Décomposition et prévision des TS : de la théorie à la pratique

Syrine Ben Salah Paul Péton

AVANADE

38,000 Professionnels

1000 +Consultants en France (incluant Azeo)

85% Certifiés

Créé en 2000 par Accenture et Microsoft, Avanade associe les meilleurs talents stratégiques et technologiques pour aider ses clients à libérer le potentiel de leurs systèmes informatiques et de leur activité.

Applications & Infrastructure

Business applications

Agenda

Principes de la décomposition

Forecasting

- Méthode naïve
- Exponential Smoothing

Quelques packages:

- fbprophet
- Neural Prophet
- Kats, PyCaret, AutoML de Databricks...

Questions pratiques

Time serie decomposition

Identifier les éléments composant la série :

- **Tendance** (pas forcément linéaire, pas forcément constante...)
- Un cycle (par exemple, macro-économique)
- Une (ou plusieurs) saisonnalité(s)
- Du **bruit** que l'on ne pourra jamais prévoir

Ces éléments peuvent s'associer de manière **additive** ou **multiplicative**.

Méthode:

- Isoler chaque composant
- Les **analyser** individuellement
- Les modéliser individuellement pour le "prolonger"
- Réassocier toutes les parties dans un même modèle

Total monthly number of persons in thousands employed in the retail sector across the US since 1990

Employed = trend + season_year + remainder

Tendance, saisonnalité ou bien... stationnaire ?

- (a) Google stock price for 200 consecutive days
- (b) Daily change in the Google stock price for 200 consecutive days
- (c) Annual number of strikes in the US
- (d) Monthly sales of new one-family houses sold in the US
- (e) Annual price of a dozen eggs in the US (constant dollars)
- (f) Monthly total of pigs slaughtered in Victoria, Australia
- (g) Annual total of lynx trapped in the McKenzie River district of northwest Canada
- (h) Monthly Australian beer production
- (i) Monthly Australian electricity production

Seasonality: (d), (h), (i)

Trend: (a), (c), (e), (f), (i)

Stationary: (b), (g)

Additive versus multiplicative models

Seasonality

- For an additive decomposition, the seasonally adjusted data are
- For a multiplicative decomposition, the seasonally adjusted data are

Source: https://www.daitan.com/innovation/exponential-smoothing-methods-for-time-series-forecasting/

Time series forecasting

Simplistic approach

Assume that the most recent observation is the only important one, and all previous observations provide no information for the future.

Assumes that all observations are of equal importance and gives them equal weights when generating forecasts.

Exponential smoothing

an approach in-between

Attach larger weights to more recent observations than to observations from the distant past.

Forecast at time T+1

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \cdots$$

$$0 \le \alpha \le 1$$

 α : is the smoothing parameter

_	α=0.2	α=0.4	α=0.6	α=0.8
уТ	0.2000	0.4000	0.6000	0.8000
yT-1	0.1600	0.2400	0.2400	0.1600
yT-2	0.1280	0.1440	0.0960	0.0320
yT-3	0.1024	0.0864	0.0384	0.0064
yT-4	0.0819	0.0518	0.0154	0.0013
yT-5	0.0655	0.0311	0.0061	0.0003
		·	·	·

Exponential smoothing 3 types

- Simple exponential smoothing
- Double exponential smoothing (Holt's trend method)
- Triple exponential smoothing (Holt-winters)

Weighted average form

Forecast at time T+1

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \cdots$$
 $0 \le \alpha \le 1$

 α : is the smoothing parameter

Fitted value (one-step forecast)

$$\hat{y}_{t+1|t} = \alpha y_t + (1-\alpha)\hat{y}_{t|t-1}$$
 for $t=1,\ldots,T$
$$0 \leq \alpha \leq 1$$
 2 parameters For t=1; $\hat{y}_{t|t-1} = \ell_0$

