题目讲评

HJQwQ

2020年8月16日

目录

- 1 多米诺骨牌
 - 各种部分分
 - 正解
 - 证明
 - 后记
- 2 抽卡
 - 各种部分分
 - 正解
 - 证明
 - 后记
- 3 归程
 - 各种部分分
 - 正解
 - 后记

$$n=1, m \leq 10$$

显然 n=1 的时候用 1×2 的骨牌尽可能靠左填就行

测试点 2,3

$$n \le 2, m \le 10^5$$

显然 n=2 的时候用 2×1 的骨牌尽可能靠左填就行

测试点 4.5

 $n \le 5, m \le 10^5$ 说实话我也没想过这部分该怎么做。可能有乱搞能拿 50 分 但其实我小小地卡了一下我能想到的几种贪心乱搞... 乱搞能过的话 算你狠

HJQwQ 题目讲评 2020年8月16日 5/38

测试点 6,7

 $n \le 10, m \le 1000$

这部分或许可以用插头 DP 来做.. 但写起来肯定会很恶心所以我也 没细想..

2020年8月16日

一个结论

答案就是 $\left[\frac{(n+1)(m+1)}{6}\right]$

惊不惊喜? 刺不刺激?(仿佛梦回 NOIP2017D1T1)

问题转化

原问题是在 $n \times m$ 的棋盘中, 放入若干**不相邻**的 1×2 或 2×1 的骨牌

这个问题等价于在 $(n+1) \times (m+1)$ 的棋盘中, 放入若干不重叠的 2×3 或 3×2 的骨牌

我们不难证明这两个问题中的方案是——对应的: 在第二个问题的任一个方案中, 所有的骨牌删去最上方一行和最左侧一列, 再删去棋盘的最上方一行和最左侧一列, 就能得到第一个问题的一种方案

类似地, 在第一个问题的任一个方案中, 所有的骨牌在左侧添加一列, 在上方添加一行, 再在整个棋盘的最左侧添加一列, 最上方添加一行, 就能得到第二个问题的一种方案

故两个问题中能放置骨牌的最大数目相同, 这样我们就完成了对问题的转化

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

良心插图

(此处应有 2 张图片)

$$r = 2$$
 或 $r = 3$ 时...

接下来我们讨论的都是转化后的问题 我们将 (n+1) 记作 r, (m+1) 记作 c, 故 r, $c \ge 2$ 当 r=2 或 r=3 的时候答案一定是 $\lfloor \frac{rc}{6} \rfloor$, 因为我们只要把骨牌挨着 放就行了

r=6 时

结论: 当 r=6 时, 一定可以放满

首先不难发现当 r = c = 6 时,一定是可以放满的,所以只需要按 $c \bmod 6$ 的值进行讨论

若 $c \mod 6 = 0$. 则直接放满就行

若 $c \mod 6 = 2$. 不难发现 6×2 的很容易放满

若 $c \mod 6 = 3$. 不难发现 6×3 的也很容易放满

若 $c \mod 6 = 4$. 放两个 6×2 就行

若 $c \mod 6 = 5$, 放一个 6×2 和一个 6×3

若 $c \mod 6 = 1$, 则 $c \ge 7$, 放一个 6×3 和两个 6×2 就能填满 6×7

故 r=6 时一定可以填满.c=6 时同理

良心插图

(此处应有 6 张图片)

12/38

HJQwQ 题目讲评 2020年8月16日

r=4 时

由于 4×6 的可以填满, 所以只需要讨论 $c \mod 6$ 的值, 找到一种填 的方法使留空的格子数小于 6

若 $c \mod 6 = 0$, 则直接放满就行

若 $c \mod 6 = 1$, 就不放, 反正只留了 4 个空

若 $c \mod 6 = 2$. 放一个 3×2

若 $c \mod 6 = 3$, 放两个 2×3

若 $c \mod 6 = 4$. 放两个 2×3

若 $c \mod 6 = 5$. 放两个 2×3 和一个 3×2

良心插图

(此处应有 6 张图片)

r=5 时

由于 5×6 的可以填满, 所以只需要讨论 $c \mod 6$ 的值, 找到一种填 的方法使留空的格子数小干 6

若 $c \mod 6 = 0$. 则直接放满就行

若 $c \mod 6 = 1$, 就不放, 反正只留了 5 个空

若 $c \mod 6 = 2$. 放一个 3×2

若 $c \mod 6 = 3$, 放两个 2×3

若 $c \mod 6 = 4$, 放两个 2×3 和一个 3×2

若 $c \mod 6 = 5$, 像风车一样放两个 2×3 和两个 3×2 , 中间留空一

格

良心插图

(此处应有 6 张图片)

16/38

HJQwQ 题目讲评

r=7 时

由于 7×6 的可以填满, 所以只需要讨论 $c \mod 6$ 的值, 找到一种填 的方法使留空的格子数小干 6

若 $c \mod 6 = 0$. 则直接放满就行

若 $c \mod 6 = 2$. 放一个 6×2

若 $c \mod 6 = 3$. 放一个 6×3

若 $c \mod 6 = 4$. 放一个 6×4

若 $c \mod 6 = 5$. 放一个 6×5

若 $c \mod 6 = 1$, 则 c > 7, 像风车一样放两个 3×4 和两个 4×3 就

行

良心插图

(此处应有 6 张图片)

HJQwQ 题目讲评

r > 7 时

由于 r=6 时一定可以填满, 我们可以先从棋盘中划去若干列, 使 $2 \le c \le 7$, 再套用上面的证明, 于是这样留的空的数目一定 < 6综上所述, 我们证明了对于所有的情况, 都有 $ans = \lfloor \frac{rc}{6} \rfloor$, 即 $ans = \left| \frac{(n+1)(m+1)}{6} \right|$

2020年8月16日

19/38

HJQwQ 题目讲评

后记

后记

第一题就讲完惹..

HJQwQ 提醒自己休息一下 qwq

这题本来是去年 NOI 之前某场 CF div2 的 A 题.. 当时是罕见的下午比赛, 我就和机房小伙伴开黑.. 结果遇到了这个题

我很快就证明了答案就是 $\lfloor \frac{(n+1)(m+1)}{6} \rfloor$.. 然后一直过不了 pretest.. 自闭了..div2A 都做不出来

然后比赛就被爆破 (unrated) 了.. 出题人和验题人写的是同一种乱搞做法..n = 6, m = 6 时输出 7.. 导致正解过不了 pretest..

然后这题就作为错题从 CF 题库中被删掉了.. 我在 NOI 之前错过了最后一次橙名的机会.. 导致橙名迟到了 1 年 qwq

测试点 1,2

直接暴力 dfs 枚举抽的卡... 然后统计答案 时间复杂度大概是 O(n!)

21/38

HJQwQ 题目讲评 动态规划.. 令 $f_{i,j,0/1}$ 表示到达前 i 个位置中选了 j 个, 且第 i 个选/未选的最大价值和转移方程为:

$$\begin{cases} f_{i,j,0} = max(f_{i-1,j,0}, f_{i-1,j,1}) \\ f_{i,j,1} = f_{i-1,j-1,0} + v_i \end{cases}$$

时间复杂度 $O(n^2)$

22 / 38

 HJQwQ
 题目讲评
 2020 年 8 月 16 日

测试点 6,7

v; 不是 1 就是 2.. 大概可以乱搞? 我没仔细想...

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

一个假贪心

每次抽序列中最大的. 然后把它以及两侧的牌从序列中删去 这样做满足了不能相邻的要求,但得到的并不是最优解.. 甚至抽不 满 [***] 张卡

改进贪心

我们发现, 如果 k=1 时最优解为抽 v_i , 那么 k=2 时要么抽 v_i 和另一张卡, 要么抽 $v_{i-1}+v_{i+1}$

因为如果 k=2 时最优解是抽 $v_{i-1}+v_j$, 其中 $j\neq i+1$ 那么说明 $v_j>v_{i+1}$, 且 j 与 i 不相邻,又因为 v_i 是原序列的最大值,故抽 v_i+v_j 一定优于 $v_{i-1}+v_j$,矛盾

抽 $v_{i+1} + v_i$ 时同理

于是由 k=1 到 k=2 的过程中, 我们要么抽一张和 v_i 不相邻的卡, 要么放回 v_i 抽出 v_{i-1} 和 v_i+1

同理, 如果在 k=2 时选了 $v_{i-1}+v_{i+1}$, 那么 k=3 时一定再抽一张不相邻的卡, 或者抽 $v_{i-2}+v_i+v_{i+2}$

不难发现我们每次都是在将一个类似于 01010 的串翻转为 10101,1 和 0 表示抽或未抽

HJQwQ 2020 年 8 月 16 日 25 / 38

改进贪心

于是我们就用堆来维护所有翻转可以获得的最大价值 (可能为负), 并用双向链表来维护序列

每次从堆中取出一个点 v_i , 就将其加入答案, 将 v_{i-1} , v_i , v_{i+1} 从序列中删除, 合并为一个新的点, 权值为 $v_{i-1}+v_{i+1}-v_i$, 再插入到序列和双向链表中

一共要进行 $\lfloor \frac{n+1}{2} \rfloor$ 轮这样的操作

总时间复杂度 $O(n \log n)$

注意特判取出的点 v; 位于链表两端的情况, 以及已经从序列中被删除的情况

 HJQwQ
 题目讲评
 2020 年 8 月 16 日
 26 / 38

证明显然 (x)

emmm 其实挺复杂的.. 直接感性理解就是对贪心进行了改进, 可以对贪心进行反悔操作, 防止陷入局部最优解..

(因为证明太麻烦了所以我本来没打算出这个题... 但在 GGN 的强烈要求下还是出了... 他还立了个 flag 说这题没人 AC 他吃点啥 (滑稽))

GGN 巨神给出了一个证明, 课后会发给大家

HJQwQ 表示这题本质上是一个模拟费用流问题,也给出了一个证明..

