

Физиология ЦНС.

Лектор: профессор кафедры физиологии человека и животных биологического факультета МГУ имени М.В. Ломоносова, д.б.н. **Дубынин Вячеслав Альбертович**

<u>Лекция 2.</u> Химический состав живых организмов. Структура и разнообразие белков. Внутреннее строение нейронов. Потенциал покоя нервных клеток.

H₂O – вода: 65-70% массы тела человека, «универсальный растворитель»

Минеральные соли:

при растворении в воде образуют ионы (переносчики зарядов в биоэлектрических процессах):

NaCl → Na⁺ + Cl⁻

Na⁺ и **Ca**²⁺ – активирующее действие на нервную систему **K** ⁺ и **CI**⁻ – участвуют в торможении нервных клеток

Моносахариды:

глюкоза (С₆H₁₂O₆)

(энергетическая функция; 0.1% в плазме крови)

фруктоза рибоза

Полисахариды:

крахмал целлюлоза

гликоген

(запасающая функция)

Фосфолипиды:

глицерин + два углеводородных хвоста + фосфорная к-та

В водном растворе липиды и фосфолипиды и образуют капли и двуслойные пленки. Такие пленки — основа всех биологических мембран (строительная функция + энерге-тическая и запасающая).

Следующий этап: образование вторичной структуры белка.

Она формируется за счет присутствия на аминогруппах довольно большого положительного заряда, на кислотных группах – отрицательного заряда.

Взаимное притяжение таких (+) и (–) ведет к укладке белковой цепи в спираль (на каждом витке примерно 3 а/к; радикалы в этом вновь не участвуют).

Третичная структура белка – белковый клубок, формируется за счет взаимодействия радикалов (и, следовательно, зависит от первичной структуры).

Взаимодействие радикалов может происходить благодаря:

образованию ковалентной химической связи

притяжению неравномерно заряженных областей

контакту углеводородных участков (как в случае «хвостов» липидных молекул) и др.

Третичная структура

(белковый клубок), как правило, имеет ямку («активный центр»). Здесь происходит захват молекулы-мишени («лиганда») по принципу «ключ-замок». После этого белок способен выполнить с лигандом те или иные операции.

Тип операции с лигандом = тип белка.

белки-ферменты; транспортные белки (белки крови, каналы, насосы); белки-рецепторы; двигательные белки; защитные (антитела), строительные и др.

Постоянно открытый

белок-канал: похож на цилиндр с отверстием; встроен в мембрану клетки; через него может идти диффузия (как правило, строго определенных мелких частиц – молекул H_2O , ионов K^+ , Na^+ и dp.).

Диффузия – движение частиц среды из области с высокой концентрацией в область с низкой концентрацией; чем больше разность концентраций, тем интенсивнее диффузия.

11

Белок-канал со створкой: также встроен

в мембрану клетки; его отверстие перекрыто петлей-створкой, («канал закрыт»). Створка при определенных условиях может открываться, «разрешая» диффузию (условия открытия: появление определенных химических веществ, электрические воздействия и др.).

Пример:

действие гормонов и медиаторов. Так, инсулин, выделяемый поджелудочной железой, активирует работу насосов, транспортирующих внутрь клетки глюкозу.

Белки-рецепторы:

Встроены в мембрану клетки и выполняют информационную функцию. Лиганд в этом случае – сигнал об определенном событии во внешней (межклеточной) среде.

После присоединения лиганда рецептор запускает реакцию клетки, влияя на ферменты, насосы, ионные каналы и т.п.

Другие типы белков:

защитные белки (белки-антитела; захватывают лиганды-антигены – вредные чужеродные вещества)

двигательные белки (актин и миозин; за счет их взаимодействия происходит сокращение мышечных клеток)

строительные белки (коллаген – белок межклеточного вещества соединительной ткани; кератин – волосы и ногти)

запасающие белки (казеины молока, глютены пшеницы и др.)

сеть молекул коллагена

Нуклеиновые кислоты (ДНК и РНК).

ДНК несет генетическую информацию и передает ее потомству.

Передача потомству = репликация ДНК (размножение на молекулярном уровне).

Генетическая информация = информация о первичной структуре белков.

Ген – фрагмент молекулы ДНК, несущий информацию о структуре определенного белка. Всего ДНК человека (23 молекулы) содержит около 20 тыс. генов. Каждая молекула ДНК (хромосома) в обычных клетках присутствует в двух экземплярах: отцовском и материнском.

РНК выполняет вспомогательную функцию, обеспечивая превращение генетической информации в конкретные белки (и-РНК – связующее звено между ДНК и рибосомами).

