Full name: Thi Ngoc Anh Tran Student ID: 9102520232

Report Assignment 2

- a) Make a MLP with 2 hidden layers (each layer with 256 units) and its training/validation/evaluation code to perform multiclass classification over all digits.
 - Please go to this <u>Link</u>

b) Train for 5 epochs with batch size 64.

- This is the result after training for 5 epochs with batch size = 64:

Inis is the result after training for 5 epochs with batch size = 64:				
With epoch 0: loss: 2.299855 [64/60000] loss: 2.294864 [12864/60000] loss: 2.290794 [25664/60000] loss: 2.288573 [38464/60000] Train: Accuracy: 19.1%, Avg loss: 2.291189 Validation: Accuracy: 28.4%, Avg loss: 2.278475	With epoch 1: loss: 2.278586 [64/60000] loss: 2.273299 [12864/60000] loss: 2.267096 [25664/60000] loss: 2.249541 [38464/60000] Train: Accuracy: 40.1%, Avg loss: 2.263770 Validation: Accuracy: 51.5%, Avg loss: 2.24775			
With epoch 2: loss: 2.245789 [64/60000] loss: 2.229317 [12864/60000] loss: 2.223746 [25664/60000] loss: 2.210133 [38464/60000] Train: Accuracy: 57.6%, Avg loss: 2.226064	With epoch 3: loss: 2.205108 [64/60000] loss: 2.196153 [12864/60000] loss: 2.169593 [25664/60000] loss: 2.136563 [38464/60000] Train: Accuracy: 62.4%, Avg loss: 2.167951			
Validation: Accuracy: 60.2%, Avg loss: 2.202433	Validation: Accuracy: 63.1%, Avg loss: 2.130547			
With epoch 4: loss: 2.156175 [64/60000] loss: 2.115165 [12864/60000] loss: 2.086789 [25664/60000] loss: 2.078814 [38464/60000] Train: Accuracy: 64.5%, Avg loss: 2.075427 Validation: Accuracy: 64.3%, Avg loss: 2.016472	Test: Accuracy: 64.8%, Avg loss: 2.007726			

c) How should we choose the number of iterations to achieve good generalization? Train until you think the model has achieved good generalization.

- We should choose the number of iterations when the loss of validation stops decreasing even though the training loss is still decreasing. The model becomes overfitting after that.

d) What are the hyperparameters you can tune? List all of them.

These are some hyperparameters that I can tune:

- Number of Units per Hidden Layer: 128, 256,...

- Learning Rate: 0.01, 0.001,...

- Batch Size: 32, 64,...

- Number of Epochs: 3, 5, 10,...

- Optimizer: Adam, Adagrad, SGD,...

- e) Use the hyperparameter tuning strategy (for at least two iterations) to find a set of hyperparameters (for at least two hyperparameters) that would provide good generalization performance. Report the procedure you took in detail.
 - ➤ I will change two hyperparameters: the learning rate and the number of epochs
 - \rightarrow I choose learning rate = 0.01, 0.005, 0.001
 - \triangleright I choose the number of epochs = 5, 10, 20

Learning rate	Number of epochs	Last validation accuracy	Last test accuracy
0.01	5	Validation: Accuracy: 90.8%, Avg loss: 0.328752	Test: Accuracy: 91.1%, Avg loss: 0.305645
	10	Validation: Accuracy: 92.7%, Avg loss: 0.255329	Test: Accuracy: 93.3%, Avg loss: 0.238912
	20	Validation: Accuracy: 94.8%, Avg loss: 0.176305	Test: Accuracy: 95.4%, Avg loss: 0.160310
0.001	5	Validation: Accuracy:	Test: Accuracy:

		64.3%, Avg loss: 2.016472	64.8%, Avg loss: 2.007726
	10	Validation: Accuracy: 78.9%, Avg loss: 0.961431	Test: Accuracy: 79.6%, Avg loss: 0.933880
	20	Validation: Accuracy: 86.7%, Avg loss: 0.490305	Test: Accuracy: 87.3%, Avg loss: 0.465445
0.005	5	Validation: Accuracy: 88.1%, Avg loss: 0.426373	Test: Accuracy: 89.0%, Avg loss: 0.400292
	10	Validation: Accuracy: 90.6%, Avg loss: 0.327362	Test: Accuracy: 91.2%, Avg loss: 0.305606
	20	Validation: Accuracy: 92.5%, Avg loss: 0.258905	Test: Accuracy: 93.2%, Avg loss: 0.241866

f) What is the final test accuracy?

- Test: Accuracy: 97.5%, Avg loss: 0.085818 (with learning rate = 0.01, number of epochs = 50)