ARTIFICIAL INTELLIGENCE

REAL TIME COMMUNICATION SYSTEM POWERED BY AI FOR SPECIALLY ABLED

PROJECT REPORT

IBM PROJECT – TEAM ID:PNT2022TMID39569

TEAM LEAD G HARISH KUMAR-510619104025

TEAM MEMBERS

B MOHAMED WASEEM - 510619104039

R KAMALESH - 510619104032

J AJITH - 510619104006

R KISHORE KUMAR - 510619104035

OF
BACHELOR OF ENGINEERING
IN
COMPUTER SCIENCE AND ENGINEERING

C.ABDUL HAKEEM COLLEGE OF ENGINEERING AND
TECHNOLOGY
ANNA UNIVERSITY: CHENNAI – 600 025

S.NO	TABLE OF CONTENT	
1	INTRODUCTION	
	1.1 Project Overview	
	1.2 Purpose	
2	LITERATURE SURVEY	
	2.1 Existing problem	
	2.2 References	
	2.3 Problem Statement Definition	
3	IDEATION & PROPOSED SOLUTION	
	3.1 Empathy Map Canvas	
	3.2 Ideation & Brainstorming	
	3.3 Proposed Solution	
	3.4 Problem Solution fit	
4	REQUIREMENT ANALYSIS	
	4.1 Functional requirement	
	4.2 Non-Functional requirements	
5	PROJECT DESIGN	
	5.1 Data Flow Diagrams	
	5.2 Solution & Technical Architecture	
	5.3 User Stories	
6	PROJECT PLANNING & SCHEDULING	
	6.1 Sprint Planning & Estimation	
	6.2 Sprint Delivery Schedule	
	6.3 Reports from JIRA	
7	CODING & SOLUTIONING (Explain the features added in the project	
-	along with code)	
	7.1 Feature 1	
	7.2 Feature 2	
8	TESTING	
	8.1 Test Cases	
	8.2 User Acceptance Testing	
9	RESULTS	
	Performance Metrics	
10	ADVANTAGES & DISADVANTAGES	
11	CONCLUSION	
12	FUTURE SCOPE	
13	APPENDIX	
	Source Code	
	GitHub & Project Demo Link	

1.INTRODUCTION

1.1 Project Overview

In our society, we have people with disabilities. The technology is developing day by day but no significant developments are undertaken for the betterment of these people. Communications between deaf-mute and a normal person has always been a challenging task. It is very difficult for mute people to convey their message to normal people. Since normal people are not trained on hand sign language. In emergency times conveying their message is very difficult. The human hand has remained a popular choice to convey information in situations where other forms like speech cannot be used. Voice Conversion System with Hand Gesture Recognition and translation will be very useful to have a proper conversation between a normal person and an impaired person in any language.

1.2 Purpose

The project aims to develop a system that converts the sign language into a human hearing voice in the desired language to convey a message to normal people. We are making use of a convolution neural network to create a model that is trained on different hand gestures. A Web Application is built which uses this model. This application enables deaf and dumb people to convey their information using signs which get converted to human understandable language.

2.LITERATURE SURVEY

2.1 Existing problem

Survey 1:

LUO CH, SHIH CH(1996):

ADAPTIVE MORSE-CODED SINGLE-SWITCH COMMUNICATION SYSTEM FOR THE DISABLED:

Luo CH, Shih CH et.al. proposed an approach to help persons with impaired hand coordination and dexterity by developing a Morse code based keyboard. Morse code, with an easy-to operate, single switch input system has been selected as an excellent communication adaptive device. It has already been successfully applied as a communication tool for people with severe physical handicaps in areas that would otherwise not be accessible to them, including writing, typing, calculating, and drawing. The major disadvantage the difficulty of maintaining precise time intervals, a Morse code time series, especially when typed by a severely physically disabled person, is generated with an unstable typing speed. Therefore, a suitable adaptive automatic recognition method is needed.

