Analysis

Teil I Folgen und Reihen

1 Konvergenz von Folgen

Def. (1) Eine Folge a_n konvergiert gegen $a \in \mathbb{R}$, falls

 $\forall \epsilon > 0 \ \exists N = N(\epsilon) \in \mathbb{N}, \ \forall n \ge N \colon |a_n - a| < \epsilon.$

Für \mathbb{R}^d muss gelten $||a_n - a|| < \epsilon$.

Def. (2) Eine Folge a_n konvergiert gegen $a \in \mathbb{R}$, falls es $l \in \mathbb{R}$ gibt, so dass $\forall \epsilon > 0$ die Menge $\{n \in \mathbf{N}^* : a_n \notin] \ l - \epsilon, l + \epsilon[\}$ endlich ist.

Thm. (Monotone) Sei $(a_n)_{n\geqslant 1}$ monoton fallend und nach unten beschränkt. Dann konvergiert $(a_n)_{n\geqslant 1}$ mit Grenzwert $\lim_{n\to\infty}a_n=\inf\{a_n:n\geqslant 1\}$.

Thm. (Cauchy) Die Folge $(a_n)_{n\geqslant 1}$ ist genau dann konvergent, falls $\forall \varepsilon > 0 \quad \exists N \geqslant 1$ so dass $|a_n - a_m| < \varepsilon \quad \forall n, m \geqslant N$

Thm. (Sandwich) Die Folge $(a_n)_{n\geqslant 1}$ konvergiert zu a, falls $(b_n)_{n\geqslant 1}$, $(c_n)_{n\geqslant 1}$ existieren mit Grenzwert a und $\forall n \geq 1 : b_n \leq a_n \leq c_n$.

2 Konvergenz von Reihen

Def. Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert absolut (\Rightarrow konvergent), falls $\sum_{k=1}^{\infty} |a_k|$ kovergiert.

Thm. (Cauchy) Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, falls. $\forall \varepsilon > 0 \quad \exists N \geqslant 1$ mit $\begin{vmatrix} \sum_{k=n}^{m} a_k \\ k \end{vmatrix} < \varepsilon \quad \forall m \geqslant n \geqslant N$

Thm. (Ratio) Sei $(a_n)_{n\geqslant 1}$ mit $a_n\neq 0 \quad \forall n\geqslant 1$. Falls

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1$$

dann konvergiert die Reihe absolut. Falls $\liminf_{n\to\infty}\Box>1$ divergiert die Reihe.

Thm. (Root) Falls

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

dann konvergiert $\sum_{n=1}^{\infty} a_n$ absolut. Falls $\square>1,$ dann divergiert die Reihe.

Thm. (Alternating) Sei $(a_n)_{n\geqslant 1}$ monoton fallend mit $a_n\geqslant 0 \quad \forall n\geqslant 1$ und $\lim_{n\to\infty}a_n=0$. Dann konvergiert

$$S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

und es gilt $a_1 - a_2 \leq S \leq a_1$.

Bsp. Die Reihe $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ konvergiert.

3 Eigenschaften

Lem. (Bernouilli) $(1+x)^n \geqslant 1+n \cdot x \quad \forall n \in \mathbb{N}, x > -1.$

Thm. (Teilfolge) Jede beschränkte Folge besitzt eine konvergente Teilfolge.

Thm. (Vektorfolge) $\lim_{n\to\infty} a_n = b$ genau dann wenn $\lim_{n\to\infty} a_{n,j} = b_j$ $\forall 1 \leq j \leq d$.

Def. (LimSup, LimInf) Sei a_n beschränkt, definieren wir

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} \sup \{ a_k : k \geqslant n \}$$

$$\liminf_{n \to \infty} a_n := \lim_{n \to \infty} \inf \{ a_k : k \geqslant n \}$$

Thm. (Umordnung) Falls eine Reihe absolut konvergiert, dann konvergiert jede Umordnung der Reihe und hat denselben Grenzwert. TODO Copy from R.

