Symmetry to create classifications

Symmetry operators

Symmetry operations/elements

- A rotation, reflection, or translation that
 - brings the lattice into self-coincidence
 - preserves distances between lattice points
- A rotation θ about an axis is called *n*-fold, where $n = \frac{360}{\theta}$
 - Only n = 1, 2, 3, 4, and 6 compatible with translational symmetry
 - Diad, triad, tetrad, and hexad
- Inversion (denoted as $\bar{1}$) \rightarrow (x, y, z) to $(\bar{x}, \bar{y}, \bar{z})$
- Reflection $(\bar{2})$ is a combination of inversion and a diad

Symmetry operators as matrices

$$D_{ij} = \delta_{ij}\cos\theta - \varepsilon_{ijk}n_k\sin\theta + (1 - \cos\theta)n_in_j$$

$$\delta_{ij} = 0, i \neq j$$
$$= 1, i = j$$

Problem

Determine the rotation matrix for the following:

- 6-fold rotation along a_3
- 2-fold rotation along $a_1 + a_3$

Practice problem

Show that a 5-fold rotation axis is inconsistent with the definition of a lattice

The Bravais Lattices

2D Bravais Nets

3D Space lattices - Development and mathematical operations

- Concept of the unit cell
 - Primitive vs. Non-primitive

Lattice properties

- Effect of adding symmetry elements
 - Distinct possibilities
 - Crystal systems

Additional translation symmetry – centering

• Illustrate with 2-D lattice or net

The most general net – Oblique net

$$(a_1, a_2, \alpha_3)$$

 $a_1 \neq a_2, \alpha_3$ not special value

Primitive vs. Non-primitive

Primitive vs. Non-primitive

Additional Lattice points

Where can we put additional lattice points?

Additional Lattice points

Where can we put additional lattice points?

Additional Lattice points

Where can we put additional lattice points?

lattice, choose it.

Problem

Show that an arrangement of points in 2-D, which on a cursory glance, you identify as *tC*, is not a new lattice.

The space lattice

01

Move on to 3 dimensions

02

Introduce new rotational symmetry elements

- Relationships between lattice parameters
- Special values of angles

03

Introduce new translational symmetry

 Additional lattice points in the unit cell

Additional Lattice points in 3-D

Base-centering:
(A, B, or C -centered)

$$\vec{t} \Rightarrow \vec{t} + \frac{(\vec{a_2} + \vec{a_3})}{2}$$
 or

$$\vec{t} \Rightarrow \vec{t} + \frac{(\vec{a_1} + \vec{a_3})}{2}$$
 or

$$\vec{t} \Rightarrow \vec{t} + \frac{(\vec{a_1} + \vec{a_2})}{2}$$

Additional Lattice points in 3-D

Body-centering (Innenzentriert)

$$\vec{t} \Rightarrow \vec{t} + \frac{(\vec{a_1} + \vec{a_2} + \vec{a_3})}{2}$$

Additional Lattice points in 3-D

Face-centering:
3 additional sites (Face)

$$\vec{t} \Rightarrow \vec{t} + \frac{(\vec{a_2} + \vec{a_3})}{2}$$
 and

$$\vec{t} \Rightarrow \vec{t} + \frac{(\vec{a_1} + \vec{a_3})}{2}$$
 and

$$\vec{t} \Rightarrow \vec{t} + \frac{(\vec{a_1} + \vec{a_2})}{2}$$

Bravais Lattice	Parameters	Simple (P)	Volume Centered (I)	Base Centered (C)	Face Centered (F)
Triclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} \neq \alpha_{23} \neq \alpha_{31}$	Ш			
Monoelinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{23} = \alpha_{31} = 90^{\circ}$ $\alpha_{12} \neq 90^{\circ}$				
Orthorhombic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^\circ$				
Tetragonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Trigonal	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} \le 120^\circ$	\$			
Cubic	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$		M		
Hexagonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = 120^\circ$ $\alpha_{23} = \alpha_{34} = 90^\circ$				

Can we always use the primitive unit cell?

Can we always use the primitive unit cell?

