Testul 1

Problema 1 Să se reprezinte grafic funcția

$$\lambda_n(x) = \sum_{k=0}^{m} |\ell_k(x)|,$$

unde $\ell_k(x)$, k = 0, ..., m sunt polinoamele fundamentale Lagrange corespunzătoare nodurilor x_k , k = 0, ..., m.

Problema 2 Să se aproximeze funcția $f: [-\pi, \pi] \to \mathbb{R}$, $f(x) = x + \sin x^2$, cu o precizie de 1e-5

- (a) Folosind interpolarea Lagrange, metoda baricentrică, noduri echidistante și noduri Cebîşev de speța I.
- (b) Folosind interpolarea Hermite cu noduri duble, noduri echidistante și noduri Cebîşev de speța I.

În fiecare caz se va preciza numărul de noduri necesare pentru atingerea preciziei.

Testul 2

Problema 3 Să se calculeze

$$\Lambda_n(x) = \max_{x \in [a,b]} \sum_{k=0}^m |\ell_k(x)|$$

unde $\ell_k(x)$, $k = 0, \ldots, m$ sunt polinoamele fundamentale Lagrange corespunzătoare nodurilor x_k , $k = 0, \ldots, m$, pentru un set dat de noduri. Să se verifice experimental că

$$\Lambda_n \sim \frac{2^{n+1}}{en\log n}$$

pentru noduri echidistante şi

$$\Lambda_n = \Theta\left(\log(n+1)\right)$$

pentru noduri Cebîşev.

Problema 4 Să se aproximeze funcția $f: [-\pi, \pi] \to \mathbb{R}$, $f(x) = x + \cos x^2$, cu o precizie de 1e-5

- (a) Folosind interpolarea Lagrange, metoda baricentrică, noduri Cebîşev de speța II.
- (b) Folosind interpolarea Hermite cu noduri duble, noduri echidistante și noduri Cebîșev de speța II.

În fiecare caz se va preciza numărul de noduri necesare pentru atingerea preciziei.

Testul 3

Problema 5 Să se reprezinte pe același grafic polinoamele fundamentale Lagrange ℓ_k , k = 0, ..., m pentru un set dat de noduri x_k , k = 0, ..., m.

Problema 6 Să se aproximeze funcția $f(x) = \arctan x$, pe [-1,1], cu o precizie de 1e-6

- (a) Folosind interpolarea Lagrange, metoda baricentrică, cu noduri echidistante și noduri Cebîșev de speța a II-a.
- (b) Folosind interpolarea Hermite cu noduri duble, noduri echidistante şi noduri Cebîşev de speța I.

În fiecare caz se va preciza numărul de noduri necesare pentru atingerea preciziei.

Testul 4

Problema 7 Pentru un set dat de noduri, x_k , k = 0, ..., m polinomul

$$u_m(x) = \prod_{k=0}^{m} (x - x_k)$$

se numește polinomul nodurilor. Să se reprezinte polinomul nodurilor pentru un set de puncte echidistante, un set de puncte Cebîşev de speța I și un set de pente Cebîşev de speța a doua. Ce legătură are aspectul polinomului cu eroarea de interpolare?

Problema 8 Să se aproximeze funcția $f(x) = x^2 \sin x$, pe $[-2\pi, 2\pi]$, cu o precizie de 1e-6

- (a) Folosind interpolarea Lagrange, metoda baricentrică, cu noduri echidistante și noduri Cebîșev de speța a II-a.
- (b) Folosind interpolarea Hermite cu noduri duble, noduri echidistante și noduri Cebîşev de speța a II-a.

 $\hat{I}n$ fiecare caz se va preciza numărul de noduri necesare pentru atingerea preciziei.