Modelo Relacional

BCD29008 - Engenharia de Telecomunicações

Prof. Emerson Ribeiro de Mello

mello@ifsc.edu.br

14 de abril de 2022

Licenciamento

Estes slides estão licenciados sob a Licença Creative Commons "Atribuição 4.0 Internacional".

Esquema e instância de banco de dados

Esquema de banco de dados

- Projeto lógico do banco de dados
- Fazendo analogia com a linguagem Java, o esquema seria equivalente a declaração de uma classe

Instância de banco de dados

- Situação dos dados em um banco de dados em um determinado instante no tempo
- Fazendo analogia com a linguagem Java, a instância seria equivalente a um objeto, que nada mais que é uma instância da classe

Tabela ou Relação

Em um banco de dados relacional os dados estão organizados na forma de **tabelas**, também chamadas de **relações**

■ Tabela é um conjunto não ordenado de linhas (tuplas). Cada linha é composta por uma série de campos (colunas ou atributos)

Chaves

Chave em um banco de dados relacional

tem por objetivo identificar linhas e estabelecer relações entre linhas de diferentes tabelas

- Não trata-se de um índice para tornar o acesso mais rápido. Trata-se apenas de uma restrição de integridade
- Chave primária (primary key PK)
 - Coluna ou combinação de colunas cujos valores distinguem uma linha das demais dentro de uma relação
- Chave estrangeira (foreign key FK)
 - Coluna ou combinação de colunas cujo valores aparecerem necessariamente na chave primária de uma outra tabela
 - O mecanismo que permite a implementação de relacionamentos em banco de dados relacionais

Chaves

Chave estrangeira

- Uma relação r_1 pode incluir entre seus atributos a chave primária de uma outra relação, por exemplo, r_2
- Esse atributo é então chamado de **chave estrangeira** de r_1 , referenciando r_2
- r₁ é chamada de relação referenciadora da dependência da chave estrangeira
- r₂ é chamada de relação referenciada da chave estrangeira

Restrição de integridade referencial

Em qualquer instância de banco de dados, dada qualquer tupla t_a de r_1 , deverá haver alguma tupla t_b em r_2 , tal que o valor do atributo da chave estrangeira de t_a seja o mesmo valor da chave primária de t_b

Restrições impostas por chave estrangeira

- Inclusão de linha na tabela que contém chave estrangeira
- Alteração do valor da chave estrangeira
- Exclusão de linha na relação referenciada da chave estrangeira
- Alteração do valor da chave primária referenciada pela chave estrangeira
- É possível inserir um aluno com o valor 321 em idCurso?
- É possível alterar o valor de idCurso do aluno Juca para 122?
- Na tabela Curso posso excluir o curso 230?

Restrições impostas por chave estrangeira

- Inclusão de linha na tabela que contém chave estrangeira
- Alteração do valor da chave estrangeira
- Exclusão de linha na relação referenciada da chave estrangeira
- Alteração do valor da chave primária referenciada pela chave estrangeira
- É possível inserir um aluno com o valor 321 em idCurso? Não!
- É possível alterar o valor de idCurso do aluno Juca para 122? Sim!
 - Na tabela Curso posso excluir o curso 230? Sim!

Restrições impostas por chave estrangeira

Inclusão de linha na tabela que contém chave estrangeira

 O valor a ser colocado na chave estrangeira deve obrigatoriamente aparecer na coluna chave primária da tabela referenciada

Alteração do valor da chave estrangeira

 O novo valor deve obrigatoriamente aparecer na coluna chave primária da tabela referenciada

Exclusão de linha na relação referenciada da chave estrangeira

 Deve ser garantido que na coluna chave estrangeira da relação referenciadora não apareça o valor que está sendo excluído da chave primária da tabela referenciada

Alteração do valor da chave primária referenciada pela chave estrangeira

Na chave estrangeira da relação referenciadora não pode aparecer o valor antigo da chave primária que está sendo alterada

Domínios e valores vazios

- Domínio do campo é o conjunto de valores que são permitidos na referida coluna em uma tabela
 - Cadeia de caracteres, inteiro, data, ...
- Ao criar um campo em uma tabela deve-se especificar seu domínio e se a mesma poderá aceitar valores nulos (NULL)
 - Colunas obrigatórias não permitem valores nulos
 - Colunas opcionais permitem valores nulos
- Colunas que compõem chaves primárias são colunas obrigatórias, porém tal exigência não é necessária para chave estrangeira

Domínios e valores vazios

- Domínio do campo é o conjunto de valores que são permitidos na referida coluna em uma tabela
 - Cadeia de caracteres, inteiro, data, ...
- Ao criar um campo em uma tabela deve-se especificar seu domínio e se a mesma poderá aceitar valores nulos (NULL)
 - Colunas obrigatórias não permitem valores nulos
 - Colunas opcionais permitem valores nulos
- Colunas que compõem chaves primárias são colunas obrigatórias, porém tal exigência não é necessária para chave estrangeira

Restrições de integridade de domínio

SGBD garante automaticamente a integridade de domínio, de valores nulos, integridade de chave e integridade referencial . O desenvolvedor de aplicação não precisa se preocupar em fazer tais verificações

