Professor: Hans Knüpfer Tutor: Leon Happ

Aufgabe 1

(a) Sei $A \subset \mathbb{R}$ abzählbar. Dann lässt sich $A = \{x_1, \ldots\}$ schreiben als abzählbare Vereinigung $\bigcup_{n \in \mathbb{N}} \{x_n\}$ seiner Elemente. Einelementige Mengen sind insbesondere abgeschlossen. A ist also die abzählbare Vereinigung von abgeschlossenen Mengen und liegt daher in $\mathcal{B}(\mathbb{R})$. Sei nun $\forall n \in \mathbb{N}$

$$A_i = [x_n, x_n + \frac{\epsilon}{2^n}).$$

Dann ist das durch das Lebesgue-Prämaß induzierte Maß

$$\lambda(A) = \inf\{\sum_{i=1}^{\infty} \lambda_{\text{pre}}(B_i) \colon B_i \in \mathcal{K}, \ A \subset \bigcup_{i \in \mathbb{N}} B_i\}.$$

Da $A_i \in \mathcal{J}$, ist das Lebesgue-Prämaß von A_i gerade gegeben durch $\lambda_{\text{pre}}(A_i) = x_i + \frac{\epsilon}{2^i} - x_i = \frac{\epsilon}{2^i}$. Wählen wir nun $B_i = A_i$, so ergibt sich für das Lebesgue-Maß

$$\lambda(A) \le \sum_{i=1}^{\infty} \lambda_{\text{pre}}(A_i) = \sum_{i=1}^{\infty} \frac{\epsilon}{2^i} = \epsilon.$$

Für $\epsilon \to 0$ erhalten wir also $\lambda(A) = 0$.

(b) Für jede beliebige abgeschlossene bzw. offene Menge $A \subset \mathbb{R}$ ist auch αA eine Teilmenge von \mathbb{R} und abgeschlossen bzw. offen. Sei für offenes A nämlich ein Punkt $\alpha x \in \alpha A$. Dann $\exists \epsilon > 0$ mit $U_{\epsilon}(x) \subset A$. Dann ist aber schon $U_{\alpha\epsilon}(x) \subset \alpha A$. Nun zeigen wir, dass $\alpha \bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} \alpha A_n$. Es gilt

$$\alpha \bigcup_{n \in \mathbb{N}} A_n = \alpha \{ a | \exists n \in \mathbb{N} : a \in A_n \}$$

$$= \{ \alpha a | \exists n \in \mathbb{N} : a \in A_n \}$$

$$= \{ a' | \exists n \in \mathbb{N} : a' \in \alpha A_n \}$$

$$= \bigcup_{n \in \mathbb{N}} \alpha A_n$$

Analog gilt auch

$$\alpha \bigcap_{n \in \mathbb{N}} A_n = \alpha \{ a | \forall n \in \mathbb{N} \colon a \in A_n \}$$

$$= \{ \alpha a | \forall n \in \mathbb{N} \colon a \in A_n \}$$

$$= \{ a' | \forall n \in \mathbb{N} \colon a' \in \alpha A_n \}$$

$$= \bigcap_{n \in \mathbb{N}} \alpha A_n.$$

Wir betrachten nun die Menge $D = \{A \in \mathcal{B}(\mathbb{R}) : \alpha A \in \mathcal{B}(\mathbb{R})\}$. Behauptung: D ist eine σ -Algebra.

Beweis. (i) $\alpha \mathbb{R} = \mathbb{R} \in \mathscr{B}(\mathbb{R})$. Also liegt $\mathbb{R} \in D$.

(ii) Sei $A \in D$, d.h. $\alpha A \in \mathcal{B}(\mathbb{R})$. Es gilt

$$\alpha A^c = \alpha \{ a \in \mathbb{R} \colon a \notin A \} = \{ \alpha a \in \mathbb{R} \colon a \notin A \} = \{ \alpha a \in \mathbb{R} \colon \alpha a \notin \alpha A \} = (\alpha A)^c.$$

Mit αA liegt stets auch $(\alpha A)^c$ in $\mathscr{B}(\mathbb{R})$. Daraus folgt $A^c \in D$.

