

(9) BUNDESREPUBLIK
DEUTSCHLAND

Offenlegungsschrift

_® DE 196 14 991 A 1

(5) Int. Cl. 6: G 06 F 9/06 G 06 F 15/76

DEUTSCHES PATENTAMT

② Aktenzeichen:

196 14 991.6

(Ž) Anmeldetag:

16. 4.96

(3) Offenlegungstag:

24. 10. 96

③ Unionspriorität: ② ③ ③

17.04.95 US 423560

(1) Anmelder: Ricoh Co., Ltd., Tokio/Tokyo, JP

⁷⁴ Vertreter:

Schwabe, Sandmair, Marx, 81677 München

(72) Erfinder:

Baxter, Michael A., Menlo Park, Calif., US

Prüfungsantrag gem. § 44 PatG ist gestellt

(3) System und Verfahren zum skalierbaren, parallelen, dynamisch rekonfigurierbaren Rechnen

Die Erfindung betrifft ein System und ein Verfahren zum skalierbaren, parallelen, dynamisch rekonfigurierbaren Rechnen. Ein Satz von S-Maschinen, eine T-Maschine, die zu jeder S-Maschine korrespondierend ist, eine Allzweck-Verbindungsmatrix (GPIM), ein Satz von I/O-T-Maschinen, ein Satz von I/O-Vorrichtungen und eine Master-Zeitbasiseinheit bilden ein System für skalierbares paralleles, dynamisch rekonfigurierbares Rechnen. Jede S-Maschine ist ein dynamisch rekonfigurierbarer Rechner mit einem Speicher, einer ersten lokalen Zeitbesiseinheit und einer dynamisch rekonfigurierbaren Verarbeitungseinheit (DRPU). Die DRPU wird realisiert bzw. implementiert, indem eine reprogrammierbare Logikvorrichtung verwendet wird, die als eine Instruktionsabrufeinheit (IFU), eine Datenoperationseinheit (DOU) und eine Adressenoperationseinheit (AOU) konfiguriert ist, von denen jede selektiv während einer Programmausführung in Antwort auf einen Rekonfigurationsinterrupt oder der Auswahl einer Rekonfigurationsanweisung, die in einen Satz von Programminstruktionen eingebettet ist, rekonfiguriert wird. Jeder Rekonfigurationsinterrupt und jede Rekonfigurationsanweisung nimmt auf einen Satz von Konfigurationsdaten Bezug, der eine DRPU-Hardware-Organisation spezifiziert, die für Realisierung bzw. Implementation einer bestimmten Instruktionssatzarchitektur (ISA) optimiert ist. Die IFU verwaltet Rekonfigurationsoperationen, Instruktionsabruf- und Decodieroperationen, Speicherzugriffsoperationen,

Beschreibung

Die vorliegende Erfindung nimmt bezug auf die US-Patentanmeldung mit dem Titel: "System und Verfahren für phasensynchrones Takten mit flexibler Frequenz und phasensynchrone Nachrichtenübertragung" bzw. "System and Method for Phase-Synchronous, Flexible Frequency Clocking and Messaging".

Die vorliegende Erfindung betrifft im allgemeinen die Architektur von Computern und insbesondere Systeme und Verfahren zum rekonfigurierbaren bzw. umstrukturierbaren Rechnen. Noch genauer handelt es sich bei der vorliegenden Erfindung um ein System und ein Verfahren zum skalierbaren, parallelen, dynamisch rekonfigu-

rierbaren Rechnen.

Die Evolution der Computerarchitektur wird von dem Bedürfnis nach immer größerer Rechenleistung angetrieben. Eine schnelle und genaue Lösung verschiedener Arten von Rechenproblemen oder numerischen Problemen erfordert typischerweise verschiedene Arten von Rechen-Systemelementen bzw. Rechen-Resourcen. Ist ein bestimmter Problembereich gegeben, so kann die Rechenleistung durch die Verwendung von Rechen-Systemelementen erhöht werden, die speziell für die betrachteten Problemtypen architektonisch ausgelegt bzw. strukturiert wurden. Zum Beispiel kann die Verwendung einer Hardware zur digitalen Signalverarbeitung (DSP) bzw. eine "Digital Signal Processing"-Hardware in Verbindung mit einem Allzweck-Computer signifikant bestimmte Arten der Signalverarbeitungsleitung bzw. der Signalverarbeitungswirkung erhöhen. Für den Fall, daß ein Computer selbst speziell für die betrachteten Problemtypen architektonisch ausgelegt wurde, wird die Berechnungsleistungsfähigkeit weiter erhöht werden oder möglicherweise sogar in bezug auf die verfügbaren Rechen-Systemelemente bzw. Rechen-Resourcen für diese bestimmten Problemtypen optimiert werden. Gegenwärtige parallele oder massiv parallele Computer, die eine hohe Leistungsfähigkeit für bestimmte Typen von Probleme der Ordnung n² bzw. von O(n²) oder größerer Komplexität anbieten, stellen Beispiele für diesen Fall dar.

Das Bedürfnis nach größerer Rechenleistung muß gegenüber dem Bedürfnis nach der Minimierung der Systemkosten und dem Bedürfnis nach der Maximierung der Systemleistungsfähigkeit in einem breitestmöglichen Bereich sowohl der täglichen bzw. aktuellen als auch möglichen zukünftigen Anwendungen abgewogen werden. Im allgemeinen beeinträchtigt das Einbringen von Rechen-Systemelementen bzw. Rechen-Resourcen, die auf eine begrenzte Anzahl von Problemtypen ausgerichtet sind, in ein Computersystem nachteilig die Systemkosten, weil eine spezialisierte Hardware typischerweise teurer ist als eine Allzweck-Hardware. Die Gestaltung und die Erzeugung eines ganzen Computers für einen bestimmten Zweck kann so teuer werden, daß es sich verbietet, und zwar sowohl bezüglich der Erstellungszeit als auch der Hardwarekosten. Die Verwendung spezialisierter Hardware, um die Rechenleistung zu erhöhen, kann wenig positives bezüglich der Leistungsfähigkeit anbieten, da die Bedürfnisse bezüglich der Berechnungen sich ändern. Im Stand der Technik wurden, da sich die Erfordernisse bezüglich der Berechnung geändert haben, neue Typen spezialisierter Hardware oder neue Systeme für bestimmte Zwecke gestaltet und hergestellt, was zu einem weiterlaufenden Kreislauf von unerwünschten, nicht zurücklaufenden Ingenieurkosten bzw. Erstellungskosten führt. Die Verwendung von Rechen-Systemelementen bzw. Rechen-Resourcen, die auf bestimmte Problemtypen ausgerichtet sind, führt deshalb zu einer ineffizenten Verwendung verfügbaren System-Siliziums, wenn man die sich andernden Rechenerfordernisse bzw. Rechenbedürfnisse in Betracht zieht. Somit ist es wegen der oben beschriebenen Gründe nicht wünschenswert, wenn man versucht, die Rechenleistung zu erhöhen, indem man spezialisierte Hardware verwendet.

Im Stand der Technik wurden verschiedene Versuche bzw. Anläufe unternommen, um sowohl die Rechenleistung zu erhöhen als auch die problemtypische Anwendbarkeit zu maximieren, indem reprogrammierbare oder rekonfigurierbare Hardware verwendet wird. Ein erster derartiger Anlauf bzw. Versuch gemäß dem Stand der Technik liegt in herunterladbaren Mikrocode-Computerarchitekturen. In einer herunterladbaren Mikrocode-Architektur kann das Verhalten von fixen, nicht rekonfigurierbaren Hardware-Systemelementen selektiv geändert werden, indem eine bestimmte Version eines Mikrocodes verwendet wird.

Ein Beispiel für eine derartige Architektur ist diejenige des IBM-Systems/360. Da die fundamentale bzw. grundlegende Rechen-Hardware in derartigen Systemen nach dem Stand der Technik nicht selbst rekonfigurierbar ist, liefern derartige Systeme keine optimierte Rechenleistungsfähigkeit, wenn man einen breiten Bereich

von Problemtypen betrachtet.

Ein zweiter Anlauf bzw. Versuch nach dem Stand der Technik im Hinblick auf sowohl einer Erhöhung der Rechenleistungsfähigkeit als auch einer Maximierung der problemtypischen Anwendbarkeit liegt in der Verwendung einer rekonfigurierbaren Hardware, die mit einem nicht-rekonfigurierbaren Host-Prozessor oder Most-System verbunden ist bzw. damit gekoppelt ist. Diesen Versuch bzw. Anlauf kann man als "zugeordnete rekonfigurierbare Prozessor" -- bzw. "Attached Reconfiguralbe Processor" (ARP) -Architektur kategorisieren, bei welcher ein gewisser Anteil der Hardware innerhalb einer Prozessorgruppe, die einem Most zugeordnet ist, rekonfigurierbar ist. Beispiele gegenwärtiger ARP-Systeme, die eine Gruppe rekonfigurierbarer Prozessoren verwenden, die mit einem Most-System gekoppelt sind bzw. verbunden sind, beinhalten: die SPLASH-1- und SPLASH-2-Systeme, die an dem Supercomputer Forschungszentrum bzw. Supercomputing Research Center (Bowie, MD, USA) designed bzw. gestaltet wurden; den WILDFIRE bzw. allgemein konfigurierbaren Computer, der von den Annapolis Micro Systems (Annapolis, MD, USA) hergestellt wird, der eine kommerzielle Version der SPLASH-2 darstellt; und dem EVC-1, der von der Virtual Computer Corporation (Reseda, CA, USA), hergestellt wird. Bei den meisten rechenintensiven Problemen wird eine beträchtliche Menge an Zeit darauf verwendet, relativ kleine Abschnitte von Programmcodes auszuführen. Im allgemeinen werden ARP-Architekturen verwendet, um eine rekonfigurierbare Rechenbeschleunigungseinrichtung für derartige Abschnitte von Programmcodes bereitzustellen. Unglücklicherweise leidet ein Rechenmodell, das auf einer oder mehreren rekonfigurierbaren Rechenbeschleunigungseinrichtungen basiert, an beträchtlichen Nachteilen, wie im folgenden beschrieben werden wird.

Ein erster Nachteil der ARP-Architekturen tritt auf, weil ARP-Systeme versuchen, eine optimierte Implementation eines bestimmten Algorithmus in einer rekonfigurierbaren Hardware zu einer bestimmten Zeit bereitzustellen. Die Philosophie, die hinter dem EVC-1 der Virtual Computer Corporation liegt, besteht z. B. darin, einen speziellen Algorithmus in eine spezielle Konfiguration von rekonfigurierbaren Hardware-Systemelementen umzuwandeln, um eine optimierte Rechenleistung für jenen bestimmten Algorithmus bereitzustellen.

Rekonfigurierbare Hardware-Systemelemente werden allein zu dem Zweck verwendet, eine optimale Leistungsfähigkeit für einen bestimmten Algorithmus bereitzustellen. Die Verwendung von rekonfigurierbaren Hardware-Systemelementen für allgemeinere Zwecke, wie z. B. dem Management der Ausführung von Instruktionen bzw. Befehlen, wird vermieden. Für einen gegebenen Algorithmus werden somit rekonfigurierbare Hardware-Systemelemente unter dem Gesichtspunkt von individuellen Gattern bzw. Gates betrachtet, die

gekoppelt sind, um eine optimale Leistungsfähigkeit zu gewährleisten.

Gewisse ARP-Systeme verlassen sich auf ein Programmierungsmodell, bei welchem ein "Programm" sowohl konventionelle Programminstruktionen bzw. -befehle beinhaltet als auch Instruktionen für spezielle Zwecke, die spezifizieren, wie verschiedene rekonfigurierbare Hardware-Systemelemente untereinander verbunden sind. Weil ARP-Systeme rekonfigurierbare Hardware-Systemelemente in einer algorithmus-spezifischen Art und 15 Weise auf Gatterebene betrachten, müssen diese auf einen speziellen Zweck gerichtete Instruktionen explizite Details bezüglich der Natur eines jeden verwendeten rekonfigurierbaren Hardware-Systemelements und der Art und Weise, in der es mit anderen rekonfigurierbaren Hardware-Systemelementen verbunden ist, bereitstellen. Dies beeinflußt nachteilig die Programmkomplexität. Um die Programmkomplexität zu verringern, wurden Versuche unternommen, eine Programmiermodell zu verwenden, bei welchem ein Programm sowohl konventionelle Instruktionen auf hohem Niveau einer Programmiersprache als auch Instruktionen auf hohem Niveau für spezielle Zwecke beinhaltet. Gegenwärtige ARP-Systeme versuchen deshalb, ein Kompilier-System zu verwenden, das in der Lage ist, sowohl Befehle auf hohem Niveau einer Programmiersprache zu kompilieren als auch die zuvor erwähnten Befehle auf hohem Niveau für spezielle Zwecke. Die angestrebte Ausgabe bzw. Sollausgabe eines derartigen Kompilier-Systems ist ein Code in Assemblersprache für konventionelle Instruktionen auf hohem Niveau einer Programmiersprache und in ein Code einer Hardware-Beschreibungssprache bzw. einer "Hardware Description Lanquage" (HDL) für Befehle zu speziellen Zwecken. Unglücklicherweise stellt die automatische Bestimmung einer Gruppe von rekonfigurierbaren Hardware-Systemelementen und ein Schema bezüglich ihrer Verbindung, um eine optimale Rechenleistung für jeglichen bestimmten Algorithmus, der gerade betrachtet wird, ein NP-Hard-Problem bzw. "NP-hard"-Problem dar. Ein Fernziel gewisser ARP-Systeme ist die 30 Entwicklung eines Kompiliersystems, das einen Algorithmus direkt in ein optimiertes Schema bezüglich der Verbindungen untereinander für eine Gruppe von Gattern kompilieren kann. Die Entwicklung eines derartigen Kompiliersystems ist jedoch eine außerordentlich schwierige Aufgabe, insbesondere wenn man die vielfachen Typen von Algorithmen betrachtet.

Ein zweiter Nachteil von ARP-Architekturen tritt auf, weil ein ARP-Apparat die Berechnungsarbeit, die mit dem Algorithmus verbunden ist, für den er konfiguriert worden ist, über eine Vielzahl rekonfigurierbarer Logikvorrichtungen verteilt. Zum Beispiel wird bei einem ARP-Apparat, der realisiert wurde, indem eine Gruppe von feldprogrammierbaren Logikvorrichtungen bzw. "Field Programmable Logic Devices" (FPGAs) verwendet wurde, und der konfiguriert wurde, um eine parallele Multiplikations-Beschleunigungseinrichtung zu implementieren, die Berechnungsarbeit, die mit der parallelen Multiplikation verbunden ist, über die gesamte Gruppe der FPGAs verteilt. Deshalb ist die Größe des Algorithmus, bezüglich dem der ARP-Apparat konfiguriert werden kann, auf die Anzahl der vorliegenden rekonfigurierbaren Logikvorrichtungen beschränkt. In ähnlicher Weise ist die maximale Datensatzgröße, die der ARP-Apparat handhaben kann, beschränkt. Eine Untersuchung von Sourcecodes bzw. Quellcodes lieferten nicht notwendigerweise einen klaren Hinweis auf die Beschränkungen des ARP-Apparats, weil einige Algorithmen Daten-Abhängigkeiten aufweisen können. Im

allgemeinen werden datenabhängige Algorithmen vermieden.

Da weiter ARP-Architekturen die Verteilung von Rechenarbeit über mehrere rekonfigurierbare Logikvorrichtung lehren, erfordert die Anpassung eines neuen (oder sogar leicht modifizierten) Algorithmus, daß die Rekonfiguration massiv durchgeführt werden muß, d. h. die mehreren rekonfigurierbaren Logikvorrichtungen müssen rekonfiguriert werden. Dies beschränkt die maximale Rate, bei der eine Rekonfiguration für alternative Probleme oder Kaskaden-Unterprobleme bzw. hintereinandergeschaltete Unterprobleme auftreten kann.

Ein dritter Nachteil von ARP-Architekturen ergibt sich aus der Tatsache, daß eine oder mehrere Abschnitte des Programmcodes auf dem Host ausgeführt werden. Das heißt ein ARP-Apparat ist nicht selbst ein unabhängiges Computersystem bzw. Rechensystem, der ARP-Apparat führt nicht ganze Programme aus und es ist deshalb eine Wechselwirkung mit dem Host notwendig. Da etwas von dem Programmcode auf dem nicht rekonfigurierbaren Host ausgeführt wird, wird die Gruppe bzw. der Satz an verfügbaren Silizium-Resourcen nicht maximal über den Zeitrahmen der Programmausführung ausgenutzt. Insbesondere während der Ausübung von Instruktionen bzw. Befehlen auf Host-Basis, werden die Silizium-Resourcen bzw. Silizium-Systemelemente auf dem ARP-Apparat untätig sein oder ineffizient verwendet werden. In ähnlicher Weise werden, wenn der ARP-Apparat mit Daten arbeitet, die Silizium-Resourcen bzw. die Silizium-Systemelemente auf dem Host im allgemeinen 60 ineffizient verwendet werden. Um leicht mehrere ganze Programme auszuführen, müssen die Silizium-Resourcen bzw. die Silizium-Systemeinheiten in leicht wiederverwendbare Resourcen bzw. Systemeinheiten kopiert werden. Wie vorstehend beschrieben wurde, behandeln ARP-System rekonfigurierbare Hardware-Systemelemente als eine Gruppe von Gattern bzw. Gates, die optimal untereinander verbunden sind, um einen bestimmten Algorithmus zu einer bestimmten Zeit zu implementieren. Somit liefern ARP-Systeme nicht eine Einrichtung, 65 um einen bestimmten Satz bzw. eine bestimmte Gruppe an rekonfigurierbaren Hardware-Systemelementen als ein leicht von einem Algorithmus zum anderen wiederverwendbares Systemelement zu behandeln, weil die Wiederverwendbarkeit ein gewisses Niveau an Unabhängigkeit bezüglich des Algorithmus erfordert.

Ein ARP-Apparat kann nicht das gegenwärtig ausgeführte Hostprogramm als Daten behandeln und kann im allgemeinen nicht sich selbst kontextualisieren. Ein ARP-Apparat kann nicht leicht so hergestellt werden, daß er sich selbst durch das Ausführen seines eigenen Hostprogramms simuliert. Weiter kann ein ARP-Apparat nicht hergestellt werden, um seine eigene HDL oder seine eigenen Anwendungsprogramme auf ihn selbst zu kompilieren, wobei er direkt die rekonfigurierbaren Hardware-Systemelemente bzw. Hardware-Resourcen verwendet, aus denen er aufgebaut ist. Ein ARP-Apparat ist somit bezüglich seiner Architektur bezüglich in sich geschlossener Rechenmodelle beschränkt, die die Unabhängigkeit von einem Hostprozessor lehren.

Weil ein ARP-Apparat als eine Rechen-Beschleunigungseinrichtung wirkt, ist er im allgemeinen nicht in der Lage, eine unabhängige Eingangs-/Ausgangs- bzw. "Input/Output" (I/O)-Verarbeitung durchzuführen. Typischerweise erfordert ein ARP-Apparat eine Wechselwirkung mit dem Host für eine I/O-Verarbeitung. Die Leistungsfähigkeit eines ARP-Apparats kann deshalb bezüglich des I/O beschränkt sein. Fachleute werden erkennen, daß ein ARP-Apparat jedoch konfiguriert werden kann, um ein spezielles I/O-Problem zu beschleunigen. Da jedoch der gesamte ARP-Apparat auf ein einziges, spezielles Problem hin gestaltet bzw. konfiguriert ist, kann ein ARP-Apparat die I/O-Verarbeitung nicht mit der Datenverarbeitung balancieren, ohne bezüglich des einen oder des anderen einen Kompromiß einzugehen. Darüber hinaus stellt ein ARP-Apparat keine Einrichtung für die Interruptverarbeitung bereit. Die Lehren bezüglich eines ARP's bieten keine derartigen Mechanismen an, da sie auf eine maximale Beschleunigung des Rechnens hin ausgerichtet sind und die Unterbrechung sich negativ auf die Rechenbeschleunigung auswirkt.

Ein vierter Nachteil von ARP-Architekturen existiert, da es Software-Applikationen gibt, die eine inhärente Datenparallelität besitzen, wobei es schwierig ist, diese auszunutzen, indem ein ARP-Apparat verwendet wird. HDL-Kompilierungs-Anwendungen liefern ein derartiges Beispiel, wenn eine Netz-Namen-Symbolauflösung in einer sehr großen Netzliste benötigt wird.

Ein fünfter Nachteil, der mit ARP-Architekturen verbunden ist, ist, daß es im wesentlichen ein SIMD-Computerarchitekturmodell gibt. ARP-Architekturen sind deshalb weniger bezüglich ihrer Architektur effektiv, als ein oder mehrere innovative nicht-rekonfigurierbare Systeme nach dem Stand der Technik. ARP-Systeme spiegeln nur einen Teil des Prozesses der Ausführung eines Programms wider, hauptsächlich die arithmetische Logik für eine arithmetische Berechnung, und zwar für jeden spezifischen Konfigurationsfall, und zwar für so viel Rechenleistung, wie die verfügbare rekonfigurierbare Hardware liefern kann. Im Gegensatz dazu nutzte nach dem Systemdesign der SYMBOL-Maschine bei Fairchild 1971 der gesamte Computer einen einzigen Hardware-Kontext für jeden Aspekt der Programmausführung. Infolgedessen umfaßte SYMBOL jedes Element für die Systemanwendung eines Computers, einschließlich des Hostabschnittes, der durch ARP-Systeme gelehrt bzw. angewiesen wird.

ARP-Architekturen weisen andere Unzulänglichkeiten ebenso auf. Zum Beispiel fehlt es einem ARP-Apparat an einer effektiven Einrichtung, um ein unabhängiges Timing bzw. eine unabhängige Zeitsteuerung für vielfach rekonfigurierbare Logikvorrichtungen bereitzustellen. Ähnlich fehlt es einem kaskadierten ARP-Apparat an einer wirksamen Takt-Verteilungseinrichtung, um unabhängig getimte Einheiten bzw. Einheiten, die bezüglich ihrer Zeitsteuerung unabhängig sind, bereitzustellen. Nach einem anderen Beispiel ist es schwierig, genau die Ausführungszeit mit den Quellencode-Anweisungen zu korrelieren, für die eine Beschleunigung beabsichtigt wird. Für eine genaue Abschätzung der Netzsystem-Taktrate muß die ARP-Vorrichtung mit einem Werkzeug für computerunterstütztes Design bzw. mit einem "Computer-Aided Design (CAD)"-Tool nach einer HDL-Kompilierung modelliert werden, dies ist ein zeitaufbrauchender Prozeß, um zu einem derartigen Basisparameter zu gelangen.

Was gebraucht wird, ist eine Einrichtung zum rekonfigurierbaren Rechnen, die die Beschränkungen des oben beschriebenen Standes der Technik überwindet.

Die vorliegende Erfindung betrifft ein System und ein Verfahren für skalierbares, paralleles, dynamisch rekonfigurierbares Rechnen. Das System weist wenigstens eine S-Maschine, eine T-Maschine, die jeder S-Maschine entspricht, eine Allzweck-Verbindungsmatrix (GPIM), eine Gruppe von I/O-T-Maschinen, eine oder mehrere I/O-Vorrichtungen und eine Master-Zeitbasis-Einheit auf. In der bevorzugten Ausführungsform beinhaltet das System mehrere S-Maschinen. Jede S-Maschine weist einen Eingang bzw. einen Ausgang auf, der mit einem Ausgang bzw. einem Eingang der entsprechenden T-Maschine verbunden ist. Jede T-Maschine beinhaltet einen Leitweg-Eingang bzw. Führungs-Eingang und einen Leitweg-Ausgang bzw. Führungs-Ausgang, der mit der GPIM verbunden ist, wie dies auch bei jeder I/O-T-Maschine der Fall ist. Eine I/O-T-Maschine beinhaltet weiter einen Eingang und einen Ausgang, der mit einer I/O-Vorrichtung verbunden ist. Schließlich weist jede S-Maschine, T-Maschine und I/O-T-Maschine einen Master-Zeitsteuer-Eingang bzw. einen Master-Timing-Eingang auf, der mit einem Zeitsteuer-Ausgang bzw. Timing-Ausgang der Master-Zeitbasiseinheit verbunden ist.

Die Master-Zeitbasiseinheit liefert eine systemweite Frequenzreferenz an jede S-Maschine, T-Maschine und I/O-T-Maschine. Jede S-Maschine ist ein Computer, der eine Verarbeitungseinheit aufweist, die selektiv rekonfiguriert werden kann, und zwar während der Ausführung von Programminstruktionen. Jede T-Maschine ist eine Datentransfervorrichtung bzw. Datenübertragungsvorrichtung. Die GPIM liefert eine skalierbare Punkt-zu-Punkt-Parallel-Verbindungseinrichtung zur Kommunikation zwischen T-Maschinen. Zusammengenommen stellt der Satz an T-Maschine und die GPIM eine skalierbare Punkt-zu-Punkt-Parallelverbindungseinrichtung zur Kommunikation zwischen S-Maschinen bereit.

Eine S-Maschine umfaßt vorzugsweise eine erste lokale Zeitbasiseinheit, einen Speicher und eine dynamisch rekonfigurierbare Verarbeitungseinheit bzw. eine "Dynamically Reconfigurable Processing Unit" (DRPU). Die erste lokale Zeitbasiseinheit umfaßt einen Zeitsteuerungseingang bzw. einen Timingeingang, der mit der Master-Zeitbasiseinheit verbunden ist, und einen Zeitsteuerungsausgang bzw. Timingausgang, der mit einem Zeitsteuerungseingang der DRPU und einem Zeitsteuerungseingang des Speichers über die erste Zeitsteuerungs-Signalleitung verbunden ist. Die DRPU umfaßt einen Steuersignalausgang, einen Adressenausgang bzw. einen bidirek-

tionalen Datenport, der mit einem Steuersignaleingang, einem Adresseneingang bzw. einem bidirektionalen Datenport des Speichers über eine Speichersteuerleitung, eine Adressenleitung bzw. eine Speicher-I/O-Leitung verbunden ist. Die DRPU weist ebenso einen bidirektionalen Steuerport auf, der mit einem bidirektionalen Steuerport ihrer entsprechenden T-Maschine über eine externe Steuerleitung verbunden ist.

Die erste lokale Zeitbasiseinheit empfängt ein Master-Zeitsteuersignal von der Master-Zeitbasiseinheit und erzeugt ein erstes lokales Zeitsteuersignal, das zu der DRPU und dem Speicher über eine erste Zeitsteuersignalleitung geliefert wird. Bei dem Speicher handelt es sich vorzugsweise um einen Speicher mit wahlfreiem Zugriff bzw. ein "Random Access Memory" (RAM), das Programminstruktionen, Programmdaten und eine oder mehrere Konfigurationsdatensätze speichert. Bei der bevorzugten Ausführungsform ist ein gegebener S-Maschinenspeicher für jede andere S-Maschine in dem System über die GPIM und ihre korrespondierende T-Maschine zugänglich.

Eine Gruppe von Programminstruktionen bzw. Programmbefehlen, die darauf ausgerichtet sind bzw. spezialisiert sind, einen spezifischen Satz von Befehlen bezüglich potentiell großen Datensätze durchzuführen, wird hierin als ein "Innenschleifen"- bzw. "Inner-Loop"-Abschnitt eines Programms bezeichnet. Eine Gruppe von Programminstruktionen, die für das Durchführen von Allzweckoperationen und/oder für das Übertragen der Steuerung von einem Innenschleifenabschnitt zu einem anderen verantwortlich ist, wird hierin als "Außenschleifen"- bzw. "Outer-Loop"-Abschnitt des Programms bezeichnet. Innerhalb jedes gegebenen Programms besteht jeder Innenschleifenabschnitt vorzugsweise aus einer kleinen Anzahl von Instruktionstypen, während Außenschleifenabschnitte vorzugsweise eine Mannigfaltigkeit bzw. Vielzahl von Allzweck-Instruktionstypen beinhalten

Jeder Konfigurationsdatensatz, der in dem Speicher gespeichert ist, spezifiziert eine DRPU-Hardware-Organisation, die für die Implementation bzw. Realisierung einer entsprechenden Befehlssatzarchitektur bzw. Instruktionssatzarchitektur ("Instruction Set Architecture" bzw. ISA) optimiert ist. Eine ISA ist ein primitiver Satz von Instruktionen, der verwendet werden kann, um einen Computer zu programmieren. Gemäß der vorliegenden Erfindung kann eine ISA kategorisiert werden als eine Innenschleifen-ISA oder eine Außenschleifen-ISA, und zwar gemäß der Anzahl und Typen von Instruktionen, die sie enhält. Eine Innenschleifen-ISA besteht aus relativ wenig Instruktionen, und zwar wo die Instruktionen nützlich sind, um spezifische Typen von Operationen durchzuführen. Eine Außenschleifen-ISA beinhaltet mehrere Instruktionen, und zwar wo die Instruktionen nützlich sind, um eine Vielzahl von Allzweck-Operationen durchzuführen.

Programminstruktionen, die in dem Speicher gespeichert sind, beinhalten selektiv eine oder mehrere Rekonfigurations-Anweisungen, und zwar wo jede Rekonfigurationsanweisung auf einen Konfigurationsdatensatz Bezug nimmt. Während der Programmausführung durch die DRPU können eine oder mehrere Rekonfigurationsanweisungen gewählt werden. Die Auswahl von gegebenen Rekonfigurationsanweisungen führt zu einer Rekonfiguration der DRPU-Hardware gemäß dem Konfigurationsdatensatz, auf dem durch die Rekonfigurationsanweisung Bezug genommen wird. Somit wird nach der Auswahl einer Rekonfigurationsanweisung die DRUP-Hardware rekonfiguriert, um eine optimierte Implementation einer bestimmten ISA bereitzustellen. Gemäß der vorliegenden Erfindung wird eine Rekonfigurationsinterrupt ausgelöst, und zwar wo der Rekonfigurationsinterrupt auf einen Konfigurationsdatensatz Bezug nimmt, der einer ISA in der oben beschriebenen Art und Weise entspricht.

Die DRPU umfaßt eine Instruktionsabrufeinheit bzw. "Instruction Fetch Unit" (IFU), eine Datenoperationseinheit bzw. "Data Operate Unit" (DOU) und eine Adressenoperationseinheit bzw. "Address Operate Unit" (AOU), wobei jede dynamisch rekonfigurierbar ist. Bei der bevorzugten Ausführungsform wird die DRPU implementiert, indem eine rekonfigurierbare Logikvorrichtung, wie z. B. ein Xilinx XC4013 programmierbares Gatter-Array bzw. "Programmable Gate Array" (FPGA) verwendet wird. Die reprogrammierbare Logikvorrichtung liefert vorzugsweise eine Vielzahl von selektiv reprogrammierbaren 1) Logikblöcken oder konfigurierbaren Logikblöcken bzw. "Configurable Logic Blocks" (CLBs); 2) I/O-Blöcke (IOBs); 3) Verbindungsstrukturen; 4) Datenspeicher-Systemeinheiten; 5) Dreizustands-Puffer-Systemeinheiten; und 6) Fähigkeiten einer fest verdrahteten Logik.

Die IFU umfaßt einen Speichersteuerausgang, der den Speichersteuerausgang der DRPU bildet, einen Dateneingang, der mit der Speicher-I/O-Leitung verbunden ist und einen bidirektionalen Steuerport, der den bidirektionalen Steuerport der DRPU bildet. Die IFU umfaßt zusätzlich einen ersten, zweiten und dritten Steuerausgang. Die DOU und die AOU umfaßte einen bidirektionalen Datenport, der mit der Speicher-I/O-Leitung verbunden ist, und die AOU umfaßt einen Adressenausgang, der mit der Adressenleitung verbunden ist. Die DOU umfaßt einen ersten Steuereingang, der mit dem ersten Steuerausgang der IFU über eine erste Steuerleitung verbunden ist. Die AOU umfaßt einen ersten Steuereingang, der mit dem zweiten Steuerausgang der IFU über eine zweiten Steuerleitung verbunden ist. Sowohl die DOU als auch die AOU umfaßen einen zweiten Steuereingang, der mit dem dritten Steuerausgang der IFU über eine dritte Steuerleitung verbunden ist. Schließlich umfaßen sowohl die IFU als auch DOU und die AOU einen Zeitsteuereingang, der mit der ersten Zeitsteuersignalleitung verbunden ist.

Die IFU verwaltet Instruktionenabruf- und Instruktionen-Decodieroperationen, Speicherzugriffsoperationen, 60 DRPU-Rekonfigurationsoperationen und gibt Steuersignale zu der DOU und der AOU aus, um die Ausführungen der Instruktionen zu erleichtern. Die IFU umfaßt vorzugsweise einen Architekturbeschreibungsspeicher, eine Instruktionszustands-Folgesteuerungseinheit bzw. einen "Instruction State Sequencer" (ISS), eine Speicherzugriffslogik, eine Rekonfigurationslogik, eine Interruptlogik, eine Abrufsteuereinheit, einen Instruktionspuffer, eine Decodiersteuereinheit, einen Instruktionsdecoder, einen Opcode- bzw. Operationscode-Speicherregistersatz, einen Registerdatei- bzw. Registerfile-(RF)-Adressenzegistersatz, einen Konstantenregistersatz und einen Prozeßsteuerregistersatz. Die ISS umfaßt einen ersten bzw. einen zweiten Steuerausgang, der die ersten bzw. zweiten Steuerausgänge der IFU umfaßt; einen Zeitsteuerungseingang, der den Zeitsteuerungseingang der IFU

ausbildet; einen Abruf-/Decodiersteuerausgang, der mit einem Steuereingang der Abrufsteuereinheit und einem Steuereingang des Decodiersteuereingangs verbunden ist; einen bidirektionalen Steuerport, der mit einem ersten bidirektionalen Steuerport sowohl der Speicherzugriffslogik als auch der Rekonfigurationslogik und der Interruptlogik verbunden ist; einen Operationscodeeingang, der mit einem Ausgang des Operationscodespeicherregistersatzes verbunden ist; einen bidirektionalen Datenport, der mit einem bidirektionalen Datenport des Prozeßsteuerregistersatzes verbunden ist. Sowohl die Speicherzugriffslogik als auch die Rekonfigurationslogik und die Interruptlogik umfaßt einen zweiten bidirektionalen Steuerport, der mit der externen Steuerleitung verbunden ist; einen Dateneingang, der mit einem Datenausgang des Architekturbeschreibungsspeichers verbunden ist. Die Speicherzugriffslogik umfaßt ebenso einen Steuerausgang, der den Speichersteuerausgang des IFU ausbildet und die Interruptlogik umfaßt zusätzlich einen Ausgang, der mit dem bidirektionalen Datenport des Verarbeitungs- bzw. Prozeßsteuerregistersatzes verbunden ist.

Der Architektur-Beschreibungsspeicher umfaßt vorzugsweise einen Speicher zum Speichern der Architektur-Spezifikationssignale, die die DRPU-Konfiguration zu jeder gegebenen Zeit kennzeichnen. Die Architektur-Spezifikationssignale beinhalten vorzugsweise eine Referenz zu einem vorgegebenen Konfigurationsdatensatz bzw. Default-Datensatz; eine Referenz bzw. einen Bezug auf eine Liste von ermöglichbaren Konfigurationsdatensatz tensätzen; ein atomares Speicher-Adresseninkrement; und einen Satz von Interrupt-Antwortsignalen, die spezifizieren, wie die gegenwärtige DRPU-Hardware-Konfiguration auf die Interrupts antwortet. Die ISS umfaßt vorzugsweise eine Zustandsmaschine, die das Ausführen von Instruktionen innerhalb der gegenwärtig betrachteten ISA erleichtert, indem Signale zu der Abrufsteuereinheit, der Decodiersteuereinheit, der DOU, der AOU und der Speicherzugriffslogik ausgegeben werden. Die ISS gibt DOU-Steuersignale auf die erste Steuerleitung, AOU-Steuersignale auf die zweite Steuerleitung und RF-Adressen und -Konstanten auf die dritte Steuerleitung. Die Interruptlogik umfaßt vorzugsweise eine Zustandsmaschine, die vorzugsweise Interrupt-Meldungsoperationen durchführt. Die Rekonfigurationslogik umfaßt vorzugsweise eine Zustandsmaschine, die Rekonfigurationsinen wird das Rekonfigurationssignal in Antwort auf ein Rekonfigurationssinterrupt oder, wenn eine Rekonfigurationsanweisung ausgewählt wird, während der Programmausführung erzeugt.

Die DOU führt Operationen aus, die zu Datenberechnungen in bezug stehen, und zwar in Übereinstimmung mit DOU-Steuersignalen, RF-Adressen und Konstanten, die von der IFU empfangen werden. Die DOU umfaßt vorzugsweise einen DOU-Crossbar-Schalter, eine Abspeicher-/Ausrichtlogik und eine Datenoperationslogik. Der DOU-Crossbar-Schalter ("X-Bar-Schalter") umfaßt einen bidirektionalen Datenport, der den bidirektionalen Datenport der DOU ausbildet; einen Konstanteneingang, der mit der dritten Steuerleitung der IFU verbunden ist; einen ersten Daten-Feedback-Eingang bzw. Daten-Rückführ-Eingang, der mit einem Datenausgang der Datenoperationslogik verbunden ist; einen zweiten Daten-Feedback-Eingang bzw. Daten-Rückführ-Eingang, der mit einem Datenausgang der Abspeicher-/Ausrichtlogik verbunden ist. Die Abspeicher-/Ausrichtlogik beinhaltet einen Adresseneingang, der mit der dritten Steuerleitung verbunden ist, und die Datenoperationslogik beinhaltet einen Dateneingang, der mit dem Ausgang der Abspeicher-/Ausrichtlogik verbunden ist. Schließlich umfaßt sowohl der DOU-Crossbar-Schalter als auch die Abspeicher-/Ausrichtlogik und die Datenoperationslogik einen Steuerleingang, der mit der ersten Steuerleitung verbunden ist.

Der DOU-Crossbar-Schalter lädt die Daten von dem Speicher, überträgt Ergebnisse, die von der Datenoperationslogik ausgegeben werden, zu der Abspeicher-/Ausrichtlogik oder dem Speicher und lädt Konstante, die durch die IFU in Antwort auf die DOU-Steuersignale, die an ihrem Eingang empfangen werden, ausgegeben werden. Die Abspeicher-/Ausrichtlogik stellt eine temporäre Speicherung für Operanden, Konstante und Teilergebnisse bereit, die mit den Datenberechnungen verbunden sind. Die Datenoperationslogik führt arithmetische, Schiebe- und/oder logische Operationen in Antwort auf die DOU-Steuersignale, die bei ihrem Steuereingang empfangen werden, durch.

Die AOU führt Operationen durch, die in Beziehung zu der Adressenberechnung stehen, und umfaßt vorzugsweise einen AOU-Crossbar-Schalter, eine Abspeicher-/Zähllogik, eine Adressenoperationslogik und einen Adressenmultiplexer. Der AOU-Crossbarschalter umfaßt einen bidirektionalen Datenport, der den bidirektionalen Datenport der AOU ausbildet; einen Adressen-Rückführeingang, der mit einem Adressenausgang der Adressenoperationslogik verbunden ist; einen Konstanteneingang, der mit der dritten Steuerleitung verbunden ist; und einen Adressenausgang, der mit einem Adressenausgang der Abspeicher-/Zähllogik beinhaltet einen RF-Adresseneingang, der mit der dritten Steuerleitung verbunden ist, und einen Adressenausgang, der mit einem Adresseneingang der Adressenoperationslogik verbunden ist. Der Adressenmultiplexer umfaßt einen ersten Eingang, der mit dem Adressenausgang der Abspeicher-/Zähllogik verbunden ist, und einen zweiten Eingang, der mit dem Adressenausgang der Adressenoperationslogik verbunden ist. Sowohl der AOU-Crossbar-Schalter als auch die Abspeicher-/Zähllogik und die Adressenoperationslogik umfassen einen Steuereingang, der mit der zweiten Steuerleitung verbunden ist.

Der AOU-Steuerschalter lädt Adressen aus dem Speicher, überträgt Ergebnisse, die von der Adressenoperationslogik ausgegeben wurden, zu der Abspeicher-/Zähllogik oder dem Speicher und lädt Konstante, die von der IFU ausgegeben wurden, in die Abspeicher-/Zähllogik in Antwort auf die AOU-Steuersignale, die an seinem Eingang empfangen werden. Die Abspeicher-/Zähllogik stellt eine temporäre Speicherung von Adressen und Adressenberechnungsergebnissen bereit. Die Adressenoperationslogik führt arithmetische Operationen bezüglich der Adressen in Übereinstimmung mit den AOU-Steuersignalen durch, die bei ihrem Steuereingang empfangen werden. Der Adressenmultiplexer wählt selektiv eine Adresse aus, die von der Abspeicher-/Zähllogik oder der Adressenoperationslogik empfangen werden, aus, und zwar in Übereinstimmung mit den AOU-Steuersignalen, die bei seinem Steuereingang empfangen werden.

