Module 4: Dictionaries and Balanced Search Trees

CS 240 - Data Structures and Data Management

Mark Petrick

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2017

Dictionary ADT

A dictionary is a collection of items, each of which contains

- a key
- some data.

and is called a *key-value pair* (KVP). Keys can be compared and are (typically) unique.

Operations:

- search(k)
- insert(k, v)
- delete(k)
- optional: join, isEmpty, size, etc.

Examples: symbol table, license plate database

Elementary Implementations

Common assumptions:

- Dictionary has n KVPs
- Each KVP uses constant space (if not, the "value" could be a pointer)
- Comparing keys takes constant time

Unordered array or linked list

```
search \Theta(n)
insert \Theta(1)
delete \Theta(n) (need to search)
```

Ordered array

```
search \Theta(\log n)
insert \Theta(n)
delete \Theta(n)
```

Binary Search Trees (review)

Structure A BST is either empty or contains a KVP, left child BST, and right child BST.

Ordering Every key k in T.left is less than the root key. Every key k in T.right is greater than the root key.

search(k) Compare k to current node, stop if found, else recurse on subtree unless it's empty

Example: search(24)

search(k) Compare k to current node, stop if found, else recurse on subtree unless it's empty

Example: search(24)

search(k) Compare k to current node, stop if found, else recurse on subtree unless it's empty

Example: search(24)

search(k) Compare k to current node, stop if found, else recurse on subtree unless it's empty

Example: search(24)

search(k) Compare k to current node, stop if found, else recurse on subtree unless it's empty insert(k, v) Search for k, then insert (k, v) as new node

Example: insert(24,...)

• If node is a leaf, just delete it.

• If node is a leaf, just delete it.

- If node is a leaf, just delete it.
- If node has one child, move child up

- If node is a leaf, just delete it.
- If node has one child, move child up

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor or predecessor node and then delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with successor or predecessor node and then delete

- If node is a leaf, just delete it.
- If node has one child, move child up
- Else, swap with *successor* or *predecessor* node and then delete

search, insert, delete all have cost $\Theta(h)$, where h = height of the tree = max. path length from root to leaf

If *n* items are *insert*ed one-at-a-time, how big is *h*?

Worst-case:

search, insert, delete all have cost $\Theta(h)$, where h = height of the tree = max. path length from root to leaf

If *n* items are *insert*ed one-at-a-time, how big is *h*?

- Worst-case: $n-1 = \Theta(n)$
- Best-case:

search, insert, delete all have cost $\Theta(h)$, where h = height of the tree = max. path length from root to leaf

If *n* items are *insert*ed one-at-a-time, how big is *h*?

- Worst-case: $n-1 = \Theta(n)$
- Best-case: $\lfloor \lg(n) \rfloor = \Theta(\log n)$
- Average-case:

search, insert, delete all have cost $\Theta(h)$, where h = height of the tree = max. path length from root to leaf

If *n* items are *insert*ed one-at-a-time, how big is *h*?

- Worst-case: $n-1 = \Theta(n)$
- Best-case: $\lfloor \lg(n) \rfloor = \Theta(\log n)$
- Average-case: $\Theta(\log n)$ (just like recursion depth in *quick-sort1*)

AVL Trees

Introduced by Adel'son-Vel'skiĭ and Landis in 1962, an *AVL Tree* is a BST with an additional structural property:

The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be -1.)

At each non-empty node, we store $height(R) - height(L) \in \{-1, 0, 1\}$:

- -1 means the tree is *left-heavy*
 - 0 means the tree is balanced
 - 1 means the tree is *right-heavy*

AVL Trees

Introduced by Adel'son-Vel'skiĭ and Landis in 1962, an *AVL Tree* is a BST with an additional structural property:

The heights of the left and right subtree differ by at most 1.

(The height of an empty tree is defined to be -1.)

At each non-empty node, we store $height(R) - height(L) \in \{-1, 0, 1\}$:

- -1 means the tree is *left-heavy*
 - 0 means the tree is balanced
 - 1 means the tree is *right-heavy*
- We could store the actual height, but storing balances is simpler and more convenient.

AVI insertion

To perform insert(T, k, v):

- First, insert (k, v) into T using usual BST insertion
- Then, move up the tree from the new leaf, updating balance factors.
- If the balance factor is -1, 0, or 1, then keep going.
- If the balance factor is ± 2 , then call the fix algorithm to "rebalance" at that node. We are done.

