Problem 1. (15pts)

An aircraft is flying straight and level at a constant velocity of 337. 77 ft/sec, and then performs a symmetric pull up such that $\dot{\Theta}=0.05$ rad/s=constant. Assume the aircraft's x-axis is aligned with the flight path throughout the motion and that at t=0, the aircraft's location in North-East-Altitude coordinate is $p_N=0$, $p_E=0$, and h=5000 ft. Find the position coordinates (p_N,p_E,h) at t=5 sec. Assume $\Psi=0$.

Problem 2. (10pts)

The aircraft velocity vector expressed in the Earth-fixed reference frame is $\bar{V}_I = U I + V J + W K = 6.6637 I + 289.1164 J - 407.8815 K (ft/sec)$ and in the aircraft fixed body reference frame it is given by $\bar{V}_b = u i + v j + w k = 497.7939 i + 17.4497 j + 43.5513 k (ft/sec)$ Find the attitude of the aircraft in terms of its Euler angles (Ψ, Θ, Φ) . Is your answer unique?

Problem 3 (10pts)

For the C_L and C_m relationship shown in the following plots

- (1) Find the linear expressions of C_m in term of C_L for line A and B, respectively.
- (2) To obtain a trim condition, which line should be selected?
- (3) Assuming $\frac{x_{cg}}{\bar{c}}$ =0.6, how to relocate the a.c center $(\frac{x_{ac}}{\bar{c}})$ to obtain a new C_{L,trim}=0.8?

Problem 4. (15pts)

Wind tunnel test on a full-scale flying wing yielded the following database

Angle of Attack, deg	C _L	$C_{m_{cg}}$
8.0	0.64	-0.014
5.0	0.40	0.010
2.0	0.16	0.034
-3.0	-0.24	0.074

The configuration c.g is located 0.58 ft from the leading edge of the chord and the chord length is 2.6 ft.

- (a) Estimate the configuration lift curve slope
- (b) Is the configuration, as tested, statically stable? Explain your answer.
- (c) Estimate values for $C_{\rm m}$ at the aerodynamic center and aerodynamic center location.
- (d) Can this configuration, as tested, be trimmed in a steady glide condition? Explain your answer.
- (e) If the answer to part (d) is yes, then estimate values for trim angle of attack and trim lift coefficient

Problem 5. (10pts)

Consider the following nonlinear 2nd-order system

$$\ddot{y} + a_1 \dot{y}^2 + \frac{a_0}{y^2} = f$$

where a_0 and a_1 are constant, and $a_0 > 0$

- (1) For a constant input $f=f_0>0$, determine the equilibrium points of the system
- (2) Obtain the linearized equations of the system at the equilibrium points
- (3) Express the linearized model in state equations, choosing $x_1 = \Delta y$, $x_2 = \Delta \dot{y}$, $u = \Delta f$

Problem 6. (10pts)

Consider an airplane in constant-altitude, straight-line flight. The velocity equation is

$$\dot{V} = T - \frac{1}{2}kV^2$$

where the second term represents aerodynamic drag, and assume k = constant, and T is the engine thrust acceleration. Treat T as the control (input). Let V^* be a given constant cruise speed. Obtain the linearized differential equation for the velocity around V^* .

Problem 7. (15pts)

From the nonlinear flight dynamics model, derive the following linear perturbation equations for Y force

$$m(\dot{v} + u_0 r) = \Delta Y + mgcos(\theta_0)\phi$$

and moments:

$$\Delta L = I_{xx}\dot{p} - I_{xz}\dot{r}$$
$$\Delta M = I_{yy}\dot{q}$$
$$\Delta N = -I_{xz}\dot{p} + I_{zz}\dot{r}$$

Show all the steps!

Problem 8. (15pts)

Consider the 2-degree-of-freedom spring mass pendulum shown below (All motion is in the plane of the picture shown). The nonlinear equations of motion are given by

$$(1) \ddot{X} + \frac{k}{m}(X - L) - g\cos\Theta - X\dot{\Theta}^2 = 0$$

$$(2)\,X^2\ddot{\Theta}+gXsin\Theta+2\dot{\Theta}X\dot{X}=0$$

where *L* is the original spring length.

Linearize the equations of motion for this system. Let the reference condition be the equilibrium (no motion) state for the pendulum mass. In particular

- (a) Define a set of perturbation variables
- (b) Substitute the results of Part (a) into the equations of motion
- (c) Expand the equations and discard appropriate terms (show the terms that are to be discarded)

