Quantum Virial Coefficients via Path Integral Monte Carlo: Theory and Development of Novel Algorithms

PhD dissertation defense by: Ramachandran Subramanian

Committee: Prof. David A. Kofke (Chair), Prof. Jeffrey R. Errington, Prof. Johannes Hachmann, Dr. Andrew J. Schultz

May 9, 2016

Overview

- Introduction
 - Viral coefficients
 - Ab initio potentials
- Objectives
- Methods
 - Mayer Sampling Monte Carlo
 - Path Integral Monte Carlo
 - Novel algorithms
- 4 Results
- 5 Summary

Virial equation of state (VEOS)

$$\frac{P}{\rho kT} = 1 + B_2(T)\rho + B_3(T)\rho^2 + \dots$$

- B_n n^{th} order virial coefficient represents the effect of interaction of n molecules.
- Depends only on temperature.
- Works well for systems with low density (typically gases).

Expressions for the virial coefficients

• Second and third order virial coefficients are given by:

$$B_2(T) = -\frac{1}{2} \int d1 \ f(0,1)$$

$$B_3(T) = -\frac{1}{3} \int \int d1 \ d2 \ f(0,1) \ f(0,2) \ f(1,2)$$
(1)

where $f(0,1) = \left(\exp\left[-\beta U_2(\mathbf{r})\right] - 1\right)$ and indices '1' and '2' denote the position and orientational degrees of freedom of molecules 1 and 2, respectively, with respect to molecule '0' at the origin.

• The number of such integrals to be summed 1 is: 3 for B_4 , 10 for B_5 , 56 for B_6 , 468 for B_7 .

 $^{^{}m l}$ J. P. Hansen and I. R. McDonald, *Theory of Simple Liquids* (2006).

Main uses:

 To compute other thermodynamic properties like the joules-thomson coefficient, critical point etc.

 To rank different potential models by comparing their virial coefficients to experimental results

Main uses:

• To compute other thermodynamic properties like the joules-thomson coefficient, critical point etc.

 To rank different potential models by comparing their virial coefficients to experimental results

To systematically tune and improve potentials as a result.

Empirical potential models

- Usually functions fitted to experimental data of bulk property measurement.
- Represent the net effect of a variety of phenomenon taking place including 2 body interactions, multi-body interactions, nuclear quantum effects etc.
- As a result, fail to accurately represent interaction potential.
- Interaction potentials that better represent condensed (high density) phase fail to predict accurate virial coefficients for the gas (low density) phase.

Example - different empirical models of water

• Importance of the accuracy of interaction potential²:

² K. M. Benjamin et al., J. Phys. Chem. B (2007).

Ab initio potential models

- Fundamentally different from empirical models as they focus only on two or three molecules at a time
- Solve for the interaction energies starting with the Schrödinger equation and involve many approximations:

$$\begin{split} \mathcal{H} \; \Psi &= E \; \Psi, \\ \mathcal{H} &= \mathcal{T}_e + \mathcal{T}_N + \mathcal{V}_{ee} + \mathcal{V}_{eN} + \mathcal{V}_{NN} \end{split}$$

- Account for electronic structure using different levels of theory and different basis sets
- We use potentials fitted to ab initio data rather than compute it on-the-fly (expensive)

Nuclear quantum effects

- Consequence of uncertainty in the positions of atoms at low temperatures (Zero-point vibrational energy).
- Have to be explicitly included in virial coefficient calculations as they
 are ignored in the development of ab initio potentials.
- Semi-classical routes to include quantum effects:
 - 1. Computing first order quantum corrections.
 - 2. Using an effective potential like the Quadratic Feynman-Hibbs³.
- Quantum route: path integral Monte Carlo (PIMC) (will be explained in detail later).

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (1965).

Introduction Ab initio potentials

Classification of virial coefficients

• Different levels of "quantumness", using B_2 as an example:

Nuclear quantum effects

• Importance of nuclear quantum effects⁴

⁴ K. R. S. Shaul, A. J. Schultz, and D. A. Kofke, J. Chem. Phys. (2012).

Overview

- Introduction
 - Viral coefficients
 - Ab initio potentials
- Objectives
- Methods
 - Mayer Sampling Monte Carlo
 - Path Integral Monte Carlo
 - Novel algorithms
- 4 Results
- Summary

Objective

Diatomic molecules

Compute accurate virial coefficients using state-of-the-art *ab initio* potentials and PIMC method.

