The Role of Unsatisfiable Boolean Constraints in Lightweight Description Logics

Doctoral Thesis Defense

19 July 2016

M. Fareed Arif

Advisor: Joao-Marques Silva, Alexey Lastovetsky

Contents

What? - Problem

Why? - Relevance

How? - Solution

Results

Conclusions

Publications

Problem?

Problem? - Boolean Satisfiability Problem (SAT)

Boolean Satisfiability Problem (SAT)

A literal is a variable or its negation

• Clause: A disjunction of literals

$$(c \lor \neg a)$$

Satisfied clause: at least one literal is true under the given assignment to variables

• CNF: A **conjunction** of clauses φ

$$(c \lor b) \land (c \lor \neg a)$$

Satisfied CNF: all of its clauses are true under the given assignment (μ) to variables

• MUS: An irreducible unsatisfiable set of clauses ${\cal M}$ from φ

$$\varphi = \overbrace{(a)}^{C_1} \wedge \overbrace{(\neg a)}^{C_2} \wedge \overbrace{(\neg a \vee b)}^{C_3} \wedge \overbrace{(\neg b)}^{C_4} \wedge \overbrace{(\neg a \vee c)}^{C_5} \wedge \overbrace{(\neg c)}^{C_6}$$

$$\varphi = \overbrace{(a)}^{C_1} \wedge \overbrace{(\neg a)}^{C_2} \wedge \overbrace{(\neg a \vee b)}^{C_3} \wedge \overbrace{(\neg b)}^{C_4} \wedge \overbrace{(\neg a \vee c)}^{C_5} \wedge \overbrace{(\neg c)}^{C_6}$$

• MUS: An irreducible unsatisfiable set of clauses ${\cal M}$ from φ

$$\varphi = \overbrace{(a)}^{C_1} \wedge \overbrace{(\neg a)}^{C_2} \wedge \overbrace{(\neg a \lor b)}^{C_3} \wedge \overbrace{(\neg b)}^{C_4} \wedge \overbrace{(\neg a \lor c)}^{C_5} \wedge \overbrace{(\neg c)}^{C_6}$$

$$\mathtt{MUSes} = \{\{C_1, C_2\}\}$$

$$\varphi = \overbrace{\textbf{(a)}}^{C_1} \wedge \overbrace{(\neg a)}^{C_2} \wedge \overbrace{(\neg a \vee b)}^{C_3} \wedge \overbrace{(\neg b)}^{C_4} \wedge \overbrace{(\neg a \vee c)}^{C_5} \wedge \overbrace{(\neg c)}^{C_6}$$

$$\texttt{MCSes} = \{\{C_1\}\}$$

• MUS: An irreducible unsatisfiable set of clauses ${\cal M}$ from φ

$$\varphi = \overbrace{(\mathsf{a})}^{C_1} \wedge \overbrace{(\neg \mathsf{a})}^{C_2} \wedge \overbrace{(\neg \mathsf{a} \vee \mathsf{b})}^{C_3} \wedge \overbrace{(\neg \mathsf{b})}^{C_4} \wedge \overbrace{(\neg \mathsf{a} \vee \mathsf{c})}^{C_5} \wedge \overbrace{(\neg \mathsf{c})}^{C_6}$$

$$\mathtt{MUSes} = \{\{C_1, C_2\}, \{C_1, C_3, C_4\}\}$$

$$\varphi = \overbrace{(a)}^{C_1} \wedge \overbrace{(\neg a)}^{C_2} \wedge \overbrace{(\neg a \lor b)}^{C_3} \wedge \overbrace{(\neg b)}^{C_4} \wedge \overbrace{(\neg a \lor c)}^{C_5} \wedge \overbrace{(\neg c)}^{C_6}$$

$$\texttt{MCSes} = \{\{C_1\}, \{C_2, C_3, C_5\}\}$$

• MUS: An irreducible unsatisfiable set of clauses ${\cal M}$ from φ

$$\varphi = \overbrace{(a)}^{C_1} \wedge \overbrace{(\neg a)}^{C_2} \wedge \overbrace{(\neg a \vee b)}^{C_3} \wedge \overbrace{(\neg b)}^{C_4} \wedge \overbrace{(\neg a \vee c)}^{C_5} \wedge \overbrace{(\neg c)}^{C_6}$$

