buffer does not produce any particular logic function since the binary value of the output is the same as the binary value of the input. This circuit is used merely for power amplification. For example, a buffer that uses 3 volts for binary 1 will produce an output of 3 volts when its input is 3 volts. However, the amount of electrical power needed at the input of the buffer is much less than the power produced at the output of the buffer. The main purpose of the buffer is to drive other gates that require a large amount of power.

The NAND function is the complement of the AND function, as indicated by the graphic symbol, which consists of an AND graphic symbol followed by a small circle. The designation NAND is derived from the abbreviation of NOT-AND. The NOR gate is the complement of the OR gate and uses an OR graphic symbol followed by a small circle. Both NAND and NOR gates may have more than two inputs, and the output is always the complement of the AND or OR function, respectively.

The exclusive-OR gate has a graphic symbol similar to the OR gate except for the additional curved line on the input side. The output of this gate is 1 if any input is 1 but excludes the combination when both inputs are 1. The exclusive-OR function has its own algebraic symbol or can be expressed in terms of AND, OR, and complement operations as shown in Fig. 1-2. The exclusive-NOR is the complement of the exclusive-OR, as indicated by the small circle in the graphic symbol. The output of this gate is 1 only if both inputs are equal to 1 or both inputs are equal to 0. A more fitting name for the exclusive-OR operation would be an odd function; that is, its output is 1 if an odd number of inputs are 1. Thus in a three-input exclusive-OR (odd) function, the output is 1 if only one input is 1 or if all three inputs are 1. The exclusive-OR and exclusive-NOR gates are commonly available with two inputs, and only seldom are they found with three or more inputs.

1-3 Boolean Algebra

A Boolean algebra is an algebra (set, operations, elements) consisting of a set B with ≥ 2 elements, together with three operations—the AND operation \cdot (Boolean product), the OR operation + (Boolean sum), and the NOT operation' (complement)—defined on the set, such that for any element a, b, c, \ldots of set $B, a \cdot b, a + b$, and a' are in B. Consider the four-element Boolean algebra $B_4 = (\{0, x, y, 1\}; \cdot, +, '; 0, 1)$. The AND, OR, and NOT operations are described by the following tables:

•	0	\boldsymbol{x}	y	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>'</u>
0	0	0	0	0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1
x	0	\boldsymbol{x}	0	$\boldsymbol{\mathcal{X}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$x \mid y$
y	0	0 x	y	y	y y 1 y 1	$y \mid x$
1	0	$\boldsymbol{\mathcal{X}}$	y	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0

NAND

NOR

exclusive-OR

Consider the two-element Boolean algebra $B_2 = (\{0, 1\}; \cdot, +, '; 0, 1)$. The three operations. (AND), + (OR), '(NOT) are defined as follows:

•	0	1	+	0	1	<u>'</u>	
0	0	0	0	0	1	0	1
1	0	1	1	1	1	1	0

The two-element Boolean algebra B_2 among all other B_i , where i > 2, defined as switching algebra, is the most useful. Switching algebra consists of two elements represented by 1 and 0 as the largest number and the smallest number respectively.

*Boolean algebra is a switching algebra that deals with binary variables and logic operations. The variables are designated by letters such as *A*, *B*, *x*, and *y*. The three basic logic operations are AND, OR, and complement. A Boolean function can be expressed algebraically with binary variables, the logic operation symbols, parentheses, and equal sign. For a given value of the variables, the Boolean function can be either 1 or 0. Consider, for example, the Boolean function

$$F = x + y'z$$

The function F is equal to 1 if x is 1 or if both y' and z are equal to 1; F is equal to 0 otherwise. But saying that y' = 1 is equivalent to saying that y = 0 since y' is the complement of y. Therefore, we may say that F is equal to 1 if x = 1 or if yz = 01. The relationship between a function and its binary variables can be represented in a truth table. To represent a function in a truth table we need a list of the 2^n combinations of the n binary variables. As shown in Fig. 1-3(a), there are eight possible distinct combinations for assigning bits to the three variables x, y, and z. The function F is equal to 1 for those combinations where x = 1 or yz = 01; it is equal to 0 for all other combinations.

A Boolean function can be transformed from an algebraic expression into a logic diagram composed of AND, OR, and inverter gates. The logic diagram for F is shown in Fig. 1-3(b). There is an inverter for input y to generate its

Figure 1-3 Truth table and logic diagram for F = x + y'z.

Boolean function

truth table

logic diagram

^{*}Two Element

complement y'. There is an AND gate for the term y'z, and an OR gate is used to combine the two terms. In a logic diagram, the variables of the function are taken to be the inputs of the circuit, and the variable symbol of the function is taken as the output of the circuit.

The purpose of Boolean algebra is to facilitate the analysis and design of digital circuits. It provides a convenient tool to:

- Express in algebraic form a truth table relationship between binary variables.
- 2. Express in algebraic form the input-output relationship of logic diagrams.
- 3. Find simpler circuits for the same function.

