### **Add All Imports**

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier
```

# **Declare Training and Testing Data**

```
In [2]:
         train = pd.read_csv("data/train.csv.zip")
         test = pd.read_csv("data/test.csv.zip")
         test.head()
In [3]:
Out[3]:
                       MEDIAN_RR
                                        SDRR
                                                 RMSSD
                                                             SDSD SDRR_RMSSD
                                                                                       HR
             MEAN_RR
                                                                                             pNN25
         0 721.901897
                        727.267280
                                    74.722315 12.361264 12.361069
                                                                        6.044877 84.121868
                                                                                            4.933333
         1 843.538633
                        844.407930
                                    58.499429
                                              19.298880
                                                        19.298795
                                                                        3.031234 71.478642 21.000000 0.2
         2 958.523868
                        966.671125
                                   132.849110 21.342715 21.342653
                                                                        6.224565
                                                                                63.874293 24.133333
                                                                                                    1.8
         3 824.838669
                                                                                74.330531
                        842.485905
                                   117.822094 11.771814 11.771248
                                                                       10.008830
                                                                                            4.733333
                                                                                                     1.0
         4 756.707933
                                                                       10.777899 82.092049
                                                                                            5.933333 0.6
                        747.941620 143.968457 13.357748 13.356388
        5 rows × 36 columns
```

In [4]: train.info()

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 369289 entries, 0 to 369288
        Data columns (total 36 columns):
             Column
                                Non-Null Count
         #
                                                 Dtype
             ____
                                -----
                                                  _ _ _ _ _
                                                 float64
         0
             MEAN RR
                                369289 non-null
         1
             MEDIAN RR
                                369289 non-null
                                                 float64
         2
                                369289 non-null
                                                 float64
             SDRR
         3
             RMSSD
                                369289 non-null
                                                 float64
         4
             SDSD
                                369289 non-null
                                                 float64
         5
             SDRR RMSSD
                                369289 non-null float64
         6
             HR
                                369289 non-null
                                                 float64
         7
                                369289 non-null
                                                 float64
             pNN25
         8
             pNN50
                                                 float64
                                369289 non-null
         9
             SD1
                                369289 non-null
                                                 float64
         10
             SD2
                                369289 non-null
                                                 float64
         11
             KURT
                                369289 non-null
                                                 float64
         12
             SKEW
                                369289 non-null
                                                 float64
         13
            MEAN REL RR
                                369289 non-null
                                                 float64
         14 MEDIAN REL RR
                                369289 non-null
                                                 float64
         15
             SDRR REL RR
                                369289 non-null
                                                 float64
         16
             RMSSD_REL_RR
                                369289 non-null
                                                 float64
         17
             SDSD REL RR
                                369289 non-null
                                                 float64
             SDRR RMSSD REL RR
                                                 float64
         18
                                369289 non-null
             KURT REL RR
                                369289 non-null
                                                 float64
         20
             SKEW REL RR
                                369289 non-null
                                                 float64
         21
             VLF
                                369289 non-null
                                                 float64
         22
             VLF PCT
                                369289 non-null
                                                 float64
         23
            LF
                                369289 non-null float64
         24
            LF PCT
                                369289 non-null float64
         25
             LF NU
                                369289 non-null
                                                 float64
             HF
                                369289 non-null
                                                 float64
         26
         27
             HF PCT
                                369289 non-null
                                                 float64
         28
            HF_NU
                                369289 non-null float64
         29
             ΤP
                                369289 non-null float64
            LF HF
                                369289 non-null
         30
                                                 float64
         31
            HF_LF
                                369289 non-null float64
         32
             sampen
                                369289 non-null
                                                 float64
         33 higuci
                                369289 non-null
                                                 float64
         34
             datasetId
                                369289 non-null
                                                 int64
         35 condition
                                369289 non-null object
        dtypes: float64(34), int64(1), object(1)
        memory usage: 101.4+ MB
        test.columns
In [5]:
        Index(['MEAN_RR', 'MEDIAN_RR', 'SDRR', 'RMSSD', 'SDSD', 'SDRR_RMSSD', 'HR',
Out[5]:
               'pNN25', 'pNN50', 'SD1', 'SD2', 'KURT', 'SKEW', 'MEAN_REL_RR',
               'MEDIAN_REL_RR', 'SDRR_REL_RR', 'RMSSD_REL_RR', 'SDSD_REL_RR',
               'SDRR_RMSSD_REL_RR', 'KURT_REL_RR', 'SKEW_REL_RR', 'VLF', 'VLF_PCT',
               'LF', 'LF_PCT', 'LF_NU', 'HF', 'HF_PCT', 'HF_NU', 'TP', 'LF_HF',
               'HF_LF', 'sampen', 'higuci', 'datasetId', 'condition'],
              dtype='object')
```

