Cognome:	Nome:	Matricola:

Elementi di Crittografia

Docenti: Paolo D'Arco

Appello 9 Gennaio 2018

Buon lavoro! ©

· '	1	1	1	
· '	1	1	1	
· '	1	1	1	l l
	i l	1	1	

- 1) **Riduzioni: metodologia.** Si descriva la **struttura generale** di una riduzione di sicurezza, evidenziando **le motivazioni** alla base dell'approccio e le **proprietà** che soddisfa. Inoltre, come caso d'esempio, si dimostri che:
 - se F è una funzione pseudocasuale, allora lo schema di cifratura che associa il cifrato

$$\mathbf{c} := \langle \mathbf{r}, \mathbf{f}_{\mathbf{k}}(\mathbf{r}) \odot \mathbf{m} \rangle$$
 al messaggio \mathbf{m}

dove r e la chiave k sono scelti **uniformemente** a caso, è uno schema di cifratura **CPA sicuro**.

2)	Funzioni hash. Si descriva la trasformata di Merkle-Damgard per estendere il dominio di un funzione di compressione e si provi che trovare efficientemente collisioni per la funzione este implica trovare efficientemente collisioni per la funzione di compressione sottostante.	na :sa

3) **Primalità.** Si spieghi in modo chiaro e conciso

- come possono essere generati numeri primi casuali di n bit
 cosa ci assicura che riusciamo a trovarne con alta probabilità con un numero di tentativi polinomiale in n
- come funziona il test di Miller e Rabin e quali risultati della teoria dei numeri utilizza

- 4) Funzioni one-way. Si spieghi in modo chiaro e conciso
 - cosa sono e come si definiscono
 - perché sono sufficienti per realizzare tutta la "crittografia simmetrica"

- 5) Gruppi ciclici e crittosistema El-Gamal. In modo chiaro e conciso, si spieghi:
 - cos'è un gruppo ciclico
 - come sono definiti i problemi DL e DH (computazionale e decisionale) su tali gruppi
 - come funziona lo schema di cifratura di El-Gamal (discutendone la sicurezza).

6)	Schemi di firme digitali. Si	descriva il funzionamento	dello schema di	firme RSA-FDH e si
•)	fornisca uno sketch della prova o	di sicurezza.		