1.1 数列的极限

1.1.1 数列极限的定义

定义 1.1.1

设 $|x_n|$ 为一数列,若存在常数 a,对于任意的 $\varepsilon > 0$ (不论它多么小),总存在正整数 N,使得当n > N时 $|x_n-a| < \varepsilon$ 恒成立,则称数 a 是数列 $|x_n|$ 的极限,或者称数列 $|x_n|$ 收敛于 a,记为

$$\lim_{n \to \infty} x_n = a \vec{\boxtimes} x_n \to a(n \to \infty)$$

该定义的 $\varepsilon - N^a$ 语言描述是

$$\lim_{n\to\infty}x_n=a\Leftrightarrow \forall \varepsilon>0,\exists \text{正整数}N, \exists n>N \text{时}, \textbf{有}|x_n,-a|<\varepsilon.$$

 $^a \varepsilon - N$ 几何意义: 对于点 a 的任何 ε 邻域即开区间 $(a - \varepsilon, a + \varepsilon)$ 一定存在 N, 当 n < N 即第 N 项以后的点 x_n 都落在 开区间 $(a - \varepsilon, a + \varepsilon)$ 内,而只有有限个 (最多有 N 个) 在区间之外.

在上面的定义中, $\varepsilon > 0$ 的 ε 任意性是非常重要的,只有这样才能表示出无限接近的意义. 总存在正整数 N,使得 n > N 这个条件用于表达 $n \to \infty$ 的过程.

注 1.1.1

- 数列的极限值与数列的前有限列无关,只与后面无穷项有关
- 若数列 $\{a_n\}$ 收敛,则其任何子列 $\{a_{n_k}\}$ 也收敛,且 $\lim_{k\to\infty}a_{n_k}=\lim_{n\to\infty}a_n{}^a$
- $\bullet \quad \lim_{n \to \infty} x_n = a \Leftrightarrow \lim_{k \to \infty} x_{2k-1} = \lim_{k \to \infty} x_{2k} = a$
- 关于数列 $(1 + \frac{1}{n})^n$ 的结论
 - 单调增加

$$-\lim_{n\to\infty} (1+\frac{1}{n})^n = e$$

 a 此条定理提供了一个判断数列发散的方法:1. 至少一个子数列发散.2. 两个子数列收敛, 但是收敛值不同.

题目 1. 证明: 若 $\lim_{n\to\infty} a_n = A$, 则 $\lim_{n\to\infty} |a_n| = |A|$

证明. 已知数列 a_n 极限为 A, 那么 $|a_n-A|<\varepsilon$, 由不等式1可得, $||a_n|-|A||\leqslant |a_n-A|<\varepsilon$, 因此 $\lim_{n\to\infty}|a_n|=|A|$.

题目 1 的注记.

- 1. 此命题反过来则错误, 如取 $a_n = (-1)^n$, 则 $\lim_{n \to \infty} |(-1)^n| = 1$ 。但 $\lim_{n \to \infty} (-1)^n$ 不存在.
- 2. 在本题中若 A=0, 则 $||a_n|-|A||=||a_n|-0|=|a_n-0|$, 即有

$$\lim_{n\to\infty}a_n=0\Leftrightarrow \lim_{n\to\infty}|a_n|=0\,,$$

此结论常用,即若要证明 $\lim_{n\to\infty}a_n=0$,可转换为证明 $\lim_{n\to\infty}|a_n|=0$,由于 $|a_n|\ge 0$,若使用了夹逼准则,只需证明 $|a_n|\le 0$ 即可

3. 此结论对函数亦成立, 即若 $\lim_{x\to x_0}f\left(x\right)=A$, 则 $\lim_{x\to x_0}|f\left(x\right)|=|A|$.

1.1.2 收敛数列的性质

唯一性

定义 1.1.2

如果数列 $\{x_n\}$ 收敛, 那么它的极限唯一

有界性

定义 1.1.3

如果数列 $\{x_n\}$ 收敛, 那么数列 $\{x_n\}$ 一定有界 a .

a如果数列有界, 但是不一定存在极限, 如数列 $(-1)^n$

保号性

定义 1.1.4

如果 $\lim_{n\to\infty}x_n=a$, 且 a>b(或 a<b), 那么存在正整数 N, 当 n>N 时, 都有 $x_n>b$ (或 $x_n< b$. 如果数列 $|x_n|$ 从某项起有 $x_n\geqslant b$ (或 $x_n\leqslant b$), 且 $\lim_{n\to\infty}x_n=a$, 那么 $a\geqslant b$ ($a\leqslant b$) a .

^a其中 b 可以为任意实数, 常考 b=0 的情况

1.2 函数的极限

1.2.1 超实数系

定义 1.2.1: 超实数系的概念

超实数 (Hyperreal number) 是一个包含实数以及无穷大和无穷小的域,它们的绝对值分别大于和小于任何正实数。

注 1.2.1

- 超实数集是为了严格处理无穷量(无穷大量和无穷小量)而提出的。
- 超实数集,或称为非标准实数集,记为*R,是实数集 R 的一个扩张.

1.2.2 邻域

1

定义 1.2.2: 邻域的相关概念

• δ 邻域: 设 x_0 是数轴上一个点, δ 是某一正数, 则称 $(x_0-\delta,x_0+\delta)$ 为点 x_0 的 δ 邻域, 记作 $U(x_0,\delta)$, 即:

$$U(x_0, \delta) = \{x | x_0 - \delta < x < x_0 + \delta\} = \{x | |x - x_0| < \delta\}$$

- 去心 δ 邻域: 定义点 x_0 的去心邻域 $\mathring{U}(x_0, \delta) = \{x | 0 < |x x_0| < \delta\}$
- 左, 右 δ 邻域: $\{x|0 < x x_0 < \delta\}$ 称为点 x_0 的右 δ 邻域, 记作 $U^+(x_0,\delta);\{x|0 < x_0 x < \delta\}$ 称为 点 x_0 的左 δ 邻域, 记作 $U^-(x_0,\delta)$.

1.2.3 函数极限的定义

函数极限的定义主要分为自变量趋于有限值 $(x \to x_0)$ 时的极限和自变量趋于无穷大时函数的极限 $(x \to \infty)$

自变量趋于有限值时的函数极限

定义 1.2.3: 当自变量趋于有限值时函数极限定义

设函数 f(x) 在点 x_0 的某一去心邻域内有定义. 如果存在常数 A, 对于任意给定的正数 ε **(不论它多么小)**^a, 总存在正数 δ , 使得当 x 满足不等式 $0 < |x - x_0| < \delta$ 时, 对应的函数值 f(x) 都满足不等式

$$|f(x) - A| < \varepsilon$$

那么常数 A 就叫做函数 f(x) 当 $x \to x_0$ 时的极限, 记作:

$$\lim_{x \to x} f(x) = A \quad \vec{\boxtimes} f(x) \to A(\stackrel{\iota}{\boxminus} x \to x_0)$$

其 $\varepsilon - N$ 语言为

$$\lim_{x\to x_0} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \underline{+}0 < |x-x_0| < \delta \mathrm{III}, \underline{+}|f(x)-A| < \varepsilon.$$

 $\forall \varepsilon > 0, \exists \delta > 0$ 在证明中, 这两句是白给, 直接写。后面的才是关键。

 $^{a}\varepsilon$ 用于衡量 |f(x)-A| 的值有多小

注 1.2.2

- 1. 在函数极限中 $x\to\infty$ 指的是 $|x|\to\infty$, 需要 x 趋于正无穷和负无穷, 但在数列中的 $n\to\infty$ 是 $n\to+\infty$
- 2. 函数的极限值只与邻域内的函数值有关, 而与该点的函数值无关.

 $^{^1}$ 邻域与区间不同,邻域属于区间的范畴. 但是邻域通常表示"一个局部位置". 比如"点 x_0 的 δ "邻域,可以理解为"点 x_0 "的附近,而区间是明确指出在实数系下的范围

4

单侧极限

定义 1.2.4: 单侧极限的定义

若当 $x \to x_0^-$ 时, f(x) 无限接近于某常数 A, 则常数 A 叫作函数 f(x) 当 $x \to x_0$ 时的**左极限**, 记为

若当 $x \to x_0^+$ 时, f(x) 无限接近于某常数 A, 则常数 A 叫作函数 f(x) 当 $x \to x_0$ 时的**右极限**, 记为

题目 2. 已知
$$\lim_{x\to 0} \left[a \arctan \frac{1}{x} + (1+\mid x\mid) \frac{1}{x} \right]$$
存在,求 a 的值

解答. 由于存在 $\arctan 与 |x|$ 函数,则对于 0 点的极限值需要分左右进行计算.

$$\lim_{x \to 0^{-}} \left[a \arctan \frac{1}{x} + (1 + \mid x \mid) \frac{1}{x} \right] = \lim_{x \to 0^{-}} a \arctan \frac{1}{x} + \lim_{x \to 0^{-}} (1 - x) \frac{1}{x} = -\frac{\pi}{2} a + \frac{1}{e}$$

$$\lim_{x \to 0^{+}} \left[a \arctan \frac{1}{x} + (1 + \mid x \mid) \frac{1}{x} \right] = \lim_{x \to 0^{+}} a \arctan \frac{1}{x} + \lim_{x \to 0^{+}} (1 + x) \frac{1}{x} = \frac{\pi}{2} a + e \stackrel{\text{HWRFE}}{=} \pi e$$

题目 2 的注记. 由于自变量趋向的双向性,以下类型的函数因此需要进行特殊讨论:

- 形如 $f(x) = max\{h(x), g(x)\}$ 此类函数也需要注意在函数变化点的自变量取值问题
- $\lim_{x\to\infty} e^x : \lim_{x\to+\infty} e^x = +\infty, \lim_{x\to-\infty} e^x = 0$
- $\lim_{x \to 0} \frac{\sin x}{|x|}$: $\lim_{x \to 0^+} = \frac{\sin x}{x} = 1$, $\lim_{x \to 0^-} = \frac{\sin x}{-x} = -1$
- $\lim_{x \to \infty} \arctan x : \lim_{x \to +\infty} \arctan x = \frac{\pi}{2}, \lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$
- $\lim_{x\to 0} [x]: \lim_{x\to 0^+} [x] = 0, \lim_{x\to 0^-} [x] = -1$

自变量趋于无穷大时函数的极限

定义 1.2.5: 自变量趋于无穷大时函数极限定义

设函数 f(x) 在点 x_0 的某一去心邻域内有定义. 如果存在常数 A, 对于任意给定的正数 ε .(不论它多么小), 总存在正数 δ , 使得当 x 满足不等式 $0 < |x - x_0| < \delta$ 时, 对应的函数值 f(x) 都满足不等式

$$|f(x) - A| < \varepsilon$$

那么常数 A 叫做函数 f(x) 当 $x \to x_0$ 的极限, 记作:

$$\lim_{x\to x_0} f(x) = A \vec{\boxtimes} f(x) \to A(\stackrel{.}{\boxminus} x \to x_0)$$

