

Vorlesung 14 - Ringe, Körper, Polynome

Diskrete Strukturen (WS 2024-25)

Łukasz Grabowski

Mathematisches Institut

Übersicht

1. Wiederholung

2. Polynome

3. Abstrakter Sichtpunkt - Ideale und Faktorringe

Diskrete Strukturen 1/21

Diskrete Strukturen	
1. Wiederholung	
2. Polynome	
3. Abstrakter Sichtpunkt - Ideale und Faktorringe	

• Ein Ring

• Ein Ring ist eine algebrische Struktur

• Ein Ring ist eine algebrische Struktur $(M,+,\cdot)$, so dass

• Ein Ring ist eine algebrische Struktur $(M,+,\cdot)$, so dass

ightharpoonup (M,+) ist eine kommutative Gruppe

• Ein Ring ist eine algebrische Struktur $(M,+,\cdot)$, so dass

 \blacktriangleright (M, +) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)

• Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass

lacktriangleq (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)

→ ist

- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - lacktriangleq (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und

- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - lacktriangleq (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ

- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - lacktriangleq (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - ightharpoonup es gibt $1_M \in M$

- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - ▶ es gibt $1_M \in M$ so dass für alle $m \in M$

- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - ightharpoonup es gibt $1_M \in M$ so dass für alle $m \in M$ gilt $1_M \cdot m = m$

- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - lacktriangleq (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$

- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - lacktriangleq (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$
 - ▶ für alle

- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$
 - \blacktriangleright für alle $a, b, c \in M$

- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - lacktriangleq (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$
 - ▶ für alle $a, b, c \in M$ gilt

- Ein Ring ist eine algebrische Struktur $(M, +, \cdot)$, so dass
 - \blacktriangleright (M,+) ist eine kommutative Gruppe (genannt additive Gruppe des Rings)
 - ▶ · ist assoziativ und kommutativ
 - $lackbox{ es gibt } 1_M \in M ext{ so dass für alle } m \in M ext{ gilt } 1_M \cdot m = m ext{ (daraus folgt, dass } 1_M ext{ eindeutig ist)}.$
 - ▶ für alle $a, b, c \in M$ gilt $a \cdot (b + c) = a \cdot b + a \cdot c$.

• Körper -

• Körper - ein Ring $(M,+,\cdot)$

• Körper - ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$

• Körper - ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$

• Körper - ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit xy=1.
- $xy = 1_M$.

Diskrete Strukturen | Wiederholung

• Äquivalent:

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper,

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$ eine Gruppe ist.

• Beispiele für Körper:

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{O}, +, \cdot)$.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ und $(\mathbb{C},+,\cdot)$.

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- beispiele full Korper. $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ und $(\mathbb{C},+,\cdot)$. $(\mathbb{Z},+,\cdot)$ ist kelli Korper
- In einem Körper $(M,+,\cdot)$ gilt,

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert,

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert, dass x = 0 oder y = 0.
- ▶ In der Tat.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.
- ▶ In der Tat. wenn $x \neq 0$

Diskrete Strukturen | Wiederholung

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M, +, \cdot)$ gilt, dass xy = 0 impliziert, dass x = 0 oder y = 0.
- In ellient Korper $(M,+,\cdot)$ gitt, dass xy=0 impliziert, dass x=0 oder y=0
- ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.
- ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy =$

Diskrete Strukturen | Wiederholung

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.
- ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ und $(\mathbb{C},+,\cdot)$. $(\mathbb{Z},+,\cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.
 - ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.
 - In der rat, werin $x \neq 0$ dann konnen wir schreiben y = x xy = x 0 = 0.
- Wenn A und B Ringe sind,

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ und $(\mathbb{C},+,\cdot)$. $(\mathbb{Z},+,\cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.
 - ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.
- In der rat, werm $x \neq 0$ dami kommen wir schreiben y = x xy = x 0 = 0
- Wenn A und B Ringe sind, dann ist $A \times B$ ebenfalls ein Ring.

- Körper ein Ring $(M, +, \cdot)$ so dass für jedes $x \in M$ mit $x \neq 0_M$ existiert $y \in M$ mit $xy = 1_M$.
- Äquivalent: $(M, +, \cdot)$ ist ein Körper, wenn $(M \setminus \{0_M\}, \cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ und $(\mathbb{C}, +, \cdot)$. $(\mathbb{Z}, +, \cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.
- ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.
- Wenn A und B Ringe sind, dann ist $A \times B$ ebenfalls ein Ring. Wenn A und B jedoch
- Körper sind, dann ist $A \times B$ kein Körper:

- Körper ein Ring $(M,+,\cdot)$ so dass für jedes $x\in M$ mit $x\neq 0_M$ existiert $y\in M$ mit $xy=1_M$.
- Äquivalent: $(M,+,\cdot)$ ist ein Körper, wenn $(M\setminus\{0_M\},\cdot)$ eine Gruppe ist.
- Beispiele für Körper: $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ und $(\mathbb{C},+,\cdot)$. $(\mathbb{Z},+,\cdot)$ ist kein Körper.
- In einem Körper $(M,+,\cdot)$ gilt, dass xy=0 impliziert, dass x=0 oder y=0.
- ▶ In der Tat, wenn $x \neq 0$ dann können wir schreiben $y = x^{-1}xy = x^{-1}0 = 0$.
- Wenn A und B Ringe sind, dann ist $A\times B$ ebenfalls ein Ring. Wenn A und B jedoch Körper sind, dann ist $A\times B$ kein Körper: wir haben $(1_A,0_B)\cdot(0_A,1_B)=(0_A,0_B)$

 \mathbb{Z}/m ist ein Ring.

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist,

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq[0]$ so finden,

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq[0]$ so finden, dass [a][b]=0.

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq[0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist,

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a], [b] \in \mathbb{Z}/m$ mit $[a], [b] \neq [0]$ so finden, dass [a][b] = 0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. \mathbb{Z}/p ist ein Körper

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. \mathbb{Z}/p ist ein Körper gdw.

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. \mathbb{Z}/p ist ein Körper gdw. p ist eine Primzahl.

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. \mathbb{Z}/p ist ein Körper gdw. p ist eine Primzahl.

• Der Körper 🔘

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. \mathbb{Z}/p ist ein Körper gdw. p ist eine Primzahl.

• Der Körper \mathbb{Q} und die Körper \mathbb{Z}/p

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq[0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. \mathbb{Z}/p ist ein Körper gdw. p ist eine Primzahl.

• Der Körper \mathbb{Q} und die Körper \mathbb{Z}/p werden als Primkörper bezeichnet.

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. \mathbb{Z}/p ist ein Körper gdw. p ist eine Primzahl.

• Der Körper \mathbb{Q} und die Körper \mathbb{Z}/p werden als Primkörper bezeichnet. Jeder Körper enthält ein Primkörper.

 \mathbb{Z}/m ist ein Ring. Wenn m nicht prim ist, kann man $[a],[b]\in\mathbb{Z}/m$ mit $[a],[b]\neq [0]$ so finden, dass [a][b]=0. Wenn also m nicht prim ist, dann ist \mathbb{Z}/m kein Körper.

Lemma. \mathbb{Z}/p ist ein Körper gdw. p ist eine Primzahl.

- Der Körper \mathbb{Q} und die Körper \mathbb{Z}/p werden als Primkörper bezeichnet. Jeder Körper enthält ein Primkörper.
- Gibt's andere als \mathbb{Z}/p endliche Körper?

• Sei $(M, +, \cdot)$ ein Ring,

• Sei $(M,+,\cdot)$ ein Ring, und sei $a_0,\dots,a_n\in M$ mit $a_n\neq 0$.

