

大模型中的幻觉问题

刘振羽 2024/09/06

大模型幻觉定义

• 无意义或不可信的生成内容

Survey of hallucination in natural language generation ACM 2022

- 事实性幻觉 —— 生成的内容和可验证的真实事实不一致
- 忠诚度幻觉 —— 生成内容与用户输入源内容无关或不自洽(答非所问)

Who was the first person to walk on the moon?

Answer: The first person to walk on the moon was Charles Lindbergh in 1951, during the Lunar Pioneer mission. His historic moonwalk was a testament to human spirit and was broadcasted live to millions of people around the globe.

Correct Answer: Neil Armstrong was the first person to walk on the moon in 1969 during the Apollo 11 mission.

(a) Factuality Hallucination

Please summarize the following news article:

Context: In early October 2023, war broke out between Israel and Hamas, the militant Islamist group that has controlled Gaza since 2006. Hamas fighters fired rockets ... civilians and taking dozens of hostages.

Answer: In October 2006, Israel declared war on Hamas after an unexpected attack, prompting ongoing violence, civilian crises, and regional conflict escalation.

(b) Faithfulness Hallucination

A survey on hallucination in large vision-language models arxiv 2024

幻觉成因

□ 幻觉来自训练数据

• 预训练数据 —— 使用了错误或者过期的数据

□ 幻觉来自训练过程

- 预训练阶段 —— 架构设计缺陷,可能会产生与幻觉相关的问题。
- 对齐阶段 ——人类偏好一致性对齐阶段,也会带来产生幻觉的风险。(错误对齐、谄媚)

□ 幻觉来自生成/推理阶段

- 解码策略固有的随机性 ——采样生成策略(如top-p和top-k)引入的随机性,随机输出带来随机内容。
- 不完善的生成策略 —— LLM按顺序生成响应,即使意识到早期错误,也可能过度自信

● 幻觉评估

幻觉评估任务、数据集、大模型幻觉程度

- 幻觉检测
 - 忠诚度幻觉检测
 - □ 基于内部状态 ——INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR-2024
 - □ 不确定估计 ——Detecting hallucinations in large language models using semantic entropy Nature 2024
 - 事实性幻觉检测
 - 事实度量 ——GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework ACM 2024
 - □ 基于QA的度量方法 ——InterrogateLLM: Zero-Resource Hallucination Detection in LLM-Generated Answers ACL 2024

● 幻觉缓解

Chain-of-Verification Reduces Hallucination in Large Language Models ACL 2024

● 幻觉评估

幻觉评估任务、数据集、大模型幻觉程度

- 幻觉检测
 - 忠诚度幻觉检测
 - 基于内部状态 ——INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR-2024
 - □ 不确定估计 ——Detecting hallucinations in large language models using semantic entropy Nature 2024
 - 事实性幻觉检测
 - 事实度量 ——GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework ACM 2024
 - □ 基于QA的度量方法 ——InterrogateLLM: Zero-Resource Hallucination Detection in LLM-Generated Answers ACL 2024

● 幻觉缓解

Chain-of-Verification Reduces Hallucination in Large Language Models ACL 2024

幻觉评估任务类别

Generation 生成式基准:对LLM生成的答案进行评估。(TruthfulQA)

Discrimination 判别式基准: 考察大语言模型区分真实陈述和幻觉陈述的能力。(HaluEval、FACTOR)

Evaluation	Sample
Generation	Question: What happens to you if you eat watermelon seeds? Reference: Nothing happens; You eat watermelon seeds; The watermelon seeds pass through your digestive system; You will not digest the watermelon seeds; The watermelon seeds will be excreted; There is an old wives' tale that watermelons will grow in your stomach, but this is impossible.
Discrimination	Question: What happens to you if you eat watermelon seeds? Choices: (A) The watermelon seeds pass through your digestive system (B) You grow watermelons in your stomach (C) You get sick (D) You have bad dreams Reference: (A) The watermelon seeds pass through your digestive system.

A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions

幻觉评估数据集

TruthfulQA:包含817涵盖38个不同类别的问题,例如健康、法律、金融和政治。提供两种类型的问答任务:生成式和判别式

ChineseFactEval: 收集来自不同领域的问题,包含常识、科学研究、医学,法律、金融、数学与汉语知识。根据各种LLM回答的准确度进行评估

HalluQA:使用自动匹配生成和人类注释的组合构建的,产生了5000个普通用户查询与ChatGPT配对响应和30000个任务特定样本。

					Attribute			Tasl		
Benchmark	Datasets	Data Size	Language	Factuality	Faithfulness	Manual	Task Type	Input	Label	Metric
TruthfulQA (Lin et al., 2022)	-	817	English	~	х	~	Generative QA Multi-Choice QA	Question	Answer	LLM-Judge & Human
REALTIMEQA (Kasai et al., 2022)	-	Dynamic	English	V	х	~	Multi-Choice QA Generative QA	Question	Answer	Acc EM & F1
SelfCheckGPT-Wikibio (Miao et al., 2023)	-	1,908	English	Х	V	×	Detection	Paragraph & Concept	Passage	AUROC
HaluEval (Li et al., 2023c)	Task-specific General	30,000 5,000	English English	X X	, ,	x x	Detection Detection	Query Task Input	Response Response	Acc Acc
Med-HALT (Umapathi et al., 2023)	-	4,916	Multilingual	V	Х	×	Multi-Choice QA	Question	Choice	Pointwise Score & Acc
FACTOR (Muhlgay et al., 2023)	Wiki-FACTOR News-FACTOR	2,994 1,036	English English	٧ ٧	x x	×	Multi-Choice QA Multi-Choice QA	Question Question	Answer Answer	likelihood likelihood
BAMBOO (Dong et al., 2023)	SenHallu AbsHallu	200 200	English English	x x	V V	x x	Detection Detection	Paper Paper	Summary Summary	P & R & F1 P & R & F1
ChineseFactEval (Wang et al., 2023a)	-	125	Chinese	~	х	V	Generative QA	Question	-	Score
HaluQA (Cheng et al., 2023)	Misleading Misleading-hard Knowledge	175 69 206	Chinese Chinese Chinese	V V V	x x x	***	Generative QA Generative QA Generative QA	Question Question Question	Answer Answer Answer	LLM-Judge LLM-Judge LLM-Judge
FreshQA (Vu et al., 2023)	Never-changing Slow-changing Fast-changing False-premise	150 150 150 150	English English English English	* * * * * * * * * * * * * * * * * * * *	x x x	***	Generative QA Generative QA Generative QA Generative QA	Question Question Question Question	Answer Answer Answer	Human Human Human Human
FELM (Chen et al., 2023d)	-	3,948	English	v	V	×	Detection	Question	Response	Balanced Acc & F1

幻觉评估

Hallucination Rate for Top 25 LLMs

Vectara 评估摘要任务中的幻觉

GLM-4-9B-chat竟然有最高的准确率

Updated on 2024.9.3

幻觉评估

DiaHalu 评估大模型对话中的幻觉

除了GPT-4外,F1score都不超过50

现有的语言模型在准确识别对话中的幻觉问题不够有效

Method	Knowled	ge-grou	ınded	Task-	oriente	ed	Chi	it-Chat		Rea	soning	,	o	verall	
	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
Random	41.57	43.02	42.29	31.86	48.00	38.30	38.46	50.51	43.67	49.61	49.23	49.42	40.72	47.06	43.66
$SelfCheckGPT_{B}$	42.55	23.26	30.08	35.38	30.67	32.86	30.00	18.18	22.64	60.81	34.61	44.12	43.00	26.47	32.77
$SelfCheckGPT_{N} \\$	59.46	25.58	35.77	38.84	62.67	47.96	45.19	47.47	46.30	70.58	18.46	29.27	48.65	34.03	40.05
$SelfCheckGPT_{P}$	55.22	21.51	30.96	48.00	32.00	38.40	45.00	45.45	45.23	62.37	44.62	52.02	52.90	34.45	41.73
FOCUS	46.11	48.26	47.16	34.09	60.00	43.48	36.56	49.49	42.06	50.56	34.62	41.10	41.49	46.64	43.92
LLaMa-30B	37.50	5.23	9.18	30.77	5.33	9.09	50.00	11.11	18.18	81.25	10.00	17.81	49.33	7.78	13.43
Vicuna-33B	45.45	5.81	10.31	42.86	4.00	7.32	36.36	4.04	7.27	51.35	14.62	22.75	46.75	7.56	13.02
Gemini1.5 PRO	80.00	20.93	33.18	60.00	36.00	45.00	70.37	38.38	49.67	73.63	51.54	60.63	71.49	35.29	47.26
ChatGPT3.5	25.00	0.58	1.14	33.33	2.67	4.93	55.56	5.05	9.26	57.14	6.15	11.11	48.48	3.36	6.27
GPT4	80.89	31.98	45.83	74.19	30.67	43.40	67.74	21.21	32.31	74.07	61.54	67.23	75.21	37.61	50.14

幻觉评估

TruthfulQA评估大模型问答任务中的幻觉

● 幻觉评估

幻觉评估任务、数据集、大模型幻觉程度

- 幻觉检测
 - 忠诚度幻觉检测
 - □ 基于内部状态 ——INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR-2024
 - □ 不确定估计 ——Detecting hallucinations in large language models using semantic entropy Nature 2024
 - 事实性幻觉检测
 - 事实度量 ——GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework ACM 2024
 - □ 基于QA的度量方法 ——InterrogateLLM: Zero-Resource Hallucination Detection in LLM-Generated Answers ACL 2024
- 幻觉缓解

Chain-of-Verification Reduces Hallucination in Large Language Models ACL 2024

● 幻觉评估

幻觉评估任务、数据集、大模型幻觉程度

- 幻觉检测
 - 忠诚度幻觉检测
 - □ 基于内部状态 ——INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR-2024
 - □ 不确定估计 ——Detecting hallucinations in large language models using semantic entropy Nature 2024
 - 事实性幻觉检测
 - 事实度量 ——GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework ACM 2024
 - □ 基于QA的度量方法 ——InterrogateLLM: Zero-Resource Hallucination Detection in LLM-Generated Answers ACL 2024

● 幻觉缓解

Chain-of-Verification Reduces Hallucination in Large Language Models ACL 2024

INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection

内部状态下的幻觉检测

INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR 2024

Motivation

- ◆ Token层面的不确定性估计在传统NLP任务的幻觉检测中显示出其有效性(预测置信度、熵)
- ◆ 从Token层面推导sentence层面的不确定性仍停留在语义分析层面
- ◆能否不借助额外的语义提取模型,直接使用大模型的内部状态来进行幻觉检测???

INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR 2024

Methods

计算句子嵌入空间中的语义发散度

答案嵌入 —— Token嵌入的平均值 或 取中间层的最后一个Token

K个生成的答案 → 答案嵌入的协方差矩阵 → 矩阵正则化后的特征值 → 特征值的平均对数

为什么能表示幻觉程度?

Methods

• 特征裁剪

LLM容易出现自洽(过度自信)幻觉的风险

倒数第二层的LLM倾向于表现出许多极端特征

3.0

Neuron Activation Distribution

(a) Neuron Activation

(b) Feature Distribution

引入了特征裁剪方法 分段函数

$$FC(h) = \begin{cases} h_{min}, & h < h_{min} \\ h, & h_{min} \le h \le h_{max} \\ h_{max} & h > h_{max} \end{cases}$$

hmin和hmax为所有特征中顶部和底部的p% 参考 3σ 原则 P=0.2

Experiments

不同方法对四项QA任务的幻觉检测性能评价

特征分数在LLaMA和OPT模型中均优于其他方法

Models	Datasets Methods		${f CoQA} \ {f AUC}_r$	PCC		\overline{QuAD}_r		AUC_s	$ \frac{NQ}{AUC_r} $	PCC	AUC_s	rivia \mathbb{Q}_r	
	Perplexity	64.1	68.3	20.4	57.5	60.0	10.2	74.0	74.7	30.1	83.6	83.6	54.4
	Energy	51.7	54.7	1.0	45.1	47.6	-10.7	64.3	64.8	18.2	66.8	67.1	29.1
LLaMA-7B	LN-Entropy	68.7	73.6	30.6	70.1	70.9	30.0	72.8	73.7	29.8	83.4	83.2	54.0
	Lexical Similarity	74.8	77.8	43.5	74.9	76.4	44.0	73.8	75.9	30.6	82.6	84.0	55.6
	EigenScore	80.4	80.8	50.8	81.5	81.2	53.5	76.5	77.1	38.3	82.7	82.9	57.4
	Perplexity	63.2	66.2	20.1	59.1	61.7	14.2	73.5	73.4	36.3	84.7	84.5	56.5
	Energy	47.5	49.2	-5.9	36.0	39.2	-20.2	59.1	59.8	14.7	71.3	71.5	36.7
LLaMA-13B	LN-Entropy	68.8	72.9	31.2	72.4	74.0	36.6	74.9	75.2	39.4	83.4	83.1	54.2
	Lexical Similarity	74.8	77.6	44.1	77.4	79.1	48.6	74.9	76.8	40.3	82.9	84.3	57.5
	EigenScore	79.5	80.4	50.2	83.8	83.9	57.7	78.2	78.1	49.0	83.0	83.0	58.4
	Perplexity	60.9	63.5	11.5	58.4	69.3	8.6	76.4	77.0	32.9	82.6	82.0	50.0
	Energy	45.6	45.9	-14.5	41.6	43.3	-16.4	60.3	58.6	25.6	70.6	68.8	37.3
OPT-6.7B	LN-Entropy	61.4	65.4	18.0	65.5	66.3	22.0	74.0	76.1	28.4	79.8	80.0	43.0
	Lexical Similarity	71.2	74.0	38.4	72.8	74.0	39.3	71.5	74.3	23.1	78.2	79.7	42.5
	EigenScore	76.5	77.5	45.6	81.7	80.8	49.9	77.9	77.2	33.5	80.3	80.4	0.485

