

PGE 338 Data Analytics and Geostatistics

Lecture 8: Bivariate Distributions

Lecture outline . . .

- Bivariate Statistics
- Correlation

Introduction

General Concepts

Univariate

Bivariate

Correlation

Regression

Model Checking

Time Series Analysis

Spatial Analysis

Machine Learning

Uncertainty Analysis

Michael Pyrcz, The University of Texas at Austin

Motivation

We deal with more than one variable or feature?

We must use calculate bivariate statistics and use them in our models.

Note, 'bivariate' is pertaining to 2 variables or features at a time

Univariate and bivariate distributions (modified from ElenaPhys on StackOverflow).

PGE 338 Data Analytics and Geostatistics

Lecture 8: Bivariate Distributions

Lecture outline . . .

Bivariate Statistics

Introduction

General Concepts

Univariate

Bivariate

Correlation

Regression

Model Checking

Time Series Analysis

Spatial Analysis

Machine Learning

Uncertainty Analysis

Michael Pyrcz, The University of Texas at Austin

Bivariate Analysis: Understand and quantify the relationship between two variables

- Example: Porosity and permeability data
- How can we use this relationship?
 What would we miss if we only looked at the 2 histograms?
- Is there a realizationship between permeability and porosity?

?

Bivariate Analysis: Understand and quantify the relationship between two variables

- Example: Porosity and permeability data
- How can we use this relationship?
 What would we miss if we only looked at the 2 histograms?
- Is there a realizationship between permeability and porosity?

No Relationship / Independence

Bivariate Analysis: Understand and quantify the relationship between two variables

- Example: Porosity and permeability data
- How can we use this relationship?
 What would we miss if we only looked at the 2 histograms?
- Is there a realizationship between permeability and porosity?

Positive Relationship as Porosity Increases, Permeability Increases

Bivariate Analysis: Understand and quantify the relationship between two variables

- Example: Porosity and permeability data
- How can we use this relationship?
 What would we miss if we only looked at the 2 histograms?
- Is there a realizationship between permeability and porosity?

Now Look at The Data!

0.000 0.002 0.004 0.006 0.008 0.010

Density

Permeability vs. Porosity

Porosity (%)

Bivariate Analysis: Understand and quantify the relationship between two variables

- Example: Porosity and permeability data
- How can we use this relationship?
 What would we miss if we only looked at the 2 histograms?
- Is there a realizationship between permeability and porosity?

Now Look at The Data!
Positive Relationship and...

Bivariate Analysis: Understand and quantify the relationship between two variables

- Example: Porosity and permeability data
- How can we use this relationship?
 What would we miss if we only looked at the 2 histograms?
- Is there a realizationship between permeability and porosity?

Now Look at The Data!

Positive Relationship and
We Could Model It with Conditional
Distributions!

Bivariate Analysis: Understand and quantify the relationship between two variables

- Example: Porosity and permeability data
- How can we use this relationship?
 What would we miss if we only looked at the 2 histograms?
- Is there a realizationship between permeability and porosity?

Now Look at The Data!

Positive Relationship and

Multiple Facies / Populations

We use all of this to build better subsurface models.

Porosity and permeability PDFs univariate and bivariate (schematic) plot modified from PythonDataBasics_Bivariate _Visualization.ipynb.

Permeability vs. Porosity

How to Quantify Relationship between two Variables?

Bivariate Analysis: Quantifying the strength of the relationship between 2 features

- Example: porosity and permeability data from a carbonate and a sandstone formation.
- In which case are the features X1 and X2 best correlated? I.e., a stronger relationship?

Univariate and bivariate distributions for 3 data sets, generated with Interative_Correlation_Coefficient.ipynb.

PGE 338 Data Analytics and Geostatistics

Lecture 8: Bivariate Distributions

Lecture outline . . .

Correlation

Introduction

General Concepts

Univariate

Bivariate

Correlation

Regression

Model Checking

Time Series Analysis

Spatial Analysis

Machine Learning

Uncertainty Analysis

Michael Pyrcz, The University of Texas at Austin

Bivariate StatisticsPearson's Correlation Coefficient

How Do We Quantify the Relationships Between 2 Features, Bivariate Relationships?

We need to go beyond qualitative descriptions, good, bad, strong, weak, none...

Bivariate StatisticsPearson's Correlation Coefficient

Definition: Pearson's Product-moment Correlation Coefficient ($\rho_{X,Y}$)

Provides a measure of the degree of linear relationship.

• Correlation coefficient is a "standardized" covariance. The covariance ($C_{X,Y}$):

Covariance:
$$C_{X,Y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)}$$
 Correlation Coefficient: $\rho_{X,Y} = \frac{C_{X,Y}}{\sigma_X \sigma_Y}$

Correlation coefficient is covariance standardized by dividing by $\sigma_X \sigma_Y$

Bivariate StatisticsVariance and Covariance

We can see that covariance and variance are related.

1. Sample Variance:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{N} (x_{i} - \bar{x})(x_{i} - \bar{x})$$

A measure of how 1 variable varies with itself.

2. Sample Covariance:

Replace the second term in the square with another feature.

$$C_{xy} = \frac{1}{n-1} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

A measure of how 2 features vary together.

Bivariate StatisticsSpearman's Rank Correlation Coefficient

Definition: Spearman's Rank Correlation Coefficient

Provides a measure of the degree of monotonic relationship.

- Rank transform, e.g. R_{x_i} , sort the data in ascending order and replace the data with the index, i = 1, ..., n.
- Spearman's rank correlation coefficient is more robust in the presence of outliers and some nonlinear features than the Pearson's correlation coefficient

Covariance

Let's think about covariance.

 For a thought experiment, consider 2 standard normal variables, N[0,1].

$$C_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)}$$

the means, $\bar{x} = \bar{y} = 0$:

$$C_{xy} \sim E\{X|Y\}$$
 and $\rho_{xy} \sim \frac{E\{X|Y\}}{\sigma_x \sigma_y}$

- Positive covariance / correlation if we pair highhigh and low-low feature values over the samples.
- Negative covariance / correlation if we pair highlow and low-high feature values over the samples.

Interactive Correlation Demonstration

What does correlation coefficient actually see?

- The correlation coefficient measure linear, homoscedastic relationships between 2 features.
- For the bivariate Gaussian distribution the correlation coefficient completely describes the relationship between features.

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho_{x,y}^2}} \exp\left[-\frac{z}{2(1-\rho_{x,y}^2)}\right]$$

where:

$$z = \frac{(x - \mu_x)^2}{\sigma_x^2} - \frac{2\rho_{x,y}(x - \mu_x)(y - \mu_y)}{\sigma_x \sigma_y} + \frac{(y - \mu_y)^2}{\sigma_y^2}$$

Interactive Correlation demonstration, the file is Interactive_Correlation_Coefficient.ipynb.

Bivariate StatisticsCorrelation and Causation

Does correlation imply causation?

- NO!
- We require a "true experiment" where one variable is manipulated, and others are rigorously controlled!

Here's an example to demonstrate a potential issue of assigning causation based on the observation of correlation.

Plot of frequency of crimes vs. frequency of churches.

Bivariate StatisticsCorrelation and Causation

Does correlation imply causation?

- NO!
- We require a "true experiment" where one variable is manipulated, and others are rigorously controlled!

Here's an example to demonstrate a potential issue of assigning causation based on the observation of correlation.

Plot of frequency of crimes vs. frequency of churches.

Bivariate StatisticsSpurous Correlations

Can correlation be misleading and misused?

Spurious Correlation:

A correlation that seems to be causal but is not.

Due to:

- random chance, too few data, data sampling bias
- outliers or artificial truncation of the data
- confounding features

Confounding Features:

feature not part of the study that is related to both the predictor and response feature

causes spurious correlations

Examples of spurious correlations.

Images from https://www.tylervigen.com/spurious-correlations

Interactive Spurious Correlations

Let's make uncorrelated random features and check their correlations.

- We can plot all feature pairwise correlations in a matrix color coded by very high or low correlations (>0.8 or <-0.8 respectively)
- What happens has the number of data is small and the number of features is large?

Interactive spurious correlations demonstration, the file is Interactive_Spurious_Correlations.ipynb.

Exercise with Pearson's Correlation Coefficient

Prepare the scatterplot of the core porosity and permeability data for formations A and B provided to you. Estimate correlation coefficient in both cases. How well is porosity and permeability are correlated in these two formations?

Excel Function Correl(Array1, Array2)

Can I derive a correlation between porosity and permeability? How reliable that correlation would be?

Exercise with Pearson's Correlation Coefficient

Prepare the scatterplot of the core porosity and permeability data for formations A and B provided to you. Estimate correlation coefficient in both cases. How well is porosity and permeability are correlated in these two formations?

Excel Function Correl(Array1, Array2)

Can I derive a correlation between porosity and permeability? How reliable that correlation would be?

Bivariate StatisticsExercise with Pearson's Correlation Coefficient

Does this nonlinear log transform improve our use / characterization with the correlation coefficient?

Bivariate StatisticsExercise with Pearson's Correlation Coefficient

Does this nonlinear log transform improve our use / characterization with the correlation coefficient?

Exercise with Pearson's Correlation Coefficient

Step 1: Generate a random data set of 19 x and y variables and estimate their correlation coefficient (Hint: Rand() in Excel with N[0,1]).

