RACIONALIDADE LIMITADA

Luís Morgado
ISEL-ADEETC

RACIONALIDADE

Um sistema é racional se faz a "acção certa" dado o conhecimento que possui [Russell & Norvig, 2003]

 Capacidade de agir no sentido de conseguir o melhor resultado possível perante os objectivos que se pretende atingir

Problema: Complexidade computacional

RACIONALIDADE

RACIONALIDADE ILIMITADA

- Informação completa
- Recursos ilimitados
- Optimização

RACIONALIDADE LIMITADA

- Informação incompleta
- Recursos limitados
- Satisfação
 - Processo de decisão orientado para a satisfação de níveis de referência sub-óptimos
 - O processo de decisão pára quando o nível de referência é satisfeito
 - Qualidade da solução vs. recursos utilizados

RACIONALIDADE LIMITADA

- RESTRIÇÕES
 - Complexidade computacional
 - Recursos limitados
- MÉTODOS PARA LIDAR COM A COMPLEXIDADE
 - Aproximação
 - Abstracção
 - Modularização
 - Focagem

APROXIMAÇÃO

- MÉTODOS HEURÍSTICOS
 - Respostas imprecisas mas expeditas
 - Por eliminação de restrições do domínio do problema
 - Por exploração de **regularidades** no ambiente
 - Por **memória** de situações relacionadas
 - Por frequência de ocorrência
 - Por categorização
 - Por ancoragem a um referencial prévio
 - Plausibilidade biológica
 - Heurísticas simples e rápidas
 - Fast and frugal heuristics [Gigerenzer, 1999]
 - Respostas de natureza afectiva

HEURÍSTICA

- Aproximação para resolução de um problema de forma expedita
- Tem por objectivo tornar viável a resolução de um problema com restrições de recursos (tempo, memória), quando isso não é possível com um método óptimo
- Tem inerente um compromisso entre resposta expedita e:
 - Soluções sub-óptimas
 - Não completude
 - Exactidão
 - Precisão

FUNÇÃO HEURÍSTICA

- Representa uma estimativa do custo ou utilidade de uma determinada situação ou acção para a resolução de um problema
- Reflecte conhecimento acerca do domínio do problema
- O seu valor é uma aproximação ao valor real da medida em causa

Exemplo

- Avaliação de um estado em relação ao objectivo a atingir
 - Independente do percurso até ao estado

Heurística admissível

- A estimativa de custo é sempre inferior ou igual ao custo efectivo mínimo
 - Optimista

FUNÇÃO HEURÍSTICA

- Como definir uma heurística admissível
 - No caso geral, uma heurística admissível é obtida através do relaxamento de restrições associadas ao problema
 - Exemplo: Navegação autónoma
 - h₁ Distância de Manhattan
 - Corresponde a retirar a restrição:
 - » Não movimentação através de obstáculos
 - h₂ Distância de Euclidiana
 - Corresponde a retirar as restrições:
 - » Não movimentação através de obstáculos
 - » Não movimentação em diagonal

HEURÍSTICA ADMISSÍVEL

h₁ – Distância Euclidiana

$$h_1(n) = \sqrt{(x_n - x_{obj})^2 + (y_n - y_{obj})^2}$$

Admissível?

SIM

HEURÍSTICA ADMISSÍVEL

h₂ – Distância de Manhattan

$$h_2(n) = |x_n - x_{obj}| + |y_n - y_{obj}|$$

Admissível?

- SIM : Se não forem possíveis movimentos diagonais
- NÃO : Caso contrário

ESFORÇO vs. QUALIDADE DA SOLUÇÃO

PROCURA A* PONDERADA (WEIGHTED A*) ALGORITMO DE PROCURA ε -Óptimo

Definition 6.1. (ϵ -Optimality) A search algorithm is ϵ -optimal if it terminates with a solution of maximum cost $(1+\epsilon) \cdot \delta(s,T)$, with ϵ denoting an arbitrary small positive constant.

Lemma 6.2. A* where $f(u) = g(u) + (1 + \epsilon) \cdot h(u)$ for an admissible estimate h is ϵ -optimal.

