1

Assignment 15

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment15

1 Problem

(hoffman/page213/3):

Find a projection **E** which projects \mathbb{R}^2 onto the subspace spanned by (1,-1) along the subspace spanned by (1,2).

2 Solution

Given	Let $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$	
		(2.0.1)
	where $\begin{pmatrix} a \\ b \end{pmatrix}$ is representation of $\begin{pmatrix} x \\ y \end{pmatrix}$ in new basis.	
To find	$\mathbf{E} \begin{pmatrix} x \\ y \end{pmatrix} = a \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	(2.0.2)
Finding a Projection E	As, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ are linearly independent.	
	As, $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ are linearly independent. Therefore, $\{\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}\}$ is a basis of \mathbb{R}^2 As $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$	
	$As \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$	
	$\implies \binom{x}{y} = a \binom{1}{-1} + b \binom{1}{2}$	(2.0.3)

	$\implies \binom{a}{b} = \binom{\frac{2x-y}{3}}{\frac{x+y}{3}}$ Projection of $\binom{x}{y}$ on subspace spanned by $\binom{1}{-1}$;	(2.0.4)
	$\mathbf{E} \begin{pmatrix} x \\ y \end{pmatrix} = a \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	(2.0.5)
	$\implies \mathbf{E} \begin{pmatrix} x \\ y \end{pmatrix} = \left(\frac{2x - y}{3} \right) \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	(2.0.6)
	$\implies \mathbf{E} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$	(2.0.7)
	$\implies \mathbf{E} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix}$	(2.0.8)
Verification	If $n \times n$ matrix E is projection matrix, then $\mathbf{E}^2 = \mathbf{E}$	
	$\mathbf{E}^{2} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix} \implies \mathbf{E} = \mathbf{E}^{2} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix}$	(2.0.9)
	Hence, Verified.	

TABLE 1: Finding Projection Matrix