Estimating Equations

Now we will consider "robustifying" infernce so that miss perification does not involidate our resulting inference.

Motivative Example: Consider the $oldsymbol{Z}=(Z_1,\ldots,Z_5)^ op$ with cdf

$$\begin{split} F(\boldsymbol{z};\alpha) &= \exp\biggl\{-\biggl(z_1^{-\frac{1}{\alpha}} + z_2^{-\frac{1}{\alpha}} + z_3^{-\frac{1}{\alpha}} + z_4^{-\frac{1}{\alpha}} + z_5^{-\frac{1}{\alpha}}\biggr)^{\alpha}\biggr\}, \quad \boldsymbol{z} \geq \boldsymbol{0}, \alpha \in (0,1]. \end{split}$$
 If we independent complete dependent (2 = 2; w.p. 1).

Marginal:

$$P(Z_i \leq z) = \exp\left[-\left(z^{-1/a}\right)^{d}\right] = \exp\left(-\frac{z^{-1}}{2}\right)$$
"Inst Fredet"

Comments:

7 Suithle for multivariate extreme value data 1.F is "max-stable."

Let'n
$$[F(nz)]^n = F(z)$$

$$[F(nz)]^n = (exp[-\{(nz_1)^{\frac{1}{4}} + ... + (nz_5)^{\frac{1}{44}}\}^d])^n$$

$$= (exp[-\{(nz_1)^{\frac{1}{4}} + ... + z_5^{\frac{1}{44}}\}\}^d])^n$$

$$= (exp[-h^{-1}(z_1^{-\frac{1}{4}} + ... + z_5^{\frac{1}{44}})^d])^n$$

$$= exp[-(z_1^{-\frac{1}{4}} + ... + z_5^{\frac{1}{44}})^d]$$

 $2.\ Z_1,\ldots,Z_5$ are exchangeable. order doesn't mother

Realistic ? Maybe not.

But this givens equal pairwise dependence => which can help reduce # parameters. and illustrate pe concept of an astimating equation.

Let's consider the likelihood.

We need to find the density, i.e.
$$\frac{\partial^5 F}{\partial z_1 \cdots \partial z_5}$$

$$\frac{\partial F}{\partial z_{1}} = \exp \left[-\left(\bar{z}_{1}^{1/4} + ... + \bar{z}_{s}^{1/4} \right)^{\alpha} \right] \times \left\{ -\alpha \left(\hat{z}_{1}^{1/4} + ... + \bar{z}_{s}^{1/4} \right)^{\alpha-1} \right\} \times \left\{ -\frac{1}{\alpha} \bar{z}_{1}^{1/4} - ... + \bar{z}_{s}^{1/4} \right\}$$

$$\frac{\partial F}{\partial z_{1}} = \exp \left[-\left(z_{1}^{-1/4} + ... + z_{5}^{-1/4} \right)^{\alpha} \right] \times \left\{ -\alpha \left(z_{1}^{-1/4} + ... + z_{5}^{-1/4} \right)^{\alpha-1} \right\}^{2} \times \left\{ -\frac{1}{\alpha} z_{1}^{-1/2} - 1 \right\} \times \left\{ -\frac{1}{\alpha} z_{1}^{-1/2} - 1 \right\}$$

$$+ e \times \rho \left[- \left(\bar{z}_{1}^{'k} + ... + \bar{z}_{5}^{'k} \right)^{k} \right] \times \left\{ -\alpha (\alpha - 1) \left(\bar{z}_{1}^{'k} + ... + \bar{z}_{5}^{'k} \right)^{\alpha - 2} \right\} \times \left\{ -\frac{1}{\alpha} \bar{z}_{2}^{-1} \right\} \dot{x} \left\{ -\frac{1}{\alpha} \bar{z}_{1}^{-1} \right\}$$

by he fine regit to
$$\frac{2^5F}{\partial z_1\cdots\partial z_5}$$
 things are gross just to unit the likelihood!

