

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	2-21780	₹ 17,424	₹ 4,356 (20%)
	12 Months	2-14,974	₹ 11,979	₹ 2,995 (20%)
5	9 Months	2-13,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	₹ 12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

*T&C apply, as available on the platform

Unacademy Unlock

20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	.2-23,100	₹ 18,480	₹ 4,620 (20%)
25	12 Months	2-16,748	₹ 13,398	₹ 3,350 (20%)
	6 Months	4-13,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	2-52,975	₹ 42,380	₹ 10,595 (20%)
Iconic	12 Months	2-30,780	₹ 24,624	₹ 6,156 (20%)
-	6 Months	₹-21,540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code ____

*T&C apply, as available on the platform.

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
П	24 Months	£ 21,780	₹ 17,424	₹ 4,356 (20%)
Plus	12 Months	-2-14,974	₹ 11,979	₹ 2,995 (20%)
	9 Months	¥ 13,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	₹ 12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

*T&C apply, as available on the platform

DETAILED COURSE 2.0 LINEAR ALGEBRA FOR IIT JAM 2023

8th SEPTEMBER

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

Unacademy Unlock 20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£-23,100	₹ 18,480	₹ 4,620 (20%)
200	12 Months	2.16,748	₹ 13,398	₹ 3,350 (20%)
	6 Months	4-13,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	_R-52,975	₹ 42,380	₹ 10,595 (20%)
conic	12 Months	7-30,780	₹ 24,624	₹ 6,156 (20%)
Ĭ	6 Months	-F-21,540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code

20

*T&C apply, as available on the platform.

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Case 7: When Q is any other function of x (General Method)

Resolve
$$f(D)$$
 into linear factors. Let $f(D) = (D - m_1)(D - m_2)...(D - m_n)$

Then for P.I. use

$$\frac{Q}{D-\alpha} = e^{\alpha x} \int e^{-\alpha x} Q dx \quad \& \quad \frac{Q}{D+\alpha} = e^{-\alpha x} \int e^{\alpha x} Q dx$$

Note: We can find particular integral by this following method

$$f(D)=Q \Rightarrow (D-m_1)(D-m_2)y=Q$$

Step - 1 : Put
$$(D - m_2)y = u$$
 (2)

then (1) becomes
$$(D - m_1)u = Q$$

find value of u by FOFD linear DE

Step -2: Put value of u in (2)

then we get value of y

which is particular integral

A particular integral of the differential equation $y'' + 3y' + 2y = e^{e^x}$ is Q1.

(a)
$$e^{e^x}e^{-x}$$

(a)
$$e^{e^x} e^{-x}$$

(c) $e^{e^x} e^{2x}$

(b)
$$e^{e^x}e^{-2x}$$

(d) $e^{e^x}e^x$

(d)
$$e^{e^x}e^x$$

Q2. Solve
$$(D^2 - 3D + 2)y = \sin(e^{-x})$$

(a)
$$y = c_1 e^x + c_2 e^{2x} - e^x \sin(e^{-x})$$

(b)
$$y = c_1 e^x + c_2 e^{2x} - e^{-2x} \sin(e^{-x})$$

(c)
$$y = c_1 e^x + c_2 e^{2x} + e^{-2x} \sec(e^{-x})$$

(d)
$$y = c_1 e^x + c_2 e^{2x} - e^{-2x} \sin(e^{2x})$$

The solution of differential equation $\frac{d^2y}{dx^2} - y = e^x$ satisfying Q3.

$$y(0) = 0 & \frac{dy}{dx}(0) = \frac{3}{2}$$
 is

(a)
$$y(x) = \sinh x + \frac{x}{2}e^x$$

(c)
$$y(x) = \sinh x - \frac{x}{2}e^x$$

(a)
$$y(x) = \sinh x + \frac{x}{2}e^x$$
 (b) $y(x) = x \cosh x + \frac{x}{2}e^x$

(c)
$$y(x) = \sinh x - \frac{x}{2}e^x$$
 (d) $y(x) = 2x \cosh x - \frac{x}{2}e^x$

TARGETED AUDIENCE

- O III-JAM
 - M.Sc. Entrance Exam

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo	
Save 25%	₹-12,252 ₹ 11,027	

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q.4. A particular integral of
$$\frac{d^2y}{dx^2} - (a+b)\frac{dy}{dx} + aby = Q(x)$$
 is

(a)
$$e^{ax} \{ \int e^{(a-b)x} \int Qe^{bx} dx \} dx$$

(b)
$$e^{ax} \{ \int e^{(b-a)x} \int Qe^{-bx} dx \} dx$$

(c)
$$e^{-ax} \{ \int e^{(b-a)x} \int Qe^{bx} dx \} dx$$

(d) None of these

Q.5. Consider the differential equation

$$y'' + ay' + y = \sin x \text{ for } x \in R \qquad (**).$$

Then which one of the following is true ?IIT JAM 2022

- (a) If a = 0, then all the solutions of (**) are unbounded over R.
- (b) If a = 1, then all the solutions of (**) are unbounded over $(0, \infty)$.
- (c) If a = 1, then all the solutions of (**) tend to zero as $x \to \infty$
- (d) If a = 2, then all the solutions of (**) are bounded over $(-\infty, 0)$

Q.6. The real valued function y(x) defined on R is said to be periodic if there exists a real number T > 0 such that y(x + T) = y(x) for all $x \in R$. Consider the differential equation $\frac{d^2y}{dx^2} + 4y = \sin ax$, $x \in (R,)$ (*) IIT JAM 2022

where $a \in R$ is a constant. Then Which of the following is are true?

- (a) All solutions of (*) are periodic for every choice of a.
- (b) All solutions of (*) are periodic for every choice of $a \in R \{-2,2\}$
- (c) All solutions of (*) are periodic for every choice of $a \in Q \{-2,2\}$
- (d) $a \in R Q$ Then there is a unique periodic solution of (*)

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£ 21,780	₹ 17,424	₹ 4,356 (20%)
	12 Months	-2-14,974	₹ 11,979	₹ 2,995 (20%)
Plus	9 Months	¥ 13,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	₹ 12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

*T&C apply, as available on the platform

DETAILED COURSE 2.0 LINEAR ALGEBRA FOR IIT JAM 2023

8th SEPTEMBER

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

Unacademy Unlock 20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£-23,100	₹ 18,480	₹ 4,620 (20%)
200	12 Months	2.16,748	₹ 13,398	₹ 3,350 (20%)
	6 Months	4-13,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	_R-52,975	₹ 42,380	₹ 10,595 (20%)
conic	12 Months	7-30,780	₹ 24,624	₹ 6,156 (20%)
Ĭ	6 Months	-F-21,540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code

20

*T&C apply, as available on the platform.

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR