```
In [1]:
           import pandas as pd
           import numpy as np
           from sklearn.model_selection import train_test_split
           from sklearn.linear_model import LogisticRegression
           from sklearn.metrics import accuracy score
In [2]:
           heart_data=pd.read_csv("C:/Users/hasif/Downloads/heart.csv")
           print(heart_data)
                                 trestbps
                                             chol
                                                    fbs
                                                          restecg
                                                                     thalach
                                                                                        oldpeak \
                 age
                       sex
                             ср
                                                                                exang
          0
                              0
                  52
                         1
                                       125
                                               212
                                                       0
                                                                          168
                                                                                             1.0
                                                                  1
                                                                                     0
          1
                  53
                              0
                                       140
                                               203
                                                                  0
                                                                          155
                                                                                    1
                         1
                                                       1
                                                                                             3.1
          2
                  70
                         1
                              0
                                       145
                                               174
                                                       0
                                                                  1
                                                                          125
                                                                                     1
                                                                                             2.6
          3
                              0
                                                       0
                  61
                         1
                                       148
                                               203
                                                                  1
                                                                                     0
                                                                                             0.0
                                                                          161
          4
                  62
                         0
                              0
                                       138
                                               294
                                                       1
                                                                  1
                                                                          106
                                                                                     0
                                                                                             1.9
                                        . . .
                                               . . .
                                                                          . . .
                                                                                             . . .
                 . . .
                             . .
                                                     . . .
                                                                . . .
                                                                                   . . .
          . . .
                       . . .
                  59
                         1
                              1
                                       140
                                                       0
                                                                                             0.0
          1020
                                               221
                                                                  1
                                                                          164
                                                                                    1
          1021
                  60
                              0
                                       125
                                               258
                                                       0
                                                                  0
                                                                          141
                                                                                    1
                                                                                             2.8
                         1
                              0
                                               275
                                                                  0
                                                                                    1
                                                                                             1.0
          1022
                  47
                         1
                                       110
                                                       0
                                                                          118
          1023
                  50
                         0
                              0
                                       110
                                               254
                                                       0
                                                                  0
                                                                          159
                                                                                     0
                                                                                             0.0
          1024
                  54
                         1
                              0
                                       120
                                              188
                                                       0
                                                                  1
                                                                          113
                                                                                     0
                                                                                             1.4
                 slope
                         ca
                              thal
                                     target
          0
                      2
                          2
                                 3
                                           0
          1
                      0
                                 3
                          0
                                           0
          2
                      0
                          0
                                 3
                                           0
                      2
          3
                          1
                                 3
                                           0
          4
                      1
                          3
                                 2
                                           0
          . . .
                    . . .
                          . .
                               . . .
                     2
                          0
                                 2
                                           1
         1020
                                 3
                                           0
         1021
                     1
                          1
                                 2
          1022
                      1
                          1
                                           0
                      2
                                 2
          1023
                          0
                                           1
          1024
                      1
                                 3
          [1025 rows x 14 columns]
In [3]:
          heart_data.head()
Out[3]:
                                                                          oldpeak slope
             age
                  sex
                        ср
                            trestbps chol fbs
                                                restecg
                                                         thalach
                                                                   exang
                                                                                           ca
                                                                                               thal
                                                                                                     target
          0
              52
                     1
                         0
                                 125
                                      212
                                              0
                                                       1
                                                             168
                                                                       0
                                                                                1.0
                                                                                        2
                                                                                            2
                                                                                                  3
                                                                                                          0
          1
              53
                     1
                         0
                                 140
                                      203
                                              1
                                                       0
                                                             155
                                                                       1
                                                                               3.1
                                                                                        0
                                                                                            0
                                                                                                  3
                                                                                                         0
          2
                                                                                                  3
              70
                     1
                         0
                                 145
                                       174
                                              0
                                                       1
                                                             125
                                                                       1
                                                                               2.6
                                                                                        0
                                                                                            0
                                                                                                          0
          3
              61
                         0
                                 148
                                      203
                                              0
                                                       1
                                                             161
                                                                       0
                                                                               0.0
                                                                                        2
                                                                                            1
                                                                                                  3
                                                                                                          0
                     1
                                                                                                  2
          4
              62
                    0
                                 138
                                      294
                                              1
                                                             106
                                                                       0
                                                                               1.9
                                                                                            3
                                                                                                         0
In [4]:
           heart data.tail()
                 age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
Out[4]:
```

```
age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
         1020
                59
                      1
                          1
                                 140
                                      221
                                             0
                                                     1
                                                           164
                                                                     1
                                                                            0.0
                                                                                   2
                                                                                       0
                                                                                            2
                                                                                                    1
         1021
                60
                      1
                                      258
                                                     0
                                                           141
                                                                    1
                                                                                       1
                                                                                            3
                                                                                                    0
                          0
                                 125
                                             0
                                                                            2.8
                                                                                    1
         1022
                47
                      1
                                 110
                                      275
                                                     0
                                                                    1
                                                                            1.0
                                                                                       1
                                                                                            2
                                                                                                    0
                          0
                                             0
                                                           118
                                                                                    1
         1023
                50
                      0
                          0
                                 110
                                      254
                                             0
                                                     0
                                                           159
                                                                    0
                                                                            0.0
                                                                                    2
                                                                                       0
                                                                                            2
                                                                                                    1
         1024
                54
                      1
                          0
                                 120
                                      188
                                             0
                                                     1
                                                           113
                                                                    0
                                                                            1.4
                                                                                    1
                                                                                      1
                                                                                            3
                                                                                                    0
In [5]:
          heart data.shape
         (1025, 14)
Out[5]:
In [6]:
          heart_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1025 entries, 0 to 1024
         Data columns (total 14 columns):
          #
              Column
                         Non-Null Count Dtype
         - - -
          0
                         1025 non-null
                                          int64
              age
          1
                         1025 non-null
                                          int64
              sex
          2
              ср
                         1025 non-null
                                          int64
          3
                         1025 non-null
                                           int64
              trestbps
          4
              chol
                         1025 non-null
                                          int64
          5
              fbs
                         1025 non-null
                                          int64
          6
              restecg
                         1025 non-null
                                          int64
          7
              thalach
                         1025 non-null
                                          int64
          8
                         1025 non-null
                                           int64
              exang
          9
              oldpeak
                         1025 non-null
                                          float64
          10 slope
                         1025 non-null
                                          int64
          11
              ca
                         1025 non-null
                                           int64
                         1025 non-null
                                           int64
          12
              thal
                         1025 non-null
                                           int64
          13 target
         dtypes: float64(1), int64(13)
         memory usage: 112.2 KB
In [7]:
          heart_data.isnull().sum()
                      0
         age
Out[7]:
                      0
         sex
         ср
                      0
         trestbps
                      0
         chol
                      0
         fbs
                      0
         restecg
                      0
         thalach
                      0
         exang
                      0
         oldpeak
                      0
         slope
                      0
                      0
         ca
         thal
                      0
         target
                      0
         dtype: int64
```

In

```
In [8]:
         #statistical measures
         heart_data.describe()
```

	near c_uaca.ucscr ibc()									
8]:		age	sex	ср	trestbps	chol	fbs	restecg	1	
	count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	1025.	
	mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756	149.	
	std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878	23.	
	min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000	71.	
	25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000	132.	
	50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000	152.	
	75 %	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000	166.	
	max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000	202.	
	4								•	
0 0	<pre>import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline</pre>									
]:			art_data['s r vs quanti		•					

E:\anaconda\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the followi ng variable as a keyword arg: x. From version 0.12, the only valid positional argument w ill be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

plt.show()


```
In [11]:
          sns.set_context("poster")
          sns.scatterplot(x='age',y='trestbps',data=heart_data)
```

```
Out[11]: <AxesSubplot:xlabel='age', ylabel='trestbps'>
```



```
In [12]:
    sns.set_context("paper")
    sns.scatterplot(x='age',y='chol',data=heart_data,hue='target')
```

Out[12]: <AxesSubplot:xlabel='age', ylabel='chol'>


```
In [13]:
    sns.set_context("poster")
    sns.scatterplot(x='age',y='restecg',data=heart_data,hue='target')
```

Out[13]: <AxesSubplot:xlabel='age', ylabel='restecg'>


```
In [14]:
    sns.set_context('poster')
    sns.relplot(data=heart_data,x='age',y='cp',hue='age',col='sex',col_wrap=3)
```

Out[14]: <seaborn.axisgrid.FacetGrid at 0x25014f81f40>


```
In [15]:
    sns.set_context('poster')
    sns.catplot(x='age',col='target',data=heart_data,kind='count',palette='husl')
    plt.gcf().set_size_inches(40,10)
    plt.show()
```



```
In [16]:
    #checking distribution of target
    heart_data['target'].value_counts()
    #1-->stroke
    #0-->healty
```

