EFFECTIVE MODEL COMPLETENESS OF THE THEORY OF RESTRICTED PFAFFIAN FUNCTIONS

N. Vorobjov

(joint work with A. Gabrielov)

First order theory of reals admits quantifier elimination (Tarski-Seidenberg theorem).

Geometric language:

Definition 1. A set $X \subset \mathbb{R}^n$ is called semialgebraic if X is representable in a form $X = \{\mathbf{x} \in \mathbb{R}^n | F(\mathbf{x})\}$, where $F(\mathbf{x})$ is a quantifier-free (Boolean) formula with atoms of the kind f > 0, where $f \in \mathbb{R}[\mathbf{x}]$.

Quantifier elimination ⇔

Theorem 2. A projection of a semialgebraic set $X \subset \mathbb{R}^n$ on any coordinate subspace of \mathbb{R}^n is a semialgebraic set.

We wish to expand the language by analytic functions different from polynomials, in particular, by elementary transcendental functions.

First important difference: open domains

Common domain for all functions that occur in the theory.

Definition 3. A set $X \subset \mathbb{R}^n$ is called semianalytic if X is representable in a form $X = \{\mathbf{x} \in \mathbb{R}^n | F(\mathbf{x})\}$, where $F(\mathbf{x})$ is a quantifier-free (Boolean) formula with atoms of the kind f > 0, where fs are real analytic functions defined in a common domain $G \subset \mathbb{R}^n$.

Second important difference:

A projection of a semianalytic set may not be semianalytic.

Example (Osgood, 1916).

$$Y := \{(x, y, z) \in \mathbb{R}^3 | \exists u \in [0, 1]$$

 $(y = xu \land z = xe^u)\}.$

Set Y is two-dimensional and any real analytic function vanishing on Y in the neighbourhood of the origin is $\equiv 0$.

Corollary 4. Quantifier elimination is not possible in a theory involving e^u .

This motivates

Definition 5. A set $X \subset \mathbb{R}^n$ is called subanalytic in an open domain $G \subset \mathbb{R}^n$ if it is an image of a semianalytic set under a projection into a subspace.

We will consider only

"Restricted" case:

Definition 6. A semianalytic set X is *restricted* in the domain G if its topological closure lies in G.

Definition 7. Consider the closed cube $[-1,1]^{m+n}$ in an open domain $G \subset \mathbb{R}^{m+n}$ and the projection map $\pi: \mathbb{R}^{m+n} \to \mathbb{R}^n$. A subset $Y \subset [-1,1]^n$ is called *restricted subanalytic* if $Y = \pi(X)$ for a restricted semianalytic set $X \subset [-1,1]^{m+n}$.

Obvious: Finite unions and intersections of arbitrary subanalytic sets are subanalytic.

Hard (Gabrielov, Wilkie): For a wide class of *restricted* subanalytic sets, the complement of a set is also subanalytic from this class.

 \Rightarrow This class is a Boolean algebra.

Logic: The first order theory of the reals expanded by real analytic functions from a "wide class" is *model complete*:

$$\forall \Leftrightarrow \neg \exists \neg$$

Any first order formula in a prenex form is equivalent to a formula in a prenex form with only \exists .

Important particular case:

Pfaffian functions

- Natural notion of the format of a formula describing the subanalytic set.
- Explicit upper bound on the format of a formula describing the complement via the format of the original set.
- An algorithm (with oracle) for computing the complement.
 - (*Oracle:* Decides whether or not a system of analytic equations and inequalities is consistent.)

The rest of this talk will be just a more detailed explanation of these items.

Pfaffian functions (Khovanskii, 1970s) are analytic functions satisfying triangular systems of first order partial differential equations with polynomial coefficients.

