Exercise 1.4.7: Finish the proof of Theorem 1.4.5 by showing that the assumption $\alpha^2 > 2$ contradicts the assumption that $\alpha = \sup A$.
Proof.
Exercise Supplemental 1: Give a from-scratch proof of the following facts:
(a) If $f: A \to B$ has an inverse function g, then f is injective.
(b) If $f: A \to B$ has an inverse function g, then f is surjective.
Proof(a).
Proof(b).
Exercise Supplemental 2: Show that the sets $[0, 1)$ and $(0, 1)$ have the same cardinality.
Exercise 1.5.10 (a) (c): (Wait until after Wednesday to start this one)
(a) Let $C \subseteq [0,1]$ be uncountable. Show that there exists $a \in (0,1)$ such that $C \cap [a,1]$ is uncountable.
(c) Determine, with proof, if the same statement remains true replacing uncountable with infinite.
Proof(a).
Proof(b).
Exercise Supplemental 3: (Wait until after Wednesday to start this one) Suppose for each $k \in \mathbb{N}$ that A_k is at most countable. Use the fact that $\mathbb{N} \times \mathbb{N}$ is countably infinite to show that $\bigcup_{k=1}^{\infty} A_k$ is at most countable. Hint: take advantage of surjections.
Proof.