```
DIALOG(R) File 351: Derwent WPI (c) 2004 Thomson Derwent. All rts. reserv.
```

007388666

WPI Acc No: 1988-022601/*198804*

Pharmaceutical with stabilised granulocytes colony stimulating factor - contains surfactant, saccharide, protein or high mol. wt. cpd. as stabiliser

Patent Assignee: CHUGAI SEIYAKU KK (CHUS); SHONAN KIKO KK (SHON-N);

CHUGAI PHARM CO LTD (CHUS)
Inventor: MACHIDA M M; MACHIDA M

Number of Countries: 023 Number of Patents: 036

Patent Family:

Pat	ent No	Kind	Date		plicat No	Kind	Date	Week	
DE	3723781	Α	19880121		3723781	A	19870717	198804	В
GB	2193631	A	19880217	·GB	8716904	A	19870717	198807	
FR	2601591	A	19880122	FR	8710156	Α	19870717	198811	
NL	8701640	A	19880216	NL	871640	Α	19870713	198811	
ΑU	8775665	A	19880121					198812	
NO	8702966	A	19880215					198812	
SE	8702907	A	19880119					198812	
DK	8703683	A	19880119					198815	
ZA	8705268	A	19880127	ZA	875268	A	19870717	198818	
HU	44941	T	19880530				,	198825	
JP	63146826	A	19880618		87178031	Α	19870716	198830	
JP	63146827	A	19880618		87178032	A	19870716	198830	
JP	63146828	A	19880618		87178034	A	19870716	198830	
JP	63152326	A	19880624	JP	87178033	A	19870716	198831	
PT	85343	A	19880729					198835	
ΒE	1000253	А	19880927	ΒE	88787	А	19880927	198840	
	8704963	А	19880224					198915	
	671157	А	19890815					198937	
	2010226	А	19891101	ES	872106	A	19870717	199004	
GB	2193631	В	19901121					199047	
	1218927	В	19900424					199211	
	1297007	С	19920310					199216	
	171828	В	19930201		872966	Α	19870716	199310	
	83220	A	19930131		83220	Α	19870717	199311	
	9304597	B1	19930601		877804	A	19870718	199423	
	2025120	C1	19941230		4203033	A	19870717	199531	
	503312	C2	19960513		872907	A	19870717	199625	
	8701775	A	19960815		871775	A	19870714	199637	
	171308	В	19960902		873683	A	19870715	199641	
	2577742	B2	19970205		87178031	A	19870716	199710	
	2577743	B2	19970205		87178032	А	19870716	199710	
ΑT	402259	В	19970215		871775	A	19870714	199713	
JP	2629000	B2	19970709		87178033	A	19870716	199732	
NL	192917	В	19980105		871640	А	19870713	199807	
	28830	A	19950314		35555	Α	19870717	199844	
DE	3723781	C2	19990902	DE	3723781	A	19870717	199939	

Priority Applications (No Type Date): JP 86169489 A 19860718; JP 86169486 A 19860718; JP 86169487 A 19860718; JP 86169488 A 19860718; JP 87178031 A 19870716; JP 87178032 A 19870716; JP 87178033 A 19870716

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes DE 3723781 A 9

```
Previous Publ. patent NO 8702966
NO 171828
             В
                      A61K-037/02
             C1
                   10 A61K-009/14
RU 2025120
                      A61K-038/18
                                     Previous Publ. patent DK 8703683
DK 171308
             В
JP 2577742
             В2
                     6 A61K-038/00
                                     Previous Publ. patent JP 63146826
                    6 A61K-038/00
JP 2577743
             B2
                                     Previous Publ. patent JP 63146827
                                     Previous Publ. patent AT 8701775
AT 402259
             В
                      A61K-038/19
             В2
                    5 A61K-038/00
                                     Previous Publ. patent JP 63152326
JP 2629000
             В
                   11 A61K-047/00
NL 192917
                     A61K-037/02
IL 83220
             Α
                      A61K-037/02
KR 9304597
             B1
SE 503312
             C2
                      A61K-038/19
             Α
AT 8701775
                      A61K-038/19
PH 28830
             Α
                      A61K-031/715
DE 3723781
             C2
                      A61K-038/16
```

Abstract (Basic): DE 3723781 A

A pharmaceutical contains stabilised G-CSF (granulocytes colony stimulating factor) as active ingredient and at least one surfactant, saccharide, protein or a high mol. wt. cpd. Pref. the amt. of surfactant or saccharide is 1-10000 pts. wt. Pref. pt. wt. G-CSF. Pref. the surfactant is non-ionic (esp. a sorbitan ester glycerine ester, poly-glycerine ester, polyoxyethylene sorbital ester, polyoxyethylene-glycerine ester or polyethylene glycol ester of an aliphatic acid, polyoxyethylene polyoxypropylene alkyl ether, a hardened polyoxyethylated castor oil, a polyoxyethylated bees wax deriv. a polyoxyethylene lanoline deriv. or an aliphatic polyoxyethylene acid aride), anionic (esp. an alkylsulphate or alkylsulpho succinyl ester salt) or natural (esp. lecithin, sphingophospholipid or an ester of an aliphatic acid with sucrose.

USE/ADVANTAGE - G-CSF can be used to treat various infectious diseases, but is unstable and highly sensitive to changes in the environment e.g. temp., humidity, oxygen or UV light. The invention stabilises the G-CSF and protects it completely against loss of activity.

Abstract (Equivalent): GB 2193631 B

A stable granulocyte colony stimulating factor containing pharmaceutical preparation that contains, in addition to the granulocyte colony stimulating factor present as the effective ingredient, at least one substance selected from pharmaceutically acceptable surfactants, saccharides, proteins and other high-molecular weight compounds such as natural polymers or synthetic polymers; wherein the granulocyte colony stimulating factor has the following physicochemical properties: (i) molecular weight: about 19,000 +/-1,000 as measured by electrophoresis through a sodium dodecylsulfate-polyacrylamide gel; (ii) isoelectric point: having at least one of the three isoelectric points, pI = 5.5 + /- 0.1, pI = 5.8+/- 0.1, and pI = 6.1 +/- 0.1; (iii) ultraviolet absorption: having a maximum absorption at 280 nm and a minimum absorption at 250 nm; (iv) amino acid sequence of the 21 residues from N terminus: H2N-Thr-Pro-Leu-Gly -Pro-Ala-Ser-Ser -Leu-Pro-Gln-Ser-Phe-Leu -Leu-Lys-Cys-Leu- Glu-Gln-Val-.

Derwent Class: A96; B04
International Patent Class (Main): A61K-009/14; A61K-031/715; A61K-037/02; A61K-038/00; A61K-038/16; A61K-038/18; A61K-038/19; A61K-047/00
International Patent Class (Additional): A61K-009/08; A61K-031/70; A61K-035/00; A61K-037/00; A61K-037/04; A61K-037/12; A61K-037/43; A61K-038/17; A61K-045/05; A61K-047/10; A61K-047/14; A61K-047/20;

A61K-047/24; A61K-047/26; A61K-047/32; A61K-047/34; A61K-047/36;

A61K-047/42; C12N-000/00

5/5/3

DIALOG(R) File 351: Derwent WPI

(c) 2004 Thomson Derwent. All rts. reserv.

