Lecture 19

March 8, 2019

Anders Sundheim asundheim@wisc.edu

Greene's Theorem

Setting

Let C be a piecewise C^1 closed Jordan Curve, that is, C is not self-intersecting. C encloses a region $S \subset \mathbb{R}^2$

Theorem

[Greene's Theorem] Let $P, Q : \to \mathbb{R}$ be C^1 functions(real valued). Then,

(*)
$$\oint_C P dx + Q dy = \iint_S \left(\frac{dQ}{dx} - \frac{dP}{dy} \right) dx dy$$

Observations

① In the theorem, there are 2 functions P and Q that are not related \Rightarrow To prove (*), it's equivalent to show 2 simpler claims.

$$\begin{cases} (**) \oint_C P \, dx = \iint_S -\frac{dP}{dy} \, dx \, dy \\ (***) \oint_C Q \, dy = \iint_S \frac{dQ}{dx} \, dx \, dy \end{cases}$$

(or, you can let $P \equiv 0, Q \equiv 0$ in (*))

(**) and (***) are more or less the same

2 Let's prove (**). $\oint_C P dx = \iint_S -\frac{dP}{dy} dx dy$

Key pt. Divide S into simple domains (in x), and we'll show that for each simple domain S_k :

$$\oint_{C_k} P \, dx = \iint_{S_k} -\frac{dP}{dy} \, dx \, dy$$

 $(C_k \text{ is the corresponding boundary of } S_k).$

Afterwards, adding all these together in k to get:

Proof of (**) for simple domains (in x)

Proof.

$$S = \{(x, y) : a \le x \le b, \varphi(x) \le y \le Psi(x)\}$$

We now compute easily:

$$\iint_{S} -\frac{dP}{dy} dx dy = \int_{a}^{b} \left(\int_{\varphi(x)}^{\Psi(x)} -\frac{dP}{dy} dy \right) dx$$
$$= \int_{a}^{b} \left(P(x, \varphi(x)) - P(x, \Psi(x)) \right) dx$$

Let's compute $\oint_C P dx$:

C is broken into 4 pieces as following.

$$(1) \alpha(x) = (x, \varphi(x)) : a \le x \le b, dx = dx$$

$$\int_{\Omega} = \int_{a}^{b} P(x, \varphi(x)) dx$$

(II)
$$\beta(s) = (b, s) : \varphi(x) \le s \le \Phi(x), dx = 0$$
 as it's constant

$$\int_{\beta} P \, dx = 0$$

Similarly, $\int_{\delta} P dx = 0$.

$$(III)$$
 $\gamma(x) = (x, \Psi(x)) : a \le x \le b, dx = x$

$$\int_{\gamma} P dx = \int_{a}^{b} P(x, \Psi(x)) dx = -\int_{a}^{b} P(x, \Psi(x)) dx$$

Sum all up,

$$\oint_C P dx = \int_a^b \left(P(x, \varphi(x)) - P(x, \Psi(x)) \right) dx$$

Remark

To prove the other identity:

$$\oint_C Q \, dy = \iint_S \frac{dQ}{dx} \, dx \, dy$$
, we simply break S into simple domains in y

Example

Compute work done by force field

$$f(x,y) = (y+3x, 2y-x)$$

in a moving particle counter-clockwise once around the ellipse

$$4x^2 + y^2 = 4$$

Earlier: Parameterize C:

$$\alpha(s) = (\cos(s), 2\sin(s)), 0 \le s \le 2\pi$$
Work done = $\int f \cdot d\alpha = \int_0^{2\pi} f(\alpha(s)) \cdot \alpha'(s) ds$

$$= \int_0^{2\pi} (2\sin(s) + 3\cos(s), 4\sin(s) - \cos(s)) \cdot (-\sin(s), 2\cos(s)) ds$$

$$= \int_0^{2\pi} (-2\sin^2(s) - 3\cos(s)\sin(s) + 8\sin(s)\cos(s) - 2\cos^2(s)) ds$$

$$= \int_0^{2\pi} (-2 + 5\sin(s)\cos(s)) ds = \dots$$

The other way:
$$P(x,y) = y + 3x$$
, $Q(x,y) = 2y - x$
Work done = $\oint_C P dx + Q dy$

$$= \iint_S (\frac{dQ}{dx} - \frac{dP}{dy})$$

$$\iint_{S} dx \, dy$$

$$= \iint_{S} (-2) \, dx \, dy$$