 어려움이 있다.
- 약 따라서, 본 발명의 목적은 제조가 간편하고 가변시간이 짧은 새로운 플라스틱 조광 렌즈를 제공하는데 있다.

【발명이 이루고자 하는 기술적 과제】

- 본 발명자들은 특정 비율로 스피로피란 계 화합물 또는 스피로옥사진 계 화합물 또는 이들의 배합물을 톨루엔에 용해시키고 여기에 아크릴계 바인더를 혼입시킴으로써 형성된 용액으로 플라스틱 렌즈에 코팅시키고 열경화시켜 가변시간이 짧으면서, 더불어 헤이즈(haze) 현상이 생기지 않고 코팅된 렌즈 표면의 경도 및 자외선 차단율이 우수한 조광렌즈를 개발하였다..
- 본 발명은 하기 화학식(I)의 스피로피란 화합물 또는 하기 화학식(II)의 스피로옥 사진 화합물 또는 이들의 배합물 1.5% 내지 5% (이하, 조성물의 전체 중량 기준), 톨루 엔 60% 내지 65% 및 아크릴계 바인더 100% 조성량으로 구성된 용액을 렌즈의 표면에 코 팅한 후 열경화하여 조광렌즈를 제조하는 방법을 제공한다:

$$R3$$
 $R3$ $R4$ $R5$ $R4$ $R5$

<14> 상기식에서,

<15> R은 탄소수 1 내지 30의 알킬을 나타내고;

- <16>R1은 탄소수 1 내지 10의 알킬, 알케닐 또는 알콕시이거나 치환 또는 비치환된 페닐을 나타내고;
- <17> R2 내지 R5는 각각 독립적으로 수소원자, 할로겐, 시아노 또는 니트로이거나 탄소수 1 내지 6의 알킬 또는 알콕시를 나타내고;

<18> X는 하이드록시, 글리시독시, 아민, 디클로로트리옥사진옥시를 나타낸다.

【발명의 구성 및 작용】

- 본 발명의 방법은 플라스틱 렌즈 및 콘택트 렌즈에 적용된다. 콘택트렌즈의 종류에는 재질에 따라 딱딱한 하드 렌즈와 부드러운 소프트 렌즈가 있다. 하드 렌즈에는 산소가 잘 투과되는 RGP(Rigid Gas Permeable) 렌즈 및 피엠엠에이(PMMA) 렌즈가 있다. 소프트 콘택트렌즈에는 매일착용(daily-wear) 렌즈, 연속착용(extended-wear) 렌즈, 일회용(disposable) 렌즈가 있다. 기타로는 공막 렌즈, 치료용 콘택트렌즈, 토릭콘택트렌즈, 착색 렌즈, 이중초점 콘택트렌즈, 각막굴절 교정용 렌즈, 코스메틱 등이 있다.
- 본 발명에서는 광가변색 화합물로서 화학식(I)의 스피로피란 화합물 또는 하기 화학식(II)의 스피로옥사진 화합물 또는 이들의 배합물을 사용한다. 이들 광가변색 화합물은 공지된 화합물이며, 화학식(I)의 스피로피란 화합물은 미국특허 제5,241,075호에 개시되어 있으며 화학식(II)의 스피로옥사진 화합물은 대한민국특허출원 제1994-0023831호에서 출발물질로 사용되고 있으며 이 물질은 미국특허 제4,342,668호에 개시된 스피로옥사진 화합물로부터 유도될 수 있다.
- 본 발명에 따라 화학식(I)의 스피로피란 화합물과 화학식(II)의 스피로옥사진 화합물은 광가변색 화합물로서 개별적으로 사용하거나 함께 혼합하여 사용할 수 있다. 개별적으로 사용하거나 혼합하여 사용하는 것은 광가변색 화합물마다 차이는 있으나 원하는색에 따라 적절히 선택할 수 있다. 스피로피란계 화합물과 스피로옥사진 화합물은 햇빛중의 자외선을 흡수하여 보라색, 노란색, 녹색, 갈색, 빨간색, 파란색을 나타내며, 자외선 차단시 무색 투명한 색으로 되돌아온다. 본 발명에 따른 광가변색 화합물은 톨루엔에용해된 상태에서 혼합이 가능하며 혼합한 코팅액은 다른 색을 띠게 된다. 예를 들면,

노란색 액과 파란색 액을 혼합하여 만든 코팅액을 이용하여 렌즈에 코팅을 하면 녹색을 띠게 된다.