Jedes Element innerhalb der IFU, der DOU und der AOU wird implementiert bzw. realisiert, indem rekonfigu-

rierbare Hardware-Systemelemente innerhalb der rekonfigurierbaren Logikvorrichtung verwendet werden, wie es durch einen gegebenen Konfigurationsdatensatz spezifiziert ist, der einer bestimmten ISA entspricht. Die detaillierte interne Struktur der Elemente innerhalb der IFU, der DOU und der AOU variiert vorzugsweise in Abhängigkeit von dem Typ der ISA, für den die DRPU konfiguriert ist, um zu jedem gegebenen Augenblick zu implementieren bzw. zu realisieren. Für eine Außenschleifen-ISA ist die interne Struktur eines jeden Elements innerhalb der IFU, der DOU und der AOU vorzugsweise für die serielle Instruktionsverarbeitung optimiert. Für eine Innenschleifen-ISA ist die interne Struktur eines jeden Elements innerhalb der IFU, der DOU und der AOU vorzugsweise für die parallele Instruktionsverarbeitung optimiert.

Jede T-Maschine umfaßt vorzugsweise eine gemeinsame Schnittstellen und Steuereinheit bzw. "common interface control unit", einen Satz an Verbindungs-I/O-Einheiten und eine zweite lokale Zeitbasiseinheit. Die zweite lokale Zeitbasiseinheit umfaßt einen Zeitsteuerungseingang, der mit der Master-Zeitbasiseinheit verbunden ist, und einen Zeitsteuerungsausgang, der mit einem Zeitsteuerungseingang der gemeinsamen schnittstellenund Steuereinheit verbunden ist. Die gemeinsame Schnittstellen- und Steuereinheit umfaßt einen Adressenausgang, der mit der Adressenleitung verbunden ist, einen ersten bidirektionalen Datenport, der mit der Speicher-I/O-Leitung verbunden ist, einen bidirektionalen Steuerport, der mit der externen Steuerleitung verbunden ist, und einem zweiten bidirektionalen Datenport, der mit einem bidirektionalen Datenport eines jeden seiner assoziierten Verbindungs-I/O-Einheiten verbunden ist.

Die zweite lokale Zeitbasiseinheit erzeugt ein zweites lokales Zeitbasissignal, das von der Master-Frequenzreferenz abgeleitet wird, die von der Master-Zeitbasiseinheit empfangen wird. Die gemeinsame schnittstellen- und Steuereinheit verwaltet den Transfer von Daten und Befehlen zwischen seiner entsprechenden S-Maschine und einer seiner zugeordneten Verbindungs-I/O-Einheiten. Jede Verbindungs-I/O-Einheit überträgt Nachrichten bzw. Meldungen, die von ihrer zugeordneten gemeinsamen Schnittstellen- und Steuereinheit empfangen wird, zu einer anderen Verbindungs-I/O-Einheit über die GPIM. Jede Verbindungs-I/O-Einheit überträgt ebenso selektiv Nachrichten, die von anderen Verbindungs-I/O-Einheiten empfangen werden, zu ihrer zugeordneten gemeinsamen Schnittstellen- und Steuereinheit.

Jede I/O-T-Maschine umfaßt vorzugsweise eine gemeinsame Kunden-Schnittstellen- und Steuereinheit, eine Verbindungs-I/O-Einheit und eine dritte lokale Zeitbasiseinheit. Die internen Verbindungen bzw. Kopplungen innerhalb einer I/O-T-Maschine sind zu jenen innerhalber einer T-Maschine analog; jedoch wird eine I/O-T-Maschine eher mit einer I/O-Vorrichtung bzw. ein I/O-Bauelement verbunden als mit einer S-Maschine, sie enthält deshalb Verbindungen, die für eine bestimmte I/O-Vorrichtung spezifisch sind. Über ihre entsprechende T-Maschine, die GPIM und eine I/O-T-Maschine kommuniziert eine S-Maschine mit einer bestimmten I/O-Vorrichtung in dem System.

Die GPIM liefert eine skalierbare Punkt-zu-Punkt-Verbindungseinrichtung für eine parallele Kommunikation zwischen T-Maschinen. Der Satz an T-Maschinen und die GPIM bilden zusammen eine skalierbare Punkt-zu-Punkt-Verbindungseinrichtung für parallele Kommunikation zwischen S-Maschinen. Die GPIM umfaßt vorzugsweise ein "k-ary, n-cube" bzw. k-n-kubisches statisches Verbindungsnetzwerk mit einer Anzahl erster Kommunikationskanäle und einer Anzahl zweiter Kommunikationskanäle. Jeder erste Kommunikationskanal beinhaltet eine Vielzahl von Knotenverbindungsplätzen, wie dies bei jedem zweiten Verbindungskanal der Fall ist. Jede Verbindungs-I/O-Einheit in dem System ist mit der GPIM derartig verbunden, daß ihr Eingang mit einem bestimmten Knotenverbindungsplat z über eine Nachrichteneingangsleitung verbunden ist und ihr Ausgang zu einem anderen Knotenverbindungsplatz über eine Nachrichtenausgangsleitung verbunden ist. Die GPIM ist somit ein skalierbares Netzwerk zum parallelen Leiten bzw. Führen von Daten und Befehlen zwischen mehreren Verbindungs-I/O-Einheiten.

Im folgenden werden kurz die Zeichnungen beschrieben:

Fig. 1 ist ein Blockdiagramm einer bevorzugten Ausführungsform eines Systems zum skalierbaren, parallelen, 45 dynamisch rekonfigurierbaren Rechnen, das in Übereinstimmung mit der vorliegenden Erfindung aufgebaut ist;

Fig. 2 ist ein Blockdiagramm einer bevorzugten Ausführungsform einer S-Maschine gemäß der vorliegenden Erfindung:

Fig. 3A ist ein exemplarisches Programmlisting, das Rekonfigurationsanweisungen enthält;

Fig. 3B ist ein Flußdiagramm bekannter Kompilierungsoperationen, die während der Kompilierung einer 50 Folge von Programminstruktionen ausgeführt werden;

Fig. 3C und 3D sind Flußdiagramme der bevorzugten Kompilierungsoperationen, die von einem Kompiler zum dynamisch rekonfigurierbaren Rechnen durchgeführt werden;

Fig. 4 ist ein Blockdiagramm einer bevorzugten Ausführungsform einer dynamisch rekonfigurierbaren Verarbeitungseinheit bzw. einer "Dynamically Reconfigurable Processing Unit" gemäß der vorliegenden Erfindung;

Fig. 5 ist ein Blockdiagramm einer bevorzugten Ausführungsform einer Instruktionsabrufeinheit bzw. einer "Instruction Fetch Unit" gemäß der vorliegenden Erfindung;

Fig. 6 ist ein Zustandsdiagramm, das einen bevorzugten Satz von Zuständen zeigt, die durch eine Befehlszustandsfolgesteuereinheit bzw. einen "Instruction State Sequencer" gemäß der vorliegenden Erfindung unterstützt werden;

Fig. 7 ist ein Zustandsdiagramm, das einen bevorzugten Satz von Zuständen zeigt, die durch eine Interruptlogik der vorliegenden Erfindung unterstützt werden;

Fig. 8 ist ein Blockdiagramm einer bevorzugten Ausführungsform einer Datenoperationseinheit bzw. einer "Data Operate Unit" der vorliegenden Erfindung;

Fig. 9A ist ein Blockdiagramm einer ersten beispielhaften Ausführungsform der Datenoperationseinheit, die 65 für die Implementation bzw. Realisierung einer Instruktionssatz-Architektur bzw. einer "Instruction Set Architecture" gemäß einer Allzweck-Außenschleife konfiguriert ist;

Fig. 9B ist ein Blockdiagramm für eine zweite beispielhafte Ausführungsform der Datenoperationseinheit, die

für die Implementation einer Innenschleifen-Instruktionssatz-Architektur konfiguriert ist;

Fig. 10 ist ein Blockdiagramm einer bevorzugten Ausführungsform für eine Adressenoperationseinheit bzw. für eine "Address Operate Unit" gemäß der vorliegenden Erfindung;

Fig. 11A ist ein Blockdiagramm einer ersten beispielhaften Ausführungsform für die Adressenoperationseinheit, die für die Implementation bzw. Realisierung einer Instruktionssatz-Architektur gemäß einer Allzweck-Außenschleife konfiguriert ist;

Fig. 11B ist ein Blockdiagramm für eine zweite beispielhafte Ausführungsform der Adressenoperationseinheit, die für die Implementation bzw. Verwirklichung einer Innenschleifen-Instruktionssatz-Architektur konfiguriert ist:

Fig. 12A ist ein Diagramm, das eine beispielhafte Zuordnung von rekonfigurierbaren Hardware-Systemeinheiten zwischen der Instruktionsabrufeinheit, der Datenoperationseinheit und der Adressenoperationseinheit für eine Außenschleifen-Instruktionssatz-Architektur zeigt;

Fig. 12B ist ein Diagramm, das eine exemplarische Zuordnung von rekonfigurierbaren Hardware-Systemeinheiten zwischen der Instruktionsabrufeinheit, der Datenoperationseinheit und der Adressenoperationseinheit für eine Innenschleifen-Instruktionssatz-Architektur zeigt;

Fig. 13 ist ein Blockdiagramm einer bevorzugten Ausführungsform einer T-Maschine der vorliegenden Erfinlung:

Fig. 14 ist ein Blockdiagramm einer Verbindungs-I/O-Einheit der vorliegenden Erfindung;

Fig. 15 ist ein Blockdiagramm einer bevorzugten Ausführungsform einer I/O-T-Maschine der vorliegenden Erfindung;

Fig. 16 ist ein Blockdiagramm einer bevorzugten Ausführungsform einer Allzweck-Verbindungsmatrix bzw. einer "General Purpose Interconnect Matrix" der vorliegenden Erfindung; und

Fig. 17A und 17B zeigen ein Flußdiagramm eines bevorzugten Verfahrens zum skalierbaren, parallelen, dynamisch rekonfigurierbaren Rechnen in Übereinstimmung mit der vorliegenden Erfindung.

Im folgenden werden die bevorzugten Ausführungsformen detailliert beschrieben:

Fig. 1 zeigt ein Blockdiagramm einer bevorzugten Ausführungsform eines Systems 10 zum skalierbaren, parallelen, dynamisch rekonfigurierbaren Rechnen, das in Übereinstimmung mit der vorliegenden Erfindung aufgebaut ist. Das System 10 umfaßt vorzugsweise wenigstens eine S-Maschine 12, eine T-Maschine 14, die zu jeder S-Maschine 12 korrespondiert, eine Allzweck-Verbindungsmatrix bzw. "General Purpose Interconnect Matrix" (GPIM) 16, wenigstens eine I/O-T-Maschine 18, eine oder mehrere I/O-Vorrichtungen 20 und eine Master-Zeitbasiseinheit 22. Bei der bevorzugten Ausführungsform umfaßt das System 10 mehrere S-Maschinen 12 und somit mehrere T-Maschinen 14 sowie mehrere I/O-T-Maschinen 18 und mehrere I/O-Vorrichtungen 20.

Jede der S-Maschinen 12, T-Maschinen 14 und I/O-T-Maschinen 18 umfaßt einen Master-Zeitsteuerungseingang, der mit einem Zeitsteuerungsausgang der Master-Zeitbasiseinheit 22 verbunden ist.

Jede S-Maschine 12 umfaßt einen Eingang und einen Ausgang, der mit ihrer entsprechenden bzw. korrespondierenden T-Maschine 14 verbunden ist. Zusätzlich dazu, daß der Eingang und der Ausgang mit ihrer entsprechenden bzw. korrespondierenden S-Maschine 12 verbunden ist, umfaßt jede T-Maschine 14 einen Leitwegeingang bzw. Führungseingang und einen Leitwegausgang bzw. Führungsausgang, der mit der GPIM 16 verbunden ist. In ähnlicher Art und Weise umfaßt jede I/O-T-Maschine 18 einen Eingang und einen Ausgang, der mit einer I/O-Vorrichtung 20 verbunden ist, und einen Leitwegeingang und einen Leitwegausgang, der mit der GPIM 16 verbunden ist.

Wie detaillierter weiter unten beschrieben werden wird, handelt es sich bei jeder S-Maschine 12 um einen dynamisch rekonfigurierbaren Computer bzw. Rechner. Die GPIM 16 bildet eine Punkt-zu-Punkt-Parallel-Verbindungseinrichtung, die die Kommunikation zwischen T-Maschinen 14 erleichtert. Der Satz von T-Maschinen 14 und die GPIM 16 bilden eine Punkt-zu-Punkt-Parallel-Verbindungseinrichtung für einen Datentransfer zwischen S-Maschinen 12. In ähnlicher Weise bilden die GPIM 16, der Satz von T-Maschinen 14 und der Satz von I/O-T-Maschinen 18 eine Punkt-zu-Punkt-Parallel-Verbindungseinrichtung für einen I/O-Transfer bzw. für eine I/O-Übertragung zwischen S-Maschinen 12 und jeder I/O-Vorrichtung 20. Die Master-Zeitbasiseinheit 22 umfaßt einen Oszillator, der ein Master-Zeitsteuersignal für jede S-Maschine 12 und T-Maschine 14 liefert.

Bei einer beispielhaften Ausführungsform ist jede S-Maschine 12 realisiert, indem ein Xilinx XC4013 (Xilinx, Inc., San Jose, CA, USA) feldprogrammierbares Gate-Array bzw. "Field Programmable Gate Array" (FPGA) verwendet wird, das mit 64 Megabyte Speicher mit wahlfreiem Zugriff bzw. "Random Access Memory" (RAM) verbunden ist. Jede T-Maschine 14 wird realisiert, indem ungefähr 50% der rekonfigurierbaren Hardware-Systemelemente in einer Xilinx XC4013 FPGA verwendet werden, dies ist auch bei jeder I/O-T-Maschine 18 der Fall. Die GPIM 14 ist als eine toroidale Verbindungsmasche bzw. Verbindungsvermaschung verwirklicht. Die Master-Zeitbasiseinheit 22 ist ein Taktoszillator, der mit dem Taktverteilungsschaltkreis verbunden ist, um eine systemweite Frequenzreferenz zu liefern, wie dies in der US-Patentanmeldung mit dem Titel "System und Verfahren für phasensynchrones Takten und phasensynchrone Nachrichtenübertragung mit flexibler Frequenz" bzw. "System and Method for Phase-Synchronous, Flexible Frequency Clocking and Messaging" beschrieben ist. Vorzugsweise übertragen die GPIM 14, die T-Maschinen 12 und die I/O-T-Maschinen 18 Information in Übereinstimmung mit dem ANSI/IEEE-Standard 1596—1992, der ein skalierbares kohärentes Interface bzw. ein "Scalable Coherent Interface" (SCI) festlegt.

Bei der bevorzugten Ausführungsform umfaßt das System 10 mehrere S-Maschinen 12, die parallel arbeiten. Die Struktur und die Funktionalität bzw. Wirkungsweise einer jeden einzelnen S-Maschine 12 sind weiter unten detailliert unter Bezugnahme auf die Fig. 2 bis 12B beschrieben. Nimmt man nun Bezug auf die Fig. 2, so ist ein Blockdiagramm einer bevorzugten Ausführungsform einer S-Maschine 12 gezeigt. Die S-Maschine 12 umfaßt eine erste lokale Zeitbasiseinheit 30, eine dynamisch rekonfigurierbare Verarbeitungseinheit bzw. eine "Dynamically Reconfigurable Processing Unit" (DRPU) 32, um Programminstruktionen auszuführen, und einen Speicher

34. Die erste lokale Zeitbasiseinheit 30 umfaßt einen Zeitsteuerungseingang, der den Master-Zeitsteuerungseingang der S-Maschine ausbildet. Die erste lokale Zeitbasiseinheit 30 umfaßt ebenso einen Zeitsteuerungsausgang, der ein erstes lokales Zeitsteuerungssignal oder einen ersten lokalen Zeitsteuerungstakt zu einem Zeitsteuerungseingang der DRPU 32 und einem Zeitsteuerungseingang des Speichers 34 über eine erste Zeitsteuerungssignalleitung 40 liefert. Die DRPU 32 umfaßt einen Steuersignalausgang, der mit einem Steuersignaleingang des Speichers 34 über eine Speichersteuerleitung 42 verbunden ist; einen Adressenausgang, der mit einem Adresseneingang des Speichers 34 über eine Adressenleitung 44 verbunden ist; einen bidirektionalen Datenport, der mit einem bidirektionalen Datenport des Speichers 34 über eine Speicher-I/O-Leitung 46 verbunden ist. Die DRPU 32 umfaßt zusätzlich einen bidirektionalen Steuerport, der mit einem bidirektionalen Steuerport ihrer entsprechenden T-Maschine 14 über eine externe Steuerleitung 48 verbunden ist. Wie in der Fig. 2 gezeigt, überspannt die Speichersteuerungsleitung 42 X Bits, die Adressenleitung 44 M Bits, die Speicher-I/O-Leitung 46 (N x k) Bits und die externe Steuerleitung 48 überspannt Y Bits.

Bei der bevorzugten Ausführungsform empfängt die erste lokale Zeitbasiseinheit 30 das Master-Zeitsteuerungssignal von der Master-Zeitbasiseinheit 22. Die erste lokale Zeitbasiseinheit 30 erzeugt das erste lokale Zeitsteuerungssignal aus dem Master-Zeitsteuerungssignal und liefert das erste lokale Zeitsteuerungssignal zu der DRPU 32 und dem Speicher 34. Bei der bevorzugten Ausführungsform kann das erste lokale Zeitsteuerungssignal von einer S-Maschine 12 zu der anderen sich ändern. Somit arbeiten die DRPU 32 und der Speicher 34 innerhalb einer gegebenen S-Maschine 12 bei unabhängigen Taktraten relativ zu der DRPU 32 dem Speicher 34 innerhalb irgendeiner anderen S-Maschine 12. Vorzugsweise ist das erste lokale Zeitsteuerungssignal mit dem Master-Zeitsteuerungssignal phasensynchronisiert. Bei der bevorzugten Ausführungsform ist die erste lokale Zeitbasiseinheit 30 realisiert, indem eine phasensynchronisierte Frequenzumwandlungsschaltung verwendet wird, einschließlich einer phasensynchronisierten Detektionsschaltung, die realisiert wird, indem rekonfigurierbare Hardware-Systemeinheiten verwendet werden. Fachleute werden erkennen, daß bei einer alternativen Ausführungsform die erste lokale Zeitbasiseinheit 30 als ein Abschnitt eines Taktverteilungsbaums realisiert werden kann.

Der Speicher 34 wird vorzugsweise als ein RAM realisiert bzw. implementiert und speichert Programminstruktionen, Programmdaten und Konfigurationsdatensätze für die DRPU 32. Der Speicher 34 einer jeden gegebenen S-Maschine 12 ist vorzugsweise für jede andere S-Maschine 12 in dem System 10 über die GPIM 16 zugänglich. Darüber hinaus ist jede S-Maschine 12 vorzugsweise dadurch gekennzeichnet, daß sie einen einheitlichen bzw. gleichmäßigen Speicheradressenraum aufweist. Bei der bevorzugten Ausführungsform enthalten Programminstruktionen, die in dem Speicher 34 gespeichert sind, selektiv Rekonfigurationsanweisungen, die an die DRPU 32 gerichtet sind. Nimmt man nun Bezug auf die Fig. 3A, so ist ein beispielhaftes Programmlisting 50 einschließlich der Rekonfigurationsanweisungen gezeigt. Wie in der Fig. 3A gezeigt ist, beinhaltet das beispielhafte Programmlisting 50 einen Satz von Außenschleifenabschnitten 52, einen ersten Innenschleifenabschnitt 54, einen zweiten Innenschleifenabschnitt 55, einen dritten Innenschleifenabschnitt 56, einen vierten Innenschleifenabschnitt 57 und einen fünften Innenschleifenabschnitt 58. Fachleute werden leicht erkennen, daß der Ausdruck "Innenschleife" bzw. "Inner-Loop" auf einen iterativen Abschnitt eines Programms Bezug nimmt, der für die Durchführung eines bestimmten Satzes von dazu in bezug stehenden Operationen verantwortlich ist, und der Term "Außenschleife" bzw. "Outer-Loop" nimmt auf jene Abschnitte eines Programms Bezug, die hauptsächlich für die Durchführung von Allzweckoperationen und/oder für das Übertragen einer Steuerung von einem Innenschleifenabschnitt zu einem anderen verantwortlich ist. Im allgemeinen führen Innenschleifenabschnitte 54, 55, 56, 57, 58 eines Programmes Operationen bezüglich potentiell großer Datensätze durch. Bei einer Bildverarbeitungsanwendung kann z. B. der erste Innenschleifenabschnitt 54 eine Farbformatumwandlungsoperation bezüglich der Bilddaten durchführen und die zweiten bis fünften Innenschleifenabschnitte 55, 56, 57, 58 können ein lineares Filtern, Falten, Mustersuchen und Komprimierungsoperationen durchführen. Fachleute werden erkennen können, daß eine aneinanderliegende Abfolge von Innenschleifenabschnitten 55, 56, 57, 58 als eine Software-Pipeline bzw. ein Software-Fließband gedacht werden kann. Jeder Außenschleifenabschnitt 52 wäre für den Daten-I/O und/oder für die Anweisung des Transfers bzw. der Übertragung von Daten und der Steuerung von dem ersten Innenschleifenabschnitt 54 zu dem zweiten Innenschleifen-Abschnitt 55 verantwortlich. Fachleute werden zusätzlich erkennen, daß ein gegebener Innenschleifenabschnitt 54, 55, 56, 57, 58 eine oder mehrere Rekonfigurationsanweisungen enthalten kann. Im allgemeinen werden für jedes gegebene Programm die Außenschleifenabschnitte 52 oder das Programmlisting 50 eine Vielzahl von Allzweck-Instruktionstypen beinhalten, während die Innenschleifenabschnitte 54, 56 des Programmlistings 50 aus relativ wenigen Instruktionstypen bestehen, die verwendet werden, um einen spezifischen Satz von Operationen durchzuführen.

Bei dem beispielhaften Programmlisting 50 erscheint eine erste Rekonfigurationsanweisung am Beginn des ersten Innenschleifenabschnittes 54 und eine zweite Rekonfigurationsanweisung erscheint an dem Ende des ersten Innenschleifenabschnittes 54. In ähnlicher Weise erscheint eine dritte Rekonfigurationsanweisung am Beginn des zweiten Innenschleifenabschnittes 55; eine vierte Rekonfigurationsanweisung erscheint am Beginn des dritten Innenschleifenabschnittes 56; eine fünfte Rekonfigurationsanweisung erscheint am Beginn des dritten Innenschleifenabschnittes 57; und eine sechste und siebte Rekonfigurationsanweisung erscheint am Beginn und am Ende des fünften Innenschleifenabschnittes 58, und zwar jeweilig. Jede Rekonfigurationsanweisung nimmt vorzugsweise auf einen Konfigurationsdatensatz Bezug, der eine interne DRPU-Hardware-Organisation spezifiziert, die auf die Implementation bzw. Realisation einer bestimmten Instruktionssatz-Architektur bzw. "Instruction Set Architecture" (ISA) ausgerichtet ist und dafür optimiert ist. Eine ISA ist ein primitiver Satz oder Kernsatz von Instruktionen, der verwendet werden kann, um einen Computer zu programmieren. Eine ISA definiert Instruktionsformate, Operationscodes bzw. Opcodes, Datenformate, Adressierungsmoden, Ausführungssteuermarken bzw. Ausführungssteuerflags und über das Programm zugreifbare Register. Fachleute werden erkennen, daß dies der konventionellen Definition einer ISA entspricht. Bei der vorliegenden Erfindung

kann jede DRPU 32 einer S-Maschine schnell in Echtzeit konfiguriert werden, um direkt mehrere ISAs durch die Verwendung eines einzigen Konfigurationsdatensatzes für jede gewünschte ISA zu realisieren. Das heißt, jede ISA wird mit einer einzigen internen DRPU-Hardware-Organisation realisiert bzw. implementiert, wie dies durch einen entsprechenden Konfigurationsdatensatz spezifiziert ist. Somit entsprechen bei der vorliegenden Erfindung die ersten bis fünften Innenschleifenabschnitte 54, 55, 56, 57, 58 jeweils einer einzigen ISA, nämlich ISA jeweilig 1, 2, 3, 4 und k. Fachleute werden erkennen, daß jede aufeinanderfolgende bzw. sukzessive ISA nicht einzig zu sein braucht. Somit kann ISA k ISA 1, 2, 3, 4 oder jede davon unterschiedliche ISA sein. Der Satz von Außenschleifenabschnitten 52 entspricht ebenso einer einzigen ISA, nämlich ISA 0. Bei der bevorzugten Ausführungsform kann während der Programmausführung die Auswahl sukzessiver Rekonfigurationsanweisungen von den Daten abhängen. Nach der Auswahl einer gegebenen Rekonfigurationsanweisung werden die Programminstruktionen aufeinanderfolgend gemäß einer entsprechenden ISA über eine einzige DRPU-Hardware-Konfiguration ausgeführt, wie dies durch einen entsprechenden Konfigurationsdatensatz spezifiziert ist.

Bei der vorliegenden Erfindung kann eine gegebene ISA als eine Innenschleifen-ISA oder eine Außenschleifen-ISA gemäß der Anzahl und Typen von Instruktionen, die sie enthält, kategorisiert werden. Eine ISA, die mehrere Instruktionen beinhaltet, und das ist nützlich, um Allzweck-Operationen durchzuführen, ist eine Außenschleifen-ISA, während eine ISA, die aus relativ wenigen Instruktionen besteht, und das ist daraufhin ausgerichtet, spezifische Typen von Operationen durchzuführen, ist eine Innenschleifen-ISA. Weil eine Außenschleifen-ISA auf die Durchführung von Allzweck-Operationen gerichtet ist, ist eine Außenschleifen-ISA besonders nützlich, wenn eine aufeinander abfolgende bzw. sequentielle Ausführung von Programminstruktionen erwünscht ist. Die Leistungsfähigkeit einer Außenschleifen-ISA bezüglich der Ausführung wird vorzugsweise in Termen der Taktzyklen pro ausgeführter Instruktion charakterisiert. Im Gegensatz dazu ist eine Innenschleifen-ISA, da eine Innenschleifen-ISA auf die Ausführung spezieller Typen von Operationen gerichtet ist, am nützlichsten, wenn eine Ausführung von Parallel-Programminstruktionen wünschenswert ist. Die Leistungsfähigkeit einer Innenschleifen-ISA wird vorzugsweise in Termen von ausgeführten Instruktionen pro Taktzyklus oder Rechenergebnis, das pro Taktzyklus erzeugt wird, charakterisiert.

Fachleute werden erkennen, daß die vorhergehende Diskussion einer Ausführung von sequentiellen Programminstruktionen und einer Ausführung von parallelen Programminstruktionen die Ausführung von Programminstruktionen innerhalb einer einzigen DRPU 32 betrifft. Das Vorliegen von mehreren S-Maschinen 12 in dem System 10 erleichtert die parallele Ausführung von mehreren Programminstruktionssequenzen zu jeder gegebenen Zeit, und zwar wo jede Programminstruktionssequenz durch eine gegebene DRPU 32 ausgeführt wird. Jede DRPU 32 ist so konfiguriert, daß sie eine parallele bzw. serielle Hardware aufweist, um eine bestimmte Innenschleifen-ISA bzw. Außenschleifen-ISA zu einer bestimmten Zeit zu implementieren. Die interne Hardwarekonfiguration einer gegebenen DRPU 32 ändert sich mit der Zeit gemäß der Auswahl von

einer oder mehreren Rekonfigurationsanweisungen, die innerhalb einer Sequenz von Programminstruktionen,

die ausgeführt werden, eingebettet sind.

Bei der bevorzugten Ausführungsform werden jede ISA und ihre entsprechende interne DRPU-Hardware-Organisation ausgestaltet, um optimale Rechenleistungsfähigkeit für eine bestimmte Klasse von Rechenproblemen relativ zu einem Satz von verfügbaren rekonfigurierbaren Hardware-Systemeinheiten bereitzustellen. Wie zuvor erwähnt wurde und wie detaillierter weiter unten beschrieben werden wird, wird eine interne DRPU-Hardware-Organisation, die einer Außenschleifen-ISA entspricht, vorzugsweise für die Ausführung sequentieler Programminstruktionen optimiert und eine interne DRPU-Hardware-Organisation, die einer Innenschleifen-ISA entspricht, wird vorzugsweise für eine Ausführung paralleler Programminstruktionen optimiert. Eine beispielhafte Allzweck-Außenschleifen-ISA ist Anhang A zu entnehmen und eine beispielhafte Innenschleifen-ISA,

die auf die Faltung gerichtet ist, ist dem Anhang B zu entnehmen.

Mit Ausnahme jeder Rekonfigurationsanweisung, umfaßt das beispielhafte Programmlisting 50 der Fig. 3A vorzugsweise herkömmliche Sprachbefehle hohen Niveaus, z.B. Befehle, die in Übereinstimmung mit der C-Programmiersprache beschrieben sind. Fachleute werden erkennen, daß der Einschluß von einer oder mehreren Konfigurationsanweisungen in eine Sequenz von Programminstruktionen einen Kompiler erfordert, der modifiziert ist bzw. geändert ist, um den Rekonfigurationsanweisungen Rechnung zu tragen. Nimmt man nun auf die Fig. 3B Bezug, so ist ein Flußdiagramm nach dem Stand der Technik für Kompilierungsoperationen gezeigt, die während der Kompilierung einer Sequenz bzw. Abfolge von Programminstruktionen durchgeführt werden. Hierin entsprechen die Kompilierungsoperationen gemäß dem Stand der Technik im allgemeinen jenen, die durch den GNU-C-Kompiler (GCC) durchgeführt werden, der von der Free Software Foundation (Cambridge, MA, USA) hergestellt werden. Fachleute werden erkennen, daß die Kompilierungsoperationen gemäß dem Stand der Technik, die weiter unten beschrieben sind, leicht für andere Kompiler verallgemeinert werden können. Die Kompilierungsoperationen nach dem Stand der Technik beginnen im Schritt 500, wobei das Kompiler-Vorderende einen nächsten Befehl hohen Niveaus aus einer Abfolge von Programminstruktionen auswählt. Danach erzeugt das Kompiler-Vorderende einen Code mittleren Niveaus, der dem gewählten Befehl hohen Niveaus im Schritt 502 entspricht, was in dem Fall des GCC dem Registertransferniveau- bzw. "Register Transfer Level" (RTL) -Befehlen entspricht. Folgt man nun Schritt 502, so bestimmt das Vorderende des Kompilers, ob ein anderer Befehl hohen Niveaus im Schritt 504 eine Beachtung erfordert. Falls dem so ist, so kehrt das bevorzugte Verfahren zu dem Schritt 500 zurück.

Im Schritt 504 bestimmt das Kompiler-Vorderende, daß kein anderer Befehls hohen Niveaus eine Beachtung erfordert, das Kompiler-Hinterende führt als nächstes herkömmliche Registerzuweisungsoperationen im Schritt 506 durch. Nach dem Schritt 506 wählt das Kompiler-Hinterende einen nächsten RTL-Befehl, der innerhalb einer gegenwärtigen RTL-Befehlsgruppe im Schritt 508 zu beachten ist. Das Kompiler-Hinterende bestimmt dann, ob eine Regel im Schritt 510 existiert, die eine Art und Weise spezifiziert, in der die gegenwärtige RTL-Befehlsgruppe in einen Satz von Assemblersprachenbefehlen übersetzt werden kann. Falls eine derartige

Regel nicht existiert, kehrt das bevorzugte Verfahren zum Schritt 508 zurück, um einen anderen RTL-Befehl auszuwählen, um ihn in die gegenwärtige RTL-Befehlsgruppe einzuschließen. Falls eine Regel existiert, die der gegenwärtigen RTL-Befehlsgruppe entspricht, erzeugt das Kompiler-Hinterende einen Satz von Assemblersprachenbefehlen gemäß der Regel in dem Schritt 512. Nachfolgend zum Schritt 512 bestimmt das Kompiler-Hinterende, ob ein nächster RTL-Befehl eine Beachtung erfordert, und zwar im Zusammenhang mit einer nächsten RTL-Befehlsgruppe. Falls dem so ist, kehrt das bevorzugte Verfahren zum Schritt 508 zurück; ansonsten endet das bevorzugte Verfahren.

Die vorliegende Erfindung beinhaltet vorzugsweise einen Kompiler für dynamisch rekonfigurierbares Rechnen. Nirmmt man nun Bezug auf die Fig. 3C und 3D, so ist ein Flußdiagramm für bevorzugte Kompilierungsoperationen gezeigt, die von einem Kompiler für eine dynamisch rekonfigurierbare Berechnung durchgeführt 10 werden. Die bevorzugten Kompilierungsoperationen beginnen beim Schritt 600 mit dem Vorderende des Kompilers für dynamisch rekonfigurierbares Berechnen, wobei ein nächster Befehl hohen Niveaus innerhalb einer Sequenz von Programminstruktionen ausgewählt wird. Als nächstes bestimmt das Vorderende des Kompilers für dynamisch rekonfigurierbares Berechnen, ob der gewählte Befehl hohen Niveaus eine Rekonfigurationsanweisung ist, und zwar im Schritt 602. Falls dem so ist, erzeugt das Vorderende des Kompilers für dynamisch 15 rekonfigurierbares Rechnen einen RTL-Rekonfigurationsbefehl im Schritt 604, nachdem das bevorzugte Verfahren zu dem Schritt 600 zurückkehrt. Bei der bevorzugten Ausführungsform handelt es sich bei dem RTL-Rekonfigurationsbefehl um einen Nicht-Standard-RTL-Befehl, der eine ISA-Identifikation bzw. ISA-Kennzeichnung beinhaltet. Falls im Schritt 602 der gewählte Programmbefehl hohen Niveaus nicht eine Rekonfigurationsanweisung ist, erzeugt das Vorderende des Kompilers für dynamisch rekonfigurierbares Rechnen als nächstes 20 einen Satz von RTL-Befehlen auf eine konventionelle Art und Weise, und zwar im Schritt 606. Nach dem Schritt 606 bestimmt das Vorderende des Kompilers für dynamisch rekonfigurierbares Rechnen, ob ein anderer Befehl hohen Niveaus eine Beachtung erfordert, und zwar im Schritt 608. Falls dem so ist, kehrt das bevorzugte Verfahren zum Schritt 600 zurück; ist dem nicht so, fährt das bevorzugte Verfahren zu dem Schritt 610 fort, um Operationen bezüglich des hinteren Endes auszulösen bzw. zu beginnen.

Im Schritt 610 führt das Hinterende des Kompilers für dynamisch rekonfigurierbares Rechnen Registerzuordnungsoperationen durch. Bei der bevorzugten Ausführungsform der vorliegenden Erfindung ist jede ISA derartig definiert, daß die Registerarchitektur von einer ISA zu einer anderen konsistent ist; deshalb werden die Registerzuordnungsoperationen auf eine konventionelle Art und Weise durchgeführt. Fachleute werden erkennen, daß im allgemeinen eine konsistente Registerarchitektur von einer ISA zur anderen kein absolutes Erfordernis ist. Als nächstes wählt das Hinterende des Kompilers für dynamisch rekonfigurierbares Rechnen einen nächsten RTL-Befehl innerhalb einer gegenwärtig betrachteten RTL-Befehlsgruppe im Schritt 612. Das Hinterende des Kompilers für dynamisch rekonfigurierbares Rechnen bestimmt dann im Schritt 614, ob der gewählte RTL-Befehl eine RTL-Rekonfigurationsbefehl ist. Falls der gewählte RTL-Befehl kein RTL-Rekonfigurationsbefehl ist, bestimmt das Hinterende des Kompilers für dynamisch rekonfigurierbares Rechnen im Schritt 618, ob 35 eine Regel für die gegenwärtig betrachtete RTL-Befehlsgruppe existiert. Falls nicht, kehrt das bevorzugte Verfahren zum Schritt 612 zurück, um einen nächsten RTL-Befehl auszuwählen, der in die gegenwärtig betrachtete RTL-Befehlsgruppe eingeschlossen werden soll. Für den Fall, daß eine Regel für die gegenwärtig betrachtete RTL-Befehlsgruppe im Schritt 618 existiert, erzeugt das Hinterende des Kompilers für dynamisch rekonfigurierbares Rechnen als nächstes einen Satz von Assemblersprachbefehlen, die der gegenwärtig betrachteten RTL-Befehlsgruppe gemäß dieser Regel entspricht, und zwar im Schritt 620. Nachfolgend zum Schritt 620 bestimmt das Hinterende des Kompilers für dynamisch rekonfigurierbares Rechnen, ob ein anderer RTL-Befehl eine Beachtung innerhalb des Zusammenhangs einer nächsten RTL-Befehlsgruppe erfordert, und zwar im Schritt 622. Falls dem so ist, kehrt das bevorzugte Verfahren zum Schritt 612 zurück, falls dem nicht so ist, endet das bevorzugte Verfahren.

Im Schritt 614 handelt es sich bei dem gewählten RTL-Befehl um einen RTL-Rekonfigurationsbefehl, das Hinterende des Kompilers für dynamisch rekonfigurierbares Rechnen wählt einen Regelsatz, der der ISA-Identifikation innerhalb des RTL-Rekonfigurationsbefehls entspricht, und zwar im Schritt 616. Bei der vorliegenden Erfindung existiert vorzugsweise ein einziger Regelsatz für jede ISA. Jeder Regelsatz liefert deshalb eine oder mehrere Regeln zur Umwandlung von Gruppen von RTL-Befehlen in Assemblersprachbefehle in Übereinstimmung mit einer bestimmten ISA. Nachfolgend zum Schritt 616 läuft das bevorzugte Verfahren weiter zum Schritt 618. Der Regelsatz, der einer jeden gegebenen ISA entspricht, beinhaltet vorzugsweise eine Regel, um den RTL-Rekonfigurationsbefehl in einen Satz von Assemblersprachbefehlen zu übersetzen, die einen Software-Interrupt erzeugen, der in der Ausführung einer Rekonfigurations-Handhabungseinrichtung resultiert, wie dies im folgenden detailliert beschrieben werden wird.

In der oben beschriebenen Art und Weise erzeugt der Kompiler für dynamisch rekonfigurierbares Rechnen selektiv und automatisch Assemblersprachbefehle, und zwar in Übereinstimmung mit mehreren ISAs während der Kompilierungsoperationen. Mit anderen Worten kompiliert während des Kompilierungsprozesses der Kompilier für dynamisch rekonfigurierbares Rechnen einen einzigen Satz von Programminstruktionen gemäß einer variablen ISA. Bei dem Kömpiler für dynamisch rekonfigurierbares Rechnen handelt es sich vorzugsweise um einen herkömmlichen Kompiler, der modifiziert ist, um die bevorzugten Kompilierungsoperationen durchzuführen, die oben unter Bezugnahme auf die Fig. 3C und 3D beschrieben sind. Fachleute werden erkennen, daß, obwohl die erforderlichen Modifikationen bzw. Änderungen nicht komplex sind, derartige Modifikationen im Hinblick auf sowohl Kompilierungstechniken nach dem Stand der Technik als auch rekonfigurierbare Rechentechniken nach dem Stand der Technik nicht offensichtlich sind.

Nimmt man nun Bezug auf die Fig. 4, so ist ein Blockschaltbild bzw. ein Blockdiagramm einer bevorzugten Ausführungsform einer dynamischen rekonfigurierbaren Verarbeitungseinheit 32 gezeigt. Die DRPU 32 umfaßt eine Instruktionsanforderungseinheit (IFU) 60, eine Datenoperationseinheit (DOU) 62 und eine Adressenopera-

tionseinheit (AOU) 64. Sowohl die IFU 60 als auch die DOU 62 und die AOU 64 umfassen einen Zeitsteuereingang, der mit der ersten Zeitsteuersignalleitung 40 verbunden ist. Die IFU 60 umfaßt einen Speichersteuerausgang, der mit der Speichersteuerleitung 42 verbunden ist, einen Dateneingang, der mit der speicher-I/O-Leitung 46 verbunden ist, und einen bidirektionalen Steuerport, der mit der externen Steuerleitung 48 verbunden ist. Die IFU 60 umfaßt zusätzlich einen ersten Steuerausgang, der mit einem ersten Steuereingang der DOU 62 über eine erste Steuerleitung 70 verbunden ist, und einen zweiten Steuerausgang, der mit einem ersten Steuereingang der AOU 64 über eine zweiten Steuereingang der DOU 62 und einem zweiten Steuerausgang, der mit einem zweiten Steuereingang der DOU 62 und einem zweiten Steuereingang der AOU 64 über eine dritte Steuerleitung 74 verbunden ist. Die DOU 62 und die AOU 64 umfassen jeweils einen bidirektionalen Datenport, der mit der speicher-I/O-Leitung 46 verbunden ist. Schließlich umfaßt die AOU 64 einen Adressen-

ausgang, der den Adressenausgang der DRPU ausbildet.

Die DRPU 32 wird vorzugsweise realisiert, indem eine rekonfigurierbare oder reprogrammierbare Logikvorrichtung, wie z. B. eine FPGA, wie z. B. eine Xilinx XC4013 (Xilinx, Inc., San Jose, CA, USA) oder eine AT&T ORCATM 1C07 (AT&T Microelectronics, Allentown, PA, USA) verwendet wird. Vorzugsweise stellt die reprogrammierbare Logikvorrichtung eine Vielzahl von folgendem bereit: 1) selektiv reprogrammierbare Logikblökke oder konfigurierbare Logikblöcke (CLBs); 2) selektiv reprogrammierbare I/O-Blöcke (IOBs); 3) selektiv reprogrammierbare Verbindungsstrukturen; 4) Datenspeicher-Systemeinheiten; 5) Dreizustands-Puffer-Systemeinheiten; und 6) Funktionsfähigkeiten einer fest verdrahteten Logik. Jede CLB beinhaltet vorzugsweise eine selektiv rekonfigurierbare Schaltung zur Erzeugung von Logikfunktionen, Speicherdaten und Wegeermittlungssignalen bzw. Leitwegsignalen. Fachleute werden erkennen, daß eine rekonfigurierbare Datenspeicherschaltung auch in einer oder mehreren Datenspeicherblöcken (DSBs) beinhaltet sein können, die von dem Satz von CLBs getrennt sind, und zwar in Abhängigkeit von der exakten Ausgestaltung der rekonfigurierbaren Logikvorrichtung, die verwendet wird. Hier befindet sich die rekonfigurierbare Datenspeicherschaltung, die innerhalb einer FPGA ist, innerhalb der CLBs; d. h. die Gegenwart von DSBs wird nicht angenommen. Fachleute werden leicht erkennen, daß eine oder mehrere Elemente, die hierin beschrieben sind, die eine CLB-basierte rekonfigurierbare Datenspeicherschaltung verwenden, eine DSB-basierte Schaltung für den Fall verwenden könnten, daß DSBs vorhanden sind. Jede IOB beinhaltet vorzugsweise eine selektiv rekonfigurierbare Schaltung, um Daten zwischen CLBs und einem FPGA-Ausgangspin zu übertragen. Ein Konfigurationsdatensatz legt eine DRPU-Hardware-Konfiguration oder -Organisation fest, indem Funktionen spezifiziert werden, die innerhalb von CLBs durchgeführt werden, sowie Verbindungen spezifiziert werden, und zwar wie folgt: 1) innerhalb CLBs; 2) zwischen CLBs; 3) innerhalb IOBs; 4) zwischen IOBs; und 5) zwischen CLBs und IOBs. Fachleute werden erkennen, daß über einen Konfigurationsdatensatz die Anzahl von Bits sowohl in der Speichersteuerleitung 42 als auch in der Adreßleitung 44, der speicher-I/O-Leitung 46 und der externen Steuerleitung 48 rekonfigurierbar ist. Vorzugsweise werden Konfigurationsdatensätze in einem oder mehreren S-Maschinenspeichern 34 innerhalb des Systems 10 gespeichert. Fachleute werden erkennen, daß die DRPU 32 nicht auf eine FPGA-basierte Implementation bzw. Realisierung beschränkt ist. Zum Beispiel könnte die DRPU 32 als eine RAM-basierte Zustandsmaschine verwirklicht werden, die möglicherweise eine oder mehrere Nachschlag- bzw. Verweistabellen enthält. Alternativ könnte die DRPU 32 realisiert werden, indem eine komplex programmierbare Logikvorrichtung bzw. eine "Complex Programmable Logic Device" (CPLD) verwendet wird. Jedoch werden Fachleute erkennen, daß einige der S-Maschinen 12 des Systems 10 DRPUs 32 enthalten können, die nicht rekonfigurierbar

Bei der bevorzugten Ausführungsform sind sowohl die IFU 60 als auch die DOU 62 und die AOU 64 dynamisch rekonfigurierbar. Somit kann ihre interne Hardware-Konfiguration selektiv während der Programmausführung geändert werden. Die IFU 60 verwaltet Instruktionsanweisungs- und Decodieroperationen, Speicherzugriffsoperationen, DRPU-Rekonfigurationsoperationen und gibt Steuersignale zu der DOU 62 und der AOU 64 aus, um die Instruktionsausübung zu erleichtern. Die DOU 62 führt Operationen aus, die eine Datenberechnung mit einschließen bzw. mit sich bringen und die AOU 64 führt Operationen aus, die eine Adressenberechnung mit sich bringen. Die interne Struktur und der Betrieb sowohl der IFU 60 als auch der DOU 62 und der AOU 64 wird nun detailliert beschrieben.

Nimmt man Bezug auf die Fig. 5, so ist ein Blockdiagramm bzw. ein Blockschaltbild einer bevorzugten Ausführungsform der Instruktionsabrufeinheit 60 bzw. "Instruction Fetch Unit" 60 gezeigt. Die IFU 60 umfaßt eine Instruktionszustandsfolgesteuereinheit bzw. einen "Instruction State Sequencer" (ISS) 100, einen Architekturbeschreibungsspeicher 101, eine Speicherzugriffslogik 102, eine Rekonfigurationslogik 104, eine Interruptlogik 106, eine Abrufsteuereinheit 108, einen Instruktionspuffer 110, eine Dekodersteuereinheit 112, einen Instruktionsdecoder 114, einen Operationscode-Speicherregistersatz 116, einen Registerfile (RF)-Adressenregistersatz 118, einen Konstantenregistersatz 120 und einen Prozeßsteuerregistersatz 122. Die ISS 100 umfaßt einen ersten bzw. einen zweiten Steuerausgang, der den ersten bzw. zweiten Steuerausgang der IFU ausbildet, und einen Zeitsteuereingang, der den Zeitsteuereingang der IFU ausbildet. Die ISS 100 umfaßt ebenso einen Abruf-/Decodersteuerausgang, der mit einem Steuereingang der Abrufsteuereinheit 108 und einem Steuereingang der Decodiersteuereinheit 112 über eine Abruf-/Decodiersteuerleitung 130 verbunden ist. Die ISS 100 weist zusätzlich einen bidirektionalen Steuerport auf, der mit einem ersten bidirektionalen Steuerport sowohl der Speicherzugriffslogik 102 als auch der Rekonfigurationslogik 104 und der Interruptlogik 106 über eine bidirektionale Steuerleitung 132 verbunden ist. Die ISS 100 umfaßt ebenso einen Operationscodeeingang, der mit einem Ausgang des Operationscodespeicherregistersatzes 116 über eine Operationscodeleitung 142 verbunden ist. Schließlich umfaßt die ISS 100 einen bidirektionalen Datenport, der mit einem bidirektionalen Datenport des ProzeBsteuerregistersatzes 122 über eine ProzeBdatenleitung 144 verbunden ist.

Sowohl die Speicherzugriffslogik 102 als auch die Rekonfigurationslogik 104 und die Interruptlogik 106 umfassen einen zweiten bidirektionalen Steuerport, der mit der externen Steuerleitung 48 verbunden ist. Die

Speicherzugriffslogik 102, die Rekonfigurationslogik 104 und die Interruptlogik 106 umfassen zusätzlich jeweils einen Dateneingang, der mit einem Datenausgang des Architekturbeschreibungsspeichers 101 über eine Implementationssteuerleitung 131 bzw. Realisierungssteuerleitung 131 verbunden ist. Die Speicherzugriffslogik 102 umfaßt zusätzlich einen Steuerausgang, der den Speichersteuerausgang der IFU ausbildet. Und die Interruptlogik 106 umfaßt einen Ausgang, der mit der Prozeßdatenleitung 144 verbunden ist. Der Instruktionspuffer 110 umfaßt einen Dateneingang, der den Dateneingang der IFU ausbildet, einen Steuereingang, der mit einem Steuerausgang der Abrufsteuereinheit 108 über eine Abrufsteuerleitung 134 verbunden ist, und einen Ausgang, der mit einem Eingang des Instruktionsdecoders 114 über eine Instruktionsleitung 136 verbunden ist. Der Instruktionsdecoder 114 umfaßt einen Steuereingang, der mit einem Steuerausgang der Decodiersteuereinheit 112 über eine Decodiersteuerleitung 138 verbunden ist, und einen Ausgang, der über eine Decodierinstruktionsleitung 140 mit 1) einem Eingang des Operationscode-Speicherregistersatzes 116; 2) einem Eingang des RF-Adressenregistersatzes 118; und 3) einem Eingang des Konstantenregistersatzes 120 verbunden ist. Der RF-Adressenregistersatz 118 und der Konstantenregistersatz 120 umfassen jeweils einen Ausgang, die zusammen den dritten Steuerausgang 74 der IFU ausbilden.

Der Architekturbeschreibungsspeicher 101 speichert Architekturbeschreibungssignale, die die gegenwärtige 15 DRPU-Konfiguration kennzeichnen. Vorzugsweise beinhalten die Architekturspezifikationssignale 1) einen Bezug bzw. eine Referenz zu einem Ausgangskonfigurationsdatensatz bzw. Default-Konfigurationsdatensatz; 2) einen Bezug bzw. eine Referenz zu einer Liste von möglichen Konfigurationsdatensätzen; 3) einen Bezug bzw. eine Referenz zu einem Konfigurationsdatensatz, der der gegenwärtig betrachteten ISA entspricht, d. h. einen Bezug zu dem Konfigurationsdatensatz, der die gegenwärtige DRPU-Konfiguration festlegt; 4) eine Verbindungsadressenliste, die eine oder mehrere Verbindungs-I/O-Einheiten 304 innerhalb der T-Maschine 14 identifiziert, die der S-Maschine 12 zugeordnet ist, in der sich die IFU 60 befindet, wie detailliert weiter unten unter Bezugnahme auf die Fig. 13 beschrieben werden wird; 5) einen Satz von Interrupt-Antwortsignalen, die eine Interruptsuchzeit bzw. Interruptverzögerungszeit und eine Interrupt-Präzisionsinformation, die festlegt, wie die IFU 60 auf die Interrupt antwortet, spezifizieren; und 6) eine Speicherzugriffskonstante, die eine atomare Speicheradresseninkrementierung festlegt. Bei der bevorzugten Ausführungsform realisiert bzw. implementiert jeder Konfigurationsdatensat z den Architekturbeschreibungsspeicher 101 als einen Satz von CLBs, der als ein Nur-Lese-Speicher bzw. "Read Only Memory" (ROM) konfiguriert ist. Die Architekturspezifikationssignale, die den Inhalt des Architekturbeschreibungsspeichers 101 festlegen, sind vorzugsweise in jedem Konfigurationsdatensatz enthalten. Da jeder Konfigurationsdatensatz einer bestimmten ISA entspricht, variiert der Inhalt des Architekturbeschreibungsspeichers 101 gemäß der ISA, die gegenwärtig betrachtet wird. Für eine gegebene ISA wird der Programmzugriff auf den Inhalt des Architekturbeschreibungsspeichers 101 vorzugsweise erleichtert, indem eine Speicherleseinstruktion in die ISA eingeschlossen wird bzw. mit aufgenommen wird. Dies ermöglicht es, daß ein Programm Informationen über die gegenwärtige DRPU-Konfiguration während der Programmausführung wiederfindet.

Bei der vorliegenden Erfindung handelt es sich bei der Rekonfigurationslogik 104 um eine Zustandsmaschine, die eine Abfolge von Rekonfigurationsoperationen steuert, die die Rekonfiguration der DRPU 32 gemäß einem Konfigurationsdatensatz erleichtert. Vorzugsweise löst die Rekonfigurationslogik 104 die Rekonfigurationsoperationen nach dem Empfang eines Rekonfigurationssignals aus. Wie detallierter weiter unten beschrieben werden wird, wird das Rekonfigurationssignal durch die Interruptlogik 106 in Antwort auf einen Rekonfigurationsinterrupt erzeugt, der auf der externen Steuerleitung 48 empfangen wird, oder es wird durch die ISS 100 in Antwort auf eine Rekonfigurationsanweisung, die in einem Programm eingebaut ist, erzeugt. Die Rekonfigurationsoperationen stellen eine anfängliche DRPU-Konfiguration bereit, die einer Einschalt-/Reset-Bedingung folgt, die den Ausgangs-Konfigurationsdatensatz bzw. Default-Konfigurationsdatensatz verwendet, auf den der Architekturbeschreibungsspeicher 101 verweist. Die Rekonfigurationsoperationen stellen ebenso eine selektive DRPU-Rekonfiguration bereit, nachdem die anfängliche DRPU-Konfiguration erstellt worden ist. Nach der Vollendung der Rekonfigurationsoperationen gibt die Rekonfigurationslogik 104 ein Vollendungssignal ab. Bei der bevorzugten Ausführungsform handelt es sich bei der Rekonfigurationslogik 104 um eine nicht-rekonfigurierbare Logik, die das Laden von Konfigurationsdatensätzen in die reprogrammierbare Logikvorrichtung selbst steuert, und somit wird die Abfolge bzw. Sequenz von Rekonfigurationsoperationen durch den Hersteller der reprogrammierbaren Logikvorrichtung festgelegt. Die Rekonfigurationsoperationen werden nun für die Fachleute bekannt sein.

Jede DRPU-Konfiguration ist vorzugsweise durch einen Konfigurationsdatensatz gegeben, der eine bestimmte Hardware-Organisation festlegt, die auf die Implementation bzw. Realisierung einer entsprechenden ISA ausgerichtet ist bzw. zugeordnet ist. Bei der bevorzugten Ausführungsform beinhaltet die IFU 60 jedes der Elemente, auf die oben hingewiesen wurde, und zwar unabhängig von der DRPU-Konfiguration. Bei einem Basisniveau bzw. bei einer Grundebene ist die Funktionalität bzw. Funktionstüchtigkeit, die durch jedes Element innerhalb der IFU 60 bereitgestellt wird, unabhängig von der gegenwärtig betrachteten ISA. Jedoch kann bei der bevorzugten Ausführungsform die detaillierte Struktur und Funktionstüchtigkeit von einem oder mehreren Elementen der IFU 60 sich verändern, und zwar aufgrund der Natur der ISA, für die sie konfiguriert worden ist. Bei der bevorzugten Ausführungsform bleibt die Struktur und Funktionalität des Architekturbeschreibungsspeichers 101 und der Rekonfigurationslogik 104 vorzugsweise von einer DRPU-Konfiguration zu einer anderen konstant. Die Struktur und Funktionstüchtigkeit bzw. Funktionalität der anderen Elemente der IFU 60 und die Art und Weise, in der sie gemäß dem Typ der ISA variieren, wird nun im Detail beschrieben.

Der Prozeßsteuerregistersatz 122 speichert Signale und Daten, die durch die ISS 100 während der Ausführung 65 von Instruktionen verwendet wird. Bei der bevorzugten Ausführungsform umfaßt der Prozeßsteuerregistersatz 122 ein Register, um ein Prozeßsteuerwort zu speichern, ein Register, um einen Interruptvektor zu speichern, und ein Register, um einen Bezug zu einem Konfigurationsdatensatz zu speichern. Das Prozeßsteuerwort

beinhaltet vorzugsweise eine Vielzahl von Bedingungsflags, die wahlweise gesetzt und rückgesetzt werden können, und zwar in Abhängigkeit von Bedingungen, die während der Instruktionsausführung auftreten. Das Prozeßsteuerwort beinhaltet zusätzlich eine Vielzahl von Übergangssteuersignalen, die eine oder mehrere Arten und Weisen festlegen, in denen Interrupts abgearbeitet werden können, wie im folgenden detaillierter beschrieben werden wird. Bei der bevorzugten Ausführungsform ist der Prozeßsteuerregistersatz 122 als ein Satz von CLBs realisiert, der für Datenspeicherung und für Gattersteuerlogik bzw. logische Torschaltungen konfiguriert ist.

Die ISS 100 ist vorzugsweise eine Zustandsmaschine, die den Betrieb der Abrufsteuereinheit 108, der Decodiersteuereinheit 112, der DOU 62 und der AOU 64 steuert und Speicherlese- und Speicherschreibsignale zu der Speicherzugriffslogik 102 ausgibt, um die Instruktionsausführung zu erleichtern. Nimmt man nun Bezug auf Fig. 6, so ist ein Zustandsdiagramm gezeigt, das einen bevorzugten Satz von Zuständen, die durch die ISS 100 unterstützt werden, zeigt. Nachfolgend zu einer Einschalt- oder Resetbedingung oder unmittelbar, nachdem eine Rekonfiguration aufgetreten ist, beginnt die ISS 100 mit einer Operation im Zustand P. In Antwort auf das Vollendungssignal, das durch die Rekonfigurationslogik 104 ausgegeben wird, schreitet die ISS 100 zum Zustand S fort, indem die ISS 100 Programmzustandsinformationen initialisiert wiederhergestellt, und zwar in dem Fall, daß eine Einschalt-/Resetbedingung bzw. eine Rekonfiguration aufgetreten ist. Die ISS 100 schreitet zum Zustand F fort, indem Instruktionsabrufoperationen durchgeführt werden. Bei den Instruktionsabrufoperationen gibt die ISS 100 ein Speicherlesesignal zu der Speicherzugriffslogik 102 aus, gibt ein Abrufsignal zu der Abrufsteuereinheit 108 aus und gibt ein Inkrementsignal zu der AOU 64 aus, um ein Programmadressenregister bezüglich einer nächsten Instruktion bzw. ein "Next Instruction Programm Address Register" (NIPAR) 232 zu inkrementieren, wie unten detaillierter unter Bezugnahme auf die Fig. 11A und 11B beschrieben wird. Nach dem Zustand F schreitet die ISS 100 zu dem Zustand D, um Instruktionsdecodieroperationen auszulösen. Im Zustand D gibt die ISS 100 ein Decodiersignal zu der Decodiersteuereinheit 112 aus. Während sie im Zustand D ist, liest die ISS 100 zusätzlich einen Operationscode aus, und zwar entsprechend einer decodierten Instruktion von dem Operationscodespeicherregistersatz 116. Basierend auf dem empfangenen Operationscode, schreitet die ISS 100 zu dem Zustand E oder zu dem Zustand M fort, um Instruktionsausführungsoperationen durchzuführen. Die ISS 100 schreitet zu dem Zustand E in dem Fall fort, daß die Instruktion in einem einzigen Taktzyklus ausgeführt werden kann; andernfalls schreitet die ISS 100 zu dem Zustand M für Multizyklusinstruktionsausführung fort. Bei den Instruktionsausführungsoperationen erzeugt die ISS 100 DOU-Steuersignale, AOU-Steuersignale und/ oder Signale, die auf die Speicherzugriffslogik 102 gerichtet sind, um die Ausführung der Instruktionen zu erleichtern, die dem wiedergewonnenen bzw. ausgelesenen Operationscode entsprechen. Nachfolgend entweder den Zuständen E oder M, schreitet die ISS 100 zu dem Zustand W fort. Im Zustand W erzeugt die ISS 100 DOU-Steuersignale, AOU-Steuersignale und/oder Speicherschreibsignale, um ein Speichern eines Ergebnisses einer Instruktionsausführung zu erleichtern. Auf dem Zustand W wird deshalb als ein Schreib-zurück-Zustand Bezug genommen.

Fachleute werden erkennen, daß die Zustände F, D, E oder M und W einen vollständigen Instruktionsausführungszyklus aufweisen. Nach dem Zustand W schreitet die ISS 100 zu dem Zustand Y in dem Fall fort, daß ein Aussetzen einer Instruktionsausführung erforderlich ist. Der Zustand Y entspricht einem nichttätigen Zustand bzw. Ruhezustand, der z. B. in dem Fall erforderlich sein kann, daß eine T-Maschine 14 Zugriff zu dem S-Maschinenspeicher 34 fordert bzw. benötigt. Nachfolgend zum Zustand Y oder nach dem Zustand W kehrt die ISS 100 in dem Fall, daß die Instruktionsausführung fortgesetzt werden soll, zu dem Zustand F zurück, um einen anderen

Instruktionsausführungszyklus aufzunehmen.

Wie in Fig. 6 gezeigt, beinhaltet das Zustandsdiagramm ebenso einen Zustand I, der festgelegt ist, ein Interruptservicezustand zu sein. Bei der vorliegenden Erfindung empfängt die ISS 100 ein Interruptmeldungssignal von der Interruptlogik 106. Wie im folgenden unter Bezugnahme auf die Fig. 7 beschrieben werden wird, erzeugt die Interruptlogik 106 Übergangssteuersignale und speichert die Übergangssteuersignale in dem Prozeßsteuerwort innerhalb des Prozeßsteuerregistersatzes 122. Die Übergangssteuersignale weisen vorzugsweise darauf hin, welcher der Zustände F, D, E, M, W und Y unterbrechbar sind bzw. auf ein Interrupt reagieren, und auf ein Niveau bzw. eine Ebene einer Interruptpräzision, die in bzw. bei jedem unterbrechbaren Zustand erforderlich ist, und für jeden unterbrechbaren Zustand auf einen nächster Zustand, bei dem die Instruktionsausführung fortgesetzt werden soll und der dem Zustand I folgt. Falls die ISS 100 ein Interruptmeldungssignal empfängt, während sie in einem gegebenen Zustand ist, schreitet die ISS 100 zu dem Zustand I, falls das Übergangssteuersignal anzeigt, daß der gegenwärtige Zustand unterbrechbar ist bzw. auf ein Interrupt ansprechen kann. Andernfalls schreitet die ISS 100 fort als ob sie kein Interruptsignal empfangen hätte, bis sie einen unterbrechbaren Zustand erreicht.

Wenn einmal die ISS 100 zum Zustand I fortgeschritten ist, greift die ISS 100 vorzugsweise auf den Prozeßsteuerregistersatz 122 zu, um ein Interruptmaskierflag bzw. eine Interruptmaskiermarke zu setzen, und sie
empfängt einen Interruptvektor. Nachdem der Interruptvektor wiedergewonnen bzw. ausgelesen ist, arbeitet
die ISS 100 vorzugsweise über einen herkömmlichen Subroutinensprung zu einer Interrupthandhabungseinrichtung bzw. zu einem Interrupthandler, wie es durch den Interruptvektor beschrieben ist, den gegenwärtigen

Interrupt ab.

Bei der vorliegenden Erfindung wird die Rekonfiguration der DRPU 32 in Antwort auf folgendes ausgelöst: 1) einen Rekonfigurationsinterrupt, der auf der externen Steuerleitung 48 aktiv ist; oder 2) die Ausführung einer Rekonfigurationsanweisung innerhalb einer Abfolge von Programminstruktionen. Bei der bevorzugten Ausführungsform führen sowohl der Rekonfigurationsinterrupt als auch die Ausführung einer Rekonfigurationsanweisung zu einem Subroutinensprung zu einer Rekonfigurationshandhabungseinrichtung bzw. zu einem Rekonfigurationshandler. Vorzugsweise speichert die Rekonfigurationshandhabungseinrichtung Programmzustandsinformationen und gibt eine Konfigurationsdatensatzadresse und das Rekonfigurationssignal zu der Rekonfigura-

tionslogik 104.

In dem Fall, daß es sich bei dem vorliegenden Interrupt nicht um einen Rekonfigurationsinterrupt handelt, schreitet die ISS 100 zu dem nächsten Zustand fort, wie dies durch die Übergangssteuersignale angezeigt wird, wenn der Interrupt empfangen worden ist, wodurch ein Instruktionsausführungszyklus wieder aufgenommen, vollendet oder ausgelöst wird.

Bei der bevorzugten Ausführungsform variiert der Satz an Zuständen, der durch die ISS 100 unterstützt wird, gemäß der Natur der ISA, für die die DRPU 32 konfiguriert ist. Somit würde der Zustand M. für eine ISA nicht vorliegen, in der eine oder mehrere Instruktionen in einem einzigen Taktzyklus ausgeführt werden können, was der Fall wäre bei einer typischen Innenschleifen-ISA. Wie gezeigt, definiert das Zustandsdiagramm der Fig. 6 vorzugsweise die Zustände, die durch die ISS 100 festgelegt werden, um eine Allzweck-Außenschleifen-ISA zu realisieren. Zur Realisierung der Innenschleifen-ISA unterstützt die ISS 100 vorzugsweise mehrere Sätze von Zuständen F, D, E und W, und zwar parallel, wodurch eine pipelineartige Steuerung einer Instruktionsausführung in einer Art und Weise erleichtert wird, die leicht von Fachleuten verstanden wird. Bei der bevorzugten Ausführungsform ist die ISS 100 als eine CLB-basierte Zustandsmaschine realisiert, die die Zustände oder einen Untersatz von den Zuständen, die oben beschrieben wurden, in Übereinstimmung mit der gegenwärtig betrachteten ISA unterstützt.

Die Interruptlogik 106 umfaßt vorzugsweise eine Zustandsmaschine, die Übergangssteuersignale erzeugt und Interruptmeldeoperationen in Antwort auf ein Interruptsignal durchführt, das über die externe Steuerleitung 48 empfangen wird. Nimmt man Bezug auf Fig. 7, so ist ein Zustandsdiagramm gezeigt, das einen bevorzugten Satz von Zuständen zeigt, die durch die Interruptlogik 106 unterstützt werden. Die Interruptlogik 106 beginnt ihren 20 Betrieb bzw. ihre Operation im Zustand P. Der Zustand P entspricht einer Einschalt-, Reset- oder Rekonfigurationsbedingung. In Antwort auf das Vollendungssignal, das durch die Rekonfigurationslogik 104 abgegeben wird, schreitet die Interruptlogik 106 zum Zustand A und liest das Interruptantwortsignal aus dem Architekturbeschreibungsspeicher 101. Die Interruptlogik 106 erzeugt dann das Übergangssteuersignal aus den Interruptantwortsignalen und speichert das Übergangssteuersignal in dem Prozeßsteuerregistersatz 122. Bei der bevorzugten Ausführungsform beinhaltet die Interruptlogik 106 ein CLB-basiertes programmierbares Logikfeld bzw. eine CLB-basierte "Programmable Logic Array" (PLA), um die Interruptantwortsignale zu empfangen und um die Übergangssteuersignale zu erzeugen. Nachfolgend zum Zustand A schreitet die Interruptlogik 106 zu dem Zustand B fort, um auf ein Interruptsignal zu warten. Nach dem Empfang eines Interruptsignals schreitet die Interruptlogik 106 zu dem Zustand C in dem Fall fort, daß das Interruptmaskierflag innerhalb des Prozeßsteuerregistersatzes 122 zurückgesetzt wird. Wenn einmal der Zustand C erreicht ist bzw. vorliegt, bestimmt die Interruptlogik 106 den Ursprung des Interrupts, eine Interruptpriorität und eine Adresse der Interrupthandhabungseinrichtung bzw. eine Interrupthandleradresse. In dem Fall, daß das Interruptsignal ein Rekonfigurationsinterrupt ist, schreitet die Interruptlogik 106 zu dem Zustand R und speichert eine Konfigurationsdatensatzadresse in dem Prozeßsteuerregistersatz 122. Nach dem Zustand R oder nachfolgend zu dem Zustand C schreitet 35 die Interruptlogik 106, in dem Fall, daß das Interruptsignal nicht ein Rekonfigurationsinterrupt ist, zu dem Zustand N fort und speichert die Interrupthandleradresse bzw. die Adresse der Interrupthandhabungseinrichtung in dem Prozeßsteuerregistersatz 122. Die Interruptlogik 106 schreitet als nächstes zu dem Zustand X und gibt ein Interruptmeldesignal zu der ISS 100. Nachfolgend zu dem Zustand X kehrt die Interruptlogik 122 zum Zustand B zurück, um auf ein nächstes Interruptsignal zu waren.

Bei der bevorzugten Ausführungsform variiert der Pegel bzw. die Ebene der Interruptwartezeit bzw. der Interruptverzögerungszeit, wie sie durch die Interruptantwortsignale und folglich durch die Übergangssteuersignale spezifiziert ist, in Abhängigkeit von der gegenwärtigen ISA, für die die DRPU 32 konfiguriert worden ist. Zum Beispiel erfordert eine ISA, die auf Hochleistungs-Echtzeitbewegungssteuerung ausgerichtet ist, schnelle und vorhersehbare Interruptantwortfähigkeiten. Der Konfigurationsdatensatz, der einer derartigen ISA entspricht, beinhaltet deshalb vorzugsweise Interruptantwortsignale, die anzeigen, daß eine Unterbrechung mit geringer Wartezeit bzw. Verzögerungszeit erforderlich ist. Die entsprechenden Übergangssteuersignale identifizieren wiederum mehrere ISS-Zustände als unterbrechbar, wodurch es einem Interrupt ermöglicht wird, einen Instruktionsausführungszyklus auszusetzen bzw. aufzugeben, bevor der Instruktionsausführungszyklus vollendet ist. Im Gegensatz zu einer ISA, die auf Echtzeitbewegungssteuerung ausgerichtet ist, benötigt eine ISA, die 50 auf Bildfaltungsoperationen ausgerichtet ist, Interruptantwortfähigkeiten, die gewährleisten, daß die Anzahl der Faltungsoperationen, die pro Zeiteinheit durchgeführt wird, maximiert ist. Der Konfigurationsdatensatz, der der Bildfaltungs-ISA entspricht, beinhaltet vorzugsweise Interruptantwortsignale, die spezifizieren, daß eine Unterbrechung mit langer Warte- bzw. Verzögerungszeit erforderlich ist. Die entsprechenden Übergangssteuersignale identifizieren einen Zustand W vorzugsweise als einen unterbrechbaren. In dem Fall, daß die ISS 100 mehrere 55 Sätze von Zuständen F, D, E und W parallel unterstützt, identifizieren die Bildsteuersignale, wenn sie konfiguriert sind, um die Bildfaltungs-ISA zu realisieren, jeden Zustand W als unterbrechbar und spezifizieren weiter, daß das Abarbeiten bezüglich des Interrupts verzögert werden soll, bis jede der parallelen Instruktionsausführungszyklen ihre Zustand-W-Operationen beendet hat. Dies gewährleistet, daß eine ganze Gruppe von Instruktionen ausgeführt werden wird, bevor ein Interrupt abgearbeitet wird, wodurch vernünftige Fließband-Ausführungsleistungspegel bzw. gepipelinte Ausführungsleistungspegel aufrechterhalten werden.

In einer Art und Weise, die analog zu dem Pegel der Interruptverzögerungszeit ist, variiert der Pegel bzw. das Niveau der Interruptpräzision, wie sie durch die Interruptantwortsignale spezifiziert werden, ebenso in Abhängigkeit von der ISA, für die die DRPU 32 konfiguriert ist. Zum Beispiel geben die Interruptantwortsignale in dem Fall, daß ein Zustand M als ein unterbrechbarer Zustand für eine Außenschleifen-ISA festgelegt ist, die unterbrechbare Multizyklusoperationen unterstützt, vorzugsweise vor, daß präzise Interrupts erforderlich sind. Die Übergangssteuersignale spezifizieren somit bzw. geben somit vor, daß Interrupts, die in dem Zustand M empfangen werden, als präzise Interrupts behandelt werden, um zu gewährleisten, daß Multizyklusoperationen

erfolgreich erneut gestartet werden können. In einem anderen Beispiel bezüglich einer ISA, die nicht fehlbare bzw. nicht fehlerbehaftete Fließband-Arithmetikoperationen unterstützt, spezifizieren Interruptantwortsignale vorzugsweise, daß ungenaue bzw. unpräzise Interrupts erforderlich sind. Die Übergangssteuersignale spezifizieren dann bzw. geben dann vor, daß die Interrupts, die im Zustand W empfangen werden, als unpräzise Interrupts behandelt werden.

Bezüglich jeder gegebenen ISA werden die Interruptantwortsignale durch einen Abschnitt des Datensatzes, der der ISA entspricht, festgelegt oder programmiert. Über programmierbare Interruptantwortsignale und die Erzeugung von entsprechenden Übergangssteuersignalen erleichtert die vorliegende Erfindung die Realisierung eines optimalen Interruptschemas auf einer ISA-durch-ISA-Basis. Fachleute werden erkennen, daß die überwiegende Mehrzahl von Computerarchitekturen nach dem Stand der Technik nicht für die flexible Spezifizierung von Unterbrechungsfähigkeiten bzw. Interruptfähigkeiten, nämlich programmierbare Zustands-Übergangsfreigabe, programmierbare Interruptverzögerungszeit und programmierbare Interruptpräzision sorgen. Bei der bevorzugten Ausführungsform ist die Interruptlogik 106 als eine CLB-basierte Zustandsmaschine realisiert, die die oben beschriebenen Zustände unterstützt.

Die Abrufsteuereinheit 108 verwaltet das Laden von Instruktionen in den Instruktionspuffer 110 in Antwort auf das Abrufsignal, das von der ISS 100 ausgegeben wird. Bei der bevorzugten Ausführungsform ist die Abrufsteuereinheit 108 als eine herkömmliche "One-Hot" codierte bzw. Monoflog-kodierte Zustandsmaschine realisiert, die Flipflops innerhalb eines Satzes von CLBs verwendet. Fachleute werden erkennen, daß bei einer alternativen Ausführungsform die Abrufsteuereinheit 108 als eine konventionell codierte Zustandsmaschine oder als eine ROM-basierte Zustandsmaschine konfiguriert werden könnte. Der Instruktionspuffer 110 stellt eine temporäre Speicherung für Instruktionsen bereit, die von dem Speicher 34 geladen werden. Für die Realisierung einer Außenschleifen-ISA ist der Instruktionspuffer 110 vorzugsweise als herkömmlicher RAM-basierter "Zuerst-rein, Zuerst-raus"- bzw. "First In, First Out" (FIFO)-Puffer realisiert, der eine Vielzahl von CLBs verwendet. Für die Realisierung einer Innenschleifen-ISA ist der Instruktionspuffer 110 vorzugsweise als ein Satz von Flipflop-Register realisiert, die eine Vilzahl von Flipflops innerhalb eines Satzes von IOBs oder eine Vielzahl von Flipflops innerhalb sowohl IBOs als auch CLBs verwendet.

Die Decodersteuereinheit 112 verwaltet den Transfer von Instruktionen von dem Instruktionspuffer 110 in den Instruktionsdecoder 114 in Antwort auf das Decodiersignal, das von der ISS 100 ausgegeben wird. Bezüglich einer Innenschleifen-ISA ist die Decodiersteuereinheit 112 vorzugsweise als eine Zustandsmaschine auf ROM-Basis realisiert, die ein ROM auf CLB-Basis aufweist, das mit einem Register auf CLB-Basis verbunden ist. Bezüglich einer Außenschleifen-ISA ist die Decodiersteuereinheit 112 vorzugsweise als eine codierte Zustandsmaschine auf CLB-Basis realisiert. Bezüglich jeder Instruktion, die als Eingang empfangen wird, gibt der Instruktionsdecoder 114 einen entsprechenden Operationscode bzw. Opcode, eine Registerfileadresse und optional eine oder mehrere Konstanten in einer herkömmlichen Art und Weise aus. Bezüglich einer Innenschleifen-ISA ist der Instruktionsdecoder 114 vorzugsweise konfiguriert, um eine Gruppe von Instruktionen zu decodieren, die als ein Eingang bzw. ein Eingangssignal empfangen werden. Bei der bevorzugten Ausführungsform ist der Instruktionsdecoder 114 als ein Decoder auf CLB-Basis bzw. als ein CLB-basierter Decoder konfiguriert, um jede der Instruktionen zu decodieren, die in der ISA, die gegenwärtig betrachtet wird, beinhaltet sind.

Der Operationscode-Speicherregistersatz 116 stellt eine temporäre Speicherung für jeden Operationscode bereit, der durch den Instruktionsdecoder 144 ausgegeben wird und gibt jeden Operationscode bzw. Opcode zu der ISS 100 aus. Wenn eine Außenschleifen-ISA in der DRPU 32 realisiert wird, wird der Operationscode-Speicherregistersatz 116 vorzugsweise realisiert, indem eine optimale Anzahl an Flipflop-Registerbänken verwendet wird. Die Flipflop-Registerbänke empfangen Signale von dem Instruktionsdecoder 114, die Klassen- oder Gruppencodes darstellen, die von Operationscode-Literal-Bitfeldern von Instruktionen abgeleitet werden, die zuvor durch den Instruktionspuffer 110 geschleust wurden bzw. dort in einer Warteschlange eingereiht wurden. Die Flipflop-Registerbänke speichern die zuvor erwähnten Klassen- oder Gruppencodes gemäß einem Decodierschema, das vorzugsweise die ISS-Komplexität minimiert. Für den Fall einer Innenschleifen-ISA speichert der Operationscode-Speicherregistersatz 116 vorzugsweise Operationscode-Hinweissignale, die direkter von den Operationscode-Bitfeldern abgeleitet werden, die durch den Instruktionsdecoder 114 ausgegeben werden. Innenschleifen-ISAs weisen notwendigerweise kleinere Operationscode-Literal-Bitfelder auf, wodurch die Realisierungserfordernisse für das Puffern, Decodieren bzw. Operationscode-Anzeigen für das Sequenzieren von Instruktionen durch den Instruktionspuffer 110, den Instruktionsdecodierer 114 bzw. den Operationscode-Speicherregistersatz 116 minimiert werden. Zusammengefaßt ist bezüglich Außenschleifen-ISAs der Operationscode-Speicherregistersatz 116 vorzugsweise als ein kleiner Verbund von Flipflop-Registerbänken realisiert, die durch eine Bitbreite charakterisiert sind, die gleich der Operationscode-Literal-Größe ist oder einen Bruchteil davon darstellt. Bezüglich Innenschleifen-ISAs ist der Operationscode-Speicherregistersatz 116 vorzugsweise eine kleinere und gleichmäßigere Flipflop-Registerbank als bezüglich Außenschleifen-ISAs. Die reduzierte Flipflop-Registerbankgröße in dem Innenschleifenfall spiegelt die minimale Instruktionszählcharakteristik von Innenschleifen-ISAs relativ zu Außenschleifen-ISAs wieder.

Der RF-Adreßregistersatz 118 bzw. der Konstantenregistersatz 120 stellen eine temporäre Speicherung für jede Registerfileadresse bzw. für jede Konstante bereit, die durch den Instruktionsdecoder 114 ausgegeben wird. Bei der bevorzugten Ausführungsform werden der Operationscode-Speicherregistersatz 116, der RF-Adreßregistersatz 118 und der Konstantenregistersatz 120 jeweils als ein Satz von CLBs realisiert, die für die Datenspeicherung konfiguriert sind.

Bei der Speicherzugriffslogik 102 handelt es sich um eine Speicher-Steuerschaltung, die den Transfer bzw. die Übertragung von Daten zwischen dem Speicher 34, der DOU 62 und der AOU 64 gemäß der atomaren Speicheradressengröße verwaltet und synchronisiert, die in dem Architekturbeschreibungsspeicher 122 spezifi-

ziert ist. Die Speicherzugriffslogik 102 verwaltet und synchronisiert zusätzlich den Transfer von Daten und Befehlen bzw. Kommandos zwischen der S-Maschine 12 und einer gegebenen T-Maschine 14. Bei der bevorzugten Ausführungsform unterstützt die Speicherzugriffslogik 102 Burstmodus-Speicherzugriffe und sie ist vorzugsweise als eine herkömmliche RAM-Steuereinrichtung realisiert, die CLBs verwendet. Fachleute werden erkennen, daß während der Rekonfiguration die Eingangs- und Ausgangspins bzw. -anschlüsse der Rekonfigurierbaren Logikvorrichtung drei Zustände aufweisen, die ohmsche Abschlüsse ermöglichen, um unaktive bzw. nicht angesteuerte Logikpegel festzulegen, und sie werden somit nicht den Speicher 34 stören. Bei einer alternativen Ausführungsform könnte die Speicherzugriffslogik 102 außerhalb der DRPU 32 realisiert sein.

Nimmt man nun Bezug auf Fig. 8, so ist eine Datenoperationseinheit bzw. "Data Operate Unit" 62 gezeigt. Die DOU 62 führt bezüglich der Daten Operationen gemäß den DOU-Steuersignalen, RF-Adressen und Konstanten durch, die von der ISS 100 empfangen werden. Die DOU 62 umfaßt einen DOU-Crossbar-Schalter (X-Bar-Schalter) 150, eine Abspeicher-/Ausrichtlogik 152 und eine Datenoperationslogik 154. Sowohl der DOU-Crossbar-Schalter 150 als auch die Abspeicher-/Ausrichtlogik 152 und die Datenoperationslogik 154 umfassen einen Steuereingang, der mit dem ersten Steuerausgang der IFU 60 über die erste Steuerleitung 70 verbunden ist. Der DOU-Crossbar-Schalter 150 umfaßt einen bidirektionalen Datenport, der den bidirektionalen Datenport des DOU ausbildet; einen Konstanteneingang, der mit der dritten Steuerleitung 74 verbunden ist; einen ersten Datenrückführeingang bzw. Daten-Feedback-Eingang, der mit einem Datenausgang der Datenoperationslogik 154 über eine erste Datenleitung 160 verbunden ist; einen zweiten Datenrückführeingang bzw. Daten-Feedback-Eingang, der mit einem Datenausgang der Abspeicher-/Ausrichtlogik 152 über eine zweite Datenleitung 164 verbunden ist; und einen Datenausgang, der mit einem Dateneingang der Abspeicher-/Ausrichtlogik 152 20 über eine dritte Datenleitung 162 verbunden ist. Zusätzlich zu ihren Datenausgängen umfaßt die Abspeicher-/Ausrichtlogik 154 einen Adresseneingang, der mit der dritten Steuerleitung 74 verbunden ist. Die Datenoperationslogik 154 weist zusätzlich einen Dateneingang auf, der mit dem Ausgang der Abspeicher-/Ausrichtlogik über die zweite Datenleitung 164 verbunden ist.

