Diseño de Filtros FIR de Fase Lineal Mediante el Método de Muestreo en Frecuencia

La respuesta impulsional h(n) del filtro FIR de longitud M se obtiene a partir de la especificación de los valores de la respuesta en frecuencia deseada $H_d(w)$, calculados en un conjunto de frecuencias w_k equiespaciadas w_k ,

$$w_k = \frac{2 \pi}{M} (k + \alpha)$$

$$\begin{cases} k = 0, 1, ..., \frac{M-1}{2} & M \text{ par} \\ k = 0, 1, ..., \frac{M}{2} - 1 & M \text{ impar} \\ \alpha = 0 \text{ } 61 \end{cases}$$

$$[ec. 1]$$

- Para reducir los lóbulos laterales en la respuesta frecuencial del filtro resultante, se recurre a la *optimización de la especificación de frecuencia en la banda de transición del filtro*.
 - Esto puede implementarse en computadores digitales con técnicas de programación lineal (por ejemplo, el trabajo de Rabiner et al. 1970).
- Para simplificar los cálculos durante el diseño se explotan las propiedades básicas de simetría de la función de respuesta en frecuencia muestreada.

 $H_d(w) = \sum_{n=0}^{M-1} h(n) \ e^{-jwn}$ >> Si se especifica la respuesta del filtro para M frecuencias equiespaciadas [ec. 1], se

La respuesta frecuencial deseada para el filtro es,

tiene,

Para obtener h(n) se procede a multiplicar [ec. 2] por
$$e^{j 2\pi k m/M}$$
, $m=0, 1,..M-1$, y sumar sobre $k=0, 1, ..M-1$. Con lo anterior, el lado derecho de la ecuación [ec. 2] se reduce a M $h(m)$ $e^{-j 2\pi \alpha m/M}$. Finalmente se obtiene,

 $H(k+\alpha) = H_d\left(\frac{2\pi}{M}(k+\alpha)\right) = \sum_{n=0}^{M-1} h(n) e^{-j2\pi(k+\alpha)\frac{n}{M}} \qquad k = 0,1,...,M-1$ [ec.2]

$$h(n) = \frac{1}{M} \sum_{k=0}^{M-1} H(k+\alpha) e^{j2\pi(k+\alpha)\frac{n}{M}} \qquad n = 0,1,...,M-1 \qquad [ec.3]$$

$$\Rightarrow \text{La ecuación [ec.3] permite calcular los valores de } h(n) \text{ a partir de las especificaciones}$$

- de las M muestras en frecuencia $H(k+\alpha)$, k=0, 1, ..., M-1. •• Observaciones
 - Cuando α=0,
 la ecuación [ec.2] se reduce a la transformada discreta de Fourier de la secuencia h(n)
 - la ecuación [ec.3] se reduce a la transformada inversa de Fourier de H (k)
 Como {h(n)} es real, las muestras H(k+α) satisfacen la condición de simetría H(k+α) = H*(M-k-α)

>> Condiciones de simetría para reducir la complejidad de diseño del filtro

- ▶ Simetría par en $\{H(k+\alpha)\}$: $H(k+\alpha) = H*(M-k-\alpha)$ k=0,1,...,M-1
 - Reduce las especificaciones en frecuencia de M puntos a (M+1)/2 puntos para M impar y M/2 puntos para M par.
- ▶ Simetría de $\{h(n)\}$: $h(n) = \pm h(M-1-n)$ n = 0,1,...,M-1
 - Se logra una simplificación importante en las ecuaciones lineales para determinar $\{h(n)\}$ a partir d e $\{H(k+\alpha)\}$.
 - Del análisis previo de la simetría de h(n) para los filtros FIR, se tiene,

$$H(w) = H_r(w)e^{j[\beta \frac{\pi}{2} - w(M-1)/2]} \begin{cases} \beta = 0 & \rightarrow Simetria \ par \\ \beta = 1 & \rightarrow Simetria \ impar \end{cases}$$

Al evaluar en las frecuencias $w_k = \frac{2 \pi}{M} (k + \alpha)$ se llega a,

$$H(k+\alpha) = H_r\left(\frac{2\pi}{M}(k+\alpha)\right) e^{j[\beta\frac{\pi}{2}-\frac{\pi}{M}(k+\alpha)(M-1)]}$$

• Si sólo se define un conjunto de *muestras reales* para la respuesta en frecuencia del filtro, $\{G(k+m)\}$, puede lograrse una mayor simplificación, puesto que,

$$G(k+\alpha) = (-1)^{k} H_{r} \left(\frac{2\pi}{M}(k+\alpha)\right) \qquad k = 0,1,...,M-1$$
 de donde,
$$H(k+\alpha) = G(k+\alpha) e^{j\pi k} e^{j[\beta \frac{\pi}{2} - \frac{\pi}{M}(k+\alpha)(M-1)]}$$

Las *expresiones de diseño* para h(n) de filtros FIR para los cuatro casos, $\alpha = 0$, $\alpha = 1/2$, $\beta = 0$ y $\beta = 1$ pueden simplificarse al retomar la condición de simetría de la respuesta frecuencial.

