Министерство Науки и Высшего Образования Российской Федерации Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования

# Национальный Исследовательский Ядерный Университет «МИФИ»

Институт Ядерной Физики и Технологий Кафедра Теплофизики

# Пояснительная записка к курсовому проекту на тему:

«Инженерные расчеты и проектирование реактора ВВЭР-1000»

| Студент:                              | Панин М.Д.     |  |
|---------------------------------------|----------------|--|
| Руководитель:                         | Маслов Ю.А.    |  |
| Руководитель<br>со стороны 5 кафедры: | Терновых М.Ю.  |  |
| Рецензент                             |                |  |
| Зав. Кафедрой                         | Харитонов В.С. |  |

Москва 2022

# Содержание

| 1. | Опи  | сание конструкции реактора                                   | 3  |
|----|------|--------------------------------------------------------------|----|
| 2. | Тепл | тофизический расчет                                          | 4  |
|    | 2.1. | Постановка задачи                                            | 4  |
|    | 2.2. | Исходные данные для проведения расчетов                      | 5  |
|    | 2.3. | Выбор турбины                                                | 6  |
|    | 2.4. | Расчет КПД термодинамического цикла                          | 8  |
|    | 2.5. | Расчет изменения теплового потока в наиболее нагруженном ка- |    |
|    |      | нале                                                         | 10 |
|    | 2.6. | Расчет распределения температуры теплоносителя по высоте     | 10 |
|    | 2.7. | Расчет распределения температуры внешней стенки оболочки по  |    |
|    |      | высоте                                                       | 11 |
|    | 2.8. | Расчет температуры топлива                                   | 15 |
|    | 2.9. | Определение перепадов давления и необходимой мощности на-    |    |
|    |      | сосов на прокачку                                            | 16 |
|    | 2.10 | Выводы из теплофизического расчета                           | 18 |
| 3. | Pacu | ет биологической защиты                                      | 19 |
|    | 3.1. | Постановка задачи                                            | 19 |
|    |      | Построение расчетной модели биологической защиты             | 19 |

### 1. Описание конструкции реактора

ВВЭР-1000 конструктивно относится к классу гетерогенных корпусных реакторов. С точки зрения спектра нейтронов он является тепловым. В качестве теплоносителя и замедлителя используется легкая вода под давлением. В качестве топлива в реакторе используется низкообогащенным диоксид урана  $UO_2$ . Общий вид реактора в сборке представлен на рисунке 1.1.

В верхней части реактора расположена герметично закрытая крышка с установленными на ней приводами механизмов и органов регулирования и защиты. Также крышка оснащена патрубками для вывода кабелей датчиков внутриреакторного контроля. Крепление к корпусу осуществляется с помощью шпилек.

Реактор имеет двухконтурную систему. Энергия, выделяющаяся в результате ценой реакции деления ядер урана, преобразуется в тепловую энергию теплоносителя первого контура. Далее нагретый теплоноситель поступает с помощью тепловых насосов в парогенераторы, где происходит отдача тепла воде второго контура. Образовавшийся в парогенераторах пар далее поступает в паротурбинную установку, приводящую в движение турбогенератор, который вырабатывает электроэнергию.

После передачи энергии в парогенераторах вода первого контура поступает в реактор через нижний ряд напорных патрубков. Сплошная кольцевая перегородка между рядами нижних и верхних патрубков, дистанцирующая корпус реактора и его шахту, формирует движение потока теплоносителя вниз. Поэтому вода проходит вниз по кольцевому зазору между корпусом и внутрикорпусной шахтой, затем через перфорированное эллиптическое днище и опорные трубы шахты входит в топливные тепловыделяющие сборки. Из ТВС через перфорированную нижнюю плиту блока защитных труб (БЗТ) теплоноситель выходит в межтрубное пространство БЗТ, а затем через кольцевой зазор между шахтой и корпусом и четыре верхних выходных патрубка из реактора.



Рисунок 1.1. Общий вид реактора ВВЭР-1000 в сборе

- 1. верхний блок;
- 2. привод СУ3;
- 3. шпилька;
- 4. труба для загрузки образцов-свидетелей;
- 5. уплотнение;
- 6. корпус реактора;
- 7. блок защитных труб;
- 8. шахта;
- 9. выгородка активной зоны;
- 10. топливные сборки;
- 11. теплоизоляция реактора;
- 12. крышка реактора;
- 13. регулирующие стержни;
- 14. топливные стержни.

