Promise Land Proving Correctness with Strongly Typed Javascript-Style Promises

©2022 Andrei Elliott

Submitted to the graduate degree program in Electrical Engineering and Computer Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science.

	1	Matt Moore, Chair
Committee members		
		Perry Alexander
		Drew Davidson
	Date defended:	Friday May 6, 2022

The Project Report Committee for A that this is the approved version of the f	
Promise Land Proving Correctness with Strongly Type	d Javascript-Style Promises
	Matt Moore, Chair

Date approved: _____

Abstract

Code that can run asynchronously is important in a wide variety of situations, from user interfaces to communication over networks, to the use of concurrency for performance gains. One widely-used method of specifying asynchronous control flow is the Promise model as used in Javascript. Promises are powerful, but can be confusing and hard-to-debug. This problem is exacerbated by Javascript's permissive type system, where erroneous code is likely to fail silently, with values being implicitly coerced into unexpected types at runtime.

The present work implements Javascript-style Promises in Haskell, translating the model to a strongly typed framework where we can use the type system to rule out some classes of bugs. Common errors – such as failure to call one of the callbacks of an executor, which would, in Javascript, leave the Promise in an eternally-pending deadlock state – can be detected for free by the type system at compile time and corrected without even needing to run the code.

We also demonstrate that Promises form a monad, providing a monad instance that allows code using Promises to be written using Haskell's *do notation*.

Introduction

One widely used model of concurrency is Javascript's Promises. A promise works in some ways like a lazy value, in that it will at some point contain the result of a computation, but does not stop flow of control in the current thread to compute that value. Unlike a value with lazy semantics, a promise can immediately begin computation in a separate thread as opposed to waiting for the result to be requested by some other computation.

Promises are composable: using then and catch, we can chain a promise onto the end of a different one creating a new promise that continues computation after the first has succeeded or failed respectively. Additionally, Promises can be combined in parallel, with a variety of distinct semantics such as waiting for the first success or for the first completion irrespective of success or failure.

Madsen et al. (2017) note that programmers often make mistakes when writing code involving promises and there are no static checks to detect them.

We build a model of Promises in Haskell and discuss what we gain by using a stronger type system. In particular, we show that some classes of errors can be caught automatically by the type checker.

Motivation

Promises as adopted by Javascript use model initially proposed in Friedman & Wise (1978).

Promise objects are a good candidate for parameterized types: they yield a value upon success or failure, and it would be nice to be able to check statically that these values and the functions that they will be passed to all agree on the types involved.

The operation then should "chain promises together" by accepting a function that converts a regular value to a promise, then applying it to a promise with that return type by waiting for it to finish before calling the function. We note that this operation is very similar to monadic bind (»=), suggesting that promises can be thought of as monads. (We also note that it is trivial to wrap an arbitrary value into a promise so return poses no problem. In practice, we define a separate constructor for this case to avoid forking off an entire new thread to do no computation and hand back the same result immediately.)

Background

Haskell

We will refer to types in Haskell syntax. We may say that a value v has type T and write this as v:: T. Specific types are capitalized, e.g. 3:: Integer, while type variables are written in lowercase and are usually a single character. Some types are paramterized by other types. For instance, Haskell lists are linked lists of values that share a type. A list containing values of type T will itself have the type [T], that is, list-of-T. Perhaps the most common variety of parameterized type to see in Haskell type signatures is the function, written with an ASCII arrow (->). Functions are parameterized by the types of both their input and output; a function that counts the lengths of Strings could have the type String -> Integer. The syntax for calling functions is simple juxtoposition: the expression f x means the function f applied to x. Functions with more than one argument are curried, for example a two argument function that takes an A and a B as input to produce a C is written with the type A -> B -> C, i.e., a function that accepts an A and returns another function that accepts a B and returns a C¹. Generalized Algebraic Data Type, or GADT, syntax allows us to specify our own types and give the name and type for each constructor function that can create a value of that type. We will write one defining the type Promise f p which will represent a Promise that yields a result with the type p if it succeeds or one of type f on failure.

