

1 Contest Setup

1.1 Java template

```
import java.io.*;
import java.util.*;
public class Main
   public static void main(String[] args)
        MyScanner sc = new MyScanner();
        out = new PrintWriter(new BufferedOutputStream(System.out));
        // Start writing your solution here.
        // Stop writing your solution here.
        out.close();
    public static PrintWriter out;
    public static class MyScanner
        BufferedReader br:
       StringTokenizer st;
        public MyScanner()
            br = new BufferedReader(new InputStreamReader(System.in));
        boolean hasNext()
            while (st == null || !st.hasMoreElements()) {
                    st = new StringTokenizer(br.readLine());
                } catch (Exception e) {
                    return false:
```

```
return true:
String next()
    if (hasNext())
        return st.nextToken();
    return null;
int nextInt()
    return Integer.parseInt(next());
long nextLong()
    return Long.parseLong(next());
double nextDouble()
    return Double.parseDouble(next());
String nextLine()
    String str = "";
   try {
        str = br.readLine();
    } catch (IOException e) {
        e.printStackTrace();
    return str;
```

1.1.1 Java Issues

- 1. Random Shuffle before sorting:
 Random rnd = new Random(); rnd.nextInt();
- 2. Use StringBuilder for large output
- 3. Java has strict parsing rules. e.g. using sc.nextInt() to read a long will result in RE
- 4. For class sorting, use code implements Comparable<Class name>. Or, use code new Comparator<Interval>() {} atCollections.sort() second argument

2 System Testing

- Setup Codeblock warning level and std=c++11
- 2. Test g++ and Java 8 compiler
- 3. Test if c++ and Java templates work properly on local and judge machine (bits, auto, and other c++11 stuff)
- 4. Test "divide by $0" \rightarrow RE/TLE$?
- 5. Make a complete graph and run Floyd warshall, to test time complexity upper

bound

- 6. Make a linear graph and use DFS to test stack size
- 7. Test output with extra newline and spaces
- 8. Go to Eclipse o preference o Java o Editor o ContentAssist, add .abcdefghijklmnopqrstuvwxyz to auto activation triggers for Java in Eclipse

3 Reminder

- 1. 隊友的建議,要認真聽!要記得心平氣和的小聲討論喔! 通常隊 友的建議都會突破你盲點。
- 2. 每一題都要小心讀, 尤其是 IO 的格式和限制都要看清楚。
- 3. 小心估計時間複雜度和 空間複雜度
- 4. Coding 要雨人一組,要相信你的隊友的實力!
- 5. 1WA 罰 20 分鐘! 放輕鬆, 不要急, 多產幾組測資後再丟。
- 6. 範測一定要過! 產個幾組極端測資, 例如 input 下限、特殊 cases 0, 1, -1、空集合等等
- 7. 比賽是連續測資, 一定要全部讀完再開始 solve 喔!
- 8. Bus error: 有scanf, fgets 但是卻沒東西可以讀取了! 可能有 aearly termination 但是時機不對。
- 9. 圖論一定要記得檢查連通性。最簡單的做法就是 loop 過所有的 4 點
- 10. long long = int * int 會完蛋
- 11. long long int 的位元運算要記得用 1LL << 35
- 12. 記得清理 Global variable
- 13. 建圖時要注意有無重邊!
- 14. c++ priority queue 是 max heap, Java 是 Min heap
- 15. 注意要不要建立反向圖

4 Topic list

- 1. 列舉、窮舉 enumeration
- 2. 貪心 greedy
- 3. 排序 sorting, topological sort
- 4. 二分搜 binary search (數學算式移項合併後查詢)
- 5. 爬行法 (右跑左追) Two Pointer
- 6. 離散化
- 7. Dynamic programming, 矩陣快速幂
- 8. 鴿籠原理 Pigeonhole
- 9. 最近共同祖先 LCA (倍增法, LCA 轉 RMQ)

- 10. 折半完全列舉 (能用 vector 就用 vector)
- 11. 離線查詢 Offline (DFS, LCA)
- 12. 圖的連通性 Directed graph connectivity -> DFS. Undirected graph -> Union Find
- 13. 因式分解
- 14. 從答案推回來
- 15. 寫出數學式, 有時就馬上出現答案了!
- 16. 奇偶性質

5 Useful code

5.1 Leap year O(1)

```
(year % 400 == 0 \mid \mid (year % 4 == 0 \&\& year % 100 != 0))
```

5.2 Fast Exponentiation O(log(exp))

5.3 Mod Inverse O(logn)

```
Case 1: gcd(a, m) = 1: ax + my = gcd(a, m) = 1 (use ext_gcd)
```

Case 2: m is prime: $a^{m-2} \equiv a^{-1} mod m$

5.4 GCD O(log(min(a+b)))

注意負數的 case! C++ 是看被除數決定正負號的。

```
ll gcd(ll a, ll b)
{
    return b == 0 ? a : gcd(b, a % b);
}
```

5.5 Extended Euclidean Algorithm GCD O(log(min(a + b)))

Bezout identity ax + by = gcd(a, b), where $|x| \le \frac{b}{d}$ and $|y| \le \frac{a}{d}$.

ယ 23

```
ll extgcd(ll a, ll b, ll& x, ll&y) {
       if(b = 0) {
           x = 1;
           y = 0;
           return a;
5
       }
6
       else {
           ll d = extgcd(b, a \% b, y, x);
           y = (a / b) * x;
9
           return d;
10
11
12
```

5.6 Prime Generator O(nloglogn)

```
const ll MAX_NUM = 1e6; // 要是合數
   bool is_prime[MAX_NUM];
   vector<ll> primes;
   void init primes() {
       fill(is prime, is prime + MAX NUM, true);
       is_prime[0] = is_prime[1] = false;
       for (ll i = 2; i < MAX_NUM; i++) {
           if (is prime[i]) {
                primes.push_back(i);
                for (ll j = i * i; j < MAX_NUM; j += i)
                   is_prime[j] = false;
           }
13
14
```

5.7 C++ Reference

::long long:

```
algorithm
        ::find: [it s, it t, val] -> it
        ::count: [it s, it t, val] -> int
        ::unique: [it s, it t] -> it (it = new end)
        ::merge: [it s1, it t1, it s2, it t2, it o] -> void (o allocated)
   string::
        ::replace(idx, len, string) -> void
        ::find (str, pos = \emptyset) -> idx
        ::substr (pos = 0, len = npos) -> string
   string <-> int
        ::stringstream; // remember to clear
12
        ::sscanf(s.c_str(), "%d", &i);
13
        ::sprintf(result, "%d", i); string s = result;
14
15
   math/cstdlib
       ::atan2(y=0, x=-1) -> pi
17
   io printf/scanf
                               "%d"
                                               "%d"
        ::int:
20
                               "%lf","f"
                                               "%lf"
        ::double:
21
                               "%s"
                                               "%s"
        ::string:
22
                               "%lld"
                                               "%lld"
```

```
"%Lf"
                                   "%I f"
24
         ::long double:
                                   "%u"
                                                     "%U"
         ::unsigned int:
25
                                                    "%ull"
         ::unsigned long long: "%ull"
26
         ::oct:
                                   "0%o"
27
28
         ::hex:
                                   "0x%x"
         ::scientific:
                                   "%e"
29
30
         ::width:
                                   "%05d"
         ::precision:
                                   "%.5f"
31
32
         ::adiust left:
                                   "%-5d"
33
    io cin/cout
34
         ::oct:
                                   cout << oct << showbase;</pre>
35
         ::hex:
                                   cout << hex << showbase;</pre>
36
                                   cout << scientific;</pre>
         ::scientific:
37
         ::width:
                                   cout << setw(5):</pre>
38
         ::precision:
                                   cout << fixed << setprecision(5);</pre>
39
         ::adjust left:
                                   cout << setw(5) << left;</pre>
```