007388666

WPI Acc No: 1988-022601/*198804*

XRAM Acc No: C88-009931

Pharmaceutical with stabilised granulocytes colony stimulating factor - contains surfactant, saccharide, protein or high mol. wt. cpd. as stabiliser

Patent Assignee: CHUGAI SEIYAKU KK (CHUS); SHONAN KIKO KK (SHON-N);

CHUGAI PHARM CO LTD (CHUS)
Inventor: MACHIDA M M; MACHIDA M

Number of Countries: 023 Number of Patents: 036

Patent Family:

Pat	ent No	Kind	Date	App	olicat No	Kind	Date	Week	
DE	3723781	A	19880121	DE	3723781	A	19870717	198804	В
GB	2193631	A	19880217	GB	8716904	A	19870717	198807	
FR	2601591	A	19880122		8710156	A	19870717	198811	
NL	8701640	Α	19880216	NL	871640	A	19870713	198811	
ΑU	8775665	A	19880121					198812	
NO	8702966	Α	19880215					198812	
SE	8702907	Α	19880119					198812	
DK	8703683	Α	19880119					198815	
ZA	8705268	Α	19880127	ZA	875268	A	19870717	198818	
HU	44941	T	19880530					198825	
JP	63146826	Α	19880618		87178031	A	19870716	198830	
JP	63146827	A	19880618		87178032	A	19870716	198830	
JP	63146828	А	19880618		87178034	A	19870716	198830	
JP	63152326	A	19880624	JP	87178033	A	19870716	198831	
PT	85343	Α	19880729					198835	
ΒE	1000253	Α	19880927	ΒE	88787	A	19880927	198840	
CN	8704963	Α	19880224					198915	
СН	671157	A	19890815					198937	
ES	2010226	Α	19891101	EŞ	872106	A	19870717	199004	
GB	2193631	В	19901121					199047	
	1218927	В	19900424					199211	
	1297007	С	19920310					199216	
	171828	В	19930201		872966	A	19870716	199310	
	83220	А	19930131		83220	A	19870717	199311	
	9304597	B1	19930601		877804	А	19870718	199423	
	2025120	C1	19941230	SU	4203033	А	19870717	199531	
	503312	C2	19960513		872907	A	19870717	199625	
	8701775	A	19960815		871775	А	19870714	199637	
	171308	В	19960902		873683	A	19870715	199641	
	2577742	В2	19970205		87178031	A	19870716	199710	
JP	2577743	В2	19970205		87178032	A	19870716	199710	
ΑT	402259	В	19970215		871775	A	19870714	199713	
JP	2629000	В2	19970709	JP	87178033	A	19870716	199732	
NL	192917	В	19980105		871640	A	19870713	199807	
	28830	Α	19950314		35555	A	19870717	199844	
DΕ	3723781	C2	19990902	DE	3723781	А	19870717	199939	

Priority Applications (No Type Date): JP 86169489 A 19860718; JP 86169486 A 19860718; JP 86169487 A 19860718; JP 86169488 A 19860718; JP 87178031 A 19870716; JP 87178032 A 19870716; JP 87178033 A 19870716
Patent Details:

```
Patent No Kind Lan Pg
                       Main IPC
                                   Filing Notes
DE 3723781
             Α
                                   Previous Publ. patent NO 8702966
NO 171828
                      A61K-037/02
             C1
                   10 A61K-009/14
RU 2025120
                                   Previous Publ. patent DK 8703683
                     A61K-038/18
DK 171308
             В
                                   Previous Publ. patent JP 63146826
             В2
                    6 A61K-038/00
JP 2577742
                                  Previous Publ. patent JP 63146827
             B2
                   6 A61K-038/00
JP 2577743
                                  Previous Publ. patent AT 8701775
             B
                      A61K-038/19
AT 402259
JP 2629000
                                   Previous Publ. patent JP 63152326
            В2
                   5 A61K-038/00
NL 192917
            В
                   11 A61K-047/00
                     A61K-037/02
IL 83220
             Α
KR 9304597
             B1
                     A61K-037/02
SE 503312
             C2
                     A61K-038/19
                     A61K-038/19
AT 8701775
             Α
PH 28830
             Α
                     A61K-031/715
             C2
                     A61K-038/16
DE 3723781
```

Abstract (Basic): DE 3723781 A

A pharmaceutical contains stabilised G-CSF (granulocytes colony stimulating factor) as active ingredient and at least one surfactant, saccharide, protein or a high mol. wt. cpd. Pref. the amt. of surfactant or saccharide is 1-10000 pts. wt. Pref. pt. wt. G-CSF. Pref. the surfactant is non-ionic (esp. a sorbitan ester glycerine ester, poly-glycerine ester, polyoxyethylene sorbital ester, polyoxyethylene-glycerine ester or polyethylene glycol ester of an aliphatic acid, polyoxyethylene polyoxypropylene alkyl ether, a hardened polyoxyethylated castor oil, a polyoxyethylated bees wax deriv. a polyoxyethylene lanoline deriv. or an aliphatic polyoxyethylene acid aride), anionic (esp. an alkylsulphate or alkylsulpho succinyl ester salt) or natural (esp. lecithin, sphingophospholipid or an ester of an aliphatic acid with sucrose.

USE/ADVANTAGE - G-CSF can be used to treat various infectious diseases, but is unstable and highly sensitive to changes in the environment e.g. temp., humidity, oxygen or UV light. The invention stabilises the G-CSF and protects it completely against loss of activity.

Title Terms: PHARMACEUTICAL; STABILISED; GRANULOCYTE; COLONY; STIMULATING; FACTOR; CONTAIN; SURFACTANT; SACCHARIDE; PROTEIN; HIGH; MOLECULAR; WEIGHT; COMPOUND; STABILISED

Derwent Class: A96; B04

International Patent Class (Main): A61K-009/14; A61K-031/715; A61K-037/02;
 A61K-038/00; A61K-038/16; A61K-038/18; A61K-038/19; A61K-047/00

International Patent Class (Additional): A61K-009/08; A61K-031/70;

A61K-035/00; A61K-037/00; A61K-037/04; A61K-037/12; A61K-037/43;

A61K-038/17; A61K-045/05; A61K-047/10; A61K-047/14; A61K-047/20;

A61K-047/24; A61K-047/26; A61K-047/32; A61K-047/34; A61K-047/36;

A61K-047/42; C12N-000/00

File Segment: CPI

(9) BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift

DEUTSCHES PATENTAMT

Aktenzeichen:

P 37 23 781.0

Anmeldetag: Offenlegungstag:

17. 7.87 21. 1.88

(51) Int. Cl. 4: A 61 K 37/00

> A 61 K 35/00 A 61 K 31/70 A 61 K 31/215 A 61 K 31/25 A 61 K 31/685 A 61 K 31/725 A 61 K 31/74 A 61 K 31/195 // (A61K 37/00, 31:70)A61K 31:74 (A61K 35/00,

31:70)A61K 31:74

30 Unionspriorität: (2) (3)

18.07.86 JP P 169486/86 18.07.86 JP P 169488/86 18.07.86 JP P 169487/86 18.07.86 JP P 169489/86

(71) Anmelder:

Chugai Seiyaku K.K., Tokio/Tokyo, JP

(74) Vertreter:

Vossius, V., Dipl.-Chem. Dr.rer.nat.; Vossius, D., Dipl.-Chem.; Tauchner, P., Dipl.-Chem. Dr.rer.nat.; Heunemann, D., Dipl.-Phys. Dr.rer.nat.; Rauh, P., Dipl.-Chem. Dr.rer.nat.; Hermann, G., Dipl.-Phys. Dr.rer.nat., Pat.-Anw., 8000 München

② Erfinder:

Machida, Minoru, Musashino, Tokio/Tokyo, JP

Arzneimittel enthaltend stabilisierten G-CSF (Granulocyten-Koloniestimulierender -Faktor) und Verfahren zu seiner Herstellung

Es wird ein Arzneimittel beschrieben, das stabilisiertes G-CSF enthält. Zusätzlich zum G-CSF als aktiven Wirkstoff enthält das Arzneimittel mindestens ein pharmazeutisch verträgliches grenzflächenaktives Mittel, Saccharin, Protein oder eine pharmazeutisch verträgliche hochmolekulare Verbindung.

Patentansprüche

1. Arzneimittel enthaltend stabilisierten G-CSF (Granulocyten-Koloniestimulierender Faktor) und zusätzlich zu G-CSF als Wirkstoff noch mindestens ein pharmazeutisch verträgliches grenzflächenaktives Mittel, Sacharid, Protein oder eine pharmazeutisch verträgliche hochmolekulare Verbindung.

2. Arzneimittel nach Anspruch 1, dadurch gekennzeichnet, daß die Menge des grenzflächenaktiven Mittels

1 bis 10 000 Gewichtsteile pro Gewichtsteil G-CSF beträgt.

3. Arzneimittel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das grenzflächenaktive Mittel ein nicht-ionisches, ein anionisches oder ein natürliches grenzflächenaktives Mittel ist, wobei das nicht-ionische grenzslächenaktive Mittel ein Sorbitanester einer aliphatischen Säure, ein Glycerinester einer aliphatischen Säure, ein Polyglycerinester einer aliphatischen Säure, ein Polyoxyäthylensorbitanester einer aliphatischen Säure, ein Polyoxyäthylensorbitester einer aliphatischen Säure, ein Polyoxyäthylenglycerinester einer aliphatischen Säure, ein Ester einer aliphatischen Säure mit Polyäthylenglykol, ein Polyoxyäthylenalkyläther, ein Polyoxyäthylenpolyoxypropylenalkyläther, ein Polyoxyalkylenalkylphenyläther, ein gehärtetes Polyoxyäthyliertes Ricinusöl, ein polyoxyäthyliertes Bienenwachsderivat, ein Polyoxyäthylen-Lanolinderivat oder ein aliphatisches Polyoxyäthylensäureamid ist; das anionische grenzflächenaktive Mittel ein Alkylsulfat-, ein Polyoxyäthylenalkyläthersulfat- oder ein Alkylsulfosuccinylestersalz ist; und das natürliche grenzflächenaktive Mittel Lecithin, Glycerinphospholipid, Sphingophospholipid oder ein Ester einer aliphatischen Säure mit Saccharose ist.

4. Arzneimittel nach Anspruch 1, dadurch gekennzeichnet, daß die Saccharidmenge 1 bis 10 000 Gewichts-

teile pro Gewichtsteil G-CSF beträgt.

5

10

15

20

25

30

40

50

5. Arzneimittel nach einem der Ansprüche 1 oder 4, dadurch gekennzeichnet, daß das Saccharid Glycerin, Erythrit, Arabit, Xylit, Sorbit, Mannit, Glucuronsäure, Induronsäure, Galacturonsäure, Neuraminsäure, Glykonsäure, Mannuronsäure, Ketoglykolsäure, Ketogalactonsäure, Ketogulonsäure, Hyaluronsäure oder eines ihrer Salze, Chondroitinsulfat oder eines seiner Salze, Heparin, Inulin, Chitin oder eines seiner Derivate, Chitosan oder eines seiner Derivate, Dextrin, Dextran mit einem durchschnittlichen Molekulargewicht von 5000 bis 150 000; oder Alginsäure oder eines ihrer Salze ist.

6. Arzneimittel nach Anspruch 1, dadurch gekennzeichnet, daß die Proteinmenge 1 bis 20 000 Gewichtsteile

pro Gewichtsteil G-CSF beträgt.

7. Arzneimittel nach einem der Ansprüche 1 oder 6, dadurch gekennzeichnet, daß das Protein menschliches Serumalbumin, menschliches Serumglobulin, Gelatine, Säure- oder Alkali-behandelte Gelatine mit einem durchschnittlichen Molekulargewicht von 7000 bis 100 000 oder Kollagen ist.

8. Arzneimittel nach Anspruch 1, dadurch gekennzeichnet, daß die Menge der hochmolekularen Verbindung

1 bis 20 000 Gewichtsteile pro Gewichtsteil G-CSF beträgt.

9. Arzneimittel nach einem der Ansprüche 1 oder 8, dadurch gekennzeichnet, daß die hochmolekulare 35 Verbindung Hydroxypropylcellulose, Hydroxymethylcellulose, Natriumcarboxymethylcellulose, Hydroxyäthylcellulose, Polyäthylenglykol mit einem Molekulargewicht von 300 bis 6000, Polyvinylalkohol mit einem Molekulargewicht von 20 000 bis 100 000 oder Polyvinylpyrrolidon mit einem Molekulargewicht von 20 000 bis 100 000 ist.

10. Arzneimittel nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß zusätzlich eine Aminosäu-

re, ein schwefliges Reduktionsmittel oder ein Antioxidationsmittel enthalten ist.

11. Arzneimittel nach Anspruch 10, dadurch gekennzeichnet, daß die Menge der Aminosäure, des schwefligen Reduktionsmittels und/oder des Antioxidationsmittels 1 bis 10 000 Gewichtsteile pro Gewichtsteil G-CSF beträgt.

12. Verfahren zur Herstellung eines enthaltenden stabilisierten G-CSF Arzneimittels, dadurch gekennzeichnet, daß man den Wirkstoff G-CSF mit einem pharmazeutisch verträglichen grenzflächenaktiven Mittel, einem Saccharid, einem Protein und/oder mit einer pharmazeutisch verträglichen hochmolekularen Verbindung, gegebenenfalls mit einer Aminosäure, einem schwefligen Reduktionsmittel und/oder einem Antioxidationsmittel, und gegebenenfalls mit Hilfs- und Zusatzstoffen versetzt.

13. Verwendung mindestens einer der Verbindungen nach einem der Ansprüche 3, 5, 7 oder 9 in einer Menge nach einem der Ansprüche 2, 4, 6 oder 8 zur Stabilisierung von G-CSF in einem Arzneimittel.

Beschreibung

Die Erfindung betrifft ein G-CSF (Granulocyten-Kolonie stimulierender-Faktor) enthaltendes Arzneimittel. Insbesondere betrifft die Erfindung ein stabilisiertes Arzneimittel, in dem der Wirkstoff G-CSF gegen Aktivitätsverluste oder Inaktivierung durch Adsorption an die Wandung des das Arzneimittel enthaltenden Gefäßes oder durch Bildung von Verbindungen, Polymerisierung oder Oxidation des Wirkstoffes geschützt ist.

Eine Reihe von Infektionskrankheiten wird durch Chemotherapie behandelt. Neuerdings wurde jedoch herausgefunden, daß die Chemotherapie ernsthafte klinische Probleme hervorruft, beispielsweise führt sie zur Bildung arzneimittelresistenter Organismen, zur Veränderung der verursachenden Organismen und sie ruft starke Nebenwirkungen hervor. Um diese mit der Chemotherapie, bei der therapeutisch aktive Stoffe, wie Antibiotika und Bakterizide verwendet werden, verbundenen Probleme zu vermeiden, wurde versucht, einen die prophylaktischen Fähigkeiten des Wirtes eines insektiösen Organismus aktivierenden Stoff zu verwenden. Dadurch sollten die vorstehend genannten Probleme der Chemotherapie vollständig beseitigt werden. Eine der verschiedenen prophylaktischen Fähigkeiten des Wirtes ist die phagozytische, bakterizide Wirkung seiner Leukozyten. Es wird angenommen, daß diese den Beginn einer bakteriellen Insektion am stärksten beeinflußt. Deshalb hält man es für wichtig, die vor einer Infektion schützenden Fähigkeiten des Wirtes durch Unterstüt-

OS 37 23 781

zung des Wachstums neutrophiler Zellen und ihrer Differenzierung zu reifen Zellen zu erhöhen. G-CSF ist ein dabei sehr gut verwendbarer Stoff, der die genannten Aktivitäten aufweist. G-CSF und ein den Faktor enthaltendes Arzneimittel zur Vorbeugung gegen Infektionskrankheiten ist in der EP-A-215 126 beschrieben.

