T.D. IX - Variables aléatoires à densité

I - Lois usuelles

Solution de l'exercice 1. Rappelons que

$$F_U(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ x & \text{si } x \in [0, 1] \\ 1 & \text{si } x \geq 1 \end{cases}$$

1. Soit $x \in \mathbb{R}$. D'après la définition,

$$F_X(x) = \mathbf{P}\left([X \leqslant x]\right) = \mathbf{P}\left([3U \leqslant x]\right) = \mathbf{P}\left(\left[U \leqslant \frac{x}{3}\right]\right)$$
$$= F_U\left(\frac{x}{3}\right).$$

- * Si $\frac{x}{3} \leqslant 0$, c'est-à-dire $x \leqslant 0$, alors $F_X(x) = 0$. * Si $0 \leqslant \frac{x}{3} \leqslant 1$, c'est-à-dire $0 \leqslant x \leqslant 3$, alors $F_X(x) = \frac{x}{3}$.
- * Si $\frac{x}{2} \ge 1$, c'est-à-dire $x \ge 3$, alors $F_X(x) = 1$.

Finalement,

$$F_X(x) = \begin{cases} 0 & \text{si } x \leqslant 0\\ \frac{x}{3} & \text{si } x \in [0,3] \\ 1 & \text{si } x \geqslant 3 \end{cases}.$$

Une densité f_X de X est donnée par la dérivée de F_X en les points où F_X est dérivable, soit

$$f_X(x) = \begin{cases} \frac{1}{3} & \text{si } x \in [0,3] \\ 0 & \text{sinon} \end{cases}.$$

On reconnaît ainsi que $X \hookrightarrow \mathcal{U}([0,3])$.

2. Soit $x \in \mathbb{R}$. D'après la définition,

$$F_Y(x) = \mathbf{P}([Y \le x]) = \mathbf{P}([U+1 \le x]) = \mathbf{P}([U \le x-1])$$

= $F_U(x-1)$.

- * Si $x-1 \leq 0$, c'est-à-dire $x \leq 1$, alors $F_Y(x) = 0$.
- * Si $0 \le x 1 \le 1$, c'est-à-dire $1 \le x \le 2$, alors $F_V(x) = x 1$.
- * Si $x-1 \ge 1$, c'est-à-dire $x \ge 2$, alors $F_V(x) = 1$.

Finalement,

$$F_Y(x) = \begin{cases} 0 & \text{si } x \le 1 \\ x - 1 & \text{si } x \in [1, 2] \\ 1 & \text{si } x \ge 2 \end{cases}$$

Une densité f_Y de Y est donnée par la dérivée de F_Y en les points où F_Y est dérivable, soit

$$f_Y(x) = \begin{cases} 1 & \text{si } x \in [1, 2] \\ 0 & \text{sinon} \end{cases}.$$

On reconnaît ainsi que $Y \hookrightarrow \mathcal{U}([1,2])$.

3. Soit $x \in \mathbb{R}$. D'après la définition,

$$F_Z(x) = \mathbf{P}([Z \leqslant x]) = \mathbf{P}\left(\left[\frac{1}{2}X + 1 \leqslant x\right]\right) = \mathbf{P}([X \leqslant 2(x-1)])$$
$$= F_U(2(x-1)).$$

- * Si $2(x-1) \leq 0$, c'est-à-dire $x \leq 1$, alors $F_Z(x) = 0$.
- * Si $0 \le 2(x-1) \le 1$, c'est-à-dire $1 \le x \le \frac{3}{2}$, alors $F_Z(x) = 2(x-1)$.
- * Si $2(x-1) \ge 1$, c'est-à-dire $x \ge \frac{3}{2}$, alors $F_Z(x) = 1$.

Finalement,

$$F_Z(x) = \begin{cases} 0 & \text{si } x \leqslant 1\\ 2(x-1) & \text{si } x \in \left[1, \frac{3}{2}\right] \\ 1 & \text{si } x \geqslant \frac{3}{2} \end{cases}.$$

Une densité f_Z de Z est donnée par la dérivée de F_Z en les points où F_Z est dérivable, soit

$$f_Z(x) = \begin{cases} 2 & \text{si } x \in \left[1, \frac{3}{2}\right] \\ 0 & \text{sinon} \end{cases}.$$

T.D. IX - Variables aléatoires à densité

On reconnaît ainsi que $Z \hookrightarrow \mathscr{U}\left(\left[1, \frac{3}{2}\right]\right)$.

4. Soit $x \in \mathbb{R}$. D'après la définition,

$$F_W(x) = \mathbf{P}([W \leqslant x]) = \mathbf{P}([U^2 \leqslant x]).$$

- * Si $x \leq 0$, alors $[U^2 \leq x] = \emptyset$ et $F_W(x) = 0$.
- * Si $x \ge 0$, comme la fonction racine carrée est croissante et bijective et U est à valeurs positives,

$$F_W(x) = \mathbf{P}\left(\left[|U| \leqslant \sqrt{x}\right]\right) = \mathbf{P}\left(\left[U \leqslant \sqrt{x}\right]\right) = F_U\left(\sqrt{x}\right).$$

- * Si $0 \leqslant \sqrt{x} \leqslant 1$ c'est-à-dire $0 \leqslant x \leqslant 1$, alors $F_W(x) = \sqrt{x}$.
- \star Si $\sqrt{x} \ge 1$, c'est-à-dire $x \ge 1$, alors $F_W(x) = 1$.

Finalement,

$$F_W(x) = \begin{cases} 0 & \text{si } x \leq 0\\ \sqrt{x} & \text{si } x \in [0, 1] \\ 1 & \text{si } x \geq 1 \end{cases}$$

Une densité f_W de W est donnée par la dérivée de F_W en les points où F_W est dérivable, soit

$$f_W(x) = \begin{cases} \frac{1}{2\sqrt{x}} & \text{si } x \in]0,1] \\ 0 & \text{sinon} \end{cases}.$$

5. Soit $x \in \mathbb{R}$. D'après la définition et la fonction exponentielle est croissante et bijective

$$F_H(x) = \mathbf{P}([H \leqslant x]) = \mathbf{P}([\ln(U) \leqslant x]) = \mathbf{P}([U \leqslant e^x])$$

= $F_U(e^x)$.

