On warm-starting constraint generation methods via machine learning tools for solving mixed-integer programs

Asunción Jiménez-Cordero asuncionjc@uma.es

JOINT WORK WITH: Juan Miguel Morales González Salvador Pineda Morente

oasys.uma.es

XXXIX Congreso Nacional de Estadística e Investigación Operativa (SEIO 2022)

June 8th, 2022

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 755705)

Outline

- 1 Motivation
- 2 Methodology
- 3 Computational Experience
- 4 Conclusions and Further Research

Outline

- Motivation
- 2 Methodology
- 3 Computational Experience
- 4 Conclusions and Further Research

Mixed Integer Linear Programs (MILP) Machine Learning (ML)

Combine knowledge from both worlds

Recent reviews: Bengio et al. [2021]; Gambella et al. [2021]

Outline

- 1 Motivation
- 2 Methodology
- 3 Computational Experience
- 4 Conclusions and Further Research

$$\begin{cases}
\min_{\boldsymbol{z} \in \mathbb{R}^n \times \mathbb{Z}^q} \boldsymbol{c}^T \boldsymbol{z} \\
\text{s.t. } \boldsymbol{a}_j^T \boldsymbol{z} \leq b_j, \quad \forall j \in \mathcal{J}
\end{cases}$$

- $\bullet \ \theta = \{c, a_j, b_j, \forall j \in \mathcal{J}\}.$
- $P_{\theta}[\mathcal{J}]$ bounded and feasible.
- Optimal solution $z_{\theta}^*[\mathcal{J}]$ is a singleton.

$$(P_{m{ heta}}[\mathcal{J}]) \qquad \qquad \begin{cases} \min_{m{z} \in \mathbb{R}^n imes \mathbb{Z}^q} m{c}^T m{z} \\ ext{s.t. } m{a}_j^T m{z} \leq b_j, \quad orall j \in \mathcal{J} \end{cases}$$

- NP-hard. Very difficult to solve.
- Pure optimization-based strategy: Constraint generation (CG), *Minoux* [1989].
- Iterative process. Unaffordable in online applications.

$$\begin{cases}
\min_{\boldsymbol{z} \in \mathbb{R}^n \times \mathbb{Z}^q} \boldsymbol{c}^T \boldsymbol{z} \\
\text{s.t. } \boldsymbol{a}_j^T \boldsymbol{z} \leq b_j, \quad \forall j \in \mathcal{J}
\end{cases}$$

- Apply ML to alleviate computational burden in CG.
- Enhacing performance in MILPs.
- Learning from the information of previously solved instances.
- Providing a *qood* warm-start.
- Reducing number of iterations in CG.
- Reducing computational time in MILPs.

$$\begin{cases}
\min_{\boldsymbol{z} \in \mathbb{R}^n \times \mathbb{Z}^q} \boldsymbol{c}^T \boldsymbol{z} \\
\text{s.t. } \boldsymbol{a}_j^T \boldsymbol{z} \leq b_j, \quad \forall j \in \mathcal{J}
\end{cases}$$

- Literature: only use information from the binding constraints, i.e., $\boldsymbol{a}_{i}^{T}\boldsymbol{z}^{*}=b_{i}$.
- Not enough when integer variables appear.
- Some non-binding constraints should be included. Need to define *invariant constraint set*.

Invariant Constraint Set, \mathcal{S}

According to Calafiore [2010]:

$$\mathcal{S} \subset \mathcal{J} \text{ s.t. } c^T z_{\theta}^*[\mathcal{S}] = c^T z_{\theta}^*[\mathcal{J}]$$

The integrality of the decision variables is crucial to find out which constraints belong to S.

Binding constraints

$$\mathcal{B} = \{j \in \mathcal{J}: \boldsymbol{a}_j^T \boldsymbol{z}_{\theta}^*[\mathcal{J}] = b_j\}$$

$$\mathcal{S} = \mathcal{B}$$

Binding constraints

$$\mathcal{B} = \{j \in \mathcal{J} : \boldsymbol{a}_j^T \boldsymbol{z}_{\theta}^*[\mathcal{J}] = b_j\}$$

$$\mathcal{S} = \mathcal{B}$$

Binding constraints

$$\mathcal{B} = \{j \in \mathcal{J}: \boldsymbol{a}_j^T \boldsymbol{z}_{\theta}^*[\mathcal{J}] = b_j\}$$

$$\mathcal{S} = \mathcal{B}$$

Binding constraints

$$\mathcal{B} = \{j \in \mathcal{J} : oldsymbol{a}_j^T oldsymbol{z}_{ heta}^* [\mathcal{J}] = b_j \}$$

Some non-binding constraints also belong to S.

$$S = B$$

- Finding S is challenging in MILPs.
- For each train instance t, we look for S_t , including some of the non-binding constraints.
- And reduced MILP $P_{\theta_t}[S_t]$ is solved.

