COPIL ArtiSaneFood France

Subhasish Basak

Maison du Lait, Paris Octobre 2, 2023

Agence Nationale de Sécurité Sanitaire (ANSES), Maison-Alfort, France Université Paris-Saclay, CNRS, CentraleSupeléc, L2S, Gif-sur-yvette, France

This work is part of the ArtiSaneFood project (grant number : ANR-18-PRIM-0015) which is part of the PRIMA program supported by the European Union.

Ma thèse

- Durée de contrat : Janvier, 2021 2024
- Encadrants : E. Vazquez, J. Bect, L. Guillier, F. Tenenhaus-Aziza
- Proposition de thèse : Optimisation Bayésienne pour l'appréciation quantitative des risques en microbiologie.
- Idée générale :
 - Améliorer les mesures sanitaires dans la production fromagère
 - Trouver les paramètres optimaux pour les mesure de metrise
 - Réduire simultanément :
 - → le risque de maladie pour les consommateurs
 - \rightarrow le coût des mesures sanitaires pour le producteur

Direction de la recherche

- Construire un modèle pour L'Appréciation Quantitative des Risques
 - Pathogènes :
 - 1. STEC HP
 - 2. Salmonelle
 - 3. Listeria monocytogenes
 - Calcule le risque de maladie et le coût de l'intervention (mesures sanitaires)
- Construire un algorithme d'optimisation
 - Pour les fonctions stochastiques et coûteuses en calcul
 - Optimiser Plusieurs fonctions simultanément
 - Des fonctions contradictoires

AQR - Appréciation Quantitative des Risques

Modèle de base - AQR STEC

Figure 1: Modèle AQR STEC de fromage au lait cru pâte molle

Figure 2: Risque par lot : 1 lot ~ 20.000 fromage de 250g

Côut - STEC

Figure 3: Côut correspondant à la fabrication d'un lot de fromage

Modèle de base - AQR STEC

Figure 4: Modèle AQR STEC de fromage au lait cru pâte molle

Figure 5: Modèle AQR Salmonelle entrées

Modèle AQR - STEC + Salmonelle

Figure 6: Modèle AQR STEC + Salmonelle de fromage au lait cru pâte molle

Figure 7: Modèle AQR L. mono. entrées

Subhasish Basak et al | ANSES - L2S - UPSaclay | COPIL ArtiSaneFood 2023, Maison du Lait, Paris

Modèle multipathogènes : A quoi ça ressemble

Figure 8: Modèle AQR multipathogènes - Entrées et les sorites

Mesure de maîtrise

Figure 9: Modèle AQR - les processus d'intervention

Mesure de maîtrise

- Tri du lait
 - lait de ferme sont testés pour la concentration de E. coli
 - le lait est rejeté si la concentration dépasse un certain limite
 - * la fréquence de tri
 - * limite de concentration
- Test de fromage
 - les lots de fromages sont testés (entre J3 et J14)
 - le lot est rejeté si une contamination est détectée (par l'un des trois pathogènes)
 - * la proportion de lots testés
 - * le nombre d'unités d'échantillonnage (25g)

Mesure de maîtrise

Figure 10: Coût de l'intervention = Coût analytique + Coût de la perte

Les entrées à optimiser

Figure 11: Les paramètres des processus d'intervention

Résumer - modèle AQR

Rémark : On analyse un échantillon de 25 g pour trois pathogènes

Le risque baseline

Figure 12: Scénario de base : aucune intervention n'est appliquée

Scénario 1 : intervention

Figure 13: réduit le risque mais augmente le coût

Figure 14: les différents risques peuvent être combinés par DALY

Qu'est-ce que DALY ?

L'idée est de convertir le risque en années de vie

Calcul du DALY

DALY : Espérance de vie corrigée de l'incapacité (exprimées en années)

Pathogènes	YLL (1 cas)	YLD (1 cas)	DALY (1 cas)	
STEC HP	0.0411	0.013	0.0541 années	
Listeria monocytogenes	3.3	0.4	3.7 années	
Non-typhoidal Salmonella	0.015	0.004	0.019 années	

- Étape 1 : Pour pathogène (x) calculer,
 - $P_{\rm x}[{\rm observer}\;1\;{\rm an}\;{\rm de}\;{\rm DALY}]=\frac{P[{\rm observer}\;1\;{\rm cas}\;{\rm de}\;{\rm maladie}]}{{\rm DALY}_{\rm x}}=\frac{{\rm Risque}_{\rm x}}{{\rm DALY}_{\rm x}}$
- Étape 2 : Calculer P[1 an de DALY] causé par l'un des 3 pathogènes