Search

Ternary Search O(nlogn)

```
double l = ..., r = ....; // input
for(int i = 0; i < 100; i++) {
   double m1 = l + (r - l) / 3, m2 = r - (r - l) / 3;
   if (f(m1) < f(m2)) // f - convex function
       l = m1:
   else
        r = m2;
f(r) - maximum of function
```

Basic data structure

7.1 1D BIT

```
// BIT is 1-based
const int MAX N = 20000; //這個記得改!
ll\ bit[MAX_N + 1];
ll sum(int i) {
   int s = 0;
    while (i > 0)
        s += bit[i]:
        i -= (i \& -i);
   }
    return s;
void add(int i, ll x) {
    while (i <= MAX_N) {
        bit[i] += x;
        i += (i \& -i);
   }
}
```

7.2 2D BIT

```
// BIT is 1-based
const int MAX_N = 20000, MAX_M = 20000; //這個記得改!
ll bit[MAX N + 1][MAX M + 1];
ll sum(int a, int b) {
   ll s = 0;
    for (int i = a; i > 0; i = (i \& -i))
        for (int j = b; j > 0; j -= (j \& -j))
            s += bit[i][j];
        return s;
}
void add(int a, int b, ll x) {
    // MAX N, MAX M 須適時調整!
    for (int i = a; i \le MAX_N; i += (i \& -i))
        for (int j = b; j \le MAX_M; j += (j \& -j))
            bit[i][i] += x;
}
```

7.3 Union Find

```
const int MAX_N = 20000; // 記得改
struct UFDS {
    int par[MAX_N];
    void init(int n) {
        memset(par, -1, sizeof(int) * n);
    int root(int x) {
        return par[x] < \emptyset ? x : par[x] = root(par[x]);
    void merge(int x, int y) {
        x = root(x);
        y = root(y);
        if (x != y) {
            if (par[x] > par[y])
            swap(x, y);
            par[x] += par[y];
            par[y] = x;
    }
};
```

7.4 Segment Tree

```
dflt = val;
    NN = 1;
    while (NN < n)
        NN <<= 1;
    fill(seg, seg + 2 * NN, dflt);
    fill(lazy, lazy + 2 * NN, dflt);
}
void gather(int u, int l, int r)
    seq[u] = seq[u * 2 + 1] + seq[u * 2 + 2];
}
void push(int u, int l, int r)
    if (lazy[u] != 0) {
        int m = (l + r) / 2;
        seg[u * 2 + 1] += (m - 1) * lazy[u];
        seg[u * 2 + 2] += (r - m) * lazy[u];
        lazy[u * 2 + 1] += lazy[u];
        lazy[u * 2 + 2] += lazy[u];
        lazv[u] = 0:
}
void build(int u, int l, int r)
    if (r - l == 1)
        return;
    int m = (l + r) / 2;
    build(u * 2 + 1, l, m);
    build(u * 2 + 2, m, r);
    gather(u, l, r);
}
ll query(int a, int b, int u, int l, int r)
    if (l >= b || r <= a)
        return dflt;
    if (l >= a \&\& r <= b)
        return seq[u];
    int m = (l + r) / 2;
    push(u, l, r);
    ll res1 = query(a, b, u * 2 + 1, l, m);
    ll res2 = query(a, b, u * 2 + 2, m, r);
    gather(u, l, r); // data is dirty since previous push
    return res1 + res2;
}
void update(int a, int b, int x, int u, int l, int r)
    if (l >= b || r <= a)
        return;
```

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66 67

68

69

 $^{\circ}$

```
if (l >= a \&\& r <= b) {
70
                seq[u] += (r - l) * x: // update u and
71
                lazv[u] += x;
                                   // set subtree u is not up-to-date
72
                return;
73
           }
74
           int m = (l + r) / 2;
75
           push(u, l, r);
76
           update(a, b, x, u * 2 + 1, l, m);
77
           update(a, b, x, u * 2 + 2, m, r);
78
           gather(u, l, r); // remember this
79
80
81 };
  7.5 Sparse Table
   struct Sptb {
       int sp[MAX_LOG_N][MAX_N]; // MAX_LOG_N = ceil(lg(MAX_N))
2
3
       void build(int inp[], int n)
            for (int j = 0; j < n; j++)
                sp[0][i] = inp[i];
           for (int i = 1; (1 << i) <= n; i++)
                for (int j = 0; j + (1 << i) <= n; j++)
                    sp[i][j] = min(sp[i - 1][j], sp[i - 1][j + (1 << (i -

→ 1))]);

12
       int query(int l, int r) // [l, r)
```

8 Tree

};

8.1 LCA

```
const int MAX_N = 10000;
   const int MAX_LOG_N = 14; // (1 \ll MAX_LOG_N) > MAX_N
   int N;
   int root;
   int dep[MAX_N];
   int par[MAX LOG N][MAX N];
   vector<int> child[MAX_N];
   void dfs(int u, int p, int d) {
11
        dep[u] = d;
12
        for (int i = 0; i < int(child[u].size()); i++) {</pre>
13
            int v = child[u][i];
            if (v != p) {
15
```

int k = floor(log2(r - l));

return min(sp[k][l], sp[k][r - (1 << k)]);

```
dfs(v, u, d + 1);
16
17
       }
18
19
20
    void build() {
21
        // par[0][u] and dep[u]
22
       dfs(root, -1, 0);
23
24
        // par[i][u]
25
        for (int i = 0; i + 1 < MAX LOG N; i++) {
26
            for (int u = 0; u < N; u++) {
27
                if (par[i][u] == -1)
28
                    par[i + 1][v] = -1;
29
30
                    par[i + 1][u] = par[i][par[i][u]];
31
32
33
       }
34
35
    int lca(int u, int v) {
36
        if (dep[u] > dep[v]) swap(u, v); // 讓 v 較深
37
        int diff = dep[v] - dep[u]; // 將 v 上移到與 u 同層
38
        for (int i = 0; i < MAX_LOG_N; i++) {
39
            if (diff & (1 << i)) {
                v = par[i][v];
       }
43
44
       if (u = v) return u;
45
46
        for (int i = MAX_LOG_N - 1; i >= 0; i--) { // 必需倒序
47
            if (par[i][u] != par[i][v]) {
48
                u = par[i][u];
49
                v = par[i][v];
51
52
        return par[0][u];
53
54
```

8.2 Tree Center

```
int diameter = 0, radius[N], deg[N]; // deg = in + out degree
int findRadius()

{
    queue<int> q; // add all leaves in this group
    for (auto i : group)
        if (deg[i] == 1)
            q.push(i);

int mx = 0;
while (q.empty() == false) {
    int u = q.front();
    q.pop();
```

```
for (int v : g[u]) {
14
                dea[v]--:
15
                if (deg[v] == 1) {
16
                    q.push(v);
17
                    radius[v] = radius[u] + 1;
18
                    mx = max(mx, radius[v]);
19
                }
20
            }
21
       }
22
23
        int cnt = 0; // crucial for knowing if there are 2 centers or not
24
        for (auto i : group)
25
            if (radius[j] == mx)
26
                cnt++;
27
28
29
        // add 1 if there are 2 centers (radius, diameter)
        diameter = max(diameter, mx * 2 + (cnt == 2));
        return mx + (cnt == 2);
31
32
```

