N BARYONS(S = 0, I = 1/2)

p, $N^+ = uud$; n, $N^0 = udd$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

See the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. **D50**, 1173) for a short review.

The "partial mean life" limits tabulated here are the limits on τ/B_i , where τ is the total mean life and B_i is the branching fraction for the mode in question. For N decays, p and n indicate proton and neutron partial lifetimes.

Partial mean life

> 228 (n), > 570 (p)

90%

Created: 5/22/2019 10:04

113

p DECAY MODES	(10 ³⁰ years)	Confidence level	(MeV/c)
	antilepton + meson		
$N ightarrow e^+ \pi$	> 5300 (n), > 16000	90% (p)	459
$N \rightarrow \mu^+ \pi$	> 3500 (n), > 7700	(p) 90%	453
$N ightarrow u \pi$	> 1100 (n), > 390	(p) 90%	459
$ ho ightarrow \ e^+ \eta$	> 10000	90%	309
$ ho ightarrow \ \mu^+ \eta$	> 4700	90%	297
$n o u \eta$	> 158	90%	310
$N \rightarrow e^+ \rho$	> 217 (n), > 720 (p)) 90%	149

HTTP://PDG.LBL.GOV

 $N \rightarrow \mu^+ \rho$

Page 1

$N \rightarrow \nu \rho$	> 19 (n), > 162 (p)	90%	149
$ ho ightarrow e^+ \omega$	> 1600	90%	143
$ ho ightarrow \ \mu^+ \omega$	> 2800	90%	105
$n \rightarrow \nu \omega$	> 108	90%	144
$N \rightarrow e^+ K$	> 17 (n), > 1000 (p)	90%	339
$N ightarrow \mu^+ K$	> 26 (n), > 1600 (p)	90%	329
$N \rightarrow \nu K$	> 86 (n), > 5900 (p)	90%	339
$n ightarrow \nu K_S^0$	> 260	90%	338
$p \to e^+ K^* (892)^0$	> 84	90%	45
$N \rightarrow \nu K^*(892)$	>78 (n), >51 (p)	90%	45
	Antilepton + mesons		
$p \rightarrow e^+ \pi^+ \pi^-$	> 82	90%	448
$p \rightarrow e^+ \pi^0 \pi^0$	> 147	90%	449
$n \rightarrow e^+\pi^-\pi^0$	> 52	90%	449
$p \rightarrow \mu^+ \pi^+ \pi^-$	> 133	90%	425
$p \rightarrow \mu^+ \pi^0 \pi^0$	> 101	90%	427
$n \rightarrow \mu^{+}\pi^{-}\pi^{0}$	> 74	90%	427
$n \rightarrow e^+ K^0 \pi^-$	> 18	90%	319
	, 		
	Lepton + meson		
$n \rightarrow e^- \pi^+$	> 65	90%	459
$n \rightarrow \mu^- \pi^+$	> 49	90%	453
$n \rightarrow e^- \rho^+$	> 62	90%	150
$n \rightarrow \mu^- \rho^+$	> 7	90%	115
$n \rightarrow e^- K^+$	> 32	90%	340
$n \rightarrow \mu^- K^+$	> 57	90%	330
	Lepton + mesons		
$p \rightarrow e^- \pi^+ \pi^+$	> 30	90%	448
$n \rightarrow e^- \pi^+ \pi^0$	> 29	90%	449
$p \rightarrow \mu^- \pi^+ \pi^+$	> 17	90%	425
$n ightarrow \mu^- \pi^+ \pi^0$	> 34	90%	427
$ ho ightarrow e^- \pi^+ K^+$	> 75	90%	320
$p \rightarrow \mu^- \pi^+ K^+$	> 245	90%	279
	Antilepton + photon(s)		
$p \rightarrow e^+ \gamma$	> 670	90%	469
$p \rightarrow \mu^+ \gamma$	> 478	90%	463
$n \rightarrow \nu \gamma$	> 550	90%	470
$p \rightarrow e^{+} \gamma \gamma$	> 100	90%	469
$n \rightarrow \nu \gamma \gamma$	> 219	90%	470
	Antilepton + single massless		
$p \rightarrow e^+ X$	> 790	90%	_
$p \rightarrow \mu^+ X$	> 410	90%	_

Three (or more) leptons

$ ho ightarrow e^+ e^+ e^-$	> 793	90%	469
$ ho ightarrow e^+ \mu^+ \mu^-$	> 359	90%	457
$ ho ightarrow e^+ u u$	> 170	90%	469
$n ightarrow e^+ e^- u$	> 257	90%	470
$n \rightarrow \mu^+ e^- \nu$	> 83	90%	464
$n \rightarrow \mu^+ \mu^- \nu$	> 79	90%	458
$ ho ightarrow \ \mu^+ \mathrm{e}^+ \mathrm{e}^-$	> 529	90%	463
$ ho ightarrow \ \mu^+ \mu^+ \mu^-$	> 675	90%	439
$ ho ightarrow \ \mu^+ u u$	> 220	90%	463
$ ho ightarrow e^- \mu^+ \mu^+$	> 6	90%	457
$n \rightarrow 3\nu$	$> 5 \times 10^{-4}$	90%	470
	Indication mades		

Inclusive modes

$N ightarrow e^+$ anything	> 0.6 (n, p)	90%	_
$N ightarrow \ \mu^+$ anything	> 12 (n, p)	90%	_
$N ightarrow \ e^+ \pi^0$ anything	> 0.6 (n, p)	90%	_

$\Delta B = 2$ dinucleon modes

The following are lifetime limits per iron nucleus.

$pp \to \pi^+\pi^+ > 72.2$	90% 90%	_
+ 0	90%	_
$pn \to \pi^+ \pi^0 > 170$		
$nn \rightarrow \pi^+\pi^- > 0.7$	90%	_
$nn \to \pi^0 \pi^0 $ > 404	90%	_
$pp \rightarrow K^+K^+ > 170$	90%	_
$pp \rightarrow e^+e^+ > 5.8$	90%	_
$pp \rightarrow e^+ \mu^+ > 3.6$	90%	_
$pp \rightarrow \mu^+ \mu^+ > 1.7$	90%	_
$pn \rightarrow e^{+}\overline{\nu}$ > 260	90%	_
$pn \rightarrow \mu^+ \overline{\nu}$ > 200	90%	_
$pn \rightarrow \tau^+ \overline{\nu}_{\tau}$ > 29	90%	_
$nn \rightarrow \nu_e \overline{\nu}_e$ > 1.4	90%	_
$nn \rightarrow \nu_{\mu} \overline{\nu}_{\mu}$ > 1.4	90%	_
$pn \rightarrow \text{invisible}$ > 2.1 ×	10^{-5} 90%	_
$pp \rightarrow \text{invisible}$ $> 5 \times 1$	0^{-5} 90%	_

P DECAY MODES

p DECAY MODES	Partial mean life (years)	Confidence level	$p \pmod{p}$
$\overline{p} \rightarrow e^- \gamma$	$> 7 \times 10^5$	90%	469
$\overline{p} \rightarrow \mu^- \gamma$	$> 5 \times 10^4$	90%	463
$\overline{p} \rightarrow e^- \pi^0$	> 4 $ imes$ 10 ⁵	90%	459
$\overline{p} \rightarrow \mu^- \pi^0$	$> 5 \times 10^4$	90%	453
$\overline{ ho} ightarrow e^- \eta$	$> 2 \times 10^4$	90%	309

HTTP://PDG.LBL.GOV Page 3 Created: 5/22/2019 10:04

$\overline{\it p} ightarrow \ \mu^- \eta$	$> 8 \times 10^3$	90%	297
$\overline{p} ightarrow \ \mathrm{e}^- K_S^0$	> 900	90%	337
$\overline{p} \rightarrow \mu^- K_S^{0}$	$>$ 4 $ imes$ 10 3	90%	326
$\overline{p} ightarrow e^- K_L^{ar{0}}$	$> 9 \times 10^{3}$	90%	337
$\overline{p} \rightarrow \mu^- K_L^0$	$> 7 \times 10^{3}$	90%	326
$\overline{p} \rightarrow e^- \gamma \gamma$	$> 2 \times 10^4$	90%	469
$\overline{p} \rightarrow \mu^- \gamma \gamma$	$> 2 \times 10^4$	90%	463
$\overline{p} \rightarrow e^- \omega$	> 200	90%	143

n

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m=1.0086649159\pm0.0000000005$ u Mass $m = 939.565413 \pm 0.000006$ MeV [a] $(m_n - m_{\overline{n}})/m_n = (9 \pm 6) \times 10^{-5}$ $m_n - m_p = 1.2933321 \pm 0.0000005 \; \text{MeV}$ = 0.00138844919(45) uMean life $\tau = 879.4 \pm 0.6 \, \text{s}$ (S = 1.6) $c\tau = 2.6362 \times 10^8 \text{ km}$ Magnetic moment $\mu = -1.9130427 \pm 0.0000005~\mu_{N}$ Electric dipole moment $d < 0.30 \times 10^{-25}$ e cm, CL = 90%Mean-square charge radius $\langle r_n^2 \rangle = -0.1161 \pm 0.0022$ fm^2 (S = 1.3) Magnetic radius $\sqrt{\left\langle r_M^2 \right\rangle} = 0.864^{+0.009}_{-0.008}$ fm Electric polarizability $\alpha = (11.8 \pm 1.1) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (3.7 \pm 1.2) \times 10^{-4} \text{ fm}^3$ Charge $q = (-0.2 \pm 0.8) \times 10^{-21} e$ Mean $n\bar{n}$ -oscillation time > 8.6 × 10⁷ s, CL = 90% (free n) Mean $n \overline{n}$ -oscillation time > 2.7×10^8 s, CL = 90% [g] (bound n) Mean nn'-oscillation time > 448 s, CL = 90% [h]

$pe^-\nu_e$ decay parameters [i]

$$\lambda \equiv g_A / g_V = -1.2732 \pm 0.0023$$
 (S = 2.4)
 $A = -0.1187 \pm 0.0010$ (S = 2.6)
 $B = 0.9807 \pm 0.0030$
 $C = -0.2377 \pm 0.0026$
 $a = -0.1059 \pm 0.0028$
 $\phi_{AV} = (180.017 \pm 0.026)^{\circ}$ [j]
 $D = (-1.2 \pm 2.0) \times 10^{-4}$ [k]
 $R = 0.004 \pm 0.013$ [k]

n DECAY MODES	Fraction (Γ_i/Γ)	Confidence level (MeV/c)
$ ho e^- \overline{ u}_e$	100 %	1
$pe^-\overline{ u}_e\gamma$	[/] $(9.2\pm0.7)\times10$	⁻³
hydrogen-atom $\overline{ u}_e$	< 2.7 × 10	-3 95% 1.19
Charge conserva	ation (Q) violating n	node
$p\nu_{e}\overline{\nu}_{e}$ Q	< 8 × 10	-27 68% 1

$N(1440) 1/2^+$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1360 to 1380 (\approx 1370) MeV -2Im(pole position) = 160 to 190 (\approx 175) MeV Breit-Wigner mass = 1410 to 1470 (\approx 1440) MeV Breit-Wigner full width = 250 to 450 (\approx 350) MeV

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	55–75 %	398
$N\eta$	<1 %	†
$\mathcal{N}\pi\pi$	17–50 %	347
${\it \Delta}(1232)\pi$, $\it P$ -wave	6–27 %	147
$N\sigma$	11–23 %	_
$p\gamma$, helicity=1/2	0.035-0.048 %	414
$n\gamma$, helicity=1/2	0.02-0.04 %	413

N(1520) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1505 to 1515 (\approx 1510) MeV -2Im(pole position) = 105 to 120 (\approx 110) MeV Breit-Wigner mass = 1510 to 1520 (\approx 1515) MeV Breit-Wigner full width = 100 to 120 (\approx 110) MeV

N(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	55–65 %	453
$N\eta$	0.07-0.09 %	142
$N\pi\pi$	25–35 %	410
$\Delta(1232)\pi$	22–34 %	225
${\it \Delta}(1232)\pi$, $\it S$ -wave	15–23 %	225
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	7–11 %	225
$N\sigma$	< 2 %	_

$oldsymbol{ ho}\gamma$	0.31-0.52 %	467
$p\gamma$, helicity $=1/2$	0.01-0.02 %	467
$p\gamma$, helicity=3/2	0.30–0.50 %	467
$n\gamma$	0.30-0.53 %	466
$n\gamma$, helicity $=1/2$	0.04-0.10 %	466
$n\gamma$, helicity=3/2	0.25-0.45 %	466

N(1535) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

Re(pole position) = 1500 to 1520 (\approx 1510) MeV -2Im(pole position) = 110 to 150 (\approx 130) MeV Breit-Wigner mass = 1515 to 1545 (\approx 1530) MeV Breit-Wigner full width = 125 to 175 (\approx 150) MeV

N(1535) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	32–52 %	464
$N\eta$	30–55 %	176
$N\pi\pi$	3–14 %	422
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	1–4 %	240
$N\sigma$	2–10 %	_
$N(1440)\pi$	5–12 %	†
$p\gamma$, helicity $=1/2$	0.15-0.30 %	477
$n\gamma$, helicity=1/2	0.01–0.25 %	477

N(1650) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$$

Re(pole position) = 1640 to 1670 (\approx 1655) MeV -2Im(pole position) = 100 to 170 (\approx 135) MeV Breit-Wigner mass = 1635 to 1665 (\approx 1650) MeV Breit-Wigner full width = 100 to 150 (\approx 125) MeV

N(1650) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	50-70 %	547
$N\eta$	15–35 %	348
ΛK	5–15 %	169
$N\pi\pi$	8–36 %	514
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	6–18 %	345
$N\sigma$	2–18 %	_
$N(1440)\pi$	6–26 %	150
$p\gamma$, helicity= $1/2$	0.04-0.20 %	558
$n\gamma$, helicity=1/2	0.003-0.17 %	557

N(1675) 5/2⁻

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^-)$$

Re(pole position) = 1655 to 1665 (\approx 1660) MeV -2Im(pole position) = 125 to 150 (\approx 135) MeV Breit-Wigner mass = 1665 to 1680 (\approx 1675) MeV Breit-Wigner full width = 130 to 160 (\approx 145) MeV

N(1675) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	38–42 %	564
$N\eta$	< 1 %	376
$N\pi\pi$	25–45 %	532
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	23–37 %	366
$N\sigma$	3–7 %	_
$m{p}\gamma$	0-0.02 %	575
$p\gamma$, helicity $=1/2$	0-0.01 %	575
$p\gamma$, helicity $=3/2$	0-0.01 %	575
$n\gamma$	0-0.15 %	574
$n\gamma$, helicity $=1/2$	0-0.05 %	574
$n\gamma$, helicity=3/2	0-0.10 %	574

N(1680) 5/2⁺

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$$

Re(pole position) = 1665 to 1680 (\approx 1675) MeV -2Im(pole position) = 110 to 135 (\approx 120) MeV Breit-Wigner mass = 1680 to 1690 (\approx 1685) MeV Breit-Wigner full width = 115 to 130 (\approx 120) MeV

N(1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	60–70 %	571
$N\eta$	<1 %	386
$N\pi\pi$	20–40 %	539
$\Delta(1232)\pi$	11–23 %	374
$arDelta(1232)\pi$, $\mathit{P} ext{-}$ wave	4–10 %	374
${\it \Delta}(1232)\pi$, $\it F-wave$	1–13 %	374
$N\sigma$	9–19 %	_
$p\gamma$	0.21-0.32 %	581
$p\gamma$, helicity=1/2	0.001-0.011 %	581
$p\gamma$, helicity=3/2	0.20-0.32 %	581
$n\gamma$	0.021-0.046 %	581
$n\gamma$, helicity=1/2	0.004-0.029 %	581
$n\gamma$, helicity=3/2	0.01–0.024 %	581

N(1700) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1650 to 1750 (\approx 1700) MeV -2Im(pole position) = 100 to 300 (\approx 200) MeV Breit-Wigner mass = 1650 to 1800 (\approx 1720) MeV Breit-Wigner full width = 100 to 300 (\approx 200) MeV

