Algorithmik zur Optimierung in neuronalen Netzwerken

Gradient Descent und Backpropagation

Tim Hilt

Date: tbd

Hochschule Esslingen — University of Applied Sciences

Gliederung

Supervised Learning

Künstliche Neuronale Netze

Training

Loss-Funktion

Gradient Descent

Backpropagation

Umsetzung in Keras

Supervised Learning

Machine Learning Workflow

Abbildung 1: Machine Learning Workflow [1]

Supervised Learning

Abbildung 2: Struktur der Daten bei Supervised Learning [1]

Supervised Learning

Abbildung 2: Struktur der Daten bei Supervised Learning [1]

Definition Supervised Learning

"In supervised learning, the dataset is the collection of labeled examples $\{(\mathbf{x}_i,y_i)\}_{i=1}^N$. Each element \mathbf{x}_i among N is called a feature vector. A feature vector is a vector in which each dimension $j=1,\ldots,D$ contains a value that describes the example somehow [...]. The goal of a supervised learning algorithm is to use the dataset to produce a model, that takes a feature vector \mathbf{x} as input and outputs information that allow deducing the label \hat{y} for this feature vector." [2]

Beispiel: Datensatz für Supervised Learning

Beispiel: Datensatz für Supervised Learning

- · Insgesamt 70000 Bilder
- · Bildgröße: 28 × 28 Pixel

- 150

- 100

- · Abgebildet: Kleidungsstücke
- · Ouelle: Zalando Research [4]

Label	Description
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

Künstliche Neuronale Netze

Künstliches Neuron

Künstliches Neuron

Künstliches Neuron

$$z = \sum_{i} x_i w_i + b = \mathbf{x} \mathbf{w} + b$$

 $\Rightarrow z$ wird für spätere Parameteroptimierung benötigt

Aktivierungsfunktion $\sigma(x)$

⇒ Es gibt eine Vielzahl verschiedener Aktivierungsfunktionen für unterschiedliche Problemstellungen, für uns soll jedoch lediglich die **Sigmoid-Funktion** relevant sein:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Aktivierungsfunktion $\sigma(x)$

⇒ Es gibt eine Vielzahl verschiedener Aktivierungsfunktionen für unterschiedliche Problemstellungen, für uns soll jedoch lediglich die **Sigmoid-Funktion** relevant sein:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Architektur eines Neuronalen Netzwerks

Architektur eines Neuronalen Netzwerks

Deep Neural Network

Target-Architektur zur Klassifikation von MNIST

Vektorisierung der Gewichte \boldsymbol{w} und der Biases \boldsymbol{b}

Vektorisierung der Gewichte \boldsymbol{w} und der Biases \boldsymbol{b}

Vektorisierung der Gewichte \boldsymbol{w} und der Biases \boldsymbol{b}

Training

Loss-Funktion

- · Dient zur Berechnung des Fehlers während dem Training
- Trainingsfehler soll minimiert werden
- → wir suchen den Punkt, an dem die Ableitung der Loss-Funktion 0 wird, der Fehler also nicht mehr abnimmt
- Es gibt eine Vielzahl an Loss-Funktionen, wir betrachten hier die "Mean Squared Error (MSE)":

$$C(w,b) = \frac{1}{2m} \sum_{x=1}^{m} (y(x) - \hat{y}(x))^2$$

Loss-Funktion

- · Dient zur Berechnung des Fehlers während dem Training
- Trainingsfehler soll minimiert werden
- → wir suchen den Punkt, an dem die Ableitung der Loss-Funktion 0 wird, der Fehler also nicht mehr abnimmt
- Es gibt eine Vielzahl an Loss-Funktionen, wir betrachten hier die "Mean Squared Error (MSE)":

$$C(w,b) = \frac{1}{2m} \sum_{x=1}^{m} (y(x) - \hat{y}(x))^2$$

st
S

- \cdot Methode um die Weights w und Biases b zu optimieren
- · Vorgehen:

- \cdot Methode um die Weights w und Biases b zu optimieren
- · Vorgehen:
 - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases $(\partial C/\partial w; \partial C/\partial b)$

- \cdot Methode um die Weights w und Biases b zu optimieren
- · Vorgehen:
 - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases $(\partial C/\partial w; \partial C/\partial b)$
 - 2. Multipliziere die Änderungsrate mit der Lernrate η

- Methode um die Weights w und Biases b zu optimieren
- Vorgehen:
 - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases $(\partial C/\partial w; \partial C/\partial b)$
 - 2. Multipliziere die Änderungsrate mit der Lernrate η
 - 3. Ziehe das Produkt aus Änderungsrate und Lernrate von den aktuellen Parametern ab

