ROTATION

WHAT IS PHYSICS?

As we have discussed, one focus of physics is motion. However, so far we have examined only the motion of **translation**, in which an object moves along a straight or curved line, as in Fig. 10-1a. We now turn to the motion of **rotation**, in which an object turns about an axis, as in Fig. 10-1b.

You see rotation in nearly every machine, you use it every time you open a beverage can with a pull tab, and you pay to experience it every time you go to an amusement park. Rotation is the key to many fun activities, such as hitting a long drive in golf (the ball needs to rotate in order for the air to keep it aloft longer) and throwing a curveball in baseball (the ball needs to rotate in order for the air to push it left or right). Rotation is also the key to more serious matters, such as metal failure in aging airplanes.

We begin our discussion of rotation by defining the variables for the motion, just as we did for translation in Chapter 2. As we shall see, the variables for rotation are analogous to those for one-dimensional motion and, as in Chapter 2, an important special situation is where the acceleration (here the rotational acceleration) is constant. We shall also see that Newton's second law can be written for rotational motion, but we must use a new quantity called *torque* instead of just force. Work and the work–kinetic energy theorem can also be applied to rotational motion, but we must use a new quantity called *rotational inertia* instead of just mass. In short, much of what we have discussed so far can be applied to rotational motion with, perhaps, a few changes.

We wish to examine the rotation of a rigid body about a fixed axis. A **rigid body** is a body that can rotate with all its parts locked together and without any change in its shape. A **fixed axis** means that the rotation occurs about an axis that does not move. Thus, we shall not examine an object like the Sun, because the parts of the Sun (a ball of gas) are not locked together. We also shall not examine an object like a bowling ball rolling along a lane, because the ball rotates about a moving axis (the ball's motion is a mixture of rotation and translation).

Fig. 10-1 Figure skater Sasha Cohen in motion of (a) pure translation in a fixed direction and (b) pure rotation about a vertical axis. (a: Mike Segar/Reuters/Landov LLC; b: Elsa/Getty Images, Inc.)

(b)

Fig. 10-2 A rigid body of arbitrary shape in pure rotation about the *z* axis of a coordinate system. The position of the *reference line* with respect to the rigid body is arbitrary, but it is perpendicular to the rotation axis. It is fixed in the body and rotates with the body.

Figure 10-2 shows a rigid body of arbitrary shape in rotation about a fixed axis, called the **axis of rotation** or the **rotation axis.** In pure rotation (*angular motion*), every point of the body moves in a circle whose center lies on the axis of rotation, and every point moves through the same angle during a particular time interval. In pure translation (*linear motion*), every point of the body moves in a straight line, and every point moves through the same *linear distance* during a particular time interval.

We deal now—one at a time—with the angular equivalents of the linear quantities position, displacement, velocity, and acceleration.

Angular Position

Figure 10-2 shows a *reference line*, fixed in the body, perpendicular to the rotation axis and rotating with the body. The **angular position** of this line is the angle of the line relative to a fixed direction, which we take as the **zero angular position**. In Fig. 10-3, the angular position θ is measured relative to the positive direction of the *x* axis. From geometry, we know that θ is given by

$$\theta = \frac{s}{r}$$
 (radian measure). (10-1)

Here s is the length of a circular arc that extends from the x axis (the zero angular position) to the reference line, and r is the radius of the circle.

An angle defined in this way is measured in **radians** (rad) rather than in revolutions (rev) or degrees. The radian, being the ratio of two lengths, is a pure number and thus has no dimension. Because the circumference of a circle of radius r is $2\pi r$, there are 2π radians in a complete circle:

1 rev =
$$360^{\circ} = \frac{2\pi r}{r} = 2\pi \,\text{rad},$$
 (10-2)

and thus

$$1 \text{ rad} = 57.3^{\circ} = 0.159 \text{ rev.}$$
 (10-3)

We do *not* reset θ to zero with each complete rotation of the reference line about the rotation axis. If the reference line completes two revolutions from the zero angular position, then the angular position θ of the line is $\theta = 4\pi \text{ rad}$.

For pure translation along an x axis, we can know all there is to know about a moving body if we know x(t), its position as a function of time. Similarly, for pure rotation, we can know all there is to know about a rotating body if we know $\theta(t)$, the angular position of the body's reference line as a function of time.

Angular Displacement

If the body of Fig. 10-3 rotates about the rotation axis as in Fig. 10-4, changing the angular position of the reference line from θ_1 to θ_2 , the body undergoes an **angular displacement** $\Delta\theta$ given by

$$\Delta \theta = \theta_2 - \theta_1. \tag{10-4}$$

This definition of angular displacement holds not only for the rigid body as a whole but also for *every particle within that body*.

If a body is in translational motion along an x axis, its displacement Δx is either positive or negative, depending on whether the body is moving in the positive or negative direction of the axis. Similarly, the angular displacement $\Delta \theta$ of a rotating body is either positive or negative, according to the following rule:

An angular displacement in the counterclockwise direction is positive, and one in the clockwise direction is negative.

This dot means that the rotation axis is out toward you.

Fig. 10-3 The rotating rigid body of Fig. 10-2 in cross section, viewed from above. The plane of the cross section is perpendicular to the rotation axis, which now extends out of the page, toward you. In this position of the body, the reference line makes an angle θ with the x axis.

The phrase "clocks are negative" can help you remember this rule (they certainly are negative when their alarms sound off early in the morning).

A disk can rotate about its central axis like a merry-go-round. Which of the following pairs of values for its initial and final angular positions, respectively, give a negative angular displacement: (a) -3 rad, +5 rad, (b) -3 rad, -7 rad, (c) 7 rad, -3 rad?

Angular Velocity

Suppose that our rotating body is at angular position θ_1 at time t_1 and at angular position θ_2 at time t_2 as in Fig. 10-4. We define the **average angular velocity** of the body in the time interval Δt from t_1 to t_2 to be

$$\omega_{\text{avg}} = \frac{\theta_2 - \theta_1}{t_2 - t_1} = \frac{\Delta \theta}{\Delta t},\tag{10-5}$$

where $\Delta \theta$ is the angular displacement during Δt (ω is the lowercase omega).

The (instantaneous) angular velocity ω , with which we shall be most concerned, is the limit of the ratio in Eq. 10-5 as Δt approaches zero. Thus,

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}.$$
 (10-6)

If we know $\theta(t)$, we can find the angular velocity ω by differentiation.

Equations 10-5 and 10-6 hold not only for the rotating rigid body as a whole but also for *every particle of that body* because the particles are all locked together. The unit of angular velocity is commonly the radian per second (rad/s) or the revolution per second (rev/s). Another measure of angular velocity was used during at least the first three decades of rock: Music was produced by vinyl (phonograph) records that were played on turntables at " $33\frac{1}{3}$ rpm" or "45 rpm," meaning at $33\frac{1}{3}$ rev/min or 45 rev/min.

If a particle moves in translation along an x axis, its linear velocity v is either positive or negative, depending on its direction along the axis. Similarly, the angular velocity ω of a rotating rigid body is either positive or negative, depending on whether the body is rotating counterclockwise (positive) or clockwise (negative). ("Clocks are negative" still works.) The magnitude of an angular velocity is called the **angular speed**, which is also represented with ω .

Angular Acceleration

If the angular velocity of a rotating body is not constant, then the body has an angular acceleration. Let ω_2 and ω_1 be its angular velocities at times t_2 and t_1 , respectively. The **average angular acceleration** of the rotating body in the interval from t_1 to t_2 is defined as

$$\alpha_{\text{avg}} = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t},\tag{10-7}$$

in which $\Delta \omega$ is the change in the angular velocity that occurs during the time interval Δt . The (instantaneous) angular acceleration α , with which we shall be most concerned, is the limit of this quantity as Δt approaches zero. Thus,

$$\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}.$$
 (10-8)

Equations 10-7 and 10-8 also hold for *every particle of that body*. The unit of angular acceleration is commonly the radian per second-squared (rad/s²) or the revolution per second-squared (rev/s²).

Fig. 10-4 The reference line of the rigid body of Figs. 10-2 and 10-3 is at angular position θ_1 at time t_1 and at angular position θ_2 at a later time t_2 . The quantity $\Delta\theta (= \theta_2 - \theta_1)$ is the angular displacement that occurs during the interval $\Delta t (= t_2 - t_1)$. The body itself is not shown.

Sample Problem

Angular velocity derived from angular position

The disk in Fig. 10-5a is rotating about its central axis like a merry-go-round. The angular position $\theta(t)$ of a reference line on the disk is given by

$$\theta = -1.00 - 0.600t + 0.250t^2, \tag{10-9}$$

with t in seconds, θ in radians, and the zero angular position as indicated in the figure.

(a) Graph the angular position of the disk versus time from t = -3.0 s to t = 5.4 s. Sketch the disk and its angular position reference line at t = -2.0 s, 0 s, and 4.0 s, and when the curve crosses the t axis.

KEY IDEA

The angular position of the disk is the angular position $\theta(t)$ of its reference line, which is given by Eq. 10-9 as a function of time t. So we graph Eq. 10-9; the result is shown in Fig. 10-5b.

Calculations: To sketch the disk and its reference line at a particular time, we need to determine θ for that time. To do so, we substitute the time into Eq. 10-9. For t = -2.0 s, we get

$$\theta = -1.00 - (0.600)(-2.0) + (0.250)(-2.0)^{2}$$
$$= 1.2 \text{ rad} = 1.2 \text{ rad} \frac{360^{\circ}}{2\pi \text{ rad}} = 69^{\circ}.$$

This means that at t = -2.0 s the reference line on the disk is rotated counterclockwise from the zero position by 1.2 rad = 69° (counterclockwise because θ is positive). Sketch 1 in Fig. 10-5b shows this position of the reference line.

Similarly, for t = 0, we find $\theta = -1.00$ rad $= -57^{\circ}$, which means that the reference line is rotated clockwise from the zero angular position by 1.0 rad, or 57° , as shown in sketch 3. For t = 4.0 s, we find $\theta = 0.60$ rad $= 34^{\circ}$ (sketch 5). Drawing sketches for when the curve crosses the t axis is easy, because

Fig. 10-5 (a) A rotating disk. (b) A plot of the disk's angular position $\theta(t)$. Five sketches indicate the angular position of the reference line on the disk for five points on the curve. (c) A plot of the disk's angular velocity $\omega(t)$. Positive values of ω correspond to counterclockwise rotation, and negative values to clockwise rotation.

then $\theta = 0$ and the reference line is momentarily aligned with the zero angular position (sketches 2 and 4).

(b) At what time t_{\min} does $\theta(t)$ reach the minimum value shown in Fig. 10-5b? What is that minimum value?

KEY IDEA

To find the extreme value (here the minimum) of a function, we take the first derivative of the function and set the result to zero.

Calculations: The first derivative of $\theta(t)$ is

$$\frac{d\theta}{dt} = -0.600 + 0.500t. \tag{10-10}$$

Setting this to zero and solving for t give us the time at which $\theta(t)$ is minimum:

$$t_{\min} = 1.20 \text{ s.}$$
 (Answer)

This is a plot of the angular velocity of the disk versus time.

The angular velocity is initially negative and slowing, then momentarily zero during reversal, and then positive and increasing.

To get the minimum value of θ , we next substitute t_{\min} into Eq. 10-9, finding

$$\theta = -1.36 \text{ rad} \approx -77.9^{\circ}.$$
 (Answer)

This minimum of $\theta(t)$ (the bottom of the curve in Fig. 10-5b) corresponds to the maximum clockwise rotation of the disk from the zero angular position, somewhat more than is shown in sketch 3.

(c) Graph the angular velocity ω of the disk versus time from t = -3.0 s to t = 6.0 s. Sketch the disk and indicate the direction of turning and the sign of ω at t = -2.0 s, 4.0 s, and $t_{\rm min}$.

KEY IDEA

From Eq. 10-6, the angular velocity ω is equal to $d\theta/dt$ as given in Eq. 10-10. So, we have

$$\omega = -0.600 + 0.500t. \tag{10-11}$$

The graph of this function $\omega(t)$ is shown in Fig. 10-5c.

Calculations: To sketch the disk at t = -2.0 s, we substitute that value into Eq. 10-11, obtaining

$$\omega = -1.6 \text{ rad/s.}$$
 (Answer)

The minus sign here tells us that at t = -2.0 s, the disk is turning clockwise (the left-hand sketch in Fig. 10-5c).

Substituting t = 4.0 s into Eq. 10-11 gives us

$$\omega = 1.4 \text{ rad/s.}$$
 (Answer)

The implied plus sign tells us that now the disk is turning counterclockwise (the right-hand sketch in Fig. 10-5c).

For t_{\min} , we already know that $d\theta/dt = 0$. So, we must also have $\omega = 0$. That is, the disk momentarily stops when the reference line reaches the minimum value of θ in Fig. 10-5b, as suggested by the center sketch in Fig. 10-5c. On the graph, this momentary stop is the zero point where the plot changes from the negative clockwise motion to the positive counterclockwise motion.

(d) Use the results in parts (a) through (c) to describe the motion of the disk from t = -3.0 s to t = 6.0 s.

Description: When we first observe the disk at t = -3.0 s, it has a positive angular position and is turning clockwise but slowing. It stops at angular position $\theta = -1.36$ rad and then begins to turn counterclockwise, with its angular position eventually becoming positive again.

Sample Problem

Angular velocity derived from angular acceleration

A child's top is spun with angular acceleration

$$\alpha = 5t^3 - 4t.$$

with t in seconds and α in radians per second-squared. At t = 0, the top has angular velocity 5 rad/s, and a reference line on it is at angular position $\theta = 2$ rad.

(a) Obtain an expression for the angular velocity $\omega(t)$ of the top. That is, find an expression that explicitly indicates how the angular velocity depends on time. (We can tell that there *is* such a dependence because the top is undergoing an angular acceleration, which means that its angular velocity *is* changing.)

KEY IDEA

By definition, $\alpha(t)$ is the derivative of $\omega(t)$ with respect to time. Thus, we can find $\omega(t)$ by integrating $\alpha(t)$ with respect to time.

Calculations: Equation 10-8 tells us

$$d\omega = \alpha \, dt,$$
$$\int d\omega = \int \alpha \, dt.$$

so

From this we find

$$\omega = \int (5t^3 - 4t) dt = \frac{5}{4}t^4 - \frac{4}{2}t^2 + C.$$

To evaluate the constant of integration C, we note that $\omega = 5$ rad/s at t = 0. Substituting these values in our expression for ω yields

$$5 \text{ rad/s} = 0 - 0 + C$$

so C = 5 rad/s. Then

$$\omega = \frac{5}{4}t^4 - 2t^2 + 5.$$
 (Answer)

(b) Obtain an expression for the angular position $\theta(t)$ of the top.

KEY IDEA

By definition, $\omega(t)$ is the derivative of $\theta(t)$ with respect to time. Therefore, we can find $\theta(t)$ by integrating $\omega(t)$ with respect to time.

 $d\theta = \omega dt$,

Calculations: Since Eq. 10-6 tells us that

we can write

n write

$$\theta = \int \omega \, dt = \int \left(\frac{5}{4}t^4 - 2t^2 + 5\right) \, dt$$

$$= \frac{1}{4}t^5 - \frac{2}{3}t^3 + 5t + C'$$

$$= \frac{1}{4}t^5 - \frac{2}{3}t^3 + 5t + 2,$$
(Answer)

where C' has been evaluated by noting that $\theta = 2$ rad at t = 0.

Additional examples, video, and practice available at WileyPLUS

10-3 Are Angular Quantities Vectors?

We can describe the position, velocity, and acceleration of a single particle by means of vectors. If the particle is confined to a straight line, however, we do not really need vector notation. Such a particle has only two directions available to it, and we can indicate these directions with plus and minus signs.

In the same way, a rigid body rotating about a fixed axis can rotate only clockwise or counterclockwise as seen along the axis, and again we can select between the two directions by means of plus and minus signs. The question arises: "Can we treat the angular displacement, velocity, and acceleration of a rotating body as vectors?" The answer is a qualified "yes" (see the caution below, in connection with angular displacements).

Consider the angular velocity. Figure 10-6a shows a vinyl record rotating on a turntable. The record has a constant angular speed ω (= $33\frac{1}{3}$ rev/min) in the clockwise direction. We can represent its angular velocity as a vector $\vec{\omega}$ pointing along the axis of rotation, as in Fig. 10-6b. Here's how: We choose the length of this vector according to some convenient scale, for example, with 1 cm corresponding to 10 rev/min. Then we establish a direction for the vector $\vec{\omega}$ by using a

Fig. 10-6 (a) A record rotating about a vertical axis that coincides with the axis of the spindle. (b) The angular velocity of the rotating record can be represented by the vector $\vec{\omega}$, lying along the axis and pointing down, as shown. (c) We establish the direction of the angular velocity vector as downward by using a right-hand rule. When the fingers of the right hand curl around the record and point the way it is moving, the extended thumb points in the direction of $\vec{\omega}$.

right-hand rule, as Fig. 10-6c shows: Curl your right hand about the rotating record, your fingers pointing *in the direction of rotation*. Your extended thumb will then point in the direction of the angular velocity vector. If the record were to rotate in the opposite sense, the right-hand rule would tell you that the angular velocity vector then points in the opposite direction.

It is not easy to get used to representing angular quantities as vectors. We instinctively expect that something should be moving *along* the direction of a vector. That is not the case here. Instead, something (the rigid body) is rotating *around* the direction of the vector. In the world of pure rotation, a vector defines an axis of rotation, not a direction in which something moves. Nonetheless, the vector also defines the motion. Furthermore, it obeys all the rules for vector manipulation discussed in Chapter 3. The angular acceleration $\vec{\alpha}$ is another vector, and it too obeys those rules.

In this chapter we consider only rotations that are about a fixed axis. For such situations, we need not consider vectors—we can represent angular velocity with ω and angular acceleration with α , and we can indicate direction with an implied plus sign for counterclockwise or an explicit minus sign for clockwise.

Now for the caution: Angular *displacements* (unless they are very small) *cannot* be treated as vectors. Why not? We can certainly give them both magnitude and direction, as we did for the angular velocity vector in Fig. 10-6. However, to be represented as a vector, a quantity must *also* obey the rules of vector addition, one of which says that if you add two vectors, the order in which you add them does not matter. Angular displacements fail this test.

Figure 10-7 gives an example. An initially horizontal book is given two 90° angular displacements, first in the order of Fig. 10-7a and then in the order of Fig. 10-7b. Although the two angular displacements are identical, their order is not, and the book ends up with different orientations. Here's another example. Hold your right arm downward, palm toward your thigh. Keeping your wrist rigid, (1) lift the arm forward until it is horizontal, (2) move it horizontally until it points toward the right, and (3) then bring it down to your side. Your palm faces forward. If you start over, but reverse the steps, which way does your palm end up facing? From either example, we must conclude that the addition of two angular displacements depends on their order and they cannot be vectors.

Fig. 10-7 (a) From its initial position, at the top, the book is given two successive 90° rotations, first about the (horizontal) x axis and then about the (vertical) y axis. (b) The book is given the same rotations, but in the reverse order.

10-4 Rotation with Constant Angular Acceleration

In pure translation, motion with a *constant linear acceleration* (for example, that of a falling body) is an important special case. In Table 2-1, we displayed a series of equations that hold for such motion.

In pure rotation, the case of *constant angular acceleration* is also important, and a parallel set of equations holds for this case also. We shall not derive them here, but simply write them from the corresponding linear equations, substituting equivalent angular quantities for the linear ones. This is done in Table 10-1, which lists both sets of equations (Eqs. 2-11 and 2-15 to 2-18; 10-12 to 10-16).

Recall that Eqs. 2-11 and 2-15 are basic equations for constant linear acceleration—the other equations in the Linear list can be derived from them. Similarly, Eqs. 10-12 and 10-13 are the basic equations for constant angular acceleration, and the other equations in the Angular list can be derived from them. To solve a simple problem involving constant angular acceleration, you can usually use an equation from the Angular list (*if* you have the list). Choose an equation for which the only unknown variable will be the variable requested in the problem. A better plan is to remember only Eqs. 10-12 and 10-13, and then solve them as simultaneous equations whenever needed.

CHECKPOINT 2

In four situations, a rotating body has angular position $\theta(t)$ given by (a) $\theta = 3t - 4$, (b) $\theta = -5t^3 + 4t^2 + 6$, (c) $\theta = 2/t^2 - 4/t$, and (d) $\theta = 5t^2 - 3$. To which situations do the angular equations of Table 10-1 apply?

Table 10-1

Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

Equation Number	Linear Equation	Missing Variable		Angular Equation	Equation Number
(2-11)	$v = v_0 + at$	$x-x_0$	$\theta - \theta_0$	$\omega = \omega_0 + \alpha t$	(10-12)
(2-15)	$x - x_0 = v_0 t + \frac{1}{2} a t^2$	ν	ω	$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$	(10-13)
(2-16)	$v^2 = v_0^2 + 2a(x - x_0)$	t	t	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$	(10-14)
(2-17)	$x - x_0 = \frac{1}{2}(v_0 + v)t$	a	α	$\theta - \theta_0 = \frac{1}{2}(\omega_0 + \omega)t$	(10-15)
(2-18)	$x - x_0 = vt - \frac{1}{2}at^2$	v_0	ω_0	$\theta - \theta_0 = \omega t - \frac{1}{2}\alpha t^2$	(10-16)

Sample Problem

Constant angular acceleration, grindstone

A grindstone (Fig. 10-8) rotates at constant angular acceleration $\alpha = 0.35 \text{ rad/s}^2$. At time t = 0, it has an angular velocity of $\omega_0 = -4.6 \text{ rad/s}$ and a reference line on it is horizontal, at the angular position $\theta_0 = 0$.

(a) At what time after t = 0 is the reference line at the angular position $\theta = 5.0$ rev?

KEY IDEA

The angular acceleration is constant, so we can use the rota-

tion equations of Table 10-1. We choose Eq. 10-13,

$$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$$

because the only unknown variable it contains is the desired time *t*.

Calculations: Substituting known values and setting $\theta_0 = 0$ and $\theta = 5.0$ rev $= 10\pi$ rad give us

$$10\pi \,\text{rad} = (-4.6 \,\text{rad/s})t + \frac{1}{2}(0.35 \,\text{rad/s}^2)t^2.$$

(We converted 5.0 rev to 10π rad to keep the units consis-

tent.) Solving this quadratic equation for t, we find

$$t = 32 \text{ s.}$$
 (Answer)

Now notice something a bit strange. We first see the wheel when it is rotating in the negative diretion and through the $\theta = 0$ orientation. Yet, we just found out that 32 s later it is at the positive orientation of $\theta = 5.0$ rev. What happened in that time interval so that it could be at a positive orientation?

(b) Describe the grindstone's rotation between t = 0 and t = 32 s.

Description: The wheel is initially rotating in the negative (clockwise) direction with angular velocity $\omega_0 = -4.6$ rad/s, but its angular acceleration α is positive. This initial opposition of the signs of angular velocity and angular acceleration means that the wheel slows in its rotation in the negative direction, stops, and then reverses to rotate in the positive direction. After the reference line comes back through its initial orientation of $\theta = 0$, the wheel turns an additional 5.0 rev by time t = 32 s.

(c) At what time t does the grindstone momentarily stop?

Calculation: We again go to the table of equations for constant angular acceleration, and again we need an equation

Fig. 10-8 A grindstone. At t = 0 the reference line (which we imagine to be marked on the stone) is horizontal.

that contains only the desired unknown variable t. However, now the equation must also contain the variable ω , so that we can set it to 0 and then solve for the corresponding time t. We choose Eq. 10-12, which yields

$$t = \frac{\omega - \omega_0}{\alpha} = \frac{0 - (-4.6 \text{ rad/s})}{0.35 \text{ rad/s}^2} = 13 \text{ s.}$$
 (Answer)

Sample Problem

Constant angular acceleration, riding a Rotor

While you are operating a Rotor (a large, vertical, rotating cylinder found in amusement parks), you spot a passenger in acute distress and decrease the angular velocity of the cylinder from 3.40 rad/s to 2.00 rad/s in 20.0 rev, at constant angular acceleration. (The passenger is obviously more of a "translation person" than a "rotation person.")

(a) What is the constant angular acceleration during this decrease in angular speed?

KEY IDEA

Because the cylinder's angular acceleration is constant, we can relate it to the angular velocity and angular displacement via the basic equations for constant angular acceleration (Eqs. 10-12 and 10-13).

Calculations: The initial angular velocity is $\omega_0 = 3.40$ rad/s, the angular displacement is $\theta - \theta_0 = 20.0$ rev, and the angular velocity at the end of that displacement is $\omega = 2.00$ rad/s. But we do not know the angular acceleration α and time t, which are in both basic equations.

To eliminate the unknown t, we use Eq. 10-12 to write

$$t=\frac{\omega-\omega_0}{\alpha}$$

which we then substitute into Eq. 10-13 to write

$$\theta - \theta_0 = \omega_0 \left(\frac{\omega - \omega_0}{\alpha} \right) + \frac{1}{2} \alpha \left(\frac{\omega - \omega_0}{\alpha} \right)^2.$$

Solving for α , substituting known data, and converting 20 rev to 125.7 rad, we find

$$\alpha = \frac{\omega^2 - \omega_0^2}{2(\theta - \theta_0)} = \frac{(2.00 \text{ rad/s})^2 - (3.40 \text{ rad/s})^2}{2(125.7 \text{ rad})}$$
$$= -0.0301 \text{ rad/s}^2. \tag{Answer}$$

(b) How much time did the speed decrease take?

Calculation: Now that we know α , we can use Eq. 10-12 to solve for *t*:

$$t = \frac{\omega - \omega_0}{\alpha} = \frac{2.00 \text{ rad/s} - 3.40 \text{ rad/s}}{-0.0301 \text{ rad/s}^2}$$

= 46.5 s. (Answer)

10-5 Relating the Linear and Angular Variables

In Section 4-7, we discussed uniform circular motion, in which a particle travels at constant linear speed ν along a circle and around an axis of rotation. When a rigid body, such as a merry-go-round, rotates around an axis, each particle in the body moves in its own circle around that axis. Since the body is rigid, all the particles make one revolution in the same amount of time; that is, they all have the same angular speed ω .

However, the farther a particle is from the axis, the greater the circumference of its circle is, and so the faster its linear speed v must be. You can notice this on a merry-go-round. You turn with the same angular speed ω regardless of your distance from the center, but your linear speed v increases noticeably if you move to the outside edge of the merry-go-round.

We often need to relate the linear variables s, v, and a for a particular point in a rotating body to the angular variables θ , ω , and α for that body. The two sets of variables are related by r, the *perpendicular distance* of the point from the rotation axis. This perpendicular distance is the distance between the point and the rotation axis, measured along a perpendicular to the axis. It is also the radius r of the circle traveled by the point around the axis of rotation.

The Position

If a reference line on a rigid body rotates through an angle θ , a point within the body at a position r from the rotation axis moves a distance s along a circular arc, where s is given by Eq. 10-1:

$$s = \theta r$$
 (radian measure). (10-17)

This is the first of our linear – angular relations. Caution: The angle θ here must be measured in radians because Eq. 10-17 is itself the definition of angular measure in radians.

The Speed

Differentiating Eq. 10-17 with respect to time—with r held constant—leads to

$$\frac{ds}{dt} = \frac{d\theta}{dt} r.$$

However, ds/dt is the linear speed (the magnitude of the linear velocity) of the point in question, and $d\theta/dt$ is the angular speed ω of the rotating body. So

$$v = \omega r$$
 (radian measure). (10-18)

Caution: The angular speed ω must be expressed in radian measure.

Equation 10-18 tells us that since all points within the rigid body have the same angular speed ω , points with greater radius r have greater linear speed v. Figure 10-9a reminds us that the linear velocity is always tangent to the circular path of the point in question.

If the angular speed ω of the rigid body is constant, then Eq. 10-18 tells us that the linear speed v of any point within it is also constant. Thus, each point within the body undergoes uniform circular motion. The period of revolution T for the motion of each point and for the rigid body itself is given by Eq. 4-35:

$$T = \frac{2\pi r}{\nu}. (10-19)$$

This equation tells us that the time for one revolution is the distance $2\pi r$ traveled in one revolution divided by the speed at which that distance is traveled.

Fig. 10-9 The rotating rigid body of Fig. 10-2, shown in cross section viewed from above. Every point of the body (such as P) moves in a circle around the rotation axis. (a) The linear velocity \vec{v} of every point is tangent to the circle in which the point moves. (b) The linear acceleration \vec{a} of the point has (in general) two components: tangential a_t and radial a_r .

Substituting for v from Eq. 10-18 and canceling r, we find also that

$$T = \frac{2\pi}{\omega} \qquad \text{(radian measure)}. \tag{10-20}$$

This equivalent equation says that the time for one revolution is the angular distance 2π rad traveled in one revolution divided by the angular speed (or rate) at which that angle is traveled.