N(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	7–17 %	594
$N\eta$	seen	422
$N\omega$	10–34 %	†
$N\pi\pi$	60–90 %	564
$\Delta(1232)\pi$	55–85 %	402
${\it \Delta}(1232)\pi$, $\it S$ -wave	50–80 %	402
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	4–14 %	402
$N(1440)\pi$	3–11 %	225
$N(1520)\pi$	<4 %	145
$N\rho$, $S=3/2$, S -wave	32–44 %	74
$N\sigma$	2–14 %	_
$p\gamma$	0.01-0.05 %	604
$p\gamma$, helicity=1/2	0.0-0.024 %	604
$ ho\gamma$, helicity $=$ 3 $/2$	0.002-0.026 %	604
$n\gamma$	0.01-0.13 %	603
$n\gamma$, helicity=1/2	0.0–0.09 %	603
$n\gamma$, helicity=3/2	0.01–0.05 %	603

$N(1710) 1/2^+$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Created: 5/22/2019 10:04

Re(pole position) = 1680 to 1720 (\approx 1700) MeV -2Im(pole position) = 80 to 160 (\approx 120) MeV Breit-Wigner mass = 1680 to 1740 (\approx 1710) MeV Breit-Wigner full width = 80 to 200 (\approx 140) MeV

N(1710) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–20 %	588
$N\eta$	10–50 %	412
$N\omega$	1–5 %	†
ΛK	5–25 %	269
ΣK	seen	138

$N\pi\pi$	seen	557
${\it \Delta}(1232)\pi$, $\it P$ -wave	3–9 %	394
$N(1535)\pi$	9–21 %	113
$N ho$, $S\!\!=\!\!1/2$, $P\!\!$ -wave	11–23 %	†
$p\gamma$, helicity $=1/2$	0.002-0.08 %	598
$n\gamma$, helicity=1/2	0.0-0.02%	597

$N(1720) 3/2^+$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1660 to 1690 (\approx 1675) MeV -2Im(pole position) = 150 to 400 (\approx 250) MeV Breit-Wigner mass = 1680 to 1750 (\approx 1720) MeV Breit-Wigner full width = 150 to 400 (\approx 250) MeV

N(1720) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8–14 %	594
$N\eta$	1-5 %	422
$N\omega$	12–40 %	†
ΛK	4–5 %	283
$N\pi\pi$	50–90 %	564
$\Delta(1232)\pi$	47–89 %	402
${\it \Delta}(1232)\pi$, $\it P$ -wave	47–77 %	402
${\it \Delta}(1232)\pi$, $\it F-wave$	<12 %	402
$N ho$, $S\!\!=\!\!1/2$, $P\!\!$ -wave	1–2 %	74
$N\sigma$	2–14 %	_
$N(1440)\pi$	<2 %	225
$N(1520)\pi$, $\it S$ -wave	1-5 %	145
$p\gamma$	0.05-0.25 %	604
$ ho\gamma$, helicity $=1/2$	0.05-0.15 %	604
$p\gamma$, helicity=3/2	0.002-0.16 %	604
$n\gamma$	0.0-0.016 %	603
$n\gamma$, helicity=1/2	0.0-0.01 %	603
$n\gamma$, helicity=3/2	0.0-0.015 %	603

N(1875) 3/2⁻

$$I(J^P)=\tfrac{1}{2}(\tfrac{3}{2}^-)$$

Created: 5/22/2019 10:04

Re(pole position) = 1850 to 1950 (\approx 1900) MeV -2Im(pole position) = 100 to 220 (\approx 160) MeV Breit-Wigner mass = 1850 to 1920 (\approx 1875) MeV Breit-Wigner full width = 120 to 250 (\approx 200) MeV

N(1875) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	3–11 %	695
$N\eta$	<1 %	559
$N\omega$	15–25 %	371
ΛK	seen	454
ΣK	seen	384
$N\pi\pi$		670
$\Delta(1232)\pi$	10–35 %	520
$arDelta(1232)\pi$, $\mathit{S} ext{-}$ wave	7–21 %	520
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	2–12 %	520
$N\rho$, $S=3/2$, S -wave	seen	379
$N\sigma$	30–60 %	_
$N(1440)\pi$	2-8 %	365
$N(1520)\pi$	<2 %	301
$p\gamma$	0.001-0.025 %	703
$ ho\gamma$, helicity $=1/2$	0.001-0.021 %	703
$p\gamma$, helicity=3/2	<0.003 %	703
$n\gamma$	<0.040 %	702
$n\gamma$, helicity=1/2	<0.007 %	702
$n\gamma$, helicity=3/2	<0.033 %	702

N(1880) 1/2⁺

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1820 to 1900 (\approx 1860) MeV -2Im(pole position) = 180 to 280 (\approx 230) MeV Breit-Wigner mass = 1830 to 1930 (\approx 1880) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

N(1880) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	3–9 %	698
$N\eta$	5–55 %	563
$N\omega$	12–28 %	377
ΛK	12–28 %	459
ΣK	10–24 %	389
$N\pi\pi$	30–80 %	673
$\Delta(1232)\pi$	18–42 %	524
$N\sigma$	10–40 %	539
$N(1535)\pi$	4–12 %	293
<i>N a</i> ₀ (980)	1–5 %	†
ΛK*(892)	0.5–1 %	†

$p\gamma$, helicity=1/2	seen	706
$n\gamma$, helicity=1/2	0.002-0.63 %	705

N(1895) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

Re(pole position) = 1890 to 1930 (\approx 1910) MeV $-2 \text{Im}(\text{pole position}) = 80 \text{ to } 140 \ (\approx 110) \text{ MeV}$ Breit-Wigner mass = 1870 to 1920 (≈ 1895) MeV Breit-Wigner full width = 80 to 200 (≈ 120) MeV

N(1895) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	2–18 %	707
$N\eta$	15–40 %	575
$N\eta'$	10–40 %	†
$N\omega$	16–40 %	395
ΛK	13–23 %	473
ΣK	6–20 %	405
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	3–11 %	535
N ho , $S=1/2$, S -wave	seen	403
$N\rho$, $S=3/2$, D -wave	3–12 %	403
$\Lambda K^{*}(892)$	4–9 %	†
$N\sigma$	seen	_
$N(1440)\pi$	1–4 %	382
$p\gamma$, helicity=1/2	0.01–0.06 %	715
$n\gamma$, helicity=1/2	0.003-0.05 %	715

N(1900) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1900 to 1940 (\approx 1920) MeV $-2 \text{Im}(\text{pole position}) = 100 \text{ to } 200 \ (\approx 150) \text{ MeV}$ Breit-Wigner mass = 1890 to 1950 (≈ 1920) MeV Breit-Wigner full width =100 to 320 (≈ 200) MeV

N(1900) DECAY MODES	Fraction (Γ_i/Γ_i)	p (MeV/c)
$N\pi$	1–20 %	723
$N\eta$	2–14 %	595
$N\eta'$	4-8 %	151
$N\omega$	7–13 %	424
ΛK	2-20 %	495
ΣK	3–7 %	431
$N\pi\pi$	40–80 %	699
HTTP://PDG LBL GOV	Page 11	Created: 5/22/2010 10:04

HTTP://PDG.LBL.GOV

Page 11

Δ (1232) π	30–70 %	553
${\it \Delta}(1232)\pi$, $\it P$ -wave	9–25 %	553
${\it \Delta}(1232)\pi$, $\it F$ -wave	21–45 %	553
$\Lambda K^{*}(892)$	< 0.2 %	†
$N\sigma$	1-7 %	_
$N(1520)\pi$	7–23 %	341
$N(1535)\pi$	4–10 %	328
$p\gamma$	0.001-0.025 %	731
$p\gamma$, helicity $=1/2$	0.001-0.021 %	731
$p\gamma$, helicity $=3/2$	<0.003 %	731
$n\gamma$	<0.040 %	730
$n\gamma$, helicity $=1/2$	<0.007 %	730
$n\gamma$, helicity=3/2	<0.033 %	730

N(2060) 5/2⁻

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^-)$$

Re(pole position) = 2020 to 2130 (\approx 2070) MeV -2Im(pole position) = 350 to 430 (\approx 400) MeV Breit-Wigner mass = 2030 to 2200 (\approx 2100) MeV Breit-Wigner full width = 300 to 450 (\approx 400) MeV

N(2060) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	7–12 %	834
$N\eta$	2–6 %	729
$N\omega$	1–7 %	600
ΛK	seen	644
ΣK	1–5 %	593
$N\pi\pi$	7–19 %	814
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	4–10 %	680
$N \rho$, $S=1/2$, P -wave	seen	605
$\Lambda K^*(892)$	0.3–1.3 %	307
$N\sigma$	3–9 %	_
$N(1440)\pi$	4–14 %	544
$N(1520)\pi$, $ extit{P}$ -wave	9–21 %	490
$N(1680)\pi$, $\it S$ -wave	8–22 %	353
$p\gamma$	0.03-0.19 %	840
$p\gamma$, helicity $=1/2$	0.02-0.08 %	840
$p\gamma$, helicity $=$ 3 $/2$	0.01–0.10 %	840
$n\gamma$	0.003-0.07 %	840
$n\gamma$, helicity $=1/2$	0.001-0.02 %	840
$n\gamma$, helicity=3/2	0.002-0.05 %	840

$N(2100) 1/2^+$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 240 to 340 (\approx 300) MeV Breit-Wigner mass = 2050 to 2150 (\approx 2100) MeV Breit-Wigner full width = 200 to 320 (\approx 260) MeV

N(2100) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8–18 %	834
$N\eta$	seen	729
$N\eta'$	5–11 %	451
N ω	10–25 %	600
ΛK	seen	644
$N\pi\pi$	20–40 %	814
${\it \Delta}(1232)\pi$, $\it P$ -wave	6–14 %	680
N ho , $S=1/2$, P -wave	seen	605
ΛK*(892)	3–11 %	307
$N\sigma$	14–26 %	_
$N(1535)\pi$	26–34 %	478
$N\gamma$, helicity=1/2	0.001-0.012 %	840

N(2120) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 200 to 360 (\approx 280) MeV Breit-Wigner mass = 2060 to 2160 (\approx 2120) MeV Breit-Wigner full width = 260 to 360 (\approx 300) MeV

N(2120) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–15 %	846
$N\eta'$	2–6 %	474
$N\omega$	4–20 %	617
$N\pi\pi$	50–95 %	827
$\Delta(1232)\pi$	40–90 %	693
${\it \Delta}(1232)\pi$, $\it S$ -wave	30–70 %	693
$arDelta(1232)\pi$, $ extit{D}\! ext{-}$ wave	8–32 %	693
ΛK*(892)	< 0.2 %	339
$N\sigma$	7–15 %	_
$N(1535)\pi$	7–23 %	494

$p\gamma$	0.16–2.1 %	852
$p\gamma$, helicity=1/2	0.07–0.80 %	852
$p\gamma$, helicity=3/2	0.09–1.3 %	852
$n\gamma$	0.04-0.72 %	852
$n\gamma$, helicity=1/2	0.04-0.60 %	852
$n\gamma$, helicity=3/2	0.001–0.12 %	852

N(2190) 7/2⁻

$$I(J^P) = \frac{1}{2}(\frac{7}{2})$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 300 to 500 (\approx 400) MeV Breit-Wigner mass = 2140 to 2220 (\approx 2180) MeV Breit-Wigner full width = 300 to 500 (\approx 400) MeV

N(2190) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	10–20 %	882
$N\eta$	1–3 %	785
$N\omega$	8–20 %	667
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	19–31 %	734
$N\rho$, $S=3/2$, D -wave	seen	672
ΛK*(892)	0.2–0.8 %	423
$N\sigma$	3–9 %	_
$oldsymbol{ ho}\gamma$	0.014-0.077 %	888
$n\gamma$	<0.04 %	888
$n\gamma$, helicity=3/2	<0.03 %	888

$N(2220) 9/2^{+}$

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^+)$$

Re(pole position) = 2130 to 2200 (\approx 2170) MeV -2Im(pole position) = 360 to 480 (\approx 400) MeV Breit-Wigner mass = 2200 to 2300 (\approx 2250) MeV Breit-Wigner full width = 350 to 500 (\approx 400) MeV

N(2220) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	15-30 %	924

N(2250) 9/2-

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^-)$$

Re(pole position) = 2150 to 2250 (\approx 2200) MeV -2Im(pole position) = 350 to 500 (\approx 420) MeV Breit-Wigner mass = 2250 to 2320 (\approx 2280) MeV Breit-Wigner full width = 300 to 600 (\approx 500) MeV

HTTP://PDG.LBL.GOV

Page 14

N(2250) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	0.05 to 0.15 (\approx 0.10)	941

$$I(J^P) = \frac{1}{2}(\frac{11}{2})$$

Breit-Wigner mass = 2550 to 2750 (\approx 2600) MeV Breit-Wigner full width = 500 to 800 (\approx 650) MeV

N(2600) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	3–8 %	1126

\triangle BARYONS (S=0, I=3/2)

$$\Delta^{++}=uuu$$
, $\Delta^{+}=uud$, $\Delta^{0}=udd$, $\Delta^{-}=ddd$

$$\Delta$$
(1232) $3/2^{+}$

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1209 to 1211 (\approx 1210) MeV $-2\text{Im}(\text{pole position}) = 98 \text{ to } 102 (\approx 100) \text{ MeV}$

Breit-Wigner mass (mixed charges) = 1230 to 1234 (≈ 1232) MeV

Breit-Wigner full width (mixed charges) = 114 to 120 (\approx 117) MeV

Δ(1232) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	99.4 %	229
$N\gamma$	0.55–0.65 %	259
$N\gamma$, helicity= $1/2$	0.11-0.13 %	259
$N\gamma$, helicity=3/2	0.44-0.52 %	259
pe^+e^-	$(4.2\pm0.7)\times10^{-5}$	259

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Created: 5/22/2019 10:04

Re(pole position) = 1460 to 1560 (\approx 1510) MeV -2Im(pole position) = 200 to 340 (\approx 270) MeV Breit-Wigner mass = 1500 to 1640 (\approx 1570) MeV Breit-Wigner full width = 200 to 300 (\approx 250) MeV

HTTP://PDG.LBL.GOV

Page 15

Δ (1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8–24 %	492
$N\pi\pi$	75–90 %	454
$\Delta(1232)\pi$	73–83 %	276
$arDelta(1232)\pi$, $\mathit{P} ext{-}$ wave	72–82 %	276
$arDelta(1232)\pi$, $ extit{\it F}$ -wave	<2 %	276
$\mathit{N}(1440)\pi$, $\mathit{P} ext{-}wave$	15–25 %	†
$N\gamma$	0.001-0.035 %	505
$N\gamma$, helicity $=1/2$	0.0–0.02 %	505
$N\gamma$, helicity=3/2	0.001-0.015 %	505

△(1620) 1/2⁻

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^-)$$

Re(pole position) = 1590 to 1610 (\approx 1600) MeV -2Im(pole position) = 100 to 140 (\approx 120) MeV Breit-Wigner mass = 1590 to 1630 (\approx 1610) MeV Breit-Wigner full width = 110 to 150 (\approx 130) MeV

△(1620) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	25–35 %	520
$N\pi\pi$	55–80 %	484
$arDelta(1232)\pi$, $ extit{D}\! ext{-wave}$	52-72 %	311
$N\rho$, $S=1/2$, S -wave	seen	†
$N\rho$, $S=3/2$, D -wave	seen	†
$N(1440)\pi$	3–9 %	98
N γ , helicity=1/2	0.03-0.10 %	532

△(1700) 3/2⁻

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1640 to 1690 (\approx 1665) MeV $-2\text{Im}(\text{pole position}) = 200 \text{ to } 300 \ (\approx 250) \text{ MeV}$ Breit-Wigner mass = 1690 to 1730 (\approx 1710) MeV Breit-Wigner full width = 220 to 380 (\approx 300) MeV

Δ(1700) DECAY MODES	Fraction $(\Gamma_i/\Gamma$	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	10–20 %	588
$N\pi\pi$	10-55 %	557
$\Delta(1232)\pi$	10-50 %	394
${\it \Delta}(1232)\pi$, $\it S$ -wave	5–35 %	394
$\Delta(1232)\pi$, $ extit{D}$ -wave	4–16 %	394
HTTP://PDG.LBL.GOV	Page 16	Created: 5/22/2019 10:04

