Teoría de Códigos y Criptografía

Justo Peralta López Juan Antonio López Ramos

Universidad de Almería Departamento de Álgebra y Análisis Matemático

- Introducción
 - Polinomios
- Cuerpo de Galois
- 3 Códigos cíclicos en anillos de polinomios
- 4 Codificación
- 5 Decodificación
- 6 Códigos cíclicos en su forma estándar
- 7 Decodificación
- Decodificación de un SEC

Definición

Un código C es cíclico si y sólo si C es lineal y si para cualquier palabra $(a_0,a_1,\ldots,a_{n-1})\in C,\,a_{n-1},a_0,\ldots,a_{n-2})\in C.$

Ejemplo

Los siguientes dos códigos son códigos cíclicos o equivalentes a códigos cíclicos.

- $C = \{000, 101, 011, 110\}$
- $C = \{0000, 1001, 0110, 1111\}$. Es equivalente a un código cíclico.

Definiciones

- Sea $F_q[x]$ el anillo de polinomios con coeficientes en F_q un cuerpo finito de q elementos. Si $f(x) = f_0 + f_1 x + \dots f_m x^m$ es un polinomio y $f_m \neq 0$, entonces m es llamado el grado de f(x), y a f_m se le llama el líder del polinomio. Si $f_m = 1$, entonces decimos que el polinomio es mónico.
- 2 Un polinomio b(x) es divisible por d(x) y d(x) es un factor de b(x) si existe un q(x) tal que b(x) = q(x)d(x). Si d(x) es un factor de b(x), entonces cd(x) también es un factor para $c \neq 0 \in GF(q)$.
- El máximo común divisor de dos polinomios, a(x) y b(x), es el polinomio mónico de mayor grado que divide a ambos.
- Il El mínimo común múltiplo de dos polinomios, a(x) y b(x), es el polinomio mónico de menor grado tal que a(x) y b(x) lo dividen.

Teorema

Si a(x) y b(x) son dos polinomios con mcd(a,b) = 1, entonces existen dos polinomios s(x) y t(x) tal que

$$s(x)a(x)+t(x)b(x)=1$$

Definición

- Sea f(x) un polinomio de grado m sobre GF(q) para $m \ge 2$. Si (x a) es un factor de f(x) con $a \in GF(q)$, entonces a es una raíz de f(x) y f(a) = 0. Un polinomio irreducible no tiene raíces en GF(q).
- ${\color{red} {\bf Z}}$ Dos polinomios g(x), h(x) en $F_q[x],$ se dicen que son congruentes módulo f(x), y se denota por

$$g(x) \equiv_{f(x)} h(x)$$

si y sólo si g(x) - h(x) es divisible por f(x).

Sea f(x) un polinomio irreducible de grado m sobre GF(q). Sea $S = \{b(x)|deg(b(x)) < m\}$, con la adición y multiplicación módulo f(x). A S lo notaremos por $F_q[x]/f(x)$ o GF(q)[x]/f(x)

Definición

Un polinomio es irreducible si no se puede escribir como productos de polinomios de menor grado.

Teorema

- \mathbf{I} $F_q[x]/f(x)$ tiene estructura de anillo (es muy similar a Z_m).
- $\mathbf{P}_q[x]/f(x), \ con \ f(x) \ irreducible \ tiene \ estructura \ de \ cuerpo.$
- 3 Si f(x) es reducible, entonces $F_q[x]/f(x)$ es un anillo pero no un cuerpo.

Definición

Un anillo tiene característica n si n es el menor natural tal que $1+1+.^n.+1$. Si ésto último nunca ocurre, entonces decimos que la característica es cero.

Sea $f(x) = x^2 + x + 1$ sobre GF(2). Entonces

$$GF(2^2) = GF(2)[x]/f(x) = \{0, 1, x + 1\}$$

Sea $f(x) = x^2 + 2x + 2$ sobre GF(3), entonces

$$GF(3^2) = GF(3)[x]/f(x) = \{0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2\}$$

Nótese que la adición se realiza con característica 3, es decir,

$$1+2=0, 2+2=1, 2x+x=0$$
 y $2x+2x=0$. Y la multiplicación se realiza módulo x^2+2x+2 , es decir, $xx^2=-2x-2=x+1, x(x+1)=x^2+x=2x+1$ y $(x+1)(x+2)=x^2+2=x+1+2=x$. Complete la tabla de la suma y la multiplicación para este cuerpo.

