- O tabelă de dispersie de lungime 10 folosește adresarea deschisă, cu sondaj liniar, iar funcția de dispersie este:
- h(k) = k % 10
- Iniţial, tabela de dispersie este vidă şi apoi se inserează 6 valori.
- Care din următoarele posibilități reprezintă ordinea în care valorile au fost inserate în tabela de dispersie ?

1 2 42 3 23 4 34
2 42 3 23
3 23
3 23 4 34
4 34
5 52 6 46 7 33
6 46
7 33
8
9

- A) 46
 42
 34
 52
 23
 33
- B) 34 42 23 52 33 46
- C) 46 34 42 23 52 33
- D) 42 46 33 23 34 52

Răspuns corect C)

- Câte secvențe diferite de inserare ale valorilor pot fi efectuate, folosind aceeași funcție de dispersie:
- h(k) = k % 10
- într-o adresare deschisă, cu sondaj liniar, pentru a se obține tabela de dispersie din figură

1 2 42 3 23 4 34
2 42 3 23
3 23
3 23 4 34
4 34
5 52 6 46 7 33
6 46
7 33
8
9

- A) 10
- B) 20
- C) 30
- D) 40

- Răspuns corect C)
- Într-o secvență de inserare corectă, valorile 42, 23 și 34 trebuie să apară înainte de 52 și 33, iar 46 trebuie să apară înainte de 33
- Numărul total de secvențe diferite de inserare este 3! * 5 = 30

- 3! se referă la valorile 42, 23 și 34, pentru că acestea pot să apară în orice ordine
- 5 se referă la valoarea 46, pentru că aceasta poate să apară în 5 locuri diferite – 46 poate fi primul element al secvenței de inserat, al doilea element, al treilea, al patrulea sau al cincilea element – al şaselea element nu poate să fie, deoarece, în acest caz, nu ar mai fi situat în celula cu cheia 6

- Într-o tabelă de dispersie, cu lungimea 10, inițial vidă, se inserează valorile:
- 12 18 13 2 3 23 5 15
- folosind adresarea deschisă, cu sondaj liniar, iar funcția de dispersie este:
- h(k) = k % 10
- Care este conţinutul tabelei de dispersie ?

0	
1	
2	2
3	23
4	
5	15
6	
7	
8	18
9	

0	
1	
2	12
3	13
4	
5	5
6	
7	
8	18
9	

0	
1	
2	12
3	13
4	2
5	3
6	23
7	5
8	18
9	15

0	
1	
2	12, 2
3	13, 3, 23
4	
5	5, 15
6	
7	
8	18
9	

(A)

(B)

(C)

(D)

Răspuns corect C)

- Într-o tabelă de dispersie, cu lungimea 7, inițial vidă, se inserează valorile:
- 1 3 8 10
- folosind adresarea deschisă, cu sondaj liniar, iar funcția de dispersie este:
- h(k) = (3*k+4) % 7
- Care este conţinutul tabelei de dispersie ?

	0	1	2	3	4	5	6
Α	1	8				10	3
В	1	8	10				3
С	1	10	8				3
D	1	10	8			3	

Răspuns corect B)

- Într-o tabelă de dispersie, cu lungimea 10, inițial vidă, se inserează valorile:
- 4322 1334 1471 9679 1989 6171 6173 4199
- folosind înlănţuirea separată, iar funcţia de dispersie este:
- h(k) = k % 10
- Care din afirmațiile următoare este adevărată?

- A) Toate elementele apar în aceeași listă înlănțuită
- B) Fiecare element apare într-o listă înlănţuită distinctă
- C) Elementele 9679, 1989 și 4199 apar în aceeași listă înlănțuită
- D) Elementele 1334, 1471 și 6171 apar în aceeași listă înlănțuită

Răspuns corect C)

- Se consideră o tabelă de dispersie, cu lungimea 100, care folosește înlănţuirea separată
- Care este probabilitatea ca primele 3 celule (cu cheile 0, 1 şi 2) să nu conţină elemente, după primele 3 inserări de elemente ?

- A) (97*97*97)/100³
- B) (99*98*97)/100³
- C) (97*96*95)/100³
- D) (97*96*95)/(3!*100³)

- Răspuns corect A)
- (97/100) * (97/100) * (97/100)

- Se consideră o tabelă de dispersie, cu lungimea 10, care folosește înlănțuirea separată. Se inserează elemente cu valori între 0 și 2020
- Care din următoarele funcții de dispersie oferă o distribuție cât mai uniformă a valorilor în cele 10 liste înlănțuite?

- A) $h(k) = k^2 \% 10$
- B) $h(k) = k^3 \% 10$
- C) $h(k) = (11 * k^2) \% 10$
- D) h(k) = (12 * k) % 10

- Răspuns corect B)
- Ultima cifră este importantă, deoarece funcția de dispersie calculează modulo 10
- La puterea a treia, valorile se distribuie uniform în cele 10 liste înlănţuite
- La puterea a doua, valorile nu se distribuie uniform în cele 10 liste înlănțuite

Cifra	Cub	Ultima cifră din cub
0	0	0
1	1	1
2	8	8
3	27	7
4	64	4
5	125	5
6	216	6
7	343	3
8	512	2
9	729	9

Cifra	Pătrat	Ultima cifră din pătrat
0	0	0
1	1	1
2	4	4
3	9	9
4	16	6
5	25	5
6	36	6
7	49	9
8	64	4
9	81	1

 Cifrele 1, 4, 6 şi 9 se repetă, adică listele înlănţuite care corespund acestor chei vor avea mai multe elemente, iar listele înlănţuite care corespund cheilor 2, 3, 7 şi 8 vor fi vide

- Se consideră o tabelă de dispersie, cu lungimea 12, iniţial vidă, care foloseşte adresarea deschisă, cu dublă dispersie
- Se inserează valorile:
- 33 10 9 13 12 45 26 17
- Prima funcţie de dispersie este:
- $h_1(k) = k \% 12$
- A doua funcţie de dispersie este:
- $h_2(k) = 7 (k \% 7)$

	0	1	2	3	4	5	6	7	8	9	10	11
Α	12	13	26	17	45	9				33	10	
В	12	13	26		45	9			17	33	10	
С	12	13	17	26	45	9				33	10	
D	12	13	17		45	9				33	10	

Răspuns corect B)

- Se consideră următoarele valori:
- 2341 4234 2839 430 22 397 3920
- şi o tabelă de dispersie cu 7 elemente
- Funcţia de dispersie este:
- h(x) = x % 7
- Să se calculeze şi să se reprezinte grafic conţinutul tabelei de dispersie după inserarea celor 7 valori în tabelă, în ordinea în care ele apar în şirul iniţial

- Se vor folosi următoarele metode de inserare în tabela de dispersie:
- a) Adresare deschisă, cu sondaj liniar
- b) Adresare deschisă, cu sondaj pătratic
- c) Adresare deschisă, cu dublă dispersie a doua funcţie de dispersie este:
- $h_1(x) = (2 * x 1) \% 7$
- d) Înlănţuire separată