

复习&答疑

王笑尘

北京邮电大学网络空间安全学院

wxiaochen@bupt.edu.cn

课程考核

- > 期末考试: 统一执行闭卷书面考试。
 - 涵盖课程所有内容;
 - 考试时间: 2024年12月31日 8:00-10:00(不要 错过!)
 - · 考试地点:沙河校区N318
 - 一般包括填空题10道(共计40分); 计算题 5-6道,每道计算题包含1-3个小题(共计60 分)。

》课程内容—概率论

教学内容	知识点
第一章 概率论的基本概念	随机事件及其运算,事件的概率及其性质, 条件概率,事件的独立性
第二章 随机变量及其分布函数	离散型随机变量及其分布律,连续型随机变量及其概率密度,随机变量函数及其分布
第三章 多维随机变量及其分布	多维随机变量及其联合分布,边缘分布,条件分布,随机变量的独立性,多维随机变量 函数及其分布,n维随机变量简介
第四章 随机变量的数字特征	数学期望,方差,协方差与相关系数,矩
第五章 大数定律及中心极限定理	大数定律,中心极限定理

》课程内容—数理统计

教学内容	知识点
第六章 数理统计部分(样本及抽样分布)	总体、样本统计量, χ^2 分布、 t 分布、 F分布,抽样分布,顺序统计量
第七章 参数估计	矩估计及极大似然估计,估计量的评选 标准,区间估计
第八章 假设检验	假设检验问题与基本概念,正态总体期望的假设检验,正态总体方差的假设检 验
第九章 方差分析及回归分析	单因素方差分析,双因素方差分析,一 元线性回归,多元线性回归

<u> </u>	知识点
第一章 概率论的基本概念	随机事件及其运算,事件的概率及其性质, 条件概率, 事件的独立性
第二章 随机变量及其分布函数	离散型随机变量及其分布律,连续型随机变 量及其概率密度,随机变量函数及其分布
第三章 多维随机变量及其分布	多维随机变量及其联合分布,边缘分布,条件分布,随机变量的独立性,多维随机变量 函数及其分布,n维随机变量简介
第四章 随机变量的数字特征	数学期望,方差,协方差与相关系数,矩
第五章 大数定律及中心极限定理	大数定律,中心极限定理

★ 事件运算所满足的下述定律:

1. 交換律:
$$A \cup B = B \cup A, A \cap B = B \cap A$$

2. 结合律:
$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

3. 分配律:
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

4. 德摩根律:
$$A \cup B = A \cap B$$
 $\overline{A \cap B} = \overline{A \cup B}$

$$P(A \mid B) = \frac{P(AB)}{P(B)},$$

性质、 计算(定义、缩减 样本空间)、 乘法定理(多个事 件积事件)

古典定义

北京郵電大學 Beijing University of Posts and Telecommunications

用条件概率求非条件概率:

- 1、样本空间划分: 互 斥完备组
- 2、基于划分,综合加 法公式和乘法公式,

 $P(A) = P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2) + \cdots$

 $= P(A|B_n) \cdot P(B_n) = \sum_{i=1}^{n} P(A|B_i) \cdot P(B_i)$

 条件概率
 全概率公

 式与贝叶
 斯公式

已知结果求原因:用 条件概率求条件概率

贝叶斯公式
$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n} P(A|B_j)P(B_j)}$$

 $1 \cdot P(AB) = P(A) P(B)$

- 2、P(A)>0, P(B)>0, 独立和互不相容:不同时成立 3、区分两两独立和相互独立
- 4、用独立的乘积特性、德摩根律求独立事件和的概率

▲ 相互独立与两两独立的关系:

两两独立——n个事件任何两个彼此独立

相互独立 —— n个事件 <u>任意 k</u>个 $(k \le n)$ 都是独立的

故相互独立 ⇒ 两两独立,反之则不真

 \triangle n 个独立事件和 的概率公式:

设事件 A_1, A_2, \dots, A_n 相互独立,则

$$P(A_1+...+A_n)$$

$$=1-P(A_1+A_2+\cdots+A_n)$$

」摩根

由

德

$$\overline{A}_1, \overline{A}_2, \cdots, \overline{A}_n$$

也相互独立

$$=1-\boldsymbol{P}(\overline{A}_{1}\overline{A}_{2}\cdots\overline{A}_{n})$$

$$= \mathbf{1} - P(\overline{A}_1)P(\overline{A}_2)\cdots P(\overline{A}_n)$$

▲ 类似地, A_1 , A_2 , ···, A_n 至少有一个不发生的概率 (1-都发生的概率):

$$P(\overline{A}_1 + \overline{A}_2 + \dots + \overline{A}_n) = 1 - P(A_1)P(A_2)\cdots P(A_n)$$

教学内容	知识点
第一章 概率论的基本概念	随机事件及其运算,事件的概率及其性质, 条件概率,事件的独立性
第二章 随机变量及其分布函数	离散型随机变量及其分布律,连续型随机变 量及其概率密度,随机变量函数及其分布
第三章 多维随机变量及其分布	多维随机变量及其联合分布,边缘分布,条件分布,随机变量的独立性,多维随机变量 函数及其分布,n维随机变量简介
第四章 随机变量的数字特征	数学期望,方差,协方差与相关系数,矩
第五章 大数定律及中心极限定理	大数定律,中心极限定理

1. 定义:设X是一个随机变量,x是任意实数,称函数:

$$F(x) = P(X \le x) \quad (-\infty < x < +\infty)$$

为 X 的分布函数。 记作: $X \sim F(x)$ 或 $F_X(x)$.

