Programming Project 1

Solving 8-puzzle using A* search algorithm *Note*: You can work alone or in a team of THREE max

You are to implement A* search algorithm and apply it to 8-puzzle problem, using any programming language of your choice.

In addition to coding of A^* search algorithm, provide state space representation, operators, g (cost) and two heuristic functions of the 8-puzzle problem. Your program should accept initial and goal states from user and will compute the best path. You will turn in the following as **hard copy** directly to me in the class, in addition to submitting everything in canvas:

- A report covering 8-puzzle problem formulation, program structure, global variables, functions and procedures, etc. [10 points]
- Analyze six input/output cases:
 - For each input/output sample, for each heuristic report the following: (1) The solution path from initial state to goal state (2) the number of nodes generated, and (3) the number of nodes expanded.
 - For each heuristic $(6 \times (1.5 + 1.5 + 1.5)) = 27$ points
 - Total 54 points [27 + 27]
 - Summarize the results in a table. [6 points]
- Error free source code with adequate inline documentation.
- Quality of the report and code (e.g. taking user input) [5 points]

Sample initial and goal states:

Initial	state:	Goal State:
1 2 3		1 2 3
7 4 5		8 6 4
6 8 0		7 5 0
Initial	state:	Goal State:
2 8 1		3 2 1
3 4 6		8 0 4
7 5 0		7 5 6
Initial	state:	Goal State:
7 2 4		1 2 3
5 6		4 5 6
8 3 1		7 8