其 $\varepsilon - N$ 语言为

$$\lim_{x\to x_0}f(x)=A\Leftrightarrow \forall \varepsilon>0, \exists \delta>0, \leqq 0<|x-x_0|<\delta \text{\rm if}\,, \not|f(x)-A|<\varepsilon.$$

 $\forall \varepsilon > 0, \exists \delta > 0$ 在证明中, 这两句是白给, 直接写。后面的才是关键。

需要注意的是趋向的值不同时, $\varepsilon - N$ 写法不同,不能照抄. 其 $\varepsilon - N$ 的表达为如下表格:

	$f(x) \to A$	$f(x) \to \infty$	$f(x) \to +\infty$	$f(x) \to -\infty$
$x \to x_0$	$\forall \varepsilon > 0, \exists \delta > 0,$	$\forall M > 0, \exists \delta > 0,$	$\forall M>0, \exists \delta>0,$	$\forall M > 0, \exists \delta > 0,$
	使当0 < x - x ₀	使当 $0 < \mid x - x_0 \mid$	使当 $0 < x - x_0 $	使当0 < x - x ₀
	< δ 时,即有	$<\delta$ 时,即有	$<\delta$ 时,即有	$<\delta$ 时,即有
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M.	f(x) < -M
$x \to x_0^+$	$\forall \varepsilon > 0, \exists \delta > 0,$	$\forall M > 0, \exists \delta > 0,$	$\forall M>0, \exists \delta>0,$	$\forall M > 0, \exists \delta > 0,$
	使当 $0 < x - x_0 <$	使当 $0 < x - x_0 <$	使当 $0 < x - x_0 <$	使当 $0 < x - x_0 < \delta$
	δ时,即有	δ 时,即有	δ 时,即有	时,即有
	$ f(x) - A < \varepsilon.$	f(x) > M.	f(x) > M.	f(x) < -M
$x \to x_0^-$	$\forall \varepsilon > 0, \exists \delta > 0,$	$\forall M > 0, \exists \delta > 0,$	$\forall M>0, \exists \delta>0,$	$\forall M > 0, \exists \delta > 0,$
	使当 $0 > x - x_0 >$	使当 $0 > x - x_0 >$	使当 $0 > x - x_0 >$	使当 $0 > x - x_0 >$
	$-\delta$ 时,即有	$-\delta$ 时,即有	$-\delta$ 时,即有	$-\delta$ 时,即有
	$ f(x) - A < \varepsilon.$	f(x) > M.	f(x) > M	f(x) < -M
$x \to \infty$	$\forall \varepsilon > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$
	使当 $ x > X$ 时,	使当 $\mid x \mid > X$	使当 $\mid x \mid > X$	使当 x >X 时,
	即有	时,即有	时,即有	即有
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M	f(x) < -M.
$x \to +\infty$	$\forall \varepsilon > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$	$\forall M > 0, \exists X > 0,$
	使当 x>X 时,	使当 $x > X$ 时,	使当 $x > X$ 时,	使当 x>X 时,
	即有	即有	即有	即有
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M.	f(x) < -M
$x \to -\infty$	$\forall \varepsilon > 0, \exists X > 0,$	$\forall M>0, \exists X>0,$	$\forall M>0, \exists X>0,$	$\forall M>0, \exists X>0,$ 使
	使当 $x < -X$ 时,	使当 $x < -X$	使当 $x < -X$	$\exists x < -X$ 时,即有
	即有	时,即有	时,即有	
	$ f(x) - A < \varepsilon.$	f(x) > M	f(x) > M	f(x) < -M.

注 1.2.3: 上表的部分解释

- 以 $\lim_{x\to x_0}f(x)=A$ 为例: 不管 f(x) 与 A 的距离多近 ($\forall \varepsilon>0$), 总有 x 不断靠近 x_0 , 使得 $|f(x)-A|<\varepsilon$.
- 以 $\lim_{x\to\infty}f(x)=\infty$ 为例: 不管 M 多大,总有当 $x>\infty$ 时,使得 |f(x)>M|,即满足 $\lim_{x\to\infty}f(x)=\infty$.

1.2.4 函数极限的性质

唯一性

定理 1.2.1

如果 $\lim_{x \to x_0} f(x)$ 存在, 那么极限唯一

注 1.2.4: 关于唯一性的说明

- 对于 $x \to \infty$, 意味着 $x \to +\infty$ 且 $x \to -\infty$
- 对于 $x \to x_0$, 意味着 $x \to x_0^+$ 且 $x \to x_0^-$ 对于上述问题, 我们称为自变量取值的"双向性". 以下有一些常见的问题:
 - $-\lim_{x\to\infty}e^x \text{ 不存在, } \lim_{x\to0}\frac{\sin x}{|x|} \text{ 不存在, } \lim_{x\to\infty}\arctan x \text{ 不存在, } \lim_{x\to x_0}[x] \text{ 不存在.}$
 - 其不存在的原因均为分段函数分段点极限表达式不同, 需要分别求左右极限.

注 1.2.5: 极限存在的充要条件

$$\lim_{x\to x_0} f(x) = A \Leftrightarrow \lim_{x\to x_0^-} f(x) = A, \\ \coprod \lim_{x\to x_0^+} f(x) = A^a$$

$$\lim_{x\to x_0} f(x) = A \Leftrightarrow f(x) = A + \alpha(x), \\ \lim_{x\to x_0} \alpha(x) = 0 (无穷小量\alpha(x) = 0)^b$$

^a左右极限都存在且相等

 b 对于此概念, 如果引入超实数系的解释应为 A 是 f(x) 的标准实数部分, 而 f(x) 的值是超实数系下的值, 因此其值应为 $f(x)=A+\alpha(x)$

注 1.2.6: 极限不存在的情况

- 函数在该点附近趋于无穷
- 函数在该点的左右极限只存在一个, 或两者都存在但不相等
- 函数在该点附近不停地震荡
- 该点是函数无定义点的聚点

局部有界性

定理 1.2.2

若极限 $\lim_{x \to x_0} f(x)$ 存在 a , 则 f(x) 在点 x_0 某去心邻域内有界.

^a对局部有界性的描述需要指明是在那个区间上

注 1.2.7: 局部有界性的性质

- 极限存在必有界, 有界函数极限不一定存在.
- 若 y = f(x) 在 [a,b] 上为连续函数,则 f(x) 在 [a,b] 上必有界.
- 若 f(x) 在 (a,b) 内为连续函数,且 $\lim_{x\to a^+}f(x)$ 与 $\lim_{x\to b^-}f(x)$ 都存在,则 f(x) 在 (a,b) 内必 定有界.
- 有界函数与有界函数的和, 差, 积仍为有界函数 a.
- a 商不是有界函数,因为: $y_1=1,y_2=0,rac{y_1}{y_2}=\infty$

题目 3. 在下列区间内, 函数 $f(x) = \frac{x \sin(x-3)}{(x-1)(x-3)^2}$ 有界的是: A:(-2,1) B:(-1,0) C:(1,2) D:(2,3)

解答. 又题意可知, 函数的分段点为 x=3,0,1, 对上述三点求极限, 分析可得, 当 x=3,1 时, 函数极限为 ∞ , 因此函数在上述两点的极限不存在, 因此根据局部有界性的性质可得, 含这两个点的区间无界, 因此排除 A,C,D. 答案为 B.

局部保号性

定理 1.2.3

如果 $\lim_{x\to x_0}f(x)=A$, 且 A>0(或 A<0), 那么存在常数 $\delta>0$, 使得当 $0<|x-x_0|<\delta$ 时有 f(x)>0(f(x)<0) a .

如果在 x_0 的某去心邻域内 $f(x) \geqslant 0$ (或 $f(x) \leqslant 0$), 而且 $\lim_{x \to x_0} f(x) = A$, 那么 $A \leqslant 0$ 或 $(A \le 0)^b$.

 a 如果函数在 x_{0} 附近的极限值为正,那么 x_{0} 附近的函数值为正

对上述定理中,为什么一个可以等于 0,一个不能等于 0?其解释如下: 如果第一个定理中 $A \leq 0$, $f(x) \leq 0$,那么以函数 $f(x) = x^2$ 为例,虽然 $\lim_{x\to 0} f(x) = 0$,但是邻域内的函数值都大于 0. 对于第二个定理中如果 f(x) < 0,A < 0,那么以函数 $f(x) = -x^2$ 为例,虽然邻域内的函数值都小于 0,但是 $\lim_{x\to 0} f(x) = 0$.

注 1.2.8

由保号性可推出保序性: 设 $\lim_{x\to x_0} f(x) = A, \lim_{x\to x_0} g(x) = B,$ 则:

- 2. 若 $\exists \delta > 0$, 当 $x \in \mathring{U}(x_0, \delta)$ 时, $f(x) \geqslant g(x) \Rightarrow A \geqslant B$.

题目 4. 局部保号性的证明:

证明. 如果 $\lim_{x\to x_0}f(x)=A>0$,所以,取 $\varepsilon=\frac{A}{2}>0$, $\exists \delta>0$ 当 $0<|x-x_0|<\delta$ 时,有

$$|f(x)-A|<\frac{A}{2}\Rightarrow f(x)>A-\frac{A}{2}=\frac{A}{2}>0.$$

由上述证明可得如下推论

推论 1.2.1

如果 $\lim_{x\to x_0}f(x)=A>0$ $(A\neq 0)$,那么就存在 x_0 的某一去心邻域 $\mathring{U}(x_0)$,当 $x\in U^\circ(x_0)$ 时,就有 $|f(x)|>\frac{|A|}{2}$

函数极限与数列极限的关系(海涅定理)

定理 1.2.4

设 f(x) 在 $\mathring{U}(x_0,\delta)$ 内有定义,则 $\lim_{x\to x_0}f(x)=A$ 存在 \Leftrightarrow 对任何 $\mathring{U}(x_0,\delta)$ 内以 x_0 为极限的数列 $\{x_n\}$ $(x_n\neq x_0)$,极限 $\lim_{n\to\infty}f(x_n)=A$ 存在.

把这个定理简化一下, 主要意思就是

 $^{^{}b}$ 如果函数在 x_{0} 附近的函数值 ≤ 0 , 那么 x_{0} 此处的极限值 ≤ 0

$$\lim_{x\to a}f(x)=L$$

$$\updownarrow$$
 所有的 $\lim_{n\to\infty}a_n=a,$ 有 $\lim_{n\to\infty}f(a_n)=L$

其不同之处在于是离散的趋近还是连续的趋近

除此之外,f(x) 和 $f(a_n)$ 的函数图像如下所示

如上图所示 $f(a_n)$ 其实是 f(x) 的抽样

需要注意的是,是所有的数列(抽样)才能完全代表整体.不能说我选了某个数列有极限就代表函数有极限. 总结:海<mark>涅定理表述了离散与连续、数列极限与函数极限的关系</mark>.

