Formeln mit freien Variablen vs. Sätze

Formeln mit freien Variablen Sätze $\varphi_1(x) := \forall y \ \forall z \ (y*z=x \rightarrow (y=1 \ \forall z=1)) \qquad \varphi_2 := \forall y \ \exists x \ (y < x \land \varphi_1(x))$

$$\varphi_1(x) := \forall y \, \forall z (y * z = x \rightarrow (y = 1))^T$$

$$\varphi_4(x,y) := \exists z (x * x = y + z)$$

$$\varphi_3 := \forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z)$$

Formeln $\varphi(x)$.

Eine Formel $\varphi(x)$ sagt etwas über ein Element innerhalb einer Struktur aus. D.h. $\varphi(x)$ beschreibt eine Eigenschaft eines Elements.

Wenn $\beta(x) = a$ eine Belegung von x ist, dann gilt $(A, \beta) \models \varphi(x)$, wenn a die Eigenschaft φ hat.

Sätze ψ .

Ein Satz ψ sagt etwas über die Struktur insgesamt aus.

Ohne freie Variablen brauchen wir keine Belegung β .

D.h. $\mathcal{A} \models \psi$, wenn die Struktur die Eigenschaft ψ hat.

Stephan Kreutzer Logik 3 / 21 WS 2022/2023

Modellklassen und definierbare Relationen

Definition (definierbare Relationen).

Sei \mathcal{A} eine σ -Struktur und $\varphi(x_1,\ldots,x_k)\in \mathsf{FO}[\sigma]$. Wir definieren

$$\varphi(\mathcal{A}) := \{(a_1, \ldots, a_k) \in A^k : (\mathcal{A}, [x_1/a_1, \ldots, x_k/a_k]) \models \varphi\}$$

und sagen, dass φ die Relation $\varphi(A)$ in A definiert. $R = \{ (o_1b) : b : ct \text{ vol } o \text{ out} \}$ Umgekehrt nennen wir eine Relation $R \subseteq A^k$ FO-definierbar in A, wenn es

eine Formel $\varphi(x_1,\ldots,x_k)\in FO$ gibt, so dass $\varphi(\mathcal{A})=R$.

Definition (Modellklassen).

Sei σ eine Signatur und $\Phi \subseteq FO[\sigma]$ eine Menge von σ -Sätzen.

Die Modellklasse von Φ , geschrieben $Mod(\Phi)$, ist die Klasse aller σ -Strukturen \mathcal{A} mit $\mathcal{A} \models \Phi$.

Falls $\Phi := \{ \varphi \}$ nur einen Satz enthält, schreiben wir kurz $\mathsf{Mod}(\varphi)$.

Stephan Kreutzer Logik 6 / 21 WS 2022/2023

Auswerten prädikatenlogischer Formeln

Das Auswerten prädikatenlogischer Formeln ist viel schwerer als das Auswerten aussagenlogischer Formeln.

Top-Down Auswertung. Auswerten der Formel von "außen" nach "innen".

D.h. beginnend bei den äußersten Quantoren $\exists x.../\forall x...$ testen wir jede mögliche Belegung der Variablen durch.

Bottom-up Auswertung. Auswerten der Formel von "innen" nach "außen".

Beginnend bei den atomaren Formeln $\varphi(\overline{x}) := R(x_1, \dots, x_r)$ berechnen wir alle erfüllenden Variablenbelegungen, d.h. $\varphi(A)$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 15 / 21

Top-Down Auswertung prädikatenlogischer Formeln

 $MC(\mathcal{A}, \mathcal{B}, \varphi)$.

Eingabe: endliche σ -Struktur $\mathcal{A}, \quad \varphi(x_1, \dots, x_k) \in \mathsf{FO}$

Belegung β der freien Variablen von φ .

Ausgabe: 1 wenn $(A, \beta) \models \varphi$, 0 sonst.

Algorithmus. Fallunterscheidung anhand des Formelaufbaus.

for all $a \in A$: • $\varphi = \exists x_i \psi(x_i)$.

if $MC(A, \beta[x_i/a], \psi) = 1$ then return 1.

return 0.

