Resolucions de problemes

GEOMETRIA DIFERENCIAL DE CORBES I SUPERFÍCIES

Mario VILAR

17 de juny de 2024

Índex

I Corbes 2 Llista 2 3 Llista 3 Referències

I Corbes

Corbes

Exercici 1.1. Sigui $\alpha : \mathbb{R} \longrightarrow \mathbb{R}^2$ la corba parametritzada definida per $\alpha(t) = (t^3 - 2t, t^2 - 2)$.

- I. Determineu si els punts (-1, -1), (4, 2) i (1, 2) es troben a la seva traça.
- 2. Trobeu els punts d'intersecció de la traça de α amb els eixos de coordenades.
- 3. Trobeu una equació de la forma f(x, y) = 0 tal que el conjunt de les seves solucions sigui la traça d'a.
- 4. Determineu les rectes tangents a α que siguin paral·leles a la recta d'equació 2x + y + 3 = 0.
- 5. Trobeu l'angle que forma la corba α amb la recta d'equació y = x 2 en els punts de tall.

Demostració.

I. No té pèrdua. Intentem trobar els valors de t tals que (-1, -1), (4, 2) i (1, 2) caiguin dins la imatge de la corba (la traça):

$$t^2 - 2 = -1 \implies t = \pm 1 i \alpha(1) = (-1, -1).$$

 $t^2 - 2 = 2 \implies t = \pm 2 i \alpha(2) = (4, 2).$
 $t^2 - 2 = 2 \implies t = \pm 2, \ \alpha(2) = (4, 2) i \alpha(-2) = (-4, 2).$

Amb què per un dels dos valors de t ho compleixi en tenim prou. En el cas de (1, 2) hem vist que no ho fa cap dels dos, de manera que $(1, 2) \notin \text{Im}(\alpha)$.

- 2. És clar que hem d'estudiar $\operatorname{Im}(\alpha) \cap \{x = 0\}$ i $\operatorname{Im}(\alpha) \cap \{y = 0\}$. Aleshores:
 - 2.1. Volem trobar per a quins $\alpha(t)$ tenim x = 0. És a dir, $\alpha(t) \in \{x = 0\}$. Cal resoldre $t^3 2t = 0$ i obtenim t = 0, $t = \pm \sqrt{2}$; així doncs, $\alpha(0) = (0, -2)$, $\alpha(\sqrt{2}) = (0, 0)$ i $\alpha(-\sqrt{2}) = (0, 0)$.
 - 2.2. Anàlogament, $\operatorname{Im}(\alpha) \cap \{y = 0\}$ implica que $t = \pm \sqrt{2}$. Pel que acabem de fer, $\operatorname{Im}(\alpha) \cap \{y = 0\} = \{(0,0)\}$.
- 3. La corba està formada pels punts $(x, y) = (t^3 2t, t^2 2)$. Per tant, cal trobar t tal que $x = t^3 2t$ i $y = t^2 2$. Aïllant, $t = \pm \sqrt{y+2}$ i $x = (\pm \sqrt{y+2})^3 \mp 2\sqrt{y+2} = \pm \sqrt{y+2} \cdot y$. Pel que, elevant al quadrat a banda i banda:

$$x^2 = (y+2) \cdot y^2 \implies f(x, y) = x^2 - (y+2)y^2.$$

Vegem que $\operatorname{Im}(\alpha) \subset \{f(x, y) = 0\}$. En efecte:

$$(t^3 - 2t)^2 - t^2(t^2 - 2)^2 = t^6 + 4t^2 - 4t^4 - t^2(t^4 - 4t^2 + 4) = 0.$$

Anàlogament, comprovem que $\text{Im}(\alpha) \supset \{f(x, y) = 0\}$. Prenent $(x, y) = \alpha(t)$, volem veure que per (x, y) tal que $x^2 = y^2(y + 2)$, quin és el t.

$$\left(\frac{x}{y}\right)^2 = y + 2 = t^2 \implies t = \pm \sqrt{y + 2} i \alpha (\pm \sqrt{y + 2}) = (x, y),$$

on $x = (\pm \sqrt{y+2})^3 \mp \sqrt{y+2}$. Com que x és $(y+2)\sqrt{y+2} \mp \sqrt{y+2}$ ens queda $x = \pm y\sqrt{y+2}$.

Corbes 1.3

4. Calculem $\alpha'(t) = (3t^2 - 2, 2t)$. El vector director de la recta és v = (1, -2) i imposem que la pendent de x sigui -2, és a dir, $\frac{2t}{3t^2-2} = -2$.

$$2t = -2(3t^2 - 2) \iff 6t^2 + 2t - 4 = 0 \iff \begin{cases} t = -1 & \Longrightarrow \alpha(-1) = (1, -1) \\ t = \frac{2}{3} & \Longrightarrow \alpha(\frac{2}{3}) = (-\frac{28}{27}, -\frac{14}{9}). \end{cases}$$

Exercici 1.2 (Càlcul de la longitud d'arc). Determineu quines de les corbes següents són 1-regulars. Trobeu, per cada corba, la longitud d'arc entre els punts indicats.

- I. $y = \log x$, entre I i x.
- 2. $y = a \cosh \frac{x}{a}$, entre o i x (aquesta corba es diu catenària).
- 3. $\alpha(t) = (a(\cos t + t\sin t), a(\sin t t\cos t))$, entre o $i\pi/2$.
- 4. $\alpha(t) = (\cos^3 t, \sin^3 t, \cos 2t)$, entre o $i 2\pi$.
- 5. $\alpha(t) = (\cosh t, \sinh t, t)$, entre o i t.

Demostració.

4. No té pèrdua. Apliquem la distributiva i obtenim $\alpha(t) = (a\cos t + at\sin t), a\sin t - at\cos t)$ i derivant:

$$\alpha'(t) = (-a\sin t + a\sin t + at\cos t, a\cos t - a\cos t - at\sin t) = (at\cos t, -at\sin t)$$

$$\implies \|\alpha'(t)\| = \sqrt{a^2t^2(\cos^2 t + \sin^2 t)} = at.$$

Podem calcular també la longitud:

$$\log(\alpha; 0, x) = \int_0^x at \ dt = \frac{ax^2}{2} \implies \log\left(\alpha; 0, \frac{\pi}{2}\right) = \frac{a\pi^2}{8}.$$

L'únic punt singular d' α és t = 0.

5. Torna a ser rutinari. Tenim $\alpha(t) = (\cos^3 t, \sin^3 t, \cos 2t), t \in [0, 2\pi]$, cal derivar i calcular la longitud:

$$\alpha'(t) = (-3\sin t \cos^2 t, 3\cos t \sin^2 t, -2\sin(2t))$$

$$\log(\alpha; o, x) = \int_0^x \sqrt{9\sin^2 t \cos^4 t + 9\cos^2 \sin^4 t + 4\sin^2(2t)} dt = \int_0^x \sqrt{\cos^2 t \sin^2 t (9 + 16)}$$

$$= \int_0^x 5 \cdot |\cos t \sin t| dt.$$

Hem de trobar el valor d'aquesta integral. Per fer-ho dividim l'interval d'integració, per exemple:

$$\log(\alpha; 0, 2\pi) = \int_0^{2\pi} 5 \cos t \sin t \, dt - \int_{\frac{\pi}{2}}^{\pi} 5 \cos t \sin t \, dt + \int_{\pi}^{\frac{3\pi}{2}} 5 \cos t \sin t \, dt - \int_{\frac{3\pi}{2}}^{2\pi} 5 \cos t \, dt - \int_{\frac{3\pi}{2}}^{2\pi} 5 \cos$$

I el resultat d'aquesta integral és 10. La resta d'apartats queden com a exercici.

Exercici 1.3 (Canvi de paràmetres). Demostreu que les corbes parametritzades

$$\alpha(\theta) = (\cos \theta, \sin \theta), -\pi < \theta < \pi; \quad \beta(t) = \left(\frac{1 - t^2}{1 + t^2}, \frac{2t}{1 + t^2}\right), -\infty < t < +\infty,$$

tenen la mateixa traça i trobeu la funció de canvi de paràmetre entre θ i t.

Corbes

<u>Demostració</u>. El canvi és $t = \tan \frac{\theta}{2}$. Això és pot comprovar analíticament fent servir les fórmules del sinus i el cosinus de θ en funció de $t = \tan \frac{\theta}{2}$.

$$\cos \theta = \frac{I - t^2}{I + t^2}, \quad \sin \theta \frac{2t}{I + t^2}.$$

Geomètricament es pot veure de la manera següent. Sigui $A=(x,y)=\alpha(\theta)$ un punt de la circumferència de centre O=(0,0) i radi I. El triangle amb vèrtexs A=(x,y),O,B=(-I,0) és isòsceles. Si ω és l'angle \widehat{ABO} , aleshores l'angle \widehat{AOB} val $\pi-2\omega$. Per tant, si C=(x,0) l'angle \widehat{COA} val $\theta=2\omega$. Per tant, si $t=\tan\omega=\tan\frac{\theta}{2}$, del triangle rectangle $\triangle ABC$ obtenim $t=\frac{y}{I+x}$,

$$I = x^2 + y^2 = x^2 + t^2(I + x)^2$$

i d'aquí l'equació de segon grau en x

$$(1+t^2)x^2 + 2t^2x + (t^2 - 1) = 0.$$

L'única solució real de la qual és $x = \frac{\mathbf{I} - t^2}{\mathbf{I} + t^2}$. Per tant $y = (\mathbf{I} + x)t = \frac{2t}{\mathbf{I} + t^2}$, i

$$(\cos \theta, \sin \theta) = \alpha(\theta) = (x, y) = \left(\frac{1 - t^2}{1 + t^2}, \frac{2t}{1 + t^2}\right).$$

Exercici 1.4 (Tractriu). Sigui a > 0 una constant i una corba de paràmetre a que descriu un punt P situat inicialment a les coordenades (a, 0), que és estirat per un altre punt situat inicialment a l'origen de coordenades, que es manté a distància constant a del punt P i que es mou seguint l'eix o y. A això ho anomenarem tractriu. Proveu que la tractriu és una corba parametritzada 1-regular a tot arreu llevat d'un punt i trobeu la seva longitud d'arc.

Demostració. Sigui Q el punt que, sortint de l'origen, es mou seguint l'eix Oy (desplaçant-se cap amunt, per exemple). És útil pensar que hi ha una corda de longitud a que uneix el punt Q amb el punt P i que el punt P és arrossegat pel punt Q estirat per la corda. La corda estarà estirada en tot moment, per tant geomètricament és un segment rectilini de longitud a. Sigui $\alpha:[o,\lambda)\longrightarrow\mathbb{R}$ (per un cert $\lambda>o$) una corba parametritzada que descriu la trajectòria del punt P (de moment no especifiquem la parametrització, que en tot cas es dedueix de la velocitat —constant o no— a la que es mou el punt Q per l'eix Qy). En tot moment el vector velocitat del punt P és paral·lel al acorda per la qual Q arrossega P. Com que el vector velocitat del punt P és α' , tenim la següent condició que caracteritzarà la corba α un cop n'especifiquem la parametrització:

$$\alpha(t) + a \cdot \frac{\alpha'(t)}{\|\alpha'(t)\|} \in oy, \ \forall t \ge o.$$
 (1.1)

Corbes 1.5

Figura 1: Corba tractiu.

Ens convindrà triar la parametrització d' α respecte a la qual la primera coordenada de α és a-t, de tal manera que $\alpha: [o,a) \longrightarrow \mathbb{R}^2$ és de la forma $\alpha(t)=(a-t,f(t))$ per una certa funció $f:[o,a) \longrightarrow \mathbb{R}$, que haurà de satisfer a més que f(o)=o ja que $\alpha(o)=(a,o)$, la posició de P al punt inicial. El vector velocitat és $\alpha'(t)=(-1,f'(t))$ de manera que $\|\alpha'(t)\|=\sqrt{1+f'(t)^2}$. Ara, (I.I) és equivalent a què la primera coordenada del vector resultant s'anul·li (ja que pertany a O γ) i s'escriu així:

$$a - t - \frac{a}{\sqrt{1 + f'(t)^2}} = 0.$$

Per simplificar els càlculs suposarem que a=1. De fet, el cas general es pot reduir a aquest aplicant una homotècia de raó a^{-1} , que multiplica les longituds de les corbes per la mateixa raó a^{-1} . Llavors l'equació anterior és equivalent a:

$$\frac{1}{1-t} = \sqrt{1 + f'(t)^2} \iff f'(t) = \frac{\sqrt{2t - t^2}}{1-t}.$$

Arribats a aquest punt ja tenim tota la informació necessària per a respondre el problema. La corba α és:

$$\alpha(t) = \left(a - t, \int_0^t \frac{\sqrt{2x - x^2}}{1 - x} dx\right) \implies \alpha'(t) = \left(-1, \frac{\sqrt{2t - t^2}}{1 - t}\right).$$

És clar que $\|\alpha'(t)\| \neq 0$ pel que α és 1-regular.

Observació 1.5. Les corbes diferenciables que considerem al curs estan definides en intervals oberts. La corba α , en canvi, està definida a [0,1). Per tal que el que diem sigui consistent amb el que hem vist al curs cal que eliminem el punt inicial o i considerem la restricció de α en (0,1). Per calcular el paràmetre arc és útil, en canvi, triar com a punt inicial el o.

Corbes

Aleshores:

$$\log(0, t; \alpha) = \int_0^t \|\alpha'(t)\| dt = \int_0^t \sqrt{1 + f'(x)^2} dx = \int_0^t \frac{1}{1 - x} dx = \left[-\log|1 - x| \right]_{x = 0}^{x = t} = -\log(1 - t).$$

Es pot calcular explícitament la integral de la definició fent el canvi $x = I - \sqrt{I - y^2}$ tenim $dx = \frac{y}{\sqrt{I - y^2}} dy$ i podem calcular:

$$\int_{0}^{t} \frac{\sqrt{2x - x^{2}}}{1 - x} dx = \int_{0}^{\sqrt{2t - t^{2}}} \frac{y}{\sqrt{1 - y^{2}}} \cdot \frac{y}{\sqrt{1 - y^{2}}} dy = \int_{0}^{\sqrt{2t - t^{2}}} \frac{y^{2}}{1 - y^{2}} dy$$

$$= -\int_{0}^{\sqrt{2t - t^{2}}} dy + \int_{0}^{\sqrt{2t - t^{2}}} \frac{1}{1 - y^{2}} dy$$

$$= -\int_{0}^{\sqrt{2t - t^{2}}} dy + \int_{0}^{\sqrt{2t - t^{2}}} \left(\frac{1}{2(1 - y)} + \frac{1}{2(1 - y)} \right) dy$$

$$= \left[-y - \frac{1}{2} \log(1 - y) + \frac{1}{2} \log(1 + y) \right]_{y = 0}^{y = \sqrt{2t - t^{2}}}$$

$$= -\sqrt{2t - t^{2}} - \frac{1}{2} \log(1 - \sqrt{2t - t^{2}}) + \frac{1}{2} \log(1 + \sqrt{2t - t^{2}})$$

$$= -\sqrt{2t - t^{2}} + \frac{1}{2} \log\left(\frac{1 + \sqrt{2t - t^{2}}}{1 - \sqrt{2t - t^{2}}}\right).$$

En conclusió, la tractriu està parametritzada per la corba següent:

$$\alpha(t) = \left(\mathbf{I} - t, -\sqrt{2t - t^2} + \frac{\mathbf{I}}{2} \log \left(\frac{\mathbf{I} + \sqrt{2t - t^2}}{\mathbf{I} - \sqrt{2t - t^2}} \right) \right).$$

Exercici 1.6 (Cicloide). Un disc de radi a en el pla x y roda uniformement i sense lliscar damunt de l'eix x. La corba que descriu un punt P de la circumferència s'anomena cicloide.

- 1. Proveu que la cicloide es pot parametritzar per $\alpha(t) = (a(t \sin t), a(1 \cos t))$, on t és l'angle que formen CP i CQ, C el centre de la circumferència, Q el punt de contacte de la circumferència amb l'eix Ox i P = (x, y).
- 2. Trobeu els punts singulars de la parametrització α.
- 3. Determineu la funció longitud de l'arc de la cicloide.

Figura 2: Representació gràfica de la cicloide.

Corbes 1.7

Demostració.

La corba s'obté suposant que al temps inicial t = 0 el punt P es troba a l'origen de coordenades i suposant que el disc va rodant sense lliscar al llarg de l'eix de les x a velocitat constant igual a a. Aleshores, al temps t el disc és tangent a l'eix de les x al punt Q = (at, 0), de tal manera que C = (at, a). El punt P es troba en el punt de la circumferència que resulta de recórrer la vora del disc (que és una circumferència de radi a centrada a C) t radiants en sentit horari (pel que hem de considerar $(-\sin t, -\cos t)$) començant al punt de tangència. Per tant:

$$P = C + a(-\sin t, -\cos t) = (at, a) + (-a\sin t, -a\cos t) = a(t - \sin t, 1 - \cos t) = \alpha(t).$$

- 2. Calculem $\alpha'(t) = a(1 \cos t, \sin t)$ de manera que $\alpha'(t) = o$ (és a dir, t és un punt singular de α) si, i només si, $\cos t = 1$ i sin t = o. Això passa exactament quan t és un múltiple enter de 2π .
- 3. Usant el càlcul anterior obtenim que:

$$\|\alpha'(t)\| = a\sqrt{(1-\cos t)^2 + \sin^2 t} = a\sqrt{1+\cos^2 t - 2\cos t + \sin^2 t} = a\sqrt{2(1-\cos t)}.$$

Usant les identitats $I = \cos^2 \frac{t}{2} + \sin^2 \frac{t}{2}$ i $\cos t = \cos^2 \frac{t}{2} - \sin^2 \frac{t}{2}$ obtenim que $I - \cos t = 2 \sin^2 \frac{t}{2}$ i per tant:

$$\|\alpha'(t)\| = a\sqrt{4\sin^2\frac{t}{2}} = 2a\left|\sin\frac{t}{2}\right|.$$

Com que sin $\frac{t}{2} \ge$ o sempre que $t \in [0, 2\pi]$, podem calcular:

$$\log(\alpha; 0, t) = 2a \int_0^t \sin \frac{u}{2} du = \left[-4a \cos \frac{u}{2} \right]_{u=0}^{u=t} = 4a \left(1 - \cos \frac{t}{2} \right).$$

En particular, $\log(\alpha; 0, 2\pi) = 8a$. D'altra banda, com la funció α' és 2π -periòdica, per a tot enter k se satisfà $\log(\alpha; 0, 2k\pi) = 8ka$. Finalment, si t és un nombre real arbitrari, existeix un enter k tal que $t = 2k\pi + s$, on $s \in [0, 2\pi]$. En aquest cas, podríem calcular:

$$\log(\alpha; 0, t) = \log(\alpha; 0, 2k\pi + s)$$

$$= \log(\alpha; 0, 2k\pi) + \log(\alpha; 2k\pi, 2k\pi + s) = 8ka + 4a\left(1 - \cos\frac{s}{2}\right).$$

I amb això ja hem acabat.