The Acceleration

Differentiating Eq. 10-18 with respect to time—again with r held constant—leads to

$$\frac{dv}{dt} = \frac{d\omega}{dt} r. ag{10-21}$$

Here we run up against a complication. In Eq. 10-21, dv/dt represents only the part of the linear acceleration that is responsible for changes in the *magnitude v* of the linear velocity \vec{v} . Like \vec{v} , that part of the linear acceleration is tangent to the path of the point in question. We call it the *tangential component a_t* of the linear acceleration of the point, and we write

$$a_t = \alpha r$$
 (radian measure), (10-22)

where $\alpha = d\omega/dt$. Caution: The angular acceleration α in Eq. 10-22 must be expressed in radian measure.

In addition, as Eq. 4-34 tells us, a particle (or point) moving in a circular path has a *radial component* of linear acceleration, $a_r = v^2/r$ (directed radially inward), that is responsible for changes in the *direction* of the linear velocity \vec{v} . By substituting for v from Eq. 10-18, we can write this component as

$$a_r = \frac{v^2}{r} = \omega^2 r$$
 (radian measure). (10-23)

Thus, as Fig. 10-9b shows, the linear acceleration of a point on a rotating rigid body has, in general, two components. The radially inward component a_r (given by Eq. 10-23) is present whenever the angular velocity of the body is not zero. The tangential component a_t (given by Eq. 10-22) is present whenever the angular acceleration is not zero.

A cockroach rides the rim of a rotating merry-go-round. If the angular speed of this system (merry-go-round + cockroach) is constant, does the cockroach have (a) radial acceleration and (b) tangential acceleration? If ω is decreasing, does the cockroach have (c) radial acceleration and (d) tangential acceleration?

Sample Problem

Linear and angular variables, roller coaster speedup

In spite of the extreme care taken in engineering a roller coaster, an unlucky few of the millions of people who ride roller coasters each year end up with a medical condition called *roller-coaster headache*. Symptoms, which might not appear for several days, include vertigo and headache, both severe enough to require medical treatment.

Let's investigate the probable cause by designing the track for our own *induction roller coaster* (which can be accelerated by magnetic forces even on a horizontal track). To create an initial thrill, we want each passenger to leave the loading point with acceleration g along the horizontal track. To increase the thrill, we also want that first section of track to form a circular arc (Fig. 10-10), so that the passenger also experiences a centripetal acceleration. As the passenger accelerates along the arc, the magnitude of this centripetal acceleration increases alarmingly. When the magnitude a of the net acceleration reaches a0 at some point a1 and a2 along the arc, we want the passenger then to move in a straight line, along a tangent to the arc.

(a) What angle θ_P should the arc subtend so that a is 4g at point P?

KEY IDEAS

(1) At any given time, the passenger's net acceleration \vec{a} is the vector sum of the tangential acceleration \vec{a}_t along the track and the radial acceleration \vec{a}_r toward the arc's center of curvature (as in Fig. 10-9b). (2) The value of a_r at any given time depends on the angular speed ω according to Eq. 10-23 ($a_r = \omega^2 r$, where r is the radius of the circular arc). (3) An angular acceleration α around the arc is associated with the tangential acceleration a_t along the track according to Eq. 10-22 ($a_t = \alpha r$). (4) Because a_t and r are constant, so is α and thus we can use the constant angular-acceleration equations.

Calculations: Because we are trying to determine a value for angular position θ , let's choose Eq. 10-14 from among the constant angular-acceleration equations:

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0). \tag{10-24}$$

For the angular acceleration α , we substitute from Eq. 10-22:

$$\alpha = \frac{a_t}{r}. (10-25)$$

Fig. 10-10 An overhead view of a horizontal track for a roller coaster. The track begins as a circular arc at the loading point and then, at point *P*, continues along a tangent to the arc.

We also substitute $\omega_0 = 0$ and $\theta_0 = 0$, and we find

$$\omega^2 = \frac{2a_t \theta}{r}.\tag{10-26}$$

Substituting this result for ω^2 into

$$a_r = \omega^2 r \tag{10-27}$$

gives a relation between the radial acceleration, the tangential acceleration, and the angular position θ :

$$a_r = 2a_t \theta. \tag{10-28}$$

Because \vec{a}_t and \vec{a}_r are perpendicular vectors, their sum has the magnitude

$$a = \sqrt{a_t^2 + a_r^2}. (10-29)$$

Substituting for a_r from Eq. 10-28 and solving for θ lead to

$$\theta = \frac{1}{2} \sqrt{\frac{a^2}{a_+^2} - 1}.$$
 (10-30)

When a reaches the design value of 4g, angle θ is the angle θ_P we want. Substituting a = 4g, $\theta = \theta_P$, and $a_t = g$ into Eq. 10-30, we find

$$\theta_P = \frac{1}{2} \sqrt{\frac{(4g)^2}{g^2} - 1} = 1.94 \text{ rad} = 111^\circ.$$
 (Answer)

(b) What is the magnitude *a* of the passenger's net acceleration at point *P* and after point *P*?

Reasoning: At P, a has the design value of 4g. Just after P is reached, the passenger moves in a straight line and no longer has centripetal acceleration. Thus, the passenger has only the acceleration magnitude g along the track. Hence,

$$a = 4g$$
 at P and $a = g$ after P . (Answer)

Roller-coaster headache can occur when a passenger's head undergoes an abrupt change in acceleration, with the

acceleration magnitude large before or after the change. The reason is that the change can cause the brain to move relative to the skull, tearing the veins that bridge the brain and skull. Our design to increase the acceleration from g to 4g along the path to P might harm the passenger, but the abrupt change in acceleration as the passenger passes through point P is more likely to cause roller-coaster headache.

Additional examples, video, and practice available at WileyPLUS

10-6 Kinetic Energy of Rotation

The rapidly rotating blade of a table saw certainly has kinetic energy due to that rotation. How can we express the energy? We cannot apply the familiar formula $K = \frac{1}{2}mv^2$ to the saw as a whole because that would give us the kinetic energy only of the saw's center of mass, which is zero.

Instead, we shall treat the table saw (and any other rotating rigid body) as a collection of particles with different speeds. We can then add up the kinetic energies of all the particles to find the kinetic energy of the body as a whole. In this way we obtain, for the kinetic energy of a rotating body,

$$K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \frac{1}{2}m_3v_3^2 + \cdots$$

= $\sum \frac{1}{2}m_iv_i^2$, (10-31)

in which m_i is the mass of the *i*th particle and v_i is its speed. The sum is taken over all the particles in the body.

The problem with Eq. 10-31 is that v_i is not the same for all particles. We solve this problem by substituting for v from Eq. 10-18 ($v = \omega r$), so that we have

$$K = \sum_{i=1}^{n} m_i (\omega r_i)^2 = \frac{1}{2} \left(\sum_{i=1}^{n} m_i r_i^2 \right) \omega^2,$$
 (10-32)

in which ω is the same for all particles.

The quantity in parentheses on the right side of Eq. 10-32 tells us how the mass of the rotating body is distributed about its axis of rotation. We call that quantity the **rotational inertia** (or **moment of inertia**) I of the body with respect to the axis of rotation. It is a constant for a particular rigid body and a particular rotation axis. (That axis must always be specified if the value of *I* is to be meaningful.)

We may now write

$$I = \sum m_i r_i^2 \qquad \text{(rotational inertia)} \tag{10-33}$$

and substitute into Eq. 10-32, obtaining

$$K = \frac{1}{2}I\omega^2 \qquad \text{(radian measure)} \tag{10-34}$$

as the expression we seek. Because we have used the relation $v = \omega r$ in deriving Eq. 10-34, ω must be expressed in radian measure. The SI unit for I is the kilogram – square meter (kg · m^2).

Equation 10-34, which gives the kinetic energy of a rigid body in pure rotation, is the angular equivalent of the formula $K = \frac{1}{2}Mv_{\text{com}}^2$, which gives the kinetic energy of a rigid body in pure translation. In both formulas there is a factor of $\frac{1}{2}$. Where mass M appears in one equation, I (which involves both mass and its distribution)

Fig. 10-11 A long rod is much easier to rotate about (a) its central (longitudinal) axis than about (b) an axis through its center and perpendicular to its length. The reason for the difference is that the mass is distributed closer to the rotation axis in (a) than in (b).

appears in the other. Finally, each equation contains as a factor the square of a speed—translational or rotational as appropriate. The kinetic energies of translation and of rotation are not different kinds of energy. They are both kinetic energy, expressed in ways that are appropriate to the motion at hand.

We noted previously that the rotational inertia of a rotating body involves not only its mass but also how that mass is distributed. Here is an example that you can literally feel. Rotate a long, fairly heavy rod (a pole, a length of lumber, or something similar), first around its central (longitudinal) axis (Fig. 10-11a) and then around an axis perpendicular to the rod and through the center (Fig. 10-11b). Both rotations involve the very same mass, but the first rotation is much easier than the second. The reason is that the mass is distributed much closer to the rotation axis in the first rotation. As a result, the rotational inertia of the rod is much smaller in Fig. 10-11a than in Fig. 10-11b. In general, smaller rotational inertia means easier rotation.

CHECKPOINT 4

The figure shows three small spheres that rotate about a vertical axis. The perpendicular distance between the axis and the center of each sphere is given. Rank the three spheres according to their rotational inertia about that axis, greatest first.

10-7 Calculating the Rotational Inertia

If a rigid body consists of a few particles, we can calculate its rotational inertia about a given rotation axis with Eq. 10-33 ($I = \sum m_i r_i^2$); that is, we can find the product mr^2 for each particle and then sum the products. (Recall that r is the perpendicular distance a particle is from the given rotation axis.)

If a rigid body consists of a great many adjacent particles (it is *continuous*, like a Frisbee), using Eq. 10-33 would require a computer. Thus, instead, we replace the sum in Eq. 10-33 with an integral and define the rotational inertia of the body as

$$I = \int r^2 dm \qquad \text{(rotational inertia, continuous body)}. \tag{10-35}$$

Table 10-2 gives the results of such integration for nine common body shapes and the indicated axes of rotation.

Parallel-Axis Theorem

Suppose we want to find the rotational inertia I of a body of mass M about a given axis. In principle, we can always find I with the integration of Eq. 10-35. However, there is a shortcut if we happen to already know the rotational inertia I_{com} of the body about a *parallel* axis that extends through the body's center of mass. Let h be the perpendicular distance between the given axis and the axis through the center of mass (remember these two axes must be parallel). Then the rotational inertia I about the given axis is

$$I = I_{\text{com}} + Mh^2$$
 (parallel-axis theorem). (10-36)

This equation is known as the **parallel-axis theorem.** We shall now prove it.

Proof of the Parallel-Axis Theorem

Let O be the center of mass of the arbitrarily shaped body shown in cross section in Fig. 10-12. Place the origin of the coordinates at O. Consider an axis through O

Table 10-2

Some Rotational Inertias

perpendicular to the plane of the figure, and another axis through point *P* parallel to the first axis. Let the *x* and *y* coordinates of *P* be *a* and *b*.

Let dm be a mass element with the general coordinates x and y. The rotational inertia of the body about the axis through P is then, from Eq. 10-35,

$$I = \int r^2 dm = \int [(x - a)^2 + (y - b)^2] dm,$$

which we can rearrange as

We can rearrange as
$$I = \int (x^2 + y^2) dm - 2a \int x dm - 2b \int y dm + \int (a^2 + b^2) dm. \quad (10-37)$$

From the definition of the center of mass (Eq. 9-9), the middle two integrals of Eq. 10-37 give the coordinates of the center of mass (multiplied by a constant) and thus must each be zero. Because $x^2 + y^2$ is equal to R^2 , where R is the distance from O to dm, the first integral is simply $I_{\rm com}$, the rotational inertia of the body about an axis through its center of mass. Inspection of Fig. 10-12 shows that the last term in Eq. 10-37 is Mh^2 , where M is the body's total mass. Thus, Eq. 10-37 reduces to Eq. 10-36, which is the relation that we set out to prove.

CHECKPOINT 5

The figure shows a book-like object (one side is longer than the other) and four choices of rotation axes, all perpendicular to the face of the object. Rank the choices according to the rotational inertia of the object about the axis, greatest first.

We need to relate the rotational inertia around the axis at *P* to that around the axis at the com.

Fig. 10-12 A rigid body in cross section, with its center of mass at O. The parallel-axis theorem (Eq. 10-36) relates the rotational inertia of the body about an axis through O to that about a parallel axis through a point such as P, a distance h from the body's center of mass. Both axes are perpendicular to the plane of the figure.

Sample Problem

Rotational inertia of a two-particle system

Figure 10-13a shows a rigid body consisting of two particles of mass m connected by a rod of length L and negligible mass.

(a) What is the rotational inertia I_{com} about an axis through the center of mass, perpendicular to the rod as shown?

KEY IDEA

Because we have only two particles with mass, we can find the body's rotational inertia $I_{\rm com}$ by using Eq. 10-33 rather than by integration.

Calculations: For the two particles, each at perpendicular distance $\frac{1}{2}L$ from the rotation axis, we have

$$I = \sum m_i r_i^2 = (m)(\frac{1}{2}L)^2 + (m)(\frac{1}{2}L)^2$$

= $\frac{1}{2}mL^2$. (Answer)

(b) What is the rotational inertia I of the body about an axis through the left end of the rod and parallel to the first axis (Fig. 10-13b)?

KEY IDEAS

This situation is simple enough that we can find I using either of two techniques. The first is similar to the one used in part (a). The other, more powerful one is to apply the parallel-axis theorem.

First technique: We calculate I as in part (a), except here the perpendicular distance r_i is zero for the particle on the left and

Here the rotation axis is through the com.

Here it has been shifted from the com without changing the orientation. We can use the parallel-axis theorem.

Fig. 10-13 A rigid body consisting of two particles of mass m joined by a rod of negligible mass.

L for the particle on the right. Now Eq. 10-33 gives us

$$I = m(0)^2 + mL^2 = mL^2$$
. (Answer)

Second technique: Because we already know $I_{\rm com}$ about an axis through the center of mass and because the axis here is parallel to that "com axis," we can apply the parallel-axis theorem (Eq. 10-36). We find

$$I = I_{\text{com}} + Mh^2 = \frac{1}{2}mL^2 + (2m)(\frac{1}{2}L)^2$$

= mL^2 . (Answer)

Sample Problem

Rotational inertia of a uniform rod, integration

Figure 10-14 shows a thin, uniform rod of mass M and length L, on an x axis with the origin at the rod's center.

(a) What is the rotational inertia of the rod about the perpendicular rotation axis through the center?

KEY IDEAS

(1) Because the rod is uniform, its center of mass is at its center. Therefore, we are looking for I_{com} . (2) Because the rod is a continuous object, we must use the integral of Eq. 10-35,

$$I = \int r^2 dm, \tag{10-38}$$

to find the rotational inertia.

Calculations: We want to integrate with respect to coordi-

nate x (not mass m as indicated in the integral), so we must relate the mass dm of an element of the rod to its length dx along the rod. (Such an element is shown in Fig. 10-14.) Because the rod is uniform, the ratio of mass to length is the same for all the elements and for the rod as a whole. Thus, we can write

$$\frac{\text{element's mass } dm}{\text{element's length } dx} = \frac{\text{rod's mass } M}{\text{rod's length } L}$$

or
$$dm = \frac{M}{L} dx$$
.

We can now substitute this result for dm and x for r in Eq. 10-38. Then we integrate from end to end of the rod (from x = -L/2 to x = L/2) to include all the elements. We find

$$I = \int_{x=-L/2}^{x=+L/2} x^{2} \left(\frac{M}{L}\right) dx$$

$$= \frac{M}{3L} \left[x^{3}\right]_{-L/2}^{+L/2} = \frac{M}{3L} \left[\left(\frac{L}{2}\right)^{3} - \left(-\frac{L}{2}\right)^{3}\right]$$

$$= \frac{1}{12}ML^{2}.$$
 (Answer)

This agrees with the result given in Table 10-2e.

(b) What is the rod's rotational inertia *I* about a new rotation axis that is perpendicular to the rod and through the left end?

KEY IDEAS

We can find *I* by shifting the origin of the *x* axis to the left end of the rod and then integrating from x = 0 to x = L. However,

here we shall use a more powerful (and easier) technique by applying the parallel-axis theorem (Eq. 10-36), in which we shift the rotation axis without changing its orientation.

Calculations: If we place the axis at the rod's end so that it is parallel to the axis through the center of mass, then we can use the parallel-axis theorem (Eq. 10-36). We know from part (a) that I_{com} is $\frac{1}{12}ML^2$. From Fig. 10-14, the perpendicular distance h between the new rotation axis and the center of mass is $\frac{1}{2}L$. Equation 10-36 then gives us

$$I = I_{\text{com}} + Mh^2 = \frac{1}{12}ML^2 + (M)(\frac{1}{2}L)^2$$

= $\frac{1}{3}ML^2$. (Answer)

Actually, this result holds for any axis through the left or right end that is perpendicular to the rod, whether it is parallel to the axis shown in Fig. 10-14 or not.

Fig. 10-14 A uniform rod of length L and mass M. An element of mass dm and length dx is represented.

Sample Problem

Rotational kinetic energy, spin test explosion

Large machine components that undergo prolonged, high-speed rotation are first examined for the possibility of failure in a *spin test system*. In this system, a component is *spun up* (brought up to high speed) while inside a cylindrical arrangement of lead bricks and containment liner, all within a steel shell that is closed by a lid clamped into place. If the rotation causes the component to shatter, the soft lead bricks are supposed to catch the pieces for later analysis.

In 1985, Test Devices, Inc. (www.testdevices.com) was spin testing a sample of a solid steel rotor (a disk) of mass M = 272kg and radius R = 38.0 cm. When the sample reached an angular speed ω of 14 000 rev/min, the test engineers heard a dull thump from the test system, which was located one floor down and one room over from them. Investigating, they found that lead bricks had been thrown out in the hallway leading to the test room, a door to the room had been hurled into the adjacent parking lot, one lead brick had shot from the test site through the wall of a neighbor's kitchen, the structural beams of the test building had been damaged, the concrete floor beneath the spin chamber had been shoved downward by about 0.5 cm, and the 900 kg lid had been blown upward through the ceiling and had then crashed back onto the test equipment (Fig. 10-15). The exploding pieces had not penetrated the room of the test engineers only by luck.

How much energy was released in the explosion of the rotor?

KEY IDEA

The released energy was equal to the rotational kinetic energy K of the rotor just as it reached the angular speed of $14\,000$ rev/min.

Fig. 10-15 Some of the destruction caused by the explosion of a rapidly rotating steel disk. (*Courtesy Test Devices, Inc.*)

Calculations: We can find K with Eq. 10-34 ($K = \frac{1}{2}I\omega^2$), but first we need an expression for the rotational inertia I. Because the rotor was a disk that rotated like a merrygo-round, I is given by the expression in Table 10-2c ($I = \frac{1}{2}MR^2$). Thus, we have

$$I = \frac{1}{2}MR^2 = \frac{1}{2}(272 \text{ kg})(0.38 \text{ m})^2 = 19.64 \text{ kg} \cdot \text{m}^2.$$

The angular speed of the rotor was

$$\omega = (14\ 000\ \text{rev/min})(2\pi\ \text{rad/rev})\left(\frac{1\ \text{min}}{60\ \text{s}}\right)$$

= 1.466 × 10³ rad/s.

Now we can use Eq. 10-34 to write

$$K = \frac{1}{2}I\omega^2 = \frac{1}{2}(19.64 \text{ kg} \cdot \text{m}^2)(1.466 \times 10^3 \text{ rad/s})^2$$

= 2.1 × 10⁷ J. (Answer)

Being near this explosion was quite dangerous.

Additional examples, video, and practice available at WileyPLUS

10-8 Torque

A doorknob is located as far as possible from the door's hinge line for a good reason. If you want to open a heavy door, you must certainly apply a force; that alone, however, is not enough. Where you apply that force and in what direction you push are also important. If you apply your force nearer to the hinge line than the knob, or at any angle other than 90° to the plane of the door, you must use a greater force to move the door than if you apply the force at the knob and perpendicular to the door's plane.

Figure 10-16a shows a cross section of a body that is free to rotate about an axis passing through O and perpendicular to the cross section. A force \vec{F} is applied at point P, whose position relative to O is defined by a position vector \vec{r} . The directions of vectors \vec{F} and \vec{r} make an angle ϕ with each other. (For simplicity, we consider only forces that have no component parallel to the rotation axis; thus, \vec{F} is in the plane of the page.)

To determine how \vec{F} results in a rotation of the body around the rotation axis, we resolve \vec{F} into two components (Fig. 10-16b). One component, called the radial component F_r , points along \vec{r} . This component does not cause rotation, because it acts along a line that extends through O. (If you pull on a door parallel to the plane of the door, you do not rotate the door.) The other component of \vec{F} , called the tangential component F_t , is perpendicular to \vec{r} and has magnitude $F_t = F \sin \phi$. This component does cause rotation. (If you pull on a door perpendicular to its plane, you can rotate the door.)

The ability of \vec{F} to rotate the body depends not only on the magnitude of its tangential component F_{t} , but also on just how far from O the force is applied. To include both these factors, we define a quantity called **torque** τ as the product of the two factors and write it as

$$\tau = (r)(F\sin\phi). \tag{10-39}$$

Two equivalent ways of computing the torque are

$$\tau = (r)(F\sin\phi) = rF_t \tag{10-40}$$

and
$$\tau = (r\sin\phi)(F) = r_{\perp}F, \tag{10-41}$$

where r_{\perp} is the perpendicular distance between the rotation axis at O and an extended line running through the vector \vec{F} (Fig. 10-16c). This extended line is called the **line of action** of \vec{F} , and r_{\perp} is called the **moment arm** of \vec{F} . Figure 10-16b shows that we can describe r, the magnitude of \vec{r} , as being the moment arm of the force component F_t .

Torque, which comes from the Latin word meaning "to twist," may be loosely identified as the turning or twisting action of the force \vec{F} . When you apply a force to an object—such as a screwdriver or torque wrench—with the purpose of turning that object, you are applying a torque. The SI unit of torque is the newtonmeter (N·m). Caution: The newton-meter is also the unit of work. Torque and work, however, are quite different quantities and must not be confused. Work is often expressed in joules (1 J = 1 N · m), but torque never is.

In the next chapter we shall discuss torque in a general way as being a vector quantity. Here, however, because we consider only rotation around a single axis, we do not need vector notation. Instead, a torque has either a positive or negative value depending on the direction of rotation it would give a body initially at rest: If the body would rotate counterclockwise, the torque is positive. If the object would rotate clockwise, the torque is negative. (The phrase "clocks are negative" from Section 10-2 still works.)

Torques obey the superposition principle that we discussed in Chapter 5 for forces: When several torques act on a body, the **net torque** (or **resultant torque**) is the sum of the individual torques. The symbol for net torque is τ_{net} .

CHECKPOINT 6

The figure shows an overhead view of a meter stick that can pivot about the dot at the position marked 20 (for 20 cm). All five forces on the stick are horizontal and have the same magnitude. Rank the forces according to the magnitude of the torque they produce, greatest first.

The torque due to this force causes rotation around this axis (which extends out toward you).

But actually only the tangential component of the force causes the rotation.

You calculate the same torque by using this moment arm distance and the full force magnitude.

(c)

Fig. 10-16 (a) A force \vec{F} acts on a rigid body, with a rotation axis perpendicular to the page. The torque can be found with (a) angle ϕ , (b) tangential force component F_t , or (c) moment arm r_{\perp} .

The torque due to the tangential component of the force causes an angular acceleration around the rotation axis.

Fig. 10-17 A simple rigid body, free to rotate about an axis through O, consists of a particle of mass m fastened to the end of a rod of length r and negligible mass. An applied force \vec{F} causes the body to rotate.

10-9 Newton's Second Law for Rotation

A torque can cause rotation of a rigid body, as when you use a torque to rotate a door. Here we want to relate the net torque $\tau_{\rm net}$ on a rigid body to the angular acceleration α that torque causes about a rotation axis. We do so by analogy with Newton's second law $(F_{\rm net}=ma)$ for the acceleration a of a body of mass m due to a net force $F_{\rm net}$ along a coordinate axis. We replace $F_{\rm net}$ with $\tau_{\rm net}$, m with I, and I0 with I1 in radian measure, writing

$$\tau_{\text{net}} = I\alpha$$
 (Newton's second law for rotation). (10-42)

Proof of Equation 10-42

We prove Eq. 10-42 by first considering the simple situation shown in Fig. 10-17. The rigid body there consists of a particle of mass m on one end of a massless rod of length r. The rod can move only by rotating about its other end, around a rotation axis (an axle) that is perpendicular to the plane of the page. Thus, the particle can move only in a circular path that has the rotation axis at its center.

A force \vec{F} acts on the particle. However, because the particle can move only along the circular path, only the tangential component F_t of the force (the component that is tangent to the circular path) can accelerate the particle along the path. We can relate F_t to the particle's tangential acceleration a_t along the path with Newton's second law, writing

$$F_t = ma_t$$
.

The torque acting on the particle is, from Eq. 10-40,

$$\tau = F_t r = m a_t r$$
.

From Eq. 10-22 $(a_t = \alpha r)$ we can write this as

$$\tau = m(\alpha r)r = (mr^2)\alpha. \tag{10-43}$$

The quantity in parentheses on the right is the rotational inertia of the particle about the rotation axis (see Eq. 10-33, but here we have only a single particle). Thus, using I for the rotational inertia, Eq. 10-43 reduces to

$$\tau = I\alpha$$
 (radian measure). (10-44)

For the situation in which more than one force is applied to the particle, we can generalize Eq. 10-44 as

$$\tau_{\text{net}} = I\alpha$$
 (radian measure), (10-45)

which we set out to prove. We can extend this equation to any rigid body rotating about a fixed axis, because any such body can always be analyzed as an assembly of single particles.

CHECKPOINT 7

The figure shows an overhead view of a meter stick that can pivot about the point indicated, which is to the left of the stick's midpoint. Two horizontal forces, $\vec{F_1}$ and $\vec{F_2}$, are applied to the stick. Only $\vec{F_1}$ is shown. Force $\vec{F_2}$ is perpendicular to the stick and is applied at the right end. If the stick is not to turn, (a) what should be the direction of $\vec{F_2}$, and (b) should F_2 be greater than, less than, or equal to F_1 ?

Sample Problem

Newton's 2nd law, rotation, torque, disk

Figure 10-18a shows a uniform disk, with mass $M=2.5 \,\mathrm{kg}$ and radius $R=20 \,\mathrm{cm}$, mounted on a fixed horizontal axle. A block with mass $m=1.2 \,\mathrm{kg}$ hangs from a massless cord that is wrapped around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of the disk, and the tension in the cord. The cord does not slip, and there is no friction at the axle.

KEY IDEAS

(1) Taking the block as a system, we can relate its acceleration a to the forces acting on it with Newton's second law $(\vec{F}_{net} = m\vec{a})$. (2) Taking the disk as a system, we can relate its angular acceleration α to the torque acting on it with Newton's second law for rotation $(\tau_{net} = I\alpha)$. (3) To combine the motions of block and disk, we use the fact that the linear acceleration a of the block and the (tangential) linear acceleration a_t of the disk rim are equal.

Forces on block: The forces are shown in the block's free-body diagram in Fig. 10-18b: The force from the cord is \vec{T} , and the gravitational force is \vec{F}_g , of magnitude mg. We can now write Newton's second law for components along a vertical y axis $(F_{\text{net},y} = ma_y)$ as

$$T - mg = ma. ag{10-46}$$

However, we cannot solve this equation for a because it also contains the unknown T.

Torque on disk: Previously, when we got stuck on the y axis, we switched to the x axis. Here, we switch to the rotation of the disk. To calculate the torques and the rotational inertia I, we take the rotation axis to be perpendicular to the disk and through its center, at point O in Fig. 10-18c.