注 如果将 X 看作数轴上随机点的坐标,则分布函数 F(x) 的值就表示 X落在区间 $(-\infty, x]$ 上的概率

$$\begin{array}{c} X \leq x \\ \\ \\ x \end{array}$$

2. 性质

性质1 F(x)是一个不减函数,即若 $x_1 \le x_2$,则: $F(x_1) - F(x_2) \le 0$

证:
$$F(x_2) - F(x_1) = P(x_1 < X \le x_2) \ge 0$$
,
即 $F(x_1) \le F(x_2)$

性质2
$$0 \le F(x) \le 1$$
 且:
$$\begin{cases} F(-\infty) = \lim_{x \to -\infty} F(x) = 0 \\ F(+\infty) = \lim_{x \to +\infty} F(x) = 1 \end{cases}$$

特别: 若 X 仅在 (a,b] 内取值,则有:

$$F(a) = P(X \le a) = 0, \quad F(b) = P(X \le b) = 1$$

性质3 F(x)是右连续的函数,即 $\lim_{x\to x_0^+} F(x) = F(x_0)$

反之,具备性质1、2、3的函数F(X)必是某个随机变量的分布函数

17

1.(0-1)分布

若随机变量X只能取 0 与 1 两个值,它的分布律为:

$$P(X = k) = p^{k} (1-p)^{(1-k)}$$
 $k = 0,1.$ 0

则称 X 服从 (0-1)分布,记为: $X \sim (0,1)$

列表:
$$X = 0$$
 1 $P_k = 1-p$ p

(2). 二项分布

若用X表示 n 重伯努利概型中事件A 发生的次数,它的分布律为:

$$P_n(k) = C_n^k p^k (1-p)^{n-k}$$
 $k = 0,1,2 \cdots n$

则称 X 服从参数为 n, p (0<p<1) 的二项分布,记为: $X \sim b(n, p)$

分布律	X	0	1	2n
列表	$P_n(k)$	$P_n(0)$	$P_n(1)$	$P_n(2)\cdots P_n(n)$

3. 泊松分布

定理: 若随机变量X的所有可能取值为:0,1,2,······ 而它的分布律(它所取值的各个概率)为:

$$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad k = 0,1,2,\cdots$$

其中 $\lambda > 0$ 是常数.

则称 X 服从参数为 λ 的 泊松分布, 记为 $X\sim P(\lambda)$

1. 均匀分布

若连续型随机变量 X 具有概率密度 f(x)为:

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & 其它 \end{cases}$$

则称 X 在区间 (a, b)上服从均匀分布 (或等概率分布)

注: \triangle 易证 f(x)满足:

1°.
$$f(x) \ge 0$$
, 2^{0} . $\int_{-\infty}^{+\infty} f(x) dx = 1$

2. 指数分布

若连续型随机变量 X 具有概率密度 f(x)为:

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0\\ 0 &$$
其它

其中 $\theta > 0$ 为常数

则称 X 为服从参数 θ 的指数分布

注:易证f(x)满足:

$$1^{0}$$
. $f(x) \ge 0$, 2^{0} . $\int_{-\infty}^{+\infty} f(x) dx = 1$

(1). 正态分布的定义

若随机变量X的概率密度为:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

其中: μ 和 σ^2 都是常数, μ 任意, $\sigma > 0$,则称X服从参数为 μ 和 σ^2 的正态分布。记作:

$$X \sim N(\mu, \sigma^2)$$

f(x) 所确定的曲线叫作正态曲线。

引理: 若
$$X \sim N(\mu, \sigma^2)$$
, 则: $Z = \frac{X - \mu}{\sigma} \sim N(0,1)$

求Y=g(X)概率分布/概率密度的一般思路:

- 1、确定Y的取值/取值范围;
- 2、确定X对应的取值/范围;
- 3、求Y在某点/某范围取值的概率,即为求X在对应点/对应范围的取值概率(本质、理解);
- 4、根据步骤3,即可得到离散型随机变量Y的分布律,或连续型随机变量Y的分布函数。

离散型随 机变量 连续型随 机变量

函数的 分布 其中,对于连续型随机变量:

对步骤3得到的分布函数进行求导,即得到其概率密度函数。

 $(-\infty < x < +\infty)$,又设函数 g(x) 处处可导,

且恒有g'(x) > 0(或g'(x) < 0) $^{\circ}$

则 Y=g(X) 是连续型随机变量,

其概率密度为:

一严格单 调可微 的函数

$$f_{Y}(y) = \begin{cases} f_{X}(h(y)) \cdot |h'(y)| & \alpha < y < \beta \\ 0 & \sharp ' \stackrel{\cdot}{\boxtimes} \end{cases}$$

教学内容	知识点
第一章 概率论的基本概念	随机事件及其运算,事件的概率及其性质, 条件概率,事件的独立性
第二章 随机变量及其分布函数	离散型随机变量及其分布律,连续型随机变 量及其概率密度,随机变量函数及其分布
第三章 多维随机变量及其分布	多维随机变量及其联合分布,边缘分布,条件分布,随机变量的独立性,多维随机变量 函数及其分布,n维随机变量简介
第四章 随机变量的数字特征	数学期望,方差,协方差与相关系数,矩
第五章 大数定律及中心极限定理	大数定律,中心极限定理

