Геометрические векторы

- \square Дан треугольник ABC: A(5,7), B(-1,10), C(8,-3). На стороне AB взята точка D так, что AD : DB = 2:3, на отрезке CD взята точка E так, что CE : ED = 5:2. Найдите координаты точки E.
- $\boxed{2}$ Даны вершины треугольника ABC: A(1,-1,2), B(0,3,-2), C(1,2,0). Найдите $\angle C$, проекцию \overline{AB} на \overline{AC} , длину высоты BD, опущенной из вершины B.
- 3 На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нулевому вектору?
- 4 Можно ли расположить на плоскости три вектора так, чтобы модуль суммы каждых двух из них был равен 1, а сумма всех трёх была равна нулевому вектору?
- $\overline{5}$ Дан вектор $\overline{a}=2\overline{m}-\overline{n}$, где \overline{m} и \overline{n} единичные векторы, угол между которыми 120° . Найдите углы между векторам \overline{a} и \overline{n} , \overline{a} и \overline{m} .
- $ar{a}$ При каком значении параметра lpha векторы $ar{a}=lphaar{i}-3ar{j}+2ar{k}$ и $ar{b}=ar{i}+2ar{j}-lphaar{k}$ ортогональны?
- $\overline{0}$ Найдите проекции вектора $\overline{a}=(4,-3,2)$ на ось, составляющую с координатными осями равные острые углы.
- $\boxed{8}$ Даны векторы $\overline{\alpha}=(3,-1,5)$ и $\overline{b}=(1,2,-3)$. Найдите вектор $\overline{m},$ если $\overline{m}\bot Oz,$ $\overline{m}\,\overline{a}=9,\,\overline{m}\,\overline{b}=-4.$
- 9 В плоскости xOz найдите вектор, ортогональный вектору (5, -3, 4), и имеющий одинаковую с ним длину.
- 10 В квадратной матрице векторы-столбцы попарно ортогональны. Докажите, что модуль её определителя равен произведению длин её векторов-столбцов
 - 11 Найдите угол между диагоналями смежных граней куба.
- 12^* Непересекающиеся диагонали двух смежных боковых граней прямоугольного параллелепипеда наклонены к плоскости его основания под углами α и β . Найдите угол между этими диагоналями.
- $\overline{13}$ Единичные векторы \overline{a} , \overline{b} , \overline{c} удовлетворяют условию $\overline{a}+\overline{b}+\overline{c}=0$. Вычислите $\overline{a}\,\overline{b}+\overline{b}\,\overline{c}+\overline{c}\,\overline{a}$.
- $\lfloor 14 \rfloor$ Найдите угол между диагоналями параллелограмма, построенного на векторах \overline{a} и \overline{b} , если $|\overline{a}|=2$, $|\overline{a}|=1$, $\angle \overline{a}$, $\overline{b}=\frac{\pi}{3}$.