• Sei $(M,+,\cdot)$ ein Ring, und sei $a_0,\dots,a_n\in M$ mit $a_n\neq 0$. Wir assoziieren mit dieser endlichen Folge ein Polynom:

• Sei $(M, +, \cdot)$ ein Ring, und sei $a_0, \ldots, a_n \in M$ mit $a_n \neq 0$. Wir assoziieren mit dieser endlichen Folge ein Polynom:

 $p = a_0 + a_1 X + \dots a_n X^n.$

• Sei $(M, +, \cdot)$ ein Ring, und sei $a_0, \ldots, a_n \in M$ mit $a_n \neq 0$. Wir assoziieren mit dieser endlichen Folge ein Polynom:

$$p = a_0 + a_1 X + \dots a_n X^n.$$

• Dieses Polynom p definiert eine Funktion $p: M \to M$.

• Sei $(M,+,\cdot)$ ein Ring, und sei $a_0,\dots,a_n\in M$ mit $a_n\neq 0$. Wir assoziieren mit dieser endlichen Folge ein Polynom:

$$p = a_0 + a_1 X + \dots a_n X^n.$$

• Dieses Polynom p definiert eine Funktion $p \colon M \to M$. Für alle $x \in M$:

• Sei $(M, +, \cdot)$ ein Ring, und sei $a_0, \ldots, a_n \in M$ mit $a_n \neq 0$. Wir assoziieren mit dieser endlichen Folge ein Polynom:

 $p(x) = a_0 + a_1 x + \dots a_n x^n \in M.$

$$p = a_0 + a_1 X + \dots a_n X^n.$$

• Dieses Polynom p definiert eine Funktion $p: M \to M$. Für alle $x \in M$:

$$p = a_0 + a_1 X + \dots a_n X^n.$$

• Dieses Polynom p definiert eine Funktion $p\colon M\to M$. Für alle $x\in M$: $p(x)=a_0+a_1x+\dots a_nx^n\in M.$

• Wir schreiben auch grad(p) = n.

$$p = a_0 + a_1 X + \dots a_n X^n.$$

• Dieses Polynom p definiert eine Funktion $p: M \to M$. Für alle $x \in M$:

 $p(x) = a_0 + a_1 x + \dots a_n x^n \in M.$

• Wir schreiben auch
$$\operatorname{grad}(p) = n$$
. Das Nullpolynom p mit $p = 0$ hat kein Grad oder Grad $-\infty$.

$$p = a_0 + a_1 X + \dots a_n X^n.$$

 $p(x) = a_0 + a_1 x + \dots a_n x^n \in M.$

• Dieses Polynom p definiert eine Funktion $p: M \to M$. Für alle $x \in M$:

• Wir schreiben auch
$$\operatorname{grad}(p)=n$$
. Das Nullpolynom p mit $p=0$ hat kein Grad oder Grad $-\infty$. Ein Element $x\in M$ ist Nullstelle von p

$$p = a_0 + a_1 X + \dots a_n X^n.$$

• Dieses Polynom p definiert eine Funktion $p: M \to M$. Für alle $x \in M$:

 $p(x) = a_0 + a_1 x + \dots a_n x^n \in M.$

• Wir schreiben auch $\operatorname{grad}(p) = n$. Das Nullpolynom p mit p = 0 hat kein Grad oder Grad $-\infty$. Ein Element $x \in M$ ist Nullstelle von p gdw. p(x) = 0.

$$p = a_0 + a_1 X + \dots a_n X^n.$$

• Dieses Polynom p definiert eine Funktion $p: M \to M$. Für alle $x \in M$:

 $p(x) = a_0 + a_1 x + \dots a_n x^n \in M.$

• Wir schreiben auch
$$\operatorname{grad}(p)=n$$
. Das Nullpolynom p mit $p=0$ hat kein Grad oder Grad $-\infty$. Ein Element $x\in M$ ist Nullstelle von p gdw. $p(x)=0$.

• Die Menge von allen Polynomen

$$p = a_0 + a_1 X + \dots a_n X^n.$$

• Dieses Polynom p definiert eine Funktion $p: M \to M$. Für alle $x \in M$:

 $p(x) = a_0 + a_1 x + \dots a_n x^n \in M.$

• Wir schreiben auch
$$\operatorname{grad}(p)=n$$
. Das Nullpolynom p mit $p=0$ hat kein Grad oder Grad $-\infty$. Ein Element $x\in M$ ist Nullstelle von p gdw. $p(x)=0$.

• Die Menge von allen Polynomen $\,$ mit Koeffizienten aus M

Diskrete Strukturen | Polynome

$$p(x) = a_0 + a_1 x + \dots a_n x^n \in M.$$

• Dieses Polynom p definiert eine Funktion $p: M \to M$. Für alle $x \in M$:

• Wir schreiben auch $\operatorname{grad}(p)=n$. Das Nullpolynom p mit p=0 hat kein Grad oder Grad $-\infty$. Ein Element $x\in M$ ist Nullstelle von p gdw. p(x)=0.

• Die Menge von allen Polynomen $\,$ mit Koeffizienten aus M $\,$ wird $\,$ mit $\,$ M[X] bezeichnet.

• Im Körper $\mathbb{Z}/5$ betrachten wir das Polynom $X^2 + 4X + 2$.

• Im Körper $\mathbb{Z}/5$ betrachten wir das Polynom X^2+4X+2 . Es gilt

$$p(2) \equiv 2 + (4 \cdot 2) + (2 \cdot 2) \equiv 2 + 3 + 4 \equiv 4$$

$$p(2) \equiv 2 + (4 \cdot 2) + (2 \cdot 2) \equiv 2 + 3 + 4 \equiv 4$$

• Im Körper $\mathbb{Z}/5$ betrachten wir das Polynom $X^2 + 4X + 2$. Es gilt

• Im Körper $\mathbb{Z}/5$ betrachten wir das Polynom $X^2 + 4X + 2$. Es gilt

$$p(2) \equiv 2 + (4 \cdot 2) + (2 \cdot 2) \equiv 2 + 3 + 4 \equiv 4$$

$$ightharpoonup p(0) \equiv 2$$
,

• Im Körper $\mathbb{Z}/5$ betrachten wir das Polynom $X^2 + 4X + 2$. Es gilt

$$p(2) \equiv 2 + (4 \cdot 2) + (2 \cdot 2) \equiv 2 + 3 + 4 \equiv 4$$

$$ightharpoonup p(0) \equiv 2$$
,

$$p(1) \equiv 2 + 4 + 1 \equiv 2$$
,

• Im Körper $\mathbb{Z}/5$ betrachten wir das Polynom $X^2 + 4X + 2$. Es gilt $p(2) \equiv 2 + (4 \cdot 2) + (2 \cdot 2) \equiv 2 + 3 + 4 \equiv 4$

$$-3+4 \equiv 4$$

$$ightharpoonup p(0) \equiv 2$$
.

