

Classification of Protein Ubiquitination Sites using MLP and GA

The Pitch, April 3rd 2017

Group: 11

Jinny Lee MASc Student under the

supervision of Dr. Andy Adler, Dr. Eran Ukwatta

George Hanna

4th year Biomedical and Electrical Engineering Student.

Review our Method/Implementation

"Hidden Markov Models cannot be used"

Review our Method/Implementation

Method

- Classifier: Multilayer Perceptron
- Feature selection : Genetic search

Implementation

Work environment: Matlab 2017a NN Toolbox Feature selection by WEKA

Pre-processing data

1 Normalization: Multilayer network creation functions such as "patternnet" include default processing functions such as "removeconstantrows" and "mapminmax"

Pre-processing data

- 1 **Normalization**: Multilayer network creation functions such as "patternnet" include default processing functions such as "removeconstantrows" and "mapminmax"
- 2 Missing Data: -9999 values are replaced with column medians.

Pre-processing data

- 1 **Normalization**: Multilayer network creation functions such as "patternnet" include default processing functions such as "removeconstantrows" and "mapminmax"
- 2 Missing Data: -9999 values are replaced with column medians.
- 3 Outlier Detection: Mean Absolute Deviation (MAD) used to replace values that are >10 deviations away with the median value.

Mitigating Class Imbalance

- Synthetic Sampling (SMOTE)
- Adaptive SMOTE (AdaSyn)
- Cost-sensitive classification
- Undersampling

Sampling of Minority Class using K Neighbors

Mitigating Class Imbalance

- Synthetic Sampling (SMOTE)
- Adaptive SMOTE (AdaSyn)
- Cost-sensitive classification
- Undersampling

Sampling of Minority Class Near Border

Mitigating Class Imbalance

- Synthetic Sampling (SMOTE)
- Adaptive SMOTE (AdaSyn)
- Cost-sensitive classification
- Undersampling

Mitigating Class Imbalance

- Synthetic Sampling (SMOTE)
- Adaptive SMOTE (AdaSyn)
- Cost-sensitive classification
- Undersampling

Datasets: Split 60% for training and 40% for test set

Feature Selection Using WEKA:

- CfsBestSubsetEval Greedy search 10 60 features
- Results used as initial state for Genetic Search, giving 10 60 features

Feature Selection Using WEKA:

Training and Testing Protocol:

Train X NNs on X Bootstrap samples of training data

- Samples have equal proportion of positives and negatives
- Training uses Early Stopping, Bayesian Regularization to lower risk of overfitting.

NNs applied to hold-out test-set

• Outputs of each NN are summed, averaged, thresholded.

Parameter Tuning

• Learning Rate, Momentum, Hidden Layers

Meta Learning

Hybrid Learners:

Combine weak NN with decision trees and KNN classifiers. Weak improvement in classification precision/recall

Bagging:

Several tens of NNs are trained on bootstrap samples of training set. Could be combined with Hybrid Scheme to improve stability

GA-based Selective NN Ensemble:

Assign voting weights to NNs using GA.

Meta Learning

Active Learning

Voting-based Query Selection

1000 points are chosen where vote among X classifiers is closest. These points are deemed uncertain and should help in defining a more accurate classifier.

Active Learning

Estimated Results

Min Sensitivity: 30%

Min Precision: 30%

Estimated Results

Accuracy: 0.15 +/- 0.05