• $\varphi = \forall x_i \psi(x_i)$. for all $a \in A$:

if $MC(A, \beta[x_i/a], \psi) = 0$ then return 0.

return 1.

• $\varphi = (\varphi_1 \vee \varphi_2).$

return max{MC($\mathcal{A}, \beta, \varphi_1$), MC($\mathcal{A}, \beta, \varphi_2$)}

• $\varphi = R(t_1, \ldots, t_k)$.

für ein k-stelliges Relationssymbol $R \in \sigma$.

Berechne $a_1 := t_1, \ldots, a_k := t_k$ in A

if $(a_1, \ldots, a_k) \in \mathbb{R}^A$ then return 1 else return 0. (Weitere Fälle analog)

Beispiel: Top-Down Auswertung

$$\varphi := \exists x \forall y \ (x = y \lor E(x, y)).$$

 Stephan Kreutzer
 Logik
 WS 2022/2023
 17 / 21

$MC2(\mathcal{A}, \varphi)$.

Eingabe: endliche σ -Struktur \mathcal{A} , $\varphi(x_1,\ldots,x_k) \in \mathsf{FO}$

Ausgabe: $\varphi(A) = \{(a_1, \dots, a_k) \in A^k : (A, [x_1/a_1, \dots, x_k/a_k]) \models \varphi\}$ Hinweis. Hier auch Terme betrachten.

Algorithmus. Fallunterscheidung anhand des Formelaufbaus.

- $\varphi = R(x_1, \dots, x_k)$. für ein k-stelliges Relationssymbol $R \in \sigma$.

 Return $R^A = \{(a_1, \dots, a_k) \in A^k : \bar{a} \in R^A\}$.
- $\varphi = (\varphi_1(\overline{x}) \vee \varphi_2(\overline{x}))$. Berechne $R_1 = \text{MC2}(\mathcal{A}, \varphi_1)$ und $R_2 = \text{MC2}(\mathcal{A}, \varphi_2)$ Return $R_1 \cup R_2$

Weitere Fälle analog

- $\varphi = \exists x_i \psi(x_1, \dots, x_i, \dots, x_r)$. Berechne $R = MC2(\mathcal{A}, \psi)$ return $\{(a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_r) : (a_1, \dots, a_r) \in R\}$.
 $\varphi = \forall x_i \psi(x_1, \dots, x_i, \dots, x_r)$. Berechne $R = MC2(\mathcal{A}, \psi)$
- **return** $\{(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_r) : (a_1, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_r) \in R \text{ für alle } a \in A\}.$

Anmerkung zu $\varphi_1(\overline{x}) \vee \varphi_2(\overline{y})$. Es ist effizienter, nur $MC2(\mathcal{A}, \varphi_1(\overline{x}))$ und $MC2(\mathcal{A}, \varphi_2(\overline{y}))$ auszurechnen und die Ergebnisse "sinnvoll" zusammenzusetzen.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 18 / 21

Beispiel: Bottom-Up Auswertung

Bottom-Up Auswertung.

Unterformel
$$x = y$$

$$\{(a,a),(b,b),(c,c)\}$$

$$E(x, y)$$
 {(b, a), (b, c)}

$$\{(b,a),(b,c)\}\$$

$$\{(x=y \lor E(x,y)) \qquad \{(\underline{a},a),(\underline{b},b),(\underline{c},c),(\underline{b},a),(\underline{b},c)\}\$$

$$\forall (A): \exists \forall y (x = y \lor E(x, y)).$$

$$\mathbf{q} = \exists x \forall y (x = y \lor E(x, y))$$

also gilt $G \models \varphi$

BUMY A (BUX, 2) V BUY, 81)

$$\varphi := \exists x \forall y \ (x = y \lor E(x, y)).$$

$$\frac{(b,c)}{(b,c)}$$
 co. (b,c)

Stephan Kreutzer

Das Auswerten prädikatenlogischer Formeln ist viel schwerer als das Auswerten aussagenlogischer Formeln.