Excel Function NORM.INV(RAND(),0,1)

Step 2: Now add any desired outlier to the data and estimate the correlation coefficient (see example).

How does this outlier affect the correlation coefficient?

Random data with one bivariate outlier.

Exercise with Pearson's Correlation Coefficient

Step 1: Generate a random data set of 19 x and y variables and estimate their correlation coefficient (Hint: Rand() in Excel with N[0,1]).

Excel Function NORM.INV(RAND(),0,1)

Step 2: Now add any desired outlier to the data and estimate the correlation coefficient (see example).

How does this outlier affect the correlation coefficient?

Random data with one bivariate outlier.

Bivariate StatisticsExercise with Pearson's Correlation Coefficient

Step 3: Apply the rank transform to the dataset (Hint: 21-Rank.Avg() in Excel).

How does this outlier now affect the correlation coefficient?

This is a more robust form of the correlation coefficient called the rank correlation coefficient.

Random data rank transformed with one bivariate outlier.

Bivariate StatisticsExercise with Pearson's Correlation Coefficient

Step 3: Apply the rank transform to the dataset (Hint: 21-Rank.Avg() in Excel).

How does this outlier now affect the correlation coefficient?

This is a more robust form of the correlation coefficient called the rank correlation coefficient.

Random data rank transformed with one bivariate outlier.

Measuring Linear Relationships with the Correlation Coefficient

Correlation / Covariance is a measure of linear relationship

• What is the Correlation / Covariance of $y = x^2$ over range of [-1, 1]?

Bivariate data that have follow a parabola.

Measuring Linear Relationships with the Correlation Coefficient

Correlation / Covariance is a measure of linear relationship

- What is the Correlation / Covariance of $y = x^2$ over range of [-1, 1]?
- Correlation Coefficient $\rho_{x,y} = 0.0!$

$$y = x^2$$
 over range of $[0, 1]$?

• Correlation Coefficient $\rho_{x,y} = 0.98!$

Bivariate data that have follow a parabola.

Interactive Bivariate Outlier Demonstration

Let's make a random data set, and add and adjust a single outlier

 Watch the Pearson and Spearman correlation coefficients as you increase X and then increase Y for the single outlier.

Interactive Outlier demonstration, the file is Interactive_Correlation_Coefficient_Issues.ipynb.

Bivariate Statistics Mixing Populations

Mixing multiple populations may impact correlation coefficients.

Simpson's Paradox

Correlation within multiple groups disappears or reverses when the groups are combined together.

5 groups each with positive correlations.

Combined group with a negative correlation.

Images from Wikipedia gif available at https://commons.wikimedia.org/wiki/File:Simpsons_paradox_-_animation.gif by Pace~svwiki.

Bivariate StatisticsOther Issues Correlation Coefficient

For more than two variables make matrix scatterplots:

- By hand in Excel or packages in R and Python.
- Look for linear / nonlinear features
- Look for homoscedasticity (constant conditional variance) and heteroscedasticity (conditional variance changes with value)
- Look for constraints

Matrix scatter plot with a couple interpretations.

Bivariate StatisticsOther Issues Correlation Coefficient

Correlation Matrix Plot

- look for high and low correlations
- collinearity, variables with the same correlations with the other variables.

Secondary Variables (26)

Primary Variables (39)

Correlation matrix plot from McLennon et al., (2006).

Bivariate Statistics In Excel

Calculating bivariate statistics in Excel demo

- covariance
- Pearson product-moment correlation coefficient
- Spearman rank correlation coefficient

