1 Convex sets

1.1 Definitions

Convex hull of S: conv $S = \left\{ \sum_{i=1}^k \theta_i x_i : k \in [1, |S|], \forall i, x_i \in S, \theta \succeq 0, \mathbf{1}_k^T \theta = 1 \right\}.$

Hyperplane: $\{x : a^T x = b\}$ (affine). **Halfspace**: $\{x : a^T x \le b\}$ (convex).

Euclidean ball (or ball) in \mathbb{R}^n : $B(x_c, r) = \{x : ||x - x_c||_2 \le r\}, r > 0$ (convex).

Ellipsoid: $\mathcal{E} = \{x : (x - x_c)^T P^{-1} (x - x_c) \le 1\}$ where $P \in \mathcal{S}_n^{++}$. Another representation is $\{x_c + Au : ||u||_2 \le 1\}$ with A square and nonsingular (convex).

Norm cone: $C = \{(x,t) : ||x|| \le t\} \subset \mathbb{R}^{n+1}$. $\|\cdot\|_2$: second-order cone (convex).

Polyhedron: $\mathcal{P} = \{x : Ax \leq b, Cx = d\}$ (convex).

1.2 Operations that preserve convexity

Show convexity of C: (i) definition, (ii) operations that preserve convexity.

Intersection: the intersection of (any number of) convex sets is convex.

Affine functions: the image or inverse image by an affine function preserves convexity (e.g. scaling, translation, projection).

Perspective function: $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$, dom $P = \mathbb{R}^n \times \mathbb{R}_+^*$, P(z,t) = z/t. If $C \subset \text{dom } P$ convex, then P(C) convex. If $C \subset \mathbb{R}^n$ convex, then $P^{-1}(C)$ convex.

Linear-fractional function: compose the perspective function with an affine function, i.e. $f(x) = \frac{Ax+b}{c^Tx+d}$, dom $f = \{x : c^Tx+d > 0\}$ (same results about convexity).

1.3 Separating and supporting hyperplanes

Separating hyperplane theorem. C, D nonempty disjoint convex sets. Then there exist $a \neq 0$ and b such that $a^T x \leq b$ for all $x \in C$ and $a^T x \geq b$ for all $x \in D$.

Definition. The *supporting hyperplane* to set C at a boundary point x_0 is defined by $\{x: a^Tx = a^Tx_0\}$ where $a \neq 0$ and for all $x \in C$, $a^Tx \leq a^Tx_0$.

Supporting hyperplane theorem. C convex. Then there exists a supporting hyperplane at every boundary point of C.

1.4 Dual cones and generalized inequalities

Proper cone: $K \subset \mathbb{R}^n$ convex, closed, solid (int $K \neq \emptyset$), pointed (contains no line i.e., if $x, -x \in K$, then x = 0). **Generalized inequality**, $x \prec_K y$ iff $y - x \in K$.

Dual cone. K a cone. $K^* = \{y : \forall x \in K, x^T y \ge 0\}$ is the **dual cone** of K. K^* is a cone, and is always convex. Geometrically, $y \in K^*$ if and only if -y is the normal of a hyperplane that supports K at the origin.

Properties. K, K_1, K_2 cones. (i) K^* closed and convex, (ii) $K_1 \subset K_2$ implies $K_2^* \subset K_1^*$, (iii) if $\operatorname{int} K \neq \emptyset$, then K^* pointed, (iv) if \overline{K} is pointed then $\operatorname{int} K^* \neq \emptyset$, (v) $K^{**} = \overline{\operatorname{conv} K}$ (hence if K is convex and closed, $K^{**} = K$). These properties show that if K is a proper cone, then so is its dual K^* , and moreover, that $K^{**} = K$.

2 Convex optimization problems

2.1 Basic properties and examples

Convex: ax + b, e^{ax} , x^{α} ($\alpha \in \mathbb{R} \setminus (0,1)$), $|x|^p$ ($p \ge 1$), $x \log x$, norms (e.g. $\lambda_{\max}(X^T X)^{1/2}$). Concave: ax + b, x^{α} on \mathbb{R}_{++} ($\alpha \in [0,1]$), $\log x$ on \mathbb{R}_{++} .