1.3 无穷小与无穷大

1.3.1 无穷小

定义 1.3.1: 无穷小的定义

如果函数 f(x) 当 $x \to x_0$ (或 $x \to \infty$) 时的极限为零, 那么称函数 f(x) 为当 $x \to x_0$ (或 $x \to \infty$) 时的无 穷小.

f(x) 是可以本身为 0 或者无限趋近于零, 其中 0 可以作为无穷小唯一常数.

注 1.3.1: 无穷小与函数极限的关系(脱帽法)

 $\lim_{x \to \cdot} f(x) = A \Leftrightarrow f(x) = A + \alpha$, 其中 $\lim_{x \to \cdot} f(x)$ 为超实数值, 其实数部分为 A, 函数 f(x) 的函数值为 $A + \alpha$

1.3.2 无穷小的性质

1 有限个无穷小的和是无穷小2

证明. 设 α_1 和 α_2 为无穷小量。则 $0 \leqslant |\alpha_1 + \alpha_2| \leqslant |\alpha_1| + |\alpha_2|, |\alpha_1| + |\alpha_2|$ 的极限为 0。证明完毕。

2 有界函数与无穷小的乘积是无穷小3

证明. $|\alpha_1| \leq M, \alpha_2$ 是无穷小量。那么 $0 \leq |\alpha_1 \times \alpha_2| = |\alpha_1| \times |\alpha_2| \leq M \times |\alpha_2|$ 证明完毕。

3 有限个无穷小的乘积是无穷小4

1.3.3 无穷小的比阶

定义 1.3.2

- 如果 $\lim_{\alpha \to 0} \frac{\beta}{\alpha} = 0$, 那么就说 β 是比 α 高阶的无穷小, 记作 $\beta = o(\alpha)$;
- 如果 $\lim \frac{\beta}{\alpha} = \infty$, 那么就说 β 是比 α 低阶的无穷小;
- 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = c \neq 0$, 那么就说 β 与 α 是同阶无穷小;
- 如果 $\lim \frac{\beta}{\alpha^k} = c \neq 0, k > 0$, 那么就说 β 是关于 α 的 k 阶无穷小 α ;
- 如果 $\lim_{\alpha} \frac{\beta}{\alpha} = 1$, 那么就说 $\beta = 1$ 是等价无穷小, 记作 $\alpha \sim \beta$

"不是相等, 超实数系下没有加减运算, 只可以进行替换运算

前三个定义解释: $\lim_{\alpha} \frac{\beta}{\alpha} = 0$ 是指分子趋于 0 的速度比分母快, $\lim_{\alpha} \frac{\beta}{\alpha} = \infty$ 是指分子趋于 0 的速度比分母 慢, $\lim \frac{\beta}{\alpha} = c \neq 0$ 是指趋于 0 的速度一样.

 $^{^2}$ 无穷个无穷小的和不一定是无穷小,如 $\lim_{n \to \infty} = (\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} \cdots + \frac{1}{n+n}) = \ln 2$ 3 无界函数 × 无穷小量不一定是无穷小,如 $\lim_{x \to \infty} x \times \frac{1}{x} = 1$

 $^{^3}$ 无界函数 × 无穷小量不一定是无穷小, 如 $\lim_{x \to \infty} x$ ×

⁴这个地方虽然张宇老师给出了证明, 但是好像存在一定的争议性

同时需要注意的是,**并不是任意两个无穷小都可进行比阶的**. 例如,当 $x\to 0$ 时, $x\sin\frac{1}{x}$ 与 x^2 虽然都是无穷小,但是却不可以比阶,也就是说既无高低阶之分,也无同阶可言,因为 $\lim_{x\to 0}\frac{x\sin\frac{1}{x}}{x^2}=\lim_{x\to 0}\frac{1}{x}\sin\frac{1}{x}$ 不存在,其值为 ∞ 和 0。

1.3.4 无穷小的运算

 5 设 m, n 为无穷小,则

1.
$$o(x^m) \pm o(x^n) = o(x^l), l = \min\{m, n\}$$

2.
$$o(x^m) \cdot o(x^n) = o(x^{m+n}), x^m \cdot o(x^n) = o(x^{m+n})$$

3.
$$o(x^m) = o(kx^m) = k \cdot o(x^m), k \neq 0$$

1.3.5 无穷大

定义 1.3.3: 无穷大的定义

设函数 f(x) 在 x_0 的某一去心邻域内有定义(或 |x| 大于来一正数时有定义)。如果对于任意给定的正数 M(不论它多么大),总存在正数 $\delta($ 或数 X),只要 x 适合不等式 $0<|x-x_0|<\delta($ 或 |x|>X),对应的函数 值 f(x) 总满足不等式

那么称函数 f(x) 是当 $x \to x_0$ (或 $x \to \infty^a$) 时的无穷大. b 其 $\varepsilon - N$ 语言为

$$\lim_{x\to x_0}f(x)=\infty \Leftrightarrow \forall M>0, \exists \delta>0, \ \ \, \le 0<|x-x_0|<\delta \ \, \exists \ \, \ell\in M.$$

题目 5. 证明 $\lim_{x\to 1} \frac{1}{x-1} = \infty$

解答. $\forall M > 0 \Leftrightarrow \delta = \frac{1}{4M} > 0$,当 $0 < |x-1| < \delta$ 时,即 $0 < |x-1| < \frac{1}{4M}$ 时, $|x-1| < \frac{1}{M}$,所以 $\frac{1}{|x-1|} > M$ 这就证明了 $\lim_{x \to 1} \frac{1}{x-1} = \infty$

1.3.6 无穷大的比阶

- $\exists x \to +\infty \text{ pt, } \ln^a x \ll x^{\beta} \ll a^x, \text{ } \exists \text{ } \vdash \alpha > 0, \beta > 0, a > 1.6$
- $\stackrel{.}{=} n \rightarrow \infty$ $\text{III}, \ln^a n \ll n^\beta \ll a^n \ll n! \ll n^n, \text{ <math>\stackrel{.}{=}} + \alpha > 0, \beta > 0, a > 1.$

1.3.7 无穷大的性质

- 两个无穷大量的积仍未无穷大量
- 无穷大量与有界变量的和仍是无穷大量

a等价于 $x \to -\infty$ 同时 $x \to +\infty$

 $^{^{}b}$ 无穷大一定无界,但无界不一定是无穷大量。与无穷小相同,都是一个极限过程,因此无穷大也是一个极限,所以无界不一定是 无穷大量

⁵此处多用于泰勒公式的应用中,会对上述高阶无穷小的运算提出要求

⁶由洛必达公式证明

1.3.8 无穷大与无界变量的关系

无穷大量一定是无界变量,但无界变量不一定是无穷大量.7

1.3.9 无穷大与无穷小的关系

在自变量的同一变化过程中,若 f(x) 是无穷大,则 $\frac{1}{f(x)}$ 是无穷小;若 f(x) 是无穷小,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 是无穷大.

1.4 函数极限的运算

1.4.1 极限的四则运算法则

利用极限的四则运算法则求极限

如果极限不存在,那么极限属于超实数系的范畴,在超实数系下不可以进行代数运算,只可以进行替换运算。 但是如果极限均存在,那么可以进行代数计算。

若 $\lim f(x) = A, \lim g(x) = B$, 那么

- $\lim[kf(x) \pm lg(x)] = k \lim f(x) \pm l \lim g(x) = kA \pm lB$, 其中 k, l 为常数
- $\lim[f(x)\cdot g(x)]=\lim f(x)\cdot \lim g(x)\equiv A\cdot B$, 特别的, 若 $\lim f(x)$ 存在,n 为正整数, 则 $\lim[f(x)]^n=\left[\lim f(x)\right]^n$
- $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)} = \frac{A}{B}(B \neq 0)$

定义 1.4.1: 复合函数极限运算法则

设函数 y=f[g(x)] 是由函数 u=g(x) 与函数 y=f(u) 复合而成,f[g(x)] 在点 x_0 的某去心领域内有定义,若 $\lim_{x\to x_0}g(x)=u_0,\lim_{u\to u_0}f(u)=A$,且存在 $\delta_0>0$,当 $x\in \mathring{U}(x_0,\delta_0)$ 时,有 $g(x)\neq u_0$,则

$$\lim_{x\to x_0} f[g(x)] = \lim_{u\to u_0} f(u) = A.$$

题目 6. (1) 证明: $\lim f(x) = A \neq 0 \Rightarrow \lim f(x)g(x) = A \lim g(x)$ (2) 证明: $\lim \frac{f(x)}{g(x)}$ 存在, $\lim g(x) = 0 \Rightarrow \lim f(x) = 0$

证明. (1)
$$\lim f(x) = \lim \frac{f(x)}{g(x)} \cdot g(x) = \lim \frac{f(x)}{g(x)} \cdot \lim g(x) = A \cdot 0 = 0.$$
(2) 由于 $g(x) = \frac{f(x)}{\frac{f(x)}{g(x)}}$,则 $\lim g(x) = \lim \frac{f(x)}{\frac{f(x)}{g(x)}} = \frac{\lim f(x)}{\lim \frac{f(x)}{g(x)}} = \frac{0}{A} = 0$

题目 6 的注记. 此题的两个证明是常用结论

注 1.4.1: 常用结论

- 存在 ± 不存在 = 不存在 (只有这一个是不存在,其余都是不一定或者存在)

7
如数列 $x_{n} = \begin{cases} n, n \text{ 为奇数} \\ 0, n \text{ 为偶数} \end{cases}$, 是无界变量,但不是无穷大. 无穷大是一个极限

- 存在 ×(÷) 不存在 = 不一定

• 不存在 ×(÷) 不存在 = 不一定
$$\frac{ {}^a \text{反例: } \lim_{x \to 0} (\sin \frac{1}{x} - \sin \frac{1}{x}) = 0 }$$

题目 7. 求
$$\lim_{x\to +\infty} \frac{e^x}{\left(1+\frac{1}{x}\right)^{x^2}}$$
. 极限

由于该极限的分子 e^x 的极限为无穷大,无穷大属于极限中的不存在情况,因此不可以使用极 限的四则运算法则2.4.1,也不可以对分母使用两个重要无穷小进行化简.只能使用等价变换进行求解.即

