Deduction from Conditional Knowledge on Bayesian Networks with Interval Probability Parameters

Tanmay Goyal - Al20BTECH11021

Bayesian networks

Find Probability that it is raining, given grass is wet?

$$\Pr\left(R = T | G = T\right) \ (1)$$

$$=\frac{TTT+TFT}{TTT+TFT+FTT+FFT} (2)$$

- Directed Acyclic Graph (DAG)
- Represents Probabilistic Relationships

Logic Vs Probability

- **1** Boolean Logic: $b \rightarrow a$, "if b, then a", Pr(a|b)
- ② Classical Logic: $Pr(b \rightarrow a) = Pr(a|b) + Pr(b')Pr(a'|b) \ge Pr(a|b)$

$$=\frac{\Pr(a,b)+\Pr(b')\left(\Pr(b)-\Pr(a,b)\right)}{\Pr(b)}\tag{3}$$

$$= \Pr(a,b) + \Pr(b') \tag{4}$$

- **3** Lewis' Theorem: cannot equate the conditional probability $\Pr(A|B)$ with the probability of conditional event, $B \to A$, except for a trivial set of events
- **Output** Conditional Event Algebra (CEA): Unlike Boolean Algebra, allows defining $Pr(B \to A) = Pr(A|B)$ over a broad range of conditions
- CEA allows generalisation of Boolean Algebra to conditional events, while maintaining compatibility of standard and conditional probability

Interval Probability and Higher Order Logic

- **1** A p-probability interval for θ is an interval [a,b] with $\Pr(a \le \theta \le b) = p$, which can be $\sum_{a < \theta_i < b} \Pr(\theta_i)$ or $\int_a^b f(\theta) d\theta$
- 2 Interval Parameters: a and b
- **1** Higher- Order Logic: if b_1 then a_1 , if b_2 then a_2 ... then if c then d
- The existing definitions and concepts of interval probability do not apply to conditional probability, and cannot be used to draw inferences from higher- order conditionals using BNs.
- Proposal: Bayesian higher- order probabilistic reasoning approach with interval probability parameters, combining CEA and weak conditional probability.

Conditional Event Algebra

- Mathematically modelling conditionals as conditional events. Express probability weight of " $b \rightarrow a$ " in terms of Pr(a|b)
- ② Let (Ω, B, P) be a standard probability space such that Ω represents the Sample Space, B represents a definite event, and P a certain probability measure:
 - $P(\Omega) = 1$
 - $P(b_1 \cup b_2 \cup \ldots + b_j + \ldots) = P(b_1) + P(b_2) \ldots + P(b_j) + \ldots \text{ for mutually exclusive } b_i \text{s}$
 - $\begin{tabular}{ll} \textbf{ The set of all conditional events is Boolean Algebra with connectives} \\ \land, \lor \mbox{ and } ' \end{tabular}$
 - Any probability measure P defined on events of Ω can be extended a probability measure P_0 on conditional events such that $P_0(a|b) = P(a|b)$, i.e conditional probability is a true probability measure on conditional events.

Conditional Event Algebra

• Given normal events a and b, we define an extended probability space (Ω_0, B_0, P_0) , such that, $\Omega_0 = \Omega \times \Omega \times \ldots$, $B_0 = B \times B \times \ldots$, and B_0 being a Boolean Algebra extension. Then,

$$(a|b) = ((a \land b) \times \Omega_0) \lor (b' \times (a \land b) \times \Omega_0) \lor (b' \times b' \times (a \land b) \times \Omega_0) \dots$$
(5)

② Define $f: B \times B \rightarrow B_0$ as:

$$f(a,b) = ab \lor (b' \times ab) \lor (b' \times b' \times ab) \dots$$
 (6)

$$P_0(f(a,b)) = P_0(ab) + P_0(b' \times ab) + P_0(b' \times b' \times ab) \dots$$
 (7)

$$P_0(f(a,b)) = P(ab) \sum P(b')^j \qquad (8)$$

$$= P(a|b) \qquad (9)$$

Probability logic reasoning on Bayesian Networks

If if b_1 then a_1 and if b_2 then a_2 ... then if d then c can be expressed as:

$$G = [(a|b)_i; (c|d)]$$
(10)

$$A(G) = \bigcap \{a_j b_j, a_j' b_j, b_j'\} \cap \{cd, c'd, d'\}$$
 (11)

$$= \{\omega_1, \omega_2, \dots \omega_m\} \tag{12}$$

From (7)

$$f(a_j, b_j, c, d) = \vee(\omega_j) \tag{13}$$

$$Pr((a|b)_j;(c|d)) = Pr(A(G)) = P_0(f(a_j,b_j,c,d))$$
(14)

$$= \sum \Pr(w_j) \tag{15}$$

Interval Probability

- ① *U* universe, *S*-subset of *U*. *S* is called an interval value if $v_1, v_2, v_3 \in U$ and $v_1 \leq v_2 \leq v_3$, and $v_1, v_3 \in S$ implies $v_2 \in S$
- ② Let b be a random event, then lower and upper probabilities, written as L(b) and U(b), are given by: $(x_i$ denotes a sample from sample space Ω)

 - $U(b) = \sum \Pr(x_i) \text{ for } x_i \cap b \neq \phi$

Interval Probability

- **1** $L(a|b) = \inf \frac{\Pr(a \cap b)}{\Pr(b)}$ and $U(a|b) = \sup \frac{\Pr(a \cap b)}{\Pr(b)}$ where $pr(b) \neq 0$
- **②** Bound limited weak conditional probabilities: BL(a|b) and BU(a|b)
 - If $L(a) \le L(a|b) \le U(a|b) \le U(a)$, then $BL(a|b) = max\{EL(a|b), L(a)\}$ and $BU(a|b) = min\{EU(a|b), U(a)\}$
 - ② If $L(a|b) \le L(a) \le U(a) \le U(a|b)$, then $BL(a|b) = min\{EL(a|b), L(a)\}$ and $BU(a|b) = max\{EU(a|b), U(a)\}$
- $BL(a|b) \leq \Pr(a|b) \leq BU(a|b)$

Multiplication rules

$$U(abc) \approx BU(abc) = U(a)BU(b|a)BU(c|ab)$$

Probability logic reasoning on Bayesian Networks

$$BL(\omega_j) \le \Pr(\omega_j) \le BU(\omega_j)$$
 (16)

$$\sum BL(\omega_j) \le \sum \Pr(\omega_j) \le \sum BU(\omega_j) \tag{17}$$

$$\sum BL(\omega_j) \le \Pr\left((a|b)_j; (c|d)\right) \le \sum BU(\omega_j) \tag{18}$$

Logic: Conditional Events \longrightarrow Joint events \longrightarrow Multiplication rule

Example

$$\Pr\left(d|(b|a),(c|a)\right) \tag{19}$$

$$G = [(b|a), (c|a); (d|\Omega)]$$
 (20)

$$A(G) = \{ba, b'a, a'\} \land \{ca, c'a, a'\} \land \{d\Omega, d'\Omega, \phi\}$$
 (21)

abcd	ω_1	
ab'cd	ω_2	
abc'd	ω_3	
ab'c'd	ω_4	
a' d	ω_5	
abcd'	ω_6	
ab'cd'	ω_7	
abc'd'	ω_8	
ab'c'd'	ω_9	
a' d'	ω_{10}	

Example

$$= 0.1 \times 0.8 \times 0.1 \times 0.8 \qquad (24)$$

$$= 0.0064 \qquad (25)$$

$$= 0.0064 \qquad (26)$$

 $BL(\omega_1) = BL(abcd)$

= L(a)BL(b|a)BL(c|a)BL(d|bc)

= 0.0288 (29)

(22)

(23)

Example

		BL(.)	BU(.)
abcd	ω_1	0.0064	0.0288
ab' cd	ω_2	0.0007	0.0064
abc'd	ωз	0.0512	0.1458
ab'c'd	ω_4	0.0004	0.0018
a' d	ω_5	0.0217	0.0677
abcd'	ω_6	0.0016	0.0072
ab'cd'	ω_7	0.0020	0.0024
abc'd'	ω_8	0.0064	0.0324
ab'c'd'	ω_9	0.0076	0.0342
a' d'	ω_{10}	0.0660	0.1588
	$\sum \omega_j$	0.1766	0.4855

The probability of G is estimated to be between [0.1766, 0.4855]

