Statistics II: Introduction to Inference

Problem set 6

- 1. Show that the following distributions belong to either location, or scale, or location scale families. Hence find the appropriate transformation of a random variable belonging to these distributions, such that the transformed random variable has a distribution free of the parameters θ .
 - (a) $normal(\mu, \sigma^2)$,
 - (b) exponential(λ),
 - (c) uniform $(-\theta, \theta)$,
 - (d) exponential(λ),
 - (e) $Gamma(n, \theta)$, with n known,
 - (f) normal(θ, θ^2),
 - (g) $uniform(\theta 1/2, \theta + 1/2)$.
- 2. (a) Let X_1, \ldots, X_n be a random sample of size n from a location family of distribution with location parameter θ . Show that the distribution of any function of $Y_{i,j} = \{X_i X_j\}, i, j = 1, \ldots, n$ is free of θ .
 - (b) Let X_1, \ldots, X_n be a random sample of size n from a scale family of distribution with scale parameter θ . Show that the distribution of any function of $Y = X_1^2 / \sum_{j=1} X_j^2$ and $Z = X_{(1)} / X_{(n)}$ are free of θ .
- 3. The independent random variables X_1, \ldots, X_n have common distribution

$$P(X_i \le x) = \begin{cases} 0 & \text{if } x \le 0\\ (x/\beta)^{\gamma} & \text{if } 0 < x < \beta \\ 1 & \text{if } x \ge \beta \end{cases}$$

Find a $(1-\alpha)100\%$ confidence interval for β based on the MLE of β , when γ is known.

- 4. Find a $(1-\alpha)$ confidence interval for θ , given X_1, \ldots, X_n iid with pdf
 - (a) $f_X(x;\theta) = 1, \ \theta 0.5 \le x \le \theta + 0.5.$

[Instead of the exact confidence interval, you may find a approximate confidence interval based on the asymptotic distribution of an appropriate pivot.]

- (b) $f_X(x;\theta) = 2x\theta^{-2}, 0 < x < \theta, \theta > 0.$
- 5. Let X_1, \dots, X_n be iid from $Uniform(\theta, 1)$ distribution, $\theta < 1$.
 - (a) Obtain a suitable pivot for finding a confidence interval for θ .
 - (b) Based on this test find a (1α) confidence set.
- 6. Let T be a statistic with continuous strictly decreasing CDF $F_T(\cdot;\theta)$, and α_1,α_2 be such that $\alpha_1+\alpha_2=\alpha$, for some fixed $\alpha\in(0,1)$. Suppose that for each t the functions L(t) and U(t) are defined as

$$F_T(T; U(T)) = \alpha_1$$
, and $F_T(T; L(T)) = 1 - \alpha_2$.

Then show that the random interval [L(t), U(t)] is a $(1-\alpha)$ confidence interval for θ .

- 7. Let X be a single observation from a beta $(\theta, 1)$ distribution. Let $Y = -(\log X)^{-1}$. Evaluate the confidence coefficient, β , of the interval [y/2, y].
- 8. A confidence interval $[L(\mathbf{X}), U(\mathbf{X})]$ for the parameter θ with confidence coefficient at least 1α is called *unbiased* if $P_{\theta}(L(\mathbf{X}) < \theta < U(\mathbf{X})) \ge 1 \alpha$, and $P_{\theta}(L(\mathbf{X}) < \theta' < U(\mathbf{X})) \le 1 \alpha$ for all $\theta' \ne \theta$. Based on a random sample of size n from $uniform(0, \theta)$, show that the symmetric confidence interval obtained from the pivot $X_{(n)}/\theta$ is unbiased for sufficiently large n.
- 9. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu_0, \sigma^2)$ where μ_0 is known.
 - (a) Find the UMVUE of σ^2 .
 - (b) Using the UMVUE, find an appropriate pivot for σ^2 , and its distribution.
 - (c) Using this pivot find a $(1-\alpha)$ -confidence interval for σ^2 .
- 10. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \texttt{exponential}(\theta)$.
 - (a) Find an appropriate transformation $W_i = T(X_i, \theta)$ such that the distribution of W_i does not depend on $1/\theta$.
 - (b) Consider two pivots, one based on W_1 only, and another involving the UMVUE of $1/\theta$.
 - (c) Find the symmetric (1α) -confidence intervals using the two pivots obtained in part (b).
 - (d) Generate n = 10 IID samples from exponential(5) distribution. Based on the samples obtain realizations of the two confidence intervals for $\alpha = 0.1, 0.05, 0.025$.