

ĐẠI HỌC BÁCH KHOA HÀ NỘI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

Introduction to Machine Learning and Data Mining

IT3190

Lecture: Linear Regression

Contents

- Lecture 1: Introduction to Machine Learning & Data Mining
- Lecture 2: Data crawling and pre-processing
- Lecture 3: Linear regression
- Lecture 4+5: Clustering
- Lecture 6: Decision tree and Random forest
- Lecture 7: Neural networks
- Lecture 8: Support vector machines
- Lecture 9: Performance evaluation
- Lecture 10: Probabilistic models
- Lecture 11: Basics of data mining
- Lecture 12: Association rule mining
- Lecture 13: Regularization and advanced topics

Regression

- There is an *unknown* function y^* that maps each \mathbf{x} to a number $y^*(\mathbf{x})$
 - \square In practice, we can collect some pairs: $(\mathbf{x}_i, \mathbf{y}_i)$, where $y_i = y^*(\mathbf{x}_i)$.
 - □ Each observation of **x** is represented by a vector in an n-dimensional space, e.g., $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{in})^T$. Each dimension represents an attribute (thuộc tính) or feature (đặc trưng) or variate.
 - Bold characters denote vectors or matrices.
- Regression problem: learn a function y = f(x) from a given training set $D = \{(x_1, y_1), (x_2, y_2), ..., (x_M, y_M)\}$ such that $y_i \cong f(x_i)$ for every i

Linear regression (Hồi quy tuyến tính)

• Linear model: assume that $y^*(x)$ can be well approximated by

$$f(x,w) = w_0 + w_1x_1 + ... + w_nx_n$$

- w₀, w₁, ..., w_n are the regression coefficients/weights.
 w₀ sometimes is called "bias".
- In other words, we use a hyperplane to approximate the unknown function.
- □ f(x,w) may not be linear in x.
- *Note:* learning a linear model is equivalent to finding the weight vector $\mathbf{w} = (w_0, w_1, ..., w_n)^T$.

Linear regression: example

• What is the best function?

x	у
0.13	-0.91
1.02	-0.17
3.17	1.61
-2.76	-3.31
1.44	0.18
5.28	3.36
-1.74	-2.46
7.93	5.56

Prediction

- For each observation $\mathbf{x} = (x_1, x_2, ..., x_n)^T$
 - □ The true output: $y^*(x)$ (but unknown for future data)
 - Prediction by our linear model:

$$y_x = w_0 + w_1 x_1 + ... + w_n x_n$$

- \Box We often expect $y_x \cong y^*(x)$.
- Prediction for a future observation $\mathbf{z} = (z_1, z_2, ..., z_n)^T$
 - Use the learned function to make prediction

$$f(z,w) = w_0 + w_1 z_1 + ... + w_n z_n$$

Learning a regression function

- Learning goal: learn a function f* such that its prediction in the future is the best.
 - Its generalization is the best.
- Difficulty: infinite number of functions

$$\mathbf{H} = \{ f(\mathbf{x}, \mathbf{w}) : \mathbf{w} = (w_0, w_1, ..., w_n) \in \mathbb{R}^{n+1} \}$$

- How can we learn?
- □ Is function f better than g?
- Use a measure
 - Loss function is often used to guide learning.

Loss function

• The *error/loss* of the prediction for an example $\mathbf{x} = (x_1, x_2, ..., x_n)^T$:

$$r(f, x) = [y^*(x) - f(x, w)]^2$$

Cost, risk

• The expected loss (risk) of f over the whole space:

$$E = \mathbf{E}_{x}[r(f,\mathbf{x})] = \mathbf{E}_{x}[y^{*}(\mathbf{x}) - f(\mathbf{x},\mathbf{w})]^{2}$$

 $(\mathbf{E}_{x} \text{ is the expectation over } \mathbf{x})$

- About the loss/cost: r(f, x)
 - Square loss is used above. Other loss functions can be used, e.g.
 - \Box Absolute loss: $|y^*(x) f(x, w)|$
 - □ *Hinge loss:* $\max\{0, 1 y^*(x) f(x, w)\}$
 - ...

