

درس رقم

درس الدوال اللوغاريتمية

نيبري): قديم الدالة f(x) = ln(x) (اللوغاريتم النيبري):

.01 تقديم الدالة اللوغاريتم النيبرى:

انشاط:

 $f: \]0,+\infty[
ightarrow \mathbb{R}:]0,+\infty[$ نعتبر الدالة العددية المعرفة ب

$$x \rightarrow f(x) = \frac{1}{x}$$

- ا هل f تقبل دالة أصلية على المجال $0,+\infty$ ؟ علل جوابك (1
 - F(1) = 0 حيث f ل F أصلية و 2

❖ مفردات:

$$F(1)=0$$
 حيث $f(x)=\frac{1}{x}$ للدالة الأصلية والدالة الأصلية الدالة الدالة الأصلية الدالة الد

- F(x) = ln(x) نرمز لها ب
- الدالة F تسمى الدالة اللوغاريتم النيبرى

♦ تعریف:

الدالة الأصلية
$$F$$
 للدالة $f(x)=rac{1}{x}$ على المجال $f(x)=0$ و التي تنعدم في $f(x)=1$) تسمى الدالة اللوغاريتم النيبري $f(x)=\frac{1}{x}$ و يرمز لها ب $f(x)=\ln(x)$

♦ ملحوظة:

$$f(x) = ln(x)$$
: نکتب $F(x) = ln(x)$: بدلا من کتابة

♦ نتائج:

- $D_f = \left]0,+\infty\right[$ الدالة $f(x) = \ln(x)$ مجموعة تعريفها هي
 - $f(1) = \ln(1) = 0$
- $f'(x) = \left[\ln(x) \right]' = \frac{1}{x} > 0$ قابلة للاشتقاق على $f(x) = \left[\ln(x) \right]$ و دالتها المشتقة هي $f(x) = \ln(x)$
 - $]0,+\infty[$ نزایدیة قطعا علی $f(x)=\ln(x)$ انن الدالة
 - $\forall a,b \in]0,+\infty[$, $a < b \Leftrightarrow ln(a) < ln(b)$
 - $\forall a,b \in]0,+\infty[$, $a=b \Leftrightarrow \ell n(a)=\ell n(b)$

المارة $\ln(x)$ هي كما يلي: اشارة

ln(1) = 0: نعلم أن ln(x)

 $x > 1 \Rightarrow ln(x) > 0$ (1 لدينا:

 $0 < x < 1 \Rightarrow ln(x) < 0$ (2)

$+\infty$ ln(x)

درس رقم

درس الدوال اللوغاريتمية

$$f(x) = \sqrt{\ln(x)} - \psi$$
. $f(x) = \frac{2}{\ln(x)}$ المجموعة تعريف الدالة أ

$$\ln(2x) - \ln(x-1) = 0$$
 : 2 (2

$$\ln(2x) - \ln(x-1) \le 0$$
 على المتراجحة: 3

02. المشتقة اللوغاريتمية لدالة:

تعریف و خاصیة:

 $\forall x \in I : u(x) \neq 0$ الشتقاق على مجال $u \neq 0$ لتكن الشتقاق على الشتقاق الشال الشتقاق الشتقاق الت

الدالة: $f(x) = \ln |u(x)|$ قابلة للاشتقاق على المجال I و دالتها المشتقة هي $\frac{u'(x)}{u(x)} = \frac{u'(x)}{u(x)}$ (أي المشتقة اللوغاريتمية ل u على I).

.I الدالة $\frac{u'(x)}{x}$ على المشتقة اللوغاريتمية للدالة $x \to \frac{u'(x)}{x}$

u(x) > 0 و إما u(x) < 0 إذن u(x) < 0 إذن u(x) < 0 و إما u(x) < 0 لدينا و u(x) < 0 دالة قابلة للاشتقاق على مجال u(x) < 0 متصلة على u(x) < 0 بمأن u(x) < 0

