TEST REPORT

Reference No..... : WTD15S1035221E

FCC ID...... : 2AF9L-CBS003

Applicant...... : Shen Zhen CosBeauty Co., Ltd.

Product Name...... : aiDirect Pro Smart Skin Analyzer

Model No..... : CB-S003

Standards...... FCC CFR47 Part 15 Section 15.247:2015

Date of Receipt sample..... Cct. 14, 2015

拉芒

Date of Issue...... : May 09, 2016

Test Result..... : Pass *

*Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Approved by:

Philo Zhong / M

Reference No.: WTD15S1035221E Page 2 of 63

2 Test Summary

Test Items	Test Requirement	Result
Radiated Emissions	15.205(a)	PASS
Radiated Effissions	15.209(a)	PASS
Conducted Emissions	15.207(a)	PASS
Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

		Page
1	COVER PAGE	
	EST SUMMARY	
	ONTENTS	
4 GI	ENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T	
	4.2 DETAILS OF E.U.T	
	4.4 TEST MODE	
	4.5 TEST FACILITY	e
5 EC	QUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
	5.2 MEASUREMENT UNCERTAINTY	
. 0	5.3 TEST EQUIPMENT CALIBRATION	
6 C(ONDUCTED EMISSION	
	6.1 E.U.T. OPERATION	
	6.3 MEASUREMENT DESCRIPTION.	
	6.4 CONDUCTED EMISSION TEST RESULT	
7 R	ADIATED EMISSIONS	12
	7.1 EUT OPERATION	
	7.2 TEST SETUP	
	7.3 SPECTRUM ANALYZER SETUP	
	7.5 SUMMARY OF TEST RESULTS	
8 B	AND EDGE MEASUREMENT	28
	8.1 TEST PRODUCE	28
	8.2 TEST RESULT	29
9 B	ANDWIDTH MEASUREMENT	33
	9.1 TEST PROCEDURE	
	9.2 TEST RESULT:	
10 N	MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	
	10.1 Test Procedure	
11 🛭	POWER SPECTRAL DENSITY	
11 [11.1 TEST PROCEDURE	
	11.1 TEST PROCEDURE	
12 A	ANTENNA REQUIREMENT	
	RF EXPOSURE	
	13.1 REQUIREMENTS	
	13.2 THE PROCEDURES / LIMIT	
14 F	PHOTOGRAPHS -MODEL CB-S003 TEST SETUP PHOTOS	50
	14.1 PHOTOGRAPH – RADIATED EMISSION	
	14.2 PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP AT TEST SITE 1#	
15 F	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	52

Reference No.: WTD15S1035221E Page 4 of 63

15.1 MODEL CB-S003- EXTERNAL PHOTOS	52
15.2 Model CB-S003 – Internal Photos	5

Reference No.: WTD15S1035221E Page 5 of 63

4 General Information

4.1 General Description of E.U.T.

Product Name: : aiDirect Pro Smart Skin Analyzer

Model No.: : CB-S003

Model Difference: : N/A

Operation Frequency: : 2412-2462MHz for 802.11b/g/n-HT20

2422-2452MHz for 802.11n-HT40

The lowest oscillator: :32.768KHz

Antenna Gain: :1.5dBi

Type of modulation: : IEEE 802.11b (CCK/QPSK/BPSK,11Mbps max.)

IEEE 802.11g (BPSK/QPSK/16QAM/64QAM,54Mbps max.)
IEEE 802.11n (BPSK/QPSK/16QAM/64QAM,HT20:108Mbps

max., HT40:150Mbps max.)