Survey 2:

MARCIA B. DUGAN(2003):

LIVING WITH HEARING LOSS:

Marcia B. Dugan et.al. proposed approach provides a way to communicate via text messages over a regular phone line for the users who are normal as well who are deaf using TTY(Text Telephony) technique. TTY requires specialized equipment's that usually consists of a type writer like keyboard, a telephony coupler and some form of visual display. The major disadvantage in their proposed system is that the possession of TTY equipment isn't as widespread within the general masses during that period of time which makes it complicated for communication to occur between deaf and non deaf individuals.

Survey 3:

G. LEITNER, S. PLATTNER, AND M. HITZ(2006):

USABILITY EVALUATION OF MOBILE APPLICATIONS IN LEISURE-ORIENTED CONTEXTS:

G. Leitner,S. Plattner, and M. Hitz et.al. proposed pictogram based communication system between a patient and physicians aids non native language speakers or people with speech, hearing or cognitive impairments to communicate the relevant medical information or others signs to physicians in a more efficient way. It makes use of intuitive icons and interactive symbols which are easy to access and difficult to misplace. The advantages of their proposed system is that the Quick, simple, easy and intuitive communication is used to assist the person who is injured or paralyzed with the help of medical personnel as well.

Survey 4:

WONG SENG YUE AND NOR AZAN MAT ZIN(2013):

VOICE RECOGNITION AND VISUALIZATION MOBILE APPS GAME FOR TRAINING AND TEACHING HEARING HANDICAPS CHILDREN:

Wong S. et al. suggested an application for teaching earless kids who have issues in acquiring knowledge, understanding and responding, to overcome this issue by providing a reciprocative virtual environment. The concept was to inspire them to exercise, maintain and improve without any aid from anybody else. If the audio correlates a word exactly in the database, the pictorial output is seen. This type of matching causes a major disadvantage in their project as

it needs to store a huge amount of predefined audio formats with their corresponding word patterns and it also consumes more time during communication as it needs to match with the words and audios present in the database each time and during each message.

Survey 5:

M.BANDODKAR, AND V.CHOURASIA(2014):

LOW COST REAL TIME COMMUNICATION BRAILLE HANDGLOVE FOR VISUALLY IMPAIRED USING SLOT SENSORS AND VIBRATION MOTORS:

Bandodkar et.al. developed a Braille hand glove for visually impaired using slot sensors and vibration motors. This system is designed a one handed braille glove for English characters. the motors are attached to five fingers and to the palm. Another system UbiBraille is designed for two handed braille system which uses index finger, middle finger and ring finger to wear six ring vibrators as the actuators.

Survey 6:

CHING-HUA CHUAN, ERIC REGINA, AND CAROLINE GUARDINO(2014):

AMERICAN SIGN LANGUAGE RECOGNITION USING LEAP MOTION SENSOR:

Ching-Hua Chuan et.al. used a palm-sized, handy and a low-cost 3D motion sensor for recognition of American Sign Language. They used Support Vector Machine and K-nearest neighbour to analyse the 26 English alphabets in American Sign Language utilizing the imitative aspects of the collected data. The testing results in the high mean classification rate of 79.83% and 72.78% was attained by a SVM and k-nearest neighbour accordingly.

Survey 7:

M.V.N.R.P.KUMAR, ASHUTOSH KUMAR, S.B. ARAWANDEKAR, A. A. BHOSALE AND R. L. BHOSALE(2015):

AVR BASED GESTURE VOCALIZER USING SPEECH SYNTHESIZER IC:

M.V.N.R.P. Kumar et.al. created a system consisting of a gadget that converts a sign into audio and text to enable the contact among the silent societies and the hearing people. Data glove can detect almost all the hand movements and AVR microcontroller based system converts described movements into audio and text form on LCD for the hearing impaired. The tongue-tied people can use these gloves to depict gestures that will be transformed into audio so that hearing people can effortlessly comprehend its interpretation.

Survey 8:

AMRITHA SURESH, BINNY PAULOSE, RESHMA JAGAN AND JOBY GEORGE (2016):

VOICE BASED EMAIL FOR BLIND:

A voice based email architecture is proposed by Amritha Suresh, Binny Paulose, Reshma Jagan and Joby George which will help blind people to access email. The proposed system makes use of Speech Recognition, Interactive Voice Response and Mouse Click events. Also, for additional security purposes voice recognition is used for user verification. The existing system is not user friendly for blind people as it does not give any audio feedback to readout contents for them.

