Лабораторная работа №5.2.2

Изучение спектров атома водорода и молекулы йода.

Автор работы: Хоружий Кирилл

 ${\bf Ot}$: 6 октября 2021 г.

Цель работы

- 1. Провести градуировку УМ-2.
- 2. Исследовать спектр водорода в оптическом диапазоне. По результатам измерений вычислить постоянную Ридберга.
- 3. Исследовать спектр поглощения паров йода в оптическом диапазоне. По результатам измерения вычислить энергию колебательного кванта молекулы йода и энергию ее диссоциации в основном и возбужденном состояниях.

Оборудование

Призменный монохроматор-спектрометр УМ-2 (380-1000 нм), ртутная лампа, ячейка с парами йода, неоновая лампа, линза.

Экспериментальная установка

Схкма установки, используемой в работе, показана на рис. 1.

Рис. 1: Устройство монохроматора УМ-2

Свет от источника S с помощью линзы фокусируется на входную щель призменного монохроматора УМ-2, выделяющего узкий спектральный интервал

Основные формулы

Спектр водорода. Длины волн спектральных линий водорода описываются формулой Бальмера:

$$\frac{1}{\lambda_{mn}} = R\left(\frac{1}{n^2} - \frac{1}{m^2}\right),\tag{1}$$

где R — постоянная Ридберга. В работе изучается серия Бальмера, т.е. переходы при n=2 и линии m=3,4,5, обозначаемые как $H_{\alpha}, H_{\beta}, H_{\gamma}.$

Спектр йода. Энергетическое положение линий поглощения описывается выражением (см. рис 2)

$$h\nu_{(0,n_2)} = E_2 - E_1 + h\nu_2 \left(n_2 + \frac{1}{2}\right) - \frac{h\nu_1}{2} \tag{2}$$

Рис. 2: Электронные и электронно-колебательные энергетические уровни двухатомной молекулы

Измерения

Градуировка. Для начала была произведена градуировка барабана монохроматора УМ-2 по спектру неоновой лампы. Прокрутка барабана допускала приводила к погрешности измерений $\Delta n \sim 15$ у.е. Таким образом былы получены данные таблицы №1 , где n – показания на барабане УМ-2 в условных единицах.

Для удобства было построено приближение функции $\lambda(n)$ (рис. 3). Погрешность в λ была оценена, как $\lambda'(n)\Delta n$, что позволило оценить χ^2/ndf .

Рис. 3: Градуировка монохроматора.

Погрешность полинома в точке x можно оценить, как

$$\sigma^{2}(x) = (x^{3}, \dots, x^{0}) \cdot \text{Cov} \cdot (x^{3}, \dots, x^{0})^{T},$$

где Cov – матрица ковариации коэффициентов.

Водород. Найдены и измерены спектральные линии водорода:

$$\lambda_{{
m H}_{lpha}}^{m=3}=(656\pm1)$$
 нм; $\lambda_{{
m H}_{eta}}^{m=4}=(484\pm2)$ нм;

$$\lambda_{\rm H_{\beta}}^{m=4} = (484 \pm 2) \; {\rm HM}$$

$$\lambda_{{
m H}_{\gamma}}^{m=5} = (437 \pm 2)$$
 нм.

По ним, с учетом формулы (1), можем построить линейную зависимость

$$\frac{1}{\lambda_{m,2}} = R \cdot \left(\frac{1}{4} - \frac{1}{m^2}\right),\,$$

где коэффициент линейной зависимости будет соответствовать постоянной Ридберга.

Рис. 4: Линеаризация зависимости длины волны перехода от его номера.

Так находим, что

$$R = (10.8 \pm 0.3)$$
 MKM,

что сходится с табличным значением в рамках погрешности.

Йод. Для начала найдём длину волны длинноволновой линии, и линии $u_{1,0}$, а также $u_{1,6}$ и $u_{1,12}$:

$$\lambda_{1,0} = (620 \pm 1)$$
 нм; $E_{1,0} = (2.002 \pm 0.002)$ эВ; $\lambda_{1,6} = (596 \pm 1)$ нм; $E_{1,6} = (2.080 \pm 0.003)$ эВ; $\lambda_{\rm rp} = (507 \pm 2)$ нм; $E_{\rm rp} = (2.447 \pm 0.006)$ эВ,

где $E = h\nu$. Отсюда находим энергию колебательного кванта возбужденного состояния молекулы йоды, по формуле (2),

$$h\nu_2 = h \frac{\nu_{1,6} - \nu_{1,0}}{6} = (0.0130 \pm 0.0007) \text{ 9B}.$$

Также можем найти $E_2 - E_1 = h\nu_{\text{эл}}$:

$$h\nu_{\text{эл}} \approx h\nu_{(1,0)} - \frac{1}{2}h\nu_2 + \frac{3}{2}h\nu_1 \approx 2$$
 эВ.

Наконец, находим энергию диссоциации частицы в основном состоянии (D_1) и возбужденном состоянии (D_2) , считая $E_a = 0.94$ эВ:

$$D_1 = (1.51 \pm 0.01) \text{ 9B},$$

 $D_2 = (0.45 \pm 0.01) \text{ 9B}.$

Выводы

Исследованы видимый спектр водорода и видимый спектр поглощения йода. Определена постоянная Ридберга, совпадающая в пределах погрешности с табличным значением. Также найдены энергия квантов возбужденного состояния, энергия диссоциации частиц и энергию электронного перехода.

Приложение

Таблица 1: Градуировка монохроматора по линиям неона и ртути.

n, y.e.	λ , HM
1872	540.1
2136	585.2
2154	588.2
2230	603.0
2254	609.6
2288	616.4
2308	621.7
2334	626.7
2364	633.4
2384	638.3
2426	653.3
2496	671.7
2588	703.2
2552	690.7
2314	623.4
2104	579.1
2092	577.0
1908	546.0
1484	491.6
810	435.8
254	404.7