Microprocessors and Microcontrollers

Assignment

Samriddha Chattopadhyay

200020040

 Write a program to find the average of 5 numbers stored in memory locations starting from 60H

```
# ORG 0200H
```

```
MVI C,05 ;for taking 5 numbers
```

MVI B,05 ;Counter

MVI D,00 ;storing quotient

LXI H,0060 ;taking value from 0060H MOV E,M ;reading from memory

```
LOOP1: MOV A,E ;move data to accumulator for further addition
```

INX H ;increment the pointer to load data

ADD M ;add memory to accumulator MOV E,A ;move the sum to E to store it

DCR B ;decrement the counter

MOV A,B ;move the counter to accumulator to determine if the loop should keep running

JNZ LOOP1; if the counter is not zero, keep the loop running

MOV A,E ;move the total sum to accumulator for further operations

JZ LOOP2 ; jump to Loop 2 if counter goes to zero

```
LOOP2: CMP C ; compare with C to find the average
```

JC LOOP3 ;store the answer if the value goes to zero

SUB C ; subtract to get the average

INR D ;increase the count JMP LOOP2 ;loop back

LOOP3: INX H

MOV A,D

STA 2500

HLT

ORG 0060H

DB 10H,15H,20H,25H,06H

2. Write an assembly language program to perform division of two numbers in R0 and R1. The quotient should be stored in A and the remainder in B. DO NOT USE the DIV AB instruction! Write comments for each line of the code.

org 0000h

MOV R0,#0FH ;DIVIDEND MOV R1,#03H ;DIVISOR MOV R7,#00H ;QUOTIENT MOV R4,#00H ;REMAINDER

MOV A,R0 ; MOVE DIVIDEND IN A

LOOP:

SUBB A,R1 ;SUBTRACT THE DIVISOR FROM THE DIVIDEND

MOV R4,A ;STORE THE REMAINDER

JC BREAK ;IF THE DIVIDEND BECOMES 0, BREAK THE LOOP AND SAVE THE

RESULTS

INC R7 ;STORE THE QUOTIENT

SJMP LOOP ;LOOP BACK

BREAK:

ADD A,R1 ;PUT THE QUOTIENT IN A
MOV B,A ;MOVE A INTO B TO SAVE IT
MOV A,R7 ;PUT THE REMAINDER IN B

END

3. Write a program to generate a 2.5 kHz waveform on P1.0 with a 20% duty cycle. Write comments for each line of the code.

```
MAIN:
CLR P1.0
           :PORT1.0 IS CLEARED SO IS 0
ACALL DELAY2 ;GO TO DELAY2 FOR CREATE DELAY FOR SIGNAL
SETB P1.0 ;PORT1.0 BECOMES 1
MOV TCON,#00H
ACALL DELAY1; GO TO DELAY1 FOR CREATE DELAY FOR SIGNAL 1
ACALL ENDCODE
WAIT1:
JNB TF0,WAIT1
CLR TR0
CLR TF0
RET
WAIT2:
JNB TF0,WAIT2
CLR TR0
CLR TF0
RET
DELAY1:
MOV TMOD,#01H; SELECT MODE OF OPERATION
        ;COUNT CALCULATED=MAX COUNT(65535) - REQUIRED COUNT(80) + 1
MOV TL0,#0B0H ; LOAD LOWER NIBBLE /8BITS IN TL0
MOV TH0,#0FFH ;LOAD UPPER NIBBLE /8BITS IN TH0
MOV TCON,#10H
DELAY2:
MOV TMOD,#01H ;SELECT MODE OF OPERATION
        ;COUNT CALCULATED=MAX COUNT(65535) - REQUIRED COUNT(320) +
1
MOV TL0,#0C0H ;LOAD LOWER NIBBLE /8BITS IN TLO
MOV TH0,#0FEH
MOV TCON,#10H
ENDCODE:
END
```