AMENDMENTS TO THE CLAIMS

- 1. (Currently Amended) A propylene/1-butene random copolymer (PBR) comprising: characterized by containing
- (1) 60 to 90 mol% of units derived from propylene and 10 to 40 mol% of units derived from 1-butene, and having
- (2) a triad isotacticity, as determined from a ¹³C-NMR spectrum, of not less than 85% and not more than 97.5 %,
- (3) a molecular weight distribution (Mw/Mn), as determined by gel permeation chromatography (GPC), of from 1 to 3,
 - (4) an intrinsic viscosity, as measured in decalin at 135°C, of from 0.1 to 12 dl/g,
- (5) a melting point (Tm), as measured on a differential scanning calorimeter, of from 40 to 120°C 40 to 75°C and a crystallization rate (1/2 crystallization time) at 45°C of 10 minutes or less, and satisfying
 - (6) the following relation

 $146 \exp(-0.022M) \ge Tm \ge 125 \exp(-0.032M)$

wherein Tm represents a melting point and M (mol%) represents a content of 1-butene constituent units.

- 2. (Withdrawn) A propylene elastomer (PBER) characterized by containing:
- (1) (a) 50 to 85 mol% of units derived from propylene,
 - (b) 5 to 25 mol% of units derived from 1-butene and

Docket No.: 1155-0286PUS1 Art Unit 1713

(c) 10 to 25 mol% of units derived from ethylene, and having:

a molar ratio of propylene content to ethylene content of from 89/11 to 70/30, and a modulus in tension (YM), as measured in accordance with JIS 6301, of not more than 40 Mpa.

3. (Withdrawn) A polypropylene composition comprising:

5 to 95 wt% of polypropylene (PP-A)

and

- 95 to 5 wt% of a propylene/1-butene random copolymer (PBR) characterized by containing
- (1) 60 to 90 mol% of units derived from propylene and 10 to 40 mol% of units derived from 1-butene,

and having

- (2) a triad isotacticity, as determined from a ¹³C-NMR spectrum, of not less than 85% and not more than 97.5 %,
- (3) a molecular weight distribution (Mw/Mn), as determined by gel permeation chromatography (GPC), of from 1 to 3,
 - (4) an intrinsic viscosity, as measured in decalin at 135°C, of from 0.1 to 12 dl/g,
- (5) a melting point (Tm), as measured on a differential scanning calorimeter, of from 40 to 120°C, and satisfying
 - (6) the following relation

 $146 \exp(-0.022M) \ge Tm \ge 125 \exp(-0.032M)$

Docket No.: 1155-0286PUS1

Art Unit 1713

wherein Tm represents a melting point and M (mol%) represents a content of 1-butene constituent units.

- 4. (Withdrawn) A sheet or film comprising a polypropylene composition as claimed in claim 3.
- 5. (Withdrawn) A stretched film obtainable by stretching a sheet or film as claimed in claim 4 in at least one direction.
- 6. (Withdrawn) A transition metal compound (2a) represented by the following formula (2a):

$$R^{1}$$
 R^{14}
 R^{13}
 R^{12}
 R^{12}
 R^{10}
 R^{9}
 R^{8}
 R^{7}
 R^{10}
 R^{10}

wherein each of R¹ and R³ is hydrogen, R² and R⁴ are identically or differently selected from a hydrocarbon group and silicon-containing group, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are identically or differently selected from hydrogen, a hydrocarbon group and silicon-containing MSW/JMK/jmb

group, and adjacent substituent groups R⁵ to R¹² may be linked to form a ring, R¹⁴ is an aryl

group, and R¹³ and R¹⁴ may be identical or different each other and may be linked to form a ring.

M is a Group 4 transition metal, Y is a carbon atom, Q may identically or differently be selected

from halogen, a hydrocarbon group, anion ligand or neutral ligand capable of coordination with a

lone pair of electrons, and j is an integer of 1 to 4.

7. (Withdrawn) A transition metal compound (3a) according to claim 6, wherein

each of R¹³ and R¹⁴ in the formula (2a) is simultaneously an aryl group.

8. (Withdrawn) An olefin polymerization catalyst comprising:

(A) a transition metal compound (2a) or (3a) and

(B) at least one compound selected from:

(B-1) an organometallic compound,

(B-2) an organoaluminum oxy compound and

(B-3) a compound capable of forming an ion pair by reacting with the transition metal

compound (A).

