Package 'beyondWhittle'

March 13, 2024

Type Package
Title Bayesian Spectral Inference for Time Series
Version 1.2.1
Date 2024-03-12
Maintainer Renate Meyer < renate.meyer@auckland.ac.nz>
Description Implementations of Bayesian parametric, nonparametric and semiparametric procedures for univariate and multivariate time series. The package is based on the methods presented in C. Kirch et al (2018) <doi:10.1214 18-ba1126="">, A. Meier (2018) <https: 13470="" 1981185920="" handle="" opendata.uni-halle.de=""> and Y. Tang et al (2023) <arxiv:2303.11561>. It was supported by DFG grants KI 1443/3-1 and KI 1443/3-2.</arxiv:2303.11561></https:></doi:10.1214>
License GPL (>= 3)
Imports ltsa (>= 1.4.6), Rcpp (>= 0.12.5), MASS, forecast
LinkingTo Rcpp, RcppArmadillo, BH
RoxygenNote 7.2.2
NeedsCompilation yes
Encoding UTF-8
Author Alexander Meier [aut], Claudia Kirch [aut], Matthew C. Edwards [aut], Renate Meyer [aut, cre], Yifu Tang [aut]
Repository CRAN
Date/Publication 2024-03-13 19:30:02 UTC
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
R topics documented:
beyondWhittle-package

2

38

bayes_factor	- 2
bayes_factor.bdp_dw_result	4
bdp_dw_bayes_factor_k1	4
bdp_dw_est_post_stats	5
bdp_dw_mcmc_params_gen	5
bdp_dw_prior_params_gen	6
fourier_freq	7
gibbs_ar	8
gibbs_bdp_dw	10
gibbs_np	14
gibbs_npc	16
gibbs_var	20
gibbs_vnp	22
local_moving_FT_zigzag	25
pacf_to_ar	25
plot.bdp_dw_result	
plot.bdp_dw_tv_psd	
plot.gibbs_psd	
print.bdp_dw_result	
print.gibbs_psd	
psd_arma	
psd_tvarma12	
psd_varma	
rmvnorm	
scree_type_ar	33
sim_tvarma12	
sim_varma	
summary.bdp_dw_result	
summary.gibbs_psd	37

beyondWhittle-package Bayesian spectral inference for time series

Description

Index

Bayesian parametric, nonparametric and semiparametric procedures for spectral density inference of univariate (locally) stationary time series and multivariate stationary time series

Details

The package contains several methods (parametric, nonparametric and semiparametric) for Bayesian spectral density inference. The main algorithms to fit the models for univariate stationary time series are:

• gibbs_ar: Parametric, autoregressive (AR) model

bayes_factor 3

• gibbs_np: Nonparametric model with Whittle's likelihood and Bernstein-Dirichlet prior from Choudhuri et al (2007)

 gibbs_npc: Semiparametric model with corrected AR likelihood and Bernstein-Dirichlet prior from Kirch et al (2018)

The package also contains the following models for multivariate stationary time series:

- gibbs var: Parametric, vector autoregressive (VAR) model
- gibbs_vnp: Nonparametric model with Whittle's likelihood and Bernstein-Hpd-Gamma prior from Meier (2018)

The main function for univariate locally stationary time series is:

• gibbs_bdp_dw: Nonparametric model with BDP-DW approach from Tang et al (2023)

as well as some useful utility functions. To get started, it is recommended to consider the examples and documentation of the functions listed above. The work was supported by DFG grants KI 1443/3-1 and KI 1443/3-2.

Author(s)

Claudia Kirch, Renate Meyer, Matthew C. Edwards, Alexander Meier, Yifu Tang

Maintainer: Renate Meyer < renate.meyer@auckland.ac.nz>

References

N. Choudhuri, S. Ghosal and A. Roy (2004) *Bayesian estimation of the spectral density of a time series* JASA <doi:10.1198/016214504000000557>

C. Kirch, M. C. Edwards, A. Meier and R. Meyer (2018) *Beyond Whittle: Nonparametric Correction of a Parametric Likelihood with a Focus on Bayesian Time Series Analysis* Bayesian Analysis doi:10.1214/18-BA1126>

A. Meier (2018) A matrix Gamma process and applications to Bayesian analysis of multivariate time series PhD thesis, OvGU Magdeburg <doi:10.25673/13407>

Y. Tang, C. Kirch, J. E. Lee and R. Meyer (2023) *Bayesian nonparametric spectral analysis of locally stationary processes* ArXiv preprint <arXiv:2303.11561>

bayes_factor

a generic method for bdp_dw_result class

Description

a generic method for bdp_dw_result class

Usage

```
bayes_factor(obj)
```

Arguments

obj

object of class bdp_dw_result

```
bayes_factor.bdp_dw_result
```

Extracting the Bayes factor of k1=1 from bdp_dw_result class

Description

Extracting the Bayes factor of k1=1 from bdp_dw_result class

Usage

```
## S3 method for class 'bdp_dw_result'
bayes_factor(obj)
```

Arguments

obj

object of class bdp_dw_result

Value

the estimated Bayes factor of k1=1

```
bdp_dw_bayes_factor_k1
```

Estimating the Bayes factor of hypothesis "k1 = 1".

Description

Estimating the Bayes factor of hypothesis "k1 = 1".

Usage

```
bdp_dw_bayes_factor_k1(post_sample, precision = 1000)
```

Arguments

post_sample the poste

the posterior sample generated by bdp_dw_mcmc.

precision

a positive integer specifying the number of terms used in approximating the normalizing constant of the prior probability mass function of k1. Default 1000.

Value

The Savage-Dickey estimate of the Bayes factor and its theoretical upper bound. c.f. section 3.3 of Tang et al. (2023).

References

Tang et al. (2023) Bayesian nonparametric spectral analysis of locally stationary processes ArXiv preprint <arXiv:2303.11561>

bdp_dw_est_post_stats 5

Description

Calculating the estimated posterior mean, median and credible region (tv-PSD)

Usage

```
bdp_dw_est_post_stats(post_sample, rescaled_time, freq, unif_CR = FALSE)
```

Arguments

post_sample the posterior sample generated by bdp_dw_mcmc.

rescaled_time, freq

numeric vectors forming a rectangular grid on which the estimated tv-PSD is

evaluated.

unif_CR a Boolean value (default FALSE) indicating whether to calculate the uniform

credible region rescaled_time must be in [0, 1] and freq must be in $[0, \pi]$.