$N\rho$, $S=3/2$, S -wave	seen	†
$\mathit{N}(1520)\pi$, $\mathit{P} ext{-}$ wave	1–5 %	133
$N(1535)\pi$	0.5–1.5 %	113
$\Delta(1232)\eta$	3–7 %	†
$N\gamma$	0.22-0.60 %	598
N γ , helicity $=1/2$	0.12-0.30 %	598
$N\gamma$, helicity=3/2	0.10-0.30 %	598

△(1900) 1/2⁻

$$I(J^P) = \frac{3}{2}(\frac{1}{2})$$

Re(pole position) = 1830 to 1900 (\approx 1865) MeV -2Im(pole position) = 180 to 300 (\approx 240) MeV Breit-Wigner mass = 1840 to 1920 (\approx 1860) MeV Breit-Wigner full width = 180 to 320 (\approx 250) MeV

△(1900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	4–12 %	685
ΣK	seen	367
$N\pi\pi$	45–85 %	660
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	30–70 %	509
$N ho$, $S \!\!=\! 1/2$, $S \!\!$ -wave	8–16 %	360
$N\rho$, $S=3/2$, D -wave	18–28 %	360
$N(1440)\pi$	8–32 %	353
$\mathcal{N}(1520)\pi$	2–10 %	288
$\Delta(1232)\eta$	0–2 %	251
$N\gamma$, helicity=1/2	0.06–0.43 %	693

△(1905) 5/2⁺

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^+)$$

Re(pole position) = 1770 to 1830 (\approx 1800) MeV -2Im(pole position) = 260 to 340 (\approx 300) MeV Breit-Wigner mass = 1855 to 1910 (\approx 1880) MeV Breit-Wigner full width = 270 to 400 (\approx 330) MeV

△(1905) DECAY MODES	Fraction (Γ_i /	$p ext{ (MeV/}c)$
$N\pi$	9–15 %	698
$N\pi\pi$		673
Δ (1232) π	80–100 %	524
${\it \Delta}(1232)\pi$, $\it P$ -wave	23–43 %	524
$arDelta(1232)\pi$, \emph{F} -wave	56-72 %	524
$N\rho$, $S=3/2$, P -wave	seen	385
HTTP://PDG.LBL.GOV	Page 17	Created: 5/22/2019 10:04

$N(1535)\pi$	< 1 %	293
$N(1680)\pi$, $ extit{P}$ -wave	5–15 %	133
$\Delta(1232)\eta$	2–6 %	282
$N\gamma$	0.012-0.036 %	706
$N\gamma$, helicity=1/2	0.002-0.006 %	706
$N\gamma$, helicity=3/2	0.01–0.03 %	706

△(1910) 1/2⁺

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1830 to 1890 (\approx 1860) MeV -2Im(pole position) = 200 to 400 (\approx 300) MeV Breit-Wigner mass = 1850 to 1950 (\approx 1900) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

△(1910) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	15–30 %	710
ΣK	4–14 %	410
$N\pi\pi$		686
$\Delta(1232)\pi$	34–66 %	539
$N(1440)\pi$	3–9 %	386
$\Delta(1232)\eta$	5–13 %	310
$N\gamma$, helicity=1/2	0.0-0.02 %	718

△(1920) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1850 to 1950 (\approx 1900) MeV -2Im(pole position) = 200 to 400 (\approx 300) MeV Breit-Wigner mass = 1870 to 1970 (\approx 1920) MeV Breit-Wigner full width = 240 to 360 (\approx 300) MeV

Δ(1920) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–20 %	723
ΣK	2-6 %	431
$N\pi\pi$		699
$\Delta(1232)\pi$	50–90 %	553
$arDelta(1232)\pi$, $ extit{\it P}$ -wave	8–28 %	553
$\Delta(1232)\pi$, <i>F</i> -wave	44–72 %	553

$N(1440)\pi$, $ extit{\it P}$ -wave	<4 %	403
$\mathit{N}(1520)\pi$, $\mathit{S} ext{-}wave$	<5 %	341
$\mathcal{N}(1535)\pi$	<2 %	328
N a ₀ (980)	seen	41
Δ (1232) η	5–17 %	336

△(1930) 5/2[−]

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^-)$$

Re(pole position) = 1840 to 1920 (\approx 1880) MeV -2Im(pole position) = 230 to 330 (\approx 280) MeV Breit-Wigner mass = 1900 to 2000 (\approx 1950) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

△(1930) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–15 %	742
$N\gamma$	0.0-0.01 %	749
$N\gamma$, helicity $=1/2$	0.0-0.005 %	749
$N\gamma$, helicity=3/2	0.0-0.004 %	749

∆(1950) 7/2⁺

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^+)$$

Re(pole position) = 1870 to 1890 (\approx 1880) MeV -2Im(pole position) = 220 to 260 (\approx 240) MeV Breit-Wigner mass = 1915 to 1950 (\approx 1930) MeV Breit-Wigner full width = 235 to 335 (\approx 285) MeV

Δ(1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	35–45 %	729
ΣK	0.3–0.5 %	441
$N\pi\pi$		706
$\mathit{\Delta}(1232)\pi$, $\mathit{F} ext{-}$ wave	1–9 %	560
$N(1680)\pi$, $ extit{P}$ -wave	3–9 %	191
$\Delta(1232)\eta$	< 0.6 %	349

∆(2200) 7/2[−]

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^-)$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 260 to 420 (\approx 340) MeV Breit-Wigner mass = 2150 to 2250 (\approx 2200) MeV Breit-Wigner full width = 200 to 500 (\approx 350) MeV

HTTP://PDG.LBL.GOV

Page 19

Δ(2200) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	2-8 %	894
ΣK	1–7 %	672
$\Delta\pi$, \emph{D} -wave	40–100 %	747
$\Delta\pi$, $\emph{G} ext{-}$ wave	5–25 %	747
$\Delta\eta$, $ extit{D}$ -wave	seen	614

△(2420) 11/2⁺

$$I(J^P) = \frac{3}{2}(\frac{11}{2}^+)$$

Re(pole position) = 2300 to 2500 (\approx 2400) MeV -2Im(pole position) = 350 to 550 (\approx 450) MeV Breit-Wigner mass = 2300 to 2600 (\approx 2450) MeV Breit-Wigner full width = 300 to 700 (\approx 500) MeV

△(2420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–10 %	1040

Λ BARYONS (S = -1, I = 0) $\Lambda^0 = uds$

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass
$$m=1115.683\pm0.006$$
 MeV $(m_{\Lambda}-m_{\overline{\Lambda}})\ /\ m_{\Lambda}=(-0.1\pm1.1)\times 10^{-5}$ (S = 1.6) Mean life $\tau=(2.632\pm0.020)\times 10^{-10}$ s (S = 1.6) $(\tau_{\Lambda}-\tau_{\overline{\Lambda}})\ /\ \tau_{\Lambda}=-0.001\pm0.009$ $c\tau=7.89$ cm

Magnetic moment $\mu=-0.613\pm0.004~\mu_{\it N}$ Electric dipole moment $d<~1.5\times10^{-16}$ ecm, CL =95%

Decay parameters

$$\begin{array}{lll} \rho\pi^{-} & \alpha_{-} = 0.750 \pm 0.010 \\ \overline{\rho}\pi^{+} & \alpha_{+} = -0.758 \pm 0.012 \\ \overline{\alpha}_{0} \; \text{FOR} \; \overline{\varLambda} \rightarrow \; \overline{n}\pi^{0} = -0.692 \pm 0.017 \\ \rho\pi^{-} & \phi_{-} = (-6.5 \pm 3.5)^{\circ} \\ \text{"} & \gamma_{-} = 0.76 \; ^{[n]} \\ \text{"} & \Delta_{-} = (8 \pm 4)^{\circ} \; ^{[n]} \end{array}$$

$$\overline{lpha}_0$$
 / $lpha_+$ in $\overline{\Lambda}
ightarrow \overline{n}\pi^0$, $\overline{\Lambda}
ightarrow \overline{p}\pi^+ = 0.913 \pm 0.030$ $n\pi^0$ $lpha_0 = 0.75 \pm 0.05$ $pe^-\overline{
u}_e$ $g_A/g_V = -0.718 \pm 0.015$ $[i]$

A DECAY MODES		Fraction (Γ_i /	′Γ) Confi	dence level	<i>p</i> (MeV/ <i>c</i>)
$p\pi^-$		(63.9 ±0.	5)%		101
$n\pi^0$		$(35.8 \pm 0.$	5)%		104
$n\gamma$		$(1.75\pm0.$	$15) \times 10^{-3}$		162
$p\pi^-\gamma$		[o] (8.4 ± 1 .	4) \times 10 ⁻⁴		101
$pe^-\overline{ u}_e$		(8.32 ± 0 .	$14) \times 10^{-4}$		163
ρ $\mu^-\overline{ u}_\mu$		$(1.57\pm0.$	$35) \times 10^{-4}$		131
Lepton (L) and/	or Baryo	on (B) number v	violating dec	cay modes	
π^+e^-	L,B	< 6	\times 10 ⁻⁷	90%	549
$\pi^+\mu^-$	L,B	< 6	\times 10 ⁻⁷	90%	544
π^-e^+	L,B	< 4	\times 10 ⁻⁷	90%	549
$\pi^-\mu^+$	L,B	< 6	\times 10 ⁻⁷	90%	544
K^+e^-	L,B	< 2	\times 10 ⁻⁶	90%	449
$K^+\mu^-$	L,B	< 3	\times 10 ⁻⁶	90%	441
$K^- e^+$	L,B	< 2	$\times 10^{-6}$	90%	449
$K^-\mu^+$	L,B	< 3	$\times 10^{-6}$	90%	441
$K_S^0 \nu$	L,B	< 2	$\times 10^{-5}$	90%	447
$\overline{p}\pi^+$	В	< 9	\times 10 ⁻⁷	90%	101

Λ(1405) 1/2⁻

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Mass $m=1405.1^{+1.3}_{-1.0}~{\rm MeV}$ Full width $\Gamma=50.5\pm2.0~{\rm MeV}$ Below $\overline{K}~N$ threshold

Λ(1405) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Sigma \pi$	100 %	155

Λ(1520) 3/2[−]

$$I(J^P)=0(\tfrac{3}{2}^-)$$

Mass $m=1519.5\pm1.0$ MeV $^{[p]}$ Full width $\Gamma=15.6\pm1.0$ MeV $^{[p]}$

Λ(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	(45 ±1) %	243
$\Sigma \pi$	$(42 \pm 1)\%$	268
$\Lambda\pi\pi$	(10 ± 1) %	259

HTTP://PDG.LBL.GOV

Page 21

$\Sigma \pi \pi$	($0.9~\pm0.1$) %	169
$\Lambda\gamma$	$(~0.85\pm0.15)~\%$	350

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass m=1560 to 1700 (≈ 1600) MeV Full width $\Gamma=50$ to 250 (≈ 150) MeV

A(1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	15–30 %	343
$\Sigma \pi$	10–60 %	338

Λ(1670) 1/2⁻

$$I(J^P) = 0(\frac{1}{2}^-)$$

Mass m=1660 to 1680 (≈ 1670) MeV Full width $\Gamma=25$ to 50 (≈ 35) MeV

Λ(1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20–30 %	414
$\Sigma \pi$	25-55 %	394
$\Lambda\eta$	10–25 %	69
$N\overline{K}^*(892)$, $S=3/2$, D -wave	(5±4) %	†

Λ(1690) 3/2⁻

$$I(J^P)=0(\tfrac{3}{2}^-)$$

Mass m=1685 to 1695 (≈ 1690) MeV Full width $\Gamma=50$ to 70 (≈ 60) MeV

∧(1690) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	20–30 %	433
$\Sigma \pi$	20–40 %	410
$\Lambda\pi\pi$	\sim 25 %	419
$\sum \pi \pi$	\sim 20 %	358

Λ(1800) 1/2⁻

$$I(J^P) = 0(\frac{1}{2})$$

Mass m=1720 to 1850 (≈ 1800) MeV Full width $\Gamma=200$ to 400 (≈ 300) MeV

HTTP://PDG.LBL.GOV

Page 22

Λ(1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	25–40 %	528
$\Sigma \pi$	seen	494
$\Sigma(1385)\pi$	seen	349
$\Lambda\eta$	(6±5) %	326
$N\overline{K}^*(892)$	seen	†

Λ(1810) 1/2⁺

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Mass m=1750 to 1850 (≈ 1810) MeV Full width $\Gamma=50$ to 250 (≈ 150) MeV

Λ(1810) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20-50 %	537
$\Sigma \pi$	10–40 %	501
$\Sigma(1385)\pi$	seen	357
$N\overline{K}^*(892)$	30–60 %	†

Λ(1820) 5/2⁺

$$I(J^P)=0(\tfrac{5}{2}^+)$$

Mass m=1815 to 1825 (≈ 1820) MeV Full width $\Gamma=70$ to 90 (≈ 80) MeV

Λ(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	55–65 %	545
$\Sigma \pi$	8–14 %	509
$\Sigma(1385)\pi$	5–10 %	366
$N\overline{K}^*$ (892), $S=3/2$, P -wave	(3.0 ± 1.0) %	†

Λ(1830) 5/2⁻

$$I(J^P)=0(\frac{5}{2}^-)$$

Mass m=1810 to 1830 (≈ 1830) MeV Full width $\Gamma=60$ to 110 (≈ 95) MeV

Λ(1830) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	3–10 %	553
$\Sigma \pi$	35–75 %	516

HTTP://PDG.LBL.GOV

Page 23

$\Sigma(1385)\pi$	>15 %	374
$arSigma(1385)\pi$, $ extit{D} ext{-}$ wave	(52±6) %	374

Λ(1890) 3/2⁺

$$I(J^P) = 0(\frac{3}{2}^+)$$

Mass m=1850 to 1910 (≈ 1890) MeV Full width $\Gamma=60$ to 200 (≈ 100) MeV

∧(1890) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20–35 %	599
$\Sigma \pi$	3–10 %	560
$\Sigma(1385)\pi$	seen	423
$N\overline{K}^*(892)$	seen	236

Λ(2100) 7/2⁻

$$I(J^P) = 0(\frac{7}{2}^-)$$

Mass m=2090 to 2110 (≈ 2100) MeV Full width $\Gamma=100$ to 250 (≈ 200) MeV

Λ(2100) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	25–35 %	751
$\Sigma \pi$	\sim 5 %	705
$\Lambda\eta$	<3 %	617
$\equiv K$	<3 %	491
$\Lambda \omega$	<8 %	443
$N\overline{K}^*(892)$	10–20 %	515

Λ(2110) 5/2⁺

$$I(J^P) = 0(\frac{5}{2}^+)$$

Created: 5/22/2019 10:04

Mass m=2090 to 2140 (≈ 2110) MeV Full width $\Gamma=150$ to 250 (≈ 200) MeV

A(2110) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	5-25 %	757
$\Sigma \pi$	10–40 %	711
$\Lambda\omega$	seen	455
$\Sigma(1385)\pi$	seen	591
$N\overline{K}^*(892)$	10–60 %	525

Λ(2350) 9/2⁺

$$I(J^P) = 0(\frac{9}{2}^+)$$

Mass m=2340 to 2370 (≈ 2350) MeV Full width $\Gamma=100$ to 250 (≈ 150) MeV

A(2350) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	\sim 12 %	915
$\Sigma \pi$	\sim 10 %	867

Σ BARYONS (S=-1, I=1)

 $\Sigma^+ = uus$, $\Sigma^0 = uds$, $\Sigma^- = dds$

Σ+

$$I(J^P)=1(\tfrac{1}{2}^+)$$

Mass
$$m=1189.37\pm0.07~{\rm MeV}~{\rm (S=2.2)}$$
 Mean life $\tau=(0.8018\pm0.0026)\times10^{-10}~{\rm s}$ $c\tau=2.404~{\rm cm}$ ($\tau_{\Sigma^+}-\tau_{\overline{\Sigma}^-})$ / $\tau_{\Sigma^+}=-0.0006\pm0.0012$ Magnetic moment $\mu=2.458\pm0.010~\mu_N~{\rm (S=2.1)}$ ($\mu_{\Sigma^+}+\mu_{\overline{\Sigma}^-}$) / $\mu_{\Sigma^+}=0.014\pm0.015$ $\Gamma(\Sigma^+\to n\ell^+\nu)/\Gamma(\Sigma^-\to n\ell^-\overline{\nu})$ < 0.043