The torques are then given by Eq. 10-40 ($\tau = rF_t$). The gravitational force on the disk and the force on the disk from the axle both act at the center of the disk and thus at distance r=0, so their torques are zero. The force \vec{T} on the disk due to the cord acts at distance r=R and is tangent to the rim of the disk. Therefore, its torque is -RT, negative because the torque rotates the disk clockwise from rest. From Table 10-2c, the rotational inertia I of the disk is $\frac{1}{2}MR^2$. Thus we can write $\tau_{\rm net} = I\alpha$ as

$$-RT = \frac{1}{2}MR^2\alpha. \tag{10-47}$$

This equation seems useless because it has two unknowns, α and T, neither of which is the desired a. However, mustering physics courage, we can make it useful

Fig. 10-18 (a) The falling block causes the disk to rotate. (b) A free-body diagram for the block. (c) An incomplete free-body diagram for the disk.

with this fact: Because the cord does not slip, the linear acceleration a of the block and the (tangential) linear acceleration a_t of the rim of the disk are equal. Then, by Eq. 10-22 ($a_t = \alpha r$) we see that here $\alpha = a/R$. Substituting this in Eq. 10-47 yields

$$T = -\frac{1}{2}Ma. (10-48)$$

Combining results: Combining Eqs. 10-46 and 10-48 leads to

$$a = -g \frac{2m}{M + 2m} = -(9.8 \text{ m/s}^2) \frac{(2)(1.2 \text{ kg})}{2.5 \text{ kg} + (2)(1.2 \text{ kg})}$$
$$= -4.8 \text{ m/s}^2. \tag{Answer}$$

We then use Eq. 10-48 to find T:

$$T = -\frac{1}{2}Ma = -\frac{1}{2}(2.5 \text{ kg})(-4.8 \text{ m/s}^2)$$

= 6.0 N. (Answer)

As we should expect, acceleration a of the falling block is less than g, and tension T in the cord (= 6.0 N) is less than the gravitational force on the hanging block (= mg = 11.8 N). We see also that a and T depend on the mass of the disk but not on its radius. As a check, we note that the formulas derived above predict a = -g and T = 0 for the case of a massless disk (M = 0). This is what we would expect; the block simply falls as a free body. From Eq. 10-22, the angular acceleration of the disk is

$$\alpha = \frac{a}{R} = \frac{-4.8 \text{ m/s}^2}{0.20 \text{ m}} = -24 \text{ rad/s}^2.$$
 (Answer)

10-10 Work and Rotational Kinetic Energy

As we discussed in Chapter 7, when a force F causes a rigid body of mass m to accelerate along a coordinate axis, the force does work W on the body. Thus, the body's kinetic energy ($K = \frac{1}{2}mv^2$) can change. Suppose it is the only energy of the body that changes. Then we relate the change ΔK in kinetic energy to the work W with the work–kinetic energy theorem (Eq. 7-10), writing

$$\Delta K = K_f - K_i = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = W \qquad \text{(work-kinetic energy theorem)}. \tag{10-49}$$

For motion confined to an x axis, we can calculate the work with Eq. 7-32,

$$W = \int_{x_i}^{x_f} F \, dx \qquad \text{(work, one-dimensional motion)}. \tag{10-50}$$

This reduces to W = Fd when F is constant and the body's displacement is d. The rate at which the work is done is the power, which we can find with Eqs. 7-43 and 7-48,

$$P = \frac{dW}{dt} = Fv \qquad \text{(power, one-dimensional motion)}. \tag{10-51}$$

Now let us consider a rotational situation that is similar. When a torque accelerates a rigid body in rotation about a fixed axis, the torque does work W on the body. Therefore, the body's rotational kinetic energy $(K = \frac{1}{2}I\omega^2)$ can change. Suppose that it is the only energy of the body that changes. Then we can still relate the change ΔK in kinetic energy to the work W with the work–kinetic energy theorem, except now the kinetic energy is a rotational kinetic energy:

$$\Delta K = K_f - K_i = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2 = W \qquad \text{(work-kinetic energy theorem)}. \tag{10-52}$$

Here, I is the rotational inertia of the body about the fixed axis and ω_i and ω_f are the angular speeds of the body before and after the work is done, respectively.

Also, we can calculate the work with a rotational equivalent of Eq. 10-50,

$$W = \int_{\theta_i}^{\theta_f} \tau \, d\theta \qquad \text{(work, rotation about fixed axis)}, \tag{10-53}$$

where τ is the torque doing the work W, and θ_i and θ_f are the body's angular positions before and after the work is done, respectively. When τ is constant, Eq. 10-53 reduces to

$$W = \tau(\theta_f - \theta_i) \qquad \text{(work, constant torque)}. \tag{10-54}$$

The rate at which the work is done is the power, which we can find with the rotational equivalent of Eq. 10-51,

$$P = \frac{dW}{dt} = \tau \omega \qquad \text{(power, rotation about fixed axis)}. \tag{10-55}$$

Table 10-3 summarizes the equations that apply to the rotation of a rigid body about a fixed axis and the corresponding equations for translational motion.

Proof of Eqs. 10-52 through 10-55

Let us again consider the situation of Fig. 10-17, in which force \vec{F} rotates a rigid body consisting of a single particle of mass m fastened to the end of a massless rod. During the rotation, force \vec{F} does work on the body. Let us assume that the

Table 10-3

Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Di	rection)	Pure Rotation (Fixed Axis)		
Position	х	Angular position	θ	
Velocity	v = dx/dt	Angular velocity	$\omega = d\theta/dt$	
Acceleration	a = dv/dt	Angular acceleration	$\alpha = d\omega/dt$	
Mass	m	Rotational inertia	I	
Newton's second law	$F_{\rm net} = ma$	Newton's second law	$ au_{\mathrm{net}} = I \alpha$	
Work	$W = \int F dx$	Work	$W = \int \tau d\theta$	
Kinetic energy	$K = \frac{1}{2}mv^2$	Kinetic energy	$K = \frac{1}{2}I\omega^2$	
Power (constant force)	P = Fv	Power (constant torque)	$P = \tau \omega$	
Work-kinetic energy theorem	$W = \Delta K$	Work-kinetic energy theorem	$W = \Delta K$	

only energy of the body that is changed by \vec{F} is the kinetic energy. Then we can apply the work – kinetic energy theorem of Eq. 10-49:

$$\Delta K = K_f - K_i = W. \tag{10-56}$$

Using $K = \frac{1}{2}mv^2$ and Eq. 10-18 ($v = \omega r$), we can rewrite Eq. 10-56 as

$$\Delta K = \frac{1}{2}mr^2\omega_f^2 - \frac{1}{2}mr^2\omega_i^2 = W.$$
 (10-57)

From Eq. 10-33, the rotational inertia for this one-particle body is $I = mr^2$. Substituting this into Eq. 10-57 yields

$$\Delta K = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2 = W,$$

which is Eq. 10-52. We derived it for a rigid body with one particle, but it holds for any rigid body rotated about a fixed axis.

We next relate the work W done on the body in Fig. 10-17 to the torque τ on the body due to force \vec{F} . When the particle moves a distance ds along its circular path, only the tangential component F_t of the force accelerates the particle along the path. Therefore, only F_t does work on the particle. We write that work dW as F_t ds. However, we can replace ds with r $d\theta$, where $d\theta$ is the angle through which the particle moves. Thus we have

$$dW = F_t r \, d\theta. \tag{10-58}$$

From Eq. 10-40, we see that the product $F_t r$ is equal to the torque τ , so we can rewrite Eq. 10-58 as

$$dW = \tau d\theta. \tag{10-59}$$

The work done during a finite angular displacement from θ_i to θ_f is then

$$W = \int_{ heta_{-}}^{ heta_{f}} au \, d heta,$$

which is Eq. 10-53. It holds for any rigid body rotating about a fixed axis. Equation 10-54 comes directly from Eq. 10-53.

We can find the power P for rotational motion from Eq. 10-59:

$$P = \frac{dW}{dt} = \tau \frac{d\theta}{dt} = \tau \omega,$$

which is Eq. 10-55.

Sample Problem

Work, rotational kinetic energy, torque, disk

Let the disk in Fig. 10-18 start from rest at time t = 0 and also let the tension in the massless cord be 6.0 N and the angular acceleration of the disk be -24 rad/s^2 . What is its rotational kinetic energy K at t = 2.5 s?

KEY IDEA

We can find K with Eq. 10-34 ($K = \frac{1}{2}I\omega^2$). We already know that $I = \frac{1}{2}MR^2$, but we do not yet know ω at t = 2.5 s. However, because the angular acceleration α has the constant value of -24 rad/s², we can apply the equations for constant angular acceleration in Table 10-1.

Calculations: Because we want ω and know α and ω_0 (= 0), we use Eq. 10-12:

$$\omega = \omega_0 + \alpha t = 0 + \alpha t = \alpha t.$$

Substituting $\omega = \alpha t$ and $I = \frac{1}{2}MR^2$ into Eq. 10-34, we find

$$K = \frac{1}{2}I\omega^2 = \frac{1}{2}(\frac{1}{2}MR^2)(\alpha t)^2 = \frac{1}{4}M(R\alpha t)^2$$

= $\frac{1}{4}(2.5 \text{ kg})[(0.20 \text{ m})(-24 \text{ rad/s}^2)(2.5 \text{ s})]^2$
= 90 J. (Answer)

KEY IDEA

We can also get this answer by finding the disk's kinetic energy from the work done on the disk.

Calculations: First, we relate the *change* in the kinetic energy of the disk to the net work W done on the disk, using the work–kinetic energy theorem of Eq. 10-52 $(K_f - K_i = W)$. With K substituted for K_f and 0 for K_i , we get

$$K = K_i + W = 0 + W = W. (10-60)$$

Next we want to find the work W. We can relate W to the torques acting on the disk with Eq. 10-53 or 10-54. The only torque causing angular acceleration and doing work is the torque due to force \vec{T} on the disk from the cord, which is equal to -TR. Because α is constant, this torque also must be constant. Thus, we can use Eq. 10-54 to write

$$W = \tau(\theta_f - \theta_i) = -TR(\theta_f - \theta_i). \tag{10-61}$$

Because α is constant, we can use Eq. 10-13 to find $\theta_f - \theta_i$. With $\omega_i = 0$, we have

$$\theta_f - \theta_i = \omega_i t + \frac{1}{2} \alpha t^2 = 0 + \frac{1}{2} \alpha t^2 = \frac{1}{2} \alpha t^2$$

Now we substitute this into Eq. 10-61 and then substitute the result into Eq. 10-60. Inserting the given values T = 6.0 N and $\alpha = -24 \text{ rad/s}^2$, we have

$$K = W = -TR(\theta_f - \theta_i) = -TR(\frac{1}{2}\alpha t^2) = -\frac{1}{2}TR\alpha t^2$$

= $-\frac{1}{2}(6.0 \text{ N})(0.20 \text{ m})(-24 \text{ rad/s}^2)(2.5 \text{ s})^2$
= 90 J. (Answer)

Additional examples, video, and practice available at WileyPLUS

REVIEW & SUMMARY

Angular Position To describe the rotation of a rigid body about a fixed axis, called the **rotation axis**, we assume a **reference line** is fixed in the body, perpendicular to that axis and rotating with the body. We measure the **angular position** θ of this line relative to a fixed direction. When θ is measured in **radians**,

$$\theta = \frac{s}{r}$$
 (radian measure), (10-1)

where s is the arc length of a circular path of radius r and angle θ . Radian measure is related to angle measure in revolutions and degrees by

$$1 \text{ rev} = 360^{\circ} = 2\pi \text{ rad.}$$
 (10-2)

Angular Displacement A body that rotates about a rotation axis, changing its angular position from θ_1 to θ_2 , undergoes an **angular displacement**

$$\Delta \theta = \theta_2 - \theta_1, \tag{10-4}$$

where $\Delta\theta$ is positive for counterclockwise rotation and negative for clockwise rotation.

Angular Velocity and Speed If a body rotates through an angular displacement $\Delta \theta$ in a time interval Δt , its **average angular velocity** ω_{avg} is

$$\omega_{\text{avg}} = \frac{\Delta \theta}{\Delta t}.$$
 (10-5)

The (instantaneous) angular velocity ω of the body is

$$\omega = \frac{d\theta}{dt}.\tag{10-6}$$

Both $\omega_{\rm avg}$ and ω are vectors, with directions given by the **right-hand rule** of Fig. 10-6. They are positive for counterclockwise rotation and negative for clockwise rotation. The magnitude of the body's angular velocity is the **angular speed.**

Angular Acceleration If the angular velocity of a body changes from ω_1 to ω_2 in a time interval $\Delta t = t_2 - t_1$, the **average angular acceleration** α_{avg} of the body is

$$\alpha_{\text{avg}} = \frac{\omega_2 - \omega_1}{t_2 - t_1} = \frac{\Delta \omega}{\Delta t}.$$
 (10-7)

The (instantaneous) angular acceleration α of the body is

$$\alpha = \frac{d\omega}{dt}.\tag{10-8}$$

Both α_{avg} and α are vectors.

The Kinematic Equations for Constant Angular Acceleration Constant angular acceleration (α = constant) is an important special case of rotational motion. The appropriate kinematic equations, given in Table 10-1, are

$$\omega = \omega_0 + \alpha t, \tag{10-12}$$

$$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2, \tag{10-13}$$

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0), \qquad (10-14)$$

$$\theta - \theta_0 = \frac{1}{2}(\omega_0 + \omega)t, \tag{10-15}$$

$$\theta - \theta_0 = \omega t - \frac{1}{2}\alpha t^2. \tag{10-16}$$

Linear and Angular Variables Related A point in a rigid rotating body, at a *perpendicular distance r* from the rotation axis, moves in a circle with radius r. If the body rotates through an angle θ , the point moves along an arc with length s given by

$$s = \theta r$$
 (radian measure), (10-17)

where θ is in radians.

The linear velocity \vec{v} of the point is tangent to the circle; the point's linear speed v is given by

$$v = \omega r$$
 (radian measure), (10-18)

where ω is the angular speed (in radians per second) of the body.

The linear acceleration \vec{a} of the point has both *tangential* and *radial* components. The tangential component is

$$a_t = \alpha r$$
 (radian measure), (10-22)

where α is the magnitude of the angular acceleration (in radians per second-squared) of the body. The radial component of \vec{a} is

$$a_r = \frac{v^2}{r} = \omega^2 r$$
 (radian measure). (10-23)

If the point moves in uniform circular motion, the period T of the motion for the point and the body is

$$T = \frac{2\pi r}{v} = \frac{2\pi}{\omega} \qquad \text{(radian measure)}. \tag{10-19, 10-20}$$

Rotational Kinetic Energy and Rotational Inertia The kinetic energy K of a rigid body rotating about a fixed axis is given by

$$K = \frac{1}{2}I\omega^2$$
 (radian measure), (10-34)

in which I is the **rotational inertia** of the body, defined as

$$I = \sum m_i r_i^2 \tag{10-33}$$

for a system of discrete particles and defined as

$$I = \int r^2 dm \tag{10-35}$$

for a body with continuously distributed mass. The r and r_i in these expressions represent the perpendicular distance from the axis of rotation to each mass element in the body, and the integration is carried out over the entire body so as to include every mass element.

The Parallel-Axis Theorem The *parallel-axis theorem* relates the rotational inertia I of a body about any axis to that of the same body about a parallel axis through the center of mass:

$$I = I_{\text{com}} + Mh^2. {(10-36)}$$

Here h is the perpendicular distance between the two axes, and $I_{\rm com}$ is the rotational inertia of the body about the axis through the com. We can describe h as being the distance the actual rotation axis has been shifted from the rotation axis through the com.

Torque Torque is a turning or twisting action on a body about a rotation axis due to a force \vec{F} . If \vec{F} is exerted at a point given by the position vector \vec{r} relative to the axis, then the magnitude of the torque is

$$\tau = rF_t = r_{\perp}F = rF\sin\phi,$$
 (10-40, 10-41, 10-39)

where F_t is the component of \vec{F} perpendicular to \vec{r} and ϕ is the angle between \vec{r} and \vec{F} . The quantity r_\perp is the perpendicular distance between the rotation axis and an extended line running through the \vec{F} vector. This line is called the **line of action** of \vec{F} , and r_\perp is called the **moment arm** of \vec{F} . Similarly, r is the moment arm of F_t .

The SI unit of torque is the newton-meter (N·m). A torque τ is positive if it tends to rotate a body at rest counterclockwise and negative if it tends to rotate the body clockwise.

Newton's Second Law in Angular Form The rotational analog of Newton's second law is

$$\tau_{\text{net}} = I\alpha, \tag{10-45}$$

where $\tau_{\rm net}$ is the net torque acting on a particle or rigid body, I is the rotational inertia of the particle or body about the rotation axis, and α is the resulting angular acceleration about that axis.

Work and Rotational Kinetic Energy The equations used for calculating work and power in rotational motion correspond to equations used for translational motion and are

$$W = \int_{\theta_i}^{\theta_f} \tau \, d\theta \tag{10-53}$$

and

$$P = \frac{dW}{dt} = \tau \omega. \tag{10-55}$$

When τ is constant, Eq. 10-53 reduces to

$$W = \tau(\theta_f - \theta_i). \tag{10-54}$$

The form of the work-kinetic energy theorem used for rotating bodies is

$$\Delta K = K_f - K_i = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2 = W. \tag{10-52}$$

- 1 Figure 10-19 is a graph of the angular velocity versus time for a disk rotating like a merry-go-round. For a point on the disk rim, rank the instants a, b, c, and d according to the magnitude of the (a) tangential and (b) radial acceleration, greatest first.
- **2** Figure 10-20 shows plots of angular position θ versus time t for three cases in which a disk is rotated like a merry-go-round. In each case, the rotation direction changes at a certain angular position θ_{change} . (a) For each case, determine whether θ_{change} is clockwise or counterclockwise from $\theta = 0$, or whether it is at $\theta = 0$. For each case, determine (b) whether ω is zero before, after,

Fig. 10-19 Question 1.

Fig. 10-20 Question 2.

or at t = 0 and (c) whether α is positive, negative, or zero.

- **3** A force is applied to the rim of a disk that can rotate like a merry-go-round, so as to change its angular velocity. Its initial and final angular velocities, respectively, for four situations are: (a) -2 rad/s, 5 rad/s; (b) 2 rad/s, 5 rad/s; (c) -2 rad/s, -5 rad/s; and (d) 2 rad/s, -5 rad/s. Rank the situations according to the work done by the torque due to the force, greatest first.
- **4** Figure 10-21*b* is a graph of the angular position of the rotating disk of Fig. 10-21*a*. Is the angular velocity of the disk positive, negative, or zero at (a) t = 1 s, (b) t = 2 s, and (c) t = 3 s? (d) Is the angular acceleration positive or negative?

5 In Fig. 10-22, two forces \vec{F}_1 and \vec{F}_2 act on a disk that turns about its center like a merry-go-round. The forces maintain the indicated angles during the rotation, which is counterclockwise and at a con-

angles during the rotation, which is counterclockwise and at a constant rate. However, we are to decrease the angle θ of \vec{F}_1 without changing the magnitude of \vec{F}_1 . (a) To keep the angular speed constant, should we increase, decrease, or maintain the magnitude of

Fig. 10-22 Question 5.

- \vec{F}_2 ? Do forces (b) \vec{F}_1 and (c) \vec{F}_2 tend to rotate the disk clockwise or counterclockwise?
- 6 In the overhead view of Fig. 10-23, five forces of the same magnitude act on a strange merry-go-round; it is a square that can rotate about point P, at midlength along one of the edges. Rank the forces according to the magnitude of the torque they create about point P, greatest first.

Fig. 10-23 Question 6.

7 Figure 10-24*a* is an overhead view of a horizontal bar that can pivot; two horizontal forces act on the bar, but it is stationary. If the angle between the bar and \vec{F}_2 is now decreased from 90° and the bar is still not to turn, should F_2 be made larger, made smaller, or left the same?

Fig. 10-24 Questions 7 and 8.

- 8 Figure 10-24b shows an overhead view of a horizontal bar that is rotated about the pivot point by two horizontal forces, \vec{F}_1 and \vec{F}_2 , with \vec{F}_2 at angle ϕ to the bar. Rank the following values of ϕ according to the magnitude of the angular acceleration of the bar, greatest first; 90°, 70°, and 110°.
- **9** Figure 10-25 shows a uniform metal plate that had been square before 25% of it was snipped off. Three lettered points are indicated. Rank them according to the rotational inertia of the plate around a perpendicular axis through them, greatest first.

Fig. 10-25 Question 9.

radius) that can rotate about their centers like merry-go-rounds. Each disk consists of the same two materials, one denser than the other (density is mass per unit volume). In disks 1 and 3, the denser material forms the outer half of the disk area. In disk 2, it forms the inner half of the disk area. Forces with identical magnitudes are applied tangentially to the disk, either at the outer edge or at the interface of the two materials, as shown. Rank the disks according to (a) the torque about the disk center, (b) the rotational inertia about the disk center, and (c) the angular acceleration of the disk, greatest first.

Fig. 10-26 Question 10.

VICW AII

Λ TCM $\Delta T T$

0 В Е M

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign

Worked-out solution available in Student Solutions Manual Number of dots indicates level of problem difficulty

WWW Worked-out solution is at

ILW Interactive solution is at

http://www.wiley.com/college/halliday

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

sec. 10-2 The Rotational Variables

- •1 A good baseball pitcher can throw a baseball toward home plate at 85 mi/h with a spin of 1800 rev/min. How many revolutions does the baseball make on its way to home plate? For simplicity, assume that the 60 ft path is a straight line.
- •2 What is the angular speed of (a) the second hand, (b) the minute hand, and (c) the hour hand of a smoothly running analog watch? Answer in radians per second.
- ••3 When a slice of buttered toast is accidentally pushed over the edge of a counter, it rotates as it falls. If the distance to the floor is 76 cm and for rotation less than 1 rev, what are the (a) smallest and (b) largest angular speeds that cause the toast to hit and then topple to be butter-side down?
- ••4 The angular position of a point on a rotating wheel is given by $\theta = 2.0 + 4.0t^2 + 2.0t^3$, where θ is in radians and t is in seconds. At t = 0, what are (a) the point's angular position and (b) its angular velocity? (c) What is its angular velocity at t = 4.0 s? (d) Calculate its angular acceleration at t = 2.0 s. (e) Is its angular acceleration constant?
- ••5 ILW A diver makes 2.5 revolutions on the way from a 10-mhigh platform to the water. Assuming zero initial vertical velocity, find the average angular velocity during the dive.
- ••6 The angular position of a point on the rim of a rotating wheel is given by $\theta = 4.0t - 3.0t^2 + t^3$, where θ is in radians and t is in seconds. What are the angular velocities at (a) t = 2.0 s and (b) t = 4.0 s? (c) What is the average angular acceleration for the time interval that begins at t = 2.0 s and ends at t = 4.0 s? What are the instantaneous angular accelerations at (d) the beginning and (e) the end of this time interval?
- •••7 The wheel in Fig. 10-27 has eight equally spaced spokes and a radius of 30 cm. It is mounted on a fixed axle and is spinning at 2.5 rev/s. You want to shoot a 20-cmlong arrow parallel to this axle and through the wheel without hitting any of the spokes. Assume that the arrow and the spokes are very thin.

Fig. 10-27 Problem 7.

- (a) What minimum speed must the arrow have? (b) Does it matter where between the axle and rim of the wheel you aim? If so, what is the best location?
- •••8 The angular acceleration of a wheel is $\alpha = 6.0t^4 4.0t^2$, with α in radians per second-squared and t in seconds. At time t = 0, the wheel has an angular velocity of +2.0 rad/s and an angular position of +1.0 rad. Write expressions for (a) the angular velocity (rad/s) and (b) the angular position (rad) as functions of time (s).

sec. 10-4 Rotation with Constant Angular Acceleration

•9 A drum rotates around its central axis at an angular velocity of 12.60 rad/s. If the drum then slows at a constant rate of 4.20 rad/s², (a) how much time does it take and (b) through what angle does it rotate in coming to rest?

- •10 Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 5.0 s, it rotates 25 rad. During that time, what are the magnitudes of (a) the angular acceleration and (b) the average angular velocity? (c) What is the instantaneous angular velocity of the disk at the end of the 5.0 s? (d) With the angular acceleration unchanged, through what additional angle will the disk turn during the next 5.0 s?
- •11 A disk, initially rotating at 120 rad/s, is slowed down with a constant angular acceleration of magnitude 4.0 rad/s². (a) How much time does the disk take to stop? (b) Through what angle does the disk rotate during that time?
- •12 The angular speed of an automobile engine is increased at a constant rate from 1200 rev/min to 3000 rev/min in 12 s. (a) What is its angular acceleration in revolutions per minute-squared? (b) How many revolutions does the engine make during this 12 s interval?
- ••13 ILW A flywheel turns through 40 rev as it slows from an angular speed of 1.5 rad/s to a stop. (a) Assuming a constant angular acceleration, find the time for it to come to rest. (b) What is its angular acceleration? (c) How much time is required for it to complete the first 20 of the 40 revolutions?
- •14 •• A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is rotating at 10 rev/s; 60 revolutions later, its angular speed is 15 rev/s. Calculate (a) the angular acceleration, (b) the time required to complete the 60 revolutions, (c) the time required to reach the 10 rev/s angular speed, and (d) the number of revolutions from rest until the time the disk reaches the 10 rev/s angular speed.
- ••15 SSM A wheel has a constant angular acceleration of 3.0 rad/s². During a certain 4.0 s interval, it turns through an angle of 120 rad. Assuming that the wheel started from rest, how long has it been in motion at the start of this 4.0 s interval?
- ••16 A merry-go-round rotates from rest with an angular acceleration of 1.50 rad/s². How long does it take to rotate through (a) the first 2.00 rev and (b) the next 2.00 rev?
- ••17 At t = 0, a flywheel has an angular velocity of 4.7 rad/s, a constant angular acceleration of -0.25 rad/s^2 , and a reference line at $\theta_0 = 0$. (a) Through what maximum angle θ_{max} will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at $\theta = \frac{1}{2}\theta_{\text{max}}$? At what (d) negative time and (e) positive time will the reference line be at $\theta = 10.5 \text{ rad?}$ (f) Graph θ versus t, and indicate the answers to (a) through (e) on the graph.

sec. 10-5 Relating the Linear and Angular Variables

- •18 If an airplane propeller rotates at 2000 rev/min while the airplane flies at a speed of 480 km/h relative to the ground, what is the linear speed of a point on the tip of the propeller, at radius 1.5 m, as seen by (a) the pilot and (b) an observer on the ground? The plane's velocity is parallel to the propeller's axis of rotation.
- •19 What are the magnitudes of (a) the angular velocity, (b) the radial acceleration, and (c) the tangential acceleration of a spaceship taking a circular turn of radius 3220 km at a speed of 29 000 km/h?

TCW

0-1------- 11--- 44

- •20 An object rotates about a fixed axis, and the angular position of a reference line on the object is given by $\theta = 0.40e^{2t}$, where θ is in radians and t is in seconds. Consider a point on the object that is 4.0 cm from the axis of rotation. At t = 0, what are the magnitudes of the point's (a) tangential component of acceleration and (b) radial component of acceleration?
- •21 Between 1911 and 1990, the top of the leaning bell tower at Pisa, Italy, moved toward the south at an average rate of 1.2 mm/y. The tower is 55 m tall. In radians per second, what is the average angular speed of the tower's top about its base?
- •22 An astronaut is being tested in a centrifuge. The centrifuge has a radius of 10 m and, in starting, rotates according to $\theta = 0.30t^2$, where t is in seconds and θ is in radians. When t = 5.0 s, what are the magnitudes of the astronaut's (a) angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration?
- •23 SSM WWW A flywheel with a diameter of 1.20 m is rotating at an angular speed of 200 rev/min. (a) What is the angular speed of the flywheel in radians per second? (b) What is the linear speed of a point on the rim of the flywheel? (c) What constant angular acceleration (in revolutions per minute-squared) will increase the wheel's angular speed to 1000 rev/min in 60.0 s? (d) How many revolutions does the wheel make during that 60.0 s?
- •24 A vinyl record is played by rotating the record so that an approximately circular groove in the vinyl slides under a stylus. Bumps in the groove run into the stylus, causing it to oscillate. The equipment converts those oscillations to electrical signals and then to sound. Suppose that a record turns at the rate of $33\frac{1}{3}$ rev/min, the groove being played is at a radius of 10.0 cm, and the bumps in the groove are uniformly separated by 1.75 mm. At what rate (hits per second) do the bumps hit the stylus?
- ••25 SSM (a) What is the angular speed ω about the polar axis of a point on Earth's surface at latitude 40° N? (Earth rotates about that axis.) (b) What is the linear speed ν of the point? What are (c) ω and (d) ν for a point at the equator?
- ••26 The flywheel of a steam engine runs with a constant angular velocity of 150 rev/min. When steam is shut off, the friction of the bearings and of the air stops the wheel in 2.2 h. (a) What is the constant angular acceleration, in revolutions per minute-squared, of the wheel during the slowdown? (b) How many revolutions does the wheel make before stopping? (c) At the instant the flywheel is turning at 75 rev/min, what is the tangential component of the linear acceleration of a flywheel particle that is 50 cm from the axis of rotation? (d) What is the magnitude of the net linear acceleration of the particle in (c)?
- ••27 A record turntable is rotating at $33\frac{1}{3}$ rev/min. A watermelon seed is on the turntable 6.0 cm from the axis of rotation. (a) Calculate the acceleration of the seed, assuming that it does not slip. (b) What is the minimum value of the coefficient of static friction between the seed and the turntable if the seed is not to slip? (c) Suppose that the turntable achieves its angular speed by starting from rest and undergoing a constant angular acceleration for 0.25 s. Calculate the minimum coefficient of static friction required

for the seed not to slip during the acceleration period.

