Statistika Inferensia Dasar

Pertemuan 3

Uji Normalitas

- Uji Normalitas adalah sebuah uji yang dilakukan dengan tujuan untuk menilai sebaran data pada sebuah kelompok data atau variabel, apakah sebaran data tersebut berdistribusi normal atau tidak.
- Uji Normalitas berguna untuk menentukan data yang telah dikumpulkan berdistribusi normal atau diambil dari populasi normal.
- Pengujian normalitas suatu data tidak begitu rumit. Berdasarkan pengalaman empiris beberapa pakar statistik, data yang banyaknya lebih dari 30 angka (n > 30), maka sudah dapat diasumsikan berdistribusi normal. Biasa dikatakan sebagai sampel besar.

- Formula/rumus yang digunakan untuk melakukan suatu uji dibuat dengan mengasumsikan bahwa data yang akan dianalisis berasal dari populasi yang sebarannya normal.
- Data yang normal memiliki kekhasan seperti mean, median dan modusnya memiliki nilai yang sama
- Selain itu juga data normal memiliki bentuk kurva yang sama, bell curve
- Dengan mengasumsikan bahwa data dalam bentuk normal ini, analisis statistik baru bisa dilakukan.

Metode Chi-Square Dalam Uji Normalitas

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Dengan

 O_i : frekuensi observasi/ data asli

 E_i : Nilai Ekspektasi = $n \times P_i$

 P_i : Luas daerah / nilai peluang dari Z-score

n : banyaknya data

Nilai Z-Score

- Z Score adalah suatu ukuran penyimpangan data dari nilai rataratanya yang diukur dalam satuan standar deviasinya. Jika nilainya terletak diatas rata-rata maka Z score-nya akan bernilai positif, sedangkan apabila nilainya dibawah nilai rata-rata maka Z score-nya akan bernilai negatif. Z Score ini juga disebut dengan Nilai Standar atau Nilai Baku.
- Manfaat dari menstandarisasikan nilai-nilai skor mentah atau nilai yang diamati dari distribusi normal menjadi Z Score atau Skor Z ini adalah untuk memungkinkan kita menghitung probabilitas skor yang terjadi dalam distribusi normal dan juga memungkinkan kita untuk membandingkan dua skor yang berasal dari populasi yang berbeda.

Untuk mencari Z Score atau Nilai Baku ini, kita perlu mengetahui nilai rata-rata (mean) dan stardar deviasi suatu populasi karena Rumus untuk menghitung Z Score adalah dengan mengurangi nilai yang diamati (skor mentah) dengan rata-rata populasi dan kemudia dibagi dengan standar deviasinya.

Berikut ini adalah persamaan untuk Menghitung Z Score:

$$Z = \frac{(\bar{x} - \mu)}{\sigma}$$

Keterangan

 \dot{x} = nilai rata-rata yang diamati (skor mentah)

 μ = rata-rata populasi

 σ = adalah standar deviasi populasi

Z = Z Score (Nilai Baku)

Langkah Uji Normalitas

- 1. Merumuskan hipotesis
 - Ho : data berdistribusi normal
 - Ha: data tidak berdistribusi normal
- 2. Membuat tabel bantu untuk penyajian data
- 3. Menentukan taraf nyata (α)
 Untuk mendapatkan nilai chi kuadrat tabel:
 Rumus Chi Kuadrat (χ^2) Tabel:

$$\chi^2$$
 tabel = χ^2 df, α df = Derajat kebebasan df = $k-3$ k = banyak kelas interval α = level signifikan = 5% = 0,05

- 4. Menentukan nilai uji statistik : Mencari nilai Z Score dan Chi Kuadrat Persamaan Z Score $Z = \frac{(\bar{x} - \mu)}{\sigma}$ Persamaan Chi Kuadrat $\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$
- 5. Menentukan kriteria pengujian hipotesis Ho ditolak jika χ^2 hitung $\geq \chi^2$ tabel Ho diterima jika χ^2 hitung $< \chi^2$ tabel
- 6. Memberikan kesimpulan

Contoh

Diketahui: Data mahasiswa yang mendapat nilai ujian matematika sebanyak 30 sebagai berikut:

75	74	74	73	76	77	87	67	56	78
78	67	76	66	65	67	67	76	78	77
77	77	80	87	89	89	89	89	91	85

Ditanya : Ujilah apakah data tersebut berdistribusi normal atau tidak dengan α = 0,05 ?