题目 8. 已知
$$f(0)=f'(0)=0, f''(0)\neq 0,$$
 求 $\lim_{x\to 0}\frac{f(x)}{f'(x)}$

如果想把分子写 $x \to 0$ 时的导数形式,然后进行计算,即 $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \frac{f'(0)}{f'(0)} = 1$ 进行运算, 则不满足极限四则运算法则2.4.1, 因为其分母为 0, 违背了极限的四则运算法则, 因此不可这样计算, 需要对其 进行恒等变形计算. 即 $\lim_{x\to 0} \frac{\frac{f(x)}{x^2}}{\frac{f'(x)-f'(0)}{x^2}} = \frac{1}{f''(0)} \lim_{x\to x_0} \frac{f(x)}{x^2} \xrightarrow{\frac{\text{Adds}}{\text{Adds}}} \frac{1}{f''(0)} \lim_{x\to 0} \frac{1}{2} \frac{f'(x)-f'(0)}{x} = \frac{1}{2} \frac{f'(x)-f'(0)}{x}$ $\frac{1}{f''(0)} \frac{1}{2} f''(0) = \frac{1}{2}$

题目 9. 求
$$\lim_{x\to 0} (\frac{1}{x^2} - \cot^2 x)$$

解答. $\lim_{x\to 0} (\frac{1}{x^2} - \frac{1}{\tan^x x}) = \frac{(\tan x + x)(\tan x - x)}{x^2 \times \tan^2 x} = \frac{2x \times \frac{1}{3}x^3}{x^4} = \frac{2}{3}$

上面的解法相比有些复杂, 但是记录一个常见的错误, 即什么时 候可以用等价无穷小的问题, 其写法为:

原式 =
$$\lim_{x \to 0} \left(\frac{1}{x^2} - \cot^2 x \right) = \left(\frac{1}{x^2} - \frac{\cos^2 x}{\sin^2 x} \right)$$

= $\lim_{x \to 0} \frac{\sin^2 x - x^2 \cos^2 x}{x^2 \sin^2 x}$
= $\lim_{x \to 0} \left(\frac{\sin^2 x - x^2 \cos^2 x}{x^4} \right)$

此处有一个常见的错误, 就是能不能把 $\cos^2 x$ 代换为 1, 其实是不能的, 即使最后答案正确, 此时 $x \to 0$ 时, 分母 也趋于 0, 如果进行替换, 则违背了极限的运算法则, 因此不能进行替换

原式 =
$$\lim_{x \to 0} \frac{(\sin x - x \cos x)(\sin x + x \cos x)}{x^4}$$
 = 泰勒公式 $\frac{2}{3}$

题目 10. 若 $\lim \frac{f(x)}{g(x)} = A \neq 0$,则 $\lim f(x) = 0$, $\lim g(x) = 0$

证明.
$$g(x) = \frac{f(x)}{\frac{f(x)}{g(x)}}$$
。 求极限得 $\lim g(x) = \lim \frac{f(x)}{\frac{f(x)}{g(x)}} = \frac{\lim f(x)}{\lim \frac{f(x)}{g(x)}} = 0$. 证明完毕

题目 10 的注记. 此证明为结论, 经常使用

1.4.2 泰勒公式

泰勒公式的目的是提高精确度, 用更高次的多项式来逼近函数

带拉格朗日余项的 n 阶泰勒展开式

如果函数 f(x) 在 x_0 的某个邻域 $U(x_0)$ 内具有 (n+1) 阶导数, 那么对任一 $x \in U(x_0)$, 有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f^{(n)}\left(x_0\right)}{n!}\left(x - x_0\right)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1} + \frac{f^{(n+1)}(\xi)}{$$

带佩亚诺余项的 n 阶泰勒展开式

如果函数 f(x) 在 x_0 处具有 n 阶导数, 那么存在 x_0 的一个邻域, 对于该邻域内的任一 x, 有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o\left((x - x_0)^n\right)$$

带有佩亚诺余项的麦克劳林公式

对带有佩亚诺余项的泰勒公式取 $x_0 = 0$,则可以得到带有佩亚诺余项的麦克劳林公式

$$f(x) = f(0) + f'(0)x + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

当 $x \to 0$ 时, 由麦克劳林公式可得, 有以下结论

$$\begin{split} \sin x &= x - \frac{x^3}{3!} + o(x^3) & \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4) \\ \arcsin x &= x + \frac{x^3}{3!} + o(x^3) & \arccos x = \frac{\pi}{2} - \arcsin x = \frac{\pi}{2} - x - \frac{1}{3!}x^3 + o(x^3) \\ \arctan x &= x - \frac{x^3}{3} + o(x^3) & \tan x = x + \frac{x^3}{3} + o(x^3) \\ e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3) & (1 + x)^a = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!}x^2 + o(x^2) \\ \frac{1}{1 + x} &= 1 - x + x^2 - \dots + (-1)^n x^n + o(x^n) & \frac{1}{1 - x} &= 1 + x + x^2 + \dots + x^n + o(x^n) \\ \ln(x + \sqrt{1 + x^2}) &= x - \frac{1}{6}x^3 + \frac{3}{40}x^5 + \dots & \ln(1 + x) &= x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3) \end{split}$$

注 1.4.2: 泰勒公式应用时的展开原则

- $\frac{A}{B}$ 型, 适用于"上下同阶"原则: 具体来说, 如果分母或者分子是 x 的 k 次幂, 则应把分子或分母展 开到 x 的 k 次幂。如: $\lim_{x\to 0}\frac{x-\ln(1+x)}{r^2}$,此处 $\ln(1+x)$ 应展开为 $x-\frac{x^2}{2}+o(x^2)$
- A-B型,适用"幂次最低"原则:将A,B分别展开到他们系数不相等的x的最低次幂为止。如:

已知当
$$x\to 0$$
 时, $\cos x-e^{\dfrac{x^2}{2}}$ 与 ax^b 为等价无穷小,求 a,b . 则应展开为 $\cos x=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}+o(x^4), e^{-\dfrac{x^2}{2}}=1-\dfrac{x^2}{2}+\dfrac{1}{2!}\dfrac{x^4}{4}+o(x^4).$

注 1.4.3: 泰勒公式的解题技巧

- 1. 泰勒公式构建了函数与其高阶导之间的联系, 因此看见高阶导数, 要条件反射的想到泰勒公式
- 2. 奇函数的泰勒展式只有奇数次幂, 偶函数的泰勒展式只有偶数次幂^a
- 3. 极限当中,用佩亚诺余项 O(x 的 n 次幂),证明题中,用拉格朗日余项,找提供信息最多的点作为展开点
- 4. 等价无穷小的本质是泰勒的低精度形式, 加减法不建议使用等价无穷小, 建议直接泰勒
- 5. 加项减项的本质也是泰勒^b

a如 $\sin x$ 和 $\cos x$

 b 如 $\ln(x) = \ln(1+x-1) \sim x-1$

题目 11.
$$\lim_{x\to 0} \frac{\ln(1+x+x^2)-x}{x^2}$$

解答. 对等式进行泰勒展开即:

$$\frac{\ln(1+x+x^2)-x}{x^2} = \frac{(x+x^2-\frac{1}{2}(x+x^2)^2-x)}{x^2} = \lim_{x\to 0} \frac{x^2-\frac{1}{2}x^2}{x^2} = \frac{1}{2}$$

题目 12.
$$f(x)$$
 在 $x=0$ 处二阶可导且满足 $\lim_{x\to 0} \frac{f(x)\sin x + \ln(1+x)}{x^3} = 0$,求 $f(0), f'(0), f''(0)$

解答. 对原式中 f(0) 和 $\sin x$ 和 $\ln(1+x)$ 各项进行泰勒展开得:

$$\begin{split} &\lim_{x\to 0} \frac{f(x)\sin x + \ln(1+x)}{x^3} = 0 \\ &= \lim_{x\to 0} \frac{(f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2)(x - \frac{1}{6}x^3) - (x - \frac{1}{6}x^3) + (x - \frac{x^2}{2} + \frac{x^3}{3})}{x^3} = 0 \\ &= \frac{(f(0) + 1)x + (f''(0) - \frac{1}{2})x^2 + (-\frac{1}{6}f(0) + \frac{f''(0)}{2} + \frac{1}{3})x^3 + o(x^3)}{x^3} = 0. \end{split}$$

可以得到的是,分子的极限一定为 0,那么 $\begin{cases} f(0)+1=0 \\ f'(0)-\frac{1}{2}=0 \\ -\frac{1}{6}f(0)+\frac{f''(0)}{2}+\frac{1}{3}=0 \end{cases} \implies \begin{cases} f(0)=-1 \\ f'(0)=\frac{1}{2} \\ f''(0)=-1 \end{cases}$ **题目 12 的注记.** 看见各阶导数应想到泰勒公式

题目 13. 已知函数 f(x) 在 x=0 的某领域内连续,且 $\lim_{x\to 0}(\frac{\sin x}{x^2}+\frac{f(x)}{x})=2$,试求 f(0),f'(0)

解答. 对原式进行通分然后对 $\sin x$ 进行泰勒展开:

$$\lim_{x \to 0} \frac{\sin x + x f(x)}{x^2} = 2$$

$$= \lim_{x \to 0} \frac{x + x f(x) + o(x^2)}{x^2} = 2$$

根据函数极限与无穷小的关系2.3.1可知,1 + f(x) = 2x + o(x),f(x) = 2x - 1 + o(x) 因为函数在 x = 0 上连续, 因 此 $f(0) = \lim_{x\to 0} f(x), f(x) = 2x - 1 + o(x)$ 的表达式是 $x\to 0$ 时的表达式,将 x=0 带入可得 f(0)=-1,使 用导数定义求得 f(x) 在点 0 处的导数,即 $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \frac{2x + o(x)}{x} = 2$ 题目 13 的注记. 看见此类问题,第一步应先通分,然后将具体函数的泰勒进行展开(因为此题中的条件是连续

而不是可导, 如果是可导的话可以全部进行展开), 然后把 f(x) 的表达式给求出来

题目 14. 设函数
$$f(x) = \sec x$$
 在 $x = 0$ 处的 2 次泰勒多项式为 $1 + ax + bx^2$,则 $(A)a = 1, b = \frac{1}{2}$ $(B)a = 1.b = \frac{1}{2}$ $(C)a = 0, b = -\frac{1}{2}$ $(D)a = 0, b = \frac{1}{2}$

解答. $f(x) = \sec x = \frac{1}{\cos x}$, 该函数为偶函数, 因此泰勒展开只有偶数次幂, 那么 a = 0, 该函数一定大于 0, 因 此 $b \ge 0$, 排除 C,A,B.

题目 14 的注记. 本题也可以将 $\sec x$ 展开, 但是较为麻烦, 可以采用上述的方法进行运算.