 $f(x) = \ln |u(x)| = \ln (u(x))$ ومنه u(x) > 0

u(I) ومنه الدالة u(X)>0 قابلة للاشتقاق على $u(I)\subset]0,+\infty$ بمأن u(x)>0 بمأن

$$I \xrightarrow{u} u(I) \xrightarrow{\ell n} \mathbb{R}$$

 $x \longrightarrow u(x) \longrightarrow \ell n(u(x)) = \ell n \circ u(x)$:

إذن: f قابلة للاشتقاق لأنها مركبة دالتين قابلتين للاشتقاق ومنه:

$$f'(x) = \left[\ln\left|u(x)\right|\right]' = \left[\ln\left(u(x)\right)\right]' = \left[\ln\left(u(x)\right)\right]' = \left[\ln\left(u(x)\right)\right]' = u'(x) \times \ln\left(u(x)\right) = u'(x) \times \frac{1}{u(x)} = \frac{u'(x)}{u(x)} = \frac{u'(x$$

حالة: u(x) < 0 ومنه: (بنفس الطريقة نبرهن على ذلك)

$$f(x) = [\ln |x^2 - x|]$$
 نحسب: 'f مع

$$f'(x) = \left[\ln |x^2 - x| \right]' = \frac{(x^2 - x)'}{x^2 - x} = \frac{2x - 1}{x^2 - x}$$
 : لاينا:

$$u(x) = 3x^2 - 5x$$
: لنعتبر الدالة

 $x \to \frac{6x-5}{3x^2-5x}$ الدالة المشتقة اللوغاريتمية ل u الدالة المشتقة اللوغاريتمية ل u هي الدالة:

استنتاج

 $\forall x \in I : u(x) \neq 0$ حيث u حيث u دالة قابلة للاشتقاق على مجال u

 $(c \in \mathbb{R})$ الدوال الأصلية للدالة: $x \to \frac{u'(x)}{u(x)}$ على المجال $x \to \frac{u'(x)}{u(x)}$ مع $(c \in \mathbb{R})$.

درس رقم

درس الدوال اللوغاريتمية

المرين:

] 2,+∞ [على
$$f(x) = \frac{5}{x-2}$$
 على] 0 +.2] على]

.03 الخاصيات الجبرية:

💠 خاصیات:

لكل a و b من]∞+,0[

$$ln(a \times b) = ln(a) + ln(b)$$

$$\ln\left(\frac{1}{b}\right) = -\ln(b)$$

$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

$$r \in \mathbb{Q} \bowtie ln(a^r) = r \times ln(a)$$

$$\ln\left(\sqrt[3]{a}\right) = \frac{1}{3} \times \ln\left(a\right)$$
 $\ln\left(\sqrt{a}\right) = \frac{1}{2} \times \ln\left(a\right)$:

. $ln(a \times b) = ln(a) + ln(b)$: نبر هن على: \Leftrightarrow

و (1)
$$f(1) = \ln(a)$$
 ومنه $g(x) = \ln(a) + \ln(x)$ عتبر $g(x) = \ln(a) + \ln(a)$ ثم الدالة $f(x) = \ln(ax)$ ثم الدالة $g(x) = \ln(a)$ ومنه $g(x) = \ln(a)$ ثم الدالة $g(x) = \ln(a)$

.]0,+ ∞ و و معرفتين على g و f

: الذن
$$f'(x) = g'(x)$$
 ومنه $g'(x) = [ln(a) + ln(x)]' = \frac{1}{x}$ و $f'(x) = [ln(ax)]' = \frac{(ax)'}{ax} = \frac{1}{x}$

$$(3)$$
 $f(x)=g(x)+c$ اذن $c \in \mathbb{R}$ مع $f(x)-g(x)=c$ و بالتالي $(f(x)-g(x))'=0$

$$f(x) = g(x)$$
 و منه $f(x) = g(x)$ و حسب $f(x) = g(x)$ و حسب $f(x) = g(x)$ عسب $f(x) = g(x)$ و منه $f(x) = g(x)$

ين :
$$x = b$$
 نخذ $x = [0,+\infty]$ وذلك لكل $f(x) = g(x) \Leftrightarrow \ln(ax) = \ln(a) + \ln(x)$ ين الخذ وانن

$$. \ln(ab) = \ln(a) + \ln(b)$$

$$\forall a,b \in]0,+\infty[$$
 : $\ln(ab) = \ln(a) + \ln(b)$: خلاصة

.
$$\ln\left(\frac{1}{b}\right) = -\ln(b)$$
 : نبر هن على:

