

Nombre:			Tercera Evaluación
Curso:	4º ESO A-B	Examen XII CCSS	
Fecha:	8 de junio de 2018	Final Junio 2018	

1.- (1 punto) Calcula indicando los pasos intermedios:

a)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1} =$$

$$b) \quad \frac{2^5 \cdot 27^2 \cdot 4^{-1} \cdot 8^{-3}}{2^{-3} \cdot 16 \cdot 81}$$

a)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2} - 1} - \frac{1}{\sqrt{2} + 1} =$$
 b) $\frac{2^5 \cdot 27^2 \cdot 4^{-1} \cdot 8^{-3}}{2^{-3} \cdot 16 \cdot 81}$ c) $(\sqrt{200} - \sqrt{75} + 2\sqrt{27} + \sqrt{12})^2$

- 2.- (0,75 puntos) Luis XIV decidió en 1.682 trasladarse a Versalles y para ello utilizó 4 carruajes. En el primero llevó un quinto del equipaje, en el segundo un cuarto del resto, en el tercero, dos tercios del nuevo resto, y en el cuarto 750 Kg. ¿Cuál era el peso total del equipaje?
- 3.- (0,5 puntos) Calcula el valor de x en las siguientes expresiones logarítmicas y exponenciales:

a)
$$\frac{\left(3^{x+1}\right)^2 \cdot 9^{-x}}{81^{1-x} \cdot 3^{2x}} = 1$$

a)
$$\frac{(3^{x+1})^2 \cdot 9^{-x}}{81^{1-x} \cdot 3^{2x}} = 1$$
 b) $\log \sqrt{x-1} = \log(x+1) - \log \sqrt{x+4}$

4.- (0,5 puntos) Realiza las siguientes operaciones de polinomios:

a)
$$(3x^3-7x^2+5)^2$$

a)
$$(3x^3-7x^2+5)^2$$
 b) $2x^5+6x^4-4x^2+10x+4|x^3-x+1|$

5.- (1 punto) Resuelve las siguientes ecuaciones:

a)
$$2\sqrt{x+4} - \sqrt{5x+4} = 0$$

a)
$$2\sqrt{x+4} - \sqrt{5x+4} = 0$$
 b) $\frac{(2x-1)\cdot(2x+1)}{3} + \frac{(x-2)^2}{4} = \frac{3x+4}{6} + \frac{x^2}{3}$

6.- (0,75 puntos) Si se añade 49 al cuadrado de cierto número natural, dicha suma es igual al cuadrado de 11 más dicho número. ¿De qué número se trata?

Departamento de Matemáticas

- 7.- (0,75 puntos) ¿Cuántos peldaños tiene una escalera si subiéndolos de dos en dos hay que dar tres saltos más que si los subimos de 3 en tres?
- **8.-** (0,5 puntos) Resuelve el siguiente sistema de ecuaciones: $\begin{cases} x^2 + y^2 = 100 \\ x \cdot v = 48 \end{cases}$
- **9.-** $_{(0,75 \text{ puntos})}$ Una comerciante compra 50 kg de harina y 80 kg de arroz, por los que tiene que pagar 66,10 €; pero consigue un descuento del 20% en el precio de la harina y un 10% en el del arroz. De esa forma paga 56,24 €. ¿Cuáles son los precios primitivos de cada artículo?

10.- (0,5 puntos) Calcula el dominio de la función:
$$f(x) = (x-2) \cdot \sqrt{\frac{1+x}{1-x}}$$

11.- (0,75 puntos) Tras un test realizado al nuevo Volkswagen Touareg, se ha observado que el consumo de gasóleo, C(x), expresado en litros, viene dado por la función:

$$C(x) = 7,5-0,05x+0,00025x^2$$

Siendo x la velocidad en Km/h y $25 \le x \le 175$

- a) Determine el consumo de combustible a las velocidades de 50 km/h y 150 km/h.
- **b)** Estudie el crecimiento y decrecimiento de la función.
- c) ¿A qué velocidades se obtiene el mínimo consumo?, ¿y el máximo? Calcula el consumo máximo y mínimo.
- **12.-** (0,75 puntos) Dada la distribución estadística:

x_i	[0, 5)	[5, 10)	[10, 15)	[15, 20)	[20, 25)	[25, 30)
f_i	3	5	7	8	2	6

Calcular:

- a) El percentil 96.
- **b)** El coeficiente de Variación.
- **13.-** (0,5 puntos) En la heladería "Oliveri" de la ciudad de Casablanca, preparan copas de helado con cuatro bolas elegidas de entre los 20 sabores diferentes.
 - a) ¿Cuántas copas distintas pueden prepararse si las cuatro bolas son diferentes?
 - **b)** ¿Y si no fueran diferentes, cuantas copas pueden prepararse?
- **14.-** (0,5 puntos) En un aula de dibujo hay 40 sillas, 30 con respaldo y 10 sin él. Entre las sillas sin respaldo hay 3 que son nuevas y entre las sillas con respaldo hay otras 7 nuevas.
 - a) Tomada una silla al azar, ¿cuál es la probabilidad de que sea nueva?
 - b) Si se coge una silla vieja, ¿cuál es la probabilidad de que no tenga respaldo?
- 15.- (0,5 puntos) Dado el gráfico siguiente, calcula los límites:

