- 3.2.2 Let $B = \{\frac{(-1)^n n}{n+1} : n = 1, 2, 3, ...\}.$
 - (a) Find the limit points of B. $\{-1, 1\}$
 - (b) Is B a closed set?No, it contains neither of its limit points.
 - (c) Is B an open set? No, its not possible to find an ε-neighborhood for every point in B such that the ε-neighborhood is contained in B.
 - (d) Does B contain any isolated points? Every element of B is an isolated point.
 - (e) Find \overline{B} . $B \cup \{-1, 1\}$
- 3.2.6 Prove Theorem 3.2.8: A set $F \subseteq \mathbb{R}$ is closed if and only if every Cauchy sequence contained in F has a limit that is also an element of F.

Proof.

First we prove that if a set $F \subseteq \mathbb{R}$ is closed then every Cauchy sequence contained in F has a limit that is also an element of F. Assume $F \subseteq \mathbb{R}$ is closed, that is F contains its limit points. So, we need to show that every Cauchy sequence (a_n) contained in F has a limit in F. Assume (a_n) is an arbitrary Cauchy sequence contained in F. Since (a_n) is Cauchy, it's limit exists. So, let $a = \lim(a_n)$. Now, we need to show that a is either a limit point in F or an isolated point in F. If $a_n \neq a$ for all $n \in \mathbb{N}$, then a is a limit point and since F is closed, $a \in F$. Otherwise, $a_n = a$ for some $n \in \mathbb{N}$, and since $(a_n) \subseteq F$, $a \in F$. So, every Cauchy sequence contained in F has a limit that is also an element of F.

Next, we prove that if every Cauchy sequence contained in a set F has a limit that is also an element of F, then $F \subseteq \mathbb{R}$ is closed. Assume every Cauchy sequence contained in a set $F \subseteq \mathbb{R}$ has a limit that is also an element of F. Need to show that F is closed, that is F contains all its limit points. Let F be an arbitrary limit point of F. Then, F is a limit point of F is closed, cauchy sequence. So, F is closed.

- 3.2.10 (De Morgan's Laws): A proof for De Morgan's Laws in the case of two sets is outlined in Exercise 1.2.3. The general argument is similar.
 - (a) Given a collection of sets $\{E_{\lambda} : \lambda \in \Lambda\}$, show that $(\bigcup_{\lambda \in \Lambda} E_{\lambda})^c = \bigcap_{\lambda \in \Lambda} E_{\lambda}^c$ and $(\bigcap_{\lambda \in \Lambda} E_{\lambda})^c = \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$.

Proof. First, we need to show that $(\bigcup_{\lambda \in \Lambda} E_{\lambda})^c \subseteq \bigcap_{\lambda \in \Lambda} E_{\lambda}^c$, that is $\forall x \in (\bigcup_{\lambda \in \Lambda} E_{\lambda})^c$, $x \in \bigcap_{\lambda \in \Lambda} E_{\lambda}^c$. Suppose $x \in (\bigcup_{\lambda \in \Lambda} E_{\lambda})^c$. Then, by definition of set complement, $\forall \lambda \in \Lambda, x \notin E_{\lambda}$. So, $\forall \lambda \in \Lambda, x \in E_{\lambda}^c$. Then, by definition of set intersection, $x \in \bigcap_{\lambda \in \Lambda} E_{\lambda}^c$. So, $(\bigcup_{\lambda \in \Lambda} E_{\lambda})^c \subseteq \bigcap_{\lambda \in \Lambda} E_{\lambda}^c$. Next, we need to show that $\bigcap_{\lambda \in \Lambda} E_{\lambda}^c \subseteq (\bigcup_{\lambda \in \Lambda} E_{\lambda})^c$, that is $\forall y \in \bigcap_{\lambda \in \Lambda} E_{\lambda}^c$, $y \in (\bigcup_{\lambda \in \Lambda} E_{\lambda})^c$. Suppose $y \in \bigcap_{\lambda \in \Lambda} E_{\lambda}^c$. Then, by definition of set intersection, $\forall \lambda \in \Lambda, y \in E_{\lambda}^c$. So, $\forall \lambda \in \Lambda, y \notin E_{\lambda}$. Then, by definition of set union, $y \notin \bigcup_{\lambda \in \Lambda} E_{\lambda}$. So, $y \in (\bigcup_{\lambda \in \Lambda} E_{\lambda})^c$. Thus, $(\bigcup_{\lambda \in \Lambda} E_{\lambda})^c \subseteq \bigcap_{\lambda \in \Lambda} E_{\lambda}^c$ and $\bigcap_{\lambda \in \Lambda} E_{\lambda}^c \subseteq (\bigcup_{\lambda \in \Lambda} E_{\lambda})^c$ means that $(\bigcup_{\lambda \in \Lambda} E_{\lambda})^c = \bigcap_{\lambda \in \Lambda} E_{\lambda}^c$.