A Boolean function specified by a truth table can be expressed algebraically in many different ways. Two ways of forming Boolean expressions are canonical and non-canonical forms. Canonical forms express all binary variables in every product (AND) or sum (OR) term of the Boolean function. To determine the canonical sum-of-products form for a Boolean function F(A, B, C) = A'B + C' + ABC, which is in non-canonical form, the following steps are used:

$$F = A'B + C' + ABC$$

$$= A'B(C + C') + (A + A')(B + B')C' + ABC,$$
where $x + x' = 1$ is a basic identity of Boolean algebra
$$= A'BC + A'BC' + ABC' + AB'C' + A'BC' + A'B'C' + ABC$$

$$= A'BC + A'BC' + ABC' + AB'C' + A'B'C' + ABC$$

By manipulating a Boolean expression according to Boolean algebra rules, one may obtain a simpler expression that will require fewer gates. To see how this is done, we must first study the manipulative capabilities of Boolean algebra.

Table 1-1 lists the most basic identities of Boolean algebra. All the identities in the table can be proven by means of truth tables. The first eight identities show the basic relationship between a single variable and itself, or in

TABLE 1-1 Basic Identities of Boolean Algebra

(1) x + 0 = x	$(2) x \cdot 0 = 0$
(3) $x + 1 = 1$	$(4) x \cdot 1 = x$
(5) x + x = x	$(6) x \cdot x = x$
(7) x + x' = 1	$(8) x \cdot x' = 0$
(9) x + y = y + x	(10) xy = yx
(11) x + (y + z) = (x + y) + z	(12) x(yz) = (xy)z
(13) x (y + z) = xy + xz	(x + y)(x + z)
(15) (x + y)' = x'y'	(16) (xy)' = x' + y'
(17) (x')' = x	

conjunction with the binary constants 1 and 0. The next five identities (9 through 13) are similar to ordinary algebra. Identity 14 does not apply in ordinary algebra but is very useful in manipulating Boolean expressions. Identities 15 and 16 are called DeMorgan's theorems and are discussed below. The last identity states that if a variable is complemented twice, one obtains the original value of the variable.

The identities listed in the table apply to single variables or to Boolean functions expressed in terms of binary variables. For example, consider the following Boolean algebra expression:

$$AB' + C'D + AB' + C'D$$

By letting x = AB' + C'D the expression can be written as x + x. From identity 5 in Table 1-1 we find that x + x = x. Thus the expression can be reduced to only two terms:

$$AB' + C'D + A'B + C'D = AB' + CD$$

DeMorgan's theorem

DeMorgan's theorem is very important in dealing with NOR and NAND gates. It states that a NOR gate that performs the (x + y)' function is equivalent to the function x'y'. Similarly, a NAND function can be expressed by either (xy)' or (x' + y'). For this reason the NOR and NAND gates have two distinct graphic symbols, as shown in Figs. 1-4 and 1-5. Instead of representing a NOR gate with an OR graphic symbol followed by a circle, we can represent it by an AND graphic symbol preceded by circles in all inputs. The invert-AND symbol for the NOR gate follows from DeMorgan's theorem and from the convention that small circles denote complementation. Similarly, the NAND gate has two distinct symbols, as shown in Fig. 1-5. NAND and NOR gates can be used to implement any Boolean function, including basic logic gates such as AND, OR, and NOT. Hence, NAND and NOR gates are called as Universal gates.

Figure 1-4 Two graphic symbols for NOR gate.

Figure 1-5 Two graphic symbols for NAND gate.

Figure 1-6 Three logic diagrams for the same Boolean function.

To see how Boolean algebra manipulation is used to simplify digital circuits, consider the logic diagram of Fig. l-6(a). The output of the circuit can be expressed algebraically as follows:

$$F = ABC + ABC' + A'C$$

Each term corresponds to one AND gate, and the OR gate forms the logical sum of the three terms. Two inverters are needed to complement A' and C'. The expression can be simplified using Boolean algebra.

$$F = ABC + ABC' + A'C = AB(C + C') + A'C = AB + A'C$$

Note that (C + C)' = 1 by identity 7 and $AB \cdot 1 = AB$ by identity 4 in Table 1-1.

The logic diagram of the simplified expression is drawn in Fig. 1-6(b) and Fig. 1-6(c). It requires only four gates rather than the six gates used in the circuit of Fig. 1-6(a). The two circuits are equivalent and produce the same truth table relationship between inputs A, B, C and output F.

