

GAN神經網路介紹

Estimated time: 45 min.

學習目標

- 25-1:GAN神經網路介紹
- 25-2:GAN的概念
- · 25-3:GAN演算法

25-1:GAN神經網路介紹

- GAN神經網路介紹
- GAN熱門程度
- · GAN網路神經網路的組成

GAN神經網路介紹

- ◆ GAN(Generative adversarial networks)是一種類神經網路
 - 非監督式學習
 - 包含兩個神經網路,這兩個網路會互相對抗
 - 由lan Goodfellow於2014年所提出

GAN熱門程度

FB的AI研究院院長Yann Lecun說GAN是近20年來深度學習最酷的想法

The coolest idea in deep learning in the last 20 years

GAN熱門程度

- 自從GAN被提出以來,每年的論文數量持續以驚人的數度增加
 - GAN神經網路的變形也非常多
 - https://github.com/hindupuravinash/the-gan-zoo

GAN網路神經網路的組成

- GAN神經網路包含兩個部分
 - Generator跟Discriminator
- Generator network
 - 目標是試著想要生成假照片來騙過Discriminator
- Discriminator network
 - 目標是想要辨識到底是真的照片還是Generator產生的假照片

25-2: GAN的概念

- Generator與Discriminator
- GAN演化的概念
- GAN整體架構

Generator與Discriminator

- Generator的概念是輸入一個隨機的向量,其可以產生一張照片
 - 有時候產生的照片很逼真,有時候很假

Generator與Discriminator

- 輸入一張照片 · Discriminator 會判別此照片是否為真的照片
 - 輸出數字越接近1代表照片越接近真實,越接近0代表照片越假

- 假設我們一開始有一個Generator以及Discriminator
 - 一開始Discriminator無法很好的辨識照片是真的還是假的

- Discriminator會開始演化
 - 於是它開始可以辨識出Generator產生出來的假照片

- ◆ 為了騙過Discriminator, Generator會開始演化
 - 於是Generator產生出來的假照片開始又可以騙過Discriminator

- 以此類推, Generator及Discriminator不斷演化下去
 - 我們最終得到一個可以以假亂真的照片Generator
 - 還有一個很會辨識真假照片的Discriminator

GAN整體架構

- GAN的整體架構如下
 - Generator的輸入是noise,輸出是一個以假亂真的照片
 - Discriminator可以辨識出哪些是真照片,哪些是假照片

25-3:GAN演算法

- GAN演算法
- 固定Generator,更新Discriminator
- 更新Generator,固定Discriminator
- 修正Generator損失函數

designed by **@ freepik**

GAN演算法

- GAN整體演算法如下
- 初始化Generator及其參數 $heta_g$ 且初始化Discriminator及其參數 $heta_d$
- 在每次訓練迭代當中:
 - 固定Generator並更新Discriminator參數多次
 - 固定Discriminator並更新Generator一次

固定Generator,更新Discriminator

- 隨機從資料分布 $P_{data}(x)$ 去從資料集 $\{x^1, ..., x^m\}$ 取樣**m**筆資料
- 從常態分佈noise $\{z^1, ..., z^m\}$ 裡面去取樣m筆資料
- 計算Generator產生的資料 $\{\tilde{x}^1,...,\tilde{x}^m\}$,這些資料是從 $\tilde{x}^i=G(z^i)$ 來的
- 更新Discriminator參數 θ_d 並極大化以下式子

$$- \tilde{V} = \frac{1}{m} \sum_{i=1}^{m} \log(D(x^i)) + \frac{1}{m} \sum_{i=1}^{m} \log(1 - D(\tilde{x}^i))$$

- 可以使用梯度上降法 θ_d ← θ_d + $\eta \nabla \tilde{V}$ (θ_d)
- 重複以上步驟多次

更新Generator,固定Discriminator

- 從常態分佈noise $\{z^1, ..., z^m\}$ 裡面去取樣m筆資料
- 更新Generator參數 $heta_g$ 並極小化以下式子

$$- \tilde{V} = \frac{1}{m} \sum_{i=1}^{m} \log(D(x^i)) + \frac{1}{m} \sum_{i=1}^{m} \log(1 - D(G(z^i)))$$

- 可以使用梯度下降法 $\theta_g \leftarrow \theta_g - \eta \nabla \tilde{V}(\theta_g)$

修正Generator損失函數

- 關於更新Generator,可以發現 $heta_g$ 只與後面 $\log(1-D(G(z)))$ 那一項有關
 - 但是log(1-D(G(z)))這個函數在0附近的時候微分太平緩了
 - 所以當初設計GAN的作者找了另外一個函數來取代它,這樣可以增加訓練 速度
 - 把原本藍色的式子變成紅色的式子(如右圖)

$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} \log(D(x^i)) + \frac{1}{m} \sum_{i=1}^{m} \log(1 - D(G(z^i)))$$

紅色: $-\log(x)$ 藍色: $\log(1-x)$

修正Generator損失函數

- 因此,更新Generator,固定Discriminator的演算法變成如下
- 從常態分佈noise $\{z^1, ..., z^m\}$ 裡面去取樣m筆資料
- 更新Generator參數 θ_g 並極小化以下式子

$$- \tilde{V} = \frac{1}{m} \sum_{i=1}^{m} -\log(D(G(z^{i})))$$

- 可以使用梯度下降法 θ_g ← θ_g − $\eta \nabla \tilde{V}(\theta_g)$

Demo 25-3

- 建立Generator
- 建立Discriminator
- GAN神經網路建構

線上Corelab

- ▶ 題目1:實作GAN Generator
 - 給予MNIST資料,將Generator程式碼部分完成讓GAN可以產生MNIST照片
- 題目2:實作GAN Discriminator
 - 給予MNIST資料,將Discriminator程式碼部分完成讓GAN可以產生MNIST 照片
- 題目3:實作GAN在MNIST資料集上
 - 給予MNIST資料,完成GAN所有程式碼

本章重點精華回顧

- · GAN神經網路介紹
- GAN的概念
- GAN演算法

Lab:GAN神經網路

Lab01:建立Generator

Lab02:建立Discriminator

Lab03:GAN神經網路建構

Estimated time: 20 minutes

