南京大学 电子科学与工程学院 全日制统招本科生 《数学物理方法》期末考试试卷 闭卷

任课教师姓名:	朱广浩	张蜡宝

力	考试日期:			考试时日	≲: <u>2</u> ⁄	小时 <u>0</u>	分钟	
考生年级	及	考生专业		考生学号_		考生姓名		_
题号	_	=	三	四	五	总分		
得分								

一. (20分)试概述两例数学物理方程在专业课中的应用。

二. (20 分)一细弦在媒质中做横振动,假设媒质的阻力与速度成正比,试导出弦的横振动方程。

本题得分

三. (20分) 用分离变量法求定解问题:

本题得分

$$u_{tt} - a^2 u_{xx} = 0 \ 0 < x < l, t > 0$$

$$u(0,t)=u_x(l,t)=0 \quad t>0$$

$$u(x,0)=\varphi(x)$$

$$u_t(x,0) = \Psi(x)$$

四.(20 分)半径为 a 的导体球面附近的电场分布为 $f = A\cos\theta$,确 本题得分 定球外空间的电势 u。

五. (20分)

本题得分	

半径为 b, 高为 L 的圆柱体,侧面和上底保持零度,下底的温度分布为 Apsinp, 求柱内的稳恒温度分布。

. 2

注: 以下页面可做草稿, 交卷时不上交。

可能用到的公式:

方 程	球坐标系	 柱坐标系	
		$\Phi(\varphi) = \begin{cases} \cos m\varphi \\ \sin m\varphi \end{cases}$ $(\mu > 0) \qquad (\mu = -\nu^2 < 0)$	
拉普拉斯方程 Δ ₃ u=0	$ \Phi(\varphi) = \begin{cases} \cos m\varphi \\ \sin m\varphi \end{cases} $ $ R(r) = \begin{cases} r \\ 1/r^{l+1} \end{cases} $ $ \Theta(x): l $ 阶连带勒 让德方程	$Z(z) = \begin{cases} e^{\sqrt{\mu} z} \\ e^{-\sqrt{\mu} z} \end{cases}$ $Z(z) = \begin{cases} \cos \nu z \\ \sin \nu z \end{cases}$ $R(\rho):m $	
波动方程 u _u -a²∆₃u=0	1	$R_{0}(\rho) = \begin{Bmatrix} 1 \\ \ln \rho \end{Bmatrix}; R_{m}(\rho) = \begin{Bmatrix} \rho^{m} \\ \rho^{-m} \end{Bmatrix}$ $(m \neq 0)$	
输运方程 $u_t - a^2 \Delta_3 u = 0$	$T(t) = e^{-k^2 a^2 t} \qquad \Delta v(r) + k^2 v(r) = 0$		
亥姆霍兹方程 $\Delta_3 v + k^2 v = 0$	$\Phi(\varphi) = \begin{cases} \cos m\varphi \\ \sin m\varphi \end{cases}$ $\Theta(\theta): l \text{ 阶连带勒}$ 让德方程 $R(r): l \text{ 阶球贝塞尔}$ 方程($k \neq 0$) $R_0(r) = \begin{cases} r^l \\ 1/r^{l+1} \end{cases}$	$\Phi(\varphi) = \begin{cases} \cos m\varphi \\ \sin m\varphi \end{cases}$ $Z(z) = \begin{cases} \cos \nu z \\ \sin \nu z \end{cases}; (\text{If } \nu = 0) $	