

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
4 April 2002 (04.04.2002)

PCT

(10) International Publication Number
WO 02/28043 A2

- (51) International Patent Classification⁷: **H04L 27/00**
- (21) International Application Number: **PCT/IB01/01741**
- (22) International Filing Date:
21 September 2001 (21.09.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
09/672,753 28 September 2000 (28.09.2000) US
- (71) Applicant: **NOKIA CORPORATION [FI/FI]**; Keilalahdentie 4, FIN-02150 Espoo (FI).
- (71) Applicant (for LC only): **NOKIA, INC. [US/US]**; 6000 Connection Drive, Irving, TX 75039 (US). (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, VN, ZW), Eurasian
- (72) Inventors: **HEISKALA, Juha**; Apartment 2081, 9486 Valley Ranch Parkway, Irving, TX 75063 (US). **TERRY, John**; 1402 Blakes Way, Garland, TX 75042 (US).
- (74) Agents: **KELLY, Robert, H.** et al.; Novakov Davis & Munck, P.C., 900 Three Galleria Tower, 13155 Noel Road, Dallas, TX 75240 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

[Continued on next page]

(54) Title: APPARATUS, AND ASSOCIATED METHOD, FOR FORMING A MODULATED SIGNAL UTILIZING OTD AND TCM TECHNIQUES

(57) Abstract: Apparatus (28), and an associated method, for facilitating communication of data upon a communication channel (38) which exhibits fading. Orthogonal transmit diversity techniques and trellis-coded modulation techniques are utilized to form a signal permitting the communication of data at high data rates while maintaining spectral efficiency, good error rate performance, without excessive computational complexity. The apparatus and associated method is advantageously implemented in a WLAN (Wireless Local Area Network) (10) constructed pursuant to the IEEE 802.11 standard.

WO 02/28043 A2

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- *without international search report and to be republished upon receipt of that report*

APPARATUS, AND ASSOCIATED METHOD, FOR FORMING A
MODULATED SIGNAL UTILIZING OTD AND TCM TECHNIQUES

The present invention relates generally to
5 communications in a radio communication system, such
as a WLAN (wireless local area network), in which
data is communicated upon a channel susceptible to
fading. More particularly, the present invention
relates to apparatus, and an associated method, by
10 which to form a modulated signal containing the data.
The modulated signal is formed utilizing Orthogonal
Transmit Diversity (OTD) techniques as well as
Trellis-Coded Modulation (TCM) techniques. Data is
able to be communicated at high data rates, such as
15 those required during operation of a communication
system constructed to be operated pursuant to the
specification set forth in the IEEE 802.11 standard.

BACKGROUND OF THE INVENTION

A communication system is formed, at a minimum,
20 of a transmitting station and a receiving station
interconnected by a communication channel.
Communication signals generated by the transmitting
station are transmitted upon the communication
channel to be received by the receiving station.

25 A radio communication system is a communication
system in which at least a portion of the
communication channel is formed of a portion of the
electromagnetic spectrum. Increased mobility of
communications is permitted as a fixed or hard-wired
30 connection is not required to be formed between the
transmitting and receiving stations.

A cellular communication system is an exemplary radio communication system. A subscriber to a cellular communication system, when positioned at almost any location throughout an area encompassed by 5 the network infrastructure of the cellular communication system, is able to communicate by way of the system with a mobile terminal.

The network infrastructure of an exemplary cellular communication system includes spaced-apart, 10 fixed-site base stations which include transceivers. In such an exemplary system, each fixed-site base station defines a cell. As the mobile terminal used by the subscriber to communicate with another communication station travels between cells of the 15 system, uninterrupted communication is possible by handing-over communications from one base station to another.

Several analogous types of wireless communication systems have been implemented, and others have been 20 proposed, to encompass limited areas, such as the area encompassed by a building structure or office workplace. Wireless communication systems sometimes referred to as microcellular networks, private networks, and WLANs (wireless local area networks), 25 are exemplary of such systems.

