

Mini UAV's: Can Active Flow Control Do It All?

Avi Seifert

Department of Fluid Mechanics and Heat Transfer
Faculty of Engineering
Tel-Aviv University, Tel-Aviv, ISRAEL

What is "All"?

- Eliminate Low Re Effects on Performance
- Control Attitudes and Provide Guidance
- Propulsion by Periodic Excitation
- No Moving Parts

DARPA Proposal, Patent Pending, w/ Wygnanski & Greenblatt

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate or rmation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 2. REPORT TYPE N/A				3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Mini-UAV's: Can Active Flow Control Do It All?				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Tel-Aviv University, Tel-Aviv, Israel				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
13. SUPPLEMENTARY NOTES See also ADM001685, CSP 02-5078, Proceedings for Aerodynamic Issues of Unmanned Air Vehicles (UAV)., The original document contains color images.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	29	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Mini UAV Controlled and Propelled by Periodic Excitation

Proposed mUAV Configuration – No Moving Parts

Wing profile considered for the proposed mUAV.

Zero Pitching Moment – when Flow fully attached.

Form-thrust capability (Glauert, Goldschmied)

Arrows indicate possible actuator placement

Plan-view of the "flying wing" mUAV configuration considered in the proposal

Aerolab

Basic micro and mini UAV performance comparison (Root chord of 15 cm)

Low Re Effects on C_L of the PR8/flap airfoil

Flap element of the PR8 airfoil

Effect of tabs and AFC at low Reynolds numbers

Non dimensional frequency

$$F^{+} \equiv \frac{f \cdot C}{U_{\infty}}$$

Oscillatory momentum coefficient

$$C_{\mu} \equiv \frac{\left\langle u' \right\rangle^{2} A_{slot}}{\frac{1}{2} U_{\infty}^{2} A_{wing}}$$

f=modulating or actuators frequency

C=root chord

 U_{∞} =free stream velocity

A_{wing}= wing area

 A_{slot}

<u>>=excitation velocity fluctuations

Oscillatory Momentum Generator

Performance of the actuator model shown above. Force and required power (left ordinate) and RMS of slot exit velocity (right side ordinate).

> Mean and RMS velocity due to flow entrained by periodic excitation in the absence of jet flow.

Oscillatory Momentum Generator

Velocity profiles showing actuator effect on Jet flow. Blue – jet without actuator, Red – passive Actuator, Green – operating actuator.

Summary – mUAV Activities

- Rugged, No Moving Parts mUAV (45cm, 225gr) proposed
- Real Low Re Effective Operation (10m/s) using AFC
- Available TAU Piezo cavity Installed Actuators

- Controls Aspects (later)
- Guidance (at work)

Active Flow Control of a Delta Wing at High Incidence using Segmented Piezoelectric Actuators

S. Margalit (M.Sc. Student)

Faculty of Mechanical Engineering
Department of Fluid Mechanics and Heat Transfer
Tel-Aviv University

Background & motivation

- The Delta wing is used in jets planes, space shuttle and missiles
- Problematic maneuvering at low speed, high angles of attack
- Vortices → Lift (at high angles of attack)
- Vortex breakdown → stall, loss of control
 - Previous work :
 - Mechanical add ons, fixed or non fixed
 - Steady suction/blowing
 - Mass-less periodic excitation :
 - Does not alter external shape
 - No complex devices, No Plumbing
 - Fast response
 - Energy efficient

UAV_Bath 02 v2 12

Our idea: A "2D" approach to a 3D problem

Previous periodic excitation from the leading edge

- [Gad-el-Hak & Blackwelder 1987]
- [Bachar & Wygnanski 1997]
- [Guy et al 1999 , Siegel et al 2001]
- small vortices that shed from the leading edge roll up to form a large vortex.
 - [Payne & Nelson],[Gad-el-Hack & Blackwelder 1987]

SHEAR LAYER ROLL UP

Rear view of lateral cross section

shed small vortices -> strengthen the primary vortex

The objective of the investigation

Identify the optimal excitation parameters,
 by measuring the aerodynamic forces & moments, using a balance

 Understand the mechanisms of control effectiveness, using pressure and PIV data.

Questions of research

- Is the vortex breakdown delayed, is the vortex strengthened, or perhaps something else all together?
- What is the effect of the wind tunnel boundary layer?
- What is the Effect of Reynolds number?