题目 15. 设函数
$$f(x)=\frac{\sin x}{1+x^2}$$
 在 $x=0$ 处的 3 次泰勒多项式为 $ax+bx^2+cx^3$,则 $(A)a=1,b=0,c=-\frac{7}{6}$ $(B)a=1,b=0,c=\frac{7}{6}$ $(C)a=-1,b=-1,c=-\frac{7}{6}$ $(D)a=-1,b=-1,c=\frac{7}{6}$

解答. 法 1: 对分子进行泰勒展开, 然后使用整式除法

法 2: 对整式进行泰勒展开与等价无穷小替换 $f(x) = (x - \frac{x^3}{6})(1 - x^2) = x - \frac{7}{6}x^3$

法 3: 对整式进行泰勒展开计算可得 $x-\frac{7}{6}x^3$

题目 15 的注记. 遇见此类问题,解题方法的优先级为长除法,利用等价替换,使用定义(利用泰勒公式直接所 有项都展开)

1.4.3 洛必达法则

定义 1.4.2

- $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0(\infty)$
- f(x) 和 g(x) 在 x_0 的某去心邻域内可导, 且 $g'(x) \neq 0$

•
$$\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$$
 存在 (或 ∞)

$$\text{ Im}_{x \rightarrow x_0} \, \frac{f(x)}{g(x)} = \lim_{x \rightarrow x_0} \frac{f^{'}(x)}{g^{'}(x)}$$

需要注意的是使用过洛必达法则之后的极限必须存在,即 $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 必须存在.

题目 16. 求
$$\lim_{x\to 0} \frac{x^2 \times \sin\frac{1}{x}}{\sin x}$$

解答. 该函数也是 $\frac{0}{0}$ 型,但是如果使用洛必达法则,则 $2x \times \sin\frac{1}{x} - \cos\frac{1}{x}$,极限显然不存在,因此不可以使用洛必达法则。则正确求法为 $\lim_{x\to 0} \frac{x^2 \times \sin\frac{1}{x}}{x} = \lim_{x\to 0} x \times \sin\frac{1}{x} = 0$.

注 1.4.4: 洛必达可以洛到几阶

- n 阶导连续,则最多可以洛到 n 阶.
- n 阶导存在/n 阶邻域内可导,则最多能洛到 n-1 阶.
- 实际上,n 阶等连续,不一定能够洛到 n 阶 a . 结论如下: $\lim_{x\to x_0}\frac{f(x)}{(x-x_0)^m}$ 到底能用多少次洛必达法则假设 m 和 n 均为正整数,并且 $f(x_0)=f'(x_0)=\cdots=f^{(n)}(x_0)=0$.
 - 1. 如果 f(x) 在 x_0 的 n 阶导数连续,则:
 - (a) 若 $m\leqslant n$, 则 $\lim_{x\to x_0}\frac{f(x)}{\left(x-x_0\right)^m}$ 可以用 m 次洛必达 $\lim_{x\to x_0}\frac{f^{(m)}\left(x\right)}{m!}=\frac{f^{(m)}\left(x_0\right)}{m!}$
 - (b) 若 m > n, 则 $\lim_{x \to x_0} \frac{f(x)}{(x x_0)^m}$ 则一次都不能用洛必达.
 - 2. 如果 f(x) 在 x_0 有 n 阶导数 (没说 n 阶导函数连续), 则:
 - (a) 若 $m \leqslant n-1$, 则 $\lim_{x \to x_0} \frac{f(x)}{\left(x-x_0\right)^m}$ 可以用 m 次洛必达 $\lim_{x \to x_0} \frac{f^{(m)}(x)}{m!} = \frac{f^{(m)}(x_0)}{m!}$
 - (b) 若 m=n,则 $\lim_{x\to x_0}\frac{f(x)}{x^m}$ 可以用 m-1 次洛必达出现 $\lim_{x\to x_0}\frac{f^{(m-1)}(x)}{m!(x-x_0)}$,然后利用导数 定义 $f^{(n)}(x_0)=\lim_{x\to x_0}\frac{f^{(n-1)}\left(x\right)-f^{(n-1)}\left(x_0\right)}{x-x_0}$ 进一步计算
 - (c) 若 $m \ge n+1$, 则 $\lim_{x\to x_0} \frac{f(x)}{\left(x-x_0\right)^m}$ 一次都不能用洛必达

题目 17. 设 f(x) 有二阶连续导数, 并且 f(0)=0, f'(0)=0, f''(0)=0, 并且 $\lim_{x\to 0}\frac{f(x)}{x^3}=1$, 问 $\frac{f(x)}{x^3}$ 是否可以进行洛必达法则? 如果可以请求出 f'''(0); 如果不存在, 请说明理由.

解答. 看到此题的二阶导数连续, 一般都认为可以进行洛必达, 但是其实该方程式一次洛必达都不可以进行, 假设函数 f(x) 表达式为

$$f(x) = \begin{cases} x^{\frac{28}{9}} \sin \frac{1}{\sqrt[3]{x}} + x^3, x \neq 0 \\ 0, x = 0 \end{cases}$$

[&]quot;但是考研中这点没有难为过人, 因此可以粗略的认为上述两条是成立的

那么

$$f'\left(x\right) = \begin{cases} \frac{28}{9}x^{\frac{19}{9}}\sin\frac{1}{\sqrt[3]{x}} - \frac{1}{3}x^{\frac{16}{9}}\cos\frac{1}{\sqrt[3]{x}} + 3x^{2}, x \neq 0\\ 0, x = 0 \end{cases}$$

二阶导为

$$f''(x) = \begin{cases} \frac{532}{82} x^{\frac{10}{9}} \sin \frac{1}{\sqrt[3]{x}} - \frac{44}{27} x^{\frac{7}{9}} \cos \frac{1}{\sqrt[3]{x}} - \frac{1}{9} x^{\frac{4}{9}} \sin \frac{1}{\sqrt[3]{x}} + 6x, x \neq 0\\ 0, x = 0 \end{cases}$$

可知函数 f'(0) = 0, 且 f''(0) = 0, 该函数完全满足题意, 但是对 $\frac{f(x)}{x^3}$ 使用第一次洛必达时, 为

$$1 = \lim_{x \to 0} \frac{f(x)}{x^3} = \lim_{x \to 0} \frac{f'(x)}{3x^2} = \lim_{x \to 0} \frac{\frac{28}{9}x^{\frac{19}{9}} \sin \frac{1}{\sqrt[3]{x}} - \frac{1}{3}x^{\frac{16}{9}} \cos \frac{1}{\sqrt[3]{x}} + 3x^2}{3x^2}$$

洛必达之后的极限显然不存在, 因此该情况下不可以使用洛必达法则,

题目 17 的注记. 本题需要注意, 不是所有的条件下都可以进行洛必达法则, 由此可以抽象出来一个样例:

$$f(x) = \begin{cases} x^{a} \sin \frac{1}{\sqrt[b]{x}} + x^{c}, x \neq 0\\ 0, x = 0 \end{cases}$$

题目 18. 已知函数 f(x) 在 x=0 的某领域内可导,且 $\lim_{x\to 0}(\frac{\sin x}{x^2}+\frac{f(x)}{x})=2$,试求 f(0),f'(0) 以及 $\lim_{x\to 0}\frac{x}{f(x)+e^x}$

解答. 本题中未说明 f(x) 在邻域内连续可导,只说明一阶导存在,因此一阶都不可以进行洛必达法则,但是可以使用泰勒公式对上述式子进行泰勒展开,因此上述式子的解法为对原式进行通分然后对 $\sin x$ 进行泰勒展开:

$$\lim_{x \to 0} \frac{\sin x + x f(x)}{x^2} = 2$$

$$= \lim_{x \to 0} \frac{x + x f(x) + o(x^2)}{x^2} = 2$$

根据函数极限与无穷小的关系2.3.1可知,1 + f(x) = 2x + o(x),f(x) = 2x - 1 + o(x) 因为函数在 x = 0 上连续, 因此 $f(0) = \lim_{x \to 0} f(x)$,f(x) = 2x - 1 + o(x) 的表达式是 $x \to 0$ 时的表达式,将 x = 0 带入可得 f(0) = -1,使用导数定义求得 f(x) 在点 0 处的导数,即 $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \frac{2x + o(x)}{x} = 2$,然后带入极限 $\lim_{x \to 0} \frac{x}{f(x) + o^x} = \frac{x}{1 + 2x + o^x} = \frac{1}{3}$

题目 18 的注记. 看见此类问题, 第一步应先通分, 然后将具体函数的泰勒进行展开 (因为此题中的条件是连续而不是可导, 如果是可导的话可以全部进行展开), 然后把 f(x) 的表达式给求出来

题目 19. 求极限 $\lim_{x\to+\infty} x(e^{\frac{\pi}{2}+\arctan x}-e^{\pi})$

解答. (2) 提后项:
$$\lim_{x\to +\infty} e^{\pi}(e^{\arctan\frac{\pi}{2}}-1) = \lim_{x\to +\infty} e^{\pi} \times \arctan\frac{-\pi x}{2} = -e^{\pi}$$
 (3) 直接洛: $\lim_{x\to +\infty} \frac{e^{\frac{\pi + \arctan x}{2}} - e^{\pi}}{\frac{1}{x}} = \frac{e^{\frac{\pi}{2} + \arctan x} \times \frac{1}{1+x^2}}{-\frac{1}{x^2}} = -e^{\pi}$

题目 19 的注记. 无穷大乘以无穷小,可以构造无穷大比无穷大,或无穷小比无穷小,之后进行洛必达。方法多了,往往会忽视洛必达,但有时洛必达反而会简单一些。

题目 20. 设 y = f(x) 是方程 $y'' + 2y' + y = e^{3x}$ 的解, 且满足 y(0) = y'(0) = 0, 则当 $x \to 0$ 时, 与 y(x) 为等价无穷小的是 ()

(A).
$$\sin x^2$$
 (B). $\sin x$ (C). $\ln(1+x^2)$ (D). $\ln \sqrt{1+x^2}$

解答. 等价无穷小具有传递性,因此 $\sin x^2 \sim x^2, \sin x \sim x, \ln(1+x^2) \sim x^2, \ln(\sqrt{1+x^2}) \sim \frac{1}{2}x^2$. 若与 y(x) 为 等价无穷小,那么 $\lim_{x\to 0} \frac{y(x)}{f(x)} = 1$ 。 对 y(x) 进行泰勒展开 $y(x) = y(0) + y'(0)x + \frac{y''(0)}{2}x^2$. 当 x = 0 时,有 y''(0) = 1,易知一阶导是连续的,对函数形式进行分析,可知函数在二阶导也是连续的,那么就可以展开到二阶,那么 $y(x) = \frac{1}{2}x^2$ 。

除此之外, 还可以这样解决, 已知二阶导连续, 那么对 $\frac{y(x)}{A/B/C/D}$ 进行洛必达可知 D 选项正确。

1.4.4 等价替代求极限

利用基本极限求极限

$$\lim_{\square \to \infty} (1 + |\square|)^{\frac{1}{\square}} = e^{|\square| \frac{1}{\square}} \qquad \lim_{\square \to 0} \frac{\sin \square}{\square} = 1$$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1 \qquad \lim_{n \to \infty} \sqrt[n]{a} = 1(a > 0)$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$

