Data Visualization in Python

◆ 1. What is Data Visualization?

Definition:

- The process of representing data in a graphical format (charts, plots, maps).
- Helps to see patterns, relationships, and trends.

Why it is important?

Easier to understand large datasets

Makes comparison and trends clear

Used in data science, business, research

2. Libraries for Visualization in Python

Matplotlib → foundation library (basic plots).

Seaborn → built on Matplotlib, gives **statistical & beautiful plots**.

Plotly → interactive visualizations.

We'll cover Matplotlib + Seaborn in detail.

Part A: Matplotlib

♦ 3. Matplotlib Basics

import matplotlib.pyplot as plt

- (a) Line Plot
- Used to show trends over time.


```
x = [1,2,3,4,5]
y = [2,4,6,8,10]

plt.plot(x,y, color="blue", marker="o")
plt.title("Line Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()
```

When to use? → Growth, stock prices, time series

(b) Bar Chart

Used to compare categories.


```
categories = ['A','B','C','D']
values = [3,7,5,6]

plt.bar(categories, values, color='skyblue')
plt.title("Bar Chart")
plt.show()
```

When to use? → Compare sales by product, scores by group

(c) Histogram

Shows distribution of values.


```
import numpy as np
data = np.random.randn(1000)

plt.hist(data, bins=30, color='orange', edgecolor='black')
plt.title("Histogram")
plt.show()
```

When to use? → Age distribution, exam marks, frequency

(d) Scatter Plot

Shows relationship between two variables.


```
x = [5,7,8,7,6,9,5,6,7,8]
y = [99,86,87,88,100,86,103,87,94,78]

plt.scatter(x, y, color='red')
plt.title("Scatter Plot")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
```

When to use? → Height vs Weight, Salary vs Experience

(e) Pie Chart

Shows proportions of categories.

Pie Chart


```
sizes = [40, 25, 20, 15]
labels = ["A","B","C","D"]

plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140)
plt.title("Pie Chart")
plt.show()
```

4. Matplotlib Customization


```
plt.plot(x, y, color='green', linestyle='--', marker='o')
plt.title("Customized Plot", fontsize=16, color="red")
plt.xlabel("X-axis", fontsize=12)
plt.ylabel("Y-axis", fontsize=12)
plt.grid(True)
plt.legend(["Line"])
plt.show()
```

Features: color, labels, markers, legends, gridlines

Part B: Seaborn

♦ 5. Seaborn Basics

import seaborn as sns

(a) Histogram with KDE

sns.histplot(data, kde=True, bins=30, color="blue")

Adds **smooth curve** for distribution

(b) Box Plot (Whisker Plot)

Shows spread & outliers

sns.boxplot(x=categories, y=values)

Median, quartiles, and outliers visible

(c) Violin Plot

Similar to boxplot but shows distribution shape

sns.violinplot(x=categories, y=values)

(d) Pairplot

Multiple scatter plots for all features

sns.pairplot(df)

(e) Heatmap

Shows correlation between variables

Correlation Heatmap


```
corr = df.corr()
sns.heatmap(corr, annot=True, cmap="coolwarm")
```

Colors indicate strength of relationship

Part C: Choosing the Right Chart

Line Plot → Trend over time

Bar Chart → Compare categories

 $\textbf{Histogram} \rightarrow \mathsf{Distribution} \ \mathsf{of} \ \mathsf{values}$

Scatter Plot → Relationship between variables

Pie Chart → Percentage/proportion

Box Plot → Outliers & spread

Heatmap → Correlation

✓ Quick Recall (Cheat Sheet)

Matplotlib → plot, bar, hist, scatter, pie
Customization → color, linestyle, marker, legend, grid
Seaborn → histplot, boxplot, violinplot, pairplot, heatmap
Use Case Guide → Trend = Line, Comparison = Bar, Distribution = Histogram,
Relation = Scatter