DALY : Scénario de base

Figure 15: DALY et coût pour scénario baseline

Scénario 1 : intervention

Figure 16: réduit le DALY mais augmente le coût

Scénario 2 : augmenter le nombre d'échantillons

Figure 17: réduit le DALY mais augmente le coût

Scénario 3 : diminuer la limite de tri

Figure 18: réduit le DALY mais augmente le coût

Scénario 4 : modifier simultanément deux paramètres

Figure 19: le DALY et le coût sont des objectifs contradictoires

Plusieurs scénarios

- On peut imaginer de nombreux scénarios avec tous les paramètres variables:
 - Proportion de lots testé p^{test} : {10%, 30%, 50%}
 - n° d'echantillons n^{sample} : $\{1, 5, 10, 15\}$
 - Fréquence de tri p^{tri} : {10%, 50%, 100%}
 - Limite de tri l^{tri} : {10, 20, 30, 50, 100, 200}
- Construire un scénario particulier $\rightarrow \{p^{\text{test}}, n^{\text{sample}}, p^{\text{tri}}, l^{\text{tri}}\}$
- Toutes les combinaisons possibles avec ça : 216
- Idée : trouver les scénarios qui réduisent à la fois le DALY et le coût

DALY vs côut pour diff. scénarios (STEC + Salmo + L. mono)

Redéfinir le plan d'échantillonnage ? (basé sur virulence)

- Le test du fromage n'a pas une efficacité significative pour réduire le DALY
- Une forte prévalence favorise la détection, mais seulement une petite proportion des agents pathogènes hautement virulent provoque la maladie

Prévalence (pourcentage d'une portion de 25 g de fromage avec au moins un colonie au moment de la consommation) dans un scénario de référence

Symbol	Mean	Median	SD	$q_{0.05}$	$q_{0.95}$
MPS STEC	1.97	0.16	8.21	0	7.43
HV Salmonella	0.37	0.02	3.22	0	0.91
LV Salmonella	0.75	0.06	4.67	0	2.27
Listeria	39.47	37.03	21.97	8.37	80.03

DALY et côut pour différents scénarios (STEC + Salmo)

Contribution

Une version modifiée du modèle STEC.

Subhasish Basak et al. Quantitative risk assessment of haemolytic and uremic syndrome (hus) from consumption of raw milk soft cheese. Food and Ecological Systems Modelling Journal, (under review).

- Implémentation avec R et FSKX
- Approche bayésienne : Utilisation des données ACTALIA pour estimer les paramètres d'hygiène des fermes
- Un modèle multipathogen (STEC + Salmonelle + Listeria)

Subhasish Basak et al. Minimizing risk of illness and analytical costs using a QMRA model for raw milk cheeses. ICPMF'12, Sapporo, Japon (oral).

Optimisation multiobjectif

Différents scénarios d'intervention

- Condidérer le problème de l'optimisation pour STEC
- Espace de paramètres

$$\begin{split} p^{\text{tri}} &\in \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1\} \\ l^{\text{tri}} &\in \{10, 20, 30, 50, 100, 200\} \\ p^{\text{test}} &\in \{0.1, 0.2, 0.3, 0.4, 0.5\} \\ n^{\text{sample}} &\in \{3, 5, 8, 10, 12\} \end{split}$$

- Toutes les combinaisons possibles donnent 1500 scénarios possible
- Pour chaque scénario le DALY et le côut sont calculés
- Comment trouver les scénarios qui réduisent à la fois le DALY et le coût ?

DALY vs côut pour diff. scénarios (STEC)

Comment choisir les scénarios optimaux ?

- Nous utilisons le concept d'optimalité de Pareto
- L'idée est d'obtenir un compromis efficace entre les différents objectifs plutôt qu'une solution unique
- Il cherche des solutions où aucune amélioration n'est possible dans un objectif sans détériorer un autre
- Les solutions Pareto-optimales sont non dominées, offrant un compromis efficace entre les objectifs
- Elles forment le front de Pareto, et les décideurs choisissent la meilleure solution selon leurs préférences

Figure 20: Un scénario particulier : z_1

Figure 21: $D(z_1)$: Région dominée par z_1

Figure 22: Tout autre point en $D(z_1)$ aura un côut ou un DALY plus élevé

Figure 23: z_3 , z_4 and z_5 sont dominée par z_1 et z_2

Le front Pareto est dans la frontière

Figure 24: z_1 et z_2 sont Pareto optimale

Le front de Pareto pour STEC

Direction de recherche et contribution

- 3 jours de calcul pour évaluer tous les 1500 points
- Proposer un algorithme d'optimisation pour un gagner du temps
- Nos contributions :
 - Nous avons proposé une extension de l'algorithme PALS par Barracosa et al. (2021)
 - Subhasish Basak et al. Bayesian multi-objective optimization for quantitative risk assessment in microbiology. MASCOT-NUM 2022, June 2022, Clermont-Ferrand, France.
 - Nouvel algorithme: basé sur le principle SUR et w-IMSE
 Subhasish Basak et al. Bayesian multi-objective optimization for quantitative risk assessment in microbiology. MASCOT-NUM 2023, April 2023, Le Croisic, France.
- Avec l'algorithme : 4h de calcul avec une précision de 96%

Calendrier des travaux

■ Fin de thèse : Decembre 2023

• Rédaction de manuscript : En cours ...

à soumettre fin octobre

Soutenance : Janvier 2024

- Projet d'article scientifique
 - Papier journal sur modèle multipathogene : Microbiological Risk Assessment Journal - Special Issue - ICPMF'12

Merci pour votre attention!

