Set Operations

Set Operations

Overview Set Theory

· Introduction: collection of objects

"E" notation

Set - builder notation

" Subsets: $A \subseteq B \iff (\forall x)(x \in A \Rightarrow x \in B)$ $\phi \subseteq A$ for any set \check{A} .

Unions, Intersections, and Relative Complements

Definition 1 (Set Operations)

Let A and B be sets.

• The union of A and B (denoted $A \cup B$) is the set of all things that belong to at least one of the sets A and B; in other words,

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

• The intersection of A and B (denoted $A \cap B$) is the set of all things that belong to both of the sets A and B; in other words,

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

• The relative complement of B in A (denoted $A \setminus B$) is the set of all things that belong to A but not to B; in other words,

$$A \backslash B = \{x : x \in A \text{ and } x \notin B\}.$$

Notes on Set Operations

- Short ways to read $A \cup B$, $A \cap B$, and $A \setminus B$ are "A union B," "A intersect B," and "A less B" respectively.
- $A \cup B$ should not be read "A or B." $A \cap B$ should not be read "A and B." We use the connectives "and" and "or" to connect sentences, not nouns.
- The results of set operations are another sets, so they are nouns. Hence, one must not write something like " $A \cup B$ iff $x \in A$ or $x \in B$." Instead, write " $x \in A \cup B$ iff $x \in A$ or $x \in B$."

Set Inclusion and Set Operations

Example 2

Let A and B be sets. Then:

- **2** $A \cap B \subseteq A$ and $A \cap B \subseteq B$.

Proof of 1 We will only show A = AUB; B = AUB can be shown Similarly.

Let ZEA (We need to show that ZEAUB.) Then ZEA or ZEB.

T by assumption

Let & be arbitrary. Assume XEA.

Thus LEAUB. Therefore A = AUB.

Set Inclusion and Set Operations (cont')

Example 3

Let A, B, and C be sets. Then:

- 1 If $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.
- 2 If $C \subseteq A$ and $C \subseteq B$, then $C \subseteq A \cap B$.

Proof of Buppose ASC and BSC. (NTS: AUBSC)

Let ZEAUB. Then ZEA or ZEB. In the case

Let x be arb?

where IEA, IEC, because ACC. In the case

Assume LEAUB.

Where $\pm 6B$, $\pm 6C$, because $B \leq C$. In either Case, $\pm 6C$. (We have shown that for each $\pm 4C$) Therefore, $\pm 4C$.

Set Inclusion and Set Operations (cont')

Example 4 (Equivalence to Set Inclusion)

Let A and B be sets. Then:

- $2 A \subseteq B \text{ iff } A \cap B = A.$

Now, A⊆B by assumption and B⊆B by reflexivity.

Thus AUBSB by Ex.30. Hence AUB = B.

(€) Conversely, Suppose that AUB=B. By Ex.20, A⊆AUB, but AUB=B. Thus, A⊆B.