Wireless communication systems are typically constructed pursuant to standards promulgated by a regulatory or quasi-regulatory body. For instance, the IEEE 802.11 standard, and variants thereof, 30 promulgated by the IEEE (Institute of Electrical and Electronic Engineering) is a wireless LAN standard pertaining generally to communications at various

wireless frequencies including a 5GHz range and a 2.4 GHz range. The 802.11 standard specifies an over-the-air interface between a wireless client, e.g., a mobile terminal, and a base station or access point, 5 as well as among wireless clients. Standards pertaining to a physical layer and an MAC (media access control) layer are set forth in such standard. The standard permits automatic medium sharing between different devices which includes compatible physical 10 layers. Asynchronous data transfer is provided for in the standard, generally by way of the MAC layer which utilizes a CSMA/CA (carrier sense multiple access with collision avoidance) communication scheme.

15 While the IEEE 802.11a standard requires that data be able to be communicated at relatively high data rates, e.g., data rates in excess of 54 Mbits/sec, achieving such a throughput rate is difficult when the communication channel upon which 20 the data is transmitted exhibits fading characteristics. The high data rate communication is required to be effectuable within a stringent spectral efficiency range, a stringent error rate performance level and within appropriate 25 computational load requirements. At a data rate of 96 Mbits/sec, a spectral efficiency of six bits/s/Hz, including coding, is required. The 96 Mbits/sec data rate is desired to be effectuated with an error rate performance at least as good as the error rate 30 performance set forth in the IEEE 802.11a standard at a reduced rate, e.g., a 54 Mbits/sec data rate.

Generally, to overcome distortion introduced upon a signal transmitted upon a channel which exhibits fading characteristics, various techniques are utilized.

5 Time encoding of the signal, prior to its transmission, is sometimes utilized to counteract the distortion introduced thereon during its transmission upon the channel. Time encoding introduces signal redundancy upon the signal. By increasing the time
10 redundancy of the signal, the likelihood that the informational content of the signal can be recovered, once received at the receiving station, is increased. Introducing time redundancy into the signal is sometimes referred to as creating time diversity.

15 Space diversity is sometimes also utilized to overcome the distortion. Typically, space diversity refers to the utilization of more than one transmitting antenna transducer from which a communication signal is transmitted, thereby to
20 provide spatial redundancy.

And, various modulation techniques are also utilized. TCM (Trellis-Coded Modulation), for instance, is sometimes utilized. Conventional TCM techniques typically utilize an acceptable number of
25 states, e.g., less than 256 states. But, a resultant trellis that is utilized in conventional TCM requires parallel transitions between states. The performance of a TCM scheme with parallel transitions provides almost no coding gain, relative to an uncoded
30 communication scheme, when operated in a fading environment.

Multiple TCM is sometimes also utilized. In a TCM scheme, multiple coded symbols are transmitted during each transition in the trellis defined in the modulation scheme. Coding gains, sometimes almost 3 dB in magnitude, are sometimes achievable in the use of multiple TCM in contrast to conventional TCM. But, each increase in the effective length of the multiple-TCM requires another coded symbol to be added per transition. Additionally, each additional coded symbol requires another set of encoders, thereby increasing the complexity of the code. Additionally, coded symbols of the M-TCM require orthogonal channels for transmission. As spatial dimensions are generally not orthogonal, orthogonal time slots or frequency carriers are required to be used. The use of orthogonal time slots or frequency carriers would be contrary to the requirement to maintain spectral efficiency.

Additionally, trellis STC is sometimes utilized. When trellis STC is utilized, at least as many states are required as there are transitions per state. In other words, a trellis STC implementation would generally require at least 256 states. Such a trellis utilizing two-dimensional constellation is unable to provide a coding gain, merely a diversity gain, and thereby also is inadequate. ED-TCM (Enhanced Dimensional Trellis-Coded Modulation) is also sometimes utilized. In ED-TCM, subsets are selected from a Cartesian product constellation. Through such selection, though, the required spectral efficiency cannot be achieved.

