Association Rule Mining Basics, Apriori

Huiping Cao

Motivation

- Market basket analysis
 - Products that are often bought together by a customer

- Applications
 - Design store layouts \rightarrow combined sale
 - Discount for package sale

What Is Frequent pattern?

■ Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set

 First proposed by Agrawal, Imielinski, and Swami [AlS93] in the context of frequent itemsets and association rule mining.

Basic Concepts: Frequent Itemsets and Association Rules

Transaction-id	Items Bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

- Itemset $X = \{x_1, \dots, x_k\}$
- lacktriangle Find all the rules $X \to Y$ with minimum support and confidence
 - support, s, probability that a transaction contains $X \cup Y$
 - confidence, c, conditional probability that a transaction having X also contains Y

Basic concepts

- Support $(X \to Y) = P(X \cup Y) = \frac{count(X \cup Y)}{total\ transaction\ count}$
 - Relative support
 - Absolute support: occurrence frequency vfill
 - $X \cup Y$: means the transaction contains all the items in X and Y; does NOT mean that it contains EITHER X or Y
- K-itemset
 - Frequent k-itemset L_k
- Confidence $(X \rightarrow Y) = P(Y|X)$
 - $= \frac{support_count(X \cup Y)}{support_count(X)}$

${A}: 3$ Basic Concepts: Frequent Itemsets (a) not Association Rules

Transaction-id	Items Bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	D C D E E

Transaction-id	Items Bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	BCDFF

■ Let supmin = 50%, confmin = 50% Freq. Itemset.: {A:3, B:3, D:4, E:3, AD:3} Association rules: $A \to D$ (60%, 100%) $D \to A (60\%, 75\%)$

```
\{D\}: 4
\{E\}: 3
{AD}: 3
A -> D <==> {A} -> {D}
count(A,D): 3
total count: 5
Support= 3/5
count(A,D) = 3
count(A) = 3
```

conf. = 3/3 = 1.0

Association rule mining

- Two-step process
 - Find all frequent itemsets (Expensive)
 - Generate strong association rules from the frequent itemsets

- Monotonicity
 - If any itemset is frequent, all its subset are frequent
- Challenge
 - A large itemset contains a combinatorial number of sub-itemsets, e.g., $\{a_1, \dots, a_{100}\}$ contains $2^{100} 1$ sub-itemsets.

Scalable Methods for Mining Frequent Patterns

- The downward closure property of frequent patterns
- Any subset of a frequent itemset must be frequent
- If {beer, diaper, nuts} is frequent, so is {beer, diaper} i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & SrikantVLDB'94)
 - Freq. pattern growth (FPgrowthHan, Pei & Yin SIGMOD'00)
 - Vertical data format approach (CharmZaki& Hsiao SDM'02)

Apriori: A Candidate Generation-and-Test Approach

Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant VLDB'94, Mannila, et al. KDD' 94)

Method:

- Generate length (k+1) candidate itemsets from length k frequent itemsets
- Test the candidates against DB
- Terminate when no frequent or candidate set can be generated

The Apriori AlgorithmAn Example

Tid	Items	
10	A, C, D	
20	В, С, Е	
30	A, B, C, E	
40	B, E	

 $\begin{array}{c} n = 2 \\ C_{I} \\ C_{I} \\ \text{Scan} \\ \text{E} \end{array}$

	Itemset	sup
(L_1)	{A}	2
)	{B}	3
	{C}	3
	{E}	3

L_2	Itemset	sup
	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2
(

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 Itemset {B, C, E}

 3^{rd} scan L

- C_k : Candidate itemset of size k
 - L_k : frequent itemset of size k
- \blacksquare $L_1 = \{ frequent items \}$
- for $(k = 1; L_k \neq \emptyset, k + +)$ do begin
 - C_{k+1} = candidates generated from L_k ;
 - for each transaction t in database do
 - Increment the count of all candidates in C_{k+1} that are contained in t
 - end for
- end for
- $L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support}$
- Return $\bigcup_k L_k$;

Important Details of Apriori

- How to generate candidates? ∠ K
 - Step 1: self-joining L_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - $L_3 = \{abc, abd, acd, ace, bcd\}$
 - Self-joining: L₃ * L₃ abcd from abc and abd acde from acd and ace
 - Pruning: acde is removed because ade is not in L₃
 - $C_4 = \{abcd\}$

How to Generate Candidates?

- lacksquare Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1} insert into select $p.item_1, p.item_2, \cdots, p.item_k = 1, q.item_{k-1}$ from L_{k-1} p, L_{k-1} q where $p.item_1 = q.item_1, \cdots, p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1}$
- Step 2: pruning for all itemsets c in C_k do
 - for all (k-1)-subsets s of c do
 - If (s is not in L_{k-1}) then delete c from C_k

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Naive Method:
 - Compare each transaction against every candidate itemset
 - Expensive!

Support counting (1)

- Enumerate itemsets
- \blacksquare {1,2,3,4,5} the <u>3-itemsets</u> are
 - **1** [2, 3, 4, 5]
 - $\blacksquare 12[3,4,5] => (1,2,3), (1,2,4), (1,2,5)$
 - 13[4,5] => (1,3,4), (1,3,5)
 - 14[5] => (1,4,5)
 - **2**[3, 4, 5]
 - 23[4,5] => (2,3,4), (2,3,5)
 - \blacksquare 24[5] => (2,4,5)
 - **3**[4, 5]
 - \blacksquare 34[5] => (3, 4, 5)

Support counting (2)

- Hash-tree based method:
 - Candidate itemsets are stored in a hash tree
 - Leaf node of hash-tree contains a list of candidate itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Example: Counting Supports of Candidates

Complexity

- Support Threshold
 - Maximum size of frequent itemsets
- Number of items (dimensionality)
- Number of transactions
- Average transaction width
 - More frequent itemsets

Challenges of Frequent Pattern Mining

- Challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB

Apriori

- Scan 1: partition database and find local frequent patterns
- Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association in large databases. In VI DB'95

Partition based

■ A partition *p* of the database refers to any subset of the transactions.

- Any two different partitions are non-overlapping.
- Local support of a partition: the fraction of transactions containing that item in a partition

DIC: Reduce Number of Scans

Bottleneck of Frequent-pattern Mining

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset i_1, i_2, \dots, i_{100} # of scans: 100 # of candidtes: $2^{100} - 1 = 1.27 * 10^{30}$
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?

References

- Chapter 5: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar
- Implementation of Apriori algorithm with Python 2.7 and 3.3 -3.5: https://pypi.org/project/apyori/

