《数字逻辑》(白中英)(第六版)

习题解答

第1章 开关理论基础

1、将下列十进制数化为二进制数和八进制数:

十进制	二进制	八进制
49	110001	61
53	110101	65
127	1111111	177
635	1001111011	1173
7.493	111.011111100	7.374
79.43	1001111.0110110	117.33

2、将下列二进制数转换成十进制数和八进制数:

二进制	十进制	八进制
1010	10	12
111101	61	75
1011100	92	134
0.10011	0.59375	0.46
101111	47	57
01101	13	15

3、将下列十进制数转换成 8421BCD码:

1997=0001 1001 1001 0111

65.312=0110 0101.0011 0001 0010

3.1416=0011.0001 0100 0001 0110

0.9475=0.1001 0100 0111 0101

4、一个电路有三个输入端 A、B、C, 当其中有两个输入端为高电平时,输出 X

为高电平,试列出真值表,并写出 X 的逻辑表达式。 [解]: 先列出真值表,然后写出 X 的逻辑表达式

A	В	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$X = \overline{ABC} + A\overline{BC} + AB\overline{C}$$

5、求下列函数的值:

当 A,B,C 为 0,1,0 时:
$$\overline{A}B + BC = \mathbf{1}$$
$$(A+B+C)(\overline{A}+\overline{B}+\overline{C}) = \mathbf{1}$$
$$(\overline{A}B+A\overline{C})B = \mathbf{1}$$

当 A,B,C 为 1,1,0时:
$$\overline{A}B + BC = \mathbf{0}$$
 $(A+B+C)(\overline{A}+\overline{B}+\overline{C}) = \mathbf{1}$ $(AB+AC)B = \mathbf{1}$

当 A,B,C 为 1,0,1 时:
$$\overline{AB} + BC = \mathbf{0}$$
$$(A+B+C)(\overline{A}+\overline{B}+\overline{C}) = \mathbf{1}$$
$$(\overline{AB} + A\overline{C})B = \mathbf{0}$$

6、用真值表证明恒等式 $\overline{A} \oplus \overline{B} \oplus \overline{C} = A \oplus \overline{B} \oplus C$ 成立。证明:

A	В	C	$\overline{A} \oplus \overline{B} \oplus \overline{C}$	$A \oplus \overline{B} \oplus C$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

所以由真值表得证。

7、证明下列等式

(1)
$$A + \overline{AB} = A + B$$

证明: 左边= $A + \overline{AB}$
 $= A(\overline{B} + B) + \overline{AB}$
 $= A\overline{B} + AB + \overline{AB}$
 $= A\overline{B} + AB + AB + \overline{AB}$
 $= A(\overline{B} + B) + (A + \overline{A})B$
 $= A + B$
 $= \overline{AD}$

(2)
$$ABC + A\overline{B}C + AB\overline{C} = AB + BC$$

证明: 左边= $ABC + ABC + ABC$
= $ABC + A\overline{B}C + AB\overline{C} + ABC$
= $AC(B + \overline{B}) + AB(\overline{C} + C)$
= $AC + AB$
= 右边

(3)
$$A + A\overline{BC} + \overline{ACD} + (\overline{C} + \overline{D})E = A + CD + E$$

证明: 左边= $A + A\overline{BC} + \overline{ACD} + (\overline{C} + \overline{D})E$
= $A + CD + AB \overline{C} + \overline{CD} E$
= $A + CD + \overline{CD} E$
= $A + CD + E$
= $A + CD + E$

(4)
$$\overline{AB} + A\overline{BC} + ABC = \overline{AB} + AC + \overline{BC}$$

证明: 左边= $\overline{AB} + A\overline{BC} + ABC$
= $(\overline{AB} + \overline{ABC}) + AB\overline{C} + \overline{ABC}$
= $\overline{AB} + \overline{AC} + \overline{BC} = \overline{AD}$

8、用布尔代数简化下列逻辑函数

(1)
$$F = A + ABC + A\overline{BC} + CB + \overline{CB}$$

 $= (A + ABC + A\overline{BC}) + CB + \overline{CB}$
 $= A + CB + \overline{CB}$
 $= A + \overline{B \oplus C}$

(2)
$$F = A\overline{B}CD + AB\overline{C}\overline{D} + A\overline{B} + A\overline{D} + A\overline{B}C$$

= $(ABCD + AB + ABC) + (ABCD + AD)$
= $A\overline{B} + A\overline{D}$

(3)
$$F = ABC\overline{D} + ABD + BC\overline{D} + ABCD + B\overline{C}$$

$$= ABC + ABD + BC\overline{D} + B\overline{C}$$

$$= ABC + ABD + B\overline{D} + B\overline{C}$$

$$= B(AC + AD + \overline{D} + \overline{C})$$

$$= B(A + \overline{C} + A + \overline{D})$$

$$= AB + B\overline{C} + B\overline{D}$$

$$= AB + B\overline{C} + B\overline{C}$$

$$= (AC + \overline{ABC}) \cdot \overline{BC} \cdot \overline{ABC}$$

$$= (AC + \overline{ABC}) (B + \overline{C}) (\overline{A} + \overline{B} + C)$$

$$= (ABC + BC) (\overline{A} + \overline{B} + C)$$

$$= (\overline{ABC} + ABC + BC)$$

$$= BC$$

10、用卡诺图化简下列各式

(1)
$$F = \overline{AC + \overline{ABC} + \overline{BC}} + AB\overline{C}$$

说明: 卡诺图中标有 0 的格子代表 $F_I = AC + \overline{ABC} + \overline{BC}$, $\overline{F_I}$ 则是标有 0 之外的其余格子。

(2)
$$F = A\overline{B}CD + AB\overline{C}\overline{D} + A\overline{B} + A\overline{D} + A\overline{B}C$$

(3) $F(A,B,C,D) = \sum m(0,1,2,5,6,7,8,9,13,14)$

$$F = \overline{BC} + \overline{CD} + \overline{ABC} + \overline{ACD} + BC\overline{D}$$

(4) $F(A,B,C,D) = \sum m(0, 13,14,15) + \sum \varphi$ (1, 2, 3, 9, 10, 11)

$$F = \overline{AB} + AD + AC$$

- 11、用与非门实现下列函数,并画出逻辑图。
 - (1) $F = AB\overline{C} + A\overline{B}\overline{C}$

$$=A\overline{C}(B+\overline{B})=A\overline{C}=\overline{\overline{AC}}$$

(2)
$$F = \overline{(A+B)(C+D)}$$

$$= \overline{A + B} + \overline{C + D}$$

$$=\overline{A}\overline{B}+\overline{C}\overline{D}$$

$$=\overline{\overline{A}\overline{B}}+\overline{\overline{C}}\overline{\overline{D}}$$

$$=\overline{AB}\cdot\overline{CD}$$

SN74LS00N

12、画出 F_1 和 F_2 的波形图

$$F_I = \overline{AB + AB} = A \oplus B$$

$$F_2 = F_1 \oplus C$$

A

B

 $\mathbf{F_2}$

第2章 组合逻辑

1、分析图 P2.1 所示的逻辑电路。

1)
$$F = \overline{\overline{AB}} + \overline{\overline{B}} = \overline{AB} + \overline{\overline{B}} = \overline{A} + \overline{\overline{B}} = \overline{AB}$$

2) $F_1 = \overline{\overline{AB}}$
 $F_2 = \overline{\overline{AB}} \overline{\overline{B}} \overline{\overline{B}}$
 $F_3 = \overline{\overline{AB}} \overline{\overline{C}}$
 $F = \overline{F_1 \cdot F_2 \cdot F_3} = \overline{F_1} + \overline{F_2} + \overline{F_3} = \overline{AB} + \overline{ABCB} + \overline{ABCC} = \overline{AB} + \overline{ABC}(B+C)$
 $= \overline{AB} + (\overline{A} + \overline{B} + \overline{C})(B+C)$
 $= \overline{AB} + (\overline{AB} + \overline{AC} + \overline{BB} + \overline{BC} + \overline{BC} + \overline{CC})$
 $= \overline{AB} + \overline{AC} + \overline{BC} + \overline{BC}$

- 4、分析 P2.3 所示逻辑电路图的功能。
 - 1) 用逐级电平推导法:

$$F=0 \rightarrow F_i=0 \rightarrow A_i=1 \rightarrow A_i=0$$

2) 列写布尔代数法:

$$F = \overline{F_1 + F_2 + F_3 + F_4} = \overline{F_1} \cdot \overline{F_2} \cdot \overline{F_3} \cdot \overline{F_4}$$

$$F_1 = \overline{\overline{A_0} \overline{A_1} \overline{A_2} \overline{A_3}}$$

$$F_2 = \overline{\overline{A_4} \overline{A_5} \overline{A_6} \overline{A_7}}$$

$$F_3 = \overline{\overline{A_8} \overline{A_9} \overline{A_{10}} \overline{A_{11}}}$$

$$F_1 = \overline{A_{12} A_{13} A_{14} A_{15}}$$

$$F = \overline{F_1} \cdot \overline{F_2} \cdot \overline{F_3} \cdot \overline{F_4} = \overline{A_0} \overline{A_1} \overline{A_2} \overline{A_3} \overline{A_4} \overline{A_5} \overline{A_6} \overline{A_7} \overline{A_8} \overline{A_9} \overline{A_{10}} \overline{A_{11}} \overline{A_{12}} \overline{A_{13}} \overline{A_{14}} \overline{A_{15}}$$
可见,当 $A_0 \sim A_{15}$ 为为 B 时, $F = 1$ 。

5、分析图 P2.5 所示的逻辑电路。

$$F = \overline{A_1} \overline{A_0} X_0 + A_1 \overline{A_0} X_1 + \overline{A_1} A_0 X_2 + A_1 A_0 X_3$$

显然,这是一个四选一数据选择器,其中 A1、A0 为选择控制输入:

$$A_1A_0=00$$
时, $F=X_0$

$$A_1A_0=01$$
时, $F=X_1$

$$A_1A_0=10$$
时, $F=X_2$

$$A_1A_0=11$$
时, $F=X_3$

- 6、图 P2.6 为两种十进制代码转换器,输入为余三码,分析输出是什么代码?
 - 1)逻辑表达式:

$$W = \overline{\overline{ACD} \cdot \overline{AB}} = ACD + AB = A(CD + B)$$

$$X = \overline{\overline{BC}} \overline{\overline{BC}} \cdot \overline{\overline{BD}} = BCD + \overline{BC} + \overline{BD} = BCD + \overline{B(C + D)}$$

$$= BCD + \overline{B} \cdot \overline{CD} = \overline{B \oplus CD}$$

$$Y = \overline{\overline{CD}} \cdot \overline{\overline{CD}} = C\overline{D} + \overline{CD} = C \oplus D$$

$$Z = \overline{D}$$

2) 真值表:

A	В	C	D	W	X	Y	Z
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	1	0	0	0	1	1
0	1	1	1	0	1	0	0
1	0	0	0	0	1	0	1
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	1
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	1

由真值表可知,该电路为余三码到8421BCD码转换电路。

- 7、分析图 P2.7 所示代码转换电路的功能。
 - 1) 逻辑表达式:

$$Y_3 = X_3$$

 $Y_2 = X_3 \oplus X_2$
 $Y_1 = (\overline{YM} \cdot \overline{MX_2}) \oplus X_1 = (MX_2 + \overline{M}Y_2) \oplus X_1$
 $Y_0 = X_0 \oplus (\overline{MX_1} \cdot \overline{\overline{MY_1}}) = (MX_1 + \overline{M}Y_1) \oplus X_0$
当 M=1 时: $Y_3 = X_3$
 $Y_2 = X_3 \oplus X_2$
 $Y_1 = X_2 \oplus X_1$
 $Y_0 = X_1 \oplus X_0$
当 M=0 时: $Y_3 = X_3$
 $Y_2 = X_3 \oplus X_2$
 $Y_1 = X_3 \oplus X_2$
 $Y_1 = X_3 \oplus X_2 \oplus X_1$
 $Y_0 = X_3 \oplus X_2 \oplus X_1$
 $Y_0 = X_3 \oplus X_2 \oplus X_1 \oplus X_0$

2) 真值表

M=1 时的真值表

X ₃	X_2	X_1	X_0	Y ₃	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

8421 码 → 循环码

M=0 时的真值表

X_3	X_2	X_1	X_0	Y_3	Y_2	\mathbf{Y}_1	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	1	0	0	1	0
0	0	1	0	0	0	1	1
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
0	1	0	1	0	1	1	0
0	1	0	0	0	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	1	1	0	1	0
1	1	1	0	1	0	1	1
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	0	0	1	1	1	1	0
1	0	0	0	1	1	1	1

循环码 → 8421 码

- 8、已知输入信号 A, B, C, D信号的波形如图 P2.8 所示,设计产生输出 F 波形的组合逻辑电路。
 - 1) 真值简表(只列出F=1的情况)

A	В	С	D	F
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1

2) 逻辑表达式

 $F = \sum m(1,3,4,5,8,9,10,11,12)$

 $F = A\overline{B} + \overline{B}D + B\overline{C}\overline{D} + \overline{A}B\overline{C}$

3) 逻辑电路图(略)

9、【解】

1) 真值表(输入"1"表示不正常,输出"1"表示亮)

A	В	C	F _R F _Y F _G
0	0	0	0 0 1
0	0	1	1 0 0
0	1	0	1 0 0
0	1	1	0 1 0
1	0	0	1 0 0
1	0	1	0 1 0
1	1	0	0 1 0
1	1	1	1 1 0

2) 逻辑表达式

$$F_{R} = \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC = A \oplus B \oplus C$$

$$F_{Y} = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC = AB + AC + BC$$

$$F_{G} = \overline{ABC}$$

3)逻辑电路图(略)

19、【解】

1) 真值表(输入"1"表示按下,输出F=表示开锁,G=1表示报警)

A B C	F G
0 0 0	0 0
0 0 1	0 1
0 1 0	0 1
0 1 1	0 1
1 0 0	0 0
1 0 1	1 0
1 1 0	1 0
1 1 1	1 0

2) 逻辑表达式

$$F = ABC + ABC + ABC = AB + AC$$
$$G = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} = \overline{AB} + \overline{AC}$$

3)逻辑电路图(略)

第3章 时序逻辑

7.【解】

1) 激励方程

$$J_3 = Q_2$$

$$J_2 = Q$$

$$J_3 = Q_2 \qquad \qquad J_2 = Q_1 \qquad \qquad J_1 = \overline{Q_2}$$

$$K_3 = \overline{Q_2} \qquad K_2 = \overline{Q_I} \qquad K_I = Q_3$$

$$K_2 = \overline{O_1}$$

$$K_1 = Q$$

2) 状态转移表

现态 PS	激励条件	次态
$Q_3^n Q_2^n Q_1^n$	$J_3 \ K_3 \ J_2 \ K_2 \ J_1 \ K_1$	$Q_3^{n+1} Q_2^{n+1} Q_1^{n+1}$
0 0 0	0 1 0 1 1 0	0 0 1
0 0 1	0 1 1 0 1 0	0 1 1
0 1 1	1 0 1 0 0 0	1 1 1
1 1 1	1 0 1 0 0 1	1 1 0
1 1 0	1 0 0 1 0 1	1 0 0
1 0 0	0 1 0 1 1 1	0 0 1
0 1 0	1 0 0 1 0 0	1 0 0
1 0 1	0 1 1 0 0 1	0 1 0

3) 状态转移图(简图)

由状态转移表可知,电路只形成一个封闭的循环,因此能够自启动。

8.【解】

1) 状态方程

$$Q_3^{n+1} = D_2 = Q_2^n$$

$$Q_2^{n+1} = D_1 = Q_1'$$

$$Q_3^{n+1} = D_2 = Q_2^n$$
 $Q_2^{n+1} = D_1 = Q_1^n$ $Q_1^{n+1} = D_1 = \overline{Q_3^n} \overline{Q_2^n}$

2) 状态转移表

Q_3^{n}	见态 F Q2 ⁿ		Q_3^{n+1}	次态 Q2 ⁿ⁺	Q_1^{n+1}
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	1	1	0
1	1	0	1	0	0
1	0	0	0	0	0
0	1	0	1	0	0
1	0	1	0	1	0
1	1	1	1	1	0

3) 状态转移图(简图)

$$000 \rightarrow 001 \rightarrow 011 \rightarrow 110 \rightarrow 100$$

9.【解】

1) 状态编码

采用常规的计数器法,须3个触发器。

2) 状态转移表

计数器有6个状态,状态010和110未使用,可令这2个状态的次态为已使 用的6个状态之一。

	\$1. I.	W -
现态 PS	/ 次态	激励条件
Q_3^n Q_2^n Q_1^n	$Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}$	D_3 D_2 D_1
0 0 0	0 0 1	0 0 1
0 0 1	0 1 1	0 1 1
0 1 1	1 1 1	1 1 1
1 1 1	1 0 1	1 0 1
1 0 1	1 0 0	1 0 0
1 0 0	0 0 0	0 0 0
0 1 0	0 0 0	0 0 0
1 1 0	0 0 0	0 0 0

3) 激励方程

$$D_3 = \overline{Q_3}Q_2Q_1 + Q_3Q_2Q_1 + Q_3\overline{Q_2}Q_1 = Q_3Q_1 + Q_2Q_1$$

$$D_2 = \overline{Q_3} \overline{Q_2} Q_1 + \overline{Q_3} Q_2 Q_1 = \overline{Q_3} Q_1$$

$$D_1 = \overline{Q_3} \overline{Q_2} \overline{Q_1} + \overline{Q_3} \overline{Q_2} \overline{Q_1} + \overline{Q_3} \overline{Q_2} \overline{Q_1} + \overline{Q_3} \overline{Q_2} \overline{Q_1} + \overline{Q_3} \overline{Q_2} \overline{Q_2} + \overline{Q_2} \overline{Q_2} \overline{Q_2} + \overline{Q_3} \overline{Q_2} \overline{Q_2} + \overline{Q_3} \overline{Q_2} \overline{Q_2} \overline{Q_2} + \overline{Q_3} \overline{Q_2} \overline{Q_2}$$