Complement of a Function

The complement of a function F when expressed in a truth table is obtained by interchanging l's and O's in the values of F in the truth table. When the function is expressed in algebraic form, the complement of the function can be derived by means of DeMorgan's theorem. The general form of DeMorgan's theorem can be expressed as follows:

$$(x_1 + x_2 + x_3 + \dots + x_n)' = x_1' x_2' x_3' \dots x_n'$$
$$(x_1 x_2 x_3 \dots x_n)' = x_1' + x_2' + x_3' + \dots + x_n'$$

From the general DeMorgan's theorem we can derive a simple procedure for obtaining the complement of an algebraic expression. This is done by changing all OR operations to AND operations and all AND operations to OR operations and then complementing each individual letter variable. As an example, consider the following expression and its complement:

$$F = AB + C'D' + B'D$$

 $F' = (A' + B')(C + D)(B + D')$

The complement expression is obtained by interchanging AND and OR operations and complementing each individual variable. Note that the complement of *C*' is *C*.

1-4 Map Simplification

The complexity of the logic diagram that implements a Boolean function is related directly to the complexity of the algebraic expression from which the function is implemented. The truth table representation of a function is unique, but the function can appear in many different forms when expressed algebraically. The expression may be simplified using the basic relations of Boolean algebra. However, this procedure is sometimes difficult because it lacks specific rules for predicting each succeeding step in the manipulative process. Two methods of simplifying Boolean algebraic expressions are the map method and the tabular method. The map method is used for functions upto six variables. To manipulate functions of a large number of variables, the tabular method also known as the Quine-McCluskey method, is used. If a function to be minimized is not in a canonical form, it must first be converted into canonical form before applying Quine-McCluskey tabular

procedure. Another tabular method, known as the iterative consensus method, begins the simplification process even if the function is not in a canonical form. The map method provides a simple, straightforward procedure for simplifying Boolean expressions. This method may be regarded as a pictorial arrangement of the truth table which allows an easy interpretation for choosing the minimum number of terms needed to express the function algebraically. The map method is also known as the Karnaugh map or K-map.

Each combination of the variables in a truth table is called a minterm. For example, the truth table of Fig. 1-3 contains eight minterms. When expressed in a truth table a function of n variables will have 2^n minterms, equivalent to the 2^n binary numbers obtained from n bits. A Boolean function is equal to 1 for some minterms and to 0 for others. The information contained in a truth table may be expressed in compact form by listing the decimal equivalent of those minterms that produce a 1 for the function. For example, the truth table of Fig. 1-3 can be expressed as follows:

$$F(x, y, z) = \sum (1, 4, 5, 6, 7)$$

The letters in parentheses list the binary variables in the order that they appear in the truth table. The symbol Σ stands for the sum of the minterms that follow in parentheses. The minterms that produce 1 for the function are listed in their decimal equivalent. The minterms missing from the list are the ones that produce 0 for the function.

The map is a diagram made up of squares, with each square representing one minterm. The squares corresponding to minterms that produce 1 for the function are marked by a 1 and the others are marked by a 0 or are left empty. By recognizing various patterns and combining squares marked by l's in the map, it is possible to derive alternative algebraic expressions for the function, from which the most convenient may be selected.

The maps for functions of two, three, and four variables are shown in Fig. 1-7. The number of squares in a map of n variables is 2^n . The 2^n minterms are listed by an equivalent decimal number for easy reference. The minterm numbers are assigned in an orderly arrangement such that adjacent squares represent minterms that differ by only one variable. The variable names are listed across both sides of the diagonal line in the corner of the map. The 0's and 1's marked along each row and each column designate the value of the variables. Each variable under brackets contains half of the squares in the map where that variable appears unprimed. The variable appears with a prime (complemented) in the remaining half of the squares.

The minterm represented by a square is determined from the binary assignments of the variables along the left and top edges in the map. For example, minterm 5 in the three-variable map is 101 in binary, which may be obtained from the 1 in the second row concatenated with the 01 of the second column. This minterm represents a value for the binary variables A, B, and C, with A and C

minterm

Figure 1-7 Maps for two-, three-, and four-variable functions.

being unprimed and B being primed (i.e., AB'C). On the other hand, minterm 5 in the four-variable map represents a minterm for four variables. The binary number contains the four bits 0101, and the corresponding term it represents is A'BC'D.

Minterms of adjacent squares in the map are identical except for one variable, which appears complemented in one square and uncomplemented in the adjacent square. According to this definition of adjacency, the squares at the extreme ends of the same horizontal row are also to be considered adjacent. The same applies to the top and bottom squares of a column. As a result, the four corner squares of a map must also be considered to be adjacent.

A Boolean function represented by a truth table is plotted into the map by inserting l's in those squares where the function is M he squares containing l's are combined in groups of adjacent squares. These groups must contain a number of squares that is an integral power of 2. Groups of combined adjacent squares may share one or more squares with one or more groups. Each group of squares represents an algebraic term, and the OR of those terms gives the simplified algebraic expression for the function. The following examples show the use of the map for simplifying Boolean functions.

In the first example we will simplify the Boolean function

$$F(A, B, C) = \sum (3, 4, 6, 7)$$

adjacent squares