Chapitre: Dérivation (3)

Activité:

On définit une fonction f sur [0; 7] par $f(x) = x^3 - 10x^2 + 25x + 2$. Calculer la fonction dérivée f' de f.

- 1. Tracer les deux fonctions sur votre calculatrice.
- 2. Emettre une conjecture sur un éventuel lien entre la fonction dérivée et les variations de la fonction.
- 3. Expliquer ce lien avec vos mots.
- 4. Vérifier votre conjecture sur f et sur un nouvel exemple : $a(x) = x^2 + 3x 6$ définie sur[-7; 5].

I. Variations d'une fonction dérivable

Propriétés 1 : Soit f une fonction dérivable sur un intervalle I de \mathbb{R} .

- Si *f* est strictement croissante sur *I* alors ______ sur *I*.
- Si f est strictement décroissante sur I alors sur I.
- Si *f* est constante sur *I* alors _____ sur *I*.

Exercice 1 : Du sens de variation au signe de la dérivée

- 1. Soit f une fonction dérivable et croissante sur $[3; +\infty[$. Quel est le signe de la dérivée de f sur
- 2. Soit f une fonction dérivable et décroissante sur \mathbb{R} . Quel est le signe de la dérivée de f sur \mathbb{R} ?
- 3. Soit f une fonction dérivable sur \mathbb{R} et telle que f est décroissante sur $]-\infty$; 4] et croissante sur $[4 : +\infty[$.
 - a. Quel est le signe de la dérivée de f sur $]-\infty$; 4]?
 - b. Quel est le signe de la dérivée de f sur $[4; +\infty[?]]$

Exercice 2 : Du sens de variation au signe de la dérivée

1. Soit f une fonction dérivable sur \mathbb{R} et telle que f est 2. Soit f une fonction dérivable sur [-8;8]croissante sur $]-\infty-5]$ et décroissante sur $[-5: +\infty[$.

Recopier et compléter le tableau de signe de f'(x).

x	$-\infty$	- 5	$+\infty$
f'(x)		ģ	

et dont le tableau de variations est le suivant:

Quel est le signe de la dérivée de f sur :

a.
$$[-8; -3]$$
 b. $[-3; 5]$ c. $[5; 8]$

Exercice 3: Du sens de variation au signe de la dérivée

On considère la fonction f dérivable sur l'intervalle [-2; 4] dont on donne la représentation graphique ci-contre.

- 1. Par lecture graphique, déterminer le sens de variation de f sur [-2:4].
- 2. En déduire le signe de f'(x) sur l'intervalle [-2;4].

Propriétés 2 : Soit f une fonction dérivable sur un intervalle I de \mathbb{R} .

- Si pour tout x de I, f'(x) > 0 alors la fonction f est sur I.
- Si pour tout x de I, f'(x) < 0 alors la fonction f est sur I.
- Si pour tout x de I, f'(x) = 0 alors la fonction f est sur I.

Exercice 4 : Du signe de la dérivée au sens de variation

- 1. Soit f une fonction dérivable sur $[-7; +\infty[$ telle que f'(x) est négatif pour tout réel $x \in [-7; +\infty[$. Quel est le sens de variation de f sur $[-7; +\infty[$?
- 2. Soit f une fonction dérivable sur \mathbb{R} telle que $f'(x) = x^2 + 3$ tout réel x. Quel est le sens de variation de f sur \mathbb{R} ?
- 3. Soit f une fonction dérivable sur \mathbb{R} telle que f'(x) est positif sur $]-\infty$; 5] et négatif sur $[5; +\infty[$.
 - a. Quel est le sens de variation de f sur $]-\infty$; 5]?
 - b. Quel est le sens de variation de f sur $[5; +\infty[?]$

Exercice 5 : Du signe de la dérivée au sens de variation

Soit f une fonction dérivable sur \mathbb{R} . On donne ci-dessous le tableau de signe de f'(x).

x	$-\infty$	- 3		4	$+\infty$
f'(x)	-	þ	+	þ	_

En déduire les variations de la fonction f.

Exercice 6 : Associer à chaque courbe, la courbe de la fonction dérivée correspondante.

Voici les courbes représentatives de quatre fonctions f, g, h et k définies sur $\mathbb R$ et de leurs fonctions dérivées f', g', h' et k'.

