1 Syllabus

- 1. Asymptotic notation, recurrence.
- 2. Divide and Conquer.
- 3. Dynamic Programming.
- 4. Greedy Algorithm.
- 5. Graph Algorithm.
- 6. NPC

2 Basic

2.1 What is an algorithm?

Unambiguous, mechanically executable sequence of elementary operations.

There are certain types of algorithm:

Traditi	onal (This courses main focus.)	Modern algorithm research
Determ	ninistic	Randomized
Exact		Approximate
Off-line		On-line
Sequen	tial	Parallel

2.2 Input & Output

View algorithm as a function with well defined inputs mapping to specific outputs. For example:

Input: A[1...n] // Positive real number, distinct.

Output: $MAXA[i], 1 \le i \le n$.

2.2.1 Algorithm 1

Stupid way.

```
1: procedure FINDMAX
      for i = 1 to n do
2:
          count = 0
3:
4:
          for j = 1 to n do
             if A[i] > A[j] then
5:
                 count = count + 1
6:
             end if
7:
          end for
8:
          if count = n then
9:
             return A[i]
10:
11:
          end if
      end for
12:
13: end procedure
```

Algorithm 1: Stupid Find Max Algorithm

Analysis: Worst Case, n^2 comparison.

2.2.2 Algorithm 2

Sort & Find.

```
1: procedure FINDMAX

2: \overline{A} = sort(A)

3: return \overline{A}[n]

4: end procedure
```

Algorithm 2: Sort & Find Max Algorithm

Analysis: Worst Case, sorting takes $c n \log n$ time.

2.2.3 Algorithm 3

Dynamically store the biggest one.

```
1: procedure FINDMAX
     current = 1
2:
     for i = 2 to n do
3:
         if A[i] > A[current] then
4:
            current = i
5:
         end if
6:
7:
     end for
     return A[current]
8:
9: end procedure
```

Algorithm 3: Search & Find Max Algorithm

2.3 Can we do better?

It depends on the operations allowed. For example the dropping the curtain and find the first appearing one.

3 Asymptotic Notation – big "O" notation

3.1 Growth of Functions

The growth of function in Table 1 increase downwards.

```
 \begin{array}{c|c} \text{Table 1: Function List} \\ \log_{10} n & \text{binary search} \\ n & \text{input} \\ n^2 & \text{pairs} \\ 10^{10}n^{10} & \\ 1.000.1^n & \\ 2^n & \text{Binary string of length n} \\ n! & \text{Permutation} \end{array}
```

Let f(n), g(n) be function.

3.2 big "O" notation

Definition 3.2.1. $f(n) = \mathcal{O}(g(n))$, if $\exists n_0 \in \mathbb{N}$, $c \in \mathbb{R}^+$, s.t. $\forall n \geq n_0$, $f(n) \leq c * g(n)$, and $\lim_{n \to \infty} \frac{f(n)}{g(n)} \neq \infty$, i.e. it is $\lim_{n \to \infty} \frac{f(n)}{g(n)} < k$, for some constant k.

Table 2 shows the basic definition of all the asymptotic notations.

Table 2: Definition for all Asymptotic Notation

f(n)	$\lim_{n\to\infty} \frac{f(n)}{g(n)}$	relation
$\mathcal{O}(g(n))$	$\neq \infty$	\leq
$\Omega(g(n))$	$ eq \infty$	\leq
$\Theta(g(n))$	=k>0	=
o(g(n))	=0	<
$\omega(g(n))$	$=\infty$	>

3.3 Asymptotic Relation's feature

Theorem 3.3.1. Multiplying by positive constant does NOT change asymptotic relations. i.e. if $f(n) = \mathcal{O}(g(n))$, then $100 * f(n) = \mathcal{O}(g(n))$.

