CLUSTERING DE CLIENTES O PRODUCTOS SISTEMAS DE RECOMENDACIÓN. FILTRO COLABORATIVO

Sistemas de recomendación

- Dado un cliente, queremos recomendarle productos (similares a los que ha consumido) que han sido consumidos por otros clientes similares a él.
- Una de las aplicaciones más importante del aprendizaje automático.
 - Amazon: recomendar productos,
 - Youtube: videos,
 - Facebook: noticias recomendadas,
 - Google play: aplicaciones descargadas,
 - Netflix: series, peliculas
 - Eroski: ofertas, descuentos, etc..
- Porcentaje de las ganancias depende de las compras/vistas que hacen los usuarios de los productos recomendados.

Sistemas de recomendación

- Caso real: muchos productos y muchos clientes.
- Cada cliente está representado por los productos que ha comprado (valorado, etc..)
- Vectores "vacios": la mayoría de los valores están vacíos, por lo tanto no podemos calcular las distancias.
- Tampoco podemos construir una matriz de similaridad entre clientes (no los conocemos).
- □ Tampoco podemos construir una matriz de similaridad entre productos (son muchos).

Ejemplo: recomendar películas en base a las valoraciones

Película	Ander	Sergio	Adriana	Uxue
Transformers: La era de la extinción	5	5	0	1
Capitán América: El soldado de invierno	5	?	?	0
X-Men: Días del futuro pasado	?	4	2	5
El amor está en el aire	0	0	4	5
El lado bueno de las cosas	1	0	5	5

 $n_u = n$ úmero usuarios $n_m = n$ úmero de peliculas r(i,j) = 1 si el usuario j ha valorado la película i. y(i,j) = valoración del usuario j de la película i.

Sistemas de recomendación. Recomendaciones basadas en el contenido

Película	Ander	Sergio	Adriana	Uxue	x_1 (Acción)	x_2 (Romance)
Transformers: La era de la extinción	5	5	0	1	0,9	0,05
Capitán América: El soldado de invierno	5	?	5	0	1	0
X-Men: Días del futuro pasado	5	4	2	5	0,8	0,1
El amor está en el aire	0	0	4	5	0	1
El lado bueno de las cosas	1	0	5	5	0,1	0,95

- Para cada usuario j
 podemos aprender los
 parámetros θ^(j) de un
 modelo de regresión
 lineal.
- Predecir lasvaloraciones delusuario j para lapelícula i :

$$\square (\boldsymbol{\theta^{(j)}})^T \boldsymbol{x^{(i)}}$$

Formulación del problema:

```
r(i,j) = 1 si el usuario j ha valorado la pelicula i, 0 en otro caso.
```

y(i,j) = valoración del usuario j de la pelicula i.

 $\theta^{(j)} = vector del parámetros del usuario j.$

 $x^{(i)} = vector de características de la película i.$

 $m^{(j)} = no. de películas que ha valorado el usuario j.$

Para encontrar $\theta^{(j)}$:

$$min_{\theta^{(j)}} \frac{1}{2n^{(j)}} \left[\sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \lambda \sum_{k=1}^n (\theta_k^{(j)})^2 \right]$$

Podemos eliminar $m^{(j)}$, ya que es una constante y es diferente para cada usuario.

 \square Función a minimizar. Para un único usuario j, $\theta^{(J)}$:

$$min_{\theta^{(j)}} \quad \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

Para todos los usuarios a la vez

$$min_{\theta^{(1)},\dots,\theta^{(n_u)}} \qquad \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Algoritmo de optimización

$$min_{\theta^{(1)},\dots,\theta^{(n_u)}} \qquad \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Descenso por gradiente:

$$\begin{split} \theta_0^{(j)} &\coloneqq \theta_0^{(j)} - \alpha \left[\sum_{i: r(i,j) = 1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right) \cdot x_0^{(i)} \right] \\ \theta_k^{(j)} &\coloneqq \theta_k^{(j)} - \alpha \left[\sum_{i: r(i,j) = 1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right) \cdot x_k^{(i)} + \lambda \theta_k^{(j)} \right] \end{split} \quad \text{Para k = 1,..,n}$$

- Necesitamos que un experto valore las características que hemos creado para cada película.
- Obtenemos un vector de parámetros que define a cada usuario.
- Podemos realizar un clustering utilizando para usuario el vector de características que hemos obtenido.
- Obtendremos grupos basados en las valoraciones que han realizado sobre las películas.

Película	Ander	Sergio	Adriana	Uxue	x_1 (Acción)	x_2 (Romance)
Transformers: La era de la extinción	5	5	0	1	5	5
Capitán América: El soldado de invierno	5	?	?	0	5	5
X-Men: Días del futuro pasado	5	4	2	5	5	5
El amor está en el aire	0	0	4	5	5	5
El lado bueno de las cosas	1	0	5	?	Ş	Ś

■ No conocemos las características de las películas pero si conocemos (porque se lo hemos preguntado) el perfil de los usuarios.