ناخذ: b > 0 لدينا:

$$\ln\left(1\right) = 0 \Leftrightarrow \ln\left(\frac{\mathbf{b}}{\mathbf{b}}\right) = 0 \Leftrightarrow \ln\left(\mathbf{b} \times \frac{1}{\mathbf{b}}\right) = 0 \Leftrightarrow \ln\left(\mathbf{b}\right) + \ln\left(\frac{1}{\mathbf{b}}\right) = 0 \Leftrightarrow \ln\left(\frac{1}{\mathbf{b}}\right) = -\ln\left(\mathbf{b}\right)$$

.
$$\ln\left(\frac{1}{b}\right) = -\ln(b)$$
 خلاصة:

$$r \in \mathbb{Q}$$
 مع $\ln(a^r) = r \times \ln(a)$ مع \Leftrightarrow

$$g(x) = rln(x)$$
 و الدالة $f(x) = ln(x^r)$ مع اعتبار الدالة $f(x) = ln(x^r)$ و الدالة $ln(a \times b) = ln(a) + ln(b)$ و الدالة

درس رقم

درس الدوال اللوغاريتمية

- ♦ تطبيق:
- ln(8) = ln(4): نضع ln(2) = 0.69 و ln(8)
 - $\ln(\sqrt{3}) + \ln(9)$:
 - $\ln \left[\left(\sqrt{5} \right)^{2012} \right] \ln \left(\sqrt{5} \right) : \blacksquare$
 - ❖ ملحوظة:

$$ln(x) \times ln(x) = ln^2(x)$$
 : الكتابة

$$ln(x) \times ln(x) \times ln(x) = ln^3(x)$$
 : الكتابة

$$n \in \mathbb{N}^* \underbrace{\ln(x) \times \ln(x) \times \dots \times \ln(x)}_{n} = \ln^n(x) :$$
 بصفة عامة

- $\ln^2(3-\sqrt{2})-\ln^2(3+\sqrt{2})$: نطبیق: بسط \star
 - .04 نهایات اعتیادیة:
 - الله خاصیات:

الدالة:
$$f(x) = [0,+\infty]$$
 معرفة على $f(x) = ln(x)$ إذن:

- $=-\infty$ ومنه الدالة f تقبل مقارب عمودي معادلته: f اي محور الأراتيب $\int_{x\to 0^+}^{+} \ln(x) = -\infty$

 - ومنه a=0 إذن الدالة f تقبل فرع شلجمي في اتجاه محور الأفاصيل. $\lim_{x\to +\infty}\frac{\ln(x)}{x}=0$
 - $\lim_{\substack{x \to 0 \\ x > 0}} x \times \ln(x) = 0^{-}$
 - $\lim_{x\to+\infty} \ln(x) = +\infty : 0$ برهان ل

.
$$n \geq E\left(\frac{A}{\ln 2}\right) + 1$$
 اذن $n \ln(2) > A$ انعتبر $n \ln(2) + 1$ اندن $n \geq E\left(\frac{A}{\ln 2}\right)$

ومنه:

$$x > 2^n \Rightarrow \ell n(x) > \ell n(2^n)$$
 : فإن $x > 2^n$ إذا كان $x > 2^n$

$$\Rightarrow ln(x) > nln(2)$$

$$\Rightarrow ln(x) > A$$
; $(nln(2) > A)$

.
$$\forall A > 0$$
, $\exists B = 2^n > 0$, $x > B \Rightarrow \ell n(x) > A$

.
$$\lim_{x\to +\infty} \ln(x) = +\infty$$
 : خلاصة

.(
$$X = \frac{1}{x}$$
 یمکنك أن تضع $\lim_{x \to 0^+} ln(x) = -\infty$).

