अध्याय 10

गुरुत्वाकर्षण (Gravitation)

अध्याय 8 तथा 9 में हमने वस्तुओं की गित के बारे में तथा बल को गित के कारक के रूप में अध्ययन किया है। हमने सीखा है कि किसी वस्तु की चाल या गित की दिशा बदलने के लिए बल की आवश्यकता होती है। हम सदैव देखते हैं कि जब किसी वस्तु को ऊँचाई से गिराया जाता है तो वह पृथ्वी की ओर ही गिरती है। हम जानते हैं कि सभी ग्रह सूर्य के चारों ओर चक्कर लगाते हैं। चंद्रमा पृथ्वी की पिरक्रमा करता है। इन सभी अवस्थाओं में, वस्तुओं पर, ग्रहों पर तथा चंद्रमा पर लगने वाला कोई बल अवश्य होना चाहिए। आइजक न्यूटन इस तथ्य को समझ गए थे कि इन सभी के लिए एक ही बल उत्तरदायी है। इस बल को गुरुत्वाकर्षण बल कहते हैं।

इस अध्याय में हम गुरुत्वाकर्षण तथा गुरुत्वाकर्षण के सार्वित्रिक नियम के बारे में अध्ययन करेंगे। हम पृथ्वी पर गुरुत्वाकर्षण बल के प्रभाव के अंतर्गत वस्तुओं की गित पर विचार करेंगे। हम अध्ययन करेंगे कि किसी वस्तु का भार एक स्थान से दूसरे स्थान पर किस प्रकार परिवर्तित होता है। द्रवों में वस्तुओं के प्लवन की शर्तों के बारे में भी हम विचार-विमर्श करेंगे।

10.1 गुरुत्वाकर्षण

हम जानते हैं कि चंद्रमा पृथ्वी का चक्कर लगाता है। किसी वस्तु को जब ऊपर की ओर फेंकते हैं, तो वह कुछ ऊँचाई तक ऊपर पहुँचती है और फिर नीचे की ओर गिरने लगती है। कहते हैं कि जब न्यूटन एक पेड़ के नीचे बैठे थे तो एक सेब उन पर गिरा। सेब के गिरने की क्रिया ने न्यूटन को सोचने के लिए प्रेरित किया। उन्होंने सोचा कि यदि पृथ्वी सेब को अपनी ओर आकर्षित कर सकती है तो क्या यह चंद्रमा को आकर्षित नहीं कर सकती? क्या दोनों स्थितियों में वही बल लग रहा है? उन्होंने अनुमान लगाया कि दोनों अवस्थाओं में एक ही प्रकार का बल उत्तरदायी है। उन्होंने तर्क दिया कि अपनी कक्षा के प्रत्येक बिंदु पर चंद्रमा किसी सरल रेखीय पथ पर गित नहीं करता वरन् पृथ्वी की ओर गिरता रहता है। अत: वह अवश्य ही पृथ्वी द्वारा आकर्षित होता है। लेकिन हम वास्तव में चंद्रमा को पृथ्वी की ओर गिरते हुए नहीं देखते।

आइए चंद्रमा की गति को समझने के लिए क्रियाकलाप 8.11 पर पुन: विचार करें।

क्रियक्लप

धागे का एक टुकड़ा लीजिए। इसके एक सिरे पर एक छोटा पत्थर बाँधिए। धागे के दूसरे सिरे को पकड़िए और पत्थर को वृत्ताकार पथ में घुमाइए जैसा कि चित्र 10.1 में दिखाया गया है।

चित्र 10.1: पत्थर द्वारा नियत परिमाण के वेग से वृत्ताकार पथ में गति

पत्थर की गित की दिशा को देखिए।
अब धागे को छोड़िए।
फिर से पत्थर की गित की दिशा को देखिए।

धागे को छोड़ने से पहले पत्थर एक निश्चित चाल से वृत्ताकार पथ में गित करता है तथा प्रत्येक बिंदु पर उसकी गित की दिशा बदलती है। दिशा के परिवर्तन में वेग-परिवर्तन या त्वरण सिम्मिलित है। जिस बल के कारण यह त्वरण होता है तथा जो वस्तु को वृत्ताकार पथ में गितशील रखता है, वह बल केंद्र की ओर लगता है। इस बल को अभिकेंद्र बल कहते हैं। इस बल की अनुपस्थिति में पत्थर एक सरल रेखा में मुक्त रूप से गितशील हो जाता है। यह सरल रेखा वृत्तीय पथ पर स्पर्श रेखा होगी।

पृथ्वी के चारों ओर चंद्रमा की गति अभिकेंद्र बल के कारण है। अभिकेंद्र बल पृथ्वी के आकर्षण बल के कारण मिल पाता है। यदि ऐसा कोई बल न हो तो चंद्रमा एकसमान गति से सरल रेखीय पथ पर चलता रहेगा।

यह देखा गया है कि गिरता हुआ सेब पृथ्वी की ओर आकर्षित होता है। क्या सेब भी पृथ्वी को आकर्षित करता है? यदि ऐसा है, तो हम पृथ्वी को सेब की ओर गित करते क्यों नहीं देख पाते? गित के तीसरे नियम के अनुसार सेब भी पृथ्वी को आकर्षित करता है। लेकिन गित के दूसरे नियम के अनुसार, किसी दिए हुए बल के लिए त्वरण वस्तु के द्रव्यमान के व्युत्क्रमानुपाती होता है [समीकरण (9.4)]। पृथ्वी की अपेक्षा सेब का द्रव्यमान नगण्य है। इसीलिए हम पृथ्वी को सेब की ओर गित करते नहीं देखते। इसी तर्क का विस्तार यह जानने के लिए कीजिए कि पृथ्वी चंद्रमा की ओर गित क्यों नहीं करती।

हमारे सौर परिवार में, सभी ग्रह सूर्य की परिक्रमा करते हैं। पहले की भाँति तर्क करके हम कह सकते हैं कि सूर्य तथा ग्रहों के बीच एक बल विद्यमान है। उपरोक्त तथ्यों के आधार पर न्यूटन ने निष्कर्ष निकाला कि केवल पृथ्वी ही सेब और चंद्रमा को आकर्षित नहीं करती, बल्कि विश्व के सभी पिंड एक-दूसरे को आकर्षित करते हैं। वस्तुओं के बीच यह आकर्षण बल गुरुत्वाकर्षण बल कहलाता है।

10.1.1 गुरुत्वाकर्षण का सार्वत्रिक नियम

विश्व का प्रत्येक पिंड प्रत्येक अन्य पिंड को एक बल से आकर्षित करता है, जो दोनों पिंडों के द्रव्यमानों के गुणनफल के समानुपाती तथा उनके बीच की दूरी के वर्ग के व्युत्क्रमानुपाती होता है। यह बल दोनों पिंडों को मिलाने वाली रेखा की दिशा में लगता है।

चित्र 10.2: किन्हीं दो एकसमान पिंडों के बीच गुरुत्वाकर्षण बल उनके केंद्रों को मिलाने वाली रेखा की दिशा में निदेशित होता है

आइजक न्यूटन (1642 – 1727)

आइजक न्यूटन का जन्म इंग्लैंड में ग्रैंथम के निकट वूल्सथोर्पे में हुआ था। विज्ञान के इतिहास में वह प्राय: सबसे अधिक मौलिक तथा प्रभावशाली सिद्धांतवादी के रूप में जाने जाते हैं। वे एक निर्धन कृषक परिवार में जन्मे थे। लेकिन वे खेती के काम में कुशल नहीं थे। 1661 में

शिक्षा ग्रहण करने के लिए उन्हें कैंब्रिज विश्वविद्यालय भेज दिया गया। सन् 1665 में कैंब्रिज में प्लेग फैल गया और न्यूटन को एक वर्ष की छुट्टी मिल गई। ऐसा कहा जाता है कि इसी वर्ष उनके ऊपर सेब गिरने की घटना घटित हुई। इस घटना ने न्यूटन को, चंद्रमा को उसकी कक्षा में बनाए रखने वाले बल तथा गुरुत्व बल के बीच संबंध की संभावना की खोज करने को प्रेरित किया। इससे उन्होंने गुरुत्वाकर्षण का सार्वित्रक नियम खोज निकाला। विशिष्ट बात यह है कि उनसे पहले भी बहुत से महान वैज्ञानिक गुरुत्व के बारे में जानते थे, किंतु वे उसके महत्व को समझने में असफल रहे।