## 2. Теплофизический расчет

#### 2.1. Постановка задачи

В данном разделе будут определены основные термодинамические и гидравлические параметры реакторной установки. Теплофизический расчет подразумевает следующий ряд задач:

- 1. Выбор турбины и разработка принципиальной теплосиловой схемы установки:
- 2. Рассчет КПД проектируемой установки;

- 3. Рассчет основных теплофизических характеристик, таких как мощность ТВС и твэла, расход и скорость теплоносителя, коэффициент теплоотдачи;
- 4. Построение распределения температур теплоносителя, оболочки и топлива по длинне для наиболее напряжённого канала;
- 5. Определение максимально возможных температур теплоносителя, оболочки и топлива;
- 6. Рассчёт перепадов давлений и мощности, необходимой на прокачку теплоносителя;
- 7. Рассчёт коэффициента запаса до кризиса теплообмена;

### 2.2. Исходные данные для проведения расчетов

Для проведения теплогидравлического расчета реакторной установки использовались следующие характеристики, представленные в Таблице 2.1.

Таблица 2.1: Исходные данные для проектируемого РУ ВВЭР-1000

| Характеристика                                                                       | Значение |
|--------------------------------------------------------------------------------------|----------|
| Электрическая мощность реактора, МВт                                                 | 1000     |
| Температура теплоносителя на входе в АЗ $T_{\rm BX}$ , ° $C$                         | 287      |
| Температура теплоносителя на выходе АЗ $T_{\scriptscriptstyle  m BMX}$ , $^{\circ}C$ | 320      |
| Температура питательной воды, , $^{\circ}C$                                          | 220      |
| Температура свежего пара, $^{\circ}C$                                                | 280      |
| Давление свежего пара                                                                | 5.9      |
| Температура пара после пароперегревателей, ${}^{\circ}C$                             | 250      |
| Давление в АЗ, МПа                                                                   | 15.7     |
| Степень сухости пара после ЦВД и ЦНД, %                                              | 80       |
| Количество петель РУ                                                                 | 4        |
| Число ТВС $N_{ m TBC}$ , шт                                                          | 163      |
| Число твэл в ТВС $N_{{}_{TВЭЛ}}$ , шт                                                | 317      |
| Коэффициент неравномерности по высоте АЗ                                             | 1.5      |
| Коэффициент неравномерности по радиусу АЗ                                            | 1.25     |
| Высота АЗ $H_{\mathrm{AZ}}$ , м                                                      | 3.5      |
| Диаметр твэл $d_{\scriptscriptstyle \mathrm{TB}}$ , мм                               | 9.1      |
| Размер ТВС «под ключ» а, мм                                                          | 234      |
| Толщина чехла ТВС $\delta_{	ext{чехла}}$ , мм                                        | 1.5      |
| Диаметр центрального канала в ТВС $D_{ m ц.к}$ , мм                                  | 10.3     |
| Число направляющих каналов в ТВС $N_{\scriptscriptstyle 	ext{H.K.}}$ , шт            | 12       |
| Шаг решетки ТВС $S_m$ , мм                                                           | 12,75    |
| Диаметр направляющего канала в ТВС $D_{\scriptscriptstyle  m H.K}$ , мм              | 12.6     |
| Толщина оболочки твэл $\delta_{	ext{твэл}}$ , мм                                     | 0.65     |
| Толщина газового зазора в твэл $\delta_{\scriptscriptstyle \Gamma}$ , мм             | 0.135    |
| Диаметр топливной таблетки $d_{ m ton}$ , мм.                                        | 7.53     |
| Диаметр отверстия топливной таблетки $d_{ m orb}$ , мм                               | 1.3      |

## 2.3. Выбор турбины

В качестве турбины в расчетах будем использовать модель K-1000-60/1500-2. Её характеристики представлены в таблице 2.2

Таблица 2.2: Параметры турбины К-1000-60/1500-2

| Параметр                                                  | Значение или Название |  |
|-----------------------------------------------------------|-----------------------|--|
| Прототип турбины                                          | K-1000-60/1500        |  |
| Температура питательной воды, $^{\circ}C$                 | 220                   |  |
| Температура свежего пара, $^{\circ}C$                     | 274.6                 |  |
| Давление свежего пара, $^{\circ}C$                        | 5.9                   |  |
| Температура после промежуточного перегрева, ${}^{\circ}C$ | 250                   |  |
| Количество регенеративных подогревателей                  | 7                     |  |



Рисунок 2.1. Тепловая схема АЭС: 1 – ядерный реактор, 2 – главный циркуляционный насос, 3 – парогенератор, 4 – цилиндр высокого давления, 5 – сепаратор-пароперегреватель, 6 – цилиндры низкого давления, 7 – генератор, 8 – конденсатор, 9 – конденсационный электронасос, 10 – подогреватель низкого давления, 11 – охладитель, 12 – станция насосная, 13 – деаэратор, 14 – плунжерный электронасос, 15 – подогреватель высокого давления, 16 – конденсационный насос с гидротурбинным приводом

