This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Partial English Translation of Japanese Patent No. 3026087

5

10

A monocrystalline, sapphire substrate 50 cleaned by organic cleaning and heat-treatment and having the (0001) plane as a main plane was mounted to a susceptor 20. Then, while H_2 was let to flow at 0.3 λ /min in a liner pipe 12 through a first gas pipe 28, a second gas pipe 29, and an external pipe 35, the sapphire substrate 50 was etched in a vapor phase at a temperature of 1100°C. Then, the temperature was lowered to 650°C, and H_2 and NH_3 were let to flow at 3 λ /min and 2 λ /min, respectively and TMA at 15°C was supplied at 50cc/min from the first gas pipe 28 for two minutes.

In the growth process, as shown in Fig. 6, an AlN buffer

layer 51 was formed to have a thickness of about 300 Å. The

buffer layer was measured for the RHEED image. The result is

given in Fig. 7. As can be understood from the RHEED image

in Fig. 7, the crystal structure is in a non-monocrystalline

state including an amorphous, microcrystalline, or

polycrystalline state.

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

02229476 A

(43) Date of publication of application: 12 . 09 . 90

(51) Int. CI

H01L 33/00 H01L 21/205 H01L 21/86

(21) Application number: 01050458

(22) Date of filing: 01 . 03 . 89

(71) Applicant:

TOYODA GOSEI CO LTD UNIV

NAGOYA RES DEV CORP OF

JAPAN

(72) Inventor:

MANABE KATSUHIDE KATO HISAYOSHI AKASAKI ISAMU

HIRAMATSU KAZUMASA

AMANO HIROSHI

(54) VAPOR GROWTH OF GALLIUM NITRIDE COMPOUND SEMICONDUCTOR AND LIGHT-EMITTING ELEMENT

(57) Abstract:

PURPOSE: To improve crystallinity of a gallium nitride compound semiconductor grown on a sapphire substrate and to provide a blue-light-emitting element having high light-emitting efficiency by providing a buffer layer of aluminum nitride on the sapphire substrate and then growing the gallium nitride compound semicon. ductor on the buffer layer.

CONSTITUTION: When a gallium nitride compound semiconductor film (containing Al_xGa_{2-x}N; X=0) is vapor grown on a sapphire substrate 60 by using an organic metal compound gas, it is grown on the substrate 60 to a thickness of 100 to 500Å at a growing temperature of 400 to 900°C. Prior to growth of the gallium nitride compound semiconductor, a buffer layer of aluminum nitride (AIN) 61 having wurtzite structure in which microcrystals or polycrystals are mixed in irregular crystals is provided on the substrate 60. Then, the gallium nitride compound semiconductor (containing Al, Ga_{1.}, N; X=0) is grown on the buffer layer. According to this method, the gallium nitride compound semiconductor grown on the buffer layer is allowed to

have improved crystallinity and hence the light-emitting has desirable blue light emitting properties.

COPYRIGHT: (C)1990, JPO&Japio

(19)日本国特許庁(JP)

(12) 特許公 報 (B2)

(11)特許番号

特許第3026087号 (P3026087)

(45)発行日 平成12年3月27日(2000.3.27)

(24) 登録日 平成12年1月28日(2000.1.28)

(51) Int.CL."

識別配号

FΙ

C

HO1L 33/00

21/205 21/86

H 0 1 L 33/00

21/205

21/86

請求項の数1(全 13 頁)

(21)出願番号

(22) 出題日

特願平1-50458

(73)特許権者 999999999

豊田合成株式会社

平成1年3月1日(1989.3.1)

受知県西春日井郡春日町大字格合字長畑

1番地

(65)公開番号

特團平2-229476

(43)公開日

平成2年9月12日(1990.9.12)

審査請求日 審判番号

平成8年1月31日(1996.1.31) 平10-10644

審判請求日

平成10年7月8日(1998.7.8)

(73)特許権者 999999999

名古屋大学長

愛知県名古屋市千種区不老町(番地な

し

(74)代理人 999999999

弁理士 藤谷 修

合識体

密判長 小林 邦雄

秀朋

審判官 稲積 登簿

最終百に続く

(54) 【発明の名称】 窒化ガリウム系化合物半導体の気相成長方法

(57)【特許請求の範囲】

【請求項1】有機金属化合物ガスを用いてサファイア基 板上に窒化ガリウム系化合物半導体薄膜 (Al₁Ga₁₋₁N;X =0を含む)を気相成長させる方法において、

サファイア基板上に、成長温度400℃以上600℃未満で、 膜厚100&以上500&未満の厚さに成長され、結晶構造を 無定形結晶中に微結晶又は多結晶の混在したウルツァイ ト構造とする窒化アルミニウム(A1N)から成るバッフ ァ層を設け、

前記パッファ層上に窒化ガリウム系化合物半導体(AlaG a_{1-x}N;X=Oを含む)を成長させることを特徴とする窒 化ガリウム系化合物半導体の気相成長方法。

【発明の詳細な説明】

【産業上の利用分野】

本発明は窒化ガリウム系化合物半導体の製法に関す

る。

【従来技術】

従来、有機金属化合物気相成長法(以下「MOVPE」と 記す)を用いて、窒化ガリウム系化合物半導体(Al,Ga ւդN;X=Oを含む)薄膜をサファイア基板上に気相成長 させることや、その窒化ガリウム系化合物半導体薄膜を 発光層とする発光素子が研究されている。

窒化ガリウム系化合物半導体の単結晶ウエハーが容易 に得られないことから、窒化ガリウム系化合物半導体を それと格子定数の近いサファイア基板上にエピタキシャ ル成長させることが行われている。

【発明が解決しようとする課題】

ところが、サファイアと発光層としての窒化ガリウム 系化合物半導体との格子不整合や、ガリウムと窒素の蒸 気圧が大きく異なるため、良質な窒化ガリウム系化合物

半導体結晶が得られないとう問題があり、このため、青 色発光の発光効率の高い発光素子が得られなかった。

したがって、本発明は、上記の課題を解決するために 成されたものであり、その目的とするところは、サファ イア基板上に成長させる窒化ガリウム系化合物半導体の 結晶性を向上させると共に発光効率の高い青色の発光素 子を提供することである。

【課題を解決するための手段】

上記課題を解決するための発明の構成は、有機金属化合物ガスを用いてサファイア基板上に窒化ガリウム系化合物半導体薄膜(AlaGa in N;X=0を含む)を気相成長させる方法において、サファイア基板上に、成長温度400℃以上600℃未満では、膜厚100 Å以上500 Å未満の厚さに成長され、結晶構造を無定形結晶中に微結晶又は多結晶の混在したウルツァイト構造とする窒化アルミニウム(AlN)から成るバッファ層を設け、バッファ層上に窒化ガリウム系化合物半導体(AlaGa in N;X=0を含む)を成長させることを特徴とする。

【作用及び効果】

サファイア基板上に、成長温度400°C以上600°C未満では、膜厚100Å以上500Å未満の厚さに成長され、結晶構造を無定形結晶中に微結晶又は多結晶の混在したウルツァイト構造とする窒化アルミニウム (AIN) から成るバッファ層を設けたため、そのバッファ層上に成長する窒化ガリウム系化合物半導体の結晶性が良くなった。

【実施例】

以下、本発明を具体的な実施例に基づいて説明する。 第1図は本発明を実施するための気相成長装置の構成 を示した断面図である。

石英管10はその左端でOリング15でシールされてフランジ14に当接し、緩衝材38と固定具39を用い、ボルト46,47とナット48,49等により数箇所にてフランジ41に固定されている。又、石英管10の右端はOリング40でシールされてフランジ27に螺子締固定具41,42により固定されている。

石英管10で囲われた内室11には、反応ガスを導くライナー管12が配設されている。そのライナー管12の一端13はフランジ14に固設された保持プレート17で保持され、その他端16の底部18は保持脚19で石英管10に保持されている。

石英管10のX軸方向に垂直なライナー管12の断面は、第2図〜第5図に示すように、X軸方向での位置によって異なる。即ち、反応ガスはX軸方向に流れるが、ガス流の上流側では円形であり、下流側(X軸正方向)に進むに従って、紙面に垂直な方向(Y軸方向)を長軸とし、長軸方向に拡大され、短軸方向に縮小された楕円形状となり、サセプタ20を載置するやや上流側のA位置では上下方向(Z軸)方向に薄くY軸方向に長い偏平楕円形状となっている。A位置におけるIV-IV矢視方向断面図における開口部のY軸方向の長さは7.0cmであり、Z

