Crystal Systems and Structure of Crystalline Materials

Micro structure

 Microstructure of Poly-crystalline sample consist of several grain, separated by grain boundary.

Periodic arrangement of atoms

Long range ordering

- Crystalline Solid have long range ordering
- Crystalline materials are characterised by a regular atomic structure that repeats itself in all three dimensions. In other words, the structure displays translational symmetry
- The periodic nature of the structure can be represented using a lattice. Every lattice point have identical surrounding.

Crystal = Lattice + Motif

How to repeat what to repeat

Lattice

Here, Only (a) and (d) constitute lattices

Unit cell

- The structure of a crystal can be seen to be composed of a repeated element in three dimensions. This repeated element is known as the unit cell.
- In three dimension the unit cell is any parallelepiped whose vertices are lattice points. In two dimension it is any parallelogram whose vertices are lattice points.
- There are infinite possibilities to chose the unit cell.
- In general, the unit cell is chosen such that it is the smallest unit cell that reflects the symmetry of the structure.

What is symmetry?

- An object is said to be symmetric with respect to a geometric operation if it can be brought into self coincidence by that operation.
- An object is described as symmetric with respect to a transformation if the object appears to be in a state that is identical to its initial state, after the transformation.
- There are two main types of symmetries (i.e. symmetry operations): (a) Translation symmetry (b) Point symmetry

Translational symmetry

- Translations, i.e. executable shifting movements, proceeding along a straight line and on a certain specified distance, such that the operation does not result in any change of the shifted pattern.
- Lattice considered as infinite array of points
- Translational vector can be any vector joining two points
- Translation symmetry is the defining symmetry of a lattice

Point Symmetries

 It is a macroscopically visible symmetry operations: after it has been applied to the crystal at least one point remains where it was !!

☐ Different point symmetry operations:

- Rotation (1,2,..)
- Mirror (m)
- Inversion $(\overline{1})$
- Roto-inversion $(\overline{2}, \overline{3}, \overline{4}, ...)$

Rotational

3 Fold symmetry

4 Fold symmetry

5 Fold symmetry

Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems

Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	a

Crystal Systems

 $\alpha = \beta = \gamma = 90^{\circ}$

Orthorhombic

Triclinic
$$a \neq b \neq c$$
 $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Crystal System	Axial Relationships	Interaxial Angles
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$
Hexagonal	$a = b \neq c$	$\alpha = \beta = 90^\circ, \gamma = 120$
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$
Rhombohedral (Trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$
Monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ} \neq \beta$

Unit Cell Notation

P (or R for rhombohedral): Primitive

I: Body center

F: Face center

C: Edge center or Base center

	6
	ja
$\frac{c}{P}$	$\frac{c}{C}$

Bravais lattices

 $a \neq b \neq c$

Note: All the atoms belong to the same element, colour difference is shown only to illustrate their respective positions more clearly.

Closed Packed Structures

Note: All the different coloured atoms belong to the same element

Cubic close-packed (or FCC) structure

Close Packing in FCC Unit Cell

C or C' : corner atoms F: face centering atom

Alloy

a Fe

Interstitial alloy

Distortion caused by a large interstitial atom

Lattice Distortion

Substitutional alloys

FCC

$$AB^2 + BC^2 = AC^2$$

$$a=2\sqrt{2}R$$

$$APF = \frac{\text{volume of atoms in a unit cell}}{\text{total unit cell volume}} = \frac{V_S}{V_C}$$

$$V_S = (4)\frac{4}{3}\pi R^3 = \frac{16}{3}\pi R^3$$

$$V_C = a^3 = (2R\sqrt{2})^3 = 16R^3\sqrt{2}$$

APF =
$$\frac{V_S}{V_C} = \frac{(\frac{16}{3})\pi R^3}{16R^3\sqrt{2}} = 0.74$$

- a) Find the relation between R and a.
- b) How many atoms are in a face centered cubic (FCC) unit cell?
- c) Calculate the atomic packing factor (APF) for a face centered-cubic structure (FCC).
- d) Which structure has the highest atomic packing factor: face centered cubic (FCC), body centered cubic (BCC) or simple cubic (SC).

Simple Cubic

$$2R = a$$

$$APF = 0.52$$

BCC

$$4R = \sqrt{3}a$$

$$APF = \frac{\text{volume of atoms in a unit cell}}{\text{total unit cell volume}} = \frac{V_S}{V_C}$$

$$= 0.68$$

Theoretical Density (ρ) Calculation

$$\rho = \frac{nA}{V_C N_{\rm A}}$$

n = number of atoms associated with each unit cell

A = atomic weight

 V_C = volume of the unit cell

 $N_{\rm A} = \text{Avogadro's number } (6.023 \times 10^{23} \text{ atoms/mol})$

Unit cell	Number of atoms at			No. of atoms	Volume occupied
	Corners	Centres	Faces	per unit cell	by particles (%)
Simple cubic	$8 \times \frac{1}{8} = 1$	0	0	1	52.4
Body centred	$8 \times \frac{1}{8} = 1$	1	0	2	68
cubic (BCC)					
Face centred	$8 \times \frac{1}{8} = 1$	0	$6 \times \frac{1}{2} = 3$	4	74
cubic (FCC)					

Crystallographic Points

For the unit cell shown in the accompanying sketch (a), locate the point having coordinates $\frac{1}{4} 1 \frac{1}{2}$.

Point Number	Fr	Fractional Lengths			
	x axis	y axis	z axis	Point Coordinates	
1	0	0	0	0 0 0	
2	1	0	0	100	
3	1	1	0	110	
4	0	1	0	010	
5	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}\frac{1}{2}\frac{1}{2}$	
6	Õ	Ō	Ĩ.	001	
7	1	0	1	101	
8	1	1	1	111	
9	0	1	1	011	