Introduction aux réseaux IP

Université de Thiès

UFR Sciences et Technologies

Département Informatique

Enseignant: Cheikh SARR

Professeur Titulaire

Contact: <u>csarr@univ-thies.sn</u>

Programme du cours (1/2)

- Chapitre 1 : Généralités sur les réseaux IP
 - Introduction aux réseaux
 - Supports de transmission
 - Modes de communication
 - Mesures de performance
- Chapitre 2 : Modèles en couches des réseaux
 - Modèle OSI Modèle TCP/IP
 - Protocoles et encapsulation
 - Techniques de transfert
 - Equipements réseaux
 - Généralités sur Internet

Programme du cours (2/2)

- Chapitre 3 : Couches du modèle TCP/IP
 - Couche Physique
 - Couche Liaison de données
 - Ethernet filaire et sans fil
 - Couche Réseau
 - Adressage et routage
 - Couche Transport
 - Protocoles TCP/UDP
 - Couche Application
 - Services réseaux (DHCP DNS)

Chapitre 1 : Généralités sur les réseaux

Définition d'un réseau

- Un réseau
 - Ensemble de deux ou plusieurs nœuds interconnectés afin de s'échanger des informations

- Nœuds
 - C'est un système terminal qui peut être soit un PC, ou un composant réseau relié au utilisateurs
- Les liaisons ou support de transmission
 - Physiques: câbles (cuivre, fibre optique, etc.)
 - Radio: ondes radio

Usage actuels des réseaux

Interconnexion des réseaux

- Deux types d'interconnexion
 - Physique : les deux équipements sont directement branché au même dispositif
 - Logique: Les deux équipements passent par un équipement intermédiaire pour communiquer

Types de réseaux

- Réseaux informatiques (d'ordinateurs)
 - Transportent des données
 - Données sont au format binaire {0,1}
 - Exemple: Internet
- Réseaux de transport de la voix (téléphonie)
 - Ce sont les réseaux télécom classiques
 - Réseaux téléphoniques commuté (filaire)
 - Réseaux cellulaires ou mobiles
- Réseaux de diffusion Hertzienne (TV, Radio)
 - Diffusion de chaines TV
 - Diffusion de Radio

Classification des réseaux

- PAN (Personnel Area Network)
 - Réseaux personnels
 - Une dizaine de mètres au maximum
- LAN (Local Area Network)
 - Réseaux de particuliers ou d'entreprises
 - De 10m à 1Km au maximum
- MAN/RAN (Metropolitain / Regional Area Network)
 - Réseaux à l'échelle d'un ville / d'un région
 - De dizaines à des centaines de Km
- WAN (Wide Area Network)
 - Réseaux à l'échelle d'un pays ou internationaux
 - Distances très grandes (centaines à milliers de Km)

Classification des réseaux

Composants d'une transmission

- Une transmission est concernée par quatre entités
- 1. Emetteur
 - Celui qui produit le signal
- 2. Canal ou support de transmission

Emetteur

- Milieu de propagation du signal
- 3. Récepteur
 - Réception et traitement du signal
- 4. Signal
 - Information à transmettre
- Système idéal S(émis) = S(reçu)
- En pratique ce n'est pas le cas (pertes)

Récepteur

→ MVM Signal

Période d'un signal

- Un signal est dit périodique
 - Si les variations de son amplitude se reproduisent régulièrement au bout d'une période T constante
 - □ Pour toute durée t, X(t + T) = X(t)
- Exemple de signaux périodiques
 - Signaux carrés
 - Signaux sinusoïdaux
 - Signaux triangulaires

Fréquence d'un signal

- La fréquence
 - Mesure du nombre de fois qu'un signal se reproduit par unité de temps (Unité en Hertz noté Hz)
 - □ C'est l'inverse de la période temporelle F=1/T
 - □ Un signal à une période de $0.05s \rightarrow F = 20 \text{ Hz}$
 - Ondes sinusoïdales de fréquences différentes : Laquelle possède la fréquence la plus élevée ?

Supports de transmission

- La qualité du réseau dépend fortement des supports de transmission utilisés
- Les supports exploitent les propriétés
 - des métaux
 - des ondes électromagnétiques
 - du spectre visible de la lumière
- Deux catégories de support de transmission :
 - Les supports guidés (supports en cuivre et supports optiques)
 - Les supports libres (ondes radio et liaisons satellites)

Supports de transmission

Paire torsadée

 Informations sous forme de signal électrique

Câble coaxial

 Informations sous forme de signal électrique

 Informations transitent sous forme d'impulsions lumineuses

La radio

 Informations sous forme d'ondes électromagnétiques

Fibre optique

- Signal lumineux propagé dans et à proximité du cœur
- Gaine et revêtement plastique servent à protéger le cœur de la fibre
- Adapté pour les transmissions longues distances (17 000Km de fibre)

Modes de communication

- Sens des échanges d'une transmission
 - Simplex : de l'émetteur vers le récepteur