- * est une quantité toujours strictement positive.
- * Si $0 \le e^x \le 1$, c'est-à-dire $x \le 0$, alors $F_H(x) = e^x$.
- * Si $e^x \ge 1$, c'est-à-dire $x \ge 0$, alors $F_H(x) = 1$.

Finalement,

$$F_H(x) = \begin{cases} e^x & \text{si } x \leq 0\\ 1 & \text{si } x \geqslant 0 \end{cases}.$$

Une densité f_H de H est donnée par la dérivée de F_H en les points où F_H est dérivable, soit

D 2

$$f_H(x) = \begin{cases} e^x & \text{si } x \leq 0 \\ 0 & \text{sinon} \end{cases}.$$

6. Soit $x \in \mathbb{R}$. D'après la définition, la fonction exponentielle est croissante et bijective,

$$F_E(x) = \mathbf{P}([E \leqslant x]) = \mathbf{P}([-\ln(U) \leqslant x]) = \mathbf{P}([\ln(U) \geqslant -x])$$
$$= \mathbf{P}([U \geqslant e^{-x}]) = 1 - \mathbf{P}([U \leqslant e^{-x}])$$
$$= 1 - F_U(e^{-x}).$$

- * e^{-x} est une quantité toujours strictement positive.
- * Si $0 \le e^{-x} \le 1$, c'est-à-dire $x \ge 0$, alors $F_E(x) = 1 e^{-x}$.
- * Si $e^{-x} \ge 1$, c'est-à-dire $x \le 0$, alors $F_E(x) = 0$.

Finalement,

$$F_E(x) = \begin{cases} 1 - e^{-x} & \text{si } x \geqslant 0 \\ 0 & \text{sinon} \end{cases}.$$

Une densité f_E de E est donnée par la dérivée de F_E en les points où F_E est dérivable, soit

$$f_E(x) = \begin{cases} e^{-x} & \text{si } x \geqslant 0\\ 0 & \text{sinon} \end{cases}.$$

On reconnaît $E \hookrightarrow \mathcal{E}(1)$.

Solution de l'exercice 2.

1. $R(\omega)$ est le plus petit des réels $R_1(\omega)$ et $R_2(\omega)$. Ainsi, $R(\omega) > x$ si et seulement si $R_1(\omega)$ et $R_2(\omega)$ sont strictement supérieurs à x. Ainsi,

$$[R > x] = [R_1 > x] \cap [R_2 > x]$$

 $\mathbf{P}([R > x]) = \mathbf{P}([R_1 > x] \cap [R_2 > x]).$

2. Soit $x \in \mathbb{R}$. En utilisant les propriétés de la fonction de répartition

et la question précédente,

$$F(x) = \mathbf{P}([R \leqslant x]) = 1 - \mathbf{P}([R > x])$$

$$= 1 - \mathbf{P}([R_1 > x] \cap [R_2 > x]), \text{ d'après } \mathbf{1}.$$

$$= 1 - \mathbf{P}([R_1 > x]) \times \mathbf{P}([R_2 > x]), \text{ par indépendance}$$

$$= 1 - \mathbf{P}([R_1 > x])^2, \text{ car } R_1 \text{ et } R_2 \text{ ont même loi}$$

$$= 1 - (1 - \mathbf{P}([R_1 \leqslant x]))^2.$$

Comme $R_1 \hookrightarrow \mathcal{U}([0,1])$, sa fonction de répartition satisfait :

$$\mathbf{P}([R_1 \leqslant x]) = \begin{cases} 0 & \text{si } x \leqslant 0 \\ x & \text{si } 0 \leqslant x \leqslant 1 \\ 1 & \text{si } x \geqslant 1 \end{cases}$$

Ainsi.

* Si $x \leq 0$, alors

$$F(x) = 1 - (1 - 0)^2 = 0.$$

* Si $0 \le x \le 1$, alors

$$F(x) = 1 - (1 - x)^2 = x(2 - x).$$

* Si $x \ge 1$, alors

$$F(x) = 1 - (1 - 1)^2 = 1.$$

Finalement,

$$F(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ x(2-x) & \text{si } x \in [0,1] \\ 1 & \text{sinon} \end{cases}$$

Une densité f de R est donnée par la dérivée de F en tout point où F est dérivable, soit

$$f(x) = \begin{cases} 2(1-x) & \text{si } x \in [0,1] \\ 0 & \text{sinon} \end{cases}.$$

 ${\bf 3.}\,$ On cherche la probabilité que le minimum des deux distances soit inférieur à 50cm, soit

$$\mathbf{P}([R \leqslant 0.5]) = F(0.5) = \frac{1}{2} \left(2 - \frac{1}{2}\right) = \frac{3}{4}.$$

Solution de l'exercice 3. On note F_X la fonction de répartition de X. Comme $X \hookrightarrow \mathscr{E}(\lambda)$, alors

$$F_X(x) = \begin{cases} 0 & \text{si } x < 0\\ 1 - e^{-\lambda x} & \text{sinon} \end{cases}$$

1. Comme X est à valeurs positives, alors $Y(\Omega) = \mathbb{N}^*$. Soit $n \in \mathbb{N}^*$.

$$\mathbf{P}(Y=n) = \mathbf{P}(\lfloor X \rfloor + 1 = n) = \mathbf{P}(\lfloor X \rfloor = n - 1) = \mathbf{P}(n - 1 \leqslant X < n)$$

$$= F_X(n) - F_X(n - 1)$$

$$= \left(1 - e^{-\lambda n}\right) - \left(1 - e^{-\lambda(n - 1)}\right)$$

$$= e^{-\lambda(n - 1)} - e^{-\lambda n} = e^{-\lambda(n - 1)} \left(1 - \frac{1}{e^{\lambda}}\right).$$

Ainsi, $Y \hookrightarrow \mathscr{G}\left(1 - \frac{1}{e^{\lambda}}\right)$.

2. On note F_Z la fonction de répartition de Z. Alors,

$$F_Z(x) = \mathbf{P}(Z \leqslant x) = \mathbf{P}(\sqrt{X} \leqslant x).$$

- * Si $x \leq 0$, l'événement $[\sqrt{Z} \leq x]$ est impossible et $F_Z(x) = 0$.
- * Si $x \ge 0$, comme la fonction carrée est croissante et bijective sur \mathbb{R}_+ ,

$$F_Z(x) = \mathbf{P}(X \le x^2) = 1 - e^{-\lambda x^2}.$$

Finalement,

$$F_Z(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ 1 - e^{-\lambda x^2} & \text{si } x \geqslant 0 \end{cases}.$$

Une densité de Z est donnée par

$$f_Z(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ 2\lambda x e^{-\lambda x^2} & \text{si } x \geqslant 0 \end{cases}.$$

Sous réserve d'existence, $\mathbf{E}[Z] = \int_{-\infty}^{+\infty} t f_Z(t) dt$.

Soit x > 0.

$$\int_{-\infty}^{x} t f_Z(t) dt = \int_{0}^{x} 2\lambda t^2 e^{-\lambda t^2} dt.$$

On pose $\begin{cases} u(t) = t \\ u'(t) = 1 \end{cases} \text{ et } \begin{cases} v'(t) = 2\lambda t e^{-\lambda t^2} \\ v'(t) = -e^{-\lambda t^2} \end{cases}$. Les fonctions u et v sont de classe \mathscr{C}^1 sur [0, x], donc d'après la formule d'intégration par parties,

$$\int_{-\infty}^{x} t f_Z(t) dt = \left[t \times \left(-e^{-\lambda t^2} \right) \right]_0^{x} + \int_0^{x} e^{-\lambda t^2} dt$$
$$= x e^{-\lambda x^2} + \int_0^{x} e^{-\lambda t^2} dt.$$

Or, $\sqrt{\frac{\lambda}{\pi}} e^{-\frac{t^2}{2\frac{1}{2\lambda}}}$ est une densité de la loi $\mathcal{N}\left(0, \frac{1}{2\lambda}\right)$ donc $\int_{-\infty}^{+\infty} e^{-\lambda t^2} dt = \sqrt{\frac{\pi}{\lambda}}$. D'après la symétrie de cette densité, on obtient

$$\int_0^{+\infty} e^{-\lambda t^2} dt = \frac{\sqrt{\pi}}{2\sqrt{\lambda}}.$$

D'autre part, d'après le théorème des croissances comparées, $\lim_{x\to +\infty}x\,\mathrm{e}^{-\lambda x^2}=0.$ Ainsi, Z admet une espérance et

$$\mathbf{E}\left[Z\right] = \frac{1}{2}\sqrt{\frac{\pi}{\lambda}}.$$

De plus, $\mathbf{E}\left[Z^2\right] = \mathbf{E}\left[X\right] = \frac{1}{\lambda}$. Ainsi,

$$\mathbf{V}(Z) = \mathbf{E}[Z^2] - \mathbf{E}[Z]^2 = \frac{1}{\lambda} - \frac{\pi}{4\lambda} = \frac{4 - \pi}{4\lambda}.$$

3. On note F_W la fonction de répartition de W. Alors,

$$F_W(x) = \mathbf{P}(W \leqslant x) = \mathbf{P}(X^2 \leqslant x).$$

- * Si $x \leq 0$, l'événement $[X^2 \leq x]$ est impossible et $F_W(x) = 0$.
- * Si $x \ge 0$, comme la fonction racine carrée est croissante et bijective sur \mathbb{R}_+ et X est à valeurs positives,

$$F_W(x) = \mathbf{P}(|X| \leqslant \sqrt{x}) = \mathbf{P}(X \leqslant \sqrt{x}) = 1 - e^{-\lambda\sqrt{x}}$$

Finalement,

$$F_W(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ 1 - e^{-\lambda\sqrt{x}} & \text{si } x \geq 0 \end{cases}.$$

Une densité de W est donnée par

$$f_W(x) = \begin{cases} 0 & \text{si } x \leq 0\\ \frac{\lambda}{2\sqrt{x}} e^{-\lambda\sqrt{x}} & \text{si } x > 0 \end{cases}.$$

Enfin, sous réserve d'existence,

$$\mathbf{E}[W] = \mathbf{E}[X^2] = \mathbf{V}(X) + \mathbf{E}[X]^2 = \frac{2}{\lambda^2}.$$

Solution de l'exercice 4.

90

1. La fonction $f:t\mapsto \frac{1}{\sqrt{2\pi}}\,\mathrm{e}^{-t^2/2}$ est continue sur $\mathbb R$. D'après le théorème des croissances comparées, $\lim_{t\to -\infty} t^2\,\mathrm{e}^{-t^2/2}=0$, le théorème de comparaison aux intégrales de Riemann assure que $\int_{-\infty}^x f(t)\,\mathrm{d}t$ converge. Notons F la primitive de f qui s'annule en 0. D'après la question précédente, $\lim_{x\to -\infty} \int_0^x f(t)\,\mathrm{d}t$ existe et est finie. Notons $\ell=\lim_{x\to -\infty} F(x)$. Alors, $\Phi(x)=F(x)-\lim_{t\to -\infty} F(t)$. Ainsi, la fonction la fonction Φ est dérivable et

$$\forall x \in \mathbb{R}, \Phi'(x) = f(x).$$

Comme f>0, la fonction Φ est strictement croissante. De plus, $\lim_{x\to -\infty}\Phi(x)=0$ et, d'après la propriété de la loi normale,

$$\lim_{x \to +\infty} \Phi(x) = \int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t = 1.$$

D'après le théorème de la bijection monotone, Φ réalise une bijection de $\mathbb R$ dans]0,1[.

2. En utilisant la notation précédente, pour tout x > 0.

$$g(x) = \mathbf{P}(-x < X < x) = \Phi(x) - \Phi(-x) = \Phi(x) - (1 - \Phi(x)) = 2\Phi(x) - 1.$$

Comme Φ réalise une bijection de \mathbb{R} dans]0,1[, alors g réalise une bijection de \mathbb{R} dans]0,1[(car g(0)=0). Ainsi, il existe un unique réel t_0 tel que $g(t_0)=0.95$.

- **3.** Comme $X \hookrightarrow \mathcal{N}(8,4)$, alors $\frac{X-8}{2} \hookrightarrow \mathcal{N}(0,1)$.
 - a) En utilisant la table de la loi normale,

$$\mathbf{P}(X < 7.5) = \mathbf{P}(X - 8 < -0.5) = \mathbf{P}\left(\frac{X - 8}{2} < -0.25\right)$$
$$= 1 - \Phi(0.25)$$
$$\approx 1 - 0.5987 \approx 0.4013.$$

b) En utilisant la table de la loi normale,

$$\mathbf{P}(X > 8.5) = \mathbf{P}(X - 8 > 0.5) = \mathbf{P}\left(\frac{X - 8}{2} > 0.25\right)$$
$$= 1 - \Phi(0.25)$$
$$\approx 1 - 0.5987 \approx 0.4013.$$

c) En utilisant la table de la loi normale,

$$\mathbf{P}(6,5 < X < 10) = \mathbf{P}(-2,5 < X - 8 < 2) = \mathbf{P}\left(-1,25 < \frac{X - 8}{2} < 1\right)$$
$$= \Phi(1) - \Phi(-1,25) = \Phi(1) - (1 - \Phi(1,25)$$
$$\simeq 0.8413 - 1 + 0.8943$$
$$\simeq 0.7356.$$

d) En utilisant la table de la loi normale,

$$\mathbf{P}_{[X>5]}(X>6) = \frac{\mathbf{P}([X<6] \cap [X>5])}{\mathbf{P}(X>5)}$$

$$= \frac{\mathbf{P}(5< X<6)}{\mathbf{P}(X>5)}$$

$$= \frac{\mathbf{P}(-1,5<\frac{X-8}{2}<-1)}{\mathbf{P}(\frac{X-8}{2}>-1,5)}$$

$$= \frac{\Phi(-1)-\Phi(-1,5)}{1-\Phi(-1,5)}$$

$$= \frac{1-\Phi(1)-(1-\Phi(1,5))}{1-(1-\Phi(1,5))}$$

$$= \frac{\Phi(1,5)-\Phi(1)}{\Phi(1,5)}$$

$$\simeq \frac{0,9332-0,8413}{0,9332} \simeq 0,0985.$$

II - Densités

Solution de l'exercice 5.

- 1. Montrons que f est une densité de probabilité.
 - * D'après les théorèmes généraux, f est continue sur $\mathbb R$ sauf éventuellement en -1 et 1.

Comme $\lim_{t\to -1^-} f(t)=0$ et $\lim_{t\to -1^+} f(t)=1-1=0$, alors f est continue en -1.

Comme $\lim_{t\to 1^-} f(t)=1-1=0$ et $\lim_{t\to 1^+} f(t)=0$, alors f est continue en 1.

Finalement, f est continue sur \mathbb{R} .

- * Pour tout $t \in [-1, 1]$, alors $|t| \in [0, 1]$ et $1 |t| \ge 0$. Ainsi, comme f est nulle en dehors du segment [-1, 1], alors f est positive ou nulle sur \mathbb{R} .
- * Comme f est nulle en dehors d'un segment, alors $\int_{-\infty}^{+\infty} f(t) dt$

Lycée Ozenne 91 A. Camanes

converge et

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{-1}^{1} (1 - |t|) dt = \int_{-1}^{0} (1 - |t|) dt + \int_{0}^{1} (1 - |t|) dt$$

$$= \int_{-1}^{0} (1 + t) dt + \int_{0}^{1} (1 - t) dt$$

$$= \left[\frac{(1 + t)^{2}}{2} \right]_{-1}^{0} + \left[-\frac{(1 - t)^{2}}{2} \right]_{0}^{1}$$

$$= \frac{1 - 0}{2} + \frac{-0 + 1}{2} = 1.$$

Finalement, la fonction f est bien une densité de probabilité.

2. Comme f est nulle en dehors d'un segment, alors $\int_{-\infty}^{+\infty} t f(t) dt$ converge et

$$\mathbf{E}[X] = \int_{-1}^{1} t f(t) \, dt = \int_{-1}^{0} t (1 - |t|) \, dt + \int_{0}^{1} t (1 - |t|) \, dt$$
$$= \int_{-1}^{0} t (1 + t) \, dt + \int_{0}^{1} t (1 - t) \, dt.$$

On effectue le changement de variable $\varphi:[0,1]\to[-1,0],\ u\mapsto -u$ dans la première intégrale :

$$\mathbf{E}[X] = \int_{1}^{0} -u(1-u)(-1) \, du + \int_{0}^{1} t(1-t) \, dt$$
$$= -\int_{0}^{1} u(1-u) \, du + \int_{0}^{1} t(1-t) \, dt = 0.$$

De manière analogue,

$$\mathbf{V}(X) = \mathbf{E} [X^2] - \mathbf{E} [X]^2 = \mathbf{E} [X^2] - 0$$

$$= \int_{-1}^1 t^2 f(t) \, dt = \int_{-1}^0 t^2 (1 - |t|) \, dt + \int_0^1 t^2 (1 - |t|) \, dt$$

$$= \int_{-1}^0 t^2 (1 + t) \, dt + \int_0^1 t^2 (1 - t) \, dt$$

$$= \int_1^0 (-u)^2 (1 - u)(-1) \, du + \int_0^1 t^2 (1 - t) \, dt$$

$$= \int_0^1 u^2 (1 - u) \, du + \int_0^1 t^2 (1 - t) \, dt$$

$$= 2 \left(\int_0^1 t^2 \, dt - \int_0^1 t^3 \, dt \right)$$

$$= 2 \left(\frac{1}{3} - \frac{1}{4} \right) = \frac{1}{6}.$$

Solution de l'exercice 6.

1. Montrons que f est une densité de probabilité.

- * Comme l'exponentielle est à valeurs strictement positives, le dénominateur de f ne s'annule pas et la fonction f est continue sur \mathbb{R} .
- * Comme l'exponentielle est à valeurs strictement positives, alors f est à valeurs strictement positives.
- * Soit y < 0 < x. Alors,

$$\int_{y}^{x} f(t) dt = \int_{y}^{x} \frac{e^{-t}}{(1 + e^{-t})^{2}} dt$$
$$= \left[\frac{1}{1 + e^{-t}}\right]_{y}^{x}$$
$$= \frac{1}{1 + e^{-x}} - \frac{1}{1 + e^{-y}}.$$

D 2

Lvcée Ozenne

92

En utilisant les propriétés de la fonction exponentielle,

$$\int_{-\infty}^{x} f(t) dt = \lim_{y \to -\infty} \int_{y}^{x} f(t) dt = \frac{1}{1 + e^{-x}}$$
$$\int_{-\infty}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{-\infty}^{x} f(t) dt = 1.$$

Finalement, f est bien une densité de probabilité.

2. En utilisant la question précédente, pour tout x réel,

$$F(x) = \mathbf{P}(X \le x) = \int_{-\infty}^{x} \frac{e^{-t}}{(1 + e^{-t})^2} dt = \frac{1}{1 + e^{-x}}.$$

3. On remarque que

$$\varphi(x) = \frac{e^x + 1 - 2}{e^x + 1} = 1 - \frac{2}{e^x + 1}.$$

Ainsi, la fonction φ est continue et strictement croissante sur \mathbb{R} . De plus, $\lim_{x \to +\infty} \varphi(x) = -1$ et $\lim_{x \to +\infty} \varphi(x) = 1$.

Ainsi, φ réalise une bijection de \mathbb{R} dans]-1,1[.

4. Soient $x \in \mathbb{R}$ et $y \in]-1,1[$ tels que :

$$\varphi(x) = y$$

$$1 - \frac{2}{e^x + 1} = y$$

$$\frac{2}{e^x + 1} = 1 - y$$

$$e^x + 1 = \frac{2}{1 - y}$$

$$e^x = \frac{2}{1 - y} - 1 = \frac{1 + y}{1 - y}$$

$$x = \ln\left(\frac{1 + y}{1 - y}\right).$$

Ainsi, la fonction φ est bijective et $\varphi^{-1}: y \mapsto \ln\left(\frac{1+y}{1-y}\right)$.

- 5. Soit $x \in \mathbb{R}$.
 - * Comme Y est à valeurs dans [-1, 1],

- \star Si $x \leq -1$, alors G(x) = 0.
- \star Si $x \geqslant 1$, alors G(x) = 1.
- * Si $x \in]-1,1[$, comme φ^{-1} est strictement croissante et bijective,

$$G(x) = \mathbf{P}(Y \leqslant x) = \mathbf{P}(\varphi(X) \leqslant x)$$

$$= \mathbf{P}(X \leqslant \varphi^{-1}(x)) = F(\varphi^{-1}(x))$$

$$= \frac{1}{1 + \exp(-\ln(\frac{1+x}{1-x}))}$$

$$= \frac{1}{1 + \frac{1-x}{1+x}}$$

$$= \frac{1+x}{1+x+1-x}$$

$$= \frac{1+x}{2}.$$

Finalement,

$$G(x) = \begin{cases} 0 & \text{si } x \leqslant -1\\ \frac{1+x}{2} & \text{si } -1 \leqslant x \leqslant 1\\ 1 & \text{si } x \geqslant 1 \end{cases}$$

Une densité g est donnée par la dérivée de G en tout point où G est dérivable, soit

$$g(x) = \begin{cases} \frac{1}{2} & \text{si } x \in [-1, 1] \\ 0 & \text{sinon} \end{cases}.$$

Ainsi, $Y \hookrightarrow \mathcal{U}([-1,1])$.

Solution de l'exercice 7.

93

- 1. Déterminons les valeurs de C telles que f_{α} soit une densité de probabilité.
 - * La fonction f_{α} est continue sauf en 1, point en lequel elle admet des limites finies à gauche et à droite car

$$\lim_{t \to 1^{-}} f(t) = 0 \text{ et } \lim_{t \to 1^{+}} f(t) = C.$$

* Comme f_{α} est non nulle pour $t \ge 1$, et que $t^{\alpha+1}$ est positif pour $t \ge 1$, alors f_{α} est positive si et seulement si $C \ge 0$.

* Soit $x \ge 1$.

$$\int_{-\infty}^{x} f_{\alpha}(t) dt = \int_{1}^{x} \frac{C}{t^{\alpha+1}} dt = C \left[-\frac{1}{\alpha t^{\alpha}} \right]_{1}^{x} = \frac{C}{\alpha} \left(1 - \frac{1}{x^{\alpha}} \right).$$

Comme
$$\alpha > 0$$
, alors $\lim_{x \to +\infty} \frac{1}{x^{\alpha}} = 0$ et $\int_{-\infty}^{+\infty} f_{\alpha}(t) dt = \frac{C}{\alpha}$.

Ainsi,
$$\int_{-\infty}^{+\infty} f_{\alpha}(t) dt = 1$$
 si et seulement si $C = \alpha$.

Finalement, comme $\alpha > 0$, alors f_{α} est une densité de probabilité si et seulement si $C = \alpha$.

2. En utilisant le caclul précédent,

$$F(x) = \begin{cases} 0 & \text{si } x \leq 1\\ 1 - \frac{1}{x^{\alpha}} & \text{sinon} \end{cases}.$$

3. Sous réserve d'existence, $\mathbf{E}[X] = \int_{-\infty}^{+\infty} t f_{\alpha}(t) dt$. Soit $x \geqslant 1$. Alors,

$$\int_{-\infty}^{x} t f_{\alpha}(t) \, \mathrm{d}t = \int_{1}^{x} \frac{\alpha}{t^{\alpha}} \, \mathrm{d}t.$$

* Si
$$\alpha = 1$$
. Alors, $\int_{-\infty}^{x} t f_1(t) dt = \int_{1}^{x} \frac{1}{t} dt = \ln(x)$. Ainsi,

$$\lim_{x\to+\infty}\int_{-\infty}^x tf_1(t)\,\mathrm{d}t = +\infty \text{ et }X \text{ n'admet pas d'espéance.}$$

* Si $\alpha \neq 1$. Alors

$$\int_{1}^{x} \frac{\alpha}{t^{\alpha}} dt = \left[-\frac{\alpha}{(\alpha - 1)t^{\alpha - 1}} \right]_{1}^{x} = \frac{\alpha}{\alpha - 1} \left(1 - \frac{1}{x^{\alpha - 1}} \right).$$

Or,

- \star si $\alpha > 1$, alors $\lim_{x \to +\infty} \frac{1}{x^{\alpha-1}} = 0$ et $\int_{-\infty}^{+\infty} t f_{\alpha}(t) dt = \frac{\alpha}{\alpha 1}$ donc X admet bien une espéance:
- \star si $\alpha < 1$, alors $\lim_{x \to +\infty} \frac{1}{x^{\alpha-1}} = +\infty$ et $\int_{-\infty}^{+\infty} t f_{\alpha}(t) dt$ diverge donc X n'admet pas d'espérance.

