Computer Graphics -Transformation

Junjie Cao @ DLUT Spring 2018

http://jjcao.github.io/ComputerGraphics/

What in the world is this?

Cube

Transformations in Rigging

Basic idea: f transforms x to f(x)

And what is our favorite type of transformation?

What can we do with linear transformations?

What did *linear* mean?

$$f(u + v) = f(u) + f(v)$$
$$f(au) = af(u)$$

- Cheap to compute
- Composition of linear transformations is linear
 - Leads to uniform representation of transformations
 - E.g., in graphics card (GPU) or graphics APIs

Linear transforms

- Do you know...
 - what u_1 and u_2 are?
 - what a₁ and a₂ are?

Linear transforms

- u is a linear combination of e_1 and e_2
- f(u) is that same linear combination of a_1 and a_2
- a_1 and a_2 are $f(e_1)$ and $f(e_2)$
- by knowing what e_1 and e_2 map to, you know how to map the entire space!

Linear transforms

If a map can be expressed as

$$\mathbf{f(u)} = \sigma_{i=1}^{m} u_i \mathbf{a}_i$$

with fixed vectors a_i , then it is linear

Let's look at some transforms that are important in graphics...

Scale

Is uniform scale a linear transform?

Yes!

 $R_{ heta}$ = rotate counter-clockwise by heta

 $R_{\theta} = rotate\ counter - clockwise\ by\ \theta$

As angle changes, points move along *circular* trajectories. Hence, rotations preserve length of vectors: $|R_{\theta}(x)| = |x|$

What does $R_{ heta}$ look like?

- From x, compute α and r
- Write down $R_{\theta}(x)$ as a function of α , θ and r (i.e. vector (r,0) rotated by $\alpha + \theta$)
- Apply sum of angle formulae...
- Fine, but remember, we only need to know how e₁ and e₂ are transformed!

Is rotation linear?

• Yes

Translation

Let's write $T_b(x)$ in the form

$$T_{\boldsymbol{b}}(\boldsymbol{x}) = x_1 \begin{bmatrix} ? \\ ? \end{bmatrix} + x_2 \begin{bmatrix} ? \\ ? \end{bmatrix}$$

such that $T_b(x) = x + b$

Is translation linear?

No. Translation is affine.

Reflection

 $Re_y(x)$: reflection about y-axis

Reflections change "handedness"...

Do you know what $Re_y(x)$ looks like?

Is reflection a linear transform?

Do you know how to reflect about an arbitrary axis?

Shear (in x direction)

What does H(x) look like?

$$\boldsymbol{H}_{a}(\boldsymbol{x}) = x_{1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_{2} \begin{bmatrix} a \\ 1 \end{bmatrix}$$

Is shearing a linear transformation?

Compose basic transformations to construct more complicated ones

 $f(\mathbf{x_3}) \qquad f(\mathbf{x_2})$ $f(\mathbf{x_0}) \qquad f(\mathbf{x_1})$

 $f(\mathbf{x}) = T_{3,1}(S_{0.5}(\mathbf{x}))$

Note: order of composition matters

Top-right: scale, then translate Bottom-right: translate, then scale

How would you perform these transformations?

Common task: rotate about a point x

Summary of basic transforms

Linear:

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$
$$f(a\mathbf{x}) = af(\mathbf{x})$$

Scale

Rotation

Reflection

Shear

Not linear:

Translation

Affine:

Composition of linear transform + translation (all examples on previous two slides)

$$f(\mathbf{x}) = g(\mathbf{x}) + \mathbf{b}$$

Not affine: perspective projection (will discuss later)

Euclidean: (Isometries)

Preserve distance between points (preserves length)

$$|f(\mathbf{x}) - f(\mathbf{y})| = |\mathbf{x} - \mathbf{y}|$$

Translation

Rotation

Reflection

"Rigid body" transforms are Euclidean transforms that also preserve "winding" (does not include reflection)

2D Geometric Transformations

Representing Transformations in Coordinates

Review: representing points in a coordinate space

Review: matrix multiplication

$$\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
a_{11}x_1 + a_{12}x_2 \\
a_{21}x_1 + a_{22}x_2
\end{bmatrix}
= x_1 \begin{bmatrix}
a_{11} \\
a_{21}
\end{bmatrix} + x_2 \begin{bmatrix}
a_{12} \\
a_{22}
\end{bmatrix} = x_1 a_1 + x_2 a_2
f(x) = \sum_{i=1}^{m} x_i a_i = Ax$$

- Matrix multiplication is linear combination of columns
- Encodes a linear map!