Exercici 1.7 (Corba de Viviani). La intersecció de l'esfera $x^2 + y^2 + z^2 = 4a^2$, amb el cilindre $(x-a)^2 + y^2 = a^2$ s'anomena corba de Viviani.

I. Proveu que:

$$\alpha(u) = \left(a(1+\cos u), a\sin u, 2a\sin\frac{u}{2}\right), -2\pi \le u \le 2\pi.$$

és una parametrització de la corba de Viviani.

2. Proveu que (2a, 0, 0) és un punt doble amb dues tangents diferents.

Corbes

3. Feu el canvi de paràmetre $t=\tan\frac{u}{4}$ i proveu que la nova parametrització és:

$$\beta(t) = \left(\frac{2a(1-t^2)^2}{(1+t^2)^2}, \frac{4at(1-t^2)}{(1+t^2)^2}, \frac{4at}{1+t^2}\right).$$

Demostració.

I. És fàcil veure que $\operatorname{Im}(\alpha) \subset V$ amb les equacions. El cercle al pla $\langle x, y \rangle$ i de centre (a, 0, 0) i radi a és $\beta(t) = (a + a \cos t, a \sin t, z(t)), t \in [0, 2\pi]$. Volem que $\beta(t)$ estigui a l'esfera:

$$(a + a\cos t)^2 + a\sin^2 t + z(t)^2 = 4a^2$$

$$\iff z(t)^2 = 4a^2 - a^2 - a^2\cos^2 t - a^2\sin^2 t - 2a^2\cos t = 2a^2(1 - \cos t),$$

pel que $z(t) = \pm 2a \sin \frac{t}{2}, t \in [0, 2\pi].$

2. Imposem $\alpha(u)=(2a,0,0)$; aleshores, la segona coordenada ha de complir sin u=0 implica que $u\in\{-2\pi,-\pi,0,\pi,2\pi\}$. Fent el mateix amb la tercera coordenada obtenim sin $\frac{u}{2}=0$ i, per tant, $u\in\{-2\pi,0,2\pi\}$. En particular, $\alpha(0)=\alpha(2\pi)=(2a,0,0)$. Calculem el vector tangent i avaluem en $x=0,2\pi$:

$$\alpha'(u) = \left(-a\sin u, a\cos u, -a\cos\frac{u}{2}\right) \implies \begin{cases} \alpha'(o) = (o, a, -a) \\ \alpha'(2\pi) = (o, a, a) \end{cases}$$

pel que les tangents són diferents, com volíem veure.

3. El canvi de paràmetre $t=\tan\frac{u}{4}$ és el mateix que u=4 arctan t, i si $u\in(-2\pi,2\pi)$, clarament $\frac{u}{4}\subset(-\frac{\pi}{2},\frac{\pi}{2})$ i $t\in\mathbb{R}$. Així doncs, $\beta(t)=\alpha(u(t))$ queda com:

$$(a(1+\cos(4\arctan t), a\sin(4\arctan t), 2a\sin(2\arctan t))) \stackrel{?}{\Longrightarrow} \beta(t) = \left(\frac{2a(1-t^2)^2}{(1+t^2)^2}, \frac{4at(1-t^2)}{(1+t^2)^2}, \frac{4at}{1+t^2}\right).$$

Volem comprovar aquesta inplicació. Suposem $y = \arctan x$; aleshores, $\tan y = x$ pel que $\tan^2 y = x^2$ i $\frac{\sin^2 y}{\cos^2 y} = x^2$. Volem posar el cosinus en termes de l'arctan, pel que:

$$\frac{\sin^2 y}{\cos^2 y} = x^2 \iff \frac{1 - \cos^2 y}{\cos^2 y} = x^2 \iff x^2 + 1 = \frac{1}{\cos^2 y} \iff \cos^2 y = \frac{1}{x^2 + 1}$$
$$\iff \cos y = \frac{1}{\sqrt{x^2 + 1}}$$

Pel que, efectivament, $\cos y = \frac{1}{\sqrt{x^2+1}}, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] i \cos(\arctan x) = \frac{1}{\sqrt{x^2+1}}$. Anàlogament, $\sin(\arctan x) = \frac{x}{\sqrt{x^2+1}}$. Ara podem fer el mateix per als següents:

$$\cos(2\arctan x) = \cos^2(\arctan x) - \sin^2(\arctan x) = \frac{I - x^2}{I + x^2}, \quad \sin(2\arctan x) \frac{2x}{I + x^2};$$
$$\cos(4\arctan x) = \frac{I - 6x^2 + x^4}{(x^2 + I)^2}, \quad \sin(4\arctan x) = \frac{4x(I - x^2)}{(x^2 + I)^2}$$

Substituint aquests resultats, ja hem acabat.

Corbes 1.9

Exercici 1.8. Sigui $\alpha: I \longrightarrow \mathbb{R}^2$ una corba regular, $\alpha'(t) \neq 0$, per a tot $t \in I$. Suposarem que és parametritzada per l'arc. Proveu que si totes les normals d' α passen per un punt fix, aleshores la corba està continguda en una circumferència.

<u>Demostració.</u> La recta normal a la corba pel punt $\alpha(t)$ és $r_{\lambda}(t) = \alpha(t) + \langle \vec{n}(t) \rangle = \alpha(t) + \lambda \vec{n}(t)$, $\lambda \in \mathbb{R}$. Si totes les normals d'una corba regular passen per un punt (de moment no fa falta que sigui fix) P, llavors existeixen $\lambda_t \in \mathbb{R}$ tals que per a tota normal tenim $r_{\lambda_t}(t) = P$:

$$\alpha(t) + \lambda_t \vec{n}(t) = P \iff \alpha(t) = P - \lambda_t \vec{n}(t), \ \forall t.$$

Com que $\|\vec{n}\| = 1$ per a tot $t \in I$ (hem suposat parametritzada per l'arc), tenim:

$$||P - \alpha(t)|| = ||\lambda_t \vec{n}(t)|| = |\lambda_t| \implies \lambda_t^2 = ||P - \alpha(t)||^2 = \langle P - \alpha(t), P - \alpha(t) \rangle.$$

Derivant i usant que $\alpha' \perp \vec{n}$ (és a dir, $\langle \alpha', \vec{n} \rangle = 0$),

$$\frac{d}{dt}(\lambda_t^2) = \langle -\alpha'(t), P - \alpha(t) \rangle + \langle P - \alpha(t), -\alpha'(t) \rangle
= 2\langle -\alpha'(t), P - \alpha(t) \rangle = \langle -\alpha'(t), \lambda_t \vec{n}(t) \rangle = -\lambda_t \langle \alpha'(t), \vec{n}(t) \rangle = 0.$$

Com $\frac{d}{dt}(\lambda_t^2)$ = 0, queda que $\lambda_t^2 = r^2$ per a certa r constant. A més,

$$\vec{t}(t) = \alpha'(t) = (P - r\vec{n}(t))' = -r\vec{n}'(t) \stackrel{F}{=} -r(-k\vec{t}) \implies k = \frac{1}{r}.$$

Ja havíem vist que la parametrització de la circumferència ens donava la mateixa curvatura, de manera que la corba està continguda en una circumferència amb centre P i radi r. En certa manera està relacionat amb l'exercici següent.

Exercici 1.9. Sigui α una corba plana parametritzada per l'arc continguda en un disc D de radi R. Suposem que la corba toca la vora del disc per t_0 (i.e. $\|\alpha(t_0)\| = R$). Proveu que $\|k(t_0)\| \ge \frac{1}{R}$. (Indicació: en el punt t_0 el mòdul $\|\alpha(t)\|$ assoleix un màxim.)

Demostració. Podem posar α en funció del tangent \vec{t} i el normal: siguin f, g dues funcions diferenciables tals que $\alpha(t) = f(t)\vec{t}(t) + g(t)\vec{n}(t)$, llavors:

$$\vec{t}(t) = \alpha'(t) = (f(t) \cdot \vec{t}(t) + g(t) \cdot \vec{n}(t))' = f'(t)\vec{t}(t) + g'(t)\vec{n}(t) + f(t)\vec{t}'(t) + g(t)\vec{n}'(t).$$

Recordem que estem en el pla, així que per les fórmules de Frenet per a corbes planes, $\vec{t}'(t) = k(t)\vec{n}(t)$ i $\vec{n}'(t) = -k(t)\vec{t}(t)$. La idea és escriure \vec{t} com a combinació lineal de \vec{t} i \vec{n} (aquest segon haurà de ser nul):

$$\vec{t}(t) = (f'(t) - k(t)g(t))\vec{t}(t) + (g'(t) + k(t)f(t))\vec{n}(t) \implies \begin{cases} f'(t) - k(t)g(t) = 1 \\ g'(t) + k(t)f(t) = 0 \end{cases}$$

Pel que f'(t) = 1 + k(t)g(t) i g'(t) = -k(t)f(t). Obtenim el següent:

$$\frac{d}{dt}|\alpha|^2 = 2(f(t)\cdot f'(t) + g(t)\cdot g'(t)) = 2f(t).$$

Si $t = t_0$, $\|\alpha\| = R$ és un màxim i $\|\alpha'\| = 0$, $\|\alpha''\| \le 0$. Així, tenim $f(t_0) = 0$, $f'(t_0) \le 0$ i $g(t_0) = R$, pel que:

$$f'(t) = \mathbf{I} + k(t)g(t) \implies \mathbf{I} + k(t_0)R \le \mathbf{0} \implies ||k(t_0) \cdot R|| \ge \mathbf{I} \implies ||k(t_0)|| \ge \frac{\mathbf{I}}{R}.$$

Exercici 1.10 (El·lipse). Siguin F_1 i F_2 dos punts diferents del pla, $2c = |F_1F_2|$ la distància entre F_1 i F_2 (distància focal), i $a \in \mathbb{R}$ una constant tal que a > c. Denotem

$$b = \sqrt{a^2 - c^2}$$
 (semieix menor), $e = \frac{c}{a} < 1$ (excentricitat), $p = \frac{b^2}{a}$ (paràmetre focal).

L'el·lipse amb focus F_1 i F_2 i semieix major a és el lloc geomètric dels punts P del pla tals que

$$|PF_1| + |PF_2| = 2a$$
.

1. Prenent com a pol F_1 i com a origen d'angles la semirecta amb extrem F_1 i que passa per F_2 , proveu que l'equació de l'el·lipse en coordenades polars és

$$\rho(\theta) = \frac{p}{1 - e \cos \theta}.$$

2. Prenent ara coordenades cartesianes amb origen el punt mig O de F_1F_2 (centre de l'el·lipse) i amb eix Ox en la direcció OF_2 , proveu que l'equació de l'el·lipse pren la forma

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1.$$

3. Proveu que

$$\alpha(t) = (a\cos t, b\sin t), o \le t \le 2\pi,$$

és una corba parametritzada regular la traça de la qual és l'el·lipse anterior (el paràmetre t s'anomena angle d'anomalia excèntrica del punt $P = \alpha(t)$).

Exercici 1.11. Proveu que si les rectes tangents d'una corba 1-regular són perpendiculars a una direcció fixa, aleshores la corba és plana.

Demostració. Observem que α no és 2-regular, així que no podem utilitzar que α és plana si, i només si, $\tau = 0$. Un candidat és $\pi : \alpha(0) + \langle v \rangle^{\perp}$. Aleshores, $\alpha(t) \in \pi$ si, i només si $\alpha(t) - \alpha(0) \perp v$. Per t = 0 és trivial, ja que $\langle \alpha(0) - \alpha(0), v \rangle = \langle 0, v \rangle = 0$. Vegem que $g(t) = \langle \alpha(t) - \alpha(0), v \rangle$ és constant:

$$g'(t) = \langle \alpha'(t), v \rangle = 0 \implies g \text{ és constant } \implies g \equiv 0.$$

Corbes 1.13

Exercici 1.12. Proveu que si els plans osculadors d'una corba 2-regular passen per un punt fix, aleshores la corba és plana. Concloeu-ne que la trajectòria d'una partícula que es mou en un camp de fores és plana. Apliqueu aquest resultat a les òrbites dels planetes.

Demostració. Com α és 2-regular, i suposant que estem parametritzats per l'arc (ho podem fer perquè els plans osculadors no depenen de la parametrització), volem veure que $\tau(t) = 0$ per a tot t. Suposem que el punt fix és el \vec{o} . Per contradicció, suposem que $\exists t_0 \mid \tau(t_0) \neq 0$. El pla osculador a $\alpha(t)$ és $\pi_t : \alpha(t) + \langle B(t) \rangle^{\perp}$. Sabem que $\vec{o} \in \pi_t \iff \langle \alpha(t) - \vec{o}, B(t) \rangle = 0$. Ara derivem:

$$\underbrace{\langle \alpha'(t), B(t) \rangle}_{\langle T(t), B(t) \rangle = 0} + \langle \alpha(t), B'(t) \rangle = 0 \iff \langle \alpha(t), -\tau N \rangle = 0.$$

A $t=t_0$ sabem que $\tau(t_0)\neq 0$ i, per tant, $\tau(t_0)\langle\alpha(t),N\rangle=0$ i $\alpha(t)\perp N$. Per tant, tenim que $\alpha(t)$ és ortogonal tant a B(t) (perquè pertany a $\langle B(t)\rangle^{\perp}$) i a N, pel que en tot punt és múltiple de t i.e. $\alpha(t)=\lambda(t_0)\cdot T(t_0)$. També, per a tot t tenim que $\{T,N,B\}$ és una base ortonormal. Fixem-nos que el conjunt $\{t\mid \tau(t)\neq 0\}\subset I$ és un obert, perquè $\{t\mid \tau(t)=0\}$ és un tancat, per exemple. Per tant, per definició existeix $\varepsilon>0$ tal que per a tot $t\in [t_0-\varepsilon,t_0+\varepsilon]$ tenim $\alpha(t)=\lambda(t)\cdot T(t)$. Ara, $\tilde{\alpha}=\alpha|_{[t_0-\varepsilon,t_0+\varepsilon]}$ és una corba tal que $\tilde{\alpha}$ pertany a tota recta tangent, perquè que $\alpha(t)=\lambda(t)\cdot T(t)$ implica que $\alpha(t)-\lambda(t)\alpha'(t)=0$. Per l'exercici 23, $\tilde{\alpha}$ està en una recta i $\alpha'\wedge\alpha''=0$ per a tot $t\in [t_0-\varepsilon,t_0+\varepsilon]$.

Pel que fa al segon apartat, vegem que una partícula sotmesa a una força central¹ té una trajectòria plana. Si posem que $\alpha:I\longrightarrow\mathbb{R}^3$ és la partícula, per Newton:

$$\alpha''(t) = \frac{\mathbf{I}}{M} \cdot F(\alpha(t)) = \frac{\mathbf{I}}{M} \cdot g(\alpha(t)) \cdot (\alpha(t) - q) \implies q = \frac{M}{g(\alpha(t))} \cdot \alpha''(t) + \alpha(t).$$

Per tant, $q \in \pi_+$ definit per $\alpha(t) + \langle B(t) \rangle^{\perp} \equiv \alpha(t) + \langle \alpha', \alpha'' \rangle$, α és plana.

Exercici 1.13. Demostreu que la traça de la corba parametritzada $\alpha(t) = (a \sin^2 t, b \cos t \sin t, c \cos^2 t)$, $o < t < 2\pi$ es troba en un el·lipsoide. Determineu els punts d'intersecció d' α amb l'el·lipse $\beta(u) = (a \sin u, b \cos u, o)$, $o < u < 2\pi$, i els angles de tall de les dues corbes en aquests punts.

<u>Demostració.</u> Recordem que l'expressió d'un el·lipsoide és $(\frac{x}{\alpha})^2 + (\frac{y}{\beta})^2 + (\frac{z}{\gamma})^2$, tals que $\alpha, \beta, \gamma \neq 0$. Com que els punts de la traça d' α són $\{(x, y, z) \in \mathbb{R}^3 \mid (a \sin^2 t, b \cos t \sin t, c \cos^2 t)\}$, prenem l'el·lipsoide tal que $\alpha = a, \gamma = c$ i $\beta = \frac{b}{\sqrt{2}}$.

$$\left(\frac{a\sin^2 t}{a}\right)^2 + 2\left(\frac{b\cos t\sin t}{b}\right)^2 + \left(\frac{c\cos^2 t}{c}\right)^2 = \sin^4 t + 2\cos^2 t\sin^2 t + \cos^4 t = (\sin^2 t + \cos^2 t)^2 = 1.$$

 β potser no és tan fàcil de deduir, fixem-nos que volem desfer-nos de tots els termes que puguem a partir de la identitat $\sin^2 + \cos^2 = 1$. En qualsevol cas, això ens dona que α es troba en aquest el·lipsoide. Pel que fa els

Força central centrada en q vol dir que $F(\vec{x}) = g(\vec{x}) \cdot (\vec{x} - q)$.

Corbes

punts d'intersecció, $\operatorname{im}(\alpha) \cap \operatorname{im}(\beta)$. $p \in \operatorname{im}(\alpha) \cap \operatorname{im}(\beta) \iff c \cos^2 t = o \iff t = \frac{\pi}{2}, \frac{3\pi}{2}$. Hem de veure quina expressió prenen tant en α com en β :

$$\alpha\left(\frac{\pi}{2}\right) = (a, 0, 0), \ \alpha\left(\frac{3\pi}{2}\right) = (a, 0, 0)$$
$$\beta\left(\frac{\pi}{2}\right) = (a, 0, 0), \ \alpha\left(\frac{3\pi}{2}\right) = (-a, 0, 0)$$

Per tant, descartem $\frac{3\pi}{2}$ i im(α) \cap im(β) = $\{\frac{\pi}{2}\}$. Els respectius vectors tangents ens donen els angles de tall que volem. Per tant:

$$\alpha'(t) = (2a\cos t\sin t, b\cos^2 t - b\sin^2 t, -2c\sin t\cos t), \ \beta(u) = (a\cos u, -a\sin u, o).$$

Pel que $\alpha'(\frac{\pi}{2}) = (o, -b, o)$ i $\beta'(\frac{\pi}{2}) = (o, -b, o)$. Són paral·lels; per tant, l'angle és zero.

Exercici 1.14 (Càlcul de la curvatura d'una corba plana).

- I. Trobeu la curvatura d' $\alpha(t) = (3t^2, 3t t^3)$, en t = 1.
- 2. Trobeu la curvatura d' $\alpha(t) = (a\cos t, b\sin t)$, $o \le t \le 2\pi$. Proveu que la curvatura assoleix els seus extrems en els punts de tall amb els eixos de coordenades (vèrtexs de l'el·lipse).
- 3. Trobeu la curvatura d' $\alpha(t) = (a \cosh t, b \sinh t), t \in \mathbb{R}$. Proveu que la curvatura assoleix el seu màxim en el punt de tall amb l'eix Ox (vèrtex de l'hipèrbola) i que tendeix a zero en l'infinit.

Demostració.

