Continuous optimization ENT 305

Elise Grosjean

Ensta-Paris Institut Polytechnique de Paris November 9, 2021

And to sum up the courses ...

	Necessary conditions	Sufficient conditions
Abstract formulation		if K compact, $f \in C^0(K)$
(exist.)		then at least one solution
		if K closed,
		$f \in C^0(K)$, coercive
		then at least one solution

	Necessary conditions	Sufficient conditions
No constraints	if \overline{x} local sol.,	if $f \in C^2(K)$, $\nabla f(\overline{x}) = 0$,
$K = \mathbb{R}^d$ (opt.)	$f \in C^2(K)$ then,	$D^2 f(\overline{x})$ positive def.
	$D^2f(\overline{x})$ is positive semi-def.	then \overline{x} local sol.
Affine		f convex,
constraints	\overline{x} local sol. then KKT	then KKT=global sol.
Non-linear		f convex,
constraints	\overline{x} local sol., LICQ then KKT	h affine, g convex,
		then KKT=global sol.

And to sum up the courses ...

	Necessary conditions	Sufficient conditions
Abstract formulation		if K compact, $f \in C^0(K)$
(exist.)		then at least one solution
		if K closed,
		$f \in C^0(K)$, coercive
		then at least one solution

	Find a local solution
No constraints	Gradient Descent
Affine constraints	Penalty methods
Non-linear constraints	

Introduction

Aim of the lecture: a general presentation of one numerical methods for constrained optimization.

- Penalty methods ~> equality constraints
- Projected gradient methods \leadsto inequality constraints

well suited if constraints projection is possible and easy to compute.

Reference:

Nocedal and Wright. Numerical optimization. Springer Science and Business Media, 2006.

Boyd and Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

- Penalty methods for constrained optimization
 - Quadratic penalization
 - Augmented Lagrangian
 - Lagrangian decomposition

- 2 Projected gradient method
 - Projection
 - Method
 - Combination with penalty methods

We consider in this section

$$\inf_{x \in \mathbb{R}^n} f(x), \quad \text{subject to: } h(x) = 0, \tag{P}$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}^m$ are given and "smooth".

A general difficulty: we need to cope with **two general goals**:

- Minimizing f
- Ensuring the feasibility of x.

When designing a numerical method, the question arises: Given an iterate x_k , should we look for x_{k+1} so that

$$f(x_{k+1}) < f(x_k)$$
 or $||h(x_{k+1})|| < ||h(x_k)||$?

Main idea: combining the two objectives into a single one. Given a real number $c \ge 0$, consider the **penalty problem:**

$$\inf_{x \in \mathbb{R}^n} Q_c(x) := f(x) + \frac{c}{2} \|h(x)\|^2.$$
 (P_c)

A rough statement: if c is large, (P) and (P_c) are "almost" equivalent.

Big advantage of the approach: numerical **methods of** unconstrained optimization can be employed for solving (P_c) .

Exercise.

Consider the problem:

$$\inf_{x \in \mathbb{R}} x$$
, subject to: $x = 0$.

- **1** What is the solution \bar{x} to the problem?
- **2** Calculate the solution x_c to the corresponding penalized problem P_c .
- **3** Verify that $x_c \xrightarrow[c \to +\infty]{} \bar{x}$.

Solution.

- 1 Obviously $\bar{x} = 0$, since 0 is the unique feasible point of the problem.
- 2 Let c>0. We have $Q_c(x)=x+\frac{c}{2}x^2$ and $\nabla Q_c(x)=1+cx$. Therefore,

$$\nabla Q_c(x) = 0 \Longleftrightarrow x = -\frac{1}{c}.$$

Since Q_c is convex, $x_c := -1/c$ is the unique solution of (P_c) .

