OLS Stata Example R Example Inference

Ordinary Least Squares (Linear) Regression

Department of Government London School of Economics and Political Science

27 January 2017

1 OLS

2 Stata Example

- 3 R Example
- 4 Inference

1 OLS

2 Stata Example

- 3 R Example
- 4 Inference

Uses of Regression

Description

2 Prediction

3 Causal Inference

OLS Stata Example R Example Inference

Descriptive Inference

- We want to understand a population of cases
- We cannot observe them all, so:
 - 1 Draw a *representative* sample
 - Perform mathematical procedures on sample data
 - 3 Use assumptions to make inferences about population
 - 4 Express uncertainty about those inferences based on assumptions

Parameter Estimation

- \blacksquare We want to observe population parameter θ
- If we obtain a representative sample of population units:
 - lacksquare Our sample statistic $\hat{ heta}$ is an unbiased estimate of heta
 - Our sampling procedure dictates how uncertain we are about the value of θ

An Example

- We want to know \bar{Y} (population mean)
- Our *estimator* is the sample mean formula which produces the sample *estimate* \bar{y} :

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \tag{1}$$

■ The *sampling variance* is our uncertainty:

$$Var(\bar{y}) = \frac{s^2}{n} \tag{2}$$

where s^2 = sample element variance

Uncertainty

- \blacksquare We never know θ
- lacksquare Our $\hat{ heta}$ is an estimate that may not equal heta
 - Unbiased due to Law of Large Numbers
 - For \bar{y} : $N(Y, \sigma^2)$
- The size of sampling variance depends on:
 - Element variance
 - Sample size!
- Note: $SE(\bar{y}) = \sqrt{Var(\bar{y})}$
- We may want to know $\hat{\theta}$ per se, but we are mostly interested in it as an estimate of θ

Causal Inference

Causal Inference

Everything that goes into descriptive inference

Causal Inference

- Everything that goes into descriptive inference
- Plus, randomization or perfectly specified model
 - X comes before Y
 - X measured without error
 - No confounding due to omitted variables

- Y is continuous
- lacksquare X is a randomized treatment indicator/dummy (0,1)
- How do we know if the treatment X had an effect on Y?

- Y is continuous
- **X** is a randomized treatment indicator/dummy (0,1)
- How do we know if the treatment *X* had an effect on *Y*?
- Look at mean-difference: $E[Y_i|X_i = 1] - E[Y_i|X_i = 0]$

Three Equations

I Population: $Y = \beta_0 + \beta_1 X$ $(+\epsilon)$

 $ilde{z}$ Sample estimate: $\hat{y} = \hat{eta}_0 + \hat{eta}_1 x$

3 Unit:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i$$

= $\bar{y}_{0i} + (y_{1i} - y_{0i}) x_i + (y_{0i} - \bar{y}_{0i})$

- Mean difference $(E[Y_i|X_i=1]-E[Y_i|X_i=0])$ is the regression line slope
- Slope (β) defined as $\frac{\Delta Y}{\Delta X}$

- Mean difference $(E[Y_i|X_i=1]-E[Y_i|X_i=0])$ is the regression line slope
- Slope (β) defined as $\frac{\Delta Y}{\Delta X}$

$$\Delta Y = E[Y_i|X=1] - E[Y_i|X=0]$$

OLS Stata Example R Example Inference

Systematic versus unsystematic component of the data

- Systematic: Regression line (slope)
 - Linear regression estimates the conditional means of the population data (i.e., E[Y|X])
- Unsystematic: Error term is the deviation of observations from the line
 - The difference between each value y_i and \hat{y}_i is the residual: e_i
 - OLS produces an estimate of the relationship between X and Y that minimizes the residual sum of squares

Measurement error

- Measurement error
- Fundamental randomness

- Measurement error
- Fundamental randomness
- Omitted variables

- Mean difference $(E[Y_i|X_i=1]-E[Y_i|X_i=0])$ is the regression line slope
- Slope (β) defined as $\frac{\Delta Y}{\Delta X}$

$$\Delta Y = E[Y_i|X=1] - E[Y_i|X=0]$$

- Mean difference $(E[Y_i|X_i=1]-E[Y_i|X_i=0])$ is the regression line slope
- Slope (β) defined as $\frac{\Delta Y}{\Delta X}$

$$\Delta Y = E[Y_i|X=1] - E[Y_i|X=0]$$

- How do we know if this is a significant difference?
 - Substantive: own judgment
 - Statistical: larger than twice the SE

- Y is continuous
- X is continuous (and randomized)
- How do we know if the treatment *X* had an effect on *Y*?
 - \blacksquare Correlation coefficient (ρ)
 - Regression coefficient (slope; β_1)