The Delta wing and actuators slots

Excitation waveforms

Pure Sine

AM (Amplitude Modulation)

BM (Burst Mode) [Used by Amitay et al 1998]

Non dimensional frequency

$$F^{+} \equiv \frac{f \cdot C}{U_{\infty}}$$

Oscillatory momentum coefficient

$$C_{\mu} \equiv \frac{\left\langle u' \right\rangle^{2} A_{slot}}{\frac{1}{2} U_{\infty}^{2} A_{wing}}$$

f=modulating or actuators frequency

C=root chord

 U_{∞} =free stream velocity

A_{wing}= wing area

 A_{slot}

<u>>=excitation velocity fluctuations

Delta Wing - Frequency effect: AM and BM

- BM → larger enhancement
- BM→ wider frequency response
- Sine →Negative effect

Excitation voltage 75 volt.

AM: $C\mu$ =0.41%; BM: 3 cycles $C\mu$ increase with F^+ .

Re=234k, angle of attack 37.8°

Excitation Momentum effect : AM & BM

- BM is more effective than
 AM at much lower input
- BM responses at extremely low input
- Restitution at exit peak velocity of the order of the free stream.

Excitation: BM: F⁺=2.0, C μ changed by amplitude.

Re=234k, angle of attack 37.8°

Normal force vs. angle of attack: AM&BM

- BM enhances normal force by up to 27%
- BM excitation momentum is an order of magnitude less than
 AM
- The "dent" was improved

Excitation: AM: $F^{+}=2.0$, $C\mu$ 0.41%.

BM: F+=1.0, C μ =0.03%.

Re=234k

Delta Wing -Separate activation of actuators

- AM most effective near apex
- BM most effective close to trailing edge
- At AM slots 3-5 degrade C_N
- Beneficial for rolling control

Excitation: AM,F⁺=2.0, C μ =0.19% BM, 3 cycles,F⁺=1.0, C μ =0.006%

Delta Wing - Cross stream Velocity (PIV) at X/C=0.6

- Shear layer→ closer to wing
- Stagnant bubble → vortical flow
- **Velocity enhancement**

BM Excitation Avg of 8 phases

UAV Bath 02 v2

PIV avg of 100 image pairs Angle of attack 37.8° Re=234k

Excitation: BM, F+=1.0, $C\mu$ =0.003%.

10/14/02

Delta Wing - Summary

- Installation of Piezo actuators in very tight space
- Generation of Low Frequency Excitation through Amplitude Modulation and Burst Mode and Non-linear Interaction
- O(10⁻²) Saving in Energy due to VERY Low Duty Cycle
- Control and Guidance Aspects

Closed-loop Vectoring Control of a Turbulent Jet Using Periodic Excitation

D. Rapoport (M.Sc. Student)

Background

- Mechanical strategies pros & cons:
- ✓ Significant engine jet deflection angles
- **★** Weight and Thrust penalty
- Slow response
- Fluidic strategies pros & cons :
- **✓** Fast response (bandwidth around 50 Hz).
- ✓ No moving parts.
- **×** Moderate deflection angles.

Motivation – Jet Vectoring

- Applications for fluidic jet vectoring
 - Gust alleviation
 - Engine out performance
 - mUAV Guidance

- Closed-loop control motivation
 - Enabling fast and smooth transitions between stationary deflection angles
 - Maintaining desired vectoring angles under varying system conditions

Experiment

Axis-symmetric Circular Jet, Diffuser, Excitation

10/14/02

Jet Vectoring using AFC

 Jet vectoring using periodic excitation acting only on the upper quarter of the jet circumference:

Data from current setup

$$C_{\mu} \equiv \frac{j'_{slot}}{J_{jet}} = \frac{\rho A_{slot} u'_{slot}^2}{\rho A_{jet} U_{jet}^2}$$

Less Sensitive to F⁺

Static Measurements

Cavity Mean Pressure vs. Jet Deflection Angle

10/14/02

UAV Bath 02 v2

Plant's Model Identification (Freq. Sweep 1-90Hz)

Closed-loop Step Response

Jet Vectoring Control - Summary

- Closed-loop LINEAR jet vectoring Control:
 - Using Only one Sensor @ Actuator's Cavity for:
 - Health Monitoring
 - System INPUT
 - Jet Deflection Indicator (to close the loop)
 - Zero steady-state error
 - Small overshoot (less than 10%)
 - Bandwidth ≈ 50Hz (S_{td} ≈ 0.17)
- The Linear Controller performs reasonably well over the entire range of deflection angles (outside the design envelope)