Weighted average form

$$egin{aligned} \hat{y}_{T+1|T} &= lpha y_T + (1-lpha) \hat{y}_{T|T-1}, \ \hat{y}_{T|T-1} &= lpha y_{T-1} + (1-lpha) \hat{y}_{T-1|T-2}, \ \hat{y}_{4|3} &= lpha y_3 + (1-lpha) \hat{y}_{3|2}, \ \hat{y}_{3|2} &= lpha y_2 + (1-lpha) \hat{y}_{2|1}, \ \hat{y}_{2|1} &= lpha y_1 + (1-lpha) \ell_0 \end{aligned}$$

Forecasts from Simple exponential smoothing

Component form

Weighted average form

$$\hat{y}_{t+1|t} = \alpha y_t + (1 - \alpha)\hat{y}_{t|t-1}$$

 $0 \le \alpha \le 1$

for
$$t = 1, \ldots, T$$

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1-\alpha)\ell_{t-1}$

- Let is the level (or the smoothed value) of the series at time t.
- The smoothing equation for the level gives the estimated level of the series at each period t.
- The forecast equation shows that the forecast value at time t+1 is the estimated level at time t.
- The forecast is independent from h.

Figure 7.2: Simple exponential smoothing applied to oil production in Saudi Arabia (1996–2013).

On training data (fitted values = one-step forecast):

- Learn best α and ℓ_0 , that minimize RSS (residual sum of squares)
- At each time t, calculate the level I_t (based on observed data and I_{t-1})
- Forecast at t+1 is equal to l_t

Forecasts from Simple exponential smoothing

Figure 7.2: Simple exponential smoothing applied to oil production in Saudi Arabia (1996-2013).

On training data (fitted values = one-step forecast):

- Learn best α and ℓ_0 , that minimize RSS (residual sum of squares)
- At each time t, calculate the level l_t (based on observed data and l_{t-1})
- Forecast at t+1 is equal to l_t

On testing data $\ \hat{y}_{t+h|t} = \ell_t$

Flat forecasts

Simple exponential smoothing will only be suitable if the time series has no trend or seasonal component.

Double exponential smoothing (Holt)

Extend Simple exponential smoothing to allow forecasting series with a

trend

Figure 7.3: Forecasting total annual passengers of air carriers registered in Australia (millions of passengers, 1990–2016). For the damped trend method, $\phi=0.90$.

Simple exponential smoothing

Forecast equation

Smoothing equation

$$0 \le \alpha \le 1$$

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = lpha y_t + (1-lpha)\ell_{t-1}$$

Forecast equation \hat{y}_t

Level equation Trend equation

$$0 \le \alpha \le 1$$
$$0 \le \beta^* \le 1$$

$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

$$b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1},$$

Estimated trend at time t

Estimated trend at time t-1

 $\hat{y}_{t+1|t} = \alpha y_t + (1-\alpha)\hat{y}_{t|t-1}$

Triple exponential smoothing (Holt-winter)

Additive seasonality

• Extend double exponential smoothing to consider serie with

seasonality (and trend)

International visitors nights in Australia

(Supplies of the state of

Double exponential smoothing

Level equation

Trend equation

$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

$$b_t = eta^*(\ell_t - \ell_{t-1}) + (1 - eta^*)b_{t-1},$$

$$0 \le \alpha \le 1$$

$$0 \leq \beta^* \leq 1$$

Triple exponential smoothing

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t+h-m(k+1)} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}, \end{split}$$

k is the integer part of (h-1)/m

Sum up

Simple exponential smoothing

Double exponential smoothing (Holt)

Triple exponential smoothing (Holt-winters)

No trend, no seasonality

- It is easy to learn and apply.
- More suitable for short term forecast since it gives more importance to recent values
- Fast computation time

Trend

Seasonality

- Only univariate time series prediction
- Not for mid/long term forecast: as it assumes future patterns and trends will look like current patterns and trends (cf. lag behind actual)

https://www.rte-france.com/eco2mix

Accueil / éCO²mix - Toutes les données de l'électricité en temps réel

éCO₂mix - Toutes les données de l'électricité en temps réel

Les données de la consommation électrique en France - éCO₂mix

display(df)

