Ortogonalidad y Espacios

Ing. José Miguel Barboza Retana Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Verano 2019-2020

Espacios Lineales

Espacios lineales

¿Qué es un vector?

¿Qué es un vector?

- En física, se introducen vectores como entidades matemáticas con magnitud y dirección
- Tradicionalmente se utiliza en ingeniería el concepto de vector como un conjunto ordenado (o tupla) en n cantidades, por ejemplo $[x_1, x_2, ..., x_n]^T$.

Vector

Formalmente, un vector es un elemento de un *espacio lineal* o *espacio vectorial*.

Combinación lineal

El vector \underline{x} es una **combinación lineal** de los vectores $\underline{u}_1, \underline{u}_2, ..., \underline{u}_n$ si

$$\underline{\mathbf{x}} = c_1 \underline{\mathbf{u}}_1 + c_2 \underline{\mathbf{u}}_2 + \dots + c_n \underline{\mathbf{u}}_n$$

Independencia lineal

El conjunto $\mathcal{U} = \{\underline{u}_1, \underline{u}_2, ..., \underline{u}_n\} \subset \mathbb{V}$ es:

- Linealmente dependiente (o ligado) si algún \underline{u}_i es una combinación lineal de otros elementos de u.
- Linealmente independiente (o libre) si $c_1\underline{u}_1 + c_2\underline{u}_2 + \cdots + c_n\underline{u}_n = \underline{\mathbf{0}}$ solo con $c_1 = c_2 = \cdots = c_n = 0$.

Generación de espacios

$$\mathcal{U} = \{\underline{\boldsymbol{u}}_1, \underline{\boldsymbol{u}}_2, \dots, \underline{\boldsymbol{u}}_n\} \subset \mathbb{V}$$

Si contiene todas las combinaciones lineales de los vectores de \mathcal{U} , al que se denomina entonces conjunto generador del espacio.

- A cada elemento del conjunto $\boldsymbol{\mathcal{U}}$ se le denomina en este contexto vector generador.

Espacio lineal finito

El espacio lineal V se denomina finito si existe un sistema de vectores

$$\mathcal{U} = \{\underline{\boldsymbol{u}}_1, \underline{\boldsymbol{u}}_2, \dots, \underline{\boldsymbol{u}}_n\} \subset \mathbb{V}$$

que lo engendran, con n finito.

Base

- u es una **base** de v si los vectores generadores \underline{u}_i son linealmente independientes.
- Todo espacio lineal finito $\mathbb{V} \neq \{0\}$ posee al menos una base.
- Si existen varias bases, todas contienen el mismo número de vectores generadores.
- Este número de vectores es la dimensión del espacio lineal.

Tipos de Espacios Lineales

Espacio métrico

Espacio métrico

Un espacio métrico es una estructura algebraica en la que se define la operación $d(\underline{x},\underline{y})$ denominada métrica

$$d: \mathbb{V} \times \mathbb{V} \to \mathbb{R}$$

Axiomas para una métrica

- $d\left(\underline{x},\underline{y}\right) \geq 0$ (no negatividad)
- $d(\underline{x},\underline{x}) = 0$ (reflexividad)
- $d\left(\underline{x},\underline{y}\right) = 0 \iff \underline{x} = \underline{y}$ (identidad de los indiscernibles)
- $d\left(\underline{x},\underline{y}\right) = d\left(\underline{y},\underline{x}\right)$ (simetría)
- $d(\underline{x}, \underline{z}) \le d(\underline{x}, \underline{y}) + d(\underline{y}, \underline{z})$ (designaldad del triángulo)

Espacio lineal normado

Espacio lineal normado

El espacio lineal normado incluye definición de una norma denotada con ||·||:

$$\|\cdot\|:\mathbb{V}\to\mathbb{R}$$

Axiomas para una norma:

- $\|\underline{x}\| \ge 0$ (positividad)
- $||a\underline{x}|| = |a||\underline{x}||$ (escalabilidad positiva)
- $\|\underline{x} + \underline{y}\| \le \|\underline{x}\| + \|\underline{y}\|$ (designaldad de Minkowski)
- $\|\underline{x}\| = 0 \Leftrightarrow \underline{x} = \underline{\mathbf{0}}.$

Definición de métrica a través de la norma

Usualmente se le asigna a la norma $|\underline{x}|$ el significado de longitud o magnitud del vector \underline{x} .

Todo espacio normado es a su vez un espacio métrico, pues se puede definir la métrica como

$$d\left(\underline{x},\underline{y}\right) = \left\|\underline{x} - \underline{y}\right\|$$

Espacios con producto interno

Espacios con producto interno

El producto interno es una operación binaria

$$\langle\cdot,\cdot\rangle:\mathbb{V}\times\mathbb{V}\to\mathbb{F}$$

que satisface los siguientes axiomas

- $\forall \underline{x} \in \mathbb{V}, \langle \underline{x}, \underline{x} \rangle \geq 0$. (No negatividad, $\langle \underline{x}, \underline{x} \rangle \in \mathbb{R}$).
- $\forall \underline{x} \in \mathbb{V}, \langle \underline{x}, \underline{x} \rangle = 0$ si y solo si $\underline{x} = \underline{0}$. (No degenerabilidad).
- $\forall \underline{x}, \underline{y} \in \mathbb{V}, \langle \underline{x}, \underline{y} \rangle = \langle \underline{y}, \underline{x} \rangle^*$. (Conmutatividad conjugada)
- $\forall a \in \mathbb{F}, \forall \underline{x}, \underline{y} \in \mathbb{V}, \langle \underline{x}, a\underline{y} \rangle = a \langle \underline{x}, \underline{y} \rangle;$
- $\forall \underline{x}, \underline{y}, \underline{z} \in \mathbb{V}, \langle \underline{x}, \underline{y} + \underline{z} \rangle = \langle \underline{x}, \underline{y} \rangle + \langle \underline{x}, \underline{z} \rangle$. (Sesquilinealidad)

Sesquilinealidad

Combinando la sesquilinealidad con la simetría conjugada se obtiene además

$$\forall a \in \mathbb{F}, \forall \underline{x}, \underline{y} \in \mathbb{V}, \qquad \langle a\underline{x}, \underline{y} \rangle = a^* \langle \underline{x}, \underline{y} \rangle$$

$$\forall \underline{x}, \underline{y}, \underline{z} \in \mathbb{V}, \qquad \langle \underline{x} + \underline{y}, \underline{z} \rangle = \langle \underline{x}, \underline{z} \rangle + \langle \underline{y}, \underline{z} \rangle$$

Definición de producto interno a través de la norma

Utilizando el producto interno puede definirse la norma de un vector *x* como

$$\|\underline{x}\| = \sqrt{\langle \underline{x}, \underline{x} \rangle} \Longrightarrow \langle \underline{x}, \underline{x} \rangle = \|\underline{x}\|^2$$

Ortogonalidad

Ortogonalidad

- Del griego orthos (recto) y gonia (ángulo).
- Concepto: lo que aporta una "dimensión" es totalmente independiente de las otras.
- Ejemplo: sistema cartesiano de coordenadas
- Aquí: extensión del concepto a funciones

Ortogonalidad

Ortogonalidad de vectores

• En estos espacios lineales con producto interno se dice que dos vectores \underline{x} y \underline{y} diferentes de $\underline{0}$ son ortogonales si su producto interno $\langle \underline{x}, \underline{y} \rangle$ es 0.

Ángulo entre vectores

 El ángulo entre los dos vectores se define indirectamente por medio de la ecuación

$$\cos\left(\angle\left(\underline{x},\underline{y}\right)\right) = \frac{\left\langle\underline{x},\underline{y}\right\rangle}{\left\|\underline{x}\right\| \left\|\underline{y}\right\|}$$

Ortogonalidad y Ortonormalidad

• Si $\mathcal{U} = \{\underline{u}_1, \underline{u}_2, ..., \underline{u}_n\} \subset \mathbb{V}$ es una base de \mathbb{V} y todo par de vectores \underline{u}_i y \underline{u}_k $(i \neq k)$ es ortogonal, se dice que \mathcal{U} es una base **ortogonal** de \mathbb{V} .

• Si además se cumple que la norma de todos los vectores generadores $|\underline{u}_i|$ es uno, entonces a \underline{u} se le denomina una base ortonormal.

Ejemplo: Coeficientes de una base ortogonal (1)

• Si u es una base ortogonal de v, ¿cómo se pueden calcular los coeficientes para representar un vector $\underline{x} \in v$ en dicha base?

Ejemplo: Coeficientes de una base ortogonal (2)

- Solución: Si u es una base ortogonal de v se cumple para todo vector x ∈ v

$$\underline{x} = \sum_{i=1}^{n} c_i \underline{u}_i$$

Realizando el producto escalar a ambos lados con un vector generador específico $\underline{\boldsymbol{u}}_k$, utilizando las propiedades del producto interno descritas anteriormente, y haciendo uso de la Ortogonalidad de los vectores generadores $\underline{\boldsymbol{u}}_i$ se obtiene

$$\langle \underline{\boldsymbol{u}}_{k}, \underline{\boldsymbol{x}} \rangle = \langle \underline{\boldsymbol{u}}_{k}, \sum_{i=1}^{n} c_{i}\underline{\boldsymbol{u}}_{i} \rangle = \sum_{i=1}^{n} \langle \underline{\boldsymbol{u}}_{k}, c_{i}\underline{\boldsymbol{u}}_{i} \rangle = \sum_{i=1}^{n} c_{i} \langle \underline{\boldsymbol{u}}_{k}, \underline{\boldsymbol{u}}_{i} \rangle$$

$$= c_k \langle \underline{\boldsymbol{u}}_k, \underline{\boldsymbol{u}}_k \rangle = c_k \|\underline{\boldsymbol{u}}_k\|^2$$

Ejemplo: Coeficientes de una base ortogonal (3)

Con lo que se deriva

$$c_k = \frac{\langle \underline{\boldsymbol{u}}_k, \underline{\boldsymbol{x}} \rangle}{\left\| \underline{\boldsymbol{u}}_k \right\|^2}$$

Espacios Euclidianos

Espacio euclidiano

El **espacio euclidiano** de n dimensiones es un caso particular donde los vectores se representan por tuplas de n elementos:

$$\underline{\boldsymbol{x}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = [x_1, x_2, \dots, x_n]^T$$

Producto interno y producto punto

En un espacio euclidiano el producto interno utilizado es siempre el producto punto, definido como:

$$\langle \underline{x}, \underline{y} \rangle = \underline{x} \cdot \underline{y} = \underline{x}^{*T} \underline{y} = \sum_{i=1}^{n} x_i^* y_i$$

Norma euclidiana

Con el producto punto se define la norma euclidiana |x| como:

$$\|\underline{x}\| = \sqrt{\langle \underline{x}, \underline{x} \rangle} = \sqrt{\underline{x} \cdot \underline{x}} = \sqrt{\underline{x}^{*T} \underline{x}} = \sqrt{\sum_{i=1}^{n} |x_i|^2}$$

Métrica euclidiana

La métrica euclidiana puede describirse entonces en términos de la norma:

$$d\left(\underline{x},\underline{y}\right) = \left\|\underline{x} - \underline{y}\right\| = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}$$

Representación de un vector con diferentes bases

Ejemplo: Cambio de base para un vector (1)

Una base ortogonal \mathcal{U}' en un espacio euclidiano tridimensional está compuesta por los vectores

$$\underline{\mathbf{u}'}_1 = [x_1, y_1, z_1]^T
\underline{\mathbf{u}'}_2 = [x_2, y_2, z_2]^T
\underline{\mathbf{u}'}_3 = [x_3, y_3, z_3]^T$$

Cuyas coordenadas x_i , y_i y z_i indican las componentes de cada vector de esta base en la base canónica $\mathcal{U} = \{u_1, u_2, u_3\}$ con

$$\underline{\boldsymbol{u}}_1 = [1,0,0]^T$$

$$\underline{\boldsymbol{u}}_2 = [0,1,0]^T$$

$$\underline{\boldsymbol{u}}_3 = [0,0,1]^T$$

Ejemplo: Cambio de base para un vector (2)

Encuentre los coeficientes c_i para representar al vector $\underline{v} = [a, b, c]^T$ (también representado en la base canónica) como combinación lineal de los vectores \underline{u}'_i .

Ejemplo: Cambio de base para un vector (3)

Solución: se sabe que

$$\underline{\boldsymbol{v}} = c_1 \underline{\boldsymbol{u}'}_1 + c_2 \underline{\boldsymbol{u}'}_2 + c_3 \underline{\boldsymbol{u}'}_3$$

donde, por ser la base \mathcal{U}' ortonormal, se cumple que

$$c_{i} = \frac{\left\langle \underline{\boldsymbol{u}'}_{i}, \underline{\boldsymbol{v}} \right\rangle}{\left\| \underline{\boldsymbol{u}'}_{i} \right\|^{2}} = \left\langle \underline{\boldsymbol{u}'}_{i}, \underline{\boldsymbol{v}} \right\rangle$$

Puesto que el espacio utilizado es euclidiano, se utiliza el producto punto como producto interno, y así:

$$c_1 = ax_1 + by_1 + cz_1$$

 $c_2 = ax_2 + by_2 + cz_2$
 $c_3 = ax_3 + by_3 + cz_3$

Ejemplo: Cambio de base para un vector (4) que puede expresarse de forma matricial como

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Así, el producto del vector representado en la base canónica puede ser transformado a otro vector en la base u' multiplicándolo por la izquierda con una matriz cuyas filas corresponden a los vectores generadores de la nueva base, representados sobre la base canónica.

Los valores c_i pueden interpretarse como "qué tanto" de cada vector \underline{u}_i está contenido en \underline{v} , de modo que la suma de los tres "tantos" genera dicho vector.

Ejemplo: Cambio de base para un vector (5)

Ejemplo: Cambio de base para un vector

Ejemplo: Cambio de base para un vector

3

Ortogonalidad de funciones

Definición de vector por componentes "etiquetados"

El vector \underline{x} a través de sus componentes x_i puede interpretarse como función de variable discreta $x: \{1,2,...n\} \to \mathbb{F}$:

$$x(i) = x_i$$

Generalización a enteros

El dominio de la función se puede generalizar a cualquier rango entero. De este modo el producto se puede expresar como:

$$\langle \underline{x}, \underline{y} \rangle = \sum_{i=n_1}^{n_2} x^*(i)y(i)$$

Generalización a reales y complejos

La restricción de un dominio entero también puede eliminarse, y extenderse a funciones de variable real o compleja. Con estas funciones, el producto punto se reemplaza por:

$$\langle x(t), y(t) \rangle = \int_a^b x^*(t)y(t)dt$$

Norma de funciones

La norma de la función se define como:

$$||x(t)|| = \sqrt{\langle x(t), x(t) \rangle} = \sqrt{\int_a^b |x(t)|^2 dt}$$

Ángulo entre funciones

Es posible incluso definir el ángulo entre funciones

$$\cos\left(\angle(x(t),y(t))\right) = \frac{\langle x(t),y(t)\rangle}{\|x(t)\|\|y(t)\|}$$

Bibliografía

• [1] P. Alvarado, Señales y Sistemas. Fundamentos Matemáticos. Instituto Tecnológico de Costa Rica: Centro de Desarrollo de Material Bibliográfico, 2008.

