Chapitre 1

Les arbres de décisions

1.1 Exercices

EXERCICE 4.1 Donner les arbres de décisions qui expriment les fonctions booléennes suivantes :

- 1. $A \wedge \neg B$
- 2. $A \lor (B \land C)$
- 3. AXORB
- 4. $(A \wedge B) \vee (C \wedge D)$

Corrigé

- 1. A==VRAI==>
 - B==VRAI ==> VRAI
 - B==FAUX ==> FAUX
 - A==FAUX==> FAUX
- 2. A==VRAI==> VRAI
 - A==FAUX==>
 - B==VRAI==>
 - C==VRAI ==> VRAI
 - C==FAUX ==> FAUX
 - B==FAUX==> FAUX
- 3. A==VRAI==>
 - B==VRAI ==> FAUX
 - B==FAUX ==> VRAI
 - A==FAUX==>
 - B==VRAI ==> VRAI
 - B==FAUX ==> FAUX

EXERCICE 4.2 Soient les exemples suivants :

1. Calculer l'entropie de l'ensemble d'exemples par rapport à la valeur de la classe.

1.1. EXERCICES Page 2

Instance	Classe	sse a1	
1	+	T	T
2	+ T		T
3	-	Т	F
4	+	F	F
5	-	F	T
6	-	F	T

2. Quel le gain de l'attribut a2.

Corrigé

1. En appliquant:

$$I(n,p) = \left(\frac{p}{p+n}\right)\log_2(\frac{p+n}{p}) + \left(\frac{n}{p+n}\right)\log_2(\frac{p+n}{n})$$
(1.1.1)

nous avons 3 exemples positifs et trois négatifs donc I(n, p) = 1

2. En appliquant:

$$E(T) = \sum_{i=1}^{n} \left(\frac{p_i + n_i}{p_i + n_i}\right) I(p_i, n_i)$$
 (1.1.2)

où T est un test sur l'attribut a2 on aura :

$$E(T) = \frac{4}{6} * I(2,2) + \frac{2}{6} * I(1,1) = 1$$

Par conséquent, le gain est égal à 0.

EXERCICE 4.3 Soient les exemples suivants :

NUM	CIEL	TEMP.	HUMI.	VENT	Concept
1	couvert	élevé	normale	non	1
2	pluvieux	moyenne	normale	non	1
3	ensoleillé	élevé	forte	non	0
4	ensoleillé	élevé	forte	oui	0

TABLE 1.1 – Description des conditions météorologiques et du concept JouerFoot

Comparer l'arbre de décision calculé par ID3 avec les hypothèses trouvées selon l'algorithme candidate-elimination. Commenter.

Corrigé L'arbre obtenu est :

- HUMI==normale==>1
- HUMI==forte==>0

1.1. EXERCICES Page 3

Candidate-elimination nous donne l'espace de version suivant :

$$S = \{\langle?,?,normale,non\rangle\}$$
$$G = \{\langle?,?,normale,?\rangle\}$$

La première branche de l'arbre de décision correspond à l'hypothèse la plus générale dans l'espace.

EXERCICE 4.4 Installer le logiciel Weka à partir du site : http://www.cs.waikato.ac.nz/ml/Weka/.

- 1. Choisir l'application explorer.
- 2. Ouvrir le fichier "data/weather.nominal".
- 3. A l'aide du bouton *edit* vérifier le contenu du fichier (vous trouvez les 14 exemples traités en cours).
- 4. Choisir *classify* et ensuite choisir via le bouton *choose* la méthode ID3 (classés dans le répertoire *trees*.
- 5. Appuyer sur *start* : l'arbre de décision est construit.
- 6. Ouvrez avec un éditeur externe le fichier weather.nominal. Étudier le codage des données pour pouvoir faire l'exercice suivant.
- 7. Appliquer ID3 (via weka) sur l'ensemble d'exemples suivants et comparer avec le résultat de candidate-elimination :

Pays	Constructeur	Couleur	Année	Type	Exemple
Japon	Honda	Bleue	2000	Familiale	1
Japon	Toyota	Verte	1997	Sportive	0
Japon	Toyota	Bleue	1999	Familiale	1
Étas-Unis	Chrysler	Rouge	2000	Familiale	0
Japon	Honda	Blanche	2000	Familiale	1