Homework Project: Object Detection with YOLO

YOLO Models from YOLOv1 to YOLOv9

A graphical depiction of the **PP-YOLO** object detection network

YOLO Models from YOLOv1 to YOLOv9

- 2015 YOLOv1: First version by Joseph Redmon.
- 2016 YOLOv2: Improved speed and accuracy, introduced anchor boxes.
- 2018 YOLOv3: Multi-scale predictions, Darknet-53 backbone.
- 2020 YOLOv4: Introduced CSPNet, optimized for speed and accuracy. 2020 YOLOv5: Developed by Ultralytics, focused on usability and deployment.
- 2021 YOLOv6: Improved industrial applications, anchor-free detection.
- 2022 YOLOv7: Enhanced learning efficiency, reduced parameters and computation.
- 2023 YOLOv8: Anchor-free, faster NMS, and semantic segmentation.
- 2024 YOLOv9: Latest improvements and features, pushing the boundaries.

https://github.com/ultralytics/yolov5

Nano YOLOv5n Small YOLOv5s Medium YOLOv5m YOLOv5I

XLarge YOLOv5x

4 MB_{FP16} 6.3 ms_{V100} 28.4 mAP_{COCO} 14 MB_{FP16} 6.4 ms_{V100} 37.2 mAP_{COCO} 41 MB_{FP16} 8.2 ms_{V100} 45.2 mAP_{COCO} 89 MB_{FP16} 10.1 ms_{V100} 48.8 mAP_{coco}

166 MB_{FP16} 12.1 ms_{V100} 50.7 mAP_{COCO}

Pretrained Checkpoints

Model	size (pixels)	mAP ^{val} 50-95	mAP ^{val} 50	Speed CPU b1 (ms)	Speed V100 b1 (ms)	Speed V100 b32 (ms)	params (M)	FLOPs @640 (B)
YOLOv5n	640	28.0	45.7	45	6.3	0.6	1.9	4.5
YOLOv5s	640	37.4	56.8	98	6.4	0.9	7.2	16.5
YOLOv5m	640	45.4	64.1	224	8.2	1.7	21.2	49.0
YOLOv5I	640	49.0	67.3	430	10.1	2.7	46.5	109.1
YOLOv5x	640	50.7	68.9	766	12.1	4.8	86.7	205.7
YOLOv5n6	1280	36.0	54.4	153	8.1	2.1	3.2	4.6
YOLOv5s6	1280	44.8	63.7	385	8.2	3.6	12.6	16.8
YOLOv5m6	1280	51.3	69.3	887	11.1	6.8	35.7	50.0
YOLOv5l6	1280	53.7	71.3	1784	15.8	10.5	76.8	111.4
YOLOv5x6 + TTA	1280 1536	55.0 55.8	72.7 72.7	3136 -	26.2	19.4	140.7	209.8

Why YOLOv5

Quick Start: Setup Environment

• Create & activate conda environment for yolov5

```
> conda create -n yolov5 python=3.8
```

- > conda activate yolov5
- Clone yolov5(https://github.com/ultralytics/yolov5.git)

```
> git clone https://github.com/ultralytics/yolov5.git
```

- > cd yolov5
- Install requirements

```
> pip install -r yolov5/requirements.txt
```

Quick Start: Inference

- Inference with detect.py
 - detect.py runs inference on a variety of sources, downloading <u>models</u> automatically from <u>the latest YOLOv5 release</u> and saving results to runs/detect.

```
> python detect.py --weights yolov5s.pt --source 0
                                                                                   # webcam
                                                  img.jpg
                                                                                   # image
                                                  vid.mp4
                                                                                   # video
                                                                                   # screenshot
                                                  screen
                                                                                   # directory
                                                  path/
                                                  list.txt
                                                                                   # list of images
                                                  list.streams
                                                                                   # list of streams
                                                  'path/*.jpg'
                                                                                   # glob
                                                                                  # YouTube
                                                  'https://youtu.be/LNwODJXcvt4'
```

Quick Start: Inference

 The inference result should be under the path yolov5/run/detect/exp*

Tutorial: Download Custom Data

- A huge amount of objection detection dataset are available in RoboFlow Universe: https://universe.roboflow.com/
- Let's use rock-paper-scissors as an example(make sure to sign-in)

Tutorial: Download Custom Data

Tutorial: Download Custom Data

- Unzip the downloaded file & move its content to the *yolov5* folder.
- Your project should have the following structure in the end.
 - HW3
 - yolov5
 - test/
 - train/
 - valid/
 - data.yaml
 - •
 - •

Tutorial: Train w/ Custom Data

 Run the following command to train yolo5s on our custom data. (feel free to modify the parameters highlighted in red)

```
> python train.py --name custom --data data.yaml --weights yolov5s.pt --epochs 3 --batch-size 16
```

- See the <u>parse opt</u> function in train.py for details of other hyper parameters.
- The trained model weight should be saved under runs/train/custom*/weights/best.pt (* is a number depends on how many time you've run train.py before)

Tutorial: Validation

• We can run validate our model's performance with val.py:

```
# Run validation on custom model
> python val.py --name custom --data data.yaml --weights runs/train/custom*/weights/best.pt --task test --augment
```

The result should look like below:

```
Model summary: 157 layers, 7018216 parameters, 0 gradients, 15.8 GFLOPs
test: Scanning C:\ncku\hw3\yolov5\test\labels.cache... 304 images, 118 backgrounds, 0 corrupt: 100%
                                                                                                                304/304 [00:00<?, ?it/s]
                                                                                                          | 10/10 [00:28<00:00, 2.82s/it]
                                                                                mAP50-95: 100%
                 Class
                           Images Instances
                                                      Ρ
                                                                        mAP50
                                                                 R
                   all
                              304
                                                   0.77
                                                             0.811
                                                                        0.853
                                                                                    0.531
                                                             0.736
                              304
                                                  0.718
                                                                        0.794
                                                                                   0.441
                 Paper
                                                             0.862
                  Rock
                                                  0.813
                                                                        0.891
                                                                                    0.566
              Scissors
                              304
                                                  0.779
                                                             0.836
                                                                        0.875
                                                                                    0.585
Speed: 0.5ms pre-process, 90.6ms inference, 0.4ms NMS per image at shape (32, 3, 640, 640)
Results saved to runs\val\custom
```

Tutorial: Run the Model

• Finally, we can run our model with *detect.py*:

Inference with webcam
> python detect.py --weights runs/train/custom*/weights/best.pt --source 0

Objective

- For this homework, you need to follow the tutorial above and prepare a report in the form of ppt or pdf detailing each steps.
 - Collect custom data from internet, ex. Roboflow Universe
 - Train yolov5 model with custom data
 - Validate the model
 - Run inference