Exercice 7 – Couche 3 : Subnetting Observations et exercices simples

1) Observations

- On dispose d'un réseau de classe B avec un masque de sous-réseau de 255.255.240.0.
- Combien de bits ont été empruntés à la partie hôte pour la partie sous-réseau ? 4 bits
- Combien de sous-réseaux utilisables avons-nous à notre disposition dans ce contexte ?
 14 sous-réseaux (2⁴ 2)
- Considérons le réseau 192.168.33.0. Nous utilisons le masque de sous-réseau /28. Quelles sont, parmi les suivantes, les adresses IP utilisables pouvant être attribuées à des hôtes ?

Adresse IP	Utilisable?	Si non, pourquoi ?	
192.168.33.3	Non	L'adresse se trouve dans le premier sous-réseau	
192.168.33.15	Non	L'adresse se trouve dans le premier sous-réseau	
192.168.33.16	Non	L'adresse IP est une adresse de sous-réseau	
192.168.33.17	Oui		
192.168.33.63	Non	L'adresse IP est une adresse de broadcast	
192.168.33.65	Oui		

- Considérons une station d'un réseau ayant pour adresse IP 134.157.130.45.
- Quelle est la classe d'adresse utilisée ? Classe B publique
- Le masque de sous-réseau étant 255.255.255.128, combien de sous-réseaux peuvent être utilisés ? 9 bits empruntés, donc : $2^9 2 = 510$
- Quelle est l'adresse de sous-réseau pour cette station ? 134.157.130.0

2) Exercices simples

 Un ordinateur a pour adresse IP 136.14.2.174/28. Est-ce que cette IP est valide et quelle est l'adresse du sous-réseau de cette station?
 Valide, 136.14.2.160

• Un ordinateur a pour adresse IP 10.1.35.14/17. Est-ce que cette IP est valide et quelle est l'adresse de broadcast de cette station ? Valide, 10.1.127.255

• Une interface de routeur a pour IP 192.168.17.3/30. Est-ce que cette IP est valide et quelle est l'adresse du sous-réseau pour cette interface de routeur ?

Non valide, 192.168.17.0

Exercice 8 – Couche 3 : Subnetting Etudes de cas

1) Cas n°1

- Combien de sous-réseaux doit-on créer au minimum ?
- Combien de bits doit-on emprunter à la partie hôte et combien de sous-réseaux seront ainsi créés ? Emprunter 4 bits, ce qui crée 16 sous-réseaux dont 14 utilisable.
- Quel est le masque de sous-réseau ainsi créé ? 255.255.255.240
- Nous allons utiliser la classe d'adresse 192.168.1.0/24.
- Complétez enfin le tableau d'attribution des plages d'adresses :

Sous-réseau	IP de sous-réseau IP de broadcast	Plage d'adresses utilisables
LAN n°1	192.168.1.16	De 192.168.1.17
LAN n°1	192.168.1.31	à 192.168.1.30
LAN n°2	192.168.1.32	De 192.168.1.33
	192.168.1.47	à 192.168.1.46
LAN n°3	192.168.1.48	De 192.168.1.49
	192.168.1.63	à 192.168.1.62
LAN n°4	192.168.1.64	De 192.168.1.65
	192.168.1.79	à 192.168.1.78
LAN n°5	192.168.1.80	De 192.168.1.81
	192.168.1.95	à 192.168.1.94

WAN n°1	192.168.1.96	De 192.168.1.97
	192.168.1.111	à 192.168.1.110
WAN n°2	192.168.1.112	De 192.168.1.113
	192.168.1.127	à 192.168.1.126
WAN n°3	192.168.1.128	De 192.168.1.129
	192.168.1.143	à 192.168.1.142

2) Cas n°2

- Une entreprise dispose d'un réseau Ethernet avec 60 hôtes, supportant le protocole TCP/IP.
- Les informations dont nous disposons sur ce réseau sont :
 - o Classe d'adresse utilisée : 193.250.17.0
 - o 3 départements : Administratif, commercial et production
 - o Ces départements sont reliés à l'aide de routeurs (2 liaisons WAN)
- Les contraintes pour ce réseau sont les suivantes :
 - o Chaque département doit avoir son propre sous-réseau.
 - Certaines stations du département de production utilisées sur les chaînes de montage ont déjà une plage d'adresses IP à ne pas modifier (attribuée statiquement). Celle-ci va de 193.250.17.110 à 193.250.17.117.
 - o Le département administratif contient 25 hôtes, le département commercial 15 et le département production 20.
- Proposez un masque de sous-réseau en justifiant votre choix :

Minimum de sous-réseaux = 5 Minimum d'IP utilisables par sous-réseau = 26 Masque de sous-réseau = 255.255.255.224

- Calculer le nombre total d'hôtes que peut contenir chaque sous-réseau :
 30 hôtes
- Complétez le tableau d'attribution des sous-réseaux :

Sous-réseau	IP de sous-réseau IP de broadcast	Plage d'adresses utilisables	Quelles adresses doivent être configurées sur le DHCP
Administratif	193.250.17.32 193.250.17.63	De 193.250.17.33 à 193.250.17.62	Toutes
Commercial	193.250.17.64 193.250.17.95	De 193.250.17.65 à 193.250.17.94	Toutes
Production	193.250.17.96 193.250.17.127	De 193.250.17.97 à 193.250.17.126	Toutes sauf de 193.250.17.110 à 193.250.17.117
Liaison WAN n°1	193.250.17.128 193.250.17.159	De 193.250.17.129 à 193.250.17.158	Aucune
Liaison WAN n°2	193.250.17.160 193.250.17.191	De 193.250.17.161 à 193.250.17.190	Aucune

• Complétez le schéma suivant :

3) Cas n°3

- Une entreprise dispose d'un parc informatique de 600 machines réparties équitablement dans 6 services.
- Nous voulons construire l'architecture réseau sur une seule classe d'adresses IP. De plus chaque service doit accéder à des ressources spécifiques dont les autres services ne devront pas disposer.
- Quelle classe d'adresses allez-vous employer ? Classe B
- Expliquez, notamment par le calcul, quel masque de sous-réseau vous allez utiliser pour répondre aux contraintes de l'énoncé : 255.255.224.0

• Quels sont les 6 sous-réseaux que vous allez utiliser pour le réseau de cette entreprise ?

Sous-réseau n°1	130.65.32.0/19
Sous-réseau n°	130.65.64.0/19
Sous-réseau n°	130.65.96.0/19
Sous-réseau n°	130.65.128.0/19
Sous-réseau n°	130.65.160.0/19
Sous-réseau n°	130.65.192.0/19

Exercice 12 – Couche 3 : Routage Classless CIDR

- 1) Quelle est la meilleure agrégation pour les adresses réseaux 10.2.65.0/24 10.2.66.0/24 10.2.67.0/24 ? 10.2.64.0/22
- 2) Votre compagnie dispose de 4 adresses réseaux de classe C :

200.39.32.0

200.39.33.0

200.39.34.0

200.39.35.0

Ces adresses réseaux peuvent-elles être agrégées en une seule adresse ? Si oui laquelle ?

Oui 200.39.32.0/22

3) On souhaite agréger 16 classes A pour une multinationale. Proposez un agrégat de classes publiques de votre choix.

/4

4) On souhaite agréger les classes suivantes : 200.100.127.0/24, 200.100.128.0/24, 200.100.129.0/24 et 200.100.130.0/24. Est-ce possible ? Si oui, quel est l'agrégat obtenu ? L'agrégat obtenu correspond-t-il précisément au besoin, ou avons-nous agréger plus ? Dans ce cas, proposez un meilleur agrégat.

200.100.127.0/24 200.100.128.0/24 200.100.129.0/24 200.100.130.0/24.

Oui: 200.100.0.0/16

L'agrégat obtenu agrége beaucoup trop de route.

Meilleur agrégat : 200.100.127.0/24 200.100.128.0/22

5) Nous disposons d'une adresse réseau de classe B 160.123.0.0 à laquelle nous attribuons le masque 255.255.255.0. Les sous réseaux 160.123.8.0, à 160.123.15.0 doivent être agrégés. Donnez l'adresse et le masque qui permettent cette agrégation.

160.123.8.0/21

6) Donnez les adresses réseaux classfull agrégées par l'adresse réseau suivante 212.27.32.0 /21.

212.27.32.0 212.27.33.0 212.27.34.0 212.27.35.0 212.27.36.0 212.27.37.0 212.27.38.0 212.27.39.0

7) 192.168.10.0 /24 192.168.11.0 /24 192.168.12.0 /24 192.168.13.0 /24 192.168.14.0 /24 192.168.15.0 /24 192.168.16.0 /24 192.168.17.0 /24

Peut-on agréger ces adresses par 192.168.10.0 /21 ? Expliquez votre réponse et donnez une autre possibilité pour agréger 8 adresses réseaux si cette proposition est incorrecte.

NON si on utilise un masque CIDR en /21 nous ne pourrons agréger que les route de 192.168.0.0. À 192.168.7.0

Réponse correcte : 192.168.0.0/21 agrégation de 8 sous réseaux.

8) XYZ a besoin de 1000 IPs publiques. Choisissez la classe d'adresse qui permettra le moins de gaspillage ? Combien d'adresse de cette classe faut-il pour répondre au besoin ? Donner les adresses choisies ainsi que l'agrégat.