Overview

- Introduction
 - Viral coefficients
 - Ab initio potentials
- Objectives
- Methods
 - Mayer Sampling Monte Carlo
 - Path Integral Monte Carlo
 - Novel algorithms
- 4 Results
- 5 Summary

Mayer Sampling Monte Carlo

• Second and third order virial coefficients are given by:

$$B_2(T) = -\frac{1}{2} \int d1 \ f(0,1)$$

$$B_3(T) = -\frac{1}{3} \int \int d1 \ d2 \ f(0,1) \ f(0,2) \ f(1,2)$$

• MSMC⁵ is a free energy perturbation technique to evaluate the integrals in the above equations indirectly.

$$\Gamma(T) = \Gamma_o \frac{\langle \gamma/\pi \rangle_{\pi}/\langle \gamma_{os}/\pi \rangle_{\pi}}{\langle \gamma_o/\pi \rangle_{\pi_o}/\langle \gamma_{os}/\pi_o \rangle_{\pi_o}}$$
$$\gamma_{os} = \frac{|\gamma_o||\gamma|}{\alpha|\gamma_o|+|\gamma|}$$

J. K. Singh and D. A. Kofke, Phys. Rev. Lett. (2004).

PIMC - thermal density matrix

• The paritition function is an important property in statistical mechanics:

$$P(x) = \frac{1}{Z}\rho(x,x),$$

$$Z = \int \rho(x,x)dx \equiv \operatorname{trace}\{\rho\}.$$

where $\rho(x',x)$ is the statistical thermal density matrix at temperature T.

• Richard Feynman⁶ was able to connect it with quantum mechanics:

$$\rho(R, R'; \beta) = \langle R|e^{-\beta \mathcal{H}}|R'\rangle$$

where $R = \{ \mathbf{r}_1, \mathbf{r}_2, \dots \mathbf{r}_n \}$ and $\beta = 1/k_{\rm B}T$, with $k_{\rm B}$ Boltzmann's constant and T the temperature.

⁶ R. P. Feynman and A. R. Hibbs, *Quantum Mechanics and Path Integrals* (1965).

Important equations

• A key property of the density matrix is that the product of two density matrices is also a density matrix. Hence the convlution⁷:

$$\rho(R_1, R_3; \beta_1 + \beta_2) = \int dR_2 \rho(R_1, R_2; \beta_1) \rho(R_2, R_3; \beta_2)$$

⁷ D. M. Ceperley, Rev. Mod. Phys. (1995).

⁸ T. Cui et al., Phys. Rev. B (1997).

Important equations

 A key property of the density matrix is that the product of two density matrices is also a density matrix. Hence the convlution⁷:

$$\rho(R_1, R_3; \beta_1 + \beta_2) = \int dR_2 \rho(R_1, R_2; \beta_1) \rho(R_2, R_3; \beta_2)$$

• As $\frac{\beta}{P} \to 0$ or equivalently as $PT \to \infty$, the "primitive approximation" is given by⁸:

$$e^{-\frac{\beta}{P}(\mathcal{T}+\mathcal{V})}\approx e^{-\frac{\beta}{P}\mathcal{T}}e^{-\frac{\beta}{P}\mathcal{V}}$$

⁷ D. M. Ceperley, Rev. Mod. Phys. (1995).

⁸ T. Cui et al., Phys. Rev. B (1997).

Important equations

• A key property of the density matrix is that the product of two density matrices is also a density matrix. Hence the convlution⁷:

$$\rho(R_1, R_3; \beta_1 + \beta_2) = \int dR_2 \rho(R_1, R_2; \beta_1) \rho(R_2, R_3; \beta_2)$$

• As $\frac{\beta}{P} \to 0$ or equivalently as $PT \to \infty$, the "primitive approximation" is given by⁸:

$$e^{-rac{eta}{P}(\mathcal{T}+\mathcal{V})} pprox e^{-rac{eta}{P}\mathcal{T}} e^{-rac{eta}{P}\mathcal{V}}$$

• The Trotter formula proves that this approximation does converge to the right result in the $P \to \infty$ limit and is given by:

$$e^{-\beta(\mathcal{T}+\mathcal{V})} = \lim_{P \to \infty} \left[e^{-\frac{\beta}{P}\mathcal{T}} e^{-\frac{\beta}{P}\mathcal{V}} \right]^P$$

D. M. Ceperley, Rev. Mod. Phys. (1995).

⁸ T. Cui et al., Phys. Rev. B (1997).

