CS335: Bottom-up Parsing

Swarnendu Biswas

Semester 2019-2020-II CSE, IIT Kanpur

Rightmost Derivation of abbcde

$$S \rightarrow aABe$$

$$A \rightarrow Abc \mid b$$

$$B \rightarrow d$$

Input string: abbcde

 $S \rightarrow aABe$

 $\rightarrow aAde$

 $\rightarrow aAbcde$

 $\rightarrow abbcde$

Bottom-up Parsing

Constructs the parse tree starting from the leaves and working up toward the root

$$S \rightarrow aABe$$

$$A \rightarrow Abc \mid b$$

$$B \rightarrow d$$

Input string: abbcde				
$S \rightarrow aABe$	abbcde			
$\rightarrow aAde$	$\rightarrow aAbcde$			
$\rightarrow aAbcde$	$\rightarrow aAde$			
$\rightarrow abbcde$	$\rightarrow aABe$			↓
	$\rightarrow S$		reverse of	1
Swarnendu Biswas			rightmost derivation	

Bottom-up Parsing

$$S \rightarrow aABe$$

$$A \rightarrow Abc \mid b$$

$$B \rightarrow d$$

Input string: abbcde

abbcde

- $\rightarrow aAbcde$
- $\rightarrow aAde$
- $\rightarrow aABe$
- $\rightarrow S$

Reduction

- Bottom-up parsing **reduces** a string w to the start symbol S
 - At each reduction step, a chosen substring that is the rhs (or body) of a production is replaced by the lhs (or head) nonterminal

- Handle is a substring that matches the body of a production
 - Reducing the handle is one step in the reverse of the rightmost derivation

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid \mathbf{id}$$

Right Sentential Form	Handle	Reducing Production
$id_1 * id_2$	id_1	$F \rightarrow id$
$F*id_2$	F	$T \to F$
$T*id_2$	id_2	F o id
T * F	T * F	$T \to T * F$
T	T	$E \rightarrow T$

Although T is the body of the production $E \to T$, T is not a handle in the sentential form $T * \mathbf{id}_2$

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (E) \mid \mathbf{id}$$

Right Sentential Form	Handle	Reducing Production
$id_1 * id_2$	id_1	F o id
$F*id_2$	F	$T \to F$
$T*id_2$	id_2	F o id
T*F	T * F	$T \to T * F$
T	T	$E \rightarrow T$

• If $S \Longrightarrow_{rm}^{*} \alpha Aw \Longrightarrow_{rm} \alpha \beta w$, then $A \to \beta$ is a handle of $\alpha \beta w$

• String w right of a handle must contain only terminals

A handle $A \to \beta$ in the parse tree for $\alpha \beta w$

If grammar G is unambiguous, then every right sentential form has only one handle

If G is ambiguous, then there can be more than one rightmost derivation of $\alpha\beta w$

Shift-Reduce Parsing

Shift-Reduce Parsing

- Type of bottom-up parsing with two primary actions, shift and reduce
 - Other obvious actions are accept and error
- The input string (i.e., being parsed) consists of two parts
 - Left part is a string of terminals and nonterminals, and is stored in stack
 - Right part is a string of terminals read from an input buffer
 - Bottom of the stack and end of input are represented by \$

Shift-Reduce Actions

- Shift: shift the next input symbol from the right string onto the top of the stack
- Reduce: identify a string on top of the stack that is the body of a production, and replace the body with the head

Shift-Reduce Parsing

Initial

Stack	Input
\$	w\$

Final goal

Stack	Input
\$ <i>S</i>	\$

Shift-Reduce Parsing

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

Stack	Input	Action
\$	$id_1 * id_2$ \$	Shift
$\mathbf{\$id}_1$	$*$ id $_2$ \$	Reduce by $F \rightarrow id$
\$F	* id ₂ \$	Reduce by $T \to F$
\$T	* id ₂ \$	Shift
\$ <i>T</i> *	id ₂ \$	Shift
$T * id_2$	\$	Reduce by $F \rightarrow id$
T * F	\$	Reduce by $T \to T * F$
\$T	\$	Reduce by $E \rightarrow T$
\$E	\$	Accept

Handle on Top of the Stack

• Is the following scenario possible?

Stack	Input	Action
$\alpha \beta \gamma$	w\$	Reduce by $A \rightarrow \gamma$
$\alpha \beta \gamma$ $\alpha \beta A$ $\alpha \beta A$	w\$	Reduce by $B \to \beta$
αBA	w\$	

Possible Choices in Rightmost Derivation

Handle on Top of the Stack

Is the following scenario possible?

Shift-Reduce Actions

- Shift: shift the next input symbol from the right string onto the top of the stack
- Reduce: identify a string on top of the stack that is the body of a production, and replace the body with the head

How do you decide when to shift and when to reduce?

