МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Информатика»

Тема: Машина Тьюринга и конечные автоматы

Студент гр. 3341		Шуменков А.П.
Преподаватель		Иванов Д. В.
	Санкт-Петербург	

2023

Цель работы

Целью лабораторной работы является изучение работы конченых автоматов, в частности машины Тьюринга.

Для достижения поставленной цели требуется решить следующие задачи:

- 1) Ознакомиться с концепцией машины Тьюринга
- 2) Создать программу, моделирующую работу машины Тьюринга, выполняющую определенную задачу.

Задание

Вариант работы №4.

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}, которая начинается с символа 'a'.

Напишите программу, которая заменяет в исходной строке символ, идущий после последних двух встретившихся символов 'a', на предшествующий им символ(гарантируется, что это не пробел). Наличие в строке двух подряд идущих символов 'a' гарантируется.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Для примера выше лента будет выглядеть так:

Алфавит:

- a
- b
- C
- "" (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
- 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
- 3. В середине строки не могут встретиться пробелы.

- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.
- 6. Нельзя использовать дополнительную ленту, в которую записывается результат.

Ваша программа должна вывести полученную ленту после завершения работы.

Выполнение работы

Для решения задачи таблица состояний машины Тьюринга (см. ниже) была реализована в виде словаря .

Далее осуществляется ввод строки с клавиатуры в переменную lenta (лента машины). Затем в массив lenta добавляется несколько (13+1) пустых ячеек. Дополнительо добавляется одна пустая ячейка в начало массива (перед началом слова согласно заданию).

Переменная idx используется для обозначения текущей ячейки, обрабатывемой машиной Тьюринга. (Изначально равна 0). Переменная sost содержит текущее состояние машниы Тьюринга. Изначально q 0.

Далле в цикле while перебираются символы ленты (массива lenta). Текущий символ записывается в переменную symbol. Далее обновляются переменные new_symbol (на что меняется текущий символ), move (сдвиг ленты машины Тьюринга: 1 — вправо, -1 — влево), sost (новое состояние машины Тьюринга).

Функция возвращает строку, полученную из списка *tape* методом *join()*. Массиву sostoyaniya соответствует таблица состояний машины Тьюринга:

	'a'	'b'	'c'	'A'	'B'	'C'	'0'	11	
q_0	a; 1;	b; 1; q_1	c; 1; q_1					' ';	1;
	q_1							q_0	
q_1	a; 1;	b; 1; q_1	c; 1; q_1					' ';	-1;
	q_1							q_2	
q_2	0; 1;	0; 1; q_4	0; 1; q_5	A; -1;	B; -1;	C; -1;	0; -1;	' ';	1;
	q_3			q_2	q_2	q_2	q_2	q_0	
q_3	a; 1;	b; 1; q_3	c; 1; q_3	A; 1;	B; 1;	C; 1;	0; 0; q_3	A; ·	-1;
	q_3			q_3	q_3	q_3		q_2	
q_4	a; 1;	b; 1; q_4	c; 1; q_4	A; 1;	B; 1;	C; 1;	0; 0; q_4	В;	-1;
	q_3			q_4	q_4	q_4		q_2	

q_5	a; 1;	b; 1; q_5	c; 1; q_5	A;	1;	B; 1;	C; 1;	0; 0; q_5	5 0	C;	-1;
	q_5			q_5		q_5	q_5		C	<u>_</u> 2	
q_6				a; 1; q_	6	b; 1; q_6	c; 1; q_6	' '; 1	; '	'; 0;	qT
								q_6			
qT											

