Red Wine Quality Prediction

Team 6:

Priya Ramakrishnan, Chirag Madhukar, Parth Parsana, Noor Zia, Pratheek Praveen Kumar.

Agenda

- 1. Introduction
- 2. Project Purpose
- 3. Data Dictionary
- 4. Analysis Process
- 5. Models & Prediction
- 6. Correlation Plots
- 7. Conclusion & Takeaways

Introduction

Facts:

- Quality Certification
- Physicochemical properties

Problem statement:

- Biased opinion
- Expensive

Value:

Controlled certification and assessment process reducing human intervention.

"I'm a wine enthusiast. The more wine I drink, the more enthusiastic I get."

Wine Making Procedure

Chemical Process

- Fermentation -> alcohol & residual sugars
- Grape -> acids, chlorides
- Preservation -> sulphates, free sulphur dioxide

Good tasting wines should have:

Alcohol	Volatile Acidity	Fixed Acidity	Sulphates	Citric acid	Residual sugars
High	Low	High	Low	Low	low
рН	Chlorides	Free sulphur dioxide	Density	Total sulphur dioxide	
low	Low	Low	high	low	

Project Purpose

- Determine the best red wine quality indicators.
- Quality of wine = Taste Preferences
- Multi Class Classification Problem

Data Dictionary

- Fixed acidity Unit: Density in float
- Volatile acidity Unit: Density in float
- Citric acid Unit: Density in float
- Residual sugar Unit: Grams in float
- Chlorides Unit: Density in float
- Free sulphur dioxide Unit: Density in float
- Total sulphur dioxide Unit: Density in float
- Density Unit: Density in float
- pH Unit: Integer, Scale: 1-14
- Sulphates Unit: Density in Float
- Alcohol Unit: Percentage by volume
- Quality Class Scale 1- 10

Analysis Process

- Dataset from: UCI Data Repository
- Sample size: 1599
- Predictor Variable: Quality(1-10 scale)
- Pre-Processing
 - Classified the data in 3 labels
 - Quality > 6 Good
 - 6 > Quality > 4 Okay
 - Quality < 4 Bad
- Smote Analysis to balance data
- Train: 70%; Test: 30%
- 4 models analyzed

Models Used

- Multinomial Regression
- XGBoost
- Random Forest
- Support Vector Machine (SVM)

Multinomial Regression

```
> head(pvalues)
    (Intercept) fixed.acidity volatile.acidity citric.acid
            0 7.405287e-02 3.361148e-18 0.03002649
Good
            0 4.366036e-15 9.326824e-20 0.70608666
0k
    residual.sugar chlorides free.sulfur.dioxide
Good 3.983799e-06 0.03989669 3.999020e-07
ok 4.091226e-16 0.71735877
                               4.848941e-04
    total.sulfur.dioxide density
                                         sulphates
                                    рН
           Good
           0.123183015 0 4.432288e-22 3.792674e-01
0k
        alcohol
Good 9.881660e-39
ok 1.035369e-13
```

XGBoost

Preprocessing:

- Conversion to xgb.DMatrix format
- Hyperparameters chosen:
 - o nrounds = 100
 - objective = "multi:softmax"

XGBoost Confusion Matrix

Accuracy: 0.7531

Confusion Matrix:-

R	eferenc	e	
Prediction	bad	good	ok
bad	9	0	36
good	0	50	58
ok	9	15	301

XGBoost Parameters

	Class: bad	Class: good	Class: ok
Sensitivity	0.50	0.77	0.76
Specificity	0.92	0.86	0.71
Balanced Accuracy	0.71	0.81	0.74
Precision	0.04	0.18	0.85
F1 Score	0.08	0.29	0.80

XGBoost Features

Sr No.	Feature	Gain	Cover	Frequency
1	alcohol	0.24718990	0.2576002	0.1901004
2	sulphates	0.24216656	0.1995195	0.1744978
3	volatile acidity	0.23474276	0.1638620	0.1608680
4	рН	0.11091620	0.1515180	0.1807747
5	density	0.08595417	0.1036645	0.1576399
6	citric acid	0.07903041	0.1238358	0.1361191

Random Forest

Hyperparameters:

Variables: 4

Terminal nodes: 6

ntree:100

Confusion Matrix:

Reference

Prediction	bad	good	ok
bad	9	0	38
good	0	52	57
ok	9	13	300

Accuracy: 75.52%

Random Forest

	Class: bad	Class: good	Class: ok
Sensitivity	0.50	0.80	0.76
Specificity	0.92	0.86	0.73
Balanced Accuracy	0.71	0.83	0.75
Precision	0.19	0.48	0.93
F1 Score	0.28	0.60	0.84

Support Vector Machine

Confusion Matrix:-

Reference				
bac	d good	ok		
11	1	71		
1	53	67		
6	11	257		
	bac 11 1	bad good 11 1 1 53		

Accuracy: 0.6715

Support Vector Parameters

	Class: bad	Class: good	Class: ok
Sensitivity	0.61	0.82	0.65
Specificity	0.84	0.84	0.79
Balanced Accuracy	0.73	0.83	0.72
Precision	0.13	0.44	0.94
F1 Score	0.21	0.57	0.77

Correlation Matrix

From the following matrix, we observe that following variables are the most correlated:
-'alcohol': positive correlation
-'sulphates': positive correlation
-'citric acid': positive correlation
-'volatile acidity': negative correlation.

Quality Correlation Plot

Conclusion

Model	Accuracy	Takeaways
Random Forest	75.52%	Best model overall, better precision, sensitivity and specificity
Support Vector Machine	67.15%	Worse than RF in every metric
XGBoost	75.31%	Excellent accuracy, better precision and sensitivity for some classes

- 1. Most significant variables to assess the quality of wine: Alcohol, Volatile Acidity, pH, citric acid and density
- 2. From our findings, a good quality wine should have high alcohol (increases density), low volatile acidity, low pH (3 to 4), and some presence of citric acid.