More precisely:

Definition 8. A *Pfaffian chain* of the order $r \ge 0$ and degree $\alpha \ge 1$ in an open domain $G \subset \mathbb{R}^n$ is a sequence of analytic functions f_1, \ldots, f_r in G satisfying differential equations

$$\frac{df_j}{dx_i}(\mathbf{x}) = g_{ij}(\mathbf{x}, f_1(\mathbf{x}), \dots, f_j(\mathbf{x}))$$

for $1 \le j \le r$, $1 \le i \le n$. Here $g_{ij}(\mathbf{x}, y_1, \dots, y_j)$ are polynomials in $\mathbf{x} = (x_1, \dots, x_n), y_1, \dots, y_j$ of degrees not exceeding α . A function $f(\mathbf{x}) = P(\mathbf{x}, f_1(\mathbf{x}), \dots, f_r(\mathbf{x}))$, where $P(\mathbf{x}, y_1, \dots, y_r)$ is a polynomial of a degree not exceeding $\beta \ge 1$, is called a *Pfaffian function* of order r and degree (α, β) .

Examples.

- (a) Pfaffian functions of order 0 and degree $(1,\beta)$ are polynomials of degrees not exceeding β .
- (b) $f(x) = e^{ax}$ is a Pfaffian function of order 1 and degree (1,1) in $G = \mathbb{R}$ because df(x)/dx = af(x).
- (c) f(x) = 1/x is Pfaffian of order 1 and degree (2,1) in $\{x \in \mathbb{R} | x \neq 0\}$ because $df(x)/dx = -f^2(x)$.
- (d) $f(x) = \ln(|x|)$ is Pfaffian of order 2 and degree (2,1) in $\{x \in \mathbb{R} | x \neq 0\}$ because df(x)/dx = g(x) and $dg(x)/dx = -g^2(x)$, where g(x) = 1/x.
- (e) Fewnomials.

Exercise. Show that $f(x) = \cos(x)$ is Pfaffian of order 2 and degree (2,1) in $\bigcap_{k \in \mathbb{Z}} \{x \in \mathbb{R} | x \neq (2k+1)\pi\}.$

We will see that cos(x) is *not* Pfaffian in the whole \mathbb{R} .

We'll assume that G is "simple", like \mathbb{R}^n , $\{\mathbf{x}| \|\mathbf{x}\|^2 < 1\}$, or $(-1,1)^n$.

Theorem 9. (Khovanskii) Consider

$$f_1=\cdots=f_n=0,$$

where f_i , $1 \le i \le n$ are Pfaffian functions in a domain $G \subset \mathbb{R}^n$, having a common Pfaffian chain of order r and degrees (α, β_i) respectively. Then the number of non-degenerate solutions of this system does not exceed

$$2^{r(r-1)/2}\beta_1\cdots\beta_n$$

$$\cdot (\min\{n,r\}\alpha + \beta_1 + \cdots + \beta_n - n + 1)^r.$$

Semi- and subanalytic sets defined by formulae with Pfaffian functions are called *semi- and* sub-Pfaffian sets respectively.

Aim: to give an "effective" proof of the complement theorem for restricted sub-Pfaffian sets ⇔ effective model completeness of the theory of restricted Pfaffian functions.

Gabrielov (1968, 1996): geometric proof Wilkie (1995, 1999): model-theoretic proof Gabrielov-Vorobjov (2001): effective proof Pericleous-Vorobjov (2003): alternative effective proof The complement theorem immediately follows from the existence of a *cylindrical cell decom- position (CCD)* of the ambient space compatible with a given subanalytic set.

CCD compatible with X is a partition of the space into disjoint simple subanalytic subsets, called *cells*, such that for any cell C either $C \subset X$ or $C \cap X = \emptyset$.

Definition 10. Cylindrical cell is defined by induction as follows.

