

Практическое занятие 5

Функциональные ряды. Область сходимости. Теорема Вейерштрасса

Степенные ряды. Теорема Абеля. Интервал и радиус сходимости

Теоретический материал

1. Функциональные ряды. Область сходимости.

Определение. Пусть дана последовательность функций: $u_1(x), u_2(x), \cdots, u_n(x), \cdots$, определенных на некотором множестве X. Выражение вида: $u_1(x) + u_2(x) + \cdots + u_n(x) + \cdots = \sum_{n=1}^{\infty} u_n(x)$ называется функциональным рядом, а множество X – областью определения этого ряда.

При подстановке произвольного значения x из множества X функциональный ряд становится числовым, причем при одних значениях x числовой ряд может быть сходящимся, а при других — расходящимся.

<u>Определение.</u> Множество значений переменной x, при которых функциональный ряд сходится, называется *областью сходимости* функционального ряд.

В области сходимости можно говорить о:

- а) *сумме* функционального ряда $S(x)=u_1(x)+\cdots+u_n(x)+\cdots$;
- δ) частичной сумме $S_n(x) = u_1(x) + \cdots + u_n(x)$;
- B) остаточном члене $r_n(x) = u_{n+1}(x) + \cdots$

<u>Пример 1.</u> $\sum_{n=1}^{\infty} ax^{n-1} = a + ax + ax^2 + \dots + ax^{n-1} + \dots; a \neq 0.$ <u>Решение.</u> Областью сходимости данного ряда является область |x| < 1, для всех x из этой области сумма ряда $S = \frac{a}{1-x}$.

$$\underline{\Pi pumep \ 2.} \ \frac{1}{1^x} + \frac{1}{2^x} + \cdots + \frac{1}{n^x} + \cdots$$

<u>Решение.</u> Областью сходимости данного ряда является область x > 1.

Пример 3.
$$\frac{1}{1+x^2} + \frac{1}{2^2+x^2} + \cdots + \frac{1}{n^2+x^2} + \cdots$$

<u>Решение</u>. Оценим общий член данного ряда $\frac{1}{n^2+x^2} \leq \frac{1}{n^2}$, отсюда следует, что ряд сходится $\forall x$, т.к. $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится как ряд Дирихле с показателем $\alpha=2$.

Пример 4.
$$\sum_{n=0}^{\infty} x^n n!$$

<u>Решение.</u> Воспользуемся признаком Даламбера. Для этого рассмотрим $\lim_{n\to\infty}\left|\frac{u_{n+1}(x)}{u_n(x)}\right|=\lim_{n\to\infty}\left|\frac{x^{n+1}\cdot(n+1)!}{x^nn!}\right|=|x|=D;$ условие D<1 выполняется только при x=0.

Пример 5.
$$\sum_{n=2}^{\infty} \frac{1}{n+\sin x}$$
.

<u>Решение.</u> Воспользуемся предельным признаком сравнения. Для сравнения возьмем гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$, который расходится при $\forall x$.

$$\lim_{n \to \infty} \left| \frac{1}{n + \sin x} : \frac{1}{n} \right| = \lim_{n \to \infty} \left| \frac{n}{n(1 + \frac{\sin x}{n})} \right| = 1$$
. Следовательно, данный ряд тоже расходится.

Пример 6.
$$\sum_{n=1}^{\infty} \frac{1}{x^{n}+1}$$
.

<u>Решение.</u> Вычислим предел общего члена при различных значениях x:

$$\lim_{n \to \infty} \frac{1}{|x^n + 1|} = egin{cases} \frac{1}{2}$$
, при $x = 1 \\ 0$, при $|x| > 1$, таким образом необходимый признак вы- 1 , при $|x| < 1$

полняется только при |x| > 1.

Воспользуемся признаком Даламбера, вычислим:

$$\lim_{n\to\infty} \left| \frac{\mathbf{u}_{n+1}}{\mathbf{u}_n} \right| = \lim \frac{|x^n+1|}{|x^{n+1}+1|} = \frac{1}{|x|} < 1 \text{ при } |x| > 1.$$

Т.е. область сходимости: $(-\infty; -1) \cup (1; +\infty)$.

<u>Замечание.</u> Для нахождения области сходимости функционального ряда можно использовать те же признаки сравнения, что и для числовых рядов (признак Даламбера, радикальный признак Коши). При этом члены функционального ряда необходимо брать **по модулю**, так как признаки применимы к рядам с положительными членами, то есть в области сходимости ряд будет **сходиться абсолютно**.

2. Равномерная сходимость функционального ряда.

Определение. Сходящийся в области D функциональный ряд $\sum_{n=1}^{\infty} u_n(x)$ называется равномерно сходящимся в этой области, если $\forall \varepsilon > 0$ найдется $N = N(\varepsilon)$ такое, что для остатка ряда $R_n(x) = \sum_{k=n+1}^{\infty} u_k(x) \ \forall n > N$ и $x \in D$ имеет место оценка $|R_n(x)| < \varepsilon$.

<u>Пример 1.</u> Исследовать характер сходимости $\sum_{n=1}^{\infty} \frac{1}{(x+n)(x+n+1)}$, $0 < x < +\infty$.

Решение. Представим
$$\frac{1}{(x+n)(x+n+1)} = \frac{1}{x+n} - \frac{1}{x+n+1}$$
.

Найдем частичную сумму ряда: $S_n = \left(\frac{1}{x+1} - \frac{1}{x+2}\right) + \left(\frac{1}{x+2} - \frac{1}{x+3}\right) + \dots +$

$$+\left(\frac{1}{x+n} - \frac{1}{x+n+1}\right) = \frac{1}{x+1} - \frac{1}{x+n+1} = \frac{n}{(x+1)(x+n+1)}.$$

Тогда сумма ряда:
$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{n}{(x+1)(x+n+1)} = \lim_{n \to \infty} \frac{1}{(x+1)\left(\frac{x+1}{n}+1\right)} =$$

$$=\frac{1}{x+1}.$$

Найдем остаток ряда $|R_n(x)| = |S - S_n| = \left| \frac{1}{x+1} - \frac{n}{(x+1)(x+n+1)} \right| =$ $= \left| \frac{1}{x+1} \cdot \frac{x+n+1-n}{(x+1)(x+n+1)} \right| = \left| \frac{1}{x+1+n} \right|.$

Оценим остаток ряда $|R_n(x)| = \left|\frac{1}{x+1+n}\right| < \frac{1}{n} < \varepsilon$.

Следовательно, $\forall \varepsilon > 0$ найдется $N = \frac{1}{\varepsilon}$, что $\forall n > N(\varepsilon) |R_n(x)| < \varepsilon$, а значит, ряд сходится равномерно.

<u>Пример 2.</u> Исследовать характер сходимости $\sum_{n=0}^{\infty} (1-x)x^n$, $0 \le x \le 1$. <u>Решение.</u> Найдем остаток ряда $R_n(x) = (1-x)[x^{n+1} + x^{n+2} + \cdots] = (1-x)x^{n+1}[1+x+x^2+\cdots] = (1-x)x^{n+1}\frac{1}{1-x} = x^{n+1}$ (воспользовались формулой суммы бесконечной геометрической прогрессии).

Для равномерной сходимости необходимо, чтобы $\forall \varepsilon > 0 \ \exists N$: $\forall n > N$ и $x \in D \ |R_n(x)| < \varepsilon$.

Предположим, что верно $x^{n+1} < \varepsilon_0$, $\varepsilon_0 = \frac{1}{2}$, найдем N: но для $x_0 = 1$ не выполняется $1^{n+1} < \frac{1}{2}$, а значит, равномерной сходимости нет.

Теорема Вейерштрасса (достаточное условие равномерной сходимости).

Если члены функционального ряда $\sum_{n=1}^{\infty}u_n(x)$ при всех x, принадлежащих множеству X, удовлетворяют неравенству: $|u_n(x)| \leq a_n$, $n=1,2,3,\cdots$, где $a_n \geq 0$ — члены некоторого сходящегося числового ряда $\sum_{n=1}^{\infty}a_n$, то функциональный ряд $\sum_{n=1}^{\infty}u_n(x)$ сходится абсолютно и равномерно на множестве X.

<u>Определение.</u> Числовой ряд $\sum_{n=1}^{\infty} a_n$, удовлетворяющий условиям теоремы Вейерштрасса, называется *мажорирующим* числовым рядом для функционального ряда $\sum_{n=1}^{\infty} u_n(x)$ или *числовой мажорантой*.

<u>Пример 1.</u> Доказать, что функциональный ряд $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ сходится равномерно при всех x.

<u>Решение.</u> Мажорирующим числовым рядом для данного функционального ряда является ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$, т.к. $\left|\frac{\cos nx}{n^2}\right| \leq \frac{1}{n^2}$ при всех x. Т.к. ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится как ряд Дирихле, то данный функциональный ряд сходится равномерно на всей числовой оси.

<u>Пример 2.</u> Найти область равномерной сходимости функционального ряда: $\sin x + \frac{\sin 2x}{2^2} + \dots + \frac{\sin nx}{n^n}$.

<u>Решение.</u> Оценим ряд из модулей: $\left| \frac{\sin nx}{n^n} \right| \le \frac{1}{n^n}$. Исследуем сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{n^n}$ с помощью радикального признака Коши:

 $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n^n}} = \lim_{n\to\infty} \frac{1}{n} = 0 < 1 \Rightarrow$ сходится, т.е. $\sum_{n=1}^{\infty} \frac{1}{n^n}$ является мажорантой исходного ряда. А значит, по теореме Вейерштрасса, данный функциональный ряд сходится равномерно на всей числовой оси.

<u>Пример 3.</u> Найти область равномерной сходимости функционального ряда: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3+x^{2n}}$.

<u>Решение.</u> Оценим общий член ряда. Для любого значения $x, x^{2n} \ge 0$, поэтому выполняется неравенство: $\left| \frac{(-1)^{n+1}}{n^3 + x^{2n}} \right| \le \frac{1}{n^3}$. Т.к. мажорирующим числовым рядом является ряд $\sum_{n=1}^{\infty} \frac{1}{n^3}$, который сходится как ряд Дирихле
(показатель α =3>1), значит данный функциональный ряд сходится абсолютно и равномерно на всей числовой оси ($-\infty \le x \le +\infty$) по теореме
Вейерштрасса.

<u>Пример 4.</u> Найти область равномерной сходимости функционального ряда: $\sum_{n=1}^{\infty} \frac{x^n}{2^n \sqrt{n^4 + x^2}}, x \in [-2; 2].$

<u>Решение.</u> Оценим общий член ряда: $\left|\frac{x^n}{2^n\sqrt{n^4+x^2}}\right| \leq \frac{2^n}{2^n\sqrt{n^4}} = \frac{1}{n^2}$, а ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ — мажоранта, сходится как ряд Дирихле (показатель α =2>1), значит данный функциональный ряд сходится равномерно на $x \in [-2; 2]$ по теореме Вейерштрасса.

3. Степенные ряды. Теорема Абеля. Интервал и радиус сходимости.

Определение. Степенным рядом называется функциональный ряд вида:

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

Рассматриваются также степенные ряды более общего вида:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots,$$

которые с помощью замены $(x-x_0)$ на новую переменную сводятся к рядам вида $\sum_{n=0}^{\infty} a_n x^n$.

<u>Теорема Абеля</u>. Если степенной ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится в некоторой точке $x_0 \neq 0$, то он абсолютно сходится в любой точке x, такой что $|x| < |x_0|$.

<u>Определение.</u> Интервал (-R, R) называется интервалом сходимости степенного ряда, а число R – радиусом сходимости.

Если степенной ряд сходится на всей числовой оси, то его радиус сходимости $R = \infty$, а если ряд сходится только в одной точке x = 0, то R = 0.