(iii) Sei $\forall i \in \mathbb{N} : A_i \in D$, d.h. $\forall i \in \mathbb{N} : \alpha A_i \in \mathscr{B}(\mathbb{R})$. Es gilt

$$\alpha \bigcup_{i \in \mathbb{N}} A_i = \bigcup_{i \in \mathbb{N}} \alpha A_i \in \mathscr{B}(\mathbb{R}).$$

Also ist $\bigcup_{i\in\mathbb{N}} A_i \in D$.

Da für alle offenen Mengen A auch αA wieder in $\mathscr{B}(\mathbb{R})$ liegen, enthält D insbesondere alle offenen Mengen in \mathbb{R} . Sei O die Menge aller offenen Mengen von \mathbb{R} . Dann gilt $\mathscr{B}(\mathbb{R}) = \sigma(O) \subset D \subset \mathscr{B}(\mathbb{R})$, also $D = \mathscr{B}(\mathbb{R})$. Daher gilt für alle $A \in \mathscr{B}(\mathbb{R})$: $\alpha A \in \mathscr{B}(\mathbb{R})$.

Wir betrachten wieder das Lebesgue-Maß

$$\lambda(A) = \inf\{\sum_{i=1}^{\infty} \lambda_{\text{pre}}(B_i) \colon B_i \in \mathcal{K}, \ A \subset \bigcup_{i \in \mathbb{N}} B_i\}.$$

Zunächst gilt $B_i \in \mathcal{K} \implies B_i = \bigcup_{1 \leq k < n} [a_k, b_k) \implies \alpha B_i = \bigcup_{1 \leq k \leq n} [\alpha a_k, \alpha b_k) \in \mathcal{K}$. Daran sieht man auch sofort, dass $\lambda_{\text{pre}}(\alpha B_i) = \sum_{1 \leq k \leq n} (\alpha b_k - \alpha a_k) = \alpha \sum_{1 \leq k \leq n} (b_k - a_k) = \alpha \lambda_{\text{pre}}(B_i)$. Diese beiden Aussagen benutzen wir im Folgenden:

$$\lambda(\alpha A) = \inf\{\sum_{i=1}^{\infty} \lambda_{\text{pre}}(B_i) \colon B_i \in \mathcal{K}, \ \alpha A \subset \bigcup_{i \in \mathbb{N}} B_i\}$$

Es gilt $B_i = \alpha \frac{1}{\alpha} B_i =: \alpha B_i'$

$$=\inf\{\sum_{i=1}^{\infty} \lambda_{\operatorname{pre}}(\alpha B_i') \colon \alpha B_i' \in \mathcal{K}, \ \alpha A \subset \bigcup_{i \in \mathbb{N}} \alpha B_i'\}$$
$$=\inf\{\sum_{i=1}^{\infty} \lambda_{\operatorname{pre}}(\alpha B_i') \colon \alpha B_i' \in \mathcal{K}, \ \alpha A \subset \alpha \bigcup_{i \in \mathbb{N}} B_i'\}$$

Es gilt $\alpha A \subset \alpha B \implies A \subset B$

$$= \inf\{\sum_{i=1}^{\infty} \lambda_{\operatorname{pre}}(\alpha B_i') \colon \alpha B_i' \in \mathcal{K}, \ A \subset \bigcup_{i \in \mathbb{N}} B_i'\}$$

$$= \inf\{\sum_{i=1}^{\infty} \lambda_{\operatorname{pre}}(B_i') \colon B_i' \in \mathcal{K}, \ A \subset \bigcup_{i \in \mathbb{N}} B_i'\}$$

$$= \alpha \inf\{\sum_{i=1}^{\infty} \lambda_{\operatorname{pre}}(B_i') \colon B_i' \in \mathcal{K}, \ A \subset \bigcup_{i \in \mathbb{N}} B_i'\}$$

$$= \alpha \inf\{\sum_{i=1}^{\infty} \lambda_{\operatorname{pre}}(B_i') \colon B_i' \in \mathcal{K}, \ A \subset \bigcup_{i \in \mathbb{N}} B_i'\}$$

$$= \alpha \lambda(A)$$

(c) Wähle $A := [0, \alpha) \uplus (\mathbb{Q} \cap [\alpha, \infty))$. Dann gilt

$$\lambda(A) = \underbrace{\lambda([0,\alpha))}_{\in \mathscr{K}} + \underbrace{\lambda(\mathbb{Q} \cap [\alpha,\infty))}_{\text{abz\"{a}hlbar}} = \alpha + 0.$$

Behauptung: Es gibt keine offene Menge mit diesen Eigenschaften.

Beweis. Zunächst stellen wir fest, dass sich jede offene Menge $A \subset \mathbb{R}$ als Vereinigung offener Intervalle der Form (a,b) schreiben lässt. Jedes solcher Intervalle ist eine abzählbare Vereinigung von offenen Intervallen mit rationalen Endpunkten (q_a,q_b) , da sich leicht eine Folge von Mengen konstruieren lässt, die monoton wachsend gegen (a,b) konvergiert. Daher muss A bereits eine abzählbare Vereinigung offener Intervalle mit rationalen Endpunkten sein, $A = \bigcup_{n \in \mathbb{N}} (a_n,b_n)$. Sei nun $(q_i)_{i \in \mathbb{N}}$ eine qufsteigende Abzählung der rationalen Zahlen. Angenommen, es gäbe ein $i \in \mathbb{N}$, sodass $(q_i,q_{i+1}) \not\subset A$. Dann gäbe es für ein $x \in (q_i,q_{i+1})$ eine Umgebung, die nicht in A läge. A liegt aber dicht in \mathbb{R} . Also müssen alle Intervalle der Form (q_i,q_{i+1}) in A liegen. Damit ist aber bereits $A^c \subset \mathbb{Q}$ und daher $\lambda(A) = \lambda(\mathbb{R}) - \lambda(A^c) = \lambda(\mathbb{R}) - \lambda(\mathbb{Q}) = \lambda(\mathbb{R}) > \alpha$ für beliebiges $\alpha \in \mathbb{R}$.

Aufgabe 2

Notationstechnisch wird die Aufgabe (meiner Meinung nach) schöner, wenn man folgendes definiert

$$\mathscr{H}^s_{\delta} := \inf \left\{ \sum_{j \in J} \operatorname{diam}(B_j)^s \colon A \subset \bigcup_{j \in J} B_j, \ \operatorname{diam}(B_j) \le \delta, J \subset \mathbb{N}, B_j \ne \emptyset \right\}.$$

Diese Definition ist nur eine Änderung der Notationsweise, sonst verändert sich nichts am Ergebnis.

- (a) (i) Es gilt $\emptyset \subset \bigcup_{j \in \emptyset} B_j = \emptyset$. Also ist $\mathscr{H}^s_{\delta}(\emptyset) = \sum_{j \in \emptyset} \operatorname{diam}(B_j)^s = 0$. Daher ist auch $\mathscr{H}^s(\emptyset) = 0$.
 - (ii) Monotonie: Sei $A \subset B$. Dann gilt $B \subset \bigcup_{j \in J} B_j \implies A \subset \bigcup_{j \in J} B_j$. Also ist

$$\begin{split} \{ \sum_{j \in J} \operatorname{diam}(B_j)^s \colon B \subset \bigcup_{j \in J} B_j, \operatorname{diam}(B_j) \leq \delta, J \subset \mathbb{N}, B_j \neq \emptyset \} \\ \subset \{ \sum_{j \in \mathbb{N}} \operatorname{diam}(B_j)^s \colon A \subset \bigcup_{j \in \mathbb{N}} B_j, \operatorname{diam}(B_j) \leq \delta, J \subset \mathbb{N}, B_j \neq \emptyset \}. \end{split}$$

Ist $M \subset N$, so ist $\inf M \geq \inf N$. Hier gilt also $\forall \delta \colon \mathcal{H}^s_{\delta}(A) \leq \mathcal{H}^s_{\delta}(B)$ und damit auch $\mathcal{H}^s(A) \leq \mathcal{H}^s(B)$.