Representação do esquema de banco de dados relacional

- Existem diferentes tipos de notações para representação gráfica de um esquema de banco de dados (depende da ferramenta)
- Representação acima foi feita com o MySQL Workbench
 - Notação UML para relacionamento
 - Notação MySQL Workbench simplificada para tabelas

Representação do esquema de banco de dados relacional Representação textual

■ Linguagem SQL é a linguagem padrão

```
CREATE TABLE Aluno (idAluno INT NOT NULL, Nome VARCHAR(45) NULL,
Curso_idCurso INT NOT NULL,
PRIMARY KEY (idAluno),
CONSTRAINT fk_Aluno_Curso
FOREIGN KEY (Curso_idCurso)
REFERENCES Curso (idCurso));
```

Representação resumida

```
Aluno (<u>idAluno</u>, Nome, idCurso)

idCurso referencia Curso

Curso (<u>idCurso</u>, Nome)
```


ER e Relacional

- Modelagem ER
 - Modelo conceitual independente do SGBD
- Modelagem Relacional
 - Modelo lógico modela os dados no nível de SGBD

Modelo ER pode ser implementado por diferentes modelos relacionais

Diferentes modelos relacionais podem gerar desempenho, facilidades de uso e manutenção diferentes

Transformação entre modelo ER e relacional

Objetivos do projeto de BD e regras de tradução

- Objetivos básicos de um projeto de BD
 - Bom desempenho nas operações de consulta e alteração
 - Simplificar o desenvolvimento e manutenção de aplicações

Objetivos do projeto de BD e regras de tradução

- Objetivos básicos de um projeto de BD
 - Bom desempenho nas operações de consulta e alteração
 - Simplificar o desenvolvimento e manutenção de aplicações

Regras de tradução que serão usadas nessa aula

- Evitar junções (JOIN)
 - ter os dados necessários a uma consulta em uma única tabela
- Minimizar número de chaves
 - evitar a criação de índices pelo BD
- Evitar campos opcionais
 - campos com valores NULL

Processo de um projeto lógico

- 1 Implementar **entidades** e respectivos atributos
- 2 Implementar relacionamentos e respectivos atributos
- 3 Implementar generalizações/especificações

Implementar entidades

- Nome da Entidade pode ser usado como nome da tabela
- Nome dos atributos são mapeados para nome de colunas
- É recomendável que o nome da chave primária tenha como sufixo o nome da tabela

Relacionamento identificador

- Cria-se uma chave estrangeira na tabela que implementa a entidade identificada pelo relacionamento
- Na entidade fraca, a **chave primária deve ser** formada por
 - atributos identificadores da entidade
 - chaves estrangeiras que implementam os relacionamentos identificadores


```
Empregado(<u>idEmpregado</u>, nome)
```

Dependente (<u>idDependente</u>, <u>idEmpregado</u>, nome)

idEmpregado referencia Empregado

3

Relacionamento identificador


```
Grupo (idGrupo, nome)
```

- 2 Empresa(<u>idEmpresa</u>, <u>idGrupo</u>, nome)
- 3 Empregado(<u>idEmpregado</u>, <u>idEmpresa</u>, <u>idGrupo</u>, nome)
- 4 Dependente(<u>idDependente</u>, <u>idEmpregado</u>, <u>idEmpresa</u>, <u>idGrupo</u>, nome)

Implementação de relacionamentos

A cardinalidade mínima e máxima são fatores determinantes para indicar qual a tradução adequada

- Tabela própria
- Adição de colunas em uma das entidades participantes
- Fusão de tabelas de entidades

Relacionamento: Tabela própria

Obrigatório quando cardinalidade n..n

Chave primária formada pelas chaves primárias das entidades relacionadas + atributos identificadores do relacionamento


```
1 Engenheiro(idEng, nome)
2 Projeto(idProj, nome)
3 Atuacao(idEng, idProj, funcao)
4 idEng referencia Engenheiro
5 idProj referencia Projeto
```


Relacionamento: Adição de coluna

Possível quando uma das entidades possuir cardinalidade máxima 1

Inserir além dos atributos do relacionamento, as colunas identificadoras da entidade relacionada, definidas como chave estrangeira


```
1 Departamento(<u>idDepto</u>, nome)
2 Funcionario(idFuncionario, nome idDepto, dataLotaca
```

idDepto referencia Departamento

3

Funcionario(<u>idFuncionario</u>, nome, idDepto, dataLotacao)

Relacionamento: Fusão de tabelas

Possível somente quando o relacionamento é um-para-um

Uma única tabela combina atributos das entidades e do relacionamento


```
1 Conferencia(<u>idConferencia</u>, nome, data, coordenador)
```


