Roll No	o.:.	• • • • • •										
Invigil	ator	's Si	gnature :	• • • • • • •								
CS / BCA / SEM-2 / BM-201 / 2011												
2011												
MATHEMATICS												
Time A	Alloti	ted :	3 Hours		Full Marks : 70							
Cana	dida		e figures in the margin in tre required to give their as far as pro	ansu	vers in their own words							
Group – A												
(Multiple Choice Type Questions)												
1. C	Choose the correct alternatives f r any ten of the following:											
					10 × 1 = 10							
i)	i) The degree and order of the differential equation											
	$y = \frac{x d^2 y}{dx^2} + r \sqrt{\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}} \text{ are}$											
		a)	2, 2	b)	2, 1							
		c)	3, 2	d)	none of these.							
ii) The geometric series $1+r+r^2+$ is convergent if												
		a)	- 1 < <i>r</i> < 1	b)	<i>r</i> > 1							
		c)	r = 1	d)	none of these.							
ii	i) '	The	series 1 + 1 + 1 + is									
		a)	convergent	b)	divergent							
		c)	oscillatory	d)	none of these.							
2153					[Turn over							

Name:.....

CS / BCA / SEM-2 / BM-201 / 2011

- iv) An absolutely convergent series is
 - a) necessarily convergent
 - b) not necessarily convergent
 - c) conditionally convergent
 - d) none of these.
- v) Leibnitz's test is applied to
 - a) a constant series
 - b) an alternating series
 - c) series of positive terms only
 - d) none of these.
- vi) If W_1 and W_2 be two subspaces of a vector space V(F) then $W_1 \cap W_2$ is
 - a) necessarily a subspace
 - b) not a subspace
 - c) is a ubspace only when one is contained within another
 - d) none of these.
- vii) In the vector space R^3 over the field R the vectors (1,0,0),(0,1,0) and (0,0,1) are
 - a) linearly independent
 - b) linearly dependent
 - c) none of these.

viii)	Inte	grating	factor	of	differential	equation
	x log	$gx\frac{dy}{dx} + y =$	$=2\log x$ is			
	a)	$\log x$		b)	$\log(\log x)$	
	c)	e^{x}		d)	none of these.	

- The upper bound of the sequence $\{(-3)^n\}$ is ix)
 - 3 d) none of these. c)
- If T is a linear mapping for V to V and $\alpha, \beta \in V$ and $\alpha, b \in V$ x) are scalers, then
 - a) $T(a\alpha + b\beta) = aT(\alpha) + bT(\beta)$
 - b) $T(a\alpha + b\beta) = aT(\alpha) bT(\beta)$
 - c) $T(a\alpha + b\beta) = T(\alpha)$
 - d) $T(a\alpha + b\beta) = bT(\beta)$
- xi) The root of the auxiliary equation of the given differential equation $\frac{d^2y}{dx^2} - \frac{4dy}{dx} + 4y = 0$ are
 - a) 2, 4

a)

b) 2, 2

1, 1

- d) none of these.
- xii) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by T(x,y) = (2x - y, x + y). Then kernel of T is
 - a) {(1,2)}
- b) {(0,0)}
- c) $\{(1, 2), (1, -1)\}$ d) none of these.

CS / BCA / SEM-2 / BM-201 / 2011

xiii) If $T: V_2 \to V_3$ be defined by

 $T(v_2) = \{ (x,0,0) : x \text{ is a real number } \}$ then rank of T is

a) 3

b) 2

c) 1

d) 0.

xiv) If T is a linear transformation from vector space V into W, then

- a) $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V)$
- b) $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(W)$
- c) $\operatorname{rank}(T) \operatorname{nullity}(T) = \dim(V)$
- d) none of these.

Group - B

(Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- 2. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
- 3. Show that the mapping defined by $T: \mathbb{R}^2 \to \mathbb{R}^3$ $T(x_1, x_2) = (x_1 + x , x_1 x_2, x_2) \text{ is linear. Find the value of } T(1 2).$
- 4. Solve:

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - x \frac{\mathrm{d}y}{\mathrm{d}x} - 3y = x^2 \log x.$$

- 5. The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by T(x,y,z) = (x-y, x+2y, y+3z). Show that T is invertible and determine T^{-1} .
- 6. Prove that the set of vectors $\{(1, -2, 3), (2, 3, 1), (-1, 3, 2)\}$ is linearly independent. Also verify whether this set forms a basis of V_3 or not.
- 7. Let $S = \{(x, y, z) : (x, y, z) \in \mathbb{R}^3, x + y + z = 0\}$. Prov that S is a subspace. Find the dimension of S.

Group - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 8. a) Find the order and degree of the differential equation $\frac{d^2 y}{dx^2} = \left(y + \left(\frac{dy}{dx}\right)^2\right)^{\frac{1}{4}}$
 - b) Verify whether the differential equation $e^y dx + (xe^y + 2y) dy = 0$ is exact. If so, then solve it.
 - c) Solve the differential equation $x \frac{dy}{dx} 2y = xy^4$.

3 + 5 + 7

- 9. a) Solve $y = px + \frac{a}{p}$ and also obtain the singular solution.
 - b) Solve $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} 5y = \sin(\log x)$.

CS / BCA / SEM-2 / BM-201 / 2011

c) Test the convergence of the series $\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})$.

$$5 + 6 + 4$$

- 10. a) State D' Alembert's ratio test. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$.
 - b) Prove that the series $\left(1+\frac{1}{2}\right)-\left(1+\frac{1}{4}\right)+\left(1+\frac{1}{8}\right)-\left(1+\frac{1}{16}\right)+ \text{ . is an oscillating series.}$
 - c) Verify for the following example that the converse of the statement "If $\sum a_n$ be a onvergent series then

$$\lim_{n \to \infty} a_n = 0 \text{ "is no true, where } \sum a_n = \sum_{n=1}^{\infty} \frac{1}{n}.$$

$$5 + 6 + 4$$

- 11. a) Define basis of a vector space.
 - b) Show that the vectors $\alpha_1 = (1, 0, -1)$, $\alpha_2 = (1, 2, 1)$ and $\alpha_3 = (0, -3, 2)$ form a basis for \mathbb{R}^3 .
 - c) Determine the value of k so that the set $S = \{ (1, 2, 1), (k, 3, 1), (2, k, 0) \}$ is linearly dependent in R^3 . 3 + 6 + 6

2153

- 12. a) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T(x,y,z) = (x-2y,y-2z,z-2x) for $(x,y,z) \in \mathbb{R}^3$. Obtain a matrix representation for the linear transformation T.
 - b) Let $V = \text{ set of all } 2 \times 2 \text{ matrices and } T: V \to V \text{ be}$ defined by T(X) = AX XA where $X \in V$ and $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$. Find the basis of ker (T) and the nullity
 - c) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear m pping defined by T(x, y, z) = (x + 2y, z). Verify that dimension (kernel (T)) + dimension (Image (T)) = dim (\mathbb{R}^3) .
- 13. a) Define a subspace of a vector space.
 - b) State a necessary and sufficient condition for $W \subseteq V$ to be a subspace of V(F).
 - c) Test whe her the series

$$\frac{x}{1+x} - \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} - \frac{x^4}{1+x^4} + \dots (0 < x < 1)$$

is convergent or not.

3 + 3 + 9