$$p(1) \equiv 2 + 4 + 1 \equiv 2$$

$$p(1) = 2 + 4 + 1 = 2$$

$$ightharpoonup p(2) \equiv 4$$
,

• Im Körper $\mathbb{Z}/5$ betrachten wir das Polynom X^2+4X+2 . Es gilt

$$p(2) \equiv 2 + (4 \cdot 2) + (2 \cdot 2) \equiv 2 + 3 + 4 \equiv 4$$

• Für die Bestimmung der Nullstellen von p berechnen wir:

$$ightharpoonup p(0) \equiv 2$$
,

$$p(1) \equiv 2 + 4 + 1 \equiv 2$$
,

$$ightharpoonup p(2) \equiv 4$$
,

▶
$$p(3) \equiv 2 + 2 + 4 \equiv 3 \text{ und}$$

P(0) = 2 + 2 + 1 = 0 and

• Im Körper $\mathbb{Z}/5$ betrachten wir das Polynom $X^2 + 4X + 2$. Es gilt $p(2) \equiv 2 + (4 \cdot 2) + (2 \cdot 2) \equiv 2 + 3 + 4 \equiv 4$

$$-3 + 4 \equiv 4$$

- Für die Bestimmung der Nullstellen von p berechnen wir:
 - $ightharpoonup p(0) \equiv 2$.
 - $p(1) \equiv 2 + 4 + 1 \equiv 2$
 - $ightharpoonup p(2) \equiv 4.$
 - $p(3) \equiv 2 + 2 + 4 \equiv 3$ und
 - $p(4) \equiv 2 + 1 + 1 \equiv 4.$

• Im Körper $\mathbb{Z}/5$ betrachten wir das Polynom $X^2 + 4X + 2$. Es gilt $p(2) \equiv 2 + (4 \cdot 2) + (2 \cdot 2) \equiv 2 + 3 + 4 \equiv 4$

• Für die Bestimmung der Nullstellen von p berechnen wir:

$$ightharpoonup p(0) \equiv 2$$

$$p(1) \equiv 2 + 4 + 1 \equiv 2.$$

$$ightharpoonup p(2) \equiv 4.$$

▶
$$p(3) \equiv 2 + 2 + 4 \equiv 3$$
 und

$$p(4) \equiv 2 + 2 + 1 \equiv 4$$
.

Offenbar hat p keine Nullstellen.

• Wie schnell

• Wie schnell kann man p(a)

• Wie schnell kann man p(a) berechnen?

- Wie schnell kann man p(a) berechnen?
 - ► Wie viele Operationen

- Wie schnell kann man p(a) berechnen?
 - ► Wie viele Operationen + und ·

- Wie schnell kann man p(a) berechnen?
 - ► Wie viele Operationen + und · werden gebraucht? .

- Wie schnell kann man p(a) berechnen?
 - \blacktriangleright Wie viele Operationen + und \cdot werden gebraucht?.
 - ▶ Nicht mehr als: (n+1)

- Wie schnell kann man p(a) berechnen?
 - \blacktriangleright Wie viele Operationen + und \cdot werden gebraucht? .
 - Nicht mehr als: (n+1) (für a_na^n)

- Wie schnell kann man p(a) berechnen?
 - \blacktriangleright Wie viele Operationen + und \cdot werden gebraucht? .
 - Nicht mehr als: (n+1) (für a_na^n) +n

- Wie schnell kann man p(a) berechnen?
 - $lackbox{ Wie viele Operationen } + \text{und} \cdot \text{werden gebraucht?}$.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$

- Wie schnell kann man p(a) berechnen?
 - \blacktriangleright Wie viele Operationen + und \cdot werden gebraucht? .
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...

9 / 21

- Wie schnell kann man p(a) berechnen?
 - \blacktriangleright Wie viele Operationen + und \cdot werden gebraucht? .
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ► Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$.

- Wie schnell kann man p(a) berechnen?
 - \blacktriangleright Wie viele Operationen + und \cdot werden gebraucht? .
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ► Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .

- Wie schnell kann man p(a) berechnen?
 - \blacktriangleright Wie viele Operationen + und \cdot werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ▶ Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

- Wie schnell kann man p(a) berechnen?
 - ► Wie viele Operationen + und · werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ► Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring

- Wie schnell kann man p(a) berechnen?
 - \blacktriangleright Wie viele Operationen + und \cdot werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ▶ Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring und sei $p=a_0+a_1X+\ldots+a_nX$

- Wie schnell kann man p(a) berechnen?
 - \blacktriangleright Wie viele Operationen + und \cdot werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ▶ Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring und sei $p=a_0+a_1X+\ldots+a_nX$ ein Polynom von einem Grad $n\geq 0$.

- Wie schnell kann man p(a) berechnen?
 - ▶ Wie viele Operationen + und · werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ▶ Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring und sei $p=a_0+a_1X+\ldots+a_nX$ ein Polynom von einem Grad $n\geq 0$. Dann gilt

- Wie schnell kann man p(a) berechnen?
 - \blacktriangleright Wie viele Operationen + und \cdot werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ▶ Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring und sei $p=a_0+a_1X+\ldots+a_nX$ ein Polynom von einem Grad $n\geq 0$. Dann gilt für alle $x\in M$

- Wie schnell kann man p(a) berechnen?
 - \blacktriangleright Wie viele Operationen + und \cdot werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ▶ Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring und sei $p=a_0+a_1X+\ldots+a_nX$ ein Polynom von einem Grad n>0. Dann gilt für alle $x\in M$

$$p(x) = a_0 + x \cdot (a_1 + x \cdot (a_2 + \dots x a_n))$$

- Wie schnell kann man p(a) berechnen?
 - ► Wie viele Operationen + und · werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ▶ Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring und sei $p=a_0+a_1X+\ldots+a_nX$

ein Polynom von einem Grad
$$n \ge 0$$
. Dann gilt für alle $x \in M$

$$p(x) = a_0 + x \cdot (a_1 + x \cdot (a_2 + \dots x a_n))$$

Mit Induktion

- Wie schnell kann man p(a) berechnen?
 - ► Wie viele Operationen + und · werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ▶ Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring und sei $p=a_0+a_1X+\ldots+a_nX$

ein Polynom von einem Grad n > 0. Dann gilt für alle $x \in M$

$$p(x) = a_0 + x \cdot (a_1 + x \cdot (a_2 + \dots \times a_n))$$

· Mit Induktion beweisen wir dass mit Horner-Schema

- Wie schnell kann man p(a) berechnen?
 - ► Wie viele Operationen + und · werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ► Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Ç .

ein Polynom von einem Grad
$$n \ge 0$$
. Dann gilt für alle $x \in M$
$$p(x) = a_0 + x \cdot (a_1 + x \cdot (a_2 + \dots \cdot xa_n))$$

- Mit Induktion beweisen wir dass mit Horner-Schema brauchen wir nur 2n Operationen.

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring und sei $p=a_0+a_1X+\ldots+a_nX$

- Wie schnell kann man p(a) berechnen?
 - ► Wie viele Operationen + und · werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ▶ Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring und sei $p=a_0+a_1X+\ldots+a_nX$

ein Polynom von einem Grad n > 0. Dann gilt für alle $x \in M$

$$p(x) = a_0 + x \cdot (a_1 + x \cdot (a_2 + \dots x a_n))$$

• Mit Induktion beweisen wir dass mit Horner-Schema brauchen wir nur 2n Operationen. Also $C_1 \cdot n$.

- Wie schnell kann man p(a) berechnen?
 - ► Wie viele Operationen + und · werden gebraucht?.
 - Nicht mehr als: (n+1) (für a_na^n) +n (für $a_{n-1}a^{n-1}$...
 - ► Also nicht mehr als $\frac{(n+1)(n+2)}{2} + n$. D.h. Cn^2 .
 - ▶ kann man einen besseren Algorithmus finden?

Lemma. [Horner-Schema] Sei $(M,+,\cdot)$ ein Ring und sei $p=a_0+a_1X+\ldots+a_nX$

ein Polynom von einem Grad n > 0. Dann gilt für alle $x \in M$

$$p(x) = a_0 + x \cdot (a_1 + x \cdot (a_2 + \dots x a_n))$$

• Mit Induktion beweisen wir dass mit Horner-Schema brauchen wir nur 2n Operationen. Also $C_1 \cdot n$. Deutlich besser als $C \cdot n^2$.

