Measures of Central Tendency: Mean, Median and Mode

- A **statistic** is a characteristic or measure obtained by using the data values from a sample.
- A **parameter** is a characteristic or measure obtained by using all the data values from a specific population.

> Mean

• The **mean** is the sum of the values, divided by the total number of values. The symbol represents the sample mean.

$$\overline{X} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n} = \frac{\sum X}{n}$$

where n represents the total number of values in the sample.

$$\mu = \frac{X_1 + X_2 + X_3 + \dots + X_N}{N} = \frac{\sum X}{N}$$

• For a population, the Greek letter μ (mu) is used for the mean. where N represents the total number of values in the population.

➤ Mean (Contd.)

• The procedure for finding the mean for grouped data is given here –

A	В	C	D		
Class	Frequency f	Midpoint X_m	$f \cdot X_m$		
5.5-10.5	1	8	8		
10.5-15.5	2	13	26		
15.5-20.5	3	18	54		
20.5-25.5	5	23	115		
25.5-30.5	4	28	112		
30.5-35.5	3	33	99		
35.5-40.5	2	38	76		
	$n=\overline{20}$	Σf	$\cdot X_m = \overline{490}$		
$\overline{X} = \frac{\sum f \cdot X_m}{n} = \frac{490}{20} = 24.5 \text{ miles}$					

The Weighted Mean

Find the **weighted mean** of a variable *X* by multiplying each value by its corresponding weight and dividing the sum of the products by the sum of the weights.

$$\overline{X} = \frac{w_1 X_1 + w_2 X_2 + \dots + w_n X_n}{w_1 + w_2 + \dots + w_n} = \frac{\sum w X}{\sum w}$$

where w_1, w_2, \ldots, w_n are the weights and X_1, X_2, \ldots, X_n are the values.

Example:

Course	Credits (w)	Grade (X)	
English composition I	3	A (4 points)	
Introduction of Psychology	3	C (2 points)	
Biology I	4	B (3 points)	
Physical Education	2	D (1 points)	

$$\overline{X} = \frac{\sum wX}{\sum w} = \frac{3 \cdot 4 + 3 \cdot 2 + 4 \cdot 3 + 2 \cdot 1}{3 + 3 + 4 + 2} = \frac{32}{12} = 2.7$$

The grade point average is 2.7.

> Median

• The **median** is the midpoint of the data array. The symbol for the median is MD.

> Example:

• The number of cloudy days for the top 10 cloudiest cities is shown. Find the median.

209, 223, 211, 227, 213, 240, 240, 211, 229, 212

> Solution:

• Arrange the data in order.

209, 211, 211, 212, 213, 223, 227, 229, 240, 240

Median

$$MD = (213 + 223) / 2 = 218$$

Hence, the median is 218 days.

> Mode

• The value that occurs most often in a data set is called the **mode**.

> Example:

• Find the mode of the signing bonuses of eight NFL players for a specific year.

The bonuses in millions of dollars are 18.0, 14.0, 34.5, 10, 11.3, 10, 12.4, 10

> Solution:

• It is helpful to arrange the data in order although it is not necessary.

10, 10, 10, 11.3, 12.4, 14.0, 18.0, 34.5

Since \$10 million occurred 3 times, a frequency larger than any other number, so the mode is \$10 million.

Measures of Central

Tendency: Midrange

> Midrange

• The **midrange** is defined as the sum of the lowest and highest values in the data set, divided by 2. The symbol MR is used for the midrange.

$$MR = \frac{lowest \ value + highest \ value}{2}$$

- > Example:
 - In the last two winter seasons, two cities, city-1 and city-2 reported these numbers of water-line breaks per month.
- > Find the midrange.

2, 3, 6, 8, 4, 1

> Solution:

$$MR = (1 + 8)/2 = 4.5$$

Hence, the midrange is 4.5

Summary of Measures of Central Tendency

Summary of Measures of Central Tendency			
Measure	Definition	Symbol(s)	
Mean	Sum of value, divided by total number of values	μ, \overline{X}	
Median	Middle point in data set that has been ordered	MD	
Mode	Most frequent data value	None	
Midrange	Lowest value plus highest value, divided by 2	MR	

Measures of Central Tendency: Distribution Shapes

Skewness & Kurtosis

Skewness – Asymmetrical Distribution

- Skewness is a measure of symmetry in a distribution. If one tail is longer than another, the distribution is skewed, e.g. Income, Populations of countries.
- Different ways to measure a skew: Pearson Mode, Bowley, Kelly's Measure, Momental.
- Which technique you use depends on what you know about your data, e.g. if you know the mean, mode (or median) and standard deviation you can use Pearson's.
- Momental skewness could be an option if you only know the mean and standard deviation for your set of data.

Skewness – Asymmetrical Distribution Contd...

 A symmetrical distribution has a skew of zero. A positive result means that your data is positively skewed. A negative result means that your data is negatively skewed.

