Transmissão de Vídeo em Tempo Real em Redes AD HOC

Anderson Andrei da Silva

IME - USP anderson.andrei.silva@usp.br

Patrick Abrahão Menani

IME - USP patrick.menani@usp.br

Roger Immich

UNICAMP roger@lrc.ic.unicamp.br

Alfredo Goldman

IME - USP gold@ime.usp.br

- Introdução
- Cenário das simulações
- Resultados obtidos
- Conclusão

TRANSMISSÃO DE VÍDEO EM TEMPO REAL EM REDES AD HOC

Cenário das simulações - ambiente de trabalho

Figura: https://omnetpp.org/

INET Framework

An open-source OMNeT++ model suite for wired, wireless and mobile networks. INET evolves via feedback and contributions from the user community.

Figura: https://inet.omnetpp.org/

Cenário das simulações

- HostA e B inicialmente fixados
- Nº de dispositivos:

o Pouco denso : 50

o Denso: 100

Muito denso: 150

Velocidade: 3 e 6 mps

Mobilidade: MassMobility

Duração do vídeo: 90 s

- Protocolos
 - Transmissão

TCP, UDP

Técnica DASH

- Roteamento
 - AODV

Cenário das simulações

- HostA e B inicialmente fixados
- Nº de dispositivos:

o Pouco denso : 50

Denso: 100

Muito denso: 150

Velocidade: 3 e 6 mps

Mobilidade: MassMobility

Duração do vídeo: 90 s

- Protocolos
 - Transmissão

TCP, UDP

Técnica DASH

- Roteamento
 - AODV

DASH - Cenário : muito denso e velocidade : 6m/s

Muito denso e 6 m/s

Média: 5.07 Desvio padrão: 5.13

UDP Muito e 6 m/s

TCP

Média: 2.23

Desvio padrão: 1.67

DASH

Muito denso e 6 m/s

Média: 5.55

Desvio padrão: 4.97

TCP

Pouco denso e 3 m/s

Média: 3.16

Desvio padrão: 4.96

UDP

Pouco denso e 3 m/s

Média: 0.49

Desvio padrão: 0.55

DASH

Pouco denso e 3 m/s

Média: 5.53

Desvio padrão: 7.56

Resultado dos experimentos

Tabela 1. UDP, TCP, DASH atraso na entrega dos pacotes

 UDP apresenta menor atraso na entrega dos pacotes

	obe, ree, basin attaso na entrega dos pacotes							
Parâmetros	Velocio	lade dos dis	p.: 3m/s	Velocidade dos disp. : 6m/s				
	50 disp.	100 disp.	150 disp.	50 disp.	100 disp.	150 disp.		
			UDP					
Média	0.49	0.60	0.41	0.94	nan	2.23		
Desvio padrão	0.55	0.81	0.40	1.14	nan	1.67		
	i.		TCP	Ů:				
Média	3.16	2.91	2.20	3.83	2.77	5.07		
Desvio padrão	4.96	3.59	1.90	5.91	2.81	5.13		
			DASH					
Média	5.53	3.82	3.66	5.84	4.98	5.55		
Desvio padrão	7.56	3.65	3.12	7.44	5.84	4.97		
	A							

IIDP TCP DASH atraso na entrega dos nacotes

Resultado dos experimentos

Tabela 2. UDP, TCP, DASH requisição e perda de pacotes

- UDP apresenta maior perda de pacotes
- Atraso na entregaxPerda de pacotes
- Fluxo de dados

	UDP, TC	P, DASH req	uisição e p	erda de par	cotes	
	Velocio	dade dos dis	p.: 3m/s	Velocidade dos disp. : 6m/s		
Parâmetros	50 disp.	100 disp.	150 disp.	50 disp.	100 disp.	150 disp.
		Ul	DP			
Pacotes requisitados	89.8	90.00	90.00	89.90	80.90	89.90
Perda de pacotes (%)	46.00	54.22	33.90	67.40	51.91	60.62
		TO	CP			
Pacotes requisitados	123.20	135.90	166.20	126.20	150.30	88.10
Perda de pacotes (%)	3.25	2.94	2.41	3.17	2.66	4.54
		DA	\SH			
Pacotes requisitados	103.30	145.20	145.9	103.40	122.20	108.40
Perda de pacotes (%)	6.77	4.27	4.73	6.38	6.05	7.01

Resultado dos experimentos

Tabela 3. UDP, TCP, DASH total de KiB recebidos

Tamanho dos pacotes:

TCP e UDP: 60KiB DASH próximo inicialmente, adaptável ao longo da simulação

- TCP envia mais dados
 - o Tolerância a falhas ?
- DASH envia mais que o UDP
- Total recebidoXAtraso na entrega

		UDP, TCP, I	DASH total o	le KiB rece	bidos		
	Velocid	ade dos dis	p. : 3m/s	Velocidade dos disp.: 6m/s			
Parâmetros	50 disp.	100 disp.	150 disp.	50 disp.	100 disp.	150 disp.	
			UDP	<i>*</i>			
Média (KiB)	2841.8	2414.0	3486.3	1631.6	2220.2	1997.6	
Desvio Padrão	1084.5	1319.0	833.9	962.7	1275.4	1040.4	
			TCP				
Média (KiB)	14281.6	15769.5	19320.3	14632.8	17457.0	14436.9	
Desvio Padrão	7463.3	8435.2	9794.2	9292.4	9983.0	0	
			DASH	,			
Média (KiB)	6071.7	9056.5	8854.3	6948.8	7412.9	7064.4	
Desvio Padrão	2387.6	3254.0	1743.9	3427.7	3193.6	1984.4	

Conclusão

- UDP garante menor latência na entrega dos pacotes em relação ao TCP e o DASH, que mantém essa taxa próxima.
- TCP envia mais KiB no total, mas ainda não sabemos o quanto disso são as informações relevantes para a reprodução correta do vídeo.
- O DASH entrega uma quantidade razoável de KiB, com um atraso similar ao TCP, mas cumpre com seu papel de variar a qualidade do vídeo quando necessário, garantindo um fluxo de dados contínuo, considerado um aspecto importante para a transmissão de vídeo em tempo real.

Obrigado!

Transmissão de Vídeo em Tempo Real em Redes AD HOC

Anderson Andrei da Silva

IME - USP anderson.andrei.silva@usp.br

Patrick Abrahão Menani

IME - USP patrick.menani@usp.br

Roger Immich

UNICAMP roger@lrc.ic.unicamp.br

Alfredo Goldman

IME - USP gold@ime.usp.br

Referências

- Adobe Digital Index. A look at the 2017 adobe mobile maturity survey. Technical report, Adobe, 2017.
- [2] Cisco. White paper: Cisco VNI forecast and methodology, 2016-2021. Technical report, Cisco, September 2017.
- [3] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: Concepts, applications and issues. In *Proceedings of the 2015 Workshop on Mobile Big Data*, Mobidata '15, pages 37–42. ACM, New York, NY, USA, 2015.
- [4] Omnet++, https://www.omnetpp.org/.
- [5] Inet framework, https://inet.omnetpp.org/.
- [6] Roger Immich, Eduardo Cerqueira, and Marilia Curado. Mechanisms for Resilient Video Transmission. PhD thesis, University of Coimbra. http://www.lrc.ic.unicamp.br/roger/phdThesis.pdf, October 2017.

Referências

- [7] Roger Immich, Eduardo Cerqueira, and Marilia Curado. Efficient high-resolution video delivery over vanets. Wireless Networks, Feb 2018.
- [8] Mpeg-dash vs. apple hls vs. microsoft smooth streaming vs. adobe hds.
- [9] Hong Yao, Changmin Bai, Deze Zeng, Qingzhong Liang, and Yuanyuan Fan. Migrate or not? exploring virtual machine migration in roadside cloudlet-based vehicular cloud. Concurr. Comput.: Pract. Exper., 27(18):5780–5792, December 2015.
- [10] Rong Yu, Yan Zhang, Stein Gjessing, W. Xia, and K. Yang. Toward cloud-based vehicular networks with efficient resource management. *IEEE Network Magazine*, 27(5):48– 55, 2013.
- [11] Navarro joaquin github, https://github.com/navarrojoaquin/adaptive-video-tcp-omnet.
- [12] Vehicularnetworksic github, https://github.com/andersonandrei/vehicularnetworksic/.

TCP - Cenário: pouco denso e velocidade: 3m/s

Média: 3.16 Desvio padrão: 4.96

UDP - Cenário: pouco denso e velocidade: 3m/s

InterSCity
Future Internet for Smart Cities

TCP Pouco denso e 3 m/s

Média: 3.16 Desvio padrão: 4.96

Média: 0.49 Desvio padrão: 0.55

DASH - Cenário : pouco denso e velocidade : 3m/s

TCP

Pouco denso e 3 m/s

Média: 3.16

Desvio padrão: 4.96

UDP

Pouco denso e 3 m/s

Média: 0.49

Desvio padrão: 0.55

Média: 5.53 Desvio padrão: 7.56

TCP - Cenário : muito denso e velocidade : 6m/s

TCP

Pouco denso e 3 m/s

Média: 3.16

Desvio padrão: 4.96

UDP

Pouco denso e 3 m/s

Média: 0.49

Desvio padrão: 0.55

DASH

Pouco denso e 3 m/s

Média: 5.53

Desvio padrão: 7.56

Média: 5.07 Desvio padrão: 5.13

UDP - Cenário : muito denso e velocidade : 6m/s

TCP Muito denso e 6 m/s

Média: 5.07

Desvio padrão: 5.13

TCP

Pouco denso e 3 m/s

Média: 3.16

Desvio padrão: 4.96

UDP

Pouco denso e 3 m/s

Média: 0.49

Desvio padrão: 0.55

DASH

Pouco denso e 3 m/s

Média: 5.53

Desvio padrão: 7.56

Média: 2.23 Desvio padrão: 1.67