

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Departamento de Engenharia de Computação e Sistemas Digitais

PCS3635 – LABORATÓRIO DIGITAL I

EXPERIÊNCIA 4 – Desenvolvimento de Projeto de Circuitos Digitais em FPGA

Relato da Bancada A3 – Turma 2 – Prof. Reginaldo

Data de Emissão: 27 de Janeiro DE 2025.

Nome: Pedro Henrique Zanato da Costa	Número USP: 13874761	
Nome: Enzo Koichi Jojima	Número USP: 14568285	
Nome: Eduardo Ribeiro do Amparo Rodrigues de Souza	Número USP: 14567346	

1 Introdução

Esta experiência tem como objetivo o estudo de aspectos de projeto de circuitos digitais usando um sinal periódico como entrada de clock e a interface de elementos externos como entrada de dados. O circuito da experiência é baseado no projeto desenvolvido na experiência anterior.

2 DESCRIÇÃO DO PROJETO

A visão conceitual do projeto descreve o desenvolvimento de um sistema digital baseado em Verilog que funciona como um jogo de advinhação, adaptada da experiência

três.

O fluxo de dados, adaptado da experiência anterior, é integrado com a unidade de controle, também adaptada da experiência anterior para formar um sistema cujo funcionamento pode ser descrito pela descrição abaixo. O projeto também conta com síntese do circuito para validações experimentais na FPGA e sua descrição foi dada da seguinte maneira:

"O circuito do sistema digital sequencial inclui um conjunto de 16 dados de 4 bits que é armazenado em uma memória interna, cujos endereços são percorridos por meio de um contador interno. Depois do acionamento do sinal reset, o circuito deve aguardar o início de sua operação até o acionamento do sinal de entrada iniciar.

Depois de iniciar seu funcionamento, o circuito deve aguardar o acionamento de uma das chaves de entrada. A ocorrência desse acionamento deve ser indicada pela saída de depuração db_temjogada. O dado das chaves (jogada realizada) deve ser armazenado pelo circuito e apresentado nos leds de saída e também na saída de depuração db_jogadafeita. Em seguida, deve-se comparar o conteúdo armazenado da entrada de jogada com o respectivo dado da memória e deve-se indicar, na saída de depuração db_igual, o resultado da comparação. Em seguida, o contador interno deve ser incrementado para posicionar o acesso à memória interna para o próximo dado. As saídas de depuração db_contagem e db_memoria indicam, respectivamente, o endereço e o dado armazenado pela memória, ao passo que a saída de depuração db_estado, por sua vez, deve indicar o código do estado vigente da Unidade de Controle em determinado instante do funcionamento do sistema digital. Essas quatro saídas (db_jogadafeita, db_contagem, db_memoria e db_estado) devem ser projetadas para serem exibidas em displays de sete segmentos.

O ciclo de espera pela jogada, armazenamento das chaves, comparação e reposicionamento da memória deve prosseguir enquanto o jogador acertar o dado armazenado na memória e até que todos os 16 dados da memória sejam verificados. Se o jogador acertar todos os dados, o sinal de saída acertou deve ser ativado. Se o jogador errar um dado, o ciclo deve ser imediatamente interrompido, e o sinal de saída errou deve ser ativado. Ao final da operação, o sinal de saída pronto também deve ser ativado. Depois disso, o circuito deve aguardar o próximo acionamento do sinal iniciar. Essas três

saídas (acertou, errou e pronto), quando ativadas, devem permanecer ativadas até o reinício da operação do circuito."

3 DETALHAMENTO DO PROJETO LÓGICO

3.1 Projeto do Fluxo de Dados

O projeto do fluxo de dados apresentado é extremamente similar ao utilizado na experiência anterior. Dessa forma, apresenta-se nesse relatório apenas as alterações e adaptações feitas.

No fluxo de dados dessa experiência, a principal novidade é a inclusão de um detector de borda, que tem a função de sinalizar para a unidade de controle quando uma jogada é feita através de chaves. O sinal de condição jogado para a unidade de controle é denominado **jogada_feita**. Para isso, o sinal do detector é um OR lógico de todos os sinais das chaves, chamado no diagrama de *sinal*. O reset do detector de borda foi deixado em aberto e o circuito funcionou perfeitamente. Apesar disso, o grupo chegou na conclusão de que o sinal de reset do detector poderia ter sido atribuído como ~*sinal*, uma vez que o detector pode resetar quando a jogada deixar de ser feita.