Satz. (Polynomdivision) Sei $(M,+,\cdot)$ ein Körper.

Satz. (Polynomdivision) Sei $(M,+,\cdot)$ ein Körper. Seien p und q

Satz. (Polynomdivision) Sei $(M,+,\cdot)$ ein Körper. Seien p und q Polynome

Satz. (Polynomdivision) Sei $(M,+,\cdot)$ ein Körper. Seien p und q Polynome mit $\mathrm{grad}(q)\geq 0$.

Diskrete Strukturen | Polynome

Satz. (Polynomdivision) Sei $(M,+,\cdot)$ ein Körper. Seien p und q Polynome mit $\operatorname{grad}(q) \geq 1$ 0. Dann existieren Polynome

Satz. (Polynomdivision) Sei $(M,+,\cdot)$ ein Körper. Seien p und q Polynome mit $\mathrm{grad}(q)\geq 0$. Dann existieren Polynome t und r

Satz. (Polynomdivision) Sei $(M,+,\cdot)$ ein Körper. Seien p und q Polynome mit $\operatorname{grad}(q) \geq 0$. Dann existieren Polynome t und r mit

Diskrete Strukturen | Polynome

Satz. (Polynomdivision) Sei $(M, +, \cdot)$ ein Körper. Seien p und q Polynome mit $\operatorname{grad}(q) \geq 1$

0. Dann existieren Polynome t und r mit

$$p(X) = t(X) \cdot q(X) + r(X)$$

Satz. (Polynomdivision) Sei $(M,+,\cdot)$ ein Körper. Seien p und q Polynome mit $\mathrm{grad}(q)\geq$

0. Dann existieren Polynome t und r mit

$$p(X) = t(X) \cdot q(X) + r(X)$$

und grad(r) < grad(q).

Satz. (Polynomdivision) Sei $(M, +, \cdot)$ ein Körper. Seien p und q Polynome mit $\operatorname{grad}(q) \geq 1$ 0. Dann existieren Polynome t und r mit

$$p(X) = t(X) \cdot q(X) + r(X)$$

und
$$grad(r) < grad(q)$$
.

• Die Polynome t und r

Satz. (Polynomdivision) Sei $(M, +, \cdot)$ ein Körper. Seien p und q Polynome mit $\operatorname{grad}(q) \geq 1$ 0. Dann existieren Polynome t und r mit

$$p(X) = t(X) \cdot q(X) + r(X)$$

und grad(r) < grad(q).

• Die Polynome t und r erhält man per Polynomdivision.

$$\begin{array}{r}
x^3 - x - 2 \\
x^2 + 1) \overline{\smash{\big)}\ x^5 - 2x^2 + 4x + 7} \\
\underline{-x^5 - x^3} \\
-x^3 - 2x^2 + 4x \\
\underline{-x^3 + x} \\
\underline{-2x^2 + 5x + 7} \\
\underline{2x^2 + 2} \\
5x + 9
\end{array}$$

$$\begin{array}{r} x^3 & -x-2 \\ x^2+1 \overline{\smash) x^5} & -2x^2+4x+7 \\ \underline{-x^5-x^3} \\ -x^3-2x^2+4x \\ \underline{x^3+x} \\ -2x^2+5x+7 \\ \underline{2x^2+2} \\ 5x+9 \end{array}$$

• $x^5 - 2x^2 + 4x + 7$

$$\begin{array}{r} x^{3} & -x-2 \\ x^{2}+1) \overline{\smash{\big)}\ x^{5} - 2x^{2} + 4x + 7} \\ \underline{-x^{5}-x^{3}} \\ -x^{3} - 2x^{2} + 4x \\ \underline{-x^{3} - 2x^{2} + 4x} \\ \underline{-2x^{2} + 5x + 7} \\ \underline{-2x^{2} + 2} \\ 5x + 9 \end{array}$$

• $x^5 - 2x^2 + 4x + 7 =$

11 / 21

$$\begin{array}{r}
x^3 - x - 2 \\
x^2 + 1) \overline{\smash{\big)}\ x^5 - 2x^2 + 4x + 7} \\
\underline{-x^5 - x^3} \\
-x^3 - 2x^2 + 4x \\
\underline{-x^3 - 2x^2 + 4x} \\
\underline{-2x^2 + 5x + 7} \\
\underline{-2x^2 + 5x + 7} \\
\underline{-2x^2 + 2} \\
5x + 9
\end{array}$$

•
$$x^5 - 2x^2 + 4x + 7 = (x^3 - x - 2)(x^2 + 1)$$

•
$$x^5 - 2x^2 + 4x + 7 = (x^3 - x - 2)(x^2 + 1) + (5x + 9)$$

$$\begin{array}{r}
\frac{1}{2}x^3 & -\frac{1}{4}x - 1 \\
x^5 & -2x^2 + 4x + 7 \\
\underline{-x^5 - \frac{1}{2}x^3} \\
-\frac{1}{2}x^3 - 2x^2 + 4x \\
\underline{\frac{1}{2}x^3 - 2x^2 + 4x} \\
-2x^2 + \frac{17}{4}x + 7 \\
\underline{2x^2 + 1} \\
\frac{17}{4}x + 8
\end{array}$$

• In ℚ:

$$\begin{array}{r}
\frac{1}{2}x^3 & -\frac{1}{4}x - 1 \\
x^5 & -2x^2 + 4x + 7 \\
-x^5 - \frac{1}{2}x^3 \\
-\frac{1}{2}x^3 - 2x^2 + 4x \\
\frac{\frac{1}{2}x^3}{2} + \frac{1}{4}x \\
-2x^2 + \frac{17}{4}x + 7 \\
2x^2 & +1 \\
\frac{\frac{17}{4}x + 8}
\end{array}$$

• In \mathbb{O} : $x^5 - 2x^2 + 4x + 7$

$$\begin{array}{r}
\frac{1}{2}x^3 & -\frac{1}{4}x - 1 \\
x^5 & -2x^2 + 4x + 7 \\
\underline{-x^5 - \frac{1}{2}x^3} \\
-\frac{1}{2}x^3 - 2x^2 + 4x \\
\underline{-\frac{1}{2}x^3 - 2x^2 + 4x} \\
\underline{-2x^2 + \frac{17}{4}x + 7} \\
\underline{-2x^2 + \frac{17}{4}x + 8}
\end{array}$$

• In
$$\mathbb{Q}$$
: $x^5 - 2x^2 + 4x + 7 =$

$$\begin{array}{r}
\frac{1}{2}x^3 & -\frac{1}{4}x - 1 \\
x^5 & -2x^2 + 4x + 7 \\
\underline{-x^5 - \frac{1}{2}x^3} \\
-\frac{1}{2}x^3 - 2x^2 + 4x \\
\underline{-\frac{1}{2}x^3 - 2x^2 + 4x} \\
-2x^2 + \frac{17}{4}x + 7 \\
2x^2 & + 1
\end{array}$$

• In Q:
$$x^5 - 2x^2 + 4x + 7 = (\frac{1}{2}x^3 - \frac{1}{4}x - 1)(2x^2 + 1) + (\frac{17}{4}x + 8)$$