2.2 References

- **1.** Luo CH, Shih CH. Adaptive Morse-coded single-switch communication system for the disabled. Int J of Biomed Comput 1996;41:99–106.
- 2. Living With Hearing Loss, Marcia B. Dugan, 2003.
- **3.** G. Leitner, S. Plattner, and M. Hitz, "Usability evaluation of mobile applications in leisure-oriented contexts," Information and Communication Technologies in Tourism, pp. 158–169, 2006.
- **4.** Wong Seng Yue and Nor Azan Mat Zin, "Voice Recognition and Visualization Mobile
 - Apps Game for Training and Teaching Hearing Handicaps Children," The 4th International Conference on Electrical Engineering and Informatics (ICEEI), pp. 479 486, 2013.
- **5.** M.Bandodkar, and V.Chourasia,"Low cost real time communication Braille hand-glove for visually impaired using slot sensors and vibration motors"2014.
- **6.** Ching-Hua Chuan, Eric Regina, and Caroline Guardino," American Sign Language Recognition Using Leap Motion Sensor," 13th IEEE International Conference on Machine Learning and Applications, 2014.

- 7. M.V.N.R.P.kumar, Ashutosh Kumar, S.B. Arawandekar, A. A. Bhosale and R. L. Bhosale, "AVR Based Gesture Vocalizer Using Speech Synthesizer IC," International Journal of Research in Advent Technology, Vol.3, No.5, 2015.
- **8.** Amritha Suresh, Binny Paulose, Reshma Jagan and Joby George, "Voice Based Email for Blind". International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET) Volume 2, Issue 3, 2016, pp. 93-97.

2.3 Problem Statement Definition

Communication plays a significant role in making the world a better place. Communication creates bonding and relations among the people, whether persona, social, or political views. Most people communicate efficiently without any issues, but many cannot due to disability. They cannot hear or speak, which makes Earth a problematic place to live for them. Even simple basic tasks become difficult for them. Disability is an emotive human condition. It limits the individual to a certain level of performance. Being deaf and dumb pushes the subject to oblivion, highly introverted. In a world of inequality, this society needs empowerment. Harnessing technology to improve their welfare is necessary. In a tech era, no one should be limited due to his or her inability. The application of technology should create a platform or a world of equality despite the natural state of humans. On the other hand, technology is the most innovative thing on Earth for every time the clock ticks, researchers, software engineers, programmers, and information technology specialists are always coming up with bright ideas to provide convenience to everyone.

Our project is to build an efficient real time communication system powered by ai for specially abled to overcome the disabilities faced by them during communication.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

S.NO.	PARAMETER	DESCRIPTION
1.	Problem statement	Communication between specially abled person
	(Problem to be solved)	and a normal person has always been a
		challenging task. It is very difficult for mute
		people to convey their message to normal
		people. Since normal people are not trained on
		hand sign language. In emergency times
		conveying their message is very difficult.
2.	Idea/Solution description	This system is built by using the AI. By using
		this system they can interact with people
		easily. They can able to convey what they are
		trying to speak, especially in emergency time.
3.	Novelty/Uniqueness	The application will make understand people what
		the specially abled person trying to convey and it
		also helps people to communicate with the
		specially abled. They can use this system to
		communicate with people at any time.

4.	Social Impact/Customer	This system provides an effective support to both the
	Satisfaction	specially abled person and the normal person to
		build their conversation And creates satisfaction to
		both of them.
5.	Business Model	This system covers a wide range of users who are
	(Revenue Model)	even specially abled, enabling them to communicate
		by any means.
6.	Scalability of the solution	Implementing this system provides the specially
		abled person to effectively communicate with other
		peoples and vice versa without any difficulties.
		And creates a platform or a world of equality despite
		the natural state of humans.

3.4 Problem Solution Fit

1. CUSTOMER SEGMENT(S)	6. CUSTOMER STATE LIMITATIONS	5. AVAILABLE SOLUTIONS
 Deaf and mute peoples. And other specially abled peoples. 	Should have speaker and mic.Smart Device with active Internet Connection.	- Rely on other person: the specially abled people should convey his message to some one and he needs to convey the message of specially abled person to the required receiver.

