1mo gruppo di esercizi di Grafica Computerizzata del 15 Novembre 2018

Esercizio n.1

Sviluppate un'applicazione permetta di disegnare uno dei seguenti solidi geometrici: **cubo, cono, cilindro, toro, sfera.** L'applicazione deve permettere di selezionare sia la figura per mezzo di menu gestito tramite dat.gui.js incluso il colore da applicare al solido. Come esempio utilizzate il file **HW_Code1** dove ho inserito la gui con una gestione dell'interazione semplice con l'utente.

$$\begin{cases} x(\varphi, \vartheta) = (R + r\cos\varphi)\cos\theta \\ y(\varphi, \vartheta) = (R + r\cos\varphi)\sin\theta \\ z(\varphi, \vartheta) = r\sin\varphi \end{cases}$$

dove:

R è il raggio della circonferenza nel piano (x,y) lungo cui ruota il cerchio di raggio r,

l'angolo ϕ identifica l'angolo di rotazione del punto lungo la circonferenza di raggio r,

l'angolo θ identifica l'angolo di rotazione del cerchio di raggio r rispetto all'asse x.

Prendiamo in considerazione il modello di shading di Blinn-Phong descritto dall'equazione:

$$I = k_A \cdot L_A + \frac{1}{a + b \cdot d + c \cdot d^2} \left[k_D \cdot L_D \cdot \max(\vec{l} \cdot \vec{n}, 0) + k_S \cdot L_S \cdot \left[\max(\vec{h} \cdot \vec{n}, 0) \right]^{\alpha} \right]$$

dove:

- k_A è la componente ambientale del materiale,
- LA è la componente ambientale della luce,
- k_s è la componente speculare del materiale,
- Ls è la componente speculare della luce,
- k_D è la componente diffusiva del materiale,
- L_D è la componente diffusiva della luce,
- d è la distanza del punto della superficie dalla luce,

mentre i vettori \vec{l} , \vec{n} , \vec{h} sono rispettivamente il vettore direzione della luce, il vettore normale e il vettore intermedio $\vec{h} = \frac{\vec{l} + \vec{v}}{|\vec{l} + \vec{v}|}$.

Esercizio n.2

Utilizzando una delle figure geometriche create nel secondo esercizio, selezionate tra cono, cilindro e toro, sviluppate un'applicazione che permetta di selezionare il materiale da utilizzare per l'oggetto scelto, utilizzando un apposito menu, tra quelli presenti nell'elenco allegato. Ricordatevi di prestare attenzione nel definire o calcolare correttamente le normali da utilizzare successivamente nel modello di Blinn-Phong. Come codice troverete i file **HW_Code2.html** e **HW_Code2.js** da utilizzare come punto di partenza.

Esercizio n.3

Nel codice fornito il modello di Blinn-Phong è implementato nel vertex shader, modificate il codice della parte a in modo che il modello sia implementato nel fragment shader.

Tabella n.1 Elenco dei materiali da utilizzare nell'esercizio n.2 e n.3

Name	Ambient			Diffuse			Specular			Shininess*
emerald	0.0215	0.1745	0.0215	0.07568	0.61424	0.07568	0.633	0.727811	0.633	0.6
jade	0.135	0.2225	0.1575	0.54	0.89	0.63	0.316228	0.316228	0.316228	0.1
obsidian	0.05375	0.05	0.06625	0.18275	0.17	0.22525	0.332741	0.328634	0.346435	0.3
pearl	0.25	0.20725	0.20725	1	0.829	0.829	0.296648	0.296648	0.296648	0.088
ruby	0.1745	0.01175	0.01175	0.61424	0.04136	0.04136	0.727811	0.626959	0.626959	0.6
turquoise	0.1	0.18725	0.1745	0.396	0.74151	0.69102	0.297254	0.30829	0.306678	0.1
brass	0.329412	0.223529	0.027451	0.780392	0.568627	0.113725	0.992157	0.941176	0.807843	0.217949
bronze	0.2125	0.1275	0.054	0.714	0.4284	0.18144	0.393548	0.271906	0.166721	0.2
chrome	0.25	0.25	0.25	0.4	0.4	0.4	0.774597	0.774597	0.774597	0.6
copper	0.19125	0.0735	0.0225	0.7038	0.27048	0.0828	0.256777	0.137622	0.086014	0.1
gold	0.24725	0.1995	0.0745	0.75164	0.60648	0.22648	0.628281	0.555802	0.366065	0.4
silver	0.19225	0.19225	0.19225	0.50754	0.50754	0.50754	0.508273	0.508273	0.508273	0.4

^{*} il valore di **shininess** deve essere moltiplicato per 128 prima di essere utilizzato come esponente

Ciascuno studente ha a disposizione 15 giorni per svolgere i 3 esercizi: consegna 30 Novembre 2018. Lo studente invii al docente una e-mail all'indirizzo didomenico@fe.infn.it, avente come soggetto "esercizi_2", e come allegato un file archivio contenente tutti file sorgenti, un documento di testo nel quale spiegate brevemente la vostra implementazione: vi ricordo di inserire commenti nei file in modo da rendere più chiaro il codice.