Loss function

 The goal of learning is to find f* that minimizes the expected loss:

$$f^* = \arg\min_{f \in \boldsymbol{H}} \boldsymbol{E}_{x}[r(f, \boldsymbol{x})]$$

- For linear model: H is the space of functions of linear form.
- But we cannot work directly with this problem during the learning phase. (Why?)

Empirical loss

- We can observe a data set $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_M, \mathbf{y}_M)\},$ and have to learn f from \mathbf{D} .
- Residual sum of squares:

$$RSS(f) = \sum_{i=1}^{M} (y_i - f(\mathbf{x}_i, \mathbf{w}))^2 = \sum_{i=1}^{M} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2$$

- Empirical loss (lỗi thực nghiệm): $L(f, \mathbf{D}) = \frac{1}{M}RSS(f)$ $L(f, \mathbf{D})$ is an approximation of $\mathbf{E}_{\mathbf{x}}[\mathbf{r}(\mathbf{x})]$.
- $|L(f, \mathbf{D}) \mathbf{E}_x[r(\mathbf{x})]|$ is often known as generalization error (lỗi tổng quát hoá) of f.
- Many learning algorithms base on this RSS or its variants.

Methods: ordinary least squares (OLS)

Given D, we find f* that minimizes RSS:

$$f^* = \arg\min_{f \in H} RSS(f)$$

$$\Leftrightarrow \mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2$$
(1)

- This method is often known as ordinary least squares (OLS, bình phương tối thiểu).
- Find w* by taking the gradient of RSS and solving the equation RSS'=0. We have:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- □ Where **A** is the data matrix of size $M \times (n+1)$, where the ith row is $\mathbf{A_i} = (1, x_{i1}, x_{i2}, ..., x_{in})$; $\mathbf{B^{-1}}$ is the inversion of matrix **B**; $\mathbf{y} = (y_1, y_2, ..., y_M)^T$.
- □ Note: we assume that **A**^T**A** is invertible (ma trận **A**^T**A** khả nghịch).

Methods: OLS

- Input: $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_M, \mathbf{y}_M)\}$
- Output: *w**
- Learning: compute

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

• Where **A** is the data matrix of size $M \times (n+1)$, where the ith row is $\mathbf{A_i} = (1, x_{i1}, x_{i2}, ..., x_{in})$; $\mathbf{B^{-1}}$ is the inversion of matrix **B**;

$$\mathbf{y} = (y_1, y_2, ..., y_M)^T.$$

- Note: we assume that A^TA is invertible.
- Prediction for a new **x**: $y_x = w_0^* + w_1^* x_1 + \cdots + w_n^* x_n$

Methods: OLS example

X	y
0.13	-1
1.02	-0.17
3	1.61
-2.5	-2
1.44	0.1
5	3.36
-1.74	-2.46
7.5	5.56

Methods: limitations of OLS

- OLS cannot work if A^TA is not invertible
 - If some columns (attributes/features) of A are dependent, then A will be singular and therefore A^TA is not invertible. (N\u00e9u m\u00f6t v\u00eai c\u00f6t c\u00fca A ph\u00fc tu\u00fc\u00e9n t\u00eanh th\u00e0 A s\u00e9 kh\u00e3nghich)
- OLS requires considerable computation due to the need of computing a matrix inversion.
 - Intractable for the very high dimensional problems.
- OLS likely tends to overfitting, because the learning phase just focuses on minimizing the error of the training data.

• Given $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_M, y_M)\}$, we solve for:

$$f^* = \arg\min_{f \in \mathbf{H}} RSS(f) + \lambda \|\mathbf{w}\|_2^2$$

$$\Leftrightarrow \mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - \mathbf{A}_i \mathbf{w})^2 + \lambda \sum_{j=0}^{n} w_j^2$$
 (2)

 $_{\square}$ Where λ is a regularization constant ($\lambda > 0$), $||w||_2$ is the L² norm.

Tikhonov, smoothing an illposed problem

Zaremba, model complexity minimization

Bayes: priors over parameters

Andrew Ng: need no maths, but it prevents overfitting!