4.2 Details of E.U.T.

Technical Data :Battery DC 3.7V, 500mAh

DC 5V, 1A by adapter

(Adapter Input: 100-240V~50/60Hz, 0.2A Output: DC 5V, 1A

Model: BX-0501000 by CosBeauty)

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

4.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11b	11 Mbps	1/6/11	TX
Maximum conducted (average) output power	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
Daniel Canada Dana'i	802.11b	11 Mbps	1/6/11	TX
	802.11g	54 Mbps	1/6/11	TX
Power Spectral Density	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/11	TX
Band Edge	802.11g	54 Mbps	1/11	TX
	802.11n HT20	108 Mbps	1/11	TX
	802.11n HT40	150 Mbps	3/9	TX

Reference No.: WTD15S1035221E Page 6 of 63

	802.11b	11 Mbps	1/6/11	TX
Bandwidth	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/6/11	TX
Tananaittan Causiana Fraissiana	802.11g	54 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A-1, October 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

Equipment Used during Test 5

Equipments List

Conducted Emissions Test Site 1#

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.15,2015	Sep.14,2016	
2.	LISN	R&S	ENV216	101215	Sep.15,2015	Sep.14,2016	
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.15,2015	Sep.14,2016	
Condu	cted Emissions Test	Site 2#					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S			Sep.15,2015	Sep.14,2016	
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.15,2015	Sep.14,2016	
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.15,2015	Sep.14,2016	
4.	Cable	LARGE	RF300	-	Sep.15,2015	Sep.14,2016	
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#			
Item	em Equipment Manufacturer		Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2015	Sep.14,2016	
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.15,2015	Sep.14,2016	
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Sep.15,2015	Sep.14,2016	
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.15,2015	Sep.14,2016	
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.19,2015	Apr.18,2016	
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.19,2015	Apr.18,2016	
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Sep.15,2015	Sep.14,2016	
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Sep.15,2015	Sep.14,2016	
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date	
1	Test Receiver	R&S	ESCI	101296	Sep.15,2015	Sep.14,2016	
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.15,2015	Sep.14,2016	
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.15,2015	Sep.14,2016	
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.15,2015	Sep.14,2016	

Last

RF Conducted Testing								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2015	Sep.14,2016		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2015	Sep.14,2016		
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.15,2015	Sep.14,2016		

5.2 Measurement Uncertainty

Parameter	Uncertainty		
Radio Frequency	± 1 x 10 ⁻⁶		
RF Power	± 1.0 dB		
RF Power Density	± 2.2 dB		
	± 5.03 dB (Bilog antenna 30M~1000MHz)		
Radiated Spurious Emissions test	± 4.74 dB (Horn antenna 1000M~25000MHz)		
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)		

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTD15S1035221E Page 9 of 63

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C
Humidity: 51 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

Live line:

Neutral line:

Reference No.: WTD15S1035221E Page 12 of 63

7 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05 & ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

Temperature: $25.5 \, ^{\circ}\text{C}$ Humidity: $51 \, ^{\circ}\text{RH}$ Atmospheric Pressure: 1016 mbar

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

	-	
Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	. 10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	. 300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	. 3MHz
	Detector	. Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	. 10Hz

Reference No.: WTD15S1035221E Page 15 of 63

7.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

Reference No.: WTD15S1035221E Page 16 of 63

7.5 Summary of Test Results

Test Frequency: 32.768KHz~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

	Receiver	Lietector	Turn	RX Antenna		Corrected	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	11b: Low Channel 2412MHz								
225.66	42.17	QP	14	1.7	Н	-11.62	30.55	46.00	-15.45
225.66	35.92	QP	146	1.1	V	-11.62	24.30	46.00	-21.70
4824.00	51.04	PK	7	1.7	V	-1.06	49.98	74.00	-24.02
4824.00	47.17	Ave	7	1.7	V	-1.06	46.11	54.00	-7.89
7236.00	43.95	PK	93	1.7	Н	1.33	45.28	74.00	-28.72
7236.00	39.95	Ave	93	1.7	Н	1.33	41.28	54.00	-12.72
2345.49	46.31	PK	41	1.3	V	-13.19	33.12	74.00	-40.88
2345.49	38.23	Ave	41	1.3	V	-13.19	25.04	54.00	-28.96
2385.26	42.80	PK	205	1.7	Н	-13.14	29.66	74.00	-44.34
2385.26	38.57	Ave	205	1.7	Н	-13.14	25.43	54.00	-28.57
2497.66	42.22	PK	206	1.2	V	-13.08	29.14	74.00	-44.86
2497.66	36.96	Ave	206	1.2	V	-13.08	23.88	54.00	-30.12