Película	Ander $ heta^{(1)}$	Sergio $ heta^{(2)}$	Adriana $ heta^{(3)}$	Uxue $ heta^{(4)}$	x ₁ (Acción)	x ₂ (Romance)
Transformers: La era de la extinción	5	5	0	1	≈1	≈0
Capitán América: El soldado de invierno	5	?	?	0	?	?
X-Men: Días del futuro pasado	?	4	2	?	?	?
El amor está en el aire	0	0	4	5	?	?
El lado bueno de las cosas	1	0	5	5	?	?

$$\theta^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix} \leftarrow \theta_0$$

$$\leftarrow \text{Gusto por las películas de acción}$$

$$\leftarrow \text{Gusto por las películas de romance}$$

$$\theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix} \qquad \theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} \qquad \qquad \theta^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$$

$$\begin{cases} (\theta^{(1)})^T x^{(1)} \approx 5 \\ (\theta^{(2)})^T x^{(1)} \approx 5 \\ (\theta^{(3)})^T x^{(1)} \approx 0 \\ (\theta^{(4)})^T x^{(1)} \approx 1 \end{cases}$$

Algoritmo de optimización (suponiendo que tenemos los perfiles de los usuarios $\theta^{(j)}$ para aprender las características de la película $x^{(i)}$:

$$min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Para todas las películas:

$$min_{x^{(1)},\dots,x^{(n_m)}} \qquad \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

- Necesitamos que TODOS los clientes completen un perfil con sus gustos.
- Obtenemos un vector de parámetros que define a cada película.
- Podemos realizar un clustering utilizando para película el vector de características que hemos obtenido.
- Obtendremos grupos de películas basados en las valoraciones que han realizado los usuarios sobre las películas.

Algoritmo filtro colaborativo básico

- Dadas unas características de las películas $x^{(1)}, ..., x^{(n_m)}$, y unas valoraciones, podemos estimar el perfil del usuario $\theta^{(1)}, ..., \theta^{(n_u)}$.
- \square Dados los perfiles de usuarios $\theta^{(1)}, \dots, \theta^{(n_u)}$, y unas valoraciones, podemos estimar las características de las películas $x^{(1)}, \dots, x^{(n_m)}$.
- □ ¿el huevo o la gallina?

□ ¿Podemos hacerlo mejor?

Algoritmo filtro colaborativo

Dadas unas características de las películas $x^{(1)}, ..., x^{(n_m)}$, y unas valoraciones, podemos estimar el perfil del usuario $\theta^{(1)}, ..., \theta^{(n_u)}$.

$$min_{\theta^{(1)},\dots,\theta^{(n_u)}} \qquad \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Dados los perfiles de usuarios $\theta^{(1)}$, ..., $\theta^{(n_u)}$, y unas valoraciones, podemos estimar las características de las películas $x^{(1)}$, ..., $x^{(n_m)}$.

$$min_{x^{(1)},\dots,x^{(n_m)}} \quad \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Algoritmo filtro colaborativo

Juntamos todo en una misma función objetivo:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{i,j:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

□ Vamos a minimizar la función objetivo y los parámetros serán:

$$x^{(1)}, ..., x^{(n_m)}, \theta^{(1)}, ..., \theta^{(n_u)}$$

 \square No incluimos el término $x_0^{(i)}$, ni el término $\theta_0^{(j)}$

Algoritmo filtro colaborativo

1. Inicializar con números aleatorios pequeños,

$$x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$$

2. Minimizar $J(x^{(1)},...,x^{(n_m)},\theta^{(1)},...,\theta^{(n_u)})$ utilizando el descenso por gradiente. Para cada $i=1,...,n_m$ y $j=1,...,n_u$:

$$x_k^{(i)} \coloneqq x_k^{(i)} - \alpha \left[\sum_{j:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right) \cdot \theta_k^{(j)} + \lambda x_k^{(i)} \right]$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left[\sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right) \cdot x_k^{(i)} + \lambda \theta_k^{(j)} \right]$$

Filtro colaborativo. Normalización

Película	Ander $ heta^{(1)}$	Sergio $ heta^{(2)}$	Adriana $ heta^{(3)}$	Uxue $ heta^{(4)}$	Edson
Transformers: La era de la extinción	5	5	0	1	?
Capitán América: El soldado de invierno	5	?	?	0	?
X-Men: Días del futuro pasado	?	4	2	?	?
El amor está en el aire	0	0	4	5	?
El lado bueno de las cosas	1	0	5	?	?

$$Y = \begin{bmatrix} 5 & \cdots & ? \\ \vdots & \ddots & \vdots \\ 1 & \cdots & ? \end{bmatrix}$$

Añadimos un nuevo usuario que no ha visto ninguna película.

En la función de coste solo se tendrá en cuenta el termino de regularización. Por lo tanto $\theta^{(nuevo)}=0$.

El sistema predecirá todas las valoraciones del nuevo = 0. $(\theta^{(nuevo)})^T x^{(i)} = 0$

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i,j:r(i,j)=1}^{n_u} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Filtro colaborativo. Normalización por la media

2,25	2,25	0	-1,75	3
2,5	?	٠٠	-2,5	?
?	1	-1	?	?
-2,25	-2,25	1,75	2,75	?
-1	-2	3	?	?

- Utilizar la nueva matriz Y para aprender $x^{(1)}, ..., x^{(n_m)}, \theta^{(1)}, ..., \theta^{(n_u)}$
- Al predecir la valoración del usuario j de la película i: $(\theta^{(j)})^T x^{(i)} + \mu_i$
- Por tanto al usuario que no ha visto ninguna película le recomendaré según la valoración media de todos los usuarios.

Clustering de clientes o productos

- \Box Una vez que hemos entrenado el filtro colaborativo cada película estará representada por un vector $x^{(i)}$.
- \square Cada usuario será un vector $\theta^{(j)}$
- Podemos aplicar el algoritmo k-means o el EM para encontrar grupos de clientes parecidos en sus gustos o grupos de películas.