ORIE 4580/5580: Simulation Modeling and Analysis ORIE 5581: Monte Carlo Simulation

Unit 3: Intro to Monte Carlo Simulation

Sid Banerjee School of ORIE, Cornell University

expectation and variance of sums of rvs

linearity of expectation

for any rvs X and Y, and any constants $a,b\in\mathbb{R}$

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

note: no assumptions! (in particular, does not need independence)

• for general X, Y

$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2abCov(XY)$$

• when X and Y are independent

$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y)$$

law of large numbers

let X_1, X_2, \ldots be a sequence of independent rvs with $\mathbb{E}[X_i] = \mu$ for all i then, "almost" always

$$ar{X}_n = rac{1}{n} \sum_{i=1}^n X_i {\longrightarrow} \mu \quad , \quad \text{as } n o \infty$$

note: for any finite n, $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ is still a random variable

central limit theorem

let X_1, X_2, \ldots be a sequence of independent rvs with

$$\mathbb{E}[\mathsf{X}_i] = \mu, \mathsf{Var}(\mathsf{X}_i) = \sigma^2 < \infty$$
 for all .

then,

$$\sqrt{n}(\bar{X}_n - \mu) \stackrel{D}{\longrightarrow} \sigma \mathcal{N}(0, 1) = \mathcal{N}(0, \sigma^2)$$
 , as $n \to \infty$

approximations for large n,

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{D}{\approx}$$

$$S_n = \sum_{i=1}^n X_i \stackrel{D}{\approx}$$

QUESTION OF THE DAY

How can we tell if we are not already in a computer simulation?

#AGICHAT

clicker question: Staffing a Food Bank

a food bank depends on volunteers for its labor pool on any given day, the number of workers who show up is $Uniform(\{1,2,\ldots,9\})$, while the number of donations needed to be collected is $Uniform(\{1,2,\ldots,29\})$ assuming the work is equally divided among each worker, what is the average load for each worker?

- (a) 3
- (b) > 3
- (c) < 3
- (d) can be any of the above on different days

staffing a food bank

a food bank depends on volunteers for its labor pool on any given day, the number of workers who show up is $Uniform(\{1,2,\ldots,9\})$, while the number of donations needed to be collected is $Uniform(\{1,2,\ldots,29\})$ assuming the work is equally divided among each worker, what is the average load for each worker?

- let X = number of workers, Y = number of donations
- we have $\frac{\mathbb{E}[Y]}{\mathbb{E}[X]} = \frac{30/2}{10/2} = 3$
- on the other hand, $\mathbb{E}[Load] = \mathbb{E}\left[\frac{Y}{X}\right]$; is this also 3?
- let us simulate and check!

understanding what happened

for random variables X and Y, and function $g(\cdot, \cdot)$,

$$\mathbb{E}[g(X, Y)] \neq g(\mathbb{E}[X], \mathbb{E}[Y])!$$

flaw of averages

moral: in most settings, average inputs don't give average outputs!

what can go wrong?

- non-linearities
- correlations between rvs
- 'inspection paradox' (buses take longer to arrive than they should!)
- ...

simulation allows us to avoid such problems!

how many replications?

simulating food bank for many days (samples/replications) = distribution of loads as number of replications increases, sample average \rightarrow average load (by LLN)

question: every time we run the simulation model with some fixed number of replications, our estimate of $\mathbb{E}[load]$ changes.

answer: use CLT to build a confidence interval!

confidence intervals

let X_1,X_2,\ldots be a sequence of i.i.d. random variables with mean $\mathbb{E}[X_1]=\mu$ and variance $Var(X_1)=\sigma^2<\infty$

want to measure $\boldsymbol{\mu}$ from simulations

confidence interval: attempt 1...

an interval [a,b] is called a 95% confidence interval for $\mathbb{E}[X_1]$ if

$$\mathbb{P}[a \leq \mathbb{E}[X_1] \leq b] \geq 0.95$$

Q: what is wrong with this?