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 :$$
بر هن علی \star

5

الصفحة

درس رقم

درس الدوال اللوغاريتمية

- $[1,+\infty[$ على f على $f(x)=2\sqrt{x}-\ln(x)$ على $f(x)=2\sqrt{x}$. ثم ادرس رتابة f على $f(x)=2\sqrt{x}$
 - . $\lim_{x\to +\infty} \frac{\ln(x)}{x}$ عُم النهاية $0 \le \frac{\ln(x)}{x} \le \frac{2}{\sqrt{x}}$: استنتج.
 - . $\lim_{\substack{x\to 0\\x>0}} x \times \ln(x) = 0^-$: نبرهن علی \Leftrightarrow

.
$$X \rightarrow +\infty$$
 نضع : $X \rightarrow 0^+$ ومنه : $X \rightarrow 0^+$ فإن $X = \frac{1}{x}$

إذن :

$$\lim_{\substack{x \to 0 \\ x > 0}} x \times \ln(x) = \lim_{X \to +\infty} \frac{1}{X} \times \ln\left(\frac{1}{X}\right)$$

$$= \lim_{X \to +\infty} \frac{1}{X} \times (-\ln X)$$

$$= \lim_{X \to +\infty} \frac{-\ln X}{X}$$

$$= 0$$

$$\lim_{X \to 0} x \times \ln(x) = 0^{-} : \text{ and } x = 0$$

$$\lim_{x \to +\infty} \frac{\ln(x+2)}{x}$$
 نظبيق: أحسب *

.05 نهایات ضروریة معرفتها:

الله خاصيات:

$$\lim_{x \to 1} \frac{\ln(x)}{x-1} = 1 \quad \text{if} \quad \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1 \quad \blacksquare$$

$$n \in \mathbb{N}^*$$
; $\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0$ $\lim_{x \to 0^+} x^n \times \ln(x) = 0^-$

$$\lim_{x\to 1}\frac{\ln(x)}{x-1}=1$$
 نبرهن على \star

.
$$x_0 = 1$$
 في $f(x) = \ln x$ في 1.

.
$$\lim_{x\to 1}\frac{\ln(x)}{x-1}$$
 : استنتج نهایة $\frac{\ln(x)}{x-1}$

$$x_0=0$$
 و $f(x)=\ln(x+1)$ و الطريقة مع $\lim_{x\to 0}\frac{\ln(x+1)}{x}=1$ و $x_0=0$ نبرهن على $x_0=0$ و $x_0=0$ يمكنك استعمال نفس الطريقة مع

$$\lim_{x\to 0} \frac{\ln(x+1)}{x^3}$$
 و $\lim_{\substack{x\to 0\\x>0}} \frac{1}{x \times \ln(x)}$: خطبيق: أحسب $\frac{1}{x}$

:
$$f(x) = ln(x)$$
 دراسة الدالة .06

• حسب ما سبق نستنتج: جدول تغيرات f

الصفحة

درس رقم

درس الدوال اللوغاريتمية

 $(0,\overline{i},\overline{j})$ في م. م. م الدالة: f في م. م. م

انتائج:

- $]0,+\infty$ متصلة و تزايدية قطعا على $f(x)=\ln(x)$
- $f\left(\left[0,+\infty\right[\right)=\left[-\infty,+\infty\right[$ الى $\left[0,+\infty\right]$ القابل من $\left[0,+\infty\right]$ الى $\left[0,+\infty\right]$
- المعادلة f(x)=1 (أي $\ln(x)=1$) تقبل حلا وحيدا على $0,+\infty$ ونرمز لهذا الحل ب: $e\simeq 2,718$ عدد اللاجذري
 - $\forall r \in \mathbb{Q} : r = ln(e^r)$

الله مثال:

$$-\frac{2}{7} = \ln\left(e^{-\frac{2}{7}}\right) \quad 3 = \ln\left(e^{3}\right)$$

🍫 تطبيق:

$$f(x) = \frac{1}{3 - \ln(x)}$$
 حدد مجموعة تعريف الدالة:

 $a\in \left]0,1\right[\cup \left]1,+\infty\right[$ دالة اللوغاريتم للأساس a مع: $\left[0,1\right[\cup \left]1,+\infty\right[$

العريف:

$$(a \neq 1$$
 و $a \neq 1$ عدد موجب قطعا و $a \neq 1$ لیکن a من $a \neq 1$ ا

$$f:]0,+\infty[\rightarrow \mathbb{R}$$

$$x \to f(x) = \frac{\ln(x)}{\ln(a)}$$

تسمى دالة اللوغاريتم للأساس a و نرمز لها ب log a.