9 Graph

9.1 Articulation point / Bridge

```
const int MAX_N = 1111;
   vector<int> q[MAX_N];
   // for bridge
   typedef pair<int, int> ii;
   vector<ii> ans;
   // for articulation point
                             // set it before dfs() call
   bool isCutVertex[MAX_N]; // init to false
   int tt = 0, dfn[MAX_N], low[MAX_N]; // init array to -1
   void dfs(int u, int p)
   {
14
        dfn[u] = low[u] = tt++;
15
        // for articulation point, root needs to have >= 2 childrens
17
        int child = 0;
18
        for (auto v : q[u]) {
19
            if (v == p)
20
                continue;
21
            child++;
22
23
            if (dfn[v] == -1) {
24
                dfs(v, u);
25
                low[u] = min(low[u], low[v]);
26
27
                if (low[v] > dfn[u]) // bridge
28
                    ans.push_back(ii(min(u, v), max(u, v)));
29
30
                if (u != root && low[v] >= dfn[u]) { // articulation point
31
```

```
32
                    isCutVertex[u] = true;
                } else if (u == root && child >= 2) { // articulation point
33
                    isCutVertex[u] = true;
34
35
            } else {
36
                // u -> v, u has direct access to v -> back edge
37
                low[u] = min(low[u], dfn[v]);
38
39
       }
40
   }
41
```

9.2 2-SAT

```
p \lor (q \land r)
= ((p \land q) \lor (p \land r))
p \oplus q
= \neg((p \land q) \lor (\neg p \land \neg q))
= (\neg p \lor \neg q) \land (p \lor q)
```

```
// 建圖
// (x1 or x2) and ... and (xi or xj)
// (xi or xj) 建邊
// ~xi -> xi
// ~xj -> xi
tarjan(); // scc 建立的順序是倒序的拓璞排序
for (int i = 0; i < 2 * N; i += 2) {
    if (belong[i] = belong[i \land 1]) {
       // 無解
   }
for (int i = 0; i < 2 * N; i += 2) { // 迭代所有變數
   if (belong[i] < belong[i ^ 1]) { // i 的拓璞排序比 ~i 的拓璞排序大
       // i = T
   }
   else {
       // i = F
}
```

9.3 CC

9.3.1 BCC

以 Edge 做分界的話, stack 要裝入 (u - v), 並 pop 終止條件為!= (u - v) 以 Articulation point 做為分界 (code below), 注意有無坑人的重邊注意, 用 SCC 的 code 的話, 只要多判一個 u 是否為 p, 如果是的話就直接 return (加在第 21 行之後)

9.3.2 SCC

First of all we run DFS on the graph and sort the vertices in decreasing of their finishing time (we can use a stack).

Then, we start from the vertex with the greatest finishing time, and for each vertex $_{53}$ v that is not yet in any SCC, do: for each u that v is reachable by u and u is not yet $_{54}$ } in any SCC, put it in the SCC of vertex v. The code is quite simple.

```
}
```

```
const int MAX_V = ...;
   const int INF = 0x3f3f3f3f;
   int V;
   vector<int> q[MAX V];
   int dfn_idx = 0;
   int scc cnt = 0;
   int dfn[MAX V];
   int low[MAX_V];
   int belong[MAX_V];
   bool in st[MAX V];
   vector<int> st;
13
   void scc(int v)
15
       dfn[v] = low[v] = dfn_idx++;
16
       st.push back(v);
       in st[v] = true;
       for (int i = 0; i < int(g[v].size()); i++) {
           const int u = q[v][i];
21
           if (dfn[u] = -1) {
22
                scc(u);
                low[v] = min(low[v], low[u]);
           } else if (in_st[u]) {
25
                low[v] = min(low[v], dfn[u]);
26
           }
27
       }
       if (dfn[v] = low[v]) {
           int k;
           do {
                k = st.back();
33
                st.pop back();
                in_st[k] = false;
35
                belong[k] = scc_cnt;
36
           } while (k != v);
37
           scc_cnt++;
38
       }
39
40
   void tarjan() // scc 建立的順序即為反向的拓璞排序
   {
43
44
       st.clear();
       fill(dfn, dfn + V, -1);
45
       fill(low, low + V, INF);
46
       dfn_idx = 0;
47
       scc_cnt = 0;
48
       for (int v = 0; v < V; v++) {
           if (dfn[v] == -1) {
50
                scc(v);
51
```

9.4 Shortest Path

Time complexity notations: V = vertex, E = edge Minimax: dp[u][v] = min(dp[u][v], max(dp[u][k], dp[k][v]))

9.4.1 Dijkatra (next-to-shortest path) O(VlogE)

密集圖別用 priority queue!

```
struct Edge {
       int to, cost;
   };
   typedef pair<int, int> P; // <d, v>
   const int INF = 0x3f3f3f3f;
   int N, R;
   vector<Edge> g[5000];
   int d[5000];
   int sd[5000]:
   int solve()
14
15
       fill(d. d + N. INF):
16
       fill(sd, sd + N, INF);
17
       priority_queue<P, vector<P>, greater<P>> pq;
18
19
       d[0] = 0:
20
       pq.push(P(0, 0));
21
22
       while (!pq.empty()) {
23
            P p = pq.top();
24
           pq.pop();
25
            int v = p.second;
26
27
            if (sd[v] < p.first) // 比次短距離還大,沒用,跳過
28
                continue:
29
30
            for (size t i = 0; i < q[v].size(); i++) {
31
                Edge \&e = q[v][i];
32
                int nd = p.first + e.cost;
33
                if (nd < d[e.to]) { // 更新最短距離
34
                    swap(d[e.to], nd);
35
                    pg.push(P(d[e.to], e.to));
36
37
                if (d[e.to] < nd && nd < sd[e.to]) { // 更新次短距離
38
                    sd[e.to] = nd:
39
                    pq.push(P(sd[e.to], e.to));
40
41
           }
42
       }
43
```

```
44
        return sd[N - 1];
45
   }
46
  9.4.2 SPFA
   #define sz(x) (int(x.size()))
   const int MAX_V = ...;
   const int INF = 0x3f3f3f3f;
   struct Edge {
       int to, w;
   };
   vector<Edge> g[MAX_V];
   int d[MAX_V];
10
   bool spfa(int V, int S) {
11
       fill(d, d + V, INF);
12
        queue<int> q;
13
        vector<bool> inq(V, false);
14
        vector<int> cnt(V, 0);
16
       d[S] = 0;
       cnt[S]++;
        ing[S] = true;
       q.push(S);
21
       while (!q.empty()) {
            int u = q.front(); q.pop(); inq[u] = false;
            for (int i = 0; i < sz(g[u]); i++) {
                const Edge& e = g[u][i];
                if (d[e.to] > d[u] + e.w) {
                    d[e.to] = d[u] + e.w:
                    if (++cnt[e.to] >= V) {
                        return true;
                    }
30
31
                    if (!ing[e.to]) {
                        inq[e.to] = true;
32
                        q.push(e.to);
33
                    }
34
                }
35
            }
36
37
38
        return false;
39
40
  9.4.3 Bellman-Ford O(VE)
   struct Edge {
        int from, to, cost;
   };
   const int MAX_V = ...;
   const int MAX_E = ...;
```

const int INF = 0x3f3f3f3f;

```
int V, E;
   Edge edges[MAX_E];
   int d[MAX_V];
   bool bellman_ford()
12
13
        fill(d, d + V, INF);
14
15
        d[0] = 0;
16
        for (int i = 0; i < V; i++) {
17
            for (int j = 0; j < E; j++) {
18
                 Edge &e = edges[i];
19
                 if (d[e.to] > d[e.from] + e.cost) {
20
                     d[e.to] = d[e.from] + e.cost;
21
22
                     if (i == V - 1) // negative cycle
23
                         return true;
24
                }
25
26
       }
27
28
29
        return false;
30
```

9.4.4 Floyd-Warshall $O(V^3)$

The graph is stored using adjacency matrix. The initial state is diagnal=0 and others=INF. (If INF is int, use long long for the matrix) If diagonal numbers are negative \leftarrow cycle .