- 1. Cylindrical 0-cell in \mathbb{R}^n is an isolated point. Cylindrical 1-cell in \mathbb{R} is an open interval $(a,b)\subset\mathbb{R}$.
- 2. For $n \geq 2$ and $0 \leq k < n$ a cylindrical (k+1)-cell B in \mathbb{R}^n is either a graph of a continuous bounded function $f: C \to \mathbb{R}$, where C is a cylindrical a cylindrical (k+1)-cell in \mathbb{R}^{n-1} , or else a set of the form

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n|\ (x_1,\ldots,x_{n-1})\in C$$

and $f(x_1, \ldots, x_{n-1}) < x_n < g(x_1, \ldots, x_{n-1})\},$

where C is a cylindrical k-cell in \mathbb{R}^{n-1} , and $f,g:C\to\mathbb{R}$ are continuous bounded functions such that

$$f(x_1, \dots, x_{n-1}) < g(x_1, \dots, x_{n-1})$$

for all points $(x_1, \ldots, x_{n-1}) \in C$.

Definition 11. Cylindrical cell decomposition \mathcal{D} of a subset $A \subset \mathbb{R}^n$ is defined by induction as follows.

- 1. If n = 1, then \mathcal{D} is a finite family of pairwise disjoint cylindrical cells (i.e., isolated points and intervals) whose union is A.
- 2. If $n \geq 2$, then \mathcal{D} is a finite family of pairwise disjoint cylindrical cells in \mathbb{R}^n whose union is A and there is a cylindrical cell decomposition \mathcal{D}' of $\pi(A)$ such that $\pi(C)$ is its cell for each $C \in \mathcal{D}$, where $\pi : \mathbb{R}^n \to \mathbb{R}^{n-1}$ is the projection map onto the coordinate subspace of x_1, \ldots, x_{n-1} . We say that \mathcal{D}' is *induced* by \mathcal{D} .

Definition 12. Let $B \subset A \subset \mathbb{R}^n$ and \mathcal{D} be a CCD of A. Then \mathcal{D} is *compatible* with B if for any $C \in \mathcal{D}$ we have either $C \subset B$ or $C \cap B = \emptyset$ (i.e., some subset $\mathcal{D}' \subset \mathcal{D}$ is a CCD of B).

MAIN RESULT

Given:

A semi-Pfaffian set

$$X := \bigcup_{1 \le i \le M} \{ \mathbf{x} \in \mathbb{R}^{m+n} | f_{i1} = \dots = f_{iI_i} = 0,$$

$$g_{i1} > 0, \dots, g_{iJ_i} > 0\} \subset (-1, 1)^{m+n},$$

where f_{ij}, g_{ij} are Pfaffian functions with a common Pfaffian chain in an open domain $G \subset \mathbb{R}^{m+n}$ and $[-1,1]^{m+n} \subset G$.

The projection map $\pi: \mathbb{R}^{m+n} \to \mathbb{R}^n$.

$$Y := \pi(X)$$
.

Then:

There is an algorithm (with oracle) producing a cylindrical cell decomposition \mathcal{D} of $(-1,1)^n$ compatible with Y (modulo a linear coordinate change).

Output:

Each cell in \mathcal{D} is described as a projection of a semi-Pfaffian set in DNF:

$$\pi' \left(\bigcup_{1 \le i \le M} \bigcap_{1 \le j \le M_i} \{h_{ij} *_{ij} 0\} \right),$$

where h_{ij} are Pfaffian functions in $n' \geq m+n$ variables, $\pi': \mathbb{R}^{n'} \to \mathbb{R}^n$ is the projection map, $*_{ij} \in \{=, >\}$, and $M, M_i \ (i=1, \ldots, M)$ are certain integers.

Complexity:

Let there be N Pfaffian functions in the input formula, having order r and degrees (α, β) . Let $\dim(Y) = d$.

Then

• The number of cells in the CCD \mathcal{D} is $N^{(r+m+2n)^{2d}}(\alpha+\beta)^{r^{O(d(m+dn))}}.$

- Integers n', M, M_i do not exceed the same bound.
- ullet Order of h_{ij} is r, degrees are

$$(\alpha + \beta)^{r^{O(d(m+dn))}}.$$

The complexity of the algorithm is

$$N^{(r+m+n)^{O(d)}}(\alpha+\beta)^{(r+m+n)^{O(d(m+dn))}}.$$

Relaxing and simplifying:

All parameters of the output and the complexity are bounded from above by

$$(N(\alpha+\beta))^{(r+m+n)^{O(n^3)}}.$$

Corollary 13. The complement

 $\widetilde{Y} := (-1,1)^n \setminus Y$ is a sub-Pfaffian set.

