Exercise 2.1.

(a) Show that every number field of degree 2 over \mathbb{Q} is one of the quadratic fields $\mathbb{Q}[\sqrt{m}]$, $m \in \mathbb{Z}$.

Proof. Suppose K is a degree 2 number field. Every such field is of the form $\mathbb{Q}[\alpha]$ for an algebraic number $\alpha \in \mathbb{C}$. Since K is degree 2, α must be the root of a degree 2 irreducible polynomial $f = ax^2 + bx + c$. When considering the irreducibility of f over \mathbb{Q} , we might as well consider a monic polynomial (a = 1) after rescaling. Hence, f is irreducible if and only if

$$\frac{-b \pm \sqrt{b^2 - 4c}}{2} \notin \mathbb{Q},$$

which happens if and only if b^2-4c is squarefree. It's clear then that $\mathbb{Q}[\sqrt{b^2-4c}]=\mathbb{Q}[\alpha]$, since we have $\alpha=-\frac{b}{2}\pm\frac{1}{2}\sqrt{b^2-4c}\in\mathbb{Q}[\sqrt{b^2-4c}]$ and $\sqrt{b^2-4c}=\pm\frac{b}{2}\pm\alpha\in\mathbb{Q}[\alpha]$.

(b) Show that the fields $\mathbb{Q}[\sqrt{m}]$, m squarefree, are pairwise distinct. (Hint: Consider the equation $\sqrt{m} = a + b\sqrt{n}$); use this to show that they are in fact pairwise non-isomorphic.

Proof. Suppose m and n are squarefree with $m \neq n$. We want to show that $\mathbb{Q}[\sqrt{m}]$ and $\mathbb{Q}[\sqrt{n}]$ are pairwise distinct. Suppose they are equal, then $\sqrt{m} = a + b\sqrt{n}$ for some $a, b \in \mathbb{Q}$. Then, $m = a^2 + b^2n + 2ab\sqrt{n}$. That is, 2ab = 0 and $m = a^2 + b^2n$. Then we must have a = 0 or b = 0, but if b = 0, then $m = a^2$, contradicting the fact that m is not a square of an integer, let alone a rational number. On the other hand, writing $b = \frac{x}{y}$ for $x, y \in \mathbb{Z}$, we obtain $y^2m = x^2n$. Since m and n are squarefree, this only happens if y = x and m = n.

Exercise 2.2. Let I be the ideal generated by 2 and $1 + \sqrt{-3}$ in the ring $\mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in \mathbb{Z}\}$. Show that $I \neq (2)$ but $I^2 = 2I$. Conclude that ideals in $\mathbb{Z}[\sqrt{-3}]$ do not factor uniquely into prime ideals. Show moreover that I is the unique prime ideal containing (2) and conclude that (2) is not a product of prime ideals.

Proof. Note that I = (2) if and only if $1 + \sqrt{-3} \in (2)$, but we clearly cannot have

$$1 + \sqrt{-3} = 2(a + b\sqrt{-3}) = 2a + 2b\sqrt{-3}$$

for $a,b \in \mathbb{Z}$. Now, $I^2 = (4,2+2\sqrt{-3},-2+2\sqrt{-3})$ while $2I = (4,2+2\sqrt{-3})$. Since $2+2\sqrt{-3} = 4+(-2+2\sqrt{-3})$, a sum of the other two generators of I^2 , we can conclude that $I^2 = 2I$. For the next claim, we want to show that I and (2) are prime ideals. We claim that 2 is prime. Suppose $2 \mid (a+b\sqrt{-3})(c+d\sqrt{-3}) = ac-3bd+(ad+bc)\sqrt{-3}$.

Exercise 2.3. Complete the proof of Corollary 2, Theorem 1.

Proof. We'll start with finishing the proof of Corollary 2. We have that for $\alpha = r + s\sqrt{m}$, $r, s \in \mathbb{Q}$, for $s \neq 0$, the monic irreducible polynomial over \mathbb{Q} having α as a root is

$$x^2 - 2rx + r^2 - ms^2$$
.

Hence, α is an algebraic integer if and only if 2r and $r^2 - ms^2$ are integers. Now if m is squarefree, then we must have $m \equiv 1, 2, 3 \pmod{4}$.

Exercise 2.4.

Exercise 2.5. Show that if f is any polynomial over \mathbb{Z}_p (p a prime) then $f(x^p) = (f(x))^p$. (Suggestion: Use induction on the number of terms.)

Proof. Recall that the binomial formula gives us for f, $g \in \mathbb{Z}_p[x]$, $(f+g)^p = f^p + g^p$. Induction gives us the result.

Exercise 2.6. Show that if f and g are polynomials over a field K and $f^2 \mid g$ in K[x], then $f \mid g'$. (Hint: Write $g = f^2h$ and differentiate)

Proof. If $f^2 \mid g$ in K[x], then we can write $g = f^2h$. By the product rule and chain rule, we get $g' = 2ff'h + f^2h'$ so that g' = f(2f'h + fh'). Hence, $f \mid g'$.