1. Using basic calculations, prove that the maximum ionisation occurs at optical depth unity. Assume an isothermal atmosphere (i.e. $n(z)=n_0 \exp(-z/H)$) where H can be assumed constant) and use the definition of optical depth, tau= sigma X integral (n *dz). Note that the formula for n(z) allows for a very covenient representation of the integral or derivative of n(z) with respect to z. You'll need that

$$I(s_{\lambda}) = \operatorname{solar flux}$$

$$\sigma^{a} = \operatorname{absorption crosssection}$$

$$The decrease intensity after it travels an incremental distance:$$

$$dI(s_{\lambda}) = -I(s_{\lambda})n(z)\sigma^{a}ds_{\lambda}$$

$$\chi \Rightarrow \operatorname{Solar Zenith angle}$$

$$ds_{\lambda} = -dz \sec \chi$$

$$dI(s_{\lambda}) = -I(z)n(z)\sigma^{a} \sec \chi dz$$

$$I_{(z)} = \int_{z}^{\infty} \frac{dI(z)}{I(z)} = \int_{z}^{\infty} \sigma^{a} \sec \chi n(z) dz$$

$$\ln\left(\frac{I_{\infty}}{I(z)}\right) = \sigma^{a} \sec \chi \int_{z}^{\infty} n(z) dz = \sec \chi \tau$$

$$I(z) = I_{\infty} \exp\left(-\tau \sec \chi\right)$$

$$\operatorname{Optical Depth:} \tau = \sigma^{a} \int_{z}^{\infty} n(z) dz$$

$$\operatorname{Isothermal atmosphere:} n(z) = n_{0} \exp\left(\frac{-(z-z_{0})}{H}\right)$$

$$\ln\left(\frac{I_{\infty}}{I(z)}\right) = \sigma^{a} \sec \chi \int_{z}^{\infty} n_{0} \exp\left(\frac{-(z-z_{0})}{H}\right) dz$$

$$= \sigma^{a} \sec \chi H n_{0} \exp\left(\frac{-(z-z_{0})}{H}\right)$$

$$= \sigma^{a} \sec \chi H n(z)$$

$$I(z) = I_{\infty} \exp\left(-\sigma^{a} \sec \chi H n(z)\right)$$

$$\tau(z) = \sigma^{a} H n(z)$$

Photoionisation:
$$P_c(z,\chi) = I(z,\chi)\beta\sigma^a n(z)$$
 $\beta = probability of ionisation$
 $P_c(z,\chi) = I_\infty \exp(-\tau(z) \sec \chi)\beta\sigma^a n(z)$

Maximum ionisation: $\frac{dP_c}{dz} = 0$

$$\frac{dP_c}{dz} = I_\infty \beta\sigma^a [\exp(-\tau(z) \sec \chi) n'(z) - n(z) \exp(-\tau(z) \sec \chi) \sec \chi \tau'(z)] = 0$$

$$\Rightarrow n'(z) - n(z) \sec \chi \tau'(z) = 0$$
 $[n'(z) - n(z) \sec \chi \tau'(z)] = 0$

$$\tau(z) = \sigma^a H n(z) \Rightarrow \tau'(z) = \sigma^a H n'(z) (assuming H constant)$$

$$\frac{\tau'(z)}{\sigma^a H} - n(z) \sec \chi \tau'(z) = 0$$

$$\tau'(z) - \sigma^a H n(z) \sec \chi \tau'(z) = 0$$

$$\tau'(z) (1 - \sigma^a H n(z) \sec \chi) = 0$$

$$\tau'(z) (1 - \tau(z) \sec \chi) = 0$$

$$\tau(z) \sec \chi = 1$$
For $\sec \chi = 1$: overhead $\sin \tau(z) = 1$ for maximum ionisation

2. Having shown that tau=1, substitute the atmospheric density variation according to the above formula and derive a value for the appropriate cross-section for maximum absorption as a function of altitude (cover the range from 50- 120 km)

Assuming all the energy absorbed goes into ionisation: $\tau(z)$ sec $\chi=1$

$$\sigma^{a}H n(z) \sec \chi = 1$$

$$n_{0} \exp(\frac{-(z-z_{0})}{H}) = \frac{1}{\sigma^{a}H \sec \chi}$$

$$-\frac{(z-z_{0})}{H} = \ln\left(\frac{1}{H n_{0}} \frac{1}{\sigma^{a} \sec \chi}\right)$$

$$z = z_{0} + H \ln\left(H n_{0} \sigma^{a} \sec \chi\right)$$

$$Also:$$

$$n_{0} \exp(\frac{-(z-z_{0})}{H}) = \frac{1}{\sigma^{a}H \sec \chi}$$

$$\sigma^{a} = \frac{1}{H \sec \chi n_{0} \exp\left(\frac{-(z-z_{0})}{H}\right)}$$

$$\sigma^{a} = \frac{1}{H n_{0} \sec \chi} \exp\left(\frac{z-z_{0}}{H}\right)$$

3. Assume pure N_2 absorption (for mars you would use CO_2), use the Henke curves, convert the cross-sections profile to energy, and hence wavelength of incident photon and present again as a function of altitude. This should give a profile of photon wavelength vs altitude where maximum absorption occurs. Then answer- what altitude corresponds to maximum absorption of the Fe XV line at 1.9 A?