▶ (1) Spark Jobs

	Region	DateHeure	Consommation	Date
1	Bretagne	2013-01-01T17:00:00.000+0000	2404	2013-01-01
2	Bretagne	2013-04-26T22:00:00.000+0000	2404	2013-04-26
3	Bretagne	2013-05-16T02:30:00.000+0000	2404	2013-05-16
4	Bretagne	2013-07-15T15:30:00.000+0000	2404	2013-07-15
5	Bretagne	2013-09-19T18:30:00.000+0000	2404	2013-09-19
6	Bretagne	2013-09-19T20:00:00.000+0000	2404	2013-09-19
7	Bretagne	2013-10-10T19 ⁻ 00 ⁻ 00 000+0000	2404	2013-10-10

Truncated results, showing first 1000 rows.

Click to re-execute with maximum result limits.

Command took 0.42 seconds -- by paul.peton@live.fr at 18/11/2021, 06:29:25 on mycluster10ML

Forecasting at scale.

Prophet is a forecasting procedure implemented in R and Python. It is fast and provides completely automated forecasts that can be tuned by hand by data scientists and analysts.

INSTALL PROPHET

GET STARTED IN R

GET STARTED IN PYTHON

READ THE PAPER

https://facebook.github.io/prophet/

$$y(t) = g(t) + s(t) + h(t) + e(t)$$

avec respectivement :

- g(t) : la **tendance** (linéaire ou logistique)
- s(s) : une ou plusieurs composantes **saisonnières** (annuelle, hebdomadaire ou quotidienne)
- h(t): l'effet des vacances ou de jours spécifiques qui pourront être paramétrés
- e(t): l'erreur, bruit aléatoire qui mesure l'écart entre le modèle et les données réelles

Quelques recommandations et astuces :

- Disposer d'années complètes
- Réaliser une CV pour déterminer les meilleures HP puis ré-entrainer avec les dernières données
- Tester l'ajout de « special events »

prophet changepoints

prophet prediction

df_test = df_day[(df_day['ds'] >= train_test_limit) & (df_day['ds'] < train_test_limit + timedelta(days = 365))]
print(df_test.shape)</pre>

range_test = m.make_future_dataframe(periods=365, freq='d', include_history=False)

fc_test = m.predict(range_test)

124692.37003271384 149389.80123006777 2019-01-03T00:00:00.000+0000 149255.73971672292 2019-01-04T00:00:00.000+0000 124695.0695004096 2019-01-05T00:00:00.000+0000 124697.76896810539 133139.73953936002 2019-01-06T00:00:00.000+0000 124700.46843580117 127016.37604019756 2019-01-07T00:00:00 000+0000 124703 16790349693 148515 66385174484 Showing all 365 rows.

■ ...| **±**

Command took 3.18 seconds -- by paul.peton@live.fr at 18/11/2021, 06:27:18 on mycluster

prophet decomposition

$$y(t) = g(t) + s(t) + h(t) + e(t)$$

Out[50]:

is

an open-source forecasting library.

tl;dr

Prophet in PyTorch + AR + Covar + NN + multistep + ...

Task:

Forecasting.

Data:

1E+2 to 1E+6 of samples. Unidistant, real-valued.

Dynamics:

Future values must depend on past observations. e.g. Seasonal, trended, events, correlated variables.

Applications:

Human behavior, energy, traffic, sales, environment, server load, ...

https://github.com/ourownstory/neural_prophet https://neuralprophet.com/html/index.html

NeuralProphet is more than the Neural evolution of Prophet.

facebook

- 1. Missing local context for predictions
- 2. Acceptable forecast accuracy
- 3. Framework is difficult to extend (Stan)

NeuralProphet solves these:

- 1. Support for auto-regression and covariates.
- Hybrid model (linear <> Neural Network)
- 3. Python package based on PyTorch using standard deep learning methods.

Time series forecasting is messy. We need hybrid models to bridge the gap.

Model components

$$y(t) = g(t) + s(t) + h(t) + AR(t) + LR(t) + \varepsilon(t)$$
Fully connected neural networks

- g(t): piecewise linear or logistic growth curve for modelling nonperiodic changes in time series
- s(t): periodic changes (e.g. weekly/yearly seasonality)
- h(t): effects of holidays (user provided) with irregular schedules
- AR(t): to model Auto-Regression
- LR(t): to model covariates (Lagged regression)
- ϵ_t : error term accounts for any unusual changes not accommodated by the model

Model Auto-regression and covariates as AR-Nets

Auto-Regression (AR)

AR refers to the process of regressing a variable's future value against its past values.

time	Target
0	\mathcal{Y}_{o}
1	\mathcal{Y}_1
р	\mathcal{Y}_p
t-2	$oldsymbol{\mathcal{Y}_{t ext{-}2}}$
t-1	\mathcal{Y}_{t-1}
t	\mathcal{Y}_t

The number of past values included is usually referred to as the order p of the AR(p) model.

In classic AR model

$$y_t = c + \sum_{i=1}^{i=p} \theta_i \cdot y_{t-i} + e_t$$

Model Auto-Regression

Neural prophet params:

- $n_{ags} = p$
- n_forecasts = 1
- num_hidden_layer = k
- d_hidden = i

n_lags = p n_forecasts =1 num_hidden_layer = 0 AR-Net(0) Interpretable

Automatic Sparsity

Quadratically faster

Forecast horizon > 1

A user-friendly Python package

Gentle learning curve.

Get results first. Learn. Improve.

Powerful, customizable, extendable.

```
m = NeuralProphet()
metrics = m.fit(df, freq='D')
forecast = m.predict(df)
m.plot(forecast)
```

Model covariates

Lagged Regression

time	feature	Target
0	F ₀	\mathcal{Y}_0
1	F ₁	\mathcal{Y}_1
		• • •
t-2	F _{t-2}	\mathcal{Y}_{t-2}
t-1	F _{t-1}	\mathcal{Y}_{t-1}
		y_t

Upcomings

STAY TUNED

Extensions [upcoming]

- Hierarchical Forecasting& Global Modelling
- Quantifiable and Explainable Uncertainty
- Anomaly Prediction& Semi-Supervised Learning
- Attention: Automatic Multimodality
 & Dynamic Feature Importance

Improvements [upcoming]

- Improved NN
- Faster Training Time& GPU support
- Improved UI
- Diagnostic Tools for Deep Dives

One stop shop for time series analysis in Python

Get Started

TSFeatures

https://facebookresearch.github.io/Kats/

Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis. Time series analysis is an essential component of Data Science and Engineering work at industry, from understanding the key statistics and characteristics, detecting regressions and anomalies, to forecasting future trends. Kats aims to provide the one-stop shop for time series analysis, including detection, forecasting, feature extraction/embedding, multivariate analysis, etc. Kats is released by Facebook's Infrastructure Data Science team. It is available for download on PyPI.

Forecasting

- kats.models.metalearner package
 - kats.models.metalearner.get metadata module
 - kats.models.metalearner.metalearner hpt module
 - kats.models.metalearner.metalearner_modelselect module
 - kats.models.metalearner.metalearner predictability module
 - kats.models.metalearner module
- kats.models.model module
- kats.models.nowcasting package
 - kats.models.nowcasting.feature_extraction module
 - kats.models.nowcasting.model io module
 - kats.models.nowcasting.nowcasting module
- kats.models.nowcasting module
- kats.models.prophet module
- kats.models.quadratic_model module • kats.models.reconciliation package

Detection

- · kats.models package
 - o kats.models.arima module
 - kats.models.bayesian var module
 - kats.models.ensemble package
 - kats.models.ensemble.ensemble module
 - kats.models.ensemble.kats ensemble module
 - kats.models.ensemble.median ensemble module
 - kats.models.ensemble.weighted_avg_ensemble module
 - kats.models.ensemble module
 - kats.models.harmonic_regression module
 - kats.models.holtwinters module
 - kats.models.linear model module
 - · kats.models.lstm module

Utilities

- kats.models.reconciliation package
 - kats.models.reconciliation.base models module
 - kats.models.reconciliation.thm module
 - kats.models.reconciliation module
- o kats.models.sarima module
- kats.models.stlf module
- · kats.models.theta module
- kats.models.var module
- kats.models module

