تمرین شماره ۲:

ابید. میدان الکتریکی را در کلیه نقاط فضا بیابید. ho_0 در ho_0 در ho_0 در ho_0 در کلیه نقاط فضا بیابید.

۲- روی نواری به عرض 2a در صفحه $\rho_0 = |y| < 5$ و |y| < 5 قرار دارد. z=0 قرار دارد. شدت میداتن الکتریکی را روی محور z به به به تابید.

میدان $ho_s=rac{
ho_0}{r}$ C/m^2 بار سطحی با چگالی $ho_s=rac{
ho_0}{r}$ قراردارد. میدان $ho_s=1$ قراردارد. میدان کنید.

- $ho_s=
 ho_0$ قرار الکتریکی با چگالی $ho_s=
 ho_0$ قرار $ho_s=
 ho_0$ قرار بار الکتریکی با چگالی $ho_s=
 ho_0$ قرار دارد. پتانسیل الکتریکی را در مرکز کره محاسبه کنید.
 - $ar{E}=E_x\hat{a}_x$ است، یعنی x است، یعنی در جهت x است، یعنی $ar{E}$ در تمام نقاط یک ناحیه میدان الکتریکی $ar{E}$ در این ناحیه مستقل از y و y است. به نشان دهید اگر این ناحیه خالی از بار باشد، میدان $ar{E}$ یک میدان یکنواخت است.
- ج- بار الکتریکی به طور یکنواخت با چگالی ρ_{s0} روی $\frac{1}{8}$ سطح کرهای به شعاع a که مرکز آن منطبق بر مبدا مختصات میباشد، توزیع شده است. میدان الکتریکی را در مبدا مختصات پیدا کنید.
- را در نظر بگیرید. با q در نقطه ($x=0,\ y=0,\ z=-a$) قرار دارد. شار $x^2+y^2+z^2=a^2$ را در نظر بگیرید. با $(\int_S \epsilon_0 \overrightarrow{E}. \overrightarrow{ds})$ است را حساب کنید. (سوال الکتریکی ($\int_S \epsilon_0 \overrightarrow{E}. \overrightarrow{ds})$) گذرنده از قسمتی از سطح کره که در آن $(\int_S \epsilon_0 \overrightarrow{E}. \overrightarrow{ds})$ است را حساب کنید. (سوال اختیاری با نمره اضافی)