I. L'expressió d' α és $\alpha(t) = (3t^2, 3t - t^3)$ i hem de calcular la curvatura en I. Per la fórmula, necessitem $\alpha'(t), \alpha''(t), \langle \alpha'(t), \alpha''(t) \rangle$ i $\|\alpha'(t)\|$.

$$\begin{array}{c} \alpha'(t) = (6t, 3-3t^2), \ \alpha''(t) = (6, -6t), \\ \alpha'(1) = (6, 0), \ \alpha''(1) = (6, -6) \\ \langle \alpha'(1), \alpha''(1) \rangle = \det(\alpha'(1), \alpha''(1)) = -36, \ \|\alpha'(1)\| = 6. \end{array} \right\} \ k(t) = \frac{\langle \alpha'(t), \alpha''(t) \rangle}{\|\alpha'(t)\|^3} \implies k(1) = -\frac{1}{6}.$$

2. Es pot provar que la família d'el·lipses $\left\{ \left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 = 1 \right\}$ queda parametritzada per $\alpha(t) = (a \cos t, b \sin t)$, o $\leq t \leq 2\pi$ (és un exercici de la llista). Tornem a necessitar tot allò de l'apartat anterior:

$$\alpha'(t) = (-a\sin t, b\cos t), \ \alpha''(t) = (-a\cos t, -b\sin t) = -\alpha(t),$$
$$\langle \alpha'(t), \alpha''(t) \rangle = ab\sin^2 t + ab\cos^2 t = ab,$$
$$\|\alpha'(t)\| = \sqrt{a^2\sin^2 t + b^2\cos^2 t} = \sqrt{a^2\sin t - b^2\sin^2 t + b^2} = \sqrt{(a^2 - b^2)\sin^2 t + b^2}.$$

Pel que:

$$k(t) = \frac{\langle \alpha'(t), \alpha''(t) \rangle}{\|\alpha'(t)\|^3} = \frac{ab}{(\sqrt{(a^2 - b^2)\sin^2 t + b^2})^3}.$$

La curvatura depèn de t, i $\max_t k(t) = \min_t \sin^2 t$ (anàlogament $\min_t k(t) = \max_t \sin^2 t$). Els mínims de $\sin^2 t$ són t = 0, π i els màxims, $t = \frac{\pi}{2}, \frac{3\pi}{2}$, pel que els màxims de k(t) són a t = 0, π i els mínims, a $t = \frac{\pi}{2}, \frac{3\pi}{2}$. Calculant aquests punts:

$$\alpha(o) = (a, o), \ \alpha(\pi) = (-a, o), \ \alpha\left(\frac{\pi}{2}\right) = (o, b), \ \alpha\left(\frac{3\pi}{2}\right) = (o, -b).$$

Corbes 1.16

Que són justament els vèrtexs de la el·lipse.

3. Calculem rutinàriament les successives derivades:

$$\alpha'(t) = (a\sinh(t), b\cosh(t)) = \alpha''(t) \implies \langle \alpha'(t), \alpha''(t) \rangle = ab(\sinh^2 t - \cosh^2 t) = ab.$$

L'estratègia és la mateixa que a l'apartat anterior, calculant k(t) veurem que depèn de $\sinh^2(t)$ i el màxim de k(t) serà el mínim de $\sinh^2 t$ i viceversa.

$$\|\alpha'(t)\| = \sqrt{a^2 \sinh^2(t) + b^2 \cosh^2(t)} = \sqrt{(a^2 + b^2) \sinh^2(t) + b^2} \implies k(t) = \frac{ab}{\|\alpha'(t)\|^3}.$$

El màxim de k(t) haurà de ser un mínim de $\sinh^2(t)$ (i viceversa), pel que $\min_t k(t)$ és en t = 0. Per tant, $k(0) = (a\cos h(0), 0) = (a, 0) \in ox$, com volíem veure. Per acabar, com $\sinh(t) \xrightarrow{t \to \pm \infty} \pm \infty$, aleshores $\sinh^2(t) \xrightarrow{t \to \pm \infty} +\infty$ i $k(t) \xrightarrow{t \to \pm \infty} 0$.

Exercici 1.15. Siguin $\alpha: I \longrightarrow \mathbb{R}^3$ una corba parametritzada 2-regular, $t_o \in I$ i $\pi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la projecció ortogonal afí de \mathbb{R}^3 sobre el pla osculador de α en t_o . Proveu que la curvatura $k(t_o)$ d' α en t_o és igual a la curvatura en t_o de la corba plana $\beta = \pi \circ \alpha$. **Nota**: si $p_o = \alpha(t_o)$ i b_o és el vector binormal d' α en t_o . Aleshores, $\pi(x) = x - \langle x - p_o, b_o \rangle b_o$.

$$\underline{Demostracio}. \text{ Si } p_{o} = \alpha(t_{o}) \text{ i } b_{o} = \beta(t_{o}) \text{ aleshores, } \pi(x) = x - \langle x - p_{o}, b_{o} \rangle \cdot b_{o} \text{ i:}$$

$$\beta(t) = \pi \circ \alpha(t) = \alpha(t) - \langle \alpha(t) - \alpha(t_{o}), b(t_{o}) \rangle \cdot b(t_{o}) = \alpha(t) - (\langle \alpha(t), b(t_{o}) \rangle - \langle \alpha(t_{o}), b(t_{o}) \rangle) \cdot b(t_{o})$$

$$\beta'(t) = \alpha'(t) - (\langle \alpha'(t), b(t_{o}) \rangle + \langle \alpha(t), b'(t_{o}) \rangle - \langle \alpha'(t_{o}), b(t_{o}) \rangle - \langle \alpha(t_{o}), b'(t_{o}) \rangle) b(t_{o})$$

$$= \alpha'(t) - \langle \alpha'(t), b(t_{o}) \rangle \cdot b(t_{o})$$

$$\beta''(t) = \alpha''(t) - (\langle \alpha''(t), b(t_{o}) \rangle + \langle \alpha'(t), b'(t_{o}) \rangle) b(t_{o}) = \alpha''(t) - \langle \alpha''(t), b(t_{o}) \rangle \cdot b(t_{o}).$$

Recordem que $k_{\alpha}(t_{o}) = \frac{\|\alpha'(t_{o}) \times \alpha''(t_{o})\|}{\|\alpha'(t_{o})\|^{3}}$, volem calcular $k_{\beta}(t_{o})$ per demostrar que $k_{\alpha}(t_{o}) = k_{\beta}(t_{o})$. Per les fórmules que ja hem calculat,

$$\beta'(t_{o}) = \alpha'(t_{o}) - \langle \alpha'(t_{o}), b(t_{o}) \rangle \cdot b(t_{o}) \xrightarrow{b \parallel \alpha' \times \alpha'', \text{ en } t_{o}} \beta'(t_{o}) = \alpha'(t_{o}).$$

Anàlogament:

$$\beta''(t_o) = \alpha''(t_o) - \langle \alpha''(t_o), b(t_o) \rangle \cdot b(t_o) \xrightarrow{b \parallel \alpha' \times \alpha'', \text{ en } t_o} \beta''(t_o) = \alpha''(t_o).$$

$$\operatorname{Com} \beta'(t_o) = \alpha'(t_o) \text{ i } \beta''(t_o) = \alpha''(t_o), k_\beta(t_o) = k_\alpha(t_o).$$

Exercici 1.16. Considerem la corba:

$$\alpha(t) = \begin{cases} (t, 0, e^{-\frac{1}{t^2}}), & si \ t > 0; \\ (t, e^{-\frac{1}{t^2}}, 0), & si \ t < 0; \\ (0, 0, 0), & si \ t = 0. \end{cases}$$

Corbes

1. Proveu que α és una corba diferenciable, α és regular per a tot t, i $k(t) \neq 0$ per a $t \neq 0$, $t \neq \pm \sqrt{\frac{2}{3}}i$ k(0) = 0.

2. Proveu que el límit dels plans osculadors quan $t \to 0$ (t > 0) és el pla y = 0, però el límit quan $t \to 0$ (t < 0) és el pla z = 0. Això confirma la discontinuïtat del vector $\vec{n}(t)$ quan t = 0, atès que k(0) = 0.

Demostració.

I. Definirem una funció $f: \mathbb{R} \longrightarrow \mathbb{R}$ de manera que si t > 0, aleshores $f(t) = e^{-\frac{1}{t^2}}$ i si $t \le 0$, f(t) = 0. Aquesta és una funció suau no analítica.

Definició 1.17 (Funció analítica). Una funció real φ és analítica en un punt x – o si és infinitament diferenciable en un cert entorn \mathcal{U} d' x_0 , en què la seva sèrie de Taylor convergeix i coincideix amb φ . També es caracteritza perquè imposa l'existència d'una sèrie de potències centrada en el punt.

Notem que si φ és analítica en x_0 serà $C^{\infty}(\{x_0\})$, però no tota funció $C^{\infty}(\{x_0\})$ serà analítica. Que és exactament el cas si prenem $\varphi = f$, ja que f és infinitament diferenciable per a tot $t \in \mathbb{R}$ i en particular $f^{(n)}(t) = 0$, $\forall n \geq 1$; la seva sèrie de Taylor al voltant del zero és idènticament nul·la i per tant en cap entorn de t = 0 coincideixen la funció i la sèrie de Taylor.

En qualsevol cas, podem posar $\alpha(t)=(t,f(-t),f(t));$ per tant, $\alpha\in C^\infty\iff f\in C^\infty.$

$$\left(e^{-\frac{1}{t^2}}\right)^{(k)} \xrightarrow{t \to o^+} o.$$

Veurem que $\left(e^{-\frac{1}{l^2}}\right)^{(k)} = p_k(\frac{1}{t}) \cdot e^{-\frac{1}{l^2}}$, on p_k és un cert polinomi. Per inducció:

- Quan k = 0, tenim que $\left(e^{-\frac{1}{t^2}}\right)^{(0)} = e^{-\frac{1}{t^2}}$, pel que $p_{\mathbf{I}}(\frac{1}{t}) = \mathbf{I}$.
- Suposem ara que és cert per a k i volem demostrar-ho per a k+1:

$$\left(e^{-\frac{1}{t^2}}\right)^{(k+1)} = \left(\left(e^{-\frac{1}{t^2}}\right)^{(k)}\right)' = \left(p_k\left(\frac{1}{t}\right)\cdot e^{-\frac{1}{t^2}}\right)' = -\frac{1}{t^2}\cdot p_{k+1}\left(\frac{1}{t}\right)\cdot e^{-\frac{1}{t^2}} + p_k\left(\frac{1}{t}\right)\cdot \left(\frac{2}{t^3}e^{-\frac{1}{t^2}}\right).$$

Per tant, $p_k(t) = \frac{1}{t^2} \cdot p_{k+1}\left(\frac{1}{t}\right) \cdot e^{-\frac{1}{t^2}} + p_k\left(\frac{1}{t}\right) \cdot \left(\frac{2}{t^3}e^{-\frac{1}{t^2}}\right)$. Vegem que $\lim_n \left(e^{-\frac{1}{t^2}}\right)^{(k)} \xrightarrow{t \to 0^+} 0$.

2. En altres paraules, hem de provar que si $t \to o^+$ és el pla y = o i, en canvi, si $t \to o^-$, és el pla z = o. Recordem que podem escriure el pla osculador com $\alpha(t) + (\alpha' \perp \alpha'')^{\perp}$.

$$\alpha'(t) \perp \alpha''(t) = \begin{cases} (o, f''(t), o), & \text{si } t > o; \\ (o, o, o), & \text{si } t < o. \end{cases}$$

Per a $\varepsilon > 0$, tenim $\pi_{\varepsilon} = \alpha(\varepsilon) + \langle (0, I, 0) \rangle^{\perp}$ i si $\varepsilon \to 0^+$, $\pi_{\varepsilon} = \{z = 0\}$. Anàlogament, per a $-\varepsilon < 0$ tenim $\pi_{-\varepsilon} = \alpha(-\varepsilon) + \langle (0, 0, I) \rangle^{\perp}$ i si $-\varepsilon \to 0^-$, $\pi_{-\varepsilon} = \{z = 0\}$.

Corbes 1.20

Exercici 1.18. Sigui $\alpha(s)$ una corba 2-regular parametritzada per l'arc, i sigui $\beta(s) = \alpha'(s)$. Proveu que la curvatura k_{β} i la torsió τ_{β} de la corba β s'expressen en funció de la curvatura k i la torsió τ de α per a les fórmules següents:

$$k_{\rm I}^2 = \frac{k^2 + \tau^2}{k^2}, \ \tau_{\rm I} = \frac{\tau' k - k' \tau}{k(k^2 + \tau^2)}.$$

Deduïu-ne que β és plana si, i només si, $\frac{\tau}{k}$ és constant.

Demostració. L'objectiu d'aquest exercici és acabar aplicant la fórmula de curvatura i a grans trets ens ajudarem de les fórmules de Frenet. Com $\beta(s) = \alpha'(s) = T(s)$, sigui $\beta'(s) = T'(s)$ que, per la fórmula de Frenet per a corbes planes:

$$\beta'(s) = T'(s) = k_{\alpha}(s)N(s)$$

$$\beta''(s) = T''(s) = k_{\alpha}(s)'N(s) + k_{\alpha}(s)N'(s) = k_{\alpha}(s)'N(s) + k_{\alpha}(s)(-k_{\alpha}(s)T(s) + \tau_{\alpha}(s)B(s))$$

$$= -k_{\alpha}^{2} \cdot T(s) + k_{\alpha}'(s)N(s) + k_{\alpha}\tau_{\alpha} \cdot B(s).$$

$$\beta'''(s) = T'''(s) = -3k_{\alpha}(s)k_{\alpha}'(s) + (k_{\alpha}''(s) + k_{\alpha}^{3}(s) - k_{\alpha}(s)\tau_{\alpha}^{2}(s))N(s) + (2k_{\alpha}'(s) + k_{\alpha}(s)\tau_{\alpha}'(s))B(t).$$

$$(\beta' \times \beta'')(s) = k_{\alpha}^{3}(s)B(s) + k_{\alpha}^{2}(s)\tau_{\alpha}(s)T(s) \implies \|\beta' \times \beta''\| = \|(k_{\alpha}^{2}\tau_{\alpha}, 0, k_{\alpha}^{3})\| = \sqrt{k^{6} + k^{4}\tau^{2}}.$$

Per tant, ens queda que $k_{\beta}(t) = \frac{\sqrt{k^6 + k^4 \tau^2}}{k^3} = \frac{\sqrt{k^2 + \tau^2}}{k}$, com volíem. La τ queda com exercici.

Exercici 1.19. Proveu que si els plans normals d'una corba 2-regular són paral·lels a una direcció fixa, aleshores la corba és plana.

Demostració. Recordem que els plans normals $\pi_t : \alpha(t) + \langle T \rangle^{\perp}$. Aleshores, α és plana si, i només si, $\tau = 0$. $\tau = 0$ si, i només si, $\det(\alpha', \alpha'', \alpha''') = 0$. La hipòtesi del problema ens diu que existeix un \vec{v} fix tal que $\vec{v} \parallel \pi_t$:

$$\langle \alpha'(t), \vec{v} \rangle = 0 \implies \langle \alpha''(t), \vec{v} \rangle = 0 \implies \langle \alpha'''(t), \vec{v} \rangle = 0.$$

Per tant, α' , α'' , α''' són ortogonals a \vec{v} (estan en el pla $\langle \vec{v} \rangle^{\perp}$). Si tenim tres vectors continguts en un pla aleshores han de ser linealment dependents, pel que com $\det(\alpha', \alpha'', \alpha''') = 0$ ja hem acabat.

Exercici 1.20. Sigui $\alpha(s)$, $s \in (-\varepsilon, \varepsilon)$ una corba regular de \mathbb{R}^3 parametritzada per l'arc, tal que $k \neq 0$ i $k \neq \tau$. Es defineix:

$$\beta(s) = \int_0^s (t(u) + b(u)) du.$$

- 1. Trobeu un paràmetre arc per a la corba $\beta(s)$.
- 2. Demostreu que la curvatura K de la corba $\beta(s)$ és $K = \frac{1}{2}|k-\tau|$.
- 3. Comproveu que el valor absolut de la torsió de la corba $\beta(s) = |\frac{k+\tau}{2}|$.

Demostració.

Corbes

1. No té pèrdua. Considerem $\beta'(s) = T(s) + B(s)$, pel que el paràmetre arc és $\|\beta'(s)\| = \sqrt{\langle T + B, T + B \rangle} = \sqrt{2}$.

2. Recordem que la fórmula és $k_{\beta} = \frac{\|\beta' \times \beta''\|}{\|\beta'\|^3}$, pel que simplement cal anar calculant, ajudant-nos de les fórmules de Frenet per a corbes en l'espai.

$$\beta''(s) = (\beta'(s))' = T'(s) + B'(s) = kN - \tau N$$

$$\beta' \times \beta'' = (T+B) \times (k-\tau)N = (k-\tau)(T\times N) + (k-\tau)(\underbrace{B\times N}_{-N\times B}) = (k-\tau)B - (k-\tau)T$$

$$k_{\beta} = \frac{\|\beta' \times \beta''\|}{\|\beta'\|^3} = \frac{\sqrt{(k-\tau)^2 + (k-\tau)^2}}{2\sqrt{2}} = \frac{\sqrt{2}|k-\tau|}{2\sqrt{2}} = \frac{|k-\tau|}{2}.$$

3. També és bastant rutinari. La fórmula és $\tau_{\beta} = \frac{\det(\beta', \beta'', \beta''')}{\|\beta' \times \beta''\|^2}$, pel que necessitem fer algunes operacions. Un altre cop, fent ús de les fórmules de Frenet.

$$\beta'''(s) = ((k - \tau)N)' = (k' - \tau')N + (k - \tau)N' = (k' - \tau')N + (k - \tau)(-kT + \tau B)$$

$$= -k(k - \tau)T + (k' - \tau')N + (k - \tau)\tau B.$$

$$\det(\beta', \beta'', \beta''') = \begin{vmatrix} \mathbf{I} & \mathbf{0} & -k(k - \tau) \\ \mathbf{0} & k - \tau & k' - \tau' \\ \mathbf{I} & \mathbf{0} & \tau(k - \tau) \end{vmatrix} = -(k - \tau)(\tau(k - \tau) + k(k - \tau)) = (k - \tau)^2(k + \tau).$$

Per tant:

$$\tau_{\beta} = \frac{\det(\beta', \beta'', \beta''')}{\|\beta' \times \beta''\|^2} = \frac{(k - \tau)^2 (k + \tau)}{2(k - \tau)^2} = \frac{k + \tau}{2}.$$

Exercici 1.21 (Hèlix generalitzada). El teorema de Lancret. Sigui α una corba 2-regular (no depèn de la parametrització) i a més parametritzada per l'arc. Són equivalents:

- 1. α és hèlix generalitzada.
- 2. $\frac{\tau}{b}$ és constant.
- 3. $w = \tau T + k\beta$ és paral·lel a una direcció fixa.