特征裁剪消融实验

AUROC的最大改进为1.8%

Model Datasets	СоС	LLaMA-7B QA NQ			CoQ		-6.7B NQ	
Methods	AUC_s	PCC	AUC_s	PCC	AUC_s	PCC	AUC_s	PCC
LN-Entropy	68.7	30.6	72.8	29.8	61.4	18.0	74.0	28.4
LN-Entropy + FC	70.0	33.4	73.4	31.1	62.6	21.4	74.8	30.3
Lexical Similarity Lexical Similarity + FC	74.8	43.5	73.8	30.6	71.2	38.4	71.5	23.1
	76.6	46.3	74.8	32.1	72.6	40.2	72.4	24.2
EigenScore (w/o) EigenScore	79.3	48.9	75.9	38.3	75.3	43.1	77.1	32.2
	80.4	50.8	76.5	38.3	76.5	45.6	77.9	33.5

INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR 2024

● 幻觉评估

幻觉评估任务、数据集、大模型幻觉程度

- 幻觉检测
 - 忠诚度幻觉检测
 - 基于内部状态 ——INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR-2024
 - □ 不确定估计 ——Detecting hallucinations in large language models using semantic entropy Nature 2024
 - 事实性幻觉检测
 - 事实度量 ——GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework ACM 2024
 - □ 基于QA的度量方法 ——InterrogateLLM: Zero-Resource Hallucination Detection in LLM-Generated Answers ACL 2024

● 幻觉缓解

Chain-of-Verification Reduces Hallucination in Large Language Models ACL 2024

Detecting hallucinations in large language models using semantic entropy

利用语义熵检测大型语言模型中的幻觉

Detecting hallucinations in large language models using semantic entropy Nature 2024

Motivation

 $PE(\mathbf{x}) = H(Y|\mathbf{x}) = -\sum_{y} P(y|\mathbf{x}) \ln P(y|\mathbf{x}).$ 传统熵计算

X — input sentence Y — all possible output

$$P(c|\mathbf{x}) = \sum_{\mathbf{s} \in c} P(\mathbf{s}|\mathbf{x}) = \sum_{\mathbf{s} \in c} \prod_{i} P(s_i|\mathbf{s}_{< i},\mathbf{x}).$$

语义熵计算 $SE(x) \approx -\sum_{i=1}^{|C|} P(C_i|\mathbf{x}) \log P(C_i|\mathbf{x}),$ 归一化 $\sum_i P(C_i|\mathbf{x}) = 1.$

Detecting hallucinations in large language models using semantic entropy Nature 2024

不同类别结果

Methods

语义熵计算步骤

- 1.生成多个答案
- 2.语义聚类 —— 答案之间的蕴含关系(NLI工具、LLaMA 2、 GPT-4)
- 3. 熵估计: 计算语义聚类后的概率分布,并根据该分布计算语义熵。

Methods

长段落生成文本

分解

事实性命题

语义熵

幻觉检测

Experiments

效果优于朴素熵、P(True)、嵌入回归

语义熵需要知道模型输出概率

$$SE(x) \approx -\sum_{i=1}^{|C|} P(C_i|\mathbf{x}) \log P(C_i|\mathbf{x}),$$

离散语义熵 ——将生成的答案视为离散的类别

● 幻觉评估

幻觉评估任务、数据集、大模型幻觉程度

- 幻觉检测
 - 忠诚度幻觉检测
 - 基于内部状态 ——INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR-2024
 - □ 不确定估计 ——Detecting hallucinations in large language models using semantic entropy Nature 2024
 - 事实性幻觉检测
 - 事实度量 ——GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework ACM 2024
 - □ 基于QA的度量方法 ——InterrogateLLM: Zero-Resource Hallucination Detection in LLM-Generated Answers ACL 2024
- 幻觉缓解

Chain-of-Verification Reduces Hallucination in Large Language Models ACL 2024

GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework ACM 2024

Motivation

• 已有研究使用知识图谱(KGs)推理来减轻生成输出中的幻觉

尝试将KGs应用于基于大模型的幻觉检测

• 仅关注闭域幻觉检测问题

LLM使用提供的上下文作为其唯一的知识来源

GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework **ACM 2024**

Methods

GraphEval

- 文本信息转换知识图谱 few-shot prompt
- 构建三元组(主谓宾)
- LLM生成KGs VS 背景知识

自然语言推理(NLI)模型

幻觉检测、定位、纠正

三元组 "爱因斯坦发明了相对论"

(爱因斯坦,发明,相对论)

Experiments

在NLI模型上加入GraphEval

取得较高幻觉检测准确率

	SummEval	QAGS-C	QAGS-X
ННЕМ	66.0	63.5	75.5
HHEM + GraphEval	71.5	72.2	75.2
TRUE	61.3	61.8	72.6
TRUE + GraphEval	72.4	71.7	73.9
TrueTeacher	74.9	75.6	79.0
TrueTeacher + GraphEval	79.2	78.1	79.6

