CLAIMS

1. A compound having high affinity for a dopamine transporter having a formula selected from the group consisting of:

$$X \xrightarrow{i} B \longrightarrow (CH_2)_{\overline{m}} N \longrightarrow N \longrightarrow N \longrightarrow T \xrightarrow{A_{\overline{n}}} Z_1$$
Formula |

$$X \xrightarrow{i} B \longrightarrow (CH_2)_{\overline{m}} N \xrightarrow{O} H \xrightarrow{i} Z_2$$

Formula II

$$X \xrightarrow{i} B \longrightarrow (CH_2)_{\overline{m}} N \longrightarrow N \longrightarrow N \longrightarrow (CH_2)_{\overline{m}} Z_3$$

Formula III

$$X \xrightarrow{i} B \longrightarrow (CH_2)_{\overline{m}} N$$

Formula IV

Formula V

wherein:

n is an integer of 1 to 6; X, Y, Z_1 and Z_2 can be the same or different and are hydrogen, halo, haloalkyl, alkyl, aryl, (C_1-C_6) alkoxy, N-alkyl, (C_2-C_6) acyloxy, N-alkylene, -SH, -SR, wherein R is from the same group as R_1 and R_2 and can be the same or different than R_1 and R_2 , amino, nitro, cyano, hydroxy, C(=O) OR₆, -C(=O) NR₅R₄, NR₃R₂, or $S(=O)_k$ R₁ wherein k is 1 or 2, and R₁ to R₆ are independently hydrogen or (C_1-C_6) alkyl;

 R_1 , and R_2 can be the same or different and are hydrogen, (C_1-C_6) alkyl, hydroxyalkyl or mercaptoalkyl, -C(=0) OR_1 , cyano, (C_1-C_6) alkenyl, (C_2-C_6) alkynyl, or 1, 2, 4-oxadiazol-5-yl optionally substituted at the 3-position by Z_4 wherein any (C_1-C_6) alky, (C_1-C_6) alkanoyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl can optionally be substituted by 1, 2 or 3 Z;

 Z_4 is (C₁-C₆) alkyl or phenyl, optionally substituted by 1, 2 or 3 Z_1

R₇ can be hydrogen, O or phenyl

R₈ can be hydrogen, phenyl, halophenyl, nitrophenyl, pyridyl, piperonyl or sulfoxonitrophenyl

W is O or S

T is amino or C₁-C₆ aminoalkyl

A is N or C

T is C1-C6 alklyl or sulfonyl and

V is alkyl (C₀-C₆), alkenyl, alkynyl, haloaryl, alkyl phenol, alkyl halophenyl, and R₁ or

R₂ as indicated above and

 ϕ is phenyl, naphthyl, thienyl or pyridinyl.

2. The compound of claim 1 selected from the group consisting of:

- 3. The compound of any one of claims 1, or 2 which is labeled with a radionuclide.
- 4. The compound of claim 3 wherein said radionuclide is ^{99m}Tc.
- 5. The compound of claim 3 wherein said radionuclide is an iodine isotope.
- 6. The method for imaging dopamine neurons in a mammal which comprises: administering to the mammal an imaging dose of the compound of claim 1 labeled with a radionuclide and detecting binding of the compound in the mammal.
- 7. The method for imaging dopamine neurons in a mammal which comprises: administering to the mammal an imaging dose of the compound of claim 2 labeled with a radionuclide and detecting binding of the compound in the mammal.
- 8. The method of treating an mammal afflicted with cocaine abuse which comprises: administering to the mammal an effective amount of a compound of claim 1.
- 9. The method of treating an animal afflicted with cocaine abuse which comprises: administering to the mammal an effective amount of a compound of claim 2.
- 10. The method of treating an mammal afflicted with a neurodegenerated disease characterized by a degeneration of dopamine neurons which comprises: administering to the mammal an effective amount of the compound of claim 1.

- 11. The method of treating an mammal afflicted with a neurodegenerated disease characterized by a degeneration of seratonin neurons which comprises:
 administering to the mammal an effective amount of the compound of claim 1.
- 12. The method of treating a mammal afflicted with a neurodegenerated disease characterized by a degeneration of dopamine neurons which comprises: administering to the mammal an effective amount of the compound of claim 2.
- 13. The method of treating a mammal afflicted with a neurodegenerated disease characterized by a degeneration of seratonin neurons which comprises: administering to the mammal an effective amount of the compound of claim 2.