Iso-symmteric Primitive Unit Cell

Wigner-Seitz cell

Region of space closer to a lattice point than to any other lattice point

Crystalline Materials

Standardized way to describe lattices

Symmetry to create classifications

- Mathematical techniques
 - Unambiguous and clear description
 - Rules and tools to perform crystallographic computations

$$u \equiv u_1$$

$$v \equiv u_2$$

$$w \equiv u_3$$

$$\tau = \{\vec{t} \mid \vec{t} = u\vec{a} + v\vec{b} + w\vec{c}\}\$$
$$u, v, w \in \mathbb{Z}$$

$$\vec{t} = u_i \mathbf{a_i}$$

$$\vec{a} \equiv a_1$$

$$\vec{b} \equiv a_2$$

$$\vec{c} \equiv a_3$$

Notation for lattice vectors

Working in real space

Special symbol for directions: [u₁u₂u₃] Also, [uvw] can be used

u₁, u₂, u₃ are smallest integers proportional to components of the translation vector

Directions always defined w.r.t. crystallographic basis

$$\vec{d} = [111] - [200]$$

$$\vec{d} = [111] - [200]$$

$$|\vec{d}| = \sqrt{d \cdot d}$$

$$= \sqrt{([111] - [200]) \cdot ([111] - [200])}$$

Distance between two lattice points

$$\mathbf{q} = q_1 \mathbf{a_1} + q_2 \mathbf{a_2} + q_3 \mathbf{a_3}$$

 $\mathbf{p} = p_1 \mathbf{a_1} + p_2 \mathbf{a_2} + p_3 \mathbf{a_3}$

$$d^2 = (\mathbf{q} - \mathbf{p}) \cdot (\mathbf{q} - \mathbf{p})$$

$$(\mathbf{q} - \mathbf{p}) \cdot (\mathbf{q} - \mathbf{p})$$

$$(\mathbf{q} - \mathbf{p}) \cdot (\mathbf{q} - \mathbf{p}) = (q_1 - p_1 \quad q_2 - p_2 \quad q_3 - p_3) \begin{pmatrix} \mathbf{a_1} \cdot \mathbf{a_1} & \mathbf{a_1} \cdot \mathbf{a_2} & \mathbf{a_1} \cdot \mathbf{a_3} \\ \mathbf{a_2} \cdot \mathbf{a_1} & \mathbf{a_2} \cdot \mathbf{a_2} & \mathbf{a_2} \cdot \mathbf{a_3} \\ \mathbf{a_3} \cdot \mathbf{a_1} & \mathbf{a_3} \cdot \mathbf{a_2} & \mathbf{a_3} \cdot \mathbf{a_3} \end{pmatrix} \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \\ q_3 - p_3 \end{pmatrix}$$

$$(\mathbf{q} - \mathbf{p}) \cdot (\mathbf{q} - \mathbf{p}) = (q_1 - p_1 \quad q_2 - p_2 \quad q_3 - p_3) \begin{pmatrix} \mathbf{a_1} \cdot \mathbf{a_1} & \mathbf{a_1} \cdot \mathbf{a_2} & \mathbf{a_1} \cdot \mathbf{a_3} \\ \mathbf{a_2} \cdot \mathbf{a_1} & \mathbf{a_2} \cdot \mathbf{a_2} & \mathbf{a_2} \cdot \mathbf{a_3} \\ \mathbf{a_3} \cdot \mathbf{a_1} & \mathbf{a_3} \cdot \mathbf{a_2} & \mathbf{a_3} \cdot \mathbf{a_3} \end{pmatrix} \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \\ q_3 - p_3 \end{pmatrix}$$

Real space metric tensor

$$(\mathbf{q} - \mathbf{p}) \cdot (\mathbf{q} - \mathbf{p}) = (q_1 - p_1 \quad q_2 - p_2 \quad q_3 - p_3) \begin{pmatrix} \mathbf{a_1} \cdot \mathbf{a_1} & \mathbf{a_1} \cdot \mathbf{a_2} & \mathbf{a_1} \cdot \mathbf{a_3} \\ \mathbf{a_2} \cdot \mathbf{a_1} & \mathbf{a_2} \cdot \mathbf{a_2} & \mathbf{a_2} \cdot \mathbf{a_3} \\ \mathbf{a_3} \cdot \mathbf{a_1} & \mathbf{a_3} \cdot \mathbf{a_2} & \mathbf{a_3} \cdot \mathbf{a_3} \end{pmatrix} \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \\ q_3 - p_3 \end{pmatrix}$$

Real space metric tensor

$$d^{2} = (q - p)_{i} g_{ij} (q - p)_{j}$$

Uses of real space metric tensor

Computation of length of a vector

Computation of angle between lattice directions

Computation of the distance between atoms

Computation of the angle between atomic bonds

Problem

- A crystal has lattice parameters: (3,3,3,68°,68°,68°)
 - Atoms are present at (½, 1/3, ¼) and (1/3, ½, ¾). Compute distance between the two atoms.
 - Compute length of the body diagonal.

• What is the angle between the [101] and [201] directions.