Chapter 9 Summary

Robert

March 2024

1 Adjoints

Definition 1.1. Let C, D be categories, and let $F : C \to D$ and $G : D \to C$ be functors. Then F is left adjoint to G and G is right adjoint to F, if we have the following situation:

$$\mathbf{D}(Fc,d) \cong \mathbf{C}(c,Gd)$$

(given objects $c \in \mathbb{C}$ and $d \in \mathbb{D}$). The isomorphism also has to be natural in c, d.

Intuitively it feels like adjoint functors have some kind of symmetry to them.

Example 1.2 (Riehl, Category Theory in Context). Let $U: \mathbf{Top} \to \mathbf{Sets}$ be the forgetful functor. Then U has a left and right adjoint. For a left adjoint of U, we need some functor $L: \mathbf{Sets} \to \mathbf{Top}$ such that $\mathbf{Sets}(UX, S) \cong \mathbf{Top}(X, LS)$ naturally. So we need to make a topological space from S such that every function $f: U(X) \to S$ corresponds to exactly one continuous function $\tilde{f}: X \to L(S)$. Since we know that any function out of a space with the discrete topology is continuous, we can let L take a set S to the topological space $(S, \mathcal{P}(S))$.

For the right adjoint, we can let R take a set S to $(S, \{\emptyset, S\})$, endowing it with the trivial topology. Since every function into a space with the trivial topology is continuous U, R are indeed adjoint.

Forgetful functors often admit left adjoints. For example the functor taking a set to the free monoid on it is left adjoint to the forgetful functor from monoids to sets. The functor that takes a set to its free abelian group is also left adjoint to the forgetful functor from abelian groups to sets.

Adjoints can also be equivalently characterized by the following:

Definition 1.3. Let $F: \mathbf{C} \to \mathbf{D}$ and $G: \mathbf{D} \to \mathbf{C}$ be functors. Then F is left adjoint to U if there is a natural transformation $\eta: 1_{\mathbf{C}} \to G \circ F$ such that given any $c \in \mathbf{C}, d \in \mathbf{D}, f: c \to G(d) \in \mathrm{Mor}\,\mathbf{C}$, there is a unique $g: Fc \to d \in \mathrm{Mor}\,\mathbf{D}$ such that $f = G(g) \circ \eta_c$.

Here η is called the unit, and if we have $\phi: \mathbf{D}(Fc,d) \cong \mathbf{C}(c,Gd)$ natural, then we can obtain $\eta_c = \phi(1_{Fc})$, and $\phi(g) = G(g) \circ \eta_c$.

By duality, we can also get a counit, a natural transformation $\varepsilon : F \circ G \to 1_{\mathbf{D}}$ such that given any $c \in \mathbf{C}, d \in \mathbf{D}$, $g : Fc \to d \in \mathrm{Mor}\,\mathbf{D}$, there is a unique $f : c \to Gd \in \mathrm{Mor}\,\mathbf{C}$ such that $g = \varepsilon_d \circ F(f)$.

Example 1.4. Let **C** be a category with binary products. Fix an object $A \in \mathbf{C}$. Then $(-) \times A$ is left adjoint to the exponential functor $(-)^A$. The counit here is what gives us the evaluation morphism.

If a functor admits a left/right adjoint it is a natural question to wonder whether said left/right adjoint is unique. It turns out that they are.

Proposition 1.5 (Uniqueness of adjoints). If $L: \mathbf{C} \to D$ has right adjoints $R, S: \mathbf{D} \to C$ then $R \cong S$. By symmetry this is also true for left adjoints.

The proof of this proposition follows from applying the Yoneda principle to the fact that $\mathbf{C}(c,Rd) \cong \mathbf{C}(c,Sd)$ naturally.

There are also the adjoint functor theorems but I feel like I'm going to need quite a bit more time to understand it.