9.5 MST

9.5.1 Kruskal

- 1. Store the graph by (weight, (from, to))
- 2. Sort the graph by weight
- 3. Start from the smallest weight, and keep adding edges that won't form a cycle with the current MST set
- 4. Early termination condition: n-1 edges has been added, NOT size of the union-find set

9.5.2 Second MST

10

16

17

19

20

21

22

24

25

26

30

31

32

44

45

47

48

49

50

51

52

54

56

57

59

60

61

62

9

```
int u, v, w;
};
vector<Edge> edges;
// btn[i][u] = u 前往它 2<sup>i</sup> parent 的路上經過的最大權重
// par[i][u] = u 的 2<sup>i</sup> parent 是誰
int dep[MAX_V]; // should be init to -1
int btn[MAX_LOG_V][MAX_V];
int par[MAX_LOG_V][MAX_V];
// mst
struct AdiE {
    int to, w;
vector<AdjE> g[MAX_V];
void dfs(int u, int p, int d) {
   dep[u] = d:
    par[0][u] = p;
    for (auto e : q[u]) {
       if (e.to != p) {
            btn[0][e.to] = e.w;
            dfs(e.to, u, d + 1);
        }
   }
}
void build() {
    for (int u = 0; u < V; u++) {
        if (dep[u] == -1) {
            dfs(u, -1, 0);
        }
   }
    for (int i = 0; i + 1 < MAX_LOG_V; i++) {
        for (int u = 0; u < V; u++) {
            if (par[i][u] == -1 || par[i][par[i][u]] == -1) {
                par[i + 1][u] = -1;
                btn[i + 1][u] = 0:
            else {
                par[i + 1][u] = par[i][par[i][u]];
                btn[i + 1][u] = max(btn[i][u], btn[i][par[i][u]]);
           }
        }
   }
int lca(int u, int v) { // 回傳 u, v 之間的最大權重
    int mx = -INF; // U, V 之間的最大權重
    if (dep[u] > dep[v]) swap(u, v);
    int diff = dep[v] - dep[u];
    for (int i = MAX_LOG_V - 1; i \ge 0; i--) {
       if (diff & (1 << i)) {
            mx = max(mx, btn[i][v]);
```

```
v = par[i][v];
63
64
       }
65
66
67
       if (u == v) return mx;
68
        for (int i = MAX_LOG_V - 1; i >= 0; i--) {
69
            if (par[i][u] != par[i][v]) {
70
                mx = max(mx, btn[i][u]);
71
                mx = max(mx, btn[i][v]);
72
                u = par[i][u]:
73
                v = par[i][v];
74
            }
75
       }
76
       // lca = par[0][u] = par[0][v];
77
       mx = max(mx, max(btn[0][u], btn[0][v]));
78
79
       return mx:
80
81
82
   // second mst
   build();
   int ans = INF;
85
   for (auto e: non_mst_edges) {
86
       int mx_w = lca(e.u, e.v);
87
       ans = min(ans, (total_w + e.w - mx_w));
   }
```

10 Flow

10.1 Max Flow (Dinic)

```
struct Edge {
       int to, cap, rev;
       Edge(int a, int b, int c) {
           to = a;
            cap = b;
            rev = c;
   };
   const int INF = 0x3f3f3f3f;
   const int MAX_V = 20000 + 10;
   // vector<Edge> g[MAX V];
   vector< vector<Edge> > g(MAX_V);
   int level[MAX_V];
14
   int iter[MAX_V];
15
   inline void add_edge(int u, int v, int cap) {
       g[u].push_back((Edge){v, cap, (int)g[v].size()});
18
       g[v].push_back((Edge){u, 0, (int)g[u].size() - 1});
19
20
21
   void bfs(int s) {
22
       memset(level, -1, sizeof(level)); // 用 fill
```

```
24
        queue<int> q;
25
        level[s] = 0;
26
        q.push(s);
27
28
        while (!q.empty()) {
29
            int v = q.front(); q.pop();
30
            for (int i = 0; i < int(g[v].size()); i++) {
31
                const Edge& e = q[v][i];
32
                if (e.cap > 0 && level[e.to] < 0) {
33
                    level[e.to] = level[v] + 1;
34
                    q.push(e.to);
                }
36
            }
37
       }
38
39
   int dfs(int v, int t, int f) {
41
       if (v == t) return f:
42
43
        for (int& i = iter[v]; i < int(g[v].size()); i++) { // & 很重要
            Edge& e = q[v][i];
            if (e.cap > 0 && level[v] < level[e.to]) {</pre>
                int d = dfs(e.to, t, min(f, e.cap));
                if (d > 0) {
47
                    e.cap -= d;
48
                    g[e.to][e.rev].cap += d;
                    return d:
                }
            }
52
       }
        return 0;
   int max_flow(int s, int t) { // dinic
       int flow = 0;
        for (;;) {
            bfs(s):
            if (level[t] < 0) return flow:
61
            memset(iter, 0, sizeof(iter));
62
63
            while ((f = dfs(s, t, INF)) > 0) {
64
                flow += f;
65
66
67
```

10.2 Min Cost Flow

```
#define st first
#define nd second

typedef pair <double, int > pii; // 改成用 int const double INF = 1e10;

struct Edge {
int to, cap;
```

```
9
       double cost:
        int rev;
10
   };
11
12
   const int MAX V = 2 * 100 + 10;
   int V;
   vector<Edge> g[MAX_V];
   double h[MAX V]:
   double d[MAX V];
   int prevv[MAX V];
   int preve[MAX_V];
    // int match[MAX V]:
21
   void add_edge(int u, int v, int cap, double cost) {
22
       g[u].push_back((Edge){v, cap, cost, (int)g[v].size()});
23
       g[v].push_back((Edge){u, 0, -cost, (int)g[u].size() - 1});
24
25
26
27
   double min_cost_flow(int s, int t, int f) {
       double res = 0;
28
        fill(h, h + V, \emptyset);
29
        fill(match, match + V, -1);
        while (f > \emptyset) {
31
            // dijkstra 找最小成本增廣路徑
32
            // without h will reduce to SPFA = O(V*E)
33
            fill(d, d + V, INF);
34
35
            priority_queue< pii, vector<pii>, greater<pii> > pq;
36
            d[s] = 0:
37
            pq.push(pii(d[s], s));
38
39
            while (!pq.empty()) {
40
                pii p = pq.top(); pq.pop();
41
                int v = p.nd;
42
                if (d[v] < p.st) continue;</pre>
                for (size_t i = 0; i < q[v].size(); i++) {
44
                    const Edge& e = q[v][i];
45
                    if (e.cap > 0 \&\& d[e.to] > d[v] + e.cost + h[v] -
46
     → h[e.to]) {
                         d[e.to] = d[v] + e.cost + h[v] - h[e.to];
47
                         prevv[e.to] = v;
48
                         preve[e.to] = i;
49
                         pg.push(pii(d[e.to], e.to));
50
51
                }
52
            }
53
54
            // 找不到增廣路徑
55
56
            if (d[t] == INF) return -1; // double 時不能這樣判
57
58
            // 維護 h[v]
            for (int v = 0; v < V; v++)
                h[v] += d[v];
60
61
62
            // 找瓶頸
```

```
63
            int bn = f;
                                                                                   21
                                                                                                    // 交錯配對
            for (int v = t: v != s: v = prevv[v])
64
                bn = min(bn, g[prevv[v]][preve[v]].cap);
65
                                                                                   23
            // // find match
                                                                                               }
67
                                                                                   25
            // for (int v = prevv[t]; v != s; v = prevv[prevv[v]]) {
68
                                                                                   26
                   int u = prevv[v];
                                                                                   27
                                                                                           return false;
69
            //
                   match[v] = u:
70
                                                                                   28
            //
                   match[u] = v;
                                                                                   29
71
            // }
72
                                                                                   30
                                                                                           int res = 0;
                                                                                   31
73
            // 更新剩餘圖
74
            f = bn;
                                                                                   33
75
            res += bn * h[t]; // SPFA: res += bn * d[t]
76
                                                                                   34
            for (int v = t; v != s; v = prevv[v]) {
                                                                                   35
77
                Edge& e = q[prevv[v]][preve[v]];
78
                e.cap -= bn;
                                                                                   37
                                                                                                        res++;
79
                g[v][e.rev].cap += bn;
                                                                                   38
                                                                                                    }
80
                                                                                               }
            }
                                                                                   39
81
                                                                                           }
82
                                                                                           return res;
        return res;
                                                                                   41
83
84
```

