

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

BAIN036 Álgebra Lineal para Ingeniería Pauta Prueba Sustitutiva Lunes 23 de Diciembre de 2013

1.- Se tiene el siguiente producto interno en \mathbb{R}^4

$$\langle (x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4) \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3 + 2x_4 y_4$$

Considere $W = \langle (1,0,-1,0), (0,2,3,1) \rangle$ con el producto interno antes definido y determine:

- i) Complemento ortogonal de W.
- ii) Base de W^{\perp} .

Solución.

i)

$$\begin{split} W^{\perp} &= \{(x,y,z,t) \in \mathbb{R}^4 : \langle (x,y,z,t), (1,0,-1,0) \rangle = 0 \land \langle (x,y,z,t), (0,2,3,1) \rangle = 0\} \\ &= \{(x,y,z,t) \in \mathbb{R}^4 : x-z = 0 \land 2y + 3z + 2t = 0\} \\ &= \{(x,y,z,t) \in \mathbb{R}^4 : x = z \land y = \frac{-3z-2t}{2}\} \\ &= \{(z,\frac{-3z-2t}{2},z,t) \in \mathbb{R}^4 : y,z \in \mathbb{R}\} \\ &= \langle (1,-3/2,1,0), (0,-1,0,1) \rangle \end{split}$$

- ii) El conjunto $B = \{(1, -3/2, 1, 0), (0, -1, 0, 1)\}$ es l.i. porque los vectores no son múltiplos entre sí y genera a W^{\perp} , por lo tanto, B es una base de W^{\perp} y su dimensión es 2.
- 2.- Se define $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$, transformación lineal tal que

$$T(ax^3 + bx^2 + cx + d) = (a - b + 2c + 5d)x^3 + (b + c + 2d)x^2 + (c + d)x + (a - b - 3c)$$

Determine:

- i) Base y dimensión de Ker(T) e Im(T).
- ii) Matriz asociada $[T]_C,$ en la base canónica
 $C=\{x^3,x^2,x,1\}$

Solución.

i)
$$Ker(T) = \{ax^3 + bx^2 + cx + d \in P_3(\mathbb{R}) : T(ax^3 + bx^2 + cx + d) = 0\},$$

$$T(ax^3 + bx^2 + cx + d) = 0 \iff a - b + 2c + 5d = 0$$

$$b + c + 2d = 0$$

$$c + d = 0$$

$$a - b - 3c = 0$$

$$\begin{bmatrix} 1 & -1 & 2 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & -3 & 0 \end{bmatrix} \xrightarrow{f_{4+(-1)1}} \begin{bmatrix} 1 & -1 & 2 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{f_{4+(-1)3}} \begin{bmatrix} 1 & -1 & 2 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{f_{2+(-1)3}} \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Luego,

$$T(ax^3 + bx^2 + cx + d) = 0 \Leftrightarrow a + 4d = 0$$

 $b + d = 0$
 $c + d = 0$

Por lo tanto, $Ker(T)=\{-4dx^3-dx^2-dx+d:d\in\mathbb{R}\}=\langle -4x^3-x^2-x+1\rangle$, su base es $B=\{-4x^3-x^2-x+1\}$ ya que genera y es l.i. (único vector no nulo) y su dimensión es 1.

Calculemos base de Im(T)

$$Im(T) = \langle T(x^3), T(x^2), T(x), T(1) \rangle$$

= $\langle x^3 + 1, -x^3 + x^2 - 1, 2x^3 + x^2 + x - 3, 5x^3 + 2x^2 + x \rangle$

La imagen está generado por $\{x^3+1, -x^3+x^2-1, 2x^3+x^2+x-3, 5x^3+2x^2+x\}$. Veamos si es l.i.

$$\alpha(x^3+1) + \beta(-x^3+x^2-1) + \gamma(2x^3+x^2+x-3) + \delta(5x^3+2x^2+x) = 0$$

resolviendo el sistema

$$A = \begin{bmatrix} 1 & -1 & 2 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & -3 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Como el r(A) < número de elementos, el conjunto es l.d. Así una base de Im(T) es $B = \{x^3 + 1, -x^3 + x^2 - 1, 2x^3 + x^2 + x - 3\}$ y su dimensión es 3.

