	One random variable, X		Two joint random variables (X, Y)	
	Discrete	Continuous	Discrete	Continuous
Probability mass/density	pmf: $p_X(x)$	pdf: $f_X(x)$	$p_{X,Y}(x,y)$	$f_{X,Y}(x,y)$
function	= P(X = x)	$(P(X=x) \equiv 0)$	= P(X = x, Y = y)	
defined for	all x with $p_X(x) > 0$	$-\infty < x < \infty$		$-\infty < x < \infty, -\infty < y < \infty$
Probability $P(X \in A)$	$\sum_{x \in A} p_X(x)$	$\int_{x \in A} f_X(x) dx$	$\sum \sum_{(x,y)\in A} p_{X,Y}(x,y)$	$\int \int_{(x,y)\in A} f_{X,Y}(x,y) dx dy$
Note:	$p_X(x) \ge 0$	$f_X(x) \ge 0$	$p_{X,Y}(x,y) \ge 0$	$f_{X,Y}(x,y) \ge 0$
	$\sum_{x} p_X(x) = 1$	$\int_{X} f_X(x) dx = 1$	$\int_{x} \sum_{y} p_{X,Y}(x,y) = 1$	$\int_{X} \int_{Y} f_{X,Y}(x,y) dx dy = 1$
Cumulative distrib. func.	istrib. func. $F_X(x) = \sum_{z \le x} p_X(z)$ $F_X(x) = \int_{-\infty}^x f_X(z) dz$		$F_{X,Y}(x,y) = P(X \le x, Y \le y)$	
$\operatorname{cdf}, F_X(x) = P(X \le x)$			$\sum_{z \le x, w \le y} p_{X,Y}(z, w)$	$\int_{z=-\infty}^{x} \int_{w=-\infty}^{y} f_{X,Y}(z,w) dz \ dw$
Result:	$P(a < X \le b) = F_X(b) - F_X(a)$		$P(a_1 < X \le a_2, b_1 < Y \le b_2) =$	
			$F_{X,Y}(a_2,b_2) - F_{X,Y}(a_1,b_2)$	$(a_1, b_1) - F_{X,Y}(a_2, b_1) + F_{X,Y}(a_1, b_1)$
From cdf to pdf		$f_X(x) = \frac{d}{dx} F_X(x)$		$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \ \partial y} F_{X,Y}(x,y)$
Marginal pmf/pdf			$p_X(x) = \sum_y p_{X,Y}(x,y)$ $p_X(y) = \sum_y p_{X,Y}(x,y)$	$f_X(x) = \int_y f_{X,Y}(x,y)dy$ $f_Y(y) = \int_x f_{X,Y}(x,y)dx$
				$JY(y) = J_x JX, Y(x, y)dx$
Expectation $E(X)$	$\sum_{x} x p_X(x)$	$\int_{-\infty}^{\infty} x f_X(x) dx$		
Result: $E(g(X))$	$\sum_{x} g(x) p_X(x)$	$\int_{-\infty}^{\infty} g(x) f_X(x) dx$	$\sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$	$\int_{x} \int_{y} g(x,y) f_{X,Y}(x,y) dx dy$
Consequence:	$E(g_1(X) + g_2(X)) = E(g_1(X)) + E(g_2(X))$		$E(g_1(X) + g_2(Y)) = E(g_1(X)) + E(g_2(Y))$	