••28 In Fig. 10-28, wheel A of radius $r_A = 10$ cm is coupled by belt B to wheel C of radius $r_C = 25$ cm. The angular speed of wheel A is increased from rest at a constant rate

Fig. 10-28 Problem 28.

- of 1.6 rad/s². Find the time needed for wheel C to reach an angular speed of 100 rev/min, assuming the belt does not slip. (*Hint:* If the belt does not slip, the linear speeds at the two rims must be equal.)
- ••29 An early method of measuring the speed of light makes use of a rotating slotted wheel. A beam of light passes through one of the slots at the outside edge of the wheel, as in Fig. 10-29, travels to a distant mirror, and returns to the wheel just in time to pass through the next slot in the wheel. One such slotted wheel has a radius of 5.0 cm and 500 slots around its edge. Measurements taken when the mirror is L = 500 m from the wheel indicate a speed of light of 3.0×10^5 km/s. (a) What is the (constant) angular speed of the wheel? (b) What is the linear speed of a point on the edge of the wheel?

Fig. 10-29 Problem 29.

- ••30 A gyroscope flywheel of radius 2.83 cm is accelerated from rest at 14.2 rad/s² until its angular speed is 2760 rev/min. (a) What is the tangential acceleration of a point on the rim of the flywheel during this spin-up process? (b) What is the radial acceleration of this point when the flywheel is spinning at full speed? (c) Through what distance does a point on the rim move during the spin-up?
- •••32 A pulsar is a rapidly rotating neutron star that emits a radio beam the way a lighthouse emits a light beam. We receive a radio pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. The pulsar in the Crab nebula has a period of rotation of T = 0.033 s that is increasing at the rate of 1.26×10^{-5} s/y. (a) What is the pulsar's angular acceleration α? (b) If α is constant, how many years from now will the pulsar stop rotating? (c) The pulsar originated in a supernova explosion seen in the year 1054. Assuming constant α, find the initial T.

sec. 10-6 Kinetic Energy of Rotation

•33 SSM Calculate the rotational inertia of a wheel that has a kinetic energy of 24 400 J when rotating at 602 rev/min.

.. ATEM YTT

... ATEM YTT

•34 Figure 10-30 gives angular speed versus time for a thin rod that rotates around one end. The scale on the ω axis is set by $\omega_s = 6.0$ rad/s. (a) What is the magnitude of the rod's angular acceleration? (b) At t = 4.0 s, the rod has a rotational kinetic energy of 1.60 J. What is its kinetic energy at t = 0?

Fig. 10-30 Problem 34.

sec. 10-7 Calculating the Rotational Inertia

•35 SSM Two uniform solid cylinders, each rotating about its central (longitudinal) axis at 235 rad/s, have the same mass of 1.25 kg but differ in radius. What is the rotational kinetic energy of (a) the smaller cylinder, of radius 0.25 m, and (b) the larger cylinder, of radius 0.75 m?

•36 Figure 10-31a shows a disk that can rotate about an axis at a radial distance h from the center of the disk. Figure 10-31b gives the rotational inertia I of the disk about the axis as a function of that distance h, from the center out to the edge of the disk. The scale on the I axis is set by $I_A = 0.050 \text{ kg} \cdot \text{m}^2$ and $I_B = 0.150 \text{ kg} \cdot \text{m}^2$. What is the mass of the disk?

Fig. 10-31 Problem 36.

•37 SSM Calculate the rotational inertia of a meter stick, with mass 0.56 kg, about an axis perpendicular to the stick and located at the 20 cm mark. (Treat the stick as a thin rod.)

•38 Figure 10-32 shows three 0.0100 kg particles that have been glued to a rod of length L=6.00 cm and negligible mass. The assembly can rotate around a perpendicular axis through point O at the left end. If we remove one particle (that is, 33% of the mass), by what percentage does the rotational inertia of the assembly

Fig. 10-32 Problems 38 and 62.

around the rotation axis decrease when that removed particle is (a) the innermost one and (b) the outermost one?

••39 Trucks can be run on energy stored in a rotating flywheel, with an electric motor getting the flywheel up to its top speed of 200π rad/s. One such flywheel is a solid, uniform cylinder with a mass of 500 kg and a radius of 1.0 m. (a) What is the kinetic energy of the flywheel after charging? (b) If the truck uses an average power of 8.0 kW, for how many minutes can it operate between chargings?

••40 Figure 10-33 shows an arrangement of 15 identical disks that have been glued together in a rod-like shape of length $L=1.0000\,\mathrm{m}$ and (total) mass $M=100.0\,\mathrm{mg}$. The disk arrangement can rotate about a perpendicular axis through its central disk at point O. (a) What is the rotational inertia of the arrangement about that axis? (b) If we approximated the arrangement as being a uniform rod of mass M and length L, what percentage error would we make in using the formula in Table 10-2e to calculate the rotational inertia?

Fig. 10-33 Problem 40.

••41 •• In Fig. 10-34, two particles, each with mass m = 0.85 kg, are fastened to each other, and to a rotation axis at O, by two thin rods, each with length d = 5.6 cm and mass M = 1.2 kg. The combination rotates around the rotation axis with the angular speed $\omega = 0.30$ rad/s. Measured about O, what are the combination's (a) rotational inertia and (b) kinetic energy?

Fig. 10-34 Problem 41.

****42** The masses and coordinates of four particles are as follows: 50 g, x = 2.0 cm, y = 2.0 cm; 25 g, x = 0, y = 4.0 cm; 25 g, x = -3.0 cm; y = -3.0 cm; y = -2.0 cm, y = 4.0 cm. What are the rotational inertias of this collection about the (a) x, (b) y, and (c) z = -2.0 cm.

axes? (d) Suppose the answers to (a) and (b) are A and B, respectively. Then what is the answer to (c) in terms of A and B?

••43 SSM WWW The uniform solid block in Fig. 10-35 has mass 0.172 kg and edge lengths a = 3.5 cm, b = 8.4 cm, and c = 1.4 cm. Calculate its rotational inertia about an axis through one corner and perpendicular to the large faces.

Fig. 10-35 Problem 43.

••44 Four identical particles of mass 0.50 kg each are placed at the vertices of a $2.0 \text{ m} \times 2.0 \text{ m}$ square and held there by four massless rods, which form the sides of the square. What is the rotational inertia of this rigid body about an axis that (a) passes through the midpoints of opposite sides and lies in the plane of the square, (b) passes through the midpoint of one of the sides and is perpendicular to the plane of the square, and (c) lies in the plane of the square and passes through two diagonally opposite particles?

Orlew All

OSJETTO AT.

sec. 10-8 Torque

•45 SSM ILW The body in Fig. 10-36 is pivoted at O, and two

forces act on it as shown. If $r_1 = 1.30$ m, $r_2 = 2.15$ m, $F_1 = 4.20$ N, $F_2 = 4.90$ N, $\theta_1 = 75.0^\circ$, and $\theta_2 = 60.0^\circ$, what is the net torque about the pivot?

Fig. 10-36 Problem 45.

•46 The body in Fig. 10-37 is pivoted at O. Three forces act on it: $F_A = 10 \text{ N}$ at point A, 8.0 m from O; $F_B = 16 \text{ N}$ at B, 4.0 m from B; and B0; and B10 N at B2, 3.0 m from B3. What is the net torque about B3?

Fig. 10-37 Problem 46.

•47 SSM A small ball of mass 0.75 kg is attached to one end of a 1.25-m-long massless rod, and the other end of the rod is hung from a pivot. When the resulting pendulum is 30° from the vertical, what is the magnitude of the gravitational torque calculated about the pivot?

•48 The length of a bicycle pedal arm is 0.152 m, and a downward force of 111 N is applied to the pedal by the rider. What is the magnitude of the torque about the pedal arm's pivot when the arm is at angle (a) 30° , (b) 90° , and (c) 180° with the vertical?

sec. 10-9 Newton's Second Law for Rotation

•49 SSM ILW During the launch from a board, a diver's angular speed about her center of mass changes from zero to 6.20 rad/s in 220 ms. Her rotational inertia about her center of mass is 12.0 kg·m². During the launch, what are the magnitudes of (a) her average angular acceleration and (b) the average external torque on her from the board?

•50 If a 32.0 N·m torque on a wheel causes angular acceleration 25.0 rad/s², what is the wheel's rotational inertia?

Fig. 10-38 Problems 51 and 83.

celeration? (e) What is its rotational inertia?

Fig. 10-39 Problem 52.

Fig. 10-40 Problem 53.

plied tangentially to the rim as indicated, so that at time t = 1.25 s the disk has an angular velocity of 250 rad/s counterclockwise. Force \vec{F}_1 has a magnitude of 0.100 N. What is magnitude F_2 ?

••54 In a judo foot-sweep move, you sweep your opponent's left foot out from under him while pulling on his gi (uniform) toward that side. As a result, your opponent rotates around his right foot and onto the mat. Figure 10-41 shows a simplified diagram of your opponent as you face him, with his left foot swept out. The rotational axis is through point O. The gravitational force \vec{F}_{σ} on him effectively acts at his center of mass, which is a horizontal distance d = 28 cm from point O. His mass is 70 kg, and his rotational inertia about point O is 65 kg·m². What is the magnitude of his initial angular acceleration about point O if your pull \vec{F}_a on his

Fig. 10-41 Problem 54.

gi is (a) negligible and (b) horizontal with a magnitude of 300 N and applied at height h = 1.4 m?

plastic plate with uniform thickness and density (mass per unit volume) is to be rotated around an axle that is perpendicular to the plate face and through point *O*. The rotational inertia of the plate about that axle is measured with the following method. A circular disk of mass 0.500 kg and radius 2.00 cm is glued to the plate, with its center aligned with point *O* (Fig. 10-42*b*). A string is wrapped around the edge of the disk the way a string is wrapped around a top. Then the string is pulled for 5.00 s. As a result, the disk

(a)

Fig. 10-42 Problem 55.

ATCM YTT

$\Lambda T \subset M$

and plate are rotated by a constant force of 0.400 N that is applied by the string tangentially to the edge of the disk. The resulting angular speed is 114 rad/s. What is the rotational inertia of the plate about the axle?

••**56** Figure 10-43 shows particles 1 and 2, each of mass m, attached to the ends of a rigid massless rod of length $L_1 + L_2$, with $L_1 = 20$

Fig. 10-43 Problem 56.

cm and $L_2 = 80$ cm. The rod is held horizontally on the fulcrum and then released. What are the magnitudes of the initial accelerations of (a) particle 1 and (b) particle 2?

•••57 A pulley, with a rotational inertia of $1.0 \times 10^{-3} \text{ kg} \cdot \text{m}^2$ about its axle and a radius of 10 cm, is acted on by a force applied tangentially at its rim. The force magnitude varies in time as $F = 0.50t + 0.30t^2$, with F in newtons and t in seconds. The pulley is initially at rest. At t = 3.0 s what are its (a) angular acceleration and (b) angular speed?

sec. 10-10 Work and Rotational Kinetic Energy

- •58 (a) If R = 12 cm, M = 400 g, and m = 50 g in Fig. 10-18, find the speed of the block after it has descended 50 cm starting from rest. Solve the problem using energy conservation principles. (b) Repeat (a) with R = 5.0 cm.
- •59 An automobile crankshaft transfers energy from the engine to the axle at the rate of 100 hp (= 74.6 kW) when rotating at a speed of 1800 rev/min. What torque (in newton-meters) does the crankshaft deliver?
- •60 A thin rod of length 0.75 m and mass 0.42 kg is suspended freely from one end. It is pulled to one side and then allowed to swing like a pendulum, passing through its lowest position with angular speed 4.0 rad/s. Neglecting friction and air resistance, find (a) the rod's kinetic energy at its lowest position and (b) how far above that position the center of mass rises.
- •61 A 32.0 kg wheel, essentially a thin hoop with radius 1.20 m, is rotating at 280 rev/min. It must be brought to a stop in 15.0 s. (a) How much work must be done to stop it? (b) What is the required average power?
- ••62 In Fig. 10-32, three 0.0100 kg particles have been glued to a rod of length L = 6.00 cm and negligible mass and can rotate around a perpendicular axis through point O at one end. How much work is required to change the rotational rate (a) from 0 to 20.0 rad/s, (b) from 20.0 rad/s to 40.0 rad/s, and (c) from 40.0 rad/s to 60.0 rad/s? (d) What is the slope of a plot of the assembly's kinetic energy (in joules) versus the square of its rotation rate (in radianssquared per second-squared)?
- ••63 SSM ILW A meter stick is held vertically with one end on the floor and is then allowed to fall. Find the speed of the other end just before it hits the floor, assuming that the end on the floor does not slip. (Hint: Consider the stick to be a thin rod and use the conservation of energy principle.)
- ••64 A uniform cylinder of radius 10 cm and mass 20 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 5.0 cm from the central longitudinal axis of the cylinder. (a) What is the rotational inertia of the cylinder about the axis of rotation? (b) If the cylinder is released from rest with its central longitudinal axis at the same height as the axis about which the cylinder rotates, what is the angular speed of the cylinder as it passes through its lowest position?

•••65 A tall, cylindrical chimney falls over when its base is ruptured. Treat the chimney as a thin rod of length 55.0 m. At the instant it makes an angle of 35.0° with the vertical as it falls, what are (a) the radial acceleration of the top, and (b) the tangential acceleration of the top. (Hint: Use energy considerations, not a torque.) (c) At what angle θ is the tangential acceleration equal to g?

ملد ملد

•••66 A uniform spherical shell of mass $M = 4.5 \,\mathrm{kg}$ and radius R = 8.5 cm can rotate about a vertical axis on frictionless bearings (Fig. 10-44). A massless cord passes around the equator of the shell, over a pulley of rotational inertia $I = 3.0 \times 10^{-3} \text{ kg} \cdot \text{m}^2$ and radius r = 5.0 cm, and is attached to a small object of mass m = 0.60 kg. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object when it has fallen 82 cm after being released from rest? Use energy considerations.

Fig. 10-44 Problem 66.

•••67 •• Figure 10-45 shows a rigid assembly of a thin hoop (of mass m and radius $R = 0.150 \,\mathrm{m}$) and a thin radial rod (of mass m and length L =2.00R). The assembly is upright, but if we give it a slight nudge, it will rotate around a horizontal axis in the plane of the rod and hoop, through the lower end of the rod. Assuming that the energy given to the assembly in

Fig. 10-45 Problem 67.

such a nudge is negligible, what would be the assembly's angular speed about the rotation axis when it passes through the upsidedown (inverted) orientation?

Additional Problems

- 68 Two uniform solid spheres have the same mass of 1.65 kg, but one has a radius of 0.226 m and the other has a radius of 0.854 m. Each can rotate about an axis through its center. (a) What is the magnitude τ of the torque required to bring the smaller sphere from rest to an angular speed of 317 rad/s in 15.5 s? (b) What is the magnitude F of the force that must be applied tangentially at the sphere's equator to give that torque? What are the corresponding values of (c) τ and (d) F for the larger sphere?
- 69 In Fig. 10-46, a small disk of radius r = 2.00 cm has been glued to the edge of a larger disk of radius R = 4.00 cm so that the disks lie in the same plane. The disks can be rotated around a perpendicular axis through point O at the center of the larger disk. The disks both have a uniform density (mass per unit Fig. 10-46 Problem 69.

TCM

volume) of 1.40×10^3 kg/m³ and a uniform thickness of 5.00 mm. What is the rotational inertia of the two-disk assembly about the rotation axis through O?

70 A wheel, starting from rest, rotates with a constant angular acceleration of 2.00 rad/s². During a certain 3.00 s interval, it turns through 90.0 rad. (a) What is the angular velocity of the wheel at the start of the 3.00 s interval? (b) How long has the wheel been turning before the start of the 3.00 s interval?

71 SSM In Fig. 10-47, two 6.20 kg blocks are connected by a massless string over a pulley of radius 2.40 cm and rotational inertia $7.40 \times 10^{-4} \,\mathrm{kg\cdot m^2}$. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When

Fig. 10-47 Problem 71.

this system is released from rest, the pulley turns through 0.650 rad in 91.0 ms and the acceleration of the blocks is constant. What are (a) the magnitude of the pulley's angular acceleration, (b) the magnitude of either block's acceleration, (c) string tension T_1 , and (d) string tension T_2 ?

72 Attached to each end of a thin steel rod of length 1.20 m and mass 6.40 kg is a small ball of mass 1.06 kg. The rod is constrained to rotate in a horizontal plane about a vertical axis through its midpoint. At a certain instant, it is rotating at 39.0 rev/s. Because of friction, it slows to a stop in 32.0 s. Assuming a constant retarding torque due to friction, compute (a) the angular acceleration, (b) the retarding torque, (c) the total energy transferred from mechanical energy to thermal energy by friction, and (d) the number of revolutions rotated during the 32.0 s. (e) Now suppose that the retarding torque is known not to be constant. If any of the quantities (a), (b), (c), and (d) can still be computed without additional information, give its value.

A uniform helicopter rotor blade is 7.80 m long, has a mass of 110 kg, and is attached to the rotor axle by a single bolt. (a) What is the magnitude of the force on the bolt from the axle when the rotor is turning at 320 rev/min? (*Hint:* For this calculation the blade can be considered to be a point mass at its center of mass. Why?) (b) Calculate the torque that must be applied to the rotor to bring it to full speed from rest in 6.70 s. Ignore air resistance. (The blade cannot be considered to be a point mass for this calculation. Why not? Assume the mass distribution of a uniform thin rod.) (c) How much work does the torque do on the blade in order for the blade to reach a speed of 320 rev/min?

74 Racing disks. Figure 10-48 shows two disks that can rotate about their centers like a merry-goround. At time t = 0, the reference lines of the two disks have the same orientation. Disk A is already rotating, with a constant angular velocity

Fig. 10-48 Problem 74.

of 9.5 rad/s. Disk *B* has been stationary but now begins to rotate at a constant angular acceleration of 2.2 rad/s². (a) At what time *t* will the reference lines of the two disks momentarily have the same angular displacement θ ? (b) Will that time *t* be the first time since t = 0 that the reference lines are momentarily aligned?

75 A high-wire walker always attempts to keep his center of mass over the wire (or rope). He normally carries a long, heavy

Thote to help: If he leans, say, to his right (his com moves to the right) and is in danger of rotating around the wire, he moves the pole to his left (its com moves to the left) to slow the rotation and allow himself time to adjust his balance. Assume that the walker has a mass of 70.0 kg and a rotational inertia of 15.0 kg·m² about the wire. What is the magnitude of his angular acceleration about the wire if his com is 5.0 cm to the right of the wire and (a) he carries no pole and (b) the 14.0 kg pole he carries has its com 10 cm to the left of the wire?

76 Starting from rest at t = 0, a wheel undergoes a constant angular acceleration. When t = 2.0 s, the angular velocity of the wheel is 5.0 rad/s. The acceleration continues until t = 20 s, when it abruptly ceases. Through what angle does the wheel rotate in the interval t = 0 to t = 40 s?

77 SSM A record turntable rotating at $33\frac{1}{3}$ rev/min slows down and stops in 30 s after the motor is turned off. (a) Find its (constant) angular acceleration in revolutions per minute-squared. (b) How many revolutions does it make in this time?

78 • A rigid body is made of three identical thin rods, each with length $L = 0.600 \,\mathrm{m}$, fastened together in the form of a letter **H** (Fig. 10-49). The body is free to rotate about a horizontal axis that runs along the length of one of the legs

Fig. 10-49 Problem 78.

of the \mathbf{H} . The body is allowed to fall from rest from a position in which the plane of the \mathbf{H} is horizontal. What is the angular speed of the body when the plane of the \mathbf{H} is vertical?

79 SSM (a) Show that the rotational inertia of a solid cylinder of mass M and radius R about its central axis is equal to the rotational inertia of a thin hoop of mass M and radius $R/\sqrt{2}$ about its central axis. (b) Show that the rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by

$$k = \sqrt{\frac{I}{M}}$$
.

The radius k of the equivalent hoop is called the *radius of gyration* of the given body.

80 A disk rotates at constant angular acceleration, from angular position $\theta_1 = 10.0$ rad to angular position $\theta_2 = 70.0$ rad in 6.00 s. Its angular velocity at θ_2 is 15.0 rad/s. (a) What was its angular velocity at θ_1 ? (b) What is the angular acceleration? (c) At what angular position was the disk initially at rest? (d) Graph θ versus time t and angular speed ω versus t for the disk, from the beginning of the motion (let t = 0 then).

81 The thin uniform rod in Fig. 10-50 has length 2.0 m and can pivot about a horizontal, frictionless pin through one end. It is released from rest at angle $\theta = 40^{\circ}$ above the horizontal. Use the principle of conservation of energy to determine the angular speed of the rod as it passes through the horizontal position.

82 George Washington Gale Ferris, Jr., a civil engineering graduate from Rensselaer

Fig. 10-50 Problem 81.

Polytechnic Institute, built the original Ferris wheel for the 1893 World's Columbian Exposition in Chicago. The wheel, an astounding engineering construction at the time, carried 36 wooden cars,

... ATEM VIT

each holding up to 60 passengers, around a circle 76 m in diameter. The cars were loaded 6 at a time, and once all 36 cars were full, the wheel made a complete rotation at constant angular speed in about 2 min. Estimate the amount of work that was required of the machinery to rotate the passengers alone.

- 83 In Fig. 10-38, two blocks, of mass $m_1 = 400$ g and $m_2 = 600$ g, are connected by a massless cord that is wrapped around a uniform disk of mass M = 500 g and radius R = 12.0 cm. The disk can rotate without friction about a fixed horizontal axis through its center; the cord cannot slip on the disk. The system is released from rest. Find (a) the magnitude of the acceleration of the blocks, (b) the tension T_1 in the cord at the left, and (c) the tension T_2 in the cord at the right.
- At 7:14 A.M. on June 30, 1908, a huge explosion occurred above remote central Siberia, at latitude 61° N and longitude 102° E; the fireball thus created was the brightest flash seen by anyone before nuclear weapons. The *Tunguska Event*, which according to one chance witness "covered an enormous part of the sky," was probably the explosion of a *stony asteroid* about 140 m wide. (a) Considering only Earth's rotation, determine how much later the asteroid would have had to arrive to put the explosion above Helsinki at longitude 25° E. This would have obliterated the city. (b) If the asteroid had, instead, been a *metallic asteroid*, it could have reached Earth's surface. How much later would such an asteroid have had to arrive to put the impact in the Atlantic Ocean at longitude 20° W? (The resulting tsunamis would have wiped out coastal civilization on both sides of the Atlantic.)
- **85** A golf ball is launched at an angle of 20° to the horizontal, with a speed of 60 m/s and a rotation rate of 90 rad/s. Neglecting air drag, determine the number of revolutions the ball makes by the time it reaches maximum height.
- 86 Figure 10-51 shows a flat construction of two circular rings that have a common center and are held together by three rods of negligible mass. The construction, which is initially at rest, can rotate around the common center (like a merry-goround), where another rod of negligible mass lies. The mass, inner radius, and outer radius of the

Fig. 10-51 Problem 86.

rings are given in the following table. A tangential force of magnitude 12.0 N is applied to the outer edge of the outer ring for 0.300 s. What is the change in the angular speed of the construction during that time interval?

Ring	Mass (kg)	Inner Radius (m)	Outer Radius (m)	
1	0.120	0.0160	0.0450	
2	0.240	0.0900	0.1400	

87 In Fig. 10-52, a wheel of radius 0.20 m is mounted on a frictionless horizontal axle. A massless cord is wrapped around the wheel and attached to a 2.0 kg box that slides on a frictionless surface inclined at angle $\theta = 20^{\circ}$ with the horizontal. The box accelerates down the surface at 2.0 m/s². What is the rotational inertia of the wheel about the axle?

Fig. 10-52 Problem 87.

- **88** A thin spherical shell has a radius of 1.90 m. An applied torque of 960 N·m gives the shell an angular acceleration of 6.20 rad/s² about an axis through the center of the shell. What are (a) the rotational inertia of the shell about that axis and (b) the mass of the shell?
- **89** A bicyclist of mass 70 kg puts all his mass on each downward-moving pedal as he pedals up a steep road. Take the diameter of the circle in which the pedals rotate to be 0.40 m, and determine the magnitude of the maximum torque he exerts about the rotation axis of the pedals.
- 90 The flywheel of an engine is rotating at 25.0 rad/s. When the engine is turned off, the flywheel slows at a constant rate and stops in 20.0 s. Calculate (a) the angular acceleration of the flywheel, (b) the angle through which the flywheel rotates in stopping, and (c) the number of revolutions made by the flywheel in stopping.
- **91** SSM In Fig. 10-18a, a wheel of radius 0.20 m is mounted on a frictionless horizontal axis. The rotational inertia of the wheel about the axis is $0.40 \text{ kg} \cdot \text{m}^2$. A massless cord wrapped around the wheel's circumference is attached to a 6.0 kg box. The system is released from rest. When the box has a kinetic energy of 6.0 J, what are (a) the wheel's rotational kinetic energy and (b) the distance the box has fallen?
- **92** Our Sun is 2.3×10^4 ly (light-years) from the center of our Milky Way galaxy and is moving in a circle around that center at a speed of 250 km/s. (a) How long does it take the Sun to make one revolution about the galactic center? (b) How many revolutions has the Sun completed since it was formed about 4.5×10^9 years ago?
- **93** SSM A wheel of radius 0.20 m is mounted on a frictionless horizontal axis. The rotational inertia of the wheel about the axis is $0.050 \text{ kg} \cdot \text{m}^2$. A massless cord wrapped around the wheel is attached to a 2.0 kg

Fig. 10-53 Problem 93.

block that slides on a horizontal frictionless surface. If a horizontal force of magnitude P = 3.0 N is applied to the block as shown in Fig. 10-53, what is the magnitude of the angular acceleration of the wheel? Assume the cord does not slip on the wheel.

- **94** A car starts from rest and moves around a circular track of radius 30.0 m. Its speed increases at the constant rate of 0.500 m/s². (a) What is the magnitude of its *net* linear acceleration 15.0 s later? (b) What angle does this net acceleration vector make with the car's velocity at this time?
- 95 The rigid body shown in Fig. 10-54 consists of three particles connected by massless rods. It is to be rotated about an axis perpendicular to its plane through point P. If M = 0.40 kg, a = 30 cm, and b = 50 cm, how much work is required to take the body from rest to an angular speed of 5.0 rad/s?

96 Beverage engineering. The pull tab was a major advance in the engi-

Fig. 10-54 Problem 95.

neering design of beverage containers. The tab pivots on a central bolt in the can's top. When you pull upward on one end of the tab, the other end presses downward on a portion of the can's top that has been scored. If you pull upward with a 10 N force, approximately what is the magnitude of the force applied to the scored section? (You will need to examine a can with a pull tab.)

Fig. 10-55 Problem 97.

tion of point A and of a point at radial distance 0.150 m? (b) Find the slope of a plot of a versus radial distance along the blade.

98 A yo-yo-shaped device mounted on a horizontal frictionless axis is used to lift a 30 kg box as shown in Fig. 10-56. The outer radius R of the device is 0.50 m, and the radius r of the hub is 0.20 m. When a constant horizontal force $\vec{F}_{\rm app}$ of magnitude 140 N is applied to a rope wrapped around the outside of the device, the box, which is suspended from a rope wrapped around the hub, has an upward acceleration of magnitude 0.80 m/s². What is

Fig. 10-56 Problem 98.

the rotational inertia of the device about its axis of rotation?

99 A small ball with mass 1.30 kg is mounted on one end of a rod 0.780 m long and of negligible mass. The system rotates in a horizontal circle about the other end of the rod at 5010 rev/min. (a) Calculate the rotational inertia of the system about the axis of rotation. (b) There is an air drag of 2.30×10^{-2} N on the ball, directed opposite its motion. What torque must be applied to the system to keep it rotating at constant speed?

100 Two thin rods (each of mass $0.20 \,\mathrm{kg}$) are joined together to form a rigid body as shown in Fig. 10-57. One of the rods has length $L_1 = 0.40$ m, and the other has length $L_2 = 0.50 \,\mathrm{m}$. What is the rotational inertia of this rigid body about (a) an axis that is perpendicular to the plane of the paper and passes through the center of the shorter rod and (b) an axis that is perpendicular to the plane of the paper and passes through the center of the paper and passes through the center of the longer rod?

Fig. 10-57 Problem 100.

