MBA em Ciência de Dados

Técnicas Avançadas de Captura e Tratamento de Dados

Módulo III - Aquisição e Transformação de Dados

Discretização

Material Produzido por Moacir Antonelli Ponti

CeMEAI - ICMC/USP São Carlos

Conteúdo:

- 1. Intervalo ou histograma: binning
- 2. Agrupamento

Referência complementar

DIEZ, David M.; BARR, Christopher D.; CETINKAYA-RUNDEL, Mine. **OpenIntro statistics**. 3.ed. OpenIntro, 2015. Capítulo 1.

Discretização

Valores contínuos podem representar um desafio na análise de dados

- alguns métodos não permitem o uso de valores contínuos, seja como atributo de entrada ou saída.
- é possível que aprender segundo uma hipótese de valor contínuo seja inviável devido à quantidade de dados disponível

Discretizar é criar um novo atributo discreto (com valores finitos e bem definidos) a partir de um atributo contínuo.

 podemos também re-aplicar discretização em dados já discretos, reduzindo a quantidade de valores possíveis

Vamos usar uma base com dados do PIB e população (dados reais) e outros indicadores (simulados a partir de dados reais) formulada para exemplificar esse conceito, contendo os seguintes atributos:

- gid identificador geográfico do município
- · UF unidade federativa
- nome nome do município
- · Censo ano do censo relativo aos dados
- PIB total do PIB
- pop populacao em 2009
- classe classe do município (de 1 a 5)
- desemprego índice de desemprego na cidade no ano do Censo
- pop_sanea porcentagem da população servida por saneamento básico
- expec vida expectativa de vida ao nascer no ano de 2017
- pobreza porcentagem de pessoas em extrema pobreza
- IDH índice em 2010
- urbaniz escala de urbanização do município: rural, baixo, médio, alto, muito alto
- dens_pop_urbana índice de densidade populacional urbana: baixa, média, alta, muito alta

OBS: desemprego, IDH, pobreza e pop_sanea por município foram simulados com base nos dados reais dos estados

```
In [1]: # carregando as bibliotecas necessárias
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# carregando dados
data = pd.read_csv("./dados/municipios_mba.csv")
data
```

Out[1]:

		gid	UF	nome	Censo	PIB	pop	classe	des
_	0	752	ACRE	Acrelândia	2010.0	151120.015625	12241	2	
	1	747	ACRE	Assis Brasil	2010.0	48347.300781	5662	1	
	2	748	ACRE	Brasiléia	2010.0	194979.828125	20238	1	
	3	754	ACRE	Bujari	2010.0	88708.031250	6772	2	
	4	751	ACRE	Capixaba	2010.0	89052.679688	9287	1	
	5560	1011	TOCANTINS	Tocantinópolis	2010.0	124657.000000	21826	1	
	5561	5545	TOCANTINS	Tupirama	2010.0	34883.894531	1474	3	
	5562	5546	TOCANTINS	Tupiratins	2010.0	30757.437500	2143	2	
	5563	5141	TOCANTINS	Wanderlândia	2010.0	66966.773438	9493	1	
	5564	1107	TOCANTINS	Xambioá	2010.0	117627.132812	11099	2	

5565 rows × 14 columns

Intervalo ou Histograma

Método que usa intervalos (bins) e atribui elementos em cada intervalo um novo valor.

Vamos analisar o atributo expec_vida e discretizá-lo utilizando intervalos

```
In [2]: atts = 'expec_vida'
    data.boxplot(atts)
    print(data[atts].unique())
```