$$\mathtt{MUSes} = \{\{\textit{C}_1, \textit{C}_2\}, \{\textit{C}_1, \textit{C}_3, \textit{C}_4\}, \{\textit{C}_1, \textit{C}_5, \textit{C}_6\}\}$$

$$\varphi = \overbrace{(a)}^{C_1} \wedge \overbrace{(\neg a)}^{C_2} \wedge \overbrace{(\neg a \lor b)}^{C_3} \wedge \overbrace{(\neg b)}^{C_4} \wedge \overbrace{(\neg a \lor c)}^{C_5} \wedge \overbrace{(\neg c)}^{C_6}$$

$$\text{MCSes} = \{\{C_1\}, \{C_2, C_3, C_5\}, \{C_2, C_3, C_6\}\}$$

• MUS: An irreducible unsatisfiable set of clauses $\mathcal M$ from φ

$$\varphi = \overbrace{(a)}^{C_1} \wedge \overbrace{(\neg a)}^{C_2} \wedge \overbrace{(\neg a \lor b)}^{C_3} \wedge \overbrace{(\neg b)}^{C_4} \wedge \overbrace{(\neg a \lor c)}^{C_5} \wedge \overbrace{(\neg c)}^{C_6}$$

$$\mathtt{MUSes} = \{\{\textit{C}_1, \textit{C}_2\}, \{\textit{C}_1, \textit{C}_3, \textit{C}_4\}, \{\textit{C}_1, \textit{C}_5, \textit{C}_6\}\}$$

$$\varphi = \overbrace{(a)}^{C_1} \wedge \overbrace{(\neg a)}^{C_2} \wedge \overbrace{(\neg a \lor b)}^{C_3} \wedge \overbrace{(\neg b)}^{C_4} \wedge \overbrace{(\neg a \lor c)}^{C_5} \wedge \overbrace{(\neg c)}^{C_6}$$

$$\texttt{MCSes} = \{\{C_1\}, \{C_2, C_3, C_5\}, \{C_2, C_3, C_6\}, \{C_2, C_4, C_5\}\}$$

• MUS: An irreducible unsatisfiable set of clauses ${\cal M}$ from φ

$$\varphi = \overbrace{(a)}^{C_1} \wedge \overbrace{(\neg a)}^{C_2} \wedge \overbrace{(\neg a \vee b)}^{C_3} \wedge \overbrace{(\neg b)}^{C_4} \wedge \overbrace{(\neg a \vee c)}^{C_5} \wedge \overbrace{(\neg c)}^{C_6}$$

$$\mathtt{MUSes} = \{\{\mathit{C}_1, \mathit{C}_2\}, \{\mathit{C}_1, \mathit{C}_3, \mathit{C}_4\}, \{\mathit{C}_1, \mathit{C}_5, \mathit{C}_6\}\}$$

$$\varphi = \overbrace{(a)}^{C_1} \wedge \overbrace{(\neg a)}^{C_2} \wedge \overbrace{(\neg a \lor b)}^{C_3} \wedge \overbrace{(\neg b)}^{C_4} \wedge \overbrace{(\neg a \lor c)}^{C_5} \wedge \overbrace{(\neg c)}^{C_6}$$

$$\mathtt{MCSes} = \{\{\mathit{C}_1\}, \{\mathit{C}_2, \mathit{C}_3, \mathit{C}_5\}, \{\mathit{C}_2, \mathit{C}_3, \mathit{C}_6\}, \{\mathit{C}_2, \mathit{C}_4, \mathit{C}_5\}, \{\mathit{C}_2, \mathit{C}_4, \mathit{C}_6\}\}$$

- Hitting set duality:
 - An MUS of φ is an irreducible hitting set of MCSes
 - An MCS of φ is an irreducible hitting set of MUSes

Problem?

Problem? - Lightweight Description Logic \mathcal{EL}^+

• Description Logics (DLs) are formal knowledge representation languages (more expressive than propositional logic)

• Lightweight Description Logic \mathcal{EL}^+ is tractable and has efficient polynomial-time reasoning services.

