L, 2 jet of words that start and and vish some symbol N FA; Pr. 1, 0/04 ()FA odol length w. cds 0 f set of DFA',

l.a. Using product DEA to prove intersution Pmolnut - Final State

\*Word case - 19 states

concetenation markine Concetenation.  $\mathcal{W}^{\prime}$ use RMET to remove E 1, 6, 6, . 62 \* Final Final States
will be removed a in L, - closyre

1. 6 RMET

1. b RMET 9, E, 9, 0, 1, E, Po Po Po Po Po Po de formation of the property o  $\sqrt{3}$   $\frac{\xi}{\xi}$   $\sqrt{3}$   $\frac{\zeta}{\xi}$   $\frac{\zeta}{\xi}$ Lan we say it goes to q  $\gamma$   $\sim$   $\gamma$   $\gamma$   $\sim$   $\gamma$ empty state? 9,9 => 1, 69 => 7 94 => ', 94 >> 92. == > 60

1. b. con4

|            | •          | b            |  |
|------------|------------|--------------|--|
| () o       | 91         | ۲,           |  |
| £ pi       | <b>C</b> 6 | Po           |  |
| <b>%</b> 0 | N, 1 60    | 2~ 1 60      |  |
|            | 20160161   | d 31 6"      |  |
| <b>س</b> ک | η", ρ,     | ٩- ١ ١٩٠ ١٩٠ |  |
| <b>%</b>   | 6015,      | D            |  |
| <b>%</b> 4 | $\phi$     | 60 1 0 2     |  |
|            |            |              |  |
|            |            |              |  |
|            |            |              |  |

Wate include Dia steps for gradage



Queur', [[294 | P1], [201 | P0 | P1], cpo) [[] Quene: [[], [Po] [] [] 

Final PFA

S- Start State
P- Final state

|   |             | €               | b               |
|---|-------------|-----------------|-----------------|
| 5 | ( o o)      | (8,16,9)        | [ 92/ Pa]       |
|   | Collos      | [ 4, 1 6, 16, j | [ 0 2 6 1)      |
|   | [ 921 60]   | [qq, P,]        | [92180181]      |
|   | [ 01160160] | [ Q,   [0  P, ] | [ 23 1 6, 1 60] |
| F | C193        | しゅう             | [ هم ]          |
| F | [ 63 61)    | Cq, 160)        | ر م ع           |
| F | [ 94, 6.]   | [ م ]           | [ po, 40]       |
| F | [q2/60/6.]  | [ 941 P1 , p0]  | [ 92   90   9.] |
|   | C. 97       | しょう             | [ Cp.]          |
|   |             |                 |                 |
|   |             |                 |                 |
|   |             |                 |                 |
|   |             |                 |                 |
|   |             |                 |                 |



1. C. CONT, RMET 6 octosure (direct tions (E-closure (P), symbol)) Po E Po ' 14+ & 2 nd e Nosmies many revolu Line of the state  $\frac{\xi}{\xi}$ 

RMET unt.  $\frac{t}{\sqrt{t}}$ 92 <u>t</u>; 92 <u>t</u>; 92  $\frac{1}{3}$ 93 (93 ) 94 - 194 - 194 

1. c. Lont (5 - closure (din(t-clos(q)))

direct trans

|   |                                        | t - closure         |       |            | 0             | b           |
|---|----------------------------------------|---------------------|-------|------------|---------------|-------------|
| F | Pa                                     | % 16°               | F     | (C) 9      | V° 1 V 1 P°   | 10/92/10    |
|   | V 0                                    | <i>o</i> ∕ <i>b</i> | MKH   | O V        | d = 1 d, 1 6= | 901921°0    |
| K | 9,                                     | lo ( o), I o) p     | 100 E | <i>y</i> , | 1012,160      | 90,60,23,92 |
| F | e √ ∫                                  | 10/12/0/3           | ~/F_  | ~L         | 20 180 1919t  | √1, S. 1 6. |
|   | 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 3 3                 | ζ),   | · ~~~      | 1.1.60        | 9 3         |
|   | J /                                    | °\ 4                |       | 7,1        | , 94          | 90192180    |
| 4 | \<br>\(\)                              |                     |       | 101+       |               |             |

