

First Named Inventor: Toru Takenaka National Stage of PCT/JP2004/009476 Customer No. 40854; Docket No. SAT-16306 Page 2 of 9 REPLACEMENT SHEET

First Named Inventor: Toru Takenaka National Stage of PCT/JP2004/009476 Customer No. 40854; Docket No. SAT-16306 Page 3 of 9 REPLACEMENT SHEET

First Named Inventor: Toru Takenaka
National Stage of PCT/JP2004/009476
Customer No. 40854; Docket No. SAT-16306
Page 4 of 9
REPLACEMENT SHEET

FIG.17

REPLACEMENT SHEET

FIG.42 S702 CALCULATE PROVISIONAL CURRENT TIME GAIT UNTIL END TIME ON THE BASIS OF PROVISIONAL DESIRED ZMP AND OTHER CURRENT TIME GAIT PARAMETERS. **S704** DETERMINE TERMINAL DIVERGENT COMPONENT q0[k] ACCORDING TO THE FOLLOWING EQUATION FROM BODY POSITION/VELOCITY (Xe, Vxe) AT END OF CURRENT TIME GAIT.

DETERMINE TERMINAL DIVERGENT COMPONENT ERROR erro ACCORDING TO THE FOLLOWING EQUATION:

errq = q0[k] - q"

S700

 ∞

ENTRY

S708 yes

LEAVE REPETITION LOOP

S706

IS errg WITHIN PERMISSIBLE RANGE?

 $q0[k] = Xe + Vxe / \omega 0$

S710

CALCULATE PROVISIONAL CURRENT TIME GAIT UNTIL END TIME ON THE BASIS OF DESIRED ZMP OBTAINED BY ADDING CORRECTION TO PROVISIONAL DESIRED ZMP ACCORDING TO RELATIONSHIP OF FIG. 44, ASSUMING THAT $a = \triangle a$.

S712

DETERMINE TERMINAL DIVERGENT COMPONENT q1[k] ACCORDING TO THE FOLLOWING EQUATION ON THE BASIS OF BODY POSITION/VELOCITY (Xe1, Vxe1) AT END OF CURRENT TIME GAIT RECALCULATED ON THE BASIS OF DESIRED ZMP TO WHICH CORRECTION HAS BEEN ADDED:

 $q1[k] = Xe1 + Vxe1 / \omega 0$

DETERMINE PARAMETER SENSITIVITY r ACCORDING TO THE FOLLOWING EQUATION:

S714

 $\mathbf{r} = (\mathbf{q} \mathbf{1}[\mathbf{k}] - \mathbf{q} \mathbf{0}[\mathbf{k}]) / \triangle \mathbf{a}$

S716 ADD CORRECTION AMOUNT BASED ON a=-erra/r TO PROVISIONAL DESIRED ZMP TO PROVIDE UPDATED PROVISIONAL DESIRED ZMP.

S718

DETERMINE BODY INCLINATION RESTORING MOMENT ZMP-CONVERTED VALUE PATTERN ON THE BASIS OF DIFFERENCE BETWEEN TERMINAL BODY POSTURE ANGLE OF PROVISIONAL CURRENT TIME GAIT AND INITIAL BODY POSTURE ANGLE OF NORMAL GAIT AND DIFFERENCE BETWEEN TERMINAL BODY POSTURE ANGULAR VELOCITY OF PROVISIONAL CURRENT TIME GAIT AND INITIAL BODY POSTURE ANGULAR VELOCITY OF NORMAL GAIT.

DETERMINE, AS DESIRED ZMP PATTERN, THE PATTERN OBTAINED BY ADDING BODY INCLINATION RESTORING MOMENT ZMP-CONVERTED VALUE PATTERN TO PROVISIONAL DESIRED ZMP PATTERN. **S720**

S722

DETERMINE ANTIPHASE ARM SWING RESTORING ANGULAR ACCELERATION PATTERN ON THE BASIS OF DIFFERENCE BETWEEN TERMINAL ANTIPHASE ARM SWING ANGLE OF PROVISIONAL CURRENT TIME GAIT AND INITIAL ANTIPHASE ARM SWING ANGLE OF NORMAL GAIT AND DIFFERENCE BETWEEN TERMINAL ANTIPHASE ARM SWING ANGULAR VELOCITY OF PROVISIONAL CURRENT TIME GAIT AND INITIAL ANTIPHASE ARM SWING ANGULAR VELOCITY OF NORMAL GAIT.

First Named Inventor: Toru Takenaka National Stage of PCT/JP2004/009476 Customer No. 40854; Docket No. SAT-16306 Page 6 of 9 REPLACEMENT SHEET

FIG.43

First Named Inventor: Toru Takenaka National Stage of PCT/JP2004/009476 Customer No. 40854; Docket No. SAT-16306 Page 7 of 9 REPLACEMENT SHEET

FIG.62

ENTRY

DETERMINE DIFFERENCE IN HORIZONTAL BODY POSITION BETWEEN MODELS, WHICH IS THE DIFFERENCE BETWEEN HORIZONTAL BODY POSITION OF CORRECTED GAIT AND HORIZONTAL BODY POSITION OF ORIGINAL GAIT.

S2200

DETERMINE DIFFERENCE IN BODY POSTURE INCLINATION ANGLE BETWEEN MODELS, WHICH IS THE DIFFERENCE BETWEEN BODY POSTURE INCLINATION ANGLE OF CORRECTED GAIT AND BODY POSTURE INCLINATION ANGLE OF ORIGINAL GAIT.

S2202

DETERMINE DIFFERENCE IN ANTIPHASE ARM SWING ANGLE BETWEEN MODELS, WHICH IS THE DIFFERENCE BETWEEN ANTIPHASE ARM SWING ANGLE OF CORRECTED GAIT AND ANTIPHASE ARM SWING ANGLE OF ORIGINAL GAIT.

S2204

DETERMINE REQUIRED VALUE OF MODEL HORIZONTAL BODY POSITION STABILIZATION FLOOR REACTION FORCE MOMENT NECESSARY TO CONVERGE DIFFERENCE TO ZERO ON THE BASIS OF DIFFERENCE IN HORIZONTAL BODY POSITION BETWEEN MODELS.

S2206

DETERMINE REQUIRED VALUE OF MODEL BODY POSTURE INCLINATION ANGLE STABILIZATION FLOOR REACTION FORCE MOMENT NECESSARY TO CONVERGE DIFFERENCE TO ZERO ON THE BASIS OF DIFFERENCE IN BODY POSTURE INCLINATION ANGLE BETWEEN MODELS.

1 S2208

DETERMINE-REQUIRED VALUE OF MODEL ANTIPHASE ARM SWING ANGLE STABILIZATION FLOOR REACTION FORCE MOMENT NECESSARY TO CONVERGE DIFFERENCE TO ZERO ON THE BASIS OF DIFFERENCE IN ANTIPHASE ARM SWING ANGLE BETWEEN MODELS.

S2210

S2212

DETERMINE MODEL HORIZONTAL BODY POSITION STABILIZATION MOMENT, MODEL BODY POSTURE ANGLE STABILIZATION MOMENT, MODEL ANTIPHASE ARM SWING ANGLE STABILIZATION MOMENT, HORIZONTAL BODY ACCELERATION, BODY POSTURE ANGULAR VELOCITY, AND ANTIPHASE ARM SWING ANGULAR ACCELERATION SUCH THAT THEY SATISFY RESTORING CONDITIONS.

MODEL MANIPULATION FLOOR REACTION FORCE MOMENT HORIZONTAL COMPONENT

S2214

- = MODEL HORIZONTAL BODY POSITION STABILIZATION MOMENT
- + MODEL BODY POSTURE ANGLE STABILIZATION MOMENT

DESIRED FLOOR REACTION FORCE MOMENT HORIZONTAL COMPONENT FOR COMPLIANCE CONTROL

- = COMPENSATING TOTAL FLOOR REACTION FORCE MOMENT HORIZONTAL COMPONENT Mdmdxy
- + MODEL MANIPULATION FLOOR REACTION FORCE MOMENT HORIZONTAL COMPONENT

S2216

DESIRED FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT FOR COMPLIANCE CONTROL

- = COMPENSATING TOTAL FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT Mdmdz
- + FLOOR REACTION FORCE MOMENT VERTICAL COMPONENT BALANCING WITH CORRECTED GAIT

S2218

RETURN

First Named Inventor: Toru Takenaka National Stage of PCT/JP2004/009476 Customer No. 40854; Docket No. SAT-16306 Page 8 of 9 REPLACEMENT SHEET

First Named Inventor: Toru Takenaka National Stage of PCT/JP2004/009476 Customer No. 40854; Docket No. SAT-16306 Page 9 of 9 REPLACEMENT SHEET

FIG.80