Lema

Cualquier polinomio verifica las siguientes propiedades

- If Un polinomio f(x) tiene como factor a(x-a) si y sólo si f(a)=0.
- Un polinomio de grado 2 o 3 es irreducible si y sólo si $f(a) \neq 0$ para cualquier $a \in F_q$.
- $x^{n}-1=(x-1)(x^{n-1}+x^{n-2}+\cdots+x+1)$

$$f(x) = x^2 + x + 1$$

2
$$f(x) = x^2 + 2x + 2$$
 un polinomio irreducible sobre $GF(3)$.

Definición

Sea α una raíz de f(x), un polinomio irreducible de grado m sobre GF(q). Si α genera $GF(q^m)^*$, todos los elementos no nulos de $GF(q^m)$, entonces α es un elemento primitivo de $GF(q^m)$ y f(x) un polinomio primitivo.

Ejemplo

Sea $f(x)=x^2+1$ irreducible en GF(3). Si α es su raíz en $GF(3^2)$, entonces $f(\alpha)=0=\alpha^2+1$ y la ecuación característica es $\alpha^2=2$. El grupo cíclico generado por α viene dado por

$$<\alpha>= \{\alpha, \alpha^2 = 2, \alpha^3 = 2\alpha, \alpha^4 = 1\}$$

Luego α no genera a $GF(3^2)^*$ y por lo tanto no es un elemento primitivo. Aun así, el conjunto

$$S = \{0, 1, 2, \alpha, \alpha + 1, \alpha + 2, 2\alpha, 2\alpha + 1, 2\alpha + 2\}$$

bajo la adición y multiplicación módulo $f(x) = \alpha^2 + 1$, tiene la misma estructura que $GF(3^2)$.

Sea ahora $f(x)=x^n-1$ y consideremos el anillo de polinomios $F_q[x]/(x^n-1)$. Entonces $x^n\equiv 1\ (mod\ x^n-1)$. Luego podemos reducir cualquier polinomio módulo x^n-1 reemplazando x^n por 1, x^{n+1} por x, etc.

Ahora identifiquemos un vector $a_0, a_1, ..., a_{n-1} \in V(n, q)$ con el polinomio

$$a(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$
 en $F[x]/(x^n - 1)$

Entonces

$$V(n,q) \cong F[x]/(x^n-1)$$

Ahora, si multiplicamos a(x) por x, obtenemos $xa(x) = a_0x + a_1x^2 + a_2x^3 + \dots + a_{n-1}x^n = a_{n-1} + a_0x + a_1x^2 + a_2x^3 + \dots + a_{n-2}x^{n-2}$.

Es decir, si consideramos a(x) como una palabra de un código cíclico, multiplicar por x^i es equivalente a ciclar dicha palabra i veces.

Teorema

Un código C en $F[x]/(x^n - 1)$ es cíclico si y solo si verifica

i)
$$a(x), b(x) \in C \Rightarrow a(x) + b(x) \in C$$

ii)
$$a(x) \in C$$
 y $r(x) \in F[x]/(x^n - 1) \Rightarrow r(x)a(x) \in C$

Corolario

Todo ideal en $F[x]/(x^n - 1)$ es un código cíclico.

Teorema

Sea C un código cíclico. Entonces

- i) Existe un unico polinomio mónico g(x) de menor grado in C
- ii) $C = \langle g(x) \rangle$
- iii) g(x) es un factor de $x^n 1$

Al polinomio g(x) del teorema anterior se le llama polinomio generador de C.

