TÍN HIỆU VÀ HỆ THỐNG

Chương 2: Biểu diễn hệ thống tuyến tính bất biến trong miền thời gian

Phần 1: ĐÁP ỨNG XUNG ĐƠN VỊ

Trần Thị Thúy Quỳnh

MỤC ĐÍCH

Mục đích của phép biểu diễn?

- Mô tả mối quan hệ giữa tín hiệu vào x(n) và ra y(n).
- Dễ dàng xác định được đầu ra tương ứng khi biết tín hiệu đầu vào .
- Dễ dàng phân tích các tính chất của hệ thống
- Thiết kế được cấu trúc của hệ thống.

PHÂN LOẠI

- Biểu diễn hệ thống bằng đáp ứng xung đơn vị
- Biểu diễn hệ thống bằng phương trình Vi phân/Sai phân
- Biểu diễn hệ thống bằng Sơ đồ khối

ĐÁP ỨNG XUNG

Hệ thống LTI liên tục

Đáp ứng xung của hệ thống TTBB là đầu ra của hệ thống khi tín hiệu đầu vào là xung $\delta(t)$.

$$x(t) = \delta(t)$$
, đáp ứng xung: $h(t) = T(x(t)) = T(\delta(t))$

• Hệ thống LTI rời rạc

Đáp ứng xung, h(n), là đầu ra của hệ thống **TTBB** khi tín hiệu đầu vào là $\delta(n)$.

Cho hệ thống T, y(n) = T(x(n)).

Đáp ứng xung của hệ thống: $h(n) = T(\delta(n))$

PHÉP TÍCH CHẬP

Hệ thống LTI liên tục

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

• Hệ thống LTI rời rạc

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]b[n-k]$$

CÁCH TÍNH TÍCH CHẬP VỚI HỆ THỐNG LIÊN TỤC

VÍ DỤ

$$x(t) = u(t-1) - u(t-3)$$

$$h(t) = u(t) - u(t-2)$$

Tính:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

CÁCH TÍNH TÍCH CHẬP VỚI HỆ THỐNG LIÊN TỤC

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

1. Biểu diễn x(t) theo biến độc lập au

2. Biểu diễn $h(t-\tau)$ theo biến độc lập τ bằng cách lật $h(\tau)$ thành $h(-\tau)$ và dịch $h(-\tau)$ một lượng (-t) (dịch về bên phải)

3. Tính
$$\omega_t(\tau) = x(\tau)h(t-\tau)$$

Với
$$1 \le t < 3$$

$$w_t(\tau) = \begin{cases} 1, & 1 < \tau < t \\ 0, & \text{otherwise} \end{cases}$$

Với
$$3 \le t < 5$$

$$w_t(\tau) = \begin{cases} 1, & t - 2 < \tau < 3 \\ 0, & \text{otherwise} \end{cases}$$

CÁCH TÍNH TÍCH CHẬP VỚI HỆ THỐNG LIÊN TỤC

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

4. Tính y(t)

Với
$$t < 1$$
 và $t > 5$: $\omega_t(\tau) = 0$, nên $y(t) = 0$

Với
$$1 \le t < 3$$
: $\mathbf{w}_t(\tau) = \begin{cases} 1, & 1 < \tau < t \\ 0, & \text{otherwise} \end{cases}$ nên $y(t) = \int_1^t \omega_t(\tau) d\tau = t - 1$

nên
$$y(t) = \int_1^t \omega_t(\tau) \ d\tau = t - 1$$

Với
$$3 \le t \le 5$$
:

$$w_t(\tau) = \begin{cases} 1, & t-2 < \tau \\ 0, & \text{otherwise} \end{cases}$$

Với
$$3 \le t \le 5$$
: $\mathbf{w}_{t}(\tau) = \begin{cases} 1, & t - 2 < \tau < 3 \\ 0, & \text{otherwise} \end{cases}$ sên $y(t) = \int_{t-2}^{3} \omega_{t}(\tau) d\tau = 3 - (t-2)$

VÍ DỤ

Tính:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]b[n-k]$$

1. Biểu diễn x[n] theo biến độc lập k

2. Biểu diễn h[n-k]theo biến độc lập k bằng cách lật h(k) thành h(-k) và dịch h(-k) một lượng (-n) (dịch về bên phải)

3. Tính $\omega_n(k) = x[k]h[n-k]$

Với $0 \le n \le 3$

Với
$$3 < n \le 9$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]b[n-k]$$

Với $9 < n \le 12$

$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$

4. Tính y[n]

Với
$$n<0$$
 và $n>12$: $\omega_n(\tau)=0$, nên $y[n]=0$

Với $0 \le n \le 3$

Với
$$3 < n \le 9$$

Với
$$9 < n \le 12$$

TÍNH CHẤT PHÉP TÍCH CHẬP

Continuous-time system

$$x(t) * h_1(t) + x(t) * h_2(t) =$$

$$x(t) * \{h_1(t) + h_2(t)\}$$

$$\{x(t) * h_1(t)\} * h_2(t) = x(t) * \{h_1(t) * h_2(t)\}$$

$$h_1(t) * h_2(t) = h_2(t) * h_1(t)$$

Discrete-time system

$$x[n] * h_1[n] + x[n] * h_2[n] =$$

$$x[n] * \{h_1[n] + h_2[n]\}$$

$$\{x[n] * h_1[n]\} * h_2[n] = x[n] * \{h_1[n] * h_2[n]\}$$

$$h_1[n] * h_2[n] = h_2[n] * h_1[n]$$