Simétrica $\beta=0$

$$\alpha = 0$$

$$H(k) = G(k)e^{j\pi k/M} \qquad k = 0,1,...,M-1$$

$$G(k) = (-1)^k H_r \left(\frac{2\pi k}{M}\right) \qquad G(k) = -G(M-k)$$

$$h(n) = \frac{1}{M} \left\{ G(0) + 2\sum_{k=1}^{U} G(k)\cos\frac{2\pi k}{M} \left(n + \frac{1}{2}\right) \right\}$$

$$U = \begin{cases} \frac{M-1}{2}, & M \text{ impar} \\ \frac{M}{2} - 1, & M \text{ par} \end{cases}$$

$$\alpha = \frac{1}{2}$$

$$H\left(k + \frac{1}{2}\right) = G\left(k + \frac{1}{2}\right)e^{-j\pi/2}e^{j\pi(2k+1)/2M}$$

$$G\left(k + \frac{1}{2}\right) = (-1)^k H_r\left[\frac{2\pi}{M}\left(k + \frac{1}{2}\right)\right]$$

$$G\left(k + \frac{1}{2}\right) = G\left(M - k - \frac{1}{2}\right)$$

$$h(n) = \frac{2}{M}\sum_{k=0}^{U}G\left(k + \frac{1}{2}\right)sen\frac{2\pi}{M}\left(k + \frac{1}{2}\right)\left(n + \frac{1}{2}\right)$$

Antisimétrica β=1

$$\alpha = 0$$

$$H(k) = G(k)e^{j\pi/2}e^{j\pi k/M} \qquad k = 0,1,...,M-1$$

$$G(k) = (-1)^k H_r \left(\frac{2\pi k}{M}\right) \qquad G(k) = G(M-k)$$

$$h(n) = -\frac{2}{M} \sum_{k=1}^{(M-1)/2} G(k) sen \frac{2\pi k}{M} \left(n + \frac{1}{2}\right) \qquad M \text{ impar}$$

$$h(n) = \frac{1}{M} \left\{ (-1)^{n+1} G(M/2) - 2 \sum_{k=1}^{(M-2)-1} G(k) sen \frac{2\pi}{M} k \left(n + \frac{1}{2}\right) \right\} \qquad M \quad par$$

$$\alpha = \frac{1}{2}$$

$$H\left(k + \frac{1}{2}\right) = G\left(k + \frac{1}{2}\right) e^{j\pi(2k+1)/2M} e^{j\pi(2k+1)/2M}$$

$$G\left(k + \frac{1}{2}\right) = (-1)^k H_r \left[\frac{2\pi}{M}\left(k + \frac{1}{2}\right)\right]$$

$$G\left(k + \frac{1}{2}\right) = -G\left(M - k - \frac{1}{2}\right); \quad G(M/2) = 0 \quad para \ M \ impar$$

$$h(n) = \frac{2}{M} \sum_{k=0}^{V} G\left(k + \frac{1}{2}\right) \cos\frac{2\pi}{M}\left(k + \frac{1}{2}\right) \left(n + \frac{1}{2}\right)$$

$$V = \begin{cases} \frac{M-3}{2}, & M \text{ impar} \\ \frac{M}{2} - 1, & M \text{ par} \end{cases}$$

>> Ejemplo 1

Determine los coeficientes de un filtro FIR de fase lineal de longitud M=15 con h(n) simétrica y respuesta frecuencial que satisface las condiciones,

$$H_r \left(\frac{2\pi k}{15}\right) = \begin{cases} 1 & k = 0,1,2,3\\ 0.4 & k = 4\\ 0 & k = 5,6,7 \end{cases}$$

▶ Se aprecia en H_r que $\alpha = 0$, y puesto que h(n) es simétrico ($\beta=0$), de las tablas anteriores,

$$G(k) = (-1)^k H_r \left(\frac{2\pi k}{15}\right)$$
 $k = 0,1,...,7$

$$h(n) = \frac{1}{M} \left\{ G(0) + 2 \sum_{k=1}^{U} G(k) \cos \frac{2\pi k}{M} \left(n + \frac{1}{2} \right) \right\}$$
donde,
$$U = \begin{cases} \frac{M-1}{2} & M \text{ impar} \\ \frac{M}{2} - 1 & M \text{ par} \end{cases}$$

h(0)=h(14)=-0.014113 h(4)=h(10)= -0.091388 h(1)=h(13)=-0.001945 h(5)=h(9) = -0.0180899 h(2)=h(12)= 0.040000 h(6)=h(8) = 0.3133176 h(3)=h(11)= 0.012234 h(7)= 0.52

▶ Ejemplo 2

Determine los coeficientes de un filtro FIR de fase lineal de longitud M=32 con h(n) simétrica y respuesta frecuencial que satisface las condiciones,

$$H_r\left(\frac{2\pi(k+\alpha)}{32}\right) = \begin{cases} 1 & k = 0,1,2,3,4,5 \\ T_1 & k = 6 \\ 0 & k = 7,8,...,15 \end{cases}$$

