Dynamic Energy Budget (DEB) theory summary notes

Matthew Malishev^{1*}

 $^{1}\ Department\ of\ Biology,\ Emory\ University,\ 1510\ Clifton\ Road\ NE,\ Atlanta,\ GA,\ USA,\ 30322$

Contents

List of parameters and variables	2
Overview	٠
Reserve mobilisation	•
Length	٠
Weak homeostasis	4

 $\begin{array}{ll} \text{Date: } 2018\text{-}10\text{-}31 \\ \text{R version: } 3.5.0 \end{array}$

 $\hbox{*Corresponding author: matthew.malishev@gmail.com}$

List of parameters and variables

Parameter	Definition
E $[E]$ e	energy reserve energy reserve per volume scaled energy reserve

Overview

Summarised notes from DEB workshops, telecourses, lectures, and discussions.

Reserve mobilisation

Conductance determines mobilisation rate from reserve to structure

The larger the SA of reserve, the more mobilisation is possible and thus faster maintenance and growth because due to more SA - SA scales slower than volume-specific flows

Reserve dynamics f = 1 (max feeding rate)

$$\frac{dE}{dt} = \frac{f\{\dot{p}_{AM}\}}{L} - \frac{\dot{v}[E]}{L}$$

 $[E_M] = \max$ reserve. Reserve doesn't change.

$$= \frac{\{\dot{p}_{AM}\}}{L} - \frac{\dot{v}[E_M]}{L}$$
$$\therefore [E_M] = \frac{\{\dot{p}_{AM}\}}{\dot{v}}$$

Scaled reserve

$$e = \frac{[E]}{[E_M]}$$

$$\frac{de}{dt} = \frac{[E]/[E_M]}{dt} = \frac{f\dot{v}}{L} - \frac{e\dot{v}}{L}$$

$$=\frac{\dot{v}(fe)}{L}$$

Under steady state, reserve doesn't change

$$0 = \frac{\dot{v}(fe)}{L} \quad \text{or} \quad f = e$$

Length

Getting maximum length L_m

$$\frac{dV}{dt} = V\dot{r}$$

Can rewrite r using scaled reserve e

$$\dot{r} = \dot{v} \frac{\frac{e}{L} - (1 + \frac{L_T}{L})/L_m}{e + g}$$

Getting L_m

$$\frac{dV}{dt} = V\dot{r}$$

To find $V_m=Lm^3,$ set f=1 and $\frac{dV}{dt}=0,$ then solve for $V=V_m$

$$L_m = \frac{\kappa\{\dot{p}_{Am}\}}{[\dot{p}_M]}$$

Weak homeostasis

Structural isomorphy implies weak homeostasis Weak homeostasis depends on ratio of reserve to structure $\frac{d[E]}{dt}$