Numerical Optimization Solution to exercise sheet

review on 15.01.2024 during the exercise class

1. (Active set method)

The active set method is an optimization method for quadratic problems (QP) with (affine) linear equality and inequality constraints of the form

$$\begin{cases}
\min_{x} f(x) := \frac{1}{2}x^{T}Ax + a^{T}x \\
\text{s.t. } Bx = b, \ Cx \le c,
\end{cases}$$
(1)

where A is symmetric positive definite on ker B and B has full rank. The idea is to reduce the problem to a sequence of QPs with only equality constraints. At an iterate $x^{(k)} \in \mathcal{F}$ not being the solution x^* , we seek a feasible descent direction $d^{(k)}$ by solving (see (3.6.19))

$$\begin{cases} \min_{d^{(k)}} f(x^{(k)} + d^{(k)}) \\ \text{s.t. } Bd^{(k)} = 0, \ C_j d^{(k)} = 0, \ j \in \mathcal{A}(x^{(k)}) \end{cases}$$

which is equivalent to

$$\begin{cases} \min_{d^{(k)}} \frac{1}{2} (d^{(k)})^T A d^{(k)} + (d^{(k)})^T (A x^{(k)} + a) \\ \text{s.t. } D^{(k)} d^{(k)} = 0. \end{cases}$$
 (2)

We know from the lecture, that there can now arise three possibilities.

Case 1: $d^{(k)} = 0, \, \mu^{(k)} \ge 0$

Case 2: $d^{(k)} = 0$, $\mu_j^{(k)} < 0$ for at least on $j \in \mathcal{A}(x^{(k)})$

Case 3: $d^{(k)} \neq 0$ is a feasible direction

- a) Derive the KKT system for (1) and (2).
- b) Let (1) be convex and let $x^{(k)} \in \mathcal{F}$ be the current iterate. Show that, if for the solution $d^{(k)}$ and the Lagrange multiplier $\mu^{(k)}$ of (2) holds Case 1, then $x^{(k)}$ is a solution of (1).
- c) Assume that we are in Case 2 and the Inactivation step has been performed, i.e. we have $d^{(k)}=0$ and $\mu_j^{(k)}<0$ for at least one $j\in\mathcal{A}^{(k)}$. Further, we have $\tilde{d}^{(k)}$, $\tilde{\lambda}^{(k)}$ and $\tilde{\mu}^{(k)}$ as the solution of problem (2) w.r.t. the set $\tilde{\mathcal{A}}^{(k)}:=\mathcal{A}^{(k)}\setminus\{j\}$ as described in the lecture notes. Show that $\tilde{d}^{(k)}$ is a feasible direction at $x^{(k)}$ by showing $\tilde{d}^{(k)}\in\mathcal{L}(\mathcal{F},x^{(k)})$.

Hint: Exploit the optimality conditions for $d^{(k)}$ and $\tilde{d}^{(k)}$.

d) Assume everything from c) holds and further assume that $D^{(k)}$ has full rank for all $k \in \mathbb{N}$. Show that $\tilde{d}^{(k)} \neq 0$.

$$(2+4+6+4=16 \text{ Points})$$

Solution:

a) The KKT system for (1) is given by:

$$x^{T}A + a^{T} + \lambda^{T}B + \mu^{T}C = 0$$

$$Bx - b = 0$$

$$\mu \ge 0$$

$$Cx - c \le 0$$

$$\mu^{T}(Cx - c) = 0$$

and for (2) we obtain

$$(d^{(k)})^T A + (x^{(k)})^T A + a^T + (\lambda^{(k)})^T B + (\mu^{(k)})^T C(x^{(k)}) = 0$$
$$Bd^{(k)} = 0$$
$$C(x^{(k)})d^{(k)} = 0$$

b) We assume now that Case 1 holds, i.e. $d^{(k)} = 0$ and $\mu^{(k)} \ge 0$. We know from the KKT-Theorem for convex problems that if $x^{(k)}$ fulfills the KKT conditions it follows that $x^{(k)}$ is a global solution of (1). Since $d^{(k)} = 0$ is a solution of (2), the KKT system holds for some Lagrange multiplier $\lambda^{(k)}$ and $\mu^{(k)}$. From that and by setting

$$\tilde{\mu}_j^{(k)} := \begin{cases} \mu_j^{(k)}, & j \in \mathcal{A}(x^{(k)}), \\ 0, & \text{else} \end{cases}$$

we deduce

$$(x^{(k)})^T A + a^T + (\lambda^{(k)})^T B + (\tilde{\mu}^{(k)})^T C = 0$$

which is the first equation of the KKT system for (1). Due to $x^{(k)} \in \mathcal{F}$ we have also $Bx^{(k)} - b = 0$ and $Cx^{(k)} - c \leq 0$. The definition of $\tilde{\mu}^{(k)}$ and the assumption of Case 1 gives us $\tilde{\mu}^{(k)} \geq 0$. The last equation $(\tilde{\mu}^{(k)})^T (Cx^{(k)} - c) = 0$ follows also from $\tilde{\mu}_j^{(k)} = 0$ for $j \notin \mathcal{A}(x^{(k)})$ and $C_j x^{(k)} - c_j = 0$ for $j \in \mathcal{A}(x^{(k)})$.

c) We show that $\tilde{d}^{(k)} \in \mathcal{L}(\mathcal{F}, x^{(k)})$, i.e. we have to show $B\tilde{d}^{(k)} = 0$ and $C_j\tilde{d}^{(k)} \leq 0$ for $j \in \mathcal{A}(x^{(k)})$. Due to the constraints of problem (2) we have $B\tilde{d}^{(k)} = 0$ and $C_j\tilde{d}^{(k)} = 0$ for $j \in \tilde{\mathcal{A}}^{(k)}$. The only thing left to prove is $C_{j^*}\tilde{d}^{(k)} \leq 0$ for $j^* := \mathcal{A}^{(k)} \setminus \tilde{\mathcal{A}}^{(k)}$. From the optimality conditions for $d^{(k)}$ and $\tilde{d}^{(k)}$ we deduce

$$(x^{(k)})^T A + a^T + (\lambda^{(k)})^T B + (\mu^{(k)})^T C^{(k)} = 0 \quad \text{and}$$
$$(\tilde{d}^{(k)})^T A + (x^{(k)})^T A + a^T + (\tilde{\lambda}^{(k)})^T B + (\tilde{\mu}^{(k)})^T \tilde{C}^{(k)} = 0.$$

We multiply the equation with $\tilde{d}^{(k)}$ and subtract the resulting equations, from which we get due to the constraints of the QP (2)

$$0 < (\tilde{d}^{(k)})^T A \tilde{d}^{(k)} = \mu_{j^*}^{(k)} C_{j^*}^{(k)} \tilde{d}^{(k)}.$$

Therefore, with the assumption $\mu_{j^*}^{(k)} < 0$ we must have $C_{j^*}^{(k)} \tilde{d}^{(k)} \leq 0$.

d) The derivation from c) holds only if $\tilde{d}^{(k)} \neq 0$. So we assume $\tilde{d}^{(k)} = 0$ and again from the optimality conditions we get

$$(x^{(k)})^T A + a^T + (\lambda^{(k)})^T B + (\mu^{(k)})^T C^{(k)} = 0 \quad \text{and}$$
$$(x^{(k)})^T A + a^T + (\tilde{\lambda}^{(k)})^T B + (\tilde{\mu}^{(k)})^T \tilde{C}^{(k)} = 0,$$

which reduces to

$$(\lambda^{(k)})^T B + (\mu^{(k)})^T C^{(k)} = (\tilde{\lambda}^{(k)})^T B + (\tilde{\mu}^{(k)})^T \tilde{C}^{(k)}.$$

This can be rewritten as

$$(C_{j^*}^{(k)})^T = \frac{1}{\mu_{j^*}^{(k)}} \left[B^T \left(\tilde{\lambda}^{(k)} - \lambda^{(k)} \right) + (\tilde{C}^{(k)})^T \left(\tilde{\mu}^{(k)} - \mu_{\tilde{\mathcal{A}}^{(k)}}^{(k)} \right) \right],$$

i.e. $C_{j^*}^{(k)}$ is a linear combination of the rows of $\tilde{D}^{(k)}$ which is a contradiction to the full rank of $D^{(k)}$.

2. (Active set method, Matlab)

In this exercise we want to visualize the iterations of the active set method.