न्यूटन ने गित के सुप्रसिद्ध नियमों का प्रतिपादन किया। उन्होंने प्रकाश तथा रंगों के सिद्धांतों पर कार्य किया। उन्होंने खगोलीय प्रेक्षणों के लिए खगोलीय दूरदर्शी की रचना की। न्यूटन एक महान गणितज्ञ भी थे। उन्होंने गणित की एक नई शाखा की खोज की जिसे कलन (Calculus) कहते हैं। इसका उपयोग उन्होंने यह सिद्ध करने के लिए किया कि किसी एकसमान घनत्व वाले गोले के बाहर स्थित वस्तुओं के लिए गोले का व्यवहार इस प्रकार का होता है जैसे कि उसका संपूर्ण द्रव्यमान उसके केंद्र पर स्थित हो। न्यूटन ने अपने गित के तीन नियमों तथा गुरुत्वाकर्षण के सार्वित्रक नियम से भौतिकीय विज्ञान के ढाँचे को बदल दिया। सत्रहवीं शताब्दी की प्रमुख वैज्ञानिक क्रांति के रूप में न्यूटन ने कॉपरिनकस, कैप्लर, गैलीलियो तथा अन्य के योगदान को अपने कार्यों के साथ एक नए शिक्तिशाली संश्लेषण के रूप में सिम्मिश्रित किया। यह एक विशिष्ट बात है कि उस समय तक गुरुत्वीय सिद्धांत का सत्यापन नहीं हो सका था यद्यपि उसकी सत्यता के बारे में कोई संदेह नहीं था। इसका कारण था कि न्यूटन का सिद्धांत ठोस वैज्ञानिक तर्कों पर आधारित था और गणित से उसकी पुष्टि भी की गई थी। इससे यह सिद्धांत सरल व परिष्कृत हो गया। ये विशेषताएँ आज भी किसी अच्छे वैज्ञानिक सिद्धांत

न्यूटन ने व्युत्क्रम वर्ग नियम का अनुमान कैसे लगाया?

के लिए अपेक्षित हैं।

ग्रहों की गित के अध्ययन में सदैव से ही हमारी गहरी रुचि रही है। सोलहवीं शताब्दी तक अनेक खगोलशास्त्रियों ने ग्रहों की गित से संबंधित बहुत से आँकड़े एकत्रित कर लिए थे। जोहांस कैप्लर ने इन आँकड़ों के आधार पर तीन नियम व्युत्पन्न किए। इन्हें कैप्लर के नियम कहा जाता है। ये नियम इस प्रकार हैं:

- प्रत्येक ग्रह की कक्षा एक दीर्घवृत्त होती है और सूर्य इस दीर्घवृत्त के एक फोकस पर होता है जैसा कि निम्न चित्र में दिखाया गया है। इस चित्र में सूर्य की स्थिति को O से दर्शाया गया है।
- 2. सूर्य तथा ग्रह को मिलाने वाली रेखा समान समय में समान क्षेत्रफल तय करती है। इस प्रकार यदि A से B तक गति करने में लगा समय C से D तक गति करने में लगे समय के बराबर हो तो क्षेत्रफल OAB तथा क्षेत्रफल OCD बराबर होंगे।
- 3. सूर्य से किसी ग्रह की औसत दूरी (r) का घन उस ग्रह के सूर्य के परित: परिक्रमण काल T के वर्ग के समानुपाती होता है। अथवा $r^3/T^2 = \mathcal{E}$ श्यरांक।

यह जानना महत्वपूर्ण है कि ग्रहों की गति की व्याख्या करने के ि लिए कैप्लर कोई सिद्धांत प्रस्तुत नहीं

कर सके। न्यूटन ने ही यह दिखाया कि ग्रहों की गित का कारण गुरुत्वाकर्षण का वह बल है जो सूर्य उन पर लगाता है। न्यूटन ने कैप्लर के तीसरे नियम का उपयोग गुरुत्वाकर्षण बल का परिकलन करने में किया। पृथ्वी का गुरुत्वाकर्षण बल दूरी के साथ घटता जाता है। एक सरल तर्क इस प्रकार है। हम कल्पना कर सकते हैं कि ग्रहों की कक्षाएँ वृत्ताकार हैं। मान लीजिए कि कक्षीय वेग V तथा ग्रह की कक्षा की त्रिज्या T है। तब परिक्रमा करते हुए ग्रह पर लगने वाला बल, F V^2/T

यदि परिक्रमण काल T है, तब $v = 2\pi r/T$, अर्थात् $v^2 = r^2/T^2$

इस संबंध को इस प्रकार भी लिखा जा सकता है $v^2 = (1/r) \times (r^3/T^2)$ क्योंकि r^3/T^2 कैप्लर के तीसरे नियम के अनुसार एक स्थिरांक है। अत:

 v^2 (1/r)

इसे $F = v^2/r$ के साथ संयोजित करने पर हमें प्राप्त होता है, $F = 1/r^2$.

मान लीजिए M तथा m द्रव्यमान के दो पिंड A तथा B एक-दूसरे से d दूरी पर स्थित हैं (चित्र 10. 2)। मान लीजिए दोनों पिंडों के बीच आकर्षण बल F है। गुरुत्वाकर्षण के सार्वित्रिक नियम के अनुसार, दोनों पिंडों के बीच लगने वाला बल उनके द्रव्यमानों के गुणनफल के समानुपाती है। अर्थात्,

$$F M \times m$$
 (10.1) तथा दोनों पिंडों के बीच लगने वाला बल उनके बीच की दूरी के वर्ग के व्युत्क्रमानुपाती है, अर्थात्,

$$F = \frac{1}{d^2} \tag{10.2}$$

समीकरणों (10.1) तथा (10.2) से हमें प्राप्त होगा

$$F = \frac{M}{d^2} \tag{10.3}$$

या,
$$F = G \frac{M \times m}{d^2}$$
 (10.4)

जहाँ G एक आनुपातिकता स्थिरांक है और इसे सार्वित्रिक गुरुत्वीय स्थिरांक कहते हैं। वज्र-गुणन करने पर, समीकरण (10.4) से प्राप्त

$$F \times d^2 = G M \times m$$

होगा

या G
$$\frac{Fd^2}{Mm}$$
 (10.5)

समीकरण (10.5) में बल, दूरी तथा द्रव्यमान के मात्रक प्रतिस्थापित करने पर हमें G के SI मात्रक प्राप्त होंगे जो N m² kg⁻² है।

हैनरी कैवेंडिस (1731-1810) ने एक सुग्राही तुला का उपयोग करके G का मान ज्ञात किया। G का वर्तमान मान्य मान 6.673 × 10⁻¹¹ N m² kg⁻² है।

हम जानते हैं कि किन्हीं भी दो वस्तुओं के बीच आकर्षण बल विद्यमान होता है। आप अपने तथा समीप बैठे अपने मित्र के बीच लगने वाले इस बल के मान का अभिकलन कीजिए। निष्कर्ष निकालिए कि आप इस बल का अनुभव क्यों नहीं करते।

यह नियम सार्वित्रिक इस अभिप्राय से है कि यह सभी वस्तुओं पर लागू होता है, चाहे ये वस्तुएँ बड़ी हों या छोटी, चाहे ये खगोलीय हों या पार्थिव।

व्युत्क्रम-वर्ग

F, d के वर्ग के व्युत्क्रमानुपाती है इस कथन का अर्थ है कि यदि d को 6 गुणा कर दिया जाए, तो F का मान 36 वाँ भाग रह जाएगा।

इसे भी जानें

उदाहरण 10.1 पृथ्वी का द्रव्यमान 6 10²⁴ kg है तथा चंद्रमा का द्रव्यमान 7.4 10²² kg है। यदि पृथ्वी तथा चंद्रमा के बीच की दूरी 3.84 10⁵ km है तो पृथ्वी द्वारा चंद्रमा पर लगाए गए बल का परिकलन कीजिए। G = 6.7 10⁻¹¹ N m² kg⁻²

