APPM 4650 — Floating point arithmetic

Algorithms vs Pseudocode

Definition 0.1 An algorithm is a procedure that describes a finite number of steps to be performed in a specific order. NOTE: There is no mention of problem statement here.

Definition 0.2 A pseudocode is a way of describing an algorithm in a clear consise form. It includes: Input, output and distinct clear steps.

Example: Write a pseudocode for the algorithm of summing N values $\{x_i\}_{i=1}^N$. The algorithm is $S = \sum_{i=1}^{N} x_i$. Solution:

Input: N, $\{x_i\}_{i=1}^N$

Output: S

Step 1: Set S=0. (initialize)

Step 2: for $i = 1, \ldots, N$ do

 $S = S + x_i$ (add terms)

Step 3: Output S.

Our job in this class is to design or choose an algorithm to approximate the solution of a problem. We want this technique to be reliable. What does that mean mathematically?

We would like that if there is a small change in the input data, that there is just a small change in the output data. Such an algorithm is called *stable*. Otherwise the algorithm is called *unstable*.

There are some algorithms that are stable for a class of input data but not all input data. These are called *conditionally stable*.

Example: Consider the following two algorithms:

Algorithm 1: $p_n = c_1(1/3)^n + c_2 3^n$

Algorithm 2: $p_n = \frac{10}{3}p_{n-1} - p_{n-2}$

These algorithms are equivalent (in exact arithmetic) when $p_0 = 1$ and $p_1 = 1/3$. This corresponds to $c_1 = 1$ and $c_2 = 0$. Thus the first algorithm can be simplified to $p_n = (1/3)^n$ for all n.

Now supposed we used 5 digit arithmetic and errors were made in solving for c_1 and c_2 . Let $\hat{c}_1 = 1.0000$ and $\hat{c}_2 = -0.12500 \times 10^{-5}$ denote the approximate coefficients. Then algorithm 1 becomes

$$\hat{p}_n = 1.0000(1/3)^n - 0.12500 \times 10^{-5}(3)^n$$

as $n \to \infty$, $\hat{p}_n \to -\infty$ instead of 0.

The code stability_example illustrates how quickly this error grows.

There is a way to determine if a problem is stable. It is called the condition number. See Section 2.4 of Dahlquist and Björk for more information.

Convergence Rates

Big O vs little o

Definition 0.3 Let f(x) and g(x) be defined in some neighborhood of x = 0.

• We say f(x) = o(q(x)) as $x \to 0$ (little o) if

$$\lim_{x \to o} \left| \frac{f(x)}{g(x)} \right| = 0$$

In other words, $f(x) \to 0$ faster than g(x).

• We say f(x) = O(g(x)) as $x \to 0$ (big O) if there exist a positive constant M such that

$$\left| \frac{f(x)}{g(x)} \right| \le M$$

for all x in some neighborhood of 0. In other words, f(x) and g(x) have the same behavior up to a constant around 0.

Example: Verify that $\epsilon^2 \log(\epsilon) = o(\epsilon)$ as $\epsilon \to 0^+$.

Solution:

$$\lim_{\epsilon \to 0^+} \frac{\epsilon^2 \log(\epsilon)}{\epsilon} = \lim_{\epsilon \to 0^+} \epsilon \log(\epsilon)$$

$$\lim_{\epsilon \to 0^+} \frac{\log(\epsilon)}{1/\epsilon}$$

$$\lim_{\epsilon \to 0^+} \frac{1/\epsilon}{-1/\epsilon^2} \text{ by L'Hopital's rule}$$

$$\lim_{\epsilon \to 0^+} -\epsilon = 0$$

Example: Verify $\sin(\epsilon) = O(\epsilon)$ as $\epsilon \to 0^+$.

Solution: We need to look at $\frac{\sin(\epsilon)}{\epsilon}$. We can add 0 to the top and bottom to get

$$\frac{\sin(\epsilon) - \sin(0)}{\epsilon - 0}$$

Now we can use the mean value theorem.

By the mean value theorem, there exist a number $c \in [0, \epsilon]$ such that

$$\frac{\sin(\epsilon) - \sin(0)}{\epsilon - 0} = \cos(c).$$

This means that

$$|\sin(\epsilon)| \le |\epsilon\cos(c)| \le |\epsilon|$$

since $|\cos(c)| \le 1$.

Therefore $\sin(\epsilon) = O(\epsilon)$.

In this class we will talk about the convergence rates of different algorithms. These are all in terms of big O.

Definition 0.4 Suppose $\{\beta_n\}_{n=1}^{\infty}$ is a sequence known to convergence to 0 and $\{\alpha_n\}_{n=1}^{\infty}$ converges to α . If there exist and constant K such that

$$|\alpha_n - \alpha| \le K|\beta_n|$$

for large n then we say that $\{\alpha_n\}_{n=1}^{\infty}$ converges to α at a rate $O(\beta_n)$. This can be written as $\alpha_n = \alpha + O(\beta_n)$.

Example: Find the rate of convergence of $\sin(1/n)$ as $n \to \infty$.

Solution: We know that close to 0, $\sin(x)$ and x behave roughly the same. Thus we choose to compare $\sin(1/n)$ with 1/n.

Note $\sin(1/n) \le 1/n$ for large n is a re-statement of above. Thus $\sin(1/n) = O(1/n)$.

Definition 0.5 Suppose that $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$. If there exists a positive constant K such that

$$|F(h) - L| \le K|G(h)|$$

for h sufficiently small, then we write F(h) = L + O(G(h)). We will often use $G(h) = h^p$ where p > 0.

Example: Find the rate of convergence of $\lim_{h\to 0} \frac{\sin(h)}{h} = 1$. **Solution:** For this problem we will use the McLaurin expansion of $\sin(h)$. Recall $\sin(h) = h - \frac{h^3}{3!} + \frac{h^5}{5!} + \cdots$.

Thus

$$\left| \frac{\sin(h)}{h} - 1 \right| = \left| \frac{h - \frac{h^3}{3!} + \frac{h^5}{5!} + \dots}{h} - 1 \right|$$

$$= \left| 1 - \frac{h^2}{3!} + \frac{h^4}{5!} + \dots - 1 \right|$$

$$= O(h^2)$$