Review Problems Unit 0

Advanced Statistical Inference

Alexander J Ohrt

9/30/2021

Setting some of the parameters to arbitrary values.

V[i] <- sqrt(N)*(mean(X)-mean(Y)-mu_1+mu_2)/(2*sigma)</pre>

norm <- rnorm(reps)</pre>

```
sigma <- 1 mu_1 <- 1 mu_2 <- 2 # To show that both expectations do not have to be equal.  

a) Show that V_n = \frac{1}{2\sigma} \sqrt{n} (\overline{X} - \overline{Y} - \mu_1 - \mu_2) is distributed as N(0,1).  
N <- 1000 reps <- 10000  
V <- rep(0,reps) for (i in 1:reps){ # Sampling X and Y from their respective distributions.  
X <- rnorm(N, mu_1, sqrt(sigma^2))  
Y <- rnorm(N, mu_2, sqrt(3*sigma^2))
```

Firstly I make a scatter plot of the points from V and rnorm(1000), to check if there are some obvious differences.

```
par(mfrow=c(1,1))
plot(V, col = 1, lty = 1, main = "Scatter plot of simulated V and N(0,1)")
points(norm, col = 2, lty = 1)
legend(0, 3.5, c("V_n", "N(0,1)"), col = c(1,2), lty = 1)
```

Scatter plot of simulated V and N(0,1)

Secondly I make histograms of the two vectors, in order to compare them side by side. The simulation of V_n seems to be distributed (standard) normally, based on the histograms.

```
par(mfrow=c(1,2))
hist(V, breaks = 100)
hist(norm, col = 2, breaks = 100)
```

Histogram of V

Histogram of norm

b)

```
Show that (n-1)T_n/\sigma^2=\frac{(n-1)}{\sigma^2}(S_{1n}^2+\frac{1}{3}S_{2n}^2) is distributed as \chi^2_{2(n-1)}.
reps <- 5000
N <- 1000
sim <- rep(0,reps)</pre>
chi <- rep(0,reps)
for (i in 1:reps){
  \# Sampling X and Y from their respective distributions.
  X <- rnorm(N, mu_1, sqrt(sigma^2))</pre>
  Y <- rnorm(N, mu_2, sqrt(3*sigma^2))
  sim[i] \leftarrow (N-1)*(var(X) + 1/3*var(Y))/sigma^2
}
chi <- rchisq(reps, 2*(N-1))</pre>
par(mfrow=c(1,1))
plot(sim, col = 1, lty = 1, main = "Scatter plot of simulated Tn and rqchisq")
points(chi, col = 2, lty = 1)
legend(0, 1880, c("Tn", "rchisq"), col = c(1,2), lty = 1)
```

Scatter plot of simulated Tn and rqchisq


```
par(mfrow=c(1,2))
hist(sim, breaks = 100, main = "Histogram of (n-1)Tn/sigma^2")
hist(chi, col = 2, breaks = 100)
```

Histogram of (n-1)Tn/sigma^2

Histogram of chi

Similar to the conclusion in a), the plots show what we wanted to show.

c)

Not sure how to show that two statistics are independent via simulation in R.

d)

```
Show that U_n = \sqrt{n}(\overline{X} - \overline{Y} - \mu_1 + \mu_2)/\sqrt{2T_n} \sim t_{2(n-1)}.
reps <- 5000
N <- 1000
Tn <- rep(0,reps)</pre>
Un <- rep(0,reps)
for (i in 1:reps){
  # Sampling X and Y from their respective distributions.
  X <- rnorm(N, mu_1, sqrt(sigma^2))</pre>
  Y <- rnorm(N, mu_2, sqrt(3*sigma^2))
  Tn[i] \leftarrow var(X) + 1/3*var(Y)
  Un[i] <- sqrt(N)*(mean(X)-mean(Y)-mu_1+mu_2)/sqrt(2*Tn[i])</pre>
}
student <- rt(reps, 2*(N-1))</pre>
par(mfrow=c(1,1))
plot(Un, col = 1, lty = 1, main = "Scatter plot of simulated Un and rt")
points(student, col = 2, lty = 1)
legend(0, -2, c("Tn", "Student"), col = c(1,2), lty = 1)
```

Scatter plot of simulated Un and rt


```
par(mfrow=c(1,2))
hist(Un, breaks = 100, main = "Histogram of Un")
hist(student, col = 2, breaks = 100)
```


As before, the plots simulate the theoretical conclusions.

e) and f)

Is it possible to simulate (e) (convergence in probability) and (f) (convergence in law)?