Penyelesaian

1. Merumuskan hipotesis

Ho: data berdistribusi normal

Ha: data tidak berdistribusi normal

2. Membuat tabel bantu untuk penyajian data

Item	Notasi/Formulasi		Pembulatan
Jumlah Sampel	n	30	
Max		91	
Min		56	
Rentangan	R = Max - Min	35	
Banyak Kelas	$BK = 1 + 3.3 \operatorname{Log} n$	5,8745	6
Panjang Kelas	$i = \frac{R}{BK}$	5,957954	6

Buat tabel distribusi frekuensi skor baku variabel **Motivasi** (x_1) ,

No	Kelas Interval	f	x_{i}	x_i^2	$f x_i$	$\int x_i^2$
1	56-61	1	58,5	3422,25	58,5	3422.25
2	62-67	6	64,5	4160,25	387	24961.5
3	68-73	1	70,5	4970,25	70,5	4970.25
4	74-79	13	76,5	5852,25	994,5	76079.25
5	80-85	2	82,5	6806,25	165	13612.5
6	86-91	7	88,5	7832,25	619,5	54825.75
	\sum	30		\sum	2295	177871,5

3. Menentukan Chi Kuadrat dengan taraf nyata (α)

```
Untuk mendapatkan nilai chi kuadrat tabel:
Rumus Chi Kuadrat (\chi^2)tabel :
df = Derajat kebebasan
df = 6 - 3 = 3
\alpha = level signifikan = 5% = 0,05
\chi^2_{df. \alpha} tabel = \chi^2_{df. 1-\alpha}
              = \chi^2_{3.95} (gunakan daftar tabel Chi Kuadrat)
               = 7.81
```

Menentukan nilai uji statistik : Nilai Z Score dan Chi Kuadrat

$$\overline{x} = \frac{\sum f \cdot x_i}{n} = \frac{2295}{30} = 76,5.$$

Simpangan baku (s) diperoleh sebagai:

$$s = \sqrt{\frac{n \cdot \sum f x_i^2 - \left(\sum f x_i\right)^2}{n \cdot (n-1)}} = \sqrt{\frac{30 \times 177871, 5 - \left(2295\right)^2}{30 \cdot (30-1)}} =$$

$$s = \sqrt{\frac{5336145 - 5267025}{870}} = 8,91$$

Kelas	Frek (fi)	Tepi Kelas	Nilai Z	Luas 0-Z	Luas Kelas Interval	Frek Harapan (Ei)	$\frac{\left(O_i - E_i\right)^2}{E_i}$
56-61	1	55,5	-2,3569	0,491	0,0374	1,122	0,0133
62-67	6	61,5	-1,6835	0,454	0,1097	3,291	2,2299
68- 73	1	67,5	-1,0101	0,344	0,2107	6,321	4,4792
74- 89	13	73,5	-0,3367	0,133	0,2662	7,986	3,1480
80- 85	2	79,5	0,3367	0,133	0,2107	6,321	2,9538
86- 91	7	85,5	1,0101	0,344	0,1097	3,291	4,1801
		91,5		0,454			
						$\chi^2 =$	17,0043

Luas Interval adalah harga mutlak, Luas interval kelas 1 adalah 0,491-0,454 = 0,0374; Luas Interval kelas ke 2 adalah 0,454 – 0,344 = 0,1097; dan seterusnya 5. Menentukan kriteria pengujian hipotesis.

Ho ditolak jika χ^2 hitung $\geq \chi^2$ tabel Ho diterima jika χ^2 hitung $< \chi^2$ tabel χ^2 hitung = 17,0043 χ^2 tabel = 7,81

6. Memberikan kesimpulan karena χ^2 hitung > χ^2 tabel, yaitu 12,017 > 7,81, Maka kesimpulannya tolak Ho, data ujian matematika tidak berdistribusi normal

Pr df	0.25	0.10	0.05	0.010	0.005	0.001
1	1.32330	2.70554	3.84146	6.63490	7.87944	10.82757
2	2.77259	4.60517	5.99146	9.21034	10.59663	13.81551
3	4.10834	6.25139	7.81473	11.34487	12.83816	16.26624
4	5.38527	7.77944	9.48773	13.27670	14.86026	18.46683
5	6.62568	9.23636	11.07050	15.08627	16.74960	20.51501
6	7.84080	10.64464	12.59159	16.81189	18.54758	22.45774
7	9.03715	12.01704	14.06714	18.47531	20.27774	24.32189
8	10.21885	13.36157	15.50731	20.09024	21.95495	26.12448
9	11.38875	14.68366	16.91898	21.66599	23.58935	27.87716
10	12.54886	15.98718	18.30704	23.20925	25.18818	29.58830
11	13.70069	17.27501	19.67514	24.72497	26.75685	31.26413
12	14.84540	18.54935	21.02607	26.21697	28.29952	32.90949
13	15.98391	19.81193	22.36203	27.68825	29.81947	34.52818
14	17.11693	21.06414	23.68479	29.14124	31.31935	36.12327
15	18.24509	22.30713	24.99579	30.57791	32.80132	37.69730
16	19.36886	23.54183	26.29623	31.99993	34.26719	39.25235
17	20.48868	24.76904	27.58711	33.40866	35.71847	40.79022
18	21.60489	25.98942	28.86930	34.80531	37.15645	42.31240
19	22.71781	27.20357	30.14353	36.19087	38.58226	43.82020
20	23.82769	28.41198	31.41043	37.56623	39.99685	45.31475

Tabel Chi-Square

Latihan

DIAMBIL TINGGI BADAN MAHASISWA DI SUATU PERGURUAN TINGGI TAHUN 1990

TINGGI BADAN	JUMLAH
140 - 144	7
145 - 149	10
150 - 154	16
155 - 159	23
160 - 164	21
165 - 169	17
170 174	6
JUMLAH	100

Selidikilah dengan α = 5%, apakah data tersebut di atas berdistribusi normal ? (Mean = 157.8; Standar deviasi = 8.09)

Uji Hipotesis Rata-Rata 1 Populasi

Uji Z dan Uji t

Langkah Pengujian Hipotesis

Tentukan hipotesis

```
Misal: H_0: \mu = c, lawan H_1: \mu \neq c (uji dua sisi)
```

Atau: H_0 : $\mu = c$, lawan H_1 : $\mu > c$ (uji satu sisi)

Tentukan tingkat signifikansi α

Biasanya kalau tidak diketahui, maka hal yang biasa digunakan adalah tingkat kesalahan α sebesar 5%.

- Statistik Uji
- Daerah kritik, H₀ diterima bila dan H₀ ditolak bila.
- Keputusan, H₀ diterima atau ditolak
- Kesimpulan

Uji Z

- Uji Z dapat digunakan untuk data yang simpangan bakunya diketahui,
- Data berdistribusi normal dan dengan jumlah data (n) cukup besar (n>30)

Teorema 3.1.

Jika X_1, X_2, \cdots, X_n adalah sampel random dari Populasi yang berdistribusi normal dengan mean μ dan variansi σ^2 maka variable random

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

akan mendekati normal standar dengan mean 0 dan simpangan baku 1.

Teorema 3.2.

Jika X_1, X_2, \cdots, X_n adalah sampel random dari Populasi sembarang dengan mean μ dan variansi σ^2 maka untuk sampel berukuran cukup besar (n > 30), berdasarkan Teorema 3.1., variable random

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

akan mendekati normal standar dengan mean 0 dan simpangan baku 1.

