Zomato Data Analysis

In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [10]: df = pd.read_csv("Zomato data.csv")
df

Out[10]:

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1/5	775	800	Buffet
1	Spice Elephant	Yes	No	4.1/5	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8/5	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7/5	88	300	Buffet
4	Grand Village	No	No	3.8/5	166	600	Buffet
•••							
143	Melting Melodies	No	No	3.3/5	0	100	Dining
144	New Indraprasta	No	No	3.3/5	0	150	Dining
145	Anna Kuteera	Yes	No	4.0/5	771	450	Dining
146	Darbar	No	No	3.0/5	98	800	Dining
147	Vijayalakshmi	Yes	No	3.9/5	47	200	Dining

148 rows × 7 columns

In [12]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 148 entries, 0 to 147
       Data columns (total 7 columns):
        # Column
                                      Non-Null Count Dtype
       ---
                                      -----
                                      148 non-null object
        0 name
        1
           online_order
                                     148 non-null object
                                     148 non-null object
        2 book_table
        3 rate
                                     148 non-null
                                                    object
        4 votes
                                      148 non-null
                                                    int64
        5 approx_cost(for two people) 148 non-null
                                                    int64
        6 listed_in(type)
                                      148 non-null
                                                    object
       dtypes: int64(2), object(5)
       memory usage: 8.2+ KB
In [69]: def handle_rating(value):
            val=str(value).split('/')
            return float(val[0])
        df['rate'] = df['rate'].apply(handle_rating)
        df['rate'].head()
Out[69]: 0
             4.1
        1
             4.1
           3.8
        2
             3.7
        3
        4
             3.8
        Name: rate, dtype: float64
In [35]: df
```

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1	775	800	Buffet
1	Spice Elephant	Yes	No	4.1	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
4	Grand Village	No	No	3.8	166	600	Buffet
•••							
143	Melting Melodies	No	No	3.3	0	100	Dining
144	New Indraprasta	No	No	3.3	0	150	Dining
145	Anna Kuteera	Yes	No	4.0	771	450	Dining
146	Darbar	No	No	3.0	98	800	Dining
147	Vijayalakshmi	Yes	No	3.9	47	200	Dining

148 rows × 7 columns

In [71]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148 entries, 0 to 147
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	name	148 non-null	object
1	online_order	148 non-null	object
2	book_table	148 non-null	object
3	rate	148 non-null	float64
4	votes	148 non-null	int64
5	<pre>approx_cost(for two people)</pre>	148 non-null	int64
6	<pre>listed_in(type)</pre>	148 non-null	object

dtypes: float64(1), int64(2), object(4)

memory usage: 8.2+ KB

In [87]: pd.isna(df).sum()

There are **no null values** in the dataset given.

1. What type of restaurants do the majority of the customers order from.

```
In [108...
          counts = df['listed_in(type)'].value_counts()
          counts
Out[108...
          listed_in(type)
          Dining 110
                 23
          Cafes
          other
                    8
          Buffet
                    7
          Name: count, dtype: int64
          sns.countplot(x=df['listed_in(type)'])
In [126...
          plt.xlabel("Restaurant Type")
          plt.ylabel("Number Of Orders")
          plt.show()
```


Conclusion: Majority of the customers have ordered from **Dining** restauants

2. How many votes has each type of restaurant has received from customers

In [138... (

df.head()

Out[138...

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1	775	800	Buffet
1	Spice Elephant	Yes	No	4.1	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
4	Grand Village	No	No	3.8	166	600	Buffet

In [142...

votes = df.groupby(['listed_in(type)'])['votes'].sum()
votes

```
Out[142...
          listed_in(type)
          Buffet
                     3028
          Cafes
                     6434
          Dining
                    20363
          other
                     9367
          Name: votes, dtype: int64
In [162...
          plt.plot(votes,marker="o")
          plt.xlabel("Restaurant Type")
          plt.ylabel("Votes")
          plt.show()
            20000
            17500
            15000
            12500
            10000
             7500
             5000
             2500
                    Buffet
                                         Cafes
                                                              Dining
                                                                                   other
```

Conclusion: **Dining** restaurants have the most number of votes compared to other restaurants.

Restaurant Type

3. What are the ratings that majority of the restaurants recieved.