Top-Down Auswertung. Auswerten der Formel von "außen" nach "innen".

D.h. beginnend bei den äußersten Quantoren $\exists x.../\forall x...$ testen wir jede mögliche Belegung der Variablen durch.

Vorteil. Es wird relativ wenig Platz benötigt.

Bottom-up Auswertung. Auswerten der Formel von "innen" nach "außen".

Beginnend bei den atomaren Formeln $\varphi(\overline{x}) := R(x_1, \dots, x_r)$ berechnen wir alle erfüllenden Variablenbelegungen, d.h. $\varphi(A)$.

Vorteil. Wir sparen uns die vielen rekursiven Aufrufe, verbrauchen aber eventuell sehr viel Platz.

 Stephan Kreutzer
 Logik
 W5 2022/2023
 20 / 21

Komplexität des Auswertungsproblems

Laufzeitabschätzung des top-down Algorithmus'.

Sei \mathcal{A} eine Struktur mit Universum A und φ eine Formel der Länge $|\varphi|$.

Der Algorithmus durchläuft für jeden Quantor in φ alle Elemente in A.

Es ergibt sich eine Laufzeit von $|A|^{O(|\varphi|)}$.

Allerdings wird nur $O(|\varphi| \cdot |A|)$ Platz benötigt.

0(191 100 1A1) X/i

Komplexität des Auswertungsproblems.

Das Auswertungsproblem für die Prädikatenlogik ist

- lösbar in Zeit exponentiell in der Formellänge aber nur polynomiell in der Strukturgröße.
- PSPACE vollständig.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 21 / 21

10.1 Substitution

Erinnerung: Beispiele

$$\sigma := \{+, *, <, 0, 1\}:$$

Signatur der Arithmetik

$$\mathcal{A} := (\mathbb{N}, +^{\mathcal{A}}, *^{\mathcal{A}}, <^{\mathcal{A}}, 0^{\mathcal{A}}, 1^{\mathcal{A}}):$$

Struktur über den natürlichen Zahlen mit der üblichen Interpretation von +, *, <, 0, 1.

Beispiele.

$$\bullet \varphi_1(x) := \forall y \left(\exists z \left(y * z = x \to (y = 1 \lor z = 1) \right) \right)$$

•
$$\varphi_2 := \forall y \exists x (y < x \land \varphi_1(x))$$

Anmerkung. Hier wird φ_1 in die Formel φ_2 "eingesetzt". Im allgemeinen nicht unproblematisch, siehe nächste Woche.

Formeln als Unterformeln. Sei $\varphi(x_1, x_2)$ eine Formel.

Wir wollen eine andere Formel $\psi := \exists y \exists z \varphi(y, z)...$ definieren.

Dazu wollen wir in φ die freien Variablen x_1 und x_2 durch y und z ersetzen. \leadsto Substitution

Stephan Kreutzer Logik WS 2022/2023 3 / 23

Analog zur Aussagenlogik wollen wir einen Begriff der Substitution einführen.

Ziel ist es. Variablen sinnvoll durch *Terme* zu ersetzen.

Wenn wir z.B. in der σ_{ar} -Formel

$$\exists y \ y * y = x + x$$

die Variable x durch (1+1) ersetzen, erhalten wir

$$\exists y \ y * y = (1+1) + (1+1).$$

Stephan Kreutzer Logik WS 2022/2023 4 / 23

Analog zur Aussagenlogik wollen wir einen Begriff der Substitution einführen.

Ziel ist es, Variablen sinnvoll durch Terme zu ersetzen.

Wenn wir z.B. in der σ_{ar} -Formel

$$\exists y \ y * y = x + x$$

Variablen durch Formeln zu ersetzen wäre sinnlos. Warum?

die Variable \times durch (1+1) ersetzen, erhalten wir

$$\exists y \ y * y = (1+1) + (1+1).$$

Stephan Kreutzer Logik WS 2022/2023 4 / 23

Das folgende Beispiel zeigt potentielle Probleme.

Beispiel. Sei $\varphi := \exists y \ y * y = x + x$.