Steps in Shift-Reduce Parsers

- The general shift-reduce technique is
 - If there is no handle on the stack then shift
 - If there is a handle then reduce

- Bottom up parsing is essentially the process of detecting handles and reducing them
- Different bottom-up parsers differ in the way they detect handles

Challenges in Bottom-up Parsing

Which action do you pick when there is a choice?

 Both shift and reduce are valid, implies a shift-reduce conflict

Which rule to use if reduction is possible by more than one rule?

Reduce-reduce conflict

Shift-Reduce Conflict

$$id + id * id$$

Stack	Input	Action
\$	id + id * id\$	Shift
8 8 8		
E + E	* id\$	Reduce by $E \rightarrow E + E$
\$ <i>E</i>	* id\$	Shift
\$ <i>E</i> *	id\$	Shift
E * id	\$	Reduce by $E \rightarrow id$
E * E	\$	Reduce by $E \rightarrow E * E$
\$ <i>E</i>	\$	

id + id * id

Stack	Input	Action
\$	id + id * id\$	Shift
E + E	* id\$	Shift
E + E *	id\$	Shift
E + E * id	\$	Reduce by $E \rightarrow id$
E + E * E	\$	Reduce by $E \rightarrow E * E$
E + E	\$	Reduce by $E \rightarrow E + E$
\$ <i>E</i>	\$	

Shift-Reduce Conflict

 $Stmt \rightarrow if Expr then Stmt$ | if Expr then Stmt else Stmt | other

Stack	Input	Action
if $Expr$ then $Stmt$	else\$	

Shift-Reduce Conflict

 $Stmt \rightarrow if Expr then Stmt$ | if Expr then Stmt else Stmt | other

Stack	Input	Action
if $Expr$ then $Stmt$	else\$	

What is a correct thing to do for this grammar – shift or reduce?

Reduce-Reduce Conflict

$$M \to R + R \mid R + c \mid R$$

$$R \to c$$

$$c + c$$

Stack	Input	Action
\$	c + c\$	Shift
\$ <i>c</i>	+ <i>c</i> \$	Reduce by $R \rightarrow c$
\$R	+ <i>c</i> \$	Shift
\$R +	<i>c</i> \$	Shift
R + c	\$	Reduce by $R \rightarrow c$
R + R	\$	Reduce by $R \to R + R$
\$ <i>M</i>	\$	

$$c + c$$

Stack	Input	Action
\$	c + c\$	Shift
\$ <i>c</i>	+ <i>c</i> \$	Reduce by $R \rightarrow c$
\$ <i>R</i>	+ <i>c</i> \$	Shift
\$R +	<i>c</i> \$	Shift
R + c	\$	Reduce by $M \to R + c$
\$ <i>M</i>	\$	

LR Parsing

LR(k) Parsing

- Popular bottom-up parsing scheme
 - L is for left-to-right scan of input
 - R is for reverse of rightmost derivation
 - k is the number of lookahead symbols
- LR parsers are table-driven, like the nonrecursive LL parser
- LR grammar is one for which we can construct an LR parsing table

Popularity of LR Parsing

- LR parsers can recognize all programming language constructs for which context-free grammars can be written
- LR-parsing is most general nonbacktracking shift-reduce parsing method
- LR parsing works for a superset of grammars that can be parsed with predictive or LL parsers
 - LL(k) parsing must predict which production to use having seen only the first k tokens of the right-hand side
 - LR(k) parsing postpones the decision until it has seen input tokens corresponding to the entire right-hand side of the production

Popularity of LR Parsing

Can recognize all language constructs with CFGs

Most general nonbacktracking shift-reduce parsing method

Works for a superset of grammars parsed with predictive or LL parsers

Popularity of LR Parsing

Can recognize all language constructs with CFGs

Most general nonbacktracking shift-reduce parsing method

Works for a superset of grammars parsed with predictive or LL parsers

- LL(k) parsing predicts which production to use having seen only the first k tokens of the right-hand side
- LR(k) parsing can decide after it has seen input tokens corresponding to the entire right-hand side of the production

Block Diagram of LR Parser

LR(0) Item

An LR(0) item (also called item)
 of a grammar G is a production
 of G with a dot at some position
 in the body

- An item indicates how much of a production we have seen
 - Symbols on the left of "." are already on the stack
 - Symbols on the right of "." are expected in the input

Production	Items
	$A \rightarrow XYZ$
1 \ VV7	$A \rightarrow X.YZ$
$A \to XYZ$	$A \rightarrow XY.Z$
	$A \rightarrow XYZ$.