```
In [166... df.head()
```

Out[166		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet
	1	Spice Elephant	Yes	No	4.1	787	800	Buffet
	2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
	3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
	4	Grand Village	No	No	3.8	166	600	Buffet
In [172		tings = df[tings	'rate'].value	_counts()				
Out[172	3. 3. 4. 3. 4. 3. 4. 3. 4. 2. Na	7 15 3 14 4 12 1 11 6 11 0 10 9 10 2 8 1 7 2 7 9 7 5 6 6 2 8 2 4 2 0 2 3 1 6 1 me: count,	dtype: int64					
In [182		t.hist(df[' t.show()	rate'], bins=	10)				

Conclusion: Majority of the ratings were from the range **3.75 - 4.00**

4. Zomato has observed that most of the couples order most of their food online. What is their average spending on each other.

In [186...

df.head()

Out[186...

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1	775	800	Buffet
1	Spice Elephant	Yes	No	4.1	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
4	Grand Village	No	No	3.8	166	600	Buffet

In [220...

cost = df['approx_cost(for two people)'].value_counts().reset_index()
cost

Ο.		г.	\neg	\neg	$\overline{}$	
Uι	ıt	١.	7	2	U	

	approx_cost(for two people)	count
0	300	23
1	200	16
2	150	16
3	400	15
4	500	14
5	600	13
6	800	12
7	100	6
8	450	6
9	250	6
10	700	5
11	550	3
12	750	3
13	350	3
14	900	2
15	850	2
16	650	2
17	950	1

```
In [250...
sns.barplot(x='approx_cost(for two people)', y='count', data=cost, hue='approx_cost
plt.xlabel("Average Cost For Two People")
plt.ylabel("Number Of Orders")
plt.title("Distribution of Orders by Cost")
plt.xticks(rotation=45)
plt.show()
```


Conclusion: Average cost for two people is 300 rupees

5. Which mode online or offline has recieved the maximum rating.

In [254...

df.head()

Out[254...

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1	775	800	Buffet
1	Spice Elephant	Yes	No	4.1	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
4	Grand Village	No	No	3.8	166	600	Buffet

```
In [268...
          df.groupby(['online_order'])['rate'].mean()
Out[268...
          online_order
                  3.487778
          No
                  3.858621
          Yes
          Name: rate, dtype: float64
In [284...
          plt.figure(figsize = (6,6))
          sns.boxplot(x='online_order',y='rate',data=df,hue='online_order',palette="coolwarm"
          plt.title('Average Rating')
          plt.xlabel('Online Order')
          plt.ylabel("Rating")
          plt.show()
```


Conclusion:

Average **Online** rating ranges from **3.75 to 4.15**Average **Offline** rating ranges from **3.25 to 3.75**

^{**}Online rating is greater compared to Offline rarting**

6. Which type of restaurant received more offline orders, so that Zomato can provide those customers with good offers and make them order online.

In [298... df.head() Out[298... approx_cost(for online_order book_table rate votes listed_in(type) two people) 0 Yes 4.1 775 800 Buffet Jalsa Yes Spice 4.1 787 800 Buffet 1 Yes No Elephant San Churro 2 Yes No 3.8 918 800 **Buffet** Cafe Addhuri 3 Udupi No 3.7 88 300 Buffet No Bhojana Grand 4 No No 3.8 166 600 Buffet Village In [321... values = df.pivot_table(columns='online_order',index='listed_in(type)',aggfunc='siz values Out[321... online order No Yes listed_in(type) **Buffet** 4 3 **Cafes** 15 **Dining** 77 33 other 2 6 In [339... sns.heatmap(data=values,cmap='YlGnBu',annot=True) plt.xlabel("Online Order") plt.ylabel("Restaurant Types") plt.show()

Conclusion: From above heatmap we can observe that **Dining Restaurant types have most offline order**s. So Zomato can give those customers various offers to make them order online

In []: