(12) 1. Use algebraic techniques to evaluate the following limits. Identify the limits that do not exist and use $-\infty$ or ∞ as appropriate. Show your work.

(a)
$$\lim_{x \to -3} \frac{x^2 - 2x - 15}{x + 3}$$

(b)
$$\lim_{x \to -2} \frac{\sqrt{x+3} - 1}{x+2}$$

(c)
$$\lim_{x \to -\infty} \frac{2x - 6}{x + 1}$$

(d)
$$\lim_{x \to \infty} \left(3 + \frac{5}{\sqrt{x}} \right)$$

(e)
$$\lim_{x\to 2^{-}} f(x)$$
, where $f(x) = \begin{cases} 3x - 1 & \text{if } x < 2\\ x^{2} + 4 & \text{if } x \geq 2 \end{cases}$

(f)
$$\lim_{x \to -3^+} \frac{x+2}{x^2+6x+9}$$

(4) 2. Use the graph of the function f(x) below to find the following. Use ∞ , $-\infty$, or DNE where appropriate.

(b)
$$\lim_{x \to -3^-} f(x) = \dots$$

(c)
$$\lim_{x \to -3^+} f(x) = \dots$$

(d)
$$\lim_{x \to 1^{-}} f(x) = \dots$$

(e)
$$\lim_{x \to 1^+} f(x) = \dots$$

(f)
$$\lim_{x \to \infty} f(x) = \dots$$

(g)
$$f(-2) = \dots$$

(h)
$$f(1) = \dots$$

- (3) 3. For the function f(x) as defined in question number 2,
 - (a) list the value(s) of x where f(x) is discontinuous,
 - (b) list the value(s) of x where f(x) is continuous but not differentiable.
- (2) 4. Find the value(s) of x for which the following function is not continuous. Justify using the definition of continuity.

$$f(x) = \begin{cases} 24 - x^2 & \text{if } x \le 5\\ |4 - x| & \text{if } x > 5 \end{cases}$$

(2) 5. Find the value(s) of k that will make f(x) continuous for all real numbers.

$$f(x) = \begin{cases} \frac{x^2 + 2x - 3}{x - 1} & \text{if } x \neq 1 \\ k^2 & \text{if } x = 1 \end{cases}$$

- (8) 6. Given $f(x) = \sqrt{5-x}$,
 - (a) find f'(x) using the limit definition of the derivative,
 - (b) find the equation of the tangent line to f(x) at x = 1.
- (24) 7. Find $\frac{dy}{dx}$ for each of the following functions. **Do not simplify your answers.**
 - (a) $y = 5x\sqrt{x^2 + 1}$

(b)
$$y = \frac{6x^2}{x^{1/2}} + \frac{5}{2x} - \frac{e}{\sqrt{x}}$$

(c)
$$y = \frac{\sin(3x)}{3 - 2\cos x}$$

(d)
$$y = \tan(2x) + e^{\sec 3x}$$

(e)
$$y = \ln\left(\frac{\cos x}{\sqrt[3]{x^3 + 2}(3x - 1)^2}\right)$$

(f)
$$y = \log_7(x^4 - 3x) + 2^{3x}$$

(g)
$$e^y = x^2y^3 + 4$$

(h)
$$y = (3x^2 + 5)^{\sqrt{x}}$$

- (3) 8. Given the function $f(x) = x \sin(2x)$, find f''(0).
- (4) 9. Find the x-values of the points on the graph of $f(x) = \frac{2}{3}x^3 \frac{1}{2}x^2 x$ where the slope of the tangent line is 2.
- (4) 10. Find the absolute extrema of $f(x) = 2x^3 9x^2 + 3$ on the interval [2, 5].

(10) 11. Given
$$f(x) = \frac{2x^2}{(x-1)^2}$$
 $f'(x) = \frac{-4x}{(x-1)^3}$ $f''(x) = \frac{4(2x+1)}{(x-1)^4}$

- (a) find all x and y intercepts, vertical and horizontal asymptotes, intervals where f(x) is increasing or decreasing, relative extrema, intervals where f(x) is concave up or concave down, and points of inflection.
- (b) sketch the graph of f(x) on the following page.
- (4) 12. Given $f(x) = 3x^4 18x^2 + 24x + 5$ $f'(x) = 12(x-1)^2(x+2)$ $f''(x) = 36x^2 36$ find all relative extrema of f(x).
- (5) 13. A car dealer sells 80 cars per month at a price of \$20 000 per car. For every decrease of \$1000 in the price, 10 more cars are sold. What is the price to maximize the revenue?