Decay parameters

$$\begin{array}{lll} \rho\pi^0 & \alpha_0 = -0.980^{+0.017}_{-0.015} \\ \text{"} & \phi_0 = (36 \pm 34)^\circ \\ \text{"} & \gamma_0 = 0.16^{\,[n]} \\ \text{"} & \Delta_0 = (187 \pm 6)^\circ \,^{[n]} \\ n\pi^+ & \alpha_+ = 0.068 \pm 0.013 \\ \text{"} & \phi_+ = (167 \pm 20)^\circ \quad (S = 1.1) \\ \text{"} & \gamma_+ = -0.97^{\,[n]} \\ \text{"} & \Delta_+ = (-73^{\,+133}_{-\,\,10})^\circ \,^{[n]} \\ \rho\gamma & \alpha_\gamma = -0.76 \pm 0.08 \end{array}$$

Σ^+ DECAY MODES	Fraction (Γ_i/Γ) Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\rho\pi^0$	(51.57±0.30) %	189
$n\pi^+$	(48.31±0.30) %	185
$oldsymbol{ ho}\gamma$	$(1.23\pm0.05)\times10^{-3}$	225

HTTP://PDG.LBL.GOV

Page 25

$$n\pi^{+}\gamma$$
 [o] $(4.5 \pm 0.5) \times 10^{-4}$ 185 $\Lambda e^{+}\nu_{e}$ $(2.0 \pm 0.5) \times 10^{-5}$ 71

$\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 1$ weak neutral current (S1) modes

ne $^+ u_e$	SQ	< 5	\times 10 ⁻⁶	90%	224
n $\mu^+ u_\mu$	SQ	< 3.0	\times 10 ⁻⁵	90%	202
pe^+e^-	<i>S</i> 1	< 7	\times 10 ⁻⁶		225
$ ho \mu^+ \mu^-$	<i>S</i> 1	$(2.4 \begin{array}{c} +1.7 \\ -1.3 \end{array}$	$) \times 10^{-8}$		121

Σ^0

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass
$$m=1192.642\pm0.024$$
 MeV $m_{\Sigma^-}-m_{\Sigma^0}=4.807\pm0.035$ MeV (S = 1.1) $m_{\Sigma^0}-m_{\Lambda}=76.959\pm0.023$ MeV Mean life $\tau=(7.4\pm0.7)\times10^{-20}$ s $c\tau=2.22\times10^{-11}$ m

Transition magnetic moment $|\mu_{\Sigma\Lambda}|=1.61\pm0.08~\mu_{N}$

Σ^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{arLambda\gamma}$	100 %		74
$\Lambda \gamma \gamma$	< 3 %	90%	74
$\Lambda e^+ e^-$	[q] 5×10^{-3}		74

Σ-

$$I(J^P)=1(\tfrac{1}{2}^+)$$

Mass
$$m=1197.449\pm0.030$$
 MeV (S = 1.2) $m_{\Sigma^-}-m_{\Sigma^+}=8.08\pm0.08$ MeV (S = 1.9) $m_{\Sigma^-}-m_{\Lambda}=81.766\pm0.030$ MeV (S = 1.2) Mean life $\tau=(1.479\pm0.011)\times10^{-10}$ s (S = 1.3) $c\tau=4.434$ cm Magnetic moment $\mu=-1.160\pm0.025$ μ_N (S = 1.7) Σ^- charge radius = 0.78 \pm 0.10 fm

Decay parameters

$$n\pi^ \alpha_- = -0.068 \pm 0.008$$
 " $\phi_- = (10 \pm 15)^\circ$ " $\gamma_- = 0.98 \ [n]$ " $\Delta_- = (249^+_{-120})^\circ \ [n]$ " $g_A/g_V = 0.340 \pm 0.017 \ [i]$ " $f_2(0)/f_1(0) = 0.97 \pm 0.14$

"
$$D = 0.11 \pm 0.10$$

 $\Lambda e^- \overline{\nu}_e$ $g_V/g_A = 0.01 \pm 0.10^{[i]}$ (S = 1.5)
" $g_{WM}/g_A = 2.4 \pm 1.7^{[i]}$

Σ ⁻ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$n\pi^-$	(99.848±0.005) %	193
$n\pi^-\gamma$	[0] (4.6 ± 0.6) $ imes 10^{-4}$	193
$ne^-\overline{ u}_e$	$(1.017\pm0.034)\times10^{-3}$	230
$n\mu^-\overline{ u}_\mu$	$(4.5 \pm 0.4) \times 10^{-4}$	210
$\Lambda e^{-}\overline{\nu}_{e}$	$(5.73 \pm 0.27) \times 10^{-5}$	79

Σ (1385) $3/2^{+}$

$$I(J^P)=1(\tfrac{3}{2}^+)$$

 $\Sigma(1385)^+$ mass $m=1382.80\pm0.35$ MeV (S = 1.9) $\Sigma(1385)^0$ mass $m=1383.7\pm1.0$ MeV (S = 1.4) $\Sigma(1385)^-$ mass $m=1387.2\pm0.5$ MeV (S = 2.2) $\Sigma(1385)^+$ full width $\Gamma=36.0\pm0.7$ MeV $\Sigma(1385)^0$ full width $\Gamma=36\pm5$ MeV $\Sigma(1385)^-$ full width $\Gamma=39.4\pm2.1$ MeV (S = 1.7)

Below $\overline{K}N$ threshold

Σ (1385) DECAY MODES	Fraction (Γ_j/Γ)	Confidence level	(MeV/ <i>c</i>)
$\Lambda\pi$	(87.0 ± 1.5) %		208
$\Sigma\pi$	(11.7 ± 1.5) %		129
$\Lambda\gamma$	$(1.25^{+0.13}_{-0.12})\%$		241
$\Sigma^+ \gamma \ \Sigma^- \gamma$	($7.0~\pm1.7$) $ imes$ 1	0.0^{-3}	180
$oldsymbol{\Sigma}^- \gamma$	< 2.4 × 1	.0 ⁻⁴ 90%	173

Σ(1660) 1/2⁺

$$I(J^P) = 1(\frac{1}{2}^+)$$

Created: 5/22/2019 10:04

Mass m=1630 to 1690 (≈ 1660) MeV Full width $\Gamma=40$ to 200 (≈ 100) MeV

Σ (1660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	10–30 %	405
$\Lambda\pi$	seen	440
$\Sigma \pi$	seen	387

$$I(J^P)=1(\tfrac{3}{2}^-)$$

Mass m=1665 to 1685 (≈ 1670) MeV Full width $\Gamma=40$ to 80 (≈ 60) MeV

Σ (1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	7–13 %	414
$\Lambda\pi$	5–15 %	448
$\Sigma \pi$	30–60 %	394

Σ(1750) 1/2⁻

$$I(J^P) = 1(\frac{1}{2}^-)$$

Mass m=1730 to $1800~(\approx 1750)$ MeV Full width $\Gamma=60$ to $160~(\approx 90)$ MeV

Σ (1750) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	10–40 %	486
$\Lambda\pi$	seen	507
$\Sigma \pi$	<8 %	456
$\Sigma \eta$	15–55 %	98
$N\overline{K}^*(892), S=1/2$	(8±4) %	†

Σ(1775) 5/2⁻

$$I(J^P)=1(\frac{5}{2}^-)$$

Mass m=1770 to 1780 (≈ 1775) MeV Full width $\Gamma=105$ to 135 (≈ 120) MeV

Σ (1775) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
NK	37–43%	508	
$\Lambda\pi$	14–20%	525	
$\Sigma \pi$	2–5%	475	
$\Sigma(1385)\pi$	8–12%	327	
$\Lambda(1520)\pi$, $ extit{P-wave}$	17–23%	201	

Σ (1915) 5/2⁺

$$I(J^P)=1(\tfrac{5}{2}^+)$$

Created: 5/22/2019 10:04

Mass m=1900 to $1935~(\approx 1915)~\text{MeV}$ Full width $\Gamma=80$ to $160~(\approx 120)~\text{MeV}$

Σ (1915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	5-15 %	618
$\Lambda\pi$	seen	623
$\Sigma \pi$	seen	577
$\Sigma(1385)\pi$	<5 %	443

Σ(1940) 3/2⁻

$$I(J^P)=1(\tfrac{3}{2}^-)$$

Mass m=1900 to $1950~(\approx 1940)~\text{MeV}$ Full width $\Gamma=150$ to $300~(\approx 220)~\text{MeV}$

Σ (1940) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	<20 %	637
$\Lambda\pi$	seen	640
$\Sigma \pi$	seen	595
$\Sigma(1385)\pi$	seen	463
$\Lambda(1520)\pi$	seen	355
$\Delta(1232)\overline{K}$	seen	410
N K *(892)	seen	322

Σ (2030) 7/2⁺

$$I(J^P)=1(\tfrac{7}{2}^+)$$

Mass m=2025 to 2040 (≈ 2030) MeV Full width $\Gamma=150$ to 200 (≈ 180) MeV

Σ (2030) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	17–23 %	702
$\Lambda\pi$	17–23 %	700
$\Sigma \pi$	5–10 %	657
$\equiv K$	<2 %	422
$\Sigma(1385)\pi$	5–15 %	532
$\Lambda(1520)\pi$	10–20 %	430
$\Delta(1232)\overline{K}$	10–20 %	498
$N\overline{K}^*(892)$	<5 %	439

Σ(2250)

$$I(J^P) = 1(??)$$

Mass m=2210 to 2280 (≈ 2250) MeV Full width $\Gamma=60$ to 150 (≈ 100) MeV

HTTP://PDG.LBL.GOV

Page 29

Σ (2250) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	<10 %	851
$\Lambda\pi$	seen	842
$\Sigma \pi$	seen	803

$$\Xi$$
 BARYONS
($S=-2$, $I=1/2$)
 $\Xi^0 = uss$, $\Xi^- = dss$

=0

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass
$$m=1314.86\pm0.20$$
 MeV $m_{\equiv -}-m_{\equiv 0}=6.85\pm0.21$ MeV Mean life $\tau=(2.90\pm0.09)\times10^{-10}$ s $c\tau=8.71$ cm

Magnetic moment $\mu = -1.250 \pm 0.014~\mu_{ extbf{ extit{N}}}$

Decay parameters

$$\Lambda \pi^0$$
 $\alpha = -0.347 \pm 0.010$
" $\phi = (21 \pm 12)^\circ$
" $\gamma = 0.85 \ ^{[n]}$
" $\Delta = (218^{+12}_{-19})^\circ \ ^{[n]}$
 $\Lambda \gamma$ $\alpha = -0.70 \pm 0.07$
 $\Lambda e^+ e^ \alpha = -0.8 \pm 0.2$
 $\Sigma^0 \gamma$ $\alpha = -0.69 \pm 0.06$
 $\Sigma^+ e^- \overline{\nu}_e$ $g_1(0)/f_1(0) = 1.22 \pm 0.05$
 $\Sigma^+ e^- \overline{\nu}_e$ $f_2(0)/f_1(0) = 2.0 \pm 0.9$

≡ ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda\pi^0$	(99.524 ± 0.012)	%	135
$\Lambda\gamma$	(1.17 ± 0.07)	$\times 10^{-3}$	184
$\Lambda e^+ e^-$	(7.6 ± 0.6)	\times 10 ⁻⁶	184
$\Sigma^0\gamma$	(3.33 ± 0.10)	$\times 10^{-3}$	117
$\Sigma^+ e^- \overline{ u}_e$	(2.52 ± 0.08)		120
$\Sigma^+ \mu^- \overline{ u}_{\mu}$	(2.33 ± 0.35)	\times 10 ⁻⁶	64

$\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 2$ forbidden (S2) modes

$\Sigma^- e^+ u_e$	SQ	<	9	$\times10^{-4}$	90%	112
$\Sigma^- \mu^+ u_\mu$	SQ	<	9	\times 10 ⁻⁴	90%	49
$p\pi^-$	<i>S2</i>	<	8	$\times 10^{-6}$	90%	299
$pe^{-}\overline{\nu}_{e}$	<i>S2</i>	<	1.3	$\times 10^{-3}$		323
$ ho\mu^-\overline{ u}_{\mu}$	<i>S2</i>	<	1.3	$\times 10^{-3}$		309

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass
$$m=1321.71\pm0.07~{\rm MeV}$$
 $\left(m_{\Xi^-}-m_{\overline{\Xi}^+}\right)/m_{\Xi^-}=(-3\pm9)\times10^{-5}$ Mean life $\tau=(1.639\pm0.015)\times10^{-10}~{\rm s}$ $c\tau=4.91~{\rm cm}$ $\left(\tau_{\Xi^-}-\tau_{\overline{\Xi}^+}\right)/\tau_{\Xi^-}=-0.01\pm0.07$ Magnetic moment $\mu=-0.6507\pm0.0025~\mu_N$ $\left(\mu_{\Xi^-}+\mu_{\overline{\Xi}^+}\right)/\left|\mu_{\Xi^-}\right|=+0.01\pm0.05$

Decay parameters

$$\begin{array}{ll} \Lambda \pi^- & \alpha = -0.392 \pm 0.008 \\ [\alpha(\Xi^-)\alpha_-(\Lambda) - \alpha(\overline{\Xi}^+)\alpha_+(\overline{\Lambda})] \ / \ [\text{ sum }] = (0 \pm 7) \times 10^{-4} \\ \text{"} & \phi = (-2.1 \pm 0.8)^\circ \\ \text{"} & \gamma = 0.89 \ [n] \\ \text{"} & \Delta = (175.9 \pm 1.5)^\circ \ [n] \\ \Lambda e^- \overline{\nu}_e & g_A/g_V = -0.25 \pm 0.05 \ [i] \end{array}$$

≡ − DECAY MODES	Fraction	(Γ_i/Γ) Confi	dence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda\pi^-$	(99.88	37±0.035) %		140
$\Sigma^-\gamma$	(1.27	$7 \pm 0.23) \times 10^{-2}$	1	118
$\Lambda e^- \overline{ u}_e$	(5.63	$3 \pm 0.31 \times 10^{-4}$	1	190
$\Lambda\mu^-\overline{ u}_\mu$	(3.5	$^{+3.5}_{-2.2}$) \times 10 ⁻⁴	4	163
$\Sigma^0 e^- \overline{ u}_e$	(8.7	± 1.7) $\times 10^{-5}$	5	123
$\Sigma^0 \mu^- \overline{ u}_{\mu}$	< 8	\times 10 ⁻²	90%	70
$\bar{\Xi}^0 e^- \bar{\nu}_e$	< 2.3	× 10 ⁻³	90%	7
	$\Delta S = 2$ forbidden (S	(2) modes		
$n\pi^-$	<i>S2</i> < 1.9	× 10 ⁻⁵	90%	304
$ne^-\overline{ u}_e$	<i>S2</i> < 3.2	$\times 10^{-3}$	90%	327
n $\mu^-\overline{ u}_\mu$	<i>S2</i> < 1.5	%	90%	314
$p\pi^-\pi^-$	<i>S2</i> < 4	\times 10 ⁻²	90%	223

$p\pi^-e^-\overline{ u}_e$	<i>S2</i>	< 4	$\times 10^{-4}$	90%	305
$ ho\pi^-\mu^-\overline{ u}_\mu$	<i>S2</i>	< 4	\times 10 ⁻⁴	90%	251
$ ho\mu^-\mu^-$	L	< 4	\times 10 ⁻⁸	90%	272

Ξ(1530) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

$$\Xi(1530)^0$$
 mass $m=1531.80\pm0.32$ MeV (S = 1.3) $\Xi(1530)^-$ mass $m=1535.0\pm0.6$ MeV $\Xi(1530)^0$ full width $\Gamma=9.1\pm0.5$ MeV $\Xi(1530)^-$ full width $\Gamma=9.9^{+1.7}_{-1.9}$ MeV

≡ (1530) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Xi \pi$	100 %		158
$\equiv \gamma$	<4 %	90%	202

Ξ(1690)

$$I(J^P) = \frac{1}{2}(??)$$

Mass $m=1690\pm 10$ MeV $^{[p]}$ Full width $\Gamma < 30$ MeV

≡ (1690) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	seen	240
$\Sigma \overline{K}$	seen	70
$\Xi\pi$	seen	311
$\equiv -\pi^+\pi^-$	possibly seen	213

Ξ(1820) 3/2[−]

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Created: 5/22/2019 10:04

Mass $m=1823\pm 5$ MeV $^{[p]}$ Full width $\Gamma=24^{+15}_{-10}$ MeV $^{[p]}$

≡ (1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	large	402
$\Sigma \overline{K}$	small	324
$\equiv \pi$	small	421
$\Xi(1530)\pi$	small	237

$$I(J^P) = \frac{1}{2}(??)$$

Mass $m=1950\pm15$ MeV $^{[p]}$ Full width $\Gamma=60\pm20$ MeV $^{[p]}$

Fraction (Γ_i/Γ)	p (MeV/c)
seen	522
possibly seen	460
seen	519
	seen possibly seen

≡(2030)

$$I(J^P) = \frac{1}{2}(\geq \frac{5}{2}?)$$

Mass $m=2025\pm 5$ MeV $^{[p]}$ Full width $\Gamma=20^{+15}_{-5}$ MeV $^{[p]}$

≡ (2030) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	\sim 20 %	585
$\Sigma \overline{K}$	\sim 80 %	529
$\Xi \pi$	small	574
$\Xi(1530)\pi$	small	416
$\Lambda \overline{K} \pi$	small	499
$\Sigma \overline{K} \pi$	small	428

$$\Omega$$
 BARYONS $(S=-3, I=0)$

 $\Omega^-=sss$

$$I(J^P) = 0(\frac{3}{2}^+)$$

Created: 5/22/2019 10:04

 $J^P=\frac{3}{2}^+$ is the quark-model prediction; and J=3/2 is fairly well established.

