Mathematical Induction

Invariant: A property that is true about our algorithm no matter what. Rosen p375

Theorem: Statement that can be shown to be true, usually an important one.

Rosen p81

Less important theorems can be called **proposition**, **fact**, **result**.

A less important theorem that is useful in proving a theorem is called a **lemma**.

A theorem that can be proved directly after another one has been proved is called a **corollary**

Theorem: A robot on an infinite 2-dimensional integer grid starts at (0,0) and at each step moves to diagonally adjacent grid point. This robot can / cannot (*circle one*) reach (1,0).

Definition The set of positions the robot can visit P is defined by:

are

Basis Step: $(0,0) \in P$

Recursive Step: If $(x, y) \in P$, then

Lemma: $\forall (x,y) \in P((x+y \text{ is an even integer}))$

Proof of theorem using lemma: To show is $(1,0) \notin P$. Rewriting the lemma to explicitly restrict the domain of the universal, we have $\forall (x,y) \ ((x,y) \in P \to (x+y) \text{ is an even integer})$. Since the universal is true, $((1,0) \in P \to (1+0) \text{ is an even integer})$ is a true statement. Evaluating the conclusion of this conditional statement: By definition of long division, since $1 = 0 \cdot 2 + 1$ (where $0 \in \mathbb{Z}$ and $1 \in \mathbb{Z}$ and $0 \le 1 < 2$ mean that 0 is the quotient and 1 is the remainder), $1 \mod 2 = 1$ which is not 0 so the conclusion is false. A true conditional with a false conclusion must have a false hypothesis. Thus, $(1,0) \notin P$, QED. \square

Proof of lemma by structural induction:

Basis Step

Recursive Step. Consider arbitrary $(x, y) \in P$. To show is:

(x+y) is an even integer \rightarrow (sum of coordinates of next position is even integer)

Assume as the induction hypothesis, IH that:

"New"! Proof by Mathematical Induction (Rosen 5.1 p329)

To prove a universal quantification over the set of all integers greater than or equals some base integer b:

Basis Step: Show the statement holds for b.

Recursive Step: Consider an arbitrary integer n greater than or equal to b, assume (as the **induction hypothesis**) that the property holds for n, and use this and other facts to prove that the property holds for n + 1

Recall that the set of linked lists of natural numbers L

Basis Step: $[] \in L$

Recursive Step: If $l \in L$ and $n \in \mathbb{N}$ then

 $(n,l) \in L$

Recall that length of a linked list of natural rebers L, $length: L \to \mathbb{N}$ is defined by:

Basis step: length([]) = 0

Recursive step: If $l \in L$ and $n \in \mathbb{N}$

length((n, l)) = 1 + length(l)

Prove or disprove: $\forall n \in \mathbb{N} \ \exists l \in L \ (\ length(l) = n \)$

Proof of \star by mathematical case assumption). Calculating: induction (b = 8)

Basis step: WTS property is true about 8

Recursive step: Consider an arbitrary $n \geq 8$. Assume (as the IH) that there are nonnegative integers x, y such that n = 5x + 3y. WTS that there are nonnegative integers x', y' such that n + 1 = 5x' + 3y'. We consider two cases, depending on whether any 5 cent coins are used for n.

Case 1: Assume $x \geq 1$. Define x' = x - 1 and y' = y + 2 (both in N by Galculatingtion).

$$5x' + 3y' \stackrel{\text{by def}}{=} 5(x - 1) + 3(y + 2) = 5x - 5 + 3y + 6$$

$$\stackrel{\text{rearranging}}{=} (5x + 3y) - 5 + 6$$

$$\stackrel{\text{IH}}{=} n - 5 + 6 = n + 1$$

Case 2: Assume x = 0. Therefore n = 3y, so since $n \ge 8$, $y \ge 3$. Define x' = 2 and y' = y - 3 (both in N by

$$5x' + 3y' \stackrel{\text{by def}}{=} 5(2) + 3(y - 3) = 10 + 3y - 9$$

$$\stackrel{\text{rearranging}}{=} 3y + 10 - 9$$

$$\stackrel{\text{IH and case}}{=} n + 10 - 9 = n + 1$$

Proof of \star by strong induction (b = 8 and j = 2)

Basis step: WTS property is true about 8, 9, 10

Recursive step: Consider an arbitrary $n \ge 10$. Assume (as the IH) that the property is true about each of $8, 9, 10, \ldots, n$. WTS that there are nonnegative integers x', y' such that n + 1 = 5x' + 3y'.