(iii) Seien $\forall i \in \mathbb{N} \colon A_i \subset \mathbb{R}$ und zu jedem A_i eine Überdeckung gegeben,

$$A_i \subset \bigcup_{j \in M_i} B_j$$
 diam $(B_j) \le \delta, M_i \subset \mathbb{N}, B_j \ne \emptyset.$

Sei $J := \bigcup_{i \in \mathbb{N}} M_i$. Dann lässt sich leicht eine Überdeckung von $A := \bigcup_{i \in \mathbb{N}} A_i$ konstruieren,

$$A \subset \bigcup_{j \in J} B_j$$
 diam $(B_j) \le \delta, M_i \subset \mathbb{N}, B_j \ne \emptyset.$

Es gilt

$$\sum_{j \in J} \operatorname{diam}(B_j)^s \le \sum_{i \in \mathbb{N}} \sum_{j \in M_i} \operatorname{diam}(B_j)^s,$$

da $\bigcup_{i=1}^{\infty} M_i = J$. Da wir für jedes A_i eine beliebige Überdeckung vorgeben und stets diese Ungleichung erhalten, gilt auch

$$\begin{split} \mathscr{H}^{s}_{\delta}(A) &= \inf\{\sum_{j \in J} \operatorname{diam}(B_{j})^{s} \colon B \subset \bigcup_{j \in J} B_{j}, \operatorname{diam}(B_{j}) \leq \delta, J \subset \mathbb{N}, B_{j} \neq \emptyset\} \\ &\leq \inf\{\sum_{i \in \mathbb{N}} \sum_{j \in M_{i}} \operatorname{diam}(B_{j})^{s} \colon A_{i} \subset \bigcup_{j \in M_{i}} B_{j}, \operatorname{diam}(B_{j}) \leq \delta, M_{i} \subset \mathbb{N}, B_{j} \neq \emptyset\} \\ &= \sum_{i \in \mathbb{N}} \inf\{\sum_{j \in M_{i}} \operatorname{diam}(B_{j})^{s} \colon A_{i} \subset \bigcup_{j \in M_{i}} B_{j}, \operatorname{diam}(B_{j}) \leq \delta, M_{i} \subset \mathbb{N}, B_{j} \neq \emptyset\} \\ &= \sum_{i \in \mathbb{N}} \mathscr{H}^{s}_{\delta}(A_{i}) \end{split}$$

Damit ist die Subadditivität für beliebiges δ , also auch für $\delta \to 0$ bewiesen.

(b) Es gilt diam $(\alpha B_j) = \sup\{|\alpha x - \alpha y| : x, y \in B_j\} = \alpha \operatorname{diam}(B_j)$. Daraus folgt sofort $\sum_{j \in J} \operatorname{diam}(\alpha B_j)^s = \alpha^s \sum_{j \in J} \operatorname{diam}(B_j)^s$. Insgesamt erhalten wir also

$$\mathscr{H}_{\delta}^{s}(\alpha A) = \inf\{\sum_{j \in J} \operatorname{diam}(B_{j})^{s} : \alpha A \subset \bigcup_{j \in J} B_{j}, \operatorname{diam}(B_{j}) \leq \delta, J \subset \mathbb{N}, B_{j} \neq \emptyset\}$$

