Computational Physics

Übungsblatt 7

 $\label{eq:miriam_simm} \begin{aligned} & \operatorname{Miriam\ Simm} \\ & \operatorname{miriam.simm@tu-dortmund.de} \end{aligned}$

Katrin Bolsmann katrin.bolsmann@tu-dortmund.de

 ${\it Mario~Alex~Hollberg} \\ {\it mario-alex.hollberg@tu-dortmund.de}$

Abgabe: 15. Mai 2020

Aufgabe 1: Runge-Kutta-Verfahren

a)

Das RK-Verfahren 4.Ordnung wird auf die Newtonsche Bewegungsgleichung für ein Teilchen implementiert und an einem harmonischen Oszillator mit zwei unterschiedlichen Anfangsbedingungen getest:

1 Tests

 $\vec{r}(0)$ beliebig und $\vec{v}(0) = \vec{0} \implies \vec{r}(0) = (1,2,3)^T$ und $\vec{v}(0) = (1,1,1)^T$ gewählt Das Teilchen wird praktisch an einem Punkt losgelassen und fängt an harmonisch zu pendeln.

Abbildung 1: Pendel-Trajektorie, wobei die Masse des Teilchens 1 beträgt

2 Test

 $\vec{v}(0) \neq \vec{0}$ und $\vec{v}(0) \not\parallel \vec{r}(0) \implies \vec{r}(0) = (1,2,3)^T$ und $\vec{v}(0) = (1,1,1)^T$ gewählt Da das Teilchen dieses Mal einen Anfangsimpuls besitzt, bewegt es sich auf einer Ellipse.

Abbildung 2: Elliptische Trajektorie, wobei die Masse des Teilchens 1 beträgt

Da in beiden Fällen keine Dämpfung vorliegt, ist die Trajektorie immer die gleiche. Somit werden ältere Wegpunkten von Neueren überlagert (weshalb man keine dunkle Punkte mehr sehen kann).

b)

Damit die Schrittweite h der Toleranzgrenze von $|\vec{r}_0 - \vec{r}_i| < 10^{-5}$ bei i = 10 Schwingungen genügt, muss h in der Größenornung von 10^{-8} liegen.

c)

Als nächstes wird die Energieerhaltung des 1. Tests aus Aufgabenteil a) überprüft. Für einen harmonischen Oszillator gilt:

$$E_{\text{ges}} = E_{\text{pot}} + E_{\text{kin}} = \frac{1}{2}m\omega^2\hat{x}^2 + \frac{1}{2}m\hat{v}^2 = const.$$
 (1)

In Abbildung 3 ist die relative Gesamtenergie zu jedem Zeitschritt aufgetragen. Um die Änderung der Gesamtenergie deutlicher zu machen, wird jeder Wert von dem Anfangswert $E_{\rm ges}(t=0)$ abgezogen. Es ist deutlich eine sinus förmige Bewegung zu erkennen, welche nicht für eine Energieerhaltung spricht. Vermutlich wurde das RK-Verfahren nicht sauber genug implementiert.

Abbildung 3: Energieerhaltung eines Teilchens mit eier Masse von eins

Aufgabe 2: Adams-Bashforth-Verfahren

a)

Das Adams-Bashforth-Verfahren für die Bewegungsgleichung

$$\ddot{x} = -x - \alpha \dot{x}$$

und verschiedene Fälle für α werden untersucht. Dabei werden zunächst vier Anfangspunkte mittels der in Aufgabe 1 implementierten RK-Methode bestimmt.

Für den Fall das $\alpha>0$ ist, zeigt sich in Abbildung 4, wie zu erwarten, ein gedämpfter harmonischer Oszillator. Das Teilchen schwingt mit der Zeit in einer immer enger werdenden Kreisbahn.

Ist $\alpha = 0$ liegt ein ungedämpfter harmonischer Oszillator wie in Aufgabe 1 vor. Das Teilchen bewegt sich also immer auf der gleichen Kreisbahn (siehe Abbildung 5).

Zuletzt wird $\alpha < 0$ betrachtet, in der eine erzwungende harmonische Oszillation zu erwarten ist. Diese zeigt sich für den Fall $\alpha = -0.1$ in Abbildung 6 gut. Das Teilchen bewegt sich auf einer immer größer werdenden Kreisbahn.

Die mittels dem RK-Verfahren ermittelten vier Startwerte stechen in den jeweiligen Abbildungen besonders hervor.

Abbildung 4: Gedämpfer harm. Osz. mit $\alpha=0.1$

Abbildung 5: Harm. Osz. mit $\alpha=0$

Abbildung 6: Erzwungener harm. Osz. mit $\alpha = -0.1$

b)

Als nächstes wird die Energieerhaltung für $\alpha=0.1$ für t=20 Zeitschritten untersucht. Da keine Reibungsenergie berücksichtigt wird, sinkt die Gesamtenergie des gedämpften harmonischen Oszillators, wie in Abbildung 7 zu sehen ist, mit der Zeit.

Abbildung 7: Gedämpfer harm. Osz. mit $\alpha=0.1$