 $\underline{3aмечание\ 1}$. Степенной ряд вида $\sum_{n=0}^{\infty}a_n(x-x_0)^n$ сходится или в интервале (x_0-R,x_0+R) с центром в точке x_0 , или на всей числовой оси,или только в точке $x=x_0$.

<u>Замечание 2</u>. Интервал сходимости степенного ряда может быть найден с помощью признаков Даламбера или Коши. Для установления сходимости или расходимости на концах интервала требуется дополнительное исследование с помощью других теорем.

<u>Пример 1.</u> Найти область сходимости степенного ряда $\sum_{n=0}^{\infty} \frac{(n+1)}{2^n} x^n$.

 $\underline{Peшeнue.}$ Обозначим общий член ряда $u_n(x)$.

Применим признак Даламбера:

$$\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n \to \infty} \left| \frac{(n+2)x^{n+1}}{2^{n+1}} \cdot \frac{2^n}{(n+1)x^n} \right| = \frac{|x|}{2} \lim_{n \to \infty} \frac{n+2}{n+1} = \frac{|x|}{2} < 1 \iff |x| < 2 \iff -2 < x < 2.$$

Значит $x \in (-2,2)$ – интервал сходимости, R = 2 – радиус сходимости.

Исследуем сходимость на концах интервала:

1)
$$x = 2$$
.

Ряд принимает вид $\sum_{n=0}^{\infty} \frac{(n+1)}{2^n} 2^n = \sum_{n=0}^{\infty} (n+1)$.

Проверим необходимый признак: $\lim_{n\to\infty} |n+1| = \infty \ (\neq 0)$, т.е. необходимый признак не выполнен и ряд расходится.

2) пусть x = -2.

дится.

Ряд принимает вид $\sum_{n=0}^{\infty} \frac{(n+1)}{2^n} (-1)^n 2^n = \sum_{n=0}^{\infty} (-1)^n (n+1).$ Проверим необходимый признак: $\lim_{n\to\infty} |u_n(x)| = \lim_{n\to\infty} |(-1)^n (n+1)| = \infty \ (\neq 0)$, т.е. необходимый признак не выполнен и ряд расхо-

Окончательно имеем область сходимости (-2,2), радиус сходимости R=2.

<u>Пример 2.</u> Найти область сходимости степенного ряда $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.

<u>Решение.</u> Обозначим общий член ряда $u_n(x) = \frac{x^n}{n!}$.

Применим признак Даламбера:

 $\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = |x| \cdot \lim_{n \to \infty} \frac{1}{n+1} = 0$ при всех x. Следовательно, область сходимости данного ряда — вся числовая ось.

<u>Пример 3.</u> Найти область сходимости степенного ряда $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$. <u>Решение.</u> Обозначим общий член ряда $u_n(x) = (-1)^{n+1} \frac{x^n}{n}$.

Применим признак Даламбера:

$$\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{n+1}}{(n+1)} \cdot \frac{n}{(-1)^n x^n} \right| = |x| \cdot \lim_{n \to \infty} \frac{n}{n+1} = |x|,$$

ряд сходится при |x| < 1, т.е. область сходимости (-1;1), радиус сходимости R = 1.

Исследуем поведение ряда на концах интервала:

1)
$$x = 1$$
.

При подстановке в исходный ряд получаем знакочередующийся ряд $\sum_{n=1}^{\infty} (-1)^{n+1} \, \frac{1}{n}.$

- Проверим абсолютную сходимость, для этого рассмотрим ряд из модулей: $\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ гармонический ряд, про который известно, что он расходится, т.е. абсолютной сходимости у ряда $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ нет.
- Проверим выполнение теоремы Лейбница:
 - a) $\lim_{n\to\infty} |u_n(x)| = \lim_{n\to\infty} \left| (-1)^{n+1} \frac{1}{n} \right| = 0$ условие выполняется;
 - б) монотонное убывание следует из свойств функции $\frac{1}{n}$: $\frac{1}{n} > \frac{1}{n+1}$. Таким образом признак Лейбница выполнен, значит, ряд $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ сходится условно.

