

語音偽造辨識與偵測

Outline

- Spoofing Attack and Automatic Speaker Verification
- Spoofing Attacks Methods
 - Replay attack
 - Impersonation (twins and siblings)
 - Cut and paste
 - Voice conversion (text-to-speech)
 - Acoustic scene conversion

Automatic Speaker Verification (ASV) System With Eight Attack Points

- Direct attacks (spoofing attacks), can be applied at the microphone level as well as the transmission points 1 and 2.
- Indirect attacks (ASV system): points 3 to 8. They generally require system-level access, such as interfering with feature extraction (points 3 and 4), models (points 5 and 6) or score and decision logic computation (points 7 and 8).

Wu et. al., "Spoofing and countermeasures for speaker verification: a survey," Speech Communication 2015.

Automatic Speaker Verification (ASV) System With Eight Attack Points

	Decision		
	Accept	Reject	
Genuine	Correct acceptance	False rejection	
Impostor	False acceptance	Correct rejection	

- Standard ASV: an evaluation using (a) and (b).
- Spoofing and countermeasure: an evaluation using (a) and (c).
- (c) represents spoofed version of (b), and (b) has the same number of trials as (c).

Wu et. al., "Spoofing and countermeasures for speaker verification: a survey," Speech Communication 2015.

Spoofing Attack Methods

- Replay attack
- Impersonation (twins and siblings)
- Cut and paste
- Voice conversion (Text-to-speech)
- Acoustic scene conversion

PA (physical access) LA (logical access)

Replay Attack

Impersonation (Twins and Siblings)

Cut and Paste

Acoustic Scene Conversion

Acoustic Scene Conversion

	0dB	2dB	5dB
DDAE	100%	100%	100%
FCN	100%	100%	100%
MMSE	95.22%	94.94%	95.53%

Voice Conversion

- Voice Conversion (VC) is a technique that converts one type of speech to another, without changing the linguistic content
- Applications:
 - Impaired speech to normal speech conversion
 - Narrowband speech to wideband speech conversion (bandwidth expansion)
 - Speech to singing conversion
 - Speaker voice conversion

Spectral Conversion

- Convert the "spectrum" of a source to a target
- Standard procedures:
 - Parallel corpus available (same text for the source and target speakers)
 - Alignment (e.g., DTW)
 - \triangleright Mapping function estimation: $x_t = f(x_s)$

Voice Conversion

Types of Voice Conversion

- One-to-one vs. Many-to-one
 - One-to-one VC: the source and target speech utterances are available in the offline stage
 - Many-to-one VC: the source speaker is not seen in the offline stage
 - The system can convert the speech of any arbitrary source speaker to that of a desired target speaker
 - One-to-many, Many-to-many
- Parallel vs. Non-parallel
 - Parallel: parallel speech corpora available in the offline stage
 - Non-parallel: parallel speech corpora not available in the offline stage

Parallel One-To-One VC Methods

- Statistical methods:
 - Linear methods: Gaussian Mixture Model (GMM), partial least squares regression (PLS), etc
 - Nonlinear methods: dynamic kernel PLS (DKPLS), neural network (NN), etc
- Exemplar-based methods:
 - Nonnegative matrix factorization (NMF)
 - Locally linear embedding (LLE)
- Others:
 - Frequency Warping (FW), hybrid methods (e.g., FW+NMF),
 etc

ENMF-based VC (1/2)

- Exemplar-based NMF (ENMF) VC
 - Pre-select a source & a target dictionary
 - Obtain an activation by reconstructing the source input
 - Predict the output by activating the target dictionary

ENMF-based VC (2/2)

- Advantages
 - Acceptable quality
 - Reasonable similarity to the target speaker
 - Applicable on-the-fly (without training phases)
- Disadvantages
 - Slow conversion (solving V iteratively during conversion)
 - Less scalable (voice quality of output is somewhat proportional to the dictionary size)
 - > Trade-off between performance and speed
- Dictionary learning? $\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \approx \begin{bmatrix} \mathbf{U}_{\mathbf{X}} \\ \mathbf{U}_{\mathbf{Y}} \end{bmatrix}_{\mathbf{V}}$ high complexity
- Fast conversion?

Non-parallel VAE-based VC

- VAE: variational autoencoder
- Nonparallel: no parallel speech corpora

 VAE modeling is to learn the encoding function and the decoding function through the process of encoding and decoding self-reconstruction

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}_n) = -D_{KL}(q_{\boldsymbol{\phi}}(\boldsymbol{z}_n | \boldsymbol{x}_n) || p(\boldsymbol{z}_n)) + \mathbf{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}_n | \boldsymbol{x}_n)}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_n | \boldsymbol{z}_n)]$$

• Speaker representation y can be a pre-defined one-hot representation or a learned representation