- a) Download the MATLAB function activeset.m from Moodle and adjust the method such that the nullspace_method.m is used to solve the subproblems.
- b) Apply the active set method to the problem

$$\min_{x \in \mathbb{R}^2} f(x) = (x_1 - 1)^2 + (x_2 - 2.5)^2$$
s.t. $x_1 - 2x_2 + 2 \ge 0$

$$-x_1 - 2x_2 + 6 \ge 0$$

$$-x_1 + 2x_2 + 2 \ge 0$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

with the initial value $x_0 = (2,0)^T$ and the associated active set $\mathcal{A}(x_0)$.

c) Plot the contours of f with the constraints and the path of the iterations of the active set method.

$$(2+4+6=12 \text{ Points})$$

Solution:

a) The adjusted function could look like

```
function [x_opt,lambda_opt,mu_opt,fval,exitflag,its] = ...
                                           activeset_method(A,a,...
                                                            B, b, ...
                                                            C, c, ...
                                                             x0, tol, maxIter)
% acitve set method for quadratic problems
% Minimize: 0.5*x'*A*x + b'*x
% Subject to: B * x = q, C * x <= r
if nargin<9
   maxIter = 1000;
%-- No Inequality Constraints
if size(C,1) == 0
   [x_opt,lambda_opt] = nullspace_method(A,a,B,b);
                     = zeros(0,1);
   mu_opt
   return
end
```

```
%-- Initialization
        = x0;
x(:,1)
            = size(B,1);
m
lambda
           = zeros(m, 1);
           = zeros(size(C, 1), 1);
mu
activeSet = [3,5];
inactiveSet = [1, 2, 4];
% inactiveSet = 1:size(C, 1);
for iter = 1:maxIter
    %-- nullspace method for feasible descent direction
    ghelp = A * x (:, end) + a;
    Bhelp = [B; C(activeSet, :)];
    if isempty(Bhelp)
        d = -A \setminus ghelp;
    else
                     = zeros(size(Bhelp, 1),1);
        rhs
        [d,lambda_mu] = nullspace_method(A,ghelp,Bhelp,rhs);
        lambda = lambda_mu(1:m);
        if isempty(activeSet)
           mu = [];
           mu = lambda_mu(m+1:end);
    end
    if norm(d) < tol
        if all(mu >= 0) %--case 1
            exitflag = 1;
            break;
                        %-- case 2: inactivation
            [\sim, idx] = min(mu);
           activeSet(idx) = [];
            continue;
        end
    end
                         %-- case 3
                         %-- step size determination
    sigma = 1;
    for i = inactiveSet
        if C(i, :) * d > 1e-10
            sigma = min(sigma, (c(i) - C(i, :) * x(:,end)) / (C(i, :) * d));
    end
    x(:,end+1) = x(:,end) + sigma * d;
                = find(abs(C \star x(:,end) - c) < tol)';
    activeSet = unique([activeSet, idx]);
    inactiveSet = setdiff(1:size(C, 1), activeSet);
end
mu_opt
                = zeros(size(C, 1),1);
mu_opt(activeSet) = mu;
                = lambda;
lambda_opt
x_{opt} = x;
fval = 0.5 * x(:,end)' * A * x(:,end) + a' * x(:,end);
its = iter;
if iter == maxIter
    exitflag = 0;
end
```

b) The script could look like

```
clear, close all
clc
% define the problem by defining the matrices
A = 2 * eye(2,2);
a = -[2; 5];
B = [];
b = [];
C = -[1, -2; -1, -2; -1, 2; 1, 0; 0, 1];
c = [2; 6; 2; 0; 0];
f_{opt} = @(x) x' *A*x + a' *x;
% solver options
tol = 1e-10;
maxIter = 50;
     = [2;0];
[x.opt,lambda,mu,fval,exitflag,its] = activeset_method(A,a,B,b,C,c,x0,tol,maxIter)
% print the function and the solution path
x = linspace(-0.5, 5, 96);
y = linspace(-0.5, 5, 96);
[xx,yy] = meshgrid(x,y);
ff = (xx-1).^2 + (yy-2.5).^2;
levels = -1:0.75:50;
figure(1)
contour(x,y,ff,levels,LineWidth=1.2),
colorbar
axis([-0.5 5 -0.5 5])
axis square
hold on
% plot constraints
plot([0, 2, 4, 2, 0, 0],[1, 2, 1, 0, 0, 1],'kx-', MarkerSize=10, LineWidth=2);
% plot iterations
plot(x_opt(1,:), x_opt(2,:), 'r-o', MarkerSize=12, LineWidth=2)
xlabel("$x_1$", Interpreter="latex")
ylabel("$x_2$", Interpreter="latex")
title("Iteration of the active set method", Interpreter="latex")
set(gca, "FontSize", 22, "TickLabelInterpreter", "latex")
hold off
```

c) The Plot could look like