2. PROBLEMS / PAINS 9. ROOT/CAUSE 7. BEHAVIOUR - Specially abled people should - Every time the specially abled - Being a specially abled manually visit other people to person may not rely on some others makes them feel difficult convey his message and the people to convey his message. to covey his messages to who receives the message may or - Might have worries under their the normal person and may not understand his message. **Communication Privacy** receive there messages. - Or the specially abled people should - In emergency times conveying convey his message to some one and their messages is very he needs to convey the message of difficult.Consumes more time for specially abled person to the required providing banking functionalities to receiver. customers.

3. TRIGERS TO ACT	10. YOUR SOLUTION	8. CHANNELS OF BEHAVIOUR
To make the life easier for specially	To build an effective and efficient	ONLINE: Through Advertising in
abled people and to save time from	real time communication system for	social medias, news platform makes
manual communication and want to	specially abled using AI and IBM	customer to know and recognize the
become smart through technologies.	WATSON to provide an easy	effectiveness of real time
occome smart unough technologies.	-	communication system for specially
	communication system to which	abled and their instant and secure
	converts the sign language into a	features.
4. EMOTIONS	human hearing voice in the desired	OFFLINE: words of mouth among
BEFORE: Specially abled people	language to convey a message to	customers.
feel stressful through manual	normal people, as well as convert	
communication.	speech into understandable sign	
AFTER: Customers feel Smart and	language for the specially abled and	
easier through this effective	makes communication in a safe and	
communication system which makes their life comfortable.	secured manner and consider	
makes then me connormore.	customer privacy and make	
	available communication features	
	24*7 to them.	

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	User Registration	Registration is done
		through Form
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	Authentication	Authentication through Facial recognition
		Authentication through Password
		authenticationprotocol
FR-4	External interfaces	Microphone, Camera
		Ethernet, Wi-Fi and USB dongle to provide internet
		facilities
FR-5	Reporting	If any issues are faced by the customer or user it will
		be directly notified to the developer.
FR-6	Compliance to Rules or Laws	Privacy policy, Terms and Conditions, End
		user agreement.

4.2 Non-Functional requirements

NFR No.	Non-Functional Requirement	Description
NFR-1	Usability	The system should be easily usable to the persons with disabilities.
NFR-2	Security	All the communication information is accessed only by the user.
NFR-3	Reliability	It setting the pace of the future and helping peoplein need.
NFR-4	Performance	Enables people with disabilities to step into a worldwhere their difficulties are understood and taken into account.
NFR-5	Availability	Provides automatic recovery as much as possible.
NFR-6	Scalability	The improvement in the specially abled personsinteraction with the environments.

5.PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

Solution Architecture:

Technical Architecture:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	User visits the website and get redirected to the application by clicking an button .	HTML, CSS, JavaScript.
2.	Application Logic-1	It requires various types libraries, frameworks to develop the project .	Java / Python
3.	Application Logic-2	Helps to converting the human gestures/actions into Written words	Machine Learning
4.	Application Logic-3	Provides helpful , feasible answers after recognizing the human gestures.	ANN , CNN.
5.	Database	Data could be numbers or words.	MySQL , Rational Database.
6.	Cloud Database	Providing customer to use host database without buying additional hardware.	Deep learning and neural networks
7.	File Storage	File storage should be highly flexible, scalable and effective ,fast ,reliable.	Local Filesystem
8.	External API-1	Used to access the information in the cloud	Weather API
9.	External API-2	Used to access the information for data driven decision making	Aadhar API

10.		Machine learning interact with various algorithms that are required for implementation	Image acquisation
11.	,	Application deployment on local system /local cloud server configuration. Install the windows version and execute the installer	Local, Cloud Foundry, Kubernetes, etc.

