SBML Model Report

Model name: "Zhu2015 - Combined gemcitabine and birinapant in pancreatic cancer cells - mechanistic PD model"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Matthew Grant Roberts¹ at February sixth 2018 at 10:23 a.m. and last time modified at February seventh 2018 at 1:58 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity	
compartment types	0	compartments	1	
species types	0	species	7	
events	0	constraints	0	
reactions	0	function definitions	0	
global parameters	58	unit definitions	2	
rules	23	initial assignments	8	

Model Notes

Zhu2015 - combined gemcitabine and birinapantin pancreatic cancer cells - mechanistic PD modelMechanistic mathematical model toillustrate the effectiveness of combination chemotherapy involvinggemcitabine and birinapant against pancreatic cancer.

¹EMBL-EBI, mroberts@ebi.ac.uk

This model is described in the article:Mechanism-based mathematical modeling of combined gemcitabine and birinapant in pancreatic cancer cells.Zhu X, Straubinger RM, Jusko WJ.J Pharmacokinet Pharmacodyn 2015 Oct; 42(5): 477-496

Abstract:

Combination chemotherapy is standard treatment for pancreatic cancer. However, current drugs lack efficacy for most patients, and selection and evaluation of new combination regimens is empirical and time-consuming. The efficacy of gemcitabine, a standard-of-care agent, combined with birinapant, a pro-apoptotic antagonist of Inhibitor of Apoptosis Proteins (IAPs), was investigated in pancreatic cancer cells. PANC-1 cells were treated with vehicle, gemcitabine (6, 10, 20 nM), birinapant (50, 200, 500 nM), and combinations of the two drugs. Temporal changes in cell numbers, cell cycle distribution, and apoptosis were measured. A basic pharmacodynamic (PD) model based on cell numbers, and a mechanism-based PD model integrating all measurements, were developed. The basic PD model indicated that synergistic effects occurred in both cell proliferation and death processes. The mechanism-based model captured key features of drug action: temporary cell cycle arrest in S phase induced by gemcitabine alone, apoptosis induced by birinapant alone, and prolonged cell cycle arrest and enhanced apoptosis induced by the combination. A drug interaction term was employed in the models to signify interactions of the combination when data were limited. When more experimental information was utilized, values approaching 1 indicated that specific mechanisms of interactions were captured better. PD modeling identified the potential benefit of combining gemcitabine and birinapant, and characterized the key interaction pathways. An optimal treatment schedule of pretreatment with gemcitabine for 24-48 h was suggested based on model predictions and was verified experimentally. This approach provides a generalizable modeling platform for exploring combinations of cytostatic and cytotoxic agents in cancer cell culture studies.

This model is hosted on BioModels Database and identified by: BIOMD0000000669.

To cite BioModels Database, please use: Chelliah V et al. BioModels: ten-year anniversary. Nucl. Acids Res. 2015, 43(Database issue):D542-8.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Name volume

Definition ml

2.2 Unit substance

Name substance

Definition mmol

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
Pancreas	Pancreas		3	1	litre	Z	

3.1 Compartment Pancreas

This is a three dimensional compartment with a constant size of one ml.

Name Pancreas

4 Species

This model contains seven species. The boundary condition of seven of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
G1	G1	Pancreas	$mmol \cdot ml^{-1}$		$ \overline{\checkmark} $
S	S	Pancreas	$mmol \cdot ml^{-1}$		
G2	G2	Pancreas	$\mathrm{mmol}\cdot\mathrm{ml}^{-1}$		$\overline{\checkmark}$
R_{-} apo	R_apo	Pancreas	$\mathrm{mmol}\cdot\mathrm{ml}^{-1}$		
R_other	R_other	Pancreas	$\mathrm{mmol}\cdot\mathrm{ml}^{-1}$		$\overline{\checkmark}$
R_{-} total	R_total	Pancreas	$mmol \cdot ml^{-1}$		$\overline{\checkmark}$
R_live	R_live	Pancreas	$\mathrm{mmol}\cdot\mathrm{ml}^{-1}$		\overline{Z}

