

Protocoale de Securitate

Cuprins

- Scopul securitatii si metode de rezolvare
- Modele criptografice cu chei simetrice si publice
- Cifrarea prin substitutie si transpozitie
- DES si AES
- RSA
- Analiza algoritmilor criptografici

Scopul securitatii

- confidentialitatea
 - informaţia este disponibilă doar utilizatorilor autorizaţi
- integritatea
 - informaţia poate fi modificată doar de utilizatorii autorizaţi sau în modalitatea autorizată (mesajul primit nu a fost modificat în tranzit sau măsluit)
- disponibilitatea
 - accesul la informaţie al utilizatorilor autorizaţi nu este îngrădit (opusul este denial of service)

Probleme derivate

- autentificarea
 - determinarea identităţii persoanei cu care schimbi mesaje înainte de a dezvălui informaţii importante
- autorizarea (controlul accesului)
 - protectia impotriva accesului ne-autorizat
- non-repudierea
 - transmitatorul nu poate nega transmiterea unui mesaj pe care un receptor l-a primit

Metode de rezolvare

- Organizare
 - Algoritmi de criptare si hash
 - Mecanisme de securitate
 - criptare, rezumare (hash), semnatura digitala
 - Servicii si protocoale de securitate
- Securitatea in ierarhia de protocoale
 - considerata initial in nivelul prezentare al ISO OSI
 - este distribuita, in realitate, diverselor nivele
 - fizic tuburi de securizare a liniilor de transmisie
 - legatura de date legaturi criptate
 - retea ziduri de protectie (firewalls), IPsec
 - transport end-to-end security
 - aplicatie autentificarea, non-repudierea

Alte aspecte

- Politici de securitate.
- Control software (antivirus).
- Control hardware:
 - Cartele inteligente;
 - Biometrie.
- Control fizic (protecţie).
- Educaţie.
- Măsuri legale.

Modelul de bază al criptării

confidentialitatea - intrusul să nu poată reconstitui M din C (să nu poată descoperi cheia de descifrare K').

integritatea - intrusul să nu poată introduce un text cifrat C', fără ca acest lucru să fie detectat (sa nu poată descoperi cheia de cifrare K).

Definiţii

- Spargerea cifrurilor = criptanaliză.
- Proiectarea cifrurilor = criptografie.
- Ambele sunt subdomenii ale criptologiei.
- Transformarea F realizată la cifrarea unui mesaj:
- $F : \{M\} \times \{K\} -> \{C\}, unde:$
 - {M} este mulţimea mesajelor;
 - {K} este mulţimea cheilor;
 - {C} este mulţimea criptogramelor.
- Operaţii:
 - Cifrarea (Encryption): $C = E_k(M)$.
 - Descifrarea (Decryption): $M = D_{k'}(C)$.
- Conotaţie de ordin practic!

Problema criptanalistului

- Criptanaliză cu text cifrat cunoscut; se cunosc:
 - Un text cifrat;
 - Metoda de criptare;
 - Limbajul textului clar;
 - Subjectul;
 - Anumite cuvinte din text.
- Criptanaliză cu text clar cunoscut; se cunosc:
 - Un text clar;
 - Textul cifrat corespunzător;
 - Anumite cuvinte cheie (login).
- Criptanaliză cu text clar ales; se cunosc:
 - Mod cifrare anumite porţiuni de text;
 - Exemplu pentru o bază de date modificare / efect.

Caracteristicile sistemelor secrete

sistem neconditionat sigur

- rezistă la orice atac, indiferent de cantitatea de text cifrat interceptat
- ex. one time pad

computational sigur sau tare

 nu poate fi spart printr-o analiză sistematică cu resursele de calcul disponibile.

sistem ideal

 indiferent de volumul textului cifrat care este interceptat, o criptogramă nu are o rezolvare unică, ci mai multe, cu probabilităti apropriate

Cerințe criptosisteme cu chei secrete

- Cerinţe generale:
 - Cifrare şi descifrare eficiente pentru toate cheile.
 - Sistem uşor de folosit (gasire chei de transformare).
 - Securitatea să depindă de chei, nu de algoritm.
- Cerinţe specifice pentru confidenţialitate: să fie imposibil computaţional ca un criptanalist să determine sistematic:
 - Transformarea D_k din C, chiar dacă ar cunoaşte M.
 - M din C (fără a cunoaste D_k).
- Cerinţe specifice pentru integritate: să fie imposibil computaţional ca un criptanalist să determine sistematic:
 - Transformarea E_k, din C, chiar dacă ar cunoaşte M.
 - Cifrul C' astfel ca $D_k(C')$ să fie un mesaj valid (fără a cunoaște E_k).

