

TubeDETR: Spatio-Temporal Video Grounding with Transformers

Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, Cordelia Schmid

Project page: https://antoyang.github.io/tubedetr.html

Paper: https://arxiv.org/abs/2203.16434

Spatio-Temporal Video Grounding

- Input text query: What does the adult ride in the playground?
- Output spatio-temporal tube:

TubeDETR Architecture Overview

Video-Text Encoder

Space-Time Decoder

Training

• Loss: Combination of spatial localization (\mathcal{L}_1 , gIoU) and temporal localization (KL , att) objectives

$$\mathcal{L} = \lambda_{\mathcal{L}_1} \mathcal{L}_{\mathcal{L}_1}(\hat{b}, b) + \lambda_{gIoU} \mathcal{L}_{gIoU}(\hat{b}, b) + \lambda_{KL} \mathcal{L}_{KL}(\hat{\tau}_s, \hat{\tau}_e, \tau_s, \tau_e) + \lambda_{att} \mathcal{L}_{att}(A)$$

 λ_ullet : scalar weights of the individual losses

 \hat{b} and b : predicted and ground truth boxes

 $\hat{ au}_S$ and au_S : predicted and ground truth start probability distribution

 $\hat{ au}_e$ and au_e : predicted and ground truth end probability distribution

A : temporal self-attention matrix

Initialization: from MDETR weights pretrained on Visual Genome,
 COCO and Flickr

Ablations: Space-Time Decoder

Table 1. Effect of the time encoding and the temporal selfattention in our space-time decoder on the VidSTG validation set.

Ablations: Weights initialization

VidSTG validation set.

temporal self-attention helps.

Ablations: Video-Text Encoder

- Our encoder is memory-efficient.
- Fast branch matters.

	(a) VidSTG								(b) HC-STVG2.0									
	East	Res.	Temp.	m tloII	m vIoII	vIoU@0.3	vIolian 5	m «IoII	Mem.	Enc	t Res.	Temp.			vIoU@0.3	vIoII@0.5	m cloII	Mem.
rasi	rast	i Kcs.	Stride	manoc	U III_VIOU	V10U@0.3	V100@0.5	IILSIOU	(GB)	1 ds	t Kes.	Stride	miliou	m_vioc	V100 @0.5	V10U@0.5	III_SIOU	(GB)
1.	_	224	1	46.5	25.2	34.1	23.0	49.1	23.9	1. —	224	1	52.8	35.0	55.3	28.3	63.9	14.3
2	1	224	2	46.0	25.0	34.3	22.9	49.0	16.2	2. 🗸	224	2	53.7	35.8	56.7	29.6	64.3	10.2
3.	1	224	5	45.9	24.3	33.2	22.0	47.7	11.8	3. ✓	224	5	53.2	35.0	54.5	29.0	63.2	8.0
4.	1	288	2	46.4	25.9	35.0	23.9	50.5	23.7	4. 1	288	2	53.9	36.4	58.1	30.7	65.4	13.9
5.	1	320	3	46.4	25.9	35.7	23.7	50.7	23.6	5. ✓	320	3	53.6	36.2	57.5	30.4	65.2	13.8
6.	1	352	4	46.9	26.2	36.1	24.1	50.7	24.4	6. ✓	352	4	53.9	36.4	58.8	30.6	64.9	14.3
7.	X	352	4	46.6	24.8	34.0	21.6	48.3	18.1	7. X	352	4	53.1	34.7	55.9	27.4	63.0	11.3
8.	1	384	5	46.8	26.0	35.5	24.0	50.4	26.1	8. 🗸	384	5	53.6	36.3	57.5	30.4	65.3	15.2

Table 3. Comparison of performance-memory trade-off with various temporal strides k, spatial resolutions (Res.), with or without the fast branch in our video-text encoder, on the VidSTG validation set (left, Table 3a) and the HC-STVG2.0 validation set (right, Table 3b).

Comparison with state of the art

State-of-the-art results on: VidSTG and HC-STVG.

	Destroisies	VidSTG								HC-STVG1		
Method	Pretraining Data	I	Declarati	ve Senteno	ces Intern			terrogative Sentences				
	Data	m_tIoU	m_vIoU	vIoU@0.3	vIoU@0.5	m_tIoU	m_vIoU	vIoU@0.3	vIoU@0.5	m_vIoU	vIoU@0.3	vIoU@0.5
1. STGRN [102]	Visual Genome	48.5	19.8	25.8	14.6	47.0	18.3	21.1	12.8	_		
2. STGVT [72]	Visual Genome + Conceptual Captions	1	21.6	29.8	18.9	_	_	-	_	18.2	26.8	9.5
3. STVGBert [68]	ImageNet + Visual Genome + Conceptual Captions	_	24.0	30.9	18.4	i—	22.5	26.0	16.0	20.4	29.4	11.3
4. TubeDETR (Ours) ImageNet	43.1	22.0	29.7	18.1	42.3	19.6	26.1	14.9	21.2	31.6	12.2
5. TubeDETR (Ours) ImageNet + Visual Genome + Flickr + COCO	48.1	30.4	42.5	28.2	46.9	25.7	35.7	23.2	32.4	49.8	23.5

Table 4. Comparison to the state of the art on the VidSTG test set and the HC-STVG1 test set.

Qualitative results

- Interactive Demo: http://stvg.paris.inria.fr/
- Query: What is beneath the adult in the snow?

TubeDETR
Ground Truth

