Notes of Lecture3: Set Functions

Measure continouity

We start by a set of definitions.

DEFINITION Let $C \subseteq S(\Omega)$, where $S(\Omega)$ denote a collection of subests of Ω , define a measure μ on C whose values are on $\mathbb{R}_+ + \{+\infty\}$.

- $\forall E \in \mathcal{C}$, μ is said to be continous form below at E, if $\forall (E_n)_{n \geq 1}, E_n \in \mathcal{C}$, $E_n \subseteq E_{n+1}, \bigcup_{n \geq 1} E_n = E$, $s.t. \lim_{n \to +\infty} \mu(E_n) = \mu(E)$, where the conditions satisfied by E_n is denoted by $E_n \uparrow E$.
- $\forall E \in \mathcal{C}$, μ is said to be continous form above at E, if $\forall (E_n)_{n \geq 1}, E_n \in \mathcal{C}, E_n \supseteq E_{n+1}, \exists \eta_0, \mu(E_{\eta_0}) < \infty, \bigcap_{n \geq 1} E_n = E, s.t. \lim_{n \to +\infty} \mu(E_n) = \mu(E)$, where the conditions satisfied by E_n is denoted by $E_n \downarrow E$.
- μ is said to be continous at E if and only if μ is both continous from above and below at E.

LEMMA Let a be an algebra and $a \subseteq \mathcal{S}(\Omega)$, measure μ is defined on a whose values are on $\mathbb{R}_+ + \{+\infty\}$ and assuming that μ is additive. We have the following conclusions:

- (1) μ is σ -additive $\Rightarrow \forall E \in a$, μ is continous at E.
- (2) μ is continous from below $\Rightarrow \mu$ is σ -additive.
- (3) μ is continous from above at \varnothing and μ is finite $\Rightarrow \mu$ is σ -additive.

PROOF

- (1.1) We first prove that μ is σ -additive $\Rightarrow \mu$ is continous from below $\forall E \in a$. Suppose $E \in a$ and a sequence of sets $E_n \uparrow E$. Since E_n is increasing, we construct a new sequence $\{F_n\}$ based on $\{E_n\}$ where $F_n = E_n | E_{n-1}$ and $E_0 = \varnothing$. Hence, $F'_n s$ are disjoint pairwise i.e. $F_i \cap F_j = \varnothing, i \neq j$. It is obvious that $\bigcup_{i \geq 1}^n F_i = \bigcup_{i \geq 1}^n E_i$ and $\sum_{i = 1}^n F_i = E_n$. Since μ is σ additive, $\mu(E) = \sum \mu(E_i) = \sum \mu(F_i) = \lim_{n \to \infty} \sum_{i = 1}^n \mu(F_i) = \lim_{n \to \infty} \mu(\sum_{i = 1}^n F_i) = \lim_{n \to \infty} \mu(E_n)$. This proves that μ is continous from below at any $E \in a$.
- (1.2) Now we prove that μ is continous from above. Suppose $E \in a$ and a sequence of sets $E_n \downarrow E$ where $\exists n_0, s.t. \forall n > n_0, \mu(E_n) < \infty$. Considering the following set sequence G_n where $G_1 = E_{n_0}|E_{n_0+1},...,G_n = E_{n_0}|E_{n_0+n},E_n$ is decreasing thus G_n is increasing and $G_n \uparrow E_{n_0}|E$. Since all $E'_n s$ are in the algebra a, then $G_n \in a$. By the conclusion we draw on (1), we have that $\lim_{n \to \infty} \mu(G_n) = \mu(E_{n_0}|E)$. Since $E \subseteq E_n$. Then

$$\mu(E_{n_0}) - \mu(E) = \mu(E_{n_0}|E) = \lim_{n o \infty} \mu(G_n) = \lim_{n o \infty} (\mu(E_{n_0}) - \mu(E_{n_0+n})) = \mu(E_{n_0}) - \lim_{n o \infty} \mu(E_{n_0+n})$$

, which leads to $\mu(E) = \lim_{n \to \infty} \mu(E_{n_0+n})$. This proves that μ is continous from above. Thus we concludes the proof. The statement here is not as useful as the statements below because we it is derived from μ is σ -

additive. In reality, we usually don't have any idea if a measure μ is σ additive and instead we usually do the opposite: prove that a measure is σ -additive.

