EE3210 Signals and Systems

Part 7: Continuous-Time Fourier Series

Instructor: Dr. Jun Guo

DEPARTMENT OF ELECTRONIC ENGINEERING

Continuous-Time Periodic Complex Exponentials

- A continuous-time complex exponential of the form $e^{j\omega t}$ is periodic for any (positive or negative) value of ω .
 - The fundamental period T_0 of $e^{j\omega t}$ is $T_0 = 2\pi/|\omega|$.
 - Thus, the signals $e^{j\omega t}$ and $e^{-j\omega t}$ have the same fundamental period.
- A harmonically related set of continuous-time complex exponentials, all of which have a common period T with fundamental frequency $\omega_0 = 2\pi/T$, is defined as

$$\phi_k(t) = e^{jk\omega_0 t} = e^{jk(2\pi/T)t}, \quad k = 0, \pm 1, \pm 2, \dots$$
 (1)

Continuous-Time Periodic Complex Exponentials (cont.)

- We observe in (1) that:
 - For k = 0, $\phi_k(t)$ is a constant, which is periodic for any value of T.
 - For $k \neq 0$, $\phi_k(t)$ is periodic with fundamental period T/|k|, which is also periodic with period T.
- Thus, a linear combination of harmonically related continuous-time complex exponentials of the form

$$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$
 (2)

is also periodic with period T.

- Consider a continuous-time periodic signal x(t) with fundamental period $T_0 = T$.
- Assume x(t) can be represented with the series of (2):

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$
(3)

with fundamental frequency $\omega_0 = 2\pi/T$.

- The representation of x(t) in the form of (3) is referred to as the Fourier series representation.
- (3) is known as the synthesis formula of the continuous-time Fourier series.

- Note in (3) that:
 - The term for k=0 is simply a_0 , which is the constant or dc component of x(t).
 - The two terms for k = +1 and k = -1 are periodic with fundamental period T and are collectively referred to as the 1st harmonic components.
 - The two terms for k = +2 and k = -2 are periodic with fundamental period T/2 and are referred to as the 2nd harmonic components.
 - In general, the two terms for k = +N and k = -N are referred to as the Nth harmonic components.

- Now, we need a procedure for determining the Fourier series coefficients a_k in (3).
- Multiplying both sides of (3) by $e^{-jn\omega_0t}$ for an arbitrary integer n, we obtain

$$x(t)e^{-jn\omega_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} e^{-jn\omega_0 t}$$

$$= \sum_{k=-\infty}^{+\infty} a_k e^{j(k-n)\omega_0 t}$$

$$= \sum_{k=-\infty}^{+\infty} a_k e^{j(k-n)\omega_0 t}$$
(4)

Integrating both sides of (4) over any interval of length T, i.e., over one fundamental period of x(t), we have

$$\int_{T} x(t)e^{-jn\omega_{0}t}dt = \int_{T} \sum_{k=-\infty}^{+\infty} a_{k}e^{j(k-n)\omega_{0}t}dt$$

$$= \sum_{k=-\infty}^{+\infty} a_{k} \left[\int_{T} e^{j(k-n)\omega_{0}t}dt \right]$$
(5)

Note: \int_T is a shorthand notation, which has the same effect as $\int_{\tau}^{\tau+T}$ for any real number τ .

- We observe in the right-hand side of (5) that:
 - For k=n, we have $\int_T e^{j(k-n)\omega_0 t} dt = \int_{ au}^{ au+T} dt = T$
 - For $k \neq n$, we have

$$\int_{T} e^{j(k-n)\omega_{0}t} dt = \int_{\tau}^{\tau+T} e^{j(k-n)\omega_{0}t} dt
= \frac{e^{j(k-n)\omega_{0}(\tau+T)} - e^{j(k-n)\omega_{0}\tau}}{j(k-n)\omega_{0}}
= \frac{e^{j(k-n)\omega_{0}\tau} e^{j(k-n)2\pi} - e^{j(k-n)\omega_{0}\tau}}{j(k-n)\omega_{0}} = 0$$

Thus,

$$\sum_{k=-\infty}^{+\infty} a_k \left[\int_T e^{j(k-n)\omega_0 t} dt \right] = a_n T \tag{6}$$

By (5) and (6), we obtain $\int_T x(t)e^{-jn\omega_0t}dt=a_nT$ and hence

$$a_{k} = \frac{1}{T} \int_{T} x(t)e^{-jk\omega_{0}t}dt = \frac{1}{T} \int_{T} x(t)e^{-jk(2\pi/T)t}dt$$
 (7)

(7) is known as the analysis formula of the continuoustime Fourier series.

