A Proof of Theorem 1 and Theorem 2

385 A.1 Proof of Theorem 1

Proof. Note the function $g(t) = exp(-\gamma t)$ is Lipschitz-continuous with Lipschitz constant γ . Therefore.

$$|f(\mathbf{x}_{1}) - f(\mathbf{x}_{2})| = |\langle f, \phi(\mathbf{x}_{1}) - \phi(\mathbf{x}_{2}) \rangle|$$

$$\leq ||f||_{\mathcal{H}} ||\phi(\mathbf{x}_{1}) - \phi(\mathbf{x}_{2})||_{\mathcal{H}}$$

$$= ||f||_{\mathcal{H}} \sqrt{\int_{\omega} p(\omega)(\phi_{\omega}(\mathbf{x}_{1}) - \phi_{\omega}(\mathbf{x}_{2}))^{2} d\omega}$$

$$\leq ||f||_{\mathcal{H}} \sqrt{\int_{\omega} p(\omega)\gamma^{2} |d(\mathbf{x}_{1}, \omega) - d(\mathbf{x}_{2}, \omega)|^{2} d\omega}$$

$$\leq \gamma ||f||_{\mathcal{H}} \sqrt{\int_{\omega} p(\omega)d(\mathbf{x}_{1}, \mathbf{x}_{2})^{2} d\omega}$$

$$\leq \gamma ||f||_{\mathcal{H}} d(\mathbf{x}_{1}, \mathbf{x}_{2}) \leq \gamma C d(\mathbf{x}_{1}, \mathbf{x}_{2})$$

388

389 A.2 Proof of Theorem 2

Proof. Our goal is to bound the magnitude of $\Delta_R(x_1, x_2) = \tilde{k}_R(x_1, x_2) - k(x_1, x_2)$. Since $E[\Delta_R(x_1, x_2)] = 0$ and $|\Delta_R(x_1, x_2)| \le 1$, from Hoefding's inequality, we have

$$P\{|\Delta_R(x_1, x_2)| \ge t\} \le 2\exp(-Rt^2/2)$$

a given input pair (x_1, x_2) . To get a unim bound that holds $\forall (x_1, x_2) \in X \times X$, we find an ϵ -covering ε of X w.r.t. d(., .) of size $N(\varepsilon, X, d)$. Applying union bound over the ε -covering ε for ε and ε have

$$P\left\{\max_{\boldsymbol{x}_{1}'\in\mathcal{E},\boldsymbol{x}_{2}'\in\mathcal{E}}|\Delta_{R}(\boldsymbol{x}_{1}',\boldsymbol{x}_{2}')|>t\right\}\leq 2|\mathcal{E}|^{2}\exp(-Rt^{2}/2). \tag{13}$$

Then by the definition of \mathcal{E} we have $|d(x_1, \omega) - d(x_1', \omega)| \le d(x_1, x_1') \le \epsilon$. Together with the fact that $\exp(-\gamma t)$ is Lipschitz-continuous with parameter γ for $t \ge 0$, we have

$$|\phi_{\omega}(x_1) - \phi_{\omega}(x_1')| \le \gamma \epsilon$$

and thus

$$|\tilde{k}_R(\boldsymbol{x}_1,\boldsymbol{x}_2) - \tilde{k}_R(\boldsymbol{x}_1',\boldsymbol{x}_2')| \le 3\gamma\epsilon,$$

$$|k(\boldsymbol{x}_1,\boldsymbol{x}_2) - k(\boldsymbol{x}_1',\boldsymbol{x}_2')| \le 3\gamma\epsilon$$

for $\gamma \epsilon$ chosen to be ≤ 1 . This gives us

$$|\Delta_R(\mathbf{x}_1, \mathbf{x}_2) - \Delta_R(\mathbf{x}_1', \mathbf{x}_2')| \le 6\gamma\epsilon \tag{14}$$

Combining (13) and (14), we have

$$P\left\{\max_{\boldsymbol{x}_{1}'\in\mathcal{E},\boldsymbol{x}_{2}'\in\mathcal{E}}|\Delta_{R}(\boldsymbol{x}_{1}',\boldsymbol{x}_{2}')| > t + 6\gamma\epsilon\right\}$$

$$\leq 2\left(\frac{2}{\epsilon}\right)^{2p\chi,d}\exp(-Rt^{2}/2).$$
(15)

Choosing $\epsilon = t/6\gamma$ yields the result.