Die Datenoperationslogik 154 führt arithmetische, Schiebe- und/oder logische Operationen bezüglich der 25 Daten durch, die bei ihrem Dateneingang in Antwort auf die DOU-Steuersignale empfangen werden, die bei ihrem Steuereingang empfangen werden. Die Abspeicher-/Ausrichtlogik 152 umfaßt Datenspeicherelemente, die eine temporare Speicherung bezüglich Operanden, Konstanten und Teilergebnissen, die mit Datenberechnungen verbunden sind, bereitstellen, und zwar unter der Verwaltung der RF-Adressen bzw. DOU-Steuersignale, die bei ihrem Adresseneingang bzw. Steuereingang empfangen werden. Der DOU-Crossbar-Schalter 150 ist 30 vorzugsweise ein konventionelles Crossbar-Schalt-Netzwerk, das das Laden von Daten aus dem Speicher 34, den Transfer von Ergebnissen, die durch die Datenoperationslogik 154 ausgegeben werden, zu der Abspeicher-/Ausrichtlogik 152 des Speichers 34, und das Laden von Konstanten, die durch die IFU 60 ausgegeben werden, in die Abspeicher-/Ausrichtlogik 152 in Übereinstimmung mit DOU-Steuersignalen, die bei ihrem Steuereingang empfangen werden, erleichtert. Bei der bevorzugten Ausführungsform hängt die detaillierte Struktur der Daten- 35 operationslogik 154 von den Typen der Operationen ab, die durch die ISA, die gegenwärtig betrachtet wird, unterstützt werden. Das heißt, die Datenoperationslogik 154 umfaßt eine Schaltung, um arithmetische und/oder logische Operationen durchzuführen, die durch die Datenoperationsinstruktionen innerhalb der gegenwärtig betrachteten ISA spezifiziert werden. In ähnlicher Weise hängt die detaillierte Struktur der Abspeicher-/Ausrichtlogik 152 und des DOU-Crossbar-Schalters 150 von der gegenwärtig betrachteten ISA ab. Die detaillierte 40 Struktur der Datenoperationslogik 154, der Abspeicher-/Ausrichtlogik 152 und der DOU-Crossbar-Schalters 150 gemäß des ISA-Typs wird im folgenden unter Bezugnahme auf die Fig. 9A und 9B beschrieben.

Bezüglich einer Außenschleifen-ISA ist die DOU 62 vorzugsweise konfiguriert, um serielle Operationen bezüglich der Daten durchzuführen. Nimmt man Bezug auf die Fig. 9A, so ist ein Blockdiagramm bzw. ein Blockschaltbild einer ersten beispielhaften Ausführungsform der DOU 61 gezeigt, die für die Realisierung einer Allzweck-Außenschleifen-ISA konfiguriert ist. Eine Allzwecke-Außenschleifen-ISA erfordert eine Hardware, die konfiguriert ist, um mathematische Operationen, wie z. B. Multiplikation, Addition und Subtraktion; boolsche Operationen, wie z. B. AND bzw. UND, ODER bzw. OR und NICHT bzw. NOT; Schiebeoperationen; und Rotationsoperationen bzw. Drehoperationen durchzuführen. Somit weist die Datenoperationslogik 154 für die Realisierung einer Allzweck-Außenschleifen-ISA vorzugsweise eine herkömmliche arithmetische Logikeinheit 50 bzw. "Arithmetic-Logic Unit" (ALU)/Verschiebeeinrichtung 184 mit einem ersten Eingang, einem zweiten Eingang, einem Steuereingang und einem Ausgang auf. Die Abspeicher-/Ausrichtlogik 152 umfaßt vorzugsweise einen ersten RAM 180 und einen zweiten RAM 182, von denen jeder einen Dateneingang, einen Datenausgang, einen Adreß-Wähleingang und einen Freigabeeingang bzw. Enable-Eingang aufweist. Der DOU-Crossbar-Schalter 150 umfaßt vorzugsweise ein herkömmliche Crossbar-Schaltnetzwerk mit zwei bidirektionalen und 55 unidirektionalen Crossbar-Verbindungen und mit Eingängen und Ausgängen, die zuvor unter Bezugnahme auf die Fig. 8 beschrieben wurden. Fachleute werden erkennen, daß eine wirksame Realisierung des DOU-Crossbar-Schalters 150 für eine Außenschleifen-ISA, Multiplexer, Drei-Zustands-Puffer, CLB-basierte Logik, direkte Verdrahtung oder Untersätze bzw. Subsets von zuvor erwähnten Elementen beinhalten, die in jeglicher Kombination durch die Wirkung bzw. Eigenschaft der rekonfigurierbaren Kopplungseinrichtung bzw. rekonfigurierbaren Verbindungseinrichtung verbunden werden. Bezüglich einer Außenschleifen-ISA wird der DOU-Crossbar-Schalter 150 realisiert bzw. implementiert, um eine serielle Datenbewegung in einer minimal möglichen Zeit voranzutreiben bzw. zu beschleunigen, während ebenso eine maximale Anzahl von einzigen Datenbewegungs-Crossbar-Verbindungen bereitgestellt werden, um verallgemeinerte Außenschleifen-Instruktionstypen zu un-

Der Dateneingang des ersten RAM's 180 ist ebenso wie der Dateneingang des zweiten RAM's 182 über die dritte Datenleitung 162 mit dem Datenausgang des DOU-Crossbar-Schalters 150 verbunden. Die Adressenauswahleingänge des ersten RAM's 180 und des zweiten RAM's 182 sind verbunden, um Registerfileadressen von

der IFU 60 über die dritte Steuerleitung 74 zu empfangen. In ähnlicher Weise sind die Freigabeeingänge des ersten und des zweiten RAM's 180, 182 verbunden, um DOU-Steuersignale über die erste Steuerleitung 70 zu empfangen. Die Datenausgänge des ersten bzw. des zweiten RAM's 180, 182 sind mit dem ersten bzw. dem zweiten Eingang der ALU/Verschiebeeinrichtung 184 verbunden und sind ebenso mit dem zweiten Daten-Feedback-Eingang des DOU-Crossbar-Schalters 150 verbunden. Der Steuereingang der ALU/Verschiebeeinrichtung 184 ist verbunden, um die DOU-Steuersignale über die erste Steuerleitung 70 zu empfangen, und der Ausgang der ALU/Verschiebeeinrichtung 184 ist mit dem ersten Datenrückführeingang des DOU-Crossbar-Schalters 150 verbunden. Die Verbindungen zu den übrigen Eingängen und Ausgängen des DOU-Crossbar-Schalters 150 sind mit jenen identisch, die oben unter Bezugnahme auf die Fig. 8 beschrieben wurden.

Um die Ausführung einer Datenoperationsinstruktion zu erleichtern, gibt die IFU 60 DOU-Steuersignale, RF-Adressen und Konstante zu der DOU 61 während einem der beiden ISS-Zustände E oder M aus. Der erste bzw. zweite RAM 180, 182 liefern ein erstes bzw. zweites Registerfile zur temporären Datenspeicherung. Individuelle Adressen innerhalb des ersten und des zweiten RAM's 180, 182 werden gemäß den RF-Adressen ausgewählt, die bei dem jeweiligen Adresseneingang jedes RAM's empfangen werden. In ähnlicher Weise wird das Laden des ersten und zweiten RAM's 180, 182 durch die DOU-Steuersignale gesteuert, die jedes RAM 180, 182 bei seinem Schreibfreigabeeingang empfängt. Bei der bevorzugten Ausführungsform beinhaltet wenigstens ein RAM 180, 182 eine Hindurchreichfähigkeit, um den Transfer von Daten von dem DOU-Crossbar-Schalter 150 direkt zu der ALU/Verschiebeeinrichtung 184 zu erleichtern. Die ALU/Verschiebeeinrichtung 184 führt arithmetische, logische oder Schiebeoperationen bezügliche eines ersten Operanden aus, der von dem ersten RAM 180 empfangen wird, und/oder bezüglich eines zweiten Operanden aus, der von dem zweiten RAM 182 empfangen wird, und zwar unter der Verwaltung der DOU-Steuersignale, die bei ihrem Steuereingang empfangen werden. Der DOU-Crossbar-Schalter 150 leitet selektiv folgendes: 1) Daten zwischen dem Speicher 34 und dem ersten und zweiten RAM 180, 182; 2) Ergebnisse von der ALU/Verschiebeeinrichtung 184 zu dem ersten und zweiten RAM 180, 182 oder dem Speicher 34; 3) Daten, die in dem ersten oder zweiten RAM 180, 182 gespeichert sind, zu dem Speicher 34; und 4) Konstanten von der IFU 60 zu dem ersten und zweiten RAM 180, 182. Wie zuvor beschrieben wurde, leitet in dem Fall, daß entweder der erste oder der zweite RAM 180, 182 eine Hindurchreichfähigkeit beinhaltet, der DOU-Crossbar-Schalter 150 ebenso selektiv Daten von dem Speicher 34 oder dem Ausgang der ALU/Verschiebeeinrichtung direkt zurück in die ALU/Verschiebeeinrichtung 184. Der DOU-Crossbar-Schalter 150 führt eine bestimmte Leitweg-Operation bzw. Wegeermittlungsoperation gemäß den DOU-Steuersignalen durch, die bei seinem Steuereingang empfangen werden. Bei der bevorzugten Ausführungsform wird die ALU/Verschiebeeinrichtung 184 realisiert, indem Logikfunktionsgeneratoren innerhalb eines Satzes von CLBs und eine Schaltung, die auf mathematische Operationen innerhalb der rekonfigurierbaren Logikvorrichtung ausgerichtet ist, verwendet werden. Der erste und zweite RAM 180, 182 werden vorzugsweise realisiert, indem die Datenspeicherschaltung, die in einem Satz von CLBs vorliegt, verwendet wird, und der DOU-Crossbar-Schalter 150 wird vorzugsweise in einer Art und Weise realisiert, wie vorstehend beschrieben.

Es wird nun auf die Fig. 9B Bezug genommen. Dort ist ein Blockdiagramm bzw. ein Blockschaltbild einer zweiten beispielhaften Ausführungsform der DOU 63 gezeigt, die für die Realisierung einer Innenschleifen-ISA konfiguriert ist. Im allgemeinen unterstützt eine Innenschleifen-ISA relativ wenige spezialisierte Operationen und wird vorzugsweise verwendet, um einen allgemeinen Satz von Operationen bezüglich potentiell großer Datensätze durchzuführen. Optimale Rechenleistungsfähigkeit wird deshalb für eine Innenschleifen-ISA durch eine Hardware erzeugt, die konfiguriert ist, um Operationen parallel durchzuführen. Somit sind bei der zweiten beispielhaften Ausführung der DOU 63 die Datenoperationslogik 154, die Abspeicher-/Ausrichtlogik 152 und der DOU-Crossbar-Schalter 150 konfiguriert, um Fließband-Berechnungen bzw. gepipelinete Berechnungen durchzuführen. Die Datenoperationslogik 154 umfaßt eine Fließband-Funktionseinheit bzw. gepipelinte Funktionseinheit 194 mit einer Anzahl von Eingängen, einem Steuereingang und einem -ausgang. Die Abspeicher-Ausrichtlogik 152 umfaßt folgendes: 1) einen Satz von herkömmlichen Flipflop-Feldern 192, wobei jedes Flipflop-Feld 192 einen Dateneingang, einen Datenausgang und einen Steuereingang umfaßt; und 2) eine Datenauswähleinrichtung 190 mit einem Steuereingang, einem Dateneingang und einer Anzahl von Datenausgängen, die der Anzahl der vorliegenden Flipflop-Felder 192 entsprechen. Der DOU-Crossbar-Schalter 150 umfaßt ein herkömmliches Crossbar-Schaltnetzwerk mit Duplex-unidirektionalen Crossbar-Verbindungen. Bei der zweiten beispielhaften Ausführungsform der DOU 63 beinhaltet der DOU-Crossbar-Schalter 150 vorzugsweise die Eingänge und Ausgänge, die vorhergehend unter Bezugnahme auf die Fig. 8 beschrieben wurden, und zwar mit Ausnahme des zweiten Datenrückführeingangs. In einer Art und Weise, die dem Außenschleifen-ISA-Fall analog ist, kann eine wirksame Realisierung des DOU-Crossbar-Schalters 150 für eine Innenschleifen-ISA, Multiplexer, Drei-Zustands-Puffer, eine CLB-basierte Logik, eine direkte Verdrahtung bzw. eine direkte Leitung oder einen Untersatz der zuvor erwähnten Elemente, die in rekonfigurierbarer Art und Weise verbunden sind, beinhalten. Für eine Innenschleifen-ISA ist der DOU-Crossbar-Schalter 150 vorzugsweise realisiert, um eine parallele Datenbewegung innerhalb eines minimalen Zeitaufwands zu maximieren, während ebenso eine minimale Anzahl von einzigen Datenbewegungs-Crossbar-Verbindungen bereitgestellt wird, um Innenschleifen-ISA-Instruktionen zu unterstützen, die eine starke Betonung der Fließbandbearbeitung aufweisen bzw. die stark 'gepipelined" sind.

Der Dateneingang der Datenauswähleinrichtung 190 ist mit dem Datenausgang des DOU-Crossbar-Schalters 150 über die erste Datenleitung 162 verbunden. Der Steuereingang der Datenauswähleinrichtung 190 ist verbunden, um RF-Adressen über die dritte Steuerleitung 74 zu empfangen, und jeder Ausgang der Datenauswähleinrichtung 190 ist mit einem entsprechenden Flipflop-Feld-Dateneingang verbunden. Der Steuereingang eines jeden Flipflop-Feldes 192 ist verbunden, um DOU-Steuersignale über die erste Steuerleitung 70 zu empfangen, und jeder Flipflop-Feld-Datenausgang ist mit einem Eingang der Funktionseinheit 194 verbunden. Der Steuereingang der Funktionseinheit 194 ist verbunden, um DOU-Steuersignale über die erste Steuerleitung 70 zu

empfangen, und der Ausgang der Funktionseinheit 194 ist mit dem ersten Datenrückführeingang des DOU-Crossbar-Schalters 150 verbunden. Die Verbindungen der verbleibenden Eingänge und Ausgänge des DOU-Crossbar-Schalters 150 sind mit jenen identisch, die zuvor unter Bezugnahme auf die Fig. 8 beschrieben wurden.

Im Betrieb führt die Funktionseinheit 194 Fließband-Operationen bzw. gepipelinete Operationen bezüglich der Daten durch, die bei ihren Dateneingängen in Übereinstimmung mit den DOU-Steuersignalen empfangen werden, die bei ihrem Steuereingang empfangen werden. Fachleute werden erkennen, daß die Funktionseinheit 194 eine Multiplikations-Akkumulationseinheit, eine Schwellen-Bestimmungseinheit, eine Bild-Rotationseinheit, eine Kantenverstärkungseinheit bzw. eine Randverstärkungseinheit oder irgendeine Art von Funktionseinheit sein kann, die geeignet ist, um Fließband-Operationen bzw. gepipelinete Operationen bezüglich der aufgeteilten bzw. partitionierten Daten durchzuführen. Die Datenauswähleinrichtung 190 leitet Daten von dem Eingang des 10 DOU-Crossbar-Schalters 150 in ein gegebenes Flipflop-Feld 192 gemäß den RF-Adressen, die bei seinem Steuereingang empfangen werden. Jedes Flipflop-Feld 192 beinhaltet vorzugsweise einen Satz von sequentiell gekoppelten Datenlatches bzw. Datenhalteeinrichtungen, um räumlich und temporär Daten relativ zu dem Dateninhalt eines anderen Flipflop-Feldes 192 auszurichten, und zwar unter der Verwaltung der Steuersignale. die bei seinem Steuereingang empfangen werden. Der DOU-Crossbar-Schalter 150 leitet selektiv folgendes: 1) Daten von dem Speicher 34 zu der Datenauswähleinrichtung 190; 2) Ergebnisse von der Multiplikations-/Akkumulationseinheit 194 zu der Datenauswähleinrichtung 190 oder dem Speicher 34; und 3) Konstante von der IFU 60 zu der Datenauswähleinrichtung 190. Fachleute werden erkennen, daß eine Innenschleifen-ISA einen Satz von eingebauten bzw. "built-in"-Konstanten aufweist. Bei der Realisierung einer derartigen Innenschleifen-ISA beinhaltet die Abspeicher-/Ausrichtlogik 154 vorzugsweise ein ROM auf CLB-Basis bzw. ein CLB-basiertes ROM, das eingebaute Konstanten enthält, wodurch das Erfordernis beseitigt wird, die Konstanten von der IFU 60 in die Abspeicher-/Ausrichtlogik 152 über den DOU-Crossbar-Schalter 150 zu leiten. Bei der bevorzugten Ausführungsform ist die Funktionseinheit 194 vorzugsweise implementiert bzw. realisiert, indem Logikfunktionsgeneratoren und eine Schaltung, die auf mathematische Operationen innerhalb eines Satzes von CLBs ausgerichtet ist, verwendet werden. Jedes Flipflop-Feld 192 ist vorzugsweise realisiert, indem Flipflops innerhalb 25 eines Satzes von CLBs verwendet werden, und die Datenauswähleinrichtung 190 ist vorzugsweise implementiert, indem Logikfunktionsgeneratoren und eine Datenauswählschaltung innerhalb eines Satzes von CLBs verwendet werden. Schließlich wird die Codier- und Decodierschaltung 150 vorzugsweise in der zuvor für eine Innenschleifen-ISA beschriebenen Art und Weise realisiert.

Nimmt man nun Bezug auf Fig. 10; so ist ein Blockdiagramm einer bevorzugten Ausführungsform der 30 Adressenoperationseinheit 64 gezeigt. Die AOU 64 führt Operationen bezüglich der Adressen gemäß der AOU-Steuersignale, RF-Adressen und Konstanten durch, die von der IFU 60 empfangen werden. Die AOU 64 umfaßt einen AOU-Crossbar-Schalter 200, eine Abspeicher-/Zähllogik 202, eine Adressenoperationslogik 204 und einen Adressen-Multiplexer 206. Sowohl der AOU-Crossbar-Schalter 200 als auch die Abspeicher-/Zähllogik 202 und die Adressenoperationslogik 204 und der Adressenmultiplexer 206 umfassen einen Steuereingang, der mit dem zweiten Steuereingang des IFU 60 über die zweiten Steuerleitung 72 verbunden ist. Der AOU-Crossbar-Schalter 200 umfaßt einen bidirektionalen Datenport, der den bidirektionalen Datenport des AOU ausbildet; einen Adressen-Rückführeingang, der mit einem Adressenausgang der Adressenoperationslogik 204 über eine erste Adressenleitung 201 verbunden ist; einen Konstanteneingang, der mit der dritten Steuerleitung 74 verbunden; und einen Adressenausgang, der mit einem Adresseneingang über der Abspeicher-/Zähllogik 202 über eine zweite Adressenleitung 212 verbunden ist. Zusätzlich zu seinem Adresseneingang und Steuereingang, weist die Abspeicher-/Zähllogik 202 einen RF-Adresseneingang auf, der mit der dritten Steuerleitung 74 verbunden ist, und einen Adressenausgang auf, der mit einem Adresseneingang der Adressenoperationslogik 204 über eine dritte Adressenleitung 214 verbunden ist. Der Adressenmultiplexer 206 umfaßt einen ersten Eingang, der mit der ersten Adressenleitung 210 verbunden ist, einen zweiten Eingang, der mit der dritten Adressenleitung 214 verbunden ist, und einen Ausgang, der den Adressenausgang der AOU 64 ausbildet.

Die Adressenoperationslogik 204 führt arithmetische Operationen bezüglich der Adressen durch, die bei ihrem Adresseneingang empfangen werden, und zwar unter der Verwaltung der AOU-Steuersignale, die bei ihrem Steuereingang empfangen werden. Die Abspeicher-/Zähllogik 202 stellt eine temporäre Speicherung von Adressen bereit und adressiert Rechenergebnisse. Der AOU-Crossbar-Schalter 200 erleichtert das Laden von Adressen von dem Speicher 34, den Transfer von Ergebnissen, die durch die Adressenoperationslogik 204 ausgegeben werden, zu der Abspeicher-/Zähllogik 202 oder dem Speicher 34, und das Laden von Konstanten, die durch die IFU 60 ausgegeben werden, in die Abspeicher-/Zähllogik 202 in Übereinstimmung mit den AOU-Steuersignalen, die bei ihrem Eingang empfangen werden. Der Adressenmultiplexer 206 gibt selektiv eine Adresse, die von der Abspeicher-/Zähllogik 202 oder der Adressenoperationslogik 200 empfangen wird, zu dem Adressenausgang der AOU 64 unter der Verwaltung des AOU-Steuersignals aus, das bei seinem Steuereingang empfangen wird. Bei der bevorzugten Ausführungsform hängt die detaillierte Struktur des AOU-Crossbar-Schalters 200, der Abspeicher-/Ausrichtlogik 202 und der Adressenoperationseinheit 204 von dem Typ der ISA ab, die gegenwärtig betrachtet wird, wie im folgenden unter Bezugnahme auf die Fig. 11A und 11B beschrieben wird.

Es wird nun auf die Fig. 11A Bezug genommen. Dort ist ein Blockschaltbild einer ersten beispielhaften Ausführungsform der AOU 65 gezeigt, die für die Realisierung einer Allzweck-Außenschleifen-ISA konfiguriert ist. Eine Allzweck-Außenschleifen-ISA erfordert eine Hardware zur Durchführung von Operationen, wie z. B. Addition, Subtraktion, Inkrementation und Dekrementation bezüglich der Inhalte eines Programmzählers und bezüglich Adressen, die in der Abspeicher-/Zähllogik 202 gespeichert sind. Bei der ersten beispielhaften Ausführungsform der AOU 65 umfaßt die Adressenoperationslogik 204 vorzugsweise ein Programmadressenregister bezüglich nächster Befehle bzw. ein "Next Instruction Program Address Register" (NIPAR) 232 mit einem Eingang, einem Ausgang und einem Steuereingang; wobei eine arithmetische Einheit 234 einen ersten Eingang,

einen zweiten Eingang, einen dritten Eingang, einen Steuereingang und einen Ausgang umfaßt; und ein Multiplexer 230 einen ersten Eingang, einen zweiten Eingang, einen Steuereingang und einen Ausgang umfaßt. Die
Abspeicher-/Zähllogik 202 umfaßt vorzugsweise einen dritten RAM 220 und einen vierten RAM 222, wobei
jeder einen Eingang, einen Ausgang und einen Adressenauswähleingang und einen Freigabeeingang umfaßt.
Der Adressenmultiplexer 206 umfaßt vorzugsweise einen Multiplixer mit einem ersten Eingang, einem zweiten
Eingang, einem dritten Eingang, einem Steuereingang und einem Ausgang. Der AOU-Crossbar-Schalter 200
umfaßt vorzugsweise ein herkömmliches Crossbar-Schaltnetzwerk mit Duplex-unidirektionalen Crossbar-Verbindungen und mit den Eingängen und Ausgängen, die zuvor unter Bezugnahme auf die Fig. 10 beschrieben
wurden. Eine wirksame Realisierung des AOU-Crossbar-Schalters 200 kann Multiplexer, Drei-Zustandspuffer,
eine CLB-basierte Logik, eine Direktverdrahtung bzw. eine Direktleitung oder irgendeinen Untersatz von
derartigen Elemente aufweisen, die durch rekonfigurierbare Verbindungen verbunden sind. Für eine Außenschleifen-ISA wird der AOU-Crossbar-Schalter vorzugsweise realisiert, um die Bewegung bezüglich serieller
Adressen zu maximieren, und zwar innerhalb eines minimalen Zeitaufwands, während ebenso eine maximale
Anzahl von einzigen bzw. eindeutigen Adressenbewegungs-Crossbar-Verbindungen bereitgestellt wird, um
verallgemeinerte Außenschleifen-ISA-Adressenoperationsinstruktionen zu unterstützen.

Der Eingang des dritten RAM's 220 und der Eingang des vierten RAM's 222 sind jeweils mit dem Ausgang des AOU-Crossbar-Schalters 200 über die zweite Adressenleitung 212 verbunden. Die Adressenauswahleingänge des dritten und vierten RAM's 220, 222 sind verbunden, um RF-Adressen von der IFU 60 über die dritte Steuerleitung 74 zu empfangen, und die Freigabeeingänge des ersten und zweiten RAM's 220, 222 sind verbunden, um AOU-Steuersignale über die zweite Steuerleitung 72 zu empfangen. Der Ausgang des dritten RAM's 220 ist mit dem ersten Eingang des Multiplexers 230, dem ersten Eingang der arithmetischen Einheit 234 und dem ersten Eingang des Adressenmultiplexers 206 verbunden. In ähnlicher Weise ist der Ausgang des vierten RAM's 222 mit dem zweiten Eingang des Multiplexers 230, dem zweiten Eingang der arithmetischen Einheit 234 und dem zweiten Eingang des Adressenmultiplexers 206 verbunden. Die Steuereingänge des Multiplexers 230, der NIPAR 232 und der arithmetischen Einheit 234 sind jeweils mit der zweiten Steuerleitung 72 verbunden. Der Ausgang der arithmetischen Einheit 234 bildet den Ausgang der Adressenoperationslogik 204 und ist deshalb mit dem Adressen-Rückführeingang des AOU-Crossbar-Schalters 200 und dem dritten Eingang des AOU-Crossbar-Schalters 200 und des Adressenmultiplexers 206 sind mit jenen identisch, die zuvor unter Bezugnahme auf die Fig. 10 beschrieben wurden.

Um das Ausführen einer Adressen-Operationsinstruktion zu erleichtern, gibt die IFU 60 AOU-Steuersignale, RF-Adressen und Konstante zu der AOU 64 während eines der beiden ISS-Zustände E oder M aus. Der dritte bzw. vierte RAM 220, 222 liefern ein erstes bzw. ein zweites Registerfile für die temporäre Adressenspeicherung. Individuelle Speicherstellen innerhalb des dritten und vierten RAM's 220, 222 werden gemäß den RF-Adressen ausgewählt, die bei den jeweiligen Adressen-Auswähl-Eingang jedes RAM's empfangen werden. Das Laden des dritten und vierten RAM's 220, 222 wird durch die AOU-Steuersignale gesteuert, die das jeweilige RAM 220, 222 bei seinem Schreib-Freigabeeingang empfängt. Der Multiplexer 230 leitet selektiv Adressen, die durch den dritten und vierten RAM 220, 222 ausgegeben werden, zu der NIPAR 232, und zwar unter der Verwaltung der AOU-Steuersignale, die bei seinem Steuereingang empfangen werden. Der NIPAR 232 lädt eine Adresse, die von dem Ausgang des Multiplexers 230 empfangen wird, und inkrementiert ihren Inhalt in Antwort auf das AOU-Steuersignal, das von seinem Steuereingang empfangen wird. Bei der bevorzugten Ausführungsform speichert der NIPAR 232 die Adresse der nächsten Programminstruktion, die auszuführen ist. Die arithmetische Einheit 234 führt arithmetische Operationen einschließlich Addition, Subtraktion, Inkrementation, Dekrementation bezüglich der Adressen durch, die von dem dritten und vierten RAM 220, 222 empfangen werden, und/oder bezüglich des Inhalts des NIPAR 232. Der AOU-Crossbar-Schalter 200 leitet selektiv folgendes: 1) Adressen von dem Speicher 34 zu dem dritten und vierten RAM 220, 222; und 2) Ergebnisse der Adressenberechnungen, die durch die arithmethische Einheit 234 ausgegeben werden, zu dem Speicher 34 oder dem dritten und vierten RAM 220, 222. Der AOU-Crossbar-Schalter 200 führt eine bestimmte Leitwegoperation bzw. Wegermittlungsoperation gemäß der AOU-Steuersignale durch, die bei seinem Steuereingang empfangen werden. Der Adressenmultiplexer 206 leitet selektiv die Adressen, die durch das dritte RAM 220 ausgegeben werden, Adressen, die durch das vierte RAM 222 ausgegeben werden, oder die Ergebnisse von Adressenberechnungen, die durch die arithmetische Einheit 234 ausgegeben werden, zu dem Adressenausgang des AOU, und zwar unter der Verwaltung des AOU-Steuersignals, das bei seinem Steuereingang empfangen wird.

Bei der bevorzugten Ausführungsform werden der dritte und vierte RAM 220, 222 jeweils realisiert, indem die Datenspeicherschaltung, die innerhalb eines Satzes von CLBs vorliegt, verwendet wird. Der Multiplexer 230 und der Adressenmultiplexer 206 werden jeweils vorzugsweise realisiert, indem eine Datenauswählschaltung verwendet wird, die innerhalb eines Satzes von CLBs vorhanden ist, und der NIPAR 232 wird vorzugsweise realisiert, indem die Datenspeicherschaltung, die innerhalb eines Satzes von CLBs vorliegt, verwendet wird. Die arithmetische Einheit 234 wird vorzugsweise realisiert, indem logische Funktionsgeneratoren und eine Schaltung, die auf mathematische Operationen innerhalb eines Satzes von CLBs ausgerichtet ist, verwendet wird. Schließlich wird der AOU-Crossbar-Schalter 200 vorzugsweise in einer zuvor beschriebenen Art und Weise implementiert.

Es wird nun auf die Fig. 11B Bezug genommen. Dort ist ein Blockschaltbild einer zweiten exemplarischen Ausführungsform der AOU 66 gezeigt, die für die Implementation einer Innenschleifen-ISA konfiguriert ist. Vorzugsweise erfordert eine Innenschleifen-ISA eine Hardware zur Durchführung eines sehr beschränkten Satzes von Adressenoperationen und eine Hardware zur Aufrechterhaltung wenigstens eines Quellenadressenzeigers und einer entsprechende Anzahl von Bestimmungsadressenzeigern. Arten von Innenschleifenverarbeitung, für die eine sehr beschränkte Anzahl von Adressenoperationen oder sogar eine einzige Adressenoperation

benötigt werden, beinhalten Block-, Raster- oder Serpentinenoperationen bezüglich der Bilddaten: Bit-Umkehroperationen; Operationen bezüglich zirkularer Pufferdaten; und Parsingoperationen bezüglich variabler Datenmengen. Hier wird eine einzige Adressenoperation, nämlich eine Inkrementoperation, betrachtet. Fachleute werden erkennen, daß Hardware, die Inkrementoperationen durchführt, ebenso inhärent in der Lage sein kann, Dekrementoperationen durchzuführen, wodurch eine zusätzliche Adressenoperationsfähigkeit bereitgestellt wird. Bei der zweiten beispielhaften Ausführungsform der AOU 66 umfaßt die Abspeicher-/Zähllogik 202 wenigstens ein Quellenadressenregister 202 mit einem Eingang, einem Ausgang und einem Steuereingang; wenigstens ein Bestimmungsadressenregister 254 mit einem Eingang, einem Ausgang und einem Steuereingang; und eine Datenauswähleinrichtung 250 mit einem Eingang, einem Steuereingang und einer Anzahl von Ausgangen, die gleich der gesamten Anzahl der vorliegenden Quellen- und Bestimmungsadressenregisters 252, 254 ist. Hier werden ein Einzelquellen-Adressenregister 252 und ein Einzelbestimmungs-Adressenregister 254 betrachtet, und somit hat die Datenauswähleinrichtung 250 einen ersten Ausgang und einen zweiten Ausgang. Die Adressenoperationslogik 204 umfaßt ein NIPAR 232 mit einem Eingang, einem Ausgang und einem Steuerausgang; einen Multiplexer 260 mit einer Anzahl von Eingängen, die gleich der Anzahl von Datenauswählausgängen ist, einen Steuereingang und einen Ausgang. Hier umfaßt der Multiplexer 260 einen ersten Eingang und einen zweiten Eingang. Der Adressenmultiplexer 206 umfaßt vorzugsweise einen Multiplexer mit einer Anzahl von Eingängen, die um 1 größer ist als die Anzahl von Datenauswahlausgängen, einem Steuereingang und einem Ausgang. Somit umfaßt der Adressenmultiplexer 206 einen ersten Eingang, einen zweiten Eingang und einen dritten Eingang. Der AOU-Crossbar-Schalter 200 umfaßt vorzugsweise ein herkömmliches Crossbar-Schaltnetzwerk mit bidirektionalen und unidirektionalen Crossbarverbindungen und mit den Eingängen und Ausgangen, die zuvor unter Bezugnahme auf die Fig. 10 beschrieben wurden. Eine wirksame Realisierung des AOU-Crossbar-Schalters 200 kann Multiplexer, Drei-Zustands-Puffer, eine CLB-basierte Logik, direkte Verdrahtung bzw. eine direkte Leitung oder sonstige Untersätze von derartigen Elementen enthalten, die durch rekonfigurierbare Verbindungen verbunden sind. Für eine Innenschleifen-ISA wird der AOU-Crossbar-Schalter 200 vorzugsweise realisiert, um eine parallele Adressenbewegung in einer minimal möglichen Zeit zu maximieren, 25 während ebenso eine minimale Anzahl von einzigen bzw. eindeutigen Adressen-Bewegungs-Crossbar-Verbindungen bereitgestellt werden, um Innenschleifen-Adressenoperationen zu unterstützen.

Der Eingang der Datenauswähleinrichtung 250 ist mit dem Ausgang des AOU-Crossbar-Schalters 200 verbunden. Der erste bzw. zweite Ausgang der Datenauswähleinrichtung 250 sind mit dem Eingang des Quellenadressenregisters 252 bzw. mit dem Eingang des Bestimmungsadressenregisters 254 verbunden. Die Steuereingänge des Quellenadressenregisters 252 und des Bestimmungsadressenregisters 254 sind verbunden, um AOU-Steuersignale über die zweite Steuerleitung 72 zu empfangen. Der Ausgang des Quellenadressenregisters 252 ist mit dem ersten Eingang des Multiplexers 260 und dem ersten Eingang des Adressenmultiplexers 206 verbunden. In ähnlicher Weise ist der Ausgang des Bestimmungsregisters 254 mit dem zweiten Eingang des Multiplexers 254 und dem zweiten Eingang des Adressenmultiplexers 206 verbunden. Der Eingang des NIPAR 232 ist mit dem Ausgang des Multiplexers 260 verbunden, der Steuereingang des NIPAR 232 ist verbunden, um AOU-Steuersignale über die zweite Steuerleitung zu empfangen, und der Ausgang des NIPAR 232 ist sowohl mit dem Adressen-Rückführeingang bzw. Adressen-Feedback-Eingang des AOU-Crossbar-Schalters 200 als auch mit dem dritten Eingang des Adressenmultiplexers 206 verbunden. Die Verbindungen zu den übrigen Eingängen und Ausgängen des AOU-Crossbar-Schalters 200 sind mit den zuvor unter Bezugnahme auf die Fig. 10 beschriebenen identisch.

Im Betrieb leitet die Datenauswähleinrichtung 250 Adressen, die von dem AOU-Crossbar-Schalter empfangen werden, zu dem Quellenadressenregister 252 oder dem Bestimmungsadressenregister 254 gemäß den RF-Adressen, die bei ihrem Steuereingang empfangen werden. Das Quellenadressenregister 252 lädt eine Adresse, die an ihrem Eingang vorliegt, als Antwort auf das AOU-Steuersignal, das bei seinem Steuereingang vorliegt. Das Bestimmungsadressenregister 254 lädt eine Adresse, die bei seinem Eingang vorliegt, in einer analogen Art und Weise. Der Multiplexer 260 leitet eine Adresse, die von dem Quellenadressenregister 252 oder dem Bestimmungsadressenregister 254 empfangen wird, zu dem Eingang des NIPAR 232 gemäß den AOU-Steuersignalen, die bei seinem Steuereingang empfangen werden. Das NIPAR 232 lädt eine Adresse, die bei seinem Eingang vorliegt, inkrementiert ihren Inhalt oder dekrementiert ihren Inhalt in Antwort auf die AOU-Steuersignale, die bei seinem Steuereingang empfangen werden. Der AOU-Crossbar-Schalter 200 leitet selektiv folgendes: 1) Adressen von dem Speicher 34 zu der Datenauswähleinrichtung 250; und 2) die Inhalte des NIPAR 232 zu dem Speicher 34 oder der Datenauswähleinrichtung 250. Der AOU-Crossbar-Schalter 200 führt eine bestimmte Leitwegoperation bzw. Wegeermittlungsoperation gemäß den AOU-Steuersignal durch, die bei seinem Eingang empfangen werden. Der Adressenmultiplexer 206 leitet selektiv die Inhalte des Quellenadressenregisters 252, des Bestimmungsadressenregisters 254 oder des NIPAR 232 zu dem Adressenausgang des AOU's, und zwar unter der Verwaltung der AOU-Steuersignale, die aus einem Steuereingang empfangen werden.

Bei der bevorzugten Ausführungsform sind sowohl das Quellenadressenregister 252 als auch das Bestimmungsadressenregister 254 verwirklicht, indem die Datenspeicherschaltung verwendet wird, die innerhalb eines Satzes von CLBs vorliegt. Das NIPAR 232 wird vorzugsweise verwirklicht, indem eine Inkrement-/Dekrementlogik und Flipflops innerhalb eines Satzes von CLBs verwendet werden. Die Datenauswähleinrichtung 250, der Multiplexer 230 und der Adressenmultiplexer 206 werden jeweils vorzugsweise verwirklicht, indem eine Datenauswahlschaltung verwendet wird, die innerhalb eines Satzes von CLBs vorliegt. Schließlich wird der AOU-Crossbar-Schalter 200 vorzugsweise in der zuvor für einen Innenschleifen-ISA beschriebenen Art und Weise verwirklicht. Fachleute werden erkennen, daß es bei bestimmten Anwendungen vorteilhaft sein kann, eine ISA zu verwenden, die sich auf eine Innenschleifen-AOU-Konfiguration mit einer Außenschleifen-DOU-Konfiguration oder umgekehrt verläßt. Zum Beispiel würde eine assoziative String-Such-ISA vorteilhaft eine Innenschleifen-DOU-Konfiguration mit einer Außenschleifen-Beispiel

würde eine ISA zur Durchführung von Histogrammoperationen vorteilhaft eine Außenschleifen-DOU-Konfiguration mit einer Innenschleifen-AOU-Konfiguration nutzen.

Finite bzw. endliche rekonfigurierbare Hardware-Systemelemente müssen zwischen jedem Element der DRPU 32 zugewiesen werden. Weil die rekonfigurierbaren Hardware-Systemelemente in ihrer Anzahl beschränkt sind, beeinflußt bzw. beeinträchtigt die Art und Weise, in der sie der IFU 60 zugeordnet sind, z. B. den maximalen Rechenleistungsfähigkeitspegel, der durch die DOU 62 und die AOU 64 erreichbar ist. Die Art und Weise, in der die rekonfigurierbaren Hardware-Systemelemente zwischen der IFU 60, der DOU 62 und der AOU 64 zugewiesen sind, variiert gemäß der Art der ISA, die zu jedem gegebenen Augenblick zu implementieren ist. Wenn die ISA-Komplexität zunimmt, müssen mehr rekonfigurierbare Hardware-Systemelemente der IFU 60 zugewiesen werden, um die zunehmend komplexen Decodier- und Steueroperationen zu erleichtern, was dazu führt, daß weniger rekonfigurierbare Hardware-Systemelemente zwischen der DOU 62 und der AOU 64 verfügbar bleiben. Somit nimmt die maximale Rechenleistung, die von der DOU 62 und der AOU 64 verfügbar bleiben. Somit nimmt die maximale Rechenleistung, die von der DOU 62 und der AOU 64 erreicht werden kann, mit der ISA-Komplexität ab. Im allgemeinen wird eine Außenschleifen-ISA viel mehr Instruktionen aufweisen als eine Innenschleifen-ISA, und deshalb wird ihre Realisierung in Termen der Decodier- und Steuerschaltung beträchtlich komplexer sein. Zum Beispiel würde eine Außenschleifen-ISA, die einen Allzweck-64-Bit-Prozessor festlegt, viel mehr Instruktionen aufweisen als eine Innenschleifen-ISA, die nur auf Datenkomprimierung ausgerichtet ist.

Nimmt man nun Bezug auf die Fig. 12A, so ist ein Diagramm gezeigt, das eine examplarische Zuweisung von rekonfigurierbaren Hardware-Systemelementen zwischen der IFU 60, der DOU 62 und der AOU 64 für eine Außenschleifen-ISA zeigt. Bei der beispielhaften Zuweisung von rekonfigurierbaren Hardware-Systemelementen für die Außenschleifen-ISA werden der IFU 60, der DOU 62 und der AOU 64 jeweils ein Drittel der verfügbaren rekonfigurierbaren Hardware-Systemelemente bzw. Hardware-Ressourcen zugewiesen. Für den Fall, daß die DRPU 32 rekonfiguriert werden soll, um eine Innenschleifen-ISA zu verwirklichen, werden weniger rekonfigurierbare Hardware-Systemelemente benötigt, um die IFU 60 und die AOU 64 zu verwirklichen, und zwar aufgrund der beschränkten Anzahl von Instruktionen und Typen von Adressenoperationen, die durch eine Innenschleifen-ISA unterstützt werden. Nimmt man nun Bezug auf die Fig. 12B, so ist ein Diagramm gezeigt, daß eine beispielhafte Zuweisung von rekonfigurierbaren Hardware-Systemelementen bzw. Hardware-Ressourcen zwischen der IFU 60, der DOU 62 und der AOU 64 für eine Innenschleifen-ISA zeigt. Bei der beispielhaften Zuweisung von rekonfigurierbaren Hardware-Systemelementen für die Innenschleifen-ISA wird die IFU 60 verwirklicht, indem ungefähr 5-10% der rekonfigurierbaren Hardware-Systemelemente verwendet werden, und die AOU 64 wird verwirklicht, indem ungefähr 10-25% der rekonfigurierbaren Hardware-Systemelemente verwendet werden. Somit verbleiben ungefähr 70-80% der rekonfigurierbaren Hardware-Systemelemente für die Realisierung der DOU 62 verfügbar. Dies wiederum bedeutet, daß die interne Struktur der DOU 62, die mit der Innenschleifen-ISA in Zusammenhang steht bzw. dieser zugeordnet ist, komplexer sein kann und deshalb eine beträchtlich höhere Leistungsfähigkeit anbietet als die interne Struktur der DOU 62, die mit der Außenschleifen-ISA im Zusammenhang steht bzw. dieser zugeordnet ist.

