### 深圳技术大学考试答题纸

(以论文、报告等形式考核专用)

|      | <u>_</u> o_ |      | ~ = 0 = = | 二四   | 学年 | 度第    | 学期      |        |  |
|------|-------------|------|-----------|------|----|-------|---------|--------|--|
| 课程编号 | IB00108     | 课程名称 | Python 程  | 是序设计 |    | 主讲教师  | 柯笑      | 评分<br> |  |
|      | 2022002     |      |           |      |    |       |         |        |  |
| 学 号  | 02017       | 姓名   | 陈佳煜       | 专业年级 |    | 计算机一理 | <b></b> |        |  |
| 教师评语 | :           |      |           |      |    |       |         |        |  |

## 题目: fashion-mnist-master 数据分类

## 1. 研究动机及背景介绍

动机: Fashion-MNIST 数据集是为了替代原始的 MNIST 数据集,用于基准测试机器学习算法。MNIST 数据集对于现代算法来说已经过于简单,无法挑战现有模型的极限,因此需要一个更具挑战性和多样性的数据集。

重要性: Fashion-MNIST 作为一个更具挑战性和多样性的数据集,反映了更实际的场景。这对于推动计算机视觉研究和提高分类算法的准确性非常重要,尤其是在自动化零售系统、库存管理和个性化时尚推荐等应用中。

背景: Fashion-MNIST 包含 70,000 张灰度图像,涵盖 10 个不同的时尚类别,每个类别包含 7,000 张图像。每张图像的大小为 28x28 像素。数据集分为 60,000 张训练图像和 10,000 张测试图像,格式与原始 MNIST 数据集相同。

#### 2. 数据来源

数据集描述: Fashion-MNIST 数据集是公开可用的,可以从 Zalando Research 网站下载。数据集包含:

训练集: 60,000 张图像

测试集: 10,000 张图像

图像大小: 28x28 像素

类别数量: 10

数据特征: 数据集包括各种时尚物品,如 T 恤、裤子和鞋子,标签从 0 到 9,每个标签对应一个特定的时尚物品。

统计分析:

均值和方差: 计算像素值的均值和方差以了解分布情况。

箱线图: 可视化像素值分布以检测异常值。

t 检验和正态性检验: 确认数据是否符合正态分布,这可能影响算法的选择。

```
# 计算像素值的均值和方差
train_images = np.array(fashion_mnist_train_dataset.images)
mean_pixel_value = np.mean(train_images)
std_pixel_value = np.std(train_images)
print(f'像素值均值: {mean_pixel_value}, 像素值标准差: {std_pixel_value}')
```

像素值均值: 72.94042205810547, 像素值标准差: 90.02120971679688 正态性检验p值: 0.0

```
# 绘制像素值分布箱线图(取样100张图像)
sample_images = train_images[:100]

plt.figure(figsize=(10, 5))
sns.boxplot(data=sample_images.reshape(100, -1))
plt.title('Boxplot of pixel value distribution (sample of 100 images)')
plt.show()
```

#### 像素值分布直方图



## 3. 数据预处理

标准化: 通过除以255将像素值标准化到[0, 1]范围内。

缺失值处理: 确保数据集中没有缺失值,因为所有图像的大小和标签是一致的。

异常值检测和处理: 使用箱线图和 z 分数检测并处理像素值中的异常值。

数据增强: 应用旋转、缩放和翻转等变换,增加训练集的多样性,提高模型的鲁棒性。

```
# 数据标准化和增强
trans = Compose([Normalize(mean=[127.5], std=[127.5], data_format='CHW'), ToTensor()])
fashion_mnist_train_dataset = FashionData(dir='data/fashion', type="train", trans=trans)
fashion_mnist_test_dataset = FashionData(dir='data/fashion', type='t10k', trans=trans)
```

```
# 绘制像素值分布箱线图 (取样100张图像)
sample_images = train_images[:100]

plt.figure(figsize=(10, 5))
sns.boxplot(data=sample_images.reshape(100, -1))
plt.title('Boxplot of pixel value distribution (sample of 100 images)')
plt.show()
```

```
像素值均值: 72.94042205810547, 像素值标准差: 90.02120971679688
正态性检验p值: 0.0
```

### 4. 降维技术

主成分分析 (PCA):

降低数据维度,同时保留大部分方差。

应用于加速训练过程并降低计算复杂度。

t-SNE: 另一种将高维数据可视化的技术,通过降维到2或3维进行可视化。

```
# PCA降维
pca = PCA(n_components=50)
train_images_pca = pca.fit_transform(train_images)
test_images_pca = pca.transform(np.array(fashion_mnist_test_dataset.images))
print(f'PCA后训练数据形状: {train_images_pca.shape}')
print(f'PCA后测试数据形状: {test_images_pca.shape}')
```

| PCA后训练数据形状:PCA后测试数据形状:                                       |                                                                                                        |                                                              |                                               |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|
| Layer (type)                                                 | Input Shape                                                                                            | Output Shape                                                 | Param #                                       |
| Flatten-1 Linear-1 ReLU-1 Linear-2 ReLU-2 Linear-3 Softmax-1 | [[1, 28, 28]]     [[1, 784]]     [[1, 100]]     [[1, 100]]     [[1, 100]]     [[1, 100]]     [[1, 10]] | [1, 784] [1, 100] [1, 100] [1, 100] [1, 100] [1, 10] [1, 10] | 0<br>78,500<br>0<br>10,100<br>0<br>1,010<br>0 |

