S721 HW4

John Koo

Problem 1.39

Part a

If A and B are mutually exclusive, then $A \cap B = \emptyset \implies P(A \cap B) = 0$.

Assume that A and B are independent. Then $P(A \cap B) = P(A)P(B)$. But the left hand side is equal to 0, which means P(A) = 0 or P(B) = 0, which is a contradiction.

Part b

If A and B are independent, then $P(A \cap B) = P(A)P(B)$.

Assume that A and B are mutually exclusive. Then $P(A \cap B) = 0$. But this is equal to P(A)P(B). Therefore, P(A) = 0 or P(B) = 0, which is a contradiction.

Problem 1.40

Part b

 $P(A^c \cap B) = P(A^c \mid B)P(B) = (1 - P(A \mid B))P(B)$. Since A and B are independent, $P(A \mid B) = P(A)$. Therefore, $(1 - P(A \mid B)P(B) = (1 - P(A))P(B) = P(A^c)P(B)$.

Part c

$$P(A^c \cap B^c) = P(B^c \mid A^c)P(A^c) = (1 - P(B \mid A^c))P(A^c) = (1 - P(B))P(A^c)$$
 (from part (b)) $= P(B^c)P(A^c)$

Problem 2.1.b

$$Y = 4X + 3 \implies X = \frac{Y-3}{4}$$

Since
$$X > 0$$
, $Y > 3$.

$$f_Y(y) = f_X(x(y)) \left| \frac{dx}{dy} \right|$$
= $7 \exp\left(-\frac{7(y-3)}{4}\right) \frac{1}{4}$
= $\frac{7}{4} \exp\left(-\frac{7}{4}(y-3)\right)$

Then if we integrate,

$$\int_{y=3}^{\infty} f_Y(y) dy$$

$$= \int_3^{\infty} \frac{7}{4} \exp\left(-\frac{7}{4}(y-3)\right) dy$$

$$= -\exp\left(-\frac{7}{4}(y-3)\right) \Big|_3^{\infty}$$

$$= -\exp(-\infty) + \exp(0) = 1$$

Problem 2.2.b

$$Y = -\log X \implies X = \exp(-Y) \implies \frac{dx}{dy} = -\exp(-Y)$$

Since $0 < x < 1$, $0 < y < \infty$.
$$f_Y(y) = f_X(x(y)) \left| \frac{dx}{dy} \right|$$
$$= \frac{(n+m+1)!}{n!m!} \exp(-ny) (1 - \exp(-y))^m \left| - \exp(-y) \right|$$
$$= \frac{(n+m+1)!}{n!m!} \exp\left(-y(n+1)\right) (1 - \exp(-y))^m$$

Problem 2.5

Using Figure 2.1.1, we can divide the domain into four regions, $(0, \pi/2]$, $(\pi/2, \pi]$, $(\pi, 3\pi/2]$, and $(3\pi/2, 2\pi)$. In the first and third regions, $x = \arcsin(\sqrt{y})$, in the second region, $x = \pi - \arcsin(-\sqrt{y})$, and in the fourth region, $x = 2\pi - \arcsin(-\sqrt{y})$. In any case, $\left|\frac{dx}{dy}\right| = \frac{1}{2\sqrt{y(1-y)}}$.

Then
$$f_Y(y) = f_X(x(y)) \left| \frac{dx}{dy} \right| \times 4$$
 (four regions)
= $\frac{1}{2\pi} \frac{1}{2\sqrt{y(1-y)}} \times 4$
= $\frac{1}{\pi\sqrt{y(1-y)}}$

Not from text

$$F(x \mid \theta) = \int_0^x \frac{1}{B(\theta, 1)} t^{\theta - 1} dt$$
$$= \frac{x^{\theta}}{\theta B(\theta, 1)}$$

Then $F^{-1}(y) = (\theta B(\theta, 1)y)^{1/\theta}$, which we will use to draw our samples.

Note that $B(\theta,1) = \frac{\Gamma(\theta)\Gamma(1)}{\Gamma(\theta+1)} = \frac{\Gamma(\theta)}{\Gamma(\theta)\theta} = \frac{1}{\theta}$. Then our pdf is simply $f(x \mid \theta) = \theta x^{\theta-1}$ and our cdf is simply $F(x \mid \theta) = x^{\theta}$ (so $F^{-1}(y) = y^{1/\theta}$).

```
library(ggplot2)
import::from(magrittr, `%>%`)

theme_set(theme_bw())

# as specified by the problem
theta <- 2.5
n.vector <- c(10, 100, 1000)

draw.beta <- function(n, theta) {
    # draw from the beta distribution with parameters theta and 1
    Y <- runif(n)
    Y ^ (1 / theta)
}

# ground truth data
dx <- 1e-3
x <- seq(0, 1, by = dx)
y <- theta * x ^ (theta - 1)</pre>
```


In the above plots, the solid line is the estimated density from the sample and the dashed line is the ground truth. We can see that as n grows, we get a better approximation to the ground truth.