La courbe représentant f, g, h et k sont donnés, respectivement, par le graphique 1, 2, 3 et 4. Associer à chaque courbe numérotée de 1 à 4, la courbe de la fonction dérivée correspondante.

	pilication 1.
1.	Soit f la fonction définie sur \mathbb{R} par $f(x) = 2$. Etudier les variations de f sur \mathbb{R} .
2.	Soit g la fonction définie sur \mathbb{R} par $g(x)=2x+1$. Etudier les variations de g sur \mathbb{R} .

3. Soit h la fonction définie sur \mathbb{R} par $h(x)=2x^2-5x+1$. Etudier les variations de h sur \mathbb{R} .	4. Soit k la fonction définie sur \mathbb{R} par $k(x) = \frac{1}{3} x^3 + x^2 + x + 38$. Etudier les variations de k sur \mathbb{R} .		

Exercice 7 : Calculer la dérivée pour étudier le sens de variations

Donner le sens de variations des fonctions suivantes :

- 1. f définie sur I = [-3; 3] par $f(x) = x^2 2x 3$
- 2. f définie sur I = [-3; 2] par $f(x) = -3x^2 + x + 2$
- 3. f définie sur I = [0; 4] par $f(x) = x^3 6x^2 + 9x$
- 4. f définie sur I = [-3; 2] par $f(t) = -t^3 3t^2 + 9$
- 5. f définie sur I =]0; $+\infty[par f(x) = (x^2 1)\sqrt{x}]$
- 6. f définie sur I = [0; 10] par $f(x) = \frac{2x+1}{x+1}$
- 7. f définie sur I = [-4; 4] par $f(x) = \frac{4x}{x^2 + x + 1}$
- 8. f définie sur $I = \mathbb{R} \{-2\}$ par $f(x) = x + 2 + \frac{1}{2x + 4}$

Exercice 8 : Sens de variations et tangente.

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \frac{1}{3}x^3 - 3x^2 + 9x$$

- 1. Déterminer le sens de variation de f sur \mathbb{R} .
- 2. Déterminer une équation de la tangente T à la courbe C_f de f au point d'abscisse 0 dans un repère (0, I, J).
- 3. Etudier la position de la courbe C_f par rapport à sa tangente T.

Extremums d'une fonction dérivable

Définitions 1:

Soit f une fonction définie et dérivable sur un intervalle I de \mathbb{R} . Soit a et b deux réels de I.

- Dire que f(a) est un **minimum local** de f signifie qu'il existe un intervalle ouvert Iinclus dans I et contenant a tel que, pour tout nombre réel x de I on a : f(x)
- Dire que f(b) est un maximum local de f signifie qu'il existe un intervalle ouvert Iinclus dans I et contenant b tel que, pour tout nombre réel x de I on a : f(x)
- On appelle extremum local un minimum local ou un maximum local.

Propriété 3 : Soit f une fonction définie et dérivable sur un intervalle I de \mathbb{R} .

Si f admet un extremum local en $x_0 \in I$ (c'est à dire (x_0)) tel que x_0 ne soit pas une borne de l'intervalle I, alors $f'(x_0)$.

La courbe C représentative de la fonction f admet une

au point d'abscisse x_0 .

<u>Propriété 4 :</u> Soit f une fonction définie et dérivable sur un intervalle I de \mathbb{R} . Soit $x_0 \in I$ tel
que x_0 ne soit pas une borne de l'intervalle I
Si la dérivée f^\prime
en x_0 alors f présente un extremum local en x_0 .

Application 2 : Etude complète d'une fonction				
Soit f la fonction définie sur $[-2; 4]$ par $f(x) = x^3 - 1.5x^2 - 6x + 2$				
1. Etudier les variations de la fonction f sur $[-2;4]$.				
2. Déterminer les extremums de f sur $[-2;4]$.				
2. Determiner ies extremunis de / sur [2 , 1].				
3. Déterminer un encadrement de f sur $[-2;4]$.				
5. Determiner un encaurement de j sur $[-2, 4]$.				

Exercice 9: Extremums d'une fonction polynôme.

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = x^3 - 1.5x^2 - 18x$$

- 1. a. Tracer la courbe de f sur la calculatrice.
 - b. Par lecture graphique, quel semble être le minimum de la fonction f sur [-4;4]? En quelle valeur de x semble-t-il atteint?
- 2. a. Etudier le sens de variations de f sur [-4; 4].
 - b. Déterminer le minimum de f sur $\begin{bmatrix} -4 \\ ; 4 \end{bmatrix}$.

