11.4-1.

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of length m = 11 using open addressing with the auxiliary hash function h'(k) = k. Illustrate the result of inserting these keys using linear probing, using quadratic probing with $c_1 = 1$ and $c_2 = 3$, and using double hashing with $h_1(k) = k$ and $h_2(k) = 1 + (k \mod (m-1))$.

Answer.

Figure 1 shows the result of inserting these keys using linear probing.

Figure 1. Insertion by linear probing. Since $59 \equiv 4 \mod 11$, we insert the key 59 into empty slot 8, after examining slots 4, 5, 6, 7 and finding them to be occupied.

Figure 2 shows the result of inserting these keys using quadratic probing.

Figure 2. Insertion by quadratic probing. Since $59 \equiv 4 \mod 11$, we insert the key 59 into empty slot 7, after examining slots 4, 8 and finding them to be occupied.

Figure 3 shows the result of inserting these keys using double hashing.

^{*.} Creative Commons © 2014, Lawrence X. Amlord (颜世敏, aka 颜序). Email address: informlarry@gmail.com

Figure 3. Insertion by double hashing. Since $59 \equiv 4 \mod 10$, we insert the key 59 into empty slot 2, after examining slots 4, 3 and finding them to be occupied.