Fachleute werden erkennen, daß die DRPU 32 in einer alternativen Ausführungsform entweder die DOU 62 oder die AOU 64 ausschließen kann. Zum Beispiel kann in einer alternativen Ausführungsform die DRPU 32 nicht eine AOU 64 beinhalten. Die DOU 62 würde dann für die Durchführungsoperationen bezüglich sowohl der Daten als auch der Adressen verantwortlich sein. Unabhängig von der bestimmten DRPU-Ausführung, die betrachtet wird, muß eine finite bzw. endliche Zahl von rekonfigurierbaren Hardwarequellen zugewiesen werden, um die Elemente der DRPU 32 zu realisieren. Die rekonfigurierbaren Hardware-Systemelemente werden vorzugsweise derart zugewiesen, daß eine optimale Leistungsfähigkeit oder eine beinahe optimale Leistungsfähigkeit bezüglich der gegenwärtig betrachteten ISA relativ zu dem gesamten Raum von verfügbaren rekonfigurierbaren Hardware-Systemelementen erreicht wird. Fachleute werden erkennen, daß die detaillierte Struktur eines jeden Elements der IFU 60, der DOU 62 und der AOU 64 nicht auf die Ausführungsformen beschränkt ist, die oben beschrieben wurden. Für eine gegebene ISA ist der entsprechende Konfigurationsdatensatz vorzugsweise derartig festgelegt, daß die interne Struktur eines jeden Elements innerhalb der IFU 60, der DOU 62 und der AOU 64 die Rechenleistungsfähigkeit relativ zu den verfügbaren rekonfigurierbaren Hardware-Systemelementen maximiert.

Nimmt man nun Bezug auf die Fig. 13, so ist ein Blockdiagramm einer bevorzugten Ausführungsform einer T-Maschine 14 gezeigt. Die T-Maschine 14 umfaßt eine zweite lokale Zeitbasiseinheit 300, eine gemeinsame Schnittstellen- und Steuereinheit 302 und einen Satz von Verbindungs-I/O-Einheiten 304. Die zweite lokale Zeitbasiseinheit 300 weist einen Zeitsteuereingang auf, der den Master-Zeitsteuereingang der T-Maschine ausbildet. Die gemeinsame Schnittstellen- und Steuereinheit 302 umfaßt einen Zeitsteuereingang, der mit einem Zeitsteuerausgang der zweiten lokalen Zeitbasiseinheit 300 über eine zweite Zeitsteuersignalleitung 310 verbunden ist, einen Adressenausgang, der mit der Adressenleitung 44 verbunden ist, einen ersten bidirektionalen Datenport, der mit der Speicher-I/O-Leitung 46 verbunden ist, einen bidirektionalen Steuerport, der mit einem bidirektionalen Datenport einer jeden Verbindungs-I/O-Einheit 304, die vorliegt, über eine Nachrichtenübertragungsleitung 312 verbunden ist. Jede Verbindungs-I/O-Einheit 304 umfaßt einen Eingang, der mit der GPIM 16 über eine Nachrichteneingangsleitung 314 verbunden ist, und einen Ausgang, der mit der GPIM 16 über eine Nachrichtenausgangsleitung 316 verbunden ist.

Die zweite lokale Zeitbasiseinheit 300 innerhalb der T-Maschine 14 empfängt das Master-Zeitsteuersignal von der Master-Zeitbasiseinheit 22 und erzeugt ein zweites lokals Zeitsteuersignal. Die zweite lokale Zeitsteuereinheit 300 liefert das zweite lokale Zeitsteuersignal zu der gemeinsamen Schnittstellen- und Steuereinheit 302, dadurch wird eine Zeitsteuerreferenz für die T-Maschine 14 geliefert, auf der sie beruht. Vorzugsweise ist das zweite lokale Zeitsteuersignal phasensynchronisiert mit dem Master-Zeitsteuersignal. Innerhalb des Systems 10

operiert bzw. arbeitet jede zweite lokale Zeitbasiseinheit 300 der T-Maschine vorzugsweise mit einer identischen Frequenz. Fachleute werden erkennen, daß bei einer alternativen Ausführungsform eine oder mehrere zweite lokale Zeitbasiseinheiten 300 bei verschiedenen Frequenzen arbeiten können. Die zweite lokale Zeitbasiseinheit 300 wird vorzugsweise realisiert, indem eine herkömmliche phasensynchronisierte Frequenzumwandlungsschaltung verwendet wird, einschließlich einer CLB-basierten phasensynchronisierten Detektionsschaltung. Fachleute werden erkennen, daß bei einer alternativen Ausführungsform die zweite lokale Zeitbasiseinheit 300 als ein Abschnitt eines Taktverteilungsbaumes realisiert werden könnte.

Die gemeinsame Schnittstellen- und Steuereinheit 302 verwaltet den Transfer von Nachrichten zwischen ihrer entsprechenden S-Maschine 12 und einer spezifizierten Verbindungs-I/O-Einheit 304, wo eine Nachricht ein Kommando bzw. einen Befehl und mögliche Daten enthält. Bei der bevorzugten Ausführungsform kann die spezifizierte Verbindungs-I/O-Einheit 304 innerhalb jeglicher T-Maschine 14 oder I/O-T-Maschine 18 sich innerhalb oder außerhalb bezüglich des Systems 10 befinden. Bei der vorliegenden Erfindung ist jeder Verbindungs-I/O-Einheit 304 vorzugsweise eine Verbindungsadresse zugeordnet, die einzig die Verbindungs-I/O-Einheit 304 identifiziert. Die Verbindungsadressen zur Verbindung der I/O-Einheiten 304 innerhalb einer gegebenen T-Maschine werden in dem entsprechenden Architekturbeschreibungsspeicher 101 der S-Maschine gespeichert.

Die gemeinsame Schnittstellen- und Steuereinheit 302 empfängt Daten bzw. Befehle von ihrer entsprechenden S-Maschine 12 über die Speicher-I/O-Leitung 46 bzw. die externe Steuersignalleitung 48. Vorzugsweise beinhaltet jeder empfangene Befehl eine Zielverbindungsadresse und einen Befehlscode bzw. Kommandocode, der einen bestimmten Operationstyp spezifiziert, der durchgeführt werden soil. In der bevorzugten Ausführungsform beinhalten die Operationstypen, die einzig bzw. eindeutig durch die Kommandocodes bzw. Befehlscodes identifiziert werden, folgendes: 1) Datenleseoperationen; 2) Datenschreiboperationen; und 3) Interruptsignaltransfer einschließlich Rekonfigurations-Interruptsignaltransfer. Die Zielverbindungsadressen identifizieren zielverbindungs-I/O-Einheit 304, zu der Daten und Befehle übertragen werden soll. Vorzugsweise überträgt die gemeinsame Schnittstellen- und Steuereinheit 302 jeden Befehl und jegliche in Beziehung stehende Daten als einen Satz von Nachrichten auf Paketbasis in einer herkömmlichen Art und Weise, und zwar wo jede Nachricht die Zielverbindungsadresse und den Befehlscode enthält.

Zusätzlich zum Empfang der Daten und Befehle von ihrer entsprechenden S-Maschine 12 empfängt die gemeinsame Schnittstellen- und Steuereinheit 302 Nachrichten bzw. Meldungen von jeder der Verbindungs-I/O-Einheiten 304, die mit der Nachrichtenübertragungsleitung bzw. Nachrichtentransferleitung 312 verbunden sind.

Bei der bevorzugten Ausführungsform wandelt die gemeinsame Schnittstellen- und Steuereinheit 302 eine Gruppe von in Beziehung stehenden Nachrichten in eine einzige Befehls- und Datensequenz um. Falls der Befehl auf die DRPU 32 innerhalb ihrer entsprechenden S-Maschine 12 gerichtet ist, gibt die gemeinsame Schnittstellen- und Steuereinheit 302 den Befehl über die externe Steuersignalleitung 48 aus. Falls der Befehl auf den Speicher 34 innerhalb ihrer entsprechenden S-Maschine 12 gerichtet ist, gibt die gemeinsame Schnittstellen- und Steuereinheit 302 ein entsprechendes Speichersteuersignal über die externe Steuersignalleitung 48 und ein Speicheradressensignal über die Speicheradressenleitung 44 aus. Daten werden über die Speicher-I/O-Leitung 46 übertragen. Bei der bevorzugten Ausführungsform umfaßt die gemeinsame Schnittstellen- und Steuereinheit 302 eine Schaltung auf CLB-Basis, um Operationen analog zu jenen, die durch eine konventionelle SCI-Schaltungseinheit durchgeführt werden, wie sie durch den ANSI/IEEE-Standard 1596—1992 definiert ist, zu realisieren.

Jede Verbindungs-I/O-Einheit 304 empfängt Nachrichten von der gemeinsamen Schnittstellen- und Steuereinheit 302 und überträgt Nachrichten zu anderen Verbindungs-I/O-Einheiten 304 über die GPIM 16, und zwar unter Verwaltung der Steuersignale, die von der gemeinsamen Schnittstellen- und Steuereinheit 302 empfangen werden. Bei der bevorzugten Ausführungsform basiert die Verbindungs-I/O-Einheit 304 auf einem SCI-Knoten, wie durch den ANSI/IEEE-Standard 1596-1992 definiert ist. Nimmt man nun Bezug auf die Fig. 14, so ist ein Blockdiagramm einer bevorzugten Ausführungsform einer Verbindungs-I/O-Einheit 304 gezeigt. Die Verbindungs-I/O-Einheit 304 umfaßt einen Adressendecoder 302, einen Eingangs-FIFO-Puffer 322, einen Bypaß-FIFO-Puffer 324 und einen Ausgangs-FIFO-Puffer 326 und einen Multiplexer 328. Der Adressendecoder 328 umfaßt einen Eingang, der den Eingang der Verbindungs-I/O-Einheit ausbildet, einen ersten Ausgang, der mit dem 50 Eingangs-FIFO 322 verbunden ist, und einen zweiten Ausgang, der mit dem Bypaß-FIFO 324 verbunden ist. Der Eingangs-FIFO 322 umfaßt einen Ausgang, der mit der Nachrichtentransferleitung 312 zur Übertragung von Nachrichten zu der gemeinsamen Schnittstellen- und Steuereinheit 302 verbunden ist. Der Ausgangs-FIFO 326 umfaßt einen Eingang, der mit der Nachrichtentransferleitung 312 zum Empfang von Nachrichten von der gemeinsamen Schnittstellen- und Steuereinheit 302, verbunden ist, und einen Ausgang, der mit dem ersten 55 Eingang des Multiplexers 328 verbunden ist. Der Bypaß-FIFO 326 umfaßt einen Ausgang, der mit einem zweiten Eingang des Multiplexers 328 verbunden ist. Schließlich umfaßt der Multiplexer 328 einen Steuereingang, der mit der Nachrichtentransferleitung 312 verbunden ist, und einen Ausgang, der den Ausgang der Verbindungs-I/O-Einheit ausbildet.

Die Verbindungs-I/O-Einheit 304 empfängt Nachrichten bei dem Eingang des Adressendecoders 320. Der Adressendecoder 320 bestimmt, ob die Zielverbindungsadresse, die in einer empfangenen Nachricht spezifiziert ist, identisch mit der Verbindungsadresse der Verbindungs-I/O-Einheit 304 ist, in der sie sich befindet. Falls dem so ist, leitet der Adressendecoder 320 die Nachricht zu dem Eingangs-FIFO 322. Ansonsten leitet der Adressendecoder 320 die Nachricht zu dem Bypaß-FIFO 324. Bei der bevorzugten Ausführungsform umfaßt der Adressendecoder 320 einen Decoder und eine Datenauswähleinrichtung, die verwirklicht ist, indem IOBs und CLBs 65 verwendet werden.

Bei dem Eingangs-FIFO 322 handelt es sich um einen konventionellen FIFO-Puffer, der Nachrichten, die bei seinem Eingang empfangen werden, zu der Nachrichtenübertragungsleitung 312 überträgt. Sowohl der Bypaß-

FIFO 324 als auch der Ausgangs-FIFO 326 sind herkömmliche FIFO-Puffer, die Nachrichten, die bei deren Eingängen empfangen werden, zu dem Multiplexer 328 übertragen. Der Multiplexer 328 ist ein herkömmlicher Multiplexer, der entweder eine Nachricht, die von dem Bypaß-FIFO 324 erhalten wird, oder eine Nachricht, die von dem Ausgangs-FIFO 326 erhalten wird, zu der GPIM 16 in Übereinstimmung mit einem Steuersignal, das bei seinem Steuereingang empfangen wird, leitet. Bei der bevorzugten Ausführungsform werden sowohl der Eingangs-FIFO 322 als auch der Bypaß-FIFO 324 und der Ausgangs-FIFO 326 realisiert, indem ein Satz von CLBs verwendet wird. Der Multiplexer 328 wird vorzugsweise realisiert, indem ein Satz von CLBs und IOBs verwendet wird.

Es wird nun auf die Fig. 15 Bezug genommen. Dort ist ein Blockdiagramm einer bevorzugten Ausführungsform einer I/O-T-Maschine 18 gezeigt. Die I/O-T-Maschine 18 umfaßt eine dritte lokale Zeitbasiseinheit 360, eine allgemeine Kunden-Schnittstellen- und Steuereinheit 326 und eine Verbindungs-I/O-Einheit 304. Die dritte lokale Zeitbasiseinheit 360 umfaßt eine Zeitbasiseinheit, die den Master-Zeitsteuereingang der I/O-T-Maschine ausbildet. Die Verbindungs-I/O-Einheit 304 umfaßt einen Eingang, der mit der GPIM 16 über eine Nachrichteneingangsleitung 314 verbunden ist, und einen Ausgang, der mit der GPIM 16 über eine Nachrichtenausgangsleitung 316 verbunden ist. Die gemeinsame Kunden-Schnittstellen- und Steuereinheit 362 umfaßt vorzugsweise einen Zeitsteuereingang, der mit einem Zeitsteuerausgang der dritten lokalen Zeitbasiseinheit 360 über eine dritte Zeitsteuersignalleitung 370 verbunden ist, einen ersten bidirektionalen Datenport, der mit einem bidirektionalen Datenport der Verbindungs-I/O-Einheit 304 verbunden ist, und einen Satz von Verbindungen zu einer I/O-Vorrichtung 20. Bei der bevorzugten Ausführungsform beinhaltet der Satz von Verbindungen zu der I/O-Vorrichtung 20 einen zweiten bidirektionalen Datenport, der mit einem bidirektionalen Datenport der I/O-Vorrichtung 20 verbunden ist, und einen Adressenausgang, der mit einem Adresseneingang von der I/O-Vorrichtung 20 verbunden ist, und einen bidirektionalen Steuerport, der mit einem bidirektionalen Steuerport der I/O-Vorrichtung 20 verbunden ist. Fachleute werden leicht erkennen, daß die Verbindungen zu der I/O-Vorrichtung 20 von dem Typ der I/O-Vorrichtung 20 abhängen, mit der die gemeinsam Kunden-Schnittstellen- und Steuereinheit 362 verbunden ist.

Die dritte lokale Zeitbasiseinheit 360 empfängt das Master-Zeitsteuersignal von der Master-Zeitsteuereinheit 22 und erzeugt ein drittes lokales Zeitsteuersignal. Die dritte lokale Zeitbasiseinheit 360 liefert das dritte lokale Zeitsteuersignal zu der gemeinsamen Kunden-Schnittstellen- und Steuereinheit 362, womit eine Zeitsteuerreferenz für die I/O-T-Maschine bereitgestellt wird, in der sie sich befindet. Bei der bevorzugten Ausführungsform ist das dritte lokale Zeitsteuersignal mit dem Master-Zeitsteuersignal phasensynchronisiert. Die dritte lokale Zeitbasiseinheit 360 einer jeden I/O-T-Maschine arbeitet vorzugsweise bei einer identischen Frequenz. Bei einer alternativen Ausführungsform können eine oder mehrere dritte lokale Zeitbasiseinheiten 360 bei verschiedenen Frequenzen arbeiten. Die dritte lokale Zeitbasiseinheit 360 wird vorzugsweise realisiert, indem eine herkömmliche phasensynchronisierte Frequenzumwandlungsschaltung verwendet wird, die eine phasensynchronisierte Detektionsschaltung auf CLB-Basis beinhaltet. Auf eine Art und Weise, die zu jener für die ersten und zweiten lokalen Zeitbasiseinheiten 30, 300 analog ist, könnte die dritte lokale Zeitbasiseinheit 360 als ein Abschnitt eines Taktverteilungsbaumes in einer alternativen Ausführungsform verwirklicht werden.

Die Struktur und Funktionalität der Verbindungs-I/O-Einheit 304 innerhalb der I/O-T-Maschine 18 ist vorzugsweise mit jener der zuvor für die T-Maschine 14 beschriebenen identisch. Der Verbindungs-I/O-Einheit 304 innerhalb der I/O-T-Maschine 18 ist vorzugsweise einer einzigen Verbindungsadresse in einer Art und Weise zugeordnet, die zu jener für jede Verbindungs-I/O-Einheit 304 innerhalb einer gegebenen T-Maschine 14 analog ist.

Die gemeinsame Kunden-Schnittstellen- und Steuereinheit 362 verwaltet den Transfer bzw. die Übertragung von Nachrichten zwischen der I/O-Vorrichtung 20, an die sie gekoppelt ist, und der Verbindungs-I/O-Einheit 304, und zwar wo eine Nachricht einen Befehl und mögliche Daten enthält. Die gemeinsame Kunden-Schnittstellen- und Steuereinheit 362 empfängt Daten und Befehle von ihrer entsprechenden I/O-Vorrichtung 20. Vorzugsweise beinhaltet jeder Befehl, der von der I/O-Vorrichtung 20 empfangen wird, eine Zielverbindungsadresse und einen Befehlscode, der einen bestimmten Typ von Operation spezifiziert, der durchgeführt werden soll. Bei der bevorzugten Ausführungsform beinhalten die Typen von Operationen, die ausschließlich bzw. einzig durch Befehlscodes identifiziert werden, folgendes: 1) Datenanforderungen; 2) Datentransferbestätigungen; und 3) Interruptsignaltransfer. Die Zielverbindungsadresse identifiziert eine Zielverbindungs-I/O-Einheit 304 in dem System 10, zu der Daten und Befehle übertragen werden sollen. Vorzugsweise überträgt die gemeinsame Schnittstellen- und Steuereinheit 362 jedes Kommando bzw. jeder Befehl und jegliche in Bezug stehende Daten als einen Satz von Nachrichten auf Paketbasis in einer herkömmlichen Art und Weise, und zwar wo jede Nachricht die Zielverbindungsadresse und den Befehlscode enthält.

Zusätzlich zum Empfang von Daten und Befehlen von ihrer entsprechenden I/O-Vorrichtung 20, empfängt die allgemeine Kunden-Schnittstellen- und Steuereinheit 362 Nachrichten von ihrer zugeordneten Verbindungs-I/O-Einheit 304. Bei der bevorzugten Ausführungsform wandelt die gemeinsame Kunden-Schnittstellen- und Steuereinheit 362 eine Gruppe von in Beziehung stehenden Nachrichten in eine einzige Befehls- und Datensequenz in Übereinstimmung mit den Kommunikationsprotokollen um, die durch ihre entsprechende I/O-Vorrichtung 20 unterstützt werden. Bei der bevorzugten Ausführungsform umfaßt die gemeinsame Kunden-Schnittstellen- und Steuereinheit 362 eine CLB-basierte I/O-Vorrichtungs-Steuereinrichtung, die mit der CLB-basierten Schaltung zur Realisierung von Operationen verbunden ist, die analog zu jenen sind, die durch eine konventionelle SCI-Schaltungseinheit durchgeführt werden, wie es durch den ANSI/IEEE-Standard 1596—1992 festgelegt ist.

Die GPIM 16 ist eine herkömmliche Verbindungsmasche bzw. Verbindungsvermaschung, die eine Punkt-zu-Punkt-Parallelnachrichten-Wegeermittlung zwischen Verbindungs-I/O-Einheiten 304 erleichtert. Bei der bevorzugten Ausführungsform handelt es sich bei der GPIM 16 um ein statisches "k-ary n-cube" bzw. k-n-kubisches

Verbindungsnetzwerk auf Verdrahtungsbasis. Nimmt man nun Bezug auf Fig. 16, so ist ein Blockdiagramm einer beispielhaften Ausführungsform einer Allzweck-Verbindungsmatrix 16 gezeigt. In der Fig. 16 handelt es sich bei der GPIM 16 um eine toroidale Verbindungsmasche oder aquivalent um ein "k-ary-2-cube" bzw. ein k-2-Kubus mit einer Anzahl von ersten Kommunikationskanälen 380 und einer Anzahl von zweiten Kommunikationskanälen 382. Jeder erste Kommunikationskanal 380 beinhaltet eine Anzahl von Knotenverbindungssitzen 384, wie dies auch bei jedem zweiten Kommunikationskanal 382 der Fall ist. Jede Verbindungs-I/O-Einheit 304 in dem System 10 ist vorzugsweise mit der GPIM 16 derartig verbunden, daß die Nachrichteneingangsleitung 314 und die Nachrichtenausgangsleitung 316 an fortlaufende Knotenverbindungssitze 384 innerhalb eines gegebenen Kommunikationskanals 380, 382 angeschlossen sind. Bei der bevorzugten Ausführungsform beinhaltet jede T-Maschine 14 eine Verbindungs-I/O-Einheit 304, die mit dem ersten Kommunikationskanal 380, und eine Verbindungs-I/O-Einheit 304, die mit dem zweiten Kommunikationskanal 382 in der oben beschriebenen Weise verbunden ist. Die gemeinsame Schnittstellen- und Steuereinheit 302 innerhalb der T-Maschine 14 erleichtert vorzugsweise das Leiten von Informationen zwischen ihrer Verbindungs-I/O-Einheit 304, die mit dem ersten Kommunikationskanal verbunden ist, und ihrer Verbindungs-I/O-Einheit 304, die mit dem zweiten Kommunikationskanal 382 verbunden ist. Somit erleichtert für eine T-Maschine 14 mit einer Verbindungs-I/O-Einheit 304, die an den ersten Kommunikationskanal angeschlossen ist, der als 380c bezeichnet ist, und einer Verbindungs-I/O-Einheit 304, die mit dem zweiten Kommunikationskanal verbunden ist, der als 382c in Fig. 16 bezeichnet ist, diese gemeinsame Schnittstellen- und Steuereinheit 302 der T-Maschine das Leiten vom Informationen zwischen diesem Satz von ersten und zweiten Kommunikationskanälen 380c, 382c.

Die GPIM 16 erleichtert somit das parallele Leiten von mehreren Nachrichten zwischen den Verbindungs-I/O-Einheiten 304. Für die zweidimensionale GPIM 16, die in Fig. 16 gezeigt ist, beinhaltet jede T-Maschine 14 vorzugsweise eine einzige Verbindungs-I/O-Einheit 304 für den ersten Kommunikationskanal 380 und eine einzige Verbindungs-I/O-Einheit 304 für den zweiten Verbindungskanal 382. Fachleute werden erkennen, daß bei einer Ausführungsform, bei der die GPIM 16 eine Dimensionalität aufweist, die größer als 2 ist, die T-Maschine 14 vorzugsweise mehr als zwei Verbindungs-I/O-Einheiten 304 aufweist. Vorzugsweise ist die GPIM 16 als ein k-ary 2-cube bzw. k-2-Kubus mit einer 16-Bit-Datenpfadgröße realisiert.

Bei der vorhergehenden Beschreibung wurden verschiedene Elemente der vorliegenden Erfindung vorzugsweise realisiert, indem rekonfigurierbare Hardware-Systemelemente verwendet wurden. Die Hersteller von reprogrammierbaren Logikvorrichtungen liefern typischerweise veröffentlichte Richtlinien, um herkömmliche digitale Hardware zu realisieren, indem reprogrammierbare oder rekonfigurierbar Hardware-Systemelemente verwendet werden. Zum Beispiel beinhaltet das 1994 Xilinx Programmable Logic Data Book (Xilinx, Inc., San Jose, GA) als Bemerkungen zur Anwendung bzw. als "Application Notes" das folgende: Application Note XAPP 05.002 "Register-Based FIFO"; Application Note XAPP 044.00 "High-Perrormance RAM-Based FIFO"; Application Note XAPP 013.001 "Using the Dedicated Carry Logic in the XC 4000"; Application Note XAPP 018.000 "Estimating the Performance of XC 4000 Adders and Counters"; Application Note XAPP 028.001, "Frequency/ 35 Phase Comparator for Phase-Locked Loops"; Application Note XAPP 031.000 "Using the XC4000 RAM Capability"; Application Note XAPP 036.001, "Four-Port DRAM Controller ..."; und Application Note XAPP 039.001, "18-Bit Pipelined Accumulator". Zusätzliches von Xilinx veröffentlichtes Material beinhaltet Merkmale aus "XCELL, The Quarterly Journal for Xilinx Programmable Logic Users". Zum Beispiel ist ein Artikel in der Ausgabe 14 des dritten Quartals 1994 erschienen, der die Realisierung von schnellen Integermultiplikatoren detailliert beschreibt.

Bei dem hierin beschriebenen System 10 handelt es sich um eine skalierbare, parallele Computer-Architektur, um dynamisch mehrere ISAs zu realisieren. Jede einzelne S-Maschine 12 ist in der Lage, ein gesamtes Computer-programm selbst ablaufen zu lassen, und zwar unabhängig von einer ander S-Maschine 12 oder externen Hardware-Systemelementen, wie z. B. einem Hostcomputer. Auf jeder individuellen S-Maschine 12 sind mehrere ISAs sequentiell in der Zeit während der Programmausführung realisiert, und zwar in Antwort auf die Rekonfigurations-Interrupts und/oder auf im Programm eingebettete Rekonfigurationsanweisungen. Weil das System 10 vorzugsweise mehrere S-Maschinen 12 beinhaltet, werden mehrere Programme vorzugsweise simultan ausgeführt, wo jedes Programm unabhängig sein kann. Da somit das System 10 vorzugsweise mehrere S-Maschinen 12 beinhaltet, sind mehrere ISAs simultan (d. h. parallel) zu allen Zeiten, außer während der Systeminitialisierung oder Rekonfigurierung, realisiert. Das heißt, zu jeder gegebenen Zeit werden mehrere Sätze von Programminstruktionen simultan ausgeführt, und zwar wo jeder Satz von Programminstruktionen gemäß einer entsprechenden ISA ausgeführt wird. Jede derartige ISA kann einzig sein.

S-Maschinen 12 kommunizieren miteinander und mit I/O-Vorrichtungen 20 über den Satz von T-Maschinen 14, der GPIM 16 und jeder I/O-T-Maschine 18. Obwohl jede S-Maschine 12 einen ganzen Computer in sich selbst darstellt, der zu einem unabhängigen Betrieb in der Lage ist, ist jede S-Maschine 12 in der Lage als eine Master-S-Maschine 12 für andere S-Maschinen 12 oder das gesamte System 10 zu wirken, Daten zu senden und/oder Befehle zu anderen S-Maschinen 12, einer oder mehreren T-Maschinen 16 oder einer oder mehreren I/O-T-Maschinen 18 oder einer oder mehreren T/O-Vorrichtungen 22 zu senden.

Das System 10 der vorliegenden Erfindung ist somit besonders nützlich für Probleme, die sowohl räumlich als auch zeitlich in ein oder mehrere datenparallele Subprobleme unterteilt werden können, z. B.: Bildverarbeitung, medizinische Datenverarbeitung, kalibriertes Farbmatching bzw. kalibrierte Farbanpassung, Datenbasisrechnen, Vorlagenverarbeitung, assoziative Suchmaschinen und Netzwerkserver. Bezüglich Rechenproblemen mit einem großen Feld von Operanden existiert ein Datenparallelismus, wenn Algorithmen verwendet werden können, um so eine wirksame Berechnungsgeschwindigkeit anzubieten, die durch parallele Rechentechniken beschleunigt wird. Datenparallelprobleme besitzen eine bekannte Komplexität, nämlich von O(nk). Der Wert von k ist problemabhängig; z. B. k = 2 für Bildverarbeitung und k = 3 für medizinische Datenverarbeitung. Bei der vorliegenden Erfindung werden individuelle S-Maschinen 12 vorzugsweise verwendet, um den Datenparal-

lelismus bei der Ebene von Programminstruktionsgruppen auszuschöpfen bzw. auszunutzen. Weil das System 10 mehrere S-Maschinen 12 beinhaltet, wird das System 10 vorzugsweise verwendet, um den Datenparallelismus auf der Ebene von Sätzen von gesamten Programmen auszunutzen.

Das System 10 der vorliegenden Erfindung liefert eine große Menge an Rechenleistung, und zwar wegen seiner Fähigkeit, die Instruktionsverarbeitungshardware in jeder S-Maschine 12 vollständig zu rekonfigurieren, um die Rechenfähigkeiten einer derartigen Hardware relativ zu Rechenerfordernissen zu einem gegebenen Augenblick zu optimieren. Jede S-Maschine 12 kann unabhängig von jeder anderen S-Maschine 12 rekonfiguriert werden. Das System 10 behandelt vorteilhafterweise jeden Konfigurationsdatensatz und folglich jede ISA als eine programmierte Grenze oder Schnittstelle zwischen Software und der rekonfigurierbaren Hardware, die hierin beschrieben ist. Die Architektur der vorliegenden Erfindung erleichtert zusätzlich die Strukturierung auf hoher Ebene von rekonfigurierbarer Hardware, um selektiv die Belange aktueller Systeme in situ anzusprechen, einschließlich: der Arten und Weisen, in denen eine Unterbrechung die Instruktionsverarbeitung beeinträchtigt; des Erfordernisses einer deterministischen bzw. bestimmbaren Verzögerungsantwort bzw. Latenzantwort, um Echtzeitverarbeitung und Steuerfähigkeiten zu erleichtern; und des Erfordernisses nach wählbaren Antworten zur Fehlerhandhabung.

Im Gegensatz zu anderen Computer-Architekturen lehrt die vorliegende Erfindung die maximale Verwendung von Silizium-Systemelementen zu allen Zeiten. Die vorliegende Erfindung liefert ein paralleles Computersystem, das auf jede gewünschte Größe zu jeder Zeit vergrößert werden kann, sogar zu massiv parallelen Größen mit tausenden von S-Maschinen 12. Derartige Skalierbarkeit bezüglich der Architektur ist möglich, da Instruktionsverarbeitung auf S-Maschinen-Basis absichtlich von der Datenkommunikation auf T-Maschinen-Basis getrennt ist. Dieses Trennungsparadigma bzw. Trennungsbeispiel bezüglich der Befehlsverarbeitung/Datenkommunikation paßt äußerst gut für datenparalleles Rechnen. Die interne Struktur der S-Maschinen-Hardware ist vorzugsweise für den Zeitfluß von Instruktionen optimiert, während die interne Struktur der T-Maschinen-Mardware vorzugsweise für wirksame Datenkommunikation optimiert ist. Der Satz von S-Maschinen 12 und der Satz von T-Maschinen stellen jeweils einen trennbaren, konfigurierbaren Bestandteil in einer Raum-Zeit-Aufteilung einer datenparallelen Rechenarbeit dar.

Mit der vorliegenden Erfindung kann zukünftige rekonfigurierbare Hardware ausgenutzt werden, um Systeme mit sogar noch größeren Rechenfähigkeiten zu konstruieren, während die Gesamtstruktur bzw. die zugrundeliegende Struktur, die hierin beschrieben ist, aufrechterhalten wird. Mit anderen Worten, das System 10 der vorliegenden Erfindung ist technologisch skalierbar. Bei scheinbar allen gegenwärtigen rekonfigurierbaren Logikvorrichtungen handelt es sich um komplementäre Metalloxidhalbleiter- bzw. "Complementary Metal-Oxide Semiconductor" (CMOS) -Technologie auf Speicherbasis. Fortschritte in der Kapazität bzw. Fähigkeit der Bauelemente folgen den Trends der Halbleiterspeichertechnologie. In zukünftigen Systemen würde ein rekonfigurierbares Logikbauelement, das verwendet wird, um eine S-Maschine 12 zu erstellen bzw. zu konstruieren, eine Aufteilung der internen Hardware-Systemelemente in Übereinstimmung mit der Innenschleifen- und Außenschleifen-ISA-Parameter aufweisen, die hierin beschrieben sind. Größere rekonfigurierbare Logikvorrichtungen bieten einfach die Fähigkeit an, mehr datenparallele Rechenarbeit innerhalb eines einzigen Bauelelements durchzuführen. Zum Beispiel würde eine größere Funktionseinheit 194 innerhalb der zweiten beispielhaften Ausführung der DOU 63, wie sie oben unter Bezugnahme auf die Fig. 9B beschrieben ist, sich an größere Bildkerngrößen bzw. "imaging kernel sizes" anpassen. Fachleute werden erkennen, daß die technologische Skalierbarkeit, die durch die vorliegende Erfindung bereitgestellt wird, nicht auf Vorrichtungen auf CMOS-Basis beschränkt ist, noch daß sie auf Implementationen auf FPGA-Basis beschränkt ist. Somit liefert die vorliegende Erfindung eine technologische Skalierbarkeit unabhängig von der bestimmten Technologie, die verwendet wird, um eine Rekonfigurierbarkeit oder Reprogrammierbarkeit bereitzustellen.

Nimmt man nun Bezug auf die Fig. 17A und 17B, so ist ein Flußdiagramm eines bevorzugten Verfahrens für skalierbares, paralleles, dynamisch rekonfigurierbares Rechnen gezeigt. Vorzugsweise wird das Verfahren der Fig. 17A und 17B innerhalb jeder S-Maschine 12 in dem System 10 durchgeführt. Das bevorzugte Verfahren beginnt im Schritt 1000 in der Fig. 17A mit der Rekonfigurationslogik 104, die einen Konfigurationsdatensatz, der einer ISA entspricht, ausliest bzw. wieder aufnimmt. Danach konfiguriert im Schritt 1002 die Rekonfigurationslogik 104 jedes Element innerhalb der IFU 60, der DOU 62 und der AOU 64 gemäß dem ausgelesenen Datensatz im Schritt 1002, wodurch eine DRPU-Hardware-Organisation für die Implementation der ISA, die gegenwärtig betrachtet wird, erzeugt wird. Nachfolgend zum Schritt 1002 liest die Interruptlogik 106 die Interruptantwortsignale aus, die in dem Architekturbeschreibungsspeicher 101 gespeichert sind, und erzeugt einen entsprechenden Satz von Übergangssteuersignalen, die festlegen, wie die gegenwärtige DRPU-Konfiguration auf die Unterbrechungen bzw. Interrupts im Schritt 1004 antwortet. Die ISS 100 initialisiert nachfolgend eine Programmzustandsinformation im Schritt 1006, nach der die ISS 100 einen Instruktionausführungszyklus im Schritt 1008 initialisiert.

Danach bestimmt im Schritt 1010 die ISS 100 oder die Interruptlogik 106, ob eine Rekonfiguration erforderlich ist. Die ISS 100 bestimmt, daß die Rekonfiguration in dem Fall erforderlich ist, daß eine Rekonfigurationsanweisung während der Programmausführung gewählt wird. Die Interruptlogik 106 bestimmt, daß eine Rekonfiguration in Antwort auf einen Rekonfigurationsinterrupt erforderlich ist. Falls eine Rekonfiguration erforderlich ist, schreitet das bevorzugte Verfahren zum Schritt 1012 fort, in dem eine Rekonfigurationshandhabungseinrichtung Programmzustandsinformationen sichert. Vorzugsweise beinhalten die Programmzustandsinformationen einen Bezug zu dem Konfigurationsdatensatz, der die laufende DRPU-Konfiguration entspricht. Nach dem Schritt 1012 kehrt das bevorzugte Verfahren zum Schritt 1000 zurück, um einen nächsten Konfigurationsdatensatz derartig auszulesen, wie durch die Rekonfigurationsanweisung oder den Rekonfigurationsinterrupt verwiesen

Für den Fall, daß eine Rekonfiguration im Schritt 1010 nicht erforderlich ist, bestimmt die Interruptlogik 106,

ob ein Nicht-Rekonfigurationsinterrupt eine Behandlung im Schritt 1014 erfordert. Falls dem so ist, bestimmt die ISS 100 als nächstes im Schritt 1020, ob ein Zustandsübergang von dem gegenwärtigen ISS-Zustand innerhalb des Instruktionsausführungszyklus zu dem Interrupt Servicezustand, basierend auf den Übergangssteuersignalen, möglich ist. Falls ein Zustandsübergang zu dem Interruptservicezustand nicht möglich ist bzw. nicht erlaubt ist, schreitet die ISS 100 zu einem nächsten Zustand in dem Instruktionsausführungszyklus fort und kehrt zu dem Zustand 1020 zurück. Für den Fall, daß die Übergangssteuersignale einen Zustandsübergang von dem gegenwärtigen ISS-Zustand innerhalb des Instruktionsausführungszyklus zu dem Interruptservicezustand erlauben, schreitet die ISS 100 als nächstes zu dem Interruptservicezustand im Schritt 1024 fort. Im Schritt 1024 sichert die ISS 100 die Programmzustandsinformation und führt Programminstruktionen zur Abarbeitung des Interrupts aus. Nachfolgend zum Schritt 1024 kehrt das bevorzugte Verfahren zum Schritt 1008 zurück, um den gegenwärtigen Instruktionsausführungszyklus wieder aufzunehmen, falls er nicht vollendet worden ist, oder um einen nächsten Instruktionsausführungszyklus auszulösen bzw. zu initialisieren.

Für den Fall, daß kein Nicht-Rekonfigurationsinterrupt eine Abarbeitung im Schritt 1014 erfordert, schreitet das bevorzugte Verfahren zum Schritt 1016 fort und bestimmt, ob die Ausführung des gegenwärtigen Programms vollendet ist. Falls die Ausführung des gegenwärtigen Programms fortgesetzt werden soll, kehrt das bevorzugte Verfahren zum Schritt 1008 zurück, um einen anderen Instruktionsausführungszyklus auszulösen bzw. zu initialisieren. Ansonsten endet das bevorzugte Verfahren.

Die Lehren der vorliegenden Erfindung unterscheiden sich entscheidend von anderen Systemen und Verfahren zum reprogrammierbaren oder rekonfigurierbaren Rechnen. Insbesondere ist die vorliegende Erfindung nicht äquivalent zu herunterladbaren Mikrocode-Architekturen, weil derartige Architekturen sich im allgemeinen auf nicht-rekonfigurierbare Steuereinrichtungen und nicht-rekonfigurierbare Hardware verlassen. Die vorliegende Erfindung unterscheidet sich also eindeutig von einem zugeordneten rekonfigurierbaren Prozessor bzw. "Attached Reconfigurable Processor" (ARP)-System, in dem ein Satz von rekonfigurierbaren Hardware-Systemelementen zu einem nicht-rekonfigurierbaren Hostprozessor oder Hostsystem verbunden wird. Ein ARP-Apparat hängt bezüglich der Ausführung einiger Programminstruktionen von dem Host ab. Deshalb ist 25 der Satz an verfügbaren Silizium-Systemelementen nicht maximal über den Zeitrahmen der Programmausführung ausgenutzt, da die Silizium-Systemelemente auf dem ARP-Apparat bzw. dem Host untätig sein werden oder ineffizient genutzt werden, wenn der Host- bzw. der ARP-Apparat mit Daten arbeitet. Im Gegensatz dazu handelt es sich bei jeder S-Maschine 12 um einen unabhängigen Computer, in dem gesamte Programme leicht ausgeführt werden können. Mehrere S-Maschinen 12 führen vorzugsweise Programme simultan aus. Die vorliegende Erfindung lehrt deshalb das maximale Ausnutzen von Silizium-Systemelementen bzw. Silizium-Resourcen zu allen Zeiten, sowohl für einzelne Programm, die auf einzelnen S-Maschinen 12 ausgeführt werden, als auch für mehrere Programme, die auf dem gesamten System 10 ausgeführt werden.

Ein ARP-Apparat liefert eine Rechen-Beschleunigungseinrichtung für einen bestimmten Algorithmus zu einer bestimmten Zeit und ist als ein Satz von Gattern realisiert, die optimal bezüglich dieses bestimmten Algorithmus 35 verbunden sind. Die Verwendung rekonfigurierbarer Hardware-Systemelemente für Allzweck-Operationen, wie z.B. die Handhabung einer Befehlsausführung wird in ARP-Systemen vermieden. Darüber hinaus behandelt ein ARP-System nicht einen gegebenen Satz von untereinander verbundenen Gattern als eine leicht wiederverwendbare Resource bzw. als ein leicht wiederverwendbares Systemelement. Im Gegensatz dazu lehrt die vorliegende Erfindung eine dynamisch rekonfigurierbare Verarbeitungseinrichtung, die für die effiziente Handhabung einer Instruktionsausführung konfiguriert ist, und zwar gemäß einem Instruktionsausführungsmodell, das am besten an die Rechenerfordernisse zu einem bestimmten Moment angepaßt ist. Jede S-Maschine 12 beinhaltet eine Vielzahl von leicht wiederverwendbaren Systemelementen, z. B. die ISS 100, die Interruptlogik 106 und die Abspeicher-/Ausrichtlogik 152. Die vorliegende Erfindung lehrt die Verwendung von rekonfigurierbaren Logik-Systemelementen auf der Ebene von Gruppen von CLBs, IOBs und rekonfigurierbaren Verbindungen eher als auf der Ebene von untereinander verbundenen Gattern. Die vorliegende Erfindung lehrt somit die Verwendung rekonfigurierbarer Logikdesign-Konstruktionen höheren Niveaus, die nützlich bei der Durchführung von Operationen auf einer gesamten Klasse von Rechenproblemen sind, eher als daß sie ein einziges nützliches Gatterverbindungsschema lehrt, das für einen einzigen Algorithmus nützlich ist.

Im allgemeinen sind ARP-Systeme auf die Übersetzung eines bestimmten Algorithmus in einen Satz von untereinander verbundenen Gattern gerichtet. Einige ARP-Systeme streben an, Instruktionen hohen Niveaus in eine optimale Hardware-Konfiguration auf Gatterniveau zu kompilieren bzw. zu übersetzen, was im allgemeinen ein "NP-Hard"- bzw. NP-hart-Problem ist. Im Gegensatz dazu lehrt die vorliegende Erfindung die Verwendung eines Kompilers für dynamisch rekonfigurierbares Rechnen, der Programminstruktionen hohen Niveaus in Assemblersprachinstruktionen gemäß einer variablen ISA in einer sehr geradlinigen Art und Weise kompiliert.

Ein ARP-Apparat ist im allgemeinen nicht in der Lage, sein eigenes Hostprogramm als Daten zu behandeln oder sich selbst zu kontextualisieren bzw. vom Kontext abhängig zu behandeln. Im Gegensatz dazu kann jede S-Maschine in dem System 10 ihr eigenes Programm als Daten behandeln und sich somit leicht selbst kontextualisieren bzw. vom Kontext abhängig behandeln. Das System 10 kann sich leicht selbst durch das Ausführen seiner eigenen Programme simulieren. Die vorliegende Erfindung hat zusätzlich die Fähigkeit, seinen eigenen Kompiler zu kompilieren.

Bei der vorliegenden Erfindung kann ein einziges Programm eine erste Gruppe von Instruktionen beinhalten, die zu einer ersten ISA gehören, eine zweite Gruppe von Instruktionen, die zu einer zweiten ISA gehören, eine dritte Gruppe von Instruktionen, die zu einer noch anderen ISA gehören, usw. Die hierin gelehrte Architektur führt jede derartige Gruppe von Instruktionen aus, indem Hardware verwendet wird, die bezüglich der Ausführungszeit bzw. Laufzeit konfiguriert ist, um die ISA zu realisieren, zu der die Instruktionen gehören. Kein System oder Verfahren nach dem Stand der Technik bietet ähnliche Techniken an.

Die vorliegende Erfindung lehrt weiter ein rekonfigurierbares Interruptschema bzw. Unterbrechungsschema,

bei welche die Interruptverzögerungszeit bzw. die Interruptlatenz, die Interruptpräzision und die programmierbare Zustandsübergangsfreigabe sich gemäß der ISA ändern kann, die gegenwärtig betrachtet wird. Keine analogen Techniken wurden in anderen Computersystemen gefunden. Die vorliegende Erfindung lehrt zusätzlich ein Computersystem mit einer rekonfigurierbaren Datenpfadbitbreite, Adressenbitbreite und rekonfigurierbarer Steuerleitungsbreite im Gegensatz zu dem Stand der Technik von Computersystemen.

Während die vorliegende Erfindung unter Bezugnahme auf gewisse bevorzugte Ausführungsformen beschrieben wurde, werden Fachleute erkennen, daß verschiedene Änderungen vorgenommen werden können. Veränderungen und Modifikationen der bevorzugten Ausführungsformen werden durch die vorliegende Erfindung bereitgestellt, die nur durch die folgenden Ansprüche beschränkt ist.

Zusammenfassend kann man folgendes bemerken:

35

40

Die Erfindung betrifft ein System und ein Verfahren zum skalierbaren, parallelen, dynamisch rekonfigurierbaren Rechnen. Ein Satz von S-Maschinen, eine T-Maschine, die zu jeder S-Maschine korrespondierend ist, eine Allzweck-Verbindungsmatrix (GPIM), ein Satz von I/O-T-Maschinen, ein Satz von I/O-Vorrichtungen und eine Master-Zeitbasiseinheit bilden ein System für skalierbares paralleles, dynamisch rekonfigurierbares Rechnen. Jede S-Maschine ist ein dynamisch rekonfigurierbarer Rechner mit einem Speicher, einer ersten lokalen Zeitbasiseinheit und einer dynamisch rekonfigurierbaren Verarbeitungseinheit (DRPU). Die DRPU wird realisiert bzw. implementiert, indem eine reprogrammierbare Logikvorrichtung verwendet wird, die als eine Instruktionsabrufeinheit (IFU), eine Datenoperationseinheit (DOU) und eine Adressenoperationseinheit (AOU) konfiguriert ist, von denen jede selektiv während einer Programmausführung in Antwort auf einen Rekonfigurationsinterrupt oder der Auswahl einer Rekonfigurationsanweisung, die in einen Satz von Programminstruktionen eingebettet ist, rekonfiguriert wird. Jeder Rekonfigurationsinterrupt und jede Rekonfigurationsanweisung nimmt auf einen Satz von Konfigurationsdaten Bezug, der eine DRPU-Hardware-Organisation spezifiziert, die für Realisierung bzw. Implementation einer bestimmten Instruktionssatzarchitektur (ISA)optimiert ist. Die IFU verwaltet Rekonfigurationsoperationen, Instruktionsabruf- und Decodieroperationen, Speicherzugriffsoperationen, und sie gibt Steuersignale an die DOU und die AOU aus, um eine Instruktionsausführung zu erleichtern bzw. zu vereinfachen. Die DOU führt Datenberechnungen durch und die AOU führt Adressenberechnungen durch. Bei jeder T-Maschine handelt es sich um eine Datentransfervorrichtung bzw. um eine Datenübertragungsvorrichtung mit einer gemeinsamen Schnittstellen- und Steuereinheit, einer oder mehrerer Verbindungs-I/O-Einheiten und einer zweiten lokalen Zeitbasiseinheit. Bei der GPIM handelt es sich um ein skalierbares Verbindungsnetzwerk, das eine parallele Kommunikation zwischen T-Maschinen erleichtert bzw. vereinfacht. Der Satz von T-Maschinen und die GPIM erleichtert eine parallele Kommunikation zwischen S-Maschinen.

ANHANG A

Instruktionssatz 0

Eine Allzweck-Außenschleifen-ISA

1.0 Architekturmodell des Programmierers

Dieser Abschnitt stellt die Sicht der ISA0-Architektur aus der Sicht des Programmierers dar, einschließlich Register, Speichermodell, Aufrufkonventionen bzw. "Calling"-Konventionen von Sprachen hohen Niveaus und eines Interruptmodells.

1.1. Register

Die ISA0 umfaßt 16 16-Bit-Allzweckregister, 16 Adressenregister, zwei Prozessorstatusregister und ein Interruptvektorregister. Die Mnemoniks für die Daten und Adressenregister verwenden hexadezimale Zahlen, deshalb handelt es sich bei dem letzten Datenregister um df und bei dem letzten Adressenregister um af. Einer der Prozessorstatusregister, nipar (Programmadressenregister für den nächsten Befehl bzw. "Next Instruction Program Address Register"), zeigt zum Abruf auf die Adresse der nächsten Instruktion. Das andere Statusregister pcw (Prozessorsteuerwort bzw. "Processor Control Word") beinhaltet Marken bzw. Flags und Steuerbits, die verwendet werden, um Programmfluß- und Interrupthandhabung zu bewirken. Seine Bits sind in Fig. 2 und 3 festgelegt. Undefinierte Bits sind für eine zukünftige Verwendung reserviert. Die vier Bedingungsflags bzw. Zustandsflags Z, N, V und G werden als Seiteneffekte verschiedener Instruktionen eingestellt bzw. gesetzt. Für eine Zusammenfassung jener Flags bzw. Marken, die durch jede Instruktion beeinträchtigt bzw. beeinflußt werden, siehe Abschnitt 2.0.

Fig. 1. Register

Das T-(Ablaufverfolgungsmodus bzw. "Trace Mode") und das IM-(Interruptmaske bzw. "Interrupt 25 Mask")-Flag steuert, wie der Prozessor auf die Interrupts antwortet und wann Traps gehandhabt werden. Das Interruptvektorregister ivec hält die 64-Bitadresse der Interruptserviceroutine. Interrupts und Traps werden im Abschnitt 1.4 beschrieben.

1.2. Speicherzugriff

30

Werte, die in dem 64-Bit-Adressenregister gespeichert werden, werden bei Speicher-Lade-/Abspeicherinstruktionen verwendet und greifen auf den Speicher in 16- und 64-Bit-Inkrementen zu (siehe Tabelle 4). Bei den Adressen handelt es sich um Bitadressen, d. h. Adresse 16 zeigt auch das Wort, das bei Bit 16 in dem Speicher beginnt. Wörter können nur an 16-Bit-Grenzen gelesen werden und deshalb werden die vier LSBs eines 35 Adressenregisters ignoriert, wenn ein Speicher gelesen wird (siehe [1] zur weiteren Diskussion des Konzepts Kisa.) 64-Bit-Werte werden als 16-Bit-Worte in der "Little-Endian"-Ordnung (die 16 Bits mit der geringsten Signifikanz werden bei der niedrigsten Adresse gespeichert) gespeichert.

Fig. 2. pcw-Felder

15	14	13	12	111	10	9	8	7	6	5	14	3	1	2	1	101	
T							IMO				L	N	İ	z	V	C	45
		•		L	abel	T		Bede	utung	3							
					T	A	olauf	verf	olgur	ıgsmo	odus						
					IMO				Maski								50
					N			Nega						•			
					Z			Null									
					v		Übe	rlau	£								55
					С		Ũbе	rtra	g								

1.3. Aufrufkonventionen bzw. "Calling"-Konventionen

Nach Konvention wird ein Register af als der Stackzeiger durch C-Programme verwendet und ein Register ae wird als der Stackrahmenzeiger bzw. "Stack Frame Pointer" verwendet. Die Anemoniks sp und fp können als Alias bzw. als Alternativnamen für diese Register verwendet werden. Alle anderen Register sind zum allgemeinen Gebrauch frei. Der Stack wächst nach unten.

ints sind 16 Bits, longs sind 64, wie dies auch void *s sind int-Werte werden in d0, long- und void *-Werte in a0 2 zurückgegeben bzw. returned. d0—d4 und a0—a3 können durch Funktionen "überfahren" bzw. "fertiggemacht" werden, alle anderen allgemeinen Register müssen über die Funktionsaufrufe erhalten bleiben. Nachdem in eine Funktion eingetreten wurde, zeigt der Stackzeiger zu der Rückkehradresse bzw. Returnadresse und somit

beginnt das erste Argument bei Adresse sp + 64 (Dezimal).

1.4. Traps und Interrupts

ISA0 arbeitet eine Interruptleitung und Software-Traps von zwei Quellen ab. Alle rufen denselben *Flow-of-Control"-Transfermechanismus bzw. Steuerfluß-Transfermechanismus auf, der unten beschrieben wird.

Extern gibt es einen einzigen INTR-Signaleingang und einen iack-Ausgang. iack wird aktiv, sobald das Interrupt-Maskierbit in pcw gelöscht ist, und zwar indem entweder pcw mit einer xpcw-Instruktion zurückgesetzt wird oder pew in seinem originalen Wert durch das Rückkehren aus dem Interrupt mit einer rti-Instruktion wiederhergestellt wird. Die Zeitmenge, die zwischen dem Signal geben des Interrupts durch die externe Vorrichtung und dem Abarbeiten des Interrupts durch den Prozessor gebraucht wird, hängt von den Instruktionen ab, die gegenwärtig ausgeführt werden und von der Gegenwart von Software-Traps.

Software-Traps werden entweder durch eine explizite trap-Instruktion oder durch das Ausführen einer Instruktion, bei der das T-(trace)-Flag gesetzt ist, ausgelöst. In diesem Fall wird eine Steuerung zu der Interruptserviceroutine übertragen, und zwar nach der ersten Instruktion, die dem Setzen des T folgt. Wenn eine trap-Instruktion ausgeführt wird, dann setzt der Prozessor das T-Flag und tritt in die Interruptserviceroutine ein als ob das T-Flag vor der Ausführung des Programms gesetzt worden wäre. Es werden keine Interrupts abgearbeitet, während das T-Flag bzw. die T-Marke gesetzt ist. Es werden keine weiteren Traps auftreten, bis das T-Flag entweder durch Rücksetzen von pow mit einer xpow-Instruktion oder durch sein Rücksetzen aus dem Stack, indem aus dem Interrupt mit einer rti-Instruktion zurückgekehrt wird, gelöscht wird.

Interrupts werden durch die Gegenwart von aktiven Signalen auf dem intr-Externsignal verursacht. Falls das im-Flag oder das T-Flag gesetzt ist, dann werden die Interrupts maskiert und der anhängige Interrupt wird ignoriert. Wenn das im-Flag und das T-Flag gelöscht werden, dann wird die Steuerung zu der Interruptserviceroutine übertragen, und zwar nach der ersten Instruktion, die der Bestätigung von intr folgt. Nach dem Eintritt in die Interruptserviceroutine wird das im-Flag durch den Prozessor gesetzt. Es werden keine weiteren Interrupts auftreten, bis das im-Flag gelöscht ist, und zwar entweder durch ein Rücksetzen von pcw mit einer xpcw-Instnktion oder durch sein Rücksetzen aus dem Stack, indem aus dem Interrupt mit einer rti-Instruktion zurückgekehrt

Die Schritte, die von dem Prozessor unternommen werden, wenn ein Interrupt oder ein Trap auftritt, sind die folgenden:

1. Alle Instruktionen, die gegenwärtig ausgeführt werden, werden vollendet.

2. Die Inhalte der 16 Datenregister (d0 zuerst), der 16 Adressenregister (a0 zuerst), pcw, ivec und nipar werden auf den Stack (auf den durch das Register af gezeigt wird) in dieser Ordnung geschoben bzw. gepusht. Der Wert des af, der auf den Stack gepusht wird, ist sein Wert, bevor das Abarbeiten des Interrupts oder des Traps begann.

Falls dies ein Interrupt ist, dann wird das Interrupt-Bit in pcw besetzt um weitere Interrupts zu maskieren. Falls dies eine trap-Instruktion ist, dann wird das T-Flag gesetzt. Falls dies ein Trap ist, der durch den T-Flag verursacht wird, dann wird pcw nicht geändert.

4. nipar wird mit dem Wert in dem ivec-Register geladen. 5. Ausführung von Instruktionen in dem Interrupthandler beginnt dann.

Nach der Ausführung der rti-Instruktion werden die folgenden Aktionen unternommen:

- 1. Die Register werden von dem Stack in der umgekehrten Ordnung, in der sie geschrieben wurden, wiederhergestellt bzw. erneut gespeichert.
- 2. Die Ausführung wird wieder aufgenommen.

Es ist zu bemerken, daß, falls das Interrupt-Maskierflag nicht bereits gelöst worden ist, es durch die rti-Instruktion gelöscht wird, da es nach dem Eintritt in die Serviceroutine gelöscht bzw. freigegeben war, sofern nicht der Wert des pew auf dem Stack modifiziert worden ist. Falls das T-Flag durch Ausführen einer trap-Instraktion gesetzt worden ist, dann wird es nach der Ausführung einer rti aus gleichen Gründen gelöscht. Falls der Trap durch das T-Flag verursacht wurde, das vor dem Eintritt in die Serviceroutine gesetzt worden ist, dann muß es durch die Serviceroutine gelöscht werden, um zu bestätigen, daß der Trap aufgetreten ist. Wenn das Interrupt-Maskierflag auf irgendwelche Weise gelöscht worden ist, wird das externe Ausgangssignal iack für einen Taktzyklus aktiv, um der externen Vorrichtung bzw. dem externen Bauelement zu signalisieren, daß der Interrupt abgearbeitet worden ist.

35

40

45

2.0 Instruktionen gruppiert nach Funktion

Die Notationskonventionen sind:

Notation	Bedeutung
d0,d1	Zwei Datenregister (die das selbe Register sein können)
a0,a1	Zwei Adressregister (die das selbe Register sein können)
<<	Links-Schiebe-Operation
>>	Recht-Schiebe-Operation
K,	N-Bit-Konstante
S K,	vorzeichenbehaftete (Zweierkomplement) N-bit-Konstante
(d1+1,d1)	Ein 32-Wert von einem Paar von Daten-Register
(a0)	Der Wert bei der Speicherstelle auf die durch das Register a0 gezeigt wird
K _{isa}	Architektur-Konstante, die 4 für ISA0 beträgt, siehe Referenz [1]
AddrWidth	Architektur-Konstante, die die Bit-Breite eines Adressregisters bezeichnet.
	Ihr Wert ist 64

2.1 Register-Bewegung

Tabelle 1

Register-Bewegung

Mnemonik	Operation	Flags	Seite
mov d0, d1	dl -d0	Z, N	17
emov a0, a1	al - a0	Z, N	13
xda d0, a0	a0 - (d0+3, d0+2, d0+1, d0)	KEINE	20
xad a0, d0	(d0+3, d0+2, d0+1, d0) - a0	KEINE	20
xivec al	al - ivec	KEINE	21 -
xpcw .	d0 - pcw	KEINE	21

2.2 Logische Operationen

Tabelle 2

Logische Operationen. Flags modifiziert: Z, N

Mnemon	ik	Operation	Flags	Seite
and	d0, d1	d1 ← d1 * d0	Z,N	10
or	d0, d1	d1 ← d1 + d0	Z,N	17
xor	d0, d1	d1 ← d1 ⊕ d0	Z,N	20
mask	d0, d1	d1 ← d1 * -d0	Z,N	16
inv	d0, d1	dl ← -d0	Z,N	14
sl	d0, d1	d1 ← d1 << d0	Z,N	15
rotl	d1 .	d1 ← d1 << 1 ·	Z,N,C	1.7
ks1	K4, d0	d1 ← d1 << K4	Z,N	15
esl	al	al ←, al << 1	Z,N	13
erotl	al	ai + ai << 1 C	Z,N,C	1.3
sr	đ0, d1	d1 ← d1 >> d0	Z,N	18
ksr	K4, dl	d1 ← d1 >> K4	Z,N	16
esr	al	al ← al >> 1	Z,N	14
byta	a0, dl	dl ← (dl >>(a03 *8))	Z,Nª	10
L		=0xff	· .	<u> </u>

a. Das N-Flag wird durch Bit 7 und nicht Bit 15 gesetzt

2.3 Speicher Laden/Abspeichern

Tabelle 3

Laden/Abspeichern. Modifizierte Flags: Z, N

Мпето	nik	. Operation	Seite	
st	d0, al	(al) ←d0	18	10
SCI	d0, al	$ai \leftarrow al - (1 << K_{isa})$	18	
		(al) ← d0 ·		
estr	a0, a1	al ← al -	14	1:
•		(1< <k<sub>isa) * (AddrWidth/K_{isa})</k<sub>		
		(al) ←a0		
là	e0, d1	d1 ← (a0)	16	20
ldf	a0, dl	d1 ← (a0)	15	
		al ← al + (1< <k<sub>isa)</k<sub>		,
eldf	aO, al	al ← (a0)	12	25
		al ← al +		
		(1< <k<sub>isa) * (AddrWdth/K_{isa})</k<sub>		
läi	K15, d0	d0 ← K ₁₆	16	3.0
eldi	K54, a0	a0 ← K ₆₄	1.3	•

2.4 Arithmetische Operationen

Tabelle 4

Arithmetische Operationen. Modifizierte Flags: Z, N, V, C

Mnemon	ik	Operation	Seite
	d0, d1	d1 ← d1 + d0	1 9
addc	dO, dl	d1 ← d1 + d0 + C	9
addq ·	SX ₃ , dl	d1 ← d1 ÷ SKg	9
sub	đ0, d1	d1 ← d1 - d0	1.9
subc	đ0, đ1	d1 ← d1 − d0 − C	19
mul	d0, d1	(d1+1,d1) ← d1 - d0	17
umul	d0, d1	(d1+1,d1) ← d1 * d0	20
div	d0, d1	(d1+1,d1)← (d1+1,d1)/d0	11
udiv	đ0, đ1	(d1+1,d1) ← (d1+1,d1)/d0	19
eadd	d0, al	al ← al + d0	11
efadd	a0, al	al + al + a0	12
eaddq	SKg, al	a1 ← a1 + SKg	11
esub	dO, al	al ← al - d0 ·	14
efsub	a0, al	a1 ← · ai + a0	1.2
CEED	d0, d1	Ø ← d1 - d0	111
ecmb	a0, a1	Ø ← a1 + a0	12

2.5 Steuer-Fluß

Tabelle 5

Steuer-Fluß. Modifizierte Flags: Keine

Mneiro	onik	Operation	Seite	Ī
qmį	addr ₄₄	nipar ← addr ₅₄	15	10
jcc	addr ₅₄	(CC==1)? nipar ← addr ₆₄ :	15	İ
Ĺ		nipar ← nipar+(1<<%:sa)		
brc	CC, SK ₁₅	(CC==1)? nipar ← nipar + SK ₁₆	10	15
		nipar ← nipar+(1< <kisa)< td=""><td></td><td></td></kisa)<>		
jsr	a0, a1	al ← al -	15	,
		(1< <k<sub>isa) * (AddrWdth/K_{isa});</k<sub>		20
Ì		(al) ← nipar .		
		nipar ← a0	<u> </u>	
res	al	nipar ← (al);	13	25
		al ← al +		
		(1< <k<sub>isa) * (AddrWath/K_{isa})</k<sub>		
tu	0ے	siehe Abschnitt 1.4	_ 19	30
rti	āl	siehe Abschnitt 1.4	17	

35

50

55

60

65

3.0 Alphabetische Referenz

Der Instruktions-Satz für ISA0 ist unten in alphabetischer Ordnung aufgelistet. Die Mnemonik ist mit einer kurzen Beschreibung dargestellt. Unterhalb dieser befindet sich die binäre Kodierung der Instruktion. Jede Zeile in der binären Kodierung ist ein 16-Bit-Wort. Die beeinträchtigten Flags sind dann aufgelistet. Falls nicht anders spezifiziert bzw. beschrieben, werden die Flags gesetzt, indem die Daten verwendet werden, die in dem Bestimmungsregister gespeichert sind. Es wird angenommen, daß nipar bereits zu Beginn der Instruktionsausführung inkrementiert worden ist. Schließlich wird eine Textbeschreibung der Instruktions-Semanfik bereitgestellt.

Die Notations-Konventionen, die in den binären Kodierungen verwendet werden, werden in der folgenden Tabelle beschrieben. Die Bedingung-Codes sind in Tabelle 7 definiert.

DE 196 14 991 A₁

Tabelle 6

Notations-Konventionen

	Notation		Bedeutung			
dddda		Bestimmungs-	Bestimmungs-Datenregister			
dddd,		Quellen-Dater	nregister			
aaaa _d		Bestimmungs-	-Adressregister			
aaaa,		Quellen-Adres	ssregister			
cccc		Bedingungs-C	ode			
KKKK		nicht-vorzeich	enbehaftete 4-Bit-Konstant			
SKKKKKKK		vorzeichenbeh	vorzeichenbehaftete 8-Bit-Konstante			
SKKKKKKK	KKKKKKKK	vorzeichenbeh	vorzeichenbehaftete 16-Bit-Konstante			
KKKKKKK	KKKKKKKK	nicht-vorzeichenbehaftete 16-Bit-Konstant				
1110	add (Add data r	egisters)-Addiert Datenre	egister dddd,			
	C register, läßt das Ergebnis ldc (Add data registers wit					
•						

1110	dddda	0010	dddd,
Flags: Z, N, V, C			

Addiert zwei Datenregister plus das Carry-Flag bzw. Übertrags-Flag, läßt das Ergebnis im Bestimmungsregister.

addq (Add quick constant)-Addiere schnell Konstante

55	1100	qqqq	SKKKKKKK	
	Plane 7 M M C			<u> </u>

Flags: Z, N, V, C

Addiert ein 8-Bit vorzeichenbehaftete (Zweierkomplement) Konstante zu einem Datenregister, läßt das Ergebnis im Register.

65 .

45

and (Bitwise and) - Bitweises und

het das kienvaiss	IND von zwei Determeni	rter durch 158+ des Fresh-	ie im Bactimmusoceanistes	
nrt das bitweise			is im Bestimmungsregister.	
	brCC (Conditions	l branch) — bedingte Verz	zweigung	
0000	0000	0001	cccc	,
	SKKI	CKKKKKKKKKKKK		
lags: keine				
lls die Bedingung	g war ist, dann wird (offset	≺K _{isa}) zu nipar addiert.		
	bru (Unconditional	branch) — unbedingte Ver	rzweigung	
0000	0000	Loon		-
0000	0000	0001	0000	
	. SKKI	KKKKKKKKKKKK		زا
lags: keine	SKKI	KKKKKKKKKKKK		
lags: keine	SKKI	KKKKKKKKKKK		
lags: keine set ≺K _{iss}) wird	SKKF zu nipar addiert.	KKKKKKKKKKKK		
	zu nipar addiert.	e align)-Byte-Ausrichtung		
	zu nipar addiert.			
	zu nipar addiert. byte (Byt	e align)-Byte-Ausrichtung		
set ≺K _{isa}) wird	zu nipar addiert.		2222,	
'set ≺ K _{isa}) wird	zu nipar addiert. byte (Byt	e align)-Byte-Ausrichtung		
set < K _{isa}) wird 1101 lags: Z, N schiebe bedingt	zu nipar addiert. byte (Byt dddd t 8 Bit nach rechts und ma	e align)-Byte-Ausrichtung 1111 skiere. Wird nach einer L	aaaa, ade-Instruktion verwendet	
iset < Kisa) wird 1101 lags: Z, N schiebe bedingt	zu nipar addiert. byte (Byt dddd, t 8 Bit nach rechts und ma	e align)-Byte-Ausrichtung 1111 skiere. Wird nach einer L elesen werden. Falls die Ac	aaaa, ade-Instruktion verwendet dresse, die in dem Quellen-A	Adressre
1101 lags: Z, N schiebe bedingt	zu nipar addiert. byte (Byt dddd, t 8 Bit nach rechts und ma en, die von Wort-Offsets ge einer 8-Bit-Grenze (hat B	e align)-Byte-Ausrichtung 1111 skiere. Wird nach einer Lelesen werden. Falls die Acit 2 gesetzt) liegt, dann w	aaaa, ade-Instruktion verwendet	Adressre gisters na
iset < K _{isa}) wird 1101 lags: Z, N schiebe bedingt worte auszulese inthalten ist, an ei um 8 Bit versc ters gelöscht.	zu nipar addiert. byte (Byt dddd t 8 Bit nach rechts und ma en, die von Wort-Offsets ge einer 8-Bit-Grenze (hat B hoben. Falls die Adresse i	e align)-Byte-Ausrichtung 1111 skiere. Wird nach einer Lelesen werden. Falls die Acit 2 gesetzt) liegt, dann wicht an einer 8-Bit-Grenz	aaaa, ade-Instruktion verwendet dresse, die in dem Quellen- ird der Wert des Datenreg	Adressre fisters na 8-Bits
iset < K _{isa}) wird 1101 lags: Z, N schiebe bedingt worte auszulese inthalten ist, an ei um 8 Bit versc ters gelöscht.	zu nipar addiert. byte (Byt dddd t 8 Bit nach rechts und ma en, die von Wort-Offsets ge einer 8-Bit-Grenze (hat B hoben. Falls die Adresse i	e align)-Byte-Ausrichtung 1111 skiere. Wird nach einer Lelesen werden. Falls die Acit 2 gesetzt) liegt, dann wicht an einer 8-Bit-Grenz	aaaa, ade-Instruktion verwendet dresse, die in dem Quellen- ird der Wert des Datenreg ze liegt, werden die oberen	Adressre fisters na 8-Bits
Set < K _{isa}) wird 1101 lags: Z, N schiebe bedingt worte auszulese inthalten ist, an ei um 8 Bit verse ters gelöscht. rke: Der negativ	zu nipar addiert. byte (Byt dddd t 8 Bit nach rechts und ma en, die von Wort-Offsets ge einer 8-Bit-Grenze (hat B hoben. Falls die Adresse in	e align)-Byte-Ausrichtung 1111 skiere. Wird nach einer Lelesen werden. Falls die Acit 2 gesetzt) liegt, dann wicht an einer 8-Bit-Grenz	aaaa, ade-Instruktion verwendet dresse, die in dem Quellen-A ird der Wert des Datenreg ze liegt, werden die oberen htert die Vorzeichen-Ausde	Adressre fisters na 8-Bits
Set < K _{isa}) wird 1101 lags: Z, N schiebe bedingt worte auszulese inthalten ist, an ei um 8 Bit verse ters gelöscht. rke: Der negativ	zu nipar addiert. byte (Byt dddd t 8 Bit nach rechts und ma en, die von Wort-Offsets ge einer 8-Bit-Grenze (hat B hoben. Falls die Adresse in	e align)-Byte-Ausrichtung 1111 skiere. Wird nach einer Lelesen werden. Falls die Acit 2 gesetzt) liegt, dann wnicht an einer 8-Bit-Grenzt, nicht Bit 15. Dies erleic	aaaa, ade-Instruktion verwendet dresse, die in dem Quellen-A ird der Wert des Datenreg ze liegt, werden die oberen htert die Vorzeichen-Ausde	Adressre fisters na 8-Bits
Set < K _{isa}) wird 1101 lags: Z, N schiebe bedingt worte auszulese inthalten ist, an ei um 8 Bit verse ters gelöscht. rke: Der negativ	zu nipar addiert. byte (Byt dddd t 8 Bit nach rechts und ma en, die von Wort-Offsets ge einer 8-Bit-Grenze (hat B hoben. Falls die Adresse in	e align)-Byte-Ausrichtung 1111 skiere. Wird nach einer Lelesen werden. Falls die Acit 2 gesetzt) liegt, dann wnicht an einer 8-Bit-Grenzt, nicht Bit 15. Dies erleic	aaaa, ade-Instruktion verwendet dresse, die in dem Quellen-A ird der Wert des Datenreg ze liegt, werden die oberen htert die Vorzeichen-Ausde	Adressre fisters na 8-Bits

37

div (Signed 32 by 16 division) - Vorzeichenbehaftete 32-durch-16-Division

Flags: Z, N, V,	3		dddd,	
Vorzeichenbehafter 6-Bit Integer, gibt de espeichert ("little-en nungsregister ausgeh ird in dem Bestimm nungsregister zurück arstellung benötigt.	te Division einer vorzei n vorzeichenbehafteten dian"), und zwar in zwei lend beginnen. Der 16-B ungsregister zurückgege gegeben (modulo 16). I	16-Bit Quotienten und der aufeinanderfolgenden Re it-Divisor ist im Quellenr eben, und der Quotiont w Ein Überlauf tritt auf, fa	nteger durch eine vorzeich n Rest zurück. Der 32-Bit-D gistern, die von dem Index egister bzw. Source-Regist rird in dem Register nach o lls der Quotient mehr als nregister zu Adressregister	ivide des er. D iem 16-l
0101		1		
Flags: Z, N, V, O	aaaa4	0010	dddd,	
ک و ۷ واک ویک، تنهاست ند	*			
Addiant oin Date				
Addiert ein Datenre	gister zu einem Adresser	ıregister, läßt das Ergebni	s im Adressenregister.	
ead dq (Add qu	ick constant to address re	egister) — Addiere schnell	Konstante zu Adressenreg	ister
٠.			•	
•				
1000 Flags: Z, N, V, C	aaaa ₄		SKKKKKK	
Flags: Z, N, V, C Addiert eine vorze dressenregister.	; ichenbehaftete 8-Bit-Ko	enstante zu einem Adres es registers) – Vergleich v	senregister, läßt das Erge	bnis
Flags: Z, N, V, C Addiert eine vorze dressenregister.	; ichenbehaftete 8-Bit-Ko		senregister, läßt das Erge	bnis
Flags: Z, N, V, C Addiert eine vorze dressenregister.	ichenbehaftete 8-Bit-Ko ecmp (Compare of addres		senregister, läßt das Erge	bnis
Flags: Z, N, V, C Addiert eine vorze dressenregister.	ichenbehaftete 8-Bit-Ko ecmp (Compare of addres	s registers) — Vergleich v	senregister, läßt das Erge von Adressregister	bnis
Flags: Z, N, V, C Addiert eine vorze dressenregister. 0101 Flags: Z, N, V, C Setzt Flags zum Grögister substrahiert w	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	0100 Adressregister, indem das	senregister, läßt das Erge von Adressregister	stim
Flags: Z, N, V, C Addiert eine vorze dressenregister. 0101 Flags: Z, N, V, C Setzt Flags zum Grögister substrahiert w	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	0100 Adressregister, indem das gs. ss register) — Addiere Ad	senregister, läßt das Ergel von Adressregister aaaa, Quellenregister von dem Be ressregister zu Adressregist	stim
Flags: Z, N, V, C Addiert eine vorze dressenregister. 0101 Flags: Z, N, V, C Setzt Flags zum Grögister substrahiert w efadd (Add a	aaaaaa dees seems (Compare of address aaaaa dees seems (Compare of address aaaaa dees aaaaa dees seems (Compare of address register to address aaaaa dees aaaaaa dees aaaaaa dees aaaaaa dees aaaaaa dees aaaaa dees aaaaa dees aaaaa dees aaaaa dees aaaaa dees aaaaaa dees aaaaaaa dees aaaaaaaaaa	0100 Adressregister, indem das	senregister, läßt das Ergel von Adressregister aaaa, Quellenregister von dem Be	stim
Flags: Z, N, V, C Addiert eine vorze dressenregister. 0101 Flags: Z, N, V, C Setzt Flags zum Grögister substrahiert w efadd (Add a	aaaaaa dees seems (Compare of address aaaaa dees seems (Compare of address aaaaa dees aaaaa dees seems (Compare of address register to address aaaaa dees aaaaaa dees aaaaaa dees aaaaaa dees aaaaaa dees aaaaa dees aaaaa dees aaaaa dees aaaaa dees aaaaa dees aaaaaa dees aaaaaaa dees aaaaaaaaaa	0100 Adressregister, indem das gs. ss register) — Addiere Ad	senregister, läßt das Ergel von Adressregister aaaa, Quellenregister von dem Be ressregister zu Adressregist	stim

efsub (Substract address register from address register) - Substrahiere Adressregister von Adressregister

0101	aaaa _a	0111	aaaa,
lags: Z, N, V,	С		
strahiere das Ç er ab.	Quellenregister von dem B	estimmungsregister, speic	ther das Ergebnis in dem Bestimmu
Ci au.			
	eldf (Extended load f	orward) — Erweitertes La	iden vorwärts
0110	aaaa _d	1101	aaaa,
lags: Z, N	•		
t-Inkrement La	den in das Adressregist	er. Speicher wird von de	er Adresse gelesen, auf die durch
nregister geze ientiert.	igt wird, und wird in den	1 Bestimmungsregister pl	laziert. Das Quellenregister wird d
رام	di (load immediate into ad	ress register) — Lade sofo	et in Adressregister
· ·	- (200106	Te in run obbi egister
			-
1110	aaaa _d	1000	0000
· · · · · · · · · · · · · · · · · · ·	KKK	KKKKKKKKKKKK	
	KKKI	CKKKKKKKKKKKK	
	KKKI	CKKKKKKKKKKKK	
		KKKKKKKKKKK	
ıgs: Z, N	TOTAL .	THE CONTRACTOR OF THE CONTRACT	
	•	•	
64-Bit-Konsta	nte in ein Adressregister.	•	
•	emov (Move address	register) - Bewege Adre	ssenregister
101	aaaa	1111	
gs: Z, N	amag	1111	aaaa,
			·
· .	on dem Quellenregister zu	dem Bestimmungs-Adres	sregister.
ge den Wert vo	_	dem Bestimmungs-Adres	
ge den Wert vo	egister left through carry	_	ssregister. chiebe zyklisch Adressenregister na
ege den Wert vo	egister left through carry	flag) — Rotiere bzw. vers	
ege den Wert vo	egister left through carry	flag) — Rotiere bzw. vers	

Schiebe ein Adressregister zu dem linken Bit. Das LSB wird durch den Wert des Carry-Flag ersetzt. Das MSB 65 wird in das Carry-Flag am Ende der Instruktion plaziert.

esl (Shift address register left) — Schiebe Adressenregister links

0101	aasa _d	1000	0000
Flags: Z, N			
Schiehe ein Adresse	enregister zu dem linken E	Rit	
Schiebe em Adresse	•	r right) — Schiebe Adresse	nregister rechts
	est (simit address register	right) — Schiebe Adresse	
0101	aaaa _d	1001	0000
Flags: Z, N			
Sabiaha ain Aduana		TDia	
schiebe ein Adresse	enregister zu dem rechten		
	est (Store address re	egister) — Speichere Adre	ssenregister
Tarra			· · · · · · · · · · · · · · · · · · ·
0110 Flags: Z, N	aaaa _d	1000	аааа,
riags. Z, N			`.
chrieben, auf die d	turch das Bestimmungsre, Inung plaziert sind, geschr estr (Extended store re		· · · · ·
r "little-endian"-Ord	lnung plaziert sind, geschr estr (Extended store re	rieben. verse) — Erweiterte Speic	herumkehrung
chrieben, auf die d	lnung plaziert sind, geschr	rieben.	· · · · ·
chrieben, auf die d Tittle-endian"-Ord	lnung plaziert sind, geschr estr (Extended store re	rieben. verse) — Erweiterte Speic	herumkehrung
chrieben, auf die de "little-endian"-Ord 0110 Flags: Z, N	estr (Extended store red aaaaa ichern aus Adressenregis	rieben. verse) — Erweiterte Speic 1110 ter. Das Bestimmungsregi	herumkehrung aaaa, ster wird dekrementiert
on the second se	estr (Extended store red aaaaa ichern aus Adressenregis ellenregister in die Spei	rieben. verse) — Erweiterte Speic	herumkehrung aaaa, ster wird dekrementiert uf die durch das Bestim
O110 Flags: Z, N Prä-dekrement-speir Wert in dem Quezeigt wird. Der Wert	estr (Extended store red aaaaa ichern aus Adressenregis ellenregister in die Speit t wird als vier 16-Bit-Wör	rieben. verse) — Erweiterte Speic 1110 ter. Das Bestimmungsregicherstelle geschrieben, au	aaaa, ster wird dekrementiert of die durch das Bestin
O110 Flags: Z, N Prä-dekrement-speir Wert in dem Quizeigt wird. Der Wert esub (Subsfract of	estr (Extended store red aaaaa ichern aus Adressenregis ellenregister in die Speit t wird als vier 16-Bit-Wör	rieben. verse) — Erweiterte Speic 1110 ter. Das Bestimmungsregi cherstelle geschrieben, au rter geschrieben, die in "litt	aaaa, ster wird dekrementiert of die durch das Bestin
O110 Flags: Z, N Prä-dekrement-spei Wert in dem Queigt wird. Der Wert esub (Subsfract of	estr (Extended store red aaaaa ichern aus Adressenregis ellenregister in die Speit t wird als vier 16-Bit-Wör data register from address aaaaa	rieben. verse) — Erweiterte Speic 1110 ter. Das Bestimmungsregi cherstelle geschrieben, au rter geschrieben, die in "litt	aaaa, ster wird dekrementiert of die durch das Bestin
on the description of the descri	estr (Extended store red aaaaa ichern aus Adressenregis ellenregister in die Speit t wird als vier 16-Bit-Wör data register from address aaaaa	rieben. verse) — Erweiterte Speic 1110 ter. Das Bestimmungsregi cherstelle geschrieben, au rter geschrieben, die in "littes s register) — Substrahiere	aaaa, ster wird dekrementiert uf die durch das Bestim tle-endian*-Ordnung plaa
on the description of the descri	estr (Extended store red aaaaa ichern aus Adressenregis ellenregister in die Speid wird als vier 16-Bit-Wör data register from address aaaaa aaaaa	rieben. verse) — Erweiterte Speic 1110 ter. Das Bestimmungsregicherstelle geschrieben, airter geschrieben, die in "littes register) — Substrahiere 0010	aaaa, ster wird dekrementiert uf die durch das Bestim tle-endian*-Ordnung plaa Datenregister von Adre
O110 Flags: Z, N Prā-dekrement-spei Wert in dem Queigt wird. Der Wert esub (Subsfract of	estr (Extended store red estr (Extended store red aaaaa ichern aus Adressenregis ellenregister in die Speidt wird als vier 16-Bit-Wör data register from address aaaaa C	rieben. verse) — Erweiterte Speic 1110 ter. Das Bestimmungsregicherstelle geschrieben, air rier geschrieben, die in "litts register) — Substrahiere 0010	aaaa, ster wird dekrementiert uf die durch das Bestim tle-endian"-Ordnung plat Datenregister von Adre dddd,
O110 Flags: Z, N Prä-dekrement-speir Wert in dem Quezeigt wird. Der Wert esub (Subsfract of 1110 Flags: Z, N, V, C	estr (Extended store red estr (Extended store red aaaaa ichern aus Adressenregis ellenregister in die Speidt wird als vier 16-Bit-Wör data register from address aaaaa C	rieben. verse) — Erweiterte Speic 1110 ter. Das Bestimmungsregicherstelle geschrieben, airter geschrieben, die in "littes register) — Substrahiere 0010	aaaa, ster wird dekrementiert uf die durch das Bestim tle-endian"-Ordnung plat Datenregister von Adre dddd,
O110 Flags: Z, N Prä-dekrement-speir Wert in dem Quezeigt wird. Der Wert esub (Subsfract of 1110 Flags: Z, N, V, C	estr (Extended store red estr (Extended store red aaaaa ichern aus Adressenregis ellenregister in die Speidt wird als vier 16-Bit-Wör data register from address aaaaa C	rieben. verse) — Erweiterte Speic 1110 ter. Das Bestimmungsregicherstelle geschrieben, air rier geschrieben, die in "litts register) — Substrahiere 0010	aaaa, ster wird dekrementiert uf die durch das Bestim tle-endian"-Ordnung plat Datenregister von Adre dddd,

Plaziert das bitweise Inverse des Quellenregisters in das Bestimmungsregister.

jCC (Conditional jump) — Bedingter Sprung

KKKKKK KKKKKK KKKKKK adressen. Siehe Tabel jmp (Unconditional ju 0000 KKKKKK KKKKKK	KKKKKKKKKK KKKKKKKKKK KKKKKKKKK KKKKK		
KKKKKK KKKKKK adressen. Siehe Tabel jmp (Unconditional ju 0000 KKKKKK KKKKK	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	Sprung	
KKKKKK adressen. Siehe Tabel jmp (Unconditional ju 0000 KKKKKK	KKKKKKKKKK lle 7 für Bedingungscom ump) — Unbedingter S 0000 KKKKKKKKKKKK	Sprung	
adressen. Siehe Tabel jmp (Unconditional ju 0000 KKKKK KKKKK	lle 7 für Bedingungscommp) — Unbedingter S 0000 KKKKKKKKKKK	Sprung	
jmp (Unconditional ju 0000 KKKKK KKKKK	ump) — Unbedingter S 0000 KKKKKKKKKK	Sprung	
jmp (Unconditional ju 0000 KKKKK KKKKK	ump) — Unbedingter S 0000 KKKKKKKKKK	Sprung	
jmp (Unconditional ju 0000 KKKKK KKKKK	ump) — Unbedingter S 0000 KKKKKKKKKK	Sprung	
0000 KKKKK KKKKK	0000 KKKKKKKKKK		
KKKKKK	KKKKKKKKKK	0000	
KKKKKK			
	KKKKKKKKKK		
VVVVVV			
vvvvvv	KKKKKKKKKK		
KKKKKK	KKKKKKKKKK		
		·	
	0000		\neg
aaaa _d	1 0000	aaaa,	
espeichert, auf die du nn mit der Adresse in d	rch das Bestimmungsr dem Quellenregister g	egister (üblicherweise der St eladen, bevor die nächste In	tackpoi
dddd₄	1000	KKKK	
	(Jump to subroutine) aaaaa rd zuerst inkrementie espeichert, auf die du un mit der Adresse in	(Jump to subroutine) — Springe zu Unterpraazaa 00000 rd zuerst inkrementiert, dann wird das gege espeichert, auf die durch das Bestimmungst in mit der Adresse in dem Quellenregister g	clut-Adresse. Dasselbe wie jCC mit Bedingung "immer". (Jump to subroutine) — Springe zu Unterprogramm aaaa 0000 aaaa rd zuerst inkrementiert, dann wird das gegenwärtige nipar (zeigt zu der espeichert, auf die durch das Bestimmungsregister (üblicherweise der Stan mit der Adresse in dem Quellenregister geladen, bevor die nächste In (Shift left by constant) — Schiebe links um Konstante

ksr (Shift right by constant) - Schiebe rechts um Konstante

1101	dddd,	1001	KKKK
Flags: Z, N	1 acred	1001	RACKA
1 1050, 20, 11			
hiebe ein Datenre	gister um eine konstante	Anzahl von Bits nach rech	ts.
	Id (Load data	register) – Lade Datenreg	rister
	• • • • • • • • • • • • • • • • • • • •		,
			
0110	dddd	0001	aaaa,
lags: Z, N			
		•	
de ein Datenregis	ster aus dem Speicher. D	er Wert, auf den durch d	as QuellenadreBregister
	gsdatenregister geladen.		
	Idf(Load	forward) — Lade vorwärts	5
	•	•	
	γ	<u> </u>	
0110	qqqq ^q	0101	aaaa,
Jane 7 M			
rags: Z, N		•	•
st-inkrement-lade senregister gezei	gt wird, und wird in das	cher wird von der Adress Bestimmungsdatenregist immediate) — Lade sofort	ter plaziert. Das Quellen .
st-inkrement-lade senregister gezei inkrementiert.	gt wird, und wird in das	Bestimmungsdatenregist immediate) — Lade sofort	er plaziert. Das Quellen
st-inkrement-lade senregister gezei inkrementiert.	gt wird, und wird in das	Bestimmungsdatenregist	ter plaziert. Das Quellen .
st-inkrement-lade senregister gezei inkrementiert. 0111	gt wird, und wird in das Idi(Load dddd	Bestimmungsdatenregist immediate) — Lade sofort	er plaziert. Das Quellen
st-inkrement-lade senregister gezei inkrementiert. 0111	gt wird, und wird in das Idi(Load dddd	Bestimmungsdatenregist immediate) — Lade sofort 0000	er plaziert. Das Quellen
st-inkrement-lade senregister gezei inkrementiert. 0111	gt wird, und wird in das Idi(Load dddd	Bestimmungsdatenregist immediate) — Lade sofort 0000	er plaziert. Das Quellen
st-inkrement-lade senregister gezei inkrementiert. 0111 lags: Z, N	gt wird, und wird in das Idi (Load dddd _d KKKK	Bestimmungsdatenregist immediate) — Lade sofort 0000	or plaziert. Das Quellen
st-inkrement-lade senregister gezei inkrementiert. 0111	gt wird, und wird in das Idi (Load dddd _d KKKK	Bestimmungsdatenregist immediate) — Lade sofort 0000 KKKKKKKKKKKKK Bit-Direkt-Wert in ein Da	0000 tenregister.
st-inkrement-lade senregister gezei inkrementiert. 0111	gt wird, und wird in das Idi (Load dddd _d KKKK	Bestimmungsdatenregist immediate) — Lade sofort 0000 KKKKKKKKKKKKK	0000 tenregister.
st-inkrement-lade senregister gezei inkrementiert. 0111 lags: Z, N de einen 16-Bit-So	gt wird, und wird in das Idi (Load ddddd KKKK ofort-Wert bzw. einen 16- mask (Bitwise mask o	Bestimmungsdatenregist immediate) — Lade sofort 0000 KKKKKKKKKKKKK Bit-Direkt-Wert in ein Da peration)-Bitweise Maskie	0000 tenregister.
st-inkrement-lade senregister gezei inkrementiert. 0111 Clags: Z, N de einen 16-Bit-So	gt wird, und wird in das Idi (Load dddd _d KKKK	Bestimmungsdatenregist immediate) — Lade sofort 0000 KKKKKKKKKKKKK Bit-Direkt-Wert in ein Da	0000 tenregister.
st-inkrement-lade senregister gezei inkrementiert. 0111 Clags: Z, N de einen 16-Bit-So	gt wird, und wird in das Idi (Load ddddd KKKK ofort-Wert bzw. einen 16- mask (Bitwise mask o	Bestimmungsdatenregist immediate) — Lade sofort 0000 KKKKKKKKKKKKK Bit-Direkt-Wert in ein Da peration)-Bitweise Maskie	0000 tenregister.
st-inkrement-lade senregister gezei inkrementiert. O111 lags: Z, N de einen 16-Bit-So 1111 lags: Z, N	gt wird, und wird in das Idi (Load dddd KKKK ofort-Wert bzw. einen 16- mask (Bitwise mask o	Bestimmungsdatenregist immediate) — Lade sofort 0000 KKKKKKKKKKKKK Bit-Direkt-Wert in ein Da peration)-Bitweise Maskie	0000 tenregister. ar-Operation dddd,
st-inkrement-lade senregister gezei inkrementiert. 0111 Clags: Z, N de einen 16-Bit-So 1111 Clags: Z, N	gt wird, und wird in das Idi (Load dddd KKKK fort-Wert bzw. einen 16- mask (Bitwise mask o	Bestimmungsdatenregist immediate) — Lade sofort 0000 KKKKKKKKKKKKK Bit-Direkt-Wert in ein Da peration)-Bitweise Maskie	0000 tenregister. ar-Operation dddd,
on senregister gezei inkrementiert. Oll1 Flags: Z, N de einen 16-Bit-So 1111 Flags: Z, N	gt wird, und wird in das Idi (Load dddd KKKK Fort-Wert bzw. einen 16- mask (Bitwise mask o dddd dddd ister wird durch das bitwiet wird.	immediate) — Lade sofort 0000 KKKKKKKKKKKKK Bit-Direkt-Wert in ein Da peration)-Bitweise Maskie 0100 weise Inverse des Quellen	tenregister. dddd registers ersetzt, das mit
ost-inkrement-lade ssenregister gezei inkrementiert. O111 Flags: Z, N de einen 16-Bit-So 1111 Flags: Z, N	gt wird, und wird in das Idi (Load dddd KKKK Fort-Wert bzw. einen 16- mask (Bitwise mask o dddd dddd ister wird durch das bitwiet wird.	Bestimmungsdatenregist immediate) — Lade sofort 0000 KKKKKKKKKKKKK Bit-Direkt-Wert in ein Da peration)-Bitweise Maskie	tenregister. dddd registers ersetzt, das mit
ost-inkrement-lade ssenregister gezei inkrementiert. O111 Flags: Z, N de einen 16-Bit-So 1111 Flags: Z, N	gt wird, und wird in das Idi (Load dddd KKKK Fort-Wert bzw. einen 16- mask (Bitwise mask o dddd dddd ister wird durch das bitwiet wird.	immediate) — Lade sofort 0000 KKKKKKKKKKKKK Bit-Direkt-Wert in ein Da peration)-Bitweise Maskie 0100 weise Inverse des Quellen	tenregister. dddd registers ersetzt, das mit

Der Wert in dem Quellendatenregister wird in das Bestimmungsdatenregister plaziert.

mul (Signed 16 by 16-bit multiply)-Vorzeichenbehaftete 16 mit 16-Bit-Multiplikation

or(bitt	mian and Dimensions and an	
	vise or) — Bitweises oder	
dddd₄	1110	dddd,
DER bzw. OR von zwei	Datenregistern durch, läß	t das Ergebnis in dem Bestimmu
	N. Butan barana da 1	
er left through carry fla	g) — Rotiere bzw. verschie Carry-Flag	ebe zyklisch Datenregister links d
	1010	0000
dddd	1010	0000
rister zu dem linken B		len Wert des Carry-Flag ersetz
rister zu dem linken B in dem Carry-Flag am rti (Return from i	it. Das LSB wird durch d	len Wert des Carry-Flag ersetz ert.
rister zu dem linken B in dem Carry-Flag am	it. Das LSB wird durch d Ende der Instruktion plazi	len Wert des Carry-Flag ersetz ert.
rister zu dem linken B in dem Carry-Flag am rti (Return from i	it. Das LSB wird durch d Ende der Instruktion plazi nterrupt) — Return vom I	len Wert des Carry-Flag ersetz ert. nterrupt
rister zu dem linken B in dem Carry-Flag am rti (Return from i aaaa	it. Das LSB wird durch d Ende der Instruktion plazi nterrupt) — Return vom I	len Wert des Carry-Flag ersetz ert. nterrupt 0000
rister zu dem linken B in dem Carry-Flag am rti (Return from i aaaa,	it. Das LSB wird durch d Ende der Instruktion plazi nterrupt) — Return vom I 10001	len Wert des Carry-Flag ersetz ert. nterrupt 0000 ack-Zeiger verwendet.
rister zu dem linken B in dem Carry-Flag am rti (Return from i aaaa,	it. Das LSB wird durch d Ende der Instruktion plazie nterrupt) — Return vom I 10001	len Wert des Carry-Flag ersetz ert. nterrupt 0000 ack-Zeiger verwendet.
rister zu dem linken B in dem Carry-Flag am rti (Return from i aaaa,	it. Das LSB wird durch d Ende der Instruktion plazie nterrupt) — Return vom I 10001	len Wert des Carry-Flag ersetz ert. nterrupt 0000 ack-Zeiger verwendet.
rister zu dem linken B in dem Carry-Flag am rti (Return from i aaaa, as Quellenregister bzw. rts (Return from subrot	it. Das LSB wird durch d Ende der Instruktion plazie nterrupt) — Return vom Ii 10001 Sourceregister wird als St ntine) — Rückkehr von Un	len Wert des Carry-Flag ersetz ert. nterrupt 0000 ack-Zeiger verwendet. terprogramm
rister zu dem linken B in dem Carry-Flag am rti (Return from i aaaa, as Quellenregister bzw. rts (Return from subrot	it. Das LSB wird durch d Ende der Instruktion plazie nterrupt) — Return vom Ii 10001 Sourceregister wird als St ntine) — Rückkehr von Un	len Wert des Carry-Flag ersetz ert. nterrupt 0000 ack-Zeiger verwendet. terprogramm
rister zu dem linken B in dem Carry-Flag am rti (Return from i aaaa, as Quellenregister bzw. rts (Return from subrot aaaaa,	it. Das LSB wird durch dende der Instruktion plazienterrupt) — Return vom In 10001 Sourceregister wird als Statine) — Rückkehr von Un 0001	len Wert des Carry-Flag ersetz ert. nterrupt 0000 ack-Zeiger verwendet. terprogramm
	ER bzw. OR von zwei	ER bzw. OR von zwei Datenregistern durch, läß er left through carry flag) — Rotiere bzw. verschie

Das Bestimmungsregister wird links um die Anzahl von Bits verschoben, die durch den Wert des Quellenregister spezifiziert sind.

sr (Shift right) - Schiebe rechts 5 1101 $dddd_{a}$ 0001 dddd_ Flags: Z, N 10 Das Bestimmungsregister wird rechts um die Anzahl von Bits verschoben, die durch den Wert des Quellenregisters spezifiziert sind. 15 st (Store) - Speichern 0110 dddd, 0000 20 aaaa, Flags: Z. N Speichere aus einem Datenregister. Der Wert in dem Quellenregister wird zu der Speicherstelle geschrieben, auf die durch das Bestimmungsregister gezeigt wird. str (Store reserve) - Speicher umgekehrt 30 0110 $dddd_{d}$ 0110 aaaa, Flags: Z, N 35 Prä-dekrement-speichern aus Datenregister. Das Bestimmungregister wird dekrementiert und dann wird der Wert in dem Quellenregister in die Speicherstelle geschrieben, auf die durch das Bestimmungsregister gezeigt 40 sub (Substract data register from data register) - Substrahiere Datenregister von Datenregister 1110 dddd 0001 dddd, 45 Flags: Z, N, V, C Substrahiere das Quellenregister von dem Bestimmungsregister, speichere das Ergebnis in dem Bestimmungsregister. subc (Substract with carry) - Substrahiere mit Carry bzw. Übertrag 55 1110 dddd₄ 1100 dddd, Flags: Z, N, V, C 60

Substrahiere das Quellenregister von dem Bestirmmungsregister, dann substrahiere das Carry-Bit, wobei das Ergebnis in dem Bestimmungsregister gespeichert wird.

65

trap (Unconditional trap) - Unbedingter Trap

0011	aaaa _d	0000	0000	
Flags: Keine				J
ndet.		•	register wird als der Stack-Po	inter ve
, ,				
1110	dddd,	0111	dddd,	
Flags: Z, N, V, C	j			
vorzeichenbehafte enden Registern, sor ist in dem Que l in das nächste R	te 16-Bit-Quotient und - beginnend von dem Ind Elenregister. Der Rest wi	Rest zurückgegeben wird. Iex des Bestimmungsregi: ird in das Bestimmungsreg mmungregister zurückges	rzeichenbehaftete 16-BitInteg Die 32 Bits werden in zwei auf sters, gespeichert ("little endi gister zurückgegeben und der geben. Ein Überlauf tritt auf;	feinande an"). De Quotien
umul (Unsigned 1	6 by 16-Bit-Multiplikatio	n) — Nicht-vorzeichenbel	aftete 16 mit 16-Bit Multiplika	ation
1110	dddd	0110	dddd,	
Flags: Z, N, V, C as Ergebnis der Mo gespeichert (Tittl	ultiplikation des Werts in	dem Quellenregister mit d	dem Wert in dem Bestimmung Register beginnend mit dem	sregiste
gsregister.			essenregister zu Datenregister	
010 1	dddd	1101	аава	
lags: Keine				
Bestimmungsregis	ter. Der Wert wird "little	gister zu vier aufeinander endian-gespeichert und gister jedes Register sein	folgende Datenregister begin die Bestimmungsregisteradre kann.	nend mi
no 10 bei ecimiet, 30	•			
	_	egister) — Übertrag Date	nregister zu Adressenregister	
	_	egister) — Übertrag Date	nregister zu Adressenregister dddd	

Übertrag einen "little-endian"-64-Bit-Wert in vier aufeinanderfolgende Datenregister in das Bestimmungsadressenregister. Die Quellenregisteradresse wird modulo 16 berechnet, so daß das Bestimmungsregister jede 65 Integer sein kann.

xor (Bitwise exclusive or) - Bitweises exklusives Oder

			
11111	dddd.	0110	
		0110	

Flags: Z, N

Führt das bitweise exklusive ODER bzw. OR bezüglich zwei Datenregistern durch, läßt das Ergebnis im Bestimmungsregister.

 ${\tt xpcw} \ ({\tt Exchange} \ processor \ control \ word) - {\tt Tausche} \ {\tt Prozessor-Steuerwort}$

O:	100	dddd.	1010	0000
		u	444	

Flags: Alle

15

20

25

30

35

50

55

60

Der Wert in dem Quellendatenregister wird durch das pcw-Register ausgetauscht.

xivec (Exchange interrupt vector) - Tausche Interrupt-Vektor

		1	l
0101	aaaa _d	0111	0000

Flags: Alle

Der Wert in dem Quellenadressregister wird mit dem ivec-Register ausgetauscht.

4.0 Bedingungs-Codes

Die Bedingungs-Code-Opcode-Unterfelder verwenden die Werte der folgenden Tabelle:

Tabelle 7

Bedingungs-Codes

Mne.	Code	Bedeutung	Gleichung
eq	0001	gleich	z
ле	0010	nicht gleich	-z
٩٤	0011	größer als	Z(N ⊕V)
12	0100	kleiner als	N O V
çe	0101	größer oder gleich	(V⊕V)
le	0110	kleiner oder gleich	Z (N OV)
9	0111	positiv "	-71
n	1000	negativ	N
B EIT	1001	größer als, nicht vorzeichenbehaftet	-c-z
νc	1010	Überlauf löschen	-v
vs	1011	Überlauf setzen	V
cc	1100	Übertrag löschen	-c
cs	1101	Übertrag setzen	C

65

Anhang B

Instruktionssatz 1

Eine gepipelinte Multiplikations-Akkumulier-ISA

5

ISA1 gepipelinte Faltungsmaschine für XC 4013

Einführung

10

ISA1 ist ein gepipelinte Multiplikations-Akkumulator-Array, das zu 4 simultanen MultiplikationsAkkumulationen pro Instruktionszyklus in der Lage ist. Es gibt 8 8-Bit Datenregister (xd0-xd3 & yd0-yd3), einen für jeden Eingang zu den vier 8-Bit-X-8-Bit-Multiplizierern. Die vier Multiplizierer werden über ein gepipelinetes Addier-Array summiert, bis eine engültige 16-Bit-Summe herauskommt, und zwar wo bis zu vier 16-Bit-Register das Ergebnis (m0-m4) speichern werden können. Die Architektur der ISA1 vermutet einen Fluß-durch-Batch-Verarbeitungszyklus mit Hauptspeicher. Für sich genommen gibt es keinen Feedback-Pfad bzw. Rückführ-Pfad durch den Multiplikations-Akkumulator-Datenpfad, um akkumulierte Ergebnisse wieder aufzuarbeiten, weil die Betonung auf den Speicher-Datenflußraten liegt. Es ist nichts vorgesehen für Überlauf-Skalierung oder erweiterte Endlichkeits-Akkumulierungen; ISA1 vermutet, daß die Koeffizienten, die für Faltungs-Filtern verwendet werden, nicht mehr als 16-Bit-Ergebnis-Endlichkeiten für alle Datensätze hervorbringen. Das Multiplikations-Array nimmt 8-bit-2er-Komplement-Dateneingänge an und erzeugt ein 16-Bit-2er-Komplement-Ergebnis.

Speicherzugriff wird durch zwei 64-Bit-Addressenregister (a0 & a1) verwaltet bzw. gehandhabt, die als miteinander vertauschbare Quellen- und Bestimmungsregister gedacht werden können. Programmfluß wird durch das Standard-64-Bit-NIPAR-Register verwaltet und ein 64-Bit-Interrupt-Vektor-Register (IVEC) wird für 25 einen einzelnen Interrupt, wie z. B. einen Frame- oder Datenfertig-Interrupt, unterstützt.

Der Instruktionssatz von ISA1 ist sehr klein und auf 16-Bitwort-Größe ausgerichtet, die mit der K_{ISA}=4-Speicher-Organisation für den Außenschleifen-Prozessor ISA0 zusammenpaßt. Bis zu 7 Arithmethikoperationen können in einem einzigen Taktzyklus mit ISA1 sofort ausgeführt bzw. beispielhaft durchgeführt werden, und die Implementation hält eine Ergebnisrate von eins pro Takt über ein schmales Fenster von Takten aufrecht, und zwar mit der Fähigkeit neue Quell- oder Bestimmungsadressen zu indizieren und Registerdaten aus oder zu einem Speicher zu bewegen, und zwar parallel mit einer Berechnung.

ISA1 Instruktionssatz

35

Datenbewegung

ld (reg-vector)

Jeder von bis zu 14 Registern wird sequentiell aus dem Speicher geladen, und zwar gemäß 14-Bit-Bitmap-reg- 40 vector, der rechts-justiert im Instruktionswort enthalten ist.

st (reg-vector)

Jedes von bis zu 14 Register wird sequentiell in einen Speicher gespeichert, und zwar gemäß einem 14-Bit-Bit-45 map-reg-vector, der rechts-justiert in dem Instruktionswort enthalten ist.

Id (îvec-data)

Die 64-Bitadresse, die dieser Instruktion folgt, wird in das IVEC-Register geladen, während NIPAR + = 5, um so auf die nächste auszuführende Instruktion zu zeigen.

Programm-Steuerung

jmp (nipar-data)

55

Die 64-Bit-Adresse, die dieser Instruktion folgt, wird in das NIPAR-Register geladen, wodurch auf die nächste auszuführende Instruktion gezeigt wird.

Arithmetik

60

mac (m-reg)

Das Multiplikations-Ergebnis-Register, auf das durch den 2-Bit-m-reg-Code gezeigt wird, empfängt das Produkt und die Summe (xd0°yd0)+(xd1°yd1)+(xd2°yd2)+(xd3°yd3).

0.

macp (s-vec, d-vec)

Das Multiplikations-Ergebnis-Register, auf das durch 2-Bits des 4-Bit-d-vec-Codes gezeigt wird, empfängt das Produkt und die Summe (xd0*yd0) + (xd1*yd1) + (xd2*yd2) + (xd3*yd3). Ein anderes Bit des d-vec-Codes enabelt selektiv eine Speicher-Schreiboperation dieses Ergebnis-Registers bei Adresse (a1) bzw. gibt diese frei, während das übrige Bit des d-vec-Codes auswählt, ob das Adressenregister a1 inkrementiert wird oder nicht. Der 8-Bit-s-vec wird in vier 2-Bit-Gruppen aufgeteilt, die sukzessiv für die Datenregister xd0-xd3 spezifizieren bzw. vorgeben, ob eine Leseoperation aus dem Speicher bei Adresse (a0) auftreten soll und ob das Adressenregister a0 inkrementiert werden soll. Falls Lese- oder Schreiboperationen spezifiziert bzw. vorgegeben sind, werden sie parallel mit der Multiplikation durchgeführt. Die Software muß der gepipelineten Ausrichtung der Instruktionsverarbeitung bezüglich Batches bzw. Blöcken von Daten Rechnung tragen, die vom Speicher gelesen werden und im Speicher gespeichert werden.

Rekonfiguration

reconf (ISA-vector)

ISA1 wird de-kontextet und die S-Maschine wird für die ISA rekonfiguriert, die durch das ISA-vector-Bitfeld in der Instruktion ausgewählt ist.

Block-Diagramm von ISA1 — Gepipelinete Faltungsmaschine für XC4013

Speicher-Datenbus

Patentansprüche

1. Dynamisch rekonfigurierbare Verarbeitungseinheit zum Ausführen von Programminstruktionen, um Daten zu verarbeiten, wobei die dynamisch rekonfigurierbare Verarbeitungseinheit einen Eingang, einen Ausgang und eine veränderbare interne Hardware-Organisation umfaßt, die selektiv während der Ausführung einer Sequenz von Programminstruktionen zwischen einer ersten Hardware-Architektur, die Instruktionen von einem ersten Instruktionssatz ausführt, und einer zweiten Hardware-Architektur, die Instruktionen eines zweiten Instruktionssatzes ausführt, veränderbar ist, wobei die dynamisch rekonfigurierbare Verarbeitungseinheit, wenn sie als die erste Hardware-Architektur konfiguriert ist, auf eine Rekonfigurationsinstruktion anspricht, um die interne Hardware-Organisation der dynamisch rekonfigurierbaren Verarbeitungseinheit zu verändern, die als die zweite Hardware-Architektur konfiguriert werden soll.

- 2. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 1, bei welcher die Rekonfigurationsinstruktion eine der Instruktionen in dem ersten Instruktionssatz ist.
- 3. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 1, bei welcher die Rekonfigurationsinstruktion ein Teil einer anderen Instruktion ist und die Ausführung der Rekonfigurationsinstruktion von Daten abhängt, die in Registern der dynamisch rekonfigurierbaren Verarbeitungseinheit gespeichert sind.
- 4. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 1, die weiter folgendes umfaßt: eine zweite rekonfigurierbare Verarbeitungseinheit mit einem Eingang, einem Ausgang und einer veränderbaren internen Hardware-Organisation, die selektiv während der Ausführung einer Folge von Programminstruktionen zwischen der ersten Hardware-Architektur, die Instruktionen von dem ersten Instruktionssatz ausführt, und der zweiten Hardware-Architektur, die Instruktionen von dem zweiten Instruktionssatz ausführt, veränderbar ist, wobei der Eingang der zweiten rekonfigurierbaren Verarbeitungseinheit mit dem Ausgang der dynamisch rekonfigurierbaren Verarbeitungseinheit werbunden ist und der Ausgang der zweiten rekonfigurierbaren Verarbeitungseinheit mit dem Eingang der dynamisch rekonfigurierbaren Verarbeitungseinheit mit dem Eingang der dynamisch rekonfigurierbaren Verarbeitungseinheit werbunden ist.

10

15

20

25

30

35

40

55

- 5. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 4, bei welcher die dynamisch rekonfigurierbare Verarbeitungseinheit unabhängig von einer Rekonfiguration der zweiten rekonfigurierbaren Verarbeitungseinheit dynamisch rekonfigurierbar ist.
 - 6. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 1, bei welcher es sich bei der ersten Hardware-Architektur um einen seriellen Instruktionsprozessor bzw. eine serielle Instruktionsverarbeitungseinrichtung handelt und bei der zweiten Hardware-Architektur um einen parallelen Instruktionsprozessor bzw. eine parallele Instruktionsverarbeitungseinrichtung.
 - 7. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 1, bei welcher die veränderbare interne Hardware-Organisation der dynamisch rekonfigurierbaren Verarbeitungseinheit eine Instruktionsabrufeinheit mit einem Dateneingang, einem ersten Steuerausgang und einem zweiten Steuerausgang umfaßt, um Instruktionsausführungsoperationen innerhalb der dynamisch rekonfigurierbaren Verarbeitungseinheit sequentiell zu ordnen, wobei der Dateneingang mit einem Datenport eines Speichers verbunden ist.
 - 8. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 7, bei welcher die Instruktionsabrufeinheit weiter folgendes aufweist:
- einen Architekturbeschreibungsspeicher mit einem Ausgang, wobei der Architekturbeschreibungsspeicher einen Satz von Architekturbeschreibungssignalen einschließlich eines Interruptantwortsignals speichert, das eine Art und Weise spezifiziert, in der die dynamisch rekonfigurierbare. Verarbeitungseinheit auf ein Interruptsignal antwortet, wenn sie konfiguriert ist, um eine Instruktionssatz-Architektur zu verwirklichen bzw. zu implementieren;
- eine Instruktionszustandsfolgesteuereinheit bzw. ein Instruktionszustands-Sequenzer mit einem Eingang und einem Ausgang, um einen Instruktionsausführungszyklus und einen Übergang zwischen einem Instruktionsabrufzustand, einem Instruktionsdecodierzustand, einem Instruktionsausführungszustand und einem Schreib-zurück-Zustand zu steuern; und
 - eine Interruptzustandsmaschine mit einem Eingang und einem Ausgang, um ein Übergangssteuersignal zu erzeugen, das einen Zustand, innerhalb des Instruktionsausführungszyklus spezifiziert, für den ein Übergang zu einem Interruptservicezustand erlaubt ist, wobei der Eingang der Interruptzustandsmaschine mit dem Ausgang des Architekturbeschreibungsspeichers verbunden ist, der Ausgang der Interruptzustandsmaschine mit dem Eingang der Instruktionszustands-Folgesteuereinheit bzw. dem Instruktionszustands-Sequenzer verbunden ist.
- 9. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 1, bei welcher die veränderbare interne Hardware-Organisation der dynamisch rekonfigurierbaren Verarbeitungseinheit eine Datenoperationseinheit mit einem Datenport und einem Steuereingang umfaßt, um Operationen bezüglich der Daten durchzuführen, wobei der Datenport der Datenoperationseinheit mit dem Datenport des Speichers verbunden ist und der Steuereingang verbunden ist, um Steuersignale zu empfangen.
- 50 10. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 9, bei welcher die Datenoperationseinheit folgendes umfaßt:
 - einen Schalter mit einem Datenport, einen Steuereingang, einen Rückführ- bzw. Feedbackeingang und einen Ausgang, um selektiv Daten zwischen dem Datenport, dem Rückführ- bzw. Feedbackeingang und dem Ausgang zu leiten, wobei der Datenport des Schalters mit dem Datenport des Speichers verbunden ist und der Steuereingang des Schalters verbunden ist, um Steuersignale zu empfangen;
 - eine Abspeicher-/Ausrichteinheit mit einem Eingang, einem Ausgang und einer Steuereinheit, um Daten zu speichern, wobei der Eingang der Abspeicher-/Ausrichteinheit mit dem Ausgang des Schalters verbunden ist und der Steuereingang der Abspeicher-/Ausrichteinheit verbunden ist, um Steuersignale zu empfangen;
- eine Datenoperationsschaltung mit einem Eingang, einem Ausgang und einem Steuereingang, um Datenberechnungen durchzuführen, wobei der Eingang der Datenoperationsschaltung mit dem Ausgang der Abspeicher-/Ausrichteinheit verbunden ist, der Ausgang der Datenoperationseinheit mit dem Rückführ-bzw. Feedbackeingang des Schalters verbunden ist und der Steuereingang der Datenoperationslogik verbunden ist, um Steuersignale zu empfangen.
- 11. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 10, bei welcher die Abspeicher-/Ausrichteinheit rekonfigurierbar ist und selektiv als eine aus der Gruppe von einem Speicher mit wahlfreiem Zugriff bzw. ein RAM und einem gepipelineten Register bzw. Fließbandregister konfiguriert werden kann, und zwar in Antwort auf Steuersignale für eine entsprechende Instruktionssatz -Architektur.

12. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 10, bei welcher entsprechend Signalen die Datenoperationseinheit rekonfigurierbar ist und selektiv als eine aus der Gruppe von einer arithmetische Logikeinheit und einer gepipelineten Funktionseinheit bzw. Fließband-Funktionseinheit konfiguriert werden kann, und zwar in Antwort auf Steuersignale für eine entsprechende Instruktionssatz-Architektur.

13. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 1, bei welcher die veränderbare interne Hardware-Organisation der rekonfigurierbaren Verarbeitungseinheit eine Adressen-Operationseinheit mit einem Steuereingang, einem Adresseneingang und einem Ausgang umfaßt, um Operationen bezüglich Adressen durchzuführen, wobei der Adresseneingang mit dem Datenport eines Speichers verbunden ist und der Ausgang der Adressen-Operationseinheit mit einem Adresseneingang des Speichers verbunden ist, und der Steuereingang der Adressen-Operationseinheit verbunden ist, um Steuersignale zu 10 empfangen.

14. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 13, bei welcher die Adressen-Operationseinheit folgendes umfaßt:

einen Schalter mit einem Datenport, einen Steuereingang, einen Rückführ- bzw. Feedbackeingang und einen Ausgang, um selektiv Adressen zwischen dem Datenport, dem Rückführ- bzw. Feedbackeingang und dem Ausgang zu leiten bzw. zu führen, und zwar in Antwort auf ein Steuersignal, das bei dem Steuereingang empfangen wurde, wobei der Datenport des Schalters mit dem Datenport des Speichers verbunden ist; eine Abspeicher-/Zähleinheit mit einem Eingang, einem Ausgang und einem Steuereingang, um Daten zu speichern, wobei der Eingang der Abspeicher-/Zähleinheit mit dem Ausgang des Schalters verbunden ist, der Steuereingang der Abspeicher-/Zähllogik verbunden ist, um Steuersignale zu empfangen; und eine Adressen-Operationsschaltung mit einem Eingang, einem Ausgang und einem Steuereingang, um

Adressen-Operationsschaltung mit einem Eingang, einem Ausgang und einem Steuereingang, um Adressenberechnungen durchzuführen, wobei der Eingang der Adressen-Operationsschaltung mit dem Ausgang der Abspeicher-/Zähleinheit verbunden ist, der Ausgang der Adressen-Operationsschaltung mit dem Rückführ- bzw. Feedbackeingang des Schalters verbunden ist, und der Steuereingang der Adressen-Operationseinheit verbunden ist, um Steuersignale zu empfangen.

15. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 14, bei welcher die Abspeicher-/Zähleinheit rekonfigurierbar ist und selektiv als etwas aus der Gruppe konfiguriert werden kann, die ein Speicher mit wahlfreiem Zugriff bzw. ein RAM und ein Register aufweist, und zwar in Antwort auf Signale, die an dem Steuereingang der Abspeicher-/Zähleinheit empfangen werden.

16. Dynamisch rekonfigurierbare Verarbeitungseinheit nach Anspruch 14, bei welcher die Adressen-Operationsschaltung als eine aus der Gruppe von einem Register und einem Register und einer arithmetischen Einheit rekonfigurierbar ist, und zwar in Antwort auf Signale, die bei dem Steuereingang der Adressen-Operationsschaltung empfangen werden.

17. System zur dynamisch rekonfigurierbaren Steuerung, das folgendes umfaßt:

eine erste rekonfigurierbare Verarbeitungseinheit zur Ausführung von Programminstruktionen, um Daten 35 zu verarbeiten, wobei die erste rekonfigurierbare Verarbeitungseinheit einen Eingang, einen Ausgang und eine veränderbare interne Hardware-Organisation aufweist, die selektiv während der Ausführung einer Sequenz von Programminstruktionen veränderbar ist;

eine erste Kommunikationsvorrichtung mit einem Eingang, einem Ausgang, einem ersten Datenport und einem zweiten Datenport, um Daten zu und von der ersten rekonfigurierbaren Verarbeitungseinheit zu übertragen, wobei der Eingang der ersten Kommunikationsvorrichtung mit dem Ausgang der ersten rekonfigurierbaren Verarbeitungseinheit verbunden ist, und der Ausgang der ersten Kommunikationsvorrichtung mit dem Eingang der ersten rekonfigurierbaren Verarbeitungseinheit verbunden ist.

18. System nach Anspruch 17, das weiter folgendes umfaßt:

eine zweite rekonfigurierbare Verarbeitungseinheit zur Ausführung von Programminstruktionen, um Daten zu verarbeiten, wobei die zweite rekonfigurierbare Verarbeitungseinheit einen Eingang, einen Ausgang und eine veränderbare interne Hardware-Organisation umfaßt, die selektiv während der Ausführung einer Sequenz von Programminstruktionen veränderbar ist;

eine zweite Kommunikationsvorrichtung mit einem Eingang, einem Ausgang, einem ersten Datenport und einem zweiten Datenport, um Daten zu und von der zweiten rekonfigurierbaren Verarbeitungseinheit zu übertragen, wobei der Eingang der zweiten Kommunikationsvorrichtung mit dem Ausgang der zweiten rekonfigurierbaren Verarbeitungseinheit verbunden ist, und der Ausgang der zweiten Kommunikationsvorrichtung mit dem Eingang der zweiten rekonfigurierbaren Verarbeitungseinheit verbunden ist; und eine Verbindungseinrichtung zum Leiten von Daten und mit einer Vielzahl von Kommunikationskanälen, wobei sowohl der erste Datenport der ersten Kommunikationsvorrichtung als auch der zweite Datenport

wobei sowohl der erste Datenport der ersten Kommunikationsvorrichtung als auch der zweite Datenport der ersten Kommunikationsvorrichtung und der erste Datenport der zweiten Kommunikationsvorrichtung und der zweite Datenport der zweiten Kommunikationsvorrichtung mit einem der Vielzahl von Kommunikationskanälen verbunden ist.

19. System nach Anspruch 18, bei welchem die erste rekonfigurierbare Verarbeitungseinheit dynamisch unabhängig von der Rekonfiguration der zweiten rekonfigurierbaren Verarbeitungseinheit rekonfigurierbar ist.

20. System Anspruch 18, das weiter folgendes aufweist:

eine dritte rekonfigurierbare Verarbeitungseinheit zur Ausführung von Programminstruktionen, um Daten zu verarbeiten, wobei die dritte rekonfigurierbare Verarbeitungseinheit einen Eingang, einen Ausgang und eine veränderbare interne Hardware-Organisation aufweist, die selektiv während der Ausführung einer Sequenz von Programminstruktionen veränderbar ist; und

eine dritte Kommunikationsvorrichtung mit einem Eingang, einem Ausgang, einem ersten Datenport und einem zweiten Datenport, um Daten zu und von der dritten rekonfigurierbaren Verarbeitungseinheit zu

übertragen, wobei der Eingang der dritten Kommunikationsvorrichtung mit dem Ausgang der dritten rekonfigurierbaren Verarbeitungseinheit verbunden ist, der Ausgang der dritten Kommunikationsvorrichtung mit dem Eingang der dritten rekonfigurierbaren Verarbeitungseinheit verbunden ist, sowohl der erste Datenport der dritten Kommunikationsvorrichtung als auch der zweite Datenport der dritten Kommunikationsvorrichtung als auch der zweite Datenport der dritten Kommunikationsvorrichtung mit einer der Vielzahl von Kommunikationskanälen der Verbindungseinrichtung verbunden ist.

21. System nach Anspruch 17, das weiter folgendes aufweist:

eine nicht-rekonfigurierbare Verarbeitungseinheit mit einer vorbestimmten Architektur, um ein Programm von Instruktionen auszuführen, das aus einem einzigen Instruktionssatz ausgebildet ist, wobei die nicht-re-konfigurierbare Verarbeitungseinheit einen Eingang und einen Ausgang umfaßt; und

eine zweite Kommunikationsvorrichtung mit einem Eingang, einem Ausgang, einem ersten Datenport und einem zweiten Datenport, um Daten zu und von der nicht-rekonfigurierbaren Verarbeitungseinheit zu übertragen, wobei der Eingang der dritten Kommunikationsvorrichtung mit dem Ausgang der nicht-rekonfigurierbaren Verarbeitungseinheit verbunden ist, der Ausgang der dritten Kommunikationsvorrichtung mit dem Eingang der nicht-rekonfigurierbaren Verarbeitungseinheit verbunden ist; und

eine Verbindungseinrichtung zum Leiten von Daten mit einer Vielzahl von Kommunikationskanälen, wobei sowohl der erste Datenport der ersten Kommunikationsvorrichtung als auch der zweite Datenport der ersten Kommunikationsvorrichtung und der erste Datenport der zweiten Kommunikationsvorrichtung und der zweite Datenport der zweiten Kommunikationsvorrichtung und der zweiten Kommunikationsvorrichtung mit einem der Vielzahl von Kommunikationsvorrichtung mit

tionskanälen verbunden ist.