 (Be sure to use a test to confirm that this is a maximum.)
- (4) 14. The average cost function in \$\frac{1}{2}\underset \text{unit is given by } \overline{C} = -2x^2 + 3x + \frac{10}{x}\text{ where } x \text{ is the number of units produced. Find the marginal cost at } x = 50 \text{ and interpret the result.}

- (5) 15. A company wants to build a rectangular fence next to the wall of a building. No fencing is required along the wall of the building. The fence costs \$40 per meter. The company has \$4000 to spend for the fence. Find the dimensions of the courtyard that will maximize the area. (Use a test to confirm that this is a maximum.)
- (6) 16. Given the demand function $p = \frac{2}{\sqrt{7+x^2}}$,
 - (a) find the price elasticity of demand function (simplify your answer),
 - (b) find the price elasticity of demand at x = 3,
 - (c) determine whether the demand is elastic or inelastic at x=3. (Justify your answer.)

Answers

(1a)
$$-8$$
; (1b) $\frac{1}{2}$; (1c) 2; (1d) 3; (1e) 5; (1f) $-\infty$

(2a)
$$+\infty$$
; (2b) 1; (2c) -1; (2d) -3; (2e) $-\infty$; (2f) -1; (2g) 0; (2h) 2

(3a)
$$x = -3$$
, $x = 1$; (3b) $x = -2$; (4) discontinuous at $x = 5$; (5) $k = \pm 2$

(6a) Use
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 to find $f'(x) = \frac{-1}{2\sqrt{5-x}}$; (6b) $y = -\frac{1}{4}x + \frac{9}{4}$

(7a)
$$\frac{dy}{dx} = 5\sqrt{x^2 + 1} + 5x \frac{2x}{2\sqrt{x^2 + 1}}$$
; (7b) $\frac{dy}{dx} = 9x^{1/2} - \frac{5}{2}x^{-2} + \frac{e}{2}x^{-3/2}$

(7c)
$$\frac{dy}{dx} = \frac{3\cos 3x(3-2\cos x) - 2\sin x \cdot \sin 3x}{(3-2\cos x)^2}$$
; (7d) $\frac{dy}{dx} = 2\sec^2(2x) + e^{\sec 3x} \cdot 3\sec 3x \tan 3x$

(7e)
$$\frac{dy}{dx} = \frac{-\sin x}{\cos x} - \frac{1}{3} \frac{3x^2}{x^3 + 2} - 2 \frac{3}{3x - 1} ; (7f) \frac{dy}{dx} = \frac{4x^3 - 3}{(x^4 - 3x) \ln 7} + 3(2^{3x}) \ln 2$$

(7g)
$$\frac{dy}{dx} = \frac{2xy^3}{e^y - 3x^2y^2}$$
; (7h) $\frac{dy}{dx} = (3x^2 + 5)^{\sqrt{x}} \left[\frac{1}{2\sqrt{x}} \ln(3x^2 + 5) + \sqrt{x} \frac{6x}{3x^2 + 5} \right]$

(8)
$$f''(0) = 4$$
; (9) $x = -1, x = \frac{3}{2}$

(10) absolute maximum is 28 at x = 5; absolute minimum is -24 at x = 3

(11)

x and y intercept: (0,0) vertical asymptote: x=1 horizontal asymptote: y=2 relative minimum: (0,0) points of inflection: $\left(-\frac{1}{2},\frac{2}{9}\right)$ increasing: 0 < x < 1 decreasing: x < 0 or x > 1 concave up: $-\frac{1}{2} < x < 1$ or x > 1 concave down: $x < -\frac{1}{2}$

- (12) relative minimum at (-2, -67); (13) the price is \$14,000 to maximize the revenue
- (14) the marginal cost is C'(50) = -14700 dollars/unit; $C'(50) \approx C(51) C(50)$
- (15) the dimensions are 25 by 50 meters to maximize the area.

(16a)
$$\eta = -\frac{x^2 + 7}{x^2}$$
; (16b) $\eta(3) = -\frac{16}{9} \approx -1.78$; (16c) demand is elastic