[73.6 74.2 75.3 73.4 75.4 72.6 72.5 74.6 73.3 74.8 74.9 74. 1 73.7 75.2 73.1 72. 72.8 71.8 70.6 70.7 73.5 72.7 71.7 70.5 71.4 71. 3 71.1 72.4 71.9 73. 70.9 73.2 71.6 72.1 71. 72.2 70.8 71.5 72.9 71. 2 73.8 75. 74.3 74.4 74. 72.3 75.1 73.9 74.7 74.5 75.6 75.5 79.3 78. 77.8 77.2 78.6 79. 78.4 77.1 79.4 78.3 77.5 77.9 78.5 77.3 77. 79. 8 79.1 77.6 79.6 79.5 77.7 79.7 77.4 78.8 79.2 78.7 80. 78.1 78.2 78. 9 75.7 75.8 68.7 68.9 68.8 70.2 69.1 69. 70.3 69.8 70.4 69.5 68.6 69. 7 69.6 70.1 69.9 69.4 69.2 70. 69.3 68.5 75.9 76. 76.4 76.6 76.2 76. 9 76.1 76.8 76.5 76.7 76.3 80.5 80.1 79.9 80.4 80.9 80.8 80.6 80.3 80. 2 80.7]


```
In [3]: data[atts].hist()
```

Out[3]: <matplotlib.axes. subplots.AxesSubplot at 0x7f1dd12f5e50>


```
In [4]: # copiar original
  data_orig = data.copy()

# definir intervalos
  interv_idade = np.arange(68,82,3)
  print(interv_idade)
```

```
In [5]: # realizar discretizacao e armazenar
    expec_vida_disc = pd.cut(data['expec_vida'], bins=interv_i
    dade)
    # inserir nova coluna
    data.insert(10, 'expec_vida_disc', expec_vida_disc)

# exibir o tipo da coluna
    print(data['expec_vida_disc'].dtype.name)
```

category

[68 71 74 77 80]

```
In [7]: # tentando exibir histograma da nova variavel
#data['expec_vida_disc'].hist()
```

```
In [8]: # para variáveis categoricas podemos usar value_counts
    data['expec_vida_disc'].value_counts()
```

```
Out[8]: (74, 77] 1999
(77, 80] 1770
(71, 74] 1348
(68, 71] 360
Name: expec_vida_disc, dtype: int64
```

```
In [9]: data['expec_vida_disc'].value_counts().plot(kind='bar')
Out[9]: <matplotlib.axes. subplots.AxesSubplot at 0x7fldd0b81490>
```


Outra opção é nomear os intervalos:

```
In [11]:
         interv idade = np.arange(68,82,3)
         labels = ['muito baixo', 'baixo', 'médio', 'alto']
         print(interv idade)
         print(labels)
         [68 71 74 77 80]
         ['muito baixo', 'baixo', 'médio', 'alto']
In [12]: | data = data_orig.copy()
         # realizar discretização e armazenar
         expec vida disc = pd.cut(data['expec vida'], bins=interv i
         dade, labels=labels)
         # inserir nova coluna
         data.insert(10, 'expec vida disc', expec vida disc)
         # exibir o tipo da coluna
         print(data['expec vida disc'].dtype.name)
         data['expec vida disc'].value counts()
         category
Out[12]: médio
                         1999
         alto
                         1770
         baixo
                         1348
         muito baixo
                         360
         Name: expec vida disc, dtype: int64
```

In [13]: data['expec_vida_disc'].value_counts().plot(kind='bar')

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1dd0aef580>

In [14]: data.groupby('UF').expec_vida_disc.value_counts()

Out[14]:	UF ACRE	expec_vida_disc médio	12
	ACKL	baixo	10
	ALAGOAS	baixo	87
	ALAGUAS	muito baixo	15
	AMAPÁ	baixo	9
	AMAFA	médio	7
	AMAZONAS	baixo	56
	AMAZUNAS	muito baixo	6
	BAHIA	baixo	246
	DAITIA	médio	171
	CEARÁ	médio	97
	CLANA	baixo	87
	DISTRITO FEDERAL	alto	1
	ESPIRITO SANTO	alto	76
	L31 1K110 3/K10	médio	2
	GOIÁS	médio	150
	301/13	baixo	96
	MARANHÃO	muito baixo	191
		baixo	26
	MATO GROSSO	médio	93
		baixo	48
	MATO GROSSO DO SUL		70
	6.16555 26 562	alto	8
	MINAS GERAIS	alto	539
		médio	314
	PARANÁ	alto	238
		médio	161
	PARAÍBA	baixo	145
		médio	78
	PARÁ	baixo	135
		muito baixo	8
	PERNAMBUCO	médio	96
		baixo	89
	PIAUÍ	baixo	112
		muito baixo	112
	RIO DE JANEIRO	médio	63
		alto	29
	RIO GRANDE DO NORTE	médio	145
		alto	22
	RIO GRANDE DO SUL		450
	^	alto	46
	RONDÔNIA	baixo	26
		muito baixo	26
	RORAIMA	baixo	13
	CANTA CATABINA	muito baixo	2
	SANTA CATARINA	alto	205
	SERGIPE	baixo	66
	CÃO DAULO	médio	9
	SÃO PAULO	alto mádia	606
	TOCANTINS	médio	39 07
	LOCANITINO	baixo médio	97 42
	Name: expec_vida_dis		42
	Maille, expec_viua_uis	c, utype, into4	

