Fundamental Review of Trading Book

Sensitivity Based Approach Youngsuk Lee

Recap – Market Risk Capitalisation under FRTB

Question: Where do we need Standardised Approach under FRTB?

- Market risk capitalisations:
 - organize trading book into desks
 - internal models waiver by desk
 - calculate capital

inside the waiver outside the waiver

internal models approach
i.e. ES, IDR, NMRF

i.e. SBA

- 2. Surcharge or Floor to IMA charges
 - CP2: "...including to potentially be used as a surcharge or floor to an internal models based charge."
 - Disclose <u>Standard Approach</u> charge calculated *across all positions* in the trading book *regardless* of waiver.

for disclosure

All positions under SA

Design Principles and Re-designing History

- Design principles for standardised approach (according to CP2)
 - 1. Simplicity, transparency and consistency
 - 2. Improved risk sensitivity
 - 3. Credible calibration
 - 4. Limited model reliance
 - 5. A credible fall back to internal models

Inherent contradictions between some of these objectives; inevitable trade-offs

- Evolution of standardised approach over time (non-default risk)
 - CP1 (05/2012): partial risk factor approach and fuller risk factor approach
 - CP2 (10/2013): notional position decomposition approach
 - QIS2 (07/2014): sensitivity based approach (SBA) with disallowance factor
 - CP3 (12/2014): SBA with correlation scaling
 - ISDA/TBG on-going conversations: some key changes under SBA

Sensitivity Based Approach

As of CP3, Standardised approach (SA) consists of

- non-default risk charges:
 - calculated through Sensitivity Based Approach (SBA)
 - sum across
 - Delta, Curvature and Vega charges
 - risk factor classes:
 GIRR, CSR (non-sec), CSR (sec), equity, commodity, FX
- default charge: non-securitisations & securitisations

SA and SBA

- Sometimes, the term 'SBA' is over-used to include the SA default charge calculations as well.
- Strictly speaking, curvature calculations require more than those sensitivities that banks usually calculate day-to-day.

SBA - How It Works

Focus on Delta Charges

explain using GIRR example

PV01's

V(x + 0.5bp) - V(x-0.5bp)

e.g. 1bp increase in EUR 1Y

- Trade 1: 20 profile
- Trade 2: 15 loss

Inputs: Risk sensitivities by currency <u>bucket</u>

define a set of risk factors

Bucket	Mat
EUR	1Y
	5Y
GBP	1Y
	5Y

calculate sensitivities for each trade

T1	T2	Т3
+20		-15
+15		-20
	-20	+30
	-30	+15

net sensitivities across trades

ſ	Vet
	+5
	-5
-	+10
	-15

Capital Calculation: <u>Aggregate</u> netted risk sensitivities across risk factors. But **HOW?**

SBA Risk Aggregation - Risk Weight

Risk Weighted Sensitivities

- For each risk factor k, a risk weight RW_k is assigned.
- Represents the 97.5% stressed expected shortfalls

risk weights as of CP3

subject to further calibration

Net Sensitivities across trades

Bucket	Mat	Net
£	1Y	+5
	5Y	-5
\$	1Y	+10
	5Y	-15

<u>W</u>eighted Sensitivities

WS _k
+750
-500
+1500
-1500

- The individual capital charge for each position would be the risk weighted sensitivity itself. (e.g. £ 1Y: 750, \$ 5Y: 1500)
- How to aggregate across all risk weighted positions?

SBA Risk Aggregation - Correlation

Variance-Covariance (VCV)

- aggregation across all positions.
- incorporate hedging and diversification effects by specifying
 - ρ_{ik}: intra-bucket correlations
 - γ_{£\$}: inter-bucket correlations

			£		\$	
WS _k			1Y	5Y	1Y	5Y
+750	£	1Y	1	0.75	0	E
-500	•	5Y	0.75	1	U	.5
+1500	,	1Y		_	1	0.75
-1500	\$	5Y	0.5		0.75	1

correlations as of CP3 subject to further calibration

aggregate within each currency bucket

charges	net positions
$K_{\mathfrak{t}} = \sqrt{\sum_{k} WS_{\mathfrak{t},k}^2 + \sum_{k \neq l} \rho_{kl}} WS_{\mathfrak{t},k} \cdot WS_{\mathfrak{t},l}$	$S_{\scriptscriptstyle{\pounds}} = \sum_k W S_{\scriptscriptstyle{\pounds,k}}$
$K_{\$} = \sqrt{\sum_{k} WS_{\$,k}^{2} + \sum_{k eq l} oldsymbol{ ho}_{kl}} WS_{\$,k} \cdot WS_{\$,l}$	${S}_{\$} = \sum_k W {S}_{\$,k}$

aggregate across buckets

Delta Charge =
$$\sqrt{K_{\text{£}}^2 + K_{\$}^2 + 2 \cdot \gamma_{\text{£\$}}} \cdot S_{\text{£}} \cdot S_{\$}$$