Demostració. Primer provarem $2 \Leftrightarrow 3$ i després, $I \Rightarrow 2$ i $2/3 \Rightarrow I$.

- $2 \Leftrightarrow 3$ Provarem les dues implicacions.
 - \Rightarrow Suposem que $\frac{\tau}{k}$ és constant. Aleshores, $\tilde{w} = \frac{\tau}{k} T + B$ és paral·lel a w. Estudiem \tilde{w} :

$$(\tilde{w})' = \left(\frac{\tau}{k}\right)'T + \frac{\tau}{k}T' + B' = \frac{\tau}{k}(kN) + (-\tau N) = 0.$$

En altres paraules, $(\tilde{w})' = 0$ i \tilde{w} és un vector constant. I, per tant, w és paral·lel a una direcció fixa \tilde{w} .

Corbes I.21

 \Leftarrow Suposem que $w = \tau T + kB$ és paral·lel a una direcció fixa \vec{v} . Aleshores, $w = h(t) \cdot \vec{v}$ per a certa funció $h: I \longrightarrow \mathbb{R}$ diferenciable. Per tant:

$$w' = h'(t) \cdot \vec{v} + h(t) \cdot \underbrace{\vec{v}'}_{0} = h'(t) \cdot \vec{v}.$$

És a dir, $w' \parallel w$ per a tot t. Això passa si, i només si, $w \times w' = o$. Ara bé, d'altra banda:

$$w'=\tau'T+\tau T'+k'B+kB'=\tau'T+\tau(kN)+k'B+k(-\tau N)=\tau T+k'B,$$

pel que:

$$w \times w' = (\tau T + kB) \times (\tau' T + k'B) = \tau \tau' (T \times T) + \tau k' (T \times B) + k\tau' (B \times T) + kk' (B \times B) = (k\tau' - \tau k)N,$$

Com $w \times w' = 0$, aleshores $k\tau' - \tau k = 0$, és a dir, $\left(\frac{\tau}{k}\right)' = \frac{\tau' k - \tau k'}{k^2} = 0$ i $\frac{\tau}{k}$ ha de ser constant.

 $1 \Rightarrow 2$ Suposem que α és hèlix generalitzada. Prenem \vec{v} tal que generi aquesta direcció i a més $||\vec{v}|| = 1$. Sabem que l'angle entre $\alpha^2(t)$ i \vec{v} és constant si, i només si:

$$\cos(\theta_{o}) = \frac{\langle T, \vec{v} \rangle}{\|T\| \cdot \|\vec{v}\|} i \langle T, \vec{v} \rangle = C \in \mathbb{R}.$$

Derivant, i aplicant que T' = kN amb $k \neq 0$ (perquè α és 2-regular):

$$\langle T', \vec{v} \rangle + \langle T, \vec{v}' \rangle = 0 \implies k \langle N, \vec{v} \rangle = 0 \implies \langle N, \vec{v} \rangle = 0.$$
 (1.2)

Derivant una vegada més,

$$\langle N', \vec{v} \rangle = 0 \iff \langle -kT + \tau B, \vec{v} \rangle = 0 \iff -k \langle \tau, \vec{v} \rangle + \tau \langle B, \vec{v} \rangle = 0 \iff \frac{\tau}{k} = \frac{c}{\langle B, \vec{v} \rangle}.$$

Falta veure que $\langle B, \vec{v} \rangle$ és constant:

$$\langle B', \vec{v} \rangle = \langle B', \vec{v} \rangle = \tau \langle N, \vec{v} \rangle \stackrel{\text{(1.2)}}{=} \text{o.}$$

Per tant, $\langle B, \vec{v} \rangle$ és constant i $\frac{\tau}{k}$ és constant.

 $_{2/3} \Rightarrow _{1}$ Sabem que $\tilde{w} = \frac{\tau}{k}T + B$ és constant. Volem veure que α és hèlix generalitzada. Vegem doncs que $\widehat{\alpha'\tilde{w}}$ és constant; és a dir:

$$\cos(\widehat{\alpha'\tilde{w}}) = \frac{\langle T, \tilde{w} \rangle}{\|T\| \cdot \|\tilde{w}\|} = \frac{\langle T, \frac{\tau}{k}T \rangle + \langle T, B \rangle}{\|T\| \cdot \|\tilde{w}\|} = \frac{\frac{\tau}{k} \langle T, T \rangle}{\|T\| \cdot \|\tilde{w}\|} \xrightarrow{\frac{\tau}{k} \text{ és constant}} \left\| \frac{\tau}{k} T + B \right\| \text{ és constant}.$$

Per tant, $\widehat{\alpha'\tilde{w}}$ és constant.

- 2

LLISTA 2

Definició 2.1. Una família uniparamètrica de rectes a \mathbb{R}^3 és una família $\{L_v\}_{v\in I}$ on $I\subset\mathbb{R}$ i L_v és una recta; tals que existeixen aplicacions diferenciables

Exercici 2.2 (Con circular). Sigui ω constant, $0 < \omega < \frac{\pi}{2}$. Proveu que

$$\varphi(u, v) = u(\sin \omega \cos v, \sin \omega \sin v, \cos \omega), u \neq o, v \in \mathbb{R}$$

és una superfície parametritzada regular i la seva traça és

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2 \tan^2 \omega \} \setminus \{(0, 0, 0)\},\$$

el con circular menys el vèrtex. Proveu que tots els plans tangents passen pel vèrtex i les normals tallen l'eix OZ formant un angle constant.

Demostració. Definim $\varphi: \mathcal{U} \longrightarrow \mathbb{R}^3$ tal com planteja l'enunciat i $\mathcal{U} = \mathbb{R} \setminus \{o\} \times \mathbb{R}$, un obert de \mathbb{R}^2 (tot \mathbb{R}^2 excepte la recta x = o). $\varphi \in C^{\infty}$ perquè sin $\omega \cos v$, sin $\omega \sin v$, $\cos \omega \in C^{\infty}$, pel que $C = \varphi(u, v)$, $u \neq o$, $v \in \mathbb{R}$ és superfície parametritzada. Per veure que és regular simplement ens cal veure que rang $(\nabla \varphi) = 2$ a tot punt. Calculem les derivades φ_u , φ_v i calculem $\varphi_u \times \varphi_v$ per comprovar que són linealment independents:

$$\varphi_u = (\sin \omega \cos v, \sin \omega \cos v, \cos \omega), \ \varphi_v = (-u \sin \omega \sin v, u \sin \omega \cos v, o).$$

$$\varphi_{u} \times \varphi_{v} = \begin{vmatrix} i & j & k \\ \sin \omega \cos v & \sin \omega \cos v & \cos \omega \\ -u \sin \omega \sin v & u \sin \omega \cos v & o \end{vmatrix}$$
$$= u(-\sin \omega \cos \omega \cos v, -\cos \omega \sin \omega \sin v, \sin^{2} \omega \cos^{2} v + \sin^{2} \omega \sin^{2} v)$$

 $= (u \cdot (-\sin \omega \cos \omega \cos v), u \cdot (-\cos \omega \sin \omega \sin v), u \sin^2 \omega)$

Com $\omega \in (0, \frac{\pi}{2})$, $\sin \omega \neq 0$ i la tercera component mai no s'anul·la, per a qualsevol $(u, v) \in \mathcal{U}$. Per tant, $\|\varphi_u \times \varphi_v\| \neq 0$ i φ és regular. Pel que fa a la traça, sigui $(x, y, z) \in S$, és a dir, que compleix $x^2 + y^2 = z^2 \tan^2 \omega$. Definim $\tilde{u} = \frac{z}{\cos \omega}$:

$$\tilde{u}^2 = \frac{z^2}{\cos^2 \omega} = \frac{x^2 + y^2}{\tan^2 \omega \cos^2 \omega} \implies x^2 + y^2 = \tilde{u}^2 \sin^2 \omega.$$

Per tant, (x, y) està en un cercle de radi $|\tilde{u}| \cdot \sin \omega$ i existeix \tilde{v} tal que $(x, y) = |\tilde{u}| \cdot \sin \omega (\cos \tilde{u}, \sin \tilde{v})$. Com és indiferent quin angle prenem per a parametritzar \tilde{u} li podem treure el valor absolut. És a dir, que $(x, y, z) = \varphi(\tilde{u}, \tilde{v})$ i $(x, y, z) \in \text{im}(\varphi)$. Provem que tots els plans tangents passen pel vèrtex:

$$T_{(u,v)}(\varphi) = \varphi(u,v) + \langle \varphi_u, \varphi_v \rangle = \varphi(u,v) + \langle \varphi_u \times \varphi_v \rangle^{\perp}.$$

Volem veure que $o \in T_{(u,v)}(\varphi) \iff \langle \varphi(u,v), \varphi_u \times \varphi_v \rangle = o.$

$$\langle \varphi(u, v), \varphi_u \times \varphi_v \rangle = u^2 (-\sin^2 \omega \cos \omega \cos^2 v - \sin^2 \omega \cos \omega \sin^2 v + \cos \omega \sin^2 \omega)$$
$$= u^2 \sin^2 \omega (\cos \omega (-\cos^2 v - \sin^2 v + 1)) = 0$$

Finalment, observem que:

$$\phi(u,v) + (\cos \omega)^{-1} \cdot \phi_u(u,v) \times \phi_v(u,v) = (o, o, (\cos \omega)^{-1} \cdot u),$$

cosa que demostra que totes les rectes normals tallen l'eix OX. Per acabar, cal comprovar que l'angle de tall entre les rectes normals i l'eix OZ és constant. Prenent l'angle de tall entre dues rectes que es tallen dins del rang $[0, \frac{\pi}{2}]$, el cosinus d'aquest angle és:

$$\frac{\left|\left\langle \phi_{u}(u,v) \times \phi_{v}(u,v), (o,o,i)\right\rangle\right|}{\left\|\phi_{u}(u,v) \times \phi_{v}(u,v)\right\|} = \frac{\left|u\sin^{2}\omega\right|}{\left|u\sin\omega\right|} = \sin\omega,$$

que és constant (observem que hem escrit $|\sin\omega|=\sin\omega$ perquè $\omega\in(0,\frac{\pi}{2})$). Com l'aplicació cos : $[0,\frac{\pi}{2}]\longrightarrow[0,1]$ és injectiva, podem concloure que l'angle de tall és constant.

Exercici 2.3. Siguin a, b, c > 0. Proveu que

$$\varphi(u, v) = (a \cosh u \cos v, b \cosh u \sin v, c \sinh u), \quad u \in \mathbb{R}, o < v < 2\pi$$

és una superfície parametritzada regular i la seva traça està continguda en la quàdrica d'equació $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$. Trobeu la intersecció d'aquesta superfície amb el pla z = 0 i proveu que els plans tangents de φ en aquests punts són verticals.

<u>Demostració.</u> Primer hem de provar que $\phi(u,v)$ descriu una superfície parametritzada regular. En efecte, sigui $\mathcal{U} = \mathbb{R} \times (0, 2\pi)$, que és un obert (producte cartesià d'oberts en la topologia euclidiana) i a més $\varphi \in C^{\infty}$, ja que $\varphi_1, \varphi_2, \varphi_3 \in C^{\infty}$ també. En particular, la regularitat es troba comprovant que rang $(\nabla \varphi) = 2$ a tot punt. Ho fem com a l'exercici anterior, calculant φ_u, φ_v i $\varphi_u \times \varphi_v$. Se satisfà

 $\phi_u(u,v) = (a \sinh u \cos v, b \sinh u \sin v, c \cosh u), \quad \phi_v(u,v) = (-a \cosh u \sin v, b \cosh u \cos v, o)$ i, per tant,

$$\phi_u(u,v) \times \phi_v(u,v) = (-bc \cosh^2 u \cos v, -ac \cosh^2 u \sin v, ab \sinh u \cosh u).$$

Com que $\cosh u \neq o$ i $(\cos v, \sin v) \neq (o, o)$ per a qualssevol u, v^2 , resulta que almenys una de les dues primeres coordenades de $\phi_u(u, v) \times \phi_v(u, v)$ és diferent de zero. Per tant, $\phi_u(u, v) \times \phi_v(u, v) \neq o$ per a qualsevol $(u, v) \in \Omega$, cosa que demostra que ϕ és regular. Per comprovar que $\phi(\Omega)$ està continguda dins la quàdrica d'equació:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = I,$$

Per una banda, és evident que $(\cos v, \sin v) \neq (o, o)$ perquè mai no tindrem $\cos v = o, \sin v = o$ simultàniament. D'altra banda, si no hem treballat mai amb $\cosh u$ una simple consulta al Geogebra ens val per afirmar, efectivament, que $\cosh u \neq o$.

és suficient veure que les funcions coordenades de ϕ satisfan l'equació que defineix la quàdrica. Ara bé,

$$\frac{(a \cosh u \cos v)^2}{a^2} + \frac{(b \cosh u \sin v)^2}{b^2} - \frac{(c \sinh u)^2}{c^2} = (\cosh u \cos v)^2 + (\cosh u \sin v)^2 - \sinh^2 u$$
$$= \cosh^2 u - \sinh^2 u = I,$$

amb la qual cosa hem demostrat el que volíem. La intersecció de ϕ amb el pla z=o és la restricció de ϕ a $\phi^{-1}(\{z=o\})$. Però

$$\phi^{-1}(\{z=o\}) = \{(u,v) \in \Omega \mid c \sinh u = o\} = \{o\} \times (o, 2\pi).$$

Finalment volem veure que per a tot $p \in \phi^{-1}(\{z = o\})$ el pla tangent $T_p^{\text{vect}}\phi$ és vertical, és a dir, conté el vector (o, o, i). Però si u = o aleshores $\phi_u(o, v) = (o, o, c \cosh u)$, que és un vector diferent de zero i paral·lel a (o, o, i). Això demostra que si p = (o, v) aleshores $T_p^{\text{vect}}\phi$ és vertical.

Exercici 2.4.

- I. Proveu que si totes les rectes normals d'una superfície parametritzada regular connexa són paral·leles a una direcció fixa, llavors la traça d'aquesta superfície està continguda en un pla.
- 2. Proveu que si totes les rectes normals afins d'una superfície parametritzada regular connexa passen per un punt fix, llavors la traça d'aquesta superfície està continguda en una esfera.

Demostració.

I. Sigui $\phi: \Omega \longrightarrow \mathbb{R}^3$ una superfície parametritzada regular connexa (és a dir, ϕ és diferenciable i rang $(\phi_u, \phi_v) = 2$, Ω és un obert *connex* de \mathbb{R}^2). Que totes les rectes *normals* a la superfície siguin paral·leles a una direcció fixa vol dir que existeix un vector $w \in \mathbb{R}^3$, $w \neq (0, 0, 0)$, tal que $\langle \phi_u(p), w \rangle = \langle \phi_v(p), w \rangle = 0$ per a qualsevol $p \in \Omega^3$. En aquest cas,

$$f: \Omega \longrightarrow \mathbb{R} \atop (u,v) \longmapsto \langle \phi, w \rangle \ \} \ f_u = \langle \phi_u, w \rangle + \underbrace{\langle \phi, w_u \rangle}_{\circ} = \langle \phi_u, w \rangle, \ f_v = \langle \phi_v, w \rangle + \underbrace{\langle \phi, w_v \rangle}_{\circ} = \langle \phi_v, w \rangle$$

Per tant, $\nabla f = (0, 0)$. f és localment constant i com Ω és connex, necessàriament f ha de ser constant. És a dir, existeix una constant c tal que $\phi(\Omega)$ està continguda dins de $\Pi := \{q \in \mathbb{R}^3 \mid \langle q, w \rangle = c\}^4$. Ara bé, el conjunt Π és un pla, pel que ja hem acabat.

2. Sigui $\phi:\Omega\longrightarrow\mathbb{R}^3$ una superfície parametritzada regular i connexa, i suposem que totes les rectes normals afins de ϕ passen per un punt fix. Composant ϕ amb una translació podem suposar que totes les rectes normals afins passen per l'origen. Aquesta última condició es pot escriure així:

$$\langle \phi(p), \phi_u(p) \rangle = \langle \phi(p), \phi_v(p) \rangle = 0, \ \forall p \in \Omega.$$

Estem imposant que en cadascuna de les components els vectors tangents ϕ_u , ϕ_v siguin perpendiculars a w, que és *paral·lel* a qualsevol de les rectes normals (i.e. té la mateixa direcció que aquestes).

⁴ El candidat natural és $\pi: \varphi(u_0, v_0) + \langle w \rangle^{\perp}$.

Suposant que les igualtats anterior se satisfan, sigui $g:\Omega \longrightarrow \mathbb{R}$ la funció $g=\langle \phi,\phi \rangle$. Les derivades parcials de g són $g_u=2\langle \phi,\phi_u\rangle=$ o i $g_v=2\langle \phi,\phi_v\rangle=$ o. Per tant, podem concloure que g és idènticament zero, és localment constant i com Ω és connex aleshores g és constant. Existeix una constant c tal que $\phi(\Omega)$ està continguda dins $S=\{q\in\mathbb{R}^3\mid \langle q,q\rangle=c\}$. Observem que si $\Omega\neq\emptyset$ aleshores $c\geq 0$ forçosament, ja que si no S seria el conjunt buit; d'altra banda, com ϕ és regular no pot ser una aplicació constant i, per tant, la inclusió $\phi(\Omega)\subset S$ implica que S té més d'un punt, cosa que implica que c>0. Per tant, si $\Omega\neq\emptyset$, S és una esfera de radi $\sqrt{c}>0$.

Exercici 2.5. Proveu que el subconjunt S de \mathbb{R}^3 definit per l'equació $(x-y)^3+y^5+(z+x)^4=2$ és una superfície regular. Proveu que el punt P=(1,1,0) és de S i trobeu el pla tangent a S en P.

Definició 2.6 (Valor regular). Sigui $\Gamma \subset \mathbb{R}^3$ un obert i sigui $f : \Gamma \longrightarrow \mathbb{R}$ una funció diferenciable. Direm que $t \in \mathbb{R}$ és un valor regular d'f si $\forall q \in f^{-1}(t)$ se satisfà que $(f_x(q), f_y(q), f_z(q)) \neq (o, o, o)$.