4) 电路图(略)

13.【解】

1)输出方程

$$Z = \overline{Q_1 Q_2}$$

2) 激励方程

$$J_2 = Q_1 \oplus x \qquad \qquad J_1 = 1$$

$$J_{I}=1$$

$$K_2 = Q_1 \oplus x$$

$$K_1 = 1$$

3) 状态转移表

输入	现态 PS	激励条件	次态	输出
X	$Q_2^n Q_1^n$	$J_2 K_2 J_1 K_1$	$Q_2^{n+1} Q_1^{n+1}$	Z
0	0 0	0 0 1 1	0 1	1
0	0 1	1 1 1 1	1 0	1
0	1 0	0 0 1 1	1 1	1
0	1 1	1 1 1 1	0 0	0

1	0 0	1 1 1 1	1 1	1
1	1 1	0 0 1 1	1 0	0
1	1 0	1 1 1 1	0 1	1
1	0 1	0 0 1 1	0 0	1

4) 状态转移图(简图)

x=0时,为加法计数器

x=1 时,为减法计数器

16.【解】

1) 由波形图可知, 电路有7个状态。

2) 状态表

Q_3	Q_2	Q_1	
0	1	1	
1	1	1	
1	1	0	
1	0	0	
0	1	0	
1	0	1	
0	0	1	

3) 状态转移表

状态 000 没有在波形图中出现,为了让电路能够自启动,可令上述 7 个状态中任意一个作为状态 000 的次态。

现态 PS	次态	激励条件
$Q_3^n Q_2^n Q_1^n$	$Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}$	D_3 D_2 D_1
0 1 1	1 1 1	1 1 1
1 1 1	1 1 0	1 1 0
1 1 0	1 0 0	1 0 0
1 0 0	0 1 0	0 1 0
0 1 0	1 0 1	1 0 1
1 0 1	0 0 1	0 0 1
0 0 1	0 1 1	0 1 1
0 0 0	X X X	X X X

4) 激励函数(下边表达式中的φ为最小项 000)

$$D_3 = \sum (3,7,6,2) + \varphi = \overline{Q_3}Q_1 + Q_3Q_2$$

$$D_2 = \sum (3,7,4,1) + \varphi = \overline{Q_3}Q_1 + Q_2Q_1 + \overline{Q_2}\overline{Q_1}$$

$$D_1 = \sum (3,2,5,1) + \varphi = \overline{Q_3} + \overline{Q_2}Q_1$$

在利用卡诺图化简中, D_2 和 D_1 使用了任意项 "000",故状态 000 的次态为 011。

5) 电路图(略)

19.【解】

1) 状态编码

时序机有 4 个状态, 用 2 个 D 触发器表示, 并设 S_0 =00, S_1 =01, S_2 =10, S_3 =11。

2) 状态转移表

现态 PS	次态	转换条件
$Q_2^n Q_1^n$	$Q_2^{n+1}Q_1^{n+1}$	k
0 0	0 0	\overline{k}
	0 1	k
0 1	0 1	\overline{k}
	1 0	k
1 0	1 0	$\frac{k}{k}$
	1 1	\overline{k}
1 1	1 1	\overline{k}
	0 0	k

3) 激励函数

$$D_{2} = Q_{2}^{n+1} = k\overline{Q_{2}}Q_{1} + kQ_{2}\overline{Q_{1}} + \overline{k}Q_{2}\overline{Q_{1}} + \overline{k}Q_{2}Q_{1} = k\overline{Q_{2}}Q_{1} + Q_{2}\overline{Q_{1}} + \overline{k}Q_{2}$$

$$D_{1} = Q_{1}^{n+1} = k\overline{Q_{2}}\overline{Q_{1}} + \overline{k}\overline{Q_{2}}Q_{1} + \overline{k}Q_{2}\overline{Q_{1}} + \overline{k}Q_{2}Q_{1} = k\overline{Q_{2}}\overline{Q_{1}} + \overline{k}Q_{2} + \overline{k}Q_{1}$$

4)逻辑电路图(略)