Convergence of Continuous-Time Fourier Series

- Virtually all periodic continuous-time signals that are not pathological in nature have a Fourier series representation.
 - Thus, convergence of continuous-time Fourier series is not a problem in general engineering practice.
- In particular, it is known that, for a periodic signal x(t) with no discontinuities, the Fourier series representation converges and equals x(t) at every value of t.

Convergence of Continuous-Time Fourier Series (cont.)

- For x(t) with a finite number of discontinuities in each period T, the Fourier series representation equals x(t) everywhere except at the discontinuities.
 - However, in this case, the difference between x(t) and its Fourier series representation contains no energy.
 - That is, if we define an error signal

$$e(t)=x(t)-\sum_{k=-\infty}^{+\infty}a_ke^{jk\omega_0t}$$
, then $\int_T|e(t)|^2dt=0$.

Consequently, the two signals can be thought of as being the same for all practical purposes.

An Example

- Consider the periodic square wave x(t) with $0 < \alpha < \frac{1}{2}$ and fundamental period $T_0 = T$.
 - The fundamental frequency of its Fourier series representation is $\omega_0 = 2\pi/T$.
 - Because of the symmetry of x(t) about t=0 in this case, it is convenient to choose $-T/2 \le t \le T/2$ as the interval over which the integration is performed.

An Example (cont.)

- Using (7) with the limits -T/2 and T/2, we obtain:
 - For k=0, $a_0=\frac{1}{T}\int_{-T/2}^{T/2}\!\!x(t)dt=\frac{1}{T}\int_{-\alpha T}^{\alpha T}\!\!dt=2\alpha \tag{8}$
 - \blacksquare For $k \neq 0$,

$$a_{k} = \frac{1}{T} \int_{-T/2}^{T/2} x(t)e^{-jk\omega_{0}t}dt = \frac{1}{T} \int_{-\alpha T}^{\alpha T} e^{-jk\omega_{0}t}dt$$

$$= \frac{e^{j\alpha k\omega_{0}T} - e^{-j\alpha k\omega_{0}T}}{jk\omega_{0}T} = \frac{2j\sin(\alpha k\omega_{0}T)}{jk\omega_{0}T} = \frac{\sin(2\alpha k\pi)}{k\pi}$$
(9)

Note: $\lim_{k\to 0} \frac{\sin(2\alpha k\pi)}{k\pi} = 2\alpha$ by l'Hôpital's rule.

An Example (cont.)

Thus, the Fourier series representation of the periodic square wave x(t) in this example is

$$x(t) = \sum_{k=-\infty}^{+\infty} \frac{\sin(2\alpha k\pi)}{k\pi} e^{jk(2\pi/T)t}$$

or, equivalently, $x(t) = \lim_{N \to \infty} x_N(t)$, where

$$x_N(t) = \sum_{k=-N}^{+N} \frac{\sin(2\alpha k\pi)}{k\pi} e^{jk(2\pi/T)t}$$

is known as a truncated Fourier series approximation of x(t).

An Example (cont.)

- Here, we show $x_N(t)$ for several values of N for x(t) with $\alpha=1/4$.
 - Note: An overshoot of 9% of the height of the discontinuity, no matter how large N becomes.
 - Known as the Gibbs phenomenon.

Properties of Continuous-Time Fourier Series

- Here, we will describe several important properties, including: 1) linearity, 2) time shift, 3) time reversal,
 - 4) time scaling, 5) multiplication, 6) differentiation,
 - 7) Parseval's relation.
 - A summary of these and other important properties of continuous-time Fourier series can be found in Table 3.1 on Page 208 of the textbook.
- For notational convenience, we will use $x(t) \leftrightarrow a_k$ to indicate the relationship between a periodic signal x(t) and its Fourier series coefficients a_k .

Linearity

Given that x(t) and y(t) are both periodic with period T and that $x(t) \leftrightarrow a_k$, $y(t) \leftrightarrow b_k$, then Ax(t) + By(t) is also periodic with period T and

$$Ax(t) + By(t) \leftrightarrow Aa_k + Bb_k$$

where A and B are arbitrary constants.