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	The frameworks used in the project are	Tensor flow, Theano, RNN, PyTorch
2.	Security Implementations	the security / access controls are implemented using firewalls etc.	Firewall and other security related softwares.
3.	Scalable Architecture	the scalability of architecture (3 – tier, Micro- services)	Data, models, operate at size, speed, consistency and complexity
4.	Availability	the availability of application (e.g. use of load balancers, distributed servers etc.)	Image and facial recognition, speech recognition and real time captioning.
5.	Performance	Design aspects for the performance of the application (number of requests per second, use of Cache, use of CDN's) etc.	Full and effective participation, equality of opportunity, accessibility, using machine learning for communication.

5.3 User Stories

User Story Number	User Story / Task
USN-1	Collecting the Dataset
USN-2	Image Pre-processing
USN-3	Import the required libraries.
USN-4	Add the necessary layers and compile the model.
USN-5	Training the image classification model using CNN and others systems.
USN-6	Training the model and testing the model's performance
USN-7	Converting the input sign language images into English alphabets
USN-8	Build HTML code to create a web based interface for the users to communicate with each other.

USN-9	Build a Python code to integrate the HTML files
	created.
USN-10	To run the application based on python on Flask
	Server.
USN-11	Build the system and deploy the model in IBM cloud

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	10	6 Days	24 Oct 2022	29 Oct 2022	8	29 Oct 2022
Sprint-2	10	6 Days	31 Oct 2022	05 Nov 2022	7	05 Nov 2022
Sprint-3	10	6 Days	07 Nov 2022	12 Nov 2022	8	12 Nov 2022
Sprint-4	10	6 Days	14 Nov 2022	19 Nov 2022	7	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity}$$

$$AV = 6/10 = 0.6$$

6.2 Sprint Delivery Schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	Collecting the Dataset	10	High	G.Harish Kumar, R.Kamalesh, B.Mohamed Waseem

Sprint-1		USN-2	Image Pre- processing	7	Medium	G.Harish Kumar, R.Kamalesh, B.Mohamed Waseem
Sprint-2	Model Building	USN-3	Import the required libraries, add the necessary layers and compile the model.	10	High	R.Kishore Kumar,J.Ajith
Sprint-2		USN-4	Training the image classification model using CNN and others systems.	7	Medium	R.Kishore Kumar, J.Ajith
Sprint-3	Training and Testing	USN-5	Training the model and testing the model's performance	10	High	G.Harish Kumar, R.Kamalesh, B.Mohamed Waseem, R.Kishore Kumar, J.Ajith
Sprint-4	Implementation of the application	USN-6	Converting the input sign language images into English alphabets	10	High	G.Harish Kumar, R.Kamalesh, B.Mohamed Waseem, R.Kishore Kumar, J.Ajith
Sprint-4		USN-7	Build the system and deploy the model in IBM cloud	7	Medium	G.Harish Kumar, R.Kamalesh, B.Mohamed Waseem, R.Kishore Kumar, J.Ajith

6.3 Reports from JIRA

ROADMAP

SPRINT BURNDOWN CHART

7.CODING & SOLUTIONING

7.1 Feature 1

The user is given with a webpage in which after clicking on the "Click Here" button then the camera is opened and here the hand gestures is given.

```
def predict():
        print("[INFO] starting video stream...")
        vs = cv2.VideoCapture(0)
        (W, H) = (None, None)
        while True:
            (grabbed, frame) = vs.read()
            if not grabbed:
                break
            if W is None or H is None:
                (H, W) = frame.shape[:2]
            output = frame.copy()
            # r = cv2.selectROI("Slect", output)
            # print(r)
            cv2.rectangle(output, (81, 79), (276,274), (0,255,0), 2)
            frame = frame[81:276, 79:274]
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
            _, frame = cv2.threshold(frame, 95, 255, cv2.THRESH_BINARY_INV)
            frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
```

7.2 Feature 2

After the camera is opened in the webpage then an certain frame is given with an fixed size in the screen where the hand gestures is given then the character based on the hand gesture shown is represented on the screen.

```
img = resize(frame,(64,64,3))
    img = np.expand_dims(img,axis=0)
    if(np.max(img)>1):
        img = img/255.0

    result = np.argmax(model.predict(img))
    index=['A', 'B','C','D','E','F','G','H','I']
    result=str(index[result])
```