D V		culate statistics in Exc	el.								
1. Raw Well-based Data								2. Yarious Statisl			
			Binned Porosity B			Permeability Power	Porosity Rank	Permeaiblity Rank	Measures of Centrality	Porosity (4)	
0.25	13.0	265.5	13	270	7.78	86.95	68	97	Arithmetic Average / Mean	11.7	161.0
0.50	13.6	116.9	14	120	8.06	45.11	75	32	Median	11.4	144.3
0.75	9.0	136.9	9	140	5.78	51.19	21	47	Mode (most frequent binned)	9.0	130.0
1.00	17.6	216.7	18	220	9.93	73.90	102	85			
1.25	9.4	131.6	9	130	6.02	49.59	31	39	Geometric Mean	11.2	143.4
1.50	4.1	59.1	4	60	3.10	26.14	1	6	Harmonic Mean	10.6	127.2
1.75	11.4	79.4	11	80	7.02	33.10	52	13	Power Law Average	11.6	157.4
2.00	11.7	146.0	12	150	7.17	53.90	54	57			
2.25	16.6	142.7	17	140	9.48	52.90	95	51	Measures of Dispersion		
2.50	6.2 11.7	84.9 135.8	6 12	80	4.30 7.17	34.92 50.85	5 55	18 46	Population Variance	11.1 11.2	6482 6544
	13.2	135.8	12	140 140		50.85 53.41	70	46 54	Sample Variance Population Standard Deviation	11.2 3.3	80.5
3.00	10.2	182.6	10	180	7.86 6.40	64.45	41	71		3.3	80.
3.50	9.6	170.5	10	170	6.10	61.01	35	67	Sample Standard Deviation	3.3	00.
3.75	8.0	83.3	8	80	5.27	34,38	13	15	Range	15.3	529.
	13.6	224.4	14	220	8.09	34.30 75.99	76	86	Percentile EXC	9.1	103.
4.00 4.25	13.6	224.4 151.0	14	220 150	8.09 7.58	15.88 55.34	76 66	58	Percentile EXC Percentile INC	9.1	103.
4.50	13.8	176.4	14	180	8.18	62.70	78	69	Interquartile Range	4.9	104.
4.75	11.3	125.9	11	130	6.94	47.87	50	35	interquartile Hange	4.3	102.
5.00	15.8	227.4	16	230	9.09	76.82	90	87	Tukey Outlier Test		
5.25	7.1	32.7	7	30	4.82	37.46	7	23	P25	9.1	104.
5.50	9.2	83.9	ė	80	5.90	34.59	29	16	P75	14.0	206
5.75	15.9	156.1	16	160	9.15	56.84	92	60	Interguartile Range	4.9	102.
6.00	11.8	187.9	12	190	7.19	65.94	58	74	Lower Fence	1.7	-43.
6.25	6.8	129.1	7	130	4.65	48.82	6	38	Upper Fence	21.4	360.
6.50	8.6	171.4	9	170	5.60	61.26	17	68	Number Outliers	0	2
6.75	12.4	128.9	12	130	7.48	48.77	63	37			
7.00	7.1	102.7	7	100	4.82	40.67	8	25	Measures of Shape		
7.25	9.0	77.5	9	80	5.81	32.48	23	11	Skew (standardized, sample)	0.2	1.6
7.50	10.1	117.6	10	120	6.34	45.33	39	33	Excess Kurtosis (standardized, sample) -0.5	5.5
7.75	9.2	58.8	9	60	5.89	26.04	28	5	Pearson' Mode Skewness	8.0	0.4
8.00	11.4	65.6	11	70	7.02	28.40	53	9	Quartile Skew Coefficient	0.1	0.2
8.25	8.1	77.8	8	80	5.36	32.55	15	12			
8.50	8.1	138.8	8	140	5.31	51.76	14	49			
8.75	10.7	116.6	11	120	6.64	45.01	45	31	Bivariate Statistics		
9.00	18.5	213.7	19	210	10.30	73.10	104	82			
9.25	9.1	54.3	9	50	5.83	24.43	26	3	Population Covariance	171.4	
9.50	14.8	190.9	15	190	8.64	66.78	84	75	Sample Covariance	173.1	
9.75	8.9	61.0	9	60	5.75	26.81	19	7	Sample Correlation	0.64	
10.00	10.5	205.1	11	210	6.58	70.72	44	78	Sample Rank Correlation	0.65	

File is Basic_Statistics_Demo.xlsx.

Bivariate Statistics In Python

Calculating bivariate statistics in Python demo

- covariance
- Pearson product-moment correlation coefficient
- Spearman rank correlation coefficient

Data Analytics

Basic Bivariate Statistics in Python

Michael Pyrcz, Associate Professor, University of Texas at Austin

Twitter | GitHub | Website | GoogleScholar | Book | YouTube | LinkedIn

Data Analytics: Basic Bivariate Statistics

Here's a demonstration of calculation of bivariate statistics in Python. This demonstration is part of the resources that I include for my courses in Spatial / Subsurface Data Analytics and Geostatistics at the Cockrell School of Engineering and Jackson School of Goesciences at the University of Texas at Austin.

We will cover the following statistics:

Bivariate Statistics

- Covariances
- . Pearson Product Momment Correlation Coefficient
- . Spearman Rank Correlation Coefficient

I have a lecture on these bivariate statistics available on YouTube

File is PythonDataBasics_Bivariate_Statistics.ipynb.

PGE 338 Data Analytics and Geostatistics

Lecture 8: Bivariate Distributions

Lecture outline . . .

- Bivariate Statistics
- Correlation

Introduction

General Concepts

Univariate

Bivariate

Correlation

Regression

Model Checking

Time Series Analysis

Spatial Analysis

Machine Learning

Uncertainty Analysis

Michael Pyrcz, The University of Texas at Austin