How to find S_t ?

Algorithm Identifying an invariant constraint set for each instance t

- 0) Initialize $S_t = \mathcal{B}_t$.
- 1) Solve $P_{\boldsymbol{\theta_t}}[\mathcal{S}_t]$ with solution $\boldsymbol{z_{\boldsymbol{\theta_t}}^*[\mathcal{S}_t]}$.
- 2) If $\boldsymbol{z}_{\boldsymbol{\theta}_t}^*[\mathcal{S}_t]$ is infeasible for $P_{\boldsymbol{\theta}_t}[\mathcal{J}]$, go to step 3). Otherwise, stop.
- 3) $S_t := S_t \cup \{j \in \mathcal{J} \setminus S_t : j \text{ is the most violated constraint}\},$ go to step 1).

Recap

Advantages

- Based on CG. Crucial constraints are included.
- Optimality and feasibility guarantees of CG are preserved.
- Reducing number of iterations of CG.
- Maybe only one iteration.
- Independent on the ML method used.
- ullet Identifying ${\mathcal S}$ and training ML is performed offline.

Outline

- Motivation
- 2 Methodology
- 3 Computational Experience
- 4 Conclusions and Further Research

Experimental Setup

- \bullet Binary classification problem. knn.
- Label $s_i^t = \pm 1$ depending on inclusion on \mathcal{S}_t .
- We choose to be conservative when including constraints.
- Synthetic and real-world applications.

Two comparative approaches

Unit Commitment problem

$$\begin{cases} \min_{\boldsymbol{x} \in \mathbb{R}^n, \, \boldsymbol{y} \in \{0, 1\}^n} \sum_{i=1}^n c_i x_i \\ \text{s.t. } \sum_{i=1}^n x_i = \sum_{i=1}^n d_i, \\ -f_j \le \sum_{i=1}^n a_{ij} (x_i - d_i) \le f_j, \quad j = 1, \dots, m \\ l_i y_i \le x_i \le u_i y_i, \quad i = 1, \dots, n \end{cases}$$

- $\theta = d$.
- n = 96.
- $m = 120 \ (240 \ \text{constraints}).$
- T = 8640 (Leave-one-out).

	k	$\left[C_{min},C_{max}\right]$	$\left[I_{min},I_{max}\right]$	$P_1(\%)$	$\Delta(\%)$
CG	-	[0, 22]	[1, 23]	9.16	188.38
$\mathcal{B}+\mathrm{CG}$	5	[0, 23]	[1, 8]	54.40	74.09
	20	[0, 26]	[1, 5]	68.28	62.35
	100	[0, 29]	[1, 5]	83.70	54.62
s+cG	5	[0, 26]	[1, 5]	92.66	44.84
	20	[0, 29]	[1, 4]	98.81	42.83
	100	[0, 32]	[1, 3]	99.71	44.41

• C: constr. • I: iterat. • P_1 : one iteration. • Δ : time wrt MILP solver.

	k	$\left[C_{min},C_{max}\right]$	$\left[I_{min},I_{max}\right]$	$P_1(\%)$	$\Delta(\%)$
CG	-	[0, 22]	[1, 23]	9.16	188.38
$\mathcal{B}+\mathrm{CG}$	5	[0, 23]	[1, 8]	54.40	74.09
	20	[0, 26]	[1, 5]	68.28	62.35
	100	[0, 29]	[1, 5]	83.70	54.62
$\mathcal{S}+CG$	5	[0, 26]	[1, 5]	92.66	44.84
	20	[0, 29]	[1, 4]	98.81	42.83
	100	[0, 32]	[1, 3]	99.71	44.41

• C : constr. • I: iterat. • P_1 : one iteration. • Δ : time wrt MILP solver.

Pure optimization-based tools worse than MILP solver

	k	$\left[C_{min},C_{max}\right]$	$\left[I_{min},I_{max}\right]$	$P_1(\%)$	$\Delta(\%)$
CG	-	[0, 22]	[1, 23]	9.16	188.38
$\mathcal{B}+\mathrm{CG}$	5	[0, 23]	[1, 8]	54.40	74.09
	20	[0, 26]	[1, 5]	68.28	62.35
	100	[0, 29]	[1, 5]	83.70	54.62
$\mathcal{S}+\mathrm{CG}$	5	[0, 26]	[1, 5]	92.66	44.84
	20	[0, 29]	[1, 4]	98.81	42.83
	100	[0, 32]	[1, 3]	99.71	44.41

• C : constr. • I: iterat. • P_1 : one iteration. • Δ : time wrt MILP solver.

