Matematyka

Michał Nycz

r.a. 2024/2025

Spis treści

1	Pod	lstawy	logiki matematycznej	1
	1.1	Funkt	ory zdaniotwórcze	1
	1.2		tyfikatory	1
	1.3	Prawa	rachunku zdań	1
		1.3.1	Prawa De Morgana dla zdań	1
		1.3.2	Prawo kontrapozycji	2
	1.4	Prawa	rachunku kwantyfikatorów	2
2	Elei		kombinatoryki i teorii mnogości	3
	2.1	Działa	nia na zbiorach	3
	2.2	Iloczy	n kartezjański	4
3	Rac	hunek	prawdopodobieństwa i kombinatoryka	5
	3.1		nty kombinatoryki	5
		3.1.1	Symbol sumy	5
		3.1.2	Symbol iloczynu	5
		3.1.3	Silnia	5
		3.1.4	Symbol Newtona	5
		3.1.5	Regóła mnożenia	6
		3.1.6	Permutacja bez powtórzeń	7
		3.1.7	Permutacja z powtórzeniami	7
		3.1.8	Wariacja z powtórzeniami	7
		3.1.9	Wariacja bez powtórzeń	8
		3.1.10	Kombinacja bez powtórzeń	8
	3.2	Prawo	opodobieństwo klasyczne	8
4	Mad	cierze		10
	4.1	Szczeg	ólne typy macierzy	10
		4.1.1		10
		4.1.2	Macierz kwadratowa	10
		4.1.3	Macierz trójkątna	10
		4.1.4	Macierz diagonalna	11
		4.1.5	Macierz jednostkowa	11
	4.2	Działa	nia na macierzach	12
		4.2.1	Transponowanie (Transpozycja)	12
		4.2.2		12
		4.2.3		12
		121		12

	4.3	Wyznacznik macierzy	13
		4.3.1 Wzory Sarrusa	14
		4.3.2 Tw. Laplace'a	14
	4.4	Macierz odwrotna	14
	4.5	Minor macierzy	15
		4.5.1 Minor bazowy	15
		4.5.2 Rząd macierzy	15
	4.6	Układy równań liniowych	15
		4.6.1 Układ Cramera	15
		4.6.2 Metoda macierzy odwrotnej	15
		4.6.3 Metoda Cramera	15
		4.6.4 Twierdzenie Kroneckera-Capelliego	15
		4.6.5 Macierz schodkowa	16
		4.6.6 Operacje elementarne na wierszach	16
		4.6.7 Metoda Gaussa (eliminacji zmiennych)	16
5			17
	5.1	J 1	17
	5.2		17
			17
			18
			18
			18
			18
		V I	19
		V 1 0 C	19
	5.3		20
			20
			20
		5.3.3 Ekstrema lokalne funkcji dwóch zmiennych	21
6	Dog	nunek Całkowy	22
U	6.1		22
	0.1	· -	22
	6.0	J 1 J	
	6.2		22
	6.3	V 1	22
	6.4	Całka oznaczona Riemanna	
		6.4.1 Tw. Newtona-Leibniza	22

1 Podstawy logiki matematycznej

Zdanie (w logice) jest to wyrażenie w trybie orzekającym, które jest: albo **prawdziwe** - ma wartość logiczną 1, albo **fałszywe** - ma wartość logiczną 0.

Forma zdaniowa (funkcja zdaniowa, predykat) określona w dziedzinie D jest to wyrażanie zawierające zmienną (lub zmienne), które staje się zdaniem, gdy w miejsce zmiennej (lub zmiennych) podstawimy nazwę (lub nazwy) dowolnego elementu (lub dowolnych elementów) zbioru D.

1.1 Funktory zdaniotwórcze

"Nieprawda, że"	- symbol \sim	Negacja
"i"	- symbol \land	Koniunkcja
"lub"	- symbol \vee	Alternatywa
"jeżeli, to"	- symbol \implies	Implikacja
"wtedy i tylko wtedy"	- symbol \iff	Równoważność

Tabela 1: Wartości logiczne zdań złożonych

$\sim p$	p	q	$p \wedge q$	$p \lor q$	$p \implies q$	$p \iff q$
0	1	1	1	1	1	1
1	0	1	0	1	1	0
	1	0	0	1	0	0
	0	0	0	0	1	1

1.2 Kwantyfikatory

```
"dla każdego x\dots" - symbol \wedge albo \forall - kwantyfikator duży, ogólny "istnieje x, takie że \dots" - symbol \forall albo \exists - kwantyfikator mały, szczegółowy, egzystencjonalny
```

1.3 Prawa rachunku zdań

Tautologia - Zdanie zawsze prawdziwe.

1.3.1 Prawa De Morgana dla zdań

I prawo De Morgana

Prawo zaprzeczania koniunkcji: negacja koniunkcji jest równoważna alternatywie negacji

$$[\sim (p \land q)] \iff (\sim p \lor \sim q)$$

Tabela 2: Wartości logiczne I prawa De Morgana

p	q	$p \wedge q$	$\sim (p \wedge q)$	$\sim p$	$\sim q$	$(\sim p) \vee (\sim q)$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

II prawo De Morgana

Prawo zaprzeczenia alternatywy: negacja alternatywy jest równoważna koniunkcji negacji

$$[\sim (p \lor q)] \iff (\sim p \land \sim q)$$

Tabela 3: Wartości logiczne II prawa De Morgana

			0 1		1	O	
p	q	$p \lor q$	$\sim (p \vee q)$	$\sim p$	$\sim q$	$(\sim p) \land (\sim q)$	
1	1	1	0	0	0	0	
1	0	1	0	0	1	0	
0	1	1	0	1	0	0	
0	0	0	1	1	1	1	

1.3.2 Prawo kontrapozycji

$$(p \implies q) \iff (\sim p \implies \sim q)$$

Tabela 4: Wartości logiczne prawa kontrapozycji

p	q	$p \implies q$	$\sim q$	$\sim p$	$(\sim q) \implies (\sim p)$
1	1	1	0	0	1
1	0	0	1	0	0
0	1	1	0	1	1
0	0	1	1	1	1

1.4 Prawa rachunku kwantyfikatorów

Jeżeli f(x) i g(x) są formami zdaniowymi o zakresie zmienności $x \in X$, to:

Prawa De Morgana dla kwantyfikatorów

1.
$$\sim \forall f(x) \iff \exists x \sim f(x)$$

$$2. \sim \exists f(x) \iff \forall x \sim f(x)$$

2 Elementy kombinatoryki i teorii mnogości

2.1 Działania na zbiorach

Suma

 $C = A \cup B$

Iloczyn

 $D=A\cap B$

Różnica

 $E = A \setminus B$

Dopełnienie zbioru

 $A`=X\setminus A$

2.2 Iloczyn kartezjański

$$A\times B=\{(a,b):a\in A\ \mathrm{i}\ b\in B\}$$

$$A = \{a, b, c\} \qquad B = \{1, 2\}$$

$$A \times B = \{(a, 1)(a, 2)(b, 1)(b, 2)(c, 1)(c, 2)\}$$

Oznaczenie: $\left|X\right|$ - ilość elementów

Tw.
$$|A \times B| = |A| \cdot |B|$$

 $\mathbb R$ - zbiór liczb
 rzeczywistych (prosta liczbowa)

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x,y) : x \in \mathbb{R} \text{ i } y \in \mathbb{R}\}$$
 - płaszczy
zna

 \mathbb{R}^n - przestrzeń n wymiarowa

3 Rachunek prawdopodobieństwa i kombinatoryka

3.1 Elementy kombinatoryki

3.1.1 Symbol sumy

 \sum - sigma, symbol sumy

$$\sum_{i=2}^{5} i^2 = 2^2 + 3^2 + 4^2 + 5^2 = 4 + 9 + 16 + 25 = 54$$

3.1.2 Symbol iloczynu

 \prod - pi, symbol iloczynu

$$\prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n!$$

3.1.3 Silnia

n! - n silnia $n \in \mathbb{N}_0$

$$n! = \begin{cases} 1, & n = 0 \lor n = 1\\ 1 \cdot 2 \cdot \dots \cdot n, & n > 1 \end{cases}$$

$$n! = (n-1)! \cdot n, \quad n \in \mathbb{N}$$

Def. Permutacja skończonego zbirou A to ciąg wszystkich elementów zbioru A.

Tw. Ilość wszystkich permutacji zbioru n-elementowego wynosi n!.

3.1.4 Symbol Newtona

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad k, n \in \mathbb{N}_0 \\ \binom{n}{n-k} = \binom{n}{k} \qquad k, n \in \mathbb{N}_0 \\ k \leqslant n$$

$$\binom{n}{0} = 1 \quad \binom{n}{1} = n \quad \binom{n}{n-1} = n \quad \binom{n}{n} = 1$$

Tw. Ilość wszystkich k-elementowych podzbiorów zbioru n-elementowego wynosi $\binom{n}{k}$

Tw. Ilość wszystkich podzbiorów zbioru n-elementowego 2^n

Tw. Dla $k, n \in \mathbb{N}, k \leqslant n$

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

Dwumian Newtona

Tw. Dwumian Newtona, dla $a,b\in\mathbb{R}$ i $n\in\mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Trójkąt Pascala

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ 0 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1$$

3.1.5 Regóła mnożenia

Jeżeli pewien wybór zależy od skończenie wielu decyzji, powiedzmy k, przy czym podejmując pierwszą decyzję mamy n_1 możliwości, drugą n_2 możliwości, ..., k-tą n_k możliwości, bo wybór ten może być zrobiony na:

1 5 10 10 5 1 1 6 15 20 15 6 1

$$n = n_1 \cdot n_2 \cdot \ldots \cdot n_k$$

3.1.6 Permutacja bez powtórzeń

 $Permutacja\ bez\ powtórzeń$ zbioru n-elementowego $A=\{a_1,a_2,\ldots,a_n\}$, dla $n\in\mathbb{N}$ nazywamy każdy n-wyrazowy ciąg utworzony ze wszystkich n-elementów zbioru A, czyli każde uporządkowanie elementów zbioru A.

Liczba wszystkich różnych permutacji bez powtórzeń zbioru n-elementowego jest równa

$$P_n = n!$$

Permutacje wykorzystujemy, gdy:

- występują wszystkie elementy zbioru,
- kolejność jest istotna.

3.1.7 Permutacja z powtórzeniami

Permutacją n-wyrazową z powtórzeniami zbioru k-elementowego $A = \{a_1, a_2, \dots, a_k\}$, w której element a_i występuje n_i razy, $i = 1, 2, \dots, k$, przy czym $\sum_{i=0}^k n_i = n$.

Liczba wszystkich różnych n-wyrazowych permutacji z powtórzeniami ze zbioru k-elementowego jest równa:

$$P_n(n_1, n_2, \dots, n_k) = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!},$$

gdzie
$$n_i \in \mathbb{N}, i=1,2,\ldots,k,\; n_i$$
 - liczba powtórzeń elementu $a_i \in A, \sum_{i=0}^k n_i = n$

3.1.8 Wariacja z powtórzeniami

 $Wariacją\ k$ -wyrazową z powtórzeniami zbioru A, n-elementowego, gdzie $k \in \mathbb{N}$, nazywamy każdy k-wyrazowy ciąg, którego wyrazami są elementy danego zbioru A.

Liczba wszystkich różnych k-wyrazowych wariacji z powtórzeniami zbioru n-elementowego jest równa:

$$W_n^k = n^k$$

Wariacje z powtórzeniami wykorzystujemy, gdy:

- kolejność elementów jest istotna,
- elementy mogą się powtarzać (losowanie ze zwracaniem),
- niekoniecznie wszystkie elementy zbioru są wykorzystane.

3.1.9 Wariacja bez powtórzeń

Wariacją~k-wyrazową bez powtórzeń zbioru A, n-elementowego, gdzie $k \in \mathbb{N}$, nazywamy każdy k-wyrazowy ciąg różnowartościowy, którego wyrazami są elementy danego zbioru A.

Liczba wszystkich różnych k-wyrazowych wariacji bez powtórzeń zbioru n-elementowego jest równa

$$V_n^k = \frac{n!}{(n-k)!}$$

Wariacje bez powtórzeń wykorzystujemy, gdy:

- kolejność elementów jest istotna,
- elementy nie mogą się powtarzać (losowanie bez zwracania),
- niekoniecznie wszystkie elementy zbioru są wykorzystane.

3.1.10 Kombinacja bez powtórzeń

 $Kombinacją\ k$ -elementową bez powtórzeń zbioru A, n-elementowego, gdzie $k \in \mathbb{N}$, nazywamy każdy podzbiór k-elementowy zbioru A, przy czym elementy nie mogą się powtarzać.

Liczba wszystkich różnych kombinacji k-elementowych bez powtórzeń jest równa:

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 \mathcal{A}

3.2 Prawdopodobieństwo klasyczne

 ω - zdarzenie elementarne,

 Ω - zbiór wszystkich zdarzeń elementarnych,

A - zdarzenie losowe, $A \subset \Omega$,

 \mathcal{A} - zbiór wszystkich zdarzeń losowych,

 \emptyset - zdarzenie niemożliwe,

 Ω - zdarzenie pewne,

A' - zdarzenie przeciwne, $A' = \Omega \setminus A$,

Rodzinę podzbiorów $\mathcal A$ zbioru Ω nazywamy algebrą zbiorów, jeżeli:

(i)
$$A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$$
,

(ii)
$$A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$$
,

(iii)
$$A \in \mathcal{A} \implies A' = (\Omega \setminus A) \in \mathcal{A}$$
,

(iv)
$$\Omega \in \mathcal{A}, \emptyset \in \mathcal{A}$$
.

Prawdopodobieństwo P(A) to liczba przypisana zdarzeniu losowemu

(i)
$$A \cap B = \emptyset \implies P(A \cup B) = P(A) + P(B)$$
,

(ii)
$$A \subset B \implies P(B \setminus A) = P(B) - P(A)$$
,

(iii)
$$P(A') = 1 - P(A)$$
,

(iv)
$$P(\emptyset) = 0$$
, $P(\Omega) = 1$,

(v)
$$A \subset B \implies P(A) \leqslant P(B)$$
,

(vi)
$$P(A) \in [0, 1],$$

(vii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

W modelu klasycznym prawdopodobieństwa zakładamy, że zbiór Ω jest skończony i wszystkie zdarzenia elementarne są jednakowo prawdopodobne.

Zdarzenia losowe to wszystkie podzbiory zbioru Ω i prawdopodobieństwo określa się wzorem:

$$P(A) = \frac{|A|}{|\Omega|}, \qquad |x|$$
 - ilość elementów x

4 Macierze

Macierz tworzą liczby wpisane do prostokątnej tabelki

$$A_{m,n} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

$$a_{ij}$$
 i - numer wiersza j - numer kolumny

 $M^{m\times n}$ - Zbiór wszystkich macierzy wymiaru $m\times n.$

4.1 Szczególne typy macierzy

4.1.1 Macierz zerowa

Macierz złożona z samych zer.

$$\theta_{3\times 2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4.1.2 Macierz kwadratowa

Macierz w której liczba wierszy równa się liczbie kolumn (m = n)

Wyróżniamy główną przekątną:

$$\begin{bmatrix} \ddots & & \\ & \ddots & \\ & & \ddots \end{bmatrix}$$

$$(a_{1,1}, a_{2,2}, \dots a_{n,n})$$

4.1.3 Macierz trójkątna

To macierz kwadratowa w której wszystkie elementy nad lub pod główną przekątną wynoszą zero.

$$\begin{bmatrix} \cdot & & 0 \\ & \cdot & \\ & \cdot & \cdot \end{bmatrix}$$
 - Macierz trójkątna dolna.

$$\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot \end{bmatrix}$$
 - Macierz trójkątna górna.

4.1.4 Macierz diagonalna

To macierz, która jest trójkątna górna i dolna. Inaczej mówiąc jest to macierz kwadratowa w której poza główną przekątną występują same zera.

$$\begin{bmatrix} 0 & \ddots \\ \ddots & 0 \end{bmatrix}$$

4.1.5 Macierz jednostkowa

To macierz diagonalna w której na głównej przekątnej występują same 1.

$$I = \begin{bmatrix} 1 & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{bmatrix}$$
$$I_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

4.2 Działania na macierzach

4.2.1 Transponowanie (Transpozycja)

$$A \in M^{m \times n}, \quad B \in M^{n \times m} \qquad \substack{i \in \{1, 2, \cdots, m\} \\ j \in \{1, 2, \cdots, n\}}$$

$$B = A^T \iff b_{ji} = a_{ij}$$

Aby transponować macierz A należy zamienić wiersze macierzy A na kolumny (albo kolumny na wiersze).

$$A = \begin{bmatrix} 3 & 0 & 5 \\ 4 & 7 & 1 \end{bmatrix} \qquad A^T = \begin{bmatrix} 3 & 4 \\ 0 & 7 \\ 5 & 1 \end{bmatrix}$$

4.2.2 Mnożenie macierzy przez liczbę

$$A, B \in M^{m \times n}, \quad \alpha \in R \qquad \substack{i \in \{1, 2, \dots, m\} \\ j \in \{1, 2, \dots, n\}}$$

$$B = \alpha \cdot A \iff b_{ij} = \alpha \cdot a_{ij}$$

Aby pomnożyć Macierz A przez liczbę α każdy element macierzy A mnożymy przez liczbę α .

$$A = \begin{bmatrix} 3 & 5 \\ 0 & -1 \\ -4 & 8 \end{bmatrix} \qquad 3A = \begin{bmatrix} 9 & 15 \\ 0 & -3 \\ -12 & 24 \end{bmatrix}$$

4.2.3 Dodawanie i odejmowanie macierzy

$$A,B,C,D\in M^{m\times n} \qquad \substack{i\in\{1,2,\cdots,m\}\\j\in\{1,2,\cdots,n\}}$$

$$C = A + B \iff c_{ij} = a_{ij} + b_{ij}$$

 $D = A - B \iff c_{ij} = a_{ij} - b_{ij}$

Dodawanie i odejmowanie można wykonać tylko na macierzach tego samego wymiaru.

Działania te wykonujemy na współrzędnych to znaczy dodajemy/odejmujemy liczby na tych samych pozycjach.

$$A = \begin{bmatrix} 4 & 0 & -3 \\ -2 & 5 & 1 \end{bmatrix} \quad B = \begin{bmatrix} -7 & 6 & 4 \\ -9 & 8 & 0 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 4 & 0 & -3 \\ -2 & 5 & 1 \end{bmatrix} + \begin{bmatrix} -7 & 6 & 4 \\ -9 & 8 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 6 & 1 \\ -11 & 13 & 1 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 4 & 0 & -3 \\ -2 & 5 & 1 \end{bmatrix} - \begin{bmatrix} -7 & 6 & 4 \\ -9 & 8 & 0 \end{bmatrix} = \begin{bmatrix} 11 & -6 & -7 \\ 7 & -3 & 1 \end{bmatrix}$$

$$B - A = \begin{bmatrix} -11 & 6 & 7 \\ -7 & 3 & -1 \end{bmatrix}$$

4.2.4 Mnożenie macierzy

$$A \in M^{m \times p}, \quad B \in M^{p \times n}, \quad C \in M^{m \times n} \qquad \substack{i \in \{1, 2, \dots, m\} \\ j \in \{1, 2, \dots, n\}}$$

$$C = A \cdot B \iff c_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj}$$

Aby wykonać mnożenie A razy B liczba kolumn macierzy A musi być równa liczbie wierszy macierzy B.

$$\begin{bmatrix} a_1, a_2, \cdots, a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n$$

Aby wykonać mnożenie $A \cdot B$ pierwszy wiersz A mnożymy przez wszystkie kolumny B, następnie drugi wiersz A przez wszystkie kolumny B i tak dalej.

$$A = \begin{bmatrix} 4 & 0 & -2 \\ 1 & 5 & -1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 1 \\ 0 & 2 \\ 4 & 0 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} 4 & 0 & -2 \\ 1 & 5 & -1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 \\ 0 & 2 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3 + 0 \cdot 0 + 4 \cdot (-2) & 4 \cdot 1 + 0 \cdot 2 + (-2) \cdot 0 \\ 1 \cdot 3 + 5 \cdot 0 + (-1) \cdot 4 & 1 \cdot 1 + 5 \cdot 2 + (-1) \cdot 0 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ -1 & 11 \end{bmatrix}$$

$$B \cdot A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \\ 4 & 0 \end{bmatrix} \cdot \begin{bmatrix} 4 & 0 & -2 \\ 1 & 5 & -1 \end{bmatrix} = \begin{bmatrix} 3 \cdot 4 + 1 \cdot 1 & 3 \cdot 0 + 1 \cdot 5 & 3 \cdot (-2) + 3 \cdot (-1) \\ 0 \cdot 4 + 2 \cdot 1 & 0 \cdot 0 + 2 \cdot 5 & 0 \cdot (-2) + 2 \cdot (-1) \\ 4 \cdot 4 + 0 \cdot 1 & 4 \cdot 0 + 0 \cdot 5 & 4 \cdot (-2) + 0 \cdot (-1) \end{bmatrix} = \begin{bmatrix} 13 & 5 & -9 \\ 2 & 10 & -2 \\ 16 & 0 & -8 \end{bmatrix}$$

4.3 Wyznacznik macierzy

Wyznacznik to liczba przyporządkowana macierzy kwadratowej.

Macierze kwadratowe dzielimy na:

- osobliwe, tzn. det A = 0.
- nieosobliwe, tzn. $det A \neq 0$

det A - wyznacznik

$$n = 1$$
 $A = [a]$ $det A = a$

$$n=2$$
 $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $det A=ad-bc$

4.3.1 Wzory Sarrusa

Używane do liczenia wyznacznika dla macierzy kwadratowej rozmiaru n=3.

$$det \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 5 \\ 4 & 1 & 6 \end{bmatrix} = (1 \cdot 2 \cdot 6 + 0 \cdot 1 \cdot 3 + 4 \cdot 0 \cdot 5) - (4 \cdot 2 \cdot 3 + 1 \cdot 1 \cdot 5 + 0 \cdot 0 \cdot 6) = 12 - 29 = -17$$

$$1 \quad 0 \quad 3$$

$$0 \quad 2 \quad 5$$

4.3.2 Tw. Laplace'a

Jeżeli A jest macierzą kwadratową wymiaru $n \ge 2$, to

$$det A = \sum_{j=1}^{n} a_{ij} D_{ij}$$
 Rozwinięcie względem wiersza i

$$det A = \sum_{i=1}^{n} a_{ij} D_{ij} \qquad \text{Rozwinięcie względem kolumny } j$$

Gdzie D_{ij} to dopełnienie algebraiczne a_{ij}

$$D_{ij} = (-1)^{i+j} \cdot det A_{ij}$$

gdzie A_{ij} to macierz, która powstaje z A przez skreślenie wiersza i oraz kolumny j;

Stosując wzór Laplace'a szukamy wiersza lub kolumny z największą ilością zer. Jeżeli w maceirzy występuje wiersz lub kolumna złożona z samych zer to det A = 0.

4.4 Macierz odwrotna

Macierz A^{-1} jest macierzą odwrotną do A, jeżeli:

$$A^{-1} \cdot A = A \cdot A^{-1} = I$$

MacierzAjest odwracalna $\iff A$ jest maceirzą nieosobliwą.