Exercice 10: Extremums d'une fonction quotient

Soit f la fonction définie sur [-1; 1] par :

$$f(x) = \frac{x^2 + x + 2}{x + 2}$$

- 1. Etudier le sens de variations de f sur [-1; 1].
- 2. En déduire les extremums de f sur ce même intervalle.

Exercice 11:

Soit f une fonction dérivable sur [0; 4] dont le tableau de variation est donné ci-dessous.

x	0		1		4
f'(x)	-	+	þ	_	
f	0-		-2_		-3

- 1. Indiquer si f admet un extremum sur [0; 4]. Si oui, pour quelle valeur de x?
- 2. Quel est le signe de f(x) sur [0;1]?
- 3. On admet que f(2) = 0.
 - a. Compléter le tableau de variation avec 2 et f(2) = 0.
 - b. En déduire le signe de f(x) lorsque x varie dans [0;4].
- 4. a. Indiquer le nombre de solutions de l'équation f(x) = -1 sur [0:4].
 - b. Même question avec f(x) = 0.

Exercice 12:

Soit f une fonction dérivable sur [-4;3] dont le tableau de variation est donné ci-dessous.

- 1. Pour quelle(s) valeur(s) de x la fonction f admet-elle :
 - a. un maximum?

- b. un minimum?
- 2. Peut-on donner le signe de f(x) sur [-4;3]?
- 3. Indiquer le nombre de solutions de l'équation f(x) = 0 sur [-4; 3].
- 4. On admet maintenant que f(-3) = 0, f(-1,5) = 0 et f(1) = 0. En déduire l'ensemble des solutions sur [-4:3] de l'inéquation $f(x) \ge 0$.

Exercice 13:

Soit f la fonction définie sur I = [-1; 5] par :

$$f(x) = \frac{1}{6}x^3 - x^2 + \frac{3}{2}x - 1$$

- 1. Dresser le tableau de variations de f.
- 2. En déduire un encadrement de f(x) pour tout réel x de I.
- 3. Tracer C_f et ses tangentes horizontales.
- 4. a. Combien de solutions possède l'équation $f(x) = -\frac{1}{2}$?
 - b. Donner une valeur approchée à 10^{-2} près de la plus petite des solutions.

Exercice 14:

Soit f la fonction définie sur I = [-10; 10] par :

$$f(x) = \frac{1}{4}x^4 + x^3 - 4x + 2$$

- 1. Montrer que $f'(x) = (x-1)(x+2)^2$
- 2. En déduire le sens de variation de f.
- 3. Combien de solutions possède l'équation f(x) = 0?
- 4. Discuter, suivant la valeur du réel m, du nombre de solutions de l'équations f(x) = m.

Exercice 15: Obtention d'inégalités

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = -x^3 + 3x + 18$$

- 1. Dresser le tableau de variations de f.
- 2. Déterminer le signe de f sur $]-\infty$; 1].
- 3. a. Vérifier que f(3) = 0.
 - b. Déterminer le signe de f(x) sur $[1; +\infty[$.
 - c. Pour quelles valeurs de x a-t-on $x^3 < 3x + 18$?

Exercice 16: Obtention d'inégalités

Soit f la fonction définie sur I = [0; 4] par :

$$f(x) = \sqrt{x} - \left(1 + \frac{1}{4}x\right)$$

- 1. Dresser le tableau de variations de f.
- 2. En déduire que pour tout $x \in I$:

$$\sqrt{x} \le 1 + \frac{1}{4}x$$

3. Développer $(0.5\sqrt{x}-1)^2$, puis redémontrer que :

$$\sqrt{x} \le 1 + \frac{1}{4}x$$

Exercice 17: Obtention d'inégalités

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = x^3 - x^2$$

- 1. Etudier le signe de f(x) sur \mathbb{R} .
- 2. Etudier le sens de variation de f sur \mathbb{R}
- 3. Déterminer une équation de la tangente T à \mathcal{C}_f au point d'abscisse 2.

4. Soit g la fonction définie sur $\mathbb R$ par :

$$g(x) = x^3 - x^2 - 8x + 12$$

- a. Etudier le sens de variation de g sur $\mathbb R$
- b. En utilisant le minimum de g sur $[2; +\infty[$, démontrer que g(x) est positif sur $[2; +\infty[$.
- c. Déduire des questions précédentes la position de la courbe C_f par rapport à sa tangente T sur $[0\;;\;+\infty[.$

Preuve des variations d'une fonction polynôme du second degré.

Propriété 3 : Soit a, b et c trois nombres réels avec $a \neq 0$.

Soit la fonction trinôme f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$

Son tableau de variation est :

<u>Si <i>a</i> > 0</u>					
x	$-\infty$	+∞			
f'(x)	C)			
f					

<u>Si <i>a</i> < 0</u>			
x	$-\infty$		+∞
f'(x)		0	i e
f			

Une fonction polynôme du degré 2 admet

Une fonction polynôme du degré 2 admet

atteint en x =

La parabole de sommet S(

atteint en x =

), admet un axe vertical de symétrie

d'équation x =

Preuve: Soit a, b et c trois nombres réels avec $a \neq 0$.

Soit la fonction polynôme du second degré f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ f est dérivable sur \mathbb{R} et pour tout réel x on a :

$$f'(x) = 2ax + b$$

Cette fonction dérivée est une fonction affine avec comme du coefficient directeur : m=2a.

Comme 2 > 0, le signe du coefficient directeur ne dépend que de a.

Le signe d'une fonction affine permet de donner le signe de f'(x) selon les valeurs de a.

$$f'(x) = 0 \Leftrightarrow 2ax + b = 0 \Leftrightarrow x = -\frac{b}{2a}$$

f'(x) s'annule en $-\frac{b}{2a}$ en changeant de signe, donc f admet un extremum en $-\frac{b}{2a}$.

Problèmes

Exercice 18 : Aire et dérivée

ABCD est un rectangle de dimensions : $AB = 3 \ cm \ et BC = 4 \ cm$.

M, N, P et Q sont quatre points tels que :

AM = BN = CP = DO = x.

- 1. On admet que MNPO est un parallélogramme. On désigne par A(x) l'aire du parallélogramme MNPO. Déterminer A(x) en fonction de x.
- 2. a. Etudier les variations de la fonction f définie sur [0:3] par $f(x) = 2x^2 - 7x + 12$. b. En déduire la valeur de x pour laquelle l'aire A(x) est minimale.

Exercice 19 : Bénéfice et dérivée

Une entreprise fabrique mensuellement une quantité de 0 à 80 tonnes de produit chimique. Le coût de fabrication de x tonnes, exprimé en centaines d'euros, est donné par la fonction $\mathcal C$ définie par :

$$C(x) = 0.01x^3 - 1.05x^2 + 37x + 40$$

où $x \in [0; 80]$. Chaque tonne est vendue 19 centaines d'euros. On note R(x), la recette en centaines d'euros, obtenue pour la vente de x tonnes de produit.

1. Montrer que le bénéfice mensuel, en centaines d'euros, est donné par la fonction B définie par :

$$B(x) = -0.01x^3 + 1.05x^2 - 18x - 40$$

- 2. Dresser le tableau de variation de la fonction $B \sup [0; 80]$.
- 3. Déduire de la guestion précédente le nombre de tonnes que doit vendre l'entreprise pour que son bénéfice mensuel soit maximal. Que vaut alors ce bénéfice ?

Exercice 20 : Volume et dérivée

La figure 1 ci-dessous représente un patron du parallélépipède rectangle de la figure 2.

Ce patron est fabriqué à partir d'une feuille cartonnée carrée de 30 cm de côté.

Le parallélépipède ainsi obtenu est une boîte de lait

1. Démontrer que le volume V(x) du parallélépipède *ABCDEFGH* s'exprime en cm^3 pour $x \in [0; 15]$ par

$$V(x) = 2x(15 - x)^2$$

2. Dresser le tableau de variations de V sur [0 ; 15].

- 3. Pour quelle valeur de x le volume de cette boîte est-il maximal ? Calculer ce volume maximal.
- 4. Compléter le tableau de valeur suivant :

х	0	1	 15
f(x)			

- 5. Tracer la courbe représentative de V dans le plan muni d'un repère orthogonal, 1cm représentant en abscisses 1cm, et en ordonnée 100 cm^3 .
- 6. Le fabriquant voudrait que le volume de cette boîte soit de 0.5 Litres, c'est à dire $500 cm^3$.
 - a. Combien de valeurs de x permettent de fabriquer des boîtes de 0,5 Litre? Les faire figurer sur le graphique.
 - b. En déterminer des valeurs approchées à 0,1 près à l'aide de la calculatrice.
 - c. Parmi ces valeurs, laquelle retiendra le fabriquant?

Exercice 21: Rayon de cintrage minimal

Un jeune agriculteur bio veut fabriquer une serre pour protéger ses cultures de tomates dont les dimensions sont :

$$AB = 400 cm$$
$$100 cm \le x \le 300 cm$$

La distance HK = x avec H milieu de [AB] est appelé la flèche.

Le rayon de cintrage est noté R.

Ainsi
$$R = OA = OB = OK$$
.

On veut déterminer pour quelle valeur de \boldsymbol{x} le rayon \boldsymbol{R} de cintrage est minimal.

b. En déduire que
$$OH = \frac{40000 - x^2}{2x}$$

- 2. c. Exprimer alors R en fonction de x. Soit f la fonction définie sur [100; 300] par $f(x) = \frac{20000}{x} + \frac{x}{2}$.
 - a. Etudier les variations de f sur [100;300]
 - b. Déterminer la valeur de x pour laquelle la fonction f admet un minimum.
- 3. a. Pour quelle valeur de la flèche x, le rayon est-il minimal ?
- 4. b. Quelle est alors la particularité de l'arc AB?

Exercice 22:

On veut construire une bouée ayant la forme d'un double cône.

Unité choisie : le décimètre (dm) pour tout l'exercice.

On désigne par h la hauteur OB du cône.

On désigne par r le rayon OA de base.

On fixe la longueur AB à 3 dm.

- 1. a) Exprimer le volume V de la bouée en fonction de r et de h.
 - b) En considérant le triangle OAB, déterminer une relation entre r et de h.
 - c) En déduire que le volume peut s'écrire sous la forme : $V = \frac{2}{3} \pi (9h h^3)$
- 2. a) Etudier les variations de V(h) sur [0; 3].
 - b) Pour quelle valeur h_0 le volume est-il maximal ? Que vaut alors ce volume V_0 ? (on attend des valeurs exactes)
 - c) Quel est le rayon r_0 correspondant à ce volume maximal?

Exercice 23:

On veut, avant construction, rendre minimal le frottement d'un fluide contre les parois

L'aire de la section intérieure du canal doit être de 0,5 m².

On désigne par h la hauteur et par L la largeur (en mètres)

de cette section intérieure. On admettra que le frottement est minimum lorsque

la longueur g(h) = AB + BC + CD de la section intérieure est minimum.

- 1) a) Ecrire L en fonction de h.
- b) Montrer que $(h) = 2h + \frac{1}{2h}$.
- c) Démontrer que la dérivée de g est : $g'(h) = \frac{(2h-1)(2h+1)}{2h^2}$.
- d) Etudier les variations de g sur]0; $+\infty[$.
- 2) Déduire de ce qui précède les valeurs de h et de L permettant d'obtenir le frottement minimum.

Exercice 24:

Soit f la fonction définie sur $D_f = \mathbb{R} \setminus \{2\}$ par : $f(x) = \frac{3x^2}{x-2} + 1$

f est représentée par la courbe C_f dans un repère du plan.

- 1) a) Montrer que la dérivée de f est : $f'(x) = \frac{3x(x-4)}{(x-2)^2}$
- b) Etudier les variations de la fonction f sur D_f .
- c) Préciser s'il y a un maximum local ou un minimum local (ou plusieurs).
- 2) a) Déterminer l'équation de la tangente T_{-2} au point d'abscisse -2.
- b) Etudier les positions relatives de C_f et de T_{-2} sur D_f .
- 3) Démontrer qu'il existe deux points de C_f en lesquels la tangente est parallèle à la droite Δ d'équation
- y = 2x 5. On donnera leurs abscisses simplifiées (on trouve des valeurs assez compliquées...) mais leurs ordonnées ne sont pas demandées.
- 4) Déterminer les coordonnées des points d'intersection de C_f avec l'axe des abscisses.

Exercice 25:

Pour chacune des fonctions données, déterminer l'ensemble de définition, étudier les variations de f sur cet ensemble, et préciser les extremums locaux.

1)
$$f(x) = x^3 + 6x^2 - 15x + 1$$

2)
$$f(x) = x^2 - 4x + 3$$

3)
$$f(x) = -x^4 - 2x^2 + 2$$

4)
$$f(x) = \frac{2x+1}{3x-9}$$

$$5) \ f(x) = \sqrt{x}(x+3)$$

6)
$$f(x) = 3 - \frac{5}{2x-1}$$

7)
$$f(x) = \sqrt{-x^2 + 6x - 8}$$

8)
$$f(x) = \sqrt{x}(2 - 3x)$$

9)
$$f(x) = (2x + 1)^5$$

10)
$$f(x) = 2x + 3 + \frac{2}{x+1}$$

