

Patent

Attorney Docket No.: 2855/96

CGC

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANTS : Zhu FENG et al.
SERIAL NO. : 10/618,145
FILED : July 11, 2003
PATENT NO. : 7,042,670 B2
ISSUED : May 9, 2006
FOR : METHOD FOR ADJUSTING FLYING HEIGHT OF MAGNETIC
HEADS USING AN ELECTRICAL CHARGE THROUGH AN
ELECTRICAL PAD ON THE SLIDER

M/S: CERTIFICATE OF
CORRECTION BRANCH
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Certificate of Mailing

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: M/S: CERTIFICATE OF CORRECTION BRANCH, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on

Date June 20, 2007

Signature: Barbara Vance
Barbara Vance

REQUEST FOR CERTIFICATE OF CORRECTION

Dear Sir:

We have compared the above patent with the application as filed and have found errors in the printing of the patent. We respectfully request that the enclosed Certificate of Correction on Form PTO-1050 be issued correcting the mistakes set forth therein under authority of 35 U.S.C. §254. The exact column and line number where the errors occurred in the patent are listed on the enclosed certificate.

JUN 28 2007

*Certificate
JUN 28 2007
of Correction*

The errors that appear in the patent are typographical errors made by the Patent Office and therefore, no fee is required.

If any fee is required, the Office is hereby authorized to charge any additional fees, or credit any overpayments, to Kenyon & Kenyon LLP, Deposit Account No. **11-0600**.

Respectfully submitted,

KENYON & KENYON

Dated: June 20, 2007

By:
Sumit Bhattacharya
(Reg. No. 51,469)

KENYON & KENYON LLP
333 West San Carlos St., Suite 600
San Jose, CA 95110

Telephone: (408) 975-7500
Facsimile: (408) 975-7501

JUN 22 2007

PTO/SB/21 (05-03)

Approved for use through 04/30/2003. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

TRANSMITTAL
FORM

(to be used for all correspondence after initial filing)

Application Number	10/618,145
Filing Date	July 11, 2003
First Named Inventor	Zhu FENG et al.
Art Unit	2651
Examiner Name	James Lee HABERMEHL
Total Number of Pages in This Submission	13
Attorney Docket Number	2855/96

ENCLOSURES (Check all that apply)

<input type="checkbox"/> Fee Transmittal Form	<input type="checkbox"/> Drawing(s)	<input type="checkbox"/> After Allowance communication to Group
<input type="checkbox"/> Fee Attached	<input type="checkbox"/> Licensing-related Papers	<input type="checkbox"/> Appeal Communication to Board of Appeals and Interferences
<input type="checkbox"/> Amendment/Reply	<input type="checkbox"/> Petition	<input type="checkbox"/> Appeal Communication to Group (Appeal Notice, Brief, Reply Brief)
<input type="checkbox"/> After Final	<input type="checkbox"/> Petition to Convert to a Provisional Application	<input type="checkbox"/> Proprietary Information
<input type="checkbox"/> Affidavits/declaration(s)	<input type="checkbox"/> Power of Attorney, Revocation	<input type="checkbox"/> Status Letter
<input type="checkbox"/> Extension of Time Request	<input type="checkbox"/> Change of Correspondence Address	<input checked="" type="checkbox"/> Other Enclosure(s) (please identify below):
<input type="checkbox"/> Express Abandonment Request	<input type="checkbox"/> Terminal Disclaimer	1. Certificate of Correction
<input type="checkbox"/> Information Disclosure Statement	<input type="checkbox"/> Request for Refund	2. Patent 7,042,670 B2 (changes marked in red)
<input type="checkbox"/> Certified Copy of Priority Document(s)	<input type="checkbox"/> CD, Number of CD(s) _____	3. Postcard
<input type="checkbox"/> Response to Missing Parts/ Incomplete Application	<input type="checkbox"/> Remarks	
<input type="checkbox"/> Response to Missing Parts under 37 CFR 1.52 or 1.53		

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT

Firm or Individual name	Sumit Bhattacharya (Reg. No. 51,469)
Signature	
Date	June 20, 2007

CERTIFICATE OF TRANSMISSION/MAILING

I hereby certify that this correspondence is being facsimile transmitted to the USPTO or deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date shown below. M/S: Certificate of Correction Branch

Typed or printed name	Barbara Vance
Signature	
Date	June 20, 2007

This collection of information is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

JUN 28 2007

**UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION**

PATENT NO : 7,042,670 B2

DATED : May 9, 2006

INVENTOR(S) : Zhu FENG et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 2, line 41: Delete "dr"

MAILING ADDRESS OF SENDER:

Attorney Ref.: 2855/96

PATENT NO. 7,042,672 B2

KENYON & KENYON LLP

333 W. San Carlos, Suite 600

No. of additional copies

San Jose, CA 95110

Telephone: (408) 975-7500

This collection of information is required by 37 CFR 1.322, 1.323, and 1.324. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

JUN 28 2007

US0070426 /JB2

(12) **United States Patent**
Feng et al.

(10) **Patent No.:** US 7,042,670 B2
(45) **Date of Patent:** May 9, 2006

(54) **METHOD FOR ADJUSTING FLYING HEIGHT OF MAGNETIC HEADS USING AN ELECTRICAL CHARGE THROUGH AN ELECTRICAL PAD ON THE SLIDER**

(75) Inventors: **Zhu Feng**, Pleasanton, CA (US); **Ellis Cha**, San Ramon, CA (US); **David Hu**, Los Altos, CA (US); **Yen Fu**, San Jose, CA (US)

(73) Assignee: **SAE Magnetics (H.K.) Ltd.**, Shatin (HK)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 112 days.

(21) Appl. No.: **10/618,145**

(22) Filed: **Jul. 11, 2003**

(65) **Prior Publication Data**

US 2005/0007687 A1 Jan. 13, 2005

(51) **Int. Cl.**

G11B 5/60 (2006.01)

(52) **U.S. Cl.** **360/75**

(58) **Field of Classification Search** **360/75,**

360/69, 234.4, 234.5, 245.8, 294.7

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

5,748,412 A * 5/1998 Murdock et al. **360/323**

5,901,014 A *	5/1999	Hiraoka et al.	360/234.5
6,359,746 B1 *	3/2002	Kakekado et al.	360/75
6,577,466 B1 *	6/2003	Meyer et al.	360/75
6,621,661 B1 *	9/2003	Ichikawa et al.	360/234.5
6,700,724 B1 *	3/2004	Riddering et al.	360/69
6,757,120 B1 *	6/2004	Minoshima et al.	360/75
6,775,089 B1 *	8/2004	Bonin et al.	360/75
2002/0097517 A1 *	7/2002	Bonin et al.	360/75
2003/0043497 A1 *	3/2003	Riddering et al.	360/75
2004/0233568 A1 *	11/2004	Rao et al.	360/75

FOREIGN PATENT DOCUMENTS

JP 019161233 A * 6/1997

* cited by examiner

Primary Examiner—David Hudspeth

Assistant Examiner—James L Habermehl

(74) *Attorney, Agent, or Firm—Kenyon & Kenyon LLP*

(57) **ABSTRACT**

A system and method for adjusting the flying height of a magnetic head above a magnetic storage medium, such as a disk, is disclosed. A charging electrical pad may be coupled to the slider separate from the magnetic head to allow a charging electrical conductor to apply an electrical charge to the slider. By acting as a quasi-parallel capacitor, the amount of spacing in the head-disk interface may be increased or decreased based on the amount of voltage applied. The slider may be electrically isolated from the suspension. A feedback control system may monitor and control the head-disk spacing by measuring temperature or other environmental conditions surrounding the slider and disk.

26 Claims, 5 Drawing Sheets

JUN 28 2007

Fig. 1
Prior Art

JUN 23 2007

Fig. 2

JUN 28 2007

Figure 3

JUN 28 2007

Fig. 4

Figure 5

JUN 28 2007

1

**METHOD FOR ADJUSTING FLYING
HEIGHT OF MAGNETIC HEADS USING AN
ELECTRICAL CHARGE THROUGH AN
ELECTRICAL PAD ON THE SLIDER**

BACKGROUND INFORMATION

The present invention relates to magnetic hard disk drives. More specifically, the present invention relates to a method of adjusting the flying height of magnetic heads over magnetic storage media through an electrical pad on the slider.

Hard disk drives are common information storage devices essentially consisting of a series of rotatable disks, or other magnetic storage mediums, that are accessed by magnetic reading and writing elements. These data transferring elements, commonly known as transducers, are typically carried by and embedded in a slider body that is held in a close relative position over discrete data tracks formed on a disk to permit a read or write operation to be carried out. In order to properly position the transducer with respect to the disk surface, an air bearing surface (ABS) formed on the slider body experiences a fluid air flow that provides sufficient lift force to "fly" the slider and transducer above the disk data tracks. The high speed rotation of a magnetic disk generates a stream of air flow or wind along its surface in a direction substantially parallel to the tangential velocity of the disk. The air flow cooperates with the ABS of the slider body which enables the slider to fly above the spinning disk. In effect, the suspended slider is physically separated from the disk surface through this self-actuating air bearing.