CS240 - Module 4 Fall 2017 9 / 23

How to "fix" an unbalanced AVL tree

Goal: change the structure without changing the order

Notice that if heights of A, B, C, D differ by at most 1, then the tree is a proper AVL tree.

Right Rotation

This is a *right rotation* on node z:

Right Rotation

This is a *right rotation* on node *z*:

Note: Only two edges need to be moved, and two balances updated. Useful to fix left-left imbalance.

Right Rotation

Right Rotation

Right Rotation

Left Rotation

This is a *left rotation* on node z:

Again, only two edges need to be moved and two balances updated. Useful to fix right-right imbalance.

Left Rotation

Left Rotation

Left Rotation

Pseudocode for rotations

rotate-right(T)

T: AVL tree

returns rotated AVL tree

- 1. $newroot \leftarrow T.left$
- 2. $T.left \leftarrow newroot.right$
- 3. $newroot.right \leftarrow T$
- 4. **return** *newroot*

rotate-left(T)

T: AVL tree

returns rotated AVL tree

- 1. $newroot \leftarrow T.right$
- 2. $T.right \leftarrow newroot.left$
- 3. $newroot.left \leftarrow T$
- 4. **return** newroot

Double Right Rotation

This is a *double right rotation* on node *z*:

First, a left rotation on the left subtree (y). Second, a right rotation on the whole tree (z).

Useful for left-right imbalance.

Double Right Rotation

This is a *double right rotation* on node *z*:

First, a left rotation on the left subtree (y). Second, a right rotation on the whole tree (z).

Useful for left-right imbalance.

Double Right Rotation

Double Left Rotation

This is a *double left rotation* on node z:

Right rotation on right subtree (y), followed by left rotation on the whole tree (z).

Useful for right-left imbalance.

Fixing a slightly-unbalanced AVL tree

Idea: Identify one of the previous 4 situations, apply rotations

```
T: AVL tree with T.balance = \pm 2
returns a balanced AVL tree
      if T.balance = -2 then
   if T.left.balance = 1 then
                T.left \leftarrow rotate-left(T.left)
3.
           return rotate-right(T)
5.
     else if T.balance = 2 then
6.
         if T.right.balance = -1 then
                T.right \leftarrow rotate-right(T.right)
7.
           return rotate-left(T)
8.
```

AVL Tree Operations

search: Just like in BSTs, costs $\Theta(height)$

insert: Shown already, total cost $\Theta(height)$

- fix restores the height of the tree it fixes to what it was,
- so fix will be called at most once.

delete: First search, then swap with successor (as with BSTs), then move up the tree and apply fix (as with insert).

• fix may be called $\Theta(height)$ times.

Total cost is $\Theta(height)$.

Height of an AVL tree

Define N(h) to be the *least* number of nodes in a height-h AVL tree.

One subtree must have height at least h-1, the other at least h-2:

$$N(h) = \left\{ egin{array}{ll} 1 + N(h-1) + N(h-2), & h \geq 1 \\ 1, & h = 0 \\ 0, & h = -1 \end{array}
ight.$$

What sequence does this look like?

Height of an AVL tree

Define N(h) to be the *least* number of nodes in a height-h AVL tree.

One subtree must have height at least h-1, the other at least h-2:

$$N(h) = \left\{ egin{array}{ll} 1 + N(h-1) + N(h-2), & h \geq 1 \ 1, & h = 0 \ 0, & h = -1 \end{array}
ight.$$

What sequence does this look like? The Fibonacci sequence!

$$\mathit{N(h)} = \mathit{F_{h+3}} - 1 = \left\lceil rac{arphi^{h+3}}{\sqrt{5}}
ight
floor - 1, ext{ where } arphi = rac{1 + \sqrt{5}}{2}$$

AVL Tree Analysis

Easier lower bound on N(h):

$$N(h) > 2N(h-2) > 4N(h-4) > 8N(h-6) > \cdots > 2^{i}N(h-2i) \ge 2^{\lfloor h/2 \rfloor}$$

AVL Tree Analysis

Easier lower bound on N(h):

$$N(h) > 2N(h-2) > 4N(h-4) > 8N(h-6) > \cdots > 2^{i}N(h-2i) \ge 2^{\lfloor h/2 \rfloor}$$

Since $n > 2^{\lfloor h/2 \rfloor}$, $h \le 2 \lg n$, and thus an AVL tree with n nodes has height $O(\log n)$. Also, $n \le 2^{h+1} - 1$, so the height is $\Theta(\log n)$.

 \Rightarrow search, insert, delete all cost $\Theta(\log n)$.