درس رقم

درس الدوال اللوغاريتمية

انتائج:

$$\log_{a}(1) = \frac{\ln(1)}{\ln(a)} = 0 \quad \text{9} \quad \log_{a}(x) = \frac{\ln(x)}{\ln(a)} \quad \blacksquare$$

$$\log_{a}(a) = \frac{\ln(a)}{\ln(a)} = 1$$

$$\log_{a}(e) = \frac{\ln(e)}{\ln(a)} = \frac{1}{\ln(a)}$$

♦ ملحوظة:

$$\log_e = \ell n$$
 ذن $\log_e(x) = \frac{\ell n(x)}{\ell n(e)} = \ell n(x)$

المنات:

 $a \in]0,1[\, \cup \,]1,+\infty[\, \, \, \, \, \, \, \,]0,+\infty[\, \, \, \, \, \, \, \, \, \, \, \,]$ لکل x و y من

$$\log_{a}(x \times y) = \log_{a}(x) + \log_{a}(y)$$

$$\log_{a}\left(\frac{1}{y}\right) = -\log_{a}(y)$$

$$\log_{a}\left(\frac{x}{y}\right) = \log_{a}(x) - \log_{a}(y) \quad \blacksquare$$

$$r \in \mathbb{Q} \bowtie \log_a(x^r) = r \times \log_a(x)$$

$$\log_a\left(\sqrt[3]{x}\right) = \frac{1}{3} \times \log_a(x) \quad \text{so} \quad \log_a\left(\sqrt{x}\right) = \frac{1}{2} \times \log_a(x)$$

$$\log_a(x \times y) = \log_a(x) + \log_a(y)$$
 نبر هن على:

$$\log_{a}(x \times y) = \frac{\ln(x \times y)}{\ln(a)} = \frac{\ln(x) + \ln(y)}{\ln(a)} = \frac{\ln(x) + \ln(y)}{\ln(a)} + \frac{\ln(y)}{\ln(a)} = \log_{a}(x) + \log_{a}(y)$$
الدينا:

$$\log_a(x \times y) = \log_a(x) + \log_a(y)$$
 اذن:

ملحوظة:

في حالة : a=10 الدالة : $f(x) = \log_{10}(x)$ تسمى الدالة اللوغاريتم العشري ويرمز لها باختصار : $f(x) = \log_{10}(x)$ إذن :

$$(\log_{10}(x) = \text{Log}(x) \approx 0.43 \ln(x) : Log_{10} = \log_{10} = \log_{10}$$

- $(Log(10^r) = r ; Log(10) = 1 ; Log(1) = 0$
- . $a = \frac{1}{2}$ و a = 2 نأخذ: $f(x) = \log_a(x)$ و $a = \frac{1}{2}$

درس رقم

درس الدوال اللوغاريتمية

تمارین تطبیقیة:

بسط التعابير التالية:

الصفحة

$$\log_2(8) - \log_2(\sqrt[3]{32}) + \log_2(9) - \log_2(3)$$
 (1

$$.\log_3\left(\frac{15}{4}\right) + \log_2\left(\frac{1}{27}\right) + \log_3\left(\frac{4}{5}\right)$$
 (2)

$$.\log(100) - \log(10^{2013}) + \log\left(\frac{1}{10^{100}}\right)$$
 (3)

$$. \forall a,b \in]1,+\infty[\log_b(a) = \frac{1}{\log_a(b)}$$
 بين أن: (4

$$\log_3(2x) \times (\log_5(x)-1) = 0$$
 المعادلة: \mathbb{R} على في (5

$$\log_{\sqrt{3}}(3x-1) \ge \log_{\sqrt{3}}(x+1)$$
 المتراجحة: (3x-1) حل في \mathbb{R}

$$f(x) = \log_5(x+1)$$
 : أدرس الدالة (7