- ▶ Para disminuir los lóbulos, T₁ puede seleccionarse de tablas de valores óptimos.
 - $T_1 = 0.3789795$ para $\alpha = 0$
 - $T_1 = 0.3570496$ para $\alpha = 1/2$, (el filtro resultante alcanza un mayor ancho de banda)
- ▶ Siguiendo el procedimiento del ejemplo 1, se llega a:

Respuesta en frecuencia del filtro FIR de fase lineal.. M=32, $\alpha=0$

Respuesta en frecuencia del filtro FIR de fase lineal.. M=32, $\alpha=1/2$

		α	= 0 Coefficients			de transicion	0. – 1/2		
M Impar			M Par				BW	Minimax	T_1
BW	Minimax	T_1	BW	Minimax	T_1			M = 16	
	M = 15			M = 16			1	-51.60668707	0.26674805
1	-42.30932283	0.43378296	1	-39.75363827	0.42631836		2	-47.48000240	0.32149048
$\frac{1}{2}$	-41.26299286	0.41793823	2	-37.61346340	0.40397949		3	-45.19746828	0.34810181
3	-41.25333786	0.41047636	3	-36.57721567	0.39454346		4	-44.32862616	0.36308594
4	-41.94907713	0.40405884	4	-35.87249756	0.38916626		5	-45.68347692	0.36661987
5	-44.37124538	0.39268189	5	-35.31695461	0.38840332		6	-56.63700199	0.34327393
6	-56.01416588	0.35766525	6	-35.51951933	0.40155639			M=32	
	M = 33			M = 32			1	-52.64991188	0.26073609
1	-43.03163004	0.42994995	1	-42.24728918	0.42856445		2	-49.39390278	0.30878296
$\overline{2}$	-42.42527962	0.41042481	2	-41.29370594	0.40773926		3	-47.72596645	0.32984619
3	-42.40898275	0.40141601	3	-41.03810358	0.39662476		4	-46.68811989	0.34217529
4	-42.45948601	0.39641724	4	-40.93496323	0.38925171		6	-45.33436489	0.35704956
6	-42.52403450	0.39161377	5	-40.85183477	0.37897949		8	-44.30730963	0.36750488
8	-42.44085121	0.39039917	8	-40.75032616	0.36990356		10	-43.11168003	0.37810669
10	-42.11079407	0.39192505	10	-40.54562140	0.35928955		12	-42.97900438	0.38465576
12	-41.92705250	0.39420166	12	-39.93450451	0.34487915		14	-56.32780266	0.35030518
14	-44.69430351	0.38552246	14	-38.91993237	0.34407349			M = 64	
15	-56.18293285	0.35360718					1	-52.90375662	0.25923462
	M=65			M = 64			2	-49.74046421	0.30603638
1	-43.16935968	0.42919312	1	-42.96059322	0.42882080		3	-48.38088989	0.32510986
2	-42.61945581	0.40903320	2	-42.30815172	0.40830689		4	-47.47863007	0.33595581
3	-42.70906305	0.39920654	3	-42.32423735	0.39807129		5	-46.88655186	0.34287720
4	-42.86997318	0.39335937	4	-42.43565893	0.39177246		6	-46.46230555	0.34774170
5	-43.01999664	0.38950806	5	-42.55461407	0.38742065		10	-45.46141434	0.35859375
6	-43.14578819	0.38679809	6	-42.66526604	0.38416748		14	-44.85988188	0.36470337
10	-43.44808340	0.38129272	10	-43.01104736	0.37609863		18	-44.34302616	0.36983643
14	-43.54684496	0.37946167	14	-43.28309965	0.37089233		22	-43.69835377	0.37586059
18	-43.48173618	0.37955322	18	-43.56508827	0.36605225		26	-42.45641375	0.38624268
22	-43.19538212	0.38162842	22	-43.96245098	0.35977783		30	-56.25024033	0.35200195
26	-42.44725609	0.38746948	26	-44.60516977	0.34813232		_	M = 128	
30	-44.76228619	0.38417358	30	-43.81448936	0.29973144		1	-52.96778202	0.25885620
31	-59.21673775	0.35282745					2	-49.82771969	0.30534668
	M = 125	5		M = 128			3	-48.51341629	0.32404785
1	-43.20501566	0.42899170	1	-43.15302420	0.42889404		4	-47.67455149	0.33443604
2	-42.66971111	0.40867310	2	-42.59092569	0.40847778		5	-47.11462021	0.34100952
3	-42.77438974	0.39868774	3	-42.67634487	0.39838257		7	-46.43420267	0.34880371
4	-42.95051050	0.39268189	4	-42.84038544	0.39226685		10	-45.88529110	0.35493774
6	-43.25854683	0.38579101	5	-42.99805641	0.38812256		18	-45.21660566	0.36182251
8	-43.47917461	0.38195801	7	-43.25537014	0.38281250		26	-44.87959814	0.36521607
10	-43.63750410	0.37954102	10	-43.52547789	0.3782638		34	-44.61497784	0.36784058
18	-43.95589399	0.37518311	18	-43.93180990	0.37251587		42	-44.32706451	0.37066040
26	-44.05913115	0.37384033	26	-44.18097305	0.36941528		50	-43.87646437	0.37500000