As a result, while various modulation schemes are used to combat the effects of fading exhibited upon a communication channel, the existing modulation techniques are not able to ensure that data can be
5 communicated at high data rates as required, e.g., pursuant to the IEEE 802.11 standard, while also maintaining acceptable spectral efficiency levels, error rate performance, and appropriate computation complexity levels.

10 If a manner could be provided by which better to modulate data which is to be communicated at high data rates upon a channel susceptible to fading, improved communication quality levels when operating a communication system would be possible.

15 It is in light of this background information related to wireless communications that the significant improvements of the present invention have evolved.

SUMMARY OF THE INVENTION

20 The present invention, accordingly, advantageously provides apparatus, and an associated method, by which to facilitate communications in a radio communication system, such as a WLAN (Wireless Local Area Network), in which data is communicated
25 upon a channel susceptible to fading.

Through operation of an embodiment of the present invention, a manner is provided by which to form a modulated signal containing the data. The modulated signal is formed through the use of Orthogonal
30 Transmit Diversity (OTD) techniques as well as Trellis-Coded Modulation (TCM) techniques. The

resultant, modulated signal permits communication of data at high data communication rates while also maintaining high spectral efficiency, acceptable error rate performance, as well as also requiring 5 only modest computational complexities.

In one aspect of the present invention, apparatus is provided for a sending station operable to send a communication signal representative of data to be communicated. At the sending station, trellis-coded 10 modulation as well as orthogonal transmit diversity techniques are utilized to form a modulated signal containing data to be communicated upon a communication channel. Symbol sequences formed as a result of utilization of such techniques are applied 15 to separate transmit antennas to be transduced therefrom.

The transmit antennas transduce the symbol sequences applied thereto, and the sequences are communicated upon communication channels to a 20 receiving station. At the receiving station, the receive sequences are separated and receive circuitry operations are performed thereon to recreate the informational content of the data.

In one implementation, apparatus is provided for 25 a sending station operable in a WLAN (Wireless Local Area Network) operable pursuant, e.g., the IEEE 802.11a standard, or a variant thereof. In a WLAN, fixed-site transceivers, sometimes referred to as access points, are positioned at selected locations. 30 Access points communicate with mobile terminals positioned within a coverage area defined by the access points. Through operation of an embodiment of

the present invention, fading exhibited upon channels connecting the access point and a mobile terminal is compensated for by forming signals in which orthogonal transmit diversity and trellis-coded
5 modulation techniques are utilized.

In these and other aspects, apparatus, and an associated method, is provided in a communication system having a sending station for sending data upon a communication channel. The communication channel
10 is susceptible to fading. Apparatus is provided for the sending station to convert the data into a form to facilitate communication thereof upon the communication channel. A multi-dimensional trellis-coded modulator is coupled to receive indications of
15 the data to be sent by the sending station. The multi-dimensional trellis-coded modulator forms N-dimensional, trellis-encoded sequences therefrom. A first transmit antenna and at least a second transmit antenna is coupled to the multi-dimensional, trellis-coded modulator. A first N-dimensional sequence is
20 transduced by the first transmit antenna, and a second N-dimensional transmit antenna is transduced by the second transmit antenna. The first and second N-dimensional sequences exhibit orthogonal transmit
25 diversity.

A more complete appreciation of the present invention and the scope thereof can be obtained from the accompanying drawings which are briefly summarized below, the following detailed description
30 of the presently-preferred embodiment of the invention, and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a functional block diagram of a communication system in which an embodiment of the present invention is operable.

5 Figure 2 illustrates a graphical representation of a 128 QAM symbol constellation.

Figure 3 illustrates a graphical representation of a TCM constellation utilized for 8-D signaling.

