Predicting the Award Price of First Price Sealed Bid Procurement Auctions

Fabian Blasch

09/28/2022

Motivation: The Importance of Public Auctions

Auctions are a vital tool for governments to procure contracts. For construction contracts, first price sealed bid auctions are of particlar importance.

- The authorities of the European Union for example spent around 14% of their GDP on public procurement in 2017 (Rodríguez et al. 2020).
- Similar observatios can be made for the U.S. economy, one state of particular importance for this thesis is Colorado.
- In 2021 the Budget for Transportation in Colorado amounted to roughly \$2 billion. Out of this Budget the CDOT awarded \$790 millions worth of contracts to construct design and repair bridges and highways. All of those contracts were procured via first price sealed bid auctions.

Thesis Overview

- Provide an award price prediction model for the Colorado Department of Transportation.
 - This model would enable the auctioning entity to plan their budget more accurately.
- Unsupervised Collusion Detection
 - Examine whether the interaction of certain bidders has an effect on award prices. A significant interaction effect could allude to the existance of a bid rigging scheme.

Data: Source

An example of a bid tab, as published on the website of the CDOT.

		Colorado Depa	rtment Of Transportation	Printed On:	11/17/2015	
		Ve	endor Ranking		Page 1 of 1	
Letting No: Letting Date:	20151112 November 12, 2015	Contract ID: Region:	C19868	Project(s): STU1211	1-084	
Letting Time:	10:00 AM		260 WORKING DAYS	Counties: JEFFERS		

Contract Description:

SH121(WADSWORTH)-HIGHLAND DR-10TH AVE-JEFFERSON CO

THIS PROJECT IS LOCATED ON WADSWORTH BETWEEN HIGHLAND AND 10TH.

CONSTRUCTION WILL INCLUDE A FULL CONSTRUCTION WITH WIDEINING OF ONE LANE IN BOTH DIRECTIONS, AND A MULTI MODAL TRAIL ON BOTH SIDES. THE MAINLINE PAVING WILL BE CONCRETE. THE WORK ALSO INCLUDES A CONCRETE BOX CULVERT NEAR HIGHLAND TO CARRY LAKEWOOD GULCH UNDER WADSWORTH.

CDOT WILL ONLY BE ACCEPTING ELECTRONIC BIDS FOR THIS PROJECT. PLEASE CONTACT BID SYPRESS CUSTOMER SERVICE AT 1-888-352-2439 TO OBTAIN AN ACCOUNT IF NECESSARY.

Rank	Vendor ID	Vendor Name	Total Bid	Percent Of Low Bid	Percent Of Estimate
0	-EST-	Engineer's Estimate	\$9,821,027.20	91.58%	100.00%
1	870A	SEMA CONSTRUCTION, INC.	\$10,723,550.00	100.00%	109.19%
2	884A	HAMON INFRASTRUCTURE, INC.	\$10,817,000.00	100.87%	110.14%
3	1275A	CASTLE ROCK CONSTRUCTION COMPANY OF COLORADO, LLC	\$10,817,845.03	100.88%	110.15%
4	065A	CONCRETE WORKS OF COLORADO INCORPORATED	\$11,614,565.78	108.31%	118.26%
5	232A	AMERICAN CIVIL CONSTRUCTORS, INC. dba ACC Mountain West	\$12,338,888.00	115.06%	125.64%

Figure 1: Bid Tab Example

Data: Extraction

- The following text based data was extracted utilizing the package pdftools and regular expressions (Ooms 2022):
 - Contract ID
 - County
 - Contract Time
 - Contract Description
- The table containing the bids, the unique bidder intentifiers and the engineer's estimate was extracted utilizing the R package tabulizer (Leeper 2018).

Data: Final Dataset

The final dataset features 430 observations and 1086 variables.

- County
- Letting month
- Letting year
- Contract time
- Number of bidders
- Engineer's estimate
- Award price
- 169 binary variables, representing the bidder identities
- 652 binary variables, representing pair-wise bidder interaction terms
- 258 binary variables, representing the contract description hit words

Methods

For the Prediction Model the following models were applied utilizing different preprocessing schedules:

- Elastic net
- Random forest
- eXtreme Gradient Boosting
- OLS estimated linear model

Methods: Elastic Net

Given the model matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ we may formulate the elastic net as a linear model that utilizes ℓ_1 and ℓ_2 regularization.Further, suppose that $\alpha \in [0,1]$ and $t \in \mathbb{R}^+$, we can then define the elastic net estimator as a constrained minimization problem,

$$\hat{\beta} = \underset{\boldsymbol{\beta}}{\arg\min} |\mathbf{y} - \mathbf{X}\boldsymbol{\beta}|^2,$$

subject to,

$$(1-\alpha)|\beta|_1 + \alpha|\beta|^2 \le t.$$

Where,

$$|\beta|_1 = \sum_{i=1}^p |\beta_i| \text{ and } |\beta|^2 = \sum_{i=1}^p \beta_i^2.$$

Regularized Regression: Intuition

The best performing regularized model is a lasso regression model,i.e., $\alpha=0$. The lasso penalty shrinks some elements of the parameter vector $\hat{\beta}$ exactly to zero.

Figure 2: Regularization Utilizing Different Norms (Toth 2022)

Why use Lasso Regression instead of OLS

- Lasso allows us to fit a regression in cases where p>>n
- Gauss Markov Theorem tells us that OLS is the best linear unbiased estimator but what if we do not mind a biased estimate?
 - Lasso offers a more flexible framework that allows us to optimize the bias variance tradeoff

Bias Variance Trade-Off

Figure 3: Bias Variance Tradeoff (Fortmann-Roe 2012)

Post Selection Inference: Motivation

The derivation of a test statistic for a single covariate in our model usually assumes that the model is fixed, as if we knew ex ante which variables we need to include.

- Why is it problematic if we use the Data to choose the variables in our model?
 - A pre-selection that minimizes some predictive error, will choose variables that have a relationship with the dependent variable!
 - Thus we need to correct our inferential procedure for this selection event!
- Very informally speaking, we could say, a predictor needs to suprise us twice. Once to make it into the model and then another time to reject the H_0 of our significance test.

Results: Out of Sample Performance

Figure 4: Performance Comparison

Results: Out of Sample Performance

The following table lists the performance of the applied methods utilizing linear and quadratic loss functions, i.e.,

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(\hat{y}-y)^2}$$

$$MAE = \frac{1}{n}\sum_{i=1}^{n}|\hat{y}-y|.$$

	Lasso	Eng. Est.	logPCA_RF	rfe_RF	XGB	logPCA_LM
RMSE	326.1261	497.0567	509.7934	560.7600	671.6634	609.4673
MAE	241.7894	327.9388	348.2869	373.1132	376.3191	448.2662

Unsupervised Colusion Detection: Post-Selection Inference

References

- Leeper, Thomas J. 2018. *Tabulizer: Bindings for Tabula PDF Table Extractor Library.*
- Ooms, Jeroen. 2022. *Pdftools: Text Extraction, Rendering and Converting of PDF Documents.*https://CRAN.R-project.org/package=pdftools.
- Rodríguez, Manuel J. García, Vicente Rodríguez Montequín, Francisco Ortega Fernández, and Joaquín M. Villanueva Balsera. 2020. "Bidders Recommender for Public Procurement Auctions Using Machine Learning: Data Analysis, Algorithm, and Case Study with Tenders from Spain." *Complexity* 2020: 1–20. https://doi.org/10.1155/2020/8858258.