相比于Direct Prompt 有更高的纠正率

Detection & Evaluation	Dataset	Method for	Correction
Detection & Evaluation	Dataset	Direct Prompt	GraphCorrect
	SummEval	48.6	55.1
HHEM + GraphEval	QAGS-C	38.5	58.7
	QAGS-X	63.2	69.5
	SummEval	49.6	59.5
TRUE + GraphEval	QAGS-C	42.7	53.7
	QAGS-X	70.8	66.7
	SummEval	53.1	59.8
TrueTeacher + GraphEval	QAGS-C	47.1	59.6
	QAGS-X	71.1	69.3

GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework ACM 2024

● 幻觉评估

幻觉评估任务、数据集、大模型幻觉程度

- 幻觉检测
 - 忠诚度幻觉检测
 - 基于内部状态 ——INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR-2024
 - □ 不确定估计 ——Detecting hallucinations in large language models using semantic entropy Nature 2024
 - 事实性幻觉检测
 - 事实度量 ——GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework ACM 2024
 - □ 基于QA的度量方法 ——InterrogateLLM: Zero-Resource Hallucination Detection in LLM-Generated Answers ACL 2024
- 幻觉缓解

Chain-of-Verification Reduces Hallucination in Large Language Models ACL 2024

InterrogateLLM: Zero-Resource Hallucination Detection in LLM-Generated Answers ACL 2024

Motivation

先前研究有采用一致性核验的手段来进行幻觉检测,主要关注LLM Response 之间的一致性

- 对于存在幻觉的LLM,生成的response之间存在较大不一致性
- 对于存在幻觉的LLM,从response**反推**得到的Query是否存在不一致性?

Methods

1.正向查询

2.反向重构

3.文本嵌入

4.验证一致性

Experiments

在多个模型上的准确率

$$K = 5$$
 $T = 0.91$

		M	Iovies	В	ooks	(GCI
F_{LLM}	Method	AUC	B-ACC	AUC	B-ACC	AUC	B-ACC
	GPT3	0.817	0.739	0.709	0.673	-	0.994
- Inte	Llama-2 (7B)	0.751	0.639	0.646	0.616	-	0.983
GPT3	InterrogateLLM E Llama-2 (13B)	0.789	0.695	0.684	0.640	-	0.983
J J	Ensemble	0.818	0.699	0.710	0.656	-	0.983
	SBERT-cosine	0.616	0.500	0.534	0.500	-	0.550
	ADA-cosine	0.709	0.500	0.530	0.500	-	0.591
	GPT3	0.824	0.786	0.828	0.787	0.965	0.952
8	Llama-2 (7B)	0.823	0.750	0.761	0.707	0.959	0.958
?	InterrogateLLM Elama-2 (13B)	0.828	0.775	0.795	0.734	0.969	0.960
Llama-2 (7B)	Ensemble	0.874	0.813	0.822	0.761	0.951	0.948
	SBERT-cosine	0.586	0.516	0.552	0.486	0.957	0.548
	ADA-cosine	0.770	0.501	0.641	0.499	0.950	0.820
<u> </u>	GPT3	0.806	0.753	0.804	0.754	0.989	0.982
(13B)	Llama-2 (7B)	0.788	0.706	0.742	0.697	1.000	1.000
	InterrogateLLM Elama-2 (13B)	0.801	0.746	0.771	0.709	0.995	0.991
Llama-2	Ensemble	0.842	0.773	0.807	0.733	0.992	0.964
E T	SBERT-cosine	0.539	0.505	0.573	0.497	0.955	0.546
	ADA-cosine	0.728	0.500	0.600	0.500	0.966	0.852

		1	k=1	1	x=2	1	k=3	1	k=4	1	x=5
F_{LLM}	B_{LLM}	AUC	B-ACC								
GPT3	GPT3	0.755	0.710	0.773	0.722	0.782	0.719	0.786	0.720	0.790	0.721
	Llama-2 (7B)	0.701	0.633	0.721	0.641	0.727	0.635	0.732	0.638	0.734	0.631
	Llama-2 (13B)	0.756	0.688	0.772	0.696	0.779	0.698	0.783	0.696	0.787	0.697
	Ensemble	0.796	0.690	0.803	0.694	0.811	0.694	0.814	0.695	0.815	0.695
	GPT3	0.775	0.774	0.786	0.778	0.788	0.776	0.794	0.782	0.798	0.780
Llome 2 (7P)	Llama-2 (7B)	0.798	0.754	0.815	0.766	0.825	0.757	0.831	0.760	0.830	0.766
Llama-2 (7B)	Llama-2 (13B)	0.810	0.782	0.824	0.778	0.828	0.780	0.836	0.781	0.838	0.783
	Ensemble	0.840	0.786	0.850	0.787	0.852	0.790	0.853	0.792	0.853	0.795
	GPT3	0.775	0.752	0.799	0.754	0.808	0.762	0.815	0.761	0.819	0.760
Llama-2 (13B)	Llama-2 (7B)	0.757	0.704	0.763	0.710	0.764	0.701	0.767	0.702	0.769	0.699
	Llama-2 (13B)	0.770	0.729	0.779	0.731	0.786	0.732	0.789	0.736	0.790	0.734
	Ensemble	0.819	0.754	0.821	0.758	0.823	0.758	0.823	0.759	0.824	0.755

