

Genome Survey Report

Bioinformatics Center

May 6, 2016

CONTENTS

1 DESCRIPTION OF WORKFLOW	1
1.1 Pipeline of Experiment	1
1.2 Pipeline of Bioinformatics Analysis	1
2 BIOINFORMATICS RESULT	3
2.1 Background	3
2.2 Data statistics	3
2.3 17-mer analyses and genome size evaluation	3
2.4 Result of Assembly	5
2.5 GC-content and Sequencing depth analysis	5
3 DATA DOWNLOADING	7
4 CONTACT US	8

1 DESCRIPTION OF WORKFLOW

1.1 Pipeline of Experiment

The pipeline of the experiment is illustrated in Figure 1.1 bellow:

Figure 1.1 Pipeline of experiment.After the DNA sample(s) was(were) delivered, we did a sample quality test first. Then we used this(those) qualified DNA sample(s) to construct BS library, and we did a library quality test. At last, the qualified BS library would be used for sequencing

1.2 Pipeline of Bioinformatics Analysis

The pipeline of the Bioinformatics Analysis is illustrated in Figure 1.2 bellow:

华大基因 Premier Scientific Partner

Figure 1.2 Pipeline of genome survey. When got the raw data, we filtered it first to get high quality reads. We used those clean data to do K-mer analysis and heterozygous simulation. Then we assembled them using *SOAP de novo* software. We got the gc depth distribution by *SOAP aligner* result. After all, we known the basic characteristics of the genome sequence and write the survey report.

2 BIOINFORMATICS RESULT

2.1 Background

a. Species name: Ostrea lurida

b. Evaluate Genome size: 500 Mb

c. Designated reference sequences: No

2.2 Data statistics

Table 2.2.1 Statistics of Raw Data

Lib ID	Insert	Read	Data(Mb)	Sequence
	Size(bp)	Length(bp)		Depth(X)
wHAIPI023992-37	500	150	18375.9423	36.7519
wHAMPI023991-66	800	150	17626.7775	35.253555
wHAXPI023905-96	300	150	13181.6286	26.3633
Total	-	150	49184.3484	98.3687

This batch of sequencing produced 53.46GB raw data. After low quality reads filtering, total 49.18 Gb data was used for further analysis, if the genome size is estimated to be 500 Mb in previous experiment, then the sequencing depth of filter data is expected to be 98.3687-fold.

2.3 17-mer analyses and genome size evaluation

A K-mer refers to an artificial sequence division of K nucleotides. A raw sequencing read with L bp contains (L-K+1) K-mers if the length of each K-mer is K bp. The frequency of each K-mer can be calculated from the raw genome sequencing reads. The K-mer frequencies along the sequencing depth gradient follow a Poisson distribution in a given data set. During deduction, the genome size $G=K_num/Peak_depth$, where the K_num is the total number of K-mer, and $Peak_depth$ is the expected value of K-mer depth. Typically, K=17.

Figure 2.3.1 17-mer depth distribution

Table 2.3.1 17-mer Data statistics

K	K-mer_num	Peak_depth	Genome Size	Used Bases	Used Reads	X
17	43675081228	23	1898916575	4889001630	325933442	25.7463

Total 48.89 Gb data was retained for 17-mer analysis .the 17-mer frequency distribution derived from the sequencing reads was plotted in Fig1, the peak of the 17-mer distribution is about 23, and the total K-mer count is 43675081228, then the genome size can be estimated (by formula: Genome Size=K-mer_num/Peak_depth) as 1898.92 Mb.

If the heterozygous rate is higher, then a small peak will be presented at 1/2 of Peak_depth. So this K-mer analysis can be used to roughly determine the

华大基因 Premier Scientific Partner

heterozygous rate of a given genome.

Also, this distribution can be used to determine the repeat content of the genome. If this genome contains high proportion of repeat, the distribution will display a fat tail which indicate more than expect proportion of the genome have a high sequencing depth which may due to sequence similarly.

Conclusion: Genome size is 1898.92 Mb.

2.4 Result of Assembly

Table 2.4.1 The result of assembly (using the data of 49.18G)

	5 (,		
	Scat	ffold	Contig		
	Size(bp)	Number	Size(bp)	Number	
max_len	130073		27058		
N10	13454	4059	5036	8769	
N20	8938	11277	3328	24377	
N30	6467	21567	2393	46798	
N40	4846	35506	1773	77428	
N50	3635	54072	1315	118652	
N60	2673	79034	960	174535	
N70	1883	113615	666	252923	
N80	1183	165270	401	374545	
N90	489	261507	165	616112	
Total Size	776306190		627311244		
Total NumberNumber(>=100bp)	765755		1135869		
Total Number(>=2kb)	107343		63776		
GC_rate	0.2	295	0.358		

Conclusion: This is a initial version of assembly without gap filling, due to the length of contig N50 is short than expected.

2.5 GC-content and Sequencing depth analysis

Figure 2.5.1 Distribution of GC depth.The x-axis represents as GC content; the y-axis represents the average depth. We used 10 kb non-overlapping sliding windows to calculate the GC content and average depth among the windows.

The distribution of GC content versus sequencing depth will provide an eye about the sequencing bias or contamination. Usually, the genomic region with high or low GC content will possess a low sequencing depth compare to median GC content region, if the distribution of a given genome project is different from the expected pattern, it may indicate sequencing bias of contamination. If predicted to be contaminated, then we can eliminate the polluted reads by aligned the reads against bacteria, virus and fungous database.

3 DATA DOWNLOADING

Decompress the files

Some of the documents have been compressed under Linux environment as *.gz, which can be decompressed by the following methods:

Unix/Linux user: gzip -d *.gz Windows user: winRAR Mac user: Shell : gzip -d *.gz

Some of the directories have been packed under Linux environment as *.tar, which can be unpacked by the following methods:

Unix/Linux user: tar -xvf *.tar Windows user: winRAR Mac user: Shell: tar -xvf *.tar

FTP directory structure

```
|-- Assembly
| |-- README.txt
| |-- Clean Data
| |-- lib_id_1.fq.gz.clean.dup.clean.gz
| |-- lib_id_2.fq.gz.clean.dup.clean.gz
| |-- Assembly Result
| |-- Ostrea_lurida.scafSeq
| |-- Assembly Evaluation
| |-- Ostrea_lurida.GC_content_vs_depth.png
```

Figure 5.1 FTP directory structure

4 CONTACT US

Service Hotline: 400-706-6615

Customer Service: customer@genomics.com.cn

Technical Support: tech@genomics.com.cn

Complaint Hotline: 010-80481175(Beijing) 0755-25273291(Shenzhen)