Brain-Inspired Artificial Intelligence 4: Model-Free Reinforcement Learning

Eiji Uchibe

Dept. of Brain Robot Interface

ATR Computational Neuroscience Labs.

Outline

- We have studied Model-based RL
 - Bellman expectation equation and Bellman optimality equation
- We will study model-free approaches to solve MDP problems
- Model-free methods
 - TD-learning
 - SARSA
 - Q-learning

Model-based vs. Model-free Methods

Model-based approach

- $p(s',r \mid s,a)$ is known explicitly
- Policy iteration, value iteration, linear programming

Model learning and model-free approach

- Estimate an environmental model $\hat{p}(s', r \mid s, a)$ from samples
- Apply model-free approach to \hat{p}

Experience replay and model-free approach

- Store experienced samples in the buffer
- Apply model-free approach with samples drawn from the buffer

Model-free approach

- Train V^π , Q^π , or π directly from samples drawn from p
- Discard experienced samples without reuse

Model-Free Reinforcement Learning

- Model-based RL needs p(s', r|s, a)
- Model-free RL uses samples $\{s_t, a_t, r_{t+1}, s_{t+1}\}_{t=0}^T$

Model-Free Policy Evaluation

- The goal is to estimate V^{π} when π is given, but we do not know $p(s',r\mid s,a)$
- Reminder: Definition of $v_{\pi}(s)$

$$V^{\pi}(s) = \mathbb{E}_{\pi} \{G_t \mid s_t = s\}, \ G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

• A naïve way is to collect many returns $\left\{G_t^i\right\}_{i=1}^N$ for every state and compute its empirical average

$$V^{\pi}(s_t) = \frac{1}{N} \sum_{i=1}^{N} G_t^i$$

Model-Free Policy Evaluation

 To derive an online update rule, we consider the sample-approximate Bellman expectation operator

$$B_{\pi}V(s) = \sum_{a,s',r} p(a,s',r|s)[r + \gamma V(s')] \qquad p(a,s',r|s) \text{ depends on } \pi(a|s)$$
 because
$$p(a,s',r|s)$$

$$\widehat{B}_{\pi}V(s_t) \triangleq r_{t+1} + \gamma V(s_{t+1})$$

Note because $p(a,s',r\mid s)$ $= p(s',r\mid s,a)\pi(a\mid s)$

• It is proved that \widehat{B}_{π} converges to B_{π} when we have

$$\{s_t^i, a_t^i, r_{t+1}^i, s_{t+1}^i\}_{i=1}^N \text{ as } N \to \infty$$

TD Learning

• Weighted average between the current estimate $V(s_t)$ and $\hat{B}_{\pi}V(s_t)$

$$V(s_t) \leftarrow (1 - \alpha)V(s_t) + \alpha \hat{B}_{\pi}V(s_t)$$

where $\alpha \in [0, 1]$ is called the learning rate

Re-write the right hand side of the equation

$$V(s_t) \leftarrow V(s_t) + \alpha \delta_t, \qquad \delta_t \triangleq r_{t+1} + \gamma V(s_{t+1}) - V(s_t)$$
target value