定义在同一样本空 间的(X,Y)

 $F(x,y) = P\{(X \le x) \cap (Y \le y)\}$ 分布函数四个性质

- (1) 非减
- (2) 右连续
- (3) [0,1]
- (4) 矩形区域内

概率非负

$$P(X = x_i, Y = y_j)$$

 $= p_{ij}$

$$i, j = 1, 2, \cdots$$

二维离散型 随机变量

取值(x,y)只能是有限 对或可列无限多对

$$(1) \quad p_{ij} \ge 0$$

 $(2) \quad \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$

联合分 布律 联合分 布函数

多维随机变量

$$F(x,y) = \sum_{x_i \le x} \sum_{y_j \le y} p_{ij}$$

多维随机变量

4个性质:

- (a) 非负
- (b) 规范性
- (c) 分布函数与概率密度的关系(二阶偏导)
- (d) 某区域内概率的 求解

二维连续型随机变量 联合概 联合分 布函数

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv$$

已知 $P(X = x_i, Y = y_i) = p_{ii}$ 为(X,Y)的联合分布律

则 X 边缘分布函数
$$F_X(x) = F(x, +\infty) = \sum_{x_i \le x} \sum_{j=1}^{\infty} p_{ij}$$
 边缘分布律
$$p_{i.} = P(X = x_i) = \sum_{j=1}^{\infty} p_{ij}$$
 $i = 1, 2 \cdots$

边缘分布函数
$$F_Y(y) = F(+\infty, y) = \sum_{y_j \leq y} \sum_{i=1}^{\infty} p_{ij}$$
 边缘分布律 $p_{\cdot j} = P(Y = y_j) = \sum_{i=1}^{\infty} p_{ij}$ $j = 1, 2 \cdots$ p_i . 是由 p_{ij} 关于 j 求和得到; $p_{\cdot j}$ 是由 p_{ij} 关于 i 求和得到。

已知连续型随机变量(X,Y)的联合概率密度 f(x,y)及联合分布函数 F(x,y)

则 X 的
$$\begin{cases} \dot{D}$$
 缴分布函数:
$$F_X(x) = F(x, +\infty) = \int_{-\infty}^x \left[\int_{-\infty}^{+\infty} f(x, y) dy \right] dx \\ \dot{D}$$
 缴概率密度:
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy \end{cases}$$

则 Y 的
$$\begin{cases} \dot{D}$$
 缘分布函数:
$$F_Y(y) = F(+\infty, y) = \int_{-\infty}^y \left[\int_{-\infty}^{+\infty} f(x, y) dx \right] dy \\ \dot{D}$$
 缘概率密度:
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx \\ 33 \end{cases}$$

在 $\{Y = y_j\}$ 条件下,随机变量X的条件分布律为(=联合分布/边缘分布):

$$P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)} = \frac{p_{ij}}{p_{.j}}$$

2. 性质:

$$1^{0} P(X = x_{i} | Y = y_{i}) \ge 0$$

$$2^{0} \sum_{i=1}^{\infty} P(X = x_{i} | Y = y_{j}) = \sum_{i=1}^{\infty} \frac{p_{ij}}{p_{.j}} = \frac{1}{p_{.j}} \sum_{i=1}^{\infty} p_{ij} = \frac{1}{p_{.j}} \cdot p_{.j} = 1$$

3°.
$$\sum_{i=1}^{\infty} P(Y = y_i | X = x_i) = 1$$

在条件Y = y 下, X 的条件分布函数为:

$$F_{X|Y}(x|y) = P(X \le x|Y = y)$$

对于 $f_Y(y) > 0$,在条件Y = y下的X的条件概率密度:

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$F_{X|Y}(x|y) = \int_{-\infty}^{x} f_{X|Y}(x|y) dx$$

课程内容—第三章

一. 随机变量相互独立的定义

 \mapsto 设 (X,Y) 的联合分布函数及边缘分布函数为F(x,y)及 $F_X(x)$, $F_Y(y)$ 。若对任意的 x, y 都有:

$$P(X \le x, Y \le y) = P(X \le x) \cdot P(Y \le y)$$

$$\mathbb{P} \quad F(x, y) = F_X(x) \cdot F_Y(y)$$

则称随机变量X和Y是相互独立的。

二. 当 (X,Y) 为离散型随机变量

X和Y相互独立 \longrightarrow 对于 (X,Y) 的所有可能的取值 (x_i,y_j) 有 $P(X=x_i,Y=y_j)=P(X=x_i)\cdot P(Y=y_j)$

三. 当 (X,Y) 为连续型随机变量

X和Y相互独立 \longleftrightarrow $f(x,y) = f_X(x) \cdot f_Y(y)$

课程内容—第三章

二维连续型随 机变量

> 函数的 分布

一、和的分布(Z=X+Y)

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$

X和Y相互独立时,和的分布 (Z=X+Y)

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) \cdot f_Y(z - x) dx$$

结论(可加性):对于相互独立的服从正态分布,了分布或泊松分布的随机变量,它们的和仍服从正态分布,了分布或泊松分布,并且参数是单个参数的相加。

课程内容—第三章

二维连续型随 机变量

> 函数的 分布

二、商的分布(Z=X/Y)

$$f_{z}(z) = \int_{-\infty}^{+\infty} |y| f(yz, y) dy$$

X和Y相互独立时,商的分布 (Z=X/Y)

$$(Z=X/Y)$$

$$f_{Z}(z) = \int_{-\infty}^{+\infty} |y| \cdot f_{X}(yz) \cdot f_{Y}(y) dy$$

类似地,乘积的分布(Z=XY)

$$f_{z}(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f(x, \frac{z}{x}) dx$$

