Support vector machines

CSE 250B

Improving upon the Perceptron

For a linearly separable data set, there are in general many possible separating hyperplanes, and Perceptron is guaranteed to find one of them.

Is there a better, more systematic choice of separator? The one with the most buffer around it, for instance?

The learning problem

Given: training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}.$

Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y^{(i)}(w \cdot x^{(i)} + b) > 0$ for all i.

The learning problem

Given: training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}.$

Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $y^{(i)}(w \cdot x^{(i)} + b) > 0$ for all i.

By scaling w, b, can equivalently ask for

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i

Maximizing the margin

Given: training data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$. Find: $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that

$$y^{(i)}(w \cdot x^{(i)} + b) \ge 1$$
 for all i .

Maximize the margin γ .

A formula for the margin

Close-up of a point z on the positive boundary.

A quick calculation shows that $\gamma = 1/\|w\|$.

In short: to maximize the margin, minimize ||w||.

Maximum-margin linear classifier

• Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

```
\begin{aligned} & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}} & \|w\|^2 \\ \text{s.t.:} & & y^{(i)}(w \cdot x^{(i)} + b) \geq 1 & \text{for all } i = 1, 2, \dots, n \end{aligned}
```

Maximum-margin linear classifier

• Given $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

```
\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2 s.t.: y^{(i)}(w \cdot x^{(i)} + b) \ge 1 for all i = 1, 2, \dots, n
```

- This is a convex optimization problem:
 - Convex objective function
 - · Linear constraints
- This means that:
 - the optimal solution can be found efficiently
 - duality gives us information about the solution

Support vectors

Support vectors: training points right on the margin, i.e. $y^{(i)}(w \cdot x^{(i)} + b) = 1$.

 $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

Small example: Iris data set

Fisher's iris data

150 data points from three classes:

- iris setosa
- iris versicolor
- iris virginica

Four measurements: petal width/length, sepal width/length

Small example: Iris data set

Two features: sepal width, petal width.

Two classes: setosa (red circles), versicolor (black triangles)

Small example: Iris data set

Two features: sepal width, petal width.

Two classes: setosa (red circles), versicolor (black triangles)

Recall: maximum-margin linear classifier

Given: $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}.$

Find: the linear separator w that perfectly classifies the data and has maximum margin.

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$
 s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, \dots, n$

Solution $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

Recall: maximum-margin linear classifier

Given: $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}.$

Find: the linear separator w that perfectly classifies the data and has maximum margin.

$$\min_{\substack{w \in \mathbb{R}^d, b \in \mathbb{R} \\ \text{s.t.: } y^{(i)}(w \cdot x^{(i)} + b) \ge 1 \quad \text{for all } i = 1, 2, \dots, n}}$$

Solution $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

What if data is not separable?

The non-separable case

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, \dots, n$
 $\xi \ge 0$

Each data point $x^{(i)}$ is allowed some **slack** ξ_i .

Wine data set

Here C = 1.0

Wine data set

Here C = 1.0

The tradeoff between margin and slack

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \|w\|^2 + C \sum_{i=1}^n \xi_i$$
s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, \dots, n$

$$\xi \ge 0$$

$$C = 10$$

$$C = 10$$

$$C = 3$$

$$C = 2$$

$$C = 1$$

$$C = 0.5$$

$$C = 0.1$$

$$C = 0.01$$

Sentiment data

Sentences from reviews on Amazon, Yelp, IMDB, each labeled as positive or negative.

- Needless to say, I wasted my money.
- He was very impressed when going from the original battery to the extended battery.
- I have to jiggle the plug to get it to line up right to get decent volume.
- Will order from them again!

Data details:

- Bag-of-words representation using a vocabulary of size 4500
- 2500 training sentences, 500 test sentences

What C to use?

С	training error (%)	test error (%)	# support vectors
0.01	23.72	28.4	2294
0.1	7.88	18.4	1766
1	1.12	16.8	1306
10	0.16	19.4	1105
100	0.08	19.4	1035
1000	0.08	19.4	950

Cross-validation

Results of 5-fold cross-validation:

Cross-validation

Results of 5-fold cross-validation:

Chose C = 0.32. Test error: 15.6%