EPISEN – ING3. SI Machine Learning

Abdallah EL HIDALI

Tech Lead Sita For Aircraft abdallah.el-hidali@sita.aero

EPISEN

2024/2025

VIII. Les métriques d'évaluation des modèles

Introduction

- En machine learning, l'objectif est de résoudre des problèmes à partir de données.
- Plusieurs outils sont disponibles, comme les modèles de régression, de classification et de boosting ...
- **Pour évaluer** lequel de ces modèles répond le mieux à nos besoins, il existe des méthodes spécifiques d'évaluation de performance.
- Ces outils permettent de comparer l'efficacité des modèles.
- Ils aident à choisir le modèle qui offre les meilleures performances pour résoudre notre problème.

REGRESSION AND CLASSIFICATION

- Jusqu'à présent, nous avons exploré les modèles de régression et de classification.
- Les modèles de régression servent à prédire des valeurs numériques
- Les modèles de classification permettent de prédire des catégories ou états, tels que oui ou non, 0 ou 1, chat ou chien, etc.
- Comment mesurer la performance de nos modèles ?

WHICH MODEL IS BETTER?

- Dans cet exemple, nous faisons face à un problème de régression.
- Nous choisissons deux modèles pour représenter la relation entre les données :
 - Le premier modèle est une régression linéaire.
 - Le deuxième est une courbe.
- Lequel des modèles est meilleur

WHICH MODEL IS BETTER?

- Prenons un nouveau point (rouge) pour évaluer l'erreur de ces deux modèles.
- Il semble que le modèle de régression présente moins d'erreur que la courbe.

WHICH MODEL IS BETTER?

Nous aborderons plus tard dans le cours la notion de surapprentissage (overfitting). La question maintenant est : comment trouver un modèle qui généralise mieux ?

- On introduit le concept de test.
- On divise les données en deux ensembles : le trainning set et le testing set.
- On utilise le trainning set pour entraîner notre modèle.
- On évalue ensuite le modèle sur le testing set.

TESTING

- Dans cet exemple, le modèle de régression fait le moins d'erreur sur les données de test.
- On conclut donc que c'est le meilleur modèle.

WHICH MODEL IS BETTER?

Le même raisonnement s'applique aux modèles de classification.

TESTING IN SKLEARN

Exercice: https://github.com/elhidali/EPISEN-2024/

Comment le modèle se comporte-t-il?

HEALTHY

Nous allons étudier deux modèles

SPAM CLASSIFIER MODEL

SPAM

	Diagnosed Sick	Diagnosed Healthy
Sick	True Positive	False Negative
Healthy	False Positive	True Negative

CONFUSION MATRIX

ATIENTS

	Diagnosed Sick	Diagnosed Healthy
Sick	1000 True Positives	200 False Negatives
Healthy	800 False Positives	8000 True Negatives

DIAGNOSIS

TO, OUG PATTENT.

	Sent to Spam Folder	Sent to Inbox
Spam	True Positive	False Negative
Not Spam	False Positive	True Negative

CONFUSION MATRIX

1000 EMAILS

SPAM

	Spam Folder	Inbox
Spam	100 True Positives	170 False Negatives
Not Spam	30 False Positives	700 True Negatives

CONFUSION MATRIX

	Guessed Positive	Guessed Negative
Positive	? True Positives	? False Negatives
Negative	? False Positives	? True Negatives

Dans cet exemple, les points bleus sont étiquetés comme positifs et les points rouges comme négatifs. De plus, les points au-dessus de la ligne sont prédits (supposés) comme positifs, tandis que les points en dessous de la ligne sont prédits comme négatifs.

L'exactitude (Accuracy)

L' exactitude (accuracy) répond à la question, parmi tous les patients, combien ont été bien classés ?

	Diagnosed sick	Diagnosed healthy		
Sick	1,000	200	Accuracy = $\frac{1,000 + 8,000}{10,000} = 90\%$	
Healthy	800	8,000		
	<pre>from sklearn.metrics import accuracy_score accuracy_score (y_true, y_pred)</pre>			

L' exactitude (Accuracy)

	Spam folder	Inbox	
Spam	100	170	Accuracy = <u>100 + 700</u> = 80%
Not spam	30	700	

L'exactitude (Accuracy)

Quelle est l'exactitude (accuracy) du modèle suivant

La Précision (Accuracy)

Quelle est l'exactitude (accuracy) du modèle suivant

	Guessed Positive	Guessed Negative
Positive	6 True Positives	1 False Negatives
Negative	2 False Positives	5 True Negatives

Accuracy =
$$\frac{\text{Correctly classified points}}{\text{All points}}$$

$$= \frac{11}{11 + 3}$$

$$= \frac{11}{14}$$

$$= 78.57\%$$

Les limites de la métrique « accuracy »

CREDIT CARD FRAUD

Peut-on proposer un modèle avec une exactitude > 99%?