軸方向の長さ1.2cmである。

ライナー管12の下流側には、サセプタ20を載置するX軸に垂直な断面形状が長方形の試料載置室12が一体的に連設されている。その試料載置室21の底部22にサセプタ20が載置される。そのサセプタ20はX軸に垂直な断面は長方形であるが、その上面23はX軸に対して緩やかに2軸正方向に傾斜している。そのサセプタ20の上面23に試料、即ち、長方形のサファイア基板50が載置されるが、そのサファイア基板50とそれに面するライナー管12の上部管壁24との間隙は、上流側で12mm,下流側で4mmである。

サセプタ20には操作棒26が接続されており、フランジ27を取り外してその操作棒26により、サファイア基板50を載置したサセプタ20を試料載置室21へ設置したり、結晶成長の終わった時に、試料載置室21からサセプタ20を取り出せるようになっている。

又、ライナー管12の上流側には、第1ガス管28が開口し、第2ガス管29は端部で封止されて第1ガス管28を覆っている。そして、それらの両管28,29は同軸状に2重管構造をしている。第1ガス管28の第2ガス管29から突出した部分と第2ガス管29の側周部には、多数の穴30が開けられており、第1ガス管28と第2ガス管29により導入された反応ガスは、それぞれ、多数の穴30を介してライナー管12の内部に吹出される。そして、そのライナー管12の内部で、両反応ガスは初めて混合される。

その第1ガス管28は第1マニホールド31に接続され、第2ガス管29は第2マニホールド32に接続されている。そして、第1マニホールド31にはNH₁の供給系統日とキャリアガスの供給系統Iとトリメチルガリウム(以下「TMG」と記す)の供給系統Jとトリメチルアルミニウム(以下「TMA」と記す)の供給系統Kとが接続され、第2マニホールド32にはキャリアガスの供給系統Iとジエチル亜鉛(以下「DEZ」と記す)の供給系統Lとが接続されている。

又、石英管10の外周部には冷却水を循環させる冷却管 33が形成され、その外周部には高周波電界を印加するた めの高周波コイル34が配設されている。

又、ライナー管12はフランジ14を介して外部管35と接続されており、その外部管35からはキャリアガスが導入されるようになっている。

又、試料載置室21には、側方から導入管36がフランジ14を通過して外部から伸びており、その導入管36内に試料の温度を測定する熱電対43とその導線44,45が配設されており、試料温度を外部から測定できるように構成されている。

このような装置構成により、第1ガス管28で導かれたNH,とTMGとTMAとH,との混合ガスと、第2ガス管29で導かれたDEZとH,との混合ガスがそれらの管の出口付近で混合され、その混合反応ガスはライナー管12により試料 戦置室21へ導かれ、サファイア基板50とライナー管12の

上部管壁24との間で形成された間隙を通過する。この時、サファイア基板50上の反応ガスの流れが均一となり、場所依存性の少ない良質な結晶が成長する。

N型のAl 「Ga 」、N薄膜を形成する場合には、第1ガス管28だけから混合ガスを流出させれば良く、「型のAl」Ga」、N薄膜を形成する場合には、第1ガス管28と第2ガス管29とからそれぞれの混合ガスを流出させれば良い。「型のAl」、Ga」、N薄膜を形成する場合には、ドーパントガスであるDEZは第1ガス管28から流出する反応ガスとサファイア基板50の近辺のライナー間12の内部で初めて混合されることになる。そして、DEZはサファイア基板50に吹き付けられ熱分解し、ドーパント元素は成長するAl」、Ga」、Nにドーピングされて、「型のAl」、Ga」、Nが得られる。この場合、第1ガス管28と第2ガス管29とで分離して、反応ガスとドーパントガスがサファイア基板50の付近まで導かれるので、良好なドーピングが行われる。次に本装置を用いて、サファイア基板50上に次のよう

まず、有機洗浄及び熱処理により洗浄した (0001) 面を主面とする単結晶のサファイア基板50をサセプタ20に装着する。次に、H₁を0.3 ℓ/分で、第1ガス管28及び第2ガス管29及び外部管35を介してライナー管12に流しながら、温度1100℃でサファイア基板50を気相エッチングした。次に温度を650℃まで低下させて、第1ガス管28からH₁を3ℓ/分、NH₁を2ℓ/分、15℃のTMAを50cc/分で2分間供給した。

にして結晶成長をおこなった。

この成長工程で、第6図に示すように、A1Nのバッファ層51が約300Åの厚さに形成された。このバッファ層のRHEED像を測定した。その結果を第7図に示す。第7図のRHEED像から、結晶構造は非単結晶、即ち、アモルファス、微結晶、多結晶となっていることが理解される。

又、上記装置を用いて他のサファイア基板上に成長温 度650℃で膜厚を50~1000Å範囲で変化させて、各種のA 1Nのバッファ層を形成した。その時の表面のRHEED像を 測定した。その結果を第8図(a),(b)に示す。膜 厚が100Å以下だど単結晶性が強く、膜厚が500Å以上だ と多結晶性が強くなっている。又、AINのバッファ層の 膜厚が50~1000Å範囲の上記の各種の試料において、試 料温度を970℃に保持し、第1ガス管28からH₁を2.5 ℓ/ 分、NH₁を1.5 ℓ/分、-15℃のTMGを100cc/分で60分間 供給し、第9図に示すように、膜厚約7μmのN型のGa Nから成るN層52をそれぞれ形成した。そして、このN 層52のSEM像及びRHEED像を測定した。その結果を第10図 (a), (b)、第11図 (a), (b) に示す。SEM像 の倍率は4100倍である。バッファ層51の膜厚が100A以 下だどN層52はピットの発生した状態となり、バッファ 層51の膜厚が500 Å以上においても N 層52は100 Å以下と 同じ状態となる。従って、結晶性の良いN層を得るに は、A1Nのバッファ層51の膜厚は100~500Åの範囲が望

ましい。

更に、上記の膜厚300ÅのA1Nのバッファ層を成長温度300~1200℃の範囲で成長させた各種試料に対し、さらにA1Nのバッファ層上に、上記と同一条件で、膜厚約7μmのN型のGaNから成るN層を成長させた。そして、このN層のSEM像及びRHEED像を測定した。その結果を第13図(a)、(b)、第14図(a)、(b)に示す。SEM像の倍率は3700倍である。A1Nのバッファ層の成長温度を400℃より低くすると、N型のGaNから成るN層はピットが発生した結晶となり、A1Nのバッファ層の成長温度を900℃以上とすると、六角形のモホロジーをもつ結晶となる。その結果から、結晶性の良いN層を得るには、A1Nのバッファ層の成長温度は400~900℃が望ましいことが分かる。

尚、上記の実験により、AINのバッファ層の結晶構造は、無定形構造の中に、多結晶又は微結晶が混在したウルツァイト構造であるときに、その上に成長するGaN層の結晶性が良くなることが分かった。そして、その多結晶又は微結晶の存在割合は1~90%が良いことや、その大きさは0.1μm以下であることが望ましいことが分かった。このような結晶構造のAINのバッファ層の形成は、膜厚や成長温度が上記条件の他、反応ガス流量として15℃のTMAが0.1~1000cc/分、NH、が100cc~10 ℓ/分、H,が1 ℓ~50 ℓ/分の範囲で行ったが、いずれもウルツァイト構造が得られた。

次に、発光ダイオードの作成方法について説明する。 次に本装置を用いて、第15図に示す構成に、サファイ ア基板60上に次のようにして結晶成長をおこなった。

上記と同様にして、単結晶のサファイア基板60上に、成長温度650°Cで、第1ガス管28からH₁を3 ℓ/分、NH₁を2 ℓ/分、15°CのTMGを500cc/分で1分間供給して350 ÅのA1Nのバッファ層61を形成した。次に、1分経過した時にTMAの供給を停止して、サファイア基板60の温度を970°Cに保持し、第1ガス管28からH₁を2.5 ℓ/分、NH₂を1.5 ℓ/分、−15°CのTMGを100cc/分で60分間供給し、膜厚約7μmのN型のGaNから成るN層62を形成した。そのN層62の形成されたサファイア基板60を気相成長装置から取り出し、N層62の主面にホトレジストを塗布して所定パターンのマスクを使って露光した後エッチングを行って所定パターンのホトレジストを得た。次に、このホトレジストをマスクにして膜厚100 Å程度のSi0₁膜63をパターン形成した。その後、ホトレジストを

除去しSiO₁膜63のみがパターン形成されたサファイア基 板60を洗浄後、再度、サセプタ20に装着し気相エッチン グした。そして、サファイア基板60の温度を970℃に保 持し、第1ガス管28からは、H₁を2.5 ℓ/分、NH₁を1.5 ℓ/分、-15℃のTMGを100cc/分供給し、第2ガス管29 からは、30℃のDEZを500cc/分で5分間供給して、I型 のGaNから成るΙ層64を膜厚1.0μmに形成した。この 時、GaNの露出している部分は、単結晶のI型のGaNが成 長しI層64が得られるが、SiO₁膜63の上部には多結晶の GaNから成る導電層65が形成される。その後、反応室20 からサファイア基板60を取り出し、I層64と導電層65の 上にアルミニウム電極66、67を蒸着し、サファイア基板 60を所定の大きさにカッティングして発光ダイオードを 形成した。この場合、電極66は I 層64の電極となり、電 極67は導電層65と極めて薄いSiO ,膜63を介してN層62の 電極となる。そして、I層64をN層62に対し正電位とす ることにより、接合面から光が発光する。