101 In Fig. 10-58, four pulleys are connected by two belts. Pulley A (radius 15 cm) is the drive pulley, and it rotates at 10 rad/s. Pulley B (radius 10 cm) is connected by belt 1 to pulley A. Pulley B' (radius 5 cm) is concentric with pulley B and is rigidly attached to it. Pulley C (radius 25 cm) is connected by belt 2 to pulley B'. Calculate (a) the linear speed of a point on belt 1, (b) the an-

Fig. 10-58 Problem 101.

gular speed of pulley B, (c) the angular speed of pulley B', (d) the linear speed of a point on belt 2, and (e) the angular speed of pulley C. (*Hint:* If the belt between two pulleys does not slip, the linear speeds at the rims of the two pulleys must be equal.)

102 The rigid object shown in Fig. 10-59 consists of three balls and three connecting rods, with $M = 1.6 \,\mathrm{kg}$, $L = 0.60 \,\mathrm{m}$, and $\theta = 30^\circ$. The balls may be treated as particles, and the connecting rods have negligible mass. Determine the rotational kinetic energy of the object if it has an angular speed of 1.2 rad/s about (a) an axis that passes through point P and is perpendicular to the plane of the figure and (b) an axis that passes through point P, is perpendicular to the rod of length 2L, and lies in the plane of the figure.

Fig. 10-59 Problem 102.

103 In Fig. 10-60, a thin uniform rod (mass 3.0 kg, length 4.0 m) rotates freely about a horizontal axis A that is perpendicular to the rod and passes through a point at distance d=1.0 m from the end of the rod. The kinetic energy of the rod as it passes through the vertical position is 20 J. (a) What is the rotational inertia of the rod about axis A? (b) What is the (linear) speed of the end B of the rod as the rod passes through the vertical position? (c) At what angle θ will the rod momentarily stop in its upward swing?

Fig. 10-60 Problem 103.

104 Four particles, each of mass, 0.20 kg, are placed at the vertices of a square with sides of length 0.50 m. The particles are connected by rods of negligible mass. This rigid body can rotate in a vertical plane about a horizontal axis *A* that passes through one of the particles. The body is released from rest with rod *AB* horizontal (Fig. 10-61). (a) What is the rotational inertia of the body about axis *A*? (b) What is the angu-

Fig. 10-61 Problem 104.

lar speed of the body about axis A when rod AB swings through the vertical position?

ROLLING, TORQUE, AND ANGULAR MOMENTUM

As we discussed in Chapter 10, physics in

As we discussed in Chapter 10, physics includes the study of rotation. Arguably, the most important application of that physics is in the rolling motion of wheels and wheel-like objects. This applied physics has long been used. For example, when the prehistoric people of Easter Island moved their gigantic stone statues from the quarry and across the island, they dragged them over logs acting as rollers. Much later, when settlers moved westward across America in the 1800s, they rolled their possessions first by wagon and then later by train. Today, like it or not, the world is filled with cars, trucks, motorcycles, bicycles, and other rolling vehicles.

The physics and engineering of rolling have been around for so long that you might think no fresh ideas remain to be developed. However, skateboards and inline skates were invented and engineered fairly recently, to become huge financial successes. Street luge is now catching on, and the self-righting Segway (Fig. 11-1) may change the way people move around in large cities. Applying the physics of rolling can still lead to surprises and rewards. Our starting point in exploring that physics is to simplify rolling motion.

11-2 Rolling as Translation and Rotation Combined

Here we consider only objects that *roll smoothly* along a surface; that is, the objects roll without slipping or bouncing on the surface. Figure 11-2 shows how complicated smooth rolling motion can be: Although the center of the object moves in a straight line parallel to the surface, a point on the rim certainly does not. However, we can study this motion by treating it as a combination of translation of the center of mass and rotation of the rest of the object around that center.

Fig. 11-2 A time-exposure photograph of a rolling disk. Small lights have been attached to the disk, one at its center and one at its edge. The latter traces out a curve called a *cycloid*. (*Richard Megna/Fundamental Photographs*)

Fig. 11-1 The self-righting Segway Human Transporter. (*Justin Sullivan/Getty Images News and Sport Services*)

Fig. 11-3 The center of mass O of a rolling wheel moves a distance s at velocity \vec{v}_{com} while the wheel rotates through angle θ . The point P at which the wheel makes contact with the surface over which the wheel rolls also moves a distance s.

To see how we do this, pretend you are standing on a sidewalk watching the bicycle wheel of Fig. 11-3 as it rolls along a street. As shown, you see the center of mass O of the wheel move forward at constant speed $v_{\rm com}$. The point P on the street where the wheel makes contact with the street surface also moves forward at speed $v_{\rm com}$, so that P always remains directly below O.

During a time interval t, you see both O and P move forward by a distance s. The bicycle rider sees the wheel rotate through an angle θ about the center of the wheel, with the point of the wheel that was touching the street at the beginning of t moving through arc length s. Equation 10-17 relates the arc length s to the rotation angle θ :

$$s = \theta R, \tag{11-1}$$

where R is the radius of the wheel. The linear speed $v_{\rm com}$ of the center of the wheel (the center of mass of this uniform wheel) is ds/dt. The angular speed ω of the wheel about its center is $d\theta/dt$. Thus, differentiating Eq. 11-1 with respect to time (with R held constant) gives us

Fig. 11-4 Rolling motion of a wheel as a combination of purely rotational motion and purely translational motion. (a) The purely rotational motion: All points on the wheel move with the same angular speed ω . Points on the outside edge of the wheel all move with the same linear speed $v = v_{\text{com}}$. The linear velocities \vec{v} of two such points, at top (T) and bottom (P) of the wheel, are shown. (b) The purely translational motion: All points on the wheel move to the right with the same linear velocity \vec{v}_{com} . (c) The rolling motion of the wheel is the combination of (a) and (b).

Figure 11-4 shows that the rolling motion of a wheel is a combination of purely translational and purely rotational motions. Figure 11-4a shows the purely rotational motion (as if the rotation axis through the center were stationary): Every point on the wheel rotates about the center with angular speed ω . (This is the type of motion we considered in Chapter 10.) Every point on the outside edge of the wheel has linear speed $v_{\rm com}$ given by Eq. 11-2. Figure 11-4b shows the purely translational motion (as if the wheel did not rotate at all): Every point on the wheel moves to the right with speed $v_{\rm com}$.

The combination of Figs. 11-4a and 11-4b yields the actual rolling motion of the wheel, Fig. 11-4c. Note that in this combination of motions, the portion of the wheel at the bottom (at point P) is stationary and the portion at the top (at point T) is moving at speed $2\nu_{\rm com}$, faster than any other portion of the wheel. These results are demonstrated in Fig. 11-5, which is a time exposure of a rolling bicycle wheel. You can tell that the wheel is moving faster near its top than near its bottom because the spokes are more blurred at the top than at the bottom.

The motion of any round body rolling smoothly over a surface can be separated into purely rotational and purely translational motions, as in Figs. 11-4a and 11-4b.

Rolling as Pure Rotation

Figure 11-6 suggests another way to look at the rolling motion of a wheel—namely, as pure rotation about an axis that always extends through the point

Fig. 11-5 A photograph of a rolling bicycle wheel. The spokes near the wheel's top are more blurred than those near the bottom because the top ones are moving faster, as Fig. 11-4c shows. (Courtesy Alice Halliday)

where the wheel contacts the street as the wheel moves. We consider the rolling motion to be pure rotation about an axis passing through point *P* in Fig. 11-4*c* and perpendicular to the plane of the figure. The vectors in Fig. 11-6 then represent the instantaneous velocities of points on the rolling wheel.

Question: What angular speed about this new axis will a stationary observer assign to a rolling bicycle wheel?

Answer: The same ω that the rider assigns to the wheel as she or he observes it in pure rotation about an axis through its center of mass.

To verify this answer, let us use it to calculate the linear speed of the top of the rolling wheel from the point of view of a stationary observer. If we call the wheel's radius R, the top is a distance 2R from the axis through P in Fig. 11-6, so the linear speed at the top should be (using Eq. 11-2)

$$v_{\text{top}} = (\omega)(2R) = 2(\omega R) = 2v_{\text{com}},$$

in exact agreement with Fig. 11-4c. You can similarly verify the linear speeds shown for the portions of the wheel at points O and P in Fig. 11-4c.

CHECKPOINT 1

The rear wheel on a clown's bicycle has twice the radius of the front wheel. (a) When the bicycle is moving, is the linear speed at the very top of the rear wheel greater than, less than, or the same as that of the very top of the front wheel? (b) Is the angular speed of the rear wheel greater than, less than, or the same as that of the front wheel?

11-3 The Kinetic Energy of Rolling

Let us now calculate the kinetic energy of the rolling wheel as measured by the stationary observer. If we view the rolling as pure rotation about an axis through P in Fig. 11-6, then from Eq. 10-34 we have

$$K = \frac{1}{2}I_P\omega^2,\tag{11-3}$$

in which ω is the angular speed of the wheel and I_P is the rotational inertia of the wheel about the axis through P. From the parallel-axis theorem of Eq. 10-36 $(I = I_{\text{com}} + Mh^2)$, we have

$$I_P = I_{\text{com}} + MR^2,$$
 (11-4)

in which M is the mass of the wheel, $I_{\rm com}$ is its rotational inertia about an axis through its center of mass, and R (the wheel's radius) is the perpendicular distance h. Substituting Eq. 11-4 into Eq. 11-3, we obtain

$$K = \frac{1}{2}I_{\text{com}}\omega^2 + \frac{1}{2}MR^2\omega^2,$$

and using the relation $v_{\text{com}} = \omega R$ (Eq. 11-2) yields

$$K = \frac{1}{2}I_{\text{com}}\omega^2 + \frac{1}{2}Mv_{\text{com}}^2. \tag{11-5}$$

We can interpret the term $\frac{1}{2}I_{\text{com}}\omega^2$ as the kinetic energy associated with the rotation of the wheel about an axis through its center of mass (Fig. 11-4a), and the term $\frac{1}{2}Mv_{\text{com}}^2$ as the kinetic energy associated with the translational motion of the wheel's center of mass (Fig. 11-4b). Thus, we have the following rule:

A rolling object has two types of kinetic energy: a rotational kinetic energy $(\frac{1}{2}I_{\text{com}}\omega^2)$ due to its rotation about its center of mass and a translational kinetic energy $(\frac{1}{2}Mv_{\text{com}}^2)$ due to translation of its center of mass..

Fig. 11-6 Rolling can be viewed as pure rotation, with angular speed ω , about an axis that always extends through P. The vectors show the instantaneous linear velocities of selected points on the rolling wheel. You can obtain the vectors by combining the translational and rotational motions as in Fig. 11-4.

Fig. 11-7 A wheel rolls horizontally without sliding while accelerating with linear acceleration \vec{a}_{com} . A static frictional force \vec{f}_s acts on the wheel at P, opposing its tendency to slide.

11-4 The Forces of Rolling

Friction and Rolling

If a wheel rolls at constant speed, as in Fig. 11-3, it has no tendency to slide at the point of contact P, and thus no frictional force acts there. However, if a net force acts on the rolling wheel to speed it up or to slow it, then that net force causes acceleration \vec{a}_{com} of the center of mass along the direction of travel. It also causes the wheel to rotate faster or slower, which means it causes an angular acceleration α . These accelerations tend to make the wheel slide at P. Thus, a frictional force must act on the wheel at P to oppose that tendency.

If the wheel *does not* slide, the force is a *static* frictional force \vec{f}_s and the motion is smooth rolling. We can then relate the magnitudes of the linear acceleration \vec{a}_{com} and the angular acceleration α by differentiating Eq. 11-2 with respect to time (with R held constant). On the left side, dv_{com}/dt is a_{com} , and on the right side $d\omega/dt$ is α . So, for smooth rolling we have

$$a_{\text{com}} = \alpha R$$
 (smooth rolling motion). (11-6)

If the wheel *does* slide when the net force acts on it, the frictional force that acts at P in Fig. 11-3 is a *kinetic* frictional force \vec{f}_k . The motion then is not smooth rolling, and Eq. 11-6 does not apply to the motion. In this chapter we discuss only smooth rolling motion.

Figure 11-7 shows an example in which a wheel is being made to rotate faster while rolling to the right along a flat surface, as on a bicycle at the start of a race. The faster rotation tends to make the bottom of the wheel slide to the left at point P. A frictional force at P, directed to the right, opposes this tendency to slide. If the wheel does not slide, that frictional force is a static frictional force \vec{f}_s (as shown), the motion is smooth rolling, and Eq. 11-6 applies to the motion. (Without friction, bicycle races would be stationary and very boring.)

If the wheel in Fig. 11-7 were made to rotate slower, as on a slowing bicycle, we would change the figure in two ways: The directions of the center-of-mass acceleration \vec{a}_{com} and the frictional force \vec{f}_s at point P would now be to the left

Rolling Down a Ramp

Figure 11-8 shows a round uniform body of mass M and radius R rolling smoothly down a ramp at angle θ , along an x axis. We want to find an expression for the body's acceleration $a_{\text{com},x}$ down the ramp. We do this by using Newton's second law in both its linear version ($F_{\text{net}} = Ma$) and its angular version ($\tau_{\text{net}} = I\alpha$).

We start by drawing the forces on the body as shown in Fig. 11-8:

- 1. The gravitational force \vec{F}_g on the body is directed downward. The tail of the vector is placed at the center of mass of the body. The component along the ramp is $F_g \sin \theta$, which is equal to $Mg \sin \theta$.
- **2.** A normal force \vec{F}_N is perpendicular to the ramp. It acts at the point of contact P, but in Fig. 11-8 the vector has been shifted along its direction until its tail is at the body's center of mass.
- **3.** A static frictional force \vec{f}_s acts at the point of contact P and is directed up the ramp. (Do you see why? If the body were to slide at P, it would slide down the ramp. Thus, the frictional force opposing the sliding must be up the ramp.)

We can write Newton's second law for components along the x axis in Fig. 11-8 $(F_{\text{net},x} = ma_x)$ as

$$f_s - Mg\sin\theta = Ma_{\text{com},x}. (11-7)$$

Fig. 11-8 A round uniform body of radius R rolls down a ramp. The forces that act on it are the gravitational force \vec{F}_g , a normal force \vec{F}_N , and a frictional force \vec{f}_s pointing up the ramp. (For clarity, vector \vec{F}_N has been shifted in the direction it points until its tail is at the center of the body.)

This equation contains two unknowns, f_s and $a_{\text{com},x}$. (We should *not* assume that f_s is at its maximum value $f_{s,\text{max}}$. All we know is that the value of f_s is just right for the body to roll smoothly down the ramp, without sliding.)

We now wish to apply Newton's second law in angular form to the body's rotation about its center of mass. First, we shall use Eq. 10-41 ($\tau = r_{\perp}F$) to write the torques on the body about that point. The frictional force \vec{f}_s has moment arm R and thus produces a torque Rf_s , which is positive because it tends to rotate the body counterclockwise in Fig. 11-8. Forces \vec{F}_g and \vec{F}_N have zero moment arms about the center of mass and thus produce zero torques. So we can write the angular form of Newton's second law ($\tau_{\rm net} = I\alpha$) about an axis through the body's center of mass as

$$Rf_s = I_{\text{com}}\alpha. \tag{11-8}$$

This equation contains two unknowns, f_s and α .

Because the body is rolling smoothly, we can use Eq. 11-6 ($a_{\text{com}} = \alpha R$) to relate the unknowns $a_{\text{com},x}$ and α . But we must be cautious because here $a_{\text{com},x}$ is negative (in the negative direction of the x axis) and α is positive (counterclockwise). Thus we substitute $-a_{\text{com},x}/R$ for α in Eq. 11-8. Then, solving for f_s , we obtain

$$f_s = -I_{\text{com}} \frac{a_{\text{com},x}}{R^2}.$$
 (11-9)

Substituting the right side of Eq. 11-9 for f_s in Eq. 11-7, we then find

$$a_{\text{com},x} = -\frac{g \sin \theta}{1 + I_{\text{com}}/MR^2}.$$
 (11-10)

We can use this equation to find the linear acceleration $a_{\text{com},x}$ of any body rolling along an incline of angle θ with the horizontal.

CHECKPOINT 2

Disks A and B are identical and roll across a floor with equal speeds. Then disk A rolls up an incline, reaching a maximum height h, and disk B moves up an incline that is identical except that it is frictionless. Is the maximum height reached by disk B greater than, less than, or equal to h?

Sample Problem

Ball rolling down a ramp

A uniform ball, of mass $M = 6.00 \,\mathrm{kg}$ and radius R, rolls smoothly from rest down a ramp at angle $\theta = 30.0^{\circ}$ (Fig. 11-8).

(a) The ball descends a vertical height h = 1.20 m to reach the bottom of the ramp. What is its speed at the bottom?

KEY IDEAS

The mechanical energy E of the ball-Earth system is conserved as the ball rolls down the ramp. The reason is that the only force doing work on the ball is the gravitational force, a conservative force. The normal force on the ball from the ramp does zero work because it is perpendicular to the ball's path. The frictional force on the ball from the ramp does not transfer any energy to thermal energy because the ball does not slide (it *rolls smoothly*).

Therefore, we can write the conservation of mechanical energy $(E_f = E_i)$ as

$$K_f + U_f = K_i + U_i,$$
 (11-11)

where subscripts f and i refer to the final values (at the bottom) and initial values (at rest), respectively. The gravitational potential energy is initially $U_i = Mgh$ (where M is the ball's mass) and finally $U_f = 0$. The kinetic energy is initially $K_i = 0$. For the final kinetic energy K_f , we need an additional idea: Because the ball rolls, the kinetic energy involves both translation and rotation, so we include them both by using the right side of Eq. 11-5.

Calculations: Substituting into Eq. 11-11 gives us

$$(\frac{1}{2}I_{\text{com}}\omega^2 + \frac{1}{2}Mv_{\text{com}}^2) + 0 = 0 + Mgh, \qquad (11-12)$$

where I_{com} is the ball's rotational inertia about an axis through its center of mass, v_{com} is the requested speed at the bottom, and ω is the angular speed there.

Because the ball rolls smoothly, we can use Eq. 11-2 to substitute v_{com}/R for ω to reduce the unknowns in Eq. 11-12. Doing so, substituting $\frac{2}{5}MR^2$ for I_{com} (from Table 10-2f), and then solving for v_{com} give us

$$v_{\text{com}} = \sqrt{\frac{10}{7}gh} = \sqrt{\frac{10}{7}(9.8 \text{ m/s}^2)(1.20 \text{ m})}$$

= 4.10 m/s. (Answer)

Note that the answer does not depend on M or R.

(b) What are the magnitude and direction of the frictional force on the ball as it rolls down the ramp?

KEY IDEA

Because the ball rolls smoothly, Eq. 11-9 gives the frictional force on the ball.

Calculations: Before we can use Eq. 11-9, we need the ball's acceleration $a_{\text{com},x}$ from Eq. 11-10:

$$a_{\text{com},x} = -\frac{g \sin \theta}{1 + I_{\text{com}}/MR^2} = -\frac{g \sin \theta}{1 + \frac{2}{5}MR^2/MR^2}$$
$$= -\frac{(9.8 \text{ m/s}^2) \sin 30.0^\circ}{1 + \frac{2}{5}} = -3.50 \text{ m/s}^2.$$

Note that we needed neither mass M nor radius R to find $a_{\text{com.x}}$. Thus, any size ball with any uniform mass would have this acceleration down a 30.0° ramp, provided the ball rolls smoothly.

We can now solve Eq. 11-9 as

$$f_s = -I_{\text{com}} \frac{a_{\text{com},x}}{R^2} = -\frac{2}{5}MR^2 \frac{a_{\text{com},x}}{R^2} = -\frac{2}{5}Ma_{\text{com},x}$$

= $-\frac{2}{5}(6.00 \text{ kg})(-3.50 \text{ m/s}^2) = 8.40 \text{ N}.$ (Answer)

Note that we needed mass M but not radius R. Thus, the frictional force on any 6.00 kg ball rolling smoothly down a 30.0° ramp would be 8.40 N regardless of the ball's radius but would be larger for a larger mass.

Additional examples, video, and practice available at WileyPLUS

11-5 The Yo-Yo

A yo-yo is a physics lab that you can fit in your pocket. If a yo-yo rolls down its string for a distance h, it loses potential energy in amount mgh but gains kinetic energy in both translational $(\frac{1}{2}Mv_{\text{com}}^2)$ and rotational $(\frac{1}{2}I_{\text{com}}\omega^2)$ forms. As it climbs back up, it loses kinetic energy and regains potential energy.

In a modern yo-yo, the string is not tied to the axle but is looped around it. When the yo-yo "hits" the bottom of its string, an upward force on the axle from the string stops the descent. The yo-yo then spins, axle inside loop, with only rotational kinetic energy. The yo-yo keeps spinning ("sleeping") until you "wake it" by jerking on the string, causing the string to catch on the axle and the yo-yo to climb back up. The rotational kinetic energy of the yo-yo at the bottom of its string (and thus the sleeping time) can be considerably increased by throwing the yo-yo downward so that it starts down the string with initial speeds v_{com} and ω instead of rolling down from rest.

To find an expression for the linear acceleration $a_{\rm com}$ of a yo-yo rolling down a string, we could use Newton's second law just as we did for the body rolling down a ramp in Fig. 11-8. The analysis is the same except for the following:

- **1.** Instead of rolling down a ramp at angle θ with the horizontal, the yo-yo rolls down a string at angle $\theta = 90^{\circ}$ with the horizontal.
- **2.** Instead of rolling on its outer surface at radius R, the yo-yo rolls on an axle of radius R_0 (Fig. 11-9a).
- **3.** Instead of being slowed by frictional force \vec{f}_s , the yo-yo is slowed by the force \vec{T} on it from the string (Fig. 11-9b).

The analysis would again lead us to Eq. 11-10. Therefore, let us just change the notation in Eq. 11-10 and set $\theta = 90^{\circ}$ to write the linear acceleration as

$$a_{\rm com} = -\frac{g}{1 + I_{\rm com}/MR_0^2},\tag{11-13}$$

where I_{com} is the yo-yo's rotational inertia about its center and M is its mass. A yo-yo has the same downward acceleration when it is climbing back up.

11-6 Torque Revisited

In Chapter 10 we defined torque τ for a rigid body that can rotate around a fixed axis, with each particle in the body forced to move in a path that is a circle centered on that axis. We now expand the definition of torque to apply it to an individual particle that moves along any path relative to a fixed *point* (rather than a fixed axis). The path need no longer be a circle, and we must write the torque as a vector $\vec{\tau}$ that may have any direction.

Figure 11-10a shows such a particle at point A in an xy plane. A single force \vec{F} in that plane acts on the particle, and the particle's position relative to the origin O is given by position vector \vec{r} . The torque $\vec{\tau}$ acting on the particle relative to the fixed point O is a vector quantity defined as

$$\vec{\tau} = \vec{r} \times \vec{F}$$
 (torque defined). (11-14)

We can evaluate the vector (or cross) product in this definition of $\vec{\tau}$ by using the rules for such products given in Section 3-8. To find the direction of $\vec{\tau}$, we slide

Fig. 11-10 Defining torque. (a) A force \vec{F} , lying in an xy plane, acts on a particle at point A. (b) This force produces a torque $\vec{\tau}$ (= $\vec{r} \times \vec{F}$) on the particle with respect to the origin O. By the right-hand rule for vector (cross) products, the torque vector points in the positive direction of z. Its magnitude is given by rF_{\perp} in (b) and by $r_{\perp}F$ in (c).

Fig. 11-9 (a) A yo-yo, shown in cross section. The string, of assumed negligible thickness, is wound around an axle of radius R_0 . (b) A free-body diagram for the falling yo-yo. Only the axle is shown.

the vector \vec{F} (without changing its direction) until its tail is at the origin O, so that the two vectors in the vector product are tail to tail as in Fig. 11-10b. We then use the right-hand rule for vector products in Fig. 3-19a, sweeping the fingers of the right hand from \vec{r} (the first vector in the product) into \vec{F} (the second vector). The outstretched right thumb then gives the direction of $\vec{\tau}$. In Fig. 11-10b, the direction of $\vec{\tau}$ is in the positive direction of the z axis.

To determine the magnitude of $\vec{\tau}$, we apply the general result of Eq. 3-27 $(c = ab \sin \phi)$, finding $\tau = rF \sin \phi$, (11-15)

where ϕ is the smaller angle between the directions of \vec{r} and \vec{F} when the vectors are tail to tail. From Fig. 11-10b, we see that Eq. 11-15 can be rewritten as

$$\tau = rF_{\perp},\tag{11-16}$$

Sample Problem

Torque on a particle due to a force

In Fig. 11-11*a*, three forces, each of magnitude 2.0 N, act on a particle. The particle is in the xz plane at point A given by position vector \vec{r} , where r=3.0 m and $\theta=30^\circ$. Force \vec{F}_1 is parallel to the x axis, force \vec{F}_2 is parallel to the z axis, and force \vec{F}_3 is parallel to the y axis. What is the torque, about the origin O, due to each force?

KEY IDEA

Because the three force vectors do not lie in a plane, we cannot evaluate their torques as in Chapter 10. Instead, we must use

vector (or cross) products, with magnitudes given by Eq. 11-15 $(\tau = rF \sin \phi)$ and directions given by the right-hand rule for vector products.

Calculations: Because we want the torques with respect to the origin O, the vector \vec{r} required for each cross product is the given position vector. To determine the angle ϕ between the direction of \vec{r} and the direction of each force, we shift the force vectors of Fig. 11-11a, each in turn, so that their tails are at the origin. Figures 11-11b, c, and d, which are direct views of the xz plane, show the shifted force vectors \vec{F}_1 ,

where F_{\perp} (= $F \sin \phi$) is the component of \vec{F} perpendicular to \vec{r} . From Fig. 11-10c, we see that Eq. 11-15 can also be rewritten as

$$\tau = r_{\perp} F,\tag{11-17}$$

where $r_{\perp} (= r \sin \phi)$ is the moment arm of \vec{F} (the perpendicular distance between O and the line of action of F).

CHECKPOINT 3

The position vector \vec{r} of a particle points along the positive direction of a z axis. If the torque on the particle is (a) zero, (b) in the negative direction of x, and (c) in the negative direction of y, in what direction is the force causing the torque?

 \vec{F}_2 , and \vec{F}_3 , respectively. (Note how much easier the angles between the force vectors and the position vector are to see.) In Fig. 11-11d, the angle between the directions of \vec{r} and \vec{F}_3 is 90° and the symbol \otimes means \vec{F}_3 is directed into the page. If it were directed out of the page, it would be represented with the symbol \odot .

Now, applying Eq. 11-15 for each force, we find the magnitudes of the torques to be

$$\tau_1 = rF_1 \sin \phi_1 = (3.0 \text{ m})(2.0 \text{ N})(\sin 150^\circ) = 3.0 \text{ N} \cdot \text{m},$$

 $\tau_2 = rF_2 \sin \phi_2 = (3.0 \text{ m})(2.0 \text{ N})(\sin 120^\circ) = 5.2 \text{ N} \cdot \text{m},$

(d)

and
$$\tau_3 = rF_3 \sin \phi_3 = (3.0 \text{ m})(2.0 \text{ N})(\sin 90^\circ)$$

= 6.0 N·m. (Answer)

To find the directions of these torques, we use the righthand rule, placing the fingers of the right hand so as to rotate \vec{r} into \vec{F} through the *smaller* of the two angles between their directions. The thumb points in the direction of the torque. Thus $\vec{\tau}_1$ is directed into the page in Fig. 11-11b; $\vec{\tau}_2$ is directed out of the page in Fig. 11-11c; and $\vec{\tau}_3$ is directed as shown in Fig. 11-11d. All three torque vectors are shown in Fig. 11-11*e*.

These are the three torques acting on the particle, each measured about the origin O.

Cross \vec{r} into \vec{F}_3 . Torque $\vec{\tau}_3$ is in the xz plane.

Fig. 11-12 Defining angular momentum. A particle passing through point A has linear momentum $\vec{p} (= m\vec{v})$, with the vector \vec{p} lying in an xy plane. The particle has angular momentum $\vec{\ell} (= \vec{r} \times \vec{p})$ with respect to the origin O. By the right-hand rule, the angular momentum vector points in the positive direction of z. (a) The magnitude of $\vec{\ell}$ is given by $\ell = rp_{\perp} = rmv_{\perp}$. (b) The magnitude of $\vec{\ell}$ is also given by $\ell = r_{\perp}p = r_{\perp}mv$.

11-7 Angular Momentum

Recall that the concept of linear momentum \vec{p} and the principle of conservation of linear momentum are extremely powerful tools. They allow us to predict the outcome of, say, a collision of two cars without knowing the details of the collision. Here we begin a discussion of the angular counterpart of \vec{p} , winding up in Section 11-11 with the angular counterpart of the conservation principle.