- q_0 начальное состояние. Машина двигается по ленте вправо, пока не найдет первый символ, отличный от пробела (a, b, c). После чего переходит в состояние q_1 .
- q_1 машина нашла первый символ строки, после чего двигается вправо до конца строки, пока снова не найдет пробел. Потом переходит в состояние q_2 .
- q_2 машина двигается по строке в обратном направлении (влево), пока не встретит пробел. (Т.е. пока не дойдет до начала строки). Если в данном состоянии машина встречает символ отличный от 0, она заменяет его на 0 и переходит в состояние q_3, если символ был а, состояние q_4 если b, и q_5 если с. Если символ был A, B или C он не меняется, машина продолжает двигаться влево. Если машина в данном состоянии встречает пробел, машина переходит в состояние q_6.
- q_3 машина двигается вправо, пока не находит первый пробел. После чего она заменяет его на А и переходит в состояние q_2.
- q_4 машина двигается вправо, пока не находит первый пробел. После чего она заменяет его на В и переходит в состояние q_2.
- q_5 машина двигается вправо, пока не находит первый пробел. После чего она заменяет его на С и переходит в состояние q 2.
- q_6 машина двигается вправо, пока не найдет пробел. Она заменяет 0 на пробелы, а строчные буквы на прописные. После чего машина переходит в терминальное состояние.

Разработанный программный код см. в приложении А.

Тестирование

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные
1.	abcabc	cbacba
2.	cbcbabcb	bebabebe
1.	aaccbb	bbccaa

Выводы

Была разработана программа на языке программирования Python, симулирующая работу машины Тьюринга. Была описана программа машины Тьюринга, с помощью которой автомат способен обработать строку символов определённым образом.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
sostoyaniya = {'q 0': {'a': ('a', 1, 'q 1'),
                            'b': ('b', 1, 'q 1'),
                            'c': ('c', 1, 'q 1'),
                            ' ': (' ', 1, 'q 0')
            'q 1': {'a': ('a', 1, 'q 1'),
                       'b': ('b', 1, 'q_1'), 'c': ('c', 1, 'q_1'), '': ('', -1, 'q_2')
            'q 2': {'a': ('0', 1, 'q 3'),
                        'b': ('0', 1, 'q_4'), 'c': ('0', 1, 'q_5'), 'A': ('A', -1, 'q_2'),
                        'B': ('B', -1, 'q 2'),
                        'C': ('C', -1, 'q_2'),
                        '0': ('0', -1, 'q_2'),
'': ('', 1, 'q_6'),
            'q_3': {'a': ('a', 1, 'q_3'),
                       'b': ('b', 1, 'q 3'),
                       'c': ('c', 1, 'q_3'),
                       'A': ('A', 1, 'q 3'),
                       'B': ('B', 1, 'q 3'),
                       'C': ('C', 1, 'q_3'),
                       '0': ('0', 1, 'q_3'),
' ': ('A', -1, 'q_2')
            'q 4': {'a': ('a', 1, 'q 4'),
                       'b': ('b', 1, 'q 4'),
                       'c': ('c', 1, 'q_4'),
                       'A': ('A', 1, 'q_4'),
                       'B': ('B', 1, 'q_4'),
                       'C': ('C', 1, 'q 4'),
                       '0': ('0', 1, 'q_4'),
'': ('B', -1, 'q_2')
            'q 5': {'a': ('a', 1, 'q 5'),
                       'b': ('b', 1, 'q_5'), 'c': ('c', 1, 'q_5'),
                       'A': ('A', 1, 'q_5'),
                       'B': ('B', 1, 'q_5'),
                       'C': ('C', 1, 'q 5'),
                       '0': ('0', 1, 'q_5'),
'': ('C', -1, 'q 2')
            'q_6': {'0': (' ', 1, 'q_6'), 'A': ('a', 1, 'q_6'), 'B': ('b', 1, 'q_6'),
                          'C': ('c', 1, 'q 6'),
```

```
' ': (' ', 0, 'qT')
}
lenta = list(input())
lenta += [' ' for x in range(14)]
lenta = [' '] + lenta
lenta += [' ']
idx = 0
sost = 'q_0'
while sost != 'qT':
    symbol = lenta[idx]

    new_symbol, move, sost = sostoyaniya[sost][symbol]
    lenta[idx] = new_symbol
    idx += move

print(''.join(lenta).replace(' ', ''))
```