Here I used this formula obtained from the previous part:

$$z=z_0+H\ln\left(Hn_0\sigma^a\sec\chi\right)$$

Fe XV line at 1.9 A, the altitude comes out to be 65 km. From Henke, I got the cross-section to be 8.46E-22 cm²

- 4. Then you can answer the following: what sampling for the cross-section corresponds to a grid vertical resolution of:
- a. 10 km
- b. 1 per 7 km scale height
- c. 2 per 7 km scale height

Let the vertical resolution be ΔV

$$\begin{split} &z_2 - z_1 = H \left(\ln \left(H \, n_0 \, \sigma_2^a (\lambda_2) \operatorname{sec} \chi \right) - \ln \left(H \, n_0 \, \sigma_1^a (\lambda_1) \operatorname{sec} \chi \right) \right) \\ &z_2 - z_1 = H \ln \left(\frac{\sigma_2^a (\lambda_2)}{\sigma_1^a (\lambda_1)} \right) \\ &\left| \frac{\sigma_2^a (\lambda_2)}{\sigma_1^a (\lambda_1)} \right| = \exp \left(\frac{z_2 - z_1}{H} \right) \\ &\left| \frac{\sigma_2^a (\lambda_2)}{\sigma_1^a (\lambda_1)} \right| = \exp \left(\frac{\Delta V}{H} \right) \\ &\left| \frac{\sigma_2^a (\lambda_2)}{\sigma_1^a (\lambda_1)} \right| = \exp \left(\frac{\Delta V}{H} \right) \end{split}$$

Assuming scale height H=7 km

 $a.\Delta V = 10 \, km$

$$\left| \frac{\sigma_2^a(\lambda_2)}{\sigma_1^a(\lambda_1)} \right| = \exp\left(\frac{10}{7}\right) = 4.17$$

 $b.1 cross-section per 7 km scale height: \Delta V = 7 km$

$$\left| \frac{\sigma_2^a(\lambda_2)}{\sigma_1^a(\lambda_1)} \right| = \exp\left(\frac{7}{7}\right) = e^1 = 2.7$$

c.2 cross — sections per 7 km scale height: $\Delta V = 3.5$ km

$$\left| \frac{\sigma_2^a(\lambda_2)}{\sigma_1^a(\lambda_1)} \right| = \exp\left(\frac{3.5}{7}\right) = e^{0.5} = 1.6$$

Here I have added all the sampling of the cross-sections data for the O_2 and N_2 for a vertical resolution of 5km, calculated using the above derived relationship.

O2 data for Vertical resolution of 5km						
calculated cross- section (cm2)	H+F cross-section	H+F wavelength (A)	H+F energy (eV)	Altitude(Tau=1) (km)		
8.50E-24	8.5024E-024	0.4	30992.5	31		
1.74E-23	1.44541E-023	0.5	24794	36		
3.55E-23	2.56666E-023	0.6	20661.7	41		
7.25E-23	7.91786E-023	0.8	15496.2	46		
1.48E-22	7.91786E-023	0.8	15496.2	51		
3.02E-22	3.04492E-022	1.3	9536.15	56		
6.18E-22	5.8454E-022	1.5	8264.67	61		
1.26E-21	1.53575E-021	2.1	5903.33	66		
2.58E-21	2.62512E-021	2.5	4958.8	71		
5.26E-21	6.3768E-021	3.4	3646.18	76		
1.08E-20	1.19034E-020	4.2	2951.67	81		
2.20E-20	2.52946E-020	5.4	2295.74	86		
4.49E-20	3.51255E-020	6.1	2032.3	91		
9.17E-20	8.5024E-020	8.3	1493.61	96		
1.87E-19	1.9E-019	33.74	367.43	101		
	0.045.040					

47.7

259.9

106

3.82E-19

3.84E-019

N2 data for Vertical resolution of 5km						
calculated cross- section (cm2)	H+F cross-section	H+F wavelength (A)	H+F energy (eV)	Altitude(Tau=1) (km)		
4.54E-24	4.5357E-24	0.4	30992.5	31		
9.26E-24	7.76884E-24	0.5	24794	36		
1.89E-23	1.3863E-23	0.6	20661.7	41		
3.86E-23	1.3863E-23	0.8	15496.2	46		
7.90E-23	4.32171E-23	0.8	15496.2	51		
1.61E-22	1.65611E-22	1.3	9536.15	56		
3.29E-22	3.18662E-22	1.5	8264.67	61		
6.73E-22	5.1172E-22	1.8	6887.22	66		
1.37E-21	1.45608E-21	2.5	4958.8	71		
2.81E-21	3.57739E-21	3.4	3646.18	76		
5.74E-21	6.79192E-21	4.2	2951.67	81		
1.17E-20	9.95528E-21	4.7	2637.66	86		
2.39E-20	2.07479E-20	6.1	2032.3	91		
4.89E-20	2.07479E-20	8.3	1493.61	96		
9.99E-20	9.62964E-20	10.4	1192.02	101		
2.04E-19	2.09E-19	47.7	259.9	106		