### 2.4. Расчет КПД термодинамического цикла



Рисунок 2.2. ТЅ диаграмма турбинного цикла в реакторе ВВЭР-1000 : hbc — нагрев и испарение в парогенераторе; cd — расширение пара в ЦВД; de — пар отделяется от конденсата в сепараторе; ef — пар поступает в промежуточный пароперегреватель; fk — расширение пара в ЦНД; ka — конденсация в конденсаторе; ад — регенеративный подогрев в ПНД; gh — регенеративный подогрев в ПВД;

Таблица 2.3: Значения параметров TS-диаграммы

| Точка | Р, МПа | T, °C   | S, Дж/(кг · K) | h, кДж/кг |
|-------|--------|---------|----------------|-----------|
| h     | 5.9    | 220     | 2516.4         | 942.9     |
| b     | 5.9    | 274.6   | 3017.4         | 1208.1    |
| С     | 5.9    | 274.6   | 5898.01        | 2785.6    |
| d     | 0.98   | 179.189 | 5898.01        | 2462.7    |
| е     | 0.98   | 179.189 | 6591.7         | 2776.4    |
| f     | 0.98   | 250     | 7199.86        | 2943.61   |
| k     | 0.004  | 30.5    | 7199.86        | 2178.6    |
| k'    | 0.004  | 30.5    | 442.236        | 127.396   |
| a     | 5.9    | 30.5    | 440.4          | 132.8     |
| g     | 0.98   | 179.2   | 2130.2         | 758.9     |

Произведём расчет КПД для турбины К-1000-60/1500. Термический КПД без регенерации:

$$\eta_{t0} = 1 - \frac{T_k \cdot \left(s_f - s_a\right) \cdot x_d}{\left(h_c - h_q\right) + x_d \left(\left(h_q - h_a\right) + \left(h_f - h_e\right)\right)}$$

$$\eta_{t0} = 1 - \frac{3.035 \cdot 10^2 \cdot \left(7.200 \cdot 10^3 - 4.404 \cdot 10^2\right) \cdot 8.445 \cdot 10^{-01}}{\left(2.786 \cdot 10^6 - 7.589 \cdot 10^5\right) + 8.445 \cdot 10^{-01} \left(\left(7.589 \cdot 10^5 - 1.328 \cdot 10^5\right) + \left(2.944 \cdot 10^6 - 2.776 \cdot 10^6\right)\right)}$$

$$\eta_{t0} = 3.575 \cdot 10^{-01}$$

Термический КПД с идеальной регенерацией:

$$\eta_{t\infty} = 1 - \frac{T_k \cdot \left(s_f - s_g\right) \left(s_c - s_h\right)}{\left(h_c - h_h\right) \cdot \left(s_e - s_q\right) + \left(h_f - h_e\right) \cdot \left(s_c - s_h\right)}$$

$$\eta_{t\infty} = 1 - \frac{3.035 \cdot 10^2 \cdot \left(7.200 \cdot 10^3 - 2.130 \cdot 10^3\right) \left(5.898 \cdot 10^3 - 2.516 \cdot 10^3\right)}{\left(2.786 \cdot 10^6\right) - 9.429 \cdot 10^5\right) \cdot \left(6.592 \cdot 10^3 - 2.130 \cdot 10^3\right) + \left(2.944 \cdot 10^6 - 2.776 \cdot 10^6\right) \cdot \left(5.898 \cdot 10^3 - 2.516 \cdot 10^3\right)}$$

$$\eta_{t\infty} = 4.078 \cdot 10^{-01}$$

Термический КПД с n=7 регенеративными отборами:

$$\eta_{tn} = \eta_{t0} + (\eta_{t\infty} - \eta_{t0}) \cdot \frac{n}{n+1} = 3.575 \cdot 10^{-01} + \left(4.078 \cdot 10^{-01} - 3.575 \cdot 10^{-01}\right) \cdot \frac{7}{8} = 4.015 \cdot 10^{-01}$$

Учитываем:  $\eta^{\text{вн}}=0.85$  — внутренний КПД турбины;  $\eta_{\text{ос}}=0.98$  — коэффициент использования тепла, учитывающий; потери тепла в окружающую среду в прочем энергооборудовании;  $\eta_{\text{эг}}=0.98$  — КПД электрогенератора;  $\eta_{\text{мех}}=0.97$  — КПД механический, Вычисляем КПД брутто АЭС как:

$$\eta_{\text{брутто}} = \eta^7 \cdot \eta^{\text{bh}} \cdot \eta_{\text{oc}} \cdot \eta_{\text{ff}} \cdot \eta_{\text{mex}} = 0.335 = 4.015 \cdot 10^{-01} \cdot 0.85 \cdot 0.98 \cdot 0.98 \cdot 0.97 = 3.179 \cdot 10^{-01} \cdot 0.85 \cdot 0.98 \cdot 0.$$

