QUANTUM FISHER INFORMATION AND TOPOLOGICAL PHASES

Sunny **Pradhan**, Federico **dell'Anna**, Elisa **Ercolessi** (*University of Bologna*)

We study the quantum Fisher information in one-dimensional models as a tool for measuring the multipartite entanglement, which can give valuable information about the existence of topological phases. We show that the scaling of quantum fisher information of strictly non-local observables can be used for characterizing the phase diagrams and, in particular, for detecting topological phases.

MULTIPARTITE ENTANGLEMENT

Pure state $|\psi\rangle$ of a quantum system with N parts

n-separability

$$|\psi\rangle=|\phi_1\rangle\otimes|\phi_2\rangle\otimes\cdots\otimes|\phi_n\rangle$$
, $n\leq N$ factorizable in n terms $|\phi_i\rangle$

k-party entanglement

$$|\psi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle \otimes \cdots \otimes |\phi_m\rangle$$
, $m \geq N/k$ each term $|\phi_i\rangle$ involves at most k elements

genuine k-party entanglement

if $|\psi\rangle$ is not producible by (k-1)-party entanglement

fully separable

1-party entangled (*N*-separable)

maximally entangled

N-party entangled (1-separable)

QUANTUM FISHER INFORMATION

PHASE ESTIMATION

$$\rho \to \rho(\theta) = e^{-i\theta \hat{H}} \rho e^{i\theta \hat{H}}$$

Angle θ to be estimated with m measurements and operators $\{\hat{E}_u\}$

Quantum Cramér-Rao bound

$$(\Delta \theta)^2 \ge \frac{1}{mF[\rho(\theta), \{\hat{E}_{\mu}\}]} \ge \frac{1}{mF_{\mathcal{Q}}[\rho, \hat{H}]}$$

Fisher information

$$F[\rho(\theta), \{\hat{E}_{\mu}\}] = \sum_{\mu} \frac{[\partial_{\theta} P(\mu|\theta)]^2}{P(\mu|\theta)} \qquad P(\mu|\theta) = \text{Tr}[\rho(\theta)\hat{E}_{\mu}]$$

 $P(\mu|\theta)$ probabilities of a measure with value μ given θ

Quantum Fisher information

$$F_{\mathcal{Q}}[\rho, \hat{H}] = \max_{\{\hat{E}_{\mu}\}} F[\rho(\theta), \{\hat{E}_{\mu}\}]$$

For pure states: $F_Q[|\psi\rangle, \hat{H}] = 4(\Delta \hat{H})^2 = 4(\langle \hat{H}^2\rangle_{\psi} - \langle \hat{H}\rangle_{\psi}^2)$

ENTANGLEMENT CRITERION

Input state with k-party entanglement ρ_{k-ent}

Linear two-mode interferometer:

$$\hat{H}_{lin} = \frac{1}{2} \sum_{i} \vec{n}_{j} \cdot \vec{\sigma}_{j} = \frac{1}{2} \sum_{i} \left(\alpha_{j} \sigma_{j}^{x} + \beta_{j} \sigma_{j}^{y} + \gamma_{j} \sigma_{j}^{z} \right)$$

QFI Criterion

$$F_Q[\rho_{\mathsf{k-ent}}, \hat{H}_{\mathsf{lin}}] \leq kN$$

QFI density

fully separable

maximally entangled

 $f_Q = F_Q/N$

 $f_Q[\rho_{\mathsf{sep}}, \hat{H}] \le 1$

 $f_Q[\rho_{\mathsf{max}}, \hat{H}] \leq N$

LONG-RANGE KITAEV CHAIN

one-dimensional p-wave superconductor

$$H = \sum_{i} \left[-tc_{i}^{\dagger}c_{j} - \mu \left(c_{j}^{\dagger}c_{j} - \frac{1}{2} \right) + \frac{\Delta}{2} \sum_{r} \frac{1}{r^{\alpha}} c_{j}^{\dagger}c_{j+r} + \text{h.c.} \right]$$

superconducting long-range coupling $\sim 1/r^{\alpha}$

Jordan-Wigner transformation

topological

massive edge state

non-local operators

QFI from correlators

$$\sigma_j^+ = c_j^\dagger e^{i\pi\sum_{i< j} c_i^\dagger c_i} \quad \sigma_j^- = e^{i\pi\sum_{i< j} c_i^\dagger c_i} c_j \qquad \hat{H}_\rho = \sum_j \sigma_j^\rho, \quad \rho = x, y \qquad f_Q[|gs\rangle\,, \hat{H}_\rho] \sim \sum_{r=1}^L C_\rho(r)$$

Correlators from Toeplitz determinants

$$C_{
ho}(R) = \langle \sigma_1^{
ho} \sigma_{1+R}^{
ho} \rangle = \det T_R(\gamma^{
ho})$$
 $T_R(\gamma) = \begin{pmatrix} \gamma_0 & \gamma_{-1} & \gamma_{-2} & \cdots & \gamma_{1-N} \\ \gamma_1 & \gamma_0 & \gamma_{-1} & \cdots & \gamma_{2-N} \\ \gamma_2 & \gamma_1 & \gamma_0 & \cdots & \gamma_{3-N} \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$

$$\gamma(\theta) = \sum_{n} \gamma_{n} e^{in\theta}$$
 $\gamma^{x} = \gamma e^{i\theta}$ $\gamma^{y} = \gamma e^{-i\theta}$

massless edge state **Analytical results**

$f_Q \sim L$ topol. massless topol. massive critical $f_Q \sim L^{3/4}$ trivial $\alpha < 1$ trivial $\alpha > 1$ $f_Q \sim \text{const}$

BILINEAR-BIQUADRATIC CHAIN

Spin-1 chain

$$H = J \sum_{i} \left[S_i \cdot S_{i+1} + \beta (S_i \cdot S_{i+1})^2 \right] = J' \sum_{i} \left[\cos \theta S_i \cdot S_{i+1} + \sin \theta (S_i \cdot S_{i+1})^2 \right]$$

String order parameter

$\widetilde{S}_j = \left(e^{i\pi\sum_{i< j}S_i^z}\right)S_j$, $\hat{O} = \sum_j \widetilde{S}_j^z$ $f_Q[|gs\rangle, \hat{O}] \sim cL^b$

QFI density