Linear transforms in 2D is 2*2 matrices

Non-uniform scale

$$S(\mathbf{x}) = x_1 a \mathbf{e}_1 + x_2 b \mathbf{e}_2$$
$$= \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mathbf{x}$$

So, what happens to vectors (1, 0) and (0, 1) after rotation by θ ?

Rotation

$$R_{\theta}(\mathbf{e}_{1}) = (\cos \theta, \sin \theta) = \mathbf{a}_{1}$$

$$R_{\theta}(\mathbf{e}_{2}) = (-\sin \theta, \cos \theta) = \mathbf{a}_{2}$$

$$R_{\theta}(\mathbf{x}) = x_{1}\mathbf{a}_{1} + x_{2}\mathbf{a}_{2}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \mathbf{x}$$

Shear

Shear in x:

$$\mathbf{H}_{xs} = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}$$

Arbitrary shear:

Shear in y:

$$\mathbf{H}_{ys} = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix}$$

General shear mappings

if V is the <u>direct sum</u> of W: and W', and we write vectors as: v=w+w'

$$L(v) = (w + Mw') + w'$$

where M is a linear mapping from W' into W. In block matrix terms L can be represented as:

$$\begin{bmatrix} I & M \\ 0 & I \end{bmatrix}$$

How do we compose linear transformations?

Compose linear transformations via matrix multiplication.
This example: uniform scale, followed by rotation

$$f(\mathbf{x}) = R_{\pi/4} \mathbf{S}_{[1.5, 1.5]} \mathbf{x}$$

Enables simple, efficient implementation: reduce complex chain of transformations to a single matrix multiplication

How do we deal with translation? (Not linear)

$$T_{\mathbf{b}}(\mathbf{x}) = \mathbf{x} + \mathbf{b}$$

Recall: translation is not a linear transform

- → Output coefficients are not a linear combination of input coefficients
- → Translation operation cannot be represented by a 2x2 matrix

$$\mathbf{x}_{\text{out}x} = \mathbf{x}_x + \mathbf{b}_x$$

$$\mathbf{x}_{\mathbf{out}y} = \mathbf{x}_y + \mathbf{b}_y$$

Translation math

2D homogeneous coordinates (2D-H)

Key idea: lift 2D points to a 3D space

So the point
$$(x_1, x_2)$$
 is represented as the 3-vector: $\begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$

And 2D transforms are represented by 3x3 matrices

For example: 2D rotation in homogeneous coordinates:

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}$$

Q: how do the transforms we've seen so far affect the last coordinate?

Translation in 2D-H coords

Translation expressed as 3x3 matrix multiplication:

$$T(x) = x + b = \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 + b_1 \\ x_2 + b_2 \\ 1 \end{bmatrix}$$
 (remember: linear combination of columns!)

Cool: In homogeneous coordinates, translation is a linear transformation!

Homogeneous coordinates: some intuition

Homogeneous coordinates: points vs. vectors

2D-H points with w=0 represent 2D vectors (think: directions are points at infinity)

Unlike 2D, points and directions are distinguishable by their representation in 2D-H

Note: translation does not modify directions:

$$\mathbf{T_{b}v} = \begin{bmatrix} 1 & 0 & \mathbf{b}_{x} \\ 0 & 1 & \mathbf{b}_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v}_{x} \\ \mathbf{v}_{y} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{x} \\ \mathbf{v}_{y} \\ 0 \end{bmatrix}$$

Another way to think about transformations: change of coordinates

Alternative interpretation:

Transformations induce of change of coordinates: Representation of $\, \mathbf{x} \,$ changes since point is now expressed in new coordinates

Moving to 3D (and 3D-H)

Represent 3D transforms as 3x3 matrices and 3D-H transforms as 4x4 matrices

Scale:

$$\mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 \\ 0 & \mathbf{S}_y & 0 \\ 0 & 0 & \mathbf{S}_z \end{bmatrix} \quad \mathbf{S_s} = \begin{bmatrix} \mathbf{S}_x & 0 & 0 & 0 \\ 0 & \mathbf{S}_y & 0 & 0 \\ 0 & 0 & \mathbf{S}_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Shear (in x, based on y,z position):

$$\mathbf{H}_{x,\mathbf{d}} = \begin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{H}_{x,\mathbf{d}} = \begin{bmatrix} 1 & \mathbf{d}_y & \mathbf{d}_z & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translate:

$$\mathbf{T_b} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{b}_x \\ 0 & 1 & 0 & \mathbf{b}_y \\ 0 & 0 & 1 & \mathbf{b}_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: simple camera transform