Some of the major objectives in ABS designs are to fly the slider and its accompanying transducer as close as possible to the surface of the rotating disk, and to uniformly maintain that constant close distance regardless of variable flying conditions. The height or separation gap between the air bearing slider and the spinning magnetic disk is commonly defined as the flying height. In general, the mounted transducer or read/write element flies only approximately less than one micro-inch (25.4 nm) above the surface of the rotating disk. The flying height of the slider is viewed as one of the most critical parameters affecting the magnetic disk reading and recording capabilities of a mounted read/write element. A relatively small flying height allows the transducer to achieve greater resolution between different data bit locations on the disk surface, thus improving data density and storage capacity. With the increasing popularity of lightweight and compact notebook type computers that utilize relatively small yet powerful disk drives, the need for a progressively lower flying height has continually grown.

As shown in FIG. 1 an ABS design known for a common catamaran slider 5 may be formed with a pair of parallel rails 2 and 4 that extend along the outer edges of the slider surface facing the disk. Other ABS configurations including three or more additional rails, with various surface areas and geometries, have also been developed. The two rails 2 and 4 typically run along at least a portion of the slider body length from the leading edge 6 to the trailing edge 8. The leading edge 6 is defined as the edge of the slider that the rotating disk passes before running the length of the slider 5 towards a trailing edge 8. As shown, the leading edge 6 may be tapered despite the large undesirable tolerance typically associated with this machining process. The transducer or magnetic element 7 is typically mounted at some location along the trailing edge 8 of the slider as shown in FIG. 1. The rails 2 and 4 form an air bearing surface on which the slider flies, and provide the necessary lift upon contact with the air

2

flow created by the spinning disk. As the disk rotates, the generated wind or air flow runs along underneath, and in between, the catamaran slider rails 2 and 4. As the air flow passes beneath the rails 2 and 4, the air pressure between the rails and the disk increases thereby providing positive pressurization and lift. Catamaran sliders generally create a sufficient amount of lift, or positive load force, to cause the slider to fly at appropriate heights above the rotating disk.

As illustrated in FIG. 2, a head gimbal assembly 40 often provides the slider with multiple degrees of freedom such as vertical spacing, or pitch angle and roll angle which describe the flying height of the slider. As shown in FIG. 2, a suspension 74 holds the HGA 40 over the moving disk 76 (having edge 70) and moving in the direction indicated by arrow 80. In operation of the disk drive shown in FIG. 2, an actuator 72 (such as a voice-coil motor (VCM)) moves the HGA over various diameters of the disk 76 (e.g., inner diameter (ID), middle diameter (MD) and outer diameter (OD)) over arc 75.

Ideally, the head-disk spacing should stay unchanged at different temperatures. However, the flying height or head-disk spacing changes with environmental temperature fluctuations. The reasons for the flying height change are the changes in head geometry such as crown and camber. At extremely low temperatures, for example, the flying height change can be up to a few nanometers due to head geometry change, leading to degraded recording performance or malfunction of the head. To solve this problem, two methods have been used to compensate the flying height change at low temperatures. In one method, a heating coil is built in the head, which causes the read-write area to protrude. The actual head-disk spacing remains unchanged. Since the heating coil is added to the head in the wafer level, this method adds complications to the overall manufacturing process. In an alternative method, a high current is run through the writer to heat up and to protrude the pole area, leading to flying height adjustment. As can be seen, both techniques try to achieve protruding of the pole tip area. This may move the minimum flying height point to the protruded pole-tip area, leaving it unprotected against possible contact from distortions on the disk surface.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a slider device with a read/write head that is known in the art.

FIG. 2 is a perspective view of a disk drive device that is known in the art.

FIG. 3 illustrates one embodiment of the slider and suspension as practiced in the present invention.

FIG. 4 illustrates one embodiment of the slider with a charging bonding pad as practiced in the present invention.

FIG. 5 shows a typical chart of Guzik measurements, where the head-disk spacing change is plotted against applied voltage.

DETAILED DESCRIPTION

JUN 28 2007

A system and method for adjusting the flying height of a magnetic head above a magnetic storage medium, such as a disk, is disclosed. A charging electrical pad may be coupled to the slider separate from the magnetic head to allow a charging electrical conductor to apply an electrical charge to the slider. By acting as a quasi-parallel capacitor, the amount of spacing in the head-disk interface may be increased or decreased based on the amount of voltage applied. The slider may be electrically isolated from the suspension. A feedback

control system may monitor and control the head-disk spacing by measuring temperature or other environmental conditions surrounding the slider and disk.

