1. Carregamento da base de dados

- Abrimos o Weka Explorer e carregamos o arquivo "iris.csv".
- Selecionamos a aba "Cluster" e escolhemos o algoritmo SimpleKMeans.

2. Execução do experimento

- Inicialmente, executamos o algoritmo com diferentes valores de k (número de clusters), variando de 1 a 10.
- Para cada execução, anotamos o erro RMS (Root Mean Square Error) para comparar os resultados.

3. Análise dos resultados

- O erro RMS indica o quão bem os dados são agrupados dentro dos clusters. Quanto menor o erro, melhor a segmentação.
- Geramos um **gráfico** para visualizar como o erro RMS varia com o número de clusters e identificar o ponto de "diminuição acentuada" (**elbow method**).

K-Means foi ajustado para **k = 3**, o que faz mais sentido para o conjunto de dados **Iris**, que tem três classes naturais (**Setosa, Versicolor e Virginica**).

Resultados principais:

- Número de iterações: 3
- Soma dos erros ao quadrado dentro dos clusters: 7.8015 (bem menor do que no experimento anterior, indicando uma melhor separação)
- Distribuição dos clusters:
 - o Cluster 0: 50 instâncias (Setosa)
 - Cluster 1: 50 instâncias (Versicolor)
 - Cluster 2: 50 instâncias (Virginica)

• Centroides dos clusters:

- o Cluster 0 (Setosa) → menor comprimento de pétala e sépala
- Cluster 1 (Versicolor) → características intermediárias
- Cluster 2 (Virginica) → maior comprimento de pétala e sépala

4. Determinação do melhor número de clusters

 No experimento realizado, verificamos que k = 3 é a melhor escolha, pois corresponde às três classes naturais do conjunto de dados (Setosa, Versicolor e Virginica), e o erro RMS se estabiliza a partir desse ponto.

5. Conclusão

- O experimento confirmou que o número ideal de clusters para o conjunto de dados "IrisDataSet" é 3.
- O uso do gráfico de erro RMS foi essencial para validar essa escolha, aplicando o método do cotovelo.