Diatomic molecule - rigid rotor⁹

• Let m and I denote the mass of the atom and moment of inertia of the rigid rotor respectively with $\Lambda_m = h/\sqrt{2\pi m k_B T}$. Its Hamiltonian is given by:

$$\hat{h}_2 = \frac{\hat{m{p}}^2}{2m} + \frac{\hat{m{J}}_1^2}{2I} + \frac{\hat{m{J}}_2^2}{2I} + \hat{U}(r, \Omega_1, \Omega_2)$$

where $\hat{\pmb{\rho}}$ is the momentum operator conjugated to the COM separation, $\hat{\pmb{J}}_1$ and $\hat{\pmb{J}}_2$ are the angular momentum operators, $\hat{U}(r,\Omega_1,\Omega_2)$ is the intermolecular potential function in terms of the COM distance r and the orientation vectors Ω_1 and Ω_2 .

⁹ K. Patkowski et al., J. Chem. Phys. (2008).

Diatomic molecule - rigid rotor¹⁰

ullet Use $oldsymbol{x}^i, \Omega_1^i, \Omega_2^i$ to denote the configuration of the $i^{ ext{th}}$ rigid rotors,

Matrix elements

$$\mathcal{T}_{\text{tra}}^{i,i+1} = \left\langle \mathbf{x}^{i} \left| \exp\left(-\frac{\beta \hat{\mathbf{p}}^{2}}{2mP}\right) \right| \mathbf{x}^{i+1} \right\rangle = \frac{P^{3/2}}{\Lambda_{m}^{3}} \exp\left(-\frac{\pi P(\mathbf{x}^{i} - \mathbf{x}^{i+1})^{2}}{\Lambda_{m}^{2}}\right)$$

$$\mathcal{T}_{\text{rot}}^{i,i+1} = \left\langle \Omega^{i} \left| \exp\left(-\frac{\beta \hat{\mathbf{J}}^{2}}{2IP}\right) \right| \Omega^{i+1} \right\rangle = \sum_{j=0}^{\infty} \frac{2j+1}{4\pi} \mathcal{P}_{j}(\cos(\theta_{i,i+1}))$$

$$\times \exp\left[-\beta j(j+1)\Upsilon/P\right]$$

where j is the angular quantum number, $\theta_{i,i+1}$ is the angle between bead orientation vectors $\Omega_i, \Omega_{i+1}, \mathcal{P}_j$ is the Legendre polynomial of order j and $\Upsilon = \hbar^2/(2I)$.

¹⁰ K. Patkowski et al., J. Chem. Phys. (2008).

Diatomic molecule - rigid rotor¹⁰

ullet Use $oldsymbol{x}^i, \Omega_1^i, \Omega_2^i$ to denote the configuration of the $i^{ ext{th}}$ rigid rotors,

Matrix elements

$$\mathcal{T}_{\text{tra}}^{i,i+1} = \left\langle \mathbf{x}^{i} \left| \exp\left(-\frac{\beta \hat{\mathbf{p}}^{2}}{2mP}\right) \right| \mathbf{x}^{i+1} \right\rangle = \frac{P^{3/2}}{\Lambda_{m}^{3}} \exp\left(-\frac{\pi P(\mathbf{x}^{i} - \mathbf{x}^{i+1})^{2}}{\Lambda_{m}^{2}}\right)$$

$$\mathcal{T}_{\text{rot}}^{i,i+1} = \left\langle \Omega^{i} \left| \exp\left(-\frac{\beta \hat{\mathbf{J}}^{2}}{2IP}\right) \right| \Omega^{i+1} \right\rangle = \sum_{j=0}^{\infty} \frac{2j+1}{4\pi} \mathcal{P}_{j}(\cos(\theta_{i,i+1}))$$

$$\times \exp\left[-\beta j(j+1)\Upsilon/P\right]$$

where j is the angular quantum number, $\theta_{i,i+1}$ is the angle between bead orientation vectors $\Omega_i, \Omega_{i+1}, \mathcal{P}_j$ is the Legendre polynomial of order j and $\Upsilon = \hbar^2/(2I)$.

¹⁰ K. Patkowski et al., J. Chem. Phys. (2008).