Тепловая мощность реактора при номинальной электрической мощности  $Q_{\rm эл}=1000~{
m MBt}$  равна:

$$Q_{\text{теп}} = \frac{Q_{\text{эл}}}{\eta_{\text{брутто}}} = \frac{1.000 \cdot 10^9}{3.179 \cdot 10^{-01}} = 3.146 \cdot 10^3 \text{MBt}$$

# 2.5. Расчет изменения теплового потока в наиболее нагруженном канале

из условия

$$K_z = \frac{\pi H_{\rm a3}}{2 H_{\rm 9\varphi} \sin\left(\frac{\pi H_{\rm a3}}{2 H_{\rm 9\varphi}}\right)} = 1.5$$

находим эфективную добавку к высоте активной зоны. эффективная высота активной зоны будет равна  $h_{\rm эф}=3.715$  м. максимальная величина теплового потока на один твэл:

$$q_{max} = \frac{Q_{\text{TER}} K_r K_z}{N_{\text{TRO}} N_{\text{TRO}} H_{\text{A2}}} = \frac{3.146 \cdot 10^9 \cdot 1.25 \cdot 1.5}{163 \cdot 317 \cdot 3.5} = 3.261 \cdot 10^2 \frac{\text{Bt}}{\text{CM}}$$

Зависимость величины теплового потока от высоты:

$$q(z) = q_{max} \cos \left( \frac{\pi \cdot z}{H_{\rm 9\varphi}} \right) = 3.261 \cdot 10^2 \cos \left( \frac{\pi \cdot z}{3.715} \right) \, \left[ \frac{\rm Bt}{\rm cm} \right]$$

# 2.6. Расчет распределения температуры теплоносителя по высоте

Энтальпия входа  $h_{\rm BX}=1.268\cdot 10^6$  . Энтальпия выхода  $h_{\rm BЫX}=1.452\cdot 10^6$  . Расход теплоносителя через ТВС:

$$G_{\mathrm{TBC}} = \frac{Q_{\mathrm{teff}}}{(h_{\mathrm{bhx}} - h_{\mathrm{bx}}) N_{\mathrm{TBC}}} = \frac{3.146 \cdot 10^9}{(1.452 \cdot 10^6 - 1.268 \cdot 10^6) \cdot 163} = 1.049 \cdot 10^2 \ \frac{\mathrm{kr}}{\mathrm{c}}$$

Расход теплоносителя через реактор:

$$G_{\rm peak} = \frac{Q_{\rm ten}}{(h_{\rm pluy} - h_{\rm px})} = \frac{3.146 \cdot 10^9}{(1.452 \cdot 10^6 - 1.268 \cdot 10^6)} = 1.710 \cdot 10^4 \; \frac{\rm KF}{\rm C}$$

Средняя теплоемкость воды:

$$C_p = \frac{h_{\text{вых}} - h_{\text{вх}}}{T_{\text{вых}} - T_{\text{вх}}} = C_p = \frac{1.452 \cdot 10^6 - 1.268 \cdot 10^6}{5.930 \cdot 10^2 - 5.600 \cdot 10^2} = 5.574 \cdot 10^3 \, \frac{\text{Дж}}{\text{кг} \cdot \text{K}}$$

Распределение температуры теплоносителя по высоте реактора:

$$T(z) = T_{\rm BX} + \frac{N_{\rm TBC}N_{\rm TBЭЛ}q_{\rm max}H_{\rm 9\varphi}}{G_{\rm peak}C_p\pi} \left[ \sin\left(\frac{\pi z}{H_{\rm 9\varphi}}\right) + \sin\left(\frac{\pi H_{\rm A3}}{2H_{\rm 9\varphi}}\right) \right]$$

Отсюда максимальная температура жидкости  $T_{\rm TH}^{max}=328.54~^{\circ}C$ . График изменения температуры теплоносителя по высоте представлен на 2.3



Рисунок 2.3. Изменение температуры теплоносителя по высоте

Максимальная температура теплоносителя определяется из температуры кипения теплоносителя при давлении в активной зоне. Температура насыщения воды при давлении  $15.7~\mathrm{M\Pi a} - 345.8~^\circ C$ . Отсюда следует что запас до кипения  $\approx 17.26~^\circ C$ .