## **Preprocess**

```
In [6]: print(train.isnull().sum().sum())
   print(test.isnull().sum().sum())
```

0

# Transform Y-value to binary (0 and 1) value

```
In [8]: le = preprocessing.LabelEncoder()
    le.fit(train['condition'])
        train['condition'] = le.transform(train['condition'])
        test['condition'] = le.transform(test['condition'])
        train['condition'].unique()
Out[8]: array([0, 1])
```

#### Stressed = 1 and Not Stressed = 0

### **Feature Extraction**

Finding Correlations from heatmap

```
In [9]: plt.figure(figsize=(12,10))
    corr = train.corr()
    sns.heatmap(corr, annot=False, cmap=plt.cm.Reds)
    plt.show()
    corr
```



Out[9]:

|                   | MEAN_RR   | MEDIAN_RR | SDRR      | RMSSD     | SDSD      | SDRR_RMSSD | н        |
|-------------------|-----------|-----------|-----------|-----------|-----------|------------|----------|
| MEAN_RR           | 1.000000  | 0.960949  | 0.462882  | 0.333046  | 0.332950  | 0.332924   | -0.94455 |
| MEDIAN_RR         | 0.960949  | 1.000000  | 0.333753  | 0.309061  | 0.309021  | 0.203815   | -0.92964 |
| SDRR              | 0.462882  | 0.333753  | 1.000000  | 0.262933  | 0.262610  | 0.914952   | -0.20232 |
| RMSSD             | 0.333046  | 0.309061  | 0.262933  | 1.000000  | 1.000000  | -0.067463  | -0.28487 |
| SDSD              | 0.332950  | 0.309021  | 0.262610  | 1.000000  | 1.000000  | -0.067835  | -0.28486 |
| SDRR_RMSSD        | 0.332924  | 0.203815  | 0.914952  | -0.067463 | -0.067835 | 1.000000   | -0.08433 |
| HR                | -0.944552 | -0.929640 | -0.202327 | -0.284871 | -0.284863 | -0.084332  | 1.00000  |
| pNN25             | 0.286793  | 0.270630  | 0.136393  | 0.951750  | 0.951771  | -0.145871  | -0.26290 |
| pNN50             | 0.245215  | 0.196992  | 0.473307  | 0.794846  | 0.794774  | 0.187629   | -0.11489 |
| SD1               | 0.332950  | 0.309021  | 0.262610  | 1.000000  | 1.000000  | -0.067835  | -0.28486 |
| SD2               | 0.462577  | 0.333450  | 0.999997  | 0.260933  | 0.260609  | 0.915475   | -0.20200 |
| KURT              | -0.292933 | -0.284508 | -0.096440 | -0.178586 | -0.178621 | -0.029829  | 0.30367  |
| SKEW              | -0.197770 | -0.317130 | 0.276610  | -0.053997 | -0.054125 | 0.313448   | 0.30640  |
| MEAN_REL_RR       | -0.016858 | -0.018019 | 0.000217  | -0.024209 | -0.024228 | 0.014103   | 0.01777  |
| MEDIAN_REL_RR     | 0.009506  | -0.006349 | 0.196399  | -0.437706 | -0.437774 | 0.300669   | 0.05464  |
| SDRR_REL_RR       | -0.142334 | -0.157426 | 0.236845  | 0.836688  | 0.836678  | -0.048227  | 0.23455  |
| RMSSD_REL_RR      | -0.396832 | -0.401170 | 0.157551  | 0.583895  | 0.583878  | -0.041412  | 0.49986  |
| SDSD_REL_RR       | -0.396833 | -0.401170 | 0.157551  | 0.583894  | 0.583877  | -0.041412  | 0.49986  |
| SDRR_RMSSD_REL_RR | 0.654578  | 0.635819  | 0.119951  | 0.102232  | 0.102240  | 0.078020   | -0.67555 |
| KURT_REL_RR       | -0.292933 | -0.284508 | -0.096440 | -0.178586 | -0.178621 | -0.029829  | 0.30367  |
| SKEW_REL_RR       | -0.197770 | -0.317130 | 0.276610  | -0.053997 | -0.054125 | 0.313448   | 0.30640  |
| VLF               | 0.499427  | 0.399023  | 0.798173  | 0.341457  | 0.341293  | 0.617610   | -0.30456 |
| VLF_PCT           | 0.388775  | 0.313607  | 0.579652  | -0.278834 | -0.278996 | 0.637485   | -0.25454 |
| LF                | 0.079001  | 0.084147  | -0.018551 | 0.886955  | 0.887012  | -0.276739  | -0.09722 |
| LF_PCT            | -0.335932 | -0.262426 | -0.575309 | 0.299521  | 0.299684  | -0.637903  | 0.19413  |
| LF_NU             | 0.631864  | 0.627497  | 0.003269  | 0.185242  | 0.185263  | -0.041196  | -0.72426 |
| HF                | -0.550557 | -0.550244 | 0.049095  | 0.332323  | 0.332324  | -0.062388  | 0.64742  |
| HF_PCT            | -0.643472 | -0.596973 | -0.281334 | -0.072118 | -0.072056 | -0.262097  | 0.65642  |
| HF_NU             | -0.631864 | -0.627497 | -0.003269 | -0.185242 | -0.185263 | 0.041196   | 0.72426  |
| TP                | 0.482112  | 0.388862  | 0.749198  | 0.595021  | 0.594883  | 0.499011   | -0.30129 |
| LF_HF             | 0.435019  | 0.421338  | 0.016527  | 0.170218  | 0.170234  | -0.040053  | -0.40474 |
| HF_LF             | -0.606072 | -0.602190 | -0.000024 | -0.163887 | -0.163904 | 0.036832   | 0.70186  |
| sampen            | 0.122610  | 0.235890  | -0.549505 | 0.134697  | 0.134970  | -0.680969  | -0.30758 |

