Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2.	Mark:							
Determine if	$\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix} $ can 1	oe writte	n as a linear combination of the vectors	$\begin{bmatrix} 5 \\ 2 \\ -3 \\ 2 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}$	

Standard S1.

Mark:

Determine if the set of matrices $\left\{ \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -8 \\ 6 & 5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Standard S3.

$$\begin{bmatrix}
\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \\
\end{bmatrix}$$
Let $W = \operatorname{span} \left(\left\{ \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\} \right)$. Find a basis of W .

Standard S4.
$$\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix}$$
 Compute the dimension of W .

Name:	
J#:	Dr. Clontz
Date:	

${\bf MASTERY~QUIZ~DAY~15}$

Math 237 – Linear Algebra Fall 2017

Version 2 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V2.	Mark:	
Determine if $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be	e written as a linear combination of the vecto	rs $\begin{bmatrix} -1\\ -9\\ 15 \end{bmatrix}$ and $\begin{bmatrix} 1\\ 5\\ -5 \end{bmatrix}$.

Standard S1.

independent.

Mark:

Determine if the set of matrices $\left\{ \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -8 \\ 6 & 5 \end{bmatrix} \right\}$ is linearly dependent or linearly

Standard S3.

$$\begin{bmatrix}
\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix}
\end{bmatrix}$$
Let $W = \text{span}\left(\left\{\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix}\right\}\right)$. Find a basis of W .

Standard S4.
$$\begin{bmatrix} & & & & \\ & &$$

Name:	
J#:	Dr. Clontz
Date:	

$\begin{array}{c} {\rm MASTERY~QUIZ~DAY~15} \\ {\rm Version~3} \end{array}$

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2.	Mark:							
Determine if	$\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix} $ can 1	oe writte	en as a linear combination of the vectors	$\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}$	

	Mark:
Standard S1.	

Determine if the set of polynomials $\{x^2+x, x^2+2x-1, x^2+3x-2\}$ is linearly dependent or linearly independent

Standard S3.

Mark:

Let W be the subspace of \mathcal{P}_2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

Standard S4. $\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix} \end{bmatrix}$. Compute the dimension of W.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard	V2.	Mark:						
Determine if	$\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix} $ can l	oe writte	en as a linear combination of the vectors	$\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, and	$\begin{bmatrix} 8 \\ 3 \\ 5 \\ -1 \end{bmatrix}.$	

Standard S1.

Mark:

Determine if the set of matrices $\left\{ \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -8 \\ 6 & 5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Standard S3.

$$\begin{bmatrix}
\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix}
\end{bmatrix}$$
Let $W = \text{span}\left(\left\{\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix}\right\}\right)$. Find a basis of W .

Standard S4.
$$\begin{bmatrix} & & & & \\ & &$$

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.	Mark:

Determine if the set of polynomials $\{x^2 + x, x^2 + 2x - 1, x^2 + 3x - 2\}$ is linearly dependent or linearly independent

Standard S3.

$$\begin{bmatrix}
\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \\
\end{bmatrix}$$
Let $W = \text{span}\left(\left\{\begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}\right\}\right)$. Find a basis of W .

Let W be the subspace of \mathcal{P}_3 given by $W = \operatorname{span}\left(\left\{x^3 - x^2 + 3x - 3, 2x^3 + x + 1, 3x^3 - x^2 + 4x - 2, x^3 + x^2 + x - 7\right\}\right)$. Compute the dimension of W.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 6 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V2.	Mark:	
Determine if $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be	written as a linear combination of the vector	ors $\begin{bmatrix} -1\\ -9\\ 15 \end{bmatrix}$ and $\begin{bmatrix} 1\\ 5\\ -5 \end{bmatrix}$.

	Mark:
Standard S1.	

Determine if the set of polynomials $\{x^3 - 8x, x^3 + 2x^2 + 2, -x^2 + 3\}$ is linearly dependent or linearly independent

Standard S3.

Mark:

Let W be the subspace of \mathcal{P}_2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

Standard S4. $\begin{bmatrix} & & & \\ & & & & \\ & &$