Property. $f: \mathbb{R}^n \to \mathbb{R}$ convex iff $t \mapsto f(x+tv)$ convex for any $x \in \text{dom } f, v \in \mathbb{R}^n$.

1st-order cond.: diff. f with convex domain is convex iff $f(y) \ge f(x) + \nabla f(x)^T (y - x)$. **2nd-order cond.**: twice diff. f with convex domain is convex iff $\nabla^2 f(x) \ge 0$.

 α -sublevel set: $C_{\alpha} = \{x \in \text{dom } f, f(x) \leq \alpha\}$ (convex if f convex).

2.2 Operations that preserve convexity

Establishing convexity: (i) definition, (ii) Hessian, (iii) operations that preserve convexity. Nonnegative weighted sum, composition with affine function (e.g. log barrier), pointwise maximum/supremum, composition ($h \circ g$ convex if g, h convex, \tilde{h} non-decreasing or if g concave, h convex, \tilde{h} nonincreasing), minimization on a convex set ($\inf_y x^T Ax + 2x^T By + y^T Cy = x^T (A - BC^{-1}B^T)x$), perspective (g(x, t) = tf(x/t)).

2.3 Definitions

Conjugate function: $f^*(y) = \sup_x \left(y^T x - f(x) \right)$ convex. Quasiconvex: if sublevel sets are convex. Jensen: $f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$. Log-concave: $f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1-\theta}$ (e.g. $x^a, a \ge 0$, normal density, CDF Gaussian). Twice diff. f log-concave iff $f(x) \nabla^2 f(x) \preceq \nabla f(x) \nabla f(x)^T$.

2.4 Convex optimization problem

Feasible set of a convex optimization problem is convex.

Linear program (LP):

$$\min_{x} c^{T}x + d
s.t. Gx \leq h
Ax = b$$

Quadratic program (QP):

$$\min_{x} \quad \frac{1}{2}x^{T}Px + q^{T}x + r$$
s.t.
$$Gx \leq h$$

$$Ax = b$$

 $\begin{tabular}{ll} Quadratically \ constrained \ quadratic\\ program \ (QCQP): \end{tabular}$

$$\begin{aligned} & \min_{x} & & \frac{1}{2}x^TPx + q^Tx + r \\ & \text{s.t.} & & \frac{1}{2}x^TP_ix + q_i^Tx + r_i \leq 0, Ax = b \end{aligned}$$

Second order cone program (SOCP):

$$\begin{aligned} \min_{x} & f^{T}x\\ \text{s.t.} & \|A_{i}x + b_{i}\|_{2} \leq c_{i}^{T}x + d_{i}, Fx = g \end{aligned}$$

Chebyshev center: of $\mathcal{P} = \{x, a_i^T x \leq b_i, i = 1, ..., m\}$ is center of largest inscribed | 3.2 Examples ball $\mathcal{B} = \{x_c + u, \|u\|_2 \le r\}$. $a_i^T x \le b_i$ for all $x \in \mathcal{B}$ iff $\sup \{a_i^T (x_c + u), \|u\|_2 \le r\} = 0$ $a_i^T x_c + r \|a_i\|_2 \le b_i$. x_c, r determined by solving the LP: $\max r$ s.t. $a_i^T x_c + r \|a_i\|_2 \le b_i$. **Perron-Frobenius eigenvalue**: exists for (elementwise) positive square A. Real positive eigenvalue of A, equal to $\max_i |\lambda_i(A)|$. $A^k \sim \lambda_{pf}^k$.

Properties. $\lambda_{\max}(A) \leq t \text{ iff } A \leq tI. \|A\|_2 \leq t \text{ iff } A^T A \leq t^2 I.$

Duality

Theory 3.1

Lagrangian: $(f_i \le 0, h_i = 0)$. $L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$. **Lagrange dual function**: $g(\lambda, \nu) = \inf_x L(x, \lambda, \nu)$ (concave). If $\lambda \succeq 0, g(\lambda, \nu) \le p^*$.

Dual norm: $||v||_* = \sup_{\|u\| \le 1} u^T v$. $\|y\|^* = 0$ if $\|y\|_* \le 1$, $-\infty$ otherwise.

Lagrange dual problem: maximize $g(\lambda, \nu)$ s.t. $\lambda \succeq 0$.

