Modul 129 Praktisch

Ablauf: 1 Erfassen (tcpdump,tshark), 2 Kopieren (pscp), 3 Auswerten (Wireshark)

vmLF1: Linux Router, Firewall + tcpdump | User: root, PW: gibbiX12345

vmLS2: Linux Server + tshark | User: vmadmin, PW: gibbiX12345

vmWP1: Windows Rechner + wireshark | User: vmadmin, PW: gibbiX12345 Wireshark: A: Paketliste, B: Paketdetails, C: Hexadezimale Darstellung

Linux zwischen Konsolen wechseln: Alt+F1, Alt+F2

Umgebung in Betrieb nehmen:

vmLF1: root@vmLF1: # host www.gibb.ch ENTER address 86.118.90.94

// Falls keine Verbindung /etc/init.d/network restart ENTER

vmLS2: vmadmin@vmLS2: # nslookup www.gibbix.ch ENTER Server ... 86.118.65.51

vmLS2: sudo apt-get update; sudo apt-get upgrade; sudo apt-get install tshark

vmLS2: sudo chgrp adm /usr/bin/dumpcap; sudo chmod 750 /usr/bin/dumpcap;

sudo setcap cap_net_raw, cap_net_admin+eip /usr/bin/dumpcap ; sudo setcap cap_net_raw, cap_net_admin+eip /usr/bin/tsharkset

tshark -D ENTER 1. Eth 0 \n 2. Nflog \n 3. Nfqueue \n 4. Any

vmWP1: RECHTSKLICK auf Desktop -> neu -> Verknüpfung -> C:\Windows\System32\cmd.exe -> Eingabeaufforderung

RECHTSKLICK auf Verknüpfung -> Eigenschaften -> Verknüpfung -> Ausführen in: C:\; Optionen -> QuickEdit-Modus: Aktiviert;

Schriftart -> Schriftgrad: 20; Schriftart -> Schriftart -> Lucida Console; Layout -> 1. 120*300; Layout -> 2. 120*35

vmWP1: netsh interface ip show config // Anpassen der Einstellungen ncpa.cpl

vmWP1: C:\> appwiz.cpl // Die alte Wireshark Version löschen

vmWP1: C:\> "Program Files\Wireshark\tshark.exe" -v // Ausführen nach Installation von neuer Wireshark Version

vmWP1: C:\Windows\system32> netsh advfirewall set allprofiles state off // Eingabeaufforderung als Admin ausführen \ FW ausschalten

Verbindung vmWP1 - vmLS2 / vmWP1 - vmLF1

vr "1: C:\>md c:\capdat ; cd c:\capdat ;

vm-v1: C:\>setx path "%path%;%ProgramFiles%\Wireshark;%ProgramFiles(x86)%\Putty" // Nicht als Admin

vmWP1: C:\>path // Zuerst schliessen Eingabeaufforderung restart und dann ausgeben ob übernommen | korrigieren; control sysdm.cpl,,3

vmLS2: cat /var/log/syslog > /tmp/syslog_vmls2.txt

vmLF1: cat /var/log/messages > /tmp/messages_vmlf1.txt

vmWP1: C:\> pscp vmadmin@192.168.220.11:/tmp/syslog_vmls2.txt C:\capdat\

vmWP1: C:\> pscp -P 222 root@192.168.210.1:/tmp/messages_vmlf1.txt C:\capdat\ // Portangabe, da nicht Standardport

vmWP1: C:\> dir c:\capdat // Die 2 Dateien sollten drin sein

Überprüfen der Vorbereitungsarbeiten

vmLF1: host www.google.ch; ping 192.168.210.10

vmLS2: nslookup www.gibb.ch; tshark -D

vmWP1: nslookup www.gibb.ch; tshark.exe -v; kopieren pscp vmLS2 auf vmWP1 erfolgreich; kopieren pscp vmLF1 auf vmWP1;

Desktop Verknüpfung "Eingabeaufforderung"; Desktop Verknüpfung "Wireshark"

Protokollanalyse - Workshop

Ping Auswertungen anzeigen

vmLF1: tcpdump -i green0 vmWP1 (CMD-Fenster1): tshark -i 1

vmWP1 (CMD-Fenster2): ping -n 10 192.168.210.1

vmLF1/vmWP1: Aufzeichnung mit CTRL C abbrechen

Ping Auswertung speichern und anzeigen

vml F1: tcpdump -i green0 -s 65535 -w /tmp/wp1-ping-lf1-r.pcap

vt 1 (CMD-Fenster1): tshark -i 1 -w \capdat\wp1-ping-lf1-s.pcap

vmWP2 (CMD-Fenster2): ping -n 10 🐠 192.168.210.1

vmLF1/vmWP1: CTRL C abbrechen

vmWP1: Aufzeichnung von vmLF1 mit pscp.exe ins Verzeichnis C:\capdat

vmWP1: vmWP1-ping-vmfl1-r.pcap und vmWP1-ping-vmlf1-s.pcap mit Wireshark öffnen und vergleichen

vmWP1: Filter auf icmp stellen

Verschiedene Ping Auswertungs Infos:

Protokolle ping-Befehl: ICMP, IP, Ethernet

ICMP-Request Senderseite: 192.168.210.10 -> 192.168.210.1 ICMP 74 Echo (ping) request

Beteiligte PDU's beim ping: Paket, Frame, Bit

Unterschied tshark / tcpdump: id bei tshark hexadezimal, bei tcpsump dezimal; - ttl wird nur bei tshark angezeigt

- Länge wird nur bei tcpdump angezeigt ; - tcpdump zeigt Namen an, tshark IP

Unterschied ttl: - ICMP-request hat 128; - ICMP-replay hat 64

Unterschied der zwei Auswertungen: keine, es sind die gleichen ICMP Pakete

Konsequenz ersten Punkt: Es spielt keine Rolle an welchem Endpunkt die Aufzeichnung gemacht wird wenn die überwachten Geräte im gleichen Netz sind.

ICMP-Filter: Es werden nur die ICMP-Pakete angezeigt

Display-Filter icmp.type == 0: Es werden nur die ICMP-Replys angezeigt.

Display-Filter für die ICMP-Requests: icmp.type == 8

Bereich für ICMP-Type: Paketdetail, Abschnitt Internet Control Message Protocol (Type 8 request, Type 0 reply).

Filter ip.dst == 192.168.210.1: Nur die Pakete welche für vmLF1 bestimmt sind, in unserem Fall die ICMP-Request.

Nur ausgehende Pakete von vmWP1 sehen: ip.src == 192.168.210.10

Der Ping-Befehl schickt per Default 32 Byte Daten. Daten finden und aussehen: Im Unterabschnitt Data des Internet Control Message Proto-col und zwar wiederholt die Kleinbuchstaben a..w.

Laufzeit zwischen einem ICMP-Request und einem ICMP-Reply herauslesen: Die Time-Differenz zwischen ICMP-Request und ICMP-Reply.

exe -> Eingabeaufforderung
onen -> QuickEdit-Modus: Aktiviert;
; Layout -> 2. 120*35

er Wireshark Version
ung als Admin ausführen \ FW ausschalten

/ Nicht als Admin
pernommen | korrigieren: control sysdm.cpl,,3

TOPDUMP

Mirio Eggmann

ACP-Bezug

/mLF1 (Konsole 2): dhcpcd –k red0

vmLF1 (Konsole 2): ifconfig red0 up

vmLF1 (Konsole 1): tcpdump -i red0 -s 65535 -w /tmp/lf1-dhcp-iet-r.pcap

vmLF1 (Konsole 2): dhcpcd -n red0

vmLF1 (Konsole 1): Mit CTRL C Aufzeichung abbrechen + Firewall zurücksetzen

/etc/init.d/network restart

vmWP1: Aufzeichung vmLF1 mit pscp.exe ins Verzeichnis C:\capdat

vmWP1: lf1-dhcp-iet-r.pcap mit wireshark öffnen.

Verschiedene DHCP Auswertungs Infos:

Protokoll DHCP Transportschicht: UDP Zielport vmLF1 DHCP Anfrage: 67 Quellport vmLF1 DHCP Anfrage: 68

Filter Ziel- und Quellport DHCP-Anfrage: udp.port == 68 and udp.port == 67

DHCP-Anfrage anders filtern: bootp

vmLF1

ng DHCP No.	Time	Delta Time Source	Destination	Protocol	Length Info
	8 12.384267	1.004630 192.168.100.1	192,168,100,158	DHCP	342 DHCP 0
port UOP	9 12.385042	0.000775 0.0.0.0	255.255.255.255	DHCP	379 DHCP R
	10 12.561971	0.176929 192.168.100.1	192.168.100.158	DHCP	342 DHCP A
net IP	Sthernet II, Src: Internet Protocol	es on wire (2936 bits), 367 b : Vmware_06:2a:81 (00:50:56:0 Version 4, Src: 0.0.0.0 (0. otocol, Src Port: 68 (68), Ds (Discover)	5:2a:81), Dst: Broadcast 0.0.0), Dst: 255.255.255.	(ff:ff:ff	