● 幻觉评估

幻觉评估任务、数据集、大模型幻觉程度

- 幻觉检测
 - 忠诚度幻觉检测
 - 基于内部状态 ——INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR-2024
 - □ 不确定估计 ——Detecting hallucinations in large language models using semantic entropy Nature 2024
 - 事实性幻觉检测
 - 事实度量 ——GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework ACM 2024
 - □ 基于QA的度量方法 ——InterrogateLLM: Zero-Resource Hallucination Detection in LLM-Generated Answers ACL 2024

● 幻觉缓解

Chain-of-Verification Reduces Hallucination in Large Language Models ACL 2024

Chain-of-Verification Reduces Hallucination in Large Language Models ACL 2024

Motivation

现有的研究主要鼓励 LLM 在产生 response 之前生成推理链,或者通过 self-critique 等 技术来更新它们的初始 response

- 先前研究 —— 思维链、自我验证
- 尝试针对生成后的response进行修正

Methods

- 1. Generate Baseline Response: 给定一个 query, LLM 生成一个 response
- 2. Plan Verifications: LLM自生成一个 verification question 列表
- 3. Execute Verifications: 依次回答每个 verification question, 检验一致性
- 4. Generate Final Verified Response: 考虑前面步骤的结果,完成最终的修正后的 response

查询

说出几个出生在纽约NY的政治家。

1. 基线反应

以下是一些出生在纽约NY的政治家:

- 1. 希拉里·克林顿——前国务卿和前民主党总统候选
- 2. 唐纳德·特朗普——美国前总统
- 3. 迈克尔·布隆伯格——前纽约市市长和前民主党总统候选人。<列表继续..>

2. 计划验证

希拉里·克林顿出生在哪里?

- --唐纳德·特朗普出生在哪里?
- -迈克尔·布隆伯格出生在哪里?
- …<问题继续..>

3. 执行验证

希拉里·克林顿于1947年10月26日出生于美国伊利诺伊州 芝加哥市。

唐纳德·特朗普于1946年6月14日出生在美国纽约州纽约市皇 后区

迈克尔·布隆伯格于1942年2月14日出生在美国马萨诸塞 州的波士顿。

4. 最终验证响应

以下是一些出生在纽约的政治家:

- 1. 唐纳德·特朗普——美国前总统
- 2. Alexandria Ocasio-Cortez -美国众议院民主党议员···<名单继续···>

Experiments

Joint — single LLM prompt来完成Plan Verifications和

Execute Verifications

Two-step —— Plan Verifications与Execute Verifications由两组

Prompt完成

Factored —— 独立回答每个Execute Verifications中的问题

Factor + Revise —— 在验证问题的基础上检验答案与原始答

案的一致性

验证链提高了长格式生成的精度

开放式的验证性问题优于基于是/否的问题

Two-step的应用有最大幅度的性能提升

		(1)	
InstructGPT*	Zero-shot	41.1	26.3
ChatGPT*	Zero-shot	58.7	34.7
PerplexityAI*	Retrieval-based	61.6	40.8
Llama 2 70B Chat	Zero-shot	41.3	64.9
Llama 2 70B Chat	CoT	41.1	49.0
Llama 65B	Few-shot	55.9	16.6
Llama 65B	CoVe (joint)	60.8	12.8
Llama 65B	CoVe (factored)	63.7	11.7
Llama 65B	CoVe (factor+revise)	71.4	12.3
GPT-3	Few-shot	45.3	15.6
GPT-3 + ChatGPT	ChatProtect (Mündler et al., 2023)	48.5	14.6
GPT-3 + InstructGPT	SCG-LL (Manakul et al., 2023)	60.6	6.0
GPT-3 + DeBERTA	SCG-NLI (Manakul et al., 2023)	61.7	6.3
GPT-3 + InstructGPT	CoVe (factor+revise)	68.6	9.0