10 Figure 4 illustrates a graphical representation of four constellations which have a minimum squared distance of $4d_0$.

Figure 5 illustrates a functional block diagram of the apparatus of an embodiment of the present invention.

15 Figure 6 illustrates a graphical representation of the bit error rate plotted as a function of a signal-to-noise ratio of a signal received at a receiving station during operation of an embodiment of the present invention.

20 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring first to Figure 1, a communication system, shown generally at 10, provides for radio communications with mobile terminals, of which the mobile terminal 12 is exemplary, therein. In the
25 exemplary implementation, the communication system 10 forms a WLAN (wireless local area network) which provides for radio communications with the mobile terminal as set forth in the IEEE 802.11 standard as well, potentially, pursuant to a proprietary mode of
30 operation. Other communication systems can analogously be represented, and operation of an

embodiment of the present invention is analogously also operable in such other communication systems.

In conventional manner, the WLAN includes a plurality of spaced-apart access points (APs) 14 positioned at spaced-apart locations. Two access points are shown in the Figure. In an actual WLAN, typically, in greater numbers of access points 14 are utilized. The access points 14 are sometimes referred to as base stations or RADs (remote antenna devices). The term "access point" shall generally be used herein to identify such devices as the devices form the points of access to the network infrastructure of the communication system.

The access points 14 include radio transceiver circuitry 16 capable of transceiving radio communication signals with mobile terminals when the mobile terminals are positioned within communication range of the access points. Generally, a mobile terminal communicates with an access point 14 when the mobile terminal is positioned within an area, referred to as a cell 18, proximate to, and defined by, the access point. The Figure illustrates a cell 18 associated with each of the illustrated access points.

The access points 14 are here shown to be coupled to a central control unit (CCU) 22. The CCU 22 provides control functions to control various aspects of operation of the WLAN. And, as shown, the CCU 22 provides for connections to an external communication network backbone 24. Although not separately shown, other communication devices, such as other communication stations and other communication

networks are typically coupled to the communication network backbone 24. Thereby, a communication path can be formed to provide for communications between the mobile terminal 12 and communication stations 5 coupled, either directly or indirectly, to the communication network backbone. Also, local communications between mobile terminals 12 are also permitted. In communications between pairs of mobile terminals, the communication path formed therebetween 10 includes two separate radio-links.

In the exemplary implementation, the transceiver circuitry 16 forming a portion of each access point includes the apparatus 28 of an embodiment of the present invention. The apparatus 28 is operable to 15 form a signal utilizing Orthogonal Transmit Diversity (OTD) as well as Trellis-Coded Modulation (TCM) techniques. The apparatus 28 is here shown to include an OTD-TCM (Orthogonal Transmit Diversity, Trellis-Coded Modulation) modulator 32. Symbol 20 sequences formed by the modulator 32 are applied to a plurality, here two, antenna transducers 34 by way of the lines 36. The antenna transducers transduce the symbol sequences provided thereto into electromagnetic form, and the symbol sequences are 25 sent upon communication channels 38 to be received at an appropriate mobile terminal 12. The mobile terminal 12 includes as a portion thereof, apparatus 42 operable, pursuant to an embodiment of the present invention, to operate upon receive signals 30 corresponding to the signals transmitted by the access point 16. The apparatus 42, due to the nature of the modulated signals formed during operation of

the apparatus 28 are separable into individual paths, thereby to facilitate recreation of the informational content of the data of which the signals are formed.

The multi-dimensional construction utilized
5 pursuant to an embodiment of the present invention is predicated upon the integration of a convolutional code with a bandwidth-efficient modulation scheme. Such a combination is able to achieve significant coding gain compared to uncoded schemes without a
10 corresponding reduction in data rate throughput or increasing bandwidth requirements to communicate the encoded data. The combination of the convolutional coding with a bandwidth-efficient modulation scheme here is trellis-coded modulation, entails encoding a
15 bit-value data stream with a convolutional encoder and mapping the output coded bits to an expanded signal constellation.

