Model Tuning

Outline

- Model Tuning
- Data Science Project Life Cycle
- Case Study

Model Parameters

Model parameter is a configuration variable that is internal to the model whose value can be estimated from the underlying data

- These are required by the model when making predictions
- These values define the skill of the model on your problem
- These are estimated or learned from the underlying data
- These are not set manually by the data scientist
- They are often saved as part of the learned model
- Parameters are key to machine learning algorithms. They are part of the model that is learned from historical training data
- Examples:
 - The coefficients in a linear or logistic regression

Model Hyperparameters

- Model parameters are learnt during training(eg: intercept and slopes in Linear Regression)
- Model hyperparameters are set by data scientist ahead of training
- Hyperparameters are parameters that are not directly learnt within estimators
 - Examples for hyperparameters?
- In scikit-learn these are passed as arguments to the constructor of the estimator classes
- Intercept and slopes learnt during training of a Linear Regression model are model parameters while the number of trees in a Random Forest is a model hyperparameter because it is set by the data scientist
- It is possible and recommended to search the hyperparameter space for the best <u>cross validation</u> score.

Model Hyperparameters

- A model hyperparameter is a configuration that is external to the model and whose value cannot be estimated from data
 - They are often used in processes to help estimate model parameters
 - They are often specified by data scientist
 - They can often be set using heuristics
 - They are often tuned for a given predictive modelling problem
- We cannot know the best value for a model hyperparameter on a given problem. We may use rule of thumb, copy values used in other problems, or search for the best value by trial and error
- When a machine learning algorithm is tuned for a specific problem, then
 you are tuning the hyperparameters of the model that result in the most
 skilful predictions

Model Hyperparameters

- Hyperparameters can be thought of as model settings
- These settings need to be tuned for each problem as the best model hyperparameters for one particular data set will not be the best across all data sets
- The process of hyperparameter tuning (also referred as hyperparameter optimization) means finding the combination of hyperparameter values for a machine learning model that performs the best as measured on a test data set for a given problem
- A lot of data scientists use the terms 'parameters' and 'hyperparameters' interchangeably to refer to the model settings. This is technically incorrect.
- If you have to specify a model parameter manually then it is probably a model hyperparameter

Hyper parameters: Examples

Linear Regression, Logistic Regression, Naïve Bayes

No hyper parameters

Decision Trees

- min_samples_leaf
- min_samples_split
- criterion

AdaBoost

- n_estimators
- learning_rate

kNearestNeighbors

Number of neighbors

Random Forest

- n_estimators
- max_depth
- min_samples_split
- min samples leaf
- max_features
- etc

Gradient Boosting

- n_estimators
- max_depth
- learning_rate
- max_features
- etc

Optimal Parameters Search

 It is common that a small subset of hyper-parameters can have a large impact on the predictive or computation of the model and other hyper-parameters can be set to default

Optimal Parameters Search

- Optimal Parameters search consists of:
 - An estimator (eg: regressor or classifier)
 - A parameter space
 - A method for searching or sampling candidates
 - A cross-validation scheme
 - A score function

Optimal Hyper Parameters Search

- Some models allow for specialized, efficient parameter search strategies
- Approaches for optimal hyper parameters search
 - Manual
 - Grid search
 - Exhaustively considers all parameter combinations
 - Random search (not covered in class)
 - Automated hyper parameter tuning (not covered in class)

Grid Search

- Grid search is provided by GridSearchCV
- Generates candidates from a grid of parameter values specified with the param_grid parameter
- Example *param_grid* for RandomForest:

• The GridSearchCV instance implements the usual estimator API: when 'fitting' it on a dataset all the possible combinations of parameter values are evaluated and the best combination is retained

Grid Search

• Lab ("Lab1_gridSearch_MLmodels.ipynb ")

Tips for parameter search

- Specifying an objective metric
- Composite estimators and parameter spaces
- Model selection: development and evaluation
- Parallelism

Pipeline

- Pipeline can be used to chain multiple estimators into one.
- This is useful as there is often a fixed sequence of steps in processing the data, for example feature selection, normalization and classification.
- Pipeline serves two purposes here:
 - Convenience and encapsulation: We only have to call fit and predict once on our data to fit a whole sequence of estimators.
 - Joint parameter selection: We can grid search over parameters of all estimators in the pipeline at once.
- Safety: Pipelines help avoid leaking statistics from our test data into the trained model in cross-validation, by ensuring that the same samples are used to train the transformers and predictors.

Pipeline: usage

 The Pipeline is built using a list of (key, value) pairs, where the key is a string containing the name we want to give this step and value is an estimator object

Data Science Project Life Cycle

- 1. Prepare Problem
 - Load libraries
 - 2. Load dataset
- 2. Summarize Data
 - 1. Descriptive statistics
 - 2. Data visualizations
- 3. Prepare Data
 - 1. Data Cleaning
 - Feature Selection
 - 3. Data Transforms
- 4. Evaluate Algorithms
 - 1. Split-out validation dataset
 - 2. Test options and evaluation metric
 - 3. Spot Check Algorithms
 - 4. Compare Algorithms
- 5. Improve Accuracy
 - 1. Algorithm Tuning
 - 2. Ensembles
- 6. Finalize Model
 - Predictions on validation dataset
 - 2. Create standalone model on entire training dataset
 - 3. Save model for later use

Data Science Project Life Cycle

- Lab ("Lab2_mlProjectLifeCycleBostonHousePricePrediction.ipynb ")
- Lab ("Lab2_Extension_customerDeliveryBostonHousePricePrediction.ipynb ")
- Hands-On ("Lab3_mlProjectLifeCycleKingCountyHousePricePrediction.ipynb")

Possible Capstone Projects

- NLP
 - Text classification
 - Language modelling
 - Speech recognition
 - Caption generation
 - Machine translation
 - Document summarization

- Image Analytics
 - Image detection
 - Brightness correction in Zoom video call(help speaker to deliver talks with ease)
 - Weed identification in crops using deep learning techniques
 - Store monitoring (brands detection etc) and supply chain optimization using deep learning
 - Psychology analysis using hand written notes

- Consumer complaints data analysis and case outcome prediction
 - Collect case status data from district, state and NCDRC
 - Extract important basic info about each case (using NLP techniques) and add to the features
 - Build predictive models for the outcome of the complaints
- Consumer complaints judgments summarization
 - Real estate
 - Healthcare
- Similar consumer complaints judgements identification
- NLP based features engineering for consumer complaints judgements(may need to use sequential models also)

References

• Ref1: https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosting-gbm-python/

Summary

- Grid Search
- Pipeline
- Data Science Project Life Cycle
- Case study

Questions?