Es sind also mit der derzeit praktizierten Chemotherapie verschiedenartige unvermeidliche Schwierigkeiten verbunden, und es wurden intensive Anstrengungen unternommen, einen Arzneistoff zu verwenden, der die prophylaktischen Funktionen des Wirtes oder der infizierten Person aktivieren kann.

Bekanntlich kann G-CSF die prophylaktischen Funktionen des Wirtes aktivieren. Außerdem zeigt G-CSF noch größere therapeutische Wirkungen bei der klinischen Anwendung wenn es in Kombination mit einem Stoff verwendet wird, der selbst die prophylaktischen Fähigkeiten des Wirtes aktiviert.

G-CSF wird in sehr kleinen Mengen verwendet. Üblicherweise wird ein Arzneimittel in einer Dosierung von 1 bis 7 mal pro Woche und Erwachsenem verabfolgt, das 0,1 bis 500 µg (vorzugsweise 5 bis 50 µg) G-CSF enthält. G-CSF hat jedoch die Tendenz, von der Wandung seines Behältnisses, beispielsweise einer Injektionsampulle oder einer Spritze, adsorbiert zu werden. Deshalb wird der Wirkstoff von der Wandung seines Behältnisses, beispielsweise einer Ampulle oder einer Spritze, adsorbiert, wenn er zur Injektion, beispielsweise als wäßrige Lösung, verwendet wird. G-CSF entfaltet daher entweder nicht seine vollständige pharmazeutische Aktivität oder es ist erforderlich, G-CSF im Überschuß zu verwenden, so daß ein Teil durch Adsorption verloren gehen

Ferner ist G-CSF labil und hochempfindlich gegenüber Umwelteinflüssen, wie Temperatur, Luftfeuchtigkeit, Sauerstoff und ultravioletter Strahlung. Bei der Einwirkung solcher Faktoren erfolgen physikalische oder chemische Veränderungen von G-CSF, beispielsweise geht es Verbindungen ein, polymerisiert oder oxidiert, so daß es einen starken Aktivitätsverlust erleidet. Aufgrund dessen ist es schwierig, die genaue und vollständige Durchführung einer Therapie durch Verabfolgung sehr kleiner G-CSF-Mengen sicherzustellen.

Der Erfindung liegt somit die Aufgabe zugrunde, ein Arzneimittel bereitzustellen, das stabilisiertes G-CSF enthält, in dem der Wirkstoff G-CSF vollständig gegen Aktivitätsverluste geschützt ist.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß man dem Arzneimittel ein pharmazeutisch verträgliches grenzflächenaktives Mittel, Saccharid, Protein oder eine pharmazeutisch verträgliche hochmolekulare Verbindung zusetzt.

Gegenstand der Erfindung ist somit ein dieses stabilisierte G-CSF enthaltendes Arzneimittel, das sowohl G-CSF als auch mindestens ein pharmazeutisch verträgliches grenzflächenaktives Mittel, Saccharid, Protein oder eine pharmazeutisch verträgliche hochmolekulare Verbindung enthält. Gegebenenfalls enthält das erfindungsgemäße Arzneimittel außerdem Hilfs- und Zusatzstoffe.

Das in den erfindungsgemäßen Arzneimitteln enthaltene G-CSF ist in an sich bekannter Weise oder wie in EP-A-169 566 und EP-A-215 126 beschrieben, erhältlich. Beispielsweise läßt sich menschliches G-CSF entweder durch Züchtung eines Zellstammes, wie dem bei der CNCM unter der Hinterlegungs-Nummer I-315 oder I-483 hinterlegten Zellstamm herstellen, der aus Tumorzellen von Patienten mit Mundhöhlenkrebs gewonnen wurde, oder durch Expression einer rekombinanten DNA, die mit Hilfe eines menschliches G-CSF codierenden Gens konstruiert wurde, in einer geeigneten Wirtszelle, beispielsweise E. coli, C 127 oder Eierstockzellen eines chinesischen Hamsters.

Im erfindungsgemäßen Arzneimittel läßt sich jedes beliebige hochreine menschliche G-CSF verwenden. Bevorzugte menschliche G-CSF's werden durch aus dem Überstand einer menschliches G-CSF herstellenden Zellkultur isoliert oder sind Polypeptide oder Glykoproteine mit der biologischen Aktivität von menschlichem G-CSF, die durch Transformation eines Wirtes mit einem rekombinanten Vektor erhalten wurden, in den ein für ein Polypeptid mit der biologischen Aktivität von menschlichem G-CSF codierendes Gen eingebaut wurde.

Nachstehend werden zwei besonders bevorzugte Beispiele von menschlichem G-CSF aufgeführt. Das erste menschliche G-CSF hat die folgenden physikalisch chemischen Eigenschaften:

- 1. Molekulargewicht: Etwa 19 000 \pm 1000 bestimmt durch Elektrophorese durch ein Natriumdodecylsulfat-Polyacrylamidsgel.
- 2. Isoelektrischer Punkt: Mindestens einer der drei isoelektrischen Punkte $pI = 5.5 \pm 0.1$, $pI = 5.8 \pm 0.1$ und $pI = 6.1 \pm 0.1$.
- 3. Absorption von ultraviolettem Licht: Ein Absorptionsmaximum liegt bei 280 nm und ein Absorptionsminimum bei 250 nm.
- 4. Die Aminosäuresequenz der 21 N-terminalen Aminosäuren ist H₂N-Thr-Pro-Leu-Gly-Pro-Ala-Ser-Ser-Leu-Pro-Gln-Ser-Phe-Leu-Lys-Cys-Leu-Glu-Gln-Val-

Das zweite besonders bevorzugte menschliche G-CSF enthält entweder ein Polypeptid mit der biologischen Aktivität des menschlichen Granulozyten-stimulierenden Faktors, das mindestens einen Teil der nachstehenden Aminosäuresequenz aufweist, oder ein Glykoprotein, das außer diesem Polypeptid noch eine Zuckerkette aufweist:

65

50

55

60

	(Met) n	Thr	Pro	Leu	Gly	Pro	Ala	Ser	Ser	Leu	Pro
	Gln	Ser	Phe	Leu	Leu	Lys	Cys	Leu	Glu	Gln	Val
	Arg	Lys	lle	Gin	Gly	Asp	Gĺy	Ala	Ala	Leu	Gln
	Glu	Lys	Leu	(Val	Ser	Glu) _m	Cys	Ala	Thr	Туг	Lys
	Leu	Cys	His	Pro	Glu	Glu	Leu	Val	Leu	Leu	Gly
5	His	Ser	Leu	Gly	lle	Pro	Trp	Ala	Рго	Leu	Ser
	Ser	Cys	Pro	Ser	Gln	Ala	Leu	Gln	Leu	Ala	Gly
	Cys	Leu	Ser	Gln	Leu	His	Ser	Gly	Leu	Phe	Leu
	Tyr	Gln	Gly	Leu	Leu	Gln	Ala	Leu	Glu	Gly	lle
10	Ser	Рго	Glu	Leu	Gly	Pro	Thr	Leu	Asp	Thr	Leu
10	Gin	Leu	Asp	Val	Ala	Asp	Phe	Ala	Thr	Thr	Ile
	Trp	Gln	Gln	Met	Glu	Glu	Leu	Gly	Met	Ala	Pro
	Ala	Leu	Gln	Pro	Thr	Gln	Gly	Ala	Met	Pro	Ala
	Phe	Ala	Ser	Ala	Phe	Gin	Arg	Arg	Ala	Gly	Gly
15	Val	Leu	Val	Ala	Ser	His	Leu	Gln	Ser	Phe	Leu
15	Glu	Val	Ser	Туг	Arg	Val	Leu	Arg	His	Leu	Ala
	Gln	Pro		,							

(mit der Maßgabe, daß m den Wert 0 oder 1 hat; und daß n den Wert 0 oder 1 hat).

Einzelheiten des Herstellungsversahrens dieser beiden G-CSF-Formen lassen sich beispielsweise aus EP-A-169 566 und EP-A-215 126 entnehmen.

In einem anderen Herstellungsverfahren wird eine G-CSF-herstellende Zelle mit einer proliferierenden malignen Tumorzelle fusioniert und das dadurch erhaltene Hybridom gegebenenfalls in Gegenwart eines Mitogens gezüchtet.

Die erhaltene, das menschliche G-CSF enthaltende Lösung kann nach der Reinigung und Konzentration in gefrorenem Zustand gelagert werden. Andererseits läßt sich die Lösung auch nach einer Dehydratisierung, beispielsweise durch Gefriertrocknung, lagern.

Jedes der so gewonnenen menschlichen G-CSF's läßt sich wie in der vorliegenden Erfindung beschrieben, zu Arzneimitteln weiter verarbeiten, die das G-CSF in stabilisierter Form enthalten.

Spezielle Beispiele für grenzflächenaktive Mittel, die sich zur Herstellung des erfindungsgemäßen, stabilisiertes G-CSF enthaltenden Arzneimittels eignen, sind nicht-ionische grenzflächenaktive Mittel mit einem HLB-Wert von 6 bis 18, wie Sorbitanester von aliphatischen Säuren (z. B. Sorbitanmonocaprylat, Sorbitanmonolaurat oder Sorbitanmonopalmitat), aliphatische Glycerinester aliphatischer Säuren (z. B. Glycerinmonocaptylat, Glycerinmonomyristat oder Glycerinmonostearat). Polyglycerinester aliphatischer Säuren (z. B. Decaglycerylmonostearat, Decaglyceryldistearat oder Decaglycerylmonolinoleat), Polyoxyäthylensorbitanester aliphatischer Säuren (z. B. Polyoxyäthylensorbitanmonolaurat, Polyoxyäthylensorbitanmonooleat, Polyoxyäthylensorbitanmonostearat, Polyoxyäthylensorbitanmonoplamitat, Polyoxyäthylensorbitantrioleat oder Polyoxyäthylensorbitantristearat), Polyoxyäthylensorbitester aliphatischer Säuren (z. B. Polyoxyäthylensorbittetrastearat oder Polyoxyäthylensorbittetraoleat), Polyäthylenglycerinester aliphatischer Säuren (z. B. Polyoxyäthylenglycerylmonostearat), Ester aliphatischer Säuren mit Polyäthylenglykol (z. B. Polyäthylenglykoldistearat), Polyoxyäthylenalkyläther (z. B. Polyoxyäthylenlauryläther), Polyoxyäthylenpolyoxypropylenalkyläther (z. B. Polyoxyäthylenpolyoxypropylenglykoläther, Polyoxyäthylenpolyoxypropylenpropyläther oder Polyoxyäthylenpolyoxypropylencetyläther), Polyoxyäthylenalkylphenyläther (z. B. Polyoxyäthylennonylphenyläther), polyoxyäthyliertes Ricinusöl, gehärtetes polyoxyäthyliertes Ricinusöl (polyoxyäthyliertes hydriertes Ricinusöl), polyoxyäthylierte Bienenwachsderivate (z. B. polyoxyäthyliertes Sorbitbienenwachs), Polyoxyäthylen-Lanolinderivate (z. B. Polyoxyäthylenlanolin) oder aliphatische Polyoxyäthylensäureamide (z. B. Polyäthylenstearinsäureamid); anionische grenzflächenaktive Mittel, wie Alkylsulfate mit einer C₁₀-C₁₈-Alkylgruppe (z. B. Natriumcetylsulfat, Natriumlaurylsulfat oder Natriumoleylsulfat), Polyoxyäthylenalkyläthersulfate, in denen die durchschnittliche Molzahl der Äthylenoxidaddition 2 bis 4 beträgt und die Alkylgruppe 10 bis 18 Kohlenstoffatome aufweist (z. B. Polyoxyäthylen-Natriumlaurylsulfat), Salze von Alkylsulfosuccinatestern, in denen die Alkylgruppe 8 bis 18 Kohlenstoffatome aufweist (z. B. Natriumlaurylsulfosuccinatester); und natürliche grenzflächenaktive Mittel wie Lecithin, Glycerophospholipid, Sphingophospholipid (z. B. Sphingomyelin) oder die Ester aliphatischer Säuren mit Saccharose, in denen die aliphatische Säure 12-18 Kohlenstoffatome aufweist. Erfindungsgemäß lassen sich diese grenzflächenaktiven Mittel entweder einzeln oder im Gemisch verwenden.

Die vorstehend aufgeführten grenzflächenaktiven Mittel werden vorzugsweise in einer Menge von 1 bis

10 000 Gewichtsanteilen pro Gewichtsteil G-CSF verwendet.

Die zur Herstellung des stabilisiertes G-CSF enthaltenden Arzneimittels verwendeten Saccharide sind Monosaccharide, Oligosaccharide oder Polysaccharide sowie Phosphatester oder deren Nucleotidderivate, sofern sie pharmazeutisch verträglich sind. Typische Beispiele sind trivalente und höhere Zuckeralkohole, wie Glycerin, Erythrit, Arabit, Xylit, Sorbit oder Mannit, Zuckersäuren, wie Glucuronsäure, Iduronsäure, Neuraminsäure, Galacturonsäure, Gluconsäure, Mannuronsäure, Ketoglykolsäure, Ketogalactonsäure oder Ketogulonsäure, Hyaluronsäure oder ihre Salze, Chondroitinsulfat oder seine Salze, Heparin, Inulin, Chitin oder eines seiner Derivate; Chitosan oder seine Derivate, Dextrin, Dextran mit einem durchschnittlichen Molekulargewicht von 5 bis 150 000, oder Algininsäure oder ihre Salze. Erfindungsgemäß lassen sich diese Saccharide entweder einzeln oder im Gemisch verwenden.

Die vorstehend aufgeführten Saccharide werden vorzugsweise in einer Menge von 1 bis 10 000 Gewichtsteilen pro Gewichtsteil G-CSF verwendet.

Typische Beispiele für Proteine, die sich zur Herstellung des stabilisiertes G-CSF enthaltenden Arzneimittels

eignen, sind menschliches Serumalbumin, menschliches Serumglobulin, Gelatine, säurebehandelte Gelatine (mit einem durchschnittlichen Molekulargewicht von 7000 bis 100 000), alkalibehandelte Gelatine (mit einem durchschnittlichen Molekulargewicht von 7000 bis 100 000) oder Kollagen. Erfindungsgemäß lassen sich diese Proteine entweder einzeln oder im Gemisch verwenden.

Die vorstehend aufgeführten Proteine werden vorzugsweise in einer Menge von 1 bis 20 000 Gewichtsteilen pro Gewichtsteil G-CSF verwendet.

Typische Beispiele für hochmolekulare Verbindungen, die sich zur Herstellung des stabilisiertes G-CSF enthaltenden Arzneimittels eignen, sind natürliche Polymere, wie Hydroxypropylcellulose, Hydroxymethylcellulose, Natriumcarboxymethylcellulose oder Hydroxyäthylcellulose; oder synthetische Polymere, wie Polyäthylenglykol (MW = 300 - 6000), Polyvinylalkohol (MW = 20 000 - 100 000) oder Polyvinylpyrrolidon (MW = 20 000 - 100 000). Auch diese hochmolekularen Verbindungen lassen sich erfindungsgemäß entweder einzeln oder in Kombination verwenden.

Vorzugsweise werden die vorstehend aufgeführten hochmolekularen Verbindungen in einer Menge von 1 bis 20 000 Gewichtsteilen pro Gewichtsteil G-CSF verwendet.

Zusätzlich zum vorstehend beschriebenen grenzflächenaktiven Mittel, Saccarid, Protein oder der hochmole-kularen Verbindung kann dem stabilisiertes G-CSF enthaltenden Arzneimittel auch eine Aminosäure, ein schwefliges Reduktionsmittel und/oder ein Antioxidationsmittel zugesetzt werden. Beispiele der erfindungsgemäß verwendbaren Aminosäuren sind Glycin, Threonin, Tryptophan, Lysin, Hydroxylysin, Histidin, Arginin, Cystein, Cystin und Methionin. Beispiele der erfindungsgemäß verwendbaren schwefeligen Reduktionsmittel sind N-Acetylcystein, N-Acetylhomocystein, Thioctinsäure, Thiodiglykol, Thioäthanolamin, Thioglycerin, Thiosorbit, Thioglykolsäure oder eines ihrer Salze, Natriumthiosulfat, Natriumhydrogensulfit, Natriumpyrosulfit, Natriumsulfit, Thiolactinsäure, Dithiothreitol, Glutathion oder ein mildes schwefliges Reduktionsmittel mit einer Sulfhydrylgruppe, wie eine C₁-C₇-Thioalkansäure. Beispiele der erfindungsgemäß verwendbaren Antioxidationsmittel sind Erythorbinsäure, Dibutylhydroxytoluol, Butylhydroxyanisol, dl-a-Tocopherol, Tocopherolacetat, L-Ascorbinsäure oder eines ihrer Salze, L-Ascorbinsäurepalmitat, L-Ascorbinsäurestearat, Triamylgallat, Propylgallat oder Chelatkomplexbildner, wie Dinatriumäthylendiamintetraacetat (EDTA), Natriumpyrophosphat oder Natriummetaphosphat.

Die vorstehend aufgeführten Aminosäuren, schwefligen Reduktionsmittel und Antioxidationsmittel oder ihre Gemische werden vorzugsweise in einer Menge von 1 bis 10 000 Gewichtsteilen pro Gewichtsteil G-CSF verwendet.

Ferner kann bei der Herstellung des stabilisiertes G-CSF enthaltenden Arzneimittels in einer geeigneten Dosierung mindestens ein Verdünnungsmittel, eine Aufschlußhilfe, ein isotonisches Mittel, ein Excipiens, ein pH-Modifikationsmittel, ein Beruhigungsmittel oder ein Puffer zugesetzt werden.

Das stabilisierte G-CSF enthaltende Arzneimittel kann entweder zur oralen oder zur parenteralen Verabfolgung, beispielsweise durch verschiedenartige Injektion, formuliert werden. Je nach Verabfolgungsart wird das Arzneimittel in unterschiedlichen Dosierungsformen verwendet. Typische Dosierungsformen sind zur oralen Verabfolgung vorgesehenen, beispielsweise als Tabletten, Pillen, Kapseln, Granulat oder Suspensionen; hauptsächlich zur intravenösen, intramuskulären, subkutanen oder intrakutanen Injektion vorgesehene Lösungen, Suspensionen oder gefriergetrocknete Präparate; und die zur transmucosalen Verabfolgung vorgesehenen Dosierungsformen wie Rektalzäpfehen, Nasenmittel oder Vaginalzäpfehen.

Erfindungsgemäß wird dem G-CSF enthaltendem Arzneimittel mindestens ein grenzslächenaktives Mittel, Saccharid, Protein oder eine hochmolekulare Verbindung zugesetzt, um zu verhindern, daß das G-CSF von der Wandung seines Gefäßes oder von der einer Spritze adsorbiert wird und um zu gewährleisten, daß es gleichzeitig langzeitstabilisiert wird.

Der genaue Mechanismus, durch den die vorstehend genannten Substanzen das G-CSF stabilisieren oder dessen Adsorption verhindern, ist bis jetzt noch nicht aufgeklärt worden. In Gegenwart eines grenzflächenaktiven Mittels könnte die Oberfläche des hydrophoben G-CSF-Proteins mit dem grenzflächenaktiven Mittel bedeckt sein. Dadurch wird das G-CSF gelöst. Somit wird das nur in Spuren vorhandene G-CSF wirkungsvoll vor der Adsorption an die Wand seines Behältnisses oder einer Spritze geschützt. Ein Saccharid oder eine hochmolekulare Verbindung könnte eine hydratisierte Schicht zwischen G-CSF und der adsorbierenden Oberfläche der Wandung des Behältnisses oder der Spritze bilden. Auch dadurch wird die Adsorption des G-CSF wirkungsvoll verhindert. Ein Protein könnte mit G-CSF um die Adsorption an die Wandung des Behältnisses oder der Spritze kompetieren. Dadurch würde die Adsorption von G-CSF wirkungsvoll gehemmt werden.

Die vorstehend genannten Stoffe verhindern nicht nur die Adsorption des G-CSF sondern sie unterstützen auch die Verhinderung der Polymerisation der G-CSF-Moleküle. In Gegenwart eines grenzflächenaktiven Mittels, Saccharids, Proteins oder einer hochmolekularen Verbindung sind die einzelnen G-CSF-Moleküle in diesen Stoffen dispergiert. Dadurch wird die Wechselwirkung zwischen den G-CSF-Molekülen ausreichend vermindert. Dies führt zu einer ausreichenden Herabsetzung der Wahrscheinlichkeit der Bildung von Verbindungen oder der Polymerisation. Zusätzlich verzögern diese Substanzen die Autooxidation des G-CSF, die bei hohen Temperaturen oder Luftfeuchtigkeiten gesteigert wird. Außerdem verhindern sie eine Bildung von Verbindungen zwischen den G-CSF-Molekülen oder ihrer Polymerisation infolge der Autooxidation. Diese Wirkung auf die Verzögerung der Autooxidation von G-CSF oder der Verhinderung Verbindungen oder Polymerisate zu bilden, läßt sich weiter durch die Zugabe einer Aminosäure, eines schwefligen Reduktionsmittels oder eines Antioxidants steigern.

Die vorstehend beschriebenen Probleme lassen sich besonders bei Injektionslösungen und Suspensionen bemerken, treten aber auch bei der Formulierung von G-CSF zu anderen Dosierungsformen, beispielsweise zu Tabletten, auf. Die Zugabe von grenzflächenaktiven Mitteln, Sacchariden, Proteinen oder hochmolekularen Verbindungen ist aber auch im letztgenannten Fall wirksam.

Durch die Zugabe mindestens eines grenzslächenaktiven Mittels, Saccharids, Proteins oder einer hochmolekularen Verbindung wird G-CSF stark stabilisiert und erhält seine Aktivität über lange Zeitspannen. Dies wird in den nachstehenden Beispielen erläutert. Zur Erzielung der beschriebenen Ergebnisse ist die Wahl der Menge jeder dieser Substanzen und insbesondere die Auswahl der unteren Grenzmenge kritisch. Die folgenden Mengenbereiche werden bevorzugt: 1 bis 10 000 Gewichtsteile grenzslächenaktives Mittel, 1 bis 10 000 Gewichtsteile Saccharid, 1 bis 20 000 Gewichtsteile Protein und 1 bis 20 000 Gewichtsteile hochmolekulare Verbindung pro Gewichtsanteil G-CSF.

Erfindungsgemäß wird ein grenzflächenaktives Mittel, Saccharid, Protein und/oder eine hochmolekulare Verbindung in einer speziellen Konzentration verwendet. Dadurch wird nicht nur die Adsorption des G-CSF an die Wandung seines Behältnisses oder der Spritze wirksam verhindert, sondern auch die Stabilität des G-CSF im erfindungsgemäßen Arzneimittel erhöht. Im Ergebnis wird es möglich, die Verabfolgung einer geringen aber sehr genauen G-CSF-Dosis an Patienten zu gewährleisten. Da G-CSF teuer ist, verringert seine wirtschaftliche Verwendung die Herstellungskosten für G-CSF enthaltende Arzneimittel.

In den nachstehend beschriebenen Beispielen wird die G-CSF-Restaktivität mit Hilfe einer der folgenden Methoden bestimmt:

(a) Weichagarmethode mit Mäuseknochenmarkzellen

0,4 ml Pferdeserum, 0,1 ml Probe, 0,1 ml Suspension einer Mäuseknochenmarkszelle, beispielsweise C3H/He (weiblich), mit 0,5 bis 1 × 10⁵ nucleären Zellen und 0,4 ml modifiziertes McCoy's 5A Kulturmedium enthaltend 0,75% Agar werden vermischt. Das Gemisch wird in eine Plastik-Gewebekulturschale mit einem Durchmesser von 35 mm gegossen. Das erstarrte Gemisch wird 5 Tage bei 37°C in einer Atmosphäre aus 5% CO₂ und 95% Luft bei 100% Luftfeuchtigkeit kultiviert. Danach wird die Anzahl der sich bildenden Kolonien bestimmt. Eine Kolonie muß dabei mindestens 50 Zellen ausweisen. Daraus wird die Aktivität berechnet. Es wird davon ausgegangen, daß eine Einheit zur Ausbildung einer Kolonie führt.

Das im Verfahren (a) verwendete modifizierte McCoy's 5A Kulturmedium wird zweifach konzentriert hergestellt durch Auflösen von 12 g McCoy's 5A Kulturmedium (Gibco), 2,55 g MEM Aminosäure-Vitamin-Medium (Nissui Seiyaku Co., Ltd.), 2,18 g Natriumbicarbonat und von 50 000 Einheiten Kaliumpenicillin G zweimal in 500 ml destilliertem Wasser und nachfolgender Sterilfiltrierung durch ein Milliporefilter (0,22 μm).

(b) Revers-Phasen-Hochleistungs-Flüssigkeitschromatographie

Unter den folgenden Gradientenbedingungen wurde die G-CSF-Restaktivität (injiziert in einer 1µg entsprechenden Menge) mit einer Reverse-Phasen C8-Säule (4,6 mm × 300 mm, 5 µm) und einem Gemisch aus n-Propanol/Trifluoressigsäure als mobiler Phase bestimmt:

Zeit	Lösungsmittel	Lösungsmittel	Gradient
(Sek.)	(A)	(B)	
0	100%	0%	linear
15	0%	100%)
25	100%	0%	linear

Lösungsmittel (A):

30

40

45

50

55

30% n-Propanol und 0,1% Trifluoressigsäure

Lösungsmittel (B):

60% n-Propanol und 0,1% Trilluoressigsäure.

Der Nachweis wurde bei einer Wellenlänge von 210 mm durchgeführt und die G-CSF-Restaktivität wurde mit der folgenden Formel berechnet:

Die nach diesem Verfahren bestimmte G-CSF-Restmenge korreliert sehr gut mit den Ergebnissen der Messung nach dem Weichagar-Verfahren (a), bei dem Mäuseknochenmarkzellen verwendet wurden. Die Beispiele erläutern die Erfindung.

Beispiel 1

5 μg G-CSF werden mit einem der in Tabelle I aufgeführten Stabilisierungsmittel versetzt. Das Gemisch wird steril in einer 20 mM Pufferlösung (enthaltend 100 mM Natriumchlorid; pH 7,4) gelöst. Es wird ein Arzneimittel mit 5 μg G-CSF pro ml erhalten, das anschließend gefriergetrocknet wird. Die Aktivitätsänderung von G-CSF in Abhängigkeit von der Zeit wird durch das Verfahren (a) gemessen. Die Meßergebnisse sind in Tabelle I zusammengefaßt. Der in der Tabelle verwendete Ausdruck "Aktivität (%)" kennzeichnet die G-CSF-Restaktivität im Verhältnis zur Ausgangseinheit und wird durch die folgende Formel definiert:

Aktivität (%) = Aktivitätseinheit nach Verstreichen einer vorgegebenen Zeitspanne × 100

Die Gefriertrocknung wurde wie folgt durchgeführt:

Die ein Stabilisierungsmittel enthaltende G-CSF-Lösung wird in eine sterile mit Sulfa behandelte Glasampulle überführt, 4 Stunden bei mindestens -50°C eingefroren, und einer ersten Trocknung durch Erwärmen von -40°C auf 0°C während 48 Stunden und gleichzeitigem Anstieg des Druckes von 0,03 auf 0,1 Torr unterzogen. Der zweite Trocknungsvorgang wird durch Erwärmen von 0°C auf 20°C während 12 Stunden unter gleichzeitigem Druckanstieg von 0,03 auf 0,08 Torr durchgeführt. Danach wird der Innenraum der Ampulle mit sterilem, getrocknetem Stickstoffgas gefüllt, um atmosphärischen Druck zu erreichen. Sodann wird die Ampulle mit einem Gefriertrocknungsgummistöpsel verschlossen und mit einem Aluminiumdeckel versiegelt.

Tabelle I

Stabilisierungsmittel	Menge (Gewichtsanteil)	Aktivität (%) nach 6monatiger Lagerung bei 4°C	nach 18monatiger Lagerung bei 37°C	
Xylit	10,000	92	86	-
Mannit	10.000	91	85	:
Glucuronsäure	10,000	86	82	
Hyaluronsäure	2,000	92	89	
Dextran (MW 40 000)	2,000	95	90	
Heparin	5,000	85	80	2
Chitosan	2,000	93	91	•
Algininsäure	2,000	90	90	
menschl. Serumalbumin	1,000	98	99	
menschl. Serumglobulin	1,000	98	95	
säurebehandelte Gelatine	2,000	97	95	3
alkalibehandelte Gelatine	1,000	99	96	3
Kollagen	2,000	95	90	
Polyäthylenglykol (MW 4000)	10.000	94	90	
Hydroxypropylcellulose	1.000	98	94	
Natriumcarboxymethylcellulose	1,000	88	80	-
Hydroxymethylcellulose	5,000	92	90	3:
Polyvinylalkohol (MW 50 000)	2,000	96	95	
Polyvinylpyrrolidon (MW 50 000)	2,000	95	94	
menschl. Serumalbumin	2,000	33	JT	
Mannit	2,000	100	97	
Cystein	100	100	31	40
menschl. Serumalbumin	2,000			
Polyoxyäthylensorbitanmonolaureat	100	99	96	
Mannit	2,000	33	50	
menschl. Serumalbumin	2,000			
Hydroxypropylcellulose	500	98	92	45
Dextran (MW 40 000)	2,000	.70	72	
Polyoxyäthylensorbitanmonolaureat	100			
ory oxyatriyichsor ortaninon ora areat	100	98	96	
Sorbit	2,000	30	3 0	
polyoxyäthyliertes gehärtetes Rizinusöl	100			50
orjonjamjneries genarietes Mziilosor	100	94	02	
Dextran (MW 40 000)	2000	34	92	
ohne Zusatz	2,000	74	£0	
IIIIC ZUSAIZ	_	74	58	
•	Beispiel 2			55