# 2.7. Расчет распределения температуры внешней стенки оболочки по высоте

Площадь проходного сечения:

$$S_{\rm npox} = \sqrt{3}/2(a-2\cdot\delta_{\rm чехла})^2 - N_{\rm твэл}\frac{\pi d_{\rm тв}^2}{4} - N_{\rm н.к.}\frac{\pi D_{\rm н.к.}^2}{4} - \frac{D_{\rm ц.к}^2\pi}{4}$$

$$S_{\rm npox} = \sqrt{3}/2(2.340 \cdot 10^{-01} - 2 \cdot 0.0015)^2 - 3.170 \cdot 10^2 \frac{\pi (9.100 \cdot 10^{-03})^2}{4} - 1.200 \cdot 10^1 \frac{\pi (1.260 \cdot 10^{-02}))^2}{4} - \frac{(1.030 \cdot 10^{-02})^2 \pi (1.000 \cdot 10^{-02})^2}{4} - \frac{(1.030 \cdot 10^$$

$$S_{\rm npox}=2.402\cdot 10^4{\rm mm}^2$$

Периметр:

$$\Pi = (2(a-2\delta_{\text{чехла}})\sqrt{3}) - N_{\text{твэл}}\,\pi d_{\text{тв}} + N_{\text{н.к}}\,\pi D_{\text{н.к}} + \pi D_{\text{ц.к}}$$

 $\Pi = (2(\cdot 2.340 \cdot 10^{-01} - 2 \cdot 1.500 \cdot 10^{-03}) \cdot \sqrt{3}) - 3.170 \cdot 10^2 \cdot \pi \cdot 9.100 \cdot 10^{-03} + 1.200 \cdot 10^1 \cdot \pi \cdot 1.260 \cdot 10^{-02} + \pi \cdot 1.030 \cdot 10^{-02}) \cdot 10^{-02} \cdot 10^{-02} \cdot 10^{-03} \cdot 10^$ 

$$\Pi = 1.037 \cdot 10^4 \text{mm}$$

Гидравлический диаметр:

$$d_{\Gamma} = \frac{4S_{\rm npox}}{\Pi} = \frac{4 \cdot 2.402 \cdot 10^{-02}}{1.037 \cdot 10^{1}} = 9.263 \cdot 10^{-03} {\rm mm}$$

Определим коэффициент теплоотдачи в режиме турбулентного стационарного течения несжимаемой жидкости. Параметры теплоносителя при усредненной температуре  $\overline{T}=303.5^{\circ}\mathrm{C}$ :

- Динамическая вязкость  $\mu = 8.721 \cdot 10^{-5} \Pi \mathbf{a} \cdot \mathbf{c}$
- Коэффициент теплопроводности  $\lambda = 0.5536 rac{\mathrm{BT}}{\mathrm{M} \cdot K}$
- Число Прандтля Pr=0.8729

По формуле Б.С.Петухова, В.В. Кириллова (круглые трубы): Число Рейнолдса:

$$\mathrm{Re} = \frac{G_{\mathrm{peak}} \cdot d_{\mathrm{r}}}{N_{\mathrm{TRC}} \cdot S_{\mathrm{ppoy}} \cdot \mu} = 4.640 \cdot 10^{5}$$

Коэффициент гидравлического сопротивления:

$$\xi = (1,82 \cdot \log(\mathrm{Re}) - 1.64)^{-2} = 0.013$$

Расчитываем число Нуссельта:

$$\begin{aligned} \text{Nu} = & \frac{\frac{\xi}{8} \cdot \text{Re} \cdot \text{Pr}}{k + 12.7 \cdot \left( \text{Pr}^{\frac{2}{3}} - 1 \right) \cdot \sqrt{\frac{\xi}{8}}} = \\ = & \frac{\frac{1.329 \cdot 10^{-02}}{8} \cdot 4.640 \cdot 10^{5} \cdot 8.729 \cdot 10^{-01}}{1 + \frac{900}{4.640 \cdot 10^{5}} + 12.7 \cdot \left( (8.729 \cdot 10^{-01})^{\frac{2}{3}} - 1 \right) \cdot \sqrt{\frac{1.329 \cdot 10^{-02}}{8}}} = 7.033 \cdot 10^{2} \end{aligned}$$

, где 
$$k=1+rac{900}{Re}$$

Коэффициент теплоотдачи:

$$\alpha_1 = \frac{Nu \cdot \lambda}{d_{\scriptscriptstyle \Gamma}} = \frac{7.033 \cdot 10^2 \cdot 5.536 \cdot 10^{-01}}{9.263 \cdot 10^{-03}} = 4.203 \cdot 10^4 \frac{\rm Bt}{\rm m^2 \cdot K}$$

