Lecture 2: Numerical Linear Algebra (UMA021): Roots of Non-Linear Equations

Dr. Meenu Rani

Department of Mathematics TIET, Patiala Punjab-India

Dr. Meenu Rani

Methods for root-finding problem:

To find a solution of an equation f(x) = 0, we discuss the following three methods:

- Bisection method
- 2 Fixed point Iteration
- 3 Newton method

Dr. Meenu Rani 2/9

egn [f/1)=0

Intermediate Value Theorem (IVT)

Let
$$f(x)$$
 be continuous function on $[a,b]$ and $f(a) * f(b) < 0$, then \exists a number $c \in (a,b)$ such that

Bisection method: Procedure

Step 2 find the interval in which
$$f(a) \times f(b) < 0$$

Step 2 Use bisection method $x_1 = a + b$

Step 3 Check the sign of $f(x_1) < 0$

The root lies in (x_1, b) by $1 \vee 7$

Step 4 Use bisection method $x_2 = x_1 + b$

The root lies in either in (x_1, x_2) or (x_3, b)

The root lies in either in (x_1, x_2) or (x_3, b)

Check the Sign of $f(x_2) > 0 \Rightarrow$ The root lies in (x_1, x_2)

Step 5 Use bisection method $x_3 = x_1 + x_2$

Continue this process

Bisection method: Stopping Criteria

$$|\chi_{n}-\chi_{n-1}| < \text{tolerance}$$
 (given)
11
e.g. $|0^{-1}|$ or $|0^{-2}|$ or $|0^{-3}|$

Bisection method: Example

Show that $f(x) = x^3 + 2x^2 - 3x - 1 = 0$ has a root in [1,2] and use the bisection method to determine an approximation to the root i.e. is accurate to at least within 10^{-1} .

Solution:
$$f(n)$$
 is 3rd polynomial function, so it contains on $[1,2]$

and $f(1) = 1+2-3-1=-1<0$
 $f(2) = 8+8-6-1=9>0$

=) by IVT, we say that $f(n)$ by $f(n)$ a root in $[1,2]$

Dr. Meenu Rani

By using bisection method

$$x_1 = 1+\frac{1}{2} = 1.5$$

Root lies in either [1, 1.5] or [1.5,2]

the the f(1.5) = 0

=) By IVT, Root lies in [1, 1.5]

Using bisection method $x_2 = \frac{1+1.5}{2} = 1.25$

Root lies in either [1,1.25] or [1.25, 1.5] $x_1 = \frac{1}{2}$

Check $f(1.25) > 0$

=) by IVT, Root lies in [1,1.25]

 $x_2 = \frac{1+1.25}{2} = 1.125$
 $x_3 = \frac{1+1.25}{2} = 1.125$

Dr. Meenu Rani

Check
$$f(1.125) < 0$$

Root lies in $[1.125, 1.25]$
 $34 = 1.125 + 1.25 = 1.1875$
 $[134 - 341] = [1.125 - 1.1875] < 10^{-1}$

Table of Bisection matted

 $35m \text{ od}$
 3

Exercise:

- Use intermediate value theorem to get the first positive root of $x 2^{-x} = 0$ and hence apply bisection method to find the root accurate to within 10^{-1} .
- Using the bisection method, determine the point of intersection of the curves given by y = 3x and $y = e^x$ in the interval [0, 1] with an accuracy 0.1.

Dr. Meenu Rani 9/9