Ejemplo

Códigos cíclicos de longitud 3 en GF(2)

$$x^3 - 1 = (x+1)(x^2 + x + 1)$$

Polinomio	Código en	Código en
Generador	$F[x]/(x^3-1)$	V(3,2)
1	Todo $F[x]/(x^3 - 1)$	Todo V(3,2)
<i>x</i> + 1	$\{0, 1+x, x+x^2, 1+x^2\}$	{000, 110, 011, 101}
$x^2 + x + 1$	$\{0, 1 + x + x^2\}$	{000, 111}
$x^3 - 1$	0	{000}

Lema

Sea $g(x)=g_0+g_1x+g_2x^2+\cdots+g_rx^r$ un polinomio generador de un código cíclico. Entonces $g_0\neq 0$.

En $F[x]/(x^n-1)$ basta con multiplicar por el polinomio de datos por el polinomio generador módulo (x^n-1) generador.

Teorema

Si C es un código cíclico con polinomio generador g(x), y gr(g(x)) = r, entonces C tiene dimensión n - r. Es decir,

$$C = \langle g(x) \rangle = \{f(x)g(x)|deg(f(x)) \langle n-r\}$$

Teorema

 $Si\ g(x)=g_0,g_1x+\cdots+g_rx^r$ es el polinomio generador de C, entonces la matriz generadora G viene dado por

Matrices generadoras de todos los códigos cíclicos ternarios de longitud 4.

$$x^4 - 1 = (x - 1)(x^3 + x^2 + x + 1) = (x - 1)(x^2 + 1)(x + 1)$$

Polinomio Generador	Matriz generadora
1	[/1]
	[-1 1 0 0]
<i>x</i> − 1	$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	[0 0 -1 1]
	$ \left[\begin{array}{ccccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right] $
x+1	0 1 1 0
$x^2 + 1$	
$(x-1)(x+1) = x^2 - 1$	-1 0 1 0 0 -1 0 1
$(x-1)(x^2+1) = x^3 - x^2 + x - 1$	[-1 1 -1 1]
$(x+1)(x^2+1) = x^3 + x^2 + x + 1$	
$x^4 - 1 = 0$	0 0 0 0

Teorema

Un polinomio mónico $p(x) \in F_q[x]/x^n - 1$ es el generador de un código cíclico si y sólo si $p(x)|x^n - 1$

Teorema

Sea $C_1 = \langle g_1(x) \rangle$ y $C_2 = \langle g_2(x) \rangle$ dos códigos cíclicos en $F_q[x]/x^n - 1$. Entonces

- 1 $C_1 \subset C_2$ si y sólo si $g_2(x)|g_1(x)$.
- $C_1 \cap C_2 = mcm(g_1(x), g_2(x))$
- $C_1 + C_2 = < mcd(g_1(x), g_2(x))$

Sea g(x) el polinomio generador de un [n, n-r]-código (r grado de g(x)). Entonces $x^n - 1 = g(x)h(x)$ y h(x) es el **polinomio de chequeo** con grado n-r. Si c(x) es una palabra del código cíclico, entonces c(x)h(x) = 0. Esto mismo no tiene porqué ocurrir en V(n,q), ya que el producto de polinomios no es equivalente al producto de vectores en un espacio vectorial.

Teorema

Sea h(x) el polinomio de chequeo de un código cíclico.

El código C puede describirse por

$$C = \{p(x) \in F[x]/(x^n - 1)|p(x)h(x) \equiv 0\}$$

2 Si $h(x) = h_0 + h_1 x + \cdots + h_{n-r} x^{n-r}$, su matriz de paridad será

$$H = \left[\begin{array}{cccccccc} h_{n-r} & \dots & h_0 & 0 & 0 & \dots & 0 \\ 0 & h_{n-r} & \dots & h_0 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & & & \ddots \\ 0 & 0 & \dots & 0 & h_{n-r} & \dots & h_0 \end{array} \right]$$

3 C[⊥] tiene como polinomio generador a

$$h^{\perp}(x) = x^{n-r}h(x^{-1}) = h_0x^{n-r} + h_1x^{n-r-1} + \cdots + h_{n-r}$$

Al polinomio del último punto del teorema anterior, lo llamamos polinomio recíproco y posee las siguientes propiedades

- 2 Si h(x) es irreducible $h^{\perp}(x)$ también lo es.
- si Si α es un cero de h(x) de multiplicidad n, entonces α^{-1} es un cero de $h^{\perp}(x)$ con la misma multiplicidad.

Teorema

Un código cíclico detecta todos los errores simples.

Teorema

Si el polinomio generador de un código cíclico binario C es de la forma $g(x) = (x^h - 1)m(x)$ para algún h > 0, entonces todos los errores de peso impar son detectables.

Definición

Un polinomio de error de la forma $e(x) = x^i + x^j$ se denomina un error doble de distancia |i - j|.

Teorema

Si el polinomio generador es múltiplo de un polinomio primitivo de grado s, todos los errores dobles de distancia menor que $2^s - 1$ son detectables.

Corolario

Si g(x) contiene como factor a un polinomio primitivo de grado s con $n \neq 2^s - 1$, todos los errores dobles son detectados.

Definición

Un polinomio error (binario) es una ráfaga de longitud s si es posible escribirlo como $x^i(1+e_1x+e_2x^2+\cdots+x^{s-1}) \mod x^n-1$ con $e_j \in GF(2)$ y s es el menor entero con esta propiedad.

Ejemplo

010001 ($e(x) = 1 + x^4$) no es una ráfaga de longitud 5, sino 3 ya que 101000 o 000101 son otras formas de escribirlo, $e(x) = x^4(1 + x^2) \mod x^6 - 1$.

Teorema

Un código cíclico binario con parámetros [n, k] detecta todas las ráfagas de longitud menor a n - k.

Sea

$$g(x) = x^{16} + x^{12} + x^5 + 1 = (x+1)(x^{15} + x^{14} + x^{13} + x^{12} + x^4 + x^3 + x^2 + x + 1)$$

Además $(x + 1)|x^{2^{15}-1} + 1$ y $2^{15-1} = 32767$. Luego, $C = \langle g(x) \rangle (n = 32767)$.

- Detecta errores simples.
- 2 Detecta los errores impares (contiene x + 1)).
- Detecta los errores dobles ya que $x^{15} + x^{14} + \cdots + x^2 + x + 1$ es un polinomio primitivo de grado 15 y $2^{15} 1 \ge 32767$.
- Detecta las ráfagas de longitud ≤ 16.

Sea d(x) el dato que queremos codificar en un (n,k)-código cíclico C, cuyo polinomio generador es g(x) de grado r.

Multiplicamos d(x) por x^r y dividimos por g(x).

$$d(x)x^r = g(x)q(x) + r(x)$$

con gr(r(x)) < r Si llamamos u(x) = g(x)q(x) y despejamos

$$u(x) = d(x)x^{r} - r(x) = g(x)q(x)$$

y u(x) es una palabra del código ya que es un múltiplo del polinomio generador, donde $d(x)x^r$ forman los bits de información y r(x) los de paridad (fíjese que $d(x)x^r$ ocupa siempre las posiciones más significativas de u(x), y r(x) las menos significativos).

Sea $x^7 - 1 = (x - 1)(x^3 + x + 1)(x^3 + x^2 + 1)$ y $g(x) = x^3 + x + 1$ el polinomio generador del código en cuestión.

-		Cádigo como nelinemico	Cádigo como voctoro
		Código como polinomios	Código como vectore
0.g(x)	=	0	0000000
1.g(x)		$x^3 + x + 1$	0001011
x.g(x)		$x^4 + x^2 + x$	0010110
(x+1)g(x)	=	$x^4 + x^3 + x^2 + 1$	0011101
$x^2.g(x)$	=	$x^5 + x^3 + x^2$	0101100
$(x^2+1).g(x)$		$x^5 + x^2 + x + 1$	0100111
$(x^2+x).g(x)$		$x^5 + x^4 + x^3 + x$	0111010
$(x^2+x+1).g(x)$		$x^5 + x^4 + 1$	0110001
$x^3.g(x)$	=	$x^6 + x^4 + x^3$	1011000
$(x^3 + 1).g(x)$		$x^6 + x^4 + x + 1$	1010011
$(x^3+x)g(x)$		$x^6 + x^3 + x^2 + x$	1001110
$(x^3 + x + 1).g(x)$	=	$x^6 + x^2 + 1$	1000101
$(x^3+x^2).g(x)$		$x^6 + x^5 + x^4 + x^2$	1101001
$(x^3 + x^2 + 1).g(x)$	=	$x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$	1111111
$(x^3 + x^2 + x).g(x)$		$x^6 + x^5 + x$	1100010
$(x^3 + x^2 + x + 1).g(x)$	=	$x^6 + x^5 + x^3 + 1$	1101001