По формуле Диттуса-Болтера:

$$Nu = 0.023Re^{0.8}Pr^{0.4} = 743.6$$

Коэффициент теплоотдачи:

$$\alpha_2 = \frac{Nu \cdot \lambda}{d_{\scriptscriptstyle \Gamma}} = \frac{7.436 \cdot 10^2 \cdot 5.536 \cdot 10^{-01}}{9.263 \cdot 10^{-03}} = 4.444 \cdot 10^4 \frac{\rm Bt}{\rm m^2 \cdot K}$$

По формула М.А. Михеева:

$$Nu = 0.021Re^{0.8}Pr^{0.43} = 676.2$$

Коэффициент теплоотдачи:

$$\alpha_3 = \frac{Nu \cdot \lambda}{d_{\rm r}} = \frac{6.762 \cdot 10^2 \cdot 5.536 \cdot 10^{-01}}{9.263 \cdot 10^{-03}} = 4.041 \cdot 10^4 \frac{\rm Bt}{\rm m^2 \cdot K}$$

Усредним коэффициент теплоотдачи:

$$\alpha = \frac{\alpha_1 + \alpha_2 + \alpha_3}{3} = 4.229 \cdot 10^4 \frac{\text{Bt}}{\text{m}^2 \cdot K}$$

Распределение температуры внешней стенки твэла по высоте реактора:

$$T_{\text{o6}}\left(z\right) = T_{\text{\tiny TH}}\left(z\right) + \frac{q_{\text{max}} \cdot \cos\left(\frac{\pi \cdot z}{H_{\ni \phi}}\right)}{\pi d_{\text{\tiny TR}} \, \alpha}$$

Распределение температуры внешней стенки твэла по высоте реактора представлено на 2.4



Рисунок 2.4. Изменение температуры стенки твэла по высоте

Из 2.4 видно, что максимальная температура  $T_{
m o6}^{
m max}=341.9^{\circ}C$  стенки достигается в  $Z_{
m max}=0.8$ . Отсюда можно сделать вывод о том, что также отсутствует поверхностное кипения теплоносителя.

Общий график для распределений теплоносителя и оболочки представлены на 2.5



Рисунок 2.5. Изменение температуры стенки твэла и теплоносителя по высоте

### 2.8. Расчет температуры топлива

Произведём расчет термического сопротивления оболочки, газового зазора и топлива:

$$\begin{split} \sum R_i = & \frac{\ln \frac{d_{\text{\tiny TB}}}{d_{\text{\tiny TB}}-2\delta}}{2\pi\lambda_{\text{\tiny 06}}} + \frac{\ln \frac{d_{\text{\tiny TB}}-2\delta}{d_{\text{\tiny TOI}}}}{2\pi\lambda_{\text{\tiny F,3}}} + \frac{\frac{1}{2} - \frac{d_{\text{\tiny OTB}}^2}{d_{\text{\tiny TOI}}-d_{\text{\tiny OTB}}^2} \ln \frac{d_{\text{\tiny TOII}}}{d_{\text{\tiny OTB}}}}{2\pi\lambda_{\text{\tiny TOII}}} = = \\ = & \frac{\ln \frac{9.100 \cdot 10^{-03}}{9.100 \cdot 10^{-03} - 2 \cdot 6.500 \cdot 10^{-04}}}{2 \cdot \pi \cdot 2.010 \cdot 10^1} \\ + & \frac{\ln \frac{9.100 \cdot 10^{-03} - 2 \cdot 6.500 \cdot 10^{-04}}{7.530 \cdot 10^{-03}}}{2\pi \cdot 3.500 \cdot 10^{-01}} \\ + & \frac{0.5 - \frac{(1.300 \cdot 10^{-03})^2}{(7.530 \cdot 10^{-03})^2 - (1.300 \cdot 10^{-03})^2} \ln \frac{7.530 \cdot 10^{-03}}{1.300 \cdot 10^{-03}}}{2\pi \cdot 3.500} = \\ = & 3.752 \cdot 10^{-02} \frac{\text{M} \cdot K}{\text{BT}} \end{split}$$

где

- $\lambda_{\text{г.з.}} = 0.35 \, \frac{\text{Вт}}{\text{м-K}}$  теплопроводность газового слоя
- $\,\lambda_{\mathrm{of}} = 23\,rac{\mathrm{BT}}{\mathrm{M\cdot K}}$  теплопроводность оболочки
- $\lambda_{\text{топ}} = 3 \, \frac{\text{Вт}}{\text{м·K}}$  теплопроводность топлива

