Graph Theory

The Basics

The degree of a vertex

 $\delta(G) := \min \{ d(v) \mid v \in V \}$ is the minimum degree of G, the number $\Delta(G) := \max \{ d(v) \mid v \in V \}$ its maximum degree.

Proposition 1.3.1. Every graph G contains a path of length $\delta(G)$

Proof. Let $x_0
ldots x_k$ be a longest path in G. Then all the neighbours of x_k lie on this path (Fig. 1.3.4). Hence $k \ge d(x_k) \ge \delta(G)$. If i < k is minimal with $x_i x_k \in E(G)$, then $x_i \dots x_k x_i$ is a cycle of length at least $\delta(G) + 1$.

Fig. 1.3.4. A longest path $x_0 \dots x_k$, and the neighbours of x_k

A seperator in G(V,E) is $S \subseteq V$ s.t. G - S is disconnected

K(G) ≥ |min S|

Trees and forests

Lemma 1. Every tree T on at least 2 vertices has a leaf.

Proof. Assume this is not the case. Then all the vertices of the tree have degree at least 2. In this case we can find a cycle in T greedily by traversing the tree until we visit the same vertex twice. This will happen because T is finite.

Lemma 2. Any tree T contains exactly |V(T)| - 1 edges.

Proof. We show the claim by induction on |V|. The base |V|=1 is easy to check to be true. Let ℓ be a leaf in T. The vertex ℓ exists by the previous lemma. Remove ℓ from T and let T' be the resulting graph. The graph T' is connected and acyclic and therefore a tree. Hence by the induction hypothesis |E(T')| = |V(T')| - 1 and therefore |E(T)| = |V(T)| - 1.

Lemma 3. Any tree T=(V,E) contains a 1/2-balanced separator of size 1.

Proof. We find the required separator greedily. Let v be any vertex of T. Check if every connected component of $T - \{v\}$ is of size at most 1/2|V|. If this is the case, we are done. If this is not the case, let u be a neighbor of v in the unique component of size greater than 1/2|V| in $T - \{v\}$. Repeat for u the same steps as for v. The algorithm stops as T is finite and we never go back to a vertex we visited.

An d-balanced Seperator is SEV(G) s.t. every connected Component in G-S contains ea |V(G)| vertices

Bipartite graphs

Proposition 1.6.1. A graph is bipartite if and only if it contains no odd cycle.

Proof. Let G = (V, E) be a graph without odd cycles; we show that G is bipartite. Clearly a graph is bipartite if all its components are bipartite or trivial, so we may assume that G is connected. Let T be a spanning tree in G, pick a root $r \in T$, and denote the associated tree-order on V by \leq_T . For each $v \in V$, the unique path rTv has odd or even length. This defines a bipartition of V; we show that G is bipartite with this partition.

Let e = xy be an edge of G. If $e \in T$, with $x <_T y$ say, then rTy = rTxy and so x and y lie in different partition classes. If $e \notin T$ then $C_e := xTy + e$ is a cycle (Fig. 1.6.3), and by the case treated already the vertices along xTy alternate between the two classes. Since C_e is even by assumption, x and y again lie in different classes. \square

Matching in bipartite graphs

Theorem 2.1.2. (Hall 1935)

G contains a matching of A if and only if $|N(S)| \ge |S|$ for all $S \subseteq A$.