Diatomic molecule - rigid rotor¹⁰

ullet Use $oldsymbol{x}^i, \Omega_1^i, \Omega_2^i$ to denote the configuration of the $i^{ ext{th}}$ rigid rotors,

Matrix elements

$$\mathcal{T}_{\text{tra}}^{i,i+1} = \left\langle \mathbf{x}^{i} \left| \exp\left(-\frac{\beta \hat{\mathbf{p}}^{2}}{2mP}\right) \right| \mathbf{x}^{i+1} \right\rangle = \frac{P^{3/2}}{\Lambda_{m}^{3}} \exp\left(-\frac{\pi P(\mathbf{x}^{i} - \mathbf{x}^{i+1})^{2}}{\Lambda_{m}^{2}}\right)$$

$$\mathcal{T}_{\text{rot}}^{i,i+1} = \left\langle \Omega^{i} \left| \exp\left(-\frac{\beta \hat{\mathbf{J}}^{2}}{2IP}\right) \right| \Omega^{i+1} \right\rangle = \sum_{j=0}^{\infty} \frac{2j+1}{4\pi} \mathcal{P}_{j}(\cos(\theta_{i,i+1}))$$

$$\times \exp\left[-\beta j(j+1)\Upsilon/P\right]$$

where j is the angular quantum number, $\theta_{i,i+1}$ is the angle between bead orientation vectors $\Omega_i, \Omega_{i+1}, \mathcal{P}_j$ is the Legendre polynomial of order j and $\Upsilon = \hbar^2/(2I)$.

¹⁰ K. Patkowski et al., J. Chem. Phys. (2008).

Diatomic molecule - rigid rotor¹¹

• Defining $r \equiv x^{(1)}, \Delta^{(i)} \equiv x^{(i+1)} - x^{(i)},$

$$\exp[-\beta \bar{U}(|\boldsymbol{r}|) = \left\langle \exp\left[-\frac{\beta}{P}\sum_{i=1}^{P} U(|\boldsymbol{x}^{i}|, \Omega_{1}^{i}, \Omega_{2}^{i})\right]\right\rangle_{F, \rho}$$

Probability distributions:

$$arrho(\Omega) = rac{1}{q_{\mathsf{rot}}} \prod_{i=1}^P \mathcal{T}^{i,i+1}_{\mathsf{rot}}, \qquad F(oldsymbol{\Delta}) = eta^3_m \prod_{i=1}^P \mathcal{T}^{i,i+1}_{\mathsf{tra}}
onumber \ q_{\mathsf{rot}} = \sum_{j'} (2j'+1) \exp\left[-eta \Upsilon j'(j'+1)
ight]$$

Fully quantum second virial coefficient

$$B_2(T) = -2\pi \int dr \ r^2(e^{-\beta \bar{U}(r)} - 1)$$

I1 K. Patkowski et al., J. Chem. Phys. (2008).

Diatomic molecule - rigid rotor¹²

• A closer look at the effective potential:

$$\exp[-\beta \bar{U}(|\mathbf{r}|) = \left\langle \exp\left[-\frac{\beta}{P} \sum_{i=1}^{P} U(|\mathbf{x}^{i}|, \Omega_{1}^{i}, \Omega_{2}^{i})\right] \right\rangle_{F, \varrho}$$

¹² K. Patkowski et al., J. Chem. Phys. (2008).

Objectives

Diatomic molecules

Compute accurate virial coefficients using state-of-the-art *ab initio* potentials, MSMC and PIMC methods for the rigid case.

Challenges

Lack of efficient an sampling algorithm for orientations.

- Idea proposed by Garberoglio et al.¹³: two independent atoms (vs. one rigid rotor previously)
- Leads to possibility of avoiding quantum chemistry calculations
- Look at the sampling more mathematically, without having to worry about the physics of the rigid rotor

¹³ G. Garberoglio et al., J. Chem. Phys. (2014).

- Instead of using Cartesian coordinates, we use the P COM position vectors \mathbf{R}_i and the P bead (or image) vectors \mathbf{b}_i .
- We consider both Boltzmann type as well as exchange type configurations.
- Probability associated with a configuration $Z \equiv (R, b)$ is given as:

$$P_{\sigma}(\boldsymbol{Z}) = \frac{1}{Q_1^{(\sigma)}} F(\boldsymbol{R}; 2m) F(\boldsymbol{b}^{(\sigma)}; m/2) e^{-\beta \bar{u}(\boldsymbol{b})}$$

where F is the path-integral weight, and \bar{u} is the intramolecular potential energy averaged over all images:

$$F(\mathbf{x}; m) = \left(\frac{P^{3/2}}{\Lambda_m^3}\right)^P \exp\left[-\frac{\pi P}{\Lambda_m^2} \sum_{i=0}^{P-1} |\mathbf{x}_{i+1} - \mathbf{x}_i|^2\right]$$
$$\bar{u}(\mathbf{b}) = \frac{1}{P} \sum_{i=0}^{P-1} u(b_i)$$

- Define π to be the **b**-dependent terms of the probability distribution F.
- We sample from an approximate distribution $\tau(o \to n)$ and accept or reject based on:

$$P_{
m acc} = {\sf Min} \left[1, rac{\pi(n)/\pi(o)}{ au(o o n)/ au(n o o)}
ight]$$

where 'o' and 'n' denote the old and new configurations respectively.

ullet We derive a simple and anlytic expression for au(o o n)

- Image $0 \parallel$ image P and the angle between them is 0 for Boltzmann type and π for exchange type. The choice of orientation of image 0 is arbitrary
- At every stage, we are given two images b_i, b_k and we choose the orientation of image j = (i + k)/2.
- We note that τ(o → n) is exact for the last step of the algorithm.