Larger values of k imply more constraints (more conservative).

	k	$[C_{min}, C_{max}]$	$\left[I_{min},I_{max}\right]$	$P_1(\%)$	$\Delta(\%)$
CG	-	[0, 22]	[1, 23]	9.16	188.38
$\mathcal{B}+\mathrm{CG}$	5	[0, 23]	[1, 8]	54.40	74.09
	20	[0, 26]	[1, 5]	68.28	62.35
	100	[0, 29]	[1, 5]	83.70	54.62
S+CG	5	[0, 26]	[1, 5]	92.66	44.84
	20	[0, 29]	[1, 4]	98.81	42.83
	100	[0, 32]	[1, 3]	99.71	44.41

• C : constr. • I: iterat. • P_1 : one iteration. • Δ : time wrt MILP solver.

Computational gains in both approaches.

	k	$\left[C_{min},C_{max}\right]$	$\left[I_{min},I_{max}\right]$	$P_1(\%)$	$\Delta(\%)$
CG	-	[0, 22]	[1, 23]	9.16	188.38
$\mathcal{B}+\mathrm{CG}$	5	[0, 23]	[1, 8]	54.40	74.09
	20	[0, 26]	[1, 5]	68.28	62.35
	100	[0, 29]	[1, 5]	83.70	54.62
$\mathcal{S}+CG$	5	[0, 26]	[1, 5]	92.66	44.84
	20	[0, 29]	[1, 4]	98.81	42.83
	100	[0, 32]	[1, 3]	99.71	44.41

• C : constr. • I: iterat. • P_1 : one iteration. • Δ : time wrt MILP solver.

Few extra constraints in S-learner. Large time improvements.

	k	$[C_{min}, C_{max}]$	$[I_{min}, I_{max}]$	$P_1(\%)$	$\Delta(\%)$
CG	-	[0, 22]	[1, 23]	9.16	188.38
$\mathcal{B}+\mathrm{CG}$	5	[0, 23]	[1, 8]	54.40	74.09
	20	[0, 26]	[1, 5]	68.28	62.35
	100	[0, 29]	[1, 5]	83.70	54.62
$\mathcal{S}+CG$	5	[0, 26]	[1, 5]	92.66	44.84
	20	[0, 29]	[1, 4]	98.81	42.83
	100	[0, 32]	[1, 3]	99.71	44.41

• C : constr. • I: iterat. • P_1 : one iteration. • Δ : time wrt MILP solver.

Adding constraints is not enough (k = 20 vs k = 5)

	k	$\left[C_{min},C_{max}\right]$	$\left[I_{min},I_{max}\right]$	$P_1(\%)$	$\Delta(\%)$
CG	-	[0, 22]	[1, 23]	9.16	188.38
$\mathcal{B}+\mathrm{CG}$	5	[0, 23]	[1, 8]	54.40	74.09
	20	[0, 26]	[1, 5]	68.28	62.35
	100	[0, 29]	[1, 5]	83.70	54.62
S+CG	5	[0, 26]	[1, 5]	92.66	44.84
	20	[0, 29]	[1, 4]	98.81	42.83
	100	[0, 32]	[1, 3]	99.71	44.41

• C: constr. • I: iterat. • P_1 : one iteration. • Δ : time wrt MILP solver.

 $\approx 100\%$ of the instances are optimally solved with one iteration (P_1) .

More details

Machine-learning-aided warm-start of constraint generation methods for online mixed-integer optimization

> Asunción Jiménez-Cordero", Juan Miguel Morales, Salvador Pineda OASYS Group. Ada Byron Research Building, Arquitecto Francisco Peñalcos Sc., 18, 29010, University of Miloga, Miloga, Spain

Abstract

Mixed froeger Linear Programs (LHIF) are well known to be NP-hard problems in general. From though pure optimization, based methods, so the contenting generation, are guaranteed to provide an optimal solution if enough time is given, their use in online applications is still a great challenge due to their near econovir time requirements. To alleviate their computational broaden, some metholic learning tendingless have been proposed in the literature, using the informational provided by previously whole MLIF instances. Unfortunately, those techniques report a non-negligible percentage of infossible or subscriptional broaden, and the subscription of the subscription of the previously whole MLIF instances. Unfortunately, those techniques report a non-negligible percentage of infossible or subscription between the proposal contributions of the proposal contribution of the prop