与费用流的联系

前置知识: 网络流, 费用流, MCMF 算法 这道题可以抽象成一个费用流问题 建图方法如下...

(此处有一张图片)

中间的每一条边流量上限为 1, 费用为 v_i , 代表原来的一张卡, 有流 量就代表要选它

左右的边流量上限为 1, 费用为 0, 保证了相邻两张卡只会选一张 那么这显然就是一个最大费用流问题

与费用流的联系

每次 k++ 的过程就是费用流的增广过程: 在残量网络中找一条总 费用最大的从 s 到 t 的路径,然后将这条路径的流量增加 1

由于总费用最大的增广路一定是从 s 到第 1 层节点, 然后经过了若 干条中间的边,最后进入t,这就等价干找一条翻转价值最大的01 串

然后将这条路径上每条边的流量 +1. 由干流量上限也是 1. 故这样 会将残量网络中路径上的边反向, 等价干将这个 01 串翻转

这样就证明了题解的做法等价于费用流 MCMF 算法的增广过程, 由 于贪心沿着最长费用路增广是正确的, 故题解中的也是正确的

我们称这类用堆等数据结构来模拟费用流的增广/退流等操作的问 **题为模拟费用流问题**

拓展

什么? 为什么 MCMF 算法每次沿着最大费用路增广是正确的? 时间原因这里就不再赘述... 课后会发证明... 有兴趣的同学可以看...

后记

第二题也讲完惹...

HJQwQ 提醒自己休息一下 gwg

这道题原题是洛谷 P1484

这题是我在广州集训的时候遇到的... 当时还不会做... 然后讲完之后觉得自己就是个锑...

并且这题在很多 OJ 上都出现过很多次..BZOJ 和洛谷至少各有 3 道一样的题..

我能找到的最早出处大概是APIO2007 数据备份

后来就被无数集训/模拟赛/OJ 抄了无数次... 但极难找到这道题的 正确性证明... 我和 **GGN 巨神**证了好久才证出来

总而言之是一个很经典也很有意思的题 qwq

STL 的优先队列不开 O2 慢的要死..n 只能出到 2×10^5 .. 不然本来 还想出到 10^6 ..

2020年8月16日

可以枚举删边,然后 O(n!) 枚举所有可能的路径,再计算经过这条路径的概率和总长度,最后算出期望值

测试点 3,4,5

令 gi 表示从 i 号点开始走经过的路径长度期望值, 则有

$$g_i = \begin{cases} 0, & \text{i 无出边} \\ \sum\limits_{(i,v) \in E} \frac{w_{(i,v)}}{\sum\limits_{(i,u) \in E} w_{(i,u)}} (g_v + I_{(u,v)}), & \text{i 有出边} \end{cases}$$

这样就可以枚举删边,然后每次用拓扑排序暴力 DP,时间复杂度 $O(m^2)$

不太清楚有什么乱搞做法 qwq..

正解

首先通过一次拓扑排序计算出 gi

然后考虑删边对答案的影响: 删去边 (u,v) 只会对经过 u 点的路径 造成影响, 并且只会对 u 点的 g 值造成影响, 故要重新计算 g_{u} , 并求出 g_{ii} 的变化对总答案的响, 故我们要求出经过 u 点的概率 f_{ii} 令 f_{ii} 表示从 1号点出发,前进路径经过;号点的概率,则有

$$f_{i} = \begin{cases} 1, & i = 1\\ \sum_{(u,i) \in E} \frac{w_{(u,i)}}{\sum_{(u,v) \in E} w_{(u,v)}} f_{u}, & i \neq 1 \end{cases}$$

HJQwQ 题目讲评 2020年8月16日 35/38

正解

正解

于是我们再用一次拓扑排序算出 f_i , 对一条边 (u,v), 计算删去它后, g_u 的变化量 Δg_u , 总答案 ans 的变化量 $\Delta ans = \Delta g_u \times f_u$, 这样算一次是 O(1) 的

然后我们枚举每一条边进行计算,总答案 ans 取最小值即可,总时间 复杂度 O(m)

36 / 38

 HJQwQ
 题目讲评
 2020 年 8 月 16 日

后记

终于讲完了 qwq 这道题原题是BZOJ3470

原题要保留 6 位小数... 我当时好像卡了好长时间的精度才过 这个颗也是综合了概率和期望的很妙的颗...

本来想出另外一道题的... 但因为太容易搜到题解所以被我毙掉了 然后正好想到这几天的模拟赛还没出概率期望...就想出一道概率期

望

本来打算出一个无向图随机游走的题。但 GGN 巨神说那种题太水 了..HJQwQ 就只好另外找了这道题.. 结果还是被 GGN 巨神秒了 qwq emmm 还有就是 double 运算不开 O2 好慢... 本来打算出到 $m \leq 2$ times 10^6 的.. 但试了一下直接就 TLE 了 qwq

完结

祝大家身体健康, 再见!