हल:

पृथ्वी का द्रव्यमान, $M = 6 ext{ } 10^{24} ext{ kg}$ चंद्रमा का द्रव्यमान, $m = 7.4 ext{ } 10^{22} ext{ kg}$ पृथ्वी तथा चंद्रमा के बीच की दूरी,

> $d = 3.84 10^5 \text{ km}$ = 3.84 \ 10⁵ \ 1000 \text{ m} = 3.84 \ 10⁸ \text{ m} G = 6.7 \ 10^{-11} \text{ N m}^2 \text{ kg}^{-2}

समीकरण (10.4) से, पृथ्वी द्वारा चंद्रमा पर लगाया गया बल.

$$F = G \frac{M \times m}{d^2}$$

 $\frac{6.7 \cdot 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2} \cdot 6 \cdot 10^{24} \,\mathrm{kg} \cdot 7.4 \cdot 10^{22} \,\mathrm{kg}}{(3.84 \cdot 10^8 \,\mathrm{m})^2}$

 $= 2.01 \times 10^{20} \text{ N}.$

अत: पृथ्वी द्वारा चंद्रमा पर लगाया गया बल 2.01 × 10²⁰ N है।

१ १ ,

 गुरुत्वाकर्षण का सार्वित्रक नियम बताइए।
 पृथ्वी तथा उसकी सतह पर रखी किसी वस्तु के बीच लगने वाले गुरुत्वाकर्षण बल का परिमाण ज्ञात करने का सुत्र लिखिए।

10.1.2 गुरुत्वाकर्षण के सार्वित्रक नियम का महत्व

गुरुत्वाकर्षण का सार्वित्रिक नियम अनेक ऐसी परिघटनाओं की सफलतापूर्वक व्याख्या करता है जो असंबद्ध मानी जाती थीं:

(i) हमें पृथ्वी से बाँधे रखने वाला बल;

- (ii) पृथ्वी के चारों ओर चंद्रमा की गति;
- (iii) सूर्य के चारों ओर ग्रहों की गति; तथा
- (iv) चंद्रमा तथा सूर्य के कारण ज्वार-भाटा।

10.2 मुक्त पतन

मुक्त पतन का अर्थ जानने के लिए आइए एक क्रियाकलाप करें।

क्रियकलप

ma

- एक पत्थर लीजिए।
- इसे ऊपर की ओर फेंकिए।
- यह एक निश्चित ऊँचाई तक पहुँचता है और तब नीचे गिरने लगता है।

हम जानते हैं कि पृथ्वी वस्तुओं को अपनी ओर आकर्षित करती है। पृथ्वी के इस आकर्षण बल को गुरुत्वीय बल कहते हैं। अत: जब वस्तुएँ पृथ्वी की ओर केवल इसी बल के कारण गिरती हैं. हम कहते हैं कि वस्तुएँ मुक्त पतन में हैं। क्या गिरती हुई वस्तुओं के वेग में कोई परिवर्तन होता है? गिरते समय वस्तुओं की गति की दिशा में कोई परिवर्तन नहीं होता। लेकिन पृथ्वी के आकर्षण के कारण वेग के परिमाण में परिवर्तन होता है। वेग में कोई भी परिवर्तन त्वरण को उत्पन्न करता है। जब भी कोई वस्तु पृथ्वी की ओर गिरती है, त्वरण कार्य करता है। यह त्वरण पृथ्वी के गुरुत्वीय बल के कारण है। इसलिए इस त्वरण को पृथ्वी के गुरुत्वीय बल के कारण त्वरण या गुरुत्वीय त्वरण कहते हैं। इसे 'g' से निर्दिष्ट करते हैं। g के मात्रक वही हैं जो त्वरण के हैं, अर्थात् m s-21

गित के दूसरे नियम से हमें ज्ञात है कि बल द्रव्यमान तथा त्वरण का गुणनफल है। मान लीजिए क्रियाकलाप 10.2 में पत्थर का द्रव्यमान m है। हम पहले से ही जानते हैं कि मुक्त रूप से गिरती वस्तुओं में गुरुत्वीय बल के कारण त्वरण लगता है और इसे

g से निर्दिष्ट करते हैं। इसलिए गुरुत्वीय बल का परिमाण F, द्रव्यमान तथा गुरुत्वीय त्वरण के गुणनफल के बराबर होगा. अर्थात

F = mg (10.6) समीकरण (10.4) तथा (10.6) से हमें प्राप्त होता है

$$mg = G \frac{M m}{d^2}$$

या
$$g = G \frac{M}{d^2}$$
 (10.7)

जहाँ पर M पृथ्वी का द्रव्यमान है तथा d वस्तु तथा पृथ्वी के बीच की दूरी है।

मान लीजिए एक वस्तु पृथ्वी पर या इसकी सतह के पास है। समीकरण (10.7) में दूरी d, पृथ्वी की त्रिज्या R के बराबर होगी। इस प्रकार पृथ्वी की सतह पर या इसके समीप रखी वस्तुओं के लिए

$$mg = G \frac{M \times m}{R^2}$$
 (10.8)

$$g = G \frac{M}{R^2} \tag{10.9}$$

पृथ्वी एक पूर्ण गोला नहीं है। पृथ्वी की त्रिज्या ध्रुवों से विषुवत वृत्त की ओर जाने पर बढ़ती है, इसिलए g का मान ध्रुवों पर विषुवत वृत्त की अपेक्षा अधिक होता है। अधिकांश गणनाओं के लिए पृथ्वी की सतह पर या इसके पास g के मान को लगभग स्थिर मान सकते हैं लेकिन पृथ्वी से दूर की वस्तुओं के लिए पृथ्वी के गुरुत्वीय बल के कारण त्वरण समीकरण (10. 7) से ज्ञात किया जा सकता है।

10.2.1 गुरुत्वीय त्वरण g के मान का परिकलन

गुरुत्वीय त्वरण g के मान का परिकलन करने के लिए हमें समीकरण (10.9) में G, M तथा R के मान रखने होंगे। जैसे,

सार्वित्रिक गुरुत्वीय नियतांक, $G = 6.7 \times 10^{-11}$ N m^2 kg⁻², पृथ्वी का द्रव्यमान, $M = 6 \times 10^{24}$ kg, तथा पृथ्वी की त्रिज्या, $R = 6.4 \times 10^6$ m

$$g = G \frac{M}{R^2}$$

$$= \frac{6.7 \cdot 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2} \cdot 6 \cdot 10^{24} \,\mathrm{kg}}{(6.4 \cdot 10^6 \,\mathrm{m})^2}$$

$$= 9.8 \,\mathrm{m} \,\mathrm{s}^{-2}$$

अत: पृथ्वी के गुरुत्वीय त्वरण का मान $g = 9.8 \text{ m s}^{-2}$

10.2.2 पृथ्वी के गुरुत्वीय बल के प्रभाव में वस्तुओं की गति

यह समझने के लिए कि क्या सभी वस्तुएँ खोखली या ठोस, बड़ी या छोटी, किसी ऊँचाई से समान दर से गिरेंगी, आइए एक क्रियाकलाप करें।

- कागज़ की एक शीट तथा एक पत्थर लीजिए। दोनों को किसी इमारत की पहली मंजिल से एक साथ गिराइए। देखिए, क्या दोनों धरती पर एक साथ पहुँचते हैं।
 - हम देखते हैं कि कागज धरती पर पत्थर की अपेक्षा कुछ देर से पहुँचता है। ऐसा वायु के प्रतिरोध के कारण होता है। गिरती हुई गतिशील वस्तुओं पर घर्षण के कारण वायु प्रतिरोध लगाती है। कागज पर लगने वाला वायु का प्रतिरोध पत्थर पर लगने वाले प्रतिरोध से अधिक होता है। इस प्रयोग को यदि हम काँच के जार में करें जिसमें से हवा निकाल दी गई है तो कागज तथा पत्थर एक ही दर से नीचे गिरेंगे।