• (2) Assume that a measure μ is continous from below and $E=\sum_{k\geq 1}E_k, E, E_k\in a, E_i\cap E_j=\varnothing, i\neq j$. We know that $\forall n\geq 1, \sum_{k=1}^n E_k\subseteq E$, thus $\mu(\sum_{k=1}^n E_k)\leq \mu(E)$. Since μ is additive then we have $\sum_{k=1}^n \mu(E_k)\leq \mu(E)$. By the limit inequality, $\lim_{n\to\infty}\sum_{k=1}^n \mu(E_k)=\sum_{k\geq 1}\mu(E_k)\leq \mu(E)$. Let $F_n=\sum_{k=1}^n E_k\in a$, thus $F_n\uparrow E$. Since μ is continous from below, thus

$$\lim_{n o\infty}\mu(F_n)=\lim_{n o\infty}\sum_{k=1}^n\mu(E_k)=\sum_{k\geq 1}\mu(E_k)=\mu(E).$$

This proves that μ is σ additive.

• (3) Suppose that μ is continous from above at \varnothing and $\mu(\Omega)<\infty$. Let $E,E_k\in a,E=\sum_{k\geq 1}E_k$, then $F_n=\sum_{k\geq n}E_k\in a$, thus $F_n=(E|\sum_{j=1}^{n-1}E_j)$ and it is obvious that $F_n\downarrow\varnothing$, we also have that $\mu(F_1)<\infty$. By the continouity above \varnothing , then $\mu(F_n)\to\mu(\varnothing)=0$. Then $\mu(E)=\mu(\sum_{k=1}^n\cup\sum_{k\geq n}E_k)=\sum_{i=1}^n\mu E_k+\mu(F_{n+1})$. By taking the limit on both side of the equation, we hanve $\mu(E)=\mu(\sum_{k\geq 1}E_k)=\sum_{k\geq 1}\mu(E_k)+0=\sum_{k\geq 1}\mu(E_k)$, this proves that μ is σ -additive. Thus we conclude the lemma. \square

EXAMPLE Suppose $\Omega=(0,1)$ and $\mathcal C$ be the collection of intervals in which the intervals has the form of $(a,b], 0 \leq a < b < 1$. Define the measure μ to be as follow:

$$\mu((a,b]) = \left\{egin{array}{ll} b-a, ext{ if } a>0 \ +\infty, ext{ if } a=0 \end{array}
ight..$$

Suppose $E_1=(a_1,b_1]\in\mathcal{C}, E_2=(a_2,b_2]\in\mathcal{C}, E_1\cap E_2=\varnothing$, where a_1,a_2 are not zero, then by definition of μ , we have $\mu(E_1\cup E_2)=b_1-a_1+b_2-a_2=\mu((a_1,b_1])+\mu((a_2,b_2])$, the same conclusion holds for a_1,a_2 are 0. Thus μ is additive. However, μ is *NOT* σ -additive. \square

Extension of measure

Theorem 1 Suppose $\mathcal{F}\subseteq\Omega$ be a semi-algebra and μ be a additive measure defined on \mathcal{F} . Now we show that there exists a extension measure ν , s.t. (1) ν is a measure defined on the algebra generated by \mathcal{F} , which is denoted by $a(\mathcal{F})$; (2) $\forall A\in\mathcal{F}, \nu(A)=\mu(A)$; (3) if μ_1,μ_2 are defined on $a(\mathcal{F})$, then $\forall A\in\mathcal{F},\mu_1(A)=\mu_2(A)$ implies $\mu_1(E)=\mu_2(E), \forall E\in a(\mathcal{F})$

PROOF Recall the important property of an algebra generated by a semi-algabra: $A \in a(\mathcal{F})$ implies that there exists a finite sequence $E_i, s.t. A = \sum_{i=1}^n E_i, E_i \in \mathcal{F}$. Then we propose

$$\nu(A) = \sum_{j=1}^n \mu(E_j).$$

Next we prove the following properties that ν has: (1) ν is well-define;(2) ν is additive;(3) the uniqueness of ν .

