Exploring generalized Jacobi preconditioners and smoothers in MFEM

Gabriel Pinochet-Soto ¹ Tzanio Kolev ² Chak Shing Lee ²

¹Fariborz Maseeh Department of Mathematics and Statistics, Portland State University

²Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

October 21, 2024

Preliminaries

Consider $A = (a_{ij})_{ij} \in \mathbb{R}^{n \times n}$ an SPD operator.

A-convergent smoother

We say M is an A-convergent smoother if $M + M^T - A$ is SPD, i.e., $(Ax,x) < (Mx,x) + (M^Tx,x) = 2(Mx,x)$, for all $x \in \mathbb{R}^n$.

Boundedness of off-diagonal entries

A C.B.S. inequality implies $|a_{ij}| \leq \sqrt{a_{ii}} \sqrt{a_{jj}}$.

Two-level preconditioner

The two-level preconditioner will be SPD provided M being a A-convergent smoother.

$$\label{eq:BTL} B_{\mathrm{TL}}^{-1} = M(M^{\,T} + M - A)^{-1}M^{\,T} + \; \text{SPSD term} \; .$$

$\ell_{p,q}$ -Jacobi preconditioners

We define the family of (diagonal) $\ell_{p,q}$ -Jacobi preconditioners $\{D_{p,q}\}_{p,q}$, for $p\geq 0, q\in \mathbb{R}$, by

$$(\mathsf{D}_{p,q})_{i,i} := \sum_{j} \left(\frac{|a_{ij}|}{a_{ii}^{1-\frac{q}{p}} a_{jj}^{\frac{q}{p}}} \right)^{p} a_{ii}, \tag{1}$$

which can conveniently written as $D_{p,q} = \text{diag}(D^{1+q-p}|A|^pD^{-q}1)$, where D is the diagonal matrix of A, i.e., $(D)_{ii} := a_{ii}$, and we understand the operations as *entry-wise* operations.

Specific examples of Jacobi-type preconditioners

Under the assumption of a diagonally dominant matrices $(a_{ii} = \max_j |a_{ij}|)$, we have some examples.

- 1. $p = 0, q = 0 \mapsto \text{Row-wise re-scaled Jacobi smoother}$ $(D_{0,0})_{ii} = \text{nnz}_i \ a_{ii}.$
- 2. $p=1, q=0 \mapsto \ell_1$ -Jacobi smoother $(\mathsf{D}_{1,0})_{ii} = \mathsf{a}_{ii} + \sum_{j \neq i} |\mathsf{a}_{ij}|.$
- 3. $p = 2, q = 0 \mapsto D_{2,0} = \arg\min_{D} \|Id D^{-1}A\|_{Fro}$ $(D_{2,0})_{ii} = a_{ii} + \sum_{j \neq i} \frac{|a_{ij}|^2}{a_{ii}}.$
- 4. $p = \infty, q = 0 \mapsto \mathsf{Jacobi}$ smoother $(\mathsf{D}_{\infty,0})_{ii} = a_{ii}$.

Properties of the $\ell_{p,q}$ -Jacobi family

- 1. $D_{p_1,q_1} \leq D_{p_2,q_2}$, if $q_1 q_2 = \frac{p_1 p_2}{2}$ and $p_1 \geq p_2$.
- 2. A weighted Young's inequality is the key step to prove $A \leq D_{p,q}$ for $0 \leq p \leq 1$ and all q.
- 3. All $D_{p,q}$, for $0 \le p \le 1$ and all q, are A-convergent smoothers.

Question

Can we get a better smoother (or preconditioner) when increasing p?

Absolute-value ℓ_1 -Jacobi preconditioner

In the context of finite element methods, we usually have an operator of the form

We know that the ℓ_1 -Jacobi preconditioner is convergent: A \leq D₁. A rough approximation of the ℓ_1 -Jacobi smoother can be made by just employing triangle inequality.

$$D_{Abs-\ell_1} = diag(|P|^T |G|^T |B|^T D|B||G||P|1),$$
 (2)

so we have $A \leq D_1 \leq D_{\mathrm{Abs}-\ell_1}$.

Numerical Results: Diffusion Problem on ICF Mesh

Ord.	N. Iter.	N. DoF.
1	235	3,721
2	587	14,609
3	941	32,665
4	1,370	57,889
5	1,824	90,281
6	2,323	129,841
7	2,855	176,569
8	3,399	230,465
9	3,949	291,529
10	4,531	359,761

Ord.	N. Iter.	N. DoF.
1	155	3,721
2	351	14,609
3	569	32,665
4	766	57,889
5	895	90,281
6	1,125	129,841
7	1,314	176,569
8	1,596	230,465
9	1,812	291,529
10	2,068	359,761

Ord.	N. Iter.	N. DoF.
1	49	3,721
2	98	14,609
3	143	32,665
4	148	57,889
5	192	90,281
6	190	129,841
7	227	176,569
8	247	230,465
9	271	291,529
10	272	359,761

(a) Without preconditioner (b) Abs. ℓ₁-Jacobi precond.

(c) MG, abs. ℓ1-Jacobi smooth.

Table: Diffusion problem on icf.mesh, with partial assembly, utilizing PCG.

Current status

Main modifications

- Current PR #4498
 Jacobi-type of preconditions/smoothers
- Implementation of AbsMult on matrices.
- AddAbsMult on domain integrators.
- Miniapp with Multigrid wrappers (cf. Example 26p).
- 5. Comparable with previous examples (cf. Example 1p, 2p, 3p).

Examine the current status!

(a) MFEM website

(b) PR #4498

Implementation of absolute-value multiplication: CurlCurl kernel

Let us consider u_h a FE discretization for the definite Maxwell problem:

$$\operatorname{curl} u_h = \sum_i u_i \operatorname{curl} \phi_{h,i}.$$

The curl of a function of the form (e.g.) $v = \phi^{3D}(x)e_1$ is

curl
$$v = (0, \partial_2 \phi^{3D}(x), -\partial_1 \phi^{3D}(x)).$$

We get the absolute-value application of B by taking the absolute value of the basis function on the quadrature points and making sure the curl does not introduce a negative sign.

Implementation of absolute-value multiplication: CurlCurl kernel

```
template<int T_D1D = 0, int T_Q1D = 0>
      inline void PACurlCurlApply3D(const int d1d,
 3
                                     const int q1d,
                                     const bool symmetric,
                                     const int NE.
                                     const Array<real t> &bo.
                                     const Array<real_t> &bc,
                                     const Array<real_t> &bot,
                                     const Array<real_t> &bct,
10
                                     const Array<real_t> &gc,
11
                                     const Array<real_t> &gct,
12
                                     const Vector &pa data.
13
                                     const Vector &x.
14
                                     Vector &v,
15
                                     bool useAbs = false)
16
17
         // ...
18
               // x component
                         for (int qx = 0; qx < Q1D; ++qx)
19
20
21
                            // \hatf\nabla}\times\hatful is [0, (u 0) fx 2], -(u 0) fx 1]]
                            curl[qz][qy][qx][1] += gradXY[qy][qx][1] * wDz; // (u_0)_{x_2}
22
23
                            if (!useAbs) { curl[qz][qy][qx][2] -= gradXY[qy][qx][0] * wz; } //
                           \hookrightarrow -(u_0)_{x_1}
24
                            else { curl[qz][qy][qx][2] += gradXY[qy][qx][0] * wz; } // + (u_0)_{x_1}
25
26
27
```