ETH zürich

1. Motivation

2. The moduli space of tori
One-loop open strings
Rectangular tori
General tori
Fundamental domain

3. Torus partition function Compactified closed strings World-sheet closed strings

4. Modular invariance of the amplitude

ETH zürich Department of Physics 16.5.2022 1/23

1. Motivation

- The moduli space of tori
 One-loop open strings
 Rectangular tori
 General tori
 Fundamental domain
- 3. Torus partition function Compactified closed strings World-sheet closed strings
- 4. Modular invariance of the amplitude

ETH zürich Department of Physics 16.5.2022 2/23

Interactions and observables

In the study of string interactions, the ultimate goal will be the assignment of a probability for a certain process and the prediction of a physical cross section.

As outlined in Section 22, the computation of an observable cross section involves a series of steps:

- 1. Canonical representation of string diagram through moduli space
- 2. Compute scattering amplitude by means of conformal field theory
- 3. Convert scattering amplitude into a cross section

ETH zürich Department of Physics 16.5.2022 3/23

Loop amplitudes in string theory

In order to obtain accurate scattering amplitudes of processes, one needs to include contributions from loops in string diagrams.

These loops can be seen as contributions from the next higher order pertubation. Graphically we consider the following processes:

ETH zürich Department of Physics 16.5.2022 4/23

Ultraviolet divergence

Amplitudes from virtual processes as depicted before can lead to ultraviolet (UV) divergences in quantum field theory (QFT).

Whereas QFT must employ complex renormalizations to deal with these UV divergences, we do not encounter these problems in string theory.

ETH zürich Department of Physics 16.5.2022 5/23

- 1. Motivation
- 2. The moduli space of tori
 One-loop open strings
 Rectangular tori
 General tori
 Fundamental domain
- 3. Torus partition function Compactified closed strings World-sheet closed strings
- 4. Modular invariance of the amplitude

ETH zürich Department of Physics 16.5.2022 6/23

One-loop open strings

Before approaching the moduli space of tori, lets consider a one-loop open string with light-cone momentum p^+ . This will serve as an intuitive analogon. The light-cone diagram is:

For fixed external momentum p^+ we find the two parameters: $\Delta T \in (0, \infty)$ and $p_1^+ \in (0, p^+)$. \rightarrow The class of Riemann surfaces of this process has two moduli.

ETH zürich Department of Physics 16.5.2022 7/23

Canonical annulus

Use $w = \tau + i\sigma$ and apply conformal transformations:

- 1. Exponential map: $z = exp[\frac{w}{2\alpha'p^+}]$
- 2. Linear fractional transformation: $\eta = \frac{1+iz}{1-iz}$
- 3. Canonical annulus: A region in $\mathbb C$ that is topologically an annulus can be mapped conformally to a canonical annulus

Rectangular tori

In order to apply the concept of moduli spaces to a torus, we need to assure that a torus is indeed a Riemann surface.

Consider a rectangular region of $\mathbb C$. By applying the analytic identifications $z\sim z+L_1$ and $z\sim z+iL_2$ we obtain a torus. This shows that the region remains a Riemann surface. Graphically:

Parametrisation

We have:

Rectangular torus

$$z \sim z + L_1$$
 and $z \sim z + iL_2$

By applying $z' = \frac{z}{L_1}$ the identifications become:

Torus parameter T

$$z^{'}\sim z^{'}+1$$
 and $z^{'}\sim z^{'}+iT$ with $T=rac{L_{2}}{L_{1}}$

Ultraviolet divergence

T is a parameter of the torus but does not yet define the moduli space, i.e. tori with different T can be conformally equivalent.

Consider the following series of conformal maps to a rectangular torus with T < 1:

Rectangular torus

Tori with T and $\frac{1}{T}$ are conformally equivalent

 \rightarrow The moduli space can be chosen to be $T \in (0,1]$ or $T \in [1,\infty)$

ETH zürich Department of Physics 16.5.2022 11/23

General tori

Rectangular tori represent only a subset off all conformally inequivalent tori. Let's construct a more general class of tori:

General construction of a torus Riemann surface

Choose $\omega_1, \omega_2 \in \mathbb{C}$ with $\Im(\frac{\omega_1}{\omega_2})$.

A torus is obtained by the indentifications $z \sim z + \omega_1$ and $z \sim z + \omega_2$.

By scaling we obtain $z \sim z + 1$ and $z \sim z + \tau$ with $\tau = \frac{\omega_2}{\omega_1}$, $\Im(\tau) > 0$.

 \rightarrow Note that for $\tau = iT$ ($\Leftrightarrow \Re(\tau) = 0$) we consider the rectangular torus.

Twisting the torus

Intuitively, if a cylinder is twisted and the end surfaces are connected, we expect a different torus. Formally: Consider $\Re(\tau) \neq 0$ and a point $P=0=\tau$. We can reconstruct the rectangular fundamental domain by using the identification $z\sim z+1$. Graphically:

ETH zürich Department of Physics 16.5.2022 13/23

Twisting parameter

The point P is no longer identified with a point on the perpendicular. Indeed the degree of twisting is parametrised by $\theta = 2\pi\Re(\tau)$. How does the twisting angle θ affect the torus parameter τ ?