हम जानते हैं कि मुक्त पतन में वस्तु त्वरण का अनुभव करती है। समीकरण (10.9) से, वस्तु द्वारा अनुभव किया जाने वाला यह त्वरण इसके द्रव्यमान पर निर्भर नहीं करता। इसका अर्थ हुआ कि सभी वस्तुएँ खोखली या ठोस, बड़ी या छोटी, एक ही दर से नीचे गिरनी चाहिए। एक कहानी के अनुसार, इस विचार की पुष्टि के लिए गैलीलियो ने इटली में पीसा की झुकी हुई मीनार से विभिन्न वस्तुओं को गिराया। क्योंकि पृथ्वी के निकट g का मान स्थिर है, अत: एकसमान त्विरत गित के सभी समीकरण, त्वरण a के स्थान पर g रखने पर भी मान्य रहेंगे (देखिए अनुभाग 8.5)। ये समीकरण हैं:

$$v = u + at \tag{10.10}$$

$$s = ut + \frac{1}{2} at^2 ag{10.11}$$

$$v^2 = u^2 + 2as (10.12)$$

यहाँ u एवं v क्रमशः प्रारंभिक एवं अंतिम वेग तथा s वस्तु द्वारा t समय में चली गई दूरी है।

इन समीकरणों का उपयोग करते समय, यदि त्वरण (a) वेग की दिशा में अर्थात् गति की दिशा में लग रहा हो तो हम इसको धनात्मक लेंगे। त्वरण (a) को ऋणात्मक लेंगे जब यह गति की दिशा के विपरीत लगता है।

उदाहरण 10.2 एक कार किसी कगार से गिर कर 0.5 s में धरती पर आ गिरती है। परिकलन में सरलता के लिए g का मान 10 m s⁻² लीजिए।

- (i) धरती पर टकराते समय कार की चाल क्या होगी?
- (ii) 0.5 s के दौरान इसकी औसत चाल क्या होगी?
- (iii) धरती से कगार कितनी ऊँचाई पर है?

हल:

समय,
$$t = 0.5 \text{ s}$$

प्रारंभिक वेग, $u = 0 \text{ m s}^{-1}$
गुरुत्वीय त्वरण, $g = 10 \text{ m s}^{-2}$

कार का त्वरण, $a = + 10 \text{ m s}^{-2}$ (अधोमुखी)

(i) ਥੀਲ
$$v=a~t$$

$$v=10~{\rm m~s^{-2}}\times 0.5~{\rm s}$$

$$=~5~{\rm m~s^{-1}}$$

(ii) औसत चाल =
$$\frac{u+v}{2}$$

= $(0 \text{ m s}^{-1} + 5 \text{ m s}^{-1})/2$
= 2.5 m s^{-1}

(iii) तय की गई दूरी,
$$s = \frac{1}{2} a t^2$$

= $\frac{1}{2} \times 10 \text{ m s}^{-2} \times (0.5 \text{ s})^2$
= $\frac{1}{2} \times 10 \text{ m s}^{-2} \times 0.25 \text{ s}^2$
= 1.25 m

अत:.

- (i) धरती पर टकराते समय इसकी चाल $= 5 \text{ m s}^{-1}$
- (ii) 0.5 सेकंड के दौरान इसकी औसत चाल = 2.5 m s⁻¹
- (iii) धरती से कगार की ऊँचाई = 1.25 m

उदाहरण 10.3 एक वस्तु को ऊर्ध्वाधर दिशा में ऊपर की ओर फेंका जाता है और यह 10 m की ऊँचाई तक पहुँचती है। परिकलन कीजिए

- (i) वस्तु कितने वेग से ऊपर फेंकी गई तथा
- (ii) वस्तु द्वारा उच्चतम बिंदु तक पहुँचने में लिया गया समय।

हलः

तय की गई दूरी,
$$s = 10 \text{ m}$$

अंतिम वेग, $v = 0 \text{ m s}^{-1}$
गुरुत्वीय त्वरण, $g = 9.8 \text{ m s}^{-2}$
वस्तु का त्वरण, $a = -9.8 \text{ m s}^{-2}$ (ऊर्ध्वमुखी)
(i) $v^2 = u^2 + 2a s$

$$v^{2} = u^{2} + 2a s$$

$$0 = u^{2} + 2 \times (-9.8 \text{ m s}^{-2}) \times 10 \text{ m}$$

$$-u^{2} = -2 \times 9.8 \times 10 \text{ m}^{2} \text{ s}^{-2}$$

$$u = \sqrt{196} \text{ m s}^{-1}$$

$$u = 14 \text{ m s}^{-1}$$

(ii)
$$V = u + a t$$

 $0 = 14 \text{ m s}^{-1} - 9.8 \text{ m s}^{-2} \times t$
 $t = 1.43 \text{ s}.$

अत:.

- (i) प्रारंभिक वेग $u = 14 \text{ m s}^{-1}$ तथा
- (ii) लिया गया समय t = 1.43 s

1.2.

मुक्त पतन से आप क्या समझते हैं?
 गुरुत्वीय त्वरण से आप क्या समझते हैं?

2. गुरुरपाय (परण स जाय प्रया समझर

10.3 द्रव्यमान

हमने पिछले अध्याय में पढ़ा है कि किसी वस्तु का द्रव्यमान उसके जड़त्व की माप होता है (अनुभाग 9.3)। हमने यह भी सीखा है कि जितना अधिक वस्तु का द्रव्यमान होगा, उतना ही अधिक उसका जड़त्व भी होगा। किसी वस्तु का द्रव्यमान उतना ही रहता है चाहे वस्तु पृथ्वी पर हो, चंद्रमा पर हो या फिर बाह्य अंतरिक्ष में हो। इस प्रकार वस्तु का द्रव्यमान स्थिर रहता है तथा एक स्थान से दूसरे स्थान पर नहीं बदलता।

10.4 भार

हम जानते हैं कि पृथ्वी प्रत्येक वस्तु को एक निश्चित बल से आकर्षित करती है और यह बल वस्तु के द्रव्यमान (m) तथा पृथ्वी के गुरुत्वीय बल के कारण त्वरण (g) पर निर्भर है। किसी वस्तु का भार वह बल है जिससे यह पृथ्वी की ओर आकर्षित होती है। हमें जात है कि

$$F = m \times g \tag{10.14}$$

वस्तु पर पृथ्वी का आकर्षण बल वस्तु का भार कहलाता है। इसे W से निर्दिष्ट करते हैं। इसे समीकरण (10.14) में प्रतिस्थापित करने पर

$$W = m \times g \tag{10.15}$$

क्योंकि वस्तु का भार एक बल है जिससे यह पृथ्वी की ओर आकर्षित होता है, भार का SI मात्रक वही है जो बल का है, अर्थात् न्यूटन (N)। भार एक बल है जो ऊर्ध्वाधर दिशा में नीचे की ओर लगता है, इसलिए इसमें परिमाण तथा दिशा दोनों होते हैं। हम जानते हैं कि किसी दिए हुए स्थान पर g का मान स्थिर रहता है। इसिलए किसी दिए हुए स्थान पर, वस्तु का भार वस्तु के द्रव्यमान m के समानुपाती होता है। अर्थात् W m। यही कारण है कि किसी दिए हुए स्थान पर हम वस्तु के भार को उसके द्रव्यमान की माप के रूप में उपयोग कर सकते हैं। किसी वस्तु का द्रव्यमान प्रत्येक स्थान पर, चाहे पृथ्वी पर या किसी अन्य ग्रह पर, उतना ही रहता है जबिक वस्तु का भार इसके स्थान पर निर्भर करता है।

10.4.1 किसी वस्तु का चंद्रमा पर भार

हमने सीखा है कि पृथ्वी पर किसी वस्तु का भार वह बल है जिससे पृथ्वी उस वस्तु को अपनी ओर आकर्षित करती है। इसी प्रकार, चंद्रमा पर किसी वस्तु का भार वह बल है जिससे चंद्रमा उस वस्तु को आकर्षित करता है। चंद्रमा का द्रव्यमान पृथ्वी की अपेक्षा कम है। इस कारण चंद्रमा वस्तुओं पर कम आकर्षण बल लगाता है।

