Quiz 4

Honor Code: On my honor, I have neither given nor received any aid during this examination.

Instruction: You are not allowed to use a calculator during this examination. You need to show all necessary steps to get credit. This document is **double-sided**.

Problem 1

Recall the signed area of the region bounded by f(x) and x-axis from a to b is given by

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta_x,$$

where $f(x_i)$ can be understood as the height of summing rectangles, and Δ_x can be understood as the base.

Fill the blanks. Suppose we want to evaluate the signed area of the region bounded by $f(x) = \sqrt{\sin(x)}$ from 0 to π , we should use:

$$f(x_i) =$$
 ______ (use right-endpoint method),
$$\Delta_x =$$
 ______, thus

Your answers should not directly contain the letters f and x. Do not evaluate the expression.

Problem 2

You are standing at the edge of a river which is 1 mile wide and wish to return to your campground on the opposite side of the river. You can swim at 2 mph and walk at 3 mph.

You must first swim across the river, diagonally, to any point on the opposite bank. From there walk to the campground, which is 2 miles from the point directly across the river from where you start your swim. What route will take the **least amount of time**? That is, with the variable provided on the graph, **find** x.

Hint:
$$y = \text{Time} = \text{Time}_{\text{swim}} + \text{Time}_{\text{walk}} = \frac{\text{Distance}_{\text{swim}}}{\text{Speed}_{\text{swim}}} + \frac{\text{Distance}_{\text{walk}}}{\text{Speed}_{\text{walk}}} = \dots$$