Particle Physics Project - Pionic Atoms

Muhammad Sadegh Esmaeilian

January 2020

1 Overview

A pionic atom is system contain a quark and an anti-quark i.e. is a meson. We have three pions in definition π^0 , π^+ and π^- . Pions are the lightests mesons. They are unstable with the life time and rest mass of

Pions, which are mesons with zero spin, are composed of first-generation quarks. In the quark model, an up quark and an anti-down quark make up a π^+ , whereas a down quark and an anti-up quark make up the π^- , and these are the antiparticles of one another. The neutral pion π^0 is a combination of an up quark with an anti-up quark or a down quark with an anti-down quark. The two combinations have identical quantum numbers, and hence they are only found in superpositions. The lowest-energy superposition of these is the π^0 , which is its own antiparticle. Together, the pions form a triplet of isospin. Each pion has isospin (I=1) and third-component isospin equal to its charge $(I_z=+1,0,1)$. Also the well-known decays of pions are listed below

In the next part we are going to obtain the wavefunctions and energy levels in these systems.

2 Energy Levels and Wave functions

The General form of Lagrangian Density is

$$\mathcal{L} = \frac{\hbar^2}{2m_0} \left[\left(\partial_{\mu} - \frac{iq}{\hbar c} A_{\mu} \right) \psi^* \left(\partial^{\mu} + \frac{iq}{\hbar c} A^{\mu} \right) \psi - \frac{m^2 c^2}{\hbar^2} \psi^* \psi - \frac{U_s^2}{c^2 \hbar^2} \psi^* \psi \right] - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} \quad (1)$$

Now for a simple pionic atom we choose

$$A^{\mu} = \left(\frac{Z|e|}{r}, 0\right) \tag{2}$$

So by this definition we solve the Euler-Lagrange equation which for ψ is

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} - \frac{\partial \mathcal{L}}{\partial \psi} = 0 \tag{3}$$

and for ψ^* is

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{*})} - \frac{\partial \mathcal{L}}{\partial \psi^{*}} = 0 \tag{4}$$

By substituting relation (1) in Euler-Lagrange equation for ψ^*

$$\partial_{\mu} \left[\partial^{\mu} + \frac{iq}{\hbar c} A^{\mu} \right] \psi + \frac{iq}{\hbar c} A_{\mu} \left[\partial^{\mu} + \frac{iq}{\hbar c} A^{\mu} \right] \psi + \frac{m^2 c^2}{\hbar^2} \psi + \frac{U_s^2}{\hbar^2 c^2} \psi = 0$$
 (5)

which we can write it as

$$\left[D_{\mu}D^{\mu} + \frac{m^2c^2}{\hbar^2} + \frac{U_{(S)}^2}{\hbar^2c^2} \right] \psi = 0$$
(6)

and similarly for ψ we should have

$$\left[\left[\partial_{\mu} - \frac{iq}{\hbar c} A_{\mu} \right] \left[\partial^{\mu} - \frac{iq}{\hbar c} A^{\mu} \right] + \frac{m^2 c^2}{\hbar^2} + \frac{U_s^2}{\hbar^2 c^2} \right] \psi^* = 0 \tag{7}$$

which is

$$\[D'_{\mu}D'^{\mu} + \frac{m^2c^2}{\hbar^2} + \frac{U'_{(S)}}{\hbar^2c^2} \] \psi^* = 0$$
 (8)

These are knowns as Klein-Gorden Equations. Because in this case our scaler and vector potential don't depend to time we can seperate our solution. So we can write

$$\left[\left(\frac{1}{c} \partial_t + \frac{iq}{\hbar c} A^0 \right) \left(\frac{1}{c} \partial_t + \frac{iq}{\hbar c} A^0 \right) - \nabla^2 + \frac{m^2 c^2}{\hbar^2} \right] \psi(\vec{x}, t) = 0$$
 (9)

which means we can write

$$\psi(\vec{x},t) = \psi(\vec{x})e^{-\frac{i\epsilon t}{\hbar}} \tag{10}$$

Now we have

$$\left[\left(\frac{1}{c} \partial_t + \frac{iq}{\hbar c} A^0 \right) \left(\frac{1}{c} \partial_t + \frac{iq}{\hbar c} A^0 \right) - \nabla^2 + \frac{m^2 c^2}{\hbar^2} \right] \psi(\vec{x}) e^{-\frac{i\epsilon t}{\hbar}} = 0$$
 (11)

where in spherical coordinates we have

$$\nabla^2 = \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{1}{r^2 \sin \theta} \partial_\theta \left(\sin \theta \partial_\theta \right) + \frac{1}{r^2 \sin^2 \theta} \partial_\varphi^2 \tag{12}$$

