SEQUENCE LISTING

	<110		Maxy Maxy	-	_	ings	Ltd.									
<120> Single-Chain Polype								ides	3							
	<130)>	0218us210													
	<150 <151		US 6 2000			7										
	<160)>	16													
	<170)>	Pate:	ntIn	vers	sion	3.1									
	<210 <211 <212 <213	. >	1 174 PRT Homo sapiens													
	<400)>	1													
	Thr 1	Pro	Leu	Gly	Pro 5	Ala	Ser	Ser	Leu	Pro 10	Gln	Ser	Phe	Leu	Leu 15	Lys
	Cys	Leu	ı Glu	Gln 20	Val	Arg	Lys	Ile	Gln 25	Gly	Asp	Gly	Ala	Ala 30	Leu	Gln
	Glu	Lys	Leu 35	Cys	Ala	Thr	Tyr	Lys 40	Leu	Cys	His	Pro	Glu 45	Glu	Leu	Val
	Leu	Leu 50	ı Gly	His	Ser	Leu	Gly 55	Ile	Pro	Trp	Ala	Pro 60	Leu	Ser	Ser	Cys
	Pro 65	Ser	Gln	Ala	Leu	Gln 70	Leu	Ala	Gly	Сув	Leu 75	Ser	Gln	Leu	His	Ser 80
	Gly	Leu	ı Phe	Leu	Tyr 85	Gln	Gly	Leu	Leu	Gln 90	Ala	Leu	Glu	Gly	Ile 95	Ser
	Pro	Glı	ı Leu	Gly 100	Pro	Thr	Leu	Asp	Thr 105	Leu	Gln	Leu	Asp	Val 110	Ala	Asp
	Phe	Ala	Thr		Ile	Trp	Gln	Gln 120	Met	Glu	Glu	Leu	Gly 125	Met	Ala	Pro
	Ala	Let 130	ı Gln	Pro	Thr	Gln	Gly 135	Ala	Met	Pro	Ala	Phe 140	Ala	Ser	Ala	Phe

150 155 145 Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 165 <210> 2 63 <211> <212> DNA <213> Saccharomyces cerevisiae <400> 2 atgaaattga aaactgttag atctgctgtt ttgtcttctt tgtttgcttc tcaagttttg 60 63 ggt ļ. <210> <211> 126 <212> DNA Ų <213> Artificial Sequence = ·D <220> <400> 3 **4** caaccaattg atgatactga atctcaaact acttctgtta atttgatggc tgatgatact 60 - L gaatotgott tigotacica aactaatici ggiggittigg algitigg titigatatog 120 ļ. 126 atggcc 1 <210> <211> 522 <212> DNA <213> Artificial Sequence <220> DNA encoding G-CSF copy 1 in the single chain G-CSF dimer <223> <400> 4 actocattgg gtocagotto ttotttgcca caatottttt tgttgaaatg tttggaacaa 60 gttagaaaaa ttcaaggtga tggtgctgct ttgcaagaaa aattgtgtgc tacttataaa 120 ttgtgtcatc cagaagaatt ggttttgttg ggtcattctt tgggtattcc atgggctcca 180 ttqtcttctt gtccatctca agctttgcaa ttggctggtt gtttgtctca attgcattct 240 ggtttgtttt tgtatcaagg tttgttgcaa gctttggaag gtatttctcc agaattgggt 300