We will discuss what types various objects should have and will, at times, need a convention to refer to a parameterized type when we haven't yet decided what the parameter will be. In these cases, ? is a metavariable representing some concrete type yet to be decided, rather than real syntax. Integer -> ? -> ? means a function accepting an Integer and some type we will decide later that returns another value of that type. This is distinct from Integer -> a -> a using

^{1-&}gt; associates to the right to facilitate writing curried functions without parentheses

type variables because the latter is a function accepting an Integer and any value whatsoever, returning a value of the same type as the input.

Values in Haskell are referentially transparent, meaning that if an expression evaluates to a value, it can be replaced by that value with no change to the program's semantics. This makes it easier to reason about and prove properties of programs, but comes with a few challenges. It wouldn't do to have a print statement be replaced with its value without executing. Haskell solves this problem with the IO monad. A value of type IO T can be thought of as an action that may have side effects and will result in a value of type T. An action that is performed solely for its side effects and has no useful result value is conventionally given the type IO (). The type (), pronounced "unit" is the type of tuples of zero objects. There is only one value of this type, also written (). The contents of IO values can only be interacted with through the interface of the monad typeclass. In particular, there is no way to convert an IO T into a T; you cannot get a value out of IO. The do notation provides a friendly, imperative-looking syntax for interacting with monadic values. In code like the following, the expression ioThing returns a value wrapped in a monad.

do
x <- ioThing</pre>

. . .

The arrow (<-) binds the value so wrapped to the variable x and in the region of the code marked by elipses (. . .), x can be treated as a normal non-monadic value. However, at the end of the block, the final expression must be re-encapsulated into the monad. The simplest way to do this is the function return. return x simply puts the value x into a default context in the monad.

In order to implement Promises, we need asynchronous action. To accomplish this in Haskell, we will use forkIO and MVars. The function forkIO :: IO () -> IO ThreadId accepts an IO () action and runs it in a separate thread. In order to communicate between threads, we use MVars. A value of type MVar T is a thread safe place to store up to one value of type T. We interact with MVars with three functions: newEmptyMVar :: IO (MVar a) creates an MVar with no contents. The type variable a will usually be inferred by what type we try to add later. putMVar

Figure 1: states and transitions

:: MVar a -> a -> IO () accepts a value of type a and stores it in the MVar. If the MVar already contains a value, the thread running putMVar will block until the MVar is empty. The last, takeMVar :: MVar a -> IO a reads an IO a from the MVar, leaving it empty, and will block, if necessary, until there is a value in the MVar to be read before doing so.

Promises

Promises can be in one of three states. The *pending* state represents a Promise that is still running. A Promise that has completed with a success value is in the *fulfilled* state; the process of moving from *pending* to *fulfilled* is referred to as the Promise *resolving*. The state for a failed Promise is called *rejected* and to *reject* a Promise is to move it from the *pending* state to the *rejected* state. For a Promise to *settle*, it moves from *pending* to either *fulfilled* or *rejected*. Figure 1 summarizes this terminology.

