- Given: Two graphs $G_A(V_A, E_A)$ and $G_B(V_B, E_B)$ and their adjacency matrices: A and B
- Idea: $n = |V_a|$, $m = |V_b|$, $n \times m$ ("permutation") matrix M with following form:
 - ► M contains only '0' and '1'
 - Exact one '1' in each row
 - Not more than one '1' in each column
- Permutate adjacency matrix B by multiplying it with M, and compare adjacency.

Ullmann's Algorithm

• $M \times B$: Move row j to row $i \ \forall M_{ij} = 1$

- $(MB)^T$: Move column j to column i
- $M(MB)^T$: Move column j to column i and row j to row i

Ullmann's Algorithm

M

0	1	0	0		
1	0	1	1		
0	1	0	0		
0	1	0	0		
$B=B^{T}$					

$$M(MB)^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \times \left(\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \right)^{T}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} = C$$

Ullmann's Algorithm

also called "induced subgraph isomorphism"

Creating pairs of nodes by exchanging rows and columns (renaming).

Adjacency condition

Let $C = M(MB)^T$,

A is a (subgraph-) isomorphism iff

$$A_{ij} = 1 \Leftrightarrow C_{ij} = 1 \forall i, j$$

How do we get M?

Subgraph Monomorphism

Ullmann's Algorithm

- sometimes called "subgraph isomorphims problem" (sigh!)
- "most common" version

Creating pairs of nodes by exchanging rows and columns (renaming).

Adjacency condition

Let
$$C = M(MB)^T$$
,

A is a (subgraph-) monomorphism

iff

$$A_{ij}=1 \Rightarrow C_{ij}=1 \forall i,j$$

How do we get M?

Ullmann's Algorithm

- Build Startmatrix M^0 by setting all values to 1 (allow all permutations)
- Set values to 0 for all M_{ij}^0 where $deg(B_j) < deg(A_i)$ (remove impossible permutations)

$$M_{ij}^0 = \left\{ egin{array}{ll} 1 & \emph{if} & deg(B_j) \geq deg(A_i) \\ 0 & \textrm{otherwise} \end{array} , orall i, j
ight.$$

• Generate systematically permutation matrices M^d .

1	1	1	1
1	1	1	1
0	1	0	0