Figura 1: Estrutura interna do fluxo de dados

3.2 Projeto da Unidade de Controle

A lógica de execução do programa foi adaptada da experiência 3, e pode ser resumida pelo bloco de pseudocódigo a seguir:

```
Algoritmo: sistema digital simples modificado
    entradas: iniciar, chaves
    saídas: acertou, errou, pronto, <mark>leds</mark>
    depuração: contagem, memória, estado, <mark>jogadafeita</mark>, igual, <mark>temjogada</mark>
1.
        while (verdadeiro) {
2.
            espera acionamento do sinal iniciar
3.
4.
            inicia circuito com condições iniciais
5.
            while (acertou dado \underline{E} não atingiu o último dado) {
                 espera acionamento das chaves (fazer uma jogada)
6.
7.
                registra entrada da jogada realizada
8.
                 compara jogada realizada com dados armazenados
                 incrementa contador interno
10.
11.
            ativa acertou se acertou todos os dados da memória
12.
            ativa errou se errou um dado
            ativa saída pronto (até reiniciar)
13.
14.
15. }
```

Figura 2: Pseudocódigo da lógica de execução do circuito

A unidade de controle também foi adaptada da experiência anterior. O diagrama a seguir mostra em cores os novos estados propostos para atender às exigências do novo enunciado. Três estados foram adicionados e novas condições para acionamento de sinais de controle e transição de estados foram estabelecidas. Uma alteração em relação ao diagrama é que no estado de preparação, o registrador também é zerado.

Figura 3: Diagrama de estados da unidade de controle

Tabela 1 – Descrição da Unidade de Controle do Sistema

Nome do Estado	Descrição do Estado	Próximo Estado	Condições e Justificativas para a Transição entre Estados	
Inicial	Estado inicial, responsável por zerar o registrador e o contador	Preparação	Quando o iniciar é ativado ele muda de estado na subida de clock. Até lá continua no estado inicial.	
Preparação	Zera o contador e o registrador	Espera jogada	Na próxima subida de clock.	
Espera Jogada	Espera ativação das chaves (sinal jogada_feita)	Registra	Quando jogada_feita é ativado ele muda de estado na subida de clock. Até lá continua no mesmo estado.	
Registra	Registrar o valor das chaves	Comparação	Na próxima subida de clock	
Comparação	Verifica se a contagem terminou e compara o valor do contador e as chaves.	1:Próximo 2:Fim com Acerto 3:Fim com Erro	1: se fimC = 0 e os números comparados são iguais, vai para o estado Próximo na próxima subida de clock 2: se fimC = 1 e os números comparados são iguais vai para o estado Fim com Acerto na próxima subida de clock 3: se os números comparados são diferentes, independente de fimC vai para o estado Fim com Erro na próxima subida de clock	
Próximo	Acrescenta um na contagem do contador	Espera Jogada	Na Próxima subida de clock	
Fim com	Indica o fim	Preparação	Só muda de estado com iniciar	

Nome do	Descrição do	Próximo	Condições e Justificativas para a
Estado	Estado	Estado	Transição entre Estados
Acerto	acertando todos os números, além de levantar a flag acertou		
Fim com Erro	Indica o fim acertando todos os números, além de levantar a flag errou	Preparação	Só muda de estado com iniciar

3.3 Projeto do Sistema Digital

Sinais de Controle: Idem experiência 3.

Sinais de Condição: A novidade agora é o sinal de condição tem_jogada enviado do fluxo de dados à unidade de controle, responsável por ativar a transição de estados de "Espera Jogada" para o estado "Registra", isto é, um indicativo para a unidade de controle de quando a jogada foi feita.

Sinais de Depuração:

- **db_jogadafeita_out**: envidado a um display de 7 segmentos mostrando qual número está sendo jogado pelas chaves.
- db_tem_jogada_out: indica se há jogada ou não. Representa o sinal de depuração do sinal de condição tem_jogada.

Saídas:

 acertou_out, errou_out, pronto e leds. Os leds representam quais chaves estão ativadas, devem mostrar, em binário, o mesmo número mostrado no display de 7 segmentos do sinal de depuração db_jogadafeita_out.

Figura 4: Esquema do circuito completo com RTLView

4 PLANO DE TESTES DO SISTEMA E SIMULAÇÕES

4.1 CENÁRIO DE TESTE 1 - ACERTO DAS 16 JOGADAS

Tabela 2 - Descrição e Resultados Simulados do Cenário de Teste 1

#	Operação	Entradas	Saídas Esperadas	Resultado Simulado OK?
c.i.	Condições Iniciais	reset, iniciar e chaves zerados	errou, acertou, fim e LEDs zerados	<mark>sim</mark>
1	"Resetar" circuito	acionar reset	errou, acertou, fim e LEDs zerados	<mark>sim</mark>
2	Aguardar alguns segundos	reset, iniciar e chaves zerados	errou, acertou, fim e LEDs zerados	<mark>sim</mark>
3	Acionar sinal iniciar	acionar iniciar	errou, acertou, fim e LEDs zerados	sim
4	Acionar primeira entrada (jogada 1)	acionar chave(0)	LED(0) liga	<mark>sim</mark>
5	Acionar segunda entrada (jogada 2)	acionar chave(1)	LED(1) liga	<mark>sim</mark>
6	Acionar terceira entrada (jogada 3)	acionar chave(2)	LED(2) liga	<mark>sim</mark>
7	Acionar quarta entrada (jogada 4)	acionar chave(3)	LED(3) liga	<mark>sim</mark>
8	Acionar quinta entrada (jogada 5)	acionar chave(2)	LED(2) liga	<mark>sim</mark>
9	Acionar sexta entrada (jogada 6)	acionar chave(1)	LED(1) liga	<mark>sim</mark>
10	Acionar sétima entrada (jogada 7)	acionar chave(0)	LED(0) liga	<mark>sim</mark>
11	Acionar oitava entrada (jogada 8)	acionar chave(0)	LED(0) liga	<mark>sim</mark>
12	Acionar nona entrada (jogada 9)	acionar chave(1)	LED(1) liga	sim
13	Acionar 10ª entrada (jogada 10)	acionar chave(1)	LED(1) liga	<mark>sim</mark>
14	Acionar 11ª entrada (jogada 11)	acionar chave(2)	LED(2) liga	<mark>sim</mark>
15	Acionar 12ª entrada (jogada 12)	acionar chave(2)	LED(2) liga	<mark>sim</mark>
16	Acionar 13ª entrada (jogada 13)	acionar chave(3)	LED(3) liga	<mark>sim</mark>
17	Acionar 14ª entrada (jogada 14)	acionar chave(3)	LED(3) liga	<mark>sim</mark>
18	Acionar 15ª entrada (jogada 15)	acionar chave(0)	LED(0) liga	<mark>sim</mark>
19	Acionar 16ª entrada (jogada 16)	acionar chave(2)	LED(2) liga, saídas pronto e acertou ativadas	sim

Observações a Respeito da Tabela:

O cenário de testes apresentado anteriormente aborda o caso em que o jogador acerta todas as 16 jogadas. Esse resultado é indicado pelo sinal de saída *acertou*. Como o clock do sistema opera a uma frequência constante e significativamente mais rápida que a entrada do jogador, cada operação é processada em mais de 10 ciclos de clock. Isso garante que a velocidade das jogadas do jogador não afete o funcionamento do sistema.

Contudo, no desafio isso vai mudar.

Imagens do Primeiro Cenário de Testes (Modelsim):

