VEŠTAČKA INTELIGENCIJA, 2020/2021

PRODUKCIONI SISTEMI: NEPOUZDANO ZAKLJUČIVANJE

Sadržaj

- Neizvesnost (Uncertainty)
- Verovatnoca: Sintaksa i Semantika
- NZ kod produkcionih sistema

Rad sa nepreciznim podacima

- Sposobnosti čoveka: sposobnost efektivnog rada sa nepreciznim, nepotpunim i ponekad nesigurnim informacijama.
- □ Postoji više vrsta nesigurnosti:
 - Nesigurno znanje
 - Nesigurni podaci
 - Nesigurne informacije

Rad sa nepreciznim podacima

- U stvarnom svetu agent skoro nikada nema potpune i tačne podatke o okruženju.
- Primer: Akcija A_t kreni na aerodrom t minuta pre poletanja
- Problemi
 - neki delovi okruzenja nisu dostupni
 - □ Sum u podacima dobijenih sa senzora
 - neizvesni rezultati akcija
 - Kompleksnost modeliranja i predvidjanja u stvarnom okruženju

Teorija verovatnoće

- Verovatnoća omogućava da izrazimo subjektivno verovanje da je neka rečenica tačna.
- Verovatnoća neke rečenice može da se promeni kada se dobiju nova znanja o okruženju.
 - □ **Prethodna verovatnoća** (prior probability): pre nego što su dokazi dostupni
 - □ Posteriror (uslovna) verovatnoća: nakon što se dobiju dokazi
- □ Primer: Koju od sledećih akcija treba izabrati?

$$P(A_{25}) = 0.04$$
 $P(A_{90}) = 0.70$ $P(A_{120}) = 0.95$ $P(A_{1440}) = 0.9999$

Aksiome verovatnoće

- 1. $0 \le P(A) \le 1$
- 2. P(True) = 1, P(False) = 0
- 3. $P(A \vee B) = P(A) + P(B) P(A \wedge B)$

Sintaksa

 Slučajne promenljive imaju svoje domene (uređene skupove vrednosti).

P(Vreme=Sunčano)=0.7 P(Vreme=Kiša)=0.2

P(Vreme=Oblačno)=0.08 P(Vreme=Sneg)=0.02

□ Distribucija verovatnoce:

P(Vreme) = <0.7, 0.2, 0.08, 0.02>

Sintaksa (nast.)

Uslovna (posteriorna) verovatnoća

$$P(Karijes | Zubobolja) = 0.8$$

(pod uslovom da agent jedino zna da zubobolja postoji)

- Ako agent takodje zna da postoji karijes, onda P(Karijes I Zubobolja) = 1
- Uslovna verovatnoća:

$$P(A \mid B) = P(A \land B) / P(B)$$
 ako $P(B) \neq 0$

□ Pravilo proizvoda (product rule):

$$P(A \wedge B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

Nepouzdano zaključivanje kod produkcionih sistema

- Nepouzdano zaključivanje se koristi kod produkcionih sistema da bi se omogućio rad sa
 - nepouzdanim i
 - nedovoljno preciznim informacijama.
- □ Činjenicama i pravilima se podeljuje
 - □ Faktor pouzdanosti (FP): verovatnoća tačnosti tvrdnje:
 - Činjenice
 - Dobijenog zaključka iz pravila

Faktor pouzdanosti

- □ Faktor pouzdanosti je numerička vrednost u intervalu od [0,1] (ili [0,100]%).
- Granične vrednosti odgovaraju istinitosnim vrednostima:
 - □ 0 (0%) NETAČNO
 - 1 (100%) TAČNO
- □ UNKNOWN nepoznat FP

Formule za izračunavanje FP-a

- Neka su A i B iskazi, sa FP(A) i FP(B) označavamo faktore pouzdanosti ovih iskaza.
- □ Formule za računanje FP-a kod logičkih operacija:
 - \blacksquare FP(NOT A) = 1 FP(A) (ili 100% FP(A))
 - \square FP(A AND B) = min(FP(A), FP(B))
 - \square FP(A OR B) = max(FP(A), FP(B))
- Za računanje faktora pouzdanosti zaključka parvila koristi se sledeća formula:
 - FP(zaključka) = FP(premise) * FP(pravila)

Formule za izračunavanje FP-a

Ukoliko se neka činjenica izvodi kao zaključak iz više od jednog pravila, njen faktor pouzdanosti se računa po sledećoj formuli verovatnoće:

$$C(A, B) = FP(A) + FP(B) - FP(A) * FP(B)$$

- FP(A) i FP(B) su faktori pouzdanosti iste činjenice dobijene iz dva različita pravila.
- □ C(A, B) je novi faktor pouzdanosti za tu činjenicu.

Primer izračunavanja FP

Primer izračunavanja FP

- □ Na osnovu skupa iskaza za koje je poznat FP:
 - □ Č1. Problem zahteva hitnu intervenciju (0.8)
 - Č2. Kvar je na električnoj instalaciji (0.6)
 - Č3. Prostoji kratak spoj na instalaciji (0.4)
 - Č4. Kvar je u računaru za kontrolu ubrizgavanja (0.2)
- Odrediti faktor pouzdanosti iskaza:
 - Kvar je u električnoj instalaciji i potrebno ga je hitno popraviti, ali je problem i kratak spoj ili je računar za kontrolu ubrizgavanja u kvaru.

Primer (rešenje)

- Kvar je u električnoj instalaciji I potrebno ga je hitno popraviti, ali je problem I kratak spoj ILI je računar za kontrolu ubrizgavanja u kvaru.
- Analizom zadatih iskaza, iskaz za koji se traži računanje FP-a možemo predstaviti kao:

```
Z = (\check{C}2 \text{ and } \check{C}1) \text{ and } (\check{C}3 \text{ or } \check{C}4)
```

□ U tom slučaju FP(Z) računamo kao

```
FP(Z) = min(min(FP(Č2), FP(Č1)),
max(FP(Č3), FP(Č4)))
= min(min(0.6, 0.8), max(0.4, 0.2))
= min(0.6, 0.4) = 0.4, tj. 40\%
```

Primer: Nepouzdano zaključivanje

- P1: AKO pacijent ima manje od 8 ili više od 60 godina

 ONDA (1.0) pacijent je u kritičnim godinama
- P2: AKO pacijent ima visoku temperaturu [
 (pacijent oseća malaksalost [L]
 pacijent oseća bolove u mišićima)

 ONDA (0.7) pacijent ima grip
- P3: AKO pacijent ima natečeno grlo I pacijent ima kijavicu ONDA (0.6) pacijent ima grip
- P4: AKO pacijent ima grip I pacijent je u kritičnim godinama

 ONDA (0.9) pacijent treba hitno da se obrati lekaru

Primer: Nepouzdano zaključivanje

- □ Za pacijenta koji ima:
 - 65 godina,
 - visoku temperaturu,
 - natečeno grlo i
 - □ kijavicu,
 - oseća malaksalost sa izvesnošću 0.8 i
 - □ bolove u mišićima sa izvesnošću 0.9.
- Odrediti faktor pouzdanosti zaključka:
 - a) da pacijent ima grip
 - □ b) da pacijent treba hitno da se obrati lekaru

Rešenje

- □ Baza činjenica je:
 - □ Č1: pacijent ima manje od 8 ili više od 60 godina (1.0)
 - □ Č2: pacijent ima visoku temperaturu (1.0)
 - □ Č3: pacijent ima natečeno grlo (1.0)
 - □ Č4: pacijent ima kijavicu (1.0)
 - Č5: pacijent oseća malaksalost (0.8)
 - □ Č6: pacijent oseća bolove u mišićima (0.9).

- □ Z = pacijent ima grip
- \Box FP(Z) = ?
- Zaključak da "pacijent ima grip" može da se izvede iz pravila P2 i P3.

- \Box FP(Z) = FP(Z2) + FP(Z3) FP(Z2) * FP(Z3)
- \Box FP(Z2) = ?, FP(Z3) = ?