- $\overline{15}$ Какой угол образуют единичные векторы \overline{p} и \overline{q} , если векторы $\overline{a}=\overline{p}+2\overline{q}$, $\overline{b}=5\overline{p}-4\overline{q}$ перпендикулярны?
- 16* а) Чему равен наибольший угол между векторами (x,y,z) и (y,z,x)? б) Чему равен наименьший угол между векторами (1-5x,1,3) и (-1,1+4x,3-3x)?
- 17 Найдите площадь треугольника ABC: A(1,2,3), B(3,2,2), C(1,-1,0). Вычислите длину высоты, опущенной из вершины A.
- 18 Вычислите площадь параллелограмма, построенного на векторах $\overline{a}=2\overline{m}+\overline{n}$, $\overline{b}=\overline{m}-\overline{n}$, где $|\overline{m}|=3$, $|\overline{n}|=1$, $\angle\overline{m},\overline{n}=\frac{2\pi}{3}$.
- $\overline{19}$ Зная две стороны треугольника \overline{ABC} : $\overline{AB}=3\overline{p}-4\overline{q}$, $\overline{BC}=\overline{p}+5\overline{q}$, вычислите длину его высоты CD, если $|\overline{p}|=2$, $|\overline{q}|=3$, $\angle\,\overline{p},\overline{q}=\frac{\pi}{3}$.
- $\overline{20}$ Вектор \overline{m} перпендикулярен векторам $\overline{a}=(4,-2,-3)$ и $\overline{b}=(0,1,3)$ и образует с осью Оу тупой угол. $|\overline{m}|=26$, Найдите координаты вектора \overline{m} .
- $\overline{21}$ Вычислите площадь параллелограмма, диагонали которого определяют векторы $\overline{d_1}=3\overline{m}+\overline{n},\ \overline{d_2}=\overline{m}-5\overline{n},$ если $|\overline{m}|=|\overline{n}|=1,\ \angle\,\overline{m},\overline{n}=\frac{\pi}{4}.$
- 22 Проверьте, лежат ли точки A(2,-3,4), B(2,3,-4), C(-2,3,4), D(2,3,4) в одной плоскости. Если нет, найдите объем тетраэдра ABCD.
- 23 Дана пирамида OABC: O(0,0,0), A(5,2,0), B(2,5,0), C(1,2,4). Вычислите её объём, площадь грани ABC и высоту пирамиды, опущенную на эту грань.
- 24 Объём тетраэдра ABCD равен 5. A(2,1,-1), B(3,0,1), C(2,-1,3). Найдите координаты вершины D, если она лежит на оси Oy.
- $\overline{25^*}$ Для заданных векторов \overline{a} и \overline{b} укажите критерий разрешимости уравнения $\overline{a} imes \overline{x} = \overline{b}$. Найдите общее решение этого уравнения.
 - $\fbox{26*}$ Решите уравнение $\overline{x}=\overline{a} imes(\overline{x}+\overline{b}).$
- $\overline{27^*}$ Даны векторы $\overline{b}=\overline{\mathfrak{i}}+2\overline{\mathfrak{j}}+3\overline{k}$ и $\overline{c}=2\overline{\mathfrak{i}}+3\overline{\mathfrak{j}}+\overline{k}$. Найдите все векторы \overline{a} , для которых система уравнений $\left\{ egin{array}{l} \overline{a} imes\overline{x}&=\overline{b}\\ \overline{a} imes\overline{y}&=\overline{c} \end{array}
 ight.$ имеет хотя бы одно решение.
- $\overline{28*}$ а) Найдите наибольшее значение $|\overline{x} \times \overline{a} + \overline{x}|$, если $|\overline{x}| = 1$ и \overline{a} фиксированный вектор; б) Найдите наибольшее значение $|\overline{x} \times \overline{a} + (\overline{x}\,\overline{a})\overline{x}|$, если $|\overline{x}| = 2$ и \overline{a} фиксированный вектор.
- 29* Каково наибольшее возможное число лучей в пространстве, выходящих из одной точки и образующих попарно тупые углы?

- 30* Дано восемь вещественных чисел a, b, c, d, e, f, g, h. Докажите, что хотя бы одно из шести чисел ac+bd, ae+bf, ag+bh, ce+df, cg+dh, eg+fh неотрицательно.
- 31^* Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N центры окружностей описанных около треугольников AKB и CKD. Докажите, что OM = KN.
- 32* Внутри правильного п-угольника взята точка. Все её проекции на стороны попали во внутренние точки сторон и (вместе с вершинами) разбили периметр на 2n отрезков. Докажите, что сумма длин отрезков через один равна полупериметру этого п-угольника.
- 33* Докажите, что в выпуклом п-угольнике сумма расстояний от любой внутренней точки до сторон постоянна тогда и только тогда, когда сумма векторов единичных внешних нормалей равна нулю.
- $\boxed{34^*}$ Докажите, что если векторы $\overline{a} \times \overline{b}$, $\overline{b} \times \overline{c}$, $\overline{c} \times \overline{a}$ компланарны, то они коллинеарны.
- \overline{a} \overline{b} Пусть \overline{a} и \overline{b} трёхмерные векторы, для которых \overline{a} $\overline{b} \neq 0$. Решите уравнение $\overline{a} \times (\overline{x} \times \overline{b}) = \overline{a}(\overline{x}\overline{b})$.
- $\overline{36*}$ Даны неперпендикулярные векторы \overline{a} и \overline{b} , причём $|\overline{a}|=1$. Рассмотрим последовательность $\overline{x}_1=\overline{a}\times\overline{b}, \, \overline{x}_2=\overline{a}\times\overline{x}_1,\,\ldots,\, \overline{x}_n=\overline{a}\times\overline{x}_{n-1},\,\ldots$ Докажите, что эта последовательность является периодической.