Modelul criptografic cu chei publice

- Sistemele criptografice:
 - Simetrice.
 - Asimetrice:
 - Propuse de Diffie şi Hellman în 1976.
 - Chei diferite de cifrare E şi descifrare D cu proprietatea
 - -D(E(M)) = M.
 - Nu se pot deduce (uşor) una din alta, mai precis:
 - Este extrem de greu să se deducă D din E;
 - D nu poate fi "spart" prin criptanaliză cu text clar ales.

Schema de confidențialitate

- Într-un sistem asimetric, un utilizator B:
 - Face publică cheia (transformarea) E_b de cifrare.
 - Păstrează secretă cheia (transformarea) D_b de descifrare.
- Se asigură confidentialitatea
 - doar B, care are cheia privată Db poate intelege mesajul M

Schema de integritate

- Pentru integritate / autentificare:
 - condiţia necesară este ca transformările E_a şi D_a să comute,
 adică

$$E_a(D_a(M)) = D_a(E_a(M)) = M.$$

Cheia Da se foloseste pentru criptarea mesajului M Se asigură integritatea

- Oricine poate folosi cheia publica Ea pentru a decripta mesajul
- Nimeni nu poate modifica mesajul M deoarece nu cunoaste cheia privata Da

Schema de autentificare

autentificare M este criptat mai intai cu cheia privata a lui A

 Da(M) este un fel de "semnatura" a mesajului rezultatul este apoi criptat cu cheia publica a lui B
 Se asigura că A este sursa mesajului și că mesajul este confidențial

ne-repudiere folosind perechea Da(M) si M, B poate demonstra ca a primit mesajul de la A

Clasificare generală

Cifrarea prin substitutie

Cifrul lui Cezar (substitutie monoalfabetică)

textul clar: CRIPTOGRAFIE

text cifrat: FULSWRJUDILH

fiecare litera este inlocuita de litera aflata la distanta 3 de ea

Relatia de calcul

c[i] = (m[i] + 3) mod 26

In general

c[i] = (a.m[i] +b) mod n.

Substitutia polialfabetică (Vigenere)

foloseste 36 de cifruri Cezar si o cheie de cifrare de lungime l fiecare litera din cheie = substitutul literei A din textul clar

Exemplu: cheia POLIGRAF

POLIGRAFPOLIGRAGPOLIGRAFPOLI cheie

AFOSTODATACANPOVESTIAFOSTCANICIODATA clar

PTZAZFDFIONITGOATGEQGWOXIQLVOTITSOEI cifrat

Litera O din cheie substituie A din textul clar;

Litera F (situata la 5 pozitii de A) este inlocuita de T (aflata la 5 pozitii de O)

Cifrarea prin transpozitie

Modifică ordinea caracterelor. Uzual:

- textul clar este dispus în liniile succesive ale unei matrice si
- parcurgerea acesteia după o anumită regulă pentru stabilirea noii succesiuni de caractere.

Exemplu

- caracterele dispuse pe linii sunt citite pe coloane,
- ordinea coloanelor este dată de ordinea alfabetică a literelor unei chei.

cheie: POLIGRAF

ordine: 76543812

text clar: AFOSTODATACANPOVESTIAFOSTCANICIO

POLIGRAF

AFOSTODA

TACANPOV

ESTIAFOS

TCANICIO

text cifrat: DOOIAVSOTNAISAINOCTAFASCATETOPFC

Cifruri produs

Principii pentru a obţine o securitate mai mare:

- compune două cifruri "slabe", complementare
 - P-box permutare (transpozitie) asigură difuzia
 - S-box substitutie asigură confuzia
- repetă aplicarea permutării şi substituţiei

DES (Data Encryption Standard) Schema generală O iteraţie

Calculul lui f(R_{i-1},k_i)