Proof. For nodes u in *Open* that satisfy invariant (I) (Lemma 2.2) we have $f(u) = \delta(s, u) + h(u)$ and $g(u) = \delta(s, u)$ due to the reweighting process. Therefore,

$$f(u) \le \delta(s, u) + \delta(u, T) + \epsilon \cdot \delta(u, T)$$

$$\le \delta(s, T) + \epsilon \cdot \delta(u, T)$$

$$\le \delta(s, T) + \epsilon \cdot \delta(s, T)$$

$$\le (1 + \epsilon) \cdot \delta(s, T).$$

Thus, if a node $t \in T$ is selected we have $f(t) \leq (1 + \epsilon) \cdot \delta(s, T)$.

PROCURA A* PONDERADA (WEIGHTED A*)

O processo de descrição de conhecimento a diferentes níveis de detalhe (quantidade de informação) e tipos de representação (estrutura da informação).

[Korf, 1980]

Redução de detalhe

- Identificação de características principais
- Redução de complexidade da representação
- Redução de complexidade do processamento

Problemas

- Qualidade da solução
- Método não completo
 - Pode não ser possível encontrar solução, apesar de existir solução em níveis de detalhe superior

ABSTRACÇÃO LINEAR EM GRELHA

ABSTRACÇÃO LINEAR HIERÁRQUICA

[Sturtevant & Buro, 2005]

ABSTRACÇÃO NÃO-LINEAR

EXEMPLO: QUADTREES

ABSTRACÇÃO NÃO-LINEAR

QUADTREE - Abstracção não-linear em espaços bidimensionais

KD-TREE - Abstracção não-linear em espaços n-dimensionais

ABSTRACÇÃO COM BASE EM QUADTREES

OUTRAS FORMAS DE ABSTRAÇÃO

A capacidade de abstracção depende de conhecimento do domínio do problema

COM BASE EM REDES NEURONAIS

BASEADA EM CONHECIMENTO DO DOMÍNIO DO PROBLEMA

- Redução de detalhe
- Relaxamento de restrições

[Knoblock, 1991]

PLANEAMENTO HIERÁRQUICO

- Estratégias de alto nível
 - Planos abstractos
- Detalhe progressivo
 - Decomposição em Abstract Space sub-problemas Abstract Space Ground Space Goal Initial State

PROCURA A* HIERÁRQUICA

Níveis de transformação

$$- \phi_1, \phi_2, \phi_3, \dots$$

- Função heurística de um nível gerada a partir de níveis de abstração superiores
 - Exemplo
 - $\phi_2(\phi_1(u)), \phi_2(\phi_1(t))$
- Função heurística não consistente
- Pré-computação da função heurística a níveis abstractos para optimização de desempenho

MODULARIZAÇÃO

- Associada à abstracção
- Redução de complexidade por decomposição combinatória
 - divisão em sub-problemas com relação causal
 - Resolução sequencial
 - Soluções parciais
 - Composição da solução global em função das soluções parciais
- Exemplo
 - Navegação através de pontos de referência (waypoints)

EXEMPLO: 15-PUZZLE

$$N \approx 10^{12}$$

9	2	12	6
5	7	14	13
3	4	1	11
15	10	8	0

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	0

Plano abstracto guia raciocínio concreto

- Decomposição em sub-problemas
- Resolução independente de cada sub-problema

OPERAÇÃO EM TEMPO-REAL EM AMBIENTES COMPLEXOS E DINÂMICOS

FOCAGEM

SELECÇÃO

 Os recursos computacionais são orientados para aspectos específicos de um problema

ELIMINAÇÃO

Os restantes aspectos não são considerados

PROBLEMA DA RELEVÂNCIA

- Quais os aspectos a seleccionar
- Quais os aspectos a eliminar

VERTENTES DE FOCAGEM

- Espaço (Memória)
- Tempo

FOCAGEM

- VERTENTES DE FOCAGEM
 - ESPAÇO
 - Limitação de memória
 - Iterative Deepening A* (IDA*)
 - Memory Bounded A* (MA*, SMA*)
 - Beam Search
 - Mecanismos de atenção
 - TEMPO
 - Limitação de tempo de processamento
 - Algoritmos Anytime
 - Raciocínio em tempo-real
 - Real-Time Dynamic Programing (RTDP)
 - Real-Time Adaptive A* (RTAA*)