Coding gain is achieved by partitioning the expanded signal set into subsets of increasing
20 minimum squared distances. The convolutional encoder imparts a rule of correspondence such that shorter length transitions originating and returning to the state correspond to intersubset transitions. The longer length transitions correspond to intrasubset
25 transition. This has the overall effect of increasing the minimum squared free distance in the trellis. The system yields a coding gain over an uncoded system provided that the power penalty associated with the expanded signal set is less than
30 the gain in minimum squared free distance.

Multi-dimensional TCM is a generalized situation of the afore-mentioned trellis-coded modulation. The

multi-dimensional construction of interest is referred to as the Wei construction. The Wei construction generates a two N-dimensional alphabet by utilizing a two-dimensional constellation in each 5 one of N adjacent by the baud intervals. Thereafter, one redundant bit is added every N intervals. In contrast to a two-dimensional constellation, 2^{NM+1} signals are required in contrast merely 2^{M+1} signals. For large values of NM, the power penalty is 10 considerably smaller than in a two-dimensional implementation.

In a multi-dimensional construction, the mapping between NM+1 bits and the signals may be converted into N simple constituent two-dimensional mappings. 15 Also, the size of the constituent two-dimensional mapping is preferably maintained as small as possible. And, the peak-to-average power ratio is also kept as small as possible.

Figure 2 illustrates a constellation set, shown 20 generally at 52, of a two-dimensional rectangular constellation having 2^Q signals. The constellation set forms a lattice, and added $1/N^* 2^Q$ signals are drawn from the same lattice but have as little average energy as possible.

25 Thereafter, the constellation is divided into two groups, an inner and an outer group. Figure 3 illustrates a construction set 54, here identifying the inner group 56 and the outer group 58. 2^M signals form the inner group, and the inner group corresponds 30 to the construction set 52 shown in Figure 2. The inner group 56 is selected from the original constellation in order to keep the average power as

small as possible. The outer group 58 is selected from the rest of the original constellation also so that the average power can be maintained as small as possible. Figure 4 illustrates the set 54, here 5 divided into four subconstellations. The subconstellations here exhibit minimum squared distances of $4d_0$.

A constellation of 2^{NM+1} signals is then constructed by concatenated N such two-dimensional 10 constellations, and excluding the two N-dimensional signals corresponding to more than one two-dimensional outer signals. For each constituent two-dimensional constellation, the inner group is used to $N-1$ times as often as the outer group.

15 In an OFDM (Orthogonal Frequency Deletion Multiplexing) system, OTD (Orthogonal Transmit Diversity) is performable over the entire OFDM symbol. Use is made, for instance, of the Radon-Hurwitz unitary transform which is defined as:

$$20 \quad R - H \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{bmatrix} s_1 & s_2 \\ -s_2^* & s_1^* \end{bmatrix}. \quad (1)$$

Figure 5 illustrates again the apparatus of 28 of an embodiment of the present invention. Here, the data to be communicated by the access points to a 25 mobile terminal is designated to be sourced at the binary source 62. The data is provided to a multi-dimensional TCM modulator 64. The modulator is operable to perform multi-dimensional, TCM modulation operations and to generate symbol sequences on the 30 lines 66 to be applied to modulation mapper and demultiplexers 68 formed on separate paths. Output

symbols on the lines 70 are provided to element 72 and, in turn, to element 74, and thereafter multiplexed outputs therefrom are provided to Radon-Hurwitz transformer 76. Radon-Hurwitz transforms are 5 performed thereat and thereafter provided to CP element 78 and, in turn, to transmit antennas 34.

Two consecutive OFDM symbols are, for purposes of explanation, referred to X_0X_e . At a first transmitter, X_0 is transmitted during a first time epoch followed by X_e during a second time epoch. And, at a second transmitter $-X_e^*$ is transmitted during the first time epoch followed by transmission of X_0^* during the second time epoch.