Non-parallel VAW-GAN-based VC

VAW-GAN: variational autoencoding Wasserstein generative adversarial network

$$J_{vawgan} = -\mathcal{D}_{KL} (q_{\phi}(\boldsymbol{z}_{n}|\boldsymbol{x}_{n}) || p(\boldsymbol{z}_{n}))$$

$$+ \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} [\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}, \boldsymbol{y})]$$

$$+ \alpha \mathbb{E}_{\boldsymbol{x} \sim p_{t}^{*}} [\mathcal{D}_{\psi}(\boldsymbol{x})]$$

$$- \alpha \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} [\mathcal{D}_{\psi}(\mathcal{G}_{\theta}(\boldsymbol{z}, \boldsymbol{y}_{t}))]$$

$$J_{lat}(\phi; \boldsymbol{x}) = \mathcal{D}_{\mathrm{KL}} ig(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) \| p_{\theta}(\boldsymbol{z}) ig),$$
 $J_{obs}(\phi, \theta; \boldsymbol{x}, \boldsymbol{y}) = -\mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} ig[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}, \boldsymbol{y}) ig],$ $J_{wgan} = \mathbb{E}_{\boldsymbol{x} \sim p_{t}^{*}} ig[\mathcal{D}_{\psi}(\boldsymbol{x}) ig] - \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} ig[\mathcal{D}_{\psi}(\mathcal{G}_{\theta}(\boldsymbol{z}), \boldsymbol{y}_{t}) ig]$

Algorithm 1 VAE-WGAN training

function AUTOENCODE
$$(X,y)$$

$$Z_{\mu} \leftarrow \mathcal{E}_{\phi_1}(X)$$

$$Z_{\sigma} \leftarrow \mathcal{E}_{\phi_2}(X)$$

$$Z \leftarrow \text{sample from } \mathcal{N}(Z_{\mu}, Z_{\sigma})$$

$$X' \leftarrow \mathcal{G}_{\theta}(Z, y)$$
return X', Z

$\phi, \theta, \psi \leftarrow \text{initialization}$ while not converged do

 $X_s \leftarrow \text{mini-batch of random samples from source}$ $X_t \leftarrow \text{mini-batch of random samples from target}$ $X_s', Z_s \leftarrow \text{AUTOENCODE}(X_s, y_s)$ $X_t', Z_t \leftarrow \text{AUTOENCODE}(X_t, y_t)$ $X_{t|s} \leftarrow \mathcal{G}_{\theta}(Z_s, y_t)$ $J_{obs} \leftarrow J_{obs}(X_s) + J_{obs}(X_t)$ $J_{lat} \leftarrow J_{lat}(Z_s) + J_{lat}(Z_t)$ $J_{wqan} \leftarrow J_{wqan}(X_t, X_s)$

// Update the encoder, generator, and discriminator while not converged do

$$\begin{array}{ll} \boldsymbol{\psi} \xleftarrow{update} & -\nabla_{\boldsymbol{\psi}}(-J_{wgan}) \\ \boldsymbol{\phi} \xleftarrow{update} & -\nabla_{\boldsymbol{\phi}}(J_{obs} + J_{lat}) \\ \boldsymbol{\theta} \xleftarrow{update} & -\nabla_{\boldsymbol{\theta}}(J_{obs} + \alpha J_{wgan}) \end{array}$$

Results

VCC2016 corpus

Figure 3: Selected frames of the STRAGIHT spectra converted from SF1 to TM3. The spectral envelopes from the VAW-GAN outputs are less smooth across the frequency axis.

Figure 4: Global variance computed from the logSP_{en} over all non-silent frames from speaker TM3.

Figure 2: MOS on naturalness. The source is SF1, and the targets are TF2 and TM3.

Non-parallel CDVAE-based VC

CDVAE: cross-domain VAE

$$\mathcal{L} = \mathcal{L}_{wi} + \mathcal{L}_{KLD} + \mathcal{L}_{cross} + \mathcal{L}_{sim}.$$

$$egin{aligned} \mathcal{L}_{wi} &= \mathcal{L}_{recon}^{~~(1)}(oldsymbol{x}_{SP},oldsymbol{y}) + \mathcal{L}_{recon}^{~~(2)}(oldsymbol{x}_{MCC},oldsymbol{y}), \ \mathcal{L}_{KLD} &= \mathcal{L}_{lat}(oldsymbol{x}_{SP}) + \mathcal{L}_{lat}(oldsymbol{x}_{MCC}), \ \mathcal{L}_{cross} &= \mathcal{L}_{recon}^{~~(3)}(oldsymbol{x}_{SP},oldsymbol{y}) + \mathcal{L}_{recon}^{~~(4)}(oldsymbol{x}_{MCC},oldsymbol{y}). \ \mathcal{L}_{sim} &= \|oldsymbol{z}_{SP} - oldsymbol{z}_{MCC}\|_{1}. \end{aligned}$$

Conventional Vocoder vs. WaveNet Vocoder

(a) Conventional Vocoder [17]

Tamamori et al. Interspeech2017

Comparison of VC Systems and Vocoders

Results

Results

Neural Vocoder: A10, A12, A15

Human listening results (Similarity)

Human listening results (Quality)

Voice Conversion (ASR + TTS)

VC Challenge 2020

T26: One shot VC Griffin-Lim; One shot VC Griffin-Lim

T10: ASR-TTS (Transformer) / PPG-VC (LSTM) WaveNet; PPG-VC (LSTM) WaveNet

Outline

- Spoofing Attack and Automatic Speaker Verification
- Spoofing Attacks Methods
 - Replay attack
 - Impersonation (twins and siblings)
 - Cut and paste
 - Voice conversion (text-to-speech)
 - Acoustic scene conversion