Dengan demikian, Berdasarkan Teorema 3.1. dan Teorema 3.2., untuk melakukan uji ratarata 1 populasi tidak perlu dilakukan uji normalitas. Akan dilakukan uji hipotesis bahwa mean suatu populasi sama dengan nilai tertentu μ_0 , dengan n besar (n > 30).

Langkah Uji Z

Adapun langkah-langkah pengujian hipotesisnya sebagai berikut :

1. Tentukan Hipotesis

	H_0	$: \mu = \mu_0$	(Uji Dua Sisi)
a.	H_1	$: \mu \neq \mu_0$	
b.	H_0	$: \mu \le \mu_0$	(Uji Satu Sisi)
D.	H_0	$: \mu > \mu_0$	
	H_0	$: \mu \ge \mu_0$	(Uji Satu Sisi)
C.	H_0	$: \mu < \mu_0$	

Lanjutan...

- 2. Tentukan tingkat signifikansi : α
- 3. Statistik Penguji

$$Z = rac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

$ar{X}$	Rata – rata sampel
μ_0	Rata – rata yang diketahui (Populasi)
σ	Simpangan baku yang diketahui
n	Jumlah data populasi

Lanjutan...

4. Kriteria Penolakan H_0

 H_0 ditolak jika (sesuaikan dengan hipotesis yang digunakan)

a.
$$Z_{hitung} < -Z_{\frac{\alpha}{2}}$$
 atau $Z_{hitung} > Z_{\frac{\alpha}{2}}$

b.
$$Z_{hitung} > Z_{\alpha}$$

c.
$$Z_{hitung} < -Z_{\alpha}$$

5. Kesimpulan

Daerah Penolakan $oldsymbol{H_0}$ Untuk Uji Dua Sisi

Untuk hipotesis dua sisi:

 H_0 : $\mu = c$ lawan H_1 : $\mu \neq c$

Daerah Penerimaan H₀

$$-Z_{\alpha/2} \le Z \le Z_{\alpha/2}$$

Daerah Penolakan H₀

$$Z > Z_{\alpha/2}$$
 atau $Z < -Z_{\alpha/2}$

Daerah Penolakan H_0 Uji Satu Sisi

Untuk hipotesis satu sisi:

 H_0 : $\mu = c$ lawan H_1 : $\mu < c$

Daerah Penerimaan Ho

$$Z > -Z_{\alpha}$$

Daerah Penolakan H₀

$$Z \le -Z_{\alpha}$$

Daerah Penolakan H_0 Uji Satu Sisi

 H_0 : $\mu = c$ lawan H_1 : $\mu > c$

Daerah Penerimaan H₀

 $Z \leq Z_{\alpha}$

Daerah Penolakan H₀

 $Z > Z_{\alpha}$

Contoh

Diberikan data umur sebanyak 44 Pasien yang berobat ke Puskesmas sbb:

76	18	45	50	60	22
17	26	27	50	38	18
42	35	19	41	7	60
24	50	60	13	37	62
80	52	10	21	60	28
12	30	9	39	38	45
8	9	45	22	33	24
50	25	doni doto	. 1	1 1 1 20	1

Misalkan diketahui bahwa simpangan baku dari data tersebut adalah 20, dengan tingkat signifikansi $\alpha = 5\%$, Apakah dapat disimpulkan bahwa pasien yang berobat rata-rata berusia 35 tahun?

Penyelesaian

1. Hipotesis:

$$H_0: \mu = 35$$
 vs $H_1: \mu \neq 35$

- 2. Tingkat Signifikansi : $\alpha = 5\%$
- 3. Statistik Penguji:

$$\bar{X} = \frac{\sum x_i}{n} = \frac{1537}{44} = 34,93$$

$$Z_{hitung} = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = \frac{34,93 - 35}{20 / \sqrt{44}} = \frac{-0,07}{3,015} = -0,023$$

Lanjutan

4. Kriteria penolakan H_0

 H_0 ditolak jika $Z_{hitung} > Z_{\frac{\alpha}{2}}$ atau $Z_{hitung} < -Z_{\frac{\alpha}{2}}$. Karena $\alpha = 0.05$ sehingga $\frac{\alpha}{2} = 0.025$ maka berdasarkan tabel Z-test diperoleh $Z_{\frac{\alpha}{2}} = Z_{0.025} = 1.96$. Dengan demikian, karena $Z_{hitung} = -0.023 > -1.96 = -Z_{0.025}$ maka H_0 tidak ditolak.

