Produto Escalar

Definição

Se $\mathbf{a}=\langle a_1,\ldots,a_n\rangle$ e $\mathbf{b}=\langle b_1,\ldots,b_n\rangle$, então o **produto escalar** de \mathbf{a} e \mathbf{b} é o número $\mathbf{a}\cdot\mathbf{b}$ dado por

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + \cdots + a_n b_n$$

Assim, para achar o produto escalar de a e b, multiplicamos as componentes correspondentes e somamos. O resultado não é um vetor. É um número real, isto é, um escalar, por isso o nome.

Exemplos

1.
$$\langle 2,4
angle\cdot\langle 3,-1
angle=2\cdot 3+4\cdot -1=2$$

2.
$$(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \cdot (2\mathbf{j} - \mathbf{k}) = 1 \cdot 0 + 2 \cdot 2 - 3 \cdot -1 = 7$$

Propriedades

Se ${\bf a},\,{\bf b}$ e ${\bf c}$ são vetores de V_3 , ${\bf e}$ o vetor nulo, e c um escalar, então:

1.
$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

2.
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

4.
$$(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$$

5.
$$\mathbf{e} \cdot \mathbf{a} = 0$$

Teorema

O produto escalar $\mathbf{a} \cdot \mathbf{b}$ tem uma interpretação geométrica em termos do **ângulo** θ **entre** \mathbf{a} e \mathbf{b} :

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

Figura 1

Demonstração

Se aplicarmos a Lei dos Cossenos no triângulo OAB da Figura 1, obteremos

$$|AB|^2 = |OA|^2 + |OB|^2 - 2|OA||OB|\cos\theta$$

Onde
$$|OA|=|\mathbf{a}|$$
, $|OB|=|\mathbf{b}|$ e $|AB|=|\mathbf{a}-\mathbf{b}|$. Ou seja,

$$|\mathbf{a} - \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta =$$

$$|\mathbf{a}|^2 - 2\mathbf{a} \cdot \mathbf{b} + |\mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta =$$

$$-2\mathbf{a} \cdot \mathbf{b} = -2|\mathbf{a}||\mathbf{b}|\cos\theta =$$

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta =$$

Exemplo

Determine o ângulo entre dois vetores $\mathbf{a}=\langle 2,2,-1
angle$ e $\mathbf{b}\langle 5,-3,2
angle.$

$$egin{aligned} \mathbf{a} \cdot \mathbf{b} &= |\mathbf{a}| |\mathbf{b}| \cos heta \implies \cos heta = rac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \ rac{2(5) + 2(-3) + 2(-1)}{\sqrt{2^2 + 2^2 + (-1)^2} \cdot \sqrt{5^2 + (-3)^2 + 2^2}} = rac{2}{3\sqrt{38}} \end{aligned}$$

Casos específicos

Dois vetores **a** e **b** formam um ângulo

- ortogonal se $\mathbf{a} \cdot \mathbf{b} = 0 \implies \theta = \frac{1}{2}\pi;$
- agudo se $\mathbf{a} \cdot \mathbf{b} > 0$;
- obtuso se $\mathbf{a} \cdot \mathbf{b} < 0$.

Ângulos Diretores

Os ângulos α , β e γ (no intervalo $[0,\pi]$) que **a** faz com os eixos coordenados positivos x,y e z.

Os cossenos desses ângulos diretores são chamados **cossenos diretores** do vetor **a**.

$$\cos \alpha = \frac{a_1}{|\mathbf{a}|}; \cos \beta = \frac{a_2}{|\mathbf{a}|}; \cos \gamma = \frac{a_3}{|\mathbf{a}|}.$$

Onde

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

Por isso

$$\mathbf{a} = \langle a_1, a_2, a_3
angle = \langle |\mathbf{a}| \cos lpha, |\mathbf{a}| \cos eta, |\mathbf{a}| \cos \gamma
angle = |\mathbf{a}| \langle \cos lpha, \cos eta, \cos \gamma
angle$$

Disso implica que

$$rac{1}{|\mathbf{a}|}\mathbf{a} = \langle \coslpha, \coseta, \cos\gamma
angle$$

Projeções

A figura acima mostra as representações \overrightarrow{PQ} e \overrightarrow{PR} de dois vetores \mathbf{a} e \mathbf{b} com a mesma origem P. Se S é o pé do perpendicular a partir de R à reta contendo \overrightarrow{PQ} , então o vetor coam representação \overrightarrow{PS} é chamado **vetor projeção** de \mathbf{b} sobre \mathbf{a} e é denotado por $\operatorname{proj}_{\mathbf{a}}\mathbf{b}$.

$$\mathrm{proj}_{\mathbf{a}}\mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}$$

Onde $\frac{\mathbf{a}}{|\mathbf{a}|}$ é o *versor* (vetor unitário) de \mathbf{a} .

A projeção escalar de \mathbf{b} sobre \mathbf{a} (também chamada componente de \mathbf{b} ao longo de \mathbf{a}) $\operatorname{comp}_{\mathbf{a}}\mathbf{b}$ é definida como o módulo com sinal do vetor projeção, cujo valor é dado pelo número $|\mathbf{b}| \cos \theta$, onde θ é o ângulo entre \mathbf{a} e \mathbf{b} .

$$\operatorname{comp}_{\mathbf{a}}\mathbf{b} = |\mathbf{b}|\cos\theta = \frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}|}$$

Observe que o vetor projeção é a projeção escalar vezes o versor de **a**:

$$\mathrm{proj}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a}}{|\mathbf{a}|}\mathrm{comp}_{\mathbf{a}}\mathbf{b}$$