9. (Withdrawn) A polyolefin resin composition comprising:

100 parts by weight of a propylene polymer (PP-C) and

not less than 10 parts by weight of at least one elastomer selected from elastomers (EL-1)

to (EL-4) obtainable by a metallocene catalyst,

wherein the elastomer (EL-1) is

I) a propylene and ethylene random copolymer in a molar ratio of constituent units

derived from propylene to constituent units derived from ethylene of from 80/20 to 20/80, and

has

II) an intrinsic viscosity $[\eta]$ of not less than 1.5 dl/g,

III) a ratio (Mw/Mn) of a weight average molecular weight(Mw) to a number average

molecular weight (Mn), as measured by gel permeation chromatography (GPC), of from 1.0 to

3.5, and

IV) a ratio of an irregularly bonded propylene monomer based on 2,1-insertion to all the

propylene constituent units, as determined from a ¹³C-NMR spectrum, of not more than 1.0

mol%;

the elastomer (EL-2) is

I) a random copolymer of ethylene and an α -olefin having 4 to 20 carbon atoms in a

molar ratio of constituent units derived from ethylene to constituent units derived from α -olefin

of from 80/20 to 20/80, and has

II) an intrinsic viscosity $[\eta]$ of not less than 1.5 dl/g,

III) a ratio (Mw/Mn) of a weight average molecular weight(Mw) to a number average

molecular weight (Mn), as measured by gel permeation chromatography (GPC), of from 1.0 to

3.5, and

IV) a ratio of an irregularly bonded α -olefin monomer based on 2,1-insertion to all the α -

olefin constituent units, as determined from a ¹³C-NMR spectrum, of not more than 1.0 mol%;

MSW/JMK/jmb

the elastomer (EL-3) is

I) a random copolymer of propylene and an α -olefin having 4 to 20 carbon atoms in a

molar ratio of constituent units derived from propylene to constituent units derived from α -olefin

of from 80/20 to 20/80, and has

II) an intrinsic viscosity $[\eta]$ of not less than 1.5 dl/g,

III) a ratio (Mw/Mn) of a weight average molecular weight(Mw) to a number average

molecular weight (Mn), as measured by gel permeation chromatography (GPC), of from 1.0 to

3.5,

IV) a ratio of an irregularly bonded propylene monomer based on 2,1-insertion to all the

propylene constituent units, as determined from a ¹³C-NMR spectrum, of not more than 1.0

mol%, and

V) a melting point, as measured on DSC, of not higher than 150°C or not measured;

the lastomer (EL-4) is

I) a random copolymer of ethylene, propylene and an α -olefin having 4 to 20 carbon

atoms in a molar ratio of constituent units derived from propylene to constituent units derived

from α -olefin of from 80/20 to 20/80, and has

II) a molar ratio [(EP) / (OL)] of constituent units (EP) derived from ethylene and

propylene to constituent units (OL) derived from α-olefin having 4 to 20 carbon atoms of from

99/1 to 20/80,

III) an intrinsic viscosity $[\eta]$ of not less than 1.5 dl/g,

III) a ratio (Mw/Mn) of a weight average molecular weight(Mw) to a number average

MSW/JMK/jmb

molecular weight (Mn), as measured by gel permeation chromatography (GPC), of from 1.0 to 3.5,

IV) a ratio of an irregularly bonded propylene monomer based on 2,1-insertion to all the propylene constituent units, as determined from a 13 C-NMR spectrum, of not more than 1.0 mol%, and a ratio of an irregularly bonded α -olefin monomer based on 2,1-insertion to all the α -olefin constituent units, as determined from a 13 C-NMR spectrum, of not more than 1.0 mol%; and

the metallocene catalyst comprises:

a transition metal compound (1a) represented by the following formula (1a)

$$R^{1}$$
 R^{14}
 R^{13}
 R^{12}
 R^{10}
 R^{9}
 R^{8}
 R^{7}
(1a)

in which R³ is selected from a hydrocarbon group and silicon-containing group; R¹, R² and R⁴ are identically or differently selected from hydrogen, a hydrocarbon group and silicon-containing group; R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ are identically or differently selected from hydrogen, a hydrocarbon group and silicon-containing group; adjacent substituent groups R⁵ to R¹² may be linked each other to form a ring; R¹³ and R¹⁴ may be the same or different each other MSW/JMK/jmb

and may be linked to form a ring; M is a Group 4 transition metal; Y is a carbon atom; Q may be identically or differently selected from halogen, a hydrocarbon group, anion ligand or neutral ligand capable of coordination with a lone pair of electrons, and j is an integer of 1 to 4,

an organoaluminum oxy-compound (1b) and/or

a compound (2b) capable of forming an ion pair by reacting the transition metal compound (1a) and optionally

an organoaluminum compound (c).

