Name Date

AI UNIT TEST 2

1) Each Question is of 1 mark 2) Quiz contains 30 Questions

1.	Α	heu	ristic	is	а	wav	of	tr	vina	points:	1
_	-				•		•		,	ponico.	_

- O To discover something or an idea embedded in a program
- O To search and measure how far a node in a search tree seems to be from a
- O To compare two nodes in a search tree to see if one is better than the other
- Only (a) and (b)
- Only (a), (b) and
- (c)

2. Consider the following statements related to AND-OR Search algorithm. S1: A solution is a subtree that has a goal node at every leaf. S2: OR nodes are analogous to the branching in a deterministic environment. S3: AND nodes are analogous to the branching in a non-deterministic environment. Which of the following is true referencing the above statements? Choose the correct answer from the code given below: points: 1

- S1 False, S2 True, S3 -True O S1 - True, S2 - True, S3 -False O S1 - True, S2 - True, S3 -True O S1 - False, S2 - True, S3 -
- False

3. tee+let=All where E=5 find A+L+L points: 1

- O 17
- \bigcirc 9
- \bigcirc 12
- O 10

- 4. A* algorithm uses f' = g + h' to estimate the cost of getting from the initial state to the goal state, where g is a measure of the cost of getting from initial state to the current node and the function h' is an estimate of the cost of getting from the current node to the goal state. To find a path involving the fewest number of steps, we should set *points:* 1
 - \bigcirc g = 1
 - \bigcirc g = 0
 - \bigcirc h' = 0
 - \bigcirc h' = 1
- 5. Consider following sentences regarding A * , an informed search strategy in Artificial Intelligence (AI). (a) A * expands all nodes with f(n) < C *. (b) A * expands no nodes with $f(n) \ge C *$. (c) Pruning is integral to A * . Here, C * is the cost of the optimal solution path. Which of the following is correct with respect to the above statements? *points:* 1
 - O Both statement (a) and statement (b) are true.
 - O Both statement (a) and statement (c) are
 - O Both statement (b) and statement (c) are true
 - All the statements (a), (b) and (c) are true.
- 6. Consider the following AO graph: Which is the best node to expand next by AO* algorithm? points: 1

- \bigcirc A
- \bigcirc B
- \circ c
- B and

C

"INC	onsider the following bachelor Prolog program. What would it be the CORRECT" result of the following query? bachelor(P):- male(P), not ried(P). male(henry). male(tom). married(tom). points: 1
	?- bachelor(henry).
	yes
0	?- bachelor(tom).
	no
0	?- bachelor(Who).
	Who=henry
	?- married(X). X=tom
0	?- male(P).
	no
Thu	he predicate "length(L,N)" is supposed to bind N to be the length of L. s, "length([a,b,c,d],N)" should succeed with N bound to 4. Which of the owing definitions is correct: (Only one is.) $points: 1$
0	length([],0). length([X L],N) :- length(L,N) + 1.
0	length([],0). $length([X L],N)$:- $length(L,N)$, N is $N+1$.
0	length([],0). $length([X L], N+1)$:- $length(L,N)$.
	length([],0). length([X L], N) :- N1 is N-1,
	length(L,N1).
0	length([],0). length([X L],N) :- length(L,N1), N is
	N1+1.
pro	Which one from the options would return true/yes for given prolog gram? boy(john,123). girl(jane,234). student(john,123). points: 1
0	
\bigcirc	girl(jane,x). ?-
O	boy('john',123).
\bigcirc	All of
Ŭ	above.
0	None of
	above.
10.	A prolog query can be made up of only two subgoals. points: 1
0	True
0	False

11.	Which one of the following is not a variable in prolog? points: 1
0	X_yz
0	g_23A
0	'_Xyz'
0	B & C both
	Which function is used to calculate the feasibility of whole game tree?
poi	ints: 1
0	Evaluation
	function
	Transposition
	All afters
O	All of the mentioned
	mentioned
	A game can be formally defined as a kind of search problem with the
foll	owing components: points: 1
0	Initial State
0	Successor
_	Function
_	Terminal Test
O	All of the
	mentioned
14.	The initial state and the legal moves for each side define the for
the	game. points: 1
0	Search Tree
0	Game Tree
0	State Space
	Search
0	Forest

15. Consider the following minimax game tree search points: 1

- \bigcirc 3
- \bigcirc 4
- O 5
- \bigcirc 6

16. In alpha-beta pruning, is used to cut off the search at maximizing level only and is used to cut off the search at minimizing level only. *points:* 1

- O alpha, beta
- O beta, alpha
- O alpha, alpha
- O beta, beta

17. An expert system shell is an expert system without points: 1

- O domain knowledge
- \bigcirc explanation facility
- O reasoning with knowledge
- all of the above

18. Match the following components of an expert system: a. I/O interface i. Accepts user's queries and responds to question through I/O interface b. Explanation module ii. Contains facts and rules about the domain c. Inference engine iii. Gives the user, the ability to follow inferencing steps at any time during consultation d. Knowledge base iv. Permits the user to communicate with the system in a natural way Code a b c d points: 1

- O i iii iv ii
- O iv iii i ii
- O i iii ii iv
- O iv i iii ii

19.	The major tasks of NLP includes points: 1
0	Automatic Summarization
0	Discourse Analysis
0	Machine
	Translation
0	All of the
	mentioned
	High level knowledge which relates to the use of sentences in different texts and how the context affect the meaning of the sentences? $points: 1$
0	Morphological
0	Syntactic
0	Semantic
0	Pragmatic
21.	One of the main challenge/s of NLP is points: 1
0	Handling Ambiguity of
	Sentences
0	Handling
	Tokenization
0	Handling POS-
	Tagging
0	All of the
	mentioned
22.	Natural Language generation is the main task of Natural language
pro	cessing. points: 1
0	True
0	False
23.	Hill-Climbing algorithm terminates when, points: 1
0	Stopping criterion
	met
0	Global Min/Max is
	achieved
0	No neighbor has higher
	value
0	All of the
	mentioned

	Genetic algorithm (or GA) is a variant of stochastic beam search in which cessor states are generated by combining two parent states, rather than
by ı	modifying a single state. points: 1
0	True
0	False
25.	Mark two main features of Genetic Algorithm points: 1
0	Fitness function & Crossover
	techniques
0	Crossover techniques & Random
_	mutation
0	Individuals among the population & Random
	mutation
O	Random mutation & Fitness function
	Tunction
26.	Many words have more than one meaning; we have to select the meaning
	ch makes the most sense in context. This can be resolved by <i>points:</i> 1
\bigcirc	Fuzzy Logic
	Word Sense
0	Disambiguation
0	Shallow Semantic Analysis
	All of the
	mentioned
27.	Semantic Networks is points: 1
0	A way of representing
	knowledge
\circ	Data
	Structure
0	Data
_	Type
O	None of the
	mentioned
28.	There exists two way to infer using semantic networks. points: 1
0	Intersection
\cup	Search
\circ	Inheritance
	Search
0	True
$\overline{\bigcirc}$	False

	All of the following are suitable problems for genetic algorithms EXCEPT $nts: 1$
ρυι	III.S. I
0	dynamic process control
0	pattern recognition with complex patterns
0	simulation of biological models
0	simple optimization with few variables
	Following are the elements, which constitutes to the frame structure. Ints: $oldsymbol{1}$
0	Facts or Data
0	Procedures and default values
0	Frame names
0	Frame reference in hierarchy