TEA

Project 3:

Text Classification

Yang Li

Introduction

Problem Statement

• KiddyToy has online business to sell toys. The company faces the problem that receive drastic amount of customer feedback each day. The current system only allows employees to categorize customer feedback manually which is time-consuming. As the company's data science team member, we initialize a project to build up a text classifier to automate this process.

Dataset Description

Topics Selected

Coffee and Tea

Data extraction

Via Reddit's API

Data clean

- >500+ rows out of 900+ rows for Tea subreddit had no 'selftext'
- ➤ No missing 'selftext' for 900+ Coffee posts
- >concatenate 'title' and 'selftext'

Exploratory Data Analysis

Overall, tea posts have shorter text length than coffee posts.

Preprocessing – bag of words

- Coffee
 - water, grind, bean, make, cup, taste, machine, brew, time, gear
- Tea
 - cup, oolong, green, want, taste, water, brew, black

Modeling

- Word vectorizers:
 - **≻**CountVectorizer
 - **≻**TfidfVectorizer

- Classifiers:
 - Logistic Regression
 - **➤** Naive Bayes

Modeling Comparison

Default hyper-parameters

Model Name	Vectorizer	Train Score	Test Score	Overfit diff
Logistic Regression	CountVectorizer	99.5%	91.8%	7.7%
Logistic Regression	TfidfVectorizer	97.1%	91.6%	5.5%
Naive Bayes	CountVectorizer	96.2%	90.8%	5.4%
Naive Bayes	TfidfVectorizer	96.7%	90.6%	6.1%

• Use GridSeach to tune hyper-parameters.

Model Name	Vectorizer	Train Score	Test Score	Overfit diff
Logistic Regression	CountVectorizer	99.1%	91.2%	7.9%
Logistic Regression	TfidfVectorizer	97.2%	91.4%	5.8%
Naive Bayes	CountVectorizer	94.2%	90.4%	3.8%
Naive Bayes	TfidfVectorizer	96.6%	92.1%	4.5%

Evaluation and Conceptual Understanding

- Misclassification analysis:
 - Common words for both coffee and tea posts
 - Such as 'water', 'brew', 'cup', 'taste'

know problem seem <mark>brew</mark> hot seem get deep strong flavor cold <mark>brew</mark> try play water temperature amount put get strong time overnigh t <mark>brew</mark> strong flavor

buy haru bancha yuuki cha one recommend vender use gram dry water minute still <mark>taste</mark> light way make <mark>taste</mark> strong use gram alway s <mark>taste</mark> light way make haru bancha strong

try blind <mark>cup</mark> sample pack angel <mark>cup</mark> see lot people talk angel <mark>cup</mark> much anymore wonder anyone else subscription past tip get angel <mark>cup</mark> flight

Conclusion and Recommendations

 Naive Bayes classifier performs well with a test accuracy score of 92.05%.

Misclassification due to some common words.

- Further improvement
 - Optimize stop words
 - Model more than two topics to improve user's satisfaction