How about if we were to just use pairs of points to estimate α ?

$$F_{z_{1}z_{2}}(z_{1}z_{2}) = \exp\left[-\left(z_{1}^{-1/4} + z_{2}^{-1/4}\right)^{\alpha}\right]$$

$$\frac{\partial^{2} F}{\partial z_{1}\partial z_{2}} = \exp\left[-\left(z_{1}^{-1/4} + z_{2}^{-1/4}\right)^{\alpha}\right] (z_{1}z_{2})^{\frac{1}{\alpha}-1} \left\{\left(\frac{1}{\alpha}-1\right)\left(z_{1}^{-1/4} + z_{2}^{-1/4}\right)^{\alpha-2} + \left(z_{1}^{-1/4} + z_{2}^{-1/2}\right)^{2\alpha-2}\right\}$$

If we just used $(z_{1i}, z_{2i}), i = 1, \ldots, n$ would the likelihood based on the bivariate density be a good estimator for α ?

Yes, unbiased

No: in efficient (not using all dota).

What if we took all $(\frac{5}{2}) = 10$ pairs? (Z_{1i}, Z_{2i}) , (Z_{1i}, Z_{2i}) ,...

Yes: unbiased, efficient (using all data).

No: H's not be right likelihood!

Let's try it.

```
library(evd)
# simulate data with alpha = 0.5
alpha <- 0.5
z < -rmvevd(500, dep = alpha, d = 5, mar = c(1, 1, 1))
## bivariate density
d bivar <- function(z, alpha){</pre>
    #here "z" is a single observation (ordered pair)
    inside \langle z[1]^(-1/alpha) + z[2]^(-1/alpha)
    one <- exp(-inside^alpha)</pre>
    two <- (z[1]*z[2])^(-1 / alpha - 1)
    three <- (1 / alpha - 1)*inside^(alpha - 2)
    four <- inside^(2 * alpha - 2)</pre>
    one*two*(three + four)
}
d bivar(c(4, 5), alpha = alpha)
## [1] 0.003650963
dmvevd(c(4,5), dep = alpha, d = 2, mar = c(1,1,1))
## [1] 0.003650963
## estimate alpha
```

```
log pair lhood <- function(alpha, z) {</pre>
    #here "z" is bivariate matrix of observations
    inside <-z[, 1]^(-1 / alpha) + z[, 2]^(-1 / alpha)
    log one <- -inside^alpha</pre>
    \log two <- (-1 / alpha - 1) * (log(z[, 1]) + log(z[, 2]))
    three \leftarrow (1 / alpha - 1) * inside^(alpha - 2)
    four <- inside^(2 * alpha - 2)</pre>
    contrib <- log_one + log_two + log(three + four)</pre>
    return(sum(contrib))
}
all pairs lhood <- function(alpha, z) {
```

[1] 0.4954979 0.5182678

```
## checking coverage
B <- 200
coverage <- numeric(B)
for(k in seq_len(B)) {
    z_k <- rmvevd(500, dep = .5, d = 5, mar = c(1, 1, 1))
    alpha_mple_k <- optim(.2, lower = .01, upper = .99,
        all_pairs_lhood, z = z_k, method = "Brent", hessian = TRUE,
        control = list(fnscale = -1))
    ci <- alpha_mple_k$par + c(-1.96, 1.96)*sqrt(-1 /
        alpha_mple_k$hessian[1, 1])
    coverage[k] <- as.numeric(ci[1] < alpha & ci[2] > alpha)
}
mean(coverage)
```

[1] 0.745

So, it looks like the point estimate from the pairwise likelihood is ok, but we need to be able to get an appropriate measure of uncertainty.
The proper adjustment is

1 Introduction

M-estimators are solutions of the vector equation

$$\sum_{i=1}^n oldsymbol{\psi}(oldsymbol{Y}_i,oldsymbol{ heta}) = oldsymbol{0}.$$

In the likelihood setting, what is $\boldsymbol{\psi}$?

8 1 Introduction

Example: Let Y_1, \ldots, Y_n be independent, univariate random variables. Is $\theta = \overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ an M-estimator?

Example: Consider the mean deviation from the sample mean,

$$\hat{ heta}_1 = rac{1}{n} \sum_{i=1}^n |Y_i - \overline{Y}|.$$

Is this an M-estimator?