FIG. 3 illustrates one embodiment of the slider and suspension as practiced in the present invention. The slider 5 contains the magnetic read/write head 7, or magnetic read/write transducer. The interface between the head 7 and the disk 76 may be modeled as a quasi-parallel capacitor. The magnetic head 7 acts as an upper electrode while the magnetic disk 76 acts as a lower electrode. The magnetic head 7 and the magnetic disk 76 are separated by a small air-gap. When a low voltage is applied to the head-disk interface (HDI), the flying height decreases with the applied voltage according to the equation $f=k v^2/d^2$. The symbol f represents the attractive force between the two electrodes (i.e. the head 7 and the disk 76). The symbol k represents a constant value. The symbol v represents voltage applied to the electrodes, or the potential difference in the electrostatic field between the head 7 and the disk 76. The symbol d represents the distance between the head 7 and the disk 76. The equation illustrates that d will decrease with increasing applied voltage, as required by increased f at high voltages. In other words, applying a voltage may decrease the spacing between the head and disk.

In one embodiment, a first electrical conductor 310 and a second electrical conductor 320 may couple the magnetic head 7 to an electronic feedback system 330. The first electrical conductor may apply a voltage to the magnetic head 310. The first electrical conductor 310 may be coupled to the magnetic head 7 by adding an electrical pad at the trailing edge of the slider 5 in the wafer process. The electrical pad may be separate from any pads of the magnetic head 7 and electrically isolated from any such pads. The slider 5 may be electrically isolated from the suspension 74, which is usually grounded. The slider 5 may be coupled to the suspension 74 using an adhesive 340 with high electrical resistance, allowing no current leakage to the ground through the suspension 74 when a small voltage is applied to the slider 5. A flying height monitor system, or electronic feedback system 330, may be built into the disk drive electronics system to accurately control flying height for each individual head and to prevent possible head-disk contact while the flying height is being lowered. The feedback system 330 monitors the head-disk spacing by using a read-back signal sent via the second electrical conductor 320. The read-back signal may be amplitude, amplitude modulation or other electrical signals that are sensitive to the head-disk spacing changes. The read-back signal may also include data regarding the temperature or other environmental conditions surrounding the slider 7. The feedback system 330 may control the head-disk spacing by sending accurate voltages to the slider 7 based on the measured head-disk spacing.

Referring to FIG. 4, a first embodiment of the present invention is shown. In this embodiment, a slider 401 is provided including read and write electrical components at a trailing end of the slider. Bonding pads 409 and 411 are provided on the slider for electrically connecting the read and write electrical components to electrical components on the suspension 421. In this embodiment, the electrical components of the suspension include four conductive traces 405, 407 that are coupled to bonding pads 415, 417, respectively, for read/write signals. In a typical suspension as known in the art, the conductive traces 405, 407 may be incorporated into the suspension 421, or created separately in a flex circuit or the like that is coupled to the suspension. Also, the traces are electrically coupled to electrical com-

ponents of the disk drive (e.g., a preamplifier, not shown specifically in FIG. 4) that control the reading of data from and writing of data to the storage medium.

According to this embodiment of the present invention, the slider 401 is coupled to a tongue 403 of the suspension in a conventional manner (e.g., with an electrically insulative adhesive). A separate charging bonding pad 413 is provided on an outer surface of the slider 401. This charging bonding pad 413 is electrically connected to the slider 401, either through direct contact or conducting paths built in the head structure. A separate charging pad 420 is provided on the suspension along with a charging trace 419 to provide a conductive path to the electrical feedback system 330. After the slider 401 is attached to the tongue 403, the bonding pads 409, 411, 413 of the slider may be electrically coupled to the bonding pads 417, 415, 420 of the suspension by, for example, gold ball bonding structure. Other methods of electrical connection may be used including ultrasonic bonding and soldering.

FIG. 5 shows a typical chart of dynamic electric testing (DET) measurements, where the head-disk spacing change is plotted against applied voltage. The head-disk spacing change was measured by the power width at 50% height of a read-back signal pulse (PW50). The PW50 changes linearly with the head-disk spacing. To obtain these measurements, a DC power supply was used as the voltage source, and voltages -2 to +2 volts were used. As indicated in the plot, the flying height (PW50) decreases with applied voltage, regardless of whether the voltage is positive or negative. For a voltage range of 0-2 volts, the PW50 change is about 0.12 μ in or 0.06 μ in/volt. So for a flying height increase of 0.06 μ in, as may occur at cold operation conditions, 1 volt would be sufficient to compensate.