Pandas ainda permite discretização baseada em quantis

Note que agora usamos o mesmo rótulo, mas a interpretação será diferente, pois ele irá selecionar de forma balanceada cortando pelos *quantis* e não pelos intervalos fixos

```
In [15]:
         labels = ['muito baixo', 'baixo', 'médio', 'alto']
         # realizar discretizacao e armazenar
         expec vida qdisc = pd.qcut(data['expec vida'], 4, labels=l
         abels)
         # inserir nova coluna
         data.insert(11, 'expec vida 4quant', expec vida qdisc)
         # exibir o tipo da coluna
         print(data['expec_vida_4quant'].value_counts())
                        1409
         baixo
         muito baixo
                        1408
         médio
                        1378
         alto
                        1370
         Name: expec_vida_4quant, dtype: int64
         plt.subplot(121)
In [16]:
         data['expec vida disc'].value counts().plot(kind='bar')
         plt.subplot(122)
         data['expec_vida_4quant'].value_counts().plot(kind='bar')
Out[16]: <matplotlib.axes. subplots.AxesSubplot at 0x7f1dd0af7af0>
```


Agrupamento

Método que agrupa valores considerando uma ou mais variáveis e considera valores discretos como o rótulo dos grupos

Vamos analisar o atributo expec vida e discretizá-lo

```
In [18]:
         from sklearn.mixture import GaussianMixture
         X = np.array(data['expec vida']).reshape(-1,1)
         gmm = GaussianMixture(n components=4, random state=10).fit
         (X)
         probs = np.round(gmm.predict proba(X), 3)
         clusters = gmm.predict(X)
         print(probs[:10,:])
         print(clusters[:10])
         h = plt.hist(clusters)
                 0.094 0.
         [[0.
                              0.906]
          [0.006 0.039 0.
                              0.9551
          [0.256 0.008 0.004 0.732]
                 0.128 0.
          [0.
                              0.8721
          [0.324 0.007 0.005 0.664]
```

2000 1750 1500 1250 1000 750 500 250 0

0.59 1

0.872

0.537]]

[0.256 0.008 0.004 0.732] 0.41 0.

[0.256 0.008 0.004 0.732]

0.128 0.

0.463 0.

0.5

0.0

1.0

[3 3 3 3 3 3 3 3 3 3]

[0.

[0.

11 of 12 4/21/20, 6:52 PM

1.5

2.0

2.5

```
In [19]:
         # atribuindo a nova variável ao dataframe
         data['expec vida clu'] = clusters
         # verificando como ficou o agrupamento em termos de mínimos
         e máximos
         print(data.groupby('expec_vida_clu').expec_vida.min())
         print(data.groupby('expec vida clu').expec vida.max())
         expec vida clu
               75.7
         0
              68.5
         1
         2
              77.7
         3
              72.5
         Name: expec vida, dtype: float64
         expec_vida_clu
0 77.6
              72.4
         1
         2
              80.9
         3
              75.6
         Name: expec vida, dtype: float64
```

Resumo:

- Discretização pode ser uma ferramenta importante para gerar novos atributos que sumarizam as informações e permitem análises inviáveis com os atributos originais
- Intervalo:
 - fixo
 - quantis
- · Agrupamento:
 - abordagem data-driven