2017~2018 学年《高等数学 A》(上)试题解析

一、填空题(本题共有5道小题,每小题3分,满分15分),请将答案填在横线上.

【答案】 2

【解析】
$$\lim_{x\to\infty} \left(\frac{x+a}{x}\right)^x = \lim_{x\to\infty} \left(1+\frac{a}{x}\right)^{\frac{x}{a}\cdot a} = e^a$$
,推出 $a=2$.

2.
$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = 6, \quad \lim_{\Delta x \to 0} \frac{f(x_0 - \Delta x) - f(x_0)}{\Delta x} = \underline{\qquad}.$$

【答案】 -6

【解析】
$$\lim_{\Delta x \to 0} \frac{f(x_0 - \Delta x) - f(x_0)}{\Delta x} = -\lim_{\Delta x \to 0} \frac{f(x_0 - \Delta x) - f(x_0)}{-\Delta x} = -6.$$

3. 设 $x + y = e^{x-y}$, 则 dy =______

【答案】
$$\frac{e^{x-y}-1}{e^{x-y}+1}dx$$

【解析】
$$dy = f'(x)dx$$
, 对 $x + y = e^{x-y}$ 两边对 x 求导得, $y' = \frac{e^{x-y}-1}{e^{x-y}+1}$,

所以
$$dy = \frac{e^{x-y}-1}{e^{x-y}+1}dx.$$

4. 已知函数 f(x) 在 $(-\infty, +\infty)$ 上连续, $f(x) = (x+1)^2 + 2\int_0^x f(t)dt$,则当 $n \ge 2$ 时, $f^{(n)}(0) =$

【答案】 5×2ⁿ⁻¹

【解析】 对
$$f(x) = (x+1)^2 + 2\int_0^x f(t)dt$$
 两边对 x 求导, $f'(x) = 2(x+1) + 2f(x)$, $f'(0) = 2 + 2f(0) = 4$

两边再对 x 求导, f''(x) = 2 + 2f'(x),则 $f''(0) = 2[1 + f'(0)] = 2 \times 5$,

同理, 当
$$n \ge 3$$
时, $f^{(n)}(x) = 2f^{(n-1)}(x) = 2^{n-2}f''(x)$, 即可得, $f^{(n)}(0) = 5 \times 2^{n-1}$.

5. 曲线 $\rho = 1 + \cos\theta \ (0 \le \theta \le 2\pi)$ 所围成的平面图形的面积为______.

【答案】 $\frac{3\pi}{2}$

【解析】 $S = \frac{1}{2} \int_{0}^{2\pi} (1 + \cos \theta)^{2} d\theta = \frac{3\pi}{2}$

二、单项选择题(本题共5道小题,每小题3分,满分15分),请将答案填在括号内.

1. 设
$$f(x) = \lim_{n \to \infty} \frac{1+x}{1+x^{2n}}$$
, 下列结论中,正确的是 ().

- (A) f(x) 没有间断点
- (B) x = -1 为 f(x) 的间断点
- (C) x=1为 f(x)的间断点 (D) $x=\pm 1$ 都是 f(x)的间断点

【答案】(C)

【解析】
$$f(x) = \lim_{n \to \infty} \frac{1+x}{1+x^{2n}} = \begin{cases} 1+x, & |x| < 1 \\ 0, & x = -1 \\ 1, & x = 1 \end{cases}$$
, $\lim_{x \to -1^-} f(x) = \lim_{x \to -1^+} f(x) = f(-1) = 0$, $|x| > 1$

但 $\lim_{x \to 1^+} f(x) = 0 \neq f(1)$, 故选(C).

- **2.** 设 y = f(x) 在 x_0 处可微, $\Delta x = x x_0$,则当 $\Delta x \rightarrow 0$ 时, $f(x_0 + \Delta x) f(x_0) f'(x_0) \Delta x$ 是 Δx 的 (
 - (A) 高阶无穷小 (B)同阶无穷小 (C)等价无穷小 (D) 低阶无穷小

【答案】(A)

【解析】
$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0) - f'(x_0) \Delta x}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0) = 0$$
,

故选(A).

