Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 10. Goodness-of-fit Tests

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

1

Chapter 10. Goodness-of-fit Tests

- § 10.1 Introduction
- § 10.2 The Multinomial Distribution
- § 10.3 Goodness-of-Fit Tests: All Parameters Known
- § 10.4 Goodness-of-Fit Tests: Parameters Unknown
- § 10.5 Contingency Tables

<i>p_i</i> are known	p_i are unknown
$D = \sum_{i=1}^{t} \frac{(X_i - np_i)^2}{np_i}$	$D_1 = \sum_{i=1}^t rac{(X_i - n\hat{p}_i)^2}{n\hat{p}_i}$
χ^2 with f.d. $t-1$	χ^2 with f.d. $t-1-s$
$d = \sum_{i=1}^{t} rac{(k_i - np_{i0})^2}{np_{i0}}$	$d_1 = \sum_{i=1}^t rac{(k_i - n\hat{p}_{i0})^2}{n\hat{p}_{i0}}$
$np_{i0} \geq 5$	$\hat{np}_{i0} \geq 5$
$d>\chi^2_{1-lpha,t-1}$	$ extstyle d_1 > \chi^2_{1-lpha,t-1-s}$

† s is the number of unknown parameters.

 $\label{eq:df} \operatorname{\underline{df}} = \underline{\operatorname{number of classes}} - 1 - \operatorname{number of unknown parameters}.$

E.g. 1 Binomial data: 4096 students, each shots basketball 4 times. Let X_i be the number of hits for the *i*th student.

Number of Hits, i	Obs. Freq., k_i
(0	1280
1	1717
$r_i's$ 2	915
3	167
4	17

People believe that X_i should following binomial (4, p), that is, shotting basketball should be something like trying to get red chocolate beans from a jar of beans of two colors.

Find the MLE for p. Use the data to make a conclusion.

Sol. 1) $H_0: X_i \sim \text{binomal}(4, p)$.

2) Under H_0 , the MLE for p is $p_e = ... = 0.251$

3) Compute the expected frequenies:

Table 10.4.1		
Number of Hits, i	Obs. Freq., k_i	Estimated Exp. Freq., $n \hat{p}_{i_o}$
(0	1280	1289.1
$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	1717	1728.0
$r_i's$ 2	915	868.6
3	167	194.0
4	17	16.3

$$\implies$$
 $d_1 = \cdots = 6.401.$

- 4) Critical region: $(\chi^2_{.95,5-1-1}, +\infty) = (7.815, +\infty)$
- 5) Conclusion: Fail to reject.
- 6) Alternatively, *P*-value = $\mathbb{P}(\chi_3^2 \ge 6.401) = 0.094$, ... discuss...

E.g. 2 Does the number of death per day follow the Poisson distribution?

Obs. Freq., k_i
162
267
271
185
111
61
27
8
3
1
0
1096

- Sol. 1) Let X_i be the number of death in ith day, $1 \le i \le 1096$.
 - 2) $H_0: X_i$ follow Poisson(λ).
 - 3) The MLE for λ is: $\lambda_e = \cdots = 2.157$.
 - 4) Compute the expected frequencies:

Table 10.4.2			
Number of Deaths, i	Obs. Freq., k _i	Est. Exp. Freq., $n \hat{p}_{i_o}$	
0	162	126.8	
1	267	273.5	
2	271	294.9	
3	185	212.1	
4	111	114.3	
5	61	49.3	
6	27	17.8	
7		5.5	
8		1.4	
9		0.3	
10+		0.1	
	1096	1096	

Table 10.4.3			
Number of De	aths, i	Obs. Freq., k _i	Est. Exp. Freq., $n\hat{p}_{i_0}$
r_1, r_2, \ldots, r_8	0 1 2 3 4 5 6 7+	162 267 271 185 111 61 27 12	126.8 273.5 294.9 212.1 114.3 49.3 17.8 7.3
		1096	1096

$$\implies$$
 $d_1 = \cdots = 25.98.$

5) *P*-value =
$$\mathbb{P}(\chi_{1.8-1-1}^2 \ge 25.98) = 0.00022$$
. Reject!