Modelos No Lineales Clase Modelo

Edinson Tolentino
email: edinson.tolentino@gmail.com

Twitter: @edutoleraymondi

Educate Peru

Contenido

- Conceptos Básicos estadísticos
- Reintroducción Maximun Likelihood (ML)
- Modelo de Probabilidad Lineal
- Modelo de Regresión Logística
- Modelo Probit
- Probabilidades y caracteristicas promedio
- Efectos Marginales

- Asuma el lanzamiento de un dado , el cual denota 6 lados como producto
- La formula para la probabilidad de cada producto estará dado por:

$$Prob\left[Y=j\right]=\frac{1}{6}$$

• Donde, j = 1, 2, 3, 4, 5, 6

Probabilidad acumulada

• La función densidad de probabilidad (pdf) y el gráfico de la función de probabilidad acumulada (CDF) de una distribución normal.

$$pdf: f(z) = \frac{1}{\sqrt{2\pi}} exp\left(\frac{-z^2}{2}\right) \Rightarrow z \sim N(0, 1)$$

The standard normal probability density curve

• La función de probabilidad acumulada (CDF) de una distribución normal.

$$CDF: F(z) = \int_{-\infty}^{c} f(z) \partial z$$

• La CDF de la distrbución normal estandar tiene una forma de una curva de cambio

- Maximum Likelihood (ML) requiere un conocimiento exacto de la función de distribución de probabilidad de una variable subyacente.
- La pdf puede ser representado por una curva

$$prob\left(a < Y < b
ight) = \int_{a}^{b} f(y) \partial y$$
 $prob\left(a < Y < a
ight) = \int_{a}^{a} f(y) \partial y = 0$ $prob\left(-\infty < Y < +\infty
ight) = \int_{-\infty}^{+\infty} f(y) \partial y = 1$

ullet Supuesto de la distribución dentro del rango $-\infty$ hacia $+\infty$

• Entonces:

$$prob(Y \le c) = \int_{\infty}^{c} f(y)\partial y = prob(Y < c)$$
 $F(c) = \int_{\infty}^{c} f(y)\partial y$

- ullet Donde F(c) represente la probabilidad acumulada
- ullet F(c) es llamada la función de probabilidad cumulada (operador) , llamada CDF
- Esto permite que, la derivada de la CDF es el pdf:

$$\frac{\partial F(y)}{\partial y} = f(y)$$

Maximum Likelihood

• **Ejemplo:** Asuma que Y es una variable aletoria con valor de 0 o 1, donde 1 ocurre dado una probabilidad de λ y 0 con probabilidad de $1-\lambda$

- **Ejemplo:** Asuma que Y es una variable aletoria con valor de 0 o 1, donde 1 ocurre dado una probabilidad de λ y 0 con probabilidad de $1-\lambda$
- ullet La distribución de la variable aletoria Y es caracterizada por un parametro λ , el cual significa

$$Prob[Y = 1] = \lambda$$

$$Prob[Y=0]=1-\lambda$$

• Asumiendo que se tiene tes valores de Y, de forma aleatoria , los cuales son:

$$Y = (1, 1, 0)$$

• ¿Cuál es el estimador de Maximum likelihood de λ ?

- Paso 1: Denotar la función de veroslimilitud (*Likelihood Function*), probabilidad conjunta de las observaciones sera :
- Entonces:

$$LF = Prob(Y = 1) \times Prob(Y = 1) \times Prob(Y = 0)$$

Luego:

$$LF = \lambda \times \lambda \times (1 - \lambda)$$

• Por lo tanto:

$$\textit{LF} = \lambda^2(1-\lambda)$$

- Paso 2: optimizar la función de veroslimilitud (Likelihood Function):
- Por lo tanto:

$$\textit{LF} = \lambda^2(1-\lambda) = \lambda^2 - \lambda^3$$

Optimización:

$$\frac{\partial LF}{\partial \lambda} = 2\lambda - 3\lambda^2 = 0$$

ullet Por tanto, se encuentra el valor de λ que hace óptimo LF

Maximum Likelihood (ML)

- La metodología de ML requiere tres puntos:
 - **1** Se debe especificar la pdf para casos continuos (o la CDF para casos discretos) dada una función donde no se conce los parametros β_1, \dots, β_k
 - ② El uso de la diferenciación (derivadas) para encontrar el valor de los parametros que óptimizan (maximizan) la función de verosimilitud (FL)
 - Uso de las ecuaciones de las derivadas parciales para encontrar los demas parametros
 - \bullet Esto requiere de iteracciones no lineales , por tanto , por lo general se usa un $Log\vartheta$ para para función de verosimilitud (L)

Maximum Likelihood (ML)

- Entonces, si se tiene el parametro β_0 como estimador de ML y L como el logaritmo de la función verosimilitud (Likelihood function, LF), los elementos que requiere el método de ML son:
 - La función de score dado por:

$$\frac{\partial L}{\partial \beta_0} = S(\beta_0)$$

2 La información dado por :

$$-E\frac{\partial^{2}L}{\partial\beta_{0}^{2}}=I\left(\beta_{0}\right)$$

Nota: (Conocido como la información de Fisher)

La varianza muestral asintótica para los estimadores de ML obtenidos como;

$$Var\left(eta_{0}
ight)=\left[I\left(eta_{0}
ight)
ight]^{-1}$$

Modelo de Probailidad Lineal

Siguiendo la especificación:

$$y_i = X_i'\beta + \mu_i$$

- Donde : y = 1 o y = 0 , $E(\mu) = 0$
 - La probabilidad de que y=1 es ρ
 - Mientras que la probabilidad de que y=0 sera $1-\rho$
- Entonces : $E[y_i] = X'\beta = Prob(y = 1) = \rho_i$

- Caso 1: En un encuentro de futbol entre el Arsenal y el Fullham, las casas de apuestas ofrecen una probabilidad (odds) de 2/9 en conra de que el Arsenal gane (local)
 - ► El enunciado anterir significa que si tu apuestas un dolar 1 \$ sobre una victoria del Arsena, las casas de apuestas te pagaran 1 \$ mas 0.22 centavos
 - Por tanto, las casas de apuestas tienen un odds ratio en contra de que ocurra el evento (victoria de arsenal) definido como:

$$\frac{(1-\rho)}{\rho}=\frac{2}{9}$$

La probabilidad implicita de la victoria del local (Arsenal) que las casas de apuestas usan es:

$$\rho = \frac{9}{11} = 0.818$$

▶ las casas de apuestas asumen una victoria del Arsenal en 82 %

• La curva de CDF para un modelo de regresión logistica esta dado por:

$$Prob(y_i = 1) = F(X'\beta) = \frac{exp(X'\beta)}{1 + exp(X'\beta)}$$

Nota Probabilidad para cuando el evento ocurra

Por otro lado:

$$Prob (y_i = 0) = 1 - F (X'\beta) =$$

$$= 1 - \frac{exp(X'\beta)}{1 + exp(X'\beta)}$$

$$= \frac{1 + exp(X'\beta)}{1 + exp(X'\beta)} - \frac{exp(X'\beta)}{1 + exp(X'\beta)}$$

$$= \frac{1}{1 + exp(X'\beta)}$$

Nota Probabilidad para cuando el evento no ocurra

• Usando el modelo logístico, podemos construir el siguiente ratio:

$$\frac{Prob(y_i = 1)}{1 - Prob(y_i = 1)} = \exp(X'\beta)$$

• Luego podemos tomar el logaritmo a la ultima expresión:

$$\log\left(\frac{Prob(y_i=1)}{1-Prob(y_i=1)}\right) = X'\beta$$

• Si tomamos diferencial respecto a la variable explicativa , se tiene:

$$\frac{\partial log\left(\frac{Prob(y_i=1)}{1-Prob(y_i=1)}\right)}{\partial X'} = \beta$$

Modelo	Interpretación de coeficientes
Modelo de Probabilidad Lineal	El efecto de un pequeño cambio en el regresor sobre la probabilidad del evento de ocurrencia
Modelo logit	El efecto de un pequeño cambio en el regresor sobre el log odds ratio del evento de ocurrencia

- Probit
- $\sim \textit{N}\left(0,1\right)$

- Logit
- $\sim L\left(0,\frac{\pi^2}{3}\right)$

- El marco de un umbral es provisto dentro del Modelo Probit
- La metodología incluye una variable latente (no observable) para una variable dependiente y^* , el cual puedo tomar dos valores a través de una variable latente ($y_i = 1/0$)

• La variable dependiente del modelo es expresada como:

$$y_{i}^{*} = X_{i}^{'}\beta + \mu_{i}$$

Donde:

$$\mu_i \sim N\left(0, \sigma^2\right)$$

$$y_{i}^{*} \sim N\left(X_{i}^{'}\beta,\sigma^{2}\right)$$

- Si y_i* > 0 entonces: y_i = 1
 Si y_i* ≤ 0 entonces: y_i = 0
- Nota:

$$prob\left[y_i=1\right]=prob\left[y_i^*>0\right]$$

- Usando y considerando : $prob [y_i^* > 0]$
- Restando el promedio de y_i^* de ambos lados:

$$prob\left[y_{i}^{*}>0\right]=prob\left[y_{i}^{*}-X_{i}^{*}\beta>-X_{i}^{*}\beta\right]$$

ullet Dividir ambos lados respecto a los terminos de sigma σ

$$= \operatorname{prob}\left[\frac{y_i^* - X_i'\beta}{\sigma} > -\frac{X_i'\beta}{\sigma}\right]$$

$$= \operatorname{prob}\left[\frac{\mu_i}{\sigma} > -\frac{X_i'\beta}{\sigma}\right]$$

• Dado la simetría natural de la distribución, se puede reescribir la expresión:

$$= prob \left[\frac{\mu_i}{\sigma} \le \frac{X_i' \beta}{\sigma} \right]$$

• Nosotros reexpresamos usando el operador CDF dado por $F(\circ)$ como:

$$= F\left[\frac{X_i'\beta}{\sigma}\right]$$
$$= \Phi\left(\frac{X_i'\beta}{\sigma}\right)$$

Nota Bajo el supuesto de identificación de los parámetros del modelo probit $\sigma=1$

$$=\Phi\left[X_{i}^{'}\beta\right]$$

• Donde $\Phi(\bullet)$ denotado la normal estandar de la CDF.

	Second decimal place in z									
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199		0.5279		
0.1	0.5398	0.5438	0,5478	0.5517	0.5557	0.5596	0.5636	0.5675		
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985		0.7054	0.7088		0.7157		
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422		0.7486		0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734		0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340		0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577		. 0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	.0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0,9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000°									

[†] Por $z \ge 3.90$, the areas are 1.0000 to four decimal places.

					Second de	imal place	in z			
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.0
0.0	0.5000	0.5040	0.5080	0.5120				0.5279		
0.1	0.5398	0.5438	0.5478	0.5517		0.5596		0.5675		
0.2	0.5793	0.5832	0.5871	0.5910		0.5987		0.6064	0.6103	0.614
0.3	0.6179	0.6217		0.6293		0.6368		0.6443		
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736		0.6808	0.6844	0.687
0.5	0.6915			0.7019		0.7088		0.7157	0.7190	
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422		0.7486	0.7517	0.754
0.7	0.7580		0.7642	0.7673	0.7704	0.7734		0.7794	0.7823	
0.8	0.7881	0.7910		0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.813
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289		0.8340	0.8365	
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.883
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.901
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.917
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.931
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.944
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.954
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.963
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.970
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.976
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.981
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.985
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.989
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.991
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.993
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.995
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.996
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.997
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.998
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.998
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.999
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.999
3.2	0.9993	.0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9993
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998		0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000°									

[†] Por z ≥ 3.90, the areas are 1.0000 to four decimal places

• Asumiendo una variable aleatoria

$$X \sim N\left(\mu, \sigma^2\right)$$

• Entonces:

$$\frac{X_i - \mu}{\sigma} = z_i$$

Donde:

$$z_{i}\sim N\left(0,1\right)$$

 ¿Cuál es el área bajo la curva normal estándar desde -∞ hasta el valor z de 1.22?

