

ESCOLA DE ENGENHARIA DE VOLTA REDONDA (EEIMVR-UFF) Departamento de Ciências Exatas (VCE)

Segunda Avaliação (P2) - 2018/2

Disciplina:	Equações Diferenciais Ordinárias	Data: 07 / 12 / 2018	NOTA
Professor:	Yoisell Rodríguez Núñez		
Aluno(a):			

1. (1,5 pontos) **Identifique** o elemento na primeira coluna abaixo, com sua correspondente interpretação na segunda coluna:

I)
$$\frac{6s^2 - 2s^4 + 24}{s^4(s^2 + 4)}$$

$$\underline{\qquad} \det\left(A - \lambda I\right) = 0$$

$$\frac{2 \cdot \omega(s+a)}{\left[(s+a)^2 + \omega^2\right]^2}$$

S)
$$\frac{e^{-(2\pi)s}s}{s^2+4}$$

$$(3-\lambda)(2-\lambda)(1-\lambda)$$

A)
$$\mathcal{L}^{-1} \left\{ \frac{s+4}{s^2+4s+8} \right\}$$

$$---\frac{6}{s^4} - \frac{2}{s^2 + 4}$$

R)
$$-\lambda^3 + 6\lambda^2 - 11\lambda + 6$$

$$e^{-2t}\cos(2t) + e^{-2t}\sin(2t)$$

E)
$$\mathcal{L}\left\{te^{-at}\operatorname{sen}(\omega t)\right\}$$

$$\mathcal{L}\left\{u_{2\pi}(t)\cos(2(t-2\pi))\right\}$$

2. (3,0 pontos) Calcule a **transformada inversa de Laplace** da função:

a)
$$\frac{1 - e^{-\pi s}}{s^2 + 25}$$

b)
$$(s+5)^{-2}$$

c)
$$\frac{6s^2 - 2s^4 + 24}{s^4(s^2 + 4)}$$

3. (2,5 pontos) Utilize a $\mathbf{transformada}$ de $\mathbf{Laplace}$ para resolver o problema de valor inicial (\mathbf{PVI}) :

$$\begin{cases} y'' + 2y' + 5y = 4e^{-t}\cos(2t) \\ y(0) = 1, \\ y'(0) = 0 \end{cases}$$

Dica:

$$\frac{s^3 + 4s^2 + 13s + 14}{(s^2 + 2s + 5)^2} = \frac{s + 1}{(s + 1)^2 + 4} + \frac{1}{2} \frac{2}{(s + 1)^2 + 4} + \frac{2 \cdot 2(s + 1)}{\left[(s + 1)^2 + 4\right]^2}$$

4. (3,0 pontos) Encontre a **solução geral** para o seguinte **sistema de EDOs** homogêneo, utilizando o **método matricial**:

$$\begin{cases} x_1' = x_1 \\ x_2' = -x_1 + 2x_2, \\ x_3' = -x_2 + 3x_3 \end{cases}$$

Observação

o Todas as respostas devem estar justificadas, isto é, acompanhadas dos argumentos e/ou cálculos usados para obtê-las.