4 Wichtige Beispiele

Bsp. (Potenzreihe) Eine Potenzreihe kann man als eine Funktion

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

auffassen. Es gilt:

$$\begin{cases} |x - x_0| < \rho & \Longrightarrow & \sum_{n=0}^{\infty} a_n x^n \text{ konvergiert} \\ |x - x_0| > \rho & \Longrightarrow & \sum_{n=0}^{\infty} a_n x^n \text{ divergiert} \end{cases}$$

Wobei je nach Eignung:

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|, \qquad n!, \ \alpha^n \text{ oder Polynom}$$

$$\rho = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}. \qquad (b_n)^n$$

Bsp. (Zeta-Funktion) Die Funktion konvergiert für s > 1 und divergiert für s = 1

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} n^a q^n, \ 0 \le q \le 1, \ a \in \mathbb{Z} = 0$$

$$\lim_{n \to \pm \infty} \left(1 \pm \frac{x}{n}\right)^n = e^{\pm x}$$

$$\lim_{n \to \infty \land f(n) \to \infty} \left(1 + \frac{1}{f(n)}\right)^{f(n)} = e$$

$$\lim_{n \to \infty \land f(n) \to \infty} \left(1 + f(x)\right)^{\frac{1}{f(x)}} = e$$

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Teil II Stetige Funktionen

Def. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist stetig falls sie in jedem Punkt von D stetig ist.

Def. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist gleichmässig stetig, falls $\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in D$

$$|x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon$$

. Insbesondere ist eine auf einem kompaktem Intervall stetige Funktion auch gleichmässig stetig.

1 Stetigkeit an einem Punkt

Def. (Epsilon) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in D$ gilt:

$$|x-x_0| < \delta \Longrightarrow |f(x)-f(x_0)| < \varepsilon$$

Thm. (Sequence) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist genau dann in x_0 stetig, falls für jede Folge $(a_n)_{n \ge 1}$ in D

$$\lim_{n \to \infty} a_n = x_0 \Longrightarrow \lim_{n \to \infty} f(a_n) = f(x_0)$$

gilt.

Thm. (Sidewise) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls

$$f(x_0) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$$

gilt.

Thm. (Differentiable) Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist in x_0 stetig, falls sie x_0 differenzierbar ist.

2 Eigenschaften

Thm. (Zwischenwertsatz) Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \longrightarrow \mathbb{R}$ eine stetige Funktion und $a, b, \in I$. Für jedes y zwischen f(a) und f(b) gibt es ein x zwischen a und b mit f(x) = y.

Thm. (Min-Max) Sei $f: I = [a, b] \longrightarrow \mathbb{R}$ stetig auf einem kompakten Intervall I. Dann gibt es $u \in I$ und $v \in I$ mit

$$f(u) \leqslant f(x) \leqslant f(v) \quad \forall x \in I$$

und f ist beschränkt.

Thm. (Umkehrabbildung) Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \longrightarrow \mathbb{R}$ stetig, streng monoton. Dann ist $J := f(I) \subset \mathbb{R}$ ein Intervall und $f^{-1}: J \longrightarrow I$ ist stetig, streng monoton.

3 Konvergenz von Funktionenfolgen

Def. (Punktweise) Eine Folge stetiger Funktionen $f_n: \Omega \subset \mathbb{R} \to \mathbb{R}$ konvergiert punktweise gegen f(x), falls

$$\forall x \in \Omega \ \lim_{n \to \infty} f_n(x) = f(x).$$

Def. (Gleichmässig) Eine Folge stetiger Funktionen $f_n \colon \Omega \subset \mathbb{R} \to \mathbb{R}$ konvergiert gleichmässig gegen f, falls

$$\lim_{n \to \infty} \sup_{x \in \Omega} |f_n(x) - f(x)| = 0.$$

bzw. falls gilt: $\forall \varepsilon > 0 \quad \exists N \ge 1$, so dass:

$$\forall n \geqslant N, \quad \forall x \in D: \quad |f_n(x) - f(x)| < \varepsilon$$

Thm. (Stetige Funktionenfolge) Sei $D \subset R$ und $f_n: D \to \mathbb{R}$ eine Funktionenfolge bestehend aus (in D) stetigen Funktionen die (in D) gleichmässig gegen eine Funktion $f: D \to \mathbb{R}$ konvergieren. Dann ist f (in D) stetig.

Thm. (Beschränkte Funktionenfolge) Sei $D \subset R$ und $f_n : D \to \mathbb{R}$ eine Folge stetiger Funktionen. Falls $|f_n(x)| \leq c_n \quad \forall x \in D \text{ und } \sum_{n=0}^{\infty} c_n$ konvergiert dann konvergiert

$$\sum_{n=0}^{\infty} f_n(x) =: f(x)$$

ebenfalls und deren Grenzwert f ist eine in D stetige Funktion.

