

پروژه ی درس برنامه ریزی حمل و نقل

پریا جباری

نمونه ی ساده ای از مسئله ی بهینه سازی:

این مسئله، مسئله ی حمل و نقل بوده و از برنامه ریزی خطی استفاده شده است.

هدف مسئله: حداقل سازی هزینه

تحليل اجزاي مدل:

اجزای مدل

پارامتر ها

اندیس ها:

i: كارخانه ها

j: شهرها

داده های ورودی:

f: هزینه ی حمل و نقل به ازای هر ۵ کیلومتر اسکا

i ظرفیت کارخانه ی a_i

j تعداد كالاي درخواستي شهر: b_j

جدول j فاصله ی کارخانه ی i از شهر d_{ij}

متغير تصميم:

j به شهر i تعداد کالای حمل شده از کارخانه ی i به شهر χ_{ij}

نمای مدل

تحلیل اجزای مدل:

نمای مدل

اندیس ها

i: كارخانه ها

$$i = \{1,2\}$$

j: شهرها

$$j = \{A, B, C\}$$

تحلیل اجزای مدل:

نمای مدل

داده های ورودی

1- اسكالر:

f: هزینه ی حمل و نقل به ازای هر ٥ کیلومتر

۵ کیلومتر س ۳۰ هزار تومان

۳۰ واحد پولي

۲- پارامتر ها:

i ظرفیت کارخانه ی a_i

 $a_1 = 300$ $a_2 = 400$

j تعداد كالاي درخواستى شهر: b_j

 $b_A = 210$ $b_B = 250$ $b_C = 240$

٣- جدول:

j فاصله ی کارخانه ی i از شهر: d_{ij}

 $d_{1A} = 10$ $d_{2A} = 30$ $d_{1B} = 15$ $d_{2B} = 20$ $d_{1C} = 25$ $d_{2C} = 10$

تحلیل اجزای مدل:

j هرینه ی حمل و نقل هر واحد کالا از کارخانه ی i به شهر c_{ij}

$$C_{1A} = \left(\frac{10}{5}\right) \times 30 = 60$$

$$C_{1B} = \left(\frac{15}{5}\right) \times 30 = 90$$

$$C_{1C} = \left(\frac{25}{5}\right) \times 30 = 150$$

$$C_{2A} = \left(\frac{30}{5}\right) \times 30 = 180$$

$$C_{2B} = \left(\frac{20}{5}\right) \times 30 = 120$$

$$C_{2C} = \left(\frac{10}{5}\right) \times 30 = 60$$

Minimizing Z:

$$Z = C_{1A} \times x_{1A} + C_{1B} \times x_{1B} + C_{1C} \times x_{1C} + C_{2A} \times x_{2A} + C_{2B} \times x_{2B} + C_{2C} \times x_{2C}$$
$$= \sum_{i=1}^{2} \sum_{j=A}^{C} C_{ij} \times x_{ij}$$

نحوه ی فرمول نویسی تابع هدف:

j هرینه ی حمل و نقل هر واحد کالا از کارخانه ی i به شهر : c_{ij}

$$Z = \sum_{i=1}^{I} \sum_{j=A}^{J} C_{ij} \times x_{ij}$$

نمونه ای از فرمول نویسی توابع هدف در مقالات:

محدوديت ها

Subject to:

1.
$$x_{1A} + x_{1B} + x_{1C} \le a_1$$
 $\forall i = 1$

$$x_{2A} + x_{2B} + x_{2C} \le a_2$$
 $\forall i = 2$

$$\sum_{j=A}^{C} x_{ij} \leq a_i \quad \forall i \in \{1,2\}$$

$$2. x_{1A} + x_{2A} \ge b_A \qquad \forall j = A$$

$$x_{1B} + x_{2B} \ge b_B \qquad \forall j = B$$

$$x_{1C} + x_{2C} \ge b_C \qquad \forall j = C$$

$$\sum_{i=1}^{2} x_{ij} \geq b_{j} \quad \forall j \in \{A, B, C\}$$

3.
$$x_{ij} \ge 0$$
, Integer $\forall i \in \{1,2\}, j \in \{A,B,C\}$

فرمول نویسی محدودیت ها:

$$\sum_{j=A}^{J} x_{ij} \leq a_{i} \quad \forall i$$

$$\sum_{i=1}^{I} x_{ij} \geq b_{j} \quad \forall j$$

$$x_{ij} \geq 0 \text{ ,Integer} \quad \forall i,j$$

i: كارخانه ها

j:شهرها

داده های ورودی:

f: هزینه ی حمل و نقل به ازای هر ۵ کیلومتر 🛘 اسکالو

 \hat{a}_i ظرفیت کارخانه ی \hat{a}_i پارامتر ها \hat{b}_j تعداد کالای درخواستی شهر \hat{b}_j

غاصله ی کارخانه ی i از شهر j جدول جدول

متغير تصميم:

 \hat{j} تعداد کالای حمل شده از کارخانه ی \hat{i} به شهر x_{ij}