Teorema 2.7 (Teorema del valor regular). Sigui $\Gamma \subset \mathbb{R}^3$ un obert i sigui $f : \Gamma \longrightarrow \mathbb{R}$ una funció diferenciable. Si $t \in \mathbb{R}$ és un valor regular d'f, aleshores el conjunt $S := f^{-1}(t)$ és una superfície regular. A més a més,

$$T_p(S) = \{ (\alpha, \beta, \gamma) \in \mathbb{R}^3 \mid f_x(p)\alpha + f_y(p)\beta + f_z(p)\gamma = o \}.$$
 (2.1)

Demostració. La funció $F: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definida per $F(x, y, z) = (x - y)^3 + y^5 + (z + x)^4$ és clarament diferenciable. Volem aplicar el criteri del gradient, pel que $\nabla F \neq (0, 0, 0)$ i a més no podem trobar (x, y, z) tal que $F(x, y, z) \neq 2$ (i.e. $S = F^{-1}(2)$):

$$F_x(x, y, z) = 3(x - y)^2 + 4(z + x)^3,$$

$$F_y(x, y, z) = -3(x - y)^2 + 5y^4,$$

$$F_z(x, y, z) = 4(z + x)^3,$$

$$F(x, y, z) = 2$$

$$\nabla F = (0, 0, 0) \iff \begin{cases} x - y = 0 \\ y = 0 \\ z + x = 0 \end{cases} \implies x = y = z = 0,$$

però $F(0,0,0) = 0 \neq 2$. Pel teorema del valor regular, $S = F^{-1}(2)$ és una superfície regular. Com F(1,0,0) = 2, evidentment $(1,1,0) \in S$, com volíem veure. Finalment, el pla tangent (vectorial) a S en P es pot calcular com a (2.1):

$$T_p(S) = \{(\alpha, \beta, \gamma) \in \mathbb{R}^3 \mid F_x(p)\alpha + F_y(p)\beta + F_z(p)\gamma = o\} = \{(\alpha, \beta, \gamma) \in \mathbb{R}^3 \mid 4\alpha + 5\beta + 4\gamma = o\}. \blacksquare$$

Exercici 2.8. Sigui S el paraboloide hiperbòlic d'equació $z = x^2 - y^2$.

1. Proveu que S és una superfície regular i que

$$\varphi(u,v) = (u+v, u-v, 4uv),$$

$$\psi(s,t) = (s\cosh t, s\sinh t, s^2), s \neq 0$$

són cartes de S.

2. Determineu el canvi de paràmetres $h = \varphi^{-1} \circ \psi$.

Proposició 2.9 (Criteri fàcil de carta). Sigui $S \subset \mathbb{R}^3$ una superfície regular i sigui $\phi : \Omega \longrightarrow \mathbb{R}^3$ una superfície parametritzada. Suposem que se satisfà:

- *I.* $\phi(\Omega) \subset S$,
- 2. φ és injectiva,
- 3. ϕ és regular.

Aleshores, (Ω, ϕ) és una carta d'S.

Demostració.

1. Hem d'usar el teorema del valor regular, pel que definirem $F: \mathbb{R}^3 \longrightarrow \mathbb{R}$ tal que $F(x, y, z) = x^2 - y^2 - z$.

$$\nabla F = (F_x, F_y, F_z) = (2x, -2y, -1) \neq (0, 0, 0), \ \forall x, y.$$

Per tant, per a tot $t \in \mathbb{R}$ tenim que $\forall q \in F^{-1}(t), (F_x(q), F_y(q), F_z(q)) \neq (o, o, o)$ (i.e. tot $t \in \mathbb{R}$ és regular). En particular, S és un paraboloide hiperbòlic donat per $x^2 - y^2 - z = o$ i $S = F^{-1}(o)$, pel que S és una superfície regular.

- 2. Usarem en ambdós casos el criteri fàcil de carta, 2.9.
 - 2.1. $\phi: \Omega \longrightarrow \mathbb{R}^3$ la superfície parametritzada $\phi(u, v) = (u+v, u-v, 4uv)^5$. Vegem que $\phi(\Omega) \subset S$; sigui, doncs, $(u, v) \in \mathbb{R}^2$ qualsevol:

$$(u+v)^2 - (u-v)^2 = (u+v+u-v) \cdot (u+v-u+v) = 4uv, \ \phi(u,v) \in S.$$

Vegem que ϕ és injectiva. Efectivament, si $\phi(u,v) = \phi(u',v')$, igualant les primera coordenades deduïm que u+v=u'+v' i igualant les segones obtenim u-v=u'-v'. Per tant:

$$u = \frac{1}{2}((u+v) + (u-v)) = \frac{1}{2}((u'+v') + (u'-v')) = u',$$

$$v = \frac{1}{2}((u+v) - (u-v)) = \frac{1}{2}((u'+v') - (u'-v')) = v'.$$

$$(u,v) = (u',v').$$

Finalment, per veure que ϕ és regular calculem les seves derivades parcials:

$$\phi_u = (1, 1, 4v), \ \phi_v = (1, -1, 4u), \ \phi_u \times \phi_v = (4u + 4v, 4v - 4u, -2).$$

Llavors, la tercera coordenada de $\phi_u \times \phi_v$ és constant igual a -2 i, per tant, $\phi_u \times \phi_v$ no s'anul·la enlloc. Això demostra que ϕ és regular.

2.2. Sigui ara $\Omega = (\mathbb{R} \setminus \{0\}) \times \mathbb{R}$ i $\psi : \Omega \to \mathbb{R}^3$ la superfície parametritzada $\psi(s,t) = (s\cosh t, s\sinh t, s^2)$. Apliquem novament el criteri fàcil de carta. La inclusió $\psi(\Omega) \subset S$ és conseqüència de la igualtat $(s\cosh t)^2 - (s\sinh t)^2 - s^2 = o$. Per la injectivitat observem que si $\psi(s,t) = \psi(s',t')$

⁵ Ho és perquè $\Omega=\mathbb{R}^2$ és un *clopen* i $\phi\in C^\infty$, tota component és infinitament diferenciable

on $(s,t), (s',t') \in \Omega$ aleshores igualant les terceres coordenades obtenim $s'=\pm s$. Com que $\cosh t > 0$ i $\cosh t' > 0$, igualant les primeres coordenades deduïm que s i s', que són diferents de zero, tenen el mateix signe. Per tant, s'=s. Llavors comprant les segones coordenades i dividint per s=s' obtenim $\sinh t=\sinh t'$. Com que la funció $\sinh : \mathbb{R} \to \mathbb{R}$ és injectiva deduïm que t=t'. Per tant la injectivitat està demostrada. Finalment, per veure que ψ és regular calculem

$$\psi_s = (\cosh t, \sinh t, 2s), \ \psi_t = (s \sinh t, s \cosh t, o), \ \psi_s \times \psi_t = (-2s^2 \cosh t, 2s^2 \sinh t, s),$$

de manera que la tercera coordenada de $\psi_s \times \psi_t$ és igual a s. Com que per tots els punts $(s,t) \in \Omega$ se satisfà $s \neq o$, deduïm que ψ és regular. De l'expressió de ϕ es dedueix immediatament que si $(x, y, z) \in S$ aleshores:

$$\phi^{-1}(x, y, z) = \left(\frac{x+y}{2}, \frac{x-y}{2}\right).$$

Per tant:

$$\left(\phi^{-1} \circ \psi\right)(s,t) = \left(s \cdot \frac{\cosh t + \sinh t}{2}, s \cdot \frac{\cosh t - \sinh t}{2}\right) = \left(s \cdot \frac{e^t}{2}, s \cdot \frac{e^{-t}}{2}\right).$$

Exercici 2.10. Siguin $a \neq 0$ i S el subconjunt de \mathbb{R}^3 definit per l'equació

$$x \sin \frac{z}{a} = y \cos \frac{z}{a}$$

- 1. Proveu que S és una superfície regular.
- 2. Proveu que

$$\varphi(u,v) = (u\cos v, u\sin v, av), (u,v) \in \mathbb{R}^2,$$

és una carta global de S. (És a dir, S és un helicoide recte.)

Definició 2.11 (Carta global). És una carta local on, a més, imposem que ϕ és exhaustiva (no només $\phi(\Omega) \subset S$, sinó que $\phi(\Omega) = S$).

Demostració.

I. Sigui $S = \{(x, y, z) \in \mathbb{R}^3 \mid x \sin \frac{z}{a} = y \cos \frac{z}{a}\}$. Volem veure que S és regular, pel que definim $F(x, y, z) = x \sin \frac{z}{a} - y \cos \frac{z}{a}$ i $S = F^{-1}(o)$. Vegem que o és un valor regular:

$$\partial F = \left(\sin\frac{z}{a}, -\cos\frac{z}{a}, \frac{x}{a}\cos\frac{z}{a} + \frac{y}{a}\sin\frac{z}{a}\right).$$

Com no existeix $\alpha \in \mathbb{R}$ tal que $\cos \alpha = \sin \alpha = 0$, no hi ha cap valor d'(x, y, z) per al qual les derivades parcials $F_x(x, y, z)$ i $F_y(x, y, z)$ s'anul·lin alhora. En conclusió, tot $t \in \mathbb{R}$ és valor regular d'F. Pel teorema del valor regular, $S = F^{-1}(0)$ és superfície regular.

2. Per veure que la superfície parametritzada $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, $\varphi(u,v) = (u\cos v, u\sin v, av)$ és una carta de S usarem el criteri fàcil de carta. Cal veure que $\varphi(\mathbb{R}^2) \subset S$, que φ és injectiva i φ és regular. Primerament, la inclusió $\varphi(\mathbb{R}^2) \subset S$ es dedueix de:

$$F(u\cos v, u\sin v, av) = u\cos v\sin\frac{av}{a} - u\sin v\cos\frac{av}{a} = u\cos v\sin v - u\sin v\cos v = 0.$$

Per la injectivitat, suposem:

$$(u\cos v, u\sin v, av) = \varphi(u, v) = \varphi(u', v') = (u'\cos v', u'\sin v', av').$$

Comparant les terceres coordenades obtenim v=v'. Llavors, si $\cos v=\cos v'$ és diferent de zero, comparant les primeres coordenades i dividint per $\cos v=\cos v'$ obtenim u=u'. Si $\sin v=\sin v'$ és diferent de zero, comparant les segones coordenades i dividint per $\sin v=\sin v'$ deduïm també u=u'. Com $\cos v$ i $\sin v$ no es poden anul·lar simultàniament, almenys un dels dos arguments anteriors funcionarà i, per tant, en qualsevol cas podem afirmar que u=u'. Amb això la injectivitat està demostrada, finalment cal veure que φ és regular. Calculem-ne les derivades parcials:

$$\varphi_u = (\cos v, \sin v, o), \ \varphi_v = (-u \sin v, u \cos v, a), \ \varphi_u \times \varphi_v = (a \sin v, -a \cos v, u).$$

Per tant, la primera i la segona coordenada de $\varphi_u \times \varphi_v$ no poden ser simultàniament zero. És a dir, $(\varphi_u \times \varphi_v)(u,v) \neq 0$ per a tots els $(u,v) \in \mathbb{R}^2$. Queda, doncs, demostrat que φ és regular.

3. Cal veure que φ és exhaustiva. Suposem que (x, y, z) satisfà $F(x, y, z) = x \sin \frac{z}{a} - y \cos \frac{z}{a} = 0$. Volem trobar $(u, v) \in \mathbb{R}^2$ tal que $(x, y, z) = \varphi(u, v) = (u \cos v, u \sin v, av)$. Igualant les terceres coordenades, forçosament $v = \frac{z}{a}$. Suposem que $\cos v \neq 0$, $\sin v \neq 0$. Aleshores:

$$u\cos v = x, \ u\sin v = y \implies u = \frac{x}{\cos\frac{z}{a}}, \ u = \frac{y}{\sin\frac{z}{a}}.$$
$$\frac{x}{\cos v} = \frac{x}{\cos\frac{z}{a}} = \frac{y}{\sin\frac{z}{a}} = \frac{y}{\cos v},$$

on a la segona igualtat hem usat l'anul·lació de F(x,y,z). Per tant, en qualsevol cas estem assignant un únic valor a u. Vegem que amb aquests valors de u, v se satisfà que $\varphi(u,v)=(x,y,z)$. La igualtat entre terceres coordenades és immediata. La igualtat entre les primeres (resp. segones) coordenades és immediata si $\cos v \neq 0$ (resp. $\sin v \neq 0$). Ara, si $\cos v = \cos \frac{z}{a} = 0$; llavors, de F(x,y,z) = 0 es dedueix que $x \sin \frac{z}{a} = x = 0$ i, per tant, la primera coordenada de $\varphi(u,v)$ que és zero coincideix amb z. Amb un argument similar demostrem que si $\sin v = \sin \frac{z}{a} = 0$; aleshores, la segona coordenada de $\varphi(u,v)$ coincideix amb y.

Exercici 2.12. Considerem el següent subconjunt de \mathbb{R}^3 : $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2 + 1\}$.

1. Demostreu que S és una superfície regular.

2. Demostreu que per a tot $\theta \in \mathbb{R}$ l'aplicació $\phi_{\theta} : (-\pi, \pi) \times \mathbb{R} \longrightarrow \mathbb{R}^3$ definida per:

$$\phi_{\theta}(u, v) = (\cos(\theta + u), \sin(\theta + u), o) + v(-\sin(\theta + u), \cos(\theta + u), I)$$

és una carta de S i trobeu $\theta_1, \ldots, \theta_k$ de manera que:

$$S = \phi_{\theta_{\ell}}((-\pi, \pi) \times \mathbb{R}) \cup \cdots \cup \phi_{\theta_{\ell}}((-\pi, \pi) \times \mathbb{R}).$$

3. Demostreu que per a cada punt $p \in S$ es podem trobar dues rectes diferents $r_1, r_2 \subset S$ tals que $p \in r_1 \cap r_2$.

Demostració.

I. Farem servir un altre cop el teorema del valor regular. Sigui $F: \mathbb{R}^3 \longrightarrow \mathbb{R}$ una funció $F(x, y, z) = x^2 + y^2 - z^2$ tal que $S = F^{-1}(\{i\})$ i comprovem que $\nabla F(x, y, z) \neq 0$, per a tot $(x, y, z) \in S$. Efectivament:

$$\nabla F(x, y, z) = (2x, 2y, -2z), \ \nabla F(x, y, z) = (0, 0, 0) \iff (x, y, z) = (0, 0, 0) \notin S.$$

Com $(o, o, o) \notin S$, aleshores I és un valor regular i pel teorema del valor regular, $S = F^{-1}(o)$ és superfície regular.

2. Utilitzem el criteri fàcil de carta, 2.9, per veure que $\phi_{\theta}: \Omega := (-\pi, \pi) \times \mathbb{R} \longrightarrow \mathbb{R}^3$ és una carta (local) de S. Primerament, im $(\phi_{\theta}) \subset S$, ja que:

$$F(\phi_{\theta}(u,v)) = F(\cos(\theta + u) - v\sin(\theta + u), \sin(\theta + u) + v\cos(\theta + u), v)$$

$$= (\cos(\theta + u) - v\sin(\theta + u))^{2} + (\sin(\theta + u) + v\cos(\theta + u))^{2} - v^{2}$$

$$= \sin^{2}(\theta + u) + \cos^{2}(\theta + u) + v^{2}(\sin^{2}(\theta + u) + \cos^{2}(\theta + u))$$

$$+ 2v(\sin(\theta + u) \cdot \cos(\theta + u) - \sin(\theta + u) \cdot \cos(\theta + u)) - v^{2} = 1.$$

Vegem ara que ϕ_{θ} és regular, on simplement ens falta veure que $\phi_{u} \times \phi_{v} \neq (o, o, o)$ (això implicarà que l'angle entre els dos no valgui zero i rang $(\nabla \phi_{\theta}) = 2$).

$$\phi_{u} = (-\sin(\theta + u) - v\cos(\theta + u), \cos(\theta + u) - v\sin(\theta + u), o),$$

$$\phi_{v} = (-\sin(\theta + u), \cos(\theta + u), i),$$

$$\phi_{u} \times \phi_{v} = (\cos(\theta + u) - v\sin(\theta + u), \sin(\theta + u) + v\cos(\theta + u), \cdot),$$

la tercera coordenada és llarga de calcular i tampoc juga un paper molt important en el resultat. Si $\phi_u \times \phi_v = 0$, en particular les dues primeres coordenades valen zero, però:

$$\cos(\theta + u) - v\sin(\theta + u) = \sin(\theta + u) + v\cos(\theta + u) \implies \cos(\theta + u) = \sin(\theta + u) = 0$$

però tal cosa és impossible. Per tant, $\phi_u \times \phi_v \neq 0$ i per a tot $(u,v) \in \Omega$ ϕ_θ és regular. Se'ns demana ara trobar $\theta_1, \ldots, \theta_k$ de manera que:

$$S = \phi_{\theta_i}((-\pi, \pi) \times \mathbb{R}) \cup \cdots \cup \phi_{\theta_k}((-\pi, \pi) \times \mathbb{R}) = \operatorname{im}(\phi_{\theta_i}) \cup \cdots \cup \operatorname{im}(\phi_{\theta_k}).$$

Demostrarem que, de fet, que:

$$S = \phi_{o}((-\pi, \pi) \times \mathbb{R}) \cup \phi_{\pi}((-\pi, \pi) \times \mathbb{R}) = \operatorname{im}(\phi_{\theta_{o}}) \cup \operatorname{im}(\phi_{\theta_{\pi}}).$$

Estenem ϕ_0 , definint $\tilde{\phi}_0: [-\pi, \pi] \times \mathbb{R} \longrightarrow \mathbb{R}^3$. Vegem que $\operatorname{im}(\tilde{\phi}_0) = S$. Sigui (x, y, z) un punt qualsevol en S, volem trobar $(u, v) \mid \tilde{\phi}_0(u, v) = (\cos u - v \sin u, \sin u + v \cos u, v) = (x, y, z)$; per tant, imposem v = z i trobem u:

Per tant, existeix un u tal que $(\cos u, \sin u)$ té norma 1. Comprovem-ho:

$$\left(\frac{x+zy}{1+z^2}\right)^2 + \left(\frac{y-zx}{1+z^2}\right)^2 = \frac{(x^2+y^2)(1+z^2)}{(1+z^2)^2} \stackrel{(x,y,z) \in S}{=} \frac{(1+z^2)^2}{(1+z^2)^2} = 1.$$

Si estenem la definició de ϕ_0 a una aplicació $\mathbb{R}^2 \longrightarrow \mathbb{R}^3$, com hem fet amb $\tilde{\phi}_0$ aleshores obtenim una aplicació exhaustiva. Però llavors deixarà de ser injectiva i, per tant, no serà una carta. En definitiva, tot $(x,y,z)\in S$ és a im $(\tilde{\phi}_0)$. Si $(x,y,z)=\tilde{\phi}_0(u,v), u\in (-\pi,\pi)$ implica que $(x,y,z)\in \operatorname{im}(\phi_0)$. Si $(x,y,z)=\tilde{\phi}_0(\pm\pi,v)$, aleshores $(x,y,z)=\phi_\pi(o,v)$ i, per tant, $S=\operatorname{im}(\phi_0)\cup\operatorname{im}(\phi_\pi)$.

3. Sabem que $p = \tilde{\phi}_{o}(u_{o}, v_{o})$.

$$\tilde{\phi}_{0}(u, v) = (\cos u - v \sin u, \sin u + v \cos u, v),$$

$$\tilde{\phi}(u_{0}, v) = (\cos u_{0}, \sin u_{0}, o) + v(-\sin u_{0}, \cos u_{0}, 1).$$

Per tant, és una recta r_1 : $(\cos u_0, \sin u_0, o) + \langle (-\sin u_0, \cos u_0, i) \rangle$ (equivalentment, r_1 : $(\cos u_0, \sin u_0, o) + \lambda (-\sin u_0, \cos u_0, i), \lambda \in \mathbb{R}$) tal que $r_1 \subset S$ i $p \in r_1$ si prenem $\lambda = v_0$. Recordem que im $(\tilde{\phi}_0 \subset S)$ perquè:

$$(\cos u - v \sin v)^2 + (\sin u + v \cos u)^2 = v^2 + 1.$$

Considerem ara $r_2: (\cos u_0, \sin u_0, o) + \lambda(\sin u_0, -\cos u_0, i)$. Es pot comprovar que $r_2 \subset S$ i $p \in r_2$, prenent $\lambda = -v_0$.

Observació 2.13. Sigui $\varphi : \mathcal{U} \longrightarrow \mathbb{R}^3$ una superfície parametritzada i $\alpha : I \longrightarrow \mathbb{R}^3$ una corba. α està a φ si existeix una corba $\beta : I \longrightarrow \mathcal{U} \subset \mathbb{R}^2$ tal que $\alpha(t) = \varphi(\beta(t))$. $\beta(t) = (u(t), v(t))$ són les coordenades de α en φ .

Exercici 2.14. Siguin S la superfície regular d'equació $z^2 + y - x^3 = 0$, φ la parametrització de S definida per $\varphi(u, v) = (u, u^3 - v^2, v)$ i $\alpha(t) = (e^t, e^{3t} - t^2, t)$.

- 1. Proveu que la corba parametritzada α està continguda en S i trobeu les coordenades d' α respecte de ϕ .
- 2. Trobeu les components d' α' en la base φ_u , φ_v del pla tangent a S. Existeix algun punt d' α en què α' sigui paral·lel a φ_u ?

Llista 2 2.15

Demostració.

I. Hem de veure que α és a S (en altres paraules, que si $(x, y, z) \in \alpha$, aleshores $(x, y, z) \in S$) i trobar β . Imposem $\varphi(u(t), v(t)) = \alpha(t)$, pel que $(u, u^3 - v^2, v) = (e^t, e^{3t} - t, t)$ i $\beta(t) = (e^t, t)$.

2. Ara se'ns demana trobar les components d' α' en la base $\{\varphi_u, \varphi_v\}$ del pla tangent a S. Observem que $\alpha(t) = \varphi(\beta(t)) = \varphi(u(t), v(t))$ i:

$$\alpha'(t) = u'(t) \cdot \varphi_u(u(t), v(t)) + v'(t) \cdot \varphi_v(u(t), v(t)).$$

Per tant, els coeficients d' $\alpha(t)$ en la base $\{\varphi_u, \varphi_v\}$ són $u'(t) = e^t$ i v'(t) = 1. No existeix cap punt d' α tal que α' sigui paral·lel a φ_u perquè la component φ_v d' α' és sempre 1.

Exercici 2.15. Sigui $\varphi(u, v) = (a \cos v, a \sin v, u)$, per a tot $(u, v) \in \mathbb{R}^2$.

- 1. Proveu que φ és una superfície parametritzada regular tal que la seva traça és el cilindre $x^2 + y^2 = a^2$.
- 2. Trobeu els coeficients de la primera forma fonamental.
- 3. Proveu que la traça de l'hèlice $\alpha(t) = (a\cos t, a\sin t, bt)$ està continguda dins la imatge φ i trobeu funcions u, v tal que $\alpha(t) = \varphi(u(t), v(t))$.
- 4. Trobeu la longitud de la corba α de l'apartat anterior entre t = 0 i $t = 2\pi$ utilitzant la primera forma fonamental.

Demostració.

I. És clar que φ és diferenciable. Derivant φ , veiem que $\varphi_u = (o, o, i)$ i $\varphi_v = (-a \sin v, a \cos v, o)$. A més a més, rang $(\nabla \varphi) = 2$, ja que:

$$\begin{vmatrix} -a\sin v & o \\ o & I \end{vmatrix} i \begin{vmatrix} a\cos v & o \\ o & I \end{vmatrix}$$

no es poden anul·lar simultàniament, ja que això implicaria que sin $v=\cos v=$ o. Per tant, φ és regular. Ara hem de provar que im $(\varphi)=\{(x,\,y,\,z)\mid x^2+y^2=a^2\}=C_a$.

 \subseteq Donat $(x, y, z) \in C_a$, volem veure $\{(u, v) \mid \varphi(u, v) = (x, y, z)\}$, així que ho imposem; per tant, a la tercera coordenada tenim que u = z. A més:

$$a\cos v = x$$
, $a\sin v = y \implies \cos v = \frac{x}{a}$, $\sin v = \frac{y}{a}$.

Pel que $(\frac{x}{a})^2 + (\frac{y}{a})^2 = 1$, com volíem veure.

- ⊇ Exercici (pel que sembla).
- 2. Calcular la primera forma fonamental, I_{φ} , és bastant rutinari:

$$E = \langle \varphi_u, \varphi_u \rangle = I, \ F = \langle \varphi_u, \varphi_v \rangle = o, \ G = \langle \varphi_v, \varphi_v \rangle = a^2 \implies I_{\varphi}(u, v) = \begin{pmatrix} I & O \\ O & a^2 \end{pmatrix}.$$

3. En altres paraules, hem de comprovar que $\operatorname{im}(\varphi) \subset C_{\alpha}$ i trobar funcions u(t), v(t) tals que $\alpha(t) = (u(t), v(t))$. Per tant, imposem $\varphi(u, v) = \alpha(t)$:

$$(a\cos v(t), a\sin v(t), u(t)) = (a\cos t, a\sin t, bt) \implies \begin{cases} \cos v(t) = \cos t \\ \sin v(t) = \sin t \\ u(t) = bt \end{cases}$$

Queda clar que $v(t) = t + 2\pi k$, $k \in \mathbb{Z}$ i prenent k = 0, $\beta(t) = (u(t), v(t)) = (bt, t)$.

4. Finalment, sabem que $\|\alpha'(t)\|^2 = \langle \beta'(t), I_p(\beta(t)) \cdot \beta'(t) \rangle$, pel que:

$$\beta'(t) = (b, \mathbf{I}), \ \|\alpha'(t)\|^2 = (b, \mathbf{I}) \cdot \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & a^2 \end{pmatrix} \begin{pmatrix} b \\ \mathbf{I} \end{pmatrix} = a^2 + b^2$$
$$l(\alpha; \mathbf{0}, 2\pi) = \int_0^{2\pi} \sqrt{a^2 + b^2} \, dt = 2\pi (a^2 + b^2).$$

I ja hem acabat.

Exercici 2.16. Sigui φ la superficie parametritzada regular:

$$\varphi(u, v) = (u \cos v, u \sin v, u^2), o < u, o < v < 2\pi.$$

- I. Trobeu els coeficients E, F, G de la primera forma fonamental.
- 2. Trobeu l'angle que formen les corbes v = u + 1, v = 3 u en el seu punt de contacte.
- 3. Trobeu la longitud de la corba u = 3, per a v tal que $\frac{\pi}{2} \le v \le \pi$.

Demostració.

1. Derivant no té cap dificultat. Trobem que $\varphi_u = (\cos v, \sin v, 2u)$ i $\varphi_v = (-u \sin v, u \cos v, o)$, mentre que $E = \langle \varphi_u, \varphi_u \rangle = 1 + 4u^2$, $F = \langle \varphi_u, \varphi_v \rangle = o$ i $G = \langle \varphi_v, \varphi_v \rangle = u^2$. Així doncs:

$$I_{\varphi}(u,v) = \begin{pmatrix} 1 + 4u^2 & 0 \\ 0 & u^2 \end{pmatrix}.$$

2. D'altra banda, $r_1: v = u + 1$ i $r_2: v = 3 - u$ en el seu punt d'intersecció. Aquest punt és $\alpha(1) = \beta(1)$, i se'ns demana calcular el cosinus de l'angle amb el qual es tallen les corbes $\varphi(\alpha(t)) = \tilde{\alpha}(t)$ i $\varphi(\beta(t)) = \tilde{\beta}(t)$ quan t = 1. La recta r_1 és $\alpha(t) = (t, t + 1)$ i $\beta(s) = (s, 3 - s)$ (que no té per què ser el mateix paràmetre que t). Intersequem u + 1 = 3 - u, pel que obtenim (u, v) = (1, 2) al punt $(\alpha(1), \beta(1)) = (u, v) = (1, 2)$. Pel que definim volem saber:

$$\cos(\measuredangle(\tilde{\alpha}(I), \tilde{\beta}(I))) = \frac{\langle \tilde{\alpha}'(I), \tilde{\beta}'(I) \rangle}{\|\tilde{\alpha}'(I)\| \cdot \|\tilde{\beta}'(I)\|}.$$

Calculant $\langle \tilde{\alpha}'(\mathbf{1}), \tilde{\beta}'(\mathbf{1}) \rangle$,

$$\langle \tilde{\alpha}'(1), \tilde{\beta}'(1) \rangle = \langle \alpha'(1), I_{\varphi}(\beta(1)) \cdot \beta'(1) \rangle = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 4.$$

Llista 2 2.17

També cal veure que:

$$\|\tilde{\alpha}(\mathbf{1})\| = \|\varphi_u(\mathbf{1}, \mathbf{2}) + \varphi_v(\mathbf{1}, \mathbf{2})\| = \sqrt{E(\mathbf{1}, \mathbf{2}) + 2F(\mathbf{1}, \mathbf{2}) + G(\mathbf{1}, \mathbf{2})} = \sqrt{6},$$

$$\|\tilde{\beta}(\mathbf{1})\| = \|\varphi_u(\mathbf{1}, \mathbf{2}) - \varphi_v(\mathbf{1}, \mathbf{2})\| = \sqrt{E(\mathbf{1}, \mathbf{2}) - 2F(\mathbf{1}, \mathbf{2}) + G(\mathbf{1}, \mathbf{2})} = \sqrt{6}.$$

Per tant, $\cos(\measuredangle(\tilde{\alpha}(1), \tilde{\beta}(1))) = \frac{2}{3}$.

3. Sigui $\eta(t)=(3,t)$. Se'ns demana calcular la longitud de la corba $\varphi(\nu(t))=\tilde{\nu}(t)$ entre $t=\frac{\pi}{2}$ i $t=\pi$. Per la regla de la cadena se satisfà $\tilde{\eta}'(t)=\varphi_{v}(\eta(t))$, de manera que $\|\tilde{\eta}'(t)\|=\sqrt{G(\eta(t))}=3$. Per tant,

$$\log\left(\tilde{\eta}; \frac{\pi}{2}, \pi\right) = \int_{\frac{\pi}{2}}^{\pi} 3 \, du = \frac{3\pi}{2}.$$

Exercici 2.17 (Helicoide recte). Sigui φ l'helicoide recte definit per $\varphi(u,v) = (u\cos v, u\sin v, av), (u,v) \in \mathbb{R}^2$. Proveu que:

- 1. φ és una superfície regular reglada amb generatrius $v=v_{o}$.
- 2. El pla tangent a φ al llarg d'una generatriu $v = v_0$ conté aquesta generatriu, i si $\theta(u)$ denota l'angle que forma el pla tangent a φ en un punt (u, v_0) de la generatriu amb l'eix Oz, llavors $\tan \theta(u)$ és proporcional a la distància u del punt $\varphi(u, v_0)$ a l'eix Oz.
- 3. Proveu que φ és una superfície no cilíndrica i trobeu el seu paràmetre de distribució així com la seva línia d'estricció.

Demostració.

- I. Hem de veure que l'helicoide és reglat amb generatrius $\{v = v_o\}$. Veiem que $\varphi(u, v) = (o, o, av) + u(\cos v, \cos v, o) = \alpha(v) + u \cdot w(v)$, pel que φ és reglada. Les generatrius són $L_{v_o} = \{v = v_o\}$.
- 2. Hem de provar que el pla tangent afí a φ en un punt L_{v_o} conté la generatriu. Fixat v_o , un punt arbitrari de L_{v_o} és $p = \varphi(u, v_o) = (o, o, av_o) + u(\cos v_o, \sin v_o, o)$. El pla tangent queda com:

$$\varphi_{u}(u, v_{o}) = (\cos v_{o}, \sin v_{o}, o)$$

$$\varphi_{v}(u, v) = (-u \sin v_{o}, u \cos v_{o}, a)(\varphi_{u} \times \varphi_{v})(u, v_{o}) = (a \sin v_{o}, -a \cos v_{o}, u)$$

$$\implies \pi_{u, v_{o}} = p + \langle (a \sin v_{o}, -a \cos v_{o}, u) \rangle^{\perp}.$$

Volem veure que $L_{v_o} \subset \pi_{u,v_o}$. Sigui $q \in L_{v_o}$,

$$q = \varphi(\tilde{u}, v_o) = (o, o, av_o) + \tilde{u}(\cos v_o, \sin v_o, o).$$

Sabem que $q \in \pi_{u,v_0} \iff q - p \perp (a \sin v_0, -a \cos v_0, u)$. Aleshores:

$$\langle a - p, \varphi_u \times \varphi_v(u, v_o) \rangle = \langle (\tilde{u} \times u)(\cos v_o, \sin v_o, o), (a \sin v_o, -a \cos v_o, u) \rangle = (\tilde{u} - u) \cdot o = o.$$

3. Si $\theta(u)$ és l'angle entre el pla tangent a φ en (u, v_0) i l'eix Oz, demostrar que $\tan(u)$ és proporcional a u. Recordem que l'angle entre una recta i un pla és el suplementari $\frac{\pi}{2} - \theta$ de l'angle $\alpha(u)$ entre la recta

i el vector normal a π . Teníem que un vector normal al pla π_{u,v_o} és $\vec{n}=(a\sin v_o,-a\cos v_o,u)$ i un vector director de Oz és (o,o,i). Per tant:

$$\cos(\alpha(u)) = \frac{\langle (a\sin v_{\text{o}}, -a\cos v_{\text{o}}, u), (\text{o}, \text{o}, \text{i}) \rangle}{\|\vec{n}\|} = \frac{u}{\sqrt{a^2 + u^2}}.$$

Com $\theta(u) = \frac{\pi}{2} - \alpha(u) \implies \sin(\theta(u)) = \cos(\alpha(u))$ i, per tant, $\sin(\theta(u)) = \frac{u}{\sqrt{a^2 + u^2}}$. Així doncs, passem a la tangent:

$$\sin^2(\theta(u)) = \frac{u^2}{a^2 + u^2}, \cos^2(\theta(u)) = I - \sin^2(\theta(u)) = \frac{a^2}{a^2 + u^2}, \tan^2(\theta(u)) = \frac{u^2}{a^2},$$

pel que $tan(\theta(u)) = \pm \frac{1}{a} \cdot u$, el que volíem veure.

Exercici 2.18. Trobeu la superfície reglada que té per generatrius les rectes que intersequen les rectes $\{x = 0, z + a = 0\}$, $\{y = 0, z = a\}$ i la circumferència $\{x^2 + y^2 = r^2, z = 0\}$.

Demostració. Se'ns demana trobar una superfície reglada que té per generatrius les rectes que intersequen $r_1: \{x = 0, z = -a\}, r_2: \{y = 0, z = a\}, C: \{x^2 + y^2 = r^2, z = o\}$. Plantegem les equacions paramètriques:

$$r_1: (o, o, -a) + \lambda(i, o, o), r_2: (o, o, a) + \mu(o, i, o).$$

Donat un $p=(x,y,o)\in C$, siguin $q_1\in r_1$ i $q_2\in r_2$ tals que la recta $q_1\vee q_2$ conté p. Escrivim q_1 i q_2 com a punts arbitraris, és a dir, $q_1=(\lambda,o,-a)$ i $q_2=(\mu,o,a)$. És a dir, $r_p=q_1+\langle q_2-q_1\rangle=(o,\lambda,-a)+\gamma(\mu,-\lambda,2a)$ i imposem $p=(x,y,o)\in r_p$ amb tercera coordenada $o=-a+2\gamma a$ i $\gamma=\frac{1}{2}$. Així:

$$x = \frac{1}{2}\mu \implies \mu = 2x$$

$$y = -\frac{1}{2}\lambda \implies \lambda = -2y$$

$$q_1 = (0, -2y, -a), \ q_2 = (2x, 0, a).$$

Exercici 2.19. Sigui S un subconjunt $d \mathbb{R}^3$ amb la propietat de què per a cada $p \in S$ existeix un obert $p \in V \subset S$ tal que V és una superfície. Aleshores, S és una superfície.

Demostració. Sigui $p \in S$ i provem que per a cada p existeix una parametrització. Per hipòtesi, existeix un obert $\mathcal{V} \subset S$ de p que és una superfície. Per tant, existeix $X : \mathcal{U} \subset \mathbb{R}^2 \longrightarrow \mathcal{W} \subset \mathcal{V} \subset \mathbb{R}^3$ una parametrització per a la superfície \mathcal{V} . Vegem que $X : \mathcal{U} \longrightarrow \mathcal{W}$ també és una parametrització d'S. Observem que X és un homeomorfisme (transitivitat de les topologies induïdes), $X : \mathcal{U} \longrightarrow \mathbb{R}^3$ és diferenciable i el rang de la derivada és 2 (és una qüestió local).

L'únic que queda per provar és que W és un obert en S, però això és cert ja que $W \subset V \subset S$ és un obert d'V i V també ho és d'S.

3

LLISTA 3

Sigui $S \subset \mathbb{R}^3$ una superfície regular, $f: S \longrightarrow \mathbb{R}^m$ una aplicació. f és diferenciable si, i només si, $f \circ \varphi: \mathcal{U}_{\varphi} \longrightarrow \mathbb{R}^3$ és diferenciable per a tota carta (\mathcal{U}, φ) . A més, $df|_p: T_p(S) \longrightarrow \mathbb{R}^m$ és l'única aplicació lineal tal que:

$$df|_{p}(\varphi_{u}) = \frac{\partial f_{\circ}\varphi}{\partial u}, \ df|_{p}(\varphi_{v}) = \frac{\partial f_{\circ}\varphi}{\partial v}.$$
 (3.1)

Exercici 3.1. Sigui V un obert de \mathbb{R}^3 , S una superfície regular continguda a V, i $F:V\longrightarrow\mathbb{R}^m$ una aplicació diferenciable. Demostreu que la restricció $f:=F|_S:S\longrightarrow\mathbb{R}^m$ és diferenciable. A més, per a tot $p\in S$:

$$d_p f = \left(d_p F \right)_{\mid T_p S}$$

Aplicació del resultat anterior: Siguin V un obert de \mathbb{R}^3 , $f:V\longrightarrow\mathbb{R}$ una funció diferenciable, $a\in f(V)$ un valor regular de f i $S=f^{-1}(a)$. Demostreu que $N:S\longrightarrow\mathbb{R}^3$ definida per

$$N(\mathbf{x}) = \frac{\operatorname{grad} f(\mathbf{x})}{|\operatorname{grad} f(\mathbf{x})|}$$

és una aplicació diferenciable tal que $N(\mathbf{x})$ és un vector normal unitari de S en \mathbf{x} , per a tot $\mathbf{x} \in S$.