Obviously

$$x_c = -1/c \xrightarrow[c \to \infty]{} 0 = \bar{x}.$$

Figure: Graph of Q_c , for various values of c

Lemma 1

Let $c_k \to \infty$. Let $(x_k)_{k \in \mathbb{N}}$ be a sequence in \mathbb{R}^n . Assume that

- For all $k \in \mathbb{N}$, x_k is the solution to (P_{c_k}) .
- The sequence $(x_k)_{k\in\mathbb{N}}$ converges, let \bar{x} denote the limit.
- There exists \tilde{x} such that $h(\tilde{x}) = 0$.

Then, \bar{x} is a **solution** to the original constrained problem (P).

Proof. Step 1. Let x be a feasible point (that is, h(x) = 0). Then,

$$Q_{c_k}(x) = f(x) + \frac{c_k}{2} ||h(x)||^2 = f(x).$$

In particular, $Q_{c_k}(\tilde{x}) = f(\tilde{x})$.

Step 2: \bar{x} is feasible. For all $k \in \mathbb{N}$, we have

$$\begin{aligned} c_k \|h(x_k)\|^2 &= Q_{c_k}(x_k) - f(x_k) \\ &\leq Q_{c_k}(\tilde{x}) - f(x_k) & [Optimality \ of \ x_k] \\ &= f(\tilde{x}) - f(x_k). & [Equality \ of \ Step \ 1] \end{aligned}$$

Since $f(x_k) \to f(\bar{x})$, the sequence $(f(x_k))_{k \in \mathbb{N}}$ is bounded. Therefore, there exist M > 0 such that $c_k \|h(x_k)\|^2 \le M$. Thus

$$||h(x_k)|| \leq \sqrt{M/c_k}, \quad \forall k \in \mathbb{N}.$$

Passing to the limit, we get $||h(\bar{x})|| \le 0$. Thus \bar{x} is **feasible**.

Step 3. Optimality of \bar{x} . Let x be feasible. We have

$$f(x_k) \le f(x_k) + c_k \|h(x_k)\|^2$$

 $= Q_{c_k}(x_k)$
 $\le Q_{c_k}(x)$ [Optimality of x_k]
 $= f(x)$. [Equality of Step 1]

Passing to the limit, we get

$$f(\bar{x}) \leq f(x)$$
.

Thus \bar{x} is optimal.

The result of the lemma must be seen as an "ideal" situation.

Difficulties in practice:

■ The problem (P_c) may not have a solution, even if (P) has a solution. Example:

$$\inf_{x \in \mathbb{R}} x^3$$
, subject to: $x = 0$.

- The sequence $(x_k)_{k \in \mathbb{N}}$ may not converge.
- The problem (P_c) is **hard to solve** when c is large, it is likely to be ill-conditioned (see next example).

Example. Consider:

$$\inf_{(x,y)\in\mathbb{R}^2} \frac{1}{2} (x^2 + (y-1)^2), \text{ subject to: } x = y.$$

Projection problem of the point (0,1) on the line $\{(x,y) | y = x\}$.

Exercise. Verify the following statements.

- Solution: $x^* = (0.5, 0.5)$.
- Solution of P_c , the penalty function, is:

$$\begin{pmatrix} x_c \\ y_c \end{pmatrix} = \frac{1}{1+2c} \begin{pmatrix} c \\ 1+c \end{pmatrix}.$$

■ There exists a constant M such that for all $c \ge 0$,

$$||(x_c, y_c) - (\bar{x}, \bar{y})|| \le M/c.$$

Solution.

