Aplikovaná statistika (1)

Hana Skalská

Testování hypotéz: Úvodní část

Analýza dat – typické úlohy

Test statistické hypotézy

Formulace úlohy, příklady hypotéz

Chyby při testování hypotéz, souvislost mezi chybami

Obecný postup provedení testu

Hypotézy pro jeden výběr - přehled

Hypotéza o střední hodnotě Rozhodovací oblast pro různé alternativy Koncept p hodnoty a rozhodnutí o hypotéze

Analýza dat

Analýza dat:

Pečlivě plánovaný rozhodovací proces, který využívá vhodné analytické nástroje.

Data + analytické nástroje + kritické uvažování

Typické úlohy:

- Sběr dat, popis dat, explorační analýzy (vytváření hypotéz)
- Ověřování hypotéz (testování statistických hypotéz)
- Sledování a analýza závislostí
- Modely sestavené na základě dat
- Učení na základě dat (např. klasifikace, predikce)
- Data mining speciální typ aplikací

Testy a hypotézy řešené v tomto kurzu

Formulace úlohy, chyby při testování hypotéz Testy parametrické:

Test hypotézy o průměru (jeden, nebo dva výběry – nezávislé i závislé vzorky).

Test hypotézy o parametru binomického rozdělení (pro jeden, nebo dva nezávislé výběry).

Test shody o rozptylu (jeden, nebo dva výběry nezávislé).

ANOVA pro jeden faktor – test shody více než dvou průměrů (více než dva nezávislé vzorky).

Test neparametrický:

Analýza závislosti v kombinační (kontingenční) tabulce.

Další typy úloh v tomto kurzu a testy hypotéz

- Míry lineární závislosti pro dvě veličiny: Kovariance, koeficient korelace a test hypotézy
- Lineární regrese pro jednu nezávisle proměnnou veličinu, odhad parametrů modelu a testy v regresi
- Lineární regrese při více nezávisle proměnných veličinách, odhad parametrů modelu a testy v regresi
- Časová řada, základní charakteristiky a jednorozměrný model časové řady (trend, sezónnost, cyklická a náhodná složka)

Testování (ověřování) statistických hypotéz

Cílem kurzu je vysvětlení zásad testování hypotéz.

- Získat přehled o typech testů a jejich využití.
- Porozumět postupu testování.
- Podle zadání problému formulovat hypotézy, navrhnout vhodný test.
- Znát význam základních pojmů v úloze testování: Testové kritérium a jeho rozdělení, chyby testu, oblast zamítání, kritická hodnota.
- Rozhodnout o hypotéze a výsledek interpretovat (vysvětlit praktické využití výsledku testování).

Praktický pohled na test hypotézy

- Hypotéza je domněnka o (neznámých) populačních parametrech.
- Test uvažuje hypotézu nulovou H₀ a hypotézu alternativní H₁.
- Oprávněnost (výběr) jedné z možností se ověří pomocí dat výběru.
- Po provedení výběru a analýze výsledku získaného výběrem se testem rozhodne, zda výsledek výběru spíše podporuje alternativní, nebo nulovou hypotézu.
- Zde prezentované postupy vycházejí ze statistických modelů rozdělení pravděpodobnosti testového kritéria, které je odvozené za předpokladu, že platí nulová hypotéza.
- Jiné přístupy užívají tzv. Bayesovské metody.

Značení

Parametr populace	Název parametru Název pro odhad, pokud je jiný než název parametru	Bodový odhad (z výběru)
μ	Střední hodnota Odhad aritmetickým průměrem	$\overline{\mathbf{X}}$
σ	Směrodatná odchylka	S
σ^2	Rozptyl	s^2
π	Pravděpodobnost výskytu jevu Odhad relativní četností	p
ρ	Koeficient korelace	r
β	Koeficient v regresi	b

Příklady nulových hypotéz H0

Hypotézy o populační střední hodnotě:

- \triangleright Dávkovač kávy odměřuje do kelímku 5 g kávy, H₀: μ = 5.
- Neznámá hodnota průměrných výdajů za telefonní mobilní hovory studenta(ky) FIM je H_0 : μ = 220 Kč měsíčně.

Hypotéza o neznámých (populačních) středních hodnotách:

Průměrný měsíční výdaj za telefonní mobilní hovory studentů FIM (mužů) je stejný, jako průměrný měsíční výdaj za telefonní hovory studentek FIM (žen) H₀: μm = μž

Příklady jednoduchých hypotéz mají tvar nulové hypotézy H₀.