Figura 5: Imagem do Modelsim Testando o Final do Cenário de Teste 1

4.2 CENÁRIO DE TESTE 2 - ACERTO DAS 3 PRIMEIRAS JOGADAS E ERRO NA 4ª JOGADA

Tabela 3 – Descrição e Resultados Simulados do Cenário de Teste 2

#	Operação	Entradas	Saídas Esperadas	Resultado Simulado OK?
c.i.	Condições Iniciais	reset, iniciar e chaves zerados	errou, acertou, fim e LEDs zerados	<mark>sim</mark>
1	"Resetar" circuito	acionar reset	errou, acertou, fim e LEDs zerados	<mark>sim</mark>
2	Aguardar alguns segundos	reset, iniciar e chaves zerados	errou, acertou, fim e LEDs zerados	<mark>sim</mark>
3	Acionar sinal iniciar	acionar iniciar	errou, acertou, fim e LEDs zerados	sim
4	Acionar primeira entrada (jogada 1)	acionar chave(0)	LED(0) liga	<mark>sim</mark>
5	Acionar segunda entrada (jogada 2)	acionar chave(1)	LED(1) liga	<mark>sim</mark>
6	Acionar terceira entrada (jogada 3)	acionar chave(2)	LED(2) liga	<mark>sim</mark>
7	Acionar quarta entrada (jogada 4)	acionar chave(0)	LED(0) liga, saídas pronto e errou ativadas	sim

Observações a Respeito da Tabela:

Nessa tabela o jogador erra na quarta rodada colocando a chave na posição 0 ao invés da posição 3. Essa jogada incorreta levanta o sinal *errou*, caracterizando assim a "derrota" do jogador.

Imagens do Segundo Cenário de Testes (Modelsim):

Figura 6: Imagem do Modelsim Testando o Cenário de Teste 2

IMPLANTAÇÃO DO PROJETO

Node Name

5.1 PINAGEM DA PLACA FPGA

Direction

Output

Output

Output Output

Output

Output Output

Output

Input

db_memoria[2]

db memoria[0]

db_tem_jogada

iniciar leds[3]

leds[3]
leds[2]
leds[1]
leds[0]
leds[0]
reset

VREF Group Current Strength Differential Pair er Analog Setting: PIN_N1 PIN_P19 B2A_N0 B5A_N0 Output PIN_N1 25 V 12mA (default) 1 (default) chaves[3] 12mA (default) PIN P19 2.5 V Input chaves[2] PIN N19 5B B5B NO PIN N19 2.5 V 12mA (default) chaves[0] Input PIN R22 5A B5A NO PIN R22 2.5 V 12mA (default) 12mA (default) 12mA (default) PIN_N16 5B B5B_NO PIN_N16 db clock PIN L2 Output BZA NO PIN L2 db_ctock

db_ccortagem[6]

db_ccortagem[5]

db_ccortagem[4]

db_ccortagem[3]

db_ccortagem[2] PIN_AA22 PIN_Y21 PIN_AA22 PIN_Y21 Output 4A B4A NO 2.5 V 12mA (default) 1 (default) Output 12mA (default) Output PIN_Y22 PIN_W21 4A B4A NO PIN_Y22 PIN_W21 2.5 V 12mA (default) 1 (default) Output B4A_NO 12mA (default) PIN W22 2.5 V 1 (default) Output 4A B4A NO PIN W22 12mA (default) db_contagem[2]
db_contagem[1]
db_contagem[0]
db_estado[6]
db_estado[5]
db_estado[4] PIN_V21 PIN_U21 B4A_NO B4A_NO PIN_V21 PIN_U21 2.5 V 2.5 V 12mA (default) 12mA (default) 1 (default) 1 (default) 4A Output Output Output PIN W19 44 B4A NO PIN W19 2.5 V 12mA (default) 1 (default) PIN_C2 Output PIN_C1 2A B2A NO PIN C1 12mA (default) 1 (default) db_estado[3] PIN_P14 PIN_T14 B4A_N0 B4A_N0 12mA (default) 12mA (default) PIN_P14 1 (default) PIN_T14 1 (default) 2.5 V Output db_estado[1] Output Output PIN_M8 PIN_N9 38 B3B_N0 B3B_N0 PIN_M8 PIN_N9 2.5 V 2.5 V 12mA (default) 1 (default) 12mA (default) db_igual db_iniciar db_iogada Output PIN_U1 2A B2A NO PIN_U1 2.5 V 12mA (default) 1 (default) PIN_y16 PIN_AB21 B4A_NO B4A_NO PIN_V13 PIN_AB21 12mA (default) 12mA (default) 4A 4A 1 (default) db_jogadafeita[6] 2.5 V 1 (default) Output db_jogadafeita[5]

db_jogadafeita[4]