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11b: Mid	dle Chan	nel 243	7MHz			
225.66	41.50	QP	353	1.8	Н	-11.62	29.88	46.00	-16.12
225.66	35.16	QP	327	2.0	V	-11.62	23.54	46.00	-22.46
4874.00	50.56	PK	78	1.9	V	-0.62	49.94	74.00	-24.06
4874.00	44.82	Ave	78	1.9	V	-0.62	44.20	54.00	-9.80
7311.00	41.66	PK	173	1.5	Н	2.21	43.87	74.00	-30.13
7311.00	41.25	Ave	173	1.5	Н	2.21	43.46	54.00	-10.54
2336.62	45.28	PK	255	1.6	V	-13.19	32.09	74.00	-41.91
2336.62	37.88	Ave	255	1.6	V	-13.19	24.69	54.00	-29.31
2358.20	43.81	PK	113	1.6	Н	-13.14	30.67	74.00	-43.33
2358.20	36.53	Ave	113	1.6	Н	-13.14	23.39	54.00	-30.61
2499.67	42.73	PK	331	1.7	V	-13.08	29.65	74.00	-44.35
2499.67	37.04	Ave	331	1.7	V	-13.08	23.96	54.00	-30.04

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11b: Hi	gh Chanr	nel 2462	!MHz			
225.66	42.76	QP	143	1.9	Н	-11.62	31.14	46.00	-14.86
225.66	36.16	QP	231	1.7	V	-11.62	24.54	46.00	-21.46
4924.00	49.16	PK	150	1.8	V	-0.24	48.92	74.00	-25.08
4924.00	44.74	Ave	150	1.8	V	-0.24	44.50	54.00	-9.50
7386.00	42.12	PK	172	1.6	Н	2.84	44.96	74.00	-29.04
7386.00	41.21	Ave	172	1.6	Н	2.84	44.05	54.00	-9.95
2317.28	45.96	PK	96	1.2	V	-13.19	32.77	74.00	-41.23
2317.28	37.56	Ave	96	1.2	V	-13.19	24.37	54.00	-29.63
2361.33	44.43	PK	189	1.9	Н	-13.14	31.29	74.00	-42.71
2361.33	38.57	Ave	189	1.9	Н	-13.14	25.43	54.00	-28.57
2491.51	43.99	PK	177	1.3	V	-13.08	30.91	74.00	-43.09
2491.51	38.45	Ave	177	1.3	V	-13.08	25.37	54.00	-28.63

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC F 15.247/2	l l
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Lo	w Chann	el 2412l	MHz			
225.66	43.17	QP	243	1.5	Н	-11.62	31.55	46.00	-14.45
225.66	36.64	QP	295	1.6	V	-11.62	25.02	46.00	-20.98
4824.00	49.55	PK	282	1.9	V	-1.06	48.49	74.00	-25.51
4824.00	43.88	Ave	282	1.9	V	-1.06	42.82	54.00	-11.18
7236.00	43.19	PK	75	1.6	Н	1.33	44.52	74.00	-29.48
7236.00	42.12	Ave	75	1.6	Н	1.33	43.45	54.00	-10.55
2348.32	45.76	PK	116	1.9	V	-13.19	32.57	74.00	-41.43
2348.32	38.99	Ave	116	1.9	V	-13.19	25.80	54.00	-28.20
2354.94	44.43	PK	35	1.6	Н	-13.14	31.29	74.00	-42.71
2354.94	36.29	Ave	35	1.6	Н	-13.14	23.15	54.00	-30.85
2494.42	42.40	PK	16	1.2	V	-13.08	29.32	74.00	-44.68
2494.42	36.82	Ave	16	1.2	V	-13.08	23.74	54.00	-30.26

