Exercice 1

On considère l'application suivante :

$$f: \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}^3$$

$$(x, y, z) \quad \longmapsto \quad (y + z, \ x - y + z, \ z - 2x)$$

- 1) Montrer que f est une application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 .
- 2) Déterminer la matrice de f dans la base canonique \mathcal{B}_0 .
- 3) On considère la base $\mathcal{B} = ((1,1,0),(0,1,1),(1,0,1)).$ Déterminer $\operatorname{Mat}_{\mathcal{B}_0,\mathcal{B}}(f), \operatorname{Mat}_{\mathcal{B},\mathcal{B}_0}(f),$ et $\operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f)$

On considère l'application suivante :

$$f: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^3$$

$$(x,y) \quad \longmapsto \quad (x+y,x-y,2y-3x)$$

- 1) Montrer que f est une application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 .
- 2) Déterminer la matrice de f dans les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3
- 3) On considère la base $\mathcal{B} = ((1,1),(0,2))$ de \mathbb{R}^2 et la base $\mathcal{B}' = ((1,0,0),(0,2,0),(0,0,3)$ de \mathbb{R}^3 . Déterminer $\mathrm{Mat}_{\mathcal{B},\mathcal{B}'}(f)$.
- 4) Montrer que f est injective.
- 5) Déterminer une base de im(f).

Soient $A, B \in \mathcal{M}_2(\mathbb{R})$ données par

$$A = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}$$

- 1) Vérifier que $A^2 = A$ et que $B^2 = B$
- 2) Déterminer le rang de A ainsi que la dimension du noyau de A
- 3) En notant I_2 la matrice identité de $\mathcal{M}_2(\mathbb{R})$, montrer que $I_2 AB$ et que A + B AB sont inversibles.

Soit E un espace vectoriel de dimension 3 et soit $f \in \mathcal{L}(E)$ un endomorphisme non nul. On suppose que $f^2 = 0$, c'est à dire que $f \circ f = 0_{\mathcal{L}(E)}$.

Le but de cet exercice est de montrer qu'il existe une base \mathcal{B} de E dans laquelle la matrice de f est $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f) =$

- $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$
 - 1) Montrer que $\operatorname{im}(f) \subset \ker(f)$
 - 2) En déduire que $0 < rg(f) \le dim(ker(f)) < 3$
 - 3) À l'aide du théorème du rang, déterminer rg(f) et dim(ker(f)).
 - 4) Justifier qu'il existe $u \in \mathbb{R}^3$ tel que $f(u) \neq 0$.
 - 5) On pose v = f(u). Justifier qu'il existe $w \in \text{Ker}(f)$ tel que (v, w) est une base de Ker(f).
 - 6) Montrer que (v, w, u) est une base de \mathbb{R}^3 qui répond au problème posé.

Soit E un \mathbb{R} -espace vectoriel de dimension finie. Montrer que si f est une homothétie de E, alors la matrice représentative de f dans une base \mathcal{B} de E ne dépend pas de la base choisie.

Soit E un \mathbb{R} -espace vectoriel et f un endomorphisme de E tel que : $\forall \boldsymbol{x} \in E, \exists \lambda \in \mathbb{R}, f(\boldsymbol{x}) = \lambda \cdot \boldsymbol{x}$ Montrer que : $\exists \lambda \in \mathbb{R}, \forall \boldsymbol{x} \in E, f(\boldsymbol{x}) = \lambda \cdot \boldsymbol{x}$.

On considère l'application suivante :

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$$
$$(x,y,z) \longmapsto (3x+y+z, x-2y+z, x+y, 2x+z)$$

- 1) Montrer que f est une application linéaire
- 2) Déterminer la matrice de f dans la base canonique
- 3) On pose:

$$\mathcal{B} = ((2,0,0),(0,2,0),(0,0,2)) \quad \text{et} \quad \mathcal{B}' = ((1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1,1))$$

Montrer que \mathcal{B} est une base de \mathbb{R}^3 et que \mathcal{B}' est une base de \mathbb{R}^4

- 4) Déterminer la matrice de passage de la base canonique à \mathcal{B} et la matrice de passage de \mathcal{B}' à la base canonique.
- 5) En déduire $A = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$ la matrice de f dans les bases \mathcal{B} et \mathcal{B}' .
- 6) Déterminer Im(f) et Ker(f).

