T(p)=	6.3462e+01
lowest T=	3.0177e+01

4. Consider the hexagonal domain shown in the figure below, and with the elements and nodes plotted there.

We want to solve the problem defined by the equation

$$-\Delta u = 2$$

with boundary conditions given by:

- u = 3 at the edges that joint the vertices (0, 2), (-1, 1), (0, 0), (1, 0) and (2, 1).
- The natural boundary condition $q_n=0$ at the edge that joints the vertices (2,1) and (1,2)
- The natural boundary condition $\frac{\partial u}{\partial y}(x,2) = 1 x$ at the edge that joints the vertices (0,2) and (1,2)

Meshing this domain with eight triangular elements as it is shown in the figure and using the proposing numbering for this mesh, compute:

(a) The coefficient K_{36} , K_{45} of the global assembled system.

K_{36}	K_{45}			
0	-1			

(b) The essential and natural boundary conditions needed to solve the global assembled system (write them just below)

$$u_1 = u_2 = u_3 = u_6 = u_7 = 3, Q_8 = 1/6, Q_4 = Q_5 = 0.$$

(c) The value of u(1,2)

$$u(1,2) = 4.1261$$

(*Hint:* It must be a value among the following ones: $10.297, \, 2.0180, \, 3.0045, \, 4.7568, \, 4.1261, \, 6.1532, \, 2.1631, \, 3.1511$)

(d) The value of u(0.5, 0.8)

$$u(0.5, 0.8) = 3.5721$$

(4 points)

(a) T3-MN-FEM2D, page 48:
$$K = \frac{1}{2} \begin{pmatrix} 1-1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$
, $F^{k} = \frac{2 \cdot \frac{1}{2}}{3} \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} = \frac{$

(b)
$$U_1 = U_2 = U_3 = U_6 = U_7 = 3$$

 $Q_4 = Q_5 = 0$, $Q_8 = Q_{13}^8 + Q_{22}^7 = \frac{1}{3}0.1 + \frac{1}{6}1.1 = \frac{1}{6}$

(K12+K21	K31+K13	K21+K23	$K_{22}^{1}+K_{11}^{2}+K_{33}+K$	6 22+K2	K32+K23	0	K1+K23	0
(5)	0	$K_{21}^3 + K_{23}^4$	0	$K_{32}^{6} + K_{23}^{3}$		$k_{22}^{3}+k_{23}^{6}+k_{11}^{7}$ + $k_{22}^{8}+k_{22}^{4}$	K21+K23	K31+K13	K12+K21
8	6	0	0	0		K7+K8	K ₁₃	K 7 23	K22 + K11
	\(\sigma_1 \)	0 0 -1 -1 0	G L 2	-1	© 0	① ② O O O O O O O O O O O O O O O O O O	U ₄	$\frac{60}{5} = \frac{F_3}{F_5} = \frac{1}{5}$	
	o	6 0			0	-1 3/2		= Fg= 3	1 1

$$F_{4} = F_{2}^{1} + F_{3}^{2} + F_{3}^{3} + F_{2}^{6} + F_{2}^{5} = \frac{9}{3}$$

$$F_{5} = F_{2}^{3} + F_{2}^{4} + F_{2}^{8} + F_{1}^{7} + F_{3}^{6} = \frac{9}{3}$$

$$F_{8} = F_{2}^{7} + F_{1}^{7} = \frac{9}{3}$$

So the reduced system casts:

$$\frac{F_4 = F_2^{1} + F_3^{2} + F_3^{3} + F_2^{6} + F_2^{5} = \frac{5}{3}}{F_5 = F_2^{3} + F_2^{4} + F_3^{4} = \frac{5}{3}} = \frac{5}{3} + \frac{5}{4} + \frac{5}{4} + \frac{5}{4} = \frac{5}{3} = \frac{5}{3} = \frac{5}{3} + \frac{5}{4} + \frac{5}{4} = \frac{5}{3} =$$

or, equivalently:

$$\begin{pmatrix} 12 & -3 & 0 \\ -3 & 12 & -3 \\ 0 & -6 & 9 \end{pmatrix} \begin{pmatrix} U_4 \\ U_5 \\ U_8 \end{pmatrix} \cong \begin{pmatrix} 32 \\ 23 \\ 14 \end{pmatrix}$$

$$\begin{pmatrix}
12 & -3 & 0 & | & 32 \\
-3 & 12 & -3 & | & 23 \\
0 & -6 & 9 & | & 14
\end{pmatrix}$$

$$\begin{pmatrix}
12 & -3 & 0 & | & 32 \\
0 & 45 & -12 & | & 124 \\
0 & -6 & 9 & | & 14
\end{pmatrix}$$

$$\begin{pmatrix}
12 & -3 & 0 & | & 32 \\
0 & 45 & -12 & | & 124 \\
0 & 0 & -6 & 9 & | & 14
\end{pmatrix}$$

$$\begin{pmatrix}
12 & -3 & 0 & | & 32 \\
0 & 45 & -12 & | & 124 \\
0 & 0 & \frac{411}{2} & | & 229 \\
\frac{25}{6} & 3^{4} + 2^{4} & | & 24
\end{pmatrix}$$

50:

$$U_8 = \frac{2 \times 229}{141} = \frac{458}{111}$$

$$U_5 = \frac{1}{45} \left(124 + 12 \times \frac{458}{111} \right) = \frac{19260}{45 \times 111} = \frac{428}{111}$$

$$U_4 = \frac{1}{12} \left(32 + 3 \times \frac{428}{111} \right) = \frac{4836}{12 \times 111} = \frac{403}{111}$$

FEM Solution:

$$U_{1} = 3$$

$$U_{2} = 3$$

$$U_{3} = 3$$

$$U_{4} = \frac{403}{111}$$

$$U_{5} = \frac{428}{111}$$

(c)
$$M(1,2) \stackrel{\sim}{=} U_8 = \frac{4.58}{111} = 4.1261$$

By inspection for we can use formulas in TI-MN-Interpolation-Shape-Functions.pdf, page 30):

$$Y_1^3(x,y) = 1 - y$$
, $Y_2^3(x,y) = x + y - 1$, $Y_3^3(x,y) = 1 - x$

Therefore:

$$u(0,5,0.8) \approx U_2 V_1^3(0.5,0.8) + U_5 V_2^3(0.5,0.8) + U_4 V_3^3(0.5,0.8)$$

$$= 3(1-0.8) + \frac{428}{111} \times 0.3 + \frac{403}{111} \times 0.5 = \frac{793}{222}$$

$$= 3.57207$$