An Introduction to the Current Approaches in

Computer Poker

Richard Gibson December 4, 2009

Source (all card images)http://en.wikipedia.org/wiki/Playing_card

Motivation

Source:http://www.flickr.com/ph otos/andresrueda/3453821052/

iki/File:ArtificialFictionBrain.png

- Fully autonomous intelligent computers
- We are far from completely autonomous behaviour
- Use games as a stepping stone for artificial intelligence research

Texas Hold'em

 Example: Player 2 wins the pot in a showdown

Challenges

- Other studied games, like Checkers, are:
 - Deterministic
 - Full information
 - Win, lose, or draw

- In Texas Hold'em:
 - Card deals are random
 - Hole cards are private
 - Variable degrees of winning and losing

Extensive Form Games

 Upper part of the extensive form game tree [Osborne & Rubenstein 1994] for Heads-Up Limit Texas Hold'em

Extensive Form Games

 Two states in the same information set for Player 1

Information Set

Nash Equilibrium

- (σ_1, σ_2) is a Nash equilibrium [Nash 1951]
- Provides a guarantee on expected winnings in Heads-Up games (u₂ = -u₁)
- Can theoretically approximate via linear programming [Koller et al. 1994]

Abstraction

- Heads-Up Limit Texas Hold'em too large; instead, analyze an abstract game
- Group hands according to expected hand strength
 = probability of winning against a uniformly
 random hand (as found in [Johanson 2007]).

CFR

Counter-factual Regret Minimization algorithm [Zinkevich et al. 2008]:

Input: Extensive form game tree, number of iterations *T*

- Finds an approximate Nash equilibrium
- Can analyze larger abstractions than linear programming

Source:http://www.lasvegasvegas.com/viewer/v/WSOP20 4-2006/WSOP2006+2006+World+Series+of+Poker+-

Polaris

Man-Machine Poker Championships 2007 and 2008 [man-machine]

- Heads-Up Limit Texas Hold'em only
- Polaris used strategy based on CFR
- 2007: Polaris loses to Phil Laak and Ali Eslami
- 2008: Polaris defeats a team of professionals including Matt Hawrilenko and IJay Palansky

Future Work

- No Limit Hold'em
 - Must also abstract actions. But how?
- Ring (Multi-Player) Limit Hold'em
 - Will CFR find a "useful" strategy?
 - Do we even want to play in equilibrium?

References

- The second man-machine poker competition. http://poker.cs.ualberta.ca/man-machine, 2008.
- M. Johanson. Robust strategies and counter-strategies: Building a champion level computer poker player. Master's thesis, University of Alberta, 2007.
- D. Koller, N. Megiddo, and B. von Stengel. Fast algorithms for finding randomized strategies in game trees. In Annual ACM Symposium on Theory of Computing, STOC'94, pages 750-759, 1994.
- J. Nash. Non-cooperative games. *The Annals of Mathematics*, **54**:286-295, 1951.
- M. Osborne and A. Rubenstein. A Course in Game Theory. The MIT Press, Cambridge, Massachusetts, 1994.
- M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione. Regret minimization in games with incomplete information. In Advances in Neural Information Processing Systems 20 (NIPS), 2008.

