# Applied Machine Learning

Linear Regression - Transformation of Variables

#### Linear Regression - Transformations

- Box-Cox transformation
- Polynomials of the same explanatory variable
- Regularization

# Linear Regression

- Low  $R^2$ 
  - Linear function may not be best to explain dataset
- A transformation may help
  - box-cox transformation of explanatory or dependent variables
  - polynomials of explanatory variables



#### **Box-Cox Transformation**

$$y_i^{(bc)} = \begin{cases} \frac{y_i^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \ln y_i & \text{if } \lambda = 0 \end{cases}$$

- defined for  $y_i \ge 0$
- statistical libraries to search for  $\lambda$
- Inverse transformation:

$$y_i = \begin{cases} |\lambda y_i^{(bc)} + 1|^{\frac{1}{\lambda}} & \text{if } \lambda \neq 0 \\ e^{y_i^{(bc)}} & \text{if } \lambda = 0 \end{cases}$$



#### Polynomial of Explanatory Variable

• Lineal model of 2 explanatory variables

• 
$$y_i = \beta_2 x_2^{(i)} + \beta_1 x_1^{(i)} + \beta_0 + \xi^{(i)}$$

• 
$$X_i^{\mathsf{T}} = [x_2^{(i)}, x_1^{(i)}, 1]$$

Polynomial model of order 2 with 1 explanatory variable

• 
$$y_i = \beta_2(x^{(i)})^2 + \beta_1(x^{(i)})^1 + \beta_0 + \xi^{(i)}$$

• 
$$X_i^{\top} = [(x^{(i)})^2, (x^{(i)})^1, 1]$$

- Apply regression as before
- Hard to determine appropriate order



# Regularization

- Regression solves
  - $X^{\mathsf{T}}X\hat{\beta} = X^{\mathsf{T}}\mathbf{y}$
- Correlation among explanatory variables
  - small eigenvectors of  $\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}$ 
    - $X^{\mathsf{T}}X\hat{\beta} \approx X^{\mathsf{T}}X(\hat{\beta} + \mathbf{w})$  for large  $\mathbf{w}$
    - large values in  $\hat{\beta}$  yield to large errors in prediction

# Regularization

Regression solves

• 
$$X^{\mathsf{T}}X\hat{\beta} = X^{\mathsf{T}}\mathbf{y}$$

- Large values  $\hat{\beta}$  yield to large errors in prediction
- Add regularization term to penalize larve values of  $\beta$  and minimize:

$$\frac{1}{N}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^T \boldsymbol{\beta}$$

• 
$$\lambda \geq 0$$

# Regularization

Add regularization term and minimize

$$\frac{1}{N}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^{\mathsf{T}}\boldsymbol{\beta}$$

- $\lambda \ge 0$  penalizes large values of  $\beta$
- $\beta^{\mathsf{T}}\beta$  is the  $L_2$  norm of  $\beta$ : Ridge Regression
- Differentiating with respect to  $\beta$  and equating to 0. Regression:

$$\left[ \frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{X} + \lambda I \right] \beta = \frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

# Regularization - Finding $\lambda$

- Cross-validation
  - consider choices of  $\lambda$  at different scales, e.g.,  $\lambda \in \{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 1, 10\}$
- for each  $\lambda_i$ ,
  - iteratively build new random Fold from Training Set
    - fit Cross-Validation Train Set using  $\lambda_i$
    - compute MSE for current Fold on Validation set
  - for each  $\lambda_i$  record average error and  $\sigma$  over all Folds
- $\lambda$  with smallest error largest  $\lambda$  within one  $\sigma$



#### Regularization - Putting it all together

Fit dependent variable from explanatory variables

- outliers
  - standardized residuals, leverage, Cook's distance
- not a random normal variable or predictions suggest non-linearities
  - box-cox
  - polynomial representation
- regularization
  - cross-validation

#### Linear Regression - Transformations

- Box-Cox transformation
- Polynomials of the same explanatory variable
- Regularization

# Applied Machine Learning

Linear Regression - Transformation of Variables