Figure 1: Example for P = 8

Methods Novel algorithms

- Image 0 \parallel image P and the angle between them is 0 for Boltzmann type and π for exchange type. The choice of orientation of image 0 is arbitrary
- At every stage, we are given two images b_i , b_k and we choose the orientation of image j = (i + k)/2.
- We note that τ(o → n) is exact for the last step of the algorithm.

Figure 1: Example for P = 8

Methods Novel algorithms

- Image 0 \parallel image P and the angle between them is 0 for Boltzmann type and π for exchange type. The choice of orientation of image 0 is arbitrary
- At every stage, we are given two images b_i , b_k and we choose the orientation of image j = (i + k)/2.
- We note that $\tau(o \rightarrow n)$ is exact for the last step of the algorithm.

Figure 1: Example for P = 8

Methods Novel algorithms

- Image 0 \parallel image P and the angle between them is 0 for Boltzmann type and π for exchange type. The choice of orientation of image 0 is arbitrary
- At every stage, we are given two images \boldsymbol{b}_i , \boldsymbol{b}_k and we choose the orientation of image j = (i + k)/2.
- We note that $\tau(o \rightarrow n)$ is exact for the last step of the algorithm.

Figure 1: Example for P = 8

Adjacent image probability distribution:

$$\tau^{\text{adj}}(\mathbf{b}_{j}(\alpha, \beta) : \mathbf{a}_{j}, \psi_{i,k})$$

$$= \pi(\mathbf{b}_{i}, \mathbf{b}_{j})\pi(\mathbf{b}_{j}, \mathbf{b}_{k})$$

$$= \exp(-4k_{h}[d_{AC}^{2} + d_{BC}^{2}]/b^{2})$$

$$= \exp(-4k_{h}[1 - \cos(\psi_{i,k}/2)\cos(\alpha)])$$

• The angle α can be calculated by choosing C at random, uniformly on [0,1].

$$\alpha = \cos^{-1} \left[1 + (1/\kappa) \times \ln \left(1 - C(1 - \exp[-2\kappa]) \right) \right],$$

$$\kappa = 4 \cos(\psi_{i,k}/2) k_h b^2$$

Figure 2: Simplified picture

Objectives

Diatomic molecules

Compute accurate virial coefficients using state-of-the-art *ab initio* potentials, MSMC and PIMC methods for the flexible case.

Challenges

To include vibrational degrees of freedom.

Bond-length sampling

• Define π in a similar fashion to the orientation sampling algorithm:

$$\pi(\mathbf{b}) = \prod_{i=0}^{P-1} b_i^2 e^{-\beta u(b_i)/P} \pi(b_i, b_{i+1}, \theta_{i,i+1})$$

$$\pi(b_i, b_j, \theta_{i,j}) = \exp\left(-\frac{1}{2} k_h \left(b_i^2 + b_j^2 - 2b_i b_j \cos(\theta_{i,j})\right)\right)$$

where $\theta_{i,j}$ is the angle between orientations of images i and j.

Bond-length sampling

• Let $\pi(\mathbf{b}) = \exp(-y)$, where y can be defined as follows:-

$$y = \sum_{i=0}^{P-1} \left\{ k_h \left(b_i^2 - b_i b_j \cos(\theta_{ij}) \right) - 2 \log b_i + \frac{\beta u(b_i)}{P} \right\}$$

• We define $\tilde{y} \approx y$ such that:

$$\tilde{y} = \sum_{i=0}^{P-1} \left\{ k_h \left(b_i^2 - b_i b_j \right) - \frac{2 \log b_i}{P} + \frac{\beta u(b_i)}{P} \right\}$$

• We solve for the nominal $cos(\hat{\theta})$ value by:

$$\frac{\partial y}{\partial b_i} = \frac{\partial \tilde{y}}{\partial b_i} \Rightarrow \cos(\hat{\theta}) = 1 - \frac{P - 1}{P \ k_h \ b_i^2}$$

