▼ IMPORTING LIBRARIES

import numpy as np
import pandas as pd
df=pd.read_csv('/content/heart.csv')
df

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	th
0	52	1	0	125	212	0	1	168	0	1.0	2	2	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	
1025 rd	ows ×	14 col	umn	S									→

df.head()

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca
0	52	1	0	125	212	0	1	168	0	1.0	2	2
1	53	1	0	140	203	1	0	155	1	3.1	0	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1
4	62	0	0	138	294	1	1	106	0	1.9	1	3
4												•

df.tail()

age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	С
59	1	1	140	221	0	1	164	1	0.0	2	
60	1	0	125	258	0	0	141	1	2.8	1	
47	1	0	110	275	0	0	118	1	1.0	1	
50	0	0	110	254	0	0	159	0	0.0	2	
54	1	0	120	188	0	1	113	0	1.4	1	
	59 60 47 50	59 1 60 1 47 1 50 0	59 1 1 60 1 0 47 1 0	59 1 1 140 60 1 0 125 47 1 0 110 50 0 0 110	59 1 1 140 221 60 1 0 125 258 47 1 0 110 275 50 0 0 110 254	59 1 1 140 221 0 60 1 0 125 258 0 47 1 0 110 275 0 50 0 0 110 254 0	59 1 1 140 221 0 1 60 1 0 125 258 0 0 47 1 0 110 275 0 0 50 0 0 110 254 0 0	59 1 1 140 221 0 1 164 60 1 0 125 258 0 0 141 47 1 0 110 275 0 0 118 50 0 0 110 254 0 0 159	59 1 1 140 221 0 1 164 1 60 1 0 125 258 0 0 141 1 47 1 0 110 275 0 0 118 1 50 0 0 110 254 0 0 159 0	59 1 1 140 221 0 1 164 1 0.0 60 1 0 125 258 0 0 141 1 2.8 47 1 0 110 275 0 0 118 1 1.0 50 0 0 110 254 0 0 159 0 0.0	60 1 0 125 258 0 0 141 1 2.8 1 47 1 0 110 275 0 0 118 1 1.0 1 50 0 0 110 254 0 0 159 0 0.0 2

df.info

<bound< th=""><th>metho</th><th>d Da</th><th>taFrame</th><th>info c</th><th>of</th><th>age</th><th>sex</th><th>ср</th><th>trestbps</th><th>chol</th><th>fbs</th><th>restecg</th><th>thalach</th><th>exang</th><th>oldpeak</th><th>\</th></bound<>	metho	d Da	taFrame	info c	of	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	\
0	52	1	0	125	212	0	1	_	168	0	1.	0				
1	53	1	0	140	203	1	0)	155	1	3.	1				
2	70	1	0	145	174	0	1		125	1	2.	6				

3	61	1	0	148	203	0	1	161	0	0.0
4	62	0	0	138	294	1	1	106	0	1.9
							• • •			
1020	59	1	1	140	221	0	1	164	1	0.0
1021	60	1	0	125	258	0	0	141	1	2.8
1022	47	1	0	110	275	0	0	118	1	1.0
1023	50	0	0	110	254	0	0	159	0	0.0
1024	54	1	0	120	188	0	1	113	0	1.4

```
slope ca thal target
0
          2
               3
1
2
       0
         0
             3
3
       2 1
             3
4
         3
             2
1020
       2
          0
                    1
1021
          1
               3
1022
               2
1023
       2
               2
                      1
          1
               3
1024
       1
                      0
```

[1025 rows x 14 columns]>

▼ FINDING MISSING VALUES

```
df.isna().sum()
                 0
     age
                 0
     sex
     ср
     trestbps
     chol
     fbs
                 0
     restecg
                 0
     thalach
     exang
     oldpeak
     slope
     ca
     thal
     target
     dtype: int64
```

▼ SEPARATING X AND Y VARIABLES

▼ SPLITTING INTO TRAINING AND TESTING DATA

▼ NORMALIZATION USING MINMAX SCALER

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
x_train=scaler.fit_transform(x_train)
x_test=scaler.fit_transform(x_test)
x_train
                         , 0.33333333, ..., 1.
                                                    , 0.
    array([[0.58333333, 1.
           1. ],
           [0.77083333, 1.
                                                          , 0.
                                     , ..., 1.
           0.33333333],
           [0.1875 , 1.
                               , 0.66666667, ..., 1.
           0.66666667],
                               , 0.
                                                          , 0.
           [0.35416667, 1.
                                         , ..., 1.
           1. ],
                               , 0.33333333, ..., 1.
           [0.5625
                    , 1.
           1.
                    ],
           [0.6875
                    , 0.
                               , 0.66666667, ..., 0.5
                                                          , 0.25
                    11)
x_test
    array([[0.72340426, 0.
                              , 0.66666667, ..., 1.
           0.66666667],
           [0.31914894, 1.
                              , 0.66666667, ..., 1.
                                                          , 0.
           0.66666667],
           [0.76595745, 0.
                               , 0.66666667, ..., 1.
                                                          , 0.
           0.66666667],
           [0.46808511, 1.
                              , 0.66666667, ..., 0.5
                                                          , 0.
           0.66666667],
           [0.59574468, 1.
                              , 0.66666667, ..., 0.5
                                                          , 0.25
           1. ],
           [0.10638298, 0.
                               , 0.33333333, ..., 1.
                                                          , 0.
           0.66666667]])
```

→ MODEL CREATION

KNN MODEL AND PERFORMANCE EVALUATION

```
from sklearn.neighbors import KNeighborsClassifier
knn model=KNeighborsClassifier(n neighbors=7)
knn_model.fit(x_train,y_train)
v pred=knn model.predict(x test)
y_pred
     array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1,
            1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0,
            1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1,
            0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0,
            1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0,
            0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
            1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1,
            0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0,
            1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
            0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1,
            1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1,
            0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
            0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1,
            1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1])
from sklearn.metrics import confusion matrix,accuracy score
result=confusion matrix(y test,y pred)
result
     array([[136, 22]
            [ 24, 126]])
score=accuracy_score(y_pred,y_test)
score
     0.8506493506493507
```

NAIVE BAYES MODEL AND PERFORMANCE EVALUATION

```
from sklearn.naive_bayes import GaussianNB
nb_model=GaussianNB()
nb model.fit(x train,y train)
y pred=nb model.predict(x test)
y_pred
     array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,
            1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0,
            1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0,
            1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0,
            1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
            0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
            1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,
            0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1,
            1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1,
           1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1,
            0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0,
            0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1,
            1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1]
from sklearn.metrics import confusion_matrix,accuracy_score
result=confusion_matrix(y_test,y_pred)
result
    array([[135, 23],
            [ 16, 134]])
```

```
score=accuracy_score(y_test,y_pred)
score
```

0.8733766233766234

SVM MODEL AND PERFORMANCE EVALUATION

```
from sklearn.svm import SVC
svm model=SVC()
svm_model.fit(x_train,y_train)
y pred=svm model.predict(x test)
y_pred
     array([1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1,
            1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0,
            1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0,
            1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,
            1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0,
            0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1,
            1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1,
            0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1,
            1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0,
            0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
            1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1,
            0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1,
            1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1])
from sklearn.metrics import confusion_matrix,accuracy_score
result=confusion matrix(y test,y pred)
result
     array([[141, 17],
            [ 25, 125]])
score=accuracy_score(y_test,y_pred)
score
     0.8636363636363636
```

Colab paid products - Cancel contracts here