Silizium-PIN-Fotodiode mit Tageslichtsperrfilter Silicon PIN Photodiode with Daylight Filter Lead (Pb) Free Product - RoHS Compliant

SFH 235 FA

Wesentliche Merkmale

- Speziell geeignet f
 ür Anwendungen bei 880 nm
- Kurze Schaltzeit (typ. 20 ns)
- 5 mm-Plastikbauform im LED-Gehäuse
- Auch gegurtet lieferbar

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Lichtdimmern und Gerätefernsteuerungen
- Lichtschranken für Gleich- und Wechsellichtbetrieb

7 1	Bestellnummer Ordering Code
SFH 235 FA	Q62702P0273

Features

- Especially suitable for applications of 880 nm
- Short switching time (typ. 20 ns)
- 5 mm LED plastic package
- · Also available on tape and reel

Applications

- IR-remote control of hi-fi and TV sets, video tape recorders, dimmers, remote control of various equipment
- Photointerrupters

Grenzwerte Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	32	V
Verlustleistung, $T_{\rm A}$ = 25 °C Total power dissipation	P _{tot}	150	mW

Kennwerte ($T_A = 25$ °C, $\lambda = 870$ nm) **Characteristics**

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Fotostrom Photocurrent $V_{\rm R}$ = 5 V, $E_{\rm e}$ = 1 mW/cm ²	I_{P}	50 (≥ 40)	μΑ
Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity	$\lambda_{S \text{ max}}$	900	nm
Spektraler Bereich der Fotoempfindlichkeit $S=10~\%$ von $S_{\rm max}$ Spectral range of sensitivity $S=10~\%$ of $S_{\rm max}$	λ	740 1120	nm
Bestrahlungsempfindliche Fläche Radiant sensitive area	A	7	mm ²
Abmessung der bestrahlungsempfindlichen Fläche Dimensions of radiant sensitive area	$L \times B$ $L \times W$	2.65 × 2.65	mm × mm
Halbwinkel Half angle	φ	± 65	Grad deg.
Dunkelstrom, $V_{\rm R}$ = 10 V Dark current	I_{R}	2 (≤ 30)	nA
Spektrale Fotoempfindlichkeit Spectral sensitivity	S_{λ}	0.63	A/W
Quantenausbeute Quantum yield	η	0.9	Electrons Photon
Leerlaufspannung, $E_{\rm e}$ = 0.5 mW/cm ² Open-circuit voltage	V_{O}	320 (≥ 250)	mV

Kennwerte ($T_{\rm A}$ = 25 °C, λ = 870 nm) **Characteristics** (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Kurzschlußstrom, $E_{\rm e}$ = 0.5 mW/cm ² Short-circuit current	$I_{ m SC}$	22	μΑ
Anstiegs- und Abfallzeit des Fotostromes Rise and fall time of the photocurrent $R_{\rm L}$ = 50 Ω ; $V_{\rm R}$ = 5 V; λ = 850 nm; $I_{\rm p}$ = 800 μ A	t_{r},t_{f}	20	ns
Durchlaßspannung, $I_{\rm F}$ = 100 mA, E = 0 Forward voltage	V_{F}	1.3	V
Kapazität, $V_{\rm R}$ = 0 V, f = 1 MHz, E = 0 Capacitance	C_0	72	pF
Temperaturkoeffizient von $V_{\rm O}$ Temperature coefficient of $V_{\rm O}$	TC_{V}	- 2.6	mV/K
Temperaturkoeffizient von $I_{\rm SC}$ Temperature coefficient of $I_{\rm SC}$	TC_1	0.03	%/K
Rauschäquivalente Strahlungsleistung Noise equivalent power $V_{\rm R}$ = 10 V	NEP	4.0 × 10 ⁻¹⁴	$\frac{W}{\sqrt{Hz}}$
Nachweisgrenze, $V_{\rm R}$ = 10 V Detection limit	D*	6.6 × 10 ¹²	$\frac{\text{cm} \times \sqrt{\text{Hz}}}{\text{W}}$

Relative Spectral Sensitivity $S_{\text{rel}} = f(\lambda)$

Photocurrent $I_{\rm P} = f(E_{\rm e}),~V_{\rm R} = 5~{\rm V}$ Open-Circuit Voltage

Total Power Dissipation $P_{\text{tot}} = f(T_{\text{A}})$

Dark Current

Capacitance

Dark Current

Directional Characteristics

100°

40°

80°

100°

120°

Maßzeichnung Package Outlines

Maße in mm (inch) / Dimensions in mm (inch).

Lötbedingungen Soldering Conditions Wellenlöten (TTW)

(nach CECC 00802) (acc. to CECC 00802)

Published by **OSRAM Opto Semiconductors GmbH** Wernerwerkstrasse 2, D-93049 Regensburg www.osram-os.com

EU RoHS and China RoHS compliant product

按照中国的相关法规和标准,不含有毒有害物质或元素。

此产品符合欧盟 RoHS 指令的要求;

© All Rights Reserved.

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ¹, may only be used in life-support devices or systems ² with the express written approval of OSRAM OS. ¹ A critical component is a component usedin a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.

² Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

2007-04-02 6

