Category Theory from Scratch: Day I Homework

Mathcamp 2025 - Della Hendrickson & Riley Shahar

In class today, we started a table of various mathematical domains and various constructions within them. We then gave a definition of a category, which will provide a common language for talking about these domains.

Definition 1. A category C consists of:

- a set of objects;
- for each pair of objects *x*, *y*, a set of *morphisms*;
- for each object x, an identity morphism $x \xrightarrow{1_x} x$;
- for each pair of morphisms $x \xrightarrow{f} y \xrightarrow{g} z$, a *composite morphism* $x \xrightarrow{g \circ f} z$;

so that:

• composition is *associative*: for any triple of morphisms $x \xrightarrow{f} y \xrightarrow{g} z \xrightarrow{h} w$, we have

$$(h \circ q) \circ f = h \circ (q \circ f);$$

• the identity is a *unit*: for any morphism $x \xrightarrow{f} y$, we have

$$f = 1_y \circ f = f \circ 1_x$$
.

Our goal in this homework is to build some intuition for this definition, mostly by looking at lots of examples. we recommend doing Problems 1 to 3, and at least one of Problems 4 to 8; the rest are optional.

Problem 1. Prove that the category SET of sets—whose objects are sets, morphisms are functions, identities are the identity functions, and composition is ordinary function composition—satisfies the definition of a category.

Problem 2. Choose at least one row on our table, and prove that the choices of objects and arrows given there form a category. For instance:

- Prove that the category GRP of groups and group homomorphisms is a category.
- Prove that the category Top of topological spaces and continuous maps is a category.
- Prove that the category Vect_ℂ of complex vector spaces and linear maps is a category. (For fun: do this for any field k.)
- Prove that the category CRING of commutative rings and ring homomorphisms is a category.

Think about what you really need to prove for these examples. How much follows from the case of Set, since each of these objects and morphisms has a set and a set-function underlying it?

Problem 3. Given a category C, define a new category C^{op} whose objects are the same as C, but whose morphisms $x \to y$ are the morphisms $y \to x$ in C. Define composition and the identities, and prove that C^{op} is a category. The category C^{op} is called the opposite category of C.

Problem 4. Let A be a set. Define a category whose objects are the elements of A, and with a unique morphism $x \to y$ if and only if x = y. Define composition and the identities, and prove that this defines a category. *This category is called the* discrete category *on* A.

Problem 5. Let n be a natural number. Define a category \underline{n} whose objects are the numbers $0, \ldots, n-1$, and with a unique morphism $i \to j$ if and only if $i \le j$. Define composition and the identities, and prove that \underline{n} is a category. The category \underline{n} is called the ordinal category associated to n.

Problem 6. Let P be a *preordered set*. This means that P consists of a set, together with a relation \leq on that set which is:

- reflexive: for any $x \in P$, we have $x \le x$;
- *transitive*: for any $x, y, z \in P$, if $x \le y$ and $y \le z$, then $x \le z$.

Define a category, |P|, whose objects are the elements of P and with a unique morphism $x \to y$ if and only if $x \le y$. Define composition and the identities, and prove that |P| is a category.

I do not know of a separate name for |P|, because it is somewhat common to view P as identical with its associated category |P|. Indeed, it is a fun exercise to show that any category C with at most one morphism between any pair of objects determines a preordered set.

Problem 7. Let M be a *monoid*. This means that M consists of a set, together with a binary multiplication and an identity $e \in M$ so that:

• multiplication is associative: for any $x, y, z \in M$, we have

$$(xy)z = x(yz);$$

• e is a unit: for any $x \in M$, we have

$$ex = x = xe$$
.

Define a category, BM, with a unique object * and the morphisms $* \rightarrow *$ the elements of M. Define composition and the identities, and prove that BM is a category.

The category BM is sometimes called the delooping *of the monoid M*.

Problem 8. Let G be a directed graph. This means that G consists of a set V of vertices and a set $E \subseteq V \times V$ of edges; an element $(v, w) \in E$ represents an edge from v to w in G. A path of length n in G between v_1 and v_n consists of a sequence $(v_0, v_1), (v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n)$ of edges, which may repeat. (In the case n = 0, we have the *empty path*.)

Define a category, $\mathcal{F}G$, whose objects are the vertices of G and whose morphisms $v \to w$ are the paths between v and w in G. Define composition and the identities, and prove that $\mathcal{F}G$ is a category.

The category $\mathcal{F}G$ is called the free or path category associated to the graph G.

Problem 9. Given a category C and an object x, define a new category C/x as follows:

- The objects of C/x are pairs (y, f), where y is an object in C and $f: y \to x$ is a morphism in C.
- The morphisms between (y, f) and (z, q) in C/x are the morphisms $h: y \to z$ in C so that $q \circ h = f$.

Define composition and the identities, and prove that C/x is a category.

The category C/x is called the slice or over category of C at x. You can also define an under category x/C—it is a fun exercise to figure out how to do so!