SITA

Les limites de la métrique exactitude (accuracy)

CREDIT CARD FRAUD

MODEL: ALL TRANSACTIONS ARE GOOD.

$$ACCURACY = \frac{284,335}{284,887} = 99.83\%$$

Bien que ce modèle affiche une grande exactitude, il n'identifie aucune transaction frauduleuse.

Les faux négatifs et les faux positifs

Dans le contexte médical, qu'est-ce qui est plus problématique : un faux positif ou un faux négatif ?

Dans le cas d'un détecteur de spam, lequel est plus problématique : un faux positif ou un faux négatif ?

Les faux négatifs et les faux positifs

Dans le contexte médical, qu'est-ce qui est plus problématique : un faux positif ou un faux négatif ?

Les faux négatifs

Dans le cas d'un détecteur de spam, lequel est plus problématique : un faux positif ou un faux négatif ?

Les faux positifs

Précision (Precision) et Rappel (Recall)

SOLUTION: FALSE POSITIVES AND NEGATIVES

Medical Model

FALSE POSITIVES OK

FALSE NEGATIVES NOT OK

OK IF NOT ALL ARE SICK FIND ALL THE SICK PEOPLE

Spam Detector

FALSE POSITIVES NOT OK

FALSE NEGATIVES OK

DON'T NECESSARILY NEED TO FIND ALL THE SPAM **BETTER BE SPAM**

HIGH RECALL

HIGH PRECISION

La Précision

PRECISION

DIAGNOSIS

			1
	\$	Diagnosed Sick	Diagnosed Healthy
	Sick	1000	200 🚫
	Healthy	800	9000
,			

PRECISION =
$$\frac{1,000}{1,000 + 800}$$
 = 55.6%

La Précision

PRECISION

FOLDER

		Sent to Spam Folder	Sent to Inbox
EMAIL	Spam	100	170
	Not Spam	30 🚫	700

PRECISION =
$$\frac{100}{100 + 30}$$
 = 76.9%

La Précision

PRECISION

OUT OF THE POINTS WE HAVE PREDICTED TO BE POSITIVE, HOW MANY ARE CORRECT? Dans cet exemple, les points bleus sont étiquetés positifs, et les points rouges sont étiquetés négatifs. De plus, les points au-dessus de la ligne sont prédits comme positifs, et les points en dessous de la ligne sont prédits comme négatifs.

Quelle est la	précision	de ce	modèle?
---------------	-----------	-------	---------

	Guessed Positive	Guessed Negative
Positive	6 True Positives	1 False Negatives
Negative	2 False Positives	5 True Negatives

Le rappel

RECALL

DIAGNOSIS

PATIENTS	\$	Diagnosed Sick	Diagnosed Healthy
	Sick	1000	200 🛇
	Healthy	800	8000

OUT OF THE SICK PATIENTS, HOW MANY DID WE CORRECTLY DIAGNOSE AS SICK?

$$RECALL = \frac{1,000}{1,000 + 200} = 83.3\%$$

Le rappel

RECALL

FOLDER

Sent to Spam Folder Sent to Inbox

Spam 100 170

Not Spam 30 × 700

OUT OF ALL THE SPAM E-MAILS, HOW MANY WERE CORRECTLY SENT TO THE SPAM FOLDER?

Recall =
$$\frac{100}{100 + 170}$$
 = 37%

Le rappel

PRECISION

OUT OF THE POINTS WE HAVE PREDICTED TO BE POSITIVE, HOW MANY ARE CORRECT? Dans cet exemple, les points bleus sont étiquetés positifs, et les points rouges sont étiquetés négatifs. De plus, les points au-dessus de la ligne sont prédits comme positifs, et les points en dessous de la ligne sont prédits comme négatifs.

	Guessed Positive	Guessed Negative
Positive	6 True Positives	1 False Negatives
Negative	2 False Positives	5

Quelle est le rappel de ce modèle ?

Limite de la précision et du rappel

PRECISION AND RECALL

ONE SCORE?

MEDICAL MODEL

PRECISION: 55.7%

RECALL: 83.3%

SPAM DETECTOR

PRECISION: 76.9%

RECALL: 37%

Peut-on avoir une seule métrique qui combine la précision et le rappel en même temps ?

La moyenne entre la précision et le rappel

CREDIT CARD FRAUD

MODEL: ALL TRANSACTIONS ARE GOOD.

PRECISION = 100% AVERAGE = 50% RECALL = 0%

La moyenne ne traduit pas le fait que le modèle n'est pas bon en rappel

La moyenne entre la précision et le rappel

CREDIT CARD FRAUD

MODEL: ALL TRANSACTIONS ARE FRAUDULENT.

PRECISION = 472/284,807 = 0.16%

RECALL = 472/472 = 100%

AVERAGE = 50.08%

La moyenne ne traduit pas le fait que le modèle n'est pas bon en précision

La moyenne harmonique / F1 score

HARMONIC MEAN

F1 Score

CREDIT CARD FRAUD

MODEL: ALL TRANSACTIONS ARE GOOD.

PRECISION = 100% F₁ SCORE = 0 RECALL = 0%

F-beta Score

\circ QUIZ: $F_{\!\!eta}$ SCORE

$$F_1$$
 SCORE = 2 Precision * Recall Precision + Recall

$$F_{\beta}$$
 SCORE = $(1+\beta^2)_{\beta^2} \frac{\text{Precision * Recall}}{\text{* Precision + Recall}}$

PRECISION

F_{0.5} SCORE

F, SCORE

F, SCORE

RECALL

SITA

F-beta Score

- Dans la détection des fraudes, on peut chercher à maximiser le rappel en choisissant une valeur élevée pour bêta.
- Cela risque d'augmenter le nombre de faux positifs et d'envoyer de nombreuses notifications aux clients pour des transactions erronément signalées comme frauduleuses.
- Un bêta plus faible favorisera la précision, réduisant ainsi le risque de manquer une transaction frauduleuse. Le choix du bêta n'est pas une science exacte et nécessite plusieurs itérations.

Récap

Actual

		Spam (Positive)	Not Spam (Negative)
	Spam (Positive)	True Positive (TP)	False Positive (FP)
	Not Spam (Negative)	False Negative (FN)	True Negative (TN)

Actual

		Spam (Positive)	Not Spam (Negative)
Predicted	Spam (Positive)	True Positive (TP)	False Positive (FP)
Pred	Not Spam (Negative)	False Negative (FN)	True Negative (TN)

Actual

		Spam (Positive)	Not Spam (Negative)
licted	Spam (Positive)	True Positive (TP)	False Positive (FP)
Prec	Not Spam (Negative)	False Negative (FN)	True Negative (TN)

$$\overline{F_p} = (1 + \beta^2) \frac{\text{Precision} * \text{Recall}}{(\beta^2, \text{Precision}) + \text{Recall}}$$

MEAN ABSOLUTE ERROR IN SKLEARN

```
from sklearn.metrics import mean_absolute_error
from sklearn.linear_model import LinearRegression

classifier = LinearRegression()
classifier.fit(X,y)

guesses = classifier.predict(X)

error = mean_absolute_error(y, guesses)
```


MEAN SQUARED ERROR IN SKLEARN

```
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression

classifier = LinearRegression()
classifier.fit(X,y)

guesses = classifier.predict(X)

error = mean_squared_error(y, guesses)
```

SITA

• Le score R² permet de comparer l'erreur du modèle à celle du modèle le plus simple, qui est basé sur la moyenne.

• R2 SCORE

La performance du modèle est similaire à celle du modèle le plus simple, qui est basé sur la moyenne.

BAD MODEL

The errors should be similar. R2 score should be close to 0.

GOOD MODEL

The mean squared error for the linear regression model should be a lot smaller than the mean squared error for the simple model.

R2 score should be close to 1.

R2 SCORE IN SKLEARN

```
from sklearn.metrics import r2_score
y_true = [1, 2, 4]
y_pred = [1.3, 2.5, 3.7]
r2_score(y_true, y_pred)
```


Exercice: https://github.com/elhidali/EPISEN-2024/