Demostració. Sigui $S \subset V$ una superfície regular, definim $f: S \longrightarrow \mathbb{R}^m$ tal que f(p) = F(p).

I. Volem veure que f és diferenciable. Sigui $\varphi: U \longrightarrow \mathbb{R}^3$ una carta de S. Tenim $f \circ \varphi = F \circ \varphi$. Però $F \circ \varphi$ és composició d'aplicacions diferenciables entre oberts de $\mathbb{R}^2, \mathbb{R}^3, \dots, \mathbb{R}^m$.

$$\mathcal{U} \xrightarrow{\varphi} \mathcal{V} \xrightarrow{F} \mathbb{R}^m$$

Com a conclusió, f és diferenciable.

2. Volem veure que $\forall p \in S$, tenim que $d_p(f) = d_p(F)|_{T_p(S)}$; per això, veurem que $d_p(F)|_{T_p(S)}$ satisfà (3.1). Sigui (\mathcal{U}, φ) una carta de S tal que $\varphi : \mathcal{U} \longrightarrow \mathbb{R}^3$.

$$d_p(F(\varphi_u)) = \frac{\partial (F \circ \varphi)}{\partial u} = \frac{\partial f \circ \varphi}{\partial u}$$
$$d_p(F(\varphi_v)) = \frac{\partial (F \circ \varphi)}{\partial v} = \frac{\partial f \circ \varphi}{\partial v}$$

 $d_p(F)$ actua en una base $\{\varphi_u, \varphi_v\}|_p$ igual que $d_p(f)$, pel que $d_p(F)|_{T_p(S)} = d_p(f)$.

3. Sigui $f: \mathcal{V} \longrightarrow \mathbb{R}$ una funció diferenciable de $\mathcal{V} \subset \mathbb{R}^3$, $S = f^{-1}(a)$ on a és un valor regular (i.e. S és superfície regular continguda en \mathcal{V}). Volem veure que N definit com:

$$\begin{array}{cccc} N: & S & \longrightarrow & \mathbb{R}^3 \\ & p & \longmapsto & \frac{\nabla f(p)}{\|\nabla f(p)\|}. \end{array}$$

és diferenciable i N(p) és un vector normal unitari de S en p. Sigui $\mathcal{U} = \{p \in \mathcal{V} \mid \nabla f(p) \neq (0, 0, 0)\} \subset \mathbb{R}^3$, que és un obert de \mathcal{V} ja que és el complementari d'un tancat. Aleshores, $F : \mathcal{U} \longrightarrow \mathbb{R}^m$ definit de la següent manera està ben definit (el gradient mai no s'anul·la):

$$F: \quad \mathcal{U} \longrightarrow \mathbb{R}^m$$
$$(x, y, z) \longmapsto \frac{\nabla f(x, y, z)}{\|\nabla f(x, y, z)\|}.$$

A més, $S \subset \mathcal{U}$. Pel primer apartat, $F|_S = N$ és diferenciable. Sabem (pel Teorema del Gradient) que $T_p(S) = \langle \nabla f_p \rangle^{\perp}$ i $N(p) \parallel \nabla f$ i N(p) és normal a S en p i $\parallel N(p) \parallel = 1$.

Exercici 3.2. Proveu que la diferencial de l'aplicació normal d'un pla o d'una esfera és una homotècia amb raó constant. Recíprocament, proveu que si S és una superfície connexa tal que la diferencial de N en cada punt és una homotècia, aleshores la raó de la homotècia no depèn del punt i S està continguda en un pla o en una esfera.

Demostració.

- \Rightarrow Donada una superfície S connexa, posem el camp normal $N:S\longrightarrow S^2\subset\mathbb{R}^3$. Si S és un pla, $N(p)=\vec{v}$ per un vector unitari \vec{v} i N és constant, a més que $d_p(N)\equiv$ o (es pot formalitzar per cartes). Si S és una esfera $S=\{x^2+y^2+z^2=r^2\}$, aleshores $N(x,y,z)=\pm\frac{(x,y,z)}{r}\in\mathbb{R}^3$. Fixem-nos que $N=F|_S$ on $F:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ tal que $(x,y,z)\longmapsto\frac{(x,y,z)}{r}$, pel que F és diferenciable. Com F és lineal, dF=F i $d_p(N)=dF|_{T_p(S)}$ i per tant és una homotècia de raó $\frac{1}{r}$.
- \Leftarrow Per hipòtesi, existeix una aplicació $\lambda:S\longrightarrow\mathbb{R}$ tal que $v\in T_p(S)$ compleix $d_p(N(v))=\lambda(p)\cdot v$. En cap moment hem dit, però, que λ sigui diferenciable. Per veure que λ és constant, vegem que ho és (diferenciable) i que $d_p(\lambda)=$ 0, per a tot $p\in S$. Sigui una carta (\mathcal{U},φ) de S tal que $\varphi:\mathcal{U}\longrightarrow\mathbb{R}^3$, compatible amb l'orientació donada per N (cf. Teoria) i \mathcal{U} sigui connex. Per tant,

$$\begin{split} \tilde{N}(u,v) &= (N \circ \varphi)(u,v) = \frac{\varphi_u \times \varphi_v}{\|\varphi_u \times \varphi_v\|} \\ \frac{\partial \tilde{N}}{\partial u} &= \frac{\partial N \circ \varphi}{\partial u} = dN|_{\varphi(u,v)}(\varphi_u(u,v)) = \lambda(\varphi(u,v)) \cdot \varphi_u(u,v) \\ \frac{\partial \tilde{N}}{\partial v} &= \frac{\partial N \circ \varphi}{\partial v} = dN|_{\varphi(u,v)}(\varphi_v(u,v)) = \lambda(\varphi(u,v)) \cdot \varphi_v(u,v). \end{split}$$

Fixem-nos que si agafem $\mu = \lambda \circ \varphi$, se satisfà $\tilde{N}_u = \mu \varphi_u$ i $\tilde{N}_v = \mu \varphi_v$, i tenim $\mu = \frac{\langle \tilde{N}_u, \varphi_u \rangle}{\langle \varphi_u, \varphi_u \rangle}$ i, per tant, μ és diferenciable. Com φ era arbitrària, λ és diferenciable. Notem que:

$$\tilde{N}_{uv} = \frac{\partial \tilde{N}_{u}}{\partial v} = \frac{\partial \mu}{\partial v} \cdot \phi_{u}(u, v) + \mu \cdot \phi_{uv}(u, v),$$

$$\tilde{N}_{vu} = \frac{\partial \tilde{N}_{v}}{\partial u} = \frac{\partial \mu}{\partial u} \cdot \phi_{v}(u, v) + \mu \cdot \phi_{vu}(u, v).$$

Com $\tilde{N}_{uv}=\tilde{N}_{vu}$ i $\varphi_{uv}=\varphi_{vu}$, restant les dues igualtats anteriors obtenim:

$$\frac{\partial \mu}{\partial v}\phi_u - \frac{\partial \mu}{\partial u}\phi_v = 0.$$

 $\{\phi_u, \phi_v\}$ són base, aleshores $\frac{\partial \mu}{\partial u} = 0$ i $d\mu = 0$; $\frac{\partial \mu}{\partial v} = 0$ i $d\lambda = 0$. I amb això hem demostrat que la homotècia és constant.

Exercici 3.3. Sigui S la gràfica de $z = x^2 + ay^2 - y^3$, i $p = (0, 0, 0) \in S$. Classifiqueu, segons les curvatures media i de Gauss, el punt p en funció del paràmetre $a \in \mathbb{R}$.

Exercici 3.4. Sigui S la gràfica d'una funció z = h(x, y) tal que h(0, 0) = 0 i $dh_{(0,0)} = 0$. Sigui p = (0,0,0) i suposem que S està orientada de manera que N(p) = (0,0,1). Proveu que, en la base $\mathbf{e}_1 = (1,0,0)$, $\mathbf{e}_2 = (0,1,0)$ de T_pS , la matriu de l'endomorfisme d_pN és la matriu hessiana de -h en (0,0).

Demostració. Tenim la carta global (\mathcal{U} , φ), definida per $\varphi(u,v) = (u,v,h(u,v))$; podem obtenir fàcilment les derivades parcials $\varphi_u = (i, o, h_u)$ i $\varphi_v = (o, i, h_v)$, pel que $\varphi_u \times \varphi_v = (-h_u, h_v, i)$. Aleshores,

$$\tilde{N}(u,v) = N \circ \varphi(u,v) = \frac{(-h_u, h_v, 1)}{\|(-h_u, h_v, 1)\|} = \frac{(-h_u, h_v, 1)}{\sqrt{1 + h_u^2 + h_v^2}}, \ N(p) = \tilde{N}(0, 0) = (0, 0, 1).$$

Resulta que amb això podem dir que φ és compatible amb la orientació. Se satisfà que $p=(o,o,o)=\varphi(o,o)$. Per calcular la matriu de $d_p(N)$ en la base $\varphi_u(o,o)=(i,o,o)$ i $\varphi_v(o,o)=(o,i,o)$ hem d'escriure $\tilde{N}_u(o,o)$ i $\tilde{N}_v(o,o)$ com a combinació lineal dels vectors $\varphi_u(o,o)$, $\varphi_v(o,o)$. Definit $g(u,v)=\|\varphi_u\times\varphi_v\|$, se satisfà:

$$\tilde{N}_{u} = \frac{(-h_{uu}, -h_{vu}, o) \cdot g - (-h_{u}, -h_{v}, \mathbf{I}) \frac{\partial g}{\partial u}}{g^{2}}, \quad \frac{\partial g}{\partial u} = \frac{2h_{u}h_{uu} + 2h_{v}h_{vu}}{2g}.$$

Com $h_u(o, o) = h_v(o, o) = o$ per hipòtesi obtenim $\varphi_u(o, o) = (i, o, o)$ i $\varphi_v(o, o) = (o, i, o)$ i també:

$$g(o, o) = \sqrt{1 + h_u^2(o, o) + h_v^2(o, o)} = 1, \ \frac{\partial g}{\partial u}(o, o) = 0,$$

i per tant

$$N_u(o, o) = (-h_{uu}(o, o), -h_{vu}(o, o), o) = -h_{uu}(o, o)\varphi_u(o, o) - h_{vu}(o, o)\varphi_v(o, o).$$

$$N_v(o, o) = (-h_{uv}(o, o), -h_{vv}(o, o), o) = -h_{uv}(o, o)\varphi_u(o, o) - h_{vv}(o, o)\varphi_v(o, o).$$

Per tant, la matriu de $d_p(N)$ en base e_1, e_2 és:

$$\begin{pmatrix} -h_{uu}(o,o) & -h_{vu}(o,o) \\ -h_{uv}(o,o) & -h_{vv}(o,o) \end{pmatrix} = -H_{e_b}(o,o).$$

Exercici 3.5. Sigui S una superfície de revolució i suposem que:

$$\varphi(u,v) = (a(u)\cos v, a(u)\sin v, b(u)), \ u_0 < u < u_1, \ o < v < 2\pi, \ a(u) > o,$$

és una carta de S. Notem $c(u) = \|(a'(u), b'(u)\|$, sigui $\alpha(u) = (a(u), o, b(u))$. Proveu les següents fórmules:

$$k_1(u,v) = \frac{a'b'' - a''b'}{c^3}(u) = k_\alpha(u), \ k_2 = \frac{b'}{ac}, \ K = \frac{b'(a'b'' - a''b')}{ac^4}, \ H = \frac{a'b'' - a''b'}{2c^3} + \frac{b'}{2ac}$$

on $k_{\alpha}(u)$ és la curvatura d'a. Concloure que $K(\varphi(u,v)) = 0$ si $k_{\alpha}(u) = 0$, en canvi si $k_{\alpha}(u) \neq 0$, el signe de $K(\varphi(u,v))$ depèn de la concavitat de la corba $\alpha(u) = (a(u),0,b(u))$ en relació a l'eix Oz. Proveu que els punts d'inflexió de la corba α tals que la tangent és horitzontal formen un paral·lel de punts plans.

Demostració. Derivant,

$$\varphi_{u} = (a'\cos v, a'\sin v, b'), \quad \varphi_{v} = (-a\sin v, a\cos v, o), \quad \tilde{N} = \frac{\varphi_{u} \times \varphi_{v}}{\|\varphi_{u} \times \varphi_{v}\|} = \frac{(-b'\cos v, -b'\sin v, a')}{c}$$

$$\tilde{N}_{u} = \frac{1}{c^{2}} \left(-b''\cos v \cdot c + b'\cos v \frac{a'a'' + b'b''}{c}, -b''\sin v \cdot c + b'\sin v \frac{a'a'' + b'b''}{c}, a''c - a'\frac{a'a'' + b'b''}{c} \right)$$

$$= \left(\frac{b'a'' - b''a'}{c^{3}} \right) \varphi_{u}$$

$$\tilde{N}_{v} = \frac{1}{c} \left(b'\sin v, -b'\cos v, o \right) = -\frac{b'}{ac} \varphi_{v}$$

Els valors propis són:

$$\begin{split} k_{1}(u,v) &= \frac{b'a'' - b''a'}{c^{3}} = k_{\alpha}(u), \ k_{2}(u,v) = -\frac{b}{ac}, \\ k_{3}(u,v) &= \frac{b'(a'b'' - b'a'')}{ac^{4}}, \ H(u,v) = -\frac{1}{2} \left(\frac{b'a'' - b''a'}{c^{3}} - \frac{b'}{ac} \right). \end{split}$$

Concloem que si $K(\varphi(u,v)) = k_{\alpha}(u) = 0$, aleshores $k_{1}(u,v) = 0$ i per tant k(u,v) = 0. Si ara posem $k_{\alpha}(u) \neq 0$ i definim la corba $\alpha(u) = (\alpha(u), 0, b(u))$. Els punts d'inflexió de la corba (on $k_{\alpha}(u) = 0$) on la corba és horitzontal (b' = 0) corresponen a punts plans de la superfície.

$$k_1(u,v) = 0$$
 $k_2(u,v) = 0$ $\Longrightarrow k = 0, H = 0 \Longrightarrow \varphi(u,v)$ és un punt pla.

Exercici 3.6. Proveu que si un pla és tangent a una superfície regular orientable al llarg d'una corba, llavors els punts d'aquesta corba tenen curvatura de Gauss nul·la. Concloure a partir d'això que les superfícies desenvolupables tenen curvatura de Gauss igual a zero.

Demostració. La idea seria veure que $K(\alpha(t)) = o$ per a tot $t \in \mathbb{R}$, i volem veure que $\alpha'(t)$ és un vector propi de $d_{\alpha(t)}(N)$. Sigui $N: S \longrightarrow \mathbb{S}^2$ l'aplicació de Gauss i definim $N \circ \alpha: I \longrightarrow \mathbb{S}^2$. Com que el pla π és tangent a S en tot punt $\alpha(t)$, N és constant al llarg d' α (si es vol, $T_{\alpha(t)}(S) = \pi$, per a tot t); és a dir, $N(\alpha(t))$ és constant. Derivant, $d_{\alpha(t)}(N(\alpha'(t))) = \vec{o}$. α és 1-regular, pel que $\alpha'(t) \neq o$ i el rang és rang $(d_{\alpha(t)}(N)) < 2$, per a tot $t \in I$. Per tant, $\det(d_{\alpha(t)}(N)) = o$ i $K(\alpha(t)) = o$.

A partir d'això, se'ns demana concloure que les superfícies desenvolupables tenen curvatura de Gauss igual a zero. Val la pena recordar la següent definició (no la numerem).

Definició. Sigui $\varphi : \mathcal{U} \longrightarrow \mathbb{R}^3$, $\mathcal{U} \subset \mathbb{R}^2$ un obert, definida per $\varphi(u,v) = \alpha(u) + v \cdot w(u)$. És desenvolupable si $\forall u_o$ el vector normal de φ és constant al llarg de la generatriu $L_{u_o} = \{\varphi(u_o,v) \mid v \in \mathbb{R}\}$.

Donat (u_0, v_0) , està a la corba $L_{u_0}(v) = \varphi(u_0, v)$, que està continguda en un pla tangent a S, $\varphi(u_0, v_0) + \langle N(u_0, v_0) \rangle^{\perp}$.

Exercici 3.7. Sigui S una superfície regular orientable. Proveu que si $\alpha: I \longrightarrow S$ és una corba 1-regular d'S formada per punts plans d'S, llavors α és una corba plana. Exemple: sobre $\varphi(u,v) = ((1+u)\cos v, v(1+u)\sin v, u^4)$ la corba coordenada u=1 està formada per punts plans.

Demostració. La idea d'aquesta demostració passa per veure que N no varia al llarg d' α , és a dir, $d_{\alpha(t)}N(\alpha'(t))=\vec{0}$, per a tot t. Sigui A(t) la matriu de $d_{\alpha(t)}(N)$ en base $\{\varphi_u, \varphi_v\}$ per a certa carta $(\mathcal{U}, \varphi), \varphi: \mathcal{U} \longrightarrow \mathbb{R}^3$ que conté $\alpha(t)$. Sabem que $k(\alpha(t)) = \det(A(t))$ i $H(\alpha(t)) = -\frac{1}{2}\operatorname{tr}(A(t))$. Que $\det(A(t)) = 0$ implica que 0 és valor propi i $\operatorname{tr}(A(t)) = 0$, la suma dels VAPs, ens diu que 0 és VAP de multiplicitat 2. Ara bé, $d_{\alpha(t)}(N)$ és un endomorfisme simètric; per tant, diagonalitza i $d_{\alpha(t)}(N)$ és idènticament zero. Com a conclusió, resulta que $d_{\alpha(t)}(N(\alpha'(t)))$, per a tot t, pel que N no varia al llarg de la corba.

Definim $\pi: \alpha(t_0) + \langle N(\alpha(t_0)) \rangle^{\perp}$, pel que donat $\alpha(t)$, cal demostrar que $\alpha(t) \in \pi$. Sigui $g(t) = \langle \alpha(t) - \alpha(t_0), N(\alpha(t_0)) \rangle = 0$, que clarament compleix $g(t_0) = 0$. Derivant,

$$g'(t) = \langle \alpha'(t), N(\alpha(t_0)) \rangle = \langle \alpha'(t), N(\alpha(t)) \rangle = 0.$$

Exercici 3.8 (Superfícies reglades no cilíndriques i curvatura de Gauss). Sigui $\varphi(u,v) = \alpha(u) + v \cdot w(u)$ una superfície reglada no cilíndrica tal que ||w|| = 1 i $\langle \alpha', w' \rangle = 0$. Sigui $\lambda = \frac{[\alpha', w, w']}{||w'||^2}$.

- 1. Trobeu la primera forma fonamental de φ i proveu que $EG F^2 = (\lambda^2 + v^2) ||w'||^2$.
- 2. Trobeu els coeficients f, g de la segona forma fonamental i proveu que $K(u,v) = -\frac{\lambda^2(u)}{(\lambda^2(u)+v^2)^2}$.
- 3. Proveu que si S és una superfície el·líptica llavors S no pot ser reglada.

Demostració.