Value

list containing the following fields:

```
tvpsd.mean,tvpsd.median
```

posterior mean and pointwise posterior median (matrices of dimension length(rescaled_time) by length(freq))

tvpsd.p05,tvpsd.p95

90 percent pointwise credibility interval

tvpsd.u05,tvpsd.u95

90 percent uniform credibility interval if unif_CR = TRUE. Otherwise NA

bdp_dw_mcmc_params_gen

Generate a list of values for MCMC algorithm

Description

Generate a list of values for MCMC algorithm

Usage

```
bdp_dw_mcmc_params_gen(
  Ntotal = 110000,
  burnin = 60000,
  thin = 10,
  adaptive.batchSize = 50,
  adaptive.targetAcceptanceRate = 0.44
)
```

Arguments

Ntotal total number of iterations to run the Markov chain

burnin number of initial iterations to be discarded

thin thinning number (for post-processing of the posterior sample)

adaptive.batchSize

the batch size for the adaptive MCMC algorithm for sampling tau

adaptive.targetAcceptanceRate
the target acceptance rate for the adaptive MCMC algorithm for sampling tau

Value

A list of MCMC parameter values

```
bdp_dw_prior_params_gen
```

Generate a list of parameter values in prior elicitation

Description

Generate a list of parameter values in prior elicitation

Usage

```
bdp_dw_prior_params_gen(
    M = 1,
    g0.alpha = 1,
    g0.beta = 1,
    k1.theta = 0.01,
    k2.theta = 0.01,
    tau.alpha = 0.001,
    tau.beta = 0.001,
    k1max = 100,
    k2max = 100,
    L = 20,
    bernstein1_l = 0.1,
    bernstein1_r = 0.9,
```

fourier_freq 7

```
bernstein2_1 = 0.1,
bernstein2_r = 0.9
)
```

Arguments

M DP base measure constant (> 0)

g0.alpha, g0.beta

parameters of Beta base measure of DP

k1.theta prior parameter for polynomial corresponding to rescaled time (propto exp(-

k1.theta*k1*log(k1))

k2.theta prior parameter for polynomial corresponding to rescaled frequency (propto

 $\exp(-k2.\text{theta*}k2*\log(k2)))$

tau.alpha, tau.beta

prior parameters for tau (inverse gamma)

k1max upper bound of the degrees of Bernstein polynomial corresponding to rescaled

time (for pre-computation of basis functions)

k2max upper bound of the degrees of Bernstein polynomial corresponding to rescaled

frequency (for pre-computation of basis functions)

L truncation parameter of DP in stick breaking representation

bernstein1_l, bernstein1_r

left and right truncation of Bernstein polynomial basis functions for rescaled

time, 0<=bernstein1_1<bernstein1_r<=1

bernstein2_1, bernstein2_r

left and right truncation of Bernstein polynomial basis functions for rescaled

frequency, 0<=bernstein2_1<bernstein2_r<=1

Value

A list of prior parameter values

fourier_freq

Fourier frequencies

Description

Fourier frequencies on [0,pi], as defined by 2*pi*j/n for j=0,...,floor(n/2).

Usage

```
fourier_freq(n)
```

Arguments

n

integer

gibbs_ar

Value

numeric vector of length floor(n/2)+1

gibbs_ar Gibbs sampler for an autoregressive model with PACF parametriza-

tion.

Description

Obtain samples of the posterior of a Bayesian autoregressive model of fixed order.

Usage

```
gibbs_ar(
  data,
  ar.order,
 Ntotal,
  burnin,
  thin = 1,
  print_interval = 500,
  numerical_thresh = 1e-07,
  adaption.N = burnin,
  adaption.batchSize = 50,
  adaption.tar = 0.44,
  full_lik = F,
  rho.alpha = rep(1, ar.order),
  rho.beta = rep(1, ar.order),
  sigma2.alpha = 0.001,
  sigma2.beta = 0.001
)
```

Arguments

data numeric vector; NA values are interpreted as missing values and treated as ran-

dom

ar.order order of the autoregressive model (integer \geq 0) Ntotal total number of iterations to run the Markov chain

burnin number of initial iterations to be discarded

thin thinning number (postprocessing)

print_interval Number of iterations, after which a status is printed to console numerical_thresh

Lower (numerical pointwise) bound for the spectral density

adaption.N total number of iterations, in which the proposal variances (of rho) are adapted adaption.batchSize

batch size of proposal adaption for the rho_i's (PACF)

gibbs_ar 9

adaption.tar target acceptance rate for the rho_i's (PACF)

full_lik logical; if TRUE, the full likelihood for all observations is used; if FALSE, the

partial likelihood for the last n-p observations

rho.alpha, rho.beta

prior parameters for the rho_i's: 2*(rho-0.5)~Beta(rho.alpha,rho.beta), default

is Uniform(-1,1)

sigma2.alpha, sigma2.beta

prior parameters for sigma2 (inverse gamma)

Details

Partial Autocorrelation Structure (PACF, uniform prior) and the residual variance sigma2 (inverse gamma prior) is used as model parametrization. The DIC is computed with two times the posterior variance of the deviance as effective number of parameters, see (7.10) in the referenced book by Gelman et al. Further details can be found in the simulation study section in the referenced paper by C. Kirch et al. For more information on the PACF parametrization, see the referenced paper by Barndorff-Nielsen and Schou.

Value

list containing the following fields:

rho matrix containing traces of the PACF parameters (if p>0)

sigma2 trace of sigma2

DIC a list containing the numeric value DIC of the Deviance Information Criterion

(DIC) and the effective number of parameters ENP

psd.median,psd.mean

psd estimates: (pointwise) posterior median and mean

psd.p05,psd.p95

pointwise credibility interval

psd.u05,psd.u95

uniform credibility interval

lpost trace of log posterior

References

C. Kirch et al. (2018) Beyond Whittle: Nonparametric Correction of a Parametric Likelihood With a Focus on Bayesian Time Series Analysis Bayesian Analysis doi:10.1214/18-BA1126>

A. Gelman et al. (2013) Bayesian Data Analysis, Third Edition

O. Barndorff-Nielsen and G. Schou On the parametrization of autoregressive models by partial autocorrelations Journal of Multivariate Analysis (3),408-419 <doi:10.1016/0047-259X(73)90030-4>

Examples

```
## Not run:
## Example 1: Fit an AR(p) model to sunspot data:
##
# Use this variable to set the AR model order
p <- 2
data <- sqrt(as.numeric(sunspot.year))</pre>
data <- data - mean(data)</pre>
# If you run the example be aware that this may take several minutes
print("example may take some time to run")
mcmc <- gibbs_ar(data=data, ar.order=p, Ntotal=10000, burnin=4000, thin=2)</pre>
# Plot spectral estimate, credible regions and periodogram on log-scale
plot(mcmc, log=T)
## Example 2: Fit an AR(p) model to high-peaked AR(1) data
# Use this variable to set the AR model order
p <- 1
n <- 256
data <- arima.sim(n=n, model=list(ar=0.95))</pre>
data <- data - mean(data)</pre>
omega <- fourier_freq(n)</pre>
psd_true <- psd_arma(omega, ar=0.95, ma=numeric(0), sigma2=1)</pre>
# If you run the example be aware that this may take several minutes
print("example may take some time to run")
mcmc <- gibbs_ar(data=data, ar.order=p, Ntotal=10000, burnin=4000, thin=2)</pre>
# Compare estimate with true function (green)
plot(mcmc, log=F, pdgrm=F, credib="uniform")
lines(x=omega, y=psd_true, col=3, lwd=2)
# Compute the Integrated Absolute Error (IAE) of posterior median
cat("IAE=", mean(abs(mcmc$psd.median-psd_true)[-1]) , sep="")
## End(Not run)
```

gibbs_bdp_dw

BDP-DW method: performing posterior sampling and calculating statistics based on the posterior samples