For the complete form of equation we can write

$$E'\psi = -\frac{\hbar^{2}}{\mu_{0} + \mu} \nabla^{2}\psi + \frac{2\mu}{\mu_{0} + \mu} U\psi - \frac{U^{2}}{(\mu_{0} + \mu) c^{2}} \psi + \frac{1}{(\mu_{0} + \mu) [(\mu_{0} + \mu) c^{2} - U]} \frac{dU}{dr} \left(\frac{2}{r} \mathbf{S} \cdot \mathbf{L}\psi - \hbar^{2} \frac{\partial \psi}{\partial r}\right)$$
(13)

which for simplifying this equation we can write this as

$$E'\psi = -\frac{\hbar^2}{m_0 + m} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right] \psi - \frac{2m}{m_0 + m} \frac{Ze_s^2}{r} \psi - \frac{1}{(m_0 + m)c^2} \frac{Z^2 e_s^4}{r^2} \psi$$
(14)

Now from this equation, because our potential has spherical symmetry we can seperate the radial part and spherical part of it i.e.

$$\psi(r,\theta,\phi) = R(r)Y(\theta,\phi) \tag{15}$$

So

$$\frac{(m_0 + m) E'r^2}{\hbar^2} + \frac{1}{R} \frac{\partial}{\partial r} \left(r^2 \frac{\partial R}{\partial r} \right) + 2m \frac{Ze_s^2}{\hbar^2} r + \frac{Z^2 e_s^4}{\hbar^2 c^2}
= -\frac{1}{Y} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \varphi^2} \right] = \lambda$$
(16)

and

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial R}{\partial r}\right) + \frac{\left(m_0 + m\right)E'}{\hbar^2}R + \left[\frac{2m}{\hbar^2}\frac{Ze_s^2}{r} + \left(\frac{Z^2e_s^4}{\hbar^2c^2} - \lambda\right)\frac{1}{r^2}\right]R = 0 \tag{17}$$

Also for spatial part we have

$$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \varphi^2} + \lambda Y = 0 \tag{18}$$

where λ denote l(l+1) for l=0,1,2,... and certainly we find that the solutions spherical part are spherical harmonics. Now for radial part, let's talk about a condition where we are in the bound states E' < 0, Let

$$\alpha' = \left[\frac{4(m_0 + m)|E'|}{\hbar^2} \right]^{1/2}, \quad \beta = \frac{2mZe_s^2}{\alpha'\hbar^2}$$
 (19)

Also by letting $R(r) = \frac{u(r)}{r}$,

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) = \frac{1}{r}\frac{d^2}{dr^2}(rR) \tag{20}$$

and by using $\rho = \alpha' r$, then the equation will be

$$\frac{d^2u}{d\rho^2} + \left[\frac{\beta}{\rho} - \frac{1}{4} - \frac{l(l+1) - Z^2\alpha^2}{\rho^2}\right]u = 0$$
 (21)

Now by studing the asymptotic behaviour of this equation, when $\rho \to \infty$ we can write

$$\frac{d^2u}{d\rho^2} - \frac{1}{4}u = 0, \quad u(\rho) = e^{\pm \rho/2}$$
 (22)

So the general solution will be $u(\rho) = e^{-\frac{\rho}{2}} f(\rho)$, (we choose negative sign for convergency)

$$\frac{d^2f}{d\rho^2} - \frac{df}{d\rho} + \left[\frac{\beta}{\rho} - \frac{l(l+1) - Z^2\alpha^2}{\rho^2}\right]f = 0$$
 (23)

The solution for this equation can be shown as a series form i.e.

$$f(\rho) = \sum_{\nu=0}^{\infty} b_{\nu} \rho^{s+\nu}, \quad b_0 \neq 0$$
 (24)

Now by substituting (24) in (23) as the coefficient of $\rho^{s+\nu-1}$ is equal to zero which we get,

$$b_{\nu+1} = \frac{s + \nu - \beta}{(s + \nu)(s + \nu + 1) - l(l+1) + Z^2 \alpha^2} b_{\nu}$$
 (25)

If the series are infinite series, then when $\nu \to \infty$ we have $b_{\nu+1}/b_{\nu} \to 1/\nu$. Therefore, when $\rho \to \infty$, the behaviour of the series is the same as that of e^{ρ} , then we have

$$R = \frac{\alpha'}{\rho} u(\rho) = \frac{\alpha'}{\rho} e^{-\rho/2} f(\rho)$$
 (26)

Where $f()\rho$ goes to infinity when $\rho \to \infty$, which is in conflict with the finite conditions of wave functions. There for, the series should only have finite terms. Let $b_{n_r}\rho^{s+n_r}$ be the highest-order term, then $b_{n_r+1}=0$, by substituting $\nu=n_r$ into (25) we have $\beta=n_r+s$. On the other hand, the series starts from $\nu=0$, and doesn't have the term $\nu=-1$, therefore $b_{-1}=0$. Substituting this in (25) and considering b_0 is not zero we have $s(s-1)=l(l+1)-Z^2\alpha^2$. Denoting $n=n_r+l+1$ then the following set of equations can be solved for s and s,

$$\begin{cases} s(s-1) = l(l+1) - Z^2 \alpha^2 \\ \beta = n_r + s \\ n = n_r + l + 1 \end{cases}$$
 (27)

where we have $s = 1/2 \pm \sqrt{(l+1/2)^2 - Z^2 \alpha^2}$ which we take the positive sign. So

$$\beta = n_r + s = n - l - 1/2 + \sqrt{(l+1/2)^2 - Z^2 \alpha^2} = n - \sigma_l \tag{28}$$

where

$$\sigma_l = l + 1/2 - \sqrt{(l+1/2)^2 - Z^2 \alpha^2} \tag{29}$$

and according to (19) we have

$$\beta = \frac{2mZe_s^2}{\alpha'\hbar^2} = \frac{Ze_s^2}{\hbar} \left[\frac{m^2}{(m_0 + m)|E'|} \right]^{1/2} \text{ or } (n - \sigma_l)^2 = \frac{Z^2e_s^4}{\hbar^2} \frac{m^2}{(m_0 + m)|E'|}$$
(30)

Considering $m = m_0 - \frac{|E'|}{c^2}$, then |E'| satisfies the following second-order algebric equation

$$\frac{Z^2\alpha^2 + (n - \sigma_l)^2}{c^2} |E'|^2 - 2m_0 \left[Z^2\alpha^2 + (n - \sigma_l)^2 \right] |E'| + Z^2\alpha^2 m_0^2 c^2 = 0$$
 (31)

As we see, the expression of |E'| obtained by solving the equation is related to both n = 1, 2, ... and l = 0, 1, ..., n - 1 thus $E = m_0 c^2 - |E'|$ can be denoted by E_n then we have

$$E_n = m_0 c^2 - |E'|$$

$$= m_0 c^2 - m_0 c^2 \left(1 \pm \frac{n - \sigma_l}{\sqrt{Z^2 \alpha^2 + (n - \sigma_l)^2}} \right) = \mp \frac{(n - \sigma_l) m_0 c^2}{\sqrt{Z^2 \alpha^2 + (n - \sigma_l)^2}}$$
(32)

by taking positive sign

$$E_n = \frac{m_0 c^2}{\sqrt{1 + Z^2 \alpha^2 / (n - \sigma_l)^2}}$$
 (33)

If we ignore the effects of nuclear motion, then its relativistic energy level is

$$E_n = m_0 c^2 \left[1 + \frac{Z^2 \alpha^2}{(n - (l + 1/2) + \sqrt{(l + 1/2)^2 - Z^2 \alpha^2})^2} \right]^{-1/2}$$

$$= m_0 c^2 \left[1 - \frac{Z^2 \alpha^2}{2n^2} - \frac{Z^4 \alpha^4}{2n^4} \left(\frac{n}{l + 1/2} - \frac{3}{4} \right) + \cdots \right]$$
(34)

As $E_n = mc^2$, the system mass corresponding to the positive solution is

$$m = \frac{m_0}{\sqrt{1 + Z^2 \alpha^2 / (n - \sigma_l)^2}}$$
 (35)

Solving the radial equation, we found that if we substitute the solutions $s = l + 1 - \sigma_l$ and $\beta = n - \sigma_l$ into equation (25) we have,

$$b_{\nu+1} = \frac{\nu + l + 1 - n}{(\nu + 1 - \sigma_l)(2l + 2 + \nu - \sigma_l) + Z^2 \alpha^2} b_{\nu}$$
 (36)

and

$$b_{\nu} = \frac{(l-n+\nu)(l-n+\nu-1)\cdots(l-n+2)(l-n+1)}{\prod_{k=1}^{\nu} [(k-\sigma_{l})(2l+1+k-\sigma_{l})+(Z\alpha)^{2}]} b_{0}$$

$$= \frac{(-1)^{\nu}(n-l-1)(n-l-2)\cdots(n-l-\nu)}{\prod_{k=1}^{\nu} [(k-\sigma_{l})(2l+1+k-\sigma_{l})] \prod_{k=1}^{\nu} \left(1+\frac{Z^{2}\alpha^{2}}{(k-\sigma_{l})(2l+k-\sigma_{l})}\right)} b_{0}$$

$$= \frac{(-1)^{\nu}(n-l-1)!}{(n-l-1-\nu)! \prod_{k=1}^{\nu} [(k-\sigma_{l})(2l+1+k-\sigma_{l})] \eta(l,\nu)} b_{0}$$
(37)

where b_0 is a constant

$$b_0 = -\frac{[(n+l)!]^2}{(n-l-1)!\Gamma(1-\sigma_l)\Gamma(2l+2-\sigma_l)} \frac{N_{nl}}{\alpha'}$$
(38)