1. Wenn wir in φ die freie Variable x durch y ersetzen, erhalten wir

$$\exists y \ y * y = y + y$$

was eine andere Bedeutung hat.

Wir müssen also auf Konflikte mit gebundenen Variablen achten.

Stephan Kreutzer Logik WS 2022/2023 5 / 23

Das folgende Beispiel zeigt potentielle Probleme.

Beispiel. Sei
$$\varphi := \exists y \ y * y = x + x$$
.

1. Wenn wir in φ die freie Variable x durch y ersetzen, erhalten wir

$$\exists y \ y * y = y + y$$

was eine andere Bedeutung hat.

Wir müssen also auf Konflikte mit gebundenen Variablen achten.

2. Wenn wir in φ die gebundene Variable y durch x ersetzen, erhalten wir die Formel

$$\exists x \, x * x = x + x$$

ebenfalls mit anderer Bedeutung.

Wir sollten daher nur freie Variablen substituieren.

Stephan Kreutzer Logik WS 2022/2023 5 / 23

Substitution

Definition. Sei σ eine Signatur.

- 1. Eine σ -Substitution ist eine Abbildung $\mathcal{S}: def(\mathcal{S}) \to \mathcal{T}_{\sigma}$ mit endlichem Wertebereich $def(S) \subseteq Var$.
- 2. Für eine Substitution S definieren wir var(S) als die Menge der Variablen, die in einem Term im Bild der Substitution vorkommen, d.h.

$$\operatorname{\mathsf{var}}(\mathcal{S}) := \bigcup_{x \in \operatorname{\mathsf{def}}(\mathcal{S})} \operatorname{\mathsf{var}}(\mathcal{S}(x)).$$

Stephan Kreutzer Logik WS 2022/2023 6 / 23

Substitution

 $var(\mathcal{S}) := \{v, z, v\}.$

Definition. Sei σ eine Signatur.

- 1. Eine σ -Substitution ist eine Abbildung $\mathcal{S}: def(\mathcal{S}) \to \mathcal{T}_{\sigma}$ mit endlichem Wertebereich $def(S) \subseteq Var$.
- 2. Für eine Substitution S definieren wir var(S) als die Menge der Variablen, die in einem Term im Bild der Substitution vorkommen, d.h.

$$\operatorname{\mathsf{var}}(\mathcal{S}) := \bigcup_{x \in \operatorname{\mathsf{def}}(\mathcal{S})} \operatorname{\mathsf{var}}(\mathcal{S}(x)).$$

Stephan Kreutzer Logik WS 2022/2023 6 / 23

Substitution in Termen

Definition. Sei S eine σ -Substitution.

Induktiv über die Struktur von Termen definieren wir für jeden Term $t \in \mathcal{T}_{\sigma}$ den Term $t\mathcal{S}$, der durch Anwendung von \mathcal{S} auf t entsteht, als:

• Wenn
$$t := x$$
, wobei $x \in Var$, dann $tS := \begin{cases} S(x) & \text{wenn } x \in \text{def}(S) \\ x & \text{sonst.} \end{cases}$

ang von S auf t

$$\exists 2 \left(+72 = +72 \right)$$

$$\exists 4 \left(+44 = +44 \right)$$

$$\exists 3 \left(+44 = +44 \right)$$

$$\exists 4 \left(+44$$

 $var(\mathcal{S}) := \{y, z, v\}.$

Beispiel.

 $S: \stackrel{x \mapsto y + z}{\downarrow_{y \mapsto z + v}}.$

- Wenn t := c, für ein Konstantensymbol $c \in \sigma$, dann tS := c.
- Wenn $t := f(t_1, ..., t_k)$, für ein k-stelliges Funktionssymbol $f \in \sigma$ und σ -Terme $t_1, ..., t_k \in \mathcal{T}_{\sigma}$, dann $tS := f(t_1 S, ..., t_k S)$.

メーシブ

Stephan Kreutzer Logik WS 2022/2023 7 / 23

Substitution in Termen

Definition. Sei S eine σ -Substitution.