1.- (1 punto) Calcula indicando los pasos intermedios:

a)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}-1} - \frac{1}{\sqrt{2}+1} =$$

b)
$$\frac{2^5 \cdot 27^2 \cdot 4^{-1} \cdot 8^{-3}}{2^{-3} \cdot 16 \cdot 81}$$

a)
$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2} - 1} - \frac{1}{\sqrt{2} + 1} =$$
 b) $\frac{2^5 \cdot 27^2 \cdot 4^{-1} \cdot 8^{-3}}{2^{-3} \cdot 16 \cdot 81}$ c) $(\sqrt{200} - \sqrt{75} + 2\sqrt{27} + \sqrt{12})^2$

Sol: a) $2+\sqrt{2}/2$; b) 9/128 d) $227+60\sqrt{6}$

2.- (0,75 puntos) Luis XIV decidió en 1.682 trasladarse a Versalles y para ello utilizó 4 carruajes. En el primero llevó un quinto del equipaje, en el segundo un cuarto del resto, en el tercero, dos tercios del nuevo resto, y en el cuarto 750 Kg. ¿Cuál era el peso total del equipaje?

Sol: 3.500 kg

3.- (0,5 puntos) Calcula el valor de x en las siguientes expresiones logarítmicas y exponenciales:

a)
$$\frac{\left(3^{x+1}\right)^2 \cdot 9^{-x}}{81^{1-x} \cdot 3^{2x}} = 1$$

a)
$$\frac{\left(3^{x+1}\right)^2 \cdot 9^{-x}}{81^{1-x} \cdot 3^{2x}} = 1$$
 b) $\log \sqrt{x-1} = \log(x+1) - \log \sqrt{x+4}$ Sol: a) $x=1$; b) $x=5$

4.- (0,5 puntos) Realiza las siguientes operaciones de polinomios:

a)
$$(3x^3 - 7x^2 + 5)^2$$

b)
$$2x^5 + 6x^4 - 4x^2 + 10x + 4 \left\lfloor x^3 - x + 1 \right\rfloor$$

a) $(3x^3 - 7x^2 + 5)^2$ b) $2x^5 + 6x^4 - 4x^2 + 10x + 4 | x^3 - x + 1 |$ Sol: a) $9x^6 - 42x^5 + 49x^4 + 30x^3 - 70x^2 + 25$; b) $C(x) = 2x^2 + 6x + 2$; R(x) = 6x + 2

5.- (1 punto) Resuelve las siguientes ecuaciones:

a)
$$2\sqrt{x+4} - \sqrt{5x+4} = 0$$

a)
$$2\sqrt{x+4} - \sqrt{5x+4} = 0$$

b) $\frac{(2x-1)\cdot(2x+1)}{3} + \frac{(x-2)^2}{4} = \frac{3x+4}{6} + \frac{x^2}{3}$

Sol: a) x=12; b) $x_1=0$ y $x_2=6/5$

6.- (0,75 puntos) Si se añade 49 al cuadrado de cierto número natural, dicha suma es igual al cuadrado de 11 más dicho número. ¿De qué número se trata?

Sol: El número es el 9.

Departamento de Matemáticas

7.- (0,75 puntos) ¿Cuántos peldaños tiene una escalera si subiéndolos de dos en dos hay que dar tres saltos más que si los subimos de 3 en tres?

Sol: 18 peldaños.

8.- (0,5 puntos) Resuelve el siguiente sistema de ecuaciones: $\begin{cases} x^2 + y^2 = 100 \\ x \cdot y = 48 \end{cases}$

Sol: Si x=6, y=8; y si x=8, y=6.

9.- (0,75 puntos) Una comerciante compra 50 kg de harina y 80 kg de arroz, por los que tiene que pagar 66,10 €; pero consigue un descuento del 20% en el precio de la harina y un 10% en el del arroz. De esa forma paga 56,24 €. ¿Cuáles son los precios primitivos de cada artículo?

Solución: 1 kg de harina valía 0,65 € y un kg de arroz 0,42 €

10.- (0,5 puntos) Calcula el dominio de la función:
$$f(x) = (x-2) \cdot \sqrt{\frac{1+x}{1-x}}$$

Sol: [-1,1)

11.- (0,75 puntos) Tras un test realizado al nuevo Volkswagen Touareg, se ha observado que el consumo de gasóleo, C(x), expresado en litros, viene dado por la función:

$$C(x) = 7,5-0,05x+0,00025x^2$$

Siendo x la velocidad en Km/h y $25 \le x \le 175$

- d) Determine el consumo de combustible a las velocidades de 50 km/h y 150 km/h.
- e) Estudie el crecimiento y decrecimiento de la función.
- f) ¿A qué velocidades se obtiene el mínimo consumo?, ¿y el máximo? Calcula el consumo máximo y mínimo.