H₀ uvažuje shodu neznámého populačního parametru s hypoteticou hodnotou. Vždy obsahuje relaci "="

Není rozdíl mezi neznámými parametry dvou populací,

Není rozdíl mezi parametrem populace a hypotetickou hodnotou, apod.

Hypotézy alternativní H₁

- Alternativa (alternativní hypotéza) H_1 je dvoustranná nebo jednostranná, tvoří doplněk k H_0 .
- V případě jednostranné H_1 zahrne H_0 kromě "= " logicky také ostatní možnosti, které neuvažuje H_1 .
- Často je H₁ hypotéza, která má potvrdit nové domněnky. Například: Nový design jogurtu AB zvýší podíl výrobku na trhu v dané cenové kategorii. Dosavadní podíl na trhu je 32 %.

$$H_0$$
: $\pi = 32$, H_1 : $\pi > 32$

- Poznámka: H₀ zde automaticky zahrne též všechny případy, kdy podíl je menší než 32.
- H₁ Zpravidla neobsahuje samotnou relaci rovnosti =
- H₁ Nejčastěji obsahuje buď relaci < , nebo > , nebo ≠
- H₁ může být zamítnutá, nebo přijatá H₀ může být buď zamítnutá, nebo nezamítnutá

Test statistické hypotézy

Rozhodovací problém (zobecnění výsledku výběru).

 $D = \{d_1, d_2\}$ je prostor rozhodnutí,

 $\Omega = \{\omega, \overline{\omega}\}$ je prostor možných výběrových výsledků vztažených k parametru θ , $\overline{\omega} = \Omega - \omega$.

Pokud $\theta \in \omega$, je výhodnější rozhodnutí d₁

Jestliže $\theta \in \overline{\omega}$, je výhodnější rozhodnutí d₂

Možnost $\theta \in \omega$ označíme jako hypotézu H_0 (nulovou hypotézu).

Možnost $\theta \in \overline{\omega}$ označíme jako alternativní hypotézu H_1 (nebo A).

Test statistické hypotézy (2)

 $W(d,\theta)$ je ztrátová funkce definovaná na D x Ω , vyjadřuje ztrátu, která vznikne přijetím rozhodnutí d, když správná hodnota parametru je θ .

Předpokládáme náhodný výběr $\mathbf{x} = (x_1, x_2, ..., x_n)$, který má rozsah n.

Testujeme hypotézu H₀ proti H₁.

K testu hypotézy použijeme statistiku g(x) - funkci výběru, která se nazývá testové kritérium.

Obor hodnot, kterých může g(x) nabývat, se rozdělí na disjunktní množiny:

Kritický obor W_{α} (indexu α bude vysvětlený) Doplňkový obor V

Test statistické hypotézy (3)

 $P_W(\theta)$ značí pravděpodobnost, že při pokuse (náhodném výběru \mathbf{x}) získáme výsledek z W (hypotéza H_0 bude zamítnutá), když parametr má ve skutečnosti hodnotu θ (když H_0 platí).

Chyba α nazvaná "chyba prvního druhu" je náhodná veličina, její pravděpodobnost je $P_{W_\alpha}(\theta) \leq \alpha$ pro všechna $\theta \in \omega$.

Pokud $g(x) \in W_{\alpha}$, zamítáme H_0 (přijímáme H_1). Jestliže $g(x) \notin W_{\alpha}$, potom H_0 nezamítáme. Oblast W_{α} odpovídá rozhodnutí "zamítnout H_0 ".

Chyby při testování hypotéz

Chyba I. druhu: zamítnutí H₀ která platí

Pravděpodobnost chyby I. druhu = hladina významnosti α

Hladina významnosti: podmíněná pravděpodobnost chyby I. druhu P(nesprávného zamítnutí H_0), pro kterou platí

$$P(g(x) \in W_{\alpha} | H_0) \le \alpha$$

Čti: Když platí H_0 , potom pravděpodobnost, že hodnota $g(\mathbf{x})$ bude patřit do oblasti zamítání W_{α} nejvýš rovna α . W_{α} je oblast zamítání H_0 (závisí na zvoleném α).

Chyba II. druhu: přijetí H₀, která ve skutečnosti neplatí Pravděpodobnost chyby 2. druhu:

$$\beta = P(g(x) \in V|H_1) = P(přijetí H_0|H_0 neplatí)$$

Síla testu:
$$1-\beta = P(g(x) \in W_{\alpha}|H_1)$$

Chyby při testování hypotéz

Skutečnost Rozhodnutí	H ₀ platí	H ₀ neplatí (platí H ₁)
H ₀ přijmout	Správné rozhodnutí	Chyba II. druhu
Hodnota TK je	Pravděpodobnost	Pravděpodobnost
obsažená ve V	≥ 1 - α	= β
H ₀ zamítnout	Chyba I. druhu	Správné rozhodnutí
Hodnota TK je	Pravděpodobnost	Pravděpodobnost
obsažená ve W _α	≤α	= 1 - β

TK = testové kritérium (náhodná veličina). Hodnota funkce g(x) závisí na hodnotách, zjištěných na prvcích náhodného výběru.

Chyby při testování hypotéz

$$P(TK \in W_{\alpha} | H_0) \le \alpha \longrightarrow P(zamitnuti H_0 | H_0 plati) \le \alpha$$

Chyba I. druhu: Nesprávné zamítnutí nulové hypotézy má pravděpodobnost α, kterou volíme.

Test je konstruovaný vždy tak, že pravděpodobnost chyby I. druhu nepřekročí α , pokud by platila H_0 .

Chyba II. druhu je spojená s nesprávným přijetím nulové hypotézy.

Tuto chybu lze vypočítat pro určitou jednoduchou alternativu. Velikost tohoto rizika nevolíme, často její pravděpodobnost neznáme. Proto místo přijetí H_0 proto H_0 nezamítáme.

Čím je ovlivněná chyba II. druhu

- Chyba II. druhu se zvětšuje, když se zmenšuje (zvolená) chyba I. druhu při stejném rozsahu výběru.
 - Nedoporučuje se proto volit α příliš malé. Většinou uvažujeme chybu α = 0,05 nebo α = 0,01.
- Chyba II. druhu se snižuje, pokud variabilita znaku je menší (při menší populační variabilitě studované veličiny). Variabilita je vlastnost dat.
- Chyba II. druhu klesá, pokud se zvětšuje rozsah souboru (při nezměněné hodnotě chyby α).

Oblasti zamítání pro různě formulované alternativní hypotézy

P[
Příklad: Hypotézy o střední hodnotě	Oblast zamítání H₀ je zvýrazněna stínováním Hladina významnosti = α		
	Kritická hodnota je označena šipkou 耶		
$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$ Oboustranná alternativa	a/2 a/2		
$H_0: \mu = \mu_0$ $H_1: \mu < \mu_0$ Levostranná alternativa	I		
$H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$ Pravostranná alternativa			

Při stejné volbě hladiny významnosti α jsou různě vymezeny oblasti zamítání H_0 . Křivka naznačuje tvar rozdělení testového kritéria. Tvar rozdělení je daný v testu.

Kritická oblast

Kritická oblast je vymezená kritickou hodnotou (hodnotami).

Kritická oblast závisí na:

- Zvoleném testu.
- Zvolené hladině významnosti.
- Volbě alternativní hypotézy (oboustranná, levostranná, pravostranná).
- ✓ Tvaru rozdělení testového kritéria při platnosti H₀.

Tvar rozdělení testového kritéria závisí na testovaném parametru, na rozsahu výběru, na rozdělení sledované veličiny v populaci.

Shrnutí důležitých pojmů

Nulová hypotéza H₀: Tvrzení o neznámých parametrech (není rozdíl, neliší se, nezávislost, apod.).

Alternativní hypotéza H₁: Doplněk H₀ (nebo její negace).

Kritický obor: Množina hodnot testového kritéria, kdy zamítáme H_0 .

Kritický obor je určený výsledkem výběru a tvarem rozdělení testového kritéria.

Kritická hodnota: Určuje rozdělení množiny hodnot testového kritéria na oblasti W_{α} a V.

Chyba prvního druhu: Nesprávné zamítnutí H₀.

Chyba druhého druhu: Nesprávné přijetí H₀.

Hladina významnosti: Pravděpodobnost chyby I. druhu.

Postup testování hypotéz

- Formulace hypotézy H₀ (nulové) a H₁ (alternativní).
- Volba hladiny významnosti (chyby α).
- Provedení výběru.
- Volba vhodného testu (dle typu veličiny, hypotézy, rozsahu výběru, výsledku ověření předpokladů).
- Výpočet testového kritéria (TK), výpočet vychází z hodnot výběru (TK je výběrová statistika, náhodná veličina).
- Vymezení oblasti W_{α} pro zamítání H_0 na hladině α .
- Rozhodnutí o hypotéze na základě TK a W_{α} .
- Interpretace výsledku.