Calcul des Probabilités - Première Année S2 - Feuille de TD 2

Rappels sur l'indépendance de variables aléatoires

Exercice 1

Soit $X \sim \mathcal{B}(3;0,3)$ et $Y \sim \mathcal{B}(4;0,3)$ deux variables aléatoires **indépendantes**. On pose Z = X + Y.

- 1) Calculer $P(4 \le Z \le 5)$.
- 2) Même question si les deux variables aléatoires indépendantes sont $X \sim \mathcal{P}(3)$ et $Y \sim \mathcal{P}(4)$.

Exercice 2

Soient X_1 et X_2 deux variables aléatoires suivant respectivement les lois $\mathcal{N}(1,5)$, $\mathcal{N}(2,3)$. On définit la variable aléatoire :

$$Y = 2X_1 + 3X_2$$

- 1) Déterminer la loi suivie par la v.a Y pour le cas où X_1 et X_2 sont indépendantes.
- 2) Déterminer l'espérance et la variance de Y dans les deux cas suivants : $Cov(X_1, X_2) = 0$, $Cov(X_1, X_2) = -1$.

Exercice 3

Soient X_1, X_2, X_3 trois variables aléatoires suivant respectivement les lois $\mathcal{N}(5,2), \mathcal{N}(10,25)$ et $\mathcal{N}(7,9)$.

1) On suppose que X_1 , X_2 et X_3 sont **indépendantes**. Déterminer la loi des variables aléatoires suivantes :

$$Y_1 = X_1 - X_2$$
; $Y_2 = X_1 + 2X_2 + 3X_3$;

2) Mêmes questions si les variables X_1 , X_2 et X_3 vérifient $Cov(X_1, X_2) = 1$, $Cov(X_2, X_3) = 0$ et $Cov(X_1, X_3) = -1$.

Exercice 4

Exercice d'examen partiel 2011-2012

Soit U une variable aléatoire uniforme sur [1,5], soit X_1 une variable aléatoire de loi normale de moyenne 3 et de variance 4. Soit X_2 une variable aléatoire suivant une loi normale de moyenne 1 et de variance 1. On définit également la variable aléatoire $Y = X_2 - 2X_1$.

- 1) Calculer P(U > 3) et $P(X_1 < 1)$.
- **2)** Trouver q tel que $P(U \le q) = 0.5$.
- 3) On suppose que $Cov(X_1, X_2) = 3$. Déterminer alors l'espérance et la variance de Y.
- 4) On suppose à présent que X_1 et X_2 sont indépendants. Que peut-on dire concernant la covariance de X_1 et X_2 ? Donner la loi de Y.

Exercice 5

Soient X_1, \ldots, X_n n variables aléatoires **indépendantes** d'espérance mathématique μ et de variance σ^2 . Soit $\overline{X} = (1/n) \sum_{i=1}^n X_i$.

- 1) Calculer
 - a- $E(\overline{X})$ et $V(\overline{X})$.
 - b- $Cov(X_i \overline{X}, \overline{X})$ pour tout $i \in \{1, ..., n\}$.
- 2) On admet que si X_1, \ldots, X_n sont identiquement distribuées de loi normale alors $(X_i \overline{X})$ et \overline{X} sont indépendantes. En déduire que \overline{X} et $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ sont indépendantes.