10 µg G-CSF werden mit einem der in Tabelle II aufgeführten Stabilisierungsmittel versetzt. Das Gemisch wird steril in einer 20 mM Phosphatpufferlösung (enthaltend 100 mM Natriumchlorid; pH 7,4 gelöst. Es wird ein Arzneimittel enthaltend 10 µg G-CSF pro ml erhalten. Das Mittel wird steril in sulfatbehandelte Glasampullen gefüllt, die versiegelt wurden. Die Aktivitätsveränderung von G-CSF in Abhängigkeit von der Zeit, in der in den Ampullen enthaltenden Lösung wird nach dem bereits in Beispiel 1 angewendeten Verfahren gemessen. Die Ergebnisse sind in Tabelle II zusammengefaßt.

65

Tabelle II

Stabilisierungsmittel	Menge (Gewichtsanteile)	Aktivität (%) nach 7tägiger Lagerung bei 4°C	nach 2monatiger Lagerung bei 4°C	nach 1monatiger Lagerung bei
:				Raumtemperatu
Mannit	5,000	91	87	82
Hyaluronsäure	2,000	93	87	70
Dextran (MW 40 000)	2,000	96	95	85
Glycerin	10,000	90	90	88
Neuraminsäure	5,000	93	91	84
Chitin	2,000	95	92	86
	2,000	90	92	87
Dextrin menschl. Serumalbumin	1,000	99	95	92
	1,000	98	94	90
menschl. Serumglobulin	2,000	97	96	87
säurebehandelte Gelatine	500	99	95	92
alkalibehandelte Gelatine		99	94	88
Kollagen	2,000	94	89	90
Polyäthylengiykol	10,000	34	05	
(MW 4000)	0.000		95	92
Hydroxypropylcellulose	2,000	98 92	91 91	80
Natriumcarboxymethyl-	2,000	92	31	
cellulose		. 00	94	90
Hydroxyäthylcellulose	4,000	92	93	90
Polyvinylalkohol	4,000	97	93	
(MW 50 000)			0.E	92
Polyvinylpyrrolidon	4,000	95	95	32
(MW 50 000) Sorbitanmonolaureat	400	97	96	95
	400	100	96	94
Polyoxyäthylensorbitan-	400		• •	
monolaureat	400	98	97	94
Polyoxyäthylensorbitan-	400			
monostearat	400	100	94	93
Polyoxyäthylen-	400		· .	
polyoxypropylenglykoläther	400 ·	99	98	90
polyxcyäthyliertes	400	33	30	
gehärtetes Rizinusöl		07	93	87 -
Natriumlaurylsulfat	2,000	97	94	90
Lecithin	2,000	97	J *1	50
menschl. Serumalbumin	2,000	100	00	97
Mannit	2,000	100	99	31
Cystein	100			
menschl. Serumalbumin	2,000		07	95
Polyoxyäthylensorbitan-	100	99	97	95
monolaureat				
Mannit	2,000			
menschl. Serumalbumin	1,000			05
Hydroxypropylcellulose	500	99	97	95
Dextran (MW 40 000)	2,000			
Polyoxyäthylensorbitan-	100			
monopalmitat		06	96	93
	2 000	96		J J
Sorbit	2,000			
Polyoxyäthylen-gehärtetes	100		•	•
Rizinusöl			00	02
		95	92	92
Dextran (MW 40 000)	2,000			47
ohne Zusatz	_	72	61	47

Beispiel 3

¹⁰ μg G-CSF werden mit einem der in Tabelle III aufgeführten Stabilisierungsmittel versetzt. Das Gemisch wird in einer 20 mM Phosphatpufferlösung (enthaltend 100 mM Natriumchlorid vom pH 7,4) steril gelöst und es wird ein Arzneimittel enthaltend 10 μg G-CSF/ml erhalten. 1 ml des Mittels wird in eine sulfabehandelte, silikonbeschichtete Glasampulle überführt und bei 4°C aufbewahrt. Die Wirkung der Stabilisierungsmittel bei der Veränderung der G-CSF-Adsorption wird durch Messung der G-CSF-Restaktivität in der Lösung nach 0,5, 2

OS 37 23 781

und 24 Stunden ausgewertet. Die Messung wird nach dem Verfahren (b) mit Reversephasen-Hochleistungs-Flüssigkeits-Chromatographie durchgeführt. Die Ergebnisse sind in Tabelle III zusammengefaßt.

Tabelle III

Stabilisierungsmittel	Menge	Resta	Restaktivität (%)			
	(Gewichts anteile)		0.5 h	2 h	24 1	h
Mannit	5,000	100	93	90	91	-
Hyalursäure	2,000	100	97	92	92	
Dextran (MW 40 000)	2,000	100	98	95	96	
Glycerin	10,000	100	94	91	90	
Heparin .	2,000	100	92	90	90	
Glucuronsäure	5,000	100	96	90	91	
Ketoglykolsäure	5,000	100	92	88	90	
menschl. Serumalbumin	1,000	100	100	101	99	
menschl. Serumglobulin	1,000	100	98	100	98	
alkalibehandelte Gelatine	500	100	99	98	99	
Säurebehandelte Gelatine	2,000	100	99	97	97	
Kollagen	2,000	100	100	98	99	
Polyäthylenglykol (MW 4000)	10,000	100	100	100	99	
łydroxypropylcellulose	2,000	100	100	100	99	
latriumcarboxymethylcellulose	2,000	100	98	96		
lydroxyäthylcellulose	4,000	100	96	93	95 92	
olyvinylalkohol (MW 50 000)	4,000	100	99	100	· 98	
olyvinylpyrrolidon (MW 50 000)	4,000	100	98	98		
orbitanmonocaprylat	400	100	100	100	96	
olyoxyäthylensorbitanmonostearat	400	100	100	98	98	
olyoxyäthyliertes gehärtetes Rizinusöl.	400	100	99	101	100	
atriumlaurylsulfat	2,000	100	100	99	99	
ecithin	2,000	100	99		97	
enschl. Serumalbumin	2,000	100	77	100	98	
annit	2,000	100	100	100	101	
estein	100		100	100	101	
enschl. Serumalbumin	2,000					4
lyoxyäthylensorbitanmonolaureat annit	100	100	100	98	99	
enschl. Serumalbumin	2,000					
droxypropylcellulose	1,000					5
xtran (MW 40 000)	500 2,000	100	101	99	100	Ī
yoxyäthylensorbitanmonolaureat	100					
		001	100	99	99	
bit	2,000			"	77	6
yoxyäthyliertes gehärtetes Rizinusöl	100					
stran (MW 40 000)		100	100	98	97	
e Zusatz	2,000	100	91	72	•	65

THIS PAGE BLANK (WSPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.