5 Parameters

This model contains 58 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Inh_1	Inh_1		0.642		
IR50	IR50		123000.000		
Inh_3	Inh_3		0.483		
$Imax_3$	Imax_3		0.753		
k3	k3		0.222		$ \overline{\checkmark} $
k1	k1		0.357		$ \overline{\checkmark} $
k_apo	k_apo		0.004		$ \overline{\checkmark} $
k2	k2		0.114		$ \overline{\checkmark} $
${\tt Imax_g}$	Imax_g		0.878		
$C_{-}g$	$C_{-}g$		20.000		
$C_{-}b$	C_b		500.000		$ \overline{\checkmark} $
Hi_g	Hi_g		4.340		$ \overline{\checkmark} $
Hs_b	Hs_b		1.240		$\overline{\mathbf{Z}}$
Hi_b	Hi_b		1.000		$\overline{\mathbf{Z}}$
Hs_g	Hs_g		3.000		$\overline{\mathbf{Z}}$
Tlag_re	Tlag_re		81.324		
${\sf Tlag_sg}$	Tlag_sg		38.700		
k_{-} other	k_other		2.97 · 1	0^{-4}	
${ t Hother_g}$	Hother_g		0.100		
Smax_b	Smax_b		3.720		$\overline{\mathbf{Z}}$
Psi_i	Psi_i		0.949		$\overline{\mathbf{Z}}$
Psi_s	Psi_s		1.260		$ \overline{\checkmark} $
Smax_{-g}	Smax_g		2.740		$ \overline{\checkmark} $
SC50_g	SC50_g		23.600		$ \overline{\mathbf{Z}} $
SC50_b	SC50_b		50.100		$ \overline{\checkmark} $
k_comb2	k_comb2		7.75 · 1	0^{-4}	$ \overline{\checkmark} $
k_comb1	k_comb1		9.19 · 1	0^{-4}	$ \overline{\checkmark} $
$k_{\tt repair}$	k_repair		0.050		
${ t Tlag_r}$	Tlag_r		55.721		
k_{-} delay	k_delay		18.600		
$R_{-}O$	$R_{-}0$		236000.000		
f_G10	$f(G1)_{-}0$		48.100		$\overline{\mathbf{Z}}$
f_S0	$f(S)_0$		10.800		$\overline{\mathbf{Z}}$
f_apo0	f(apo)_0		5.000		$\overline{\mathbf{Z}}$
f_other0	f(other)_0		1.500		$\overline{\mathbf{Z}}$
f1	f1		0.467		$\overline{\checkmark}$

Id	Name	SBO	Value	Unit	Constant
Imax_b	Imax_b		0.177		✓
IC50_g	IC50_g		6.000		
IC50_b	IC50_b		154.000		$\overline{\mathbf{Z}}$
k_tau	k_tau		0.376		$ \overline{\checkmark} $
${\tt Kother_g}$	Kother_g		1	10^{-5}	$ \overline{\checkmark} $
${ t Kother_b}$	Kother_b		0.006		
${ t Hother_b}$	Hother_b		1.000		$ \overline{\checkmark} $
Inh_g	Inh_g		0.874		
${\tt Inh_b}$	Inh_b		0.135		
Sti_g	Sti_g		0.000		
Sti_other_g	Sti_other_g	1.3	4928284767356 · 1	10^{-5}	
Sti_other_b	Sti_other_b		2.750		
Sti_b	Sti_b		3.455		
Sti_apo_g	Sti_apo_g		0.000		
Sti_apo_b	Sti_apo_b		0.000		
f_G20	$f(G2)_{-}0$		34.600		
$CURVE_G1$	CURVE_G1		0.481		
$CURVE_S$	CURVE_S		0.108		
CURVE_G2	CURVE_G2		0.346		
CURVE-	CURVE_FIGURE-		0.935		
_FIGURE-	_7a/d/g				
_7a_d_g					
CURVE-	CURVE_FIGURE-		0.050		
_FIGURE-	_7b/r/h				
$_{\mathtt{7}b}\underline{\mathtt{r}}\underline{\mathtt{h}}$					
CURVE-	CURVE_FIGURE-		0.000		
_FIGURE-	_7c/f/i				_
_7c_f_i					

6 Initialassignments

This is an overview of eight initial assignments.

6.1 Initialassignment G1

Derived unit contains undeclared units

6.2 Initialassignment S

Derived unit contains undeclared units

$$\quad \text{Math} \ \ \tfrac{f_S__0\cdot R_0}{100}$$

6.3 Initialassignment G2

Derived unit contains undeclared units

6.4 Initialassignment R_apo

Derived unit contains undeclared units

6.5 Initialassignment R_other

Derived unit contains undeclared units

6.6 Initialassignment Psi_i

Derived unit contains undeclared units

$$\label{eq:math} \mbox{Math} \begin{tabular}{ll} \left\{ \begin{aligned} 0.949 & \mbox{if } (C_b \neq 0) \land (C_g \neq 0) \\ 1 & \mbox{otherwise} \end{aligned} \right.$$

6.7 Initialassignment Psi_s

Derived unit contains undeclared units

$$\label{eq:math} \mbox{Math} \; \begin{cases} 1.26 & \mbox{if} \; (C_b \neq 0) \land (C_g \neq 0) \\ 1 & \mbox{otherwise} \end{cases}$$

6.8 Initialassignment f_G2__0

Derived unit contains undeclared units

Math
$$100 - f_apo_0 - f_G1_0 - f_S_0 - f_other_0$$

7 Rules

This is an overview of 23 rules.