Распределение температур в топливе по высоте активной зоны:

$$T_{\text{\tiny TO\Pi}}\left(z\right) = T_{\text{\tiny CT}}(z) + \Sigma R_i \cdot q_{\text{\tiny max}} \cdot \cos\left(\frac{\pi \cdot z}{H_{\text{\tiny 3}\varphi}}\right)$$

График изменения температуры топлива по высоте представлен на 2.6



Рисунок 2.6. Изменение температуры топлива по высоте

Максимальная температура топлива  $T_{\rm топ}=1559^{\circ}C$  при  $Z_{\rm max}=0$ м. Максимально допустимая температура топлива при авариях определяется температурой плавления оксида урана и составляет с некоторым запасом  $2600^{\circ}C$ . Однако в условиях нормальной эксплуатации максимально допустимая температура топлива определяется сколонностью топлива к усиленному распуханию начиная с некоторой температуры, которая равна  $1041^{\circ}C$ .

# 2.9. Определение перепадов давления и необходимой мощности насосов на прокачку

Для того чтобы определить мощность на прокачку теплоносителя через реактор, найде перепад давления в ТВС Гидравлическое сопротивление трения по формуле Дарси:

$$\Delta P_{\rm Tp} = \xi_{\rm Tp} \cdot \frac{H_{\rm a3}}{d_{\rm r}} \cdot \frac{w^2}{2} \rho_{\rm Cp} = 1.329 \cdot 10^{-02} \frac{3.500}{9.263 \cdot 10^{-03}} \cdot \frac{(5.600)^2}{2} \cdot 7.200 \cdot 10^2 = 5.671 \cdot 10^4 \Pi {\rm a}$$

где

- $w=5.6\frac{\mathrm{M}}{\mathrm{c}}$  средняя скорость теплоносителя
- $\, 
  ho_{\mathrm{cp}} = 720 \Pi$ а средняя плотность среды

Потеря напора на ускорение:

$$\Delta P_{\text{yck}} = \left(\frac{G_{\text{peak}}}{N_{\text{TBC}} \cdot S_{\text{npox}}}\right)^2 \cdot \left(\frac{1}{\rho_{\text{BLIX}}} - \frac{1}{\rho_{\text{BX}}}\right) = \left(\frac{1.710 \cdot 10^4}{1.630 \cdot 10^2 \cdot 2.402 \cdot 10^{-02}}\right)^2 \cdot \left(\frac{1}{6.808 \cdot 10^2} - \frac{1}{7.521 \cdot 10^2}\right) = 2.658 \cdot 10^3 \text{ Ma}$$

, где  $ho_{\text{вых}}=680.8~\frac{\text{кг}}{\text{м}^2}$ ,  $ho_{\text{вх}}=752.1~\frac{\text{кг}}{\text{м}^2}$ . Нивелирный напор:

$$\Delta P_{ ext{HИВ}} = 
ho_{ ext{CD}} \cdot g \cdot H_{ ext{a3}} = 7.200 \cdot 10^2 \cdot 9.807 \cdot 3.500 = 2.471 \cdot 10^4 \Pi ext{a}$$

Местное сопротивление:

$$\Delta P_{\text{\tiny MECT}} = \frac{\left(\frac{G}{N_{\text{\tiny TBC}} \cdot S_{\text{\tiny IIpox}}}\right)^2}{2} \cdot \left(\frac{\xi_{\text{\tiny BX}}}{\rho_{\text{\tiny BX}}} + \frac{13\xi_{\text{\tiny peiii}}}{\rho_{\text{\tiny cp}}} + \frac{\xi_{\text{\tiny BbIX}}}{\rho_{\text{\tiny BbIX}}}\right)$$

$$\Delta P_{\text{\tiny MECT}} = \frac{\left(\frac{1.710\cdot10^4}{163\cdot2.402\cdot10^{-02}}\right)^2}{2} \cdot \left(\frac{2.6}{7.521\cdot10^2} + \frac{13\cdot0.45}{7.200\cdot10^2} + \frac{0.26}{6.808\cdot10^2}\right) = 1.142\cdot10^5 \Pi \text{a}$$

где  $\xi_{\rm BX}=2.6$  — коэффициент сопротивления на входе в кассету;  $\xi_{\rm BЫX}=0.26$  — коэффициент сопротивления на выходе из кассеты,  $\xi_{\rm pem}=0.45$  — коэффициент сопротивления при проходе через дистанцирующую решетку Общее сопротивление каналов:

$$\Delta P = \Delta P_{\mathrm{Tp}} + \Delta P_{\mathrm{yck}} + \Delta P_{\mathrm{нив}} \, + \Delta P_{\mathrm{мест}} \, = 1.983 \cdot 10^5 \Pi \mathrm{a}$$