10.3 Bipartite Matching, Unweighted

最大匹配數: 最大匹配的匹配邊的數目

最小點覆蓋數:選取最少的點,使任意一條邊至少有一個端點被選擇

最大獨立數:選取最多的點,使任意所選兩點均不相連

最小路徑覆蓋數: 對於一個 DAG (有向無環圖), 選取最少條路徑, 使得每個頂點 屬於且僅屬於一條路徑。路徑長可以為 0 (即單個點)

定理 1: 最大匹配數 = 最小點覆蓋數 (這是 Konig 定理)

定理 2: 最大匹配數 = 最大獨立數

定理 3: 最小路徑覆蓋數 = 頂點數 - 最大匹配數

```
const int MAX_V = ...;
   int V;
   vector<int> q[MAX_V];
   int match[MAX_V];
   bool used[MAX_V];
   void add_edge(int u, int v) {
       q[u].push back(v):
       q[v].push back(u);
10
11
   // 回傳有無找到從 V 出發的增廣路徑
   // (首尾都為未匹配點的交錯路徑)
   // [待確認] 每次遞迴都找一個末匹配點 V 及匹配點 U
   bool dfs(int v) {
       used[v] = true;
16
       for (size_t i = 0; i < g[v].size(); i++) {
17
          int u = g[v][i], w = match[u];
18
           // 尚未配對或可從 W 找到增廣路徑 (即路徑繼續增長)
19
          if (w < 0 \mid | (!used[w] \&\& dfs(w)))  {
```

```
match[v] = u:
           match[u] = v;
           return true;
int bipartite_matching() { // 匈牙利演算法
   memset(match, -1, sizeof(match));
    for (int v = 0; v < V; v++) {
        if (match[v] == -1) {
           memset(used, false, sizeof(used));
           if (dfs(v)) {
```

String

Rolling Hash 11.1

- 1. Use two rolling hashes if needed.
- 2. The prime for pre-calculation can be 137 and 257, for modulo can be 1e9 + 7and 0xdefaced

```
#define N 1000100
   #define B 137
   #define M 1000000007
   typedef long long ll;
   char inp[N];
   int len;
   ll p[N], h[N];
   void init()
   { // build polynomial table and hash value
       p[0] = 1; // b to the ith power
        for (int i = 1; i \le len; i++) {
14
            h[i] = (h[i - 1] * B % M + inp[i - 1]) % M; // hash value
15
            p[i] = p[i - 1] * B % M;
16
       }
17
18
   ll get_hash(int l, int r) // [l, r] of the inp string array
20
21
       return ((h[r + 1] - (h[l] * p[r - l + 1])) % M + M) % M;
22
23
```

11.2 KMP

```
void fail()
   {
2
        int len = strlen(pat);
       f[0] = 0;
        int j = 0;
        for (int i = 1; i < len; i++) {
7
            while (j != 0 && pat[i] != pat[j])
8
                j = f[j - 1];
10
            if (pat[i] = pat[j])
11
12
                j++;
13
            f[i] = j;
14
15
16
17
   int match()
18
19
   {
        int res = 0:
20
        int j = 0, plen = strlen(pat), tlen = strlen(text);
        for (int i = 0; i < tlen; i++) {
23
            while (j != 0 && text[i] != pat[j])
24
                j = f[j - 1];
25
            if (text[i] == pat[j]) {
                if (i = plen - 1) \{ // find match \}
28
                    res++;
                    j = f[j];
                } else {
                    j++;
            }
       }
35
36
        return res;
```

11.3 Z Algorithm

```
int len = strlen(inp), z[len];
   z[0] = 0; // initial
   int l = 0, r = 0; // z box bound [l, r]
   for (int i = 1; i < len; i++)
6
       if (i > r) { // i not in z box
           l = r = i; // z box contains itself only
           while (r < len \&\& inp[r - l] == inp[r])
                r++;
10
11
           z[i] = r - l;
           r--;
12
       } else { // i in z box
13
```

```
if (z[i - l] + i < r) // over shoot R bound
14
                 z[i] = z[i - l];
15
            else {
16
                 l = i;
17
                 while (r < len \&\& inp[r - l] == inp[r])
18
19
                     r++;
                 z[i] = r - l;
20
                 r--;
21
            }
22
        }
23
24
```

11.4 Trie

注意 count 的擺放位置, 視題意可以擺在迴圈外

```
struct Node {
        int cnt:
        Node* nxt[2];
        Node() {
            cnt = 0;
            fill(nxt, nxt + 2, nullptr);
   };
   const int MAX_Q = 200000;
   int Q;
12
   int NN = 0;
13
   Node data[MAX_Q * 30];
14
   Node* root = &data[NN++];
15
16
    void insert(Node* u, int x) {
17
        for (int i = 30; i >= 0; i--) {
18
            int t = ((x >> i) & 1);
19
            if (u->nxt[t] == nullptr) {
20
                 u->nxt[t] = &data[NN++];
21
22
23
            u = u -> nxt[t];
24
25
            u->cnt++;
26
27
28
   void remove(Node* u, int x) {
29
        for (int i = 30; i >= 0; i--) {
30
            int t = ((x >> i) & 1);
31
32
            u = u -> nxt[t];
            u->cnt--;
33
       }
34
35
36
   int query(Node* u, int x) {
37
38
        int res = 0;
        for (int i = 30; i \ge 0; i - -) {
39
            int t = ((x >> i) & 1);
40
```

 $\overline{\omega}$

```
41
            // if it is possible to go the another branch
            // then the result of this bit is 1
42
            if (u->nxt[t ^ 1] != nullptr && u->nxt[t ^ 1]->cnt > 0) {
43
                u = u - > nxt[t \land 1];
44
                 res |= (1 << i);
45
            }
46
            else {
47
                 u = u -> nxt[t];
48
            }
49
50
51
        return res;
  }
52
```