Mass $m=1672.45\pm0.29~{\rm MeV}$ $(m_{\Omega^-}-m_{\overline{\Omega}^+})\ /\ m_{\Omega^-}=(-1\pm8)\times 10^{-5}$ Mean life $\tau=(0.821\pm0.011)\times 10^{-10}~{\rm s}$ $c\tau=2.461~{\rm cm}$ $(\tau_{\Omega^-}-\tau_{\overline{\Omega}^+})\ /\ \tau_{\Omega^-}=0.00\pm0.05$ Magnetic moment $\mu=-2.02\pm0.05~\mu_N$

Decay parameters

$$\alpha(\Omega^{-}) \ \alpha_{-}(\Lambda) \ {\rm FOR} \ \Omega^{-} \to \Lambda K^{-} = 0.0115 \pm 0.0015$$
 $\Lambda K^{-} \qquad \alpha = 0.0154 \pm 0.0020$ $\Lambda K^{-}, \ \overline{\Lambda} K^{+} \ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) = -0.02 \pm 0.13$ $\Xi^{0} \pi^{-} \qquad \alpha = 0.09 \pm 0.14$ $\Xi^{-} \pi^{0} \qquad \alpha = 0.05 \pm 0.21$

Ω^- DECAY MODES	Fraction (Γ_i/I)	Γ) Confidence level	(MeV/c)	
ΛK^-	(67.8 ± 0.7)	%	211	
$\equiv^0\pi^-$	(23.6 ± 0.7)	%	294	
$\underline{\Xi}^-\pi^0$	(8.6 ± 0.4)	%	289	
$\Xi^-\pi^+\pi^-$	$(3.7^{+0.7}_{-0.6})$	\times 10 ⁻⁴	189	
$\Xi(1530)^0 \pi^-$	< 7	\times 10 ⁻⁵ 90%	17	
$\Xi^0 e^- \overline{\nu}_e$	(5.6 ± 2.8)	$\times 10^{-3}$	319	
$\equiv -\gamma$	< 4.6	$\times 10^{-4}$ 90%	314	
$\Delta S = 2$ forbidden (S2) modes				
$\Lambda\pi^-$	<i>S2</i> < 2.9	$\times 10^{-6}$ 90%	449	

$\Omega(2012)^-$

$$I(J^P) = 0(?^-)$$

Mass $m = 2012.4 \pm 0.9 \text{ MeV}$ Full width $\Gamma = 6.4^{+3.0}_{-2.6} \text{ MeV}$

$\Omega(2012)^-$ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\equiv^0 K^-$	seen	403
$\equiv - K^0$	seen	392

$\Omega(2250)^{-}$

$$I(J^P) = 0(??)$$

Created: 5/22/2019 10:04

Mass $m=2252\pm 9~{
m MeV}$ Full width $\Gamma=55\pm 18~{
m MeV}$

$\Omega(2250)^-$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi^-\pi^+\kappa^-}$	seen	532
$\Xi(1530)^0 K^-$	seen	437

CHARMED BARYONS (C=+1)

$$\Lambda_c^+ = udc, \quad \Sigma_c^{++} = uuc, \quad \Sigma_c^+ = udc, \quad \Sigma_c^0 = ddc,$$

$$\Xi_c^+ = usc, \quad \Xi_c^0 = dsc, \quad \Omega_c^0 = ssc$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass
$$m=2286.46\pm0.14$$
 MeV Mean life $\tau=(200\pm6)\times10^{-15}$ s $~(S=1.6)$ $c\tau=59.9~\mu{\rm m}$

Decay asymmetry parameters

A
$$\pi^+$$
 $\alpha=-0.91\pm0.15$ $\Sigma^+\pi^0$ $\alpha=-0.45\pm0.32$ $\Lambda\ell^+\nu_\ell$ $\alpha=-0.86\pm0.04$ $(\alpha+\overline{lpha})/(\alpha-\overline{lpha})$ in $\Lambda_c^+\to\Lambda\pi^+$, $\overline{\Lambda}_c^-\to\overline{\Lambda}\pi^-=-0.07\pm0.31$ $(\alpha+\overline{lpha})/(\alpha-\overline{lpha})$ in $\Lambda_c^+\to\Lambda e^+\nu_e$, $\overline{\Lambda}_c^-\to\overline{\Lambda}e^-\overline{\nu}_e=0.00\pm0.04$ $A_{CP}(\Lambda X)$ in $\Lambda_c\to\Lambda X$, $\overline{\Lambda}_c\to\overline{\Lambda} X=(2\pm7)\%$ $\Delta A_{CP}=A_{CP}(\Lambda_c^+\to\rho K^+K^-)-A_{CP}(\Lambda_c^+\to\rho \pi^+\pi^-)=(0.3\pm1.1)\%$

Branching fractions marked with a footnote, e.g. [a], have been corrected for decay modes not observed in the experiments. For example, the submode fraction $\Lambda_c^+ \to p \overline{K}^*(892)^0$ seen in $\Lambda_c^+ \to p K^- \pi^+$ has been multiplied up to include $\overline{K}^*(892)^0 \to \overline{K}^0 \pi^0$ decays.

A+ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Created: 5/22/2019 10:04

Hadronic modes with a p or n: S = -1 final states

	($1.59\pm~0.08$) %	S=1.1	873
	$(6.28\pm\ 0.32)\%$	S=1.4	823
[<i>r</i>]	($1.96\pm~0.27)~\%$		685
	$(1.08\pm~0.25)~\%$		710
[<i>r</i>]	($2.2~\pm~0.5$) %		627
	(3.5 ± 0.4) %		823
	($1.97\pm~0.13$) %	S=1.1	823
	($1.82\pm~0.25$) %		821
	($1.6~\pm~0.4$) %		568
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$pK_S^0\pi^+\pi^-$		($1.60\pm~0.12)~\%$	S=1.1	754
$pK^{-}\pi^{+}\pi^{0}$		(4.46± 0.30) %	S=1.5	759
$p K^*(892)^- \pi^+$	[<i>r</i>]	(1.4 \pm 0.5) %		580
$p(K^-\pi^+)_{\text{nonresonant}}\pi^0$		(4.6 \pm 0.8) %		759
$\Delta(1232)\overline{K}^*(892)$		seen		419
$pK^{-}2\pi^{+}\pi^{-}$		$(1.4 \pm 0.9) \times 10^{-3}$		671
$pK^-\pi^+2\pi^0$		(1.0 ± 0.5) %		678

Hadronic modes with a p: S = 0 final states

				_	
$p\pi^0$		< 2.7	$\times 10^{-4}$	CL=90%	945
$p\eta$		($1.24\pm$	$0.30) \times 10^{-3}$		856
$p\omega(782)^{0}$		(9 \pm	4) \times 10 ⁻⁴		751
$p\pi^+\pi^-$		($4.61\pm$	$0.28) \times 10^{-3}$		927
$p f_0(980)$		$[r]$ (3.5 \pm	$2.3) \times 10^{-3}$		614
$p2\pi^{+}2\pi^{-}$		(2.3 \pm	$1.4) \times 10^{-3}$		852
pK^+K^-		($1.06\pm$	$0.06) \times 10^{-3}$		616
$oldsymbol{ ho}\phi$		$[r]$ ($1.06\pm$	$0.14) \times 10^{-3}$		590
pK^+K^- non-	ϕ	(5.3 \pm	$1.2) \times 10^{-4}$		616
$ ho\phi\pi^0$		(10 \pm	4) $\times 10^{-5}$		460
$ hoK^+K^-\pi^0$ non	resonant	< 6.3	\times 10 ⁻⁵	CL=90%	494

Hadronic modes with a hyperon: S = -1 final states

Tidal Offic Tilodos With	a hyperonn o I imai .	564665	
$\Lambda\pi^+$	($1.30\pm~0.07)~\%$	S=1.1	864
$\Lambda\pi^{+}\pi^{0}$	(7.1 ± 0.4) %	S=1.1	844
Λho^+	< 6 %	CL=95%	636
$\Lambda\pi^-2\pi^+$	$(3.64\pm\ 0.29)\%$	S=1.4	807
$\Sigma(1385)^+\pi^+\pi^-$, $\Sigma^{*+} ightarrow$	(1.0 ± 0.5) %		688
$\Lambda\pi^+ \ \Sigma(1385)^- 2\pi^+$, $\Sigma^{*-} ightarrow \Lambda\pi^$	(7.6 ± 1.4) $\times 10^{-3}$		688
$\Lambda \pi^{+} \stackrel{\wedge}{\rho}^{0}$	(1.5 ± 0.6) %		524
Σ (1385) $^+ ho^0$, $\Sigma^{*+} ightarrow$ $\Lambda\pi^+$	$(5 \pm 4) \times 10^{-3}$		363
$\Lambda\pi^-2\pi^+$ nonresonant	< 1.1 %	CL=90%	807
$\Lambda\pi^-\pi^02\pi^+$ total	(2.3 ± 0.8) %		757
$\Lambda\pi^+\eta$	$[r]$ (2.2 \pm 0.5) %		691
$\Sigma(1385)^+\eta$	[r] ($1.07\pm~0.32$) %		570
$\Lambda\pi^+\omega$	$[r]$ (1.5 \pm 0.5) %		517
$arLambda\pi^-\pi^02\pi^+$, no η or ω	$<$ 8 \times 10 ⁻³	CL=90%	757
$\Lambda K^+ \overline{K}{}^0$	$(5.7 \pm 1.1) \times 10^{-3}$	S=1.9	443
${\it \Xi}(1690)^0{\it K}^+$, ${\it \Xi}^{*0} ightarrow {\it \Lambda} {\it \overline{K}}{}^0$	$(1.6 \pm 0.5) \times 10^{-3}$		286
$\Sigma^0\pi^+$	($1.29\pm~0.07$) %	S=1.1	825
$\Sigma^+\pi^0$	($1.25\pm~0.10$) %		827
$\Sigma^+ \eta$	$(6.9 \pm 2.3) \times 10^{-3}$		713
$\Sigma^+\pi^+\pi^-$	$(4.50\pm\ 0.25)\ \%$	S=1.3	804
$\Sigma^+ ho^0$	< 1.7 %	CL=95%	575

$\Sigma^- 2\pi^+$	$(1.87\pm~0.18)~\%$		799
$\Sigma^0\pi^+\pi^0$	$(3.5 \pm 0.4)\%$		803
$\Sigma^+\pi^0\pi^0$	$(1.55\pm\ 0.15)\%$		806
$\Sigma^0\pi^-2\pi^+$	(1.11 ± 0.30) %		763
$\Sigma^+\pi^+\pi^-\pi^0$	<u> </u>		767
$\Sigma^+\omega$	[r] (1.70 ± 0.21) %		569
$\Sigma^-\pi^02\pi^+$	$(2.1 \pm 0.4)\%$		762
$\Sigma^+ {\mathcal K}^+ {\mathcal K}^-$	$(3.5 \pm 0.4) \times 10^{-3}$	S=1.1	349
$oldsymbol{\Sigma}^+ \phi$	[r] (3.9 ± 0.6) × 10 ⁻³	S=1.1	295
$\Xi(1690)^0K^+$, Ξ^{*0} \to	$(1.02\pm 0.25) \times 10^{-3}$		286
Σ^+K^-	,		
$\Sigma^+K^+K^-$ nonresonant	$<$ 8 \times 10 ⁻⁴	CL=90%	349
$\equiv^0 K^+$	$(5.5 \pm 0.7) \times 10^{-3}$		653
$\Xi^- K^+ \pi^+$	$(6.2 \pm 0.6) \times 10^{-3}$		565
$\Xi(1530)^0 K^+$	$(4.3 \pm 0.9) \times 10^{-3}$	S=1.1	473
Hadronia modes wit	h a hymeren. S — O final s	tatas	
	h a hyperon: $S = 0$ final s	tates	
ΛK^+	$(6.1 \pm 1.2) \times 10^{-4}$		781
$\Lambda K^+ \pi^+ \pi^-$	$< 5 \times 10^{-4}$	CL=90%	637
$\Sigma^0 K^+$	$(5.2 \pm 0.8) \times 10^{-4}$		735
$\Sigma^0 {\mathcal K}^+ \pi^+ \pi^-$	$< 2.6 \times 10^{-4}$	CL=90%	574
$\Sigma^+ {\mathcal K}^+ \pi^-$	$(2.1 \pm 0.6) \times 10^{-3}$		670
$\Sigma^+ \mathcal{K}^* (892)^0$	[r] (3.5 ± 1.0) $\times 10^{-3}$		470
$\Sigma^- K^+ \pi^+$	$< 1.2 \times 10^{-3}$	CL=90%	664

Doubly Cabibbo-suppressed modes

Created: 5/22/2019 10:04

$$pK^{+}\pi^{-}$$
 (1.11± 0.18) × 10⁻⁴ 823

Semileptonic modes

$\Lambda e^+ \nu_e$	(3.6 ± 0.4) %	871
$\Lambda \mu^+ u_{\mu}$	(3.5 ± 0.5) %	867

Inclusive modes

e^+ anything	(3.95± 0.35) % –
p anything	(50 ±16)% -
n anything	(50 ±16) % -
arLambda anything	(38.2 + 2.9 - 2.4) %
3prongs	(24 ± 8) % -

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

pe^+e^-	C1	< 5.5	$\times10^{-6}$ CL=90%	951
$p\mu^+\mu^-$ non-resonant	C1	< 7.7	$\times 10^{-8}$ CL=90%	937
$p\mathrm{e}^+\mu^-$	LF	< 9.9	$\times 10^{-6}$ CL=90%	947
$pe^-\mu^+$	LF	< 1.9	$\times10^{-5}$ CL=90%	947

<u></u> p 2e ⁺	L,B	< 2.7	$\times 10^{-6}$	CL=90%	951
$\overline{p}2\mu^+$	L,B	< 9.4	$\times 10^{-6}$	CL=90%	937
$\overline{p}e^+\mu^+$	L,B	< 1.6	$\times 10^{-5}$	CL=90%	947
$\Sigma^-\mu^+\mu^+$	L	< 7.0	$\times 10^{-4}$	CL=90%	812

$\Lambda_c(2595)^+$

$$I(J^P) = 0(\frac{1}{2})$$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant. This assumes that $J^P=1/2^+$ for the $\Sigma_c(2455)$.

Mass
$$m = 2592.25 \pm 0.28$$
 MeV $m - m_{\Lambda_c^+} = 305.79 \pm 0.24$ MeV Full width $\Gamma = 2.6 \pm 0.6$ MeV

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma_c(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

Λ_c (2595) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	[s] —	117
$\Sigma_c(2455)^{++}\pi^-$	24 \pm 7 %	†
Σ_c (2455) $^0\pi^+$	24 \pm 7 %	†
$\Lambda_c^+\pi^+\pi^-$ 3-body	18 \pm 10 $\%$	117
$\Lambda_c^+ \pi^0$ $\Lambda_c^+ \gamma$	[t] not seen	258
$\Lambda_c^+ \gamma$	not seen	288

$\Lambda_c(2625)^+$

$$I(J^P) = 0(\frac{3}{2}^-)$$

 ${\it J}^{\it P}$ has not been measured; $\frac{3}{2}^{\it -}$ is the quark-model prediction.

Mass
$$m=2628.11\pm0.19$$
 MeV (S $=1.1$) $m-m_{\Lambda_c^+}=341.65\pm0.13$ MeV (S $=1.1$) Full width Γ $<$ 0.97 MeV, CL $=$ 90%

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

Λ_c (2625) ⁺ DECAY MODES	Fraction (Γ_i/Γ_j)) Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ \pi^+ \pi^-$	≈ 67%		184
Σ_c (2455) ⁺⁺ π^-	<5	90%	102
HTTP://PDG.LBL.GOV	Page 38	Created: 5/22/201	9 10:04

Σ_c (2455) $^0\pi^+$	<5	90% 102
$\Lambda_c^+\pi^+\pi^-$ 3-body	large	184
$\Lambda_c^+ \pi^0$	[t] not seen	293
$\Lambda_c^+ \gamma$	not seen	319

$\Lambda_c(2860)^+$

$$I(J^P) = 0(\frac{3}{2}^+)$$

Mass
$$m = 2856.1^{+2.3}_{-6.0} \text{ MeV}$$

Full width $\Gamma = 68^{+12}_{-22} \text{ MeV}$

Λ_c (2860) + DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 p$	seen	259

$\Lambda_c(2880)^+$

$$I(J^P)=0(\tfrac{5}{2}^+)$$

Mass
$$m=2881.63\pm0.24~{
m MeV}$$
 $m-m_{\Lambda_c^+}=595.17\pm0.28~{
m MeV}$ Full width $\Gamma=5.6^{+0.8}_{-0.6}~{
m MeV}$

Λ_c (2880) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	seen	471
$\Sigma_c(2455)^{0,++}\pi^{\pm}$	seen	376
$\Sigma_c(2520)^{0,++}\pi^{\pm}$	seen	317
ρD^0	seen	316

$\Lambda_c(2940)^+$

$$I(J^P) = 0(\frac{3}{2}^-)$$

Created: 5/22/2019 10:04

 $\overline{J^P} = 3/2^-$ is favored, but is not certain

Mass
$$m=2939.6^{\,+\,1.3}_{\,-\,1.5}~{
m MeV}$$
 Full width $\Gamma=20^{\,+\,6}_{\,-\,5}~{
m MeV}$

Λ_c (2940) $^+$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
pD^0	seen	420
$\Sigma_c(2455)^{0,++}\pi^{\pm}$	seen	_

$$\Sigma_c(2455)$$

$$I(J^P) = 1(\frac{1}{2}^+)$$

$$\begin{split} & \Sigma_c(2455)^{++} \text{mass } m = 2453.97 \pm 0.14 \text{ MeV} \\ & \Sigma_c(2455)^{+} \quad \text{mass } m = 2452.9 \pm 0.4 \text{ MeV} \\ & \Sigma_c(2455)^0 \quad \text{mass } m = 2453.75 \pm 0.14 \text{ MeV} \\ & M_{\Sigma_c^{++}} - M_{\Lambda_c^{+}} = 167.510 \pm 0.017 \text{ MeV} \\ & M_{\Sigma_c^{+}} - M_{\Lambda_c^{+}} = 166.4 \pm 0.4 \text{ MeV} \\ & M_{\Sigma_c^{0}} - M_{\Lambda_c^{+}} = 167.290 \pm 0.017 \text{ MeV} \\ & M_{\Sigma_c^{0}} - M_{\Lambda_c^{+}} = 167.290 \pm 0.013 \text{ MeV} \\ & M_{\Sigma_c^{++}} - M_{\Sigma_c^{0}} = 0.220 \pm 0.013 \text{ MeV} \\ & M_{\Sigma_c^{+}} - M_{\Sigma_c^{0}} = -0.9 \pm 0.4 \text{ MeV} \\ & \Sigma_c(2455)^{++} \text{full width } \Gamma = 1.89_{-0.18}^{+0.09} \text{ MeV} \quad (\text{S} = 1.1) \\ & \Sigma_c(2455)^{+} \quad \text{full width } \Gamma < 4.6 \text{ MeV, CL} = 90\% \\ & \Sigma_c(2455)^{0} \quad \text{full width } \Gamma = 1.83_{-0.19}^{+0.11} \text{ MeV} \quad (\text{S} = 1.2) \end{split}$$

 $\Lambda_c^+\pi$ is the only strong decay allowed to a Σ_c having this mass.

Σ_c (2455) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 5/22/2019 10:04

 $\Lambda_c^+ \pi$

 \approx 100 %

94

$\Sigma_c(2520)$

$$I(J^P) = 1(\frac{3}{2}^+)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$\begin{split} & \Sigma_c(2520)^{++} \text{mass } m = 2518.41^{+0.21}_{-0.19} \text{ MeV} \quad (\text{S} = 1.1) \\ & \Sigma_c(2520)^{+} \quad \text{mass } m = 2517.5 \pm 2.3 \text{ MeV} \\ & \Sigma_c(2520)^{0} \quad \text{mass } m = 2518.48 \pm 0.20 \text{ MeV} \quad (\text{S} = 1.1) \\ & m_{\Sigma_c(2520)^{++}} - m_{\Lambda_c^+} = 231.95^{+0.17}_{-0.12} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2520)^{+}} - m_{\Lambda_c^+} = 231.0 \pm 2.3 \text{ MeV} \\ & m_{\Sigma_c(2520)^{0}} - m_{\Lambda_c^+} = 232.02^{+0.15}_{-0.14} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2520)^{0}} - m_{\Lambda_c^+} = 232.02^{+0.15}_{-0.14} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2520)^{++}} - m_{\Sigma_c(2520)^{0}} = 0.01 \pm 0.15 \text{ MeV} \\ & \Sigma_c(2520)^{++} \quad \text{full width } \Gamma = 14.78^{+0.30}_{-0.40} \text{ MeV} \\ & \Sigma_c(2520)^{+} \quad \text{full width } \Gamma < 17 \text{ MeV}, \text{ CL} = 90\% \\ & \Sigma_c(2520)^{0} \quad \text{full width } \Gamma = 15.3^{+0.4}_{-0.5} \text{ MeV} \end{split}$$

 $\Lambda_c^+\pi$ is the only strong decay allowed to a Σ_c having this mass.

Σ_c (2520) DECAY MODES Fraction (Γ_i/Γ) p (MeV/c) $\Lambda_c^+ \pi \approx 100 \%$ 179

$$\Sigma_c(2800)$$

$$I(J^P) = 1(??)$$

$$\begin{split} & \Sigma_c(2800)^{++} \text{ mass } m = 2801^{+4}_{-6} \text{ MeV} \\ & \Sigma_c(2800)^+ \text{ mass } m = 2792^{+14}_{-5} \text{ MeV} \\ & \Sigma_c(2800)^0 \text{ mass } m = 2806^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2800)^{++}} - m_{\Lambda_c^+} = 514^{+4}_{-6} \text{ MeV} \\ & m_{\Sigma_c(2800)^+} - m_{\Lambda_c^+} = 505^{+14}_{-5} \text{ MeV} \\ & m_{\Sigma_c(2800)^0} - m_{\Lambda_c^+} = 519^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \\ & \Sigma_c(2800)^{++} \text{ full width } \Gamma = 75^{+22}_{-17} \text{ MeV} \\ & \Sigma_c(2800)^+ \text{ full width } \Gamma = 62^{+60}_{-40} \text{ MeV} \\ & \Sigma_c(2800)^0 \text{ full width } \Gamma = 72^{+22}_{-15} \text{ MeV} \end{split}$$

Σ_c (2800) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_c^+ \pi$$

seen

443

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2467.93\pm0.18$$
 MeV (S $=1.1$)
Mean life $au=(442\pm26)\times10^{-15}$ s (S $=1.3$)
 $c au=132~\mu{\rm m}$

Branching fractions marked with a footnote, e.g. [a], have been corrected for decay modes not observed in the experiments. For example, the submode fraction $\Xi_c^+ \to \Sigma^+ \overline{K}^* (892)^0$ seen in $\Xi_c^+ \to \Sigma^+ K^- \pi^+$ has been multiplied up to include $\overline{K}^* (892)^0 \to \overline{K}^0 \pi^0$ decays.

=+ DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

No absolute branching fractions have been measured. The following are branching ratios relative to $\Xi^- 2\pi^+$.

Cabibbo-favored (S=-2) decays — relative to $\Xi^-2\pi^+$

,		
0.087 ± 0.021		767
_		852
[r] 1.0 ± 0.5		746
0.323 ± 0.033		787
[r] < 0.16	90%	608
[r] < 0.23	90%	678
		r $[r]$ 1.0 ± 0.5 0.323 ± 0.033 $[r]$ < 0.16 90%

HTTP://PDG.LBL.GOV

Page 41

$\Sigma^+ K^- \pi^+$	$0.94\ \pm0.10$		811
$\Sigma^+\overline{K}^*(892)^0$	[r] 0.81 ± 0.15		658
$\Sigma^0 K^- 2\pi^+$	0.27 ± 0.12		735
$\equiv^0 \pi^+$	0.55 ± 0.16		877
$\equiv -2\pi^+$	DEFINED AS 1		851
$\Xi(1530)^0\pi^+$	[r] < 0.10	90%	750
$\Xi(1620)^0\pi^+$	seen		_
${\it \Xi}(1690)^{0}\pi^{+}$	seen		644
$\equiv^0 \pi^+ \pi^0$	2.3 ± 0.7		856
$\equiv^0 \pi^- 2\pi^+$	1.7 ± 0.5		818
$\equiv^0 e^+ \nu_e$	$2.3 \begin{array}{c} +0.7 \\ -0.8 \end{array}$		884
$\Omega^- K^+ \pi^+$	0.07 ± 0.04		399

Cabibbo-suppressed decays — relative to $\Xi^-2\pi^+$

$pK^-\pi^+$		0.21 ± 0.04		944
$\rho \overline{K}^* (892)^0$	[<i>r</i>]	0.116 ± 0.030		828
$\Sigma^+\pi^+\pi^-$		0.48 ± 0.20		922
$\Sigma^- 2\pi^+$		0.18 ± 0.09		918
$\Sigma^+ {\mathcal K}^+ {\mathcal K}^-$		$0.15\ \pm0.06$		580
$\Sigma^+\phi$	[r] ·	< 0.11	90%	549
arxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		< 0.05	90%	501
$\Sigma^+ {\mathcal K}^-$				

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^+$ is the quark-model prediction.

Mass
$$m=2470.91\pm0.25~{
m MeV}$$
 $m_{\Xi_c^0}-m_{\Xi_c^+}=2.98\pm0.22~{
m MeV}$ Mean life $\tau=(112^{+13}_{-10})\times10^{-15}~{
m s}$ $c au=33.6~{
m \mu m}$

Decay asymmetry parameters

$$\Xi^{-}\pi^{+}$$
 $\alpha = -0.6 \pm 0.4$

$\frac{\mathcal{I}_{c}^{0}}{c}$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	(MeV/ <i>c</i>)
Cabibbo-f	avored ($S = -2$) decays		
$pK^-K^-\pi^+$	$(4.8 \pm 1.2) \times 10^{-3}$	1.1	676
$pK^-\overline{K}^*(892)^0$, $\overline{K}^{*0} \rightarrow K^-$	π^+ (2.0 ±0.6) × 10 ⁻³		413
$ ho K^- K^- \pi^+$ (no \overline{K}^{*0})	$(3.0 \pm 0.9) \times 10^{-3}$		676
ΛK_S^0	$(3.0 \pm 0.8) \times 10^{-3}$		906
$\Lambda K^{-} \pi^{+}$	$(1.45\pm0.33)~\%$	1.1	856

HTTP://PDG.LBL.GOV

Page 42

$\Lambda \overline{K}{}^0 \pi^+ \pi^-$	seen		787
$\Lambda K^- \pi^+ \pi^+ \pi^-$	seen		703
$\equiv^-\pi^+$	(1.43±0.32) %	1.1	875
$\Xi^{-}\pi^{+}\pi^{+}\pi^{-}$	(4.8 ± 2.3) %		816
$\Omega^- K^+$	$(4.2 \pm 1.0) \times 10^{-3}$		522
$\Xi^- e^+ \nu_e$	(1.8 \pm 1.2) %		882

Cabibbo-suppressed decays

$\Xi^- K^+$	$(3.9 \pm 1.2) \times 10^{-4}$	790
$\Lambda K^+ K^- (no \phi)$	$(4.1 \pm 1.4) \times 10^{-4}$	648
$\Lambda\phi$	$(4.9 \pm 1.5) \times 10^{-4}$	621

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2578.4\pm0.5~{
m MeV}$$
 $m_{\Xi_c^{\prime+}}-m_{\Xi_c^+}=110.5\pm0.4~{
m MeV}$ $m_{\Xi_c^{\prime+}}-m_{\Xi_c^{\prime0}}=-0.8\pm0.6~{
m MeV}$

The $\Xi_c^{\prime+} - \Xi_c^+$ mass difference is too small for any strong decay to occur.

$= \frac{c}{c}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_c^+ \gamma}$	seen	108

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass
$$m = 2579.2 \pm 0.5 \text{ MeV}$$
 $m_{\Xi_c^{\prime 0}} - m_{\Xi_c^0} = 108.3 \pm 0.4 \text{ MeV}$

The $\Xi_c^{\prime0}$ - Ξ_c^0 mass difference is too small for any strong decay to occur.

='0 DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$=\frac{0}{c}\gamma$	seen	106

$$\Xi_c(2645)$$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; $\frac{3}{2}^+$ is the quark-model prediction.

$$Ξ_c(2645)^+$$
 mass $m=2645.57\pm0.26$ MeV $Ξ_c(2645)^0$ mass $m=2646.38\pm0.21$ MeV (S = 1.1) $m_{\Xi_c(2645)^+}-m_{\Xi_c^0}=174.66\pm0.09$ MeV $m_{\Xi_c(2645)^0}-m_{\Xi_c^+}=178.44\pm0.10$ MeV $m_{\Xi_c(2645)^+}-m_{\Xi_c(2645)^0}=-0.80\pm0.26$ MeV $\Xi_c(2645)^+$ full width $\Gamma=2.14\pm0.19$ MeV (S = 1.1) $\Xi_c(2645)^0$ full width $\Gamma=2.35\pm0.22$ MeV

 $\Xi_{\mathcal{C}} \pi$ is the only strong decay allowed to a $\Xi_{\mathcal{C}}$ resonance having this mass.

Ξ_c (2645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$= c^0 \pi^+$	seen	102
$\equiv_{c}^{+}\pi^{-}$	seen	106

$\Xi_c(2790)$

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

 $\overline{J^P}$ has not been measured; $\frac{1}{2}$ is the quark-model prediction.

$$\begin{split} &\Xi_c(2790)^+ \text{ mass} = 2792.4 \pm 0.5 \text{ MeV} \\ &\Xi_c(2790)^0 \text{ mass} = 2794.1 \pm 0.5 \text{ MeV} \\ &m_{\Xi_c(2790)^+} - m_{\Xi_c'^0} = 213.20 \pm 0.22 \text{ MeV} \\ &m_{\Xi_c(2790)^0} - m_{\Xi_c'^+} = 215.70 \pm 0.22 \text{ MeV} \\ &m_{\Xi_c(2790)^+} - m_{\Xi_c(2790)^0} = -1.7 \pm 0.7 \text{ MeV} \\ &\Xi_c(2790)^+ \text{ width} = 8.9 \pm 1.0 \text{ MeV} \\ &\Xi_c(2790)^0 \text{ width} = 10.0 \pm 1.1 \text{ MeV} \end{split}$$

Ξ_c (2790) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Xi_c'\pi$$

seen

160

$\Xi_c(2815)$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

 J^P has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$egin{aligned} &\Xi_c(2815)^+ \; ext{mass} \; m = 2816.73 \pm 0.21 \; ext{MeV} \ &\Xi_c(2815)^0 \; ext{mass} \; m = 2820.26 \pm 0.27 \; ext{MeV} \ &m_{\Xi_c(2815)^+} - m_{\Xi_c^+} = 348.80 \pm 0.10 \; ext{MeV} \end{aligned}$$

HTTP://PDG.LBL.GOV

Page 44

$$m_{\Xi_c(2815)^0}-m_{\Xi_c^0}=349.35\pm0.11~{
m MeV} \ m_{\Xi_c(2815)^+}-m_{\Xi_c(2815)^0}=-3.53\pm0.27~{
m MeV} \ \Xi_c(2815)^+~{
m full~width}~\Gamma=2.43\pm0.26~{
m MeV} \ \Xi_c(2815)^0~{
m full~width}~\Gamma=2.54\pm0.25~{
m MeV}$$

The $\Xi_{c} \pi \pi$ modes are consistent with being entirely via $\Xi_{c}(2645) \pi$.