ii) Para hallar la matriz asociada en la base canónica debemos evaluar cada vector de la base C y escribirlo como combinación lineal de la base C, entonces, se tiene

$$T(x^{3}) = x^{3} + 1 = 1 \cdot x^{3} + 0 \cdot x^{2} + 0 \cdot x + 1 \cdot 1$$

$$T(x^{2}) = -x^{3} + x^{2} - 1 = -1 \cdot x^{3} + 1 \cdot x^{2} + 0 \cdot x + (-1) \cdot 1$$

$$T(x) = 2x^{3} + x^{2} + x - 3 = 2 \cdot x^{3} + 1 \cdot x^{2} + 1 \cdot x + (-3) \cdot 1$$

$$T(1) = 5x^{3} + 2x^{2} + x = 5 \cdot x^{3} + 2 \cdot x^{2} + 1 \cdot x + 0 \cdot 1$$

Finalmente, la matriz asociada en la base canónica es:

$$[T]_C = \begin{bmatrix} 1 & -1 & 2 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & -3 & 0 \end{bmatrix}$$

3.- Dada la matriz $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{bmatrix}$.

- i) Demuestre que A es diagonalizable.
- ii) Encuentre P matriz invertible, D matriz diagonal tales que $D=P^{-1}AP$ y compruebe esta igualdad.

Solución.

i) Calculemos el polinomio caracterísitico

$$p(\lambda) = \det \begin{pmatrix} \begin{bmatrix} 1-\lambda & 2 & -2 \\ 2 & 1-\lambda & -2 \\ 2 & 2 & -3-\lambda \end{bmatrix} \end{pmatrix}$$

$$\stackrel{f_{1+(-1)3}}{\stackrel{\longrightarrow}{=}} \det \begin{pmatrix} \begin{bmatrix} -1-\lambda & 0 & 1+\lambda \\ 2 & 1-\lambda & -2 \\ 2 & 2 & -3-\lambda \end{bmatrix} \end{pmatrix}$$

$$\stackrel{C_{3+(1)1}}{\stackrel{\longrightarrow}{=}} \det \begin{pmatrix} \begin{bmatrix} -1-\lambda & 0 & 0 \\ 2 & 1-\lambda & 0 \\ 2 & 2 & -1-\lambda \end{bmatrix} \end{pmatrix}$$

$$= -\lambda^3 - \lambda^2 + \lambda + 1$$

$$= -(\lambda - 1)(\lambda + 1)^2$$

Los valores propios de A son $\lambda = 1$ con multiplicidad 1 y $\lambda = -1$ con multiplicidad 2. Calculamos ahora los espacios propios asociados a cada valor propio.

$$V_{1} = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : (A - 1 \cdot I_{3}) \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$\begin{bmatrix} 0 & 2 & -2 \\ 2 & 0 & -2 \\ 2 & 2 & -4 \end{bmatrix} \xrightarrow{f_{(1/2)^{2}}} \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} \xrightarrow{f_{3+(-1)^{2}}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\text{Luego, } V_{1} = \left\{ \begin{bmatrix} z \\ z \\ z \end{bmatrix} : z \in \mathbb{R} \right\} = \left\langle \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\rangle$$

$$V_{-1} = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : (A - (-1) \cdot I_{3}) \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

$$\begin{bmatrix} 2 & 2 & -2 \\ 2 & 2 & -2 \\ 2 & 2 & -2 \end{bmatrix} \xrightarrow{f_{2+(-1)^{1}}} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$V_{-1} = \left\langle \left[\begin{array}{c} -y + z \\ y \\ z \end{array} \right] : y, z \in \mathbb{R} \right\rangle = \left\langle \left[\begin{array}{c} -1 \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right] \right\rangle$$

El orden de la matriz A es 3 y coincide con la suma de las dimensiones de los subespacios propios de V_1 y V_{-1} . Por lo tanto, A es diagonalizable.

ii)
$$P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 y $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

Calculamos ahora P^{-1}

$$\begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{f_{2+(-1)3}} \begin{bmatrix} 0 & -1 & 0 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{f_{2+(1)1}} \begin{bmatrix} f_{2+(1)1} & 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 & 1 & -2 \\ 1 & 0 & 0 & 1 & 1 & -1 \end{bmatrix}$$

$$\xrightarrow{f_{(-1)2}} \begin{bmatrix} f_{(-1)2} & 0 & 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & -1 & 2 \end{bmatrix}$$

Luego
$$P^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & 2 \end{bmatrix}$$
 y entonces,
$$P^{-1}AP = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$