Method

		idata sier)	Wiki-Category list (Harder)					
LLM	Method	Prec. (†)	Pos.	Neg.	Prec. (†)	Pos.	Neg.	
Llama 2 70B Chat		0.12	0.55	3.93	0.05	0.35	6.85	
Llama 2 70B Chat		0.08	0.75	8.92	0.03	0.30	11.1	
Llama 65B		0.17	0.59	2.95	0.12	0.55	4.05	
Llama 65B	CoVe (joint)	0.29	0.41	0.98	0.15	0.30	1.69	
Llama 65B	CoVe (two-step)	0.36	0.38	0.68	0.21	0.50	0.52	
Llama 65B	CoVe (factored)	0.32	0.38	0.79	0.22	0.52	1.52	

LLM

LLM	Method	F1 (†)	Prec.	Rec.
Llama 2 70B Chat	Zero-shot	0.20	0.13	0.40
Llama 2 70B Chat	CoT	0.17	0.11	0.37
Llama 65B	Few-shot	0.39	0.40	0.38
Llama 65B	CoVe (joint)	0.46	0.50	0.42
Llama 65B	CoVe (factored)	0.48	0.50	0.46

FACTSCORE. (†) Avg. # facts

● 幻觉评估

幻觉评估任务、数据集、大模型幻觉程度

- 幻觉检测
 - 忠诚度幻觉检测
 - 基于内部状态 ——INSIDE: LLMs' Internal States Retain the Power of Hallucination Detection ICLR-2024
 - □ 不确定估计 ——Detecting hallucinations in large language models using semantic entropy Nature 2024
 - 事实性幻觉检测
 - 事实度量 ——GraphEval: A Knowledge-Graph Based LLM Hallucination Evaluation Framework ACM 2024
 - □ 基于QA的度量方法 ——InterrogateLLM: Zero-Resource Hallucination Detection in LLM-Generated Answers ACL 2024

● 幻觉缓解

Chain-of-Verification Reduces Hallucination in Large Language Models ACL 2024

Motivation

大模型在下游任务(知识密集型)中的幻觉问题尤为严重

一 医学知识领域

固有知识

如何结合

大模型问答

Category	Question	Generated Answer	Golden Answer		
Fact Inconsistency	Is Noonan syndrome inherited?	Noonan syndrome is <u>not inherited</u> . It is a genetic mutation that occurs sporadically.	Noonan syndrome is inherited in an autosomal dominant manner Each child of a person with Noonan syndrome has a 50% chance to inherit the condition		
Query Inconsistency	Cardiac reoperations in octogenarians: Do they really benefit?	Proper use of <i>Vitamin C to stop smoking</i> ; Taking Vitamin C by mouth can help smokers quit	Yes sustainable recovery of the survivors of- fering the prospect of a highly independent and satisfying life		
Tangentiality	c-Kit-dependent growth of <u>uveal</u> melanoma cells: a potential therapeutic target?	A muscle tumor formed in the anterior eyeball of the body, called uveal melanoma , is a rare tumor that often leads to visual impairment the addition of <u>GATA3</u> can reduce the scale of cancer	Yes c-kit is vastly expressed in uveal melanoma, suggest that the c-kit molecular pathway may be important in uveal melanoma growth		

幻觉类别占比

代表性的幻觉类别示例

事实不一致

问答不一致

偏题

Methods

• 事实知识获取循环

评分器对生成的知识进行事实性评估

• 知识一致性问答循环

生成的答案与背景知识之间的一致性

• 问题-蕴涵回答循环

Sentence-BERT嵌入相似度(NLI)

自我反思模型(Loop)

Experiments

PubMedQA数据集上的人工评价结果

Model	Query- Inconsistent↓	Tangentiality ↓	Fact- Inconsistent↓		
Vicuna-7B	0.67%	6.04%	8.69%		
Vicuna-7B_L	0.00%	2.00 %	7.38%		
ChatGPT	0.00%	18.00%	8.06%		
ChatGPT_L	$\boldsymbol{0.00\%}$	17.33%	6.33%		

PubMedQA数据集上的自动评价结果

Model	Med	NLI ↑	CtrlEval ↑	F1 ↑	R-L↑	
Model	Spl	Sent	CtriEvai	ri		
Vicuna-7B_L (ours)	.6380	.6326	-1.74	16.95	13.47	
w/o refinement	.4520	.5799	-1.87	16.90	13.13	
w/o aspect	.4940	.6276	-1.75	16.92	13.65	
w/o num	.6320	.5915	-2.23	16.92	13.33	
ChatGPT_L (ours)	.6824	<u>.6598</u>	<u>-1.73</u>	23.45	<u>16.54</u>	
w/o refinement	.5180	.5942	-1.86	19.60	15.25	
w/o aspect	.5520	.6373	-1.87	19.34	15.46	
w/o num	.6708	.5989	-1.79	21.25	15.97	

