العلامة		/ + #\$ »
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		التمرين الأول: (06 نقاط)
0,5	0,5	1. تعريف السقوط الحر: نقول عن جسم صلب أنه يسقط سقوطا حرا إذا خضع لثقله فقط
		(تهمل دافعة أرخميدس والاحتكاك مع الهواء).
	0,25	.2
0,75	0,23	1.2. المرجع المناسب: (أ) المرجع السطحي الأرضي.
0,73	0,25	2.2. نعم يمكن اعتبار المرجع المختار عطاليا
	0,25	التعليل: لأن مدة الدراسة صغيرة جدا أمام دور الأرض.
		.3
	0,25	ا 1.3. القوى الخارجية: \bar{p}
	0,23	– الثقل.
		Z .
		2.3. نص القانون الثاني لنيوتن:
	0,5	" في معلم عطالي، المجموع الشعاعي للقوى الخارجية المطبقة على جملة مادية يساوي
		جداء كتلتها في شعاع تسارع مركز عطالتها."
		$\sum \vec{F}_{ext} = m \cdot \vec{a}_G$
		3.3. المعادلة التفاضلية التي تحققها سرعة مركز عطالة الجملة في كل لحظة:
2,75	0,25	$\sum_{G} ec{F}_{ext} = m \cdot ec{a}_G$ بتطبیق القانون الثاني لنیوتن $ec{B} = m \cdot ec{a}_G$
	0,25	$1 - m \cdot u_G$
	0,25	$mg = ma_G$ بالإسقاط وفق محور الحركة نجد معرم الحركة نجد
	0,25	$\frac{dv}{dt} = g$ ومنه
	0.05	4.3 تحديد طبيعة الحركة:
	0,25	المسار مستقيم والتسارع ثابت موجب، الحركة مستقيمة متسارعة بانتظام
	0,25	$v(t) = at + v_0$: المعادلة الزمنية للسرعة $-$
	0,25	$ u_0 = 0$ من الشروط الابتدائية
	0,25	v(t) = at = 9.8t

العلامة		/ 1 "Ext
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
	0,5	v(m/s) : $v = f(t)$ الكرية الكرية $v = f(t)$
		2.4. إيجاد ارتفاع الجسر عن سطح الأرض بيانيا:
		يمثل مساحة الجزء المحصورة بين المستقيمين $t = 4,67s$ و مخطط السرعة
2	0,25	$h = \frac{4,67 \times 45,766}{2}$ ومنه:
	0,25	$h = 106,86m \approx 107 m$
	0,5	المعادلة الزمنية للحركة: $z = \frac{1}{2}gt^2$
		t = 4,67s التأكد من قيمة h حسابيا: عند 4.4.
	0,25	$h = \frac{1}{2} \times 9.8 \times (4.67)^2$
	0,25	$h = 106, 86 \approx 107 m$
		K_1 i (07) التمرين الثاني: i التمرين الثاني: الثاني: التمرين ا
		1. شحن المكثفة
	$0,25\times4$	1.1. رسم الدارة وتوضيح كيفية ربط راسم u_c
	$0,25\times4$	$E\left(\bigcup_{u_R} u_c \mid C \right)$
		R
F 5		$u_{\scriptscriptstyle C}$ المعادلة التفاضلية يحققها عند $u_{\scriptscriptstyle C}$
5,5	0,25	$E = u_C + u_R$
	0,25	$E = u_C + Ri$ du_C
	0,25	$E = u_C + RC \frac{du_C}{dt}$
		$\frac{du_C}{dt} + \frac{1}{RC}u_C = \frac{E}{RC}$

العلامة		/ t=\$t(a . : t()	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)	
		3.1. إيجاد عبارة كل من الثابتين A و B	
		نعوض عبارة $u_{c}(t)$ و $\frac{du_{c}}{dt}$ في المعادلة التفاضلية فنجد:	
	0,25	$\frac{du_C}{dt} = \frac{A}{B}e^{-\frac{t}{B}}$	
	0,25	$Ae^{-\frac{t}{B}}(\frac{1}{B} - \frac{1}{RC}) + \frac{A}{RC} = \frac{E}{RC}$	
	0,25	$\frac{A}{RC} = \frac{E}{RC} \implies A = E$	
	0,25	$\frac{1}{B} - \frac{1}{RC} = 0 \implies B = RC$	
	0,25	. يمثل الثابت B ثابت الزمن B ثابت الزمن	
	0,25	مدلوله الفيزيائي: هو الزمن اللازم لبلوغ التوتر بين طرفي المكثفة 63% من قيمته	
	-, -	الأعظمية اثناء الشحن.	
		5.1. وحدة الثابت B: باستعمال التحليل البعدي	
	0,25	$[\tau] = [R] \cdot [C]$	
	0,25	$[\tau] = \frac{[U]}{[I]} \cdot \frac{[T] \cdot [I]}{[U]} = [T]$	
		فهو متجانس مع الزمن وحدته الثانية (s) .	
		الزمن مع تحديد الطريقة المستعملة $ au$ ثابت الزمن مع تحديد الطريقة المستعملة	
	0,25	$u_{c}(au)=0.63E=3.15$ من البيان قيمة $ au$ تمثل فاصلة النقطة التي ترتيبها	
	0,25	au=200ms ومنه	
		أو: يمكن استعمال طريقة المماس.	
		رد. حساب قيمة C سعة المكثفة:	
	0.07	$C = \frac{\tau}{R} = \frac{200 \times 10^{-3}}{100}$	
	0,25	$R 100$ $C = 2 \times 10^{-3} \text{ F} = 2000 \mu\text{F}$	
	0,25	$C = 2 \times 10^{-1} - 2000 \mu$ استنتاج الطاقة المخزنة في المكثفة عند نهاية الشحن:	
		$E_C = \frac{1}{2}C \cdot E^2$	
	0,25	2	
	0,25	$E_C = 25 \times 10^{-3} J$	
	0,25	8.1. يتم شحن المكثفة بالدارة السابقة بشكل أسرع بالخفض من قيمة R .	

العلامة		/ 1 "Ext		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)		
	0,25	 2. تفريغ المكثفة 1.2. 1.1.1. أثناء التفريغ، تتناقص الطاقة المخزنة في المكثفة حيث تستهلك في الناقل الأومي على شكل حرارة بفعل جول. 		
1,5	0,5	عبارة اللحظية للطاقة المخزنة في المكثفة: $ E_C(t) = \frac{1}{2}Cu_C^2(t) = \frac{1}{2}CE^2e^{-\frac{2t}{\tau'}} = \frac{1}{2}CE^2e^{-\frac{t}{\tau'/2}} $		
	0,25	$rac{ au'}{2} = 0.4s$ قيمة ' $ au$: من البيان $ au$		
	0,25	R' قيمة المقاومة $R'=rac{ au'}{C}$		
	0,25	$R'=400\Omega$ التمرين التجريبي: (07 نقاط)		
0,25	0,25	النجريبي. (07 تعطى النجريبي. (07 تعرض العبارة: يجب لبس القفازات لأن المادة كاوية وحارقة، ويجب لبس نظارات لمنع تعرض العين لهذه المادة		
0,5	0,25 0,25	2. التركيب التجريبي لعملية المعايرة: - التجهيز - البيانات - البيانات المزيج التفاعلي المخلاط		
0,25	0,25	${ m H_3O^+}(aq) + { m HO^-}(aq) = 2{ m H_2O}(\ell)$. معادلة تفاعل المعايرة:		
8	0,25	: عيين $c_1V_1=c_aV_{aE}$ التركيز المولي للمحلول $c_1(S)$ عند التكافؤ $c_1V_1=c_aV_{aE}$ ومنه $c_1=\frac{c_aV_{aE}}{V_1}$		
1	0,25	$c_1 = \frac{0.1 \times 20}{20} = 0.1 \text{ mol} \cdot L^{-1}$ $c_0 = 50c_1$		
	0,25 0,25	$c_0 = 50 \times 0, 1 = 5 mol \cdot L^{-1}$: $c_0 = 50 \times 0, 1 = 5 mol \cdot L^{-1}$		

العلامة		/ * "Est -	. 41 7 1 141	4.	
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)			
0,25	0,25	c_{0} صعبة التحقيق نظرا لقيمة	جاري: عملية المعايرة	، المحلول الت	5. الهدف من تخفيف
0,23	0,23	معاير للوصول الى نقطة التكافؤ.	م كبير من المحلول ال	ب إضافة حجم	
0,25	0,25	الجزء 2: 1. تعریف الحمض: هو كل فرد كیمیائي (شاردي أم جزیئي) قادر علی فقدان بروتون H^+ او أكثر خلال تحول كیمیائي.			
0.5			ك في الماء:	**	2. معادلة انحلال حم
0,5	0,5	$HCOOH(\ell) + H$	$I_2O(\ell) = H_3O^+(aq)$		
			:0	حلول المخفف	3. التركيز المولي للم
0,5	0,25 0,25		$c = \frac{c_0}{10}$ $c = 0,2 mol \cdot L^{-1}$		
	0.25		(S)محلول		4. الزجاجيات المناسب
0,75	0,25 0,25				ماصىة عيارية حوجلة عيارية ،
	0,25	إلى حوجلة عيارية 100mL	S مرات يحتاج (S		
				عل:	 جدول تقدم التفا.
		HCOOH(ℓ)	$+ H_2O(\ell) = H_3O(\ell)$		
		الحالة	ة المادة (mol)	كمي	
	0,25	· ح	. :	0	0
		· ح	بوفرة	х	x
2.75	0,25	ح. نهائية $cV - x_f$		\mathcal{X}_f	X_f
2,75					$: au_f$ عبارة =
	0,25		$x_f = \frac{x_f}{x_{max}}$		
	0,25	7	$\tau_f = \frac{n_{f(\mathrm{H}_3\mathrm{O}_{(\mathrm{aq})}^+)}}{n_0}$		
	0,25		$x_f = \frac{\left[\mathbf{H}_3 \mathbf{O}_{(aq)}^+ \right]_f V}{cV}$		
	0,25	1	$\tau_f = \frac{10^{-pH}}{c}$		

تابع للإجابة النموذجية لموضوع اختبار مادة: العلوم الفيزيائية/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

العلامة		/ 1 " \$ 1
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
		:اینای $ au_f$ بیانیا:
		$ au_{fI}=0.14$ $pH_1=2.9$ من أجل
	0,25 0,25	$ au_{f2} = 0.96$ $pH_2 = 5.0$ من أجل
	0,23	- استنتاج التركيز المولي لكل محلول:
		$c=rac{10^{-pH}}{ au_f}$ من عبارة نسبة تقدم التفاعل
		$c_1 = 8,99 \times 10^{-3} mol \cdot L^{-1}$
	0,25	$c_2 = 1.04 \times 10^{-5} mol \cdot L^{-1}$
	0,25	
	0,25	3.5. كلما مددنا المحلول الابتدائي كلما ازداد انحلال الحمض في الماء.

العلامة		/ •1,501 - • •1\ 71 1 1 1 1 -
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
0,25	0,25	التمرين الأول: (06 نقاط) 1. المرجع المناسب هو المرجع الجيومركزي.
0,75	0,25	$\overline{F_{T_N}}$ (S) F
	0,25×2	$F_{T/S} = \frac{GM_T m}{(R_T + h)^2} = 3,59 \times 10^6 \text{N}$
		3. إيجاد عبارة السرعة:
		بتطبيق القانون الثاني لنيوتن
	0,25	$\sum \vec{F} = m\vec{a}$
	0,25	$\overrightarrow{F_{T/S}} = m\overrightarrow{a}$
1,25	0,25	$F_{T/S} = ma_n = m \frac{v^2}{(R_T + h)}$ بالإسقاط على الناظم
1,26	0,25	$v = \sqrt{\frac{\mathbf{F}_{\text{T/S}}}{m} . (R_T + h)}$
		حساب السرعة المدارية:
		$v = \sqrt{\frac{3,59 \times 10^6 (6,4 \times 10^6 + 0,4 \times 10^6)}{4,15 \times 10^5}}$
	0,25	$v = 7,67 \times 10^3 m \cdot s^{-1}$
		4. كتابة عبارة الدور:
	0,25	$T=rac{2\pi(R_{_T}+h)}{v}$
	0,25	$T = 5,56 \times 10^3 s$
		عدد الدورات المنجزة في اليوم الواحد
	$0,25\times2$	$N = \frac{24 \times 3600}{T} = \frac{24 \times 3600}{5,56 \times 10^3} = 15,5$ دورة

العلامة		/ 21 4 2 41 7 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثَّاني)		
	0,25	0		
		3.1.5 هو الكترون β1.5 هو الكترون 2.5 كتابة التناك		
		2.5. كتابة معادلة التفكك $I o {}^{131}_{53} I o {}^{A}_{7} X + {}^{0}_{-1} e$		
	0,25	A = 131		
		Z = 54		
	0,25	$^{131}_{53} ext{I} o ^{131}_{54} ext{Xe} + ^{0}_{-1} ext{e}$ النواة الناتجة هي $^{131}_{54} ext{Xe}$ النواة الناتجة هي		
		3.5. حساب عدد الأنوية الابتدائية:		
	0,25	$N_{o}=rac{m_{o}}{M}.N_{\mathrm{A}}$		
		$N_0 = \frac{0.8}{131} \times 6,023 \times 10^{23}$		
	0,25	$= 3,68 \times 10^{21} \text{noyaux}$		
		${f A}_0$ استنتاج		
		$A_o = \lambda . N_o$		
	0,25	$A_o = rac{ln2}{t_{rac{1}{2}}}.N_o$		
	0,25	$A_0 = 3,69 \times 10^{15} \mathrm{Bq}$		
	0,23	$\frac{11_0 - 3,00 \times 10^{-1} \text{ Bq}}{4.5}$		
		1.4.5. إثبات العلاقة:		
		$A(t_1) = A_0 e^{-\lambda t_1}$		
		$\frac{A(t_1)}{A_0} = e^{-\lambda t_1}$		
		$ln\frac{A(t_1)}{A_0} = -\lambda t_1$		
2,75	0,25	$A_0 = A_0$		
		$ln\frac{A_0}{A(t_1)} = \frac{ln2}{t_{1/2}}t_1$		
	0,25	$t_{I} = \frac{t_{1/2}}{\ln 2} \ln \frac{A_{0}}{A(t_{I})}$		
	0,25	$A(t_1) = 0.2 \times A_0$ t_1 2.4.5		
		$t_1 = \frac{8}{\ln 2} \times \ln 5$		
	0,25	$t_1 = 18,6 jours$		