	T	T	ī	ı		T	T	ī	
Fraguenov	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	FCC F 15.247/20	
Frequency	Reading	Doteotoi	Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Mid	dle Chan	nel 243	7MHz			
225.66	42.14	QP	316	1.2	Н	-11.62	30.52	46.00	-15.48
225.66	35.69	QP	337	1.4	V	-11.62	24.07	46.00	-21.93
4874.00	50.96	PK	150	1.3	V	-0.62	50.34	74.00	-23.66
4874.00	44.53	Ave	150	1.3	V	-0.62	43.91	54.00	-10.09
7311.00	43.06	PK	306	1.7	Н	2.21	45.27	74.00	-28.73
7311.00	41.77	Ave	306	1.7	Н	2.21	43.98	54.00	-10.02
2316.54	46.48	PK	355	1.6	V	-13.19	33.29	74.00	-40.71
2316.54	38.14	Ave	355	1.6	V	-13.19	24.95	54.00	-29.05
2352.71	43.13	PK	317	1.1	Н	-13.14	29.99	74.00	-44.01
2352.71	38.98	Ave	317	1.1	Н	-13.14	25.84	54.00	-28.16
2489.65	44.73	PK	16	2.0	V	-13.08	31.65	74.00	-42.35
2489.65	37.22	Ave	16	2.0	V	-13.08	24.14	54.00	-29.86

	Receiver	D 1 1	Turn	RX An	tenna	Corrected		FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Hiç	gh Chann	el 2462	MHz			•
225.66	42.28	QP	85	1.5	Н	-11.62	30.66	46.00	-15.34
225.66	34.35	QP	23	1.1	V	-11.62	22.73	46.00	-23.27
4924.00	52.03	PK	155	1.1	V	-0.24	51.79	74.00	-22.21
4924.00	43.36	Ave	155	1.1	V	-0.24	43.12	54.00	-10.88
7386.00	44.54	PK	103	1.4	Н	2.84	47.38	74.00	-26.62
7386.00	42.11	Ave	103	1.4	Н	2.84	44.95	54.00	-9.05
2336.87	45.56	PK	259	1.4	V	-13.19	32.37	74.00	-41.63
2336.87	39.44	Ave	259	1.4	V	-13.19	26.25	54.00	-27.75
2357.60	44.09	PK	121	1.1	Н	-13.14	30.95	74.00	-43.05
2357.60	37.23	Ave	121	1.1	Н	-13.14	24.09	54.00	-29.91
2499.83	44.62	PK	181	1.2	V	-13.08	31.54	74.00	-42.46
2499.83	36.62	Ave	181	1.2	V	-13.08	23.54	54.00	-30.46

								FCC F	Part
Frequency	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	15.247/20	
Frequency	Reading	Detector	Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11 n20: L	ow Chan	nel 241	2MHz			
225.66	42.13	QP	34	1.1	Н	-11.62	30.51	46.00	-15.49
225.66	34.16	QP	46	1.1	V	-11.62	22.54	46.00	-23.46
4924.00	52.21	PK	146	1.7	V	-0.24	51.97	74.00	-22.03
4924.00	40.95	Ave	146	1.7	V	-0.24	40.71	54.00	-13.29
7386.00	42.02	PK	161	1.1	Н	2.84	44.86	74.00	-29.14
7386.00	42.28	Ave	161	1.1	Н	2.84	45.12	54.00	-8.88
2311.66	46.45	PK	72	1.6	V	-13.19	33.26	74.00	-40.74
2311.66	38.60	Ave	72	1.6	V	-13.19	25.41	54.00	-28.59
2360.93	43.09	PK	120	1.6	Н	-13.14	29.95	74.00	-44.05
2360.93	38.83	Ave	120	1.6	Н	-13.14	25.69	54.00	-28.31
2484.88	44.36	PK	280	2.0	V	-13.08	31.28	74.00	-42.72
2484.88	36.09	Ave	280	2.0	V	-13.08	23.01	54.00	-30.99