Lightweight Description Logic \mathcal{EL}^+

- N_C , N_R denote concept & role names, respectively
- Concept descriptions formed using 3 constructors below
- Ontology \mathcal{O} is a finite set of GCI's and RI's

	Syntax	Semantics
top	Т	4
conjunction	$X \sqcap Y$	$X^{\perp} \cap Y^{\perp}$
existential restriction	∃r.X	
general concept inclusion	$X \sqsubseteq Y$	$X^{\mathcal{I}} \subseteq Y^{\mathcal{I}}$
role inclusion	$r_1 \circ \cdots \circ r_n \sqsubseteq s$	

Lightweight Description Logic \mathcal{EL}^+

- N_C , N_R denote concept & role names, respectively
- Concept descriptions formed using 3 constructors below
- ullet Ontology ${\mathcal O}$ is a finite set of GCI's and RI's
- Interpretation: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where
 - $-\Delta^{\mathcal{I}}$ is non-empty set of individuals, and
 - − ·^I maps
 - ▶ Each $C \in N_C$ to $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - ▶ Each $r \in N_R$ to a binary relation $r^{\mathcal{I}}$ in $\Delta^{\mathcal{I}}$
 - $-\cdot^{\mathcal{I}}$ is defined inductively for arbitrary concept descriptions:

	Syntax	Semantics
top	Т	$\Delta^{\mathcal{I}}$
conjunction	$X \sqcap Y$	$X^{\mathcal{I}} \cap Y^{\mathcal{I}}$
existential restriction	∃r.X	$\left \left\{ x \in \Delta^{\mathcal{I}} \mid \exists y \in \Delta^{\mathcal{I}} : (x, y) \in r^{\mathcal{I}} \land y \in X^{\mathcal{I}} \right\} \right $
general concept inclusion	$X \sqsubseteq Y$	$X^{\mathcal{I}} \subseteq Y^{\mathcal{I}}$
role inclusion	$r_1 \circ \cdots \circ r_n \sqsubseteq s$	$r_1^{\mathcal{I}} \circ \cdots \circ r_n^{\mathcal{I}} \subseteq s^{\mathcal{I}}$

Lightweight Description Logic \mathcal{EL}^+ (cont.)

• $\mathcal I$ is a model of $\mathcal O$ if semantics conditions are satisfied for every concept inclusion (GCI or RI)

Lightweight Description Logic \mathcal{EL}^+ (cont.)

- $\mathcal I$ is a model of $\mathcal O$ if semantics conditions are satisfied for every concept inclusion (GCI or RI)
- Concept Subsumption: C is subsumed w.r.t. D, $C \sqsubseteq_{\mathcal{O}} D$, if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for every model \mathcal{I} of \mathcal{O}

Lightweight Description Logic \mathcal{EL}^+ (cont.)

- $\mathcal I$ is a model of $\mathcal O$ if semantics conditions are satisfied for every concept inclusion (GCI or RI)
- Concept Subsumption: C is subsumed w.r.t. D, $C \sqsubseteq_{\mathcal{O}} D$, if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for every model \mathcal{I} of \mathcal{O}
- Classification: infer all subsumption relations between atomic concepts

Example of medical ontology (\mathcal{O}_{med})

- 1. Endocarditis
 ☐ Inflammation
 ☐ ∃hasLoc.Endocardium
- 2. Inflammation \sqsubseteq Disease $\sqcap \exists actsOn.Tissue$
- 3. Endocardium \sqsubseteq Tissue $\sqcap \exists$ contln.HeartValve
- 4. HeartValve

 ∃contIn.Heart
- 5. Heart Disease \square Bhas Loc. Heart
- 6. contln \circ contln \sqsubseteq contln
- 7. hasLoc ∘ contln ⊑ hasLoc
- Question? example:
 - Endocarditis $\sqsubseteq_{\mathcal{O}_{med}}$ Heart Disease explained by axioms above

Problem?

- Axiom pinpointing: compute minimal set of axioms (MinAs) that explain some (unintended) inference (concept subsumption)
 [SHC03, BPS07]
 - Goal is to compute many, or even all, minimal explanations

- Axiom pinpointing: compute minimal set of axioms (MinAs) that explain some (unintended) inference (concept subsumption)
 [SHC03, BPS07]
 - Goal is to compute many, or even all, minimal explanations
- Repair complement to Diagnosis: is a maximal subset of axioms from which the inference (concept subsumption) relation does not follow.