Laplace transforms - Table					
$f(t) = L^{-1}{F(s)}$	F(s)	$f(t) = L^{-1}\{F(s)\}$	F(s)		
$a t \ge 0$	$\frac{a}{s}$ $s > 0$	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$		
at $t \ge 0$	$\frac{a}{s^2}$	cosωt	$\frac{s}{s^2 + \omega^2}$		
e ^{-at}	$\frac{1}{s+a}$	$\sin(\omega t + \theta)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$		
te ^{-at}	$\frac{1}{(s+a)^2}$	$\cos(\omega t + \theta)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$		
$\frac{1}{2}t^2e^{-at}$	$\frac{1}{(s+a)^3}$	$t \sin \omega t$	$\frac{2\omega s}{(s^2+\omega^2)^2}$		
$\frac{1}{(n-1)!}t^{n-1}e^{-at}$	$\frac{1}{(s+a)^n}$	tcosωt	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$		
e ^{at}	$\frac{1}{s-a} \qquad s>a$	$\sinh \omega t$	$\frac{\omega}{s^2 - \omega^2} \qquad s > \omega $		
te ^{at}	$\frac{1}{(s-a)^2}$	$\cosh \omega t$	$\frac{s}{s^2 - \omega^2} \qquad s > \omega $		
$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$	e ^{-at} sinωt	$\frac{\omega}{(s+a)^2+\omega^2}$		
$\frac{1}{a^2}[1-e^{-at}(1+at)]$	$\frac{1}{s(s+a)^2}$	e ^{-at} cosωt	$\frac{s+a}{(s+a)^2+\omega^2}$		
t ⁿ	$\frac{n!}{s^{n+1}}$ $n = 1,2,3$	e ^{at} sin ωt	$\frac{\omega}{(s-a)^2+\omega^2}$		
t ⁿ e ^{at}	$\frac{n!}{(s-a)^{n+1}} s > a$	e ^{at} cosωt	$\frac{s-a}{(s-a)^2+\omega^2}$		
t ⁿ e ^{-at}	$\frac{n!}{(s+a)^{n+1}} s > a$	$1-e^{-at}$	$\frac{a}{s(s+a)}$		
\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{3/2}}$	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$		
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$ $s > 0$	$f(t-t_1)$	$e^{-t_1s}F(s)$		
$g(t) \cdot p(t)$	$G(s) \cdot P(s)$	$f_1(t) \pm f_2(t)$	$F_1(s) \pm F_2(s)$		
$\int f(t)dt$	$\frac{F(s)}{s} + \frac{f^{-1}(0)}{s}$	$\delta(t)$ unit impulse	1 all s		
$\frac{df}{dt}$	sF(s)-f(0)	$\frac{d^2f}{df^2}$	$s^2F(s) - sf(0) - f'(0)$		
$\frac{d^n f}{dt^n}$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - s^{n-3}f''(0) - \dots - f^{n-1}(0)$				

GABARITO EDO (P2) - 2018/2

1. (1,5 pontos) Identifique o elemento na presegunda coluna:	imeira coluna abaixo, com sua corre	spondente interpretação na
I) $\frac{6s^2 - 2s^4 + 24}{s^4(s^2 + 4)}$	\checkmark \vdash $\det(A - \lambda I) = 0$	6-31-21+)2

S)
$$\frac{e^{-(2\pi)s}s}{s^2+4}$$

F) Polinômio característico

A)
$$\mathcal{L}^{-1}\left\{\frac{s+4}{s^2+4s+8}\right\}$$

$$R) = \lambda^3 + 6\lambda^2 - 11\lambda + 6$$

E)
$$\mathcal{L}\left\{te^{-at}\operatorname{sen}(\omega t)\right\}$$

$$\frac{\sqrt{F}}{\sqrt{E}} \frac{\det(A - \lambda I) = 0}{\left[(s + a)^2 + \omega^2\right]^2} \qquad 6 - 3\lambda - 2\lambda + \lambda^2$$

$$\frac{2 \cdot \omega(s + a)}{\left[(s + a)^2 + \omega^2\right]^2} \qquad 6 + 3\lambda - 2\lambda + \lambda^2$$

$$\frac{\sqrt{R}}{\sqrt{R}} (3 - \lambda)(2 - \lambda)(1 - \lambda) \qquad -6\lambda + 3\lambda^2 + 2\lambda^2 - \lambda^3$$

$$\sqrt{\frac{1}{s^4}} = \frac{6}{s^4} - \frac{2}{s^2 + 4}$$
 -)3+6/2-17/16

$$e^{-2t}\cos(2t) + e^{-2t}\sin(2t)$$

$$S \quad \mathcal{L}\left\{u_{2\pi}(t)\cos(2(t-2\pi))\right\}$$

