Ex. No. : 4.1 Date: 12.04.24

Register No.: 231401029 Name: Ernita Poobalarayan

Factors of a number

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number).

For example:

Input	Result
292	1
1015	2
108	3
22	0

PROGRAM

def digits (n):
 count=0
 for digit in range (10):
 if str(n).count(str(digit))==1:
 count+=1
 return count
 n=int (input ())
 print(digits (n))

	Input	Expected	Got	
~	292	1	1	~
~	1015	2	2	~
~	108	3	3	~
~	22	0	0	~
Passe	d all tes	ts! 🗸		

Ex. No. : 4.2 Date: 14.04.24

Register No.: 231401029 Name: Ernita Poobalarayan

Non Repeated Digit Count

Write a program to find the count of non-repeated digits in a given number N. The number will be passed to the program as an input of type int.

Assumption: The input number will be a positive integer number ≥ 1 and ≤ 25000 . Some examples are as below.

If the given number is 292, the program should return 1 because there is only 1 non-repeated digit '9' in this number

If the given number is 1015, the program should return 2 because there are 2 non-repeated digits in this number, '0', and '5'.

If the given number is 108, the program should return 3 because there are 3 non-repeated digits in this number, '1', '0', and '8'.

If the given number is 22, the function should return 0 because there are NO non-repeated digits in this number.

Example 1: if the given number N is 7, the method must return 2

Example 2: if the given number N is 10, the method must return 1

For example:

Input	Result
7	2

Input	Result
10	1

Program

n=int (input ())
f=0
for i in range (2, n) :
if n%i==0:
f=1
Break
if f==1:

else : print(2)

print(1)

	Input	Expected	Got	
~	7	2	2	~
~	10	1	1	~

Ex. No. : 4.3 Date: 14.04.24

Register No.: 231401029 Name: Ernita Poobalarayan

Prime Checking

Write a program that finds whether the given number N is Prime or not. If the number is prime, the program should return 2 else it must return 1.

Assumption: $2 \le N \le 5000$, where N is the given number.

Input Format:

Integer input from stdin.

Output Format:

Perfect square greater than N.

Example Input:

10

Output:

16

Program

def square (n):

if(n%4==0):

return "Yes"

else:

return "No"

n=int (input ())

print (square (n))

		Input	Expected	Got	
	~	10	16	16	~
ı	Passe	d all tes	ts! 🗸		

Ex. No. : 4.4 Date:14.04.24

Register No.: 231401029 Name: Ernita Poobalarayan

Next Perfect Square

Given a number N, find the next perfect square greater than N.

NOTE: Fibonacci series looks like -

```
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . and so on.
```

i.e. Fibonacci series starts with 0 and 1, and continues generating the next number as the sum of the previous two numbers.

- first Fibonacci number is 0,
- second Fibonacci number is 1,
- third Fibonacci number is 1,
- fourth Fibonacci number is 2,
- fifth Fibonacci number is 3,
- sixth Fibonacci number is 5,
- seventh Fibonacci number is 8, and so on.

For example:

Input:

7

Output

8

Program

```
import math
```

n=int(input ())

n1=math.sqrt(n)

n2=n1+1

m=int (n2)

print (m**2)

	Input	Expected	Got	
~	1	0	0	~
~	4	2	2	~
~	7	8	8	~
Pass	ed all tes	its! 🗸		

Ex. No. : 4.5 Date: 14.04.24

Register No.: 231401029 Name: Ernita Poobalarayan

Nth Fibonacci

Write a $\frac{program}{program}$ to return the nth number in the fibonacci series. The value of N will be passed to the $\frac{program}{program}$ as input.

Input Format:

Single Integer Input from stdin.

Output Format:

Yes or No.

Example Input:

175

Output:

Yes

Explanation

 $1^1 + 7^2 + 5^3 = 175$

Example Input:

123

Output:

No

For example:

Input Result

175 Yes

123 No

Program

n=int (input ())

if n<2:

print (n-1)

else:

n=n-1

fs= [0,1]

for i in range (1, n):

print(fs [n])

s.append(fs[i]+fs[i-1])

print(fs[n])

	Input	Expected	Got			
~	175	Yes	Yes	~		
~	123	No	No	~		
Passed all tests! ✓						

Ex. No. : 4.6 Date: 14.04.24

Register No.: 231401029 Name: Ernita Poobalarayan

Disarium Number

A Number is said to be Disarium number when the sum of its digit raised to the power of their respective positions becomes equal to the number itself. Write a <u>program</u> to print number is Disarium or not.

```
Sample Test Cases
Test Case 1
Input
4
Output
1234
Explanation:
as input is 4, have to take 4 terms.
```

Test Case 2

1 + 11 + 111 + 1111

Input

6

Output

123456

For example:

Input	Result
3	123

Program

```
import math
a=int (input ( ))
b= (pow(10, a+1) -10-9*a) /81
print(' {:.0f}'.format (b))
```

	Input	Expected	Got	
~	4	1234	1234	~
~	6	123456	123456	~

Ex. No. : 4.7 Date: 14.04.24

Register No.: 231401029 Name: Ernita Poobalarayan

Sum of Series

Write a program to find the sum of the series $1 + 11 + 111 + 1111 + \dots + n$ terms (n will be given as input from the user and sum will be the output)

For example:

Input	Result
292	2
1015	3

Program

Def digit(N):

Return len(set(str(N)))

N=int(input())

Print(digit(N))

292 2 1015 3 3 3		Input	Expected	Got	
✓ 1015 3 3 ✓	~	292	2	2	~
	~	1015	3	3	~
✓ 123 3 ✓	~	123	3	3	~

Ex. No. : 4.8 Date:14.04.24

Register No.: 231401029 Name: Ernita Poobalarayan

Unique Digit Count

Write a program to find the count of unique digits in a given number N. The number will be passed to the program as an input of type int.

Assumption: The input number will be a positive integer number ≥ 1 and ≤ 25000 . For e.g.

If the given number is 292, the program should return 2 because there are only 2 unique digits '2' and '9' in this number

If the given number is 1015, the program should return 3 because there are 3 unique digits in this number, '1', '0', and '5'.

```
Input Format:
      Single Integer input.
      Output Format:
      Output displays Yes if condition satisfies else prints No.
      Example Input:
      14
      Output:
      Yes
      Example Input:
      13
      Output:
      No
Program
a=int (input ())
if a%2==0 or a%3=-0 or a%5==0 or a%7==0 or a%9==0:
print("Yes")
else:
print ("No")
```

	Input	Expected	Got	
~	175	Yes	Yes	~
~	123	No	No	~
Passe	d all tes	ts! 🗸		

Ex. No. : 4.9 Date: 14.04.24

Register No.: 231401029 Name: Ernita Poobalarayan

$\underline{Product\ of\ single\ digit}$

Given a positive integer N, check whether it can be represented as a product of single digit numbers.

Input Format:

Single integer input.

Output Format:

Yes or No.

Example Input:

24

Output:

Yes

Example Input:

26

Output:

No

For example:

Input	Result
24	Yes

Program

def square(n):

if (n%4=-0):

return

else

return 'No'

n=int (input ())

print (square (n))

Ex. No. : 4.10 Date:14.04.24

Register No.: 231401029 Name: Ernita Poobalarayan

Perfect Square After adding One

Given an integer N, check whether N the given number can be made a perfect square after adding 1 to it.

```
Program

def square (n):

if(n%4==0):

return "Yes"

else:

return "No"

n=int (input ( ))

print (square (n))
```

	Input	Expected	Got	
~	24	Yes	Yes	~
~	26	No	No	~