Test 3

Last Name	Davis	First Name	Trevor	Grade	/100
Last I valle	Davis	_ 1 113t 1 vaille _	716001	Grade	_/ 100

1. (20%) Give a description of Chomsky hierarchy of grammar in a table.

type	Language generated	production restrictions $X \rightarrow Y$	accepter
0	Unrestricted	Unrestricted	Turing machine
1	Context - Sensitive grammar	d >B Where d < B d & V* N U* B & U*	Linear bounded Automata
2	Context Gree Gramman	A→ d A∈N d∈V*	Pushdown Qutomata
3	Regular	A > XB A > X A,B EN XET*	Finite automata

- 2. (30 %) For each of the following languages, **construct a grammar** and **indicate** its Chomsky hierarchy type (s) (pick all integer type [0, 1,2 3] that apply)
 - (a) $L(a^nb^na^n, n\geq 1\}$)
 - (b) $L(\{a^{2n}b^n, n \ge 0\})$

- b) Staasblaabla
- This is a context free grammar and is a type 2 grammar

- 3. (30%) Construct a PDA that accept the following language on $\{a,b\}$ in two steps $L=\{a^nb^m:n\leq m\leq 2n\}$
- (a) Give a brief algorithm design in English.

a) $S \rightarrow AA | \lambda$

(b) Give the PDA transition graph based on your algorithm in (a).

$$(40, \lambda, 2) = (43, 2)$$

 $(40, a, 2) = (91, a2)$
 $(40, a, 2) = (91, aa2)$
 $(91, a, a) = (91, aaa)$
 $(91, a, a) = (91, aaa)$
 $(91, a) = (92, a)$
 $(92, a) = (92, a)$
 $(92, a) = (93, a)$

L= {λ, qa, ab, ba, bb, aasa, }

- 4. (20%) For the following languages on $\{a, b\}$, $L = \{w: |w| \ge 0 \text{ and is multiple of } 2\}$
- (a) Write a grammar that generates L; (b) Construct a TM in TG that will accept L.

$$A \rightarrow aAa \mid aAb \mid bAa \mid bAb \mid \lambda$$

$$a_1 \mid B, R$$

$$b_1 \mid B, R$$

$$q_0 \qquad a_1 \mid B, R$$

$$q_1 \qquad B_1 \mid B_2 \qquad q_1$$

$$B_2 \qquad B_3 \mid B_4 \qquad B_4 \qquad B_5 \mid B_4 \qquad B_5 \mid B_6 \mid$$