7.1 Rule R_total

Rule R_total is an assignment rule for species R_total:

$$R_{total} = [G1] + [S] + [G2] + [R_{apo}] + [R_{other}]$$
 (1)

Derived unit $mmol \cdot ml^{-1}$

7.2 Rule R_live

Rule R_live is an assignment rule for species R_live:

$$R_{\text{live}} = [G1] + [S] + [G2]$$
 (2)

Derived unit $mmol \cdot ml^{-1}$

7.3 Rule Inh_1

Rule Inh_1 is an assignment rule for parameter Inh_1:

$$Inh_{-1} = \frac{[R_live]}{IR50 + [R_live]}$$
(3)

7.4 Rule Inh_3

Rule Inh_3 is an assignment rule for parameter Inh_3:

$$Inh_3 = \frac{Imax_3 \cdot [R_live]}{IR50 + [R_live]}$$
(4)

7.5 Rule k_other

Rule k_other is an assignment rule for parameter k_other:

$$k_other = \begin{cases} 2.97 \cdot 10^{-4} & \text{if } (C_b \neq 0) \land (C_g \neq 0) \\ 0 & \text{otherwise} \end{cases}$$
 (5)

7.6 Rule Tlag_r

Rule Tlag_r is an assignment rule for parameter Tlag_r:

$$Tlag_r = \begin{cases} 0 & \text{if } C_g = 0 \\ k_delay \cdot ln C_g & \text{otherwise} \end{cases}$$
 (6)

7.7 Rule Tlag_re

Rule Tlag_re is an assignment rule for parameter Tlag_re:

$$Tlag_re = (1 + k_comb1 \cdot C_b) \cdot Tlag_r$$
 (7)

7.8 Rule Inh_g

Rule Inh_g is an assignment rule for parameter Inh_g:

$$\begin{split} & \text{Inh_g} & \\ & = \begin{cases} \frac{I max_g \cdot C_g^{Hi_g}}{IC50_g^{Hi_g} + C_g^{Hi_g}} \\ \begin{cases} \frac{I max_g \cdot C_g^{Hi_g}}{IC50_g^{Hi_g} + C_g^{Hi_g}} \cdot exp\left(1 \cdot k_repair \cdot (time - Tlag_r)\right) \\ \begin{cases} \frac{I max_g \cdot C_g^{Hi_g}}{IC50_g^{Hi_g} + C_g^{Hi_g}} \\ \begin{cases} \frac{I max_g \cdot C_g^{Hi_g}}{IC50_g^{Hi_g} + C_g^{Hi_g}} \\ \end{cases} \\ \begin{cases} \frac{I max_g \cdot C_g^{Hi_g}}{IC50_g^{Hi_g} + C_g^{Hi_g}} \cdot exp\left(1 \cdot \left(1 - k_comb2 \cdot C_b\right) \cdot k_repair \cdot (time - Tlag_re)\right) \end{cases} & \text{if } (C_b \neq 0) \\ 0 & \text{otherwise} \end{cases} \end{split}$$

7.9 Rule Inh_b

Rule Inh_b is an assignment rule for parameter Inh_b:

$$Inh_{-}b = \frac{Imax_{-}b \cdot C_{-}b^{Hi_{-}b}}{IC50 \ b^{Hi_{-}b} + C_{-}b^{Hi_{-}b}}$$
(9)

7.10 Rule Sti_g

Rule Sti_g is an assignment rule for parameter Sti_g:

$$Sti_{-g} = \begin{cases} 0 & \text{if time } \leq Tlag_sg \\ \frac{Smax_g \cdot C_g^{Hs_g}}{SC50 \ g^{Hs_g} + C \ g^{Hs_g}} & \text{otherwise} \end{cases}$$
 (10)

7.11 Rule Sti_other_g

Rule Sti_other_g is an assignment rule for parameter Sti_other_g:

$$Sti_other_g = Kother_g \cdot C_g^{Hother_g}$$
 (11)

7.12 Rule Sti_other_b

Rule Sti_other_b is an assignment rule for parameter Sti_other_b:

$$Sti_other_b = Kother_b \cdot C_b^{Hother_b}$$
 (12)

7.13 Rule Sti_b

Rule Sti_b is an assignment rule for parameter Sti_b:

$$Sti_b = \frac{Smax_b \cdot C_b^{Hs_b}}{(Psi_s \cdot SC50_b)^{Hs_b} + C_b^{Hs_b}}$$
(13)

