2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

gondola

Language: en-HRV

Gondola

Mao-Kong gondola je poznata turistička atrakcija u Taipeiju. Konstrukcija gondole sastoji se od kružne trase, jedne stanice i \boldsymbol{n} gondola označenih redom brojevima od 1 do \boldsymbol{n} koje putuju trasom stalno u istom smjeru. Nakon što gondola s brojem \boldsymbol{i} prođe stanicu, iduća gondola koja će proći bit će gondola $\boldsymbol{i+1}$ osim ako je $\boldsymbol{i}=\boldsymbol{n}$, onda će to biti gondola s brojem $\boldsymbol{1}$. Drugim riječima, gondole se voze u krug.

Osim što se voze, gondole se mogu i kvariti. Na svu sreću, prljavo smo bogati i imamo beskonačno zamjenskih gondola koje su označene brojevima n+1, n+2, n+3 i tako do beskonačnosti. Kada se gondola pokvari zamjenimo je sa prvom neiskorištenom zamjenskom gondolom, odnosno, onom koja ima najmanji broj. Na primjer, ako imamo $\bf 5$ gondola $\bf 1$ se pokvari, zamijenit ćemo je gondolom $\bf 6$.

Vi ste malo čudni, volite stajati na stanici i gledati gondole kako prolaze. Moguće je da se nekoliko gondola pokvarilo i da su zamijenjene prije no što ste došli, ali nijedna se nije pokvarila dok ste vi gledali kako prolaze.

 $Gondolični \ niz$ je niz od n brojeva koji predstavljaju redne brojeve uzastopnih gondola koja prolaze kraj stanice.

Vrijedi primijetiti da od iste konfiguracije gondola na trasi možemo dobiti više različitih gondoličnih nizova, ovisno o tome koja je gondola prva prošla kraj stanice otkad ste vi tamo. Na primjer, ako se niti jedna gondola nije pokvarila onda su (2,3,4,5,1) i (4,5,1,2,3) mogući gondolični nizovi, ali niz (4,3,2,5,1) nije (jer se gondole javljaju u krivom poretku).

Ako se gondola broj 1 pokvari, onda možemo vidjeti gondolični niz (4, 5, 6, 2, 3). Ako se gondola broj 4 pokvari nakon nje, zamjenjujemo je s gondolom broj 7 i tada možemo uočiti gondolični niz (6, 2, 3, 7, 5). Ako se gondola broj 7 pokvari nakon ovoga, zamjenjujemo je s gondolom broj 8 i možemo uočiti gondolični niz (3, 8, 5, 6, 2).

pokvarena gondola	nova gondola	mogući gondolični niz
1	6	(4, 5, 6, 2, 3)
4	7	(6, 2, 3, 7, 5)
7	8	(3, 8, 5, 6, 2)

 $Pokvareni\ niz$ je niz koji se sastoji od rednih brojeva gondola koje su se pokvarile, u redoslijedu kojim su se kvarile. U prethodnom primjeru, pokvareni niz je (1,4,7). Pokvareni niz r generira gondolični niz r ako nakon kvarova opisanih nizom r možemo uočiti gondolični niz r.

Provjera gondoličnog niza

U prva tri podzadatka morate provjeriti je li zadani niz mogući gondolični niz. Pogledajte tablicu ispod za primjere nizova koji jesu ili nisu mogući gondolični niz. Morate implementirati funkciju valid.

- valid(n, inputSeq)
 - n: duljina zadanog niza
 - inputSeq: niz duljine n n; inputSeq[i] je i-ti element zadanog niza, za $i \in \{0, 1, \dots, n-1\}$.
 - Funkcija treba vratiti 1 ako je zadani niz mogući gondolični niz, a 0 ako nije.

Podzadaci 1, 2 i 3

podzadatak	broj bodova	n	inputSeq
1	5	$n \leq 100$	svaki broj od 1 do n pojavljuje se točno jednom
2	5	$n \leq 100,000$	$1 \leq \text{inputSeq[i]} \leq n$
3	10	$n \leq 100,000$	$1 \le inputSeq[i] \le 250,000$

Primjeri

podzadatak	inputSeq	povratna vrijednost	napome na
1	(1, 2, 3, 4, 5, 6, 7)	1	
1	(3, 4, 5, 6, 1, 2)	1	
1	(1, 5, 3, 4, 2, 7, 6)	0	1 se ne može pojaviti drito ispred 5
1	(4, 3, 2, 1)	0	4 se ne može pojaviti drito ispred 3
2	(1, 2, 3, 4, 5, 6, 5)	0	dvije gondole označene brojem 5
3	(2, 3, 4, 9, 6, 7, 1)	1	pokvareni niz je (5, 8)
3	(10, 4, 3, 11, 12)	0	4 se ne može pojaviti drito ispred 3

Pokvareni niz

U sljedeća tri podzadatka morate konstruirati neki pokvareni niz koji generira zadani gondolični niz. Bilo koji ispravan pokvareni niz bit će prihvaćen. Morate implementirati funkciju replacement.