Haskell Implementation

Making a Promise

Javascript's Promise() constructor builds a new promise object from an 'executor' function. The executor accecpts two callback functions the standard names resolutionFunc and rejectionFunc, one to call in the case of successful resolution and the other for failure. The executor will, on a success/failure, call resolutionFunc/rejectionFunc, repectively, passing in the value of or reason for the success or failure. Let's assume we want a promise with type Promise f p, i.e. one where success results in a value of type p and failure gives a reason with type f. To build one, resolutionFunc will need to accept a value of type p. Since calling resolutionFunc will settle the promise and therefore have effects elsewhere in the promise chain, its return type will have to be something wrapped in IO, so we know resolutionFunc :: p -> IO ?. Similarly, rejectionFunc must accept a f, and calling it will also settle the promise, so rejectionFunc :: f -> IO ?. The executor function should accept resolutionFunc and rejectionFunc as parameters and is expected to end by calling exactly one of them, so we will expect it to have a proper tail call to one of the parameters. This means its return type matches that of resolutionFunc and rejectionFunc, i.e. executor :: $(p \rightarrow I0 ?) \rightarrow (p \rightarrow I0 ?) \rightarrow I0 ?$ and the ?s for the two callbacks should be the same type. For now, let's use () as ?, so that the callbacks have a return type of IO (), the conventional Haskell type for IO actions that only have an effect (here, setting the Promise from Pending state to one of the settled states) instead of containing a useful value. Our function for building a Promise object needs to accept a function with the type of executor and give back a Promise value, which must be contained in IO because it has the side effect of running the executor in another thread. It thus has the type newPromise :: ((p -> IO ()) \rightarrow (f \rightarrow IO ()) \rightarrow IO (Promise f p). We can represent a Promise

f p by an MVar (Either f p). Once the computation for the Promise is complete, it can be written to with an Either f p value, i.e. Left reason for a failure or Right result in the case of success. newPromise will also need to fork a thread that will run the executor and set up communication so that the final Promise object will be updated with the results once they are available. In total, we need to: create an MVar which we'll call state, then fork a thread that calls the executor, passing it callback functions that write the results to state, and finally, return state as a Promise value.

```
newPromise :: ((p -> IO ()) -> (f -> IO ()) -> IO ()) -> IO (Promise f p)
newPromise k = do
    state <- newEmptyMVar
    forkIO $ k (putMVar state . Right) (putMVar state . Left)
    return (Pending state)</pre>
```

Since the constructor here is used to create Promises that are in the *pending* state, we'll call it Pending. We could, in principle, use this same constructor to build Promise values that we know have already succeeded or failed. To get a promise that always succeeds with a value of s, say, simply call newPromise with an executor that immediately calls successFunc, like so:

```
newPromise (\ succeed fail -> succeed s)
```

This is inefficient, though, because it spawns an entire new thread in order to do absolutely nothing with it. Instead, it is easy enough to define a constructor that marks a value as known to be the result of a successful computation (and a parallel one declaring a value to be the known reason for a failed computation). These correspond to the promise being in the state *fulfilled* or *rejected*, repectively, so we will uses those terms as the names the constructors. At this point, the Promise type has the following form, in GADT syntax:

```
data Promise :: * -> * -> * where
Pending :: MVar (Either f p) -> Promise f p
```

Fulfilled :: p -> Promise f p

Rejected :: f -> Promise f p

What happens if we use a type other than () in place of? in the newPromise function? Say we use the type τ . The executor function passed in must evaluate to an IO τ . If the executor ends in a call to either resolutionFunc or rejectionFunc, it will work exactly the same no matter what type τ represents. When using newPromise, we can use the same code we did before in the $\tau = ()$ case. When executor doesn't contain a tail-call to one of its argument functions, the type τ matters for whether newPromise executor typechecks; in particular, it will be accepted if and only if whatever executor is doing other than calling one of its callbacks yields the result type IO τ. In this situation, the resulting Promise will never settle and any further actions chained to it will never run. Unintentionally causing this state of affairs in that manner was the cause of multiple errors in the case study from madsen. If we were to select a type τ that doesn't appear as the result of normal code, we could have Haskell's type system automatically detect this entire class of bugs at compile time. One option would be Haskell's Void type, which has no constructors. But there may be cases where we legitimately need a Promise that will never resolve (for example, the Javascript standard specifes that the result of calling Promise.race() on the empty list results in such a Promise). Furthermore, we need to create a value of type IO τ when implementing newPromise. Therefore, instead of using Void, we create a new type unused anywhere else. We name this type Token because its only value is that you need one to write an executor function. We can provide a value hangForever :: IO Token representing the behavior of remaining in the *pending* state indefinitely and never resolving. This allows the user who wants that behavior to specify it while making it unlikely to occur by accident.

What Then?

