Course Code	21CSC20	SC201J Course Name Data Structures and Algorithms Course Category							Profe	essio	onal	Co	re				1 3		_	C 4					
Pre-requisi Courses					Co- requisite Courses	Nil			Progressi e Courses																
Course Off	Course Offering Department Computing Technologies Data Book / Codes / Standards Nil																								\Box
Course Learning Rationale (CLR): The purpose of learning this course is to:								ΙΓ				Prog	gram	Outc	omes	s (PC	D)				Р				
CLR-1 :	Know about searching and serting techniques used to handle a set of data along with time and										12	Program Specific outcomes													
CLR-2:				_			evelop solutions				E n														
CLR-3:					•	_	or real time applications				gi n		D				Е								
CLR-4:					and its applic						е		е			Т	n v								
CLR-5:	R-5: Utilize hash tables for data storage and use graphs to solve real time problems									e ri		si g			h	i r		1		Р					
I				I							g K n o w le d g e	Pro ble m Ana lysis	d e v el o p m e n	nd uct inv est iga tio ns of co m	o d e r n T o o l I	e n g n e e r a n a	n m e n t & S u s t	E t h i c s	d i v i d u a l & T o	Co m m uni cat ion	j e c t M g t . & F	Lif e Lo ng Le arn	P S O - 1	P S O - 2	P S O- 3
Course O	outcomes (C	;O):		At the er	nd of this course, lean	ners will be a	able to:						t o f s ol u ti o n	ple x pr obl e ms	U s a g e	d s o c i e t y	a i n a b i l i t y		e a W o r k		i n a n c e	ing			
1 CO-1:	Devise alg	jorith	ıms to arı	ange the	e data in required	order an	d retrieve a specific datur	n in e	efficient		1	2	3	-	-	-	-	-	-	-	-	-	3	_	-

manner

CO-2:	Determine the type of list structure that could be used for solving a problem and implement it using C programming language				-	-	-	-	-	-	-	-		3	
CO-3:	Devise solutions using linear structures Stack and Queue				-	-	1	-	-	-	-	-	ı	3	
CO-4:	Express proficiency in usage of tree for solving problems	2	3	3	-	-	1	-	-	-	-	-	1	3	
CO-5:	Implement Hash tables for storing data and algorithms to find shortest path between nodes in a graph	3	2'	3	-	-	-	-	-	-	-	-	-	3	

Unit-1: Introduction

Primitive data types, Structures, Self-referential structures, Pointers, Dynamic memory allocation, Matrix multiplication; Data Structure – Definition, Types, ADT, Operations; Mathematical notations, Asymptotic Notations-Big O, Omega and Theta; Complexity – Time, Space, Trade off, Searching-Linear Search and Binary Search; Sorting-Insertion sort, Bubble sort.

Unit-2: Array and Linked List

Operations on List ADT – Create, Insert, Search, Delete, Display elements; Implementation of List ADT – Array, Cursor based Linked List; Types – Singly Linked List, Doubly Linked List, Circular Linked List; Applications - Sparse Matrix, Polynomial Arithmetic, Josephus Problem.

Unit-3: Stack and Oueues

Operations on Stack ADT – Create, Push, Pop, Top; Implementation of Stack ADT – Array and Linked List; Applications - Infix to Postfix Conversion, Postfix Evaluation, Balancing symbols, Function Calls, Tower of Hanoi; Operations on Queue ADT - Create, Enqueue and Dequeue; Implementation of Queue ADT – Array and Linked List; Types of Queue - Circular, Double ended and Priority Queue, Applications – Scheduling.

Unit-4: Trees

Introduction to Trees, Tree traversals, Binary Tree Representation, Complete Binary Tree, Binary Search Trees-Searching, Insertion and Deletion, Self-Balancing BST - AVL trees, B trees, Red-black tree, Heap.

Unit-5: Hashing and Graphs

Hashing - Introduction, Hash functions, Collision avoidance, Separate chaining, Open Addressing, Linear Probing, Quadratic probing, Introduction to Graph, Graph Traversal, Topological sorting, Minimum spanning tree – Prim's Algorithm, Kruskal's Algorithm, Shortest Path Algorithm - Dijkstra's Algorithm.

Lab:

- Lab 1: Problem solving using structures and pointers
- Lab 2: Implementation of sorting and searching
- Lab 3: Implementation of Matrix Multiplication Dynamic Memory allocation
- Lab 4: Array Implementation of List
- Lab 5: Implementation of Linked List

Lab 6: Implementation of Doubly linked List

Lab 7: Implementation of Stack using array and Linked List

Lab 8: Implementation of Queue using array and Linked list

Lab 9: Applications of Stack, Queue

Lab 10: Implementation of Tree using array

Lab 11: Implementation of BST using linked list

Lab 12: Implementation of B-Trees

Lab 13: Implementation of Graph - Shortest path Algorithm

Lab 14: Implementation of Minimal Spanning Tree

Lab 15: Implementation of hash tables

	1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2nd								
	ed., Pearson Education, 2015								
Learning	2. Reema Thareja, Data Structures Using C, 1st ed., Oxford Higher								
Resources	Education, 2011								
	3. Thomas H Cormen, Charles E Leiserson, Ronald L Revest, Clifford								
	Stein, Introduction to Algorithms 3rd ed., The MIT Press Cambridge, 201								

- 4. A.V. Aho, J.E Hopcroft , J.D.Ullman, Data structures and Algorithms, Pearson Education, 2003
- 5. Seymour Lipschutz, Data Structures with C, McGraw Hill, 2014
- 6. R.F.Gilberg, B.A.Forouzan, Data Structures, 2nd ed., Thomson India, 2005

Learning Assessment								
			Continuous Learning	g Assessment (CLA)		Sum	mative	
	Bloom's Level of Thinking	CLA-I A uni	native verage of t test 5%)	Lea CLA-II-	Long* arning - Practice 5%)	Fi Exam	inal ination eightage)	
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	15%	-	-	10%	25%	-	
Level 2	Understand	30%	-	-	25%	30%	-	
Level 3	Apply	30%	-	-	30%	25%	-	
Level 4	Analyze	25%	-	-	25%	20%	-	
Level 5	Evaluate	-	-	-	10%	-	-	
Level 6	Create	-	-	-	-	-	-	
	Total	10	0 %	10	0 %	10	0 %	

Course Designers										
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts								
Dr. Mariappan Vaithilingam, Senior Engineering Manager, Uber India Research and Development Pvt Centre, Bangalore.	Dr. Venkatesh Raman, Professor, Theoretical Computer Science, Institute of Mathematical Sciences	1. Dr. K. Vijaya, Associate Professor, SRMIST 2. Dr. S. Poornima, Assistant Professor, SRMIST 3. Dr. P. Saranya, Assistant Professor, SRMIST 4. Dr. K. Venkatesh, Assistant Professor, SRMIST								