confidence intervals: definition

an random interval [A,B] (computed from data/experiments) is called a 95% confidence interval for some (deterministic) quantity μ if

$$\mathbb{P}[A \le \mu \le B] \ge 0.95$$

confidence intervals for population mean

$$X_1, X_2, \ldots$$
 are i.i.d. rvs with $\mathbb{E}[X_1] = \mu$ and $Var(X_1) = \sigma^2 < \infty$; $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

• from the central limit theorem:

$$\sqrt{n}(ar{X}_n - \mu) \stackrel{D}{pprox} \sigma \mathcal{N}\left(0, 1
ight) = \mathcal{N}\left(0, \sigma^2
ight)$$

ullet from the inverse cdf of $\mathcal{N}(0,1)$, we can compute

$$\mathbb{P}[\hspace{1cm} \leq \mathcal{N}(0,1) \leq \hspace{1cm}] \geq 0.95.$$

confidence intervals

want to measure $\mu = \mathbb{E}[X_1]$ from simulations

- ullet from the central limit theorem: $\sqrt{n}(ar{X}_n-\mu) \stackrel{D}{pprox} \sigma \mathcal{N}\left(0,1
 ight)$
- \bullet from the cdf of $\mathcal{N}(0,1),$ we have $\mathbb{P}[-1.96 \leq \mathcal{N}(0,1) \leq 1.96] \geq 0.95$

putting these together, we have:

confidence intervals: problems

• the confidence interval is approximate because

• the confidence interval is 'exact' when

• the confidence interval above requires knowledge of σ^2

confidence intervals: problems

• the confidence interval is approximate because

• the confidence interval is 'exact' when

ullet the confidence interval above requires knowledge of σ^2

can replace σ^2 with its sample estimator

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

fixed sample-size: recipe for CI

approximate $100(1-\alpha)\%$ Gaussian CI for $\mathbb{E}X$

- 1. select a sample size N
- 2. generate N i.i.d. samples X_1, X_2, \dots, X_N of X
- 3. compute the estimators \bar{X}_N , s_N^2

$$ar{X}_N = rac{1}{N} \sum_{n=1}^N X_n, ~~ s_N^2 = rac{1}{N-1} ~\sum_{n=1}^N \left(X_n - ar{X}_N
ight)^2$$

4. look up the value of $z_{\alpha/2}$ such that

$$\mathbb{P}[-z_{\alpha/2} \le N(0,1) \le z_{\alpha/2}] = 1 - \alpha$$

5. the approximate $100(1-\alpha)\%$ CI for $\mathbb{E}X$ is given by

$$\bar{X}_N \mp z_{\alpha/2} \frac{s_N}{\sqrt{\Lambda}}$$

selecting the sample size

how large should N be so that the resulting $100(1-\alpha)\%$ confidence interval will have a pre-specified width?

• CI
$$\implies \bar{X}_N \mp z_{\alpha/2} \left(\sigma/\sqrt{N} \right)$$

$$ullet$$
 half-width $\implies z_{lpha/2} rac{\sigma}{\sqrt{N}}$

- ullet be the desired half-width
- Set *N* =

selecting the sample size

- problem: σ^2 is unknown!
- estimating σ^2 through s_N^2 requires simulation!
- solution: 'pilot runs' perform k simulation runs to get $[X_n':n=1,\ldots,k]$ as outcomes compute

$$ilde{X}_k = rac{1}{k} \sum_{n=1}^k X_n', \quad ilde{s}_k^2 = rac{1}{k-1} \sum_{n=1}^k \left(X_n' - ilde{X}_k
ight)^2$$

use \tilde{s}_k^2 to estimate σ^2

for confidence level α , half-width ℓ , set

$$N = \left[\frac{z_{\alpha/2}^2 \tilde{s}_k^2}{\ell^2} \right]$$

clicker question

we want to estimate $\mathbb{E}[X]$ with ∓ 0.01 accuracy with 95% confidence from 10 replications, $\tilde{s}_{10}^2=0.5$

how many replications should we use?

A 200

B 2,000

C 20,000

D 40,000

E 200,000

clicker question

we want to estimate $\mathbb{E}[X]$ with ∓ 0.01 accuracy with 95% confidence from 10 replications, $\tilde{s}_{10}^2=0.5$

thus we have

$$\left\lceil \frac{z_{\alpha/2}^2 \tilde{s}_k^2}{\ell^2} \right\rceil = \frac{2^2 \times 0.5}{0.01^2} = 20,000$$

how many replications should we use?