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		,	11 n20: Mi	iddle Cha	nnel 24	37MHz			
225.66	42.73	QP	38	1.7	Н	-11.62	31.11	46.00	-14.89
225.66	33.45	QP	125	1.1	V	-11.62	21.83	46.00	-24.17
4874.00	52.33	PK	357	1.5	V	-0.62	51.71	74.00	-22.29
4874.00	41.34	Ave	357	1.5	V	-0.62	40.72	54.00	-13.28
7311.00	42.16	PK	174	1.9	Н	2.21	44.37	74.00	-29.63
7311.00	42.07	Ave	174	1.9	Н	2.21	44.28	54.00	-9.72
2343.34	45.95	PK	95	1.5	V	-13.19	32.76	74.00	-41.24
2343.34	38.81	Ave	95	1.5	V	-13.19	25.62	54.00	-28.38
2364.91	43.75	PK	130	1.6	Н	-13.14	30.61	74.00	-43.39
2364.91	36.50	Ave	130	1.6	Н	-13.14	23.36	54.00	-30.64
2493.00	43.11	PK	106	1.2	V	-13.08	30.03	74.00	-43.97
2493.00	37.77	Ave	106	1.2	V	-13.08	24.69	54.00	-29.31

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11 n20: F	ligh Char	nel 246	2MHz			
225.66	42.13	QP	34	1.1	Н	-11.62	30.51	46.00	-15.49
225.66	34.16	QP	46	1.1	V	-11.62	22.54	46.00	-23.46
4924.00	52.21	PK	146	1.7	V	-0.24	51.97	74.00	-22.03
4924.00	40.95	Ave	146	1.7	V	-0.24	40.71	54.00	-13.29
7386.00	42.02	PK	161	1.1	Н	2.84	44.86	74.00	-29.14
7386.00	42.28	Ave	161	1.1	Н	2.84	45.12	54.00	-8.88
2311.66	46.45	PK	72	1.6	V	-13.19	33.26	74.00	-40.74
2311.66	38.60	Ave	72	1.6	V	-13.19	25.41	54.00	-28.59
2360.93	43.09	PK	120	1.6	Н	-13.14	29.95	74.00	-44.05
2360.93	38.83	Ave	120	1.6	Н	-13.14	25.69	54.00	-28.31
2484.88	44.36	PK	280	2.0	V	-13.08	31.28	74.00	-42.72
2484.88	36.09	Ave	280	2.0	V	-13.08	23.01	54.00	-30.99

	T	T	I	I		T	T	I	
Eroguopov	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	FCC F 15.247/20	
Frequency	Reading	Detector	Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11 N40: L	ow Char	nel 242	2MHz			
229.66	42.96	QP	68	1.1	Н	-11.62	29.34	46.00	-16.66
229.66	39.35	QP	335	1.5	V	-11.62	22.73	46.00	-23.27
4844.00	50.39	PK	161	1.4	V	-1.06	48.33	74.00	-25.67
4844.00	39.98	Ave	161	1.4	V	-1.06	36.92	54.00	-17.08
7266.00	450.71	PK	113	1.1	Н	1.33	42.04	74.00	-31.96
7266.00	40.66	Ave	113	1.1	Н	1.33	41.99	54.00	-12.01
2320.25	45.09	PK	243	1.2	V	-13.19	31.90	74.00	-42.10
2320.25	37.84	Ave	243	1.2	V	-13.19	24.65	54.00	-29.35
2389.52	43.47	PK	331	1.6	Н	-13.14	30.33	74.00	-43.67
2389.52	36.50	Ave	331	1.6	Н	-13.14	23.36	54.00	-30.64
2499.40	43.42	PK	201	1.0	V	-13.08	30.34	74.00	-43.66
2499.40	37.04	Ave	201	1.0	V	-13.08	23.96	54.00	-30.04

-	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	I
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		1	I1 N40: M	iddle Cha	annel 24	37MHz			
225.66	43.28	QP	62	1.3	Н	-11.62	29.66	46.00	-16.34
225.66	36.94	QP	148	1.4	V	-11.62	22.32	46.00	-23.68
4874.00	50.75	PK	5	1.0	V	-0.62	49.13	74.00	-24.87
4874.00	39.59	Ave	5	1.0	V	-0.62	37.97	54.00	-16.03
7311.00	43.38	PK	252	1.7	Н	2.21	42.59	74.00	-31.41
7311.00	43.50	Ave	252	1.7	Н	2.21	42.71	54.00	-11.29
2320.91	46.36	PK	177	1.7	V	-13.19	33.17	74.00	-40.83
2320.91	37.75	Ave	177	1.7	V	-13.19	24.56	54.00	-29.44
2377.79	43.76	PK	349	1.3	Н	-13.14	30.62	74.00	-43.38
2377.79	38.96	Ave	349	1.3	Н	-13.14	25.82	54.00	-28.18
2486.59	44.55	PK	104	1.8	V	-13.08	31.47	74.00	-42.53
2486.59	37.71	Ave	104	1.8	V	-13.08	24.63	54.00	-29.37

	Receiver	Datastan	Turn	RX An	tenna	Corrected Factor Amplitu	Carrantad	FCC F 15.247/2	I
Frequency	Reading	Detector	table Angle	Height	Polar		Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11 N40: F	ligh Char	nnel 245	52MHz			
225.66	4661	QP	180	1.6	Н	-11.62	29.99	46.00	-16.01
225.66	36.31	QP	346	1.5	V	-11.62	21.69	46.00	-24.31
4904.00	50.40	PK	34	1.4	V	-0.24	49.16	74.00	-24.84
4904.00	39.97	Ave	34	1.4	V	-0.24	37.73	54.00	-16.27
7356.00	46.26	PK	47	1.6	Н	2.84	43.10	74.00	-30.90
7356.00	45.80	Ave	47	1.6	Н	2.84	43.64	54.00	-10.36
2325.47	45.77	PK	181	1.6	V	-13.19	32.58	74.00	-41.42
2325.47	37.63	Ave	181	1.6	V	-13.19	24.44	54.00	-29.56
2381.16	44.02	PK	117	1.9	Н	-13.14	30.88	74.00	-43.12
2381.16	38.79	Ave	117	1.9	Н	-13.14	25.65	54.00	-28.35
2485.27	43.40	PK	181	1.5	V	-13.08	30.32	74.00	-43.68
2485.27	36.88	Ave	181	1.5	V	-13.08	23.80	54.00	-30.20

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTD15S1035221E Page 28 of 63

8 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05 April 08, 2016

Test Limit: Regulation 15.247 (d),In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

8.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.2 Test Result

11b

11g Band edge-left side **(** Offs 0.50 dB * RBW 100 kHz * Att 20 dB * VBW 300 kHz M2[1] -50.01 dBm Batt Ref 10.50 dBm SWT 15ms 2.399730000 GHz -49.28 dBm M1[1] 2.400000000 GHz 1Rm 0 dBm-Max -10 dBm D1 -15,800 dBm -20 dBm -30 dBm -40 dBm 45.800 dBm -D2 -50 dBm -60 dBm -70 dBm -80 dBm Start 2.31 GHz Stop 2.432 GHz

11 N20

11 N40

Reference No.: WTD15S1035221E Page 33 of 63

9 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05 April 08, 2016

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

9.2 Test Result:

Operation mode	E	Bandwidth (MH	z)
	Channel 1	Channel 6	Channel 11
TX 11b	10.092	10.092	10.092
	Channel 1	Channel 6	Channel 11
TX 11g	16.567	16.567	16.567
	Channel 1	Channel 6	Channel 11
TX 11n HT20	17.838	17.838	17.838
	Channel 3	Channel 6	Channel 9
TX 11n HT40	36.450	36.450	36.450

Test result plot as follows:

Mode: TX 11b channel 11

Reference No.: WTD15S1035221E Page 40 of 63

10 Maximum conducted (average) output power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05 April 08, 2016

10.1 Test Procedure

558074 D01 DTS Meas Guidance v03r05 April 08, 2016 section 9.2.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1MHz. VBW = 3MHz. Sweep = auto; Detector Function =RMS, Set the span to at least 1.5 times the 6 dB bandwidth.
- 3. Keep the EUT in transmitting at lowest, Middle and highest channel individually. Record the max value.