Now that we can create Promise values, the next step is to allow them to chain together. Javascript's Promise.then() is used to set a handler function to run after a promise completes. Specifically,

p1.then(f) results in a new promise that will wait for the Promise p1 to complete. If p1 succeeds and resolves to a value v, it will then call f(v). The result of running the callback should be another Promise, p2; when it settles, the new Promise will also settle, to the same state and value². In our system in Haskell, pThen accepts pr, a Promise f p along with a callback that expects a value of type p, the type contained in a successful Promise f p. pThen will return a Promise (in IO because we need to be able to read the state MVar), which must have the same failure type as pr because if pr is Rejected, the result will be as well, with the same value. The result type can have a different success type, though, so it's overall type is IO (Promise f p'). The callback returns a new Promise in IO, which must match pThen's return type, so in total

Note that the type signature for pThen looks extremely similar to the type (>=) would have if it were to be specialized to Promise f ((>=) :: Promise f a -> (a -> Promise f b) -> Promise f b). The difference is that pThen is entangled in the IO monad.

Promise.catch() works the same way as .then() except that the handler is set to run only if

²Javascript also allows the callback to return a non-Promise value, in which case p1.then(f) resolves to that value as soon as it's computed. We won't implement this functionality directly (allowing differeng argument types would not work in Haskell's type system unless we made separate then functions for the two variants). However, we get to the same result by enclosing the value we would like to return in an always-successful Promise. Once we define a monad instance for Promise f, we can even do so by writing return v where v is the value for the final promise to resolve to, which should look familiar to anyone used to the Javascript syntax!

and when the Promise it is being chained to fails, rather then when it succeeds. Our translation to Haskell, pCatch, is very much like pThen except that the code for a failed promise and a successful one have swapped places. Its type is

which is the same as that for pThen except that it operates on the type f, the type of failure cases, instead of p, the type of success cases.

```
pCatch (Pending state) k = do
  result <- readMVar state
  case result of
    Left x -> k x
    Right x -> return $ resolve x

pCatch (Fulfilled x) k = return $ resolve x
```

pCatch is dual to pThen in that it is identical to a pThen that operates on Promises with reversed semantics for which type argument represents success and which failure.

pThen and pCatch both share the same central function of waiting, if necessary, for a Promise to settle, then branching on whether the result was a success or a failure. We can generalize this behavior by writing a single function that accepts arguments specifying what to do in either case. The action yes, to do in the case of success can depend on the particular value the promise resolved with, so it should be a function accepting values of type p. The overall result of runPromise must be contained in the IO monad because we can only compute it with the side effect of waiting for

the Promise to settle. The return type of yes should match that of runPromise, so yes $:: p \rightarrow I0$?. There are no other restrictions on ?, so we canc choose yes $:: p \rightarrow I0$ a. no must also match return types so no $:: f \rightarrow I0$ a.

```
runPromise :: (p -> IO a) -> (f -> IO a) -> Promise f p -> IO a
runPromise yes no (Pending state) = do
result <- readMVar state
case result of
  Left x -> no x
  Right x -> yes x
runPromise yes _ (Fulfilled x) = yes x
runPromise no (Rejected x) = no x
```

Now we can avoid code duplication by rewriting pThen and pCatch in terms of runPromise, as follows:

```
pThen p k = runPromise k (return . reject) p
pCatch p k = runPromise (return . resolve) k p
```

runPromise has the semantics of the two argument form of Javascript's Promise.then(), adding to the chain in both the success case and the failure case.

Similarly to Javascript's Promise.finally(), the function pFinally runs a Promise, then chains to the Promise passed as its argument regardless of how the former settles. We can implement it by generating the function const k which ignores its input and always returns k, the Promise to chain to. We then pass this constant function as both the yes and no arguments to runPromise.

```
-> IO (Promise f' p')
pFinally p k = runPromise (const k) (const k) p
```

It is sometimes helpful to run a Promise to completion to yield a non-Promise value storing the results. A function to do so has the type Promise f p -> IO (Either f p). The result must be in IO and is either a Left f representing failure with the given reason or a Right p representing success with the given value. Implementing such a helper function is as simple as calling runPromise and passing in a yes that wraps its input in Right and IO and a no that wraps in Left and IO. We call this function await in analogy to the *await* keyword in Javascript. Similarities include that it converts from a Promise to a non-Promise value by waiting for it to complete and that it can only be used inside the appropriate context; either the IO monad or an *async* function, as appropriate.

