CS & IT ENGINERING

Theory of Computation

Regular Languages

Mallesham Devasane Sir

Lecture No.- 14

Recap of Previous Lecture

Topic

Regular Expressions

Topics to be Covered

Topic

Automata Laphral

Automaton Lasingular

Automata JIt is a machine JIT represents a language


```
It is a machine that represents a regular language (accepts)

(recognizes)
```


$$S_{DFA}: QXZ \rightarrow Q$$

$$S_{NFA}: QX \sum U\{\epsilon\} \longrightarrow 2$$

Graph	Table		Set	
Graph A A A Constitution state Constitution state	5 2 71 2 Initial 2 final 2	6 1 2	Set $Q = \{1,2\}$ $\Sigma = \{a,b\}$ $S(1,a) = 2$ $S(2,b) = 2$ $S(2,b) = 2$	90=1 F={2}
(O): Final State Slide 12 (O): Non Final	0.470	, Q		

Slide 12

$$\delta(1,a)=2$$
 $\delta(1,b)=1$
 $\delta(2,a)=2$
 $\delta(2,b)=2$

$$S: Q \times \Sigma \to Q$$

$$\Rightarrow S = Q\left(\frac{1}{2}, a\right), \frac{2}{2} \cdot \left(\frac{1}{2}, b\right), 1 \cdot \left(\frac{2}{2}, a\right), \frac{2}{2}$$

$$\Rightarrow Co-domain$$

$$Q = \{1, 2, 3\}$$
 $F = \{0\}$
 $\sum = \{a, b\}$

$$\delta(1,a)=3$$
 $\delta(1,a)=3$
 $\delta(1,b)=1$
 $\delta(2,a)=3$
 $\delta(2,b)=3$
 $\delta(3,b)=3$
 $\delta(3,b)=3$

2 mins Summary

Topic

THANK - YOU