db_jogadafeita[3] Output Output PIN_AB22 PIN_V14 44 B4A NO PIN_AB22 PIN_V14 2.5 V 2.5 V 12mA (default) 1 (default) Output PIN_Y14 4A B4A NO PIN_Y14 PIN_AA10 2.5 V 12mA (default) 1 (default) db_jogadafeita[2] PIN_AA10 PIN_AB17 4A PIN_AB17 12mA (default) Output B4A_NO 2.5 V 1 (default) db_jogadafeita[0] Output PIN_Y19 PIN_U22 44 B4A_NO B4A_NO PIN_Y19 PIN_U22 2.5 V 2.5 V 12mA (default) 12mA (default) 1 (default) 1 (default) db_memoria[5]
db_memoria[4]
db_memoria[3] PIN_AA17 PIN_AB18 Output PIN_AA17 4A B4A NO 2.5 V 12mA (default) 1 (default) PIN_AB18 PIN_AA18

I/O Standard

Slew Rate

Tabela 4 - Pinagem da Placa FPGA no Pin-Planner do Quartus

I/O Bank

4A

4A

2A

2A

2A

PIN_AA19 PIN_AB20

PIN AA20

PIN_L1

PIN U2

PIN_U13

PIN Y3

PIN_W2 PIN_AA1

PIN AA2

PIN B16

B4A_NO

B4A_NO B4A_NO

B4A NO

B2A NO

B4A_NO

B2A NO

BZA NO

B2A NO

B7A NO

PIN_AA18

PIN_AA19 PIN_AB20

PIN AA20

PIN_L1

PIN U2

PIN Y3

PIN_W2 PIN_AA1

PIN AA2

PIN B16

PIN_U13

2.5 V

2.5 V 2.5 V

2.5 V

2.5 V

2.5 V

2.5 V

2.5 V

2.5 V

2.5 V

12mA (default)

12mA (default) 12mA (default)

12mA (default)

12mA (default)

12mA (default) 12mA (default)

12mA (default)

12mA (default)

12mA (default)

12mA (default)

1 (default)

1 (default) 1 (default)

1 (default)

1 (default)

1 (default)

1 (default)

1 (default)

5.2 ESTRATÉGIA DE MONTAGEM

A síntese do circuito foi feito para a placa usando o Quartus, utilizando os guias disponibilizados pelo professor foi feito a conexão do analog discovery, a Flgura 7 mostra o resultado da montagem. Nela é possível observar os sinais de monitoramento, a seguir descreveremos eles.

Figura 7: Montagem da Experiência

O primeiro display de 7 segmentos da esquerda pra direita(HEX5) mostra o estado atual do programa, ele não possui muita utilidade na nossa aplicação pois os estados mudam muito rápido tornando inviável observá lo bem, mas mesmo assim resolvemos implementá-lo para observarmos se está no estado esperaJogada enquanto jogamos. o segundo display utilizado esta conectado apenas na entrada mais de cima e ele equivale a entrada iniciar negada, portanto na figura o iniciar é igual a zero. O terceiro display(HEX2) equivale ao sinal de depuração jogada feita, sinal da última jogada feita que fica armazenada. O quarto display (HEX1) é o sinal de depuração da memória, que mostra a saída atual da memória e portanto qual a jogada "correta" a ser feita. O quinto display(HEX0) é a contagem de acertos. O primeiro LED também da esquerda para a direita é temJogada(LED9).O segundo é o *clock*(LED8) que está sempre ligado pois é muito rápido.O terceiro(LED7) é o que indica que a saída da memória é o mesmo das chaves. O quarto(LED6) é o *pronto*, que indica o fim do circuito. O quinto(LED5) e o

sexto(LED4) são *acertou* e *errou* respectivamente. Os próximos 4 LEDs são os conectados às saídas das chaves e ficam acesos enquanto a jogada é feita.

5.3 ESTRATÉGIA DE DEPURAÇÃO

Os sinais de depuração estão sendo mostrados na placa conforme especificado na montagem, alguns são LEDs e outros displays de 7 segmentos.

Caso aconteça algum problema, temos como identificá-lo durante os cenários de teste usando os sinais de depuração em conjunto com as saídas. A partir do momento que um problema é identificado temos que buscar a origem do problema testando mais afundo. Caso o problema for lógico, devemos fazer as alterações necessárias no verilog afim de corrigir o problema, e novamente testar o programa primeiramente através de testbench e softwares como o Modelsim. Caso o problema for de montagem temos que montar da forma correta e testar novamente o circuito. Quando implementarmos mudanças no projeto, por causa do desafio ou qualquer outro motivo, devemos refazer as baterias de teste anteriores a fim de garantir que as novas implementações não prejudicaram o funcionamento do que já tinha sido previamente testado.