Soit $n \in \mathbb{N}^*$ et soient les matrices carrées de taille n suivante : $A = (2^{i+j})_{1 \le i,j \le n}$ et $B = (i+j)_{1 < i,j < n}$

- 1) Écrire A et B dans le cas n=5
- 2) Déterminer le rang de A et le rang de B dans le cas général
- 3) Déterminer une base de Ker(A) et une base de Ker(B) dans le cas n = 5.

* * Exercice 9

Soit $n \geq 2$ un entier et soit $A = (\sin(i+j))_{1 \leq i,j \leq n}$. Montrer que $\operatorname{rg}(A) \leq 2$.

* * Exercice 10 -

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $A = \begin{pmatrix} 0 & 1 & 1 \\ -2 & 3 & 2 \\ 1 & -1 & 0 \end{pmatrix}$.

On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

- 1) a) Calculer $(A-I)^2$
 - b) En déduire que A est inversible et écrire A^{-1} comme combinaison linéaire de I et A.
- 2) On pose $u_1 = (f \text{Id})(e_1)$ et $u_2 = e_1 + e_3$.
 - a) Montrer que le rang de (f Id) est égal à 1. En déduire la dimension de Ker(f Id).
 - b) Justifier que (u_1, u_2) est une base de Ker(f Id)
- 3) Montrer que la famille (u_1, u_2, e_1) est une base de \mathbb{R}^3
- 4) Déterminer la matrice T de f dans cette base.
- 5) Soit la matrice $P = \begin{pmatrix} -1 & 1 & 1 \\ -2 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$. Justifier que P est inversible puis écrire la relation existant entre les matrices A, T, P et P^{-1} .

Soit $A = (a_{i,j})_{1 \le i,j \le n}$ une matrice carrée de taille n. On dit que A est une matrice stochastique si les deux conditions suivantes sont remplies :

- $\forall (i,j) \in [1,n]^2, a_{i,j} \ge 0$
- $\forall i \in [1, n], \sum_{j=1}^{n} a_{i,j} = 1$
- 1) Soient A et B deux matrice stochastiques. Montrer que AB est stochastique.
- 2) On considère la matrice $A = \frac{1}{8} \begin{pmatrix} 4 & 2 & 2 \\ 2 & 1 & 5 \\ 2 & 5 & 1 \end{pmatrix}$.
 - a) Vérifier que A est stochastique.
 - b) Justifier que A^n est stochastique.
 - c) Calculer le rang de A.
 - d) On pose $e_1 = (1, 1, 1)$, $e_2 = (0, -1, 1)$ et $e_3 = (-2, 1, 1)$ et X_1, X_2, X_3 les vecteurs colonnes correspondant. Montrer que (e_1, e_2, e_3) est une base de \mathbb{R}^3
 - e) Exprimer AX_1 , AX_2 et AX_3 en fonction de X_1 , X_2 et X_3 et en déduire qu'il existe une matrice inversible P telle que :

$$A = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \\ 0 & 0 & \frac{1}{4} \end{pmatrix} P^{-1}$$

Préciser la matrice P et déterminer son inverse P^{-1} .

f) Déterminer une expression de A^n en fonction de n.

$$\star$$
 \star \star
Exercice 12

On veut démontrer dans cet exercice la formule d'inversion de Pascal : on suppose que (a_n) et (b_n) sont deux suites de réels telles que pour tout $n \in \mathbb{N}$, $a_n = \sum_{k=0}^n \binom{n}{k} b_k$.

Le but de l'exercice est de montrer que $\forall n \in \mathbb{N}, b_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} a_k$.

Soit $n \in \mathbb{N}^*$. On considère l'application

$$u: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

 $P(X) \longmapsto P(X+1)$

- 1) Montrer que u définit bien un endomorphisme de $\mathbb{R}_n[X]$.
- 2) Montrer que u est inversible d'inverse :

$$v: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

 $P(X) \longmapsto P(X-1)$

- 3) Exprimer les matrices de u et de v dans la base canonique $\mathcal{B}_0 = (1, X, ..., X^n)$.
- 4) On note $M = \operatorname{Mat}_{\mathcal{B}_0}(u)$ et $N = \operatorname{Mat}_{\mathcal{B}_0}(v)$, et on note $X = \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix}$ et $Y = \begin{pmatrix} b_0 \\ \vdots \\ b_n \end{pmatrix}$. Montrer que $X^T = Y^T M$ et en déduire l'égalité voulue.