Description

BDP-DW method: performing posterior sampling and calculating statistics based on the posterior samples

Usage

```
gibbs_bdp_dw(
  data,
  m,
  likelihood_thinning = 1,
  monitor = TRUE,
  print_interval = 100,
  unif_CR = FALSE,
  res_time,
  freq,
  Ntotal = 110000,
  burnin = 60000,
  thin = 10,
  adaptive.batchSize = 50,
  adaptive.targetAcceptanceRate = 0.44,
  M = 1,
  g0.alpha = 1,
  g0.beta = 1,
  k1.theta = 0.01,
  k2.theta = 0.01,
  tau.alpha = 0.001,
  tau.beta = 0.001,
  k1max = 100,
  k2max = 100,
  L = 20,
  bernstein1_l = 0.1,
  bernstein1_r = 0.9,
  bernstein2_1 = 0.1,
  bernstein2_r = 0.9
)
```

Arguments

m window size needed to calculate moving periodogram.

likelihood_thinning
the thinning factor of the dynamic Whittle likelihood.

monitor
a Boolean value (default TRUE) indicating whether to display the real-time status

print_interval If monitor = TRUE, then this value indicates number of iterations after which a status is printed to console; If monitor = FALSE, it does not have any effect

unif_CR a Boolean value (default FALSE) indicating whether to calculate the uniform

credible region

res_time, freq a set of grid lines in [0,1] and $[0,\pi]$, respectively, specifying where to evaluate

the estimated tv-PSD

Ntotal total number of iterations to run the Markov chain

burnin number of initial iterations to be discarded

thin thinning number (for post-processing of the posterior sample)

adaptive.batchSize

the batch size for the adaptive MCMC algorithm for sampling tau

adaptive.targetAcceptanceRate

the target acceptance rate for the adaptive MCMC algorithm for sampling tau

M DP base measure constant (> 0)

g0.alpha, g0.beta

parameters of Beta base measure of DP

k1.theta prior parameter for polynomial corresponding to rescaled time (propto exp(-

k1.theta*k1*log(k1))

k2.theta prior parameter for polynomial corresponding to rescaled frequency (propto

 $\exp(-k2.theta*k2*log(k2)))$

tau.alpha, tau.beta

prior parameters for tau (inverse gamma)

k1max upper bound of the degrees of Bernstein polynomial corresponding to rescaled

time (for pre-computation of basis functions)

k2max upper bound of the degrees of Bernstein polynomial corresponding to rescaled

frequency (for pre-computation of basis functions)

L truncation parameter of DP in stick breaking representation

bernstein1_l, bernstein1_r

left and right truncation of Bernstein polynomial basis functions for rescaled

time, 0<=bernstein1_l<bernstein1_r<=1

bernstein2_1, bernstein2_r

left and right truncation of Bernstein polynomial basis functions for rescaled

frequency, 0<=bernstein2_1<bernstein2_r<=1

Value

list containing the following fields:

k1,k2,tau,V,W1,W2

posterior traces of PSD parameters

lpost traces log posterior

tim total run time

bf_k1 Savage-Dickey estimate of Bayes factor of hypothesis k1=1

tvpsd.mean,tvpsd.median

posterior mean and pointwise posterior median (matrices of dimension length(rescaled_time)

by length(freq))

```
tvpsd.p05, tvpsd.p95
90 percent pointwise credibility interval
tvpsd.u05, tvpsd.u95
90 percent uniform credibility interval if unif_CR = TRUE. Otherwise NA
```

References

Tang et al. (2023) Bayesian nonparametric spectral analysis of locally stationary processes ArXiv preprint <arXiv:2303.11561>

Examples

```
## Not run:
## Example: Applying BDP-DW method to a multi-peaked tvMA(1) process
##
# set seed
set.seed(200)
# set the length of time series
len_d <- 1500
# generate data from DGP LS2c defined in Section 4.2.2 of Tang et al. (2023).
# see also ?sim_tvarma12
sim_data <- sim_tvarma12(len_d = 1500, dgp = "LS2", innov_distribution = "c")</pre>
# specify grid-points at which the tv-PSD is evaluated
res_time <- seq(0, 1, by = 0.005); freq <- pi * seq(0, 1, by = 0.01)
# calculate the true tv-PSD of DGP LS2c at the pre-specified grid
true_tvPSD <- psd_tvarma12(rescaled_time = res_time, freq = freq, dgp = "LS2")</pre>
# plot the true tv-PSD
# type ?plot.bdp_dw_tv_psd for more info
plot(true_tvPSD)
# If you run the example be aware that this may take several minutes
print("This example may take some time to run")
result <- gibbs_bdp_dw(data = sim_data,</pre>
m = 50,
likelihood_thinning = 2,
rescaled_time = res_time,
freq = freq)
# extract bayes factor and examine posterior summary
bayes_factor(result)
summary(result)
# compare estimate with true function
# type ?plot.bdp_dw_result for more info
par(mfrow = c(1,2))
plot(result, which = 1,
zlim = range(result$tvpsd.mean, true_tvPSD$tv_psd)
)
```

```
plot(true_tvPSD,
zlim = range(result$tvpsd.mean, true_tvPSD$tv_psd),
main = "true tv-PSD")

par(mfrow = c(1,1))

## End(Not run)
```

gibbs_np

Gibbs sampler for Bayesian nonparametric inference with Whittle likelihood

Description

Obtain samples of the posterior of the Whittle likelihood in conjunction with a Bernstein-Dirichlet prior on the spectral density.

