Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi Simulazione di prova parziale

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. Sia

$$S_k = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| (k+2)a + (k+1)b^2 - kc + d = k^2 - 1 \right\} \subseteq M_2(\mathbb{R}).$$

Si stabilisca per quali valori di k si ha che S_k è un sottospazio di $M_2(\mathbb{R})$. Scelto uno dei valori trovati

- a) Si determini una base \mathcal{B}_k di S_k e la si completi ad una base $\tilde{\mathcal{B}}$ di $M_2(\mathbb{R})$.
- b) Si determinino le coordinate di $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ rispetto alla base $\tilde{\mathcal{B}}$.
- c) Si dica se è vera la seguente affermazione: Per ogni $\mathbf{v} \in M_2(\mathbb{R})$ tale che $\mathbf{v} \notin S_k$ si ha che $\mathcal{B}_k \cup \{\mathbf{v}\}$ è una base di $M_2(\mathbb{R})$.
- d) Si determinino, se possibile, 3 vettori di S_k linearmente indipendenti che non generino S_k .

Esercizio 2. Siano
$$\mathbf{v}_1 = x^3 + 2x^2 + 3x - 1$$
, $\mathbf{v}_2 = kx^3 + 4x^2 + 3kx - 2$, $\mathbf{v}_3 = kx^2 + 3$, $\mathbf{v} = x^3 + kx^2 + 3x + 3$.

- a) Si stabilisca per quali valori di k si ha che $\mathbf{v} \in \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$.
- b) Si stabilisca per quali valori di k i vettori $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ sono linearmente dipendenti e, scelto un valore di k per cui sono linearmente dipendenti, si scriva uno di essi come combinazione lineare degli altri.
- c) Posto k = 0, si stabilisca se i vettori $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}$ generano $\mathbb{R}_3[x]$.