- **A** 200
- **B** 2,000
- **C** 20,000
- **D** 40,000
- **E** 200,000

basic simulation workflow

- perform pilot run of k simulations (sufficient but not large k)
- compute required sample-size N for desired confidence interval
- run N additional simulations \implies production runs
- form fixed-sample confidence intervals from these N samples
- note: final CI may be different than desired, because it is constructed by using s_N^2 (may be larger/smaller than \tilde{s}_k^2)
- for the final confidence interval, discard the information from the trial runs not a problem, since $N \gg k$ usually

clicker question: abusing CI (?)

in a homework assignment in Simulation, students were asked to do a Monte Carlo simulation to compute π up to 2 decimal places there were 100 homework submissions, and *all* submissions reported 95% CIs which included 3.14 the probability that this happened 'by chance' is approximately

- (a) 0.4
- (b) 0.05
- (c) 0.006
- (d) 0.0007
- (e) 0

confidence intervals as a social contract

a random interval [A,B] (computed from data/experiments) is a 95% confidence interval for some unknown μ if before the experiment is done

$$\mathbb{P}[A \le \mu \le B] \ge 0.95$$

clicker question: (mis)interpreting CI

a 95% confidence interval for the mean annual rainfall in Milford Sound, New Zealand is 26 feet plus or minus 1 foot therefore, the rainfall next year will be between 25 feet and 27 feet with 95% probability.

- (a) true
- (b) false
- (c) where is New Zealand?

confidence intervals vs quantiles

the CI for the mean is NOT the same as the quantiles of a random variable.

ullet suppose that X is a rv with probability density function

• we can select q_1 and q_2 so that

$$\mathbb{P}[q_1 \le X \le q_2] = 0.95,$$

but $[q_1, q_2]$ is not a 95% confidence interval for $\mathbb{E}X$.

tool 1: Jensen's inequality

Q: can we say something about $\mathbb{E}[f(X)]$ vs $f(\mathbb{E}[X])$ (in particular, \geq or \leq) without simulating?

Jensen's inequality

if X is a random variable and f is a convex function, then

$$\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$$

Example – in our food-bank staffing problem, since $f(x) = \frac{1}{x}$, x > 0 is convex:

$$\mathbb{E}[Y]\mathbb{E}\left[\frac{1}{X}\right] \geq \frac{\mathbb{E}[Y]}{\mathbb{E}[X]}$$

tool 1: Jensen's inequality

Jensen's inequality

if X is a random variable and f is a convex function, then

$$\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$$

proof sketch (plus way to remember)

tool 2: Chebyshev's Inequality

Q: since the CLT convergence is faster/slower for different rvs, can we be sure that CIs based on variance always make sense?

Chebyshev's inequality

let X be any rv with finite mean μ and finite variance $\sigma^2>0$ then for any k>0,

$$\mathbb{P}\left[|X - \mu| \ge k\sigma\right] \le \frac{1}{k^2}$$

'always-valid' confidence intervals

Chebyshev's inequality

let X be any rv with finite mean μ and finite variance $\sigma^2>0$ then for any k>0,

$$\mathbb{P}\left[|X - \mu| \ge k\sigma\right] \le \frac{1}{k^2}$$

worst-case CI: if we choose k = 2, then we always have 75% confidence intervals

tool 3: the union bound

- Q: how can we get simultaneous confidence intervals for multiple hypothesis?
- \bullet Eg. I give you five 95% confidence intervals; do they simultaneously contain their respective means 95% of the time?

tool 3: the union bound

the union bound

let A_1, A_2, \ldots, A_k be events; then

$$P(A_1 \cap A_2 \cap \dots \cap A_k) = 1 - P(A_1^c \cup A_2^c \cup \dots \cup A_k^c)$$

$$\geq 1 - (P(A_1^c) + P(A_2^c) + \dots + P(A_k^c))$$

let A_i = event that the ith CI contains its true mean...