$$B_j = \alpha \frac{1}{\alpha} B_j =: \alpha B_j'$$

$$=\inf\{\sum_{j\in J}\operatorname{diam}(\alpha B_j')^s\colon \alpha A\subset \bigcup_{j\in J}\alpha B_j', \operatorname{diam}(\alpha B_j')\leq \delta, J\subset \mathbb{N}, \alpha B_j'\neq\emptyset\}$$

$$=\inf\{\alpha^s\sum_{j\in J}\operatorname{diam}(B_j')^s\colon \alpha A\subset \alpha\bigcup_{j\in J}B_j', \alpha\operatorname{diam}(B_j')\leq \delta, J\subset \mathbb{N}, B_j'\neq\emptyset\}$$

$$\alpha A \subset \alpha B \implies A \subset B$$

$$\begin{split} &=\alpha^s\inf\{\sum_{j\in J}\operatorname{diam}(B_j')^s\colon A\subset\bigcup_{j\in J}B_j',\operatorname{diam}(B_j')\leq\frac{1}{\alpha}\delta,J\subset\mathbb{N},B_j'\neq\emptyset\}\\ &=\alpha^s\cdot\mathscr{H}^s_{\underline{\delta}}(A) \end{split}$$

Für $\delta \to 0$ erhalten wir also $\mathcal{H}^s(\alpha A) = \alpha^s \cdot \mathcal{H}^s(A)$.

(c) Es gilt diam $(B_j + y) = \sup\{|x + y - (z + y)|: x, z \in B_j\} = \sup\{|x - z|: x, z \in B_j\} = \text{diam}(B_j)$. Daher erhalten wir

$$\mathscr{H}^{s}_{\delta}(A+y) = \inf\{\sum_{j \in J} \operatorname{diam}(B_{j})^{s} \colon A+y \subset \bigcup_{j \in J} B_{j}, \operatorname{diam}(B_{j}) \leq \delta, J \subset \mathbb{N}, B_{j} \neq \emptyset\}$$

$$\begin{split} B_j &= B_j - y + y =: B_j' + y \\ &= \inf\{\sum_{j \in J} \operatorname{diam}(B_j' + y)^s \colon A + y \subset \bigcup_{j \in J} B_j' + y, \operatorname{diam}(B_j' + y) \leq \delta, J \subset \mathbb{N}, B_j' + y \neq \emptyset\} \\ &= \inf\{\sum_{j \in J} \operatorname{diam}(B_j')^s \colon A + y \subset \left(\bigcup_{j \in J} B_j'\right) + y, \operatorname{diam}(B_j') \leq \delta, J \subset \mathbb{N}, B_j' \neq \emptyset\} \\ A + y \subset B + y \implies A \subset B \\ &= \alpha^s \inf\{\sum_{j \in J} \operatorname{diam}(B_j')^s \colon A \subset \bigcup_{j \in J} B_j', \operatorname{diam}(B_j') \leq \delta, J \subset \mathbb{N}, B_j' \neq \emptyset\} \\ &= \mathscr{H}^s_\delta(A) \end{split}$$

Für $\delta \to 0$ folgt also $\mathcal{H}^s(A+y) = \mathcal{H}^s(A)$.

(d) Im Grenzprozess $\delta \to 0$ bleiben am Ende nur noch Mengen $B_j = \{x\}$ übrig, da diam $(\{x\}) = \sup\{|y-z|y,z\in\{x\}\} = 0$. Sobald mehr als ein Punkt in B_j liegt, ist nämlich diam $(B_j) > 0$. Wir erhalten daher

$$\mathcal{H}^{0}(A) = \inf\{\sum_{j \in J} \operatorname{diam}(B_{j})^{0} : A \subset \bigcup_{j \in J} B_{j}, \operatorname{diam}(B_{j}) = 0, J \subset \mathbb{N}, B_{j} \neq \emptyset\}$$
$$= \inf\{\sum_{j \in J} 1 : A \subset \bigcup_{j \in J} \{a_{j}\}, a_{j} \in \mathbb{R}\}$$
$$= \sum_{a \in A} 1$$

Für endliche Mengen ist dies gerade #A, für unendliche Mengen divergiert die Reihe und es gilt $\mathcal{H}^0(A) = \infty$.

(e) Wir zeigen zunächst, dass $\mathscr{H}^1([0,1])=1$ ist. Daraus folgt bereits, dass \mathscr{H}^1 nicht σ -additiv sein kann, da sonst das Maßproblem gelöst wäre. Wir wählen zunächst $\delta_k=\frac{1}{k}$ und $\forall 1\leq j\leq k$: $:B_j^k=[(j-1)\delta_k,j\delta_k]$. Dann gilt $\mathrm{diam}(B_j^k)=\sup\{|x-y|,\;(j-1)\delta_k\leq x,y\leq j\delta_k\}=\delta_k,\;\bigcup_{1\leq j\leq k}B_j^k=[0,1]$ und $\sum_{j=1}^k\mathrm{diam}(B_j^k)=\sum_{j=1}^k\delta_k=k\cdot\frac{1}{k}=1.$ Es gilt

$$\mathscr{H}^{1}([0,1]) = \lim_{k \to \infty} \inf \left\{ \underbrace{\sum_{j \in J} \operatorname{diam}(B_{j}) \colon [0,1] \subset \bigcup_{j \in J} B_{j}, \ \operatorname{diam}(B_{j}) \le \delta_{k}, J \subset \mathbb{N}, B_{j} \ne \emptyset}_{M_{k}} \right\}$$

Offensichtlich gilt $\forall k$ für $J = \{1, \dots, k\}$ und $B_j = B_j^k$:

$$\sum_{j \in J} \operatorname{diam}(B_j^k) = 1 \in M_k.$$

Daher gilt $\mathscr{H}^1([0,1]) \leq 1$. Angenommen, es gäbe eine Überdeckung $\bigcup_{j \in J} B_j$ von [0,1] sodass $\sum_{j \in J} \operatorname{diam}(B_j) < 1$. Wir ordnen die B_j dann nach aufsteigendem Supremum sup b_j und erhalten

eine Folge $(B_j)_{j\in J}$. Wir definieren nun $C_j=B_j\setminus\left[\bigcup_{i=1}^{j-1}B_j\right]$. Es gilt immer noch $\bigcup_{j\in J}C_j=\bigcup_{j\in J}B_j$, aber die C_j sind jetzt paarweise disjunkt. Da $[0,1]\subset\bigcup_{j\in J}C_j$ darf es keine Lücken in der Überdeckung geben, es muss also inf $C_j=\sup C_{j-1}$ gelten. Außerdem muss inf $C_1=0$ und $\sup C_{\max J}=1$ sein. Wir wissen außerdem, dass $\operatorname{diam}(C_j)=\sup\{|x-y|\colon\inf C_j\leq x,y\leq\sup C_j\}=\sup C_j-\inf C_j$ Damit ergibt sich

$$1 = 1 - 0 \stackrel{\text{Teleskop}}{=} \sum_{j \in J} i \in J \sup_{C_j} C_j - \inf_{j \in J} C_j = \sum_{j \in J} \operatorname{diam}(C_j) < 1.$$

Das ist aber ein Widerspruch. Also ist für jede Überdeckung immer $\sum_{j \in J} \text{diam}(B_j) \ge 1$. Da wir bereits gezeigt haben, dass eine Überdeckung mit $\sum_{j \in J} \text{diam}(B_j) = 1$ existiert, gilt

$$\mathscr{H}^1([0,1]) = \lim_{k \to \infty} \inf \{ \sum_{j \in J} \operatorname{diam}(B_j) \colon [0,1] \subset \bigcup_{j \in J} B_j, \ \operatorname{diam}(B_j) \le \delta_k, J \subset \mathbb{N}, B_j \ne \emptyset \} = 1.$$

Also kann, wie oben erklärt, \mathcal{H}^1 nicht σ -additiv sein. Daher ist es kein Maß.