Instances

We noted earlier that pThen had a form reminiscent of a monadic bind operation; it is now time to demonstrate the connection more directly by writing a Monad instance for Promises. This will, among other things, allow us to use *do notation* when code employing Promises. The Monad typeclass operates on types of kind * -> *, i.e. type "containers" that are parameterized by exactly one other type. But Promise takes two type parameters, having kind * -> * -> *. We can fix this mismatch by defining an instance for the partially applied type Promise f that has already taken one type parameter. Because f is fixed in the instance, a given invocation of a function from one of our instances will need to keep the type of the failure value constant, even if it changes the type of the success value.³ To define a Monad instance for Promise f, we begin with Functor and Applicative instances. For Functor (Promise f), we must define fmap with type (a -> b) -> Promise f a -> Promise f b. fmap must accept a function, g, and a Promise, pr, as input

³This is the reason the failure type is specified before the success type in Promise f p: it is more straightforward to write instances where the first parameter is held constant and being able to change the success type with fmap is more useful.

and apply the g to the success value of pr if there is such a value, to yield a new Promise (fmap will have no effect on a Promise that fails; we wouldn't be able to apply g to the failure value since it has the wrong type). It is simple enough to run pr and then either apply g to the result on a success or not on a failure, like so:

```
fmap' :: (a - > b) -> Promise f a -> IO (Promise f b)
fmap' g pr = runPromise (return . resolve . g) (return . reject) pr
```

But we have a problem: computing fmap' has a side effect - it waits until pr has settled. This side effect shows up in the type as we can see that fmap' generates an IO (Promise f b) instead of a Promise f b. To declare a Functor instance, the type of fmap is specified exaclty. fmap' isn't good enough - Functors can be mapped over anywhere, not just inside the IO monad. What we can do instead is store g, so we can wait to apply it until we *are* instructed to run pr. We can store g by defining another constructor for Promise f p. We now know that there is another way to make a Promise object: take an existing Promise and store along with it a function to map over it. We add a new line to the Promise GADT, which now reads:

```
data Promise :: * -> * -> * where
   Pending :: MVar (Either f p) -> Promise f p
   Fulfilled :: p -> Promise f p
   Rejected :: f -> Promise f p
   PromiseMap :: (a -> b) -> Promise f a -> Promise f b
```

At this point declaring the instance is as simple as telling Haskell to convert fmap to our PromiseMap constructor:

```
instance Functor (Promise f) where
fmap g pr = PromiseMap g pr
```

If that seemed too easy, that's because it was; we still need something like fmap' to actually apply g when it needs to be applied. Our definition for runPromise needs to say what to do when we try

to run a PromiseMap. For this case, we can pattern match to runPromise yes no (PromiseMap g pr). Unlike when defining fmap, at this point, we are returning an IO Promise so we can wait for the contained promise pr to settle and decide whether or not to apply g. We can make a recursive call to runPromise on pr; we know this will terminate becuase pr is structurally smaller than PromiseMap g pr ⁴. The no function is unchanged since mapping over a failed Promise has no effect, but in the case of a successful one, we need to call g before we give the result to yes. This means the success function for the recursive call will be yes . g, the composition of yes and g, that applies g, then gives the result directly to yes.