7.14 Rule CURVE_G1

Rule CURVE_G1 is an assignment rule for parameter CURVE_G1:

$$CURVE_G1 = \frac{[G1]}{[R_total]}$$
 (14)

Derived unit dimensionless

7.15 Rule CURVE_S

Rule CURVE_S is an assignment rule for parameter CURVE_S:

$$CURVE_S = \frac{[S]}{[R_total]}$$
 (15)

Derived unit dimensionless

7.16 Rule CURVE_G2

Rule CURVE_G2 is an assignment rule for parameter CURVE_G2:

$$CURVE_G2 = \frac{[G2]}{[R_total]}$$
 (16)

Derived unit dimensionless

7.17 Rule CURVE_FIGURE_7a_d_g

Rule CURVE_FIGURE_7a_d_g is an assignment rule for parameter CURVE_FIGURE_7a_d_g:

$$CURVE_FIGURE_7a_d_g = \frac{[R_live]}{[R_total]}$$
 (17)

Derived unit dimensionless

7.18 Rule CURVE_FIGURE_7b_r_h

Rule CURVE_FIGURE_7b_r_h is an assignment rule for parameter CURVE_FIGURE_7b_r_h:

$$CURVE_FIGURE_7b_r_h = \frac{[R_apo]}{[R_total]}$$
 (18)

Derived unit dimensionless

7.19 Rule G1

Rule G1 is a rate rule for species G1:

$$\frac{d}{dt}G1 = 2 \cdot (1 - Inh_3) \cdot (1 - Inh_b) \cdot k3 \cdot [G2] - (1 - Inh_1) \cdot (1 - Inh_b) \cdot k1 \cdot [G1] - (1 + Sti_apo_g)$$

$$\cdot (1 + Sti_apo_b) \cdot k_apo \cdot [G1] - (1 + Sti_other_g) \cdot (1 + Sti_other_b) \cdot k_other \cdot [G1]$$

$$(19)$$

7.20 Rule S

Rule S is a rate rule for species S:

$$\begin{split} \frac{d}{dt}S &= (1-Inh_1)\cdot (1-Inh_b)\cdot k1\cdot [G1] - (1-Inh_g)\cdot k2\cdot [S] - (1+Sti_apo_g) \\ &\quad \cdot (1+Sti_apo_b)\cdot k_apo\cdot [S] - (1+Sti_other_g)\cdot (1+Sti_other_b)\cdot k_other\cdot [S] \end{split} \tag{20}$$

7.21 Rule G2

Rule G2 is a rate rule for species G2:

7.22 Rule R_apo

Rule R_apo is a rate rule for species R_apo:

$$\frac{d}{dt}R_apo = (1 + Sti_apo_g) \cdot (1 + Sti_apo_b) \cdot k_apo \cdot ([G1] + [S] + [G2])$$

$$- (1 + Sti_apo_g) \cdot (1 + Sti_apo_b) \cdot f1 \cdot k_apo \cdot [R_apo]$$
(22)

7.23 Rule R_other

Rule R_other is a rate rule for species R_other:

$$\frac{d}{dt}R_other = (1 + Sti_other_g) \cdot (1 + Sti_other_b) \cdot k_other$$

$$\cdot ([G1] + [S] + [G2]) - k_other \cdot [R_other]$$
(23)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

8.1 Species G1

Name G1

Initial concentration $113516 \text{ mmol} \cdot \text{ml}^{-1}$

Initial assignment G1

Involved in rule G1

One rule determines the species' quantity.

8.2 Species S

Name S

Initial concentration $25488 \text{ } \text{mmol} \cdot \text{ml}^{-1}$

Initial assignment S

Involved in rule S

One rule determines the species' quantity.

8.3 Species G2

Name G2

Initial concentration $81656 \text{ } \text{mmol} \cdot \text{ml}^{-1}$

Initial assignment G2

Involved in rule G2

One rule determines the species' quantity.

8.4 Species R_apo

Name R_apo

Initial concentration $11800 \text{ } \text{mmol} \cdot \text{ml}^{-1}$

Initial assignment R_apo

Involved in rule R_apo

One rule determines the species' quantity.

8.5 Species R_other

Name R_other

Initial concentration $3540 \text{ } \text{mmol} \cdot \text{ml}^{-1}$

Initial assignment R_other

Involved in rule R_other

One rule determines the species' quantity.

8.6 Species R_total

Name R_total

Initial concentration $236000 \text{ mmol} \cdot \text{ml}^{-1}$

Involved in rule R_total

One rule determines the species' quantity.

8.7 Species R_live

Name R_live

Initial concentration 220660 mmol⋅ml⁻¹

Involved in rule R_live

One rule determines the species' quantity.

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany