Association Analysis

Naren Ramakrishnan

Recap

- Supervised learning
 - Classification, Regression
- Unsupervised learning
 - Clustering, Dimensionality Reduction
- Time Series Analysis
 - Both supervised and unsupervised learning

Today

- Association analysis
 - Primarily unsupervised learning
 - One of the "new age" data mining problems
- Goes by other names
 - Market basket analysis
 - Mining transaction datasets
 - Itemset mining
 - Association rule mining

Example

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market basket

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Examples of Association Rules

```
{Diaper} → {Beer},
{Milk, Bread} → {Eggs,Coke},
{Beer, Bread} → {Milk},
```

Implication means co-occurrence, not causality!

Another example

Mining associations in electronic medical records

Property	Value
Number of patients	1,620,681
Number of diagnostic (ICD) codes	41,186,511
Number of procedure (CPT) codes	38,942,605
Max. number of codes in a record	10,430
Min. number of codes in a record	1
Max. span of a record in days	$8202 \text{ days} \approx 22.5 \text{ years}$
Min. span of a record in days	1

Describing the Relationship between Cat Bites and Human Depression Using Data from an Electronic Health Record

How do we find association rules?

- First
 - Find "frequent" itemsets {X,Y}
 - Defined by a support threshold
- Next
 - See if $X \rightarrow Y$ or $Y \rightarrow X$ hold
 - Defined by a confidence threshold

Frequent itemsets

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Association rules

Association Rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example:{Milk, Diaper} → {Beer}

 Rule Evaluation Metric 		Rule	Eva	luation	M	letrics
--	--	------	-----	---------	---	---------

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

All this sounds good...

- But how do we mine association rules from a given database?
 - Keep in mind that the database is likely to have billions of transactions and potentially millions of items

Observation 1

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Two step approach

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive!

Searching for sets

Observation 2

The Apriori principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

Itemset	Count
{Bread,Milk,Diaper}	3

More formally

- Support is anti-monotone
 - If an itemset X does not have support, no superset of X can have support

The Apriori algorithm

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

The Apriori algorithm

- Let k=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets – HOW?
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Generating (k+1) itemsets from k-itemsets

- To generate a (k+1) itemset
 - Pick 2 k-itemsets that have the same (k-1) prefix
 - Merge them!
- Example
 - (A,B,C) and (A,B,D) are merged to form (A,B,C,D)

Rule generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

```
ABC \rightarrowD, ABD \rightarrowC, ACD \rightarrowB, BCD \rightarrowA, A \rightarrowBCD, B \rightarrowACD, C \rightarrowABD, D \rightarrowABC AB \rightarrowCD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrowAD, BD \rightarrowAC, CD \rightarrowAB,
```

If |L| = k, then there are 2^k - 2 candidate
 association rules (ignoring L → Ø and Ø → L)

Rule generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
- $e.g., L = {A,B,C,D}$:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule generation (from a single itemset)

Rule generation details

 Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

join(CD=>AB,BD=>AC)
 would produce the candidate
 rule D => ABC

 Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Practical issues

Many real datasets have skewed support distributions

- Too small support vs
- Too large support

- Assocation analysis tends to produce too many rules!
 - Use interestingness measures to prune/select rules

What we have learnt thus far

- Association analysis
 - A new age data mining problem
 - Data mining is simply "smart counting and book-keeping"
 - Efficiency of search is important!

Recommender systems

Recommender systems

Recommender systems

About 74,200,000 results (0.55 seconds)

Machine learning - Wikipedia

How do they work?

- Two basic threads
 - Content-based filtering
 - Tom likes aviation movies, so Tom will like Sully
 - Collaborative filtering
 - Tom likes the movies that Sally likes and Sally liked Sully, so Tom will like Sully
 - Suffers from "cold start" problems

Collaborative filtering

- Two basic flavors
 - User-based
 - Item-based
- Both are types of nearest neighbor reasoning!

Example

	Item1	ltem2	Item3	ltem4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

First measure similarities between users

A popular similarity measure in user-based CF: Pearson correlation

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

a, b: users

 $r_{a,p}$: rating of user a for item p

P: set of items, rated both by a and b

Possible similarity values between -1 and 1; $\overline{r_a}$, $\overline{r_b}$ = user's average ratings

	ltem1	Item2	Item3	Item4	Item5	
Alice	5	3	4	4	?	sim = 0,85
User1	3	1	2	3	3	sim = 0,85 sim = 0,70 sim = -0,79
User2	4	3	4	3	5	
User3	3	3	1	5	4	
User4	1	5	5	2	1	

Make a prediction

 To predict the rating for user a for product p, find others who have rated p and scale their ratings by their similarity to a

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a,b) * (r_{b,p} - \overline{r_b})}{\sum_{b \in N} sim(a,b)}$$

Item-based CF

- User-based CF has scalability issues if there are many more users than items
- Alternative idea
 - Find similarities between items

How this works

Example

- Look for items similar to item5
- Take Alice's ratings for these items to predict her rating for item5

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

How Amazon works

- Purportedly uses item-based collaborative filtering
- Pre-compute item similarities
 - They are more stable than user similarities
 - Neighborhood used at run-time is small since each user has rated only a small number of items

What we have learnt thus far

- Two broad classes of association methods
 - Itemset mining
 - Recommender systems
- We have seen only the most basic/vanilla versions of these methods
 - Significant variations and optimizations abound!