Time Shift

Given that x(t) is periodic with period T and that $x(t) \leftrightarrow a_k$, then $x(t-t_0)$ is also periodic with period T and

$$x(t-t_0) \leftrightarrow \left[e^{-jk(2\pi/T)t_0}\right] a_k$$

Time Reversal

Given that x(t) is periodic with period T and that $x(t) \leftrightarrow a_k$, then x(-t) is also periodic with period T and

$$x(-t) \leftrightarrow a_{-k}$$

Thus:

- If x(t) is even, i.e., x(-t) = x(t), then its Fourier series coefficients are also even, i.e., $a_{-k} = a_k$.
- If x(t) is odd, i.e., x(-t) = -x(t), then its Fourier series coefficients are also odd, i.e., $a_{-k} = -a_k$.

Time Scaling

• Given that x(t) is periodic with period T and that $x(t) \leftrightarrow a_k$, then $x(\alpha t)$, where α is a positive real number, is periodic with period T/α , and

$$x(\alpha t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk(\alpha\omega_0)t}$$

- That is:
 - The fundamental frequency of the Fourier series representation has changed.
 - However, the Fourier series coefficients have not changed.

Multiplication

Given that x(t) and y(t) are both periodic with period T and that $x(t) \leftrightarrow a_k$, $y(t) \leftrightarrow b_k$, then the product x(t)y(t) is also periodic with period T and the Fourier series coefficients h_k of x(t)y(t) can be obtained as

$$h_k = \sum_{l=-\infty}^{+\infty} a_l b_{k-l}$$

Differentiation

Given that x(t) is periodic with period T and that $x(t)\leftrightarrow a_k$, then $\frac{dx(t)}{dt}$ is also periodic with period T and

$$\frac{dx(t)}{dt} \leftrightarrow (jk\omega_0)a_k$$

Parseval's Relation

Given that x(t) is periodic with period T and that $x(t) \leftrightarrow a_k$, then Parseval's relation states that

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \sum_{k=-\infty}^{+\infty} |a_{k}|^{2}$$

Also, we have

$$\frac{1}{T} \int_{T} \left| a_k e^{jk\omega_0 t} \right|^2 dt = |a_k|^2$$

■ Thus, the total average power in x(t) equals the sum of the average powers in all of its harmonic components.

Example 1

- Consider the signal g(t) with period T=4.
- Recall the periodic square wave x(t) discussed on pages 11–14 with T=4 and $\alpha=1/4$.
- It is clear that g(t) can be obtained from x(t) as

$$g(t) = x(t-1) - 1/2$$

Example 1 (cont.)

■ Using the results of (8) and (9) on Page 12, we have in this case the Fourier series coefficients a_k of x(t) as

$$a_k = \begin{cases} 1/2, & k = 0\\ \frac{\sin(k\pi/2)}{k\pi}, & k \neq 0 \end{cases}$$

The time shift property of continuous-time Fourier series indicates that, if $x(t) \leftrightarrow a_k$, then the Fourier series coefficients b_k of x(t-1) can be expressed as

$$b_k = a_k e^{-jk\pi/2} = \begin{cases} 1/2, & k = 0\\ \frac{\sin(k\pi/2)}{k\pi} e^{-jk\pi/2}, & k \neq 0 \end{cases}$$

Example 1 (cont.)

■ The Fourier series coefficients c_k of the constant -1/2 are simply

$$c_k = \begin{cases} -1/2, & k = 0 \\ 0, & k \neq 0 \end{cases}$$

Applying the linearity property, the Fourier series coefficients d_k of g(t) can be expressed as

$$d_k = b_k + c_k = \begin{cases} 0, & k = 0\\ \frac{\sin(k\pi/2)}{k\pi} e^{-jk\pi/2}, & k \neq 0 \end{cases}$$
 (10)

Example 2

- Consider the triangular wave signal x(t) with period T=4 and hence $\omega_0=\pi/2$.
- The derivative of x(t) is the signal g(t) in Example 1.

Example 2 (cont.)

The differentiation property of continuous-time Fourier series indicates that, if $g(t) \leftrightarrow d_k$, then the Fourier series coefficients a_k of x(t) can be obtained from

$$d_k = jk(\pi/2)a_k \Rightarrow a_k = \frac{2d_k}{jk\pi}, \text{ for } k \neq 0$$

■ Thus, using the results of d_k of g(t) in (10) on Page 25, we obtain

$$a_k = \frac{2\sin(k\pi/2)}{j(k\pi)^2}e^{-jk\pi/2}, \text{ for } k \neq 0$$

■ For k = 0, a_0 can be obtained from

$$a_0 = \frac{1}{T} \int_0^T x(t)dt = \frac{1}{2}$$