Contents

What? - Problem

Why? - Relevance

How? - Solution

Results

Conclusions

Publications

Why? - Relevance of Axiom Pinpointing

- Extensively studied problem [BH95,SC03,MLBP06,BLS06,SCH07,BS08,BP10,...]
- Life sciences ontologies represented with Lightweight DLs (\mathcal{EL}^+)
 - E.g. SNOMED CT: Systematized Nomenclature Of Medicine Clinical Terms → 311,000 concepts
- Important Applications:
 - Ontology Debugging and Revision [PSK05.KPSG06.SHCH07]
 - Unintended subsumption in (old version of) SNOMED CT: AmputationOfFinger $\sqsubseteq_{\mathcal{O}_{snomed-ct}}$ AmputationOfHand
 - Ontology Matching [JC11,ES13]
 - Explaining Logical Differences
 - Context-based Reasoning
 - Error-tolerant Reasoning

 Role in SFI Project (BEACON): BoolEAn-based deCision and OptimizatioN procedures for safety or analyzing biological systems.

[BS08]

[KLW12]

[BKP12]

[LP14]

Sol? - SAT-based axiom pinpointing for \mathcal{EL}^+

Sol? - SAT-based axiom pinpointing for \mathcal{EL}^+

MUS

 Axiom pinpointing: compute minimal set of axioms (MinAs) that explain some (unintended) inference (concept subsumption)

MUSes

- Goal is to compute many, or even all, minimal explanations

Sol? - SAT-based axiom pinpointing for \mathcal{EL}^+

MUS

MUSes

• Axiom pinpointing: compute minimal set of axioms (MinAs) that explain some (unintended) inference (concept subsumption)

— Goal is to compute many, or even all, minimal explanations MSS
MCS

• Repair complement to Diagnosis: is a maximal subset of axioms from which the inference (concept subsumption) relation does not follow.

SAT-based axiom pinpointing for \mathcal{EL}^+ (EL+SAT)

• EL⁺SAT remained state of the art until 2014

[VS09,VS15]

Note: EL⁺SAT encodes classification of O as Horn formula

EL⁺SAT (cont.)

- EL⁺SAT main components:
 - Horn Encoder: Encode classification of an \mathcal{EL}^+ ontology using a Horn Formula (φ)

 MinA Enumeration: Enumeration of models inspired by AllSAT/SMT

[LNO06]

Contents

What? - Problem

Why? - Relevance

How? - Solution

Results

Conclusions

Publications

How? - MUS enumeration of Horn formulae

• For \mathcal{EL}^+ , a MinA corresponds to an MUS of a Horn formula and the problem of axiom pinpointing corresponds to group MUS enumeration of Horn formulae: [AMMS15]

- How to enumerate MUSes?
 - Use hitting set duality between MUSes and MCSes

[R87,BL03]

- ► An MUS is an irreducible hitting set of MCSes
- ▶ An MCS is an irreducible hitting set of MUSes
- We propose state-of-the art axiom pinpointing and debugging tools (use the enumeration of MUSes):
 - ► EL2MCS

[AMMS-KI15]

► EL2MUS (core HgMUS)

[AMMS-SAT15]

BEACON

[AMMS-SAT16]

How? - MUS enumeration of Horn formulae (cont.)

- EL2MCS: First effort based on explicit hitting set dualization
 - Compute all MCSes (MaxSAT-based MCSes enumeration) [MHJ13]
 - Use hitting set dualization to enumerate MUSes [R87,BL03,BS05,LS08]

How? - MUS enumeration of Horn formulae (cont.)

- EL2MCS: First effort based on explicit hitting set dualization
 - Compute all MCSes (MaxSAT-based MCSes enumeration)
 - Use hitting set dualization to enumerate MUSes [R87,BL03,BS05,LS08]

- In practice, EL2MCS extensively outperforms EL⁺SAT [AMMS15]
 - But, there can be exponentially many MCSes
 - It may even be infeasible to start enumeration of MUSes!

How? - MUS enumeration of Horn formulae (cont.)