Répétez le même exercice avec 157234 IPs publiques.

1000 IPs publiques:

Afin d'éviter le gaspillage, le choix le plus judicieux semble être l'utilisation d'une classe C ($2^8 = 256 - 2$ hôtes utilisables par réseaux).

Nous utiliserons donc 4 plages de classe C (1000 / 254 = 3.94).

Adresses + agrégat. 200.50.10.0/22 200.50.11.1/22

200.50.11.2/22 200.50.10.3/22

157234 IPs publiques : Utilisation d'adresse réseau de classe B ($2^16 = 65536 - 2$ hôtes utilisables). 157234 / 65534 = 3 plages de classe B.

Adresse + agrégat.

130.0.0.0/14 130.1.0.0/14

130.2.0.0/14

Exercice 13 – Couche 3 : Routage Classless VLSM asymétrique

1) Topologie n°1

• L'entreprise XYZ souhaite mettre en place le réseau suivant :

 Vous devez mettre en place un plan d'adressage qui utilise VLSM pour allouer les adresses aux LAN et WAN que comporte le réseau de l'entreprise XYZ. Vous veillerez à minimiser tout gaspillage en optimisant l'utilisation de votre espace d'adresse. Vous travaillerez sur une adresse réseau de classe C et emploierez la règle du 2n.

Espace d'adresse	Nombre d'adresse IP	Adresse réseau et préfixe	Masque de sous- réseau
Adresse réseau de Classe C	1022 utilisables	192.168.28.0/22	255.255.252.0
LAN1	250	192.168.28.0/24	255.255.255.0
LAN2	120	192.168.29.0/25	255.255.255.128
LAN3	120	192.168.29.128/25	255.255.255.128
WAN1	2	192.168.30.0/30	255.255.255.252
WAN2	2	192.168.30.4/30	255.255.255.252

2) Topologie n°2

Vous avez été désigné pour concevoir le plan d'adressage du réseau représenté par le schéma cidessus. Votre Fournisseur d'Accès Internet vous a attribué une portion d'une adresse réseaux de classe B représentant 4096 adresses. La commande **ip subnet-zero** est activée sur les routeurs.

• Votre objectif sera de proposer un plan d'adressage VLSM qui permettra de minimiser la perte d'adresses.

Espace d'adressage	Nombre d'adresses IP	Adresse réseau avec le préfixe associé	Masque de sous réseaux
Adresse réseau de classe B	4096 (4094 utilisables)	172.30.160.0/20	255.255.240.0
LAN1	2000	172.30.160.0/21	255.255.248.0
LAN2	1020	172.30.168.0/22	255.255.252.0
LAN3	500	172.30.172.0/23	255.255.254.0
LAN4	100	172.30.174.0/25	255.255.255.128
WAN1	2	172.30.174.128/30	255.255.255.252
WAN2	2	172.30.174.132/30	255.255.255.252
WAN3	2	172.30.174.136/30	255.255.255.252
WAN4	2	172.30.174.140/30	255.255.255.252

3) Topologie n°3

Soit le réseau de l'entreprise GHI décomposé comme suit :

- O Présence sur 2 pays : l'Allemagne et le Japon
- o Allemagne:
 - Berlin : 5 étages de 50 utilisateurs par étage
 - Stuttgart : 3 étages de 100 utilisateurs par étage
 - Cologne : 1 étage de 100 utilisateurs par étage
- o Japon
 - Tokyo: 3 étages de 50 utilisateurs par étage
 - Okinawa : 2 étages de 70 utilisateurs par étage
- Déterminez le type de classe le plus adapté, donnez les adresses réseaux et masques associés attribués à chaque étage.
- Proposez un plan d'adressage hiérarchique en utilisant la règle 2ⁿ.

193.172.0.0/21 Allemagne

193.172.0.0/23 Berlin:

1^{er} étage 193.172.0.0/26 2eme étage 193.172.0.64/26 3eme étage 193.172.0.128/26 4eme étage 193.172.0.192 /26 5eme étage 193.172.1.0 /26

193.172.2.0/23 Stuttgart:

1^{er} étage 193.172.2.0/25 2eme étage 193.172.2.128/25 3eme étage 193.172.3.0/25

193.172.4.0/24 Cologne :

1^{er} étage 193.172.4.0/25

(Il va rester 3 plages en Backup pour mettre en place éventuellement d'autre site)

193.172.8.0/23 Japon

193.172.8.0/24 Tokyo

1^{er} étage 193.172.8.0/26 2eme étage 193.172.8.64/26 3eme étage 193.172.8.128/26

193.172.9.0/24 Okinawa:

1^{er} étage 193.172.9.0/25 2eme étage 193.172.9.128/25