396 A.3 Proof for Corollary 1

Proof. First of all, we have

$$\frac{1}{n} \sum_{i=1}^{n} \ell\left(\frac{1}{n} \sum_{j=1}^{n} \tilde{\alpha}_{j} \tilde{k}(\boldsymbol{x}_{j}, \boldsymbol{x}_{i}), y_{i}\right)$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \ell\left(\frac{1}{n} \sum_{i=1}^{n} \alpha_{j} \tilde{k}(\boldsymbol{x}_{j}, \boldsymbol{x}_{i}), y_{i}\right)$$

by the optimality of $\{\tilde{\alpha}_j\}_{j=1}^n$ w.r.t. the objective using the approximate kernel. Then we have

$$\begin{split} \hat{L}(\tilde{f}_{R}) - \hat{L}(\hat{f}_{n}) \\ &\leq \frac{1}{n} \sum_{i=1}^{n} \ell(\frac{1}{n} \sum_{j=1}^{n} \alpha_{j} \tilde{k}(\boldsymbol{x}_{j}, \boldsymbol{x}_{i}), y_{i}) - \ell(\frac{1}{n} \sum_{j=1}^{n} \alpha_{j} k(\boldsymbol{x}_{j}, \boldsymbol{x}_{i}), y_{i}) \\ &\leq M \frac{\|\boldsymbol{\alpha}\|_{1}}{n} \left(\max_{\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{X}} |\tilde{k}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}) - k(\boldsymbol{x}_{1}, \boldsymbol{x}_{2})| \right) \\ &\leq M A \left(\max_{\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{X}} |\tilde{k}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}) - k(\boldsymbol{x}_{1}, \boldsymbol{x}_{2})| \right) \end{split}$$

where A is a bound on $\|\alpha\|_1/n$. Therefore to guarantee

$$\hat{L}(\tilde{f}_R) - \hat{L}(\hat{f}_n) \le \epsilon$$

we would need $(\max_{i,j\in[n]} |\Delta_R(x_1,x_2)|) \le \hat{\epsilon} := \epsilon/MA$. Then applying Theorem 2 leads to the result.

401 B General Experimental Settings

Baselines. We compare with the following methods:

KNN: a simple yet universal method to apply any distance measure to classification tasks.

DSK_RBF [15]: distance substitution kernels, a general framework for kernel construction by substituting a problem specific distance measure for the Euclidean distance used in ordinary kernel functions. We use a Gaussian RBF kernel.

DSK_ND [15]: another class of distance substitution kernels with negative distance.

GDK_LED [10]: learning a pseudo-Euclidean linear embedding from the dissimilarity matrix followed by performing singular value decomposition [34, 35].

RSM [10]: building an embedding by computing distances from randomly selected representative samples.

Among these baselines, KNN, DSK_RBF, DSK_ND, and GDK_LED have quadratic complexity $O(N^2L^2)$ in both the number of data samples and the length of the sequences, while RSM has computational complexity $O(NRL^2)$, linear in the number of data samples but still quadratic in the length of the sequence. These compare to our method, D2KE, which has complexity O(NRL), linear in both the number of data samples and the length of the sequence.

General Setup. For each method, we search for the best parameters on the training set by performing 417 10-fold cross validation. Following [15], we use an exact RBF kernel for DSK RBF while choosing 418 squared distance for DSK_ND. Since there no clear indication how many singular vectors should 419 be computed for the GDK LED method after construction of the dissimilarity matrix, we compute 420 R = [4, 512] singular vectors and report the best performance. Importantly, we also perform SVD 421 transductively on both train and test data for GDK LED; we will show below that this is beneficial. Similarly, we adopted a simple method – random selection – to obtain R = [4, 512] data samples as 423 the representative set for GDK LW. For our new method D2KE, since we generate random samples 424 from the distribution, we can use as many as needed to achieve performance close to an exact kernel. 425 We report the best number in the range R = [4, 4096] (typically the larger R is, the better the accuracy). 426 We employ a linear SVM implemented using LIBLINEAR (Fan et al., 2008) for all embedding-based 427 methods (GDK_LED, RSM, and D2KE) and use LIBSVM [33] for precomputed dissimilarity kernels (DSK RBF and DSK ND).

All computations were carried out on a DELL dual-socket system with Intel Xeon processors at 2.93GHz for a total of 16 cores and 250 GB of memory, running the SUSE Linux operating system. To accelerate the computation of all methods, we used multithreading with 12 threads total for various distance computations in all experiments.

Table 4: Properties of the datasets. TS, Str and Img stand for Time-Series, String, and Image respectively. Var/Alpb stands for the number of variables for time-series or image SIFT-descriptors, and for the size of the alphabet for strings.