Ξ_c (2815) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Xi_c'\pi$	seen	188
$\Xi_c(2645)\pi$	seen	102

$\Xi_c(2970)$

$$I(J^P) = \frac{1}{2}(??)$$

$$\begin{split} & \Xi_c(2970)^+ \ m = 2969.4 \pm 0.8 \ \text{MeV} \quad (\text{S} = 1.1) \\ & \Xi_c(2970)^0 \ m = 2967.8^{+0.9}_{-0.7} \ \text{MeV} \quad (\text{S} = 1.1) \\ & m_{\Xi_c(2970)^+} - m_{\Xi_c^0} = 498.5 \pm 0.8 \ \text{MeV} \quad (\text{S} = 1.1) \\ & m_{\Xi_c(2970)^0} - m_{\Xi_c^+} = 499.9^{+0.8}_{-0.7} \ \text{MeV} \quad (\text{S} = 1.1) \\ & m_{\Xi_c(2970)^+} - m_{\Xi_c(2970)^0} = 1.5^{+1.1}_{-1.2} \ \text{MeV} \quad (\text{S} = 1.1) \\ & \Xi_c(2970)^+ \ \text{width} \ \Gamma = 20.9^{+2.4}_{-3.5} \ \text{MeV} \quad (\text{S} = 1.2) \\ & \Xi_c(2970)^0 \ \text{width} \ \Gamma = 28.1^{+3.4}_{-4.0} \ \text{MeV} \quad (\text{S} = 1.5) \end{split}$$

Ξ_c (2970) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ \overline{K} \pi$	seen	231
$\Sigma_c(2455)\overline{K}$	seen	133
$\Sigma_c(2455)\overline{K}$ $\Lambda_c^+\overline{K}$	not seen	414
$=$ _C 2π	seen	385
$\Xi_c'\pi$	seen	_
$\Xi_c(2645)\pi$	seen	277

$\Xi_c(3055)$

$$I(J^P)=?(??)$$

Created: 5/22/2019 10:04

Mass $m=3055.9\pm0.4$ MeV Full width $\Gamma=7.8\pm1.9$ MeV

Ξ_c (3055) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Σ^{++} K $^-$	seen	_
ΛD^+	seen	316

$$\Xi_c(3080)$$

$$I(J^P) = \frac{1}{2}(?^?)$$

$$\Xi_c(3080)^+\ m=3077.2\pm0.4\ {
m MeV}$$
 $\Xi_c(3080)^0\ m=3079.9\pm1.4\ {
m MeV}\ ({
m S}=1.3)$ $\Xi_c(3080)^+\ {
m width}\ \Gamma=3.6\pm1.1\ {
m MeV}\ ({
m S}=1.5)$ $\Xi_c(3080)^0\ {
m width}\ \Gamma=5.6\pm2.2\ {
m MeV}$

Ξ_c (3080) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ \overline{K} \pi$	seen	415
Σ_c (2455) \overline{K}	seen	342
Σ_c (2455) $^{++}$ K $^-$	seen	342
Σ_c (2520) $^{++}$ K $^-$	seen	239
$\Sigma_c(2455)\overline{K} + \Sigma_c(2520)\overline{K}$	seen	_
$\Lambda_c^+ \overline{K}$	not seen	536
$\Lambda_c^+ \overline{K} $ $\Lambda_c^+ \overline{K} \pi^+ \pi^ \Lambda D^+$	not seen	144
ΛD^+	seen	362

Ω_c^0

$$I(J^P) = 0(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2695.2\pm1.7$$
 MeV (S = 1.3)
Mean life $\tau=(268\pm26)\times10^{-15}$ s $c\tau=80~\mu{\rm m}$

Ω_c^0 DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Created: 5/22/2019 10:04

No absolute branching fractions have been measured. The following are branching ratios relative to $\Omega^-\pi^+$.

Cabibbo-favored (S = -3) decays — relative to $\Omega^-\pi^+$

$\Omega^-\pi^+$	DEFINED AS 1		821
$\Omega^-\pi^+\pi^0$	1.80 ± 0.33		797
$\Omega^- ho^+$	>1.3	90%	532
$\Omega^-\pi^-2\pi^+$	$0.31\!\pm\!0.05$		753
$\Omega^- \mathrm{e}^+ u_\mathrm{e}$	2.4 ± 1.2		829
$\equiv^0 \overline{K}^0$	1.64 ± 0.29		950
$\equiv^0 K^- \pi^+$	1.20 ± 0.18		901
$ar{ar{\mathcal{K}}}^{*0}$, $\overline{\mathcal{K}}^{*0} ightarrow \mathcal{K}^-\pi^+$	$0.68\!\pm\!0.16$		764
$\equiv \overline{K}^0 \pi^+$	$2.12 \!\pm\! 0.28$		895

$\Xi^- K^- 2\pi^+$	0.63 ± 0.09		830
$\Xi(1530)^0K^-\pi^+$, Ξ^{*0} \rightarrow	$0.21\!\pm\!0.06$		757
$=\frac{\Xi^-\pi^+}{K^{*0}\pi^+}$	$0.34 \!\pm\! 0.11$		653
$\Sigma^+ K^- K^- \pi^+$	<0.32	90%	689
$\Lambda \overline{K}{}^{0} \overline{K}{}^{0}$	$1.72\!\pm\!0.35$		837

$\Omega_c(2770)^0$

$$I(J^P) = 0(\tfrac{3}{2}^+)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

Mass
$$m=2765.9\pm2.0$$
 MeV (S $=1.2$) $m_{\Omega_c(2770)^0}-m_{\Omega_c^0}^{0}=70.7^{+0.8}_{-0.9}$ MeV

The $\Omega_c(2770)^0 - \Omega_c^0$ mass difference is too small for any strong decay to occur.

Ω_c (2770) 0 DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Omega_c^0 \gamma$	presumably 100%	70

$\Omega_c(3000)^0$

$$I(J^P) = ?(??)$$

Mass $m=3000.41\pm0.22$ MeV Full width $\Gamma=4.5\pm0.7$ MeV

$\Omega_c(3000)^0$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_c^+ K^-}$	seen	181

$$\Omega_c(3050)^0$$

$$I(J^P) = ?(??)$$

Mass $m=3050.20\pm0.13~{\rm MeV}$ Full width $\Gamma~<~1.2~{\rm MeV},~{\rm CL}=95\%$

$\Omega_c(3050)^0$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\equiv_c^+ K^-$	seen	278

 $\Omega_c(3065)^0$

$$I(J^P) = ?(??)$$

Mass $m=3065.46\pm0.28~{\rm MeV}$ Full width $\Gamma=3.5\pm0.4~{\rm MeV}$

HTTP://PDG.LBL.GOV

Page 47

Ω_c (3065) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\equiv_c^+ K^-$	seen	303

$$\Omega_c(3090)^0$$

$$I(J^P) = ?(??)$$

Mass $m=3090.0\pm0.5~{\rm MeV}$ Full width $\Gamma=8.7\pm1.3~{\rm MeV}$

Ω_c (3090) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_c^+ K^-$	seen	339

$\Omega_c(3120)^0$

$$I(J^P) = ?(?^?)$$

Mass $m=3119.1\pm1.0~{
m MeV}$ Full width $\Gamma~<~2.6~{
m MeV},~{
m CL}=95\%$

Ω_c (3120) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_c^+} K^-$	seen	379

DOUBLY CHARMED BARYONS (C=+2)

 $\Xi_{cc}^{++}=ucc$, $\Xi_{cc}^{+}=dcc$, $\Omega_{cc}^{+}=scc$

$$I(J^P) = ?(??)$$

Created: 5/22/2019 10:04

Mass $m = 3621.2 \pm 0.7 \; \text{MeV}$ Mean life $\tau = (256 \pm 27) \times 10^{-15} \; \text{s}$

=++ DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ K^- \pi^+ \pi^+$	seen	880
$\Xi_c^+ \pi^+, \ \Xi_c^+ \rightarrow \ p K^- \pi^+$	seen	-

BOTTOM BARYONS

$$(B=-1)$$

 $\Lambda_b^0=u\,d\,b,\; \Xi_b^0=u\,s\,b,\; \Xi_b^-=d\,s\,b,\; \Omega_b^-=s\,s\,b$

 Λ_b^0

$$I(J^P) = 0(\frac{1}{2}^+)$$

 $I(J^P)$ not yet measured; $O(\frac{1}{2}^+)$ is the quark model prediction. Mass $m = 5619.60 \pm 0.17$ MeV $m_{A_{\cdot}^{0}} - m_{B^{0}} = 339.2 \pm 1.4 \; \text{MeV}$ Mean life $\tau = (1.471 \pm 0.009) \times 10^{-12}$ s $c\tau = 441.0 \ \mu \text{m}$ $A_{CP}(\Lambda_b \to p\pi^-) = -0.025 \pm 0.029$ (S = 1.2) $A_{CP}(\Lambda_b \to pK^-) = -0.025 \pm 0.022$ $\Delta A_{CP}(pK^{-}/\pi^{-}) \equiv A_{CP}(pK^{-}) - A_{CP}(p\pi^{-}) = 0.014 \pm$ $A_{CP}(\Lambda_b \to p \overline{K}{}^0 \pi^-) = 0.22 \pm 0.13$ $\Delta A_{CP}(J/\psi \, p \pi^- / K^-) \equiv A_{CP}(J/\psi \, p \pi^-) - A_{CP}(J/\psi \, p K^-)$ = $(5.7 \pm 2.7) \times 10^{-2}$ $A_{CP}(\Lambda_b \to \Lambda K^+ \pi^-) = -0.53 \pm 0.25$ $A_{CP}(\Lambda_b \to \Lambda K^+ K^-) = -0.28 \pm 0.12$ $\Delta A_{CP}(\Lambda_h^0 \rightarrow pK^-\mu^+\mu^-) \equiv A_{CP}(pK^-\mu^+\mu^-)$ $-A_{CP}(pK^{-}J/\psi) = (-4 \pm 5) \times 10^{-2}$ $A_{FR}^{\ell}(\mu\mu)$ in $\Lambda_b \rightarrow \Lambda \mu^+ \mu^- = -0.39 \pm 0.04$ $\Delta(A_{FB}^{\ell}(\mu\mu)) \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.05 \pm 0.09$ $A_{FB}^{h}(p\pi) \text{ in } \Lambda_b \to \Lambda(p\pi)\mu^+ \mu^- = -0.30 \pm 0.05$ $A_{FB}^{\ell h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04$

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b \to \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

$\Lambda_{m{b}}^0$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$J/\psi(1S)$ $\Lambda \times B(b \rightarrow \Lambda_b^0)$	(5.8 ±0.8)×	10 ⁻⁵	1740
$pD_0^0\pi^-$	(6.3 \pm 0.7) \times		2370
pD^0K^-	(4.6 \pm 0.8) \times		2269
$ ho J/\psi \pi^-$	(2.6 $^{+0.5}_{-0.4}$) $ imes$	10^{-5}	1755
$p\pi^- J/\psi$, $J/\psi \rightarrow \mu^+ \mu^-$	(1.6 \pm 0.8) \times	10^{-6}	_
$ hoJ/\psiK^-$	(3.2 $^{+0.6}_{-0.5}$) $ imes$	10^{-4}	1589
$P_c(4380)^+K^-,\;\;P_c ightarrow onumber onum$	[u] (2.7 \pm 1.4) \times	10^{-5}	_
$P_c(4450)^+K^-, P_c \rightarrow pJ/\psi$	[u] (1.3 \pm 0.4) \times	10 ⁻⁵	-
$\chi_{c1}(1P) p K^-$	(7.6 $^{+1.5}_{-1.3}$) $ imes$	10 ⁻⁵	1242
$\chi_{c2}(1P) p K^-$	(7.9 $^{+1.6}_{-1.4}$) $ imes$	10 ⁻⁵	1198
$\rho J/\psi(1S)\pi^+\pi^-K^-$	(6.6 $^{+1.3}_{-1.1}$) $ imes$	10^{-5}	1410
$p\psi(2S)K^-$	(6.6 $^{+1.2}_{-1.0}$) $ imes$	10^{-5}	1063
ψ (2S) $ ho\pi^-$	(7.5 $^{+1.6}_{-1.4}$) $ imes$	10 ⁻⁶	1320
$p\overline{K}^0\pi^-$	(1.3 \pm 0.4) \times	_	2693
pK^0K^-		10^{-6} CL=90%	2639
$\Lambda_c^+ \pi^ \Lambda_c^+ K^-$	$(4.9 \pm 0.4) \times$		2342
$\Lambda_c^+ \Lambda$ $\Lambda_c^+ a_1 (1260)^-$	$(3.59\pm0.30) \times$	10 ⁻⁴ S=1.2	2314
C · ·	seen ($4.6~\pm0.6~) imes$	10-4	2153 1886
$\Lambda_c^+ D^ \Lambda_c^+ D_s^-$	$(4.0 \pm 0.0) \times$ $(1.10 \pm 0.10) \%$		1833
$\Lambda_c^+ \pi^+ \pi^- \pi^-$	$(7.7 \pm 1.1) \times$	_	2323
$\Lambda_c(2595)^+\pi^-$,	$(3.4 \pm 1.5) \times$		2210
$\Lambda_c(2595)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$,		
$\Lambda_c(2625)^+\pi^-$,	(3.3 ± 1.3) $ imes$	10^{-4}	2193
$\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$		4	
Σ_c (2455) 0 π^+ π^- , Σ_c^0 $ ightarrow$	(5.7 ± 2.2) \times	10^{-4}	2265
$\Sigma_c(2455)^{++}\pi^-\pi^-$, $\Sigma_c^{++} \rightarrow \Lambda_c^+\pi^+$	(3.2 ± 1.6) $ imes$	10 ⁻⁴	2265
$\Lambda_c^+ p \overline{p} \pi^-$	(2.65±0.29)×	10^{-4}	1805
$\Sigma_c(2455)^0 p \overline{p}, \Sigma_c(2455)^0 \rightarrow \Lambda_c^+ \pi^-$	(2.4 ±0.5)×	_	-
C			

$\Sigma_c(2520)^0 p \overline{p},\; \Sigma_c(2520)^0 ightarrow \Lambda_c^+ \pi^-$	$(3.2 \pm 0.7) \times 10^{-5}$		_
$\Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything	[v] (10.4 ±2.2)%		_
$\Lambda_c^+ \ell^- \overline{\nu}_\ell$	$(6.2 \begin{array}{c} +1.4 \\ -1.3 \end{array})\%$		2345
$\Lambda_c^+ \pi^+ \pi^- \ell^- \overline{\nu}_\ell$	(5.6 ±3.1) %		2335
$\Lambda_c(2595)^+\ell^-\overline{ u}_\ell$	$(7.9 \ ^{+4.0}_{-3.5}) \times 10^{-3}$		2212
$\Lambda_c(2625)^+\ell^-\overline{ u}_\ell$	(1.3 $^{+0.6}_{-0.5}$) %		2195
p h ⁻	[x] < 2.3 × 10 ⁻⁵	CL=90%	2730
$p\pi^-$	$(4.3 \pm 0.8) \times 10^{-6}$		2730
pK-	$(5.1 \pm 0.9) \times 10^{-6}$		2709
pD_s^-	$< 4.8 \times 10^{-4}$	CL=90%	2364
$ ho\mu^-\overline{ u}_\mu$	$(4.1 \pm 1.0) \times 10^{-4}$		2730
$\Lambda \mu^+ \mu^-$	$(1.08\pm0.28)\times10^{-6}$		2695
$\rho \pi^- \mu^+ \mu^-$	$(6.9 \pm 2.5) \times 10^{-8}$		2720
$\Lambda\gamma$	$< 1.3 \times 10^{-3}$	CL=90%	2699
$\Lambda\eta$	$(9 ^{+7}_{-5}) \times 10^{-6}$		2670
$\Lambda \eta'(958)$	$< 3.1 \times 10^{-6}$	CL=90%	2611
$\Lambda \pi^+ \pi^-$	(4.7 ± 1.9) $ imes 10^{-6}$		2692
$\Lambda K^+ \pi^-$	(5.7 ± 1.3) $ imes 10^{-6}$		2660
$\Lambda K^+ K^-$	$(1.62\pm0.23)\times10^{-5}$		2605
$\Lambda\phi$	$(9.3 \pm 2.5) \times 10^{-6}$		2599
$\rho\pi^-\pi^+\pi^-$	$(2.11\pm0.23)\times10^{-5}$		2715
$pK^-K^+\pi^-$	$(4.1 \pm 0.6) \times 10^{-6}$		2612
$pK^-\pi^+\pi^-$	$(5.1 \pm 0.5) \times 10^{-5}$		2675
p K - K + K -	$(1.27\pm0.14)\times10^{-5}$		2524

$\Lambda_b(5912)^0$

$$J^P = \frac{1}{2}^-$$

Mass $m=5912.20\pm0.21~{\rm MeV}$ Full width $\Gamma~<~0.66~{\rm MeV},~{\rm CL}=90\%$

Λ _b (5912) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi^+ \pi^-$	seen	86

$\Lambda_b(5920)^0$

$$J^P = \frac{3}{2}^-$$

Mass $m=5919.92\pm0.19$ MeV (S = 1.1) Full width Γ < 0.63 MeV, CL = 90%

HTTP://PDG.LBL.GOV

Page 51

Λ_b (5920) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi^+ \pi^-$	seen	108

 Σ_b

$$I(J^P) = 1(\frac{1}{2}^+)$$

I, J, P need confirmation.

