REMARKS

The applicant respectfully requests reconsideration in view of the following remarks. Support for newly added claims 18-20 can be found in the original claim 12. Claims 11 and 12 were rejected under 35 U.S.C. 102(b) as anticipated by Wu et. al., U.S. Patent No. 5,728,801 ("Wu") or WO 00/55927 ("WO '927") or WO 02/26859 ("WO '859") or WO 03/000773 ("WO '773") or EP 1310539 ("EP '539"). The applicant respectfully traverses these rejections.

<u>Wu</u>

Wu discloses the following formulation:

$$A = \begin{bmatrix} Ar^1 - N - Ar^1 \\ Ar^2 \end{bmatrix} \times \begin{bmatrix} Ar^1 & Ar^2 \\ Ar^2 \end{bmatrix} \times \begin{bmatrix} Ar^1 & Ar$$

Groups 1 or 2 or a combination must be present (x is independently in each occurrence a positive number from 0 to 1).

The Examiner is incorrect that the first group (group 1) corresponds to the claimed formula (Ir). Formula (Ir) would only correspond to the first unit of Wu if in the definition of the applicant's formula n = 1, but according to the applicant's claim 11 "n is at least 2".

The applicant requires Ar and the following formula Ir:

Reply to Office Action of May 7, 2009

$$-Ar-N-Ar^{1}\begin{pmatrix} N-Ar \\ R \end{pmatrix}$$

with n being at least 2.

When n is 2, the formula would be as follows:

The applicant has additional (RNAr) group compared to Wu. For this reason alone, Wu does not anticipate claim 11.

Contrary to what the Examiner has alleged, Wu does not disclose the applicant's claimed second unit, Ar². It is also not correct that the second unit of Wu corresponds to the claimed formula Ar², because according to pending claim 11 the backbone of Ar² "represents aryl or heteroaryl groups", whereas, the second unit of Wu also contains a nitrogen atom, which is not an aryl or heteroaryl group. For the above reasons, this rejection should be withdrawn.

WO '927

WO '927 is cited at page 11, line 16 of the applicant's specification. In WO '927, copolymers are disclosed which do not correspond to the copolymers of the present application, as claimed in the applicant's claim 11, because n = 0 or 1. However, according to the applicant's claim 11 "n is at least 2". For this reason alone WO '927 does not anticipate the applicant's claimed invention.

Docket No.: 14113-00065-US

Even if the polymers of WO '927 would contain two or more triarylamine units one beside the other, these units would not lead to the repeating unit of formula (lr) of the present application, because the combination of these triarylamine units would lead to a unit which contains always two aryl groups between two nitrogen atoms,

$$(Ar-N-Ar)-(Ar-N-Ar)$$
 $\begin{vmatrix} & & & \\ & & & \\ & & & Ar \end{vmatrix}$

whereas the unit of formula (lr) always contains only one aryl or heteroaryl group between two nitrogen atoms:

For the above reasons this rejection should be withdrawn.

WO '859

WO '859 is cited at page 11, line 17 of the applicant's specification. The Examiner refers to page 3. Page 3 has the following formula:

8

$$-[(Ar-N-Ar)]_m -$$

$$|$$

$$Ar$$

If m is 2 then the formula would correspond to the formula below:

$$(Ar-N-Ar)-(Ar-N-Ar)$$
 $|$
 Ar
 Ar

These units would not lead to the repeating unit of formula (lr) of the present application, because the combination of these triarylamine units would lead to a unit which contains always **two** aryl groups between two nitrogen atoms, whereas the unit of formula (lr) of the applicant's invention always contains **only one** aryl or heteroaryl group between two nitrogen atoms:

$$(Ar-N-Ar)-(N-Ar)-(N-Ar)$$

For the above reasons, this rejection should be withdrawn.

WO '773

WO '773 is cited at page 2, line 14 of the applicant's specification. WO '773 discloses copolymers comprising a first repeat unit of the following formula (1)

wherein x is 0 or 1.

This formula (1) would only lead to the repeating unit (lr) of the present application, if x = 2, but according to WO '773 x is only 0 or 1 (see the abstract, page 5, four lines from the bottom of the page, page 10, line 4 and claim 1 of WO '773). For the above reasons, this rejection should be withdrawn.

EP '539

The Examiner refers to the formulas in paragraph nos: [0167], [0174], [178] and [0182].

In these formulas Ar would correspond to first unit in amount of 70. However the second unit

9

Application No. 10/558,578 Docket No.: 14113-00065-US Reply to Office Action of May 7, 2009

, _____

does not correspond to the applicant's claimed formula of (Ir).

In paragraph nos. [0167], [0178] and [0182], EP '539 discloses the generic formula:

The applicant requires the following formula.

$$-Ar-N-Ar^{1}\begin{pmatrix} N-Ar \\ R \end{pmatrix}_{n}$$

with n being at least 2.

When n is 2, the formula would be as follows:

When n is 2, the applicant has an additional (RNAr) group compared to EP '539. When n is three the applicant has two additional (RNAr) groups compared to EP '539. Therefore the applicant has at least one additional (RNAr) group compared to EP '539.

In paragraph no. [0174] EP '539 discloses the generic formula:

$$(Ar-N-Ar)-(Ar-N-Ar)$$
 $|$
 Ar
 Ar

These units would not lead to the repeating unit of formula (lr) of the present application, because the combination of these triarylamine units would lead to a unit which contains always **two** aryl groups between two nitrogen atoms, whereas the unit of formula (lr) always contains **only one** aryl or heteroaryl group between two nitrogen atoms:

For the above reasons, this rejection should be withdrawn.

In view of the above, applicant believes the pending application is in condition for allowance.

Applicant believes no fee is due with this response. However, if a fee is due, please charge our Deposit Account No. 03-2775, under Order No. 14113-00065-US from which the undersigned is authorized to draw.

Application No. 10/558,578 Reply to Office Action of May 7, 2009

Dated: August 6, 2009

Docket No.: 14113-00065-US

Electronic signature: /Ashley I. Pezzner/

Ashley I. Pezzner

Respectfully submitted,

Registration No.: 35,646

CONNOLLY BOVE LODGE & HUTZ LLP

1007 North Orange Street

P. O. Box 2207

Wilmington, Delaware 19899-2207

(302) 658-9141

(302) 658-5614 (Fax)

Attorney for Applicant

12