- 1 $\nabla f(x,y) = \binom{x}{y-1}$. The function f is convex and thus, the global solution of the unconstrainted version is (0,1). With the constraints, we aim at minimizing $\frac{1}{2}(2x^2-2x+1)$, and the unique solution is obviously x=0.5.
- 2 $Q_c(x) = \frac{1}{2}(x^2 + (y-1)^2) + \frac{c}{2}(y-x)^2$ and $\nabla Q_c(x,y) = \begin{pmatrix} x c(y-x) \\ y 1 + c(y-x) \end{pmatrix}$, and since Q_c is convex, the unique solution of P_c is: $\begin{pmatrix} x_c \\ y_c \end{pmatrix} = \frac{1}{1+2c} \begin{pmatrix} c \\ 1+c \end{pmatrix}$.
- 3 $\lim_{c \to \infty} \binom{x_c}{y_c} = \lim_{c \to \infty} \frac{c}{c(1/c+2)} \binom{1}{1/c+1} = \frac{1}{2} \binom{1}{1}$ $\|(x_c, y_c) (0.5, 0.5)\|^2 = \frac{0.5}{(1+2c)^2} \Rightarrow \|(x_c, y_c) (0.5, 0.5)\| = \frac{\sqrt{0.5}}{1+2c} \leq \frac{M}{c}.$ Yet, $\nabla^2 Q(x, y) = \binom{1+c}{-c} \frac{-c}{1+c}$ which is ill-conditioned for large c. It yields difficulties with e.g. Newton algorithm $(\nabla^2 Q \cdot p = -\nabla Q)$ with abrupt function changes.

Figure: Graph of Q_c , for c = 0.

Figure: Graph of Q_c , for c = 0.5.

Figure: Graph of Q_c , for c = 1.

Figure: Graph of Q_c , for c = 2.

Figure: Graph of Q_c , for c = 5.

Penalty algorithm

General idea: increase the value of c progressively, to mitigate the difficulty of minimizing Q_c .

Algorithm:

- **1** Input: Choose $c_0 > 0$, starting point $x_0 \in \mathbb{R}^n$.
- **2** For k = 1, ..., K 1, do
 - Solve (P_{c_k}) (e.g. with a gradient descent algorithm starting from x_{k-1}) and set x_k the solution.
 - If x_k is such that $h(x_k) = 0$, stop.
 - Otherwise choose $c_{k+1} > c_k$.

End for.

3 Output: x_K .

Penalty algorithm

$$Q_c(x) = f(x) + \frac{c}{2} \|h(x)\|^2$$

$$\nabla Q_c(x) = \nabla f(x) + c \langle h(x), \nabla h(x) \rangle$$

$$= \nabla L(x, ch(x))$$

$$c_k h(x_k) \simeq \overline{\mu}$$

Unlike the penalty method, with the **augmented Lagrangian method** is not necessary to take $c \to \infty$ in order to solve the original constrained problem, avoiding ill-conditioning.

The two ideas of the augmented Lagrangian method:

- I Solving a penalty problem (like (P_c)) also yields an approximation of the Lagrange multiplier.
- 2 We can "improve" the penalty function Q_c with the knowledge of that approximation.

Algorithm: at each iteration,

- the penalty parameter is increased
- the approximations x_k of the solution and λ_k of the Lagrange multiplier are improved.

Let c > 0. The **augmented Lagrangian** $L_c : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is defined by

$$L_c(x,\mu) = f(x) + \langle \mu, h(x) \rangle + \frac{c}{2} \|h(x)\|^2.$$

$$\nabla L_c(x,\mu) = \nabla f(x) + \langle \mu, \nabla h(x) \rangle + \langle ch(x), \nabla h(x) \rangle$$

$$= \nabla L(x,\mu + ch(x))$$

$$\mu_k + c_k h(x_k) \simeq \overline{\mu}$$

$$h(x_k) \simeq \frac{\overline{\mu} - \mu_k}{c_k}$$

$$\mu_{k+1} = \mu_k + c_k h(x_{k+1})$$

$$L_c(x,\mu) = f(x) + \langle \mu, h(x) \rangle + \frac{c}{2} ||h(x)||^2.$$

We have

$$L_{c}(x,\mu) = L(x,\mu) + \frac{c}{2} \|h(x)\|^{2}$$

$$= Q_{c}(x) + \langle \mu, h(x) \rangle$$

$$= f(x) + \frac{c}{2} \|h(x) + \frac{\mu}{c}\|^{2} - \frac{\|\mu\|^{2}}{2c}$$

For a fixed λ , $L_c(\cdot, \mu)$ still serves as a **penalty function**. If $x_{c,\mu}$ minimizes $L_c(x,\mu)$ and if c is very large, then

- $f(x_{c,\mu})$ is small
- $\frac{c}{2} \|h(x) + \frac{\mu}{c}\|^2$ is small $\rightarrow \|h(x) + \frac{\mu}{c}\|$ is very small $\rightarrow \|h(x)\|$ is very small.