- **3.** 设 f(0) = 0, $f'(x) = sec^2 x$,则 f(x) 的原函数为 ().
 - (A) $\ln/\sin x/+C$

(B) $-\ln/\sin x/+C$

(C) $\ln/\cos x/+C$

(D) $-\ln/\cos x/+C$

【答案】(D)

【解析】由 $f'(x) = sec^2 x$,有 f(x) = tan x,所以

$$F(x) = \int \tan x dx = -\int \frac{1}{\cos x} d\cos x = -\ln|\cos x| + C, \text{ bight}(D).$$

4. 定积分 $\int_{-\pi}^{\pi} (\sin^3 x \cos^4 x + \sqrt{\pi^2 - x^2}) dx = ($

(A)
$$\pi^2 + 1$$
 (B) $\frac{\pi^3}{2}$ (C) $\frac{\pi^2}{2}$

(B)
$$\frac{\pi^3}{2}$$

(C)
$$\frac{\pi^2}{2}$$

【答案】(B)

【解析】 $\int_{-\pi}^{\pi} (\sin^3 x \cos^4 x + \sqrt{\pi^2 - x^2}) dx = \int_{-\pi}^{\pi} \sin^3 x \cos^4 x dx + \int_{-\pi}^{\pi} \sqrt{\pi^2 - x^2} dx$

$$=0+\int_{-\pi}^{\pi}\sqrt{\pi^2-x^2}\ \mathrm{d}x=\frac{1}{2}\pi\,R^2\Big|_{R=\pi^2}=\frac{1}{2}\pi^3$$
,故选(B).

- (A) 0 (B) 1 (C) $\frac{\sqrt{2}}{2}$ (D) $\sqrt{2}$

【答案】(C)

【解析】因为
$$f(1)=0$$
,所以 $(f^{-1})'(0)=\frac{1}{dy/dx\Big|_{x=1}}=\frac{1}{\sqrt{1+x^3}\Big|_{x=1}}=\frac{1}{\sqrt{2}}$,故选(C).

三、求解下列各题(本题共有3道小题,每小题5分,满分15分).

1. 求极限 $\lim_{x\to 0} \frac{e^{\cos x} - e}{\ln \cos x}$

【详解】
$$\lim_{x \to 0} \frac{e^{\cos x} - e}{\ln \cos x} = \lim_{x \to 0} \frac{-e^{\cos x} \sin x \cos x}{-\sin x} = e$$

型
$$\lim_{x \to 0} \frac{e^{\cos x} - e}{\ln \cos x} = \lim_{x \to 0} \frac{e(e^{\cos x - 1} - 1)}{\ln(1 + \cos x - 1)} = \lim_{x \to 0} \frac{e(\cos x - 1)}{(\cos x - 1)} = e$$

2. 求 $y = x^x + 3$ 的导数.

【详解】
$$y' = (x^x)'$$
,

设
$$y_1 = x^x$$
, 两边取对数: $\ln y_1 = x \ln x$,

两边对
$$x$$
 求导,得 $\frac{y_1'}{y_1} = \ln x + 1$, $y_1' = x^x (\ln x + 1)$,

所以,
$$y' = y_1' = x^x (\ln x + 1)$$
.

3. 求
$$\begin{cases} x = t^2, \\ y = t^3 + 3t, \end{cases}$$
的拐点.

【详解】
$$\frac{dy}{dx} = \frac{3t^2 + 3}{2t}$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{3t^2 + 3}{2t} \right)}{2t} = \frac{3}{4} \frac{t^2 - 1}{t^3}$$

$$\frac{d^2y}{dx^2} = \frac{3}{4} \frac{t^2 - 1}{t^3} = 0 \Rightarrow t = \pm 1$$
,且 $\frac{d^2y}{dx^2}$ 在 $t = \pm 1$ 的邻域内变号,

所以(1,4)、(1,-4)为拐点.

四、(本题满分 10 分) 已知函数 y(x) 由方程 $x^3 + y^3 - 3x + 3y - 2 = 0$ 确定,求 y(x) 的极值.

【详解】
$$\forall x^3 + y^3 - 3x + 3y - 2 = 0$$
关于 x 求导得: $3x^2 + 3y^2y' - 3 + 3y' = 0$(1)

令 y' = 0 得 $3x^2 = 3$, 因此 $x = \pm 1$, 当 x = 1 时, y = 1, 当 x = -1 时, y = 0.

(1)式两端对x求导得: $6x+6y(y')^2+3y^2y''+3y''=0$,

将 y' = 0代入可得 $6x + (3y^2 + 3)y'' = 0$,

当x=1时,y=1时,代入可得y''=-1,

当 x = -1 时, y = 0 时,代入可得 y'' = 2,

因此函数的极大值为 y(1) = 1, 极小值为 y(-1) = 0.