等价无穷小求极限

关于等价无穷小,有以下两个定理

定义 1.4.3: 等价无穷小的充要条件

β与α是等价无穷小的充分必要条件为

$$\beta = \alpha + o(\alpha)$$

定义 1.4.4: 等价无穷小的替换准则

设
$$\alpha \sim \tilde{\alpha}, \beta \sim \tilde{\beta}$$
, 且 $\lim \frac{\tilde{\beta}}{\alpha}$ 存在, 则

$$\lim \frac{\beta}{\alpha} = \lim \frac{\tilde{\beta}}{\tilde{\alpha}}.$$

求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替.但是需要遵循以下代换原则。

- 乘除关系可以换: 若 $\alpha \sim \alpha_1, \beta \sim \beta_1, \text{ 则 lim } \frac{\alpha}{\beta} = \text{lim } \frac{\alpha_1}{\beta} = \text{lim } \frac{\alpha_1}{\beta_1} = \text{lim } \frac{\alpha_1}{\beta_1}$
- 加减关系一定条件下可以换。

$$- \ \, \hbox{\hbox{$\not$$}$} - \ \, \hbox{\hbox{$\not$$}$} \alpha \sim \alpha_1, \beta \sim \beta_1, \underline{\Pi} \lim \frac{\alpha_1}{\beta_1} = A \neq 1, 则 \alpha - \beta \sim \alpha_1 - \beta_1$$

$$-$$
 若 $\alpha \sim \alpha_1, \beta \sim \beta_1,$ 且 $\lim \frac{\alpha_1}{\beta_1} = A \neq -1,$ 则 $\alpha + \beta \sim \alpha_1 + \beta_1$

加减关系代换准则证明如下:

证明.

$$\lim \frac{\alpha - \beta}{\alpha_1 - \beta_1} = \lim \frac{\beta(\frac{\alpha}{\beta} - 1)}{\beta_1(\frac{\alpha_1}{\beta_1} - 1)} = 1$$

^a其实没有什么替换原则,本质其实是因为超实数系下不能进行实数运算,只能进行替换运算

^b这样的形式其实不经常用,看见加减最好使用泰勒公式进行替换运算

以下为常用等价无穷小 当 $x \to 0$ 时, 有

1.

$$x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$$

 $\sim \ln(1+x)$
 $\sim e^x - 1$

2.

$$(1+x)^{a} \sim 1 + ax$$

$$a^{x} - 1 \sim x \ln a$$

$$1 - \cos^{\alpha} x \sim \frac{\alpha}{2} x^{2}$$

3. 上述结论的推广当 $x\to 0$ 时, 若 $(1+x)^a-1\sim ax$, 则 $\alpha(x)\to 0$, $\alpha(x)\beta(x)\to 0$, 那么 $[1+\alpha(x)]^{\beta(x)}-1\sim \alpha(x)\beta(x)$

4.

$$\frac{1}{2}x^2 \sim \sec x - 1 \sim x - \ln(1+x)$$

5.

$$\boxed{\frac{1}{6}x^3 \sim x - \sin \sim \arcsin x - x}$$

6.

$$\frac{1}{3}x^3 \sim x - \arctan x \sim \tan x - x$$

7. $x \to 1$ 时, $\ln x \sim x - 1$, 因为 $\ln(1 + x - 1) \sim x - 1$

8. 当
$$A \rightarrow 0, B \rightarrow 0$$
 时, $e^A - e^B \sim A - B$, 因为 $e^B(e^{A-B} - 1) \sim A - B$

题目 21. 假设 $\lim_{x\to 0} \frac{f(x)}{1-\cos x}$ 存在

解答. 若
$$\lim_{x\to 0} \frac{f(x)}{1-\cos x}$$
 存在,那么 $\lim_{x\to 0} \frac{f(x)}{1-\cos x} = \lim_{x\to 0} (\frac{f(x)}{\frac{1}{2}x^2} \times \frac{\frac{1}{2}x^2}{1-\cos x}) \xrightarrow{\frac{90}{2}\times 50} \lim_{x\to 0} \frac{f(x)}{\frac{1}{2}x^2}$

题目 21 的注记. 整体的乘除法本质是构造恒等变形

题目 22. 求极限
$$\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x}$$

解答. 由常用不等式2.5.2的 $x \to 0$, $|\sin x| \le |x|$, 那么 $|\frac{\sin(x^2\sin\frac{1}{x})}{x}| \le |\lim_{x\to 0}\frac{x^2\sin\frac{1}{x}}{x}|$, 由夹逼准则得: $0 \le \lim_{x\to 0}|\frac{\sin(x^2\sin\frac{1}{x})}{x}| \le \lim_{x\to 0}|\frac{x^2\sin\frac{1}{x}}{x}|$ 友右极限都为 0, 因此 $\lim_{x\to 0}\frac{\sin(x^2\sin\frac{1}{x})}{x}$ 极限为 0

题目 22 的注记. 等价无穷小替换的本质是构造恒等变形

本题有一个常见的错误做法,就是直接把 $\lim_{x\to 0}\frac{\sin(x^2\sin\frac{1}{x})}{x}$ 进行等价无穷小替代,写为 $\lim_{x\to 0}\frac{x^2\sin\frac{1}{x}}{x}$,但是 这是错误的,如果这样写,那么 $\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x^2\sin\frac{1}{x}} \times \frac{x^2\sin\frac{1}{x}}{x}$,在 $\lim_{x\to 0} \frac{\sin(x^2\sin\frac{1}{x})}{x^2\sin\frac{1}{x}}$ 的分母中,存在 $x=\frac{1}{n\pi}$ 的间断点,根据极限定义,极限如果存在,那么去心邻域一定要有定义,那这样写就违背了极限的存在准则,因此 极限 $\lim_{x\to 0} \frac{x^2 \sin\frac{1}{x}}{x}$ 不存在, 不可以这样写.

题目 23. 设 $\lim_{x\to 0} \varphi(x)=0$,则下列命题中正确的个数为 $(1)\lim_{x\to 0} \frac{\sin \varphi(x)}{\varphi(x)}=1$

$$(1)\lim_{x\to 0} \frac{\sin \varphi(x)}{\varphi(x)} = 1$$

$$(2)\lim_{x\to 0} (1+\varphi(x))^{\frac{1}{\varphi(x)}} = e.$$

$$\begin{array}{l} \varphi(x) \\ (2) \mathrm{lim}_{x \rightarrow 0} (1+\varphi(x))^{\frac{1}{\varphi(x)}} = \mathrm{e.} \\ (3) 若 f'(x_0) = A, 则 \mathrm{lim}_{x \rightarrow 0} \frac{f(x_0+\varphi(x)) - f(x_0)}{\varphi(x)} = A \end{array}$$

解答. 这三个都是错的, 因为 $\varphi(x)$ 在分母上, 都可能为 0

题目 23 的注记. 抽象函数等价的条件是 $f(x) \to 0$ **只有** $f(x) \neq 0$ **,才能将** $\sin(f(x)) \sim f(x)$,比如函数 $\varphi(x) = x \times \sin \frac{1}{x}$,其极限为 0,但是又存在 $x = \frac{1}{n\pi}$ 的无定义点.

积分等价替换求极限

定义 1.4.5: 积分等价替换法则

设 f(x) 和 g(x) 在 x = 0 的某邻域内连续,且 $\lim_{x\to 0} \frac{f(x)}{g(x)} = 1$,则 $\int_0^x f(t) dt \sim \int_0^x g(t) dt$.

定义 1.4.6: 变限积分求导公式

设 $F(x)=\int_{arphi_1(x)}^{arphi_2(x)}f(t)\mathrm{d}t$,其中 f(x) 在 [a,b] 上连续,可导函数 $\varphi_1(x)$ 和 $\varphi_2(x)$ 的值域在 [a,b] 上,则在函数 $\varphi_1(x)$ 和 $\varphi_2(x)$ 的公共定义域上,有

$$F'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t) \mathrm{d}t \right] = f[\varphi_2(x)] \varphi_2'(x) - f[\varphi_1(x)] \varphi_1'(x).$$

题目 24. 求
$$\lim_{x\to+\infty} \frac{\int_0^x (1+t^2) \mathrm{e}^{t^2} \mathrm{d}t}{x \, \mathrm{e}^{x^2} + x^2}$$
 导数

解答. 看见变上限积分类型计算题应首先想到洛必达法则,对原式进行进行洛必达法则得:

原式 =
$$\lim_{x \to +\infty} \frac{e^{x^2} + x^2 e^{x^2}}{e^{x^2} + 2x^2 e^{x^2} + 2x}$$

$$= \frac{1 + x^2}{1 + 2x^2 + \frac{2x}{e^{x^2}}}$$

对极限取大头可得

$$\lim_{x \to +\infty} \frac{1+x^2}{1+2x^2+\frac{2x}{e^{x^2}}} = \frac{1}{2}$$

题目 24 的注记. 在极限中, 处理变上限积分的最好办法是洛必达。能洛则洛, 不能洛的话就换元之后再洛。

题目 25. 若
$$\lim_{x\to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a^2+t^2}} dt}{bx-\sin x} = 1$$
, 求 a,b, 其中 a,b 为正数

解答.

原式 =
$$\frac{\frac{x^2}{\sqrt{a^2 + x^2}}}{b - \cos x}$$
$$= \frac{1}{a} \cdot \lim_{x \to 0} \frac{x^2}{b - \cos x}$$

若分子趋近于零, 但是该等式的极限为 1, 那么该分母的极限一定趋近于 0, 那么 b 一定为 1

原式 =
$$\frac{1}{a} \cdot \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2}$$

综上所述 a = 2, b = 1

题目 25 的注记. 对于本题, 还可以可被积函数进行等价运算2.4.4, 但是这不是通法, 因此应当对此类问题首先进行洛必达. 以下为使用被积函数等价运算计算过程: 由于当 $t\to 0$ 时, $\frac{t^2}{\sqrt{a^2+t^2}}\sim \frac{t^2}{a^2}$

原式 =
$$\lim_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a^2 + t^2}} dt}{bx - \sin x}$$

= $\lim_{x \to 0} \frac{\int_0^x \frac{t^2}{a} dt}{bx - \sin x}$
= $\frac{1}{3a} \lim_{x \to 0} \frac{x^3}{bx - \sin x} \xrightarrow{b \neq 1} \frac{1}{3a} \lim_{x \to 0} \frac{x^3}{bx - x} = 0$

等式矛盾, 因此 b=1, 对上式进行泰勒展开得:

$$1 = \frac{1}{3a} \lim_{x \to 0} \frac{x^3}{x - \sin x} = \frac{1}{3a} \lim_{x \to 0} \frac{x^3}{\frac{x^3}{6}} = \frac{2}{a}$$

综上所述 a = 2, b = 1

题目 26. 求极限
$$\lim_{x\to 0} \frac{x \int_0^x \ln{(1+t^2)} dt}{x^2 - \sin^2{x}}$$

解答.

