packet routing

- synchrónny režim
- vrcholy majú pakety (uložené v bufferoch)
- v jednom kroku po jednej linke ide max. jeden paket
- algoritmus = odchádzajúce linky + priorita bufferov
- celkový čas

packet routing na mriežke $\sqrt{N} \times \sqrt{N}$

vstup

Každý vrchol má 1 paket, do každého smeruje 1 paket (permutation routing)

algoritmus

Najprv riadok, potom stĺpec. Prednosť má ten s najdlhšou cestou.

analýza: stačí $2\sqrt{N} - 2$ krokov

- po $\sqrt{N} 1$ krokoch je každý v správnom stĺpci (nebrzdia sa)
- routovanie v stĺpci ide v $\sqrt{N} 1$ krokoch
 - pre každé i platí: po N − 1 krokoch sú koncové pakety na koncových miestach
 - o dôvod: zdržujú sa iba navzájom

veľkosť buffra v najhoršom prípade: $2/3\sqrt{N}-3$

veľkosť buffra: priemerný prípad I

setting

Každý vrchol má jeden paket s náhodným cieľom

max. veľkosť buffra \approx počet zahnutí vo vrchole

psť, že aspoň
$$r$$
 zahne $\leq {\sqrt{N}\choose r}\left(\frac{1}{\sqrt{N}}\right)^r < \left(\frac{\varrho}{r}\right)^r$

pre
$$r = \frac{e \log N}{\log \log N}$$
 je psť $o(N^{-2})$

veľkosť buffra: priemerný prípad II

wide-channel: nepredbiehajú sa

lema

psť, že vo wch prejde aspoň $\alpha\Delta/2$ paketov cez hranu e počas $t+1,t+2,\ldots,t+\Delta$ je najviac $e^{(\alpha-1-\alpha\ln\alpha)\Delta/2}$

očakávaný počet paketov na hrane $(i,j)\mapsto (i+1,j)$ je

$$\frac{2i(\sqrt{N}-i)\Delta}{N} \leq \frac{\Delta}{2}$$

chceme ukázať, že s veľkou psťou ich neprejde príliš viac

Černovov odhad

lema

Majme n nezávislých Bernoulihho náh. prem. X_1, \ldots, X_n , pričom $Pr[X_k = 1] \le P_k$. Potom

$$Pr[X \ge \beta P] \le e^{(1-\frac{1}{\beta}-\ln\beta)\beta P}$$

kde
$$X = \sum X_i$$
, $P = \sum P_i$

$$\begin{split} E[e^{\lambda X_k}] &\leq 1 + P_k(e^{\lambda} - 1) \leq e^{P_k(e^{\lambda} - 1)} \\ & E[e^{\lambda X}] \leq e^{P(e^{\lambda} - 1)} \\ P[e^{\lambda X} &\geq e^{\lambda \beta P}] \leq \frac{E[e^{\lambda X}]}{e^{\lambda \beta P}} \leq e^{P(e^{\lambda} - 1) - \lambda \beta P} \end{split}$$

veľkosť buffra: priemerný prípad II

lema

Majme n nezávislých Bernoulihho náh. prem. X_1, \ldots, X_n , pričom $Pr[X_k = 1] \le P_k$. Potom

$$Pr[X \ge \beta P] \le e^{(1-\frac{1}{\beta}-\ln\beta)\beta P}$$

kde
$$X = \sum X_i$$
, $P = \sum P_i$

lema

psť, že vo wch prejde aspoň $\alpha\Delta/2$ paketov cez hranu e počas $t+1,t+2,\ldots,t+\Delta$ je najviac $e^{(\alpha-1-\alpha\ln\alpha)\Delta/2}$

očakávaný počet paketov na hrane $(i,j)\mapsto (i+1,j)$ je

$$\frac{2i(\sqrt{N}-i)\Delta}{N} \leq \frac{\Delta}{2}$$

chceme ukázať, že s veľkou psťou ich neprejde príliš viac

$$n = 2i\Delta$$
, $P_k = \frac{\sqrt{N}-i}{N}$, $P = \frac{2i(\sqrt{N}-i)\Delta}{N}$, $\beta = \frac{\alpha N}{4i(\sqrt{N}-i)}$

veľkosť buffra: priemerný prípad II

lema

ak je paket vo vzd. d od hrany e v čase T, a p prejde cez e v čase $T+d+\delta$, potom v každom kroku $[T+d,T+d+\delta]$ prejde paket cez e

dosledok

ak paket prejde cez e v čase T vo wch, a prejde cez e v čase $T+\delta$ v št. , tak v každom kroku $[T,T+\delta]$ prejde paket

lema

ak počas $[T+1, T+\Delta]$ prejde cez e x paketov v št., tak pre nejaké t prejde x+t paketov cez e v čase $[T+1=t, T+\Delta]$ vo wch.

lema

psť, že cez e prejde viac ako $\alpha\Delta/2$ paketov počas konkrétneho okna Δ krokov je najviac $O(e^{(\alpha-1-\alpha\ln\alpha)\Delta/2})$

dosl

s psťou 1 $-O(\frac{1}{N})$ neprejde po e viac ako $c\log N$ paketov v posebe idúcich krokoch, kde $c=\frac{5\ln 2}{2\ln 2-1}<9$.