

ISCIDE2019

A Lightweight Lateral Inhibition Network for Single MR Image Super-Resolution

Xiaole Zhao 赵 小 乐

Tao Zhang 张涛

Mark Zou 邹 学 明

E-mail: <u>zxlation@foxmail.com</u>; <u>taozhangjin@gmail.com</u>; <u>mark.zou@alltechmed.com</u>. High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan

Key Laboratory for NeuroInformation of Ministry of Education

University of Electronic Science and Technology of China (UESTC)
School of Life Science and Technology

Single Image Super-Resolution (SISR)

■ Target: recovering a HR image from a single LR image

Low-resolution (LR) image

High-resolution (HR) image

LR image

Super-Resolution

HR image

Motivation

- **■** CNN Structure Design Inspired by Physiological Mechanisms
- Channel Attention and Spatial Attention

- Promoting the effective allocation of network resources
- Improving the model representational capacity
- Visual Inhibition

$$v_{i}^{'} = v_{i} - \sum_{j \neq i} w_{ij} \cdot \max\left(0, v_{j} - t_{ij}\right)$$

- Explicitly imposing inhibitory regulation on features
- Alleviating the representational burden of the model

Lateral Inhibition Network (LIN)

■ Network Architecture

Lateral Inhibition Network (LIN)

■ Network Architecture

$$v_{i}^{'} = v_{i} - \sum_{j \neq i} w_{ij} \cdot \max\left(0, v_{j} - t_{ij}\right) \quad \Longrightarrow \quad v_{i}^{'} = \phi \left\{v_{i} - \sum_{j \neq i} w_{ij} \cdot \max\left(0, v_{j} - t_{ij}\right)\right\}$$

Implementation Details

■ Network Structure

LIB	LIU	Batch	Patch	Kernel	Feature	Activation	Wide
Number	Number	Size	Size	Size	Maps	Function	Activation
4	4	16	24×24	3×3	32(×4)	ReLU	Yes

■ ModelTraining

Initializer	Optimizer	Total Iterations	Learning Rate	GPU	Data Augmentation
Xavier Initialization	Adam Optimizer $Beta1 = 0.9$ $Beta2 = 0.999$ $Epsilon = 10^{-8}$	10 ⁶ Training steps	2×10 ⁻⁴ Halved at every 200000 iters	NVIDIA GeForce GTX 1080 Ti	Horizontal and vertical flips, and 90° rotations

• Wide activation

• Data augmentation

Results

Quantitative evaluation

——————————————————————————————————————										
Methods	Scales	Params	Bicubic Downsampling (BD)			k-space Truncation (TD)				
			PD	T1	Т2	PD	T1	Т2		
Bicubic		/	35.04/0.9664	33.80/0.9525	33.44/0.9589	34.65/0.9625	33.38/0.9460	33.06/0.9541		
NLM	1	/	37.26/0.9773	35.80/0.9685	35.58/0.9722	36.18/0.9707	34.71/0.9581	34.56/0.9641		
SRCNN]	24.5K	38.96/0.9836	37.12/0.9761	37.32/0.9796	38.23/0.9802	36.52/0.9705	37.04/0.9773		
VDSR]	0.67M	39.97/0.9861	37.67/0.9783	38.65/0.9836	39.89/0.9850	37.58/0.9760	38.74/0.9823		
IDN	×2	0.73M	40.27/0.9869	37.79/0.9787	39.09/0.9846	40.43/0.9862	37.79/0.9765	39.48/0.9842		
RecNet		1.33M	40.43/0.9873	37.86/0.9792	39.13/0.9848	40.10/0.9857	37.54/0.9764	39.03/0.9832		
FSCWRN		3.50M	40.72/0.9880	37.98/0.9797	39.44/0.9855	40.91/0.9876	38.04/0.9786	39.82/0.9851		
LIN		1.33M	40.86/0.9884	38.04/0.9798	39.50/0.9856	41.11/0.9880	38.21/0.9793	40.02/0.9855		
LIN+]	1.33M	41.03/0.9886	38.19/0.9803	39.62/0.9860	41.31/0.9886	38.40/0.9801	40.18/0.9859		
Bicubic		/	29.13/0.8799	28.28/0.8312	27.86/0.8611	28.82/0.8713	27.96/0.8182	27.60/0.8511		
NLM]	/	30.27/0.9044	29.31/0.8655	28.85/0.8875	29.27/0.8906	28.68/0.8439	28.37/0.8718		
SRCNN]	24.5K	31.10/0.9181	29.90/0.8796	29.69/0.9052	30.52/0.9078	29.31/0.8616	29.32/0.8960		
VDSR]	0.67M	32.09/0.9311	30.57/0.8932	30.79/0.9240	31.69/0.9244	30.14/0.8818	30.51/0.9162		
IDN	×4	0.96M	32.47/0.9354	30.74/0.8966	31.37/0.9312	32.33/0.9318	30.40/0.8889	31.31/0.9270		
RecNet		1.33M	32.58/0.9378	30.86/0.9005	31.30/0.9310	32.16/0.9310	30.46/0.8900	31.03/0.9243		
FSCWRN		3.50M	32.91/0.9415	30.96/0.9022	31.71/0.9359	32.78/0.9387	30.79/0.8973	31.71/0.9334		
LIN		1.36M	32.94/0.9417	31.01/0.9033	31.72/0.9361	32.82/0.9391	30.88/0.8990	31.77/0.9339		
LIN+	1	1.36M	33.12/0.9432	31.28/0.9073	31.88/0.9376	33.03/0.9415	31.20/0.9041	31.96/0.9362		
	=	-	-	-	-		=	-		

Bicubic	NLM	SRCNN	VDSR	IDN	RecNet	FSCWRN	LIN [Ours]	LIN+ [Ours]	Ground Truth
F 150	10.30	19.32	19.30	91.22	18.30	19.32	10 1 3 20	19.50	102
3.2	318	1	113			11		113	1
28.51 / 0.8957	29.87 / 0.9224	30.44 / 0.9306	31.44 / 0.9428	31.73 / 0.9460	31.76 / 0.9467	32.11 / 0.9507	32.17 / 0.9510	32.31 / 0.9524	PSNR / SSIM
		3	0	34	33	3	9	9	M
31.74 / 0.8767	32.83 / 0.9037	33.43 / 0.9166	34.18 / 0.9287	34.41 / 0.9321	34.56 / 0.9347	34.69 / 0.9365	34.73 / 0.9372	34.95 / 0.9401	PSNR / SSIM
Ï	Ï	I	Y	X	X	X	X	X	X
28.86 / 0.8669	29.86 / 0.8941	30.68 / 0.9109	31.65 / 0.9288	32.22 / 0.9365	32.12 / 0.9356	32.53 / 0.9407	32.56 / 0.9409	32.70 / 0.9425	PSNR / SSIM

Results

Bicubic	NLM	SRCNN	VDSR	IDN	RecNet	FSCWRN	LIN [Ours]	LIN+ [Ours]	Ground Truth
Sand 3	(ma)	200	200	See	and .				- 110
240	54	560	5.0	5.00	2.5	500	200	2	Y
25.68 / 0.8556	26.71 / 0.8779	27.73 / 0.8995	28.76 / 0.9158	29.32 / 0.9224	29.21 / 0.9232	29.82 / 0.9311	29.85 / 0.9313	30.03 / 0.9341	PSNR / SSIM
18	12	12							
31.09 / 0.8386	31.73 / 0.8618	32.19 / 0.8758	32.80 / 0.8913	33.13 / 0.8990	33.10 / 0.8991	33.40 / 0.9059	33.52 / 0.9084	33.74 / 0.9125	PSNR / SSIM
\langle	A				A	A			A
27.63 / 0.8541	28.49 / 0.8770	29.38 / 0.9004	30.53 / 0.9205	31.38 / 0.9320	31.12 / 0.9294	31.87 / 0.9392	31.94 / 0.9398	32.11 / 0.9419	PSNR / SSIM

Thank you!