• (1) Assume that $A=\sum_{i=1}^m F_k$, then we want to show $\nu(A)=\sum_{j=1}^n \mu(E_j)=\sum_{k=1}^m \mu(F_k)$. We know that $E_j\subseteq A=\sum_{k=1}^m F_k$, thus $E_j=E_j\cap\sum_{k=1}^m F_k=\sum_{k=1}^m E_j\cap F_k$, by the property of semi-algebra the element $E_j\cap F_k\in \mathcal{F}$. By additivity of semi-algebra, we have

$$\mu(E_j) = \mu(\sum_{k=1}^m E_j \cap F_k)$$

- . Therefore, $\nu(A)=\sum_{j=1}^n\mu(E_j)=\sum_{j=1}^n\sum_{k=1}^m\mu(E_j\cap F_k)$. The same argument holds for $\nu(A)=\sum_{k=1}^m\mu(F_k)$ and hence ν is well define.
- (2) We next prove the additivity of ν . Let $B=\sum_{k=1}^m F_k$ where $A\cap B=\varnothing, F_k\in\mathcal{F}$. Thus $A\cup B=\sum_{j=1}^n E_j+\sum_{k=1}^m F_k$. Thus, by definition of a semi-algebra, $\nu(A\cup B)=\sum_{j=1}^n \mu(E_j)+\sum_{k=1}^m \mu(F_k)=\nu(A)+\nu(B)$. This shows that ν is additive.
- (3) Now we show the uniqueness. We would like to show that for μ_1, μ_2 define on $a(\mathcal{F})$ and $\mu_1(A) = \mu_2(A), \forall A \in \mathcal{F}$ and μ_1, μ_2 are additive, $\mu_1(B) = \mu_2(B), \forall B \in a(\mathcal{F})$. Let $B \in a(\mathcal{F})$, then $B = \sum_{j=1}^n E_j, E_j \in \mathcal{F}$, then $\mu_1(B) = \sum_{j=1}^n \mu_1(E_j) = \sum_{j=1}^n \mu_2(E_j) = \mu_2(B)$. This proves the uniqueness. \square

We now show that if μ is σ -additive then ν is also σ -additive.

PROOF

Suppose $A=\sum_{k\geq 1}A_j$ where $A,A_j\in a(\mathcal{F})$, we would like to show that $\nu(A)=\sum_{k\geq 1}\nu(A_k)$. Since $A\in a(\mathcal{F})$, then $A=\sum_{j=1}^nE_j,E_j\in\mathcal{F}$. In addition, each $A_k\in a(\mathcal{F})$, thus $A_k=\sum_{l=1}^{n_k}E_{k,l},E_{k,l}\in\mathcal{F}$. By definition, we have $\nu(A)=\sum_{j=1}^n\mu(E_j)$. Observe that $E_j=E_j\cap A=E_j\cap (\sum_{k\geq 1}A_k)=E_j\cap (\sum_{k\geq 1}A_k)=E_j\cap (\sum_{k\geq 1}\sum_{l=1}^{n_k}E_{k,l})=\sum_{k\geq 1}\sum_{l=1}^{n_k}E_{k,l}\cap E_j$. Since μ is σ -additive, $\mu(E_j)=\sum_{k\geq 1}\sum_{l=1}^{n_k}\mu(E_{k,l}\cap E_j)$. Hence $\nu(A)=\sum_{j=1}^n\sum_{k\geq 1}\sum_{l=1}^{n_k}\mu(E_{k,l}\cap E_j)$. Moreover, $E_{k,l}=A\cap E_{k,l}=\sum_{j=1}^nE_{k,l}\cap E_j$, then $\mu(E_{k,l})=\sum_{j=1}^n\mu(E_{k,l}\cap E_j)$. Recall that $\nu(A_k)=\sum_{l=1}^{n_k}\mu(E_{k,l})$, thus $\sum_{k\geq 1}\nu(A_k)=\sum_{l=1}^{n_k}\mu(E_{k,l})=\sum_{l=1}^{n_k}\sum_{l=1}^{n_k}\mu(E_{k,l}\cap E_j)=\nu(A)$. Therefore, $\nu(A)=\sum_{k\geq 1}\nu(A_k)$, this proves that the extension ν is also σ -additive. \square