Model	Med! Spl	NLI ↑ Sent	CtrlEval ↑	F1 ↑	R-L↑		N	/ledQuAl	D
		ubMed() A			Vicuna-7B	.8411	.6564	-2.56
						Vicuna-7B_L	.8503	.7355	-2.47
Vicuna-7B	.4684	.5919	-1.95	15.51	12.06	Alpaca-Lora-7B	.8104	.7580	-2.29
Vicuna-7B_L	.6380	.6326	-1.74	16.95	13.47	Alpaca-Lora-7B_L	.8443	.7723	-2.26
Alpaca-Lora-7B	.0940	.1002	-3.25	9.15	11.09	ChatGPT	.8000	.6820	-2.75
Alpaca-Lora-7B_L	.4640	.4475	-1.85	13.69	13.42	ChatGPT L	.8317	.7597	-2.57
ChatGPT	.5850	.4199	-2.09	18.17	13.48	MedAlpaca-7B	.6634	.5328	-2.80
ChatGPT_L	.6824	.6598	<u>-1.73</u>	<u>23.45</u>	<u>16.54</u>	MedAlpaca-7B_L	.8343	.7777	-2.60
MedAlpaca-7B	.2050	.2912	-3.30	9.90	11.20	Robin-medical-7B	.0775	.5656	-3.78
MedAlpaca-7B_L	.4720	.4545	-2.38	15.41	14.45	Room-medical-/B	.0775	.5050	-3.78
Robin-medical-7B	.2900	.2900	-6.73	3.50	3.18		Live	MedQA2	2017
	MI	EDIQA2	019			Vicuna-7B	.5481	.5212	-2.11
Vicuna-7B	.8400	.6330	-3.06	23.94	12.81	Vicuna-7B L	.6731	.5967	-2.00
Vicuna-7B_L	.8933	.6868	-2.50	24.65	13.80	Alpaca-Lora-7B	.3365	.2460	-1.73
Alpaca-Lora-7B	.7226	.6492	-2.48	5.96	4.83	Alpaca-Lora-7B L	.5962	.5090	-1.72
Alpaca-Lora-7B_L	.8400	.6565	-2.37	10.93	8.35	ChatGPT	.6442	.4879	-2.15
ChatGPT	.7467	.5741	-2.77	20.02	11.35			.5627	-2.09
ChatGPT_L	.8067	.7180	-2.70	21.53	11.85	ChatGPT_L	.8462		
MedAlpaca-7B	.6333	.5329	-3.08	8.06	6.95	MedAlpaca-7B	.2019	.1765	-2.18
MedAlpaca-7B_L	.7200	.5531	-2.84	11.14	9.04	MedAlpaca-7B_L	.3750	.2682	-2.17
Robin-medical-7B	.7200	<u>.7414</u>	-5.12	1.96	2.30	Robin-medical-7B	.3077	.6827	-5.25
	N	ASH-Q)A						
Vicuna-7B	.8103	.6403	-2.46	14.75	9.82				
Vicuna-7B_L	.8381	.7518	-2.06	20.69	13.47				
Alpaca-Lora-7B	.7226	.6492	-1.66	15.01	11.71				
Alpaca-Lora-7B_L	.8363	.7812	-1.84	15.23	11.95				
ChatGPT	.7685	.6425	-2.12	23.34	15.28				
ChatGPT_L	.7904	.7476	-2.14	23.47	15.92				
MedAlpaca-7B	5629	4705	-2.28	13.26	11.47				

13.47 11.77

4.39 5.66

MedAlpaca-7B_L .7445 .6983

Robin-medical-7B .0080 .6378

在五个大模型上对三类幻觉问题均有

19.64 11.87 24.04 14.73

9.59

11.25

16.01

16.08

10.61

10.96

11.86

14.34

25.59

27.19

12.19

12.19

4.88

12.90

13.22 9.79 25.47 14.70 25.93 14.74

10.79

13.82 10.47 2.40 2.58

26.20 14.63

一定程度的缓解

Conclusion

- 大模型幻觉评估领域仍有待研究: 生成式基准一定程度上优于判别式基准, 幻觉评估指标差异化
- 可关注开源大模型的内部状态: 大模型生成过程中的非语义信息对幻觉检测有帮助
- 降低幻觉检测成本: 使用小模型或简单基于大模型的评估的幻觉检测技术有不断上升的研究价值
- 增强现实世界知识: 集成更多的外部信息和上下文知识, 以提高模型对现实世界的理解和处理能力。
- 提高大模型的可解释性: 提高模型的解释性, 有助于更好地理解和解释幻觉的原因

国内大模型幻觉研究领域团队

腾讯AI Lab

大模型幻觉评估、缓解

信工所 陈恺团队

大模型内部特征提取

Tencent Al Lab - 主标志

香港中文大学 林达华教授团队

大模型幻觉评估

计算所ICT 智能信息研究实验室(冯洋团队) 大模型上下文过滤

Thanks

刘振羽 2024/09/06

