LOGIC GATES

Falstad's Circuit Simulator
Premade Circuit File

Introduction: Boolean Values

Boolean data are a type of variables that defines truth, and can only have the value of False (0) or True (1).

Booleans are widely used in informatic and mathematical logic.

FALSE = 0 TRUE = 1

Introduction: Boolean Values

In informatic Boolean values are mainly used to define and check the truth of given prompts:

example made using python3 console

Main Elements: inputs, outputs, gates

Basic Gates: BUFFER, NOT

BUFFER Gate:

The output (Q) is equal to the input (A).

Α	Q	
0	0	
1	1	

NOT Gate:

The output is the opposite of the input.

This gate is also known as "Inverter".

A	Q	
0	1	
1	0	

Conjunction Gates: AND, NAND

AND Gate:

If both inputs are 1, outputs 1, otherwise outputs 0.

Α	В	Q
0	0	0
0	1	0
1	0 0	
1	1 1	

NAND Gate:

If both inputs are 1,
outputs 0, otherwise
outputs 1.
(Inversion of AND outputs)

A	В	Q	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Disjunction Gates: OR, NOR

OR Gate:

If at least one of the inputs is 1, outputs 1, otherwise outputs 0.

Α	В	Q
0	0 0	
0	1	1
1	0 1	
1	1	1

NOR Gate:

If at least one of the inputs is 1, outputs 0, otherwise outputs 1.

(Inversion of OR outputs)

Α	В	Q
0	0 1	
0	1	0
1	0	0
1	1	0

Biconditional Gates: XOR, XNOR

XOR Gate:

If one (and one only!) of the inputs is 1, outputs 1, otherwise outputs 0.

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

XNOR Gate:

If one (and one only!) of the inputs is 1, outputs 0, otherwise outputs 1.

(Inversion of XNOR outputs)

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

TRUTH TABLE OF ALL LOGIC GATES

INF	PUT	OUTPUT					
Α	В	AND	NAND	OR	NOR	XOR	XNOR
0	0		1	0	1	0	1
0	1	0				1	0
1	0			1	0	1	0
1	1	1	0			0	1

Logic Circuits

Several logic gates can be connected together to form what is called a logic circuit.

Logic Circuits

Some of the microchips and components used in our digital devices are simply very complex logic circuits.

A 4-bit Carry Lookahead Adder

Find the value of Q using the given inputs.

$$\begin{array}{c} A \\ B \\ \hline \\ C \\ \hline \end{array}$$

Find the value of Q using the given inputs.

Which values of A, B, C, D makes Q = 1?

Find the value of Q using the given inputs.

RANDOM MEMES

(because you haven't suffered enough)

