

NEW MIND AI BOOTCAMP BITIRME PROJESI

ALTAN TOPBAŞ

VERI SETI TANITIMI

	Metin	Durum
0	evet anlatıldığı gibi	1
1	Daha öncede almıştım bu cihazdan ense ve sakal	1
2	Ürün gayet başarılı sakal kesmede başlık sayıs	1
3	Daha öncede aynısını almıştım çok güzel ve kal	1
4	Erkek kuaförüyüm ense ve sıfır sakal traşı içi	1

RANDOM FOREST ILE SINIFLANDIRMA

```
rf_model = RandomForestClassifier(n_estimators=500)
rf_model.fit(X_train_tfidf, y_train)
# 500 ağaçlı bir RandomForest Modeli kullanarak eğitime başlarız.
```

```
RandomForest Model ***
Accuracy: 0.8605800922874094
classification report:
               precision
                           recall f1-score
                                              support
                                      0.89
                   0.88
                            0.91
                                                1361
                   0.84
                            0.95
                                      0.89
                                                1368
                            0.28
                                      0.41
                   0.79
                                                 305
                                      0.86
                                                3034
    accuracy
                                      0.73
   macro avg
                   0.84
                            0.71
                                                3034
weighted avg
                   0.86
                            0.86
                                                3034
                                      0.84
```


XGBOOST ILE SINIFLANDIRMA

*** XGBoost Model ***							
Accuracy: 0.8744232036914964							
classification_report:							
	precision	recall	f1-score	support			
Ø	0.90	0.92	0.91	1361			
1	0.89	0.92	0.90	1368			
2	0.63	0.47	0.54	305			
accuracy			0.87	3034			
macro avg	0.81	0.77	0.78	3034			
weighted avg	0.87	0.87	0.87	3034			

results

This model is a fine-tuned version of <u>dbmdz/bert-base-turkish-uncased</u> on an unknown dataset. It achieves the following results on the evaluation set:

Loss: 0.3292

Accuracy: 0.9262

Precision: 0.9262

Recall: 0.9262

F1: 0.9262

```
# Metin Temizleme Fonksiyonu
def clean_text(text):
   # 1. Küçük harfe çevir
   text = text.lower()
   # 2. Noktalama işaretlerini kaldır
   text = re.sub(r"[^\w\s]", '', text)
   # 3. Tokenize et
   tokens = word_tokenize(text)
   # 4. Stop Words'leri kaldır
   stop_words = set(stopwords.words('turkish')) # Türkçe stop words
   tokens = [word for word in tokens if word not in stop_words]
   # 5. Lemmatization
   lemmatizer = WordNetLemmatizer()
   tokens = [lemmatizer.lemmatize(word) for word in tokens]
   # 6. Temizlenmiş kelimeleri birleştir
   cleaned_text = ' '.join(tokens)
   return cleaned_text
```

Metin ön işleme işlemi bu fonksiyonla gerçekleşir

```
X = df['Metin'] # Features olarak, X belirlenir.
y = df['Durum'] # Target olarak, Y belirlenir.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=64)

# X ve y test ve train için ayrılır.
# Veri setinin %80'i eğitim, %20'si test için ayrılmıştır.

Kodlamaya başlayın veya yapay zeka ile kod oluşturun.

tfidf_vectorizer = TfidfVectorizer(max_features=1000) #TF-IDF ile vektörleştirilme işlemi yapılır.

X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
# Temiz metinleri sayısal bir vektöre dönüştürürüz. Böylelikle üzerlerinde işlem yapılabilir hale getiririz.
```

RandomForest ve XGBoost ile sınıflandırılma işlemleri yapılabilmesi için TF-IDF vektörize etme işlemi yapılır.

BERT ILE SINIFLANDIRMA

- Metin ön işlemeden sonra bert tabanlı model seçilir
- Yazılan ifadenin token'laştırılması yapılır.
- Model değişkeni oluşturulur.
- Model için gerekli eğitim parametreleri hazırlanır.
- Eğitim parametreleri eğitime sokulur.

Loss: 0.3292

Accuracy: 0.9262

Precision: 0.9262

Recall: 0.9262

• F1: 0.9262

LLM İLE YANIT ÜRETME

Yapılan yorumun negatif olması durumunda

```
# Kullanıcı yorumu
user_comment = input("Lütfen Yorumunuzu Girin: ")

# Yorumun sınıfını belirle
comment_class = classify_comment(user_comment)

# Metin üretimi
result = generate_response(comment_class, user_comment)
print("Üretilen Yanıt:\n", result)

Lütfen Yorumunuzu Girin: ürün güzel değil
Üretilen Yanıt:
### Görev: Kullanıcı üründen memnun değil. Sorunu çözmek için yapıcı bir yanıt verin.
### Kullanıcı Yorumu: "ürün güzel değil"
### Yanıt:
Bu yorum çok doğru ve anlamlı, ürünümüzü tekrar gözden geçirmemiz gerekiyor çünkü kullanıcılar tarafından yapılan bu değerlendirmeyi dikkate almalıyız. Ürününüz veya
```

LLM İLE YANIT ÜRETME

Yapılan yorumun pozitif olması durumunda

Lütfen Yorumunuzu Girin: ürün gayet iyi Üretilen Yanıt: Yorumunuz için teşekkür ederim. Ürünümüz oldukça iyi görünüyor.