Supporting information materials for

Can an Electron-Shell Closing Model Explain the Structure and Stability of Ligand-Stabilized Metal Clusters?

Jaehoon Jung, †,# Hyemi Kim, † and Young-Kyu Han*,‡

[†] Corporate R&D, LG Chem., Ltd. Research Park, Daejeon 305-380, Republic of Korea

[‡] Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea

Present address: Department of Advanced Materials Science, The University of Tokyo, Chiba 277-

8561, Japan and RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan

Fax: +82-42-865-3610; E-mail Address: ykhan@kbsi.re.kr

^{*} Authors to whom correspondence should be addressed.

Complete reference 14

Gaussian03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.

Absolute energies for aluminum, aluminum hydride and aluminum iodide clusters

	Isomer	Absolute energy (Hartrees)	Relative energy (eV)
Al_7^-		-1696.25927864	
Al_{13}^{-}		-3150.34560338	
Al ₇ H	10	-1696.79689595	0.00
	1b	-1696.76319698	0.92
Al ₁₃ H	1f	-3150.82696146	0.00
	10	-3150.81666042	0.28
$Al_{13}H_3$	2o1b	-3152.01510096	0.00
	1o2b	-3151.98704731	0.76
Al ₇ I	10	-1991.97930807	0.00
	1b	-1991.95790161	0.58
Al ₁₃ I	1b	-3445.99435467	0.00
	10	-3445.98602299	0.23

Cartesian coordinates

• Al ₇			• Al ₁₃ H : 1f
Al	0.288837000 0.934562000	1.365342000	Al 1.324625000 -2.283652000 -0.576942000
Al	0.288837000 -1.696648000	1.349432000	Al 1.661010000 0.005402000 -2.079928000
Al	0.288837000 -1.696648000	-1.349432000	Al -0.854295000 1.445808000 -2.065586000
Al	0.288837000 0.934562000	-1.365342000	Al -0.844872000 -1.451335000 -2.065586000
Al	2.168206000 -0.306047000	0.000000000	Al -1.300801000 -2.276597000 0.535669000
Al	-1.613869000 -0.475257000	0.000000000	Al -1.675278000 -0.005448000 2.047908000
Al	-1.709686000 2.305475000	0.000000000	Al 0.861602000 -1.458842000 2.034516000
			Al 2.626530000 0.008542000 0.512462000
			Al 1.309743000 2.292221000 -0.576942000
• Al ₁₃			Al -1.315582000 2.268087000 0.535669000
Al	0.000000000 0.000000000	2.667291000	Al 0.852094000 1.464415000 2.034516000
Al	2.268933000 0.737221000	1.192849000	Al -2.645413000 -0.008604000 -0.552579000
Al	2.268933000 -0.737221000	-1.192849000	Al -0.000314000 -0.000001000 -0.015367000
Al	1.402278000 -1.930070000	1.192849000	H 0.012358000 0.000040000 3.018440000
Al	-1.402278000 -1.930070000	1.192849000	
Al	-2.268933000 -0.737221000	-1.192849000	
Al	-2.268933000 0.737221000	1.192849000	• Al ₁₃ H : 10
Al	0.000000000 2.385698000	1.192849000	Al -2.345684000 -0.704522000 1.119236000
Al	1.402278000 1.930070000	-1.192849000	Al -0.000003000 -0.000133000 2.559607000
Al	0.000000000 0.000000000	-2.667291000	Al 2.311213000 -0.810481000 1.119236000
Al	-1.402278000 1.930070000	-1.192849000	Al -0.055709000 -2.448417000 1.119331000
Al	0.000000000 -2.385698000	-1.192849000	Al -1.461031000 -1.917973000 -1.208204000
Al	0.000000000 0.000000000	0.000000000	Al 0.000006000 0.000260000 -2.493732000
			Al -2.275736000 0.797593000 -1.207556000
			Al -1.395394000 2.012807000 1.120654000
• Al ₇ H :	10		Al 1.485498000 1.947258000 1.120654000
Al	-0.534660000 1.706700000	-0.000607000	Al 2.309658000 0.693262000 -1.207556000
Al		1.349313000	Al 0.054883000 2.412111000 -1.207085000
Al	1.481046000 -1.558978000	0.000555000	Al 1.372285000 -1.982440000 -1.208204000
Al	-0.533929000 -0.853229000		A1 0.000022000 0.000984000 0.054563000
Al	1.481193000 0.778778000		Н -0.000091000 -0.004001000 4.147731000
Al	-0.533929000 -0.852176000		
Al	-2.523364000 -0.000656000	0.000001000	
Н	-4.128157000 -0.002315000	0.000003000	• Al ₁₃ H ₃ : 201b
			Al -2.579491000 0.000015000 0.726149000
			Al -0.338066000 1.440662000 2.175381000
• Al ₇ H :	1h		Al -0.337944000 -1.440879000 2.175321000
Al	0.244746000 0.858828000	1.614111000	A1 -1.392155000 2.291304000 -0.204198000
Al	0.244746000 -1.729494000	1.265465000	A1 -1.392093000 -2.291309000 -0.204237000
			Al -1.918869000 -0.000091000 -1.893055000
Al Al		-1.265465000 -1.614111000	Al -0.017931000 -0.000003000 0.000075000
Al		0.000000000	Al 2.047219000 0.000063000 1.729688000
Al	2.097157000 0.115193000 -1.670857000 -0.432290000	0.000000000	Al 1.421789000 2.292726000 0.276081000
Al	-1.471145000	0.000000000	Al 1.421999000 -2.292567000 0.276031000
H	0.856213000 -2.908206000	0.000000000	Al 0.354494000 1.506686000 -2.141781000
11	0.000210000 -2.700200000	3.0000000	Al 0.354638000 -1.506753000 -2.141731000