Proof. First, we need to show that $(\bigcap_{\lambda \in \Lambda} E_{\lambda})^c \subseteq \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$, that is $\forall x \in (\bigcap_{\lambda \in \Lambda} E_{\lambda})^c$, $x \in \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$. Suppose $x \in (\bigcap_{\lambda \in \Lambda} E_{\lambda})^c$. So, $x \notin \bigcap_{\lambda \in \Lambda} E_{\lambda}$ which means that there exists at least one $\lambda' \in \Lambda$ such that $x \notin E_{\lambda'}$. Choose $\lambda' \in \Lambda$ such that $x \notin E_{\lambda'}$. Then, $x \in E_{\lambda'}^c$. So, $x \in \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$ which means $(\bigcap_{\lambda \in \Lambda} E_{\lambda})^c \subseteq \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$. Next we need to prove that $\bigcup_{\lambda \in \Lambda} E_{\lambda}^c \subseteq (\bigcap_{\lambda \in \Lambda} E_{\lambda})^c$, that is $\forall y \in \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$, $y \in (\bigcap_{\lambda \in \Lambda} E_{\lambda})^c$. Suppose $y \in \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$. Then, there exists at least one $\lambda'' \in \Lambda$ such that $y \notin E_{\lambda''}$. Choose $\lambda'' \in \Lambda$ such that $y \notin E_{\lambda''}$. Then, $y \notin \bigcap_{\lambda \in \Lambda} E_{\lambda}$. So, $y \in (\bigcap_{\lambda \in \Lambda} E_{\lambda})^c$ which means $\bigcup_{\lambda \in \Lambda} E_{\lambda}^c \subseteq (\bigcap_{\lambda \in \Lambda} E_{\lambda})^c$. Thus, $(\bigcap_{\lambda \in \Lambda} E_{\lambda})^c \subseteq \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$ and $\bigcup_{\lambda \in \Lambda} E_{\lambda}^c \subseteq (\bigcap_{\lambda \in \Lambda} E_{\lambda})^c$ means that $(\bigcap_{\lambda \in \Lambda} E_{\lambda})^c = \bigcup_{\lambda \in \Lambda} E_{\lambda}^c$.

- (b) Now, provide the details for the proof of Theorem 3.2.14
 - (i) The union of a finite collection of closed sets is closed.

Proof. Suppose $\{E_{\lambda} : \lambda \in \Lambda\}$ is a collection of closed sets. Then, $\{E_{\lambda} : \lambda \in \Lambda\}^c$ is a collection of open sets and we know that the intersection of a finite amount of open sets is open (Theorem 3.2.3). So, taking the complement again $(\{E_{\lambda} : \lambda \in \Lambda\}^c)^c = \{E_{\lambda} : \lambda \in \Lambda\}$ gives us a closed set (since the complement of an open set is a closed set) as desired.

(ii) The intersection of an arbitrary collection of closed sets is closed.

Proof. Suppose $\{E_{\lambda} : \lambda \in \Lambda\}$ is an arbitrary collection of closed sets. Then, E_{λ}^{c} is open and $\forall \lambda \in \Lambda$, the union of E_{λ}^{c} is open (Theorem 3.2.3). By De Morgan's Law, we know $\bigcup_{\lambda \in \Lambda} E_{\lambda}^{c} = (\bigcap_{\lambda \in \Lambda} E_{\lambda})^{c}$ so $(\bigcap_{\lambda \in \Lambda} E_{\lambda})^{c}$ is open. Then, $\bigcap_{\lambda \in \Lambda} E_{\lambda}$ is closed. Thus, the intersection of an arbitrary collection of closed sets is closed.

Rohit Rao	Chapter 3	311 Self Study May 29, 2021
3.3.4		
3.3.8		
3.3.10		
3.4.4		
3.4.5		
3.4.7		
3.5.1		
3.5.2		
3.5.3		