12 Matrix

12.1 Gauss Jordan Elimination

```
typedef long long ll;
   typedef vector<ll> vec;
   typedef vector<vec> mat;
4
   vec gauss_jordan(mat A) {
       int n = A.size(), m = A[0].size(); // 增廣矩陣
       for (int i = 0; i < n; i++) {
           // float: find j s.t. A[j][i] is max
           // mod: find min j s.t. A[j][i] is not 0
           int pivot = i;
           for (int j = i; j < n; j++) {
                // if (fabs(A[j][i]) > fabs(A[pivot])) {
                      pivot = j;
               // }
               if (A[pivot][i] != 0) {
                   pivot = j;
                    break:
           }
19
20
            swap(A[i], A[pivot]);
21
           if (A[i][i] == 0) { // if (fabs(A[i][i]) < eps)
22
23
                // 無解或無限多組解
               // 可改成 continue, 全部做完後再判
24
                return vec();
25
           }
26
27
           ll divi = inv(A[i][i]);
28
           for (int j = i; j < m; j++) {
29
                // A[i][i] /= A[i][i];
30
                A[i][j] = (A[i][j] * divi) % MOD;
31
           }
32
33
            for (int j = 0; j < n; j++) {
34
               if (j != i) {
35
                    for (int k = i + 1; k < m; k++) {
36
                        // A[j][k] -= A[j][i] * A[i][k];
37
                        ll p = (A[j][i] * A[i][k]) % MOD;
38
```

```
A[j][k] = (A[j][k] - p + MOD) \% MOD;
39
                 }
41
            }
42
       }
43
44
        vec x(n);
45
        for (int i = 0; i < n; i++)
46
            x[i] = A[i][m - 1];
47
        return x;
48
   }
```

12.2 Determinant

整數版本

```
typedef long long ll;
   typedef vector<ll> vec;
   typedef vector<vec> mat;
   ll determinant(mat m) { // square matrix
       const int n = m.size();
       ll det = 1;
       for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                int a = i, b = j;
10
                while (m[b][i]) {
                    ll q = m[a][i] / m[b][i];
12
                    for (int k = 0; k < n; k++)
13
                         m[a][k] = m[a][k] - m[b][k] * q;
14
                    swap(a, b);
15
                }
17
                if (a != i) {
18
                    swap(m[i], m[j]);
19
20
                    det = -det:
21
            }
22
23
            if (m[i][i] == 0)
24
                return 0;
25
26
            else
                det *= m[i][i];
27
28
        return det;
29
30
```

13 Geometry

- 1. Keep things in integers as much as possible!
- 2. Try not to divide
- 3. If you have decimals, if they are fixed precision, you can usually just multiply all the input and use integers instead

13.1 EPS

= 0: fabs < eps

bool zero(double x)

```
< 0: < -eps
  > 0: > +eps
   // if the points are given in doubles form, change the code accordingly
   typedef long long ll;
   typedef pair<ll, ll> pt; // points are stored using long long
   typedef pair<pt, pt> seg; // segments are a pair of points
   #define x first
   #define v second
   #define EPS 1e-9
12
   pt operator+(pt a, pt b)
13
14
       return pt(a.x + b.x, a.y + b.y);
   }
17
   pt operator-(pt a, pt b)
18
       return pt(a.x - b.x, a.y - b.y);
   }
22
   pt operator*(pt a, int d)
       return pt(a.x * d, a.y * d);
   ll cross(pt a, pt b)
       return a.x * b.y - a.y * b.x;
   int ccw(pt a, pt b, pt c)
34
       ll res = cross(b - a, c - a);
35
36
       if (res > 0) // left turn
            return 1;
37
38
       else if (res = 0) // straight
            return 0;
39
       else // right turn
40
            return -1;
41
   }
42
43
   double dist(pt a, pt b)
44
45
       double dx = a.x - b.x;
46
       double dy = a.y - b.y;
47
       return sqrt(dx * dx + dy * dy);
48
49
```

```
52
        return fabs(x) \leq EPS;
53
   }
54
55
56
    bool overlap(seg a, seg b)
    {
57
        return ccw(a.x, a.y, b.x) = 0 && ccw(a.x, a.y, b.y) = 0;
60
    bool intersect(seg a, seg b)
61
62
        if (overlap(a, b) == true) { // non-proper intersection
63
            double d = 0;
64
            d = max(d, dist(a.x, a.y));
65
            d = max(d. dist(a.x. b.x)):
            d = max(d, dist(a.x, b.y));
67
            d = max(d, dist(a.v, b.x));
68
69
             d = max(d, dist(a.y, b.y));
             d = max(d, dist(b.x, b.y));
70
71
            // d > dist(a.x, a.y) + dist(b.x, b.y)
72
73
            if (d - (dist(a.x, a.y) + dist(b.x, b.y)) > EPS)
                 return false:
74
75
             return true;
        }
76
77
        //
        // Equal sign for ----| case
78
        // non geual sign => proper intersection
79
        if (ccw(a.x, a.y, b.x) * ccw(a.x, a.y, b.y) \le 0 \&\&
80
            ccw(b.x, b.y, a.x) * ccw(b.x, b.y, a.y) <= 0
81
82
             return true:
        return false;
83
84
85
    double area(vector<pt> pts)
86
87
88
        double res = 0:
        int n = pts.size();
89
        for (int i = 0: i < n: i++)
90
             res += (pts[i].y + pts[(i + 1) % n].y) * (pts[(i + 1) % n].x -
91
     \rightarrow pts[i].x);
        return res / 2.0;
92
93
94
    vector<pt> halfHull(vector<pt> &points)
95
96
        vector<pt> res;
97
98
        for (int i = 0; i < (int)points.size(); i++) {
99
            while ((int)res.size() >= 2 &&
100
                    ccw(res[res.size() - 2], res[res.size() - 1], points[i]) <</pre>
101
     → Ø)
                 res.pop_back(); // res.size() - 2 can't be assign before
102
     \rightarrow size() >= 2
            // check, bitch
103
104
```

```
res.push_back(points[i]);
105
        }
106
107
        return res:
108
    }
109
110
    vector<pt> convexHull(vector<pt> &points)
111
112
        vector<pt> upper. lower:
113
114
        // make upper hull
115
        sort(points.begin(), points.end());
116
117
        upper = halfHull(points);
118
        // make lower hull
119
        reverse(points.begin(), points.end());
120
        lower = halfHull(points);
121
122
        // merge hulls
123
        if ((int)upper.size() > 0) // yes sir~
124
             upper.pop_back();
125
        if ((int)lower.size() > 0)
126
             lower.pop_back();
128
        vector<pt> res(upper.begin(), upper.end());
130
        res.insert(res.end(), lower.begin(), lower.end());
131
        return res;
```