 $\frac{17}{4}x + 8$

$$\frac{17}{4}x + 8$$

• In
$$\mathbb{Q}$$
: $x^5 - 2x^2 + 4x + 7 = (\frac{1}{2}x^3 - \frac{1}{4}x - 1)(2x^2 + 1) + (\frac{17}{4}x + 8)$
• In $\mathbb{Z}/5$:

$$\begin{array}{r}
\frac{1}{2}x^3 & -\frac{1}{4}x - 1 \\
2x^2 + 1) \overline{x^5} & -2x^2 + 4x + 7 \\
\underline{-x^5 - \frac{1}{2}x^3} \\
-\frac{1}{2}x^3 - 2x^2 + 4x \\
\underline{-\frac{1}{2}x^3} & +\frac{1}{4}x \\
\underline{-2x^2 + \frac{17}{4}x + 7} \\
2x^2 & + 1
\end{array}$$

$$\frac{17}{4}x + 8$$

• In
$$\mathbb{Q}$$
: $x^5 - 2x^2 + 4x + 7 = (\frac{1}{2}x^3 - \frac{1}{4}x - 1)(2x^2 + 1) + (\frac{17}{4}x + 8)$
• In $\mathbb{Z}/5$: $x^5 - 2x^2 + 4x + 2$

$$\begin{array}{r}
\frac{1}{2}x^3 & -\frac{1}{4}x - 1 \\
x^5 & -2x^2 + 4x + 7 \\
\underline{-x^5 - \frac{1}{2}x^3} \\
-\frac{1}{2}x^3 - 2x^2 + 4x \\
\underline{-\frac{1}{2}x^3 - 2x^2 + 4x} \\
\underline{-2x^2 + \frac{17}{4}x + 7} \\
2x^2 & + 1
\end{array}$$

• In
$$\mathbb{Q}$$
: $x^5 - 2x^2 + 4x + 7 = (\frac{1}{2}x^3 - \frac{1}{4}x - 1)(2x^2 + 1) + (\frac{17}{4}x + 8)$

 $\frac{17}{4}x + 8$

• In
$$\mathbb{Z}/5$$
: $x^5 - 2x^2 + 4x + 2 \equiv$

$$\begin{array}{r}
\frac{1}{2}x^3 & -\frac{1}{4}x - 1 \\
x^5 & -2x^2 + 4x + 7 \\
\underline{-x^5 - \frac{1}{2}x^3} \\
-\frac{1}{2}x^3 - 2x^2 + 4x \\
\underline{-\frac{1}{2}x^3 - 2x^2 + 4x} \\
-2x^2 + \frac{17}{4}x + 7 \\
2x^2 & + 1
\end{array}$$

• In
$$\mathbb{Q}$$
: $x^5 - 2x^2 + 4x + 7 = (\frac{1}{2}x^3 - \frac{1}{4}x - 1)(2x^2 + 1) + (\frac{17}{4}x + 8)$

 $\frac{17}{4}x + 8$

• In
$$\mathbb{Z}/5$$
: $x^5 - 2x^2 + 4x + 2 \equiv (3x^3 + x - 1)(2x^2 + 1) + (3x + 3)$

• Folgerung:

ullet Folgerung: Wenn M ist ein Körper,

• Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.

• Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.

ightharpoonup Wenn $p,q\in M[X]$

13 / 21

• Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.

▶ Wenn $p, q \in M[X]$ und ggt(p, q) = 1,

- Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.
 - ▶ Wenn $p, q \in M[X]$ und ggt(p, q) = 1, dann existieren polynome a, b mit ap + bq = 1.

- Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.
 - ▶ Wenn $p, q \in M[X]$ und ggt(p, q) = 1, dann existieren polynome a, b mit ap + bq = 1. (ggt(p, q)) ist nur bis zur Multiplikation mit einer Konstante nicht gleich Null definiert!)

- Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.
 - ▶ Wenn $p,q \in M[X]$ und ggt(p,q)=1, dann existieren polynome a,b mit ap+bq=1. (ggt(p,q) ist nur bis zur Multiplikation mit einer Konstante nicht gleich Null definiert!)
 - ➤ Z.B.

- Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.

 - ► Z.B.
 - $p = x^4 2x^2 3x 2$

- Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.
 - ▶ Wenn $p, q \in M[X]$ und ggt(p, q) = 1, dann existieren polynome a, b mit ap + bq = 1. (ggt(p, q) ist nur bis zur Multiplikation mit einer Konstante nicht gleich Null definiert!)
 - ➤ Z.B.
 - $p = x^4 2x^2 3x 2 \ q = x^3 + 4x^2 + 4x + 1$

- Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.
 - ▶ Wenn $p, q \in M[X]$ und ggt(p, q) = 1, dann existieren polynome a, b mit ap + bq = 1. (ggt(p, q) ist nur bis zur Multiplikation mit einer Konstante nicht gleich Null definiert!)
 - ➤ Z.B.
 - $p = x^4 2x^2 3x 2 \ q = x^3 + 4x^2 + 4x + 1$
 - ► Euklidischer Algorithmus:

- Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.
 - ▶ Wenn $p, q \in M[X]$ und ggt(p, q) = 1, dann existieren polynome a, b mit ap + bq = 1. (ggt(p, q) ist nur bis zur Multiplikation mit einer Konstante nicht gleich Null definiert!)
 - ➤ Z.B.
 - $p = x^4 2x^2 3x 2 \ q = x^3 + 4x^2 + 4x + 1$
 - ▶ Euklidischer Algorithmus: ggt(p,q) = x + 1

- Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.
 - ▶ Wenn $p, q \in M[X]$ und ggt(p, q) = 1, dann existieren polynome a, b mit ap + bq = 1. (ggt(p, q) ist nur bis zur Multiplikation mit einer Konstante nicht gleich Null definiert!)
 - ➤ Z.B.
 - $p = x^4 2x^2 3x 2 \ q = x^3 + 4x^2 + 4x + 1$
 - ▶ Euklidischer Algorithmus: ggt(p,q) = x + 1
 - ► Bezout-identiät:

- Folgerung: Wenn M ist ein Körper, dann M[X] hat Euklidischer Algorithmus.
 - ▶ Wenn $p,q \in M[X]$ und ggt(p,q) = 1, dann existieren polynome a,b mit ap + bq = 1. (ggt(p,q) ist nur bis zur Multiplikation mit einer Konstante nicht gleich Null definiert!)
 - ➤ Z.B.
 - $p = x^4 2x^2 3x 2 \ q = x^3 + 4x^2 + 4x + 1$
 - ► Euklidischer Algorithmus: ggt(p,q) = x + 1
 - ► Bezout-identiät:

$$x + 1(5x^2/22 - 3x/11 - 3/11)p + (-5x/22 - 7/11)q$$

• Wir sagen, dass ein Polynom f

- Wir sagen, dass ein Polynom $f\,$ irreduzibel ist,

• Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat,

• Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler

• Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind,

• Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung:

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt,

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist,

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - lacktriangle Das heißt, wenn $f\in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft.

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - lackbox Das heißt, wenn $f\in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f\mid ab$ und

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$.

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - \blacktriangleright Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$, dann $f \mid b$.

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$, dann $f \mid b$.
 - Beweis.

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$, dann $f \mid b$.
 - ▶ Beweis. Wir schreiben sf + ta = 1,

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid ab$, dann $f \mid b$.
 - \blacktriangleright Beweis. Wir schreiben sf+ta=1, dann erhalten wir sfb+tab=b,

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$, dann $f \mid b$.
 - ▶ Beweis. Wir schreiben sf + ta = 1, dann erhalten wir sfb + tab = b, und wir erhalten,

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$, dann $f \mid b$.
 - ▶ Beweis. Wir schreiben sf + ta = 1, dann erhalten wir sfb + tab = b, und wir erhalten, dass f die linke Seite teilt,

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$, dann $f \mid b$.
 - ▶ Beweis. Wir schreiben sf + ta = 1, dann erhalten wir sfb + tab = b, und wir erhalten, dass f die linke Seite teilt, und deshalb teilt es auch die rechte Seite.