Consider the map $\tau \to \tau + 1$:

With the identification $z \sim z + 1$ we can conclude $\tau \sim \tau + 1$ and hence $\theta \sim \theta + 2\pi$.

Note:

The "twisting" does not correspond to actual torsion. It is the mere identification of the points P.

ETH zürich Department of Physics 16.5.2022 14/23

Moduli space I

So far we have established that $\Im(\tau)>0\Leftrightarrow \tau\in\mathbb{H}$. However, the identification $\tau\sim\tau+1$ implies that the space of inequivalent tori is smaller. Indeed:

Strip S_0

$$S_0 = \{-\frac{1}{2} < \Re(\tau) < \frac{1}{2}, \Im(\tau) > 0\}$$

Is S_0 the moduli space of tori?

For rectangular tori we found that $T, \frac{1}{T}$ yield equivalent tori. Since $\tau = iT$ we have $\tau' = \frac{i}{T} = -\frac{1}{\tau}$.

ETH zürich

Moduli space II

We have found two identifications with generators:

T-module transform

$$T\tau = \tau + 1$$

S-module transform

$$S\tau = -\frac{1}{\tau}$$

The corresponding fundamental domain should be a subset of S_0 . Indeed, the S-module transform identifies points in $|\tau| < 1$ with points in $|\tau| > 1$.

Therefore we can postulate:

Fundamental domain \mathcal{F}_0

$$\mathcal{F}_0 = \{ -\frac{1}{2} < \Re(\tau) < \frac{1}{2}, \Im(\tau) > 0, |\tau| \geq 1 \text{ and } \Re(\tau) \geq 0 \text{ if } |\tau| = 1 \}$$

ETH zürich Department of Physics 16.5.2022 16/23

ETH zürich

Department of Physics

Modular group $PSL(2,\mathbb{Z})$

Consider a general linear fractional transformation $g \in G$:

$$g\tau = \frac{a\tau + b}{c\tau + d}, \ \Im(g\tau) = \frac{\Im(\tau)}{|c\tau + d|^2}$$
 (1)

with $a, b, c, d \in \mathbb{Z}$ and ad - bc = 1.

Equivalently we can use a matrix representation:

$$[g] = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \det[g] = 1 \tag{2}$$

 $\to g$ satisfies the group homomorphism $\phi: G \to G$, $[g_1g_2] \mapsto [g_1][g_2]$. We call G the modular group $PSL(2,\mathbb{Z})$.

In matrix notation we see that $[T] = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $[S] = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

ETH zürich Department of Physics 16.5.2022 18/23

Proving \mathcal{F}_0

Claim

For all $\tau \in \mathbb{H}$ exists $g \in G'$ such that $g\tau \in \mathcal{F}_0$

 $\rightarrow \mathcal{F}_0$ contains exactly one copy of each inequivalent torus.

Step 1: For each τ there is $g \in G'$ such that $\Im(g\tau)$ is largest.

Step 2: Show that $\tau' = T^n g \tau \in \mathcal{S}_0$ really is in $\bar{\mathcal{F}}_0$.

Step 3: Send $\tau \in \bar{\mathcal{F}}_0$ to $\tau \in \mathcal{F}_0$ via T- or S-transform.

ETH zürich Department of Physics 16.5.2022 19/23

- 1. Motivation
- 2. The moduli space of tori
 One-loop open strings
 Rectangular tori
 General tori
 Fundamental domain
- 3. Torus partition function Compactified closed strings World-sheet closed strings
- 4. Modular invariance of the amplitude

ETH zürich Department of Physics 16.5.2022 20/23

Compactified bosonic string

Consider the compactified coordinate $X \sim X + 2\pi r$. In a free field theory the action can be written as $S = \frac{1}{2\pi} \int \partial X \partial \bar{X}$

For such coordinates the boundary conditions read:

BC

$$X_0(z+ au,zar{+} au)=X_0(z,ar{z})+2\pi rn'$$
 and $X_0(z+1,zar{+}1)=X_0(z,ar{z})+2\pi rn$

The solution to the classical equations of motion reads:

$$X_0^{(n,n')}(z,\bar{z}) = \frac{2\pi r}{2i\tau_2} (n'(z-\bar{z}) + n(\tau\bar{z} - \bar{\tau}z))$$
(3)

ETH zürich Department of Physics 16.5.2022 21/23

Functional integral

ETH zürich Department of Physics 16.5.2022 22/23

- 1. Motivation
- 2. The moduli space of tori
 One-loop open strings
 Rectangular tori
 General tori
 Fundamental domain
- 3. Torus partition function Compactified closed strings World-sheet closed strings
- 4. Modular invariance of the amplitude

ETH zürich Department of Physics 16.5.2022 23/23