I. Sabem que $||w||^2 = \langle w, w \rangle = 1$ i derivant $\langle w', w \rangle = 0$. Derivant, ara sobre φ , $\varphi_u = \alpha'(u) + v \cdot w'(u)$ i $\varphi_v = w(u)$. Si seguim derivant, $\varphi_{uu} = \alpha''(u) + vw''(u)$, $\varphi_{uv} = w'(u)$ i $\varphi_{vv} = 0$. Amb tot, podem calcular $EG - F^2$:

$$E = \langle \varphi_u, \varphi_u \rangle = \langle \alpha' + vw', \alpha' + vw' \rangle = \|\alpha\|^2 + v^2 \|w'\|^2.$$

$$F = \langle \alpha' + vw', w \rangle = \langle \alpha', w \rangle + v \langle w', w \rangle = \langle \alpha', w \rangle.$$

$$G = \langle w, w \rangle = \|w\|^2 = 1.$$

$$EG - F^2 = \|\alpha'\|^2 + v^2 \|w'\|^2 - \langle \alpha', w \rangle^2 = \left(\frac{\|\alpha'\|^2 - \langle \alpha', w \rangle^2}{\|w'\|^2} + v^2\right) \|w'\|^2.$$

Definim $\tilde{T} = \frac{(\|\alpha'\|^2 - \langle \alpha', w \rangle^2)}{\|w'\|^2}$. Sabem que $[\alpha', w, w'] = \langle \alpha' \times w, w' \rangle$. Tenim w, w' linealment independents⁷, $\langle \alpha', w' \rangle = 0$ (per hipòtesi de l'enunciat) i $\langle w, w' \rangle = 0$ (ho hem vist al principi). Tot plegat $\alpha' \times w$ és paral·lel a w' i això implica que $\alpha' \times w$ és perpendicular a $w' \times w$. D'altra banda, com $\langle w, w \rangle = 1$

⁶ Usem que N és constant al llarg de α , i.e. $N(\alpha(t_0)) = N(\alpha(t))$ per a tot t. En la següent igualtat, cal observar que $\alpha'(t) \in T_{\alpha(t)}(S) = \langle N(\alpha(t)) \rangle^{\perp}$.

⁷ Justament pel fet que la superfície és reglada i no cilíndrica, ja que aquesta última condició ens dona $w \times w' \neq o$.

(ho hem vist al principi) i ||w|| = 1, se satisfà $||w' \times w|| = ||w'||^2$. Prenent el vector unitari $\frac{w'}{||w'||}$, podríem haver posat:

$$\alpha' \times w = \frac{\langle \alpha' \times w, w' \rangle}{\|w'\|^2} \cdot w' = \frac{\|\alpha' \times w\|}{\|w'\|} \cdot w' = \lambda \|w'\|^2 \implies \|\alpha' \times w\|^2 = \lambda^2 \|w'\|^2.$$

I combinant els càlculs anteriors, $EG - F^2 = (\lambda^2 + v^2) \cdot ||w'||^2$.

Observació 3.9. També podríem haver proposat, gràcies a la fórmula de Lagrange:

$$\|\alpha' \times w\|^2 = \langle \alpha' \times w, \alpha' \times w \rangle = \begin{vmatrix} \langle \alpha', \alpha' \rangle & \langle \alpha', w \rangle \\ \langle \alpha', w \rangle & \langle w, w \rangle \end{vmatrix} = \|\alpha'\|^2 - \langle \alpha', w \rangle^2.$$

Per tant,

$$\tilde{T} = \frac{\|\alpha'\|^2 - \langle \alpha', w \rangle^2}{\|w'\|^2} = \frac{\langle \alpha' \times w, \alpha' \times w \rangle}{\|w'\|^2} = \lambda.$$

Com volíem veure.

2. Recordem que la segona forma fonamental s'escriu com:

$$\mathbb{I}_{\varphi} = \begin{pmatrix} e & f \\ f & g \end{pmatrix}, \ e = \frac{[\varphi_u, \varphi_v, \varphi_{uu}]}{\sqrt{EG - F^2}}, \ f = \frac{[\varphi_u, \varphi_v, \varphi_{uv}]}{\sqrt{EG - F^2}}, \ g = \frac{[\varphi_u, \varphi_v, \varphi_{vv}]}{\sqrt{EG - F^2}}$$

Ara, $\varphi_u = \alpha' + vw'$, $\varphi_v = w(u)$, $\varphi_{uv} = w'(u)$ i $\varphi_{vv} = 0$, pel que:

$$g = 0$$

$$f = \frac{[\alpha' + vw', w, w']}{\sqrt{\lambda^2 + v^2} \cdot |w'|} = \frac{[\alpha', w, w']}{\sqrt{\lambda^2 + v^2} \cdot ||w'||} = \frac{||w'||^2 \cdot \lambda}{\sqrt{\lambda^2 + v^2} \cdot ||w'||} = \frac{\lambda \cdot ||w'||}{\sqrt{\lambda^2 + v^2}}.$$

Sabem $K(u, v) = \frac{eg - f^2}{EG - F^2} = \frac{-\lambda^2 ||w'||}{(\lambda^2 + v^2)^2} \le o.$

3. Observem que el segon apartat implica que no pot ser reglada en el sentit del primer apartat. Demostrarem que si S és el·líptica, no pot contenir cap segment de recta. Suposem que existeix un segment de recta $\alpha: [o, \varepsilon] \longrightarrow S$, on $\alpha(t) = p + t\vec{v}$ (p un punt de la recta i \vec{v} el vector director de la mateixa). Per a un $\varepsilon > o$ prou petit, podem suposar que $\alpha(t) \in \text{im}(\varphi)$ per una carta de S. Tenim $\alpha'(t) = v$ i com $\alpha(t) \in S$ per a tot t,

$$\alpha'(t) \in T_{\alpha(t)}(S) \iff \langle \alpha'(t), N(\alpha(t)) \rangle = 0 \xrightarrow{\frac{\partial}{\partial t}} \langle v, \partial_t(N(\alpha(t))) \rangle = 0$$

$$\iff \langle v, d_{\alpha(t)}(N(\alpha'(t))) \rangle = 0 \iff \langle v, d_{\alpha(t)}(N(v)) \rangle = 0 \iff -\mathbb{I}_{\alpha(t)}(v, v) = 0.$$

Ara, com usem $-\mathbb{I}_{\alpha(t)}(v,v) = 0$ per veure que $K(\alpha(t)) > 0$?

Proposició 3.10 (Equacions de Weingarten). La matriu de $d_{\alpha(t)}(N)$ en base $\{\varphi_u, \varphi_v\}$ és:

$$A = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} = -\begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} e & f \\ f & g \end{pmatrix} = -I_{\varphi}^{-1} \cdot \mathbb{I}_{\varphi}.$$

Llista 3 3.13

Sabem que $\det(I_{\varphi}) > 0$ i, a més, que \mathbb{I}_{φ} no és definida positiva, ni definida negativa (els vaps de \mathbb{I}_{φ} satisfan $\lambda \mu \leq 0$), pel que $\det(\mathbb{I}_{\varphi}) \leq 0$.

Observació 3.11. Quan prenem determinants d'una matriu, el signe «menys» de davant, no multiplica el determinant! Quan estem en dimensió 2, tenim que el determinant de -A és el determinant de la mateixa matriu A (ja que és com multiplicar dues files per -1, i per tant el -1 surt dues vegades).

Vist aquest petit detall, acabem l'argument. Com el determinant de la primera forma fonamental és positiu, el determinant de la segona forma fonamental \leq 0, i el signe menys no s'ha de tenir en compte en calcular el determinant, deduïm que el determinant de l'endomorfisme de Wiengarten ha de ser \leq 0. Per tant, la superfície no pot ser reglada.

Exercici 3.12. Siguin S i M les superfícies definides per les cartes $\varphi(u,v) = (u\cos v, u\sin v, \log u)$ ($o < u, o < v < 2\pi$) i $\psi(u,v) = (u\cos v, u\sin v, v)$ ($o < u, o < v < 2\pi$), respectivament. Proveu que l'expressió de la curvatura de Gauss en les coordenades (u,v) d'ambdues superfícies és la mateixa, però no tenen els mateixos coeficients de la primera forma fonamental.

Demostració. El primer seria calcular la primera forma fonamental de φ i ψ , respectivament.

1. Calculem $\varphi_u, \varphi_v, \varphi_{uu}, \varphi_{uv}, \varphi_{vv}$:

$$\varphi_{u} = (\cos v, \sin v, \frac{1}{u}) \qquad \varphi_{v} = (-u \sin v, u \cos v, o)
\varphi_{uu} = (o, o, -\frac{1}{u^{2}}) \qquad \varphi_{uv} = \varphi_{vu} = (-\sin v, \cos v, o) \qquad \varphi_{vv} = (-u \cos v, -u \sin v, o)
E = I + \frac{1}{u^{2}} \qquad F = o \qquad G = u^{2}$$

Per tant,

$$e = \frac{-\frac{1}{u}}{\sqrt{u^2 + 1}}, \ g = \frac{u}{\sqrt{1 + u^2}}, \ f = 0 \implies K_{\varphi} = \frac{eg - f^2}{EG - F^2} = -\frac{1}{(u^2 + 1)^2}.$$

2. Anàlogament, podem trobar ψ_u , ψ_v , ψ_{uu} , ψ_{uv} , ψ_{vv} :

$$\psi_{u} = (\cos v, \sin v, o) \qquad \psi_{v} = (-u \sin v, u \cos v, I)
\psi_{uu} = (o, o, o) \qquad \psi_{uv} = \psi_{vu} = (-\sin v, \cos v, o) \qquad \psi_{vv} = (-u \cos v, -u \sin v, o)
E = I \qquad F = o \qquad G = u^{2} + I$$

Per tant,

$$e = 0, f = \frac{-I}{\sqrt{I + u^2}} \implies K_{\psi} = \frac{-f^2}{EG - F^2} = -\frac{I}{(u^2 + I)^2}.$$

Evidentment, l'expressió de la curvatura de Gauss en les coordenades (u, v) d'ambdues superfícies és la mateixa, però no tenen els mateixos coeficients de la primera forma fonamental.

Exercici 3.13. Sigui a > 0. Trobeu la curvatura de Gauss i la curvatura mèdia de l'helicoide recte $\varphi(u, v) = (u \cos v, u \sin v, av)$.

Demostració. Calculem les derivades parcials de φ :

$$\varphi_u = (\cos v, \sin v, o) \quad \varphi_v = (-u \sin v, u \cos v, a)$$

$$\varphi_{uu} = o \quad \varphi_{uv} = (-\sin v, \cos v, o) \quad \varphi_{vv} = (-u \cos v, -u \sin v, o).$$

Per tant, els coeficients de la primera forma fonamental són E=1, F=0, $G=u^2+v^2$ i tot plegat $EG-F^2=u^2+a^2$. Els coeficients de la segona forma fonamental són e=0, $f=-\frac{a}{\sqrt{u^2+a^2}}$ i g=0. Per tant, la curvatura de Gauss és:

$$k = \frac{eg - f^2}{EG - F^2} = -\frac{a^2}{(u^2 + a^2)^2}.$$

I la curvatura mitjana és:

$$H = \frac{eG - 2fF + gE}{2(EG - F^2)} = \frac{o \cdot G - 2f \cdot o + o \cdot E}{2(u^2 + a^2)} = o.$$

Exercici 3.14. Trobeu les línies de curvatura i les línies asimptòtiques de l'helicoide recte.

Observació 3.15. Si S és una superfície regular orientada amb aplicació de Gauss $N:S\longrightarrow \mathbb{S}^2$ i $\alpha:I\longrightarrow S$ és una corba, es diu que α és una línia de curvatura si per a tot $t\in I$ existeix un nombre real ξ tal que $d_{\alpha(t)}(N(\alpha'(t)))=\xi\alpha'(t)$.

Demostració. Definim $\varphi(u,v)=(u\cos v,u\sin v,av), a>0$. Pel que fa a la curvatura, busquem $\alpha:I\longrightarrow S$ tal que $\alpha'(t)$ és un VEP de $d_{\alpha(t)}(N)$. En definitiva, volem $d_{\alpha(t)}(N(\alpha'(t)))=\zeta(t)\cdot\alpha'(t)$. Es pot trobar (de fet, ja ho hem fet en algun exercici anterior) que $E=\mathfrak{I}, F=\mathfrak{o}, G=u^2+a^2, e=\mathfrak{o}, f=\frac{-a}{\sqrt{u^2+a^2}}, g=\mathfrak{o}.$ Les equacions de Wiengarten corresponen a:

$$A = (d(N))_{\varphi_{u},\varphi_{v}} = -I_{\varphi}^{-1} \cdot \mathbb{I}_{\varphi} = -\begin{pmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{O} & u^{2} + a^{2} \end{pmatrix}^{-1} \cdot \begin{pmatrix} \mathbf{O} & -\frac{a}{\sqrt{u^{2} + a^{2}}} \\ -\frac{a}{\sqrt{u^{2} + a^{2}}} & \mathbf{O} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{O} & \frac{1}{u^{2} + a^{2}} \end{pmatrix} \begin{pmatrix} \mathbf{O} & \frac{a}{\sqrt{u^{2} + a^{2}}} \\ \frac{a}{\sqrt{u^{2} + a^{2}}} & \mathbf{O} \end{pmatrix} = \begin{pmatrix} \mathbf{O} & \frac{a}{\sqrt{u^{2} + a^{2}}} \\ \frac{a}{(\sqrt{u^{2} + a^{2}})^{3}} & \mathbf{O} \end{pmatrix}.$$

Diagonalitzem, busquem els VAPs:

$$p_A(\lambda) = \lambda^2 - \frac{a^2}{(u^2 + a^2)^2} \implies \lambda = \frac{\pm a}{u^2 + a^2}, \ \lambda_1 = \frac{a}{u^2 + a^2}, \ \lambda_2 = \frac{-a}{u^2 + a^2}.$$

Pel que fa al vector propi de VAP $\lambda_{\rm I}$, resolem $(A - \lambda Id|\vec{o})$:

$$\begin{pmatrix} -\frac{a}{u^2 + a^2} & \frac{a}{\sqrt{u^2 + a^2}} \\ \frac{a}{(\sqrt{u^2 + a^2})^3} & \frac{a}{u^2 + a^2} \end{pmatrix} L_2 + \frac{1}{\sqrt{u^2 + a^2}} L_1 \begin{pmatrix} -\frac{a}{u^2 + a^2} & \frac{a}{\sqrt{u^2 + a^2}} \\ 0 & 0 \end{pmatrix}$$

Pel que la primera equació queda $-\frac{a}{u^2+a^2}x+\frac{a}{\sqrt{u^2+a^2}}y=0$ i per tant $x=\sqrt{u^2+a^2}y$. El vector propi de VAP λ_2 és $v_2=(\sqrt{u^2+a^2},-1)$. Donada una corba α en coordenades (u(t),v(t)) han de satisfer:

$$u'(t) = \sqrt{u(t)^2 + a^2}, \ v'_{\pm}(t) = \pm 1 \implies u(t) = a \sin h(t + c_0), \ v(t) = \pm t + c_1,$$

 c_0 , c_1 són constants (condicions inicials de la EDOS). Això són les línies de curvatura, $\alpha(t) = \varphi(u(t), v(t))$. Pel que fa a les línies asimptòtiques, són corbes $\beta: J \longrightarrow S$ que satisfan $\langle \beta'(t), d_{\beta(t)}(N(\beta'(t))) \rangle = 0$, per a tot $t \in J$. Equivalentment, si $\beta'(t) = \lambda \varphi_u + \mu \varphi_v$,

$$(\lambda \quad \mu) \begin{pmatrix} e & f \\ f & g \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = 0 \iff \lambda^2 e + 2\lambda \mu f + \mu^2 g = 0.$$

Per càlculs anteriors, e=g=0 i $f\neq 0$, pel que ens queda $\lambda\mu=0$; és a dir, 0 bé $\lambda=0$ o bé $\mu=0$. Per tant, les línies asimptòtiques de S són de la forma $\beta(t)=\varphi(t,c_0)$ i $\beta(t)=\varphi(c_1,t)$.

Exercici 3.16. Trobeu la curvatura geodèsica dels paral·lels d'una superfície de revolució.

Definició. Sigui $\alpha: I \longrightarrow S$ tal que $\alpha \subset S$. El triedre de Darboux $\langle \vec{t}, N, V = t \times N \rangle$. El vector curvatura d' α està definit per $\vec{K} = K_{\alpha} \times \vec{n} \in \langle N, V \rangle$. Per tant, $\vec{K} = K_n \cdot N + K_g \cdot V$, on K_n és la curvatura normal i K_g és la geodèsica. Per fórmules rellevants trobem:

$$K_n = \frac{\langle \alpha'', N \rangle}{\|\alpha'\|^2}, \ K_g = \frac{[\alpha', \alpha'', N]}{\|\alpha'\|^3}.$$

<u>Demostració.</u> Sigui la superfície de revolució $\varphi(u,v)=(a(u)\cos v,a(u)\sin v,b(u)),\ a>0$ i $(\alpha')^2+(\beta')^2\neq 0$. Un paral·lel és $\alpha_{u_0}(t)=(a(u_0)\cos t,a(u_0)\sin t,b(u_0))$ i les successives derivades:

$$\alpha'_{u_0}(t) = (-a(u_0)\sin t, a(u_0)\cos t, o), \ \alpha''_{u_0}(t) = (-a(u_0)\cos t, -a(u_0)\sin t, o)$$

En particular, $\|\alpha'\| = a$, per a tot t. Derivem φ respecte u i v:

$$\varphi_u = (a'\cos v, a'\sin v, b'), \ \varphi_v = (-a\sin v, a\cos v, o).$$

Per tant:

$$N_{\varphi} = \frac{\varphi_u \times \varphi_v}{\|\varphi_u \times \varphi_v\|} = \frac{1}{\sqrt{(a')^2 + (b')^2}} (-b'\cos v, -b'\sin v, a').$$

I podem calcular el determinant $[\alpha'_0, \alpha''_0, \alpha'''_0]$

$$[\alpha_{o}', \alpha_{o}'', \alpha_{o}'''] = \begin{vmatrix} -a(v_{o}) \sin t & -a(v_{o}) \cos t & * \\ a(v_{o}) \cos t & -a(v_{o}) \sin t & * \\ o & o & \frac{a'(v_{o})}{\sqrt{(a')^{2} + (b')^{2}}} \end{vmatrix} = \frac{a' \cdot a^{2}}{\sqrt{(a')^{2} + (b')^{2}}} \implies K_{g} = \frac{a'(v_{o})}{a\sqrt{(a')^{2} + (b')^{2}}}.$$

Acabada de trobar $K_g = \frac{a'(v_0)}{a\sqrt{(a')^2 + (b')^2}}$, ja hem acabat.

Referències

[BL23] Thomas F. BANCHOFF i Stephen LOVETT. Differential Geometry of Curves and Surfaces. 3a ed. CRC Press, 2023. ISBN: 9781032281094, 9781032047782, 9781003295341.