 Half-duplex : données circulent de façon bidirectionnelle mais pas simultanément

 Full-duplex : données circulent de façon bidirectionnelle et simultanément

Liaison simplex

Puits

ou récepteur

Source

ou émetteur

Modes de transmission

- Transmission série
 - Transmission successive de tous les bits d'un même message
 - Un seul bus de transmission utilisé

Modes de transmission

- Transmission parallèle
 - Transmission simultanée de tous les bits d'un même message
 - Plusieurs bus de transmission utilisés
 - Débit plus important que pour la transmission série

Exercice d'application

- On désire transmettre D=200 bits de données d'une source vers une destination.
 Sachant qu'à chaque période de transmission
 T=0.1s on peut transmettre N=2 bits. Quelle est la durée de transmission des 200 bits de données si :
- on utilise une transmission série?
- on utilise une transmission parallèle avec 8 bus de communication?
- on utilisation une transmission en parallèle avec n bus de communication?

Synchronisation

Transmission asynchrone

- Les bits sont transmis de façon irrégulière dans le temps (saisie clavier).
- Chaque message est compris entre des bits d'émission (START) et de fin de transmission (STOP)

Transmission synchrone

- Réception continue des information au rythme d'émission de l'émetteur
- Emetteur et récepteur cadencés à la même vitesse
- Problème : différence d'horloge entre émetteur et récepteur

Types de communication

Trois types de communication
Unicast
Broadcast:
Multicast:

Client Group

Topologies des réseaux

- Disposition des éléments réseaux
- Pour connecter deux équipements un fil suffit
- Comment connecter
 N équipements N > 2
- Plusieurs topologies possibles (étoile, bus, maille, anneau, arbre etc.)

Activités 1 : Topologies

- Pour chacune des cinq (05) topologies des réseaux précédentes calculer :
 - Le nombre de liaisons en fonction du nombre de nœuds
 - Le coût de l'ajout d'un nœud en terme de nouvelles liaisons
 - L'influence de la panne d'un nœud sur la connexité du réseau

Mesures de performance

- Indicateurs permettant de juger de la qualité du réseau
 - La latence : Temps écoulé entre l'envoi et la réception d'une information
 - La capacité: Quantité d'information maximale que l'on peut transmettre. En relation avec le support de transmission
 - Le débit : Quantité d'information transmise par unité de temps
 - Le taux d'erreur binaire : Pourcentage de bits faussés lors de la transmission

La latence ou le délai

- La latence ou le délai
 - Représente la durée qui s' écoule entre l'émission d'un paquet et la réception de ce dernier
 - Emission du premier bit et réception du dernier bit
- L'unité est la seconde (s) dans le S.I
- Ce temps se décompose en deux temps
 - Le délai de propagation qui est le temps de transmission sur le support de communication
 - Le délai de bufferisation qui est le temps passé dans les files d'attente des équipements réseaux

Détermination de la latence

- d1, d3, d5 → délais de propagation
- d2, d4 → délais de bufferisation

Latence = d1 + d2 + d3 + d4 + d5

Activités 2 : Calcul de latence

On considère une information

L : la taille de l'information en bits

N : le nombre de sauts (routeurs traversés)

D : le debit de transmission de chaque liaison

Alpha : la latence au niveau de chaque routeur

- Donner le délai T(L) d'un paquet de taille L?
- On découpe ces paquets en paquets de tailles S tq (L=k*S). Donner le délai d'un paquet de taille S ?
- Est-il plus rapide d'envoyer un paquet de taille L ou k paquets de taille S ? Justifiez votre réponse

Capacité

- Quantité d'information maximale qui peut être transmise sur le support de transmission
- Unité dans le S.I : b/s
- Formule $C = W.\log_2(1 + SNR)$
 - W: Largeur de bande du support en Hz
 - SNR: Rapport signal sur bruit
- Exemple
 - □ Fibre optique: W = 200Mhz, 600Mhz, 10Ghz
 - Câbles électriques W = 10 à 25 Mhz

Débit

- Quantité d'information transmise par unité de temps. Unité dans le S.I : b/s
- Ne caractérise pas le support de transmission
- Soit une information à transmettre :
 - Avec une taille L exprimée en bits
 - Un délai de T secondes (durée entre l'émission du paquet et la réception de ce dernier) comme calculé précédemment
- Alors son débit D est donné par :
- Condition $D \le C$

Taux d'erreur binaire

- Aussi appelé BER (Bit Error Rate)
- Lors d'une transmission des bits peuvent être faussés
 - Remplacement d'un 1 par un 0 ou vice versa

$$BER = \frac{Nombres de bits erronés}{Nombre total de bits reçus}$$

- Conséquences
 - Retransmissions des informations
 - Augmentation de la latence, diminution du débit
- Ordre de grandeur
 - □ Dans un LAN \rightarrow 10⁻⁹ (1 bit faux sur 1 milliard)

Exemple BER

BER (Bit Error Ratio) ou TEB (Taux d'Erreur Binaire)

Taux d'erreur binaire BER =

Nombre de bits reçu en erreur

Nombre de bits reçu