Universidade Federal do Rio Grande do Norte

Aluno: Thiago Theiry de Oliveira Disciplina: Aprendizado de Máquina

Checkpoint 3

KNN						
Base	Treinamento/teste	1k	3k	5k	7k	10k
Metodologia		Acc	Acc	Acc	Acc	Acc
	10-Fold CV	0.7271	0.7547	0.7680	0.7751	0.7751
Base	70/30	0.7202	0.7517	0.7659	0.7731	0.7702
Original	80/20	0.7201	0.7564	0.7653	0.7743	0.7736
	90/10	0.7133	0.7500	0.7620	0.7702	0.7710
Base	10-Fold CV	0.6051	0.6112	0.6255	0.6223	0.6211
Reduzida 1	70/30	0.6047	0.6015	0.6196	0.6174	0.6217
	80/20	0.5821	0.6077	0.6093	0.6029	0.6236
	90/10	0.5796	0.6178	0.6274	0.6115	0.6465
Base	10-Fold CV	0.7224	0.7330	0.7426	0.7454	0.7470
Reduzida 2	70/30	0.7110	0.7207	0.7295	0.7342	0.7342
	80/20	0.7152	0.7257	0.7324	0.7380	0.7414
	90/10	0.7246	0.7388	0.7515	0.7515	0.7500
Base Reduzida 3	10-Fold CV	0.7169	0.7536	0.7739	0.7834	0.7888
	70/30	0.7185	0.7584	0.7769	0.7796	0.7839
	80/20	0.7129	0.7534	0.7706	0.7758	0.7859
	90/10	0.7208	0.7582	0.7754	0.7769	0.7852
Média		0.6872	0.7120	0.7247	0.7270	0.7325
Desvio padrão		0.0549	0.0603	0.0619	0.0672	0.0624

A. O que aconteceu com a acurácia do k-NN quando o k aumentou?

R = A acurácia aumentou conforme o valor de K aumentou. Isso ocorre porque valores maiores de K tendem a reduzir o efeito de ruídos nos dados, promovendo uma decisão mais estável ao considerar mais vizinhos.

B. Este comportamento se apresentou para todas as bases de dados

R = Sim, esse padrão de melhora com o aumento de K foi observado em todas as bases, embora a taxa de crescimento da acurácia varie um pouco entre elas, especialmente para os valores mais altos de K. Mas como foi pedido, foi sendo testado até que estabilizasse.

Estratégia de treinamento	Acurácia
10-fold CV	0.7196
Hold-out 90/10	0.7191
Hold-out 80/20	0.7133
Hold-out 70/30	0.7146

Qual a estratégia de aprendizado está obtendo a melhor acurácia? Por que?

R= Olhando separadamente as bases e os valores K, teve momentos que abordagens diferentes resultaram em uma melhor acuracia, Porém de forma geral, a estratégia com 10-fold Cross Validation (CV) apresentou os melhores resultados. Isso ocorre porque o 10-fold CV permite que o modelo seja treinado e testado em diferentes subconjuntos dos dados, utilizando a totalidade da base de maneira mais eficiente para avaliar o desempenho.

Árvore de Decisão					
Base	Treinamento/teste	md = 3	md = 5	md = 7	
Metodologia		Acc	Acc	Acc	
	10-Fold CV	0.7328	0.7619	0.7660	
Base	70/30	0.7357	0.7594	0.7649	
Original	80/20	0.7317	0.7567	0.7594	
	90/10	0.7343	0.7605	0.7680	
Base	10-Fold CV	0.5336	0.5729	0.5758	
Reduzida 1	70/30	0.5199	0.5758	0.5949	
	80/20	0.5430	0.5845	0.5919	
	90/10	0.5318	0.5605	0.5924	
Base	10-Fold CV	0.7259	0.7579	0.7659	
Reduzida 2	70/30	0.7272	0.7592	0.7607	
	80/20	0.7238	0.7470	0.7545	
	90/10	0.7320	0.7560	0.7717	
Base	10-Fold CV	0.7677	0.7778	0.7854	
Reduzida 3	70/30	0.7654	0.7769	0.7834	
	80/20	0.7653	0.7725	0.7807	
	90/10	0.7687	0.7784	0.7792	
Média		0.6899	0.7161	0.7247	
Desvio padrão		0.0925	0.0829	0.0790	

A. O que aconteceu com a acurácia da árvore de decisão quando a profundidade máxima aumentou?

R = Acompanhando os valores de K para o k-NN, a acurácia aumentou à medida que a profundidade máxima da árvore cresceu.

B. Este comportamento se apresentou para todas as bases de dados

R = Sim, embora a taxa de crescimento varie, o padrão geral de melhora com o aumento da profundidade foi mantido em todas as bases.

Estratégia de treinamento	Acurácia
10-fold CV	0.7103
Hold-out 90/10	0.7111
Hold-out 80/20	0.7093
Hold-out 70/30	0.7103

Qual a estratégia de aprendizado está obtendo a melhor acurácia? Por que? Foi o mesmo resultado do k-NN?

R = Neste caso, o melhor desempenho médio foi observado com o Hold-out 90/10, embora os resultados entre as diferentes estratégias sejam muito próximos. A diferença em relação ao k-NN está no fato de que para o k-NN, a estratégia com 10-fold CV se destacou um pouco mais.

O resultado ficou bem proximo ao k-NN, tendo uma ressalva que com o k-NN fui até k=10, e com a árvore de decisão os experimentos foram até a profundidade igual a 7.

Naive Bayes				
Base	Treinamento/teste	Default		
Meto	Acc			
	10-Fold CV	0.6215		
Base	70/30	0.6159		
Original	80/20	0.5812		
	90/10	0.6160		
Base	10-Fold CV	0.5895		
Reduzida 1	70/30	0.5399		
	80/20	0.5439		
	90/10	0.5510		
Base	10-Fold CV	0.5353		
Reduzida 2	70/30	0.4964		
	80/20	0.4517		
	90/10	0.5090		
Base	10-Fold CV	0.6791		
Reduzida 3	70/30	0.6849		
	80/20	0.6804		
	90/10	0.6756		
Média		0.5857		
Desvio padrão		0.0699		

Estratégia de treinamento	Acurácia
10-fold CV	0.6063
Hold-out 90/10	0.5879
Hold-out 80/20	0.5214
Hold-out 70/30	0.5842

Qual a estratégia de aprendizado está obtendo a melhor acurácia? Por que? Foi o mesmo resultado do k-NN e AD?

R = Para o Naive Bayes, a estratégia que obteve melhor resultado foi o 10-fold CV, com média de acurácia superior às demais estratégias. Sendo o modelo que a diferença entre as abordagens ficou mais nítida. Isso se deve ao fato de que o Naive Bayes é sensível à variação dos dados e, por ser um classificador probabilístico simples, ele se beneficia bastante da avaliação cruzada, que permite explorar toda a base durante o processo de treinamento e teste.

Porém, o Naive Bayes foi o modelo com pior desempenho geral quando comparado ao k-NN e à Árvore de Decisão.

Resultados com o MLP

Durante os experimentos com o MLP, não foi possível obter resultados devido a limitações computacionais.O modelo utilizado, MLPClassifier do Scikit-learn, não oferece suporte ao uso de GPU, sendo executado exclusivamente na CPU. Como estou trabalhando com imagens como entrada, isso impôs um custo computacional muito elevado, tornando o treinamento extremamente lento., inclusive ao utilizar bases menores (Como foi recomendado). Mesmo aplicando a **Base Reduzida 1**, construída com o objetivo de balancear todas as classes pela quantidade da classe minoritária. Vale destacar que os algoritmos anteriores, como Árvore de Decisão e k-NN, já apresentaram tempos de execução consideráveis, e o MLP, por sua natureza iterativa e maior complexidade, exigiu ainda mais recursos, o que impossibilitou a finalização dos experimentos. Nenhum cenário foi concluído com sucesso, o que inviabilizou a análise dos resultados para esse classificador.

Análise Comparativa

Nesta primeira análise, o aluno deve responder se a redução de dados teve impacto positivo ou negativo no desempenho dos modelos supervisionados? Para responder à pergunta, monte a seguinte tabela:

	K-NN	AD	NB	MLP
Base original	0.7569	0.7526	0.6087	_
Base reduzida 1	0.6129	0.5648	0.5561	_
Base reduzida 2	0.7345	0.7485	0.4981	_
Base reduzida 3	0.7624	0.7751	0.6800	_
Média geral	0.7167	0.7103	0.5857	_

R = A análise dos resultados mostra que a redução de instâncias (Base Reduzida 1) teve um impacto negativo no desempenho dos modelos, com queda significativa na acurácia para todos os algoritmos testados. Isso pode ser atribuído à natureza complexa dos dados sísmicos, onde a redução na quantidade de amostras prejudica a capacidade dos modelos de aprender padrões representativos, especialmente em um problema multiclasse.

Por outro lado, as reduções baseadas em atributos (Base Reduzida 2 e Base Reduzida 3) mostraram impacto positivo ou neutro, com a Base Reduzida 3 apresentando os melhores desempenhos gerais, superando até mesmo a base original em alguns casos. Isso sugere que, ao eliminar atributos redundantes ou irrelevantes, os dados se tornam mais interpretáveis para os modelos, o que facilita o processo de aprendizado.

A média geral reforça essa conclusão: as bases com redução de atributos mantêm ou melhoram a performance em relação à base original, enquanto a redução de instâncias leva a uma perda considerável de desempenho.

Obs: Não foi possível testar o MLP devido a limitações computacionais, conforme detalhado anteriormente.

Nesta segunda análise, o aluno deve responder qual modelo obteve o melhor desempenho na sua base de dados. Para tal, análise a tabela descrita na tabela anterior e escolha a base de dados com a melhor acurácia média e construa a seguinte tabela:

	K-NN	AD	NB	MLP
Melhor base	0.7624 (b3)	0.7751 (b3)	0.6800 (b3)	_

R = Considerando a base de dados com a melhor média de desempenho (Base Reduzida 3), o modelo que obteve o melhor resultado individual de acurácia foi a Árvore de Decisão (AD), alcançando 0.7751. Isso indica que o AD foi o mais eficaz em aprender os padrões dos dados reduzidos, seguido de perto pelo K-NN.

O modelo Naive Bayes teve desempenho inferior, mas ainda assim apresentou uma melhora significativa em relação às outras bases.

O modelo MLP não pôde ser testado devido a limitações computacionais.