runPromise yes no (PromiseMap g pr) = runPromise (yes . g) no pr

To define the Applicative instance Applicative (Promise f), we need to be able to put an arbitrary value into a Promise f and to map a function that is itself the result of a Promise f over the (successful) result of another Promise f. The first function we must provide is pure a -> Promise f a. pure should put its argument into the context of a Promise 'containing' nothing else, which is precisely what resolve does. The other function to define for the Applicative instance is (<*>) :: Promise f (a -> b) -> Promise f a -> Promise f b, which is like fmap except that the function is also inside a Promise. Directly running the Promises to get their results to combine can't happen outside I0, so we will again need to encode the map into a new constructor for Promise and unpack it in runPromise to avoid the extraneous IO in the type. Rather than encoding (<*>) directly, we can instead use the equivalent liftA2 construction that maps a two-argument function over two instances of the applicative. Specialized to Applicative (Promise f), liftA2 has the type (a \rightarrow b \rightarrow c) \rightarrow Promise f a -> Promise f c -> Promise f c. Given such a function, we can implement (<*>) as $f \ll x = liftA2$ (\$) f x, where (\$) is the application function that accepts a function and an argument and applies one to the other. Our new constructor is called PromiseMap2 because it maps over two arguments, and we add it to the GADT for Promiise:

⁴for this to fail to terminate, we would need to be trying to run a Promise with an infinite number of functions mapped over it

PromiseMap2 :: (a -> b -> c) -> Promise f a -> Promise f b -> Promise f c and we define the instance as follows:

```
instance Applicative (Promise f) where
pure x = resolve x
f <*> x = PromiseMap2 ($) f x
```

The new case to runPromise for mapping a function g across two Promises creates a Promise chain that waits for both arguments to resolve, then yields the value of g applied to the results.

```
runPromise yes no (PromiseMap2 g prA prB) = do
pr' <- pThen prA $ \a ->
   pThen prB $ \b -> return $ resolve $ g a b
runPromise yes no pr'
```

Note that, while using a do block here may look circular since we haven't yet defined the monad instance for Promise f, this do is in the IO monad rather than Promise.

The instance for Monad (Promise f) requires return :: a -> Promise f a that puts a value into a neutral context; this can be the same as pure from Applicative. The other function required to declare a Monad instance is (>=) (pronounced "bind") and, when specialized to Promise f, has the type Promise f a -> (a -> Promise f b) -> Promise f b. That is, it accepts a Promise, p, as well as a function, k, that converts from a plain value of the type of a successful result from p. Then, (>=) applies k to p as though p were a plain value instead of a Promise. The type of (>=) is exactly that of pThen except that it references unadorned Promises in the places where pThen had IO Promises. As will be familiar by now, we must add a new Promsie constructor so we can delay execution until runPromise. In this case, we can add

```
PromiseJoin :: Promise f (Promise f a) -> Promise f a
```

which collapses a two-layer Promise into a single layer. Join is an equivalent characterization to (>=) as we can write

```
p >>= k = PromiseJoin (fmap k p)
```

using fmap to apply k to p before returning to a single layer of Promise with join.

To implement pJoin, we need to squash a double-decker Promise, pp:: Promise f (Promise f a), down to a single layer. We can do this with pThen. Normally, pThen expects the function argument, k, to be a function that adds a layer of Promiseness to the input (as well as an IO wrapper): after all, it has the type $p \rightarrow IO$ (Promise f p'). But what if we instead *only* wrap k's input in IO? Here k x = return x, with the type b $\rightarrow IO$ b, but k also has to match the type p $\rightarrow IO$ (Promise f p'), and we know that pp:: Promise f p, so p \sim Promise f a. Because both expressions for k have to match for the result to typecheck, Promise f a \rightarrow IO (Promise f p') \sim b \rightarrow IO b meaning a \sim p'. Since the return type is IO (Promise f p'), we get out an IO-wrapped single-layer Promise. In effect we have "tricked" pThen into unwrapping a layer of Promise by failing to add a layer in a place where it expected us to.

```
pJoin :: Promise f (Promise f p) -> IO (Promise f p)
pJoin pp = pThen pp return
```

Then we can exend runPromise like so:

```
runPromise yes no (PromiseJoin pp) = do
p <- pJoin pp
runPromise yes no p</pre>
```

While we are adding constructors, let's include one for a dual Promise, one that swaps its success and failure types. We can use this if we ever need to fmap or >= over the failure value of a Promise rather than the success value.

```
PromiseInvert :: Promise p f -> Promise f p
```

The new case to runPromise merely swaps the positions of the yes and no functions so they apply to the correct arguments:

```
runPromise yes no (PromiseInvert pr) = runPromise no yes pr
```

Parallel Combiners

The Javascript standard library has several ways to combine promises in parallel in addition to the sequential combination provided by then and catch.