Proof.
$$f(n) = \mathcal{O}(g(n)) \Rightarrow \exists n_0 \exists c, \forall n \ge n_0, f(n) \le c * g(n),$$

then, $\exists n_0 \exists c', \text{ s.t. } \forall n \ge n_0, \ 100 * f(n) \le c' * g(n) = 100c * g(n).$

Example:

$$C * 2^n = \Theta(2^n) \tag{1}$$

$$(C*2)^n \neq \Theta(2^n) \tag{2}$$

Claim 3.3.2. *Show:* $2n \log(n) - 10n = \Theta(n \log(n))$

Proof. First show: $2n \log(n) - 10n = \mathcal{O}(n \log(n))$

For $n_0 = 1$, c = 2

$$2n\log(n) - 10n \le 2n\log(n)$$

Now show: $2n \log(n) - 10n = \Omega(n \log(n))$

For $n_0 = 2^1 0$, c = 1,

$$2n \log(n) - 10n \ge n \log(n) + n \log(2^{10}) - 10n$$
$$= n \log(n) + 10n - 10n$$
$$= n \log(n)$$

$$n_0 = 1 \ (n_0 = 2^{10})$$
 means n is at least 1 (or 2^{10}).

Corollary 3.3.3. $\mathcal{O}(1)$ means Any Constant.

Attention: Asymptotic notation has limit. It is not applicable for all scenarios.

3.4 Properties of log(n)

Definition 3.4.1. $n = C^{\log_c n}, c > 1, \lg n = \log_2 n, \ln n = \log_e n.$

Theorem 3.4.2. $\forall a, b > 1$

$$\log_b(n) = \frac{\log_a(n)}{\log_a(b)}$$
$$\log_b(n) = \Theta(\log_a(n))$$

Theorem 3.4.3. $\forall a, b \in \mathbb{R}$

$$\log(a^n) = n * \log(a)$$
$$\log(a * b) = \log(a) + \log(b)$$
$$a^{\log(b)} = b^{\log(a)}$$

Theorem 3.4.4. $\lg(n)$ is to n as n is to 2^n .

3.5 Something More

Theorem 3.5.1. Let f(n) be a polynomial function, then $\log(f(n)) = \Theta(\log(n))$.

Proof. The asymptotic result of n^2 and n^10 are the same.

Definition 3.5.2. $\log^*(n) = o(\log \log \log \log \log \log n) = \alpha$.

Example: $\lg^*(2^{2^{2^{2^2}}}) = 5$.

4 Series

4.1 Some Definition

Definition 4.1.1. Harmonic Series:

$$\sum_{i=1}^{n} \frac{1}{i} = \Theta(\log(n))$$

Definition 4.1.2. Geometric Series:

$$\sum_{i=0}^{n-1} x^i = \frac{x^n - 1}{x - 1} = \begin{cases} \Theta(x^n) & \text{if } \forall x > 1, \\ \Theta(1) & \text{if } \forall x < 1, \\ \Theta(n) & \text{if } \forall x = 1. \end{cases}$$

Definition 4.1.3. Arithmetic Series:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$$

4.2 Some Theorem

Suppose I want to know if f(n) = o(g(n)).

Theorem 4.2.1. If $\log(f(n)) = o(\log(g(n)), \text{ then } f(n) = o(g(n)).$

Example: Let $f(n) = n^3$, $g(n) = 2^n$. Then $\log(f(n)) = \log(n^3) = 3\log(n)$, $\log(g(n)) = \log(2^n) = n$.

i.e.
$$\log(f(n)) < \log(g(n) \Rightarrow f(n) < g(n)$$

Note that this theorem stands for 'o', NOT TRUE for 'O'.

Example: $\log(n^3) = \mathcal{O}(\log(n^2))$, but $n^3 \neq \mathcal{O}(n^2)$.

5 Induction

5.1 When to use?

Prove statement for all $n \in \mathbb{N}$, s.t. $n \geq n_0$.

5.2 Definition

Basically, induction has two parts:

- 1. Base case(s) Sometimes there are more than one base cases. Prove statement for some n. Often $n_0 = 0$ or 1.
- 2. Induction Hypothesis

Assume statement hold true for all $m \leq n$.

Prove the hypothesis implies that it hold true for n + 1.

Note that the process may be different from previous, which just hypothesize n-1 is true and prove for n.