4xam I PSTAT 126 5/19/2022

1(a)
$$SSYeg = (3 \times 1) - n = 226.3 - 12 \times 1 = 34.3$$
 $SSTOT = Syy = 11 - n = 264 - 12 \times 1 = 72$

RSS = $11 - (3 \times 1) = 264 - 226.3 = 37.7$

A NOVA

Source of variation SS of MS

Regulation 34.3 3 11.43

Error 37.7 2 4.7125

Titel 72 11

(b) Rujet Hoif F7 F3, 8,0.05 = 4.07
$$T = \frac{MS \times 29}{MSE} = \frac{11.43}{4.7125} = 2.42$$

 $\Rightarrow Do \text{ not rejet Ho} \Rightarrow The overall regions is not significant$ $(c) R^{2} = \frac{55 \text{ reg}}{5 \text{ ry}} = \frac{34.3}{72} = 0.4764 = 47.64\%$ $\Rightarrow 47.64\% \text{ of } 9 - \text{variorbility was explained by the}$ $\lim \text{linear relation}$

(b)
$$H_{6}$$
: $\beta_{1} = 0$ V_{5} $H_{1} = \beta_{1} \neq 0$
 $h_{1} = 0$
 $h_{2} = 0$
 $h_{3} = 0$
 $h_{4} = 0$
 $h_{5} = 0$
 $h_{1} = 0$
 $h_{1} = 0$
 $h_{2} = 0$
 $h_{3} = 0$
 $h_{4} = 0$
 $h_{5} = 0$
 h

(e) Ho:
$$\beta_1 = \beta_3$$
 H₁: $\beta_2 \neq \beta_3$

Reject H₀ if $|\pm| > \pm 8,0.025 = 2.306$

$$\pm \frac{(\hat{\beta}_1 - \hat{\beta}_3)}{\sqrt{\hat{\gamma}_{1}(\hat{\beta}_1) + \hat{\gamma}_{2}(\hat{\beta}_3)} - 2 \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_3)}$$

$$= \frac{(0.24 - 1.01)}{\sqrt{4.7125}} \sqrt{0.049 \pm 0.055 - 2 \times (-0.003)}$$

$$C\beta = 0 \iff 2\beta_1 + \beta_2 = 0 \text{ (1)}$$

$$4\beta_2 + \beta_3 = 0 \text{ (2)} \Rightarrow 2\beta_1 + \beta_2 = 0$$

$$2\beta_1 - 3\beta_2 + \beta_3 = 0 \text{ (3)} \Rightarrow 2\beta_1 + \beta_2 = 0$$

$$\Xi(i) = \{i \text{ ot } \{i, X_1 + \{i\}_2 X_2 + \{i\}_3 X_3\} \\
= \{i \text{ ot } \{i, X_1 - 2\}_1 X_2 - 2\{i\}_1 X_3\} \\
= \{i \text{ ot } \{i, X_1 - 2X_2 - 2X_3\}_1 \}$$

(h) Reject Ho 24 F7 F3,8,0.05 = 4.46
$$F = \frac{(66.79 - 37.7)/2}{4.7/25} = 3.086 $\frac{4.46}{4.96}$$

$$=) Do nut reject Ho$$

2.
$$\lambda_{2} = 1$$
 if B is in effect $\lambda_{3} = 1$ if C is in effect

 $E(Y) = \beta_{0} + \beta_{1}\lambda_{1} + \beta_{1}\lambda_{2} + \beta_{1}\lambda_{3}$
 $\Rightarrow program A: E(Y) = \beta_{0} + \beta_{1}\lambda_{1} + \beta_{2} = (\beta_{0} + \beta_{2}) + \beta_{1}\lambda_{1}$
 $program C: E(Y) = \beta_{0} + \beta_{1}\lambda_{1} + \beta_{2} = (\beta_{0} + \beta_{2}) + \beta_{1}\lambda_{1}$
 $program C: E(Y) = \beta_{0} + \beta_{1}\lambda_{1} + \beta_{2} = (\beta_{0} + \beta_{2}) + \beta_{1}\lambda_{1}$
 $h_{0}: \beta_{2} = \beta_{3} = 0$
 $RSS = RSS(X_{1}, X_{2}, X_{3}) = 1000$
 $RSS = RSS(X_{2}, X_{3} | X_{1}) = RSS(X_{1}) - RSS(X_{1}, X_{2}, X_{2})$
 $= 3600 - 1000 = 2600$
 $RSS = RSS(X_{2}, X_{3} | X_{1}) = RSS(X_{1}) + RSS(X_{1}, X_{2}, X_{2})$
 $\Rightarrow RSS = RSS(X_{1}, X_{2}, X_{3} | X_{1}) = \frac{2600/2}{1000/5} = \frac{1300}{200} = 6.5 > 5.79$
 $\Rightarrow RSS = RSS(X_{2}, X_{3} | X_{1}) = RSS(X_{1}) - RSS(X_{1}, X_{3})$
 $\Rightarrow RSS = RSS(X_{1}, X_{2}) = RSS(X_{1}) - RSS(X_{1}, X_{3})$
 $\Rightarrow RSS = RSS(X_{1}, X_{2}) = RSS(X_{1}) - RSS(X_{1}, X_{3})$
 $\Rightarrow RSS = RSS(X_{1}, X_{2}) = RSS(X_{1}) - RSS(X_{1}, X_{3})$
 $\Rightarrow RSS = RSS(X_{1}, X_{2}) = RSS(X_{1}) - RSS(X_{1}, X_{3})$
 $\Rightarrow RSS = RSS(X_{1}, X_{2}) = RSS(X_{1}) - RSS(X_{1}, X_{3})$
 $\Rightarrow RSS = RSS(X_{1}, X_{2}) = RSS(X_{1}) - RSS(X_{1}, X_{3})$
 $\Rightarrow RSS = RSS(X_{1}, X_{2}) = RSS(X_{1}, X_{3}) = 2200$

RSS
$$(X_2 | X_1, X_2) = RSS(X_1, X_3) - RSS(X_1, X_2, X_3)$$

 $= 2200 - 1000 = 1200$
Reject the if $F = 7 = 7$, 5 , 5 , 5 , 5 6 6 6 7 $7 = 1$, 5 , 5 , 5 , 5 6 6 $7 = 1$, 5 , 5 , 5 6 $7 = 1$, 5 , 5 , 5 6 $7 = 1$, 5 , 5 , 5 6 $7 = 1$, 5 , 5 , 5 6 $7 = 1$, 5 , 5 $7 = 1$, 5 , 5 $7 = 1$, 5 7

(c)