The use of the Radon-Hurwitz transform with spaced-time codes is advantageous as utilization of the transform allows the individual paths at the receiver to be separated.

For instance, by denoting diagonal matrices containing the DFT's of channel response vectors for the 20 separate transmitter portions as Λ_1 and Λ_2 , respectively. By assuming that the communication channel upon which the symbols are to be transmitted is constant over two consecutive time epochs, the demodulated receive signals at the respective time slots are governed by the 25 following:

$$\begin{aligned} \mathbf{Y}_1 &= \Lambda_1 \mathbf{X}_0 - \Lambda_2 \mathbf{X}_e^* \\ \mathbf{Y}_2 &= \Lambda_1 \mathbf{X}_e + \Lambda_2 \mathbf{X}_0^* \end{aligned} \quad (2)$$

Through appropriate substitution, the estimates of the consecutive OFDM symbols are represented as follows:

$$\begin{aligned}\hat{\mathbf{X}}_o &= \Lambda_1^* \mathbf{Y}_1 + \Lambda_2^* \mathbf{Y}_2 \\ \hat{\mathbf{X}}_e &= \Lambda_1^* \mathbf{Y}_2 - \Lambda_2^* \mathbf{Y}_1\end{aligned}\quad (3)$$

Through additional substitution, the following is representative of the OFDM symbols:

$$\begin{aligned}\hat{\mathbf{X}}_o &= \left(|\Lambda_1|^2 + |\Lambda_2|^2 \right) \mathbf{Y}_1 \\ \hat{\mathbf{X}}_e &= \left(|\Lambda_1|^2 + |\Lambda_2|^2 \right) \mathbf{Y}_2\end{aligned}\quad (4)$$

5 Thereby, OTD techniques are shown to improve the performance of TCM over fading channels. Assuming the two channels fade independently, then the average performance of Radon-Hurwitz/TCM approaches the performance of TCM over AWGN (Average White Gaussian
10 Noise) provided that the expected value of the sum of the squares of the channel coefficients equal unity.

Figure 6 illustrates a graphical representation, shown generally at 84. The representation is a plot 86 of an exemplary performance of the bit error rate 15 as a function of signal-to-noise ratio of symbol sequences transmitted during operation of an embodiment of the present invention. Analysis of the graphical representation indicates that there is considerable improvement of communication quality 20 upon fading channels without degradation over AWGN channels.

OFDM systems achieve frequency diversity by utilizing a wideband signal. This diversity is better utilized when TCH is combined with OFDM, if 25 the transmitted symbols are interleaved in frequency. Interleaving distributes the symbols over a wide frequency spacing that is wider than the coherence bandwidth of the channel. This further improves the

performance, as most of the time, consecutive interleaved symbols do not experience deep fades.

While, in the exemplary implementation, the apparatus of an embodiment of the present invention 5 is shown as a portion of a WLAN constructed pursuant to the IEEE 802.11 standard, operation of an embodiment of the present invention can also analogously be implemented in other communication systems in which communication is effectuated upon 10 communication channels susceptible to fading.

The preferred descriptions are of preferred examples for implementing the invention, and the scope of the invention should not be necessarily be limited by this description. The scope of the 15 present invention is defined by the following claims.

We claim:

1. In a communication system having a sending station for sending data upon a communication channel, the communication channel susceptible to fading, an improvement of apparatus for the sending station for converting the data into a form to facilitate communication thereof upon the communication channel, said apparatus comprising:

a multi-dimensional trellis-coded modulator coupled to receive indications of the data to be sent by the sending station, said multi-dimensional trellis-coded modulator for forming N-dimensional, trellis-encoded sequences therefrom;

a first transmit antenna and at least a second transmit antenna coupled to said multi-dimensional, trellis-coded modulator, a first N-dimensional sequence transduced by said first transmit antenna and a second N-dimensional transmit antenna transduced by said second transmit antenna, the first and second N-dimensional sequences exhibiting orthogonal transmit diversity.

