IIIT Vadodara WINTER 2021-2022 **MA202 Numerical Techniques** Lab # 9 Monte Carlo Integration

Exercise 1

Write a program to numerically evaluate the integral of the function $f(x) = \frac{\sin(\lambda x)}{x}$, from x = -10 to x = 10, for the values of $\lambda = 0.01, 0.1, 1, 10, 100$. Repeat the same exercise as above for $g(x) = \exp(\sin(\lambda x))$, for which the integration limits are x = 0 to $x = 5\pi$. Note that your answers should be accurate upto 5th significant digit. Also mention the estimated error in the evaluation. Do clearly mention number of sampling done in each case.

Exercise 2

Write a program to numerically integrate the multi-dimensional integral

Write a program to numerically integrate the multi-dimensional integral
$$\int_{-L}^{L} dx_1 \int_{-L}^{L} dx_2 \cdots \int_{-L}^{L} dx_n \exp[-\frac{1}{2}(x_1^2 + x_2^2 + \cdots + x_n^2)].$$
 Take $n = 8,9,10$ and $L = 10$ to evaluate the integral.

Your answer should be accurate upto 5th significant digit. Please mention the number of sampling needed as also the variance estimate in each case.

Exercise 3

Use the above written program to evaluate this integral $\int_{-L}^{L} dx_1 \int_{-L}^{L} dx_2 \cdots \int_{-L}^{L} dx_n \exp[-\frac{1}{2}x^T \cdot A \cdot x]$, where the matrix $x = (x_1, x_2, \dots, x_n)$, and the matrix A is such that, $A_{ij} = 1$ when |i - j| = 1, else $A_{ij} = 0$. Take n = 8,9,10 and L = 10 to evaluate the integral. Your answer should be accurate upto 5th significant digit. Please mention the number of sampling needed as also the variance estimate in each case.