(co)-Homologie (des faisceaux)

2023-2024

Table des matières

1	Faisceaux		
	1.1	Définitions	7
	1.2	Faisceautisation	8
	1.3	Faisceau localement constant	Ĉ
	1.4	Suites exactes de faisceaux	Ĉ
	1.5	Images directes et inverses de faisceaux	10

TABLE DES MATIÈRES

Introduction

Le but ca va être la cohomologie des faisceaux et les théorèmes de changement de base propres (pas comme dans [Mum70]).

TABLE DES MATIÈRES

Chapitre 1

Faisceaux

1.1 Définitions

On parle d'espaces topologiques. Soit X un e.t.

Définition 1.1.1 (Préfaisceau abélien). Pour l'instant c'est un faisceau en groupe abélien.

Remarque 1. Soit \mathscr{P} un faisceau en groupes abéliens. Soit $U = \bigcup_i U_i$ un recouvrement ouvert on peut définir la séquence

$$0 \to \mathscr{P}(U) \to \prod_{i} \mathscr{P}(U_{i}) \to \prod_{(i,j)} \mathscr{P}(U_{i} \cap U_{j})$$

où la premier flèche est la restriction et la deuxième la différence $(s_i)_i \mapsto (s_i|_{U_i \cap U_j} - s_j|_{U_i \cap U_j})_{i,j}$. C'est une suite exacte parce que si on appelle d_0 et d_1 les deux flèches :

$$(s|_{U_i}|_{U_i\cap U_j} - s|_{U_j}|_{U_i\cap U_j})$$

Ca mesure si une section est globale! En particulier ca axiomatise les faisceaux :

- La condition $ker(d^1) = Im(d^0)$ équivant au gluing de sections locales.
- La condition $\ker(d^0) = 0$ équivant à l'unicité des sections.

On appelle $C(\bigcup_i U_i, \mathscr{P})$ la suite exacte du dessus.

Définition 1.1.2. On définit la fibre (stalk) en $x \in X$ pour un préfaisceau \mathscr{P} par

$$\mathscr{P}_x = \varinjlim_{x \in U} \mathscr{P}(U)$$

et on a

$$\mathscr{P}_x = \sqcup_{x \in U} \mathscr{P}(U) / \sim$$

où la relation c'est la relation de coincider sur une restriction. On a les germes de sections comme d'habitude qu'on note par s_x .

Théoreme 1.1.3. Une flèche de faisceaux $\mathscr{F} \to \mathscr{G}$ est un isomorphisme ssi la flèche induite sur les fibres sont des isomorphismes.

Définition 1.1.4 (Support d'une section d'un faisceau). Soit \mathscr{F} un faisceau sur X. On définit $\operatorname{Supp}_U(s) := \{s \in U | s_x \neq 0\}$

Exercices 1.1.5. Soit \mathscr{F} un faisceau abélien, montrer que le support d'une section s est fermé. Faut juste montrer que s_x vaut zéro même en élargissant à un petit ouvert autour de x, c'est évident en fait.

Remarque 2. Le foncteur d'oubli $Sh(X) \to PreSh(X)$ est pleinement fidèle. Au sens où les morphismes sont les mêmes par définition.

1.2 Faisceautisation

Il a l'air de l'avoir fait avec l'espace étalé. Bon je peux garder ma déf habituelle.

Définition 1.2.1 (Faisceautisé). Pour un préfaisceau \mathscr{F} sur X on définit $\mathscr{F}^+(U) := \{ f_P \in \prod_{P \in \mathscr{F}(U)} \mathscr{F}_P | \forall P \exists V_P, \ t \in \mathscr{F}(V_p) \ t_P = f_P \forall Q \in V_P \ t_Q = f_Q \}$

Remarque 3. En ajoutant les restrictions induites le préfaisceau \mathscr{F}^+ est un faisceau.

Remarque 4. Il faut utiliser des sections non locales de \mathscr{F} simplement parce que avoir les mêmes fibres à isomorphisme de permet pas nécessairement de relever de manière cohérente.

On définit $\mathscr{F} \to \mathscr{F}^+$ par la diagonale.

Théoreme 1.2.2 (Propriété universelle). Soit $\mathscr{F} \to \mathscr{G}$ un morphisme de préfaisceaux où \mathscr{G} est un faisceau. Alors le morphisme se factorise en

et la flèche $\mathscr{F}^+ \to \mathscr{G}$ est unique.

Démonstration. L'idée c'est qu'on $\mathscr{G} \simeq \mathscr{G}^+$ et on a tjr une flèche $\mathscr{F}^+ \to \mathscr{G}^+$.

Remarque 5. Le foncteur de faisceautisation est exact.

Remarque 6. Ce serait bien de refaire les preuves rien qu'une fois1.

Remarque 7 (Traduction en terme d'espace étalé). En gros l'espace étalé c'est les fonctions de U dans $\bigsqcup_P \mathscr{F}_P$. Autrement dit $\prod_{P \in U} \mathscr{F}_P$. Et on demande de la continuité. En gros y'a une fonction continue force des conditions de recollement.

1.3 Faisceau localement constant

Soit X un espace topologique et A un "objet abélien". On définit le préfaisceau constant par

$$A_{\mathbf{Y}}^{pre}(U) = A$$

pour tout ouvert $U \subset X$. On définit ensuite le faisceau localement constant associé à A par A_X .

Remarque 8. (1) L'exemple canonique du fait que A_X^{pre} c'est pas un faisceau c'est $A_X(\emptyset) = A$.

(2) On peut prendre $U_1 \sqcup U_2$ et regarder la section $(0, p_2)$. Elle lift pas vu que les restrictions sont par déf l'identité.

Proposition 1.3.1. On a $A_X(U) = A^{\pi_0(U)}!$ Où $\pi_0(U)$ compte les composantes connexes. (Attention faut quand même qu'elles soient ouvertes?!)

Démonstration. Soit $\mathscr{P} = A_X^{pre}$. On a $\mathscr{P}_P = \varinjlim_{P \in U} P(U) = \varinjlim_{P \in U} A = A$. Ensuite faut écrire $X = \coprod X_i$. Puis montrer que $\mathscr{P}^+(X_i) = A$. Ensuite clairement par propriété universelle du produit on a fini.

1.4 Suites exactes de faisceaux

On considère $\alpha\colon \mathscr{F} \to \mathscr{G}$ un morphisme de faisceaux abéliens.

Proposition 1.4.1 (Faisceau noyau). Le préfaisceau donné par $\ker(\alpha)(U) = \ker(\alpha : \mathscr{F}U \to \mathscr{G}U)$ est un faisceau.

Définition 1.4.2 (Faisceau image). On définit le préfaisceau image par $U \mapsto \operatorname{Im}^{pre}(\alpha \colon \mathscr{F}U \to \mathscr{G}U)$.

Remarque 9. En général c'est pas un faisceau donc on déf $Im(\alpha)$ le faisceau associé.

Remarque 10. À faire! Injection canonique des faisceaux Im et ker.

Définition 1.4.3 (Faisceau quotient). À nouveau on faisceautise le préfaisceau quotient.

Remarque 11. La faisceautisation commute avec les fibres. De sorte que le quotient des fibres est la fibre des quotients.

Définition 1.4.4 (Suite exacte de faisceaux abéliens). Une suite

$$0 \longrightarrow \mathscr{F}' \stackrel{\alpha}{\longrightarrow} \mathscr{F} \stackrel{\rho}{\longrightarrow} \mathscr{F}'' \longrightarrow 0$$

est exacte si on a les conditions habituelles d'égalités en tant que faisceaux.

Proposition 1.4.5. Suffit d'avoir des suites exactes sur les fibres avec les flèches induites.

Maintenant on arrive au croustillant. Si on a une suite exacte de faisceaux

$$0 \longrightarrow \mathscr{F}' \stackrel{\alpha}{\longrightarrow} \mathscr{F} \stackrel{\rho}{\longrightarrow} \mathscr{F}'' \longrightarrow 0$$

on peut montrer que $0 \to \mathscr{F}'(X) \to \mathscr{F}(X) \to \mathscr{F}''(X)$ est exacte. Mais la dernière flèche est pas nécessairement surjective.

Exemple 1.4.6. Soit $X = \mathbb{C}^{\times}$ et \mathcal{O}_X le faisceau des fonctions holomorphes. Alors on a une suite exacte

$$0 \longrightarrow (2i\pi \mathbb{Z})_X \longrightarrow \mathcal{O}_X \xrightarrow{exp} \mathcal{O}_X^{\times} \longrightarrow 0$$

où la première flèche est celle donnant les fonctions constantes. La deuxième est la post-composition avec l'exponentielle.

Remarque 12. Dans la suite exacte de faisceaux on a pas besoin de la surjectivité de la dernière flèche.

1.5 Images directes et inverses de faisceaux

Soit $f: X \to Y$ une application continue. On a

Faisceaux

Définition 1.5.1 (Image directe).

$$f_*\mathscr{F}: Ouv(Y)^{op} \to Ab$$

t.q
$$f_*\mathscr{F}(V) = \mathscr{F}(f^{-1}V)$$
.

Remarque 13. C'est un faisceau si \mathscr{F} est un faisceau, suffit de voir que $f^{-1}V = \bigcup f^{-1}V_i$ si $V = \bigcup V_i$.

Définition 1.5.2 (Image inverse).

$$f^p \mathscr{F} : Ouv(X)^{op} \to Ab$$

t.q $f^p\mathscr{G}(U) = \varinjlim_{f(U) \subset V} \mathscr{G}(V)$. On déf ensuite $f^* = (f^p)^+$ le faisceau associé.

Exemple 1.5.3 (Contre exemple pour f^P est un faisceau). Si on pullback un faisceau constant sur le singleton $\{*\}$ on obtient un préfaisceau constant!

Exercices 1.5.4. Revoir l'adjonction entre (_)* et (_)* et revoir le fait que c'est des foncteurs.

Note 1. Revoir comment obtenir les flèches de stalks.

Proposition 1.5.5. Pour tout $x \in X$,

$$(f^*\mathscr{G})_x \simeq \mathscr{G}_{f(x)}$$

Démonstration. Soit $x \in X$,

$$(f^*\mathscr{G})_x \simeq (f^P\mathscr{G})_x$$

$$\simeq \lim_{x \in \overrightarrow{U \subset X}} (f^P\mathscr{G})(U)$$

$$\simeq \lim_{x \in \overrightarrow{U \subset X}} \lim_{f(U) \subset \overrightarrow{V} \subset Y} \mathscr{G}(V)$$

$$\simeq \lim_{f(x) \in \overrightarrow{V} \subset Y} \mathscr{G}(V)$$

$$\simeq \mathscr{G}_{f(x)}$$

Remarque 14. Rappel: On peut regarder explicitement les limites et colimites on est dans Ab. Via des quotients!

Remarque 15. On peut voir un faisceau $f^*\mathscr{G}$ sur X comme un espace étalé sur X. On considère $\tilde{\mathscr{G}}$ l'espace étalé

$$\tilde{\mathscr{G}} \to Y$$

on peut regarder le produit fibré

Alors $f^*\mathscr{G} \simeq X \times_Y \widetilde{\mathscr{G}}$ au dessus de X.

Corollaire 1.5.6. $f^* : Sh_{Ab}(Y) \to Sh_{Ab}(X)$ est exact.

Démonstration. Étant donné $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ une suite exacte. On peut regarder directement sur les stalks et c'est clair.

Remarque 16. Étant donné $X = \{*\}$, un faisceau \mathscr{F} sur X est de la forme A_X un faisceau constant. On a alors une équivalence de catégorie

$$Sh_{Ab}(X) \simeq Ab$$

et même un isomorphisme. On a un pont pour envoyer des objets abéliens dans des faisceaux.

Corollaire 1.5.7. Soit X un e.t, $x \in X$ et \mathscr{F} un faisceau abélien sur X. On note $\iota_x \colon \{x\} \to X$, alors $\iota_x^* \mathscr{F}$ est le faisceau constant associé à \mathscr{F}_x sur $\{x\}$.

Exercices 1.5.8 (Faisceau gratte-ciel). Sur un e.t X et $x \in X$, $A \in Ab$. On définit

$$A_{\bar{x}}(U) = \begin{cases} A \text{ si } x \in U \\ 0 \text{ sinon} \end{cases}$$

Montrer que c'est un faisceau avec les restrictions évidentes. Montrer que

$$(A_{\bar{x}})_y = \begin{cases} A \text{ si } y \in \{\bar{x}\} \\ 0 \text{ sinon} \end{cases}$$

Soit $A_{\{\bar{x}\}}$ le faisceau constant sur $\{\bar{x}\}$. Montrer que $\iota_*A_{\{\bar{x}\}} \simeq A_{\bar{x}}$. D'après Fabrice le faisceau gratte ciel est une co-unité.