5. Kesimpulan

Berdasarkan Hasil yang diperoleh pada langkah 4 dapat disimpulkan bahwa rata-rata pasien yang datang berobat berusia 35 tahun.

Contoh

Berdasarkan data umur pasien di Contoh sebelumnya dengan tingkat signifikansi $\alpha = 0,1$. Lakukan pengujian hipotesis, apakah dapat disimpulkan bahwa ratarata usia pasien yang datang berobat tidak lebih dari 30 tahun ?

Contoh

Dari suatu sampel acak 100 catatan kematian di USA selama tahun lalu menunjukkan bahwa umur kematian rata-rata adalah 71,8 tahun dan simpangan bakunya 8,9 tahun. Apakah pernyataan ini menunjukkan bahwa harapan umur saat ini adalah lebih dari 70 tahun? (asumsikan tingkat signifikansi yang digunakan adalah 10%)

Latihan

Diberikan data jarak yang ditempuh sebuah mobil per bulannya di Jakarta (km) :

2059	2101	2419	2109
1945	1940	2028	1683
1840	2503	1969	2252
2377	1917	1959	2418
2310	2233	2065	2707
2194	1987	2023	1595
2005	1964	2670	2285
1938	2296	2378	2010

Apabila standar deviasinya adalah 280 km dan tingkat signifikansinya adalah 5%. Apakah dapat disimpulkan bahwa jarak yang ditempuh mobil tersebut kurang dari 2100 km?

Latihan

Sebuah perusahaan alat olahraga mengembangkanjenisbatang pancing sintetik, ingin menguji apakah alat pancing tersebut memiliki kekuatan dengan nilai tengah 8 kg. Diketahui bahwa simpangan baku adalah 0,5 kg. Ujilah hipotesis tersebut, bila suatu contoh acak 50 batang pancing itu setelah di tes memberikan nilai tengah 7,8 kg. Gunakan taraf nyata 0,01.

Uji t

- □Uji t dapat digunakan untuk data yang simpangan baku populasinya
 - tidak diketahui
- □ Data berdistribusi normal
- □Jumlah data (n) cukup kecil (n<30).
- ☐ Data berskala interval atau rasio

Langkah Uji t

Adapun langkah-langkah pengujian hipotesisnya sebagai berikut :

1. Tentukan Hipotesis

	H_0	$: \mu = \mu_0$	(Uji Dua Sisi)
a.	H_1	$: \mu \neq \mu_0$	
b.	H_0	$: \mu \le \mu_0$	(Uji Satu Sisi)
D.	H_0	$: \mu > \mu_0$	
	H_0	$: \mu \ge \mu_0$	(Uji Satu Sisi)
C.	H_0	$: \mu < \mu_0$	

Lanjutan...

- 2. Tentukan tingkat signifikansi : α
- 3. Statistik Penguji

$$t = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$$

$ar{X}$	Rata – rata sampel
μ_0	Rata – rata yang diketahui (Populasi)
S	Simpangan baku sampel yang diketahui
n	Jumlah data populasi

Lanjutan...

4. Kriteria Penolakan H_0

 H_0 ditolak jika (sesuaikan dengan hipotesis yang digunakan)

a.
$$t_{hitung} < -t_{\frac{\alpha}{2}}$$
 atau $t_{hitung} > t_{\frac{\alpha}{2}}$

b.
$$t_{hitung} > t_{\alpha}$$

c.
$$t_{hitung} < -t_{\alpha}$$

5. Kesimpulan

Contoh

Di bawah ini disajikan data tekanan darah sistolik (mmHg) dari 10 laki-laki dewasa.