Induktiv über die Struktur von Termen definieren wir für jeden Term $t \in \mathcal{T}_{\sigma}$ den Term $t\mathcal{S}$, der durch Anwendung von \mathcal{S} auf t entsteht, als:

• Wenn
$$t := x$$
, wobei $x \in Var$, dann $tS := \begin{cases} S(x) & \text{wenn } x \in \text{def}(S) \\ x & \text{sonst.} \end{cases}$

- Wenn t:=c, für ein Konstantensymbol $c\in\sigma$, dann $t\mathcal{S}:=c$.
- Wenn $t := f(t_1, ..., t_k)$, für ein k-stelliges Funktionssymbol $f \in \sigma$ und σ -Terme $t_1, ..., t_k \in \mathcal{T}_{\sigma}$, dann $tS := f(t_1S, ..., t_kS)$.

Beispiel.

$$S: \frac{x \mapsto y + z}{y \mapsto z + v}.$$
$$var(S) := \{y, z, v\}.$$

Für
$$t := x + y$$
 gilt
 $tS := ((y + z) + (z + v))$.

Stephan Kreutzer Logik WS 2022/2023 7 / 23

Substitution in Formeln

Definition. Sei S eine σ -Substitution.

Induktiv definieren wir für $\varphi \in {\sf FO}[\sigma]$ die Formel $\varphi {\cal S}$ als:

- Für $\varphi := R(t_1, \dots, t_k)$ gilt $\varphi S := R(t_1 S, \dots, t_k S)$. (wobei $t_1, \dots, t_k \in \mathcal{T}_\sigma$, R k-stell. Relationssymbol)
- Für $\varphi:=t_1=t_2$ gilt $\varphi\mathcal{S}:=t_1\mathcal{S}=t_2\mathcal{S}$ (wobei $t_1,t_2\in\mathcal{T}_\sigma$).
- Für $\varphi := \neg \psi$ gilt $\varphi \mathcal{S} := \neg \psi \mathcal{S}$.
- Für $\varphi := (\psi_1 * \psi_2)$ gilt $\varphi \mathcal{S} := (\psi_1 \mathcal{S} * \psi_2 \mathcal{S})$ (wobei $\psi_1, \psi_2 \in \mathsf{FO}[\sigma]$ und $* \in \{\lor, \land, \to, \leftrightarrow\}$).
- Wenn $\varphi:=\exists x\psi$, wobei $x\in \mathsf{Var}$ und $\psi\in \mathsf{FO}[\sigma]$, dann gilt:
 - $1. \ \ \varphi \mathcal{S} := \exists x \psi \mathcal{S}', \ \mathsf{falls} \ x \not \in \mathsf{var}(\mathcal{S}), \ \mathsf{wobei} \ \mathcal{S}' := \mathcal{S}_{|\mathsf{def}(\mathcal{S}) \setminus \{x\}}.$
 - 2. Wenn $x \in \text{var}(S)$, wähle $y \in \text{Var} \setminus (frei(\varphi) \cup \text{var}(S))$ und setze $\varphi S := \exists y \psi S'$, wobei $S' := S_{\text{def}(S) \setminus \{x\}} \cup \{x \mapsto y\}$.
- Der Fall $\varphi := \forall x \psi$ ist analog.

 $S: \stackrel{x \mapsto y+2}{y \mapsto z+v}.$

 $var(S) := \{\underline{y}, z, v\}.$ Für t := x + y gilt

 $t\mathcal{S} := ((y+z) + (z+v)).$

Stephan Kreutzer

Substitution in Formeln

Definition. Sei S eine σ -Substitution.