العلامة		/ -124					
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)					
		التمرين الثاني: (07 نقاط)					
	0.252	ا. Na^+ , HO^- , $CH_3CO_2^-$ الأنواع الكيميائية المسؤولة عن ناقلية المزيج التفاعلي . 1.1					
	0,25×3	اد.1.1 الانواع الكيميانية المسوولة على تافية المربع النفاعلي (σ) المربع النفاعلي عمع مرور الزمن:					
		بما أن $[HO^-]$ المتفاعلة و $[CH_3CO_2^-]$ الناتجة متساویان و $\lambda_{HO^-} > \lambda_{CH_3CO_3^-}$					
	0,5	والناقلية المولية النوعية σ تتناقص مع مرور الزمن لتثبت في نهاية التحول عند قيمة					
		غير معدومة.					
		3.1. حساب كمية مادة ايثانوات الايثيل الابتدائية (n_1) :					
2,25	0,25	$n_1 = rac{ ho \cdot V_1}{M}$ ومنه: $m_1 = ho \cdot V_1$ ومنه: $n_1 = rac{m_1}{V_1}$ ومنه: $n_1 = rac{m_1}{M}$					
		$m_1 = 0.01 mol$ اذن: $n_1 = \frac{0.9 \times 1}{88}$					
	0,25	00					
	0,25	4.1. جدول تقدم التفاعل:					
		$C_4H_8O_{2(l)} + HO_{(aq)}^- = CH_3CO_{2(aq)}^- + C_2H_6O_{(l)}$ المعادلة					
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		$n_1 - x \qquad C_0 V_0 - x \qquad x \qquad x$					
	0,25	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		λ_{HO} عند اللحظة $t_0=0$ بدلالة والناقليات المولية الشاردية λ_{Na^+} عند اللحظة عند اللحظة المولية الشاردية الشاردية عند اللحظة المولية المولية الشاردية λ_{Na^+}					
	0,25	$\begin{bmatrix} N_{\mathrm{HO}^{-}} \end{bmatrix}_{0}^{1} = \begin{bmatrix} HO^{-} \end{bmatrix}_{0}^{1} = c_{0}$ حیث $\sigma_{0} = \lambda_{\mathrm{Na}^{+}} \cdot \begin{bmatrix} Na^{+} \end{bmatrix}_{0}^{1} + \lambda_{\mathrm{HO}^{-}} \cdot \begin{bmatrix} HO^{-} \end{bmatrix}_{0}^{1}$					
	0,25						
	0,23	$\sigma_0 = c_0(\lambda t_{\text{Na}^+} + \lambda t_{\text{HO}^-})$ المزيج التفاعلي عند لحظة $\sigma(t)$ عبارة الناقلية النوعية .2.2					
1,5	0,25	$\sigma(t) = \lambda_{\text{Na}^{+}} \cdot \left[\text{Na}^{+} \right]_{0} + \lambda_{\text{HO}^{-}} \cdot \left[\text{HO}^{-} \right]_{(t)} + \lambda_{\text{CH},\text{CO}_{2}^{-}} \cdot \left[\text{CH}_{3}\text{CO}_{2}^{-} \right]_{(t)}$					
	0,25	$\begin{bmatrix} \operatorname{CH_3CO_2}^- \end{bmatrix}_{(t)} = \frac{x(t)}{V} \cdot \begin{bmatrix} \operatorname{HO}^- \end{bmatrix}_{(t)} = c_0 - \frac{x(t)}{V} \cdot \begin{bmatrix} \operatorname{Na}^+ \end{bmatrix}_0 = c_0 : $					
	0,25	$\sigma(t) = \lambda_{\mathrm{Na^+}} \cdot c_0 + \lambda_{\mathrm{HO^-}} \cdot c_0 - \lambda_{\mathrm{HO^-}} \cdot \frac{x(t)}{V} + \lambda_{\mathrm{CH_3CO_2^-}} \cdot \frac{x(t)}{V}$ بالتعویض نجد:					
		$\sigma(t) = c_0(\lambda_{\text{Na}^+} + \lambda_{\text{HO}^-}) + \frac{(\lambda_{\text{HO}^-} + \lambda_{\text{CH}_3\text{CO}_2^-})}{V} \cdot x(t)$					
	0,25	$\sigma(t) = \frac{(\lambda_{\text{HO}^-} + \lambda_{\text{CH}_3\text{CO}_2^-})}{V} \cdot x(t) + \sigma_0 \text{easy} \sigma_0 = c_0(\lambda_{Na^+} + \lambda_{HO^-}) \text{:}$ علما أن:					