Correlation Coefficient (ρ)

 Measures how well a scatterplot is represented by a straight (non-horizontal) line

OLS Coefficient $(\beta_1)^1$

■ Measures ΔY given ΔX

¹Multivariate formula involves matrices; Week 20

OLS Coefficient $(\beta_1)^1$

- Measures ΔY given ΔX
- Formal definition: $\frac{Cov(X,Y)}{Var(X)}$
- As a reminder:

$$Cov(x,y) = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$Var(x) = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

- Measures ΔY given ΔX
- Formal definition: $\frac{Cov(X,Y)}{Var(X)}$
- As a reminder:

$$Cov(x,y) = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$Var(x) = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

 $\hat{\rho}$ and $\hat{\beta}_1$ are just scaled versions of $\widehat{Cov}(x,y)$

¹Multivariate formula involves matrices; Week 20

Minimum Mathematical Requirements

 \blacksquare Do we need variation in X?

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- \square Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- \square Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- 2 Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- 3 How many observations do we need?

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- $_{2}$ Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- 3 How many observations do we need?
 - $n \ge k$, where k is number of parameters to be estimated

Notes on Interpretation

■ Effect β_1 is constant across values of x

Notes on Interpretation

- Effect β_1 is constant across values of x
- That is not true when there are:
 - Interaction terms (heterogeneous effects)
 - Nonlinear transformations (e.g., x^2)
 - Nonlinear regression models (e.g., logit/probit)

Notes on Interpretation

- Effect β_1 is constant across values of x
- That is not true when there are:
 - Interaction terms (heterogeneous effects)
 - Nonlinear transformations (e.g., x^2)
 - Nonlinear regression models (e.g., logit/probit)
- Interpretations are sample-level
 - Sample representativeness determines generalizability

Notes on Interpretation

- Effect β_1 is constant across values of x
- That is not true when there are:
 - Interaction terms (heterogeneous effects)
 - Nonlinear transformations (e.g., x^2)
 - Nonlinear regression models (e.g., logit/probit)
- Interpretations are sample-level
 - Sample representativeness determines generalizability
- Remember uncertainty
 - These are *estimates*, not population parameters

Confounding (Selection Bias)

- If x is not randomly assigned, potential outcomes are not independent of x
- Other factors explain why a unit i received their particular value x_i

$$\underbrace{E[Y_i|X_i=1] - E[Y_i|X_i=0] =}_{\text{Naive Effect}}$$

$$\underbrace{E[Y_{1i}|X_i=1] - E[Y_{0i}|X_i=1]}_{\text{Treatment Effect on Treated (ATT)}} + \underbrace{E[Y_{0i}|X_i=1] - E[Y_{0i}|X_i=0]}_{\text{Selection Bias}}$$

Omitted Variable Bias

We want to estimate:

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \epsilon$$

■ We actually estimate:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x + \epsilon
= \tilde{\beta}_0 + \tilde{\beta}_1 x + (0 * z) + \epsilon
= \tilde{\beta}_0 + \tilde{\beta}_1 x + \nu$$

lacksquare Bias: $ilde{eta}_1=\hat{eta}_1+\hat{eta}_2 ilde{\delta}_1$, where $ilde{z}= ilde{\delta}_0+ ilde{\delta}_1x$

Size and Direction of Bias

lacksquare Bias: $ilde{eta}_1 = \hat{eta}_1 + \hat{eta}_2 ilde{\delta}_1$, where $ilde{z} = ilde{\delta}_0 + ilde{\delta}_1 x$

$$Corr(x,z) < 0$$
 $Corr(x,z) > 0$
 $\beta_2 < 0$ Positive Negative $\beta_2 > 0$ Negative Positive

Common Conditioning Strategies

Common Conditioning Strategies

Condition on nothing ("naive effect")

Common Conditioning Strategies

- Condition on nothing ("naive effect")
- Condition on some variables

Common Conditioning Strategies

- Condition on nothing ("naive effect")
- Condition on some variables
- Condition on all observables

Common Conditioning Strategies

- Condition on nothing ("naive effect")
- 2 Condition on some variables
- Condition on all observables

Which of these are good strategies?

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables

Post-treatment Bias

- We usually want to know the total effect of a cause
- If we include a mediator, D, of the $X \rightarrow Y$ relationship, the coefficient on X:
 - Only reflects the direct effect
 - \blacksquare Excludes the **indirect** effect of X through M
- So don't control for mediators!

