machine learning: KNN

Ben Amira Rawia

11 décembre 2022

Université de Toulon, UFR Sciences et Techniques $\overline{M1~DID}$

2022-2023

Table des matières		
1	Introduction	3
2	Exercice 1	3
3	Exercice 2	6
4	Conclusion	8

1 Introduction

Ce TP est elaboré dans le module base de l'apprentissage et qui traite l'algorithme KNN. L'algorithme des K plus proches voisins ou K-nearest neighbors (kNN) est un algorithme de Machine Learning qui appartient à la classe des algorithmes d'apprentissage qui peut être utilisé pour résoudre les problèmes de classification et de régression.

2 Exercice 1

Pour tester le code de KNN et sa viariante DWNN, j'ai testé les deux algorithme avec differentes valeurs de K = 1, 3, 7

Pour K=1 on obtient les affichages suivants (KNN ensuite DWNN à chaque fois) :

Pour K = 3

Pour K = 7

Si on regarde bien et on compare à chaque fois pour chaque K les deux versions, on remarque des differnces minimes. Pour mieux voir les choses on teste en calculaut l'Accurracy, la precision et le Recall.

Le calcul renvoie ces valeurs en pourcentage :

Pour KNN:

pour K=1

Accuracy: 92.75 precision: 93.0 Recall: 92.5

pour K=3

Accuracy: 92.5 precision: 93.5 Recall: 91.6

pour k=7

Accuracy: 94.0 precision: 94.5 Recall: 93.56

Ces valeurs ont été verifiées avec la bibliotheque scikit-learn Donc la justesse du code est bien verifiée, les valeurs retourné ne sont pas en pourcentage mais la multiplication par 100 renvoie les memes valeurs.

3 Exercice 2

dans cet exercice nous etudions des ensemble de pingouins l analyse des donnees nous donne ces figures :

Pour etudier nos donnees j'ai decoupé mon dataSet en 3 ensembles avec pour le trainset la majorite des elements : 222, validTest : 55 et testSet 56 avec pour le trainSet 80 pour cent et le reste 10 pou cent pour chaque ensemble.

On a effacé une espece pour travailler : la fonction effacerespece efface l espece adeli de y puisque auparavant il existait 119 espece de type Gento et 136 d Adelie et Chinstrap on a fusionné les deux especes adelie et christoph pour obtenir deux especes 119 et 136 l : Adelie + Chinstrap 0 : Gento

4 Conclusion

En conclusion pour trouver un K pertinent il faut un K qui renvoie une meilleur matrice de confusion.

pour tester les codes : python3 Classificatione_x1.py python3 Classificatione_x2.py