

Fig. 1

Fig. 2

Progression of Fetch Address Through Fetch Engine (40)

		IIP (320)	IPG (330)	ROT (340)
	t	A		
	t+1	В	А	
511 -	t+2	С	В	Α
512 -	t+3	D	С	В
513 -	t+4	D	С	В
	t+5	E	D	С
	t+6	F	E	D

Fig. 4a

x86 Engine Mirrored Progression of Fetch Addresses (30)

		BT1 (350)	BT2 (360)	BT3 (370)	ALN (380)
	t	Α			
	t+1	В	А		
521 -	t+2	С	В	A	
522 -	t+3	D	С	В	Α
523 -	t+4	D	С	В	
524 -	t+5	E	D	С	В
٠.	t+6	F	E	D	С

Fig. 4b

Progression of Fetch Address 120 Through Fetch Engine (40)

		IIP (320)	IPG (330)	ROT (340)
٠	t	Α		,
	t+1	В	Α .	
531 -	t+2	c	В	Α
532 -	t+3	D	С	В
533 -	t+4	D	С	В
	t+5	E	D	С
	t+6	F	E	D

(Prior Art)

Fig. 5a

x86 Engine Mirrored Progression of Fetch Requests 120

	BT1 (350)	BT2 (360)	BT3 (370)	ALN (380)
t	Α			
t+1	В	Α		
41 - t+2	С	В	Α	
i42 - t+3	D	С	В	Α
643 - t+4	E	D	С	В
644 - t+5	E	D	С	В
t+6	F	E	D	.c

(Prior Art)

Fig. 5b

INTO A HARDWARE EMULATION ENGINE
Inventor(s): Anuj DUA, et al.
Contact Name: William J. Streeter (970) 898-3886
Attorney Docket No.: 10001618-3

Fig. 6