

FACULTATEA DE AUTOMATICĂ ȘI CALCULATOARE
DEPARTMENTUL CALCULATOARE

# Reverse proxy pentru prevenirea utilizatorilor de Tor si a atacurilor SQLI

License Thesis

Absolvent **Alexandru Daniel Vid** 

Conducător
Your Supervisor's scientific title and name



#### OF CLUJ-NAPOCA

# FACULTATEA DE AUTOMATICĂ ȘI CALCULATOARE DEPARTMENTUL CALCULATOARE

DECANUL FACULTĂȚII Prof. dr. ing. Liviu MICLEA DIRECTOR DEPARTAMENT Prof. dr. ing. Rodica POTOLEA

# Reverse proxy pentru prevenirea utilizatorilor de Tor si a atacurilor SQLI

### Lucrare de licență

| 1. | Absolvent: Alexandru Daniel Vid                                                                                                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Conducător: Your Supervisor's scientific title and name                                                                                                             |
| 3. | Conținutul lucrării: Pagina de prezentare, aprecierile coordonatorului, titlul capitolului 1, titlul capitolului 2,, titlul capitolului n, bibliografie, anexe, CD. |
| 4. | Locul documentării: UTCN, Cluj-Napoca                                                                                                                               |
| 5. | Consultanți: Donald Knuth, Leslie Lamport, others                                                                                                                   |
| 6. | Data emiterii temei:                                                                                                                                                |
| 7. | Data predării:                                                                                                                                                      |
|    |                                                                                                                                                                     |

Semnătură Conducător Your Supervisor's scientific title and name Semnătură Absolvent Alexandru Daniel Vid



# FACULTATEA DE AUTOMATICĂ ȘI CALCULATOARE DEPARTMENTUL CALCULATOARE

## Declarție pe proprie răspundere privind autenticitatea lucrării de liceță

Subsemnatul Alexandru Daniel Vid, legitimat cu CI seria XH numărul 866549, CNP 1950417055056, autorul lucrării Reverse proxy pentru prevenirea utilizatorilor de Tor si a atacurilor <math>SQLI elaborată în vederea susținerii examenului de finalizare a studiilor de masterat la Facultatea de Automatică și Calculatoare, Departamentul Calculatoare, Specializarea Calculatoare din cadrul Universității Tehnice din Cluj-Napoca, sesiunea Iulie a anului univeristar 20XX/20XX, declar pe proprie răspundere, că această lucrare este rezultatul propriei mele activități intelectuale, pe baza cercetărilor mele și pe baza informatiilor obținute din surse care au fost citate în textul lucrării și în bibliografie.

Declar că această lucrare nu conține porțiuni plagiate, iar sursele bibliografice au fost folosite cu respectarea legislației române și a convențiilor internaționale privind drepturile de autor.

Declar, de asemenea, că această lucrare nu a mai fost prezentată în fața unei alte comisii de examen de licență sau disertație.

In cazul constatării ulterioare a unor declarații false, voi suporta sancțiunile administrative, respectiv, anularea examenului de licență.

Cluj-Napoca Semnătură data Absolvent

#### Rezumat

Reverse proxy pentru prevenirea utilizatorilor de Tor si a atacurilor SQLI incapsuleaza trasaturile normale ale unui reverse proxy oferind in plus protectie impotriva posibilelor atacuri de tipul SQL injection si blocarea ip-urilor utilizate de Tor, catre un server HTTP/HTTPS. Detectia atacurilor de tipul SQL injection se realizeaza prin analiza URI-urilor trimise de catre clienti, in relatie cu un model antrenat anterior folosind machine learning, astfel aceste request-uri nici nu vor ajunge la server, iar blocarea utilizatorilor de Tor se realizeaza prin folosirea unei liste de ip-uri(blacklist). Ambele implementari asigura adaugarea cu usurinta de noi detectii, lista de ip-uri blocate fiind acesibila utilizatorului atat pentru vizualizare cat si pentru editare.

# Cuprins

| Li       | stă d | le tabele                                   | iii          |
|----------|-------|---------------------------------------------|--------------|
| Li       | stă d | le figuri                                   | $\mathbf{v}$ |
| 1        | Intr  | roducere                                    | 1            |
|          | 1.1   | Context                                     | 1            |
|          | 1.2   | Motivație                                   | 2            |
|          | 1.3   | Structura lucrării                          | 3            |
| <b>2</b> | Obi   | ective și specificații                      | 5            |
|          | 2.1   | Obiective                                   | 5            |
|          | 2.2   | Specificații                                | 6            |
|          |       | 2.2.1 Specificatii functionale              | 7            |
|          |       | 2.2.2 Specificații non-funcționale          | 8            |
| 3        | Stu   | diu bibliografic                            | 9            |
|          | 3.1   | Abordări similare                           | 9            |
|          | 3.2   | Tehnici/Tehnologii/Surse folosite           | 14           |
| 4        | Fun   | adamente teoretice                          | 17           |
|          | 4.1   | Reverse proxy                               | 17           |
|          | 4.2   | Support vector machine                      | 18           |
|          | 4.3   | SQL injection                               | 19           |
|          | 4.4   | Adresele retelei Tor                        | 20           |
|          | 4.5   | Sistem de prevenire a intruziunilor         | 21           |
| 5        | Ana   | alysis and Design                           | 23           |
|          | 5.1   | Examples: lists, figures, tables, equations | 23           |
| 6        | Imp   | plementation Details                        | 27           |

| 7            | Tests and Results                               | 29 |
|--------------|-------------------------------------------------|----|
|              | 7.1 Functional Tests                            | 29 |
|              | 7.2 Performance Tests                           | 29 |
| 8            | User Manual                                     | 31 |
| 9            | Conclusions                                     | 33 |
| Bi           | bliografie                                      | 35 |
| $\mathbf{A}$ | Diverse anexe                                   | 39 |
| В            | Demonstrații matematice detaliate (dacă există) | 41 |
| $\mathbf{C}$ | Pseudo-cod sau cod (dacă există)                | 43 |
| D            | Articole publicate                              | 45 |

# Listă de tabele

| <b>-</b> 1 | 3.T 1.    | 1 ( 1 1 D 1)  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | <u> </u> |   |
|------------|-----------|---------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----------|---|
| 5.I        | Nonlinear | Model Results |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 24       | Ŧ |

# Listă de figuri

| 1.1               | Incapsula diagrama reverse proxy            | 1              |
|-------------------|---------------------------------------------|----------------|
| 2.1               | Cutia neagra a sistemului                   | 7              |
| 3.1<br>3.2<br>3.3 | Administrarea securitatii unei aplicatii    | 10<br>13<br>14 |
| 4.1<br>4.2        | mul de antrenare.                           | 17<br>19       |
| 4.3<br>4.4<br>4.5 | Exemplu de atac realizat prin SQL injection | 20<br>20<br>21 |
| 5 1               | Numele figurii                              | 24             |

# Capitolul 1

### Introducere

#### 1.1 Context

In general, tentativele da expluatarea vulnerabilitatilor unei aplicatii vin sub forma de input catre aceasta, generate de catrea un atacator care intentioneaza sa intrerupa activitatea sau sa preia controlul aplicatiei. Un sitem de prevenire a intruziunilor (IPS) are rolul de a sta intre aplicatie si clientii acesteia, si de a prevenie expluatarea unor astfel de vulnerabilitati.

Prin folosirea unu reverse proxy pentru accesarea resurselor unui server de catre clineti, poate sa aduca numeroase beneficii procesului de administrare a serverului [1]. Spre deosebire de un forward proxy care e un intermediar puntru un o serie de clienti prestabiliti, pentru a accesa orice server, un reverse proxy e un intermediar pentru o serie de servere prestabilite pentru a fi accesate de orice client. Unul dintre avantajele folosirii unui reverse proxy este centralizarea intregului trafic al serverului/serverelor intr-un singur punct de acces, aceasta fiind si principala caracteristica expluatata de acest proiect pentru filtrarea ip-urilor nedorite(in cazul nostru cele utilizate de reteaua Tor) si verificarea URI-urilor pentru posibile atacuri de SQL injection.



Figura 1.1: Incapsula diagrama reverse proxy

Figura 1.1 ilustreaza modul de functionare al unui reverse proxy in relatie cu serverele aferente si posibili clienti.

Conform topului alcatuit de fundatia OWASP cu cele mai mari 10 riscuri ale aplicatiilor in 2017 [2], SQL injection e considerat a fi cea mai mare vulnerabilitate a aplicatiilor web. Acest lucru se datoreaza fatului ca mare parte din aceste aplicatii se bazeaza pe procesearea continutului furnizat de catre utilizatori. Atacurile de tipul SQL injection costau in faptul ca datele furnizate de catre utilizator sunt introduse in interogari SQL, unde acestea sunt tratate ca si cod executabil [3]. Aplicatiile web vulnerabile la sqli injection pot permite unor utilizatori neautorizati sa faca interogari intr-o baza de date asupra unor date la care nu ar avea acces in mod normal. Folosind acest tip de comportament neautorizat, un astfel de utilizator poate sa obtina accesul la informatii sensibile ale clientilor, dar si a administratorilor aplicatiei, precum credentiale sau date personale. Aceasta vulnerabilitate poate sa duca la furt de identitate sau frauda.

In cazul retelei Tor, aceasta le permite utilizatorilor sa navigheze pe internet anonim. Anonimitatea online este importanta insa in multe cazuri aplicatiile web trebuie sa stie cine se conecteaza la aceasta pentru a le putea determina intentiile. Numele de Tor vine de la "the onion router" care sugereaza modul de operare al retelei. Fiecare participant la retea devine un nod de transfer, iar traficul retelei traverseaza o serie de astfel noduri pana sa ajunga la nodul de iesire ce creaza conexiunea cu destinatia dorita. Pachetele sunt criptate in mai multe "straturi", fiecare nod decriptand un singur strat de unde poate afla doar destinatia nodului urmator. Cand pachetul ajunge la ultimul nod, acesta trimite continutul la destinatie fara sa dezvalui identitatea sursei. Aceasta anonimitate usearaza desfasurarea atacurilor online. Conform datelor din reteaua organizatiei CloudFlare 94% din traficul provenit din reteaua Tor este alcatuit din request-uri automate de origine malitioasa [4].

### 1.2 Motivație

In piata actuala exista multe sitem de prevenire a intruziunilor ce ofera atat caracteristicile unui reverse proxy, cat si cele de securitate. Aceste caracteristici sunt oferite fie ca si produse individualea, fie ca si produse ce le incorporeaza pe ambele. Cu toate acestea, produsele de acest gen sunt in general scumpe, au o logica mascata de detectarea a posibilelor probleme de securitate si sunt greu de inteles si de configurat de catre utilizator dupa propiile nevoi.

Prin oferirea utilizatorilor posibilitatea de a intelege si modifica modul de functionare a unui astfel de sistem poate rezulta in sisteme mult mai eficiente si rapide, dedicate pentru preferintele si nevoile aplicatiei fiacarui utilizator in parte. Spre exemplu, un utilizator poate sa decida ca nu are nevoie de funcionalitaile de detectie impotriva atacurilor de tip SQL injection pentru o anumita aplicatie, intrucat aceasta nu prezinta vulnerabilitati din acest punct de vedere, nefolosind o arhitectura bazata pe baze de date. In cazul acesta prin eliminarea unui astfel de modul, se elimina si verificarile aferente asupra reques-urilor clientilor, imbutatatind astfel performantele sistemului.

Reverse proxy pentru prevenirea utilizatorilor de Tor si a atacurilor SQLI ofera un

sistem configurabil dupa preferintele utilizatorilor. Utilizatorul poate configura detectia bazata pe analiza request-ului primit de la client, acesta poate sa aleaga care module sa fie folosite pentru detectie, permitand si eventuala adaugare de noi module(cat timp acestea respecta anumite conditii de structura), meniurile din interfata utilizator fiind generate in mod dinamic in functie de modelele prezente. Utilizator poate, de asemenea sa configureze si lista ip-urilior blocate, permitandu-i-se sastearga din cele existente, respectiva sa aduge unele noi, dupa bunul plac.

#### 1.3 Structura lucrării

In aceasta sectiune se prezinta structura lucrarii pe capitole si o scurta descriere a continutului acestora:

Primul capitol 1, prezinta o scurta introducere despre proiect, contextul acestuia si motivatia pentru implementarea sistemului propus.

Capitolul 2 prezinta obiectivele lucrarii, specificatiile sitemului, motivand deciziile luate in implementarea sistemului, cerintele functionale si nonfunctionale necesare implementarii sistemului.

Capitolul 3 descrie alte abordari similare ale problemelor tratate de proiectul propus, prin evidentierea asemanarilor si diferentelor dintre acestea si se explica tehnologiile si metodele folosite de proiect.

Capitolul 4 sunt sunt evidentiate si explicate pe scurt aspectele teoretice pe care se bazeaza proiectul.

# Capitolul 2

# Obiective și specificații

Acest capitol prezinta obiectivele lucrarii, motivand deciziile luate in implementarea sistemului, specificatiile sitemului, cerintele functionale si nonfunctionale necesare implementarii sistemului.

#### 2.1 Objective

Elaborarea unor masuri de securitate impotriva anumitor tipuri de atacuri sau dezvoltarea unei logici de filtrare a clientilor serviti de catre aplicatie este posibila si in partea de implementare a serverului, cea ce ar putea oferi si o eventuala crestere in performantele aplicatiei, eliminand astfel posibile interceptari suplimentare si validari ale traficului. Insa o astfel de implementare presupune o arhitectura mult mai complexa pentru partea de server si individual cunostinte avansate despre securitate, posibilele vulnerabilitati la care acesta poate sa fie predispus, precum si modalitati de combatere ale acestora.

O solutie mult mai simpla la aceasta problema este folosirea unui modul care sa implementeze aceste functionalitati separat. Mare parte din produsele de pe piata, ce indeplinesc aceste caracteristici sunt destul de scumpe si nu ofera foarte multa libertate din punctul de vedera al configurari securitatii dorite de catre utilizator asupra produsului sau. In cazul ip-urilor blocate, multe aplicatii nu ofera liberatatea utilizatorilor de a edita listele de referinta ale detectiilor, acetea fiind actualizate automat conform unor date interne, iar eventualele abateri de la aceste reguli se realizeaza prin adaugarea de exceptii. In cea ce priveste validarea request-urilor primite de la clineti, mare parte din aceste sisteme nu ofera o protectie configurabila. Cum sa precizat mai sus, acest tip de sisteme pot sa introduca mici intarzieri datoreate validarilor suplimentare supra request-urilor primite de la clientii produsului, insa in unele cazuri anumite validari sunt facute inutil intrucat produsele respective nuputand sa prezinte vulnerabilitati de acel fel.