Out[16]: 1 526 499

```
Name: target, dtype: int64
In [17]:
            X=heart_data.drop(columns='target',axis=1)
            Y=heart_data['target']
In [18]:
            print(X)
                                                        fbs
                                                                                             oldpeak
                   age
                         sex
                               ср
                                    trestbps
                                                chol
                                                              restecg
                                                                         thalach
                                                                                    exang
           0
                    52
                           1
                                0
                                          125
                                                  212
                                                          0
                                                                     1
                                                                              168
                                                                                         0
                                                                                                  1.0
           1
                    53
                           1
                                0
                                          140
                                                  203
                                                          1
                                                                     0
                                                                              155
                                                                                         1
                                                                                                  3.1
           2
                                0
                    70
                           1
                                          145
                                                  174
                                                          0
                                                                     1
                                                                              125
                                                                                         1
                                                                                                  2.6
           3
                                0
                                                                                         0
                    61
                           1
                                          148
                                                  203
                                                          0
                                                                     1
                                                                              161
                                                                                                  0.0
           4
                    62
                           0
                                0
                                          138
                                                  294
                                                          1
                                                                     1
                                                                              106
                                                                                         0
                                                                                                  1.9
                   . . .
                                          . . .
                                                                              . . .
                                                                                                  . . .
           1020
                    59
                           1
                                1
                                          140
                                                  221
                                                          0
                                                                     1
                                                                              164
                                                                                         1
                                                                                                  0.0
           1021
                                0
                                                  258
                                                                                                  2.8
                    60
                           1
                                          125
                                                          0
                                                                     0
                                                                              141
                                                                                         1
           1022
                    47
                           1
                                0
                                          110
                                                  275
                                                          0
                                                                     0
                                                                              118
                                                                                         1
                                                                                                  1.0
           1023
                           0
                                0
                                          110
                                                                     0
                                                                                         0
                                                                                                  0.0
                    50
                                                  254
                                                          0
                                                                              159
           1024
                    54
                           1
                                0
                                          120
                                                  188
                                                          0
                                                                     1
                                                                                         0
                                                                              113
                                                                                                  1.4
                   slope
                           ca
                                thal
           0
                             2
                        2
                                    3
           1
                        0
                            0
                                    3
           2
                        0
                            0
                                    3
                        2
           3
                             1
                                    3
           4
                        1
                             3
                                    2
                      . . .
                            . .
                                  . . .
                        2
                            0
                                    2
           1020
           1021
                        1
                             1
                                    3
                        1
                                    2
                             1
           1022
           1023
                        2
                             0
                                    2
                        1
                                    3
           1024
                             1
            [1025 rows x 13 columns]
In [19]:
            print(Y)
           0
                     0
           1
                     0
           2
                     0
           3
                     0
           4
                     0
                    . .
           1020
                     1
           1021
                     0
           1022
                     0
           1023
                     1
           1024
           Name: target, Length: 1025, dtype: int64
In [20]:
            #splitting the data into training data and test data
            X_{\text{train}}, X_{\text{test}}, Y_{\text{train}}, Y_{\text{test}} = \text{train\_test\_split}(X, Y, \text{test\_size=0.2}, \text{stratify=Y}, \text{random\_stat})
In [21]:
            X_train.shape
```

```
Out[21]: (820, 13)
In [22]:
          print(X_test.shape)
          (205, 13)
In [23]:
          X.shape
         (1025, 13)
Out[23]:
In [24]:
          #Model training
          #logistic training
          model=LogisticRegression()
          model.fit(X train,Y train)
         E:\anaconda\lib\site-packages\sklearn\linear_model\_logistic.py:763: ConvergenceWarning:
         lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
           n_iter_i = _check_optimize_result(
         LogisticRegression()
Out[24]:
In [25]:
          #model evaluation
          #accuracy score
          #on trained data
          X train prediction=model.predict(X train)
          training data accuracy=accuracy score(X train prediction, Y train)
In [26]:
          print('Accuracy on training data:',training_data_accuracy)
         Accuracy on training data: 0.8524390243902439
In [27]:
          X_test_prediction=model.predict(X_test)
          test_data_accuracy=accuracy_score(X_test_prediction,Y_test)
In [28]:
          print('accuracy on test data:',test_data_accuracy)
         accuracy on test data: 0.8048780487804879
In [29]:
          #BUILDING A PREDICTIVE MODEL
          input data=(58,1,0,114,318,0,2,140,0,4.4,0,3,1)
          #change input data into numpy array
          input_data_as_numpy_array=np.asarray(input_data)
          #reshape the numpy array as we are predicting
          input_data_reshaped=input_data_as_numpy_array.reshape(1,-1)
          prediction=model.predict(input data reshaped)
```

```
#print(prediction)
if (prediction[0]==0):
    print('the person doesnot have a heart disease')
else:
    print('the person has a heart disease')
```

the person doesnot have a heart disease

```
In [30]:
    sns.catplot(x='sex',col='target',data=heart_data,kind='count',palette='husl')
    plt.show()
```



```
In []:
```