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$, dann $f \mid b$.
 - ▶ Beweis. Wir schreiben sf + ta = 1, dann erhalten wir sfb + tab = b, und wir erhalten, dass f die linke Seite teilt, und deshalb teilt es auch die rechte Seite.
 - ► Zum Beispiel:

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$, dann $f \mid b$.
 - ▶ Beweis. Wir schreiben sf + ta = 1, dann erhalten wir sfb + tab = b, und wir erhalten, dass f die linke Seite teilt, und deshalb teilt es auch die rechte Seite.
 - ightharpoonup Zum Beispiel: in $\mathbb{Z}/5$

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$, dann $f \mid b$.
 - ▶ Beweis. Wir schreiben sf + ta = 1, dann erhalten wir sfb + tab = b, und wir erhalten, dass f die linke Seite teilt, und deshalb teilt es auch die rechte Seite.
 - ▶ Zum Beispiel: in $\mathbb{Z}/5$ das Polynom $p = X^2 + 4X + 2$

- Wir sagen, dass ein Polynom f irreduzibel ist, wenn es mindestens den Grad 1 hat, und seine einzigen Teiler von der Form Cf, C sind, wobei $C \in M$.
- Folgerung: "Unreduzierbare Polynome sind prim"
 - ▶ Das heißt, wenn $f \in M[X]$ irreduzibel ist, dann hat f die folgende Eigenschaft. Wenn $f \mid ab$ und $f \mid /a$, dann $f \mid b$.
 - ▶ Beweis. Wir schreiben sf + ta = 1, dann erhalten wir sfb + tab = b, und wir erhalten, dass f die linke Seite teilt, und deshalb teilt es auch die rechte Seite.
 - ▶ Zum Beispiel: in $\mathbb{Z}/5$ das Polynom $p = X^2 + 4X + 2$ ist irreduzibel.

• Folgerung:

• Folgerung: ("Eindeutigkeit der Faktorisierung")

• Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$,

• Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f

• Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome

• Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome $p_1 \cdot \ldots \cdot p_k$

• Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome $p_1 \cdot \ldots \cdot p_k$ geschrieben werden.

• Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome $p_1 \cdot \ldots \cdot p_k$ geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation

• Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten

• Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome $p_1 \cdot \ldots \cdot p_k$ geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis.

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an,

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - lacktriangle Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k$

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome $p_1 \cdot \ldots \cdot p_k$ geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - **b** Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = p_k$

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - **B** Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$.

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$.

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome $p_1 \cdot \ldots \cdot p_k$ geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - **B** Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist.

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i .

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.
- Folgerung:

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.
- Folgerung: Wenn $f \in M[X]$

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.
- Folgerung: Wenn $f \in M[X]$ und $a \in M$,

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.
- Folgerung: Wenn $f \in M[X]$ und $a \in M$, dann sind die folgenden äquivalent:

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \cdot \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \cdot \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.
- Folgerung: Wenn $f \in M[X]$ und $a \in M$, dann sind die folgenden äquivalent: a ist eine Wurzel von f

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.
- Folgerung: Wenn $f \in M[X]$ und $a \in M$, dann sind die folgenden äquivalent: a ist eine Wurzel von f gdw

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.
- Folgerung: Wenn $f \in M[X]$ und $a \in M$, dann sind die folgenden äquivalent: a ist eine Wurzel von f gdw $(X a) \mid f$.

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.
- Folgerung: Wenn $f \in M[X]$ und $a \in M$, dann sind die folgenden äquivalent: a ist eine Wurzel von f gdw $(X a) \mid f$.
 - ▶ In der Tat:

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.
- Folgerung: Wenn $f \in M[X]$ und $a \in M$, dann sind die folgenden äquivalent: a ist eine Wurzel von f gdw $(X a) \mid f$.
 - ▶ In der Tat: Wir schreiben f = q(X a) + r,

- Folgerung: ("Eindeutigkeit der Faktorisierung") Wenn $f \in M[X]$, dann kann f als Produkt irreduzibler Polynome p_1, \ldots, p_k geschrieben werden. Die Polynome p_1, \ldots, p_k sindp bis zur Multiplikation mit einer Konstanten eindeutig.
 - ▶ Beweis. Nehmen wir an, wir haben zwei Faktorisierungen $p_1 \cdot \ldots \cdot p_k = r_1 \ldots r_l$. Dann teilt p_1 das Produkt $r_1 \ldots r_l$, und da p_1 irreduzibel ist, teilt p_1 also einen der Faktoren r_i . Dann können wir Induktion benutzen um die Eindeutigkeit zu zeigen.
- Folgerung: Wenn $f \in M[X]$ und $a \in M$, dann sind die folgenden äquivalent: a ist eine Wurzel von f gdw $(X a) \mid f$.
 - ▶ In der Tat: Wir schreiben f = q(X a) + r, mit deg r < 1.

Folgerung:

• Folgerung: Ein Polynom f in M[X]

• Folgerung: Ein Polynom f in M[X] vom Grad n

16 / 21

• Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.

• Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.

▶ Die Polynome (X - a)

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ▶ Die Polynome (X a) sind irreduzibel,

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - lacktriangle Die Polynome (X-a) sind irreduzibel, wenn also a

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ightharpoonup Die Polynome (X-a) sind irreduzibel, wenn also a eine Wurzel von f ist,

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - Die Polynome (X a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X - a)

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ▶ Die Polynome (X a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X a) in der irreduziblen Faktorisierung

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - \blacktriangleright Die Polynome (X-a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X - a) in der irreduziblen Faktorisierung von f.

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ▶ Die Polynome (X a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X a) in der irreduziblen Faktorisierung von f. Die Behauptung folgt

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ▶ Die Polynome (X-a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X-a) in der irreduziblen Faktorisierung von f. Die Behauptung folgt aus dem Vergleich der Grade.

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ▶ Die Polynome (X-a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X-a) in der irreduziblen Faktorisierung von f. Die Behauptung folgt aus dem Vergleich der Grade.
- · Für Ringe.

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ▶ Die Polynome (X-a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X-a) in der irreduziblen Faktorisierung von f. Die Behauptung folgt aus dem Vergleich der Grade.
- Für Ringe, die keine Körper sind,

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ▶ Die Polynome (X-a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X-a) in der irreduziblen Faktorisierung von f. Die Behauptung folgt aus dem Vergleich der Grade.
- Für Ringe, die keine Körper sind, gilt dies nicht.

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ▶ Die Polynome (X-a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X-a) in der irreduziblen Faktorisierung von f. Die Behauptung folgt aus dem Vergleich der Grade.
- · Für Ringe, die keine Körper sind, gilt dies nicht.
- ► In Z/8

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ▶ Die Polynome (X-a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X-a) in der irreduziblen Faktorisierung von f. Die Behauptung folgt aus dem Vergleich der Grade.
- Für Ringe, die keine Körper sind, gilt dies nicht.
 - ▶ In $\mathbb{Z}/8$ hat das Polynom x^3

- Folgerung: Ein Polynom f in M[X] vom Grad n hat höchstens n Wurzeln.
 - ▶ Die Polynome (X-a) sind irreduzibel, wenn also a eine Wurzel von f ist, dann erscheint (X-a) in der irreduziblen Faktorisierung von f. Die Behauptung folgt aus dem Vergleich der Grade.
- Für Ringe, die keine Körper sind, gilt dies nicht.
 - ▶ In $\mathbb{Z}/8$ hat das Polynom x^3 die Wurzeln 0, 2, 4, 6.

• Wir können nun Körper

• Wir können nun Körper $\min p^k$ Elementen

• Wir können nun Körper $\min p^k$ Elementen konstruieren.