 $f(R_{i-1}, K_i)$

32 biti

Calculul cheilor

(cu 1 sau 2 biti, in functie de numarul ciclului)

extrage si permuta 48 biti din cei 56 ai C1D1

Comentarii

- Transpoziţiile, expandările, substituţiile sunt defininte în DES
- Acelaşi algoritm folosit la criptare si decriptare

La criptare:
$$L_{j} = R_{j-1}$$

 $R_{j} = L_{j-1} \ (+) \ f(R_{j-1}, k_{j})$
De unde: $R_{j-1} = L_{j}$
 $L_{j-1} = R_{j} \ (+) \ f(R_{j-1}, k_{j})$
şi $L_{j-1} = R_{j} \ (+) \ f(L_{j}, k_{j})$

Decriptare = ordine inversă criptarii (cu cheile în ordinea $k_{16} - k_1$)

Comentarii (2)

- Elementele cheie ale algoritmului nu au fost făcute publice
 - Controverse
 - Există trape (capcane) care să uşureze decriptarea de către NSA?

NSA declară că NU.

- Descoperirea şi folosirea unei astfel de trape de un criptanalist răuvoitor
 - → unele detalii despre S-box au fost dezvăluite de NSA

Comentarii (3)

- Număr de iteraţii (16) sunt suficiente pentru difuzie?
 - Experimental, după 8 iteraţii nu se mai văd dependenţe ale biţilor de ieşire de grupuri de biţi din intrare
- Lungimea cheii
 - Cheie DES de 56 biţi spartă prin forţă brută (4 luni * 3500 maşini) în 1997
 - Dar, nu au fost raportate deficienţe în algoritm
 - Triple DES "măreşte" lungimea cheii

Triplu DES

- "Creste" lungimea cheii folosind
- •2 chei
- •3 runde de criptare / decriptare

Inlantuirea blocurilor cifrate: CBC - Cipher Block Chaining

Key – cheie secreta

IV – Initialization Vector

- ales aleator, acelasi pentru criptare si decriptare
- folosit pentru combinarea cu primul bloc de text clar

Urmarea: un acelasi text clar repetat in mesaj va fi criptat diferit

Reactie cifrata: CFB - Cipher-Feed Back

Foloseste un Initialization Vector ca prima valoare in Registrul de deplasare

O eroare de un bit in criptograma conduce la decriptarea eronata a 8 octeti

generati in pasii in care bitul se afla in registrul de deplasare

Cifrarea secventială (Stream Cipher)

Foloseste un Initialization Vector ca intrare DES pentru a genera prima cheie de criptare/decritare, care este folosita ca intrare DES pentru a genera a doua cheie etc.

Sirul de chei generat este combinat XOR cu textul clar pentru a produce criptograma

Sirul de chei depinde doar de cheia principala Key si de vectorul de initializare IV

→ Nu trebuie refolosita repetat aceeasi pereche (Key, IV)

AES – Advanced Encryption Standard

Regulile concursului organizat de NIST (ianuarie 1997) erau:

- Algoritmul trebuie să fie un cifru bloc simetric.
- 2. Tot proiectul trebuie sa fie public
- 3. Trebuie să fie suportate chei de 128, 192, și de 256 biţi
- 4. Trebuie să fie posibile atât implementări hardware cât și software
- 5. Algoritmul trebuie să fie public sau oferit cu licenţă nediscriminatorie.

Finaliştii şi scorurile lor au fost următoarele:

- 1. Rijndael (din partea lui Joan Daemen şi Vincent Rijmen, 86 voturi)
- Serpent (din partea lui Ross Anderson, Eli Biham şi Lars Knudsen, 59 voturi)
- 3. Twofish (din partea unei echipe condusă de Bruce Schneier, 31 voturi)
- 4. RC6 (din partea RSA Laboratories, 23 voturi)
- 5. MARS (din partea IBM, 13 voturi)

Foloseste o matrice de stare de 4*4 octeţi (bloc de 128 biţi)
si mai multe chei de runda fabricate din cheia de baza
Numarul de runde n depinde de lungimea cheii
n=10 pentru cheie de lungime 128; 12/ 192, 14/ 256
Initial