Time series features

```
Cmd 58
     # Initiate feature extraction class
     from kats.tsfeatures.tsfeatures import TsFeatures
     features = TsFeatures().transform(kats_ts)
     features
 INFO:numba.core.transforms:finding looplift candidates
 INFO:numba.core.transforms:finding looplift candidates
 Out[48]: {'length': 3103,
  'mean': 122553.42732839187,
  'var': 841434913.5969608,
  'entropy': 0.3974353904243942,
  'lumpiness': 1.2709757190432784e+16,
  'stability': 675695093.5617276,
  'flat_spots': 1,
  'hurst': 0.09971712749496514,
  'stdlst_der': 8749.786788183632,
  'crossing_points': 199,
  'binarize_mean': 0.43474057363841445,
  'unitroot_kpss': 0.649565748617368,
  'heterogeneity': 2846.417272383972,
  'histogram_mode': 90592.2,
  'linearity': 0.0001424275838226213,
  'trend_strength': 0.9746746652418055,
  'seasonality_strength': 0.8319643021683869,
   'spikiness': 188902088.4567415,
```

Announcing PyCaret's New Time Series Module

(Image by Author) PyCaret's New Time Series Module

Statistical testing, model training and selection (30+ algorithms), model analysis, automated hyperparameter tuning, experiment logging, deployment on cloud, and more.

compare_models function trains and evaluates 30+ algorithms from ARIMA to XGboost (TBATS, FBProphet, ETS, and more).

	Model	MAE	RMSE	MAPE
auto_arima	D_arima Auto ARIMA			0.0911
arima	ARIMA	568.497	687.251	0.0957
theta	Theta Forecaster	526.386	672.942	0.0921
Ir_cds_dt	Linear w/ Cond. Deseasonalize & Detrending	607.773	752.876	0.0972
en_cds_dt	Elastic Net w/ Cond. Deseasonalize & Detrending	607.774	752.875	0.0972
ridge_cds_dt	Ridge w/ Cond. Deseasonalize & Detrending	607.773	752.876	0.0972
lasso_cds_dt	Lasso w/ Cond. Deseasonalize & Detrending	607.774	752.875	0.0972
lar_cds_dt	Least Angular Regressor w/ Cond. Deseasonalize	607.773	752.876	0.0972
rf_cds_dt	Random Forest w/ Cond. Deseasonalize & Detrending	605.303	691.655	0.0963
llar_cds_dt	Lasso Least Angular Regressor w/ Cond. Deseaso	622.354	757.409	0.1005
omp_cds_dt	Orthogonal Matching Pursuit w/ Cond. Deseasona	637.073	779.951	0.1038
et_cds_dt	Extra Trees w/ Cond. Deseasonalize & Detrending	633.58	719.312	0.1022
lightgbm_cds_dt	Light Gradient Boosting w/ Cond. Deseasonalize	623.385	713.959	0.1086
br_cds_dt	Bayesian Ridge w/ Cond. Deseasonalize & Detren	649.424	764.901	0.1061
ada_cds_dt	AdaBoost w/ Cond. Deseasonalize & Detrending	639.408	729.451	0.1057
exp_smooth	Exponential Smoothing	554.193	638.494	0.1026
gbr_cds_dt	Gradient Boosting w/ Cond. Deseasonalize & Det	685.786	798.831	0.1099
knn_cds_dt	K Neighbors w/ Cond. Deseasonalize & Detrending	749.455	857.95	0.124
dt_cds_dt	Decision Tree w/ Cond. Deseasonalize & Detrending	778.955	906.237	0.1244
snaive	Seasonal Naive Forecaster	758.619	868.809	0.1273
huber_cds_dt	Huber w/ Cond. Deseasonalize & Detrending	823.94	953.952	0.141
par_cds_dt	Passive Aggressive w/ Cond. Deseasonalize & De	879.72	1070.64	0.1433
naive	Naive Forecaster	1340.62	1921.11	0.3362
polytrend	Polynomial Trend Forecaster	1636.96	1793.5	0.3259
grand_means	Grand Means Forecaster	2193.97	2395.24	0.3474

Tests statistiques automatisés

	Test	Test Name	Property	Setting	Value
0	Summary	Statistics	Length		3103.0
1	Summary	Statistics	Mean		122553.427328
2	Summary	Statistics	Median		114517.0
3	Summary	Statistics	Standard Deviation		29012.172776
4	Summary	Statistics	Variance		841706169.210626
5	Summary	Statistics	Kurtosis		-0.550774
6	Summary	Statistics	Skewness		0.523174
7	Summary	Statistics	# Distinct Values		3051.0
8	White Noise	Ljung-Box	Test Statictic	{'alpha': 0.05, 'K': 24}	43400.733667
9	White Noise	Ljung-Box	Test Statictic	{'alpha': 0.05, 'K': 48}	69519.004581
10	White Noise	Ljung-Box	p-value	{'alpha': 0.05, 'K': 24}	0.0
11	White Noise	Ljung-Box	p-value	{'alpha': 0.05, 'K': 48}	0.0
12	White Noise	Ljung-Box	White Noise	{'alpha': 0.05, 'K': 24}	False
13	White Noise	Ljung-Box	White Noise	{'alpha': 0.05, 'K': 48}	False
14	Stationarity	ADF	Stationarity	{'alpha': 0.05}	True
15	Stationarity	ADF	p-value	{'alpha': 0.05}	0.000976
16	Stationarity	ADF	Test Statistic	{'alpha': 0.05}	-4.098078
17	Stationarity	ADF	Critical Value 1%	{'alpha': 0.05}	-3.43248
18	Stationarity	ADF	Critical Value 5%	{'alpha': 0.05}	-2.862481
19	Stationarity	ADF	Critical Value 10%	{'alpha': 0.05}	-2.567271
20	Stationarity	KPSS	Trend Stationarity	{'alpha': 0.05}	True

Ljung-Box: L'hypothèse nulle (H0) stipule qu'il n'y a pas autocorrélation des erreurs d'ordre 1 à r. L'hypothèse de recherche (H1) stipule qu'il y a auto-corrélation des erreurs d'ordre 1 à r.

ADF: Le test augmenté de Dickey-Fuller ou test ADF est un test statistique qui vise à savoir si une série temporelle est stationnaire c'est-à-dire si ses propriétés statistiques (espérance, variance, auto-corrélation) varient ou pas dans le temps.

KPSS: vise à savoir si une série temporelle est stationnaire c'est-à-dire si ses propriétés statistiques (espérance, variance, auto-corrélation) varient ou pas dans le temps.

Questions pratiques ET fondamentales

- Ne pas se donner un horizon trop lointain
 - Au tiers de l'historique disponible
- Disposer de périodes complètes pour analyser les saisonnalités
 - Avoir plusieurs occurrences complètes des périodes
- Gestion du calendrier :
 - Supprimer les 29 février ?
 - Comment gérer les semaines incomplètes (0 ou 53 ?)

Questions pratiques ET fondamentales

- Comment séparer les datasets train et test ?
 - Sur une date précise ?
 - Définir des rolling windows?
- Inflexion de tendances : difficile à prédire
 - On reste sur la dernière tendance modélisée
- La météo est rarement est un bon régresseur
 - On a du mal à dire quel temps il fera dans une semaine!
- Comment prendre en compte l'effet COVID / confinement ?
 - Ce sujet mériterait un meetup complet!

Annexes

Hyperparameters have smart defaults.

Loss Function is **Huber loss**, unless user-defined.

The learning rate is approximated with a **learning-rate range test**.

Batch size and epochs are approximated from the dataset size.

We use **one-cycle policy** with AdamW as optimizer for simplicity.

$$L_{huber}(y, \hat{y}) = \begin{cases} \frac{1}{2\beta} (y - \hat{y})^2, & \text{for } |y - \hat{y}| < \beta \\ |y - \hat{y}| - \frac{\beta}{2}, & \text{otherwise} \end{cases}$$