- EL2MCS: First effort based on explicit hitting set dualization
 - Compute all MCSes (MaxSAT-based MCSes enumeration) [мнл13]
 - Use hitting set dualization to enumerate MUSes [R87,BL03,BS05,LS08]

- In practice, EL2MCS extensively outperforms EL⁺SAT [AMMS15]
 - But, there can be exponentially many MCSes
 - It may even be infeasible to start enumeration of MUSes!
- Alternative is implicit hitting set dualization
 - Recently proposed in eMUS / MARCO

[PMS13,LM13,LPMMS15]

- Blocking of MCSes/MSSes does not eliminate supersets of MCSes (or subsets of MSSes)
 - Why? Clause learning only uses decision variables; learned clauses only contain negative literals; supersets of MCSes not blocked

- Blocking of MCSes/MSSes does not eliminate supersets of MCSes (or subsets of MSSes)
 - Why? Clause learning only uses decision variables; learned clauses only contain negative literals; supersets of MCSes not blocked
- · Horn formulae decided by unit propagation with CDCL SAT solver
 - In MiniSat, unit propagation takes worst-case quadratic time, due to implementation of watched literals
 - Also, unnecessary propagation of 0-valued variables [DG84,M88]
 - We can do better: use dedicated LTUR algorithm [M88]

- Blocking of MCSes/MSSes does not eliminate supersets of MCSes (or subsets of MSSes)
 - Why? Clause learning only uses decision variables; learned clauses only contain negative literals; supersets of MCSes not blocked
- Horn formulae decided by unit propagation with CDCL SAT solver
 - In MiniSat, unit propagation takes worst-case quadratic time, due to implementation of watched literals
 - Also, unnecessary propagation of 0-valued variables

[DG84,M88]

We can do better: use dedicated LTUR algorithm

[M88]

- Computing each MinA corresponds to deletion-based MUS extraction
 - We can do better: use **insertion**-based MUS extraction

- Blocking of MCSes/MSSes does not eliminate supersets of MCSes (or subsets of MSSes)
 - Why? Clause learning only uses decision variables; learned clauses only contain negative literals; supersets of MCSes not blocked
- Horn formulae decided by unit propagation with CDCL SAT solver
 - In MiniSat, unit propagation takes worst-case quadratic time, due to implementation of watched literals
 - Also, unnecessary propagation of 0-valued variables

[DG84,M88]

We can do better: use dedicated LTUR algorithm

[M88]

- Computing each MinA corresponds to deletion-based MUS extraction
 - We can do better: use **insertion**-based MUS extraction
- Maximal models computed by assigning decision variables to 1
 - Corresponds to SAT with preferences

[GM06,RGM10]

– We can do better: use MCS extraction [мsн.рв13,мрмs15]

An example with MUS Enumeration of Horn formula

```
G_0 = \{ (\neg a \lor \neg b), (b), (\neg c \lor \neg d \lor \neg e) \}  MUS = \{ \{(a)\}, \{(c), (d), (e)\} \} MCS = \{ \{(a)\}, \{(a)\}, \{(a), (e)\} \} G<sub>2</sub> = \{(c)\} G<sub>3</sub> = \{(d)\} G<sub>4</sub> = \{(e)\}
```

Blocking with negative clauses

[VS09,VS15]

Q	MxM model	MUS	MCS	Blocking clause	OK?
Ø	$p_1 = \ldots = 1$	$\{G_1\}$		$B_1 = (\neg p_1)$	1
$\{B_1\}$	$p_2=\ldots=1$	$\{\textit{G}_2,\textit{G}_3,\textit{G}_4\}$		$B_2 = (\neg p_2 \vee \neg p_3 \vee \neg p_4)$	✓
$\{B_1,B_2\}$	$p_3=p_4=1$		$\{G_1,G_2\}$	$B_3 = (\neg p_3 \vee \neg p_4)$	✓
$\{B_1, B_2, B_3\}$	$p_2=p_3=1$		$\{G_1,G_4\}$	$B_4 = (\neg p_2 \vee \neg p_3)$	✓
$\{B_1,\ldots,B_4\}$	$p_2=p_4=1$		$\{G_1,G_3\}$	$B_5 = (\neg p_2 \vee \neg p_4)$	✓
$\{B_1,\ldots,B_5\}$	$p_3 = 1$		$\{G_1, G_2, G_4\}$	$B_6=(\neg p_3)$	X
$\{B_1,\ldots,B_6\}$	$p_4 = 1$		$\{G_1, G_2, G_3\}$	$B_7 = (\neg p_4)$	X
$\{B_1,\ldots,B_7\}$	$p_1=\ldots=0$				

