What is claimed is:

5

10

20

30

- 1. A capacitor of a semiconductor device, the capacitor comprising: a capacitor lower electrode on a semiconductor substrate;
- a dielectric layer on the lower electrode, remote from the semiconductor substrate; and

an upper electrode on the dielectric layer,

wherein the upper electrode comprises a metallic layer on the dielectric layer, remote from the lower electrode, and an $Si_{1-x}Ge_x$ layer on the metallic layer, remote from the dielectric layer.

- 2. The capacitor of Claim 1, wherein the lower electrode comprises a doped polysilicon layer.
- 15 3. The capacitor of Claim 2, wherein the dielectric layer comprises an HfO₂ layer, an Al₂O₃ layer and/or an Al₂O₃/HfO₂ composite layer.
 - 4. The capacitor of Claim 1, wherein the lower electrode comprises a metallic layer.
 - 5. The capacitor of Claim 4, wherein the dielectric layer comprises an HfO_2 layer, an Al_2O_3 layer, an Al_2O_3/HfO_2 composite layer, an HfO_2/Al_2O_3 layer, a $SrTiO_3$ layer, and/or a (Ba, Sr) TiO_3 layer.
- 25 6. The capacitor of Claim 1, wherein the Si_{1-x}Ge_x layer comprises a doped polySi_{1-x}Ge_x layer.
 - 7. The capacitor of Claim 6, wherein the doped polySi_{1-x}Ge_x layer is doped with P or As.
 - 8. The capacitor of Claim 6, wherein the doped polySi_{1-x}Ge_x layer is doped with B.

- 9. The capacitor of Claim 8, wherein a doping concentration of B is more than or equal to $1x10^{20}$ /cm³.
 - 10. The capacitor of Claim 1, wherein x satisfies $0.05 \le x \le 0.9$.

5

11. The capacitor of Claim 1, wherein the metallic layer of the upper electrode comprises TiN, WN, TaN, Cu, W, Al, noble metals, an oxide of the noble metals, and/or combinations thereof.

10

12. The capacitor of Claim 1 wherein the capacitor lower electrode comprises a cylinder type capacitor lower electrode.

15

13. A capacitor of a semiconductor device, the capacitor comprising: a cylinder type capacitor lower electrodecomprising a metallic layer, on a semiconductor substrate;

a dielectric layer on the cylinder type lower electrode, remote from the semiconductor substrate; and

an Si_{1-x}Ge_x upper electrode on the dielectric layer, remote from the cylinder type lower electrode.

20

14. The capacitor of Claim 13, wherein the dielectric layer comprises an HfO₂ layer, an Al₂O₃ layer, an Al₂O₃/HfO₂ composite layer, an HfO₂/Al₂O₃ layer, a SrTiO₃ layer, and/or a (Ba, Sr) TiO₃ layer.

25

15. The capacitor of Claim 13, wherein the metallic layer comprises TiN, WN, TaN, Cu, W, Al, noble metals, oxide of the noble metals, and/or combinations thereof.

30

- 16. The capacitor of Claim 13 wherein the Si_{1-x}Ge_x upper electrode comprises a doped polySi_{1-x}Ge_x upper electrode.
- A method of fabricating a capacitor of a semiconductor device, the method comprising:

17.

15

30

forming a capacitor lower electrode on a semiconductor substrate;

forming a dielectric layer on the lower electrode; and sequentially stacking a metallic layer and an Si_{1-x}Ge_x layer on the dielectric layer to form an upper electrode comprising the metallic layer and the Si_{1-x}Ge_x layer.

- 18. The method of Claim 17 wherein the Si_{1-x}Ge_x layer comprises a doped polySi_{1-x}Ge_x layer.
- 19. The method of Claim 18, wherein the doped polySi_{1-x}Ge_x layer is formed by doping a polySi_{1-x}Ge_x layer with P or As.
 - 20. The method of Claim 18, wherein the doped polySi_{1-x}Ge_x layer is formed by doping a polySi_{1-x}Ge_x layer with B.
 - 21. The method of Claim 18, wherein the doped polySi_{1-x}Ge_x layer is formed by depositing a polySi_{1-x}Ge_x layer while simultaneously doping impurities.
- 22. The method of Claim 18, wherein the doped polySi_{1-x}Ge_x layer is deposited and simultaneously activated.
 - 23. The method of Claim 22, wherein the Si_{1-x}Ge_x is deposited and simultaneously activated between about 350°C and about 550°C.
- 25 24. The method of Claim 18, wherein the doped polySi_{1-x}Ge_x layer is deposited and then activation and thermal treatment is performed.
 - 25. The method of Claim 24, wherein activation and thermal treatment is performed between about 400°C and about 550°C.
 - 26. The method of Claim 17, wherein the metallic layer of the upper

10

15

electrode comprises TiN, WN, TaN, Cu, W, Al, noble metals, oxide of the noble metals, and/or combinations thereof.

- 27. The method of Claim 17, wherein the doped polySi_{1-x}Ge_x layer is
 5 formed using low pressure chemical vapor deposition (LP CVD) using furnace type equipment, single wafer type equipment, and/or mini-batch equipment.
 - 28. The method of Claim 17, wherein the lower electrode comprises a metallic layer.
 - 29. A method of fabricating a capacitor of a semiconductor device, the method comprising:

forming a capacitor lower electrode on a semiconductor substrate; forming a dielectric layer on the lower electrode; and forming an Si_{1-x}Ge_x layer on the dielectric layer at about 550°C or less.

30. A method according to Claim 29, further comprising: thermally treating the Si_{1-x}Ge_x layer at about 550°C or less.