LISTA 6 (OPCIONAL): A FUNÇÃO DISTRIBUIÇÃO

Exercício 1. (Lema de cobertura do tipo Vitali) Seja B_1, B_2, \ldots, B_n uma coleção finita de bolas abertas em \mathbb{R}^d que $n\tilde{a}o$ são necessariamente disjuntas. Então existe uma subcoleção $B_{m_1}, B_{m_2}, \ldots, B_{m_k}$ de bolas disjuntas, tal que

$$\bigcup_{i=1}^{n} B_i \subset \bigcup_{j=1}^{k} 3 B_{m_j},$$

onde para uma bola B, denotamos por 3B a bola cujo centro coincide com o centro de B e cujo raio é 3 vezes o raio de B. Em particular, pela subaditividade finita, temos:

$$\lambda \left(\bigcup_{i=1}^{n} B_i \right) \le 3^d \sum_{j=1}^{k} \lambda(B_{m_j}).$$

Dica: use um algoritmo "ganancioso" para selecionar bolas de raio máximo que sejam disjuntas das bolas selecionadas anteriormente.

O contexto para os problemas a seguir é o seguinte. Seja $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ o espaço de medida em \mathbb{R} onde $\mathcal{B}(\mathbb{R})$ é a σ -álgebra de Borel em \mathbb{R} e λ denota a medida de Lebesgue. Seja μ uma medida boreliana finita em \mathbb{R} e denote por F_{μ} a sua função de distribuição acumulada.

O teorema fundamental do cálculo parte II (TFC II), o teorema de extensão de Hahn-Kolmogorov e o teorema de decomposição de Lebesgue-Radon-Nikodym (L-R-N) serão úteis na solução desses problemas.

Exercício 2. Prove que F_{μ} é contínua à direita e que $\lim_{x\to-\infty} F_{\mu}(x)=0$.

Exercício 3. Prove que F_{μ} é contínua no ponto a se e somente se $\mu(\{a\}) = 0$. Depois conclua que μ é uma medida contínua se e somente se a sua função de distribuição F_{μ} é contínua. Dica: use o teorema de convergência monótona para conjuntos.

Exercício 4. (a) Prove que $\mu \ll \lambda$ se e somente se F_{μ} é uma função absolutamente contínua.

(b) Supondo que $\mu \ll \lambda$, e como sabemos que uma função absolutamente contínua é diferenciável em quase todo ponto, é natural perguntar qual é a derivada de F_{μ} .

Prove que F'_{μ} é exatamente a derivada de Radon-Nikodym de μ com respeito a λ :

$$\frac{dF_{\mu}}{dx} = \frac{d\mu}{d\lambda}$$
 em q.t.p.

Em outras palavras, se $\mu = \lambda_f$, prove que $F'_{\mu}(x) = f(x)$ para λ -q.t.p. x.

Dica para parte (b): inicialmente, perceba que o que você realmente tem que provar é que

$$\mu(E) = \int_{E} F'_{\mu}(x) \, d\lambda(x)$$

é valido para todo conjunto boreleano E.

Para tanto, verifique que a igualdade acima é válida: quando E é um intervalo (é quando você precisa o TFC II); depois quando E é um conjunto elementar; e finalmente quando E é o complemento de um conjunto elementar. Em outras palavras, mostra que isso vale para a álgebra booleana de todos os conjuntos elementares e os seus complementares. Termine usando a unicidade do teorema de extensão de Hahn-Kolmogorov.

Exercício 5. Prove que $\mu \perp \lambda$ se e somente se $F'_{\mu}(x) = 0$ para λ -q.t.p. $x \in \mathbb{R}$.

Dica: inicialmente prove a direção " \Longrightarrow ". Depois use essa implicação combinada com o teorema de L-R-N (aplicado a μ) para provar " \Longleftrightarrow ".