ME951 1S2020

ME951 - Estatística e Probabilidade I

Profa.: Larissa Avila Matos

 5^a Lista de Exercícios - Intervalo de confiança para média e proporção

- Q1. Exatamente 30% da população da cidade apoiava o antigo prefeito que perdeu a última eleição (observe que as eleições já passaram e é por isto que sabe-se a proporção exata do eleitorado do antigo prefeito). Calcule, usando a aproximação da binomial pela normal, a probabilidade de que dentre 100 moradores da cidade, escolhidos ao acaso, no mínimo 40 sejam do eleitorado deste candidato.
- Q2. Considere que queremos determinar, em uma população, a proporção de pessoas acima de 40 anos que sofrem de artrite. Sabemos que, de uma amostra de 4000 pessoas acima de 40 anos, foi verificado que 240 pessoas têm artrite.
- (a) Estime a proporção de pessoas acima de 40 anos que sofrem de artrite.
- (b) Determine um intervalo de confiança de 95% para a verdadeira proporção de pessoas acima de 40 anos que sofrem de artrite?
- **Q3.** Uma amostra aleatória de 625 pessoas revelou que 70% preferem a marca X de sabonete. Construa um intervalo de 90% de confinaça para p =proporção de pessoas que preferem a marca X.
- **Q4.** Antes de uma eleição um determinado partido está interessado em estimar a proporção p de eleitores favoráveis a seu candidato. Uma amostra piloto de tamanho 100 revelou que 60% dos eleitores eram favoráveis ao cantidato em questão.
- (a) Determine o tamanho da amostra necessário para que o erro cometido na estimação seja no máximo 0.01 com probabilidade de 80%.
- (b) Se na amostra fina (com tamanho dado por (a)) observou-se que 55% dos eleitores eram favoráveis ao candidato em questão, construa um intervalo de confiança (95%) para a proporção p.
- **Q5.** Suponha que estejamos interessados em estimar a porcentagem de consumidores de um certo produto. Se uma amostra de tamanho 300 forneceu 100 indivíduos que consomem o dado produto, determine:
- (a) O intervalo de confiança para p, com coeficiente de confiança 95%.
- (b) O tamanho da amostra para que o erro da estimativa não exceda a 0.02 unidades com probabilidade 95%.
- **Q6.** Uma organização anuncia que, em uma determinada pesquisa, 43% responderam "sim" à pergunta "Você preferiria ter um emprego chato do que não ter um emprego?", com uma margem de erro de $\pm 1\%$. O que a organização não revelou?
- **Q7.** Ao tomar uma amostra para estimar uma proporção populacional, por que é melhor relatar um intervalo de confiança do que \hat{p} ?
- **Q8.** Encontre o intervalo de confiança para uma proporção p se $\hat{p} = 0,222$ e a margem de erro é 0,044.
- **Q9.** Suponha que p = 30% dos estudantes de uma escola sejam mulheres. Colhemos uma amostra aleatória simples de n = 10 estudantes e calculamos $\hat{p} =$ proporção de mulheres na amostra. Qual a probabilidade de que \hat{p} difira de p em menos de 0.01? E se n = 50?
- **Q10.** Seja uma X_1, X_2, \dots, X_n uma amostra aleatória da distribuição $N(\mu, \sigma^2)$. Mostre que a estatística $T = \sum_{i=1}^n a_i X_i$ com $\sum_{i=1}^n a_i = 1$ é não viciada para a média, ou seja, mostre que $E(T) = \mu$.
- **Q11.** O projetista de uma indústria tomou uma amostra de 50 funcionários para verificar o tempo médio gasto para montar um determinado brinquedo. Foi verificado que $\overline{x} = 20.5$ e $\sigma = 2$.
- a. Construa um intervalo de confiança de nível 99% para μ .
- **b.** Qual deverá ser o tamanho da amostra para que o erro máximo cometido, a 99% de confiança, ao estimar μ por \overline{x} , não exceda $\epsilon = 0.1$?

ME951 1S2020

Q12. Foram realizados testes glicêmicos em 25 pacientes após um jejum de 8 horas. Os resultados são apresentados na tabela abaixo. Encontre um intervalo de confiança de nível 95% para a média μ .

Teste glicêmico (mg/dL)												
80	118	100	90	83	117	95	84	102	80	112	78	102
121	82	77	88	73	104	88	132	91	103	140	101	

Q13. Seja X a duração da vida de uma peça de equipamento tal que $\sigma = 5$ horas. Admita que 100 peças foram ensaiadas fornecendo uma duração de vida média de 500 horas. Construa um intervalo de 95% para a verdadeira média populacional.

Q14. Seja X_1, X_2, \ldots, X_n uma amostra aleatória de uma distribuição normal com média μ , desconhecida e variância σ^2 , conhecida. Qual deve ser o tamanho da amostra n, tal que exista um intervalo de confiança para μ com coeficientes de confiança de 90% e comprimento menor do que 0.2σ ?

Q15. A seguinte amostra: 9, 8, 12, 7, 9, 6, 11, 6, 10, 9 foi extraída de uma população normal. Calcule o intervalo de confiança para μ ao nível de 90% de confiança.

Q16. Sendo X uma população em que μ e σ^2 são desconhecidos. Uma amostra de tamanho 15 forneceu os valores $\sum_{i=1}^{15} x_i = 8.7$ e $\sum_{i=1}^{15} x_i^2 = 27.3$. Determine um intervalo de confiança de 95% para μ .