10.2 Test Result

Test mode :TX 11b			
Maximum conducted(average) output power (dBm)			
2412MHz	2437MHz	2462MHz	
9.28	9.21	9.20	
Limit: 1W/30dBm			

Test mode :TX 11g			
Maximum conducted(average) output power (dBm)			
2412MHz	2437MHz	2462MHz	
9.46	9.28	9.45	
Limit: 1W/30dBm			

Test mode :TX 11n HT20			
Maximum conducted(average) output power (dBm)			
2412MHz 2437MHz 2462MHz			
9.46	9.36	9.27	
Limit: 1W/30dBm			

Test mode :TX 11n HT40				
Maximum conducted(average) output power (dBm)				
2422MHz	2422MHz 2437MHz 2452MHz			
9.52	9.47 9.46			
Limit: 1W/30dBm				

Reference No.: WTD15S1035221E Page 41 of 63

11 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05 April 08, 2016

11.1 Test Procedure

558074 D01 DTS Meas Guidance v03r05 April 08, 2016 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result

Test mode :TX 11b			
Power Spectral density			
2412MHz	2437MHz	2462MHz	
-23.56	-26.76	-23.81	
Limit: 8dBm per 3kHz			

Test mode :TX 11g			
Power Spectral density			
2412MHz	2437MHz	2462MHz	
-27.22	-27.26	-27.03	
Limit: 8dBm per 3kHz			

Test mode :TX 11n HT20			
Power Spectral density			
2412MHz	2437MHz	2462MHz	
-26.18	-26.26	-25.86	
Limit: 8dBm per 3kHz			

Test mode :TX 11n HT40			
Power Spectral density			
2422MHz	2437MHz	2452MHz	
-28.99	-26.44	-24.39	
Limit: 8dBm per 3kHz			

12 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB printed antenna, fulfill the requirement of this section.

Reference No.: WTD15S1035221E Page 49 of 63

13 RF Exposure

Test Requirement: FCC Part 1.1307

Evaluation Method FCC Part 2.1093 & 447498 D01 General RF Exposure Guidance v06

13.1 Requirements

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR where

- 1. f(GHz) is the RF channel transmit frequency in GHz
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is <5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

13.2 The procedures / limit

Source-based time-averaged	Source-based time-	Minimum test separation	
maximum conducted output	averaged maximum	distance required for the	SAR Test Exclusion
power(dBm)	conducted output	exposure conditions	Thresholds(mW)
	power(mW)	(mm)	
9.52	8.95	5	9.042

Remark:

Calculation formula: Source-based time-averaged maximum conducted output power(mW)

=10^[Source-based time-averaged maximum conducted output power(dBm)/10]

For frequency in 2.412GHz: SAR Test Exlusion Thresholds \leq 3.0 / [$\sqrt{f(GHz)}$] *(min. test separation

distance, mm)=3.0/(√2.412) *5=9.659 mW

For frequency in 2.462GHz: SAR Test Exlusion Thresholds \leq 3.0 / [\checkmark f(GHz)] *(min. test separation

distance, mm)=3.0/(√2.462) *5=9.042 mW

14 Photographs – Model CB-S003 Test Setup Photos

14.1 Photograph – Radiated Emission

Test frequency 32.768KHz to 30MHz Test Site 2#

Test frequency from 30MHz to 1GHz Test Site 2#

Test frequency above 1GHz Test Site 1#

14.2 Photograph – Conducted Emission Test Setup at Test Site 1#

15 Photographs - Constructional Details

15.1 Model CB-S003- External Photos

Reference No.: WTD15S1035221E Page 53 of 63

Reference No.: WTD15S1035221E Page 54 of 63

Reference No.: WTD15S1035221E Page 55 of 63

Reference No.: WTD15S1035221E Page 56 of 63

15.2 Model CB-S003 – Internal Photos

Reference No.: WTD15S1035221E Page 58 of 63

Reference No.: WTD15S1035221E Page 59 of 63

Reference No.: WTD15S1035221E Page 60 of 63

Reference No.: WTD15S1035221E Page 61 of 63

Reference No.: WTD15S1035221E Page 62 of 63

Reference No.: WTD15S1035221E Page 63 of 63

=====End of Report=====