Table

Gate	Name	Goal	Input	Output	Reference
output input fuel	Catalyst based reaction	Reversible reaction used as AND/OR gate depending on threshold. Threshold = 0.6 (OR gate), Threshold = 1.2 (AND gate).	X1, x2	y1	Ref 1, Ref 4, fig 5
amplifying $gate$ output, output, output, w_2 output, w_2 input w_2 v_3 output, v_4 output, v_4 output, v_5 output, v_6 output, v_8 outpu	Amplification gate	Uses a catalyst to displace multiple strands with a single input. First input displaces strand and produces output, then input is displaced.	x1	Y1, y2, y3	Ref 1, fig 1
input, gate input, w a mex(1-equu, s) (3)	Integration gate	Takes multiple inputs and produces a cumulative sum of inputs.	X1, x2, x3	y1	Ref 1
$\begin{array}{c} \mathbf{A} \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{y}_2 \\ \mathbf{y}_1 = \left[\sqrt{\mathbf{x}_4 \mathbf{x}_3 \mathbf{x}_2 \mathbf{x}_1} \right] \\ \mathbf{x}_5 \\ \mathbf{x}_6 \\ \mathbf{y}_7 \\ \mathbf{y}_7 \\ \mathbf{y}_8 \\ \mathbf{y}_9 \\ \mathbf{y}$	Floor of four-bit	Computes the floor of the square root of a four-bit binary input.	X1, x2, x3, x4	Y1, y2	Ref 1
c $x_1 \xrightarrow{W_1} W_2 \xrightarrow{\text{th}} y$ $x_2 \xrightarrow{\vdots} W_2 \xrightarrow{\text{th}} y$ $x_n \xrightarrow{x_2} \underbrace{x_2} \underbrace{x_2} \underbrace{x_2} \underbrace{x_2} \underbrace{x_3} \underbrace{x_2} \underbrace{x_2} \underbrace{x_3} \underbrace{x_4} \underbrace{x_2} \underbrace{x_4} \underbrace{x_5} x$	Threshold gate	A linear threshold gate and its equivalent seesaw construction.	X1, x2, x3	y1	Ref 2
a $y = XOR(x1, x2, x3)$ x_1 1 1 2 2 2 2 3 1 2 2 3 3 2 3 3 3 3 3 4 3 4 3 4 3 4 3 4 3	Three-bit XOR function	For negative weights use dual rail.	X1, x2, x3	y1	Ref 2, fig 2, fig 3

$\begin{array}{c} \mathbf{a} \\ \begin{array}{ccccccccccccccccccccccccccccccccccc$	A four-neuron Hopfield associative memory	A recurrent neural network that stores patterns as stable states and retrieves closest stored memory when presented with a distorted version.	?, ?, x3, x4	X1, x2, x3, x4	Ref 2, fig 4
b reporter (Rep _e) S6 ROX ROX	Fluorophore ROX	Report the signal	x1	ROX	Ref 2
$\begin{array}{c c} x_1 & w_{11} & \text{WTA} \\ x_2 & & & \\ \vdots & & & \\ x_n & w_{nm} & & \\ \end{array}$	WTA: Winner take all	Competitive architecture where out is only the dominant signal	{x1 xn}	Only major signal	Ref 3
$\begin{array}{c} \mathbf{b} \\ x_1 \longrightarrow z_1 \\ x_2 \longrightarrow UIA \longrightarrow z_2 \\ x_3 \longrightarrow z_3 \end{array} \qquad \begin{array}{c} x_1 \\ x_2 \longrightarrow VI \longrightarrow z_1 \\ x_2 \longrightarrow VI \longrightarrow z_2 \\ x_3 \longrightarrow z_3 \end{array}$	LTA: Losser take all	Competitive architecture where out is only the weak signal	{x1, .xn}	Only weak signal	Ref 5

References:

- 1. https://www.jstor.org/stable/pdf/27977987.pdf
- 2. https://www.nature.com/articles/nature10262.pdf
- 3. http://gianlab.caltech.edu/s41586-018-0289-6.pdf
- 4. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7424055&casa_token=d-3pOHCZHgAAAAA:IZTDykmp0aYLL0EJUDgSalz7eWq6PCE0ymMrayuvXliQu322BTccT2WIMgkhZvEngGN5iYqs81Hr
- 5. https://pubs.acs.org/doi/pdf/10.1021/acssynbio.1c00318
- 6.

Figure:

2.

d Q1: Did the scientist study neural networks?

Q2: Was the scientist British?

Q3: Was the scientist born in the 20th century?

Q4: Was the scientist a mathematician?

Answers: Yes (1), No (0), or I don't know (?)

0 1 1 0 Rosalind Franklin

1 1 1 1 Alan Turing

4.

0 0 1 1 Claude Shannon

1 0 0 0 Santiago Ramon y Cajal

Fig. 3. The DNA gate motif reaction mechanism

5.