IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application

ATSUSHI KOIDE, ET AL.

Application No.

Filed

Herewith

: METHOD FOR CONTROLLING THICKNESS OF SKIN LAYER OF

COMPOSITE RESIN MOLDED PRODUCT

Attorney's Docket

TC Art Unit: * * * * * *

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Mail Stop Patent Application, Commissioner for Patents, P.O Box 1450, Alexandria, VA 22313-1450 on

Charles L. Gagnebin III Registration No. 25,467 Attorney for Applicant(s)

PRIORITY CLAIM UNDER RULE 55

Mail Stop Patent Application Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

The benefit of the filing date in Japan of a patent application corresponding to the above-identified application is hereby claimed under Rule 55 and 35 U.S.C. 119 in accordance with the Paris Convention for the Protection of Industrial Property. This benefit is claimed based upon a corresponding Japanese patent application bearing serial no. 2002-335306 filed November 19, 2002; a certified copy of which is attached hereto.

Respectfully submitted,

ATSUSHI KOMDE.

Charles L. Gagnebin III Registration No. 25,467

Attorney for Applicant(s)

WEINGARTEN, SCHURGIN,

GAGNEBIN & LEBOVICI LLP

Ten Post Office Square

Boston, Massachusetts 02109

Telephone:

(617) 542-2290

Telecopier: (617) 451-0313

CLG/mc/298309-1 Enclosure

Express Mail Number

EV 044749438 US

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年11月19日

出願番

特願2002-335306 Application Number:

[ST. 10/C]:

[JP2002-335306]

出 願 Applicant(s):

日精樹脂工業株式会社

2003年 9月

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

NIS-14101 ·

【提出日】

平成14年11月19日

【あて先】

特許庁長官殿

【国際特許分類】

B29C 45/16

B29C 45/00

【発明者】

【住所又は居所】

長野県埴科郡坂城町大字南条2110番地 日精樹脂工

業株式会社内

【氏名】

小出 淳

【発明者】

【住所又は居所】

長野県埴科郡坂城町大字南条2110番地 日精樹脂工

業株式会社内

【氏名】

山極 佳年

【発明者】

【住所又は居所】

長野県埴科郡坂城町大字南条2110番地 日精樹脂工

業株式会社内

【氏名】

菅沼 雅資

【特許出願人】

【識別番号】

000227054

【氏名又は名称】

日精樹脂工業株式会社

【代理人】

【識別番号】

100062225

【弁理士】

【氏名又は名称】

秋元 輝雄

【電話番号】

03-3475-1501

【手数料の表示】

【予納台帳番号】

001580

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9707915

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

複合樹脂成形品におけるスキン層の層厚制御方法

【特許請求の範囲】

【請求項1】 第1の熱可塑性樹脂によるスキン層と、第2の熱可塑性樹脂によるコア層とからなる複合樹脂成形品を射出成形するにあたり、その何れか一方の熱可塑性樹脂にカーボンナノ材料を添加して相互の粘度を調整し、その粘度差からスキン層の層厚を制御してなることを特徴とする複合樹脂成形品におけるスキン層の層厚制御方法。

【請求項2】 上記請求項1の記載において、第1の熱可塑性樹脂と第2の熱可塑性樹脂は同種の樹脂からなることを特徴とする複合樹脂成形品におけるスキン層の層厚制御方法。

【請求項3】 上記請求項1の記載において、第1の熱可塑性樹脂と第2の熱可塑性樹脂は異種の樹脂からなることを特徴とする複合樹脂成形品におけるスキン層の層厚制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、スキン層とコア層とから複合構成された熱可塑性樹脂による成形 品のスキン層の層厚制御方法に関するものである。

[0002]