The new **penalty problem:**

$$\inf_{\mathbf{x}\in\mathbb{R}^n} L_c(\mathbf{x},\mu). \tag{P_{c,\mu}}$$

Lemma 2

Let \bar{x} be a local minimizer of (P). Under technical assumptions, there exists $\bar{\mu}$ and $\bar{c} \geq 0$ such that for all $c > \bar{c}$,

- the KKT conditions hold true
- \bar{x} is a local solution to $(P_{c,\bar{\mu}})$.

Reminders

	Necessary conditions	Sufficient conditions
Abstract formulation		if K compact, $f \in C^0(K)$
(exist.)		then at least one solution
		if K closed,
		$f \in C^0(K)$, coercive
		then at least one solution

	Necessary conditions	Sufficient conditions
No constraints	if \overline{x} local sol.,	if $f \in C^2(K)$, $\nabla f(\overline{x}) = 0$,
$K=\mathbb{R}^d$ (opt.)	$f \in C^2(K)$ then,	$D^2f(\overline{x})$ positive def.
	$D^2f(\overline{x})$ is positive semi-def.	then \overline{x} local sol.
Affine		f convex,
constraints	\overline{x} local sol. then KKT	then KKT=global sol.
Non-linear		f convex,
constraints	\overline{x} local sol., LICQ then KKT	h affine, g convex,
		then KKT=global sol.

The new **penalty problem:**

$$\inf_{\mathbf{x}\in\mathbb{R}^n} L_c(\mathbf{x},\mu). \tag{P_{c,\mu}}$$

Lemma 3

Let \bar{x} be a local minimizer of (P). Under technical assumptions, there exists $\bar{\mu}$ and $\bar{c} \geq 0$ such that for all $c > \bar{c}$,

- the KKT conditions hold true
- \bar{x} is a local solution to $(P_{c,\bar{\mu}})$.

Idea of proof. We have

$$\nabla L_c(\bar{x}, \bar{\mu}) = \nabla L(\bar{x}, \bar{\mu} + ch(\bar{x})) = \nabla L(\bar{x}, \bar{\mu}) = 0.$$

$$\nabla^2 L_c(\bar{x}, \bar{\mu}) = \nabla^2 L(\bar{x}, \bar{\mu}) + c \langle \nabla h(\bar{x}), \nabla h(\bar{x}) \rangle$$

For c large enough, $\nabla^2 L_c(\bar{x}, \bar{\mu})$ is positive definite.

Therefore, \bar{x} is a local solution.

Example 1. Consider $\inf_{x \in \mathbb{R}} x - x^2$, subject to: x = 0.

Exercise.

- Write the Lagrangian formulation and find the Lagrangian multiplier.
- Does KKT holds for $\bar{x} = 0$?
- Write the augmented Lagrangian $(P_{c,\bar{\mu}})$ and show that \bar{x} is a local solution to $(P_{c,\bar{\mu}})$ if $c > \bar{c}$.

Example 1. Consider $\inf_{x \in \mathbb{R}} x - x^2$, subject to: x = 0.

