AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the

application:

LISTING OF CLAIMS:

Claims 1-38 (Canceled)

39. (Currently Amended) A process for the preparation of a low-viscosity

polyfunctional isocyanate composition containing (a) at least one isocyanate trimer

containing an isocyanurate unit, or a compound containing a biuret unit or mixtures

thereof, and (b) at least one isocyanate dimer containing a uretidinedione unit, from

a starting reaction medium containing at least one isocyanate monomers monomer,

in which the isocyanate groups are borne by sp³ carbon atoms, and optionally from

other monomers, this process comprising the following steps:

i) heating the starting reaction medium, in the absence of dimerization

catalyst, to a temperature of at least 80°C, and of not more than 200°C, for a period

of less than 24 hours to obtain a reaction product;

ii) reacting the reaction product from step i) containing said isocyanate

dimer and unreacted monomers with in the presence of a (cyclo)trimerization

catalyst, under (cyclo)trimerization conditions to obtain a reaction product;

iii) removing unreacted monomers from the reaction product from step ii);

and

iv) isolating the low-viscosity polyfunctional isocyanate composition.

- 40. (Currently Amended) A process for the preparation of a low-viscosity polyfunctional isocyanate composition containing (a) at least one isocyanate trimer containing an isocyanurate unit, or a compound containing a biuret unit or mixtures thereof, and (b) at least one isocyanate dimer containing a uretidinedione unit, from a starting reaction medium containing at least one isocyanate monomers, in which the isocyanate groups are borne by sp³ carbon atoms, and optionally from other monomers, this process comprising the following steps:
- i) heating the starting reaction medium, in the absence of dimerization catalyst, to a temperature of at least 120°C, and of not more than 170°C, for a period of less than 5 hours to obtain a reaction product;
- ii) reacting the reaction product from step i) containing said isocyanate dimer and unreacted monomers with in the presence of a (cyclo)trimerization catalyst, under (cyclo)trimerization conditions to obtain a reaction product;
- iii) removing unreacted monomers from the reaction product from step ii);
 - iv) isolating the low-viscosity polyfunctional isocyanate composition.
- 41. (Currently Amended) A process for the preparation of a low-viscosity polyfunctional isocyanate composition containing (a) at least one isocyanate trimer containing an isocyanurate unit, or a compound containing a biuret unit or mixtures thereof, and (b) at least one isocyanate dimer containing a uretidinedione unit, from a starting reaction medium containing at least one isocyanate monomer

in which the isocyanate groups are borne by sp³ carbon atoms, and optionally from other monomers, this process comprising the following steps:

- i) reacting the starting monomers with at least one isocyanate monomer in the presence of a (cyclo)trimerization catalyst under (cyclo)trimerization conditions to obtain a reaction product;
- ii) heating the reaction product from step i) containing said isocyanate trimer and unreacted isocyanate monomers, in the absence of dimerization catalyst, to a temperature of at least 80°C, and of not more than 200°C, for a period of less than 24 hours to obtain a reaction product;
- iii) removing unreacted monomers from the reaction product from step ii); and
 - iv) isolating the low-viscosity polyfunctional isocyanate composition.
- 42. (Currently Amended) A process for the preparation of a low-viscosity polyfunctional isocyanate composition containing (a) at least one isocyanate trimer containing an isocyanurate unit, or a compound containing a biuret unit or mixtures thereof, and (b) at least one isocyanate dimer containing a uretidinedione unit, from a starting reaction medium containing at least one isocyanate monomers monomer in which the isocyanate groups are borne by sp³ carbon atoms, and optionally from other monomers, this process comprising the following steps:
- i) reacting the starting monomers with at least one isocyanate monomer in the presence of a (cyclo)trimerization catalyst under (cyclo)trimerization conditions to obtain a reaction product;

Attorney's Docket No. <u>004900-254</u> Application No. <u>10/682,412</u>

Page 5

ii) heating the reaction product from step i) containing said isocyanate trimer and unreacted isocyanate monomers, in the absence of dimerization catalyst, to a temperature of at least 120°C, and of not more than 170°C, for a period of less than 5 hours to obtain a reaction product;

- iii) removing unreacted monomers from the reaction product from step ii); and
 - iv) isolating the low-viscosity polyfunctional isocyanate composition.
- 43. (Previously Presented) A process according to claim 39, wherein said isocyanate dimer is obtained by heating the reaction medium along a decreasing temperature gradient.
- 44. (Currently Amended) A low-viscosity polyfunctional isocyanate composition comprising at least one uretidinedione isocyanate dimer and at least one compound having a biuret function, wherein said biuret function containing compound represents at least 10% by weight based on the weight of the composition and the total true dimer units/isocyanate functions ratio is ≤30%.
- 45. (Currently Amended) A low-viscosity polyfunctional isocyanate composition comprising at least one uretidinedione isocyanage isocyanate dimer and at least one compound having a biuret function, wherein said biuret function containing compound represents at least 20% by weight based on the weight of the composition and the total true dimer units/isocyanate function is ≤30%.

- 46. (Previously Presented) A composition comprising:
- at least one polyisocyanate composition according to claim 45; and
- a polyol.
 - 47. (Previously Presented) A composition comprising:
 - at least one polyisocyanate composition according to Claim 45; and
 - an acrylate polyol which satisfies the following conditions for a dry extract:
 - Mw (weight-average molecular weight) not greater than 10,000;
 - Mn (number-average molecular weight) of not greater than 5000;
 - Mw/Mn (dispersity ratio) of not greater than 5; and
 - number of OHs/molecule of greater than or equal to 2.
 - 48. (Previously Presented) A composition comprising:
 - at least one polyisocyanate composition according to Claim 45; and
 - a polyester polyol having a viscosity of not greater than 10,000 mPa.s at
 - 25°C, and an Mw of between 250 and 8000.
- 49. (Previously Presented) A composition according to claim 46, containing a crosslinking catalyst, which is optionally a latent catalyst.