 $A \rightarrow .XYZ$ indicates that we expect a string derivable from XYZ next on the input

LR(0) Automaton

- An LR parser makes shift-reduce decisions by maintaining states
- States represent sets of LR(0) items
- The canonical LR(0) collection is used for constructing a DFA for parsing

Closure Operation

- Let *I* be a set of items for a grammar *G*
- Closure(I) is constructed by
 - 1. Add every item in *I* to Closure(*I*)
 - 2. If $A \to \alpha . B\beta$ is in Closure(I) and $B \to \gamma$ is a rule, then add $B \to \gamma$ to Closure(I) if not already added
 - 3. Repeat until no more new items can be added to Closure(I)

Example of Closure

$$E' \to E$$

$$E \to E + T|T$$

$$T \to T * F|F$$

$$F \to (E)|id$$

Suppose
$$I = \{E' \rightarrow .E \}$$
, compute Closure(I)

Example of Closure

```
E' \to E
E \to E + T|T
T \to T * F|F
F \to (E)|id
```

```
Suppose I = \{E' \rightarrow E \}
Closure(I) = \{
           E' \rightarrow E
           E \rightarrow E + T
           E \rightarrow T
           T \rightarrow T * F
           T \rightarrow F
           F \rightarrow (E)
            F \rightarrow .id
```

Goto Operation

- Suppose I is a set of items and X is a grammar symbol
- Goto(I,X) is the closure of set all items [$A \to \alpha X.\beta$] such that [$A \to \alpha.X\beta$] is in I
 - If I is a set of items for some valid prefix α then Goto(I,X) is set of valid items for prefix αX

• Intuitively, Goto() defines the transitions in the LR(0) automaton

Example of Goto

• Suppose
$$I = \{E' \rightarrow E., E \rightarrow E. + T\}$$

• Compute Goto(I, +)

Example of Goto

$$E' \to E$$

$$E \to E + T|T$$

$$T \to T * F|F$$

$$F \to (E)|id$$

• Suppose $I = \{E' \rightarrow E, E \rightarrow E, T\}$

```
Goto(I, +) = {
          E \rightarrow E + ... T
          E \rightarrow E+.T
          T \rightarrow T * F
          T \rightarrow F
          F \rightarrow (E)
          F \rightarrow id
```

```
C = \text{Closure}(\{S' \to S\})
repeat
for each set of items I in C
for each grammar symbol X
if (\text{Goto}(I, X) \text{ is not empty and not in } C)
add \text{GOTO}(I, X) \text{ to } C
until no new sets of items are added to C
```

$$E' \to E$$

$$E \to E + T|T$$

$$T \to T * F|F$$

$$F \to (E)|id$$

 Compute the canonical collection for the expression grammar

```
I_0 = \mathsf{Closure}(E' \to E) = \{
                                           I_2 = Goto(I_0, T) = \{
             E' \rightarrow E.
                                                                E \rightarrow T..
                                                                 T \rightarrow T * F
             E \rightarrow E + T
             E \rightarrow T
             T \rightarrow T * F.
             T \rightarrow F
                                                   I_3 = Goto(I_0, F) = \{
             F \rightarrow (E)
                                                                 T \to F.
              F \rightarrow id.
                                                   I_5 = \mathsf{Goto}(I_0, \mathsf{id}) = \{
                                                                 F \rightarrow id.
I_1 = \text{Goto}(I_0, E) = \{
             E' \rightarrow E.
             E \rightarrow E + T
```

```
I_4 = Goto(I_0, "(") = \{
             F \rightarrow (.E)
             E \rightarrow E + T
             E \rightarrow T
             T \rightarrow T * F.
             T \rightarrow .F
             F \rightarrow (E)
              F \rightarrow id.
I_7 = Goto(I_2,*) = \{
             T \to T *_{\bullet} F
              F \rightarrow (E),
              F \rightarrow id
```

```
I_{6} = \mathsf{Goto}(I_{1}, +) = \{
E \to E + .T,
T \to .T * F,
T \to .F,
F \to .(E),
F \to .\mathsf{id},
\}
I_{8} = \mathsf{Goto}(I_{4}, E) = \{
E \to E . + T,
F \to (E .)
\}
```

```
I_{9} = \text{Goto}(I_{6}, T) = \{
E \to E + T.,
T \to T.*F
}
I_{10} = \text{Goto}(I_{7}, F) = \{
T \to T * F.,
}
I_{11} = \text{Goto}(I_{8}, )) = \{
F \to (E).
}
```

```
I_2 = \text{Goto}(I_4, T)
I_3 = Goto(I_4, F)
I_4 = Goto(I_4, "("))
I_5 = \text{Goto}(I_4, \text{id})
I_3 = \text{Goto}(I_6, F)
I_4 = Goto(I_6, "("))
I_5 = \text{Goto}(I_6, \text{id})
I_4 = Goto(I_7, "("))
I_5 = \text{Goto}(I_7, \text{id})
I_6 = \text{Goto}(I_8, +)
I_7 = Goto(I_9,*)
```