An example with eMUS / MARCO (cont.)

```
 \begin{aligned} & G_0 = \{ (\neg a \vee \neg b), (b), (\neg c \vee \neg d \vee \neg e) \} \\ & G_1 = \{ (a) \} \\ & G_2 = \{ (c) \} \\ & G_3 = \{ (d) \} \\ & G_4 = \{ (e) \} \end{aligned}   \begin{aligned} & \text{MUS} = \{ \{ (a) \}, \{ (c), (d), (e) \} \} \\ & \text{MCS} = \{ \{ (a), (c) \}, \{ (a), (d) \}, \{ (a), (e) \} \} \end{aligned}
```

Distinct blocking of MUSes and MCSes

[PMS13,LM13,LPMMS13]

Q	MxM model	MUS	MCS	Blocking clause	OK?
Ø	$p_1 = \ldots = 1$	$\{G_1\}$		$B_1 = (\neg p_1)$	1
$\{B_1\}$	$p_2 = \ldots = 1$	$\{G_2, G_3, G_4\}$		$B_2 = (\neg p_2 \lor \neg p_3 \lor \neg p_4)$	1
$\{B_1,B_2\}$	$p_3=p_4=1$		$\{G_1,G_2\}$	$B_3=(p_1\vee p_2)$	✓
$\{B_1,B_2,B_3\}$	$p_2=p_3=1$		$\{G_1,G_4\}$	$B_4 = (p_1 \vee p_4)$	✓
$\{B_1,\ldots,B_4\}$	$p_2=p_4=1$		$\{G_1,G_3\}$	$B_5=(p_1\vee p_3)$	✓
$\{B_1,\ldots,B_5\}$	Ø				

Organization of EL2MUS

EL2MUS, front-end to ${\rm HGMUS}$, is an efficient tool to solve the problem of axiom pinpointing in Lightweight DLs $_{\rm [AMMS15]}$

 HgMUS is a state-of-the-art group-MUS enumerator

[AMMS15]

HgMUS is a state-of-the-art group-MUS enumerator

[AMMS15]

1. Partial MUS enumeration paradigm

[PMS13,LM13,LPMMS15]

Implements implicit hitting set dualization

HGMUS is a state-of-the-art group-MUS enumerator

[AMMS15]

1. Partial MUS enumeration paradigm

[PMS13,LM13,LPMMS15]

- Implements implicit hitting set dualization
- 2. Blocking of MUSes & MCSes

HGMUS is a state-of-the-art group-MUS enumerator

[AMMS15]

1. Partial MUS enumeration paradigm

[PMS13,LM13,LPMMS15]

- Implements implicit hitting set dualization
- 2. Blocking of MUSes & MCSes
- 3. Dedicated Horn decision procedure LTUR

[M88]

HGMUS is a state-of-the-art group-MUS enumerator

[AMMS15]

1. Partial MUS enumeration paradigm

[PMS13,LM13,LPMMS15]

- Implements implicit hitting set dualization
- 2. Blocking of MUSes & MCSes
- Dedicated Horn decision procedure LTUR

[M88]

- 4. Optimized enumeration of maximal models
 - Builds on MCS extraction work MCSIs & LBX

[MSHJPB13,MPMS15]

HGMUS is a state-of-the-art group-MUS enumerator

[AMMS15]

1. Partial MUS enumeration paradigm

[PMS13.LM13.LPMMS15]

- Implements implicit hitting set dualization
- 2. Blocking of MUSes & MCSes
- 3. Dedicated Horn decision procedure LTUR

[M88]

- 4. Optimized enumeration of maximal models
 - Builds on MCS extraction work MCSIs & LBX

[MSHJPB13,MPMS15]

5. Dedicated MUS extraction algorithm for Horn formulae

BEACON Organization

BEACON is a standalone efficient Debugging tool for \mathcal{EL}^+ ontologies that assimilates HgMUS and Forges [AMMS15,ILPM15, AMMS16]

Contents

What? - Problem

Why? - Relevance

How? - Solution

Results

Conclusions

Publications

- Medical ontologies:
 - GALEN, with two variants: FULL-GALEN and NOT-GALEN
 - GENE
 - NCI
 - SNOMED CT

- Medical ontologies:
 - GALEN, with two variants: FULL-GALEN and NOT-GALEN
 - GENE
 - NCI
 - SNOMED CT large size!