Sol: a) 5,625 litros; b) f decreciente en (25,100) y f creciente en (100,175); c) El consumo mínimo se consigue a 100 km/h y es de 5 litros, y el consumo máximo se consigue a 25 o 175 km/h y es de 6,4 litros.

12.- (0,75 puntos) Dada la distribución estadística:

x_i	[0, 5)	[5, 10)	[10, 15)	[15, 20)	[20, 25)	[25, 30)
f_i	3	5	7 A	8	2	6

Calcular:

- c) El percentil 96.
- d) El coeficiente de Variación.

La tabla de valores es:

					\ \ \	\	
x_i		f_i F_i	h_i	H_{i}	$x_i \cdot f_i$	$x_i^2 \cdot f_i$	
Intervalos	X_i	<i>J</i> '	- 1	·	·	171	. 3.
0 – 5	2,5	3	3	0 <mark>,0968</mark>	0,0968	7,5	18,75
5 – 10	7,5	5	8	0,1613	0,2581	37,5	281,25
10 – 15	12,5	7	15	0,2258	0,4839	87,5	1093,75
15 – 20	17,5	8	23	0,2580	0,7419	140	2450
20 – 25	22,5	2	25	0,0645	0,8064	D 45	1012,5
25 – 30	27,5	6	31	0,1935	1	165	4537,5
Totales:			N=31			$\sum x_i \cdot f_i = 482,5$	$\sum x_i^2 \cdot f_i = 9.393,75$

El percentil 96
$$\frac{96.31}{100}$$
 = 29,76 se encuentra en la clase (25 – 30) y su valor es: P_{96} = 25 + $\frac{29,76-25}{6}$ ·5 = 28,97

Para el coeficiente de variación necesito la media y la varianza:

La media aritmética viene dada por: Media :
$$\bar{x} = \frac{\sum x_i \cdot f_i}{N} = \frac{482,5}{31} = 15,56$$

La Varianza la calculamos mediante la expresión
$$Var = \frac{\sum f_i \cdot x_i^2}{N} - \overline{x}^2 = \frac{9393,75}{31} - 15,56^2 = 60,91$$

La Desviación típica es la raíz cuadrada de la varianza:
$$\sigma = \sqrt{Var} = \sqrt{\frac{\sum f_i \cdot x_i^2}{N} - \bar{x}^2} = \sqrt{60,91} = 7,80$$

El coeficiente de variación es:
$$C.V. = \frac{\sigma}{\overline{x}} = \frac{7.8}{15,56} = 0,501$$

- **13.-** (0,5 puntos) En la heladería "Oliveri" de la ciudad de Casablanca, preparan copas de helado con cuatro bolas elegidas de entre los 20 sabores diferentes.
 - c) ¿Cuántas copas distintas pueden prepararse si las cuatro bolas son diferentes?
 - d) ¿Y si no fueran diferentes, cuantas copas pueden prepararse?

Como el orden no importa se trataría de combinaciones, en el apartado a) sin repetición y en el b) con repetición

$$C_{20}^{4} = \frac{20!}{4!\cdot 16!} = \frac{20\cdot 19\cdot 18\cdot 17}{4\cdot 3\cdot 2\cdot 1} = 4.845$$

$$CR_{20}^{5} = C_{24}^{5} = \frac{(n+m-1)!}{m!\cdot (n-1)!} = \frac{24!}{5!\cdot (19)!} = \frac{24\cdot 23\cdot 22\cdot 21\cdot 20}{5\cdot 4\cdot 3\cdot 2} = 42.504$$

- **14.-** (0,5 puntos) En un aula de dibujo hay 40 sillas, 30 con respaldo y 10 sin él. Entre las sillas sin respaldo hay 3 que son nuevas y entre las sillas con respaldo hay otras 7 nuevas.
 - c) Tomada una silla al azar, ¿cuál es la probabilidad de que sea nueva?
 - d) Si se coge una silla vieja, ¿cuál es la probabilidad de que no tenga respaldo?

Sol: a)
$$P(N) = \frac{3}{4} \cdot \frac{7}{30} + \frac{1}{4} \cdot \frac{3}{10} = \frac{7}{40} + \frac{3}{40} = \frac{1}{4}$$
; b) $P(\overline{R}/V) = \frac{P(\overline{R} \cap V)}{P(V)} = \frac{7/40}{3/4} = \frac{7}{30}$

15.- (0,5 puntos) Dado el gráfico siguiente, calcula los límites:

Departamento de Matemáticas

I.E. JUAN RAMÓN JIMÉNEZ

Casablanca (Marruecos)