• Problem (2) is equivalent to the following:

$$w^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - A_i \mathbf{w})^2$$
 Subject to $\sum_{j=0}^{n} w_j^2 \le t$ (3)

- □ for some constant *t*.
- The regularization/penalty term: $\lambda ||w||_2^2$
 - Limits the magnitute/size of w* (i.e., reduces the search space for f*).
 - Helps us to trade off between the fitting of f on **D** and its generalization on future observations.

 We solve for w* by taking the gradient of the objective function in (2), and then zeroing it. Therefore we obtain:

$$\mathbf{w}^* = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I}_{n+1})^{-1} \mathbf{A}^T \mathbf{y}$$

- □ Where **A** is the data matrix of size $M \times (n+1)$, where the ith row is **A**_i = $(1, x_{i1}, x_{i2}, ..., x_{in})$; $\mathbf{y} = (y_1, y_2, ..., y_M)^T$; \mathbf{I}_{n+1} is the identity matrix of size n+1.
- Compared with OLS, Ridge can
 - Avoid the cases of singularity, unlike OLS. Hence Ridge always works.
 - Reduce overfitting.
 - Increase the error for the training set.
- Note: the predictiveness of Ridge depends heavily on the choice of λ.

- Input: $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_M, y_M)\}$ and $\lambda > 0$
- Output: w*
- Learning: compute

$$\mathbf{w}^* = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I}_{n+1})^{-1} \mathbf{A}^T \mathbf{y}$$

Prediction for a new x:

$$y_x = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$$

 Note: to avoid some negative effects of the magnitude of y on covariates x, one should remove w₀ from the penalty term in (2). In this case, the solution of w* should be modified slightly.

An example of using Ridge and OLS

 The training set **D** contains 67 observations on prostate cancer, each was represented with 8 attributes. Ridge and OLS were learned from **D**, and then predicted 30 new observations.

W	Ordinary Least Squares	Ridge
0	2.465	2.452
Icavol	0.680	0.420
lweight	0.263	0.238
age	-0.141	-0.046
lbph	0.210	0.162
svi	0.305	0.227
lcp	-0.288	0.000
gleason	-0.021	0.040
pgg45	0.267	0.133
Test RSS	0.521	0.492

Effects of λ in Ridge regression

• $W^* = (w_0, S1, S2, S3, S4, S5, S6, AGE, SEX, BMI, BP)$ changes as the regularization constant λ changes.

LASSO

• Ridge regression use L² norm for regularization:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - \mathbf{A}_i \mathbf{w})^2$$
, subject to $\sum_{j=0}^{n} w_j^2 \le t$ (3)

Replacing L² by L¹ norm will result in LASSO:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - \mathbf{A}_i \mathbf{w})^2$$

Subject to $\sum_{j=0}^{n} |w_j| \le t$

Equivalently:

$$w^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - A_i \mathbf{w})^2 + \lambda ||\mathbf{w}||_1$$
 (4)

 This problem is non-differentiable → the training algorithm should be more complex than Ridge.

LASSO: regularization role

- The regularization types lead to different domains for w.
- LASSO often produces sparse solutions, i.e., many components of w are zero.
 - Shinkage and selection at the same time

Figure by Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=58258966

OLS, Ridge, and LASSO

 The training set **D** contains 67 observations on prostate cancer, each was represented with 8 attributes. OLS, Ridge, and LASSO were trained from **D**, and then predicted 30 new observations.

W	Ordinary Least Squares	Ridge	LASSO
0	2.465	2.452	2.468
Icavol	0.680	0.420	0.533
lweight	0.263	0.238	0.169
age	-0.141	-0.046	
lbph	0.210	0.162	0.002
svi	0.305	0.227	0.094
Icp	-0.288	0.000	
gleason	-0.021	0.040	
pgg45	0.267	0.133	
Test RSS	0.521	0.492	0.479

Some weights
are 0

→ some
attributes
may not be
important

References

- Hesterberg, T., Choi, N. H., Meier, L., & Fraley, C. (2008). Least angle and L1 penalized regression: A review. Statistics Surveys.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman. *The Elements of Statistical Learning*. Springer, 2009.
- Tibshirani, Robert (1996). Regression Shrinkage and Selection via the lasso. *Journal of the Royal Statistical Society. Series B (methodological)*. Wiley. 58 (1): 267–88.

THANK YOU!