find i_x .

At node 1,

$$\frac{12 - v_1}{3} = \frac{v_1 - v_0}{6} + \frac{v_1 - v_0}{12} \longrightarrow 48 = 7v_1 - 3v_0 \tag{1}$$

At node 2,

$$\frac{v_1 - v_0}{6} = \frac{v_0 - 0}{6} = i_x \longrightarrow v_1 = 2v_0$$
 (2)

From (1) and (2),

$$v_o = \frac{48}{11}$$

$$i_x = \frac{v_o}{6k} = \frac{727.2\mu A}{6k}$$

Specify the values of R_1 and R_2 in Figure E 6.6-1 that are required to cause v_3 to be related to v_1 and v_2 by the equation $v_3 = (6)v_1 - \left(\frac{4}{5}\right)v_2$.

ولتاژ ورودی در مدار شکل زیر نشان داده شده است، نمودار $V_{\rm o}$ بر حسب زمان را رسم کنید.

It follows directly from the circuit that $v_o = -(75/15)v_g = -5v_g$ From the plot of v_g we have $v_g = 0$, t < 0

$$v_g = t$$
 $0 \le t \le 2$
 $v_g = 4 - t$ $2 \le t \le 6$
 $v_g = t - 8$ $6 \le t \le 10$
 $v_g = 12 - t$ $10 \le t \le 14$
 $v_g = t - 16$ $14 \le t \le 18$, etc.
Therefore
 $v_o = -5t$ $0 \le t \le 2$
 $v_s = 5t - 20$ $2 \le t \le 6$

$$v_o = 5t - 20$$
 $2 \le t \le 6$
 $v_o = 40 - 5t$ $6 \le t \le 10$
 $v_o = 5t - 60$ $10 \le t \le 14$

$$v_o = 80 - 5t$$
 $14 \le t \le 18$, etc.

These expressions for v_o are valid as long as the op amp is not saturated. Since the peak values of v_o are ± 9 , the output is clipped at ± 9 . The plot is shown below.

For Node v_1 ,

$$(\nu_i - \nu_1)g_1 - C_1 \frac{d\nu_1}{dt} + C_2 \frac{d(\nu_0 - \nu_1)}{dt} = 0$$

and for Node v-

$$C_1 \frac{dv_1}{dt} + v_0 g_2 = 0.$$

$$v_{i}g_{1} = g_{1}v_{1} + (C_{1} + C_{2})\frac{dv_{1}}{dt} - C_{2}\frac{dv_{o}}{dt}$$
$$0 = C_{1}\frac{dv_{1}}{dt} + v_{o}g_{2}.$$

$$\frac{d^2v_o}{dt^2} + g_2 \frac{C_1 + C_2}{C_1 C_2} \frac{dv_o}{dt} + \frac{g_1 g_2}{C_1 C_2} v_o = -\frac{g_1}{C_2} \frac{dv_i}{dt}.$$

If the input impedance is defined as $\mathbf{Z}_{\text{in}} = \mathbf{V}_s / \mathbf{I}_s$ find the input impedance of the op amp circuit in Fig. 10.116 when $R_1 = 10 \,\text{k}\,\Omega$, $R_2 = 20 \,\text{k}\,\Omega$, $C_1 = 10 \,\text{nF}$, and $\omega = 5000 \,\text{rad/s}$.

Consider the circuit in the frequency domain as shown below.

As a voltage follower, $V_2 = V_0$

$$C_1 = 10 \text{ nF} \longrightarrow \frac{1}{j\omega C_1} = \frac{1}{j(5 \times 10^3)(10 \times 10^{-9})} = -j20 \text{ k}\Omega$$

$$C_2 = 20 \text{ nF} \longrightarrow \frac{1}{j\omega C_2} = \frac{1}{j(5 \times 10^3)(20 \times 10^{-9})} = -j10 \text{ k}\Omega$$

At node 1,

$$\frac{\mathbf{V}_{s} - \mathbf{V}_{1}}{10} = \frac{\mathbf{V}_{1} - \mathbf{V}_{o}}{-j20} + \frac{\mathbf{V}_{1} - \mathbf{V}_{o}}{20}$$
$$2\mathbf{V}_{s} = (3+j)\mathbf{V}_{1} - (1+j)\mathbf{V}_{o}$$

(1)

(2)

At node 2,

$$\frac{\mathbf{V}_1 - \mathbf{V}_0}{20} = \frac{\mathbf{V}_0 - 0}{-j10}$$
$$\mathbf{V}_1 = (1+j2)\mathbf{V}_0$$

Substituting (2) into (1) gives

$$2\mathbf{V}_{s} = \mathbf{j}6\mathbf{V}_{o}$$
 or $\mathbf{V}_{o} = -\mathbf{j}\frac{1}{3}\mathbf{V}_{s}$

$$V_1 = (1 + j2)V_o = \left(\frac{2}{3} - j\frac{1}{3}\right)V_s$$

$$I_{s} = \frac{V_{s} - V_{1}}{10k} = \frac{(1/3)(1+j)}{10k} V_{s}$$

 $\frac{I_{s}}{V_{s}} = \frac{1+j}{30k}$

$$\mathbf{Z}_{\text{in}} = \frac{\mathbf{V}_{\text{S}}}{\mathbf{I}_{\text{S}}} = \frac{30\text{k}}{1+\text{j}} = 15(1-\text{j})\text{k}$$
$$\mathbf{Z}_{\text{in}} = \underline{21.21} \angle -45^{\circ} \text{k}\underline{\Omega}$$

(i) D_1 conducts: $V_- = V_+ = 0 \ V$, $V_{o1} = -V_{D1} \approx -0.7 \ V$.

 D_2 cannot conduct (show that, if it did, KCL is not satisfied at V_o). $\rightarrow i_{R2} = 0$, $V_o = V_- = 0$ V.

 $i_{R1} = i_{D1}$ which can only be positive $\Rightarrow V_i > 0 V$.

(ii) D_1 is off; this will happen when $V_i < 0 V$.

In this case, D_2 conducts and closes the feedback loop through R_2 .

$$V_o = V_- + i_{R2}R_2 = 0 + \left(\frac{0 - V_i}{R_1}\right)R_2 = -\frac{R_2}{R_1}V_i$$
.

مقاومت معادل از دید R_L (آپ-امپ غیرایدهآل)

$$v^{-} = -i_{t}R_{s}$$

$$v^{+} = 0$$

$$v_{t} = A(v^{+} - v^{-}) + i_{t}r_{o} - v^{-}$$

$$= (1 + A)i_{t}R_{s} + i_{t}r_{o}$$

$$R_{o} = \frac{v_{t}}{i_{t}} = (1 + A)R_{s} + r_{o}.$$