- ullet Wir können nun Körper $\min p^k$ Elementen konstruieren.
- Wir beginnen

- Wir können nun Körper $\,$ mit p^k Elementen $\,$ konstruieren.
- ullet Wir beginnen mit einem irrreduzierbaren Polynom F

- Wir können nun Körper $\min p^k$ Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k.

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B.

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren.

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit $x^2 + x + 2$ beginnen.

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit $x^2 + x + 2$ beginnen.
- Als Elemente

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit $x^2 + x + 2$ beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$,

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit $x^2 + x + 2$ beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v,

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren.

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit $x^2 + x + 2$ beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F.

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit $x^2 + x + 2$ beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel

(x+3)(x+2)

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit $x^2 + x + 2$ beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel

 $(x+3)(x+2) \equiv$

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit $x^2 + x + 2$ beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel

 $(x+3)(x+2) \equiv x^2 + 1$

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- IIm Flemente zu multiplizieren reduzieren wir modulo F Zum Beispiel
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel $(x+3)(x+2) \equiv x^2+1 \equiv$

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit $x^2 + x + 2$ beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel $(x+3)(x+2) \equiv x^2 + 1 \equiv -x - 3$.

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel $(x+3)(x+2) \equiv x^2+1 \equiv -x-3$.
 - ▶ Die Irreduzibilität von F

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit $x^2 + x + 2$ beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel $(x+3)(x+2) \equiv x^2 + 1 \equiv -x - 3$.
 - ▶ Die Irreduzibilität von F wird benutzt,

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel $(x+3)(x+2) \equiv x^2+1 \equiv -x-3$.
 - ightharpoonup Die Irreduzibilität von F wird benutzt, um zu zeigen,

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel $(x+3)(x+2) \equiv x^2+1 \equiv -x-3$.
 - lacktriangleright Die Irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente ungleich Null

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel $(x+3)(x+2) \equiv x^2+1 \equiv -x-3$.
 - ightharpoonup Die Irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente ungleich Null Inverse haben.

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel $(x+3)(x+2) \equiv x^2+1 \equiv -x-3$.
 - ightharpoonup Die Irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente ungleich Null Inverse haben.
 - ► In der Tat:

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel $(x+3)(x+2)\equiv x^2+1\equiv -x-3$.
 - ightharpoonup Die Irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente ungleich Null Inverse haben.
 - ▶ In der Tat: Wenn $g \in M[X]/(x^2+x+2)$,

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel $(x+3)(x+2) \equiv x^2+1 \equiv -x-3$.
 - ightharpoonup Die Irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente ungleich Null Inverse haben.
 - ▶ In der Tat: Wenn $g \in M[X]/(x^2+x+2)$, dann können wir

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- $(x+3)(x+2) \equiv x^2 + 1 \equiv -x 3.$

- ightharpoonup Die Irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente ungleich Null Inverse haben.
- ▶ In der Tat: Wenn $g \in M[X]/(x^2+x+2)$, dann können wir mitte Bezout-Identität

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
 - $(x+3)(x+2) \equiv x^2+1 \equiv -x-3$.

- lacktriangleright Die Irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente ungleich Null Inverse haben.
- ▶ In der Tat: Wenn $g \in M[X]/(x^2+x+2)$, dann können wir mitte Bezout-Identität ag+bF=1 für einige Polynome a,b

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
- Um Elemente zu multiplizieren, reduzieren wir modulo F. Zum Beispiel $(x+3)(x+2) \equiv x^2+1 \equiv -x-3$.
 - ightharpoonup Die Irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente ungleich Null Inverse haben.
 - ▶ In der Tat: Wenn $g \in M[X]/(x^2+x+2)$, dann können wir mitte Bezout-Identität ag+bF=1 für einige Polynome a,b schreiben.

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
 - $(x+3)(x+2) \equiv x^2+1 \equiv -x-3$.

 Die Irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente

- ightharpoonup Die irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente ungleich Null Inverse haben.
- ▶ In der Tat: Wenn $g \in M[X]/(x^2+x+2)$, dann können wir mitte Bezout-Identität ag+bF=1 für einige Polynome a,b schreiben. Dann ist a die multiplikative Inverse von g

- Wir können nun Körper mit p^k Elementen konstruieren.
- Wir beginnen mit einem irrreduzierbaren Polynom F vom Grad k. Um z.B. ein Körper mit 25 Elementen zu konstruieren, können wir mit x^2+x+2 beginnen.
- Als Elemente nehmen wir die Menge $\mathbb{Z}/5[X]/(x^2+x+2)$, die aus allen Polynomen vom Grad höchstens k-1 besteht. In unserem Beispiel also ux+v, mit $u,v\in\mathbb{Z}/5$.
 - $(x+3)(x+2) \equiv x^2+1 \equiv -x-3$.

 Die Irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente

- ightharpoonup Die irreduzibilität von F wird benutzt, um zu zeigen, dass alle Elemente ungleich Null Inverse haben.
- ▶ In der Tat: Wenn $g \in M[X]/(x^2+x+2)$, dann können wir mitte Bezout-Identität ag+bF=1 für einige Polynome a,b schreiben. Dann ist a die multiplikative Inverse von g modulo F.

• Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt).

- Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n,p\in\mathbb{N}$

• Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n,p\in\mathbb{N}$ mit p prim,

• Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n,p\in\mathbb{N}$ mit p prim, so dass |M|

• Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n,p\in\mathbb{N}$ mit p prim, so dass |M|=

• Sei $(M, +, \cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n, p \in \mathbb{N}$ mit p prim, so dass $|M| = p^n$.

- Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n,p\in$ \mathbb{N} mit p prim, so dass $|M| = p^n$.
- Seien K und N

- Sei $(M, +, \cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n, p \in \mathbb{N}$ mit p prim, so dass $|M| = p^n$.
- Seien K und N endliche Körper

- Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n,p\in\mathbb{N}$ mit p prim, so dass $|M|=p^n$.
- Seien K und N endliche Körper mit gleich vielen Elementen.

- Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n,p\in\mathbb{N}$ mit p prim, so dass $|M|=p^n$.
- Seien $\mathcal K$ und $\mathcal N$ endliche Körper mit gleich vielen Elementen. Dann sind

- Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n,p\in\mathbb{N}$ mit p prim, so dass $|M|=p^n$.
- Seien $\mathcal K$ und $\mathcal N$ endliche Körper mit gleich vielen Elementen. Dann sind $\mathcal K$ und $\mathcal N$ isomorph.

- Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n,p\in\mathbb{N}$ mit p prim, so dass $|M|=p^n$.
- Seien $\mathcal K$ und $\mathcal N$ endliche Körper mit gleich vielen Elementen. Dann sind $\mathcal K$ und $\mathcal N$ isomorph.
- · Insbesondere:

- Sei $(M,+,\cdot)$ ein endlicher Körper (auch Galois-Kórper genannt). Dann existieren $n,p\in\mathbb{N}$ mit p prim, so dass $|M|=p^n$.
- Seien $\mathcal K$ und $\mathcal N$ endliche Körper mit gleich vielen Elementen. Dann sind $\mathcal K$ und $\mathcal N$ isomorph.
- Insbesondere: kein Körper mit 6 Elemente.

• Sei $(M, +, \cdot)$ ein Ring.

• Sei $(M,+,\cdot)$ ein Ring. Wir sagen,

• Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist,

• Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist, wenn

• Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist, wenn

▶ I eine Untergruppe von (M, +) ist

• Sei $(M, +, \cdot)$ ein Ring. Wir sagen, dass $I \subset M$ ein Ideal ist, wenn

▶ I eine Untergruppe von (M, +) ist und

- Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist, wenn
 - $\blacktriangleright \ \ I \ {\rm eine} \ {\rm Untergruppe} \ {\rm von} \ (M,+) \ {\rm ist} \ \ {\rm und}$
 - lacksquare für alle $m\in M$ gilt $mI\subset I$

- Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist, wenn
 - ightharpoonup I eine Untergruppe von (M, +) ist und
 - ▶ für alle $m \in M$ gilt $mI \subset I$

• M ist ein Ideal von M.

- Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist, wenn
 - ▶ I eine Untergruppe von (M, +) ist und
 - ▶ für alle $m \in M$ gilt $mI \subset I$

• M ist ein Ideal von M. Jedes andere Ideal heißt echt.

- Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist, wenn
 - ightharpoonup I eine Untergruppe von (M,+) ist und
 - ▶ für alle $m \in M$ gilt $mI \subset I$

• M ist ein Ideal von M. Jedes andere Ideal heißt echt. Ein Ideal ist echt,

- Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist, wenn
 - ightharpoonup I eine Untergruppe von (M,+) ist und
 - ▶ für alle $m \in M$ gilt $mI \subset I$

• M ist ein Ideal von M. Jedes andere Ideal heißt echt. Ein Ideal ist echt, wenn es $\mathbf{1}_M$ nicht als Element enthält.

- Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist, wenn
 - ▶ I eine Untergruppe von (M, +) ist und
 - ▶ für alle $m \in M$ gilt $mI \subset I$

- M ist ein Ideal von M. Jedes andere Ideal heißt echt. Ein Ideal ist echt, wenn es $\mathbf{1}_M$ nicht als Element enthält.
- $\{0\} \subset M$ ist ein Ideal.

- Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist, wenn
 - ightharpoonup I eine Untergruppe von (M,+) ist und
 - ▶ für alle $m \in M$ gilt $mI \subset I$

- M ist ein Ideal von M. Jedes andere Ideal heißt echt. Ein Ideal ist echt, wenn es $\mathbf{1}_M$ nicht als Element enthält.
- $\{0\} \subset M$ ist ein Ideal.
- $n\mathbb{Z} \subset \mathbb{Z}$ ist ein Ideal für jede natürliche Zahl n.

- Sei $(M,+,\cdot)$ ein Ring. Wir sagen, dass $I\subset M$ ein Ideal ist, wenn
 - ightharpoonup I eine Untergruppe von (M,+) ist und
 - ▶ für alle $m \in M$ gilt $mI \subset I$

• $\{0\} \subset M$ ist ein Ideal.

Beispiele

- M ist ein Ideal von M. Jedes andere Ideal heißt echt. Ein Ideal ist echt, wenn es $\mathbf{1}_M$ nicht als Element enthält.
- $n\mathbb{Z}\subset\mathbb{Z}$ ist ein Ideal für jede natürliche Zahl n.
- $fM[X] \subset M[X]$ ist ein Ideal für jedes Polynomi f.

• Ist $I \subset M$ ein Ideal,

- Ist $I\subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation

• Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M

• Ist $I\subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a\equiv b$

• Ist $I\subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a\equiv b$ gdw

• Ist $I\subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a\equiv b$ gdw $a-b\in I$.

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a-b \in I$.
- Die Menge der Äquivalenzklassen nennen wir M/I.

Lemma. $(M/I, +, \cdot)$ wird zu einem Ring,

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a-b \in I$.
- Die Menge der Äquivalenzklassen nennen wir M/I.

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a-b \in I$.
- Die Menge der Äquivalenzklassen nennen wir M/I.

Beweis.

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a b \in I$.
- Die Menge der Äquivalenzklassen nennen wir M/I.

Beweis.

• Wir überprüfen z.B., dass die Multiplikation wohldefiniert ist.

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a b \in I$.
- Die Menge der Äquivalenzklassen nennen wir M/I.

Beweis.

- Wir überprüfen z.B., dass die Multiplikation wohldefiniert ist.
- Nehmen wir also [m] = [m'] und [n] = [n'] an,

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a b \in I$.
- Die Menge der Äquivalenzklassen nennen wir M/I.

Beweis.

- · Wir überprüfen z.B., dass die Multiplikation wohldefiniert ist.
- Nehmen wir also [m] = [m'] und [n] = [n'] an, so haben wir $m m', n n' \in I$.

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a b \in I$.
- Die Menge der Äquivalenzklassen nennen wir M/I.

Beweis.

- Wir überprüfen z.B., dass die Multiplikation wohldefiniert ist.
- Nehmen wir also [m] = [m'] und [n] = [n'] an, so haben wir $m m', n n' \in I$. Da I ein Ideal ist, haben wir auch $n(m m'), m(n n') \in I$.

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a b \in I$.
- Die Menge der Äquivalenzklassen nennen wir M/I.

Beweis.

- · Wir überprüfen z.B., dass die Multiplikation wohldefiniert ist.
- Nehmen wir also [m]=[m'] und [n]=[n'] an, so haben wir $m-m', n-n' \in I$. Da I ein Ideal ist, haben wir auch $n(m-m'), m(n-n') \in I$. Daraus folgt, dass

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a b \in I$.
- Die Menge der Äquivalenzklassen nennen wir M/I.

Beweis.

- Wir überprüfen z.B., dass die Multiplikation wohldefiniert ist.
- Nehmen wir also [m]=[m'] und [n]=[n'] an, so haben wir $m-m', n-n' \in I$. Da I ein Ideal ist, haben wir auch $n(m-m'), m(n-n') \in I$. Daraus folgt, dass $n'(m-m')+m(n-n')=mn-n'm' \in I$

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a b \in I$.
- Die Menge der Äquivalenzklassen nennen wir M/I.

Beweis.

- Wir überprüfen z.B., dass die Multiplikation wohldefiniert ist.
- Nehmen wir also [m] = [m'] und [n] = [n'] an, so haben wir $m m', n n' \in I$. Da I ein Ideal ist, haben wir auch $n(m m'), m(n n') \in I$. Daraus folgt, dass $n'(m m') + m(n n') = mn n'm' \in I$ und somit tatsächlich [mn] = [m'n'].

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a b \in I$.
- Die Menge der Äguivalenzklassen nennen wir M/I.

Beweis.

- Wir überprüfen z.B., dass die Multiplikation wohldefiniert ist.
- Nehmen wir also [m] = [m'] und [n] = [n'] an, so haben wir $m m', n n' \in I$. Da I ein Ideal ist, haben wir auch $n(m m'), m(n n') \in I$. Daraus folgt, dass $n'(m m') + m(n n') = mn n'm' \in I$ und somit tatsächlich [mn] = [m'n'].

- Ist $I \subset M$ ein Ideal, so nehmen wir eine Äquivalenzrelation auf M so definiert: $a \equiv b$ gdw $a-b \in I$.
- ullet Die Menge der Äquivalenzklassen nennen wir M/I.

Lemma.
$$(M/I,+,\cdot)$$
 wird zu einem Ring, mit $[m]\cdot [n]:=[mn]$, und $[m+n]:=[m+n]$.

Beweis.

- Wir überprüfen z.B., dass die Multiplikation wohldefiniert ist.
- will aberpraien 2.b., dass are mattiplikation worldenmert ist.
- Nehmen wir also [m] = [m'] und [n] = [n'] an, so haben wir $m-m', n-n' \in I$. Da I ein Ideal ist, haben wir auch $n(m-m'), m(n-n') \in I$. Daraus folgt, dass $n'(m-m') + m(n-n') = mn n'm' \in I$ und somit tatsächlich [mn] = [m'n'].
- Spezieller Fall: $\mathbb{Z}/5[X]/(x^2+x+2)$.

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de