8.TESTING

8.1 Test Cases

				Date	18-Nov-22								
				Date Team ID	18-Nov-22 PNT2022TMID39569								
					Real-Time Communication System								
				Project Name	Powered by Al for Specially Abled								
				Maximum Marks	4 marks								
Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Commnets	TC for Automation(Y/N)	BUG ID	Executed By
Webpage_TC_001	u	Home Page	Verify the user is able to view the page	Latest web browser Proper Internet Connection	Enter the url of the websiteand click go Verify the webpage is loadingor not	no test data required	The webpage should be visible to the user	The webpage is visible	Pass	The test case passed without any issues	Y	1	Kamalesh R
Webpage_TC_002	UI	Home Page	Verify the page is responsive for all devices	Mobile device Desktop device Tablet device A. Tablet device A. Web browser S. Internet connection	Enter the url of the websiteand click go Verify the webpage is loading properly with proper alignments in all the devices	no test data required	The webpage should be properly visible to the user	The webpage is visible in all the devices	Pass	The test case passed without any issues	Υ	2	Harish Kumar G
Webpage_TC_003	UI	Home Page	Verify the page is responding for the Link	Latest web browser Proper laternet Connection3.Proper working mouse, touchpad or touch screen	Enter the url of the websiteand click go Verify the webpage is loadingand working properly while clicking the link	no test data required	The webpage should be stable during the clicking of the link	The webpage is responding stably	Pass	The test case passed without any issues	Y	3	Mohamed Waseem B
Webpage_TC_004	UI	Home Page	Verify the webpage is easily understandable to the user	Latest web browser Proper Internet Connection	Enter the url of the website and click go After page is loaded check for all the informations in the webpage	no test data required	The webpage should be easily understandable to the user	The webpage is clear and easy for the user to work with it	Pass	The testcase passed without any issues	Ą	4	Kishore Kumar R
Flask_TC_001	Functional	Flask app	Verify whether the camera opens	Latest web browser Proper Internet Connection Good Camera Availability	Enter the url of the websiteand click the link Verify the webpage redirects to the python opency and opens the camera	Proper working camera	The webapp should open the camera properly	The webapp opens the camera properly	Pass	The test case passed without any issues	Y	5	Kamalesh R
Flask_TC_002	Functional	Flask app	Verify the flask app use the saved model	Latest web browser Proper Internet Connection Good Camera Availability Proper lighting	Enter the url of the websiteand click the link Verify the webpage redirects to the python opency for accepting the video inputs and predecting according to the preloaded gestures of alphabets	gestures shown by the user	The webapp should predict the alphabets properly	The webapp predicts the alphabets accurately	Pass	The test case passed without any issues, but it requires more dataset to predict the alphabet accuretly	Υ	6	Ajith J
Flask_TC_003	Functional	Flask app	Verify the quit button is working to close the window	Proper working keyboard	1.After finishing the prediction press Q to quit the window	pressing Q on the keyboard	The web app should be able to close the window properly	The app closed the window successfully	Pass	The testcase passed without any issues.	Y	7	Harish Kumar G

8.2 User Acceptance Testing

Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Low Severity	Medium Severity	High Severity	Subtotal Bugs
By Ui	1	1	2	4
By Functionality	0	2	1	3
Duplicate	0	4	6	10
External	0	0	0	0
Fixed	1	3	3	7
Not Reproduced	0	0	0	0
Skipped	0	0	0	0
Won't Fix	0	0	0	0
Totals	2	10	12	24

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
User Interface	4	0	0	4
Flask Application	3	0	0	3
Exception Reporting	1	0	0	1
Final Report Output	1	0	0	1
Version Control	2	0	0	2