Implementação de relacionamentos

Tipo	Tabela própria	Adição de Coluna	Fusão
Um-para-um			
01 \01	+	✓	∄
01 \0.11	-	+	\checkmark
11 \(11 \)	-	-	\checkmark
Um-para-muitos			
01 \dirth 0n	+	✓	∄
01 \displays1n	+	\checkmark	∄
11 \dirth 0n	-	\checkmark	∄
$\texttt{11} \diamond \texttt{1n}$	-	\checkmark	∄
Muitos-para-muitos			
0n \(\dot 0n \)	✓	∌	∄
$0n \diamond 1n$	✓	∄	∄
$\texttt{1n} \diamond \texttt{1n}$	\checkmark	∌	∄

Relacionamentos **um-para-um**: 0..1 - 0..1

Ambas entidades com participação opcional

√ Adição de colunas na tabela referente a qualquer uma das entidades participantes

```
Artigo(<u>idArtigo</u>, titulo, data, idAutor)
idAutor referencia Autor
Autor(<u>idAutor</u>, nome)
```


Relacionamentos **um-para-um**: 0..1 - 0..1

Ambas entidades com participação opcional

+ Tabela própria

```
1 Artigo(<u>idArtigo</u>, titulo)
2 Autor(<u>idAutor</u>, nome)
3 Escrita(<u>idArtigo</u>,idAutor, data)
4 idArtigo referencia Artigo
5 idAutor referencia Autor
```


Relacionamentos **um-para-um**: 0..1 - 1..1

√ Fusão de tabelas

```
Aluno(<u>idAluno</u>, nome, idTCC, titulo, defesa)
```

+ Adição de colunas

```
Aluno(<u>idAluno</u>, nome)
TCC(<u>idTCC</u>, titulo, defesa, idAluno)
idAluno referencia Aluno
```


Relacionamentos **um-para-um**: 1..1 - 1..1

Ambas entidades tem participação obrigatória

√ Fusão de tabelas

```
Conferencia(<u>idConferencia</u>, nome, data, coordenador)
```


Relacionamentos **um-para-muitos**: 1..1 - 1..n

√ Adição de colunas

```
Campus(<u>idCampus</u>, nome)
Sala(<u>idCampus</u>, <u>idSala</u>, area)
idCampus referencia Campus
```


Relacionamentos **um-para-muitos**: 0..1 - 0..n

√ Adição de colunas

```
Financeira(<u>idFinanceira</u>, nome)

Venda(<u>idVenda</u>, data, idFinanceira, nParcelas, juros)

idFinanceira referencia Financeira
```


Relacionamentos **um-para-muitos**: 0..1 - 0..n

+ Tabela própria

```
Financeira(<u>idFinanceira</u>, nome)

Venda(<u>idVenda</u>, data)

Financia(<u>idVenda</u>, idFinanceira, nParcelas, juros)

idVenda referencia Venda

idFinanceira referencia Financeira
```


Relacionamentos **muitos-para-muitos**: n - n

Sempre será necessário fazer com tabela própria


```
1 Engenheiro(idEng, nome)
2 Projeto(idProj, nome)
3 Atuação(idEng, idProj, funcao)
4 idEng referencia Engenheiro
5 idProj referencia Projeto
```


Relacionamentos de grau maior que 2

- Relacionamento é transformado em entidade
- 2 Essa nova entidade é ligada por meio de relacionamento binário com cada uma das demais entidades que participavam do relacionamento

Relacionamentos de grau maior que 2

- Relacionamento é transformado em entidade
- 2 Essa nova entidade é ligada por meio de relacionamento binário com cada uma das demais entidades que participavam do relacionamento

Relacionamentos de grau maior que 2


```
1 Distribuidor(idDist, nome)
2 Cidade(idCid, nome)
3 Produto(idProd, nome)
4 Distribuicao(idProd, idCid, idDist, data)
5 idProd referencia Produto
6 idCid referencia Cidade
7 idDist referencia Distribuidor
```


Generalização/Especialização

Uma tabela para toda hierarquia

Uma tabela por entidade especializada

Generalização/Especialização

Uma tabela para toda hierarquia

```
Funcionario(<u>idFuncionario</u>, nome, tipo, idDepto, CNH, CREA, idRamo)

idDepto referencia Departamento

idRamo referencia Ramo

Participa(<u>idFuncionario</u>, idProjeto)

idFuncionario referencia Funcionario

idProjeto referencia Projeto
```


Generalização/Especialização

Uma tabela por entidade especializada

```
Funcionario (idFuncionario, nome, tipo, idDepto)
    idDepto referencia Departamento
3
  Motorista(idFuncionario, CNH)
    idFuncionario referencia Funcionario
  Engenheiro (idFuncionario, CREA, idRamo)
    idFuncionario referencia Funcionario
    idRamo referencia Ramo
10
  Participa(idFuncionario, idProjeto)
    idFuncionario referencia Engenheiro
12
13
    idProjeto referencia Projeto
```


Exercícios

Exercício 1

Exercício 2

Aulas baseadas em

HENRY F.; SUDARSHAN SILBERSCHATZ, ABRAHAM; KORTH. SISTEMAS DE BANCO DE DADOS.

6a. Edição - Editora Campus, 2012

HEUSER, C. A.

PROJETO DE BANCO DE DADOS

6a. Edição - Editora Bookman, 2009

SULLIVAN, D. G.

COMPUTER SCIENCE - HARVARD UNIVERSITY