Finalement, X admet une espérance si et seulement si $\alpha > 1$. Alors,

$$\mathbf{E}\left[X\right] = \frac{\alpha}{\alpha - 1}.$$

Sous réserve d'existence, $\mathbf{V}(X) = \int_{-\infty}^{+\infty} t^2 f_{\alpha}(t) dt - \mathbf{E}[X]^2$. Soit $x \ge 1$. Alors,

$$\int_{-\infty}^{x} t^2 f_{\alpha}(t) dt = \int_{1}^{x} \frac{\alpha}{t^{\alpha - 1}} dt.$$

* Si
$$\alpha = 2$$
, alors $\int_{-\infty}^{x} t^2 f_2(t) dt = \int_{1}^{x} \frac{2}{t} dt = 2 \ln(x)$. Ainsi,
$$\lim_{\substack{x \to +\infty \\ t \to +\infty}} \int_{-\infty}^{x} t^2 f_2(t) dt = +\infty \text{ et l'intégrale } \int_{-\infty}^{+\infty} t^2 f_2(t) dt \text{ diverge.}$$

* Si $\alpha \neq 2$. Alors,

$$\int_{-\infty}^{x} t^2 f_{\alpha}(t) dt = \left[-\frac{\alpha}{(\alpha - 2)t^{\alpha - 2}} \right]_{1}^{x} = \frac{\alpha}{\alpha - 2} \left(1 - \frac{1}{x^{\alpha - 2}} \right).$$

Or.

$$\star \text{ si } \alpha > 2, \text{ alors } \lim_{x \to +\infty} \frac{1}{x^{\alpha-2}} = 0 \text{ et } \int_{-\infty}^{+\infty} t^2 f_{\alpha}(t) dt = \frac{\alpha}{\alpha - 2};$$

$$\star$$
 si $\alpha < 2$, alors $\lim_{x \to +\infty} \frac{1}{x^{\alpha-2}} = +\infty$ et $\int_{-\infty}^{+\infty} \frac{1}{x^{\alpha-2}} dt$ diverge.

Ainsi, X admet une variance si et seulement si $\alpha > 2$. Alors,

$$\mathbf{E}\left[X^{2}\right] = \int_{-\infty}^{+\infty} t^{2} f_{\alpha}(t) \, \mathrm{d}t = \frac{\alpha}{\alpha - 2}$$

 $_{
m et}$

$$\mathbf{V}(X) = \frac{\alpha}{\alpha - 2} - \left(\frac{\alpha}{\alpha - 1}\right)^2 = \alpha \frac{(\alpha - 1)^2 - \alpha(\alpha - 2)}{(\alpha - 2)(\alpha - 1)^2} = \frac{\alpha}{(\alpha - 2)(\alpha - 1)^2}.$$

4. Soient $x \in \mathbb{R}$ et F_Y la fonction de répartition de Y.

$$F_Y(x) = \mathbf{P}(Y \leqslant x) = \mathbf{P}(X^2 \leqslant x).$$

* Si $x \leq 0$, alors $[X^2 \leq x]$ est impossible et $F_Y(x) = 0$.

* Si $x \ge 0$, comme la fonction racine carrée est croissante et bijective et X est à valeurs positives, alors

$$F_Y(x) = \mathbf{P}\left(X \leqslant \sqrt{x}\right).$$

- \star Si $\sqrt{x} \leq 1$, soit $x \leq 1$, alors $F_Y(x) = 0$.
- \star Si $\sqrt{x} \ge 1$, soit $x \ge 1$, alors

$$F_Y(x) = F(\sqrt{x}) = 1 - \frac{1}{x^{\alpha/2}}$$

Finalement,

$$F_Y(x) = \begin{cases} 0 & \text{si } x \leqslant 1\\ 1 - \frac{1}{x^{\alpha/2}} & \text{sinon} \end{cases}.$$

Une densité f_Y de Y est donnée par

$$f_Y(x) = \begin{cases} 0 & \text{si } x \leqslant 1\\ \frac{\alpha/2}{x^{\alpha/2+1}} & \text{sinon} \end{cases}.$$

Ainsi, Y suit une loi de Pareto de paramètre $\frac{\alpha}{2}$. Elle admet une espérance si et seulement si $\frac{\alpha}{2} > 1$, soit $\alpha > 2$ et alors

$$\mathbf{E}[Y] = \frac{\frac{\alpha}{2}}{\frac{\alpha}{2} - 1} = \frac{\alpha}{\alpha - 2}.$$

5. Soient $x \in \mathbb{R}$ et F_T la fonction de répartition de T.

$$F_T(x) = \mathbf{P}(T \leqslant x) = \mathbf{P}(\sqrt{X} \leqslant x).$$

- * Si $x \leq 0$, alors $[\sqrt{X} \leq x]$ est impossible et $F_T(x) = 0$.
- * Si $x\geqslant 0,$ comme la fonction carrée est croissante et bijective, alors

$$F_T(x) = \mathbf{P}\left(X \leqslant x^2\right).$$

- \star Si $x^2 \leqslant 1$, soit $0 \leqslant x \leqslant 1$, alors $F_T(x) = 0$.
- $\star \text{ Si } x^2 \geqslant 1, \text{ soit } x \geqslant 1, \text{ alors }$

$$F_T(x) = F(x^2) = 1 - \frac{1}{x^{2\alpha}}$$

Finalement,

$$F_T(x) = \begin{cases} 0 & \text{si } x \leqslant 1\\ 1 - \frac{1}{x^{2\alpha}} & \text{sinon} \end{cases}.$$

Une densité f_T de T est donnée par

$$f_T(x) = \begin{cases} 0 & \text{si } x \leqslant 1\\ \frac{2\alpha}{x^{2\alpha+1}} & \text{sinon} \end{cases}.$$

Ainsi, T suit une loi de Pareto de paramètre 2α . Elle admet une espérance si et seulement si $2\alpha > 1$, soit $\alpha > \frac{1}{2}$ et alors

$$\mathbf{E}\left[T\right] = \frac{2\alpha}{2\alpha - 1}.$$

III - Estimation

Solution de l'exercice 8.

1. En utilisant la linéarité de l'espérance.

$$\mathbf{E}[T_{1}] = \frac{\mathbf{E}[X_{1}] + \mathbf{E}[X_{2}] + \mathbf{E}[X_{3}] + \mathbf{E}[X_{4}]}{4} = \mathbf{E}[X_{1}] = \frac{2\theta}{2} = \theta,$$

$$\mathbf{E}[T_{2}] = \frac{\mathbf{E}[X_{1}] + 2\mathbf{E}[X_{2}] + 3\mathbf{E}[X_{3}] + 4\mathbf{E}[X_{4}]}{10} = \mathbf{E}[X_{1}] = \frac{2\theta}{2} = \theta.$$

Ainsi, T_1 et T_2 sont des estimateurs sans biais de θ .

2. Comme les estimateurs sont sans biais, leur risque quadratique est égal à leur variance. De plus, comme les v.a. sont indépendantes,

$$\mathbf{V}(T_1) = \frac{\mathbf{V}(X_1) + \mathbf{V}(X_2) + \mathbf{V}(X_3) + \mathbf{V}(X_4)}{16} = \frac{\mathbf{V}(X_1)}{4}$$

$$= \frac{(2\theta)^2}{48} = \frac{\theta^2}{12},$$

$$\mathbf{V}(T_2) = \frac{\mathbf{V}(X_1) + 4\mathbf{V}(X_2) + 9\mathbf{V}(X_3) + 16\mathbf{V}(X_4)}{100} = \frac{30\mathbf{V}(X_1)}{100}$$

$$= \frac{(2\theta)^2}{40} = \frac{\theta^2}{10}.$$

3. Ainsi, T_1 a un risque quadratique plus faible que T_2 et est donc préférable. \Box

Solution de l'exercice 9.

1. Notons F_X la fonction de répartition de X et F_n la fonction de répartition de M_n . Soit $x \in \mathbb{R}$.

$$F_n(x) = \mathbf{P}(M_n \leqslant x) = \mathbf{P}(\max\{X_1, \dots, X_n\} \leqslant x)$$

$$= \mathbf{P}\left(\bigcap_{k=1}^n [X_k \leqslant x]\right)$$

$$= \prod_{k=1}^n \mathbf{P}(X_k \leqslant x), \text{ d'après l'indépendance}$$

$$= F_n(x)^n.$$

Ainsi,

$$F_n(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ \left(\frac{x}{2\theta}\right)^n & \text{si } x \in [0, 2\theta] \\ 1 & \text{si } x \geq 1 \end{cases}$$

Ainsi, une densité f_n de M_n est donnée par

$$f_n(x) = \begin{cases} \frac{n}{(2\theta)^n} x^{n-1} & \text{si } x \in [0, 2\theta] \\ 0 & \text{sinon} \end{cases}.$$

Comme f_n est nulle en dehors d'un segment, alors $\int_{-\infty}^{+\infty} t f_n(t) dt$ converge et

$$\mathbf{E}[M_n] = \int_{-\infty}^{+\infty} t f_n(t) \, dt = \int_0^{2\theta} t \times \frac{n}{(2\theta)^n} t^{n-1} \, dt$$
$$= \frac{n}{(2\theta)^n} \left[\frac{t^{n+1}}{n+1} \right]_0^{2\theta} = \frac{n}{(n+1)} 2\theta.$$

Comme f_n est nulle en dehors d'un segment,

$$\mathbf{E}[M_n^2] = \int_{-\infty}^{+\infty} t^2 f_n(t) \, dt = \int_0^{2\theta} t^2 \times \frac{n}{(2\theta)^n} t^{n-1} \, dt$$
$$= \frac{n}{(2\theta)^n} \left[\frac{t^{n+2}}{n+2} \right]_0^{2\theta} = \frac{n}{n+2} (2\theta)^2.$$

Ainsi, d'après la formule de Kœnig-Huygens,

$$\mathbf{V}(M_n) = \mathbf{E}[M_n^2] - \mathbf{E}[M_n]^2 = \frac{n}{n+2} (2\theta)^2 - \left(\frac{n}{n+1}\right)^2 (2\theta)^2$$
$$= \frac{n}{(n+1)^2 (n+2)} (2\theta)^2.$$

2. Comme U_n est une fonction du n-échantillon (X_1, \ldots, X_n) , alors U_n est un estimateur.

D'après la question précédente,

$$\mathbf{E}\left[U_{n}\right] = \frac{n+1}{2n}\mathbf{E}\left[M_{n}\right] = \theta.$$

Ainsi, U_n est un estimateur sans biais de θ .

3. Comme \overline{X}_n est une fonction du *n*-échantillon (X_1, \ldots, X_n) , alors \overline{X}_n est un estimateur de θ .

D'après la linéarité de l'espérance,

$$\mathbf{E}\left[\overline{X}_{n}\right] = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right] = \frac{n2\theta}{2n} = \theta.$$

Ainsi, \overline{X}_n est un estimateur sans biais de θ .

4. Comme les variables aléatoires (X_1, \ldots, X_n) sont indépendantes,

$$\mathbf{V}(\overline{X}_n) = \frac{1}{n^2} \sum_{i=1}^n \mathbf{V}(X_i) = \frac{1}{n} \times \frac{(2\theta)^2}{12} = \frac{(2\theta)^2}{12n}.$$

Comme \overline{X}_n est U_n sont des estimateurs sans biais de θ , nous recherchons celui qui a le biais quadratique (i.e. la variance) la plus faible. Or,

$$\frac{\mathbf{V}(\overline{X}_n)}{\mathbf{V}(U_n)} = \frac{\frac{(2\theta)^2}{12n}}{\frac{n}{(n+1)^2(n+2)}(2\theta)^2}$$
$$= \frac{(n+1)^2(n+2)}{12n^2}.$$

De plus,

$$(n+1)^{2}(n+2) - 12n^{2} = (n-1)(n^{2} - 7n - 2)$$
$$= (n-1)\left(n - \frac{7 - \sqrt{57}}{2}\right)\left(n - \frac{7 + \sqrt{57}}{2}\right).$$

Comme $\frac{7+\sqrt{57}}{2} \simeq 7,27$, alors le biais de U_n est inférieur à celui de \overline{X}_n dès que $n \geqslant 8$.

Solution de l'exercice 10.

- 1. Montrons que f est une densité de probabilité.
 - * D'après les théorèmes généraux, la fonction f est continue sauf éventuellement en θ .

De plus, $\lim_{t\to\theta^-} f(t) = 0$ et $\lim_{t\to\theta^+} f(t) = \mathrm{e}^{-(\theta-\theta)} = 1$ donc la fonction f admet des limites finies à gauche et à droite en θ .

- * Comme la fonction exponentielle est à valeurs positives, alors f est à valeurs positives.
- * Soit $x \ge \theta$. Alors,

$$\int_{-\infty}^{x} f(t) dt = \int_{\theta}^{x} e^{-(t-\theta)} dt$$
$$= e^{\theta} \left[-e^{-t} \right]_{\theta}^{x}$$
$$= e^{\theta} \left(e^{-\theta} - e^{-x} \right)$$
$$= 1 - e^{\theta - x}.$$

Comme $\lim_{x \to +\infty} e^{\theta - x} = 0$, alors $\int_{-\infty}^{+\infty} f(t) dt$ converge et $\int_{-\infty}^{+\infty} f(t) dt = 1$.

Finalement, f est bien une densité de probabilité.

2. En posant $Y = T - \theta$, on remarque que $Y \hookrightarrow \mathcal{E}(1)$. Ainsi,

$$\mathbf{E}[T] = \mathbf{E}[Y + \theta] = 1 + \theta \text{ et } \mathbf{V}(T) = \mathbf{V}(Y + \theta) = 1.$$

3. D'après la linéarité de l'espérance,

$$\mathbf{E}[Y_n] = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}[T_i] = \mathbf{E}[T] = 1 + \theta.$$

Comme les variables aléatoires (T_1, \ldots, T_n) sont indépendantes,

$$\mathbf{V}(Y_n) = \frac{1}{n^2} \sum_{i=1}^{n} \mathbf{V}(T_i) = \frac{1}{n}.$$

4. Comme \widehat{Y}_n est une fonction du *n*-échantillon (T_1, \ldots, T_n) , alors \widehat{Y}_n est un estimateur.

D'après la question précédente, $\mathbf{E}\left[\widehat{Y}_{n}\right] = \mathbf{E}\left[Y_{n}\right] - 1 = \theta$.

Ainsi, \hat{Y}_n est un estimateur sans biais de θ .

5. Comme \widehat{Y}_n est un estimateur sans biais, son risque quadratique est égal à sa variance et, d'après les questions précédentes,

$$\mathbf{V}\left(\widehat{Y}_n\right) = \mathbf{V}\left(Y_n - 1\right) = \mathbf{V}\left(Y_n\right) = \frac{1}{n}.$$

6. Soit $x \in \mathbb{R}$.

$$F_n(x) = \mathbf{P} \left(\min \left\{ T_1, \dots, T_n \right\} \leqslant x \right)$$

$$= 1 - \mathbf{P} \left(\max \left\{ T_1, \dots, T_n \right\} > x \right)$$

$$= 1 - \mathbf{P} \left(\bigcap_{i=1}^n [T_i > x] \right)$$

$$= 1 - \prod_{i=1}^n \mathbf{P} \left(T_i > x \right), \text{ d'après l'indépendance}$$

$$= 1 - (1 - F(x))^n.$$

7. En utilisant la densité f, on remarque que

$$F(x) = \begin{cases} 0 & \text{si } x \leq \theta \\ 1 - e^{-(x-\theta)} & \text{si } x \geqslant \theta \end{cases}.$$

Ainsi,

$$F_n(x) = \begin{cases} 0 & \text{si } x \leqslant \theta \\ 1 - e^{-n(x-\theta)} & \text{si } x \geqslant \theta \end{cases}.$$

La variable aléatoire Z_n admet donc comme densité

$$f_n(x) = \begin{cases} 0 & \text{si } x < \theta \\ n e^{-n(x-\theta)} & \text{si } x \geqslant \theta \end{cases}.$$

8. Soit $x \ge \theta$. En utilisant la densité précédente puis une intégration par parties,

$$\int_{-\infty}^{x} t f_n(t) dt = n e^{n\theta} \int_{\theta}^{x} t e^{-nt} dt = n e^{n\theta} \frac{(n\theta + 1) e^{-n\theta} - (nx + 1) e^{-nx}}{n^2}.$$

T.D. IX - Variables aléatoires à densité

Ainsi, Z_n admet une espérance et $\mathbf{E}[Z_n] = \frac{n\theta+1}{n}$. De manière analogue,

$$\int_{-\infty}^{x} t^2 f(t) dt = n e^{n\theta} \frac{(n^2 \theta^2 + 2n\theta + 2) e^{-n\theta} - (n^2 x^2 + 2nx + 2) e^{-nx}}{n^3},$$

soit
$$\mathbf{E}\left[Z_n^2\right] = \frac{n^2\theta^2 + 2n\theta + 2}{n^2}$$
.
Ainsi, $\mathbf{V}\left(Z_n\right) = \mathbf{E}\left[Z_n^2\right] - \mathbf{E}\left[Z_n\right]^2 = \frac{1}{n^2}$.

Remarque. On aurait également pu constater que $Z_n - \theta \hookrightarrow \mathscr{E}(n)$.

- **9.** Comme \widehat{Z}_n est une fonction de T_1, \ldots, T_n , alors Z_n est un estimateur. Comme $\mathbf{E}[Z_n] = \theta + \frac{1}{n}$, alors $\mathbf{E}[Z_n \frac{1}{n}] = \theta$ et \widehat{Z}_n est un estimateur sans biais de θ .
- 10. D'après les propriétés de la variance,

$$\mathbf{V}\left(\widehat{Z}_{n}\right) = \mathbf{V}\left(Z_{n} - \frac{1}{n}\right) = \mathbf{V}\left(Z_{n}\right) = \frac{1}{n^{2}}.$$

11. Comme \widehat{Y}_n est \widehat{Z}_n sont deux estimateurs sans biais de θ , alors leurs risques quadratiques sont égaux à leurs variances. De plus, pour tout $n \ge 1$,

$$\mathbf{V}\left(\widehat{Z}_{n}\right) = \frac{1}{n^{2}} < \frac{1}{n} = \mathbf{V}\left(\widehat{Y}_{n}\right).$$

Ainsi, l'estimateur \widehat{Z}_n est préférable à \widehat{Y}_n .