Trainable params: 89,610 Non-trainable params: 0

-----

Input size (MB): 0.00

Forward/backward pass size (MB): 0.01

Params size (MB): 0.34

Estimated Total Size (MB): 0.35

## 5. AI 模型构建

模型选择:

多层感知机 (MLP): 作为基线模型的基本神经网络模型。

卷积神经网络 (CNN): 用于图像分类的高级模型。

模型详情:

输入层: 28x28 像素展平成 784 个节点。

隐藏层: 两个隐藏层,每层 100 个神经元。

输出层: 10个神经元,对应10个类别,使用softmax激活函数。

#### 参数设置:

学习率: 0.001

批量大小: 256

训练轮数:5

优化器: Adam

```
# 定义多层感知机模型

class MultilayerPerceptron(nn.Layer):

def __init__(self):
    super(MultilayerPerceptron, self).__init__()
    self.linear1 = nn.Linear(1*28*28, 100)
    self.linear2 = nn.Linear(100, 100)
    self.linear3 = nn.Linear(100, 10)

def forward(self, inputs):
    x = paddle.flatten(inputs, start_axis=1, stop_axis=-1)
    x = self.linear1(x)
    x = F.relu(x)
    x = self.linear2(x)
    x = self.linear3(x)
    y = F.softmax(x, axis=1)
    return y
```

```
# 配置模型
model = paddle.Model(network)
model.prepare(optimizer=paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()),
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy())

model.summary((1, 28, 28))

# 训练模型
model.fit(fashion_mnist_train_dataset, epochs=5, batch_size=256, verbose=1)
```

### 6. 模型评估与比较

评估指标:

准确率: 正确分类图像的比例。

精确率、召回率、F1 分数: 用于评估分类性能的指标。

混淆矩阵: 用于可视化不同类别的表现。

```
# 计算混淆矩阵
true_labels = [label[1][0] for label in fashion_mnist_test_dataset]
predicted_labels = [np.argmax(pred) for pred in predict_result[0]]
conf_matrix = confusion_matrix(true_labels, predicted_labels)

# 打印分类报告
class_report = classification_report(true_labels, predicted_labels, target_names=label_list)
print('分类报告:\n', class_report)

# 绘制混淆矩阵
plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=label_list, yticklabels=label
plt.xlabel('Predicted_Label')
plt.ylabel('True_Label')
plt.title('Confusion_Matrix')
plt.show()
```

混淆矩阵

#### fashion-mnist-master 数据分类



#### 比较:

单一模型: 基于所选模型的评估。

多个模型: 如果应用,比较 MLP 和 CNN 以确定性能更好的模型。

```
# 评估模型
eval_result = model.evaluate(fashion_mnist_test_dataset, verbose=1)
print(eval_result)

# 预测测试集
predict_result = model.predict(fashion_mnist_test_dataset)
```

| 分类报告:        |           |        |          |         |
|--------------|-----------|--------|----------|---------|
|              | precision | recall | f1-score | support |
| t-shirt      | 0.78      | 0.83   | 0.81     | 1000    |
| trouser      | 0.98      | 0.96   | 0.97     | 1000    |
| pullover     | 0.72      | 0.83   | 0.77     | 1000    |
| dress        | 0.75      | 0.93   | 0.83     | 1000    |
| coat         | 0.79      | 0.75   | 0.77     | 1000    |
| sandal       | 0.89      | 0.95   | 0.92     | 1000    |
| shirt        | 0.77      | 0.44   | 0.56     | 1000    |
| sneaker      | 0.94      | 0.87   | 0.90     | 1000    |
| bag          | 0.94      | 0.96   | 0.95     | 1000    |
| ankle boot   | 0.92      | 0.94   | 0.93     | 1000    |
|              |           |        |          |         |
| accuracy     |           |        | 0.85     | 10000   |
| macro avg    | 0.85      | 0.85   | 0.84     | 10000   |
| weighted avg | 0.85      | 0.85   | 0.84     | 10000   |

# 7. 参考文献

Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms [Internet]. ar5iv.org; 2017 [cited 2024-01-05].

Papers With Code. Fashion-MNIST Dataset [Internet]. Papers With Code. [cited 2024-01-05].

Papers With Code. Fashion-MNIST Benchmark (Image Classification) [Internet]. Papers With Code. [cited 2024-01-05].

| 姓名  | 学号           | 分工      | 总体贡献(%) |
|-----|--------------|---------|---------|
| 陈汉翀 | 202200202041 | AI 模型训练 | 30      |
| 陈佳煜 | 202200202017 | 统计分析    | 50      |
| 魏子葆 | 202200202016 | 数据收集    | 20      |