- Solution $\bar{x} = 0$.
- Lagrangian $L(x, \mu) = x x^2 + \mu x$. We have

$$\nabla L(\bar{x}, \mu) = 1 - 2\bar{x} + \mu = 1 + \mu \implies \bar{\mu} = -1.$$

Augmented lagrangian:

$$L_c(x,\mu) = x - x^2 + \mu x + \frac{c}{2}x^2 = (1+\mu)x + (\frac{c}{2}-1)x^2.$$

If $c > \bar{c} := 2$, $L_c(\cdot, \mu)$ has a unique minimizer

$$x_{c,\mu} = \frac{\mu + 1}{2 - c} = \frac{\mu - \bar{\mu}}{2 - c}.$$

In particular, $x_{c,\bar{\mu}} = \bar{x}$.

Example 2. Consider:

$$\inf_{(x,y)\in\mathbb{R}^2} \frac{1}{2} (x^2 + (y-1)^2), \text{ subject to: } x = y.$$

Projection problem of the point (0,1) on the line $\{(x,y) | y = x\}$.

Exercise. Verify the following statements.

- Solution: $(\bar{x}, \bar{y}) = (0.5, 0.5), \bar{\mu} = 0.5.$
- Solution of $(P_{c,\mu})$ (aug. lagrangian):

$$\begin{pmatrix} x_c \\ y_c \end{pmatrix} = \frac{1}{1+2c} \begin{pmatrix} c - \mu \\ 1 + c + \mu \end{pmatrix}.$$

■ There exists a constant M such that for all c > 0,

$$||(x_c, y_c) - (\bar{x}, \bar{y})|| \le M|\bar{\mu} - \mu|/c.$$

Solution.

1 $\nabla f(x,y) = {x \choose y-1}$. The function f is convex and thus, the global solution of the unconstrainted version is (0,1). With the constraints, we aim at minimizing $\frac{1}{2}(2x^2-2x+1)$, and the unique solution is $\bar{x}=0.5$. With $L(\bar{x},\bar{y},\bar{\mu})=f(\bar{x})+\bar{\mu}(\bar{y}-\bar{x})$, we find $\bar{\mu}=0.5$ from stationarity cond.

2 $L_{c,\mu}(x,y) = \frac{1}{2}(x^2 + (y-1)^2) + \frac{c}{2}(y-x)^2 + \mu(y-x)$ and $\nabla L_{c,\mu}(x,y) = \begin{pmatrix} x - c(y-x) + \mu \\ y - 1 + c(y-x) - \mu \end{pmatrix}$, and since $L_{c,\mu}$ is convex, the unique solution of $P_{c,\mu}$ is: $\begin{pmatrix} x_c \\ y_c \end{pmatrix} = \frac{1}{1+2c} \begin{pmatrix} c + \mu \\ 1+c-\mu \end{pmatrix}$.

Solution.

3.

$$\begin{split} \|(x_c, y_c) - (\bar{x}, \bar{y})\|^2 &= \frac{1}{(1 + 2c)^2} \|(c + \mu - 0.5)^2 + (1 + c - \mu - 0.5)^2\| \\ &= \frac{2(\mu - 0.5)^2}{(1 + 2c)^2} \\ &= \frac{2(\mu - \bar{\mu})^2}{(1 + 2c)^2} \end{split}$$

$$\|(x_c, y_c) - (0.5, 0.5)\| = \frac{\sqrt{2}}{1+2c} |\mu - \bar{\mu}| \le \frac{M|\mu - \bar{\mu}|}{c}.$$

Figure: Level-sets $L_c(\cdot, \mu)$, for c = 1 and $\mu = 0$.

Figure: Level-sets $L_c(\cdot, \mu)$, for c = 1 and $\mu = 0, 25$.

Figure: Level-sets $L_c(\cdot, \mu)$, for c = 1 and $\mu = 0, 5$.

Algorithm.