Kurtosis – Sharpness of Peak of Distribution

- The degree of flatness or peakedness is measured by kurtosis. It tells us about the extent to which the distribution is flat or peak vis-a-vis the normal curve.
- The normal curve is called Mesokurtic curve. If the curve of a distribution is more peaked than a normal or mesokurtic curve then it is referred to as a Leptokurtic curve. If a curve is less peaked than a normal curve, it is called as a Platykurtic curve.
- Formula:

$$\theta_2$$
= $\mu_4\mu_2$ where $\mu_2=\frac{\Sigma(x-\bar{x})^2}{N}$, $\mu_4=\frac{\Sigma(x-\bar{x})^4}{N}$, \bar{x} is mean

Measures of Variation: Range

Measures of Variation: Variance & Standard Deviation

> Variance and Standard Deviation

• The **variance** is the average of the squares of the distance each value is from the mean. The symbol for the population variance is σ^2 (σ is the Greek lowercase letter sigma). The formula for the population variance is

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

Where, X = individual value, $\mu = \text{population mean}$ and

N = population size

The **standard deviation** is the square root of the variance. The symbol for the population standard deviation is σ . The corresponding formula for the population standard deviation is

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (X - \mu)^2}{N}}$$

Example: If X values are 35, 45, 30, 35, 40, 25 $\mu = \frac{\sum X}{N} = \frac{35 + 45 + 30 + 35 + 40 + 25}{6} = \frac{210}{6} = 35$

Α	В	С
Х	$X - \mu$	$(X-\mu)^2$
35	0	0
45	10	100
30	-5	25
35	0	0
40	5	25
25	-10	100

$$\sum (X - \mu)^2 = 0 + 100 + 25 + 0 + 25 + 100 = 250$$

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N} = \frac{250}{6} = 41.7$$

$$\sigma = \sqrt{\frac{\sum (X - \mu)^2}{N}} = \sqrt{41.7} = 6.5$$

Hence, the standard deviation is 6.5.

Example:

Summary of Measures of Variation			
Measure	Definition	Symbol(s)	
Range	Distance between highest value and lowest value	R	
Variance	Average of the squares of the distance that each value is from the mean	σ^2 , s^2	
Standard deviation	Square root of the variance	σ, s	

Coefficient of Variation

Coefficient of Variation

The **coefficient of variation**, denoted by CVar, is the standard deviation divided by the mean. The result is expressed as a percentage.

For samples,

$$CVar = \frac{S}{X} \cdot 100\%$$

For populations,

$$CVar = \frac{\sigma}{\mu} \cdot 100\%$$

Coefficient of Variation

> Example:

Sales of Automobiles

The mean of the number of sales of cars over a 3-month period is 87, and the standard deviation is 5. The mean of the commissions is \$5225, and the standard deviation is \$773. Compare the variations of the two.

> Solution:

The coefficients of variation are

CVar =
$$\frac{S}{X} = \frac{5}{87} \cdot 100\% = 5.7\%$$
 sales

CVar =
$$\frac{773}{5225} \cdot 100\% = 14.8\%$$
 commissions

Since the coefficient of variation is larger for commissions, the commissions are more variable than the sales.

Boxplot with Five Number Summary

Boxplot with Five Number Summary

➢ Box Plot

- A **boxplot** is a graph of a data set obtained by drawing a horizontal line from the minimum data value to Q1, drawing a horizontal line from Q3 to the maximum data value, and drawing a box whose vertical sides pass through Q1 and Q3 with a vertical line inside the box passing through the median or Q2.
- A **boxplot** can be used to graphically represent the data set. These plots involve five specific values:
 - **1.** The lowest value of the data set (i.e., minimum)
 - **2.** *Q*1
 - 3. The median
 - **4.** Q3
 - **5.** The highest value of the data set (i.e., maximum) These values are called a **five-number summary** of the data set.

Boxplot with Five Number Summary

Example of Box Plot:

• The data set is 89, 47, 164, 296, 30, 215, 138, 78, 48, 39. Construct a boxplot for the data.

> Solution:

Step 1 Arrange the data in order:

30, 39, 47, 48, 78, 89, 138, 164, 215, 296

Step 2 Find the median. Here it is Q2 = (78 + 89)/2 = 83.5

Step 3 Find Q1. Here it is Q1 = 47

Step 4 Find Q3. Here it is Q3 = 164

Step 5 Draw a scale for the data on the *x* axis.

Step 6 Located the lowest value, *Q*1, median, *Q*3, and the highest value on the scale.

Step 7 Draw a box around *Q*1 and *Q*3, draw a vertical line through the median, and connect the upper value and the lower value to the box.

Measures of Positions: Standard Score & Outliers

Standard Scores

> Standard Score or z-score

 A z score or standard score for a value is obtained by subtracting the mean from the value and dividing the result by the standard deviation. The symbol for a standard score is z. The formula is

$$z = \frac{value - mean}{standard\ deviation}$$

• For samples, the formula is

$$z = \frac{X - \overline{X}}{S}$$

For populations, the formula is

$$\mathbf{z} = \frac{\mathbf{X} - \mathbf{\mu}}{\mathbf{\sigma}}$$

The z score represents the number of standard deviations that a data value falls above or below the mean.

Outliers

Outliers

 An outlier is an extremely high or an extremely low data value when compared with the rest of the data values.

> Procedure to find out Outliers:

Step 1: Arrange the data in order and find Q1 and Q3.

Step 2: Find the interquartile range: IQR = Q3 - Q1.

Step 3: Multiply the IQR by 1.5.

Step 4: Subtract the value obtained in step 3 from Q1 and add the value to Q3.

Step 5: Check the data set for any data value that is smaller than Q1 - 1.5*(IQR) or larger than Q3 + 1.5*(IQR)

Outliers

> Example of Outliers:

Check the following data set for outliers. 5, 6, 12, 13, 15, 18, 22, 50

> Solution:

Step 1 Here *Q*1 is 9 and *Q*3 is 20.

Step 2 So IQR = Q3 - Q1 = 20 - 9 = 11

Step 3 Multiply this value by 1.5. So 1.5 * (11) = 16.5

Step 4 So lower limit = 9 - 16.5 = -7.5 and upper limit = 20 + 16.5 = 36.5

Step 5 Check the data set for any data values that fall outside the interval from –7.5 to 36.5. The value 50 is outside this interval; hence, it can be considered an outlier.