1 Diskrete Informationsquellen

1.1 Diskrete Informationsquellen mit unabhängigen Ereignissen

- 1. (a) Bestimmen Sie die Entropien von Binärquellen, wenn die Wahrscheinlichkeiten $p_i(1) = 0, 1 \cdot i \quad (i = 0, 1, ..., 5)$ gegeben sind.
 - (b) Stellen Sie die Funktion H(p)=pld $\frac{1}{p}+(1-p)$ ld $\frac{1}{1-p}$ für $0\leq p\leq 1$ grafisch dar! Beachten Sie die Symmetrie!
- 2. Berechnen Sie den mittleren Informationsgehalt einer diskreten Quelle mit 6 Zeichen:

(a)
$$p(x_1) = 0.5$$
 $p(x_2) = 0.2$ $p(x_3) = 0.1$ $p(x_4) = 0.1$ $p(x_5) = 0.05$ $p(x_6) = 0.05$ $(H_m = 2.06 \, bit/QZ)$

(b) alle Zeichen sind gleichwahrscheinlich. $(H_0 = 2,58 \, bit/QZ)$

3. Bestimmen Sie den Informationsgehalt einer Buchseite (40 Zeilen, 65 Zeichen/Zeile). Für die Berechnung sind 45 unabhängige Zeichen anzunehmen.

$$(H_0 = 14, 3 \cdot 10^3 \, bit/S)$$

- 4. Eine automatische Waage umfasst den Messbereich von $0...100\,g$ mit der Schrittweite von $1\,g$.
 - (a) Bestimmen Sie den mittleren Informationsgehalt je Messwert! ($H_0 = 6,66 \, bit/MW$)
 - (b) Wie groß wird der mittlere Informationsgehalt je Messwert bei einer Schrittweite von 0, 1 g? $(H_0 = 9, 97 bit/MW)$
- 5. Eine Bildschirmeinheit umfasst 10⁵ Bildpunkte mit folgender Verteilung der Helligkeitsstufen:

Helligkeitsstufe	Wahrscheinlichkeit
H1	50%
H2	25%
H3	12,5%
H4	6,25%
H5	6,25%

(a) Wie groß ist der mittlere Informationsgehalt einer Bildschirmeinheit?

$$(H_m = 1,88 \cdot 10^5 \, bit/Bild)$$

(b) Wie groß wird der mittlere Informationsgehalt, wenn über die Auftrittswahrscheinlichkeit der Helligkeitsstufen keine Information vorliegt? ($H_0 = 2, 32 \cdot 10^5 \, bit/Bild$)

6. Ein kontinuierliches Signal mit exponentieller Verteilungsdichte soll quantisiert werden. Der Amplitudenbereich wird dazu in 7 Intervalle aufgeteilt, in denen die Amplitudenwerte mit folgenden Wahrscheinlichkeiten auftreten:

Intervall i	Auftrittswahrscheinlichkeit $p(x_i)$
1	0,47
2	0,25
3	0,13
4	0,07
5	0,04
6	0,02
7	0,02

- (a) Wie groß ist der mittlere Informationsgehalt eines Amplitudenwertes (Intervalls)? $(H_m = 2,07 \, bit/AW)$
- (b) Wie groß wird der mittlere Informationsgehalt, wenn jedes Intervall zusätzlich in 16 Teilintervalle zerlegt wird? (Gleiche Auftrittswahrscheinlichkeit in den Teilintervallen angenommen!)

 $(H_m = 6,07 \, bit/AW)$

 $7. \ \ Eine \ Nachrichten quelle \ sendet \ Zahlen \ mit \ folgenden \ Auftritts wahrscheinlich keiten \ aus:$

Zahlenbereich
$$i$$
 1-25 26-70 71-100

Auftrittswahrscheinlichkeit $p(x_i)$ $\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{2}$

Innerhalb eines Bereiches treten die Zahlen mit gleicher Wahrscheinlichkeit auf. Berechnen Sie die Entropie dieser Quelle! $(H_m = 6, 52 \, bit/Z)$

Vergleichen Sie mit der Entropie bei gleichwahrscheinlichem Auftreten der Zahlen! $(H_0 = 6, 64 \, bit/Z)$

Bestimmen Sie die Entropie sowie ihre Streuung σ^2 und Standardabweichung σ .

Hinweis:
$$\sigma^2 = \sum_i p(x_i) \left(\operatorname{ld} \frac{1}{p(x_i)} - H_m \right)^2 = \sum_i p(x_i) \left(\operatorname{ld} \frac{1}{p(x_i)} \right)^2 - H_m^2$$

$$(H_m = 2, 06 \pm 1, 19 \, bit/QZ)$$

1.2 Diskrete Informationsquellen mit abhängigen Ereignissen (MARKOW-Quellen)

Die Steuerung eines automatischen Teilefertigungsprozesses erfordert die laufende Qualitätsprüfung der produzierten Teile. Dabei sollen drei Güteklassen (Zustände z_1 , z_2 , z_3) unterschieden werden, für die folgende Verteilung der Auftrittswahrscheinlichkeiten zum Zeitpunkt t=0 anzunehmen ist: $(p(z_i))=(0,9-0,1-0)$.

Für den Fertigungsprozess wurde folgendes Übergangsverhalten der Zustände statistisch ermittelt:

$$(p(z_j|z_i)) = \begin{pmatrix} 0,60 & 0,38 & 0,02\\ 0,15 & 0,80 & 0,05\\ 0,40 & 0,60 & 0 \end{pmatrix}.$$

Berechnen Sie

- a) die stationären Wahrscheinlichkeiten, $\left(\ (\overline{p(z_i)} \) = (0,29\ 0,67\ 0,04) \ \right)$
- b) die MARKOW-Entropie, $(H_M = 0.95 \, bit/Z)$
- c) die Entropie, wenn die Abhängigkeiten unberücksichtigt bleiben, $(H_m = 1,09 \, bit/Z)$
- d) die Entropie, wenn die Zustände gleichwahrscheinlich auftreten. $(H_0 = 1, 58 \, bit/Z)$