Jeżeli A jest macierzą kwadratową nieosobliwą wymiaru wymiaru $n \ge 2$, to

$$A^{-1} = \frac{1}{\det A} \cdot D^T$$

gdzie $D = \left\lceil D_{ij} \right\rceil$ jest macierzą dopełnień algebraicznych a

Uwaga: n = 1

$$A = \begin{bmatrix} 5 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} \frac{1}{5} \end{bmatrix}$$

4.5 Minor macierzy

Minor M macierzy A to macierz kwadratowa, która pwostaje z A przez skreślenie pewnej ilości (być może zero) wierszy i kolumn.

4.5.1 Minor bazowy

Minor M macierzy A jest minorem bazowym A, jeżeli $det M \neq 0$ oraz wszystkie minory M' macierzy A wymiaru większego niż M mają wyznaczniki równe zero (det M' = 0)

Uwaga. Macierz A może posiadać więcej niż jeden minor bazowy, ale wszystkie minory bazowe A są tego samego wymiaru.

4.5.2 Rząd macierzy

Rząd macierzy niezerowej to wymiar dowlonego minora bazowego tej macierzy.

Rząd macierzy zerowej wynosi zero $(rz(\theta) = 0)$

4.6 Układy równań liniowych

Z układem równań liniowych można powiązać macierz A wymiaru $m \times n$ nazywaną **macierzą współczynników układu równań** (macierz główna) oraz dwie macierze kolumnowe x (kolumna zmiennych) i b (kolumna wyrazów wolnych).

$$Ax = b$$

4.6.1 Układ Cramera

Układ równań liniowych jest układem Cramera, jeżeli macierz główna układu A jest kwadratowa nieosobliwa. Czyli liczba równań w układzie jest równa liczbie zmiennych a wyznacznik macierzy głównej nie jest równy 0 ($det A \neq 0$).

4.6.2 Metoda macierzy odwrotnej

Układ równań liniowych Cramera ma dokładnie jedno rozwiązanie zadane wzorem

$$x = A^{-1} \cdot b$$

4.6.3 Metoda Cramera

Układ równań liniowych Cramera ma dokładnie jedno rozwiązanie zadane wzorem

$$x_i = \frac{\det A_i}{\det A}, \qquad i = 1, 2, \dots, n$$

gdzie A_i to macierz, która powstaje z A przez zastąpienie kolumny i przez kolumnę wyrazów wolnych.

4.6.4 Twierdzenie Kroneckera-Capelliego

Macierz U (macierz uzupełniona) powstaje z macierzy A przez dołączenie kolumny b.

$$U = \begin{bmatrix} A & \vdots & b \end{bmatrix}$$

- jeżeli rz(A) = rz(U) = n (n liczba niewiadowym), to rozwiązanie jest jedyne;
- jeżeli rz(A) = rz(U) = r < n, to rozwiązań jest nieskończenie wiele i zależą od n-r parametrów.

4.6.5 Macierz schodkowa

Macierz schodkowa to macierz w której każdy pierwszy nie zerowy element wiersza jest przesunięty w prawo w stosunku do wiersza poprzedniego

Nie bierzemy pod uwagę wierszy zerowych

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \quad rz(A) = 3$$

Rząd macierzy schodkowej jest równy liczbie schodków to znaczy nie zerowych wierszy.

4.6.6 Operacje elementarne na wierszach

- 1. Pomnożyć wiersz przez liczbę różną od zera,
- 2. do wiersza dodać inny wiersz pomnożony przez liczbę,
- 3. zamienić dwa wiersze miejscami.

Analogiczne operacje definiujemy dla kolumn

Przekształcenia elementarne nie zmieniają rzędu macierzy.

4.6.7 Metoda Gaussa (eliminacji zmiennych)

Przekształcamy macierz uzupełniną układu za pomocą operacji elementarnych na wierszach do postaci schodkowej. Z przekształconej macierzy odczytujemy czy rząd A jest równy rzędowy U, jeżeli nie to układ jest sprzeczny, jeżeli są równe to z przekształconej macierzy odczytujemy równania układu a następnie rozwiązania.

5 Rachunek różniczkowy

5.1 Pochodna funkcji w punkcie

Załóżmy, że $f:(a,b)\to\mathbb{R}$ i $x_0\in(a,b)$.

Pochodna funkcji f w punkcie x_0 to liczba $f^\prime(x_0)$ określona wzorem

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

5.2 Pochodne funkcji jednej zmiennej

5.2.1 Wzory na pochodne podstawowych funkcji

Pochodna funkcji stałej:

$$(c)' = 0$$
, gdzie $c \in \mathbb{R}$ jest stałą

Pochodna funkcji potęgowej:

$$(x^{\alpha})' = \alpha x^{\alpha - 1}$$
, gdzie $\alpha \in \mathbb{R}$ jest stałą

Pochodna funkcji wykładniczej i logarytmicznej:

$$(a^x)' = a^x \ln a$$
, gdzie $a \in (0,1) \cup (1,\infty)$ jest stałą
$$(\log_{\alpha} x)' = \frac{1}{x \ln \alpha}, \quad \text{gdzie } \alpha \in (0,1) \cup (1,\infty) \text{ jest stałą}$$

$$(e^x)' = e^x$$
$$(\ln x)' = \frac{1}{x}$$

Pochodna funkcji trygonometrycznych:

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

Pochodne funkcji łączonych:

$$(\alpha \cdot f)' = \alpha \cdot f', \quad \text{gdzie } \alpha \in \mathbb{R} \text{ jest stałą}$$

$$(f \pm g)' = f' \pm g'$$
$$(f \cdot g)' = f'g + fg'$$
$$(\frac{f}{g})' = \frac{f'g - fg'}{g^2}$$

Przydatne pochodne¹:

$$(x)' = 1$$
$$(ax)' = a$$
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

5.2.2 Tw. Rolle'a

Jeżeli

- 1. funkcja f jest ciągła w przedziale [a, b],
- 2. funckja f ma pochodną w przedziale (a, b),
- 3. f(a) = f(b)

to istnieje $c \in (a, b)$ takie, że f'(c) = 0.

5.2.3 Tw. Lagrange'a

Jeżeli

- 1. funkcja f jest ciągła w przedziale [a, b],
- 2. funckja f ma pochodną w przedziale (a, b),

to istnieje $c \in (a,b)$ takie, że $f'(c) = \frac{f(b) - f(a)}{b - a}.$

5.2.4 Monotoniczność

Jeżeli funkcja f(x) dla każdego $x \in I$, gdzie I to dowolny przedział, ma pochodną:

- 1. f'(x) = 0, to funkcja f jest stała w przedziale I,
- 2. f'(x) > 0, to funkcja f jest rosnąca w przedziale I,
- 3. f'(x) < 0, to funkcja f jest malejąca w przedziale I,
- 4. $f'(x) \ge 0$, to funkcja f jest niemalejąca w przedziale I,
- 5. $f'(x) \leq 0$, to funkcja f jest nierosnąca w przedziale I,

5.2.5 Ekstrema lokalne

Warunek konieczny istnienia ekstremum

Jeżeli funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna i ma w punkcie $x_0\in(a,b)$ ekstremum lokalne, to $f'(x_0)=0$.

¹Przydatne pochodne wywodządze się z pochodnych funkcji podstawowych

Warunek wystarczający istnienia ekstremum

Jeżeli funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna, $x_0\in(a,b), f'(x_0)=0$ oraz funkcja pochodna f' zmienia znak w otoczeniu punktu x_0 , to

- jeżeli f' zmienia znak z (+) na (-), to w punkcie x_0 jest maksimum lokalne,
- jeżeli f' zmienia znak z (-) na (+), to w punkcie x_0 jest minimum lokalne,

5.2.6 Wypukłość

Funkcja jest wypukła w przedziale I, gdy odcinek łączący dowolne dwa punkty wykresu funkcji f w przedziale I leży powyżej (funkcja ściśle wypukła) lub na wykresie tej funkcji.

Analogicznie funcja jest wklęsła gdy odcinek łączący dwa punkty wykresu funkcji f w przedziale I leży pod (funkcja ściśle wklęsła) lub na wykresie tej funkcji.

Jeżeli funkcja f(x) dla każdego $x \in I$, gdzie I to dowolny przedział, ma pochodną drugiego rzędu:

- 1. f''(x) > 0, to funkcja f jest ściśle wypukła w przedziale I,
- 2. f''(x) < 0, to funkcja f jest ściśle wklęsła w przedziale I,
- 3. $f''(x) \ge 0$, to funkcja f jest wypukła w przedziale I,
- 4. $f''(x) \leq 0$, to funkcja f jest wklęsła w przedziale I,

5.2.7 Punkty przegięcia

Warunek konieczny istnienia punktu przegięcia

Jeżeli funkcja f ma punkt przegięcia w x_0 oraz istnieje pochodna rzędu drugiego funkcji f w punkcie x_0 , to $f''(x_0) = 0$.

Warunek wystarczający istnienia punktu przegięcia

Jeżeli funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna drugiego rzędu, $x_0\in(a,b), f''(x_0)=0$ oraz funkcja pochodna f'' zmienia znak w otoczeniu punktu x_0 , to

- \bullet jeżeli $f^{\prime\prime}$ zmienia znak z (+) na (-), albo
- jeżeli f'' zmienia znak z (-) na (+),

to istnieje punkt przegięcia.

5.3 Pochodne cząstkowe funkcji wielu zmiennych

$$f = f(x_1, x_2, \dots, x_n)$$

Pochodna cząstkowa funkcji f względem zmiennej x_i

$$\frac{\delta f}{\delta x_i} = f'_{x_i}$$

Pochodną cząstkową funkcji f względem zmiennej x_i liczymi tak samo jak pochodną funkcji jednej zmiennej, przyjmując, że x_i to zmienna a wszystkie pozostałe zmienne traktując jak stałe.

Pochodne wyższych rzędów

$$\frac{\delta^2 f}{\delta x_j \delta x_i} = f''_{x_i x_j} = (f'_{x_i})'_{x_j}$$
$$\frac{\delta^2 f}{\delta x_i^2} = f''_{x_i x_i} = (f'_{x_i})'_{x_i}$$

5.3.1 Tw. Schwarza

Jeżeli pochodne mieszane funkcji f(x,y) sa funkcjami ciągłymi to sa sobie równe, czyli

$$f_{x_i x_j}^{"} = f_{x_j x_i}^{"}$$

5.3.2 Kryterium Sylvestera

Kryterium pozwalające badać określoność symetrycznej macierzy.

Niech

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix}$$

będzie macierzą symetryczną o współczynnikach rzeczywistych

Niech ponadto

$$M_1 = a_{1,1}, \quad M_2 = \det \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}, \dots \quad M_l = \det \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,l} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,l} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l,1} & a_{l,2} & \cdots & a_{l,l} \end{bmatrix}$$

Wówczas

A jest dodatnio określona wtedy i tylko wtedy, gdy jej wiodące minory główne są dodatnie, tj.

$$M_l > 0 \text{ dla } l \in \{1, \dots, n\}$$

A jest ujemnie określona wtedy i tylko wtedy, gdy

$$M_l < 0 \text{ dla } l \in \{1, 3, 5, \dots\}, M_l > 0 \text{ dla } l \in \{2, 4, 6, \dots\}$$

5.3.3 Ekstrema lokalne funkcji dwóch zmiennych

Warunek konieczny

Jeżeli w punkcie $P_0(x_0, y_0)$ istnieje esktremum to

$$\begin{cases} f'_x(P_0) = 0 \\ f'_y(P_0) = 0 \end{cases}$$

Punkt w którym spełnione są warunki konieczne jest punktem stacjonarnym.

Warunek wystarczający

Jeżeli punkt $P_0(x_0,y_0)$ jest punktem stacjonarnym oraz niech $\Delta_1=f''_{xx}$ i $\Delta_2=detf'',$ gdzie f'' to macierz pochodnych cząstkowych drugiego rzędu, to

- \bullet jeżeli $\Delta_1>0$ i $\Delta_2>0 \implies f^{\prime\prime}$ jest dodatnio określona \implies minimum lokalne,
- \bullet jeżeli $\Delta_1<0$ i $\Delta_2>0\implies f''$ jest ujemnie określona \implies maksimum lokalne,

Uwaga. Jeżeli $\Delta_2 < 0$ i $\Delta_1 \neq 0$ to w punkcie stacjonarnym nie ma ekstremum.

6 Rachunek Całkowy

6.1 Funkcja pierwotna

Rozważmy przedział zawarty w zbiorze liczb rzeczywistych $(I \subset \mathbb{R})$. Funkcję rzeczywistą mającą pochodną w każdym punkcie przedziału I nazywamy funkcją pierwotną funkcji f w przedziałe I, jeżeli w każdym punkcie zachodzi F'(x) = f(x).

6.1.1 Tw. o funkcji pierwotnej

Dwie dowolne funckje pierwotne tej samej funckji f różnią się o stałą tzn. Jeśli F i G są funkcjami pierwotnumi w przedziale I do funkcji f, to $\exists c \in \mathbb{R} \ \forall x \in I : F(x) = G(x) + c$.

6.2 Całka nieoznaczona

Rodzina wszystkich funkcji pierwotnych funkcji f w przedziale I nazywamy całką nieoznaczoną funkcji f w przedziale I i oznaczamy ją symbolem $\int f(x)dx$. Zatem

$$\int f(x)dx = F(x) + c \iff F'(x) = f(x)$$

.

6.3 Wzory podstawowe

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c; \tag{1}$$

$$\int \frac{1}{x} dx = \ln|x| + c; \tag{2}$$

$$\int e^x dx = e^x + c; \tag{3}$$

$$\int a^x dx = \frac{a^x}{\ln a} + c; \tag{4}$$

$$\int \sin x \, dx = -\cos x + c; \tag{5}$$

$$\int \cos x \, dx = \sin x + c; \tag{6}$$

$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + c; \tag{7}$$

$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + c; \tag{8}$$

6.4 Całka oznaczona Riemanna

6.4.1 Tw. Newtona-Leibniza

Jeżeli $\int f(x)dx = F(x) + c$ to

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Literatura

[1] Krystyna Bieńkowska-Lipińska, Dominik Jagiełło, and Rafał Maj. Rachunek prawdopodobieństwa i statystyka. Ośrodek Kształcenia na Odległość Politechniki Warszawskiej OKNO, 2010.