Задание 8

Коновалов Андрей, 074

1	2	3	4	5	6	7	8	Σ

Задача 1

- (i) Пронумеруем вершины сверху вниз слева направо. Тогда для вершины 3 утверждение А выполнено, но точкой раздела она не является.
 - (іі) Утверждение В для вершины 3 выполнено.
 - (iii) Вычислим low(v), получим

$$low(1) = low(2) = 1;$$
 $low(3) = low(4) = \varnothing;$

Задача 3

(i) Необходимо найти путь с максимальным $\Pi_{i=1}^{k-1}r(v_i,v_{i+1})=L$. Заметим, что максимизировать L в случае положительных ребер, это все равно, что максимизировать $\log L$, поскольку он строго монотонно возрастает.

Если в графе есть нулевые ребра, то для начала можно просто поиском в глубину проверить наличие пути с их использованием, а затем выкинуть из графа. Если теперь мы найдем положительный путь, то будем использовать его, если нет - то уже найденный нулевой (если он был, конечно).

Теперь заметим, что $\log L = \log r_1 + ... + \log r_{k-1}$. Соответственно необходимо промаксимизировать эту сумму. Поскольку $r_i \leq 1$, то $\log r_i < 0$. Получаем, что промаксимизировать ту сумму, это все равно что пронимизировать сумму $|\log r_1| + ... + |\log r_{k-1}|$. Теперь заменим метки на ребрах r_i на $|\log r_i|$ и воспользуемся алгоритмом Дейкстры, что бы найти путь минимальной длины, а соответственно и с минимальной суммой меток.

При решении мы используем поиск в глубину и алгоритм Дейкстры, а значит сложность будет $O(|V|^2)$.