原式 =
$$\lim_{x \to 0} \frac{x \int_0^x \ln(1+t^2)dt}{(x-\sin x)(x+\sin x)}$$

= $\lim_{x \to 0} \frac{x \int_0^x \ln(1+t^2)dt}{2x \times \frac{1}{6}x^3}$
= $\frac{\ln(1+x^2)}{x^2} = 1$

题目 26 的注记. 看见形如 $x^2 - \sin x^2$ 的形式, 就应当想到 $(x + \sin x)(x - \sin x)$ 的展开, 然后可以通过泰勒展开进行计算

题目 27. 设函数
$$f(x)$$
 连续,且 $f(0) \neq 0$,求极限 $\lim_{x \to 0} \frac{\int_0^x (x-t) f(t) dt}{x \int_0^x f(x-t) dt}$

解答. 由于分母有两个变量, 因此不好进行洛必达, 那么此时就要对分母进行换元, 换元过程如下: 令 (x-t) = u, 对等式两边求微分得:d(-t) = du.

首先,对分子展开,对分母换元得:

原式 =
$$\lim_{x \to 0} \frac{x \int_0^x f(t) dt - \int_0^x t f(t) dt}{x \int_0^x f(t) dt}$$

对原式进行进行洛必达法则得

原式 =
$$\lim_{x \to 0} \frac{\int_0^x f(t) \mathrm{d}t + x f(x) - x f(x)}{\int_0^x f(t) \mathrm{d}t + x f(x)}$$
 =
$$\lim_{x \to 0} \frac{\int_0^x f(t) \mathrm{d}t}{\int_0^x f(t) \mathrm{d}t + x f(x)}$$

如果此时还要进行洛必达,那么分母则会出现 f'(x),那么最后是不可计算的,因此此时应进行积分中值定理,则 $\int_0^x f(t)dt = xf(\varepsilon)(\varepsilon \in (0,x))^8$

原式 =
$$\lim_{x \to 0} \frac{xf(c)}{xf(c) + xf(x)}$$
$$= \frac{f(0)}{f(0) + f(0)} = \frac{1}{2}$$

题目 27 的注记. 如果出现两个变量则换元之后再洛, 如果实在洛不了的话, 再考虑使用积分中值定理。积分中值定理和拉格朗日中值定理中出现的 ε , 最后一步想说明最终结果时, 严格来说需要夹逼准则。(卷面上可以不体现出来, 但脑子里必须把这些事情想明白)

本题也可以积分替换进行计算, 但是不推荐, 写法如下:

原式 =
$$\lim_{x \to 0} \frac{x \int_0^x f(t) dt - \int_0^x t f(t) dt}{x \int_0^x f(t) dt}$$
.
$$= 1 - \lim_{x \to 0} \frac{\int_0^x t f(t) dt}{x \int_0^x f(t) dt}$$

$$= 1 - \lim_{x \to 0} \frac{\frac{f(0)}{2} x^2}{f(0) x^2}$$

$$= \frac{1}{2}$$

⁸这个地方一定要可以夹起来, 如果夹起来的极限不一样, 那么则不可以使用积分中值定理

1.4.5 抓大头和抓小头

本质是同时处以最高阶/最低阶

$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_n} = \begin{cases} 0 \ , \ \stackrel{\ \, \bot}{=} n > m \\ \frac{a_0}{b_0}, \ \stackrel{\ \, \bot}{=} n = m \\ \infty \ , \ \stackrel{\ \, \bot}{=} n < m \end{cases}$$

还有一个重要的等价为 $\lim_{n\to\infty} \sqrt[n]{n} \sim e^{-1} \times n$ 该等价由斯特林公式 $\lim_{n\to\infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1$ 而来,又可写为 $\lim_{n\to\infty} \frac{\sqrt[n]{n}}{n} = e^{-1}$

题目 28. 求
$$\lim_{x\to\infty} \frac{4x^3+x^2+3x+10}{3x^3+2x+7}$$

解答. 对等式上下同除以
$$x^3$$
 得 $\lim_{x\to\infty} \frac{4+\frac{1}{x}+\frac{3}{x^2}+\frac{10}{x^3}}{3+\frac{2}{x^2}+\frac{7}{x^3}}=\frac{4}{3}$

题目 29. 求
$$\lim_{x\to 0} \frac{x+2x^2+3x^4}{2x+4x^3+x^5}$$

解答. 上下同除以
$$x$$
 得 $\lim_{x\to 0} \frac{1+2x+3x^3}{2+4x^2+x^4} = \frac{1}{2}$

1.4.6 利用函数和函数极限的性质求极限

夹逼准则

定义 1.4.7: 函数极限夹逼准则

如果

• 当 $x \in U^{\circ}(x_0, r)$ (或 |x| > M) 时

$$g(x) \leqslant f(x) \leqslant h(x)$$

$$\bullet \ \lim\nolimits_{x \to x_0(x \to \infty)} g(x) = A, \lim\nolimits_{x \to x_0(x \to \infty)} h(x) = A$$

那么 $\lim_{x\to x_0(x\to\infty)} f(x)$ 存在, 且等于 A.

- 夹逼准则处主要通过放缩来求极限
- 常用的结论有: 若 $\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + ... + a_m^n}$, 其中 $a_i > 0 (i=1,2,3,...,m)$, 令 $\max a_i = a$, 则 $\sqrt[n]{a^n} \leqslant \sqrt[n]{a_1^n + a_2^n + ... + a_m^n} \leqslant \sqrt[n]{ma^n}$, $\lim_{n\to\infty} \sqrt[n]{a^n} = a$, $\lim_{n\to\infty} \sqrt[n]{a^n} = a$

单调有界准则

定义 1.4.8: 函数的单调有界准则

设函数 f(x) 在点 x_0 的某个左邻域内单调并且有界,则 f(x) 在 x_0 的左极限 $f(x_0^-)$ 一定存在

幂指函数求极限

一般主要是进行恒等变换,即 $a^b=e^{b\ln a}$. 如果两个函数的指数相同,则可以提后项/前项除此之外,还有一个常用的结论:对于 $\forall a,b>0$ 均有: $\lim_{x\to 0^+}x^a(\ln x)^b=0$,证明如下:

证明.

原式 =
$$\lim_{x \to 0^+} x^a \cdot \ln^b x$$

= $\lim_{x \to 0^+} \frac{\ln^b x}{x^{-a}}$
= $\lim_{x \to 0^+} \frac{b \ln^{b-1} x \cdot \frac{1}{x}}{-ax^{-a-1}}$

没洛一次,分子次数-1. 分母次数不变,一直洛下去,分子次数要么洛到 0(即 $\lim_{x\to 0^+} \frac{c}{x^{-a}} = \lim_{x\to o^+} cx^a = 0$),要么洛成负数 $(\lim_{x\to 0^+} c\frac{\ln^m x}{x^{-a}} = 0)$,最终结果都是 0

对数函数性质求极限

1.4.7 拉格朗日中值定理求极限

如果两个函数的形式一样,那么可以使用拉格朗日中值定理进行计算,但是处理之后的 ε 需要可以使用夹逼准则.

题目 30.
$$\lim_{x\to+\infty} x^2 \left(a^{\frac{1}{x}} - a^{\frac{1}{x+1}}\right) (a>0)$$

解答. 该题存在相近的函数形式,使用拉格朗日中值定理进行解析 $a^{\frac{1}{x}}-a^{\frac{1}{x+1}}=a^{\frac{1}{\varepsilon}}\ln a^{\frac{1}{\varepsilon^2}}, \varepsilon\in(x,x+1)$

原式 =
$$x^2 a^{\frac{1}{\varepsilon}} \ln a \frac{1}{\varepsilon^2}$$

当 $\varepsilon \to x+1$ 时,原式的极限为 $x^2 a^{\frac{1}{x+1}} \ln a \frac{1}{(x+1)^2} = \ln a$ 当 $\varepsilon \to x$ 时,原式的极限为 $x^2 a^{\frac{1}{x}} \ln a \frac{1}{x^2} = \ln a$ 综上,函数极限为 $\ln a$

题目 31.
$$\lim_{n\to\infty} n^2 \left(\arctan \frac{a}{n} - \arctan \frac{a}{n+1}\right) (a>0)$$

解答. 该题存在相近的函数形式,使用拉格朗日中值定理进行解析 $\arctan \frac{a}{n} - \arctan \frac{a}{a+1} = -\frac{a}{\varepsilon^2 + a^2}$

原式 =
$$\lim_{n \to \infty} n^2 (-\frac{a}{\varepsilon^2 + a^2}), (\varepsilon \in (n, n+1))$$

当
$$\varepsilon \to n+1$$
 时,原式的极限为 $\lim_{n \to \infty} n^2 (-\frac{a}{(n+1)^2+a^2}) = a$ 当 $\varepsilon \to n$ 时,原式的极限为 $\lim_{n \to \infty} n^2 (-\frac{a}{(n)^2+a^2}) = a$ 综上,函数极限为 a

题目 32.
$$\lim_{x\to 0} \frac{\cos(2x) - \cos x}{x^2}$$

解答. 对分子进行泰勒展开得:

原式 =
$$\frac{1 - \frac{4}{2}x^2 - 1 + \frac{x^2}{2} + o(x^2)}{x^2}$$
$$= -\frac{3}{2}$$

题目 32 的注记. 本题看似可以存在两个形式相同的函数形式, 但是如果对其使用拉格朗日中值定理解析, 则 $\sin \varepsilon$, $\varepsilon \in (x, 2x)$, 此时 $\sin \varepsilon$ 的极限不可以通过夹逼准则得到, 因此不可以使用这种方法, 只可以使用泰勒展开.

1.4.8 七种未定式的计算

主要有以下类型
$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty, \infty - \infty, \infty^0, 1^\infty$$

形如
$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty$$

$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty$$
 可以直接计算或者简单转换可以直接计算.

形如 $\infty - \infty$

 $\infty - \infty$ 可以通过取倒数或者取对数进行计算

题目 33.
$$\lim_{x\to+\infty} \left[x^2\left(e^{\frac{1}{x}}-1\right)-x\right]$$

解答. 原式
$$\stackrel{\diamondsuit}{=} \lim_{u \to 0^+} \frac{e^u - 1 - u}{u^2} = \lim_{u \to 0^+} \frac{e^u - 1}{2u} = \frac{1}{2}$$

形如 $\infty^0, 0^0$

$$\infty^0$$
 与 0^0 通常使用 $u^v = e^{v \ln u}$ 来计算

题目 34. 求极限
$$\lim_{x\to 0} \left(\frac{e^x + e^{2x} + \dots + e^{nx}}{n}\right)^{\frac{1}{x}}$$
, 其中 n 是给定的自然数.

26

解答.

