Rank-73802 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_0^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(8)$ is 1227395734

General information

Number of lines	3
Number of points	57
Number of singular points	0
Number of Eckardt points	1
Number of double points	0
Number of single points	24
Number of points off lines	32
Number of Hesse planes	0
Number of axes	0
Type of points on lines	93
Type of lines on points	$3, 1^{24}, 0^{32}$

Singular Points

The surface has 0 singular points:

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{74} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{74} = \mathbf{Pl}(1, 0, 1, 0, 0, 1)_{665}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{25}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{658} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{658} = \mathbf{Pl}(1, 1, 1, 1, 0, 1)_{874}$$

Rank of lines: (74, 4689, 658)

Rank of points on Klein quadric: (665, 25, 874)

Eckardt Points

The surface has 1 Eckardt points: $0: P_{19} = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0).$

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 24 single points: The single points on the surface are:

$0: P_3 = (0,0,0,1)$ lies on line ℓ_1	13: $P_{226} = (1, 3, 2, 1)$ lies on line ℓ_2
1: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_0	14: $P_{282} = (1, 2, 3, 1)$ lies on line ℓ_2
2: $P_{12} = (1, 0, 1, 0)$ lies on line ℓ_0	15: $P_{289} = (0, 3, 3, 1)$ lies on line ℓ_1
$3: P_{30} = (3, 2, 1, 0)$ lies on line ℓ_0	16: $P_{361} = (0, 4, 4, 1)$ lies on line ℓ_1
4: $P_{37} = (2, 3, 1, 0)$ lies on line ℓ_0	17: $P_{370} = (1, 5, 4, 1)$ lies on line ℓ_2
5: $P_{48} = (5, 4, 1, 0)$ lies on line ℓ_0	18: $P_{426} = (1, 4, 5, 1)$ lies on line ℓ_2
6: $P_{55} = (4, 5, 1, 0)$ lies on line ℓ_0	19: $P_{433} = (0, 5, 5, 1)$ lies on line ℓ_1
7: $P_{66} = (7, 6, 1, 0)$ lies on line ℓ_0	$20: P_{505} = (0, 6, 6, 1)$ lies on line ℓ_1
8: $P_{73} = (6, 7, 1, 0)$ lies on line ℓ_0	$21: P_{514} = (1,7,6,1)$ lies on line ℓ_2
9: $P_{83} = (1, 1, 0, 1)$ lies on line ℓ_2	$22: P_{570} = (1, 6, 7, 1)$ lies on line ℓ_2
10: $P_{139} = (1, 0, 1, 1)$ lies on line ℓ_2	23: $P_{577} = (0,7,7,1)$ lies on line ℓ_1
11: $P_{146} = (0, 1, 1, 1)$ lies on line ℓ_1	

The single points on the surface are:

Points on surface but on no line

12: $P_{217} = (0, 2, 2, 1)$ lies on line ℓ_1

The surface has 32 points not on any line: The points on the surface but not on lines are:

$0: P_4 = (1, 1, 1, 1)$	$6: P_{127} = (5, 6, 0, 1)$
$1: P_{20} = (1, 1, 1, 0)$	$7: P_{132} = (2,7,0,1)$
$2: P_{94} = (4, 2, 0, 1)$	$8: P_{205} = (4, 0, 2, 1)$
$3: P_{104} = (6, 3, 0, 1)$	9: $P_{223} = (6, 2, 2, 1)$
$4: P_{113} = (7, 4, 0, 1)$	$10: P_{224} = (7, 2, 2, 1)$
$5: P_{117} = (3, 5, 0, 1)$	$11: P_{229} = (4, 3, 2, 1)$

```
12: P_{254} = (5, 6, 2, 1)
                                                                  23: P_{452} = (3, 7, 5, 1)
13 : P_{271} = (6, 0, 3, 1)
                                                                  24: P_{462} = (5, 0, 6, 1)
14: P_{285} = (4, 2, 3, 1)
                                                                  25: P_{478} = (5, 2, 6, 1)
15: P_{303} = (6, 4, 3, 1)
                                                                  26: P_{515} = (2,7,6,1)
16: P_{336} = (7, 0, 4, 1)
                                                                  27: P_{523} = (2, 0, 7, 1)
17: P_{359} = (6, 3, 4, 1)
                                                                  28: P_{564} = (3, 5, 7, 1)
18: P_{363} = (2, 4, 4, 1)
                                                                  29: P_{571} = (2, 6, 7, 1)
                                                                  30: P_{581} = (4, 7, 7, 1)
19: P_{364} = (3, 4, 4, 1)
20: P_{376} = (7, 5, 4, 1)
                                                                  31: P_{582} = (5,7,7,1)
21: P_{396} = (3, 0, 5, 1)
22: P_{432} = (7, 4, 5, 1)
```