课程内容—第三章

三、最值的分布

1.
$$M = \max(X, Y)$$
 的分布

$$F_{\text{max}}(m) = F_X(m) \cdot F_Y(m)$$

函数的 分布

2. N = min (X, Y)分布

$$F_{\min}(n) = 1 - [1 - F_X(n)] \cdot [1 - F_Y(n)]$$

教学内容	知识点
第一章 概率论的基本概念	随机事件及其运算,事件的概率及其性质, 条件概率,事件的独立性
第二章 随机变量及其分布函数	离散型随机变量及其分布律,连续型随机变 量及其概率密度,随机变量函数及其分布
第三章 多维随机变量及其分布	多维随机变量及其联合分布,边缘分布,条件分布,随机变量的独立性,多维随机变量 函数及其分布,n维随机变量简介
第四章 随机变量的数字特征	数学期望,方差,协方差与相关系数,矩
第五章 大数定律及中心极限定理	大数定律,中心极限定理

$$E(X) = \sum_{k=1}^{\infty} x_k p_k$$

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

随机变量函数

的数学期望

$$E(X) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_i p_{ij}$$

$$E(Y) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} y_j p_{ij}$$

$$E(X) = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot f(x, y) dy dx$$
$$E(Y) = \int_{-\infty}^{+\infty} y \cdot f_Y(y) dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y \cdot f(x, y) dx dy$$

$$E(Y) = E[g(X)]$$

$$= \sum_{k=1}^{\infty} g(x_k) p_k$$

$$E(Y) = E[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) dx$$

数学期望的性质

$$E(X+Y)=E(X)+E(Y)$$
相互独立,则

$$E(XY) = E(X)E(Y)$$

$$D(X)=E\{[X-E(X)]^2\}$$

$$D(X) = E(X^2) - [E(X)]^2$$
 (常用计算公式)
 $D(cX) = c^2 D(X)$
 $D(X+C) = D(X)$
 $D(X+Y) = D(X) + D(Y)$ (相互独立)

(1)均匀分布:
$$E(X) = \frac{a+b}{2}$$
, $D(X) = \frac{(b-a)^2}{12}$

(2)指数分布: $E(X)=\theta$, $D(X)=\theta^2$

(3)正态分布: $E(X)=\mu$, $D(X)=\sigma^2$

(1)(0-1)分布: E(X)=p, D(X)=pq

(2)二项分布: E(X)=np, D(X)=npq

(3)泊松分布: E(X)=D(X)=λ

协方差 (刻画两 个随机变 量之间 关系)

$$Cov(X,Y) = E\{[X - E(X)][(Y - E(Y))]\}$$

(1).
$$Cov(X,Y) = Cov(Y,X)$$

(2).
$$Cov(aX,bY) = ab \ Cov(X,Y)$$

(3).
$$Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$$

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

$$D(X+Y) = D(X) + D(Y) + 2Cov(X,Y)$$

若X与Y相互独立则: Cov(X, Y)=0

相关 系数

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}$$

(1). $|\rho_{XY}| \leq 1$

X 和 Y 以概率 1 线性相关

(2).
$$|\rho_{XY}|=1$$
 \Leftrightarrow 存在常数 a,b , 使得: $P(Y=aX+b)=1$

注: X 和 Y 独立时, $\rho_{XY} = 0$ 但其逆不真。

沙谟

课程内容—第四章

一. 矩

矩是随机变量的更为广泛的一种数字特征,前面介绍的数学期望及方差都是某种矩。

定义: 设X和Y是随机变量

- (1). 若 $E(X^k)$ 存在,则称它为X 的k 阶原点矩, $k=1,2,\cdots$ 简称 k 阶矩。
- (2). 若 $E\{[X-E(X)]^k\}$ 存在, $k=2,3,\cdots$ 则称它为X 的k 阶中心矩。

(3).若 $E(X^kY^l)$ 存在, $k,l=1,2,\cdots$ 则称它为 X和 Y的 k+l 阶混合矩。

(4). 若 $E\{[X-E(X)]^k[Y-E(Y)]^l\}$ 存在, $k,l=1,2,\cdots$ 则称它为X和Y的 k+l阶 混合中心矩。

注:

数学期望E(X) 是随机变量X 的一阶原点矩; 方差D(X)是随机变量X的二阶中心矩; 协方差Cov(X,Y)是随机变量X和Y的二阶混合中心矩。

》课程内容—第五章

教学内容	知识点
第一章 概率论的基本概念	随机事件及其运算,事件的概率及其性质, 条件概率,事件的独立性
第二章 随机变量及其分布函数	离散型随机变量及其分布律,连续型随机变 量及其概率密度,随机变量函数及其分布
第三章 多维随机变量及其分布	多维随机变量及其联合分布,边缘分布,条件分布,随机变量的独立性,多维随机变量 函数及其分布,n维随机变量简介
第四章 随机变量的数字特征	数学期望,方差,协方差与相关系数,矩
第五章 大数定律及中心极限定理	大数定律,中心极限定理

