Data assimilation in an elastic friction model

Tom Gustafsson

20. September 2012

Question

 Is it possible to estimate weakly known parameters from a simple elastic friction model by using the tools of data assimilation?

Model, 2D

- Initial setting: Block, slab
- Boundary conditions

Abaqus/Standard 6.12-1, simulations on CSC

Steps of the simulation

• Step 1: 5 kN force acting downwards

• Step 2: Displacement of block's upper boundary by 70 cm to the right

Steps of the simulation: Displacement of the block

Done by using boundary conditions. Thus, a "slow displacement"

Steps of the simulation: Displacement of the block, 2

Inversion problem

- ullet Attempting to estimate friction coefficient μ
- As a priori data: x directional stress in chosen measurement points
 (~ strain gauge)

Data assimilation

- Gives an answer to the problem: How to merge measurement and model data in an optimal way?
- Traditional applications: Weather prediction, oceanography
- Multiple different methods: 3D- and 4DVar, the family of Kalman filters, ...
- In this work Ensemble Kalman Filter

Ensemble Kalman Filter

- ullet System is characterized by a bunch of state vectors $oldsymbol{\psi} \in \mathbb{R}^n$
- They estimate the same true state and their deviation characterizes the uncertainty
- This group of states is known as ensemble
- Each member of the ensemble is integrated forwards in time to the next measurement point
- After the time integration each state is merged with the measurement using

$$oldsymbol{\psi}^{oldsymbol{a}} = oldsymbol{\psi}^{oldsymbol{f}} + oldsymbol{\Sigma}_{\psi} \mathsf{M}^{\mathrm{T}} \left(oldsymbol{\Sigma}_{\psi} \mathsf{M}^{\mathrm{T}}
ight)^{-1} \left(oldsymbol{d} - \mathsf{M} oldsymbol{\psi}^{oldsymbol{f}}
ight)$$

Ensemble Kalman Filter, parametrien estimointi

Nyt malli on

$$\dot{\psi} = {\it G}(\psi,t;lpha)$$

ullet Käytännössä jatketaan tilaa parametreilla lpha

$$\hat{oldsymbol{\psi}}^f = \left(oldsymbol{\psi}^f, \; oldsymbol{lpha}
ight)^{
m T}$$

- Karsitaan lisätyt parametrit vertailuista mitattujen arvojen kanssa muokkaamalla mittamatriisia
- → Estimoitavat parametrit loksahtavat kohdalleen ratkaistaessa analyysiongelma

Ensemble Kalman Filter, yhteenveto

Takaisin ongelmaan

Malli

- ullet Estimoitava parametri μ
- Määritellään tilaksi

$$\boldsymbol{\psi} = (\sigma_{\mathsf{x}}^1, \sigma_{\mathsf{x}}^2, \sigma_{\mathsf{x}}^3, \dots, \sigma_{\mathsf{x}}^N, \mu)^{\mathrm{T}}$$

- Alussa ei kosketusta ⇒ jännitykset nollia
- ullet Alkutilan määrää ainoastaan siis μ_0

Takaisin ongelmaan 2

- Tarvitaan
 - Alkuarvaus $\mu_0 = 0.6$
 - Alkuarvauksen virhe $\sigma_0=0,1$
 - Kokoelman koko n = 200
 - Alkukokoelma jakaumasta $\mathcal{N}(\mu_0, \sigma_0^2)$
- Alkukokoelman yksittäinen tila on siis muotoa

$$\psi_j = (\underbrace{0,0,\ldots,0,0}_{N \text{ kpl}},\mu_0 + \epsilon)^{\mathrm{T}}, \ j = 1,\ldots,n$$

- Mitta"hetket": Yläreunan siirtymät $\Delta x = 7, 14, 21, \dots, 70$
- Mittadata synteettisesti

Synteettisen mittadatan generointi

ullet Minimoidaan inversiorikosta o mittadata tiheämmästä verkosta

 Miten verrata tiheämmän ja harvemman verkon antamia jännityksiä?

Synteettisen mittadatan generointi 2

Tuloksia, $\mathbf{Q} = \mathbf{0}$

Tuloksia, mallivirheen vaikutus, n = 200

Kokoelman koon vaikutus, keskiarvo

Punainen: $\Delta x = 70$, sininen: $\Delta x = 42$, vihreä: $\Delta x = 14$

Kokoelman hajonta

Peräkkäisten analyysien varianssi

Kysymyks<u>iä?</u>