मान लीजिए किसी वस्तु का द्रव्यमान m है तथा चंद्रमा पर इसका भार W_m है। मान लीजिए चंद्रमा का द्रव्यमान M_m है तथा इसकी त्रिज्या R_m है।

गुरुत्वाकर्षण का सार्वित्रिक नियम लगाने पर, चंद्रमा पर वस्तु का भार होगा

$$W_m \quad G \frac{M_m \quad m}{R_m^2} \tag{10.16}$$

मान लीजिए उसी वस्तु का पृथ्वी पर भार W_{ϱ} है। पृथ्वी का द्रव्यमान M तथा इसकी त्रिज्या R है।

सारणी 10.1

खगोलीय पिंड	द्रव्यमान (kg)	त्रिज्या (m)
पृथ्वी	5.98 10 ²⁴	$6.37 10^6$
चंद्रमा	7.36 10 ²²	$1.74 10^6$

समीकरणों (10.9) तथा (10.15) से हमें प्राप्त होता है,

$$W_e \quad G \frac{M \quad m}{R^2} \tag{10.17}$$

समीकरण (10.16) तथा (10.17) में सारणी 10.1 से उपयुक्त मान रखने पर

$$W_m$$
 G $\frac{7.36 \cdot 10^{22} \text{kg} \cdot \text{m}}{1.74 \cdot 10^6 \text{m}^2}$

 W_m 2.431 $10^{10}\,\mathrm{G} \times m$ (10.18a) तथा W_e 1.474 $10^{11}\,\mathrm{G} \times m$ (10.18b) समीकरण (10.18a) को समीकरण (10.18b) से भाग देने पर हमें प्राप्त होता है

$$\frac{W_m}{W_e} = \frac{2.431 - 10^{10}}{1.474 - 10^{11}}$$

या
$$\frac{W_m}{W_e}$$
 = 0.165 $\approx \frac{1}{6}$ (10.19)

 $\frac{a}{a}$ का चंद्रमा पर भार $=\frac{1}{6}$

वस्तु का चंद्रमा पर भार

= (1/6) × इसका पृथ्वी पर भार

उदाहरण 10.4 एक वस्तु का द्रव्यमान 10 kg है। पृथ्वी पर इसका भार कितना होगा?

हलः

द्रव्यमान $m=10~\mathrm{kg}$ गुरुत्वीय त्वरण $g=9.8~\mathrm{m~s^{-2}}$ $W=m\times g$ $W=10~\mathrm{kg}\times 9.8~\mathrm{m~s^{-2}}=98~\mathrm{N}$ अत: वस्तु का भार 98 N है।

उदाहरण 10.5 एक वस्तु का भार पृथ्वी की सतह पर मापने पर 10 N आता है। इसका भार चंद्रमा की सतह पर मापने पर कितना होगा?

हल:

हमें ज्ञात है चंद्रमा पर वस्तु का भार = (1/6) × पृथ्वी पर इसका भार अर्थात्,

$$W_m = \frac{W_e}{6} = \frac{10}{6} \text{ N}$$

= 1.67 N

अत: चंद्रमा की सतह पर वस्तु का भार 1.67 N होगा।

7 श्न

 किसी वस्तु के द्रव्यमान तथा भार में क्या अंतर है?

 ि कसी वस्तु का चंद्रमा पर भार पृथ्वी पर इसके भार का 1/6 गुणा क्यों होता है?

10.5 प्रणोद तथा दाब

क्या कभी आपने सोचा है कि ऊँट रेगिस्तान में आसानी से क्यों दौड़ पाता है? सेना का टैंक जिसका भार एक हजार टन से भी अधिक होता है, एक सतत् चेन पर क्यों टिका होता है? किसी ट्रक या बस के टायर अधिक चौड़े क्यों होते हैं? काटने वाले औजारों की धार तेज क्यों होती है?

इन प्रश्नों का उत्तर जानने के लिए तथा इनमें शामिल परिघटनाओं को समझने के लिए दी गई वस्तु पर एक विशेष दिशा में लगने वाले नेट बल (प्रणोद) तथा प्रति एकांक क्षेत्रफल पर लगने वाले बल (दाब) की धारणा से परिचय कराना सहायक होगा। प्रणोद तथा दाब का अर्थ समझने के लिए आइए निम्नलिखित स्थितियों पर विचार करें:

स्थिति 1: किसी बुलेटिन बोर्ड पर आप एक चार्ट लगाना चाहते हैं जैसा कि चित्र 10.3 में दर्शाया गया है। यह कार्य करने के लिए आपको ड्राइंग पिनों को अपने अँगूठे से दबाना होगा। इस अवस्था में आप पिन के शीर्ष (चपटे भाग) के सतह के क्षेत्रफल पर बल लगाते हैं। यह बल बोर्ड की सतह (पृष्ठ) के लंबवत् लगता है। यह बल पिन की नोक पर अपेक्षाकृत छोटे क्षेत्रफल पर लगता है।

चित्र 10.3: चार्ट लगाने के लिए ड्राइंग पिनों को अँगूठे से बोर्ड के लंबवत् दबाया जाता है

स्थिति 2: आप शिथिल (ढीले) रेत पर खड़े होते हैं। आपके पैर रेत में गहरे धँस जाते हैं। अब रेत पर लेटिए। आप देखेंगे कि आपका शरीर रेत में पहले जितना नहीं धँसता। दोनों अवस्थाओं में रेत पर लगने वाला बल आपके शरीर का भार है।

आप पढ़ चुके हैं कि भार ऊर्ध्वाधर दिशा में नीचे की ओर लगने वाला बल है। यहाँ बल रेत की सतह के लंबवत् लग रहा है। किसी वस्तु की सतह के लंबवत् लगने वाले बल को प्रणोद कहते हैं।

जब आप शिथिल रेत पर खड़े होते हैं तो बल अर्थात् आपके शरीर का भार, आपके पैरों के क्षेत्रफल के बराबर क्षेत्रफल पर लग रहा होता है। जब आप लेट जाते हैं तो वही बल आपके पूरे शरीर के संपर्क क्षेत्रफल के बराबर क्षेत्रफल पर लगता है जो कि आपके पैरों के क्षेत्रफल से अधिक है। इस प्रकार समान परिमाण के बलों का भिन्न-भिन्न क्षेत्रफलों पर भिन्न-भिन्न प्रभाव होता है। उपरोक्त स्थिति में प्रणोद समान है। लेकिन उसके प्रभाव अलग-अलग हैं। इसलिए प्रणोद का प्रभाव उस क्षेत्रफल पर निर्भर है जिस पर कि वह लगता है।

रेत पर प्रणोद का प्रभाव लेटे हुए की अपेक्षा खड़े होने की स्थिति में अधिक है। प्रति एकांक क्षेत्रफल पर लगने वाले प्रणोद को दाब कहते हैं। इस प्रकार

दाब =
$$\frac{\text{प्रणोद}}{\text{क्षेत्रफल}}$$
 (10.20)

समीकरण (10.20) में प्रणोद तथा क्षेत्रफल के SI मात्रक प्रतिस्थापित करने पर हमें दाब का SI मात्रक प्राप्त होता है। यह मात्रक N/m² या N m-² है।

वैज्ञानिक ब्लैस पास्कल के सम्मान में, दाब के SI मात्रक को पास्कल कहते हैं, जिसे Pa से व्यक्त किया जाता है।

विभिन्न क्षेत्रफलों पर लगने वाले प्रणोद के प्रभाव को समझने के लिए आइए एक संख्यात्मक उदाहरण पर विचार करें।

उदाहरण 10.6 एक लकड़ी का गुटका मेज पर रखा है। लकड़ी के गुटके का द्रव्यमान 5 kg है तथा इसकी विमाएँ 40 cm × 20 cm × 10 cm

चित्र 10.4

हैं। लकड़ी के टुकड़े द्वारा मेज पर लगने वाले दाब को ज्ञात कीजिए, यदि इसकी निम्नलिखित विमाओं की सतह मेज पर रखी जाती है: (a) $20 \text{ cm} \times 10 \text{ cm}$ तथा (b) $40 \text{ cm} \times 20 \text{ cm}$

हल:

लकड़ी के गुटके का द्रव्यमान = 5 kg तथा इसकी विमाएँ = $40 \text{ cm} \times 20 \text{ cm} \times 10 \text{ cm}$ यहाँ लकड़ी के गुटके का भार मेज की सतह पर प्रणोद लगाता है। अर्थात.