Figure 11-12 shows a particle of mass m with linear momentum $\vec{p} \ (= m\vec{v})$ as it passes through point A in an xy plane. The **angular momentum** $\vec{\ell}$ of this particle with respect to the origin O is a vector quantity defined as

$$\vec{\ell} = \vec{r} \times \vec{p} = m(\vec{r} \times \vec{v})$$
 (angular momentum defined), (11-18)

where \vec{r} is the position vector of the particle with respect to O. As the particle moves relative to O in the direction of its momentum \vec{p} (= $m\vec{v}$), position vector \vec{r} rotates around O. Note carefully that to have angular momentum about O, the particle does *not* itself have to rotate around O. Comparison of Eqs. 11-14 and 11-18 shows that angular momentum bears the same relation to linear momentum that torque does to force. The SI unit of angular momentum is the kilogrammeter-squared per second (kg·m²/s), equivalent to the joule-second (J·s).

To find the direction of the angular momentum vector $\vec{\ell}$ in Fig. 11-12, we slide the vector \vec{p} until its tail is at the origin O. Then we use the right-hand rule for vector products, sweeping the fingers from \vec{r} into \vec{p} . The outstretched thumb then shows that the direction of $\vec{\ell}$ is in the positive direction of the z axis in Fig. 11-12. This positive direction is consistent with the counterclockwise rotation of position vector \vec{r} about the z axis, as the particle moves. (A negative direction of $\vec{\ell}$ would be consistent with a clockwise rotation of \vec{r} about the z axis.)

To find the magnitude of $\vec{\ell}$, we use the general result of Eq. 3-27 to write

$$\ell = rmv \sin \phi, \tag{11-19}$$

where ϕ is the smaller angle between \vec{r} and \vec{p} when these two vectors are tail to tail. From Fig. 11-12a, we see that Eq. 11-19 can be rewritten as

$$\ell = rp_{\perp} = rmv_{\perp}, \tag{11-20}$$

where p_{\perp} is the component of \vec{p} perpendicular to \vec{r} and v_{\perp} is the component of \vec{v} perpendicular to \vec{r} . From Fig. 11-12b, we see that Eq. 11-19 can also be rewritten as

$$\ell = r_{\perp}p = r_{\perp}mv, \tag{11-21}$$

where r_{\perp} is the perpendicular distance between O and the extension of \vec{p} .

Note two features here: (1) angular momentum has meaning only with respect to a specified origin and (2) its direction is always perpendicular to the plane formed by the position and linear momentum vectors \vec{r} and \vec{p} .

CHECKPOINT 4

In part a of the figure, particles 1 and 2 move around point O in circles with radii 2 m and 4 m. In part b, particles 3 and 4 travel along straight lines at perpendicular distances of 4 m and 2 m from point O. Particle 5 moves directly away from O.

All five particles have the same mass and the same constant speed. (a) Rank the particles according to the magnitudes of their angular momentum about point O, greatest first. (b) Which particles have negative angular momentum about point O?

Sample Problem

Angular momentum of a two-particle system

Figure 11-13 shows an overhead view of two particles moving at constant momentum along horizontal paths. Particle 1, with momentum magnitude $p_1 = 5.0 \, \mathrm{kg} \cdot \mathrm{m/s}$, has position vector \vec{r}_1 and will pass 2.0 m from point O. Particle 2, with momentum magnitude $p_2 = 2.0 \, \mathrm{kg} \cdot \mathrm{m/s}$, has position vector \vec{r}_2 and will pass 4.0 m from point O. What are the magnitude and direction of the net angular momentum \vec{L} about point O of the two-particle system?

Fig. 11-13 Two particles pass near point *O*.

 \vec{r}_1 around O as particle 1 moves. Thus, the angular momentum vector for particle 1 is

$$\ell_1 = +10 \,\mathrm{kg} \cdot \mathrm{m}^2/\mathrm{s}.$$

Similarly, the magnitude of $\vec{\ell}_2$ is

$$\ell_2 = r_{\perp 2} p_2 = (4.0 \text{ m})(2.0 \text{ kg} \cdot \text{m/s})$$

= 8.0 kg·m²/s,

and the vector product $\vec{r}_2 \times \vec{p}_2$ is into the page, which is the negative direction, consistent with the clockwise rotation of \vec{r}_2 around O as particle 2 moves. Thus, the angular momentum vector for particle 2 is

$$\ell_2 = -8.0 \,\mathrm{kg} \cdot \mathrm{m}^2/\mathrm{s}.$$

The net angular momentum for the two-particle system is

$$L = \ell_1 + \ell_2 = +10 \text{ kg} \cdot \text{m}^2/\text{s} + (-8.0 \text{ kg} \cdot \text{m}^2/\text{s})$$

= +2.0 kg \cdot \text{m}^2/\text{s}. (Answer)

The plus sign means that the system's net angular momentum about point O is out of the page.

KEY IDEA

To find \vec{L} , we can first find the individual angular momenta $\vec{\ell}_1$ and $\vec{\ell}_2$ and then add them. To evaluate their magnitudes, we can use any one of Eqs. 11-18 through 11-21. However, Eq. 11-21 is easiest, because we are given the perpendicular distances $r_{1\perp}$ (= 2.0 m) and $r_{2\perp}$ (= 4.0 m) and the momentum magnitudes p_1 and p_2 .

Calculations: For particle 1, Eq. 11-21 yields

$$\ell_1 = r_{\perp 1} p_1 = (2.0 \text{ m})(5.0 \text{ kg} \cdot \text{m/s})$$

= 10 kg · m²/s.

To find the direction of vector $\vec{\ell}_1$, we use Eq. 11-18 and the right-hand rule for vector products. For $\vec{r}_1 \times \vec{p}_1$, the vector product is out of the page, perpendicular to the plane of Fig. 11-13. This is the positive direction, consistent with the counterclockwise rotation of the particle's position vector

Additional examples, video, and practice available at WileyPLUS

11-8 Newton's Second Law in Angular Form

Newton's second law written in the form

$$\vec{F}_{\text{net}} = \frac{d\vec{p}}{dt}$$
 (single particle) (11-22)

expresses the close relation between force and linear momentum for a single particle. We have seen enough of the parallelism between linear and angular quantities to be pretty sure that there is also a close relation between torque and angular momentum. Guided by Eq. 11-22, we can even guess that it must be

$$\vec{\tau}_{\text{net}} = \frac{d\vec{\ell}}{dt}$$
 (single particle). (11-23)

Equation 11-23 is indeed an angular form of Newton's second law for a single particle:

The (vector) sum of all the torques acting on a particle is equal to the time rate of change of the angular momentum of that particle.

Equation 11-23 has no meaning unless the torques $\vec{\tau}$ and the angular momentum $\vec{\ell}$ are defined with respect to the same point, usually the origin of the coordinate system being used.

Proof of Equation 11-23

We start with Eq. 11-18, the definition of the angular momentum of a particle:

$$\vec{\ell} = m(\vec{r} \times \vec{v}),$$

where \vec{r} is the position vector of the particle and \vec{v} is the velocity of the particle. Differentiating* each side with respect to time t yields

$$\frac{d\vec{\ell}}{dt} = m\left(\vec{r} \times \frac{d\vec{v}}{dt} + \frac{d\vec{r}}{dt} \times \vec{v}\right). \tag{11-24}$$

However, $d\vec{v}/dt$ is the acceleration \vec{a} of the particle, and $d\vec{r}/dt$ is its velocity \vec{v} . Thus, we can rewrite Eq. 11-24 as

$$\frac{d\vec{\ell}}{dt} = m(\vec{r} \times \vec{a} + \vec{v} \times \vec{v}).$$

Now $\vec{v} \times \vec{v} = 0$ (the vector product of any vector with itself is zero because the angle between the two vectors is necessarily zero). Thus, the last term of this expression is eliminated and we then have

$$\frac{d\vec{\ell}}{dt} = m(\vec{r} \times \vec{a}) = \vec{r} \times m\vec{a}.$$

We now use Newton's second law $(\vec{F}_{net} = m\vec{a})$ to replace $m\vec{a}$ with its equal, the vector sum of the forces that act on the particle, obtaining

$$\frac{d\vec{\ell}}{dt} = \vec{r} \times \vec{F}_{\text{net}} = \sum (\vec{r} \times \vec{F}). \tag{11-25}$$

Here the symbol Σ indicates that we must sum the vector products $\vec{r} \times \vec{F}$ for all the forces. However, from Eq. 11-14, we know that each one of those vector products is the torque associated with one of the forces. Therefore, Eq. 11-25 tells us that

$$\vec{\tau}_{\rm net} = \frac{d\vec{\ell}}{dt}.$$

This is Eq. 11-23, the relation that we set out to prove.

CHECKPOINT 5

The figure shows the position vector \vec{r} of a particle at a certain instant, and four choices for the direction of a force that is to accelerate the particle. All four choices lie in the xy plane. (a) Rank the choices according to the magnitude of the time rate of change $(d\vec{\ell}/dt)$ they produce in the angular momentum of the particle about point O, greatest first. (b) Which choice results in a negative rate of change about O?

^{*}In differentiating a vector product, be sure not to change the order of the two quantities (here \vec{r} and \vec{v}) that form that product. (See Eq. 3-28.)

Sample Problem

Torque, time derivative of angular momentum, penguin fall

In Fig. 11-14, a penguin of mass m falls from rest at point A, a horizontal distance D from the origin O of an xyz coordinate system. (The positive direction of the z axis is directly outward from the plane of the figure.)

(a) What is the angular momentum $\vec{\ell}$ of the falling penguin about O?

KEY IDEA

We can treat the penguin as a particle, and thus its angular momentum $\vec{\ell}$ is given by Eq. 11-18 ($\vec{\ell} = \vec{r} \times \vec{p}$), where \vec{r} is the penguin's position vector (extending from O to the penguin) and \vec{p} is the penguin's linear momentum. (The penguin has *angular* momentum about O even though it moves in a straight line, because vector \vec{r} rotates about O as the penguin falls.)

Calculations: To find the magnitude of $\vec{\ell}$, we can use any one of the scalar equations derived from Eq. 11-18—namely, Eqs. 11-19 through 11-21. However, Eq. 11-21 $(\ell = r_{\perp} m v)$ is easiest because the perpendicular distance r_{\perp} between O and an extension of vector \vec{p} is the given distance D. The speed of an object that has fallen from rest for a time t is v = gt. We can now write Eq. 11-21 in terms of given quantities as

$$\ell = r_1 m v = D m g t.$$
 (Answer)

To find the direction of $\vec{\ell}$, we use the right-hand rule for the vector product $\vec{r} \times \vec{p}$ in Eq. 11-18. Mentally shift \vec{p} until its tail is at the origin, and then use the fingers of your right hand to rotate \vec{r} into \vec{p} through the smaller angle between the two vectors. Your outstretched thumb then points into the plane of the figure, indicating that the product $\vec{r} \times \vec{p}$ and thus also $\vec{\ell}$ are directed into that plane, in the negative direction of the z axis. We represent $\vec{\ell}$ with an encircled cross \otimes at O. The vector $\vec{\ell}$ changes with time in magnitude only; its direction remains unchanged.

(b) About the origin O, what is the torque $\vec{\tau}$ on the penguin due to the gravitational force \vec{F}_g ?

KEY IDEAS

(1) The torque is given by Eq. 11-14 ($\vec{\tau} = \vec{r} \times \vec{F}$), where now the force is $\vec{F_g}$. (2) Force $\vec{F_g}$ causes a torque on the penguin, even though the penguin moves in a straight line, because \vec{r} rotates about O as the penguin moves.

Fig. 11-14 A penguin falls vertically from point A. The torque $\vec{\tau}$ and the angular momentum $\vec{\ell}$ of the falling penguin with respect to the origin O are directed into the plane of the figure at O.

Calculations: To find the magnitude of $\vec{\tau}$, we can use any one of the scalar equations derived from Eq. 11-14—namely, Eqs. 11-15 through 11-17. However, Eq. 11-17 $(\tau = r_{\perp}F)$ is easiest because the perpendicular distance r_{\perp} between O and the line of action of \vec{F}_g is the given distance D. So, substituting D and using mg for the magnitude of \vec{F}_g , we can write Eq. 11-17 as

$$\tau = DF_g = Dmg.$$
 (Answer)

Using the right-hand rule for the vector product $\vec{r} \times \vec{F}$ in Eq. 11-14, we find that the direction of $\vec{\tau}$ is the negative direction of the z axis, the same as $\vec{\ell}$.

The results we obtained in parts (a) and (b) must be consistent with Newton's second law in the angular form of Eq. 11-23 ($\vec{\tau}_{\text{net}} = d\vec{\ell}/dt$). To check the magnitudes we got, we write Eq. 11-23 in component form for the z axis and then substitute our result $\ell = Dmgt$. We find

$$\tau = \frac{d\ell}{dt} = \frac{d(Dmgt)}{dt} = Dmg,$$

which is the magnitude we found for $\vec{\tau}$. To check the directions, we note that Eq. 11-23 tells us that $\vec{\tau}$ and $d\vec{\ell}/dt$ must have the same direction. So $\vec{\tau}$ and $\vec{\ell}$ must also have the same direction, which is what we found.

11-9 The Angular Momentum of a System of Particles

Now we turn our attention to the angular momentum of a system of particles with respect to an origin. The total angular momentum \vec{L} of the system is the (vector) sum of the angular momenta $\vec{\ell}$ of the individual particles (here with label i):

$$\vec{L} = \vec{\ell}_1 + \vec{\ell}_2 + \vec{\ell}_3 + \dots + \vec{\ell}_n = \sum_{i=1}^n \vec{\ell}_i.$$
 (11-26)

With time, the angular momenta of individual particles may change because of interactions between the particles or with the outside. We can find the resulting change in \vec{L} by taking the time derivative of Eq. 11-26. Thus,

$$\frac{d\vec{L}}{dt} = \sum_{i=1}^{n} \frac{d\vec{\ell}_i}{dt}.$$
 (11-27)

From Eq. 11-23, we see that $d\vec{\ell}_i/dt$ is equal to the net torque $\vec{\tau}_{\text{net},i}$ on the *i*th particle. We can rewrite Eq. 11-27 as

$$\frac{d\vec{L}}{dt} = \sum_{i=1}^{n} \vec{\tau}_{\text{net},i}.$$
 (11-28)

That is, the rate of change of the system's angular momentum \vec{L} is equal to the vector sum of the torques on its individual particles. Those torques include *internal torques* (due to forces between the particles) and *external torques* (due to forces on the particles from bodies external to the system). However, the forces between the particles always come in third-law force pairs so their torques sum to zero. Thus, the only torques that can change the total angular momentum \vec{L} of the system are the external torques acting on the system.

Let $\vec{\tau}_{net}$ represent the net external torque, the vector sum of all external torques on all particles in the system. Then we can write Eq. 11-28 as

$$\vec{\tau}_{\text{net}} = \frac{d\vec{L}}{dt}$$
 (system of particles), (11-29)

which is Newton's second law in angular form. It says:

The net external torque $\vec{\tau}_{\text{net}}$ acting on a system of particles is equal to the time rate of change of the system's total angular momentum \vec{L} .

Equation 11-29 is analogous to $\vec{F}_{\rm net} = d\vec{P}/dt$ (Eq. 9-27) but requires extra caution: Torques and the system's angular momentum must be measured relative to the same origin. If the center of mass of the system is not accelerating relative to an inertial frame, that origin can be any point. However, if it is accelerating, then it *must* be the origin. For example, consider a wheel as the system of particles. If it is rotating about an axis that is fixed relative to the ground, then the origin for applying Eq. 11-29 can be any point that is stationary relative to the ground. However, if it is rotating about an axis that is accelerating (such as when it rolls down a ramp), then the origin can be only at its center of mass.

11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis

We next evaluate the angular momentum of a system of particles that form a rigid body that rotates about a fixed axis. Figure 11-15a shows such a body. The fixed axis of rotation is a z axis, and the body rotates about it with constant angular speed ω . We wish to find the angular momentum of the body about that axis.

We can find the angular momentum by summing the z components of the angular momenta of the mass elements in the body. In Fig. 11-15a, a typical mass element, of mass Δm_i , moves around the z axis in a circular path. The position of the mass element is located relative to the origin O by position vector \vec{r}_i . The radius of the mass element's circular path is $r_{\perp i}$, the perpendicular distance between the element and the z axis.

The magnitude of the angular momentum $\vec{\ell}_i$ of this mass element, with respect to O, is given by Eq. 11-19:

$$\ell_i = (r_i)(p_i)(\sin 90^\circ) = (r_i)(\Delta m_i v_i),$$

where p_i and v_i are the linear momentum and linear speed of the mass element, and 90° is the angle between \vec{r}_i and \vec{p}_i . The angular momentum vector $\vec{\ell}_i$ for the mass element in Fig. 11-15*a* is shown in Fig. 11-15*b*; its direction must be perpendicular to those of \vec{r}_i and \vec{p}_i .

We are interested in the component of $\vec{\ell}_i$ that is parallel to the rotation axis, here the z axis. That z component is

$$\ell_{iz} = \ell_i \sin \theta = (r_i \sin \theta)(\Delta m_i v_i) = r_{\perp i} \Delta m_i v_i.$$

The z component of the angular momentum for the rotating rigid body as a whole is found by adding up the contributions of all the mass elements that make up the body. Thus, because $v = \omega r_{\perp}$, we may write

$$L_{z} = \sum_{i=1}^{n} \ell_{iz} = \sum_{i=1}^{n} \Delta m_{i} v_{i} r_{\perp i} = \sum_{i=1}^{n} \Delta m_{i} (\omega r_{\perp i}) r_{\perp i}$$
$$= \omega \left(\sum_{i=1}^{n} \Delta m_{i} r_{\perp i}^{2} \right). \tag{11-30}$$

We can remove ω from the summation here because it has the same value for all points of the rotating rigid body.

The quantity $\sum \Delta m_i r_{\perp i}^2$ in Eq. 11-30 is the rotational inertia *I* of the body about the fixed axis (see Eq. 10-33). Thus Eq. 11-30 reduces to

$$L = I\omega$$
 (rigid body, fixed axis). (11-31)

We have dropped the subscript z, but you must remember that the angular momentum defined by Eq. 11-31 is the angular momentum about the rotation axis. Also, I in that equation is the rotational inertia about that same axis.

Table 11-1, which supplements Table 10-3, extends our list of corresponding linear and angular relations.

More Corresponding Variables and Relations for Translational and Rotational Motion a

Translational		Rotational	
Force	\vec{F}	Torque	$\vec{\tau} (= \vec{r} \times \vec{F})$
Linear momentum	\overrightarrow{P}	Angular momentum	$\vec{\ell} \ (= \vec{r} \times \vec{p})$
Linear momentum ^b	$\vec{P} (= \Sigma \vec{p}_i)$	Angular momentum ^b	$\vec{L} \ (= \Sigma \vec{\ell}_i)$
Linear momentum ^b	$\vec{P} = M \vec{v}_{\rm com}$	Angular momentum ^c	$L = I\omega$
Newton's second law ^b	$\vec{F}_{\text{net}} = \frac{d\vec{P}}{dt}$	Newton's second law ^b	$\vec{ au}_{ m net} = rac{d\vec{L}}{dt}$
Conservation law d	\vec{P} = a constant	Conservation law ^d	\vec{L} = a constant

^aSee also Table 10-3.

Fig. 11-15 (a) A rigid body rotates about a z axis with angular speed ω . A mass element of mass Δm_i within the body moves about the z axis in a circle with radius $r_{\perp i}$. The mass element has linear momentum \vec{p}_i , and it is located relative to the origin O by position vector \vec{r}_i . Here the mass element is shown when $r_{\perp i}$ is parallel to the x axis. (b) The angular momentum $\vec{\ell}_i$, with respect to O, of the mass element in (a). The z component ℓ_{iz} is also shown.

^bFor systems of particles, including rigid bodies.

 $^{^{}c}$ For a rigid body about a fixed axis, with L being the component along that axis.

^dFor a closed, isolated system.

In the figure, a disk, a hoop, and a solid sphere are made to spin about fixed central axes (like a

top) by means of strings wrapped around them, with the strings producing the same constant tangential force \vec{F} on all three objects. The three objects have the same mass and radius, and they are initially stationary. Rank the objects according to (a) their angular momentum about their central axes and (b) their angular speed, greatest first, when the strings have been pulled for a certain time t.

11-11 Conservation of Angular Momentum

So far we have discussed two powerful conservation laws, the conservation of energy and the conservation of linear momentum. Now we meet a third law of this type, involving the conservation of angular momentum. We start from Eq. 11-29 ($\vec{\tau}_{\rm net} = d\vec{L}/dt$), which is Newton's second law in angular form. If no net external torque acts on the system, this equation becomes $d\vec{L}/dt = 0$, or

$$\vec{L}$$
 = a constant (isolated system). (11-32)

This result, called the **law of conservation of angular momentum**, can also be written as

$$\begin{pmatrix} \text{net angular momentum} \\ \text{at some initial time } t_i \end{pmatrix} = \begin{pmatrix} \text{net angular momentum} \\ \text{at some later time } t_f \end{pmatrix},$$

or
$$\vec{L}_i = \vec{L}_f$$
 (isolated system). (11-33)

Equations 11-32 and 11-33 tell us:

If the net external torque acting on a system is zero, the angular momentum \vec{L} of the system remains constant, no matter what changes take place within the system.

Equations 11-32 and 11-33 are vector equations; as such, they are equivalent to three component equations corresponding to the conservation of angular momentum in three mutually perpendicular directions. Depending on the torques acting on a system, the angular momentum of the system might be conserved in only one or two directions but not in all directions:

If the component of the net *external* torque on a system along a certain axis is zero, then the component of the angular momentum of the system along that axis cannot change, no matter what changes take place within the system.

We can apply this law to the isolated body in Fig. 11-15, which rotates around the z axis. Suppose that the initially rigid body somehow redistributes its mass relative to that rotation axis, changing its rotational inertia about that axis. Equations 11-32 and 11-33 state that the angular momentum of the body cannot change. Substituting Eq. 11-31 (for the angular momentum along the rotational axis) into Eq. 11-33, we write this conservation law as

$$I_i \omega_i = I_f \omega_f. \tag{11-34}$$

Here the subscripts refer to the values of the rotational inertia I and angular speed ω before and after the redistribution of mass.

Like the other two conservation laws that we have discussed, Eqs. 11-32 and 11-33 hold beyond the limitations of Newtonian mechanics. They hold for parti-

PART 1

cles whose speeds approach that of light (where the theory of special relativity reigns), and they remain true in the world of subatomic particles (where quantum physics reigns). No exceptions to the law of conservation of angular momentum have ever been found.

We now discuss four examples involving this law.

1. The spinning volunteer Figure 11-16 shows a student seated on a stool that can rotate freely about a vertical axis. The student, who has been set into rotation at a modest initial angular speed ω_i , holds two dumbbells in his outstretched hands. His angular momentum vector \vec{L} lies along the vertical rotation axis, pointing upward.

The instructor now asks the student to pull in his arms; this action reduces his rotational inertia from its initial value I_i to a smaller value I_f because he moves mass closer to the rotation axis. His rate of rotation increases markedly, from ω_i to ω_f . The student can then slow down by extending his arms once more, moving the dumbbells outward.

No net external torque acts on the system consisting of the student, stool, and dumbbells. Thus, the angular momentum of that system about the rotation axis must remain constant, no matter how the student maneuvers the dumbbells. In Fig. 11-16a, the student's angular speed ω_i is relatively low and his rotational inertia I_i is relatively high. According to Eq. 11-34, his angular speed in Fig. 11-16b must be greater to compensate for the decreased I_f .

- 2. The springboard diver Figure 11-17 shows a diver doing a forward one-and-a-half-somersault dive. As you should expect, her center of mass follows a parabolic path. She leaves the springboard with a definite angular momentum \overline{L} about an axis through her center of mass, represented by a vector pointing into the plane of Fig. 11-17, perpendicular to the page. When she is in the air, no net external torque acts on her about her center of mass, so her angular momentum about her center of mass cannot change. By pulling her arms and legs into the closed tuck position, she can considerably reduce her rotational inertia about the same axis and thus, according to Eq. 11-34, considerably increase her angular speed. Pulling out of the tuck position (into the open layout position) at the end of the dive increases her rotational inertia and thus slows her rotation rate so she can enter the water with little splash. Even in a more complicated dive involving both twisting and somersaulting, the angular momentum of the diver must be conserved, in both magnitude and direction, throughout the dive.
- **3.** *Long jump* When an athlete takes off from the ground in a running long jump, the forces on the launching foot give the athlete an angular momentum with a forward rotation around a horizontal axis. Such rotation would not allow

Fig. 11-16 (a) The student has a relatively large rotational inertia about the rotation axis and a relatively small angular speed. (b) By decreasing his rotational inertia, the student automatically increases his angular speed. The angular momentum \vec{L} of the rotating system remains unchanged.

Fig. 11-17 The diver's angular momentum \vec{L} is constant throughout the dive, being represented by the tail \otimes of an arrow that is perpendicular to the plane of the figure. Note also that her center of mass (see the dots) follows a parabolic path.

Fig. 11-18 Windmill motion of the arms during a long jump helps maintain body orientation for a proper landing.

4. Tour jeté In a tour jeté, a ballet performer leaps with a small twisting motion on the floor with one foot while holding the other leg perpendicular to the body (Fig. 11-19a). The angular speed is so small that it may not be perceptible to the audience. As the performer ascends, the outstretched leg is brought down and the other leg is brought up, with both ending up at angle θ to the body (Fig. 11-19b). The motion is graceful, but it also serves to increase the rotation because bringing in the initially outstretched leg decreases the performer's rotational inertia. Since no external torque acts on the airborne performer, the angular momentum cannot change. Thus, with a decrease in rotational inertia, the angular speed must increase. When the jump is well executed, the performer seems to suddenly begin to spin and rotates 180° before the initial leg orientations are reversed in preparation for the landing. Once a leg is again outstretched, the rotation seems to vanish.

Fig. 11-19 (a) Initial phase of a tour jeté: large rotational inertia and small angular speed. (b) Later phase: smaller rotational inertia and larger angular speed.

CHECKPOINT 7

A rhinoceros beetle rides the rim of a small disk that rotates like a merry-go-round. If the beetle crawls toward the center of the disk, do the following (each relative to the central axis) increase, decrease, or remain the same for the beetle-disk system: (a) rotational inertia, (b) angular momentum, and (c) angular speed?

Sample Problem

Conservation of angular momentum, rotating wheel demo

Figure 11-20a shows a student, again sitting on a stool that can rotate freely about a vertical axis. The student, initially at rest, is holding a bicycle wheel whose rim is loaded with lead and whose rotational inertia I_{wh} about its central axis is 1.2 kg·m². (The rim contains lead in order to make the value of I_{wh} substantial.) The wheel is rotating at an angular speed ω_{wh} of 3.9 rev/s; as seen from overhead, the rotation is counterclockwise. The axis of the wheel is vertical, and the angular momentum \vec{L}_{wh} of the wheel points vertically upward. The student now inverts the wheel (Fig. 11-20b) so

that, as seen from overhead, it is rotating clockwise. Its angular momentum is now $-\vec{L}_{wh}$. The inversion results in the student, the stool, and the wheel's center rotating together as a composite rigid body about the stool's rotation axis, with rotational inertia $I_b = 6.8 \text{ kg} \cdot \text{m}^2$. (The fact that the wheel is also rotating about its center does not affect the mass distribution of this composite body; thus, I_b has the same value whether or not the wheel rotates.) With what angular speed ω_b and in what direction does the composite body rotate after the inversion of the wheel?

Fig. 11-20 (a) A student holds a bicycle wheel rotating around a vertical axis. (b) The student inverts the wheel, setting himself into rotation. (c) The net angular momentum of the system must remain the same in spite of the inversion.

KEY IDEAS

- 1. The angular speed ω_b we seek is related to the final angular momentum \vec{L}_b of the composite body about the stool's rotation axis by Eq. 11-31 $(L = I\omega)$.
- **2.** The initial angular speed ω_{wh} of the wheel is related to the angular momentum \vec{L}_{wh} of the wheel's rotation about its center by the same equation.

- **3.** The vector addition of \vec{L}_b and \vec{L}_{wh} gives the total angular momentum \vec{L}_{tot} of the system of the student, stool, and wheel.
- **4.** As the wheel is inverted, no net *external* torque acts on that system to change \vec{L}_{tot} about any vertical axis. (Torques due to forces between the student and the wheel as the student inverts the wheel are *internal* to the system.) So, the system's total angular momentum is conserved about any vertical axis.

