

#### Universidade Federal de Pelotas

Instituto de Física e Matemática

Departamento de Informática

Bacharelado em Ciência da Computação

# Arquitetura e Organização de Computadores II Aula 2

2. MIPS monociclo: instruções a serem implementadas, regime de clock, construção do bloco operativo.

Prof. José Luís Güntzel

guntzel@ufpel.edu.br

www.ufpel.edu.br/~guntzel/AOC2/AOC2.html

#### Instruções a Serem Implementadas

• Instruções de referência à memória (tipo I):

```
Load word (lw) e store word (sw)
```

• Instruções aritméticas e lógicas (tipo R):

```
( add, sub, and, or )
```

• Instruções de salto:

Branch on equal (beq ) e jump (j)

#### Instruções formato R: add, sub, or, and

- opcode = 0
- "funct" define a operação a ser feita pela ALU
- "shamt" (shift amount) é usado em instruções de deslocamento



Simbólico (exemplo): add \$s1,\$s2, \$s3 (\$s1 ← \$s2 + \$s3)

- Instruções formato I: load word (ld) e store word (sw)
  - load word (lw): opcode = 35
  - store word (sw): opcode = 43



```
lw $s1, offset($s2) ($s1 \leftarrow Mem[$s2 + deslocam])
sw $s1, offset($s2) (Mem[$s2 + deslocam] \leftarrow $s1)
```

- Instrução formato I: Desvio Condicional beq: branch on equal
  - Opcode = 4
  - Campo deslocamento usado para calcular o endereço-alvo
  - Se o conteúdo do registrador cujo endereço está no campo rs for igual ao conteúdo do registrador cujo endereço está em rt, então salta para a posição endereço+PC+4



#### Simbólico

beq \$s1, \$s2, offset (if (\$s1==\$s2) then PC $\leftarrow$ PC+4+deslocam)

Princípios do Projeto Eficiente

"Faça o caso comum executar mais rápido"

"A simplicidade favorece a regularidade"

#### Regime de Clock (Temporização)

#### **Iremos supor que:**

- Cada registrador possui um sinal de carga particular que é ativado com lógica direta
- Os registradores são "disparados" pela borda ascendente do relógio
- No desenho ao lado, quando CK=↑, se cargaR1=1, então R1←entradas



### Regime de Clock (Temporização)

Condições para o Correto Funcionamento do Bloco Comb.



O atraso crítico do bloco combinacional deve ser menor que o período do relógio

#### Regime de Clock (Temporização)

Temporização para o Correto Funcionamento do Bloco Comb.



#### Bloco Operativo Monociclo

Nesta primeira implementação iremos considerar que:

- Qualquer instrução é executada em um único ciclo de relógio
- O período do relógio será longo o suficiente para acomodar qualquer instrução
  - Na verdade, o período do relógio será função da instrução mais demorada

#### Bloco Operativo Monociclo

Elementos Necessários Para a Busca da Instrução:

- a memória onde estão armazenadas as instruções
- o contador de programa (PC) para armazenar o endereço da instrução
- um somador para calcular o endereço da próxima instrução



#### Bloco Operativo Monociclo

- O contador de programa contém o endereço da instrução em execução
- O endereço da próxima instrução é obtido pela soma de 4 posições ao contador de programa
- A instrução lida é usada por outras porções do bloco operativo



#### Bloco Operativo Monociclo

Elementos Necessários para Execução de Instruções tipo R:

- Um banco de registradores para armazenar os operandos e o resultado das operações
- Uma Unidade Lógica/Aritmética (ULA) que será utilizada para realizar as operações



#### Bloco Operativo Monociclo

- A instrução (fornecida pelo hardware de busca de instruções) contém o endereço de três registradores
- Dois destes registradores são lidos e passados para a ULA realizar a operação
- O resultado é armazenado em um terceiro registrador
- O controle da ULA determina a operação que será realizada (a partir do campo FNCT da instrução)



#### Bloco Operativo Monociclo

Elementos Necessários para Executar lw e sw

- Uma memória de dados
- Um módulo de extensão de sinal
- Um banco de registradores (já mostrado)
- Uma ULA (já mostrada)



#### Bloco Operativo Monociclo

Combinando os Elementos para uma Escrita na Memória (sw)

• O endereço de escrita é obtido pela soma de um registrador de base (registrador 1) com um deslocamento de 16 bits estendido para 32 bits

O registrador 2 é escrito na memória



#### Bloco Operativo Monociclo

Combinando os Elementos para uma Leitura da Memória (lw)

O processo de leitura é semelhante ao de escrita

A diferença básica é a existência de um caminho para escrever o valor

lido no banco de registradores



#### **Bloco Operativo Monociclo**

Elementos Necessários Implementar um Branch on Equal

Comparar dois registradores usando a ULA para fazer uma subtração

Se ocorrer desvio, o endereço de desvio é PC+4+deslocamento

 O deslocamento deve ser estendido para 32 bits (pois está em 16 bits)



PC+4

Endereco-

ComputaçãoUFPel

Arquitetura e Organização de Computadores II

#### Compondo o Bloco Operativo Monociclo

- Nesta versão de bloco operativo qualquer instrução executa em um ciclo de relógio
- Isto significa que o período do relógio deverá ser suficientemente longo para acomodar a instrução mais demorada
- Durante a execução de uma instrução qualquer, cada unidade funcional só pode ser usada uma única vez
- Por isso necessitamos de uma memória de instruções e outra de dados
- Ao combinarmos as porções de bloco operativo vistas anteriormente, veremos que muitas unidades funcionais podem ser compartilhadas

#### Compondo o Bloco Operativo Monociclo

Recursos para executar instruções lw ou sw



- Para sw, campo Rt (bits 20-16) designam registrador cujo conteúdo será escrito na memória de dados
- Para **lw**, Rt (bits 20-16) designam registrador que será carregado com valor lido da memória de dados

### Compondo o Bloco Operativo Monociclo

Combinando os recursos para executar instruções tipo R ou instruções lw e sw...



- Para lw, o endereço do registrador a ser escrito está no campo Rt (bits 20-16)
- Para **instruções tipo R**, o endereço do registrador a ser escrito está no campo Rd (bits 15-11)

### Compondo o Bloco Operativo Monociclo

Acrescentando os Recursos para a Busca da Instrução e o Cálculo do Próximo Endereço (exceto em desvios)



ComputaçãoUFPel

## Compondo o Bloco Operativo Monociclo

Acrescentando os Recursos para Executar Desvio

**Condicional (Branch on equal)** 



ComputaçãoUFPel

#### Bloco Operativo Monociclo

#### Estimativa da Freqüência Máxima de Funcionamento

- ao final de cada ciclo de relógio o PC é carregado com um novo valor
- mudança no valor do PC se propaga através de uma grande lógica combinacional
  - memória de instruções => banco de registradores => ULA => memória de dados => banco de registradores
- período do ciclo de relógio deve ser maior do que máximo atraso de propagação através desta lógica combinacional

#### Bloco Operativo Monociclo

#### Exemplo de Cálculo

• supondo os seguintes atrasos:

- memórias: 4 ns - ULA: 2 ns

− banco de registradores: 1 ns − somadores: 1 ns

- demais componentes: atraso desprezível

| instrução         | busca | Lê<br>registradores | Cálculo<br>na ULA | Acessa<br>memória de<br>dados | Escreve<br>em<br>registrador | Total |
|-------------------|-------|---------------------|-------------------|-------------------------------|------------------------------|-------|
| add, sub, and, or | 4ns   | 1ns                 | 2ns               |                               | 1ns                          | 8ns   |
| beq               | 4ns   | 1ns                 | 2ns               |                               |                              | 7ns   |
| sw                | 4ns   | 1ns                 | 2ns               | 4ns                           |                              | 11ns  |
| lw                | 4ns   | 1ns                 | 2ns               | 4ns                           | 1ns                          | 12ns  |

período do ciclo de relógio deve ser maior do que 12 ns (cerca de 83 MHz)