et le cuivre.

Sciences Physiques: DS n° 1

24 Septembre 2018

Compétence	Maitrise
Exploiter des mesures de masse volumique pour différencier des espèces chimiques.	

Seul l'Exercice 1 est à faire sur le sujet. Le soin et la qualité de rédaction sont pris en compte dans la notation.

Exercice 1 QCM (5 points)

Pour chaque question, cocher la (ou les) bonne(s) réponses. Chaque question vaut 1 point et chaque mauvaise réponse en retire 0,25.

- 1. (1 point) On ne peut pas distinguer par la couleur :

 le fer, l'argent et l'or. ✓ le fer, le zinc et l'aluminium. le zinc, l'aluminium
- 2. (1 point) Le seul métal attiré par un aimant est :

√ le fer. ○ le cuivre. ○ l'aluminium.

3. (1 point) Pour distinguer le fer du zinc, on peut utiliser :

 $\sqrt{\text{les propriétés magnétiques.}}$ \bigcirc la couleur. $\sqrt{\text{la masse volumique.}}$

4. (1 point) Sachant que la température de fusion du zinc est 420 °C, l'état physique du zinc à 600 °C :

 \bigcirc solide. \bigcirc gazeux. $\sqrt{$ liquide.

5. (1 point) Pour calculer le volume d'un objet en connaissant sa masse et sa masse volumique, on utilise la relation :

on utilise la relation : $\sqrt{V = \frac{m}{\rho}} \bigcirc V = m \times \rho \bigcirc V = \frac{\rho}{m}$

Exercice 2 Une bague en argent (4 points)

Florent observe la bague de Suzanne. Suzanne lui affirme que c'est une bague en argent mais Florent pense qu'elle est en fer-blanc. Pour en avoir le cœur net, il pèse la bague et trouve $m=14,4\ g$. Il plonge la bague dans une éprouvette contenant $5,0\ mL$ d'eau : le niveau monte jusqu'à $6,4\ mL$.

1. (1 point) De combien le volume d'eau dans l'éprouvette a-t-il augmenté? En déduire la volume de la bague de Suzanne.

Solution:

Le volume d'eau a augmenté de 1,4mL, donc la bague a un volume de 1,4mL, soit $1,4cm^3$.

2. (1 point) A l'aide des données du tableau, calculer la masse que ferait la bague si elle était en fer-blanc.

Solution:

$$1,4 \times 8 = 11,2$$

Si elle était en argent la bague aurait une masse de 11,2g.

3. (1 point) A l'aide du tableau, calculer la masse que ferait la bague si elle était en argent.

Solution:

$$1,4 \times 10,3 = 14,42$$

Si elle était en argent la bague aurait une masse de 14,42g.

4. (1 point) Déterminer à l'aide des réponses précédentes, si la bague de Suzanne est en argent ou en fer-blanc.

Solution:

La masse mesurée sur la balance est 14,4g donc la bague est argent, Suzanne a raison.

Nom de l'alliage	Composition	Masse volumique
argent 925	alliage d'argent et de cuivre en bijouterie	10,3 g/cm ³
fer-blanc	acier recouvert d'étain	8 g/cm ³

Exercice 3 Classement (2 points)

Soit huit échantillons de 10g de matériaux différents.

Matériau	Masse volumique (kg/m^3)
diamant	3517
coton	40
acier	7800
bronze	8400
fer	7680
or	19 300
uranium	18 700
aluminium	2700

1. (2 points) Classer les échantillons par ordre de volume croissant.

Solution:

Matériau	ρ (kg/m ³)	ρ (g/m^3)	ρ (g/cm ³)	Volume $(\frac{10}{\rho} (cm^3))$
diamant	3517	3 517 000	3,517	2,84
coton	40	40 000	0,04	250
acier	7800	7800000	7,8	1,28
bronze	8400	8 400 000	8,4	1,19
fer	7680	7 680 000	7,68	1,30
or	19 300	19 300 000	19,3	0,52
uranium	18 700	18 700 000	18,7	0,53
aluminium	2700	2 700 000	2,7	3,7

D'où l'ordre suivant : or, uranium, bronze, acier, fer, diamant, aluminium, coton.

Exercice 4 Conversions d'unité (3 points)

Convertir les masses, volumes et masses volumiques suivantes dans les unités demandées :

1. $\binom{1}{2}$ point) $V_1 = 3.6 L =dm^3 =m^3 =cm^3$

Solution:

$$V_1 = 3.6 L = 3.6 dm^3 = 0.0036 m^3 = 3600 cm^3$$

2. (½ point) $V_2 = 0.45 \ m^3 = ...L = ...dL = ...daL$

Solution:

$$V_2 = 0.45 \ m^3 = 450 \ L = 4500 \ dL = 4500 \ daL$$

3. $(\frac{1}{2} \text{ point})$ $m_1 = 14.2$ $g = \dots kg = \dots mg$

Solution:

$$m_1 = 14.2 \ g = 0.0142 \ kg = 14200 \ mg$$

4. $(\frac{1}{2} \text{ point})$ $m_2 = 2.31 \text{ } kg =g =mg$

Solution:

$$m_2 = 2.31 \ kg = 2310 \ g = 2310 \ 000 \ mg$$

5. (½ point) $\rho_1 = 19.3 \ kg/L =g/L =mg/L$

Solution:

$$\rho_1 = 19.3 \ kg/L = 19300 \ g/L = 19300000 \ mg/L$$

6. (½ point) $\rho_2 = 19.3 \ kg/m^3 =g/m^3 =g/m^3$

Solution:

$$\rho_2 = 19.3 \ kg/m^3 = 19300 \ g/m^3 = 19300000 \ mg/m^3$$

Exercice 5 Ordre de grandeur (5 points)

Le fer a longtemps été utilisé dans a fabrication d'objets quotidiens et a servi à la réalisation de grands projets urbains de l'aire industrielle. Sachant que la masse volumique du fer est de l'ordre de $8\ g/cm^3$, donner une estimation du volume de fer nécessaire à la fabrication des objets suivants :

1 Un clou d'une masse approximative de 12 g.

Solution:

$$12 \div 8 = 1.5 \tag{1}$$

Il faut $1.5 \text{ } cm^3$ de fer pour fabriquer un clou.

1 Un fer à cheval d'une masse approximative de 500 g.

Solution:

$$500 \div 8 = 62,5 \tag{2}$$

Il faut $62.5 \text{ } cm^3$ de fer pour fabriquer un fer à cheval.

1 Un fer à repasser d'une masse approximative de 1 kg.

Solution:

$$1000 \div 8 = 125 \tag{3}$$

Il faut $125 \text{ } cm^3$ de fer pour fabriquer un fer à repasser.

1 Un portail en fer forgé d'une masse approximative de 250 kg.

Solution:

$$125 \times 250 = 31\,250\tag{4}$$

Il faut $31\,250$ cm^3 de fer pour fabriquer un portail, soit $31\,250$ dm^3 .

1 La charpente métallique du pont Dom-Luis à Porto, dont la masse approximative est 3045 tonnes.

Solution:

$$31\,250 \times 4 \times 3045 = 380\,625\,000\tag{5}$$

Il faut $380\,625\,000\,dm^3$ de fer pour fabriquer ce pont, soit $380\,625\,m^3$.