Calculations: The conservation of \vec{L}_{tot} is represented with vectors in Fig. 11-20c. We can also write this conservation in terms of components along a vertical axis as

$$L_{b,f} + L_{wh,f} = L_{b,i} + L_{wh,i}, (11-35)$$

where i and f refer to the initial state (before inversion of the wheel) and the final state (after inversion). Because inversion of the wheel inverted the angular momentum vector of the wheel's rotation, we substitute $-L_{wh,i}$ for $L_{wh,f}$. Then, if we set $L_{h,i} = 0$ (because the student, the stool, and the wheel's center were initially at rest), Eq. 11-35 yields

$$L_{b,f} = 2L_{wh,i}$$
.

Using Eq. 11-31, we next substitute $I_b\omega_b$ for $L_{b,f}$ and $I_{wh}\omega_{wh}$ for $L_{wh,i}$ and solve for ω_b , finding

$$\omega_b = \frac{2I_{wh}}{I_b} \ \omega_{wh}$$

$$= \frac{(2)(1.2 \text{ kg} \cdot \text{m}^2)(3.9 \text{ rev/s})}{6.8 \text{ kg} \cdot \text{m}^2} = 1.4 \text{ rev/s}. \quad \text{(Answer)}$$

This positive result tells us that the student rotates counterclockwise about the stool axis as seen from overhead. If the student wishes to stop rotating, he has only to invert the wheel once more.

Sample Problem

Conservation of angular momentum, cockroach on disk

In Fig. 11-21, a cockroach with mass m rides on a disk of mass 6.00m and radius R. The disk rotates like a merry-go-round around its central axis at angular speed $\omega_i = 1.50$ rad/s. The cockroach is initially at radius r = 0.800R, but then it crawls out to the rim of the disk. Treat the cockroach as a particle. What then is the angular speed?

KEY IDEAS

(1) The cockroach's crawl changes the mass distribution (and thus the rotational inertia) of the cockroach—disk system. (2) The angular momentum of the system does not change because there is no external torque to change it. (The forces

Fig. 11-21 A cockroach rides at radius r on a disk rotating like a merry-go-round.

and torques due to the cockroach's crawl are internal to the system.) (3) The magnitude of the angular momentum of a rigid body or a particle is given by Eq. 11-31 ($L = I\omega$).

Calculations: We want to find the final angular speed. Our key is to equate the final angular momentum L_f to the initial angular momentum L_i , because both involve angular speed. They also involve rotational inertia I. So, let's start by finding the rotational inertia of the system of cockroach and disk before and after the crawl.

The rotational inertia of a disk rotating about its central axis is given by Table 10-2c as $\frac{1}{2}MR^2$. Substituting 6.00m for the mass M, our disk here has rotational inertia

$$I_d = 3.00 mR^2. (11-36)$$

(We don't have values for m and R, but we shall continue with physics courage.)

From Eq. 10-33, we know that the rotational inertia of the cockroach (a particle) is equal to mr^2 . Substituting the cockroach's initial radius (r = 0.800R) and final radius (r = R), we find that its initial rotational inertia about the rotation axis is

$$I_{ci} = 0.64mR^2 (11-37)$$

and its final rotational inertia about the rotation axis is

$$I_{cf} = mR^2.$$
 (11-38)

So, the cockroach-disk system initially has the rotational inertia

$$I_i = I_d + I_{ci} = 3.64 mR^2,$$
 (11-39)

and finally has the rotational inertia

$$I_f = I_d + I_{cf} = 4.00mR^2.$$
 (11-40)

Next, we use Eq. 11-31 ($L = I\omega$) to write the fact that the system's final angular momentum L_f is equal to the system's initial angular momentum L_i :

$$I_f \omega_f = I_i \omega_i$$

or $4.00mR^2\omega_f = 3.64mR^2(1.50 \text{ rad/s}).$

After canceling the unknowns m and R, we come to

$$\omega_f = 1.37 \text{ rad/s.}$$
 (Answer)

Note that the angular speed decreased because part of the mass moved outward from the rotation axis, thus increasing the rotational inertia of the system.

Additional examples, video, and practice available at WileyPLUS

11-12 Precession of a Gyroscope

A simple gyroscope consists of a wheel fixed to a shaft and free to spin about the axis of the shaft. If one end of the shaft of a *nonspinning* gyroscope is placed on a support as in Fig. 11-22a and the gyroscope is released, the gyroscope falls by rotating downward about the tip of the support. Since the fall involves rotation, it is governed by Newton's second law in angular form, which is given by Eq. 11-29:

$$\vec{\tau} = \frac{d\vec{L}}{dt}.\tag{11-41}$$

This equation tells us that the torque causing the downward rotation (the fall) changes the angular momentum \vec{L} of the gyroscope from its initial value of zero. The torque $\vec{\tau}$ is due to the gravitational force $M\vec{g}$ acting at the gyroscope's center of mass, which we take to be at the center of the wheel. The moment arm relative to the support tip, located at O in Fig. 11-22a, is \vec{r} . The magnitude of $\vec{\tau}$ is

$$\tau = Mgr \sin 90^\circ = Mgr \tag{11-42}$$

(because the angle between $M\vec{g}$ and \vec{r} is 90°), and its direction is as shown in Fig. 11-22a.

A rapidly spinning gyroscope behaves differently. Assume it is released with the shaft angled slightly upward. It first rotates slightly downward but then, while it is still spinning about its shaft, it begins to rotate horizontally about a vertical axis through support point O in a motion called **precession.**

Why does the spinning gyroscope stay aloft instead of falling over like the non-spinning gyroscope? The clue is that when the spinning gyroscope is released, the torque due to $M\vec{g}$ must change not an initial angular momentum of zero but rather some already existing nonzero angular momentum due to the spin.

To see how this nonzero initial angular momentum leads to precession, we first consider the angular momentum \vec{L} of the gyroscope due to its spin. To

simplify the situation, we assume the spin rate is so rapid that the angular momentum due to precession is negligible relative to \overline{L} . We also assume the shaft is horizontal when precession begins, as in Fig. 11-22b. The magnitude of \vec{L} is given by Eq. 11-31:

$$L = I\omega, \tag{11-43}$$

where I is the rotational moment of the gyroscope about its shaft and ω is the angular speed at which the wheel spins about the shaft. The vector \vec{L} points along the shaft, as in Fig. 11-22b. Since \vec{L} is parallel to \vec{r} , torque $\vec{\tau}$ must be perpendicular to \vec{L} .

According to Eq. 11-41, torque $\vec{\tau}$ causes an incremental change $d\vec{L}$ in the angular momentum of the gyroscope in an incremental time interval dt; that is,

$$d\vec{L} = \vec{\tau} dt. \tag{11-44}$$

However, for a rapidly spinning gyroscope, the magnitude of \vec{L} is fixed by Eq. 11-43. Thus the torque can change only the direction of \vec{L} , not its magnitude.

From Eq. 11-44 we see that the direction of $d\vec{L}$ is in the direction of $\vec{\tau}$, perpendicular to \vec{L} . The only way that \vec{L} can be changed in the direction of $\vec{\tau}$ without the magnitude L being changed is for \vec{L} to rotate around the z axis as shown in Fig. 11-22c. \vec{L} maintains its magnitude, the head of the \vec{L} vector follows a circular path, and $\vec{\tau}$ is always tangent to that path. Since \vec{L} must always point along the shaft, the shaft must rotate about the z axis in the direction of $\vec{\tau}$. Thus we have precession. Because the spinning gyroscope must obey Newton's law in angular form in response to any change in its initial angular momentum, it must precess instead of merely toppling over.

We can find the **precession rate** Ω by first using Eqs. 11-44 and 11-42 to get the magnitude of $d\hat{L}$:

$$dL = \tau dt = Mgr dt. \tag{11-45}$$

As \vec{L} changes by an incremental amount in an incremental time interval dt, the shaft and \vec{L} precess around the z axis through incremental angle $d\phi$. (In Fig. 11-22c, angle $d\phi$ is exaggerated for clarity.) With the aid of Eqs. 11-43 and 11-45, we find that $d\phi$ is given by

$$d\phi = \frac{dL}{L} = \frac{Mgr \, dt}{I\omega}.$$

Dividing this expression by dt and setting the rate $\Omega = d\phi/dt$, we obtain

$$\Omega = \frac{Mgr}{I\omega} \qquad \text{(precession rate)}. \tag{11-46}$$

This result is valid under the assumption that the spin rate ω is rapid. Note that Ω decreases as ω is increased. Note also that there would be no precession if the gravitational force $M\vec{g}$ did not act on the gyroscope, but because I is a function of M, mass cancels from Eq. 11-46; thus Ω is independent of the mass.

Equation 11-46 also applies if the shaft of a spinning gyroscope is at an angle to the horizontal. It holds as well for a spinning top, which is essentially a spinning gyroscope at an angle to the horizontal.

Fig. 11-22 (a) A nonspinning gyroscope falls by rotating in an xz plane because of torque $\vec{\tau}$. (b) A rapidly spinning gyroscope, with angular momentum \hat{L} , precesses around the z axis. Its precessional motion is in the xy plane. (c) The change $d\vec{L}/dt$ in angular momentum leads to a rotation of \overline{L} about O.

REVIEW & SUMMARY

Rolling Bodies For a wheel of radius *R* rolling smoothly,

$$v_{\rm com} = \omega R, \tag{11-2}$$

where v_{com} is the linear speed of the wheel's center of mass and ω is the angular speed of the wheel about its center. The wheel may also be viewed as rotating instantaneously about the point P of the "road" that is in contact with the wheel. The angular speed of the

wheel about this point is the same as the angular speed of the wheel about its center. The rolling wheel has kinetic energy

$$K = \frac{1}{2}I_{\text{com}}\omega^2 + \frac{1}{2}Mv_{\text{com}}^2,$$
 (11-5)

where $I_{\rm com}$ is the rotational moment of the wheel about its center of mass and M is the mass of the wheel. If the wheel is being accelerated but is still rolling smoothly, the acceleration of the center of mass $\vec{a}_{\rm com}$ is related to the angular acceleration α about the center with

$$a_{\rm com} = \alpha R. \tag{11-6}$$

If the wheel rolls smoothly down a ramp of angle θ , its acceleration along an x axis extending up the ramp is

$$a_{\text{com},x} = -\frac{g \sin \theta}{1 + I_{\text{com}}/MR^2}.$$
 (11-10)

Torque as a Vector In three dimensions, $torque \vec{\tau}$ is a vector quantity defined relative to a fixed point (usually an origin); it is

$$\vec{\tau} = \vec{r} \times \vec{F},\tag{11-14}$$

where \vec{F} is a force applied to a particle and \vec{r} is a position vector locating the particle relative to the fixed point. The magnitude of $\vec{\tau}$ is given by

$$\tau = rF \sin \phi = rF_{\perp} = r_{\perp}F,$$
 (11-15, 11-16, 11-17)

where ϕ is the angle between \vec{F} and \vec{r} , F_{\perp} is the component of \vec{F} perpendicular to \vec{r} , and r_{\perp} is the moment arm of \vec{F} . The direction of $\vec{\tau}$ is given by the right-hand rule.

Angular Momentum of a Particle The angular momentum $\vec{\ell}$ of a particle with linear momentum \vec{p} , mass m, and linear velocity \vec{v} is a vector quantity defined relative to a fixed point (usually an origin) as

$$\vec{\ell} = \vec{r} \times \vec{p} = m(\vec{r} \times \vec{v}). \tag{11-18}$$

The magnitude of $\vec{\ell}$ is given by

$$\ell = rmv \sin \phi \tag{11-19}$$

$$= rp_{\perp} = rmv_{\perp} \tag{11-20}$$

$$= r_{\perp} p = r_{\perp} m v, \tag{11-21}$$

where ϕ is the angle between \vec{r} and \vec{p} , p_{\perp} and v_{\perp} are the components of \vec{p} and \vec{v} perpendicular to \vec{r} , and r_{\perp} is the perpendicular distance between the fixed point and the extension of \vec{p} . The direction of $\vec{\ell}$ is given by the right-hand rule for cross products.

Newton's Second Law in Angular Form Newton's second

law for a particle can be written in angular form as

$$\vec{\tau}_{\text{net}} = \frac{d\vec{\ell}}{dt},\tag{11-23}$$

where $\vec{\tau}_{net}$ is the net torque acting on the particle and $\vec{\ell}$ is the angular momentum of the particle.

Angular Momentum of a System of Particles The angular momentum \vec{L} of a system of particles is the vector sum of the angular momenta of the individual particles:

$$\vec{L} = \vec{\ell}_1 + \vec{\ell}_2 + \dots + \vec{\ell}_n = \sum_{i=1}^n \vec{\ell}_i.$$
 (11-26)

The time rate of change of this angular momentum is equal to the net external torque on the system (the vector sum of the torques due to interactions of the particles of the system with particles external to the system):

$$\vec{\tau}_{\text{net}} = \frac{d\vec{L}}{dt}$$
 (system of particles). (11-29)

Angular Momentum of a Rigid Body For a rigid body rotating about a fixed axis, the component of its angular momentum parallel to the rotation axis is

$$L = I\omega$$
 (rigid body, fixed axis). (11-31)

Conservation of Angular Momentum The angular momentum \vec{L} of a system remains constant if the net external torque acting on the system is zero:

$$\vec{L}$$
 = a constant (isolated system) (11-32)

or
$$\vec{L}_i = \vec{L}_f$$
 (isolated system). (11-33)

This is the law of conservation of angular momentum.

Precession of a Gyroscope A spinning gyroscope can precess about a vertical axis through its support at the rate

$$\Omega = \frac{Mgr}{I\omega},\tag{11-46}$$

where M is the gyroscope's mass, r is the moment arm, I is the rotational inertia, and ω is the spin rate.

1 Figure 11-23 shows three particles of the same mass and the same constant speed moving as indicated by the velocity vectors. Points *a*, *b*, *c*, and *d* form a square, with point *e* at the center. Rank the points according to the magnitude of the net angular momentum of the three-particle system when measured about the points, greatest first.

Fig. 11-23 Question 1.

2 Figure 11-24 shows two particles A and B at xyz coordinates (1 m, 1 m, 0) and (1 m, 0, 1 m). Acting on each particle are three

numbered forces, all of the same magnitude and each directed parallel to an axis. (a) Which of the forces produce a torque about the origin that is directed parallel to y? (b) Rank the forces according to the magnitudes of the torques they produce on the particles about the origin, greatest first

Fig. 11-24 Question 2.

3 What happens to the initially stationary yo-yo in Fig. 11-25 if

you pull it via its string with (a) force \vec{F}_2 (the line of action passes

through the point of contact on the table, as indicated), (b) force \vec{F}_1 (the line of action passes above the point of contact), and (c) force \vec{F}_3 (the line of action passes to the right of the point of contact)?

- 4 The position vector \vec{r} of a particle relative to a certain point has a magnitude of 3 m, and the force \vec{F} on the particle has a magnitude of 4 N. What is the angle between the directions of \vec{r} and \vec{F} if the magnitude of the associated torque equals (a) zero and (b) 12 N·m?
- **5** In Fig. 11-26, three forces of the same magnitude are applied to a particle at the origin (\vec{F}_1 acts directly into the plane of the figure). Rank the forces according to the magnitudes of the torques they create about (a) point P_1 , (b) point P_2 , and (c) point P_3 , greatest first.

Fig. 11-25 Question 3.

Fig. 11-26 Question 5.

- **6** The angular momenta $\ell(t)$ of a particle in four situations are (1) $\ell = 3t + 4$; (2) $\ell = -6t^2$; (3) $\ell = 2$; (4) $\ell = 4/t$. In which situation is the net torque on the particle (a) zero, (b) positive and constant, (c) negative and increasing in magnitude (t > 0), and (d) negative and decreasing in magnitude (t > 0)?
- 7 A rhinoceros beetle rides the rim of a horizontal disk rotating counterclockwise like a merry-go-round. If the beetle then walks along the rim in the direction of the rotation, will the magnitudes of the following quantities (each measured about the rotation axis) increase, decrease, or remain the same (the disk is still rotating in the counterclockwise direction): (a) the angular momentum of the beetle–disk system, (b) the angular momentum and angular velocity of the beetle, and (c) the angular momentum and angular velocity

of the disk? (d) What are your answers if the beetle walks in the direction opposite the rotation?

8 Figure 11-27 shows an overhead view of a rectangular slab that can spin like a merry-go-round about its center at *O*. Also shown are seven paths along which wads of bubble gum can be thrown (all with the same speed and mass) to stick onto

Fig. 11-27 Question 8.

the stationary slab. (a) Rank the paths according to the angular speed that the slab (and gum) will have after the gum sticks, greatest first. (b) For which paths will the angular momentum of the slab (and gum) about *O* be negative from the view of Fig. 11-27?

9 Figure 11-28 gives the angular momentum magnitude L of a wheel versus time t. Rank the four lettered time intervals according to the magnitude of the torque acting on the wheel, greatest first.

10 Figure 11-29 shows a particle moving at constant velocity \vec{v} and five points with their xy coordinates. Rank

the points according to the magnitude of the angular momentum of the particle measured about them, greatest first.

Fig. 11-29 Question 10.

PROBLEMS

SSM

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign

Worked-out solution available in Student Solutions Manual
Number of dots indicates level of problem difficulty

WWW Worked-out solution is at ILW Interactive solution is at

http://www.wiley.com/college/halliday

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

sec. 11-2 Rolling as Translation and Rotation Combined

- •1 A car travels at 80 km/h on a level road in the positive direction of an x axis. Each tire has a diameter of 66 cm. Relative to a woman riding in the car and in unit-vector notation, what are the velocity \vec{v} at the (a) center, (b) top, and (c) bottom of the tire and the magnitude a of the acceleration at the (d) center, (e) top, and (f) bottom of each tire? Relative to a hitchhiker sitting next to the road and in unit-vector notation, what are the velocity \vec{v} at the (g) center, (h) top, and (i) bottom of the tire and the magnitude a of the acceleration at the (j) center, (k) top, and (l) bottom of each tire?
- •2 An automobile traveling at 80.0 km/h has tires of 75.0 cm diameter. (a) What is the angular speed of the tires about their axles? (b) If the car is brought to a stop uniformly in 30.0 complete turns

of the tires (without skidding), what is the magnitude of the angular acceleration of the wheels? (c) How far does the car move during the braking?

sec. 11-4 The Forces of Rolling

- •3 SSM A 140 kg hoop rolls along a horizontal floor so that the hoop's center of mass has a speed of 0.150 m/s. How much work must be done on the hoop to stop it?
- •4 A uniform solid sphere rolls down an incline. (a) What must be the incline angle if the linear acceleration of the center of the sphere is to have a magnitude of 0.10g? (b) If a frictionless block were to slide down the incline at that angle, would its acceleration magnitude be more than, less than, or equal to 0.10g? Why?

, ATEM VIT

- •5 ILW A 1000 kg car has four 10 kg wheels. When the car is moving, what fraction of its total kinetic energy is due to rotation of the wheels about their axles? Assume that the wheels have the same rotational inertia as uniform disks of the same mass and size. Why do you not need to know the radius of the wheels?
- ••6 Figure 11-30 gives the speed v versus time t for a 0.500 kg object of radius 6.00 cm that rolls smoothly down a 30° ramp. The scale on the velocity axis is set by $v_s = 4.0$ m/s. What is the rotational inertia of the object?
- ••7 ILW In Fig. 11-31, a solid cylinder of radius 10 cm and mass 12 kg starts from rest and rolls without slipping a distance L=6.0 m down a roof that is inclined at the angle $\theta=30^{\circ}$. (a) What is the angular speed of the cylinder about its center as it leaves the roof? (b) The roof's edge is at height H=5.0 m. How far horizontally from the roof's edge does the cylinder hit the level ground?
- ••8 Figure 11-32 shows the potential energy U(x) of a solid ball that can roll along an x axis. The scale on the U axis is set by $U_s =$ 100 J. The ball is uniform, rolls smoothly, and has a mass of 0.400 kg. It is released at x = 7.0 m headed in the negative direction of the x axis with a mechanical energy of 75 J. (a) If the ball can reach x = 0 m, what is its speed there, and if it cannot, what is its turning point? Suppose, instead, it is headed in the positive direction of the x axis when it is released at x = 7.0 m with 75 J. (b) If the ball can reach x = 13 m, what is its speed there, and if it cannot, what is its turning point?

Fig. 11-30 Problem 6.

Fig. 11-31 Problem 7.

Fig. 11-32 Problem 8.

Fig. 11-33 Problem 9.

••10 A hollow sphere of radius 0.15 m, with rotational inertia $I = 0.040 \text{ kg} \cdot \text{m}^2$ about a line through its center of mass, rolls without slipping up a surface inclined at 30° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 20 J. (a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial

- position? When the sphere has moved 1.0 m up the incline from its initial position, what are (c) its total kinetic energy and (d) the speed of its center of mass?
- ••11 In Fig. 11-34, a constant horizontal force \vec{F}_{app} of magnitude 10 N is applied to a wheel of mass 10 kg and radius 0.30 m. The wheel rolls smoothly on the horizontal surface, and the acceleration of its center of mass has magnitude 0.60 m/s². (a) In unit-vector notation, what is the frictional force on

Fig. 11-34 Problem 11.

the wheel? (b) What is the rotational inertia of the wheel about the rotation axis through its center of mass?

••12 •• In Fig. 11-35, a solid brass ball of mass 0.280 g will roll smoothly along a loop-the-loop track when released from rest

along the straight section. The circular loop has radius R = 14.0 cm, and the ball has radius $r \ll R$. (a) What is h if the ball is on the verge of leaving the track when it reaches the top of the loop? If the ball is released at height h = 6.00R, what are the (b) magnitude and (c) direction of the horizontal force component acting on the ball at point Q?

Fig. 11-35 Problem 12.

•••13 Nonuniform ball. In Fig. 11-36, a ball of mass M and radius R rolls smoothly from rest down a ramp and onto a circular loop of radius 0.48 m. The initial height of the ball is h = 0.36 m. At the loop bottom, the magnitude of the nor-

Fig. 11-36 Problem 13.

mal force on the ball is 2.00Mg. The ball consists of an outer spherical shell (of a certain uniform density) that is glued to a central sphere (of a different uniform density). The rotational inertia of the ball can be expressed in the general form $I = \beta MR^2$, but β is not 0.4 as it is for a ball of uniform density. Determine β .

•••14 ••• In Fig. 11-37, a small, solid, uniform ball is to be shot from point P so that it rolls smoothly along a horizontal path, up along a ramp, and onto a plateau. Then it leaves the plateau horizontally to land on a game board, at a horizontal distance d from the right edge of the plateau. The vertical heights are $h_1 = 5.00$ cm and $h_2 = 1.60$ cm. With what speed must the ball be shot at point P for it to land at d = 6.00 cm?

Fig. 11-37 Problem 14.

•••15 A bowler throws a bowling ball of radius R=11 cm along a lane. The ball (Fig. 11-38) slides on the lane with initial speed $v_{\text{com},0}=8.5$ m/s and initial angular speed $\omega_0=0$. The coefficient of kinetic friction between the ball and the lane is 0.21. The

... ATEM WIT

kinetic frictional force \vec{f}_k acting on the ball causes a linear acceleration of the ball while producing a torque that causes an angular acceleration of the ball. When speed v_{com} has decreased enough and an-

Fig. 11-38 Problem 15.

gular speed ω has increased enough, the ball stops sliding and then rolls smoothly. (a) What then is v_{com} in terms of ω ? During the sliding, what are the ball's (b) linear acceleration and (c) angular acceleration? (d) How long does the ball slide? (e) How far does the ball slide? (f) What is the linear speed of the ball when smooth rolling begins?

•••16 Nonuniform cylindrical object. In Fig. 11-39, a cylindrical object of mass M and radius R rolls smoothly from rest down a ramp and onto a horizontal section. From there it rolls off the ramp and onto the floor, landing a horizontal distance d = 0.506 m from the end of the ramp. The initial height of the object is H = 0.90 m; the end of the ramp is at height h = 0.10 m. The object consists of an outer cylindrical shell (of a certain uniform density) that is glued to a central cylinder (of a different uniform density). The rotational inertia of the object can be expressed in the general form $I = \beta MR^2$, but β is not 0.5 as it is for a cylinder of uniform density. Determine β .

Fig. 11-39 Problem 16.

sec. 11-5 The Yo-Yo

•17 SSM A yo-yo has a rotational inertia of $950 \,\mathrm{g\cdot cm^2}$ and a mass of $120 \,\mathrm{g}$. Its axle radius is $3.2 \,\mathrm{mm}$, and its string is $120 \,\mathrm{cm}$ long. The yo-yo rolls from rest down to the end of the string. (a) What is the magnitude of its linear acceleration? (b) How long does it take to reach the end of the string? As it reaches the end of the string, what are its (c) linear speed, (d) translational kinetic energy, (e) rotational kinetic energy, and (f) angular speed?

•18 In 1980, over San Francisco Bay, a large yo-yo was released from a crane. The 116 kg yo-yo consisted of two uniform disks of radius 32 cm connected by an axle of radius 3.2 cm. What was the magnitude of the acceleration of the yo-yo during (a) its fall and (b) its rise? (c) What was the tension in the cord on which it rolled? (d) Was that tension near the cord's limit of 52 kN? Suppose you build a scaled-up version of the yo-yo (same shape and materials but larger). (e) Will the magnitude of your yo-yo's acceleration as it falls be greater than, less than, or the same as that of the San Francisco yo-yo? (f) How about the tension in the cord?

sec. 11-6 Torque Revisited

•19 In unit-vector notation, what is the net torque about the origin on a flea located at coordinates (0, -4.0 m, 5.0 m) when forces $\vec{F}_1 = (3.0 \text{ N})\hat{k}$ and $\vec{F}_2 = (-2.0 \text{ N})\hat{j}$ act on the flea?

•20 A plum is located at coordinates (-2.0 m, 0, 4.0 m). In unit-

vector notation, what is the torque about the origin on the plum if that torque is due to a force \vec{F} whose only component is (a) $F_x = 6.0 \text{ N}$, (b) $F_x = -6.0 \text{ N}$, (c) $F_z = 6.0 \text{ N}$, and (d) $F_z = -6.0 \text{ N}$?

•21 In unit-vector notation, what is the torque about the origin on a particle located at coordinates (0, -4.0 m, 3.0 m) if that torque is due to (a) force \vec{F}_1 with components $F_{1x} = 2.0 \text{ N}$, $F_{1y} = F_{1z} = 0$, and (b) force \vec{F}_2 with components $F_{2x} = 0$, $F_{2y} = 2.0 \text{ N}$, $F_{2z} = 4.0 \text{ N}$?

••22 A particle moves through an xyz coordinate system while a force acts on the particle. When the particle has the position vector $\vec{r} = (2.00 \text{ m})\hat{i} - (3.00 \text{ m})\hat{j} + (2.00 \text{ m})\hat{k}$, the force is given by $\vec{F} = F_x\hat{i} + (7.00 \text{ N})\hat{j} - (6.00 \text{ N})\hat{k}$ and the corresponding torque about the origin is $\vec{\tau} = (4.00 \text{ N} \cdot \text{m})\hat{i} + (2.00 \text{ N} \cdot \text{m})\hat{j} - (1.00 \text{ N} \cdot \text{m})\hat{k}$. Determine F_x .

•23 Force $\vec{F} = (2.0 \text{ N})\hat{\mathbf{i}} - (3.0 \text{ N})\hat{\mathbf{k}}$ acts on a pebble with position vector $\vec{r} = (0.50 \text{ m})\hat{\mathbf{j}} - (2.0 \text{ m})\hat{\mathbf{k}}$ relative to the origin. In unit-vector notation, what is the resulting torque on the pebble about (a) the origin and (b) the point (2.0 m, 0, -3.0 m)?

••24 In unit-vector notation, what is the torque about the origin on a jar of jalapeño peppers located at coordinates (3.0 m, -2.0 m, 4.0 m) due to (a) force $\vec{F}_1 = (3.0 \text{ N})\hat{\mathbf{i}} - (4.0 \text{ N})\hat{\mathbf{j}} + (5.0 \text{ N})\hat{\mathbf{k}}$, (b) force $\vec{F}_2 = (-3.0 \text{ N})\hat{\mathbf{i}} - (4.0 \text{ N})\hat{\mathbf{j}} - (5.0 \text{ N})\hat{\mathbf{k}}$, and (c) the vector sum of \vec{F}_1 and \vec{F}_2 ? (d) Repeat part (c) for the torque about the point with coordinates (3.0 m, 2.0 m, 4.0 m).

••25 SSM Force $\vec{F} = (-8.0 \text{ N})\hat{i} + (6.0 \text{ N})\hat{j}$ acts on a particle with position vector $\vec{r} = (3.0 \text{ m})\hat{i} + (4.0 \text{ m})\hat{j}$. What are (a) the torque on the particle about the origin, in unit-vector notation, and (b) the angle between the directions of \vec{r} and \vec{F} ?

sec. 11-7 Angular Momentum

•26 At the instant of Fig. 11-40, a 2.0 kg particle P has a position vector \vec{r} of magnitude 3.0 m and angle $\theta_1 = 45^\circ$ and a velocity vector \vec{v} of magnitude 4.0 m/s and angle $\theta_2 = 30^\circ$. Force \vec{F} , of magnitude 2.0 N and angle $\theta_3 = 30^\circ$, acts on P. All three vectors lie in the xy plane. About the origin, what are the (a) magnitude and (b) direction of the angular momentum of P and the (c) magnitude and (d) direction of the torque acting on P?