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe

360

ccaactttgg atactttgca attggatgtt gctgattttg ctactactat ttggcaacaa

	atggaagaat tgg	gtatggc tcc	agctttg c	aaccaactc	aaggtgctat	gccagctttt	420					
	gettetgett tte	aaagaag agc	tggtggt g	ttttggttg	cttctcattt	gcaatctttt	480					
	ttggaagttt ctt	atagagt ttt	gagacat t	tggctcaac	ca		522					
	<210> 5 <211> 531 <212> DNA <213> Artific	ial Sequenc	e									
	<220> <223> DNA enc	oding G-CS	copy 2 i	n the sing	gle chain G	-CSF dimer						
	<400> 5 acccctctgg gcc	cggccag cag	gtetgeet e	cagagttttt	tactgaaatg	cttagaacag	60					
-	gtgcgtaaaa tcc	agggcga tg	gagaggaa a	ctgcaggaaa	aactgtgcgc	gacctataaa	120					
	ctgtgccatc ctg	gaagaact ggi	cctgtta g	ggccatagct	taggcatccc	gtgggcgcct	180					
	ctgagtagct gcc	cgagtca gg	ccctgcag c	ctggccggct	gcctgagtca	gttacatagt	240					
He he had any with the hand had been	ggcttatttt tat	atcaggg ct	tactgcag <u>c</u>	gcgttagaag	gcattagtcc	ggaactgggc	300					
	ccgaccctgg ata	iccttaca gt	tagatgtc g	gcggattttg	ccaccaccat	ttggcagcag	360					
	atggaagaat tag						420					
	gcgagtgcgt ttc						480					
THE REST	ctggaagtga gtt						531					
2000	<210> 6 <211> 348 <212> PRT <213> Artificial Sequence											
	<220> <223> Single chain G-CSF dimer polypeptide											
	<400> 6											
	Thr Pro Leu G	ly Pro Ala 5	Ser Ser L	eu Pro Gln 10	Ser Phe Le	eu Leu Lys 15						
	Cys Leu Glu G		Lys Ile G 2		Gly Ala Al							
	Glu Lys Leu C	ys Ala Thr	Tyr Lys L	eu Cys His	Pro Glu Gl 45	lu Leu Val						

Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys 50 55

Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser 65 70 75 80

Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser 85 90 95

Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp 100 105 110

Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro 115 120 125

Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe 130 135 140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe 145 150 155 160

Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro Thr Pro 165 170 175

Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys Cys Leu 180 185 190

Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys 195 200 205

Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val Leu Leu 210 215 220

Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser 225 230 235

Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly Leu 245 250 255

Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser Pro Glu 260 265 270

Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp Phe Ala 275 Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu 290 295 Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe Gln Arg 305 310 Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe Leu Glu 325 330 Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro 340 14 <210> 7 <211> 90 <212> DNA <213> Homo sapiens <400> 7 atggctggac ctgccaccca gagccccatg aagctgatgg ccctgcagct gctgctgtgg 60 II. # cacagtgcac tctggacagt gcaggaagcc 90 1 þå <210> 8 <211> 522 <212> DNA <213> Artificial Sequence ļ.Ł <220> DNA encoding single-chain G-CSF copy 1 (codon usage optimized for <223> expression in CHO cells) <400> 8 actecattgg gtccagette ttetttgeea caatettttt tgttgaaatg tttggaacaa 60 gttagaaaaa ttcaaggtga tggtgctgct ttgcaagaaa aattgtgtgc tacttataaa 120 ttgtgtcatc cagaagaatt ggttttgttg ggtcattctt tgggtattcc atgggctcca 180 ttgtcttctt gtccatctca agctttgcaa ttggctggtt gtttgtctca attgcattct 240 ggtttgtttt tgtatcaagg tttgttgcaa gctttggaag gtatttctcc agaattgggt 300 ccaactttgg atactttgca attggatgtt gctgattttg ctactactat ttggcaacaa 360 atggaagaat tgggtatggc tccagctttg caaccaactc aaggtgctat gccagctttt 420

480

gcttctgctt ttcaaagaag agctggtggt gttttggttg cttctcattt gcaatctttt

```
ttggaagttt cttatagagt tttgagacat ttggctcaac ca
```

522

```
<210> 9
   <211> 6
   <212> PRT
   <213> Artificial Sequence
   <220>
   <223> tag
   <400> 9
   His His His His His
  <210> 10
  <211> 8
<212> PRT c213> Artificial Sequence
<213> Art:
<220>
<223> tag
Į.
400> 10

Met Lys His His His His His His
5
14
<220>
  <223> tag
  <400> 11
  Met Lys His His Ala His His Gln His His
  <210> 12
  <211> 14
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> tag
  <400> 12
  Met Lys His Gln His Gln His Gln His Gln His Gln
```

```
<210> 13
   <211> 15
   <212> PRT
   <213> Artificial Sequence
   <220>
   <223> tag
   <400> 13
   Met Lys His Gln His Gln His Gln His Gln His Gln Gln
   <210> 14
   <211> 10
   <212> PRT
<= <213> Artificial Sequence
  <220>
<220>
<223> tag

<400> 14
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
, ii
210> 15
211> 8
212> PRT
2124 <213> Artificial Sequence
<220>
<223> tag
   <400> 15
   Asp Tyr Lys Asp Asp Asp Lys
   <210> 16
   <211> 9
   <212> PRT
   <213> Artificial Sequence
   <220>
   <223> tag
   <400> 16
   Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
```