课程内容—第五章

课程内容—第五章

▶ 在一定条件下,一列随机变量的<mark>算术平均值</mark>(按某种意义)收敛 于<mark>这些项的均值</mark>的定理。(为用平均值估计期望提供了理论依据)

$$\lim_{n \to \infty} P\{|\frac{1}{n}\sum_{i=1}^{n} X_{i} - \frac{1}{n}\sum_{i=1}^{n} E(X_{i})| < \varepsilon\} = 1$$

•各变量同时服从以p为参数的(0-1)分布

〉课程内容—第五章

- ▶ 背景:如果一个量是由大量相互独立的随机因素的影响所造成, 而每一个别因素在总影响中所起的作用不大,则这种量一般 都近似服从正态分布。
- ▶ 在一定条件下,大量相互独立的随机变量之和的概率 分布近似于正态分布的定理—中心极限定理。

$$\lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} P \left\{ \frac{\sum_{k=1}^n X_k - E(\sum_{k=1}^n X_k)}{\sqrt{D(\sum_{k=1}^n X_k)}} \le x \right\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

课程内容—第五章

- •同分布
- •有限数学期 望和方差

- •相互独立
- •服从二项分布

- "由大量微小 的、独立的随 机因素"(不 要求同分布) 累积成的变量 (即,满足具 体条件)
- •随机因素个数 趋于无穷时, 以正态分布为 极限。

教学内容	知识点
第六章 数理统计部分(样本及抽样分布)	总体、样本统计量, χ^2 分布、 t 分布、 F分布,抽样分布,顺序统计量
第七章 参数估计	矩估计及极大似然估计,估计量的评选 标准,区间估计
第八章 假设检验	假设检验问题与基本概念,正态总体期望的假设检验,正态总体方差的假设检 验
第九章 方差分析及回归分析	单因素方差分析,双因素方差分析,一 元线性回归,多元线性回归

几个常用的统计量

(1). 样本均值:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

它反映 了总体

它反映了总体 方差的信息, 是总体方差的 无偏估计(P145)

(2). 样本方差:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{1}{n-1} (\sum_{i=1}^{n} X_i^2 - n\bar{X}^2)$$

(3). 样本标准差:
$$\sqrt{S^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2}$$
 它反映了 总体k 阶

(4). 样本
$$k$$
 阶原点矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ $k=1,2,...$

(5). 样本
$$k$$
 阶中心矩: $B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$ 总体 k 阶中心矩的

信息

▲ 若总体 X 的 k 阶原点矩 $E(X^k) = \mu_k$ 存在,则当 $n \to \infty$ 时有: $A_k \to \mu_k$, $k = 1, 2, \cdots$

 \triangle 设总体X的均值为 μ ,方差为 σ^2 , $X_1, X_2, ..., X_n$ 为取自总体X的样本,则 (教材第5版P145)

$$E(\overline{X}) = \mu$$
, $D(\overline{X}) = \frac{\sigma^2}{n}$, $E(S^2) = \sigma^2$

1. χ² 分布

数理统计

定义. 设 X_1, X_2, \dots, X_n 是来自正态分布 N(0,1) 的样本,则称统计量:

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2$$
 为服从自由度为 *n* 的 χ^2 分布。记为: $\chi^2 \sim \chi^2(n)$

- \blacktriangle 若 $\chi^2 \sim \chi^2(n)$, 则 $E(\chi^2) = n$, $D(\chi^2) = 2n$
- \triangle χ^2 分布的可加性: 若 $\chi_1^2 \sim \chi^2(n_1)$, $\chi_2^2 \sim \chi^2(n_2)$ 且

$$\chi_1^2, \chi_2^2$$
 相互独立,则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$

2. *t* 分布

数理统计

定义. 设 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 且X = Y相互独立,则称随机变量:

$$T = \frac{X}{\sqrt{Y/n}}$$

为服从自由度为 n 的 t 分布。记为 $T \sim t(n)$

- \triangle 当 n 充分大时, $\lim_{n\to\infty} h(x;n) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$
- \blacktriangle 由上 α 分位点定义及 h(t) 对称性得:

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

数理统计

抽样分布 常用的 统计量 四个重 要分布

3. F分布

定义. 设 $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$, X 与 Y相互独立,则称统计量:

$$F = \frac{X/n_1}{Y/n_2}$$

为服从自由度 n_1 及 n_2 的 F 分布,记作: $F \sim F(n_1, n_2)$

- \blacktriangle 若 $F \sim F(n_1, n_2)$ 则 $\frac{1}{F} \sim F(n_2, n_1)$
- ▲ 若 $X \sim t(n)$ 则: $X^2 \sim F(1,n)$
- \blacktriangle F 分布的上 α 分位点的性质(推导见P145):

$$F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}$$

数理统计

抽样分布 常用的 统计量 四个重 要分布

三. 正态分布的样本均值与样本方差的分布

定理1 (样本均值和样本方差的分布)

设 $X_1, X_2, ..., X_n$ 是取自正态总体 $N(\mu, \sigma^2)$ 的样本, \overline{X}, S^2 是其样本均值和样本方差

则 (1)
$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

(2)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

(3) \bar{X} 和 S^2 相互独立

$$(4) \quad E(S^2) = \sigma^2$$

数理统计

抽样分布 常用的 统计量 四个重 要分布 定理 2. 设 $X_1, X_2, ..., X_n$ 是取自正态总体 $N(\mu, \sigma^2)$

的样本, \bar{X} 和 S^2 分别为样本均值和样本方差,

则有:
$$\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$

(1)
$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1,n_2-1);$$

(2) 当
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
 时,
$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{s_W \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