183, 152, 178, 157, 194, 163, 144, 114, 178, 152

Apabila diasumsikan tekanan darah sistolik laki-laki dewasa berdistribusi normal dengan tingkat signifikansi 0,05, dapatkah kita simpulkan berdasarkan data di atas bahwa rata-rata tekanan darah sistolik laki-laki dewasa kurang dari 140mmHg?

Penyelesaian

1. Hipotesis:

$$H_0: \mu \ge 140 \ mmHg$$
 vs $H_1: \mu < 140 \ mmHg$

- 2. Tingkat Signifikansi : $\alpha = 5\%$
- 3. Statistik Penguji:

$$\overline{X} = \frac{\sum x_i}{n} = \frac{1615}{10} = 161,5$$
 $s^2 = \frac{\sum (x_i - \overline{x})^2}{n-1} = \frac{4828,5}{10-1} = 536,5$

sehingga
$$s = \sqrt{536,5} = 23,16$$

$$t_{hitung} = \frac{\bar{X} - \mu}{s/\sqrt{n}} = \frac{161,5 - 140}{23,16/\sqrt{10}} = \frac{21,5}{7,324} = 2,9356$$

Tekanan Darah	$(x_i - \bar{x})^2$
183	462,25
152	90,25
178	272,25
157	20,25
194	1056,25
163	2,25
144	306,25
114	2256,25
178	272,25
152	90,25
$\sum x_i = 1615$	4828,5

Lanjutan

4. Kriteria penolakan H₀

 H_0 ditolak jika $t_{hitung} < -t_{\alpha}$. Karena $\alpha = 0.05$ dan derajat kebebasan d = n - 1 = 9 maka berdasarkan tabel t-test diperoleh $t_{\alpha} = t_{0.05} = 1.833$. Dengan demikian, karena $t_{hitung} = 2.9356 > -t_{0.05} = -1.833$ maka H_0 tidak ditolak.

5. Kesimpulan

Berdasarkan Hasil yang diperoleh pada langkah 4 dapat disimpulkan bahwa rata-rata tekanan darah sistolik laki-laki dewasa tidak kurang dari 140mmHg

t Table

cum. prob	t .50	t .75	t _{.80}	t .85	t .90	t .95	t .975	t .99	t .995	t .999	t_9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646

Contoh

Seorang peneliti ingin melakukan suatu penelitian mengenai tinggi badan mahasiswa yang mengikuti mata kuliah Statistika. Untuk itu dilakukan suatu penelitian terhadap sepuluh mahasiswa yang mengikuti mata kuliah tsb.

Mhs ke-	1	2	3	4	5	6	7	8	9	10
TB (cm)	185	150	156	171	160	160	165	171	166	150

Ujilah hipotesis:

- a. Apakah tinggi badan mahasiswa tersebut adalah 155 cm?
- b. Apakah tinggi badan mahasiswa tersebut di atas 155 cm?

Latihan

Rata-rata target pencapaian produksi rumput laut di seluruh propinsi adalah 100%. Untuk mengetahui kebenarannya maka dilakukan sampling data di 15 propinsi sebagai berikut:

	Capaian		Capaian		Capaian
1	110.6	6	83.24	11	119.7
2	106.2	7	112.05	12	120.5
3	116.3	8	80.31	13	90.81
4	95.9	9	80.12	14	106.3
5	100.5	10	75.93	15	102.29

Latihan

Dua belas murid SMA mengikuti kursus bahasa Inggris dipilih secara acak dan menunjukkan nilai bahasa Inggris rata-rata 80 dan simpangan bakunya 8. Dari data tersebut, apakah dapat disimpulkan bahwa nilai rata-rata bahasa Inggris murid SMA yang mengikuti kursus tersebut tidak kurang dari 85? Gunakan $\alpha = 5\%$ dan Asumsikan data berdistribusi normal.