Induktiv definieren wir für $\varphi \in FO[\sigma]$ die Formel φS als:

- Für $\varphi := R(t_1, \ldots, t_k)$ gilt $\varphi S := R(t_1 S, \ldots, t_k S)$. (wobei $t_1, \ldots, t_k \in \mathcal{T}_{\sigma}$, R k-stell. Relationssymbol)
- Für $\varphi := t_1 = t_2$ gilt $\varphi \mathcal{S} := t_1 \mathcal{S} = t_2 \mathcal{S}$ (wobei $t_1, t_2 \in T_{\sigma}$).
- Für $\varphi := \neg \psi$ gilt $\varphi \mathcal{S} := \neg \psi \mathcal{S}$.
- Für $\varphi := (\psi_1 * \psi_2)$ gilt $\varphi \mathcal{S} := (\psi_1 \mathcal{S} * \psi_2 \mathcal{S})$ (wobei $\psi_1, \psi_2 \in FO[\sigma]$ und $* \in \{ \lor, \land, \rightarrow, \leftrightarrow \}$).
- Wenn $\varphi := \exists x \psi$, wobei $x \in Var$ und $\psi \in FO[\sigma]$, dann gilt:
 - 1. $\varphi S := \exists x \psi S'$, falls $x \notin \text{var}(S)$, wobei $S' := S_{|\text{def}(S) \setminus \{x\}}$.
 - 2. Wenn $x \in \text{var}(S)$, wähle $y \in \text{Var} \setminus (frei(\varphi) \cup \text{var}(S))$ und setze $\varphi S := \exists y \psi S'$, wobei $S'_{\perp} := S_{def(S) \setminus \{x\}} \cup \{x \mapsto y\}$.
- Der Fall $\varphi := \forall x \psi$ ist analog.

$$S: \frac{x \mapsto y + z}{y \mapsto z + v}.$$

 $var(\mathcal{S}) := \{y, z, v\}.$

Für
$$t := x + y$$
 gilt
 $tS := ((y + z) + (z + v))$.

Sei
$$\varphi := \exists a \forall z (x + y + z = a + x)$$
:

$$\varphi S := \exists a \forall z (x + y + z = a + x) S$$

= $\exists a \forall v_0 (x + y + z = a + x) S'$

$$S' := S \cup \{z \mapsto v_0\}$$
$$= \exists a \ \forall v_0 \ (x + y + z)S' = (a + x)S'$$

$$= \exists a \ \forall v_0 \ ((y+z)+(z+v)+v_0 = (a+(y+z))).$$

Notation

Notation.

• Analog zur Aussagenlogik schreiben wir für eine Substitution $\mathcal S$ mit $\mathsf{def}(\mathcal S) := \{x_1, \dots, x_n\}$ und $\mathcal S(x_i) := t_i, \ 1 \le i \le n$,

$$[x_1/t_1,\ldots,x_n/t_n].$$

Das erlaubt uns, $\varphi[x_1/t_1, \ldots, x_n/t_n]$ statt φS zu schreiben.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 9 / 23

Notation

Notation.

• Analog zur Aussagenlogik schreiben wir für eine Substitution $\mathcal S$ mit $\mathsf{def}(\mathcal S) := \{x_1, \dots, x_n\}$ und $\mathcal S(x_i) := t_i, \ 1 \le i \le n$,

$$[x_1/t_1,\ldots,x_n/t_n].$$

Das erlaubt uns, $\varphi[x_1/t_1, \dots, x_n/t_n]$ statt φS zu schreiben.

• Für $\varphi(x_1,\ldots,x_k)\in \mathsf{FO}$ und $t_1,\ldots,t_k\in\mathcal{T}_\sigma$ schreiben wir

$$\varphi[t_1,\ldots,t_k]$$
 statt $\varphi[x_1/t_1,\ldots,x_k/t_k]$.

Stephan Kreutzer Logik WS 2022/2023 9 / 23

Notation

Notation.

• Analog zur Aussagenlogik schreiben wir für eine Substitution \mathcal{S} mit $\mathsf{def}(\mathcal{S}) := \{x_1, \dots, x_n\}$ und $\mathcal{S}(x_i) := t_i, \ 1 \leq i \leq n$,

$$[x_1/t_1,\ldots,x_n/t_n].$$

Das erlaubt uns, $\varphi[x_1/t_1, \dots, x_n/t_n]$ statt φS zu schreiben.