- Input:
 - Initial point and multipliers $(x_0, \mu_0) \in \mathbb{R}^n \times \mathbb{R}^m$
 - Initial penalty parameter $c_0 > 0$, initial tolerance $\varepsilon_0 > 0$
 - Tolerance $\varepsilon > 0$.
- **2** Set k = 0.
- 3 While $||D_x L(x_k, \mu_k)|| > \varepsilon$ and $||h(x_k)|| > \varepsilon$,
 - Find x_{k+1} such that $||D_x L_{c_k}(x_{k+1}, \mu_k)|| \le \varepsilon_k$.
 - If $||h(x_{k+1})||$ is small, set $\mu_{k+1} = \mu_k + c_k h(x_{k+1})$. Reduce ε_k .
 - Otherwise, increase c_k .
 - Set k = k + 1.

End while.

4 Output (x_k, λ_k) .

Main ideas of Lagrangian decomposition methods:

■ We take c = 0 in the augmented Lagrangian. At iterate k, given an approximation μ_k of the Lagrange multiplier, we solve

$$\inf_{\mathbf{x}\in\mathbb{R}^n}L(\mathbf{x},\mu_k). \tag{P_x}$$

where μ_k is found with the following maximization

$$\sup_{\mu\in\mathbb{R}^m}L(x,\mu)$$

Since $\nabla_{\mu}L(x,\mu)=h(x)$, this maximization is solved by iterating with an **ascent gradient step** to approximate the solution of h(x)=0:

• Given a solution x_{k+1} , the Lagrange multiplier is updated by

$$\mu_{k+1} = \mu_k + \alpha h(x_{k+1}),$$

where $\alpha > 0 \rightarrow$ Uzawa's algorithm.

Remarks.

- Convergence of such methods can be established only under convexity assumptions.
- The stepsize $\alpha > 0$ must in general be small enough to ensure convergence. Instead of a fixed stepsize, one can use

$$\lambda_{k+1} = \lambda_k + \alpha_k g(x_{k+1}),$$

 One may consider instead of the primal problem (P) the dual problem

$$d^* := \sup_{\mu \in \mathbb{R}^m} \inf_{x \in \mathbb{R}^n} L(x, \mu)$$
 (P_{μ_k})

and we have $p^* \geq d^*$.

Main advantage of Lagrangian decomposition: very often the minimization of L can be "parallelized".

Standard case: additive constraints.

Consider

$$\inf_{(x_1,x_2)\in X_1\times X_2} f_1(x_1) + f_2(x_2), \quad \text{subject to: } h_1(x_1) + h_2(x_2) = d,$$

where f_1 , f_2 , X_1 , X_2 , h_1 , h_2 , and d are given.

Lagrangian:

$$L(x_{1}, x_{2}, \mu) = f_{1}(x_{1}) + f_{2}(x_{2}) + \langle \mu, h_{1}(x_{1}) + h_{2}(x_{2}) - d \rangle$$

$$= \left[\underbrace{f_{1}(x_{1}) + \langle \mu, h_{1}(x_{1}) \rangle}_{=:L_{1}(x_{1}, \mu)}\right] + \left[\underbrace{f_{2}(x_{2}) + \langle \mu, h_{2}x_{2} \rangle}_{=:L_{2}(x_{2}, \mu)}\right] - \langle \mu, d \rangle.$$

Given μ , the minimization of $L(\cdot, \lambda)$ is **decomposed** into two subproblems:

$$\inf_{x_1\in\mathbb{R}^{n_1}}L_1(x_1,\lambda)\qquad ext{and}\qquad \inf_{x_2\in\mathbb{R}^{n_2}}L_2(x_2,\lambda),$$

which can be solved independently. Very often the two subproblems are **much easier** to solve than the original problem.

Remark. Straightforward generalization to the case

$$\inf_{\substack{x_1,\ldots,x_K\\\in\mathbb{R}^{n_1}\times\ldots\mathbb{R}^{n_K}}}f_1(x_1)+\ldots+f_K(x_K),\quad \text{s.t.: } h_1(x_1)+\ldots+h_K(x_K)=K.$$

 \rightarrow Decomposition in K subproblems (at each iteration).

- **1. Application 1:** time decomposition.
 - Two production units, with two independent production processes represented by the variables Problem:

$$\inf_{\mathbf{x} \in \mathbb{R}^2} -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2}, \quad \text{s.t. } \left\{ x_1 + x_2 = d \right.$$

$$L(x,\mu) = -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2} + \mu(x_1+x_2-d).$$

If $x_1 + x_2 > d$, the engine must be rented for a longer time: the cost associated to constraints is increased. The incentive μ_k is too small, it must be increased.

If $x_1 + x_2 < d$, the cost associated to constraints is decreased. The incentive μ_k is too big, it must be decreased.

This is consistent with the formula

$$\mu_{k+1} = \mu_k + \alpha_k (x_1 + x_2 - d) \tag{4.1}$$

Application 2: stochastic decomposition.

- A production process is decomposed over two periods. A **random event** with two outcomes ω_1 and ω_2 , with probabilities p and (1-p), arises inbetween.
- Optimization variables:
 - x_1 : decisions taken if outcome ω_1 arises
 - x_2 : decisions taken if outcome ω_2 arises
 - *y*: decisions taken before the random event.

Example: purchase of gas y on a day-ahead market (that is, on a given day for the next one).

Random event: temperature, which impacts consumption.

Abstract problem:

$$\inf_{\substack{(x_1,x_2,y)\\(x_1,y)\in X\\(x_2,y)\in X}} pf(x_1,y,\omega_1) + (1-p)f(x_2,y,\omega_2).$$

Equivalent problem (with non-anticipativity constraint):

$$\inf_{\substack{(x_1,x_2,y_1,y_2)\\(x_1,y_1)\in X\\(x_2,y_2)\in X}}pf(x_1,y_1,\omega_1)+(1-p)f(x_2,y_2,\omega_2),\quad \text{s.t. }y_2-y_1=0.$$

Independent (w.r.t. randomness) sub-problems:

$$\inf_{(x_1,y_1)\in X_1} pf_1(x_1,y_1,\omega_1) + \mu_k y_1, \quad \inf_{(x_2,y_2)\in X_2} (1-p)f_2(x_2,y_2,\omega_2) - \mu_k y_2.$$

- Penalty methods for constrained optimization
 - Quadratic penalization
 - Augmented Lagrangian
 - Lagrangian decomposition

- 2 Projected gradient method
 - Projection
 - Method
 - Combination with penalty methods

Idea: Apply steepest descent method but project the path onto the constraints. The projected gradient method uses a mapping called **projection** defined below.

Lemma 4

Let $K \subset \mathbb{R}^n$ be a non-empty, convex, and closed set. For all $x_0 \in \mathbb{R}^n$, there exists a **unique solution** to the problem

$$\inf_{x \in \mathbb{R}^n} \|x - x_0\|^2, \quad \text{subject to: } x \in K.$$

It is called **projection** of x_0 on K, and denoted $Proj_K(x_0)$.

Remark. The projection depends on the chosen norm $\|\cdot\|$. For simplicity, we consider the Euclidean norm.

Example 1: projection on a cuboid.

Let *K* be described by

$$K = \{x \in \mathbb{R}^n \mid \ell_i \le x_i \le u_i\},\$$

where the coefficients $\ell_1,...,\ell_n \in \mathbb{R} \cup \{-\infty\}$ and $u_1,...,u_n \in \mathbb{R} \cup \{+\infty\}$ are given.

Let
$$x \in \mathbb{R}^n$$
, let $y = \mathsf{Proj}_{\mathcal{K}}(x)$. Then

$$y_i = \min(\max(x_i, \ell_i), u_i), \quad \forall i = 1, ..., n.$$

Example 2: projection on a ball.

Let *K* be described by

$$K = \left\{ x \in \mathbb{R}^n \, | \, \|x - x_C\| \le R \right\},\,$$

where $x_C \in \mathbb{R}^n$ and $R \ge 0$ are given.