By limiting mathematical optimization and matchine issuring, this paper proposes a nord approach that speeds up the multifixinal constraint, generation metabol, preserving facilitative and optimizalty guarantees. In particular, we first identify offline the scalled invariant constraint set of past MILP limitances. We then train (also offline) a machine branting method to lears an invariant constraint set as a function of the problem parameters of each instance. Next, we predict callice an invariant constraint set of the new unness MILP application and use it to initialize the constraint generation method. This summatured strategy significantly reduces the number of iterations to reach optimizalty, and therefore, the computational bradents to solve offine on-MILP problem is significantly reduced. Very importantly, the proposed nethodology inherits the familities and optimizing guarantees of the traditional constraint generation method. The computational performance of the proposed approach is quantified through restrict and realids MILP applications.

Kegwords: Mixed integer linear programming, machine learning, constraint generation, warm-start, feasibility and optimality guarantees

Available at:

https://www.researchgate.net/publication/350371853_ Machine-learning-aided_warm-start_of_constraint_ generation_methods_for_online_mixed-integer_optimization

IN ME

Outline

- 1 Motivation
- 2 Methodology
- 3 Computational Experience
- 4 Conclusions and Further Research

Conclusions

- Approach which combines MILPs and ML.
- Warm-start in CG algorithm.
- Keeping optimality and feasibility guarantees of CG.
- Reduce computational burden.
- Tested on synthetic and real-world applications.

Conclusions

- Approach which combines MILPs and ML.
- Warm-start in CG algorithm.
- Keeping optimality and feasibility guarantees of CG.
- Reduce computational burden.
- Tested on synthetic and real-world applications.

Further research

- Other input parameters.
- Introduce expert-knowledge information.

References

- Bengio, Y., Lodi, A., and Prouvost, A. (2021). Machine learning for combinatorial optimization: A methodological tour d'horizon. European Journal of Operational Research, 290(2):405-421, doi:10.1016/j.ejor.2020.07.063.
- Calafiore, G. C. (2010). Random convex programs. SIAM Journal on Optimization, 20(6):3427–3464, doi:10.1137/090773490.
- Gambella, C., Ghaddar, B., and Naoum-Sawaya, J. (2021). Optimization problems for machine learning: A survey. European Journal of Operational Research, 290(3):807-828, doi:10.1016/j.ejor.2020.08.045.
- Karapetyan, D., Punnen, A. P., and Parkes, A. J. (2017). Markov chain methods for the bipartite boolean quadratic programming problem. European Journal of Operational Research, 260(2):494-506, doi:10.1016/j.ejor.2017.01.001.
- Kool, W., Van Hoof, H., and Welling, M. (2019). Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475.
- Kruber, M., Lübbecke, M. E., and Parmentier, A. (2017). Learning when to use a decomposition. In Salvagnin, D. and Lombardi, M., eds., Integration of AI and OR Techniques in Constraint Programming, pages 202–210. Springer International Publishing.
- Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., and Lodi, A. (2018). Predicting tactical solutions to operational planning problems under imperfect information. arXiv preprint arXiv:1807.11876.
- Liberto, G. D., Kadioglu, S., Leo, K., and Malitsky, Y. (2016). DASH: Dynamic approach for switching heuristics. European Journal of Operational Research, 248(3):943–953, doi:10.1016/j.ejor.2015.08.018.
- Lodi, A. and Zarpellon, G. (2017). On learning and branching: A survey. TOP, 25(2):207–236, doi:10.1007/s11750-017-0451-6.
- Minoux, M. (1989). Networks synthesis and optimum network design problems: Models, solution methods and applications. Networks, 19(3):313-360, doi:10.1002/net.3230190305.
- Pineda, S., Morales, J. M., and Jiménez-Cordero, A. (2020). Data-driven screening of network constraints for unit commitment. *IEEE Transactions on Power Systems*, 35(5):3695–3705, doi:10.1109/TPWRS.2020.2980212.

On warm-starting constraint generation methods via machine learning tools for solving mixed-integer programs

Asunción Jiménez-Cordero asuncionjc@uma.es

JOINT WORK WITH: Juan Miguel Morales González Salvador Pineda Morente

Thank you very much for your attention!

oasys.uma.es

XXXIX Congreso Nacional de Estadística e Investigación Operativa (SEIO 2022)

June 8th, 2021

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 755705)