ullet This is called TD learning, where δ_t is a temporal difference (TD) error

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0,1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
      A \leftarrow action given by \pi for S
      Take action A, observe R, S'
      V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
      S \leftarrow S'
   until S is terminal
```

TD Approach for Estimating Q^{π}

- TD-learning is a method of policy evaluation when $p(s',r\mid s,a)$ is unknown
- However, we cannot perform policy improvement in the model-free settings:

$$\pi(s) \leftarrow \arg\max_{a} \sum_{r,s'} p(s',r|s,a) [r + \gamma V^{\pi}(s')]$$

ullet So, we need Bellman expectation operator for Q^π and its sample-approximator

Bellman Expectation Operator for Q^{π}

ullet Reminder: Bellman expectation operator for v_π

$$B_{\pi}V(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]$$

• Bellman expectation operator for Q^{π}

$$T_{\pi}Q(s,a) \triangleq \sum_{s',r} p(s',r\mid s,a)[r+\gamma V(s')]$$

$$= \sum_{s',r} p(s',r\mid s,a) \left[r+\gamma \sum_{a'} \pi(a'\mid s')Q(s',a')\right]$$

Sample-Approximate Bellman Expectation Operator for Q^{π}

Similarly, we obtain the sample-approximate Bellman expectation operator

$$T_{\pi}Q(s,a) \triangleq \sum_{r,s',a'} p(r,s',a'|s,a)[r + \gamma Q(s',a')]$$

$$\hat{T}_{\pi}Q(s_{t},a_{t}) = r_{t+1} + \gamma Q(s_{t+1},a_{t+1})$$
Note
$$p(r,s',a'|s,a)$$

$$= \pi(a'|s')p(s',r|s,a)$$

• It is proved that \widehat{T}_{π} converges to T_{π} when we have

$$\{s_t^i, a_t^i, r_{t+1}^i, s_{t+1}^i, a_{t+1}^i\}_{i=1}^N \text{ as } N \to \infty$$

SARSA: On-Policy TD Control

• Weighted average between the current estimate $Q(s_t, a_t)$ and $\hat{T}_\pi Q(s_t, a_t)$

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha \hat{T}_{\pi}Q(s_t, a_t)$$

where $\alpha \in [0, 1]$ is called the learning rate

Re-write the right hand side of the equation

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \delta_t^{\text{SARSA}}$$
$$\delta_t^{\text{SARSA}} \triangleq r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)$$
target value

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Loop for each step of episode: Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]$ $S \leftarrow S'$; $A \leftarrow A'$; until S is terminal

Note on TD and SARSA

The operators depend on the current learning policy explicitly

$$B_{\pi}V(s) = \sum_{a,s',r} p(s',r|s,a) \pi(a|s) [r + \gamma V(s')] \approx r_{t+1} + \gamma V(S_{t+1})$$

$$T_{\pi}Q(s,a) \triangleq \sum_{r,s',a'} \pi(a' \mid s') p(r,s' \mid s,a) [r + \gamma Q(s',a')]$$

$$\approx r_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$$

- Therefore, samples to approximate the operators should be collected by the learning policy $\pi(a \mid s)$
 - on-policy learning

From On-Policy Learning to Off-Policy Learning

- On-policy learning is sample-inefficient because it cannot use samples $(s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1})$ generated by a behavior policy $b(a \mid s)$ that is different from $\pi(a \mid s)$
- Consider Bellman optimality operator

$$B_*V(s) = \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')] = \max_{a} \mathbb{E}[r + \gamma V(s')]$$

$$\hat{B}_*V(s) = \max_{a} [r_{t+1} + \gamma V(S_{t+1})]$$

• Since the max operator is outside of the expectation, it is not trivial to derive the sample-approximate Bellman optimality operator for V^*

Bellman Optimality Equation for Q^*

• Reminder: Bellman optimality equation for V^*

$$V^*(s) = \max_{a} \sum_{s',r} p(s',r \mid s,a) [r + \gamma V^*(s')]$$

• Bellman optimality equation for Q^*

$$Q^{*}(s,a) \triangleq \sum_{s',r} p(s',r \mid s,a)[r + \gamma V^{*}(s')]$$

$$= \sum_{s',r} p(s',r \mid s,a)[r + \gamma \max_{a'} Q^{*}(s',a')]$$

Bellman Optimality Operator for Q^* and its Sample-Approximation

• Define Bellman optimality operation for q_st

$$T_*Q(s,a) \triangleq \sum_{s',r} p(s',r \mid s,a) [r + \gamma \max_{a'} Q(s',a')]$$

ullet Sample-approximated Bellman optimality equation for Q^*

$$\widehat{T}_*Q(s,a) \triangleq r_{t+1} + \gamma \max_{a'} Q(s_{t+1},a')$$

• T_* and \widehat{T}_* do not depend on the learning policy π

Q-Learning: Off-Policy TD Control

ullet Weighted average between the current estimate $Q(s_t,a_t)$ and

$$\widehat{T}_*Q(s_t,a_t)$$
 $Q(s_t,a_t) \leftarrow (1-\alpha)Q(s_t,a_t) + \alpha \widehat{T}_*Q(s_t,a_t)$ where $\alpha \in [0,1]$ is called the learning rate $Q(s_t,a_t)$

 $\alpha \quad 1 - \alpha$ $Q(s_t, a_t) \xrightarrow{\widehat{T}_* Q(s_t, a_t)} \widehat{T}_* Q(s_t, a_t)$

Re-write the right hand side of the equation

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \delta_t^{Q} \quad \delta_t^{Q} \triangleq r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t)$$
This is salled Q-bases as the decomposition.

This is called Q-learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+, a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

$$S \leftarrow S'$$

until S is terminal

Difference between Q-learning and SARSA

- Deterministic state transition
- 4 actions (left, right, up, and down)
- $\gamma = 1$ • $r(s, a, s') = \begin{cases} 0 \text{ if } s' \in G \\ -100 \text{ if } s' \text{ is a cliff} \\ -1 \text{ otherwise} \end{cases}$

When the agent arrives at the cliff, it is sent back to the start state

Difference between Q-learning and SARSA

Open in Colab

1000

- SARSA found the safer path
- The agent trained with
 Q-learning tended to go to
 the cliff during learning
- In fact, Q-learning found the optimal state-action value function, and the optimal policy could be derived by the greedy policy $(\epsilon=0)$

episodes

200

Note on Q-Learning

The operator does not depend on the current learning policy

$$T_*q(s,a) \triangleq \sum_{r,s'} p(r,s'|s,a) \Big[r + \gamma \max_{a'} q(s',a') \Big]$$

$$\approx R_{t+1} + \gamma \max_{a'} Q(S_{t+1},a)$$

- Therefore, the policy $b(a \mid s)$ that is different from the learning policy $\pi(a \mid s)$ can be used to collect samples to approximate the operator off-policy learning
- The off-policy property is critical for sample efficiency