Problem Set 1

All parts are due Tuesday, February 28 at 11:59PM.

Name: Faaya Abate Fulas

Collaborators: Name1, Name2

Part A

Problem 1-1. Submit this to gradescope.

(a) **Group 1:**

```
f_1(n) = O(n)
f_2(n) = O(\log(\log(n)))
f_3(n) = O(n\log(n))
f_4(n) = O(\log(n))
f_5(n) = n\log(\sqrt{n}) = 0.5n\log(n) = O(n\log(n))
```

Since $f_2(n)$ reduces the size of the problem by its square root, its order of growth is slower than $f_4(n)$ which reduces it by half each time. Therefore, the arrangement of the functions in increasing order of growth is f_2 , f_4 , f_1 , $f_3 = f_5$

(b) Group2:

$$f_1 = O(n^{6.006} \log(n))$$

$$f_2 = n^2 \log(n^{6.006}) = 6.006n^2 \log(n) = O(n \log(n)) = O(n^2 \log(n))$$

$$f_3 = O(n^3)$$

$$f_4 = O(n^2 \log(n))$$

$$f_5 = O(n^3 \log(n))$$

Arrangement: $(f_2 = f_4), f_3, f_5, f_1$

Problem 1-2. Submit this to gradescope. I used the Master Theorem method to solve all the recurrences below.

Problem Set 1

(a)
$$T(n) = \theta(n) since n^{\log_b a} = \theta(n) and f(n) = \theta(1)$$

(b)
$$T(n) = \theta(n \lg(n)) since n^{\log_b a} = \theta(n) and f(n) = \theta(n)$$

(c)
$$T(n) = \theta(n^{\log(3)}) since n^{\log_b a} = \theta(n^{\lg 3}) and f(n) = \theta(n)$$

(d)
$$T(n) = \theta(\log(n)) since n^{\log_b a} = \theta(1) and f(n) = \theta(\log(n))$$

(e)
$$T(n) = \theta(n^2) since n^{\log_b a} = \theta(n) and f(n^2) = \theta(n^2)$$

(f)
$$T(n) = \theta(n^{\lg(7)}) since n^{\log_b a} = \theta(n^{\lg 7}) and f(n) = \theta(n^2)$$

Problem 1-3. Submit this to gradescope.

Problem 1-4. Submit this to gradescope.

Part B

Problem 1-5.

(a) Submit your implementation on alg.csail.mit.edu