Recommender Systems: Content-based Systems & Collaborative Filtering

Example: Recommender Systems

Customer X

- Buys Metalica CD
- Buys Megadeth CD

Customer Y

- Does search on Metalica
- Recommender system suggests Megadeth from data collected from

Recommendations

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller:
 - http://www.wired.com/wired/archive/12.10/tail.html

The Long Tail

Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks Source: Chris Anderson (2004)

Physical vs. Online

Types of Recommendations

Editorial and hand curated

- List of favorites
- Lists of "essential" items

Simple aggregates

Top 10, Most Popular, Recent Uploads

Tailored to individual users

– Amazon, Netflix, ...

Formal Model

- C = set of Customers
- S = set of Items
- Utility function $u: C \times S \rightarrow R$
 - -R = set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- Gathering "known" ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods

Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

Extrapolating Utilities

- Key problem: matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to Recommender Systems:
 - Content-based
 - Collaborative
 - Hybrid

Content-based Recommendations

 Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

User profile

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - <u>Text:</u> set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... feature
 - Document ... item

Sidenote: TF-IDF

 f_{ij} = frequency of term (feature) i in document (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Note: we normalize TF to discount for "longer" documents

 n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest TF-IDF scores,
together with their scores

User Profiles and Prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item

— ...

• Prediction heuristic:

- Given user profile u and item profile i, estimate $u(u,i) = \cos(u,i) = u \cdot i / (|u||i|)$
- Need efficient method to find items with high utility: LSH!

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new and unpopular items
 - No first-rater problem
- Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
- -: Recommendations for new users
 - How to build a user profile?

Collaborative Filtering

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Similar Users

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure
 - Problem: Ignores the value of the rating
- Cosine similarity measure
 - $-\sin(x,y)=\cos(r_x,r_y)$
 - Problem: Treats missing ratings as "negative"
- Pearson correlation coefficient
 - $-S_{xy}$ = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})(r_{ys} - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})^2 (r_{ys} - \bar{r_y})^2}}$$

Similarity Metric

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- Cosine similarity: 0.386 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the mean

	l		HP3	TW	SW1	SW2	SW3
\overline{A}	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C		-		-5/3	1/3	4/3	
D		0					0

sim A,B vs. A,C:

0.092 > -0.559

Notice cos sim is correlation when data is centered at 30

Rating Predictions

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Possibilities for prediction for item s of user x:

$$-r_{xi} = 1/k \sum_{y \in N} r_{yi}$$

$$-r_{xi} = (\sum_{y \in N} sim(x,y) r_{yi}) / (\sum_{y \in N} sim(x,y))$$

- Other options?
- Many tricks possible...

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{ui} = \frac{\sum_{j \in N(i;u)} s_{ij} r_{uj}}{\sum_{j \in N(i;u)} s_{ij}}$$

$$s_{ij} \dots \text{ similarity of items } i \text{ and } j$$

$$r_{uj} \dots \text{ rating of user } u \text{ on item } j$$

$$N(i;u) \dots \text{ set items rated by } u \text{ similar to } i$$

	users												
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	
- unknown rating - rating between 1 to 5 Slides by Jure Leskovec: Mining Massive Datasets										o 5			

							users	5					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

	C	Δ	rc
u		↽	1.5

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

П	S	ρ	rc
u		_	ıJ

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Compute similarity weights:

$$s_{13}=0.41, s_{16}=0.59$$

users

							uscis	•					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5

Predict by taking weighted average:

3

 $r_{51} = (0.41*2+0.59*3)/(0.41+0.59) = 2.6$

Before: $r_{ui} = \frac{\sum_{j \in N(i;u)} s_{ij} r_{uj}}{\sum_{j \in N(i;u)} s_{ij}}$

CF: Common Practice

- Define similarity s_{ij} of items i and j
- Select k nearest neighbors N(i; u)
 - items most similar to i, that were rated by u
- Estimate rating r_{ui} as the weighted average:

$$r_{ui} = b_{ui} + \frac{\sum_{j \in N(i;u)} s_{ij} (r_{uj} - b_{uj})}{\sum_{j \in N(i;u)} s_{ij}}$$

baseline estimate for r_{ui}

$$b_{ui} = \mu + b_u + b_i$$

• μ = overall mean movie rating

• b_{ij} = rating deviation of user u

= avg. rating of user $u - \mu$

Item-Item vs. User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that item-item often works better than user-user
- Why?
 - Items are simpler, users have multiple tastes

Pros/Cons of Collaborative Filtering

Works for any kind of item

No feature selection needed

Cold Start:

Need enough users in the system to find a match

Sparsity:

 The user/ratings matrix is sparse. Hard to find users that have rated the same items

• First rater:

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items

Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Finding Similar Vectors

- Common problem that comes up in many settings
- Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high similarity
 - e.g., user profiles, item profiles
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)

Clustering Users and Items

- Hard to detect similarity among either items or users due to little information about useritem pairs.
- Solution: Cluster items and/or users
- Revise the utility matrix

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE)
- Netflix Cinematch RMSE: 0.9514

Competition

- 2700+ teams
- \$1 million prize for 10% improvement on Cinematch

The Netflix Utility Matrix

17,700 movies

Utility Matrix: Evaluation

SSE =
$$\sum_{\text{June Lesk (i.e., Usa)}} (r_{ui} - \hat{r}_{ui})^2$$

BellKor Recommender System

Basically the winner of the Netflix Challenge

 Multi-scale modeling of the data: Combine top level, regional modeling of the data, with a refined, local view:

- Global:
 - Overall deviations of users/movies
- Factorization:
 - Addressing regional effects
- **CF** (k-NN):
 - Extract local patterns

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
 - $-\sqrt{\sum_{xi}(r_{xi}-r_{xi}^*)^2}$ where r_{xi} is predicted, r_{xi}^* is the true rating of x on i
 - Precision at top 10:
 - % of those in top 10
 - Rank Correlation:
 - Spearman's correlation between system's and user's complete rankings
- Another approach: 0/1 model
 - Coverage:
 - Number of items/users for which system can make predictions
 - Precision:
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
 - Could pre-compute
- Naïve pre-computation takes time O(N·|C|)
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction

Tip: Add Data

- Leverage all the data
 - Don't try to reduce data size in an effort to make fancy algorithms work
 - Simple methods on large data do best
- Add more data
 - e.g., add IMDB data on genres
- More data beats better algorithms
 - http://anand.typepad.com/datawocky/2008/03/more-data-usual.html