Funktionen

Funktion ist eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge genau ein Element der anderen Menge zwordnet. Zu jedem $x \in A$ gibł es ein eindeulig bestimmtes $y \in B$ mit (x,y).

 $q: \mathbb{R} \mapsto \mathbb{R}_0^+: \times \mapsto \times^2$ Zwei B Lür A

Keine Funktion A - B

 $Im(t) = \{2\}$ (Konstante)

<u>Bijekliv</u>

Funktion $f: \mathbb{D} \to \mathbb{B}$, $x \mapsto y = f(x)$ heisst bijektiv, falls jedes Element in der Bildmenge B genau einmal getroffen wird. Eine Funktion ist bijektiv, falls sie injektiv und surjektiv ist.

<u>Injektiv</u>

Funktion $f: \mathbb{D} \to \mathbb{B}$, $x \mapsto y = f(x)$ heisst injektiv, falls jedes Element in der Bildmenge B höchstens einmal getroffen wird. Falls $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ injektiv sind, ist auch $qof: X \rightarrow 2$ injektiv.

Surjektiv

Funktion $f: \mathbb{D} \to \mathbb{B}$, $x \mapsto_{y} = f(x)$ heisst surjektiv, falls jedes Element in der Bildmenge B mindestens einmal gestroffen wird. Falls $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ surjektive sind, ist auch gof: X → Z surjektiv.

für alle y & B ein x & B existient mit y = f(x)

Omkehr funktion / Inversfunktion

Die Funktion muss injektiv sein f-1 (x). Anhand des Funktionsbildes kann die Umkehrfunktion esstellt werden.