其中:
$$S_W^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

教学内容	知识点
第六章 数理统计部分(样本及抽样分布)	总体、样本统计量, χ^2 分布、 t 分布、 F分布,抽样分布,顺序统计量
第七章 参数估计	矩估计及极大似然估计,估计量的评选 标准,区间估计
第八章 假设检验	假设检验问题与基本概念,正态总体期望的假设检验,正态总体方差的假设检 验
第九章 方差分析及回归分析	单因素方差分析,双因素方差分析,一 元线性回归,多元线性回归

数理统计— 统计推断

矩估计法的依据: 用样本的各阶矩来代 替总体的各阶矩

- 1、通过计算总体各阶矩, 得到未知参数与总体各阶 矩之间的关系;
- 2、样本矩代替总体矩,得 到未知参数的估计量。

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$$

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - (\frac{1}{n} \sum_{i=1}^{n} X_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

(1) $\mu_i = E(X^i)$ 是参数 $\theta_1, \theta_2, \dots, \theta_k$ 的函数,

记为:
$$\begin{cases} \mu_1 = \mu_1(\theta_1, \theta_2, \cdots, \theta_k) \\ \mu_2 = \mu_2(\theta_1, \theta_2, \cdots, \theta_k) \\ \dots \\ \mu_k = \mu_k(\theta_1, \theta_2, \cdots, \theta_k) \end{cases}$$
 (*)

(2) 解(*) 式解出 $\theta_1, \theta_2, \dots, \theta_k$ 得到:

$$\begin{cases} \theta_1 = \theta_1(\mu_1, \mu_2, \dots, \mu_k) \\ \theta_2 = \theta_2(\mu_1, \mu_2, \dots, \mu_k) \\ \dots \\ \theta_k = \theta_2(\mu_1, \mu_2, \dots, \mu_k) \end{cases}$$

$$(**)$$

(3) 用 μ_i 的估计量 $A_i = \frac{1}{n} \sum_{j=1}^n X_j^i$ 分别代替(**)中的 μ_i ,则得 θ_i 的矩估计量 $\hat{\theta}_i$: $\hat{\theta}_i = \hat{\theta}_i (A_1, A_2, \dots, A_k), \quad i = 1, 2, \dots, k$

数理统计— 统计推断

极大似然估计法的基本思想: 当试验得到一个结果时,应 选择使得这个试验结果出现 概率达到最大的这个参数值 作为参数的估计值。

 $L = \prod_{k=1}^{n} f(x_k, \theta_1, \theta_2, \dots \theta_l)$

或 =
$$\prod_{k=1}^{n} P(x_k, \theta_1, \theta_2, \dots \theta_l)$$

1、构建样本对应的似然函数 (即,样本结果出现的概率); 2、若似然函数可微,对未知参数求导,求使得 $\frac{\partial L(\theta)}{\partial \theta} = \mathbf{0}$ 或 $\frac{\partial lnL(\theta)}{\partial \theta} = \mathbf{0}$ 的解。

定义: 设总体 X 的分布函数 $F(x,\theta)$ 含有一个未知参数 θ ,对于给定的值 α ($0 < \alpha < 1$),若由样本

 $X_1, X_2 \cdots X_n$ 确定的两个统计量:

$$\overline{\theta} = \overline{\theta}(X_1, X_2, \dots, X_n)$$
 $\underline{\theta} = \underline{\theta}(X_1, X_2, \dots, X_n)$

满足: $P(\underline{\theta} < \theta < \overline{\theta}) = 1 - \alpha$,则称随机区间 $(\underline{\theta}, \overline{\theta})$ 是 θ 的置信度为 $1 - \alpha$ 的置信区间。

- 1. 构建枢轴量 $W(\theta, \hat{\theta}(X_1, X_2, ..., X_n))$: 可从待估参数 θ 的一个点估计量 $\hat{\theta}$ 出发,构建关于 θ 和 $\hat{\theta}$ 的函数 $W(\theta, \hat{\theta})$,且 $W(\theta, \hat{\theta})$ ~F(x)为已知不含未知参数的分布(此处综合考虑点估计量和第六章各抽样分布)。
- 2. 构造区间: 在F(x)分布中,构造区间 $P(a < W(\theta, \hat{\theta}) < b) = 1 \alpha$ (置信水平)。
- 3. 求解区间:根据 $a < W(\theta, \hat{\theta}) < b$,即得出取值范围 $\underline{\theta} < \theta < \overline{\theta}$,即为其置信水平为 1α 的置信区间。

- 1、单个正态总体,方差已知
- > 枢轴量为:

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

- 2、单个正态总体,方差未知
- > 枢轴量为:

$$\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

- 3、两个正态总体,方差已知
- ▶ 枢轴量为:

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1^2 + \sigma_2^2 / n_2}} \sim N(0,1)$$

- 4、两个正态总体,方差未知
- > 枢轴量为:

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0,1)$$

- 5、两个正态总体,方差未知但相等
- > 枢轴量为:

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{s_w \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

$$s_{w}^{2} = \frac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2}}{n_{1} + n_{2} - 2},$$

