Definitionen

- 1. Aussage: Eine Aussage ist ein Satz, der entweder wahr (w) oder falsch (f) ist, also nie beides zugleich.
- **2.** Konjunktion: Seien A und B Aussagen. Dann ist auch "A und B" eine Aussage, die sogenannte (logische) Konjunktion. Kurz: $(A \wedge B)$.
- $(A \wedge B)$ ist genau dann wahr, wenn sowohl A als auch B wahr ist.
- 3. Disjunktion: Seien A und B Aussagen. Dann ist auch "A oder B" eine Aussage, die sogenannte (logische) Disjunktion. Kurz: $(A \vee B)$.
- $(A \vee B)$ ist genau dann wahr, wenn Aoder B wahr ist oder beide.
- 4. Negation: Sei A eine Aussage. Dann ist auch "nicht A" eine Aussage, die (logische) Negation. Kurz: $(\neg A)$. Die Aussage $(\neg A)$ ist genau dann wahr, wenn A falsch ist.
- **5.** Implikation: Seien A und B aussagen. Dann ist auch "wenn A, dann B" eine Aussage, die (logische) Implikation. Kurz: $(A \Rightarrow B)$. Die Aussage $(A \Rightarrow B)$ ist genau dann falsch, wenn A wahr und B falsch ist.
- **6. Bi-Implikation:** Seien A und B Aussagen. Dann ist auch "A **genau dann, wenn** B" eine Aussage, die **Bi-Implikation**. Kurz: $(A \iff B)$. Die Aussage $(A \iff B)$ ist genau dann wahr, wenn A und B beide den gleichen Wahrheitswert haben.
- 7. Formel: Eien aussagenlogische Verknüpfungvon Aussagenvariablen (durch endlich viele Junktoren) heißt (aussagenlogische) Formel. Aussagenvariablen werden auch als atomare Formeln bezeichnet.
- **8. Auswertung** $A_B(x)$: Sei B : Var $\rightarrow \{w,f\}$ eine Belegung. Die Auswertung $A_B(F)$ ergibt sich **rekursiv**; das Rekursionsende sind die Variablen:
- 9. Tautologie: Eine Tautologie ist eine Formel, die stets wahr is, in deren Wahrheitswerteverlauf also ausschließlich den Wahrheitswert w vorkommt.
- 10. Kontradiktion: Eine Kontradiktion ist eine Formel, die stets falsch ist, in deren Wahrheitswerteverlauf also ausschließlich der Wahrheitswert f vorkommt.
- 11. Erfüllbarkeit: Eine Formel F heißt erfüllbar, wenn es mindestens eine Belegung der Aussagenvariablen gibt, die F wahr macht.
- 12. Äquivalenz: Zwei Formeln F und G heißen (logisch) äquivalent genau dann, wenn die Formel (F \iff G) eine Tautologie ist. Dies wird durch $\mathbf{F} \equiv \mathbf{G}$ dargestellt.
- 13. Folgerungsbeziehung: Die Formel F imliziert die Formel G genau dann, wenn $(F \Rightarrow G)$ eine Tautologie ist.

Dies wird durch F = G dargestellt. ("Aus F folgt G.")

14. Aussageform: Eine Aussageform über den Universen

 U_1, \ldots, U_n ist ein Satz mit den freien Variablen x_1, \ldots, x_n .

15. Quantoren: Sei p(x) eine Aussageform über dem Universum U. $\exists x : p(x)$ ist wahr genau dann, wenn ein u in U existiert, so dass p(u) wahr ist.

 \forall : p(x) ist wahr genau dann, wenn p(u) für jedes u aus U wahr ist.

16. gebundene Variablen: Eine Variable x wird in einer Formel $F = \forall x : G$ durch den Allquantor gebunden.

Analog wird x in $F = \exists x : G$ durch den Existenzquantor **gebunden**.

- 17. Normalisierte Darstellung: Eine Formel ist in normalisierter Variablenschreibweise, wenn gilt:
 - Keine Variable kommt sowohl frei als auch gebunden vor.
 - Keine Variable ist mehrfach gebunden.

Wahrheitstabellen

\mathbf{A}	$\mid \mathbf{B} \mid$	$(\mathbf{A} \wedge \mathbf{B})$
w	W	W
W	f	f
f	w	f
f	f	f
A	В	$(A \Rightarrow B)$
A W	B	$(A \Rightarrow B)$
-		` ′
W	w	w

A	В	(A ∨ B)
w	W	w
w	f	w
f	W	w
f	f	f
Δ	$\overline{\mathbf{R}}$	(Δ <i>←</i> →

A	$\neg \mathbf{A}$
W	f
f	W

A	В	(A ⇔ B)
W	w	w
W	f	f
f	w	f
f	f	w

Umformungsregeln

Kommutativgesetz:
$$(p \land q) \equiv (q \land p)$$

 $(p \lor q) \equiv (q \lor p)$

Idempotenzgesetz:
$$(p \land p) \equiv p$$

 $(p \lor p) \equiv p$

Doppelnegation:
$$\neg(\neg p) \equiv p$$

de Morgan Gesetz:
$$\begin{array}{l} \neg(p \wedge q) \equiv ((\neg p) \vee (\neg q)) \\ \neg(p \vee q) \equiv ((\neg p) \wedge (\neg q)) \end{array}$$

$$(p \land q) \equiv p$$
 Tautologieregeln: $(p \lor q) \equiv q$
$$(q = Tautologie)$$

$$(p \wedge q) \equiv q$$
 Kontradiktions
regeln:
$$(p \vee q) \equiv p$$

$$(q = Kontradiktion)$$

Umformungsregeln für Quantoren: