Bayesian Learning from Multi-way EEG Feedback for Robot Navigation and Target Identification

Mahnaz Arvaneh

Wirth C, Toth J, Arvaneh M. Bayesian learning from multi-way EEG feedback for robot navigation and target identification. Scientific Reports. 2023 Oct 7;13(1):16925.

University of Sheffield

My Research Vision and Ambitions

Research vision: to augment human (physical and cognitive) performance by developing user-centred closed-loop neurotechnologies

Improving humanmachine collaboration (AI in Wargaming EPSRC £1.2 m, Inclusive Neurotech ARIA £410K) My Main Research Directions

Physical rehabilitation (TeleRegain funded by MRC IAA, EPSRC IAA & InnovateUK £200K) Monitoring Human
States in Real-time

(ElectroTools BBSRC £900K, Haleon £400K, Mind4ACCEL EPSRC £50K)

Improving cognitive performance & decision making

(SUPER DSTL £410K, Early Dementia MRC DiMEN £200K)

Our Research Spams the Entire Spectrum of TRL 1-6
Theoretical, Experimental, Translational, Clinical Trials

Closed-loop Optimised Non-invasive Deep Brain Stimulation

Outline

- Brain-computer interface and its flaws
- Passive BCI and its application for implicit communication
- Implicit control of a navigation robot using BCI
- Future research direction

Brain-Computer Interfaces for Robot Control

BCI uses brain signals as a means of direct communication or control of a computer.

motor imagery [Leeb07]

Flaws of existing BCI:

University of Sheffield

- Most systems require low-level action control
 - e.g. "move right... move forward... grasp..."
 - Low information transfer rate
 - High mental workload

Our aim:

To investigate the feasibility of a more autonomous BCI, where much of the burden is passed from human to machine.

Implicit Control without any commands being intentionally communicated to the system by the user.

Passive Brain-Computer-Interfaces

- ✓ Passive BCIs can detect changes in certain aspects of user state in real time.
- \checkmark This can be used to establish implicit control to adapt the machine on the fly.

Brain Responses when Observing Errors

➤ Error-related Potential can be detected in signle-trial basis with accuracy 70%-80%

Example of implicit control using EEG error detection and reinforcement learning

Example of implicit control using EEG error detection and reinforcement learning

Example of implicit control using EEG error detection and reinforcement learning

Example of implicit control using EEG error detection and reinforcement learning

Example of implicit control using EEG error detection and reinforcement learning

Example of implicit control using EEG error detection and reinforcement learning

Can we have implicit control in greater details?

By going beyond "error or not", we can improve systems further

Grand average ErrP at Cz

Decision making errors with different severity made by human

- Wirth, C., et al. "Towards error categorisation in BCI: single-trial EEG classification between different errors." *Journal of neural engineering* 17.1 (2019): 016008.

Correct action type 1: Moving towards the target

Score: 0 Error type 2: Stepping off the target location

Increasing complexity- EEG from channel Cz

Erroneous Movements:

recorded, while they merely observed robot's actions

Sub-classifying different error types

Classification Challenges:

- ✓ Similar signals in noisy data
- ✓ Small training set
- ✓ Imbalance between conditions

Single-trial classification:

- ✓ Down-sampling EEG to 32 Hz, and Oversample smaller class
- ✓ 1-10Hz band-passed EEG amplitudes, 8 electrodes
- ✓ Extracting EEG intervals (200-700ms)
- ✓ Stepwise LDA (minimum 1, maximum 20 features)

Classification Accuracy		Error 1 vs Error 2	# Significant	Correct 1 vs Correct 2	# Significant
Navigation Task 1	Mean	65.2%	18 of 25 participants	66.5%	All participants
	Max	80.8%		83.7%	
Navigation Task 2	Mean	65.6%	10 of 14 participants	68.0%	all participants
	Max	79.5%		72.4%	

Navigation robot does not know the target

Implicit control of a robot while merely observing its actions

- Bayesian inference builds a model of target probabilities
- Variable stringency, determines level of certainty required to identify target

Performance and Scalability of our Solution in Identifying Targets

- Testing efficacy of Bayesian approach against
 - Random strategy
 - React strategy: using EEG feedback for correction only (no learning)

Impact

- Opened a new horizon on implicit BCI
- Further improving the machine learning models
- Overcoming Challenges of a Human-in-the-Loop Scenario
- Expansion upon the user behaviour model
- Extending to other tasks and applications

