Информационный поиск и обработка естественного языка Information Retrieval and Natural Language Processing

Павел Браславский

ВВЕДЕНИЕ

Информационный поиск

- (Самое?) массовое приложение, успешная бизнес-модель
- Приложение-агрегатор (карты, картинки, звук, социальные сети, голос, ...)
- От минимального использования ОЕЯ до самых «продвинутых» методов
- Большие объемы текстовой информации
- Стандарты оценки (evaluation)

Teмы SIGIR2017

- Queries and Query Analysis
- Web Search
- Mining and Modeling Search Activity
- Interactive Search
- Local and Mobile Search
- Retrieval Models and Ranking
- Social Search
- Filtering and Recommending
- Evaluation
- Document Representation and Content Analysis
- Question Answering
- Efficiency and Scalability
- Search in Structured Data
- Multimedia Search
- Other Applications and Specialized Domains

NLP@Google

Определение

Поиск объектов (документов) в больших текстовых (=неструктурированных) коллекциях, которые удовлетворяют информационные потребности пользователей.

+представление, хранение, ... документов и коллекций

Акцент на информации, а не данных

ЧАСТОТНЫЕ СВОЙСТВА СЛОВ

Рост словаря с ростом коллекции

- Закон Хипса: M = kT^b
- M размер словаря (уникальные слова),
 T словоупотребления в коллекции
- Типичные значения: $30 \le k \le 100, b \approx 0.5$
- Эмпирический закон

Закон Хипса – коллекция RCV1

- Аппроксимация методом наименьших квадратов:
- $\log_{10}M = 0.49 \log_{10}T + 1.64$ $M = 10^{1.64}T^{0.49}$, T.e. $k = 10^{1.64} \approx 44$, b = 0.49.

 Для первых 1,000,020 слов коллекции модель предсказывает 38,323 уникальных слов; фактически: 38,365

Закон Ципфа

- Частота *i*-го слова в частотном пропорциональна 1/*i* (первое слово – самое частотное)
- cf_i ~ 1/i = K/i , где K нормализующая константа
- cf_i частота в коллекции (collection frequency): сколько раз слово встретилось в коллекции.
- Эмпирический закон
- Если самое частое слово встречается cf_1 раз, то второе по частоте встречается $cf_1/2$ раз, третье $cf_1/3$ раз и т.д.

НКРЯ

Nº	Словоформа	Документы	Частота
1	И	57816	7416716
2	<u>B</u>	58555	5842670
3	<u>не</u>	49962	3385161
4	<u>на</u>	55776	2936096
5	<u>c</u>	53453	2228350
6	<u>что</u>	49428	2210373
7	<u>я</u>	24694	1592127
8	<u>a</u>	47492	1541398
9	<u>он</u>	34574	1377314
10	как	44897	1300577
11	<u>K</u>	46631	1132463
12	по	51068	1071698
13	<u>HO</u>	41552	1048321
14	<u>его</u>	39492	983462
15	<u>это</u>	40341	957828
16	<u>из</u>	46975	836230
17	<u>BCe</u>	39105	817619
18	v	37148	798746

Закон Ципфа – коллекция RCV1

[Nayak & Raghavan]

ВЕКТОРНАЯ МОДЕЛЬ

Матрица «термин-документ»

Основная структура данных в ИП

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

[Nayak and Raghavan]

Частота термина в документе

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

«мешок слов» (bag of words) – не важен порядок, взаимное расположение слов, только частота

[Nayak and Raghavan]

Сглаживание частоты

• Сглаженный вес термина t в документе d

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4$, etc.
- Соответствие запросу: сумма по терминам t, которые есть и в запросе q, и в документе d:

$$\sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

Документная частота

- df_t документная частота t: количество документов, содержащих t
 - df_t обратная мера «информативности» t
 - $-df_t \leq N$
- idf (inverse document frequency):

$$idf_t = log_{10} (N/df_t)$$

– Логарифм – для сглаживания

Beca tf-idf

• Bec tf-idf термина t в документе d: комбинация частоты по документу и частоты в коллекции

$$\mathbf{w}_{_{t,d}} = (1+\log \mathrm{tf}_{_{t,d}}) imes \log_{10}(N/\mathrm{df}_{_t})$$
 Пожалуй, самая известная формула в информационном

- Пожалуй, самая известная формула в информационном поиске
- Используется в классификации документов, выделении ключевых слов, ...
 - tf-idf ← это не минус, а дефис (ВИП ☺);
 альтернативные обозначения: tf.idf, tf x idf
- Тем больше, чем чаще термин встречается в документе
- Тем больше, чем реже встречается в коллекции

[Nayak and Raghavan]

Представление tf.idf

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Документы — векторы в пространстве словаря, компоненты векторов — веса tf.idf [Nayak and Raghavan]

Близость между векторами

- Документы, запросы векторы
- Для векторов единичной длины

$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

[Nayak and Raghavan]

Пример

Документ: последняя точно последняя чашка

термин	tf	log_tf	df	cf	idf	wt	norm.
последняя	2	1.3	300	700	0.82	1.07	0.41
точно	1	1.0	400	1 500	0.70	0.70	0.27
чашка	1	1.0	10	15	2.30	2.30	0.87

$$|d| = sqrt(1.07^2 + 0.7^2 + 2.3^2) = 2.63$$

языковые модели в ип

Идея

- Предположение: пользователи имеют представление о релевантном документе и формируют запрос из слов, которые могут встретиться в таком документе
- Каждый документ > униграммная языковая модель
- Ранжировать документы по убыванию вероятности того, что модель документа сгенерировала запрос

Реализация

$$p(Q,d) = p(d)p(Q \mid d) \approx p(d)p(Q \mid M_d)$$

$$\hat{p}(Q \mid M_d) = \prod_{t \in Q} \hat{p}_{ml}(t \mid M_d) = \prod_{t \in Q} \frac{tf_{(t,d)}}{dl_d}$$

Что делать с нулями?

Смешанная модель:

$$P(w|d) = \lambda P_{mle}(w|M_d) + (1 - \lambda)P_{mle}(w|M_c)$$

Подбор Л критичен для качества Можно настраивать в зависимости от длины запроса

$$p(Q,d) = p(d) \prod_{t \in Q} ((1-\lambda)p(t) + \lambda p(t \mid M_d))$$

Пример

Коллекция:

d1: красный синий зеленый желтый охра

d2: красный белый серый голубой лазоревый

q: красный синий

$$\lambda = 0.5$$

$$p(q|d1) = [(0.2+0.2)/2] * [(0.2+0.1)/2] = 0.03$$

$$p(q|d2) = [(0.2+0.2)/2] *[(0+0.1)/2] = 0.01$$

Результаты [Ponte & Croft, 1998]

	tf.idf	LM	%chg	I/D	Sign	Wilc.
Rel:	6501	6501				
Rret.:	3201	3364	+5.09	36/43	0.0000*	0.0002*
Prec.						
0.00	0.7439	0.7590	+2.0	10/22	0.7383	0.5709
0.10	0.4521	0.4910	+8.6	24/42	0.2204	0.0761
0.20	0.3514	0.4045	+15.1	27/44	0.0871	0.0081*
0.30	0.2761	0.3342	+21.0	28/43	0.0330★	0.0054*
0.40	0.2093	0.2572	+22.9	25/39	0.0541	0.0158*
0.50	0.1558	0.2061	+32.3	24/35	0.0205*	0.0018*
0.60	0.1024	0.1405	+37.1	22/27	0.0008*	0.0027*
0.70	0.0451	0.0760	+68.7	13/15	0.0037*	0.0062*
0.80	0.0160	0.0432	+169.6	9/10	0.0107*	0.0035*
0.90	0.0033	0.0063	+89.3	2/3	0.5000	undef
1.00	0.0028	0.0050	+76.9	2/3	0.5000	undef
Avg:	0.1868	0.2233	+19.55	32/49	0.0222*	0.0003*
Prec.						
5	0.4939	0.5020	+1.7	10/21	0.6682	0.4106
10	0.4449	0.4898	+10.1	22/30	0.0081*	0.0154*
15	0.3932	0.4435	+12.8	19/26	0.0145*	0.0038*
20	0.3643	0.4051	+11.2	22/34	0.0607	0.0218*
30	0.3313	0.3707	+11.9	28/41	0.0138*	0.0070*
100	0.2157	0.2500	+15.9	32/42	0.0005★	0.0003★
200	0.1655	0.1903	+15.0	35/44	0.0001*	0.0000*
500	0.1004	0.1119	+11.4	36/44	0.0000∗	0.0000*
1000	0.0653	0.0687	+5.1	36/43	0.0000★	0.0002*
RPr	0.2473	0.2876	+16.32	34/43	0.0001*	0.0000*

АНАЛИЗ ССЫЛОК

Анализ ссылок

- Веб-документ: текст + внешние ссылки
- Классификация по темам, сниппеты, близкие слова, ...
- Веб как граф:
 - Анализ авторитетности документа
 - Создание/выявление спама

Пример: входящие ссылки

[Nayak and Raghavan]

PageRank

- Авторитетность страницы на основе анализа графа ссылок
- ~Анализ цитирования научных публикаций
- Модель случайного блуждания по вебу:
 - с равной вероятностью переходим по любой исходящей ссылке
 - телепортация: с вероятностью 0.15 переходим на случайную страницу

Марковский случайный процесс

- Матрица переходов P_{nxn}
- Эргодический случайный процесс: есть стационарное распределение вероятностей
- *x* вектор вероятностей состояний
- *xP, xP*³, *xP*² ... последовательность состояний
- Для стационарного состояния *а = аР*
- *a* главный собственный вектор *P*

Пример

	(
	(
0,038	2
0,038	

0	1	1	1
0	0	1	0
0	0	0	1
0	0	0	0

0	0,33	0,33	0,33
0	0	1	0
0	0	0	1
0,25	0,25	0,25	0,25

0,038	0,321	0,321	0,321
0,038	0,038	0,888	0,038
0,038	0,038	0,038	0,888
0,250	0,250	0,250	0,250

Пример (продолжение)

\mathbf{x}_0	X_1	X_2	X ₃	X ₄	X ₅
1	0,04	0,11	0,12	0,14	0,12
0	0,32	0,12	0,15	0,17	0,16
0	0,32	0,39	0,25	0,30	0,31
0	0,32	0,39	0,48	0,39	0,42

ОЦЕНКА

Оценка

- Релевантность (смысл слова, синтаксический разбор,...) – «в голове», мы не можем обойтись без человека при оценке
- Необходимо бороться с субъективностью и смещением
- Желательно делать результаты переиспользуемыми

Метод общего котла

Оценка качества поиска

Основа – понятие *релевантности* (соответствие информационной потребности)

• Точность (precision)

$$p=a/b$$

• Полнота (recall)

а – релевантные в отклике,

b — всего в отклике,

c — всего релевантных.

F-мера

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

[Nayak and Raghavan]

Ранжированные результаты

- precision@n
- Mean Average Precision (MAP)
- Mean Reciprocal Rank (MRR)
- (normalized) Discounted Cumulative Gain (DCG/nDCG)

Пример

	Q1	Q2	Q3	Q4	Q5
1	0	1	1	1	0
2	1	0	1	0	0
3	1	1	0	0	1
4	0	0	1	0	1
5	1	1	0	0	1
Кол-во	4	3	5	2	5
релевантных					

P = 0.52

R = 0.69

p@3 = 0.53

MAP = 0.75

MRR = 0.77

Морфология в поиске

Stemming helped markedly for Finnish (30% improvement) and Spanish (10% improvement), but for most languages, including English, the gain from stemming was in the range 0–5%, and results from a lemmatizer were poorer still. [IIR]

Согласие асессоров

Каппа-статистика Коэна:

$$\kappa = [P(A) - P(E)] / [1 - P(E)]$$

Р(А) – доля совпадений

P(E) — доля ожидаемых случайных совпадений

+вариант с весами попарное согласие для 3 и более асессоров

Пример

Number of docs	Judge 1	Judge 2
300	Relevant	Relevant
70	Nonrelevant	Nonrelevant
20	Relevant	Nonrelevant
10	Nonrelevant	Relevant

$$P(A) = 370/400 = 0.925$$

 $P(nonrelevant) = (10+20+70+70)/800 = 0.2125$
 $P(relevant) = (10+20+300+300)/800 = 0.7878$
 $P(E) = 0.2125^2 + 0.7878^2 = 0.665$
 $Kappa = (0.925 - 0.665)/(1-0.665) = 0.776$

Инициативы по оценке

- TREC http://trec.nist.gov/
- NTCIR http://research.nii.ac.jp/ntcir/
- CLEF http://www.clef-initiative.eu/
- SemEval http://alt.qcri.org/semeval2016/
- TAC https://tac.nist.gov/
- WMT http://www.statmt.org/wmt17/
- РОМИП http://romip.ru/
- Dialog http://www.dialog-21.ru/evaluation/

Коллекции РОМИП

Коллекция	Документы	Размер (compressed)	Запросы	Оценено
Legal	~300,000	2 Gb	14,794	220
By.Web	1,524,676	8 Gb	~ 60,000	1 500+
KM.RU	3,010,455	13 Gb	~ 60,000	~250

Дорожки РОМИП

- Поиск по запросу (ad-hoc text retrieval)
- Классификация документов
- Генерация сниппетов
- Вопросно-ответный поиск и извлечение фактов
- Кластеризация новостей
- Поиск по документу-образцу
- Анализ тональности
- Машинный перевод

Dialog Evaluation

Современные тенденции

- Краудсорсинг (crowdsourcing)
- Онлайн-оценка

ЕЩЕ БОЛЬШЕ ОЕЯ В ЗАДАЧАХ ИП

Синонимы

Машинный перевод

Яндекс

Картинки

форд мустанг

Найти

< Назад в поиск</p>

Любой размер ~

Свежие

Ford Mustang.

Обои 1366×768

Любая ориентация 🗸

Любой тип 🗸

Любой цвет

Ответы

Поиск сущностей

Найти

Елена Юрьевна Гагарина

Генеральный директор Государственного историко-культурного музея-заповедника «Московский Кремль», искусствовед. Старшая дочь первого космонавта планеты Юрия Гагарина. Википедия

Родилась: 17 апреля 1959 г. (57 лет), Заполярный, Мурманская область, РСФСР, СССГ

Родители: Валентина Ивановна Гагарина, Юрий Гагарин

Дети: Екатерина Караваева

Логин