vmWP1

H Anfrage

vmWP1: Chrome starten und CTRL SHIFT DELETE Cache löschen

vmWP1 (CMD mit Adm): C:\> arp -d

vmLF1: ip -s -s neigh flush all

vmLF1: tcpdump -i green0 -s 65535 -w /tmp/wp1-http-ls2-lf1.pcap

vmLS2: tshark –i eth0 –w /tmp/wp1-http-ls2-ls2.pcap vmWP1: In Chrome http://192.168.220.11 aufrufen

vmLF1 und vmLS2: Aufzeichnung mit CTRL C abbrechen

vmWP1: Aufzeichnungen von vmLF1 und vmLS2 in Verzeichnis C:\capdat vmWP1: wp1-http-ls2-lf1-pcap und wp1-http-ls2-ls2.pcap mit Wireshark öffnen vmWP1: In beide Fenster den Display-Filter arp setzen und Apply drücken 1)vmWP1: Setzen Sie den Display Filter je auf ip.dst == 192.168.220.11 && http

Verschiedene DHCP Auswertungs Infos:

Protokolle arp: ethernet und arp

Unterschied arp-Broadcast in beiden Auswertungen: - MAC von vmVP1 frägt MAC von vmLF1 green0 - MAC vmLF1 orange0 frägt MAC von vmLS2 Filter1): es werden nur Pakete mit der Ziel-IP 192.168.220.11 mit http-Anwendungsanfragen angezeigt

Schichtenunterschied der 2 Dateien: Netzzugangsschicht. Die MAC-Adressen sind bei den gleichen Sätzen verschieden. Einmal vmWP1 -> vmLF1, dann vmLF1 -> vmLS2

N)SI-Schicht	Aufgabe	TCP/IP-Schicht	Adressierung	Komponente	PDU	Kapselun g	Protokolle etc
7 / 4	Application Layer Anwendungsschicht	Stellt Anwendungen Netzwerkdienste zur Verfügung	Application Layer Anwendungs- schicht		PC	Data	ND, AH	HTTP, FTP, DNS, DHCP, RADIUS
6 / 4	Presentation Layer Darstellungsschicht	Stellt Kompatibilität unterschiedlicher Datenformate her					ND, AH, PH	ASCII, ASN.1, SSL
5 / 4	Session Layer Sitzungsschicht	Stellt Verbindungen von Applikation zu Applikation her (Aufbau, Management, Abbau)					ND, AH, PH, SH	NetBIOS, SSL, RADIUS, TCP(SessMa)
4 / 3	Transport Layer Transportschicht	Stellt Verbindung von Endkomponente zu Endkomponente her (Aufbau, Management, Abbau und Anforderung verlorengegangener Daten)	Transport Layer Transportschicht	Portnummern	Firewall	Segment	ND, AH, PH, SH, TH	TCP UDP
3 / 2	Network Layer Vermittlungsschicht	Stellt Dienst zur globalen Adressierung und Wegewahl zur Verfügung	Internet Layer Internetschicht	IP Adresse	Router	Packet	ND, AH, PH, SH, TH, NH	ICMP, DHCP, Broadcast, IP, Standargw, Subnetzmask
21	Data Link Layer Sicherungsschicht	Stellt Dienst zur physikalischen Adressierung und Übertragung über das Medium zur Verfügung. Regelt den Zugriff auf das Medium	Netzwerk Access Layer Netzzugangs- schicht	Mac Adresse	Hub Switch Bridge Netzwerkkarte	Frame	ND, AH, PH, SH, TH, NH, DLH, DLT	Kollision ARP
1/	Physical Layer Bitübertragungs- schicht	Definiert die physikalische Darstellung eines Bits sowie Normen und Standards der Übertragungsmedien, Stecker und Schnittstellen			Kupferkabel Glasfaserkabel Hub Netzwerkkarte Repeater	Bits	Bitcode über das Medium	Ethernet RJ45 Kollision

ND: Nutzerdaten | AH: Application Header | PH: Presentation Header | SH: Session Header | TH: Transport Header | NH: Network Header | DLH: Data Link Header DLT: Data Link Trailer = Übertragungsfehler aufdecken | SAP: Service Access Point = Schnittstelle zwischen Schichten | Kapselung = Bewegung der Daten durch Schichten | PDU: Protocoll Data Unit

Horizontale oder virtuelle Kommunikation: Kommunikation zwischen Peers. Auch das Protokoll der Schicht X/Y...

Vertikale oder reale Kommunikation: Kommunikation zwischen benachbarten Schichten.

Schnittstelle: Befindet sich in diesem Fall zwischen zwei Schichten. Dadurch kann Schicht X auf die darunterliegende Schicht Y zugreifen.