- \Box FP(Z2) = ?
- □ U premisi P2 imamo sledeće činjenice:
 - □ Č2: pacijent ima visoku temperaturu
 - Č5: pacijent oseća malaksalost
 - Čó: pacijent oseća bolove u mišićima
- □ Iz baze činjenica nalazimo da je:
 - \square FP(Č2) = 1.0, FP(Č5) = 0.8, FP(Č6) = 0.9
- □ FP(Z2) = min(FP(Č2), max(FP(Č5), FP(Č6))) * FP(P2)
 - = min(1.0, max(0.8, 0.9)) * 0.7
 - = min(1.0, 0.9) * 0.7 = 0.9 * 0.7 = 0.63, tj. 63%

- \Box FP(Z3) = ?
- □ U premisi P2 imamo sledeće činjenice:
 - □ Č3: pacijent ima natečeno grlo
 - □ Č4: pacijent ima kijavicu
- □ Iz baze činjenica nalazimo da je:
 - \square FP(Č3) = 1.0, FP(Č4) = 1.0
- □ FP(Z3) = min(FP(Č3), FP(Č4)) * FP(P3)= min(1.0, 1.0) * 0.6
 - = 1.0 * 0.6 = 0.6, tj. 60%

- \Box FP(Z) = FP(Z2) + FP(Z3) FP(Z2) * FP(Z3)
- \square FP(Z2) = 0.63, FP(Z3) = 0.6
- □ Faktor pouzdanosti izvedene činjenice da "pacijent ima grip" iznosi 0.852, tj. 85.2%.
 - □ Č7: pacijent ima grip (0.852)

(b) Pacijent hitno treba da se obrati lekaru

- □ Z = pacijent hitno treba da se obrati lekaru
- \square FP(Z) = \$
- □ Zaključak da "pacijent hitno treba da se obrati lekaru" može da se izvede samo iz pravila P4.
- \square FP(Z) = FP(Z4)

Rešenje pod (b)

- \square FP(Z4) = ?
- □ U premisi P4 imamo sledeće činjenice:
 - □ Č7: pacijent ima grip
 - ? pacijent je u kritičnim godinama
- □ Na osnovu rešenja pod (a) znamo da je:
 - \Box FP(Č7) = 0.852
- Druga činjenica dobija izvodjenjem iz pravila P1
 - \Box FP(Z1) = ?

Rešenje pod (b)

- \Box FP(Z1) = ?
- □ Premisa P1 ima činjenicu:
 - □ Č1: pacijent ima manje od 8 ili više od 60 godina
- □ Iz baze činjenica vidimo da je ovaj uslov zadovoljen sa FP(Č1) = 1.0 jer pacijent ima 65 godina.
- \square FP(Z1) = FP(Č1) * FP(P1) = 1.0 * 1.0 = **1.0**
- Dodaje se nova činjenica u bazu:
 - □ Č8: pacijent je u kritičnim godinama (1.0)

Rešenje pod (b)

```
□ FP(Z4) = min(FP(Č7), FP(Z1)) * FP(P4)
= min(FP(Č7), FP(Č8)) * FP(P4)
= min(0.852, 1.0) * 0.9
= 0.852 * 0.9 = 0.7668, tj. 76.68\%
```

- □ Faktor pouzdanosti izvedene činjenice da "pacijent hitno treba da se obrati lekaru" iznosi 0.7668, tj. 76.68%.
 - Č9: pacijent hitno treba da se obrati lekaru (0.7668)

Primer (za vežbu): Klasifikacija zaposlenih

P1: AKO osoba ima borben duh l osoba je poverljive prirode ONDA (0.8) osoba je sposobna da prezivi P2: AKO je osoba sposobna za putovanja <u>l</u> osoba sposobna da ubedi druge Losoba smirena i staložena ONDA (0.9) osoba sposobna da upravlja P3: AKO osoba ima govorničku veštinu ! osoba sposobna da preživi ONDA (0.7) osoba sposobna da ubedi druge P4: AKO (osoba ume da vozi | starost između 21 i 65) |LI osoba vozi bicikl

NDA (0.6) je osoba sposobna za putovanja

Primer (za vežbu): Klasifikacija zaposlenih

□ Poznato je sledeće:

IME	starost	vozi auto	vozi bicikl	govorni čka veština	poverljiva priroda	borben duh	smirenost i staloženost
Miško	45	1.0	1.0	0.5	1.0	0.4	0.5
Blaško	33	1.0	0.6	0.8	0.5	0.9	0.9

Odrediti faktor pouzadanosti zaključka da su Miško i Blaško sposobni da upravljaju

PITANJA?

Dileme?

