Halbleiter und Nanotechnologie, Übung 1, Prof. Förster

Christoph Hansen

chris@university-material.de

Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.

Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls ihr Fehler findet oder etwas fehlt, dann meldet euch bitte über den Emailkontakt.

Inhaltsverzeichnis

Aufgabe 1 2

C. Hansen 2

Aufgabe 1

a)

$$P_1V = \nu RT_1$$
$$P_2V = \nu RT_2$$

Wir setzen ein:

$$T_2 = \frac{P_2 V}{\nu R} = \frac{P_2 T}{P_1} = \frac{P_2}{P_1} \cdot T_1$$

Wenn nun bei T_1 der Druck bekannt ist, dann kann man P_2 messen und die Temperatur T_2 berechnen. P_2 wird gemessen über:

$$P_2 = P_1 + \rho_{Hg} \cdot g \cdot \Delta h$$

b)

Wir setzen die Werte in SI Einheiten ein:

$$P_2 = 10^5 + 13645 \cdot 9,81 \cdot 0,08 = 1,107 \cdot 10^5 \,\text{Pa}$$

Die Temperatur ist dann:

$$T_2 = \frac{1,107 \cdot 10^5}{10^5} \cdot 300 = 332 \,\mathrm{K}$$