13.2 Rectangle area

```
#define sz(x) (int(x.size()))
   const int MAX NN = (1 \ll 17);
   struct Rect {
        double x1, y1, x2, y2;
    struct Event {
        double y; int x1, x2, type;
10
        bool operator < (const Event& e) const {</pre>
11
            if (y == e.y)
12
                 return type < e.type:
13
            return y < e.y;
14
15
   };
16
17
   vector<double> xs:
19
   struct SegTree {
20
        int NN:
21
        int cnt[MAX NN]:
22
        double len[MAX_NN];
23
24
```

```
void init(int n) {
25
            NN = 1;
26
            while (NN < n)
27
                NN <<= 1:
28
29
            fill(cnt, cnt + 2 \times NN, \emptyset);
            fill(len, len + 2 * NN, double(\emptyset.\emptyset));
30
       }
31
32
        void maintain(int u, int l, int r) {
33
            if (cnt[u] > 0) len[u] = xs[r] - xs[l];
34
            else {
35
                if (u >= NN - 1)
36
                     len[u] = 0:
37
                else
38
                     len[v] = len[v * 2 + 1] + len[v * 2 + 2];
39
            }
40
       }
41
42
       void update(int a. int b. int x. int u. int l. int r) { // [a. b).
43
            if (r <= a || l >= b) return;
44
            if (a \le 1 \&\& r \le b) {
45
                cnt[u] += x;
46
                maintain(u, l, r);
47
48
                return;
            }
49
            int m = (l + r) / 2;
            update(a, b, x, u * 2 + 1, l, m);
51
            update(a, b, x, u * 2 + 2, m, r);
52
            maintain(u, l, r);
53
54
   };
55
56
   double get_union_area(const vector<Rect>& rect) {
57
       // 離散化 x
58
       xs.clear();
59
        for (int i = 0; i < sz(rect); i++) {
            xs.push_back(rect[i].x1);
61
            xs.push_back(rect[i].x2);
62
63
        sort(xs.begin(), xs.end());
64
        xs.resize(unique(xs.begin(), xs.end()) - xs.begin());
65
66
67
        // sweep line events
       vector<Event> es;
68
        for (int i = 0; i < sz(rect); i++) {
69
            int x1 = lower_bound(xs.begin(), xs.end(), rect[i].x1) -
70

    xs.begin():

            int x2 = lower bound(xs.begin(), xs.end(), rect[i].x2) -
71

    xs.begin();

            es.push_back((Event) {rect[i].y1, x1, x2, +1}); // bottom
72
            es.push_back((Event) {rect[i].y2, x1, x2, -1}); // top
73
74
        sort(es.begin(), es.end());
75
76
```

```
77
        // find total area
        SegTree seg;
78
        seg.init(sz(xs));
79
        seg.update(es[0].x1, es[0].x2, es[0].type, 0, 0, seg.NN);
80
81
        double res = 0;
82
        for (int i = 1; i < sz(es); i++) {
            res += seg.len[0] * (es[i].y - es[i - 1].y);
84
            seg.update(es[i].x1, es[i].x2, es[i].type, 0, 0, seg.NN);
85
       }
86
87
88
        return res;
89
```

14 Math

14.1 Euclid's formula (Pythagorean Triples)

```
egin{aligned} a &= p^2 - q^2 \\ b &= 2pq \ \mbox{(always even)} \\ c &= p^2 + q^2 \end{aligned}
```

14.2 Difference between two consecutive numbers' square is 16 odd

$$(k+1)^2 - k^2 = 2k+1$$

14.3 Summation

```
\sum_{k=1}^{n} 1 = n
\sum_{k=1}^{n} k = \frac{n(n+1)}{2}
\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}
\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}
```

14.4 Combination

14.4.1 Pascal triangle

```
#define N 210
ll C[N][N];

void Combination() {
    for(ll i=0; i<N; i++) {
        C[i][0] = 1;
        C[i][i] = 1;
    }

    for(ll i=2; i<N; i++) {
        for(ll j=1; j<=i; j++) {
              C[i][j] = (C[i-1][j] + C[i-1][j-1])%M; // if needed, mod it
        }
    }
}</pre>
```

14.4.2 Lucus

2

12

17

18

20

21

22

23

24

25

26

27 28

29

30 31

32

33

35

36

37

```
\binom{n}{m} \equiv \prod_{i=1}^{k} \binom{n_i}{m_i} \pmod{p}
                                                                                 (1)
                         n = n_k p^k + n_{k-1} p^{k-1} + \dots + n_1 p + n_0,
                         m = m_k p^k + m_{k-1} p^{k-1} + \dots + m_1 p + m_0
                         p is prime
typedef long long ll;
ll fast_pow(ll a, ll b, ll p) {
    ll ans = 1;
    ll base = a % p;
    b = b % (p - 1); // Fermat's little theorem
    while (b) {
         if (b & 1) {
             ans = (ans * base) % p;
         base = (base * base) % p;
         b >>= 1;
    }
    return ans;
ll inv(ll a, ll p) {
    return fast_pow(a, p - 2, p);
ll C(ll n, ll m, ll p) {
    if (n < m) return 0;
    m = min(m, n - m);
    ll nom = 1, den = 1;
    for (ll i = 1: i \le m: i++) {
         nom = (nom * (n - i + 1)) % p;
         den = (den * i) % p;
    return (nom * inv(den, p)) % p;
// To make C(n, m) \% p computed in O(log(p, n) * p) instead of O(m)
// https://en.wikipedia.org/wiki/Lucas's_theorem
ll lucas(ll n, ll m, ll p) {
    if (m == 0) return 1;
    return C(n % p, m % p, p) * lucas(n / p, m / p, p) % p;
```

14.4.3 線性

```
ll binomialCoeff(ll n, ll k)
{
    ll res = 1;
    if ( k > n - k ) // Since C(n, k) = C(n, n-k)
```

```
k = n - k;
for (int i = 0; i < k; ++i) // n...n-k / 1...k
{
    res *= (n - i);
    res /= (i + 1);
}
return res;</pre>
```

14.5 Chinese remainder theorem

```
typedef long long ll;
   struct Item {
       ll m, r;
   }:
   Item extcrt(const vector<Item> &v)
       ll m1 = v[0].m, r1 = v[0].r, x, y;
       for (int i = 1; i < int(v.size()); i++) {
           ll m2 = v[i].m, r2 = v[i].r;
           ll g = extgcd(m1, m2, x, y); // now x = (m/g)^(-1)
13
14
           if ((r2 - r1) \% q != 0)
                return {-1, -1};
           ll k = (r2 - r1) / g * x % (m2 / g);
           k = (k + m2 / g) \% (m2 / g); // for the case k is negative
           ll m = m1 * m2 / q;
           ll r = (m1 * k + r1) % m:
23
           m1 = m:
            r1 = (r + m) \% m; // for the case r is negative
25
       }
27
       return (Item) {
28
            m1, r1
       };
30
31
```

14.6 2-Circle relations

```
d = 圓心距, R, r 為半徑 (R \ge r)
內切: d = R - r
外切: d = R + r
內離: d < R - r
外離: d > R + r
相交: d < R + r
```

