

Orthogonal Convolutional Neural Networks

Jiayun (Peter) Wang

Yubei Chen

Rudrasis Chakraborty

Stella X. Yu

Motivations

- Feature redundancy in CNNs:
- Features are similar
- Network capacity is not fully utilized

- Instability of training CNNs:
- Spectrum of weight matrix is highly imbalanced
- Scaling power to different images is imbalanced Spectrum of Kernel $\mathcal K$

- We propose to use orthogonal convolutions in CNNs
 - Reduce feature redundancy
- Improve feature expressiveness
- Enhance network stability
- Increase robustness under attack

Convolution Layer Analysis

• A convolution Y = Conv(K, X) can be considered as matrix multiplications in two formats:

(a) **Previous work** converts input X to patch-matrix \widetilde{X} ; retains kernel K.

$$Y = K\widetilde{X}$$

(b) Our work converts K to a Toeplitz matrix K; retains input X.

$$Y = \mathcal{K}X$$

- Our form **directly** analyzes the transformation between the input and the output.
- We further constrain convolutions to be orthogonal.

Experiments & Results

Image Inpainting (Unsupervised):

Improve low-level visual feature: 4.3 PSNR gain.

Fine-grained Image Retrieval:

Improve high-level visual feature: Trained on ImageNet only. 3% gain on top-5 classification.

Image Classification:

3% gain on CIFAR100 and 1% gain on ImageNet.

Semi-supervised Learning:

Consistent 2% - 3% gain under different fractions of labelled data on CIFAR100.

% of training data	10%	20%	40%	60%	80%	100%
ResNet18 [23]	31.2	47.9	60.9	66.6	69.1	75.3
kernel orthogonality [52]	33.7	50.5	63.0	68.8	70.9	76.5
Conv-orthogonality	34.5	51.0	63.5	69.2	71.5	78.1
Our gain	3.3	3.1	2.6	2.6	2.4	2.8

Orthogonal Convolutions

Row Orthogonality:

• Row orthogonal convolution can be achieved if: $Conv(K, K, padding = P, stride = S) = I_{r0}$

$$P = \lfloor \frac{k-1}{\varsigma} \rfloor \cdot S.$$

 $I_{r0} \in \mathbf{R}^{M \times M \times (2P/S+1) \times (2P/S+1)}$ has zeros entries except for the center $M \times M$ entries as an identity matrix.

• Intuitively, only checking overlapping regions is enough:

region to check
region to check

Column Orthogonality:

$$\mathcal{K}(\cdot, ihw) = \mathcal{K}\mathbf{e_{ihw}} = \text{Conv}(K, E_{i,h,w})$$
$$\langle \mathcal{K}(\cdot, ih_1w_1), \mathcal{K}(\cdot, jh_2w_2) \rangle = \begin{cases} 1, (i, h_1, w_1) = (j, h_2, w_2) \\ 0, \text{ otherwise} \end{cases}$$

Comparisons:

• Previous work: Kernel orthogonality:

$$\begin{cases} KK^T = I \\ K^TK = I \end{cases}$$

• Our work: Convolutional orthogonality:

$$\begin{cases} \operatorname{Conv}(K, K, \operatorname{padding} = 0) = I_{r0} \\ \operatorname{Conv}(K^T, K^T, \operatorname{padding} = 0) = I_{c0} \end{cases}$$

Orthogonal CNNs:

• We add additional orthogonality loss to the final loss:

$$L = L_{\text{task}} + \lambda L_{\text{orth}}$$

$$L_{\text{orth}} = \|\text{Conv}(K, K) - I_{r0}\|_F^2$$

Robustness under Attack:

7x time and 1.7x attack queries to attack model.

Space and time complexity:

Light-cost: 9% gain in training time only. Same model size and test time.

Network Dissection:

• Network dissection analyzes how many unique
detectors each layer have

 Ours has more detectors with more concepts.

Image Generation:

- Improve comprehensive visual feature.
- 1.3 gain in FID.
- Faster GAN convergence.

Project Webpage:
Code & Paper & Model