2)
$$x = -1$$
.

При подстановке в исходный ряд получаем ряд $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(-1)^n}{n}$.

 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(-1)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{2n+1}}{n} = -\sum_{n=1}^{\infty} \frac{1}{n}$, а это гармонический ряд, который расходится.

Окончательно получаем область сходимости (-1;1] и радиус сходимости R=1.

<u>Пример 4.</u> Найти область сходимости степенного ряда $\sum_{n=2}^{\infty} (-1)^n \frac{(x+1)^n}{3^n \ln n}$. <u>Решение.</u> Обозначим общий член ряда $u_n(x) = (-1)^n \frac{(x+1)^n}{3^n \ln n}$.

Применим признак Даламбера:

$$\lim_{n \to \infty} \left| \frac{u_{n+1}(x)}{u_n(x)} \right| = \lim_{n \to \infty} \left| \frac{(x+1)^{n+1}}{3^{n+1} \ln(n+1)} \cdot \frac{3^n \ln n}{(x+1)^n} \right| = \frac{|x+1|}{3} \lim_{n \to \infty} \frac{\ln n}{\ln(n+1)} = \frac{|x+1|}{3}$$

(при вычислении $\lim_{n\to\infty} \frac{\ln n}{\ln(n+1)}$ воспользовались правилом Лопиталя).

Интервал сходимости определяется из неравенства:

$$\frac{|x+1|}{3} < 1 \iff |x+1| < 3 \iff -3 < x+1 < 3 \iff -4 < x < 2.$$

Тогда интервал сходимости будет (-4,2), а радиус схоимости R=3.

Исследуем сходимость на концах интервала:

1)
$$x = -4$$
.

При подстановке в исходный ряд получаем ряд $\sum_{n=2}^{\infty} \frac{1}{\ln n}$. Сравним его с гармоническим рядом $\sum_{n=1}^{\infty} \frac{1}{n}$. Известно, что $\frac{1}{\ln n} > \frac{1}{n}$, а ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится, значит, данный числовой ряд тоже расходится по первому признаку сравнения.

2)
$$x = 2$$
.

При подстановке в исходный ряд получаем ряд $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$. Проверим его на абсолютную сходимость.

Возьмем ряд из модулей: $\sum_{n=2}^{\infty} \left| \frac{(-1)^n}{\ln n} \right| = \sum_{n=2}^{\infty} \frac{1}{\ln n}$. Этот ряд рассмотрен в пункте 1), он расходится, т.е. абсолютной сходимости нет.

Проверим выполнение теоремы Лейбница:

- $\lim_{n\to\infty} |u_n(x)| = \lim_{n\to\infty} \left| \frac{(-1)^n}{\ln n} \right| = 0$ условие выполняется;
- функция $\left|\frac{(-1)^n}{\ln n}\right| > \left|\frac{(-1)^{n+1}}{\ln (n+1)}\right|$, т.е. условие монотонного убывания выполнено и, значит, исходный ряд сходится условно.

Окончательно получаем область сходимости (-4; 2] и радиус сходимости R = 3.

Задачи для самостоятельного решения

1. Найти область сходимости степенного ряда:

1.
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{\ln^n (n+1)}$$
 (Other: $R = +\infty$).

2.
$$\sum_{n=1}^{\infty} \frac{x^{n^2}}{n}$$
 (Other: $R = 1$, [-1,1]).

3.
$$\sum_{n=1}^{\infty} \frac{(x-1)^n n!}{3^n}$$
 (Other: $R = 0$, $x = 1$).

4.
$$\sum_{n=1}^{\infty} x^n tg \frac{1}{n}$$
 (Other: $R = 1$, $[-1,1)$).

5.
$$\sum_{n=1}^{\infty} x^n n!$$
 (Otbet: $R = 0$, $x = 0$).

2. Типовой расчет для факультетов ИИТ и ФТИ: № 1.8, 1.10, 1.11 – по 5 задач; № 2.2-2.3 (по номеру варианта).