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables
 - Do not include *colinear* variables

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- $_{2}$ Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- 3 How many observations do we need?
 - $n \ge k$, where k is number of parameters to be estimated

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- $_{2}$ Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- 3 How many observations do we need?
 - $n \ge k$, where k is number of parameters to be estimated
- Can we have highly correlated regressors?

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- \mathbf{Z} Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- 3 How many observations do we need?
 - $n \ge k$, where k is number of parameters to be estimated
- Can we have highly correlated regressors?
 - Generally no (due to multicollinearity)

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables
 - Do not include *colinear* variables

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables
 - Do not include *colinear* variables
 - Including irrelevant variables costs certainty

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables
 - Do not include *colinear* variables
 - Including irrelevant variables costs certainty
 - Including variables that affect Y alone increases certainty

Questions about specification?

Multivariate Regression Interpretation

- All our interpretation rules from earlier still apply in a multivariate regression
- Now we interpret a coefficient as an effect "all else constant"
- Generally, not good to give all coefficients a causal interpretation
 - Think "forward causal inference"
 - We're interested in the $X \rightarrow Y$ effect
 - All other coefficients are there as "controls"

From Line to Surface I

- In simple regression, we estimate a **line**
- In multiple regression, we estimate a **surface**
- Each coefficient is the *marginal effect*, all else constant (at mean)
- This can be hard to picture in your mind

From Line to Surface II

From Line to Surface II

From Line to Surface II

Goodness-of-Fit

■ We want to know: "How good is our model?"

Goodness-of-Fit

- We want to know: "How good is our model?"
- We can answer: "How well does our model fit the observed data?"

Goodness-of-Fit

- We want to know: "How good is our model?"
- We can answer: "How well does our model fit the observed data?"
- Is this what we want to know?

Coefficient of Determination (R^2)

- Definition: $R^2 = \hat{r}_{x,y}^2 = \frac{SSE}{SST} = 1 \frac{SSR}{SST}$
- Interpretation: How much of the total variation in *y* is explained by the model?
- But, R^2 increases simply by adding more variables
- So, Adjusted- $R^2 = R^2 (1 R^2) \frac{k}{n-k-1}$, where k is number of regressors
- Units: none (range 0 to 1)

Standard Error of the Regression (SER)

- \blacksquare "Root mean squared error" or just σ
- Definition: $\hat{\sigma} = \sqrt{\frac{SSR}{n-p}}$, where p is number of parameters estimated
- Interpretation: How far, on average, are the observed y values from their corresponding fitted values \hat{y}
 - \blacksquare sd(y) is how far, on average, a given y_i is from \bar{y}
 - lacksquare σ is how far, on average, a given y_i is from \hat{y}_i
- Units: same as y (range 0 to sd(y))

1 OLS

2 Stata Example

- 3 R Example
- 4 Inference

```
use "ESS7GB.dta" codebook
```

- * outcome (feel close to country)
 tab fclcntr
 recode fclcntr (7/8=.), gen(feelclose)
- * explanatory 1 (country of birth)
 tab brncntr
 recode brncntr (1=1) (2=0), gen(ukborn)
- * explanatory 2 (age) tab agea recode agea (999 = .)

reg feelclose ukborn agea

Source	SS	df	MS	Number F(2, 22		2,224 111.58
Model Residual	130.792982 1301.74614 1432.53912	2 2,221	65.3964908 .586108121	Prob > R-squar Adj R-s	F = ed = quared =	0.0000 0.0913 0.0905 .76558
feelclose	Coef.	Std. Err.	t		[95% Conf.	Interval]
ukborn agea _cons	.282186 0128909 2.279175	.0477851 .0008924 .0597376	5.91 -14.45	0.000 0.000 -	.1884779 .0146409 2.162027	.375894 0111409 2.396322

1 OLS

2 Stata Example

- 3 R Example
- 4 Inference

```
install.packages("rio")
dat <- rio::import("ESS7GB.dta")</pre>
dim(dat)
names(dat)
str(dat[,1:5])
# outcome (feel close to country)
table(dat$fclcntr)
dat$feelclose <- ifelse(dat$fclcntr %in% 7:8, NA, dat$fclcntr)
# explanatory 1 (country of birth)
table(dat$brncntr)
dat$ukborn <- ifelse(dat$brncntr == 1, 1, 0)</pre>
# explanatory 2 (age)
table(dat$agea)
dat$agea[dat$agea > 99] <- NA
m <- lm(feelclose ~ ukborn + agea, data = dat)
```

```
summary(m)
## Call:
## lm(formula = feelclose ~ ukborn + agea, data = dat)
## Residuals:
       Min
              10 Median 30
                                         Max
##
## -1.36800 -0.64610 -0.02709 0.40440 2.50859
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2791745 0.0597376 38.153 < 2e-16 ***
## ukborn 0.2821860 0.0477851 5.905 4.06e-09 ***
## agea -0.0128909 0.0008924 -14.445 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ''
##
## Residual standard error: 0.7656 on 2221 degrees of freedom
    (40 observations deleted due to missingness)
## Multiple R-squared: 0.0913, Adjusted R-squared: 0.09048
## F-statistic: 111.6 on 2 and 2221 DF, p-value: < 2.2e-16
```

