mlan MATCHINA ALGORITHMS Find Aug path Repeat. How to find Aug Path! Bepartite Graphs G=(A, B, E), Northy M Maintain an alternating folest. - Start with all unstitud vertices of A. - Add edges to B, maintaining a forest (one edge to each very vortex) - If edge to unatitud vertex in B, then any path! - Add Matching edges from vertices in B - Referrat Claim If Algorithm terminates with no Aug. path, then a has no any path wit Mandismaxim. Pf. We will show that a has a vertex going S s.t. |S| = |M]. Sie |VC| > |M| & my v.c. and any matching, the ament M mut be maximum.

	S = A\V(F) U BAV(F)
	Suppose e=(a,6) is not correred.
	then a E V (F) and b & V (F)
•	So (a, b) can be added to F and
	the algorithm continues.
	Example
_	
	True: O(E V) Friday: O(E \IV)
	What about general graphs?
	Where does this fail?
	M1=4
	(v.c.) ≥ 6
	How to prove this graph has no p.m.?!
	Idd workents
	(χ)
	$ \nabla X \subseteq V $
	even confirents is recessary.
	to recession.

