浙江大学 2015 - 2016 学年秋冬学期 《计算机组成与设计》课程期末考试试卷

课程号: _67190020_, 开课学院: _信息与电子工程学院_

考试试卷: √A卷、B卷(请在选定项上打√)

考试形式: √闭、开卷(请在选定项上打√),

允许带 1 张 A4 大小的手写资料和计算器入场

考试日期: _2016 年 1 月 _ 22 _ 日, 考试时间: _120 _ 分钟

诚信考试, 沉着应考, 杜绝违纪。

			姒信考试	,仉有应有	,在把玫纪。					
考:	生姓名:_		学号:		所属院系	(专业):				
	题序	_	=	三	四	五	总 分			
	得分									
	评卷人									
一. 1.		E (60 points):	`		,)				
1.	A 1~25		-128~126	•	-126~127		-127~+128			
2.	You want to maximize the performance of an application with the following characteristics: large number of data structures, low spatial locality, high temporal locality including frequen loads and stores to the same variable, 50% of the memory accesses are stores. Assuming a fixed total cache size, which set of choices below would most likely lead to increased performance. () A Small block size, High associativity, LRU replacement, Write back, Write allocate B Large block size, Low associativity, LRU replacement, Write back, Write allocate C Small block size, High associativity, MRU replacement, Write through, No write allocate D Large block size, Low associativity, LRU replacement, Write through, Write allocate									
3.	cache and memory a A (5+ B 1002 C 1052	evel cache-med main memory access time is 100)/2	y to be 5ns ar			-	lty to access the at the average			

4. There are some cell processors following the table. Please choose the combination to get 4.8GHz performance. Make sure it is the smallest number of Watts.(Frequency 2GHz 2.2GHz 2.4GHz 2.6GHz 2.8GHz 4.8GHz 10W Watts 1W 1W 1W 2W 2W A 2GHz and 2.8GHz B 2.2GHz and 2.6GHz C 2.4GHz and 2.4GHz D 4.8GHz 5. What is the MIPS assembly code for the binary? (100011 01010 01000 0000010010110000 B lw \$t0, 200(\$t2) A lw \$t0, 300(\$t2) C lw \$t2, 300(\$t0) D lw \$t2, 1200(\$t0) 6. Use always-taken predictor to predict the beq instructions. Assume that branch outcomes are determined in the MEM stage, there are no data hazards, and that no delay slots are used. The always-taken predictor's accuracy is 60%. The percentage of beq is 10%. So what is the extra CPI (Cycle per Instructions) due to mispredicted braches. (A 0.04 B 0.08 C 0.12 D 0.16 7. Assume that the following MIPS code is executed on a pipelined processor with a five-stage pipeline, full forwarding, and a predict-taken branch predictor: add \$1, \$5, \$3 Label1: sw \$1, 0(\$2) add \$2, \$2, \$3 beq \$2, \$4, label1; (Not taken) add \$5, \$5, \$1 sw \$1, 0(\$2) If the delay slots are used. In the given code, the instruction that follows the branch is now the delay slot instruction for that branch. Calculate the cycle if we run the whole program. Branches execute in the EX stage. (____)

8. For a 32-bit cache-memory system, a 32KB, 4-way set-associative cache has 2 words cache line size, how many bits are there in such cache's tag? (____)

C 11

A 19

A 12

B 21

B 10

C 23

D 25

D 9

9. Suppose we have made the following measurements,

Frequency of Instruction A= 25% Average CPI of Instruction A= 4.0 Average CPI of other instructions = 1.2Frequency of Instruction B= 2% Average CPI of Instruction B= 20 If we decrease the CPI of Instruction B to 2, calculate the total CPI. (___ C 1.36 A 1.64 B 1.54 D 1.27 10. Given the following MIPS assembly code (and assuming all registers start at 0): addi \$1, \$0, 10 add \$2, \$1, \$1 repeat: addi \$2, \$2, -4 add \$3, \$2, \$2 addi \$1, \$1, -2 bne \$0, \$1, repeat What is the final value of \$3? (____) A 0 В -8 C 8 D 4 11. Assume the current PC is 0x10000010, what's next value of PC after execution of "j 254"? (___) A 0x00000FE 0x10000FE 0x00003F8 D 0x100003F8 12. The following commands were used to store the contents of registers \$s0 and \$s1 onto the stack: addi \$sp, \$sp, -8 sw \$s0, 0(\$sp) sw \$s1, 4(\$sp) # insert various unrelated instructions here Assuming that neither the stack pointer nor the stack has been changed during the "various unrelated instructions" part, which of the following would allow you to recover the contents of \$s0 and \$s1 while returning \$sp to its original (pre-decremented) value? (____) addi \$sp, \$sp, 8; lw \$s0, 4(\$sp); lw \$s1, 0(\$sp) В addi \$sp, \$sp, 8; lw \$s0, 0(\$sp); lw \$s1, 4(\$sp) lw \$s0, 4(\$sp); lw \$s1, 0(\$sp); addi \$sp, \$sp, 8 D lw \$s0, 0(\$sp); lw \$s1, 4(\$sp); addi \$sp, \$sp, 8

