Explainable Rational Synthesis in Multi-Agent Systems

Alireza Farhadi¹ Mohammad Izadi² Jafar Habibi² Tobias Meggendorfer³

 1 Kish International Campus, Sharif University of Technology, Iran 2 Computer Engineering Department, Sharif University of Technology, Iran 3 Lancaster University Leipzig, Germany

ExCoS 2025 Workshop, Glasgow, Scotland

Outline

- Introduction
- Rational Synthesis Algorithm
- Second Second
- 4 Evaluation
- Conclusion

Introduction: The Challenge

- Coordinating intelligent agents in high-stakes scenarios like autonomous driving requires protocols that are both efficient and explainable.
- We formalize agent interactions using game theory, where agent objectives are specified in linear temporal logic (LTL).
- Key Challenges:
 - Computational Complexity: Automatically synthesizing Nash Equilibria (NE) is hindered by double-exponential complexity.
 - Black-Box Nature: The resulting strategies are often difficult for humans to comprehend and trust.
- This Work's Solution: An integrated approach that combines a performant synthesis algorithm with an explainability framework to make rational synthesis practical and transparent.

The Proposed Algorithm

- This paper introduces a novel and performant synthesis algorithm.
- Core Algorithm Steps:
 - **Suspect Game Construction:** First, it solves a series of parity games via a suspect game construction to guarantee punishment for any agent that deviates from its strategy.
 - 2 Equilibrium Path Extraction: Then, it applies SAT-based bounded model checking to extract a minimal equilibrium path from a run graph.
- Implemented Tool (CGES): The core synthesis algorithm is implemented in a tool named CGES (Concurrent Game Equilibrium Synthesizer). It demonstrates significant performance gains over state-of-the-art methods.

Framework for Explainability

• To move beyond opaque, "black-box" synthesis, we use two main approaches:

• 1. Port Automata (PA):

- We use a PA-based connector framework for transparently modeling game and strategies.
- PAs enhance explainability through intuitive visualization as state-transition diagrams.

• 2. Contrastive Explanation:

- We propose an algorithm for interactive, contrastive "why-not" questioning.
- This allows users to ask questions like, "Why move X instead of Y?".
- The algorithm analyzes the equilibrium structure to formally answer such queries. Implementation in CGES is future work.

An Illustrative Example

- Agents A_1 and A_2 interact in a concurrent game.
- At s_0 , A_1 chooses a or b, while A_2 selects c.
- A_1 's objective is $\mathbf{FG}s_1$.
- A_2 's objective is **FG** s_2 .

Figure: Concurrent game structure

Example: Nash Equilibria Found

First NE (Green Path)

- In this equilibrium, neither agent achieves its objective.
- If A_1 deviates, A_2 redirects the game to punish A_1 .

Second NE (Blue Path)

- In this equilibrium, agent A₁ fails and A₂ succeeds.
- The dashed section neutralizes any futile deviation by A₁.

Evaluation: CGES vs. EVE

- The CGES tool was evaluated on two case studies and compared with the state-of-the-art EVE tool.
- Case Study 1: Gossip Protocol
 - A protocol for information dissemination in large-scale systems.
 - CGES demonstrates significant superiority over EVE in scenarios with larger player counts.

Table: Performance evaluation of EVE and CGES in the gossip protocol

Players	2	3	4	5	6	7	8
CGES	0.2s	0.4s	0.6s	1.4s	3.8s	20.1s	167.3s
EVE	0.1s	0.2s	1.1s	13.5s	310.4s	>2 hours	?

Evaluation: Multi-Robot Motion Planning

Case Study 2: Multi-Robot Motion Planning (MRMP)

- Two robots must navigate an $n \times n$ grid to reach opposite corners without collisions.
- The average execution time for CGES grows linearly and remains under 5 seconds.
- In contrast, EVE's performance is reported to be exponential, exceeding 2 hours for a 10×10 grid.

Conclusion and Future Work

Contribution

- This work offers an efficient and explainable rational synthesis method.
- By using suspect games, PA-based visual connectors, and a proposed algorithm for contrastive explanations, we make multi-agent system protocols more transparent and user-amendable.

Future Work

- Implementation of the contrastive explanation algorithm in the CGES tool is planned for future work.
- Future work will also focus on integrating these formal methods with large language model-based agents to guide their strategic decision-making.

Thank you for your attention!

Questions and Discussion

CGES Tool: https://github.com/incaseoftrouble/cges

Contact: alireza.farhadi@gmail.com