- replacement(n, gondolaSeq, replacementSeq)
 - n je duljina zadanog gondoličnog niza.
 - gondolaSeq: niz duljine n; gondolaSeq će sigurno biti gondolični niz, gondolaSeq[i] je i-ti element gondoličnog niza, za $i \in \{0, 1, ..., n-1\}$.
 - funkcija treba vratiti l, duljinu ispravnog pokvarenog niza.
 - replacementSeq: niz koji je dovoljno velik da se u njega spremi ispravan pokvareni niz; vaš odgovor trebate vratiti tako da zapišete i-ti element vašeg pokvarenog niza u replacementSeq[i], za $i \in \{0, 1, \dots, l-1\}$.

Podzadaci 4, 5 i 6

podzadatak	broj bodova	\boldsymbol{n}	gondolaSeq
4	5	$n \leq 100$	$1 \le \text{gondolaSeq[i]} \le n+1$
5	10	$n \leq 1,000$	$1 \le gondolaSeq[i] \le 5,000$
6	20	$n \leq 100,000$	$1 \le \text{gondolaSeq[i]} \le 250,000$

Primjeri

podzadatak	gondolaSeq	povratna vrijednost	replacementSeq
4	(3, 1, 4)	1	(2)
4	(5, 1, 2, 3, 4)	0	()
5	(2, 3, 4, 9, 6, 7, 1)	2	(5, 8)

Prebrojavanje pokvarenih nizova

U iduća četiri podzadatka morate izračunati koliko ima mogućih pokvarenih nizova koji generiraju zadani niz (koji može, ali ne mora biti gondolični niz) modulo 1,000,000,009. Implementirajte funkciju countReplacement.

- countReplacement(n, inputSeq)
 - n: duljina zadanog niza
 - inputSeq: duljina niza n; inputSeq[i] je i-ti element zadanog niza, za $i \in \{0,1,\ldots,n-1\}$.
 - Ako zadani niz je gondolični niz, izračunajte broj pokvarenih nizova koji ga generiraju (što može biti vrlo velik broj) i *vratite ga modulo* **1,000,000,009**.
 - Ako zadani niz nije gondolični niz, vaša funkcija treba vratiti 0.
 - Ako zadani niz je gondolični niz, ali se nijedna gondola nije pokvarila, vaša funkcija treba vratiti 1.

Podzadaci 7, 8, 9 i 10

podzadaci	broj bodova	n	inputSeq
7	5	$4 \le n \le 50$	$1 \leq \text{inputSeq[i]} \leq n+3$
8	15	$4 \le n \le 50$	$1 \le \text{inputSeq[i]} \le 100$, i barem $n-3$ od početnih gondola $1, \dots, n$ se nije pokvarilo.
9	15	$n \leq 100,000$	$1 \le inputSeq[i] \le 250,000$
10	10	$n \leq 100,000$	$1 \le \text{inputSeq[i]} \le 1,000,000,000$

Primjeri

podzadatak	inputSeq	povratna vrijednost	mogući pokvareni nizovi
7	(1, 2, 7, 6)	2	(3, 4, 5) ili (4, 5, 3)
8	(2, 3, 4, 12, 6, 7, 1)	1	(5, 8, 9, 10, 11)
9	(4, 7, 4, 7)	0	inputSeq nije gondolični niz
10	(3, 4)	2	(1, 2) ili (2, 1)

Implementacijski detalji

Morate *submitati* točno jednu datoteku, gondola.c, gondola.cpp ili gondola.pas. U ovoj datoteci moraju biti implementirani gore opisani potprogrami (čak i ako želite riješiti samo neki od podzadataka) sa dolje navedenim prototipovima. Također, morate *includeati header file* gondola.h za C/C++.

C/C++ program

```
int valid(int n, int inputSeq[]);
int replacement(int n, int gondolaSeq[], int replacementSeq[]);
int countReplacement(int n, int inputSeq[]);
```

Paskal program

```
function valid(n: longint; inputSeq: array of longint): integer;
function replacement(n: longint; gondolaSeq: array of longint;
var replacementSeq: array of longint): longint;
function countReplacement(n: longint; inputSeq: array of longint):
longint;
```

Sample grader

Sample grader prima ulaz sljedećeg oblika:

- 1. linija: T, redni broj podzadatka koji želite testirati ($1 \le T \le 10$).
- 2. linija: n, duljina zadanog niza.
- 3. linija: ako je T 4, 5, ili 6, ova linija sadrži gondolaSeq[0], ..., gondolaSeq[n-1]. Inače, ova linija sadrži inputSeq[0], ..., inputSeq[n-1].