MP-1 TUTORIAL-10

1. Demonstrate the Initial Basic Solution in Transportation problem using Vogel method in Linear Programming (U-V method)., Least time Transportation problem.

QUESTION:

Factory/Warehouse	W_1	W_2	W_3	W_4	Factory Capacity
F_1	19	30	50	10	7
F_2	70	30	40	60	9
F_3	40	8	70	20	18
Warehouse Requirement	5	8	7	14	

190031187 Radhalqishna

$$= 5 \times 19 + 8 \times 8 + 7 \times 40 + 2 \times 10 + 10 \times 20 + 2 \times 60$$

$$= 98 + 64 + 280 + 20 + 200 + 120$$

$$= 779$$

u-v method

ω ,	WL	W3	Wy	
19	30	170	10	7
'70	30	40	60	9
40	R	70	20	- 18
1	8	7	14	

1111111

M= no of origins = 3.

n = no of destinations = 4

m+n-1=6 =) no of allocation = 6

And the allocations are independent position.

The problem non-degenerate

1+cp: 2

19	30	50	2 10	4/=0
70	30	7) 40	2) 60	u2=50
40	8 8	70	10 20	13=10

(1,1)
$$u_1 + V_1 = 19$$
 $v_1 = 19$

$$(244)$$
 $42+4=60$ $42=10$

$$(7,3)$$
 $u_1+v_3=40$ $v_3=-10$

$$(3,4)$$
 $u_3 + v_4 = 20$ $u_3 = 10$

Stq : 3

19	(31) 3O	(60) 500	10
⁽¹⁾ 70	(10)	1 40	1 60
⁽¹⁾ 40	8	70	10)

0

u;

50

10

19 -2 -10 10

cell evaluation 32

If all the cells evaluations are non-negative then the solution is optimal The cell coaluation -18 is negative so sol is not optimal

.. Intering cell (2,2)

19	30	20	10
70	30_	7 40	> 60
40	8 8	70	1010

0 = 2

form a loop starting from cell (2,2) 0 = min { 2-0, 8-0} 2-0 - 0

Now all the cell evaluations are non-negative Transportation cost

5 × 19 + 2 × 10 + 2 × 30 + 7 × 40 + 6 × 8 + 12 × 20

95 + 20 + 60 + 280 + 48 + 240

743