SBA Framework - Summary and Missing Bits

- Organize all risk factors into the bucketing structure for each asset class
 - 1. For each risk factor k, calculate the net sensitivity s_k across all trades
 - 2. Weight the net sensitivity by the risk weight RW_k

$$WS_k = RW_k \cdot s_k$$

3. For each bucket, calculate charges K_b & net positions S_b

$$K_b = \sqrt{\sum_k W S_k^2 + \sum_{k \neq l} \rho_{kl} W S_k W S_l} \quad \& \quad S_b = \sum_k W S_k$$

4. Asset-level charge across buckets

Charge =
$$\sqrt{\sum_{b} K_{b}^{2} + \sum_{b \neq c} \gamma_{kl}} S_{k} S_{l}$$

- Key Missing Elements
 - capturing basis risk
 - correlation uncertainty

SBA

Classic Parametric VaR Model

- $k \sim N(0, RW_k^2)$
- $corr(k, I) = \rho_{kl}$

Basis Risk

What is a basis risk?
 risk that two highly correlated risk factors do not move in line

Examples:

source of basis risk	examples
instrument differences	Future vs FRA CDS vs Bond equity price with or without dividend
rate spreads	OIS/Libor 3M/Libor 6M JPY Libor vs JPY Tibor cross-currency basis swap
underlying references	Senior vs Sub-ordinated Brent vs WTI
legal differences	deliverable vs non-deliverable CDS doc clauses

- Unprecedented widening in rate spreads during 2008-2009 crisis.
- Importance of incorporating basis risks even thought not material today.

Capturing Basis Risk

Challenge of capturing basis risk under SBA

- ideal situation: incorporate all (most) basis risk without altering the SBA framework. But, difficult.
- Attempt in CP2: capturing basis risk by applying the disallowance factor at the instrument level. Results driven by the trade volume then the actual risk of the portfolio.

Risk Factor Refinement. since CP3

Add new dimensions in the risk factor definition.

Striking the right balance is the key challenge!

Risk Factor Refinement in CP3

Additional basis risk factor attributes

asset class	main attributes (prior to CP3)	basis attributes (from CP3)
GIRR	currency, maturity, inflation	sub-curves (OIS, 1M, 3M, etc)
Credit (NonSec)	underlying obligor, maturity	bond vs CDS
Equity	underlying obligor	dividend forecast repo risk
FX	exchange rate	maturity
Commodities	commodity type	basis, location, maturity (*)

- Introduction of index basis: single name vs index
- Questions
 - Sufficient enough? any missing risks? too complicated?
 - How to aggregate risk sensitivities?
 - risk weights and correlations are specified over main attributes
 - how about basis risk?

Basis Risk and Correlation Scaling Method

Refined Risk Factors

Weighted Sensitivities

Bucket: GBP

Mat	Basis	Net
1Y	OIS	+15
5Y		-25
1Y	6M	-10
5Y		+20

same	risk
weig	hts

Mat	1Y	5Y
RW	150	100

Aggregation through Correlation Scaling

1Y	5Y	1Y	5Y
OI	S	6M	

1Y	OIS	•	11 ,	
5Y	013		(T-)	
1Y	6M	(1 v) C		
5Y		(1-x) C		

$$C = \begin{array}{c|cc} & 1 & 0.75 \\ \hline 0.75 & 1 & \end{array}$$

Procedure

- start with refined risk factors
- calculate weighted sensitivities at refined risk factors
- VCV aggregate: <u>correlation</u> between basis risk factors: scaled down by (1 - x)

$$\begin{split} (K_{\mathfrak{t}})^2 &= \sum_k WS_k^2 + \sum_{k \neq l} \rho_{kl} \cdot WS_k \cdot WS_l \\ \text{OIS} &= \sum_m WS_{OIS,m}^2 + \sum_{m \neq n} c_{mn} \cdot WS_{OIS,m} \cdot WS_{OIS,n} \\ \text{6M} &+ \sum_k WS_{6M,m}^2 + \sum_{m \neq n} c_{mn} \cdot WS_{6M,m} \cdot WS_{6M,n} \\ \text{OIS v 6M} &+ 2\sum_{m,n} (1-x) \cdot c_{mn} \cdot WS_{6M,m} \cdot WS_{OIS,n} \end{split}$$