2. The apparatus of claim 1 wherein said multi-dimensional trellis-coded modulator convolutionally encodes the data and maps the data, once encoded, to a signal constellation.

3. The apparatus of claim 2 wherein the signal constellation into which the data, once encoded, is mapped is positioned into subsets of selected minimum squared distances.

4. The apparatus of claim 3 wherein convolutional encoding of the data is effectuated according to a rule of correspondence.

5. The apparatus of claim 4 wherein the rule of correspondence comprising defining intersubset transitions to correspond to shorter-than-average length transitions.

10 6. The apparatus of claim 4 wherein the rule of correspondence comprises defining intrasubset transitions to correspond to longer-than-average transitions.

7. The apparatus of claim 1 wherein the multi-dimensional trellis-coded modulator utilizes a Wei construction.

15 8. The apparatus of claim 1 wherein the first and second N-dimensional sequences applied to said first and second transmit antennas, respectively, comprise Radon-Hurwitz transforms.

20 9. The apparatus of claim 1 further comprising a mapper coupled between said multi-dimensional trellis codes and said first and at least second transmit antennas, said mapper for mapping OFDM (Orthogonal Frequency Division Multiplexer) symbols to said first and second transmit antennas.

25 10. In the communication system of claim wherein the data sent upon the communication channel is received at a receiving station, a further improvement of apparatus for the receiver for operating upon the data once received thereat, said apparatus comprising:

a demodulator coupled to receive indications of the data received at the receiving station, said demodulator for demodulating the indications to form separate sequences, the separate 5 sequences used to estimate symbol values.

11. The apparatus of claim 1 wherein the communication system forms a WLAN (Wireless Local Area Network) having an access point and wherein said multi-dimensional trellis-coded modulator and said 10 first and second transmit antennas form portions of the access point.

12. The apparatus of claim 11 wherein the data communicated by said first and second transmit antennas is communicated at a rate specified by an 15 IEEE 802.11 standard.

13. In a method for communicating in a communication system having a sending station for sending data upon a communication channel, the communication channel susceptible to fading, an 20 improvement of a method for converting the data into a form to facilitate communication thereof upon the communication channel, said method comprising:

modulating the data to be communicated upon the communication channel to form N-dimensional, 25 trellis-encoded sequences therefrom; and

applying a first N-dimensional trellis-encoded sequence formed during said operation of modulating to a first transmit antenna and at least a second N-dimensional trellis-encoded sequence formed 30 during said operation of modulating to at least a second transmit antenna, the first and second N-

dimensional trellis-encoded sequences exhibiting orthogonal transmit diversity.

14. The method of claim 13 wherein said operation of modulating comprises convolutionally 5 encoding the data into encoded form.

15. The method of claim 14 wherein said operation of modulating further comprises mapping the data, once encoded, to a signal constellation, the signal constellation defining an allowable symbol 10 set.

16. The method of claim 15 wherein the symbol set to which the data, once encoded, is mapped during said operation of mapping is positioned into subsets of selected minimum squared distances.

15 17. The method of claim 16 wherein said operation of encoding the data is effectuated according to a rule of correspondence.

18. The method of claim 13 wherein the first and second N-dimensional sequences applied to the first 20 and second transmit antennas, respectively, comprise Radon-Harwitz transforms.

19. The method of claim 13 wherein the communication system comprises a WLAN (Wireless Local Area Network) having an access point and wherein said 25 operations of modulating and applying are performed at the access point.

20. The method of claim 19 wherein the first and second N-dimensional trellis-encoded sequences are applied during said operation of applying at rates specified pursuant to an IEEE 802.11 standard.

FIG. 1

2/6

FIG. 2

52

54

FIG. 4

FIG. 5

6/6

FIG. 6