प्रणोद = $F = m \times g$ = $5 \text{ kg} \times 9.8 \text{ m s}^{-2}$ = 49 N

सतह का क्षेत्रफल = लंबाई × चौडा़ई

 $= 20 \text{ cm} \times 10 \text{ cm}$

 $= 200 \text{ cm}^2 = 0.02 \text{ m}^2$

समीकरण (10.20) से,

বাজ = $\frac{49 \,\text{N}}{0.02 \,\text{m}^2}$ = 2450 N m⁻².

जब गुटके की $40 \text{ cm} \times 20 \text{ cm}$ विमाओं की सतह मेज पर रखी जाती है, यह मेज की सतह पर पहले जितना ही प्रणोद लगाता है।

क्षेत्रफल = लंबाई × चौडाई

 $= 40 \text{ cm} \times 20 \text{ cm}$

 $= 800 \text{ cm}^2 = 0.08 \text{ m}^2$

समीकरण (10.20) से,

বাজ = $\frac{49\,\mathrm{N}}{0.08\,\mathrm{m}^2}$

 $= 612.5 \text{ N m}^{-2}$

सतह 20 cm × 10 cm द्वारा लगाया गया दाब 2450 N m⁻² है तथा सतह 40 cm × 20 cm द्वारा लगाया गया दाब 612.5 N m⁻² है। इस प्रकार वही बल जब छोटे क्षेत्रफल पर लगता है तो अधिक दाब तथा बड़े क्षेत्रफल पर कम दाब लगाता है। यही कारण है कि कीलों के सिरे नुकीले होते हैं, चाकू की तेज़ धार होती है तथा भवनों की नींव चौड़ी होती है।

10.5.1 तरलों में दाब

सभी द्रव या गैसें तरल हैं। ठोस अपने भार के कारण किसी सतह पर दाब लगाता है। इसी प्रकार, तरलों में भी भार होता है तथा वे जिस बर्तन में रखे जाते हैं उसके आधार तथा दीवारों पर दाब लगाते हैं। किसी परिरुद्ध द्रव्यमान के तरल पर लगने वाला दाब सभी दिशाओं में बिना घटे संचरित हो जाता है।

10.5.2 उत्प्लावकता

क्या आप कभी किसी तालाब में तैरे हैं और आपने स्वयं कुछ हलका अनुभव किया है? क्या कभी आपने किसी कुएँ से पानी खींचा है और अनुभव किया है कि जब पानी से भरी बाल्टी, कुएँ के पानी से बाहर आती है तो वह अधिक भारी लगती है? क्या कभी आपने सोचा है कि लोहे तथा स्टील से बना जलयान समुद्र के पानी में क्यों नहीं डूबता, लेकिन उतनी ही मात्रा का लोहा तथा स्टील यदि चादर के रूप में हो तो क्या वह डूब जाएगा? इन सभी प्रश्नों का उत्तर जानने के लिए उत्प्लावकता के बारे में जानना आवश्यक है। उत्प्लावकता का अर्थ समझने के लिए आइए एक क्रियाकलाप करें।

प्लास्टिक की एक खाली बोतल लीजिए। बोतल के मुँह को एक वायुरुद्ध डाट से बंद कर दीजिए। इसे एक पानी से भरी बाल्टी में रखिए। आप देखेंगे कि बोतल तैरती है। बोतल को पानी में धकेलिए। आप ऊपर की ओर एक धक्का महसूस करते हैं। इसे और

गुरुत्वाकर्षण

अधिक नीचे धकेलने का प्रयत्न कीजिए। आप इसे और अधिक गहराई में धकेलने में कठिनाई अनुभव करेंगे। यह दिखाता है कि पानी बोतल पर ऊपर की दिशा में एक बल लगाता है। जैसे-जैसे बोतल को पानी में धकेलते जाते हैं, पानी द्वारा ऊपर की ओर लगाया गया बल बढ़ता जाता है जब तक कि बोतल पानी में पूरी तरह न डुब जाए।

- अब बोतल को छोड़ दीजिए। यह उछलकर सतह पर वापस आती है।
- क्या पृथ्वी का गुरुत्वाकर्षण बल इस बोतल पर कार्यरत है? यदि ऐसा है तो बोतल छोड़ देने पर पानी में डूबी ही क्यों नहीं रहती? आप बोतल को पानी में कैसे डुबो सकते हैं?

पृथ्वी का गुरुत्वाकर्षण बल बोतल पर नीचे की दिशा में लगता है। इसके कारण बोतल नीचे की दिशा में खिंचती है। लेकिन पानी बोतल पर ऊपर की ओर बल लगाता है। अत: बोतल ऊपर की दिशा में धकेली जाती है। हम पढ़ चुके हैं कि वस्तु का भार पृथ्वी के गुरुत्वाकर्षण बल के बराबर है। जब बोतल डुबोई जाती है तो बोतल पर पानी द्वारा लगने वाला ऊपर की दिशा में बल इसके भार से अधिक है। इसीलिए छोडने पर यह ऊपर उठती है।

बोतल को पूरी तरह डुबोए रखने के लिए, पानी के द्वारा बोतल पर ऊपर की ओर लगने वाले बल को संतुलित करना पड़ेगा। इसे नीचे की दिशा में लगने वाले एक बाहरी बल को लगाकर प्राप्त किया जा सकता है। यह बल कम से कम ऊपर की ओर लगने वाले बल तथा बोतल के भार के अंतर के बराबर होना चाहिए।

बोतल पर पानी द्वारा ऊपर की ओर लगने वाला बल उत्प्लावन बल कहलाता है। वास्तव में किसी तरल में डुबोने पर, सभी वस्तुओं पर एक उत्प्लावन बल लगता है। उत्प्लावन बल का परिमाण तरल के घनत्व पर निर्भर है।

10.5.3 पानी की सतह पर रखने पर वस्तुएँ तैरती या डूबती क्यों हैं?

इस प्रश्न का उत्तर प्राप्त करने के लिए आइए निम्नलिखित क्रियाकलाप करें।

क्रियकलप_____

105

 पानी से भरा एक बीकर लीजिए।
 एक लोहे की कील लीजिए और इसे पानी की सतह पर रखिए।
 देखिए क्या होता है?

कील डूब जाती है। कील पर लगने वाला पृथ्वी का गुरुत्वाकर्षण बल इसे नीचे की ओर खींचता है। पानी कील पर उत्प्लावन बल लगाता है जो इसे ऊपर की दिशा में धकेलता है। लेकिन कील पर नीचे की ओर लगने वाला बल, कील पर पानी द्वारा लगाए गए उत्प्लावन बल से अधिक है। इसलिए यह डूब जाती है (चित्र 10.5)।

चित्र 10.5: पानी की सतह पर रखने पर लोहे की कील डूब जाती है तथा कॉर्क तैरता है

क्रियकलप

706

- पानी से भरा बीकर लीजिए।
 - एक कील तथा समान द्रव्यमान का एक कॉर्क का टुकड़ा लीजिए।
- इन्हें पानी की सतह पर रखिए।
- देखिए क्या होता है।

कॉर्क तैरता है जबिक कील डूब जाती है। ऐसा उनके घनत्वों में अंतर के कारण होता है। किसी पदार्थ का घनत्व, उसके एकांक आयतन के द्रव्यमान को कहते हैं। कॉर्क का घनत्व पानी के घनत्व से कम है। इसका अर्थ है कि कॉर्क पर पानी का उत्प्लावन बल, कॉर्क के भार से अधिक है। इसीलिए यह तैरता है (चित्र 10.5)।

लोहे की कील का घनत्व पानी के घनत्व से अधिक है। इसका अर्थ है कि लोहे की कील पर पानी का उत्प्लावन बल लोहे की कील के भार से कम है। इसीलिए यह डूब जाती है।

इस प्रकार द्रव के घनत्व से कम घनत्व की वस्तुएँ द्रव पर तैरती हैं। द्रव के घनत्व से अधिक घनत्व की वस्तुएँ द्रव में डूब जाती हैं।

-श्न

- एक पतली तथा मजबूत डोरी से बने पट्टे की सहायता से स्कूल बैग को उठाना कठिन होता है, क्यों?
- 2. उत्प्लावकता से आप क्या समझते हैं?
- 3. पानी की सतह पर रखने पर कोई वस्तु क्यों तैरती या डूबती है?

10.6 आर्किमीडीज़ का सिद्धांत

क्रियकलप

'n

- एक पत्थर का टुकड़ा लीजिए और इसे कमानीदार तुला या रबड़ की डोरी के एक सिरे से बाँधिए।
 - तुला या डोरी को पकड़ कर पत्थर को लटकाइए जैसा कि चित्र 10.6(a) में दिखाया गया है।
- पत्थर के भार के कारण रबड़ की डोरी की लंबाई में वृद्धि या कमानीदार तुला का पाठ्यांक नोट कीजिए।
- अब पत्थर को एक बर्तन में रखे पानी में धीरे से डुबोइए जैसा कि चित्र 10.6(b) में दिखाया गया है।
- प्रेक्षण कीजिए कि डोरी की लंबाई में या तुला की माप में क्या परिवर्तन होता है।

चित्र 10.6: (a) हवा में लटके पत्थर के टुकड़े के भार के कारण रबड़ की डोरी में प्रसार का प्रेक्षण कीजिए।
(b) पत्थर को पानी में डुबोने पर डोरी के प्रसार में कमी आ जाती है

आप देखेंगे कि जैसे ही पत्थर को धीरे-धीरे पानी में नीचे ले जाते हैं, डोरी की लंबाई में या तुला के पाठ्यांक में भी कमी आती है। तथापि, जब पत्थर पानी में पूरी तरह डूब जाता है तो उसके बाद कोई परिवर्तन नहीं दिखाई देता। डोरी के प्रसार या तुला की माप में कमी से आप क्या निष्कर्ष निकालते हैं?

हम जानते हैं कि रबड़ की डोरी की लंबाई में परिवर्तन या तुला के पाठ्यांक में वृद्धि, पत्थर के भार के कारण होती है। क्योंकि पत्थर को पानी में डुबोने पर इन वृद्धियों में कमी आ जाती है, इसका अर्थ है कि पत्थर पर ऊपर की दिशा में कोई बल लगता है। इसके परिणामस्वरूप, रबड़ की डोरी पर लगने वाला नेट बल कम हो जाता है और इसीलिए लंबाई की वृद्धि में भी कमी आ जाती है। जैसी कि पहले ही चर्चा की जा चुकी है, पानी द्वारा ऊपर की ओर लगाया गया यह बल. उत्प्लावन बल कहलाता है।

किसी वस्तु पर लगने वाले उत्प्लावन बल का परिमाण कितना होता है? क्या किसी एक ही वस्तु के लिए यह सभी तरलों में समान होता है? क्या किसी दिए गए तरल में, सभी वस्तुएँ समान उत्प्लावन बल का अनुभव करती हैं? इन प्रश्नों का उत्तर आर्किमीडीज़ के सिद्धांत द्वारा प्राप्त होता है, जिसको निम्न प्रकार से व्यक्त किया जाता है:

जब किसी वस्तु को किसी तरल में पूर्ण या आंशिक रूप से डुबोया जाता है तो वह ऊपर की दिशा में एक बल का अनुभव करती है जो वस्तु द्वारा हटाए गए तरल के भार के बराबर होता है।

क्या अब आप स्पष्ट कर सकते हैं कि क्रियाकलाप 10.7 में पत्थर के पानी में पूरी तरह डूबने के बाद डोरी के प्रसार में और कमी क्यों नहीं हुई थी?

थे। उन्होंने एक सिद्धांत की खोज की जो उन्हीं के नाम से विख्यात है। यह सिद्धांत उन्होंने यह देखने के बाद खोजा कि नहाने के टब

आर्किमीडीज़ एक ग्रीक वैज्ञानिक

आर्किमिडीज

^ज में घुसने पर पानी बाहर बहने वे सहकों पर सोक्स (Francisc)

लगता है। वे सड़कों पर यूरेका (Eureka) - यूरेका चिल्लाते हुए भागे, जिसका अर्थ है "मैंने पा लिया है।"

इस ज्ञान का उपयोग उन्होंने राजा के मुकुट में उपयोग हुए सोने की शुद्धता को मापने के लिए किया।

उनके यांत्रिकी तथा ज्यामिति में किए गए कार्यों ने उन्हें प्रसिद्ध कर दिया। उत्तोलक, घिरनी तथा पहिया और धुरी के विषय में उनके ज्ञान ने ग्रीक सेना को रोमन सेना के विरुद्ध लड़ाई में बहुत सहायता की। आर्किमीडीज़ के सिद्धांत के बहुत से अनुप्रयोग हैं। यह जलयानों तथा पनडुब्बियों के डिज़ाइन बनाने में काम आता है। दुग्धमापी, जो दूध के किसी नमूने की शुद्धता की जाँच करने के लिए प्रयुक्त होते हैं तथा हाइड्रोमीटर, जो द्रवों के घनत्व मापने के लिए प्रयुक्त होते हैं, इसी सिद्धांत पर आधारित हैं।

प्राप्

- एक तुला (weighing machine) पर आप अपना द्रव्यमान 42 kg नोट करते हैं। क्या आपका द्रव्यमान 42 kg से अधिक है या कम?
- 2. आपके पास एक रुई का बोरा तथा एक लोहे की छड़ है। तुला पर मापने पर दोनों 100 kg द्रव्यमान दर्शाते हैं। वास्तविकता में एक-दूसरे से भारी है। क्या आप बता सकते हैं कि कौन-सा भारी है और क्यों?

10.7 आपेक्षिक घनत्व?

आप जानते हैं कि किसी वस्तु का घनत्व, उसके प्रति एकांक आयतन के द्रव्यमान को कहते हैं। घनत्व का मात्रक किलोग्राम प्रति घन मीटर है (kg m⁻³)। विशिष्ट परिस्थितियों में किसी पदार्थ का घनत्व सदैव समान रहता है। अत: किसी पदार्थ का घनत्व उसका एक लाक्षणिक गुण होता है। यह भिन्न-भिन्न पदार्थों के लिए भिन्न-भिन्न होता है। उदाहरण के लिए, सोने का घनत्व 19300 kg m⁻³ है जबिक पानी का घनत्व 1900 kg m³ है। किसी पदार्थ के नमूने का घनत्व, उस पदार्थ की शुद्धता की जाँच में सहायता कर सकता है।

प्राय: किसी पदार्थ के घनत्व को पानी के घनत्व की तुलना में व्यक्त करना सुविधाजनक होता है। किसी पदार्थ का आपेक्षिक घनत्व उस पदार्थ का घनत्व व पानी के घनत्व का अनुपात है। अर्थात् आपेक्षिक घनत्व = किसी पदार्थ का घनत्व पानी का घनत्व

चूँिक आपेक्षिक घनत्व समान राशियों का एक अनुपात है, अत: इसका कोई मात्रक नहीं होता।

उदाहरण 10.7 चाँदी का आपेक्षिक घनत्व 10.8 है। पानी का घनत्व 10³ kg m⁻³ है। SI मात्रक में चाँदी का घनत्व क्या होगा?

हल:

चाँदी का आपेक्षिक घनत्व = 10.8 आपेक्षिक घनत्व = $\frac{}{}$ चाँदी का घनत्व $\frac{}{}$ पानी का घनत्व $\frac{}{}$ चाँदी का घनत्व = $\frac{}$ चाँदी का आपेक्षिक घनत्व \times पानी का घनत्व $\frac{}{}$ = $10.8 \times 10^3 \text{ kg m}^{-3}$.

