CS 760: Machine Learning

© Fall 2020

Homework 2: Linear Regression

Instructor: Daniel L. Pimentel-Alarcón

Due 10/13/2020

GO GREEN. AVOID PRINTING, OR PRINT 2-SIDED MULTIPAGE.

In class we studied the linear regression model $\mathbf{y} = \mathbf{X}\boldsymbol{\theta}^* + \boldsymbol{\epsilon}$, under the homoskedastic assumption $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$. In this homework you will derive the same results for the slightly more general heteroskedastic model where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}^*)$. Each subproblem is worth 10 points.

Problem 2.1. Derive an expression for the coefficient vector $\boldsymbol{\theta}$ that minimizes the mean squared error, i.e.,

$$\underset{\boldsymbol{\theta}}{\operatorname{arg\,min}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_2^2.$$

Problem 2.2. Derive an expression for the maximum likelihood estimator (MLE) of θ^* , i.e.,

$$\underset{\boldsymbol{\theta}}{\arg\max} \ \mathbb{P}(\mathbf{y}, \mathbf{X} | \boldsymbol{\theta}, \boldsymbol{\Sigma}^{\star})$$

Problem 2.3. What is the distribution of the MLE of θ^* ?

Problem 2.4. Given a new sample with feature vector \mathbf{x} , what is the MLE of the response, \hat{y} ?

Problem 2.5. Given a new sample with feature vector \mathbf{x} , what is the distribution of the MLE \hat{y} ?

Problem 2.6. Derive an expression for the MLE of Σ^* , i.e.,

$$\argmax_{\boldsymbol{\Sigma}} \ \mathbb{P}(\mathbf{y}, \mathbf{X} | \boldsymbol{\theta}^{\star}, \boldsymbol{\Sigma})$$

Problem 2.7. Consider the following vector \mathbf{y} , containing information about glucose level of three individuals, and the following data matrix \mathbf{X} containing information about height and weight of the corresponding individuals:

$$\mathbf{y} = \begin{bmatrix} 110 \\ 140 \\ 180 \end{bmatrix}, \qquad \mathbf{X} = \begin{bmatrix} 180 & 150 \\ 150 & 175 \\ 170 & 165 \end{bmatrix}.$$

Given these data

- (a) What are your maximum likelihood estimates of Σ and θ^* ?
- (b) Given a new sample with feature vector $\mathbf{x} = \begin{bmatrix} 175 & 170 \end{bmatrix}^\mathsf{T}$, what is the maximum likelihood estimate of its response $\hat{\mathbf{y}}$?
- (c) Derive a 95% confidence interval for $\hat{\mathbf{v}}$.
- (d) Would you conclude that height is a significant feature for this model? Why?
- (e) Would you conclude that weight is a significant feature for this model? Why?