Université Paris - Dauphine

Processus Aléatoires Discrets

Examen du 21-1-2008

Aucun document n'est autorisé. Durée 2 heures.

- 1. Soit (X_n) une suite de variables aleatoires independantes et identiquement distribuées sur un ensemble S denombrable, de loi μ .
 - (a) Montrer que $Y_n = (X_n, X_{n+1})$ est une chaine de Markov sur $M = S \times S$. Calculer sa matrice de transition et sa probabilité stationnaire.
 - (b) Donner une condition sur μ qui implique $\{Y_n\}_n$ recurrent positif.
 - (c) Soit $Z_n = (X_n, X_{n+1}, X_{n+2})$. $\{Z_n\}_n$ est une chaine de Markov?
- 2. Soit $(Y_n)_{n\geq 1}$ une suite de variable aléatoire positives indépendantes. On suppose que $\forall n\geq 1$, $Y_n\in L^1$ et $E(Y_n)=1$. Soit $\mathcal{F}_0=\{\emptyset,\Omega\}$ et $\forall n\geq 1$, $\mathcal{F}_n=\sigma(Y_k;\ k\leq n)$. Posons $X_0=1$ et $X_n=\prod_{i=1}^n Y_k$.
 - (a) Montrer que $(X_n)_{n\geq 0}$ est une martingale par rapport la filtration $(\mathcal{F}_n, n\geq 0)$. En déduire que $(\sqrt{X_n})_{n\geq 0}$ est une sur-martingale par rapport à la même filtration.
 - (b) On rappelle qu'une sur-martingale positive converge p.s. On suppose que

$$\prod_{k=1}^{\infty} E(\sqrt{Y_k}) = 0.$$

Donner la limite de la suite $(\sqrt{X_n})_{n\geq 0}$. Pour cette question on utilisera le lemme de Fatou.

- (c) En déduire le convergence p.s de la suite $(X_n)_{n\geq 0}$. Montrer que $(\sqrt{X_n})_{n\geq 0}$ ne converge pas dans L^1 .
- (d) On suppose maintenant que

$$\prod_{k=1}^{\infty} E(\sqrt{Y_k}) > 0.$$

Montrer que $(\sqrt{X_n})_{n>0}$ est une suite de Cauchy dans L^2 .

- (e) En déduire que $(X_n)_{n\geq 0}$ est une suite de Cauchy dans L^1 et ainsi qu'elle converge dans L^1 .
- 3. On considère $(\xi_i, i \geq 1)$ une suite de v.a. indépendantes et de même loi donnée par

$$\mathbb{P}(\xi_i = 1) = 1 - \mathbb{P}(\xi_i = -1) = p, \ p \in (0, 1), \ p \neq 1/2.$$

On pose $S_0 = 0$ et

$$S_n = \xi_1 + ... + \xi_n$$
, pour $n \ge 1$.

Enfin on travaille avec la filtration $(\mathcal{F}_n, n \geq 0)$ où \mathcal{F}_n est la tribu engendrée par $(\xi_1, ..., \xi_n)$, $n \geq 1$ et $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

- (a) On pose $\phi(x) = ((1-p)/p)^x$, $x \in \mathbb{N}$. Montrer que $\phi(S_n)$, $n \ge 0$ est une martingale.
- (b) Soit $T_x = \inf\{n \ge 0 : S_n = x\}$, $x \in \mathbb{N}$. Le but de cette question est de montrer que pour a < 0 < b,

$$\mathbb{P}(T_a < T_b) = \frac{\phi(b) - \phi(0)}{\phi(b) - \phi(a)}.$$

- i. Montrer que $T_a \wedge T_b$ est un temps d'arrêt presque sûrement fini.
- ii. Montrer que $\mathbb{E}[\phi(S_{T_a \wedge T_b})] = \phi(0)$.
- iii. Exprimer $\mathbb{E}[\phi(S_{T_a \wedge T_b})]$ en fonction de $\phi(a), \phi(b)$ et $\mathbb{P}(T_a < T_b)$, puis conclure.

Dans les deux questions suivantes, on suppose que 1/2 (et toujours <math>a < 0 < b).

(c) Montrer, par exemple en utilisant la question précédente, que

$$\mathbb{P}(\min_{n} S_n \le a) = \mathbb{P}(T_a < \infty) = ((1-p)/p)^{-a}$$

et $\mathbb{P}(T_b < \infty) = 1$. En déduire que $\mathbb{E}[\min_n S_n] > -\infty$.

- (d) i. Montrer que $X_n = S_n (2p-1)n, n \ge 0$ est une martingale.
 - ii. En déduire que $(2p-1)\mathbb{E}[T_b] = \mathbb{E}[S_{T_b}]$ (indication : utiliser $\mathbb{E}[\min_n S_n] > -\infty$). Calculer la valeur de $\mathbb{E}[T_b]$.