There is an algorithm (with oracle) for computing \tilde{Y} having the same complexity as above. The complement \tilde{Y} is represented by the algorithm as a union of some cells of the CCD \mathcal{D} .

How the CCD algorithm works.

Subroutines:

 Computing frontier and closure of a semi-Pfaffian set X.

The *closure* of X in G is

$$\bar{X} := \{ \mathbf{x} \in G | \forall \varepsilon > 0 \exists \mathbf{y} \in X (|\mathbf{x} - \mathbf{y}| < \varepsilon) \}.$$

The frontier of X in G is

$$\partial X := \bar{X} \setminus X.$$

Both \bar{X} and ∂X are semi-Pfaffian.

 Computing smooth (weak) stratification of a semi-Pfaffian set X.

Partition of X into a disjoint union of nonsingular, not necessarily connected, possibly empty, semi-Pfaffian sets called *strata*.

EXAMPLE:

$$X = \{(\mathbf{y}, \mathbf{x}) = (x_1, x_2, x_3) |$$

$$f := x_1^2 + x_2^2 + x_3^2 - 1/2 = 0\},$$

$$Y = \{y = (x_1, x_2) | x_1^2 + x_2^2 \le 1/2\}.$$

$$n = d = 2, m = 1.$$

Two recursive procedures: down and up.

DOWN:

FIRST STEP:

X is non-singular (else we would use a subroutine to stratify X).

 $X' := \{(x_1, x_2, x_3) \in X | \partial f / \partial x_3 \neq 0\}$ of all regular values of the restriction

set of all regular values of the restriction of $\pi: (x_1, x_2, x_3) \mapsto (x_1, x_2)$ on X.

$$X_2 := \{(x_1, x_2, x_3) \in X | \partial f / \partial x_3 = 0\} =$$

$$= \{(x_1, x_2, x_3) \in X | x_3 = 0, x_1^2 + x_2^2 - 1/2 = 0\}$$
 set of all critical values of the restriction of $\pi : (x_1, x_2, x_3) \mapsto (x_1, x_2)$ on X .

$$Y_2 := \pi(X_2), d_2 := \dim(Y_2) = 1$$

END OF THE FIRST STEP OF DOWN.

SECOND STEP:

 X_2, Y_2 play the role of X, Y respectively.

All points of X_2 are regular for $\pi|_{X_2}$.

A new feature: $d_2 < n$.

Projection map ρ_2 : $(x_1, x_2) \mapsto x_1$.

 $S_2 := \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1^2 = 1/2, x_2 = x_3 = 0\}$ the set of all critical points of $\rho_2 \pi|_{X_2}$,

$$Z_2 := \rho_2 \pi(X_3).$$

Let
$$X_3 := S_2$$
, $Y_3 := Y_2 \cap \rho_2^{-1}(Z_2) = \pi(X_3)$, $d_3 := \dim(Y_3) = 0$.

END OF THE SECOND STEP OF DOWN.

LAST (DEGENERATE) STEP:

All points of X_3 are regular for $\pi|_{X_3}$. Similar to the second step, $d_3 < n$. Projection map ρ_3 : $(x_1, x_2) \mapsto 0$.

The set S_3 of all critical points of $\rho_3\pi|_{X_3}$ is empty, thus $Z_3:=\rho_3\pi(S_3)=\emptyset$.

DOWN IS COMPLETED.

UP:

Recursion.

On each step consider the pair Y_i, Z_i starting from the largest i, in our case, Y_3, Z_3 .

FIRST STEP:

Since Y_3 consists of just two points, $(1/\sqrt{2},0)$ and $(-1/\sqrt{2},0)$, the CCD \mathcal{D}_3 of $(-1,1)^2$ compatible with Y_3 is trivial.