4 Grenzwert an einem Punkt

Def. (Häufungspunkt) $x_0 \in \mathbb{R}$ ist ein Häufungs-punkt der Menge D falls $\forall \delta > 0$ gilt:

$$(]x_0 - \delta, x_0 + \delta [\setminus \{x_0\}) \cap D \neq \emptyset$$

Def. (Grenzwert) $\lim_{x \to x_0} f(x) = A \text{ mit } A \in \mathbb{R},$ $f: D \longrightarrow \mathbb{R}$, falls $x_0 \in \mathbb{R}$ ein Häufungspunkt ist und $\forall \varepsilon > 0 \quad \exists \delta > 0$

$$\forall x \in D \cap (]x_0 - \delta, x_0 + \delta [\setminus \{x_0\}) : |f(x) - A| < \varepsilon$$

Teil III

Differenzierbare Funktionen

Def. Die Funktion $f: D \longrightarrow \mathbb{R}$ ist differenzierbar falls sie in jedem Punkt von D differenzierbar ist.

1 Differenzierbarkeit

Def. f ist in x_0 differenzierbar falls

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Falls $x = x_0 + h$, ist dies äquivalent zu

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

2 Ableitungen

Thm. (Ableitungsregeln)

Summenregel

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

 \cdot Produktregel

$$(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

· Quotientenregel

$$\left(\frac{f}{g}\right)' = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$

· Kettenregel

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0).$$

3 Wichtige Beispiele

Exponentialfunktion

$$\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!} \quad \exp(z)' = \exp(z)$$

exp : $\mathbb{R} \longrightarrow]0, +\infty[$ ist streng monoton wachsend, differenzierbar, und surjektiv. Beobachte dass $\exp(x) \geqslant 1+x \quad \forall x \in \mathbb{R}.$ Die Umkehrabbildung ist

$$\ln :]0, +\infty[\longrightarrow \mathbb{R} \quad \ln(x)' = 1/x$$

wobei l
n eine streng monoton wachsende, differenzierbare, bijektive Funktion ist.

Trigonometrische Funkt.

$$\sin(\varphi) = \sum_{k=0}^{\infty} (-1)^k \frac{\varphi^{2k+1}}{(2k+1)!} \qquad \sin(\varphi)' = \cos(\varphi)$$

$$\cos(\varphi) = \sum_{k=0}^{\infty} (-1)^k \frac{\varphi^{2k}}{(2k)!} \qquad \cos(\varphi)' = -\sin(\varphi)$$

$$\tan(\varphi) = \frac{\sin(\varphi)}{\cos(\varphi)}$$
 $\tan(\varphi)' = \frac{1}{\cos(\varphi)^2}$

Kor.

$$\forall \varphi > 0 \quad \exists \tau \in [0, \varphi] \quad \sin(\varphi) = \varphi - \frac{\varphi^3}{6} \cos(\tau)$$

Thm. $\forall z \in \mathbb{C}$

- $\exp(iz) = \cos(z) + i\sin(z)$
- $\cdot \cos(z)^2 + \sin(z)^2 = 1$
- $\cdot \sin(z+w) = \sin(z)\cos(w) + \sin(w)\cos(z) \\ \cos(z+w) = \cos(z)\cos(w) \sin(w)\sin(z)$
- $\sin(z) = \frac{e^{iz} e^{-iz}}{2i}$, $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$

Hyperbolische Funkt.

TODO

Teil IV

Riemann Integral

1 Integrationskriterien

Def. Sei $f:[a,b] \to \mathbb{R}$, P eine Partition $(P \subset [a,b] \text{ und } \{a,b\} \subset P)$, $\delta_i = x_i - x_{i-1}$, und $\mathcal{P}(I)$ die Menge der Partitionen, wir definieren die Untersummen:

$$s(f, P) := \sum_{i=1}^{n} f_i \delta_i$$
 , $f_i = \inf_{x_{i-1} \le x \le x_i} f(x)$

$$s(f) := \sup_{P \in \mathcal{P}(I)} s(f, P)$$

und die Obersummen:

$$S(f, P) := \sum_{i=1}^{n} F_i \delta_i \quad , F_i = \sup_{x_{i-1} \le x \le x_i} f(x)$$

$$S(f) := \inf_{P \in \mathcal{P}(I)} S(f, P)$$

Def. Eine beschränkte Funktion $f:[a,b]\longrightarrow \mathbb{R}$ ist integrierbar falls

$$s(f) = S(f)$$
 := $\int_a^b f(x)dx$

Thm. Eine beschränkte Funktion $f:[a,b] \longrightarrow \mathbb{R}$ ist integrierbar falls

$$\forall \varepsilon > 0 \quad \exists P \in \mathcal{P}(I) \quad \text{mit} \quad S(f, P) - s(f, P) < \varepsilon$$

Thm. $f:[a,b] \longrightarrow \mathbb{R}$ stetig \Rightarrow integrierbar.

Thm. $f:[a,b] \longrightarrow \mathbb{R}$ monoton \Rightarrow integrierbar.