2.443021000	0.000157000	-1.014581000
-3.902734000	-0.000143000	1.619261000
3.919059000	0.000119000	-1.617510000
-0.882280000	-0.000133000	3.129375000
	-3.902734000 3.919059000	2.443021000 0.000157000 -3.902734000 -0.000143000 3.919059000 0.000119000 -0.882280000 -0.000133000

• Al₁₃H₃: **1o2b**

Al	2.674535000	-0.895779000	0.535019000
Al	-0.197105000	-1.286114000	2.274671000
Al	1.341516000	1.063358000	1.995964000
Al	0.590887000	-2.624022000	0.078686000
Al	2.153956000	1.634559000	-0.572851000
Al	1.591100000	-0.761462000	-2.052942000
Al	0.034610000	-0.018437000	0.004472000
Al	-1.857344000	0.884256000	1.730857000
Al	-2.157541000	-1.584326000	0.467856000
Al	-0.287369000	2.655725000	0.506042000
Al	-0.966218000	-1.568942000	-1.932691000
Al	-0.018988000	1.513803000	-2.069216000
Al	-2.523380000	0.768005000	-0.926765000
Н	-3.977525000	1.244403000	-1.419068000
Н	0.735678000	-0.084225000	3.235556000
Н	-1.680716000	1.691707000	-2.324807000

• Al₇I : 10

Al	1.288531000	1.731485000	-0.000855000
Al	3.288683000	0.781888000	1.353903000
Al	3.287575000	-1.564828000	0.000774000
Al	1.287630000	-0.865370000	-1.497492000
Al	3.288683000	0.780551000	-1.354673000
Al	1.287628000	-0.863888000	1.498344000
Al	-0.682202000	0.000877000	-0.000002000
I	-3.200092000	-0.000175000	0.000000000

• Al₇I : **1b**

Al	0.256237000	2.361384000	-1.661036000
Al	0.256237000	-0.235860000	-1.314246000
Al	0.256237000	-0.235860000	1.314246000
Al	0.256237000	2.361384000	1.661036000
Al	-1.541605000	1.549873000	0.000000000
Al	2.200424000	0.896332000	0.000000000
Al	1.920953000	3.552610000	0.000000000
I	-0.884177000	-2.514117000	0.000000000

• Al₁₃I : **1b**

Al	-0.269482000	-0.051134000	2.341457000
Al	-1.105586000	-1.451001000	-0.215550000
Al	-0.060909000	0.057593000	-2.432333000

Al	-1.100034000	1.469409000	-0.167045000
Al	0.880133000	2.251391000	1.496060000
Al	3.218126000	1.620398000	0.204044000
Al	2.502798000	-0.053387000	2.282952000
Al	0.884607000	-2.314189000	1.395829000
Al	1.124278000	-2.246410000	-1.540284000
Al	2.714212000	0.039685000	-2.102555000
Al	3.213501000	-1.634867000	0.121044000
Al	1.149263000	2.311720000	-1.441799000
Al	1.080401000	0.000882000	0.010606000
I	-3.490698000	-0.000022000	0.011669000

• $Al_{13}I : 10$

Al	0.000000000	2.453930000	-0.073994000
Al	0.000000000	0.000000000	1.370421000
Al	-1.442384000	-1.985271000	-0.073994000
Al	-2.333826000	0.758306000	-0.073994000
Al	-1.419645000	1.953974000	-2.400238000
Al	0.000000000	0.000000000	-3.685265000
Al	1.419645000	1.953974000	-2.400238000
Al	2.333826000	0.758306000	-0.073994000
Al	1.442384000	-1.985271000	-0.073994000
Al	0.000000000	-2.415245000	-2.400238000
Al	2.297035000	-0.746352000	-2.400238000
Al	-2.297035000	-0.746352000	-2.400238000
Al	0.000000000	0.000000000	-1.137673000
I	0.000000000	0.000000000	3.881279000

Figure S1. Molecular orbital (MO) diagrams for Al₇⁻ and **10** Al₇H (H: HOMO and L: LUMO).

Figure S2. Molecular orbital (MO) diagrams for Al₇⁻ and **1b** Al₇H (H: HOMO and L: LUMO).

Figure S3. Molecular orbital (MO) diagrams for Al₁₃⁻ and **1f** Al₁₃H (H: HOMO and L: LUMO).

Figure S4. Molecular orbital (MO) diagrams for Al₁₃⁻ and **10** Al₁₃H (H: HOMO and L: LUMO).

Figure S5. Molecular orbital (MO) diagrams for Al₁₃⁻ and **2o1b** Al₁₃H₃ (H: HOMO and L: LUMO).

Figure S6. Molecular orbital (MO) diagrams for Al₁₃⁻ and **1o2b** Al₁₃H₃ (H: HOMO and L: LUMO).