Usage

```
gibbs_np(
  data,
 Ntotal,
 burnin,
  thin = 1,
  print_interval = 100,
  numerical_thresh = 1e-07,
 M = 1,
  g0.alpha = 1,
  g0.beta = 1,
  k.theta = 0.01,
  tau.alpha = 0.001,
  tau.beta = 0.001,
  kmax = 100 * coars + 500 * (!coars),
  trunc_1 = 0.1,
  trunc_r = 0.9,
  coars = F,
  L = max(20, length(data)^(1/3))
)
```

Arguments

numeric vector; NA values are interpreted as missing values and treated as random

Ntotal total number of iterations to run the Markov chain

number of initial iterations to be discarded

thin thinning number (postprocessing)

print_interval Number of iterations, after which a status is printed to console numerical_thresh

Lower (numerical pointwise) bound for the spectral density

M DP base measure constant (> 0)

g0.alpha, g0.beta

parameters of Beta base measure of DP

k.theta prior parameter for polynomial degree k (propto exp(-k.theta*k*log(k)))

tau.alpha, tau.beta

prior parameters for tau (inverse gamma)

kmax upper bound for polynomial degree of Bernstein-Dirichlet mixture (can be set to

Inf, algorithm is faster with kmax<Inf due to pre-computation of basis functions,

but values 500<kmax<Inf are very memory intensive)

trunc_1, trunc_r

left and right truncation of Bernstein polynomial basis functions, 0<=trunc_l<trunc_r<=1

coars flag indicating whether coarsened or default bernstein polynomials are used (see

Appendix E.1 in Ghosal and van der Vaart 2017)

L truncation parameter of DP in stick breaking representation

Details

Further details can be found in the simulation study section in the references papers.

Value

list containing the following fields:

psd.median,psd.mean

psd estimates: (pointwise) posterior median and mean

psd.p05,psd.p95

pointwise credibility interval

psd.u05,psd.u95

uniform credibility interval

k, tau, V, W posterior traces of PSD parameters

lpost trace of log posterior

References

C. Kirch et al. (2018) Beyond Whittle: Nonparametric Correction of a Parametric Likelihood With a Focus on Bayesian Time Series Analysis Bayesian Analysis doi:10.1214/18-BA1126>

N. Choudhuri et al. (2004) Bayesian Estimation of the Spectral Density of a Time Series JASA <doi:10.1198/016214504000000557>

S. Ghosal and A. van der Vaart (2017) Fundamentals of Nonparametric Bayesian Inference < doi:10.1017/9781139029834>

Examples

```
## Not run:
## Example 1: Fit the NP model to sunspot data:
##
data <- sqrt(as.numeric(sunspot.year))</pre>
data <- data - mean(data)</pre>
# If you run the example be aware that this may take several minutes
print("example may take some time to run")
mcmc <- gibbs_np(data=data, Ntotal=10000, burnin=4000, thin=2)</pre>
# Plot spectral estimate, credible regions and periodogram on log-scale
plot(mcmc, log=T)
##
## Example 2: Fit the NP model to high-peaked AR(1) data
n <- 256
data <- arima.sim(n=n, model=list(ar=0.95))</pre>
data <- data - mean(data)
omega <- fourier_freq(n)</pre>
psd_true <- psd_arma(omega, ar=0.95, ma=numeric(0), sigma2=1)</pre>
# If you run the example be aware that this may take several minutes
print("example may take some time to run")
mcmc <- gibbs_np(data=data, Ntotal=10000, burnin=4000, thin=2)</pre>
# Compare estimate with true function (green)
plot(mcmc, log=F, pdgrm=F, credib="uniform")
lines(x=omega, y=psd_true, col=3, lwd=2)
# Compute the Integrated Absolute Error (IAE) of posterior median
cat("IAE=", mean(abs(mcmc$psd.median-psd_true)[-1]) , sep="")
## End(Not run)
```

gibbs_npc

Gibbs sampler for Bayesian semiparametric inference with the corrected AR likelihood

Description

Obtain samples of the posterior of the corrected autoregressive likelihood in conjunction with a Bernstein-Dirichlet prior on the correction.

Usage

```
gibbs_npc(
  data,
  ar.order,
 Ntotal,
  burnin,
  thin = 1,
  print_interval = 100,
  numerical_thresh = 1e-07,
  adaption.N = burnin,
  adaption.batchSize = 50,
  adaption.tar = 0.44,
  full_lik = F,
  rho.alpha = rep(1, ar.order),
  rho.beta = rep(1, ar.order),
  eta = T,
  M = 1,
  g0.alpha = 1,
  g0.beta = 1,
  k.theta = 0.01,
  tau.alpha = 0.001,
  tau.beta = 0.001,
  trunc_1 = 0.1,
  trunc_r = 0.9,
  coars = F,
  kmax = 100 * coars + 500 * (!coars),
  L = max(20, length(data)^{(1/3)})
)
```

Arguments

data numeric vector; NA values are interpreted as missing values and treated as ran-

dom

ar.order order of the autoregressive model (integer > 0)

Ntotal total number of iterations to run the Markov chain

burnin number of initial iterations to be discarded

thin thinning number (postprocessing)

print_interval Number of iterations, after which a status is printed to console numerical_thresh

Lower (numerical pointwise) bound for the spectral density

adaption.N total number of iterations, in which the proposal variances (of rho) are adapted adaption.batchSize

batch size of proposal adaption for the rho_i's (PACF)

adaption.tar target acceptance rate for the rho_i's (PACF)

full_lik logical; if TRUE, the full likelihood for all observations is used; if FALSE, the

partial likelihood for the last n-p observations

rho.alpha, rho.beta

prior parameters for the rho_i's: 2*(rho-0.5)~Beta(rho.alpha,rho.beta), default

is Uniform(-1,1)

eta logical variable indicating whether the model confidence eta should be included

in the inference (eta=T) or fixed to 1 (eta=F)

M DP base measure constant (> 0)

g0.alpha, g0.beta

parameters of Beta base measure of DP

k. theta prior parameter for polynomial degree k (propto exp(-k.theta*k*log(k)))

tau.alpha, tau.beta

prior parameters for tau (inverse gamma)

trunc_1, trunc_r

left and right truncation of Bernstein polynomial basis functions, 0<=trunc_1<trunc_r<=1

coars flag indicating whether coarsened or default bernstein polynomials are used (see

Appendix E.1 in Ghosal and van der Vaart 2017)

kmax upper bound for polynomial degree of Bernstein-Dirichlet mixture (can be set to

Inf, algorithm is faster with kmax<Inf due to pre-computation of basis functions,

but values 500<kmax<Inf are very memory intensive)

L truncation parameter of DP in stick breaking representation

Details

Partial Autocorrelation Structure (PACF, uniform prior) and the residual variance sigma2 (inverse gamma prior) is used as model parametrization. A Bernstein-Dirichlet prior for c_eta with base measure Beta(g0.alpha, g0.beta) is used. Further details can be found in the simulation study section in the referenced paper by Kirch et al. For more information on the PACF parametrization, see the referenced paper by Barndorff-Nielsen and Schou.

Value

list containing the following fields:

psd.median,psd.mean

psd estimates: (pointwise) posterior median and mean

psd.p05,psd.p95

pointwise credibility interval

psd.u05,psd.u95

uniform credibility interval

k, tau, V, W posterior traces of nonparametric correction

rho posterior trace of model AR parameters (PACF parametrization)

eta posterior trace of model confidence eta

lpost trace of log posterior

References

- C. Kirch et al. (2018) Beyond Whittle: Nonparametric Correction of a Parametric Likelihood With a Focus on Bayesian Time Series Analysis Bayesian Analysis doi:10.1214/18-BA1126>
- S. Ghosal and A. van der Vaart (2017) Fundamentals of Nonparametric Bayesian Inference < doi:10.1017/9781139029834>
- O. Barndorff-Nielsen and G. Schou On the parametrization of autoregressive models by partial autocorrelations Journal of Multivariate Analysis (3),408-419 <doi:10.1016/0047-259X(73)90030-4>

Examples

```
## Not run:
##
## Example 1: Fit a nonparametrically corrected AR(p) model to sunspot data:
# Use this variable to set the AR model order
p <- 2
data <- sqrt(as.numeric(sunspot.year))</pre>
data <- data - mean(data)</pre>
# If you run the example be aware that this may take several minutes
print("example may take some time to run")
mcmc <- gibbs_npc(data=data, ar.order=p, Ntotal=10000, burnin=4000, thin=2)</pre>
# Plot spectral estimate, credible regions and periodogram on log-scale
plot(mcmc, log=T)
##
## Example 2: Fit a nonparametrically corrected AR(p) model to high-peaked AR(1) data
# Use this variable to set the autoregressive model order
p <- 1
n <- 256
data <- arima.sim(n=n, model=list(ar=0.95))</pre>
data <- data - mean(data)</pre>
omega <- fourier_freq(n)</pre>
psd_true <- psd_arma(omega, ar=0.95, ma=numeric(0), sigma2=1)</pre>
# If you run the example be aware that this may take several minutes
print("example may take some time to run")
mcmc <- gibbs_npc(data=data, ar.order=p, Ntotal=10000, burnin=4000, thin=2)</pre>
# Compare estimate with true function (green)
plot(mcmc, log=F, pdgrm=F, credib="uniform")
lines(x=omega, y=psd_true, col=3, lwd=2)
```

20 gibbs_var

```
# Compute the Integrated Absolute Error (IAE) of posterior median
cat("IAE=", mean(abs(mcmc$psd.median-psd_true)[-1]) , sep="")
## End(Not run)
```

gibbs_var

Gibbs sampler for vector autoregressive model.

Description

Obtain samples of the posterior of a Bayesian VAR model of fixed order. An independent Normal-Inverse-Wishart prior is employed.

Usage

```
gibbs_var(
  data,
  ar.order,
  Ntotal,
  burnin,
  thin = 1,
  print_interval = 500,
  full_lik = F,
  beta.mu = rep(0, ar.order * ncol(data)^2),
  beta.Sigma = 10000 * diag(ar.order * ncol(data)^2),
  Sigma.S = 1e-04 * diag(ncol(data)),
  Sigma.nu = 1e-04
)
```

Arguments

data

	dom
ar.order	order of the autoregressive model (integer ≥ 0)
Ntotal	total number of iterations to run the Markov chain
burnin	number of initial iterations to be discarded
thin	thinning number (postprocessing)
<pre>print_interval</pre>	Number of iterations, after which a status is printed to console
full_lik	logical; if TRUE, the full likelihood for all observations is used; if FALSE, the partial likelihood for the last n-p observations
beta.mu	prior mean of beta vector (normal)
beta.Sigma	prior covariance matrix of beta vector
Sigma.S	prior parameter for the innovation covariance matrix, symmetric positive definite matrix
Sigma.nu	prior parameter for the innovation covariance matrix, nonnegative real number

numeric matrix; NA values are interpreted as missing values and treated as ran-

gibbs_var 21

Details

See Section 2.2.3 in Koop and Korobilis (2010) or Section 6.2 in Meier (2018) for further details

Value

```
list containing the following fields:
```

```
beta matrix containing traces of the VAR parameter vector beta

Sigma trace of innovation covariance Sigma

psd.median,psd.mean

psd estimates: (pointwise, componentwise) posterior median and mean

psd.p05,psd.p95

pointwise credibility interval

psd.u05,psd.u95

uniform credibility interval, see (6.5) in Meier (2018)

lpost trace of log posterior
```

References

G. Koop and D. Korobilis (2010) *Bayesian Multivariate Time Series Methods for Empirical Macroe-conomics* Foundations and Trends in Econometrics <doi:10.1561/0800000013>

A. Meier (2018) A Matrix Gamma Process and Applications to Bayesian Analysis of Multivariate Time Series PhD thesis, OvGU Magdeburg https://opendata.uni-halle.de//handle/1981185920/13470

Examples

gibbs_vnp

```
## Example 2: Fit a VAR(p) model to VMA(1) data
##

# Use this variable to set the VAR model order
p <- 5

n <- 256
ma <- rbind(c(-0.75, 0.5), c(0.5, 0.75))
Sigma <- rbind(c(1, 0.5), c(0.5, 1))
data <- sim_varma(model=list(ma=ma), n=n, d=2)
data <- apply(data, 2, function(x) x-mean(x))

# If you run the example be aware that this may take several minutes
print("example may take some time to run")
mcmc <- gibbs_var(data=data, ar.order=p, Ntotal=10000, burnin=4000, thin=2)

# Plot spectral estimate, credible regions and periodogram on log-scale
plot(mcmc, log=T)

## End(Not run)</pre>
```

gibbs_vnp

Gibbs sampler for multivaiate Bayesian nonparametric inference with Whittle likelihood

Description

Obtain samples of the posterior of the multivariate Whittle likelihood in conjunction with an Hpd AGamma process prior on the spectral density matrix.

Usage

```
gibbs_vnp(
  data,
  Ntotal,
  burnin,
  thin = 1,
  print_interval = 100,
  numerical\_thresh = 1e-07,
  adaption.N = burnin,
  adaption.batchSize = 50,
  adaption.tar = 0.44,
  eta = ncol(data),
  omega = ncol(data),
  Sigma = 10000 * diag(ncol(data)),
  k.theta = 0.01,
  kmax = 100 * coars + 500 * (!coars),
  trunc_1 = 0.1,
  trunc_r = 0.9,
```

gibbs_vnp 23

```
coars = F,
  L = max(20, length(data)^(1/3))
)
```

Arguments

data numeric matrix; NA values are interpreted as missing values and treated as ran-

dom

Ntotal total number of iterations to run the Markov chain

burnin number of initial iterations to be discarded

thin thinning number (postprocessing)

print_interval Number of iterations, after which a status is printed to console

numerical_thresh

Lower (numerical pointwise) bound for the eigenvalues of the spectral density

adaption.N total number of iterations, in which the proposal variances (of r and U) are

adapted

adaption.batchSize

batch size of proposal adaption

adaption.tar target acceptance rate for adapted parameters

eta AGamma process parameter, real number > ncol(data)-1

omega AGamma process parameter, positive constant
Sigma AGamma process parameter, Hpd matrix

k.theta prior parameter for polynomial degree k (propto exp(-k.theta*k*log(k)))

kmax upper bound for polynomial degree of Bernstein-Dirichlet mixture (can be set to

Inf, algorithm is faster with kmax<Inf due to pre-computation of basis functions,

but values 500<kmax<Inf are very memory intensive)

trunc_1, trunc_r

left and right truncation of Bernstein polynomial basis functions, 0<=trunc_l<trunc_r<=1

coars flag indicating whether coarsened or default bernstein polynomials are used (see

Appendix E.1 in Ghosal and van der Vaart 2017)

L truncation parameter of Gamma process

Details

A detailed description of the method can be found in Section 5 in Meier (2018).

Value

list containing the following fields:

psd.median,psd.mean

r,x,U traces of the AGamma process parameters k posterior trace of polynomial degree

psd estimates: (pointwise, componentwise) posterior median and mean

gibbs_vnp

```
psd.p05,psd.p95
pointwise credibility interval
psd.u05,psd.u95
uniform credibility interval, see (6.5) in Meier (2018)
lpost trace of log posterior
```

References

A. Meier (2018) A Matrix Gamma Process and Applications to Bayesian Analysis of Multivariate Time Series PhD thesis, OvGU Magdeburg https://opendata.uni-halle.de//handle/1981185920/13470

Examples

```
## Not run:
## Example: Fit multivariate NP model to SOI/Recruitment series:
##
data <- cbind(as.numeric(astsa::soi-mean(astsa::soi)),</pre>
               as.numeric(astsa::rec-mean(astsa::rec)) / 50)
data <- apply(data, 2, function(x) x-mean(x))</pre>
# If you run the example be aware that this may take several minutes
print("example may take some time to run")
mcmc <- gibbs_vnp(data=data, Ntotal=10000, burnin=4000, thin=2)</pre>
# Visualize results
plot(mcmc, log=T)
## Example 2: Fit multivariate NP model to VMA(1) data
##
n <- 256
ma <- rbind(c(-0.75, 0.5), c(0.5, 0.75))
Sigma <- rbind(c(1, 0.5), c(0.5, 1))
data <- sim_varma(model=list(ma=ma), n=n, d=2)</pre>
data <- apply(data, 2, function(x) x-mean(x))</pre>
# If you run the example be aware that this may take several minutes
print("example may take some time to run")
mcmc <- gibbs_vnp(data=data, Ntotal=10000, burnin=4000, thin=2)</pre>
# Plot spectral estimate, credible regions and periodogram on log-scale
plot(mcmc, log=T)
## End(Not run)
```

```
local_moving_FT_zigzag
```

Calculate the moving Fourier transform ordinates

Description

Calculate the moving Fourier transform ordinates

Usage

```
local_moving_FT_zigzag(x, m, thinning_factor)
```

Arguments

```
x A numeric vector containing time series.

m A positive integer indicating the size of window. thinning_factor
Selected from "1, 2, 3".
```

Value

A list containing the moving Fourier transform and corresponding time grid.

References

Y. Tang et al. (2023) Bayesian nonparametric spectral analysis of locally stationary processes ArXiv preprint <arXiv:2303.11561>

Examples

```
set.seed(1); x <- rnorm(1500)
local_moving_FT_zigzag(x, 50, 1)</pre>
```

pacf_to_ar

Convert partial autocorrelation coefficients to AR coefficients.

Description

Convert partial autocorrelation coefficients to AR coefficients.

Usage

```
pacf_to_ar(pacf)
```

26 plot.bdp_dw_result

Arguments

pacf

numeric vector of partial autocorrelations in (-1,1)

Details

See Section 2 in Kirch et al (2018) or Section III in Barndorff-Nielsen and Schou (1973) for further details

Value

numeric vector of autoregressive model coefficients

References

- C. Kirch et al Supplemental material of *Beyond Whittle: Nonparametric Correction of a Parametric Likelihood With a Focus on Bayesian Time Series Analysis* Bayesian Analysis <doi:10.1214/18-BA1126SUPP>
- O. Barndorff-Nielsen and G. Schou On the parametrization of autoregressive models by partial autocorrelations Journal of Multivariate Analysis (3),408-419 <doi:10.1016/0047-259X(73)90030-4>

See Also

```
acf2AR, ARMAacf
```

plot.bdp_dw_result

Plot method for bdp_dw_result class

Description

Plot method for bdp_dw_result class

Usage

```
## S3 method for class 'bdp_dw_result'
plot(
    x,
    which = 1:4,
    ask = prod(par("mfcol")) < length(which) && dev.interactive(),
    col = hcl.colors(200, "Blue-Red 3"),
    ...
)</pre>
```

plot.bdp_dw_tv_psd 27

Arguments

X	object of class bdp_dw_result
which	if a subset of the plots is required, specify a subset of the numbers 1:6. 1 indicates posterior mean, 2 indicates posterior median, 3 for lower bound of pointwise 90 percent credible region, 4 for upper bound of pointewise 90 percent credible region, 5 indicates lower bound of uniform 90 percent credible region, 6 indicates upper bound of uniform 90 percent credible region.
ask	logical; if TRUE, the user is asked before each plot.
col	choice of color, default hcl.colors(200, "Blue-Red 3").
• • •	other parameters to be passed through to image.default

plot.bdp_dw_tv_psd

Plot method for bdp_dw_tv_psd class

Description

Plot method for bdp_dw_tv_psd class

Usage

```
## S3 method for class 'bdp_dw_tv_psd'
plot(x, col = hcl.colors(200, "Blue-Red 3"), ...)
```

Arguments

```
    x an object of class bdp_dw_tv_psd
    col choice of color, default hcl.colors(200, "Blue-Red 3").
    . . . further arguments to be parsed to image.default
```

Details

Visualizes the spectral density function of time-varying

28 print.bdp_dw_result

-			
n	l∩t	gibbs	ned

Plot method for gibbs_psd class

Description

Plot method for gibbs_psd class

Usage

```
## S3 method for class 'gibbs_psd'
plot(x, pdgrm = T, credib = "both", log = T, ...)
```

Arguments

X	an object of class gibbs_psd
pdgrm	bool flag indicating whether periodogram is visualized or not
credib	string indicating which credible regions are visualized. Possible values are "pointwise", "uniform", "both" and "none".
log	logical value to determine if the individual spectra are visualized on a log scale
	further arguments to be parsed to plot.default

Details

Visualizes the spectral density estimate (pointwise posterior median), along with the periodogram and credibility regions. If the data has missing values, the periodogram is computed with a linearly interpolated version of the data using na.interp.

```
{\tt print.bdp\_dw\_result} \quad \textit{Print method for bdp\_dw\_result class}
```

Description

Print method for bdp_dw_result class

Usage

```
## S3 method for class 'bdp_dw_result'
print(x, ...)
```

Arguments

```
x object of class bdp_dw_result
... not in use
```

print.gibbs_psd 29

	• • •	
print.	gibbs	nsd

Print method for gibbs_psd class

Description

Print method for gibbs_psd class

Usage

```
## S3 method for class 'gibbs_psd'
print(x, ...)
```

Arguments

x object of class gibbs_psd

... not in use

psd_arma

ARMA(p,q) spectral density function

Description

Evaluate the ARMA(p,q) spectral density at some frequencies freq in [0,pi), Note that no test for model stationarity is performed.