\* Note, include inplici

1.0. J - Kliendy i~ Que'ne NTD defined Quenc'. [[ 90,0/1, 60], [70,12, 60]] Queue: [[po]] [ 20 | 2, | 60] = [ do | 1, | 60) [60] 2 (00) [60] p = 60 160 1 23 100 ] Onone; [[] o | 12 | 60] ( \_ 10 | 60 | 53 | 60)] [2015-160] ~ C do 160 161 64] L 00 1 0/2 (80) Queue, [ [ 00 160 163 180] [ 00 160 161 04)] 

. . .

Final DFA:

K-final state
SU Start state

|                             | 8                  | Ь                 |
|-----------------------------|--------------------|-------------------|
| S F C POJ                   | [ 90   9, ( 8 0 )  | [ 90 / 92 / Po]   |
| [091 V 160]                 | [ 00 1 0 1 1 60)   | [90160162162]     |
| F [ 901 921 P0]             | [201601711 24)     | (40/45/60)        |
|                             | [901601711 347     | [ 901921 Po/93]   |
| [90,180,11,94) <sup>‡</sup> | [ 90, 9, 1 60, 84] | [ 40, 80, 43, 92] |

Program Ontput for reference.

```
DFA.obj __str__ method: Debug print:
start [p0]
final [[p0,q0,q1,q4],[p0,q0,q1],[p0,q0,q2,q3],[p0,q0,q2],[p0]]
trans [p0]:b:[p0,q0,q2]
trans [p0]:a:[p0,q0,q1]
trans [p0,q0,q2]:b:[p0,q0,q2]
trans [p0,q0,q2]:a:[p0,q0,q1,q4]
trans [p0,q0,q1]:b:[p0,q0,q2,q3]
trans [p0,q0,q1]:a:[p0,q0,q1]
trans [p0,q0,q1,q4]:b:[p0,q0,q2,q3]
trans [p0,q0,q1,q4]:a:[p0,q0,q1,q4]
trans [p0,q0,q2,q3]:b:[p0,q0,q2,q3]
trans [p0,q0,q2,q3]:a:[p0,q0,q1,q4]
```

 Stair corse

B

X

2 - 3 (

paic

Aisting.

X \* fX ý 0 0 E'F

 $(A,B)\xrightarrow{0}(B,C)$ 

Finnli CFI

Validation Poir (F, 6)  $(A, B) \xrightarrow{0} (B, C)$ B ( Mactof (H,B) -, (B,F) (L, M) UN(M, I) (F, 6) - (6, M) (B, (5)  $(0, H) \rightarrow (H, C)$ Cin H (marked) 

Pair Validation

(B, D)

(A, E)

(A, E)

(A, E)

(B, D)

(A, E)

(A, E)

(A, E)

(B, D)

(A, E)

(A, E)

(A, E)

(A, E)

· - valid inbisting. Stair Case paic × - disting. X X \* X Final. <del>-</del> E Romeining indisting. Poics. { (A, 6), (A, 0), (B, E), (C, E), (D, G), (E, H) (F, I), (B,H) 3

| Figure out states ties tiest                                                       |
|------------------------------------------------------------------------------------|
| RMET rode.<br>- create NFA obj                                                     |
| tronsfer states & elphabet  suggestion; write &-closure method  to tind &-closures |
| para neter                                                                         |
| tirst e-closure on solution should<br>look like:<br>90', 2 91, 94, 953             |
| see network x parkage                                                              |

3.

tirst clipison vlosure  $\frac{4}{3} \frac{6}{5} \frac{1}{9} \frac{1}{5} \frac{1}{9} \frac{1}{4}$