- \cdot Methode um die Weights w und Biases b zu optimieren
- Vorgehen:
 - 1. Finde die Änderungsrate des Fehlers in Abhängigkeit von den Weights und Biases $(\partial C/\partial w; \partial C/\partial b)$
 - 2. Multipliziere die Änderungsrate mit der Lernrate η
 - 3. Ziehe das Produkt aus Änderungsrate und Lernrate von den aktuellen Parametern ab
 - 4. Aktualisiere die alten Parameter durch das Ergebnis des letzten Schrittes

$$w_{k+1} = w_k - \eta \frac{\partial C}{\partial w_k}$$

$$b_{k+1} = b_k - \eta \frac{\partial C}{\partial b_k}$$

Problem

Wie finde ich die Änderungsraten $\frac{\partial C}{\partial w}$; $\frac{\partial C}{\partial b}$, die ich für Gradient Descent benötige?

Problem

Wie finde ich die Änderungsraten $\frac{\partial C}{\partial w}$; $\frac{\partial C}{\partial b}$, die ich für Gradient Descent benötige?

 \Rightarrow Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

Problem

Wie finde ich die Änderungsraten $\frac{\partial C}{\partial w}$; $\frac{\partial C}{\partial b}$, die ich für Gradient Descent benötige?

 \Rightarrow Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^2$$

Problem

Wie finde ich die Änderungsraten $\frac{\partial C}{\partial w}$; $\frac{\partial C}{\partial b}$, die ich für Gradient Descent benötige?

 \Rightarrow Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^2$$

 $g(a, b) = a + b$

Problem

Wie finde ich die Änderungsraten $\frac{\partial C}{\partial w}$; $\frac{\partial C}{\partial b}$, die ich für Gradient Descent benötige?

⇒ Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a+b) \cdot (c+d))^{2}$$
$$g(a, b) = a + b$$
$$h(c, d) = c + d$$

Problem

Wie finde ich die Änderungsraten $\frac{\partial C}{\partial w}$; $\frac{\partial C}{\partial b}$, die ich für Gradient Descent benötige?

⇒ Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^{2}$$
$$g(a, b) = a + b$$
$$h(c, d) = c + d$$
$$i(g, h) = g \cdot h$$

Problem

Wie finde ich die Änderungsraten $\frac{\partial C}{\partial w}$; $\frac{\partial C}{\partial b}$, die ich für Gradient Descent benötige?

⇒ Idee: Divide and conquer; Problem in kleinere, handhabbare Probleme zerlegen

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^{2}$$

$$g(a, b) = a + b$$

$$h(c, d) = c + d$$

$$i(g, h) = g \cdot h$$

$$f(i) = i^{2}$$

$$f(a, b, c, d) = ((a + b) \cdot (c + d))^{2}$$

$$g(a, b) = a + b$$

$$h(c, d) = c + d$$

$$i(g, h) = g \cdot h$$

$$f(i) = i^{2}$$

Frage: $\frac{\partial f}{\partial a}$?

Frage:
$$\frac{\partial f}{\partial a}$$
?

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial i} \cdot \frac{\partial i}{\partial gh} \cdot \frac{\partial gh}{\partial g} \cdot \frac{\partial g}{\partial a}$$

Frage:
$$\frac{\partial f}{\partial a}$$
?

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial i} \cdot \frac{\partial i}{\partial gh} \cdot \frac{\partial gh}{\partial g} \cdot \frac{\partial gh}{\partial g}$$

$$\frac{\partial f}{\partial i} = 2 \cdot 21 = 42; \quad \frac{\partial i}{\partial gh} = 1; \quad \frac{\partial gh}{g} = h = 7; \quad \frac{\partial g}{\partial a} = 1 \quad \Rightarrow 7 \cdot 42 = 294$$

Zuvor beschriebene Architektur

Pass

Optimierte Architektur

- · Vorteil: Schnellere Konvergenz
- · Verwendung von optimierter Cost-, Activation- und Gradient-Descent-Funktion

- GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, 2019.
- BURKOV, Andriy. The hundred-page machine learning book. Andriy Burkov Quebec City, Can., 2019.
- LECUN, Yann; BOTTOU, Léon; BENGIO, Yoshua; HAFFNER, Patrick. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*. 1998, Jg. 86, Nr. 11, S. 2278–2324.
- XIAO, Han; RASUL, Kashif; VOLLGRAF, Roland. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*. 2017.