आपने क्या सीखा

- गुरुत्वाकर्षण के नियम के अनुसार किन्हीं दो पिंडों के बीच आकर्षण बल उन दोनों के द्रव्यमानों के गुणनफल के समानुपाती तथा उनके बीच की दूरी के वर्ग के व्युत्क्रमानुपाती होता है। यह नियम सभी पिंडों पर लागू होता है चाहे वह विश्व में कहीं भी हों। इस प्रकार के नियम को सार्वित्रक नियम कहते हैं।
- गुरुत्वाकर्षण एक क्षीण बल है जब तक कि बहुत अधिक द्रव्यमान वाले पिंड संबद्ध न हों।
- पृथ्वी द्वारा लगाए जाने वाले गुरुत्वाकर्षण बल को गुरुत्व बल कहते हैं।
- गुरुत्वीय बल पृथ्वी तल से ऊँचाई बढ़ने पर कम होता जाता है। यह पृथ्वी तल के विभिन्न स्थानों पर भी परिवर्तित होता है और इसका मान ध्रुवों से विषुवत वृत्त की ओर घटता जाता है।
- िकसी वस्तु का भार, वह बल है जिससे पृथ्वी उसे अपनी ओर आकर्षित करती है।
- िकसी वस्तु का भार, द्रव्यमान तथा गुरुत्वीय त्वरण के गुणनफल के बराबर होता है।
- िकसी वस्तु का भार भिन्न-भिन्न स्थानों पर भिन्न-भिन्न हो सकता है, किंतु
 द्रव्यमान स्थिर रहता है।
- सभी वस्तुएँ किसी तरल में डुबाने पर उत्प्लावन बल का अनुभव करती हैं।
- जिस द्रव में वस्तुओं को डुबोया जाता है उसके घनत्व से कम घनत्व की वस्तुएँ द्रव की सतह पर तैरती हैं। यदि वस्तु का घनत्व, डुबोए जाने वाले द्रव से अधिक है तो वे द्रव में डूब जाती हैं।

अभ्यास

- 1. यदि दो वस्तुओं के बीच की दूरी को आधा कर दिया जाए तो उनके बीच गुरुत्वाकर्षण बल किस प्रकार बदलेगा?
- 2. सभी वस्तुओं पर लगने वाला गुरुत्वीय बल उनके द्रव्यमान के समानुपाती होता है। फिर एक भारी वस्तु हलकी वस्तु के मुकाबले तेज़ी से क्यों नहीं गिरती?
- 3. पृथ्वी तथा उसकी सतह पर रखी किसी $1~{
 m kg}$ की वस्तु के बीच गुरुत्वीय बल का परिमाण क्या होगा? (पृथ्वी का द्रव्यमान $6\times 10^{24}~{
 m kg}$ है तथा पृथ्वी की त्रिज्या $6.4\times 10^6~{
 m m}$ है)।
- 4. पृथ्वी तथा चंद्रमा एक-दूसरे को गुरुत्वीय बल से आकर्षित करते हैं। क्या पृथ्वी जिस बल से चंद्रमा को आकर्षित करती है वह बल, उस बल से जिससे चन्द्रमा पृथ्वी को आकर्षित करता है बड़ा है या छोटा है या बराबर है? बताइए क्यों?
- 5. यदि चंद्रमा पृथ्वी को आकर्षित करता है, तो पृथ्वी चंद्रमा की ओर गित क्यों नहीं करती?
- 6. दो वस्तुओं के बीच लगने वाले गुरुत्वाकर्षण बल का क्या होगा, यदि
 - (i) एक वस्तु का द्रव्यमान दोगुना कर दिया जाए?
 - (ii) वस्तुओं के बीच की दूरी दोगुनी अथवा तीन गुनी कर दी जाए?
 - (iii) दोनों वस्तुओं के द्रव्यमान दोगुने कर दिए जाएँ?
- 7. गुरुत्वाकर्षण के सार्वित्रिक नियम के क्या महत्व हैं?
- 8. मुक्त पतन का त्वरण क्या है?
- 9. पृथ्वी तथा किसी वस्तु के बीच गुरुत्वीय बल को हम क्या कहेंगे?
- 10. एक व्यक्ति A अपने एक मित्र के निर्देश पर ध्रुवों पर कुछ ग्राम सोना खरीदता है। वह इस सोने को विषुवत वृत्त पर अपने मित्र को देता है। क्या उसका मित्र खरीदे हुए सोने के भार से संतुष्ट होगा? यदि नहीं, तो क्यों? (संकेत: ध्रुवों पर g का मान विषुवत वृत्त की अपेक्षा अधिक है।)
- 11. एक कागज की शीट, उसी प्रकार की शीट को मरोड़ कर बनाई गई गेंद से धीमी क्यों गिरती है?
- 12. चंद्रमा की सतह पर गुरुत्वीय बल, पृथ्वी की सतह पर गुरुत्वीय बल की अपेक्षा 1/6 गुणा है। एक 10 kg की वस्तु का चंद्रमा पर तथा पृथ्वी पर न्यूटन में भार क्या होगा?

- 13. एक गेंद ऊर्ध्वाधर दिशा में ऊपर की ओर 49 m/s के वेग से फेंकी जाती है। परिकलन कीजिए
 - (i) अधिकतम ऊँचाई जहाँ तक कि गेंद पहुँचती है।
 - (ii) पृथ्वी की सतह पर वापस लौटने में लिया गया कुल समय।
- 14. 19.6 m ऊँची एक मीनार की चोटी से एक पत्थर छोड़ा जाता है। पृथ्वी पर पहुँचने से पहले इसका अंतिम वेग ज्ञात कीजिए।
- 15. कोई पत्थर ऊर्ध्वाधर दिशा में ऊपर की ओर 40 m/s के प्रारंभिक वेग से फेंका गया है। $g = 10 \, \mathrm{m/s^2}$ लेते हुए ग्राफ की सहायता से पत्थर द्वारा पहुँची अधिकतम ऊँचाई ज्ञात कीजिए। नेट विस्थापन तथा पत्थर द्वारा चली गई कुल दूरी कितनी होगी?
- 16. पृथ्वी तथा सूर्य के बीच गुरुत्वाकर्षण बल का परिकलन कीजिए। दिया है, पृथ्वी का द्रव्यमान = $6 \times 10^{24} \, \mathrm{kg}$ तथा सूर्य का द्रव्यमान = $2 \times 10^{30} \, \mathrm{kg}$ । दोनों के बीच औसत दूरी $1.5 \times 10^{11} \, \mathrm{m}$ है।
- 17. कोई पत्थर 100 m ऊँची किसी मीनार की चोटी से गिराया गया और उसी समय कोई दूसरा पत्थर 25 m/s के वेग से ऊर्ध्वाधर दिशा में ऊपर की ओर फेंका गया। परिकलन कीजिए कि दोनों पत्थर कब और कहाँ मिलेंगे।
- 18. ऊर्ध्वाधर दिशा में ऊपर की ओर फेंकी गई एक गेंद 6 s पश्चात् फेंकने वाले के पास लौट आती है। ज्ञात कीजिए
 - (a) यह किस वेग से ऊपर फेंकी गई;
 - (b) गेंद द्वारा पहुँची गई अधिकतम ऊँचाई; तथा
 - (c) 4 s पश्चात् गेंद की स्थिति।
- 19. किसी द्रव में डुबोई गई वस्तु पर उत्प्लावन बल किस दिशा में कार्य करता है?
- 20. पानी के भीतर किसी प्लास्टिक के गुटके को छोड़ने पर यह पानी की सतह पर क्यों आ जाता है?
- 21. 50~g के किसी पदार्थ का आयतन $20~cm^3$ है। यदि पानी का घनत्व $1~g~cm^{-3}$ हो, तो पदार्थ तैरेगा या डूबेगा?
- 22. 500 g के एक मोहरबंद पैकेट का आयतन 350 cm³ है। पैकेट 1 g cm⁻³ घनत्व वाले पानी में तैरेगा या डूबेगा? इस पैकेट द्वारा विस्थापित पानी का द्रव्यमान कितना होगा?

गुरुत्वाकर्षण