10

15

20

25

30

35

40

45

50

55

60

65

22. System nach Anspruch 17, das weiter folgendes aufweist:

eine L/O-Vorrichtung mit einem Eingang und einem Ausgang; und

eine I/O-Kommunikationsvorrichtung mit einem Eingang, einem Ausgang, einem ersten Datenport und einem zweiten Datenport, um Daten zu und von der I/O-Vorrichtung zu übertragen, wobei der Eingang der I/O-Kommunikationsvorrichtung mit dem Ausgang der I/O-Vorrichtung verbunden ist, der Ausgang der I/O-Kommunikationsvorrichtung mit dem Eingang der I/O-Vorrichtung verbunden ist; und

eine Verbindungseinrichtung zum Leiten von Daten mit einer Vielzahl von Kommunikationskanälen, wobei sowohl der erste Datenport der ersten Kommunikationsvorrichtung als auch der zweite Datenport der ersten Kommunikationsvorrichtung und der erste Datenport der I/O-Kommunikationsvorrichtung und der zweite Datenport der I/O-Kommunikationsvorrichtung mit einem der Vielzahl von Kommunikationskanälen verbunden ist.

23. System nach Anspruch 17, das weiter eine Master-Zeitbasiseinheit mit einem Ausgang umfaßt, um ein Master-Zeitsteuersignal zu der ersten rekonfigurierbaren Verarbeitungseinheit zu liefern.

24. System nach Anspruch 23, bei welchem die erste rekonfigurierbare Verarbeitungseinheit weiter eine lokale Zeitbasis-Einheit mit einem Eingang und einem Ausgang umfaßt, um ein lokales Zeitsteuersignal von dem Master-Zeitsteuersignal zu erzeugen, wobei der Eingang der lokalen Zeitbasis-Einheit mit dem Ausgang der Master-Zeitbasiseinheit verbunden ist und der Ausgang der lokalen Zeitbasiseinheit mit einem Zeitsteuereingang der rekonfigurierbaren Verarbeitungseinheit verbunden ist.

25. System nach Anspruch 17, bei welchem die erste rekonfigurierbare Verarbeitungseinheit aus einer

programmierbaren Logikvorrichtung aufgebaut ist.

26. System nach Anspruch 25, bei welchem die programmierbare Logikvorrichtung ein erstes feldprogrammierbares Gatter-Array ist, das eine Vielzahl von konfigurierbaren Logikblöcken, eine Vielzahl von programmierbaren I/O-Blöcken und eine Vielzahl von programmierbaren Verbindungsstrukturen und Datenspeicher-Systemelementen enthält.

27. System nach Anspruch 17, bei welchem das System weiter einen Speicher umfaßt, der einen ersten Konfigurationsdatensatz speichert, der einer ersten Instruktionssatz-Architektur für einen seriellen Instruktionsprozessor entspricht, und einem zweiten Konfigurationsdatensatz, der einer zweiten Instruktionssatz-Architektur für einen parallelen Instruktionsprozessor entspricht, umfaßt und bei welchem die erste rekonfigurierbare Verarbeitungseinheit selektiv als eine aus der Gruppe von einem seriellen Instruktionsprozessor und einem parallelen Instruktionsprozessor konfiguriert wird, und zwar in Antwort auf Signale von dem Speicher, wobei die erste rekonfigurierbare Verarbeitungseinheit mit dem Speicher verbunden ist.

28. System nach Anspruch 27, bei welchem die erste rekonfigurierbare Verarbeitungseinheit mit dem Speicher über eine Vielzahl von Signalleitungen verbunden ist und die erste Anzahl von der Vielzahl von Signalleitungen Adressenleitungen ausbildet, eine zweite Anzahl von der Vielzahl von Signalleitungen Steuerleitungen ausbildet und eine dritte Anzahl der Vielzahl von Signalleitungen Datenleitungen ausbildet, wobei die erste Anzahl, die zweite Anzahl und dritte Anzahl der Vielzahl von Signalleitungen rekonfigurierbar sind und gemäß einem Konfigurationsdatensatz gesetzt bzw. eingestellt werden, der durch die erste rekonfigurierbare Verarbeitungseinheit verwendet wird.

29. System nach Anspruch 17, bei welchem die veränderbare interne Hardware-Organisation der ersten rekonfigurierbaren Verarbeitungseinheit eine rekonfigurierbare Instruktionsabrufeinheit mit einem ersten Dateneingang, einem ersten Steuerausgang und einem zweiten Steuerausgang umfaßt, um Instruktions-Ausführungsoperationen innerhalb der ersten rekonfigurierbaren Verarbeitungseinheit sequentiell zu ordnen, wobei der Dateneingang mit einem Datenport eines Speichers verbunden ist.

30. System nach Anspruch 28, bei welchem die Instruktionsabrufeinheit einen Architekturbeschreibungsspeicher mit einem Ausgang umfaßt, wobei der Architekturbeschreibungsspeicher einen Satz von Architekturbeschreibungssignalen einschließlich eines Interruptantwortsignals speichert, das eine Art und Weise spezifiziert, in der die erste rekonfigurierbare Verarbeitungseinheit auf ein Interruptsignal antwortet, wenn sie konfiguriert ist, um eine Instruktionssatz-Architektur zu realisieren bzw. zu implementieren.

31. System nach Anspruch 30, bei welchem die Instruktionsabrufeinheit weiter folgendes umfaßt: einen Instruktionszustandssequenzer bzw. eine Instruktionszustandsfolgesteuereinheit mit einem Eingang umd einem Ausgang, um einen Instruktionsausführungszyklus mit einem Instruktionsabrufzustand, einen Instruktionsdecodierzustand,

einen Instruktionsausführungszustand und einen Schreib-zurück-Zustand zu steuern, wobei der Instruktionsausführungszyklus zu der Ausführung einer Instruktion innerhalb der Instruktionssatz-Architektur führt; und

eine Interruptszustandsmaschine mit einem Eingang und einem Ausgang, um ein Übergangssteuersignal zu erzeugen, das einen Zustand innerhalb des Instruktionsausführungszyklus spezifiziert, für den ein Übergang zu einem Interruptservicezustand erlaubt ist, wobei der Eingang der Interruptzustandsmaschine mit dem Ausgang des Architekturbeschreibungsspeichers verbunden ist, der Ausgang der Interruptzustandsmaschine mit dem Eingang des Instruktionszustandssequenzers bzw. der Instruktionszustandsfolgesteuereinheit verbunden ist.

32. System nach Anspruch 31, bei welchem die Instruktionsabrufeinheit weiter folgendes aufweist:
eine programmierbare Abrufsteuereinheit mit einem Eingang und einem Ausgang, um die Operation eines
Instruktionspuffers variabler Größe zu steuern, wobei der Eingang der programmierbaren Abrufsteuereinheit mit einem Ausgang der Instruktionszustandsfolgesteuereinheit bzw. des Instruktionszustandssequenzers verbunden ist, um Signale zu empfangen, die die Operation der programmierbaren Abrufsteuereinheit festlegen, wobei der Eingang der programmierbaren Abrufsteuereinheit mit dem Instruktionspuffer verbunden ist; und

eine programmierbare Decodiersteuereinheit mit einem Eingang und einem Ausgang, um die Operation eines Instruktionsdecoders variabler Größe zu steuern, wobei der Eingang der programmierbaren Abrufsteuereinheit mit dem Ausgang des Instruktionszustandssequenzers bzw. der Instruktionszustandsfolgesteuereinheit verbunden ist, um Signale zu empfangen, die die Operation der programmierbaren Decodiersteuereinheit festlegen, wobei der Ausgang der programmierbaren Decodiersteuereinheit mit dem Instruktionsdecoder verbunden ist, um Programminstruktionen von dem Instruktionspuffer zu empfangen.

33. System nach Anspruch 17, bei welchem die veränderbare interne Hardware-Organisation der ersten rekonfigurierbaren Verarbeitungseinheit eine rekonfigurierbare Datenoperationseinheit mit einem Datenport und einem Steuereingang umfaßt, um Operationen bezüglich Daten durchzuführen, wobei der Datenport der Datenoperationseinheit mit einem Datenport eines Speichers verbunden ist und der Steuereingang verbunden ist, um Steuersignale zu empfangen.

34. System nach Anspruch 33, bei welchem die rekonfigurierbare Datenoperationseinheit folgendes aufweist:

einen Schalter mit einem Datenport, einem Steuereingang, einem Rückführ- bzw. Feedbackeingang und einem Ausgang, um selektiv Daten zwischen dem Datenport, dem Rückführ- bzw. Feedbackeingang und dem Ausgang zu leiten, wobei der Datenport des Schalters mit dem Datenport des Speichers verbunden ist und der Steuereingang des Schalters mit dem ersten Steuerausgang der Instruktionsabrufeinheit verbunden ist:

eine Abspeicher-/Ausrichteinheit mit einem Eingang, einem Ausgang und einer Steuereinheit, um Daten und Datenberechnungsergebnisse zu speichern, wobei der Eingang der Abspeicher-/Ausrichteinheit mit dem Ausgang des Schalters verbunden ist, der Steuereingang der Speicher-/Ausrichteinheit mit dem ersten Steuerausgang der Instruktionsabrufeinheit verbunden ist; und

eine Datenoperationsschaltung mit einem Eingang, einem Ausgang und einem Steuereingang, um Datenberechnungen durchzuführen, wobei der Eingang der Datenoperationsschaltung mit dem Ausgang der Abspeicher-/Ausrichteinheit verbunden ist, der Ausgang der Datenoperationsschaltung mit dem Rückführbzw. Feedbackeingang des Schalters verbunden ist, und der Steuereingang der Datenoperationsschaltung mit dem ersten Steuerausgang der Instruktionsabrufeinheit verbunden ist.

35. System nach Anspruch 34, bei welchem die Speicher-/Ausrichteinheit als etwas von der Gruppe rekonfigurierbar ist, die einen Speicher mit wahlfreiem Zugriff bzw. ein RAM aufweist und ein gepipelinetes Register bzw. ein Fließbandregister aufweist, und zwar in Antwort auf Steuersignale von dem Speicher, die ein Konfigurationsdatensatz darstellen, der einer ersten Instruktionssatz-Architektur bzw. einer zweiten Instruktionssatz-Architektur entspricht.

36. System nach Anspruch 35, bei welchem die Datenoperationseinheit als eine aus der Gruppe von einer arithmetischen Logikeinheit und einer gepipelineten Funktionseinheit rekonfigurierbar ist, und zwar in 55 Antwort auf Konfigurationssignale aus dem Speicher.

37. System nach Anspruch 17, bei welchem die veränderbare interne Hardware-Organisation der ersten rekonfigurierbaren Verarbeitungseinheit eine rekonfigurierbare Adressenoperationseinheit mit einem ersten Steuereingang, einem Adresseneingang und einem Ausgang umfaßt, um Operationen bezüglich Adressen durchzuführen, wobei der Adresseneingang mit dem Datenport eines Speichers verbunden ist und der Ausgang der Adressenoperationseinheit mit einem Adresseneingang des Speichers verbunden ist und der Steuereingang der Adressenoperationseinheit verbunden ist, um Steuersignale zu empfangen.

38. System nach Anspruch 37, bei welchem die rekonfigurierbare Adressenoperationseinheit folgendes umfaßt:

einen Schalter mit einem Datenport, einem Steuereingang, einem Rückführ- bzw. Feedbackeingang und einem Ausgang, um selektiv Adressen zwischen dem Datenport, dem Rückführ- bzw. Feedbackeingang und dem Ausgang zu leiten, wobei der Datenport des Schalters mit dem Datenport des Speichers verbunden ist und der Steuereingang des Schalters mit dem ersten Steuerausgang der Instruktionsabrufeinheit verbunden

196 14 991 A1 DE

ist:

5

10

15

25

30

35

45

55

65

eine Abspeicher-/Zähleinheit mit einem Eingang, einem Ausgang und einem Steuereingang, um Daten zu speichern, wobei der Eingang der Abspeicher-/Zähleinheit mit dem Ausgang des Schalters verbunden ist, der Steuereingang der Abspeicher-/Zähllogik mit dem zweiten Steuerausgang der Instruktionsabrufeinheit verbunden ist: und

eine Adressenoperationsschaltung mit einem Eingang, einem Ausgang und einem Steuereingang, um Adressenberechnungen durchzuführen, wobei der Eingang der Adressenoperationsschaltung mit dem Ausgang der Abspeicher-/Zähleinheit verbunden ist, der Ausgang der Adressenoperationsschaltung mit dem Rückführ- bzw. Feedbackeingang des Schalters verbunden ist, und der Steuereingang der Adressenoperationseinheit mit dem zweiten Steuerausgang der Instruktionsabrufeinheit verbunden ist.

39. System nach Anspruch 38, bei welchem die Abspeicher-/Zähleinheit rekonfigurierbar ist und selektiv als eine aus der Gruppe von einem Speicher mit wahlfreiem Zugriff bzw. einem RAM und einem Register konfiguriert werden kann, und zwar in Antwort auf Signale, die am Steuereingang der Abspeicher-/Zāhleinheit empfangen werden.

40. System nach Anspruch 38, bei welchem die Adressenoperationsschaltung als eine aus der Gruppe von einem Register und einem Register und einer arithmetischen Einheit rekonfigurierbar ist, und zwar in Antwort auf Signale, die an dem Steuereingang der Adressenoperationsschaltung empfangen werden. 41. System nach Anspruch 17, bei welchem die erste rekonfigurierbare Verarbeitungseinheit folgendes

umfaßt:

eine rekonfigurierbare Instruktionsabrufeinheit mit einem Dateneingang, einem ersten Steuereingang und 20 einem zweiten Steuerausgang, um Instruktionsausführungsoperationen innerhalb der ersten rekonfigurierbaren Verarbeitungseinheit sequentiell zu ordnen, wobei der Dateneingang mit dem Datenport eines Speichers verbunden ist;

eine rekonfigurierbare Datenoperationseinheit mit einem Datenport und einem Steuereingang, um Operationen bezüglich Daten durchzuführen, wobei der Datenport der Datenoperationseinheit mit dem Datenport des Speichers verbunden ist und der Steuereingang mit dem ersten Steuerausgang der Instruktionsab-

rufeinheit verbunden ist; und

eine rekonfigurierbare Adressenoperationseinheit mit einem Steuereingang, einem Adresseneingang und einem Ausgang, um Operationen bezüglich Adressen durchzuführen, wobei der Steuereingang der Adressenoperationseinheit mit dem zweiten Steuerausgang der Instruktionsabrufeinheit verbunden ist, der Adresseneingang mit dem Datenport des Speichers verbunden ist und der Ausgang der Adressenoperationseinheit mit einem Adresseneingang des Speichers verbunden ist.

42. System nach Anspruch 41, bei welchem die rekonfigurierbare Instruktionsabrufeinheit, die rekonfigurierbare Datenoperationseinheit und die rekonfigurierbare Adressenoperationseinheit während der Ausführung eines Befehls durch die erste rekonfigurierbare Verarbeitungseinheit rekonfigurierbar sein

43. System zum Koppeln bzw. Verbinden eines ersten Prozessors bzw. einer ersten Verarbeitungseinrichtung mit einem zweiten Prozessor bzw. einer zweiten Verarbeitungseinrichtung, wobei das System folgen-

eine erste Kommunikationsvorrichtung mit einem Eingang, einem Ausgang, einem ersten Datenport und einem zweiten Datenport, um Daten zu und von dem ersten Prozessor zu übertragen, wobei der Eingang und der Ausgang der ersten Kommunikationsvorrichtung mit dem ersten Prozessor verbunden ist; und eine zweite Kommunikationsvorrichtung mit einem Eingang, einem Ausgang, einem ersten Datenport und einem zweiten Datenport, um Daten zu und von dem zweiten Prozessor zu übertragen, wobei der Eingang

und der Ausgang der zweiten Kommunikationsvorrichtung mit dem zweiten Prozessor verbunden ist; und eine Verbindungseinrichtung zum Bereitstellen einer Punkt-zu-Punkt-Parall-Datenwegeleitung mit einem ersten und einem zweiten Kommunikationskanal, wobei der erste Datenport der ersten Kommunikationsvorrichtung und der erste Datenport der zweiten Kommunikationsvorrichtung mit dem ersten Kommunikationskanal verbunden ist und der zweite Datenport der ersten Kommunikationsvorrichtung und der zweite Datenport der zweiten Kommunikationsvorrichtung mit dem zweiten Kommunikationskanal ver-

44. System nach Anspruch 43, bei welchem die erste und die zweite Kommunikationsvorrichtung jeweils als ein feldprogrammierbares Gatter-Array aufgebaut bzw. konstruiert sind.

45. System nach Anspruch 43, bei welchem die erste Kommunikationsvorrichtung weiter folgendes auf-

eine Schnittstellen- und Steuereinheit mit einem ersten Datenport, einem zweiten Datenport und einem Steuerport, um Daten und Befehle bzw. Kommandos zu empfangen und zu senden, und zwar zu und von dem ersten Prozessor, wobei der erste Datenport mit dem ersten Prozessor zum Senden und Empfangen von Daten verbunden ist und der Steuerport mit dem ersten Prozessor zum Senden und Empfangen von Befehlen bzw. Kommandos verbunden ist;

eine erste Verbindungseinheit mit einem Eingang, einem Ausgang, einem Port und einer einzigen Verbindungsadresse, wobei der Port der ersten Verbindungseinheit mit dem zweiten Datenport der Schnittstellenund Steuereinheit verbunden ist, und der Eingang und Ausgang der ersten Verbindungseinheit mit Knoten des ersten Kommunikationskanals verbunden sind; und

eine zweite Verbindungseinheit mit einem Eingang, einem Ausgang, einem Port und einer einzigen Verbindungsadresse, wobei die zweite Verbindungseinheit mit dem zweiten Datenport der Schnittstellen- und Steuereinheit verbunden ist und der Eingang und der Ausgang der zweiten Verbindungseinheit mit Knoten

des zweiten Kommunikationskanals verbunden sind.

	46. System nach Anspruch 45, bei welchem die erste Verbindungseinheit folgendes aufweist: einen Adressendecoder mit einem Eingang und einem ersten und zweiten Ausgang, um selektiv Daten zu einem der ersten und zweiten Ausgänge zu leiten, und zwar in Antwort auf eine Adresse, die als ein Teil eines Nachrichtenpakets ausgebildet ist, wobei der Eingang des Adressendecoders mit dem ersten Kommunikationskanal verbunden ist; einen ersten Puffer zum Speichern von Daten, wobei der erste Puffer einen Eingang und einen Ausgang aufweist, wobei der Eingang des ersten Puffers mit dem ersten Ausgang des Adressendecoders verbunden ist und der Ausgang mit dem Interface und der Steuereinheit verbunden ist; einen zweiten Puffer zum Speichern von Daten, wobei der zweite Puffer einen Eingang und einen Ausgang aufweist, wobei der Eingang des zweiten Puffers mit dem zweiten Ausgang des Adressendecoders verbunden ist:	l 5
	einen dritten Puffer zum Speichern von Daten, wobei der dritte Puffer einen Eingang und einen Ausgang aufweist, wobei der Eingang des dritten Puffers mit der Schnittstellen- und Steuereinheit verbunden ist:	
	einen Multiplexer mit einem ersten Eingang, einem zweiten Eingang, einem Steuereingang und einem Ausgang, um selektiv Daten von dem ersten Eingang oder dem zweiten Eingang in Antwort auf ein Steuersignal zu dem Steuereingang weiterzugeben, wobei der erste Eingang mit dem Ausgang des zweiten Puffers verbunden ist, der zweite Eingang mit dem dritten Puffer verbunden ist, der Steuereingang mit der Schnittstellen- und Steuerlogik verbunden ist und der Ausgang des Multiplexers mit dem ersten Kommuni-	
	kationskanal verbunden ist. 47. System nach Anspruch 45, bei welchem	20
	der erste Prozessor mit der Schnittstellen- und Steuereinheit über einen Speicher verbunden ist, der eine Vielzahl von Signalleitungen aufweist, und wobei eine erste Anzahl der Vielzahl von Signalleitungen Adressenleitungen ausbilden, eine zweite Anzahl der Vielzahl von Signalleitungen Steuerleitungen ausbilden und eine dritte Anzahl der Vielzahl von Signalleitungen Datenleitungen ausbilden; und der erste Prozessor und die Schnittstellen- und Steuereinheit derartig rekonfigurierbar sind, daß die erste Anzahl, die zweite Anzahl und die dritte Anzahl der Vielzahl von Signalleitungen gemäß eines Konfigura-	
	tionsdatensatzes, der durch den ersten Prozessor und die Schnittstellen- und Steuereinheit genutzt bzw. verwendet wird, eingestellt bzw. gesetzt werden kann. 48. System nach Anspruch 45, bei welchem der erste Prozessor mit der Schnittstellen- und Steuereinheit über einen Speicher, der eine Vielzahl von	30
	Signalleitungen aufweist, verbunden ist und wobei eine erste Anzahl der Vielzahl von Signalleitungen Adressenleitungen ausbilden, eine zweite Anzahl der Vielzahl von Signalleitungen Steuerleitungen ausbilden und eine dritte Anzahl der Vielzahl von Signalleitungen Datenleitungen ausbilden; und der erste Prozessor und die Schnittstellen- und Steuereinheit derartig rekonfigurierbar sind, daß die erste Anzahl, die zweite Anzahl und die dritte Anzahl der Vielzahl von Signalleitungen gemäß eines Konfigurationsdatensatzes eingestellt werden können, der durch den ersten Prozessor und die Schnittstellen- und Steuereinheit verwendet bzw. genutzt wird.	35
	49. System nach Anspruch 45, bei welchem der erste Prozessor mit der Schnittstellen- und Steuereinheit über einen Speicher, der eine Vielzahl von Signalleitungen aufweist, verbunden ist, und wobei eine erste Anzahl der Vielzahl von Signalleitungen Adressenleitungen ausbilden, eine zweite Anzahl der Vielzahl von Signalleitungen Steuerleitungen ausbilden und eine dritte Anzahl der Vielzahl von Signalleitungen Datenleitungen ausbilden; und	40
1	die Schnittstellen- und Steuereinheit derartig rekonfigurierbar ist, daß die erste Anzahl, die zweite Anzahl bzw. die dritte Anzahl der Vielzahl von Signalleitungen eingestellt werden kann, um mit einer Anzahl von Adressen-, Steuer- bzw. Datenleitungen zusammenzupassen, die durch den ersten Prozessor verwendet werden, um auf den Speicher zuzugreifen und diesen zu steuern.	45
1 4 5	50. System nach Anspruch 45, bei welchem die Schnittstellen- und Steuereinheit eine Nachricht in einen Befehl bzw. in ein Kommando und in Daten, die von dem ersten Prozessor verwendet werden können, umwandelt und Kommandos bzw. Befehle und Daten von dem ersten Prozessor in eine Nachricht zur Übertragung über die Verbindungseinrichtung bündelt bzw. packetiert. 51. Verfahren zur Erzeugung von Instruktionen, die von einem rekonfigurierbaren Computer aus einer Vielzahl von Aussagen hohen Niveaus ausführbar sind, wobei das Verfahren die folgenden Schritte aufzeitet.	50
6	weist: eine Vielzahl von Sätzen von Regeln zum Übersetzen von Aussagen hohen Niveaus in Instruktionen, die durch einen rekonfigurierbaren Computer ausführbar sind, wird bereitgestellt; einer der Vielzahl von Sätzen von Regeln wird als der gegenwärtige Satz von Regeln ausgewählt, der	5 5
e	verwendet werden soll, um Aussagen hohen Niveaus in Instruktionen zu übersetzen, die durch einen vekonfigurierbaren Computer ausführbar sind; eine Aussage hohen Niveaus wird ausgewählt;	60
s ad	b die gewählte Aussage hohen Niveaus eine Rekonfigurationsanweisung ist, wird bestimmt; ler gegenwärtige Satz von Regeln, der zum Übersetzen von Aussagen hohen Niveaus verwendet werden oll, wird in einen Satz von Regeln geändert, der in der Rekonfigurationsanweisung spezifiziert ist, falls die gewählte Aussage hohen Niveaus eine Rekonfigurationsanweisung ist; und lie gewählte Aussage hohen Niveaus wird in wenigstens eine Instruktion übersetzt, die durch eine rekonfi-	
5	zurierbaren Computer ausführbar ist, indem der gegenwärtige Satz von Regeln verwendet wird. 2. Verfahren nach Anspruch 51, bei welchem jeder der Vielzahl von Sätzen von Regeln zum Übersetzung on Aussagen hohen Niveaus in Instruktionen, die durch den rekonfigurierbaren Computer ausführbar sind,	

einer unterschiedlichen Instruktionssatz-Architektur entspricht. 53. Verfahren nach Anspruch 51, das weiter folgende Schritte aufweist: die Rekonfigurationsanweisung wird in eine Rekonfigurationsaussage mittleren Niveaus übersetzt, falls die gewählte Aussage hohen Niveaus eine Rekonfigurationsanweisung ist; die gewählte Aussage wird in eine Aussage mittleren Niveaus übersetzt, falls die gewählte Aussage hohen Niveaus nicht eine Rekonfigurationsanweisung ist; eine Registerzuweisung wird durchgeführt; bei welchem der Schritt der Veränderung des gegenwärtigen Satzes von Regeln die folgenden Unterschritte aufweist: eine Aussage mittleren Niveaus wird ausgewählt; 10 es wird bestimmt, ob die gewählte Aussage mittleren Niveaus eine Rekonfigurationsaussage mittleren Niveaus ist; und ein Satz von Regeln wird ausgewählt, der der Instruktionssatz-Architektur entspricht, die durch die Rekonfigurationsaussage mittleren Niveaus spezifiziert ist, falls die gewählte Aussage mittleren Niveaus eine Rekonfigurationsaussage mittleren Niveaus ist; und 15 bei welchem der Schritt des Übersetzens der gewählten Aussage hohen Niveaus den Schritt der Erzeugung einer Assemblersprachaussage aus der gewählten Aussage mittleren Niveaus beinhaltet, wobei der gewählte Satz von Regeln verwendet wird, der der Instruktionssatz-Architektur entspricht, die durch die Rekonfigurationsaussage mittleren Niveaus spezifiziert ist. 54. Dynamisch rekonfigurierbares Computersystem mit einer rekonfigurierbaren Verarbeitungseinheit, 20 wobei ein Verfahren zum dynamisch rekonfigurierbaren Rechnen folgende Schritte aufweist: die rekonfigurierbare Verarbeitungseinheit zur Operation gemäß eines ersten Konfigurationsdatensatzes, der einer ersten Instruktionssatz-Architektur entspricht, wird konfiguriert, wobei die Konfiguration der rekonfigurierbaren Verarbeitungseinheit zu einer Hardware-Organisation führt, die die erste Instruktionssatz-Architektur realisiert bzw. implementiert; 25 ein Instruktionsausführungszyklus der rekonfigurierbaren Verarbeitungseinheit wird unterbrochen; und die rekonfigurierbare Verarbeitungseinheit gemäß einem zweiten Konfigurationsdatensatz, der einer zweiten Instruktionssatz-Architektur entspricht, wird derart rekonfiguriert daß die Hardware-Organisation der rekonfigurierbaren Verarbeitungseinheit die zweite Instruktionssatz-Architektur realisiert. 55. Verfahren nach Anspruch 54, das weiter den Schritt aufweist, wonach während der Ausführung einer 30 Sequenz von Programminstruktionen bestimmt wird, ob Hardware innerhalb der dynamisch rekonfigurierbaren Verarbeitungseinheit rekonfiguriert werden soll. 56. Verfahren nach Anspruch 55, das weiter den Schritt beinhaltet, wonach ein neuer Instruktionsausführungszyklus nach dem Schritt einer Rekonfigurierung ausgelöst wird. 57. Verfahren nach Anspruch 56, bei welchem der Instruktionsausführungszyklus einer ersten Programmin-35 struktion innerhalb der Sequenz von Programminstruktionen entspricht, und der neue Instruktionsausführungszyklus einer zweiten Programminstruktion innerhalb der Sequenz von Programminstruktionen entspricht. 58. Verfahren nach Anspruch 54, das weiter die folgenden Schritte aufweist: ein erster Satz von Übergangssteuersignalen, der der ersten instruktionssatz-Architektur entspricht, wird 40 erzeugt, wobei der erste Satz von Übergangssteuersignalen einen Satz unterbrechbarer Zustände innerhalb des Instruktionsausführungszyklus spezifiziert; und ein zweiter Satz von Übergangssteuersignalen wird erzeugt, der der zweiten Instruktionssatz-Architektur entspricht, wobei der zweite Satz von Übergangssteuersignalen einen Satz unterbrechbarer Zustände innerhalb eines zweiten Instruktionsausführungszyklus spezifiziert. 45 59. Dynamisch rekonfigurierbarer Computer, der folgendes aufweist: eine Einrichtung zum Konfigurieren einer rekonfigurierbaren Verarbeitungseinheit mit einem ersten Konfigurationsdatensatz, der einer ersten Instruktionssatz-Architektur entspricht, wobei die Konfiguration der rekonfigurierbaren Verarbeitungseinheit zu einer Hardware-Organisation führt, die die erste Instruktionssatz-Architektur realisiert bzw. implementiert; 50 eine Einrichtung, um während der Ausführung einer Sequenz von Programminstruktionen zu bestimmen, ob die rekonfigurierbare Verarbeitungseinheit rekonfiguriert werden soll; und eine Einrichtung zum Rekonfigurieren der rekonfigurierbaren Verarbeitungseinheit gemäß eines zweiten Konfigurationsdatensatzes derart, daß die rekonfigurierbare Verarbeitungseinheit eine neue Hardware-Organisation aufweist, die eine zweite Instruktionssatz-Architektur realisiert bzw. implementiert. 55

60. Computer nach Anspruch 59, der weiter folgendes aufweist: eine Einrichtung, um einen ersten Instruktionsausführungszyklus, der einer ersten Programminstruktion innerhalb einer Sequenz von Programminstruktionen entspricht für den Fall zu unterbrechen, daß die

60

65

rekonfigurierbare Verarbeitungseinheit rekonfiguriert werden soll; und eine Einrichtung, um einen zweiten Instruktionsausführungszyklus auszulösen, der einer zweiten Programminstruktion innerhalb der Sequenz von Programminstruktionen entspricht, und zwar nachdem die

rekonfigurierbare Verarbeitungseinheit rekonfiguriert worden ist.
61. Computer nach Anspruch 59, der weiter eine Einrichtung zur Erzeugung eines Satzes von Übergangssteuersignalen erzeugt, die einer Instruktionssatz-Architektur entsprechen, wobei der Satz von Übergangssteuersignalen einen Satz von unterbrechbaren Zuständen innerhalb eines Instruktionsausführungszyklus

spezifiziert.
62. Dynamisch rekonfigurierbarer Computer innerhalb einer reprogrammierbaren Logikvorrichtung bzw. innerhalb eines reprogrammierbaren Logikbauelements, wobei der dynamisch rekonfigurierbare Compu-

ter folgendes aufweist: einen Architekturbeschreibungsspeicher mit einem Ausgang, um Architekturbeschreibungssigna chern, die eine Architektur des rekonfigurierbaren Computers charakterisieren, wobei die Arch schreibungssignale ein Interruptantwortsignal umfassen, das eine Art und Weise spezifiziert, dynamisch rekonfigurierbare Computer auf einen Interrupt antwortet; einen Instruktionszustandssequenzer bzw. eine Instruktionszustandsfolgesteuereinheit mit einen um eine Ausführung einer Instruktion durch den rekonfigurierbaren Computer zu steuern; und	itekturbe- n der der n Eingang,	5
eine Interruptzustandsmaschine mit einem ersten Eingang, einem zweiten Eingang und einem Au ein Übergangssteuersignal zu erzeugen, das spezifiziert bzw. vorgibt, wenn während des Instruführungszyklus ein Übergang zu einem Interruptservicezustand erlaubt ist, wobei der Eingang ruptzustandsmaschine mit dem Ausgang des Architekturbeschreibungsspeichers verbunden is Ausgang der Interruptzustandsmaschine mit dem Eingang des Instruktionszustandssequenzers Instruktionszustandsfolgesteuereinheit verbunden ist. 63. Computer nach Anspruch 62, bei welchem	ktionsaus- der Inter- t und der	10
ein erster Abschnitt der rekonfigurierbaren Logikvorrichtung gemäß einem ersten Satz von K tionsdaten konfiguriert ist, und zwar derart, daß eine erste Instruktionssatz-Architektur in de Abschnitt ausgebildet wird;		15
ein zweiter Abschnitt der rekonfigurierbaren Logikvorrichtung gemäß einem zweiten Satz von K tionsdaten derart konfiguriert wird, und zwar derart, daß eine zweite Instruktionssatz-Architekt zweiten Abschnitt ausgebildet wird; der rekonfigurierbare Computer konfiguriert werden kann, um den ersten Abschnitt oder de Abschnitt zur Verarbeitung zu verwenden; und	ur in dem	20
die Interruptzustandsmaschine in den Übergangssteuersignalen eine Anzeige des Abschnittes of grammierbaren Logikvorrichtungen bzw. einen Hinweis auf den Abschnitt, auf den der rekonfig Computer zum Verwenden bzw. zum Gebrauch eingestellt bzw. gesetzt ist, und die Instruktionen, die ausgewählte Instruktionssatz-Architektur ausgeführt werden können, beinhaltet.	urierbare die durch	25
64. Verfahren zum Verarbeiten von Daten mit einem dynamisch rekonfigurierbaren Computer, Instruktionsausführungszyklus bereitstellt, der einen Instruktionsabrufzustand, einen Instruktionsausführungszustand und einen Schreib-zurück-Zustand umfaßt, wobe fahren folgende Schritte aufweist: der Computer wird zum Betrieb gemäß einer ersten Instruktionssatz-Architektur konfiguriert, der Computer wird zum Betrieb gemäß einer ersten Instruktionssatz-Architektur konfiguriert, der Computer wird zum Betrieb gemäß einer ersten Instruktionssatz-Architektur konfiguriert, der Computer wird zum Betrieb gemäß einer ersten Instruktionssatz-Architektur konfiguriert, der Computer wird zum Betrieb gemäß einer ersten Instruktionssatz-Architektur konfiguriert, der Computer wird zum Betrieb gemäß einer ersten Instruktionssatz-Architektur konfiguriert, der Computer wird zum Betrieb gemäß einer ersten Instruktionsaus der Gemäß e	decodier- i das Ver-	30
brechbare bzw. auf ein Interrupt ansprechende Zustände spezifiziert bzw. vorgibt; ein Interruptsignal wird empfangen; ein Betriebszustand bzw. Operationszustand für den dynamischen rekonfigurierbaren Compbestimmt; es wird bestimmt, ob der Betriebszustand bzw. Operationszustand des dynamisch rekonfigu		35
Computers unterbrechbar ist; das Interruptsignal wird abgearbeitet, falls der dynamisch rekonfigurierbare Computer bestim einem unterbrechbaren Zustand zu sein. 65. Verfahren nach Anspruch 64, das weiter die folgenden Schritte aufweist: ein nächster unterbrechbarer Zustand wird bestimmt, indem der Betrieb bzw. die Operation des d rekonfigurierbaren Computers unterbrechbar sein kann, falls der dynamisch rekonfigurierbare (sich nicht in einem unterbrechbaren Zustand befindet;	ynamisch	40
es wird bestimmt, wenn der dynamisch rekonfigurierbare Computer in den nächsten unterbr Zustand übergeht, falls der dynamisch rekonfigurierbare Computer sich nicht in einem unterbr Zustand befindet;	echbaren	45
das Interruptsignal in dem nächsten unterbrechbaren Zustand wird abgearbeitet bzw. bedient, stimmt ist, daß der dynamisch rekonfigurierbare Computer nicht in einem unterbrechbaren Zustan 66. Verfahren nach Anspruch 64, bei welchem der Schritt des Bedienens bzw. Abarbeitens des Intenals weiter folgende Schritte aufweist: ein Ursprung bzw. Anfang, eine Priorität und eine Interrupthandleradresse bzw. eine Adresse crupthandhabungseinrichtung wird für den Interrupt bestimmt;	d ist. erruptsig-	50
es wird bestimmt, ob das Interruptsignal eine Rekonfiguration anzeigt; und Konfigurationsdaten für eine neue Instruktionssatz-Architektur werden im Interruptsteuerregiste chert, falls das Interruptsignal Rekonfiguration anzeigt. 67. Verfahren nach Anspruch 64, bei welchem der Schritt, wonach bestimmt wird, ob der Betriel bzw. Operationszustand des dynamisch rekonfigurierbaren Computers unterbrechbar ist, weiter Schritte aufweist:	szustand	55
ein Übergangssteuersignal wird empfangen, das der Instruktionssatz-Architektur entspricht, fü dynamisch rekonfigurierbare Computer konfiguriert worden ist, wobei die Übergangssteuersigna stens einen Zustand spezifizieren, in dem die Ausführung von Instruktionen unterbrechbar ist; und die Zustände, die durch die Übergangssteuersignale spezifiziert sind, werden mit dem Betriebszus:	le wenig-	60
Operationszustand des dynamisch rekonfigurierbaren Computers verglichen. 68. Verfahren nach Anspruch 64, bei welchem der dynamisch rekonfigurierbare Computer gen Anzahl von verschiedenen Instruktionssatz-Architekturen konfiguriert werden kann, wobei jede struktionssatz-Architekturen ein Satz von Übergangssteuersignalen liefert, die wenigstens eine brechbaren Betriebszustand einer Instruktionsausführung festlegen.	näß einer er der In- en unter-	65
69. Verfahren nach Anspruch 68, bei welchem jede Instruktionssatz-Architektur einen rekonfigu	rierbaren	

Interruptmechanismus umfaßt, der durch Modifikation des Satzes von Übergangssteuersignalen bereitgestellt wird, die der Instruktionssatz-Architektur zugeordnet sind.

Hierzu 23 Seite(n) Zeichnungen

- Leerseite -

This page Blank (Uspio)

Nummer: Int. Cl.⁶:

Int. Cl.⁸: Offenlegungstag:

Nummer: Int. Cl.⁶: Offenlegungstag:

12

FIG. 2

Nummer: Int. Cl.⁶:

Offenlegungstag:

52 {	
l	REKONFIGURIERE (ISA 1)
	54
52	REKONFIGURIERE (ISA 0)
()	REKONFIGURIERE (ISA 2)
	REKONFIGURIERE (ISA 3)
	REKONFIGURIERE (ISA 4)
	· · ·
	REKONFIGURIERE (ISA k)
52 {	REKONFIGURIERE (ISA 0)

FIG. 3A

Nummer: Int. Cl.⁶: Offenlegungstag:

FIG. 3B

STAND DER TECHNIK

Nummer: Int. Cl.⁶:

Offenlegungstag:

Nummer: Int. Cl.⁶: Offenlegungstag:

FIG. 3D

Nummer: Int. Cl.⁶:

Offenlegungstag:

FIG. 4

Nummer: Int. Cl.⁶: Offenlegungstag:

Nummer: Int. Cl.8:

DE 196 14 991 A1 G 06 F 9/06

Offenlegungstag:

24. Oktober 1996

INTERRUPT-NÄCHSTER UNTERBRECHBARER SIGNAL ZUSTAND, WIE DURCH ÜBERGANGS-STEUER-ZUSTAND, WIE **EMPFANGEN** DURCH ÜBERGANGS-STEUERSIGNALE SIGNALE SPEZIFIZIERT SPEZIFIZIERT

FIG. 6

Nummer: Int. Cl.⁸: Offenlegungstag: DE 196 14 991 A1 G 06 F 9/06 24. Oktober 1996

16.7

Nummer: Int. Cl.⁸:

Offenlegungstag:

DE 196 14 991 A1 G 06 F 9/06 24. Oktober 1996

602 043/434

Nummer: Int. Cl.⁶: Offenlegungstag:

Nummer: Int. Cl.⁸:

Offenlegungstag:

Nummer: Int. Cl.⁶:

Offenlegungstag:

602,043/434

Nummer:

DE 196 14 991 A1 G 06 F 9/06

Int. Cl.6: Offenlegungstag: 24. Oktober 1996

602 043/434

Nummer: int. Cl.⁶: Offenlegungstag:

Nummer: Int. Cl.⁶: Offenlegungstag: DE 198 14 991 A1 G 06 F 9/06 24. Oktober 1996

FIG. 12A

ZUORDNUNG REKONFIGURIERBARER HARDWARE-SYSTEMELEMENTE

FIG. 12B

Nummer: Int. CI.⁶: Offenlegungstag:

FIG. 13

Nummer: Int. Cl.⁵:

Offenlegungstag:

FIG. 14

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 196 14 991 A1 G 06 F 9/06 24. Oktober 1996

602 043/434

Nummer: Int. Cl.⁸:

Offenlegungstag:

FIG. 16

Nummer: Int. Cl.6:

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 196 14 991 A1 G 06 F 9/06

24. Oktober 1996

DOCKET NO: <u>GR9878107</u>
SERIAL NO: <u>09/816,926</u>
APPLICANT: <u>Arnold & al.</u>
LERNER AND GREENBERG P.A.
P.O. BOX 2480
HOLLYWOOD, FLORIDA 33022
TEL. (954) 925-1100

FIG. 17B

602 043/434