العلامة		/ *1 ² ***
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
	0,5 0,5	: σ_f و σ_0 د 1.3 تحديد قيمة كل σ_0 و σ_0 د $\sigma_0=27,5m{ m S}\cdot m^{-1}$: لما $\sigma_0=27,5m{ m S}\cdot m^{-1}$ ، بالإسقاط نجد $\sigma_f=10m{ m S}\cdot m^{-1}$. بالإسقاط نجد
2,25	0,25	$c_0 = \frac{\sigma_0}{(\lambda_{\text{Na}^+} + \lambda_{\text{HO}^-})} : c_0 = \sigma_0 = c_0 (\lambda_{\text{Na}^+} + \lambda_{\text{HO}^-})$ $c_0 = \frac{27.5}{(5.0 + 20.0)} \Rightarrow c_0 = 1.1 \text{mol} \cdot \text{m}^{-3} = 1.1 \times 10^{-3} \text{mol} \cdot \text{L}^{-1}$
	0, 25 0, 25 0, 25	: تحديد المُتفاعل المُحد: $n_f(\mathrm{HO}^-) = c_0 V_0 - x_f = 1,1 \times 10^{-3} \times 200 - 0,22 = 0$ $n_f(\mathrm{C_4H_8O_2}) = n_1 - x_f = 10 - 0,22 \neq 0$ אو المتفاعل المُحد HO^-
0,5	0,25	4. $-0=(0)$: خاطئة لأن في البداية تكون التصادمات الفعالة كثيرة وبالتالي السرعة الحجمية تكون أعظمية. $v_{V}(0)=0$ - $v_{V}(t_{f})$ - $v_{V}(t_{f})$ أعظمية: خاطئة لأن في نهاية التفاعل يكون المتفاعل المحد قد أستهلك كليا وبالتالي السرعة الحجمية تكون معدومة.
0,5	0,5	5. العامل الحركي: تراكيز المتفاعلات.
0,25	0,25	التمرين التجريبي: (07 نقاط) 1. يمكن اعتبار الوشيعة صافية بربط طرفيها بالأوم متر حيث يشير هذا الأخير إلى قيمة صغيرة.
0,5	0,25 0,25	$u_{\scriptscriptstyle K}=E$: القاطعة مفتوحة $u_{\scriptscriptstyle K}=0$ القاطعة مغلقة $u_{\scriptscriptstyle K}=0$

العلامة		/ 01 ²⁶ 01		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)		
	0,25×4	$u_{R_2} \downarrow \bigcap_{R_2} A_{L} \downarrow u_{L}$ $E \uparrow \bigcap_{R_1} A_{L} \downarrow u_{R_1}$ \vdots		
4	0,25 0,25	$u_{R_1}+u_{R_2}+u_L=E$ $u_{R_1}+R_2i+L\frac{di}{dt}=E$		
	0,25	$u_{R_1} + R_2 \frac{u_{R_1}}{R_1} + \frac{L}{R_1} \frac{du_{R_1}}{dt} = E$		
	0,25	$\frac{du_{R_1}(t)}{dt} + \left(\frac{R_1 + R_2}{L}\right)u_{R_1}(t) = \frac{R_1}{L}E$		
	0, 25 0, 25	3.3. (b) هو المنحنى الذي يمثل $u_{R_1}(t)$ هو المنحنى $u_{R_1}(t)$ التعليل: $t=0,i=0$ (الوشيعة تعرقل مرور التيار في النظام الانتقالي)		
	0,25×2	$I_0 = \frac{u_{R_{\rm lmax}}}{R_{\rm l}} = \frac{6}{60} = 0.1A$: قيمة I_0 في النظام الدائم: 2.3.3		
	$0,5 \times 2$	$ au=10ms$ ، $E=10{ m V}$ (a) من $ au: au$ و $ au: au$ من المنحنى $ au: au$		
	0,25	$I_0=rac{E}{R_1+R_2}$ \Rightarrow $R_2=rac{E}{I_0}-R_1$: L و R_2 قيمة و R_2		
1	0,25	$R_2 = 40\Omega$		
	0,25	$L = \tau(R_1 + R_2) = 0,01 \times 100$ L = 1H		
	0,25	5. التبرير: في النظام الدائم:		
	0,25	, , , , , , , , , , , , , , , , , , ,		
0,5		$u_{y_1} = u_{R_1}(t) + u_L(t) = u_{R_1} = R_1 I_0 \; ; u_L = 0 \; : \; y_1$ على المدخل $-$		
	0,25	$u_{y_2}=u_{R_1}(t)=R_1I_0$; y_2 على المدخل –		
0.25	0.25	$u_{y_1} = u_{y_2}$		
0,25	0,25	6. تتصرف الوشيعة الصافية في النظام الدائم: (ب) سلك ناقل.		
0.5		7. الطاقة المخزنة في الوشيعة في النظام الدائم: 1		
0,5	0,25	$E_L = \frac{1}{2}LI_0^2$		
	0,25	$E_L = 5 \times 10^{-3} \mathrm{J}$		