14.7 Fun Facts

1. 如果 $\frac{b}{a}$ 是最簡分數,則 $1-\frac{b}{a}$ 也是

15 Dynamic Programming - Problems collection

```
# 零一背包 (poj 1276)
fill(dp, dp + W + 1, 0);
for (int i = 0; i < N; i++)
    for (int j = W; j >= items[i].w; j--)
       dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
return dp[W];
# 多重背包二進位拆解 (poj 1276)
for_each(ll v, w, num) {
   for (ll k = 1; k \le num; k *= 2) {
       items.push_back((Item) \{k * v, k * w\});
   if (num > 0)
       items.push back((Item) {num * v, num * w});
# 完全背包
dp[i][j] = 前 i + 1 個物品, 在重量 j 下所能組出的最大價值
第 i 個物品,不放或至少放一個
dp[i][j] = max(dp[i - 1][j], dp[i][j - w[i]] + v[i])
fill(dp, dp + W + 1, 0);
for (int i = 0; i < N; i++)
   for (int j = w[i]; j <= W; j++)
dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
return dp[W];
# Coin Change (2015 桂冠客 E)
dp[i][j] = 前 i + 1 個物品, 組出 j 元的方法數
第 i 個物品,不用或用至少一個
dp[i][j] = dp[i - 1][j] + dp[i][j - coin[i]]
# Cutting Sticks (2015 桂冠賽 F)
補上二個切點在最左與最右
dp[i][j] = 使(i, j) 區間中的所有切點都被切的最小成本
dp[i][j] = min(dp[i][c] + dp[c][j] + (p[j] - p[i])  for i < c < j)
dp[i][i + 1] = 0
ans = dp[0][N + 1]
# Throwing a Party (itsa dp 06)
給定一棵有根樹, 代表公司職位層級圖, 每個人有其權重, 現從中選一個點集合出來,
且一個人不能與其上司一都在集合中,並最大化集合的權重和,輸出該總和。
dp[u][0/1] = u 在或不在集合中,以 u 為根的子樹最大權重和
dp[u][0] = max(max(dp[c][0], dp[c][1]) for children c of u) + val[u]
dp[u][1] = max(dp[c][0]  for children c of u)
bottom up dp
# LIS (0(N^2))
dp[i] = 以 i 為結尾的 LIS 的長度
dp[i] = max(dp[j] \text{ for } 0 \le j \le i) + 1
ans = max(dp)
# LIS (O(nlgn)), poj 1631
dp[i] = 長度為 i + 1 的 LIS 的最後一項的最小值,不存在時為 INF
fill(dp, dp + N, INF);
for (int i = 0; i < N; i++)
   *lower_bound(dp, dp + N, A[i]) = A[i];
ans = lower_bound(dp, dp + N, INF) - dp;
# Maximum Subarray
# Not equal on a Segment (cf edu7 C)
給定長度為 n 的陣列 a[] 與 m 個詢問。
針對每個詢問 l, r, x 請輸出 a[l, r] 中不等於 x 的任一位置。
```

```
不存在時輸出 -1
dp[i] = max i such that i < i and a[i] != a[i]</pre>
dp[0] = -1
dp[i] = dp[i - 1] if a[i] = a[i - 1] else i - 1
針對每筆詢問 l, r, x
1. a[r] != x
                        -> 輸出 r
2. a[r] = x && dp[r] >= l -> 輸出 dp[r]
3. a[r] = x && dp[r] < l -> 輸出 -1
# bitmask dp, poj 2686
給定一個無向帶權圖, 代表 M 個城市之間的路, 與 N 張車票,
每張車票有一個數值 t[i], 若欲使用車票 t[i] 從城市 U 經由路徑 d[u][v] 走到城市 V,
所花的時間為 d[u][v] / t[i]。請問、從城市 A 走到城市 B 最快要多久?
dp[S][v] = 從城市 A 到城市 v 的最少時間, 其中 S 為用過的車票的集合
考慮前一個城市 U 是誰, 使用哪個車票 t[i] 而來, 可以得到轉移方程式:
dp[S][v] = min([
   dp[S - {v}][u] + d[u][v] / t[i]
   for all city u has edge to v, for all ticket in S
# Tug of War
N 個人參加拔河比賽, 每個人有其重量 W[i], 欲使二隊的人數最多只差一, 雙方的重量和越接近越好
請問二隊的重量和分別是多少?
dp[i][j][k] = 只考慮前 i + 1 個人, 可不可以使左堆的重量為 j, 且左堆的人數為 k
dp[i][j][k] = dp[i - 1][j - w[i][k - 1] \text{ or } dp[i - 1][j][k]
dp[i][j] = (dp[i - 1][j - w[i]] << 1) | (dp[i - 1][j])
# Modulo Sum (cf 319 B)
給定長度為 N 的序列 A 與一正整數 M, 請問該序列中有無一個子序列, 子序列的總合是 M 的倍數
若 N > M, 則根據鴿籠原理, 必有至少兩個前綴和的值 mod M 為相同值, 解必定存在
dp[i][j] = 前 i + 1 個數可否組出 mod m = j 的數
dp[i][j] = true if
   dp[i - 1][(j - (a[i] \mod m)) \mod m] or
   dp[i - 1][j] or
   j = a[i] \% m
# P0J 2229
給定正整數 N、請問將 N 拆成一堆 2^x 之和的方法數
dp[i] = 拆解 N 的方法數
dp[i] = dp[i / 2] if i is odd
     = dp[i - 1] + dp[i / 2] if i is even
# P0J 3616
給定 N 個區間 [s, t), 每個區間有權重 w[i], 從中選出一些不相交的區間, 使權重和最大
dp[i] = 考慮前 i + 1 個區間, 且必選第 i 個區間的最大權重和
dp[i] = max(dp[i] \mid 0 \iff i \iff i) + w[i]
ans = max(dp)
# P0J 2184
N 隻牛每隻牛有權重 <s, f>, 從中選出一些牛的集合,
使得 SUM(s) + SUM(f) 最大、且 SUM(s) > 0, SUM(f) > 0。
枚舉 SUM(S) ,將 SUM(S) 視為重量對 f 做零一背包。
```

```
# P01 3666
給定長度為 N 的序列、請問最少要加多少值、使得序列單調遞增
dp[i][j] = 使序列前 i+1 項變為單調, 且將 A[i] 變為「第 j 小的數」的最小成本
dp[i][i] = min(dp[i - 1][k] | 0 \le k \le i) + abs(S[i] - A[i])
min(dp[i - 1][k] | 0 <= k <= j) 動態維護
for (int j = 0; j < N; j++)
dp[0][j] = abs(S[j] - A[0]);
for (int i = 1: i < N: i++) {
   int pre min cost = dp[i][0]:
    for (int j = 0; j < N; j++) {
       pre_min_cost = min(pre_min_cost, dp[i-1][j]);
       dp[i][j] = pre min cost + abs(S[j] - A[i]);
   }
ans = min(dp[N - 1])
# P01 3734
N 個 blocks 上色, R, G, Y, B, 上完色後紅色的數量與綠色的數量都要是偶數。請問方法數。
dp[i][0/1/2/3] = 前 i 個 blocks 上完色, 紅色數量為奇數/偶數, 綠色數量為數/偶數
用遞推, 考慮第 i + 1 個 block 的顏色, 找出個狀態的轉移, 整理可發現
dp[i + 1][0] = dp[i][2] + dp[i][1] + 2 * dp[i][0]
dp[i + 1][1] = dp[i][3] + dp[i][0] + 2 * dp[i][1]
dp[i + 1][2] = dp[i][0] + dp[i][3] + 2 * dp[i][2]
dp[i + 1][3] = dp[i][1] + dp[i][2] + 2 * dp[i][3]
.
矩陣快速幂加速求 dp[N - 1][0][0]
# P01 3171
數線上、給定 N 個區間 [s[i], t[i]]、每個區間有其代價、求覆蓋區間 [M, E] 的最小代價。
dp[i][j] = 最多使用前 i + 1 個區間, 使 [M, j] 被覆蓋的最小代價
考慮第 1 個區間用或不用,可得:
dp[i][i] =
   1. min(dp[i - 1][k] for k in [s[i] - 1, t[i]]) + cost[i] if j = t[i]
   2. dp[i - 1][j] if j \neq t[i]
壓空間,使用線段樹加速。
dp[t[i]] = min(dp[t[i]],
   min(dp[i - 1][k] for k in [s[i] - 1, t[i]]) + cost[i]
fill(dp, dp + E + 1, INF);
seq.init(E + 1, INF);
int idx = 0;
while (idx < N && A[idx].s == 0) {
   dp[A[idx].t] = min(dp[A[idx].t], A[idx].cost);
   seq.update(A[idx].t, A[idx].cost);
   idx++:
for (int i = idx; i < N; i++) {
   ll v = min(dp[A[i].t], seq.query(A[i].s - 1, A[i].t + 1) + A[i].cost);
   dp[A[i].t] = v;
   seg.update(A[i].t, v);
```