【従来の技術】

従来では、複合型物を成形する場合に、第1の樹脂の粘度を炭酸ガスにより第2の樹脂よりも低粘度にして、内核の割合を増すことが行われている(特許文献 1参照)。

また第1の成形材料に粘度差を有する第2の成形材料を注入して、中空部の成 形位置を積極的に制御する場合に、適度な粘度差が得られるように、樹脂に繊維 状、粒状のフィーラを添加することが行われている(特許文献2参照)。

[0003]

【特許文献1】

特開平10-202694号公報(第2頁)。

【特許文献2】

特開2000-141405号公報(第4頁)。

[0004]

【発明が解決しようとする課題】

射出成形では熱可塑性樹脂(以下樹脂という)を可塑化して金型内に射出し、 冷却により固化させて成形品としている。一般的な成形品の殆どは、1種類の樹脂で成形されているが、同種又は異種の樹脂による複合樹脂成形を射出成形する ことがサンドイッチ成形として知られている。

[0005]

サンドイッチ成形では、成形品の表層部を形成するスキン層となる樹脂を、先に金型のキャビティに射出し、その後からコア層となる第2の樹脂を第1の樹脂の中に射出充填している。この成形により形成されるスキン層の層厚は、第1の樹脂と第2の樹脂の粘度特性によって異なり、第1の樹脂の粘度が第2の樹脂の粘度よりも低く設定すると、スキン層が薄く形成される傾向にある。

[0006]

樹脂の粘度については、可塑化温度とせん断速度とにより変化することが知られている。しかし、それによる粘度変化をもってスキン層の層厚を自在に制御するまでには至らず、また樹脂の物性劣化を招く虞もあることから、複合成形品の成形に際する粘度差の付与は、他の物質の添加により人為的に粘度を変化させて行っている。

[0007]

上記特許文献1では、炭酸ガスを溶融樹脂に溶解させることによって樹脂に粘度差を付与している。しかし炭酸ガスによる方法では、炭酸ガスの供給設備が必要となり、また樹脂を発泡させるための装置や、不要ガスを排出処理するための設備なども必要となることから、設備コストが嵩むという課題を有する。

[0008]

また特許文献 2 に記載されているように、粘度差を得る手段としてウイスカ、 金属繊維、ガラス、カーボン等の繊維状又はタルク、炭酸カルシウム、マイカな

どの粒状のフィラーを添加しているものもある。このような手段では炭酸ガスによる場合のような設備コストの課題はないが、そこに記載のフィラーの微細化には限界があるので、添加量によっては樹脂の物性に影響を与え、またスキン層を形成する第1の樹脂に添加すると、フィラーがスキン層の表にも露出するので、形成品によっては採用し難い課題をも有する。

[0009]

この発明は、上記従来の課題を解決するために考えられたものであって、その目的は、素材樹脂に超微細な他の物質を添加して粘度を変化させ、そこに生ずる粘度差により複合樹脂成形品のスキン層の層厚を制御するものでありながら、樹脂の物性や成形品に添加物による影響を与えることのない新たな方法を提供することにある。

[0010]

【課題を解決するための手段】

上記目的によるこの発明は、第1の熱可塑性樹脂によるスキン層と、第2の熱可塑性樹脂によるコア層とからなる複合樹脂成形品を射出成形するにあたり、その何れか一方の熱可塑性樹脂にカーボンナノ材料を添加して相互の粘度を調整し、その粘度差からスキン層の層厚を制御してなるというものであり、また第1の熱可塑性樹脂と第2の熱可塑性樹脂は同種又は異種の樹脂からなる、というものである。

[0011]

【発明の実施の形態】

この発明が対象とする複合樹脂成形品は、図は省略するが、通常の複合樹脂成形品と同様に、2台のインラインスクリュ式射出装置又はプリプラ式射出装置を用い、その何れか一方の射出装置からスキン層を形成する第1の樹脂を金型のキャビティに先行充填し、次に他の射出装置から第2の樹脂をキャビティ内の第1の樹脂に充填して成形される。

[0012]