For all $x \in \mathbb{R}^n$,

$$Proj_K(x) = x_C + min(||x - x_C||, R) \frac{(x - x_C)}{||x - x_C||}.$$

Figure: Projection on a ball.

Example 3: cartesian product.

Let K be given by

$$K = K_1 \times K_2$$

where K_1 and K_2 are given non-empty closed and convex subsets of \mathbb{R}^{n_1} and \mathbb{R}^{n_2} .

Then for all $x=(x_1,x_2)\in\mathbb{R}^{n_1+n_2}$,

$$\mathsf{Proj}_{\mathcal{K}}(x) = \Big(\mathsf{Proj}_{\mathcal{K}_1}(x_1), \mathsf{Proj}_{\mathcal{K}_2}(x_2)\Big).$$

Method

Optimization problem. Consider

$$\inf_{x\in\mathbb{R}^n}f(x),\quad x\in K,$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is given and differentiable and K is a given non-empty **convex** and **closed** subset of \mathbb{R}^n .

Numerical assumption: $Proj_K(\cdot)$ is **easy to compute**.

Gradient descent algorithm.

- Input: $x_0 \in \mathbb{R}^n$, $\varepsilon > 0$. Set k = 0.
- 2 While $\|\nabla f(x_k)\| \ge \varepsilon$, do
 - Find a descent direction
 - Find $\alpha_k > 0$ such that $f(x_k + \alpha_k d_k) < f(x_k)$.
 - Set $x_{k+1} = x_k + \alpha_k d_k$.
 - Set k = k + 1.
- 3 Output: x_k .

Main idea:

at iteration k, replace the search on the half line $\{x_k + \alpha_k d_k \mid \alpha \geq 0\}$ used in unconstrained optimization by a **search** on

$$\left\{\underbrace{\mathsf{Proj}_{K}(x_{k} + \alpha_{k}d_{k})}_{=:x_{k+1}(\alpha_{k})} | \alpha_{k} \geq 0\right\}.$$

Combination with penalty methods

Consider the problem

$$\inf_{x \in \mathbb{R}^n} f(x)$$
, subject to:
$$\begin{cases} h_i(x) = 0 & \forall i \in \mathcal{E}, \\ g_i(x) \leq 0 & \forall i \in \mathcal{I}, \end{cases}$$

where $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^{m^1}$ and $g: \mathbb{R}^n \to \mathbb{R}^{m_2}$ are given.

Idea: Eliminate inequality constraints by slack variables. An **equivalent formulation** is

$$\inf_{\substack{x \in \mathbb{R}^n \\ y \in \mathbb{R}^m}} f(x), \quad \text{subject to: } \left\{ \begin{array}{l} \Phi(x) - y = 0 \\ y \in K, \end{array} \right.$$

where:
$$\Phi_i(x) = \begin{cases} h_i(x), \ \forall i \in \mathcal{E}, \\ g_i(x), \ \forall i \in \mathcal{I}, \end{cases}$$
 and
$$K = \begin{cases} y \in \mathbb{R}^m \mid \begin{cases} y_i = 0 & \forall i \in \mathcal{E} \\ y_i \leq 0 & \forall i \in \mathcal{I} \end{cases} \end{cases}.$$

Combination with penalty methods

Main idea: projection on K (a cuboid) is easy to compute. Handle $y \in K$ with the projected gradient method.

Algorithm.

- At iteration k, the iterates $x_k \in \mathbb{R}^n$, $y_k \in \mathbb{R}^m$, $\mu_k \in \mathbb{R}^m$, and c_k are given.
- Solve (approximately) the penalty problem:

$$\inf_{\substack{x \in \mathbb{R}^n \\ y \in \mathbb{R}^m}} L_{c_k}(x, y, \mu_k) := f(x) + \langle \mu_k, \Phi(x) - y \rangle + \frac{c_k}{2} \|\Phi(x) - y\|^2,$$

subject to:
$$y \in K$$
,

with the projected gradient method. Use (x_k, y_k) as a starting point.