출력 일자: 2002/12/31

- 본 발명에 따라 사용되는 바인더는 아크릴계 바인더로서 이들은 유기, 무기 어떠한 것도 가능하며 또한 유·무기 복합 바인더도 가능하다. 이들 바인더는 시중에서 구입하여 사용하거나 공지된 방법에 따라 직접 제조하여 사용해도 된다.
- ○23> 통상적으로 광가변색 화합물을 용해시키기 위해 사용할 수 있는 용제로서는 핵산, 크실렌, 톨루엔, 메틸렌클로라이드, 에틸아세테이트, 부틸아세테이트 등의 유기 용매가 알려져 있다. 그러나, 본 발명에 따르면, 상기 광가변색 화합물로서 화학식(I)의 스피로 피란 화합물 또는 하기 화학식(II)의 스피로옥사진 화합물 또는 이들의 배합물을 상기 용제에 용해시켰을 때 톨루엔과 메틸렌클로라이드가 용해도가 가장 우수하였으며 광가변 색 화합물을 두 용제에 용해시킨 후 아크릴계 바인더와 혼합하여 플라스틱 렌즈에 코팅 한 결과 메틸렌클로라이드의 경우는 헤이즈(haze) 현상을 일으키는 것으로 밝혀졌다. 따라서 안경렌즈 및 콘택트렌즈에 접목하기에는 톨루엔을 사용하는 것이 가장 적합하였다.

본 발명에 따른 화학식(I) 또는 화학식(II)의 광가변색 화합물이 톨루엔에 용해되어 나타내는 색은 하기 표 1과 같다.

<25> \(\frac{1}{2} \)

<26>	색	용해도(%)
	보라	3.0
	파란	5.0
	노란	5.0
	빨간	5.0

본 발명에 따라 하기 화학식(I)의 스피로피란 화합물 또는 하기 화학식(II)의 스피로옥사진 화합물 또는 이들의 배합물은 조성물의 전체 중량을 기준으로 하여 1.5% 내지 5%를, 톨루엔은 60% 내지 65%를, 아크릴계 바인더는 100% 조성량을 사용한다. 우선 아크릴계 바인더의 함량이 낮아지면 코팅층이 표면에 완전하게 밀착하지 못하여 부착력과 경도에 문제가 생기게 된다. 또 바인더의 함량이 높아지면 점도가 높아지게 되고 코팅층이 두꺼워져서 코팅층 표면이 균일하지 않을 수 있다. 톨루엔은 함량이 높아졌을 때 광가면 화합물을 추가로 첨가시키지 않으면 코팅시 색의 농도는 낮아지게 된다. 다시 말하면, 일정 톨루엔에 광가변색 화합물이 최대 용해될 수 있는 함량보다 적게 들어가면 코팅시 색의 농도는 낮아지게 되고, 광가변색 화합물이 최대 용해될 수 있는 함량이상으로들어가면 톨루엔 용액에 용해되지 못한 만큼 바닥에 가라앉게 된다.

본 발명에 따라 화학식(I) 및/또는 화학식(II)의 광가변색 화합물, 톨루엔 및 아크 릴계 바인더로 구성된 용액을 플라스틱 렌즈 및 콘택트렌즈에 코팅하는 방법은 수 작업 으로 직접 코팅을 하거나 스핀코팅 원리를 이용하여 코팅할 수 있으며, 또한 널리 알려 진 딥코팅 방식이나 스프레이 코팅 방식을 이용할 수 있다.

본 발명에 따라 플라스틱 렌즈 및 콘택트렌즈의 표면에 본 발명의 코팅액 조성물을 코팅한 후 열경화하여 조광렌즈 및 조광콘택트렌즈를 형성한다. 본 발명에 따른 광가변색 화합물은 열에 약한 특성을 가지고 있다. 만약 경화 온도가 너무 높으면 변하는 색의정도에 문제가 생길 수 있다. 또 경화온도가 너무 낮은 경우에는 서서히 경화는 이루어지나 완전하게 경화가 이루어지기까지 오랜 시간이 걸릴 수 있고 또 완전경화가 이루어

지지 못하면 경도에도 문제가 생길 수 있다. 따라서, 본 발명에 따른 열경화 온도는 30 ℃ 내지 80℃가 바람직하다.