Faisceaux

Définition 1.5.9. On regarde $f_P : PSh_{Ab}(X) \to PSh_{Ab}(Y)$ qui à \mathscr{F} associe $(V \mapsto \mathscr{F}f^{-1}V)$.

Remarque 17. On a un carré commutatif de catégories (foncteurs diagonaux isomorphes)

$$Sh_{Ab}(X) \xrightarrow{\iota_X} PSh_{Ab}(X)$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{f_P}$$

$$Sh_{Ab}(Y) \xrightarrow{\iota_Y} PSh_{Ab}(Y)$$

Proposition 1.5.10. On a une adjoint on $f^P: PSh(Y) \leftrightarrow PSh(X): f_P$.

Démonstration. On doit donner un isomorphisme (d'ensembles)

$$\operatorname{Hom}_{PSh(X)}(f^P\mathscr{G};\mathscr{F}) \simeq \operatorname{Hom}_{PSh(Y)}(\mathscr{G}; f_P\mathscr{F})$$

fonctoriel en $\mathscr{F} \in PSh(X)$ et $\mathscr{G} \in PSh(Y)$ (l'adjoint à gauche est à gauche). Étant donné $\alpha : \mathscr{G} \to f_P\mathscr{F}$, on a pour tout V

$$\alpha(V) \colon \mathscr{G}(V) \to \mathscr{F}f^{-1}V$$

et pour tout U tel que $f(U) \subset V$ on a une flèche

$$\mathscr{G}(V) \to \mathscr{F}(f^{-1}V) \to \mathscr{F}(U)$$

et on cherche $f^P \mathcal{G}U \to \mathcal{F}U$. Suffit de prendre la limite du diagramme du haut pour l'obtenir, on peut car $U \subset f^{-1}V$.

À l'inverse si on a $\beta \colon f^P \mathscr{G} \to \mathscr{F}$ et qu'on veut des $\mathscr{G}V \to \mathscr{F}f^{-1}V$, on pose $U = f^{-1}V$, on a

$$\varinjlim_{f(f^{-1}V)\subset W}\mathscr{G}W\to\mathscr{F}f^{-1}V$$

puis comme $f(f^{-1}V) \subset V$ on a

$$\mathscr{G}V \to \varinjlim_{f(f^{-1}V)\subset W} \mathscr{G}W$$

d'où
$$\mathscr{G}V \to \mathscr{F}^{-1}V$$
.

Par la remarque plus haut et celle juste en dessou on obtient la même adjonction sur les faisceaux.

Remarque 18. La faisceautisation est adjointe à l'inclusion! (c'est la propriété universelle directement)

Proposition 1.5.11. On a une adjoint $f^*: Sh(Y) \leftrightarrow Sh(X): f_*$.

 $D\'{e}monstration.$

$$\operatorname{Hom}_{Sh(X)}(f^*\mathscr{G},\mathscr{F}) = \operatorname{Hom}_{Sh(X)}((f^p\mathscr{G})^+,\mathscr{F})$$

$$= \operatorname{Hom}_{PSh(X)}(f^p\mathscr{G}, \iota_X\mathscr{F}(=\mathscr{F}))$$

$$= \operatorname{Hom}_{PSh(Y)}(\mathscr{G}, f_p\mathscr{F})$$

$$= \operatorname{Hom}_{Sh(Y)}(\mathscr{G}, f_*\mathscr{F})$$

Proposition 1.5.12. Soit $f: X \to Y$ et $g: Y \to Z$. Alors on a des isomorphismes canoniques $(g \circ f)_* \simeq g_* \circ f_*$ et $(g \circ f)^* \simeq f^* \circ g^*$.

Démonstration. Pour $(_{-})_*$ c'est clair via $(g \circ f)^{-1} = f^{-1}g^{-1}$. Ensuite on peut faire $(_{-})^*$ via l'adjonction mdr. L'adjoint à gauche de $g_* \circ f_*$ est $f^* \circ g^*$ puis unicité.

Bibliographie

[Mum70] D. Mumford. Abelian Varieties. Biblioteka Sbornika "Matematika". Tata Institute of Fundamental Research, Bombay, 1970. ISBN: 9780195605280.