ROBEM I Find the solution of $6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{30}$.

SOLUTION. Easily $30 = 2 \times 3 \times 5$, so we consider three equations:

$$\begin{cases} 6x^3 + 27x^2 + 17x + 20 \equiv 0 \mod 2 \\ 6x^3 + 27x^2 + 17x + 20 \equiv 0 \mod 3 \\ 6x^3 + 27x^2 + 17x + 20 \equiv 0 \mod 5 \end{cases}$$

The first equation is always true, because $6x^3 + 27x^2 + 17x + 20 \equiv x^2 + x \equiv 0 \mod 2$. The second equation is equivalent to $2x + 2 \equiv 0 \mod 3$. Solve it and get $x \equiv 2 \mod 3$. The last equation is equivalent to $x^3 + 2x^2 + 2x = x(x^2 + 2x + 2) \equiv 0 \mod 5$. Easy to get that $x \equiv 0, 1, 2 \mod 5$. So finally we get that $x \equiv 2, 20, 26 \mod 30$.

ROBEM II Find the solution of $31x^4 + 57x^3 + 96x + 191 \equiv 0 \pmod{225}$.

SOLUTION. Easy to get that $225 = 3^2 \times 5^2$. So the equation is equivalent to

$$\begin{cases} 4x^4 + 3x^3 + 6x + 2 \equiv 0 \mod 9 \\ 6x^4 + 7x^3 - 4x - 9 \equiv 0 \mod 25 \end{cases}$$

First we consider $4x^4 + 3x^3 + 6x + 2 \equiv 0 \mod 3$. Easy to get $x \equiv 1, 2 \mod 3$. If $x \equiv 1 \mod 3$, assume $x \equiv 1 + 3k \mod 9$, then $(4 + 3 + 6 + 2) + 16 \times 3k + 9 \times 3k + 6 \times 3k \equiv 0 \mod 9$, then $2 + k \equiv 0 \mod 3$, so $x \equiv 4 \mod 9$. If $x \equiv 2 \mod 3$, then for the same reason we get $(4 \times 2^4 + 3 \times 2^3 + 6 \times 2 + 2) + (-16 + 9 + 6) \times 3k \equiv 0 \mod 9$, thus $x \equiv 5 \mod 9$. So $x \equiv 4, 5 \mod 9$.

Second we consider $6x^4 + 7x^3 - 4x - 9 \equiv 0 \mod 5$. Obviously $x \not\equiv 0 \mod 5$, so $x^4 \equiv 1 \mod 5$. So $2x^3 + x - 3 \equiv 0 \mod 5$, i.e., $(x-1)(2x^2 + 2x + 3) \equiv 0 \mod 5$. Then $x \equiv 1 \mod 5$ or $2x^2 + 2x + 3 \equiv 0 \mod 5$. Noting $2x^2 + 2x + 3 \equiv (x-2)(2x+6) \mod 5$, so we finally get $x \equiv 1, 2 \mod 5$. Use the same method as above, we can get that $x \equiv 1, 22 \mod 25$

Finally, we consider

$$\begin{cases} x \equiv 4, 5 \mod 9 \\ x \equiv 1, 22 \mod 25 \end{cases}$$

We obtain that $x \equiv 22, 122, 76, 176 \mod 225$.

SOUTION. Let $s=3^{16}\times\prod_{p\in\mathbb{P},5< p\leq m}p^{16},$ then easily $s\equiv 1\mod 32.$ Let t=5, and let

$$\begin{cases} a = 11s^2 - 22st - 5t^2 \\ b = -11s^2 - 10st + 5t^2 \\ c = 20t^2 + 44s^2 \end{cases}$$