- 본 발명은 하기 실시예로 보다 구체적으로 예시될 것이다. 그러나, 이들 실시예는 단지 본 발명의 구현 예이며 본 발명의 범위를 한정하는 것이 아니다.
- <31> <실시예 1>
- 돌루엔 64 중량%에 하기 화학식으로 표시되는 광가변색 화합물(유니테크(주)로부터 구입) 3 중량%를 용해시켰다.

- 이 용액에 아크릴계 유·무기 복합 바인더(애경화학 제품명 A9540) (33 중량%)를 첨가하여 혼합하여 코팅액을 만들었다.
- <35> <실시예 2>
- 돌루엔 65 중량%에 하기 화학식으로 표시되는 광가변색 화합물의 혼합물(유니테크(주)로부터 구입) 5 중량%를 용해시켰다.

<37>

<38>

<39> 이 용액에 아크릴계 유·무기 복합 바인더(애경화학 제품명 A9540) 30 중량%를 첨가 하여 혼합하여 코팅액을 만들었다.

<40> <실시예 3>

실시예 1에서 제조된 코팅액으로 플라스틱 안경렌즈의 표면에 스핀 코팅하고 80℃ 의 온도로 가열하여 경화하여 목적하는 조광렌즈를 제조하였다.

<42> <실시예 4>

실시예 2에 제조된 코팅액으로 RGP 콘택트렌즈의 표면에 딥 코팅하고 80℃의 온도로 가열하여 경화하여 목적하는 조광렌즈를 제조하였다.

- <44> <실험예 1>
- <45> 가변시간 시험
- 상기 실시예 3에서 제조된 플라스틱 조광렌즈를 햇빛에 노출시켰다. 이때 조광렌즈는 갈색을 나타냈다. 갈색의 조광렌즈를 햇빛이 차단된 실내로 옮겨왔을 때 약 1분내에 투명 무색으로 변하였다.
- <47> <실험예 2>
- <48> 자외선 차단률의 측정
- UV/Vis 스펙트럼으로 실시예 3에서 제조된 플라스틱 조광렌즈의 자외선 투과율을 측정하였다. 이의 결과는 도 1로 제시되어 있다.
- <50>도 1의 그래프로부터 본 발명의 플라스틱 조광렌즈는 자외선 차단율이 99%이상임을 알 수 있다.
- <51> <실험예 3>
- <52> 부착성 시험
- 실시예 3에서 제조된 플라스틱 조광렌즈를 KS D 6711-92의 시험 방법에 따라 부착력을 측정하였으며 결과는 100/100으로 나타났다.

이 결과는 본 발명에 따른 코팅된 플라스틱 조광렌즈의 표면 부착력이 우수함을 중 명한다.

이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예 및 실험예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범 위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위 그리고 그 둥가개 념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

【발명의 효과】

본 발명에 따라 제조된 조광렌즈는 가변시간이 짧고, 헤이즈 현상이 생기지 않으며, 코팅된 렌즈의 표면의 부착력 및 자외선 차단률이 우수하다.

【특허청구범위】

【청구항 1】

하기 화학식(I)의 스피로피란 화합물과 하기 화학식(II)의 스피로옥사진 화합물 1.5% 내지 5% (이하, 조성물의 전체 중량 기준), 톨루엔 60% 내지 65% 및 바인더 100% 조성량으로 구성된 용액을 렌즈의 표면에 코팅한 후 열경화함을 포함하여, 조광렌즈를 제조하는 방법:

$$\begin{array}{c|c} Br & H_3C & CH_3 \\ \hline & NO_2 & OCH_3 \\ \hline & NO_2 & (I) \\ \end{array}$$

상기식에서,

R 은 탄소수 1 내지 30의 알킬을 나타내고;

R1은 탄소수 1 내지 10의 알킬, 알케닐 또는 알콕시이거나 치환 또는 비치환된 페닐을 나타내고;

출력 일자: 2002/12/31

R2 내지 R5는 각각 독립적으로 수소원자, 할로겐, 시아노 또는 니트로이거나 탄소수 1 내지 6의 알킬 또는 알콕시를 나타내고;

X는 하이드록시, 글리시독시, 아민, 디클로로트리옥사진옥시를 나타낸다.

【청구항 2】

제1항에 있어서, 열경화 온도가 30℃ 내지 80℃인 방법.

【청구항 3】

제1항 또는 2항에 있어서, 렌즈가 플라스틱 렌즈 또는 콘택트렌즈인 방법.

