Министерство образования Республики Беларусь

Учреждение образования

«Белорусский государственный университет информатики и радиоэлектроники»

Кафедра электронных вычислительных машин

Лабораторная работа №4

«Исследование работы параллельного регистра и регистра сдвига»

Выполнили:

Студенты группы 150503 Ходосевич М.А. Семков А.Д. Проверил: Преподаватель Тарасюк И.С.

- 1. 4-разрядный сдвиговый регистр с режимом синхронной параллельной загрузки
- 2. 4-разрядный реверсивный регистр с дополнительными режимами запрета считывания и запрета записи по аналогии с параллельным регистром из лабораторной

1. Цель работы

- Изучить режимы работы параллельного регистра.
- Изучить режимы работы регистра сдвига.

2. Ход работы

Регистр — последовательное логическое устройство, используемое для хранения п-разрядных двоичных слов (чисел) и выполнения преобразований над ними.

Регистр представляет собой упорядоченную последовательность триггеров, число которых соответствует числу разрядов в слове. С каждым регистром связано комбинационное цифровое устройство, с помощью которого обеспечивается выполнение некоторых операций над словами.

1. Исследование работы параллельного регистра в статическом режиме

Параллельные регистры — это устройства, предназначенные для записи, хранения и выдачи информации, представленной в виде двоичных кодов. Для хранения каждого двоичного разряда в регистре используется одна триггерная ячейка.

1.1. Режим параллельной загрузки и хранения

Таблица истинности параллельного регистра

	R	E2	E1	P2	P1	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	0	0	0	0	1	1	0	LΓ	0	1	1	0
Шаг 2	0	0	0	1	0	0	1	1	0	LΓ	0	1	1	0
Шаг 3	0	0	0	0	1	0	1	1	0	LΓ	0	1	1	0
Шаг 4	0	0	0	1	1	0	1	1	0	LΓ	0	1	1	0

Диаграмма состояний параллельного регистра

Параллельная загрузка регистра происходит, если на входы P1 и P2 подан активный уровень сигнала равный нулю. Параллельный регистр работает в режиме хранения информации, если хотя бы на один из входов (P1 или P2) подан неактивный уровень сигнала.

1.2. Режим управления выходом регистра

Таблица истинности параллельного регистра

	R	E2	E1	P2	P1	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	0	0	0	0	1	1	0	LΓ	0	1	1	0
Шаг 2	0	1	0	0	0	0	1	1	0	LΓ	0	0	0	0
Шаг 3	0	0	1	0	0	0	1	1	0	LΓ	0	0	0	0
Шаг 4	0	1	1	0	0	0	1	1	0	LΓ	0	0	0	0

Хранящийся в регистре цифровой код может быть считан с выходов Q0 - Q3, если на входы управления считыванием Е1 и Е2 одновременно подан сигнал логического 0. Если хотя бы на одном из входов присутствует сигнал логической 1, выходы находятся в высокоимпедансном состоянии (Z-состояние) и считывание информации запрещено. Это позволяет подключать выходы регистра непосредственно к шине данных микропроцессорных устройств.

2. Исследование работы параллельного регистра в динамическом режиме

После изменения входных сигналов, соответствующих следующим режимам работы регистра: параллельная загрузка (E1=E2=P1=P2=R=0), запрет считывания (P1=P2=0, R=0, E1=1, E2=0), хранение (E1=E2=0, R=0, P1=1, P2=0), очистка регистра (R=1, E1=E2=P1=P2=0) — была получена диаграмма состояний, приведенная ниже.

Диаграмма состояний параллельного регистра

По приведённой диаграмме видно, что изменение состояния регистра в режиме параллельной загрузки (E1=E2=P1=P2=R=0) происходит по положительному перепаду импульса на входе С ($0 \rightarrow 1$). В режиме сброса (очистке регистра) изменение состояния регистра происходит при установке входа R в 1, остальные входы не имеют значения.

3. Исследование работы сдвигового регистра в статическом режиме

Регистр сдвига — это регистр, содержимое которого при подаче управляющего сигнала на тактовый вход C может сдвигаться в сторону старших или младших разрядов.

3.1. Режим сдвига вправо

Таблица истинности регистра сдвига

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	0	1	1	0	0	0	0	0	LΓ	0	0	0	1
Шаг 2	1	0	1	0	0	0	0	0	0	LΓ	0	0	1	0
Шаг 3	1	0	1	0	0	0	0	0	0	LΓ	0	1	0	0
Шаг 4	1	0	1	0	0	0	0	0	0	LΓ	1	0	0	0

Диаграмма состояний регистра сдвига

Сдвиг информации регистром вправо представляет собой сдвиг в сторону разрядов, имеющих большие номера. Логическая единица смещается от Q0 к Q3.

3.2. Режим сдвига влево

Таблица истинности регистра сдвига

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	1	0	0	1	0	0	0	0	LΓ	1	0	0	0
Шаг 2	1	1	0	0	0	0	0	0	0	LΓ	0	1	0	0
Шаг 3	1	1	0	0	0	0	0	0	0	LΓ	0	0	1	0
Шаг 4	1	1	0	0	0	0	0	0	0	LΓ	0	0	0	1

Диаграмма состояний регистра сдвига

Сдвиг информации регистром влево – это сдвиг в сторону разрядов, имеющих меньшие номера. Логическая единица смещается от Q3 к Q0.

3.3. Режим параллельной загрузки

Таблица истинности регистра сдвига

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	1	1	0	0	0	1	0	1	LΓ	0	1	0	1
Шаг 2	1	1	1	0	0	1	1	1	1	LΓ	1	1	1	1
Шаг 3	1	1	1	0	0	0	0	1	0	LΓ	0	0	1	0
Шаг 4	1	1	1	0	0	0	0	1	0	LΓ	0	0	1	0

Диаграмма состояний регистра сдвига

Значения на выходах Q0-Q3 соответствуют значениям на входах параллельной загрузки D0-D3, значит, регистр в режиме параллельной загрузки работает корректно.

3.4. Режим хранения

Таблица истинности регистра сдвига

	R	51	50	DR	DL	D3	D2	D1	D0	C	Q3	Q2	Q1	Q0
Шаг 1	1	0	0	1	1	0	1	0	1	LΓ	1	0	1	0
Шаг 2	1	0	0	1	1	1	1	1	1	LΓ	1	0	1	0
Шаг 3	1	0	0	1	1	0	0	1	0	LΓ	1	0	1	0
Шаг 4	1	0	0	1	1	0	0	1	0	LΓ	1	0	1	0

Диаграмма состояний регистра сдвига

Если на входы S0 и S1 подан сигнал 0, то регистр работает в режиме хранения информации, то есть при подаче импульсов на тактовый вход С регистр сдвига сохраняет на выходе первоначальный занесенный в него цифровой код.

Сводная таблица истинности регистра сдвига

Режим работы	R	S1	S0	C	$Q3_{n+1}$	$Q2_{n+1}$	$Q1_{n+1}$	$Q0_{n+1}$
Сброс	0	X	X	X	0	0	0	0
Хранение	1	0	0	X	Q3 _n	Q2 _n	$Q1_n$	$Q0_n$
Сдвиг вправо	1	0	1	1	Q2 _n	$Q1_n$	$Q0_n$	DR
Сдвиг влево	1	1	0	↑	DL	Q3 _n	Q2 _n	Q1 _n
Параллельная загрузка	1	1	1	1	D3	D2	D1	D0

- символ «х» обозначает безразличное состояние входа;
- символ « \uparrow » обозначает фронт тактового импульса ($0 \to 1$).

4. Исследование работы сдвигового регистра в динамическом режиме

После изменения входных сигналов регистра, была получена временная диаграмма, отражающая его работу в режимах параллельной загрузки, сдвига влево, сдвига вправо и сброса, приведенная ниже.

Определение перепада на тактовом входе «С» регистра сдвига, при котором происходят изменения состояний счетчика в режимах сдвига вправо, влево, параллельной загрузки и сброса: изменения состояний счетчика происходят по перепаду $C (0 \rightarrow 1)$.

3. Вывод

В процессе выполнения лабораторной работы была изучена работа параллельного регистра и регистра сдвига.

Изучены режимы работы параллельного регистра в статическом режиме: параллельная загрузка и хранение, управление выходом регистра. Для каждого режима были сформированы таблица истинности и диаграмма состояний.

Изучены режимы работы регистра сдвига в статическом режиме: сдвиг вправо, сдвиг влево, паралльная загрузка, хранение. Для каждого режима были сформированы таблица истинности и диаграмма состояний.

Изучен динамический режим работы параллельного регистра и регистра сдвига. Для каждого регистра сформирована временная диаграмма.