- Consider object in world at (10, 2, 0)
- Consider camera at (4, 2, 0), looking down x axis

- Translating object vertex positions by (-4, -2, 0) yields position relative to camera.
- Rotation about y by $-\pi/2$ gives position of object in coordinate system where camera's view direction is aligned with the z axis *

Basic perspective projection

(0,0)

Desired perspective projected result (2D point):

$$\mathbf{p}_{2\mathrm{D}} = \begin{bmatrix} \mathbf{x}_x / \mathbf{x}_z & \mathbf{x}_y / \mathbf{x}_z \end{bmatrix}^T$$

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Input: point in 3D-H

After applying P: point in 3D-H

After homogeneous divide:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_x & \mathbf{x}_y & \mathbf{x}_z & 1 \end{bmatrix}$$

$$\mathbf{P}\mathbf{x} = \begin{bmatrix} \mathbf{x}_x & \mathbf{x}_y & \mathbf{x}_z & \mathbf{x}_z \end{bmatrix}^T$$

$$\begin{bmatrix} \mathbf{x}_x/\mathbf{x}_z & \mathbf{x}_y/\mathbf{x}_z & 1 \end{bmatrix}^T$$
(throw out third component)

(throw out third component)

Screen transformation

- Convert points in normalized coordinate space to screen pixel coordinates
- Example:
 - All points within (-1,1) to (1,1) region are on screen
 - (1,1) in normalized space maps to (W,0) in screen

Normalized coordinate space:

Step 1: reflect about x

Step 2: translate by (1,1)

Step 3: scale by (W/2,H/2)

Screen (W x H output image) coordinate space:

$$f_1\Big(f_2\big(f_3(x)\big)\Big) = M_1M_2M_3x$$

Summary so far...

- Transformations can be interpreted as operations that move points in space
 - e.g., for modeling, animation
- Or as a change of coordinate system
 - e.g., screen and view transforms
- Construct complex transformations as compositions of basic transforms
- Homogeneous coordinate representation allows for expression of non-linear transforms (e.g., affine, perspective projection) as matrix operations (linear transforms) in higher-dimensional space
 - Matrix representation affords simple implementation & efficient composition

Represenging Rotations in 3D: Euler Angles

Rotation about x axis:

$$\mathbf{R}_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

Rotation about y axis:

$$\mathbf{R}_{y,\theta} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

Rotation about z axis:

$$\mathbf{R}_{z,\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

View looking down -x axis:

View looking down -y axis:

Commutativity of Rotations—2D

In 2D, order of rotations doesn't matter:

Same result! 2D rotations commute

Commutativity of Rotations—3D

- What about in 3D?
- IN-CLASS ACTIVITY:
 - Rotate 90° around Y, then 90° around Z, then 90° around X
 - Rotate 90° around Z, then 90° around Y, then 90° around X
 - (Was there any difference?)

CONCLUSION: bad things can happen if we're not careful about the order in which we apply rotations!

Recall: Rotation

So, what happens to vectors (1, 0) and (0, 1) after rotation by θ ?

Rotation

$$R_{\theta}(\mathbf{e}_{1}) = (\cos \theta, \sin \theta) = \mathbf{a}_{1}$$

$$R_{\theta}(\mathbf{e}_{2}) = (-\sin \theta, \cos \theta) = \mathbf{a}_{2}$$

$$R_{\theta}(\mathbf{x}) = x_{1}\mathbf{a}_{1} + x_{2}\mathbf{a}_{2}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \mathbf{x}$$

Rotation about an arbitrary axis

To rotate by θ about w:

- 1. Form orthonormal basis around w (see u and v in figure)
- 2. Rotate to map w to [0 0 1] (change in coordinate space)

$$\mathbf{R}_{uvw} = \begin{bmatrix} \mathbf{u}_x & \mathbf{u}_y & \mathbf{u}_z \\ \mathbf{v}_x & \mathbf{v}_y & \mathbf{v}_z \\ \mathbf{w}_x & \mathbf{w}_y & \mathbf{w}_z \end{bmatrix}$$

$$\mathbf{R}_{uvw}\mathbf{u} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{R}_{uvw}\mathbf{v} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{R}_{uvw}\mathbf{w} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