	Which of	the following	ng instructions	could this	s single-	cycle datap	oath descript	ion be referring to?
	Descripti selected,	and the valu	ues are read fr	om the so	ource reg	gisters and	sent as inpu	ter (WriteReg) are at to the ALU. The ster, and the PC is
	A add	В	ori	C li		D	sll	
	misprediction is the CF latency for	ction rate). Yet of this wo for all other it to core clock	ou may ignore orkload assumi	memory ing a thre alculate u	operation ee-cycle under wh	ons. For a si mispredict at condition	imple five-s ion penalty on a much do	accuracy (33.33% tage pipeline, what and a single-cycle eeper pipeline with)
	mapped o		emory access paing cache is v					of a 4-entry, direct-
71	•		1	6		3		
В			1			3		
Ъ		1	6	3		5		
C		1						
C		5	6	3		1		
D	1							
D			6	3				
			10					
16	Increasin	o associativi	ity can reduce	()				
		_	s (cold-start m					
В	•	ty misses	o (cora start in	15505)				
C	-	•	ollision misses)				
D		ee misses						
17.	Which of	the following	ng is generally	true abou	ut a desig	gn with two	o levels of c	aches? ()
A					-			l caches are more
cc	oncerned	about miss r	ate.					
В	First-le	evel caches	are more cond	erned ab	out miss	rate, and	second-leve	el caches are more
cc	oncerned	about hit tin	ne.					
C	Second	l-level cache	es often use lo	wer assoc	ciativity	than first-l	evel caches	given the focus of
re	ducing m	iss rates.						
D	Second	d-level cache	es are as fast as	s first-lev	el caches	S.		
			mory system w is 512MB. Tl			-		e, 32 bits each entry).

	A	1MB		B about 3MB		C	4MB		D	8MB	
19.	Не	re is a series	s of address	references given	as word a	ddres	ses:				
	2,	3, 11, 16, 21	, 13, 64, 48	, 19, 11, 3, 22, 4,	27, 6, 11.						
Ι	Dete	rmine how i	many misse	s will happen in	this condit	ion: A	two-way	set-associ	ative	cache	
V	vith	four-word b	olocks and	a total size of 16	words. Use	e LRU	replacen	nent. ()		
	A	7	B 8	C 13	3	D	15				
20.	Αo	certain gove	ernment age	ency simultaneou	sly monito	ors 10	0 cellular	phone con	nvers	ations and	d
	mu	ltiplexes the	e data onto	a network with a	bandwidth	of 1	MB/sec a	nd an over	head	latency o	ıf
	350	0 micro-sec	per 1-KB	message. Calcula	te the tran	smiss	ion time p	per messag	ge. As	ssume tha	ιt
	the	phone conv	versation da	ta consists of 2 b	ytes sampl	led at	a rate of 4	KHz. (_))	
	A	0.8s	B 1	.35s	C 1s		D	1.08s			

二. TRUE (T) OR FALSE (F) (10 points)

- 1. All other things equal, direct mapped caches have a lower tag overhead than fully associative caches. []
- 2. On every store instruction, a write back cache will write to main memory.[]
- 3. Superscalar processors can reduce CPI below 1.0 by employing multiple pipelines.[]
- 4. Bigger cache blocks always lead to a higher hit rate.[]
- 5. Pipeline designs improve CPI over multi-cycle designs by overlapping the execution of multiple instructions. []

三. **PIPELINE** (9 points)

Problems refer to the following instruction sequences:

- I1 add \$1, \$2, \$3
- I2 sw \$2, 0(\$1)
- I3 lw \$1,4(\$2)
- I4 add \$2, \$2, \$1

The basic pipeline is following the Figure.1. Please use it to solve the Q1 and Q2

Figure.1 Basic Pipeline

Please use Figure.2 to solve the Q3.