Мощность, необходимая для прокачки теплоносителя через весь реактор:

$$N_{\mathrm{np}} = N_{\mathrm{TBC}} \frac{\Delta P \cdot G_{\mathrm{TBC}}}{\eta_{\mathrm{HaC}} \cdot \rho_{\mathrm{BX}}}$$

, где  $\eta_{\mathrm{Hac}}=0.8$  — КПД насоса

$$N_{\rm np} = 163 \cdot \frac{1.983 \cdot 10^5 \cdot 1.049 \cdot 10^2}{0.8 \cdot 7.521 \cdot 10^2} = 5.635 \cdot 10^6 {\rm Bt}$$

КПД реактора с учетом потерь на прокачку теплоносителя:

$$\eta' = \frac{Q_{\text{эл}} - N_{\text{пр}}}{Q_{\text{теп}}} = \frac{1.000 \cdot 10^9 - 5.635 \cdot 10^6}{3.146 \cdot 10^9} = 3.161 \cdot 10^{-01}$$

#### 2.10. Выводы из теплофизического расчета

По итогам теплогидравлического расчета были определены основные термодинамические и теплогидравлические параметры РУ ВВЭР-1000. Были выполнены следующие поставленные задачи:

- 1. Произведен выбор турбины и определён её КПД равный 0.316 с учетом мощности, необходимой на прокачку теплоносителя.
- 2. Были найдены зависимости температуры оболочки и теплоносителя от высоты A3, было выяснено, что поверхностного кипения не наблюдается, и максимальная тепература оболочки твэла  $341.9~^{\circ}C$  не превышает предельно допустимую.
- 3. Определена зависимость температуры топлива от высоты A3, максимальная температура топлива  $1559^{\circ}C$  не превышает предельное значение  $1900^{\circ}C$ .

### 3. Расчет биологической защиты

#### 3.1. Постановка задачи

Необходимо рассчитать дозу облучения при стационарном режиме работы ЯЭУ ВВЭР-1000 за биологической защитой

#### 3.2. Построение расчетной модели биологической защиты

Для формирования расчетной модели рассмотрим компоновку элементов и помещений ЯЭУ с РУ ВВЭР-1000.



Рисунок 3.1. Общая компоновка энергоблока с РУ ВВЭР-1000 (Южно-Украинская АЭС):

1 — реактор; 2 — машина для перегрузки топлива; 3 — подъемный кран реакторного отделения; 4 — компенсатор давления, 5 — барботер; 6 — деаэратор; 7 — гидроемкость, 8 — турбогенератор; 9 — подъемный кран машинного зала; 10 — регенеративные подогреватели, 11 — защитная оболочка

Элементы компоновки вокруг реактора Рассмотрим основные элементы защиты, внешние по отношению к ВВЭР-1000 в сборе. Корпус реактора установливается в *бетонную шахту* [3.2], которая играет роль основной опоры и крепления реактора с учетом сейсмических нагрузкок, а также биологической

защиты от излучения со стороны АЗ. Между корпусом реактора и шахтой имеется кольцевой зазор, предназначенный для периодического контроля металла корпуса в связи с требованиями правил. Шахта резделена по высоте на два объема разделительным сильфоном:

- Верхний, снабжен гидрозатвором и соединяется с бассейном выдержки. При перегрузке верхний объем шахты вместе с бассейном заливается водой.
- Нижний, условно разделяемый фермой опорной на шахту зоны патрубков и шахту цилиндрической части корпуса. Соединяется проемом, снабженным герметичной дверью, с помещением для машины осмотра корпуса.

В помещении зоны патрубков биологическая защита выполнена из металлических коробов, заполненных специальным составом, в который входят серпентинитовая галя, кристаллический карбид бора, дробь чугунная литая. В районе активной зоны применяется «сухая» защита, которая представляет из себя слой серпентинитового бетона толщиной 720 мм и высотой 4,7 м, облицованного металлической оболочкой. Такой бетон обладает высокой радиационной стойкостью, что позволяет удовлетворить требования по нейтронной защите.



Рисунок 3.2. Бетонная шахта реактора

Все оборудование первого контура заключено в цилиндрическую оболочку, в верхней части которой расположен грузоподъемный поворотный кран. Между

реакторным и машинным залами располагается этажерка электротехнических устройств, где размещены также деаэраторы и различные лаборатории.

#### Активная зона

Внутрикорпусная шахта

Корпус

Бетонная шахта

Защитная оболочка