- se copiaza un bloc de 128 biti text clar in state
- se face XOR intre state si cheia rk[0]

In fiecare runda se fac patru operatii

substitutie – la nivel octet, foloseşte tabel substituţierotate_rows – prin deplasare circulară la stânga la nivel octet

```
      1
      5
      9
      13
      1
      5
      9
      13

      2
      6
      10
      14
      2
      6
      10
      14
      2

      3
      7
      11
      15
      3
      7

      4
      8
      12
      16
      4
      8
      12
```


mix_columns - elementele unei coloane sunt înmulţite cu o matrice

$$\begin{vmatrix} s'0i \\ s'1i \\ s'2i \\ s'3i \end{vmatrix} = \begin{vmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{vmatrix} \begin{vmatrix} s0i \\ s1i \\ s2i \\ s3i \end{vmatrix}$$

xor_roundkey_into_state - combinare cu o cheie de rundă rk[i]

Rijndael definit în câmp Galois $G(2^8)$ prin polinomul $P = x^8 + x^4 + x^3 + x + 1$

număr = coeficienții unui polinom

Ex.
$$23_{(10)} = 10111_{(2)}$$
 este polinomul $1*x^4+0*x^3+1*x^2+1*x+1$
 x^4+x^2+x+1

adunarea coeficienţilor făcută modulo 2

înmulţirea făcută ca la polinoame, dar modulo P

Ex.
$$(x^3+1)^*(x^4+x) = x^7+x^4+x^4+x = x^7+x$$

Algoritmul AES (3)

```
/* # bytes in data block or key */
#define LENGTH 16
                                                /* number of rows in state */
#define NROWS 4
                                                /* number of columns in state */
#define NCOLS 4
#define ROUNDS 10
                                                /* number of iterations */
typedef unsigned char byte;
                                                /* unsigned 8-bit integer */
rijndael(byte plaintext[LENGTH], byte ciphertext[LENGTH], byte key[LENGTH])
                                                /* loop index */
 int r:
 byte state[NROWS][NCOLS];
                                                /* current state */
 struct {byte k[NROWS][NCOLS];} rk[ROUNDS + 1]; /* round keys */
 expand key(key, rk);
                                                /* construct the round keys */
                                                /* init current state */
 copy_plaintext_to_state(state, plaintext);
                                                /* XOR key into state */
 xor roundkey into state(state, rk[0]);
 for (r = 1; r \le ROUNDS; r++) \{
     substitute(state);
                                                /* apply S-box to each byte */
     rotate rows(state);
                                                /* rotate row i by i bytes */
     if (r < ROUNDS) mix_columns(state);
                                                /* mix function */
     xor roundkey into state(state, rk[r]);
                                                /* XOR key into state */
 copy state to ciphertext(ciphertext, state);
                                                /* return result */
```


Comentarii

- Nu au fost probleme la utilizare
- Experimental difuzie bună
- Metodă bazată pe algebră (câmpuri Galois)
 - substituţii şi mixare coloane folosesc operaţii cu sens în teoria algebrică (nu simple tabele greu de explicat)
- autorii nu au oferit argumente matematice
- nu sunt suspectate trape (sau "scurtături" ascunse)

Cifrarea prin functii greu inversabile

- functii greu inversabile
 - cunoscînd x este usor de calculat f(x)
 - calculul lui x din f(x) este foarte dificil.

adaptare:

- calculul lui x din f(x) trebuie să fie o problemă intratabilă doar pentru criptanalist
 - problemă intratabilă nu există un algoritm de rezolvare în timp polinomial.
- destinatarul autorizat
 - are cheia sau
 - dispune de o trapă ce face problema usor de rezolvat.

Metode

- algoritmi exponentiali
- problema rucsacului.

Algoritmi exponentiali – RSA

In RSA (Rivest, Shamir si Adleman):

Criptarea si decriptarea se fac prin functii exponentiale

Criptarea se face prin calculul

$$C = (M^e) \mod n$$

unde (e, n) reprezintă cheia de criptare.

M este un bloc de mesaj (valoare întreagă între 0 si n-1)

C este criptograma.