SECOND STEP:

Consider Y_2, Z_2 .

The CCD \mathcal{D}_3 induces the CCD \mathcal{D}_3' of (-1,1) into five cells compatible with Z_2 :

$$C_1 := \{x_1 | -1 < x_1 < -1/\sqrt{2}\},\$$

$$C_2 := \{x_1 | x_1 = -1/\sqrt{2}\},\$$

$$C_3 := \{x_1 | -1/\sqrt{2} < x_1 < 1/\sqrt{2}\},\$$

$$C_4 := \{x_1 | x_1 = 1/\sqrt{2}\},\$$

$$C_5 := \{x_1 | 1/\sqrt{2} < x_1 < 1\}.$$

By the choice of Z_2 , for any $z \in C_3$ the cardinality of $\rho_2^{-1}(z) \cap Y_2$ is constant (=2).

Moreover, the following cells form CCD of $\rho_2^{-1}(C_3)\cap (-1,1)^2$ compatible with $\rho_2^{-1}(C_3)\cap Y$:

- $\{(x_1, x_2) \in \rho_2^{-1}(C_3) \cap (-1, 1)^2 | \exists (y_1, y_2) \in Y_2 \}$ $\exists (y_1', y_2') \in Y_2(y_1 = y_1', y_2 < y_2' < x_2) \}$
- $\{(x_1, x_2) \in \rho_2^{-1}(C_3) \cap (-1, 1)^2 | \exists (y_1, y_2) \in Y_2 \\ \exists (y'_1, y'_2) \in Y_2(y_1 = y'_1, y_2 < y'_2 = x_2) \}$
- $\{(x_1, x_2) \in \rho_2^{-1}(C_3) \cap (-1, 1)^2 | \exists (y_1, y_2) \in Y_2 \}$ $\exists (y_1', y_2') \in Y_2(y_1 = y_1', y_2 < x_2 < y_2') \}$
- $\{(x_1, x_2) \in \rho_2^{-1}(C_3) \cap (-1, 1)^2 | \exists (y_1, y_2) \in Y_2 \}$ $\exists (y_1', y_2') \in Y_2(y_1 = y_1', y_2 = x_2 < y_2') \}$
- $\{(x_1, x_2) \in \rho_2^{-1}(C_3) \cap (-1, 1)^2 | \exists (y_1, y_2) \in Y_2 \}$ $\exists (y_1', y_2') \in Y_2(y_1 = y_1', x_2 < y_2 < y_2') \}.$

Similar CCD of $\rho_2^{-1}(C_i) \cap (-1,1)^2$ can be constructed for all other cells C_i .

Combining all CCD for $\rho_2^{-1}(C_i) \cap (-1,1)^2$ with \mathcal{D}_3 , we get a CCD of $(-1,1)^2$ compatible with Y.

END OF UP

O-minimal structures involving Pfaffian functions

Charbonnel, Wilkie: "closure at infinity" operation.

Main theorem: sets constructed from semi-Pfaffian sets by a finite sequence of projections on subspaces and closures at infinity form an o-minimal structure.

Gabrielov: "relative closure" operation for a one-parameter family of semi-Pfaffian sets and "limit set" (a finite union of relative closures of semi-Pfaffian families).

Main theorem: limit sets form an o-minimal structure.

Problem: find upper bounds on the formats of the results of Boolean and projection operations in these o-minimal structures.

References

- 1. A. Gabrielov, N. Vorobjov, Complexity of cylindrical decompositions of sub-Pfaffian sets, *J. Pure and Applied Algebra*, 164 (2001) 179–197.
- 2. A. Gabrielov, N. Vorobjov, Complexity of computations with Pfaffian and Noetherian functions, Preprint, 2003.

Available at

http://www.math.purdue.edu/~agabriel

3. S. Pericleous, N. Vorobjov, New complexity bounds for cylindrical decompositions of sub-Pfaffian sets, in:

Discrete and Computational Geometry (Goodman-Pollack Festschrift), Springer, 2003, p. 673–694.