0.1 標準固有値問題

標準固有値問題
$$Ax = \lambda x \quad (x \neq 0)$$
 一般化固有値問題 $Ax = \lambda Gx \quad (x \neq 0)$

ただし一般化固有値問題においてGは正定値対称行列である.

0.2 線形空間と双対空間

線形空間 V 上の線形写像 f とは, $f:V\to\mathbb{R}$ であって以下を満たすものである.

$$\begin{cases} f(x+y) = f(x) + f(y) & \forall x,y \in V \\ f(\alpha x) = \alpha f(x) & \forall \alpha \in \mathbb{R}, \forall x \in V \end{cases}$$

定義 1 V の双対空間 V^* とは以下のように V 上の線形写像全体のなす集合である.

$$V^* = \{ f : V \to \mathbb{R}^| f$$
は線形写像 \}

双対性を表す内積として以下のように <,> をもちいる.

$$x \in V$$
, $f \in V^*$ のとき $f(x) = \langle f, x \rangle$

各 $x \in V$ に対して

$$\phi_x: V^* \to \mathbb{R} \quad (f \in V^*, \langle f, x \rangle \in \mathbb{R})$$
 $\phi_x(f) = \langle f, x \rangle$
 $\phi_x \in V^{**} \quad ((V^*)^* = V^{**} \succeq \text{かく})$

このとき $V \to V^{**}(x \in V, \phi_x \in V^{**})$ を考えると $V \subseteq V^{**}$ で一般には $V \neq V^{**}$

$$V$$
が有限次元空間のとき $\begin{cases} V \simeq \mathbb{R}^n \\ V^* \simeq \mathbb{R}^n \\ V^{**} \simeq \mathbb{R}^n \end{cases}$ V がノルム空間のとき $\begin{cases} V^*$ はBanach空間 V^{**} もBanach空間 でも $V^{**} \simeq V$ とは限らない V がHilbert空間 $\Rightarrow V \simeq V^* \simeq V^{**}$

ここでノルム空間はノルムが定義されたベクトル空間, Banach 空間は完備なノルム空間,Hilbert 空間はユークリッド空間の拡張である.

0.3 pairing と内積

$$\langle f, x \rangle$$
 $\langle , \rangle : V \times V^* \to \mathbb{R}$
 $(x, y)_G$ $(,) : V \times V \to \mathbb{R}$

ここで正定値対称行列 $G:V \to V^*$ を用いると

$$(x,y)_G = \langle x, Gx \rangle$$

 $\|x\|_G = \sqrt{\langle x, Gx \rangle}$

1 行列の標準形

1.1 対角化

A が実対称行列 $A^{\mathrm{T}}=A($ エルミート行列 $A^{H}=A,$ 共役転置) のとき固有値は実数で n 個存在し、固有ベクトルは直交化できる.

∃直交行列またはユニタリ行列
$$Q$$
について $Q^*AQ = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ & & \lambda_n \end{pmatrix} (Q^* = Q^{\mathrm{T}} \text{or } Q^H)$

このように対角化できる行列はどんな行列か?

定義 2

$$A$$
が正規行列 $\Leftrightarrow A^*A = AA^*$
 A がユニタリ(直交)行列 $\Leftrightarrow A^*A = I$

定理 1

$$A$$
が正規行列 $\Leftrightarrow \exists Q$ (ユニタリ行列)を用いて対角化可能 : $Q^*AQ = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$

 \Leftarrow を示す. 対角行列を D とすると $DD^*=D^*D$ であり $A=QDQ^*$ だから $A^*=(QDQ^*)^*=Q^*D^*Q^*=QD^*Q^*$ なので計算すれば $AA^*=A^*A$ が示せる.

 \Rightarrow は A の Schur 分解すると対角行列となることを示せば十分.

定理 2 (正規とは限らない)A に対して $\exists Q$ (ユニタリ) : Q^*AQ (Schur 分解) したものは上三角行列で対角要素は A の固有値になる.

証明は帰納法による. $Ax_1=\lambda_1x_1$ $\|x_1\|=1$ ととる. このとき $Q=(x_1|U)$ とする. $U^*x_1=0(U$ の各列は x_1 と直交しているので)

$$AQ = \boxed{\lambda x_1 \mid AU}$$

なので

$$Q^*AQ = \begin{pmatrix} x_1^* \\ U^* \end{pmatrix} A(x_1|U) = \begin{pmatrix} x_1^* \\ U^* \end{pmatrix} (\lambda_1 x_1|AU)$$
$$= \begin{pmatrix} x_1^* \lambda x_1 & x_1^* AU \\ U^* \lambda_1 x_1 & U^* AU \end{pmatrix}$$
$$= \begin{vmatrix} \lambda_1 & x_1^* AU \\ 0 & U^* AU \end{vmatrix}$$

最後に $\|x\|=1$ および $U^*x_1=0$ を用いた.これより左下の成分は 0 であり繰り返せば上三角行列になることが示される.

A が正規行列 $(A^*A=AA^*)$ ならば Schur 分解した $Q^*AQ=R$ の R も正規である $(R^*R=RR^*)$ (計算すると $RR^*=R^*R=Q^*AA^*Q$ になるので). したがって $RR^*=R^*R$ を書き下すと

$$\begin{bmatrix} r_{11} & \cdots & r_{1n} \\ \vdots & & \\ 0 & & r_{nn} \end{bmatrix} \begin{bmatrix} \overline{r_{11}} & 0 \\ \vdots & & \\ \overline{r_{1n}} & \overline{r_{nn}} \end{bmatrix} = \begin{bmatrix} \overline{r_{11}} & 0 \\ \vdots & & \\ \overline{r_{1n}} & \overline{r_{nn}} \end{bmatrix} \begin{bmatrix} r_{11} & \cdots & r_{1n} \\ 0 & & r_{nn} \end{bmatrix}$$

上の式で (1,1) 成分を取り出すと $||r_{11}||^2 + \cdots + ||r_{1n}||^2 = ||r_{11}||^2$ になるので $||r_{12}||^2 + \cdots + ||r_{1n}||^2 = 0$ である. したがって R は対角行列である.

1.2 いろいろな分解

Aが $n \times n$ 行列 $\Leftrightarrow \exists Q$ (ユニタリ行列)について $Q^*AQ = \bot三角行列(Schur分解)$

$$A$$
が正規行列 \Leftrightarrow $\exists Q$ (ユニタリ行列)について $Q^*AQ = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$ (固有値分解)
$$A O n \\ \text{個の固有ベクトルが独立} \Leftrightarrow \exists X (正則) について $X^{-1}AX = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$ (固有値は実数)
$$A \mathring{m} x \mathcal{n} = - \mathsf{n} + \mathsf{n} +$$$$

1.3 Sylvester 標準形

1.3.1 定義

正則行列 S を用いて Sylvester 標準形は以下のように定義される.

1の個数をs,-1の個数をtとすると $s+t=\operatorname{rank} A$ である.

定理 3 (s,t,n-s-t) を Sylvester の符号指数と定義すると、以下の Sylvester の慣性則が成り立つ。 Sylvester の慣性則: $S^*AS(S$ は正則) の形の変換で符号指数が変わらない。

1.3.2 作り方

 $\lambda_{s+1} \cdots \lambda_n < 0$) 以下のように \hat{S} を定めると S^*AS は Sylvester 標準形になる.

$$S = \begin{pmatrix} 1/\sqrt{\lambda_1} & & & & & & \\ & \ddots & & & & & \\ & & 1/\sqrt{\lambda_n} & & & & \\ & & & 1 & & \\ & & 0 & & & \ddots & \\ & & & & 1 \end{pmatrix}$$