- 1、单个正态总体,均值未知
- > 枢轴量为:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

- 2、两个正态总体,均值未知
- > 枢轴量

$$\frac{S_{1}^{2}}{\frac{\sigma_{1}^{2}}{S_{2}^{2}}} \sim F(n_{1}-1, n_{2}-1)$$

教学内容	知识点	
第六章 数理统计部分(样本及抽样分布)	总体、样本统计量, χ^2 分布、 t 分布、 F分布,抽样分布,顺序统计量	
第七章 参数估计	矩估计及极大似然估计,估计量的评选 标准,区间估计	
第八章 假设检验	假设检验问题与基本概念,正态总体期望的假设检验,正态总体方差的假设检 验	
第九章 方差分析及回归分析	单因素方差分析,双因素方差分析,一 元线性回归,多元线性回归	

一、假设检验基本思想

设总体 X 含有未知参数 θ (或总体分布函数F(x)未知) 检验下述假设:

假设 H_0 : $\theta = \theta_0$ 或 $F(x) = F_0(x)$

二、检验依据

小概率事件原理

小概率事件在一次试验中是几乎不可能发生的。

如果在假设 H_0 成立的条件下某事件是小概率事件,但在一次试验中却发生了,于是就可怀疑假设 H_0 的正确性从而拒绝 H_0 。

在假设检验中,常称这个小概率为显著性水平,用 α 表示。 $P\{$ 拒绝 $H_0|H_0$ 为真 $\}=$ α

三、本质(理解)

$$H_0$$
: $\mu = \mu_0 \ (\mu_0 = 355)$

构造一个分布已知且表征样本结果与假设结果差异的统计量,例如

$$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$$

如果偏差大(即落 在一定显著性水平 的拒绝域中),则 拒绝原假设(即差 异显著)。

假设检验问题的步骤:

- 1. 根据实际问题要求,提出原假设 H_0 及备择假设 H_1
- 2. 确定检验统计量
- 3. 按 $P(拒绝H_0|H_0为真) = \alpha$,求出拒绝域
- 4. 取样本,将样本观察值代入统计量,观察统计量是否在拒绝域以确定接受 H_0 还是拒绝 H_0

- 一. 单个正态总体 $N(\mu,\sigma^2)$ 均值 μ 的检验
- 1. σ^2 已知,关于 μ 的检验(Z检验)

都取检验统计量:

$$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$$

拒绝域:

双边假设检验

$$\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| \ge z_{\frac{\alpha}{2}}$$

右边假设检验

$$\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_{\alpha}$$

左边假设检验

$$\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \le -z_{\alpha}$$

- 一. 单个正态总体 $N(\mu,\sigma^2)$ 均值 μ 的检验
- 1. σ^2 未知,关于 μ 的检验(t检验)

都取检验统计量:
$$\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

拒绝域:

双边假设检验

右边假设检验

左边假设检验

$$\left| \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}} \right| \ge t_{\frac{\alpha}{2}}(n-1)$$

$$\frac{\overline{x} - \mu_0}{\sqrt[S]{\sqrt{n}}} \ge t_{\alpha}(n-1)$$

$$\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \le -t_{\alpha}(n-1)$$

注: 当总体服从正态分布, μ 未知

双边假设检验:
$$H_0: \sigma^2 = \sigma_0^2$$
, $H_1: \sigma^2 \neq \sigma_0^2$

右边假设检验:
$$H_0: \sigma^2 \leq \sigma_0^2$$
, $H_1: \sigma^2 > \sigma_0^2$

左边假设检验:
$$H_0: \sigma^2 \geq \sigma_0^2$$
, $H_1: \sigma^2 < \sigma_0^2$

在显著性水平 α 下, H_0 的拒绝域分别为:

双边假设检验:
$$\frac{(n-1)s^2}{\sigma_0^2} \le \chi_{1-\frac{\alpha}{2}}^2 (n-1) \cup \frac{(n-1)s^2}{\sigma_0^2} \ge \chi_{\frac{\alpha}{2}}^2 (n-1)$$

右边假设检验:
$$\frac{(n-1)s^2}{\sigma_0^2} \ge \chi_\alpha^2(n-1)$$

左边假设检验:
$$\frac{(n-1)s^2}{\sigma_0^2} \leq \chi_{1-\alpha}^2 (n-1)$$

课程内容—第九章

教学内容	知识点	
第六章 数理统计部分(样本及抽样分布)	总体、样本统计量, χ^2 分布、 t 分布、 F分布,抽样分布,顺序统计量	
第七章 参数估计	矩估计及极大似然估计,估计量的评选 标准,区间估计	
第八章 假设检验	假设检验问题与基本概念,正态总体期望的假设检验,正态总体方差的假设检 验	
第九章 方差分析及回归分析	单因素方差分析,双因素方差分析,一 元线性回归,多元线性回归	

课程内容—第九章

课程内容—第九章

单/双因素试验的方差分析步骤

- (1) 建立数学模型;
- (2) 分解平方和;
- (3) 研究统计特性;
- (4) 确定拒绝域.

单因素方差分析的问题是检验假设

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_s$$
,

$$H_1: \mu_1, \mu_2, \dots, \mu_s$$
不全相等.

或等价于检验假设
$$H_0: \delta_1 = \delta_2 = \cdots = \delta_s = 0$$
,

$$H_1: \delta_1, \delta_2, \cdots, \delta_s$$
不全为零.