Внутреннее строение клеток.

1. Клеточная мембрана: два слоя липидов + встроенные белки (каналы, насосы, ферменты, рецепторы и др.)

Внутреннее строение клеток.

- 2. Ядро: место хранения и репликации ДНК, образования РНК. и-РНК (копия того или иного гена), выходя из ядра, вступает в контакт с рибосомами, управляя сборкой соответствующ. белка.
- **3. Рибосомы:** комплекс РНК и белков-ферментов; здесь идет синтез белка по «инструкции» и-РНК; в нейронах очень много рибосом (признак чрезвычайно активного обмена веществ).
- **4. Эндоплазматическая сеть (ретикулум): ЭПС –** система тонких разветвленных мембранных каналов, пронизывающая всю цитоплазму; транспортная функция.

5. Комплекс Гольджи: система плоских мембранных цистерн; здесь происходит накопление веществ и их упаковка в пузырьки-везикулы («почкование» везикул).

Далее везикулы направляются к клеточной мембране и сливаются с нею. В результате происходит выброс (экзоцитоз) содержимого пузырьков в межклеточную среду.

Таким путем осуществля-ется выделение пищеварительных ферментов, гормонов, медиаторов.

6. Митохондрии (м/х): «электростанции» клетки (в нейронах — большое кол-во м/х); здесь завершается окисление органических веществ (прежде всего, глюкозы); при этом расходуется O₂, выделяется CO₂ и из АДФ образуется АТФ.

АТФ – аденозинтрифосфорная к-та, универсальный внутриклет. переносчик энергии; **АДФ** – аденозиндифосфорная к-та **АДФ** + фосфорная к-та → **АТФ** (реакция запасания энергии; ею управляют особые дыхательные ферменты, расположенные на складках-кристах внутренней мембраны м/х) **АТФ** → **АДФ** + фосфорная к-та (реакция выделения энергии; идет в любой части клетки, где необходимо «привести в

действие» белки-насосы, ферменты и т.п.)

Электрические свойства нейронов. Потенциал покоя и потенциал действия.

Сигнал по мембране нейрона передается в виде коротких электрических импульсов — **потенциалов действия (ПД).** Этот процесс можно сравнить с передачей информации с помощью включения и выключения фонарика (ПД = «вспышка света»).

Но для того, чтобы фонарик работал, нужна батарейка – источник электрической энергии. В случае нейрона таким источником служит постоянный внутриклеточный заряд – **потенциал покоя (ПП).**

Потенциал покоя (ПП) нейрона – его постоянный отрицательный заряд, равный в среднем -70 мВ.

Измерить ПП можно с помощью тончайшей, особым образом вытянутой стеклянной трубочки-микроэлектрода. Его кончик имеет диаметр < 1 мкм, что позволяет практически без повреждения проткнуть мембрану клетки.

Микроэлектрод (в т.ч. канал внутри кончика) заполнен раствором соли, проводящим эл. ток. Это позволяет сравнить заряд цитоплазмы нейрона с зарядом межклеточной среды).

Потенциал покоя (ПП) нейрона — его постоянный отрицательный заряд, равный в среднем -70 мВ.

Измерить ПП можно с помощью тончайшей, особым образом вытянутой стеклянной трубочки-микроэлектрода. Его кончик имеет диаметр < 1 мкм, что позволяет практически без повреждения проткнуть мембрану клетки.

Микроэлектрод (в т.ч. канал внутри кончика) заполнен раствором соли, проводящим эл. ток. Это позволяет сравнить заряд цитоплазмы нейрона с зарядом межклеточной среды).

Наличие **ПП** – результат жизнедеят-ти нейрона, совместной работы всех биополимеров и органоидов клетки; *погибший нейрон быстро теряет ПП*.

Первопричина ПП – разность концентраций ионов К⁺ и Na⁺ внутри и снаружи нейрона. Эту разность создает работа особого белка-насоса **Na⁺- K⁺- АТФазы** (Na⁺-K⁺-насоса).

межклеточная среда

Na⁺- K⁺- АТФаза обменивает находящиеся внутри клетки ионы Na⁺ на захваченные в межклеточной среде ионы К⁺, затрачивая значительное кол-во АТФ.

В результате работы Na⁺-K⁺-ATФазы в нейроне оказывается примерно в 10 раз меньше Na⁺ и в 30 раз больше K⁺, чем в межклеточной среде.