このようにして得られた発光ダイオードは発光波長48 5nmで、光度10mcdであった。A1Nバッファ層を単結晶で形成したものに比べて、発光光度において、10倍の改善が見られた。

又、本明細書には、サファイア基板と、発光層としての窒化ガリウム系化合物半導体薄膜(AliGa in N; X = 0を含む)を有する発光素子において、前記サファイア基板上に、成長温度400~900℃で膜厚100~500Åに成長され、結晶構造を無定形結晶中に微結晶又は多結晶の混在したウルツァイト構造とする窒化アルミニウム(AlN)から成るバッファ層を設け、前記バッファ層上に窒化ガリウム系化合物半導体(AliGa in N; X = 0を含む)を成長させる発光素子が開示されている。本発光素子は、同様な構成のバッファ層を設けたため、青色発光特性が改

善された。

【図面の簡単な説明】

第1図は本発明を実施するのに使用した気相成長装置の 構成図、第2図、第3図、第4図、第5図はその装置の ライナー管の断面図、第6図は結晶成長される半導体の 構成を示した断面図、第7図はAINのバッファ層のRHEED による結晶構造を示した写真、第8図はAINのバッファ 層の膜厚を変化させたときのAINのバッファ層のRHEEDに よる結晶構造を示した写真、第9図はN型GaN層の成長 した半導体の構造を示した断面図、第10図、第11図はA1 Nのバッファ層の膜厚を変化させて、そのバッファ層上 に成長させたGaN層の顕微鏡(SEM)による結晶構造を示 した写真、及びRHEEDによる結晶構造を示した写真、第1 2図は成長温度を変化させて成長させたAINバッファ層の RHEEDによる結晶構造を示した写真、第13図、第14図は 成長温度を変化させて成長させた各種のAINバッファ層 上に成長させたGaN層の顕微鏡(SEM)による結晶構造を 示した写真、及びRHEEDによる結晶構造を示した写真、 第15図は発光ダイオードを作成する場合の結晶構造を示 した断面図である。

10……石英管、12……ライナー管

20……サセプタ、21……試料載置室

28……第1ガス管、29……第2ガス管

50、60……サファイア基板

51、61······A1Nバッファ層

52、62······ N層、53、63······ I層

64……導電層、65、66……電極

H·····NH₁の供給系統

I ……キャリアガスの供給系統

J·····TMGの供給系統、K·····TMAの供給系統

L·····DEZの供給系統

【第1図】

).·

【第7図】

【第15図】

【第8図】

(b) AlNの膜厚1000Å

【第10図】

(a) × 4100 Al Nの膜厚50Å

【第11図】

(a) AlNの膜厚50Å

(b) AlNの膜厚1000Å

【第12図】

(a) AlNの成長温度300°C

(b) AlNの成長温度1000°C

【第13図】

(a) ×3700 AlNの成長温度350°C

(b) x 3700 Al Nの成長温度1000°C

【第14図】

(a) AlNの成長温度 350℃

(b) AlNの成長温度1000℃

フロントページの続き

(73)特許権者 999999999

科学技術振興事業団 埼玉県川口市本町4丁目1番8号 (72)発明者

真部 勝英

愛知県西春日井郡春日村大字落合字長畑 1番地 豊田合成株式会社内 (72)発明者 加藤 久喜

愛知県西春日井郡春日村大字落合字長畑

1番地 豊田合成株式会社内

(72)発明者 赤崎 勇

愛知県名古屋市千種区不老町(番地な

し) 名古屋大学内

(72)発明者 平松 和政

愛知県名古屋市千種区不老町(番地な

し) 名古屋大学内

(72)発明者 天野 浩

愛知県名古屋市千種区不老町(番地な

し) 名古屋大学内

(56)参考文献

日本結晶成長学会1988年 Vol. 15

No. 3 & 4 pp. 334-342

日本結晶成長学会1986年 Vol. 13

No. 4 pp. 218-225