9.RESULTS

RUNNING APP:

```
from flask import Flask, render template, request
import cv2
from keras.models import load model
import numpy as np
from gtts import gTTS
import os
from keras.preprocessing import image
from skimage.transform import resize
app = Flask(__name__)
model=load model("aslpng1.h5")
vals = ['A', 'B','C','D','E','F','G','H','I']
@app.route('/', methods=['GET'])
def index():
    return render template('index.html')
@app.route('/index', methods=['GET'])
def home():
    return render template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def predict():
        print("[INFO] starting video stream...")
        vs = cv2.VideoCapture(0)
        (W, H) = (None, None)
        while True:
            (grabbed, frame) = vs.read()
            if not grabbed:
                break
            if W is None or H is None:
                (H, W) = frame.shape[:2]
            output = frame.copy()
            # r = cv2.selectROI("Slect", output)
            # print(r)
            cv2.rectangle(output, (81, 79), (276,274), (0,255,0), 2)
            frame = frame[81:276, 79:274]
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
            _, frame = cv2.threshold(frame, 95, 255, cv2.THRESH_BINARY_INV)
            frame = cv2.cvtColor(frame, cv2.COLOR GRAY2RGB)
```

```
img = resize(frame, (64,64,3))
            img = np.expand dims(img,axis=0)
            if(np.max(img)>1):
                img = img/255.0
            result = np.argmax(model.predict(img))
            index=['A', 'B','C','D','E','F','G','H','I']
            result=str(index[result])
            cv2.putText(output, "The Predicted Letter : {}".format(result),
(10, 50), cv2.FONT_HERSHEY_PLAIN,
                        2, (150,0,150), 2)
            cv2.putText(output, "Press q to exit", (10,450),
cv2.FONT_HERSHEY_PLAIN, 2, (0,0,255), 2)
            speech = gTTS(text = result, lang = 'en', slow = False)
            cv2.imshow("Output", output)
            key = cv2.waitKey(1) & 0xFF
            if key == ord("q"):
                break
        print("[INFO] cleaning up...")
        vs.release()
        cv2.destroyAllWindows()
        return render_template("index.html")
if __name__ == '__main__':
     app.run(debug=True)
```

OUTPUT:

Model Performance Testing:

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Total params: 15,751,049 Trainable params: 15,751,049 Non-trainable params: 0	Screenshot-1
2.	Accuracy	Training Accuracy – 97.53 Validation Accuracy -98.60	Screenshot-2

Screenshots – Please refer to the next page for Screenshots

Screenshot-1:

Screenshot-2:

```
↑ ↓ © 目 ‡ 🖟 🗎 :
Epoch 1/10
  24/24 [====
                   Epoch 3/10
                    =======] - 9s 377ms/step - loss: 0.2979 - accuracy: 0.9010 - val_loss: 0.2808 - val_accuracy: 0.9141
  Epoch 4/10
                    :======] - 8s 323ms/step - loss: 0.2077 - accuracy: 0.9375 - val_loss: 0.2841 - val_accuracy: 0.9430
  24/24 [====
  Epoch 5/10
  24/24 [========
                  =======] - 8s 323ms/step - loss: 0.1857 - accuracy: 0.9505 - val_loss: 0.3101 - val_accuracy: 0.9438
  Epoch 6/10
                     24/24 [====
  Epoch 7/10
  24/24 [====
                       ====] - 8s 322ms/step - loss: 0.1363 - accuracy: 0.9596 - val_loss: 0.2326 - val_accuracy: 0.9578
  Epoch 8/10
  24/24 [=====================] - 8s 322ms/step - loss: 0.1232 - accuracy: 0.9583 - val_loss: 0.1680 - val_accuracy: 0.9664
  24/24 [====
                    ======= - 8s 323ms/step - loss: 0.0975 - accuracy: 0.9740 - val loss: 0.2348 - val accuracy: 0.9477
  Epoch 10/10
  <keras.callbacks.History at 0x7fe4882de650>
```

10.ADVANTAGES & DISADVANTAGES

Advantages:

- 1. It is possible to create a mobile application to bridge the communication gap between deaf and dumb persons and the general public.
- 2. As different sign language standards exist, their dataset can be added, and the user can choose which sign language to read.

Disadvantages:

- 1. The current model only works from alphabets A to I.
- 2. In absence of gesture recognition, alphabets from J cannot be identified as they require some kind of gesture input from the user.
- 3. As the quantity/quality of images in the dataset is low, the accuracy is not great, but that can easily be improved by change in dataset.

11.CONCLUSION

Sign language is a useful tool for facilitating communication between deaf and hearing peop le. Because it allows for two-way communication, the system aims to bridge the communication gap between deaf people and rest of society. The proposed methodology translates language into English alphabets that are understandable to humans.