• Für $\varphi(x_1, \ldots, x_k) \in FO$ und $t_1, \ldots, t_k \in \mathcal{T}_{\sigma}$ schreiben wir

$$\varphi[t_1,\ldots,t_k]$$
 statt $\varphi[x_1/t_1,\ldots,x_k/t_k]$.

Vergleiche mit Methoden in Java.

Boolean phi(int
$$x_1$$
, ..., int x_k)

Indem wir x_1, \ldots, x_k spezifizieren, fixieren wir eine Ordnung der Parameter.

Stephan Kreutzer Logik WS 2022/2023 9 / 23

Das Substitutionslemma

Lemma. Sei S eine σ -Substitution. Für alle σ -Formeln φ , ψ :

$$\varphi \equiv \psi \implies \varphi \mathcal{S} \equiv \psi \mathcal{S}$$

 Stephan Kreutzer
 Logik
 WS 2022/2023
 10 / 23

Das Substitutionslemma

Lemma. Sei S eine σ -Substitution. Für alle σ -Formeln φ , ψ :

$$\varphi \equiv \psi \implies \varphi \mathcal{S} \equiv \psi \mathcal{S}$$

40000

Lemma (Ersetzungslemma).

Sei τ eine Signatur und seien φ , ψ , $\vartheta \in FO[\tau]$.

Sei ϑ eine Teilformel von ψ und $\vartheta \equiv \varphi$. Ferner, sei ψ' die Formel, die aus ψ entsteht, indem ϑ durch φ ersetzt wird.

Dann gilt $\psi \equiv \psi'$.

 Stephan Kreutzer
 Logik
 WS 2022/2023
 10 / 23

Beispiele

$$\sigma := \{+, *, <, 0, 1\}:$$

$$\mathcal{A} := (\mathbb{N}, +^{\mathcal{A}}, *^{\mathcal{A}}, <^{\mathcal{A}}, 0^{\mathcal{A}}, 1^{\mathcal{A}}):$$

Signatur der Arithmetik

Struktur über den natürlichen Zahlen mit der üblichen Interpretation von +,*,<,0,1

Beispiele.

•
$$\varphi_1(x) := \forall y (\exists z (y * z = x \rightarrow (y = 1 \lor z = 1))$$

•
$$\varphi_2 := \forall y \exists x (y < x \land \varphi_1(x))$$

Anmerkung. Hier wird φ_1 in die Formel φ_2 "eingesetzt". Im allgemeinen nicht unproblematisch, siehe nächste Woche.

$$\varphi_2$$
 "eingesetzt". Im nächste Woche. φ_2 "Eingesetzt". φ_2 "Eingesetzt". φ_3 φ_4 φ_4 φ_4 φ_4 φ_5 φ_4 φ_4 φ_5 φ_4 φ_5 φ_5

Unterformeln

Mit Hilfe der Substitution können wir nun Unterformeln benutzen.

5:4-2

 Stephan Kreutzer
 Logik
 WS 2022/2023
 11 / 23

Beispiele

$$\sigma := \{+, *, <, 0, 1\} \colon \text{ Signatur der Arithmetik}$$

$$\mathcal{A} := (\mathbb{N}, +^{\mathcal{A}}, *^{\mathcal{A}}, <^{\mathcal{A}}, 0^{\mathcal{A}}, 1^{\mathcal{A}}) \colon \text{ Struktur über den natürlichen Zahlen mit der üblichen Interpretation von } +, *, <, 0, 1$$

Beispiele.

•
$$\varphi_1(x) := \forall y (\exists z (y * z = x \rightarrow (y = 1 \lor z = 1))$$

•
$$\varphi_2 := \forall y \exists x (y < x \land \varphi_1(x))$$
 $\exists z (\varphi_1(z) \land z * z = x)$

Anmerkung. Hier wird φ_1 in die Formel φ_2 "eingesetzt". Im allgemeinen nicht unproblematisch, siehe nächste Woche.

Unterformeln

Mit Hilfe der Substitution können wir nun Unterformeln benutzen.

Stephan Kreutzer Logik WS 2022/2023 11 / 23