The case for z = 1.22

The case for z = -1.22

The case for z = 1.22

The case for z = -1.22

- Nosotros usamos $\Phi(\bullet)$ denota la función de distribución acumulada para la normal estandar
- Si z=1.22 , entonces: $\Phi(1.22)=0.8888$
- ullet Si z=-1.22 , entonces: $\Phi(-1.22)$ $=1-\Phi(1.22)$

$$= 1 - 0.8888 \Rightarrow 0.1112$$

- El area debajo la curva normal estandar de -∞ hacia 1.22 es 0.8888
- El area debajo la curva normal estandar de $-\infty$ hacia -1.22 es 0.1112

Probabilidades y caracteristicas promedio

- Dado la naturaleza no lineal de la curva CDF implementada en el modelo Probit, no se pueden usar los valores promedio de las variables explicativas para calcular el valor promedio de la probabilidad del producto (como si se hace en el modelo MCO).
- Predecir los coeficientes del probit para los valores promedios de las variables explicativas, no retorna los valores promedio de probabilidad.

Probabilidades y caracteristicas promedio

Modelo	Interpretación de coeficientes
Modelo de Probabilidad Lineal	El efecto de un pequeño cambio en el regresor sobre la probabilidad
	asociado al evento de ocurrencia
Modelo logit	El efecto de un pequeño cambio en el regresor sobre el log odds ratio asociado al evento de ocurrencia
Modelo Probit	El efecto de un pequeño cambio en el regresor sobre indice estandarizado probit asociado al evento de ocurrencia
	la unidad de medida para un modelo estimado probit es una desviación estandar

Efectos Marginales

Variable continua:

$$Prob[y_{i}=1]=
ho_{i}=\Phi\left(X_{i}^{'}eta
ight)$$

- Donde, podemos definir : $z = X'\beta$ entonces: $\Phi(z_i)$
- Usando la regla de la cadena:

$$\frac{\partial \rho}{\partial X_k} = \frac{\partial \rho}{\partial z} \frac{\partial z}{\partial X_k}$$

Dado:

$$\frac{\partial \rho}{\partial z} = \frac{\partial \Phi}{\partial z} = \phi(z)$$

Luego:

$$\frac{\partial z}{\partial X_z} = \beta_k$$

Representandolo a través de la teoria

$$\frac{\partial Prob(y_{i} = 1)}{\partial X_{k}} = \frac{\partial F}{\partial X_{k}} = f\left(X_{i}^{'}\beta\right).\beta_{k} = \phi(z).\beta_{k}$$

Efectos Marginales

Variable discreta:

$$Prob\left[y_{i}=1
ight]=
ho_{i}=\Phi\left(X_{i}^{'}eta+\gamma D_{i}
ight)$$

- ullet Donde $\Phi(ullet)$, es la CDF operador para la normal estandar
- Dado el $D_i = 1$ si el individuo es hombre, $D_i = 0$ es mujer
- Si, $D_i = 1$, la probabilidad del evento de ocurrencia es:

$$Prob\left[y_{i}=1\mid X_{i},D_{i}=1
ight]=\Phi\left(X_{i}^{'}eta+\gamma
ight)= riangle_{1}$$

• Si, $D_i = 0$, la probabilidad del evento de ocurrencia es:

$$Prob\left[y_{i}=1\mid X_{i},D_{i}=0\right]=\Phi\left(X_{i}^{'}\beta\right)=\triangle_{0}$$

• El efecto impacto del genero sobre el producto de interes es:

$$\triangle = \Phi\left(X_{i}'\beta + \gamma\right) - \Phi\left(X_{i}'\beta\right)$$

$$\triangle = \triangle_1 - \triangle_0$$

Efectos Marginales

• Efecto de impacto:

$$z_i = \alpha + \beta X_i + \gamma D_i$$

• Dado D_i es una variable dummy (1/0)