Decriptarea se face prin calculul

$$M = (C^d) \mod n$$

unde (d, n) este cheia de decriptare

Algoritmi exponentiali – RSA

Conditia: functiile de criptare si decriptare trebuie sa fie inverse una alteia:

$$(M^e \mod n)^d \mod n = M$$

Conditia poate fi indeplinita daca

- e este un intreg relativ prim cu $\Phi(n)$

 $\Phi(n)$ este Functia lui Euler

adica nr de întregi pozitivi <n relativ primi cu n

- d este inversul multiplicativ al lui e modulo $\Phi(n)$

$$e^*d \mod \Phi(n) = 1$$

– n este produsul a doua numere prime, n = p * q

caz in care
$$\Phi(n) = (p-1)(q-1)$$

Motivatie

Functia lui Euler $\Phi(n)$ = nr de întregi pozitivi <n relativ primi cu n

daca p prim
$$\Rightarrow \Phi(p) = p-1$$
.

daca $n = p^*q$ cu p, q prime atunci

$$\Phi(n) = \Phi(p) * \Phi(q) = (p-1) (q-1)$$

Teorema (Euler). Pentru orice a si n cu (a,n) = 1 avem

$$a^{\Phi(n)} \mod n = 1$$

Aceasta proprietate este folosita in demonstrarea urmatoarei

Teorema (cifrare). Date fiind e si d care satisfac

ed mod
$$\Phi(n) = 1$$

si un mesaj $M \in [0, n-1]$, avem

$$(M^e \mod n)^d \mod n = M$$

Metoda RSA

- Se aleg două numere prime p şi q,
 (de ex. de 1024 biţi).
- 2. Se calculează $n = p \times q$ şi $z = (p-1)\times(q-1)$.
- 3. Se alege d un număr relativ prim cu zd poate fi un numar prim care satisface

$$d > (p-1) si d > (q-1)$$

- 4. Se găseşte e astfel încât $e \times d = 1 \mod z$.
- 5. (e, n) este cheia de criptare.
 - (d, n) este cheia de decriptare.

Comentarii

Cheia de criptare (e,n) se face publica

Problema:

cunoasterea lui (e,n) sa nu permita deducerea lui d

Securitate pastrata deoarece:

- p si q sunt numere prime foarte mari
- p si q sunt pastrate secrete

Cifrarea si descrifrarea sunt comutative si mutual inverse (M^d mod n)^e mod n = M

→ RSA utilizată ptr confidentialitate si autentificare.

Nu au fost identificate atacuri reusite cu RSA

Metoda MH (Merkle si Hellman) - optional

Problema rucsacului

Se dau C si ponderile A = (a[1], a[2], ..., a[m])

Se cere determinarea lui X = (x[1],x[2],...x[m]) cu elemente binare, a.i.

$$C = \sum_{i=1,m} x[i] * a[i]$$

Găsirea unei solutii = backtracking => număr operatii care creste exponential cu m.

O solutie **x** poate fi verificată prin cel mult m operatii de adunare

Varianta rucsac simplu a problemei (trapa):

dacă A satisface proprietatea de dominanță (este o secventa super-crescatoare), adică

$$a[i] > \sum_{j=1,i-1} a[j]$$

atunci problema poate fi rezolvată în timp liniar.

Ex.

text clar	1	0	1	0	0	1
rucsac	1	2	5	9	20	43
text cifrat	1		5			43

suma = 49

reprezinta criptograma

decriptarea?

POLITEHA/CP

Cheie publica: secventa (oarecare) de intregi

Cheie secreta: secventa super-crescatoare

Contributia Merkle si Hellman

conversie secventa oarecare ⇔ secventa super-crescatoare

```
Solutia: aritmetica modulara

rucsac simplu A = [a1, a2, ..., am]

rucsac greu G = [g1, g2, ...,gm]

se obtine prin calcule gi = w * ai mod n

Ex.
```

rucsac simplu A = [1, 2, 4, 9], w = 15, n = 17 $1*15 \mod 17 = 15 \mod 17 = 15$ $2*15 \mod 17 = 30 \mod 17 = 13$ $4*15 \mod 17 = 60 \mod 17 = 9$ $9*15 \mod 17 = 135 \mod 17 = 16$ rucsac greu G = [15, 13, 9, 16]

Obs. inmultirea mod n strica proprietatea de dominanta

Toate numerele din G trebuie sa fie distincte intre ele Conversia inversa de la G la A trebuie sa produca o solutie unica Impun restrictii asupra lui n si w; ex.:

w = 3; n = 6			W =	w = 3; n = 5			
X	3*x	3*x mod 6	X	3*x	3*x mod 5		
1	3	3	1	3	3		
2	6	0	2	6	1		
3	9	3	3	9	4		
4	12	0	4	12	2		
5	15	3	5	15	0		
6	18	0	6	18	3		

Cerinte:

- 1. n trebuie sa fie mai mare decat suma tuturor ai
- 2. w si n trebuie sa fie prime intre ele (se alege n prim)
 - => w are un invers multiplicativ w^{-1} (w * w^{-1} = 1 mod n)

Criptare

Obtine criptograma C din textul clar P prin C = G * P

unde G este rucsacul greu, $G = w * A \mod n$ (adica gi = w * ai mod n)

Ex:
$$P = [1,0,1,0], G = [15,13,9,16] \rightarrow C = 15+9 = 24$$

Decriptare

Receptorul cunoaste A,w, n si, bineinteles, G

Deoarece C = G * P = w * A * P mod n, rezulta

$$w^{-1} * C = w^{-1} * G * P = w^{-1} * w * A * P \mod n = A * P \mod n$$

din care P se afla prin rucsac simplu

Ex.
$$A = [1, 2, 4, 9], w = 15, n = 17, C = 24$$

$$w^{-1} = 15^{-1} = 8 \mod 17 \implies w^{-1} * C = 8 * 24 = 192 \mod 17 = 5$$

$$A = [1, 2, 4, 9] \Rightarrow P = [1, 0, 1, 0]$$

Comentarii ← opțional

Metoda pare sigura

S-au gasit metode de atac prin ocolire rucsac greu in anumite cazuri

Oricum, algoritmul MH este greu de utilizat

Analiza algoritmilor criptografici

Problema:

Pot criptogramele interceptate de un intrus sa faciliteze spargerea confidentialitatii criptografice ?

O solutie este **Teoria Informatiei**

- care masoara cantitatea medie de informatie transmisa de o sursa
- si, echivalent, cantitatea de incertitudine inlaturata (in medie) de un mesaj

Bazata pe notiunile de entropie si entropie conditionata

Entropia

Entropia este cantitatea medie de informatie transmisa de o sursa

Fie S o sursa de informatii

- care transmite mesajele X₁,..., X_n
- cu probabilitatile $p(X_1)$, ..., $p(X_n)$, ptr. care $\Sigma_{i=1,n}$ $p(X_i) = 1$.

Entropia H(X) este:

$$H(X) = \sum_{i=1,n} p(X_i)^* log (1/p(X_i)) = -\sum_{i=1,n} p(X_i)^* log (p(X_i))$$

- $-\log(1/p(X_i))$ = cantitatea de informatie primita la receptia lui X_i .
- baza logaritm = 2 → cantitatea masurata in numar de biti

Exemplu

- aruncarea monedei cap sau pajura
- probabilitati egale, 1/2
- informatie 1 bit: $H(X) = \sum_{i=1,2} (1/2)^* \log (1/(1/2)) = 1$

Incertitudinea

Entropia = cantitatea de incertitudine inlaturata (in medie) de un mesaj

Exemplu:

o sursa poate trimite n = 4 mesaje, cu probabilitati egale p(X) = 1/4

$$H(X) = \sum_{i=1,4} (1/4)^* \log (4) = 2$$

fiecare mesaj inlatura o incertitudine de 2 biti

(inainte nu se stia care din cele 4 mesaje va fi primit)

Entropia depinde de distributia probabilitatior mesajelor

când
$$p(X_1) = p(X_2) = ... = p(X_n) = 1/n$$
.

$$H(X) = \sum_{i=1,n} (1/n)^* \log (n) = \log (n)$$

când distribuţia mesajelor se restrânge.

$$-H(X) = 0$$

când $p(X_i) = 1$ pentru un mesaj i.

Entropie conditionata - Echivocitatea

Exemplu:

mesajele X sunt conditionate de mesaje Y

Fie m=4 şi p(Y) = 1/4 pentru fiecare Y.

Presupunem ca fiecare mesaj Y restrânge X astfel:

dupa Y1: urmeaza X1 sau X2, fiecare cu prob. 1/2

dupa Y2: urmeaza X3 sau X4,

dupa Y3: urmeaza X2 sau X3,

dupa Y4: urmeaza X4 sau X1.

Problema:

cum se calculeaza entropia lui X ?

Entropie conditionata – Echivocitatea (2)

Dat fiind Y din mulţimea mesajelor $Y_1,..., Y_n$ cu $\Sigma_{i=1,n}$ $p(Y_i) = 1$,

•fie: $p_Y(X)$ probabilitatea mesajului X condiţionat de Y.

p(X,Y) probabilitatea mesajelor X şi Y luate împreună:

$$p(X,Y) = p_Y(X)^*p(Y).$$

•Echivocitatea este entropia lui X condiţionat de Y:

$$H_{Y}(X) = \Sigma_{X,Y} p(X,Y)*log (1/p_{Y}(X))$$

$$H_{Y}(X) = \Sigma_{X,Y} p_{Y}(X)*p(Y) log (1/p_{Y}(X))$$

$$= \Sigma_{Y} p(Y) \Sigma_{X} p_{Y}(X)*log (1/p_{Y}(X)).$$

Pentru exemplu:

$$p(Y) = 1/4$$
 $p_Y(X) = 1/2$

Echivocitatea este:

$$H_Y(X) = \Sigma_Y p(Y) \Sigma_X p_Y(X)^* log (1/p_Y(X)).$$

$$H_Y(X) = \sum_{i=1,4} (1/4) * \sum_{j=1,2} (1/2)*log (1/(1/2))$$

$$H_Y(X) = 4*(1/4) * 2 (1/2) * (log 2) = log 2 = 1.$$

$$H_{v}(X) = 1$$
 pentru mesaje X conditionate

cunoaşterea lui Y reduce incertitudinea lui X la un bit.

Confidențialitatea perfectă

Cunoasterea unor criptograme nu reduce confidentialitatea

Fie:

- M multime texte clare cu probabilitatea p(M), $\Sigma_{\rm M}$ p(M) = 1.
- C criptograme, cu probabilitatea p(C), $\Sigma_{\rm C}$ p(C) = 1.
- K chei cu probabilitatea p(K), Σ_{K} p(K) = 1.
- p_C(M) probabiltiatea să se fi transmis M când se recepţionează C.

Confidenţialitatea perfectă $\leq p_C(M) = p(M)$.

Fie $p_M(C)$ probabilitatea să se recepționeze C când s-a transmis M:

$$p_M(C) = \sum_{k, Ek(M)=C} p(k).$$

Confidenţialitatea perfectă:

$$p_M(C) = p(C)$$
, pentru toate M şi orice C.

Confidenţialitatea perfectă

 Confidenţialitatea perfectă este posibilă dacă se folosesc chei la fel de lungi ca mesajele codificate.

Distanţa de unicitate

- "Spargerea" confidenţialităţii depinde de cantitatea de criptograme de care intrusul dispune
 - cantitatea de incertitudine în K cunoscand C, este exprimată ca entropia (echivocitatea) cheii conditionata de criptograme:

$$H_{c}(K) = \Sigma_{c} p(C)\Sigma_{K} p_{c}(K) \log (1/p_{c}(K))$$

- Dacă echivocitatea H_C(K)=0 nu există incertitudine şi cifrul se poate sparge.
- Când creşte lungimea N a textelor cifrate echivocitatea scade.
- Distanţa de unicitate:
 - Cel mai mic N pentru care H_c(K) este foarte apropiat de 0.
- Cifru neconditionat sigur:
 - H_C(K) nu se apropie niciodată de 0.

Redundanta limbajului (1)

Pentru un limbaj, consideram mulţimea mesajelor X de lungime N

- cu entropia H(X)
- fiecare mesaj este o secventa de N simboluri dintr-un alfabet A care are L simboluri

Nu toate combinatiile de N simboluri au sens

- ex. anumite succesiuni de consoane, digrame, trigrame, etc.
- Redundanţa limbajului, D este

$$D = R - r$$

- R este rata absolută a limbajului
- r este rata limbajului
- D = 3.2 ... 3.7 pentru limba engleză.

Rata limbajului

Rata limbajului este entropia pe simbol daca nu toate combinatiile de N simboluri au sens

este raportul entropia mesaj / numar simboluri din mesaj:

$$r = H(X) / N$$

- r = numar de biti pentru un simbol
 cu care se pot reprezenta (un numar de) 2^r simboluri
- pentru limba engleză r = 1 ... 1.5 biti pe litera
- Numarul total al mesajelor de lungime N cu sens este 2^{rN}

Rata absoluta a limbajului

Rata absoluta a limbajului este entropia pe simbol daca toate combinatiile de N simboluri ar avea sens

Se considera ca cele L simboluri au aceeasi probabilitate = 1/L Rezulta:

$$R = \sum_{i=1,L} (1/L) \log (L) = \log L$$

- pentru limba engleză R = log 26 = 4.7 biţi pe literă
- Numarul de simboluri L se poate rescrie L = 2^R
- Numarul de mesaje de lungime N (cu sau fara sens) este 2^{RN}

Calcul aproximativ distanță unicitate (1)

Distanta de unicitate N este:

$$N = H(K) / D$$

Justificare

- •lpoteze:
 - Sunt 2^{RN} mesaje posibile, din care 2^{rN} au sens.
 - Toate mesajele cu sens au aceeaşi probabilitate, 1/2^{rN}.
 - Toate mesajele fără sens au probabilitate 0.
 - Sunt 2^{H(K)} chei cu probabilităţi egale.
 - Cifrul este aleator:
 - Pentru fiecare k şi C, descifrarea D_K(C) este variabilă aleatoare independentă uniform distribuită pe toate mesajele, cu sau fără sens.

Calcul aproximativ distanţă unicitate (2)

Fie criptograma $C = E_{\kappa}(M)$.

- Criptanalistul are de ales între 2^{H(K)} chei, doar una este corectă.
- •Rămân 2^{H(K)}-1 chei care pot da o soluţie falsă (adica C se obţine criptând un alt mesaj M' cu înţeles)

cu aceeaşi probabilitate (= mesaje cu sens / total mesaje)

$$q = 2^{rN} / 2^{RN} = 2^{(r-R)N} = 2^{-DN}$$

•Numărul de soluții false F (= nr chei incorecte * probabilitatea unei chei de a da solutie falsa):

$$F = (2^{H(K)} - 1)q = (2^{H(K)} - 1) 2^{-DN} \approx 2^{H(K)-DN}$$

conditia de unicitate \rightarrow log F = H(K)-DN = 0

$$\rightarrow$$
 N = H(K) / D

Analiza cifrării prin substituţie

- Substituţie monoalfabetică:
 - N = H(K) / D = log n! / D

sunt n! chei posibile

- Pentru limba engleză:
 - N = log 26! / 3.2 = 27.6
- Substituţie periodică cu perioada d si s simboluri in alfabet:
 - Sunt s^d chei posibile pentru fiecare substiţutie simplă:
 - $N = H(K) / D = log s^d / D = (d*log s) / D$
 - Pentru cifrul Vigenere s = 26:
 - N = d * 4.7 / 3.2 = 1.5 d

Analiza cifrării prin transpoziție

- Caracteristici:
 - Cifrul permută caracterele cu o perioadă fixă d.
 - Sunt d! permutări posibile.
 - Toate sunt echiprobabile.
- H(K) = log d!
 - N = H(K) / D = log d! / D
 - $-N = d \log (d/e) / D$
- Pentru d = 27 şi D = 3.2 rezultă:
 - -N = 27.9

- A. S. Tanenbaum Reţele de calculatoare, ed 4-a, BYBLOS 2003
- 8.1 CRIPTOGRAFIA
- 8.2 ALGORITMI CU CHEIE SECRETĂ
- 8.3 ALGORITMI CU CHEIE PUBLICĂ

- A. S. Tanenbaum Computer networks, 5-th ed. PEARSON 2011
- 8.1 CRYPTOGRAPHY
- 8.2 SYMMETRIC-KEY ALGORITHMS
- 8.3 PUBLIC-KEY ALGORITHMS