Uczenie ze wzmocnieniem (Reinforcement Learning)

Q-learning

Proces decyzyjny markowa (MDP)

- Cel: podejmowanie najlepszych decyzji w danym momencie (stanie)
- Tablica Q[stan][akcja] wartość "jakości" decyzji. Im większa wartość, tym lepsza decyzja
- Aktualizacja tablicy Q, aby zapamiętać czy akcja w danym stanie była dobra czy nie

Q-Table		Actions							
		South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)		
States	0	0	0	0	0	0	0		
			•	•	·	•	•		
		•	•	•	·	•	•		
	327	0	0	0	0	0	0		
							•		
	499	0	0	0	0	0	0		

Q-Table		Actions							
		South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)		
States		0	0	0	0	0	0		
		•			•	•			
		•	•	•	•	•	·		
	328	-2.30108105	-1.97092096	-2.30357004	-2.20591839	-10.3607344	-8.5583017		
							.		
		•		•	•	•			
	499	9.96984239	4.02706992	12.96022777	29	3.32877873	3.38230603		

$$Q(\textit{state}, \textit{action}) \leftarrow (1 - \alpha)Q(\textit{state}, \textit{action}) + \alpha \Big(\textit{reward} + \gamma \max_{\textit{a}} Q(\textit{next state}, \textit{all actions}) \Big)$$

Równanie Bellmana, gdzie α - learning rate (współczynnik szybkości aktualizacji Q-values), γ - (discount factor, jak ważne są przyszłe nagrody od aktualnego stanu – czy mają duży wpływ na aktualną decyzję?)

Exploration vs Exploitation

Epsilon Greedy Strategy – w każdym kroku uczenia musimy wybrać akcję, którą podejmiemy. Gdy sugerujemy się tylko akcjami z Q-table możemy popaść w lokalne minima. Aby pozwolić agentowi "eksplorować" środowisko, zgodnie z losową wartościa oraz parametrem ε pozwolimy mu podejmować losowe decyzje. Wartość ε z czasem się zmniejsza, aby kłaść nacisk na nauczone wartości

Zadanie:

- 1. Zapoznaj się z:
 - a. Informacjami o RL: https://github.com/dennybritz/reinforcement-learning/tree/master/Introduction
 - b. Środowiskiem OpenAl Gym http://gym.openai.com/docs/
 - c. Implementacją Q-learning'u w problemie Taxi self_driving_taxi.py
- 2. Zaimplementuj algorytm Q-learning dla wybranego środowiska OpenAl Gym (za wyłączeniem cartpole). Implementację oraz wyniki przedstaw w sprawozdaniu.