Project 1 Interim

Kyle Kumbier

Jan 22, 2019

Outline

- Background
- Data Management
- Exploratory Data Analysis
- Main Aims and Preliminary Models
- Future Work

Background

- With an aging population, car companies must keep the interests of the elderly in mind.
- One particular issue they face is simply getting in and out of the vehicle.

Background

 Dr. Galecki provided two specific aims for us to answer, but I also wanted to focus my analysis towards results we can implement.

Discarded shoe size variable completely from the first dataset.

- Took the peak performance of all repeated measurements
 - Knee Extension Strength
 - Hip Abduction Strength
 - Hip Abduction Rate of Torque
 - Grip Strength
 - Timed Up and Go
 - One Leg Balancing

- Wept track of number of missing measurements for each subject
 - Not worried about One Leg Balancing Measurements

- Created categorical One Leg Balancing variable
 - Sum of peak performance in each leg
 - Poor balance if less than 15

Distribution of Sum Times

- Analyzed correlation structures in each of the following categories to find a single representative variable
 - Anthropometric
 - Strength
 - Mobility

Exploratory DataAnalysis

EDA

EDA

EDA Summary

- Random effects appear to be appropriate for both vehicles and subjects
- What makes Vehicle #2 and Vehicle #7 different?

Main Aims and Preliminary Models

Aim #1

Does egress (ingress) strategy affect driver egress (ingress) time in the elderly?

Do mobility impairments affect driver egress (ingress) time in the elderly?

Aim #2

Identify the human capacities that best explain the variation in egress (ingress) time between drivers.

Preliminary Models

- Linear model adjusting for age, gender, vehicle, door position, weight, hip strength, poor balance, group, and strategy
 - ingress strategy nearly significant (p=0.06)
 - egress strategy nearly significant (p=0.06)

Preliminary Models

- Linear mixed model with random intercepts for vehicle and subject
 - ingress strategy highly significant (p<0.01)
 - egress strategy not significant (p=0.18)

Preliminary Models

- Linear mixed model with random intercept for vehicle and random slope for door position by vehicle
 - Resulted in a singular fit
 - Too few random effect levels (7)
 - Indicates overfitting the model

Future Work

Future Work

 Identify the human capacities that best explain variation in ingress/egress times (Aim #2)

Future Work

- Identify which dimensions (if any)
 have a significant effect on
 ingress/egress times
 - An explanation to why drivers did better with certain vehicles
 - Give information to engineers so they can design "elderly-friendly" vehicles

Questions???