Figure.2 6-stage pipeline

1. Find all data dependences in this instruction sequence.

WAR	RAW	WAW
e.g. (\$2) I1 to I4		

2.	. Find	all I	hazarc	ls in	this	instru	ction	sequ	ence	for a	5-stage	pipeline	e witl	nout 1	forwa	ırding.	Please
sţ	pecify	the	instru	ction	ıs, lil	ke (\$2	2) I1 t	o I4.									

	Hazards	

3. To reduce clock cycle time, we are considering a split of the MEM stage into two stages. Repeat Q.2 for this 6-stage pipeline. Please specify the instructions, like (\$2) I1 to I4.

Q.2 for this 6 stage piperine. I rease specify the instructions, like (\$\pi\$2) II to II.	
Hazards	

The remaining two problems in this exercise assume that, before any of the above is executed, all values in data memory are zeroes and that registers R0 through R3 have the following initial values:

\$0	\$1	\$2	\$3
0	1	31	1000

4. Which value is the first one to be forwarded and what is the value it overrides?

First one to be forward	Overrides value

5. If we assume forwarding will be implemented when we design the hazard detection unit, but then we forget to actually implement forwarding, what are the final register values after this instruction sequence?

\$0	\$1	\$2	\$3

四. CACHE (12 points)

Consider a processor whose ISA uses 16-bit addresses and byte-granularity addressing (each address specifies a byte in memory). The processor has a direct-mapped 16KB cache with 16-byte cache blocks. The cache is initially empty (all blocks invalid). As a reminder, for such a cache the 16-bit address is divided into a 2-bit tag, a 10-bit index, and a 4-bit offset.

1. Consider a short (two-instruction) program that loads from the following two addresses. The cache starts empty, so the first load will always miss. However, will the second load hit or miss in the cache? (chose the correct answer)

Load from address: 0010 1010 0111 1000 (miss)

Load from address: 0010 1010 0101 1010 A hit B miss

2. Now assume the processor's cache has 4096-byte blocks (but the size of the cache is unchanged). Will the second load hit or miss in the cache? (chose the correct answer)

Load from address: 0010 1010 0111 1000 (miss)

Load from address: 0010 1010 0101 1010 A hit B miss

3. What program property is responsible for the decrease in miss rate?

4. Consider a different program that loads from the following three addresses. As before, the cache starts empty, so the first load will always miss. However, will the second and third loads hit or miss in the cache with 16-byte blocks? (chose the correct answer)

Load from address: 0010 1010 0111 1000 (miss)

Load from address: 1010 1100 0101 1110 A hit B miss

Load from address: 0010 1010 0101 1010 A hit B miss

5. Now assume the processor's cache has 256-byte blocks, but the size of the cache is unchanged. (chose the correct answer)

Load from address: 0010 1010 0111 1000 (miss)

Load from address: 1010 1100 0101 1110 A hit B miss

Load from address: 0010 1010 0101 1010 A hit B miss

- 6. What hardware phenomenon is responsible for the increase in miss rate?
- 7. Other than adjusting the block size, what is the most reasonable way to change the cache hardware to remedy this degradation in miss rate?

五. VIRTUAL MEMORY (9 points)

Suppose that a system has a 32-bit (4GB) virtual address space. It has 1GB of physical memory, and uses 1MB pages.

	Entry Number	Value
1. How many bits are there in the page offset?	0	1F
	1	3C
	2	55
	3	9C
	4	DD
2. How many virtual pages are there in the address space?	5	EE
	6	99
	•••	•••
	20	2F
	21	4C
3. How many physical pages are there in the address space?	22	65
	23	AC
	24	ED
	25	FE
4. Here many hits and thousing the vietnel made mymber?	26	100
4. How many bits are there in the virtual page number?	•••	•••
	40	11F
	41	13C
	42	155
	43	19C
5. How many bits are there in the physical page number?	44	1DD
2 pugo nambor.	45	1EE
	46	199
	•••	•••

6. Some entries of the page table are shown to the right (all values are in hex, and all entries shown are valid). Translate virtual address 0x410423 to a physical address, using the translations in this page table.