• Using this nominal value in the expression for y, we find b_m such that:

$$\frac{\partial y}{\partial b_i}\Big|_{b=b_m} = 0 \qquad \forall i$$

Overview

- Introduction
 - Viral coefficients
 - Ab initio potentials
- Objectives
- Methods
 - Mayer Sampling Monte Carlo
 - Path Integral Monte Carlo
 - Novel algorithms
- Results
- 5 Summary

Overview

- Introduction
 - Viral coefficients
 - Ab initio potentials
- Objectives
- Methods
 - Mayer Sampling Monte Carlo
 - Path Integral Monte Carlo
 - Novel algorithms
- 4 Results
- Summary

PIMC results for Helium-4¹⁴

¹⁴ K. R. S. Shaul, A. J. Schultz, and D. A. Kofke, J. Chem. Phys. (2012).

A new orientational sampling algorithm

- What if we don't model using the quantum rigid rotor approximation?
- The only factor that affects the probability of any configuration is the harmonic spring-like interaction between adjacent beads

•
$$U_h = \sum_{\#rings} \sum_i k_h |\mathbf{x}_i - \mathbf{x}_{i-1}|^2$$
, with $k_h = \frac{\pi P}{\Lambda^2}$ where $\Lambda = \frac{h}{\sqrt{2\pi m k_B T}}$ and \mathbf{x}_i denotes position of the bead i

• The actual probability of any configuration is given by $P_{act} = exp(-U_h)$

Growing the ring

- Tight coupling between adjacent beads makes it difficult to sample orientations that are different, thus lowering the sampling efficiency
- We always grow the complete ring each time and we do so non-sequentially

- Image 0 and image P are one and the same. The choice of orientation of image 0 is arbitrary
- Each image(child) has a set of two(parent) orientations which affect where it is placed
- For each pass, we need a probability distribution of the child image that depends on the orientations of both the parent images

Figure 3: Example for P = 8

- Image 0 and image P are one and the same. The choice of orientation of image 0 is arbitrary
- Each image(child) has a set of two(parent) orientations which affect where it is placed
- For each pass, we need a probability distribution of the child image that depends on the orientations of both the parent images

Figure 3: Example for P = 8

- Image 0 and image P are one and the same. The choice of orientation of image 0 is arbitrary
- Each image(child) has a set of two(parent) orientations which affect where it is placed
- For each pass, we need a probability distribution of the child image that depends on the orientations of both the parent images

Figure 3: Example for P = 8

- Image 0 and image P are one and the same. The choice of orientation of image 0 is arbitrary
- Each image(child) has a set of two(parent) orientations which affect where it is placed
- For each pass, we need a probability distribution of the child image that depends on the orientations of both the parent images

Figure 3: Example for P = 8

Adjacent image probability P_{01}

- Consider a sphere with diameter = bond length of the molecule i.e. r = b/2
- Let image '0' be oriented along the z-axis and image '1', at angle ϕ_1 away from it
- Distance 'x' between beads of adjacent images is given by $x^2 = 2r^2(1 \cos\phi_1)$

Figure 4: P = 2 case

- The harmonic interaction energy is given by, $U_h = 4k_h r^2 (1 \cos\phi_1)$
- P_{01} is given by:

$$P_{01}(\phi_1) = \exp[-4k_h r^2 (1 - \cos\phi_1)] \tag{2}$$

Comparison between algorithms¹⁵

Normalize these the two functions P_{01} , ρ :

$$P_{01}(\phi_1) = \exp[-4k_h r^2 (1 - \cos\phi_1)]$$

$$\rho(\phi_1) = \frac{1}{q_{rot}} \sum_{j=0}^{100} \frac{2j+1}{4\pi} P_j(\cos\phi_1) \times \exp[-\beta j(j+1)\Upsilon/P]$$

Comparison of probabilities

¹⁵ K. Patkowski et al., J. Chem. Phys. (2008).