Thus we have

$$b_{\nu} = \frac{(-1)^{\nu+1}[(n+l)!]^2}{(n-l-1-\nu)!\Gamma(\nu+1-\sigma_l)\Gamma(2l+2+\nu-\sigma_l)\eta(l,\nu)} \frac{N_{nl}}{\alpha'}$$
(39)

By substituting into (24) we get

$$R_{nl}(r) = N_{nl}e^{-\rho/2} \sum_{\nu=0}^{n-l-1} \frac{(-1)^{\nu+1}[(n+l)!]^2 \rho^{l-\sigma_l+\nu}}{(n-l-1-\nu)!\Gamma(\nu+1-\sigma_l)\Gamma(2l+2+\nu-\sigma_l)\eta(l,\nu)}$$
(40)

So the total solution is

$$\Psi(\mathbf{r},t) = \psi_{nlm}(r,\theta,\varphi)e^{-iE_nt/\hbar} = R_{nl}(r)Y_{lm}(\theta,\varphi)e^{-iE_nt/\hbar}$$
(41)

By normalizing we might get

$$R_{nl}(r) = N_{nl}e^{-\frac{Z}{(n-\sigma_l)a_0}r}r\left(\frac{2Z}{(n-\sigma_l)a_0}r\right)^{l-\sigma_l}L_{n+l}^{2l+1-\sigma_l}\left(\frac{2Z}{(n-\sigma_l)a_0}r\right)$$

$$\sigma_l = l + \frac{1}{2} - \left[\left(l + \frac{1}{2}\right)^2 - Z^2\alpha^2\right]^{1/2} = \sum_{k=1}^{\infty} \frac{2^{k-1}(2k-3)!!}{k!(2l+1)^{2k-1}}(Z\alpha)^{2k}$$
(42)

and now we got the orthonormality relation as

$$\int_0^\infty R_{nl}^2(r)r^2dr = 1 \quad \text{and} \quad \int_0^\pi \int_0^{2\pi} Y_{lm}^*(\theta,\varphi)Y_{lm}(\theta,\varphi)\sin\theta d\theta d\varphi = 1 \tag{43}$$

3 Results

I solved these equations completely and the code is available at my github page. For instance the below table shows some of the energy levels

	π^0	π^+	π^-
(1, 0)	$1.799952045397237 \times 10^{-13}$	$2.399936060529649 \times 10^{-13}$	$2.399936060529649 \times 10^{-13}$
(2, 0)	$1.7999880116287428 \times 10^{-13}$	$2.39998401550499 \times 10^{-13}$	$2.39998401550499 \times 10^{-13}$
(2, 1)	$1.799988012054546 \times 10^{-13}$	$2.399984016072728 \times 10^{-13}$	$2.399984016072728 \times 10^{-13}$
(3, 0)	$1.79999467190005 \times 10^{-13}$	$2.3999928958667334 \times 10^{-13}$	$2.3999928958667334 \times 10^{-13}$
(3, 1)	$1.799994672026214 \times 10^{-13}$	$2.399992896034952 \times 10^{-13}$	$2.399992896034952 \times 10^{-13}$
(3, 2)	$1.7999946720514467 \times 10^{-13}$	$2.3999928960685954 \times 10^{-13}$	$2.3999928960685954 \times 10^{-13}$
(4, 0)	$1.7999970029645693 \times 10^{-13}$	$2.3999960039527587 \times 10^{-13}$	$2.3999960039527587 \times 10^{-13}$
(4, 1)	$1.7999970030177948 \times 10^{-13}$	$2.399996004023726 \times 10^{-13}$	$2.399996004023726 \times 10^{-13}$
(4, 2)	$1.7999970030284397 \times 10^{-13}$	$2.3999960040379193 \times 10^{-13}$	$2.3999960040379193 \times 10^{-13}$
(4, 3)	$1.799997003033002 \times 10^{-13}$	$2.3999960040440025 \times 10^{-13}$	$2.3999960040440025 \times 10^{-13}$

and some of eigen-functions are in the next page.

