Day 1 과제

주어진 sample의 차량 위치 데이터는 아래와 같았다. (붉은 색 points)

Sample 1	직진/감속
Sample 2	직진/등속
Sample 3	선회/등속
Sample 4	선회/감속

예측 모델 4개와 각 모델에서 변화하는 상태변수는 아래와 같다. (가속도, yaw rate은 상수 가정)

Physics-based prediction model	시간에 따라 변화하는 상태변수 X
CV	[x,y]
CA	$[x,v_x]$
CTRV	$[x,y,\psi]$
CTRA	$[x,y,v,\psi]$

이론적으로 각 샘플에 대해 적절한 예측 모델은 아래와 같다.

Sample 1	CA	차량이 감속하므로 속도의 변화가 고려되어야 한다.
Sample 2	CV	단순히 시간에 대한 위치 변화만 알면 된다.
Sample 3	CTRV	차량 위치와 heading angle의 변화가 고려되어야 한다.
Sample 4	CTRA	차량의 pose + 속도의 변화가 고려되어야 한다.

번외로 차량의 y좌표와 heading angle을 고려하지 않는 CA 모델을 선회 sample에 적용시키면 같은 모양으로 위치만 변하는지 궁금해서 한번 해봤다.

예상대로다.