Reverse proxy pentru prevenirea utilizatorilor de Tor si a atacurilor SQLI are obiectivul de a oferi o componenta gratuita cat mai usor de integrat si de configurat de catre utilizator dupa preferintele produsului sau, care sa facilizeze o protectie cat mai eficienta

cu suport pentru imbunatatiri. Sistemtul trebuie sa fie usor de instalat si de configurat, oferindu-i utilizatorului o interfata clara, sugestiva si usor de folosit prin care sa interactioneze cu acesta. Detectiile sistemului trebuie sa fie activabile, utilizator putand alege in momentul pornirii sistemului ce vulnerabilitati sa fie tratate de acesta. Lista ip-urilor blocate trebuie sa fie usor de vizualizat si editabila, permitand utilizatorului sa isi impuna cu usurinta propiile reguli asupra modului de functionare a sistemului. Pentru realizarea detectiei impotriva atacurilor de tipul SQL injection se impune prelucrarea unor date reale pentru antrenarea modelului de machine learning. Prin folosirea unor date provenite din atacuri reusite sau tentative de atacuri reale, se poate crea o precizie mult mai buna pentru o clasificarea cat mai precisa a posibilelor atacuri. Sistemul trebuie de asemenea sa fie construit modular pentru a permite realizarea de modificari cu usurinta, iar incarcarea detectiilor realizata dinamic, permitand astfel ca adaugarea de noi detectii sa fie cat mai simpla.

### 2.2 Specificații

Reverse proxy pentru prevenirea utilizatorilor de Tor si a atacurilor SQLI trebuie sa fie capabil sa serveasca ca si un reverse proxy pentru un server, sa blocheze atacurile de tip SQL injection asupra lui si sa nu permita conectarea clientilor cu ip-uri utilizate de reteaua tor la acesta.

Reverse proxy pentru prevenirea utilizatorilor de Tor si a atacurilor SQLI va procura utilizatorului o interfata grafica prietenoasa, usor de folosit, prin intermediul careia, acesta va putea sa seteze mediul de rulare al sistemului. Interfata va permite setarea specificatiilor server-ului, adresa si portul pe care acesta accepta conexiuni, dar si a interfetelor prin intermediul carora se pot realiza conexiuni la server.

In interfata grafica se vor afisa si eventualele detectii realizate de produs. Introfereastra separata utilizatorul trebuie sa aiba posibilitatea sa vizualizeze toate deciziile sistemului si motivele din spatele deciziilor, permitand astfel acestuia sa inteleaga modul de functionare, respectiv sa raporteze sau sa modifice sistemul(in cazurile in care i se ofera aceasta posibilitate) cand comportamentul acestuia nu se afla in conformitate cu nevoile sau cerintele sale.

In momentul configurarii modului de rulare al sistemului, utilizatorul trebui sa aiba si posibilitatea de a impune ce module de securitate sa fie folosite de acesta in timpul rularii. Pentru a eficientiza cat mai mult sitemul, utilizatorul poate sa aleaga care sunt modulele de interes pentru propria aplicate, evitand astfel validarea unor evenimente ce nu prezinta interes pentru acesta.

In timpul rularii sistemul va asculta pe interfetele setate de catre utilizator pentu posibile cereri de conexiuni la server-ul setat. In functie de modulele alese in momentul porniri, acesta va verifica sau nu adresa clientului validand astfel conexiunea. In cazul in care adresa clientului se afla pe lista neagra de adrese, conexiunea acestuia este refuzata, iar aplicatia inregistreaza aceasta decizie in fereastra de evenimente vizibila utilizatorului.

Dupa ralizarea conexiunii la server, fiecare request trimis de clienti catre acesta va fi evaluat conform modulelor configurate. Daca reqesturile sunt considerate ca fiind "curate" acestea sunt trimise mai departe la server. In caz contrar, clientului i se intoarce un cod de eroare, iar reqestul nu va mai fi trimis mai departe catre server, de asemenea inregistrand evenimentul in fereastra de evenimente vizibila utilizatorului.



Figura 2.1: Cutia neagra a sistemului

Figura 2.1 prezinta cutia neagra a sistemului propus.

#### 2.2.1 Specificații funcționale

Sistemul trebui sa prezinte o interfata grafica usor de folosit de catre utilizator si sa fie capabil sa redirectioneze traficul interceptat catre un anumit server, clasificand si filtrand traficul malitios. Pentru a atinge obiectivele proiectului, urmatoarele cerinte functionale trabui indeplinite:

- Sa realizere conexiunea la un server HTTP/HTTPS si sa redirectioneze traficul primit catre acesta.
- Sa intercepteze traficul venit pe o anumita interfata si port prestabilit.
- Sa prelucreze request-urile primite de la clineti intr-un format specific clasificatorului de SQL injection.
- Sa nu redirectioneze reqesturile clasificate ca si SQL injection.
- Sa blocheze conectarea clientilor ce folosesc ip-uri clasificate ca ip-uri de Tor.
- Sa permita utilizatorului sa editez si sa vizualizeze lista ip-urilor de Tor.
- Sa prezinte in interfata grafica toate interventiile rezlizate asupra traficului(blocari de conexiuni sau de request-uri).
- Sa permita utilizatorului sa configureze modul de operare al sistemului.

### 2.2.2 Specificații non-funcționale

Sistemul trebuie, de asemenea, să aibă următoarele caracteristici non-funcționale pentru a realiza obiectivele specificate:

- Sa fie usor de instalat si de folosit pentru orice utilizator, oricat de neexperimentat.
- Sa poata intercepta traficul de pe orice/oricate interfete disponibile.
- Sa poata rula pe orice sistem de operare Windows cu Python2 instalat.
- $\bullet$  Sa aiba o rata de blocare de 100% a ip-urilor de pe lista neagra, iar in cazul detectiei de SQL injection sa nu aiba detectii false pozitive mai mari 2-3% si o acuratete generala de peste 90%

# Capitolul 3

# Studiu bibliografic

In acest capitol sunt prezentate alte abordari similare ale problemelor tratate de proiectul propus, prin evidentierea asemanarilor si diferentelor dintre acestea si se explica tehnologiile si metodele folosite de proiect.

#### 3.1 Abordări similare

Precum Richard Bassett, Cesar Urrutia si Nick Ierace sustin in articolul **Intrusion prevention systems** [5] "sistemele de prevenire a intruziunilor sunt o componenta importanata a sistemelor de protectie IT, iar fara aceasta tehnologie, datele noastre si retelele ar fi mult mai predispuse activitatilor malitioase".

In general tentativele de expluatare a vulnerabilitatilor unei aplicatii vin sub forma de input catre o aplicatia tinta. Acest input fiind generat de catre un atacator ce intentioneaza o controleze sau sa ii intrerupa activitatea. In cazul unui atac reusit, un astfel de atacator poate sa dezactiveze temporar aplicatia (atacuri de tipul denial of service) sau poate accesa, altera sau executa date/cod in interiorul aplicatiei. Un sistem de prevenire a intruziunilor are rolul de a examina traficul destinat unei aplicatii si de intercepta si bloca astfel de tentative [6].

Un sistem de prevenire a intruziunilor este, de regula folosit alaturi de un sistem firewall respectiv alaturi de un sistem de detectare a intruziunilor. Desi au scopuri asemanatoarea, aceste sisteme au functionalitati diferite si rezolva diferite probleme de securitate. Un sistem de preventie a instructiunilor este cel mai bine comaprat cu sistemele de tip firewall. Un sistem firewall tipic este constituit dintr-o serie de reguli ce permit traficului sa treaca. Aceste regului sunt sub forma "daca traficul indeplineste anumite conditii poate trece", insa daca nu exista nici o regula care sa potriveasca anumite pachete, acestea sunt blocate. Asemeni sistemelor firewall, sistemele de prevenire a intruziunilor prezinta un set de regului de filtrare a pachetelor, reqest-urilor sau a clientilor, insa aceste regului sunt de regula reguli de blocare. Astfel, daca un anumit pachet nu potriveste nici o regula sistemul de prevenire a intruziunilor il lasa sa treaca [7].

Spre deosebire de sistemele de tip firewall sau cele de prevenire a intruziunilor, care ofera control utilizatorului asupra traficului ce trece prin retea, sistemele de detectie a intruziunilor permite acestuia sa vizualizeze evenimentele din retea. Precum si Joel Snyder sustine in articolul **Do you need an IDS or IPS, or both?** [7] sistemele de detectie a intruziunilor ofera unui utilizator facilitati asemanatoare unui analizator de pachete [8], insa din perspectiva de securitate a retelei. Aceste informatii furnizate de catre sistem ii permit utilizatorului sa decopere:

- Incalcari ale politicilor de securitate, precum utilizatori sau siteme ce desfasoara activitati ce incalca politicile prestabilit.
- Posibile sisteme infectate ce folosesc reteaua pentru a se raspandi sau sa atace alte sisteme.
- Scurgeri de informatie cauzate de infectarea unor sisteme cu malwarei sau de utilizatori rau intentionati.
- Erori de configurare in sisteme sau aplicatii cu setari de securitate incorecte sau configurari proaste ce consuma prea multa banda de retea.
- Detectarea unor clienti sau servere ce acceseaza sau sunt accesate in mod neautorizat, respectiv aplicatii malitioase ce fac asta.



Figura 3.1: Administrarea securitatii unei aplicatii

Figura 3.1 prezinta administrarea securitatii unei aplicatii folosind combinatia dintre cele trei sisteme.

In comparatie cu sistemele de detectie a intruziunilor care sunt sisteme pasive si scaneaza reteaua fara sa interferezu cu traficul, sistemele de prevenire a intruziunilor sunt plasate intre server si cilenti, alterand in mod automat traficul in cazul in care acesta

declanseaza una din regulile prezente in sistem. Precum sunt prezentate si in articolul **What is an intrusion prevention system?** [6], printre functionalitatile unui sistem de prevenire a intruziunilor se numara:

- Notificarea unui administrator de retea in cazul in care un sau mai multe reguli sunt declansate.
- Oprirea pachetelor considerate malitioase pentru retea.
- Blocarea unor utilizatori prin excluderea adreselor ip ale acestora.
- Resetarea unor conexiuni.

In cea ce priveste functionalitatile oferite de un sistem de prevnire a intruziunilor, acestea sunt specifice tipului sistemului. Conform autorului articoluiui Intrusion Prevention System (IPS): Definition & Types [9], Beth Hendricks, exista patru tipuri primare de astfel de sisteme:

- Network-based: Protejeaza intraga retea.
- Wireless: Protejeaza doar reteaua wireless.
- Network behavior: Examineaza traficul din retea.
- Host-based: Software cu scopul de a proteja un singur calculator.

Sistemele de tipul Network-based(reprezentand si categoria in care se incadreaza Reverse proxy pentru prevenirea utilizatorilor de Tor si a atacurilor SQLI) presupun implementarea unor senzori in retea carea captureaza si analizeaza traficul ce trece prin acesta. Acesti senzori sunt plasati in puncte cheie a retelei pentru a putea captura in timp reala traficul, iar in cazul interceptarii unor activitati malitioase sa poata interveni imediat, fara sa scada performanta retelei. Aceste siteme ofera protectie retelei indiferent de dimensiunilie sau cresterea acesteia, adaugarea de noi device-uri fiind posibila fara sa necesite adaugarea de noi senziori. Adaugarea de noi senzori fiind nevoita doar in cazul in care traficul retelei depaseste capacitatea de procesarea a senzorilor curenti, infulentand astfel performantele retelei [10].

In functie de nevoi, un sistem de prevenire a intruziunilor poate sa ofere diferite optiuni de protectie pentru diferite parti ale retelei. Unele sunt capabile sa opreasca traficul malitios sau sa limiteze latimea de banda catre anumite parti ale retelei. Conform [11] aceste siteme pot oferi protecti impotriva urmatoarelor tipuri de atacuri:

- ICMP Storms: un volum mare de ecouri ICMP pot sa indice activitati malitioase precum cineva ce scaneaza reteaua.
- Ping to Death: un utilizator poate sa modifice comanda de ping, astfel incat sa trimita un numar mare de pachete de dimensiune mare catre o destinatie tinta pentru a o scoate din uz.

- SSL Evasion: unele atacuri se pot folosi de criptarea SSL pentru a evita dispozitivele de securitate, intrucat in general acestea nu sunt decriptate.
- IP Fragmentation: consta in expluatarea faptului ca pachetele sunt descompuse in fragmente pentru a staisface cerintele de dimensiune a retelelor traversate, inundand o destinatie tinta cu fragmente false pentru a ii consuma resursele.
- SMTP mass mailing attacks: un sistem infectat poate sa se foloseasca de de email-ul utilizatorului pentru a se raspandi, rezultand intr-un trafic mare destinat serverului de mail.
- DoS/DDoS attacks: cu scopul de a face o resursa indisponibila utilizatorilor, este realizata prin inundarea sistemului tinta cu un numar mare request-uri de la unul sau mai multe(in cazul DoS distribuit DDoS) siteme malitioase.
- SYN Flood attacks: atacatorul trimite un numar mare de pachete de initiare a unei conexiuni fara sa mai raspunda ulterior, epuizand astfel resursele de memorie.
- Http obfuscation: pentru a evita sa fie detectate de anumite siteme de protectie, unele atacuri folosesc tehnici de ofuscare a request-urilor HTTP.
- Port Scanning: este folosit pentru descoperi ce porturi sunt deschise pe un sistem, ulterior permitandu-i atacatorului sa stie ce vulnerabilitati ar putea prezneta sistemul.
- ARP Spoofing: un atacator trimite in retea pachete false de ARP legandu-si propria adresa MAC de adresa IP a unui alt sistem. Ca urmare, atacatorul va primi pachete destinate sistemului cu adresa IP folosita in pachetul de ARP.
- CGI Attacks: un atacator poate sa trimita request-uri malitioase, determinand destinatia sa trateze request-ul primit ca si cod executabil, oferindu-i atacatorului acces pe sistem.
- Buffer Overflow attacks: presupune ca atacatorul sa depaseasca limitele unui buffer de lungime fixa, excesul de date ajungand sa suprascrie zone adiacente de memorie rezultand in caderea sistemului sau dandu-i atacatorului oportunitatea sa ruleze cod propriu.
- OS Fingerprinting attacks: presupune ca atacatorul sa descopere ce sistem de operare ruleaza pe un sistem si folosindu-se de aceasta informatie sa expluateze vulnerabilitati specifice acelui sistem de operare.

Sistemul propus, Reverse proxy pentru prevenirea utilizatorilor de Tor si a atacurilor SQLI implementeaza un sistem de prevenire a intruziunilor folosindu-se de un reverse proxy pentru a intercepta tot traficul care intra si iese din retea (reprezentand senzorii ce au rol

de a captura si analiza traficul) si oferind protectie impotriva a doua categorii de atacuri: SQL injection si blocarea traficului venit de la ip-uri ce utilizeara frecvent Tor.

Pentru prevenirea atacurilor de SQL injection, se foloseste o metoda asemanatoare celei propuse de Eun Hong Cheon, Zhongyue Huang si Yon Sik Lee in lucrarea **Preventing SQL Injection Attack Based on Machine Learning** [12]. Pentru clasifiacrea request-urilor HTTP in SQL injection sau curate, se foloseste un sistem bazat pe machine learning. Acest sistem este antrnat anterior cu date reale, ca si trasaturi fundamentale in clasificare, folosindu-se cuvintele cheie si simbolurile specifice limbajului SQL(spre exemplu: SELECT, ADD, DELETE, ", ' etc.).



Figura 3.2: Tipuri de trasaturi ale limbajului SQL

Figura 3.2 prezinta tipurile de trasaturi luate in considerare in lucrarea **Preventing SQL Injection Attack Based on Machine Learning** in raport cu simbolurile sau cuvintele cheie folosite.

O alta abordare pentru prevenirea atacurilor SQLI este propusa de Fredrik Valeur, Darren Mutz si Giovanni Vigna in lucrarea A Learning-Based Approach to the Detection of SQL Attacks [13]. In aceasta lucrarea se prezinta folosirea unui sistem bazat pe detectia de anomalii pentru detectarea atacurilor ce expluateaza o aplicatie pentru a ii compromite baza de date. Asemeni abordarii bazate pe machine learning, acest sistem presupune o faza anterioara de antrenare in care se invata comportamentul normal al utilizatorilor, alcatuind astfel niste profile specifice. Astfel in faza de detectie, comportamentul ce nu coincide cu profilele alcatuite in faza de antrenate, este considerat malitios.

Pentru prevenirea utilizatorilor de Tor, in general lista de ip-uri este alcatuita din toate ip-urile care au utilizat reteaua intr-un anumit interval de timp, aceasta fiind actualizata periodic. O astfel de abordare este folosita si in cazul marelui firewall al Chinei [14] care indentifica nodurile la prima accesare a retelei de Tor. Insa precum precum se evidentiaza si in articolul Characterizing the Nature and Dynamics of Tor Exit Blocking [15] o astfel de abordare nu este cinstita fata de unii utilizatori de Tor, intrucat reputatia acestora este impartita intre toti utilizatorii. Astfel un nod care este utilizat doar pentru cateva minute sau ore(probabil din motive de curiozitate) poate sa ajunga sa fie blocat, fiind tratat asemeni cu un nod ce functionaza de cateva zile. O astfel de discriminare a incercat sa fie evitata prin implementarea aleasa a sistemului propus. Pentru realizarea listei de ip-uri blocate se foloseste un algoritm ce stabileste o limita de timp minima de functionare pentru un anumit nod in intervalul a 30 de zile.

### 3.2 Tehnici/Tehnologii/Surse folosite

Pentru realizarea sistemului propus s-au folosit doua limbaje de programare: Pyhton2/3(pentru partea de back end) si C#(pentru partea de front end). In partea de back end a proiectului se realizeaza implementarea unui reverse proxy pentru a intercepta traficul uneia sau mai multor interfete, un modul pentru clasificarea request-urilor impotriva atacurilor SQL injection si un modul pentru generarea listei negre de ip-uri ce utilizeaza frecvent reteaua Tor. Toate aceste componente sunt realizate prin utilizarea de librarii open-source pentru a usura si eficientiza munca precum: twisted [16], beautiful soup [17], libsvm [18].

Motivul utilizarii atat limbajului Python3 cat si Python2 este datorat diferenteleor de module si librarii open-source disponibile pentru cele doua limbaje dar si a fatului ca suportul pentru Python2 se inchei in anul 2020. Conform documentatiilor oficiale [19] si [20], dar si articolului Python 2 to python 3: why, and how hard can it be? de Tim Grey [21], intre cele doua versiuni nu sunt modificari majore, insa in anumite cazuri pot exista librarii care sa ofere doar suport pentru una dintre aceasta.

In realizarea modulului pentru clasificarea request-urilor impotriva atacurilor SQL injection sa folosit o colectie de date reale atat de atacuri cat si de trafic curat. Pentru uniformizarea acestor date si pentru a trata tentativele de pacalire a clafisicatorului prin codarea unor caractere in valoarea lor in cod hexadecimal (exemplu 'https://www.google.ro/search?q=a' echivalent cu 'https://www.google.ro/search?q=%61') datele au fost preprocesate si transformate in intregime in coduri hexadecimale [22]. In procesarea datelor, petru indetificarea trasaturilor relevant, s-au indentificat caracterele specifice limbajului [23] si cuvintele cheie rezervare [24]. Ulterior, pentru antrenarea modelului de support vector machine si pentru clasificarea noilor request-uri s-a folosit software-ul open-source libsvm [25].



Figura 3.3: Arhitectura unui sistem de clasificare a request-urilor HTTP

Figura 3.3 arhitectura unui sistem de clasificare a request-urilor HTTP de un sistem bazat pe machine learning. Structura este prezentata in lucrarea prezentata si anterior

Preventing SQL Injection Attack Based on Machine Learning [12]. Acesta structura a reprezentat un model de pornire in realizarea modulului de prevenire a atacurilor SQL injection, implementarea modulului incercand sa aduca imbunatatiri de performanta prin modificarea algoritmului folosit pentru antrenarea modelului de support vector machine dar si prin filtrarea trasaturilor propus in lucrare in conformitate cu raportul dintre obijnuinta de aparitie a acestora atat in request-urile ce intentioneaza sa execute un atac cat si in cele curate.

Pentru blocarea ip-urilor utilizate de reteua Tor s-a folosit un script scris in Python3. Programul interogheaza periodic(din 6 in 6 ore) informatiile oferite de *Tor Network Status* [26] indentificand astfel nodurile cu un "Uptime" mai mare de 7 zile in parcursul unei luni. Blocarea ip-urilor se realizeaza prin compoararea cu o astfel de lista generata lunar.

Componenta ce incorporeaza toate modulele de protectie, este cea de reverse proxy. Aici este monitorizat tot traficul ce vine de pe o anumita interfata(una sau mai multe, in functie de configuratia utilizatorului) si este trecut prin toate modulele disponibile pentru a verifica conditiile de securitate. Pentru testarea daca o adresa ip este utilizata frecvent de reteaua Tor, in momentul in care un client doreste sa realizaze o conexiune la serverul protejat de sistem, adresa ip a acestuia este verificata sa nu se afle pe lista ip-urilor blocate. Pentru actualitate, lista adreselor ip blocate este actualizata periodic cu adresele ip utilizate frecvent de reteaua Tor in ultima luna. Modulul de prevenire a atacurilor SQL injection este integrat tot in componenta de reverse proxy, insa evaluarea request-urilor este facuta dupa realizarea conexiunii intre client si server. Request-urile primite de catre server sunt tratate asemanator celor folosite pentru antrenarea modulului de support vector machine, insa pentru clasificarea acestora este folosit modulul antrenat in faza initiala si software-ul de prezicere oferit tot de libsvm [18].

# Capitolul 4

## Fundamente teoretice

In acest capitol sunt evidentiate si explicate pe scurt aspectele teoretice pe care se bazeaza proiectul.

### 4.1 Reverse proxy

Un reverse proxy este un server intermediar care trimite mai departe request-urile pentru continut de la mai multi clienti nedefiniti catre unul sau mai multe servere. Un reverse proxy este un tip de proxy care in mod normal este situat in spatele unui firewall intr-o retea interna si redirectioneaza traficul clientilor catre serverele asociate. Acesta introduce un nivel in plus de abstractizare si control, asigurand controlul fluxului de trafic [27].



Figura 4.1: Folosirea unui reverse proxy in arhitectura unei aplicatii.

Figura 4.2 prezinta modalitatea de integrare a unui reverse proxy in implementarea arhitecturii de back end a unei aplicatii.

Cele mai obisnuite caracteristici ce pot fi oferite de utilizarea unui reverse proxy sunt:

• Load balancing - un reverse proxy poate sa distribuie request-urile primite de la clienti, astfel incat nici un server sa nu fie coplesit ce reqesturi. In cazul in care un

server este supraincarcat cu reqest-uri sau este cazut, acesta poate sa redirectioneze traficul carea alte servere functionale.

- Web acceleration un reverse proxy poate sa realizeze compresia datelor sau sa memoreze in memoria cache continut ce este frecvent accesat sau poate sa realizeze operatiile de criptare SSL executate in mod normal de server, imbunatatind astfel in mod considerabil viteza de comunicare dintra client si serverul destinatie.
- Securitate si anonimitate prin interceptarea request-urilor primite de catre server, acesta asigura anonimitatea serverului actionand ca un nivel extra de securitate. De asemenea se asigura ca mai multe servere pot fi accesate prin intermediul unui punct comun, indiferent de structura retelei interne.

### 4.2 Support vector machine

Algoritmul de machine learning, support vector machine reprezinta un model obtinut prin folosire a diversi algoritmi pentru antrenarea acestuia, folosit pentru a clasifica date. Acest model intra in categoria de invatare supravegheata ('supervised learning'), intrucat pentru obtinerea lui se foloseste un set de date ca si exemplu, date pe care modelul le va folosi ca referinta pentru clasificarea noilor evenimente.

Realizarea unui astfel de model se obtine urma executarii unui proces elaborat ce implica mai multi pasi:

- Primul pas reprezinta indentificarea datelor relevante in cea ce priveste problema tratata(setul de antrenare). In conformitate cu scopul clasificarii unor evenimente/date in doua(sau mai multe) categorii, initial trebuie indentificate o serie de astfel de evenimente si categorizate de catre utilizator in evenimente ce sigur apartin fiecarei dintre categoriile tinta.
- Dupa obtinerea datelor de antrenare, trebuie indentificate toate trasaturile relevante din aceste date, trasaturi care sa fie cat se poate de specifice fiecarei categorii in parte. Fiind recomandata evitarea trasaturilor ce sunt prezente in mare parte din date sub aceasi forma (ex:caracterul '=' sau'?' intr-un URI folosit pentru clasificarea atacurilor SQL injection), indiferent de categoria din care acestea fac parte.
- Dupa obtinerea trasaturilor specifice datelor de antrenare, se realizeaza antrenarea modelului folosind un algoritm specific. In cazul proiectului propus s-a folsoit algoritmul gata implementat, furnizat de biblioteca open source LIBSVM [18]. Pentru obtinerea modelului datele de antrenare au fost procesate folosind un kernel gausian. Un kernel gausian reprezinta modul in care modelul proceseaza datele de antrenare astfel incat clasificarea noilor date sa fie realizata prin calcularea similaritatilor dintre acestea si cele de antrenare. In calcularea similaritatii dintre aceste doua tipuri de date, un parametru foare important este sigma. Acest parametru este ales pentru

intrg setul de date, iar valoarea lui este diret proportionala cu gradul de similaritate pe care algoritmul il va asocia la doua evenimente/date diferite.



Figura 4.2: Influentele aduse algoritmului de modifiacrea parametrului sigma in algoritmul de antrenare.

Figura 4.2 prezinta cum inflenteaza clasificarea unui nou eveniment valoarea parametrului sigma din formula algoritmului de support vector machine. Figura 4.2 a fost preluata din slide-urile cursului de machine leraning sustinut de Andrew Ng [28]

### 4.3 SQL injection

Atacurile de tipul SQL injection sunt realizate prin injectarea de cod executabil intr-o baza de date.

Procesul de interactionare cu o baza de date presupene realizarea de interogari asupra acesteia. In formularea acestor interogari, utilizatorul trebuie sa prezinte interpretorului, sub forma de siruri de caractere, numele tabelelor interogate sau valorile unor capuri specifice din acestea. Aceste siruri de caractere sunt delimitate folosind caracterul "sau'. Atacurile de tipul SQL injection expluateaza folosirea acestor delimitatori de siruri de caractere, trimitand siruri de caractere eronate intentionat catre baza de date. Un utilizator rau intentionat poate sa furnizeze astfel de siruri de caractere catre o baze de date prin intermediul oricarui procesator de continut disponibil unui client al unei aplicatii ce comunica cu o baza de date. Aceste siruri de caractere delimiteaza prematur valoarea care este folosita in interogare, introducand dupa aceasta o serie de caractere pe care interpretorul le va trata ca si cod executabil, oferindui astfel utilizatorului sa execute operatiuni asupra bazei de date la care nu ar avea accesul in mod normal. Aceste operatiuni pot sa reprezinte alterarea bazei de date sau obtinerea de date confidentiale.



Figura 4.3: Exemplu de atac realizat prin SQL injection.

Figura 4.3 prezinta o tenatativa de atac prin SQL injection in care in campul de validare a email-ului se incearca injectarea de cod ce va fi executat in interogarea de validare a credentialelor. Prin prezenta caracterului 's e escapeaza tot textul urmat dupa acesta ca fiind cod si nu un string ce face parte din campul de email. Operatia logica "OR 1=1" va determina interpretorul sa returneze adevarat(valid) pentru orice adresa de email introdusa introdusa inaintea caractrului '.

### 4.4 Obtinerea adreselor retelei Tor



Figura 4.4: Exemplu de trafic realizat prin reteaua Tor.

Figura 4.4 prezinta principalele elemente folosite la rutarea treficului de la client la destinatie prin intermediul retelei Tor.

### 4.5 Sistem de prevenire a intruziunilor

Conform scurtei descrieri prezentate in capitolul anterior, un sistem de prevenire a intruziunilor are rolul de a filtra traficul dintre clientii unui server si serverul propiu zis.

Acest sistem functioneaza liniar, adica este plasat direct intre server si clienti acestuia. In cazul proiectului propus, componenta de baza pentru interceptarea traficului este realizata prin implementarea unui reverse proxy, oferind astfel caracteristica de interceptare si decriptare a traficului, ce permite analiza acestuia, dar si avantajele specifice utilizarii unui reverse proxy.

Pentru filtrarea traficului, un sistem de prevenire a intruziunilor implementeaza anumiti senzori care au rolul sa inspecteze tot traficul ce trece prin sistem, realizand aceasta inspectie in timp real. Datorita acestei verificari, orice pachet considerat malitios este oprit din a ajunge la serverul destinatie. In proiectul propus, implementarea acestor senzori este realizata in doua moduri. In cazul validarii adreselor ip impotriva utilizatorilor de Tor se folosete o lista de ip-uri ce contine adrese frecvent utilizate de reteaua Tor. In interiorul reverse proxy-ului, in momentul crearii unei noi conexiuni, acesta verfica ca adresa ip ce solicita conectarea la server sa nu fie continuta de lista mentionata. In cazul detectiei impotriva atacurilor de SQL injection, senzorul este implementat prin utilizeaza un model de support vector machine. In interiorul reverse proxy-ului in momentul interceptarii unui request venit din exterior catre reteaua interna, acesta verifa daca reqestul poate fi clasificat ca si tentativa de atac, in caz afirmativ blocand trecerea acestuia mai departe catre server.



Figura 4.5: Integrarea unui sistem de prevenire a intruziunilor intr-o retea.

Figura 4.5 prezinta arhitectura unei retele interne ce integreaza un sistem de prevenire a intruziunilor pentru protejarea acesteia.

Un sistem de prevenire a intruziunilor poate sa efectueze oricare din urmatoarele actiuni in momentul detectarii unui eveniment malitios [29]:

- Sa intrerupa sesiunea dintre client si server, in cazul in care clientul desfasoara sau incearca sa desfasoare activitati malitioase in reteaua protejata de sistem. Acest lucru se poate realiza prin blocarea anumitor credentiale asociate cu utilizatorul respectiv sau prin blocarea adresei ip a acestuia.
- In conditiile in care un sistem de prevenire a intruziunilor detecteaza clasifica o activitate ca fiind malitioasa, acesta poate sa ia masuri automat pentru a preveni un astfel de atac pe viitor(ex: in momentul detectarii unei tentative de atac prin SQL injection, sistemul de prevenire a intruziunilor poate sa blocheze in mod automat adresa ip a utilizatorului ce inceraca sa faca atacul, nepermitandu-i acestuia sa se mai conecteze la serverul destinatie pentru un anumit interval de timp sau pana la interventia unui administrator).
- O alata abordare posibila in momentul declansarii unui eveniment malitios este alterarea traficului astfel incat sa elimine continutul malitios din acesta. Pentru realizarea acestui lucru, un sistem de prevenire a intruziunilor poate sa stearga atasamente infectate din interiorul unui mail, sa altereze continutul uni pachet sau sa omita trasmiterea mai departe a unor pachete.

## Analysis and Design

Acest capitol descrie design-ul proiectului și cuprinde, în general:

- 1. ilustrarea arhitecturii generale și detaliate a sistemului implementat, care să evidențieze modulele componente și relațiile dintre acestea
- 2. stările prin care trece sistemul în decursul funcționării sale (diagrame de stare)
- 3. modul de interacțiune dintre module și funcționalitatea acestora ilustrată prin diagrame de secvențe
- 4. descrierea algoritmilor/metodelor pe care se bazează funcționarea sistemului dezvoltat
- 5. descrierea organizării/structurii eventualelor baze de date folosite
- 6. justificarea alegerilor/deciziilor făcute și analiza critică a acestora (avantaje și dezavantaje), prin comparație cu alte alternative posibile

Ca idee generală, design-ul trebuie să fie prezentat independent de o implementare anume, în general, și de cea a voastră, în particular. De asemenea, descrierea design-ului trebuie să conțină toate elementele și detaliile necesare, astfel încât altcineva decât voi să poate realiza o implementare a lui, fără a fi nevoit să ia decizii arhitecturale sau organizare (adică, de design) și să vă contacteze pentru a-și lămuri anumite aspecte neclare.

Capitolul trebuie organizat pe secțiuni și subsecțiuni astfel descrierea să urmeze un cors logic și ușor de urmărit.

Ponderea acestui capitol relativ la întreaga lucrare este de 25-35%.

#### 5.1 Examples: lists, figures, tables, equations

Așa arată o listă de elemente nenumerotate:

• element 1

| Case | Method#1 | Method#2 | Method#3 |
|------|----------|----------|----------|
| 1    | 50       | 837      | 970      |
| 2    | 47       | 877      | 230      |
| 3    | 31       | 25       | 415      |

Tabela 5.1: Nonlinear Model Results



Figura 5.1: Numele figurii

- element 2
- . . .

Așa arată o listă de elemente numerotare:

- element 1
- element 2
- ...

Așa arată o listă în text: (1) element 1, (2) element  $2, (3) \dots$ 

**Atenție**: orice tabel, figura sau ecuație (formulă) trebuie referite *explicit* în text explicit (de genul: în Figura X este ulustrat ..., în Tabelul Y se poate vedea ...), pentru că Latex le poate plasa chiar și pe altă pagină decât acolo unde vrem noi să ne referim la ele. Vedeți exemple de mai jos!

Tabelul 5.1 ilustrează un exemplu de tabel. Un editor on-line de tabele poate fi găsit la http://www.tablesgenerator.com/.

În Figura 5.1

Formula (5.1) arată modul de calcul al lui  $\Delta$ :

$$\Delta = \sum_{i=1}^{N} w_i (x_i - \bar{x})^2.$$
 (5.1)

24 Iulie 2018

Algoritmul 1 este un exemplu de descriere pseudo-cod a unui algoritm, preluat de la http://en.wikibooks.org/wiki/LaTeX. El utilizează pachetul algorithm2e. Alternativ, puteți utiliza pachetele algorithmic sau program.

```
Data: this text

Result: how to write algorithm with LATEX2e initialization;

while not at end of this document do

read current;

if understand then

go to next section;

current section becomes this one;

else

go back to the beginning of current section;

end

end
```

**Algorithm 1:** How to write algorithms

#### Implementation Details

Ponderea acestui capitol relativ la întreaga lucrare este de 20-30%. Contine detalii de implementare:

- organizarea codului sursă, organizarea logică a codului (module, ierarhii de clase)
- descrierea claselor, funcțiilor, API-urilor importante ale aplicației
- descrierea la nivel de implementare a algoritmilor principali
- descrierea părților mai dificile
- alte detalii de implementare relevante, specifice fiecărei aplicații

Descrierea implementării trebuie să reflecte modul în care ea corespunde (se mapează) design-ului.

Nu se vor da detalii irelevante. Descrierea codului trebuie gândită ca un ghid de parcurgere a codului sursă de către cineva care vrea să continue proiectul vostru.

Exemplu de cod:

```
# include <stdio.h>
int main (int argc, char **argv)
{
  int i;
  for (i=0; i < argc; i++)
     printf("argv[%d] = %s\n", i, argv[i]);
  return 0;
}</pre>
```

#### Tests and Results

Ponderea acestui capitol relativ la întreaga lucrare este de 5-10%.

Aici sunt prezentate metodele de validare a soluțiilor/sistemului descris în capitolele anterioare, scenariile de testare a corectitudinii funcționale, a utilizabilității, performanței etc.

Rezultatele testelor experimentale necesită, în general interpretări (dacă rezultatele obținute corespund așteptărilor, intuițiilor cititorului, de ce apar variații/excepții etc.) și comparații cu rezultatele altor metode similare.

Sistemele de testare și testele propriu-zise trebuie descrise detaliat astfel încât să poată fi reproduse și de alții care poate vor să-și compare soluțiile lor cu a voastră (eventual, codul testelor poate fi pus în anexe). Dacă se poate alegeți pentru evaluarea sistemului vostru benchmark-uri (pachete de testare) dedicate, astfel încât comparația cu alte sisteme să poată fi făcută mai ușor. În plus, astfel de teste sunt mult mai complete și mai realiste decât cele dezvoltate de voi. Oricum, încercați ca testele efectuate să nu fie triviale, ci să acopere scenarii cât mai reale, mai complexe și mai relevante ale funcționării sistemului vostru.