Fig. 11-40 Problem 26.

•27 SSM At one instant, force $\vec{F} = 4.0\hat{j}$ N acts on a 0.25 kg object that has position vector $\vec{r} = (2.0\hat{i} - 2.0\hat{k})$ m and velocity vector $\vec{v} = (-5.0\hat{i} + 5.0\hat{k})$ m/s. About the origin and in unit-vector notation, what are (a) the object's angular momentum and (b) the torque acting on the object?

•28 A 2.0 kg particle-like object moves in a plane with velocity components $v_x = 30$ m/s and $v_y = 60$ m/s as it passes through the point with (x, y) coordinates of (3.0, -4.0) m. Just then, in unit-vector notation, what is its angular momentum relative to (a) the

origin and (b) the point located at (-2.0, -2.0) m?

•29 ILW In the instant of Fig. 11-41, two particles move in an xy plane. Particle P_1 has mass 6.5 kg and speed $v_1 = 2.2$ m/s, and it is at distance $d_1 = 1.5$ m from point O. Particle P_2 has mass 3.1 kg and speed

Fig. 11-41 Problem 29.

.. ATEM WIT

 $v_2 = 3.6$ m/s, and it is at distance $d_2 = 2.8$ m from point O. What are the (a) magnitude and (b) direction of the net angular momentum of the two particles about O?

••30 At the instant the displacement of a 2.00 kg object relative to the origin is $\vec{d} = (2.00 \text{ m})\hat{i} + (4.00 \text{ m})\hat{j} - (3.00 \text{ m})\hat{k}$, its velocity is $\vec{v} = -(6.00 \text{ m/s})\hat{i} + (3.00 \text{ m/s})\hat{j} + (3.00 \text{ m/s})\hat{k}$ and it is subject to a force $\vec{F} = (6.00 \text{ N})\hat{i} - (8.00 \text{ N})\hat{j} + (4.00 \text{ N})\hat{k}$. Find (a) the acceleration of the object, (b) the angular momentum of the object about the origin, (c) the torque about the origin acting on the object, and (d) the angle between the velocity of the ob-

the angle between the velocity of the object and the force acting on the object.

300

•31 In Fig. 11-42, a 0.400 kg ball is shot directly upward at initial speed 40.0 m/s. What is its angular momentum about P, 2.00 m horizontally from the launch point, when the ball is (a) at

Fig. 11-42 Problem 31.

maximum height and (b) halfway back to the ground? What is the torque on the ball about *P* due to the gravitational force when the ball is (c) at maximum height and (d) halfway back to the ground?

sec. 11-8 Newton's Second Law in Angular Form

•32 A particle is acted on by two torques about the origin: $\vec{\tau}_1$ has a magnitude of 2.0 N·m and is directed in the positive direction of the x axis, and $\vec{\tau}_2$ has a magnitude of 4.0 N·m and is directed in the negative direction of the y axis. In unit-vector notation, find $d\vec{\ell}/dt$, where $\vec{\ell}$ is the angular momentum of the particle about the origin.

•33 SSM ILW WWW At time t = 0, a 3.0 kg particle with velocity $\vec{v} = (5.0 \text{ m/s})\hat{i} - (6.0 \text{ m/s})\hat{j}$ is at x = 3.0 m, y = 8.0 m. It is pulled by a 7.0 N force in the negative x direction. About the origin, what are (a) the particle's angular momentum, (b) the torque acting on the particle, and (c) the rate at which the angular momentum is changing?

•34 A particle is to move in an xy plane, clockwise around the origin as seen from the positive side of the z axis. In unit-vector notation, what torque acts on the particle if the magnitude of its angular momentum about the origin is (a) $4.0 \text{ kg} \cdot \text{m}^2/\text{s}$, (b) $4.0t^2 \text{ kg} \cdot \text{m}^2/\text{s}$, (c) $4.0 \sqrt{t} \text{ kg} \cdot \text{m}^2/\text{s}$, and (d) $4.0/t^2 \text{ kg} \cdot \text{m}^2/\text{s}$?

•35 At time t, the vector $\vec{r} = 4.0t^2\hat{\mathbf{i}} - (2.0t + 6.0t^2)\hat{\mathbf{j}}$ gives the position of a 3.0 kg particle relative to the origin of an xy coordinate system (\vec{r} is in meters and t is in seconds). (a) Find an expression for the torque acting on the particle relative to the origin. (b) Is the magnitude of the particle's angular momentum relative to the origin increasing, decreasing, or unchanging?

sec. 11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis

•36 Figure 11-43 shows three rotating, uniform disks that are coupled by belts. One belt runs around the rims of disks A and C. Another belt runs around a central hub on disk A and the rim of disk B. The belts move smoothly without slippage on the rims and hub. Disk A has radius R; its hub has radius 0.5000R; disk B has radius 0.2500R; and disk C has radius 2.000R. Disks B and C have the

Fig. 11-43 Problem 36.

same density (mass per unit volume) and thickness. What is the ratio of the magnitude of the angular momentum of disk C to that of disk B?

Fig. 11-44 Problem 37.

the magnitude of the angular momentum of the middle particle, and (c) the magnitude of the angular momentum of the asssembly?

•38 A sanding disk with rotational inertia $1.2 \times 10^{-3} \, \text{kg} \cdot \text{m}^2$ is attached to an electric drill whose motor delivers a torque of magnitude $16 \, \text{N} \cdot \text{m}$ about the central axis of the disk. About that axis and with the torque applied for 33 ms, what is the magnitude of the (a) angular momentum and (b) angular velocity of the disk?

•39 SSM The angular momentum of a flywheel having a rotational inertia of $0.140 \text{ kg} \cdot \text{m}^2$ about its central axis decreases from $3.00 \text{ to } 0.800 \text{ kg} \cdot \text{m}^2/\text{s in } 1.50 \text{ s. (a)}$ What is the magnitude of the average torque acting on the flywheel about its central axis during this period? (b) Assuming a constant angular acceleration, through what angle does the flywheel turn? (c) How much work is done on the wheel? (d) What is the average power of the flywheel?

••40 A disk with a rotational inertia of 7.00 kg·m² rotates like a merry-go-round while undergoing a variable torque given by $\tau = (5.00 + 2.00t) \text{ N·m}$. At time t = 1.00 s, its angular momentum is $5.00 \text{ kg} \cdot \text{m}^2/\text{s}$. What is its angular momentum at t = 3.00 s?

Fig. 11-45 Problem 41.

••42 Figure 11-46 gives the torque τ that acts on an initially stationary disk that can rotate about its center like a merry-go-round.

Fig. 11-46 Problem 42.

... ATEM WIT

The scale on the τ axis is set by $\tau_s = 4.0 \text{ N} \cdot \text{m}$. What is the angular momentum of the disk about the rotation axis at times (a) t = 7.0 s and (b) t = 20 s?

sec. 11-11 Conservation of Angular Momentum

•43 In Fig. 11-47, two skaters, each of mass 50 kg, approach each other along parallel paths separated by 3.0 m. They have opposite velocities of 1.4 m/s each. One skater carries one end of a long pole of negligible mass, and the other skater grabs the other end as she passes. The skaters then

Fig. 11-47 Problem 43.

rotate around the center of the pole. Assume that the friction between skates and ice is negligible. What are (a) the radius of the circle, (b) the angular speed of the skaters, and (c) the kinetic energy of the two-skater system? Next, the skaters pull along the pole until they are separated by 1.0 m. What then are (d) their angular speed and (e) the kinetic energy of the system? (f) What provided the energy for the increased kinetic energy?

•44 A Texas cockroach of mass 0.17 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has radius 15 cm, rotational inertia 5.0×10^{-3} kg·m², and frictionless bearings. The cockroach's speed (relative to the ground) is 2.0 m/s, and the lazy Susan turns clockwise with angular speed $\omega_0 = 2.8$ rad/s. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular speed of the lazy Susan after the cockroach stops? (b) Is mechanical energy conserved as it stops?

•45 SSM WWW A man stands on a platform that is rotating (without friction) with an angular speed of 1.2 rev/s; his arms are outstretched and he holds a brick in each hand. The rotational inertia of the system consisting of the man, bricks, and platform about the central vertical axis of the platform is 6.0 kg·m². If by moving the bricks the man decreases the rotational inertia of the system to $2.0 \text{ kg} \cdot \text{m}^2$, what are (a) the resulting angular speed of the platform and (b) the ratio of the new kinetic energy of the system to the original kinetic energy? (c) What source provided the added kinetic energy?

•46 The rotational inertia of a collapsing spinning star drops to $\frac{1}{2}$ its initial value. What is the ratio of the new rotational kinetic energy to the initial rotational kinetic energy?

•47 SSM A track is mounted on a large wheel that is free to turn with negligible friction about a vertical axis (Fig. 11-48). A toy train of mass m is placed on the track and, with the system initially at rest, the

Fig. 11-48 Problem 47.

train's electrical power is turned on. The train reaches speed 0.15 m/s with respect to the track. What is the angular speed of the wheel

if its mass is 1.1m and its radius is 0.43 m? (Treat the wheel as a hoop, and neglect the mass of the spokes and hub.)

•48 A Texas cockroach first rides at the center of a circular disk that rotates freely like a merry-goround without external torques. The cockroach then walks out to

Fig. 11-49 Problem 48.

TCW

the edge of the disk, at radius R. Figure 11-49 gives the angular speed ω of the cockroach-disk system during the walk. The scale on the ω axis is set by $\omega_a = 5.0$ rad/s and $\omega_b = 6.0$ rad/s. When the cockroach is on the edge at radius R, what is the ratio of the bug's rotational inertia to that of the disk, both calculated about the rotation axis?

ملد ملد

Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 3.30 kg·m² about its central axis, is set spinning counterclockwise at 450 rev/min. The second disk, with rotational inertia 6.60 kg·m² about its central axis, is set spinning counterclockwise at 900 rev/min. They then couple together. (a) What is their angular speed after coupling? If instead the second disk is set spinning clockwise at 900 rev/min, what are their (b) angular speed and (c) direction of rotation after they couple together?

•50 The rotor of an electric motor has rotational inertia $I_m =$ $2.0 \times 10^{-3} \,\mathrm{kg \cdot m^2}$ about its central axis. The motor is used to change the orientation of the space probe in which it is mounted. The motor axis is mounted along the central axis of the probe; the probe has rotational inertia $I_p = 12 \text{ kg} \cdot \text{m}^2$ about this axis. Calculate the number of revolutions of the rotor required to turn the probe through 30° about its central axis.

•51 SSM ILW A wheel is rotating freely at angular speed 800 rev/min on a shaft whose rotational inertia is negligible. A second wheel, initially at rest and with twice the rotational inertia of the first, is suddenly coupled to the same shaft. (a) What is the angular speed of the resultant combination of the shaft and two wheels? (b) What fraction of the original rotational kinetic energy is lost?

••52 •• A cockroach of mass m lies on the rim of a uniform disk of mass 4.00m that can rotate freely about its center like a merrygo-round. Initially the cockroach and disk rotate together with an angular velocity of 0.260 rad/s. Then the cockroach walks halfway to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? (b) What is the ratio K/K_0 of the new kinetic energy of the system to its initial kinetic energy? (c) What accounts for the change in the ki-

••53 A uniform thin rod of length 0.500 m and mass 4.00 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3.00 g bullet traveling in the rotation plane is fired into one end of the rod. As viewed

netic energy?

Fig. 11-50 Problem 53.

from above, the bullet's path makes angle $\theta = 60.0^{\circ}$ with the rod (Fig. 11-50). If the bullet lodges in the rod and the angular velocity of the rod is 10 rad/s immediately after the collision, what is the bullet's speed just before impact?

••54 •• Figure 11-51 shows an overhead view of a ring that can rotate about its center like a merrygo-round. Its outer radius R_2 is 0.800 m, its inner radius R_1 is $R_2/2.00$, its mass M is 8.00 kg, and the mass of the crossbars at its center is negligible. It initially rotates at an angular speed of 8.00 rad/s with a cat of Fig. 11-51 Problem 54.

mass m = M/4.00 on its outer edge, at radius R_2 . By flow much does the cat increase the kinetic energy of the cat—ring system if the cat crawls to the inner edge, at radius R_1 ?

••55 A horizontal vinyl record of mass 0.10 kg and radius 0.10 m rotates freely about a vertical axis through its center with an angular speed of 4.7 rad/s. The rotational inertia of the record about its axis of rotation is $5.0 \times 10^{-4} \, \mathrm{kg \cdot m^2}$. A wad of wet putty of mass 0.020 kg drops vertically onto the record from above and sticks to the edge of the record. What is the angular speed of the record immediately after the putty sticks to it?

••56 •• In a long jump, an athlete leaves the ground with an initial angular momentum that tends to rotate her body forward, threatening to ruin her landing. To counter this tendency, she rotates her outstretched arms to "take up" the angular momentum (Fig. 11-18). In 0.700 s, one arm sweeps through 0.500 rev and the other arm sweeps through 1.000 rev. Treat each arm as a thin rod of mass 4.0 kg and length 0.60 m, rotating around one end. In the athlete's reference frame, what is the magnitude of the total angular momentum of the arms around the common rotation axis through the shoulders?

**57 A uniform disk of mass 10m and radius 3.0r can rotate freely about its fixed center like a merry-go-round. A smaller uniform disk of mass m and radius r lies on top of the larger disk, concentric with it. Initially the two disks rotate together with an angular velocity of 20 rad/s. Then a slight disturbance causes the smaller disk to slide outward across the larger disk, until the outer edge of the smaller disk catches on the outer edge of the larger disk. Afterward, the two disks again rotate together (without further sliding). (a) What then is their angular velocity about the center of the larger disk? (b) What is the ratio K/K_0 of the new kinetic energy of the two-disk system to the system's initial kinetic energy?

••58 A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about a vertical axle through the center of the disk. The platform has a mass of 150 kg, a radius of 2.0 m, and a rotational inertia of $300 \text{ kg} \cdot \text{m}^2$ about the axis of rotation. A 60 kg student walks slowly from the rim of the platform toward the center. If the angular speed of the system is 1.5 rad/s when the student starts at the rim, what is the angular speed when she is 0.50 m from the center?

••59 Figure 11-52 is an overhead view of a thin uniform rod of length 0.800 m and mass M rotating horizontally at angular speed 20.0 rad/s about an axis through its center. A particle of mass M/3.00 initially attached to

Fig. 11-52 Problem 59.

one end is ejected from the rod and travels along a path that is perpendicular to the rod at the instant of ejection. If the particle's speed

 v_p is 6.00 m/s greater than the speed of the rod end just after ejection, what is the value of v_p ?

••60 In Fig. 11-53, a 1.0 g bullet is fired into a 0.50 kg block attached to the end of a 0.60 m nonuniform rod of mass 0.50 kg. The block-rod-bullet system then rotates in the plane of the figure, about a fixed axis at A. The rotational inertia of the rod alone about that axis at A is 0.060 kg·m². Treat the block as a particle. (a) What then is

Fig. 11-53 Problem 60.

The rotational inertia of the block-rod-bullet system about point A? (b) If the angular speed of the system about A just after impact is 4.5 rad/s, what is the bullet's speed just before impact?

••61 The uniform rod (length 0.60 m, mass 1.0 kg) in Fig. 11-54 rotates in the plane of the figure about an axis through one end, with a rotational inertia of 0.12 kg·m². As the rod swings through its lowest position, it collides with a 0.20 kg putty wad that sticks to the end of the rod. If the rod's angular speed just before collision is 2.4 rad/s, what is the angular speed of the rod–putty system immediately after collision?

Fig. 11-54 Problem 61.

•••62 During a jump to his

partner, an aerialist is to make a quadruple somersault lasting a time t=1.87 s. For the first and last quarter-revolution, he is in the extended orientation shown in Fig. 11-55, with rotational inertia $I_1=19.9~{\rm kg\cdot m^2}$ around his center of mass (the dot). During the rest of the flight he is in a tight tuck, with rotational inertia $I_2=3.93~{\rm kg\cdot m^2}$. What must be his angular speed ω_2 around his center of mass during the tuck?

Fig. 11-55 Problem 62.

e••63 •• In Fig. 11-56, a 30 kg child stands on the edge of a stationary merry-go-round of radius 2.0 m. The rotational inertia of the merry-go-round about its rotation axis is $150 \text{ kg} \cdot \text{m}^2$. The child catches a ball of mass 1.0 kg thrown by a friend. Just before the ball is caught, it has a horizontal velocity \vec{v} of magnitude 12 m/s, at angle $\phi = 37^\circ$ with a line tangent to the outer edge of

Fig. 11-56 Problem 63.

the merry-go-round, as shown. What is the angular speed of the merry-go-round just after the ball is caught?

•••64 A ballerina begins a tour jeté (Fig. 11-19*a*) with angular speed $ω_i$ and a rotational inertia consisting of two parts: $I_{\text{leg}} = 1.44 \text{ kg} \cdot \text{m}^2 \text{for her leg extended outward at angle } θ = 90.0° to her body and <math>I_{\text{trunk}} = 0.660 \text{ kg} \cdot \text{m}^2 \text{ for the rest of her body (pri-$

... ATEM VIT

marily her trunk). Near her maximum height she holds both legs at angle $\theta = 30.0^{\circ}$ to her body and has angular speed ω_f (Fig. 11-19b). Assuming that I_{trunk} has not changed, what is the ratio ω_f/ω_r^2 ?

balls are attached to the ends of a thin rod of length 50.0 cm and negligible mass. The rod is free to rotate in a vertical plane without friction about a horizontal axis through its center. With the rod initially horizontal (Fig. 11-57), a 50.0 g wad of wet

Fig. 11-57 Problem 65.

putty drops onto one of the balls, hitting it with a speed of 3.00 m/s and then sticking to it. (a) What is the angular speed of the system just after the putty wad hits? (b) What is the ratio of the kinetic energy of the system after the collision to that of the putty wad just before? (c) Through what angle will the system rotate before it momentarily stops?

•••66 In Fig. 11-58, a small 50 g block slides down a frictionless surface through height h = 20 cm and then sticks to a uniform rod of mass 100 g and length 40 cm. The rod pivots about point O through angle θ before momentarily stopping. Find θ .

Fig. 11-58 Problem 66.

•••67 Figure 11-59 is an overhead view of a thin uniform rod of length 0.600 m and mass *M* rotating horizontally at 80.0 rad/s counterclock-

wise about an axis through its center. A particle of mass M/3.00 and traveling horizontally at speed 40.0 m/s hits the rod and sticks. The particle's path is perpendicular to the rod at the instant of the hit, at a distance d from the rod's center. (a) At what value of d are rod and particle stationary after the hit? (b) In which direction do rod and particle rotate if d is greater than this value?

Fig. 11-59 Problem 67.

sec. 11-12 Precession of a Gyroscope

••68 A top spins at 30 rev/s about an axis that makes an angle of 30° with the vertical. The mass of the top is 0.50 kg, its rotational inertia about its central axis is $5.0 \times 10^{-4} \,\mathrm{kg \cdot m^2}$, and its center of mass is 4.0 cm from the pivot point. If the spin is clockwise from an overhead view, what are the (a) precession rate and (b) direction of the precession as viewed from overhead?

••69 A certain gyroscope consists of a uniform disk with a 50 cm radius mounted at the center of an axle that is 11 cm long and of negligible mass. The axle is horizontal and supported at one end. If the disk is spinning around the axle at 1000 rev/min, what is the precession rate?

Additional Problems

70 A uniform solid ball rolls smoothly along a floor, then up a ramp inclined at 15.0°. It momentarily stops when it has rolled 1.50 m along the ramp. What was its initial speed?

71 SSM In Fig. 11-60, a constant horizontal force \vec{F}_{app} of magnitude 12 N is applied to a uniform solid cylinder by fishing line wrapped around the cylinder. The mass of the cylinder is 10 kg, its radius is 0.10 m, and the cylinder rolls smoothly on the horizontal surface. (a) What

Fig. 11-60 Problem 71.

is the magnitude of the acceleration of the center of mass of the cylinder? (b) What is the magnitude of the angular acceleration of the cylinder about the center of mass? (c) In unit-vector notation, what is the frictional force acting on the cylinder?

72 A thin-walled pipe rolls along the floor. What is the ratio of its translational kinetic energy to its rotational kinetic energy about the central axis parallel to its length?

73 SSM A 3.0 kg toy car moves along an x axis with a velocity given by $\vec{v} = -2.0t^3\hat{i}$ m/s, with t in seconds. For t > 0, what are (a) the angular momentum \vec{L} of the car and (b) the torque $\vec{\tau}$ on the car, both calculated about the origin? What are (c) \vec{L} and (d) $\vec{\tau}$ about the point (2.0 m, 5.0 m, 0)? What are (e) \vec{L} and (f) $\vec{\tau}$ about the point (2.0 m, -5.0 m, 0)?

74 A wheel rotates clockwise about its central axis with an angular momentum of $600 \text{ kg} \cdot \text{m}^2/\text{s}$. At time t = 0, a torque of magnitude $50 \text{ N} \cdot \text{m}$ is applied to the wheel to reverse the rotation. At what time t is the angular speed zero?

75 SSM In a playground, there is a small merry-go-round of radius 1.20 m and mass 180 kg. Its radius of gyration (see Problem 79 of Chapter 10) is 91.0 cm. A child of mass 44.0 kg runs at a speed of 3.00 m/s along a path that is tangent to the rim of the initially stationary merry-go-round and then jumps on. Neglect friction between the bearings and the shaft of the merry-go-round. Calculate (a) the rotational inertia of the merry-go-round about its axis of rotation, (b) the magnitude of the angular momentum of the running child about the axis of rotation of the merry-go-round, and (c) the angular speed of the merry-go-round and child after the child has jumped onto the merry-go-round.

76 A uniform block of granite in the shape of a book has face dimensions of 20 cm and 15 cm and a thickness of 1.2 cm. The density (mass per unit volume) of granite is 2.64 g/cm³. The block rotates around an axis that is perpendicular to its face and halfway between its center and a corner. Its angular momentum about that axis is 0.104 kg \cdot m²/s. What is its rotational kinetic energy about that axis?

77 SSM Two particles, each of mass 2.90×10^{-4} kg and speed 5.46 m/s, travel in opposite directions along parallel lines separated by 4.20 cm. (a) What is the magnitude L of the angular momentum of the two-particle system around a point midway between the two lines? (b) Does the value of L change if the point about which it is calculated is not midway between the lines? If the direction of travel for one of the particles is reversed, what would be (c) the answer to part (a) and (d) the answer to part (b)?

78 A wheel of radius 0.250 m, which is moving initially at 43.0 m/s, rolls to a stop in 225 m. Calculate the magnitudes of (a) its lin-

 $\Lambda \perp \square M$

ear acceleration and (b) its angular acceleration. (c) The wheel's rotational inertia is $0.155 \text{ kg} \cdot \text{m}^2$ about its central axis. Calculate the magnitude of the torque about the central axis due to friction on the wheel.

79 Wheels A and B in Fig. 11-61 are connected by a belt that does not slip. The radius of B is 3.00 times the radius of A. What would be the ratio of the rotational inertias I_A/I_B if the two wheels had (a) the same angular momentum about their central axes

Fig. 11-61 Problem 79.

and (b) the same rotational kinetic energy?

- **80** A 2.50 kg particle that is moving horizontally over a floor with velocity $(-3.00 \text{ m/s})\hat{j}$ undergoes a completely inelastic collision with a 4.00 kg particle that is moving horizontally over the floor with velocity $(4.50 \text{ m/s})\hat{i}$. The collision occurs at xy coordinates (-0.500 m, -0.100 m). After the collision and in unit-vector notation, what is the angular momentum of the stuck-together particles with respect to the origin?
- 81 SSM A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on a massless axle through its center (Fig. 11-62). The radius of the axle is 0.200 m, and the rotational inertia of the wheel–axle combination about its central axis is 0.600 kg·m². The wheel is initially at rest at the top of a surface that is inclined at angle $\theta = 30.0^{\circ}$ with the horizontal; the axle rests on the surface while the wheel extends into a groove in the surface without touching the surface. Once released, the axle rolls down along the surface smoothly and without slipping. When the wheel–axle combination has moved down the surface by 2.00 m, what are (a) its rotational kinetic energy and (b) its translational kinetic energy?

Fig. 11-62 Problem 81.

- **82** A uniform rod rotates in a horizontal plane about a vertical axis through one end. The rod is 6.00 m long, weighs 10.0 N, and rotates at 240 rev/min. Calculate (a) its rotational inertia about the axis of rotation and (b) the magnitude of its angular momentum about that axis.
- 83 A solid sphere of weight 36.0 N rolls up an incline at an angle of 30.0°. At the bottom of the incline the center of mass of the sphere has a translational speed of 4.90 m/s. (a) What is the kinetic energy of the sphere at the bottom of the incline? (b) How far does the sphere travel up along the incline? (c) Does the answer to (b) depend on the sphere's mass?
- Suppose that the yo-yo in Problem 17, instead of rolling from rest, is thrown so that its initial speed down the string is 1.3 m/s. (a) How long does the yo-yo take to reach the end of the string? As it reaches the end of the string, what are its (b) total ki-

- netic energy, (c) linear speed, (d) translational kinetic energy, (e) angular speed, and (f) rotational kinetic energy?
- 85 A girl of mass M stands on the rim of a frictionless merry-goround of radius R and rotational inertia I that is not moving. She throws a rock of mass m horizontally in a direction that is tangent to the outer edge of the merry-go-round. The speed of the rock, relative to the ground, is ν . Afterward, what are (a) the angular speed of the merry-go-round and (b) the linear speed of the girl?
- **86** At time t = 0, a 2.0 kg particle has the position vector $\vec{r} = (4.0 \text{ m})\hat{\mathbf{i}} (2.0 \text{ m})\hat{\mathbf{j}}$ relative to the origin. Its velocity is given by $\vec{v} = (-6.0t^2 \text{ m/s})\hat{\mathbf{i}}$ for $t \ge 0$ in seconds. About the origin, what are (a) the particle's angular momentum \vec{L} and (b) the torque $\vec{\tau}$ acting on the particle, both in unit-vector notation and for t > 0? About the point (-2.0 m, -3.0 m, 0), what are (c) \vec{L} and (d) $\vec{\tau}$ for t > 0?
- 87 If Earth's polar ice caps fully melted and the water returned to the oceans, the oceans would be deeper by about 30 m. What effect would this have on Earth's rotation? Make an estimate of the resulting change in the length of the day.
- **88** A 1200 kg airplane is flying in a straight line at 80 m/s, 1.3 km above the ground. What is the magnitude of its angular momentum with respect to a point on the ground directly under the path of the plane?
- 89 With axle and spokes of negligible mass and a thin rim, a certain bicycle wheel has a radius of 0.350 m and weighs 37.0 N; it can turn on its axle with negligible friction. A man holds the wheel above his head with the axle vertical while he stands on a turntable that is free to rotate without friction; the wheel rotates clockwise, as seen from above, with an angular speed of 57.7 rad/s, and the turntable is initially at rest. The rotational inertia of wheel + man + turntable about the common axis of rotation is $2.10 \text{ kg} \cdot \text{m}^2$. The man's free hand suddenly stops the rotation of the wheel (relative to the turntable). Determine the resulting (a) angular speed and (b) direction of rotation of the system.
- **90** For an 84 kg person standing at the equator, what is the magnitude of the angular momentum about Earth's center due to Earth's rotation?
- 91 A small solid sphere with radius 0.25 cm and mass 0.56 g rolls without slipping on the inside of a large fixed hemisphere with radius 15 cm and a vertical axis of symmetry. The sphere starts at the top from rest. (a) What is its kinetic energy at the bottom? (b) What fraction of its kinetic energy at the bottom is associated with rotation about an axis through its com? (c) What is the magnitude of the normal force on the hemisphere from the sphere when the sphere reaches the bottom?
- 92 An automobile has a total mass of 1700 kg. It accelerates from rest to 40 km/h in 10 s. Assume each wheel is a uniform 32 kg disk. Find, for the end of the 10 s interval, (a) the rotational kinetic energy of each wheel about its axle, (b) the total kinetic energy of each wheel, and (c) the total kinetic energy of the automobile.
- 93 A body of radius R and mass m is rolling smoothly with speed v on a horizontal surface. It then rolls up a hill to a maximum height h. (a) If $h = 3v^2/4g$, what is the body's rotational inertia about the rotational axis through its center of mass? (b) What might the body be?