Toward Fog/Edge Deployments: Evaluating OpenStack WANwide with Enos

Ronan-Alexandre Cherrueau (@rcherrueau)

Inria, Discovery Initiative

OpenStack

A IaaS manager

- Compute with Nova (VM), Ironic (bare metal) and Magnum (container)
- Network with Neutron
- Storage with Cinder (volume) and Swift (object)

The de facto solution

- EC2, Compute Engine, Azure: Closed Source Public Cloud
- Cloudwatt, Numergy ...
- OpenStack: Open Source Private and Public Cloud

Question: is OpenStack the de facto solution for distributed Cloud?

Distributed Cloud

Management services interconnected through WAN Link (OpenStack WANwide)

OpenStack Mechanisms for Distributed Cloud

Native Mechanisms

- Centralized: 1 control node and *n* computes
- Mutli-regions: *n* OpenStack Clouds managed by Keystone (no global view)

Research work

- Broker: *n* OpenStack Clouds managed by an external service that builds the global view (Tricircle)
- P2P: n OpenStack Clouds that collaborate to build the global view (Discovery Initiative)

Which one is the most interesting?

OpenStack lacks of a tool for performance evaluations

- Latency/throughput impact?
- Message characterization: distinction between LAN and WAN traffic?
- Changes between OpenStack releases
- Deployment complexity

A Sandbox for Conducting Performance Analysis of OpenStack?

Enos: Experimental Env. for OpenStack

Motivation: Conducting performance analysis

- In a scientific and reproducible manner (automation)
- At small and large-scale
- Under different network topologies (traffic shaping)
- Between different releases

Workflow

- 1. enos deploy: Get testbed resources; Deploys OpenStack
- 2. enos bench: Runs benchmarks; Measures CPU/RAM/Network consumption per service/node
- 3. enos backup: Get benchmarks results

enos deploy - Resource/Topology Description

```
$ cat ./basic.yml
resources:
  parasilo:
    control: 1
    network: 1
  paravance:
    compute: 50
$ enos deploy -f ./basic
    .yml
```

```
$ cat ./advanced.yml
resources:
  parasilo:
    control: 1
    network: 1
    nova-conductor: 5
  paravance:
    compute: 50
$ enos deploy -f ./
```

advanced.yml

```
$ cat ./network-topo.yml
resources:
  grp1:
    parasilo:
      control: 1
      network: 1
      nova-conductor: 5
  grp2:
    paravance:
      compute: 50
network constraints:
  - src: grp1
    dst: grp2
    delav: 100ms
    rate: 10Gbit
    loss: 0%
    symetric: yes
$ enos deploy -f ./
     network-topo.vml
```

enos deploy - Under the Hood

```
resources:
grp1:
parasilo:
control: 1
network: 1
grp2:
paravance:
compute: 50
```

network_constraints:

delay: 100ms rate: 10Gbit loss: 0%

- 1. Provider gets 2 nodes on parasilo, 50 nodes on paravance and returns node's IP addresses
- 2. Enos provisions nodes with Docker daemon
- 3. Enos installs OpenStack using Kolla-ansible
- Enos sets up bare necessities (flavors, cirros image, router, ...)
- Enos applies network constraints between grp1 and grp2 using tc

Provider to get testbed resources

- Resource \equiv Anything running a Docker daemon and Enos can SSH to.
- Existing provider: Vagrant (VBox), Grid'5000, Chameleon, OpenStack
- ~500 LoC

enos bench

Benchmarks description

```
$ cat ./run.yml
rally:
    args:
        concurrency: 5
        times: 100
    scenarios:
        - name: boot and list servers
        file: nova-boot-list-cc.yml
        osprofiler: true
        - ...
shaker: ...
$ enos bench --workload=run.yml
```

• Under the hood

- Rally: control plane benchmark
- Shaker: data plane benchmark
- o OSProfiler: code profiling
- Monitoring stack:
 - cAdvisor/Collectd: CPU/RAM/Network consumption per service/node
 - InfluxDB
 - Grafana

enos backup

enos backup produces a tarball with:

- Rally/Shaker reports
- OSProfiler traces
- InfluxDB database with cAdvisor/Collectd measures
- OpenStack logs

Enos Example: Evaluation of OpenStack WANwide

OpenStack WANwide

A single OpenStack to operate remote compute resources deployed at the edge

- Pros: simple
- Cons:
 - o Single point of failure
 - Scalability (not addressed in this presentation, see "Chasing 1000 Nodes Scale", Barcelona Summit 2016 – Done with Enos)
 - Network latency/throughput impacts on functional behaviour and performance degradation.

TestBeds: Grid'5000 + Chameleon

- Experiments runs independently on Grid'5000 and Chameleon in a fully automatized manner (software defined experiments leveraging Enos).
- 250 benchmarks (approx. 100 running hours) on each testbed.
- Results lead to the same conclusion whatever the testbed (collected performance are almost identical).
- Experimental setup: https://github.com/BeyondTheClouds/enos-scenarios/
- Results: http://enos.irisa.fr/html/

Latency Impact (Experiment #1)

```
$ cat ./wan-exp1.yml
resources:
  grp1:
    paravance:
      control: 1
  grp2:
    paravance:
      compute: 10
network_constraints:
  - src: grp1
    dst: grp2
    delay: 0ms # 10ms, 25ms, 50ms, 100ms
    rate: 10Gbit
    loss: 0%
    symetric: yes
$ enos deploy -f ./wan-exp1.yml
```


Latency Impact - Control Plane (Rally Vision)

Completion time increases with latency (factor 2 between 0 and 200ms)

Latency Impact - Data Plane (Shaker Vision)

```
$ cat ./run.yml
rally: ...
shaker: ...
  - file: openstack/dense_13_est_west.yml
  - file: openstack/full_13_est_west.yml
$ enos bench --workload=run.yml
```


Ping response time is twice the RTT

Latency Impact with DVR (Experiment #2)

You say DVR?

- Distributed Virtual Routing
- L3 forwarding/NAT distributed to compute nodes


```
$ cat ./wan-exp2.yml
resources: ...
network_constraints: ...
kolla:
    enable_neutron_dvr: yes
$ enos deploy -f ./wan-exp2.yml
```

Latency Impact with DVR - Data Plane

Without DVR (2 * RTT)

With DVR (LAN RTT)

Activating DVR is a Critical Change in WAN Context

Conclusion

You wanna conduct performance analysis of OpenStack: Use Enos!

Conducted/Ongoing Experiments with Enos

- Chasing 1000 nodes scale (OS Summit Barcelona) https://youtu.be/XURkQ3biF6w
- Toward Fog, Edge and NFV Deployments (OS Summit Boston) https://youtu.be/xwT08H02Nok
- Substitute MariaDB with CockroachDB
- Substitute RabbitMQ with QPid-dispatch

Important links

- Enos: https://enos.readthedocs.io/en/stable/
- Discovery Initiative: https://beyondtheclouds.github.io/