#### 7.1 Functional Tests

#### 7.2 Performance Tests

#### User Manual

Descrie pașii de instalare și rulare a aplicației. Dacă dezvoltarea aplicației s-a bazat sau a presupus instalarea și configurarea unei infrastructuri (complexe), descrieți detaliat pașii pe care i-ați urmat (referințele utilizate) și mai ales abaterile voite sau necesare de la documenațiile referite. Încercați ca cineva care vă continuă tema să nu mai fie nevoit să mai piardă timp inutil cu pregătirea mediului de lucru și să poată trece cât mai repede la abordarea temei proptriu-zise a proiectului.

Indincați, de asemenea, explicit versiunile aplicațiilor, bibliotecilor folosite și salvați o copie a acestora pe CD-ul atașat lucrării. E posibil ca aplicația voastră să nu mai funcționeze la fel pe alte versiuni și e bine de știut acest lucru și, în același timp, e bine ca mediul descris de voi să poată fi reprodus ulterior.

Se întinde pe aproximativ 2-3 pagini.

#### Conclusions

#### Cuprinde:

- un rezumat al contribuțiilor aduse: ce s-a realizat, relativ la ce s-a propus, în ce constă experiența acumulată, care au fost punctele dificile atinse și rezolvată, recomandări pentru alții care abordează tema, la ce este bun ce s-a obținut etc.
- a analiză critică a rezultatelor obținute: avantaje, dezavantaje, limitări
- o descriere a posibilelor dezvoltări și îmbunătățiri ulterioare

Poate fi organizat pe secțiuni, dacă se dorește. Se întinde pe aproximativ 1-2 pagini.

## Bibliografie

- [1] J. C. Villanueva, "Top 8 Benefits of a Reverse Proxy," https://www.jscape.com/blog/bid/87841/Top-8-Benefits-of-a-Reverse-Proxy, Aug 2012.
- [2] "OWASP Top 10 Application Security Risks 2017," https://www.owasp.org/index. php/Top\_10-2017\_Top\_10, Last accessed: September 30st, 2018.
- [3] J. V. William G.J. Halfond and A. Orso, "A Classification of SQL Injection Attacks and Countermeasures," 2006, College of Computing Georgia Institute of Technology, Proceedings of the IEEE International Symposium on Secure Software Engineering.
- [4] M. Prince, "The Trouble with Tor," https://blog.cloudflare.com/the-trouble-with-tor/, Mar 2016.
- [5] R. Bassett, C. Urrutia, and N. Ierace, "Intrusion prevention systems," https://dl.acm.org/citation.cfm?id=1071927, June 2005, ACM New York, NY, USA.
- [6] "What is an intrusion prevention system?" https://www.paloaltonetworks.com/cyberpedia/what-is-an-intrusion-prevention-system-ips.
- [7] J. Snyder, "Information Security," https://searchsecurity.techtarget.com/ Do-you-need-an-IDS-or-IPS-or-both.
- [8] M. Rouse, "Network management and monitoring: The evolution of network control," https://searchnetworking.techtarget.com/definition/network-analyzer.
- [9] B. Hendricks, "Intrusion Prevention System (IPS): Definition & Types," https://study.com/academy/lesson/intrusion-prevention-system-ips-definition-types.html.
- [10] C. Paquet, "Implementing cisco ios network security (iins): (ccna security exam 640-553) (authorized self-study guide)," Apr 2009, by Cisco Press.
- [11] K. Rajesh, "An overview of ips intrusion prevention system and types of network threats," https://www.excitingip.com/626/an-overview-of-ips-intrusion-prevention-system-and-types-of-network-threats/, October 2009.

- [12] E. H. Cheon, Z. Huang, and Y. S. Lee, "Preventing SQL Injection Attack Based on Machine Learning," 2013, Department of Computer Engineering, Woosuk University and Department of Computer Information Engineering, Kunsan National University .
- [13] F. Valeur, D. Mutz, and G. Vigna, "A Learning-Based Approach to the Detection of SQL Attacks," 2005, Reliable Software Group, Department of Computer ScienceUniversity of CaliforniaSanta Barbara .
- [14] P. Winter and S. Lindskog, "How the Great Firewall of China is Blocking Tor," 2012, Karlstad University .
- [15] R. Singh, R. Nithyanand2, S. Afroz, P. Pearce, M. C. Tschantz, P. Gill1, and V. Paxson, "Characterizing the Nature and Dynamics of Tor Exit Blocking," 2017, University of Massachusetts Amherst, Stony Brook University, University of California Berkeley, International Computer Science Institute.
- [16] "Framework pentru programarea retelelor scris in python." [Online]. Available: https://twistedmatrix.com/documents/8.1.0/api/twisted.html
- [17] "Librarie pentru procesarea de cod html/xml scris in python." [Online]. Available: https://www.crummy.com/software/BeautifulSoup/bs4/doc/
- [18] "Software integrat cu suport pentru svm." [Online]. Available: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
- [19] "Documentation for python 3.7.1rc1." [Online]. Available: https://docs.python.org/3/
- [20] "Documentation for python 2.7.15." [Online]. Available: https://docs.python.org/2.7/
- [21] Tim Gray, "Python 2 to python 3: why, and how hard be?" [Online]. Available: https://optimalbi.com/blog/2018/01/19/ python-2-to-python-3-why-and-how-hard-can-it-be/
- [22] "Tabela cu toate caracterele ascii si codurile lor specifice in diferite baze." [Online]. Available: https://www.asciitable.com//
- [23] "Caracterele speciale ce pot fi folosite intr-o interogare sql." [Online]. Available: https://docs.oracle.com/cd/A97630\_01/text.920/a96518/cqspcl.htm
- [24] "Cuvinte rezervate specifice limbajului sql." [Online]. Available: https://docs.microsoft.com/en-us/sql/t-sql/language-elements/reserved-keywords-transact-sql?view=sql-server-2017
- [25] "A practical guide to support vector classification." [Online]. Available: https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

36 Iulie 2018

- [26] "Statusul nodurilor utilizate de tor." [Online]. Available: https://torstatus.blutmagie. de/index.php
- [27] by NGINX Page, "What is a reverse proxy server?" [Online]. Available: https://www.nginx.com/resources/glossary/reverse-proxy-server/
- [28] Andrew Yan-Tak Ng, "Machine learning by stanford university." [Online]. Available: https://www.coursera.org/learn/machine-learning/home/welcome
- [29] by Firewalls.com Page, "How intrusion prevention systems (ips) work in firewall." [Online]. Available: https://community.spiceworks.com/topic/362007-how-intrusion-prevention-systems-ips-work-in-firewall

# Anexa A

# Diverse anexe

## Anexa B

Demonstrații matematice detaliate (dacă există)

#### Anexa C

# Pseudo-cod sau cod (dacă există)

```
/** Maps are easy to use in Scala. */
object Maps {
  val colors = Map("red" -> 0xFF0000,
                    "turquoise" -> 0x00FFFF,
                    "black" -> 0x000000,
                    "orange" -> 0xFF8040,
                    "brown" -> 0x804000)
  def main(args: Array[String]) {
    for (name <- args) println(</pre>
      colors.get(name) match {
        case Some(code) =>
          name + " has code: " + code
        case None =>
          "Unknown color: " + name
    )
  }
}
```

# Anexa D Articole publicate