Teoremas de punto fijo

14. Sea $E = \mathbb{R} \setminus \{0\}$, con la distancia usual de \mathbb{R} . Sea $f : E \to E$ dada por $f(x) = \frac{1}{3}x$. Probar que f es una contracción pero no tiene punto fijo. ¿Qué falla del Teorema de Banach?

$$\exists \alpha \in (o,i) / \exists \alpha \in (o,i) / \exists \alpha \in (o,i) / \exists \alpha \in (a,b)$$

$$d\left(\frac{1}{3}x, \frac{1}{3}S\right) = \left|\frac{1}{3}x - \frac{1}{3}S\right|$$

$$= \frac{1}{3} \cdot \left|x - S\right|$$

$$= \frac{1}{3} \cdot d\left(x, S\right)$$

$$\approx \cot x$$

$$\cot x$$

石

15. Sea $f: \mathbb{R} \to \mathbb{R}$ una función derivable. Supongamos que existe $k \in (0,1)$ tal que $|f'(x)| \leq k$ para todo $x \in \mathbb{R}$. Probar que f es una contracción.

$$\left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \leq K$$

- **16.** Sea (E,d) un espacio métrico y sea $f:E\to E$ una función. Para $n\in\mathbb{N}$ denotemos por $f^n:E\to E$ a la función $f\circ f\circ\cdots\circ f$ (n veces). Probar:
 - (a) Si $x \in E$ es punto fijo de f, entonces es punto fijo de f^n .
 - (b) Si E es completo y existe $n \in \mathbb{N}$ tal que f^n es una contracción, entonces existe un único punto fijo de f en E.

Sugerencia: probar que si $x \in E$ es punto fijo de f^n , entonces f(x) también lo es.

(c) Deducir que existe un único $x \in \mathbb{R}$ tal que $\cos(x) = x$.

$$f(x) = x \Rightarrow f(f(x)) = f(x) = x$$

$$HI \quad f \circ f(x) = x$$

$$q \cdot q \quad f \circ f \circ f(x) = x$$

$$f \circ f \circ f(x) = f \circ f(x)$$

$$= x$$

$$\circ \circ \qquad \forall (x) = x \Rightarrow \int_{0}^{\infty} (x) = x$$

1

$$\Rightarrow$$
 \uparrow $(x) = x$

$$f \circ f \circ \dots \circ f(x) = x$$

$$\Rightarrow$$
 $f(f \circ f \circ \dots \circ f(x)) = f(x)$

$$\Rightarrow f^{(n)}(x) = f(x)$$

$$x = f(x)$$

c) Lo hea Védey en le Teórice.

f(x) = coz x vo er contractina puer por teo rana

Con pon go

$$\int_{S} (x) = \cos(\cos x)$$

$$|f(x) - f(y)| = |\sin c| \cdot |x - y|$$

$$\leq 1$$
Pred ser 1!

del Valor Medio

Deri vo

$$f_z'(x) = \sin(\cos x) \cdot \sin x \leq 1$$

que nunce es 1:

•
$$Si \left| \sin x \right| = L \Rightarrow x = \frac{\pi}{2}$$
 is $x = \frac{3\pi}{2}$.

$$\Rightarrow$$
 210 (cor x) = 0

$$\Rightarrow$$
 $sin(\cos x). sin x = 0$

• Si
$$|\sin x| < 1$$
 $\Rightarrow \sin (\cos x) \cdot \sin x < 1$

$$e^{1}$$
 e^{1} e^{2} e^{2} e^{2}

$$\exists c \in E / |f(x) - f(y)| = |f'_{2}(c)| - |x - y|$$

- .. cos (cos x) es contractiva.
- · tiene un punto fijo X
- gor b

con
$$f^{z}(x) = x \Rightarrow f(x) = x$$

=> Cos x tiene un único punto hijo en X.

17. Consideremos en \mathbb{R}^n la métrica d_2 . Sea $f: \mathbb{R}^n \to \mathbb{R}^n$ una función continua. Fijemos M > 0. Supongamos que para todo $\varepsilon > 0$ existe $x \in B(0, M)$ tal que $d_2(x, f(x)) < \varepsilon$. Probar que f tiene un punto fijo.

Ver consulter con I vén

18. Sea $f:[a,b] \to [a,b]$ continua. Probar que f tiene un punto fijo. Sugerencia: usar el teorema de Bolzano.

 $\label{eq:contraction} \textbf{Teorema de Bolzano}. \ \text{Sea} \ f \ \text{una función continua en un intervalo cerrado} \ [a,b] \ \text{y} \ \text{que toma valores de signo contrario en los extremos, entonces existe al menos un valor} \ c \in (a,b) \ \text{tal que} \ f(c) = 0.$

Delino

$$g(x) = f(x) - x$$

La er continua

55

$$g(x) < 0 \Leftrightarrow f(x) < x$$

Colab

$$g(a), g(b) = 3 < 0 \Rightarrow 5igno contra n'o$$

7.00 se sdon de [a,6]?

Jce[a,b]

Kerisz

.ºo f tiene un punto hijo en C.

19. Sea (E,d) un espacio métrico y sea $f:E\to E$ continua. Probar que el conjunto de puntos fijos de f es cerrado.

$$\mathcal{F} = \left\{ x \in E : f(x) = x \right\}$$

Idez:

· Neo 2; fogs 20cezou courade ou 2 > 2 = 2

sea (Xn) « F succión con vargente a algún X « E

002

Como Xn & F

 \Rightarrow $\chi_0 = f(\chi_0)$

como f contínuz,

- \Rightarrow 2i x^{0} \rightarrow x
- $\Rightarrow f(x_n) \to f(x)$
- pero $f(x_n) \rightarrow x$
 - $\Rightarrow f(x) = x$
 - \Rightarrow $\times \in \mathcal{F}$
- como toda sucesión convergente, con verge en Je

Obs: Prede no ser continue.

$$\Rightarrow$$
 $f(x) \leqslant f(y)$

$$\Rightarrow$$
 $f(x) \leqslant f(y)$ $\forall x \leqslant y (e[a,b])$

$$? \\ \forall x_0 / f(x_0) = x_0$$

$$a \notin Z \leqslant b$$

$$f(a) \leq f(z) \leq f(b)$$

en
$$[a,b] \rightarrow [a,b]$$

•
$$f(a) > a$$

$$f(\alpha + E) \geq \alpha + E$$

Si
$$\varepsilon = b - a$$

$$f(a+b-a) = f(a+b-a)$$