Slater's condition: for a convex problem, if $\exists x \in \text{relint } \mathcal{D}$, s.t. $f_i(x) < 0$, , Ax = b (strict feasibility), then strong duality holds (can be relaxed to $f_i(x) \le 0$ for affine constraints) and dual optimal value is attained.

Complementary slackness: suppose x^* primal optimal, (λ^*, ν^*) dual optimal, then x^* minimizes $L(x, \lambda^*, \nu^*)$ over x and $\lambda_i^* f_i(x^*) = 0$, $i = 1, \ldots, m$.

KKT conditions: suppose f_i and h_i are differentiable, let x^* primal optimal, (λ^*, ν^*) dual optimal, then

- $\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^m \nu_i^* \nabla h_i(x^*) = 0$ (first-order condition).
- $f_i(x^*) < 0, i = 1, ..., m$ (primal feasibility).
- $h_i(x^*) = 0$, i = 1, ..., m (primal feasibility).
- $\lambda_i^* \geq 0$, $i = 1, \ldots, m$ (dual feasibility).
- $\lambda_i^* f_i(x^*) = 0$, i = 1, ..., m (complementary slackness).

KKT conditions for convex problem: KKT condition are also sufficient if the problem is convex, e.g., if $(\tilde{x}, \lambda, \tilde{\nu})$ satisfy the KKT conditions, then \tilde{x} is primal optimal, $(\lambda, \tilde{\nu})$ is dual optimal and we have 0 duality gap.

KKT with Slater's condition: if Slater's condition holds, x is optimal i.i.f there are (λ, ν) s.t (x, λ, ν) satisfy the KKT conditions.

$$\begin{array}{lll} \min & \log \det X^{-1} \\ \text{subject to} & a_i^T X a_i \leq 1, \ i=1,\ldots,m \\ \max & -\log \det(\sum_{i=1}^m \lambda_i a_i a_i^T) \\ & -1^T \lambda + n \\ \text{subject to} & \lambda \succeq 0 \end{array} \qquad \begin{array}{ll} \min & \frac{1}{2} x^T P_0 x + q_0^T x + r_0 \\ \text{subject to} & \frac{1}{2} x^T P_i x + q_i^T x + r_i \leq 0 \\ \max & -\frac{1}{2} q(\lambda)^T P(\lambda) q(\lambda) + r(\lambda) \\ \text{subject to} & \lambda \succeq 0 \end{array}$$

Extras 4

Dual norm: $||z||_* = \sup\{z^T x | ||x|| \le 1\}$. $\forall x, z \in \mathbb{R}^n, z^T x \le ||x|| ||z||_*$.

Singular values: $\sigma_{\max}(A) = \sup_{x \neq 0, y \neq 0} \frac{x^T A y}{\|x\|_2 \|y\|_2}$

Schur complement: Let $X \in \mathbf{S}^n$, $X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}$ where $A \in \mathcal{S}^k$, If det $A \neq 0$, $S = \mathbf{S}^k$ $C - B^T A^{-1} B$ is the Schur complement of A in X.

•
$$\det X = \det A \det S$$
, • $\inf_{u} \begin{bmatrix} u \\ v \end{bmatrix}^{T} \begin{bmatrix} A & B \\ B^{T} & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = v^{T} S v$

• $X \succ 0 \iff A \succ 0 \text{ and } S \succ 0$, • if $A \succ 0 \text{ then } X \succ 0 \iff S \succ 0$

Taylor's approximation: $\hat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f v$. **Newton's method**: $x_{n+1} \leftarrow x_n - \alpha_n (\nabla^2 f(x))^{-1} \nabla f(x)$.

Some Gradients:

• $\nabla_x(a^Tx+b)=a$, • $\nabla_x(\frac{1}{2}x^TAx)=\frac{1}{2}(A^T+A)x$, • $\nabla_x(\operatorname{Tr}(A^TX+b)=A$.

- $\nabla_x(\det(X)) = \bar{X}, \bar{X} \text{ comatrix of } X \ (\bar{X} = \det(X)X^{-T}).$
- $\nabla_x(\log \det(X)) = X^{-1}$. $f(X) = X^{-1} \Rightarrow \nabla_x f(H) = -X^{-1}HX^{-1}$.