五、(本题满分 10 分) 设函数 f(x)可导,f(0) = 0,且有 $F(x) = x \int_{1}^{2} f(tx) dt$,求 $\lim_{x \to 0} \frac{F(x)}{x^{2}}$.

【详解】 作变量替换: u = tx,则

$$F(x) = x \int_{1}^{2} f(tx) dt = \int_{x}^{2x} f(u) du$$

由洛必达法则,有
$$\lim_{x\to 0} \frac{F(x)}{x^2} = \lim_{x\to 0} \frac{F'(x)}{2x} = \lim_{x\to 0} \frac{2f(2x) - f(x)}{2x}$$

$$= \lim_{x\to 0} \frac{2[f(2x) - f(0)] - [f(x) - f(0)]}{2x} = \frac{3}{2}f'(0)$$

六、(本题满分 10 分)设 $e < a < b < e^2$, 证明 $\ln^2 b - \ln^2 a > \frac{4}{e^2}(b-a)$.

【证明】 设 $f(x) = \ln^2 x$,

应用 Lagrange 中值定理有: $\ln^2 b - \ln^2 a = \frac{2 \ln \xi}{\xi} (b - a), \quad a < \xi < b.$

又设 $\phi(t) = \frac{\ln t}{t}$,则 $\phi'(t) = \frac{1 - \ln t}{t^2}$,当t > e时, $\phi'(t) < 0$,此时 $\varphi(t)$ 单减,从而

$$\phi(\xi) > \phi(e^2)$$
, $\mathbb{P}\left[\frac{\ln \xi}{\xi} > \frac{\ln e^2}{e^2} = \frac{2}{e^2}\right]$,

所以
$$\ln^2 b - \ln^2 a > \frac{4}{e^2}(b-a)$$
.

七、(本题满分 12 分)设曲线 L 的方程为 $y = \frac{2}{3}x^{\frac{3}{2}}$, $0 \le x \le 1$.

- (1) 求L上从点(0,0)到点(1, $\frac{2}{3}$)的弧长l;
- (2) 求 L 与直线 $y = \frac{2}{3}$ 及 y 轴围成的平面图形绕直线 $y = \frac{2}{3}$ 旋转所形成的旋转体的体积V.

【详解】 (1)
$$l = \int_0^1 \sqrt{1 + (y')^2} dx = \int_0^1 \sqrt{1 + x} dx = \frac{2}{3} (1 + x)^{\frac{3}{2}} \Big|_0^1 = \frac{2}{3} (2\sqrt{2} - 1)$$

(2)
$$V = \pi \int_0^1 \left[\frac{2}{3} - \frac{2}{3} x^{\frac{3}{2}} \right]^2 dx = \frac{4\pi}{9} \int_0^1 (1 - 2x^{\frac{3}{2}} + x^3) dx = \frac{4\pi}{9} \left(x - \frac{4}{5} x^{\frac{5}{2}} + \frac{1}{4} x^4 \right) \Big|_0^1$$

$$= \frac{4\pi}{9} \left(1 - \frac{4}{5} + \frac{1}{4} \right) = \frac{\pi}{5}.$$

八、(本题满分 13 分)设函数 y(x)满足微分方程 y'' + 3y' + 2y = 0,

- (1) 求 y'' + 3y' + 2y = 0 的通解;
- (2) 若 (1) 中的解 y(x)满足 y(0)=1, y'(0)=1, 求 $\int_0^{+\infty} y(x)dx$ 的值.

【详解】(1)特征方程为 $r^2+3r+2=0$,

特征方程有两个不同的实根,即 $r_1 = -1$, $r_2 = -2$,

因此二阶常系数齐次线性微分方程的解为: $y(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$;

$$(2) \int_0^{+\infty} y(x) dx = \int_0^{+\infty} (C_1 e^{r_1 x} + C_2 e^{r_2 x}) dx = \frac{C_1}{r_1} e^{r_1 x} \Big|_0^{+\infty} + \frac{C_2}{r_2} e^{r_2 x} \Big|_0^{+\infty} = C_1 + \frac{C_2}{2}.$$

又
$$y(0) = 0, y'(0) = 1$$
, 可得:
$$\begin{cases} C_1 + C_2 = 1 \\ -C_1 - 2C_2 = 1 \end{cases}$$
, 解得 $C_1 = 3, C_2 = -2$,

代入可得
$$\int_0^{+\infty} y(x)dx = 2$$
.