5.4 Execução Prática do Cenário de Teste 1 – Acerto das 16 jogadas

Replicamos os testes feitos digitalmente e os resultados foram os esperados.

Figura 8: Operação 6, terceiro acerto

Figura 9: Operação 7, quarto acerto

Figura 10: Operação 10, sétimo acerto

5.5 EXECUÇÃO PRÁTICA DO CENÁRIO DE TESTE 2 – ACERTO DAS 3 PRIMEIRAS JOGADAS E ERRO NA 4ª JOGADA

Replicamos os testes feitos digitalmente e os resultados foram os esperados

Figura 11: Operação 7, erro e fim

6 Projeto do Desafio da Experiência

6.1 Descrição do Desafio

O desafio da experiência de hoje é colocar um tempo máximo em que o jogador deve realizar a jogada, esse tempo é de 3 segundos. Caso o jogador não consiga executar a jogada, o jogador toma "timeout".

Para implantarmos isso adicionamos um estado adicional de "tImeout", o programa só vai para esse estado partindo do estado de espera. No estado de espera, com auxílio de um contador de 12 bits, contamos quantos ciclos de clock são necessários para se passar 3 segundos. Então, caso o jogador não realize a jogada, o estado muda para o de timeout e ativa os sinais *fim* e *timeout*.

6.2 Descrição do Projeto Lógico

6.3 VERIFICAÇÃO E VALIDAÇÃO DO DESAFIO

A estratégia de testes implementada foi a de testar o novo circuito com os testes antigos e criar um novo cenário de teste de timeout.

6.3.1 CENÁRIO DE TESTE 1 - ACERTO DAS 16 JOGADAS

Os testes bateram com o que foi previamente testado

6.3.2 CENÁRIO DE TESTE 2 - ACERTO DAS 3 PRIMEIRAS JOGADAS E ERRO NA 4ª JOGADA

Os testes bateram com o que foi previamente testado

6.3.2 CENÁRIO DE TESTE 3 - TIMEOUT NA SEGUNDA JOGADA

Tabela 5 – Descrição e Resultados Simulados do Cenário de Teste 3

#	Operação	Entradas	Saídas Esperadas	Resultado Simulado OK?
c.i.	Condições Iniciais	reset, iniciar e chaves zerados	errou, acertou, timeout, fim e LEDs zerados	<mark>sim</mark>
1	"Resetar" circuito	acionar reset	errou, acertou, timeout, fim e LEDs zerados	<u>sim</u>
2	Aguardar alguns segundos	reset, iniciar e chaves zerados	errou, acertou, timeout, fim e LEDs zerados	<mark>sim</mark>
3	Acionar sinal iniciar	acionar iniciar	errou, acertou, timeout, fim e LEDs zerados	<mark>sim</mark>
4	Acionar primeira entrada (jogada 1)	acionar chave(0)	LED(0) liga	<mark>sim</mark>
5	Aguardar mais de 3 segundos para timeout	reset, iniciar e chaves zerados	timeout e fim ativados	<mark>sim</mark>

Figura 12: Operação 5, timeout

7 Conclusões

O desenvolvimento do projeto aconteceu como esperado e todas as saídas bateram com o esperado. Nosso projeto cumpre com o objetivo de criar uma interface de circuitos digitais com elementos externos de entrada de dados, conseguimos implementar as mudanças propostas pela descrição do projeto, sendo a mais importante a fase de espera do input do jogador.

Durante a aula conseguimos realizar todos os testes e todos bateram com o esperado. As figuras coladas nos capítulos de teste são justamente para documentar esse processo. Os objetivos da experiência foram cumpridos durante a aula, até mesmo realizando o desafio.

O desafio foi de longe a parte mais problemática do projeto, houve um problema de lógica no verilog do desafio que impedia o enable do contador de ser ativado, impedindo o timeout. Através de testes foi feita a identificação do problema e com auxílio dos monitores conseguimos mudar a lógica em verilog. Após isso conseguimos realizar todos os testes e assim validar o circuito do desafio.