原式 =
$$e^{\lim_{x\to 0} \frac{\ln\left(\frac{e^x + e^{2x} + \dots + e^{nx}}{n}\right)}{x}}$$

$$= \lim_{x\to 0} \frac{\frac{e^x + 2e^{2x} + \dots + ne^{nx}}{n}}{\frac{e^x + 2e^{2x} + \dots + e^{nx}}{n}}$$

$$= \lim_{x\to 0} \frac{e^x + 2e^{2x} + \dots + e^{nx}}{n}$$

$$= \lim_{x\to 0} \frac{e^x + 2e^{2x} + \dots + e^{nx}}{n}$$

$$= \frac{1 + 2e^{2x} + \dots + e^{nx}}{1 + 1 + \dots + 1}$$
原式 = $e^{\frac{n+1}{2}}$

形如 1∞

 1^{∞} 通常使用 $\lim u^v = e^{\lim(u-1)v}$ 来计算,需要知道的是 1^{∞} 可以化为第二个重要极限.

题目 35.
$$\lim_{x\to\infty} \left[\frac{x^2+x}{(x-a)(x-b)} \right]^x$$

解答.

原式 =
$$\lim_{x \to \infty} \left(\frac{x}{x-a}\right)^x \times \left(\frac{x+1}{x-b}\right)^x$$

= $\lim_{x \to \infty} \left(1 + \frac{a}{x-a}\right)^x \times \left(1 + \frac{1-b}{x+b}\right)^x$
= $e^{\lim_{x \to \infty} \frac{ax}{x-a}} \times e^{\lim_{x \to \infty} \frac{(1-b)x}{x+b}}$
= e^{a+1-b}

题目 36.
$$\lim_{n\to\infty}\left[\frac{\sqrt{n+a}+\sqrt{n+b}+\sqrt{n+c}}{3\sqrt{n}}\right]^n$$
,其中 $a>0,b>0,c>0$.

解答.

原式 =
$$\lim_{n \to \infty} \frac{\ln \frac{\sqrt{n+a} + \sqrt{n+b} + \sqrt{n+c}}{3\sqrt{n}}}{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \frac{\ln \frac{\sqrt{1+\frac{a}{n}} + \sqrt{1+\frac{b}{n}} + \sqrt{1+\frac{c}{n}}}{3}}{\frac{1}{n}}$$

$$= \lim_{x \to 0} \frac{\ln \frac{\sqrt{1+ax} + \sqrt{1+bx} + \sqrt{1+cx} + 3 - 3}{3}}{x}$$

$$= \lim_{x \to 0} \frac{\sqrt{1+ax} + \sqrt{1+bx} + \sqrt{1+cx} - 3}{3x}$$

$$= \lim_{x \to 0} \frac{\frac{a}{2\sqrt{1+ax}} + \frac{b}{2\sqrt{1+bx}} + \frac{c}{2\sqrt{1+cx}}}{3}$$

$$= \frac{a+b+c}{6}$$

综上所述,答案为 $e^{\displaystyle\frac{a+b+c}{6}}$

题目 37. 求极限
$$\lim_{x\to 0^+} \frac{x^x - (\sin x)^x}{x^2 \ln(1+x)}$$

解答.

综上所述, 答案为 $\frac{1}{6}$

题目 38. 求极限
$$\lim_{x\to 0} \left(\frac{a_1^x + a_2^x + \dots + a_n^x}{n}\right)^{\frac{n}{x}}$$
,其中 $a_i > 0, i = 1, 2, \dots, n$

28

解答.

$$\begin{split} & \text{ Fix} = \lim_{x \to 0} \left(1 + \frac{a_1^x + a_2^x + \dots + a_n^x - n}{n} \right)^{\frac{n}{a_1' + a_2' + \dots + a_n' - n} \cdot \frac{a_1' + a_1' + \dots + a_n' - n}{x}} \\ &= \lim_{x \to 0} \frac{a_1^x + a_2^x + \dots + a_n^x - n}{x} = \ln(a_1 a_2 \dots a_n) \\ &= \lim_{x \to 0} \left(1 + \frac{a_1^x + a_2^x + \dots + a_n^x - n}{n} \right)^{\frac{n}{a_1' + a_2' + \dots + a_n' - n}} = \mathrm{e} \end{split}$$

综上所述, 答案为 $a_1a_2a_3a_4...a_n$

数列极限的运算 1.5

1.5.1 数列极限的运算法则

设
$$\lim_{n\to\infty} x_n = a$$
, $\lim_{n\to\infty} y_n = b$, 则

- $\lim_{n\to\infty}(x_n\pm y_n)=a\pm b$
- $\lim_{n\to\infty} x_n y_n = ab$
- 若 $b \neq 0, y_n \neq 0$, 则 $\lim_{n \to \infty} \frac{x_n}{u} = \frac{a}{b}$

上述运算规则可推广至有限个数列的情况

1.5.2夹逼准则

定理 1.5.1: 数列极限夹逼准则

如果数列 $\{|x_n|\}, \{y_n\}$ 及 $\{z_n\}$ 满足下列条件:

• 从某项开始, 即 $\exists n_0 \in N_+(\mathbb{p} n \to \infty)$, 当 $n > n_0$ 时, 有

$$y_n \leqslant x_n \leqslant z_n$$

• $\lim_{n\to\infty} y_n = a, \lim_{n\to\infty} z_n = a$

那么数列 $\{x_n\}$ 的极限存在, 且 $\lim_{n\to\infty} x_n = a$

以下为放缩的常用方法

• 利用简单放大与缩小

$$\begin{cases} n \times u_{\min} \leqslant u_1 + u_2 + \dots + u_n \leqslant n \times u_{\max}, \\ \ \, \underline{\ \, } \\ \ \, \underline{\ \,$$

- 利用如下重要不等式
 - 1. 设 a, b 为实数, 则 $|a+b| \le |a| + |b|$; |a| |b| $| \le |a-b|$ 9

2.
$$\sqrt{ab} \leqslant \frac{a+b}{2} \leqslant \sqrt{\frac{a^2+b^2}{2}} (a,b>0)^{10}$$

$$3. \ \sqrt[3]{abc} \leqslant \frac{a+b+c}{3} \leqslant \sqrt{\frac{a^2+b^2+c^2}{3}}(a,b,c>0)$$

4. 设
$$a \ge b \ge 0$$
,则
$$\begin{cases} \exists n \ge 0 \text{ 时, } a^n \ge b^n, \\ \exists n \le 0 \text{ 时, } a^n \le b^n. \end{cases}$$

6.
$$\sin x < x < \tan x \left(0 < x < \frac{\pi}{2} \right)$$

7.
$$\sin x < x(x > 0)$$

8.
$$\pm 0 < x < \frac{\pi}{4}$$
 $\forall x < \tan x < \frac{4}{\pi}x$

9. 当
$$0 < x < \frac{\pi}{2}$$
 时, $\sin x > \frac{2}{\pi}x$

10. $\arctan x \le x \le \arcsin x (0 \le x \le 1)$

11.
$$e^x \ge x + 1(\forall x)^{12}$$

12.
$$x-1 \ge \ln x (x > 0)^{13}$$

13.
$$\frac{1}{1+x} < \ln(1+\frac{1}{x}) < \frac{1}{x}(x>0) \implies \frac{x}{1+x} < \ln(1+x) < x(x>0)^{14}$$

14. 在处理如下数列时,可以在前面加一个减项,如
$$(1+\frac{1}{2^2})(1+\frac{1}{2^{2^2}})...(1+\frac{1}{2^{2^n}})$$
,可化为 $(1-\frac{1}{4})(1+\frac{1}{2^2})(1+\frac{1}{2^{2^2}})...(1+\frac{1}{2^{2^n}})$ * $\frac{4}{3}$

- 利用闭区间上连续函数必有最大值与最小值
- 利用压缩映射原理

题目 39.
$$\lim_{n\to\infty} \left(\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \dots + \frac{n}{n^2+n+n} \right)$$

证明.

题目 40. 求极限 $\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n}$, 其中 $a_i(i=1,2,\dots,m)$ 都是非负数

证明.

$$11$$
当 $n\pi < x < (n+1)\pi, 2n < S(x) < 2(n+1)$ 时, $\frac{2n}{(n+1)\pi} < \frac{S(x)}{x} < \frac{2(n+1)}{n\pi}$.

 13 当 $x_n > 0$ 时,若 $x_{n+1} = \ln x_n + 1$,由 $\ln x_n + 1 \leqslant x_n$,得 $x_{n+1} \leqslant x_n$,即 $\{x_n\}$ 单调不增 14 令 $f(x) = \ln x$,并在区间 [x, x+1] 上对其使用拉格朗日中值定理,有 $\ln \left(1 + \frac{1}{x}\right) = \ln(1+x) - \ln x = \frac{1}{\xi}$ 其中 $0 < x < \xi < x + 1$, 因此对任意的 x>0, 有 $\frac{1}{1+x}<\ln\left(1+\frac{1}{x}\right)=\frac{1}{\xi}<\frac{1}{x}$

 $^{^{12}}$ 当 $x_{n+1}=\mathrm{e}^{x_n}-1$ 时,由 $\mathrm{e}^{x_n}-1\geqslant x_n$,得 $x_{n+1}\geqslant x_n$,即 $\{x_n\}$ 单调不减

1.5.3 单调有界准则

定理 1.5.2: 数列的单调有界准则

单调有界数列必有极限, 即若数列 $\{x_n\}$ 单调增加 (减少) 且有上界 (下界), 则 $\lim_{n\to\infty}x_n$ 存在

证明数列单调性的方法:

$$1. \ x_{n+1} - x_n \! > \! 0 \ \ \overrightarrow{\boxtimes} \frac{x_{n+1}}{x_n} \! > \! 1 \big(\overline{\boxminus} \frac{\boxminus}{\overleftarrow{\lnot}} \big)$$

- 2. 利用数学归纳法
- 3. 利用重要不等式
- 4. $x_n x_{n-1}$ 与 $x_{n-1} x_{n-2}$ 同号, 则 x_n 单调
- 5. 利用结论: 对 $x_{n+1} = f(x_n) (n = 1, 2, ...), x_n \in 区间I$
 - 若 $f'(x)>0, x\in$ 区间I,则数列 $\{x_n\}$ 单调,且 $\left\{\begin{array}{l} \exists x_2>x_1 \text{时,数列}\,\{x_n\} \text{单调增加} \\ \exists x_2< x_1 \text{时,数列}\,\{x_n\} \text{单调减少} \end{array}\right.$

证明. 若 f(x) 单调增加, 且 $x_1 < x_2$, 则数列单增的图像是这样的:

若 f(x) 单调增加, 且 $x_1 > x_2$, 则数列单增的图像是这样的

• 若 $f'(x) < 0, x \in$ 区间 I,则数列 $\{x_n\}$ 不单调证明. 若 f(x) 单调递减,且 $x_1 < x_2$ 时,则图像为

31