| Н        | SDRR_RMSSD | SDSD      | RMSSD     | SDRR      | MEDIAN_RR | MEAN_RR   |           |
|----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0.42093  | -0.455149  | -0.007754 | -0.007870 | -0.473624 | -0.461297 | -0.516444 | higuci    |
| Na       | NaN        | NaN       | NaN       | NaN       | NaN       | NaN       | datasetId |
| -0.29529 | -0.020103  | 0.211673  | 0.211658  | 0.076084  | 0.285178  | 0.294276  | condition |

36 raws x 36 calumns

#### Return all features that are above threshold of 0.1

### **Feature Selection**

```
reduced_train = train[["MEAN_RR", "pNN50", "RMSSD", "HR", "condition"]]
In [12]:
          reduced_train.head()
In [13]:
Out[13]:
             MEAN_RR
                         pNN50
                                  RMSSD
                                                HR condition
                                                           0
          0 885.157845 0.533333 15.554505 69.499952
          1 939.425371 0.000000 12.964439 64.363150
                                                            1
          2 898.186047 0.200000 16.305279 67.450066
                                                            1
          3 881.757865 0.133333 15.720468 68.809562
                                                            0
          4 809.625331 0.200000 19.213819 74.565728
                                                           0
```

## **Model Training (Random Forest)**

```
In [14]: X_train = reduced_train.iloc[:,:-1]
    y_train = reduced_train.iloc[:,-1]

In [15]: X_test = test[X_train.columns]
    y_test = test['condition']
```

# Defining the RandomForest Classifier

```
model = RandomForestClassifier()
In [16]:
         model.fit(X_train,y_train)
         RandomForestClassifier()
Out[16]:
         y_pred = model.predict(X_test)
In [17]:
In [18]:
         y pred
         array([0, 1, 0, ..., 0, 0, 1])
Out[18]:
In [19]:
         def stressed(i):
              if model.predict([X_test.iloc[i]]) == [0]:
                  return "Not Stressed"
              else:
                  return "Stressed"
          print(stressed(46))
         Not Stressed
         C:\Users\Administrator\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning:
         X does not have valid feature names, but RandomForestClassifier was fitted with featu
         re names
           warnings.warn(
```

## **Accuracy Results**

```
In [20]:
          accuracy_score(y_test,y_pred)
         0.9995125874296298
Out[20]:
          print(classification_report(y_test,y_pred))
In [21]:
                        precision
                                      recall f1-score
                                                         support
                     0
                             1.00
                                        1.00
                                                  1.00
                                                            22158
                     1
                             1.00
                                        1.00
                                                  1.00
                                                            18875
                                                            41033
              accuracy
                                                  1.00
            macro avg
                             1.00
                                        1.00
                                                  1.00
                                                            41033
         weighted avg
                             1.00
                                        1.00
                                                  1.00
                                                            41033
```