Usage

```
psd_arma(freq, ar, ma, sigma2 = 1)
```

Arguments

freq numeric vector of frequencies to evaluate the psd, 0 <= freq < pi

ar autoregressive coefficients of ARMA model (use numeric(0) for empty AR part)
ma moving average coefficients of ARMA model (use numeric(0) for empty MA

part)

sigma2 the model innovation variance

Details

See section 4.4 in the referenced book

Value

numeric vector of the (real-valued) spectral density values

30 psd_tvarma12

References

P. J. Brockwell and R. Davis (1996) Time Series: Theory and Methods (Second Edition)

psd_tvarma12

time-varying spectral density function of the tvARMA(1,2) processes for illustrations

Description

time-varying spectral density function of the tvARMA(1,2) processes for illustrations

Usage

```
psd_tvarma12(
  rescaled_time,
  freq,
  dgp = NULL,
  a1 = function(u) {
     rep(0, length(u))
 },
 b1 = function(u) {
     rep(0, length(u))
 },
 b2 = function(u) {
     rep(0, length(u))
)
```

Arguments

a1, b1, b2

rescaled_time, freq dgp

numeric vectors forming a rectangular grid on which the tv-PSD is evaluated.

optional: the tv-ARMA models demonstrated in section 4.2 of Tang et al. (2023). Should be chosen from "LS1", "LS2" and "LS3". See section Details.

If dgp is not supplied, these arguments can be used to specify customized tv-ARMA process (up to order(1,2)). See Details. rescaled_time must be in [0,1]and freq must be in $[0, \pi]$.

Details

See sim_tvarma12 for the precise definition of a tvARMA(1,2) process. The time-varying spectral density function of this process is defined as

$$f(u,\lambda) = \frac{1}{2\pi} \frac{1 + b_1^2(u) + b_2^2(u) + 2b_1(u)(b_2(u) + 1)\cos(\lambda) + 2b_2(u)\cos(2\lambda)}{1 + a_1^2(u) - 2a_1(u)\cos(\lambda)}, \quad (u,\lambda) \in [0,1] \times [0,\pi],$$

psd_varma 31

where u is called rescaled time and λ is called frequency.

For dgp = "LS1", it is a tvMA(2) process (MA order is 2) with

$$a_1(u) = 0, b_1(u) = 1.122(1 - 1.178\sin(\pi/2u)), b_2(u) = -0.81.$$

For dgp = "LS2", it is a tvMA(1) process (MA order is 1) with

$$a_1(u) = 0, b_1(u) = 1.1\cos(1.5 - \cos(4\pi u)), b_2(u) = 0.$$

For dgp = "LS3", it is a tvAR(1) process (MA order is 0) with

$$a_1(u) = 1.2u - 0.6, b_1(u) = 0, b_2(u) = 0.$$

Value

a matrix of dimension length(rescaled_time) by length(freq).

References

Tang et al. (2023) Bayesian nonparametric spectral analysis of locally stationary processes ArXiv preprint <arXiv:2303.11561>

Examples

```
## Not run:
res_time <- seq(0, 1, by = 0.005); freq <- pi*seq(0, 1, by = 0.01)
true_tvPSD <- psd_tvarma12(rescaled_time = res_time, freq = freq, dgp = "LS2")
plot(true_tvPSD)
## End(Not run)</pre>
```

psd_varma

VARMA(p,q) spectral density function

Description

Evaluate the VARMA(p,q) spectral density at some frequencies freq in [0,pi). Note that no test for model stationarity is performed.

Usage

```
psd_varma(
   freq,
   ar = matrix(nrow = nrow(Sigma), ncol = 0),
   ma = matrix(nrow = nrow(Sigma), ncol = 0),
   Sigma
)
```

32 rmvnorm

Arguments

freq	numeric vector	of frequencies	to evaluate the p	sd , $0 \le freq < pi$
	1101110110 / 00001	or medicine	ro continue in p	50, 0 1 110q 1p1

ar autoregressive coeffient matrix (d times p*d) of VARMA model, defaults to

empty VAR component

ma moving average coefficient matrix (d times p*d) of VARMA model, defaults to

empty VAR component

Sigma positive definite innovation covariance matrix (d times d)

Details

See section 11.5 in the referenced book

Value

an array containing the values of the varma psd matrix at freq

References

P. J. Brockwell and R. Davis (1996) Time Series: Theory and Methods (Second Edition)

rmvnorm

Simulate from a Multivariate Normal Distribution

Description

Produces one or more samples from the specified multivariate normal distribution.

Usage

```
rmvnorm(n, d, mu = rep(0, d), Sigma = diag(d), ...)
```

Arguments

n sample size
d dimensionality
mu mean vector
Sigma covariance matrix

... further arguments to be parsed to

Details

This is a simple wrapper function based on myrnorm, to be used within sim_varma

Value

If n=1 a vector of length d, otherwise an n by d matrix with one sample in each row.

scree_type_ar 33

Negative log AR likelihood values for scree-type plots

Description

(Approximate) negative maximum log-likelihood for for different autoregressive orders to produce scree-type plots.

Usage

```
scree_type_ar(data, order.max, method = "yw")
```

Arguments

data numeric vector of data

order.max maximum autoregressive order to consider

method character string giving the method used to fit the model, to be forwarded to

stats::ar

Details

By default, the maximum likelihood is approximated by the Yule-Walker method, due to numerical stability and computational speed. Further details can be found in the simulation study section in the referenced paper.