Then easy to check that $5a^2 + 11b^2 = c^2$. Easily $a \equiv 11 - 110 - 125 \equiv 0 \mod 32$. Then since $32 \mid b + a = -32st$ we get $32 \mid b$. Then $32^2 \mid 5a^2 + 11b^2 = c^2$, thus $32 \mid c$. Let $a_1 = \frac{a}{32}, b_1 = \frac{b}{32}, c_1 = \frac{c}{32}$, then $5a_1^2 + 11b_1^2 = c_1^2$. Now we will prove that $\gcd(c_1, m) = 1$. If not, assume $p \in \mathbb{P}$ and $p \mid \gcd(c_1, m)$. If $p > 5 \lor p = 3$, then since $p \mid m$ we get $p \leq m$, so $p \mid s$. Since $p \mid c = 20t^2 + 44s^2$, we get $p \mid t$, then p = 5, contradiction! If p = 5, then $p \mid 20t^2$, then $p \mid 44s^2$, but $5 \nmid s$, contradiction! If p = 2, then $2 \mid \frac{c}{32}$, then $16 \mid 5t^2 + 11s^2$. But easily $5t^2 + 11s^2 \equiv 125 + 11 \equiv 8$ mod p, contradiction! So we get $\gcd(c_1, m) = 1$. So $\exists d, c_1 d \equiv 1 \mod m$. Let $x = a_1 d, y = b_1 d$, then $5x^2 + 11y^2 = c^2d^2 \equiv 1 \mod m$.

ROBEM IV If $n \mid p-1, n > 1, \gcd(a, p) = 1$, prove:

- 1. $x^n \equiv a \pmod{p}$ has solution $\iff a^{\frac{p-1}{n}} \equiv 1 \pmod{p}$.
- 2. If $x^n \equiv a \pmod{p}$ has solution, then it has n solutions.
- SOUTHON. 1. " \Longrightarrow ":Since $\gcd(a,p)=1$ easily $\gcd(x,p)=1$. So $a^{\frac{p-1}{n}}\equiv x^{p-1}\equiv 1 \mod p$. " \Leftarrow ": Easy to know that there is at most $\frac{p-1}{n}$ different a satisfy $\exists x,x^n\equiv a \mod p$. For every a, there is at most n different x satisfy $x^n\equiv a \mod p$. And for every x satisfy $\gcd(x,p)=1$, there is a unique a satisfy $x^n\equiv a \mod p$. So $\sum_{x,a\in\mathbb{Z}/p\mathbb{Z},x^n\equiv a,x\neq 0}1=\sum_{a\in\mathbb{Z}/p\mathbb{Z},a^{\frac{p-1}{n}}\equiv 1}\sum_{x\in\mathbb{Z}/p\mathbb{Z},x^n\equiv a}1\leq p-1$. But $\sum_{x,a\in\mathbb{Z}/p\mathbb{Z},x^n\equiv a,x\neq 0}1=\sum_{x\in\mathbb{Z}/p\mathbb{Z},x\neq 0}1=p-1$ So we get $\forall a:a^{\frac{p-1}{n}}\equiv 1 \mod p$, there is n different x satisfy $x^n\equiv a \mod p$.
 - 2. Have been proved above.

ROBEM V $n \in \mathbb{N}^+$, $\gcd(a, m) = 1$, $x^n \equiv a \pmod{m}$ has a solution $x \equiv x_0 \pmod{m}$. Prove all the solution of $x^n \equiv a \pmod{m}$ have the form of $x \equiv yx_0 \pmod{m}$, where y is the solution of $y^n \equiv 1 \pmod{m}$.

SOLTON. Easy to know $x \equiv yx_0 \mod m$ is solution of $x^n \equiv a \mod m$. Now only need to check every solution has this form. Assume $x^n \equiv a \mod m$. Easily $\gcd(x,m) = \gcd(x_0,m) = 1$. Then $\exists b, bx_0 \equiv 1 \mod m$. Then $x^nb^n \equiv x_0^nb^n \equiv 1 \mod m$. Let y = xb, then $y^n \equiv 1 \mod m$. Then $yx_0 \equiv xbx_0 \equiv x \mod m$.