单因素试验方差分析表

方差	急来源	平方和	自由度	均方	F 比
因	$$ 素 A	S_{A}	s-1	$\overline{S}_A = \frac{S_A}{s-1}$	$oldsymbol{F} = oldsymbol{\overline{S}}_{A}/oldsymbol{\overline{S}}_{E}$
误	差	S_E	n-s	$\overline{S}_E = \frac{S_E}{n - s}$	
总	和	S_T	n-1		

单因素方差分析问题的检验假设

当 H_0 成立时, $S_E/\sigma^2 \sim \chi^2(n-s)$, $S_A/\sigma^2 \sim \chi^2(s-1)$,且 S_E 和 S_A 相互独立,从而

$$F = \frac{S_A/(s-1)}{S_E/(n-s)} \sim F(s-1,n-s).$$

对给定的检验水平 α ,若 $F \geq F_{\alpha}(s-1,n-s)$,则 拒绝假设 H_{α} ,即认为因素A影响显著.

若 $F < F_{\alpha}(s-1,n-s)$,则接受 H_0 ,即认为因素 A影响不显著.

单因素方差分析问题的参数估计

$$\hat{\mu} = \overline{X}, \hat{\mu}_j = \overline{X}_{\bullet j}, \hat{\delta}_j = \hat{\mu}_j - \hat{\mu} = \overline{X}_{\bullet j} - \overline{X},$$
 $\hat{\sigma}^2 = S_E/(n-s).$
 $\mu_j - \mu_k = \delta_j - \delta_k$ 的置信区间为
$$\left(\overline{X}_{\bullet j} - \overline{X}_{\bullet k} \pm t_{\alpha/2}(n-s)\sqrt{\overline{S}_E(\frac{1}{n_j} + \frac{1}{n_k})}\right),$$
其中 $\overline{S}_E = \frac{S_E}{n-s}.$

双因素等重复试验方差分析问题的假设检验

对检验水平 α ,

若
$$F_A = \frac{S_A/(r-1)}{S_E/(rs(t-1))} \ge F_\alpha(r-1,rs(t-1))$$

则拒绝假设 H_{01} ,即因素A影响显著;

若
$$F_B = \frac{S_B/(s-1)}{S_E/(rs(t-1))} \ge F_\alpha(s-1,rs(t-1))$$

则拒绝假设 H_{02} ,即因素B影响显著;

若
$$F_{A\times B} = \frac{S_{A\times B}/((r-1)(s-1))}{S_E/(rs(t-1))}$$
 $\geq F_{\alpha}((r-1)(s-1),rs(t-1))$

则拒绝假设 H_{03} ,即交互作用 $A \times B$ 影响显著.

90

双因素无重复试验方差分析问题的假设检验

对检验水平 α ,

若
$$F_A = \frac{\overline{S}_A}{\overline{S}_E} \ge F_\alpha(r-1,(r-1)(s-1)),$$

则拒绝假设 H_{01} ,即因素A影响显著;

若
$$F_B = \frac{\overline{S}_B}{\overline{S}_E} \ge F_\alpha(s-1,(r-1)(s-1)),$$

则拒绝假设 H_{02} ,即因素B影响显著.

一元线性回归分析

(1)数学模型

设
$$(x_1, y_1), \dots, (x_n, y_n)$$
满足一元线性模型
$$\begin{cases} Y_i = a + bx_i + \varepsilon_i \\ \varepsilon_i \sim N(0, \sigma^2) \end{cases} \qquad (i = 1, 2, \dots, n),$$

 a,b,σ^2 为模型参数.

(2)线性回归方程

$$\hat{y} = \hat{a} + \hat{b}x$$
, 其中 $\hat{a} = \overline{y} - \hat{b}\overline{x}$, $\hat{b} = \frac{S_{xy}}{S_{xx}}$.

一元线性回归分析

(3)线性假设的显著性检验

检验假设: $H_0: b=0$, $H_1: b \neq 0$. 对检验水平 α .

若
$$|t|=\frac{|\hat{b}|}{\hat{\sigma}}\sqrt{S_{xx}}\geq t_{\alpha/2}(n-2),$$

则拒绝假设 H_0 ,认为回归方程是显著的.

反之则接受假设 H_0 ,认为回归效果不显著.

一元线性回归分析

(4)系数b的置信区间

$$\left(\hat{b} \pm t_{\alpha/2}(n-2) \times \frac{\hat{\sigma}}{\sqrt{S_{xx}}}\right).$$

$$(5)y_0 = a + bx_0 + \varepsilon_0, \varepsilon_0 \sim N(0, \sigma^2)$$
的置信区间

$$\left(\hat{y}_{0} \pm t_{\alpha/2}(n-2)\hat{\sigma}_{\sqrt{n}} + \frac{(x_{0} - \overline{x})^{2}}{S_{xx}}\right).$$

多元线性回归分析

(1)数学模型

$$Y_i = b_0 + b_1 x_{i1} + \dots + b_p x_{ip} + \varepsilon_i$$
,
 $\varepsilon_i \sim N(0, \sigma^2), i = 1, 2, \dots, n$ 且相互独立,

$$B = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_p \end{pmatrix}$$
, σ^2 为模型参数.

多元线性回归分析

(2) 模型参数估计

记
$$X = egin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}, \quad Y = egin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix},$$

$$\hat{B} = (X'X)^{-1}X'Y,$$

回归方程为
$$\hat{y} = \hat{b}_0 + \hat{b}_1 x_1 + \hat{b}_2 x_2 + \dots + \hat{b}_p x_p$$
.