FOCAGEM RACIOCÍNIO DE CONTEXTO LOCAL

Irrelevant States:

unreachable from any start state under any optimal policy

Relevant States reachable from some start state under some optimal policy

MÉTODOS DE PROCURA EM TEMPO REAL PROCURA CENTRADA NO AGENTE

MÉTODOS DE PROCURA EM TEMPO REAL

- Intercala planeamento com execução
- Composição de procuras
 - Procura âmbito local
 - Solução parcial
 - Estimativa de valor global
- Actualização de valor global
 - Para resolver problema de soluções localmente óptimas mas globalmente não completas
- Diferentes métodos
 - Exemplo
 - LRTA* (Learning Real Time A*)
 - RTAA* (Real Time Adaptive A*)

PROCURA A*

- Heurística consistente (ou monótona)
 - Para cada nó n, seu sucessor n' e custo de transição c(n,n')
 - $h(n) \leq c(n,n') + h(n')$
 - Para um nó objectivo
 - $h(n_{obj}) = 0$
- Uma heurística consistente é também admissível
- Uma heurística admissível pode não ser consistente

RTAA* - REAL TIME ADAPTIVE A*

HEURÍSTICA CONSISTENTE

MÉTODOS DE PROCURA EM TEMPO REAL

RTAA* - REAL TIME ADAPTIVE A*

Heurística consistente

```
Procedure RTAA*
\delta(v,T) \geq \delta(s,T)
Input: Search task with initial h-values \delta(v,T) \geq f(\bar{u}) - g(v)
Side Effect: Updated h-values
```

```
;; Start in start state
u \leftarrow s
                                                                              ;; While goal not achieved
while (u \notin T)
   (\bar{u}, Closed) \leftarrow A^*(u, lookahead);; A* search until lookahead states have been expanded
  if (\bar{u} = false) return false
                                                                          ;; Return if goal unachievable
  for each v \in Closed
                                                                              ;; For each expanded state
                                                                                         ;; Update h-value
     h(v) \leftarrow g(\bar{u}) + h(\bar{u}) - g(v)
                                                                                                   ;; Repeat
  repeat
                                                   ;; Select action on minimal-cost path from u to \overline{u}
     a \leftarrow SelectAction(A(u))
                                                                                         :: Execute action
     u \leftarrow a(u)
                                                          ;; Until local search space exited (optional)
  until (u \notin Closed)
```

Algorithm 11.5

RTAA*.

 \bar{u} - state that was about to be expanded when the A* search terminates

RTAA* - REAL TIME ADAPTIVE A*

MÉTODOS DE PROCURA EM TEMPO REAL

- Características principais
 - Utilização de conhecimento heurístico para guiar a procura
 - Regulação do esforço de procura entre cada acção
 - Resposta rápida
 - Espaço local de procura menor
 - Soluções parciais de menor qualidade
 - » Maior esforço de execução

Resposta lenta

- Espaço de procura maior
- Soluções parciais de melhor qualidade
 - » Menor esforço de execução
- Melhoria progressiva do desempenho

REFERÊNCIAS

[Korf, 1980]

R. Korf, Toward a model of representation changes, Artificial Intelligence, Volume 14, Issue 1, 1980

[Edelkamp & Schrodl, 2012]

S. Edelkamp, S. Schrodl, Heuristic Search Theory and Applications, Morgan Kaufmann, 2012

[Pearl, 1984]

J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, 1984

[Murphy, 2000]

R. Murphy, An Introduction to Al Robotics, MIT Press, 2000

[Thayer & Ruml, 2007]

J. Thayer, W. Ruml, A Survey of Suboptimal Search Algorithms, University of New Hampshire, 2007

[Sturtevant & Buro, 2005]

N. Sturtevant, M. Buro, *Partial Pathfinding Using Map Abstraction and Refinement*, Proceedings of the 20th national conference on artificial intelligence (AAAI-05), 2005

[Botea et al., 2004]

A. Botea M. Muller, J. Schaeffer, *Near Optimal Hierarchical Path-Finding*, Journal of Game Development, Volume 1, 2004

[Cowlagi, Tsiotras, 2007]

R. Cowlagi, P. Tsiotras, *Beyond Quadtrees: Cell Decompositions for Path Planning using Wavelet Transforms*, Proceedings of the 46th IEEE Conference on Decision and Control, 2007

[Knoblock, 1991]

A. Knoblock, *Automatically Generating Abstractions for Problem Solving*, PhD Thesis, Carnegie Mellon University, 1991