Line Intersection Graph

 $\begin{array}{c|c}
 & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_{19}	P_{19}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_{19}	P_{19}

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_{19}	P_{19}

The surface has 57 points:

The points on the surface are:

$0: P_3 = (0,0,0,1)$	$20: P_{146} = (0, 1, 1, 1)$	$40: P_{396} = (3, 0, 5, 1)$
$1: P_4 = (1, 1, 1, 1)$	$21: P_{205} = (4,0,2,1)$	$41: P_{426} = (1,4,5,1)$
$2: P_5 = (1, 1, 0, 0)$	$22: P_{217} = (0, 2, 2, 1)$	$42: P_{432} = (7, 4, 5, 1)$
$3: P_{12} = (1,0,1,0)$	$23: P_{223} = (6, 2, 2, 1)$	$43: P_{433} = (0, 5, 5, 1)$
$4: P_{19} = (0, 1, 1, 0)$	$24: P_{224} = (7, 2, 2, 1)$	$44: P_{452} = (3,7,5,1)$
$5: P_{20} = (1, 1, 1, 0)$	$25: P_{226} = (1, 3, 2, 1)$	$45: P_{462} = (5,0,6,1)$
$6: P_{30} = (3, 2, 1, 0)$	$26: P_{229} = (4, 3, 2, 1)$	$46: P_{478} = (5, 2, 6, 1)$
$7: P_{37} = (2, 3, 1, 0)$	$27: P_{254} = (5, 6, 2, 1)$	$47: P_{505} = (0, 6, 6, 1)$
$8: P_{48} = (5, 4, 1, 0)$	$28: P_{271} = (6,0,3,1)$	$48: P_{514} = (1,7,6,1)$
$9: P_{55} = (4, 5, 1, 0)$	$29: P_{282} = (1, 2, 3, 1)$	$49: P_{515} = (2, 7, 6, 1)$
$10: P_{66} = (7, 6, 1, 0)$	$30: P_{285} = (4, 2, 3, 1)$	$50: P_{523} = (2,0,7,1)$
$11: P_{73} = (6,7,1,0)$	$31: P_{289} = (0, 3, 3, 1)$	$51: P_{564} = (3, 5, 7, 1)$
$12: P_{83} = (1, 1, 0, 1)$	$32: P_{303} = (6, 4, 3, 1)$	$52: P_{570} = (1, 6, 7, 1)$
$13: P_{94} = (4, 2, 0, 1)$	$33: P_{336} = (7,0,4,1)$	$53: P_{571} = (2, 6, 7, 1)$
$14: P_{104} = (6, 3, 0, 1)$	$34: P_{359} = (6, 3, 4, 1)$	$54: P_{577} = (0,7,7,1)$
$15: P_{113} = (7, 4, 0, 1)$	$35: P_{361} = (0, 4, 4, 1)$	$55: P_{581} = (4,7,7,1)$
$16: P_{117} = (3, 5, 0, 1)$	$36: P_{363} = (2, 4, 4, 1)$	$56: P_{582} = (5,7,7,1)$
$17: P_{127} = (5, 6, 0, 1)$	$37: P_{364} = (3, 4, 4, 1)$	
$18: P_{132} = (2,7,0,1)$	$38: P_{370} = (1, 5, 4, 1)$	
$19: P_{139} = (1, 0, 1, 1)$	$39: P_{376} = (7, 5, 4, 1)$	