Aufgabe 3

- (a) (i) $\nu(\emptyset) = 0$
 - (ii) Sei $A \subset B$ und $A, B \in \mathcal{P}(X)$. Wir machen eine Fallunterscheidung
 - 1. B höchstens abzählbar. Dann ist wegen $A \subset B$ auch A höchstens abzählbar. Daher gilt $\nu(A) = 0 \le 0 = \nu(B)$.
 - 2. B überabzählbar. Dann ist $\nu(B) = 1$ und wegen $\nu(A) \in \{0,1\}$ ist $\nu(A) \le 1 = \nu(B)$.
 - (iii) Seien $A_k \in \mathcal{P}(X) \forall k \in \mathbb{N}$. Auch hier machen wir eine Fallunterscheidung.
 - 1. $\forall k \in \mathbb{N}$ mit A_k ist höchstens abzählbar. Dann ist $\nu(A_k) = 0 \forall k \in \mathbb{N}$ und $\bigcup_{k \in \mathbb{N}} A_k$ ist als abzählbare Vereinigung von abzählbaren Mengen ebenfalls abzählbar. Also ist $\nu\left(\bigcup_{k \in \mathbb{N}} A_k\right) = 0 \le 0 = \sum_{k \in \mathbb{N}} \nu(A_k)$
 - 2. $\exists k \in \mathbb{N}$ mit A_k ist überabzählbar. Dann ist $\sum_{k \in \mathbb{N}} \nu(A_k) \geq 1 \geq \nu\left(\bigcup_{k \in \mathbb{N}} A_k\right)$, da $\nu\left(\bigcup_{k \in \mathbb{N}} A_k\right) \in \{0, 1\}$.
- (b) Wir machen auch hier wieder eine Fallunterscheidung.
 - 1. Sei A abzählbar.
 - i. Sei E abzählbar. Dann ist $\nu(E) = 0 = 0 + 0 = \nu(E \cap A) + \nu(E \cap A^c)$.
 - ii. Sei E überabzählbar. Dann ist $E \cap A \subset A$ trotzdem abzählbar. Angenommen, $E \cap A^c$ wäre abzählbar. Dann wäre $E = (E \cap A) \cup (E \cap A^c)$ die Vereinigung von zwei abzählbaren Mengen und damit abzählbar, Widerspruch! Also ist $E \cap A^c$ überabzählbar. Also gilt $\nu(E) = 1 = 0 + 1 = \nu(E \cap A) + \nu(E \cap A^c)$.
 - 2. Sei A^c abzählbar. Dann folgt $\nu(E) = \nu(E \cap A) + \nu(E \cap A^c)$ völlig analog zu Fall 1.
 - 3. Seien A und A^c überabzählbar. Dann sind $X \cap A$ und $X \cap A^c$ beide überabzählbar und es gilt $\nu(X) = 1 < 1 + 1 = \nu(X \cap A) + \nu(X \cap A^c)$.

Gleichung 3.2 ist also genau für die Mengen $A \subset X$ erfüllt, für die A oder A^c abzählbar sind.

Aufgabe 4

Sei $A_k = \{k\} \forall k \in \mathbb{N}$. Dann gilt $\mu(A_k) = 0 \forall k \in \mathbb{N}$, aber

$$\mu\left(\biguplus_{k\in\mathbb{N}}A_k\right)=\mu(\mathbb{N})=\limsup_{n\to\infty}\frac{1}{n}\#\left(\mathbb{N}\cap\{1,\ldots,n\}\right)=\limsup_{n\to\infty}1=1.$$

Also ist $\mu\left(\biguplus_{k\in\mathbb{N}}A_k\right)=1>0=\sum_{k\in\mathbb{N}}\mu(A_k)$. Das verletzt σ -Subadditivität und σ -Additivität. Also handelt es sich bei μ weder um ein Maß noch um ein äußeres Maß.