Domain	Name	Var/Alpb	Classes	Train	Test	length
TS	Auslan	22	95	1795	770	45-136
TS	pentip	3	20	2000	858	109-205
TS	ActRecog	3	7	1837	788	2-151
TS	IQ_radio	4	5	6715	6715	512
Str	bit-str4	4	10	140	60	44/158
Str	splice	4	3	2233	957	60
Str	mnist-str4	4	10	60000	10000	34/198
Str	mnist-str8	8	10	60000	10000	17/99
Img	flower	128	10	147	63	66/429
Img	decor	128	7	340	144	35/914
Img	style	128	7	625	268	6/530
Img	letters2	128	33	3277	1404	1/22

C Detailed Experimental Results on Time-Series, Strings, and Images

435 C.1 Results on multivariate time-series

Setup. For time-series data, we employed the most successful distance measure - DTW - for all methods. For all datasets, a Gaussian distribution was found to be applicable, parameterized by its bandwidth σ . The best values for σ and for the length of random time series were searched in the ranges [1e-3 1e3] and [2 50], respectively.

Results. As shown in Table 1, D2KE can consistently outperform or match all other baselines in terms of classification accuracy while requiring far less computation time for multivariate time-series. The first interesting observation is that our method performs substantially better than KNN, often by a large margin, i.e., D2KE achieves 26.62% higher performance than KNN on IQ_radio. This is because KNN is sensitive to the data noise common in real-world applications like IQ_radio, and has notoriously poor performance for high-dimensional data sets like Auslan. Moreover, compared to the two distance substitution kernels DSK_RBF and DSK_ND, our method can achieve much better performance, suggesting that a representation induced from a truly p.d. kernel makes significantly better use of the data than indefinite kernels. However, GDK_LED slightly outperforms D2KE on Auslan, probably due to the embedding matrix (singular vectors) being computed transductively on both train and test data. Among all methods, RSM is closest to our method in terms of practical construction of the feature matrix. However, the random time series sampled by D2KE performs significantly better, as we discussed in section 3.

C.2 Results on strings

440

442 443

444

445

446

447

449

450

451

452

453

Setup. For string data, there are various well-known edit distances. Here, we choose Levenshtein distance as our distance measure since it can capture global alignments of the underlying strings. We first compute the alphabet from the original data and then uniformly sample characters from this alphabet to generate random strings. We search for the best parameters for γ in the range [1e-5 1], and for the length of random strings in the range [2 50], respectively.

Results. As shown in Table 2, D2KE consistently performs better than or similarly to other distance-based baselines. Unlike the previous experiments where DTW is not a distance metric, Levenshtein distance is indeed a distance metric; this helps improve the performance of our baselines. However, D2KE still offers a clear advantage over baseline. It is interesting to note that the performance of DSK_RBF is quite close to our method's, which may be due to DKS_RBF with Levenshtein distance producing a c.p.d. kernel which can essentially be converted into a p.d. kernel. Notice that on relatively large datasets, our method, D2KE, can achieve better performance, and often with far

less computation than other baselines with quadratic complexity in both number and length of data samples. For instance, on mnist-str4 D2KE obtains higher accuracy with an order of magnitude less runtime compared to DSK_RBF and DSK_ND, and two orders of magnitude less than GDK_LED, due to higher computational costs both for kernel matrix construction and for eigendecomposition.

C.3 Results on Sets of SIFT-descriptors for images

470

478

479

480

481

482

484

Setup. For image data, following [10, 15] we use the modified Hausdorff distance (MHD) [19] as our distance measure between images, since this distance has shown excellent performance in the literature [36, 37]. We first applied the open-source OpenCV library to generate a sequence of SIFT-descriptors with dimension 128, then MHD to compute the distance between sets of SIFT-descriptors. We generate random images of each SIFT-descriptor uniformly sampled from the unit sphere of the embedding vector space \mathbb{R}^{128} . We search for the best parameters for γ in the range [1e-3 1e1], and for length of random SIFT-descriptor sequence in the range [3 15].

Results. As shown in Table 3, D2KE performance is near other baselines in most cases. First, GDK_LED performs best in three cases, which may be contributed to both by transductive training and by the SVD operation which allow it to directly access features of the test set and denoise unwanted information from the raw images. Nevertheless, the quadratic complexity of GDK_LED in terms of both the number of images and the length of SIFT descriptor sequences makes it hard to scale to large data. Interestingly, D2KE still performs much better than KNN, again supports our claim that D2KE can be a strong alternative to KNN across applications.