Value

a data frame containing the autoregressive orders p and the corresponding negative log likelihood values n11

References

C. Kirch et al. (2018) Beyond Whittle: Nonparametric Correction of a Parametric Likelihood With a Focus on Bayesian Time Series Analysis Bayesian Analysis doi:10.1214/18-BA1126>

Examples

```
## Not run:
###
### Interactive visual inspection for the sunspot data
###
data <- sqrt(as.numeric(sunspot.year))
data <- data <- data - mean(data)
screeType <- scree_type_ar(data, order.max=15)</pre>
```

34 sim_tvarma12

```
# Determine the autoregressive order by an interactive visual inspection of the scree-type plot
plot(x=screeType$p, y=screeType$nll, type="b")
p_ind <- identify(x=screeType$p, y=screeType$nll, n=1, labels=screeType$p)
print(screeType$p[p_ind])
## End(Not run)</pre>
```

sim_tvarma12

simulate from the tvARMA(1,2) process for illustration

Description

simulate from the tvARMA(1,2) process for illustration

Usage

```
sim_tvarma12(
  len_d,
  dgp = NULL,
  ar_order = 1,
  ma_order = 2,
  a1 = NULL,
  b1 = NULL,
  b2 = NULL,
  innov_distribution = NULL,
  wn = NULL
)
```

Arguments

len_d

a positive integer indicating the length of the simulated process.

dgp

optional: the tv-ARMA models demonstrated in section 4.2 of Tang et al. (2023). Should be chosen from "LS1", "LS2" and "LS3". See section Details.

ar_order, ma_order, a1, b1, b2

If dgp is not supplied, these arguments can be used to specify customized tv-ARMA process (up to order(1,2)). See details.

innov_distribution

optional: the distributions of innovation used in section 4.2.2 of Tang et al. (2023). Should be chosen from "a", "b", "c". "a" denotes standard normal distribution, "b" indicates standardized Student-t distribution with degrees of freedom 4 and "c" denotes standardized Pareto distribution with scale 1 and shape 4.

wn

If innov_distribution is not specified, one may supply its own innovation sequence. Please make sure the length of wn is at least the sum of len_d and the MA order of the process. If ma_order is specified, then MA order is exactly ma_order. If dgp is specified, the MA order of "LS1", "LS2" and "LS3" can be found in section Details below.

sim_tvarma12 35

Details

This function simulates from the following time-varying Autoregressive Moving Average model with order (1,2):

$$X_{t,T} = a_1(t/T)X_{t-1,T} + w_t + b_1(t/T)w_{t-1} + b_2(t/T)w_{t-2}, \quad t = 1, 2, \dots, T,$$

where T is the length specified and $\{w_t\}$ are a sequence of i.i.d. random variables with mean 0 and standard deviation 1.

For dgp = "LS1", it is a tvMA(2) process (MA order is 2) with

$$a_1(u) = 0, b_1(u) = 1.122(1 - 1.178\sin(\pi/2u)), b_2(u) = -0.81.$$

For dgp = "LS2", it is a tvMA(1) process (MA order is 1) with

$$a_1(u) = 0, b_1(u) = 1.1\cos(1.5 - \cos(4\pi u)), b_2(u) = 0.$$

For dgp = "LS3", it is a tvAR(1) process (MA order is 0) with

$$a_1(u) = 1.2u - 0.6, b_1(u) = 0, b_2(u) = 0.$$

Value

a numeric vector of length len_d simulated from the given process.

References

Tang et al. (2023) Bayesian nonparametric spectral analysis of locally stationary processes ArXiv preprint <arXiv:2303.11561>

Examples

```
## Not run:
sim_tvarma12(len_d = 1500,
dgp = "LS2",
innov_distribution = "a") # generate from LS2a
sim_tvarma12(len_d = 1500,
dgp = "LS2",
wn = rnorm(1502)) # again, generate from LS2a
sim_tvarma12(len_d = 1500,
ar\_order = 0,
ma\_order = 1,
b1 = function(u)\{1.1*cos(1.5 - cos(4*pi*u))\},
innov_distribution = "a") # again, generate from LS2a
sim_tvarma12(len_d = 1500,
ar_order = 0,
ma_order = 1,
b1 = function(u)\{1.1*cos(1.5 - cos(4*pi*u))\},
```

36 sim_varma

```
wn = rnorm(1502)) # again, generate from LS2a
## End(Not run)
```

sim_varma

Simulate from a VARMA model

Description

Simulate from a Vector Autoregressive Moving Average (VARMA) model. Note that no test for model stationarity is performed.

Usage

```
sim_varma(model, n, d, rand.gen = rmvnorm, burnin = 10000, ...)
```

Arguments

model	A list with component ar and/or ma giving the VAR and VMA coefficients respectively. An empty list gives an $VARMA(0,0)$ model, that is white noise.
n	sample size
d	positive integer for the dimensionality
rand.gen	random vector generator, function of type rand.gen(n, d,)
burnin	length of burnin period (initial samples that are discarded)
	further arguments to be parsed to rand.gen

Value

If n=1 a vector of length d, otherwise an n by d matrix with one sample in each row.

See Also

arima.sim to simulate from univariate ARMA models

Examples

```
## Not run:
# Example: Draw from bivariate normal VAR(2) model
ar <- rbind(c(.5, 0, 0, 0), c(0, -.3, 0, -.5))
Sigma <- matrix(data=c(1, .9, .9, 1), nrow=2, ncol=2)
x <- sim_varma(n=256, d=2, model=list(ar=ar))
plot.ts(x)
## End(Not run)</pre>
```

summary.bdp_dw_result Summary method for bdp_dw_result class

Description

Summary method for bdp_dw_result class

Usage

```
## S3 method for class 'bdp_dw_result'
summary(object, ...)
```

Arguments

```
object of class bdp_dw_result
... not in use
```

summary.gibbs_psd

Summary method for gibbs_psd class

Description

Summary method for gibbs_psd class

Usage

```
## S3 method for class 'gibbs_psd'
summary(object, ...)
```

Arguments

object of class gibbs_psd ... not in use

Index

```
* package
                                                psd_varma, 31
    beyondWhittle-package, 2
                                                rmvnorm, 32
acf2AR, 26
                                                scree_type_ar, 33
ar, 33
                                                sim_tvarma12, 30, 34
arima.sim, 36
                                                sim_varma, 32, 36
ARMAacf, 26
                                                summary.bdp_dw_result, 37
bayes_factor, 3
                                                summary.gibbs_psd, 37
bayes_factor.bdp_dw_result, 4
bdp_dw_bayes_factor_k1, 4
bdp_dw_est_post_stats, 5
bdp_dw_mcmc, 4, 5
bdp_dw_mcmc_params_gen, 5
bdp_dw_prior_params_gen, 6
beyondWhittle (beyondWhittle-package), 2
beyondWhittle-package, 2
fourier_freq, 7
gibbs_ar, 2, 8
gibbs_bdp_dw, 3, 10
gibbs_np, 3, 14
gibbs_npc, 3, 16
gibbs_var, 3, 20
gibbs_vnp, 3, 22
local_moving_FT_zigzag, 25
mvrnorm, 32
na.interp, 28
pacf_to_ar, 25
plot.bdp_dw_result, 26
plot.bdp_dw_tv_psd, 27
plot.gibbs_psd, 28
print.bdp_dw_result, 28
print.gibbs_psd, 29
psd_arma, 29
psd_tvarma12, 30
```