1 OLS

2 Stata Example

- 3 R Example
- 4 Inference

Inference from Sample to Population

- lacksquare We want to know population parameter heta
- lacksquare We only observe sample estimate $\hat{ heta}$
- We have a guess but are also uncertain

Inference from Sample to Population

- lacksquare We want to know population parameter heta
- lacksquare We only observe sample estimate $\hat{ heta}$
- We have a guess but are also uncertain

- What range of values for θ does our $\hat{\theta}$ imply?
- Are values in that range large or meaningful?

How Uncertain Are We?

- Our uncertainty depends on sampling procedures
- Most importantly, sample size
 - As $n \to \infty$, uncertainty $\to 0$
- We typically summarize our uncertainty as the standard error

Standard Errors (SEs)

- Definition: "The standard error of a sample estimate is the average distance that a sample estimate $(\hat{\theta})$ would be from the population parameter (θ) if we drew many separate random samples and applied our estimator to each."
- In bivariate regression: $Var(\hat{\beta}_1) = \frac{\frac{1}{n-2}SSR}{SST_x}$
- Thus, SE is a ratio of unexplained variance in y (weighted by sample size) and variance in x
- Units: same as coefficient $(\frac{y}{x})$

What affects size of SEs?

- Larger variance in x means smaller SEs
- More unexplained variance in y means biggerSEs
- More observations reduces the numerator, thus smaller SEs
- Other factors:
 - Homoskedasticity
 - Clustering
- Interpretation:
 - Large SE: Uncertain about population effect size
 - Small SE: Certain about population effect size

Ways to Express Our Uncertainty

- Standard Error
- 2 Confidence interval
- ₃ *t*-statistic
- p-value

Confidence Interval (CI)

- Definition: Were we to repeat our procedure of sampling, applying our estimator, and calculating a confidence interval repeatedly from the population, a fixed percentage of the resulting intervals would include the true population-level slope.
- Interpretation: If the confidence interval overlaps zero, we are uncertain if β differs from zero

Confidence Interval (CI)

- A CI is simply a range, centered on the slope
- Units: Same scale as the coefficient $(\frac{y}{x})$
- We can calculate different Cls of varying confidence
 - Conventionally, $\alpha = 0.05$, so 95% of the CIs will include the β

t-statistic

- A measure of how large a coefficient is relative to our uncertainty about its size
- Typically used to test a formal null hypothesis:
 - lacksquare No effect null: $t_{\hat{eta_1}} = rac{\hat{eta_1}}{eta E_{\hat{eta_1}}}$
 - Any other null: $\frac{\hat{\beta}_1 \alpha}{SE_{\hat{\beta}_1}}$, where α is our null hypothesis effect size

t-statistic

- A measure of how large a coefficient is relative to our uncertainty about its size
- Typically used to test a formal null hypothesis:
 - lacksquare No effect null: $t_{\hat{eta_1}} = rac{\hat{eta_1}}{\mathsf{SE}_{\hat{eta_1}}}$
 - Any other null: $\frac{\hat{\beta}_1 \alpha}{SE_{\hat{\beta}_1}}$, where α is our null hypothesis effect size
- Note: The *t*-statistic from a *t*-test of mean-difference is the same as the *t*-statistic from a *t*-test on an OLS slope for a dummy covariate

p-value

- A summary measure in a hypothesis test
- General definition: "the probability of a statistic as extreme as the one we observed, if the null hypothesis was true, the statistic is distributed as we assume, and the data are as variable as observed"
- Definition in a regression context: "the probability of a slope as large as the one we observed . . ."

The p-value is not:

- The probability that a hypothesis is true or false
- A reflection of our confidence or certainty about the result
- The probability that the true slope is in any particular range of values
- A statement about the importance or substantive size of the effect

Significance

Substantive significance

Statistical significance

Significance

- Substantive significance
 - Is the effect size (or range of possible effect sizes) important in the real world?

Statistical significance

Significance

Substantive significance

■ Is the effect size (or range of possible effect sizes) important in the real world?

Statistical significance

- Is the effect size (or range of possible effect sizes) larger than a predetermined threshold?
- Conventionally, $p \le 0.05$

Questions about inference?