- Medical ontologies:
 - GALEN, with two variants: FULL-GALEN and NOT-GALEN
 - GENE
 - NCI
 - SNOMED CT large size!
- Instance generation for each medical ontology:
 - 50 random
 - 50 sorted expected to have large number of minimal explanations
 - Total: 500 instances

- Medical ontologies:
 - GALEN, with two variants: FULL-GALEN and NOT-GALEN
 - GENE
 - NCI
 - SNOMED CT large size!
- Instance generation for each medical ontology:
 - 50 random
 - 50 sorted expected to have large number of minimal explanations
 - Total: 500 instances
- Instance simplifications:

[VS09,VS15]

- COI: Cone-of-influence reduction
- x2: apply COI, re-encode to ontology and encode to Horn formula

- Medical ontologies:
 - GALEN, with two variants: FULL-GALEN and NOT-GALEN
 - GENE
 - NCI
 - SNOMED CT large size!
- Instance generation for each medical ontology:
 - 50 random
 - 50 sorted expected to have large number of minimal explanations
 - Total: 500 instances
- Instance simplifications:

[VS09,VS15]

- COI: Cone-of-influence reduction
- x2: apply COI, re-encode to ontology and encode to Horn formula
- Compute cluster, with 3600s time limit and 4 GByte memory limit

Experimental setup – goal & tools

- Goal:
 - Compute all MinAs/MUSes or as many MinAs/MUSes as possible within the given timeout
- Our tools:
 - **EL2MCS**: (first attempt) developed in 2015 [AMMS15]
 - EL2MUS: uses EL⁺SAT encoder as front-end to HgMUS [AMMS15]
 - BEACON: standalone complete tool [AMMS16]
- Other SAT-based tools:
 - EL⁺SAT: developed in 2009, updated in 2014, 2015 [vso9,vs15]
 - SATPin: developed in 2015 [MP15]
- Other (non SAT-based) tools:
 - CEL only computes 10 MinAs, developed in 2006 [BLS06]
 - JUST cannot handle all \mathcal{EL}^+ constructs, developed in 2014 [L14]

Cactus plots – COI instances

Cactus plots – COI instances

Scatter plots – COI instances

Scatter plots – COI instances

Cactus plots - x2 instances

Cactus plots – x2 instances

Scatter plots -x2 instances

Scatter plots – x2 instances

Non-SAT based tools – vs CEL on COI instances

Non-SAT based tools – vs Just on x2 instances

Contents

What? - Problem

Why? - Relevance

How? - Solution

Results

Conclusions

Publications

Conclusions & research directions

- Developed state-of-the art debugging and axiom pinpointing tools
- Novel MUS enumeration algorithm for group Horn formulae
 - Exploits partial MUS enumeration, MCS extraction, (old) LTUR, insertion-based MUS extraction, etc.
- Clear performance gains (Orders of magnitude speedups for the larger instances)
- Can enumerate much larger number of MUSes/MinAs than any other approach
- Integrate recent advances in MUS/MCS extraction & enumeration
- Find more applications

Contents

What? - Problem

Why? - Relevance

How? - Solution

Results

Conclusions

Publications

Publications

- M. Fareed Arif, Carlos Mencía, and Joao Marques-Silva. Efficient Axiom Pinpointing with EL2MCS. In KI 2015, volume 9324, pages 225-233, Springer 2015
 - KI 2015: CORE C conference, but with attendance by many DL researchers
- M. Fareed Arif, Carlos Mencía, and Joao Marques-Silva. Efficient MUS Enumeration of Horn
 Formulae with Applications to Axiom Pinpointing. In SAT 2015, volume 9340, pages 324-342.
 Springer 2015
 - SAT 2015: CORE A conference, representing the bulk of the scientific contributions.
- M. Fareed Arif, Carlos Mencía, Alexey Ignatiev, Norbert Manthey, Rafael Peñaloza, and Joao Marques-Silva. BEACON: An Efficient SAT-Based Tool for Debugging EL+ Ontologies. In SAT 2016, volume 9710, pages 521-530. Springer 2015
 - SAT 2016: CORE A conference, detailing the final result of the work.
- M. Fareed Arif, Carlos Mencía Norbert Manthey, Alexey Ignatiev, Rafael Peñaloza, and Joao Marques-Silva. Towards Efficient SAT-Based Axiom Pinpointing in Lightweight Description Logics. JAIR 2016 (under review)
 - JAIR 2016: submitted for an A* journal paper, currently under review.

Thank You