This system sends hand gestures to the model, who recognises them and displays the equivalent Alphabet on the screen. Deaf-mute people can use their hands to perform sign language, which will then be converted into alphabets.

12.FUTURE SCOPE:

Having a technology that can translate hand sign language to its corresponding alphabet is a game changer in the field of communication and AI for the specially abled people such as deaf and dumb. With introduction of gesture recognition, the web app can easily be expanded to recognize letters beyond 'I', digits and other symbols plus gesture recognition can also allow controlling of software/hardware interfaces.

13.APPENDIX

Source Code

Index.html:

```
<!DOCTYPE html>
   <html>
    <head>
        <link rel="stylesheet" type="text/css" href="../static/css/style.css">
        <link rel= "stylesheet" type= "text/css" href= "{{</pre>
url_for('static',filename='css/style.css') }}">
        <link rel="stylesheet"</pre>
href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-
beta3/css/all.min.css" integrity="sha512-
Fo3rlrZj/k7ujTnHg4CGR2D7kSs0v4LLanw2qksYuRlEzO+tcaEPQogQ0KaoGN26/zrn20ImR1DfuL
WnOo7aBA==" crossorigin="anonymous" referrerpolicy="no-referrer" />
        <title>Real Time Communication</title>
    <body>
     <div class="title">
         <h1>
            REAL-TIME COMMUNICATION SYSTEM POWERED BY AI
            <BR>FOR SPECIALLY ABLED
         </h1>
     </div>
       <div>
               Hand Gesture Recognition and translation will be very useful to
have a proper conversation between a normal person and an impaired person in
any language.
           </div>
        <div>
             <h2 style="align-content: center">TO OPEN THE CAMERA FOR
RECOGNITION</h2>
             <a href="{{ url_for('predict') }}">CLICK HERE</a>
```

```
</body>
</html>
```

App.py:

```
from flask import Flask,render_template,request
import cv2
from keras.models import load_model
import numpy as np
from gtts import gTTS
import os
from keras.preprocessing import image
from skimage.transform import resize
app = Flask(__name___)
model=load_model("aslpng1.h5")
vals = ['A', 'B','C','D','E','F','G','H','I']
@app.route('/', methods=['GET'])
def index():
    return render_template('index.html')
@app.route('/index', methods=['GET'])
def home():
    return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def predict():
        print("[INFO] starting video stream...")
        vs = cv2.VideoCapture(0)
        (W, H) = (None, None)
        while True:
            (grabbed, frame) = vs.read()
            if not grabbed:
                break
            if W is None or H is None:
                (H, W) = frame.shape[:2]
            output = frame.copy()
            # r = cv2.selectROI("Slect", output)
            # print(r)
            cv2.rectangle(output, (81, 79), (276,274), (0,255,0), 2)
            frame = frame[81:276, 79:274]
```

```
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
            _, frame = cv2.threshold(frame, 95, 255, cv2.THRESH_BINARY_INV)
            frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
            img = resize(frame, (64, 64, 3))
            img = np.expand_dims(img,axis=0)
            if(np.max(img)>1):
                img = img/255.0
            result = np.argmax(model.predict(img))
            index=['A', 'B','C','D','E','F','G','H','I']
            result=str(index[result])
            cv2.putText(output, "The Predicted Letter : {}".format(result),
(10, 50), cv2.FONT_HERSHEY_PLAIN,
                        2, (150,0,150), 2)
            cv2.putText(output, "Press q to exit", (10,450),
cv2.FONT_HERSHEY_PLAIN, 2, (0,0,255), 2)
            speech = gTTS(text = result, lang = 'en', slow = False)
            cv2.imshow("Output", output)
            key = cv2.waitKey(1) & 0xFF
            if key == ord("q"):
                break
        print("[INFO] cleaning up...")
       vs.release()
        cv2.destroyAllWindows()
        return render_template("index.html")
if __name__ == '__main__':
      app.run(debug=True)
```

GitHub Link:

https://github.com/IBM-EPBL/IBM-Project-15594-1659601289

Project Demo Link:

https://voutu.be/dlABaguA4pg