Hoja 5

Transformaciones lineales

Problema 5.1 Decidir si las siguientes transformaciones son lineales:

- a) $T: \mathbb{P}_2 \to \mathbb{P}_1$, definida por $T(\alpha_0 + \alpha_1 x + \alpha_2 x^2) = \alpha_1 x$.
- b) $T: \mathcal{C} \to \mathcal{C}$, con \mathcal{C} el conjunto de todas las funciones continuas que están definidas para todo $x \in \mathbb{R}$ y $T(f)) = \int_1^x |f(t)| \, dt$.
- c) $T : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, definida por $T(A) = A^t$.
- d) $T: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, definida por $T(A) = A^t A$.
- e) $T: \mathbb{P}_n \to \mathbb{P}_{n-1}$, definida por $T(p) = \frac{dp}{dx}(x)$.
- f) $T: \mathbb{R}^2 \to \mathbb{R}$, definida por $T((a_1, a_2)^t) = a_1 + a_2$.
- g) $T: \mathbb{R}^2 \to \mathbb{R}^2$, definida por T(v) = Av, donde $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- h) $T:\mathbb{R}^2\to\mathbb{R}^2,$ definida por $T((x,y)^t)=2\,(x,y)^t+(x,-y)^t.$

Problema 5.2 Hallar el núcleo, la nulidad, la imagen y el rango de cada una de las aplicaciones del Problema 5.1 que sean efectivamente lineales. Indicar si son isomorfismos.

Problema 5.3 Consideremos la siguiente matriz

$$A = \begin{pmatrix} 1 & 3 & 4 & -3 \\ 0 & 1 & 3 & -2 \\ 3 & 7 & 6 & \alpha \end{pmatrix}$$

y la aplicación $T : \mathbb{R}^4 \to \mathbb{R}^3$, definida por T(v) = A v.

- 1. ¿Para qué valores de α el vector $\mathbf{u} = (1, -1, 7)^{\mathrm{t}}$ pertenece a la imagen de T?
- 2. ¿Para qué valores de α el vector $\nu = (2, 1, -5, 0)^{t}$ pertenece al núcleo de T?

Problema 5.4 Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal que asocia a $\mathfrak{u}=(1,5)^t$ el vector $(2,0)^t$ y asocia a $\mathfrak{v}=(3,1)^t$ el vector $(1,-4)^t$. Hallar la imagen por T de $(2,10)^t$, $(9,3)^t$ y $(-7,7)^t$.

Problema 5.5 Consideremos $T : \mathbb{P}_3 \to \mathbb{R}^4$, definida por

$$T(a_0 + a_1x + a_2x^2 + a_3x^3) = (a_0, a_1 + 1, a_2, a_3)^t$$
.

¿Es lineal la aplicación T?

Problema 5.6 Sea V un espacio vectorial de dimensión finita y sea T una aplicación lineal de V en sí mismo. Demostrar que T es un isomorfismo si y sólo si $ker(T) = \{0\}$.

Obsérvese que esta propiedad se puede utilizar como alternativa para demostrar que una transformación lineal es o no un isomorfismo.

Problema 5.7 Consideremos la transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $T((1,0)^t) = (1,1)^t$ y $T((0,1)^t) = (1,-1)^t$.

- 1. Determinar la imagen de un elemento arbitrario $(x,y)^{t}$.
- 2. Indicar si T es inyectiva, suprayectiva, ambas cosas o ninguna.

3. Calcular las dimensiones de ker(T) e Im(T).

Problema 5.8 Sea la aplicación $T:\mathbb{R}^{n\times n}\to\mathbb{R}^{n\times n}$, definida por

$$T(A) = A - \frac{tr(A)}{n} I_n.$$

- 1. Demostrar que T es lineal.
- 2. Determinar el núcleo y la imagen de T.
- 3. Calcular las dimensiones de ker(T) e Im(T).