Capturing Correlation Uncertainty

On SBA Correlations (from CP2)

- **calibration period**: "...calibrated based on a <u>long time period</u> because <u>stress period correlations</u> will not always be prudent for certain portfolios."
- two levels: "In order to capture the lack of stability in correlation parameters in some cases, <u>two values</u> have been specified for each pair of risk positions."
- aggregation with asymmetric correlations: "a higher correlation to be used when the risk positions have the same sign (to capture diversification benefits) and a lower correlation to be used when their signs differ (to capture hedging benefits)."

$$K_{b} = \sqrt{\sum_{k} WS_{k}^{2} + \sum_{k \neq l} \rho_{kl} WS_{k} WS_{l}}$$

$$= \sqrt{\sum_{k} WS_{k}^{2} + \sum_{k \neq l} \rho_{kl}^{+} WS_{k}WS_{l} + \sum_{k \neq l} \rho_{kl}^{-} WS_{k}WS_{l}} \qquad \rho_{kl}^{-} < \rho_{kl}^{+}$$

$$WS_{k}WS_{l} > 0 \qquad WS_{k}WS_{l} < 0$$

Asymmetric Correlation & Flaw

- introduced in CP2
- conservative selection of correlation at <u>each pair</u> of risk factors

Too Conservative!

- Illustration with Credit (Non-Sec)
- Refined risk factors

attributes		
main obligor name & maturity		
basis	sis bond vs CDS	

correlation structure (CP3)

same name diff maturity		diff name
same sign	90%	40%
diff sign	60%	10%

Example

Tesco bond , well-hedged by CDS

Tesco	1Y	2Y
bond	+100	+100
CDS	-100	-100

Correlation Scaling (with x = 0)

& Asymmetric Correlation

$$K_b = 109.5!$$

no basis assumption

Triangle law is broken!

For each maturity, $K_b = 0$

	1Y
bond	+100
CDS	-100

	2Y
bond	+100
CDS	-100

$$K_b(1Y + 2Y) > K_b(1Y) + K_b(2Y) !!!$$

Alternative Approach - Correlation Scenarios

What's Next?

- The regulators has recognized this flaw with the asymmetric correlation approach.
- Most likely, the alternative method is based on <u>correlation scenarios</u>
 - define two correlation scenarios:
 one with high correlations and the other with low correlations
 - 2. for each scenario, calculate the capital charge
 - 3. take the maximum or average of two
- Back to our bond/CDS example:
 - correlation scaling with x = 0
 - correlation scenario method

$$K_{b} = 0!$$

Basis Risk: Further Considerations (1/2)

- So far, examples with GIRR and Credit (Non-Sec). Other asset classes?
 With risk factor refinement under CP3...
 - FX
 - new risk factor dimensions: trade maturity
 - somewhat distant from usual market practices (via XCCY basis swaps)
 - attention brought to the regulators

FX Maturity Buckets	
less than 1yr	
1yr to 3yr	
more than 3yr	

- EQ
 - new risk factor dimensions: dividend forecast and repo levels
 - exact definitions and corresponding risk sensitivities yet to be fully described
- Commodities
 - CP2 specification was refined enough
 - Room to improve the risk factor definition & bucket specifications
- Credit (Sec) and CTP: approaches yet to be finalised

Basis Risk: Further Considerations (1/2)

- Index basis: Index vs Single Name
 - CP3: Delta risk on an index position (e.g. S&P500, iTraxx) shall be decomposed into constituents.
 - A pair of risk sensitivities, one from a single name position and the other from an index position, is subject to a correlation scaling.
- (More) difficulty of standardising basis risk
 e.g. GIRR sub-curve basis:
 - difficult to standardise a set of sub-curves
 - no universal market practice how sensitivity calculations on sub-curves are calculated and stored in their risk system
 - different banks, different results

In Closing: getting there but not yet final...

Framework Improvement

- Overall, the SBA framework is sound, in particular, for delta risk charge.
- Correlation scaling method is introduced as a mean to capture basis risk
- However, when coupled with asymmetric correlations, the method is flawed, leading to unrealistic capital levels.
- Working together with the industry, the regulators also recognize the issue and an alternative method is being considered.
- Likely the alternative is based on two correlation scenarios, taking the maximum charge from two separate calculations.
- For certain asset classes, there are still rooms to improve in the risk factor refinements (definition and sensitivities) for better capturing basis risk.

Parameter Re-Calibration:

• All SBA parameters, including correlation scaling factors (1-x), are subject to re-calibration.

Questions?