One concern with applying a charge or voltage at the head-disk interface is the possibility of electrostatic damage to the giant magneto-resistive (GMR) sensor. Most GMR sensors used in the industry have a threshold of about 5 volts. Therefore applying low voltages, such as voltages of 1 volt or less, to the head-disk interface seems unlikely to cause electrostatic damage to the GMR sensor.

Although several embodiments are specifically illustrated and described herein, it will be appreciated that modifications and variations of the present invention are covered by the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.

The invention claimed is:

1. A slider, comprising:
a magnetic head coupled to the slider, the magnetic head having a first set of electrical pads to read data from a magnetic storage medium and a second set of electrical pads to write data to the magnetic storage medium; a charging electrical pad coupled to the magnetic head; and
a charging electrical conductor coupled to the electrical pad to apply an electrical charge to the magnetic head to create an electrostatic force to adjust the flying height of the slider.
2. The slider of claim 1, wherein the charging electrical pad is coupled to a trailing edge of the slider.
3. The slider of claim 1, wherein the slider is coupled to a suspension.
4. The slider of claim 3, wherein the slider is electrically isolated from the suspension.
5. The slider of claim 4, wherein the slider is coupled to the suspension using an adhesive with a high electrical resistance.

JUN 2 2007

6. The slider of claim 1, wherein the slider is connected to an electronic feedback system, the electronic feedback system to monitor an environmental condition of the slider.

7. The slider of claim 6, wherein the charging electrical conductor is connected to the electronic feedback system, the charging electrical conductor applying the electrical charge based upon a flying height of the slider.

8. The slider of claim 6, wherein the charging electrical conductor is connected to the electronic feedback system, the charging electrical conductor applying the electrical charge based upon a surrounding temperature of the slider.

9. The slider of claim 1, wherein the electrical charge ranges between 0.1–5 volts.

10. A system, comprising:

a magnetic storage medium;

15

a suspension;

a slider coupled to the suspension;

a magnetic head coupled to the slider, the magnetic head having a first set of electrical pads to read data from the magnetic storage medium and a second set of electrical

20

pads to write data to the magnetic storage medium;

a charging electrical pad coupled to the magnetic head;

and

a charging electrical conductor coupled to the electrical pad to apply an electrical charge to the magnetic head to create an electrostatic force to adjust the flying height of the slider.

25

11. The system of claim 10, wherein the charging electrical pad is coupled to a trailing edge of the slider.

12. The system of claim 10, wherein the slider is electrically isolated from the suspension.

13. The system of claim 10, wherein the slider is coupled to the suspension using an adhesive with a high electrical resistance.

14. The system of claim 10, wherein the slider is connected to an electronic feedback system, the electronic feedback system to monitor an environmental condition of the slider.

15. The system of claim 14, wherein the charging electrical conductor is connected to the electronic feedback

system, the charging electrical conductor applying the electrical charge based upon a flying height of the slider.

16. The system of claim 14, wherein the charging electrical conductor is connected to the electronic feedback system, the charging electrical conductor applying the electrical charge based upon a surrounding temperature of the slider.

17. The system of claim 10, the electrical charge ranges between 0.1–5 volts.

18. A method, comprising:

suspending a slider with a magnetic head above a magnetic data storage medium, the magnetic head coupled to a charging electrical pad isolated electrically from a set of read electrical pads and a set of write electrical pads on the magnetic head;

applying an electrical voltage to the charging electrical pad to create an electrical charge on the magnetic head

in relation to the magnetic data storage medium to

create an electrostatic force to adjust the flying height

of the slider.

19. The method of claim 18, wherein the charging electrical pad is coupled to a trailing edge of the slider.

20. The method of claim 18, wherein the slider is coupled to a suspension.

21. The method of claim 20, wherein the slider is electrically isolated from the suspension.

22. The method of claim 20, wherein the slider is coupled to the suspension using an adhesive with a high electrical resistance.

23. The method of claim 18, further including monitoring environmental conditions of the slider.

24. The method of claim 23, further including applying the electrical charge based upon a flying height of the slider.

25. The method of claim 23, further including applying the electrical charge based upon a surrounding temperature of the slider.

26. The method of claim 18, wherein the electrical charge ranges between 0.1–5 volts.

* * * * *

JUN 28 2007

JUN 29 2007