複合樹脂成形品の素材樹脂としては、物品の成形材料として使用されている熱 可塑性樹脂、例えばポリプロピレン、ポリエチレン、ポリエステル、ポリアミド

、ポリカーボネート、ABS等の樹脂であって、それらの樹脂の同種又は異種を、スキン層となる第1の樹脂又はコア層となる第2の樹脂として、通常の手段により射出装置により可塑化したのち、上記のようにキャビティに射出充填するこで、第1の樹脂によるスキン層と、第2の樹脂によるコア層とからなる複合樹脂成形品が成形される。

[0013]

可塑化された樹脂の粘度は同種のものであっても、可塑化温度及びせん断速度によってある程度の差は生ずるが、そこに生ずる程度の粘度差では、第2の樹脂の充填により第1の樹脂によるスキン層の層厚を設定厚さに制御することは難しい。また異種の樹脂でも同様に、それぞれが有する固有粘度により粘度差が生じていても、その粘度差から生ずるスキン層の厚さは常に一定であるから、それらが有する粘度を何らかの手段をもって任意に変えられるようにしない限り、粘度差によるスキン層の層厚を複合樹脂成形品に応じて制御することはできない。

[0014]

そこで第1と第2の何れかの樹脂に、カーボンナノ材料を添加して粘度差を付与する。カーボンナノ材料の粒子は、ナノファイバー150 nm、ナノカーボンチューブ10 nm、フラーレン1 nmという大きさで、これまでに添加されたフィラーよりも超微粒子であることから、樹脂との馴染みもよく、混練による分散効率もよいので、素材樹脂の物性を損なわずに粘度変化を付与することができ、それにより粘度差をつけることができる。

[0015]

カーボンナノ材料の添加量は、1質量%~20質量%の範囲であれば、素材樹脂の可塑化及び射出充填を通常のごとく行い得る。その範囲で添加量を増してゆくと、それに応じて粘度が変化してゆくが、粘度変化はフラーレンのような球状の粒子と、カーボンナノチューブのような長さを有する繊維状の粒子とでは、そこに相違がある。

[0016]

図1は、フラーレンの添加量に伴うポリプロピレン樹脂(PP)の粘度変化を 測定したもので、添加量の増加に伴いPPの粘度が低下してゆく、これはフラー レンの粒子形態が球状であるために方向性がなく、樹脂の可塑化により均一に分散し易いことによるものと推察される。

$[0\ 0\ 1\ 7\]$

図2は、カーボンナノチューブの長さに伴うポリプロピレン樹脂(PP)の粘度変化を測定したもので、添加により粘度は低下するが、これとは別に粒子が長くなるに伴ってPPの粘度が高くなってゆく、これは長さを有することで粒子に方向性が生じ、また粒子は相互が絡み合い状態にあることから、樹脂中における分散が均等に行われても、粒子の長さ方向がまちまちとなって混在していることによるものと推察される。換言するならば、カーボンナノチューブでは粒子の長さと添加量とを制御することによって、粘度変化を制御することが可能となることである。

[0018]

成形品の射出成形には、図は省略するが、素材樹脂用とカーボンナノ材料用の2つのホッパーを備えた第1射出装置と、素材樹脂用のホッパーとを備えた第2射出装置を使用し、両射出装置を共通の金型にノズルタッチして、同一ゲート又はホットランナーを通して可塑化樹脂を成形品のキャビティに同時に射出充填できるようにセットする。

[0019]

次に両射出装置の樹脂ホッパーに同種の素材樹脂を第1の樹脂及び第2の樹脂として蓄える。また第1射出装置の他のホッパーに、予め製造された樹脂とカーボンナノ材料の複合材料又はマスターバッチとを蓄える。第1の樹脂とカーボンナノ材料とを同時に第1射出装置に供給する。この際に、両方の供給量を調整して設定量のカーボンナノ材料を第1の樹脂に混ぜる。また第2の樹脂を第2射出装置に供給する。

[0020]

第1射出装置に供給されたカーボンナノ材料と第1の樹脂とを、射出装置周囲のバンドヒータの加熱と、内装したスクリュの回転とにより可塑化して完全に混練する。同時に第2射出装置でも第2の樹脂の可塑化を行う。可塑化終了後に両射出装置から第1と第2の樹脂をキャビティに射出充填する。この射出充填は第

1射出装置による第1の樹脂を先行する。第2の樹脂の射出時期は第1の樹脂の 射出充填が完了した後と、完了する前の途中から行う場合の何れでもよく、いず れにしても第2の樹脂は第1の樹脂の中に射出されてゆき、第2の樹脂の射出充 填完了によって、第1の樹脂によるスキン層と第2の樹脂によるコア層とからな る複合成形品が完成される。この第2の樹脂の樹脂圧によりカーボンナノ材料の 添加で粘度が低下した第1の樹脂が押し延ばされて、スキン層の層厚が薄く或い は厚く生ずるようになる。たしがってスキン層の層厚はカーボンナノ材料の添加・ 量により制御されることになる。

[0021]

上記説明は、第1の樹脂の粘度をカーボンナノ材料の添加により低下させて、 同種の第2の樹脂とに粘度差を持たせてスキン層の層厚の制御を行った場合であ るが、第2の樹脂を同様な手段により粘度低下させてスキン層の層厚の制御を行 うこともできる。また素材樹脂は同種に限られず異質の樹脂にも適用することも できる。

$[0\ 0\ 2\ 2\]$

上述のように、カーボンナノ材料の添加により第1と第2の何れかの一方の樹 脂の粘度変化を行うこの発明では、炭酸ガスの添加による場合の設備コストの課 題が解決され、また樹脂の粘度低下も効率よく行うことができる。またカーボン ナノ材料はカーボン繊維などのフィラーに比べて比較にならぬほど微細なもので あるから、20重量%程の量を添加しても樹脂の物性が劣化したり、成形品の強 度が低下したりすることがなく、添加量の加減によりスキン層の層厚を適宜に制 御することができる。

[0023]

【実施例】

使用成形機

FN1000-12AD (日精樹脂工業(株)製)

素材樹脂

ポリプロピレン(PP)

カーボンナノ材 直径10 n m 、 長さ1~10 μ m 、 チューブ状

添加量

10質量%

樹脂粘度

第1樹脂 20Pa·s、 第2樹脂 15Pa·s

成形条件

可塑化温度 200℃、 射出速度 100mm/s

射出圧力 100Mpa

成形品(板)

平面積 36.0 c m² 、 肉 厚 2.0 m m

スキン層 0.24 mm、 コア層 1.52 mm

【図面の簡単な説明】

【図1】 フラーレンの添加量に伴うポリプロピレン樹脂(PP)の粘度変化図 である。

【図2】 カーボンナノチューブの長さ伴うポリプロピレン樹脂(PP)の粘度 変化図である。

【書類名】 図面

【図1】

図2]

【書類名】 要約書

【要約】

【課題】 素材樹脂に超微細な他の物質を添加して粘度を変化させ、そこに生ずる粘度差により複合樹脂成形品のスキン層の層厚を制御する。

【解決手段】 第1の熱可塑性樹脂によるスキン層と、第2の熱可塑性樹脂によるコア層とからなる複合樹脂成形品を射出成形する。その何れか一方の熱可塑性樹脂にカーボンナノ材料を添加して相互の粘度を調整する。その粘度差からスキン層の層厚を制御する。第1の熱可塑性樹脂と第2の熱可塑性樹脂は同種又は異種の樹脂からなる。

【選択図】 図2

特願2002-335306

出願人履歴情報

識別番号

[000227054]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所

長野県埴科郡坂城町大字南条2110番地

氏 名

日精樹脂工業株式会社