$Parent \rightarrow child$

- Given two parent images l_1 , l_2 , the harmonically most favorable orientation for the child image is the average of the their orientations
- Let c_n denote the average orientation of the two parents for image n and P_{c_n,l_1l_2} denote the probability distribution centered around c_n
- ullet For the case of $n=1, P_{c_1,02}$ can be computed analytically

$Parent \rightarrow child$

• We performed MC simulations and collected histograms of angles $\phi_2, \phi_4, \phi_8 \dots$ and observed that:

$$P_{c_n,l_1l_2}(\phi_n) \approx P_{01}(k_n^{\text{eff}},\phi_n)$$

 $k_n^{\text{eff}} \propto k_h cos(\psi_n/2)$

where ψ_n is the angle between the orientations of I_1 , I_2

- For the first pass alone, set $I_1 = 0$, $I_2 = 0$ and subsequent passes will have different sets of parents
- Cummulative distribution function:

$$C(\alpha) = \frac{e^{2k_n^{eff}} - e^{k_n^{eff}(1 + \cos\alpha)}}{e^{2k_n^{eff}} - 1}$$
(3)

Simple and computationally inexpensive

Generating configurations

- Difficult to generate configurations based on the actual distribution that we desire
- Instead we can generate angles from an approximate distribution $\mathcal{C}(\alpha)$ much easily
- Need to account for it by computing the ratio of the actual and generating probabilities of a configuration
- Our acceptance probability is given as: $P_{acc} = \frac{P_{acc}^{new}/P_{act}^{old}}{P_{gen}^{new}/P_{gen}^{old}}$
- Accept/reject based on P_{acc} and we can sample the (desired) actual distribution more accurately and efficiently

Bond length 16 - r_0

¹⁶ G. Garberoglio et al., J. Chem. Phys. (2014).

Bond length 17 - r_0

¹⁷ G. Garberoglio et al., J. Chem. Phys. (2014).

Methods to handle flexibility

- Instead of using ground state bond length (r_0) use average bond length at each temperature $(< r>_T)$
- Average the bond length values over internal degrees of freedom of each monomer, weighted by the appropriate wave function¹⁸

$$\langle r \rangle_{\mathcal{T}} = \sum_{n,J} p(n,J:T) \langle \chi_{nJ} | r | \chi_{nJ} \rangle$$

where n and J are quantum numbers that define the vibrational and rotational state of H_2 , respectively, while χ_{nJ} denotes the corresponding wave-function and

$$p(n, J: T) = \frac{(2J+1)\exp(-E(n, J)/T)}{\sum_{n', J'} (2J'+1)\exp(-E(n', J')/T)}$$

where E(n', J') is the energy of the (n', J') state

¹⁸ G. Garberoglio et al., J. Chem. Phys. (2012).

Bond length 19 - $< r >_{T}$

Comparison with literature values

¹⁹ G. Garberoglio et al., J. Chem. Phys. (2014).

Bond length²⁰ - $< r >_T$

G. Garberoglio et al., J. Chem. Phys. (2014).

${\cal P}$ - actual probability of a configuration

- ullet Expression for ${\mathcal P}$ is almost exponential
- Consider the argument of the exponential

$$-\log \mathcal{P} = \sum_{i=0}^{P} \left\{ k_h \cdot \left(b_i^2 - b_i \cdot b_j \cdot \cos(\theta_{ij}) \right) - 2 \cdot \log b_i + \frac{\beta \cdot U_i(b_i)}{P} \right\}$$

- ullet We can clearly see that it is not quadratic due to the presence of U_i
- ullet Presence of cross terms such as $b_i \cdot b_j$ makes the bond lengths non-independent of each other

Bond length²¹ - flexible

Comparison with literature values

²¹ G. Garberoglio et al., J. Chem. Phys. (2014).

Bond length²² - flexible

Comparison with literature values

²² G. Garberoglio et al., J. Chem. Phys. (2014).

Summary and future work

- We have developed a bond length sampling algorithm that can be used to compute virial coefficients for flexible diatomic molecules
- We applied the algorithm for H_2 molecule and the resulting second virial coefficients are not in perfect agreement with literature data
- Fix remaining issues and improve efficiency of the move
- ullet Apply the algorithm for other diatomic systems like N_2
- Extend the algorithm to other complicated systems like water

Acknowledgment

- My advisor Dr. David Kofke
- Dr. Andrew Schultz
- Members of the Kofke group
- Funding:

Computational resources:

• We would like to thank Dr. Allan H. Harvey for insightful discussions

Thank you for your attention!

Questions???

