UAV Ground Detection

Distinguish Tree Species

Christian Ekeigwe, Daehyeon Jeong, Jaeyeong Shim, Jeonghwan Kang, Seoungheong Jeong

Project 17

Detecting Tree model

Deep Forest

Training and predicting individual tree airborne RGB image

https://deepforest.readthedocs.io/en/latest/landing.html

Collecting data using UAV

Collecting data using UAV

- But we think it is hard to use UAV in Korea forest and gathering data.
- We have some several problems
- So, we try to find some new method.

Solution 1

What about UAV?

We have to build drones

Solution 2

How do we collect map data?

From Google Map API

Covertype Data Set Download: Data Folder, Data Set Description

Abstract: Forest CoverType dataset

Data Set Characteristics:	Multivariate	Number of Instances:	581012	Area:	Life
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	54	Date Donated	1998-08-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	334249

External Dataset

Data

The video capture shot we get from Purdue

Plan

Step 1

Get data from video

Make modeling system

Step 2

Classify data (Distinguish Tree Species)

Modeling data

Step 3

Real time receive data from UAV

Add/Del data from GEO chart

Step 2

Classify data (Distinguish Tree Species)

Modeling data

Classification

Classify Data

```
import time
import cv2
import numpy as np
from os.path import isfile, join
tree_classifier = cv2.CascadeClassifier('<Cascade_File_Path>')
cap = cv2.VideoCapture('<Video_File_Path>')
while True:
   time.sleep(.05)
   ret, frame = cap.read()
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    trees = tree_classifier.detectMultiScale(gray, 1.3, 5)
       image = cv2.rectangle(frame, (x, y), (x+w, y+h), (0,0,255), 2)
       cv2.imshow('Trees', image)
       #cv2.namedWindow('Trees', cv2.WINDOW_NORMAL) #optional
       #cv2.resizeWindow('Trees', 1900, 1000) #optional
       cv2.waitKey(1)
cap.release()
cv2.destroyAllWindows()
```

Detecting images from video

CascadeTrainer

Image Labeling

NEXT

Real time communication

Step 3

Data Visualization

Marker on Map

Thank you

Questions?

polytechnic.purdue.edu

TechPurdue

