

Spring 2023 - ECON 584 - Group 9 Amanda Rago, Mohammed Alshlash, Micky Sun, Wanlin Chen, Jianian Hua, Peiyao Li

- Whole Foods is a chain of grocery stores that focuses on selling natural, organic, and 'healthy' food
- Questions:
 - What factors go into Whole Foods' decision when opening a new store?
 - What neighborhood would be best suited for a new Whole Foods?
- Utilized a logistic regression model to understand what factors were correlated with Whole Foods existence in a location
 - Took these results and forecasted future locations

Study Area

- Originally analyzed at the zip code level in Los Angeles County
- Pivoted to major neighborhoods and cities
 - Sherman Oaks, Studio City, Santa Monica, etc.
- Analyzed 116 major neighborhoods and cities; 29 Whole Foods total
- Average number of Whole Foods is 0.25
- Minimum is 0, maximum is 9, standard deviation is 0.98

Literature Review

Theme 1: Demographic factors are significant for retail stores' success

• Income level and population size are important in marketing analyzation (Assessment of business potential at retail sites: empirical findings from a US supermarket chain)

• Food deserts has high correlation with ethnicity, worsening the health problems of residents in South Dallas.

(Demand Metric for Supermarket Site Selection: A Case Study)

Literature Review

Theme 2: Spatial factors affect retailers' decision making of opening new grocery stores

- Perception of location deeply affects retailers to open retail stores
 (Demand Metric for Supermarket Site Selection: A Case Study)
- Spatial factors like land price affect the decision making (Geomarketing models in supermarket location strategies)

Literature Review

Theme 3: Competitors' characteristics play two-side role in the assessment process of the possible implementation of grocery stores

 Accessibility and size of competitive stores affect consumer purchasing decisions

(Assessment of business potential at retail sites: empirical findings from a US supermarket chain)

Lack of competitors intensifies "food deserts"
 (Demand Metric for Supermarket Site Selection: A Case Study)

Data

- Dependent variable: Whole Foods dummy
- Four categories are comprised of 12 independent variables: competitors level, demographic information, socioeconomic condition, and community safety and accessibility.
- Position strategy:
 - Whole Foods and Trader Joe's both offer a unique shopping experience that caters to
 - health-conscious consumers. Ralphs and Trader Joe's both offer lower prices than Whole Foods, which appeal to budget-conscious consumers.
- Cross-sectional data is examined spatially. (116 observations: city/neighborhood)

Whole Foods

Ralphs

Trader Joes

Population

Education

Households

Unemployment

Housing Price

Apartment Price

Violent Crimes

Traffic Volume

Public Transit

Ridership

Income

Rate

Age

Variable

Number of Ralphs in a city/neighborhood, 2023 Number of Trader Joes in a city/neighborhood, 2023

Description

Binary variable: whether a city/neighborhood has a

Whole Foods or not, 2023

Median age in a city/neighborhood

Percentage of population with bachelor's degrees or

Households median income in a city/neighborhood,

Unemployment rate in a city/neighborhood

Average housing price in a city/neighborhood

Average apartment price in a city/neighborhood

Number of violent crimes in a city/neighborhood

Average annual daily traffic of freeway/highway

Percentage of population using public transit service

segment in a city/neighborhood, 2016

in a city/neighborhood, 2019

Minimum

0

0

0

5.114

31

4.20%

\$49,554

2.85

\$89,705

\$1,942

14

28,000

0.40%

Dependent Variable

Competitors Level

Demographic Information

Socioeconomic Condition

Community Safety and Accessibility

Mean

0.25

0.61

0.41

85.579

40

35.09%

\$93,458

6.48

\$1,175,492

\$2,439

28,838

2,157,306

3.71%

StDev

0.98

2.15

1.29

226,351

19.71%

\$31,766

1.47

\$769,734

\$439

151,968

8.037.348

2.68%

Maximum

22

12

2,420,705

51

78.54%

\$212,115

9.92

\$4,623,281

higher, 2020

2021

Total population in a city/neighborhood, 2021

1,632,191 86,666,500

\$3,244 13%

Data (Competitors Level)

Trader Joes (48) Ralphs (71)

Data (Demographic Information)

- % Population with bachelor's degree or higher:
 - Higher in Coastal cities

Data (Socioeconomic Condition)

- Average housing prices:
 - Coastal cities are more expensive

Data (Community Safety and Accessibility)

- Incidence of violent crimes:
 - Cluster in the northwestern part of Los Angeles county

The Model

Logistic regression model in zip code level:

Whole
$$Foods = \beta X + e$$

Significant Coefficients:

- Log of Number of Households **
- Four Years Population Growth **
- Ralphs Presence *
- Log of Average Housing Price *

- RMSE = 0.26
- Pseudo R-squared = 0.345

Logit	Regression	Resu	lts

	Dependent variable:
	Whole Foods presence
const	-61.7317
COLIST	(-24.23)
Ralphs	0.6993*
naipiis	(0.421)
Trader Joes	-0.2578
Trader Joes	
Bristol Farms	(0.524)
Bristoi Farms	0.4608
/ T-+-	(0.879)
Log(Total population)	-2.4703
	(1.812)
Log(Median Age)	0.6537
	(2.978)
Log(Number of Households)	4.0652**
1(11 b - 1 d - 10 - d	(1.947)
Log(Households Median income)	0.5616
	(1.58)
Unemployment Rate	-0.1689
	(0.178)
Log(Violent Crime)	0.1192
	(0.14)
Log(Average Apartment Rent)	2.7122
	(3.144)
Log(Average Housing Price)	1.1887*
	(0.707)
Four Years Population Growth	0.0939**
	(0.046)
Four Years Income Growth	-0.0046
	(0.027)
Pseudo R-squared	0.3454
Observations	263
Log Likelihood	-56.969
Note	*P<0.1; **P<0.05; ***P<0.0

The Model

Logistic regression model in city level:

Whole Foods =
$$\beta X + e$$

Significant Coefficients:

- Log of Total Population **
- Ralphs Presence *
- Trader Joes Presence *
- Log of Total Violent Crimes *
- Education *

- Arr Pseudo R-squared = 0.697
- **♦** RMSE= 0.19

Logit Regression Results	
	Dependent variable:
	Whole Foods presence
const	-22.917
	(74.811)
ralphs	2.296*
	(1.21)
Trader Joes	-2.5036*
	(1.318)
Bristol Farms	0.9176
	(2.195)
Log(Total population)	3.0199**
	(1.543)
Log(Median age)	-12.3676
	(10.841)
Log(Households Median income)	-4.3858
	(5.352)
Unemployment Rate	-0.0772
	(0.604)
Log(Violent Crime)	0.5955*
	(0.321)
Log(Average apt price)	6.7631
	(7.654)
Log(Average housing price)	1.0547
	(2.544)
Education	0.2536*
	(0.13)
Public transportation traffic	-0.5517
	(0.511)
Total traffic volume	5.93E-07
	(4.48E-07)
Pseudo R-squared	0.6971
Observations	116
Log Likelihood	-13.53
Note	*P<0.1; **P<0.05; ***P<0.01

Model Validation

Final Model to predict potential locations:

Whole Foods =
$$\beta_0 + \beta_1 \log(Total\ Population) + \beta_2\ Ralphs + \beta_3\ Tader\ Joes + \beta_4 \log(violent\ crime) + \beta_5\ Education$$

Training data results

- R-squared = 0.66
- RMSE = 0.28

$$eta_{logPop} = 3.92$$
 $e^{eta_{Ralphs}} = 5.94$
 $e^{eta_{TraderJoes}} = 0.12$
 $eta_{logcrime} = 0.42$
 $e^{eta_{Education}} = 1.26$

Log total population (+)	1%	3.92%↑
Ralphs (+)	1 unit	494% 🛉
Trader Joes (-)	1 unit	88%↓
Log violent crime (+)	1%	0.42% 🕇
Education rate (+)	1 unit	26%

Logit Regression Results

Logic Regression Results	
	Dependent variable:
	Whole Foods presence
const	-59.1578
	(22.048)
Log(Total population)	3.9247**
	(1.683)
Ralphs	1.7822*
	(1.00)
Trader Joes	-2.0878*
	(1.133)
Log(Violent Crime)	0.4249*
	(0.219)
Education	0.2327***
	(0.083)
R-squared	0.6566
Observations	116
Log Likelihood	-13.53
Note	*P<0.1; **P<0.05; ***P<0.01

Model Accuracy

True positive rate (TPR) (Sensitivity)	TP Actual positive	0.67
True negative rate (TNR) (Specificity)	TN Actual negative	0.90
Accuracy	$\frac{TN + TP}{Total}$	0.88

Prediction evaluation

Strategy Comparison

	Whole Foods	Trader Joe's	Ralphs
Constant	-45.4359	-36.7858	-11.9961
	(.002)	(.001)	(.052)
Log of Total Population	2.6472	2.6540	0.8609
	(.013)	(.003)	(.096)
Log of Violent Crime Number	0.5823	0.0012	-0.0013
	(.003)	(.993)	(.990)
Percentage of Bachelor's Degree or Higher	0.2028	0.1492	0.0314
	(.001)	(.000)	(.151)
Number of Whole Foods		1.2180 (.128)	1.5884 (.073)
Number of Trader Joe's	-1.4932 (.058)		1.3735 (.024)
Number of Ralphs	1.5521 (.051)	0.9473 (.035)	

Where to expand

The underserve level: Whole Foods presence dummy - model predicted probability

Further Studies and Conclusions

- Two potential locations for a new store: Pacific Palisades and Culver City
- The model predicts the closure the Venice and El Segundo location
 - This decision would be best made with sales data
- Expand study area to West Coast (California, Oregon, Washington) with neighborhood level of aggregation
 - More data
 - Reliable & detailed results
 - More meaningful results for a corporate client
- Include more competitors and commercial rent data

Thank you!

References

Rincón, & Tiwari, C. (2020). Demand Metric for Supermarket Site Selection: A Case Study. Papers in Applied Geography, 6(1), 19–34. https://doi.org/10.1080/23754931.2020.1712555

Smith, & Sanchez, S. (2003). Assessment of business potential at retail sites: empirical findings from a US supermarket chain. The International Review of Retail, Distribution and Consumer Research, 13(1), 37–58. https://doi.org/10.1080/0959396032000051684

Baviera-Puig, Buitrago-Vera, J., & Escriba-Perez, C. (2016). Geomarketing models in supermarket location strategies. Journal of Business Economics and Management, 17(6), 1205–1221. https://doi.org/10.3846/16111699.2015.1113198

The economics of supermarket and grocery store location - USDA. (n.d.). Retrieved April 19, 2023, from https://www.ers.usda.gov/webdocs/publications/42711/12705_ap036f_1_.pdf?v=0