• Let $P_{act} = \exp(-z_{act})$ where z_{act} can be defined as follows:-

$$z_{act} = \sum_{i=0}^{P} \left\{ k_h \cdot \left(b_i^2 - b_i \cdot b_j \cdot \cos(\theta_{ij}) \right) - 2 \cdot \log b_i + \frac{\beta \cdot U_i(b_i)}{P} \right\}$$

- Since z_{act} is not quadratic, it is not easy to sample from
- All bond lengths not independent of each other

Assumptions and modifications

• z_{act} is given by:

$$z_{act} = \sum_{i=0}^{P} \left\{ k_h \cdot \left(b_i^2 - b_i \cdot b_j \cdot \cos(\theta_{ij}) \right) - 2 \cdot \log b_i + \frac{\beta \cdot U_i(b_i)}{P} \right\}$$

- Finding b_{min} , given as the solution of $\frac{\partial z_{act}}{\partial b_i}\Big|_{b_i=b_{min}}=0$, before each move can be very inefficient
- Let z_{act}^* be given by:

$$z_{act}^* = \sum_{i=0}^P \left\{ k_h \cdot \left(b_i^2 - b_i \cdot b_j \right) - \frac{2 \cdot \log b_i}{P} + \frac{\beta \cdot U_i(b_i)}{P} \right\}$$

• Find b_{min} using $\frac{\partial z_{act}^*}{\partial b_i}\Big|_{b_i=b_{min}}=0$, set $\frac{\partial z_{act}}{\partial b_i}=\frac{\partial z_{act}^*}{\partial b_i}$ and solve for θ_{ij}

Assumptions and modifications

$$\begin{array}{l} \bullet \ \ \mathrm{Let} \ \frac{\partial z_{act}}{\partial b_i} = \frac{\partial z_{act}^*}{\partial b_i} \ \mathrm{solve} \ \mathrm{for} \ \mathrm{cos}(\theta_{ij}) \\ \bullet \ \ \mathrm{cos}(\theta_{ij}) = 1 - \frac{P-1}{P \cdot k_h \cdot b_i^2} \\ \bullet \ \ \mathrm{Compute} \ b_{min} \ \mathrm{using} \ \frac{\partial z_{act}}{\partial b_i} \Bigg|_{b_i = b_{min}} = \frac{\partial z_{act}^*}{\partial b_i} \Bigg|_{b_i = b_{min}} = 0 \\ \end{array}$$

Conclusions

• Let
$$\frac{\partial z_{act}}{\partial b_i} = \frac{\partial z_{act}^*}{\partial b_i}$$
 solve for $\cos(\theta_{ij})$

$$ullet$$
 $\cos(heta_{ij}) = 1 - rac{P-1}{P \cdot k_h \cdot b_i^2}$

$$\begin{array}{l} \bullet \ \ \mathrm{Let} \ \frac{\partial z_{act}}{\partial b_i} = \frac{\partial z_{act}^*}{\partial b_i} \ \mathrm{solve} \ \mathrm{for} \ \mathrm{cos}(\theta_{ij}) \\ \bullet \ \ \mathrm{cos}(\theta_{ij}) = 1 - \frac{P-1}{P \cdot k_h \cdot b_i^2} \\ \bullet \ \ \mathrm{Compute} \ b_{min} \ \mathrm{using} \ \frac{\partial z_{act}}{\partial b_i} \Bigg|_{b_i = b_{min}} = \frac{\partial z_{act}^*}{\partial b_i} \Bigg|_{b_i = b_{min}} = 0 \\ \end{array}$$

Future work

$$\begin{array}{l} \bullet \ \ \mathrm{Let} \ \frac{\partial z_{act}}{\partial b_i} = \frac{\partial z_{act}^*}{\partial b_i} \ \mathrm{solve} \ \mathrm{for} \ \mathrm{cos}(\theta_{ij}) \\ \bullet \ \ \mathrm{cos}(\theta_{ij}) = 1 - \frac{P-1}{P \cdot k_h \cdot b_i^2} \\ \bullet \ \ \mathrm{Compute} \ b_{min} \ \mathrm{using} \ \frac{\partial z_{act}}{\partial b_i} \Bigg|_{b_i = b_{min}} = \frac{\partial z_{act}^*}{\partial b_i} \Bigg|_{b_i = b_{min}} = 0 \\ \end{array}$$

Future work

$$\begin{array}{l} \bullet \ \ \mathrm{Let} \ \frac{\partial z_{act}}{\partial b_i} = \frac{\partial z_{act}^*}{\partial b_i} \ \mathrm{solve} \ \mathrm{for} \ \mathrm{cos}(\theta_{ij}) \\ \bullet \ \ \mathrm{cos}(\theta_{ij}) = 1 - \frac{P-1}{P \cdot k_h \cdot b_i^2} \\ \bullet \ \ \mathrm{Compute} \ b_{min} \ \mathrm{using} \ \frac{\partial z_{act}}{\partial b_i} \Bigg|_{b_i = b_{min}} = \frac{\partial z_{act}^*}{\partial b_i} \Bigg|_{b_i = b_{min}} = 0 \\ \end{array}$$