Codificación en su forma estandar

d(x)	d	$u(x) = d(x)x^3 - r(x)$	и
0	0000	0	0000000
1	0001	$(1)x^3 + x + 1$	0001011
X	0010	$(x)x^3 + x^2 + x$	0010110
x + 1	0011	$(x+1)x^3 + x^2 + 1$	0011101
χ^2	0100	$(x^2)x^3 + x^2 + x + 1$	0100111
$x^2 + 1$	0101	$(x^2+1)x^3+x^2$	0101100
$x^2 + x$	0110	$(x^2 + x)x^3$	0110001
$x^2 + x + 1$	0111	$(x^2 + x + 1)x^3$	0111010
x^3	1000	$(x^3)x^3$	1000101
$x^3 + 1$	1001	$(x^3+1)x^3$	1001110
$x^{3} + x$	1010	$(x^3 + x)x^3$	1010011
$x^3 + x + 1$	1011	$(x^3 + x + 1)x^3$	1011000
$x^3 + x^2$	1100	$(x^3 + x^2)x^{3'}$	1100010
$x^3 + x^2 + 1$	1101	$(x^3 + x^2 + 1)x^3$	1101001
$x^3 + x^2 + x$	1110	$(x^3 + x^2 + x)x^3$	1110100
$x^3 + x^2 + x + 1$	1111	$(x^3 + x^2 + x + 1)x^3$	1111111

El algoritmo de decodificación sigue siendo el mismo que para códigos lineales, salvo que ahora, el síndrome viene dado por

$$S(y(x)) = y(x) modg(x)$$

Obsérvese, que si $u(x) \in C$, entonces u(x) = a(x)g(x) y al dividir por g(x) el resto será cero. Si a u(x) le a nadimos un error e(x),

$$S(u(x)+e(x)) = (a(x)g(x)+e(x)) \bmod g(x) = a(x)g(x) \bmod g(x) + e(x) \bmod g(x) = S(e(x))$$

Ejemplo

Sea $g(x) = x^3 + x + 1$ el generador de un código en $F_2[x]/(x^7 - 1)$. El array de síndromes de todos los errores de peso 1 se pueden observar en la tabla **??**.

Líder	Síndrome
0	0
1	1
X	X
x^2	x^2
<i>x</i> ³	x + 1
x^4	$x^{2} + x$
x^5	$x^2 + x + 1$
x ⁶	$x^2 + 1$

$$\frac{\text{Líder}}{x^6} \frac{\text{Síndrome}}{x^2 + 1}$$

Si recibimos $u(x) = x^6 + x + 1$.

 $S(u(x)) = x^2 + x$, luego el último bit es correcto.

x.u(x) módulo $(x^7-1)=x^2+x+1$ y $S(x.u(x))=x^2+x+1$, luego no hay un error en la posición 5.

 $S(x^2.u(x)) = x^2 + 1$, luego se ha producido un error la cuarta posición.

Teorema

Sea $C = \langle g(x) \rangle$. Para cualquier polinomio $u(x) \in F_q[x]/(x^n - 1)$,

$$syn(x.u(x))mod(x^m - 1)) = syn(x.syn(u(x)))$$

Lema

Sea C un código cíclico capaz de corregir t errores. Supongamos que se producen menos de t errores en la palabra del código c(x). Si la palabra recibida, u(x) tiene peso menor que t, entonces e(x) = S(u(x))

Decodificación de un SEC