- 3. Perform rotation about z: $R_{z,\theta}$
- 4. Rotate back to original coordinate space: \mathbf{R}_{uvw}^{T}

$$\mathbf{R}_{uvw}^{-1} = \mathbf{R}_{uvw}^{T} = \begin{bmatrix} \mathbf{u}_{x} & \mathbf{v}_{x} & \mathbf{w}_{x} \\ \mathbf{u}_{y} & \mathbf{v}_{y} & \mathbf{w}_{y} \\ \mathbf{u}_{z} & \mathbf{v}_{x} & \mathbf{w}_{z} \end{bmatrix}$$

$$R_{\mathbf{w},\theta} = R_{\mathbf{u}\mathbf{v}\mathbf{w}}^{\mathbf{T}} R_{z,\theta} R_{\mathbf{u}\mathbf{v}\mathbf{w}}$$

Rotation from Axis/Angle

• Alternatively, there is a general expression for a matrix that performs a rotation around a given axis u by a given angle θ :

$$\begin{bmatrix} \cos\theta + u_x^2 (1 - \cos\theta) & u_x u_y (1 - \cos\theta) - u_z \sin\theta & u_x u_z (1 - \cos\theta) + u_y \sin\theta \\ u_y u_x (1 - \cos\theta) + u_z \sin\theta & \cos\theta + u_y^2 (1 - \cos\theta) & u_y u_z (1 - \cos\theta) - u_x \sin\theta \\ u_z u_x (1 - \cos\theta) - u_y \sin\theta & u_z u_y (1 - \cos\theta) + u_x \sin\theta & \cos\theta + u_z^2 (1 - \cos\theta) \end{bmatrix}$$

Just memorize this matrix! :-)

Complex Analysis—Motivation

- Natural way to encode geometric transformations in 2D, 3D
- Simplifies notation / thinking / debugging
- Moderate reduction in computational cost/bandwidth/storage
- Fluency with complex analysis can lead into deeper/novel solutions to problems...

DON'T: Think of these numbers as "complex."

DO: Imagine we're simply defining additional operations (like dot and cross).

Imaginary Unit—Geometric Description

Symbol 1 denotes quarter-turn in the counter-clockwise direction.

Complex Numbers

- Complex numbers are then just 2-vectors
- Instead of e₁,e₁, use "1" and "i" to denote the two bases
- Otherwise, behaves exactly like a real 2-dimensional space

 ...except that we're going to define a useful new notion of the product between two vectors.

Complex Arithmetic

Same operations as before, plus one more:

- Complex multiplication:
 - angles add
 - magnitudes multiply

"POLAR FORM"*:

$$z_1 := (r_1, \theta_1)$$
 have to be more careful here! $z_2 := (r_2, \theta_2)$ \downarrow $z_1 z_2 = (r_1 r_2, \theta_1 + \theta_2)$

Complex Product—Polar Form

Perhaps most beautiful identity in math:

$$e^{i\pi} + 1 = 0$$

Specialization of Euler's formula:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Can use to "implement" complex product:

$$z_1 = ae^{i\theta}, \quad z_2 = be^{i\phi}$$

$$z_1 z_2 = abe^{i(\theta + \phi)}$$

(as with real exponentiation, exponents add)

Leonhard Euler (1707–1783)

- · Most prolific mathematician of all time
- Opera Omnia—1 vol./yr. starting 1911
- Still going! Now ~75 vols., 25k pages
- 228 papers posthumously
- · Many later works while blind
- . (Work was also good ...)

[source: William Dunham]

2D Rotations: Matrices vs. Complex

Suppose we want to rotate a vector u by an angle θ , then by an angle φ .

REAL / RECTANGULAR	COMPLEX / POLAR		
$\mathbf{u} = (x, y) \qquad \mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$	$u=re^{i\alpha}$		
$\mathbf{B} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$	$a = e^{i\theta}$ $b = e^{i\phi}$		
$\mathbf{A}\mathbf{u} = \begin{bmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{bmatrix}$	$abu = re^{i(\alpha+\theta+\phi)}$.		
$\mathbf{BAu} = \begin{bmatrix} (x\cos\theta - y\sin\theta)\cos\phi - (x\sin\theta + y\cos\theta)\sin\phi \\ (x\cos\theta - y\sin\theta)\sin\phi + (x\sin\theta + y\cos\theta)\cos\phi \end{bmatrix}$	Or if we want rectangular coords:		
$= \cdots$ some trigonometry $\cdots =$	$=r\left[\begin{array}{c}\cos(\alpha+\theta+\phi)\\\sin(\alpha+\theta+\phi)\end{array}\right]$		
$\mathbf{BAu} = \left[\begin{array}{c} x\cos(\theta + \phi) - y\sin(\theta + \phi) \\ x\sin(\theta + \phi) + y\cos(\theta + \phi) \end{array} \right].$	$\left[\sin(\alpha+\theta+\phi)\right]$		
(and simplification is not always this obvious.)			

Pervasive theme in graphics:

Sure, there are often many "equivalent" representations.

...But why not choose the one that makes life easiest*?

Quaternions

(1805-1865)

- TLDR: Kind of like complex numbers but for 3D rotations
- Weird situation: can't do 3D rotations w/ only 3 components!

(Not Hamilton)

Quaternions in Coordinates

- Hamilton's insight: in order to do 3D rotations in a way that mimics complex numbers for 2D, actually need FOUR coords.
- One real, three imaginary:

$$H := \mathrm{span}(\{1, \imath, \jmath, k\})$$

$$q = a + b\imath + c\jmath + dk \in \mathbb{H}$$

Quaternion product determined by

$$i^2=j^2=k^2=ijk=-1$$
 together w/"natural" rules (distributivity, associativity, etc.)

WARNING: product no longer commutes!

For
$$q, p \in \mathbb{H}$$
, $qp \neq pq$

Noncommutativity of quaternion multiplication

×	1	i	j	k
1	1	j	j	k
i	i	-1	k	- <i>j</i>
j	j	- <i>k</i>	-1	i
k	k	j	-j	-1

(Will understand this a lot better when we study transformations.)

Quaternion Product / Hamilton product

Given two quaternions

$$q = a_1 + b_1 i + c_1 j + d_1 k$$

$$p = a_2 + b_2 i + c_2 j + d_2 k$$

Can express their product as

$$qp = a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 + (a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2)i + (a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2)j + (a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2)k$$

...fortunately there is a (much) nicer expression.

Quaternions—Scalar + Vector Form

- If we have four components, how do we talk about pts in 3D?
- Natural idea: we have three imaginary parts—why not use these to encode 3D vectors?

$$(x,y,z)\mapsto 0+xi+yj+zj$$

Alternatively, can think of a quaternion as a pair

(scalar, vector)
$$\in \mathbb{H}$$

 \mathbb{R} \mathbb{R}^3

Quaternion product then has simple(r) form:

$$(a, \mathbf{u})(b, \mathbf{v}) = (ab - \mathbf{u} \cdot \mathbf{v}, a\mathbf{v} + b\mathbf{u} + \mathbf{u} \times \mathbf{v})$$

For vectors in R3, gets even simpler:

$$\mathbf{u}\mathbf{v} = \mathbf{u} \times \mathbf{v} - \mathbf{u} \cdot \mathbf{v}$$

Conjugation & Norm

To define it, let q=a+bi+cj+dk be a quaternion. The **conjugate** of q is the quaternion $q^*=a-bi-cj-dk$. It is denoted by q^* , q^* , or \tilde{q} .

Conjugation is an <u>involution</u>, meaning **that it is its own inverse**, so conjugating an element twice returns the original element.

$$\|q\| = \sqrt{qq^*} = \sqrt{q^*q} = \sqrt{a^2 + b^2 + c^2 + d^2}$$

3D Transformations via Quaternions

- · Main use for quaternions in graphics? Rotations.
- Consider vector x ("pure imaginary") and unit quaternion q:

$$x \in \text{Im}(\mathbb{H})$$

 $q \in \mathbb{H}, \quad |q|^2 = 1$

Rotation from Axis/Angle, Revisited

• Given axis u, angle θ, quaternion q representing rotation is

$$q = \cos(\theta/2) + \sin(\theta/2)u$$

Slightly easier to remember (and manipulate) than matrix:

$$\begin{bmatrix} \cos\theta + u_x^2 \left(1 - \cos\theta \right) & u_x u_y \left(1 - \cos\theta \right) - u_z \sin\theta & u_x u_z \left(1 - \cos\theta \right) + u_y \sin\theta \\ u_y u_x \left(1 - \cos\theta \right) + u_z \sin\theta & \cos\theta + u_y^2 \left(1 - \cos\theta \right) & u_y u_z \left(1 - \cos\theta \right) - u_x \sin\theta \\ u_z u_x \left(1 - \cos\theta \right) - u_y \sin\theta & u_z u_y \left(1 - \cos\theta \right) + u_x \sin\theta & \cos\theta + u_z^2 \left(1 - \cos\theta \right) \end{bmatrix}$$

Where else are (hyper-)complex numbers useful in computer graphics?

Complex #s: Language of Conformal Maps

Useless-But-Beautiful Example: Fractals

Defined in terms of iteration on (hyper)complex numbers:

Thanks