 K^{+}_{out} : K^{+}_{in} = 1 : 30 Na^{+}_{out} : Na^{+}_{in} = 10 : 1

Несмотря на все это, до момента созревания (происходит на 2-3 месяце эмбрионального развития) нейрон не имеет заряда, и количество положит. (прежде всего, К+) и отрицательных ионов в его цитоплазме примерно одинаково.

Признак созревания нейрона — появление на его мембране постоянно открытых К+-каналов (определяется включением соотв. гена). В результате становится возможной диффузия К+из клетки.

Как долго идет диффузия К+ из нейрона? Очевидный вариант («до выравнивания концентраций») неверен, поскольку двигаются заряженные частицы, и выход К+ сопровождается накоплением в цитоплазме отрицательного заряда.

Этот отрицательный заряд мешает диффузии и в конце концов останавливает её. Возникает состояние «динамического равновесия»: число ионов К+, покинувших клетку благодаря диффузии = числу ионов К+, втянутых в клетку отрицательным зарядом цитоплазмы.

Такой вход Na⁺ ведет к сдвигу заряда цитоплазмы вверх и частичной потере ПП (отсюда название – «ток утечки Na⁺ »).

ПП = -91 мВ («равновесный потенциал» для К+)

В реальной клетке ПП находится ближе к нулю (в среднем -70 мВ). Причина: существование небольшого количества относительно постоянно открытых каналов для Na⁺.

Избыток ионов Na⁺ в межклеточной среде, а также их притяжение к отрицательно заряженной цитоплазме приводят к входу Na⁺ в клетку.

Такой вход Na⁺ ведет к сдвигу заряда цитоплазмы вверх и частичной потере ПП (отсюда название – «ток утечки Na⁺ »).

Ограничивает вход Na⁺, во-первых, малое число постоянно открытых Na⁺-каналов; во-вторых, работа Na⁺-K⁺- АТФазы, которая «откачивает» Na⁺, обменивая его на K⁺

В целом ПП зависит от 3-х главных факторов:

- диффузии K⁺ из клетки;
- диффузии Na⁺ в клетку;
- работы Na⁺-K⁺-АТФазы.

Диффузия K^+ из клетки определяется разностью концентраций K^+_{out} и K^+_{in} .

Если увеличить K⁺out, то разность концентраций станет меньше, диффузия – слабее, и для ее остановки потребуется не столь значительный ПП (произойдет сдвиг заряда цитоплазмы вверх до достижения новой точки равновесия).

Если снизить К⁺_{out}, то разность концентраций станет больше, диффузия – сильнее, и для ее остановки потребуется более значительный ПП (сдвиг заряда цитоплазмы вниз).

В целом ПП зависит от 3-х главных факторов:

- диффузии К+ из клетки;
- диффузии Na⁺ в клетку;
- работы Na⁺-K⁺-ATФазы.

Диффузия Na⁺ в клетку зависит, прежде всего, от числа постоянно открытых Na⁺-каналов на мембране.

Это число – стабильное свойство конкретного нейрона. Чем больше таких каналов, тем ПП ближе к нулю, чем меньше – тем ПП ближе к уровню -91 мВ.

Чем ближе ПП к нулю, тем возбудимее нейрон (такие нужны, например, в центрах бодрствования); чем ближе ПП к уровню -91 мВ, тем ниже возбудимость (минимальна в центрах, запускающих движения).

В целом ПП зависит от 3-х главных факторов:

- диффузии К+ из клетки;
- диффузии Na⁺ в клетку;
- работы Na⁺-K⁺-ATФазы.

Работа Na⁺-K⁺-ATФазы может быть нарушена химич. веществами, например, токсином одной из тропических лиан строфантином.

В этом случае ток утечки Na⁺ не будет полностью компенсироваться и ПП сместится в сторону нуля (степень смещения зависит от дозы токсина = доля заблокированных насосов).

Большая доза токсина настолько нарушает работу Na⁺-K⁺-ATФаз, что ПП теряется (происходит «разрядка батарейки фонарика»).

<u>Аналогия</u>: Na⁺-K⁺-насос = «зарядное устройство» нейрона

Уровень воды = нулевой уровень; уровень бортов лодки над водой = ПП (зависит от «веса лодки» = разность концентраций К+ во внешней среде и цитоплазме).

Ток утечки Na⁺ = отверстия в лодке, через которые втекает вода и снижает абсолютное значение ПП *(приближая его к 0).*

Na⁺-K⁺-ATФаза – ковш, которым вычерпываем воду, удерживая лодку на плаву («поломка ковша» строфантином приведет к тому, что лодка утонет).

