19CSE313 – Principles of Programming Languages Tejas Gampawar AM.EN.U4CSE22057

Criteria	Excellent	Good	Poor
Timely Submission			
Correctness of lab assignment			
Total Marks			
Signed By Lab Ins			

Labsheet: 3 Date: 27/2/25

CO1: Demonstrate a comprehensive understanding of programming paradigms, with a focus on functional programming using Haskell and Scala

Question 1: Write a function even which takes an integer and returns True if even else False. Use Guarded equation.

Code	Input	Output
	even_4	True
even_ :: Int -> Bool even_ n mod n 2 == 0 = True otherwise = False	even_7	False
	even_8	True

Code	Input	Output
	abs_5	5
abs_ :: Int->Int abs_ $n \mid n < 0 = (-1 * n)$ \mid otherwise = n	abs_ (-10)	10
	abs_0	0

19CSE313 – Principles of Programming Languages

Ouestion 3. Write a function max to find the largest among two numbers u	sing guarded expressions.

Code	Input	Output
	max_ 10 50	50
max_ :: Int-> Int -> Int max_ a b (a>b) = a	max_ 5 (-10)	5
	max_ 5 5	5

Question 4. Write a function max3 to find the largest among three numbers using guarded expressions.

Code	Input	Output
	max3_10 20 30	30
$\begin{array}{l} max3_ :: Int->Int->Int\\ max3_ a b c (a >= b && a >= c) = a\\ (b >= c) = b\\ otherwise = c \end{array}$	max3_ (-10) 20 0	20
	max3_(-1)(-2)(-3)	-1

Question 5. Write a function to read a numeric value and return 1 if the number is positive else (-1).

Code	Input	Output
	sign_10	1
sign_ :: Int->Int sign_ n n < 0 = (-1) otherwise = 1	sign_0	1
	sign_ (-5)	-1

19CSE313 – Principles of Programming Languages

Question 6. Write a function changeCase, to convert a character from uppercase to lowercase character and vice versa.

Code	Input	Output
changeCase :: Char -> Char	changeCase 'A'	a
changeCase x (fromEnum(x) >= 65 && fromEnum(x) <= 91) = toEnum(fromEnum(x) + 32)::Char (fromEnum(x) >= 97 && fromEnum(x) <= 123) = toEnum(fromEnum(x)) = 22):Chan	changeCase 'a'	A
toEnum(fromEnum(x) - 32)::Char	changeCase 'Z'	Z

(Duestion 7	. Haskell	function	isVowel to	check if a	character is	vowel or not.
`	destion /	· IIusixcii	Iuncuon		circuit ii a	ciiai actei 15	101101 01 1101

Code	Input	Output
isVowel :: Char -> Bool	isVowel 'A'	True
isVowel x $(x == 'a') \parallel (x == 'e') \parallel (x == 'i') \parallel (x == 'o') \parallel (x == 'u') = True $ $(x == 'A') \parallel (x == 'E') \parallel (x == 'I') \parallel (x == 'O') \parallel (x == 'U') = True $ otherwise = False	isVowel 'a'	True
	isVowel 'B'	False

Question 8. Haskell function charType:: Char->String, to check if a character is a vowel or
consonant.(use otherwise)

Code	Input	Output
charType :: Char -> String charType a (a == 'a') (a == 'i') (a == 'e') (a == 'o') (a == 'u') = "Vowel" (x == 'A') (x == 'E') (x == 'I') (x == 'O') (x == 'U') = "Vowel" otherwise = "Consonant"	charType 'A'	Vowel
	charType 'B'	Consonant
	charType 'i'	Vowel

19CSE313 – Principles of Programming Languages

Question 9. Write Haskell Function to compare two values and any type and return the value of type Ordering. Use guarded conditions.

Code	Input	Output
compareAny :: Float -> Float -> Ordering compareAny a b (a > b) = GT (a < b) = LT otherwise = EQ	compareAny 10 20	LT
	compareAny 10 0	GT
	compareAny 10 10	EQ

Question 10. Define bmicalculator, to find the bmi value using weight and height value and return a string based on the bmi value.use otherwise

Code	Input	Output
bmicalculator :: Int->Float->String bmicalculator w h $((w/(h^*h)) < 18.5) =$ "Underweight" $((w/(h^*h)) < 25) =$ "Normal" $((w/(h^*h)) < 30) =$ "Overweight" otherwise = "Underweight"	bmicalculator 50 1.65	Normal
	bmicalculator 90 1.8	Overweight
	bmicalculator 45 1.7	Underweight