Mass
$$m(\Sigma_b^+) = 5810.56 \pm 0.25$$
 MeV Mass $m(\Sigma_b^-) = 5815.64 \pm 0.27$ MeV $m_{\Sigma_b^+} - m_{\Sigma_b^-} = -5.06 \pm 0.18$ MeV $\Gamma(\Sigma_b^+) = 5.0 \pm 0.5$ MeV $\Gamma(\Sigma_b^-) = 5.3 \pm 0.5$ MeV

Σ_b DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Lambda_b^0 \pi$

dominant

133

 Σ_b^*

$$I(J^P) = 1(\frac{3}{2}^+)$$

I, J, P need confirmation.

Mass
$$m(\Sigma_b^{*+}) = 5830.32 \pm 0.27$$
 MeV
Mass $m(\Sigma_b^{*-}) = 5834.74 \pm 0.30$ MeV
 $m_{\Sigma_b^{*+}} - m_{\Sigma_b^{*-}} = -4.37 \pm 0.33$ MeV (S = 1.6)
 $m_{\Sigma_b^{*+}} - m_{\Sigma_b^{+}} = 19.73 \pm 0.18$
 $m_{\Sigma_b^{*-}} - m_{\Sigma_b^{-}} = 19.09 \pm 0.22$
 $\Gamma(\Sigma_b^{*+}) = 9.4 \pm 0.5$ MeV
 $\Gamma(\Sigma_b^{*-}) = 10.4 \pm 0.8$ MeV (S = 1.3)
 $m_{\Sigma_b^{*-}} - m_{\Sigma_b} = 21.2 \pm 2.0$ MeV

Σ_b^* DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Lambda_b^0 \pi$

dominant

159

 $\Sigma_b(6097)^+$

$$J^{P} = ?^{?}$$

Mass $m=6095.8\pm1.7~{\rm MeV}$ Full width $\Gamma=31\pm6~{\rm MeV}$

Σ_b (6097)⁺ DECAY MODES

Fraction (Γ_i/Γ)

 $\rho (MeV/c)$

$$\Lambda_b \pi^+ \times B(b \rightarrow \Sigma_b(6097)^+)$$

seen

$$\Sigma_b(6097)^-$$

$$J^{P} = ?^{?}$$

Mass $m=6098.0\pm1.8~{\rm MeV}$ Full width $\Gamma=29\pm4~{\rm MeV}$

Σ_b (6097) DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c

$$\overline{\varLambda_b\pi^- imes \mathsf{B}(b o \ \Sigma_b(6097)^-)}$$

seen

Ξ_b^0 , Ξ_b^-

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

I, J, P need confirmation.

$$\begin{split} & m(\Xi_b^-) = 5797.0 \pm 0.9 \; \text{MeV} \quad (\text{S} = 1.8) \\ & m(\Xi_b^0) = 5791.9 \pm 0.5 \; \text{MeV} \\ & m_{\Xi_b^-} - m_{\Lambda_b^0} = 177.5 \pm 0.5 \; \text{MeV} \quad (\text{S} = 1.6) \\ & m_{\Xi_b^0} - m_{\Lambda_b^0} = 172.5 \pm 0.4 \; \text{MeV} \\ & m_{\Xi_b^-} - m_{\Xi_b^0} = 5.9 \pm 0.6 \; \text{MeV} \\ & \text{Mean life} \; \tau_{\Xi_b^-} = (1.572 \pm 0.040) \times 10^{-12} \; \text{s} \\ & \text{Mean life} \; \tau_{\Xi_b^0} = (1.480 \pm 0.030) \times 10^{-12} \; \text{s} \end{split}$$

≡ _b DECAY MODES	Fraction (Γ	· _i /Γ) (Scale factor/ Confidence level	
$\overline{\Xi^-\ell^-\overline{ u}_\ell X} imes B(\overline{b} o \ \overline{\Xi}_b)$	(3.9 ±1	.2) × 10	4 S=1.4	_
$J/\psi \Xi^- imes B(b o \Xi_b^-)$	(1.02^{+0}_{-0})	$^{.26}_{.21}) \times 10^{-}$	-5	1782
$J/\psi \Lambda K^- imes B(b o \ oldsymbol{arXi}_b^-)$	(2.5 ± 0)	.4) × 10 ⁻	6	1631
$pD^0K^- \times B(\overline{b} \rightarrow \overline{\Xi}_b)$	(1.8 ± 0)	.6) × 10 ⁻	6	2374
$p\overline{K}^0\pi^- \times B(\overline{b} \to \overline{\Xi}_b)/B(\overline{b} \to \overline{\Xi}_b)$	< 1.6	× 10	6 CL=90%	2783
$p \overset{B^0}{K^0} {K^-} \times B(\overline{b} \to \overline{\Xi}_b)/B(\overline{b} \to \overline{B}^0)$	< 1.1	× 10	6 CL=90%	2730
$p K^- \overset{'}{K}^- imes B(\overline{b} o \overline{\Xi}_b) \ \Lambda \pi^+ \pi^- imes B(b o \overline{\Xi}_b^0) / B(b o $	(3.6 ±0 < 1.7	.8) × 10 ⁻	_	2731 2781
Λ_b^0)	< 1.7	× 10	CL—90/0	2701
$\Lambda \mathcal{K}^- \pi^+ \times B(b \to \Xi_b^0) / B(b \to \Lambda_b^0)$	< 8	× 10	7 CL=90%	2751
$\Lambda K^{+}K^{-} \times B(b \rightarrow \Xi_{b}^{0})/B(b \rightarrow$	< 3	× 10	7 CL=90%	2698
Λ_b^0)				
$\Lambda_c^+ K^- imes B(\overline{b} o \ \overline{arxi}_b)$	(6 ± 4)) × 10	7	2416
$\Lambda_b^{0} \pi^- \times B(b \to \Xi_b^-)/B(b \to \Lambda_b^0)$	(5.7 ± 2)	.0) × 10 ⁻	4	99

$$\begin{array}{lll} p \, K^- \, \pi^+ \, \pi^- \times \, \mathsf{B}(b \to & (1.9 \pm 0.4 \) \times 10^{-6} & 2766 \\ & \Xi_b^0) / \mathsf{B}(b \to \Lambda_b^0) & \\ p \, K^- \, K^- \, \pi^+ \times \, \mathsf{B}(b \to & (1.73 \pm 0.32) \times 10^{-6} & 2704 \\ & \Xi_b^0) / \mathsf{B}(b \to \Lambda_b^0) & \\ p \, K^- \, K^+ \, K^- \times \, \mathsf{B}(b \to & (1.8 \pm 1.0 \) \times 10^{-7} & 2620 \\ & \Xi_b^0) / \mathsf{B}(b \to \Lambda_b^0) & \end{array}$$

$$\equiv_b'(5935)^-$$

$$J^{P} = \frac{1}{2}^{+}$$

Mass $m=5935.02\pm0.05$ MeV $m_{\Xi_b'(5935)^-}-m_{\Xi_b^0}-m_{\pi^-}=3.653\pm0.019$ MeV Full width $\Gamma<0.08$ MeV, CL =95%

Ξ_b' (5935) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^0\pi^-} imes B(\overline{b} o$	(11.8 ± 1.8) %	31
$\Xi_b'(5935)^-)/B(\overline{b} o \Xi_b^0)$		

$\Xi_b(5945)^0$

$$J^{P} = \frac{3}{2}^{+}$$

Mass $m=5952.3\pm0.9~{\rm MeV}$ Full width $\Gamma=0.90\pm0.18~{\rm MeV}$

Ξ_b (5945) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^-\pi^+}$	seen	78

$$\Xi_b(5955)^-$$

$$J^{P} = \frac{3}{2} +$$

Mass $m=5955.33\pm0.13~{\rm MeV}$ $m_{\Xi_b(5955)^-}-m_{\Xi_b^0}-m_{\pi^-}=23.96\pm0.13~{\rm MeV}$ Full width $\Gamma=1.65\pm0.33~{\rm MeV}$

Ξ_b (5955) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^0\pi^-} imes B(\overline{b} o$	(20.7±3.5) %	84
$\Xi_b^*(5955)^-)/B(\overline{b} o \Xi_b^0)$		

$\Xi_b(6227)$

$$J^{P} = ?^{?}$$

Mass $m=6226.9\pm2.0~{\rm MeV}$ Full width $\Gamma=18\pm6~{\rm MeV}$

HTTP://PDG.LBL.GOV

Page 54

<i>≡_b</i> (6227) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_b^0 K^- \times B(b o$	$(3.20\pm0.35)\times10^{-3}$		336
\equiv_b (6227))/B($b \rightarrow \Lambda_b^0$)			
$\equiv_b^0 \pi^- \times B(b \to$	(2.8 ± 1.1) %	1.8	398
Ξ_b (6227))/B($b \rightarrow \Xi_b^0$)			

$$\Omega_b^-$$

$$I(J^P) = O(\frac{1}{2}^+)$$
 I, J, P need confirmation.

Mass
$$m=6046.1\pm 1.7~{\rm MeV}$$
 $m_{\Omega_b^-}-m_{\Lambda_b^0}=426.4\pm 2.2~{\rm MeV}$ $m_{\Omega_b^-}-m_{\Xi_b^-}=247.3\pm 3.2~{\rm MeV}$ Mean life $\tau=(1.64^{+0.18}_{-0.17})\times 10^{-12}~{\rm s}$ $\tau(\Omega_b^-)/\tau(\Xi_b^-)$ mean life ratio $=1.11\pm 0.16$

Ω_b^- DECAY MODES	Fraction (Γ _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi \Omega^- imes B(b o \Omega_b)$	$(2.9^{+1}_{-0}$	$^{\cdot 1}_{\cdot 8}) \times 10^{-6}$	j	1806
$pK^-K^- imes B(\overline{b} o \Omega_b)$	< 2.5	$\times 10^{-9}$	90%	2866
$p\pi^-\pi^- imes B(\overline{b} o \ \Omega_b)$	< 1.5	$\times 10^{-8}$	90%	2943
$pK^-\pi^- \times B(\overline{b} \to \Omega_b)$	< 7	\times 10 ⁻⁹	90%	2915

b-baryon ADMIXTURE (Λ_b , Ξ_b , Σ_b , Ω_b)

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction B($b \rightarrow b$ -baryon).

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

b-baryon ADMIXTURE DECAY MODES

$(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$	Fraction (Γ_i/Γ)	p (MeV/c)
$p\mu^-\overline{ u}$ anything	(5.6 + 2.2) %	-
$ ho \ell \overline{ u}_\ell$ anything	($5.4\pm~1.2)~\%$	_
<i>p</i> anything	(67 ± 21)%	_
$arLambda \ell^- \overline{ u}_\ell$ anything	$(3.6\pm\ 0.6)\%$	_
$arLambda\ell^+ u_\ell$ anything	$(3.0\pm~0.8)\%$	_
Λ anything	$(38 \pm 7)\%$	_
$ar{arXi}^-\ell^-\overline{ u}_\ell$ anything	$(6.3\pm\ 1.6)\times10^{-3}$	_

EXOTIC BARYONS

$P_c(4380)^+$

Mass $m=4380\pm30$ MeV Full width $\Gamma=205\pm90$ MeV

P_c (4380) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
J/ψ p	seen	741

$P_c(4450)^+$

Mass $m=4449.8\pm3.0~{\rm MeV}$ Full width $\Gamma=39\pm20~{\rm MeV}$

P_c (4450) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
J/ψ p	seen	820

NOTES

- [a] The masses of the p and n are most precisely known in u (unified atomic mass units). The conversion factor to MeV, 1 u = 931.494061(21) MeV, is less well known than are the masses in u.
- [b] The $|m_p m_{\overline{p}}|/m_p$ and $|q_p + q_{\overline{p}}|/e$ are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [c] The limit is from neutrality-of-matter experiments; it assumes $q_n=q_p+q_e$. See also the charge of the neutron.
- [d] The μp and ep values for the charge radius are much too different to average them. The disagreement is not yet understood.
- [e] There is a lot of disagreement about the value of the proton magnetic charge radius. See the Listings.
- [f] The first limit is for $p \to \text{anything or "disappearance" modes of a bound proton. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray <math>\overline{p}$'s is $\tau_{\overline{p}} > 10^7$ yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\overline{p}}/B(\overline{p} \to e^- \gamma) > 7 \times 10^5$ yr.
- [g] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [h] Lee and Yang in 1956 proposed the existence of a mirror world in an attempt to restore global parity symmetry—thus a search for oscillations between the two worlds. Oscillations between the worlds would be maximal when the magnetic fields B and B' were equal. The limit for any B' in the range 0 to 12.5 μ T is >12 s (95% CL).
- [i] The parameters g_A , g_V , and g_{WM} for semileptonic modes are defined by $\overline{B}_f[\gamma_\lambda(g_V+g_A\gamma_5)+i(g_{WM}/m_{B_i})\;\sigma_{\lambda\nu}\;q^\nu]B_i$, and ϕ_{AV} is defined by $g_A/g_V=|g_A/g_V|e^{i\phi_{AV}}$. See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.
- [j] Time-reversal invariance requires this to be 0° or 180° .
- [k] This coefficient is zero if time invariance is not violated.
- [/] This limit is for γ energies between 0.4 and 782 keV.
- [n] The decay parameters γ and Δ are calculated from α and ϕ using

$$\gamma = \sqrt{1{-}lpha^2}\,\cos\!\phi$$
 , $an\!\Delta = -rac{1}{lpha}\,\sqrt{1{-}lpha^2}\,\sin\!\phi$.

See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.

- [o] See the Listings for the pion momentum range used in this measurement.
- [p] The error given here is only an educated guess. It is larger than the error on the weighted average of the published values.
- [q] A theoretical value using QED.
- [r] This branching fraction includes all the decay modes of the final-state resonance.
- [s] See AALTONEN 11H, Fig. 8, for the calculated ratio of $\Lambda_c^+\pi^0\pi^0$ and $\Lambda_c^+\pi^+\pi^-$ partial widths as a function of the $\Lambda_c(2595)^+-\Lambda_c^+$ mass difference. At our value of the mass difference, the ratio is about 4.
- [t] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .
- [u] P_c^+ is a pentaquark-charmonium state.
- [\emph{v}] Not a pure measurement. See note at head of \varLambda_b^0 Decay Modes.
- [x] Here h^- means π^- or K^- .