

Session 1.8

Database Concepts

AN INITIATIVE BY

Introduction

Part 4: Hands-on Sessions (100 h)

Day to day work

Use cases and traceability

Defect prevention, RCA and

Test data and scenarios

other value add aspects

What will be covered in this session?

- Data, Database, and Information 3: Automated Testing (50 h)
- Types of Databases
- Entity-Relationships and RDBMS^m Overview
- SQL and SQL Queries practice using MS Access (or any other RDBMS) Elements, and more

Automation and Runs

- Part 2: Concepts of Testing (30 h)
 - Types of Testing
 - **Common Testing Tools**
 - Manual Testing Test cases, Data, Scenarios etc.
 - Case-studies and Scenarios

Part 1: The Basics (20 hours)

- Organization& its working
- **SDLC & STLC Overview**
- Basics of OOPS, Database Java essentials for Testing
- Overview on few Testing roles **Job Descriptions**

Let's go!!!

What is a Database? – in simple terms

Any of the below can be considered a Database -

- Your personal address book in a Word document
- A collection of Word documents or Excel sheets
- A very large flat file on which you run some statistical analysis functions
- Data collected, maintained, and used in airline reservation

In other words -

- **Data** is a 'raw information' that does not make sense to you on its own unless you read the same in a meaningful way as 'Information'.
- All of the above example contain 'Data' in one form or other form. You have to record, and retrieve the data from each file to comprehend the required 'Information'.
- The 'container' or a 'file' that facilitates data storage is called 'Database'.

What is a Database? - A model of 'real world'

- A database is a model of structures of real-world entities
- The **use of a database** reflect **processes** of real-world entities
- A database system is a software system which supports the definition and use of a database
- Models can be useful when we want to examine or manage part of the real world.

What is a Database? - A model of 'real world'

Any of the below can be considered a Database -

- Your personal address book in a Word document
- A collection of Word documents or Excel sheets
- A very large flat file on which you run some statistical analysis functions
- Data collected, maintained, and used in airline reservation

In other words -

- Data is a 'raw information' that does not make sense to you on its own unless you read the same in a meaningful way as 'Information'.
- All of the above example contain 'Data' in one form or other form. You have to record, and retrieve the data from each file to comprehend the required 'Information'.
- The 'container' or a 'file' that facilitates data storage is called 'Database'.

Data Modeling

- The model represents a perception of structures of real-world
- The data modeling process is to showcase structures of real-world and relationship among the various structures of the 'real-world'.
- In the data modeling process we **select** aspects and we **abstract**

Types of Databases

Traditional way / 'Older' Approach:

- Relational
- Flat-file based
- Hierarchical
- Network

The database types that we hear more in year 2021

- SQL based Databases
- NoSQL Databases

Popular Databases

Database Name	Developed in	Key Features / Points to ponder	
		Open source; used by several companies. Does not support	
MySQL	C++	XML or OLAP	
		Open source; Built by utilizing MySQL source code; so – same	
MariaDB	C++	features as MySQL	
		Open source; Popular No SQL database – works based on	
MongoDB	C, C++, JavaScript	'document-oriented' approach. Supports JSON data structure	
Redis	С	Open source; based on 'linked list' data structure	
PostgreSQL	С	Open source; A powerful object-relational database	
Casandra	Java	Open source; supports distributed data centers	
		Not Open source; wide userbase with enterprise tools – from	
Oracle	C, C++	Oracle Corporation	
Microsoft SQL Server	C, C++	Not an Open source; wide userbase from Microsoft Corp	

Let's learn Basics of RDBMS

RDBMS (Relational Database Management System) Overview

- RDBMS is built based on the concept known as 'Tuple Relational Calculus'
- First conceptualized by Edgar Codd while working on 'System R' at IBM
- At high level RDBMS is based on
 - Independent Entities
 - Relation among various entities
 - Attributes in each Entity (RDBMS Table)
 - Constraints while relating entities
 - Constraints while manipulating attributes (RDBMS columns / fields)
 - Popular constraint is Referential Integrity constraint

SQL Commands in RDBMS

Command Type	Commands	Syntax and corresponding notes / points
		These are used to create a table, drop a table etc. Generally,
	CREATE; ALTER; DROP;	System Administrator / DBA use these commands in
DDL: Data Definition Language	TRUNCATE	production.
DML: Data Manipulation		
Language	INSERT; UPDATE; DELETE	INSERT INTO {table} {{columns list} VALUES {{values})
		GRANT {privilege} ON {table} TO {user} – to give privileges to a
DCL: Data Control Language	GRANT; REVOKE	specific user or user group
DQL: Data Query Language	SELECT	SELECT {expression} FROM {TABLE} WHERE {clause – to fetch the data from a table
		COMMIT; ROLLBACK; SAVEPOINT - These are used in
TCL: Transaction Control	COMMIT; ROLLBACK;	conjunction with BEGIN TRANS END TRANS (SYNCPOINT) based
Language	SAVEPOINT	on success (return code) of the overall transaction.

RDBMS Design – Notion of ER Diagram

Example of ER Diagram (snippet of Flight booking system)

UNICAL ACADEMY

Practice using simple MS Access

- 1. Open MS Access and use any of the given templates to get a feel of RDBMS
- 2. In the subsequent slides, 'Students' template is depicted. You can pick any of the models or you can create your 'own'

Exercise 1: Create a 'Table'

Understand 'Relationships' and 'Constraints'

Write queries – using Query builder / wizard

Write queries – using plain SQL

Execute queries – (wizard mode and SQL mode) UNICAL ACADEMY

Session Recap