10. (Currently Amended) The propylene/1-butene copolymer according to claim 1 obtainable obtained by polymerizing propylene and 1-butene in the presence of an olefin polymerization catalyst comprising:

a transition metal compound (1a) represented by the following formula (1a)

$$R^{1}$$
 R^{1}
 R^{1

in which R³ is selected from a hydrocarbon group and silicon-containing group; R¹, R² and R⁴ are identically or differently selected from hydrogen, a hydrocarbon group and silicon-containing group; R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ are identically or differently selected from MSW/JMK/jmb

hydrogen, a hydrocarbon group and silicon-containing group; adjacent substituent groups R⁵ to R¹² may be linked each other to form a ring; R¹³ and R¹⁴ may be the same or different from each other and may be linked to form a ring; M is a Group 4 transition metal; Y is a carbon atom; Q may be identically or differently selected from halogen, a hydrocarbon group, anion ligand or neutral ligand capable of coordination with a lone pair of electrons, and j is an integer of 1 to 4; and j is an integer of 1 to 4,

an organoaluminum oxy-compound (1b) and/or

a compound (2b) capable of forming an ion pair by reacting the transition metal compound (1a) and optionally

an organoaluminum compound (c).

- 11. (Withdrawn) A polypropylene composite film comprising:
- (I) a crystalline polypropylene layer and
- (II) a layer of a polypropylenen composition (II) laminated on at least one surface of the layer (I),

wherein the polypropylene composition (CC-2) comprises:

0 to 95 % by weight of a crystalline polyproplylene (PP-A) and

5 to 100 % by weight of a propylene/1-butene random copolymer (PBR):

(1) containing 60 to 90 mol% of units derived from propylene and 10 to 40 mol% of units

derived from 1-butene,

and having

Docket No.: 1155-0286PUS1

Art Unit 1713

(2) a triad isotacticity, as determined from a ¹³C-NMR spectrum, of not less than 85% and not more than 97.5 %,

- (3) a molecular weight distribution (Mw/Mn), as determined by gel permeation chromatography (GPC), of from 1 to 3,
 - (4) an intrinsic viscosity, as measured in decalin at 135°C, of from 0.1 to 12 dl/g,
- (5) a melting point (Tm), as measured on a differential scanning calorimeter, of from 40 to 120°C, and satisfying
 - (6) the following relation

$$146 \exp(-0.022M) \ge Tm \ge 125 \exp(-0.032M)$$

wherein Tm represents a melting point and M (mol%) represents a content of 1-butene constituent units.

- 12. (Withdrawn) A stretched film obtainable by stretching the laminate as claimed in claim 11 in at least one direction.
 - 13. (New) A propylene/1-butene random copolymer (PBR) comprising:
- (1) 60 to 90 mol% of units derived from propylene and 10 to 40 mol% of units derived from 1-butene, and having
- (2) a triad isotacticity, as determined from a ¹³C-NMR spectrum, of not less than 85% and not more than 97.5 %,

Application No. 10/550,017 Amendment dated: April 9, 2007

Reply to Office Action of January 8, 2007

chromatography (GPC), of from 1 to 3,

(3) a molecular weight distribution (Mw/Mn), as determined by gel permeation

- (4) an intrinsic viscosity, as measured in decalin at 135°C, of from 0.1 to 12 dl/g,
- (5) a melting point (Tm), as measured on a differential scanning calorimeter, of from 40 to 66.5°C, and satisfying
 - (6) the following relation

$$146 \exp(-0.022M) \ge Tm \ge 125 \exp(-0.032M)$$

wherein Tm represents a melting point and M (mol%) represents a content of 1-butene constituent units.

- 14. (New) The propylene/1-butene random copolymer according to claim 13, further having
 - (7) a crystallization rate (1/2 crystallization time) at 45°C of 10 minutes or less.

Docket No.: 1155-0286PUS1

Art Unit 1713