The simplest of the parallel combiners is Promise.allSettled(iterable), which combines all of its input promises into a single Promise that runs them in parallel and resolves to a list of each individual result once they are all complete. In Haskell, we can implement pAllSettled :: [Promise f p] -> IO (Promise f' [Either f p]). This function accepts a list of Promise f p (these Promises must have the same success and failure types to fit into a Haskell list) and results in an IO Promise object containing a list of the results of each of the Promises from the input list. The failure type of the resulting Promise is unconstrained because the result of pAllSettled is guaranteed to succeed; even if every individual input fails, the result will be a (successful) list of each of the failures. We implement this function recursively as follows. Combining an empty list yields a Promise that immediately resolves to the empty list. Otherwise, we run the first list element in parallel with recursing. To do so, we first create an MVar for crossthread communication, then we fork off a thread to await the result of the first element and write that to the MVar. Next, we recurse, getting a Promise holding the results of each of the Promises from the tail of the list. At this point, we can read the MVar, which will block until the other thread has written to it. Finally, we combine the results into a single promise using pThen. Since the Promise we are pThening to is the result of a call to pAllSettled, it is guaranteed to succeed so our code to prepend the new result will always run.

```
a <- takeMVar v
pThen prs $ return . resolve . (a:)</pre>
```

Javascript also provides Promise.race(iterable), which runs all of the input promises simultaneously in different threads, settling with the result of whichever completes first. In our system this should have type signature pRace: [Promise f p] -> IO (Promise f p). To implement this function, let's begin with a binary variant that works for exactly two promises. pRace2:: Promise f p -> Promise f p -> IO (Promise f p). This function works similarly to the race function used to define amb, the amiguous choice operator, in Elliott (2009). We can use an MVar to accept a result from the first thread to finish. Since we must differentiate between whether the result is a success or failure, we want the MVar to hold an Either f p. We create an empty MVar, then fork off a pair of threads, each of which runs one of the input promises and writes the result to the MVar. Next, takeMVar waits for either thread to finish and give it a result, after which we can kill both threads since they are no longer needed.

The *n*-ary version of pRace operates by a sort of monadic fold over the list of input promises: we pRace2 the first promise in the list against the result of pRaceing the rest of the list, with the

result that we will settle to whichever out of any of the inputs settles first. The Javascript standard specifies that race()ing an empty iterable returns a forever-pending promise that never resolves or rejects. This is convenient for our implementation because such a promise is the identity for pRace2 so we can use it directly as the base case to our fold. We can generate an eternally pending promise by passing newPromise a function that fails to call either the success or failure handle, like so: newPromise (\s f -> hangForever), so the final pRace function is as follows:

```
pRace :: [Promise f p] -> IO (Promise f p)
pRace [] = newPromise (\s f -> hangForever)
pRace (x:xs) = do
    prs <- pRace xs
    pRace2 x prs</pre>
```

Yet another way to combine any number of promises in parallel by executing each simultaneously is Promise. any (iterable). The result is a promise that immediately resolves to the value of the first input promise to successfully complete. If all of the given promises fail, it gives a list of every failure value. To implement this, let's again start with a binary version that combines exactly two promises in this way. The type signature for the binary variation is pAny2 :: Promise f p -> Promise f' p -> IO (Promise (f, f') p). This type signature is slightly more general than will be allowed by the *n*-ary version; in particular, the failure types of the two Promises can be different here, where in pAny they will need to be the same so they can be contained in the same Haskell list. The success types must still be identical as the resulting Promise must have a value of that type to succeed and it could come from either input Promise. We still need an MVar, v, to store the value of a success from either promise A or promise B, but dealing with a failure is somewhat more complicated since one failure isn't enough to end the computation, but we still need to track it so that we know to end if both branches end in failure. We need communication between the forked threads that doesn't interfere with v, hence a second MVar that the main thread doesn't touch at all. One fork, if it fails, writes to the error MVar, while the other waits to read from it after a failure. This ensures that it won't attempt to write a failure value into the result MVar

unless both forks have failed. The main thread waits to read a value from v, then kills both threads since the remaing thread does not need to continue if we have had a success. Since v must be able to hold the value of a success or two failures, it needs to have the type MVar (Either (f, f') p).

The base case of *n*-ary pAny is that a an empty list yields a failed Promise with an empty list of reasons since we don't have a successful result to show. In the recursive case, we call pAny on the tail of the list, then pAny2 the head of the input list to the result. At this point, we have a Promise (f, [f]) p, so we need a way to constogether the pieces of the list of failure reasons in the failure case. Since we only need to touch the result if we have a failure, pCatch suffices.

```
pAny :: [Promise f p] -> IO (Promise [f] p)
pAny [] = return $ reject []
pAny (x:xs) = do
    prs <- pAny xs</pre>
```

```
pr <- pAny2 x prs
pCatch pr (return . reject . uncurry (:))</pre>
```

The last of the parallel combiners is Promise.all(iterable). It is a mirror image to Promise.any, in that it immediately rejects whenever it encounters the first failure and only succeeds when all of its inputs succeed. pAll2 and pAll are dual to pAny2 and pAny; we can implement them either by duplicating the code and inverting all the tests or by using PromiseInvert to switch the true and false cases of the input promises, then switching back after running them through the dual function.

```
pAll2 :: Promise f p -> Promise f p' -> IO (Promise f (p, p'))
pAll2 prA prB = fmap PromiseInvert (pAny2 (PromiseInvert prA) (PromiseInvert prB))
pAll :: [Promise f p] -> IO (Promise f [p])
pAll [] = return $ resolve []
pAll (x:xs) = do
    prs <- pAll xs
    pr <- pAll2 x prs
    pThen pr (return . resolve . uncurry (:))</pre>
```

Conclusions and Future Work

Madsen et al. (2017) performed a case study of recent questions posted to the forum StackOverflow about Javascript Promises. Out of 21 questions included in the analysis, six were identified as having a root cause of an unintentional return of undefined. A type mismtach of this sort, between what is being returned by a function and what is expected elsewhere, is detected at compile time in Haskell, without even needed to run the code and compare actual output to expected output. A further three questions are classified with a bug type of "Dead Promise" meansing that a Promise was neither resolved nore rejected, in one case on only some code paths. Our system detects these problems, again statically at compile time, unless the user explicity creates a Token value, perhaps by calling hangForever.

One useful extension to this work would be to encode more information into the type system in a way that could detect additional classes of errors. The case study from Madsen et al. (2017) includes multiple instances of a programmer attempting to resolve a Promise multiple times, which would not be detected by our system at compile time. This class of error could in principle be detected with linear types.

Another potential improvement would be to rearchitect the system so that Promise is less strongly coupled to IO.

Bibliography

- Elliott, C. M. (2009). Push-pull functional reactive programming. In *Proceedings of the 2nd ACM SIGPLAN symposium on Haskell Haskell '09* (pp. 25). Edinburgh, Scotland: ACM Press.
- Friedman & Wise (1978). Aspects of Applicative Programming for Parallel Processing. *IEEE Transactions on Computers*, C-27(4), 289–296.
- Madsen, M., Lhoták, O., & Tip, F. (2017). A model for reasoning about JavaScript promises. *Proceedings of the ACM on Programming Languages*, 1(OOPSLA), 1–24.