Examenul de bacalaureat național 2020

Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Test 1

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{2} \cdot \left(\frac{1}{\sqrt{2} - 1} + \frac{1}{\sqrt{2} + 1} \right) = \sqrt{2} \cdot \left(\sqrt{2} + 1 + \sqrt{2} - 1 \right) =$	3p
	$=\sqrt{2}\cdot2\sqrt{2}=4$	2 p
2.	$f\left(-1\right) = -1 + m$	2p
	$-1+m \le 0 \Leftrightarrow m \le 1$ și, cum m este număr natural, obținem $m=0$ sau $m=1$	3 p
3.	$\lg x^2 = \lg(2x+8) \Rightarrow x^2 - 2x - 8 = 0$	3 p
	x = -2, care nu convine sau $x = 4$, care convine	2p
4.	$x - \frac{10}{100} \cdot x = 540$, unde x este prețul obiectului înainte de ieftinire	3 p
	x = 600 de lei	2p
5.	Panta unei drepte perpendiculare pe dreapta d este egală cu -1	2p
	Ecuația dreptei care trece prin M și este perpendiculară pe dreapta d este $y + 2 = -(x-2)$,	2
	deci y = -x	3 p
6.	AB = 2	3p
	$P_{ABCD} = 4 \cdot AB = 8$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-2)*2 = 2 \cdot (-2) \cdot 2 - 4 \cdot (-2 + 2) + 7 =$	3 p
	$=-8-4\cdot 0+7=-1$	2p
2.	x * y = 2xy - 4(x + y) + 7 = 2yx - 4(y + x) + 7 =	3 p
	= y * x, pentru orice numere reale x și y , deci legea de compoziție "*" este comutativă	2p
3.	x * y = 2xy - 4x - 4y + 8 - 1 =	2 p
	=2x(y-2)-4(y-2)-1=2(x-2)(y-2)-1, pentru orice numere reale x și y	3 p
4.	$2(x+1-2)(x-2)-1=3 \Leftrightarrow x^2-3x=0$	3 p
	x = 0 sau $x = 3$	2p
5.	$2(2^{2x}-2)(2^x-2)-1=-1 \Leftrightarrow 2^{2x}-2=0 \text{ sau } 2^x-2=0$	3 p
	$x = \frac{1}{2} \text{ sau } x = 1$	2 p
6.	$2(x-2)\left(\frac{1}{x}-2\right)-1 \le -1 \Leftrightarrow 2(x-2)\cdot\frac{1-2x}{x} \le 0$	2p
	$x \in \left(0, \frac{1}{2}\right] \cup \left[2, +\infty\right)$	3p

SUBIECTUL al III-lea (30 de puncte)

1.	$\det(A(a)) = \begin{vmatrix} 2 & a \\ 0 & 2 \end{vmatrix} = 2 \cdot 2 - 0 \cdot a =$	3p
	=4-0=4, pentru orice număr real a	2 p
2.	$A(0) \cdot A(2020) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2020 \\ 0 & 2 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 2020 \\ 0 & 2 \end{pmatrix} =$	3p
	$=2\binom{2}{0} \frac{2020}{2} = 2A(2020)$	2p
3.	$A(-a) \cdot A(a) = \begin{pmatrix} 2 & -a \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & a \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} =$	3p
	$=4\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 4I_2$, pentru orice număr real a	2p
4.	$A(m) \cdot A(n) = \begin{pmatrix} 4 & 2(n+m) \\ 0 & 4 \end{pmatrix}, \ A(2) = \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix} $	3p
	Cum m și n sunt numere naturale nenule, obținem $m = 1$ și $n = 1$	2 p
5.	$ \begin{pmatrix} 2 & a^2 \\ 0 & 2 \end{pmatrix} - 2 \begin{pmatrix} 2 & a \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 2 & -3 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow a^2 - 2a - 3 = 0 $	3p
	a = -1 sau $a = 3$	2 p
6.	$\begin{pmatrix} 2 & -3 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2y \\ 2x + y \end{pmatrix} \Leftrightarrow \begin{pmatrix} 2x - 3y \\ 2y \end{pmatrix} = \begin{pmatrix} -2y \\ 2x + y \end{pmatrix} \Leftrightarrow y = 2x$	3p
	Există o infinitate de perechi de numere reale $(x,2x)$ care verifică relația dată	2p