Bayesian SEIR Model

Author: Dan Sheldon Date: March 31, 2020

Underlying Disease Model

We use a a standard SEIR model with a time-varying contact rate:

$$\frac{dS}{dt} = -\beta(t) \cdot S \frac{I}{N}$$

$$\frac{dE}{dt} = \beta(t) \cdot S \frac{I}{N} - \sigma E$$

$$\frac{dI}{dt} = \sigma E - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

One additional variable C(t) is added to track cumulative number of infections for the purposes of the observation model:

$$\frac{dC}{dt} = \sigma E$$

The nature of $\beta(t)$ will be discussed below --- it will change stochastically on a daily basis, but is constant for the duration of each day.

Stochastic Model

Parameters and Intial State Variables

$$I_0 \sim \text{Unif}(0, 0.001N)$$

 $E_0 \sim \text{Unif}(0, 0.001N)$
 $\sigma \sim \text{Gamma}(5, 5\hat{d}_E)$
 $\gamma \sim \text{Gamma}(5, 5\hat{d}_I)$
 $\beta_0 \sim \text{Gamma}(1, \hat{d}_I/\hat{R})$
 $\rho \sim \text{Beta}(\kappa \hat{\rho}, \kappa (1 - \hat{\rho}))$

Justification and values for user-selected parameters:

- I_0 and E_0 are the initial numbers of infected and exposed. The priors are self-explanatory.
- σ is the rate for leaving the exposed compartment; i.e., $1/\sigma$ is the expected duration in the exposed compartment.

The prior satisfies $\mathbb{E}[\sigma] = 1/\hat{d}_E$, where \hat{d}_E is an initial guess of the duration in the exposed compartment. Currently $\hat{d}_E = 4.5$ based on Lauer et al., who estimated the median incubation period to be 5.1 days --- shortened by 0.6 days for possible infectiousness prior to developing symptoms

- γ is the rate for leaving the infectious compartment; i.e., $1/\gamma$ is the expected duration in the infectious compartment. The prior satisfies $\mathbb{E}[\gamma] = 1/\hat{d}_I$, where \hat{d}_I is an initial guess for the duration in the infectious compartment. The current setting is $\hat{d}_I = 1.5$ to model the likely isolation of individuals after symptom onset. Preliminary experiments show that the model has almost no ability to estimate this parameter from available data --- it is too confounded with σ and β . Initial experiments also showed that \hat{d}_I needed to be pretty small to be able to fit observed data while keeping realistic estimates of incubation time and R_0 . It's probably important to do sensitivity analyses of forecasts on the setting of this prior.
- β is the contact rate. In the SEIR model, it is known that $R_0 = \beta/\gamma$, so we set our prior to have mean $\mathbb{E}[\beta] = \hat{R}/\hat{d}_I$ where $\hat{R} = 3.5$ is an initial guess for R_0 and $\hat{d}_I = 1.5$, as described above.
- ρ is the detection rate. This prior satisfies $\mathbb{E}[\rho] = \hat{\rho}$ where $\hat{\rho} = 0.3$ is an initial guess for the detection rate. The parameter κ is a concentration parameter, currently set to $\kappa = 50$

Philosophy for shape and concentration parameters:

- Case count data effectively places one strong constraint on (β, γ, σ) , so we probably need informative priors on two of these.
- Our better outside evidence is probably on incubation period and infectious period, as opposed to contact rate, we we set stronger priors (shape = 5) on σ and γ , and a weaker prior (shape=1) on β_0 .
- The concentration parameter κ is set somewhat arbitrarily.

Process model

The process model proceeds in discrete time steps $k = 1, 2, 3, \dots$

The state variables are initialized as:

$$X(0) = (S(0), E(0), I(0), R(0), C(0)) = (N - I_0 - E_0, E_0, I_0, 0, I_0)$$

The updates are

$$\beta_{k+1} = \beta_k \times \exp(\epsilon_k), \qquad \epsilon_k \sim \mathcal{N}(0, \tau)$$

$$X(k+1) = \text{ode_solve} \left(X(k), \, dX/dt, \, \beta_k \right)$$

The contact rate β_k undergoes an exponentiated Gaussian random walk starting from β_0 (defined above). The function ode_solve finds the state vector at time k+1 by simulating the ODE for one time step with *constant* contact rate β_k . (This could be replaced by something like Euler's approximation, Runge-Kutta, or even stochastic dynamics).

Observation model

Observations are made on confirmed cases. Let y(t) be the cumulative number of confirmed cases at time t. The model is:

$$y(t) \sim \text{BinomApprox}\left(C(t), \rho, \lambda\right)$$

The distribution BinomApprox is a continuous approximation of a binomial distribution that can also model overdispersion via the parameter λ . The definition is

$$BinomApprox(n, p, \lambda) = n \cdot Beta(\lambda p, \lambda(1 - p))$$

With $\lambda = n$, we get the binomial. With $\lambda < n$, the distribution is overdispersed. We use $\lambda = 10$, so the variance is roughly the same as a Binomial distribution with n = 10. (TODO: show a picture of this.)